Virtual reality based approach to protein heavy-atom structure reconstruction

Xubiao Peng,1,∗ Alireza Chenani,1 Shuangwei Hu,1 Yifan Zhou,2† and Antti J. Niemi3,1,¶

1 Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala, Sweden
2 Department of Biomedicine Faculty of Medicine and Dentistry, UIB Jonas Lies Vei 91, NO-5009 Bergen, Norway
3 Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours, France

Background A commonly recurring problem in structural protein studies, is the determination of all heavy atom positions from the knowledge of the central Cα-carbon coordinates.

Results We employ advances in virtual reality to address the problem. The outcome is a 3D visualisation based technique where all the heavy backbone and side chain atoms are treated on equal footing, in terms of the Cα coordinates. Each heavy atom can be visualised on the surfaces of the different two-spheres, that are centered at the other heavy backbone and side chain atoms. In particular, the rotamers are visible as clusters which display strong dependence on the underlying backbone secondary structure.

Conclusions Our method easily detects those atoms in a crystallographic protein structure which have been been likely misplaced. Our approach forms a basis for the development of a new generation, visualisation based side chain construction, validation and refinement tools. The heavy atom positions are identified in a manner which accounts for the secondary structure environment, leading to improved accuracy over existing methods.

Keywords: Side chain reconstruction, Cα trace problem, rotamers, protein visualisation

Protein structure validation methods like MolProbity [1] and Procheck [2] help crystallographers to find and fix potential problems that are incurred during fitting and refinement. These methods are commonly based on a priori chemical knowledge and utilize various well tested and broadly accepted stereochemical paradigms. Likewise, template based structure prediction and analysis packages [3] and molecular dynamics force fields [4] are customarily built on such paradigms. Among these, the Ramachandran map [5], [6] has a central rôle. It is widely deployed both to various analyzes of the protein structures, and as a tool in protein visualization. The Ramachandran map describes the statistical distribution of the two dihedral angles φ and ψ that are adjacent to the Cα carbons along the protein backbone. A comparison between the observed values of the individual dihedrals in a given protein with the statistical distribution of the Ramachandran map is an appraised method to validate the backbone geometry.

In the case of side chain atoms, visual analysis methods alike the Ramachandran map have been introduced. For example, the Janin map [7] can be used to compare observed side chain dihedrals such as θ1 and θ2 in a given protein, against their statistical distribution, in a manner which is analogous to the Ramachandran map. Crystallographic refinement and validation programs like Phenix [8], Refmac [9] and others, often utilize the statistical data obtained from the Engh and Huber library [10], [11]. This library is built using small molecular structures that have been determined with a very high resolution. At the level of entire proteins, side chain restraints are commonly derived from analysis of high resolution crystallographic structures [12], [13] in Protein Data Bank (PDB) [14]. A backbone independent rotamer library [15] makes no reference to backbone conformation. But the possibility that the side-chain rotamer population depends on the local protein backbone conformation, was considered already by Chandrasekaran and Ramachandran [16]. Subsequently both secondary structure dependent [17], see also [12] and [13], and backbone dependent rotamer libraries [18], [19] have been developed. The information content in the secondary structure dependent libraries and the backbone independent libraries essentially coincide [13]. Both kind of libraries are used extensively during crystallographic protein structure model building and refinement. But for the prediction of side-chain conformations for example in the case of homology modeling and protein design, there can be an advantage to use the more revealing backbone dependent rotamer libraries.

