ABSTRACT

Thrombotic complications in patients with coronavirus disease 2019 (COVID-19) infection have been increasingly recognized, particularly those affecting the cardiovascular system. Patients with COVID-19 infection can suffer from increased coagulopathy as well as myocardial injury. In this review, we discuss these complications with special focus on management challenges in patients with acute coronary disease based on the available evidence from published literature.

Key words: Acute coronary syndrome, coagulopathy, COVID-19, myocardial injury, percutaneous coronary intervention, SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2, thromboembolic disease

INTRODUCTION

Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) was declared a pandemic on March 11, 2020, by the World Health Organization.[1-3] The confirmed cases as of August 14, 2020, are over 20.4 million with over 744,000 confirmed deaths in more than 200 countries and areas (https://www.who.int). Typical hosts of this zoonotic disease are bats and birds.[1] COVID-19 has significantly increased the number of hospitalizations due to pneumonia with multiple organ disease. The infection may evolve from asymptomatic to a life-threatening sepsis[4] or acute respiratory distress syndrome (ARDS). A growing body of evidence has shown that severe COVID-19 may be linked to an increased risk of thrombotic complications due to the prothrombotic state in such patients.[2] Moreover, cardiovascular complications have emerged as a critical threat in addition to the respiratory disease.[3] The current article discusses thrombotic manifestations of COVID-19 with a focus on pathogenesis and select challenges in the management of cardiac ischemic events in such patients. For the purpose of this review, “thrombotic disease” term will be used collectively to describe both arterial and venous thromboembolic diseases.

PATHOGENESIS OF COVID-19

SARS-CoV-2 is a single-strand, ribonucleic acid (RNA) coronavirus[1-3] in the Coronaviridae family.[1] The virus gains entry into the respiratory system via the inhalation of its particle. It may survive on different surfaces for 24–72 h.[3] To enter into target cells, SARS-CoV-2 binds angiotensin-converting enzyme 2 (ACE2) receptor which is expressed in the heart, lung, intestine, kidney,[1,3,5] and blood vessels.[5] ACE2 has...
antioxidant, anti-inflammatory, and vasodilatory effects unlike ACE which has pro-oxidative, pro-inflammatory, and vasoconstrictive effects by the cleavage of angiotensin I into angiotensin II. ACE2 is considered to have a protective effect in the lungs, thus when the receptor is downregulated by viral binding, an acute lung injury and ARDS may occur. Another factor that plays an important role in the pathogenesis of the disease is the immune-mediated inflammation.

When the virus invades the lungs, an antiviral immune response, both innate and adaptive, develops. However, the intense and persistent immune response against the virus may generate an excessive hyperinflammatory response that is similar to the cytokine storm which damages the host cells.\(^{[9]}\)

Initial symptoms of the disease such as fever, cough, shortness of breath, fatigue, headache, and myalgia are similar to those of other respiratory viral infections, with the potential to progress into severe illness such as systemic inflammatory response syndrome, ARDS, multiorgan impairment, and shock\(^{[3,5,6,8]}\).[Figure 1]

Clinical-therapeutic staging has been proposed based on the clinical and laboratory criteria considering the increased disease severity throughout the illness course. The nonvalidated classifications have suggested a possible treatment approach for each stage.\(^{[7,8]}\) Cardiovascular aspects have to be addressed in COVID-19. Previous history of cardiovascular diseases put the patients at an increased risk of adverse events, while incidence of cardiovascular complications can be experienced in individuals without previous cardiac diseases.\(^{[3]}\) The risk of arrhythmias\(^{[5,9]}\) and heart failure increases due to the pro-inflammatory status and enhanced sympathetic stimulation.\(^{[5]}\)

COVID-19-ASSOCIATED COAGULOPATHY

Coagulopathy in COVID-19 demonstrated by hemostatic changes leads to thrombotic events.\(^{[3]}\) The SARS-CoV-2 does not seem to have procoagulant properties,\(^{[1]}\) and the exact mechanism of the coagulopathy is not fully known.\(^{[1,3,10]}\) Several contributing factors may be implicated. Excessive hypoxemia that results in vasoconstriction in the pulmonary capillary beds may lead to the reduction in blood flow and occlusion of the vessels.\(^{[10]}\) Immense inflammation activates the defense system of the host, triggering the coagulation cascade and the resultant thrombin generation. The inflammatory response may be excessive in some patients, leading to a cytokine storm.\(^{[1]}\)

Severe SARS-CoV-2 infection in patients with severe pneumonia can also lead to sepsis which induces disseminated intravascular coagulation (DIC) in addition to the release of inflammatory cytokines.\(^{[11]}\) DIC in sepsis is characterized by low platelet count,

![Figure 1: Severity of illness categories](image-url)
prolonged prothrombin time (PT) and activated partial thromboplastin time (aPTT), and hemorrhagic tendency due to coagulation system exhaustion.[12]

A prospective study recruited patients with ARDS due to SARS-CoV-2 (n = 150), found that 30%–40% of patients with septic shock were diagnosed with DIC. However, no COVID-19 patient had overt DIC, which raised a question about the mechanism of DIC in COVID-19. Such mechanism can be different from that usually described in intensive care unit (ICU) patients,[10] and that severe COVID-19-related DIC may be considered a discrete entity of coagulopathy. DIC may be associated with a more severe disease[2] and with a significantly higher risk of mortality[13,14] (88%)[15] without the increased risk of bleeding events.[15] unlike the clinical manifestations with other RNA-type viral infections such as Ebola, i.e., DIC with hemorrhagic pattern.[1,10]

The thromboembolic events in COVID-19 are not only associated with a systemic hypercoagulability but there is also a microcirculatory clot formation, i.e., thrombotic microangiopathy due to microvascular endothelial injury that was found in the postmortem examination of the lungs which may have contributed to death.[1,15-19] Moreover, endothelial injury may also explain the occurrence of myocardial ischemia, cerebrovascular complications, and other circulatory thrombotic complications.[1]

HEMOSTASIS PARAMETER ABNORMALITIES

In patients with COVID-19, deranged laboratory parameters are common[8,3,20,21] and are associated with adverse outcomes.[20] Common abnormal parameters include coagulation markers such as D-dimer, PT, aPTT, fibrinogen, platelet count, and antiphospholipid antibodies.[1,3,10,20]

Other parameters include lymphopenia and rise in lactate dehydrogenase levels and inflammatory markers such as erythrocyte sedimentation rate, C-reactive protein, ferritin, and interleukin-6 (IL-6).[1,3] High IL-6 levels have been linked to elevated fibrinogen concentrations, indicating a correlation between inflammation and the procoagulant state.[1] D-dimer has been associated with morbidity and mortality in the setting of COVID-19 infection.[1-3]

Several studies have correlated higher D-dimer levels, i.e., by 2–5 folds[14,22-24] with a more severe disease.[12,14,22-28] and/or a higher mortality risk.[12,14,22-23,29,30] The extent of PT prolongation,[2] and its association with disease severity,[23,29,31] had varied between studies, with a trend toward a shortening in aPTT.[22,23,30] With regard to the association with mortality, results from studies were inconsistent as well.[14,28,28] Fibrinogen levels exhibit initial rise with an advanced disease, but significantly decreased levels with lower antithrombin levels were observed in the nonsurvivors of COVID-19.[2]

Mild thrombocytopenia is common and seems to be correlated with an increased risk of mortality.[3,29,32,33] severe disease,[33] mechanical ventilation need, and ICU admission.[3] However, one study reported normal platelet count in the majority of the patients,[20] whereas various studies did not find difference in the platelet count when compared ICU with non-ICU patients.[22,23,25] Antiphospholipid antibodies including antiphospholipin immunoglobulin (lg) A and anti-beta₂-glycoprotein IgA and IgG were detected in a case series of severe COVID-19 patients with stroke (n = 3),[34] and in 10% of the patients in another case series (n = 50).[35] Lupus anticoagulant positivity may trigger thrombosis as well.[10,35]

THROMBOTIC MANIFESTATIONS IN COVID-19

The inflammatory responses, hypoxia, and diffuse DIC in COVID-19 as described above, predispose patients to arterial and venous thrombotic diseases[36,37] (Table 1). The incidence of thrombotic diseases has been reported in several studies. Early during the pandemic, Klok et al. described 31% cumulative incidence of both venous and arterial thrombotic diseases that affected 16.8% of the patients (n = 184) despite receiving standard thromboprophylaxis therapy.[37] The 14-day study extension has confirmed the results with a cumulative incidence of 45%.

