도로주행형 PAV 설계를 위한 인증기준, 특허 분석 및 공력해석

Certification Criteria, Patent Analysis and Aerodynamic Analysis for a Roadable PAV Design

차재영 · 황호연* · 정한규 · 김석범 · 안존
세종대학교 항공우주공학과

Jae-Young Cha · Ho-Yon Hwang* · Han-Gyu Jeong · Seok-Beom Kim · Jon Ahn
Department of Aerospace Engineering, Sejong University, Seoul 05006, Korea

요 약

현재의 지상 수송 교통 체계가 포화상태에 이르러 그 대안으로 도로주행형 개인용 항공기(PAV; personal air vehicle) 개발의 필요성이 대두되고 있다. 이에 따라 세계 각국에서는 PAV개발과 운용체계 개발을 위한 연구가 활발히 이루어지고 있다. 차세대 운송 수단인 PAV는 지상 교통, 항공 교통, IT 산업의 융합시킨 신개념의 개인 운송수단이다. 또한 PAV의 개발은 교통체증의 해소를 해소시킬 수 있고 이동시간을 획기적으로 단축시킬 수 있을 것이다. 본 연구에서는 개정 예정인 FAR Part 23의 인증기준에 대해 분석하고 도로주행형 개인용 항공기 중 가장 앞선 테라푸지아 트렌지션과 에어모빌 3.0의 특허와 접이방식에 대해 분석하였다. 또한, OpenVSP®를 이용하여 기존의 테라푸지아의 트렌지션과 에어모빌 3.0에 대한 형상 역설계를 수행하였다. 역설계한 형상데이터를 사용하여 공력해석을 XFLR5®프로그램을 사용하여 수행하였다.

[Abstract]

As the current ground transportation system becomes saturated, there is a need to develop a roadable personal air vehicle (PAV). Therefore, researches for PAV development and operation system development are being actively carried out in various countries around the world. PAV, the next generation transportation system, is a new concept of personal transportation that combines ground transportation, air traffic, and IT industry. Also, the development of PAV can solve the saturation of traffic congestion and shorten the travel time dramatically. In this study, we analyzed the certification criteria of FAR Part 23, which is going to be revised, and analyzed the patents and folding mechanism of Terrafugia Transition and Aeromobil 3.0, which are the most advanced of roadable PAV. Also, we used OpenVSP® for the reverse configuration design of the existing Terrafugia transition and Aeromobile 3.0. Aerodynamic analyses were performed for the reverse configuration design using the XFLR5® program.

Key word: Roadable personal air vehicle, Far part 23, Certification, Aerodynamic analysis.
Ⅰ. 서 론

미국은 자동차의 증가로 인한 교통체증과 시간지체의 해법을 항공교통시스템의 혁신을 통하여 찾고자 한다. 미국 도시 자동차의 평균속도는 35mph이며, 로스엔젤레스와 같은 도시의 경우 2020년이 되면 평균속도가 22mph로 떨어질 것으로 예측이 나왔다.[1] 이러한 상황을 타개하기 위하여 미국 정부는 PAVE (personal air vehicle exploration), NextGEN (next generation air transportation system), AGATE (advanced general aviation transport experiments) 및 SATS (small aircraft transportation system)와 같은 소형항공기 관련 프로젝트를 계획하고 추진하고 있다.[2]

자동차는 특성상 2차원공간인 도로에서 이동하여야 한다. 도로가 증가하는 속도보다 자동차수의 증가율이 더 높아 교통체증이 일어난다. 또한, 다양한 산업의 발전으로 우리나라의 물류 이동률은 해마다 증가하고 있으며, 생활 수준 향상으로 인해 항공기를 이용한 운송이 늘어나고 있다. 이러한 수송 수요의 증가로 인한 교통체증을 타개하기 위해서 PAV 개발이 필요하다.

지난 50년간 무수히 많은 도로주행형 항공기 설계가 이루어져 왔고 이러한 PAV (personal air vehicle)에 의해 주어지는 유연성은 통근용 비즈니스 항공기의 효율을 증가시킨다. 또한 도심지역에서의 교통 체증을 줄여 줄 것이다. 이러한 PAV가 등장하면 현재의 항공교통시스템의 전면 개편이 뒤따르게 되고 교통문화 패러다임의 대변혁이 일어날 것이다. 미국의 마크 무어 박사에 따르면 비행의 개념을 바꾸어 놓을 새로운 시대가 열리고 신뢰성과 효율성이 탁월한 최첨단 추진기관으로 인해 자동차만큼 쉽고 안전하게 탈 수 있는 항공기가 등장할 것이다.[2] PAV 개발은 하늘 고속도로 개발, 지상/해상/항공교통망 구축 등 교통체계의 3차원화로 교통증가를 완화하고 Door-to-Door 교통 달성, 기존 교통방의 최적 경로화로 평균이동시간을 단축하고 자동차 수준의 안전성/편의성/경제성을 가진 미래형 항공기의 일상화를 목표로 한다.

