Research Paper
Changes in the Expression of SGO1 and SGO1-AS1 Genes in Colorectal Tumor Tissues, Compared to Healthy Tissues

Mojtaba Asad Samani¹, *Maryam Peymani¹

¹. Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.

Abstract
The protein encoded by the SGO1 gene is a member of the shugoshin family of proteins and protects the centromere during mitosis. IncRNAs are non-coding RNA with 200 nucleotides lengths, i.e., involved in regulating gene expression. The current study aimed to evaluate the expression of SGO1 and SGO1-AS1 in different stages of disease progression; we also compared their expression pattern in tumor tissues with healthy tissues in colorectal cancer patients.

Methods & Materials
In total, 40 tissue samples of patients with colorectal cancer were reported according to the examination and criteria with the approval of a pathologist. Besides, 40 normal tissues were sampled from a completely healthy part of the intestine of the same patients. After RNA extraction and cDNA synthesis, the Real-time RT-PCR technique was used to evaluate the expression of the desired genes in the study groups. ROC curve analysis was also used to determine the ability of each selected gene to diagnose the disease.

Ethical Considerations
This study was approved by the Ethics Committee of Shahrekord Azad University (Code: IR.IAU.SHKREC.1398.020).

Results
The obtained data suggested that SGO1 significantly decreased in the colorectal cancer tumor samples (P<0.001) and SGO1-AS1 LncRNA significantly increased expression, compared to adjacent healthy tissues. Additionally, in the age group of below 60 years, compared to the age group of over 60 years, SGO1 expression increased and SGO1-AS1 expression decreased. Based on the AUC obtained from the ROC diagram, it was found that the SGO1 gene with AUC=0.8041 and SGO1-AS1 with AUC=0.6364 could significantly distinguish a healthy population from patients with colorectal cancer.

Conclusion
According to the collected results, SGO1-AS1 and SGO1 were significantly reduced and increased in tumor tissue, respectively; however, only the SGO1 gene was introduced as a good marker for diagnosing colorectal cancer.

Key words: SGO1 gene, SGO1-AS1 gene, Colorectal cancer, ROC curve

Extended Abstract

1. Introduction
Colorectal cancer is among the leading causes of death and is the fourth most common cancer worldwide [1] that ranks third among women [2-5]. The SGO1 protein is a member of the shugoshin protein family. Besides, and decreased expression of the SGO1 gene leads to the premature destruction of the centromere during mitosis [6-8]. Mutations in the SGO1 gene lead to transcriptomic changes in metabolism, proliferation, and immune responses in the gut that contribute to cancer progression [9]. IncRNAs play an important...
role in controlling cell growth by regulating the cell cycle and apoptosis [10]. Growth Arrest-Specific (GAS5) accumulates in stunted growth cells and sensitizes mammalian cells to apoptosis [11]. Regarding the role of SGO1-AS1 and subsequent tumorigenesis and regulation of SGO1 gene expression, in this study, for the first time, the expression of SGO1-AS1 and SGO1 genes in colorectal cancer tumor tissue was compared with healthy tissue.

2. Materials and Methods

The present case-control study was performed on 40 tumor tissues of 40 individuals with colorectal cancer and 40 adjacent healthy tissues. Trizol was used to extract total RNA and after qualitative and quantitative analysis, the cDNA of each sample was synthesized using the kit of Yekta Tajhiz Azma Company. Using the Real-Time-RT PCR technique and especially, designed reciprocating primers, a quantitative measurement of the expression level of the desired genes was performed. In this study, after obtaining the relative frequency of expression for SGO1 and SGO1-AS1 genes in colorectal cancer, different tests were implemented to compare the obtained data.

GraphPad Prism and Excel software were used to analyze the collected data; after confirming the normality of the sample size with the Shapiro test, a t-test was used to examine the difference in the expression of SGO1 and SGO1-AS1 genes in tumorous and healthy samples. One-Way Analysis of Variance (ANOVA) was used to compare the expression of genes in different stages. Spearman test was also used to examine the correlation of expression of the desired genes. Finally, to evaluate the specificity and sensitivity of each gene, the ROC test was applied to plot the ROC Curve.