In x-ray crystallographical protein structure experiments, the skeletonization of the electron density map is a common technique to interpret the data and to build the initial model [20]. The Cα atoms are located at the branch points between the backbone and the side chain, and as such they are subject to relatively stringent stereochemical constraints; this is the reason why the model building often starts with the initial identifi-
cation of the skeletal Cα trace. The central rôle of the Cα atoms is widely exploited in structural classification schemes such as CATH [21] and SCOP [22], in various threading [23] and homology [24] modeling techniques [25], in de novo approaches [20], and in the development of coarse-grained energy functions for folding prediction [27]. As a consequence the so-called Cα-trace problem has become the subject of extensive investigations [28–32]. The resolution of the problem would consist of an accurate main chain and/or all-atom model of the folded protein from the knowledge of the positions of the central Cα atoms only. Both knowledge-based approaches such as MAXSPROUT [28] and de novo methods including PULCHRA [31] and REMO [32] have been developed, to try and resolve the Cα trace problem. In the case of the backbone atoms, the geometric algorithm introduced by Purisima and Scheraga [33], or some variant thereof, is commonly utilized in these approaches. For the side chain atoms, most approaches to the Cα trace problem rely either on a statistical or on a conformer rotamer library in combination with steric constraints, complemented by an analysis which is based on diverse scoring functions. For the final fine-tuning of the model, all-atom molecular dynamics simulations can also be utilized.

In the present article we introduce and develop new generation visualization techniques that we hope will become a beneficial component in protein structure analysis, refinement and validation. In line with the concept of the Cα trace problem we deploy only a geometry that is determined solely in terms of the Cα coordinates. The output we aim at, is a 3D "what-you-see-is-what-you-have" type visual map of the statistically preferred all-atom structure, refinement and validation. In line with the concept of coarse grained energy functions for folding prediction [27], we aim at, is a 3D "what-you-see-is-what-you-is determined solely in terms of the Cα coordinates of the Cα trace problem. As a consequence the so-called Cα-trace problem has become the subject of extensive investigations [28–32]. The resolution of the problem would consist of an accurate main chain and/or all-atom model of the folded protein from the knowledge of the positions of the central Cα atoms only. Both knowledge-based approaches such as MAXSPROUT [28] and de novo methods including PULCHRA [31] and REMO [32] have been developed, to try and resolve the Cα trace problem. In the case of the backbone atoms, the geometric algorithm introduced by Purisima and Scheraga [33], or some variant thereof, is commonly utilized in these approaches. For the side chain atoms, most approaches to the Cα trace problem rely either on a statistical or on a conformer rotamer library in combination with steric constraints, complemented by an analysis which is based on diverse scoring functions. For the final fine-tuning of the model, all-atom molecular dynamics simulations can also be utilized.

In the present article we introduce and develop new generation visualization techniques that we hope will become a beneficial component in protein structure analysis, refinement and validation. In line with the concept of the Cα trace problem we deploy only a geometry that is determined solely in terms of the Cα coordinates. The output we aim at, is a 3D "what-you-see-is-what-you-have" type visual map of the statistically preferred all-atom structure, refinement and validation. In line with the concept of coarse grained energy functions for folding prediction [27], we aim at, is a 3D "what-you-see-is-what-you-is determined solely in terms of the Cα coordinates of the Cα trace problem. As a consequence the so-called Cα-trace problem has become the subject of extensive investigations [28–32]. The resolution of the problem would consist of an accurate main chain and/or all-atom model of the folded protein from the knowledge of the positions of the central Cα atoms only. Both knowledge-based approaches such as MAXSPROUT [28] and de novo methods including PULCHRA [31] and REMO [32] have been developed, to try and resolve the Cα trace problem. In the case of the backbone atoms, the geometric algorithm introduced by Purisima and Scheraga [33], or some variant thereof, is commonly utilized in these approaches. For the side chain atoms, most approaches to the Cα trace problem rely either on a statistical or on a conformer rotamer library in combination with steric constraints, complemented by an analysis which is based on diverse scoring functions. For the final fine-tuning of the model, all-atom molecular dynamics simulations can also be utilized.

