ONE-CYCLES ON GUSHEL-MUKAI FOURFOLDS AND
THE BEAUVILLE-VOISIN FILTERATION

RUXUAN ZHANG

Abstract. We prove that the invariant locus of the involution associated with a general double EPW sextic is a constant cycle surface and introduce a filtration on CH_1 of a Gushel-Mukai fourfold. We verify the sheaf/cycle correspondence for sheaves supported on low-degree rational curves, parallel to the cubic fourfolds case of Shen-Yin’s work.

1. Introduction

A Gushel-Mukai (GM) fourfold is a smooth prime Fano fourfold $X \subset \mathbb{P}^8$ of degree 10 and index 2. Throughout the paper, a GM fourfold is always an ordinary GM fourfold, which can be obtained as a smooth dimensionally transverse intersection

$$X = \text{Gr}(2, 5) \cap \mathbb{P}^8 \cap Q \subset \mathbb{P}^9,$$

where $\text{Gr}(2, 5) \subset \mathbb{P}^9$ is the Plücker embedding, \mathbb{P}^8 is a linear subspace and Q is a quadric hypersurface.

GM fourfolds share many properties with cubic fourfolds. One of the distinguished facts is that there is a parallel between GM and cubic fourfolds from a categorical viewpoint. Similarly to the semiorthogonal decomposition of the derived category of a cubic fourfold, Kuznetsov and Perry showed in [15] that the derived category of a GM fourfold admits a semiorthogonal decomposition:

$$D^b(X) = \langle A_X, \mathcal{O}_X, \mathcal{U}_X, \mathcal{O}_X(1), \mathcal{U}_X(1) \rangle,$$

where \mathcal{U}_X is the tautological bundle of $\text{Gr}(2, 5)$ restricted to X and A_X is a K3 category.

Another fact is that a GM fourfold has an associated irreducible holomorphic symplectic (IHS) variety, which is called the dual double EPW sextic, compared with the Fano variety of lines associated with a cubic fourfold, see [3][19][14] for details.

The Fano variety of lines of a cubic fourfold and the dual double EPW sextic of a GM fourfold both admit constructions via moduli spaces of stable objects and Hilbert schemes of rational curves. In [22] Proposition 5.17, it has been shown that at least one of the double EPW sextic and the dual double EPW sextic can be realized as a moduli space of stable objects of A_X and conjecturally both are. In [14], Iliev and Manivel gave a more geometrical description of the dual double EPW sextic. For a general GM
fourfold X, let $F(X)$ be the Hilbert scheme of conics on X and \tilde{Y}^\vee be the associated dual double EPW sextic of X, there exists a morphism

$$F(X) \to \tilde{Y}^\vee$$

such that a general fiber is \mathbb{P}^1.

Quite generally, for a $2n$-dimensional IHS variety M, Voisin predicted in [32] that there exists a filtration of the Chow ring $\text{CH}^*(M)$ (called Beauville–Voisin filtration), which can be viewed as an opposite to the conjectural Bloch-Beilinson filtration. For 0-cycles, the filtration $S_i \text{CH}_0(M)$ is defined by

$$S_i \text{CH}_0(M) := \langle x \in M \mid \dim O_y \geq n - i \rangle,$$

where O_y is the orbit of y under the rational equivalence (here we follow the definition in [24], which is opposite to Voisin’s original definition). Let $Z \subset M$ be a subvariety. If any two points on Z have the same class in $\text{CH}_0(M)$, we call that Z is a constant cycle variety on M. In particular, for an IHS variety of dimension 4, the filtration is determined by constant cycle surfaces and uniruled divisors. Let $S_i M \subset M$ be the set of points with $\dim O_y \geq n - i$. Voisin conjectured in [32, Conjecture 0.4] that

$$\dim S_i M = n + i.$$

(1.1)

It is closely related to the existence of algebraically coisotropic subvarieties on M.

Let M be a nonsingular projective moduli space of stable objects on a K3 category \mathcal{A}, then it is an IHS variety in many cases. Shen and Yin predicted that all the Beauville–Voisin filtrations associated with different moduli spaces of stable objects on a fixed K3 category should be controlled by a universal filtration on the Grothendieck group of the K3 category, see [24, Speculation 0.1].

When the K3 category is the derived category of a K3 surface S and M is a $2d$-dimensional nonsingular moduli space of stable objects, the O’Grady’s filtration on $\text{CH}_0(S)$

$$S_i(S) := \bigcup_{\deg([z])=i} \{ [z] + \mathbb{Z} \cdot [o_S] \}$$

serves as the universal filtration for all moduli space of stable objects. It has been shown in [25] that

$$c_2(\mathcal{E}) \in S_d(S)$$

for any $\mathcal{E} \in M$ and that $c_2(\mathcal{E}) \in S_i(S)$ implies $\mathcal{E} \in S_i \text{CH}_0(M)$.

Another example arises when the K3 category is the Kuznetsov component \mathcal{A}_X of a cubic fourfold X. Using the Beauville-Voisin filtration on the Fano variety of lines on X, Shen-Yin introduced in [25] a filtration $S_•(X)$ on $\text{CH}_1(X)$ induced by the incidence correspondence. They conjectured that the filtration $S_•(X)$ may serve as a universal filtration on $K_0(\mathcal{A}_X)$, i.e., for $\mathcal{E} \in \mathcal{A}_X$, there should be

$$c_3(\mathcal{E}) \in S_d(X),$$

where $d = \frac{1}{2} \dim \text{Ext}^1(\mathcal{E}, \mathcal{E})$. This implies [24] by a standard argument and they verified the prediction when \mathcal{E} is supported on low-degree rational curves.
It is natural to ask whether there exists a universal filtration on A_X for a GM fourfold, similarly to the case of a cubic fourfold. We first study the Beauville–Voisin filtration on $CH_0(\tilde{Y}^\vee)$ by finding a natural constant cycle surface on \tilde{Y}^\vee. The invariant locus Z of the involution associated with the dual double EPW sextic is a surface of general type, whose CH_0 might be huge. However, it was asked whether Z is a constant cycle surface on \tilde{Y}^\vee, see [17, Remark 2.7]. Our first result is (Theorem 4.14):

Theorem 1.1. The invariant locus Z of the involution associated with a general dual double EPW sextic \tilde{Y}^\vee is a constant cycle surface. If \tilde{Y}^\vee is very general, any other constant cycle surface Z' meets Z.

The 0-piece of the Beauville–Voisin filtration of \tilde{Y}^\vee is represented by a point on Z and the 1-piece is represented by a point on a uniruled divisor. Theorem 1.1 allows us to construct a filtration $S_\bullet(X)$ on $CH_1(X)$ by the incidence correspondence of Iliev and Manivel’s construction. For a very general GM fourfold, we predict that the filtration should serve as a universal filtration on A_X in the following way:

The Grothendieck group of A_X is shown to be generated by $pr[O_c(1)]$ and $pr[O_p]$ for a very general X, where c is a conic, p is a point on X and pr is the projection $pr: K_0(X) \to K_0(A_X)$.

Unlike the cubic fourfold case, the dual double EPW sextic determines the GM fourfold only up to period partners and the Chern class $c_3(pr[O_p])$ of a skyscraper sheaf might lie in different pieces of the filtration with respect to different GM fourfolds. We define a modification

$$p: K_0(A_X) \to CH_1(X)$$

of c_3 by dropping the effect of $pr[O_p]$, see Section 6 for details.

We propose the following conjecture relating the $K3$ category A_X to the filtration $S_\bullet(X)$ as a parallel to the case of a cubic fourfold.

Conjecture 1.2. For any object $E \in A_X$, we have

$$p(E) \in S_d(E)(X).$$

Let i^* be the left adjoint functor of the natural inclusion $A_X \hookrightarrow D^b(X)$. We show that the classes of lines and conics on a very general GM fourfold X are in $S_2(X)$, which implies our second main result concerning sheaves supported on low-degree rational curves (Theorem 6.3):

Theorem 1.3. We assume that X is very general. If \mathcal{F} is supported on lines or conics on X, conjecture 1.2 holds for $E = i^* \mathcal{F}$.

Our approach to deducing Theorem 1.1 has another application, concerning with the relation between $CH_0(\tilde{Y}^\vee)$ and $CH_1(X)$. When \tilde{Y}^\vee is birational to $S[^2]$ for some K3 surface S, it has been shown in [17] that $CH_0(\tilde{Y}^\vee)$ with \mathbb{Q}-coefficients has a natural decomposition for the Chow group. For 0-cycles, the decomposition is

$$CH_0(\tilde{Y}^\vee) = \mathbb{Q} \cdot o \oplus CH_0(S)_{hom} \oplus CH_0(\tilde{Y}^\vee)_{hom}^+.$$
where \(CH_0(\tilde{Y}^\vee)_\text{hom}^+ \) is the \(\iota \)-invariant part of \(CH_0(\tilde{Y}^\vee)_\text{hom} \). We show that in the general case, the group \(CH_1(X) \) would play the role of the group \(CH_0(S) \).

Theorem 1.4. *(Theorem 5.5)* When the dual double EPW sextic \(\tilde{Y}^\vee \) is general, we have the following isomorphism of groups:

\[
Z \cdot o \oplus CH_0(\tilde{Y}^\vee)_\text{hom}^- \cong CH_1(X),
\]

where \(CH_0(\tilde{Y}^\vee)_\text{hom}^- \) is the \(\iota \)-anti-invariant part of \(CH_0(\tilde{Y}^\vee)_\text{hom} \).

In particular, the group \(CH_1(X) \) is torsion-free and we see that if \(X' \) is another GM fourfold with the same dual double EPW sextic as \(X \), then their groups of 1-cycles are isomorphic.

Our results rely on Iliev and Manivel’s construction and hence all dual double EPW sextics are assumed to be general in the rest of the paper.

2. **Notation**

The following notations appear frequently in the paper, so we gather them together for the sake of convenience.