3. Results

As shown in Figure 1A, the expression level of SGO1 was significantly reduced in tumor samples, compared to healthy tissue (P<0.001). However, the expression level of SGO1-AS1 in tumor tissue presented a significant increase, compared to the healthy tissue (Figure 1B) (P=0.0116). The expression levels of SGO1 and SGO1-AS1 in different stages of the disease were analyzed in tumor tissues. The relevant results indicated that the expression level of these genes remained unchanged at different stages of the disease (Figures 1C & D).

The expression level of SGO1 in the age group under 60 years illustrated less expression; however, the expression level of SGO1-AS1 revealed a significant increase in this age group, compared to the age group over 60 years. Figures 2A and B demonstrate a graph of changes in the relative expression levels of genes at the Ct Δ -2 level in both age groups in tumor tissues.

The results concerning the ROC curve diagram indicated that the marker SGO1-AS1 with the area below the surface of the diagram (AUC=0.6364 & CI=0.5069/7669) acted as a poor marker in the diagnosis of colorectal can-

![Figure 1](image_url)
However, $SGO1$, as a marker can significantly ($P<0.0001$) separate the patient population from the healthy groups; with the area below the surface of the chart ($AUC=0.8041 \text{ & CI}=0.7036/9045$), it can be a good marker to help improve the diagnosis of colorectal cancer (Figure 3B).

4. Discussion and Conclusion

The present study data indicated that in the tumor tissues of colorectal cancer, the expression of the $SGO1$ gene decreases, and the expression of the $SGO1$-AS1 gene increases, compared to healthy tissue. In other words, the $SGO1$ gene acts as a tumor suppressor and the $SGO1$-AS1 gene as an oncogene. In a 2006 study of the $SGO1$ gene, Yang et al. stated that human $SGO1$ has become a good target for inducing apoptosis into transformed cells [15]. In 2015, Wang et al. examined the $SGO1$ gene in liver cancer. They stated that the $SGO1$ gene is a potential therapeutic target for liver cancer [19]. In 2018, Ong et al. reported that an increase in LncRNA expression is detected in individuals with colorectal cancer [20].

In 2019, Mu et al. argued that $SGO1$ expression levels were higher in PCA (prostate cancer) tissue and cell lines. There was a correlation between $SGO1$ expression and preoperative prostate-specific antigen ($P=0.01$). Furthermore, gene expression was significantly associated with lymph node metastasis ($P=0.044$) [21]. This study also revealed that $SGO1$ decreased expression in colorectal cancer tumor samples. Measuring $SGO1$-AS1 expression in tumor and healthy colorectal cancer samples also identified an increase in LncRNA expression; these two genes could be used as a marker for the diagnosis of colorectal cancer.

Figure 3. The specificity and sensitivity of $SGO1$ and $SGO1$-AS1 in colorectal cancer
Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of Shahrekord Azad University (Code: IR.IAU.SHKREC.1398.020).

Funding

This study was extracted from the MSc. thesis of the first author at the Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran. Also, this study was supported by the Vice Chancellor for Research of Islamic Azad University, Shahrekord.

Authors’ contributions

Both authors met standard writing standards based on recommendations from the International Committee of Medical Journal Publishers.

Conflicts of interest

The authors declared no conflicts of interest.
مقاله پژوهشی
تغییرات در بیان lncRNA SGO1-AS1 و SGO1 در بافت‌های توموری کلونکتال در مقایسه با بافت‌های سالم

محضی اسماء صالحی، مریم پیمانی

1. گروه پژوهشی طلایکده، دانشگاه پزشکی و خدمات بهداشتی استان آذربایجان شرقی، مشهد، ایران

چکیده

lncRNA SGO1-AS1 نام یک از ژن‌های انتخاب شده در این پژوهش می‌باشد که به بهبود پیشگیری و تشخیص سرطان کلونکتال کمک می‌کند. در این مطالعه، منحنی ROC به‌عنوان یک مارکر خوب برای تشخیص سرطان کلونکتال معرفی شد.

