The COMET toolkit for composing customizable genetic programs in mammalian cells

Patrick S. Donahue1,2,3, Joseph W. Draut1,8, Joseph J. Muldoon1,2,8, Hailey I. Edelstein1,8, Neda Bagheri1,2,4,5,6,7 & Joshua N. Leonard1,2,4,5,6*

Engineering mammalian cells to carry out sophisticated and customizable genetic programs requires a toolkit of multiple orthogonal and well-characterized transcription factors (TFs). To address this need, we develop the COmposable Mammalian Elements of Transcription (COMET)—an ensemble of TFs and promoters that enable the design and tuning of gene expression to an extent not, to the best of our knowledge, previously possible. COMET currently comprises 44 activating and 12 inhibitory zinc-finger TFs and 83 cognate promoters, combined in a framework that readily accommodates new parts. This system can tune gene expression over three orders of magnitude, provides chemically inducible control of TF activity, and enables single-layer Boolean logic. We also develop a mathematical model that provides mechanistic insights into COMET performance characteristics. Altogether, COMET enables the design and construction of customizable genetic programs in mammalian cells.
The construction of synthetic genetic programs has emerged as a powerful approach for investigating signaling and regulatory networks and for engineering cell-based therapeutic and diagnostic devices. Applications in mammalian cells often involve designing new ways for cells to sense and respond to internal states or environmental cues. Most programs utilize transcriptional regulation, and while large libraries of components such as transcription factors (TFs) and promoters have been developed for prokaryotes, a dearth of analogous parts for mammalian systems currently limits both fundamental research and applications in medicine.

Early synthetic TFs used in eukaryotic cells employ the bacterial tetracycline-responsive repressor TetR or yeast Gal4, and these proteins remain workhorses. New TFs have expanded the pool of orthogonal regulators through programmable DNA recognition, including zinc-finger (ZF)-TFs, transcription activator-like effectors (TALEs), dCas9-TFs, and TetR family regulators. ZF-TFs are especially attractive for building a toolkit for transcriptional control, as they are the smallest of these new TFs, affording space for more complex genetic programs under constraints such as gene delivery vehicle cargo limits.

An ideal transcriptional toolkit would include well-characterized TFs and promoters, a physical understanding of how design choices impact performance characteristics, and a quantitative framework that describes how such biological parts may be combined to produce intended behaviors. Such a toolkit should include multiple orthogonal activating and inhibitory TFs; sets of TFs and promoters that enable one to experimentally scan through values of a given performance characteristic; and modularity in TF and promoter design to enable swapping and expansion of the toolkit and interfacing with other biological parts.

To address these needs, we report the Composable Mammalian Elements of Transcription (COMET)—an ensemble of engineered promoters and modular ZF-TFs with tunable properties. We incorporate into COMET a panel of 19 TFs that were originally developed in yeast using designed ZF domains. We characterize new promoters and then append new functional domains onto the ZFs. In doing so, we elucidate design rules for utilizing TFs and promoters to build gene expression programs exhibiting customizable activation, inhibition, small molecule-responsiveness, and Boolean logic in mammalian cells, and we develop a mathematical model to describe the properties of these genetic parts and programs.

Results

Identifying promoter design rules in mammalian cells. In nature, TFs based on ZF domains coordinate diverse functions. For example, the evolutionarily ancient and widely expressed SP1 contains three Cys2-His2-type ZF motifs (generally considered a minimal ZF domain), and SP1 binding sites appear as tandem arrays in genes regulating cell growth, apoptosis, and immune function, as well as in compact, dynamically regulated viral promoters such as the long terminal repeat of HIV. To begin developing a toolkit for constructing transcriptional programs from basic parts, we first considered five synthetic ZF domains characterized in yeast by Khalil et al. and investigated whether these tools could be adapted to regulate transcription in mammalian cells. In this mammalian library, each TF comprises a ZF binding site array upstream from the TATA box.

Distance between the ZF binding site array and the TATA box (bp)	Induction over background
33	113-fold induction
117	approximately 12

These new promoters yielded strong activity and potential for high output. Increasing spacing led to decreased expression, and this effect was especially pronounced for promoters with many sites. Thus, when ZFa bind farther from the promoter, the AD is seemingly too distant to contribute to transcriptional activation. This mechanism would also explain diminishing returns observed when adding sites to large arrays. In summary, increasing ZF-TF binding site count enhances gene expression, but only if the sites are near the TATA box.

Given these findings, we next investigated whether compacting binding sites near the minimal promoter could potentiate transcriptional output. Our initial constructs had 16–38 bp spacers between each 9 bp binding site. To generate a more compact structure, constructs were generated with 6 bp spacers, such that ZFa would bind 15 bp apart in a rotating configuration around the DNA, as one turn of the double helix is 10.5 bp. We hypothesized that this configuration could avoid steric occlusion while increasing the local concentration of ZFa. A panel of compact promoters was generated, each containing 1–12 binding sites in an array beginning 33 bp upstream of the TATA box. These new promoters yielded strong output and 360-fold induction over background. The output of the strongest compact promoter (ZF1x12-C) was over five times greater than that of the comparable spaced promoter (ZF1x12-S). Background remained low across all constructs. Several of the strongest promoters exhibited mild squelching—a phenomenon in which inducing the expression of a TF (here, ZFa, which is expected to induce expression of the EFYP reporter) causes unexpected diminishment in the expression of a gene (here, the constitutively expressed EBFP2 transfection control) by competing for a limited pool of cellular resources that carry out transcription. Here, squelching is apparent when cells with high EFYP expression have lower EBFP2 expression than do cells with lower EFYP expression. Thus, COMET ZFa and promoters can be potentiated until they saturate the cellular capacity for transgene expression, and one can use simple rules to titrate transcriptional output.

Elucidating mechanisms of COMET gene expression. Several observations prompted investigation into the COMET mechanism. At high doses of ZFa plasmid, reporter output plateaued at...
different levels depending on promoter architecture (Fig. 2a, Supplementary Fig. 2a-c). This plateau did not increase by switching minimal promoters, although some choices led to higher background (Supplementary Fig. 2d). Reporter expression increased more substantially decreases in reporter expression. Compaction of ZFa binding sites enhances ZFa-induced reporter expression, for an equivalent number of ZF binding sites (one-tailed Welch's t-test, \(p = 0.002 \)), and across compact promoters, ZFa-induced reporter expression increased with the number of binding sites (ANOVA \(p < 0.001 \)). Reporter expression increased significantly from 2 to 3, 3 to 4, 5 to 6, and 8 to 12 binding sites (Tukey's HSD test with \(\alpha = 0.05 \)). Experiments were conducted in biologic triplicate, and data were analyzed as described in Methods. Error bars represent the S.E.M. Source data are provided in the Source Data file.

To help elucidate the mechanisms by which COMET operates, we developed a mathematical model of this system. As summarized in Fig. 2 and detailed in Methods, we first considered mechanistic steps of gene expression, wrote equations capturing these steps (writing such equations is tantamount to formulating a hypothesis as to how gene expression operates), identified a formulation consistent with experimental observations, and simplified this representation by removing details not required to describe observed trends in order to generate a concise model. Finally, we fit parameters of the concise model to data in order to quantitatively describe experimental observations. We hypothesized that this process should generate a set of experimentally grounded parameters representing interpretable features of TF-promoter activity. Throughout, our goal was not to predict TF or promoter sequences de novo, but rather to describe and provide insight into observed trends. The explanatory value of such a model often exceeds insights that are accessible by intuition alone, and ultimately this framework could be used to design new genetic functions based upon COMET parts.

We initiated this process by using first principles to produce a detailed model with features of transcriptional control\(^{26} \) including physical and functional interactions between the promoter, TFs, and proteins like RNAPII (Fig. 2b, Methods). This detailed model relates transcriptional output to TF concentration, TF-DNA-binding affinity, TF-DNA-binding cooperativity, RNAPII recruitment cooperativity, and maximum promoter activation. We then generated a series of theoretical landscapes analogous to the experimental landscapes in Fig. 2a, varying parameters across a biologically reasonable range, and observed that the landscapes fell within one of four categories defined with respect to the concavity and sigmoidicity of cross-sections along each axis (Fig. 2c). The experimental data most closely resembled case (iii), indicating that TF-DNA-binding is non-cooperative, but RNAPII recruitment is cooperative, and the maximum transcription rate (at a high ZFa dose) increases with both the number and compactness of binding sites. Therefore, the enhanced potency of the compact promoters stems from the cooperative recruitment of transcriptional machinery.

Based upon the observed ZFa dose response profiles (Fig. 2a) and these insights, we proposed a concise response function to represent the rate of transcription (\(f \)) as a function of ZFa dose with three parameters: background transcription (\(b \)), a steepness metric (\(w \)) related to TF-DNA-binding affinity, and a metric for maximum transcription (\(m \)) (Fig. 2d, Methods). As indicated, the three parameters in this concise response function can be related to the additional parameters in the original detailed representation. For a given ZFa-promoter combination, \(m \) is experimentally determined and is based upon the number and spacing of binding sites in the promoter, and \(b \) is determined based on reporter expression without ZFAs; \(w \) can be fit to ZFa dose response data by our previously developed method that improves parameter estimation by accounting for variation in gene expression\(^{27} \) (Fig. 2e, Supplementary Fig. 3a–c; fitted...
parameters are listed in Supplementary Tables 1 and 2. Simulated data from the calibrated model provided close agreement with the experimental data, demonstrating that a concise representation can be used to analyze and describe COMET-mediated gene expression.

Comparison of the calibrated model and experimental data confirmed two trends that hold across conditions (Supplementary Fig. 3d). First, the dependence of relative reporter output on binding site number is independent of the dose of ZFa plasmid when the output is scaled to its maximum value in each binding site series. Second, the dependence of relative reporter output on ZFa dose is independent of the number of binding sites when the output is scaled to its maximum value in each dose series. Thus, inducible gene expression follows patterns that hold across various promoter designs and that are captured by a concise model. The occurrence of these patterns, when paired with the properties elucidated by the model, makes ZFa-induced gene expression readily interpretable and ultimately usable—these are desirable features for a transcriptional toolkit.

ZFa library characterization and orthogonality. Building upon our initial characterization of five ZFAs (Fig. 1b), we evaluated whether 19 previously characterized ZFAs could activate gene expression in mammalian cells. We observed that all ZFAs drove transcription from their x6-C cognate promoters to varying extents (Fig. 3a, Supplementary Fig. 4a). Dose response profiles for the strongest 12 ZFAs revealed a set of uncorrelated cases, which we hypothesized might be due to differential ZF affinity for binding cognate DNA sequences. Since the base pair upstream and base pair downstreamanking nucleotides can differ substantially between ZFAs, we revisited promoters for two ZFAs with contrasting affinity for binding cognate DNA sequences. Since the base pair upstream and base pair downstreamanking nucleotides can differ substantially between ZFAs, we revisited promoters for two ZFAs with contrasting affinity for binding cognate DNA sequences.

