Article title: The Geographic, Environmental and Phylogenetic Evolution of the Alveolinoidea from the Cretaceous to the Present Day.
Authors: Marcelle Boudagher-Fadel[1], Geoffrey David Price[2]
Affiliations: Office of the Vice-Provost (Research), University College London, 2 Taviton Street, London WC1H 0BT UK[1]
Orcid ids: 0000-0002-2339-2444[1], 0000-0001-8232-6853[2]
Contact e-mail: m.fadel@ucl.ac.uk
License information: This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY) 4.0 https://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
Preprint statement: This article is a preprint and has not been peer-reviewed, under consideration and submitted to UCL Open: Environment Preprint for open peer review.
DOI: 10.14324/111.444/000057.v1
Preprint first posted online: 22 October 2020
Keywords: Foraminifera, alveolinoids, Cretaceous, Paleogene, Neogene, Holocene, biostratigraphy, phylogeny, palaeoenvironment, palaeogeographic distribution, extinctions, sea-level changes, The Environment, Climate, Ecology
The Geographic, Environmental and Phylogenetic Evolution of the Alveolinaidea from the Cretaceous to the Present Day.

Marcelle K. BouDagher-Fadel and Geoffrey David Price

Office of the Vice-Provost (Research), 2 Taviton Street, London WC1H 0BT UK

Corresponding author Prof. Marcelle BouDagher-Fadel e-mail: m.fadel@ucl.ac.uk, Tel: 020 7679 7480

Abstract

The superfamily Alveolinaidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single cell organisms with specific characteristic endoskeletons. Alveolinoids are found globally from the Cretaceous to present day and are very important biostratigraphic index fossils in shallow-marine carbonates. They are often associated with significant hydrocarbon reservoirs, and exhibit provincialism with characteristic genera often confined to one of the American, Tethyan or Indo-Pacific provinces. Previously, the systematic study of the global interrelationship between the various alveolinoid lineages has not been possible because of the absence of biostratigraphic correlation between the geographically scattered assemblages, and the scarcity of described material from the Indo-Pacific province. Here we use the literature and new material from the Americas, the French Alps, Iran, Tibet, India and SE Asia, coupled with the use the planktonic foraminiferal zonal (PZ) correlation scheme to put forward, for the very first time, a comprehensive, global, systematic analysis of the biostratigraphic, phylogenetic and palaeogeographic evolution of the alveolinoids. The alveolinoids originated in the Cretaceous in the Tethyan province. During a global sea-level low-stand, a westward migration of some alveolinoid species to the Americas occurred in this period, a behaviour also seen in previous studies of contemporaneous orbitolinid LBF. After the K-P event, which saw the extinction of all Cretaceous alveolinoids, rare new forms of alveolinoids evolved again, first in the Americas and later independently in Tethys. As found in previous studies of rotalid LBF, sea-level low-stands in the Paleocene also allowed some alveolinoid forms to migrate, but this time in an eastward direction from the Americas to Tethys, and from Tethys on to the Indo-Pacific. Alveolinoids still exist today (Borelis and Alveolinella), the former of which is cosmopolitan, while the latter is restricted to the Indo-Pacific province. Throughout their phylogenetic history alveolinoids
characteristically exhibit convergent evolution, with the repeated re-occurrence of certain morphological features. Understanding this propensity to homoplasy is essential in understanding and constructing the phylogenetic relationships within the alveolinoid superfamily.

Key Words: Foraminifera, alveolinoids, Cretaceous, Paleogene, Neogene, Holocene, biostratigraphy, phylogeny, palaeoenvironment, palaeogeographic distribution, extinctions, sea-level changes.

Introduction

Larger benthic foraminifera (LBF) are single cell organisms, with an internal, characteristic test, that have acted as major reef-forming organisms from the Paleozoic to the present day (see BouDagher-Fadel, 2018a). Within the geological record, there are 14 taxonomically defined orders of LBF. They are widely used as key biostratigraphic and paleoenvironmental indicators. Although, they were generally limited to warmer, shallower marine environments, their fossil forms are globally distributed, but frequently exhibit provincialism at the family or generic level. Our previous work has established that global marine regressions correlate with the migration of some LBF genera from one province to another. The inter-provincial migration of a genus is characterised and defined by the contemporaneous occurrence of the same species (although they may have been given different names, which are therefore synonyms) in two previously isolated provinces. In the Cretaceous, for example, we inferred that during a global sea-level low-stand, some orbitolinids (agglutinated foraminifera, members of the Order Textulariida) underwent a westward transoceanic migration from their Tethyan province of origin to the American province (see BouDagher-Fadel and Price, 2019), and that although subsequently the Tethyan province remained the hotspot for the orbitolinid speciation, parallel lineages evolved in the once again isolated American province, but were extremely rare. Later in the Cenozoic, the American province became the hot spot for speciation of other LBF families (including members of the Order Rotaliida, studied previously by BouDagher-Fadel and Price, 2010, 2013, 2014, 2017). Again global sea-level lows, appear to have enabled trans-Atlantic migrations to occur, but in these cases in an eastward direction into Tethys and then on to the Indo-Pacific, and at times to southern Africa. These previous studies, therefore, have led to the hypothesis that periodic, sea-level low-stand enabled, inter-provincial migration is a characteristic global dispersal mechanism of many LBF families. As suggested by Pignatti
(2019) however, this hypothesis needs further testing. In this study, therefore, we investigate the phylogenetic evolution and palaeogeographic distribution of the main genera of porcelaneous Alveolinae superfamily (members of the Order Miliolidida), in order to establish whether they too exhibit a similar evolutionary and dispersal behaviour as the previously studied LBF groups.

The Alveolinae comprise three families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae (see BouDagher-Fadel, 2018a). They range from the Cretaceous to the present day. Throughout their evolutionary lineages, the alveolinoids exhibited relatively rapid rates of evolution, and developed complex tests, which make them a very important biostratigraphic index fossil group for the shallow-marine environments of the later Mesozoic and the Cenozoic. Today, alveolinoid-bearing limestones occur globally from the Americas, through the Mediterranean and the Gulf, Tibet, and on to the Indo-Pacific. They are often associated with significant hydrocarbon reservoirs. The study of the Alveolinae and the definition of their stratigraphic ranges has been the subject of many regional micropaleontological investigations, especially those of the Tethyan and American provinces (Hottinger, 1960; Ciry, 1964; Robinson, 1968; Viallard, 1973; Fleury, 1974; Chaproniere, 1984; Leppig, 1987; Hottinger et al., 1989; Serra-Kiel et al., 1998; Vicedo et al., 2011, 2013, 2014; Vicedo and Piuz, 2017; BouDagher-Fadel, 2018a; Acar, 2019; Bozkurt and Gormus, 2019), but the most recent revisions of Alveolina from Indonesia are by Bakx (1932). Until now, however, it has not been possible to develop an effective global view of their evolution and inter-relationships, since in the past, the systematic study of the links between the American, Tethys and Indo-Pacific lineages has been hampered by the lack of biostratigraphic correlation between the geographically scattered alveolinoid assemblages described in the literature, and by the scarcity of described material from the Indo-Pacific province.

In this paper, we revise some of the analysis presented in BouDagher-Fadel (2018a), and present results from material recently obtained as a result of various investigations of LBF-bearing carbonate facies from two Atlantic basins, one from offshore Brazil (the Campos Basin), and the other off Venezuela (the Matacaibo Basin). These are augmented by studies of new material from several localities including from Saint Barthélemy (Lesser Antilles); Cardenas, San Luis Potosi, Mexico; the shallow marine sequences of the Ainsa Basin, Spain; Iles Madam and Audignon, France; Les Scaffarels sections from the Western Alps; the Circum-Troodos Massif sedimentary succession, northern Cyprus; the island of Paxos, Greece; Latakia, northwest Syria; Lebanon; the Kuh-I-Bingistan section and Savark formation, Iran; the Red
Sea; the Pila Spi formations in Jabal Hiebat Sultan, Iraq; the Ladakh region, India; the Tingri and Gamba regions of southern Tibet; the Sekau formation, Indonesia; Port Moresby, New Guinea; the Sarawak Basin (onshore carbonates from Tinjar Province); and the Baden-Brickyard, Baden, Australia. As a result, by combining our observations with those in the literature, we are able to put forward, for the very first time, a comprehensive, global, systematic analysis of the biostratigraphic, phylogenetic and palaeogeographic evolution of the alveolinoids. In our definitions of stratigraphic ranges, we primarily use the planktonic foraminiferal zonal (PZ) scheme of BouDagher-Fadel (2015, 2018b), which is tied to the time scale of Gradstein et al. (2012). In this paper, the PZ scheme is also correlated with the LBF ‘Letter Stages’ of the Far East, as defined by BouDagher-Fadel and Banner (1999), and later revised by BouDagher-Fadel (2018a) (see Figs 1 and 2), and with the biogeographic zonation of shallow benthic larger foraminifera as defined by Serra-Kiel et al. (1998), which incorporates a series of biozones proposed for the Paleogene of Western Tethys based on species of *Alveolina*, *Nummulites* and *Assilina* (Schaub, 1981). These biozones have been integrated into the shallow benthic zones (SBZ) covering the Paleocene to Eocene of the Mediterranean region by Serra-Kiel et al. (1998), as a system of numbered units for the “Tertiary”, with SBZ 1-23 covering the Paleogene (see Fig. 1).

As described below, our analysis of the evolution and distribution of the alveolinoids will show that our previously developed hypothesis (i.e. that periodic, sea-level low-stands enable inter-provincial migration of LBF; BouDagher-Fadel and Price, 2019; Pignatti, 2019) is again found to hold true, and that the behaviour and directions of migration of the alveolinoids is resonant with those of the orbitolinids (BouDagher-Fadel and Price, 2019), the orthophragminids (BouDagher-Fadel and Price, 2017), the nummulitoids (BouDagher-Fadel and Price, 2014), the miogypsins (BouDagher-Fadel and Price, 2013), and the lepidocyclinids (BouDagher-Fadel and Price, 2010).

The alveolinoids originated in the Cretaceous in the Tethyan province. We conclude here for the first time that during a global sea-level low-stand, migration of some alveolinoid species to the Americas occurred. As this province again became isolated as higher sea-levels were restored, parallel evolutionary trends between related forms of alveolinoids in the two re-isolated provinces subsequently occurred. After the end-Maastrichtian mass extinction, rare new forms of alveolinoids reappeared first in the Americas. The Americas were also inferred in previous studies to have been to location of the post K-P appearance of the rotaliid LBF. As also previously inferred from our studies of a number of rotaliid LBFs, sea-level low-stands in
the Paleocene allowed some alveolinoid forms to migrate from the Americas to Tethys, where again later sea-level rises led to provincial isolation and parallel provincial evolutionary trends. As also occurred for the previously studied rotaliids, the alveolinoids flourished in Tethys and subsequently migrated via Tethys to the Indo-Pacific, where they further diversified. With the closure of the of the Tethys seaway in the Miocene (late Burdigalian), the Mediterranean alveolinoids became isolated from their Indo-Pacific descendants and exhibited parallel evolutionary trends with more evolved, different lineages in the Indo-Pacific province showing morphological convergent trends similar to previous Cretaceous stock. Alveolinoids still exist today (Borelis and Alveolinella), the former of which is cosmopolitan, while the latter is restricted to the Indo-Pacific province.

The Alveolinoidea throughout their phylogenetic history evolved morphologically divergent features giving rise to identifiably distinct genera. As in previous biogeographical studies, however, we also confirm spatial and temporal gaps in their phylogenetic/stratigraphic distribution (Adams, 1973; Hottinger, 1973; Drobne and Hottinger, 2004; Drobne and Ćosović, 2009). We find that these gaps are best explained by homoplasy, in which convergent and characteristic features reappear as a result of either similar ecological evolutionary selection pressures, or a genetic predisposition to the repetition of specific mutations that produce morphological characteristics that are used to define a genus.

Morphological and Paleoenvironmental Characteristics of the Alveolinoidea

The Alveolinoidea made their first appearance in the Early Cretaceous (Fig. 3) exhibiting a fusiform morphology. As all miliolides, they have a porcelaneous, imperforate wall structure made of high Mg-calcite, with fine, randomly oriented crystals. Their tests are enrolled along an elongate axis, being initially planispiral or streptospiral, or “miliolide”, with chambers added in varying planes (Fig. 4). In an extreme example of ecologically driven convergent evolution involving forms from different orders, the external appearance of alveolinoids closely resembles the planispiral, fusiform fusulinides of the Permian. This example of homoplasy is the result of ecological selection pressures acting on forms from different orders filling equivalent niches but in different stratigraphic Periods. Many alveolinoids attained the same centimetric scale as the fusulinides, but differ fundamentally in their imperforate, porcelaneous wall structure, and are indeed quite distinct when studied in axial and equatorial (median) sections (see BouDagher-Fadel, 2018a). The basic morphology of the alveolinoids is
shown in Figs 4-7. Unlike the fusulinides, septal folding does not occur and the spiral septula reach the floor across the chamber. Deposition of secondary calcite (flosculinisation, Figs 4-6) occurs more evenly across the floor of the chamber or may be restricted to a specific period of ontogenesis, rather than being almost entirely concentrated in the axial zone as in the fusulinides. The embryonic apparatus consists of a spherical proloculus followed by a spiral tube (flexostyle), succeeded in some genera by a miliolid neption (pre-adult stage). In the adult, there are numerous chambers planispirally coiled around an elongate axis, each chamber being broken into tubular chamberlets by secondary septa (septula) that run in the direction of coiling. Connectivity between the chambers is enabled through the vertical septula (canals/passages). These may be situated in front of the septum (post-septal) or behind it (pre-septal) (see BouDagher-Fadel, 2018a).

In the Cenozoic, the alveolinoids re-appeared in the Paleocene seemingly independently from their Cretaceous relatives (Fig. 8), but evolving from a common simple, long-ranging miliolid ancestor, in an example of homoplasy driven by a predisposition towards the occurrence of a repeated set of mutations that produce generic characteristics. The Paleocene forms share morphological characteristics with their Cretaceous relatives, and evolved separate parallel lineages in both the Tethyan province and the American province. As will be discussed in detail below, this repeated evolution from a simple miliolid common ancestor, such as *Pseudonummuloculina* caused homoplastic generic characteristics, such as alveoles, to reappear on numerous occasions in the Paleogene and in the Neogene.

In the Middle Eocene, alveolinoids reached morphologically large sizes (e.g. *Alveolina prorrecta* Hottinger) growing up to 3.5cm in the diameter of the axial section (Hottinger, 1960). Their sizes were made achievable as a result of the evolutionary development of a variety of different morphological structures that had the effect of mechanically strengthening the alveolinoid test, such as by the thickened basal layer (which is subdivided by pillars or secondary partitions in the Fabulariidae), the canaliculation and thickening of the central zone except for a pre-septal space with buttresses or residual pillars (as in the Rhapydioninidae), and the flosculinisation with thick deposition of secondary calcite (as in the Alveolinidae, BouDagher-Fadel, 2018a). The basal layer of the larger foraminiferal test, when thickened by flosculinisation (Hottinger, 1960) or perforated by canalicular passages (Hottinger, 1978), exist only in the porcelaneous forms (Figs 5-7).
The development of alveoles (blind recesses separated by septula; e.g. see Fig. 6) in some alveolinoids may have allowed them to harbour photosymbionts (e.g. diatom symbionts in living *Alveolinella* Douvillé; Stanley and Lipps, 2011). Endosymbiosis apparently played a major role in the evolution and diversification of the alveolinoids, and appears to be a key innovation that facilitated a change in habitat from an epifaunal, free-living mode of life, to one of living attached to phytal and non-phytal substrata. Banner (1971) described *Alveolinella quoi* (from New Guinea) with a small benthic foraminifera, *Planorbulinopsis parasitica* (Fig. 9), embedded in its tests and completely enclosed by its whorls, from which he concluded that it actually fed on the cytoplasm or utilised the test as a substrate.