Thrombotic complications were associated with a higher risk of mortality (hazard ratio [HR]: 5.4, 95% confidence interval [CI]: 2.4–12).[38] Other studies have reported thrombotic event rates in 20%–43% of ICU patients.[10,11,15,39-41] In early data, venous thromboembolism (VTE) was diagnosed in 17%–20% of critically ill patients.[2] Whereas, stroke occurred in 2.7%–3.8% of patients,[10,15,24,37,39] up to 5%,[42] leading to hospitalization.[15] In one report (n = 19), myocardial infarction (MI) diagnosis in 1.1% of the patients led to the hospitalization of 75% of them.[15]

MYOCARDIAL INJURY IN COVID-19

The marker of acute myocardial injury is the rise in the levels of cardiac biomarkers, i.e., high-sensitivity troponin (hs-troponin) and/or creatinine kinase-MB, above the 99th percentile of upper reference limit (URL).[5,43]

Myocardial injury is also manifested by electrocardiographic and echocardiographic abnormalities.[43,44] Myocardial injury in COVID-19 is
usually recognized in an advanced and severe stage of the disease,[5,43] especially with severe respiratory infection and ARDS.[43] Moreover, severe disease can subject susceptible patients to atherosclerotic plaque rupture when associated with immense inflammatory response and hemodynamic changes.[29] The injury of the myocardium can result in a wide range of manifestations, from asymptomatic cardiac troponin (cTn) rise to cardiogenic shock.

In a review of 26 studies (n = 11,685), the prevalence of acute myocardial injury was between 5% and 38%, with a pooled prevalence estimate of 20% (95% CI: 17%–23%).[8] The differences were significant between the survivors and nonsurvivors of the disease.[43,45] Furthermore, myocardial injury in COVID-19 was associated with a more severe disease and poorer outcomes.[43-47]

In a prospective design, the prevalence of cardiac involvement has been evaluated by cardiovascular magnetic resonance imaging (MRI) for the first time in COVID-19 patients (n = 100) at their early convalescent phase. Cardiac involvement and ongoing myocardial inflammation were detected in 78% and 60% of the patients, respectively, regardless of the presence of other comorbidities, or the characteristics of the course of the acute illness.[48] Elevation in troponin concentrations is common in COVID-19,[5,43] and may occur due to ischemic and nonischemic, for example, myocarditis, myocardial processes.[43,44,48] However, troponin levels in COVID-19 patients do not usually exhibit dynamic changes in values.[50]

A meta-analysis of four studies (n = 341) has shown that cardiac troponin I (cTnI) concentrations increased significantly with increased disease severity, but the heterogeneity between studies was substantially high.[44] Other reports have found slight increase in cTnI levels in all COVID-19 patients, with only 8%–12% of them exhibiting values above the 99th percentile in the URL.[20] Differential diagnosis for cTn elevation should be considered, including pulmonary embolism (PE), myocarditis, renal dysfunction and the resultant accumulation of cTn, nonspecific myocardial injury, and Type 2 MI (i.e., supply–demand mismatch).[5]

The proposed potential mechanisms for the cardiac myocytes damage include hypoxemia and respiratory failure; excessive inflammation and cytokine storm; ACE2 expression downregulation; cardiac endothelial injury; coronary thrombosis due to hypercoagulability; Type 1 (i.e., plaque rupture) or Type 2 MI due to stress and/or inflammation; and possible direct myocardial infiltration by the virus through ACE2 receptors on the heart myocytes.[6]

ACUTE CORONARY SYNDROME IN COVID-19

Although the respiratory symptoms are cardinal in COVID-19, other symptoms may potentially overlap with those of acute coronary syndromes (ACS).[43,51,52] It is imperative to distinguish Type 1 MI from myocarditis and Type 2 MI.[53]

Published reports on COVID-19 showed that about 7% of the patients experienced acute cardiac injury, and may have presented with either myocarditis or Type 2 MI.[22,44] Although ST-segment elevation MI (STEMI) was the initial clinical presentation in all patients in one of the reports,[53] coronary angiography excluded Type 1 MI in 39.3% of the patients, i.e., unidentifiable culprit lesion.

The prevalence of ACS in COVID-19 may be underestimated due to the restricted availability of the coronary catheterization laboratories and the limited testing during the pandemic.[53] In a single-center study, among patients with STEMI (n = 83) who underwent primary percutaneous coronary intervention (PCI) during the outbreak, 13% of them had COVID-19.

The proportion of COVID-19 patients with an MI with nonobstructive coronary arteries (MINOCAs) was high, i.e., 54.5% of patients. COVID-19 patients had statistically significantly higher inflammatory markers and in-hospital mortality (27.3% vs. 5.6%, P = 0.016).[55] In a case series (n = 18) on COVID-19 patients with Type 1 MI, 50% of the patients underwent angiography, with two-third of them having obstructive lesions.[56]
Table 2: Case reports on COVID-19-positive patients with evidence of high thrombogenicity

First author	Characteristics	HPI	Diagnostics	CAG	Medications	Outcomes
Soltani[64]	A 63-year-old female, active smoker	SOB, cough, chills ×2 weeks; Chest pain ×24 h; resolved a day before admission; medical treatment only	ECG: anterolateral STEMI; CXR: mild interstitial edema; cardiomegaly; Cardiac CT: EF of 17%; LAD territory akinesis; apical aneurysm; measuring; LV thrombus; moderate RV hypokinesis with a small RV thrombus; multiple B/L pulmonary emboli	pLAD: 99% stenosis of the proximal LAD, with organized thrombi and TIMI-1 blood flow; Severe LV dysfunction with anterolateral akinesis, apical aneurysm, and thrombus	IV UFH and warfarin	Deteriorated Vasopressors and inotropic support Died of cardiogenic and pulmonary septic shock
Seif[65]	A 58-year-old female	Acute chest pain ×1 h; AKI; CRP; mild leukocytosis	ECG: infero-posterior STEMI (DAPT loading: aspirin, ticagrelor; fondaparinux)	EF: 40%	Ticagrelor replaced by prasugrel Amiodarone for atrial tachycardia	Died 48 h after deterioration
Harari[71]	A 40-year-old female	Chest pain ×1 day; Cough and SOB ×1 week	ECG-1: sinus tachycardia and LV hypertrophy; ECG-2: Sinus tachycardia; new RBBB; STEMI in anterior, lateral, and inferior leads; Bedside ECHO: LV apex akinesia; no thrombus; EF 20% during CAG	PPCI	Aspirin, clopidogrel Hospital Day 2: worsening chest pain	Emergent CAG
Guagliumi[73]	A 43-year-old female	Exertional sudden chest pain; transient episode of angina the day before Pain persisted on admission	ECG: infero-lateral STEMI; Focused ECHO: EF 25%; global hypokinesia and inferior and lateral akinesia; moderate pericardial effusion; no tamponade repeated ECG: diffuse ST-E; Repeated ECHO: severe LV dysfunction; progressive RV impairment; stable pericardial effusion	Normal epicardial coronary vessels; TIMI-2 flow (LAD); intense, persistent myocardial blush (dRCA)	Arunavir/cobicistat started in the ICU	Cardiogenic shock; IABP upgraded to Impella Elevated inflammatory markers Died 48 h post-PCI
Siddamreddy[68]	A 61-year-old morbidly obese AA female, smoker	Left-sided chest pain ×1 h, SOB, cough body aches for few days; Elevated WBC, CK, CK-MB, TnI, BNP, LFTs (ALT, AST)	ECG: inferior wall STEMI; CXR: diffuse B/L pulmonary infiltrates consistent with cardiogenic edema; ECHO post CAG: EF 30-35%; ECHO 2018: 65%	RCA: subtotal occlusion; AT; DES	HCQ and azithromycin	Troponins trended down Elevated LDH and D-dimer In ICU on MV

Contd...
Table 2: Contd...