- \(V_m \) is an \(m \)-dimensional vector space, \(X \) is a smooth ordinary GM fourfold and \(\tilde{Y}^\vee \) is the dual double sextic associated with \(X \).
- \(\iota \) is the involution of \(\tilde{Y}^\vee \) and \(Z \subset \tilde{Y}^\vee \) is the invariant locus of \(\iota \).
- \(c \) is a conic on \(X \), \(F(X) \) is the Hilbert scheme of conics on \(X \) and \(\alpha : F(X) \to \tilde{Y}^\vee \) is the birational \(\mathbb{P}^1 \)-fibration. \(\alpha \) induces an isomorphism \(\alpha^* : CH_0(F(X)) \cong CH_0(\tilde{Y}^\vee) \).
- \(P \) is the universal conic, \(p, q \) are the projections to \(F(X) \) and \(X \).
- \(\Phi = p_*q^* : CH^*(X) \to CH^*(F) \). \(\Psi \) is the composition of \(q_*p^* \) and \(\alpha_*^{-1} \):

\[
\Psi = q_*p^*\alpha_*^{-1} : CH_0(\tilde{Y}^\vee) \to CH_1(X),
\]

sending \(\alpha(c) \) to its class \([c] \in CH_1(X)\).
- \(S_{V_4} = Gr(2, V_4) \cap X \) for some \(V_4 \subset V_5 \), which is a degree 4 Del Pezzo surface.
- \(D_c \) is the subvariety of \(F(X) \) parameterizing conics intersecting the given conic \(c \). \(I \subset F(X) \times F(X) \) is the subvariety of \(F(X) \times F(X) \), parameterizing two intersecting conics.

3. **Preliminaries**

Let \(X = Gr(2, V_5) \cap H \cap Q \) be a very general GM fourfold and \(\tilde{Y}^\vee \to Y^\vee \) be its associated double cover of the dual EPW sextic. Denote by \(\iota : \tilde{Y}^\vee \to \tilde{Y}^\vee \) the associated involution and by \(Z \) the invariant locus of \(\iota \). We recall some facts about GM varieties and EPW sextics in this section. Throughout the paper, \(V_m \) is an \(m \)-dimensional vector space.

3.1. **EPW sextics.** Debarre and Kuznetsov gave a way to associate a GM variety with an EPW sextic in [3] via linear algebra. We will follow [4] to recall some basic facts about EPW sextics. A GM variety \(X_n = Gr(2, V_5) \cap \mathbb{P}(W) \cap Q \) of dimension \(n \) is a smooth intersection of a linear subspace of dimension \(n + 4 \), a quadratic hypersurface and \(Gr(2, V_5) \) inside \(\mathbb{P}(\wedge^2 V_5) \). It has an associated GM data \((W_{n+5}, V_6, V_5, q)\), where
• V_6 is a 6-dimensional vector space, consisting of quadrics containing X.
• V_5 is a hyperplane section of V_6, consisting of quadrics containing $\text{Gr}(2, V_5)$.
• $W_{n+5} \subset \bigwedge^2 V_5$ is a subspace of dimension $n + 5$, corresponding to the linear subspace in the definition of GM variety.
• $q : V_6 \rightarrow \text{Sym}^2 W_{n+5}$, is a linear map such that (here we choose an isomorphism $\bigwedge^5 V_5 \cong \mathbb{C}$)
 \[\forall v \in V_5, q(v)(w, w) = v \wedge w \wedge w. \]
Then $X = \bigcap_{v \in V_6} Q(v) \subset \mathbb{P}(W_{n+5})$, where $Q(v)$ is defined by $q(v)$. For a general GM data, X is a smooth GM variety.

On the other hand, $\bigwedge^3 V_6$ can be endowed with a symplectic form by wedge product. Debarre and Kuznetsov defined the Lagrangian data set (V_6, V_5, A) with $A \subset \bigwedge^3 V_6$ a Lagrangian subspace and $V_5 \subset V_6$ a hyperplane. It gives an EPW data

$Y_A^{\geq l} := \{[v] \in \mathbb{P}(V_6) \mid \dim(A \cap (v \wedge \bigwedge^2 V_6)) \geq l\}$
and an extra V_5. Here, $Y_A^{\geq 1}$ is a sextic in $\mathbb{P}(V_6)$ and $Y_A^{\geq 2}$ is a surface. In [20], O’Grady showed that

Theorem 3.2. If A contains no decomposable vectors and $Y_A^{\geq 3} = \emptyset$, there is a double cover $\tilde{Y}_A \rightarrow Y_A^{\geq 1}$ branched along the surface $Y_A^{\geq 2}$. \tilde{Y}_A is a smooth IHS variety, called the double EPW sextic.

Iliev and Manivel described in [14] another way to construct the EPW sextic associated with a GM variety X. Define $\text{Disc}(X)$ to be the subscheme of $\mathbb{P}(V_6)$ of singular quadrics containing X. It is a hypersurface of degree $n + 5$ and the multiplicity of the hyperplane $\mathbb{P}(V_5)$ of Plücker quadrics is at least $n - 1$. Then

$\text{Disc}(X) := \tilde{\text{Disc}}(X) - (n - 1)\mathbb{P}(V_5)$
equals the EPW sextic Y_A.

One can use the same construction for the Lagrangian subspace $A^\vee \subset \bigwedge^3 V_6^\vee$, the corresponding \tilde{Y}_A^\vee is called the dual double EPW sextic. We mainly deal with the dual double EPW sextic associated with a GM variety and abbreviate it as \tilde{Y}^\vee in the following sections.

There is a bijection between the GM data sets and the Lagrangian data sets by [4, Theorem 2.2]. However, the GM fourfolds associated with a fixed dual EPW sextic are not unique. Debarre and Kuznetsov proved the following [7, [4, Theorem 2.6]:

Theorem 3.3. Let M^{GM} and M^{EPW} be the coarse moduli spaces of ordinary GM n-folds and EPW sextics. Then there exists a surjective morphism:

$\pi : M^{GM} \longrightarrow M^{EPW}$

with fibre $\pi^{-1}(A^\vee) = Y_A^{\geq 3-n}$.

If two GM fourfolds are in the same fiber of π, we say that they are period partners.
3.4. Lines and Conics on X. In this subsection, we gather some facts about lines and conics on a general GM fourfold X following [14, Section 3] and [6].

Let $F(X)$ be the Hilbert scheme of conics and $F_1(X)$ the Hilbert scheme of lines on X. $F(X)$ is a smooth fivefold. For a conic $c \subset X$, we denote by (c) the plane spanned by c. For $V_4 \subset V_5$, we set

$$S_{V_4} = \text{Gr}(2, V_4) \cap H \cap Q \subset \mathbb{P}(\bigwedge^2 V_4) \cap H \cong \mathbb{P}^4,$$

which is a degree 4 Del Pezzo surface.

The hyperplane H can be viewed as a two-form ω on V_5 with a one-dimensional kernel W_1. Let $V_i \subset V_5$ be a subspace of dimension i. There are three types of conics on X:

1. a τ-conic: The plane (c) spanned by the conic c is not contained in $\text{Gr}(2, V_5)$. The normal bundle of a smooth τ-conic c is $N_{c/X} = \mathcal{O}_c \oplus \mathcal{O}_c(1) \oplus \mathcal{O}_c(1)$. A general conic is a τ-conic.

2. a ρ-conic: The plane (c) is of the form $\mathbb{P}(V_y^\omega)$ and contained in H, or equivalently, $W_1 \subset V_3$ and V_3 is isotropic for ω. For a general X, the normal bundle of a smooth ρ-conic c is $N_{c/X} = \mathcal{O}_c \oplus \mathcal{O}_c(1) \oplus \mathcal{O}_c(1)$. They form a 3-dimensional subvariety in $F(X)$.

3. a σ-conic: The plane (c) is of the form $\mathbb{P}(V_1 \wedge V_4)$ and contained in H, or equivalently, $V_4 \subset V_1^{\perp \omega}$. For $V_1 \neq W_1$, $\dim V_1^{\perp \omega} = 4$. They are parameterized by $Bl_{[W_1]}(\mathbb{P}(V_5))$ and form a 4-dimensional subvariety in $F(X)$.

We see that all the ρ-conics (resp. σ-conics) are represented by the same class in $\text{CH}_1(X)$ and denote it by ρ (resp. σ) for abuse of notations.

Lines on X are related to the double EPW sextic \tilde{Y}_A. The general σ-conics which are unions of two lines are parameterized by

$$[V_1] \in Y_{\tilde{A}}^{\geq 1} \cap \mathbb{P}(V_5)$$

and a general line is one of the components of a degenerate σ-conic by [6, Theorem 4.7]. More precisely, the Hilbert scheme of lines $F_1(X)$ is the blow-up of $Y_{\tilde{A}} \times_{\mathbb{P}(V_6)} \mathbb{P}(V_5)$ at a point. There is a rational involution

$$\iota_1 : F_1(X) \dasharrow F_1(X),$$

with $l \cup \iota_1(l)$ a σ-conic.

The Fano variety of conics $F(X)$ admits birationally a \mathbb{P}^1-fibration to \tilde{Y}^\vee in the following way. A conic $c \subset X$ spans a degree 2 surface in $\mathbb{P}(V_5)$, which is degenerate and hence contained in some $\mathbb{P}(V_4)$. Therefore, $c \subset S_{V_4}$. One may check that if c is not of ρ-type, the corresponding V_4 is unique.

The linear system $[c]$ in S_{V_2} is one-dimensional, which defines the birational \mathbb{P}^1-fibration to the dual double EPW sextic, see [14, Proposition 4.18]:

$$\alpha : F(X) \to \tilde{Y}^\vee.$$

The fibration maps all σ and ρ conics to two points y_1 and $y_2 = \iota(y_1)$ on \tilde{Y}^\vee and further to the Plücker hyperplane $[V_5] \in Y \subset \mathbb{P}(V_6^\vee)$, by [14] Lemma
4.12. In conclusion, we have the following diagram.

\[
P \xrightarrow{p} F(X) \xrightarrow{\alpha} \tilde{Y}^\vee,
\]

where \(P \) is the universal conic. The fiber of \(\alpha \) for \(y \neq y_1, y_2 \) is \(\mathbb{P}^1 \) and hence \(\alpha \) induces an isomorphism

\[\alpha_* : \text{CH}_0(F(X)) \cong \text{CH}_0(\tilde{Y}^\vee).\]

We will frequently use some maps between Chow groups: Let \(\Phi = p_* q^* : \text{CH}^*(X) \to \text{CH}^*(F) \) and \(\Psi \) be the composition of \(q_* p^* \) and \(\alpha_1^{-1} \):

\[\Psi = q_* p^* \alpha_1^{-1} : \text{CH}_0(\tilde{Y}^\vee) \to \text{CH}_1(X),\]

sending \(\alpha(c) \) to its class \([c] \in \text{CH}_1(X)\).

The involution \(\iota \) can be described generically as follows. For \(y \in \tilde{Y}^\vee \), we take a conic \(c \) in the fiber \(\alpha_1^{-1}(y) \) and it is contained in \(S_{V_4} \subset \mathbb{P}^4 \). Then taking a hyperplane in \(\mathbb{P}^4 \) containing \(c \), it intersects with \(S_{V_4} \) along another conic \(c' \). Then

\[\iota(y) = \alpha(c').\]

One can check that for a different choice of \(c \) and a hyperplane in \(\mathbb{P}^4 \), the corresponding \(\alpha(c') \) is the same.

