ORIGINAL ARTICLE

Analysis of glioblastoma tumor coverage by oncolytic virus-loaded neural stem cells using MRI-based tracking and histological reconstruction

RA Morshed1, M Gutova2, J Juliano3, ME Barish4,5, A Hawkins-Daarud3, D Oganesyan5, K Vazgen5, T Yang5, A Annala2, AU Ahmed1, KS Aboody2,4, KR Swanson3, RA Moats5,6 and MS Lesniak1,6

In preclinical studies, neural stem cell (NSC)-based delivery of oncolytic virus has shown great promise in the treatment of malignant glioma. Ensuring the success of this therapy will require critical evaluation of the spatial distribution of virus after NSC transplantation. In this study, the patient-derived GBM43 human glioma line was established in the brain of athymic nude mice, followed by the administration of NSCs loaded with conditionally replicating oncolytic adenovirus (NSC-CRAd-S-pk7). We determined the tumor coverage potential of oncolytic adenovirus by examining NSC distribution using magnetic resonance (MR) imaging and by three-dimensional reconstruction from ex vivo tissue specimens. We demonstrate that unmodified NSCs and NSC-CRAd-S-pk7 exhibit a similar distribution pattern with most prominent localization occurring at the tumor margins. We were further able to visualize the accumulation of these cells at tumor sites via T2-weighted MR imaging as well as the spread of viral particles using immunofluorescence. Our analyses reveal that a single administration of oncolytic virus-loaded NSCs allows for up to 31% coverage of intracranial tumors. Such results provide valuable insights into the therapeutic potential of this novel viral delivery platform.

Cancer Gene Therapy (2015) 22, 55–61; doi:10.1038/cgt.2014.72; published online 19 December 2014

INTRODUCTION

The most common primary malignant brain tumor affecting adult patients is glioblastoma (GBM), a WHO grade IV astrocytoma. This disease carries a very poor prognosis with patients exhibiting a median survival of ~14.6 months1 and a 5-year survival rate of only 9.8% under a care regimen of surgical debulking, radiotherapy and adjuvant chemotherapy with temozolomide.2 This poor prognosis reflects the inability of these therapies to adequately target evasive glioblastoma cells. Local recurrence is common secondary to (a) small, invasive tumor foci that may be spatially noncontiguous with the main tumor burden and (b) the presence of chemo- and radioresistant populations of glioma cells that exist within the tumor.3 Thus, novel therapeutics are needed that can both target infiltrative disease while overcoming mechanisms of resistance in these cancer cells.

Neural stem cells (NSCs) have recently been used as delivery vehicles because of their inherent tumor tropism, migrating towards a tumor mass as well as smaller microtumor foci found at or well beyond the tumor’s infiltrating edge.4,5 Preclinical studies have demonstrated the effectiveness of NSCs for prodrg carboxylesterase-mediated conversion of CPT-11 (irinotecan) to SN-38,6,8 gene therapy,5 biomolecule/antibody expression9,10 and oncolytic virus delivery11–15 in the context of a spectrum of brain tumor types including malignant glioma, medulloblastoma and secondary brain metastases. In fact, this concept has already made its way into the clinical arena: the HB1.F3.CD NSC line for cytosine deaminase-mediated conversion of 5-Flucytosine to 5-Fluorouracil is currently undergoing clinical trial testing in recurrent high-grade glioma patients (completed safety study NCT01172964; phase I dose escalation study in progress NCT02015819).