On the other hand, the development of pillars in the fabulariids (see Fig. 7) and rhapydioninids may also be seen as providing mechanical strength to the test, so for example in discoidal forms, heavily pillared endoskeletons, as a rule, occur in forms living in very shallow, turbulent water. In the present day, robust and fusiform tests (as seen in *Alveolina*) are adapted to a life in environments of high hydrodynamic energy, characteristic of water depths of less than 10m, but usually not in mobile sands, but rather on phytal or hard substrates like reef rubble (Hallock, 1985; BouDagher-Fadel, 2018a). According to Hottinger (2000), in *Alveolina* the function of the elongated fusiform test is related to motility, the test growing in the equatorial direction but moving in the polar direction. The living alveolinids (such as the elongate *Alveolinella*) appear to be confined to shallow marine (down to depths of 80m), well-oxygenated, nutrient-rich, tropical and subtropical waters. They can hide or shelter under shallow layers of coral sand, in order to regulate the illumination that they require. In comparing therefore, the occurrences of the extinct alveolinids with their Holocene descendants, we can safely deduce that these fusiform types, with large alveoles, thrived in sediments deposited in warm, shallow water. In fact, all alveolinoids are regarded as neritic (inner shelf) by Reichel (1964), restricted to littoral, tropical, protected shelf and reef shoals (Dilley, 1973; Hottinger, 1973; BouDagher-Fadel, 2018a), or high energy zones of the shallow ramp (Hohenegger, 1999), and some genera are epiphytic (Reiss and Hottinger, 1984).

Phylogeny and palaeogeographic distribution of the Alveolinoidea

In this section, we will review the phylogenetic development and taxonomic relationships of the alveolinoids of the Cretaceous, Paleogene and the Neogene. Furthermore, we clarify their provincial distributions, based around the Tethyan, American and Indo-Pacific provinces. We
discuss the development of the three alveolinoid families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae, which in the Cretaceous are found in the Tethyan and American provinces, and then the later Cenozoic forms, of which the Alveolinidae and the Fabulariidae are found in all three provinces (Tethys, American, and the Indo-Pacific), while the Rhapydioninidae are constrained to the Americas.

The Cretaceous Alveolinoidea

The Tethyan Province

The limestones of the Tethyan province range from what is today the Western Mediterranean, through the Middle East to the carbonate platforms of Tibet. This province saw the first development of the alveolinoids from small simple miliolides, such as *Pseudonummuloculina* (see Fig. 3). This latter is a simple small streptospiral-involute porcelaneous form, with an apertural slit or with a row of multiple apertures. It made its first appearance in the latest Hauterivian (PZ Hauterivian 2; Velić, 2007; BouDagher-Fadel, 2018a). It was widely distributed in the Tethyan province from the Albian until the early Paleogene (Luperto-Sinni, 1966; Calvez, 1988; Husinec et al., 2000; Krobicki and Olszewska, 2005; Mancinelli and Chiocchini, 2006; Drobne and Ćosović, 2009; Sari et al., 2009; Schlagintweit and Rashidi, 2016), and is the ancestral form for many of the Alveolinoidea.

Archaalveolina (Plate 1, fig. 1) is the earliest defined *Alveolinidae*. It is subglobular with an early streptospiral stage, pre-septal passages, and a single row of apertures at the base of the apertural face. It made its first appearance at the beginning of the Aptian and disappeared at the end of PZ Albian 1, (Husinec et al., 1999). *Archaalveolina* gave rise to and was replaced in the Albian by *Ovalveolina* (Plate 1, figs 2-3), a globular form with planispiral coiling and large pre-septal passages (BouDagher-Fadel, 2018a). *Ovalveolina* is recorded from many Tethyan localities ranging from PZ Albian 1 to PZ Cenomanian 3, but as discussed below is not found in the American province until the beginning of PZ Cenomanian 2.

In PZ Albian 4, the planispiral *Ovalveolina* gave rise to subglobular/fusiform *Praealveolina* (Plate 1, figs 4-6) with much lower and narrower chamberlets. The apertural face of *Praealveolina* has, as does *Ovalveolina*, a single row of pores near the equator, however, it increases poleward to many rows of openings. *Simplalveolina* (Plate 1, figs 7-10) which also appeared at PZ Cenomanian 1, is small and ovoid with numerous aligned septula, but lacks
secondary chamberlets. The aperture is a single row of pores in the apertural face. In PZ Cenomanian 1, *Praealveolina* gave rise to the spherical *Multispirina* (Plate 2, fig. 1), with large, numerous chambers, interleaved by spires (Reichel, 1947, 1964). The aperture is formed by a row of pores in the apertural face of each of the multiple spires. The growth of *Multispirina* is an example of an alternative to elongate growth, where the multiple spires are a means of accelerating its growth (Brasier, 1984). The multiple spires also enhance the internal interconnectedness of the pore spaces, since the numerous small apertures along the sutures connect the whorls in an irregular manner, thus making for short radial lines of interconnectedness throughout the test (Hottinger, 1978).

Parallel to the *Praealveolina* lineage, *Ovalveolina* also gave rise to the small to medium size globular, streptospirally coiled *Streptalveolina* (Plate 2, fig. 2; PZ Albian 4-Cenomanian 2). The latter also has large pre-septal passages and a single row of apertures on the apertural face. The trend in this lineage is to evolve planispiral later whorls, as in *Cisalveolina* (Plate 2, figs 3-6; PZ Cenomanian 1-3), which has alternating septula with a simple narrow, slit-like aperture extending from pole to pole. *Cisalveolina*, unlike all the Cretaceous genera with pre-septal canals, has post-septal passages.

Of the early alveolinids, 85% did not survive the widespread oceanic anoxic event (OAE) at the Cenomanian-Turonian boundary (93.9 Ma), which may in turn have been triggered by the Madagascar and Caribbean volcanic provinces events (Fig. 10). The only survivor was *Praealveolina* which in turn went extinct at the end of the Turonian.

The alveolinids re-appeared in the Late Cretaceous of the Tethyan province, but notably those that did appear had a streptospiral early stage and a planispiral-involute adult stage. It has been proposed that they are again phylogenetically linked to *Pseudonummuloculina* (Plate 2, fig. 7), and are an example of the homoplastic, re-evolution of a family from a long ranging, robust small form (Hottinger et al., 1989; BouDagher-Fadel, 2018a). They include the spherical *Helenalveolina* (Plate 2, fig. 8; PZ Coniacian 2-Santonian 2), *Subalveolina* (PZ Santonian 2-Maastrichian 3), and the axially elongated *Senalveolina* in the early Campanian. *Helenalveolina* is distinguished from the Fabulariidae by the absence of pillars subdividing the chambers, by its streptospiral coiling, and by the lack of a trematophore in its apertural face.

The earliest *Rhapydioninidae* originated in Tethys the end of the Albian. The axially compressed rhapydioninids have homologous features to the alveolinids, and occupied the same niches, but developed separate parallel lineages. They evolved, as did the alveolinids,
from the streptospiral *Pseudonummuloculina*, but did so later than the first appearance of the alveolinids (Hottinger et al., 1989; Mancinelli and Chiocchini, 2006; Vicedo et al., 2009; BouDagher-Fadel, 2018a). They had a planispiral to streptospiral early stage, but diverged from the alveolinids lineages by becoming uncoiled, compressed, peneropliform-flaring, or cylindrical in later stages. The basal layer of the rhapydioninid is pierced by tubular supplementary passages as part of the "central thickening" (Hamaoui and Fourcade, 1973). The rhapydioninid are comparable to modern peneroplid foraminifera, which commonly are found in shallow-water epifaunal habitats or on epiphytal hard substrates, including seagrasses and algal thalli (Langer, 1989, 1993; Langer et al., 1998; Langer and Goldbeck, 2009).

Sellialveolina, (Plate 3, figs 1-2) was the most primitive rhapydionid and occurred across Tethys between PZ Albian 4-Cenomanian 4 (De Castro, 1985; Vicedo et al., 2011), colonizing the carbonate platforms from the Middle East to the Iberian Peninsula. Unusually, it is a cosmopolitan rhapydionid, and is reported from the American province from PZ Cenomanian 2-Turonian 2 (n.b. in the Maastrichtian, *Rhapydionina* becomes the only other example of a cosmopolitan rhapydionid). *Sellialveolina* has a lenticular planispirally enrolled test, where the chamber lumen is subdivided into numerous chamberlets by septula. *Sellialveolina* species increased in overall test size and complexity of internal structures during their stratigraphic evolution.

Tethyan rhapydioninids are provincially characterised by *Pseudedomia* (Plate 2, fig. 9) and its descendants, which evolved from *Sellialveolina* in PZ Cenomanian 1. They are common in the Late Cretaceous deposits of the European-North African region (de Castro, 1971; Hamaoui and Fourcade, 1973; Fleury, 1977; Luperto Sinni and Ricchetti, 1978; Fleury et al., 1985; Loeblich and Tappan, 1988; Caffau et al., 1998; Goldbeck and Langer, 2009). This lineage exhibits an evolutionary trend with an increasing diameter of the megalospheric form, a reduction in the streptospiral nepionic stage, and an increase in the differentiation and regularity of the peripheral chamberlets in comparison with the median chamberlets in the same chamber (Vicedo et al., 2009).

Sellialveolina and *Pseudedomia* both resemble *Ovalveolina* in their globular initial part, but develop compressed curved chambers in their final whorls. The chambers in *Pseudedomia* become progressively longer and strongly overlapping of the preceding chambers. The evolutionary lineage from *Pseudedomia* showed progressive uncoiling and cylindrical development through *Rhapydionina, Murciella* (Plate 3, fig. 3) and *Cyclopsuededomia* (see
Fig. 7). The "central thickening" of *Rhapydionina* compares with the thickened basal layer in the polar area of *Subalveolina* (Reichel, 1984). *Murciella* has crosswise oblique median tubular chamberlets (the “helicoidal” structures of Fleury, 1979), while *Cyclopsuededomia* is cyclical with compressed arched chambers in its final whorls.

We believe that the Tethyan *Murciella* has on occasion been misidentified as a *Raadshoovenia*, which in fact is an American Paleocene form (see below). For example, the Late Cretaceous Tethyan *Raadshoovenia* (e.g. *R. salentina* (Papetti and Tedeschi)) has the same advanced early planispiral-involute nepiont as *Murciella*, and the two genera were considered synonyms by De Castro (1971). We agree with this analysis and contend that all Cretaceous, Tethyan *Raadshoovenia* are in fact synonyms of *Murciella*.

All Tethyan rhapydioninids, including *Murciella*, went extinct at the end of the Maastrichtian. The true *Raadshoovenia* appeared in the Paleogene of the American province. There are no records of *Raadshoovenia* from the Paleocene of the Tethyan province. *Raadshoovenia* has a streptospiral nepiont in both megalospheric and microspheric generations, and characteristically has a smaller test than *Murciella*. The pair of *Murciella* and *Raadshoovenia* evolved in different times on the two sides of the Atlantic. They are again an example of homoplasic evolution, rather than representing a single genus that survived the events at the Cretaceous-Paleogene boundary while simultaneously moving provinces.

The *Fabulariidae* are also common in the same ecological niches as the alveolinids, but they did not appear before the Late Cretaceous and were endemic to the Tethyan province, with no record from the Cretaceous deposits of the American province. They arose directly and independently from the alveolinids and the rhapydioninids, either from the simple *Quinqueloculina* group (Haynes, 1981), or they had a true miliolide origin from, for example, the simple-form *Idalina* (see BouDagher-Fadel, 2018a). The fabulariid test is large, dimorphic, multi-chambered with a miliolide coiling, tending to become reduced in subsequent growth stages, either to bilocular or to monolocular chamber cycles, with a trematophore as the aperture. According to Hottinger (2006) “A trematophore, or a sieve constituting the face of many porcelaneous larger foraminifera, is in miliolides produced by the coalescence of teeth, covering a large pre-septal space. It may be supported by residual pillars”. Chambers have a thickened basal layer, subdivided by pillars or secondary partitions. Foraminifera in the adult growth stages have a fixed apertural axis. For the terminology and the orientation of sections needed for detailed structural analysis see Drobne (1974) and Hottinger et al. (1989).
Idalina, a simple miliolide with a quinqueloculine to biloculine test, gave rise to Periloculina (Plate 3, figs 4-5) (see Hottinger et al., 1989), which has incomplete partitions and an aperture consisting of a round trematophore with a bar-like tooth. Also in the Coniacian, Lacazina (Plate 3, fig. 6) appeared, with chambers that overlap throughout, with a concentric growth pattern, and with an annular trematophore (Figs 3, 7) (Hottinger, 1997; BouDagher-Fadel, 2018a). Lacazina is reported from many places in the Tethyan province, for example from Southern Europe (Dilley, 1973; Drobne and Ćosović, 2009), France (Hottinger, 1966; Fleury et al., 1985; Loeblich and Tappan, 1988), Spain (Hottinger, 1966; Caus and Hottinger, 1986; Caus, 1988; Caus et al., 1996), Sardinia (Hottinger et al., 1989; Fleury et al., 1985), and Israel (Caus and Hottinger, 1986; Loeblich and Tappan, 1988; Caus, 1988). In Pseudolacazina the chambers are subdivided by longitudinal partitions or by pillars supporting the chamber roof, while in Pseudochubbina (Plate 2, figs 10-11) parallel anastomising passages are present in the basal layer. Correcting BouDagher-Fadel (2018a), we now believe that all Cretaceous fabulariids, except the small, primitive, robust Idalina, went extinct at the K-P boundary.

The American Province

The mid-Cretaceous Alveolinidae were extremely rare in the American province, and post-date the Tethyan forms. It is inferred that they migrated from the Tethyan province after their first appearance there. The pre-existing Tethyan Pseudonummuloculina appeared in the Americas together with some Tethyan orbitolinds (see BouDagher-Fadel and Price, 2019, Fig. 3) during the sea-level low-stand of the Aptian-Albian boundary (migration 1 in Fig. 11), and is represented in both provinces by P. heimi (Bonet). This species is widely distributed in the Albian-Cenomanian of both Western Tethys and the Gulf Coast (Bonet, 1956; Lucas and Krainer, 2015; Omaña et al., 2019). It has also been recorded from Texas, Florida, and Louisiana in USA (Conkin and Conkin, 1958).

The streptospiral alveolinids appeared later in the American province, in PZ Albian 4b, and are represented by Streptalveolina mexicana Fourcade, Tardy and Vila (1974). This species initially described from early Cenomanian Mexican Aurora Formation, has been also recorded in some localities from PZ Albian 4b-Cenomanian 2 of the Gulf Coast (Scott, 2002; Mancini and Scott, 2006). It is endemic to the American province, but appears to be virtually identical to the PZ Albian 4a Mediterranean species S. peybernesi (De Castro, 1983), and seems to have appeared in America after the late Albian sea-level low-stand (migration 2 in Fig. 11). Finally, the pre-existing Tethyan Ovalveolina maccagnoae De Castro is reported from the Americas
from PZ Cenomanian 2 (Omaña et al., 2012) from the mid-late Cenomanian deposits of the Manantlan Range in Colima State, Mexico, which again correlates with a global sea-level low-stand (migration 3 in Fig. 11).