Finally, we need to describe the Hilbert scheme of conics \(F(X_3) \) on a linear section \(X_3 \) of \(X \). Let \(B \subset A^3 V_6 \) be the Lagrangian subspace corresponding to \(X_3 \). Then

\[Y_{\geq 2}^B \subset Y_{\geq 1}^A \]

and \(F(X_3) \) is birational to the pull-back of \(Y_{\geq 2}^B \) in \(\tilde{Y}^\vee \), see [14, Section 5.1].

Remark 3.5. In [33, Section 2.4], it was claimed that the locus of \(\sigma \)-conics is contracted to a constant cycle surface on \(\tilde{Y}^\vee \). However, it is not true, because, by Iliev and Manivel’s construction, the locus of \(\sigma \)-conics should be contracted to a point.

3.6. The Beauville-Voisin conjecture. The Beauville-Voisin conjecture implies that the cycle class map of an IHS variety is injective when restricted to the subring generated by divisors in the Chow ring.

For a double EPW sextic, the Beauville-Voisin conjecture for zero cycles was proved in [10] and [17]. The result is slightly stronger, that is, the cycle class map restricted to the subring

\[R^*(\tilde{Y}^\vee) := \langle \text{CH}^1(\tilde{Y}^\vee), \text{CH}^2(\tilde{Y}^\vee)^+, c_j(\tilde{Y}^\vee) \rangle\]

generated by divisors, \(\iota \)-invariant 2-cycles and Chern classes is injective for \(i = 4 \). In particular, there is a distinguished 0-cycle \(o \) on \(\tilde{Y}^\vee \). For a very general double EPW sextic, \(\text{CH}^1(\tilde{Y}^\vee) \) is generated by \(h \), which is the polarization induced by the double cover of the sextic hypersurface \(Y \subset \mathbb{P}^5 \). Let \(Z \) be the invariant locus of the involution. The following relations have been obtained in [10, Proposition 6.1][10, Lemma 9.3]:

\[3Z = 15h^2 - c_2, Z^2 = 192, h^4 = 12, h^2Z = 40.\]

Moreover, the classes of \(Z^2, h^4 \) and \(h^2Z \) are all proportional to the class \(o \).
4. A CONSTANT CYCLE SURFACE ON \tilde{Y}^\vee

This section is devoted to proving Theorem 1.1. In the following parts of the paper, we assume that X is general.

4.1. Two facts about $\text{CH}_1(X)$. We first show that $\text{CH}_1(X)$ is rationally generated by conics on X and those conics represented by points on the invariant surface Z have the same class in $\text{CH}_1(X)$.

Proposition 4.2. The group $\text{CH}_1(X)_{\mathbb{Q}}$ is generated by conics and $\text{CH}_1(X)$ is generated by lines on X.

Proof. We first show that X is connected by chains of conics. Every two general points x_1, x_2 on X correspond to two 2-dimensional subspaces in V_5, hence the two subspaces are in some 4-dimensional $V_4 \subset V_5$. Thus the two points are contained in S_4, which is a degree 4 Del Pezzo surface. Choosing two conic fibrations of S_4, we see that the x_1 and x_2 are connected by a chain of 3 conics. Hence by [27, Proposition 3.1], there is a non-zero integer N, such that for any 1-cycle D on X,

$$N \cdot D \sim \text{sum of conics}.$$

Hence $\text{CH}_1(X)_{\mathbb{Q}}$ is generated by conics.

For integral coefficients, it has been shown in [27, Theorem 1.3] that $\text{CH}_1(X)$ is generated by rational curves. By bend and break, a rational curve C of degree ≥ 3 on X is algebraically equivalent to a sum of lower-degree rational curves. Moreover, a conic on a Del Pezzo surface is linearly equivalent to a sum of lines, therefore C is algebraically equivalent to a sum of lines $\sum_i n_i L_i$. The argument in [27, Lemma 3.4] shows that $\text{CH}_1(X)_{\text{alg}}$ is divisible. Therefore there exists a 1-cycle C' such that

$$N \cdot C' = C - \sum_i n_i L_i \in \text{CH}_1(X)_{\text{alg}},$$

since $N \cdot C'$ is rationally equivalent to a linear combination of lines, we find that $\text{CH}_1(X)$ is generated by lines with \mathbb{Z}-coefficients. \qed

Lemma 4.3. For $y \in \tilde{Y}^\vee$, we have $\Psi(y + \iota(y))$ is constant in $\text{CH}_1(X)$. In particular, $\Psi(2y)$ is constant in $\text{CH}_1(X)$ if y is on the invariant surface Z.

Proof. Since any 0-cycle is rationally equivalent to some 0-cycle supported on an open subscheme, we may assume that $y \in Y^\vee$ is a general point such that $y \notin Z$. We recall the description of the map

$$F(X) \overset{\alpha}{\rightarrow} \tilde{Y}^\vee \rightarrow Y^\vee,$$

in [14, Proposition 4.9]. Then the conics in $\alpha^{-1}(y)$ are identical to conics in a linear system in S_4 for some V_4. The involution ι sends conics in S_4 to their residual conics.

It suffices to show that for a general V_4 and any c, c' residual in S_4, the sums $c + c'$ are constant in $\text{CH}_1(X)$, which follows from the fact that the hyperplane sections in such S_4’s are parameterized by a \mathbb{P}^3-bundle over $\mathbb{P}(V_4^\vee)$. \qed
4.4. Relations in $\text{CH}^*(F)$ of incidences. We introduce an incidence $I \in \text{CH}^2(F \times F)$ and compute $I^2 \in \text{CH}^4(F \times F)$, where $F = F(X)$. Denote by c_s the corresponding conic to $s \in F$. The morphisms are the same as in diagram (3.1).

Definition 4.5. (1) The incidence subscheme $I \subset F \times F$ is defined to be

$$I := \{(s, t) \in F \times F \mid c_s \cap c_t \neq \emptyset\},$$

which is endowed with the reduced closed subscheme structure and of dimension 8.

(2) $D_c = p(q^{-1}(c)) \subset F$ is the locus in F consisting of conics intersecting the given conic c and $D'_c = q^{-1}(c)$.

(3) $\Sigma_1 \subset F \times F$ is defined to be

$$\Sigma_1 := \{(s, t) \in F \times F \mid c_s \text{ and } c_t \text{ are union of two lines and have a common component}\},$$

which is of dimension 5.

(4) $\Sigma_2 \subset F \times F$ consists of $(s, t) \in F \times F$, where neither c_s nor c_t is of τ-type.

(5) $W \subset F \times F$ is defined to be

$$W := \{(s, t) \mid \exists V_4, c_s \text{ and } c_t \text{ are residual in } S_{V_4}\}.$$

For general s, t, that means the two conics meet at two points. Since a conic has a pencil of residual conics in S_{V_4}, we have $\dim W = 6$.

Lemma 4.6. For a general GM fourfold X, two different conics c_1 and c_2 span different planes. If c is of τ-type, then $\langle c \rangle \cap \text{Gr}(2, V_5) = c$.

Proof. A general X contains no planes. Since X is the intersection of quadrics, $\langle c \rangle$ is not contained in some quadric $Q_0 \supset X$. Hence, $\langle c \rangle \cap X \subset Q_0 \cap \langle c \rangle = c$, which means that $\langle c \rangle$ determines c.

The second statement follows from the fact that the plane spanned by a τ-conic is not contained in $\text{Gr}(2, V_5)$ and $\text{Gr}(2, V_5)$ is also the intersection of quadrics. \square

According to Lemma 4.6, we obtain an injective morphism

$$F \to \text{Gr}(3, 10),$$

(4.1)

sending $t \in F$ to $\langle c_t \rangle \subset \mathbb{P}(\wedge^2 V_5)$. Let $\mathbb{P} = \mathbb{P}(E)$ be the universal plane of $\text{Gr}(3, 10)$ restricted to F, we have the following diagram:

$$\begin{array}{ccc}
P & \xrightarrow{q} & X \\
& \searrow & \searrow \\
& & \text{Gr}(3, 10) \\
\text{Gr}(2, V_5) & \xrightarrow{q'} & F \\
\end{array}$$

(4.2)

Lemma 4.7. The evaluation morphism q is flat for a general X. In particular, the class $I = (p \times p)_*(q \times q)^*\Delta_X \subset \text{CH}^2(F \times F)$. Equivalently, the correspondence $I = \iota P \circ P$.

Proof. The universal conic P is Cohen-Macaulay since it is a divisor in a smooth variety \mathbb{P}, hence it suffices to show that the dimensions of fibers of q are constant. Suppose on the contrary that there is a point $x \in X$ such that $q^{-1}(x)$ has a component K of dimension ≥ 3. We claim that

Claim. There is a smooth conic c passing through x such that $(c, x) \in P$ belongs to K and c is of τ-type or ρ-type.

Proof of Claim. Assume that $x = V_2$. It suffices to show that the dimension of the locus of σ-conics and singular conics passing through x is less than 3.

In fact, the σ-conics are parameterized by the planes

$$\mathbb{P}(V_1 \cap V_4) \subset H,$$

where $V_1 \subset V_4$. When $V_1 \neq W_1$, the locus of σ-conics passing through x are equal to the image of $\mathbb{P}(V_2)$ in $Bl_{W_1}(\mathbb{P}(V_5))$, which is 1-dimensional. When $W_1 = V_1$, a σ-conic passing through x corresponds to a plane $\langle c \rangle = \mathbb{P}(V_1 \cap V_4)$ with $V_2 \subset V_4 \subset V_5$, and there is a 2-dimensional choice of V_4. For singular conics, there are at most 1-dimensional lines passing through a point on X by \cite[Theorem 4.7]{HH}. Therefore the claim follows.

The fiber $p^{-1}(c) = c \subset P$ can be identified with $c \subset X$ via q and

$$N_{c/P} = H^0(N_{c/X}) \otimes \mathcal{O}_c.$$

Considering the differential of q restricted to $c \subset P$, we obtain the following diagram, see also \cite[section 2.3]{HH}:

$$\begin{array}{cccccc}
0 & \longrightarrow & Tc & \longrightarrow & TP|_c & \longrightarrow & H^0(N_{c/X}) \otimes \mathcal{O}_c & \longrightarrow & 0. \\
\downarrow & & \downarrow \cong & & \downarrow dq|_c & & \downarrow ev & & \\
0 & \longrightarrow & Tc & \longrightarrow & TX|_c & \longrightarrow & N_{c/X} & \longrightarrow & 0
\end{array} \tag{4.3}
$$

The normal bundle $N_{c/X} = \mathcal{O}_c \oplus \mathcal{O}_c(1) \oplus \mathcal{O}_c(1)$ for a smooth conic of τ-type or ρ-type. Therefore,

$$T_{(c,x)}q^{-1}(x) = \{ s \in H^0(N_{c/X}) | s_x = 0 \},$$

which is 2-dimensional, contradicting to the fact that $\dim K \geq 3$.

