Search for the highly suppressed decays $B^- \rightarrow K^+ \pi^- \pi^-$ and $B^- \rightarrow K^- K^- \pi^+$

B. Aubert, M. Bona, Y. Karyotakis, J. P. Lees, V. Poirier, E. Prence, X. Prudent, V. Tisserand, J. Garra Tico, E. Grauges, L. Lopez, A. Palano, M. Pappalardo, G. Eigen, B. Stugu, L. Sun, G. S. Abrams, M. Battaglia, D. N. Brown, R. N. Cahn, R. G. Jacobsen, L. T. Kerth, Yu. G. Kolomensky, G. Lynch, I. L. Ospenkov, M. T. Roman, K. Taickman, T. Tanabe, C. M. Hawkes, N. Soni, A. T. Watson, H. Koch, T. Schroeder, D. Walker, D. J. Asgeirsson, B. G. Fulsom, C. Hearty, T. S. Mattison, J. A. McKenna, M. Barnett, A. Khan, V. E. Blinov, A. D. Bukin, A. R. Buzykaev, V. P. Druzhinin, V. B. Golubev, A. P. Oruchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, K. Y. Todyshev, M. Boudiol, S. Curry, I. Eschrich, D. Kirkby, A. J. Lankford, P. Lund, M. Mandelkern, E. C. Martin, D. P. Stoker, S. Abachi, C. Buchanan, J. W. Gary, F. Liu, O. Long, B. C. Shen, G. M. Vitug, Z. Yasin, L. Zhang, V. Sharma, C. Campagnari, T. M. Hong, D. Kovalsky, M. A. Mazar, J. D. Richman, T. W. Beck, A. M. Eisner, C. J. Flacco, C. A. Heusch, J. Kroseberg, W. S. Lockman, A. J. Martinez, T. Schalk, B. A. Schumm, A. Seiden, M. G. Wilson, L. O. Winston, C. H. Cheng, A. D. Doll, B. Echenard, F. Fang, D. G. Hitlin, I. Narsky, T. Piatenko, F. C. Porter, R. Andreassen, G. Mancinelli, B. T. Meadows, K. Mishra, M. D. Sokoloff, P. C. Bloom, W. T. Ford, A. Gaz, J. F. Hirschauer, M. Nagel, U. Nauenberg, J. G. Smith, K. A. Ulmer, S. R. Wagner, R. Ayad, A. A. Soffer, W. H. Toki, R. J. Wilson, D. Altenburg, E. Feltresi, A. Hauke, H. Jasper, M. Karbach, J. Merkel, A. Petzold, B. Spaan, K. Wacker, M. J. Kobel, W. F. Mader, R. Nogowski, K. R. Schubert, R. Schwierz, A. Volk, D. Bernardi, G. R. Bonneau, E. Latour, M. Verderi, P. J. Clark, S. Players, J. E. Watson, M. Andreotti, D. Bettoni, C. Bozzi, R. Calabrese, A. Cecchi, G. Cribinetto, P. Franchini, E. Luppini, M. Negrini, A. Petrella, L. Piemontese, V. Santoro, R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, G. Finocchiaro, S. Pacetti, P. Patteri, I. M. Peruzzi, M. Piccolo, M. Rama, A. Zallo, A. Buzzo, R. Contrii, M. Lo Vetere, M. M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, S. Tosi, K. S. Chaisanguanthum, M. Morii, A. Adametz, J. Marks, S. Schenk, U. Uwer, V. Klose, H. M. Lackner, D. J. Bard, P. D. Dauncey, J. A. Nash, M. Tibbetts, P. K. Behera, X. Chai, J. M. Charles, U. Mallik, J. Cochran, H. B. Crawley, L. Dong, W. T. Meyer, S. Prell, E. I. Rosenberg, A. E. Rubin, Y. Y. Gao, A. V. Gritsan, Z. J. Guo, K. L. He, P. Arnaud, J. Béquilleux, A. D’Orazio, M. Davier, J. Firmino