From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds

Constantin Călin and Mircea Crasmareanu

Dedicated to the memory of Neculai Papaghiuc 1947-2008

Abstract

The Eisenhart problem of finding parallel tensors is solved for the symmetric case in the regular f-Kenmotsu framework. On this way, the Olszack-Rosca example of Einstein manifolds provided by f-Kenmotsu manifolds via locally symmetric Ricci tensors is recovered as well as a case of Killing vector fields. Some other classes of Einstein-Kenmotsu manifolds are presented. Our result is interpreted in terms of Ricci solitons and special quadratic first integrals.

2000 Math. Subject Classification: 53C40; 53C55; 53C12; 53C42.
Key words: f-Kenmotsu manifold; parallel second order covariant tensor field; irreducible metric; Einstein space; Ricci soliton.

Introduction

In 1923, Eisenhart [9] proved that if a positive definite Riemannian manifold (M, g) admits a second order parallel symmetric covariant tensor other that a constant multiple of the metric tensor, then it is reducible. In 1926, Levy [18] proved that a second order parallel symmetric non-degenerated tensor α in a space form is proportional to the metric tensor. Let us point out that this question can be considered as dual to the the problem of finding linear connections making parallel a given tensor field, problem which was considered by Wong in [35]. Also, the former question implies topological restrictions namely if the (pseudo) Riemannian manifold M admits a parallel symmetric $(0,2)$ tensor field then M is locally the direct product of a number of (pseudo) Riemannian manifolds, [36] (cited by [37]). Another situation where the parallelism of α is involved appears in the theory of totally geodesic
maps, namely, as is point out in \[22\] p. 114, $\nabla \alpha = 0$ is equivalent with the fact that $1 : (M, g) \to (M, \alpha)$ is a totally geodesic map.

While both Eisenhart and Levy work locally, Ramesh Sharma gives in \[26\] a global approach based on Ricci identities. In addition to space-forms, Sharma considered this Eisenhart problem in contact geometry \[27\]-\[29\], for example for K-contact manifolds in \[28\]. Since then, several other studies appear in various contact manifolds: nearly Sasakian \[33\], (para) P-Sasakian \[32\], \[6\] and \[19\], α-Sasakian \[5\]. Another framework was that of quasi-constant curvature in \[13\]. Also, contact metrics with nonvanishing ξ-sectional curvature are studied in \[10\].

Returning to contact geometry, an important class of manifolds are introduced by Kenmotsu in \[15\] and generalized by Olszack and Rosca in \[21\]. In the last time, there is an increasing flow of papers in this direction e.g. that of our professor N. Papaghiuc \[23\]-\[24\] to which we dedicate this short note. Motivated by this fact we studied the case of f-Kenmotsu manifolds satisfying a special condition called by us regular and show that a symmetric parallel tensor field of second order must be a constant multiple of the Riemannian metric. There are three remarks regarding our result:

i) it is in agreement with what happens in all previously recalled contact geometries for the symmetric case,

ii) it is obtained in the same manner as originated in Sharma’s paper \[26\],

iii) yields a class of Einstein manifolds already indicated by Olszack and Rosca but with a more complicated proof.

Let us point out also that the anti-symmetric case appears without proof in \[20\].

Our main result is connected with the recent theory of Ricci solitons, a subject included in the Hamilton-Perelman approach (and proof) of Poincaré Conjecture. Ricci solitons in contact geometry were first studied by Ramesh Sharma in \[11\] and \[30\]; also the preprint \[34\] is available to arxiv. In these papers the K-contact and (k, μ)-contact (including Sasakian) cases are treated; then our treatment for the Kenmotsu variant of almost contact geometry seems to be new.

Our work is structured as follows. The first section is a very brief review of Kenmotsu geometry and Ricci solitons. The next section is devoted to the (symmetric case of) Eisenhart problem in a f-Kenmotsu manifold and several situations yielding Einstein manifolds are derived. Also, the relationship with the Ricci solitons is pointed out. The last section offers a dynamical picture of the subject via Killing vector fields and quadratic first integrals of a special type.

Acknowledgement Special thanks are offered to Gheorghe Pitis for
some useful remarks as well as sending us his book [25], a source of several references. Also, we are very indebted to Marian-Ioan Munteanu and the referees who pointed out major improvements.