The COMET model. A model that represents ZFa-induced transcription from their x6-C cognate promoters to varying extents (Fig. 3a, Supplementary Fig. 4a). Dose response profiles for the strongest 12 ZFAs revealed a set of uncorrelated cases, which we hypothesized might be due to differential ZF affinity for binding cognate DNA sequences. Since the base pair upstream and base pair downstreamanking nucleotides can differ substantially between ZFAs, we revisited promoters for two ZFAs with contrasting affinity for binding cognate DNA sequences. Since the base pair upstream and base pair downstreamanking nucleotides can differ substantially between ZFAs, we revisited promoters for two ZFAs with contrasting affinity for binding cognate DNA sequences.
be used to tune transcriptional activation. To test whether the number of reporter induction mediated by ZF2a and ZF3a depends on the number of binding sites in a manner similar to that observed for ZF1a (Fig. 1e), we varied the number of sites using compact promoters, and observed a similar trend for up to eight sites (Fig. 3b). Interestingly, there was a small decrease in reporter expression as the number of binding sites increased from 6 to 7 for both ZF2 and ZF3. It is possible that some promoter architectures, such as ZFx7-C, involve mechanisms that result in slight deviations from overall trends.

To test whether ZF-mediated activation of cognate promoters is orthogonal across ZF-promoter combinations, we performed a series of pairwise evaluations using the twelve strongest ZFa and x6-C reporters. The highest expression from each promoter was observed with its cognate ZFa (Fig. 3c, Supplementary Fig. 5e). Of the 132 pairs of ZFa and non-cognate promoters, 80% showed less than 1% of the maximal expression from that promoter (i.e., off-target activation), and 97% showed less than 3% off-target activation. The highest off-target activation of a ZFa/non-cognate promoter pair (ZF2a/ZF15x6-C at 75%) may be explained by the similarities in the binding site sequences for ZF2 and ZF15 (7 of 9 bp in common). However, such sequence similarities were not noted for the next three highest off-target combinations (ZF6a/ZF7x6-C at 10%, ZF7a/ZF15x6-C at 6%, and ZF6a/ZF9x6-C at 4% off-target activation). Overall, COMET ZFa are generally orthogonal from one another and are thus well suited to composing genetic programs requiring multiple independent transcription units.

Tuning transcription through protein engineering. Having explored strategies for tuning gene expression by promoter engineering, we next investigated two strategies for tuning via protein engineering: altering the affinity of the ZF for the DNA and altering the strength of the AD. For the first strategy, we mutated four arginine residues in the ZF that interact with the DNA backbone (Fig. 4a). Arginine-to-alanine substitutions in these positions ablate favorable charge interactions between the ZF and negatively charged phosphates in the DNA backbone and decrease ZF1a-induced expression in yeast. As expected, ZFa-mediated gene expression decreased with an increasing number of such substitutions (Fig. 4b, Supplementary Fig. 6a, b). Interestingly, while changing the promoter architecture affected only the maximum transcription (m) (Fig. 2), ZF mutations affected both the maximum transcription and the relative steepness of the ZFa dose response curve (m and w). Additionally, the changes in these values were correlated, revealing an axis along which ZFa R-to-A mutations tune TF strength. This result differs from our previous analysis of ZF domain choice, which affected m and w in an uncorrelated manner (Supplementary Fig. 5c). R-to-A mutations decreased ZFa-induced transcription in a manner that was similar across various numbers of binding sites in the promoter (Supplementary Fig. 6c), showing that this tuning can be applied across a variety of promoters. For the second tuning strategy, we tested two ADs in place of VP16: VP64 and VPR (Fig. 4c). When fused in place of VP16, VPR produced the highest expression across several promoters, and VP64 was modestly stronger than VP16 in some cases (Fig. 4d). The relative effect of AD choice diminished as the number of ZF binding sites increased, suggesting that cooperative transcriptional activation by multiple weakly activating TFs (e.g., those based upon VP16), can approach the same magnitude of transcriptional activation mediated by fewer potently activating TFs (e.g., those based upon VPR). Replacing the AD on four other ZFa led to similar results (Supplementary Fig. 6d). Overall, these observations support the utility of multiple-TF engineering strategies for tuning gene expression.

To explore interactions between the two TF protein engineering strategies, we investigated whether stronger ADs could enhance gene expression conferred by TFs with low-affinity ZFs. As ZF binding affinity decreased, ZFa-mediated gene expression decreased substantially with VP16, yet only moderately with VP64 and not at all with VPR (Fig. 4e). We then compared the dose response for the weakest-binding ZFa mutant (AAAA) with each AD to the VP16 ZFa bearing a wild type (WT) ZF domain (Fig. 4f, Supplementary Fig. 6e). As AD strength increased, both m and w increased, as was observed when varying DNA-binding affinity. Although the two domains of a ZFa are physically modular, since they affect the same parameters in the response function, we find that the domains are functionally intertwined. Therefore, the two TF protein engineering strategies should be considered jointly when tuning a ZFa. In summary, our
Fig. 4 Tuning transcription through ZF mutants and AD variants. a The cartoon illustrates arginine-to-alanine (R-to-A) mutations in the ZF domain, which decrease the DNA-binding affinity. b Left: ZF mutations modulate the steepness and the maximum of the ZFa dose response profile. Circles represent experimental data and solid lines represent fitted response function models. Right: correlation between m and w parameters across mutants. The regression line is $m = 7.3 \times 10^2 + 8.6$, and the shaded region is the 95% confidence interval (one-tailed permutation test $p < 0.001$). c The cartoon depicts evaluated ADs. d Effects of AD on inducible reporter expression with different promoters. Gene expression varied with the choice of promoter (two-factor ANOVA $p < 0.001$) and AD choice ($p < 0.001$), and an interaction was observed between these two variables ($p < 0.001$). e Combined effects of AD variants and ZF mutations were identified. Gene expression was affected by both the ZF mutations (two-factor ANOVA $p < 0.001$) and the AD ($p < 0.001$), with an interaction seen between these two variables ($p < 0.001$). Each mutant ZFa induced more reporter expression with VP64 than with VP16 (one-tailed Welch’s t-test, all $p < 0.05$) and with VPR than VP64 (one-tailed Welch’s t-test, all $p < 0.01$). All VPR-ZFa induced similar expression regardless of the use of a WT or mutant ZF (Tukey’s HSD test with $\alpha = 0.05$). f The choice of AD affects the steepness and the maximum of the dose response. Circles represent experimental data and solid lines represent fitted response function models. g The cartoon summarizes expected trends in output gene expression that result from tuning each modular feature of the ZFa and promoters. These design choices can produce either a vertical shift or diagonal shift in response profiles with respect to the number of binding sites and the dose of ZFa. Experiments were conducted in biologic triplicate, and data were analyzed as described in Methods. Error bars depict S.E.M. Source data are provided in the Source Data file.

Design of inhibitory TFs. Inhibitors comprise a key component of a versatile TF toolkit. We hypothesized that removing the AD from the ZFa would result in an inhibitor that binds DNA without inducing transcription (ZF inhibitor, ZFi) (Fig. 5a). We built a promoter with six compact binding sites for ZF1 and in which each ZF1 site overlapped with a ZF2 site to allow for pairwise testing of ZFi and ZFa with fully or partially overlapping sites (Supplementary Fig. 7a). Co-expressing ZF1a with ZFi or ZF2i (equimolar plasmid doses) resulted in a ~50% decrease in inducible expression compared to ZF1a only, and inhibition mediated by partially overlapping ZF2i resembled that mediated by fully overlapping ZF1i (Fig. 5b, Supplementary Fig. 7b). This pattern held across various ZFi doses, and nearly complete inhibition was attained at high ZFi doses (Supplementary Fig. 8a). We hypothesized that transcriptional inhibition could be increased by incorporating a bulky domain to sterically block ZFa from binding adjacent sites in the promoter or to block the recruitment of RNAPII or associated factors. To test this hypothesis, we fused DsRed-Express2 (abbreviated throughout as DsRed) to the ZF domain. Co-expression of ZFi-DsRed and ZFa (equimolar plasmid doses) reduced reporter expression by 90–95%, and at higher ZFi-DsRed doses the inhibition was essentially complete, even when using stronger promoters based upon the CMV minimal promoter (Fig. 5b, Supplementary Fig. 8b, c). Therefore, the choice of a fusion partner affords an
additional design handle for substantially tuning ZFi performance characteristics.

To help understand the mechanism of ZFi-mediated transcriptional inhibition, we considered that within each cell, promoters occupy an ensemble of states that depend on the promoter architecture and the ZFa and ZFi that are present (Fig. 5c). As the relative dose of ZFi to ZFa increases, the distribution of the ensemble should shift toward states that are more inhibited; a trend towards more inhibition should also occur by increasing the relative DNA-binding affinity of the ZFi versus that of the ZFa. Given our understanding of ZFa-mediated transcriptional activation, we speculated that the inhibitors should act via a dual mechanism with these properties: (i) competitive inhibition: since inhibitors intersperse between activators, the spacing between activators should widen, and the effective m should resemble that of a promoter with lower cooperativity.

To explore this proposed mechanism of inhibition, we developed a model that describes the activity of ZFa and ZFi at a single-site promoter by representing physical interactions without a response function (Supplementary Fig. 8d, Methods). Simulated trends for ZFa dose responses with perturbations to DNA-binding affinity broadly agreed with experimental data (Supplementary Fig. 8e, Fig. 4). However, simulated trends for ZFa dose responses for varying AD strengths (at the simulated single-site promoter) differed qualitatively from the trends observed experimentally for a multi-site promoter (Fig. 4f). The difference in outcomes for the single-site and multi-site cases is consistent with our expectation that cooperative ZFa-mediated RNAPII recruitment would be observed only for the latter case.

Fig. 5 Transcriptional inhibition. a The schematic depicts two types of inhibitors that were evaluated. A ZF1/ZF2x6-C hybrid promoter is activated by ZF1a and inhibited by ZFi or ZFi-DsRed. b ZFi and ZFi-DsRed differentially inhibit transcription (one-tailed Welch’s t-test: **p < 0.01, ***p < 0.001). c The cartoon summarizes the proposed conceptual model of ZFi-mediated inhibition. Within each cell, a promoter can occupy states with different configurations, are depicted with solid lines (Methods). COMET inhibitors track the dotted lines, which represent fits to the dual mechanism model, except in the case of ZFi paired with x6-C, which tracks the competitive inhibition-only prediction. Each condition uses ZF1a at a dose of 40 ng. X-axes are scaled linearly from 0 to 10 ng and logarithmically above 10 ng. d Measured and predicted reporter expression were compared for a panel of ZFi mutants. Each condition uses ZF1a (RAAR) at a dose of 40 ng and the ZF1x6-C compact promoter. Experiments were conducted in biologic triplicate, and data were analyzed as described in Methods. Error bars represent the S.E.M. Source data are provided in the Source Data file.
Genomic integration of COMET TFs. Since some applications require stable integration of genetic programs, we investigated how COMET parts function upon stable integration into the genome, and in particular, whether COMET design rules gleaned from transient transfections might extend to performance in the genomic context. As a representative test set, we generated a panel of stable cell lines that each constitutively express a ZFa and contain one of several COMET promoters—varying the number of ZF binding sites and spacing between binding sites—that drive expression of a fluorescent reporter protein. To enable comparisons using a consistent site of genomic integration, we used site-specific Bxb1 recombinase-mediated integration into the AAVS1 safe harbor locus of HEK293FT landing pad cells. In this process, COMET components were cloned into transcription unit positioning vectors (TUPVs) followed by one-step assembly into all-in-one integration vectors (IVs). The IVs used include a constitutive fluorescent protein marker and antibiotic resistance markers, a COMET promoter-driven mKate2 reporter, and either a constitutively expressed VP16-ZF1a or a blank control sequence. Following gene delivery and selection, we obtained cell lines that enable a comparison of COMET-driven gene expression in the stable genomic context (Fig. 6c, Supplementary Fig. 10c) to delivery by transfection of separate plasmids (Fig. 6a, Supplementary Fig. 10a) or transfection of all-in-one vectors (Fig. 6b, Supplementary Fig. 10b).

