Impact of marital status at diagnosis on the survival of patients with anal canal squamous cell carcinoma: a propensity score-matched analysis

Ting Yang · Hongqi Xiao · Fei Sun · Xinggang Guo

Abstract

Purpose Marital status has been shown to be an important psychosocial factor that plays an important role in the prognosis of various cancers. The effect of marital status on survival outcomes in anal canal squamous cell carcinoma has not been studied. The purpose of this study was to address this issue.

Methods According to the established screening criteria, we obtained 2429 patients with anal canal squamous cell carcinoma from the Surveillance, Epidemiology, and End Results (SEER) database. Kaplan–Meier analysis and multivariate Cox regression analysis were used to analyze the survival of anal canal squamous cell carcinoma patients with different marital status. 1:1 propensity score matching (PSM) was used to match 979 unmarried patients with 979 married patients to further demonstrate the effect of marital status on the survival of patients with anal canal squamous cell carcinoma.

Results The 5-year overall survival (OS) rates of married, divorced/separated, single, and widowed patients with anal canal squamous cell carcinoma were 75.6%, 69.7%, 62.2%, and 51.3%, respectively and the corresponding 5-year cancer-specific survival (CSS) rates were 80.7%, 79.6%, 70.1%, and 68.9%, respectively. Multivariate Cox regression analysis showed that marital status, sex, race, SEER stage, tumor size, regional nodes positive, primary site surgery, chemotherapy, and radiotherapy were independent prognostic factors for OS and CSS, and also demonstrated that the widowed patients suffered the highest risk mortality. Furthermore, married patients were found to have better OS and CSS than unmarried patients both before and after propensity score matching.

Conclusion This study found that married patients with anal canal squamous cell carcinoma had better survival outcomes, while widowed patients had the worst OS and CSS.

Keywords Propensity score matching · Marital status · Survival analysis · Anal canal squamous cell carcinoma

Introduction

Anal cancer is a rare malignant tumor, accounting for only 3% of gastrointestinal tumors [1]. Squamous cell carcinoma is the most common pathological type of anal cancer, accounting for about 85–95% of all anal cancers [2]. In recent years, due to increased exposure to risk factors including HIV and HPV infection, smoking, and unhealthy sexual behaviors such as MSM (men who have sex with men), the incidence of anal canal squamous cell carcinoma has been increasing, which has attracted more and more attention [3]. Prior to 1970, abdominal perineal resection (APR) was the main treatment modality. Later, Nigro et al. proposed that radiation therapy combined with chemotherapy can effectively improve the survival outcome and became the standard therapy for anal canal squamous cell carcinoma [4]. However, radiation therapy and chemotherapy also cause damage to normal cells when they kill tumor cells, and long-term treatment can impose a huge financial burden on patients [5]. Therefore, it is important to focus on favorable psychosocial factors that influence patient outcomes.
Marital status is one of the important psychosocial factors and has been shown to influence patients survival in pancreatic cancer [6], nasopharyngeal carcinoma [7], osteosarcoma [8], non-small cell lung cancer [9], primary liver cancer [10], etc. However, there were also some reports demonstrating no association between marital status and patient survival outcomes [11]. For anal canal squamous cell carcinoma, to our knowledge, there is little literature reporting the relationship between it and marital status.

In the present study, we performed 1:1 propensity score matching (PSM) to explore the effects of marital status on the survival of patients with anal canal squamous cell carcinoma based on SEER.

Methods

Patient selection

The Surveillance, Epidemiology, and End Results (SEER) program is one of the largest open cancer databases in the world supported by the National Cancer Institute and Centers for Disease Control and Prevention. The database collects survival data on cancer patients covering almost 28% of the US population [12]. From the database, we chose 2429 patients according to the following criteria: (1) primary sites limited anal canal; (2) pathological diagnosis of squamous cell carcinoma (histology code: 8050–8078, 8083–8084); (3) survival months >1; (4) diagnosis of anal canal cancer by positive histology; (5) patients with only one primary malignancies. And patients who were unknown the information of race, grade, SEER stage, marital status, tumor size, primary site surgery, and cancer-specific survival were also excluded. The selection process is clearly shown in Fig. 1.