1 f-Kenmotsu manifolds. Ricci solitons

Let M be a real $2n + 1$-dimensional differentiable manifold endowed with an almost contact metric structure (φ, ξ, η, g):

\begin{align*}
(a) \quad \varphi^2 &= -I + \eta \otimes \xi, \\
(b) \quad \eta(\xi) &= 1, \quad (c) \quad \eta \circ \varphi = 0, \\
(d) \quad \varphi(\xi) &= 0, \quad (e) \quad \eta(X) = g(X, \xi), \\
(f) \quad g(\varphi X, \varphi Y) &= g(X, Y) - \eta(X)\eta(Y),
\end{align*}

for any vector fields $X, Y \in \mathcal{X}(M)$ where I is the identity of the tangent bundle TM, φ is a tensor field of $(1,1)$-type, η is a 1-form, ξ is a vector field and g is a metric tensor field. Throughout the paper all objects are differentiable of class C^∞.

We say that $(M, \varphi, \xi, \eta, g)$ is an f-Kenmotsu manifold if the Levi-Civita connection of g satisfy [20]:

\begin{equation}
(\nabla_X \varphi)(Y) = f(g(\varphi X, Y)\xi - \varphi(X)\eta(Y)),
\end{equation}

where $f \in C^\infty(M)$ is strictly positive and $df \wedge \eta = 0$ holds. A $f = constant \equiv \beta > 0$ is called β-Kenmotsu manifold with the particular case $f \equiv 1$-Kenmotsu manifold which is a usual Kenmotsu manifold [15].

In a general f-Kenmotsu manifold we have, [21]:

\begin{equation}
\nabla_X \xi = f(X - \eta(X)\xi),
\end{equation}

and the curvature tensor field:

\begin{equation}
R(X, Y)\xi = f^2(\eta(X)Y - \eta(Y)X) + Y(f)\varphi^2X - X(f)\varphi^2Y
\end{equation}

while the Ricci curvature and Ricci tensor are, [16]:

\begin{equation}
S(\xi, \xi) = -2n(f^2 + \xi(f))
\end{equation}

\begin{equation}
Q(\xi) = -2nf^2\xi - \xi(f)\xi - (2n - 1)\text{grad}f.
\end{equation}

In the last part of this section we recall the notion of Ricci solitons according to [30] p. 139]. On the manifold M, a Ricci soliton is a triple (g, V, λ) with g a Riemannian metric, V a vector field and λ a real scalar such that:

\begin{equation}
\mathcal{L}_V g + 2S + 2\lambda g = 0.
\end{equation}

The Ricci soliton is said to be shrinking, steady or expanding according as λ is negative, zero or positive.
2 Parallel symmetric second order tensors and Ricci solitons in f-Kenmotsu manifolds

Fix α a symmetric tensor field of $(0, 2)$-type which we suppose to be parallel with respect to ∇ i.e. $\nabla \alpha = 0$. Applying the Ricci identity
\[
\nabla^2 \alpha(X, Y; Z, W) - \nabla^2(X, Y; W, Z) = 0
\]
we get the relation (1.1) of [26, p. 787]:
\[
\alpha(R(X, Y)Z, W) + \alpha(Z, R(X, Y)W) = 0,
\]
which is fundamental in all papers treating this subject. Replacing $Z = W = \xi$ and using (1.4) it results:
\[
f^2[\eta(X)\alpha(Y, \xi) - \eta(Y)\alpha(X, \xi)] + Y(f)\alpha(\varphi^2 X, \xi) - X(f)\alpha(\varphi^2 Y, \xi) = 0,
\]
by the symmetry of α. With $X = \xi$ we derive:
\[
[f^2 + \xi(f)][\alpha(Y, \xi) - \eta(Y)\alpha(\xi, \xi)] = 0
\]
and supposing $f^2 + \xi(f) \neq 0$ it results:
\[
\alpha(Y, \xi) = \eta(Y)\alpha(\xi, \xi).
\]
Let us call regular f-Kenmotsu manifold a f-Kenmotsu manifold with $f^2 + \xi(f) \neq 0$ and remark that β-Kenmotsu manifolds are regular.