First author	Characteristics	HPI	Diagnostics	CAG	Medications	Outcomes
Shams[46]	A 28-year-old	AA male	Fever, dry cough, SOB, myalgias×3 days	Day 9: acute severe	Ostial-proximal LAD: thrombus with	CV risk factor screening was
	AA male	No PMH	Elevated CRP, ferritin, lactic acid Ceftriaxon, azithromycin, HCQ: responded well; stable by day 8	left-sided chest pain,	100% stenosis; TIMI-0 flow;	negative Follow-up in the clinic
				radiating to his back	AT; DES; TIMI-3 flow achieved	managed
				ECG: anterior STEMI	Postprocedure, epifibatide×18 h;	
				Elevated TsT	UFH×24 h	
				ECHO: EF 28%; dilated LV;		
				SWMA; akinetic septal and apical segments		
Dominguez-	A 64-year-old	male	Acute STEMi Treated for COVID-19 a week before this admission but without VTE prophylaxis; discharged after 7 days, just hours before he returned to the hospital	-	pRCA: Critical	Discharged
Erquicia [36]	male	No known CV			thrombotic stenosis; no atheroma (by OCT)	
	risk factors				RCA: AT; DES	
					mLAD: nonocclusive	
					thrombus without plaue	
					confirmed by OCT; medical treatment	
					with LMWH x 7 days and DAPT	
Otero[33]	A 69-year-old	male, smoker	Exertional chest pain×6 days Avoided seeking medical care due to the COVID-19 pandemic	ECG: posterior STEMI; tenecteplase, clopidogrel, aspirin ECHO day 7: resolution of hemorrhagic pericardial effusion after tenecteplase	LCx: Culp 100%	Day 10: staged PCI for LAD
	male	HTN, DM, dyslipidemia, abdominal aortic aneurysm			thrombotic occlusion	Day 19: discharge
	smoker				pLD: 90% occlusion	
	smoker				Unsuccessful balloon angioplasty	
	smoker				(high thrombus burden); IABP	
	smoker				inserted ECHO: EF 25%; small	
	smoker				pericardial effusion; visible	
	smoker				thrombus	
	smoker					
Ueki cl [60]	A 82-year-old	male	ARDS complicated by STEMi and PE Elevated D-dimer, CRP, procalconitin	ECG: Infero-posterior STEMI	Intubated; PCI (DES) pLAd: thrombotic	ICU admission for further care
	male			CT: Acute PE in right PA	occlusion pLAd: 90% occlusion	
	smoker				Unsuccessful balloon angioplasty	
	smoker				(high thrombus burden); IABP	
	smoker				inserted ECHO: EF 25%; small	
	smoker				pericardial effusion; visible	
	smoker				thrombus	
	smoker					
Xiao [67]	A 78-year-old	male	Sudden chest pain×5 h	ECG: Anterior wall AMI	oLAd: thrombus plAd: 2 DEs Flow:	Transferred to the general ward
(Case 3)	male	HTN			TIMI-3 after Ic tirofiban injection	
					D-to-B time: 139 min	

AA: African-American, AMI: Acute myocardial infarction, AKI: Acute kidney injury, ALT: Alanine aminotransferase, ARDS: Acute respiratory distress syndrome, AST: Aspartate aminotransferase, AT: Ascarii thrombectomy, aVL: Augmented vector left, B/L: Bilateral, BNP: Brain natriuretic peptide, CAD: Coronary artery disease, CAG: Coronary angiography, CK: Creatinine kinase, COPD: Chronic obstructive pulmonary disease, CPAP: Continuous positive airway pressure, CPR: Cardiopulmonary resuscitation, CRP: C-reactive protein, CT: Computed tomography, CV: Cardiovascular, COVID-19: Coronavirus disease 2019, CVA: Cerebrovascular accident, CXR: Chest radiograph, d: Distal, DAPT: Dual antiplatelets, DES: Drug-eluting stent, DM: Diabetes mellitus, D-to-B: door-to-balloon, ECG: Electrocardiogram, ECHO: Echocardiogram, EF: Ejection fraction, eGFR: Estimated glomerular filtration rate, GERD: Gastro-esophageal reflux disease, HCQ: Hydroxychloroquine, HTP: History of present illness, HTN: Hypertension, IA: Intra-arterial, IABP: Intra-aortic balloon pump, IC: Intra-coronary, ICU: Intensive care unit, IV: Intravenous, LAD: Left anterior descending artery, LCx: Left circumflex artery, LDH: Lactic acid dehydrogenase, LFTs: Liver function tests, LMWH: Low-molecular-weight heparin, LV: Left ventricle/ventricular, m: Mid, MV: Mechanical ventilation/ventilator, o: Ostial, OCT: Optical coherence tomography, OSA: Obstructive sleep apnea, p: Proximal, PA: Pulmonary artery, PE: Pulmonary embolism, (P): PCI (primary) percutaneous coronary intervention, PMI: Past medical history, RBBB: Right bundle branch block, RCA: Right coronary artery, RV: Right ventricular, SOB: Shortness of breath, ST-E: ST-segment elevation, STEMI: ST-segment elevation myocardial infarction, SR: Sinus rhythm, SWMA: Segmental wall motion abnormality, TIMI: Thrombolysis in myocardial infarction, Tnl: Troponin I, TsT: Troponin T, UFH: Unfractionated heparin, VT: Ventricular tachycardia, VTE: Venous thromboembolism, WBC: White blood cell

GENERAL ACUTE CORONARY SYNDROME MANAGEMENT

Diagnosis of myocardial injury should be confirmed through clinical examination, hs-troponin along with other markers, and imaging modalities, for example, echocardiography, cardiac MRI, cardiac computed tomography (CT), and diagnostic right and left heart catheterization. Persistent hs-troponin rise should be considered in the context of other inflammatory markers such as coagulation panel, ferritin, IL-6, and liver enzymes to confirm the etiology. Whereas, imaging modalities should be performed in selected cases if such modalities are anticipated to provide clinical benefit.[5]

The management of COVID-19 patients with Type 1 MI should be based on the published guideline recommendations such as the Society for Cardiovascular Angiography and Interventions (SCAI) and the American College of Cardiology (ACC). In their joined consensus statement, primary PCI is the gold standard of care for patients presenting with STEMI at PCI-capable facilities with fibrinolysis consideration in specific situations and in non-PCI-capable hospitals. [57,58] The SCAI and another expert groups have also recommended fibrinolysis in...
Table 3: Case reports on COVID-19-positive patients with stent thrombosis