PAV는 NASA가 2003년 비행체시스템 프로그램의 일환으로 자가용 항공기별도의 프로젝트를 신설할 때 처음 사용된 용어이다.[3] 초기 점에서 목적이자 자기가 항공기를 타고 직접 날아가는 데의 이상이 또는 비행을 위하여 목적으로 도달하려는 3차원 항공교통수단이 되기 위해서는 도로에서 운행하는 자동차만큼 불안감 없이 탈 수 있도록 편안하고 안전한 기능을 갖추어야 한다. 또한 현실과 같이 도로운항기 개발에 있어서도 비슷한 유형의 많은 요소 기술들이 제시되고 있는데 어떤 구성을, 조합을 하는 것이 가장 유망한지를 PAV임무 유형에 따라 파악해야 한다.

PAV는 이착륙방식에 따라서 CTOL (conventional take-off and landing), STOL (short take-off and landing), VTOL (vertical take-off and landing)로 나뉘며, 본 연구에서는 CTOL의 형태를 갖추고 항공기와 자동차의 기능을 결합한 dual-mode 항공기에 대해 연구하였다. VTOL형 PAV는 항공기와 석유로 바라 끈 상대로 적은 추력의 엔진을 사용하여 600 km 이하의 비행 가능 성장성이 있으며, 좁은 공간에도 주차가 가능하다. 또한 지상에서도 도로를 이용하기 쉽다. 하지만 이착륙을 위해 수백 m 내외의 활주로가 필요하게 된다는 단점이 있다.

한국항공우주연구원은 PAV 관련 선행연구를 통해서 추진 전략과 도크림을 제시하였고 PAV의 실용화의 시기를 2030년 이후로 예측하고 있다[4]. 건국대학교는 수직이착륙을 위한 멀티로터와 일반적인 고정익 비행체가 결합된 다단 틸트로터 항공기술의 실용화를 이용하여 저행성과 비행성이 높음을 고려하여 수직이착륙기술을 개발하게 되었다[5]. 충남대학교에서는 0.1 실용화 가능한 dual-mode PAV의 1/4축소모델 CNUPAV-01의 설계와 비행시험을 통한 동작성과 성능을 수행하였다[6]. 미국 정부는 현재의 까다로운 PART 23 인증이 막대한 인증비용과 시간 때문에 새로운 기술을 적용한 신형 항공기 개발을 저해하여 소형 항공기 산업이 장기간 침체되는 가장 큰 원인 중 하나라고 여론을 수렴하여 FAA의 소형 항공기에 대한 새로운 인증 규제 마련을 의무화하였다. 이에 따라 FAA는 2016년 3월 9일 FAR 23의 개정안을 공문을 발표하였다. 따라서 FAA가 제시한 PART 23 개정안 중 PAV에 적용되는 인증기준을 고려한 새로운 PAV 연구 개발이 요구되며 따라서 본 논문에서는 개정된 FAR 23 인증기준을 분석하고, 현 재개발된 도로운항기 개발의 Transition과 Aeromobil 3.0에 대해 하는 분석과 접이 방식을 평가하여 단순화하였다. 또한 Transition과 Aeromobil 3.0의 형상데이터를 이용하여 OpenVSP® 프로그램을 사용하여 항공기설계를 수행하였으며, 고정익 PAV에 사용하기 적절한 접이형을 조사한 후 가장 적합한 항공기를 선정하기 위해 XFLR5® 프로그램을 사용하여 공력해석을 수행하였다.

Ⅱ. PAV 소개, FAR 23 인증기준, 특허 및 접이 방식

PAV는 자동차처럼 자신의 집에서 출발하여 원하는 목적지에 가는 모델로 보니 비행체를 의미하는 door-to-door 개발 방식이다. NASA는 Centennial Challenge PAV대회에서 표 1와 같이 PAV에 대한 개념을 정의하였다.[1] 또한 Li et al의 연구에서는 PAV의 공학적인 요구사항 및 목표치를 표 2와 같이 제시하였으며 신뢰성, 지상주행시간 및 조종 훈련시간도 제안하였다[3].
表 1. NASA의 PAV 정의 및 고객 요구도[1]
Table 1. NASA PAV definition and customer requirements[1].

