Spatio-temporal database support for long-period scientific data

Martin Breunig
Institute for Environmental Sciences
University of Vechta, Germany
mbreunig@iuw.uni-vechta.de

Serge Shumilov
Institute for Computer Science III
University of Bonn, Germany
shumilov@cs.uni-bonn.de
Objective: Database support for long-period scientific data, like used in geological applications

Balanced restoration of structural basin evolution

Three time steps of the basin modeling in the Lower Rhine Basin:
view from the southern part to north-east with the Oligocene bases and the antithetic faults
Conceptual model of continuously changing spatial data
Change in geometry and topology

Example for the change of the topology and geometry:
part of the Oligocene of the Lower Rhine Basin about 28 million years ago
Conceptual model
-- Design objectives

- Enabling **change in discretization**

- Separate meshes from vertices
 - Building several meshes from one set of vertices
 - **Automatic consistency** w.r.t. vertices

- **Spatio-temporal data structures**
 - Dynamic: *Insert, Delete, Update* operations on 4D geometries

- **Extending existing 3D data types with time**
 - Reuse of spatial functionality
3D conceptual model extended by time
-- database type *MovingVertex*

- *Time* isomorphic to the reals
 - Location and shape of geometries is a **function of time**
- Vertices move on their *trajectories*

\[
\text{ traj}(v) = \{ \text{loc}_v(t) \mid t \in \text{def}(\text{loc}_v) \}
\]

- **Properties of the model:**
 - Trajectory **piecewise linear**
 - **Change in direction** => Snapshot
 - Linear interpolation also w.r.t. time
 => *const velocity/no acceleration*
 - **Change in velocity** => Snapshot
-- Database type **TemporalSimplex**

- Assemble **complex geometries** from moving vertices
 - Separates meshes from vertices

- A **moving simplex** comprises:
 - References to its moving vertices
 - Temporal interval of validity

- A **moving complex** comprises:
 - Set of moving simplexes
 - Temporal interval of validity

- **Integrity constraints!**
-- Database type *TemporalComplex*

- Given by a pair of:
 - Temporal interval of validity
 - List containing references to moving vertices

- Temporal interval of validity facilitates:
 - Remaining within the type system, e.g., after snapshot queries
 - Updates of snapshots
Representing time-dependent simplicial complexes applying key-frame interpolation

- Points at different times: \(t_0, p_0 \) to \(p_N \).
- Stored value at \(t_0 \) and \(t_1 \).
- Interpolated object at \(t_1 \), \(t \), and \(t_2 \).
- Representation of moving 3D points.

Key Frame Interpolation:
- "post" \(t_0 \) and "pre" \(t_1 \) indicate transitions between frames.
- Different data with same discretisation.
- Same data with different discretisation.
- Added and deleted triangles at specific times.

Interpolated Values:
- Interpolated value at \(t_1 \) and \(t_2 \).
- Representation of moving 3D points at intermediate times.
Within this scenario:
- Let proven concepts like geometric filter carry over from pure spatial setting
- Support, e.g., through access methods
Examples for spatio-temporal operations:

Base operations on *temporal simplexes*

- Operations on a per-timestep basis not sufficient

- Geometric base operations
 - Analogues in the pure-spatial setting: e.g. segment/triangle Euclidean distance
 - O(1)-operations

- Operations involve two consecutive timesteps on the merged timeline of the two objects
Base operations in the scope of this work

Minimum Euclidean distance operation

- Operands:
 - Spatial or spatio-temporal objects
- Types of operations:
 - Scalar function *min-dist*
 - Temporal function *when-min-dist*

Intersection-operations

- Operand:
 - Plane or
 - Halfspace or
 - Bounding box
- Types of operations:
 - Boolean predicate *intersects*
 - Temporal function *when-intersects*
 - Object-generating function *intersection*
Base operations on temporal simplexes
-- Implementing minimum Euclidean distance

- Definition: Minimum Euclidean distance

\[
\min_{t \in T} \sqrt{\sum_{i=1}^{3} |x_i - y_i|^2}
\]

- Solution by:
 - Parameterization of the simplex movement (shared time parameter)

 \[
 v(t) = v_0(t) + \sum_{j=1}^{d} \lambda_j (v_j(t) - v_0(t))
 \]

 \[
 w(t) = w_0(t) + \sum_{j=1}^{d} \kappa_j (w_j(t) - w_0(t))
 \]

 - Substitution into Euclidean distance formula

 \[
 \text{dist} = \sqrt{\sum_{i=1}^{3} |v(t, \lambda_1, \ldots, \lambda_{d_1}) - w(t, \kappa_1, \ldots, \kappa_{d_2})|^2}
 \]

 - Analytical search of minimum

 \[
 \frac{\partial \text{dist}}{\partial t} = 0, \frac{\partial \text{dist}}{\partial \lambda_1} = 0, \ldots, \frac{\partial \text{dist}}{\partial \lambda_p} = 0
 \]
Base operations on *temporal Simplexes*
-- Example *intersection*

- Model is not closed under *intersection*
- Contrast to purely spatial model: Approximation must be performed by query system
System architecture: Extending GeoToolKit

GeoToolKit
object-oriented API
(3D and 4D types)

GeoToolKitObject (GTO)
- methods:
 - clone(GTO):GTO
 - dimension():INT

SpatioTemporalObject (STO)
- methods:
 - time():INTERVAL
 - at(INSTANT):SO
 - distance(STO):REAL
 - when-intersects(SO):TE

SpatialObject(SO)
- methods:
 - contains(SO):BOOL
 - intersection(SO):SO

GeoToolKitObject Class Hierarchy

SpatioTemporalObject Class Hierarchy

0D+T 1D+T 2D+T 3D+T

Moving Point

TempSegm
TempTriang
TempTetra

TempPolyLine
TempTriangNet
TempTetraNet

inheritance
1:1 relationship
1:n relationship
representational data type
Examination with geological and artificial datasets

3D model “Bergheim”
(visualized by the 3D modelling tool gOcad®)

Automatical generation of artificial landform data
Result of a temporal database query from the Bergheim model

(visualized in the VRML browser Cortona™ ®).
Summary and future work

● Conclusions
 ◆ Need for spatio-temporal database types and operations
 ◆ Spatio-temporal operations
 ⇨ metric queries (minimum Euclidean distance)
 ⇨ intersection-queries
 ◆ Applications

● Future Work
 ◆ Enhance existing operations through geometric filters and index support
 ◆ Extend conceptual model: more operations on spatio-temporal types
 ◆ New applications (kinematics of landform)
Sponsors and contact information

- **Sponsor: German Research Foundation (DFG)**
 - Graduate Research Centre 437 “Landform”
 - http://slide.giub.uni-bonn.de/Kolleg/welcome.html

- Examples taken from joint research between 1994-2001 with Agemar Siehl’s group (Geological Institute) within the Collaborative Research Centre SFB 350
 - http://www.sfb350.uni-bonn.de
 - http://www.geo.informatik.uni-bonn.de/software/geotoolkit

- DFG joint project “Interoperable GIS” (IOGIS)

Group of Martin Breunig
Institute for Environmental Sciences
University of Vechta, Germany
http://www.iuw.uni-vechta.de/

Group of Armin B. Cremers
Institute for Computer Science III,
University of Bonn, Germany
http://www.geo.cs.uni-bonn.de/