CP-titanium and titanium alloys as an alternative material to dental gold-silver-palladium alloys for crown restoration

WADA Kenichi KUROIWA Akihiro*

Keyword : Cp-Ti, Ti alloy, CAD-CAM

In recent years, the cost of manufacturing prosthetic devices has increased due to soaring prices of palladium and gold, and as a result, health insurance financing is under pressure. As one countermeasure, a dental CAD-CAM hybrid resin was adopted in 2014 as a treatment option only for premolar crown restorations. In 2020, the indications for this hybrid resin were expanded to the maxillary and mandibular first molars. This enabled crown restoration for metal allergy patients or patients with esthetic demands, and we were able to respond to the increasing prices of precious metals. Considering the long-term prognosis, however, it is unknown whether hybrid resin crowns have optimal mechanical properties as an alternative material for molar crown restoration. In comparison with noble metals, CP-titanium and titanium alloys (Cp-Ti and Ti alloys) are inexpensive metals that have mechanical strength similar to that of Type 4 gold alloy. Laboratory techniques for dental gold alloys can be also applied for Cp-Ti and Ti alloys. Thus, cast crowns made with Cp-Ti and Ti alloy became covered by national insurance for medical devices in 2020. However, titanium casting requires complicated procedures with technically sensitive points. Therefore, application of CAD-CAM for the fabrication of Cp-Ti and Ti alloy prosthetic devices may be a solution to the problems in titanium casting. The present review proposes adopting CAD-CAM for the fabrication of titanium crowns under national insurance coverage in order to stably supply highly accurate titanium crowns to dental professions.

[The Journal of the Academy of Clinical Dentistry 40 (3) : 231-237, 2020]

Introduction

Since W. H. Taggart invented the dental casting of gold alloy inlays in 1907, the lost-wax method has been examined for precision casting of crown prosthetics. Although the prosthetic device for crowns is supposed to be made of cast gold alloys, gold-silver-palladium alloys are used as a substitute due to cost limitations in Japan’s health insurance system. The current composition (Au: 12%, Ag: 45-52%, Pd: 20%, and Cu: 12-20%) of gold-silver-palladium alloy was specified and has been used since 1980. In recent years, the prices of gold and palladium have continued to increase worldwide, and the price of dental casting 12% gold-silver-palladium alloys (hereinafter referred to as "gold-palladium") has increased two- to three-fold compared with a few years ago. Thus, materials made of precious metals are not appropriate for medical treatment under universal coverage because of their high variability influenced by the global economy. At the 2002 annual meeting of the Japanese Society for Dental Technology, 20 panelists advocated the problems with gold-palladium and possible alternative metals have been sought since\(^1\).
Titanium, which was considered "promising" as an alternative metal, has only been used for metal dentures and crown prosthetic devices for patients with metal allergies because of the difficulty in precision casting compared with gold-palladium. However, due to its excellent properties \(^2\text{-}^4\), and low and stable price, it was adopted as a material used in treatment under universal coverage in 2020. However, titanium casting is cumbersome and technically sensitive. In this report, we propose the use of Cp-Ti and Ti alloys as designated dental materials in conjunction with computer-aided manufacturing (CAM) technology.

II Problems in Titanium Casting

Titanium, when passive film is formed, has excellent corrosion resistance, chemical stability, and biocompatibility. These characteristics make it suitable as a biomaterial. In terms of mechanical strength, Cp-Ti has a tensile strength of 275-735 MPa (JIS Class 1-4) and that of Ti alloy (Ti-6Al-4V) is 620-1800 MPa, which is sufficient for dental use. Although it has excellent properties, titanium has not been popularized as a casting metal due to:

1. High melting point (1668°C);
2. Vulnerability to contamination—a small number of elements can greatly change the mechanical properties of the material;
3. Cavity (hollow) -shaped casting defects may develop; and
4. Difficulty in polishing.

In order to solve these problems, the following measures are necessary:

1. Special casting machine is required \((1\text{ and }2)\)

 First, a special heat source using high-frequency waves or arc discharge is used to melt high-melting-point titanium. In addition, at room temperature, titanium waves or arc discharge is used to melt high-melting-point casting becomes common.

