Shock heating by Fanaroff–Riley type I radio sources in galaxy clusters

M. Brüggen,1* S. Heinz,2 E. Roediger,1 M. Ruszkowski3 and A. Simionescu4

1Jacobs University Bremen, PO Box 750 561, 28725 Bremen, Germany
2Astronomy Department, University of Wisconsin–Madison, Madison, WI 53706, USA
3Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching, Germany
4Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany

Accepted 2007 June 13. Received 2007 June 11; in original form 2007 May 24

ABSTRACT

Feedback by active galactic nuclei (AGN) is frequently invoked to explain the cut-off of the galaxy luminosity function at the bright end and the absence of cooling flows in galaxy clusters. Meanwhile, there are recent observations of shock fronts around radio-loud AGN. Using realistic 3D simulations of jets in a galaxy cluster, we address the question what fraction of AGN energy is dissipated in shocks. We find that weak shocks that encompass the AGN have Mach numbers of 1.1–1.2 and dissipate at least 2 per cent of the mechanical luminosity of the AGN. In a realistic cluster medium, even a continuous jet can lead to multiple shock structures, which may lead to an overestimate of the AGN duty cycles inferred from the spatial distribution of waves.

Key words: shock waves – galaxies: active – galaxies: clusters: general – galaxies: jets – galaxies: nuclei.

1 INTRODUCTION

There is increasing evidence from deep X-ray observations for shock waves from radio-loud active galactic nuclei (AGN) in the central cores of galaxy clusters (e.g. McNamara et al. 2005). Examples are the (weak) shocks in M87 (Forman et al. 2005; Simionescu et al. 2007), Hydra A (Nulsen et al. 2006) and Perseus (Fabian et al. 2006). Using deeper Chandra data on the Virgo cluster, Forman et al. (2006) confirmed the presence of a weak shock at 14 kpc and determined its Mach number as $M \sim 1.2$. This shock was confirmed spectroscopically using XMM–Newton data by Simionescu et al. (2007). Sanders & Fabian (2006) reported isothermal shocks in Abell 2199 and 2A 0335+096 with Mach numbers of ~ 1.5. Shock waves have also been detected in the periphery of the low-power isolated radio galaxy NGC 3801 (Croston, Kraft & Hardcastle 2007), and a strong shock has been associated with the expanding Fanaroff–Riley type I (FR I) radio galaxy in Centaurus A (Kraft et al. 2003).

The detection of shocks around FR I sources has led to the suggestion that most, if not all, radio galaxies go through a phase that is associated with shock heating by a supersonically expanding radio source. Croston et al. (2007) have estimated that the energy stored in the shocked shell is equivalent to the thermal energy within ~ 11 kpc of the galaxy centre and a factor of 25 larger than the inferred $p\,dV$ work required to inflate the radio lobes. This suggests that in the early phases of radio source evolution, the energy transfer from the AGN to its environment is dominated by shock heating.

Nulsen et al. (2006) made the following estimate for the heat input into the intracluster medium (ICM) by shock waves: the heat per unit mass generated by a shock is given by

$$\Delta Q \sim T \Delta S = E \Delta \ln \rho / \rho^\gamma,$$

where E is the specific thermal energy, ρ the density of the gas. Thus the fraction of the thermal energy that is dissipated, $\Delta Q/E$, is given by the jump of $\ln \rho / \rho^\gamma$ in the shock. Three weak shocks are visible in the X-ray image of M87. For the innermost shock at ~ 3.7 kpc a Mach number of 1.4 has been inferred, which implies a heat input of $\Delta Q/E \approx 0.022$ and a shock age of 2.4×10^9 yr. Obviously, the heat input of this shock is tiny. However, two more shocks have been identified at larger radii that require several times more energy. Thus a shock of comparable strength to the 3.7-kpc shock may well occur every $\sim 2.5 \times 10^7$ yr. The cooling time of the gas at 3.7 kpc is $\sim 2.5 \times 10^9$ yr, so that there is time for ~ 100 such shocks during the cooling time. Therefore the combined heat input from ~ 100 of these shocks is more than enough to make up for radiative losses from the gas.

In this Letter, we investigate what fraction of the jet energy is dissipated in shocks around the supersonically expanding radio source. Using a hydrodynamical simulation of jets in a realistic cluster setup and a shock-finding algorithm, we quantify the properties of the shock and the effect on the ICM.

