DIFFERENTIAL ALGEBRAS ON κ-MINKOWSKI SPACE
AND ACTION OF THE LORENTZ ALGEBRA

STJEPAN MELJANAC, SAŠA KREŠIĆ-JURIĆ, AND RINA ŠTRAJN

ABSTRACT. We propose two families of differential algebras of classical dimension on
κ-Minkowski space. The algebras are constructed using realizations of the generators as
formal power series in a Weyl super-algebra. We also propose a novel realization of the
Lorentz algebra $\mathfrak{so}(1, n - 1)$ in terms of Grassmann-type variables. Using this realization
we construct an action of $\mathfrak{so}(1, n - 1)$ on the two families of algebras. Restriction of
the action to κ-Minkowski space is covariant. In contrast to the standard approach the
action is not Lorentz covariant except on constant one-forms, but it does not require an
extra cotangent direction.

Keywords: κ-Minkowski space, Lorentz algebra, realizations, differential algebra,
covariance

PACS numbers: 02.20.Sv, 02.20.Uw, 02.40.Gh

1. INTRODUCTION

Noncommutative (NC) geometry has been proposed for many years as a suitable model
for unification of quantum field theory and gravity. Noncommutative spaces have been
studied from many different points of view, including operator theory [1] and Hopf algebras
[2]–[24]. In particular, the notion of differential calculus on NC spaces has been studied in
Refs. [4]–[14]. It is known that many classes of NC spaces do not admit differential calculi
of classical dimensions which are fully covariant under the expected group of symmetries
[25]. This quantum anomaly for differential structures is usually fixed by introducing extra
cotangent directions.

In this paper we focus our attention to κ-Minkowski space. This is a Lie algebra type
NC space which appears as a deformation of ordinary Minkowski space-time within the
framework of doubly special relativity (DSR) [26]–[33]. The symmetry algebra for DSR
is obtained by deforming the ordinary Poincaré algebra into a Hopf algebra known as
κ-Poincaré algebra [29]–[32]. Different bases of κ-Poincaré algebra correspond to different
versions of DSR theory [29]. The κ-deformed Poincaré algebra as deformed symmetry of
the κ-Minkowski space-time inspired many authors to construct quantum field theories (see e.g. Refs. [33]–[38]) and electrodynamics on κ-Minkowski space-time [39]–[41], or to modify particle statistics [42], [43]. Bicovariant differential calculus on κ-Minkowski space-time was considered by Sitarz in Ref. [7]. He has shown that if the bicovariant calculus is required to be Lorentz covariant, then one obtains a contradiction with a Jacobi identity for the generators of the differential algebra. This contradiction is resolved by adding an extra cotangent direction (one-form) which has no classical analogue. Thus, the differential calculus in 3+1 dimensions developed in Ref. [7] is five-dimensional. This work was generalized to n dimensions by Gonera et al. in Ref. [8]. There have been several attempts to deal with this issue in κ-Euclidean and κ-Minkowski spaces [9]–[14]. In Ref. [12] Bu et al. constructed a differential algebra on κ-Minkowski space from Jordanian twist of the Weyl algebra and showed that the algebra is closed in four dimensions. In their approach they extended the κ-Poincaré algebra with a dilatation operator and used a coproduct of the Lorentz generators which is different from the one used in Ref. [7]. In Refs. [13] and [14] differential algebras of classical dimension on κ-Euclidean and κ-Minkowski spaces are constructed. In this approach one-forms are obtained from an action of a deformed exterior derivative on NC coordinates. Different deformations of exterior derivative and NC coordinates lead to different versions of differential calculus compatible with κ-deformation.

In the present work we propose new families of differential algebras (denoted D_1 and D_2) on κ-Minkowski space M_κ using realizations of the generators as formal power series in a Weyl super-algebra. We also present a novel realization of the Lorentz algebra $\mathfrak{so}(1, n - 1)$ in terms of Grassmann-type variables. This realization is used to define an action of $\mathfrak{so}(1, n - 1)$ on D_1 and D_2 which is consistent with commutation relations in D_1 and D_2 and Lorentz covariant on constant one-forms. Restriction of the action to M_κ is covariant, thus M_κ is an $\mathfrak{so}(1, n - 1)$-module algebra.

The paper is organized as follows. In Sec. 2 we discuss briefly a method for constructing differential algebras based on realizations of NC coordinates and exterior derivative as formal power series in a Weyl super-algebra. We construct two families of differential algebras D_1 and D_2 of classical dimension on κ-Minkowski space, and discuss their properties. We also show that by the same method the differential algebras in Refs. [7] and [15] can be constructed. In Sec. 3 we propose an action of $\mathfrak{so}(1, n - 1)$ on D_1 and
Differential algebras on κ-Minkowski space and action of the Lorentz algebra

\mathcal{D}_2 using a realization of $\mathfrak{so}(1, n - 1)$ in terms of Grassmann-type variables. The action is not Lorentz covariant except on one-forms, but it does not require an extra cotangent direction as in Ref. [7]. When the action is restricted to κ-Minkowski space (which is a subalgebra of \mathcal{D}_1 and \mathcal{D}_2), then the Lorentz algebra acts covariantly on products of space-time coordinates which reproduces the well-know result of Majid and Ruegg [3]. In Sec. 4 a short conclusion and future outlook is given.

2. Differential algebras on κ-Minkowski space

In this section we present the main points of the construction of differential algebras on κ-Minkowski space using realizations. First, we consider the differential algebra introduced by Sitarz [7] (see also Ref. [15]).

The κ-Minkowski space \mathcal{M}_κ is an associative algebra generated by space-time coordinates $\hat{x}_0, \hat{x}_1, \ldots, \hat{x}_{n-1}$ satisfying the Lie algebra type commutation relations

\[
[\hat{x}_i, \hat{x}_j] = 0, \quad [\hat{x}_0, \hat{x}_j] = i a_0 \hat{x}_j, \quad a_0 \in \mathbb{R},
\]

(1)

By convention Latin indices run from 1 to $n - 1$, and Greek indices run from 0 to $n - 1$. A bicovariant differential algebra compatible with relations (1) was constructed by Sitarz in Ref. [7]. He has shown that if the differential algebra is also Lorentz covariant, then the smallest such algebra in 3+1 dimensions is five-dimensional. One of its equivalent forms is given by

\[
[\hat{\xi}_0, \hat{x}_0] = -ia_0 \theta' + ia_0 \hat{\xi}_0, \quad [\hat{\xi}_0, \hat{x}_j] = ia_0 \hat{\xi}_j,
\]

(2)

\[
[\hat{\xi}_i, \hat{x}_0] = 0, \quad [\hat{\xi}_i, \hat{x}_j] = -ia_0 \delta_{ij} \theta',
\]

(3)

\[
[\theta', \hat{x}_0] = -ia_0 \theta', \quad [\theta', \hat{x}_j] = 0,
\]

(4)

where $\hat{\xi}_\mu$ is the one-form corresponding to \hat{x}_μ, and θ' is a one-form representing an extra cotangent direction that has no classical analogue. The one-forms $\hat{\xi}_\mu$ and θ' anticommute.