Enhancing oncolytic adenovirus delivery is an especially intriguing therapeutic avenue because these viruses have been shown to target the tumorigenic glioma cancer stem cell population as well.12,16,17 In fact, conditionally replicating adenoviruses that have been modified to possess survivin promoter-driven E1A gene expression and a polylysine addition to the viral fiber (CRAd-S-pk7) can effectively prolong survival in mice bearing intracranial glioma xenografts.18 NSC-mediated delivery of CRAd-S-pk7 has been shown to even further improve survival compared with free oncolytic virus in several murine preclinical models of human glioma, suggesting this platform’s potential use in glioma patients.11–15 However, there are a few areas of investigation that may be important in moving this therapy forward. First, it is important to determine the distribution pattern of NSCs within a tumor mass as these cells will mostly be targeting residual glioma cells at the tumor margins after surgical resection. Second, it is essential to quantify the therapeutic tumor coverage of oncolytic virus-loaded NSCs to rule out inhibition of tropism as compared with unloaded NSCs. A previous study by Lin et al.19 examined the three-dimensional distribution of HB1.F3.C1 NSCs in an intracranial...
glioma mouse model. In this study, confocal microscopy of serial tissue sections allowed for three-dimensional modeling of NSC and glioma cell spatial distribution providing insight into the potential tumor coverage of unloaded NSCs in the context of prodrug therapy. However, to date, no method has been applied to analyze the tumor coverage potential of NSCs carrying oncolytic virus.

Our aims in this study were to determine the distribution patterns of CRAd-S-pk7-loaded NSCs and quantify the tumor coverage potential of these cells (Figure 1). In order to do this, both quantitative and qualitative methods were employed, including calculating the distance of individual NSCs to the tumor border, visualizing intratumoral accumulation of NSCs via magnetic resonance (MR) imaging, and reconstructing three-dimensional images from ex vivo tissue specimens. We first demonstrated that unmodified NSCs and NS-CRAd-S-pk7 both share a similar distribution pattern with localization mainly at the tumor borders. We were further able to visualize the accumulation of these cells at the tumor site via T2-weighted MR imaging as well as the spread of viral particles via immunofluorescence. Finally, our analysis revealed that a single administration of NSC-CRAd-S-pk7 allowed for up to 31% coverage of intracranial tumors.

MATERIALS AND METHODS

Cell culture

GBM43 glioma cells, derived from human GBM primary tissue, were obtained from Dr David James (Northwestern University, Chicago, IL, USA) and maintained according to a protocol approved by the institutional review board at the Northwestern University. Cells were maintained as serially passaged subcutaneous xenografts in athymic mice. Before intracranial injection, GBM43 cells were thawed, washed and resuspended in serum-free Dulbecco’s Modified Eagle’s media (DMEM; Invitrogen, Carlsbad, CA, USA) at a concentration of 5 × 10^5 cells per 2 μl for stereotactic intracranial injections.

This study used the established clonal, v-myc immortalized human NSC line HB1.F3.CD, a line that is established as a Master Cell Bank at City of Hope. Briefly, HB1.F3.CD cells were thawed and cultured in DMEM supplemented with 10% heat-activated fetal bovine serum (HyClone, Logan, UT, USA) and 2 mM L-glutamine (Invitrogen).

Labeling of NSCs with ferumoxytol

HB1.F3.CD cells were labeled in culture with ferumoxytol according to a protocol previously reported. The herparin–proteamine sulfate–ferumoxytol complex was prepared by mixing 2 U/ml heparin and 40 μg ml⁻¹ proteamine sulfate (American Pharmaceuticals Partners, LLC, Lake Zurich, IL, USA) with 100 μg ml⁻¹ ferumoxytol (AMAG Pharmaceuticals, Schaumburg, IL, USA). After 24 h in culture with heparin–proteamine sulfate–ferumoxytol, labeled HB1.F3.CD cells were washed with phosphate-buffered saline (PBS), trypsinized and either prepared for oncolytic virus loading (NSC-CRAd-S-pk7 groups) or for intracranial injections directly (NSC groups).

Oncolytic viral vector and loading into NSCs

CRAd-S-pk7 is a replication-competent adenoviral vector that contains the wild-type adenovirus replication protein, E1A, under the control of the human survivin promoter, a gene that is known to be overexpressed in malignant glioma. This viral vector was created via homologous recombination using a shuttle plasmid containing the survivin promoter upstream of the E1A gene and an adenoviral vector backbone modified to contain a poly-lysine (pk) addition onto the C terminus of the wild-type fiber protein.

