Predictions for Higgs and SUSY spectra from SO(10) Yukawa Unification with $\mu > 0$

T. Blažek$^\dagger$, R. Dermíšek$^*$ and S. Raby$^*$

$^\dagger$Department of Physics, University of Southampton, Southampton, UK
and Faculty of Mathematics and Physics, Comenius Univ., Bratislava, Slovakia
$^*$Department of Physics, The Ohio State University, 174 W. 18th Ave., Columbus, Ohio 43210

Abstract

We use $t$, $b$, $\tau$ Yukawa unification to constrain SUSY parameter space. We find a narrow region survives for $\mu > 0$ (suggested by $b \to s\gamma$ and the anomalous magnetic moment of the muon) with $A_0 \sim -1.9 m_{16}$, $m_{10} \sim 1.4 m_{16}$, $m_{16} \sim 1200–3000$ GeV and $\mu, M_{1/2} \sim 100–500$ GeV. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.
Minimal supersymmetric [SUSY] SO(10) grand unified theories [GUTs] have many profound features: all fermions in one family sit in one 16 dimensional spinor representation; the two Higgs doublets of the minimal supersymmetric standard model sit in one 10 dimensional fundamental representation, and gauge coupling unification at a GUT scale $M_G \sim 3 \times 10^{16}$ GeV fits well with the low energy data. In addition, the first case the third generation squark and slepton soft masses are given by the universal mass parameter $m_{16}$ and D term splitting. In the first case the third generation squark and slepton soft masses are given by the universal mass parameter $m_{16}$, and only Higgs masses are split: $m_{(H_u, H_d)}^2 = m_{10}^2 (1 + \Delta m_H^2)$. In the second case we assume D term splitting, i.e. that the D term for $U(1)_X$ is non-zero, where $U(1)_X$ is obtained in the decomposition of SO(10) → $SU(5) \times U(1)_X$. In this second case, we have $m_{(H_u, H_d)}^2 = m_{10}^2 + 2D_X$, $m_{(Q, u, e)}^2 = m_{16}^2 + D_X$, $m_{(d, L)}^2 = m_{16}^2 - 3D_X$. The universal case does not at first sight

\[ m_b(M_Z) = \lambda_b(M_Z) \frac{v}{\sqrt{2}} \cos \beta (1 + \Delta m_b^\pm + \Delta m_b^0 + \Delta m_b^{\log}). \]

For $\mu > 0$ the gluino term is positive and in most regions of SUSY parameter space it is the dominant contribution to $\Delta m_b$. Reasonable fits prefer $\Delta m_b < 0$; hence Yukawa unification is easy to satisfy with $\mu < 0$.

The decay $b \rightarrow s\gamma$ and the muon anomalous magnetic moment also get significant corrections proportional to $\tan \beta$. The SUSY contribution to $b \rightarrow s\gamma$ comes from one loop diagrams similar to those contributing to the bottom mass. The chargino term typically dominates and has opposite sign to the SM and charged Higgs contributions, thus reducing the branching ratio for $\mu > 0$. This is necessary to fit the data since the SM contribution is somewhat too big. $\mu < 0$ would on the other hand constructively add to the branching ratio and is problematic. In addition, the recent measurement of the anomalous magnetic moment of the muon $a_{\mu}^{NEW} = (g - 2)/2 = 43 (16) \times 10^{-10}$ also favors $\mu > 0$. Thus it is important to confirm that Yukawa unification can work consistently with $\mu > 0$.

In this paper we assume exact Yukawa unification and search, using a $\chi^2$ analysis, for regions of SUSY parameter space with $\mu > 0$ providing good fits to the low energy data. We show that Yukawa unification dramatically constrains the Higgs and SUSY spectra. These results are sensitive to the SUSY breaking mechanism.