Differentiating the last equation covariantly with respect to X we have:
\[
\alpha(\nabla_X Y, \xi) + f[\alpha(X, Y) - \eta(X)\eta(Y)\alpha(\xi, \xi)] = X(\eta(Y))\alpha(\xi, \xi),
\]
which means via (2.3) with $Y \to \nabla_X Y$:
\[
f[\alpha(X, Y) - \eta(X)\eta(Y)\alpha(\xi, \xi)] = [X(g(Y, \xi)) - g(\nabla_X Y, \xi)]\alpha(\xi, \xi) =
\]
\[= g(Y, \nabla_X \xi)\alpha(\xi, \xi) = f[g(X, Y) - \eta(X)\eta(Y)]\alpha(\xi, \xi).
\]
From the positiveness of f we deduce that:
\[
\alpha(X, Y) = \alpha(\xi, \xi)g(X, Y)
\]
which together with the standard fact that the parallelism of α implies the constance of $\alpha(\xi, \xi)$ via (2.3) yields:

Theorem A symmetric parallel second order covariant tensor in a regular f-Kenmotsu manifold is a constant multiple of the metric tensor. In other words, a regular f-Kenmotsu metric is irreducible which means that
the tangent bundle does not admit a decomposition $T M = E_1 \oplus E_2$ parallel with respect of the Levi-Civita connection of g.

Corollary 1 A locally Ricci symmetric ($\nabla S \equiv 0$) regular f-Kenmotsu manifold is an Einstein manifold.

Remarks 1) The particular case of dimension three and β-Kenmotsu of our theorem appears in Theorem 3.1 from [7, p. 2689]. The above corollary has been proved by Olszack and Rosca in another way.

2) In [2] it is shown the equivalence of the following statements for an Kenmotsu manifold:
 i) is Einstein,
 ii) is locally Ricci symmetric,
 iii) is Ricci semi-symmetric i.e. $R \cdot S = 0$ where:

 \[(R(X, Y) \cdot S)(X_1, X_2) = -S(R(X, Y)X_1, X_2) - S(X_1, R(X, Y)X_2). \]

The same implication iii) \rightarrow i) for Kenmotsu manifolds is Theorem 1 from [14, p. 438]. But we have the implication iii) \rightarrow i) in the more general framework of regular f-Kenmotsu manifolds since $R \cdot S = 0$ means exactly (2.1) with α replaced by S. Every semisymmetric manifold, i.e. $R \cdot R = 0$, is Ricci-semisymmetric but the converse statement is not true. In conclusion:

Proposition 1 A Ricci-semisymmetric, particularly semisymmetric, regular f-Kenmotsu manifold is Einstein.

Another class of spaces related to the Ricci tensor was introduced in [31]; namely a Riemannian manifold is a *special weakly Ricci symmetric space* if there exists a 1-form ρ such that:

\[(\nabla_X S)(Y, Z) = 2\rho(X)S(Y, Z) + \rho(Y)S(Z, X) + \rho(Z)S(X, Y). \quad (2.7) \]

The same condition was sometimes called *generalized pseudo-Ricci symmetric manifold* ([12]) or simply *pseudo-Ricci symmetric manifold* ([11]). Making $X = Y = Z = \xi$ it results:

\[\xi(S(\xi, \xi)) = 4\rho(\xi)S(\xi, \xi) \quad (2.8) \]

and then for a β-Kenmotsu manifold we get $\rho(\xi) = 0$. Returning to (2.7) with $Y = Z = \xi$ will results $\rho(X) = 0$ for every vector field X and then we have a generalization of Theorem 3.3. from [11, p. 96]:

Proposition 2 A β-Kenmotsu manifold which is special weakly Ricci symmetric is an Einstein space.
We close this section with applications of our Theorem to Ricci solitons:

Corollary 2 Suppose that on a regular f-Kenmotsu manifold the $(0,2)$-type field $\mathcal{L}_V g + 2S$ is parallel where V is a given vector field. Then (g,V) yield a Ricci soliton. In particular, if the given regular f-Kenmotsu manifold is Ricci-semisymmetric or semisymmetric with $\mathcal{L}_V g$ parallel, we have the same conclusion.

Naturally, two situations appear regarding the vector field V: $V \in \text{span} \xi$ and $V \perp \xi$ but the second class seems far too complex to analyse in practice. For this reason it is appropriate to investigate only the case $V = \xi$.