da Costa, G. Grosdidier, A. Höcker, V. Lepelter, F. Le Diberder, A. M. Lutz, S. Pruvot, R. Roudeau, M. H. Schune, J. Serrano, V. Sordini, A. Stocchi, G. Wormser, D. J. Lange, D. M. Wright, I. Bingham, J. P. Burke, C. A. Chavez, J. R. Fry, E. Gabathuler, R. Gamet, D. E. Hutchcroft, J. D. Payne, C. Touramanis, A. J. Bevan, C. C. Krake, K. A. George, F. Di Lodovico, R. Sacco, M. Siganani, G. Cowan, H. U. Fleurier, D. A. Hopkins, S. Paramesvaran, F. Salvatore, A. C. Wren, D. N. Brown, C. L. Davis, A. G. Denig, M. Fritsch, W. Gradl, G. Schott, K. E. Alwyn, D. Bailey, R. J. Barlow, Y. M. Chia, C. L. Edgar, G. Jackson, D. G. Dafferty, T. J. West, J. I. Yi, J. Anderson, C. Chen, A. Jawahery, A. D. Roberts, G. Simi, J. M. Tuggle, C. Dallapiccola, X. Li, E. Salvati, S. Saremi, R. Cowan, D. Dujmic, P. H. Fisher, A. Sciolla, M. Spitznagel, F. Taylor, R. K. Yamamoto, M. Zhao, P. M. Patel, S. H. Robertson, L. Azzaro, V. Lombardo, F. Palumbo, J. M. Bauer, L. Cremaldi, R. Godang, R. Kroeger, D. A. Sanders, D. J. Summers, H. W. Zhao, M. Simard, P. Taras, F. B. Viana, H. Nicholson, G. De Nardo, L. Lista, Monorchio, G. Onorato, C. Sciacca, G. Raven, H. S. Snoek, C. P. Jessop, K. J. Kneepfel, J. M. LoSecco, W. F. Wang, G. Benelli, L. A. Corwin, K. Honscheid, H. Kagan, R. Kass, J. P. Morris, A. M. Rahimi, J. J. Regensburger, S. J. Sekula, K. W. King, N. L. Blount, J. Brau, R. Fery, O. Igonkina, J. A. Kolb, M. Lu, R. Rahmat, N. B. Sinev, D. Strom, E. Strube, E. Torrence, C. Castellibon, N. Gagliardi, M. Margoni, M. Morandin, M. Possolo, M. Rotondo, F. Simonetto, R. Strollo, C. Voci, P. del Amo Sanchez, E. Ben-Haim, H. Briand, G. Calderini, J. Chauveau, P. David, L. Del Buono, O. Hamon, Ph. Leruste, J. Ocariz, A. Perez, J. Prendki, S. Sitt, L. Gladney, M. Biasini.
We report a search for the decays $B^− \rightarrow K^+\pi^−\pi^−$ and $B^− \rightarrow K^−K^−\pi^+$, which are highly suppressed in the standard model. Using a sample of $(467 \pm 5) \times 10^6 B\bar{B}$ pairs collected with the BABAR detector, we do not see any evidence of these decays and determine 90% confidence level upper limits of $B(B^− \rightarrow K^+\pi^−\pi^-) < 9.5 \times 10^{-7}$ and $B(B^− \rightarrow K^-K^-\pi^+) < 1.6 \times 10^{-7}$ on the corresponding branching fractions, including systematic uncertainties.