Overall, genomic COMET components drove gene expression following trends that are consistent with those observed in transient transfection: compact promoters drove more expression than did spaced promoters, and expression increased with the number of binding sites. Interestingly, for compact promoters, increasing the number of binding sites also led to more homogeneous reporter expression profiles spanning only a single order of magnitude—matching the tight distribution expected of a constitutively expressed gene in a landing pad. For the strongest promoters (x6-C and x12-C), tight distributions of reporter expression contributed to high fold inductions (8000 and 14,000, respectively, compared to corresponding reporter-only cell lines). The promoter containing a single ZF1 binding site, placed in a favorable position with respect to the TATA box (Fig. 1d), did confer modest but significant gene expression compared to the control promoter lacking any ZF1 site (Supplementary Fig. 10d), although the expression induced by this ZF1 from a x12-C promoter was 80-fold higher (Fig. 6c). Thus, COMET TFs can drive expression from either the genome or a plasmid, and the design rules used to tune expression in transient transfections may be transferable, at least qualitatively, to the genomic context.

Design and evaluation of small molecule-responsive TFs. Chemical inducibility is useful for conferring external and temporal control over gene expression. We designed a small molecule-responsive ZFa by fusing FBKP and FRB domains, which heterodimerize upon exposure to rapamycin, onto ZF and AD, respectively (Fig. 7a). We expected that without rapamycin, the ZF would bind DNA and not induce transcription, and that with rapamycin, FKBP and FRB would dimerize to reconstitute a functional ZFa. Indeed, rapamycin-activated ZFa (RaZFa) with each AD showed rapamycin-induced reporter expression. (Fig. 7b, Supplementary Fig. 11a). Thus, COMET TFs can be adapted to achieve small molecule-induced gene expression.

We noted that fold increase in reporter output was lower for the RaZFa (± rapamycin) than for the ZFa (± ZF1a). For the RaZFa using VP16, this effect was attributable to low induced reporter expression. We hypothesized that if FKBP-ZF were present in excess, it might competitively inhibit the reconstituted RaZFa from binding the promoter. To investigate, we varied the doses and ratios of RaZFa components (Fig. 7c, Supplementary Fig. 12a). High FKBP-ZF levels diminished expression as a ZF1 would, and excess VP16-FRB increased inducible expression, resulting in high fold induction when paired with lower doses of FKBP-ZF. However, VP64-based RaZFa and VPR-based RaZFa were less affected by component ratios (Supplementary Fig. 12b, c). Thus, it appears that the relative weakness of VP16-mediated transcriptional activation makes VP16-based RaZFa more sensitive to excess FKBP-ZF.

Since high background in the absence of rapamycin limited the fold induction for VP64-based and VPR-based RaZFa, we investigated strategies to decrease background. VPR-FRB alone promoted a very low amount of reporter expression, and this background was greater in the presence of ZF-fusion proteins, even in the absence of rapamycin (Supplementary Fig. 12d), suggesting that the ZF can bind the promoter in such a way that transient promoter-AD interactions induce some transcription. To circumvent this putative undesired mechanism, we removed the nuclear localization signal (NLS) from each RaZFa component or replaced the NLS with a nuclear export signal (NES) (Fig. 7d, Supplementary Fig. 12e). For both VP64-based and...
VPR-based RaZFa, NES tagging of AD-FRB and NLS tagging of FKBP-ZF decreased background while conferring little effect on rapamycin-induced reporter expression, such that fold induction improved. To explain why the addition of NES to FKBP-ZF increased background, we hypothesize that while low levels of nuclear FKBP-ZF are sufficient to allow AD-FRB to drive transcription from the promoter, at higher nuclear levels the FKBP-ZF can act as an inhibitor. The decrease in background associated with the NES tag on AD-FRB was not due to decreased component expression (Supplementary Fig. 12f).

Fig. 6 Characterization of promoter design rules in the genome. The cartoons summarize the systems used to evaluate promoter performance characteristics across three contexts: (a) multiple plasmid transient transfection, (b) single plasmid transient transfection, and (c) single-copy stable integration at a genomic safe harbor locus. The promoters included here comprise 1, 3, 6, or 12 ZF1 binding sites positioned using spaced or compact architectures upstream of the YB_TATA minimal promoter driving an mKate2 reporter gene. Constitutive EBFP2 was used as a transfection control in the transient transfection context and as a marker for genomic locus activity in the stable context. Bar graphs and histograms show reporter expression for EBFP2-expressing cells. In all contexts, ZFa-induced gene expression increased with the number of binding sites on spaced and compact promoters (ANOVA p < 0.00001). To profile the range of inducible expression conferred by each promoter, stable cell lines and transiently transfected cells were characterized using two distinct sets of flow cytometry settings (voltages), each of which was independently calibrated to yield comparable absolute fluorescence units (bar graphs). Experiments were conducted in biologic triplicate, and data were analyzed as described in Methods. Error bars represent the S.E.M. Source data are provided in the Source Data file.
Expression of VP64-FRB was low relative to other components, but increasing the dose of VP64-FRB plasmid—above levels used in Supplementary Fig. 12b—increased background and diminished inducible reporter expression (Supplementary Fig. 12g). Altogether, these design variables led to improved rapamycin-inducible gene expression (greater fold induction) for each AD choice (Supplementary Fig. 13a), with responsiveness across several orders of magnitude of rapamycin concentration (Supplementary Fig. 13b) and yielding a useful system for chemically induced expression.

Implementing Boolean logic with COMET. Finally, we explored whether COMET could be used to encode Boolean logic functions within individual promoters. Our exploration of promoter architecture (Fig. 1c, e) suggested a strategy for designing hybrid promoters with alternating sites for combinations of ZFα to implement AND logic (Fig. 8a). We hypothesized that cooperative activation on compact promoters would occur only when both species of ZFα were present, conferring AND gate behavior. Synergistic activation arising from closely arranged TF binding sites has been used to build AND gates in mammalian genetic programs23, but arranging sites in alternating patterns does not necessarily guarantee the synergy required for an AND gate27. We tested promoters containing various pairs of ZF2 and ZF3 sites (Fig. 8b, Supplementary Fig. 14a). In each case, maximal reporter expression occurred when both ZFα were present, and this expression was greater than the sum of those induced by each ZFα individually—this defines AND gate behavior. For the three-pair hybrid promoter, AND gate behavior was observed even at low ZFα levels; 5 ng of each plasmid encoding ZF2a and ZF3a together produced more reporter expression than did 200 ng of plasmid encoding either ZFα alone (Fig. 8c, Supplementary Fig. 14b). The steep OFF-ON transition along the perimeter of the dose response landscape is due to the effective transition between x3-S and x6-C architectures—an advantageous behavior of COMET that differs from previously reported transcriptional AND gates utilizing tTA and Gal4 (Fig. 8d, Supplementary Fig. 14c, Methods)27.

We extended this hybrid promoter strategy to generate candidate three-input AND gates for ZF1a, ZF2a, and ZF3a. A promoter with one site for each ZFα did not produce AND gate behavior (Supplementary Fig. 14d), which is consistent with the expected similarity in reporter expression for promoters recruiting two versus three ZFα (Fig. 1c, e). However, a promoter with two sites per ZFα did produce AND gate behavior; reporter expression when all three ZFα were present was higher than the sum of the levels when any two ZFα were present plus the level conferred by the third (Fig. 8c). Thus, COMET’s modular features enable the composition of single-promoter AND gates.

Finally, we investigated whether inhibitors could be combined with activators to build complex logic functions using design rules elucidated in this study. As a test case, we designed a four-input logic function that takes both activators and inhibitors as inputs (Fig. 8f, Methods). We first characterized individual interactions between activators and inhibitors and found that ZF2i-DsRed and ZF3i-DsRed were the most effective at inhibiting expression
Predicted Source data are provided in the Source Data arrangement shown. Experiments were conducted in biologic triplicate, and data were analyzed as described in Methods. Error bars represent the S.E.M.

other ZFa individually (one-tailed Welch reporter expression with each ZFa individually, and also greater than the sum from each of the three combinations with two co-expressed ZFa and the

COMET AND behavior is compared with other models of transcriptional AND gates; the latter vary in whether activators have multiplicative cooperativity

The cartoon summarizes a strategy for single-layer, promoter-based logic gates with ZF-TFs. We hypothesized that AND gate promoters could be designed by using multiple repeats of a paired ZF3/ZF2 motif. Full occupancy of this promoter by both ZF2a and ZF3a mimics a fully occupied x6-C promoter, and partial occupancy (with either ZFa alone) mimics an x3-S promoter. Thus, there is a large increase in gene expression when the promoter is occupied by two types of ZFAs compared to one type.

mimics a fully occupied x6-C promoter, and partial occupancy (with either ZFa alone) mimics an x3-S promoter. Thus, there is a large increase in gene expression when the promoter is occupied by two types of ZFAs compared to one type.

A four-input gate was constructed using two repeats of a triplet binding site motif. AND gate behavior is considered significant if reporter expression with all three ZFAs is greater than the sum of reporter expression with each ZFa individually (one-tailed Welch’s t-test: *p < 0.05, **p < 0.01).

Two-input dose response for the AND gate with three repeats of paired binding sites in the promoter. The landscape is shaded from green to purple to facilitate visualization in the z-axis direction. A theoretical model of COMET AND behavior is compared with other models of transcriptional AND gates; the latter vary in whether activators have multiplicative cooperativity (ρ) and whether maximum activation (α) is equivalent for TFs individually and together (Methods). A three-input AND gate was constructed using two repeats of a triplet binding site motif. AND gate behavior is considered significant if reporter expression with all three ZFAs is greater than the sum of reporter expression with each ZFa individually, and also greater than the sum from each of the three combinations with two co-expressed ZFa and the other ZFa individually (one-tailed Welch’s t-test, **p < 0.01 for all four of these tests).

A four-input gate was constructed using the binding site arrangement shown. Experiments were conducted in biologic triplicate, and data were analyzed as described in Methods. Error bars represent the S.E.M. Source data are provided in the Source Data file.