We are interested in expressions for $\mathcal{L}_\xi g + 2S$. A straightforward computation gives:

$$\mathcal{L}_\xi g(X,Y) = 2f(g(X,Y) - \eta(X)\eta(Y)) = 2fg(\varphi X, \varphi Y). \quad (2.9)$$

A general expression of S is known by us only for the the 3-dimensional case and η-Einstein Kenmotsu manifolds. Let us treat these situations in the following:

I) [8, p. 251]:

$$S(X,Y) = \left(\frac{r}{2} + \xi(f) + f^2\right)g(X,Y) - \left(\frac{r}{2} + \xi(f) + 3f^2\right)\eta(X)\eta(Y) - Y(f)\eta(X) - X(f)\eta(Y) \quad (2.10)$$

where r is the scalar curvature. Then, for a 3-dimensional f-Kenmotsu manifold we get:

$$\alpha := (\mathcal{L}_\xi g + 2S)(X,Y) = (r + 2\xi(f) + 2f + 2f^2)g(X,Y) - (r + 2\xi(f) + 2f + 6f^2)\eta(X)\eta(Y) - 2Y(f)\eta(X) - 2X(f)\eta(Y) \quad (2.11)$$

while, for β-Kenmotsu:

$$\alpha(X,Y) = (r + 2\beta + 2\beta^2)g(\varphi X, \varphi Y) - 4\beta^2\eta(X)\eta(Y), \quad (2.12)$$

$$(\nabla_Z \alpha)(X,Y) = Z(r)g(\varphi X, \varphi Y) - \beta(r + 2\beta + 6\beta^2)[\eta(X)g(\varphi Y, \varphi Z) + \eta(Y)g(\varphi X, \varphi Z)]. \quad (2.13)$$

Substituting $Z = \xi, X = Y \in (\text{span} \xi)^\perp$ respectively $X = Y = Z \in (\text{span} \xi)^\perp$ in (2.13) we derive that r is a constant, provided α is parallel. Thus, we can state the following:
Proposition 3 A 3-dimensional β-Kenmotsu Ricci soliton (g, ξ, λ) is expanding and with constant scalar curvature.

Proof $\lambda = -\frac{1}{2} \alpha(\xi, \xi) = 2\beta^2$. □

At this point we remark that the Ricci solitons of almost contact geometry studied in [30] and [34] in relationship with the Sasakian case are shrinking and this observation is in accordance with the diagram of Chinea from [3] that Sasakian and Kenmotsu are opposite sides of the trans-Sasakian moon. Also, the expanding character may be considered as a manifestation of the fact that a β-Kenmotsu manifold cannot be compact.

II) Recall that the metric g is called η-Einstein if there exists two real functions a, b such that the Ricci tensor of g is:

$$S = ag + b\eta \otimes \eta.$$

For an η-Einstein Kenmotsu manifold we have, [14, p. 441]:

$$S(X, Y) = \left(\frac{r}{2n} + 1\right) g(X, Y) - \left(\frac{r}{2n} + 2n + 1\right) \eta(X)\eta(Y) \quad (2.14)$$

and then:

$$\alpha(X, Y) = \left(\frac{r}{n} + 4\right) g(X, Y) - \left(\frac{r}{n} + 4 + 4n\right) \eta(X)\eta(Y) \quad (2.15)$$

$$(\nabla_Z \alpha)(X, Y) = \frac{1}{n} Z(r) g(\varphi X, \varphi Y) -$$

$$- \left(\frac{r}{n} + 4n + 4\right) [\eta(Y) g(\varphi X, \varphi Z) + \eta(X) g(\varphi Y, \varphi Z)]. \quad (2.16)$$

Proposition 4 An η-Einstein Kenmotsu Ricci soliton (g, ξ, λ) is expanding and with constant scalar curvature, thus Einstein.

Proof $\lambda = -\frac{1}{2} \alpha(\xi, \xi) = 2n$. The same computation as in Proposition 3 implies constant scalar curvature. □

3 The dynamical point of view

We begin this section with a straightforward consequence of the main Theorem, which also appears in the Olzack-Rosca paper, and is related to the last part of Corollary 2:

Corollary 3 An affine Killing vector field in a β-Kenmotsu manifold is Killing. As consequence, that scalar provided by the Ricci soliton (g, V) of a Ricci-semisymmetric β-Kenmotsu manifold is $\lambda = -S(V, V)$.

Proof (inspired by [10, p. 504]) Fix $X \in \mathfrak{X}(M)$ an affine Killing vector field: $\nabla L_X g = 0$. From Theorem it results that X is conformal Killing i.e. $L_X g = cg$; more precisely X is homothetic since c is a constant. Lie differentiating the identity (1.5) along X and using $L_X S = 0$ (since X is homothetic) and equation (1.6) we get $g(L_X \xi, \xi) = 0$. Hence $c = (L_X g)(\xi, \xi) = -2g(L_X \xi, \xi) = 0$. Thus X is Killing. □

Let us present another dynamical picture of our results. Let (M, ∇) be a m-dimensional manifold endowed with a symmetric linear connection. A quadratic first integral (QFI on short) for the geodesics of ∇ is defined by $F = a_{i,j} \frac{dx^i}{dt} \frac{dx^j}{dt}$ with a symmetric 2-tensor field $a = (a_{ij})$ satisfying the Killing-type equations:

$$a_{ij,k} + a_{jk,i} + a_{ki,j} = 0,$$ \hfill (3.1)

where, as usual, the double dot means the covariant derivative with respect to ∇.