Let \mathfrak{D} denote the algebra [2]–[4]. The algebra \mathfrak{D} was considered in Ref. [15] where it is shown that by gauging a coefficient of θ' one can introduce gravity in the model. If we make a change of basis $\theta = \hat{\xi}_0 - \theta'$, we recover the original algebra introduced in Ref. [7]. As stated above, \mathfrak{D} is constructed by postulating both bicovariance and Lorentz covariance of the differential calculus on κ-Minkowski space. These conditions imply that

(1) $[\hat{x}_\mu, \hat{\xi}_\nu]$ and $[\hat{x}_\mu, \theta']$ are closed in the vector space spanned by one-forms alone,

(2) all graded Jacobi identities in \mathfrak{D} hold,
(3) the action of the Lorentz algebra $\mathfrak{so}(1, n - 1)$ is covariant:

$$M \triangleright (\tilde{x}_\mu \hat{x}_\nu) = (M(1) \triangleright \hat{x}_\mu) \hat{d}(M(2) \triangleright \hat{x}_\nu),$$

$$M \triangleright (\hat{x}_\mu \tilde{x}_\nu) = \hat{d}(M(1) \triangleright \hat{x}_\mu)(M(2) \triangleright \hat{x}_\nu), \quad M \triangleright \theta' = 0,$$

where \hat{d} is the exterior derivative and M is a generator of $\mathfrak{so}(1, n - 1)$. Here, the commutation relations in $\mathfrak{so}(1, n - 1)$ are undeformed,

$$[M_{\mu\nu}, M_{\lambda\rho}] = \eta_{\nu\lambda} M_{\mu\rho} - \eta_{\mu\lambda} M_{\nu\rho} - \eta_{\nu\rho} M_{\mu\lambda} + \eta_{\mu\rho} M_{\nu\lambda},$$

and $\Delta M = M(1) \otimes M(2)$ is the coproduct of M in Sweedler notation:

$$\Delta M_{i0} = M_{i0} \otimes 1 + e^{a_0 p_0} \otimes M_{i0} - a_0 \sum_{j=1}^{n-1} p_j \otimes M_{ij},$$

$$\Delta M_{ij} = M_{ij} \otimes 1 + 1 \otimes M_{ij},$$

where p_μ is the momentum generator. The coproduct of the momentum generators is given by [7], [11]

$$\Delta p_0 = p_0 \otimes 1 + 1 \otimes p_0,$$

$$\Delta p_i = p_i \otimes 1 + e^{a_0 p_0} \otimes p_i.$$

Relations [8]-[11] describe the coalgebra structure of the κ-Poincaré algebra generated by $M_{\mu\nu}$ and p_μ. Note that Eq. 5 implies that the Lorentz generators act on a constant one-form by $M \triangleright \hat{x}_\mu = \hat{d}(M \triangleright \hat{x}_\mu)$.

In the following we shall briefly outline the construction of the algebra \mathfrak{D} using realizations of \hat{x}_μ, $\hat{\xi}_\mu$ and θ' as formal power series in a Weyl super-algebra. Let \mathcal{A} denote the unital associative algebra generated by commutative coordinates x_μ, differential operators $\partial_\mu = \frac{\partial}{\partial x_\mu}$ and ordinary one-forms dx_μ satisfying the defining relations

$$[x_\mu, x_\nu] = [\partial_\mu, \partial_\nu] = 0, \quad [\partial_\mu, x_\nu] = \eta_{\mu\nu},$$

$$[dx_\mu, x_\nu] = [dx_\mu, \partial_\nu] = 0, \quad \{dx_\mu, dx_\nu\} = 0.$$

Here, $\{ , \}$ denotes the anticommutator and $\eta = \text{diag}(-1, 1, \ldots, 1)$ is the Minkowski metric. \mathcal{A} becomes a Weyl super-algebra if we define a graded commutator

$$[[u, v]] = uv - (-1)^{|u||v|} vu$$

(14)
where \(|u|\) denotes the degree of a homogeneous element \(u \in \mathcal{A}\). The degrees of the generators are defined by \(|x_\mu| = |\partial_\mu| = 0\) and \(|dx_\mu| = 1\). In this paper we consider two types of realizations of \(\hat{x}_\mu\), the natural \([44]\) and noncovariant \([45], [46]\). Following the notation in Ref. \([14]\) the variables used in the natural and noncovariant realizations are denoted by \((X_\mu, D_\mu)\) and \((x_\mu, \partial_\mu)\), respectively. The reason for using different notation for the generators of \(\mathcal{A}\) is that there exists an invertible transformation \((x_\mu, \partial_\mu) \mapsto (X_\mu, D_\mu)\) mapping the noncovariant into natural realization. The natural realization is defined by

\[
\hat{x}_\mu = X_\mu Z^{-1} - i a_0 X_0 D_\mu
\]

(15)

where \(Z\) is invertible operator given by

\[
Z^{-1} = i a_0 D_0 + \sqrt{1 + a_0^2} D_0^2.
\]

(16)

The scalar product in (16) is taken with respect to the Minkowski metric, i.e. \(D^2 = -D_0^2 + \sum_{k=1}^{n-1} D_k^2\). \(Z\) is called the shift operator because conjugation of \(\hat{x}_\mu\) by \(Z\) yields \(Z\hat{x}_\mu Z^{-1} = \hat{x}_\mu + i a_0 \delta_0 \mu\). One easily checks that the space-time coordinates represented by (15) satisfy the commutation relations (1). The realization (15) is a special case of covariant realizations of \(\kappa\)-Minkowski space introduced in Ref. \([44]\).