Division	PAV requirements
Seats	Less than 5 passengers
Cruising	240~320 km/h
Comfort	Quite and comfortable
Reliable	Low failure rate
Maneuverability	Able to be flown by anyone’s license.
Operating Mode	As affordable as travel by car or airliner.
All-Weather Flight	Near all-weather capability enabled by synthetic vision systems.
Fuel	Highly fuel efficient (able to use alternative fuels)
Range	1,300 km
Airport Access	Provide “door-to-door” transportation solutions, through use of small community airports that are at closer proximities to businesses and residences than large airports.

表 2. PAV의 공학적인 요구조건[3]
Table 2. PAV engineering requirements[3].

Requirements	Criterion	Target / Constraint
Speed	Cruise speed(kts)	100~250 kts
Noise	Flyover Noise(dB)	<79
Travel Time	Total Travel Time(hr)	<3.5
Takeoff Length	Total Distance to clear 50' obstacle(ft)	VTOL<1000 ft, ESTOL<2500 ft, STOL<1,000 ft, CTOL<3,000 ft
Safety	Accident Rate : Number of fatal accidents per 1,000,000 FH	<5
Reliability	MTBF : Mean Time Between Failure (hr)	>80
Maintainability	MTTR : Mean Time to Repair(hr)	>50
Ease to Operation	TTR : Training Time Requirements(hr)	<20
Mobility	TTBT : Total Time Before Takeoff(hr)	<0.3

2-1 FAR 인증기준 개정

인증 범주 중에서 세 가지의 인증 범주 (light sport aircraft using ASTM committee F37 standards, FAR part 23 with a special airworthiness certificate in the primary category, FAR part 23 with a standard airworthiness certificate in the normal category)는 고정익 PAV에 적합한 것으로 확인되었지만 항공기 인증절차 주요부문의 개정 작업이 이미 진행 중이며 큰 변화가 발생할 것으로 예상된다. 미국 정부는 현재의 아주 복잡하고 까다로운 PART23 인증이 막대한 인증비용과 시간에 따른 새로운 기술을 적용하는 신형 항공기의 개발을 저해하고, 결과적으로 소형 항공기 산업이 장기간 침체된 가장 큰 원인 중 하나는 각계의 여론을 수렴하여 2013년 소형 항공기 활성화 법안 (small airplane revitalization act)을 국회에서 통과시켜 미국연방항공청 (FAA; Federal Aviation Administration)의 소형항공기에 대한 새로운 인증규제 마련을 의무화하였다.

FAA는 2008년부터 1965년에 처음 도입된 PART23의 개정작업을 논의하기 시작하였으며 2013년 소형 항공기 활성화 법안의 통과로 본격적으로 새로운 인증 기준 및 절차 마련에 착수하였으며, 2016년 3월 9일에는 FAR 23의 개정방안을 담은 공문 (Notice of proposed rule making, “Revision of airworthiness standards for normal, utility, acrobatic, and commuter category airplanes”)을 발표하였다.

表 3. 개정중인 PART 23의 주요항목[7]
Table 3. Proposed part 23 major revision items[7].

Major revision item	Major revision contents
Performance Standards and Airplane Crashworthiness	Am more flexibility in regulations that govern crash testing. In the past, the FAA has focused on individual components rather than safety as a whole.
Loss of Control	The rule aims to improve general aviation safety by creating additional certification standards to reduce accidents caused by loss of control.
Icing Certification Standards	improve GA safety by addressing severe icing conditions. Should include Supercooled Large Drop, Mixed phase, Ice crystals. Require to demonstrate safe operations in SLD conditions. Require SLD detection and escape demonstrate.

表 4. 2017년부터 2036년까지의 예측된 이익과 비용[7]
Table 4. Estimated Benefits and Costs from 2017 to 2036(2014 $ Million) [7].

Costs	Safety Benefits + Cost Saving = Total Benefits
Total	$6.9 + $14.6 + $32.2 = $54.7
Present value	$6.9 + $5.8 = $12.7
FAA가 2016년 3월 제시한 PART 23 개정안에 따르면 기존의 항공기 무게나 엔진규모에 따른 항공기의 분류 방법에서, 항공기의 성능(최속도, 최대속도 등)이나 기술적 복잡도(시스템 비행 ArrayBuffer가 적절한 기준은 신고 후 비행기 등에 따른 분류방법으로 바꾸는 것을 제안하였다. 표 3은 개정안의 PART 23의 주요항 목이다.

PART 23 개정이 되면 앞으로 새로운 안전성 항공기의 도입이 용이하며, 인종 내재 수단 허용의 효율성 증가를 통한 이익이 창출될 것으로 예상된다. 예상되는 이익은 표 4와 같다.

