Role of Mean Platelet Volume (MPV) In Diagnosis of Acute Appendicitis

Divish Saxena*, Mrinal Tandon and B.S. Gedam

Department of Surgery, NKP Salve Institute of Medical Sciences, Digdoh Hills, Nagpur, India

*Correspondence Info:
Dr. Divish Saxena,
Assistant Professor,
Department of Surgery,
NKP Salve Institute of Medical Sciences,
Digdoh Hills, Nagpur
E-mail: drdivishsaxena@yahoo.co.in

Abstract
The diagnosis of acute appendicitis still remains an enigma for the surgeon. The Mean Platelet volume is known to be a marker determined from megakaryocytes during platelet production, which is associated with platelet function and activation. The mean platelet volume (MPV) decreases in acute inflammatory conditions like acute appendicitis due to increased consumption and sequestration of platelets in the vascular segments of inflamed bowel. In our study of 213 patients, the MPV was determined and was found to be low (< 7.6fL) in 176 patients (82.6%) out of which 175 patients were having features of acute appendicitis on histopathology. Therefore in a patient with a provisional diagnosis of acute appendicitis, a low MPV (<7.6fL) can be taken into consideration along with total leucocyte count with suspected acute appendicitis.

Keywords: Acute appendicitis, Mean Platelet Volume, Platelet sequestration

1. Introduction
Acute appendicitis is the most common surgical cause of emergency laparotomy. The surgical principle about acute appendicitis "when in doubt, take it out", is not correct as the procedure often comes with a package of few complications. Though acute appendicitis is a common problem its diagnosis still remains a challenge. The accuracy of the clinical examination has been reported to range from 71% to 97% and varies greatly depending on the experience of the examiner [2]. However, because missed ruptured appendixes have direct consequences, surgeons have traditionally accepted a 20% rate of negative findings at appendectomy and the removal of a normal appendix [3]. The rate of negative appendectomy (Removal of a normal appendix in patients with other causes of abdominal pain) is reported to be between 20% and 30% [3,4]. The delay in diagnosis may increase the morbidity and costs. The goal of surgical treatment is removal of an inflamed appendix before perforation with a minimal number of negative appendectomies. Mean platelet volume (MPV) is a measure of platelet size, generated by full blood count analyzers as part of the routine complete blood count test cycle. This entity is often missed by treating physicians [5]. MPV decreases in acute inflammatory conditions of gastrointestinal tract; the reason given is consumption and sequestration of platelets in vascular segments of inflamed bowel [26]. The introduction of MPV in the battery of investigations for the diagnosis of acute appendicitis can aid in increasing the accuracy.

2. Materials and Methods
Total 213 cases were studied, out of which 153 were male and 60 were female. Our inclusion criteria were all patients attending hospital with clinical diagnosis of acute appendicitis and undergoing appendectomy. Pregnant females, patients on steroids, immunocompromised patients, patients on chemotherapy for malignancy and appendicular lump were excluded from study. Clinical diagnosis of acute appendicitis was, based on symptoms of pain in right iliac fossa, migration of pain to right iliac fossa, nausea/vomiting, anorexia, fever and signs of peritoneal inflammation like right iliac fossa tenderness, rebound tenderness and guarding. Mean platelet volume (MPV), was estimated in all patients of suspected acute appendicitis. The cut-off point kept for MPV for
acute appendicitis in our study was 7.6 fl. Patients with strong suspicion of acute appendicitis were advised appendectomy. After obtaining consent, patient was operated, and the appendectomy specimen was sent for histopathological examination. The histopathology report was considered as the final diagnosis.