PACS numbers: 13.25.Hw, 12.60.-i
The decays $B^- \to K^+ \pi^- \pi^-$ and $B^- \to K^- K^- \pi^+$ proceed via $b \to d\pi$ and $b \to s\pi$ quark transitions, respectively. These are highly suppressed in the standard model (SM). Compared with the penguin (loop) transitions $b \to q\bar{q}d$, and $b \to q\bar{q}s$ they are additionally suppressed by the small Cabibbo-Kobayashi-Maskawa matrix $[1, 2]$ element factor $|V_{td}V_{ts}| \simeq 3 \times 10^{-4}$, leading to predicted branching fractions of only $O(10^{-14})$ and $O(10^{-11})$, respectively $[3, 4]$. Example SM decay diagrams can be seen in Fig. 1.

FIG. 1: Example standard model decay diagrams for the decays $B^- \to K^+ \pi^- \pi^-$ and $B^- \to K^- K^- \pi^+$, respectively.

These branching fractions can be significantly enhanced in SM extensions such as the minimal supersymmetric model (MSSM) with or without conserved R parity, or in models containing extra $U(1)$ gauge bosons. For example, the branching fraction for the $b \to d\pi$ transition $B^- \to \pi^- K^{*0}$ can be enhanced from about 7×10^{-14} in the SM to about 6×10^{-9} in the MSSM $[5]$. Observations of the decays $B^- \to K^+ \pi^- \pi^-$ and $B^- \to K^- K^- \pi^+$ would be clear experimental signals for the $b \to d\pi$ and $b \to s\pi$ quark transitions $[6, 7]$. These decay modes have been previously searched for $[8, 9, 10, 11]$, and the most restrictive 90% confidence level experimental upper limits $B(B^- \to K^+ \pi^- \pi^-) < 1.8 \times 10^{-6}$ and $B(B^- \to K^- K^- \pi^+) < 1.3 \times 10^{-6}$ $[10]$ were obtained from an analysis of 81.8 fb$^{-1}$ of BABAR data. Upper limits on $b \to s\pi$ transitions have also been set using the decays $B^- \to K^+ K^- \pi^+ [12]$, $B^0 \to K^{*0} K^- \pi^+ [13]$, and $B^0 \to K^{*0} K^{*0} [14]$. We report the results of a search for the decays $B^- \to K^+ \pi^- \pi^-$ and $B^- \to K^- K^- \pi^+$. Inclusion of the charge conjugate modes is implied throughout this paper. The data used in this analysis, collected at the PEP-II asymmetric energy e^+e^- collider $[13]$, consist of an integrated luminosity of 426 fb$^{-1}$ recorded at the $\Upsilon(4S)$ resonance. In addition, 44 fb$^{-1}$ of data were collected 40 MeV below the resonance and are used for background characterization. These samples are referred to as on-resonance and off-resonance data, respectively. The on-resonance data sample contains $(467 \pm 5) \times 10^6 B \bar{B}$ pairs. Beyond the larger sample size, we utilize improved analysis techniques for background rejection and signal identification compared with our previous study $[10]$.

The BABAR detector is described in detail elsewhere $[10]$. Charged particles are detected and their momenta measured with a five-layer silicon vertex tracker and a 40-layer drift chamber (DCH) inside a 1.5 T solenoidal magnet. Surrounding the DCH is a detector of internally reflected Cherenkov radiation. Energy deposited by electrons and photons is measured by a CsI(Tl) crystal electromagnetic calorimeter.

We select $B^- \to K^+ \pi^- \pi^-$ candidates by combining a charged kaon candidate with two charged pion candidates, each of which has charge opposite to the kaon. Similarly, $B^- \to K^- K^- \pi^+$ candidates are selected by combining two charged kaon candidates with a charged pion candidate. Each track is required to have a minimum transverse momentum of 50 MeV/c, and to be consistent with having originated from the interaction region. Identification of charged pions and kaons is accomplished using energy loss (dE/dx) information from the silicon vertex tracker and DCH, and the Cherenkov angle and number of photons measured in the detector of internally reflected Cherenkov radiation. The efficiency for kaon selection is approximately 80% including geometrical acceptance, while the probability of misidentification of pions as kaons is below 5%. The corresponding efficiency and kaon misidentification rate for the pion selection criteria are 95% and less than 10%, respectively. We require all charged particle candidates to be inconsistent with the electron hypothesis, based on a cut-based selection algorithm that uses information from dE/dx, shower shapes in the electromagnetic calorimeter, and the ratio

*Deceased

1Now at Temple University, Philadelphia, Pennsylvania 19122, USA

2Now at Tel Aviv University, Tel Aviv, 69978, Israel

3Also with Universit` a di Perugia, Dipartimento di Fisica, Perugia, Italy

4Also with Universit` a di Sassari, Sassari, Italy

5Also with Universit` a di Roma La Sapienza, I-00185 Roma, Italy

6Now at University of South Alabama, Mobile, Alabama 36688, USA
of the shower energy and track momentum.