It is much easier to obtain EWSB with large $\tan \beta$ when the Higgs up/down masses are split (m_{H_u}^2 < m_{H_d}^2). In our analysis we consider two particular schemes we refer to as universal and D term splitting. In the first case the third generation squark and slepton soft masses are given by the universal mass parameter $m_{16}$, and only Higgs masses are split: $m_{(H_u, H_d)}^2 = m_{10}^2 (1 + \Delta m_H^2)$. In the second case we assume D term splitting, i.e. that the D term for $U(1)_X$ is non-zero, where $U(1)_X$ is obtained in the decomposition of SO(10) → $SU(5) \times U(1)_X$. In this second case, we have $m_{(H_u, H_d)}^2 = m_{10}^2 + 2D_X$, $m_{(Q, u, e)}^2 = m_{16}^2 + D_X$, $m_{(d, L)}^2 = m_{16}^2 - 3D_X$. The universal case does not at first sight

Note, GUT scale threshold corrections to this Yukawa unification boundary condition are naturally small (< 1%), since they only come at one loop from the SO(10) gauge sector and the third generation - Higgs Yukawa coupling. This is in contrast to GUT scale threshold corrections to gauge coupling unification which may be significant, coming from doublet/triplet splitting in the Higgs sector and, even more importantly, the SO(10) breaking sector which typically has many degrees of freedom. The data requires $\epsilon_3 = \frac{\alpha_3(M_Z) - \alpha_3(M_G)}{\alpha_3(M_G)} \sim -4\%.$
appear to be similarly well motivated. It is quite clear however that in any SUSY model the Higgs bosons are very special. R parity is used to distinguish Higgs superfields from quarks and leptons. In addition, a supersymmetric mass term \( \mu \) with value of order the weak scale is needed for an acceptable low energy phenomenology. Since \( \mu \) is naturally of order \( M_G \), one needs some symmetry argument why it is suppressed. Of course, if the Higgs are special, then it is reasonable to assume splitting of Higgs, while maintaining universal squark and slepton masses. This may be achieved by GUT scale threshold corrections to the soft SUSY breaking scalar masses \([10]\). Here we present the most compelling mechanism \([11]\). In \( SO(10) \), neutrinos necessarily have a Yukawa term coupling active neutrinos to the “sterile” neutrinos present in the 16. In fact for \( \nu_\tau \) we have \( \lambda_{\nu_\tau} \bar{\nu}_L H_u \) with \( \lambda_{\nu_\tau} = \lambda_t = \lambda_b = \lambda_\tau \equiv \lambda \). In order to obtain a tau neutrino with mass \( m_{\nu_\tau} \sim 0.05 \text{ eV} \) (consistent with atmospheric neutrino oscillations), the “sterile” \( \bar{\nu}_\tau \) must obtain a Majorana mass \( M_{\bar{\nu}_\tau} \geq 10^{13} \text{ GeV} \). Moreover, since neutrinos couple to \( H_u \) (and not to \( H_d \)) with a fairly large Yukawa coupling (of order 0.7), they naturally distinguish the two Higgs multiplets. With \( \lambda = 0.7 \) and \( M_{\bar{\nu}_\tau} = 10^{13} \text{ GeV} \), we obtain a significant GUT scale threshold correction with \( \Delta m_H^2 \approx 10\% \), remarkably close to the value needed to fit the data. At the same time, we obtain a small threshold correction to Yukawa unification \( \approx 2.5\% \) (for more details see \([11]\)).

Our analysis is a top-down approach with 11 input parameters, defined at \( M_G \), varied to minimize a \( \chi^2 \) function composed of 9 low energy observables. The 11 input parameters are: \( M_G, \alpha_G(M_G), \epsilon_3 \); the Yukawa coupling \( \lambda \), and the 7 soft SUSY breaking parameters \( \mu, M_{1/2}, A_0, \tan \beta, m_{16}, m_{10}, \Delta m_H^2, (D_X) \) for universal (D term) case. We use two (one)loop renormalization group [RG] running for dimensionless (dimensionful) parameters from \( M_G \) to \( M_Z \) and complete one loop threshold corrections at \( M_Z \) \([8]\). We require electroweak symmetry breaking using an improved Higgs po-
tential, including $m_t^4$ and $m_b^4$ corrections in an effective 2 Higgs doublet model below $M_{\text{stop}}$ [12]. The $\chi^2$ function includes the 9 observables; 6 precision electroweak data $\alpha_{\text{EM}}, G_\mu, \alpha_s(M_Z), M_Z, M_W, \rho_{\text{NEW}}$ and the 3 fermion masses $M_{\text{top}}, m_b(m_b), M_\tau$. The experimental values used for the low energy observables are given in the table.