Exterior derivative \(\hat{d}\) is defined by \(\hat{d} = \sum_{\alpha,\beta=0}^{n-1} k_{\alpha\beta}(D) dX_\alpha D_\beta\) where \(k_{\alpha\beta}(D)\) is a formal power series in \(a_0\) with coefficients in the ring of differential operators \(D_\mu\). We require that \(\lim_{a_0 \to 0} \hat{d} = d\) where \(d = -dX_0 D_0 + \sum_{k=1}^{n-1} dX_k D_k\) is the classical exterior derivative. The exterior derivative acts on space-time coordinates by \(\hat{d} \cdot \hat{x}_\mu = [[\hat{d}, \hat{x}_\mu]]\). We define a noncommutative version of one-forms by \(\hat{\xi}_\mu = \hat{d} \cdot \hat{x}_\mu\). Using relations (12)-(13) we find

\[
\lim_{a_0 \to 0} \hat{\xi}_\mu = [d, X_\mu] = dX_\mu,
\]

(17)

hence \(\hat{\xi}_\mu\) is a deformation of ordinary one-form \(dX_\mu\). Before proceeding further let us point out some general properties of a differential algebra constructed in this way:

1. \(\hat{d}\) satisfies the undeformed Leibniz rule

\[
\hat{d} \cdot (f(\hat{x})g(\hat{x})) = (\hat{d} \cdot f(\hat{x}))g(\hat{x}) + f(\hat{x})(\hat{d} \cdot g(\hat{x}))
\]

(18)

where \(f(\hat{x})\) and \(g(\hat{x})\) are monomials in \(\hat{x}_\mu\).
2. one-forms are closed, i.e. \(\hat{d} \cdot \hat{\xi}_\mu = [[\hat{d}, \hat{\xi}_\mu]] = 0\),
3. one-forms anticommute, \(\{\hat{\xi}_\mu, \hat{\xi}_\nu\} = 0\),
(4) the commutator for \(\hat{\xi}_\mu \) and \(\hat{x}_\nu \) is given by

\[
[\hat{\xi}_\mu, \hat{x}_\nu] = \sum_{\alpha=0}^{n-1} K_{\mu\nu}^\alpha(D) \hat{\xi}_\alpha
\]

where \(K_{\mu\nu}^\alpha(D) \) generally depends on the differential operators \(D_\mu \). If \(K_{\mu\nu}^\alpha \) are constant for all values of \(\mu, \nu \) and \(\alpha \), then the differential algebra is closed.

We note that the Jacobi identity for \(\hat{d} \cdot [\hat{x}_\mu, \hat{x}_\nu] = [\hat{d}, [\hat{x}_\mu, \hat{x}_\nu]] \) together with commutation relations (1) implies that \(\hat{x}_\mu \) and \(\hat{\xi}_\mu \) satisfy the compatibility condition

\[
[\hat{\xi}_\mu, \hat{x}_\nu] - [\hat{\xi}_\nu, \hat{x}_\mu] = i(a_\mu \hat{x}_\nu - a_\nu \hat{\xi}_\mu)
\]

where \(a_\mu = a_0 \delta_{0\mu} \). Extension of the above construction to higher order forms was presented in detail in Ref. [13].

Given the realization (15) we want to find a realization of \(\hat{d} \) such that the action of \(\hat{d} \) on \(\hat{x}_\mu \) generates one-forms \(\hat{\xi}_\mu \) and \(\theta' \) which close the algebra (2)-(4). Consider the following ansatz for \(\hat{d} \):

\[
\hat{d} = -dX_0 D_0 + \left(\sum_{k=1}^{n-1} dX_k D_k \right) Z. \tag{21}
\]

Substituting Eqs. (15) and (21) into \(\hat{\xi}_\mu = [[\hat{d}, \hat{x}_\mu]] \) one finds

\[
\hat{\xi}_0 = dX_0 (Z^{-1} - ia_0 D_0) + ia_0 \left(\sum_{k=1}^{n-1} dX_k D_k \right) Z, \tag{22}
\]

\[
\hat{\xi}_k = dX_k - ia_0 dX_0 D_k. \tag{23}
\]

The commutation relations for \(\hat{x}_\mu \) and \(\hat{\xi}_\mu \) are given by

\[
[\hat{\xi}_0, \hat{x}_0] = -ia_0 dX_0 Z^{-1} + ia_0 \hat{\xi}_0, \quad [\hat{\xi}_0, \hat{x}_j] = ia_0 \hat{\xi}_j, \tag{24}
\]

\[
[\hat{\xi}_i, \hat{x}_0] = 0, \quad [\hat{\xi}_i, \hat{x}_j] = -ia_0 \delta_{ij} dX_0 Z^{-1}. \tag{25}
\]

Note that the algebra (24)-(25) is not closed since the commutators involve an additional term \(dX_0 Z^{-1} \) which does not correspond to any one-form \(\hat{\xi}_\mu \). However, the algebra can be closed by defining an extra one-form by \(\theta' = dX_0 Z^{-1} \). Then one easily finds

\[
[\theta', \hat{x}_0] = -ia_0 \theta', \quad [\theta', \hat{x}_j] = 0. \tag{26}
\]

The commutation relations (24)-(26) agree with the differential algebra (2)-(4). Thus, in our approach the extra cotangent direction \(\theta' \) introduced in Refs. [7] and [15] appears as a deformation of one-form \(dX_0 \) associated with time coordinate. In fact, \(\hat{\xi}_0 \) and \(\theta' \) are both deformations of \(dX_0 \), albeit different.
Differential algebras on κ-Minkowski space and action of the Lorentz algebra

2.1. Differential algebras of classical dimension. Different realizations of \hat{x}_μ and \hat{d} lead to different differential calculi on κ-Minkowski space M_κ. In the following we construct two families of differential algebras on M_κ such that there is a one-to-one correspondence between deformed one-forms and space-time coordinates. In both cases the realization of \hat{x}_μ is the same, but we consider two different deformations of the exterior derivative \hat{d}.

Let

\[\hat{x}_0 = x_0 + ia_0 \sum_{k=1}^{n-1} x_k \partial_k, \quad \hat{x}_k = x_k. \tag{27} \]

This is a special case of noncovariant realizations of the algebra (1) introduced in Ref. [45], [46]. The transformation of variables $(x_\mu, \partial_\mu) \mapsto (X_\mu, D_\mu)$ which maps the noncovariant into natural realization is given in Ref. [14]. The realization (27) corresponds to the bicrossproduct basis in Ref. [3]. The shift operator corresponding to realization (27) is given by

\[Z = \exp(A), \quad A = -ia_0 \partial_0. \tag{28} \]

Let us define the exterior derivative

\[\hat{d}_1 = dx_0 \frac{Z^c - 1}{ia_0 c} + \left(\sum_{k=1}^{n-1} dx_k \partial_k \right) Z^{-1}, \quad c \neq 0, \tag{29} \]

where for $c \to 0$ we have $\lim_{c \to 0} \hat{d}_1 = -dx_0 \partial_0 + \left(\sum_{k=1}^{n-1} dx_k \partial_k \right) Z^{-1}$. The one-forms $\hat{\xi}_\mu = [\hat{d}_1, \hat{x}_\mu]$ with space-time coordinates represented by (27) are given by

\[\hat{\xi}_0 = dx_0 Z^c, \quad \hat{\xi}_k = dx_k Z^{-1}. \tag{30} \]