Variable classification

Sex, age, married status, race, grade, SEER stage, tumor size, regional nodes positive, primary site surgery, radiotherapy, and chemotherapy were obtained from the database. Age was divided into <50 years old and ≥50 years old. For marital status, we separated the population into 2 groups: married, unmarried (including divorced/separated, single, and widowed). And tumor size was categorized into two groups (<5 cm and ≥5 cm).

Statistical analysis

We used descriptive statistics to summarize the patient demographic and tumor characteristics. The chi-square test was used to compare the differences of categorical variables between different groups. Survival time was calculated from the date of diagnosis to the date of death or last follow-up. Survival curves were plotted according to the Kaplan–Meier method, and log-rank tests were performed to compare survival differences in the different groups. In addition, univariate analysis was used to investigate possible prognostic factors, and then we performed multivariate Cox proportional hazards models for variables with $P < 0.2$.

Fig. 1 Patient selection process
To minimize the possible confounding effects between married and unmarried, we collected covariates including sex, age, race, grade, SEER stage, tumor size, regional nodes positive, primary site surgery, radiotherapy, and chemotherapy for 1:1 PSM (the nearest-neighbor algorithm and caliper value 0.05).

Kaplan–Meier survival curves and PSM were conducted by R version 4.1.3. The R package of MatchIt was used for PSM. And the rest of the analysis used the SPSS 26.0. All statistical tests were 2-sided, and \(P < 0.05 \) was considered statistically significant.

Results

Demographic and clinicopathologic characteristics

From the SEER database, 2429 anal canal squamous cell carcinoma patients were selected according to screening criteria, including 1059 (43.6%) married patients and 1370 (56.4%) unmarried patients. Among the unmarried patients, the numbers of divorced/separated, single, and widowed were 448 (18.4%), 649 (26.7%), and 273 (11.2%), respectively. Compared with married patients, unmarried patients were more often male, had higher tumor SEER stages, bigger tumor size, and were less likely to receive chemotherapy and radiotherapy. While married patients were more likely to be white and had higher tumor grade. Among the unmarried patients, the widowed group tended to be oldest and female and had the lowest rates of surgery and chemotherapy. And the single group had the most younger patients, the highest proportion of males, the highest proportion of blacks, the largest tumor size, the highest surgical rate, the lowest tumor grade, and the lowest radiotherapy rate (Table 1).

Effect of marital status on the OS

The Kaplan–Meier curves revealed that unmarried patients had a higher mortality rate than married (OS: \(P < 0.001; \) CSS: \(P < 0.001; \) Fig. 2). Then, the unmarried patients were divided into three subgroups (divorced/separated, single, and widowed) to further explore the prognosis of different unmarried status in unmarried patients. As shown in Fig. 3a, the Kaplan–Meier analysis showed that married patients have the best OS, while widowed patients have the worst (\(P < 0.001 \)). The 5-year OS was 75.6%, 69.7%, 62.2%, and 51.3% among married, divorced/separated, single, and widowed, respectively (Table 2). Similarly, there were significant differences in CSS among patients with different marital status (\(P < 0.001; \) Fig. 3b). And the CSS of widowed patients was still significantly lower than that of married patients. The 5-year CSS was 80.7%, 79.6%, 70.1%, and 68.9% among married, divorced/separated, single, and widowed, respectively (Table 3). Then we performed univariate and multivariate analyses, after adjusting clinicopathological characteristics including sex, age, SEER stage, grade, regional nodes positive, tumor size, primary site surgery, chemotherapy, and radiotherapy, the widowed patients still suffered the highest risk mortality for both OS and CSS (Tables 2 and 3).

Multivariate Cox regression analysis not only demonstrated that marital status was an independent prognostic factor for both OS and CSS in patients with anal canal squamous cell carcinoma but also sex, race, SEER stage, tumor size, regional nodes positive, primary site surgery, chemotherapy, and radiotherapy (Tables 2 and 3).

Propensity-score matching for married and unmarried groups

To further confirm that married patients had a better survival than unmarried, we performed a 1:1 propensity matching score analysis to balance the baseline characteristics between the two groups. Ultimately, 979 married patients and 979 unmarried patients were successfully matched. Table 4 and Fig. 4 showed that the demographic and clinical characteristics were well balanced (all \(P > 0.05 \)). After matching, the survival of the married patients with anal canal squamous cell carcinoma was still better than that of the unmarried patients with anal canal squamous cell carcinoma (OS: \(P < 0.001; \) CSS: \(P = 0.038; \) Fig. 5).