Lemma 4.8. Let c_1 and c_2 be two different conics on a general X and assume that at least one of them is of τ-type. If c_1 and c_2 have no common component and $\langle c_1 \rangle \cap \langle c_2 \rangle$ is a line l, there exists a 4-dimensional subspace $V_4 \subset V_5$, such that $\langle c_1 \rangle \cup \langle c_2 \rangle \subset \mathbb{P}(\wedge^2 V_4)$. In particular, $\iota(\alpha([c_1])) = \alpha([c_2])$.

Proof. A general X contains no planes and hence $l \not\subset X$. The conic c_1 is contained in $\mathbb{P}(\wedge^2 V_4)$ for some 4-dimensional vector space V_4. If $V_{41} \neq V_{42}$, then $V_3 := V_{41} \cap V_{42}$ is 3-dimensional and

$$l \subset \mathbb{P}(\wedge^2 V_3) \subset \text{Gr}(2, V_5).$$

In particular, $\langle c_i \rangle \cap \text{Gr}(2, V_5) \neq c_i$. Therefore by Lemma 4.6, we have $\langle c_1 \rangle \subset \text{Gr}(2, V_5)$ and it means that the two conics are of σ-type or ρ-type, contradicting to the fact that one of the two conics is of τ-type.
Hence \(V_{41} = V_{42} = V_4 \) and \(c_1, c_2 \) are contained in \(S_{V_4} \). Then \(\iota(\alpha(c_1)) = \alpha(c_2) \) follows from that \(\iota \) sends a conic to its residual conic in \(S_{V_4} \). \(\Box \)

We define \(\tilde{I} \subset P \times P \) and \(I' \subset P \times P \) to be the incidence correspondences, i.e.
\[
\tilde{I} = (q \times q)^{-1}\Delta_X \quad \text{and} \quad I' = (q' \times q')^{-1}\Delta_{\mathbb{P}(\wedge^2 V_5)}.
\]

Let \(I_0 = I \setminus (\Sigma_1 \cup \Sigma_2 \cup W) \), \(\tilde{I}_0 = (p \times p)^{-1}I_0 \) and \(I'_0 = (p' \times p')^{-1}I_0 \). Then Lemma 4.9 says that there is a section from \(I_0 \) to \(I'_0 \), sending two intersecting conics to their common point.

Lemma 4.9. The inclusion \(I_0 \subset F \times F \setminus (\Sigma_1 \cup \Sigma_2 \cup W) \) is a regular embedding.

Proof. The inclusion \(I' \subset P \times P \) is a regular embedding since it is obtained from \(\Delta_{\mathbb{P}(\wedge^2 V_5)} \subset \mathbb{P}(\wedge^2 V_5) \times \mathbb{P}(\wedge^2 V_5) \) via base change. By the discussion above, there exists a section from \(I_0 \) to \(I'_0 \). We apply [13] B.7.5 and obtain that \(I_0 \subset F \times F \setminus (\Sigma_1 \cup \Sigma_2 \cup W) \) is a regular embedding. \(\Box \)

Now we can compute the self-intersection \(\tilde{I}^2 \), the analogous case of cubic fourfolds can be found in [30] Proposition 2.3 or [12] Appendix A.4.

Proposition 4.10. The self-intersection
\[
\tilde{I}^2 = aW + I \cdot A + B + C \in \text{CH}^4(F \times F)
\]
for some constant \(a \). Here, \(A \) and \(B \) are contained in \(\text{pr}_1^* \text{CH}^*(F) \cdot \text{pr}_2^* \text{CH}^*(F) \subset \text{CH}^*(F \times F) \), where \(\text{pr}_i \) is the projection and \(C \) is supported on \(\Sigma_2 \subset F \times F \).

Proof. By Lemma 4.9, \(I_0 \subset F \times F \setminus (\Sigma_1 \cup \Sigma_2 \cup W) \) is a regular embedding and the restriction \(p_0 \) of \(p \) from \(\tilde{I}_0 \subset P \times P \) to \(I_0 \subset F \times F \) is an isomorphism. Then,
\[
I_0^2 = c_2(N_{I_0/F \times F})
\]
and
\[
0 \rightarrow \text{pr}_1^* T_{P/F} \oplus \text{pr}_2^* T_{P/F} \rightarrow N_{I_0/P \times P} \rightarrow p_0^* (N_{I_0/F \times F}) \rightarrow 0.
\]

Let \(q_0 \) be the map \(q_0 : \tilde{I}_0 \rightarrow \Delta_X = X \) which maps two conics in \(\tilde{I}_0 \) to their common point. Since \(\tilde{I} = (q \times q)^{-1}\Delta_X \), we have
\[
N_{I_0/P \times P} = q_0^*(TX) = \text{pr}_1^* (TX) \cdot \tilde{I}_0 = \text{pr}_2^* (TX) \cdot \tilde{I}_0
\]
and
\[
c(p_0^*(N_{I_0/F \times F})) = \frac{q_0^* c(TX)}{\text{pr}_1^* c(T_{P/F}) \cdot \text{pr}_2^* c(T_{P/F})}.
\]

Let \(K = \sigma_{1,1}|X \) be the class of \(S_{V_4} \) and \(H = \sigma_{1}|X \) is the hyperplane class. We claim that \(c_2(p_0^*(N_{I_0/F \times F})) \) is a degree 2 polynomial with variables in \(\text{pr}_1^* \text{CH}^*(F) \cdot \text{pr}_2^* \text{CH}^*(F) \) and \(\text{pr}_1^* (H, K) \cdot \text{pr}_2^* (H, K) \) restricting to \(\tilde{I}_0 \). The following computations is standard:

1. The Chern classes of \(X \)
\[
c(T_X) = \frac{c(T_{\text{Gr}(2, V_5)})|X}{(1 + H)(1 + 2H)}.
\]

where \(c(T_{\text{Gr}(2, V_5)}) \) is a polynomial in Schubert cycles. Therefore, the degree 1 and 2 parts of \(q_0^* c(T_X) \) are polynomials in \(H \) and \(\sigma_{1,1} \) via the two projections and restriction to \(\tilde{I}_0 \).
(2) The Chern classes of the relative tangent bundle $T_{P|F}$

$$c(T_{P|F}) = \frac{c(T_{P/F}^P_P)}{c(N/P)} = \frac{c(p^*(E) \otimes O_P(1))_P}{c(O_P(P))},$$

where $c_1(O_P(1))|_X = H$ and $P = 2c_1(O_P(1)) + p^*D \in CH^1(P)$ for some $D \in CH^1(F)$. So the degree 1 and degree 2 parts are polynomials in H and $CH^*(F)$.

The claim follows from the computations and \[(4.4)\]. Next, the terms in $p_0^*c_2(N_{I_0/F \times F})$ are of the following three types:

1. $D \cdot I_0$, where $D \in pr_1^*CH^*(F) \cdot pr_2^*CH^*(F)$.
2. $(q \times q)^*pr_i^*H \cdot D \cdot I_0$ for $i = 1$ or 2, where D is of form $(q \times q)^*pr_j^*H$ or $(p \times p)^*pr_j^*D_1$ for some $D_1 \in CH^1(F)$.
3. $(q \times q)^*pr_i^*K \cdot I_0$ for $i = 1$ or 2.

Applying p_0* to $p_0^*c_2(N_{I_0/F \times F})$, the terms of the first type are of the form $I \cdot A$ by projection formula. For the other two types, we use $\bar{I} = (q \times q)^*\Delta_X$ and it’s enough to show that $pr_1^*H \cdot pr_2^*H \cdot \Delta_X$ and $pr_i^*K \cdot \Delta_X$ are in $pr_1^*CH^*(X) \cdot pr_2^*CH^*(X)$. Denote by $M = Gr(2, V_5) \cap H$ the Grassmanian hull of X and consider

$$j_1: X \times X \hookrightarrow M \times X.$$

We know that M is a linear variety (Schubert varieties are linear in the sense of \[28\], since they are stratified by Schubert cells) and therefore by \[28\] Proposition 1,

$$CH^*(M \times X) = pr_1^*CH^*(M) \cdot pr_2^*CH^*(X).$$

Hence we have

$$j_1^*j_{1*}\Delta_X \in pr_1^*CH^*(X) \cdot pr_2^*CH^*(X)$$

Since X is of class $2H$ in M, we have $j_1^*j_{1*}\Delta_X = 2pr_1^*H \cdot \Delta_X$. Hence $pr_1^*H \cdot \Delta_X \in pr_1^*CH^*(X) \cdot pr_2^*CH^*(X)$.

For the third type, we recall that the class $K \in CH^2(X)$ is represented by a Del Pezzo surface $S = S_{V_4}$ and $pr_1^*K \cdot \Delta_X$ is the push-forward of the diagonal class Δ_S in $CH^2(S \times S)$. Then by the decomposition of diagonal, we see that

$$\Delta_S = \alpha \times S + \Gamma,$$

where $\alpha \in CH_0(S)$ and Γ is supported on $S \times V$ for some proper subvariety $V \subset S$. If $\dim V = 0$, Γ is of the form $S \times \beta$ for some $\beta \in CH_0(X)$. If $\dim V = 1$, then $\Gamma \in CH^1(V \times X)$. We see that $CH^1(V \times X) = pr_1^*CH^1(V) \cdot pr_2^*CH^1(S)$ since $H^1(S, O_S) = 0$. In both cases, we obtain:

$$\Delta_S \in pr_1^*CH^*(S) \cdot pr_2^*CH^*(S),$$

which implies that $pr_1^*K \cdot \Delta_X$ are in $pr_1^*CH^*(X) \cdot pr_2^*CH^*(X)$.

Finally, we get the conclusion by the localization exact sequence for Chow groups. □
4.11. **Z is a constant cycle surface.** Now we can prove that Z is a constant cycle surface on \tilde{Y}, and a point on Z represents the distinguished 0-cycle o that appeared in (3.2). First, we notice that

$$\Phi([c]) = I_*(e) = D_e$$

since q is flat, where we recall that $\Phi = p_*q^*$. Hence the class of D_e depends only on the class $[e] \in CH_1(X)$.