Discussion

We anticipate that COMET will be a useful resource for building genetic programs. Currently, the engineering of mammalian cellular functions is slow and involves multiple iterations of the design-build-test-learn cycle. In prokaryotes, the design and construction of genetic programs have been streamlined by the development of large libraries of well characterized and orthogonal components in concert with computational tools such as Cello. COMET similarly provides a large library of TFs and promoters with tunable features, and the characterization of these components provided a foundation for a mathematical model. We used the model to elucidate mechanisms by which the activators and inhibitors operate at promoters and described how these activities vary across the design choices examined. This integrated approach transcends the identification of general qualitative trends (e.g., that increasing the number of binding sites in a promoter generally increases inducible gene

Fig. 8 Composing Boolean logic. a The cartoon summarizes a strategy for single-layer, promoter-based logic gates with ZF-TFs. We hypothesized that AND gate promoters could be designed by using multiple repeats of a paired ZF3/ZF2 motif. Full occupancy of this promoter by both ZF2a and ZF3a mimics a fully occupied x6-C promoter, and partial occupancy (with either ZFa alone) mimics an x3-S promoter. Thus, there is a large increase in gene expression when the promoter is occupied by two types of ZFAs compared to one type. b Candidate two-input AND gates were constructed using one to four repeats of paired binding sites in the promoter. AND gate behavior is considered significant if reporter expression with both ZFAs is greater than the sum of reporter expression with each ZFa individually (one-tailed Welch’s t-test: *p < 0.05, **p < 0.01).

c Two-input dose response for the AND gate with three repeats of paired binding sites in the promoter. The landscape is shaded from green to purple to facilitate visualization in the z-axis direction. d A theoretical model of COMET AND behavior is compared with other models of transcriptional AND gates; the latter vary in whether activators have multiplicative cooperativity (ρ) and whether maximum activation (α) is equivalent for TFs individually and together (Methods). e A three-input AND gate was constructed using two repeats of a triplet binding site motif. AND gate behavior is considered significant if reporter expression with all three ZFAs is greater than the sum of reporter expression with each ZFa individually, and also greater than the sum from each of the three combinations with two co-expressed ZFa and the other ZFa individually (one-tailed Welch’s t-test , **p < 0.01 for all four of these tests). f A four-input gate was constructed using the binding site arrangement shown. Experiments were conducted in biologic triplicate, and data were analyzed as described in Methods. Error bars represent the S.E.M. Source data are provided in the Source Data file.

(Supplementary Fig. 14e, f). In the full genetic program, all cases produced the expected outcomes (Fig. 8f, Methods). Thus, COMET components and design principles can be employed to compose complex functions with single-layer logic.

Fig. 8 Composing Boolean logic. a The cartoon summarizes a strategy for single-layer, promoter-based logic gates with ZF-TFs. We hypothesized that AND gate promoters could be designed by using multiple repeats of a paired ZF3/ZF2 motif. Full occupancy of this promoter by both ZF2a and ZF3a mimics a fully occupied x6-C promoter, and partial occupancy (with either ZFa alone) mimics an x3-S promoter. Thus, there is a large increase in gene expression when the promoter is occupied by two types of ZFAs compared to one type. b Candidate two-input AND gates were constructed using one to four repeats of paired binding sites in the promoter. AND gate behavior is considered significant if reporter expression with both ZFAs is greater than the sum of reporter expression with each ZFa individually (one-tailed Welch’s t-test: *p < 0.05, **p < 0.01). c Two-input dose response for the AND gate with three repeats of paired binding sites in the promoter. The landscape is shaded from green to purple to facilitate visualization in the z-axis direction. d A theoretical model of COMET AND behavior is compared with other models of transcriptional AND gates; the latter vary in whether activators have multiplicative cooperativity (ρ) and whether maximum activation (α) is equivalent for TFs individually and together (Methods). e A three-input AND gate was constructed using two repeats of a triplet binding site motif. AND gate behavior is considered significant if reporter expression with all three ZFAs is greater than the sum of reporter expression with each ZFa individually, and also greater than the sum from each of the three combinations with two co-expressed ZFa and the other ZFa individually (one-tailed Welch’s t-test, **p < 0.01 for all four of these tests). f A four-input gate was constructed using the binding site arrangement shown. Experiments were conducted in biologic triplicate, and data were analyzed as described in Methods. Error bars represent the S.E.M. Source data are provided in the Source Data file.
expression) to yield quantitative and often mechanistic understanding as to how design choices affect TF-promoter activity. This insight could not have been deduced from prior knowledge, including biophysical intuition or even characterization of similar ZFAs and promoters in yeast [13]. Whether the design rules elucidated here ultimately enable large-scale, model-driven design is an important question worthy of subsequent investigation.

COMET comprises an extensible toolkit that readily accommodates new parts. The current library includes 44 activating and 12 inhibitory TFs and 83 cognate promoters. Of the 44 ZFAs, 19 were ported from a toolkit originally characterized in yeast [15] with only minor changes in the linker between protein domains. Generating the remaining activators and inhibitors involved combining ZF domains with functional domains. This highlights COMET’s modularity, in that new elements can be characterized, modeled (Fig. 2, Methods), and then utilized for customized gene regulatory functions.

Our combined experimental and computational investigation revealed properties and design rules that guide the use of COMET parts. By selecting TF-promoter combinations, one can select a magnitude of output gene expression from a range spanning three orders of magnitude. The design rules explain, at a high level, the functional consequences of choices such as ZF domain, mutations in the ZF domain that impact binding affinity, the AD, competition between activating and inhibitory TFs, and the number, spacing, and arrangement of binding sites in the promoter. COMET-mediated gene expression confers dose response landscapes that differ from those of tTA and Gal4 [27] and thus could be better suited for applications such as building hybrid promoters. COMET is also amenable to the incorporation of other functional modalities such as chemically inducible gene expression.

A key insight is that COMET promoter strength arises from cooperative recruitment of transcriptional machinery, which is an effect that varies with the number of and spacing between binding sites. This mechanism differs from that of previously characterized ZF-TF systems in which cooperativity is directly engineered into TFs through protein–protein interaction domains such as PDZ or leucine zippers [9, 15, 36]. While these previous strategies usefully enable the tuning of performance characteristics such as dose response curves, they are potentially limited by the availability, orthogonality (with respect to both synthetic and endogenous components), and geometric requirements of the protein–protein interaction domains employed. In contrast, the scalability of COMET thus far appears limited only by the availability of orthogonal ZFs; these domains can be constructed using technologies such as OPEN [16] as well as other methods, and this remains an active area of research.

COMET’s promoter-based cooperativity is useful. First, it confers both low background expression and high fold induction, even though these two objectives typically present a trade-off [24]. Second, it enables the implementation of logic gates that have attractive features. Unlike other previously described logic gates that require different architectures for activation and inhibition [9], a single COMET promoter can be used in either activating or inhibitory logic gates. Many gates function as predicted without extensive tuning (Fig. 8). These properties simplify the design process and enable integrating multiple inputs at a single promoter, ultimately decreasing the number of components required to construct genetic programs. Inhibitory COMET TFs modulate effective cooperativity to completely inhibit transcription (Fig. 5, Supplementary Fig. 8). This mechanism is fast and likely reversible, which could be advantageous over mechanisms that employ slower KRAB-mediated chromatin repression and subsequent reactivation [37].

Another advantage of promoter-based cooperativity is that it should enhance the specificity with which ZFAs activate target promoters. A limitation to the minimal three-finger ZF-TF strategy investigated here is that any single 9 bp ZF binding sequence might occur many times in a genome. However, the probability that two binding sites would occur at the same locus is unlikely, and the chance that three or more sites would co-occur is vanishingly small. Moreover, the potent activation reported in Fig. 1 also required the ZF binding array to be proximal to a transcriptional start site, which should further boost the distinction between on-target and off-target transcription. Indeed, in a genomic context (Fig. 6), although ZF1a drove modest expression from a x1 promoter (in which the ZF binding site was placed favorably close to the TATA box), the expression from a x12-C promoter was 800-fold greater. The protein engineering design rules elucidated here also suggest that specificity could be further increased, if desired, by the choice of AD and ZF domain. For example, selection of a weaker AD could necessitate that multiple ZFAs bind in a compact configuration at a promoter in order to drive transcription (Fig. 4d). Reducing the affinity with which a ZF binds DNA could also be combined with selection of a weaker AD to shift the dose response curve, such that a promoter is activated only at high concentrations of ZFAs (Fig. 4f). Thus, a potential advantage of pairing weaker ZFAs with multi-site promoters is the possibility of dramatically boosting the effective specificity of the ZFAs for driving transcription from a target promoter. Chromatin state, and thus cell type, likely impacts the trade-off between on-target and off-target gene regulation, and this question is worthy of exploration in future applications.

Several properties are not easily explained by simple design rules. It is not yet clear why some ZFAs combinations exhibit limited crosstalk when no sequence similarity in ZF binding sites is apparent (Fig. 3c), though our empirical evaluation does identify how such crosstalk can be avoided. Also, some non-specific transcriptional activation was conferred by the most potent ADs (e.g., VPR) when ZF domains were separately expressed but not driven to physically associate (i.e., by addition of rapamycin), suggesting a noncanonical mechanism. Operationally, these phenomena present minor complications that can be circumvented by system selection and attentiveness to potential artifacts during development and design of new functions.

It will be interesting to evaluate how the trends observed here are conserved or diverge as the COMET toolkit grows and is applied to new applications. For example, we cannot predict a priori the magnitude of gene expression that a new ZFA will confer on its cognate promoter, nor can we predict orthogonality, but our analysis suggests that new parts may be screened, tuned, and combined following the same principles used in this study. We expect that the specific quantitative parameters determined in this study could be limited to the implementations used here, including the methods for DNA delivery and the cell type in which the characterizations were performed. However, since the fundamental mechanisms of transcription are maintained across contexts, we expect that the observed trends will extend across cell types and delivery methods. For instance, the rank order of promoter strength across the number of binding sites was conserved between transient transfection and genomic integration (Fig. 6). In practice, it is straightforward to test a focused library of parts to empirically identify which combinations provide the function needed for an application, and if needed, tune system performance using strategies described in this study.

A particularly exciting prospect is using COMET with other synthetic biology technologies. For example, COMET could be integrated into synthetic receptors that utilize orthogonal TFs as outputs, such as MESA or synNotch, to generate cellular programs for sensing, processing, and responding to environmental cues [27, 38–40]. Alternatively, COMET could be used to regulate the expression of synthetic components, such as GEMS receptors...
which interface with endogenous regulation. We expect that COMET will be useful for prototyping and implementing sophisticated cellular functions for both fundamental research and cellular engineering applications.

Methods

General DNA assembly. Plasmid cloning was performed primarily using standard PCR and restriction enzyme cloning with Vent DNA Polymerase (New England Biolabs (NEB), Taq DNA Polymerase (NEB), Phusion DNA Polymerase (NEB), restriction enzymes (NEB; Thermo Fisher), T4 DNA Ligase (NEB), Antarctic Phosphatase (NEB), and T4 PNK (NEB). Golden gate assembly and Gibson assembly were also utilized. Most plasmids were transformed into chemically competent TOP10 (Thermo Fisher) and grown at 37 °C, except for integration vectors, which were transformed into chemically competent Stable E. coli (NEB) and grown at 30 °C.

Cloning strategy for COMET vectors. The COMET plasmids are in pcDNA-based backbones for high expression in HEK293FT cells. Restriction sites were chosen to allow for modular swapping of parts with restriction enzyme cloning. Furthermore, reporter constructs can be assembled by one-step Golden Gate reactions employing synthesized oligonucleotides. A complete list of all plasmids constructed for and utilized in this manuscript is available in Supplementary Data 1, and plasmid maps are available per Data Availability.