In the present article we introduce and develop new generation visualization techniques that we hope will become a beneficial component in protein structure analysis, refinement and validation. In line with the concept of the Cα trace problem we deploy only a geometry that is determined solely in terms of the Cα coordinates. The output we aim at, is a 3D "what-you-see-is-what-you-have" type visual map of the statistically preferred all-atom structure, refinement and validation. In line with the concept of coarse grained energy functions for folding prediction [27], we aim at, is a 3D "what-you-see-is-what-you-is determined solely in terms of the Cα coordinates of the Cα trace problem. As a consequence the so-called Cα-trace problem has become the subject of extensive investigations [28–32]. The resolution of the problem would consist of an accurate main chain and/or all-atom model of the folded protein from the knowledge of the positions of the central Cα atoms only. Both knowledge-based approaches such as MAXSPROUT [28] and de novo methods including PULCHRA [31] and REMO [32] have been developed, to try and resolve the Cα trace problem. In the case of the backbone atoms, the geometric algorithm introduced by Purisima and Scheraga [33], or some variant thereof, is commonly utilized in these approaches. For the side chain atoms, most approaches to the Cα trace problem rely either on a statistical or on a conformer rotamer library in combination with steric constraints, complemented by an analysis which is based on diverse scoring functions. For the final fine-tuning of the model, all-atom molecular dynamics simulations can also be utilized.

In the present article we introduce and develop new generation visualization techniques that we hope will become a beneficial component in protein structure analysis, refinement and validation. In line with the concept of the Cα trace problem we deploy only a geometry that is determined solely in terms of the Cα coordinates. The output we aim at, is a 3D "what-you-see-is-what-you-have" type visual map of the statistically preferred all-atom model, calculable in terms of the Cα coordinates. The present article is a proof-of-concept.

In the present article we introduce and develop new generation visualization techniques that we hope will become a beneficial component in protein structure analysis, refinement and validation. In line with the concept of the Cα trace problem we deploy only a geometry that is determined solely in terms of the Cα coordinates. The output we aim at, is a 3D "what-you-see-is-what-you-have" type visual map of the statistically preferred all-atom model, calculable in terms of the Cα coordinates. The present article is a proof-of-concept.

Our approach is based on developments in three dimensional visualization and virtual reality, that have taken place mainly after the Ramachandran map was introduced. In lieu of the backbone dihedral angles that appear as coordinates in the Ramachandran map and correspond to a toroidal topology, we employ the geometry of virtual two-spheres that surround each heavy atom. We visually describe all the higher level heavy backbone and side chain atoms on the surface of the sphere, level-by-level along the backbone and side chains, exactly in the manner how they are seen by an imaginary, geometrically determined and Cα based miniature observer who roller-coasts along the backbone and climbs up the side chains, while proceeding from one Cα atom to the next. At the location of each Cα our virtual observer orients herself consistently according to the purely geometrically determined Cα based discrete Frenet frames [34, 35]. Thus the visualization depends only on the Cα coordinates, there is no reference to the other atoms in the initialization of the construction. The other atoms - including subsequent Cα atoms along the backbone chain - are all mapped on the surface of a sphere that surrounds the observer, as if these atoms were stars in the sky.

At each Cα atom, the construction proceeds along the ensuing side chain, until the position of all heavy atoms have been determined. As such our maps provide a purely geometric and equitable, direct visual information about the statistically expected all-atom structure in a given protein.

The method we describe in this article, can form a basis for the future development of a novel approach to the Cα trace problem. Unlike the existing approaches such as MAXSPROUT [28], PULCHRA [31] and REMO [32] the method we envision accounts for the secondary structure dependence in the heavy atom positions, which we here reveal. A secondary-structure dependent method to resolve the Cα trace problem should lead to an improved accuracy in the heavy atom positions, in terms of the Cα coordinates. The present article is a proof-of-concept.

METHOD AND RESULTS

Cα based Frenet frames

Let \(r_i \) \((i = 1, \ldots, N)\) be the coordinates of the Cα atoms. The counting starts from the N terminus. At each \(r_i \) we introduce the orthonormal, right-handed, discrete Frenet frame \((t_i, n_i, b_i)\) [34]. As shown in figure 1 the tangent vector \(t_i \) points from the center of the \(i^{th} \) central carbon towards the center of the \((i + 1)^{st} \) central carbon.

\[
t_i = \frac{r_{i+1} - r_i}{\left| r_{i+1} - r_i \right|}
\]
We first describe, how to visually characterize the C_{α} trace in terms of the C_{α} based Frenet frames. We introduce the concept of a virtual miniature observer who roller-coasts the backbone by moving between the C_{α} atoms. At the location of each C_{α} the observer has an orientation that is determined by the Frenet frames. The base of the i^{th} tangent vector t_i is at the position r_i. The tip of t_i is a point on the surface of the sphere (κ, τ) that surrounds the observer; it points towards the north-pole. The vectors n_i and b_i determine the orientation of the sphere, these vectors define a frame on the normal plane to the backbone trajectory, as shown in figure 1. The observer uses the sphere to construct a map of the various atoms in the protein chain. She identifies them as points on the surface of the two-sphere that surrounds her, as if the atoms were stars in the sky.