In the American province, the **rhapydioninids** are of two types, represented by the mid-Cretaceous *Sellialveolina*, and the distinct, later Cretaceous *Chubbina*, *Chubbinella*, *Praechubbina* and *Caribalveolina*.

Sellialveolina is the most primitive genus of the axially compressed Alveolinaidea, and is the only genus of the Rhapydioninidae that is found in the mid-Cretaceous of the American province. It first appeared as a Tethyan form in PZ Albian 4, but it is reported in the Americas 3.4Ma later (in PZ Cenomanian 2) as *Sellialveolina* sp. and *Sellialveolina* cf. *dorimensis* (a Tethyan form) from northern Peru (Jaillard and Arnaud-Vanneau, 1993). This appearance in the Americas coincides with that of *Ovalveolina*, which as noted above correlates with a global PZ Cenomanian 2, sea-level low-stand (migration 3 in Fig. 11)

The later American rhapydioninids forms have no Tethyan equivalents, and seem to have evolved directly from the American *Pseudonummuloculina*. They are described from several localities in southern Mexico, Guatemala and in the Caribbean (Robinson, 1968; Fourcade and Fleury, 2001; Vicedo et al., 2012; Fleury, 2018a; Omaña and Alencáster, 2019).

They appear in PZ Campanian 1, and rapidly develop the *Chubbina* (Plate 3, figs 7-8) lineage, which is endemic to the American province. The most primitive genus of this lineage, *Praechubbina*, with a poorly developed endoskeleton, formed by short, incomplete septula and floors, is characterized by a single aperture in its early stages. It differs from the ancestor genus *Pseudonummuloculina* by the presence of endoskeletal elements and multiple apertures in adult stages of growth (Fourcade and Fleury, 2001; Vicedo et al., 2012). The septula in *Chubbinella* and *Chubbina* are complete, and divide the chambers into long tubular chamberlets. The septula of *Chubbinella* form chamberlets of equal calibre within the same chamber, while in *Chubbina* the chamberlets are unequal and the median chamberlets are parallel to the peripheral chamberlets. In *Chubbina* the subdivision of the chambers begins in the early stages of growth, whereas in *Chubbinella* the early parts are undivided (Vicedo et al., 2011). On the other hand, the axially elongated *Caribalveolina* has alveoles and chubbinid features in the poles that are similar but less regular than the polar features of *Praealveolina* (Vicedo et al., 2009).

A Late Cretaceous migration of the rhapydioninids from the American province to Tethys never occurred, however towards the middle Maastrichtian (PZ Maastrichtian 2), migration of
the Tethyan form *Rhapydionina* to the American province did occur, with *Rhapydionina cf. R. liburnica* (Stache) reported from PZ Maastrichtian 4 of southeast Mexico (Omaña and Alencáster, 2019). The early Maastrichtian low sea-level stands (migration 4 in Fig. 11) correlate with the timing of this apparent trans-oceanic migration (Fig. 12).

All American rhapydioninids went extinct at the K-P boundary.

The Paleogene Alveolinoidea

Following the Cretaceous/Paleogene global extinction event, no complex Alveolinoidea survived, however their ancestral small and simple miliolides were robust enough to continue (Fig. 8). In the Paleogene, these ancestral forms again gave rise to new members of all three of the Alveolinoidea families, which closely echoed their Cretaceous predecessors. The alveolinids of the Paleogene show a complex history of re-evolution from the simple *Pseudonummuloculina* (which survived the end Cretaceous event and only went extinct in the late Thanetian (P4)), with new forms occurring independently in both the Americas and Tethys. In the Eocene migration of alveolinids again occurred, but as previously seen in our studies of the rotaliids, now in a West to East direction, with migration of forms from Tethys to the Indo-Pacific.

In the Paleocene, the rhapydioninids also re-evolved from a small-form miliolide after the K-P extinction, but are only found in the Americas (Fig. 8). While in Tethys the fabulariid ancestral form *Idalina* survived the Maastrichtian extinction, and gave rise to a second wave of Paleocene forms, which give rise in the Middle Paleocene to a *Periloculina* lineage which echoes the homomorphic Late Cretaceous lineage, but which is separated by a stratigraphic interval of over 6Ma. In yet another example homoplasy, *Fabularia* evolved in the Americas independently of the other Tethyan fabulariids, and migrated during an early Ypresian sea-level low-stand to Tethys (Figs 14-16). All rhapydioninids and fabulariids went extinct before the end of the Paleogene, and only an alveolinid, *Borelis*, survived into the Neogene (Fig. 13).

The American Province

The alveolinids, except for a couple of primitive genera (not discussed in BouDagher-Fadel, 2018a), are rare in the Paleogene of the American province. The Danian sees the appearance of a primitive small globular planispirally coiled form, *Quasiborelis* Hanzawa (e.g. *Q. gunteri* (Cole)) with streptospiral early chambers, which was reported by Hanzawa (1967) from Florida
(Fig. 8). It has a simple internal structure, consisting of a poorly developed endoskeleton divided by few septula and floors, and high pre-septal canals, and it must have evolved from a small miliolide that survived the K-P event. *Quasiborelis* was short ranged, but was followed directly by forms similar to the later Tethyan *Borelis* (see Vicedo et al., 2014). The American *Borelis* is subglobular in shape with only one row of chamberlets and a planispiral later stage and has been reported from the Middle Paleocene to the Early Eocene (PZ P3-P9) of the American province (Cole, 1941; Levin, 1957; Butterlin and Bonet, 1960; Vicedo et al. 2013, 2014). The American *Borelis* occupies the same niches as the Tethyan *Glomalveolina* (Plate 3, figs 9-10; Vivedo et al., 2014), which is abundant in the very low hydrodynamic energy backreefs environment of Tethys, but is absent from the American province. The American *Borelis* has aligned septula and pre-septal passages, but they are in general smaller in size than those of the Tethyan *Borelis*. American *Borelis* and Tethyan *Borelis* are likely to be examples of homoplasy, as they do not co-exist, and are in fact separated by 6.6 Ma in the geological column.

Although the **Rhapydioninidae** were common and mainly endemic to the Late Cretaceous low-latitude shallow-water reefal and lagoonal settings of the American province. All of them, however, went extinct at the end of the Cretaceous. The rhapydioninids of the Paleogene are also distinct from those described from the Cretaceous of the Tethyan province, and are only found in the American province. The genus *Raadshoovenia* (*R. guatemalensis* Van Den Bold) was originally established by Van den Bold (1946) from the Eocene of Guatemala, however, as discussed above it is different from the *Raadshoovenia* misidentified in the Tethys, which are in fact *Murciella*. As discussed above, the appearance of *Raadshoovenia* in the Paleocene-Eocene of the American province is therefore yet another example of homoplasy, where similar characters are caused by convergent re-evolution. True *Raadshoovenia* has been reported from Mexico (Butterlin, 1981; Pécheux, 1984) and Guatemala (de Castro, 1971; Hamaoui Vicedo et al. 2013). There are no Paleocene records of *Raadshoovenia* from the Tethyan province.

The American *Raadshoovenia* gave rise to *Neomurciella* which made its first appearance in the Selandian of the American province (PZ P3a; Fleury and Fourcade, 1987; Vicedo et al., 2013). *Neomurciella* show a crosswise development of the central and marginal chamberlets, as was observed in the Campanian-Maastrichtian *Murciella* gr. *M. renzi* Fleury (see Fleury, 1979; and Vicedo et al., 2009, 2013), but this reappearance is 4.4 Ma later than the disappearance of *Murciella*. *Neomurciella* survived the Paleocene-Eocene boundary only to disappear within the Early Eocene.
The American **Fabulariidae** are represented by members of the genus *Fabularia*. *Fabularia* evolved for the first time in the American province from the small, primitive form *Miliola* in the Early Eocene (Ypresian, PZ P5b) by developing an involute, biloculine last stage after the early quinqueloculine stage, and thicken vertical partitions, which subdivide the chambers into elongated chamberlets with two tiers in the outer whorls. The two chambers per whorl is a key-characteristic of the megalospheric forms (see BouDagher-Fadel, 2018a). The fabulariids were represented in the American province by endemic species, such as *F. vaughani* Cole, *F. cassis*, *F. colei* and *F. verseyi*. These species are only found in the Caribbean region (Drobne and Ćosović, 2009; Powell, 2010; Gold et al., 2018) from the Early to Middle Eocene (PZ P6 – P12a). In the Middle Eocene, Lutetian (PZ P10) the biloculine *Fabularia* (Fig. 7) gave rise to *Pseudofabularia* (Plate 3, fig. 12) by developing alveolinid-like pre-septal passages (Robinson, 1974). The Bartonian-Priabonian fabulariid assemblages manifested gigantism, however, they all disappear at the end of the Eocene, except for one species, *Fabularia verseyi* that survived the Eocene-Oligocene extinction, only to die out in the Rupelian (Robinson and Mitchell, 1999; Robinson et al., 2018a).

The Tethyan Province

Although, the Tethyan province was still the hotspot for **Alveolinidae** diversity, the Paleocene forms evolved independently from their Late Cretaceous relatives (Fig. 8). In the Tethyan province, they re-evolved during the warm period of the Late Paleocene (Thanetian), where they colonized reefal and backreef environments. During the Eocene, they became large and abundant in the fore reef environments, only to largely disappear by the end of the Eocene.

It is held that the Paleogene alveolinids evolved, as did the Cretaceous forms, from *Pseudonummuloculina* (see Hottinger 2006; Hottinger et al. 1989). They subsequently develop lineages that are spherical to fusiform in shape, and planispiral in the adult part, exhibiting morphological convergence (homoplasy) with the fusiform/globular alveolinids of the mid-Cretaceous, e.g. the *Praevalveolina* group. A considerable gap, however, of about 20 Ma exists in the fossil record between the Alveolinidae of the Paleocene and the mid-Cretaceous *Praevalveolina* group.

The evolutionary lineages of the Paleogene alveolinids show an incremental increase in the length of the test from pole to pole, from globular through ovoid to elongate, and spindle-shaped. The oldest Paleogene form, *Glomalveolina* (Plate 3, figs 9-11), with a streptoloculine origin and with a fixed axial coiling throughout its ontogeny, is considered the ancestor of
Alveolina. Glomalveolina is small, globular, and non-flosculinised, with a spherical proloculus in a streptospiral coil and a later planispiral stage. The streptospiral coil still exists in the microspheric forms of Alveolina. Alveolina (Plate 4, figs 1-10; Plate 5, figs 1-10; Plate 6, fig. 1) is a planispiral-fusiform form with a single tier of chamberlets in each chamber and, unlike Glomalveolina, shows considerable thickening of the basal layer in the equatorial zone (flosculinisation). Pre-septal and post-septal passages are present in both Glomalveolina and Alveolina.

In the Eocene the amount of flosculinisation varies in different species of Alveolina, and might be considered to be of specific value only. Alveolina evolve into larger forms through the Eocene, and more than 90 species of the genus Alveolina have been reported in the Mediterranean (Hottinger, 1960). Many of the species reached gigantic sizes (up to 20 mm long; Brasier, 1995) before the end of the Middle Eocene, where they become essential members of Eocene carbonate fossil assemblages. Alveolina species, however, became smaller again before completely disappearing at the end of Eocene (see BouDagher-Fadel, 2018a).

In the Eocene Alveolina gave rise to new genera, such as Globoreticulina (Plate 6, fig. 3) and Malatyna, that exhibit similar trends of evolution to the Cretaceous Subalveolina and Praebullalveolina. They developed streptospiral nepionts in both generations and a planispiral-involute chamber arrangement in the adult stage of growth (Hottinger, 2006, 2007). Both these genera became extinct at the end of the Lutetian.

Paleoclimatic evidence shows a trend of cooling during late Middle Eocene and at the Eocene-Oligocene (E-O) boundary (Berggren and Prothero, 1992; Fig. 14)). The Middle to Late Eocene boundary (37.8 Ma) witnessed major changes in global climate and ocean circulation (Berggren and Prothero, 1992), which were likely to have been responsible for the disappearance of the gigantic alveolinid species seen at the end of the Bartonian (see BouDagher-Fadel, 2018a). The E-O boundary temperature fall followed the onset of the Late Eocene rapid sea level changes, which led to the disappearance of vast carbonate platform and lagoonal environments, and the final extinction of Alveolina, and indeed of 85% of all Alveolinoida. The move into an “ice house” climate may have been triggered at this time by the opening of the Tasmanian gateway (Smith and Pickering, 2003).

The only alveolinid survivors of the E-O cooling event were forms related to Borelis (Plate 6, figs 4-9), which is in fact an extant alveolinid, and the only one to survive into the Neogene. The appearance of Borelis in the Tethyan province in the Bartonian was 6.6 Ma years after the
last recorded *Borelis* species in the American province. Given the magnitude of this gap in the stratigraphic column, we suggest that it is unlikely that this appearance in Tethys was the result of a migration event. We suggest that it is more probable that this appearance in Tethys is yet another example of homoplasy, where re-evolution from a primitive form gave rise to a form in Tethys that was generically similar to the extinct American form, and that it filled the Tethyan niche previously occupied by *Glomalveolina*.

In the Tethyan Eocene, *Borelis* is represented by the spheroidal *B. vonderschmitti* (Schweighauser), which was widespread throughout the Bartonian and Priabonian of Western Tethys (Bassi and Loriga Broglio, 1999; Bassi et al., 2019). *Borelis* is common in deposits laid down in Early Oligocene, low-latitude, shallow-marine environments, and differs from *Alveolina* in having only a pre-septal passage and a secondary small tier of chamberlets, which alternate with the larger ones producing “Y” shaped septa in axial section (BouDagher-Fadel and Noujaim Clark, 2006). In the Oligocene, the sub-spheroidal, small (0.5–1.5 mm in diameter and 0.4–1.2 mm long), tightly coiled *B. inflata* (a form with no Y-shaped septula) is also recorded from the Oligocene to the Tortonian of the Western Tethys (Sirel, 2003; Di Carlo et al., 2010; Benedetti, 2010; Braga & Bassi, 2011; Bassi et al., 2019).

In the Early Oligocene (from about 33.9 Ma), the Drake Passage opened and there was further significant climatic cooling and ice volume increase (Berggren and Prothero, 1992; see Fig. 14). *Borelis* species which survived the E-O boundary became adapted to cooler environments, while others migrated to the warmer Tethys, such as *B. inflata*.

The Oligocene continue to witness an evolutionary trend of small alveolinids in the Mediterranean, such as *Bullalveolina*. This form evolved from being streptospiral to having a planispiral quinqueloculine test, but unlike the extant *Borelis, Bullalveolina* disappeared at the end of the Oligocene. Generally, however, there were very few notable extinctions of LBF at the end of the Oligocene (see BouDagher-Fadel, 2018a). This stratigraphic boundary is probably mainly connected to plate tectonic events, such the development of the Alpine-Himalayan orogeny, which are more gradual events and do not seem to trigger major extinctions, or to gradual changes in climate caused by the growing thermal isolation of Antarctica as Australia drifted northwards (Berggren and Prothero, 1992).

As in the Cretaceous, the Paleogene *Fabulariidae* (mainly the lacazinoform genera, *Lacazina, Lacazinella*) are directly derived from the small primitive *Idalina* which survived across the K-P boundary (see Fig. 8). Further to BouDagher-Fadel (2018a), it now seems that the
Fabulariidae re-evolved, independently from their Cretaceous counterparts. In doing so, they developed morphologically convergent, homoplastic lineages, which has led to these lineages being given the same generic names as their Cretaceous counterparts. However, we again contend that the considerable stratigraphic gap between their reappearance in the Middle-Late Paleocene and the end Cretaceous forms excludes any chance of a direct phylogenetic relationship, other than via homoplastic re-evolution from the same *Idalina* common ancestor.