Fig. 1 shows the constant $\chi^2$ contours for $m_{16} = 1500$ and 2000 GeV in the case of universal squark and slepton masses. We find acceptable fits ($\chi^2 < 3$) for $A_0 \sim -1.9 m_{16}$, $m_{30} \sim 1.4 m_{16}$ and $m_{16} \geq 1.2$ TeV. The best fit is for $m_{16} \geq 2000$ GeV with $\chi^2 < 1$. Note, electroweak symmetry breaking in this region of parameter space requires splitting Higgs up/down masses, $\Delta m_{H}^2 \sim O(13\%)$. This range of soft SUSY parameters is consistent with solution (B) of Olechowski and Pokorski [10]. In the table we present the input parameters, the fits and the predicted Higgs and SUSY spectra for two representative points with universal squark and slepton masses and the best fit value for D term splitting. We have not presented the contour plots for D term splitting since as can be seen from the best fit point in the table, the bottom quark mass is poorly fit in this case and $\chi^2 > 5$. Recall, since we have 11 input parameters and only 9 observables, we consider such poor fits unacceptable.

Fig. 2 gives the constant $m_b(m_b)$ and $\Delta m_b$ contours for $m_{16} = 2000$ GeV. We see that the best fits, near its central value, are found with $\Delta m_b \leq -2\%$. Why does Yukawa unification only work in this narrow region of SUSY parameter space? The log corrections $\Delta m_b^{\text{log}} \sim 4 - 6\%$ (total contribution from gluino, neutralino, chargino and electroweak loops) are positive and they must be cancelled in order to obtain $\Delta m_b \leq -2\%$. The leading mass insertion corrections proportional to $\tan \beta$ are approximately given by [7]

$$\Delta m_b^\tilde{g} \approx \frac{2\alpha_3}{3\pi} \frac{\mu m_\tilde{g}^2}{m_b^2} \tan \beta$$ and $$\Delta m_b^\tilde{\chi}^+ \approx \frac{\lambda^2_1}{16\pi^2} \frac{\mu A_t}{m_\tilde{t}^2} \tan \beta.$$
They can naturally be as large as 40%. The chargino contribution is typically opposite in sign to the gluino, since $A_t$ runs to an infrared fixed point $\propto -M_{1/2}$ (see for example, Carena et al. [7]). Hence in order to cancel the positive contribution of both the log and gluino contributions, a large negative chargino contribution is needed. This can be accomplished for $-A_t > m_\tilde{g}$ and $m_\tilde{t}_1 << m_\tilde{b}_1$. The first condition can be satisfied for $A_0$ large and negative, which helps pull $A_t$ away from its infrared fixed point. The second condition is also aided by large $A_t$. However in order to obtain a large enough splitting between $m_\tilde{t}_1$ and $m_\tilde{b}_1$, large values of $m_{16}$ are needed. Note, that for universal scalar masses, the lightest stop is typically lighter than the sbottom. We typically find $m_\tilde{b}_1 \sim 3 m_\tilde{g}_1$. On the other hand, D term splitting with $D_X > 0$ gives $m_\tilde{b}_1 \leq m_\tilde{t}_1$. As a result in the case of universal boundary conditions excellent fits are obtained for top, bottom and tau masses; while for D term splitting the best fits give $m_b(m_b) \geq 4.59$ GeV.