3. Results

Total 213 patients were studied, out of which, 153 (71.8%) were male and 60 (28.2%) were female. Maximum percentage of patients belonged to age group 21-30 years (46%), followed by 31-40 years (27.2%) age group. The Male: Female ratio in the present study was 2.5:1. Out of 213 cases, 209 (98.1%) specimens revealed histopathologically inflamed appendix and 4 (1.9%) specimens did not reveal histopathologically inflamed appendix. So the negative appendicectomy rate in our study is 1.9%. Out of the four negative appendicectomy, two patients were males and two were females. In one female patient, there was twisted right ovarian cyst; in rest of the three patients the diagnosis could not be made. MPV was done in all 213 patients. In our study Mean platelet volume (MPV<7.6 fl) was positive in 176 patients (82.6%) out of which 175(82.6%) patients had histopathologically confirmed features of inflamed appendix and 1 had histopathological normal appendix. (Table 1) In our study, sensitivity, specificity and accuracy of Mean platelet volume (MPV) in acute appendicitis was 83.73%, 75% and 83.56% respectively.

4. Discussion

Acute appendicitis is the most common abdominal emergency presenting to a clinician. Despite the advances in the diagnostic field, the diagnosis of acute appendicitis remains an enigma for the surgeon [7]. The Mean Platelet volume (MPV) implies the total volume of megakaryocytes in circulation. [8-12] MPV is detected during routine blood count which is usually missed by treating clinician. There are many studies performed on adults that indicate that MPV values may be a valuable method in the diagnosis of acute appendicitis [13]. It is proposed that in acute inflammatory conditions activated leucocytes secrete interleukin-6 that causes a decrease in MPV value by reducing platelet production [12, 20-22, 24]. In the literature, MPV has been reported to decrease in some inflammatory bowel diseases such as ulcerative colitis, especially in the active period, and that it could be used for determination of the disease activity[12,15,23-25] The pathogenesis of this decrease in MPV has not been fully explained, it seems reasonable to explain this with the consumption and sequestration of large active platelets in the vascular segments of the inflamed bowel as Danese et al. claimed [26].

In our study Mean platelet volume (MPV<7.6 fl) was positive in 176 patients (82.6%) out of which 175(82.6%) patients had histopathologically confirmed features of inflamed appendix and 1 had histopathological normal appendix. Mean platelet volume value was found to be significantly lower in acute appendicitis patients in our study. This finding is similar to the result of the study carried out by Albayrak et al [13]. In our study, sensitivity, specificity and accuracy of Mean platelet volume (MPV) in acute appendicitis was 83.73%, 75% and 83.56% respectively. (Table 2)

The above mentioned results show that the sensitivity of MPV in acute appendicitis in our study is higher than the results mentioned by Albayrak et al, but specificity of MPV in our study is low as compared results by Albayrak et al. Out of 213 cases, 209 (98.1%) specimens revealed histopathologically inflamed appendix and 4 (1.9%) specimens did not reveal histopathologically inflamed appendix. So the negative appendicectomy rate in our study was just 1.9%.

5. Conclusion

It is concluded from our study that the patients with right iliac fossa pain with provisional diagnosis of acute appendicitis, low MPV (<7.6fl) help in the diagnosis of acute appendicitis and the negative appendectomy rate can be decreased if
appendectomies are avoided in cases where MPV>7.6fl. As MPV value is included in the complete blood count analysis, the MPV value may be taken into consideration along with the total leukocyte count (TLC) in patients with suspected acute appendicitis. Diagnostic laparoscopy may detect other abnormality especially in females with suspected acute appendicitis.