Source vectors for DNA assembly. ZF-containing and VP16-containing vectors were a generous gift from Ahmad Khaliq, VP64 and VPR were sourced from SP-dCas8-VPR, which was a gift from George Church (Addgene plasmid #63989)32. DsRed-Express2 was obtained by site directed mutagenesis of pDsRed-N1. Golden Gate assembly was also utilized. Most plasmids were transformed into chemically competent TOP10 (Thermo Fisher) and grown at 37 °C, except for integration vectors, which were transformed into chemically competent Stable E. coli (NEB) and grown at 30 °C.

PCR and restriction enzyme cloning with Vent DNA Polymerase (New England Biolabs (NEB), Taq DNA Polymerase (NEB), Phusion DNA Polymerase (NEB), restriction enzymes (NEB; Thermo Fisher), T4 DNA Ligase (NEB), Antarctic Phosphatase (NEB), and T4 PNK (NEB). Golden gate assembly and Gibson assembly were also utilized. Most plasmids were transformed into chemically competent TOP10 (Thermo Fisher) and grown at 37 °C, except for integration vectors, which were transformed into chemically competent Stable E. coli (NEB) and grown at 30 °C.

Cloning strategy for COMET vectors. The COMET plasmids are in pcDNA-based backbones for high expression in HEK293FT cells. Restriction sites were chosen to allow for modular swapping of parts with restriction enzyme cloning. Furthermore, reporter constructs can be assembled by one-step Golden Gate reactions employing synthesized oligonucleotides. A complete list of all plasmids constructed for and utilized in this manuscript is available in Supplementary Data 1, and plasmid maps are available per Data Availability.

Source vectors for DNA assembly. ZF-containing and VP16-containing vectors were a generous gift from Ahmad Khaliq, VP64 and VPR were sourced from SP-dCas8-VPR, which was a gift from George Church (Addgene plasmid #63989)32. DsRed-Express2 was obtained by site directed mutagenesis of pDsRed-N1. Golden Gate assembly was also utilized. Most plasmids were transformed into chemically competent TOP10 (Thermo Fisher) and grown at 37 °C, except for integration vectors, which were transformed into chemically competent Stable E. coli (NEB) and grown at 30 °C.

Cloning strategy for COMET vectors. The COMET plasmids are in pcDNA-based backbones for high expression in HEK293FT cells. Restriction sites were chosen to allow for modular swapping of parts with restriction enzyme cloning. Furthermore, reporter constructs can be assembled by one-step Golden Gate reactions employing synthesized oligonucleotides. A complete list of all plasmids constructed for and utilized in this manuscript is available in Supplementary Data 1, and plasmid maps are available per Data Availability.

Source vectors for DNA assembly. ZF-containing and VP16-containing vectors were a generous gift from Ahmad Khaliq, VP64 and VPR were sourced from SP-dCas8-VPR, which was a gift from George Church (Addgene plasmid #63989)32. DsRed-Express2 was obtained by site directed mutagenesis of pDsRed-N1. Golden Gate assembly was also utilized. Most plasmids were transformed into chemically competent TOP10 (Thermo Fisher) and grown at 37 °C, except for integration vectors, which were transformed into chemically competent Stable E. coli (NEB) and grown at 30 °C.

Cloning strategy for COMET vectors. The COMET plasmids are in pcDNA-based backbones for high expression in HEK293FT cells. Restriction sites were chosen to allow for modular swapping of parts with restriction enzyme cloning. Furthermore, reporter constructs can be assembled by one-step Golden Gate reactions employing synthesized oligonucleotides. A complete list of all plasmids constructed for and utilized in this manuscript is available in Supplementary Data 1, and plasmid maps are available per Data Availability.

Source vectors for DNA assembly. ZF-containing and VP16-containing vectors were a generous gift from Ahmad Khaliq, VP64 and VPR were sourced from SP-dCas8-VPR, which was a gift from George Church (Addgene plasmid #63989)32. DsRed-Express2 was obtained by site directed mutagenesis of pDsRed-N1. Golden Gate assembly was also utilized. Most plasmids were transformed into chemically competent TOP10 (Thermo Fisher) and grown at 37 °C, except for integration vectors, which were transformed into chemically competent Stable E. coli (NEB) and grown at 30 °C.

Cloning strategy for COMET vectors. The COMET plasmids are in pcDNA-based backbones for high expression in HEK293FT cells. Restriction sites were chosen to allow for modular swapping of parts with restriction enzyme cloning. Furthermore, reporter constructs can be assembled by one-step Golden Gate reactions employing synthesized oligonucleotides. A complete list of all plasmids constructed for and utilized in this manuscript is available in Supplementary Data 1, and plasmid maps are available per Data Availability.

Source vectors for DNA assembly. ZF-containing and VP16-containing vectors were a generous gift from Ahmad Khaliq, VP64 and VPR were sourced from SP-dCas8-VPR, which was a gift from George Church (Addgene plasmid #63989)32. DsRed-Express2 was obtained by site directed mutagenesis of pDsRed-N1. Golden Gate assembly was also utilized. Most plasmids were transformed into chemically competent TOP10 (Thermo Fisher) and grown at 37 °C, except for integration vectors, which were transformed into chemically competent Stable E. coli (NEB) and grown at 30 °C.

Cloning strategy for COMET vectors. The COMET plasmids are in pcDNA-based backbones for high expression in HEK293FT cells. Restriction sites were chosen to allow for modular swapping of parts with restriction enzyme cloning. Furthermore, reporter constructs can be assembled by one-step Golden Gate reactions employing synthesized oligonucleotides. A complete list of all plasmids constructed for and utilized in this manuscript is available in Supplementary Data 1, and plasmid maps are available per Data Availability.

Source vectors for DNA assembly. ZF-containing and VP16-containing vectors were a generous gift from Ahmad Khaliq, VP64 and VPR were sourced from SP-dCas8-VPR, which was a gift from George Church (Addgene plasmid #63989)32. DsRed-Express2 was obtained by site directed mutagenesis of pDsRed-N1. Golden Gate assembly was also utilized. Most plasmids were transformed into chemically competent TOP10 (Thermo Fisher) and grown at 37 °C, except for integration vectors, which were transformed into chemically competent Stable E. coli (NEB) and grown at 30 °C.

Cloning strategy for COMET vectors. The COMET plasmids are in pcDNA-based backbones for high expression in HEK293FT cells. Restriction sites were chosen to allow for modular swapping of parts with restriction enzyme cloning. Furthermore, reporter constructs can be assembled by one-step Golden Gate reactions employing synthesized oligonucleotides. A complete list of all plasmids constructed for and utilized in this manuscript is available in Supplementary Data 1, and plasmid maps are available per Data Availability.

Source vectors for DNA assembly. ZF-containing and VP16-containing vectors were a generous gift from Ahmad Khaliq, VP64 and VPR were sourced from SP-dCas8-VPR, which was a gift from George Church (Addgene plasmid #63989)32. DsRed-Express2 was obtained by site directed mutagenesis of pDsRed-N1. Golden Gate assembly was also utilized. Most plasmids were transformed into chemically competent TOP10 (Thermo Fisher) and grown at 37 °C, except for integration vectors, which were transformed into chemically competent Stable E. coli (NEB) and grown at 30 °C.

Cloning strategy for COMET vectors. The COMET plasmids are in pcDNA-based backbones for high expression in HEK293FT cells. Restriction sites were chosen to allow for modular swapping of parts with restriction enzyme cloning. Furthermore, reporter constructs can be assembled by one-step Golden Gate reactions employing synthesized oligonucleotides. A complete list of all plasmids constructed for and utilized in this manuscript is available in Supplementary Data 1, and plasmid maps are available per Data Availability.

Source vectors for DNA assembly. ZF-containing and VP16-containing vectors were a generous gift from Ahmad Khaliq, VP64 and VPR were sourced from SP-dCas8-VPR, which was a gift from George Church (Addgene plasmid #63989)32. DsRed-Express2 was obtained by site directed mutagenesis of pDsRed-N1. Golden Gate assembly was also utilized. Most plasmids were transformed into chemically competent TOP10 (Thermo Fisher) and grown at 37 °C, except for integration vectors, which were transformed into chemically competent Stable E. coli (NEB) and grown at 30 °C.
Assembly of ZF mutants. ZF mutants were synthesized as multiple sets of complementary oligonucleotides, which were annealed and then inserted via Golden Gate assembly upon a vector designed to use ZF upon all inserts. Reactions were performed with BpiI as described in Golden Gate assembly of ZF reporter plasmids. ZF mutants were generated by whole-plasmid PCR-mediated deletion of the VP16 AD.

Assembly of RaZFa. RaZFa components were constructed by multi-step restriction enzyme-based cloning. The SV40 NLS was part of the original ZFa constructs13, and the NES sequence was obtained from14.

Gibson assembly. Gibson assembly45,46 was used to specify ADs on ZFa. Gibson reactions were performed by PCR addition of homology arms onto the target DNA. Components were mixed together: 17 fmol of backbone, 51 fmol of each insert, 7.5 µL of Gibson Master Mix, and water to 10 µL. 7.5 µL of Gibson Master mix contains 2 µL 5x iso thermal reaction buffer (0.5 M Tris-HCl pH 7.5, 0.05 M MgCl2, 1 mM dNTP, 5 mM NAD, 0.05 M DTT), 0.04 U T5 exonuclease, 0.2 U Phusion DNA polymerase, 1 mM each dNTP, and 100 ng of Rhodamine Red in water. The reactions were incubated at 50 °C for 1 h, and 5 µL was transformed into chemically competent Top10 E. coli (Thermo Fisher). In subsequent cases, ADs were moved onto other ZF by restriction digest.

Construction of plasmids for mMoClo. We made several changes to the mMoClo plasmids originally described33 in order to incorporate them into the workflow for our lab. Ouristory constructs used the pDONR201 vector series and expression vectors. Details can be found in Supplementary Fig. 9, Supplementary Data 1, 2. We modified the Destination Vector provided by the Weiss lab by adding two repeats of the CHS4 insulator into two places in the vector. The insulators upstream of the attB site are, upon genomic integration, inserted downstream of the LP, insulating the LP from the genome (and vice versa). The insulators downstream of the RB Globin polyA terminator of the puromycin resistance gene insulate this transcription unit from TU1. This new vector is termed pPD630 (Integration Vector). We cloned pLink1, pLink3, pLink5, pLink6, pLink7, and pLink8 into the MCS of pPD630 using NheI and NotI genes that anchor the COMET ZFa and ZFi and many of the RaZFa components.

Transferring COMET parts into mMoClo. COMET reporters and ZFa were transferred into TUPVs using restriction enzyme cloning. To construct mKate2 reporter plasmid pPD561, the NheI and NotI restriction sites downstream of a CAG promoter to create pHIE404. Binding site arrays were PCR-amplified from pPD152, pPD287, pPD290, pPD296, pPD603, pPD609, and pPD905 and inserted to replace CAG in pHIE404 using BglII and Nhel, resulting in pHIE402-409. To construct constitutively expressed VP16-ZFa1 in TUPV2 (pM466), the EBFP2-P2A-BlastR gene (between NheI and NotI) was inserted into the MCS of pPD630, and 40 fmol of each transcription unit and linker plasmid were inserted to be expressed with pHIE402 (see Table S1). The sequence was obtained from Thermo Fisher. We used a 1:1.5 to 1:10 ratio every 2–3 d as detection with Trypsin/EDTA (Gibco 25300-054). The mKate2 cell line and the HEK293FT-LP cell line tested negative for mycoplasma with the MycoAlert Mycoplasma Detection Kit (Lonza Cat #LT07-318).