Discussion

As far as we are concerned, this is the first study to explore the prognostic significance of marital status in anal canal squamous cell carcinoma. Based on PSM and large patient numbers, our study provided a relatively reliable result. Married patients had better survival outcomes than unmarried patients. In addition, widowed patients had worst survival.

Married patients had better survival outcomes than unmarried patients in anal canal squamous cell carcinoma for several reasons. The first possible underlying reason is that married people are more likely to be diagnosed earlier. Previous studies have confirmed that unmarried patients with delayed diagnosis have worse survival outcomes [13, 14]. Additionally, in the present study, we found that unmarried patients with anal canal squamous cell carcinoma were less likely to undergo radiation therapy and chemotherapy, suggesting that the better prognosis of married patients is partly due to aggressive and timely treatment. Secondly, married patients can receive
more financial support from relatives such as spouses and children for treatment, which leads to a better prognosis than unmarried patients [15, 16]. In addition to material support, married patients can accept more mental and emotional support from their spouses [17, 18]. Unmarried states such as divorced, separated, single, and widowed can bring strong mental stress, coupled with being diagnosed with cancer, make patients so stressed that they are more likely to be depressed and anxious [19, 20]. Meanwhile, patients with long-term negative emotions are more likely to develop bad habits such as smoking and alcoholism, which will further accelerate the progression of cancer and disrupt the effect of treatment [21, 22]. While married patients receive more care and encouragement from their spouses, their attitude towards the disease is more optimistic, and compliance with treatment is also better.

Characteristic	Total (%)	Married (%)	Unmarried (%)	Divorced/Separated (%)	Single (%)	Widowed (%)
Sex	2429 (100)	1059 (43.6)	1370 (56.4)	448 (18.4)	649 (26.7)	273 (11.2)
Male	787 (32.4)	278 (11.4)	509 (21.0)	90 (3.7)	397 (16.3)	22 (0.9)
Female	1642 (67.6)	781 (32.2)	861 (35.4)	358 (14.7)	252 (10.4)	251 (10.3)
Age						
<50	481 (19.8)	196 (8.1)	285 (11.7)	69 (2.8)	211 (8.7)	5 (0.2)
≥50	1948 (82.0)	863 (35.5)	1085 (44.7)	379 (15.6)	438 (18.0)	268 (11.0)
Race						
White	2133 (87.8)	987 (40.6)	1146 (47.2)	397 (16.3)	506 (20.8)	243 (10.0)
Black	229 (9.4)	45 (1.9)	184 (7.6)	38 (1.6)	127 (5.2)	19 (0.8)
Others	67 (2.8)	27 (1.1)	40 (1.6)	13 (0.5)	16 (0.7)	11 (0.5)
SEER stage						
Localized	1243 (51.2)	584 (24.0)	659 (27.1)	209 (8.6)	319 (13.1)	131 (5.4)
Regional	916 (37.7)	372 (15.3)	544 (22.4)	180 (7.4)	254 (10.5)	110 (4.5)
Distant	270 (11.1)	103 (4.2)	167 (6.9)	59 (2.4)	76 (3.1)	32 (1.3)
Tumor size						
<5 cm	1749 (72.0)	804 (33.1)	945 (38.9)	315 (13.0)	434 (17.9)	196 (8.1)
≥5 cm	680 (28.0)	255 (10.5)	425 (17.5)	133 (5.5)	215 (8.9)	77 (3.2)
Grade						
Grade I	306 (12.6)	111 (4.6)	195 (8.0)	51 (2.1)	124 (5.1)	20 (0.8)
Grade II	1109 (45.7)	479 (19.7)	630 (25.9)	201 (8.3)	306 (12.6)	123 (5.1)
Grade III	982 (40.4)	449 (18.5)	533 (21.9)	191 (7.9)	213 (8.8)	129 (5.3)
Grade IV	32 (1.3)	20 (0.8)	12 (0.5)	5 (0.2)	6 (0.2)	1 (0.0)
Regional nodes positive						
No	92 (3.8)	42 (1.7)	50 (2.1)	18 (0.7)	23 (0.9)	9 (0.4)
Yes	147 (6.1)	60 (2.5)	87 (3.6)	22 (0.9)	46 (1.9)	19 (0.8)
Unknown	2190 (90.2)	957 (39.4)	1233 (50.8)	408 (16.8)	580 (23.9)	245 (10.1)
Primary site surgery						
No	1535 (63.2)	662 (27.3)	873 (35.9)	301 (12.4)	383 (15.8)	189 (7.8)
Yes	894 (36.8)	397 (16.3)	497 (20.5)	147 (6.1)	266 (11.0)	84 (3.5)
Chemotherapy						
No	344 (14.2)	122 (5.0)	222 (9.1)	55 (2.3)	114 (4.7)	53 (2.2)
Yes	2085 (85.8)	937 (38.6)	1148 (47.3)	393 (16.2)	535 (22.0)	220 (9.1)
Radiotherapy						
No	275 (11.3)	103 (4.2)	172 (7.1)	49 (2.0)	93 (3.8)	30 (1.2)
Yes	2154 (88.7)	956 (39.4)	1198 (49.3)	399 (16.4)	556 (22.9)	243 (10.0)
Long-term mental stress can also have an impact on the function of endocrine and immune systems [23–25]. Persistent stress and lack of social support can lead to disturbances in the neuroendocrine network mediated by the hypothalamic-pituitary axis [26, 27]. An example is the elevation of glucocorticoids and catecholamines, which would weaken T cell-mediated immune responses and the activity of NK cells [26, 28, 29]. Then, this immunosuppressive microenvironment will promote the proliferation, invasion, and migration of tumor cells [30]. In addition, in the study of ovarian cancer cells, stress hormones were found to promote cancer cell infiltration into the extracellular matrix, thereby promoting tumor dissemination and migration [31].