To avoid a potentially large source of background arising from B decays mediated by the favored $b \to c$ transition, we veto B candidates for which pairs of daughter tracks have invariant mass combinations in the ranges $1.76 < m_{K\pi} < 1.94$ GeV/c2, $2.85 < m_{K\pi} < 3.25$ GeV/c2, and $3.65 < m_{K\pi} < 3.75$ GeV/c2. These remove events containing the decays $D^0 \to K^{-}\pi^+$, $J/\psi \to \ell^+\ell^-$, and $\psi(2S) \to \ell^+\ell^-$, respectively, where the leptons in the J/ψ and $\psi(2S)$ decays are misidentified as pions or kaons.

Continuum $e^+e^- \to q\bar{q}$ ($q = u, d, s, \ldots$) events are the dominant background. To discriminate this type of event from signal, we use a neural network that combines five variables. The first of these is the ratio of L_2 to L_0, with $L_j = \sum_i p_i^j [\cos \theta_i^j]^j$, where p_i^j is the particle momentum, θ_i^j is the angle between the particle and the thrust axis determined from the B candidate decay products, the sum is over all tracks and neutral clusters not associated with the B candidate, and all quantities are calculated in the e^+e^- center-of-mass (CM) frame. The other four variables are the absolute value of the cosine of the angle between the B direction and the beam axis; the magnitude of the cosine of the angle between the B thrust axis and the beam axis; the product of the B candidate’s charge and the output of a multivariate algorithm that identifies the flavor of the recoiling B meson [17]; and the proper time difference between the decays of the two B mesons divided by its uncertainty. The angles with respect to the beam axis are calculated in the CM frame. The neural network output NN_{out} is distributed such that it peaks around 0 for continuum background and around 1 for signal. We require $NN_{\text{out}} > 0.5$ ($NN_{\text{out}} > 0.4$) for $B^+ \to K^+\pi^-\pi^-$ ($B^- \to K^-\pi^-\pi^+$) candidates. These requirements retain approximately 90% of the signal, while rejecting approximately 80% of the continuum background.

In addition to the neural network output, we distinguish signal from background events using two kinematic variables: the difference ΔE between the CM energy of the B candidate and $\sqrt{s}/2$, and the beam-energy substituted mass $m_{\text{ES}} = \sqrt{s/4 - \mathbf{p}_B^2}$, where \sqrt{s} is the total CM energy and \mathbf{p}_B is the momentum of the candidate B meson in the CM frame. The ΔE distribution peaks near zero with a resolution of around 19 MeV/c, while the m_{ES} distribution for signal events peaks near the B mass with a resolution of around 2.4 MeV/c2. We select signal candidates that satisfy $5.260 < m_{\text{ES}} < 5.286$ GeV/c2 and $|\Delta E| < 0.100$ GeV. This region includes a sufficiently large range of m_{ES} below the signal peak to determine properties of the continuum distribution.

The efficiency for signal events to pass the selection criteria is 21.6% (17.8%) for $B^- \to K^+\pi^-\pi^-$ ($B^- \to K^-\pi^-\pi^+$), determined with a Monte Carlo (MC) simulation in which the decays are generated uniformly in three-body phase space. The BaBar detector Monte Carlo simulation is based on GEANT 4 [18] and EvtGen [19]. We find that 8.2% (5.1%) of $B^- \to K^+\pi^-\pi^-$ ($B^- \to K^-\pi^-\pi^+$) selected events contain more than one candidate, in which case we choose the one with the highest probability that the three tracks originate from a common vertex.