Author	Patient characteristics	HPI	Diagnostics	Coronary angiography	Medications	Outcomes
Lacour et al.[93]	A 68-year-old male	Acute chest pain × 4 h; Anterior STEMI; DAPT loading (aspirin, ticagrelor); Non-PCI facility; tenecteplase given	EF 15%	Rescue PCI; Recurrent chest pain after 2 h; NSVT and cardiogenic shock; Emergency CAG: LAD stent thrombosis; AT; balloon angioplasty; Inotrope support; IABP; IV UFH	Ticagrelor replaced by prasugrel	36 h later: new episode of chest pain with ST-E; CAG; extensive LAD stent thrombosis; AT; refractory no reflow Died 24 h after hemodynamic deterioration Died a few hours after severe ARDS Elevated Scr, TrtT, CK; increased inotropes AF; cardiovascular Shock (septic and cardiac); extremes cyanosis; SCr rise; bacterial superinfection; multi organ failure; ARDS CVVHD-Ci-Ca; antibiotics; ventilation; ECMO was not suitable Hospital day 11: supportive therapy only; died Inotrope stopped; ECMO removed 2 days post-PCI Patient transferred to ward
Galeazzi et al.[99]	A 79-year-old male	Intense chest pain; AMI; Fever and cough × 1 week	ECG: inferior STEMI	pRCA: in-stent thrombosis; treated	-	
Hinterser et al.[89]	A 65-year-old male	Fever, dry cough, body aches; RRI O₂ of 92% at RA Day 3: ARDS; O₂ of 78% Elevated TnT, CK, BNP ICU; intubated; VF; electrical shock	Initial ECG: SR Initial ECHO: EF of 67%; no SWMA ECG: complete RBBB right bundle branch block with ST-E in aVR ECHO: severely reduced EF ECHO (post-CAG): EF 35%	LAD: occlusion of stented segment; new DES; TIMI-3 flow	Prasugrel, aspirin, ticagrelor	
Xiao et al.[87]	Case series (Case 2)	Fever, dry cough, SOB × 1 month Hospital day 3: sudden chest pain; shortly, had signs of cardiac shock (hypotension, clamminess in extremities)	ECG: anterior STEMI	Before CAG: inotrope; ECMO; IABP CAG: Thrombus occluding stent in LAD; dissection distal to stent in LAD; 2 DES in mLAD CTos in circumflex branch and RCA	-	
Prieto-Lobato et al.[93]	Case series (Case 1)	A 49-year-old male	Lateral STEMI	EF: 45%	PCI for LCx with 2 DES (overlapping); chest pain after 30 min; ST-depression; LCx stent thrombosis; IC ticagrelor; stent overexpanded AT; ticagrelor; 2 DES; flow restored	Aspirin, ticagrelor, 24-h ticagrelor infusion Discharged on day 4
Prieto-Lobato et al.[93]	Case series (Case 2)	A 71-year-old male	EF: 55%		AT; ticagrelor; 2 DES; flow restored	Aspirin, ticagrelor -
Prieto-Lobato et al.[93]	Case series (Case 3)	A 86-year-old male	EF: 45%	Very late LAD stent thrombosis; new DES implanted	-	
Prieto-Lobato et al.[93]	Case series (Case 4)	A 86-year-old male	Chest pain × 6 h; anterior STEMI	-	-	

ABG: Arterial blood gas; AF: Atrial fibrillation; AMI: Acute myocardial infarction; ARDS: Acute respiratory distress syndrome; aVR: Augmented vector right; BNP: Brain natriuretic peptide; CAD: Coronary artery disease; CK: Creatinine kinase; CKD: Chronic kidney disease; CRP: C-reactive protein; CT: Computed tomography; CTO: Chronic total occlusion; CVVHD-Ci-Ca: veno-venous hemodiafiltration with citrate, CXR: Chest radiography, DAPT: Dual antiplatelet therapy; ECG: Electrocardiogram, ECHO: Echocardiography, ECMO: Extracorporeal membrane oxygenation, EF: Ejection fraction, IABP: Intracoronary balloon pump, IC: Intracoronary, IVUS: Intravascular ultrasound, LAD: Left anterior descending artery, LCX: Left circumflex, LDLH: Lactic acid dehydrogenase, MI: Myocardial infarction, min: Minute(s), NIV: Noninvasive ventilation, NSTEMI: Non-ST-segment elevation myocardial infarction, NSVT: Nonsustained ventricular tachycardia, p: Proximal, PAD: Peripheral artery disease, PMH: Past medical history, (P) PCI: (primary) Percutaneous coronary intervention, RA: Room air, RBBB: Right bundle branch block, RTI: Respiratory tract infection, SCr: Serum creatinine, SR: Simus rhythm, ST-E: ST-segment elevation, STEMI: ST-segment elevation myocardial infarction, TIMI: Thrombolysis in myocardial infarction, TrtT: Tropinon T, SWMA: Segmental wall motion abnormalities, VF: Ventricular fibrillation.
select patients.49,59-62 In another document, SCAI and ACC discussed the issues and challenges encountered by the catheterization laboratory personnel during the pandemic while carefully balancing between patient benefit and personnel safety.54 There is only a limited number of case reports which had discussed the management of COVID-19 patients presenting with Type 1 MI.63-76

ANTITHROMBOTIC THERAPY IN COVID-19

In Type 1 MI, the use of either anticoagulation and dual antiplatelet therapy (DAPT) is as per the respective published guidelines, unless contraindicated77-80 DAPT regimen with a less potent antiplatelet such as clopidogrel may be considered in patients at high risk of bleeding. Hospitalized COVID-19 patients should be risk stratified for VTE like other patients.2 Given the pro-inflammatory status in COVID-19, all confirmed or suspected cases should be prescribed thromboprophylaxis therapy, unless contraindicated.1,2 Intermittent pneumatic compression, therefore, may be considered.3 The ideal regimen for thromboprophylaxis is not established43 and evidence behind the relevant guideline recommendations are not specific for patients with COVID-19.81-86

Parenteral anticoagulants, i.e., unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH), are preferred in most of the cases given their safety in terms of drug–drug interactions with COVID-19 therapy.3,43 There is no universal consensus on the most appropriate dosing.2 However, due to increased rate of thrombotic events, anticoagulation therapy intensification has been debated.11 COVID-19 patients with indications for anticoagulation should be continued on their therapy. Therapeutic doses may be considered for patients with suspected PE. This has been justified by the difficulty in escorting ventilated patients to be scanned by CT; limiting staff exposure to COVID-19 patients; and the fact that D-dimer is not a useful measure given its high baseline levels in COVID-19 patients.

The use of therapeutic dose of anticoagulants has also been considered to prevent microvascular thrombosis in severe disease despite the absence of data to support it.13 The presence of microthrombi and coagulopathy has also proposed the use of tissue plasminogen activator as a possible treatment option.2 In addition to VTE prevention, the prophylactic-dose anticoagulation, mainly LMWH, was associated with a lower 28-day mortality in anticoagulation users who had sepsis-induced coagulopathy (40.0% vs. 64.2%, \(P = 0.029 \)) or a substantially elevated D-dimer (32.8% vs. 52.4%, \(P = 0.017 \)) compared to nonusers.87

Thromboprophylaxis with LMWH may reduce the generation of thrombin and alter the course of DIC.3 Similarly, treatment-dose anticoagulation was associated with better hospital outcomes. Moreover, mechanically ventilated anticoagulation users had lower in-hospital mortality rate (29.1% vs. 62.7%) compared to nonusers. Longer anticoagulation therapy was associated with lower mortality risk (adjusted HR of 0.86 per day, 95% CI: 0.82–0.89; \(P < 0.001 \)).88

Table 4: Potential drug-drug interactions between P2Y12 inhibitors and selected off-label COVID-19 medications