Finally in Fig. 3 we show the constant light Higgs mass contours for $m_{16} = 1500$ and 2000 GeV (solid lines) with the constant $\chi^2$ contours overlayed (dotted lines). Yukawa unification for $\chi^2 \leq 1$ clearly prefers light Higgs mass in a narrow range, 112 - 118 GeV. In this region the CP odd, the heavy CP even Higgs and the charged Higgs bosons are also quite light (see fit 2 in the table). In addition we find the mass of $\tilde{t}_1 \sim (150 - 250)$ GeV, $\tilde{b}_1 \sim (450 - 650)$ GeV, $\tilde{\tau}_1 \sim (200 - 500)$ GeV, $\tilde{g} \sim (600 - 1200)$ GeV, $\tilde{\chi}^+ \sim (100 - 250)$ GeV, and $\tilde{\chi}^0 \sim (80 - 170)$ GeV. All first and second generation squarks and sleptons

---

2 It would be interesting to see how sensitive our results, for Higgs masses, may be to alternative electroweak symmetry breaking approximations. In this paper we have used the effective 2 Higgs doublet analysis of [12] with an estimated 3 GeV uncertainty in Higgs masses. This approximation may be particularly well suited to the light Higgs spectrum we obtain in our analysis. The alternative scheme, in which the Higgs tadpoles are evaluated at a scale of order $M_{stop}$ [8] is however more frequently used in the literature.
Table 1: Three representative points of the fits.
We fit the central values: $M_Z = 91.188$, $M_W = 80.419$, $G_\mu \times 10^5 = 1.1664$, $\alpha_{EM}^{-1} = 137.04$, $M_\tau = 1.7770$ with 0.1% numerical uncertainties; and the following with the experimental uncertainty in parentheses: $\alpha_s(M_Z) = 0.1180 (0.0020)$, $\rho_{\text{new}} \times 10^3 = -0.200 (1.1)$, $M_t = 174.3 (5.1)$, $m_b(m_b) = 4.20 (0.20)$. The neutral Higgs masses $h, H, A_0$ are pole masses; while all other sparticle masses are running masses.

| Data points | 1    | 2    | 3    |
|-------------|------|------|------|
| Input parameters |      |      |      |
| $\alpha_{G}^{-1}$ | 24.46 | 24.66 | 24.73 |
| $M_G \times 10^{-16}$ | 3.36 | 3.07 | 3.13 |
| $\epsilon_3$ | -0.042 | -0.0397 | -0.046 |
| $\lambda$ | 0.70 | 0.67 | 0.80 |
| $m_{16}$ | 1500 | 2000 | 2000 |
| $m_{10}$ | 2027 | 2706 | 2400 |
| $\Delta m_H^2$ | 0.13 | 0.13 | 0.07 |
| $M_{1/2}$ | 250 | 350 | 350 |
| $\mu$ | 150 | 200 | 115 |
| $\tan \beta$ | 51.2 | 50.5 | 54.3 |
| $A_0$ | -2748 | -3748 | -731 |
| $\chi^2$ observables |      |      |      |
| $M_Z$ | 91.13 | 91.14 | 91.15 |
| $M_W$ | 80.45 | 80.45 | 80.44 |
| $G_\mu \times 10^5$ | 1.166 | 1.166 | 1.166 |
| $\alpha_{EM}^{-1}$ | 137.0 | 137.0 | 137.0 |
| $\alpha_s(M_Z)$ | 0.1175 | 0.1176 | 0.1161 |
| $\rho_{\text{new}} \times 10^3$ | 0.696 | 0.460 | 0.035 |
| $M_t$ | 175.5 | 174.6 | 177.9 |
| $m_b(m_b)$ | 4.28 | 4.27 | 4.59 |
| $M_\tau$ | 1.777 | 1.777 | 1.777 |
| TOTAL $\chi^2$ | 1.50 | 0.87 | 5.42 |
| $\tilde{h}$ | 116 | 116 | 115 |
| $\tilde{H}$ | 120 | 121 | 117 |
| $\tilde{A}$ | 110 | 110 | 110 |
| $\tilde{H}^+$ | 148 | 148 | 146 |
| $\tilde{\chi}_1^0$ | 86 | 130 | 86 |
| $\tilde{\chi}_2^0$ | 135 | 190 | 126 |
| $\tilde{\chi}_1^\pm$ | 123 | 178 | 105 |
| $\tilde{g}$ | 661 | 913 | 902 |
| $\tilde{t}_1$ | 135 | 222 | 1020 |
| $\tilde{b}_1$ | 433 | 588 | 879 |
| $\tilde{\tau}_1$ | 288 | 420 | 1173 |
| $\alpha^{\text{SUSY}}_\mu \times 10^{10}$ | 9.7 | 5.5 | 6.1 |
have mass of order $m_{16}$. The light stop and chargino may be visible at the Tevatron. With this spectrum we expect $\tilde{t}_1 \to \tilde{\chi}^0 b$ with $\tilde{\chi}^0 \to \tilde{\chi}^0_1 \tilde{l} \nu$ to be dominant. Lastly $\chi^0_1$ is the LSP and possibly a good dark matter candidate \cite{3}.