2 METHOD

The initial conditions of our simulation are based on a rerun of the S2 cluster from Springel, Yoshida & White (2001), the properties of
A). Even though Perseus A is inferred to have a mean power output of FR I morphologies in dense clusters such as this one (see e.g. Perseus (Allen et al. 2006). However, even such powerful sources assume extreme end of those observed and well above that cited for M87.

The jump across the compression front is larger than some chosen value is the thermal energy density, ρ is the gas density and v is the velocity. The second term inside the brackets subtracts the effect of adiabatic compression suffered at a shock. The total thermalized energy input per time (by shocks) divided by the mechanical luminosity of the jet is shown in Fig. 2. About 2 per cent and z-components of a unit vector pointing in the direction of the velocity jump, hence in the direction normal to the shock front. We now project the pre- and post-shock velocities on to the shock normal. The upstream and downstream pressure, the upstream velocity and density are then written out. We have tested this shock detection algorithm with one- and two-dimensional shock tube problems and found that the jumps in pressure and density are reproduced very well. The shock structures in a slice through the central regions of our computational domain are shown in Fig. 1.

3 RESULTS

We have simulated a jet that resembles an FR I source in a realistic cluster environment. Our simulation reproduces the shock structure in the inner ~100 kpc of the cluster around an AGN with FR I morphology. One can see how the jet inflates bubbles that break off and start to rise through the cluster medium. This morphology resembles many of the low-power AGN that are observed to inflate bubbles at the centres of cooling flow clusters.

Fig. 1 reveals two kinds of shocks. At the working surface of the jet, i.e. at the point where the jet impacts the ambient medium, there is a very strong shock wave. In the first million years after the start of the jet, this shock wave has Mach numbers with respect to the ICM of >30. The normal of this shock surface is equal or close to the direction of the jet and does not encompass the entire jet region, contrary to the outer shock that is described below. Later on, as the ICM near the jet gets hotter, the Mach number of the strong inner shock decreases to close to ~8–10. When motions of the ambient medium cause the jet to break off or to change direction, this shock can detach and a new working surface forms. As the jet jitters and ambient material moves into the jet, multiple shock fronts develop in the region close to the AGN. This leads to multiple shock features, as one can see in the bottom left-hand panel of Fig. 1. In our simulation, we see that a continuous jet can lead to multiple shock fronts such as those observed in M87 and other clusters. Hence the existence of multiple shock fronts does not necessarily imply an intermittency of the AGN.

The second kind of shock is a weak and nearly spherical shock that travels from the point of the injection region outwards through the cluster. The Mach number of the outer shock remains at fairly constant values of around 1.1–1.2 for the largest part of its propagation through the core of the cluster. The pressure jump across a shock of $M = 1.2$ is 1.55. The outer shock is a pressure wave that is driven by the additional pressure from the injected gas in the core of the cluster. This is different from the strong, inner shock that is driven by the ram pressure of the jet. After about 10 Myr the outer shock becomes prolate in the direction of the jet. As the bubbles rise mainly in the jet direction, the pressure also increases preferentially in the direction of the jet. The Mach number is slightly higher in the direction of the jet than at the sides of the outer shock front.

Next, we wish to compute the total energy thermalized in the shock front. One can write, for the thermal energy flux generated at the shock,

$$ F = \left[e_d - e_u (\rho_d/\rho_u)^{\gamma} \right] v_d, $$

(2)

where the subscripts d and u denote down- and upstream quantities, respectively, e is the thermal energy density, ρ is the gas density and v is the velocity. The second term inside the brackets subtracts the effect of adiabatic compression suffered at a shock. The total thermalized energy input per time (by shocks) divided by the mechanical luminosity of the jet is shown in Fig. 2. About 2 per cent

which are sufficiently close to a typical, massive, X-ray-bright cluster with a mass of $M \sim 7 \times 10^{14} M_\odot$ and a central temperature of 6 keV. The cluster appears as a classical, relaxed cooling flow cluster in X-rays. Its density rises steeply in the centre, and the profile is very similar to the density profiles reported by Vikhlinin et al. (2006). The set-up is the same as used by Heinz et al. (2006). The output of the GADGET smoothed particle hydrodynamics (SPH) simulation serves as the initial conditions for our simulation. We use the FLASH code (Fryxell et al. 2000) which is a modular block-structured adaptive mesh refinement code, parallelized using the Message Passing Interface. It solves the Riemann problem on a Cartesian grid using the Piecewise-Parabolic Method. Our simulation includes 7×10^5 dark matter particles. For the relatively short physical time of the jet simulation (25 Myr), radiative cooling and star formation are neglected, although they were included in the constitutive SPH simulation.