As the medical model shifts to a bio-psycho-social model, the influence of psychosocial factors in diseases has received increasing attention [32]. A good social environment and a positive attitude are very important to the patient’s treatment effect, and the patient’s marital status plays a crucial role in it. Our study, along with some previous studies, found that people who were widowed had the worst survival outcomes, suggesting that widowed patients may have suffered the greatest emotional trauma and mental stress. So how to

Fig. 2 Kaplan–Meier survival curves of anal canal squamous cell carcinoma patients between married and unmarried patients before matching. a Overall survival. b Cancer-specific survival

Fig. 3 Kaplan–Meier survival curves of anal canal squamous cell carcinoma patients among married, divorced/separated, single, and widowed. a Overall survival. b Cancer-specific survival
Variables	5-y OS	Univariate analysis	Multivariate analysis	
	5-y OS	Log-rank χ²	HR (95% CI)	P
Marital status				
Widowed	51.3%	83.2	<0.001	Reference
Single	62.2%		0.54 (0.43, 0.67)	<0.001
Divorced/separated	69.7%		0.54 (0.43, 0.67)	<0.001
Married	75.6%		0.45 (0.37, 0.55)	<0.001
Sex				
Male	59.0%	55.2	<0.001	Reference
Female	72.6%		0.55 (0.47, 0.63)	<0.001
Age				
<50	73.6%	14.5	<0.001	Reference
≥50	66.8%		1.51 (1.25, 1.82)	<0.001
Race				
White	69.9%	27.0	<0.001	Reference
Black	54.4%		1.39 (1.14, 1.70)	0.001
Others	62.8%		1.00 (0.70, 1.45)	0.988
SEER stage				
Localized	76.6%	187.5	<0.001	Reference
Regional	65.6%		1.39 (1.18, 1.64)	<0.001
Distant	37.9%		2.93 (2.39, 3.60)	<0.001
Tumor size				
<5 cm	73.3%	78.6	<0.001	Reference
≥5 cm	54.9%		1.44 (1.24, 1.67)	<0.001
Grade				
Grade I	71.2%	2.8	0.423	
Grade II	68.8%			
Grade III	66.3%			
Grade IV	73.5%			
Regional nodes positive				
No	63.9%	42.2	<0.001	Reference
Yes	45.8%		1.34 (0.92, 1.93)	0.127
Unknown	69.9%		0.90 (0.66, 1.24)	0.528
Primary site surgery				
No	66.6%	2.6	0.106	Reference
Yes	70.9%		0.85 (0.73, 0.99)	0.041
Chemotherapy				
No	56.9%	35.4	<0.001	Reference
Yes	70.0%		0.65 (0.51, 0.82)	0.001
Radiotherapy				
No	56.7%	33.9	<0.001	Reference
Yes	69.6%		0.72 (0.55, 0.94)	0.014