The region of SUSY parameter space preferred by Yukawa unification may be consistent with a supergravity mechanism for SUSY breaking at $M_{Pl}$ with RG running from $M_{Pl}$ to $M_G$ (see for example Murayama et al. \cite{14}). It however cannot be obtained with gauge mediated or gaugino mediated SUSY breaking mechanisms where $A_0 = 0$ at zeroth order. It may also be obtained in anomalously mediated schemes but in this case one still has to worry about slepton masses squared and also the fact that in this case, since the gluino and chargino masses have opposite sign, it is difficult to fit both $b \to s\gamma$ and $a_\mu$.

In a future paper \cite{11} we present the sparticle spectrum in more detail and consequences for Tevatron searches. We discuss the sensitivity of our results to small GUT scale threshold corrections to Yukawa unification with both universal and D term Higgs up/down splitting. We also check the robustness of the Higgs spectrum by artificially adjusting the CP odd Higgs mass using a penalty in $\chi^2$. We find that $\chi^2$ increases by at most 40% for any $m_A^0$ less than $\approx 350 \text{ GeV}$. The light Higgs mass $m_h$ is rather insensitive to the value of $m_A^0$; whereas $m_H, m_H^+$ are linearly dependent on $m_A^0$. We also consider constraints resulting from the processes $b \to s\gamma$, $B_s \to \mu^+ \mu^-$, $a_\mu^{NEW}$ and the proton lifetime in a semi model independent way. We shall only make a few short comments here. In order to fit $b \to s\gamma$ we find that the coefficient $C_7^{MSSM} \sim -C_7^{SM}$ (see for example, Eqn. 9 in Ref. \cite{4}) with the chargino term dominating by a factor of order 5 over all other contributions. This is due to the light stop $\tilde{t}_1$. In fact, $b \to s\gamma$ is more sensitive to $m_{\tilde{t}_1}$ than $m_b(m_b)$. Fitting the central value $B(b \to s\gamma) = 2.96 \times 10^{-4}$ \cite{5} requires a heavier $\tilde{t}_1$ with $(m_{\tilde{t}_1})_{MIN} \sim 500 \text{ GeV}$; significantly larger than the range which provides the best fits to $m_b$. We now find $m_b(m_b)_{MIN} \sim 4.3$. Moreover no other sparticle masses are affected. The process $B_s \to \mu^+ \mu^-$ provides a lower bound on $m_A^0 \geq 200 \text{ GeV}$ (see recent work of \cite{16}). However this has only a minor impact on $\chi^2$ as discussed above. We recall that proton decay experiments prefer values of $m_{16} > 2000 \text{ GeV}$ and $m_{16} \gg M_{1/2}$ (see ref. \cite{17}). This is in accord with the range of SUSY parameters found consistent with third generation Yukawa unification. There is however one experimental result which is not consistent with either Yukawa unification or proton decay and that is the anomalously magnetic moment of the muon. Large values of $m_{16} \geq 1200 \text{ GeV}$ lead to very small values for $a_\mu^{NEW} \leq 16 \times 10^{-10}$. Hence a necessary condition for Yukawa unification is that forthcoming BNL data \cite{9} and/or a reanalysis of the strong interaction variations to $a_\mu^{SM}$ will significantly decrease the discrepancy between the data and the standard model value of $a_\mu$.