PART 23 개정 공고 문단 ‘Revision airworthiness standards normal utility acrobatic commuter airplanes NPRM’ [7]의 appendix 1 to the preamble-current to proposed regulations cross-reference table에 기존의 FAR PART 23과 개정안을 서로 비교할 수 있는 상호 비교표가 있으며 양이 많아 일부분만을 발췌하여 표 5에 표시하였다.

게정안에 제시한 적합성 검증방법 (MOC; means of compliance)이 명시되지 않았으므로 기존의 적합성 검증방법 은 추후 수정되어야 한다. 기존의 형식인증을 위한 항공기 형식인증은 항공기 설계가 끝날 때까지 항공기 설계가 형식인증을 위한 사업과 기술적 측면에서 기준을 충족하는지 확인하기 위해 체계, 부체계 및 구성품별 수준에서 검증하는 방법을 의미하며, 적합성 검증은 해석, 시험, 검사, 모의 등 표 6과 같이 총 10개로 분류한다.

2-2 Transition, Aeromobil 3.0 특허

Transition 발견특허는 일반적인 도로주행 항공기분야와 관련이 있으며, 상세하게는 도로를 주행할 수 있는 차량 유형으로 변할 수 있는 항공기로 때때로 “flying car” 또는 “flying driving vehicle” 이라 한다. Transition의 특허에 관한 일부내용을 표 7에 명시하였다.

표 5. FAR PART 23 현재와 개정안의 상호 비교표[7]

Current Section	Title	Proposed Title	Proposed Title
Subpart A-General			
23.1	Applicability	23.1	Applicability
23.2	Special	--	Deleted--
23.3	Airplane categories	23.5	Certification of normal category airplanes
	--	23.10	Accepted means of compliance
Subpart B-Flight			
23.21	Proof of compliance	23.100	Weight and center of gravity
23.23	Load distribution limits	23.100	Weight and center of gravity
23.25	Weight limits	23.100	Weight and center of gravity
23.29	Empty weight and corresponding center of gravity	23.100	Weight and center of gravity

표 6. 적합성 검증방법(MOC) 분류기준

Num ber	Means	Explanation
0	Statements	Simple definition or general requirements
1	Drawing/Description/Document/Manual	Inspect Drawing/Description/Documents/Manual
2	Analysis	Verification through theoretical or numerical analysis of load, stress, performance, electrical load, etc.
3	Safety Assessment	Verification through analysis related to reliability, maintainability, and safety
4	Laboratory test	Verification through laboratory test
5	Ground test	Verification through ground test
6	Flight test	Verification through flight test
7	Inspection	Verification through inspection
8	simulation	Verification through simulation
9	Equipment Qualification	Verification using various component-level certification results

Transition의 발명특허는 비행 시와 도로 주행 시 기존 공항과 공력 인프라, 도로 등 모든 영역에 적절 작동할 수 있는 형태를 포함한다. Transition은 조종사가 운용하며, 미국 연방항공국 (FAA)의 경량항공기(LSA) 인증기준을 토대로 설계되었으며, 주 납과 조종을 자동으로 접을 수 있는 장치로 보호할 수 있는 push형 프로펠러, 후방 승강기(elevator), 매립형 조명 및 번호판을 포함하는 동적 범위, 공항에 접근을 관리하기 하는 차량 기반 RFID 시스템을 특징으로 하는 통합형 디자인이다.

Transition의 동체, 주 납은 동체에 부착된 차량 중심의 간 측에 대하여 대칭인 형태이다. 주는 점근구조(folding mechanism)의 접는 부분과 접지 없는 부분의 중간에 배치하여 서로 간섭될 수 있도록 하였다. 차량의 앞부분에 비행 시 새로운 항 인정성 및 yaw 제어를 할 수 있도록 최소한 하나의 조종면 역할을 할 수 있고, pitch 축에 대해 비행역학 조종면과 안정 성을 위해 수평 밑면 역할을 할 수 있는 2번 납을 배치하였다.

또한 Transition은 지상에서의 차량 하부를 지지하는 복수의 바퀴를 포함한다. 바퀴들 중 적어도 하나는 차량의 결정 중심의 후방에 위치하고, 또한 하나 이상은 차량의 무게중심 약간 앞에 위치한다. Transition은 지상에서 차량을 이동시키는 수단을 제공하도록 하기 위한 추진기관을 포함한다. 추진기관은 적어도 하나의 바퀴에 거치는 토마스를 포함하고, 돈도로 비행 시 차량을 추진시키기 위한 수단을 제공하도록 하여 후방 방향으로 공기 흐름을 가속하는 수단이며, 도로 주행 시 추진기관 하부에 평평한 면을 위치시켜 도로 이물질 피해로부터 보호해야 한다.