The observer constructs the C_{α} backbone map as follows. She first translates the center of the sphere from the location of the i^{th} C_{α}, all the way to the location of the $(i+1)^{th}$ C_{α}, without introducing any rotation of the sphere, with respect to the i^{th} Frenet frames. She then identifies the direction of t_{i+1}, i.e. the direction towards the site r_{i+2} to which she proceeds from the next C_{α} carbon, as a point on the surface of the sphere. This determines the corresponding coordinates (κ_i, τ_i). After this, she re-defines her orientation to match the Frenet framing at the $(i+1)^{th}$ central carbon, and proceeds in the same manner. The ensuing map, over the entire backbone, gives an instruction to the observer at each point r_i, how to turn at site r_{i+1}, to reach the $(i+2)^{th}$ C_{α} carbon at the point r_{i+2}.

In figure 1 (top) we show the C_{α} Frenet frame backbone map. It describes the statistical distribution that we obtain when we plot all PDB structures which have been measured with better than 2.0 Å resolution, and

![Figure 2](image)

FIG. 2: (Color online) Geometry of bond (κ_i) and torsion (τ_i) angles (4) and (5).

The C_{α} map

The binormal vector is

$$b_i = \frac{t_{i-1} \times t_i}{|t_{i-1} \times t_i|} \quad (2)$$

The normal vector is

$$n_i = b_i \times t_i \quad (3)$$

We also introduce the virtual C_{α} backbone bond (κ) and torsion (τ) angles, shown in figure 2. These angles are computed as follows,

$$\cos \kappa_{i+1} = t_{i+1} \cdot t_i \quad (4)$$

$$\cos \tau_{i+1} = b_{i+1} \cdot b_i \quad (5)$$

We identify the bond angle $\kappa \in [0, \pi]$ with the latitude angle of a two-sphere which is centered at the C_{α} carbon. We orient the sphere so that the north-pole where $\kappa = 0$ is in the direction of t. The torsion angle $\tau \in [-\pi, \pi]$ is the longitudinal angle. It is defined so that $\tau = 0$ on the great circle that passes both through the north pole and through the tip of the normal vector n. The longitudinal angle increases towards the counterclockwise direction around the vector t. Additional visual gain can be obtained, by stereographic projection of the sphere onto the plane. The standard stereographic projection from the south-pole of the sphere to the plane with coordinates (x, y) is given by

$$x + iy = \sqrt{x^2 + y^2} e^{i\tau} = \tan(\kappa/2) \ e^{i\tau} \quad (6)$$

This maps the north-pole where $\kappa = 0$ to the origin $(x, y) = (0, 0)$. The south-pole where $\kappa = \pi$ is sent to infinity; see figure 3. The visual effects can be further enhanced by sending

$$\kappa \rightarrow f(\kappa) \quad (7)$$

where $f(\kappa)$ is a properly chosen function of the latitude angle κ. Various different choices of $f(\kappa)$ will be considered in the sequel.

![Figure 3](image)

FIG. 3: (Color online) Geometry of bond (κ_i) and torsion (τ_i) angles (4) and (5).

The visual effects can be further enhanced by sending $\kappa \rightarrow f(\kappa)$.
FIG. 4: (Color online) Top: The stereographically projected Frenet frame map of backbone Cα atoms, with major secondary structures identified. Also shown is the directions of the Frenet frame normal vector n; the vector t corresponds to the red circle at the center, and it points away from the viewer. The map is constructed using all PDB structures that have been measured with better than 2.0 Å resolution. Bottom: Standard Ramachandran map, constructed using our 1.0 Å resolution PDB subset. Major secondary structures have been identified.

using the stereographic projection (6); for statistical clarity we prefer to use here a more extended subset of PDB, than our canonical 1.0 Å subset, which we shall use in the remainder of the present article. Here the difference is minor.