In summary, most of the results of our analysis including only third generation fermions remain intact when incorporating flavor mixing. The light Higgs mass and most sparticle masses receive only small corrections. The lightest stop mass increases, due to $b \to s\gamma$. Nevertheless there is still a significant $\tilde{t}_1 - \tilde{t}_2$ splitting and $m_{\tilde{t}_1} < m_{\tilde{b}_1}$. The $A^0$, $H$, $H^+$ masses are necessarily larger in order to be consistent with $B_s \to \mu^+ \mu^-$. \cite{11},

\footnote{We thank K.S. Babu and C. Kolda for discussions.}
which suggests that this process should be observed soon; possibly at Run II of the Tevatron. Finally, the central value for $a_{\mu}^{NEW}$ must significantly decrease. The “smoking guns” of SO(10) Yukawa unification, presented in this letter, should be observable at Run III of the Tevatron or at LHC. Also, in less than a year we should have more information on $a_{\mu}^{NEW}$.

In previous works Yukawa unification with $\mu > 0$ was not possible. Pierce et al. [8] assume $\Delta m_{H}^{2} = 0$ and, as a result, they are not able to enter the region of SUSY parameter space consistent with both EWSB and Yukawa unification. Baer et al. [18] also cannot obtain Yukawa unification with $\mu > 0$. This is because they use D term splitting for Higgs up/down which as discussed typically leads to sbottom lighter than stop.

While completing this article, the paper by Baer and Ferrandis [19] appeared which confirmed our results [20] on the existence of a preferred region of SUSY parameter space consistent with Yukawa unification and $\mu > 0$. Their results however require significant GUT threshold corrections to $\lambda_{t} = \lambda_{b} = \lambda_{\tau}$ of order 8 - 15% which helps them obtain $m_{\tilde{t}_{1}} < m_{\tilde{b}_{1}}$. They also claim that better fits are obtained with D term splitting than with the universal splitting case. We believe the latter is only true because the authors do not allow their SUSY parameters, in particular $m_{16}$ and $A_{0}$, to explore the region of parameter space discussed in [20] and this paper.

Acknowledgements
S.R. and R.D. are partially supported by DOE grant DOE/ER/01545-816. S.R. graciously acknowledges the Alexander von Humboldt Foundation, the Universität Bonn and the Theory Division at CERN for partial support. R.D. and S.R. thank the Physics Department at the Universität Bonn and the Theory Division at CERN for their kind hospitality while working on this project. R.D. and S.R. thank A. Dedes for his help and collaboration in the early stages of this analysis.

References

[1] H. Georgi, Particles and Fields, Proceedings of the APS Div. of Particles and Fields, ed C. Carlson, p. 575 (1975); H. Fritzsch and P. Minkowski, Ann. Phys. 93, 193 (1975).

[2] S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev. D24, 1681 (1981); S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150 (1981).

---

[4] In ref. [3] the corrections $\Delta m_{b}^{log}$ were neglected and Yukawa unification with $\mu > 0$ was obtained in a large region of parameter space with no constraints on the Higgs and SUSY spectra.

[5] In version 3 of this paper, the authors now cover a larger region of soft SUSY breaking parameter space. Now solutions with D term splitting are only found with $\geq 28\%$ GUT threshold corrections to Yukawa unification. Moreover, they still claim that D term splitting works better than the universal case. We have no explanation for this discrepancy.
[3] U. Amaldi, W. de Boer and H. Fürstenau, Phys. Lett. B260, 447 (1991); J. Ellis, S. Kelly and D.V. Nanopoulos, Phys. Lett. B260, 131 (1991); P. Langacker and M. Luo, Phys. Rev. D44, 817 (1991).