Transition은 주 납과 접이기 상태에서는 지면과 수직으로 위치한다. 또한, 주 납과 접이기 두께의 접을 수 있는 면을 포함한다. 납과는 비행 시 주로 차량의 roll축을 중심으로 차량 전세계를 가능하게 하는 작동도 하나의 aileron 제어면을 포함한다[8].
A fuselage
- A main wing mounted to the fuselage and oriented substantially symmetrically about a central elongate axis of the vehicle, wherein the main wing is deployable between a folded configuration and an unfolded configuration
- A folding mechanism configured to deploy the main wing between the folded configuration and the unfolded configuration, wherein the folding mechanism comprises an actuator for controlling at least one folding beam pivoted about a pivot point disposed proximate the fuselage, wherein the actuator and the at least one folding beam are configured to lock an inner wing section of the main wing
- At least one first aerodynamic control surface configured to provide longitudinal stability and control primarily about a yaw axis of the vehicle when in flight
- A second aerodynamic control surface configured to provide stability and control primarily about a pitch axis of the vehicle when in flight
- A plurality of wheels configured to support the vehicle when on the ground, wherein at least one of the plurality of wheels is located aft of a center of mass of the vehicle, and at least one of the plurality of wheels is located in front of the center of mass of the vehicle
- A first propulsion mechanism configured to provide a means of propelling the vehicle when in flight, wherein the first propulsion mechanism comprises a means of accelerating an airflow in a rearward direction
- The vehicle of claim 1, wherein at least a portion of the main wing is oriented substantially vertically with respect to the ground when in the folded configuration.
- The vehicle of claim 1, wherein the main wing comprises at least two folding sections on each side of the central elongate axis of the vehicle.
- The vehicle of claim 1, wherein the main wing comprises at least one aileron control surface to enable control of the vehicle primarily about a roll axis of the vehicle when in flight.
- The vehicle of claim 1, wherein the second aerodynamic control surface is located on the secondary wing.

Aeromobil 3.0 is a hybrid transport vehicle that can be used on land and in the air, and can be transformed into an airplane for takeoff and landing. It also includes a mechanism for transforming it back and forth. The body is tilted at an angle of 30 degrees from the ground to facilitate takeoff and landing, and each side of the central elongate axis of the vehicle has one or two actuators (actuator) for controlling the folding beams. After transformation, the vehicle can be used as a sports airplane, and the structure reduces landing distance. The configuration is shown in Fig. 1, Fig. 2, and Fig. 3.
Claim Content

1. Transformation method of hybrid transportation vehicle for ground and air, characterized in, that transformation of a sterling double or four-track automobile into a sterling aircraft for take-off and landing on the ground or water includes:
 - Expansion of both whole wings (1) from the transportation vehicle longitudinal position around two vertical axes using reciprocal transformation mechanisms of tilting wings in/out (1) into/from flying position
 - Expansion of rear parts of wings (1) from the top front parts of wings (1) using reciprocal transformation mechanisms of the wings platform outline change (1) into the spread flying position
 - Front wheels track reduction (5)

While reciprocal transformation of a sterling aircraft into a sterling double or four-track automobile includes:
 - Front wheels track expansion (5)
 - Retraction of rear parts of wings (1) from the spread flying position into the top front parts of wings (1) using reciprocal transformation mechanism of the wings platform outline change (1)
 - Retraction of both wings (1) from flying position into the hybrid transportation vehicle longitudinal position around two vertical axes using reciprocal transformation mechanism of tilting wings in/out (1)

2. Transformation method of hybrid transportation vehicle for ground and air according to the demand 1, characterized in, that prior to expansion of both whole wings (1) and expansion of rear parts of wings (1) tilting the compensation cover on (7) is executed.

3. Transformation method of hybrid transportation vehicle for ground and air according to the demand 1, characterized in, that prior to retraction of rear parts of wings (1) and retraction of both whole wings (1) tilting the compensation cover on (7) is executed.

4. Transformation method of hybrid transportation vehicle for ground and air according to the demand 1, characterized in, that after the expansion of both whole wings (1) and expansion of rear parts of wings (1) take-off and landing tilting of wings (1) by an angle alpha = 0 to 40° of a wing onset follows.
도로주행형 PAV 설계를 위한 인증기준, 특허 분석 및 공력해석

그림 6. Aeromobil 3.0 접이 방식[14]
Fig. 6. Aeromobil 3.0 folding mechanism [14].