2. Special investing materials are required \((1\text{ and }2)\)

 Casting requires a mold in which the molten metal flows and is shaped. As high-melting-point titanium decomposes and reacts with SiO\(_2\) and Mg\(_5\)(PO\(_4\))\(_2\), the oxides, such as ZrO\(_2\), Al\(_2\)O\(_3\), and MgO, are used as refractory materials. The thickness of the reaction layer ranged from 25 to 100µm and consisted of four layers. As the morphology of the prosthetic device changes if the reaction layer is completely removed, development of a refractory material with low reactivity was focused on to improve the polishability of cast titanium.

3. Casting defects are inevitable \((3)\)

 This is the biggest factor hindering its popularization. Although casting precision improves with higher mold temperatures, the lower-temperature mold is used because the higher the mold temperature, the easier it is for the mold to react with titanium. As a result, the time available for the molten metal to properly fill the casting chamber becomes markedly short and the molten metal solidifies while flowing into the chamber. Furthermore, the flow of the molten metal is also different from that of other metals. In addition, due to the low density of metal, internal defects specific to titanium casting occur unless the timing of pressure application, air permeability of the mold, and design of the sprue that feeds the molten metal are adjusted in gas pressure casting. These are the challenges in titanium casting. Being a light metal, titanium has high x-ray penetration and is easy to be nondestructively inspected; therefore, radiographic inspection of castings, which has not been performed before, became possible. Due to the complexity of preventing casting defects, titanium was considered to be an inexpensive but difficult material to handle.

4. Grinding \((4)\)

 The high temperature of molten metal easily decomposes refractory materials and the high reactivity of titanium at high temperatures makes it easy to react with ambient components. The reaction layer (α-case) formed on the surface after casting was hard and difficult to remove, and required a long polishing time to achieve a metallic luster. The thickness of the reaction layer ranged from 25 to 100µm and consisted of four layers. As the morphology of the prosthetic device changes if the reaction layer is completely removed, development of a refractory material with low reactivity was focused on to improve the polishability of cast titanium.

5. Misconceptions about titanium

 Another problem that has hindered its spread is its hardness. At the beginning of its development, titanium reacted easily at high temperatures; therefore, it reacted with oxygen at the time of melting and with the constituent elements of the investing material, forming a hard layer on the surface. For this reason, the material was rated as hard and difficult to handle. Subsequently, when lower reactive investment materials were developed, titanium was considered to be lower in strength than expected. This contradictory mechanical nature of cast titanium puzzled clinicians. As titanium casts were difficult even for dental technicians to supply to dental clinics, there was no indication for which cast titanium was better than the easy-to-use gold-palladium alloys or Co-Cr alloys, which have excellent mechanical properties as cast partial dentures. As a result, titanium gained popularity in use in dental implants fabricated by CAM from Cp-titanium and titanium alloys, rather than in a cast prosthesis. Thus, the machined titanium products we recommend in this review have been used in the oral cavity for a long period of time.
III Application of CAD-CAM Crowns to Crown Prosthetics

1. CAD-CAM crowns made with hybrid resin (herein-after referred to as “resin”)

 CAD-CAM crowns made with resin were first covered by national insurance for the bicuspids in 2014, then for molars of metal allergy patients in 2016, and further to the maxillary and mandibular first molars in 2020 under the condition that a healthy second molar is present. However, in order to strengthen the prosthetic device with resin, sufficient clearance between the abutment and opposing tooth is required to obtain a sufficient thickness of the crown. This requires a large amount of tooth preparation for resin crowns. Consequently, the resin crowns must be cautiously applied to vital teeth. As resin blocks for CAD-CAM crowns have a high degree of polymerization and a dense cross-linked structure, which makes them a disadvantage in strong bonding, there are many reports of them falling out\(^1\).

2. Problems with the use of resin for molar restoration

 The molar is the keystone of occlusal support. Excessive occlusal force is constantly loaded on the molar and mortar motion is also subjected during occlusion. The currently developed resins have improved compressive and flexural strength by increasing the filler content and the degree of polymerization, but their mechanical properties are hard and brittle\(^2\). In order to maintain a stable jaw position, it is necessary to have not only instantaneous strength, but also higher toughness. The long-term use of resin CAD-CAM crowns on molars, even under restricted conditions, remains a matter for reconsideration.