[4] T. Banks, Nucl. Phys. B303, 172 (1988); M. Olechowski and S. Pokorski, Phys. Lett. B214, 393 (1988); S. Pokorski, Nucl. Phys. B13 (Proc. Supp.), 606 (1990); B. Ananthanarayan, G. Lazarides and Q. Shafi, Phys. Rev. D44, 1613 (1991); Q. Shafi and B. Ananthanarayan, ICTP Summer School lectures (1991); S. Dimopoulos, L.J. Hall and S. Raby, Phys. Rev. Lett. 68, 1984 (1992), Phys. Rev. D45, 4192 (1992); G. Anderson et al., Phys. Rev. D47, 3702 (1993); G. Anderson et al., Phys. Rev. D49, 3660 (1994).

[5] B.D. Wright, unpublished, [hep-ph/9404217] (1994).

[6] T. Blažek et al., Phys. Rev. D56, 6919 (1997); T. Blažek, S. Raby and K. Tobe, Phys. Rev. D60, 113001 (1999), Phys. Rev. D62, 055001 (2000).

[7] L.J. Hall, R. Rattazzi and U. Sarid, Phys. Rev. D50, 7048 (1994); R. Hempfling, Phys. Rev. D49, 6168 (1994), M. Carena et al., Nucl. Phys. B426, 269 (1994); T. Blažek, S. Pokorski and S. Raby, Phys. Rev. D52, 4151 (1995).

[8] D. Pierce et al., Nucl. Phys. B491, 3 (1997).

[9] H.N. Brown et al., Phys. Rev. Lett. 86, 2227 (2001); U. Chattopadhyay and P. Nath, Phys. Rev. D53, 1648 (1996).

[10] M. Olechowski and S. Pokorski, Phys. Lett. B344, 201 (1995); D. Matalliotakis and H.P. Nilles, Nucl. Phys. B435, 115 (1995); N. Polonsky and A. Pomarol, Phys. Rev. D51, 6532 (1995); H. Murayama, M. Olechowski and S. Pokorski, Phys. Lett. B371, 57 (1996).

[11] T. Blažek, R. Dermíšek and S. Raby, [hep-ph/0201081] (2002).

[12] H.E. Haber and R. Hempfling, Phys. Rev. D48, 4280 (1993); M. Carena et al., Phys. Lett. B355, 209 (1995); M. Carena, M. Quiros and C.E.M. Wagner, Nucl. Phys. B461, 407 (1996).

[13] See for example, L. Roszkowski, R.R. de Austri and T. Nihei, [hep-ph/0106334].

[14] T. Blažek and S. Raby, Phys. Rev. D59, 095002 (1999) and references therein.

[15] P. Gambino and M. Misiak, [hep-ph/0104034 and references therein.]

[16] G. Isidori and A. Retico, [hep-ph/0110121]; A. Dedes, H.K. Dreiner and U. Nierste, [hep-ph/0108037]; K.S. Babu and C. Kolda, Phys. Rev. Lett. 84, 228 (2000) and references therein.

[17] R. Dermíšek, A. Mafi and S. Raby, Phys. Rev. D63, 035001, (2001).
[18] H. Baer et al., Phys. Rev. D61, 111701 (2000); H. Baer et al., Phys. Rev. D63, 015007 (2001).

[19] H. Baer and J. Ferrandis, hep-ph/0106352

[20] See also S. Raby talk, preliminary results, Higgs & SUSY, March 2001, Orsay, France; S. Raby talk, SUSY’01, June 2001, Dubna, Russia, hep-ph/0110203 and R. Dermíšek talk, SUSY’01, June 2001, Dubna, Russia, hep-ph/0108249.