Cell culture. The HEK293FT cell line was purchased from Thermo Fisher/Life Technologies (RRID: CVCL_6911) and was not further authenticated. The HEK293FT-LP cell line was a gift from Ron Weiss and was authenticated by flow cytometry analysis of EYP expression, which was continuous and stable over time—a pattern which is consistent with the original description of this cell line33. Cells were cultured in DME (Gibco 31600-091) with 10% FBS (Gibco 16140-071), 6 mM L-glutamine (2 mM from Gibco 31600-091 and 4 mM from additional Gibco 25303-081), penicillin (100 U/mL), streptomycin (100 µg/mL) (Thermo Fisher), and 5% CO2 for 10 d in a 37 °C, 5% CO2, and 95% air incubator. The medium was changed every 2–3 d by replacing 3/4 volume of fresh medium with 1/4 volume of fresh medium for 5–7 d, by which time the cells had adhered to the plate, they were transfected via the calcium phosphate method. Plasmids for each experiment were mixed in H2O, and 2 M CaCl2 was added to a final concentration of 0.3 M CaCl2. The exact DNA amounts added to the mix per well and plasmid details for each experiment are listed in the following sections and can be cross-referenced with the tables in Supplementary Data 3 for further details. This mixture was added dripwise to an equal-volume solution of 2x HEPES-Buffered Saline (280 mM NaCl, 0.5 M HEPES, 1.5 mM Na2HPO4) and gently pipetted up and down four times. After 2.5–3.4 min, the solution was mixed vigorously by pipetting eight times. 100 µL of medium was added to the resulting cell solution, and the plates were swirled gently. The next morning, the medium was aspirated and replaced with fresh medium. In some assays, fresh medium contained 0.05% DMSO or 0.05% DMSO with 0.1 µM rapamycin. At 36–48 h post-transfection and at least 24 h post-media change, cells were harvested for flow cytometry with FACS buffer (PBS pH 7.4 with 2–5 mM EDTA and 0.1% BSA) or with Trypsin-EDTA, which was then quenched with medium, and the resulting cell solution was added to at least two volumes of FACS buffer. Cells were spun at 150g for 5 min, FACS buffer was decanted, and fresh FACS buffer was added. All experiments were performed in biological triplicate.

Western Blotting. For western blotting, HEK293FT cells were plated at 7.5 × 105 cells/well in 2 mL of DMEM and transfected as above, using 400 µL of transfection reagent per well (the reaction scales with the volume of medium). At 36–48 h after transfection, the cells were lysed with 500 µL of RIPA buffer (150 mM NaCl, 50 mM Tris-HCl pH 8.0, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate) with protease inhibitor cocktail (Pierce/Thermo Fisher cat A23953) and insoluble material was removed by centrifugation (15,000 × g for 20 min at 4 °C) and the supernatant was harvested. A BCA assay was performed to determine protein concentration, and after a 10-min incubation with Laemmli buffer (final concentration 60 mM Tris-HCl pH 6.8, 10% glycerol, 2% sodium dodecyl sulfate, 100 mM dithiothreitol, and 0.01% bromphenol blue) at 70 °C, 0.5 µg of total protein was loaded onto a 10–20% Mini PROTEAN TGX Precast Gel (Bio-Rad) and run at 20 V for 50 min followed by 100 V for at least 1 h. Wet transfer was performed onto an Immuno-Blot PVDF membrane (Bio-Rad) for 45 min at 100 V. Porcine-S staining was used to confirm successful transfer. Membranes were blocked for 30 min with 3% milk in Tris-buffered saline pH 8.0 (TBS pH 8.0: 50 mM Tris, 138 mM NaCl, 2.7 mM KCl, 0.05% Tween 20, and 0.1% dihydrothreitol) and washed once with TBS pH 8.0 for 5 min, then incubated for 1 h at room temperature or overnight at 4 °C in primary solution antibody (Mouse-anti-FLAG M2 (Sigma F1804, RRID: AB_262044), diluted 1:1000 in 2 M CaCl2. The exact DNA amounts added to the mix per well and plasmid details for each experiment are listed in the following sections and can be cross-referenced with the tables in Supplementary Data 3 for further details. This mixture was added dripwise to an equal-volume solution of 2x HEPES-Buffered Saline (280 mM NaCl, 0.5 M HEPES, 1.5 mM Na2HPO4) and gently pipetted up and down four times. After 2.5–3.4 min, the solution was mixed vigorously by pipetting eight times. 100 µL of medium was added to the resulting cell solution, and the plates were swirled gently. The next morning, the medium was aspirated and replaced with fresh medium. In some assays, fresh medium contained 0.05% DMSO or 0.05% DMSO with 0.1 µM rapamycin. At 36–48 h post-transfection and at least 24 h post-media change, cells were harvested for flow cytometry with FACS buffer (PBS pH 7.4 with 2–5 mM EDTA and 0.1% BSA) or with Trypsin-EDTA, which was then quenched with medium, and the resulting cell solution was added to at least two volumes of FACS buffer. Cells were spun at 150g for 5 min, FACS buffer was decanted, and fresh FACS buffer was added. All experiments were performed in biological triplicate.
3% milk in TBS pH 8.0). Primary antibody solution was decanted, and the membrane was washed once with TBS pH 8.0 then twice with TBS pH 8.0 with 0.05% Tween, for 5 min each at room temperature. Selection was performed in 300 µL total volume (HIS-ANTIGEN Laboratories [HAMILTON, Switzerland] for 7 d, then cells were expanded for 7 d without antibiotics. Cells were then cultured in both puromycin and blasticidin to maintain selective pressure until flow sorting.

Sorting of landing pad cell lines. Cells were harvested by trypsinizing, resuspended at approximately 10^5 cells/mL in pre-sort medium (DMEM with 10% FBS, 25 mM HEPES [Sigma H3375], and 100 µg/mL gentamycin [Amresco 0304]), and held on ice until sorting was performed. Cells were sorted using a BD FACs AriaII, a flow cytometry instrument (BD Biosciences) for each cell line, using the settings optimized for each cell line. Cells were collected in an anti-coagulant and processed for analysis.

Analytical flow cytometry. Flow cytometry was performed on a BD LSRII or BD LS SR Fortessa Special Order Research Product (Robert H. Lurie Cancer Center Flow Cytometry Core). The lasers and filters sets used for data acquisition are listed in Supplementary Table 3. Approximately 2000–3000 single, transfected cells were analyzed per sample.

Flow Cytometry Data Analysis. Samples were analyzed using the FlowJo v10 software (FlowJo, LLC). Fluorescence data were compensated for spectral bleed-through at the time the samples were acquired in Supplementary Fig. 15, the HEK293T-LTR population was identified by FSC-A vs. SSC-A gating, and singlets were identified by FSC-A vs. FSC-H gating. To distinguish transected and non-transfected cells, a control sample of cells was gated by trypsinizing and transferring to a single well of a 6-well plate in 2 mL of medium, and then cells were cultured until they reached gentle swirling. Cells were cultured until the well was ready to split (typically 3 d), and diluted 1:3000 in 5% milk in TRIST pH 7.6 (TRIST pH 7.6: 50 mM Tris, 150 mM NaCl, HCl to pH 7.6, 0.1% Tween) was applied for 1 h at room temperature, and the membrane was washed three times for 5 min each time with TRIST pH 7.6. The membrane was incubated with Clarity Western ECL Substrate (Bio-Rad) for 5 min, and then exposed to film, which was developed and scanned. Images were cropped with Photoshop CC (Adobe). No other image processing was employed. Original images are provided in Source Data.

The western blot shown in Supplementary Fig. 12f was conducted twice with compatible subpopulation. The experiment included only the RaZFa component (no additional loading control) to confirm the presence of only one band in each lane (data not shown). In the second experiment, 40 ng of pDP798 (encoding a 3x-FLAG tagged NanoLc) was co-transfected with the RaZFa components to provide a control for loading and transfection.

Conversion of arbitrary units to standardized fluorescence. MEFL values propagated through all calculations.

Statistical model. Heterogeneity is represented by simulating genetic programs in a way that resembles their outcomes in cells, which vary in the expression of the components. The in silico population (Z) is an N x P matrix, where N is the number of cells (n = N, for N = 200) and P is the number of plasmids (p = 1P). Components that are encoded on separate plasmids are assigned separate columns. For example, the ZF1a gene is assigned one column and the reporter gene is assigned another column. Z is generated using the constrained sampling method using the following steps. First, specify parameters for the target marginal distribution of gene expression. Based on flow cytometry measurements of constitutively expressed fluorescent proteins from co-transfected plasmids, the characteristic distribution for each protein was log-bimodal Gaussian, and distributions can be described by the parameters μ1 = 1.95, σ1 = 0.3, μ2 = 3.4, and σ2 = 0.6 arbitrary units on a log_{10} scale. Second, specify a target correlation coefficient to model gene expression from co-transfected plasmids. A Pearson correlation of r = 0.8 was used based on observed correlations. Third, based on the target correlation, specify a lower bound and upper bound of acceptable values. Values should be chosen that are close to the target, such as 0.765 and 0.835. Fourth, generate a joint distribution using the parameters for the marginal distribution and the target correlation coefficient. This output is a candidate N x P matrix for population variation. Distribution is generated using the multivariate normal random number generator in MATLAB. Fifth, compute the correlation coefficient matrix (P x P). Sixth, while any non-diagonal entries in the correlation coefficient matrix are outside of the range of acceptable values specified in step 3, repeat steps 4 and 5. Lastly, for the accepted matrix, normalize the values in each column to a mean of one to obtain the population matrix Z. It is useful to plot the generated distributions and correlations to confirm resemblance to the target outcomes.
ZFa-mediated transcription. Gene regulation is represented using a system of ODEs. The example below depicts a constitutively expressed ZFa inducing the expression of a reporter. Transcription of ZFa RNA scales linearly with plasmid dose. Transcription of reporter RNA depends on ZFa protein concentration via a response function \(f \), which is described in subsequent sections. RNA degradation, protein translation, and protein degradation are represented as first-order processes. The \(k \) terms are fixed parameters that are either defined as equal to 1 or are based on a previous estimate: \(k_{\text{transcription}} = 1 \) arbitrary transcription unit, \(k_{\text{translation}} = 1 \) arbitrary translation unit, \(k_{\text{degrRNA}} = 0.35 \) h\(^{-1}\) based on another study\(^52\), and \(k_{\text{degReporterRNA}} = 0.029 \) h\(^{-1}\) based on another study\(^52\).

\[
\frac{d\text{ZFaRNA}}{dt} = k_{\text{transcription}} \cdot \text{ZFaProtein} - k_{\text{degrRNA}} \cdot \text{ZFaRNA},
\]

\[
\frac{d\text{ZFaProtein}}{dt} = k_{\text{translation}} \cdot \text{ZFaRNA} - k_{\text{degZFaProtein}} \cdot \text{ZFaProtein},
\]

\[
\frac{d\text{ReporterRNA}}{dt} = k_{\text{transcription}} \cdot f(\text{ZFaProtein}) - k_{\text{degrReporterRNA}} \cdot \text{ReporterRNA},
\]

\[
\frac{d\text{ReporterProtein}}{dt} = k_{\text{translation}} \cdot \text{ReporterRNA} - k_{\text{degReporterProtein}} \cdot \text{ReporterProtein}.
\]

Although the rate constants for transcription and translation for both the ZFa and reporter are set equal to 1 unit, these processes differ in living cells. As a result, 1 unit of ZFa RNA can correspond to a different number of molecules in a living cell than 1 unit of reporter RNA, and likewise for 1 unit of each protein. However, importantly, 1 unit for a given species (e.g., reporter protein) can be treated as equivalent across simulation conditions (e.g., ZFa plasmid doses), and these are the comparisons of interest in our analysis.