To load HB1.F3.CD cells, cell suspensions were incubated with DMEM containing 10% fetal bovine serum and 50 IU per cell of CRAd-Survivin-pk7 viruses. Fifty IU per cell is a concentration that has been determined to produce the highest adenovirus replication and infectious progeny while minimizing toxicity towards NSCs. HB1.F3.CD cells were incubated with the virus for 2 h, and, during this time, the tube containing the cells was lightly mixed every 15 min to achieve maximum loading capacity. After this 2-h incubation, HB1.F3.CD cells were washed twice with DMEM and once with PBS in preparation for intracranial implantation.

In vivo intracranial tumor implantation and NSC administration

For intracranial glioma xenograft establishment, 5 × 10^6 GBM43 cells in 2 μl of serum-free DMEM were implanted into the right frontal lobe of athymic nude mice using a stereotactic instrument. Cells were loaded into a 25-μl Hamilton syringe with a 30-gauge needle and injected over 2 min at 2 mm lateral and 0.5 mm anterior to the bregma at a depth of 3.3 mm from the surface of the skull. On day 6 following GBM43 engraftment, 5 × 10^6 NSC or NSC-CRAd-S-pk7 cells in 2 μl PBS were injected either adjacent to the tumor site (caudolateral to tumor) or into the contralateral frontal lobe. All animal studies were conducted under approved City of Hope (no. 04011) and Children’s Hospital of Los Angeles (no. 285) institutional animal care.
and use committee protocols. Mice from each group were killed on day 4 or day 7 after NSC injection, and brain tissue was collected for histological processing and analysis.

MR imaging
Mice underwent MRI scanning before NSC injection and on days 1, 4 and 7 after NSC injection to track the distribution of NSCs in the brain. Mice were inserted in the prone position into a small animal MRI scanner (PharmaScan 300, Bruker BioSpin Division, Billerica, MA, USA) 7T magnet using the 19-mm-inner diameter transmit receive coil. The ParaVision 4.0 scanner software was set to use rapid acquisition with relaxation enhancement (RARE) spin echo sequence for fast T2-weighted imaging (TE 50, TR 3 000, RARE Factor 8) with a 256 × 256 in-plane matrix and 2.56 cm field of view. MRI images were reconstructed at native resolution. For each mouse, 22 axial images with 0.4-mm-thick slices and 0.02 mm gap between slices were acquired. This produced 0.1 mm × 0.1 mm per pixel in-plane resolution with an effective slice thickness of 0.42 mm. DICOM data were stored in the small animal imaging PACS server and processed using the Mayo ANALYZE (AnalyzeDirect, Overland Park, KS, USA) and OsiriX (Open-Source Software for Navigating in Multidimensions) image analysis software packages. Mice were anesthetized with isoflurane throughout the entire imaging procedure.

Histological staining and immunofluorescence
Brain tissue was harvested and fixed in 4% paraformaldehyde for 72–96 h. Tissues were paraffin-embedded and sectioned at 10 μm in thickness, and hematoxylin and eosin (H&E) and Prussian blue staining were carried out every 10th section to visualize the tumor and to detect ferumoxytollabeled NSCs. Prussian blue staining was performed using the Accustain iron stain kit (Sigma-Aldrich, St Louis, MO, USA). Images were captured with a ×10 lens using Nikon-Eclipse 2E200U. Viral hexon protein staining was carried out using an anti-hexon fluorescein isothiocyanate (FITC)-conjugated antibody (Millipore, Billerica, MA, USA). In brief, sections were blocked using 1% BSA+0.3% Triton-X for 1 h and then incubated with the