Medication*	Clopidogrel (CYP2C19 substrate)	Prasugrel (CYP3A4 and CYP2B6 substrate)	Ticagrelor (CYP3A4 substrate)
Darunavir/	-	Minor DDI: no action needed	Major DDI: avoid combination
cubicistat (Protease inhibitor)		Prasugrel’s active metabolite (s) serum levels may decrease	Ticagrelor’s active metabolite (s) serum levels increase but not active metabolite (s) levels
Inhibitors of		MOI: inhibition of prasugrel metabolism to its active metabolite (s)	MOI: inhibition of ticagrelor metabolism to its active metabolite (s)
CYP3A4 (strong)			
Lopinavir/	Moderate DDI: monitor therapy; consider alternative	Minor DDI: no action needed	Major DDI: avoid combination
ritonavir (Protease inhibitors)	Clopidogrel’s active metabolite (s) serum levels may decrease	Prasugrel’s active metabolite (s) serum levels may decrease	Ticagrelor’s active metabolite (s) serum levels decrease
Inhibitors of	MOI: roninav inhibition of clopidogrel metabolism to its active metabolite (s)a	MOI: inhibition of prasugrel metabolism to its active metabolite (s)	MOI: inhibition of ticagrelor metabolism to its active metabolite (s)
CYP3A4	and P-gp		
Enhancer of CYP3A4 expression	-	-	Moderate DDI: monitor therapy
Tocilizumab (IL-6 inhibitor):			Ticagrelor serum levels decrease
Enhancer of CYP3A4 expression			Effect may persist several weeks after tocilizumab discontinuation due to its long half-life

aNo documented DDI of azithromycin, corticosteroids, favipiravir, HCQ, interferon, remdesivir, and ribavirin with P2Y12 inhibitors. bCYP3A4 inhibition can lead to reduction in clopidogrel efficacy despite being mostly metabolized by CYP2C19.15 Some other drug labeling states that this combination is contraindicated/should be avoided. Reference: Lexicompa available from http://online.lexi.com/lco/action/interact - accessed on 14/08/2020. CYP: Cytochrome P450, DDI: Drug-drug interaction, IL-6L: Interleukin-6, MOI: Mechanism of interaction, RNA: Ribonucleic acid.
Table 5: Potential drug-drug interactions between oral anticoagulation and selected off-label COVID-19 therapy

Medication *a, b	Factor Xa inhibitors	Thrombin inhibitor	VKA	
	Apixaban (CYP3A4 and P-gp substrate)	Edoxaban (CYP3A4 and P-gp substrate)	Rivaroxaban (CYP3A4 and P-gp substrate)	Dabigatran (P-gp substrate)
Azithromycin	Minor DDI: No action needed	Moderate DDI: modify therapy (indication-dependent)	Minor DDI: no action needed	Moderate DDI: monitor therapy
Inhibitor of P-gp	Apixaban serum levels may increase	Edoxaban serum levels may increase	Rivaroxaban serum levels may increase	Dabigatran's active metabolite (s) serum levels may increase
	MOI: inhibition of P-gp transporter			
Corticosteroids	-	-	-	-
Darunavir/	Moderate DDI: monitor therapy	Moderate DDI: avoid combination	Moderate DDI: monitor therapy with cobicistat	Moderate DDI: monitor therapy
cobicistat	(protease inhibitor)	with cobicistat		
Inhibitors of CYP3A4 (strong), inhibitor of P-gp (cobicistat)	Apixaban serum levels may increase	Rivaroxaban serum levels may increase	Dabigatran's active metabolite (s) serum levels may increase	VKA serum levels may increase
Interferon*	-	-	-	-
Lopinavir/	Major DDI: modify therapy with ritonavir	Moderate DDI: avoid combination with ritonavir	Moderate DDI: no action needed	Moderate DDI: monitor therapy
ritonavir	(protease inhibitor)	Edoxaban serum levels may increase	Rivaroxaban serum levels may increase	VKA serum levels may decrease
	Apixaban serum levels may increase	MOI: Inhibition of P-gp transporter	MOI: Inhibition of P-gp transporter	MOI: Uncertain.
	MOI: Inhibition of CYP3A4 and P-gp transporter			For warfarin: may be by induction of CYP2C9
Tocilizumab	Moderate DDI: monitor therapy	Moderate DDI: no action needed	Minor DDI: no action needed	Moderate DDI: monitor therapy
(IL-6 inhibitor)	Apixaban serum levels may increase	Rivaroxaban serum levels may increase	Rivaroxaban serum levels may increase	VKA serum levels may decrease
Enhancer of CYP3A4	-	-	-	-

*aNo documented DDI of favipiravir, hydroxychloroquine, remdesivir, and ribavirin with OACs.
*bSignificance of the DDI should also consider the presence of another interacting drugs and renal function as appropriate.
*cDDI applies to interferon alfa-2a (2a, 2b, n3), Peginterferon alfa-2a (2a, 2b). Some other drug labeling states that this combination is contraindicated, should be avoided. Reference: Lexicomp® available from http://online.lexi.com/loc/action/interact - accessed on 14/08/2020. AF: Atrial fibrillation, DDI: Drug-drug interaction, IL-6: Interleukin-6, MOI: Mechanism of this interaction, OAC: Oral anticoagulant, P-gp: P-glycoprotein, VKA: Vitamin K antagonists

CHALLENGES IN THROMBOSIS MANAGEMENT

Coronary angiography setting

Delay in door-to-balloon time

During the pandemic, the rate of admission for ACS has been reduced as reported in some studies. The admission rate fell by 40% in 147 English hospitals early in the pandemic as compared to that in 2019. In addition, in the early phase of the pandemic, there have been reductions in PCI procedures for STEMI by 21%–40% and for non-STEMI by 37%. Some hospital systems have transitioned to fibrinolysis as an initial approach for acute MI management. Factors that may have contributed to a lower ACS admission rate include delay in seeking medical attention due to patients’ fear of contracting SARS-CoV-2 infection and delays in patient triage in emergency department or in activation of...
coronary catheterization laboratory due to additional steps needed for personnel safety. However, several reports have indicated that the drop in the ACS admission rate was temporary but then rebounded.

The rebound was probably linked to patients’ encouragement to seek medical attention if experiencing signs and symptoms of acute myocardial infarction, even during the pandemic. In one study, the rate of admission fell by only 16% late in the pandemic as compared with that of the previous year. It is well known that delays in acute MI presentation and management have been associated with MI-related complications and vice versa given the time-sensitive feature of STEMI. Reports on COVID-19 have described STEMI complications in patients who avoided seeking medical assistance and discussed potential increase in the risk of mortality.

High thrombogenicity

Findings from a single-center study in STEMI patients with concurrent COVID-19 demonstrated higher thrombus burden and worse outcomes compared to those without COVID-19. All patients underwent primary PCI. COVID-19 patients had higher thrombogenicity evidenced by significantly higher incidence of multi-vessel thrombosis, stent thrombosis, and high modified thrombus grade after first device, with significantly more glycoprotein IIb/IIIa inhibitors and aspiration thrombectomy use.

The myocardial blush grade and the left ventricular ejection fraction were significantly lower and the hs-troponin and D-dimer levels were significantly higher in COVID-19 patients, who experienced significantly higher rate of cardiac arrest. With regard to in-hospital outcomes, COVID-19 patients had significantly longer hospital length of stay and more ICU admissions.

At another center, the incidence of stent thrombosis increased from 0.13% to 4%, a rare, i.e., <1% incidence at 30 days, but a catastrophic complication of stent implantation. Some reports have raised the concern about the use of fibrinolysis over primary PCT. There are several published cases demonstrating higher thrombotic features of coronary angiography findings, as presented in Tables 2 and 3.

