RECENT RESULTS FROM THE BNL E787 EXPERIMENT

TAKESHI K. KOMATSUBARA
for the E787 Collaboration
KEK-IPNS, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
E-mail: takeshi.komatsubara@kek.jp

Recent results from a rare kaon decay experiment E787 at the BNL-AGS on $K^+ \rightarrow \pi^+ \nu \bar{\nu}$, $K^+ \rightarrow \mu^+ \nu \gamma$, and $K^+ \rightarrow \pi^+ \pi^0 \gamma$ decays are reported.

1 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

1.1 Theoretical Motivation

The $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay is a flavor changing neutral current process induced in the Standard Model (SM) by loop effects in the form of penguin and box diagrams. The decay is sensitive to top-quark effects and provides an excellent route to determine the absolute value of V_{td} in the Cabibbo-Kobayashi-Maskawa matrix. With the constraints from other K and B decay experiments the SM prediction of the branching ratio is $(0.82 \pm 0.32) \times 10^{-10}$, and using only the results on $B_d - \bar{B}_d$ and $B_s - \bar{B}_s$ mixing a branching ratio limit $< 1.67 \times 10^{-10}$ can be extracted.

New physics beyond the SM could affect the branching ratio.

1.2 E787 Detector

E787 measures the charged track emanating from stopped K^+ decays. The E787 detector (Figure 1) is a solenoidal spectrometer with a 1.0 Tesla field directed along the LEB3 beam line. Slowed by a BeO degrader, kaons stop in the scintillating-fiber target at the center of the detector. A delayed coincidence requirement (> 2nsec) between the stopping kaon and the outgoing pion times helps to reject backgrounds of pions scattered into the detector or kaons decaying in flight. Charged decay products pass through the drift chamber, lose energy by ionization loss and stop in the Range Stack made of plastic scintillators and straw chambers. Momentum, kinetic energy and range are measured to reject the backgrounds by kinematic means. For further rejection of μ^+ tracks, the output pulse-shapes of the Range Stack counters are recorded and analyzed so that the decay chain $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ can be identified in the stopping scintillator. $K^+ \rightarrow \pi^+ \pi^0$ and other decay modes with extra particles (γ, e, ...) are vetoed by the coincident signals in the hermetic shower counters.

Figure 1. Side view of the upper half of the E787 detector.

1.3 Result and Prospect

E787 took data on $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ from 1995 to 1998. In the 1995 data set, one event was observed in the signal region. The new result from the 1995-1997 data set is shown in Figure 2. The same one event was observed and no new events were found in the signal region. The new value for the branching ratio is $(1.5^{+3.2}_{-1.2}) \times 10^{-10}$. Compared to the result from 1995, 2.1 times more kaon ex-

aE787 is a collaboration of BNL, Fukui, KEK, Osaka, Princeton, TRIUMF, Alberta and British Columbia.
exposure \((3.2 \times 10^{12})\) and 30\% better acceptance are achieved. The background level, \(0.08 \pm 0.02\) events, corresponding to a branching ratio of \(1.2 \times 10^{-11}\), is improved by a factor of 2.5. The new result provides a constraint \(1.07 \times 10^{-4} < |V_{ts}^* V_{td}| < 1.39 \times 10^{-3}\) without reference to the B system.

The kaon exposure in the E787 1998 data set is comparable to 1995-1997, and the analysis is ongoing. The sensitivity for the entire E787 data is expected to reach \(0.7 \times 10^{-10}\), which is comparable to the SM prediction.

E949[5] continues the experimental study of \(K^+ \rightarrow \pi^+ \nu \bar{\nu}\) at the AGS based on the experience of E787 and is expected to reach a sensitivity of \(10^{-11}\) or less in two to three years of operation. An engineering run of E949 is scheduled for 2001.

2 Photon Detection in E787

The Barrel Veto counter (BL) in Figure 2 detects photons in the study of radiative kaon decays. The counter consists of 48 azimuthal sectors and 4 radial layers, made of lead/scintillator 14 radiation lengths in depth, and covers a solid angle of about \(3\pi\) sr. The position of BL hits along the beam line is measured with ADC and TDC information from phototubes on both ends of each 2-m long module. The energy and direction of the photons from stopped kaon decays are determined from the offline clustering in the BL and the decay vertex position in the target.