The QFI defined by a is called special (SQFI) if $a_{ij,k} = 0$ and the maximum number of linearly independent SQFI a pair (M, ∇) can admit is $\frac{m(m+1)}{2}$; a flat space will admit this number. In [17, p. 117] it is shown that a non-flat Riemannian manifold may admit as many as $M_S(m) = 1 + \frac{(m-2)(m-1)}{2}$ linearly independent SQFI. Therefore, for an almost contact manifold ($m = 2n + 1$) the maximum number of SQFI is $M_S(2n+1) = 1 + n(2n-1) > 1$.

Our main result implies that for a regular f-Kenmotsu manifold the number of SQFI is exactly 1 and the only SQFI is the kinetic energy $F = g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}$. So:

Proposition 5 There exist almost contact manifolds which does not admit $M_S(2n+1)$ SQFI.

It remains as an open problem to find examples of almost contact metrics with exactly $M_S(2n+1)$ SQFI.

References

[1] A. Nesip; G. Ali; Ö. Erdal, On special weakly Ricci-symmetric Kenmotsu manifolds, Sarajevo J. Math., 3(15)(2007), no. 1, 93-97.

MR2327508 (2008c:53084)
[2] T. Q. Binh; L. Tamássy; U. C. De; M. Tarafdar, Some remarks on almost Kenmotsu manifolds, Math. Pannon., 13(2002), no. 1, 31-39. MR1888318 (2002k:53156)

[3] D. Chinea, On horizontally conformal (ϕ, ϕ')-holomorphic submersions, Houston J. Math., 34(2008), no. 3, 721-737. MR2448378

[4] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgar. J. Phys., 15(1988), no. 6, 526-531. MR1028590 (90k:53071)

[5] L. S. Das, Second order parallel tensors on α-Sasakian manifold, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 23(2007), no. 1, 65-69 (electronic). MR2322902

[6] U. C. De, Second order parallel tensors on P-Sasakian manifolds, Publ. Math. Debrecen, 49(1996), no. 1-2, 33-37. MR1416302 (97e:53089)

[7] U. C. De; A. K. Mondal, On 3-dimensional normal almost contact metric manifolds satisfying certain curvature conditions, Commun. Korean Math. Soc., 24(2009), no. 2, 265-275.

[8] U. C. De; M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 43(2003), no. 2, 247-255. MR1982228 (2004d:53049)

[9] L. P. Eisenhart, Symmetric tensors of the second order whose first covariant derivatives are zero, Trans. Amer. Math. Soc. 25 (1923), no. 2, 297-306. MR1501245

[10] A. Ghosh; R. Sharma, Some results on contact metric manifolds, Ann. Global Anal.Geom., 15(1997), no. 6, 497-507. MR1608675 (99d:53029)

[11] A. Ghosh; R. Sharma; J. T. Cho, Contact metric manifolds with η-parallel torsion tensor, Ann. Global Anal. Geom., 34(2008), no. 3, 287-299. MR2434858

[12] S. K. Jana; A. A. Shaikh, On quasi-conformally flat weakly Ricci symmetric manifolds, Acta Math. Hungar., 115(2007), no. 3, 197214. MR2317216 (2008a:53042)

[13] X.-q. Jia, Second order parallel tensors on quasi-constant curvature manifolds, Chinese Quart. J. Math., 17(2002), no. 2, 101-105. MR1951350 (2003h:53046)
[14] J.-B. Jun; U. C. De; Goutam Pathak, *On Kenmotsu manifolds*, J. Korean Math. Soc. 42 (2005), no. 3, 435-445. MR2134708 (2006d:53044)

[15] K. Kenmotsu, *A class of almost contact Riemannian manifolds*, Tôhoku Math. J., 24(1972), 93-103. MR0319102 (47 #7648)

[16] J.-S. Kim; R. Prasad; M. M. Tripathi, *On generalized Ricci-recurrent trans-Sasakian manifolds*, J. Korean Math. Soc. 39 (2002), no. 6, 953-961. MR1932790 (2003f:53066)