Figure 2. Quantitative analysis and visualization of NSC and NSC-CRAd-S-pk7 distribution within the tumor vicinity. (a) Schematic of experimental design: athymic nude mice were administered GBM 43 cells into the right hemisphere with the administration of stem cells either adjacent to or in the contralateral cortical hemisphere to the established GBM43 tumor. (b) Histogram of NSCs or NSC-CRAd-S-pk7 distribution after either adjacent or contralateral injection. Cells were found to be distributed mostly at or adjacent to the tumor border (negative values = within tumor; positive values = outside tumor). (c) Comparison of NSC and NSC-CRAd-S-pk7 distribution on day 4 after adjacent administration revealed no difference (n = 18 per group; K–S test; P = 0.97). (d) Reconstruction of tumor area and stem cell location from brain tissue sections collected on day 4. The majority of stem cells were distributed around the periphery of tumors. Scale bars = 200 μm.
antibody diluted in 1% bovine serum albumin (BSA) overnight at 4 °C. Sections were then washed in PBS and mounted using ProLong Gold Antifade Mountant with 4,6-diamidino-2-phenylindole (Life Technologies, Waltham, MA, USA). Imaging was performed at the University of Chicago Integrated Light Microscopy Facility. Images were captured with a Zeiss Axiovert 200-m inverted epifluorescence microscope (Carl Zeiss Microscopy, Thornwood, NY, USA) with a Hamamatsu Orca ER CCD camera (Hamamatsu Photonics, Skokie, IL, USA) for fluorescence imaging run by the SlideBook 5.5 software (Intelligent Imaging Innovations, Denver, CO, USA).

Quantitative distribution analysis and three-dimensional reconstruction of tumor volume and NSC location

The Automatic Cellular Imaging System (ACIS from ChromaVision Medical Systems, San Juan Capistrano, CA, USA) was used to generate high-resolution images of Prussian blue-stained histological sections (10-μm thick). For analysis of distribution, mouse tumor outlines were generated in ImageJ (http://rsb.info.nih.gov/ij/) by first segmenting the mouse tumor using the Simple Interactive Object Extraction segmentation tool. Next, the tumor edge was identified using the Image Edge plug-in (Deriche, 1.00 alpha). NSCs were segmented in ImageJ using the color threshold tool (hue: 147–187, saturation: 0–255, brightness: 90–190). Regions within some glial cells contained small portions of color that fell within a tumor color threshold selection. To remove these non-NSC selections, ImageJ’s Remove Outlier tool (radius = 2, threshold = 50) was applied. Lastly, to account for color thresholding that selected multiple parts of the same stem cell, the stem cell selections were dilated to combine disparate selections within a couple pixel distances apart. After segmentation of the tumor border and NSCs, the minimum distance of each individual NSC to the tumor border was calculated in Matlab R2013a (MathWorks, Natick, MA, USA) using the function bwdist. Image scale was ~1 μm per pixel. A visual representation of the workflow can be found in Supplementary Figure 1.

Three-dimensional reconstruction was performed using the Reconstruct software.26 For each tumor, 10 serial brain sections separated by 200 μm were imported into Reconstruct and aligned manually based on anatomical landmarks visualized in H&E-stained sections. The tumors were outlined by eye based on cell density in H&E-stained sections, and NSCs were visualized based on blue color in Prussian blue-stained sections. Tumor and NSC areas in each section were recorded. To produce three-dimensional images, structures of interest were segmented based on color (for example, Prussian blue label for NSCs) and cell density (for example, H&E staining of tumor areas). Tumor volume was quantified according to the Cavalieri principle by extrapolating the numbers of tumor-identified pixels over the 200 μm separating individual slides. Tumor coverage was estimated by drawing a 100-μm radius from the edge of Prussian blue-marked areas and determining the numbers of tumor area-containing pixels within this area.

Statistical analysis

All statistical analyses were performed using Graphpad Prism 4 (GraphPad Software, San Diego, CA, USA). To compare NSC versus NSC-CRAd-S-pk7 distribution within the tumor vicinity (Figure 2c), Kolmogorov-Smirnov test was applied with a sample size of n = 18 per group. To compare NSC versus NSC-CRAd-S-pk7 tumor coverage (Figure 3b), paired t-test was used with a sample size of n = 9 per group. Numerical data were reported as mean ± s.e.m. All reported P-values were two-sided and considered to be statistically significant only if P < 0.05.