References
[1] Hoffmann J, Rasmussen OO. Aids in the diagnosis of acute appendicitis. Br J Surg 1989; 76: 774-779.
[2] John H, Neff U, Kelemen M. Appendicitis diagnosis today: clinical and ultrasonic deductions. World J Surg 1993; 17:243 -249.
[3] Jones PF. Suspected acute appendicitis: trends in management over 30 years. Br J Surg 2001; 88:1570 -1577.
[4] Lee SL, Walsh AJ, Ho HS. Computed tomography and ultrasonography do not improve and may delay the diagnosis and treatment of acute appendicitis. Arch Surg 2001; 136:556 -561.
[5] Sandhaus LM, Meyer P. How useful are CBC and reticulocyte reports to clinicians? Am J Clin Pathol. 2002; 118(5):787-93.
[6] Beyazit Y, Sayilir A, Torun S, Suvak B, Yesil Y, Purnak T, et al. Mean platelet volume as an indicator of disease severity in patients with acute pancreatitis. Clinics and Research in Hepatology and Gastroenterology 2012; 36(2):162-168.
[7] Jones K, Penn AA et al. Are negative appendectomies still acceptable? Am J Surg. 2004; 188(6): 748-754.
[8] Martin JF, Trowbridge EA, Salmon G, Plumb J. The biological significance of platelet volume: its relationship to bleeding time, platelet thromboxane B2 production and megakaryocyte nuclear DNA concentration. Thromb Res. 1983; 32:443–460.
[9] Bath PM, Butterworth RJ. Platelet size: measurement, physiology and vascular disease. Blood Coagul Fibrinolysis. 1996; 7:157-161.
[10] Bath P, Algert C, chapman n, neal b. Progress Collaborative Group, author. Association of mean platelet volume with risk of stroke among 3134 individuals with history of cerebrovascular disease. Stroke. 2004; 35:622–626.
[11] Endler G, Klimesch A, Sunder-Plassmann H, et al. Mean platelet volume is an independent risk factor for myocardial infarction but not for coronary artery disease. Br J Haematol. 2002; 117:399–404.
[12] Kapsoritakis AN, Koukourakis MI, Sfridaki A, et al. Mean platelet volume: a useful marker of inflammatory bowel disease activity. American J Gastroenterol. 2001; 96:776–781.
[13] Albayrak Y, Albayrak A, Albayrak F, et al. Mean Platelet Volume: A New Predictor in Confirming Acute Appendicitis Diagnosis. Clin Appl Thromb Hemost. 2011 Aug; 17(4):362-6.
[14] Thompson CB, Eaton KA, Princiotta SM, Rushin CA, Valeri CR. Size dependent platelet subpopulations: relationship of platelet volume to ultrastructure, enzymatic activity, and function. Br J Haematol. 1982; 50:509–519.
[15] Martin J. The relationship between megakaryocyte ploidy and platelet volume. Blood Cells.1989; 15:108–121.
[16] Cole JL, Marzec UM, Gunthel CJ, et al. Ineffective platelet production in thrombocytopenic human immunodeficiency virus-infected patients. Blood. 1998; 9:3239–3246.
[17] Chatterji AK, Lynch EC, Garg SK, Amorosi EL, Karpatkin S. Circulating large platelets. N Engl J Med. 1971; 284:1440–1441.
[18] Van der Loo B, Martin JF. Megakaryocytes and platelets in vascular disease. Baillieres Clin Haematol. 1997; 10:109–123.
[19] Kisacik B, Tufan A, Kalyoncu U, et al. Mean platelet volume (MPV) as an inflammatory marker in ankylosing spondylitis and rheumatoid arthritis. Joint Bone Spine. 2008; 75(3):291–294.
[20] Gasparyan AY, Sandoo A, Stavropoulos-Kalinoglou A, et al. Mean platelet volume in patients with rheumatoid arthritis: the effect of anti-TNF-alpha therapy. Rheumatology International 2010 Jun; 30(8): 1125-9.
[21] Yüksel O, Helvaci K, Baar O, et al. An overlooked indicator of disease activity in ulcerative colitis: mean platelet volume. Platelets. 2009; 20:277–281.
[22] Gasparyan AY, Ayvazyan L, Mikhailidis DP, et al. Mean platelet volume: a link between thrombosis and inflammation? Current Pharmaceutical Design 2011; 17(1): 47-58.
[23] Shah A, Morgan G, Rose JD, Fifield R, Rhodes J. Platelet number and size in relation to serum orosomucoid concentration in Crohn's disease. Med Lab Sci. 1989; 46:79–80.
[24] Jaremo P, Sandberg-Gertzen H. Platelet density and size in inflammatory bowel disease. Thromb Haemost. 1996; 75:560–561.
[25] Kayahan H, Akarsu M, Ozcan MA, et al. Reticulated platelet levels in patients with ulcerative colitis. Int J Colorectal Dis. 2007; 22:1429–1435.
[26] Danese S, Motte Cd Cde L, Fiocchi C. Platelets in inflammatory bowel disease: clinical, pathogenic, and therapeutic implications. Am J Gastroenterol. 2004; 99:938–945.