3. CAD-CAM processing of titanium

 It was previously reported that there is no difference in adaptability between long-term and short-term implant-supported bridges made of titanium using the CAD-CAM method\(^3\). The adaptability of crowns was reported to be \(\pm 0.8 \mu m\) for the casting method and \(\pm 15 \mu m\) for the machining method\(^4\). The cement film thickness at the crown margins was 51.6 \(\pm 28.1 \mu m\) and that on the inner surface was 35.9 \(\pm 14.7 \mu m\)\(^5\). Full crowns made by machining were compared with those made by casting, and the CAD-CAM specimen had sufficient machining accuracy\(^6\). Titanium crowns made by casting better fit the margins than those made by CAD-CAM. The fit was particularly poor for the knife-edge geometry, and the gap was significantly smaller for the shamer and shoulder margins than for the knife-edge margin\(^7\).

 Thus, the accuracy of CAD-CAM machining of titanium has been confirmed, and although the margin should be in the form of a shamer to facilitate machining, no problem in clinical application was found.

4. Problems with processing machines

 In recent years, most dental CAD-CAM machines are dry-type machines for grinding zirconia and hybrid resin. Lubrication for cooling (wet process) is required when cutting metal, and the current wet process machines are large and expensive. There are only a few laboratories that have this system for metal cutting. However, the recent development of CAD-CAM network systems has made it possible to solve such problems by outsourcing to a machining center at the end of the design process without having to purchase individual machines.

Conclusion

The accuracy of CAD-CAM machining on titanium has been sufficiently demonstrated. CAD-CAM machining is not prone to technical sensitivity.

The machining of titanium has been used in the production of implants and has a high level of biological safety. As the mechanical properties of titanium are similar to those of gold alloys, the accumulated clinical experience with gold alloys can be utilized.

For the above reasons, covering Cp-Ti and Ti alloys as materials for posterior crowns and bridges made by the CAD-CAM method under the national insurance is recommended.

This study was supported in part by grants from the Japanese Dental Science Federation (JDSF-DSP1-2019-211-1) and Japanese Association for Dental Science (Sponsored Research 2019).

References

1) Ito Y, Eto T, Gionahaku N, et al.: Substitute Materials for Ag-Pd-Au Alloy in the Health Insurance System in Japan. J Jpn Prosthodont Soc, 46(5): 634-638, 2002 (in Japanese).
2) Koizumi H, Takeuchi Y, Imai H, et al.: Application of titanium and titanium alloys to fixed dental prostheses. J.P.R., 63: 266-270, 2019.
3) Takeuchi Y, Tanaka M, Tanaka J, et al.: Fabrication systems for restorations and fixed dental prostheses made of titanium and titanium alloys. J.P.R., 64: 1-5, 2020.
4) Nihei T, Ohashi K, Hattori M, et al.: A surveillance study of the demand of titanium and titanium alloys in Japan. D.M.J., 39: 9-11, 2020.
5) Takahashi J, Zhang J Z, Okazaki M: Effect of Casting Methods on Castability of Pure Titanium. D.M.J., 12: 245-252, 1993.
6) Ida K, Togaya T, Tsutsuomi S, et al.: Effect of Magnesia Investments in the Dental Casting of Pure Titanium or Titanium Alloys. D.M.J., 1: 8-21, 1982.
7) Takahashi H, Murakami M, Fujyu T, et al.: Basic
Researches for Titanium Cast Crown Using Calcia Investments. J Jn Prosthodont Soc, 35: 923-930, 1991. (in Japanese)

8) Watanabe K, Okawa S, Miyakawa O, et al.: Molten Titanium Flow in a Mesh Cavity by the Flow Visualization Technique. D.M.J., 10: 128-137, 1991.

9) Reza F, Takahashi H, Iwasaki Na, et al.: Effects of investment type and casting system on permeability and castability of CP titanium. J.P.D., 104: 114-121, 2010.

10) Kuroiwa A, Igarashi Y: Application of Pure Titanium to Metal Framework J Jpn Prosthodont Soc, 42: 547-558, 1998. (in Japanese)

11) Kawai Y, Takayama Y, Abe M, et al.: Study of polishing steps for titanium castings. Tsurumi Univ Dent J, 23: 407-418, 1997. (in Japanese)

12) Hirata T, Nakamura T, Takashima F, et al.: Studies on polishing of Ti and Ag–Pd–Cu–Au alloy with five dental abrasives. D.M.J., 10: 128-137, 1991.

13) Kuroiwa A, Wada K, Hibino Y, et al.: Studies on Titanium Casting (Part 1) -Influence of the Mold Temperature on Titanium Castings-. Shika Zairyo Kikai, 9: 279-288, 1990. (in Japanese)

14) Miyakawa O, Watanabe K, Okawa S, et al.: Layered Structure of Cast Titanium Surface. D.M.J., 8: 175-185, 1989.