We study possible residual backgrounds from $B\overline{B}$ events using MC event samples. Backgrounds arise from decays with topologies similar to the signal but with some misreconstruction. Such effects include kaon/pion misidentification, the loss of a soft neutral particle, and the association of a particle from the decay of the other B in the event with the signal candidate or vice versa. We find that the backgrounds can be conveniently divided into five categories for both the $K^+\pi^-\pi^-$ and $K^-\pi^-\pi^+$ channels, each of which is dominated by one or two particular decays but also includes other decay modes that result in similar m_{ES} and ΔE shapes. Table 1 provides details of the composition of the background categories.

In order to obtain the $B^- \to K^+\pi^-\pi^-$ and $B^- \to K^-\pi^-\pi^+$ signal yields, we perform unbinned extended maximum likelihood fits to the candidate events using three variables: m_{ES}, ΔE, and NN_{out}. For each event hypothesis j (signal, continuum background, or one of the five $B\overline{B}$ background categories), we define a probability density function (PDF)

$$P_j^i = P_j(m_{\text{ES}}^i, \Delta E^i) \cdot P_j(NN_{\text{out}}^i),$$

(1)

where i denotes the event index. For the signal, continuum background, and the $B\overline{B}$ background categories with small correlations between m_{ES} and ΔE, the PDF is further factorized

$$P_j(m_{\text{ES}}^i, \Delta E^i) = P_j(m_{\text{ES}}^i) \cdot P_j(\Delta E^i).$$

(2)

The extended likelihood function is

$$L = \exp \left(-\sum_k n_k \prod_i \left[\sum_j n_j P_j^i \right] \right),$$

(3)

where n_j (n_k) is the yield belonging to the event hypothesis j (k).

The signal m_{ES} and ΔE shapes are parametrized with the sum of a Gaussian and a Crystal Ball function [20] and the sum of two Gaussian functions, respectively. We determine the shape parameters by taking the values obtained from signal MC and correcting for differences between data and MC seen in a control sample of $B^- \to D^0\pi^-$ with $D^0 \to K^+\pi^-$ decays. The continuum background m_{ES} shape is described by the function $x\sqrt{1-x^2}\exp[-(1-x^2)]$, with $x = 2m_{\text{ES}}/\sqrt{s}$ and ξ a free parameter [23], while the continuum ΔE shape is modeled with a linear function. We describe the m_{ES} and ΔE shapes of each $B\overline{B}$ background category using either independent 1D histograms or a 2D histogram determined from MC samples. The decision to use 1D or 2D histograms is made based on the magnitude of the correlations between these variables for each category and the effect on the signal yield of neglecting such correlations, discussed below. The PDFs for categories 1, 2, and 3, for both $B^- \to K^+\pi^-\pi^-$ and $B^- \to K^-\pi^-\pi^+$,
are modeled using 2D histograms. We use 1D histograms to describe all NN_{out} distributions. These histograms are obtained from MC samples for the signal and $B\bar{B}$ background categories, and from a combination of on-resonance data, in a continuum-dominated sideband of m_{ES} and ΔE, and off-resonance data for the continuum background.

The nine free parameters in our fits are the yields of the signal, continuum and all five $B\bar{B}$ background categories, the ξ parameter of the continuum m_{ES} shape, and the slope of the continuum ΔE shape.

We test the fitting procedure by applying it to ensembles of simulated experiments where events are generated from the PDF shapes described above for all seven categories of events. We repeat the exercise with $q\bar{q}$ events generated from the PDF while signal events are randomly extracted from the MC samples. The $B\bar{B}$ background events are either generated from PDF shapes or drawn from MC samples. In all cases, these tests confirm that our fit performs as expected, with very small biases on the fitted signal yields, for which we correct the measured yields and include systematic uncertainties.