Using realizations (27) and (30) we find

\[[\hat{\xi}_0, \hat{x}_0] = ia_0 c \hat{\xi}_0, \quad [\hat{\xi}_k, \hat{x}_0] = -ia_0 \hat{\xi}_k, \quad [\hat{\xi}_\mu, \hat{x}_j] = 0. \tag{31} \]

We denote the differential algebra (31) by \mathcal{D}_1. Similarly, if the exterior derivative is defined by

\[\hat{d}_2 = dx_0 \frac{Z^c - 1}{ia_0 c} + \left(\sum_{k=1}^{n-1} dx_k \partial_k \right) Z^{c-1}, \tag{32} \]

then the one-forms $\hat{\xi}_\mu = [\hat{d}_2, \hat{x}_\mu]$ are found to be

\[\hat{\xi}_0 = dx_0 Z^c + ia_0 c \left(\sum_{k=1}^{n-1} dx_k \partial_k \right) Z^{c-1}, \quad \hat{\xi}_k = dx_k Z^{c-1}. \tag{33} \]
Now Eqs. (27) and (33) imply
\[
\begin{align*}
\hat{\xi}_0, \hat{x}_\mu &= \text{i}a_0 \epsilon \hat{\xi}_\mu, \\
\hat{\xi}_k, \hat{x}_0 &= \text{i}a_0(\epsilon - 1)\hat{\xi}_k, \\
\hat{\xi}_k, \hat{x}_j &= 0.
\end{align*}
\]
(34)

The differential algebra (34) is denoted by \(D_2 \). Note that \(D_1 \) and \(D_2 \) are two families of differential algebras depending on a real parameter \(\epsilon \) obtained from a fixed realization of \(\hat{x}_\mu \). They are compatible with \(\kappa \)-Minkowski space since they satisfy the compatibility condition (20) and all graded Jacobi identities for the generators of \(D_1 \) and \(D_2 \) hold. The commutator \([\hat{\xi}_\mu, \hat{x}_\nu]\) in both algebras is closed in the vector space spanned by \(\hat{\xi}_0, \hat{\xi}_1, \ldots, \hat{\xi}_{n-1} \), hence \(D_1 \) and \(D_2 \) are differential algebras of classical dimension.

3. Action of the Lorentz algebra on \(D_1 \) and \(D_2 \)

The aim of this section is to construct an action of the Lorentz algebra so\((1, n-1)\) on the algebras \(D_1 \) and \(D_2 \). First, we define an action of so\((1, n-1)\) on the subalgebra \(M_\kappa \) and then extend it to \(D_1 \) and \(D_2 \).

It is natural to consider extension of the \(\kappa \)-Minkowski space (1) by momentum operators \(p_\mu \). If we take the realization (27) and define \(p_\mu = -\text{i}\partial_\mu \), then \(\hat{x}_\mu \) and \(\partial_\mu \) generate a deformed Heisenberg algebra given by the relations (1) and
\[
\begin{align*}
[p_\mu, p_\nu] &= 0, \\
[p_0, \hat{x}_\mu] &= \text{i}\delta_{\mu 0}, \\
[p_k, \hat{x}_0] &= \text{i}a_0p_k, \\
[p_k, \hat{x}_j] &= -\text{i}\delta_{kj}.
\end{align*}
\]
(35)

Note that the deformation of the algebra (35) depends on the realization of the Minkowski coordinates \(\hat{x}_\mu \). A large class of such deformations was found in Refs. [44], [45]. Similarly, the \(\kappa \)-Minkowski space can be extended by the Lorentz algebra such that the direct sum of vector spaces \(g_\kappa = M_\kappa \oplus \text{so}(1, n-1) \) is a Lie algebra. It can be shown that the cross commutator \([M_\mu\nu, \hat{x}_\lambda]\), which must be linear in \(M_\mu\nu \) and \(\hat{x}_\mu \), is uniquely given by [45], [46]
\[
\begin{align*}
[M_00, \hat{x}_0] &= -\hat{x}_0 + \text{i}a_0M_{00}, \\
[M_{ij}, \hat{x}_0] &= 0, \\
[M_{0k}, \hat{x}_0] &= -\delta_{ik}\hat{x}_0 + \text{i}a_0M_{0k}, \\
[M_{ij}, \hat{x}_k] &= \delta_{jk}\hat{x}_i - \delta_{ik}\hat{x}_j.
\end{align*}
\]
(36)

The algebra (36)-(37) is a subalgebra of the DSR algebra obtained as a cross product extension of \(\kappa \)-Minkowski and \(\kappa \)-Poincaré algebras [17], [48]. Since the commutation relations (36)-(37) are unique, the extension of \(M_\kappa \) by \(\text{so}(1, n-1) \) is independent of the
realization of \(\hat{x}_\mu \). If the coordinates \(\hat{x}_\mu \) are given by the noncovariant realization (27), then the Lorentz generators are represented by

\[
M_{i0} = x_i \left(1 - \frac{Z}{\lambda a_0} + \frac{ia_0}{2} \Delta - \frac{2}{ia_0} \sinh \left(\frac{1}{2} A \right) Z \right) - \left(x_0 + ia_0 \sum_{k=1}^{n-1} x_k \partial_k \right) \partial_i, \quad (38)
\]

\[
M_{ij} = x_i \partial_j - x_j \partial_i, \quad (39)
\]

where \(Z \) is given by Eq. (28) and \(\Delta = \sum_{k=1}^{n-1} \partial_k^2 \) is the Laplace operator. The realization (38)-(39) is a special case of the noncovariant realizations of the Lorentz algebra found in Refs. [45, 46]. In the classical limit we have \(\lim_{\lambda a_0 \to 0} M_{\mu \nu} = x_\mu \partial_\nu - x_\nu \partial_\mu \), as required.