For a ZFa-inducible promoter, the response function \(f \) is defined as

\[
f = b + m \cdot \frac{w \cdot \text{ZFaProtein}}{1 + w \cdot \text{ZFaProtein}},
\]

where \(b \) is a non-negative value for TF-independent (leaky or background) transcription; \(m \) is a unitless value for maximum activation (for ZFa, \(m \geq 1 \)) that depends on the number and spacing of binding sites and the TF; and \(w \) is a positive value related to the steepness of the ZFa dose response. The ZFa variable refers to the simulated protein level—this is a function of plasmid dose, but is in distinct units from and is not equivalent to plasmid dose.

The parameter \(m \) describes the maximum transcription that a specific ZFa can drive at a promoter with a specific number and spacing of binding sites. An \(m \) value of 1 is defined for ZFa1 with a x1 promoter. We found that values for \(m \) vary with the number of binding sites (BS). This relationship can be approximated by sigmoid functions as shown below for ZFa1. The max argument ensures that \(m \) does not go below 1 and that it increases monotonically with the number of binding sites:

\[
m_{\text{spatial}} = \max \left(\frac{8.5}{1 + e^{-\frac{408.5 \times 1}{1 + 1.46}}}, 1 \right),
\]

\[
m_{\text{compact}} = \max \left(\frac{41}{1 + e^{-\frac{408.5 \times 1}{1 + 1.46}}}, 1 \right).
\]

For TFs that follow similar binding site-response behavior, the sigmoid appears vertically stretched or squashed. This effect can be represented by changing the numerator value in the fraction for the \(m \) function.

Calibration. The model was implemented with modifications to RNA production terms to incorporate cell heterogeneity:

\[
\frac{d\text{ZFaRNA}}{dt} = k_{\text{transcription}} \cdot z_{\text{ZFaRNA}} \cdot \text{ZFaProtein} - k_{\text{degrRNA}} \cdot \text{ZFaRNA},
\]

\[
\frac{d\text{ZFaProtein}}{dt} = k_{\text{translation}} \cdot \text{ZFaRNA} - k_{\text{degZFaProtein}} \cdot \text{ZFaProtein},
\]

\[
\frac{d\text{ReporterRNA}}{dt} = k_{\text{transcription}} \cdot z_{\text{ReporterRNA}} \cdot f(\text{ZFaProtein}) - k_{\text{degrReporterRNA}} \cdot \text{ReporterRNA},
\]

\[
\frac{d\text{ReporterProtein}}{dt} = k_{\text{translation}} \cdot \text{ReporterRNA} - k_{\text{degReporterProtein}} \cdot \text{ReporterProtein},
\]

where \(z \) denotes the intracellular and intercellular variation, using values for the ith cell and pH plasmid. The model was run by iterating through each cell in the population (over a 42 h simulated duration corresponding to a typical experimental duration), and the population mean was calculated.

In experiments from which data were used to estimate parameters, a ZFa1 dose response (0, 5, 10, 20, 50, 100, 200 ng plasmid) with a ZF16-C promoter-driven reporter (200 ng plasmid) was included as a fiducial marker for normalizing experiment-specific MEFLs to model-specific units that would be consistent across simulations. For each new ZFa, parameters can be estimated from dose response data using the following steps. First, data for the new ZFa are normalized to the within-experiment ZFa1 series to arrive at the \(m \)-equivalent units required for steps 2 and 3 below, divide the MEFL values for the new ZFa series by the mean of the MEFL values for the \([5, 10, 20, 50, 100, 200]\) ng portion of the ZFa1 series, and multiply by 22.4 (this value is determined from the ZFa1 experiment in which \(m \) was originally defined). Second, specify \(m \) for the new ZFa series using the maximum observed (or expected) reporter expression. Third, determine \(b \) from the data point for ZFa-independent reporter expression. Lastly, fit \(w \) by minimizing the sum of squares error between experimental data and simulated population means. The experimental series and simulated series should use the same ZFa plasmid doses, and they should be normalized equivalently such as by dividing by the mean reporter expression of the series. For cases of non-monotonic reporter expression, data points above the ZFa dose yielding maximum reporter expression should not be used to fit \(w \), as the response function is intended to describe only the data from zero ZFa plasmid dose through the maximum reporter expression.

Standard models of transcription. Figure 2 compares the COMET model with standard models of transcription that use more parameters\(^2\). Fractional activation \(f \) by a TF (\(w \)) with promoter affinity \(\text{h} \) and TF cooperativity \(\rho \) for RNAP recruitment, at a promoter with one site per TF, the formulation is

\[
f = \frac{a_1 + a_2 \cdot (w_y)^n}{1 + (w_y)^n},
\]

where \(a_1 \) and \(a_2 \) are combined activation \(a_1 \) and \(a_2 \), and TF cooperativity \(\rho \) for RNAP recruitment is derived using Pascals’s triangle:

\[
f = \frac{a_1 + a_2 \cdot (w_y)^n}{1 + (w_y)^n} = \frac{a_1 + a_2 \cdot (w_y)^n + a_2 \cdot (w_y)^{2n} + \rho \cdot w_y \cdot (w_y)^{2n}}{1 + (w_y)^n + (w_y)^{2n} + \rho \cdot w_y \cdot (w_y)^{2n}}.
\]

For the third and fourth landscapes in Fig. 2c, \(m \) values for spaced and compact promoters were substituted for \(a \) in each term of the numerator and denominator. As an example, the equation for three sites is

\[
f = \frac{a_1 + a_2 \cdot (w_y)^n + a_2 \cdot (w_y)^{2n} + a_2 \cdot (w_y)^{3n}}{1 + (w_y)^n + (w_y)^{2n} + (w_y)^{3n}},
\]

where \(a_1 \) and \(a_2 \) are combined activation \(a_1 \) and \(a_2 \), and TF cooperativity \(\rho \) for RNAP recruitment is derived using Pascals’s triangle:

\[
f = \frac{a_1 + a_2 \cdot (w_y)^n + a_2 \cdot (w_y)^{2n} + a_2 \cdot (w_y)^{3n} + \rho \cdot w_y \cdot (w_y)^{2n} + \rho \cdot w_y \cdot (w_y)^{3n}}{1 + (w_y)^n + (w_y)^{2n} + (w_y)^{3n} + \rho \cdot w_y \cdot (w_y)^{2n} + \rho \cdot w_y \cdot (w_y)^{3n}}.
\]

Since \(m \) values can exceed 1, no longer represents fractional activation defined with the range of zero to one. This interpretational note also applies to \(f \) in the COMET model.

To investigate modes of transcriptional regulation independent of the effects of cell heterogeneity, the plots in Fig. 2c, d depict homogeneous (one-cell) expression (whereas the fits shown as lines in Fig. 2a depict heterogeneous population means). To compare the most salient features of each landscape in Fig. 2c, simulations were conducted using the parameter values in Supplementary Table 5, and outcomes were scaled for a maximum attainable value of 1 within each model.

Mechanistic model of transcription. To assess whether the concise COMET model is consistent with a more detailed representation of gene regulation, we developed a model that more granularly represents interactions between molecular
components (Supplementary Fig. 8d-f). The components include those with tunable properties (TF (ZFa), ZFi, and free AD, and for which doses can be specified) and those without tunable properties (RNAP and single-site reporter DNA). The RNAP variable broadly represents the ensemble of factors that are recruited to initiate transcription, and this variable can bind TF or AD. For simplicity, the promoter for the reporter has one site that can be either unoccupied or occupied by TF or ZFi, and there is no TF-independent transcription.

ODEs were run to steady state and used the initial conditions and parameters below. Here, the goal was not to estimate parameter values, and therefore the values are based not on specific intracellular concentrations or rate constants, but rather on those that we observed to produce steady-state trends that were interpretable and resembled experimentally measured dose responses.

Initial values for the variables are as follows. Reporter DNA: 10 units. RNAP: 200 units. TF: dose response ranging from 0 to 200 units. ZFi: 0 units; 200 if present at a constant amount; or a dose response of [5, 10, 20, 50, 100, 200]. AD: 0 units; 200 if present at a constant amount; or a dose response of [5, 10, 20, 50, 100, 200].

Parameters for the reactions (in distinct arbitrary units) are as follows. Association of TF (or ZFi) and DNA: \(k_1 = 1 \) uM. Dissociation of TF (or ZFi) and DNA: \(k_2 = 100 \) uM; or varied as [500, 200, 100, 50, 20, 10, 5]. Association of TF (or AD) and RNAP: \(k_1 = 1 \) uM. Dissociation of TF (or AD) and RNAP: \(k_2 = 20 \) uM; or varied as [100, 50, 20, 10, 5]. Relevant metrics are \(k_{k_i} \) for the TF-DNA and ZFi-DNA interactions and \(k_{k_i} \) for RNAP recruitment by TF or AD. The DNA.TF.RNAP variable was used as a proxy for reporter readout. We made the following observations. First, the simulations qualitatively resembled experimental dose response trends. Second, increasing \(k_{k_i} \) or TF dose led to more DNA.TF.RNAP (within a typical TF dose range). At values far above this range, or with excess non-productive components such as free AD, the dose response became non-monotonic due to non-productive sequestration of components. Third, the effect of ZFi was to decrease DNA.TF.RNAP by occupying the reporter promoter non-productively. Lastly, depending on the initial values of the components, TF dose responses differed in two key ways—the maximum value for DNA.TF.RNAP and the steepness of the dose response; importantly, these features are captured by \(m \) and \(w \) respectively in the COMET model.

Transcriptional inhibition. The model used to generate predictions presented in Fig. 5d, e was developed as follows. Within the COMET framework, a competitive inhibitor is represented as

\[
f = \frac{\text{b} + \text{m} + \text{w} \cdot ZFa_{\text{Protein}}}{1 + \text{w} \cdot ZFa_{\text{Protein}} + \text{m} \cdot ZFi_{\text{Protein}}},
\]

(21)

where \(m \) and \(w \) correspond to the ZFa and ZFi inhibitors, respectively. However, the observed effect of the inhibitors (Fig. 5) was greater than that predicted by competitive inhibition alone. We found that outcomes with ZFi-DsRed or with a spaced promoter could be explained by also accounting for a decrease in effective cooperativity at the promoter. Removal of cooperativity from a multi-site promoter is a complex process involving an ensemble of promoter states within cells. For simplicity, we represent this as a non-mechanistic heuristic function that depends upon the amounts and properties of both the ZFa and the ZFi. The value \(m \) is replaced by a ramp down function from baseline cooperativity without inhibitor to no cooperativity at a high amount of inhibitor:

\[
f = \frac{\text{b} + \max \left(\frac{\text{w} \cdot ZFa_{\text{Protein}}}{1 + \text{w} \cdot ZFi_{\text{Protein}} + \text{m} \cdot ZFi_{\text{Protein}}}, \text{w} \cdot ZFa_{\text{Protein}} \right)}{1 + \text{w} \cdot ZFi_{\text{Protein}} + \text{m} \cdot ZFi_{\text{Protein}}},
\]

(22)

where \(\lambda \) and \(\mu \) are empirically determined values for the weight-normalized ratio of inhibitor to activator at which the ramp down from \(m \) to 1 begins and ends, respectively.