The computational domain is a 2.8-Mpc box around the centre of mass of the cluster. The maximum resolution at the grid centre corresponds to a cell size of 174 pc, implying 11 levels of refinement. The simulations presented in this Letter were performed assuming an adiabatic equation of state with a uniform adiabatic index of $\gamma = 5/3$.

The jet is injected through a nozzle placed at the centre of the gravitational potential, coincident with the gas density peak of the central elliptical galaxy. The nozzle is modelled as two circular back-to-back inflow boundaries 2 kpc or 12 resolution elements in diameter. The nozzle faces obey inflow boundary conditions fixed by the mass-, momentum- and energy fluxes of the jet. This treatment avoids the entrainment of cluster gas into the jet which is unavoidable in simpler schemes where the jet is approximated by injecting mass, momentum and energy into a finite volume of the cluster that contains thermal gas and is part of the active computational grid. We were thus able to separate cleanly jet fluid and cluster fluid in order to study the heat input into the ICM only. The jet is centred on the gravitational potential of the cluster and follows the (slow) motion of the cluster through the computational domain.

The jet material is injected equally in opposite directions with velocity $v_{jet} = 3 \times 10^7$ cm s$^{-1}$ and an internal Mach number of 32. The jet power of the simulation presented in this Letter was chosen to be $W_{jet} = 3 \times 10^{49}$ erg s$^{-1}$, corresponding to a rather powerful source.

Comparing this luminosity with the sample of cavity systems studied by Birzan et al. (2004), the jet power in our simulation is at the extreme end of those observed and well above that cited for M87 (Allen et al. 2006). However, even such powerful sources assume FR I morphologies in dense clusters such as this one (see e.g. Perseus A). Even though Perseus A is inferred to have a mean power output of $\sim 10^{44}$ erg s$^{-1}$ (Sanders & Fabian 2007), its peak luminosities are likely to be significantly larger. Hercules A has a power of 1.6×10^{46} erg s$^{-1}$ as implied by the large-scale shocks found around it (Nulsen et al. 2005; McNamara et al. 2005), but still exhibits an FR I/II morphology. In our simulation, we chose such a high luminosity to ensure that the jet is able to push through the dense gas of the central galaxy.

The shocks in our simulation are detected using a multidimensional shock detection mode adopted from the SPPM code (Anderson & Woodward 1995) based on pressure jumps across the shock. The basic algorithm evaluates the jump in pressure in the direction of compression (determined by looking at the velocity field). If the total velocity divergence is negative and the relative pressure jump across the compression front is larger than some chosen value ($\Delta p/p > 0.25$), then a zone is marked as shocked. Using the jumps across the shock in the three velocity components, we get the x-, y- and z-components of a unit vector pointing in the direction of the velocity jump, hence in the direction normal to the shock front. We now project the pre- and post-shock velocities on to the shock normal. The upstream and downstream pressure, the upstream velocity and density are then written out. We have tested this shock detection algorithm with one- and two-dimensional shock tube problems and found that the jumps in pressure and density are reproduced very well. The shock structures in a slice through the central regions of our computational domain are shown in Fig. 1.
of the mechanical luminosity of the jet is converted lastingly into internal energy. The properties of the outer shock are found to be relatively insensitive to the mechanical luminosity of the jet. The inner, strong shocks are much more efficient at generating energy because their Mach number is much higher. However, their area is relatively small and thus they may be important for the interstellar medium of the host galaxy, but they are unlikely to have a significant effect on the thermal state of the ICM. The properties of the inner shock depend also quite sensitively on the exact jet parameters and to some degree on the numerical resolution of our grid. Meanwhile, the properties of the outer shock are not sensitive to the numerical resolution and appear converged. We note that the time-scale and geometry of the initial energy release are important for the computation of the energy deposited in the ICM or interstellar medium. If the same total energy were injected in the form of thermal energy in pressure equilibrium with the surroundings, the amount of energy transferred to the ICM in the form of shocks would be very different. Even taking into account the uncertainties of our jet model, the approach presented here is much more realistic than schemes in which the energy is injected in pressure equilibrium.