Given the commutation relations (11) and (36)-(37) we want to define an action \(\lambda : \mathfrak{so}(1, n-1) \times \mathcal{M}_\kappa \to \mathcal{M}_\kappa \). Let \(U(\mathfrak{g}_\kappa) \) be the enveloping algebra of \(\mathfrak{g}_\kappa \) and let the generators of \(U(\mathfrak{g}_\kappa) \) act on \(1 \in U(\mathfrak{g}_\kappa) \) by \(\hat{x}_\mu \mapsto 1 = \hat{x}_\mu \) and \(M_{\mu \nu} \mapsto 1 = 0 \). Now define

\[
M_{\mu \nu} \mapsto f(\hat{x}) = [M_{\mu \nu}, f(\hat{x})] \mapsto 1 \quad (40)
\]

where \(f(\hat{x}) \) is a monomial in \(\mathcal{M}_\kappa \). Using relations (33)-37 the commutator in (40) can be written as a linear combination of terms with \(M_{\mu \nu} \), if any, pushed to the far right. Thus, the action (41) is the projection of \([M_{\mu \nu}, f(\hat{x})]\) to the subalgebra \(\mathcal{M}_\kappa \). For example, the action on Minkowski coordinates yields

\[
M_{\mu \nu} \mapsto \hat{x}_\lambda = \eta_{0 \lambda} \hat{x}_\mu - \eta_{\mu \lambda} \hat{x}_\nu. \quad (41)
\]

For monomials of order two we find

\[
M_{i0} \mapsto (\hat{x}_0 \hat{x}_k) = -\hat{x}_i \hat{x}_k - ia_0 \delta_i k \hat{x}_0 - \delta_i k \hat{x}_0^2, \quad (42)
\]

\[
M_{i0} \mapsto (\hat{x}_k \hat{x}_0) = -\hat{x}_k \hat{x}_i - \delta_{i k} \hat{x}_0^2, \quad (43)
\]

\[
M_{i0} \mapsto (\hat{x}_i \hat{x}_0) = \delta_{i k} \hat{x}_0 \hat{x}_0 \hat{x}_i \hat{x}_0 - \delta_{i i} \hat{x}_k \hat{x}_0 + ia_0 (\delta_{i k} \hat{x}_i - \delta_{i i} \hat{x}_k), \quad (44)
\]

\[
M_{ij} \mapsto (\hat{x}_0 \hat{x}_k) = \delta_{j k} \hat{x}_0 \hat{x}_i + \delta_{j i} \hat{x}_k \hat{x}_0 - \delta_{i j} \hat{x}_k \hat{x}_j, \quad (45)
\]

\[
M_{ij} \mapsto (\hat{x}_k \hat{x}_0) = \delta_{k i} \hat{x}_0 \hat{x}_i - \delta_{k i} \hat{x}_j \hat{x}_0, \quad (46)
\]

\[
M_{ij} \mapsto (\hat{x}_k \hat{x}_j) = \delta_{i k} \hat{x}_j \hat{x}_i - \delta_{i k} \hat{x}_j \hat{x}_j + \delta_{i k} \hat{x}_k \hat{x}_j - \delta_{i l} \hat{x}_k \hat{x}_j. \quad (47)
\]

The above result is the same as that obtained by Majid and Ruegg [3] using the covariance condition \(M_{\mu \nu} \mapsto (ab) = (M_{\mu \nu (1)} \mapsto a) (M_{\mu \nu (2)} \mapsto b) \), \(a, b \in \mathcal{M}_\kappa \), where the coproduct \(\Delta M_{\mu \nu} = M_{\mu \nu (1)} \otimes M_{\mu \nu (2)} \) is given by Eqs. (33)-(39) and the momentum operator in (8) acts by \(p_\mu \mapsto \hat{x}_\mu = -i \eta_{\mu \nu} \). This makes \(\mathcal{M}_\kappa \) into an \(\mathfrak{so}(1, n-1) \)-module algebra.
Next, we want to extend the action of $\mathfrak{so}(1, n - 1)$ to the differential algebras \mathfrak{D}_1 and \mathfrak{D}_2 using the same prescription (40). For this purpose we need the commutator $[M_{\mu\nu}, \hat{\xi}_\lambda]$ where $\hat{\xi}_\lambda \in \mathfrak{D}_1$ or $\hat{\xi}_\lambda \in \mathfrak{D}_2$. One can show that the general form of this commutator is given by

$$[M_{\mu\nu}, \hat{\xi}_\lambda] = [\hat{x}_\mu, \hat{\xi}_\lambda] \Phi_\nu - [\hat{x}_\nu, \hat{\xi}_\lambda] \Phi_\mu$$ \hspace{1cm} (48)$$

where Φ_μ is a power series in ∂_μ such that $\Phi(0) = 0$. The functions Φ_μ depend on the realization of $M_{\mu\nu}$. If $M_{\mu\nu}$ is given by Eqs. (38)-(39), then

$$\Phi_0 = \frac{1 - Z}{ia_0} + \frac{i a_0}{2} \Delta - \frac{2}{ia_0} \sinh^2 \left(\frac{1}{2} A\right) Z,$$

$$\Phi_k = \partial_k,$$ \hspace{1cm} (50)$$

where $\Delta = \sum_{k=1}^{n-1} \partial_k^2$. Since $[\hat{x}_\mu, \hat{\xi}_\nu] \in \text{span}\{\hat{\xi}_\lambda | 0 \leq \mu \leq n - 1\}$, the commutator $[M_{\mu\nu}, \hat{\xi}_\lambda]$ depends only on momentum operators $p_\mu = -i \partial_\mu$ and one-forms $\hat{\xi}_\lambda$. This means that in order to extend the action of $\mathfrak{so}(1, n - 1)$ to \mathfrak{D}_k we need to extend the algebra $U(\mathfrak{g}_\kappa)$ by the generators p_μ and $\hat{\xi}_\mu$ where the extension depends on whether $\hat{\xi}_\mu \in \mathfrak{D}_1$ or $\hat{\xi}_\mu \in \mathfrak{D}_2$. Denote the extended algebras by \mathfrak{H}_1 and \mathfrak{H}_2, respectively. Then \mathfrak{H}_k contains \mathfrak{D}_k and $\mathfrak{so}(1, n - 1)$ as Lie subalgebras, as well as the abelian algebra of translations generated by p_μ. Define the action of p_μ and $\hat{\xi}_\mu$ on $1 \in \mathfrak{H}_k$ by $p_\mu \cdot 1 = 0$ and $\hat{\xi}_\mu \cdot 1 = \hat{\xi}_\mu$. Now we may define the action $\mapsto: \mathfrak{so}(1, n - 1) \times \mathfrak{D}_k \to \mathfrak{D}_k$ by

$$M_{\mu\nu} \mapsto f(\hat{x}, \hat{\xi}) = [M_{\mu\nu}, f(\hat{x}, \hat{\xi})] \mapsto 1$$ \hspace{1cm} (51)$$

where $f(\hat{x}, \hat{\xi})$ is a monomial in \mathfrak{D}_k, $k = 1, 2$. The action (51) is uniquely fixed by the commutation relations in \mathfrak{D}_k and Eqs. (36)-(37) and (48). Since the generators of \mathfrak{H}_k are constructed as elements of an associative algebra all Jacobi identities in \mathfrak{H}_k hold.