It should be noted that there are tell-tale differences between Cretaceous and Paleogene genera, so for example all Paleogene representatives of *Pseudolacazina* are distinguished from the Cretaceous forms in having lower chambers, subdivided by continuous chamber partitions (septa) (see Drobne, 1988; Hottinger et al., 1989).

In the Paleocene *Periloculina* and *Pseudolacazina* echoed the Cretaceous forms, but they uniquely gave rise to Paleogene *Lacazina* and *Lacazinella* by gradual ontogenetic transformation from pluri- to unilocular, completely overlapping growth. The two chambers per whorl is a key-characteristic of the megalospheric forms in the fabulariid, however, in *Lacazina* and *Lacazinella*, the microspheric tests have a small initial biloculine stage, followed by uniloculine growth, while their megalospheric tests only show uniloculine development, with a large proloculus. The basal layer of *Pseudolacazina* bears radial pillars supporting the chamber roof that evolve into low longitudinal septula, which do not reach the chamber floor in *Lacazinella*, to continuous septula supporting the external chamber wall in *Lacazina* (BouDagher-Fadel, 2018a; Drobne and Ćosović, 2019).

The re-evolved *Lacazina* is first recorded in Tethys from the Selandian (PZ P4a), while *Lacazinella*, having completely overlapping chambers, is rare in the Tethyan province and has not been found in Europe, but is only recorded from Oman and other parts of the Middle East (Serra-Kiel et al., 2016).

On the other hand, the American *Fabularia* sp., which first appeared in the American province in PZ P5b (Gold et al. 2018), appears in Tethys (Plate 6, fig. 10) in the PZ P6b (Drobne, 1985, 1988; Drobne and Ćosović, 2009). This West to East trans-Atlantic migration coincides with one of two global sea-level low-stand in the early Ypresian (migration (5) in Figs 8, 14 and 15).

The Indo-Pacific Province

We found in our earlier studies of Paleogene rotaliids, migration from Tethys to the Indo-Pacific commonly occurred. Likewise, here we find examples of eastward migration in the
Eocene of some Alveolinidae in to the Indo-Pacific province after their first appearance in Tethys (Fig. 15). Thus the first species of Alveolina appears in the late Ypresian (PZ P9; migration 6 on Fig. 16) in the Indo-Pacific province, compared with its occurrence at the base of Thanetian (PZ P4b) in the Tethys. The Indo-Pacific alveolinids of the Paleogene remained of lower diversity than those of their Tethyan ancestors. Their sizes were smaller (ranging between 7 and 10mm; Bakx, 1932) and they showed less internal morphological variation. Only a few species have been reported from Indonesia, and many of them are of the Alveolina oblonga group of Hottinger (1960). The Indo-Pacific alveolinids range from the latest Ypresian (P9) to Bartonian (Renema, 2002). Other species reported from the Indo-Pacific province include Alveolina timorensis Verbeek and Alveolina ovicula Nuttall (Nuttall, 1925; Pringgoprawiro et al., 1998).

Borelis which first appeared in the Bartonian in Tethyan province, migrated towards the Indo-Pacific through the Tethyan corridor (Fig. 17) but did not appear in the Indo-Pacific province (migration event (9) in Fig. 8; Renema, 2002; Lunt & Allan, 2004; BouDagher-Fadel, 2018a) before the Priabonian (PZ P15b; letter stage, Tb). For example, the Tethyan Borelis vonderschmitti (Schweighauser, 1951), which was widespread throughout the Middle-Late Eocene in the Western Tethys (Bassi and Loriga Broglio, 1999), appeared in the Late Eocene of the Indo-Pacific province (Matsumaru, 1974). The Tethyan Oligocene species of B. inflata are recorded also from the Oligocene-Miocene of Sarawak (Borneo) in the Indo-Pacific area (Adams, 1965; Matsumaru, 1974). A gradual stratigraphic succession of Indo-Pacific species marked its very slow evolution throughout the Oligocene.

Some Tethyan Fabulariidae forms also migrated into the Indo-Pacific province (Hanzawa, 1947; Crespin, 1962; Lunt 2003), where they are represented by Lacazina and Lacazinella. Lacazina reached the Indo-Pacific (migration 8 in Fig. 8) in the Bartonian (late P12a) and settled there by the late Eocene. Lacazina representatives are confined to the northern margin of Indo-Pacific realm and are found only on an isolated platform of Moluccas (Drobne and Hottinger, 2004). Lacazinella restricted to the southern part of the Tethyan province in the early Eocene (Somalia, Oman) first appears in the Lutetian in the Indo-Pacific province (migration 7 in Fig. 8) and in the Late Eocene (Papua New Guinea). It is recorded from Mindoro and Timor, and on remnants of the Australian craton in Indonesia (Lunt, 2000). Lacazinella did not survive the E-O extinction. Neolacazopsis the representative of the Fabulariidae in Middle to Late Eocene of Japan evolved from Lacazina by developing turtle-neck bottle-like chamberlets and alveolar inner wall instead of arcuate chamberlets (Matsumaru, 1990).
The Neogene Alveolinoidea

Only Alveolinidae survived into the Neogene. The eastward migration towards the Indo-Pacific province along the Tethyan corridor previously seen in the Paleogene continued into the early Neogene. As species become geographically isolated, the alveolinid distribution show a distinct provincialism. They colonized new areas in the Indo-Pacific and evolve similar but distinct parallel lineages, taking advantages of empty niches and optimal conditions.

The Tethyan/Mediterranean Province

In the Miocene the Tethyan alveolinids were represented by species, such as Borelis inflata, B. melo and B. curdica. B. inflata is recorded as ranging from the Oligocene to the Miocene (Tortonian) of the Western Tethys (Sirel, 2003; Bassi et al., 2009; Braga and Bassi, 2011), and Zakynthos in Greece (Di Carlo et al., 2010; Benedetti, 2010). Borelis melo with a spheroidal shape and relatively large proloculus (60-65µm) has been reported from the Aquitanian to the Messinian in the Tethyan province (Adams et al., 1983; Betzler and Schmitz, 1997; Jones et al., 2006; BouDagher-Fadel and Noujaim Clark, 2006; Brandano et al., 2016; Bassi et al., 2019). According to Bassi et al. (2019), in B. melo the Y-shaped septula occur only in the adult growth stage, while in B. curdica the proloculus is smaller (30-50µm) and the Y-shaped septula occur in all whorls. These authors also postulated that all reliable records of B. melo and B. curdica are only from Western Tethys, and B. curdica is restricted to the Tethyan province. B. melo ranges from the Aquitanian to the earliest Messinian, while B. curdica ranges from the Burdigalian to the Tortonian (Eames et al., 1962; Bignot and Guernet, 1976; Buchbinder et al., 1993; Cahuzac and Poignant, 1997; Betzler and Schmitz, 1997; Cicha et al., 1998; BouDagher-Fadel and Clark, 2006; Jones et al., 2006; Bassi et al., 2019). For a comprehensive study and complete references to Borelis species the reader is referred to Jones et al. (2006) and Bassi et al. (2019).

Tethyan alveolinid species became isolated from the Indo-Pacific by the final eastern closure of the Mediterranean basin (Fig. 18), and finally disappeared from the Mediterranean during the Messinian salinity crisis. However, living Borelis species have been reported from the shallow (less than 40 m) continental shelf off Israel (Hyams et al., 2002). Their re-occurrence in the Eastern Mediterranean with other LBF is attributed by Hyams et al. (2002) either to migration from the Atlantic during warm periods of the Pleistocene or Holocene, or to modern migration from the Atlantic, or to modern (Lessepsian) migration from the Red Sea via the
Suez Canal. Since the opening of the Suez Canal in 1869, the flow of Lessepsian species (i.e. Indo-Pacific species introduced into the Mediterranean Sea via the canal) has been continuous (Nunes et al., 2014). We suggest that a Lessepsian migration is the only viable way that *Borelis* could have recently been introduced to the Eastern Mediterranean, since it is not found in the Western Mediterranean, which would be expected had the migration been from the Atlantic. Furthermore, Hyams et al. (2002) figured solid, sub-ellipsoidal specimens morphologically similar to the Indo-Pacific *Borelis schlumbergeri* (Reichel). The Lessepsian origin of this finding, is further supported by the fact that *Borelis schlumbergeri* (Reichel) is to be found in the Northern Bay of Safaga, in the Red sea, close to the southern entrance to the Suez Canal (Haunold et al., 1997).

The Indo-Pacific Province

In contrast to the apparent isolation of Tethys forms from the Americas in the Middle and Late Paleogene, migration towards the Indo-Pacific continued in the Oligocene and Early Miocene through the Tethyan seaway (see BouDagher-Fadel and Price, 2010, 2013, 2014, 2017). In the late Langhian–early Serravallian (13–14 Ma), a time of several regressions, the short-lived marine reconnection between the Mediterranean and Indian Ocean again closed (Von Rogl 1998). This final closure brought all migration towards the Indo-Pacific province to an end, and coincided with the onset of global cooling, and by the time the East Antarctic Ice Sheet was established (12 Ma), the forereef LBF such as the miogypsinids and lepidocyclinids had become extinct or very rare in the Indo-Pacific sub-province (BouDagher-Fadel 2008), while the isolated backreef LBF in the Indo-Pacific developed new survival characters. The small primitive *Borelis* in Middle to Late Miocene shallow-water settings became rare and was gradually replaced by more tolerant forms with more evolved characters (BouDagher-Fadel and Banner, 1999; BouDagher-Fadel, 2018a), such as *Flosculinella* (Plate 7, figs 1-2) with double rows of chamberlets on the floor of each chamber, and the elongated fusiform *Alveolinella* with several rows of chamberlets in axial section. The superposed regular layers of chamberlets separated by floors in *Alveolinella* (Plate 7, figs 3-7) are analogous structures found in the mid-Cretaceous *Praealveolina*, and are different from the irregular, tubular, supplementary chamberlets present in the thickened basal layers of the Paleogene *Alveolina* (Hottinger, 2006). They re-appear, through convergent evolution (homoplasy), millions of years after their earlier extinction as they are selected for by the changed ecological conditions developed in the Middle Miocene.
Over the Neogene period, Indo-Pacific alveolinids underwent a very slow evolution, but notably include *Borelis pygmaeus* (which persists to the top of the Te stage; BouDagher-Fadel and Banner, 1999; BouDagher-Fadel, 2018a). This species is recorded from Oligocene to Lower Miocene deposits (Bakx, 1932; Adams, 1965; Matsumaru, 1974; Boudagher-Fadel and Banner, 1999), but is suddenly replaced by a more advanced form *Flosculinella bontangensis* (Plate 7, fig. 2), with an incremental increase in the length of the test from pole to pole, changing from globular, ovoid to elongated spindle-shaped, and with an equally incremental increase in the number of secondary chamberlets (“mansardes”) from zero in *Borelis* through one in *Flosculinella* to several rows of chamberlets in *Alveolinella*. Parallel lineages have each developed with the acquisition of an additional row of chamberlets in the *Borelis-Flosculinella* lineage. This must have occurred at least twice during Te- Tf interval (Early to Middle Miocene). An example of one of these lineages is seen with the appearance of *Flosculinella reicheli* within the Early Miocene (upper Te) and of *F. bontangensis* (Plate 7, fig. 2) in the early Middle Miocene (just at the top of the Te stage). The latter gave rise to *Alveolinella praequoyi* (Plate 7, fig. 3) in the Serravallian, at the base of Tf2 stage. *A. praequoyi* has early whorls akin to *F. bontangensis*, but in the latter the chamberlets of each whorl are covered by at least 2 layers of smaller chamberlets. In *Alveolinella quoyi* (Fig. 9; Plate 7, figs 5-7), in the Tf3 stage, all of the whorls have a multiple layer of chamberlets. *Flosculinella bontangensis* grades into forms of *Alveolinella* at about the same time as the onset of the global cooling. *Alveolinella* today appear to be confined to normal shallow marine (down to depths of 80m), well-oxygenated, nutrient-rich, tropical and subtropical waters (Hohenegger, 2000; Langer and Hottinger, 2000).

Different lineages of *Borelis* spp. evolved parallel to the *Borelis pygmaeus* lineage. The latter with Y-shaped septula is separated from *B. schlumbergeri* by its smaller size, less elongated shape, and the absence of Y-shaped septula (Bassi et al., 2019). *Borelis schlumbergeri*, with Y-shaped septula occurring only in the adult growth stages, is recorded in the Indo-Pacific area, from the Tortonian to Holocene (Cole, 1954; Hottinger et al., 1993).

Bassi et al. (2019) assigned the Indo-Pacific Oligocene to Early Miocene species of *Borelis primitiva* (described from an Upper Oligocene limestone from Eniwetok; Cole, 1957), *Borelis globose, Borelis boninensis* (described from the Rupelian of east Mindanao and from the the Bonin Islands; Matsumaru 1974, 1996), and the specimen of *B. melo* (reported by Boudagher-Fadel (2018a) from the Serravallian of Australia), to *Borelis pulchra*. They based their conclusion on the absence of Y-shaped septula and the proloculus size of *B. pulchra*. In our
opinion, however, these species all have specific characteristics and are separated by time and space from *B. pulchra*. We suggest, therefore, that they should still be treated as separate species.

B. inflata which first appeared in the Oligocene of Tethys migrated rapidly into the Indo-Pacific province, and has been described from the Oligocene to Lower Miocene of Sarawak (Borneo) in the Indo-Pacific area (Adams, 1965; Matsumaru, 1974).

The American Province

The alveolinids were absent from the Neogene of the American province before the early Piacenzian closure of the Central America seaway (Figs 13 and 14). Today, they are represented by *Borelis pulchra* (d’Orbigny) which is recorded from present-day sands of Cuba, Florida, and from Jarvis Island (Langer and Hottinger, 2000; Javaux and Scott, 2003; Langer and Lipps, 2003; Förderer and Langer, 2018a; Bassi et al., 2019).

There are no records for this species from the Mediterranean, nor we would contend from the Indo-Pacific (see above). Bassi et al (2019), however, contend that Indo-Pacific forms are synonyms of *B. pulchra* and suggested that there was a migration eastwards from the Indo-Pacific across the Pacific and through the Central America Seaway, before its closure in the Pliocene (Fig. 14). However, in spite of being strong advocates for the dispersal of LBFs by trans-oceanic migration, because in our opinion the Pacific species are distinct from the American *B. pulchra*, we favour the suggestion that *B. pulchra* is another example of homoplasy, just as we suggest that the Middle Eocene Tethyan origin of *Borelis* was distinct from that of the early Paleogene American forms.

Discussion

The synthesis described here of the alveolinoids, over an expanded, globally comprehensive geographic area and stratigraphic range, has enabled a more coherent view of their phylogenetic and palaeogeographic evolution to be established, and provides an update to the description presented in BouDagher-Fadel (2018a). Two significant characteristics of their evolution and development will be discussed below in further detail, namely those of homoplasy, and of provincialism punctuated by trans-oceanic migration.
The traits of convergent evolution exhibited by the alveolinoids fall into two distinct types: those in which gross external morphology of forms echo the shape of previous LBF forms, and those in which the internal test morphology is reproduced in forms which are not directly consanguineous. As noted above, an extreme example of ecologically driven convergent evolution involving forms from different orders is exhibited in the external appearance of alveolinoids that closely resemble the planispiral, fusiform fusulinides of the Permian.