For our observer, who always fixes her gaze position towards the north-pole of the surrounding two-sphere at each Cα, i.e. towards the red dot at the center of the annulus, the color intensity in this map reveals the probability of the direction at position ri, where the observer will turns at the next Cα carbon, when she moves from ri+1 to ri+2. In this way, the map is in a direct visual correspondence with the way how the Frenet frame observer perceives the backbone geometry. We note that the probability distribution concentrates within an annulus, roughly between the latitude angle values $\kappa \sim 1$ and $\kappa \sim 3/2$. The exterior of the annulus is a sterically excluded region while the entire interior is in principle sterically allowed but not occupied in the case of folded proteins. In the figure we identify four major secondary structure regions, according to the PDB classification. These are α-helices, β-strands, left-handed α-helices and loops. In this article we will use this rudimentary level PDB classification thorough.

We note that the visualization in figure 4 (top) resembles the Newman projection of stereochemistry: The vector ti which is denoted by the red dot at the center of the figure, points along the backbone from the promixal Cα at ri towards the distal Cα at ri+1. This convention will be used thorough the present article.

When we surround Cα with an imaginary two-sphere, with Cα at the origin, we may choose the radius of the sphere to coincide with the (average) covalent bond length value [35] which is 3.8 Å in the case of Cα atoms, excluding the cis-proline. Since the variations in the covalent bond lengths are in general minor, in this article we do not account for deviations in covalent bond lengths from their ideal values.

For comparison, we also show in figure 4 (bottom) the standard Ramachandran map. The sterically allowed and excluded regions are now intertwined, while the allowed regions are more localized than in figure 4 (top). We point out that the map in figure 4 (top) provides non-local information on the backbone geometry, it extends over several peptide units, and tells the miniature observer where the backbone turns at the next Cα. As such it goes beyond the regime of the Ramachandran map, which is localized to a single Cα carbon and does not provide direct information how the backbone proceeds: The two Ramachandran angles ϕ and ψ are dihedrals for a given Cα, around the N-Cα and Cα-C covalent bonds. These angles do not furnish information about neighboring peptide groups.

Backbone heavy atoms

Consider our imaginary miniature observer, located at the position of a Cα atom and oriented according to the discrete Frenet frames. She observes and records the backbone heavy atoms N, C and the side-chain Cβ that are covalently bonded to a given Cα, and the O in the peptide plane that precedes Cα. In figures 4(a)-d we show the ensuing density distributions, on the surface of the Cα centered sphere. These figures are constructed from all the PDB entries that have been measured using diffraction data with better than 1.0 Å resolution.

We note clear rotamer structures: The Cβ, C, N and O atoms are each localized, and in a manner that depends on the underlying secondary structure [36]. Both in the case of Cβ and N, the left-handed α region (L-α)
FIG. 5: (Color online) a) Distribution of C\(_\beta\) atoms in the C\(_\alpha\) centered Frenet frames in PDB structures that have been measured with better than 1.0 Å resolution. The three major structures α-helices, β-strands and left-handed α-helices have been marked, following their identification in PDB. b) Same as a) but for backbone C atoms. Note that C atoms that precede a cis-proline are clearly identifiable. c) Same as a) and b) but for backbone N atoms. d) Same as a), b) and c) but for backbone O atoms. As in b) the atoms preceding a cis-proline are clearly identifiable.

is a distinct rotamer which is detached from the rest. In the case of C and O, the L-\(\alpha\) region is more connected with the other regions. But for C and O, the region for residues before cis-prolines becomes detached from the rest. In the case of C and C\(_\beta\) we do not observe any similar isolated and localized cis-proline rotamer.