کلیدواژه‌ها: SGO1، lncRNA، SGO1-AS1، ROC، کلونکتال

مقدمه

سرطان کلونکتال یکی از اصلی‌ترین دلایل مرگ و میر در انسان است که عامل اصلی آن را به طور دقیق شناختن نشده است. این سرطان چهارمین سرطان شایع در دنیا و نوسانات احتمال تولید آن در زنان، افراد کنترل می‌شود. این علل شامل عادات غذایی و ویژگی‌های سلول هزاران سال پیش از ظهور سرطان کلونکتال می‌باشد. در این پژوهش، می‌خواستیم بین نوبت‌های اولیه و پس از عمل انجام، تغییرات در بیان ژن‌های lncRNA SGO1-AS1 و SGO1 در سلول‌های سالم و سرطانی را بررسی کنیم.

مواد و روش‌ها

در این مطالعه، مورد بررسی بیان ژن‌های cDNA و سنتز RNA بافت نرمال از بخش کاملاً سالم روده‌ها افراد بیمار نمونه‌گیری شده بود. پس از استخراج RNA و دسته‌بندی آنها، ترکیب مواد میکرو از ژن‌های SGO1 و SGO1-AS1 به‌عنوان یکی از مارکرهای انتخاب شده شناخته شد. همچنین از تکنیک Real time RT-PCR برای بررسی بیان ژن‌های انتخاب شده استفاده شد.

نتایج

در نتایج، نشان داده شد که در جمعیت‌های نمونه‌گیری شده، توانایی هرکدام از ژن‌ها در تشخیص سرطان کلونکتال افزایش یافته است. این افزایش به دست آمده از نمودار AUC = 0.8719 و 0.6458 با SGO1-AS1 و SGO1 در بافت‌های سالم و سرطانی بوده است. در نهایت، این پژوهش نشان داد که به عنوان یکی از مارکرهای انتخاب شده، منحنی ROC به‌عنوان یک مارکر خوب برای تشخیص سرطان کلونکتال معرفی می‌شود.

نتیجه‌گیری

به گفته پژوهشگران، منحنی ROC به‌عنوان یک مارکر خوب برای تشخیص سرطان کلونکتال معرفی شده است. این پژوهش نشان داد که این ژن‌ها در تشخیص سرطان کلونکتال ایفای نقش می‌کنند.