For a general V_4, SY_4 is isomorphic to the blow-up of P^2 at five points. Let H be the pullback of the hyperplane class on P^2 and E_i, $i = 1, \ldots, 5$, be the five exceptional curves. There are 10 pencils of conics on SY_i, which are $H - E_i$ and $2H - \sum_{j \neq i} E_j$. Denote by L_i, $i = 1, \ldots, 10$ the corresponding lines on F and let $L_{i+10} = L_i$. Recall that L_i’s are contracted to a point by α and $\alpha(L_i) = \iota(\alpha(L_{i+5}))$. By a straightforward computation in SY_4, we have

$$c_i \cdot c_j = 1 \text{ for } j \neq i, i + 5; c_i \cdot c_{i+5} = 2 \text{ and } c_i^2 = 0 \text{ for any } i. \quad (4.5)$$

Here, c_i is a conic in L_i. That is, conics in L_{i+5} meet c_i at two points and conics in $L_j, j \neq i, i + 5$ meet c_i at one point. We have the following computation:

Lemma 4.12. Let c_i be a conic on a general SY_4 and $c_i \in L_i$, then

$$D^2_{c_i} = \sum_{j \neq i, j \neq i+5} L_j + 4L_{i+5} + kL_\sigma \in CH_1(F), \quad (4.6)$$

where $L_\sigma \subset F$ is a curve contained in the locus of σ-conics.

Proof. We may assume that SY_4 is general so that $W_1 \not\subset V_4$ and SY_4 contains no σ-conics. Take another conic $c_0 \in [c_i]$ and thus $D_{c_0} = D_{c_i}$ in $CH^2(F)$. The intersection $D_{c_i} \cap D_{c_0}$ consists of conics c which meet both c_i and c_0.

We distinguish between the two cases whether c is contained in SY_4 or not.

If $c \in D_{c_i} \cap D_{c_0}$ and $c \subset SY_4$, it is contained in another linear system of conics, supported on L_j, for some $j \neq i$. Conversely, $L_j \subset Supp D_{c_i} \cap D_{c_0}$ for $j \neq i$ by (4.5).

If $c \in D_{c_i} \cap D_{c_0}$ and $c \not\subset SY_4$, we first show that c must be a σ-conic. Let $x \in c \cap c_0$, $y \in c \cap c_i$ and V_x, V_y be the corresponding 2-dimensional subspaces in V_5. We have $V_x \cup V_y$ is a three-dimensional space V_3, otherwise c would be contained in SY_4. It follows that $V_x \cap V_y$ is a one-dimensional space V_1. Therefore

$$\mathbb{P}(V_1 \cap V_3) \subset Gr(2, V_5) \cap \langle c \rangle.$$

By Lemma 4.16 c is a σ-conic or a ρ-conic. Since $W_1 \not\subset V_4$, we see that $W_1 \not\subset V_3$ and c is not a ρ-conic. Therefore c is a σ-conic.

Recall that σ-conics are parameterized by $Bl_{[W_1]}(\mathbb{P}(V_5))$. Let S_{c_0} and S_{c_i} be the surfaces swept out by lines parameterized by c_0 and c_i in $\mathbb{P}(V_4)$. There is a natural morphism

$$S_{c_0} \cap S_{c_i} \rightarrow Bl_{[W_1]}(\mathbb{P}(V_5)),$$

and the image is exactly the locus of σ-conics meeting c_i and c_0 by the previous discussion. The intersection $S_{c_0} \cap S_{c_i}$ is clearly one dimensional. Therefore the conics in $D_{c_i} \cap D_{c_0}$ not contained in SY_4 are parameterized by a curve $L_\sigma \subset F$.

Thus D_{c_i} and D_{c_0} intersect dimensionally transversely and it remains to compute the multiplicity. We consider the differential dq as in (4.3). Let c be a general smooth conic in $D_{c_i} \cap D_{c_0}$ and $c \in L_j, j \neq i, i+5$. Then c meets c_i (resp. c_0) at one point x (resp. y). We have $T_{c}c \subset T_{c}S_{V_{4}}$, hence the image of $T_{c}c$ in $N_{c/X}$ is $N_{c/S_{V_{4}},x}$. Then by (4.3), we have

$$T_{(c,x)}D'_{c_i} = dq^{-1}(T_{x}c_i) = H^{0}(N_{c/X} \otimes I_{x}) \oplus H^{0}(N_{c/S_{V_{4}},x}),$$

which is 3-dimensional. Thus D'_{c_i} is smooth at (c,x). Since c_i and c meet at a single point, D'_{c_i} maps isomorphically to D_{c_i} via p around c. Hence, D'_{c_i} maps the two points $(c_1)_{i}$ and $(c_2)_{i}$ (resp. (c, y_{1}) and (c, y_{2})) to c. We obtain that the tangent cones

$$C_{c}D_{c_i} = H^{0}(N_{c/X} \otimes I_{x_{1}}) \oplus H^{0}(N_{c/X} \otimes I_{x_{2}}) \oplus H^{0}(N_{c/S_{V_{4}},x})$$

$$C_{c}D_{c_0} = H^{0}(N_{c/X} \otimes I_{y_{1}}) \oplus H^{0}(N_{c/X} \otimes I_{y_{2}}) \oplus H^{0}(N_{c/S_{V_{4}},x}).$$

(4.7)

Take a general hypersurface $G \subset F$ containing c such that G meets L_{i+5} transversely at c and then the multiplicities

$$\text{mult}_{c}D_{c_i}|_{G} = \text{mult}_{c}D_{c_0}|_{G} = 2.$$

Combining the fact that the direction of $H^{0}(N_{c/S_{V_{4}},x})$ is in the fiber of α, we obtain

$$C_{c}D_{c_i}|_{G} \cap C_{c}D_{c_0}|_{G} = 0$$

by (4.7) and the description of the normal bundle of conics. By [8, Proposition 1.29], the intersection multiplicity of $D_{c_i}|_{G}$ and $D_{c_0}|_{G}$ at c is 4. It follows that the multiplicity of the intersection of D_{c_0} and D_{c_i} at L_{i+5} is 4.

Apply this Lemma to every $c_i \subset S_{V_{4}}$ and by a linear combination, we have:

$$6(D^2_{c_i} + D^2_{c_{i+5}}) - \sum_{j=1}^{10} D^2_{c_j} = 12(L_{i} + L_{i+5}) + L',$$

(4.8)

where L' is a 1-cycle on F consisting of σ-conics.

Lemma 4.13. The constant a in Proposition 4.10 is nonzero. If $n[c_1] \sim n[c_2]$ in $CH_{1}(X)$ for some nonzero integer n, then $[c_1] \sim [c_2]$ in $CH_{0}(Y')$, where Y' is the pullback of X.

Proof. We assume on the contrary that \(a = 0 \). Then
\[
I^2 = I \cdot A + B + C \in \text{CH}^4(F \times F),
\]
where \(A, B, C \) are as in Proposition 4.10. A correspondence \(\Gamma \) of codimension larger than 0 in \(pr_1^* \text{CH}^* (F) \cdot pr_2^* \text{CH}^* (F) \) is of the form \([Z_1 \times Z_2]\), where either \(Z_1 \) or \(Z_2 \) is a proper subvariety of \(F \). In both cases, \(\Gamma \) induces a constant map \(\text{CH}_0(F) \to \text{CH}^* (F) \). Further, by Lemma 4.7, \(I = 4P \circ P \) and hence \(I_* : \text{CH}_0(F) \to \text{CH}_3(F) \) factor through \(\text{CH}_1(X) \). Together with the torsion-freeness of \(\text{CH}_0(F) \), it implies that if \(a = 0 \), then for \(\xi, \zeta \in \text{CH}_0(F) \),
\[
I^2_\xi (\xi) = I^2_\zeta (\zeta)
\]
as long as \(q_p^*(n \xi) = q_p^*(n \zeta) \in \text{CH}_1(X) \), where \(p, q \) are the projections from the universal conic to \(F \) and \(X \).

According to [26, Lemma 17.3], we know that \(I^2_\xi ([c]) = D^2_c \). Then (4.9) together with Lemma 4.3 imply that \(D^2_c + D^2_{t(c)} \) are constant in \(\text{CH}_1(F) \) when varying \(c \in F \). We want to deduce a contradiction between the formula (4.3) and the constantness of \(D^2_c + D^2_{t(c)} \).

Take a very ample divisor \(G \subseteq F \). Intersecting both sides of formula (4.3) with \(G \) and pushing forward to \(\hat{Y}^\vee \), then the constantness of \(D^2_c + D^2_{t(c)} \) implies that \(([c] + t([c])) \) is constant in \(\text{CH}_0(\hat{Y}^\vee) \), i.e., points on
\[
\Delta' = \{(y, t(y)) \mid y \in \hat{Y}^\vee\} \subseteq \hat{Y}^\vee \times \hat{Y}^\vee
\]
are constant in \(\text{CH}_0(\hat{Y}^\vee) \).

Then for any power \(\sigma^t \) of the two-form \(\sigma \) on \(\hat{Y}^\vee \), we have \((pr_1^*(\sigma^t) + pr_2^*(\sigma^t))|_{\Delta'} = 0 \) by Mumford’s theorem, see [25, Proposition 10.24]. Then we obtain
\[
2pr_1^*(\sigma^2)\mid_{\Delta'} = 0,
\]
but it is impossible since \(pr_1 \) is an isomorphism between \(\Delta' \) and \(\hat{Y}^\vee \). Therefore, \(a \) is nonzero.

For the second part, assume that \(n[c_1] \sim n[c_2] \) and again take a very ample divisor \(G \subseteq F \). Let \(m \) be the intersection number of \(G \) and a general fiber of \(\alpha : F \to \hat{Y}^\vee \). Then we have \(n^2I^2_\ast ([c_1]) = n^2D^2_{c_1} = n^2D^2_{c_2} = n^2I^2_\ast ([c_2]) \) again by [26, Lemma 17.3] and \(nI_\ast ([c_1]) = nI_\ast ([c_2]) \). Hence due to Proposition 4.10,
\[
0 = G \cdot n^2(I^2_\ast ([c_1]) - I^2_\ast ([c_2]))
= G \cdot n^2(aW + I \cdot A + B + C)([c_1] - [c_2])
= G \cdot an^2W([c_1] - [c_2])
= amn^2 \cdot (\iota([c_1]) - \iota([c_2])),
\]
here we view the cycles in \(\text{CH}^4(F \times F) \) as morphisms from \(\text{CH}_0(F) \) to \(\text{CH}_1(F) \). Then
\[
\iota([c_1]) \sim \iota([c_2])
\]
again by the torsion-freeness of \(\text{CH}_0(\hat{Y}^\vee) \) and the fact that \(a \neq 0 \). Since \(\iota \) is an involution, the result follows.

\[\square\]
Combining Lemma 4.3 and Lemma 4.13, we can get the following result:

Theorem 4.14. The invariant locus Z of the involution is a constant cycle surface on \tilde{Y}^\vee.