We apply the fit described above to the 26,478 $B^- \to K^+ \pi^- \pi^-$ and 7,822 $B^- \to K^- K^+ \pi^+$ candidate events selected from the data recorded at the $\Upsilon(4S)$ resonance. We find 22 ± 43 and -26 ± 19 signal events, respectively, (statistical uncertainties only). The yields of continuum and all $B\bar{B}$ background categories (shown in Table I) are generally consistent with expectations. The yields of $B\bar{B}$ background categories 3 and 5 from the fit to $B^- \to K^+ \pi^- \pi^-$ candidates do not show perfect agreement; however, the sum of their yields is consistent with the expectation and, owing to the strong negative correlation between the yields of these categories, the discrepancy with the expectation is not significant.

Such behavior was seen in the fit validations and has been shown not to effect the signal yield. The results of the fits are shown in Fig. 2.

We determine the branching fractions for $B^- \to K^+ \pi^- \pi^-$ and $B^- \to K^- K^+ \pi^+$ by applying corrections for the small biases evaluated in the MC studies, and then dividing by the selection efficiencies and the total number of $B\bar{B}$ pairs in the data sample.

The nine free parameters in our fits are the yields of the signal, continuum and all five $B\bar{B}$ background categories, the ξ parameter of the continuum m_{ES} shape, and the slope of the continuum ΔE shape.

We test the fitting procedure by applying it to ensembles of simulated experiments where events are generated from the PDF shapes described above for all seven categories of events. We repeat the exercise with $q\bar{q}$ events generated from the PDF while signal events are randomly extracted from the MC samples. The $B\bar{B}$ background events are either generated from PDF shapes or drawn from MC samples. In all cases, these tests confirm that our fit performs as expected, with very small biases on the fitted signal yields, for which we correct the measured yields and include systematic uncertainties.

We apply the fit described above to the 26,478 $B^- \to K^+ \pi^- \pi^-$ and 7,822 $B^- \to K^- K^+ \pi^+$ candidate events selected from the data recorded at the $\Upsilon(4S)$ resonance. We find 22 ± 43 and -26 ± 19 signal events, respectively, (statistical uncertainties only). The yields of continuum and all $B\bar{B}$ background categories (shown in Table I) are generally consistent with expectations. The yields of $B\bar{B}$ background categories 3 and 5 from the fit to $B^- \to K^+ \pi^- \pi^-$ candidates do not show perfect agreement; however, the sum of their yields is consistent with the expectation and, owing to the strong negative correlation between the yields of these categories, the discrepancy with the expectation is not significant.
The black points are the data, the solid blue curve is the total fit, the dotted red curve is the continuum background, the dashed
discretions:
we obtain the following results for the branching frac-
B
in the fit procedure and include systematic uncertain-
sults of MC studies that account for relevant biases
nual events. These bands are constructed using the re-
branching fractions to the measured numbers of sig-
dence region bands that relate the true values of the
F eldman and Cousins [28]. W e determine 90% confi-
fit, in turn, gives consistent results.
removing each of the discriminating variables from the
systematic errors of
MC in all alternative models, so we assign asymmetric
errors of +0% for B
→ K+π−π− and +25% for B
→ K−K−π+. The uncertainty on the number of B
pairs is 1.1%. Including all systematic uncertainties,
we obtain the following results for the branching frac-
tions: B(B
→ K+π−π−) = (1.8 ± 4.3 ± 0.9) × 10−7 and
B(B
→ K−K−π+) = (−3.2 ± 2.3 ± 0.6) × 10−7, where
the first uncertainties are statistical and the second are
systematic.
We have also calculated the branching fractions using
event-by-event efficiencies applied to signal weights ob-
tained from the fit result [26, 27]. We obtain results con-
sistent with our main results within the efficiency varia-
tion systematic uncertainty. We have also checked that
removing each of the discriminating variables from the
fit, in turn, gives consistent results.
To obtain 90% confidence level upper limits on the
branching fractions, we use the frequentist approach of
Feldman and Cousins [28]. We determine 90% confi-
dence region bands that relate the true values of the
branching fractions to the measured numbers of sig-
nal events. These bands are constructed using the re-
sults of MC studies that account for relevant biases
in the fit procedure and include systematic uncertain-
ties. The construction of the confidence region bands is
shown in Fig. 3. The 90% confidence level upper limits
are found to be B(B
→ K+π−π−) < 9.5 × 10−7 and
B(B
→ K−K−π+) < 1.6 × 10−7. To aid comparison
with other experiments, we also extract the sensitivities
B0 defined as the 90% confidence level upper limits that
would be obtained in the case of zero fitted signal yield.
The sensitivities are B0(B
→ K+π−π−) < 7.4 × 10−7 and
B0(B
→ K−K−π+) < 4.2 × 10−7.