RESULTS

CRAd-S-pk7 loading does not alter the distribution potential of NSCs in glioma tumor xenografts

In order to determine whether the distribution pattern of NSCs was altered after oncolytic virus loading, we compared the location of NSCs and NSC-CRAd-S-pk7 in reference to the border of a tumor. Athymic nude mice bearing established GBM43 tumors in the right frontal cerebral hemisphere were administered either NSCs or NSC-CRAd-S-pk7 adjacent to (that is, caudolateral to the tumor) or contralateral to the tumor (experimental design depicted in Figure 2a). Both cell lines were modified with ferumoxytrol, an ultrasmall iron oxide nanoparticle that allows for cell tracking in vivo by MR imaging and ex vivo with Prussian blue staining.22 On days 4 and 7 after NSC administration, brain tissue was harvested, and NSCs and NSC-CRAd-S-pk7 identified histologically via Prussian blue staining. In all groups, NSCs distributed themselves mainly at or just outside the tumor border, with a smaller portion of cells penetrating into the interior of the tumor (Figure 2b). NSCs and NSC-CRAd-S-pk7 distribution on day 4 were comparable with no significant difference (n = 18 sections per group; K-S test: P = 0.97; Figure 2c). Interestingly, stem cell accumulation at the tumor site did not depend on its size (Supplementary Figure 2), suggesting that another factor may be involved in determining migration efficiency.

To better visualize distribution patterns in these groups, we performed three-dimensional reconstructions using the
Reconstruct Software. Brain tissue sections were collected from mice killed on either day 4 or day 7 after NSC or NSC-CRAd-S-pk7 administration and stained with Prussian blue to label the stem cells. As with the quantitative data, these reconstructed images demonstrated NSC distribution mostly around the tumor periphery whether oncolytic virus had been loaded or not (Figure 2d and Supplementary Figure 3).

Quantification of therapeutic tumor coverage by NSCs

To better understand the extent of therapeutic benefit that can be achieved with oncolytic virus-loaded NSCs, it is important to determine the spatial extent of tumor volume coverage. Data used to make the three-dimensional reconstruction images were analyzed in order to determine the tumor coverage potential of NSCs and NSC-CRAd-S-pk7. Each Prussian blue-stained NSC was assigned a therapeutic radius of 100 μm, and using this radius, we determined the numbers of tumor area-containing pixels within a given NSC’s area-of-effect (visualized in Figure 3a). Brains harvested on day 4 were used in the analysis to examine the extent of tumor coverage. Four different conditions were analyzed: NSCs administered adjacent to or contralateral to an established tumor as well as NSC-CRAd-S-pk7 administered adjacent to or contralateral to an established GBM43 intracranial xenograft. Our results demonstrate that a single administration of oncolytic virus-loaded NSCs was enough to achieve between 22.95 and 30.87% coverage of the tumor (Figure 3b). There was no significant difference between NSC and NSC-CRAd-S-pk7 groups. Interestingly, the tumor coverage potential did not differ whether stem cells had been administered adjacent or contralateral to the GBM43 tumors, demonstrating the extensive migratory behavior of these cells.

MR imaging allows for visualization of ferumoxytol-labeled NSC-CRAd-S-pk7 cells at the tumor site

To follow and optimize the use of oncolytic virus-loaded NSCs in a clinical setting, it is important to develop a noninvasive tracking method to monitor these cells in vivo. Ferumoxytol labeling of NSCs allows for T2-weighted MRI tracking, a method that has already undergone preclinical testing and Food And Drug Administration approval for HB1.F3.CD cell tracking in glioma patients.22 NSC-CRAd-S-pk7 cells loaded with ferumoxytol were administered either adjacent to established GBM43 xenografts or in the contralateral cortical hemisphere. T2-weighted MRI images of mice were then acquired on either day 4 or day 7 after stem cell administration to assess for accumulation at the tumor site. Hypointense areas were found in the tumor vicinity on day 4 after adjacent administration of NSC-CRAd-S-pk7 cells when compared with pre-injection images (Figure 4a and Supplementary Figure 4). Similar changes were observed in the contralateral injection group by day 7 (Figure 4d). In order to confirm that these hypointense areas were indeed caused by ferumoxytol-loaded NSCs, brain tissue was harvested and subjected to histological Prussian blue staining. Labeled NSCs were found in locations that corresponded to the hypointense regions seen on MRI (Figures 4b and d).