Thus by (3.2), $h^2 \cdot Z = 40\omega$ in $CH_0(\tilde{Y}^\vee)$. That means ω is represented by a point on the constant cycle surface Z. We show that ω is in fact the class represented by a point on any constant cycle surface:

Proposition 4.15. For a very general \tilde{Y}^\vee, if $Z' \subset \tilde{Y}^\vee$ is another constant cycle surface, then for any point $z' \in Z'$, z' is rationally equivalent to ω.

Proof. It suffices to show that for a very general \tilde{Y}^\vee, any two surfaces on \tilde{Y}^\vee intersect. We obtain this by showing that every surface on \tilde{Y}^\vee is strictly nef, i.e., having a positive intersection number with any non-zero effective 2-cycle.

Let $N_2(\tilde{Y}^\vee)$ be the space of 2-cycles modulo numerical equivalence with \mathbb{R}-coefficients, which is a 2-dimensional vector space spanned by h^2 and Z. As in [21], the Lagrangian surface Z is in the boundary of the effective cone $Eff_2(\tilde{Y}^\vee)$, and $c_2(\tilde{Y}^\vee)$ is not contained in the interior of the effective cone. Thus

$$Eff_2(\tilde{Y}^\vee) \subset \langle R_{\geq 0}(Z), R_{\geq 0}(c_2) \rangle.$$

Then by [20], we have

$$\langle R_{\geq 0}(Z), R_{\geq 0}(c_2) \rangle \subset \langle R_{\geq 0}(24h^2 - 5Z), R_{\geq 0}(-2h^2 + 5Z) \rangle$$

$$= \langle R_{\geq 0}(Z), R_{\geq 0}(c_2) \rangle^{\vee}$$

$$\subset Neff_2(\tilde{Y}^\vee).$$

The first inclusion is such that the cones have no boundary in common by a straightforward computation. Hence every surface on \tilde{Y}^\vee is strictly nef. □

5. The filtration on CH$_1(X)$

5.1. Basics of the filtration. A uniruled divisor on a 2n-dimensional IHS variety M is a divisor D which admits a rational map to a $(2n-2)$-dimensional variety B:

$$D \hookrightarrow M,$$

$$q:$$

$$\downarrow$$

$$B$$

and the general fibers of q are rational curves. By [2], there exists a uniruled divisor on an IHS variety of $K3^{[n]}$-type with $n \leq 7$, in particular, on the dual double EPW sextic \tilde{Y}^\vee.

The Beauville–Voisin filtration on \tilde{Y}^\vee is determined by uniruled divisors and constant cycle surfaces. Points on uniruled divisors serve as the 1st piece and points on constant cycle surfaces serve as the 0th piece. According to [24, Lemma 1.1] and Proposition 4.15, the filtration does not depend on the choice of a uniruled divisor and a constant cycle surface on a very general dual double EPW sextic.
We define a filtration on \(\text{CH}_1(X) \) for a general GM fourfold induced by the Beauville–Voisin filtration on \(\tilde{Y}^\vee \). In the rest of the paper, we study some properties of the filtration.

Definition 5.2. The \(i \)th piece of the increasing filtration \(S_i X \subset \text{CH}_1(X) \) consists of \(z \in \text{CH}_1(X) \), such that (i.e., the class of \(az \) can be represented by a sum of multiples of \(\iota \) conics in a uniruled divisor and \(\theta \))

\[
az = a_1 c_1 + a_2 c_2 \ldots + a_i c_i + a_0 \theta
\]

for some integer \(a, a_j \), where \(c_j \)'s are conics with \(\alpha(c_j) \) in a uniruled divisor \(D \subset Y^\vee \) and \(\theta := \Psi(o) \) for \(o \) the class of a point on the constant cycle surface \(Z \).

The EPW sextics associated with period partners \(X \) and \(X' \) are the same. We have an immediate corollary according to the definition:

Corollary 5.3. For any \(t \in \text{CH}_0(\tilde{Y}^\vee) \), \(\Psi(t) \in S_i(X) \) iff \(\Psi_i(t) \in S_i(X') \), where \(\Psi_i : \text{CH}_0(\tilde{Y}^\vee) \rightarrow \text{CH}_1(X') \) is similarly defined as \(\Psi \).

By the proof of Proposition 4.2, there exists an integer \(N \) such that \(N \cdot z \) is a linear sum of conics for every \(z \in \text{CH}_1(X) \). At the end of the section, we show in Proposition 5.10 that every conic is rationally equivalent to a sum of conics in \(D \). Hence,

\[
\bigcup_{i=0}^{\infty} S_i(X) = \text{CH}_1(X).
\]

Let \(\text{CH}_0(\tilde{Y}^\vee)_i^- \) be the \(i \)-anti-invariant part of \(\text{CH}_0(\tilde{Y}^\vee)_\text{hom} \) and \(\text{CH}_0(\tilde{Y}^\vee)_i^+ \) be the \(i \)-invariant part. There is a decomposition of \(\text{CH}_0(\tilde{Y}^\vee) \):

\[
\text{CH}_0(\tilde{Y}^\vee) = \mathbb{Z} \cdot o \oplus \text{CH}_0(\tilde{Y}^\vee)_0^- \oplus \text{CH}_0(\tilde{Y}^\vee)_0^+.
\]

We show that the filtration on \(\text{CH}_1(X) \) can actually be defined on the \(i \)-anti-invariant part \(\text{CH}_0(\tilde{Y}^\vee)^- \).

Proposition 5.4. The morphism \(\Psi : \text{CH}_0(\tilde{Y}^\vee) \rightarrow \text{CH}_1(X) \) is zero on \(\text{CH}_0(\tilde{Y}^\vee)_\text{hom} \) and an isomorphism onto \(\text{CH}_1(X)_\text{hom} \) when restricting to \(\text{CH}_0(\tilde{Y}^\vee)_\text{hom}^- \).

Proof. Due to the divisibility of \(\text{CH}_0(\tilde{Y}^\vee)_\text{hom} \), the elements in \(\text{CH}_0(\tilde{Y}^\vee)_\text{hom}^+ \) are of the form \(\sum (t_i + \iota(t_i) - 2a) \) and elements in \(\text{CH}_0(\tilde{Y}^\vee)^- \) are of the form \(\sum t_i - \iota(t_i) \), where \(t_i \in \tilde{Y}^\vee \). This yields \(\Psi \) is zero on \(\text{CH}_0(\tilde{Y}^\vee)_\text{hom}^+ \) by Lemma 4.3.

For the second part, there exists an integer \(N \), such that for any \(z \in \text{CH}_1(X) \), \(N \cdot z \) is a linear combination of conics. Then \(\text{CH}_1(X)_\text{hom} \) is generated by conics by the divisibility of \(\text{CH}_1(X)_\text{hom} \). Therefore, it suffices to show that \(\Psi \) is injective on \(\text{CH}_0(\tilde{Y}^\vee)^- \).

Let \(G \subset F \) be an ample divisor and \(G \cdot L = m \), where \(L \) is a general fibre of \(\alpha : F \rightarrow \tilde{Y}^\vee \). Denote by \(c_i \) and \(c_i' \) the conics representing the class \(\Psi(t_i) \) and \(\Psi(t_i') \). If we have the relation

\[
\Psi(\sum t_i - \iota(t_i)) = \Psi(\sum t_i' - \iota(t_i')) \in \text{CH}_1(X),
\]

it implies that:

\[
\sum (D_{c_i} - D_{\iota(c_i)}) = \sum (D_{c_i'} - D_{\iota(c_i')}).
\text{(5.1)}
\]
By Lemma 4.12 we have:

\[G \cdot (D_{c_i} - D_{i(c_i)}) \cdot (D_{c_i} + D_{i(c_i)}) = G \cdot (D_{c_i}^2 - D_{i(c_i)^2}) = 4m(\iota(t_i) - t_i). \]

Here, we identify \(\text{CH}_0(F) \) and \(\text{CH}_0(\tilde{Y}^\vee) \) via the isomorphism \(\alpha^* \). By Lemma 4.3, we know that \(D_c + D_{i(c)} \) is constant in \(\text{CH}^2(F) \), we denote it by \(D_{0} \).

Therefore we obtain

\[G \cdot D_{0} \cdot \sum (D_{c_i} - D_{i(c_i)}) = 4m \sum (\iota(t_i) - t_i) \]

and

\[G \cdot D_{0} \cdot \sum (D_{c_i} - D_{i(c_i)}) = 4m \sum (\iota(t_i) - t_i). \]

The left-hand sides are equal by (5.1). Therefore by torsion-freeness we obtain:

\[\sum t_i - \iota(t_i) = \sum t'_i - \iota(t'_i). \]

Hence \(\Psi \) is injective on \(\text{CH}_0(\tilde{Y}^\vee)^- \). \(\square \)

Consequently, we immediately deduce that

Theorem 5.5. We have an isomorphism between groups

\[Z \cdot o \oplus \text{CH}_0(\tilde{Y}^\vee)_{\text{hom}} \cong Z \cdot \theta \oplus \text{CH}_1(X)_{\text{hom}} \cong \text{CH}_1(X). \]

(5.2)

In particular, the group \(\text{CH}_1(X) \) is torsion-free.

When \(\tilde{Y}^\vee \) is birational to \(S^{[2]} \) for some K3 surface \(S \), it has been shown in [17] that \(\text{CH}_0(\tilde{Y}^\vee)_Q \) with \(Q \)-coefficient has a natural decomposition for the Chow group. For 0-cycles, the decomposition is

\[\text{CH}_0(\tilde{Y}^\vee)_Q = Q \cdot o \oplus \text{CH}_0(S)_{\text{hom}} \oplus \text{CH}_0(\tilde{Y}^\vee)^+_\text{hom}. \]

Theorem [5.5] can be viewed as a generalization of this decomposition, where the group \(\text{CH}_1(X) \) takes the place of \(\text{CH}_0(S) \).

5.6. A result for conics. In this subsection, we prove that the class of a conic on \(X \) is in \(S_2(X) \). The proof is similar to the case of cubic fourfolds by showing any conic is contained in a certain singular cubic threefold. Here, we need the flexibility to change the GM fourfold to its period partners, guaranteed by Corollary 5.3.