The Jacobi relations for $M_{\mu\nu}$, \hat{x}_μ and $\hat{\xi}_\mu$ guarantee that the action (51) is compatible with the commutation relations in \mathfrak{D}_k. Any monomial in \mathfrak{D}_k can be written as a finite sum $f(\hat{x}, \hat{\xi}) = \sum f_1(\hat{x})f_2(\hat{\xi})$, hence it suffices to consider the action (51) on the products $f_1(\hat{x})f_2(\hat{\xi})$. Since $\Phi_\mu \mapsto 1 = 0$, Eq. (48) implies that the action of $M_{\mu\nu}$ on one-forms is trivial, i.e. $M_{\mu\nu} \mapsto f(\hat{\xi}) = 0$ for any monomial $f(\hat{\xi})$. Consequently, the action of $M_{\mu\nu}$ on product of monomials $f_1(\hat{x})f_2(\hat{\xi})$ is given by

$$M_{\mu\nu} \mapsto f_1(\hat{x})f_2(\hat{\xi}) = (M_{\mu\nu} \mapsto f_1(\hat{x}))f_2(\hat{\xi}).$$ \hspace{1cm} (52)$$

The construction outlined here has the advantage that the action (51) is compatible with the algebra structure of \mathfrak{D}_1 and \mathfrak{D}_2 without introducing the extra one-form θ as in Ref.
However, the action is not Lorentz covariant since the necessary condition $M_{\mu\nu} \triangleright \hat{\xi}_\lambda = \hat{d} \cdot (M_{\mu\nu} \triangleright \hat{x}_\lambda) = \eta_{\nu\lambda} \hat{\xi}_\mu - \eta_{\mu\lambda} \hat{\xi}_\nu$ while $M_{\mu\nu} \triangleright \hat{\xi}_\lambda = 0$. This problem can be partially resolved by modifying the realization of $M_{\mu\nu}$ such that $M_{\mu\nu} \triangleright \hat{\xi}_\lambda = \eta_{\nu\lambda} \hat{\xi}_\mu - \eta_{\mu\lambda} \hat{\xi}_\nu$ is satisfied. This modification of (51) is given as follows.

Consider extension \tilde{A} of the algebra (12)-(13) by a set of generators q_μ subject to defining relations

$$[x_\mu, q_\nu] = [\partial_\mu, q_\nu] = 0, \quad \{q_\mu, q_\nu\} = 0, \quad \{dx_\mu, q_\nu\} = \eta_{\mu\nu}. \quad (53)$$

The degree of q_μ is defined to be $|q_\mu| = 1$. Note that the variables q_μ play the role of a Grassmann type derivative with respect to one-forms dx_μ. The κ-deformed super-Heisenberg algebra, generated by \hat{x}_μ, ∂_μ, $\hat{\xi}_\mu$ and q_μ, satisfies all graded Jacobi identities.

Let us define

$$M_{\mu\nu}^{(1)} = dx_\mu q_\nu - dx_\nu q_\mu, \quad (54)$$

and let

$$\tilde{M}_{\mu\nu} = M_{\mu\nu} + M_{\mu\nu}^{(1)} \quad (55)$$

where the Lorentz generators $M_{\mu\nu}$ are given by the realization (38)-(39). It is easily seen that $M_{\mu\nu}^{(1)}$ close the relations (7) and $[M_{\mu\nu}, M_{\lambda\rho}^{(1)}] = 0$. Consequently, $\tilde{M}_{\mu\nu}$ also satisfy the relations (17), hence Eq. (55) represents a new realization of $\mathfrak{so}(1, n-1)$ in terms of the extended algebra \tilde{A}. To this realization of $\mathfrak{so}(1, n-1)$ we associate the action

$$\tilde{M}_{\mu\nu} \triangleright f(\hat{x}, \hat{\xi}) = [\tilde{M}_{\mu\nu}, f(\hat{x}, \hat{\xi})] \triangleright 1. \quad (56)$$

The action is consistent with the commutation relations in \mathcal{D}_1 and \mathcal{D}_2 since all Jacobi identities for $\tilde{M}_{\mu\nu}$, \hat{x}_μ and $\hat{\xi}_\mu$ are satisfied. For products of monomials $f_1(\hat{x})f_2(\hat{\xi})$ the action (56) satisfies the Leibniz-like rule

$$\tilde{M}_{\mu\nu} \triangleright f_1(\hat{x})f_2(\hat{\xi}) = (M_{\mu\nu} \triangleright f_1(\hat{x}))f_2(\hat{\xi}) + f_1(\hat{x})(M_{\mu\nu}^{(1)} \triangleright f_2(\hat{\xi})) \quad (57)$$

where $M_{\mu\nu}$ acts only on coordinates \hat{x}_μ and $M_{\mu\nu}^{(1)}$ acts only on one-forms $\hat{\xi}_\mu$. It follows from Eq. (57) that $\tilde{M}_{\mu\nu} \triangleright f_1(\hat{x}) = M_{\mu\nu} \triangleright f_1(\hat{x})$, hence the actions (51) and (56) agree on the κ-Minkowski space. In particular, we have the vector-like transformation $\tilde{M}_{\mu\nu} \triangleright \hat{x}_\lambda = \eta_{\nu\lambda} \hat{x}_\mu - \eta_{\mu\lambda} \hat{x}_\nu$. On the other hand, the action of $\tilde{M}_{\mu\nu}$ on one-forms is
nontrivial since one-forms also transform vector-like, \(\tilde{M}_{\mu\nu} \mapsto \tilde{\xi}_\lambda = \eta_{\nu\lambda} \hat{\xi}_\mu - \eta_{\mu\lambda} \hat{\xi}_\nu \). This implies
\[
\tilde{M}_{\mu\nu} \mapsto \tilde{\xi}_\lambda = \hat{d} \cdot (\tilde{M}_{\mu\nu} \mapsto \hat{x}_\lambda),
\]
thus the action is Lorentz covariant on constant one-forms. Restriction of (56) to monomials in \(\hat{\xi}_\mu \) satisfies the ordinary Leibniz rule
\[
\tilde{M}_{\mu\nu} \mapsto f(\hat{\xi}) g(\hat{\xi}) = (\tilde{M}_{\mu\nu} \mapsto f(\hat{\xi})) g(\hat{\xi}) + f(\hat{\xi}) (\tilde{M}_{\mu\nu} \mapsto g(\hat{\xi})).
\]
(59)
Using Eq. (58) and the rules for computing \(M_{\mu\nu} \mapsto f_1(\hat{x}) \) and \(M_{\mu\nu}^{(1)} \mapsto f_2(\hat{\xi}) \) one can easily calculate the action of \(\tilde{M}_{\mu\nu} \) on arbitrary monomials \(f(\hat{x}, \hat{\xi}) \in \mathcal{D}_k, k = 1, 2 \). For example,
\[
\tilde{M}_{\mu\nu} \mapsto \hat{x}_\lambda \hat{\xi}_\rho = (\eta_{\nu\rho} \hat{x}_\mu - \eta_{\mu\rho} \hat{x}_\nu) \hat{\xi}_\lambda + \hat{x}_\lambda (\eta_{\nu\rho} \hat{\xi}_\mu - \eta_{\mu\rho} \hat{\xi}_\nu).
\]
(60)

The condition (58) does not extend by Lorentz covariance to entire algebras \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \). This is in accordance with the theory developed in Ref. [7] since otherwise this would be in contradiction with the Jacobi identity for \(\hat{x}_\mu, \hat{x}_\nu \text{ and } \hat{\xi}_\lambda \) (for more details see Ref. [7]).