More confusingly from the taxonomic and phylogenetic viewpoint, however are the second type of homoplasy, where due to a predisposition to repeated genetic mutations, forms with the same or similar generic characteristics repeatedly appear within a family over time. When these characteristics are similar but not identical, they can lead to the misidentification of forms, as for example in the rhapsydoninids, where some Cretaceous Tethyan Murciella have been misidentified as Raadshoovenia. As noted above, true Raadshoovenia appeared only in the Paleogene of the American, and can be characterised by having a streptosporal nepiont in both megalospheric and microspheric generations, and by being a smaller than Murciella.

Another example of homoplasy is one that gives rise to very similar forms within the same family, but which are separated by a larger stratigraphic interval. So for example, following their Cretaceous predecessors, Paleogene alveolinids re-evolved from Pseudonummuloculina, giving rise to the Alveolina lineage. These Paleogene forms are morphologically convergent with the fusiform/globular alveolinids of the mid-Cretaceous characterised by the Praealveolina group. There are generic differences to the detailed test structure of these two linages, as well as a considerable gap of about 20 Ma in the fossil record, so there is no doubt that they represent distinct, homoplasic stages of evolution within the Alveolinidae. The same is not true, however, for the Late Cretaceous and Early Paleogene fabulariids. Here, the Paleocene Periloculina lineage (including Pseudolacazina and Lacazina) echoed the Cretaceous forms so closely that they are generically indistinguishable. There is however a gap of over 6Ma between the K-P boundary and first Paleogene occurrence of Periloculina in the Selandian. These Paleogene genera could be considered to be Lazarus taxa, which Wignall and Benton (1999) explain thus, “At times of biotic crisis many taxa go extinct, but others only temporarily disappeared from the fossil record, often for intervals measured in millions of years, before reappearing unchanged”. Wignall and Benton (1999) suggest that the reappearance of Lazarus taxa in the fossil record probably reflects the rebound after a period of extreme rarity during the aftermath of a global extinction. Here, however, we prefer another explanation, namely that, as with the Alveolina lineage, the Paleogene Periloculina lineage is
an example of homoplasic re-evolution from a small, simple form that survived the K-T extinction. However, unlike *Alveolina* we suggest that for Paleogene *Periloculina* lineage the homoplasy produced forms so close to the previous Cretaceous forms as to be generically indistinguishable.

A further example of a form that could be a Lazarus taxa or an example of homoplasy, is given by *Borelis*. The American *Borelis* is reported from the Middle Paleocene to the Early Eocene (PZ P3-P9), while the first occurrence of the Tethyan *Borelis* is in the Bartonian of Western Tethys. These occurrences are separated by 6.6 Ma in the geological column, and by an ocean. American *Borelis* has aligned septula and pre-septal passages, and they are in general smaller in size than those of the Tethyan *Borelis*. This, and the challenge of the concept of “the rebound after a period of extreme rarity” of a form into a province displaced from its original realm, leads us to propose that American *Borelis* and Tethyan *Borelis* are likely also to be examples of homoplasy. This potential tension between the concepts of Lazarus taxa and of homoplasy is worthy of further exploration elsewhere.

We now turn to the second notable feature of the development of the Alveolinoidea, namely their distinct global pattern of provincialism and the episodes of trans-oceanic, similar to behaviour previously observed in other LBFs (e.g. Adams, 1967; Rosen, 1984; BouDagher-Fadel and Price, 2010, 2013, 2014, 2017). The three main alveolinoid provinces were those of the Americas, Tethys, and the Indo-Pacific. We have previously demonstrated that the Cretaceous agglutinated orbitolinids originated in Tethys, but underwent periodic westward trans-oceanic migration to the Americas during periods of global sea-level low-stands (BouDagher-Fadel and Price, 2019). In this study, we have confirmed that the Tethyan province also remained the palaeogeographic centre for the porcelaneous alveolinids, and that they inhabited similar ecological habitats throughout the Cretaceous and Paleogene. It has been inferred here for the first time that a westward palaeogeographic migration of some alveolinid genera also occurred in the mid-Cretaceous from the Tethys to the Americas (migrations 1-3, Fig. 11), while the Late Cretaceous alveolinids remained mainly isolated (migration 4, Fig. 11). On the other hand, in the Paleogene we saw limited eastward migration from the American province towards Tethys (*Fabularia* in the Ypresian, PZ P6b. migration 5, Fig. 16). On the other hand, migrations from Tethys towards the Indo-Pacific region continued till the closure of the Tethyan corridor and the isolation of the Mediterranean in the Serravallian (migrations 6-9, Fig. 8). As noted, we have shown that most cosmopolitan alveolinoids appeared in Tethys before migrating to other provinces. Likewise, we have seen that once established in the
American and Indo-Pacific provinces, local provincial forms evolved, indicating that they were periodically effectively isolated from the Tethyan province. These characteristics have been observed in previous studies of Mesozoic (BouDagher-Fadel and Price, 2019) and Cenozoic LBF, specifically the lepidocyclinids (BouDagher-Fadel and Price, 2010), the miogypsinids (BouDagher-Fadel and Price, 2013), the nummulitoids (BouDagher-Fadel and Price, 2014; Benedetti, 2018) and the orthophragminids (BouDagher-Fadel and Price, 2017; Özcan et al., 2019). The periods of migration from one province to another were often followed by subsequent isolation and development of local provincial linages. These migrations were often associated with major sea-level regressions, while the subsequent provincial isolation coincided with global sea-level transgressions. This study has, therefore, further tested the migration hypothesis highlighted by Pignatti (2019), and has confirmed the wider application of the ideas initially put forward by BouDagher-Fadel and Price (2010, 2013, 2014, 2017 and 2019).

Conclusions

We have resynthesized the literature on the occurrence and distribution of the alveolinoids, and augmented this information with observations on new materials from the Americas, Europe, the Middle East, Tibet, and SE Asia. We have produced a global correlation and integration of the occurrences and stratigraphic ranges of members of the three alveolinoid families, namely the Alveolinidae, the Fabulariidae and the Rhapydioninidae, based upon the planktonic foraminiferal zonal scheme of BouDagher-Fadel (2015, 2018b). In the Cretaceous, alveolinoids are found in the Tethyan and American provinces, while of the later Cenozoic forms, Alveolinidae and Fabulariidae are found in three provinces (Tethys, American, and the Indo-Pacific), while the Rhapydioninidae are constrained to the Americas.

Alveolinoids characteristically exhibit convergent evolution, with the repeated re-occurrence of certain morphological features. This homoplasy is predominantly of two types, one which recapitulates the gross external morphology of forms, and one in which the internal test morphology is also reproduced, even to the level of regenerating forms with the same generic characteristics.

We have shown that no alveolinoid survived the K-P extinction, but that member of all three families re-evolved from small miliolides that were resilient enough to pass into the Paleogene. Specifically, we have concluded that:
• Cretaceous Tethyan *Murciella* has on occasion been misidentified as a *Raadshoovenia*, which in fact is an American Paleocene form.

• *Fabularia* originated in the Americas at the beginning of the Ypresian, but soon thereafter migrated to Tethys.

• There is a gap of over 6 Ma between the last occurrence of *Periloculina, Pseudolacazina* and *Lacazina* in the Cretaceous and their re-appearance in the Paleogene, and that these taxa are most likely to be examples of homoplasic re-evolution from a small, simple form that survived the K-P extinction.

• The 6.6 Ma gap between American *Borelis* and Tethyan *Borelis* suggests that they are likely also to be examples of homoplasy.

Finally, our previously developed hypothesis that periodic, sea-level lows enable inter-provincial migration of LBF was found to hold true, and that the behaviour and directions of migration of the alveolinoids is resonant with those of the orbitolinids, the orthophragminids, the nummulitoids the miogysinids and the lepidocyclinids. Migration occurred from East to West in the Cretaceous, but was dominated by migration from West to East in the Cenozoic.

Acknowledgements

We would like to thank Prof. Hu Xumian and Jingxin Jiang, Yiwei Xu, Gaoyuan Sun, Wen Lai, Ph. D students, School of Earth Sciences and Engineering and Engineering, Nanjing University for their assistance in sampling Tibet and Iran sections; Sagar Damania, National Stable Isotope Facility, Indian Institute of Technology; Dr. Peter Scholle, Scholle Petrographic, LLC, Greece; and Prof. Sébastien Castelltort, Department of Earth Sciences, University of Geneva, Switzerland for their collaboration and in providing us with samples from India, Greece and Spain. We are also grateful to the South East Asia Research Group, Royal Holloway College, and the Natural History Museum for allowing us access to their material.
Figure Captions

Fig. 1. Alveolinoids Paleogene biozones with diagnostic first and last occurrences, calibrated against the PZ, the “letter stages” of the Far East, and the “SB” zones of the Mediterranean, modified after BouDagher-Fadel (2018a).

Fig. 2. Alveolinoids Neogene biozones with diagnostic first and last occurrences, calibrated to the “letter stages” of the Far East.

Fig. 3. Ranges of the main genera of the Cretaceous Alveolinoidea in the three provinces.

Fig. 4. A) The evolution of the Alveolinidae from a simple streptospiral origin, such as *Pseudonummuloculina*; B) The evolution of the Rhapydioninidae from the lenticular compressed *Pseudedomia*; C) The evolution of the Fabulariidae from a completely overlapping form with vertical incomplete partitions, *Periloculina*.

Fig. 5. Basal layers and flosculinisation in *Alveolina* (modified from Hottinger, 1960 and BouDagher-Fadel, 2018a).

Fig. 6. *Alveolina globosa* (Leymerie), A) equatorial section, B) axial section. Early Eocene, Meting Limestone, Laki group, Pakistan, UCL coll. Scale bars = 1mm.

Fig. 7. A) *Fabularia hanzawai* Robinson, co-type, Eocene, Saint Andrew Claremont Formation, Jamaica, NHM P52840. B-C) *Fabularia discolithus* Defrance, Lutetian middle calcaire grossier, Chaumont-en-Vexin, Paris Basin, NHM P33071. Scale bars: A) = 0.5mm; B-C) = 1mm

Fig. 8. Ranges of the main genera of the Paleogene Alveolinoidea in the three provinces.

Fig. 9. *Alveolinella quoyi* (d’Orbigny), Port Moresby, Coral Sea, New Guinea solid specimen figured by BouDagher-Fadel (2018a), showing a parasite-symbiont (s) completely enclosed by the whorls, *Planorbulinopsis parasitica* Banner, embedded in the test. Scale bar = 0.25mm.

Fig. 10. The major tectonic, oceanic and climatic events in the Cretaceous affecting alveolinoids migration, evolution and extinction.

Fig. 11. Variation in sea level during the mid to Late Cretaceous based on Miller et al. (2005).

Fig. 12. Schematic migration of alveolinoids during Late Cretaceous, shown by red arrows, from the Tethyan province to the American province.

Fig. 13. Ranges of the main genera of the Neogene Alveolinoidea in the three provinces.
Fig. 14. The major tectonic, oceanic and climatic events in the Neogene affecting alveolinoids migration, evolution and extinction. WPP, I-P= Indo-Pacific; WT = Western Tethys; A-P = American province.

Fig. 15. Schematic migration of alveolinoids during Early Paleogene, shown by red arrows, from the American province to the Tethyan province.

Fig. 16. Variation in sea level during the Paleogene based on Miller et al. (2005).

Fig. 17. Schematic migration of alveolinoids during Late Paleogene, shown by red arrows, from the Tethyan province to the Indo-Pacific province.

Fig. 18. Schematic distribution of the alveolinoids during the Miocene in the Indo-Pacific province.
Plate captions

Plate 1

Scale bars: Fig. 1, 3, 6, 8 = 0.5mm; Figs 2, 4-5, 7, 9-10 = 1mm.

Fig. 1. *Archaealveolina reicheli* (de Castro), figured by Loeblich and Tappan (1988), Aptian, Italy.

Figs 2. *Ovalveolina* sp., Cenomanian, France, UCL collection.

Fig. 3. *Ovalveolina crassa* Castro, Cenomanian, Iles Madam, UCL collection.

Fig. 4. *Praealveolina cretacea* Reichel, Cenomanian, Iles Madam, UCL collection.

Fig 5-6. *Praealveolina tenuis* Reichel, Cenomanian, 5) oblique equatorial section; 6) oblique axial section, Audignon, near Saint-Sever, UCL collection.

Figs 7-10. *Simplalveolina simplex* (Reichel), Cenomanian, Audignon, near Saint-Sever, UCL collection.

Plate 2

Scale bars: Fig. 1 = 0.15mm; Figs 2-7, 9, 11 = 0.5mm; Figs 8, 10 = 1mm.

Fig. 1. *Multispirina* sp., Cenomanian, Qatar, NHM M2425

Fig. 2. *Streptalveolina* sp., Cenomanian, Iles Madam, UCL collection.

Figs 3-6. *Cisalveolina lehneri* Reichel, Cenomanian, India, UCL coll.

Fig. 7. *Pseudonummuloculina* sp. Cenomanian, Paxos, Greece, P. Scholle coll.

Fig. 8. *Helenalveolina tappanae* Hottinger, Drobné and Caus, Cenomanian, Iles Madam, UCL collection.

Fig. 9. *Pseudedomia persica* Rahaghi, Cenomanian, Iran, Nanjing University coll.

Fig. 10-11. *Pseudochubbina globularis* (Smout) (= *Pseudedomia globularis* Smout), paratypes, Campanian, Iraq, NHM P42646.

Plate 3

Scale bars: Figs 1-9, 11-12 = 0.5mm; fig. 10 = 1mm.

Figs 1-2. *Sellialveolina viallii* Colalongo, Cenomanian, Xinyu, Nanjing University coll.

Fig. 3. *Murciella cuvillieri* Fourcade, figured by Fourcade (1966), Campanian, Spain.

Figs 4-5. *Periloculina iranica* Rahaghi, Cenomanian, Iran, Nanjing University coll.

Fig. 6. *Lacazina* sp., Coniacian, India, UCL coll.
Figs 7-8. *Chubbina cardenasensis* (Barker and Grimsdale), 7) Late Cretaceous, Cardenas, San Luis Potosi, Mexico, NHM P33044; 8) figured by Robinson (1968) as a co-type megalospheric specimen of *Chubbina jamaicensis* Robinson, Campanian, Jamaica, NHM P48053.

Fig. 9. *Glomalveolina pilula* Hottinger, Ypresian, Lower Laki Formation, Pakistan, UCL coll.

Fig. 10. *Glomalveolina* sp., Eocene, Libya, UCL coll.

Fig. 11. *Glomalveolina lepidula* (Schwager), Early Eocene, Longjiang section, Tibet, Nanjing University coll.

Fig. 12. *Pseudofabularia matleyi* (Vaughan), figured by Loeblich and Tappan (1988), Middle Eocene, Chapelton Formation, Jamaica.

Plate 4

Scale bars: Fig 1–10 = 1mm;

Figs 1-3. *Alveolina globosa* (Leymerie), Ypresian, Eocene, Laki Limestone (Laki Formation), Sakesar Peak in the Salt Range, Pakistan, 1) UCL coll.; 2) NHM Davies coll.; 3) Toraja Formation (Sulawesi), SEA coll., Royal Holloway.

Fogs 4-6. *Alveolina oblonga* d’Orbigny, Early Eocene, 4-5) Dunghan, Siah Koh, UCL coll; 6) Chaussy, Val-d’Oise, France, UCL coll.

Fig. 7. *Alveolina leupoldi* Hottinger, Early Eocene, Qumiba section, Tingri, Tibet, Nanjing University.