The total increase in internal energy per unit time of the ambient medium (i.e. excluding the jet material) within the outer shock divided by the total mechanical power of the jet is shown in Fig. 3. We see that for the first 15 Myr of the AGN activity, a bit more than 30 per cent of the injected energy has been converted to thermal energy in the inner core. This is much more than what has been thermalized by the outer shock. The temperature increase in the cluster core is mainly caused by $p \, dV$ work from the expanding bubbles. While the shocks thermalize only a few per cent of the jet energy, this also raises the entropy of the cluster. On the other hand, $p \, dV$ work by the expanding bubbles is adiabatic until the gas motions induced by the rising bubbles are dissipated by viscous processes (Nulsen et al. 2006). Yet a succession of shocks can be sufficient to offset the radiative cooling of the entire ICM, as only 4–5 shock fronts that are permanently present lead to a conversion of ~10 per cent of the jet energy.

Figure 1. Slices through the cluster centre showing the shocks (left) and the gas density (right) at 5 and 15 Myr after the start of the jet. Shown is only the central part of the computational domain. The entire computational domain represents a volume of 2.8 Mpc3.

© 2007 The Authors. Journal compilation © 2007 RAS, MNRAS 380, L67–L70

Downloaded from https://academic.oup.com/mnrasl/article-abstract/380/1/L67/1017866 by guest on 29 July 2018
We have presented a single simulation of a shock that has been produced by an FR I jet. Obviously, there are a lot of parameters that can be varied. However, these kinds of simulations are very expensive: on NAS Columbia (NASA's Advanced Supercomputing facility) a single simulation took more than 12,000 CPU hours (on 64 processors). Hence we chose one exemplary case that reproduces properties that match observations such as those in Hercules or M87 (despite wide discrepancies in jet powers). In the long term, a proper parameter study ought to be conducted.

ACKNOWLEDGMENTS

The anonymous referee is thanked for a helpful report. MB and ER acknowledge support by the DFG grant BR 2026/3 within the Priority Programme ‘Witnesses of Cosmic History’ and the supercomputing grants NIC 2195 and 2256 at the John-Neumann Institut at the Forschungszentrum Jülich. SH acknowledges support through NASA grant TM5-6007X. We also acknowledge a supercomputing grant on NAS Columbia. The results presented were produced using the FLASH code, a product of the DOE ASC/Alliances-funded Center for Astrophysical Thermonuclear Flashes at the University of Chicago.

REFERENCES

Allen S. W., Dunn R. J. H., Fabian A. C., Taylor G. B., Reynolds C. S., 2006, MNRAS, 372, 21
Anderson S. E., Woodward P. R., 1995, http://www.lcse.umn.edu/research/sppm/README.html
Birzan L., Rafferty D. A., McNamara B. R., Wise M. W., Nulsen P. E. J., 2004, ApJ, 607, 800
Brüggen M., Ruszkowski M., Hallman E., 2005, ApJ, 630, 740
Croston J. H., Kraft R. P., Hardcastle M. J., 2007, ApJ, 660, 191
Fabian A. C., Sanders J. S., Taylor G. B., Allen S. W., Crawford C. S., Johnstone R. M., Iwasawa K., 2006, MNRAS, 366, 417
Forman W. et al., 2005, ApJ, 635, 894
Forman W. et al., 2006, astro-ph/0604583
Fryxell B. et al., 2000, ApJS, 131, 273
Heinz S., Brüggen M., Young A., Levesque E., 2006, MNRAS, 373, L65
Kraft R. P., Vázquez S. E., Forman W. R., Jones C., Murray S. S., Hardcastle M. J., Worrall D. M., Churazov E., 2003, ApJ, 592, 129
McNamara B. R., Nulsen P. E. J., Wise M. W., Rafferty D. A., Carilli C., Sarazin C. L., Blanton E. L., 2005, Nat, 433, 45
Nulsen P. E. J., Hambrick D. C., McNamara B. R., Rafferty D., Birzan L., Wise M. W., David L. P., 2005, ApJ, 625, L9
Nulsen P. E. J., Jones C., Forman W. R., David L. P., McNamara B. R., Rafferty D. A., Birzan L., Wise M. W., 2006, astro-ph/0611136
Ruszkowski M., Brüggen M., Begelman M. C., 2004, ApJ, 615, 675
Ruszkowski M., Ensslin T. A., Brüggen M., Begelman M. C., 2004, ApJ, 615, 675
Simionescu A., Bühringer H., Brüggen M., Finoguenov A., 2007, A&A, 465, 794
Springel V., Yoshida N., White S. D. M., 2001, New Astron., 6, 79
Vikhlinin A., Kravtsov A., Forman W., Jones C., Markevitch M., Murray S. S., Van Speybroeck L., 2006, ApJ, 640, 691

This paper has been typeset from a TeX/LaTeX file prepared by the author.