NSC-CRAd-S-pk7 cells allow for specific delivery of oncolytic virus to intracranial tumors

To ensure that oncolytic virus was indeed being delivered to tumor cells, athymic nude mice bearing established GBM43 tumors with adjacent administration of NSC-CRAd-S-pk7 were killed on day 7 after injection to visualize viral distributions. Immunofluorescence using an antibody against viral hexon protein allowed for the detection of viral particles. We observed extensive distribution of viral particles throughout the tumor bed...
GBM coverage by virus-loaded neural stem cells
RA Morshed et al

Figure 5. NSC-CRAd-S-pk7 successfully delivers oncolytic virus to the tumor area. (a) Immunofluorescence staining of viral hexon protein with anti-hexon FITC-conjugated antibody demonstrated viral particle distribution only within the tumor area by day 7. (b) Corresponding Prussian blue-stained tissue sections demonstrated few ferumoxytol-labeled cells, with regions containing atypical cells corresponding to hexon-positive areas.

at a distance from the administration site with no observable staining in the surrounding normal brain parenchyma (Figure 5a). Furthermore, areas containing high densities of viral particles also showed numerous atypical cells representing tumor cell destruction (Figure 5b).

DISCUSSION
NSC-mediated delivery of oncolytic virus has been a very promising strategy for inducing glioma cell destruction in several in vivo studies.11,12,15 Our results complement these previous reports by examining the critical questions as to (1) whether viral loading into NSCs alters their distributional pattern after administration and (2) the extent of NSC-CRAd-S-pk7 therapeutic coverage. Whereas other studies have demonstrated by qualitative methods that NSCs loaded with oncolytic virus preserve their migratory potential,11,12 the data we present examine this in a much more detailed way. We demonstrate the majority of NSCs (whether loaded with oncolytic virus or not) distribute themselves at the border of the tumor or just outside it. This peripheral distribution was further confirmed when we visualized NSC distribution using reconstruction of images giving a three-dimensional view of the tumor area. The distribution pattern observed suggests that this platform may be best used in conjunction with other glioblastoma therapies that target the bulk of a tumor such as surgical debulking and radiotherapy. In the current phase I clinical trial using NSCs for prodrug conversion (NCT02015819), NSCs serve as an adjuvant to gross surgical resection by homing to residual infiltrating tumor cells. Also of note, whereas NSC distribution was mostly peripheral, viral particles were dispersed within the interior of the glioma tumor. This suggests that viral release and infectivity of surrounding cancer cells allow for deeper tumor penetration and broader extension into the diffusely invading tumor periphery.

Other studies have also quantified the tumor coverage potential of NSCs in the context of produg conversion. Lin et al.19 demonstrated that, with administration of 2 x 10⁶ NSCs and with a final glioma tumor volume of 849 881–1 735 366 μm³, ~75–94% of the tumor could be covered assuming a killing radius of 23 μm.19 Although these tumor coverage values were greater than the values we report, the authors used a tumor cell line that is less aggressive compared with GBM43, the stem cell line used in the study had different modifications (CM-DiI) and a different detection method (confocal microscopy) was used for quantifying NSC distribution and tumor volume. Whereas our results show between 23 and 31% coverage of the tumor, this is only after a single dose of 5 x 10⁵ NSC-CRAd-S-pk7 cells. With multiple doses or initial administration of a greater quantity of oncolytic virus-loaded NSCs, it may be possible to achieve more extensive coverage. It also is important to note that preclinical experiments that used a similar experimental design to the one in our study have led to significant survival improvements in mice bearing intracranial glioma xenografts.11–15 Furthermore, our results pertain to coverage of a dense mass of tumor cells, whereas in humans these NSCs will be delivered after extensive tumor resection. As such, we might expect a more extensive coverage of scattered islands of tumor cells that have a greater surface area-to-volume ratio.

Our results also demonstrate that loading NSC-CRAd-S-pk7 with ferumoxytol could be a clinically useful way to monitor their distribution in vivo. Gutowa et al.22 demonstrated that ferumoxytol allowed for T2-weighted MRI monitoring of the same HB1.F3.CD cell line used in our study.22 Our results expand on this by demonstrating that this iron oxide nanoparticle can be loaded in conjunction with CRAd-S-pk7 without impairing migratory function. Through T2-weighted MR imaging, we were able to demonstrate that ferumoxytol-loaded NSC-CRAd-S-pk7 cells could accumulate within the tumor site with hypointense signal observed as early as 4 days after NSC administration. This dual loading feature also speaks to the flexibility of NSCs to serve as delivery vehicles of a wide variety of compounds where both tumor-destruction capabilities and noninvasive imaging feedback are possible.