Fig. 8. *Alveolina elliptica* (Sowerby), Eocene, Afghanistan, NHM Skinner coll. P7404.

Fig. 9. *Alveolina corbarica* Hottinger, Early Eocene, Longjiang section, Tibet, Nanjing.

Fig. 10. *Alveolina daniensis* Drobne, Early Eocene, Ladakh region, India. Sagar Damania, Indian Institute of Technology coll.

Plate 5

Scale bars: Figs 1-10 = 1mm.

Fig. 1. *Alveolina vredenburgi* Davies 1937 (= *Alveolina cucumiformis* Hottinger), toptype, axial section, Late Paleocene, Aquitaine, France, UCL coll.

Fig. 2. *Alveolina pasticillata* Schwager, Early Eocene, Ladakh region, India, Sagar Damania, Indian Institute of Technology coll.

Figs 3-4. *Alveolina stipes* Hottinger, Middle Eocene, Ainsa, Spain, UCL coll.

Fig. 5. *Alveolina solida* Hottinger, Early Eocene, Ladakh region, India, Sagar Damania, Indian Institute of Technology coll.

Fig. 6. *Alveolina leupoldi*, Hottinger, Early Eocene, Coustouge, France, UCL coll.
Fig. 7. *Alveolina palermitana* Hottinger, Middle Eocene, Middle Khirthar, Pakistan, UCL coll.

Fig. 8. *Alveolina vredenburgi* Davies, topotype, equatorial section, Late Paleocene, Aquitaine, France, UCL coll.

Figs 9-10. *Alveolina subpyrenaica* Leymerie, Early Eocene, Zagros, Iran, UCL coll.

Plate 6

Scale bars: Figs 1-10 = 1mm.

Figs 1-2. *Alveolina laxa* Fottinger, Early Eocene, Egypt, UCL coll.

Fig. 3. *Globoreticulina iranica* Rahaghi, figured by Hottinger (2006), Middle Eocene, Shiraz, Iran.

Fig. 4. *Borelis pygmaeus* Hanzawa, Oligocene, Borneo, 65/9 Loc.205, UCL coll.

Fig. 5. *Borelis vonderschmitti* (Schweighauser), Late Eocene, Syria, UCL coll.;

Fig. 6. *Borelis curdica* (Reichel), Miocene, Turkey, NHM coll.

Fig. 7. *Borelis melo* (Fichtel and Moll), Middle Miocene, Turkey, NHM P49087.

Fig. 8. *Borelis haueri* (d’Orbigny), Middle Miocene, Baden-Brickyard, Baden, Australia, UCL coll.

Fig. 9. *Lacazinella wichmanni* (Schlumberger), Late Eocene, Indonesia, UCL coll.

Fig. 10. *Fabularia discolithus* Defrance, Eocene, calcaire grosier de Rennes, France, NHM Brady coll. P41603.

Plate 7

Scale bars: Figs 1-7 = 1mm.

Fig. 1. *Flosculinella globulosa* (Rutten), Early Miocene (lowermost Burdigalian), Indonesia, UCL coll.

Fig. 2. *Flosculinella bontangensis* (Rutten), late Early Miocene (Burdigalian, lower Tfa), Borneo, UCL coll.

Fig. 3. *Alveolinella praequoyi* Wonders and Adams, holotype, early Middle Miocene (upper Tfa-Tfb), Darai Limestone, Papua New Guinea, NHM P52658.

Fig. 4. *Alveolinella fennemai* Checchia- Rispoli, late Early Miocene (Burdigalian), Borneo, UCL coll.

Figs 5-7. *Alveolinella quoyi* (d’Orbigny), Holocene, 5) Sekau, formation SEA coll., Royal Holloway; 6) Port Moresby, Coral Sea, New Guinea, UCL coll; 7) Pacific, UCL coll.
References

Acar Ş. Descriptions, systematics and revisions of the subgenera *Alveolina* (*Glomalveolina*) Hottinger, 1960 and *Alveolina* (*Alveolina*) d’Orbigny, 1826 (Foraminiferida). *Bulletin of the Mineral Research and Exploration*. 2019; 159: 89-97.

Adams CG. The foraminifera and stratigraphy of the Melinau Limestone, Sarawak, and its importance in Tertiary correlation. *The Quarterly journal of the Geological Society of London*. 1965; 121: 283–338.

Adams CG. Tertiary Foraminifera in the Tethyan, American, and Indo-Pacific Provinces. In: Adams CG., Ager, D. (Eds), *Aspects of Tethyan Biogeography*, Systematics Association Publication, special publication. London. 1967; 7: 195–217.

Adams CG. Some tertiary foraminifera. In: Hallam, A. (Ed.), Atlas of Paleobiogeography. Elsevier. 1973: 453–468.

Adams CG. Neogene larger foraminifera, evolutionary and geological events in the context of datum planes. In: Ikebe, I., Tsuchi, R. (Eds), *Pacific Neogene Datum Planes*. University of Tokyo Press, Tokyo. 1984: 47–68.

Adams CG. On the classification of the Lepidocyclinidae (foraminifera) with redescriptions of the unrelated Paleocene genera Actinosiphon and Orbitosiphon. *Micropaleontology*. 1987; 33: 289–317.

Adams CG, Gentry AW, Whybrow PJ. Dating the terminal Tethyan event. In: Meulenkamp, J.E. (Ed.), *Reconstruction of Marine Paleoenvironments*. *Utrecht Micropaleontological Bulletins*. 1983; 30: 273–298.

Bakx LAJ. De genera *Fasciolites* en *Neoalveolina* in het Indo-Pacifische gebied. *Verhandelingen van het Koninklijk Nederlandsch Geologisch en Mijnbouwkundig Genootschap voor Nederland en Koloniën*. 1932; 9: 205–267.

Banner FT. A new genus of the Planorbulinidae, an endoparasite of another foraminifera. *Revista Española de Micropaleontología*. 1971; 2: 113-128.

Bassi D, Loriga Broglio C. Alveolinids and Middle-Upper Eocene boundary in Northeastern Italy (Veneto, Colli Berici). *Journal of Foraminiferal Research*. 1999; 29: 222-235.

Bassi D, Braga JC, Iryu Y. Palaeobiogeographic patterns of a long living monophyletic lineage: *Lithophyllum pustulatum* species group (Corallinales, Rhodophyta). *Palaeogeography Palaeoclimatology Palaeoecology*, 2009; 284: 237–245.

Bassi D, Di Domenico G, Pignatti J, Abramovich S, Hallock P, Koenen J, Kovács Z, Langer MR, Pavia G, Iryu Y. Data from: Palaeobiogeography and evolutionary patterns of the larger foraminifer Borelis de Montfort (Borelidae). Dryad Digital Repository. 2019; https://doi.org/10.5061/dryad.st65n12

Benedetti A. Biostratigraphic remarks on the Saltavuturo Formation (Eocene-Oligocene) cropping out at Portella Colla (Madonie Mts., Sicily). *Revue de Paléobiologie*. 2010; 29: 197–216.
Benedetti A, Marino M, Pichezzi MR. Paleocene to lower Eocene larger foraminiferal assemblages from Central Italy: new remarks on biostratigraphy. Rivista Italiana di Paleontologia e Stratigrafia. 2018; 124: 73-90

Berggren WA, Prothero DR. Eocene–Oligocene climatic and biotic evolution: An overview. In: Prothero, D.R., Berggren, W.A. (Eds), Eocene–Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton, 1992: 1–28.

Betzler C, Schmitz S. First record of Borelis melo and Dendritina sp. in the Messinian of SE Spain (Cabo de Gata, Province Almeria). Paläontologische Zeitschrift. 1997; 71: 211-216.

Bignot G, Guernet G. Sur la présence de Borelis curdica (Reichel) dans le Miocène de l’île de Kos (Greece). Géologie Méditerranéenne, Annales de l’Université de Provence. 1976; 3: 15-26.

Bonet F. Zonificacion microfaunistica de las calizas Cretacicas del este de Mexico. Boletín de la Asociación Mexicana de Geólogos Petroleros. 1956; 8: 3-102.

BouDagher-Fadel MK. Biostratigraphic and geological significance of planktonic foraminifera. 2nd ed. London: UCL Press; 2015. p. 320.

BouDagher-Fadel MK. Evolution and geological significance of larger Benthic Foraminifera. London: UCL Press; 2018a. p. 704.

BouDagher-Fadel MK. Revised diagnostic first and last occurrences of Mesozoic and Cenozoic planktonic foraminifera. UCL Office of the Vice-Provost Research, Professional Papers Series, UCL Press; 2018b. p. 1–5.

BouDagher-Fadel MK, Banner F. Revision of the stratigraphic significance of the Oligocene–Miocene “Letter-Stages”, Revue de Micropaléontologie. 1999; 42: 93–97.

BouDagher-Fadel MK, Noujaim Clark G. Stratigraphy, paleoenvironment and paleogeography of Maritime Lebanon: a key to Eastern Mediterranean Cenozoic history. Stratigraphy. 2006; 3: 81–118.

BouDagher-Fadel MK, Price GD. Evolution and paleogeographic distribution of the lepidocyclinids. Journal of Foraminiferal Research. 2010; 40: 79-108

BouDagher-Fadel MK, Price GD. The phylogenetic and palaeogeographic evolution of the miogypsinid larger benthic foraminifera. Journal of the Geological Society. 2013; 170: 185-208. doi:10.1144/jgs2011-149

BouDagher-Fadel MK, Price GD. The phylogenetic and palaeogeographic evolution of the nummulitoid larger benthic foraminifera. Micropaleontology. 2014; 60: 483-508.

BouDagher-Fadel MK, Price GD. The paleogeographic evolution of the orthophragminids of the paleogene. Journal of Foraminiferal Research. 2017; 47: 337-357.

BouDagher-Fadel MK, Price GD. Global evolution and paleogeographic distribution of mid-Cretaceous orbitolinids. UCL Open - Environment. 2019: doi:10.14324/111.444/ucloe.000001.
Bozkurt A, Gormus M. Description Criteria for Eocene Alveolinids: Examples from Inner Western Anatolia. 2019; IOP Conference Series Earth and Environmental Science. 2019; 362 012019. doi:10.1088/1755-1315/362/1/012019

Braga JC, Bassi D. Facies and coralline algae from Oligocene limestones in the Malaguide Complex (SE Spain). Annalen des Naturhistorischen Museums in Wien, Serie A. 2011; 113: 291–308.

Brandano M, Tomassetti L, Sardella R, Tinelli C. Progressive deterioration of trophic conditions in a carbonate ramp environment: the Lithothamnion Limestone, Majella Mountain (Tortonian-early Messinian, Central Apennines, Italy). *Palaios*. 2016; 31: 125–140.

Brasier, MD. Some geometrical aspects of fusiform planispiral shape in larger foraminifera. *Journal of Micropalaeontology*. 1984; 3: 11-16.

Brasier, MD. Fossil indicators of nutrient levels. 1: Eutrophication and climate change. *Geological Society Special Publication*. 1995; 83: 113–132.

Buchbinder B, Martinotti GM, Simantov R, Zilberman E. Temporal and spatial relationships in Miocene reef carbonates in Israel. *Palaeogeography Palaeoclimatology Palaeoecology*. 1993; 101: 97–116.

Butterlin, J. Claves para la determinación de macroforaminíferos de Mexico y del Caribe del Cretácico Superior al Mioceno Medio. *Instituto Mexicano de Petróleo*, 1981; 29: 1–51.

Butterlin J, Bonet F. Microfauna del Eoceno Inferior de la Península de Yucatan. *Paleontologia Mexicana*, Instituto de Geología, Mexico. 1960; 7: 1–18.

Caffau M, Plenicar M, Pugliese N, Drobe K. Late Maastrichtian rudists and microfossils in the Karst region (NE Italy and Slovenia). *Geobios*. 1998; 31: 37–46.

Cahuzac B. Poignant A. Essai de biozonation de l’Oligo-Miocène dans les bassins européens à l’aide des grands foraminifères nérithiques. *Bulletin de la Société Géologique de France*. 1997; 168: 155–169.

Calvez H. Deux Foraminifères nouveaux de l'Albien calcaire des Pyrénées franco-espagnoles Pseudonummoloculina aurigerica n. gen., n. sp. et Dobrogelina? angulata n. sp. *Benthos ’86. Résumès Abstracts. Genève: Museum d'Histoire Naturelle*. 1988; 2: 391-399

Caus E. Upper Cretaceous Larger Foraminifera: Paleoecological distribution. *Revue de Paléobiologie*. 1988; 2: 417-419.

Caus E, and Hottinger L, Particularidades de la fauna (foraminíferos) del Cretácico superior pirenaico: *Paleontolgia i. Evolució*. 1986; 20: 115–123.

Chaproniere GCH. The Neogene larger foraminiferal sequence in the Australian and New Zealand regions, and its relevance to the East Indies letter stage classification. *Palaeoecography Palaeoclimatology Palaeoecology*. 1984; 46: 25–35.

Cicha I, RögI F, Čtyroká J, Rupp Ch, Bajraktarevic Z, Baldi T, Bobrinskaya OG, Darakchieva St, Fuchs R, Gagic N, Gruzman AD, Halmai J, Krasheninnikov VA, Kalac K, Korecz-Laky I, Krhovsky J, Luczewska E, Nagy-Gellai A, Olszewska B, Pulescu Gh, Reiser H, Schmid ME, Schreiber O, Serova MY, Szegö E, Sztrakos K, Venglinskyi IV,
Wenger W. Oligocene, Miocene Foraminifera of the Central Paratethys. *Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft*. Frankfurt am Main. 1998; 549: 1-325.

Ciry R.. À propos de Meandropsina larrazeti Mun.-Chalm., generotype d’un genre nouveau Larrazetia Ciry. *Revue de Micropaleontologie*. 1964; 6: 185-195.

Cole WS. Stratigraphic and paleontologic studies of wells in Florida – no 1. *Florida Geological Survey*. 1941; 19: 91.

Cole WS. Stratigraphic and paleontologic studies of wells in Florida. No. 1. *Geological Bulletin*. 1941; 16: 1–73.

Cole WS. Larger foraminifera from Guam. *Journal of Paleontology*. 1954; 13: 183-89.

Cole WS. Larger foraminifera from Eniwetok Atoll. *United States Geological Survey Professional Paper*. 1957; 260: 743–784.

Conkin JE, Conkin B.M. Revision of the genus *Nummoloculina* and emendation of *Nummoloculina heimi* Bonet. *Micropaleontology*. 1958; 4: 149-158.

Crespin I. *Lacazinella*, a New Genus of Trematophore Foraminifera. *Micropaleontology*. 1962; 8: 337-342.

De Castro P. Osservazioni su Raadshoovenia van den Bold, e i suoi col nuovo genere Scandonea (Foraminiferida, Miliolacea). *Bollettino della Societa dei Naturalisti in Napoli*. 1971; 80: 161–235.

De Castro P. *Cisalveolina fraasi* (Gümbel) Reichel: diffusione geografica e problemi stratigrafici. *Bollettino della Societa dei Naturalisti in Napoli*. 1983; 90 [1981]: 99-129.

De Castro P. *Pseudorhapydionina dubia* (De Castro, 1965). *Pseudorhapydionina laurinensis* (De Castro, 1965). *Pseudorhipidionina casertana* (De Castro, 1965). In Neumann M. & Schroeder R. (eds.), Les grands Foraminifères du Crétacé moyen de la region méditerranéenne. *Geobios, Mémoire spéciale*. 1985; 7: 88-97.