4. Conclusion

In this paper we have constructed differential algebras on \(\kappa \)-Minkowski space-time using realizations of coordinates \(\hat{x}_\mu \) and one-forms \(\hat{\xi}_\mu \) as formal power series in a Weyl superalgebra. The algebras considered here are the well-known differential algebra introduced by Sitarz [7] as well as new families of differential algebras \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \). The algebras \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \) are obtained from a fixed realization of \(\hat{x}_\mu \) and using different realization of exterior derivative \(\hat{d} \). The resulting one-forms \(\hat{\xi}_\mu = [[\hat{d}, \hat{x}_\mu]] \) have the property that the commutator \([\hat{\xi}_\mu, \hat{x}_\nu] \) is closed in the vector space spanned by \(\hat{\xi}_0, \hat{\xi}_1, \ldots, \hat{\xi}_{n-1} \) alone.

We have also presented a novel construction of an action of \(\mathfrak{so}(1, n-1) \) on \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \) using realizations of the Lorentz generators in terms of Grassmann-type variables \(q_\mu \). The action does not require introduction of an extra cotangent direction \(\theta \) as in Ref. [7]. When restricted to Minkowski coordinates, \(\mathfrak{so}(1, n-1) \) acts covariantly on the \(\kappa \)-Minkowski space making it into an \(\mathfrak{so}(1, n-1) \)-module algebra. The Lorentz covariance is valid for constant one-forms but it does not extend to entire algebras \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \). In this approach there is a one-to-one correspondence between the Minkowski coordinates and one-forms. This provides a certain advantage since every variable in the noncommutative setting is for a given realization a unique deformation of the corresponding classical variable. In this
paper we have focused only on the action of the Lorentz algebra generated by $M_{\mu\nu}$ and $\tilde{M}_{\mu\nu}$ (Eqs. (38), (39), (54) and (55)), but there are also other implementations of Lorentz algebras compatible with the κ-Minkowski space-time (Refs. [11], [12], [49] and [50]). Further developments of this approach as well as its applications to field theory, statistics, twist operators (see Refs. [12], [42], [43] and [49]) and dispersion relations [51] will be presented elsewhere.

Acknowledgements

This work was supported by the Ministry of Science and Technology of the Republic of Croatia under contract No. 098-000000-2865 and 177-0372794-2816.

References

[1] A. Connes, Noncommutative Geometry, Academic Press, 1994.
[2] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, 1995.
[3] S. Majid and H. Ruegg, “Bicrossproduct structure of κ-Poincaré group and noncommutative geometry”, Phys. Lett. B 334, 348 (1994), hep-th/9404107.
[4] S. L. Woronowicz, “Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups)”, Comm. Math. Phys. 122, 125 (1989).
[5] P. Aschieri, F. Lizzi and P. Vitale, “Twisting all the way: from classical to quantum mechanics”, Phys. Rev. D 77 025037, (2008), arXiv:0708.3002v2.
[6] G. Landi, An Introduction to Noncommutative Spaces and Their Geometries, Lect. Notes Phys, m 51 (1997), hep-th/9701075v1.
[7] A. Sitarz, “Noncommutative differential calculus on the kappa-Minkowski space”, Phys. Lett. B 349, 42 (1995), hep-th/9409014.
[8] C. Gonera, P. Kosinski and P. Maslanka, “Differential calculi on quantum Minkowski space”, J. Math. Phys. 37, 5820 (1996), arXiv:q-alg/9602007.
[9] M. Dimitrijević, L. Möller and E. Tsouchnika, “Derivatives, forms and vector fields on the κ-deformed Euclidean space”, J. Phys. A: Math. Theor. 37 (2004), hep-th/0404221.
[10] J. Wess, “Deformed coordinates spaces; Derivatives”, Lecture given at the Balkan workshop BW2003, August 2003, Vrnjačka Banja, Serbia, hep-th/0408080.
[11] H. C. Kim, Y. Lee, C. Rim and J. H. Yee, “Differential structure on the κ-Minkowski spacetime from twist”, Phys. Lett. B 671, 398 (2009), arXiv:hep-th/0808.2866.
[12] J.G. Bu, J.H. Yee and H.C. Kim, “Differential structure on κ-Minkowski spacetime realized as module of twisted Weyl algebra”, Phys. Lett. B 679, 486 (2009), arXiv:0903.0040v2.
[13] S. Meljanac and S. Krešić-Jurić, “Noncommutative differential forms on the kappa-deformed space”, J. Phys. A: Math. Theor. 42, 365204 (2009), arXiv:0804.3072.
[14] S. Meljanac and S. Krešić-Jurić, “Differential structure on \(\kappa \)-Minkowski space, and \(\kappa \)-Poincaré algebra”, Int. J. Mod. Phys. A 26 (20), 3385 (2011), arXiv: 1004.4547.

[15] S. Majid, “Quantum Anomalies and Newtonian Gravity on Quantum Spacetime”, arXiv:1109.6190v1.

[16] J. Lukierski, A. Nowicki, H. Ruegg and V. N. Tolstoy, “Q-deformation of Poincaré algebra”, Phys. Lett. B 264, 331 (1991).

[17] J. Lukierski, A. Nowicki and H. Ruegg, “New quantum Poincaré algebra, and \(\kappa \)-deformed field theory”, Phys. Lett. B 293, 344 (1992).

[18] J. Lukierski and H. Ruegg, “Quantum \(\kappa \)-Poincaré in any dimension”, Phys. Lett. B 329, 189 (1994), hep-th/9310117.

[19] J. Lukierski, M. Woronowicz, “New Lie algebraic and quadratic deformations of Minkowski space from twisted Poincaré symmetries”, Phys. Lett. B 633, 116 (2006), hep-th/0508083.

[20] P. Kosinski and P. Mašlanka, “The duality between \(\kappa \)-Poincaré algebra and \(\kappa \)-Poincaré group”, hep-th/9411033.

[21] S. Zakrzewski, “Quantum Poincaré group related to the kappapoincaré algebra”, J. Phys. A 27, 2075 (1994).

[22] G. Amelino-Camelia and M. Arzano, “Coprodut and star-product in field theories on Lie algebra noncomutative spacetime”, Phys. Rev.D 65, 084044 (2002), hep-th/0105120.