Drug therapy in COVID-19

Efficacy of anticoagulation therapy

When anticoagulated COVID-19 patients are admitted to hospital, especially to an ICU, specific drug-related problems arise with regard to their anticoagulation therapy. Patients on Vitamin K antagonists experience PT/international normalized ratio instability due to various causes. Furthermore, there have been concerns about UFH therapy and the frequent blood sampling for monitoring and clinical staff exposure to infection. Achieving UFH therapeutic aPTT targets is another issue, given the elevated fibrinogen levels, which is considered one of the many other factors for both hypercoagulability and heparin resistance. Thus, anti-Xa heparin levels have been suggested for monitoring.

Drug–drug interaction

Given that there is no definite treatment for COVID-19, different drugs such as anti-inflammatory and antiviral agents have been used without labeled indications in COVID-19. Their efficacy and safety in this setting are awaited to be proven. Several agents are well known to interact with various antithrombotic agents, which warrants particular attention when used. Drug–drug interactions between the off-label COVID-19 therapies and the commonly used P2Y12 inhibitors and oral anticoagulants are summarized in Tables 4 and 5.

Drug–disease interaction

DIC is common in critical illness including severe COVID-19 especially when it is associated with sepsis. In majority of DIC patients, it is recommended to discontinue long-acting antiplatelet agents unless unavoidable. Antiplatelet therapy should be individualized and considered for essential indications such as post-PCI in moderate or severe COVID-19 with DIC without excessive bleeding. Overt bleeding is rare in the setting of COVID-19 alone. However, when it occurs in association with DIC, management principles follow those in septic coagulopathy as per the International Society of Thrombosis and Haemostasis guidelines with regard to blood product transfusion.

Angiotensin-converting enzyme 2 and therapeutic implications

Because the entry of SARS-CoV-2 to human host occurs through ACE2 receptor, studies have suggested that the susceptibility to SARS-CoV-2 may be enhanced by ACE inhibitors (ACEi) and angiotensin receptor blockers (ARBs), which may upregulate ACE2. On the other hand, other reports found that ACEi/ARBs may have a protective effect on the lungs by lowering the levels of angiotensin II through its conversion to angiotensin.