We consider the following incidence relation

\[\Omega := \{(A, B) \mid \dim(A \cap B) \geq 9\} \subset L\mathbb{G}(\bigwedge^3 V_6) \times L\mathbb{G}(\bigwedge^3 V_6). \]

Denote the fibre of the projection over \(A \) by \(\Omega_A \) and \(F_y = y \wedge \bigwedge^2 V_6 \subset \bigwedge^3 V_6 \). Clearly, we have

\[Y_{\bigwedge^2 B} \subset Y_{\bigwedge^1 A} \]

for \((A, B) \in \Omega \). We let

\[\Sigma = \{ A \in L\mathbb{G}(\bigwedge^3 V_6) \mid A \text{ contains a decomposable vector} \}, \]

and \(\Sigma_k \) be the closure of the locus of \(A \) that contains exactly \(k \) decomposable vectors.

We can deduce the following lemmas.
Lemma 5.7. For any $A, B \subset \bigwedge^3 V_6$ with $(A, B) \in \Omega$ and $A \neq B$, we can find $V_5 \subset V_6$, such that the corresponding GM varieties satisfy $X_B \subset X_A$ and are of dimension 3 and 4.

Proof. It’s enough to take $V_5 \in Y_{B^1} \cap Y_{B^2}^{-2}$ by Theorem 3.3.

Lemma 5.8. For a general $B \in \Sigma_8$ and $V_5 \in Y_{B^2}^{-2}$, let $F(X_B)$ be the surface of conics on the corresponding GM threefold X_B, then $\dim \text{Alb}(F(X_B)) = 2$.

Proof. For a general choice of $B \in \Sigma_8$ and V_5, we may assume that the 8 decomposable vectors are

$$\bigwedge^3 V_{31} \ldots \bigwedge^3 V_{38} \in B \cap \bigwedge^3 V_6$$

and $V_{31}, \ldots, V_{38} \not\subset \bigwedge^3 V_5$. Then, by [3] Proposition 2.24, the Grassmanian hull $\text{Gr}(2, V_5) \cap W_B$ is smooth. $\bigwedge^3 V_{31}$ can be written as $v \wedge v_1 \wedge v_2$ with $v \in V_6 \setminus V_5$, and $O = v_1 \wedge v_2$ is the kernel of $q(v)$, by [3] Theorem 3.16. Then by [5] Lemma 4.1, X_B has a node at O. Then we can project $X_B \subset \mathbb{P}^7$ to $X_O \subset \mathbb{P}^6$ from O as in [5].

The quadrics containing X_O form a net P. Let D be the discriminant curve parameterizing singular quadrics. Then there is a line $L \subset D$ corresponding to quadrics containing the projection of $\text{Gr}(2, V_5)$. Therefore,

$$D = C \cup L$$

for some degree 6 curve $C \subset P$.

We see that the curve $\mathbb{P}(V_{31}) \cap Y_{B^2}^{-2}$ parameterizing quadrics in $Y_{B^2}^{-2}$ of corank ≥ 2 whose vertices contain O, thus it equals C. Then by [3] Proposition 2.20, C has 7 nodes corresponding to the extra decomposable vectors. For a general B,

$$Y_{B^2}^{-3} = \emptyset,$$

hence the quadrics in C are all of rank 6. There is a étale double cover $\tilde{C} \rightarrow C$, corresponding to the choice of a family of 3-planes contained in a quadric in C, see [5] section 4.2. Let $p' : \tilde{N} \rightarrow N$ be the normalization of $p : C \rightarrow C$.

There is a morphism $P' \rightarrow C^{(6)}$, sending a line in P to its intersection with C. Denote S' the pull back of P' in $\tilde{C}^{(6)}$ and S'' the further pull back in $\tilde{N}^{(6)}$. By [18] Proposition 5.8, S' has two irreducible components and $F(X_B)$ is birational to one of the components. It follows that $F(X_B)$ is birational to a component of S''. Then by [34] Theorem 8.19,

$$\text{Alb}(F(X_B)) \cong \text{Pr}(\tilde{N}/N),$$

which is of dimension 2 since $g(N) = 3$.

Lemma 5.9. For a general point $y \in Y_A$, we can find $B \in \Omega_A \cap \Sigma_8$, such that $y \in Y_B^{-2}$.

Proof. The proof is similar to [11] Proposition 5.1. Let

$$\Gamma = \Omega \cap \Lambda G(\bigwedge^3 V_6) \times \Sigma_8 \cap \Lambda G(\bigwedge^3 V_6) \times \Omega_y,$$

where $\Omega_y = \{ B \mid \dim(B \cap F_y) \geq 2 \}$ and $F_y = y \wedge \bigwedge^2 V_6$. We have the two projections:
The fiber of ρ is a codimension-2 subvariety of Ω_B, which is 8-dimensional, see [11 Lemma 5.3]. It yields that $\dim \Gamma = \dim \mathbb{L}G(\wedge^3 V_6)$. Therefore it suffices to show that $d\pi$ at a general point $(A, B) \in \Gamma$ is an isomorphism.

Let $(A, B) \in \Gamma$ be general such that the 8 decomposable forms $\alpha_1, \ldots, \alpha_8$ in B are linearly independent and that $\alpha_1, \ldots, \alpha_8$ and $F_y \cap B$ are not contained in A. Let $U = A \cap B$. According to [11 Lemma 5.4], we have the description of tangent spaces:

$$T_{(A, B)} \Omega = \{(q_A, q_B) \in \text{Sym}^2(A^\vee) \times \text{Sym}^2(B^\vee) \mid q_A|_U = q_B|_U\}$$

$$T_B \Sigma_8 = \{q_B \in \text{Sym}^2(B^\vee) \mid q_B(\alpha_1) = \ldots = q_B(\alpha_8) = 0\}$$

$$T_B \Omega_y = \{q_B : B \to B^\vee \mid q_B(F_y) \subset B + F_y/B\}.$$

We assume on the contrary that there is a nonzero $t = (q_A, q_B) \in \text{Ker} d\pi$. It implies that $q_A = 0$ and thus $\text{Ker} q_B = U \cup U'$ for some hyperplane $U' \subset B$. According to the assumptions and the description of tangent spaces, the 8 decomposable forms and $F_y \cap B$ are contained in $\text{Ker} q_B$ hence contained in U'. Then for a general B, $\dim U' = 10$, which is a contradiction. □

Now we can deduce the main result of this subsection:

Proposition 5.10. For any conic $c \subset X$, we have $c \in S_2(X)$.

Proof. We may assume that c is a general conic. Combining the above Lemmas, there exist a GM 3-fold X_B with 8 nodes containing c and a period partner X' of X such that $X_B \subset X'$. Let S' be the image of

$$F(X_B) \subset F(X) \xrightarrow{\alpha} \hat{Y}^\vee$$

and \hat{S} be the resolution of S'. Then a conic lying in R' is in $S_1(X)$, where R' is the normalization of $S' \cap D$.

The argument of [24 Section 2.4] implies that there is a surjection

$$R^{(2)} \to \text{Alb}(\hat{S}).$$

For a resolution $\hat{X}_B \to X_B$, we have $\text{CH}_1(\hat{X}_B)_{\text{hom}} \cong J(\hat{X}_B)$ by [31 Theorem 0.3]. Hence, $\text{CH}_0(\hat{S})_{\text{hom}} \to \text{CH}_1(\hat{X}_B)_{\text{hom}}$ factors through $\text{Alb}(\hat{S})$. By the surjectivity of $R^{(2)} \to \text{Alb}(\hat{S})$, there exists two conics c_1 and $c_2 \in S_1(X')$ such that $c = c_1 + c_2 - \theta \in \text{CH}_1(\hat{X}_B)$. Then the result follows from Corollary [30]. □

6. **Sheaves supported on conics and lines**

In this section, we introduce a link between the filtration on $\text{CH}_1(X)$ and the Kuznetsov component A_X of the derived category of X and prove Theorem [13]. We assume that X is very general.

Let $i^* : D^b(X) \to A_X$ be the left adjoint of the inclusion $i_* : A_X \to D^b(X)$ and $\text{pr} : K_0(X) \to K_0(A_X)$ be the projection of Grothendieck groups.
Let pr be the further projection to $K_{\text{num}}(X)$. For a very general X, the numerical Grothendieck group $K_{\text{num}}(X) \cong \mathbb{Z}^{\oplus 2}$ and under the basis λ_1, λ_2 the Euler form is given by (cf. [23, Lemma 2.4]):

$$\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix},$$

where $\lambda_1 = \operatorname{pr}[\mathcal{O}_c(1)]$ and $\operatorname{pr}[\mathcal{O}_p] = -\lambda_1 - 2\lambda_2$ for a conic $c \subset X$ and a point $p \in X$.

Lemma 6.1. $K_0(A_X) \otimes \mathbb{Q}$ is generated by $\operatorname{pr}[\mathcal{O}_c(1)]$ and $\operatorname{pr}[\mathcal{O}_p]$.

Proof. Since $CH_0(X) \cong \mathbb{Z}$, the class $[\mathcal{O}_p]$ in $K_0(X)$ is independent of the choice of $p \in X$ and the cycle class map $\operatorname{cl} : CH^i(X) \to H^i(X, \mathbb{Z})$ is injective for $i \neq 3$, by [1, Theorem 1.1].

We have the following commutative diagram:

$$
\begin{array}{ccc}
K_0(A_X) \otimes \mathbb{Q} & \xrightarrow{\operatorname{ch}} & CH^*(X) \otimes \mathbb{Q} \\
\downarrow{\operatorname{pr}} & & \downarrow{\operatorname{cl}} \\
K_{\text{num}}(A_X) \otimes \mathbb{Q} & \xrightarrow{\overline{\operatorname{ch}}} & H^*(X, \mathbb{Q}),
\end{array}
$$

It’s enough to show that $\operatorname{cl}^{-1}(\overline{\operatorname{ch}}(K_{\text{num}}(A_X)))$ is generated by $\operatorname{ch}(\mathcal{O}_c(1))$ and $\operatorname{ch}(\mathcal{O}_p)$ and this follows from the injectivity of the cycle class map for $i \neq 3$ and the fact that $CH_1(X) \otimes \mathbb{Q}$ is generated by conics. \square

For a cubic fourfold, the link between the Kuznetsov component and 1-cycles is by taking the Chern class c_3. However, the situation is slightly different for GM fourfolds:

If X and X' are period partners, their associated dual double EPW sextics are the same by Theorem 3.3. Therefore, their Fano varieties of conics both admit a birational \mathbb{P}^1-fibration to \tilde{Y}^\vee. Then by Lemma 6.1 there is a group isomorphism

$$K_0(A_X)_Q \cong K_0(A'_X)_Q,$$

which maps $\operatorname{pr}[\mathcal{O}_p]$ to $\operatorname{pr}[\mathcal{O}_p']$ and $\operatorname{pr}[\mathcal{O}_c(1)]$ to $\operatorname{pr}[\mathcal{O}_c'(1)]$. Here c' is a conic mapping to the same point with c in \tilde{Y}^\vee via the fibration.