15) Shinya A, Miura S, Koizumi H, et al.: Current status and future prospect of CAD/CAM composite crown. Ann Jpn Prosthodont Soc, 9: 1-15, 2017. (in Japanese)

16) Kameyama Y, Ohashi K, Yamaguchi H, et al.: Mechanical properties of hybrid resin blocks for CAD/CAM crown. Shika Zairyo Kikai, 36: 453-459, 2017. (in Japanese)

17) Joannis K, Philipp M, Regina SM, et al.: CAD/CAM fabrication accuracy of long- vs. short-span implant-supported FDPs. Clinical oral implants research, 26: 245-249, 2015.

18) Negishi M, Takebe S, Kanda T, et al.: Mechanical Properties and Dimensional Properties of Titanium in Casting and Machining. Meirinshika gikougaku zatsushi, 2: 22-27, 1999. (in Japanese)

19) Ohta R, Marutani Y, Shiba A, et al.: Fit of Pure Titanium Crown Manufactured by Commercial Dental CAD/CAM System. Shouwa shigaku, 24: 172-178, 2004. (in Japanese)

20) Ohno T, Kuroiwa A: Effect of Differences in Fabrication Methods for Pure Titanium Crown Restoration on Fitness. Shika Zairyo Kikai, 20: 287-299, 2001. (in Japanese)

21) Hyun HS, Yang HS, Lim HP, et al.: Marginal accuracy and internal fit of machine-milled and cast titanium crowns. J Prosthet Dent, 106: 191-197, 2011.
はじめに

歯冠補綴物を精密鋳造法にて製作する技法は、W.H.Taggartが金合金インレーの歯科鋳造を1907年に考案され以来、精密な鋳造体を求めて、長い間ロストワックス法を用いて開発・研究されてきた。さて、教育や理論的に歯冠補綴装置の金合金を鋳造して製作することを前提にされているが、金合金を国民健康保険に用いるには製作コストがかかりすぎるのに対し、金合金が代用合金に用いられている。初期には20％の金を含有した時期もあったが、学術的・経済性・機械的強度から1980年以降、現在の規格（Au:12・Ag:45-52・Pd:20・Cu:12-20％）となった。近年、金やバラジウムの世界的な高騰が続いており、歯科鋳造用12％金含有金銀バラジウム合金（以下金バラと略す）は数年前の価格から2-3倍となっている。このような貴重金属を主体とした材料は世界経済の影響から変動が大きく、診療報酬が一定の保険診療の材料としては適切でなく、原料価格の安定した代替材料が望まれる。すでに2002年に日本歯科工業学会では20名のパネリストによって金バラに対する問題提起が報告され、代替金属が模索されていた①。さて、これまで代替金属として有望であったチタンは金バラに比し鋳造が困難であったので、金属床義歯や金属アレルギー患者に対する歯冠補綴設置として使われてきた。しかしながら優れた特性が紹介され②-④で安価で安定した金属の価格などから2020年には医療機器に係る保険適用に採択された。ところが、著者はいまだにチタン鋳造は煩雑でTechnic Sensitiveであると考える。そこで誰も精度の良い装置を安定に供給することを目的に、CAD-CAMによってCpチタンやチタン合金を加工した補綴装置を保険に定要することを提案する。

II チタン鋳造の問題点

チタンは低比重で不導体膜を形成することから溶液ににくく耐食性に優れ、化学的に安定で生体親和性に優れる、これらの特性から生体材料として適した性質を持つ。また、機械的強度はCpチタンで引張り強度275-735MPa（JIS第1-4種）、チタン合金（Ti-6Al-4V）で620-1800MPaと歯科用として十分な強度を持つ、良好な性質を持つのに関わらず、鋳造用金属としては普及しなかった理由は、①融点が高い（1,668℃）
②極少量の元素の混入で機械的性質が大きく変化する。
③空洞状の欠陥が発生しやすい。
④研磨が困難である。

が挙げられる。これらの問題を解決するために

1. 特殊な鋳造機が必要（①, ②）

まず、高融点のチタンの溶接には高周波やアーク放電を用いた特殊な熱源が必要となる。加えて、チタンは常温では表面の酸化皮膜の生成により不導体皮膜を獲得し、化学的に安定であるが、大気中で溶解すると酸素を吸収して硬く脆くなる。実際、チタンの溶接時には溶接部を不活性ガス（Ar）で覆し防応力を防いでいる。このため特殊で高価な鋳造機が必要となる①。これを今日のCAD-CAMの加工機のように共同購入や加工センター化することは技術操作上煩雑であり、現実的ではない。