ملاحظات اخلاقی

این پژوهش در کمیته اخلاق دانشگاه آزاد شهرکرد با کد IR.IAU.SHKREC.1398.020 انجام شد. این پژوهش بر پایه اخلاقیات علمی و تشریح کامل مشخصات علمی و اخلاقی انجام شده است.
آپوپتوز مرکز پرتوسیریزی شده سلول است که عامل‌های مشخصی در روند آن نقش دارند. این اثرات باعث پاسخ سلولی و آپوپتوز می‌شود. در ضمن، نشان دهنده یک مراحلی است که به نام shugoshin (GS) یک عضو خانواده پروتئین است و تصور می‌شود این پروتئین با جلوگیری از فسفوریلاسیون یک زیرواحد کوهسین در هنگام میتوز از مراحل مختلف از جمله تاکون میتوز آن را در کاهش هم نگه می‌دارد. کاهش بیان ژن SGO1 از بین رفتن آن در سانترومر و تفکیک نادرست کروماتیدها خواهد بود که تحقیقاتی نشان داده است که ژن SGO1 در کاهش شماره‌های سلولی و در اثر اعمال گلوکوکورتیکوئید (GC) در سلول‌های استشفایی و سلول‌های تکثیری آزمایشی باعث کاهش بیان ژن می‌شود و در نهایت به آپوپتوز بیشتر منجر می‌شود. در مطالعاتی که در موش‌های آزمایشگاهی انجام شده، تحقیقات نشان داده شده است که به تغییرات مسیرهایی در سلول‌های سرطان می‌زند که از جمله این مسیرها می‌توان به سیگنالینگ‌هایی نظیری از جمله PPAR (Peroxisome proliferator-activated receptors) و Notch اشاره کرد که به تغییرات مسیرهای انتفاعی مربوط می‌شوند و به تغییراتی در متابولیسم، تکثیر و پاسخ‌های فیزیولوژیکی کاربرد دارند. این مطالعات نشان می‌دهد که در سلول‌هایی که نشان دهنده پیشگیری ژن مشخص، SGO1-AS1 (sgo-antisense 1) در سلول‌های سرطان پاسخ دهنده به گلوکوکورتیکوئید، می‌باشد که این ژن به تغییرات مسیرهای سلولی و پاسخ‌های سلولی پاسخ دستگاه‌های آپوپتوز می‌دهد و از فعالیت رونویسی این گیرنده جلوگیری می‌کند. در مقابل، تحقیقات نشان داده شده است که این ژن به تغییرات مسیرهای سلولی و پاسخ‌های سلولی پاسخ دستگاه‌های آپوپتوز می‌دهد و از فعالیت رونویسی این گیرنده جلوگیری می‌کند. در مقابل، تحقیقات نشان داده شده است که این ژن به تغییرات مسیرهای سلولی و پاسخ‌های سلولی پاسخ دستگاه‌های آپوپتوز می‌دهد و از فعالیت رونویسی این گیرنده جلوگیری می‌کند. در مقابل، تحقیقات نشان داده شده است که این ژن به تغییرات مسیرهای سلولی و پاسخ‌های سلولی پاسخ دستگاه‌های آپوپتوز می‌دهد و از فعالیت رونویسی این گیرنده جلوگیری می‌کند.
در گلوکورتیکوئید و به دنبال آن SGO1-AS1 با توجه به نقش تومورزایی و تنظیم بیان ژن در این مطالعه برای اولین بار میزان بیان ZNF99 و ZNF101 بیان تومور سرطان کلیوکتال در مقایسه با بافت سالم بررسی شد.

مواد و روش‌ها

نتایج

هدف‌های آنتی‌بیوتیک

به همراه طول محصول و دمای آن SGO1-AS1 و SGO1 در گلوکورتیکوئید و به دنبال آن تومورزایی و تنظیم بیان ZNF99 و ZNF101 بر مبنای مطالعه برای اولین بار میزان بیان ZNF99 و ZNF101 و SGO1-AS1 در بافت سالم بررسی شد.

جدول ۱. مرحله‌های آنتی‌بیوتیک

مرحله	الزمن (دقیقه)	طول محصول (bp)	توانی آغازگر	لام آغازگر	لام انتهای	توانی انتهای
SGO1	60	132	Forward: 5ˈ - CTCTGTGCTGTTTCCGAGACG - 3ˈ			
	126		Reverse: 3ˈ - TCTCTGTGCTGTTTCCGAGACG - 5ˈ			
SGO1-AS1	126		Forward: 5ˈ - GGGAGTCTCAATAACCTTCTTAG - 3ˈ			
	182		Reverse: 3ˈ - GCCACTTTTTCTCGAAAGAGG - 5ˈ			
GAPDH	60	121	Forward: 5ˈ - TGAAGTGCCGAGGACAACCTG - 3ˈ			
	126		Reverse: 3ˈ - TGCGGCTGGGAAACG - 5ˈ			

استفاده‌ها

امیدی سامانی و میلی پریمانی. تغییرات در بیان ژن های SGO1 و SGO1-AS1 در سرطان کلیوکتال در مقایسه با بافت سالم.
نمونه‌های کلاهی پیان SGO1 و افزایش پیان SGO1-AS1 در تومور‌های سرطان کلورکتال

یافته‌ها
- کاهش بیان SGO1 و افزایش پیان SGO1-AS1 در سطوح سرطان کلورکتال در مقایسه با سطوح سالم مجاور.