In conclusion, we present searches for the standard
model suppressed B meson decays B
→ K+π−π− and
B
→ K−K−π+. We do not see any evidence of these
decays and obtain improved 90% confidence level upper
limits on the branching fractions. These results super-
sede those of our previous publication [10] and can be
used to constrain models of new physics.
We are grateful for the excellent luminosity and ma-
chine conditions provided by our PEP-II colleagues, and
for the substantial dedicated effort from the comput-
ing organizations that support BABAR. The collaborat-
ing institutions wish to thank SLAC for its support and
kind hospitality. This work is supported by DOE and
NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3
(France), BMBF and DFG (Germany), INFN (Italy),
FOM (The Netherlands), NFR (Norway), MES (Russia),
MEC (Spain), and STFC (United Kingdom). Individuals
have received support from the Marie Curie EIF (Euro-
pean Union) and the A. P. Sloan Foundation.
FIG. 3: Construction of the confidence region bands. The left (right) plot is for $B^- \to K^+ \pi^- \pi^-$ ($B^- \to K^- K^+ \pi^+$). In each figure the blue dotted line shows the expected central value of N_{fit} as a function of the true branching fraction, the green solid (red dashed) lines show the 90% confidence level upper and lower limits including statistical and systematic errors (statistical errors only), the black dashed horizontal line marks the position of the previous upper limit [10], and the black dash-dotted lines indicate the results of this study.

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[3] K. Huitu, D. X. Zhang, C. D. Lu, and P. Singer, Phys. Rev. Lett. 81, 4313 (1998).
[4] S. Fañer, J. F. Kamenik, and N. Kosnik, Phys. Rev. D74, 034027 (2006).
[5] S. Fañer and P. Singer, Phys. Rev. D62, 117702 (2000).
[6] E. J. Chun and J. S. Lee (2003), hep-ph/0307108.
[7] T. E. Browder, T. Gershon, D. Pirjol, A. Soni, and J. Zupan (2008), arXiv:0802.3201 [hep-ph].
[8] T. Bergfeld et al. (CLEO Collaboration), Phys. Rev. Lett. 77, 4503 (1996).
[9] G. Abbiendi et al. (OPAL Collaboration), Phys. Lett. B476, 233 (2000).
[10] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 91, 051801 (2003).
[11] A. Garmash et al. (Belle Collaboration), Phys. Rev. D69, 012004 (2004).
[12] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D74, 051104 (2006).
[13] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D76, 071104 (2007).
[14] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 100, 081801 (2008).
[15] W. Kozanecki, Nucl. Instrum. Methods Phys. Res., Sect. A 446, 59 (2000).
[16] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[17] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 94, 161803 (2005).
[18] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[19] M. Oreglia (1980), PhD Thesis, SLAC-0236, Appendix D.
[20] J. Gaier (1990), PhD Thesis, SLAC-F31-86-02, Appendix B.
[21] H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C48, 543 (1990).
[22] D. Aston et al., Nucl. Phys. B296, 493 (1988).
[23] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D78, 051104 (2008).
[24] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 356 (2005).
[25] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 221801 (2007).
[26] G. J. Feldman and R. D. Cousins, Phys. Rev. D57, 3873 (1998).