2. 特殊な埋没材が必要（①, ②）

鋳造には溶けた金属が流れ賦形される鋳型が必要である。高融点チタンはSiO₂やMg₃(PO₄)₂を分解し反応するため、耐火材にはZrO₂、Al₂O₃、MgOを用いている。⑥過去には更に反応性を抑えるためにCaO、Y₂O₃などの特殊な酸化物を検討した時期もあった⑥。必然的に特殊な埋没材は高コストになるが、普及すれば安価になる可能性はある。

3. 鋳造欠陥の発生（③）

これが普及を妨げた大きな問題である。鋳造性を向上させるには鋳型温度が高いほど良いが、鋳型温度が高いほど鋳型とチタンの反応が起こるの低温鋳型で使用させてしまう。すると溶湯が鋳型を適切に充填する時間は極端に短くなり溶湯は流し出しながら凝固すると言え、さらに金屬溶湯の流れもこれまで金属と異なっていることが判明している。⑧加えて、金属の密度が低いのでガス圧鋳造などでは圧をかけるタイミングや鋳型の適性⑨、金属溶湯を流すプルーフのデザインなどを考慮しないとチタン鋳造の空洞状の内部欠陥が多発した⑩。クラスプの外観が再現されていても仮定の原因がこれであり、チタン鋳造が難しいと言われた所以である。また、軽金属であるチタンはエックス線の透過性が高く非破壊検査がしにくいので、それまで行われていなかった鋳造体のエックス線写真による検査が行われ、鋳造欠陥の予防に関する煩雑さもあり、金属は安くても扱いにくい材料とされた。
4. 研磨（6）

金属溶液の温度が高いので耐火材を容易に分解し、なおかつ高温時のチタンの活性は高く反応しやすい。蒸業、表層に形成された反応層（a 次数）は硬く、除去が困難で金属光沢を得るまでの研磨に時間を要した11, 12）。反応層の厚さは 25-100μm および13）、それ故表層からなる14）、この反応層は完全に除去すると補織装置の形態が変化するので、研磨を良くするために反応性の低い耐火材の開発に傾注していった。

5. チタンに対する溶解

もう一つの普及を妨げた問題である。開発当初、チタンが高温時に反応しやすいので、溶解時の酸素や埋没材の構成元素と反応し、表面に硬い層が形成され研磨に多くの時間を要した。これに、硬く扱いにくい材料と評価された。その後、反応しにくい埋没材が開発されるとチタンは思まったりも強度がないとされた。この矛盾した機械的性質の評価が臨床家に反感を感じさせた。供給する側の技術士も蒸業が難しかったので、作性の良い金属ベニコーヒースハートとして良好な機械的性質を持つ Co-Cr 合金を凌駕し適応症を見いだせなかった。

結局、チタンが最も普及したのはインプラント材料とし、それらはチタンやチタン合金の削り出しである。今回、我々が推奨しようとしている削り出しの加工品はすでに口腔内で長期間使われている。

III CAD-CAM 冠の歯冠精織物への利用

1. ハイブリッドレジン（以下レジンと略す）による CAD-CAM 冠

レジンにより製作された CAD-CAM 冠は 2014 年にまず、小臼歯のみに適応が認められ、2016 年に金属アレルギーを有する患者の大臼歯部に適応。2020 年には健全な第二大臼歯が既存することの条件が付加され、下顎第一大臼歯が拡大された。しかしながら、レジンで補織装置の強度を得るには対合歯との十分なクリアランスが必要なため形成量が多い。また、有齢歯への適応にも慎重にならざるを得ない。CAD-CAM 冠用レジンブロックは、強度を得るために高い重合度、網目状の架橋構造を持つつ、接着には不向性差となり脱落の報告が多い15）。

2. 大臼歯へのレジン適応

大臼歯は咬合支持を支える要な歯である。大臼歯には総合支持を支える要な歯である。機能時には単層で咬合運動も加わる。現在開発されているレジンはこれに対応するためフィラーの含有率や重合度を上げ、圧縮強さや曲げ強さを向上させているが、硬く脆い傾向がある16）。安定した隙間を保つには瞬間的な強さだけではなく高い靭性を持つことが必要である。まずは限局した条件に適応としても大臼歯にレジン CAD-CAM 冠を長期に用いることは再考の余地がある。