정확한 치수를 구할 수 없어 간략한 삼면도를 이용하여 그림 7과 같이 Transition과 Aeromobil 3.0의 형상을 구현하였다.

표 9. 트랜지션 사양[10],[15]
Table 9. Transition specification[10],[15].

	SI unit	US unit
Capacity	2 passenger	
Road-Size	6m × 2.3m × 1.98m	19ft 6in × 7ft 6in × 6ft 6in
Flying-Size	6m × 8.08m × 1.98m	19ft 6in × 26ft 6in × 6ft 6in
Useful Load	227 kg	500 lb
Empty Weight	440 kg	970 lb
Max speed	185.2 km/h	100 kt
Cruise speed	160 km/h	86.4 kt
Stall speed	100 km/h	54 kt
Take-off speed	-	-
Range (Air)	644 km	400 sm
Range (Road)	1295.52 km	805 sm
Take-off Roll	518.2 m	1700 ft
fuel consumption	18.93 L/h	5 gph
Wingspan	8.08 m	26 ft 6in
Power plant	1 × Rotax 912 (75kW)	

표 10. Aeromobil 3.0 사양[11],[16]
Table 10. Aeromobil 3.0 specification[11],[16].

	SI unit	US unit
Capacity	2 passenger	
Road-Size	6m × 1.6m	19ft 8in × 5ft 3in
Flying-Size	6m × 8.2m	19ft 8in × 26ft 11in
Useful Load	-	-
Empty Weight	450 kg	992 lb
Max speed	200 km/h	108 kt
Cruise speed	-	-
Stall speed	60 km/h	32 kt
Take-off speed	130 km/h	70 kt
Take-off Roll	-	-
fuel consumption	15.14 L/h	4.0 gph
Wingspan	8.2m	26.9 ft
Power plant	1 × Rotax 912 (75kW)	

그림 7. Transition, Aeromobil 3.0의 배경 사진[14], [17], [18]
Fig. 7. Background photo of transition, Aeromobil 3.0 [14], [17], [18].
표 11. Transition, Aeromobil 3.0의 표면적
Table 11. Wetted area of Transition, Aeromobil 3.0.

Terrafugia Transition	SI unit	US unit
Wetted Area	55.4 m²	595.9 ft²

Aeromobil 3.0	SI unit	US unit
Wetted Area	39.5 m²	424.9 ft²

Open VSP®의 background 기능을 이용하여 삼면도를 배경으로 평면도 (top view), 정면도 (front view), 측면도 (side view)로 변경하면서 형상을 구현하였다. Open VSP® 프로그램은 날개의 각 단면별로 역학 (airfoil)을 입력할 수 있으며 배경이미지를 맞추어 주 날개에 대해 사이 (chord), 상반각 (dihedral), 비틀림 각 (twist)과 같은 수치를 입력하면 그림과 같은 결과를 얻을 수 있다. 그리고 날개와 주 날개에 대해 시원, 상반각, 비틀림 각을 입력하면 그림과 같은 결과를 얻을 수 있다.

Open VSP®는 다른 소프트웨어와 비교하여 검증되었고, 실험적 결과를 기반으로 결과값을 도출하여 비교적 신뢰성을 높였다. 또한 Analysis의 기능을 이용해 파트별 또는 전체 PAU의 표면적 (Wetted Area)을 계산할 수 있으며, 표 11에 그 값을 나타내었다.

표 12. 역형 특성
Table 12. Airfoil characteristics.

	Max Thickness	Max Camber
SI unit	US unit	US unit
GA37A315mod	15% at 40%	2.47% at 40%
NACA2412	12% at 30%	2% at 40%
FX63-137	13.7% at 30%	6% at 50.5%

4-2 역형 데이터

해석에 사용된 역형 (airfoil)은 GA37A315mod, NACA 2412, FX 63-137을 사용하였고 각 airfoil의 특성은 표 12와 같다. 해석에 사용된 역형을 선정한 이유는 GA급 항공기에 사용되는 역형을 조사하여 그 중 3가지 역형을 선정한 결과이다.

4-3 양력계수 (C_L)와 항력계수 (C_D)의 계산

PAV의 양력비를 구하기 위해서는 우선 양력계수와 항력계수를 계산해야 한다. 본 연구에서는 XFLR5 프로그램을 사용하여 역형 및 항력계수를 계산하였다. 양력계수는 아래 식을 사용하여 계산할 수 있다.

$$ C_L = \frac{2W}{\rho SV_f} $$

여기서, W는 항공기 무게, ρ는 공기밀도, S는 항공기 주익 면적, V_f는 항공기 속도이다. 공기밀도는 고도에 따라 변하며, 순항 시에는 $W = L$이 된다.