95% CI, 95% confidence intervals; HR, hazard ratio

Table 2. Univariate and multivariate analysis to assess the effect of marital status on overall survival in anal canal squamous cell carcinoma.
Table 3 Univariate and multivariate analysis to assess the effect of marital status on cancer-specific survival in anal canal squamous cell carcinoma

Variables	5-y CSS	Univariate analysis	Multivariate analysis		
	Log-rankχ²	P	HR (95% CI)	P	
Marital status					
Widowed	68.9%	37.1	<0.001	Reference	
Single	70.1%			0.65 (0.49, 0.86)	0.003
Divorced/separated	79.6%			0.54 (0.40, 0.73)	<0.001
Married	80.7%			0.59 (0.45, 0.76)	<0.001
Sex					
Male	67.6%	52.2	<0.001	Reference	
Female	80.6%			0.51 (0.43, 0.61)	<0.001
Age				<0.911	
< 50	76.7%	0.0			
≥ 50	76.4%				
Race					
White	78.0%	28.1	<0.001	Reference	
Black	63.8%			1.43 (1.12, 1.82)	0.004
Others	70.9%			1.09 (0.70, 1.70)	0.692
SEER stage					
Localized	85.8%	249.8	<0.001	Reference	
Regional	73.0%			1.68 (1.36, 2.07)	<0.001
Distant	44.7%			4.10 (3.20, 5.25)	<0.001
Tumor size					
< 5 cm	81.4%	85.9	<0.001	Reference	
≥ 5 cm	63.5%			1.51 (1.26, 1.80)	<0.001
Grade					
Grade I	79.6%	6.6	0.084	Reference	
Grade II	77.5%			1.28 (0.96, 1.69)	0.093
Grade III	73.9%			1.44 (1.08, 1.92)	0.014
Grade IV	87.9%			0.93 (0.34, 2.56)	0.884
Regional nodes positive					
No	70.4%	65.4	<0.001	Reference	
Yes	50.7%			1.40 (0.91, 2.16)	0.125
Unknown	78.5%			0.84 (0.58, 1.23)	0.368
Primary site surgery					
No	74.9%	4.6	0.032	Reference	
Yes	79.1%			0.80 (0.65, 0.97)	0.022
Chemotherapy					
No	69.1%	17.5	<0.001	Reference	
Yes	77.7%			0.72 (0.53, 0.97)	0.033
Radiotherapy					
No	64.7%	33.6	<0.001	Reference	
Yes	78.0%			0.56 (0.41, 0.77)	<0.001

95% CI, 95% confidence intervals; HR, hazard ratio
solve the emotional problems of widowed patients? Previous studies have shown that the loneliness and depression of widowed patients are closely related to economic income, and widowed patients need more care from outside the home [33–35]. Therefore, the society should provide more social welfare for the widowed patients and help them find suitable jobs. In addition, the psychological problems of widowed patients often cannot be solved by themselves, and they need professional support from family doctors and psychologists to help them manage their emotions and change their attitudes in many cases [35, 36]. More community activities can help widowed patients cultivate hobbies and make new friends, both of which have great benefits for mental health [36, 37]. All in all, in the process of treatment, we should focus on social relationship and give more material and emotional help to the widowed patients.

Table 4 Characteristics of the canal squamous cell carcinoma patients before and after propensity score matching