CONCLUSION

Coagulation abnormalities are common in COVID-19 and predispose the patients to both venous and arterial thrombotic events. Antithrombotic agents play a key role in the prevention and treatment of the thrombotic events but should be balanced with their risk of bleeding and their interactions with other drugs and disease states. Currently, there is no consensus on the optimal management approach for ACS with many challenges to be taken up.
Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020;135:2033-40.
2. Al-Ani F, Chehade S, Lazo-Langner A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb Res 2020;192:152-60.
3. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol 2020;75:2950-73.
4. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A Review. JAMA 2020;323(8):782-93.
5. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe coronavirus disease 2019 in Wuhan, China: A retrospective study. Lancet Infect Dis 2020;20(8):1054-62.
6. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available from: https://www.covid19treatmentguidelines.nih.gov/. [Last accessed on 2020 Aug 02].
7. Thachil J, Cushman M, Srivastava A. A proposal for staging COVID-19 coagulopathy. Res Pract Thromb Haemost 2020;4:731-6.
8. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant 2020;39:405-7.
9. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) [published online ahead of print, 2020 Mar 27]. JAMA Cardiol 2020;5:1-8.
10. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohama M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med 2020;46:1089-98.
11. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost 2020;18:1421-4.
12. Ranucci M, Ballotta A, Di Dedda U, Bayshnikova E, Poli MD, Resta M, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome [published online ahead of print, 2020 Apr 17]. J Thromb Haemost 2020;18(7):1747-51.
13. Deng Y, Liu W, Liu K, Fang YY, Shang J, Zhou L, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: A retrospective study. Chin Med J (Engl) 2020;133:1261-7.
14. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020;18:8447-7.
15. Lodigiani C, Iapichino G, Carenzo L, Cecconi M, Ferrari P, Sebastian T, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res 2020;191:9-14.
16. Fox SE, Akmatbekov A, Habbert JL, Li G, Quincy Brown J, Vander Heide RS. Pulmonary and cardiac pathology in African American patients with COVID-19: An autopsy series from New Orleans [published online ahead of print, 2020 May 27]. Lancet Respir Med 2020;8(7):681-6;S2213-2600(20)30243-5.
17. Carsana L, Sonzogni A, Nasr A, Rossi R, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study. Lancet Infect Dis 2020;S1473-3099(20)30434-5.
18. Deshpande C. Thromboembolic findings in COVID-19 autopsies: Pulmonary thrombosis or embolism? Ann Intern Med 2020;173(5):394-395.
19. Luo W, Yu H, Gou J, Li X, Sun Y, Li J, Liu L. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). Transplantation 2020; doi:10.1097/TP.0000000000003412. https://www.preprints.org/manuscript/202002.0407/v4.
20. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-19 infection. Clin Chem Lab Med 2020;58:1131-4.
21. Han H, Yang L, Liu R, Liu F, Wu KL, Li J, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med 2020;58:1116-20.
22. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323(11):1061-9.
23. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.
24. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China [published online ahead of print, 2020 Apr 10]. JAMA Neurol 2020;77:1-9.
25. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708-20.
26. Gao Y, Li T, Han M, Li X, Wu D, Xu Y, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COV-19. J Med Virol 2020;92:791-6.
27. Li X, Wang L, Yan S, Yang F, Xiang L, Zhu J, Shen B, Gong Z. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis 2020;94:128-32.
28. Fogarty H, Townsell L, Ni Cheallaigh C,Bergin C, Martin-Leeches I, Browne P, et al. COVID-19 coagulopathy in Caucasian patients. Br J Haematol 2020;189:1044-9.
29. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020;395:1054-62.
30. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020;180(7):934-43.
31. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med 2020;8:475-81.
32. Yang X, Yang Q, Wang Y, Wu Y, Xu J, Yu Y, et al. Thrombocytopenia and its association with mortality in patients with COVID-19. J Thromb Haemost 2020;18:1469-72.
33. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta 2020;506:145-8.
34. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N Engl J Med 2020;382:e38.
35. Harzallah I, Debliquis A, Drénou B. Lupus anticoagulant is frequent in patients with COVID-19 [published online ahead of print, 2020 Apr 23]. J Thromb Haemost 2020;18(8):2064-5.
36. Singh G, Attique H, Gadela N, Mapara K, Manickaratnam S. COVID-19 related arterial coagulopathy. Cureus 2020;2:E9490.
37. Klok FA, Kruijf MJHA, van der Meer NJM, Arbas MS, Gomers DAMPJ, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020;191:145-7.
38. Klok FA, Kruijf MJ, van der Meer NJ, Arbous MS, Gomers, Kant KM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res 2020;191:148-50.
39. Thomas W, Varley J, Johnston A, Symington E, Robinson M, Sheares K, et al. Thrombotic complications of patients admitted to intensive care with COVID-19 at a teaching hospital in the United Kingdom. Thromb Res 2020;191:76-7.
40. Middeldorp S, Coppens M, van Haaps TF, Foppen M, Vlaar AP, Müller MC, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost 2020;18:1995-2002.
41. Poissy J, Goutay J, Caplan M, Parmentier E, Duburcq T, Lassalle F, et al. Pulmonary embolism in COVID-19 patients: awareness of an increased prevalence [published online ahead of print, 2020 Apr 24]. Circulation 2020;142(2):184-6.
42. Oxley TJ, Mocco J, Majidi S, Kelner CP, Shoiair H, Singh IP, et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. N Engl J Med 2020;382:660.
43. Drigin G, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol 2020;75:2352-71.
44. Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis [published online ahead of print, 2020 Mar 10]. Prog Cardiovasc Dis 2020;63(3):390-1. [Doi: 10.1016/j.pcad.2020.03.001].
45. Du RH, Liang LR, Yang CQ, Wang W, Cao TZ, Li M, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: A prospective cohort study. Eur Respir J 2020;55(5):2000524. Published 2020 May 7. doi:10.1183/13993003.00524-2020.
46. Bonow RO, Fonarow GC, O’Gara PT, Yancy CW. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality [published online ahead of print, 2020 Mar 27]. JAMA Cardiol 2020;5(7):751-3.
47. Shi S, Qin M, Cai Y, Liu T, Shen B, Yang F, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J 2020;41:2070-9.
48. Punthmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19) [published online ahead of print, 2020 Jul 27]. JAMA Cardiol 2020:e203557. doi:10.1001/jamacardio.2020.3557.
49. Kerkar PG, Naik N, Alexander T, Bahl VK, Chakraborty RN, Chatterjee SS, et al. Cardiological society of India: Document on acute MI care during COVID-19. Indian Heart J 2020;72:70-4.
50. Gaze DC. Clinical utility of cardiac troponin measurement in COVID-19 infection. Ann Clin Biochem 2020;57:202-5.
51. Castagna F, Cerrud-Rodriguez R, Villela MA, Bortnick AE. SARS-COV-2 infection presenting as ST-elevation myocardial infarction [published online ahead of print, 2020 May 30]. Catheter Cardiovasc Interv 2020;1-4. doi:10.1002/ccd.29874.
52. Loghin C, Chauhan S, Lawless SM. Pseudo acute myocardial infarction in a young COVID-19 patient [published online ahead of print, 2020 Apr 27]. JACC Case Rep 2020;2:1284-8.
53. Stefanini GG, Montorofano M, Trabattoni D, Andreini D, Ferrante G, Ancona M, et al. ST-Elevation myocardial infarction in patients with COVID-19: Clinical and angiographic outcomes. Circulation 2020;141:12113-6.
54. Welt FG, Shah PB, Aronow HD, Bortnick AE, Henry TD, Shenwood MW, et al. Catheterization laboratory considerations during the coronavirus (COVID-19) pandemic: From the ACC’s interventional council and SCAI. J Am Coll Cardiol 2020;75:2372-5.
55. Popovic B, Varlot J, Metzdorf PA, Jeulin H, Goehringer F, Camenzind E. Changes in characteristics and management among patients with ST-elevation myocardial infarction due to COVID-19 infection [published online ahead of print, 2020 Jul 15]. Catheter Cardiovasc Interv 2020;1-8. doi:10.1002/ccd.29114.
56. Bangalore S, Sharma A, Slotwiner A, Yatskar I, Harari R, Shah B, et al. ST-segment elevation in patients with COVID-19: A case series. N Engl J Med 2020;382:2478-80.
57. Mahmund E, Dauerman HL, Welt FG, Messenger JC, Rao SV, Grines C, et al. Management of acute myocardial infarction during the COVID-19 pandemic [published online ahead of print, 2020 Apr 21]. J Am Coll Cardiol 2020;76(11):1375-84:S0735-1097 (20) 35026-9.
58. Mahmund E, Dauerman HL, Welt FG, Messenger JC, Rao SV, Grines C, et al. Management of acute myocardial infarction during the COVID-19 pandemic: A Consensus Statement from the Society for Cardiovascular Angiography and Interventions (SCAI), the American College of Cardiology (ACC), and the American College of Emergency Physicians (ACEP) [published online ahead of print, 2020 Apr 20]. Catheter Cardiovasc Interv 2020;96:336–345. [Doi: 10.1002/ccd.28946].
59. Szerlip M, Anwaruddin S, Aronow HD, Cohen MG, Daniels MJ, Dehghani P, et al. Considerations for cardiac catheterization laboratory procedures during the COVID-19 pandemic perspectives from the Society for Cardiovascular Angiography and Interventions Emerging Leader Mentorship (SCAI ELM) Members and Graduates [published online ahead of print, 2020 Mar 25]. Catheter Cardiovasc Interv 2020;12. doi:10.1002/ccd.28887.
60. Daniels MJ, Cohen MG, Bavry AA, Kumbhani DJ. Reperfusion of ST-segment-elevation myocardial infarction in the COVID-19 era: Business as Usual? Circulation 2020;141:1948-50.
61. Zeng J, Huang J, Pan L. How to balance acute myocardial infarction and COVID-19: The protocols from Sichuan Provincial People’s Hospital. Intensive Care Med 2020;46:1111-3.
62. Sadeghipour P, Talasaz AH, Eslami V, Geraeily B, Vojdanparast M, Sedaghat M, et al. Management of ST-segment-elevation myocardial infarction during the coronavirus disease 2019 (COVID-19) outbreak: Iranian“247” National Committee’s position paper on primary percutaneous coronary intervention [published online ahead of print, 2020 Apr 22]. Catheter Cardiovasc Interv 2020;1-6. doi:10.1002/ccd.28889.
63. Rothstein ES, Welch TD, Andrus BW, Jayne JE. Management of a patient presenting with anterior STEMI with concomitant COVID-19 infection early in the course of the U.S. pandemic. Catheter Cardiovasc Interv 2020;1-6. doi:10.1002/ccd.28967.
64. Soltani M, Mansour S. Biventricular thrombi associated with myocardial infarction in a patient with COVID-19 [published online ahead of print, 2020 Jun 26]. Can J Cardiol 2020;36(8):1326-9.e9-1326.e10:S0828-282X (20) 30579-1. [Doi: 10.1016/j.cjc.2020.06.016].
65. Seif S, Ayuna A, Kumar A, Macdonald J. Massive coronary thrombosis caused primary percutaneous coronary intervention to fail in a COVID-19 patient with ST-elevation myocardial
infarction [published online ahead of print, 2020 May 30]. Catheter Cardiovasc Interv 2020;1-3. doi: 10.1002/ccd.29050. [Doi: 10.1002/ccd.29050].

66. Kariyanna PT, Hossain N, Jayarangaiah A, Hossain NA, Francois JC, Marmur JD, et al. Pharmacoinvasive therapy for STEMI in a patient with COVID-19: A case report. Am J Med Case Rep 2020;8:192-6.

67. Xiao Z, Xu C, Wang D, Zeng H. The experience of treating patients with acute myocardial infarction under the COVID-19 epidemic [published online ahead of print, 2020 Apr 29]. Catheter Cardiovasc Interv 2020;1-5. [Doi: 10.1002/ccd.28951].

68. Siddamreddy S, Thotakura R, Dandu V, Kanuru S, Meegada S. Coronavirus disease 2019 (COVID-19) presenting as acute ST elevation myocardial infarction. Cureus 2020;12:e7782.

69. Ueki Y, Otsuka T, Windecker S, Rabe L. ST-elevation myocardial infarction and pulmonary embolism in a patient with COVID-19 acute respiratory distress syndrome. Eur Heart J 2020;41:2134.

70. Yolcu M, Gunesdogdu F, Bektas M, Bayirli DT, Serefhanoglu K. Coronavirus disease 2019 (COVID-19) and simultaneous acute anteroseptal and inferior ST-segment elevation myocardial infarction [published online ahead of print, 2020 May 5]. Cardiovasc J Afr 2020;31:1-4.

71. Harari R, Bangalore S, Chang E, Shah B. COVID-19 complicated by acute myocardial infarction with extensive thrombus burden and cardiogenic shock [published online ahead of print, 2020 May 19]. Catheter Cardiovasc Interv 2020;;1-3. doi:10.1002/ccd.28948. [Doi: 10.1002/ccd.28992].

72. Lacour T, Semaan C, Genet T, Ianes F. Insights for increased risk of failed fibrinolytic therapy and stent thrombosis associated with COVID-19 in ST-segment elevation myocardial infarction patients [published online ahead of print, 2020 Apr 30]. Catheter Cardiovasc Interv 2020;1-3. [Doi: 10.1002/ccd.28948].