항력계수는 유도항력 (induced drag), 유해항력 (parasite drag)의 합으로 이루어지며 유해항력은 형상항력 (form drag)과 표면 마찰항력 (skin friction drag)의 합으로 표현된다.

$$ C_D = C_{D_{\text{ind}}} + C_{D_{\text{par}}} $$

또한

$$ C_{D_{\text{ind}}} = C_{D_{\text{form}}} + C_{D_{\text{fric}}} $$

유도항력은 양력계수, 가로세로비, 오스вал드 상수를 이용하여 계산할 수 있다. 그러나 오스вал드 상수는 가로세로비에 따라 변하므로 오차가 발생할 수 있다.

유해항력 중 표면마찰항력은 항공기 표면의 마찰에 의해 생기는 항력으로 표면적 (wetted area)을 이용하여 계산한다.

$$ C_{D_{\text{fric}}} = \frac{\sum k_f \frac{S_{\text{eff}}}{S_{\text{ref}}}}{Re} $$

또한

$$ C_f = \begin{cases} 1.328 \sqrt{Re} & \text{for laminar} \\ 0.074 Re^{-0.25} & \text{for turbulent} \end{cases} $$
여기서 \(k \)는 형상계수 (form factor), \(C_f \)는 표면마찰계수 (skin friction coefficient), \(S_{wet} \)는 표피면적 (wetted area), \(S_{ref} \)는 날개 기준 면적 (reference area)이다. 형상계수는 크게 항공기의 주익, 미익, 동체에 대하여 각각 계산된다. 또한 표면마찰계수는 동류와 난류 범위에 따라 나누어 계산하여야 한다.

4-4 Airfoil 해석

XFLR5™로 공력해석에 사용할 익형(airfoil)을 불러들이면 그림 8, 그림 9, 그림 10과 같이 익형의 2-D 단면과 특성을 알 수 있다. 이들 익형에 대해 표 13의 조건으로 2-D 해석을 수행하면 그림 11과 같은 결과를 얻을 수 있다. 레이놀즈 수 계산을 위해 아래 수식을 이용하였다.

\[
Re = \frac{\nu L}{\mu} \tag{1}
\]

\[
\mu = \rho \nu \tag{2}
\]

2-D 해석을 수행한 후, 표 14와 표 15의 조건에 대해 3-D 해석을 수행하였다.

표 13. 2-D 해석 조건

Analysis Type	Reynolds range	Alpha range
Type 1 (Fixed Speed)	100만 ~ 600만	-11° ~ 11°

그림 8. GA37A315mod 익형 설계 및 입력창

Fig. 8. GA37A315mod airfoil design and input window.

그림 9. NACA 2412 익형 설계 및 입력창

Fig. 9. NACA 2412 airfoil design and input window.

표 14. 날개 사양

Table 14. Wing specification.

Transition	Aeromobil 3.0	
Wing Span(m)	8.08	8.2
AR(Aspect ratio)	4.569	9.535
S(Wing area, \(\text{㎡} \))	14.395	7.052

표 15. 3-D 해석 조건

Table 15. 3-D analysis condition.

altitude	2.6km
cruise speed	44.4m/s
3-D 해석결과인 양력과 항력의 분포는 그림 12와 같다. 발음 각에 따른 양력과 항력의 분포를 계산한 후 그림 13, 그림 14와 같이 발음각 변화에 따른 양항비를 계산 후 그래프로 표현하였다.

그림 12. Aeromobil 3.0, Transition (GA37A315mod 에어폭) 3-D 공력해석 결과
Fig. 12. Aeromobil 3.0, Transition (GA37A315mod airfoil) 3-D aerodynamic analysis result.

Ⅴ. 결 론
본 논문에서는 PAV 정의 및 분류기준과 FAR PART 23 인증 기준 개정에 대해 간략히 기술하였다. 또한 본 연구에 사용된 Transition과 Aeromobil 3.0의 특허와 접이 구조에 대해 기술하였다.

이후 간단한 삼면도를 이용, OpenVSP 프로그램을 사용하여 Transition과 Aeromobil 3.0의 CAD 형상을 구현하였다. 또한 공력해석을 진행하기 위해 XFLR5 프로그램을 사용하였으며, Transition과 Aeromobil 3.0 형상에 대해 각각 다른 익형을 적용하여 양항비를 계산하였다.