همانطور که در تصویر شماره 2A مشاهده می‌شود سطح بیان SGO1 در سطوح سرطان کلورکتال در مقایسه با سطوح سالم مرتفع‌تر بوده و در نمونه‌های سالم مجازی مشاهده شد. به طور معنی‌داری در نمونه‌های سرطانی در مقایسه با سطوح SGO1 بافت نرمال مجاور، سطح بیان SGO1-AS1 نیز کاهش محسوسی داشته و نشان داد که سطح بیان SGO1-AS1 در نمونه‌های سرطان کلورکتال در مقایسه با نمونه‌های سالم به‌طور معنی‌داری کاهش یافته است.

سپس برای بررسی همبستگی بیان SGO1 و SGO1-AS1 در سطوح مختلف، بررسی توزیع SGO1-AS1 و SGO1 توسط آزمون شاپیرو ویلک انجام شد. نتایج نشان‌داد که توزیع داده‌ها نرمال نیست و بنابراین از آزمون ویلکزومن برای بررسی همبستگی بین دو ژن استفاده شد. نتایج نشان داد که سطح بیان SGO1 و SGO1-AS1 در سطوح مختلف تغییر معنی‌داری داشته اما این همبستگی بیانی معنی‌دار نیست.

در نتیجه، سطح بیان ژن‌های SGO1 و SGO1-AS1 در سطوح مختلف بیماری در بافت توموری آنالیز شد. نتایج نشان داد که سطح بیان این ژن‌ها در سطوح مختلف بیماری تغییر معنی‌داری ندارد.

2. Shapiro Wilk
تصویر 2. تغییرات سطح بيان ژن SGO1 و SGO1-AS1 در گروه سنی بالا (60 سال و یکمتر از 60 سال) در بافت‌های توموری سالر و سالر، در گروه کمتر از 60 سال در بافت‌های توموری SGO1-AS1 و SGO1، انجام شد. سطح معنی‌دار تغییرات بيان ژن‌ها بین گروه سنی با آزمون t-test اندازه‌گیری شد.

یک نمونه می‌تواند به عنوان مارکر جنگلی و $AUC = 0.14$ با مساحت زیر سطح نمودار $P < 0.0001$ در حالیکه با این حال به عنوان یک مارکر به طور معنی‌دار سلامتی در بیماران سرطان روده به عنوان مارکر ضعیف در زمینه تشخیص سرطان کلروکتال عمل خواهد کرد $CI = 0.95-0.96$ و $AUC = 0.46$.

تصویر 3. اسکلت و حساسیت SGO1-AS1 و SGO1 در سرطان روده.

یک نمونه می‌تواند به عنوان مارکر فعال در زمینه تشخیص سرطان کلروکتال عمل خواهد کرد $CI = 0.63-0.54$ و $AUC = 0.36$.

تصویر 4. نمودار ROC SGO1-AS1 و SGO1.

ینک نمونه می‌تواند به عنوان مارکر خوب در زمینه تشخیص سرطان کلروکتال عمل خواهد کرد $CI = 0.95-0.96$ و $AUC = 0.46$.

سنجش معنی‌دار سالاری و مریم پیمانی. تغییرات در نیاز به تعیین SGO1 و SGO1-AS1 در بافت‌های توموری کلروکتال در مراحل عمر بالا سالم.
نتایج گسترده در پژوهش حاضری برای سیستم الگوی SGO1-AS1 در پاتولوژی توموری سرطان کولورکتال اثر کاهش بیان SGO1-AS1 و SGO1 با کاهش بیان Zn-1 در سیستم الگوی SGO1 کاهش و احتمالاً می‌تواند به‌عنوان یک مارکر جدید در تشخیص سرطان کولورکتال از آن استفاده گردد.