3. チタンの CAD-CAM 加工

チタンを CAD-CAM にてロングスパンとショートスパンインプラント支持ブリッジを作製し適合を比較したところ適応度の差はないと報告している17）。加工方法で比較した場合、焼造加工法では ± 80μm、機械加工法では ± 15μm であった18）。クラウンのマージン部のセメント被錩厚さは 51.6 ± 28.1μm であり、耐荷被錩厚さは 35.9 ± 14.7μm であった19）。機械加工と焼造により作製されたフルクラウンを比較したところ、CAD-CAM によって作製された試験片は、十分な加工精度を有する20）。焼造によるチタンクラウンは CAD-CAM よりマージンの適合性が高い、特にナイフエッジで適合が悪く、シャンファーとボルダーマージンは、ナイフエッジマージンよりも間隙是有意に小さかった21）。

このようにチタンの CAD-CAM 加工による精度が検証されており、マージンは機械加工しやすいようにシャンファー形態にする点に留意すべきであるものの、臨床での使用に問題ないと判断できる。

4. 加工機に関する問題

近年の歯科用 CAD-CAM で使われている加工機は、ジルコニアやハイブリッドレジンなどを削る乾式タイプが多い。金属の切削には冷却用の注油（湿式）が必要で、現在ある湿式は機械体制が大きく高価なことが欠点である。金属の削り出し用として導入した加工機も少ない。しかしながら、近年の CAD-CAM のネットワークシステムの発達から個別に加工機を購入しなくても設計が終わった時点で加工センターにアウトソーシングすれば解決する。
まとめ

チタンにおけるCAD-CAM加工精度は十分検証されている。CAD-CAMによる加工にはTechnic Sensitiveが発生しない。
加工品としてインプラント体の実績があり、生体安全性は高く、チタン製品の最終研磨面の表面性状は、他の歯科用金属と比較してもほぼ遜色の無いものと報告。

参考文献解説
1) 高価した金銀パラジウム合金の価値を社会保険における診療報酬を圧迫した。現在(2002)のところ、社会保険に適用される合金として、12％金銀パラジウム合金に匹敵するかの材料を見たしましたことは困難である。今回の論証は最良の材料を純粹に求められるための新しい機会を報告。
2) 総説: チタンの機械的性質、耐性性、耐食性、チタン合金は、従来のサブレック合金と同等またはそれ以上である。臨床では、チタンとTi-6Al-7Nb合金は臨床に適していると報告。
3) 総説: さまざまなシステムで製作されたチタンとチタン合金の修復物と固定装置の経過、及びより適性は臨床的に許容される範囲内であった。チタンとチタン合金は、現在使用されている歯科用金属の有望な代替品であることを示唆。
4) 総説: パラジウムの高騰のために代替金属の選択が必要である。チタン-チタン合金は加工技術が整いつつパラジウム合金と同等な精度なので代替材料として検討する価値がある。
5) 溶解室と製造室が別れて加工、試験機械、分けていない圧力式製造機、遠心式製造機にてチタンの試作を比較したところ遠心式製造法が最も良い值を示した。
6) 反応性を抑えるためにMgOを基材とした埋立材を使用すると、良好な製造体を得ることができた。
7) 反応性を抑えるためにCaを基材に用いて造作を行った。汚染の程度が少なかったため、特別な手段を用いても調変研磨が可能であった。
8) EPMAによる点検要素法を用いてチタンの湯流れを可視化、異なった湯流れを確認した。圧力試験機を使用した場合、メッシャ内部は凝固圧で構成され、層が層流である。遠心製造機では流れが不規則であり、乱流が生成した。メッシュパターンなどの複雑なキャビティでは、遠心力ではなく圧力を有効な製造力であった。
9) 通気性の異なる埋立材を用いて造作を確認した。良好な通気性がもつチタンの造作率は向上せず高い造作力にて十分な臨床結果が得られ
10) 異なる製造方法・チタン合金の耐食性・耐圧性について造作を確認、空調室の欠点の改善としてのスプレーコーンを紹介、経済コストなどを紹介しながらチタンの将来を示唆した。
11) チタン製造体の研磨について、他の歯科用金属と比較した。チタン製品最終研磨面の中心線平均粗さは、平均0.37μmであった。チタン制剤の最終研磨面の表面性状は、他の歯科用金属と比較してもほぼ遜色の無いものと報告。