73. Otero D, Singh NS, Barry N, Raheja P, Solankhi A, Solankhi N. Complication of late presenting STEMI due to avoidance of medical care during the COVID-19 pandemic [published online ahead of print, 2020 Jun 4]. JACC Case Rep 2020;2(10):1610-13. [Doi: 10.1016/j.jaccr.2020.05.043].

74. Shams A, Ata F, Musthaq K, Munir W, Yousaf Z. Coronary thrombosis in a young man with COVID-19. IDCases 2020;21:e00923.

75. Guagliumi G, Sonzogni A, Pescetelli L, Pellegrini D, Finn AV. Microthrombi and ST-segment elevation myocardial infarction in COVID-19 [published online ahead of print, 2020 Jul 17]. Circulation 2020;142(8):804-809. [Doi: 10.1161/CIRCULATIONAHA.120.049294].

76. Dominguez-Erquicia P, Dobarro D, Raposeiras-Roubin S, Bastos-Fernandez G, Iñiguez-Romo A. Multivessel coronary thrombosis in a patient with COVID-19 pneumonia. Eur Heart J 2020;41:2132.

77. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarrelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2018;39:119-77.

78. O’Gara PT, Kushner FG, Ascheim DD, Casey Jr DE, Ching MK, de Lemos JA, et al. 2013 ACCF/AHA guideline for the management of STElevation myocardial infarction: A report of the American College of cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;61:e78-140.

79. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 2016;37:267-315.

80. Amsterdam EA, Wenger NK, Brindis RG, Casey Jr DE, Ganiats TG, Holmes Jr DR, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines [published correction appears in Circulation. 2014;130:e431-2. [Doi: 10.1161/CIR.0000000000000133].

81. Moores LK, Trischler T, Brosnahan S, Carrier M, Collen JF, Doerschug K, et al. Prevention, diagnosis, and treatment of VTE in patients with coronavirus disease 2019: CHEST guideline and expert panel report [published online ahead of print, 2020 Jun 2]. Chest 2020;;158(3):1143-1163:S0012-3692 (20) 31625-1. [Doi: 10.1016/j.chest.2020.05.559].

82. Spyropoulos AC, Levy JH, Ageno W, Connors JM, Hunt BJ, Iba T, et al. Scientific and standardization committee communication: Clinical guidance on the diagnosis, prevention and treatment of venous thromboembolism in hospitalized patients with COVID-19 [published online ahead of print, 2020 May 27]. J Thromb Haemost 2020;18(8):1859-65. [Doi: 10.1111/jth.14929].

83. Zhai Z, Li C, Chen Y, Gerotziafas G, Zhang Z, Wan J, et al. Prevention and treatment of venous thromboembolism associated with coronavirus disease 2019 infection: A consensus statement before guidelines. Thromb Haemost 2020;120:937-48.

84. Kosior DA, Undas A, Kopeć G, Hryniewiecki T, Torbicki A, Mularek-Kubzdela T, et al. Guidance for anticoagulation management in venous thromboembolism during the coronavirus disease 2019 pandemic in Poland: An expert opinion of the Section on Pulmonary Circulation of the Polish Cardiac Society. Kardiol Pol 2020;78:642-6.

85. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 2020;18:1023-6.

86. Susen S, Tacquard CA, Godon A, Mansour A, Garrigue D, Nguyen P, et al. Prevention of thrombotic risk in hospitalized patients with COVID-19 and hemostasis monitoring. Crit Care 2020;24:364.

87. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020;18:1094-9.

88. Paranjpe I, Fuster V, Lala A, Russak AJ, Glickberg BS, Levin MA, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol 2020;76:122-4.

89. De Filippo O, D’Ascenzo F, Angelini F, Bocchino PP, Conrotto F, Saglietto A, et al. Reduced rate of hospital admissions for ACS during COVID-19 Outbreak in Northern Italy. N Engl J Med 2020;383:88-9.

90. Mathew MM, Spata E, Goldacre R, Gair D, Cunow P, Bray M, et al. COVID-19 pandemic and admission rates for and management of acute coronary syndromes in England. Lancet 2020;396:381-9.

91. Gluckman TJ, Wilson MA, Chiu ST, Penny BW, Chepuri Vb, Waggoner JW, et al. Case rates, treatment approaches, and outcomes in acute myocardial infarction during the coronavirus disease 2019 pandemic [published online ahead of print, 2020 Aug 7]. JAMA Cardiol 2020;;e203629. [Doi: 10.1001/jamacardio.2020.3629].

92. Garcia S, Albaghdadi MS, Meraj PM, Schmidt C, Garberich R, Jaffa FA, et al. Reduction in ST-segment elevation cardiac catheterization laboratory activations in the United States during COVID-19 pandemic. J Am Coll Cardiol 2020;75:2871-2.
93. Prieto-Lobato A, Ramos-Martínez R, Vallejo-Calcerrada N, Corbi-Pascual M, Córdoba-Soriano JG. A case series of stent thrombosis during the COVID-19 pandemic. JACC Case Rep 2020;2:1291-6.

94. Tam CF, Cheung KS, Lam S, Wong A, Yung A, Sze M, et al. Impact of coronavirus disease 2019 (COVID-19) outbreak on ST-segment-elevation myocardial infarction care in Hong Kong, China. Circ Cardiovasc Qual Outcomes 2020;13:e006631.

95. Patel MR, Calhoon JH, Dehmer GJ, Grantham JA, Maddox TM, Maron DJ, et al. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2016 Appropriate Use Criteria for Coronary Revascularization in Patients With Acute Coronary Syndromes: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and the Society of Thoracic Surgeons. J Am Coll Cardiol 2017;69:570-91.

96. Moroni F, Gramegna M, Ajello S, Beneduce A, Baldetti L, Vilca LM, et al. Collateral damage: Medical care avoidance behavior among patients with acute coronary syndrome during the COVID-19 pandemic. J Am Coll Cardiol Case Rep 2020;2(10):1620-4.

97. Choudry FA, Hamshere SM, Rathod KS, Akhtar MM, Archbold RA, Guttmann OP, et al. High thrombus burden in patients with COVID-19 presenting with ST-elevation myocardial infarction [published online ahead of print, 2020 Jul 10]. J Am Coll Cardiol 2020;;76(10):1168-1176:S0735-1097 (20) 35966-0.

98. Gori T, Polimeni A, Indolfi C, Räber L, Adriaenssens T, Münzel T. Predictors of stent thrombosis and their implications for clinical practice. Nat Rev Cardiol 2019;16:243-56.

99. Galeazzi GL, Loffi M, Di Tano G, Danzi GB. Severe COVID-19 Pneumonia and Very Late Stent Thrombosis: A Trigger or Innocent Bystander? Korean Circ J 2020;50:632-3.

100. Hinterseer M, Zens M, Wimmer RJ, Delladio S, Lederle S, Kupatt C, et al. Acute myocardial infarction due to coronary stent thrombosis in a symptomatic COVID-19 patient. Clin Res Cardiol 2020;1-5. doi:10.1007/s00392-020-01663-4.

101. Testa S, Paoletti O, Giorgi-Pierfranceschi M, Pan A. Switch from oral anticoagulants to parenteral heparin in SARS-CoV-2 hospitalized patients. Intern Emerg Med 2020;15:751-3.

102. Schiavone M, Gobbi C, Biondi-Zoccai G, D’Ascenzo F, Palazzuoli A, Gasperetti A, et al. Acute coronary syndromes and COVID-19: Exploring the uncertainties. J Clin Med 2020;9::1683. doi:10.3390/jcm9061683.