3 \(K^+ \rightarrow \mu^+ \nu \gamma\)

The decay \(K^+ \rightarrow \mu^+ \nu \gamma\) can proceed via internal bremsstrahlung (IB) and structure dependent decay (SD). The latter is sensitive to the electroweak structure of the kaon because the photon is emitted from intermediate states. E787 has made the first measurement of the SD component in \(K^+ \rightarrow \mu^+ \nu \gamma\) decay, which is proportional to the square of the absolute value of the sum of the Vector and Axial form factors \(|F_V + F_A|\).

The SD component peaks at high muon and photon energy. With a total kaon exposure of \(9.2 \times 10^9\) and \(1.5 \times 10^6\) triggers for \(K^+ \rightarrow \mu^+ \nu \gamma\), 2693 events are observed in the signal region where the \(\mu^+\) kinetic energy is \(> 137\)MeV and the \(\gamma\) energy is \(> 90\)MeV. The distribution of the opening angle between \(\mu^+\) and \(\gamma\) \((\cos(\theta_{\mu\gamma})\) for background-subtracted data, shown in Figure 3 with the Monte Carlo distributions for IB and SD components superimposed, clearly indicates that the SD component is present. Detailed fits yield \(|F_V + F_A| = 0.165 \pm 0.007 \pm 0.011\), which corresponds to an SD branching ratio of \((1.33 \pm 0.12 \pm 0.18) \times 10^{-5}\), and a 90\% confidence level limit \(-0.04 < F_V - F_A < 0.24\).
$K^+ \rightarrow \pi^+\pi^0\gamma$

The decay $K^+ \rightarrow \pi^+\pi^0\gamma$ in which the photon is directly emitted (DE) is sensitive to the low energy hadronic interactions of mesons. E787 has performed a new measurement of $K^+ \rightarrow \pi^+\pi^0\gamma$ decay, with significantly higher statistics than before and improved kinematic constraints using the K^+ decays at rest. The DE component is isolated kinematically with the variable W^2, which is reconstructed from the opening angle between π^+ and γ ($\cos(\theta_{\pi+\gamma})$), π^+ energy and momentum ($E_{\pi+}, P_{\pi+}$), and γ energy (E_{γ}) as

$$W^2 = E_{\gamma}^2 \times (E_{\pi+} - P_{\pi+} \times \cos(\theta_{\pi+\gamma})) / (m_{K^+} \times m_{\pi^+})$$

in the stopped K^+ decays and is directly related to the observables in the E787 detector.

With a total kaon exposure of 1.8×10^{11} and 1.1×10^7 “3gamma” triggers to detect the charged track and three γ clusters in the BL, 19836 events survived all selection cuts including requiring that the kinematically fitted π^+ momentum be between 140 and 180 MeV/c. Figure 4 shows the W spectrum of the signal events. The DE component is measured to be $(1.8 \pm 0.3)\%$ of the IB component, yielding a branching ratio for DE of $(4.7 \pm 0.8 \pm 0.3) \times 10^{-6}$ in the π^+ kinetic energy range 55-90 MeV. This result can be understood by purely magnetic contributions in the framework of Chiral Perturbation Theory.

Acknowledgments

This research was supported in part by the U.S. Department of Energy under Contracts No. DE-AC02-98CH10886, W-7405-ENG-36, and grant DE-FG02-91ER40671, by the Ministry of Education, Science, Sports and Culture of Japan through the Japan-U.S. Cooperative Research Program in High Energy Physics and under the Grant-in-Aids for Scientific Research, for Encouragement of Young Scientists and for JSPS Fellows, and by the Natural Sciences and Engineering Research Council and the National Research Council of Canada.

References

1. G. Buchalla and A.J. Buras, Nucl. Phys. B 548, 309 (1999).
2. Y. Nir and M.P. Worah, Phys. Lett. B 423, 319 (1998) and references therein; A.J. Buras et al., Nucl. Phys. B 566, 3 (2000).
3. J. Doornbos et al., Nucl. Instr. Meth. A 444, 546 (2000).
4. S. Adler et al., Phys. Rev. Lett. 79, 2204 (1997).
5. S. Adler et al., Phys. Rev. Lett. 84, 3768 (2000).
6. The information on E949 is available from http://www.phy.bnl.gov/e949/.
7. S. Adler et al., Phys. Rev. Lett. 85, 2256 (2000).
8. S. Adler et al., hep-ex/0007021.
9. Review of Particle Physics, Particle Data Group, D.E. Groom et al., Eur. Phys. J. C 15, 1 (2000).

Previous experiments used decay-in-flight techniques. The current Particle Data Group average is $(1.8 \pm 0.4) \times 10^{-5}$.