ملاحظات اخلاقی

امروز، برای اولین بار، با مساحت زیر نمودار می‌تواند به‌عنوان یک مارکر جدید در بهبود تشخیص سرطان کلورکتال از آن استفاده گردد.

بحث

تا به امروز نرخ زیادی از مرگ‌ومیر در سرطان کلورکتال گزارش شده است ولی هنوز فاکتورهای کلیدی در جنبه‌های گوناگون این بیماری ناشناخته مانده است. این مطالعه نشان داد که در بافت‌های توموری بیماران سرطان کلورکتال مقایسه با بلافاصله سالم، بیان Zn-1 SGO1 کاهش و بیان Zn-1 SGO1 در سرطان کلورکتال در مقایسه با میزان SGO1 سایر سرطان‌ها توده‌گری شده و یک سایر کاربردها می‌تواند به‌عنوان بیومارکر در سرطان کلورکتال از آن استفاده گردد.

ملاحظات اخلاقی

امروز، برای اولین بار، با مساحت زیر نمودار می‌تواند به‌عنوان یک مارکر جدید در بهبود تشخیص سرطان کلورکتال از آن استفاده گردد.

نتیجه‌گیری

در پژوهش حاضری برای سیستم الگوی SGO1-AS1 در پاتولوژی توموری سرطان کولورکتال اثر کاهش بیان SGO1-AS1 و SGO1 با کاهش بیان Zn-1 در سیستم الگوی SGO1 کاهش و احتمالاً می‌تواند به‌عنوان یک مارکر جدید در تشخیص سرطان کولورکتال از آن استفاده گردد.

ملاحظات اخلاقی

امروز، برای اولین بار، با مساحت زیر نمودار می‌تواند به‌عنوان یک مارکر جدید در بهبود تشخیص سرطان کلورکتال از آن استفاده گردد.

نتیجه‌گیری

در پژوهش حاضری برای سیستم الگوی SGO1-AS1 در پاتولوژی توموری سرطان کولورکتال اثر کاهش بیان SGO1-AS1 و SGO1 با کاهش بیان Zn-1 در سیستم الگوی SGO1 کاهش و احتمالاً می‌تواند به‌عنوان یک مارکر جدید در تشخیص سرطان کولورکتال از آن استفاده گردد.

ملاحظات اخلاقی

امروز، برای اولین بار، با مساحت زیر نمودار می‌تواند به‌عنوان یک مارکر جدید در بهبود تشخیص سرطان کلورکتال از آن استفاده گردد.

نتیجه‌گیری

در پژوهش حاضری برای سیستم الگوی SGO1-AS1 در پاتولوژی توموری سرطان کولورکتال اثر کاهش بیان SGO1-AS1 و SGO1 با کاهش بیان Zn-1 در سیستم الگوی SGO1 کاهش و احتمالاً می‌تواند به‌عنوان یک مارکر جدید در تشخیص سرطان کولورکتال از آن استفاده گردد.

ملاحظات اخلاقی

امروز، برای اولین بار، با مساحت زیر نمودار می‌تواند به‌عنوان یک مارکر جدید در بهبود تشخیص سرطان کلورکتال از آن استفاده گردد.

نتیجه‌گیری

در پژوهش حاضری برای سیستم الگوی SGO1-AS1 در پاتولوژی توموری سرطان کولورکتال اثر کاهش بیان SGO1-AS1 و SGO1 با کاهش بیان Zn-1 در سیستم الگوی SGO1 کاهش و احتمالاً می‌تواند به‌عنوان یک مارکر جدید در تشخیص سرطان کولورکتال از آن استفاده گردد.

ملاحظات اخلاقی

امروز، برای اولین بار، با مساحت زیر نمودار می‌تواند به‌عنوان یک مارکر جدید در بهبود تشخیص سرطان کلورکتال از آن استفاده گردد.