[17] J. Levine; G. H. Katzin, *On the number of special quadratic first integrals in affinely connected and Riemannian spaces*, Tensor (N.S.), 19(1968), 113-118. MR0224022 (36 #7069)

[18] H. Levy, *Symmetric tensors of the second order whose covariant derivatives vanish*, Ann. of Math., (2) 27(1925), no. 2, 91-98. MR1502714

[19] Z. Li, *Second order parallel tensors on P-Sasakian manifolds with a coefficient k*, Soochow J. Math., 23(1997), no. 1, 97-102. MR1436425 (97k:53044)

[20] V. Mangione, *Harmonic maps and stability on f-Kenmotsu manifolds*, Internat. J. Math. Math. Sci., 2008, Art. ID 798317, 7 pp. MR2377360 (2008m:53161)

[21] Z. Olszak; R. Rosca, *Normal locally conformal almost cosymplectic manifolds*, Publ. Math. Debrecen, 39(1991), no. 3-4, 315-323. MR1154263 (93c:53021)

[22] C. Oniciuc, *Nonlinear connections on tangent bundle and harmonicity*, Ital. J. Pure Appl. Math., 6(1999), 109-122 (2000). MR1758536 (2001e:53026)

[23] N. Papaghiuc, *Semi-invariant submanifolds in a Kenmotsu manifold*, Rend. Mat., (7) 3(1983), no. 4, 607-622. MR0759118 (85i:53024)

[24] N. Papaghiuc, *On the geometry of leaves on a semi-invariant ξ⊥-submanifold in a Kenmotsu manifold*, An. Stiint. Univ. ”Al. I. Cuza” Iași, 38(1992), no. 1, 111-119. MR1282989 (95b:53071)

[25] Gh. Pitis, *Geometry of Kenmotsu manifolds*, Publishing House of Transilvania University of Brașov, Brașov, 2007. MR2353263 (2008i:53117)
[26] R. Sharma, *Second order parallel tensor in real and complex space forms*, Internat. J. Math. Math. Sci., 12(1989), no. 4, 787-790. MR1024982 (91f:53035)

[27] R. Sharma, *Second order parallel tensors on contact manifolds. I*, Algebras Groups Geom., 7(1990), no. 2, 145-152. MR1109567 (92b:53041)

[28] R. Sharma, *Second order parallel tensors on contact manifolds. II*, C. R. Math. Rep. Acad. Sci. Canada, 13(1991), no. 6, 259-264. MR1145119 (93b:53026)

[29] R. Sharma, *On the curvature of contact metric manifolds*, J. Geom., 53(1995), no. 1-2, 179-190. MR1337435 (96d:53031)

[30] R. Sharma, *Certain results on K-contact and (k, µ)-contact manifolds*, J. Geom., 89(2008), 138-147. MR2457028

[31] H. Singh; Q. Khan, *On special weakly symmetric Riemannian manifolds*, Publ. Math. Debrecen, 58(2001), no. 3, 523-536. MR1831059 (2002f:53076)

[32] D. Tarafdar; U. C. De, *Second order parallel tensors on P-Sasakian manifolds*, Northeast. Math. J., 11(1995), no. 3, 260-262. MR1387530 (97c:53075)

[33] M. Tarafdar; A. Mayra, *On nearly Sasakian manifold*, An. Stiint. Univ. "Al. I. Cuza" Iaşi, 45(1999), no. 2, 291-294. MR1811732 (20 01k:53086)

[34] M. M. Tripathi, *Ricci solitons in contact metric manifolds*, arXiv:0801.4222.

[35] Y.-c. Wong, *Existence of linear connections with respect to which given tensor fields are parallel or recurrent*, Nagoya Math. J., 24(1964), 67-108. MR0174015 (30 #4222)

[36] H. Wu, *Holonomy groups of indefinite metrics*, Pacific J. Math., 20(1967), 351-392. MR0212740 (35 #3606)

[37] G. Zhao, *Symmetric covariant tensor fields of order 2 on pseudo-Riemannian manifolds*, Viena Preprint ESI 479 (1997). Available at http://www.esi.ac.at/preprints/esi479.ps

Department of Mathematics,
Technical University "Gh.Asachi"
Iași, 700049
Romania
e-mail: c0nstc@yahoo.com

Faculty of Mathematics
University ”Al. I.Cuza”
Iași, 700506
Romania
e-mail: mcrasm@uaic.ro

http://www.math.uaic.ro/~mcrasm