We found that compared to ZFi, ZFi-DsRed was a more potent inhibitor. Multiplying its weight in the equation by a factor of four improved the fit to data, and ramp down parameters were adjusted accordingly to maintain the shape profile:

\[
f = \frac{\text{b} + \max \left(\frac{\text{w} \cdot ZFa_{\text{Protein}}}{1 + \text{w} \cdot ZFi_{\text{Protein}} + 4 \text{m} \cdot ZFi_{\text{DsRed}}}, \text{w} \cdot ZFa_{\text{Protein}} \right)}{1 + \text{w} \cdot ZFi_{\text{Protein}} + 4 \text{m} \cdot ZFi_{\text{DsRed}}},
\]

(23)

For the inhibitor dose responses in Fig. 5d, cooperativity was more readily removed with ZFi-DsRed than with ZFi, and with a spaced promoter than with a compact one. However, cooperativity was maintained with ZFi and a compact promoter, and this effect held across ZFi1 mutants and doses reported in Fig. 5e.

Transcriptional logic gates. In Fig. 8d, we used the standard model from Fig. 2 to investigate properties of AND gates. For simplicity, leaky transcription (\(a_{\text{leak}} \)) is set to zero and Hill coefficients (\(n \) and \(w \)) are set to one. Figures 8d and Supplementary Fig. 1c show four variations that differ in which each TF’s maximal activation (\(a_{\text{max}} \) and \(a_{\text{max}} \)) is less than or equal to the maximum activation with both present (\(\alpha_{\text{rel}} = 1 \)), and synergy (\(\rho \)) is present or absent:

\[
f = \frac{\text{ai} \cdot \text{wi} \cdot \text{yi} + \text{ai} + \text{wi} \cdot \text{yi} + \text{ai} \cdot \text{wi} \cdot \text{yi} \cdot \text{yj} + \text{w} \cdot \text{yi} \cdot \text{yj}}{1 + \text{w} \cdot \text{yi} + \text{w} \cdot \text{yi} + \text{w} \cdot \text{yi} \cdot \text{yj}}.
\]

(24)

TFs were assigned identical properties such that landscape was symmetric about the dose response diagonal. Simulations used the homogeneous model and the parameter values in Supplementary Table 7. In Fig. 8d, TF dose responses span 0 to 200 ng of plasmid, and target gene expression is linearly scaled to a maximum attainable value of 1. Comparison between experiments and simulations shows that the hybrid COMET promoter exhibits hybrid cooperative activity; it resembles x3-S with either ZFa individually, and it resembles x6-C if both ZFa are present in sufficient amounts.

To explain this effect, we consider a scenario in which a ZFa induces transcription at a x6-C promoter:

\[
f = \frac{m_{\text{max}} \cdot \text{Compact} \cdot \text{w} \cdot ZFa}{1 + \text{w} \cdot ZFi}.
\]

(25)

Hypothetically, if the pool of ZFa protein in a cell could be partitioned into two sub-pools of equal concentration, each with access to a distinct set of three alternating sites on the reporter promoter, then if only one sub-pool were active the promoter activity would decrease to

\[
f = \frac{m_{\text{max}} \cdot \text{Compact} \cdot \text{w} \cdot ZFa}{1 + \text{w} \cdot ZFi}.
\]

(26)

If the sub-pools differed in properties that affected \(m \) and \(w \), then they could be treated as distinct TFs:

\[
f = \frac{m_{\text{max}} \cdot \text{Compact} \cdot \text{w} \cdot ZFa}{1 + \text{w} \cdot ZFi}\]

(27)

An inhibitor for either ZFa would act specifically on the corresponding binding sites, such that maximal inhibition would require inhibitor species that tile both sets of sites.

In the limit of high doses of both ZFa, the contribution of each individually to the total activation becomes

\[
f = \frac{m_{\text{max}} \cdot \text{Compact} \cdot \text{w} \cdot ZFa}{1 + \text{w} \cdot ZFi}.
\]

(28)

If both ZFa are identical, this expression becomes identical to the original expression.

In experiments made using the two-input AND gate model also guide the interpretation of Fig. 8e, f. In Fig. 8e, the three-input AND gate uses a similar principle as the two-input AND gate; promoter activity is x2-S with each ZFa individually, and it transitions to x6-C if all three ZFa are present. In Fig. 8f, ZFa and ZFi-DsRed modulate the effective number (x6, x1, x3, xB) and spacing (S = spaced, C = compact) of binding sites, and whether there is competitive inhibition (Y = yes, N = no, Y/N = yes for some sites and no for others); the experimental outcomes align with the expectations in Supplementary Table 8. Among the 16 combinations of the four TF inputs, only the combination with the two activators and no inhibitors exhibited x6-C behavior. The resulting cooperativity leads to higher reporter expression than other combinations with x3-S or x1 behavior.

Statistical analysis. Statistical details for each experiment are in the figure legends. Unless otherwise stated, there are three independent biologic replicates for each condition. The data shown reflect the mean across these biologic replicates of the mean fluorescence intensity (MFI) of approximately 2,000–3,000 single, transfected cells. Error bars represent the standard error of the mean (S.E.M.). For main figures with heat maps, data are also shown in the corresponding supplemental figure as a bar graph with the mean and S.E.M. ANOVA tests were performed using the Data Analysis Toolpak in Microsoft Excel. Tukey’s HSD tests were performed with \(\alpha = 0.05 \). Pairwise comparisons were made using a one-tailed Welch’s t-test, which is a version of Student’s t-test in which the variance between samples is treated as not necessarily equal. The comparisons involved reporter only vs. reporter + ZFa in Fig. 1, Fig. 3; inhibited vs. uninhibited, or more inhibited vs. less inhibited, in Fig. 5; no binding sites vs. one binding site in Supplementary Fig. 10; DMSO vs. rapamycin in Fig. 7; and summed individual cases vs. co-expression in Fig. 8. For each comparison, the null hypothesis was that two samples were equal, and the alternative was that the latter was greater. The threshold for significance was set at 0.05. To decrease the false discovery rate, the Benjamini–Hochberg (BH) procedure was applied to each set of tests per figure panel.
in all tests, after the BH procedure, the null hypothesis was rejected for \(p < 0.05 \). The outcome of each statistical test is indicated in the figure captions.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

All reported experimental data are included as Source Data. The raw datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. Plasmid maps for all plasmids reported in this study are provided as annotated GenBank files in Source Data. The majority of the plasmids used in this study are deposited with and distributed by Addgene, including complete and annotated GenBank files, at https://www.addgene.org/Joshua_Leonard/. COMET plasmids with Addgene numbers ranging from #138749 to #138940 are available from Addgene, including complete and annotated plasmids. All code is provided under an open source license.

References

1. Bashor, C. J., Horwitz, A. A., Peisajovich, S. G. & Lim, W. A. Rewiring cells: MATLAB code for COMET can be found at https://github.com/leonardlab/COMET. Code availability

ARTICLE

Nature Communications | https://doi.org/10.1038/s41467-019-14147-5 | www.nature.com/naturecommunications
46. Goodwin, E. C. & Rottman, F. M. The 3'-flanking sequence of the bovine growth hormone gene contains novel elements required for efficient and accurate polyadenylation. *J. Biol. Chem.* 267, 16330–16334 (1992).

47. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. *PLoS ONE* 3, e3647 (2008).

48. Xu, D., Farmer, A., Collett, G., Grishin, N. V. & Chook, Y. M. Sequence and structural analyses of nuclear export signals in the NESdb database. *Mol. Biol. Cell* 23, 3677–3693 (2012).

49. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat. Methods* 6, 343–345 (2009).

50. Gibson, D. G., Smith, H. O., Hutchison, C. A. 3rd, Venter, J. C. & Merryman, C. Chemical synthesis of the mouse mitochondrial genome. *Nat. Methods* 7, 901–903 (2010).

51. Siciliano, V. et al. Construction and modelling of an inducible positive feedback loop stably integrated in a mammalian cell-line. *PLoS Comput. Biol.* 7, e1002074 (2011).

52. di Bernardo, D., Marucci, L., Menolascina, F. & Siciliano, V. Predicting synthetic gene networks. *Methods Mol. Biol.* 813, 57–81 (2012).

53. Corish, P. & Tyler-Smith, C. Attenuation of green fluorescent protein half-life in mammalian cells. *Proc. Eng. 12*, 1035–1040 (1999).

54. Muldoon, J. J. COMET v1.0.1. *Zenodo*, https://doi.org/10.5281/zenodo.3533966 (2019).

Acknowledgements

This work was supported in part by the National Cancer Institute (NCI) of the National Institutes of Health (NIH) under Award Number F30CA203325; the National Institute of Biomedical Imaging and Bioengineering of the NIH under Award Number 1R01EB026510; the National Institute of General Medical Sciences (NIGMS) of the NIH under Award Number T32GM008152 (to Hossein Ardehali); the Northwestern University Flow Cytometry Core Facility supported by Cancer Center Support Grant (NCI under Award Number T32GM008152 (to Hossein Ardehali); the National Institute of Biomedical Imaging and Bioengineering of the NIH under Award Number 1R01EB026510; the National Institute of General Medical Sciences (NIGMS) of the NIH under Award Number T32GM008152 (to Hossein Ardehali); the Northwestern Institute for Cellular Engineering Technologies core transcription regulators, promoters, and their usage described in this manuscript.

1R01EB026510; the National Institute of General Medical Sciences (NIGMS) of the NIH under Award Number F30CA203325; the National Institute of Biomedical Imaging and Bioengineering of the NIH under Award Number T32GM008152 (to Hossein Ardehali); the Northwestern University Flow Cytometry Core Facility supported by Cancer Center Support Grant (NCI under Award Number T32GM008152 (to Hossein Ardehali); the Northwestern Institute for Cellular Engineering Technologies core transcription regulators, promoters, and their usage described in this manuscript.

Author contributions

P.S.D. and J.N.L. conceptualized COMET, P.S.D., J.W.D., J.J.M. and H.I.E. created reagents, designed and performed experiments, and analyzed the data. J.J.M. developed the computational models and code. P.S.D. and J.J.M. drafted the original manuscript, and P.S.D., J.W.D., H.I.E. and J.J.M. created the figures. J.N.L. and N.B. supervised the work. All authors edited and approved the final manuscript.

Competing interests

P.S.D. and J.N.L. are co-inventors on patent-pending intellectual property that covers the COMET technology (PCT/US18/23989 filed with review pending; this patent covers the core transcription regulators, promoters, and their usage described in this manuscript. Applicant: Northwestern University).

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-14147-5.

Correspondence and requests for materials should be addressed to J.N.L.

Peer review information *Nature Communications* thanks Thomas Gorochowski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2020