Characteristic	Before matching	After matching	P value	Before matching	After matching	P value
	Unmarried (%)	Married (%)		Unmarried (%)	Married (%)	
Sex						
Male	509 (37.2)	278 (26.3)	<0.001	288 (29.4)	278 (28.4)	0.618
Female	861 (62.8)	781 (73.7)		691 (70.6)	701 (71.6)	
Age						
< 50	285 (20.8)	196 (18.5)	0.159	158 (16.1)	166 (17.0)	0.627
≥ 50	1085 (79.2)	863 (81.5)		821 (83.9)	813 (83.0)	
Race						
White	1146 (83.6)	987 (93.2)	<0.001	910 (93.0)	909 (92.8)	0.990
Black	184 (13.4)	45 (4.2)		44 (4.5)	44 (4.5)	
Others	40 (2.9)	27 (2.5)		25 (2.6)	26 (2.7)	
SEER stage						
Localized	659 (48.1)	584 (55.1)	0.002	538 (55.0)	518 (52.9)	0.602
Regional	544 (39.7)	372 (35.1)		338 (34.5)	359 (36.7)	
Distant	167 (12.2)	103 (9.7)		103 (10.5)	102 (10.4)	
Tumor size						
< 5 cm	945 (69.0)	804 (75.9)	<0.001	718 (73.3)	728 (74.4)	0.607
≥ 5 cm	425 (31.0)	255 (24.1)		261 (26.7)	251 (25.6)	
Grade						
Grade I	195 (14.2)	111 (10.5)	0.004	103 (10.5)	111 (11.3)	0.819
Grade II	630 (46.0)	479 (45.2)		449 (45.9)	456 (46.6)	
Grade III	533 (38.9)	449 (42.4)		419 (42.8)	402 (41.1)	
Grade IV	12 (0.9)	20 (1.9)		8 (0.8)	10 (1.0)	
Regional nodes positive						
No	50 (3.6)	42 (4.0)	0.730	35 (3.6)	38 (3.9)	0.896
Yes	87 (6.4)	60 (5.7)		57 (5.8)	60 (6.1)	
Unknown	1233 (90.0)	957 (90.4)		887 (90.6)	881 (90.0)	
Primary site surgery						
No	873 (63.7)	662 (62.5)	0.539	616 (62.9)	616 (62.9)	1.000
Yes	497 (36.3)	397 (37.5)		363 (37.1)	326 (37.1)	
Chemotherapy						
No	222 (16.2)	122 (11.5)	0.001	122 (12.5)	120 (12.3)	0.891
Yes	1148 (83.8)	937 (88.5)		857 (87.5)	859 (87.7)	
Radiotherapy						
No	172 (12.6)	103 (9.7)	0.029	107 (10.9)	103 (10.5)	0.770
Yes	1198 (87.4)	956 (90.3)		872 (89.1)	876 (89.5)	
Although we try to control for the biases generated in the study, there are obvious limitations in our study due to the retrospective nature. First of all, the SEER database does not provide patients' HPV and HIV infection status, which are important for patient prognosis. Second, we were only able to obtain marital status at diagnosis, but the quality of the marriage and subsequent changes in marital status were unknown. Besides, other marital statuses such as gay, bisexual, transgender, and lesbian were also unknown. This missing information may bias the results. Finally, some information that may be relevant to the prognosis of cancer patients, such as socioeconomic status, education, and reproductive history, was not available in the SEER database. Despite these limitations, our study demonstrated that marital status had a significant impact on patient survival outcomes while minimizing possible biases.

In summary, our study found that married patients with anal canal squamous cell carcinoma had better survival outcomes, while widowed patients had the worst. This result reminds our clinicians to consider the influence of psychosocial factors while paying attention to the patient’s own disease, which will provide patients with more personalized treatment.
Acknowledgements We thank Dr. Xinshu Dong for critical reading of the article and helpful suggestions. We would like to thank all the researchers for the SEER program.

Author contribution Ting Yang developed the ideal and analyzed the data. All authors wrote the manuscript. Xinggang Guo and Hongqi Xiao reviewed the manuscript. All authors read and approved the final manuscript.

Funding This work was supported by grants to H Xiao from The Heilongjiang Province Postdoctoral Fund Grant [LBZ-Z21180].

Data availability All data are freely available in the SEER datasets. These data can be found here: https://seer.cancer.gov.

Declarations

Ethics approval All patient information was obtained from the SEER database, which is publicly accessible. Therefore, ethics committee review and informed consent requirements were not required.

Conflict of interest The authors declare no competing interests.