Di Carlo M, Accordi G, Carbone F, Pignatti J. Biostratigraphic analysis of Paleogene lowstand wedge conglomerates of a tectonically active platform margin (Zakynthos Islands, Greece). *Journal of Mediterranean Earth Sciences*. 2010; 2: 31-92.

Dilley FC. Cretaceous larger foraminifera. In: Hallam, A. (Ed.), Atlas of Palaeobiogeography. Elsevier, Amsterdam. 1973: 403–419.

Drobne K. Les grandes Miliolides des couches paleocenes de la Yougoslavie du Nord-Ouest (*Idalina, Fabularia, Lacazina, Periloculina*). *Razprave IV, razr, SAZU* 17. 1974: 129–184.

Drobne K. *Periloculina dalmatina*, a new trematophorid miliolid from the Cuisian of Jugoslavia. *Razprave 4 Razreda SAZU*. 1985; 26: 159-176.

Drobne K. Structural elements and stratigraphic distribution of larger Miliolids in the foraminiferal family Fabulariidae. *Revue de Paléobiologie*. Volume special. 1988; 2: 643-661.
Drobne K, Ćosović V. Palaeobiogeography of the Late Cretaceous to Paleogene larger miliolids from tropical to subtropical sea belts (Neotethys to Caribbean). Bulletin de la Société Géologique de France. 2009; 180(4): 317-331

Drobne K, Hottinger L. Larger Miliolid Foraminifera in Time and Space. Academie Serbe Sciences et Arts, Bulletin T. CXXVIII; Sciences Naturelles. 2004; 42: 83–99.

Eames FE, Banner FT, Blow WH, Clarke, WJ. Fundamentals of Mid-Tertiary Stratigraphical Correlation. Cambridge University Press, Cambridge. 1962. p 163.

Fleury J-J, Fourcade E. Un nouvel Alveolinidae du Paléocène - Eocene inférieur du Mexique. Ses affinités avec les genres Murciella et Yaberinella. Revue de Micropaléontologie. 1987; 30: 91-110.

Fleury J-J, Bignot G, Blondeau A, Poignant A. Biogeographie de Foraminifères tethysiens du Sénonien a l’Eocène supérieur. Bulletin de la Société géologique de France. 1985; 1 (5): 757-770.

Fleury J-J. Contribution a la connaissance des Rhapydionininae (Foraminifères, Alveolinidae) crétacés. Geobios. 1974; 7 (4): 307-322.

Fleury J-J. Deux Rhapydionininae (Foraminifères, Alveolinidae) d’affinités américaines dans le Crétacé supérieur de Grèce (zone de Gavrovo-Tripolitza). Revue de Micropaléontologie. 1977; 20 (2): 77-90.

Fleury J-J. Le genre Murciella (Foraminifère, Rhapydionininae), dans le Crétacé supérieur de Grèce (zone de Gavrovo-Tripolitza). Geobios. 1979; 12 (2): 149-185.

Fleury J-J. Rhapydioninidés du Campanien-Maastrichtien en region méditerranéenne: Les genres Murciella, Sigalveolina n. gen. et Cyclopseudomia. Carnets de Géologie. 2018; 18 (11): 233-280.

Förderer M, Langer MR. Atlas of benthic Foraminifera from coral reefs of the Raja Ampat Archipelago (Irian Jaya, Indonesia). Micropaleontology. 2018; 64(1-2): 1-170.

Fourcade, É. Murciella cuvillieri n. gen. n. sp. nouveau foraminifère du Sénonien supérieur du sud-est de l'Espagne. Revue de Micropaléontologie. 1966; 9: 147-155.

Fourcade É, Fleury J-J. Origine, evolution et systématique de Praechubbina n. gen., foraminifère Alveolinacea de Crétacé supérieur du Guatemala et du Mexique. Revue de Micropaléontologie, Paris. 2001; 44: 125-157.

Fourcade E. Murciella cuvillieri n. gen., n. sp., nouveau Foraminifère du Sénonien supérieur du SE de L’Espagne. Revue de Micropaléontologie. 1966; 9: 147–155.

Fourcade E, Tardy M, Vila JM. Streptalveolina mexicana n. gen. n. sp., un Alveolinidae nouveau (Foraminifère) du Cénomanien du Mexique. Revue de Micropaléontologie. 1975; 17: 110-116.

Gold DP, Fentona JPG, Casas-Gallegoa M, Novaka V, Pérez-Rodríguez I, Ceteana C, Pricea R, Nembhard N, Thompson H. The biostratigraphic record of Cretaceous to Paleogene tectono-eustatic relative sea-level change in Jamaica, Journal of South American Earth Sciences, 2018; 86: 140-161
Goldbeck EJ, Langer MR. Biogeographic provinces and patterns of diversity in selected Upper Cretaceous (Santonian-Maastrichtian) larger foraminifera. *SEPM (Society for Sedimentary Geology)*. 2009; SEPM Special Publication No. 93: 187–232.

Gradstein FM, Ogg JG, Schmitz MD, Ogg GM. *The geologic time scale*. Amsterdam, Boston: Elsevier; 2012.

Hallock P. Why are larger foraminifera large? *Paleobiology*. 1985; 11: 195–208.

Hamaoui M, Hourcade E. Révision de Rhapydionimae (alveolinidae, foraminifères). Bulletin des Centres de Recherches Exploration - Production Elf-Aquitaine. 1973; 7: 361–435.

Hanzawa S. Three New Tertiary Foraminiferal Genera from Florida, Saipan and Guam. *Transactions and Proceedings of the Palaeontological Society of Japan*. 1967; New Series, no.65:19-25

Hanzawa S. Eocene Foraminifera from Haha-Jima (Hillsborough Island). *Journal of Paleontology*. 1947; 21: 254-259.

Haunold TG, Baal C, Piller WE. Benthic foraminiferal associations in the Northern Bay of Safaga, Red Sea, Egypt. *Marine Micropaleontology*. 1997; 29: 185–210.

Haynes JR. *Foraminifera*. MacMillan, London. 1981. p. 433.

Hohenegger J. Coenoclines of larger foraminifera. *Micropaleontology*. 2000; 46(Suppl. 1): 127–151.

Hottinger L. Uber paleocaene und eocaene Alveolinen. *Eclogae geologicae Helvetiae*. 1960; 53: 265–283.

Hottinger L. Illustrated glossary of terms used in foraminiferal research. *Carnets de Géologie / Notebooks on Geology, Memoir*. 2006/02.

Hottinger L, Drobne K, Caus E. Late cretaceous, larger, complex miliolids (foraminifera) endemic in the Pyrenean faunal province. *Facies*. 1989; 21(1): 99-133

Hottinger L, Halicz E, Reiss, Z. Recent Foraminifera from the Gulf of Aqaba, Red Sea. *The Slovenian Academy of Sciences and Arts*. 1993; 33: 1–179.

Hottinger L. Foraminifères rotaliformes et Orbitoïdes du Sénonien Inférieur Pyrénéen, *Eclogae Geologicae Helvetiae*. 1966; 59:277-301.

Hottinger L. Selected Paleogene larger foraminifera. In: Hallam, A. (Ed.), *Atlas of Palaeobiogeography*, Elsevier, Amsterdam.1973: 443–452.

Hottinger L. Comparative anatomy of selected foraminiferal shell structures. In: R.H. Headley and G. Adams (ed.) *Foraminifera III*. Academic press (London).1978: 203–266.

Hottinger L. Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. *Bulletin Société géologique de France*. 1997; 168/4: 491–505.
Hottinger L. Revision of the foraminiferal genus *Globoreticulina* Rahaghi, 1978, and of its associated fauna of larger foraminifera from the late Middle Eocene of Iran. *Notebooks on Geology* (Brest), CG2007-A06. 2007:1-51.

Husinec A, Velić I, Fuček L, Vlahović I, Matišec D, Oštříč N, Korbar T. Mid Cretaceous orbitolinid (Foraminiferida) record from the islands of Cres and Lošinj (Croatia) and its regional stratigraphic correlation. *Cretaceous Research.* 2000; 21: 155-171.

Hyams O, Almogi-Labin A, Benjamini C. Larger foraminifera of the southeastern Mediterranean shallow continental shelf off Israel. *Israel Journal of Earth Sciences.* 2002; 51: 169–179.

Jaillard E, Arnaud-Vanneau A. The Cenomanian–Turonian transition on the Peruvian margin. *Cretaceous Research.* 1993; 14: 585–605.

Javaux EJ, Scott DB. Illustration of Modern Benthic Foraminifera from Bermuda and Remarks on Distribution in Other Subtropical/tropical Areas. *Palaeontologia Electronica.* 2003; 6(4): 29pp

Krobicki M, Olszewska O. Urgonian-type microfossils in exotic pebbles of the Late Cretaceous and Palaeogene gravel stones from the Sromowce and Jarmuta formations (Pieniny Klippen Belt, Polish Carpathians). *Studia Geologica Polonica*, Kraków. 2005; 124: 215–235.

Langer MR. Distribution, Diversity and Functional Morphology of Benthic Foraminifera from Vulcano (Mediterranean Sea), Unpublished Ph.D. Thesis, University of Basel, Switzerland.1989. p. 159.

Langer MR. Epiphytic foraminifera. *Marine Micropaleontology.* 1993; 20: 235–265.

Langer MR, Hottinger L. Biogeography of selected “larger” foraminifera: *Micropaleontology,* 2000; 46:105–126.

Langer MR, Frick H, Silk MT. Photophile and sciaphile foraminifera from Lavezzi Island, Corsica: *Revue de Paléobiologie.* 1998; 17: 525–530.

Langer EJ, Goldbeck MR. Biogeographic provinces and patterns of diversity in selected upper Cretaceous (Santonian–Maastrichtian) larger foraminifera. *SEPM (Society for Sedimentary Geology)*, ISBN 978-1-56576-137-7. 2009: 187–232.

Langer MR, Lipps JH. Foraminiferal distribution and diversity, Madang Reef and Lagoon, Papua New Guinea. *Coral Reefs.* 2003; 22: 143–154.

Leppig U. Biostratigraphy of larger foraminifera and facies development from the Upper Albian to the Middle Paleocene in the Sierra de Cantabria and the Montes Obarenes (Northwestern Spain). *Neues Jahrbuch für Geologie und Paläontologie - Monatshefte* Jg. 1987; 11: 647 – 666.

Levin HL. Micropaleontology of the Oldsmar Limestone (Eocene) of Florida. *Micropaleontology.* 1957; 3(2): 137-154.

Loeblich AR Jr, Tappan H. Foraminiferal Genera and their Classification. Van Nostrand Reinhold, New York, two volumes. 1988. p. 2047.
Lucas SG, Krainer K. Cretaceous stratigraphy, paleontology, petrography, depositional environments, and cycle stratigraphy at Cerro de Cristo Rey, Doña Ana County. New Mexico Geology. 2015; 32: 103-130.

Lunt P, Allan T. Larger foraminifera in Indonesian biostratigraphy, calibrated to isotopic dating. GRDC Museum Workshop on Micropaleontology, Bandung, June. 2004. p. 109.

Lunt P. Biogeography of Some Eocene Larger Foraminifera, and Their Application in Distinguishing Geological Plates. Palaeontologia Electronica. 2003; 6(1): 22, 1.3MB; http://palaeo-electronica.org/paleo/2003_2/geo/issue2_03.htm.

Luperto-Sinni E. Microfaune del Cretaceo delle Murge baresi. Geologica Romana. 1966; 5: 117-156.

Luperto Sinni E, Ricchetti G. Studio micropaleontologicosтратиграфico di una successione carbonatica del Cretaceous superior rilevata nel sottosuolo delle Murge sud-orientali. Rivista Italiana di Paleontologia e Stratigrafia. 1978; 84: 561–666.

Mancinelli A, Chiocchini M. Cretaceous benthic foraminifers and calcareous algae from Monte Cairo (Southern Latium, Italy). Bollettino della Società Paleontologica Italiana. 2006; 45:91-113.

Mancini EA, Scott RW. Sequence Stratigraphy of Comanchean Cretaceous Outcrop Strata of Northeast and South-Central Texas: Implications for Enhanced Petroleum Exploration: Transactions Gulf Coast Association of Geological Societies. 2006; 56: 539–550.

Matsumaru K. A new genus of the trematophorate miliolids (Fabulariidae) from the Eocene Setogawa group, Southwest Japan. Transactions and Proceedings of the Palaeontological Society of Japan, N.S. 1990; 160: 663-673.

Matsumaru K. Tertiary larger foraminifera (Foraminiferida) from the Ogasawara Islands, Japan. Paleontological Society of Japan Special Paper. 1996; 36: 1-239.

Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF. The Phanerozoic record of global sea-level change. Science. 2005; 310: 1293-8. DOI: 10.1126/science.1116412

Nunes AL, Katsanevakis S, Zenetos A, Cardoso AC. Gateways to alien invasions in the European seas. Aquatic Invasions. 2014; 9, 133-144.

Nuttall WLF. The Stratigraphy of the Laki Series (Lower Eocene) of parts of Sind and Baluchistan (India); with a Description of the Larger Foraminifera contained in those beds. Quarterly Journal of the Geological Society. 1925; 81(1-4): 417-453.

Omaña L, López-Doncel R, Torres JR, Alencaster G, López-Caballero I. Mid–late Cenomanian larger benthic foraminifers from the El Abra Formation W Valles-San Luis Potosi Platform, central–eastern Mexico: Taxonomy, biostratigraphy and paleoenvironmental implications. Boletín de la Sociedad Geológica Mexicana. 2019; 71: 691–725.

Omaña L, López-Doncel R, Torres-Hernández JR, Alencáster G. Biostratigraphy and paleoenvironment of the Cenomanian/ Turonian boundary interval based on foraminifera from W Valles–San Luis Potosi Platform, Mexico. Micropaleontology. 2012; 58: 457–485.
Özcan E, Mitchell SF, Less G, Robinson E, Bryan JR, Pignatti J, Yücel AO. A revised suprageneric classification of American orthophragminids with emphasis on late Paleocene representatives from Jamaica and Alabama. *Journal of Systematic Palaeontology*. Published online; 2019. DOI: 10.1080/14772019.2018.1539778

Pêcheux MJF. *Le Senonien supérieur-Tertiaire du Chiapas (S.E. Mexique) et ses Macroforaminifères*. These 3e Cycle, Univ. Nice. 1984. p 154.

Pignatti J. *Review. Global evolution and paleogeographic distribution of mid-Cretaceous orbitolinids*. 2019. DOI: 10.14293/S2199-1006.1.SOR-EARTH.AZZFBB.v1.RVGYLO.

Powell, JB. *Larger foraminiferal biostratigraphy, systematics and paleoenvironments of the Avon Park Formation and Ocala Limestone, Highlands County, Florida*. Florida International University, ProQuest Dissertations Publishing, 2010. 3447806.

Reichel M. *Alveolinidae*. In: Moore, R.C. (Ed.), *Treatise on Invertebrate Paleontology, C* (Protista 2). Geological Society of America/University of Kansas Press, Boulder/Lawrence. 1964: 503–510.

Reichel M. *Le crible apertural de Rhapydionina liburnica* Stache du Maastrichtien de Vremski-Britof, Yugoslavie. In: Oertli, H.J. (Ed.), *Benthos ’83*, Elf-Aquitaine, Paris, France. 1984: 525–532.

Reiss Z, Hottinger L, The Gulf of Aqaba: Ecological Micropaleontology. *Ecological Studies*, Springer-Verlag, Berlin. 1984; 50: 1–354.

Renema W. Larger foraminifera and their distribution patterns on the Spermonde shelf, South Sulawesi. *Scripta Geologica*. 2002; 124: 1–263.