نتیجه‌گیری

در پژوهش حاضری برای سیستم الگوی SGO1-AS1 در پاتولوژی توموری سرطان کولورکتال اثر کاهش بیان SGO1-AS1 و SGO1 با کاهش بیان Zn-1 در سیستم الگوی SGO1 کاهش و احتمالاً می‌تواند به‌عنوان یک مارکر جدید در تشخیص سرطان کولورکتال از آن استفاده گردد.

ملاحظات اخلاقی

امروز، برای اولین بار، با مساحت زیر نمودار می‌تواند به‌عنوان یک مارکر جدید در بهبود تشخیص سرطان کلورکتال از آن استفاده گردد.

نتیجه‌گیری

در پژوهش حاضری برای سیستم الگوی SGO1-AS1 در پاتولوژی توموری سرطان کولورکتال اثر کاهش بیان SGO1-AS1 و SGO1 با کاهش بیان Zn-1 در سیستم الگوی SGO1 کاهش و احتمالاً Mی‌تواند به‌عنوان یک مارکر جدید در تشخیص سرطان کولورکتال از آن استفاده گردد.

ملاحظات اخلاقی

امروز، برای اولین بار، با مساحت زیر نمودار می‌تواند به‌عنوان یک مارکر جدید در بهبود تشخیص سرطان کلورکتال از آن استفاده گردد.

نتیجه‌گیری

در پژوهش حاضری برای سیستم الگوی SGO1-AS1 در پاتولوژی توموری سرطان کولورکتال اثر کاهش بیان SGO1-AS1 و SGO1 با کاهش بیان Zn-1 در سیستم الگوی SGO1 کاهش و احتمالاً Mی‌تواند به‌عنوان یک مارکر جدید در تشخیص سرطان کولورکتال از آن استفاده گردد.

ملاحظات اخلاقی

امروز، برای اولین بار، با مساحت زیر نمودار Mی‌تواند به‌عنوان یک مارکر جدید در بهبود تشخیص سرطان کلورکتال از آن استفاده گردد.
References

[1] Geboes K, Ectors N, Geboes KP. Pathology of early lower GI cancer. Best Pract Res Clin Gastroenterol. 2005; 19(6):363-73. [DOI:10.1016/j.bpg.2005.04.005] [PMID]

[2] Ansari R, Mahdavinia M, Sadjadi A, Nouraei M, Kamangar F, Bish-ehsari F, et al. Incidence and age distribution of colorectal cancer in Iran: results of a population-based cancer registry. Cancer Lett. 2006; 240(1):143-7. [DOI:10.1016/j.canlet.2005.09.004] [PMID]

[3] Burt RW, Barthel JS, Dunn KB, David DS, Drelichman E, Ford JM, et al. Colorectal cancer screening. J Natl Compr Canc Ne. 2010; 8(1):8-61. [DOI:10.6004/jnccn.2010.0003]

[4] Kumar V, Abbas AK, Aster JC. Robbins basic pathology e-book. Amsterdam: Elsevier Health Sciences; 2017. https://books.google.com/books?id=YYZMDgAAQBAJ&dq

[5] Pahlavan PS, Kanthan R. The epidemiology and clinical findings of colorectal cancer in Iran. J Gastrointestin Liver Dis. 2006; 15(1):15-9. [PMID]

[6] Mahapatra K, Roy S. An insight into the folding and stability of Arabidopsis thaliana SOGI1 transcription factor under salinity stress in vitro. Biochem Biophys Res Commun. 2019; 515(4):331-7. [DOI:10.1016/j.bbrc.2019.05.183] [PMID]

[7] Piché J, Gosset N, Legault LM, Pacis A, Oneglia A, Caron M, et al. Molecular signature of CAID syndrome: Noncanonical roles of SOGI1 in regulation of TGF-β signaling and epigenomics. Cell Mol Gastroenterol Hepatol. 2019; 7(2):411-31. [DOI:10.1016/j.jcmgh.2018.10.011] [PMID]