Open access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Young AN, Jacob E, Willauer P, Smucker L, Monzon R, Oceguera L (2020) Anal cancer. Surg Clin North Am 100(3):629–34. Epub 2020/05/14. https://doi.org/10.1016/j.suc.2020.02.007. PubMed PMID: 32402305

2. Nelson VM, Benson AB (2017) 3rd. Epidemiology of anal canal cancer. Surg Oncol Clin N Am 26(1):9–15. Epub 2016/11/28. https://doi.org/10.1016/j.soc.2016.07.001. PubMed PMID: 27889039

3. Tong WW, Hillman RJ, Kelleher AD, Grulich AE, Carr A (2014) Anal intraepithelial neoplasia and squamous cell carcinoma in HIV-infected adults. HIV Med. 15(2):65–76. Epub 2013/09/07. https://doi.org/10.1111/hiv.12080. PubMed PMID: 24007498

4. Leichman L, Nigro N, Vaitkevicius VK, Considine B, Buroker T, Bradley G et al (1985) Cancer of the anal canal. Model for preoperative adjuvant combined modality therapy. Am J Med 78(2):211–5. Epub 1985/02/01. https://doi.org/10.1016/0002-9343(85)90428-0. PubMed PMID: 3918441

5. Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–9. Epub 2012/03/13. https://doi.org/10.7150/ijms.3635. PubMed PMID: 22408567; PubMed Central PMCID: PMC3298009

6. Wang XD, Qian JJ, Bai DS, Li ZN, Jiang GQ, Yao J (2016) Marital status independently predicts pancreatic cancer survival in patients treated with surgical resection: an analysis of the SEER database. Oncotarget 7(17):24880–7. Epub 2016/04/02. https://doi.org/10.18632/oncotarget.8467. PubMed PMID: 27036036; PubMed Central PMCID: PMC4599570

7. Xu C, Liu X, Chen YP, Mao YP, Guo R, Zhou GQ et al (2017) Impact of marital status at diagnosis on survival and its change over time between 1973 and 2012 in patients with nasopharyngeal carcinoma: a propensity score-matched analysis. Cancer Med. 6(12):3040–51. Epub 2017/10/17. https://doi.org/10.1002/cam4.1232. PubMed PMID: 29304993; PubMed Central PMCID: PMC5727244

8. Qiu S, Tao L, Zhu Y (2019) Marital status and survival in osteosarcoma patients: an analysis of the Surveillance, Epidemiology, and End Results (SEER) database. Med Sci Monit 25:8190–203. Epub 2019/11/02. https://doi.org/10.12659/MSM.918048. PubMed PMID: 31672959; PubMed Central PMCID: PMC56849371

9. Chen Z, Yin K, Zheng D, Gu J, Luo J, Wang S et al (2020) Marital status independently predicts non-small cell lung cancer survival: a propensity-adjusted SEER database analysis. J Cancer Res Clin Oncol 146(1):67–74. Epub 2019/12/02. https://doi.org/10.1007/s00432-019-03084-x. PubMed PMID: 31786738

10. He XK, Lin ZH, Qian Y, Xia D, Jin P, Sun LM (2017) Marital status and survival in patients with primary liver cancer. Oncotarget 8(39):64954–63. Epub 2016/08/05. https://doi.org/10.18632/oncotarget.11066. PubMed PMID: 29029403; PubMed Central PMCID: PMC5630303

11. Mao W, Wu J, Wang K, Xu B, Chen M (2020) Marital status does not affect the cancer-specific survival of patients with upper tract urothelial carcinoma treated with nephroureterectomy: a propensity score matching study. Ther Adv Urol 12:1756287220981510. Epub 2021/01/26. https://doi.org/10.1177/1756287220981510. PubMed PMID: 33488776; PubMed Central PMCID: PMC7768858

12. Cronin KA, Ries LA, Edwards BK (2014) The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Cancer 120 Suppl 23:3755–7. Epub 2014/11/21. https://doi.org/10.1002/cncr.29049. PubMed PMID: 25412387

13. Goodwin JS, Hunt WC, Key CR, Samet JM (1987) The effect of marital status on stage, treatment, and survival of cancer patients. JAMA 258(21):3125–3130 (Epub 1987/12/04 PubMed PMID: 3669259)

14. Martinez ME, Unkart JT, Tao L, Kroenke CH, Schwab R, Komenaka J et al (2017) Prognostic significance of marital status in breast cancer survival: a population-based study. PLoS One 12(5):e0175515. Epub 2017/05/06. https://doi.org/10.1371/journal.pone.0175515. PubMed PMID: 28475579; PubMed Central PMCID: PMC5419505