3가지 익형(GA37A315mod, NACA2412, FX 63-137)을 Transition과 Aeromobil 3.0 형상에 대해 동일한 날개 길이, 가로 세로비, 날개면적을 적용하여 공력해석을 수행하였을 때 양의 반응각 부분에 대해 Transition과 Aeromobil 3.0 형상 모두에서 GA37A315mod 익형의 양향비가 가장 우수하였다.

추후 연구에서는 형상을 변경해 가면서 엔진 성능과 구속조건을 고려하여 공력해석을 진행할 예정이며, 각각의 설계를 모델링과 시뮬레이션을 통해 효율적으로 비교분석하기 위한 PAV 사이징 프로그램을 개발할 예정이다.

감사의 글
본 연구는 국토교통부 국토교통기술촉진연구사업의 연구비 지원(16CTAP-C114866-01)에 의해 수행되었습니다.

참고 문헌
[1] [Internet]. Available: https://en.wikipedia.org/wiki/Personal_
도로주행형 PAV 설계를 위한 인증기준, 특허 분석 및 공력해석

1. 개요
 도로주행형 PAV 설계를 위한 인증기준, 특허 분석 및 공력해석

2. 연구내용
 2.1 인증기준
 2.2 특허 분석
 2.3 공력해석

3. 결론
 본 연구를 통해 도로주행형 PAV 설계를 위한 인증기준, 특허 분석 및 공력해석의 필요성을 제시하였으며, 미래 PAV의 발전을 위한 방향을 제시하였다.

4. 참고문헌
 [1] B. H. Ahn, D. Delaurentis, and D. Mavris, Advanced personal air vehicle concept development using powered rotor and autogyro configurations, AIAA-2002-5878, 2002.
 [2] Y. Li, D. DeLaurentis, and D. Mavris, Advanced rotorcraft concept development and selection using a probabilistic methodology, AIAA 2003-6759, 2003.
 [3] J. J. Lee, et. al. PAV (personal air vehicle) development preceding research, Korea Aerospace Research Institute, Apr. 2010.
 [4] M. G. Cheon, Conceptual design and verification of a subscale personal air vehicle (PAV) based on multi-tiltrotor, Master Thesis, Konkuk University, Seoul, Korea, 2014
 [5] J. H. Jeong, S. T. Hong, D. M. Kim, J. Y. Seok, S. J. Yoon, and S. N. Kim, “Conceptual design and flight test of a subscale PAV model,” in The Korean Society For Aeronautical And Space Sciences, Gyeongju: Korea, pp. 762-767, 2011.
 [6] Federal Aviation Administration (FAA), Department of Transportation (DOT), “Revision airworthiness standards for normal utility acrobatic commuter category airplanes,” Notice of proposed rule making (NPRM), FAA-2015-1621, No. 16-01, 2016, pp. 13451–13528.
 [7] C. C. Dietrich, S. A. Schweighart, and A. M. Mrcek, Roadable aircraft with folding wings and integrated bumpers and lighting, Terrafugia Inc., Somerville, MA (US), US 7938358 B2, 2011
 [8] S. Klein, Transformation method of hybrid transportation vehicle for ground and air, and hybrid transportation vehicle itself. Aeromobil S. R. O., United States, US 2015028150 A1, 2015

저자 Credentials

차재영 (Jae-Young Cha)
2016년 2월 : 세종대학교 항공우주공학과 (공학사)
2016년 3월 ~ 현재 : 세종대학교 대학원 항공우주공학과 석사과정
※ 관심분야 : PAV Design, Solar Aircraft Design

황호연 (Ho-yon Hwang)
1993년 5월 : 미국 Georgia Institute of Technology 항공우주공학과 (공학박사)
2000년~ 현재 : 세종대학교 항공우주공학과 교수
2012년~현재 : 세종대 부설 항공산업연구소 연구소장
※ 관심분야 : PAV Design, Solar Aircraft Design, Assessment of Environmental Impacts from Aviation

www.koni.or.kr
정 한 규 (Han-Gyu Jeong)
2011년 3월 ~ 현재 : 세종대학교 항공우주공학과 학사과정
※ 관심분야 : PAV Design, Aircraft Weight Estimation

김 석 범 (Seok-Beom Kim)
2011년 3월 ~ 현재 : 세종대학교 항공우주공학과 학사과정
※ 관심분야 : PAV Design, Aircraft Weight Estimation

안 존 (Jon Ahn)
1997년 5월 : 미국 Massachusetts Institute of Technology 항공우주공학과 (공학박사)
2001년 ~ 현재 : 세종대학교 항공우주공학과 교수
※ 관심분야 : PAV Design, Solar Aircraft Design, Aerodynamic Analysis