Whereas NSC-mediated delivery of therapeutics is a promising avenue, there are still several ways in which such platforms may be optimized to improve tumor penetration and distribution. First, their delivery potential may be enhanced if oncolytic virus replication is delayed. This could be accomplished with exogenously stimulated promoters that control viral replication. Thus, improvement in the control over viral proliferation may delay toxicity to these carrier cells, providing additional time to achieve more extensive distribution. Enhancing the engraftment efficiency of NSCs should also improve tumor coverage. Administration of stem cells within gel scaffolds composed of extracellular matrix proteins such as laminin, fibronectin and thrombin have improved stem cell survival, migration and distribution in other disease models27,28 and may serve a role in stem cell therapy for GBM. Another method to improve stem cell distribution is to upregulate receptors/signaling pathways in NSCs that are critical for tumortropic migration. A number of factors have been found to be involved in NSC migration towards cancer cells including HIF-1α, hepatocyte growth factor/c-MeT and VEGF/VEGF receptor.29,30 By overexpressing these critical molecules in NSCs, more extensive distribution may be achieved.

In conclusion, our results demonstrate that NSCs loaded with replication-competent oncolytic virus can achieve significant coverage of an intracranial glioma after only a single administration of these cells. Furthermore, not only is the migratory capacity...
of these cells maintained, their final spatial distribution around the tumor periphery indicates a clear role in targeting infiltrating glioma cells in the surrounding normal tissue.

CONFLICT OF INTEREST
AJA and KSA are share-holders, directors and officers of TheraBiologics, a clinical stage biopharmaceutical company focused on the development of stem cell-mediated cancer therapy. RAM is a director of TheraBiologics.

ACKNOWLEDGEMENTS
We thank Ms. Lingjiao Zhang for her expertise in the statistical analysis of our studies.