15. Xie J, Yang S, Liu XY, Zhao YX (2018) Effect of marital status on survival in glioblastoma multiforme by demographics, education, economic factors, and insurance status. Cancer Med 7(8):3722–42. Epub 2018/07/17. https://doi.org/10.1002/cam4.1688. PubMed PMID: 30009575; PubMed Central PMCID: PMC6089174

16. Woods LM, Rachet B, Coleman MP (2006) Origins of socio-economic inequalities in cancer survival: a review. Ann Oncol 17(1):5–19. Epub 2005/09/07. https://doi.org/10.1093/annonc/mdj007. PubMed PMID: 16143594

17. Aizer AA, Chen MH, McCarthy EP, Mendu ML, Koo S, Wilhite TJ et al (2013) Marital status and survival in patients with cancer. J Clin Oncol 31(31):3869–76. Epub 2013/09/26. https://doi.org/10.1200/JCO.2013.49.6489. PubMed PMID: 24062405; PubMed Central PMCID: PMC4878087

18. Lan T, Lu Y, Luo H, He J, He J, Hu Z et al (2020) Effects of marital status on prognosis in women with infiltrating ductal
carcinoma of the breast: a real-world 1:1 propensity-matched study. Med Sci Monit 26:e923630. Epub 2020/06/26. https://doi.org/10.12659/MSM.923630. PubMed PMID: 32581209; PubMed Central PMCID: PMC733511

19. Tsunoda A, Nakao K, Hiratsuka K, Yasuda N, Shibusawa M, Kusumoto M (2005) Anxiety, depression and quality of life in colorectal cancer patients. Int J Clin Oncol 10(6):411–7. Epub 2005/12/22. https://doi.org/10.1007/s10147-005-0524-7. PubMed PMID: 16369745

20. Ng DL, Leong YC, Gan GG (2016) Quality of life amongst lymphoma survivors in a developing country. Support Care Cancer 24(12):5015–23. Epub 2016/10/28. https://doi.org/10.1007/s00520-016-3264-2. PubMed PMID: 27460016

21. Keenan K, Ploubidis GB, Silverwood RJ, Grundy E (2017) Life-course partnership history and midlife health behaviours in a population-based birth cohort. J Epidemiol Community Health 71(3):232–8. Epub 2016/09/23. https://doi.org/10.1136/jech-2015-207051. PubMed PMID: 27655423; PubMed Central PMCID: PMC518654

22. Qing M, Peng J, Shang Q, Xu H, Chen Q (2022) Effect of marital status on upper digestive tract tumor survival: married male patients exhibited a better prognosis. Front Surg 9:880893. Epub 2022/12/22. https://doi.org/10.3389/fsurg.2022.880893. PubMed PMID: 35478729; PubMed Central PMCID: PMCPMC9035669

23. Dhabhar FS (2014) Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res 58(2–3):193–210. Epub 2014/05/07. https://doi.org/10.1007/s12026-014-8517-0. PubMed PMID: 24798553

24. Powell ND, Tarr AJ, Sheridan JF (2013) Psychosocial stress and inflammation in cancer. Brain Behav Immun 30 Suppl:S41–7. PubMed PMID: 24798553

25. Reiche EM, Nunes SO, Morimoto HK (2004) Stress, the immune system, and cancer. Lancet Oncol 5(10):617–25. Epub 2004/10/07. https://doi.org/10.1016/S1470-2045(04)01597-9. PubMed PMID: 15465465

26. Antoni MH, Lutgendorf SK, Cole SW, Dhabhar FS, Sephton SE, McDonald PG et al (2006) The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 6(3):240–8. Epub 2006/02/25. https://doi.org/10.1038/nrc1820. PubMed PMID: 16498446; PubMed Central PMCID: PMCPMC3146042

27. Spiegel D, Giese-Davis J (2003) Depression and cancer: mechanisms and disease progression. Biol Psychiatry 54(3):269–82. Epub 2003/08/02. https://doi.org/10.1016/s0006-3223(03)00566-3. PubMed PMID: 12893103

28. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904. Epub 2007/07/07. https://doi.org/10.1152/physrev.00041.2006. PubMed PMID: 17615391

29. Shakhar G, Blumenfeld B (2003) Glucocorticoid involvement in suppression of NK activity following surgery in rats. J Neuroimmun 138(1–2):83–91. Epub 2003/05/14. https://doi.org/10.1016/s0165-5728(03)00118-8. PubMed PMID: 12742657

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.