[23] L. Möller, “A symmetry invariant integral on \(\kappa \)-deformed spacetime”, JHEP 0512, 029 (2005), hep-th/0409128.

[24] A. Agostini, G. Amelino-Camelia, M. Arzano, A. Marciano and R.A. Tacchi, “Generalizing the Noether theorem for Hopf-algebra spacetime symmetries”, Mod. Phys. Lett. A22 1779-1786, (2007), hep-th/0607221.

[25] E. J. Beggs and S. Majid, “Semiclassical differential structures”, Pac. J. Math. 224, 1 (2006).

[26] G. Amelino-Camelia, “Testable scenario for relativity with minimum-length”, Phys. Lett. B 510, 255 (2001), hep-th/0012238.

[27] G. Amelino-Camelia, “Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale”, Int. J. Mod. Phys. D 11, 35 (2002), gr-qc/0012051.

[28] N. R. Bruno, G. Amelino-Camelia and J. Kowalski-Glikman, “Deformed boost transformations that saturate at the Planck scale”, Phys. Lett. B 522, 133 (2001), hep-th/0107039.

[29] J. Kowalski-Glikman and S. Nowak, “Double special relativity theories as different bases of kappa-Poincaré algebra”, Phys. Lett. B 539, 126 (2002), hep-th/0203040.

[30] L. Freidel, J. Kowalski-Glikman and S. Nowak, “Field theory on \(\kappa \)-Minkowski space revisited: Noether charges and breaking of Lorentz symmetry”, Int. J. Mod. Phys. A 23, 2687 (2008), arXiv:0706.3658.

[31] J. Kowalski-Glikman, “Introduction to doubly special relativity”, Lect. Notes Phys. 669, 131 (2005), hep-th/0405273v1.

[32] J. Kowalski-Glikman and S. Nowak, “Non-commutative space-time of doubly special relativity theories”, Int. J. Mod. Phys. D 12, 299 (2003).
DIFFERENTIAL ALGEBRAS ON κ-MINKOWSKI SPACE AND ACTION OF THE LORENTZ ALGEBRA

[33] M. Daskiewicz, K. Imilkowska, J. Kowalski-Glikman and S. Nowak, “Scalar field theory on κ-Minkowski space-time and doubly special relativity”, Int. J. Mod. Phys. A 20, 4925 (2005).

[34] M. Daszkiewicz, J. Lukierski and M. Woronowicz, “Towards Quantum Noncommutative κ-deformed Field Theory”, Phys. Rev. D 77, 105007 (2008), arXiv:hep-th/0708.1561.

[35] P. Kosinski, J. Lukierski and P. Maslanka, “Local D=4 Field Theory on κ-Deformed Minkowski Space”, Phys. Rev. D 62, 025004 (2000), arXiv:hep-th/9902037.

[36] H. C. Kim, Y. Lee, C. Rim and J. H. Yee, “Scalar field theory in κ-Minkowski spacetime from twist”, J. Math. Phys. 50, 102304 (2009), arXiv:hep-th/0901.0049.

[37] S. Meljanac and A. Samsarov, “Scalar field theory on kappa-Minkowski spacetime and translation and Lorentz invariance”, Int. J. Mod. Phys. A 26, 1439 (2011), arXiv:1007.3943.

[38] S. Meljanac, A. Samsarov, J. Trampetic and M. Wohlgenannt, “Scalar field propagation in the phi 4 kappa-Minkowski model”, JHEP 1112, 010 (2011), arXiv:1111.5551.

[39] E. Harikumar, T. Juric and S. Meljanac, “Electrodynamics on κ-Minkowski space-time”, Phys. Rev. D 84, 085020 (2011), arXiv:1107.3936.

[40] E. Harikumar, “Maxwell’s equations on the κ-Minkowski spacetime and Electric-Magnetic duality”, Europhys. Lett. 90, 21001 (2010), arXiv:1002.3202v3.

[41] M. Dimitrijevic and L. Jonke, “A twisted look on kappa-Minkowski: U(1) gauge theory”, JHEP 1112, 080 (2011), arXiv:1107.3475.

[42] T. R. Govindarajan, K. S. Gupta, E. Harikumar, S. Meljanac and D. Meljanac, “Twisted statistics in κ-Minkowski spacetime”, Phys. Rev. D 77, 105010 (2008), arXiv:0802.1576.

[43] T. R. Govindarajan, K. S. Gupta, E. Harikumar, S. Meljanac and D. Meljanac, “Deformed oscillator algebras and QFT in the κ-Minkowski spacetime”, Phys. Rev. D 80, 025014 (2009), arXiv:0903.2355.

[44] S. Meljanac, S. Krešić-Jurić and M. Stojić, “Covariant realizations of kappa-deformed space”, Eur. Phys. J. C 51, 229 (2007).

[45] S. Meljanac and M. Stojić, “New realizations of Lie algebra kappa-deformed Euclidean space”, Eur. Phys. J. C 47, 531 (2006).

[46] S. Meljanac, A. Samsarov, M. Stojić and K. S. Gupta, “Kappa-Minkowski space-time and the star product realizations”, Eur. Phys. J. C 53, 295 (2008), arXiv:0705.2471.

[47] A. Borowiec and A. Pachol, “κ-Minkowski Spacetimes and DSR Algebras: Fresh Look and Old Problems”, SIGMA 6, 086 (2010), arXiv:1005.4429.

[48] A. Borowiec and A. Pachol, “The classical basis for the κ-Poincaré Hopf algebra and doubly special relativity theories”, J. Phys. A: Math. Theor. 43, 045203 (2010), arXiv:0903.5251.

[49] A. Borowiec and A. Pachol, “κ-Minkowski spacetime as the result of Jordanian twist deformation”, Phys. Rev. D 79, 045012 (2009), arXiv:0812.0576.

[50] D. Kovacević, S. Meljanac, A. Pachol and R. Štrajn, “Generalized κ-Poincaré algebras, Hopf algebras and κ-Minkowski spacetime”, arXiv:1202.3305v4.

[51] A. Borowiec, Kumar S. Gupta, S. Meljanac and A. Pachol, “Constraints on the quantum gravity scale from kappa–Minkowski spacetime”, Europhys. Lett. 92, 20006 (2010), arXiv:0912.3259.
Rudjer Bošković Institute, Bijenička cesta b.b., 10000 Zagreb, Croatia
E-mail address: meljanac@irb.hr

Faculty of Natural and Mathematical Sciences, University of Split, Teslina 12, 21000 Split, Croatia
E-mail address: skresic@pmfst.hr

Rudjer Bošković Institute, Bijenička cesta b.b., 10000 Zagreb, Croatia
E-mail address: rina.strajn@gmail.com