However, the classes $c_3(\operatorname{pr}[\mathcal{O}_p])$ and $c_3(\operatorname{pr}[\mathcal{O}_p'])$ do not coincide in $CH_0(\tilde{Y}^\vee)$ via the isomorphism (5.5) even modulo the class o. We want the link between the Kuznetsov component and 1-cycles intrinsic for the EPW sextic, so we modify the c_3 to be compatible with (5.5) by dropping the term of $\operatorname{pr}[\mathcal{O}_p]$:

If $[E] = \sum a_i \operatorname{pr}[\mathcal{O}_{c_i}(1)] + b \operatorname{pr}[\mathcal{O}_p] \in K_0(A_X)_Q$, we set

$$p(E) = \sum a_i c_i \in CH_1(X) \otimes \mathbb{Q}.$$

It is independent of the choice of representations, since b relies only on the numerical class of $[E]$. Let \mathcal{F} be a sheaf supported on a nonsingular connected rational curve $C \subset X$ of degree $e > 0$. Then $[\mathcal{F}]$ is numerically equivalent to

$$re[\mathcal{O}(1)] + m[\mathcal{O}_p]$$
in $K_{\text{num}}(X)$ for some integers $r > 0$ and m, where l is a line on X. Let
\[
d(i^*F) := \frac{1}{2} \dim \text{Ext}^1_{\mathcal{A}_X}(i^*F, i^*F)
\]
and we have:

Lemma 6.2. If \mathcal{F} is supported on a line or a conic, then $d(i^*\mathcal{F}) \geq 2$.

Proof. By straightforward computation, we have $\mathcal{P}(\mathcal{O}_p) = -\lambda_1 - 2\lambda_2$ and $\mathcal{P}(\mathcal{O}_1(1)) = -\lambda_1$. Hence $\mathcal{P}(\mathcal{E}) = -m\lambda_1 - (2m + re)\lambda_2$. Then
\[
d(i^*\mathcal{F}) \geq \frac{1}{2}(i^*\mathcal{F}, i^*\mathcal{F}) + 1 = 5m^2 + 4mre + r^2e^2 + 1.
\]
For $e = 1$ or 2, we can easily deduce that $d(i^*\mathcal{F}) \geq 2$. In fact, there is a lower bound by a quadric polynomial in e, but we only deal with $e = 1$ or 2.

Now we can prove the main theorem:

Theorem 6.3. If \mathcal{F} is supported on a line or a conic and $\mathcal{E} = i^*\mathcal{F}$, then $p(\mathcal{E}) \in S_d(\mathcal{E})(X)$.

Proof. By the definition of p, it is enough to show that every line or conic belongs to $S_2(X)$. For conics, it is proved in Proposition 5.10. For lines, the strategy is to degenerate the residual curve of a line on a certain surface to a sum of conics and lines.

The locus in $F(X)$ and its image in $\widetilde{\Psi}$ parameterizing double lines is a surface by [13, Lemma 3.8]. Since X is very general, this surface meets Z by Proposition 4.15. Hence, there exists a line $l_0 \subset X$ such that $2l_0 = \theta$. Take $\mathbb{P}(V'_2 \bigcap V'_2) = l' = \epsilon_1(l_0)$, we obtain
\[
2l' = 2\sigma - \theta,
\]
where ϵ_1 is the rational involution of the Hilbert scheme of lines $F_1(X)$.

For $l = \mathbb{P}(V'_1 \bigcap V'_3) \subset X$ a general line, let $V_2 = V_1 \oplus V'_1$ and $V_4 = V_1 \oplus V_3$ and S_{V_i} be the surface parameterizing points $x \in X$ with $V_x \cap V_2 \neq \emptyset$, where V_x is the two dimensional vector space corresponding to x. We see that S_{V_4} is a degree 6 surface in $\mathbb{P}(V_2 \bigcap V_3) \cap H = \mathbb{P}^1$. By construction, l and l' are contained in S_{V_3} and $S_{V_2} \cap S_{V_4}$ is a hyperplane section of $S_{V_4} \subset \mathbb{P}(\bigwedge^2 V_4) \cap H$, which is the union of l and a degree 3 curve C_3. Hence
\[
l + C_3 = 2\theta.
\]
Since $V_3' \cap V_4$ is 2-dimensional, l' meets S_{V_4} at the point corresponding to $V_3' \cap V_4$. For a general choice of l, it does not meet l'. It follows that l' and C_3 meet at a point, and therefore they span a $\mathbb{P}^4 \subset \mathbb{P}(V_2 \bigcap V_3) \cap H$, which cuts S_{V_4} into a degree 6 curve $l' \cup C_3 \cup c$ for some conic c.

We claim that
\[
l' + C_3 + c = 2\theta + \sigma.
\]
In fact, we can choose the hyperplane section $\mathbb{P}^4 \subset \mathbb{P}(V_2 \bigcap V_3) \cap H$ to be the span of $\mathbb{P}(V_2 \bigcap V_3) \cap H$ and $\mathbb{P}(V_1 \bigcap V_1^4)$ for some $V_1 \subset V_2$ with $V_1 \neq V_4$. Then the class of a section is $l + C_3 + c'$, which equals $2\theta + \sigma$. Here c' is the σ-type conic associated with V_1.

Finally, we obtain that $l = l' + c - \sigma = c - l_0$, which is in $S_2(X)$ by Proposition 5.10. \qed
References

[1] Bloch S, Srinivas V. Remarks on correspondences and algebraic cycles. Amer. J. Math., 1983, 105: 1235–1253
[2] Charles F, Mongardi G, Pacienza G. Families of rational curves on holomorphic symplectic varieties and applications to zero-cycles. arXiv:1907.10970, 2019
[3] Debarre O, Kuznetsov A. Gushel-Mukai varieties: Classification and birationalities. Algebr. Geom., 2018, 5: 15–76
[4] Debarre O. Gushel-Mukai varieties. arXiv:2001.03485, 2020
[5] Debarre O, Iliev A, Manivel L. On nodal prime Fano threefolds of degree 10. Sci. China Math., 2011, 54: 1591–1609
[6] Debarre O, Iliev A, Manivel L. On the period map for prime Fano threefolds of degree 10. J. Algebraic Geom., 2012, 21: 21–59
[7] Debarre O, Kuznetsov A. Gushel–Mukai varieties: moduli. Internat. J. Math., 2020, 31: 2050013, 59
[8] Eisenbud D, Harris J. 3264 and all that: A second course in algebraic geometry. Cambridge University Press, 2016
[9] Ferretti A. The Chow ring of double EPW sextics. Rend. Mat. Appl. (7), 2011, 31: 69–217.
[10] Ferretti A. The Chow ring of double EPW sextics. Algebra Number Theory, 2012, 6: 539–560.
[11] Ferretti A. Special subvarieties of EPW sextics. Math. Z., 2012, 272: 1137–1164.
[12] Fu L, Laterveer R, Vial C, Shen M. The generalized Franchetta conjecture for some hyper-Kähler varieties. J. Math. Pures Appl. (9), 2019, 130: 1–35
[13] Fulton W. Intersection theory. Berlin: Springer-Verlag, 1984.
[14] Iliev A, Manivel L. Fano manifolds of degree ten and EPW sextics. Ann. Sci. Éc. Norm. Supér. (4), 2011, 44: 393–426.
[15] Kuznetsov A, Perry A. Derived categories of Gushel-Mukai varieties. Compos. Math., 2018, 154: 1362–1406
[16] Kuznetsov A, Prokhorov Y, Shramov C. Hilbert schemes of lines and conics and automorphism groups of Fano threefolds. Jpn. J. Math., 2018, 13: 109–185.
[17] Laterveer R, Vial C. Zero-cycles on double EPW sextics. Commun. Contemp. Math., 2021, 23: Paper No. 2050040, 22.
[18] Logachev D. Fano threefolds of genus 6. Asian J. Math., 2012, 16: 515–559.
[19] O’Grady K. Irreducible symplectic 4-folds and Eisenbud-Popescu-Walter sextics. Duke Math. J., 2016, 134: 99–137.
[20] O’Grady K. Double covers of EPW-sextics. Michigan Math. J., 2013, 62: 143–184.
[21] Ottem J. Nef cycles on some hyperkähler fourfolds. In: London Math. Soc. Lecture Note Ser., 2022, 473: 228–237.
[22] Perry A, Pertusi L, Zhao X L. Stability conditions and moduli spaces for Kuznetsov components of Gushel-Mukai varieties. arXiv:1912.06935, 2019
[23] Pertusi L. On the double EPW sextic associated to a Gushel–Mukai fourfold. J. Lond. Math. Soc. (2), 2019, 100: 83–106.
[24] Shen J L, Yin Q Z. K3 categories, one-cycles on cubic fourfolds, and the Beauville-Voisin filtration. J. Inst. Math. Jussieu, 2020, 19: 1601–1627.
[25] Shen J L, Yin Q Z, Zhao X L. Derived categories of K3 surfaces, O’Grady’s filtration, and zero-cycles on holomorphic symplectic varieties. Compos. Math., 2020, 156: 179–197
[26] Shen M M, Vial C. The Fourier transform for certain hyperKähler fourfolds. Mem. Amer. Math. Soc., 2016, 240: vii+163.
[27] Tian Z Y, Zong H R. One-cycles on rationally connected varieties. Compos. Math., 2014, 150: 396–408.
[28] Totaro B. Chow groups, Chow cohomology, and linear varieties. Forum Math. Sigma, 2014, 2: Paper No. e17, 25.
[29] Voisin C. Hodge theory and complex algebraic geometry. II, Cambridge: Cambridge University Press, 2007.
[30] Voisin C. On the Chow Ring of Certain Algebraic Hyper-Kähler Manifolds. Pure Appl. Math. Q., 2008, 4: 613–649.

[31] Voisin C. Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal. J. Algebraic Geom., 2013, 22: 141–174.

[32] Voisin C. Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties. In: K3 surfaces and their moduli, 2016, 315: 365–399.

[33] Voisin C. Triangle varieties and surface decomposition of hyper-Kähler manifolds. arXiv:1810.11848, 2018.

[34] Welters G. Abel-Jacobi isogenies for certain types of Fano threefolds. Mathematical Centre Tracts, Amsterdam. 1981, 141: i+139.

RUXUAN ZHANG, SHANGHAI CENTER FOR MATHEMATICAL SCIENCES, FUDAN UNIVERSITY, JIANGWAN CAMPUS, SHANGHAI, 200438, CHINA

Email address: rxzhang18@fudan.edu.cn