[8] Mishra PK, Thapa KS, Chen P, Wang S, Hazbun TR, Basrai MA. Budding yeast CENP-ACe4 interacts with the N-terminus of SOGI1 and regulates its association with centromeric chromatin. Cell Cycle. 2018; 17(1):11-23. [DOI:10.1080/15384101.2017.1380129] [PMID]

[9] Rao CV, Sanghera S, Zhang Y, Biddick L, Reddy A, Lightfoot S, et al. Systemic chromosome instability resulted in colonic transcriptomic changes in metabolic, proliferation, and stem cell regulators in SOGI1−/+ Mice. Cancer Res. 2016; 76(3):630-42. [DOI:10.1158/0008-5472.CAN-15-0940]

[10] Ulltisky I, Bartel DP. lincRNAs: Genomics, evolution, and mechanisms. Cell. 2013; 154(1):26-46. [DOI:10.1016/j.cell.2013.06.020] [PMID]

[11] Kugel JF, Goodrich JA. Non-coding RNAs: Key regulators of mammalian transcription. Trends Biochem Sci. 2012; 37(4):144-51. [DOI:10.1016/j.tibs.2011.12.003] [PMID] [PMCID]

[12] Yao Y, Dai W. Shugoshins function as a guardian for chromosomal stability in nuclear division. Cell Cycle. 11(14):2631-42. [DOI:10.4161/cc.20633] [PMID] [PMCID]

[13] Gooding AJ, Zhang B, Jahanbani FK, Gilmore HL, Chang JC, Valadkhan S, et al. The IncRNA BORG drives breast cancer metastasis and disease recurrence. Sci Rep. 2017; 7(1):1-18. [DOI:10.1038/s41598-017-12716-6]

[14] Nasim N, Ghafouri-Fard S, Soleimani S, Esfandi F, Shirkhoda M, Saffaei M, et al. Assessment of SOGI1 and SOGI1-AS1 contribution in breast cancer. Hum Antibodies. 2019; 27(4):279-84. [DOI:10.3233/HAB-190384] [PMID]

[15] Yang Y, Wang X, Dai W. Human SOGI1 is an excellent target for induction of apoptosis of transformed cells. Cell Cycle. 2006; 5(8):896-901. [DOI:10.4161/cc.5.8.2691] [PMID]

[16] Thornton B, Basu C. Rapid and simple method of qPCR primer design. In: Basu C, editor. PCR Primer Design. Berlin: Springer; 2015. p. 173-9. [DOI:10.1007/978-1-4939-2365-6_13]

[17] Rychlik W. Oligo 7 primer analysis software. In: Yuryev A, editor. PCR Primer Design. Berlin: Springer; 2007. p. 35-59. [DOI:10.1007/978-1-59745-528-2_2]

[18] Chen C, Tan R, Wong L, Fekete R, Halsey J. Quantitattion of microRNAs by real-time RT-qPCR. In: Park DJ, PCR Protocols. Berlin: Springer; 2011. pp. 113-34. [DOI:10.1007/978-1-60761-944-4_8]

[19] Wang LH, Yen CJ, Li TN, Elowe S, Wang WC, Wang LHC. SOGI1 is a potential therapeutic target for hepatocellular carcinoma. Oncotarget. 2015; 6(4):2023-33. [DOI:10.18632/oncotarget.2764] [PMID] [PMCID]

[20] Ong MS, Cai W, Tan TZ, Huang RF-J, Hooi SC, Yap CT, et al. Long non-coding RNA landscape in colorectal cancer. RNA Dis. 2019; 6(9):1-9. [DOI:10.14800/rd.1628]

[21] Mu J, Fan L, Liu D, Zhu D. Overexpression of shugoshin1 predicts a poor prognosis for prostate cancer and promotes metastasis by affecting epithelial-mesenchymal transition. Onco Targets Ther. 2019; 12:1111-8. [DOI:10.2147/OTT.S191157] [PMID] [PMCID]