Robinson E. Some larger foraminifera from the Eocene limestones at Red Gal Ring, Jamaica. *Verhandlungen der Naturforschenden Gesellschaft in Basel*. 1974; 84(1): 281-292.

Robinson E, Mitchell SF. *Middle Eocene to Oligocene stratigraphy and palaeogeography in Jamaica: a window on the Nicaragua Rise (UNESCO/IUGS IGCP 393)*. *Contributions to Geology UWI Mona*. 1999; 4: 1-45.

Robinson E, Paytan A, Chien CT, Broach K. Dating the White Limestone of Jamaica using Sr isotope stratigraphy: a progress report. *Caribbean Journal of Earth Science*. 2018; 49: 11-21.

Robinson, E. *Chubbina*, a new Cretaceous alveolinid genus from Jamaica and Mexico. *Palaeontology*. 1968; 11: 526-534.

Schlagintweit F, Rashidi K. Some new and poorly known benthic foraminifera from late Maastrichtian shallow-water carbonates of the Zagros zone, SW Iran. *Acta Palaeontologica Romaniae*. 2016; 12: 53-70.

Scott RW. Upper Albian benthic foraminifers new in West Texas. *Journal of Foraminiferal Research*. 2002; 32: 43–50.

Serra-Kiel J, Hottinger L, Caus E, Drobne K, Ferrández C, Jaurhi AK, Less G, Pavlovevc, R Pignatti, J Samso, JM, Schaub H, Sirel E, Strougo A, Tambareau Y, Tosquella J,
Zakrevskaya E. Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. *Bulletin de la Société Géologique de France*. 1998; 169: 281–299.

Serra-Kiel J, Vicedo V, Razin Ph, Grélaud C. Selandian-Thanetian larger foraminifera from the lower Jafnayn Formation in the Sayq area (eastern Oman Mountains). *Geologica Acta*. 2016; 14: 315-333.

Sirel S. Foraminiferal description and biostratigraphy of the Bartonian, Priabonian and Oligocene shallow-water sediments of the southern and eastern Turkey. *Revue de Paleobiologie*. 2003; 22: 269-339.

Smith AG, Pickering KT. Oceanic gateways as a critical factor to initiate icehouse earth. *Journal of the Geological Society London*. 2003; 160: 337–340.

Stanley GD, Lipps JH. Photosymbiosis: The Driving Force for Reef Success and Failure. *Corals and Reefs: Crises, Collapse and Change*. 2011; 17: 33-59.

van den Bold WA. *Contribution to the study of Ostracoda with special reference to the tertiary and cretaceous microfauna of the Caribbean region*. DeBussy, Amsterdam. 1946. p.167.

Velić I. Stratigraphy and Palaeobiogeography of Mesozoic Benthic Foraminifera of the Karst Dinarides (SE Europe) - PART 1. *Geologia Croatica*. 2007: 1-113.

Viallard P. Recherches sur le cycle alpin dans la Chaine ibérique sud-occidentale. Thèse, Travaux du laboratoire de géologie méditerranéenne, Université Paul Sabatier, Tolouse. 1973. P. 445.

Vicedo V and Piuz A. Evolutionary trends and biostratigraphical application of new Cenomanian alveolinoids (Foraminifera) from the Natih Formation of Oman. *Journal of Systematic Palaeontology*. 2017; 15: 821-850.

Vicedo V, Aguilar M, Caus E, Hottinger L. Fusiform and laterally compressed alveolinaceans (Foraminiferida) from both sides of the Late Cretaceous Atlantic. *Neues Jahrbuch für Geologie und Paläontologie*. 2009; 253: 229–247.

Vicedo V, Calonge A, Caus E. Cenomanian rhapydioninids (Foraminiferida): Architecture of the shell and stratigraphy. *Journal of Foraminiferal Research*. 2011; 41(1): 41–52.

Vicedo V, Caus E, Frijia G. Late Cretaceous alveolinaceans (larger foraminifera) of the Caribbean palaeobioprovince and their stratigraphic distribution. *Journal of Systematic Palaeontology*. 2013; 11: 1-25.

Vicedo V, Berlanga JA, Serra-Kiel J. Paleocene larger foraminifera from the Yucatán Peninsula (SE Mexico). Brest, Carnets de Géologie, Notebooks on Geology. 2014; 14(4): 41-68.

Wignall PB, Benton MJ. "Lazarus taxa and fossil abundance at times of biotic crisis". *Journal of the Geological Society*. (1999);156 (3): 453–456. Bibcode:1999JGSoc.156..453W. doi:10.1144/gsigs.156.3.0453.
Plate 5
Plate 7
Age (Ma)	Epoch - Stage	Planctonic Zones	Backreef/reef	First Occurrences	"Letter Stages" SB-Zones
23.03	L Chattian	P22	Borelis pugmaeus/ B. inflata	L. Te	23
33.90	E Rupelian	P21	Neorotalia	Td	22a
		P20	Borelis pygaeus	Tc	21
		P19	Lacazinella		20
		P18	Borelis	Praebullalveolina	Tb
	L Priabonian	P17	Pseudofabularia		19
		P16	Alveolina elongata		18
		P15	Praerhapsydonia		17
	M Bartonian	P14	Alveolina prorecta		16
		P13	Alveolina munieri		15
		P12	Alveolina stipes	Malatyana	13
	E Eocene	P11	Alveolina violae		12
		P10	Alveolina dainelli		11
		P9	Alveolina schwageri		10
		P8	Alveolina trempina	Fabularia	9
		P7	Alveolina corbarica		8
		P6	Alveolina moussouensis		7
		P5	Alveolina ellipsoidalis		6
		P4	Glomalveolina primaeva	Alveolina	5
	L Thaneian	P3	Periloculina	Pseudolacazina	Ta1(b)
		P2	Pseudonummuloculina	Neomurciella	Ta1(a)
	E Danian	P1	Quasiborelis		1
Alveolinoids zonation

Epoch	Stage	Planktonic Zone	Backreef/reef	First Occurrences	"Letter Stages"
EARLY MIocene	**BURDIG**	N4	Borelis		
**	**AQUI**	N5			
**	**	N6			
**	**	N7			
MIDDLE MIocene	**LANGHIAN**	N8	Flosculinella		
**	**	N9			
**	**	N10			
**	**	N11			
**	**SERRAVALLIAN**	N12	Alveolinella		
**	**	N13			
EARLY MIocene	**BURDIG**	N4	Borelis		
**	**AQUI**	N5			
**	**	N6			
**	**	N7			
EARLY MIocene	**BURDIG**	N4	Borelis		
**	**AQUI**	N5			
**	**	N6			
**	**	N7			

- **Alveolinella quoyi**: Tf3
- **Alveolinella praequoyi**: Tf2
- **Flosculinella bontangensis**
- **Flosculinella reicheli**: Lower Te
- **Borelis parvulus**: Upper Te (Te5)
Planktonic Zonation

Age (Ma)	Period, Epoch, Stage	Planktonic Zonation
66.0	Cretaceous Early	Alveolinidae
100.5	Cretaceous Late	Rhapydioninidae

Alveolinidae
- Archaealveolina
- Multispirina
- Praevalveolina
- Ovalveolina
- Simplealveolina
- Streptalveolina
- Cylindricalveolina
- Heleralveolina
- Streptalveolina
- Subalveolina

Rhapydioninidae
- Pseudonummuloculina
- Pseudochubbina
- Chubbina
- Caribalveolina
- Pseudedomia
- Murciella = Raadshoovenia
- Cyclopseudedomia
- Idalina
- Periloculina
- Lacazina
- Adrahentina
- Pseudolacazina

Fabulariidae
- Chubbinella
- Fabulariidae
- Rhapydioninidae

Migration towards
- American province
- Tethyan province

Fig. 3
Fig. 4

Planispiral fusiform

Pseudonummuloculina

A Alveolinidae

Pseudedomia

B Rhapydioninidae

Periloculina

C Fabulariidae

Equatorial section

Horizontal partitions

Axial section
Flosculin spherical alveolinids

- **A. globosa group**
 - Loose first whorls

- **A. avellana group**
 - Tight first whorls

- **A. pasticillata group**
 - Tight first and last whorls

- **A. indicatrix group**
 - Tight first whorls and strong flosculinisation

- **A. minervensis group**
 - Tight first whorls and little flosculinisation

Oval alveolinids

- **A. subpyrenaica group**
 - Thick basal layer

- **A. ellipsoidalis group**
 - Thin basal layer
Fig. 6

- Pre-septal passage
- Post-septal passage
- Flosculinised basal layer
- Chamberlets
- Polar thickening of the basal layer
Fig. 7

A. Biloculine

B. Basal layers with preseptal passage

C. Trematophores
Fig. 8

Epoch, Stage
- Paleocene
- Eocene
- Oligocene
- Miocene
- Pliocene

Age (Ma)
- 66.0: Early Danian
- 61.6: Middle Selandian
- 59.2: Late Thanetian
- 56.0: Early Ypresian
- 52.0: Middle Oligocene
- 47.8: Late Priabonian
- 41.2: Bartonian
- 37.8: Late Chattian
- 33.9: Early Rupelian
- 27.8: Late Permian

Fabulariidae
- Fabularia
- Pseudofabularia
- Neolacazopsis
- Neolacazinella
- Pseudolacazina
- Periloculina
- Neohippocyclina
- Heterocyclina
- Pseudotocyclina
- Pseudolacazina

Alveolinidae
- Miliola
- Rhapydioninidae
- Miliola
- West to East Migration

Rhapsodyliniidae
- American province
- Tethyan province
- Indo-Pacific province
| Age (Ma) | Orbitolinid events | Alveolinid events | Tectonic and Oceanic Events | Climatic Events |
|----------|--------------------|-------------------|-----------------------------|----------------|
| 100.5 | Extinction of 90% of Orbitolinoidea | Extinction of 90% of Alveolinoidea | Impact, massive volcanism and oceanic anoxia | Significant cooling |
| 95 | Migration (2) of alveolinids to the American province (Alb 4) | Migration (3) of alveolinids and rhapydioninids to the American province (Cen.1) | Near-peak Mesozoic eustatic sealevel highstand | Onset of cooler climate |
| 90 | Extinction of 90% of Orbitolinoidea | Extinction of 95% Alveolinoidea | Wallaby eruption | Global warming peak |
| 86.0 | Extinction of orbitolinids from Western Pacific province | | Sea level low stands (100.5-98.8Ma) | Sea level low stands (100.5-98.8Ma) |
Relative Sea-level from the mid-Cretaceous to end Maastrichtian:
From Miller et al. (2005)
| Age (Ma) | Period, Epoch, Stage | Planktonic Zonation | Alveolinidae |
|----------|----------------------|---------------------|-------------|
| | Upper Pliocene | Borelis | Flosculinella |
| 5.33 | Calab. | N22 | Alveolinella |
| | Gela | N21 | |
| | Piac. | N20 | |
| 11.63 | Langhian | N19 | |
| | Serravallian | N18 | |
| | Messinian | N17 | |
| | Tortonian | N16 | |
| | Middle Miocene | N15 | |
| 15.97 | Langhian | N14 | |
| | Serravallian | N13 | |
| | Middle Miocene | N12 | |
| 23.03 | Aquitanian | N11 | |
| | Burdigalian | N10 | |
| | Early Miocene | N9 | |
| | | N8 | |
| | | N7 | |
| | | N6 | |
| | | N5 | |

Migration towards:
- American province
- Mediterranean province
- Indo-Pacific province

Fig. 13
Stage	Epoch	Reef to forereef Larger benthic foraminifera	Reef to backreef Alveolinoida	Tectonic and Oceanic Events	Climatic Events
P22b	Plioz.	Migration of miogypsinsids from the I-P subprovince (N13)		Early Pliocene closure of the Central America seaway (N21)	East Antarctic Ice Sheet established (12Ma)
P12b	Brun.	Final extinction of Lepidocyclinids from the Mediterranean (N12)	Final extinction of Flascinellina in WPP (N12b)	Final closure of the connection between the Mediterranean and the Indian Ocean	Global cooling (10-14Ma)
N12	Lower	Extinction of miogypsins from the Mediterranean subprovince (N13)	Development of Alveolinoida lineage in WPP (N12a)	Major global trangressions (15.5-16.5Ma); Eruption of the Columbia River Flood basins (15 - 17Ma).	Mid-Miocene Climatic Optimum (14-16.5Ma)
N11	Lower	Final extinction of miogypsins from the Mediterranean subprovince, replaced by Indo-Pacific non-miogypsoid forms (N8).	Final extinction of Borelis from the Mediterranean	First closure of Eastern Mediterranean (17Ma)	Global cooling
N9	Lower	Global extinction of Spirocleps and disappearance of Cyclocleps from Mediterranean (17-16Ma)	Development of Flascinellina lineages in WPP	Red Sea Rifting (21Ma); Reversal of flow through the Panama Seaway (20 to 30 Ma)	Dramatic drop in sea level (24-25Ma)
N7	Early	Migration of miogypsinsids towards South		Isolation of the Paratethys from the Proto-Tethys	Late Oligocene Warming, global temperature rise (26-27Ma)
N5	Middle	Miogypsins colonize Indo-Pacific (P22).		Rising sea level isolated the West African shelf from the American Ethiopian Flood Basalts (31-29 Ma)	
N4	Middle	Migration of lycopodicyclocidns towards Med. (P19)			
N18	Middle	Migration of early Neotetansil to Tethyan (P18-P19).			
P21	Barrem.	Migration of miogypsins to Mediterranean (P21)	Migration of large-sized Nummulites and Assilina (37.8Ma)	Sea level low stands (29 - 33Ma); Drake passage opened (33Ma)	Significant global cooling (33-34Ma); First Antarctic permanent ice-sheets (33.9Ma)
P20	Barrem.	Extinction of Nummulites in the Mediterranean and Indo-Pacific (28.1Ma)	Migration of Lacazinella (7) towards WPP	Shrinking of Tethyan seaway	
P19	Barrem.	Migration of lepidocyclinids towards Med. (P19)	Appearance of Borelis WT	Series of sea levels falls	
P18	Barrem.	Migration of early Neotetansil to Tethyan (P18-P19).	Migration of early Neotetansil to Tethyan (P18-P19).	Sea level low stands (42-43Ma)	Temperature fell with an average drop of 4 to 7 degree C
P17	Cenoman.	Global extinction of Pellatispira, Bisplanispira (33.5Ma)	Global extinction of Alveolina and 83% of Alveolinoida	First stages of the India–Asia collision	Paleocene - Eocene Thermal Maximum (PETM) associated with an increase in greenhouse gases in the atmosphere
P16	Cenoman.		Migration of Borelis (9) towards Western Pacific	Period of intense flood basalt magmatism and opening of the N. Atlantic	
P15	Cenoman.	Extinction of large-sized Nummulites and Assilina (37.8Ma)	Extinction of large alveolinoids from Tethys and all alveolinoids from WPP (37.8Ma)	Sea level low stands (59Ma)	Temperature increases (63.5-61Ma)
P14	Cenoman.		Migration of Lacazinella (8) towards WPP		
P13	Cenoman.		First appearance of Fabularia (5) in Tethys		
P12	Cenoman.		Appearances of first Paleogene alveolinoids		
P11	Cenoman.		First appearance of Borelis in the American province		
P10	Cenoman.				
P9	Cenoman.				
P8	Cenoman.				
P7	Cenoman.				
P6	Cenoman.				
P5	Cenoman.				
P4	Cenoman.				
P3	Cenoman.				
P2	Cenoman.				
P1	Cenoman.				
P0	Cenoman.				