REFERENCES
1 Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.
2 Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised Phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10: 459–466.
3 Nicholas MK, Lukas RV, Chmura S, Yamini B, Lesniak M, Pytel P. Molecular heterogeneity in glioblastoma: therapeutic opportunities and challenges. Sem Oncol 2011; 38: 243–253.
4 Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97: 12846–12851.
5 Benedetti S, Proila B, Magrassi L, Bruzzone MG, Rigamonti D et al. Gene therapy of experimental brain tumours using neural progenitor cells. Nature Med 2000; 6: 447–450.
6 Gutova M, Shackleford GM, Khankaldyuan V, Herrmann KA, Shi XH, Mittelholz K et al. Neural stem cell-mediated CE/CTT-11 enzyme/prodrug therapy in transgenic mouse model of intracerebellar medulloblastoma. Gene Ther 2013; 20: 143–150.
7 Metz MZ, Gutova M, Lacey SF, Abramantsys Y, Vo T, Gilchrist M et al. Neural stem cell-mediated delivery of inosine-lipo-activated carboxyesterases to glioma: implications for clinical use. Stem Cell Transf Med 2013; 2: 983–992.
8 Seol HJ, Jin J, Seong DH, Joo KM, Kang W, Yang H et al. Genetically engineered human neural stem cells with rabbit carboxyl esterase can target brain metastasis from breast cancer. Cancer Lett 2011; 311: 152–159.
9 Frank RT, Edmiston M, Kendall SE, Najbauer J, Cheung CW, Kassa T et al. Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies. PLoS ONE 2009; 4: e8314.
10 Ehtesham M, Kabos P, Gutierrez MAR, Chung NHC, Griffith TS, Black KL et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2002; 62: 7170–7174.
11 Ahmed AU, Thaci B, Alexiades NG, Han Y, Qian S, Liu F et al. Neural stem cell-based cell carriers enhance therapeutic efficacy of an oncolytic adenovirus in an orthotopic mouse model of human glioblastoma. Mol Ther 2011; 19: 1714–1726.
12 Ahmed AU, Thaci B, Tobias AL, Auffinger B, Zhang L, Cheng Y et al. A preclinical evaluation of neural stem cell-based carrier for targeted antiglioma oncolytic virotherapy. J Natl Cancer Inst 2013; 105: 968–977.
13 Tyler MA, Ulasov IV, Sonabend AM, Nandi S, Han Y, Marler S et al. Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo. Gene Ther 2009; 16: 262–278.
14 Thaci B, Ahmed AU, Ulasov IV, Tobias AL, Han Y, Aboody KS et al. Pharmacokinetic study of neural stem cell-based cell carrier for oncolytic virotherapy: targeted delivery of the therapeutic payload in an orthotopic brain tumor model. Cancer Gene Ther 2012; 19: 431–442.
15 Ahmed AU, Tyler MA, Thaci B, Alexiades NG, Han Y, Ulasov IV et al. A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma. Mol Pharm 2011; 8: 1559–1572.
16 Alonso MM, Jiang H, Gomez-Manzano C, Fueyo J. Targeting brain tumor stem cells with oncolytic adenoviruses. Methods Mol Biol 2012; 797: 111–125.
17 Kanai R, Rabkin SD, Yip S, Subin D, Zaupa CM, Hirose Y et al. Oncolytic virus-mediated manipulation of DNA damage responses: synergy with chemotherapy in killing glioblastoma stem cells. J Natl Cancer Inst 2012; 104: 42–55.
18 Ulasov IV, Zhu ZB, Tyler MA, Han Y, Rivera AA, Khramtsov A et al. Survivin-driven and fiber-modified oncolytic adenovirus exhibits potent antitumor activity in established intracranial glioma. Hum Gene Ther 2007; 18: 589–602.
19 Lin D, Najbauer J, Salvaterra PM, Mamelak AN, Barish ME, Garcia E et al. Novel method for visualizing and modeling the spatial distribution of neural stem cells within intracranial glioma. Neuroimage 2007; 37(Suppl 1): 518–526.
20 Giannini C, Sarkaria JN, Saito A, Uhm JH, Galanis E, Carlson BL et al. Patient tumor EGFR and PDGFRα gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro-Oncol 2005; 7: 164–176.
21 Aboody KS, Najbauer J, Metz MZ, D’Apuzzo M, Gutova M, Annala AJ et al. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci Transl Med 2013; 5: 184ra59.
22 Gutova M, Frank JA, D’Apuzzo M, Khankaldyuan V, Gilchrist MM, Annala AJ et al. Magnetic resonance imaging tracking of merocyanin-labeled human neural stem cell studies leading to clinical use. Stem Cell Transf Med 2013; 2: 766–775.
23 Thu MS, Najbauer J, Kendall SE, Harutyunyan I, Sangalang N, Gutova M et al. Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model. PLoS ONE 2009; 4: e7218.
24 Chakravarti A, Noll E, Black PM, Finkelstein DF, Finkelstein DM, Dyno NJ et al. Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol 2002; 20: 1063–1068.
25 Xie D, Zeng YX, Wang HJ, Wen JM, Tao Y, Sham JS et al. Expression of cytoplasmic and nuclear Survivin in primary and secondary human glioblastoma. Br J Cancer 2006; 94: 108–114.
26 Fiala JC. Reconstruct: a free editor for serial section microscopy. J Microsc 2005; 218: 52–61.
27 Bensaid W, Trifft JT, Blanchat C, Oudina K, Sedel L, Petite H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 2003; 24: 2497–2502.
28 Tate CC, Shear DA, Tate MC, Archer DR, Stein DG, LaPlaca MC. Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen M 2009; 3: 208–217.
29 Gutova M, Najbauer J, Frank RT, Kendall SE, Gevorgyan A, Metz MZ et al. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cell 2008; 26: 1406–1413.
30 An JH, Lee SY, Jeon JY, Cho KG, Kim SU, Lee MA. Identification of gliotrophic factors that induce human stem cell migration to malignant tumor. J Proteome Res 2009; 8: 2873–2881.