The C and O rotamers concentrate on a circular region, with essentially constant latitude angle with respect to the Frenet frame tangent vector; for the O distribution, the latitude is larger. The N rotamers form a narrow strip in the longitudinal direction, while the map for C\(_\beta\) rotamers form a shape that resembles a horse shoe.

For comparison, in figure 6 we visualize the C\(_\beta\) and N distributions in the coordinate system that is utilized in REMO\(^{32}\). The secondary structures can be identified, but the rotamers are clearly more delocalized than in the case of the Frenet frame map, shown in figure 5 a) and c). This delocalization persists in the case of backbone C and O atoms (not shown). Similarly, we have found that in the case of the coordinate system of PULCHRA\(^{31}\), the rotamers are similarly clearly more delocalized than in the Frenet frames (not shown).

One may argue that the stronger the localization of rotamers, the more precise will structure analysis, prediction and validation become. From this perspective, the Frenet frames have an advantage over the frames used e.g. in PULCHRA and REMO.

The N, C and C\(_\beta\) atoms form the covalently bonded heavy-atom corners of the C\(_\alpha\) centered \(sp^3\)-hybridized tetrahedron. We consider the three bond angles

\[
\vartheta_{NC} \simeq N - C_\alpha - C \quad (8) \\
\vartheta_{N\beta} \simeq N - C_\alpha - C_\beta \quad (9) \\
\vartheta_{\beta C} \simeq C_\beta - C_\alpha - C \quad (10)
\]

The \(\vartheta_{NC}\) angle relates to the backbone only, while the definition of the other two involves the side chain C\(_\beta\). In figure 7 we show the distribution of the three tetrahe-

FIG. 6: (Color online) Distribution of C\(_\beta\) atoms (left) and backbone N atoms (right) in the frames of REMO\(^{32}\).

FIG. 7: (Color online) Distribution of the three bond angles (8)-(10), according to secondary structures. Blue are α-helices, red are β-strands and yellow are loops; the small (yellow) peak in N-C\(_\alpha\)-C\(_\beta\) with angle around 103° is due to prolines. See Table 1 for the average values for α-helices, β-strands and loops in figure a). See also Table 2 for the average values in figures a), b) and c) with no regard to secondary structure. Finally, see Table 3 for the average values.

FIG. 7: (Color online) Distribution of the three bond angles (8)-(10) in our PDB data set. We find that in the case of the two side chain C\(_\beta\) related angles \(\vartheta_{N\beta}\) and \(\vartheta_{\beta C}\), the distribution has a single peak which is compatible with ideal values; the isolated small peak in figure 7 b) is due to cis-prolines. But in the case of the backbone-only specific angle \(\vartheta_{NC}\) we find that in our data set this is not the case. The PDB data set we use
and display in figure 7 a) shows, that there is a correlation between the ϑ_{NC} distribution and the backbone secondary structure. See also Table 1.

Structure	ϑ_{NC} (deg)
Helix	111.5 ± 1.7
Strand	109.1 ± 2.0
Loop	111.0 ± 2.5

TABLE I: Average values of the angle ϑ_{NC} separately for α-helices, β-strands and loops in figure 7 a) with one-\sigma standard deviations.

We note that in protein structure validation all three angles [8]-[10] are commonly presumed to assume the ideal values, shown in Table 3. For example, the deviation of the C_β atom from its ideal position is among the validation criteria in MolProbity [11], that uses it to identify potential backbone distortions around C_α. But several authors [36]-[40] have pointed out that certain variation in the values of the τ_{NC} can be expected, and is in fact present in PDB data. Accordingly, the protein backbone geometry does not obey the single ideal value paradigm. Since this paradigm motivates the applicability of small molecule libraries such as the Engh and Huber library [10], there is a good case to be made in favor of using the PDB based libraries [13], [18], [19] in the case of proteins.

We remind that ϑ_{NC} pertains to the two peptide planes that are connected by the C_α. The Ramachandran angles (ϕ, ψ) are the adjacent dihedrals, but unlike ϑ_{NC} they are specific to a single peptide plane; the Ramachandran angles describe the twisting of the ensuing peptide plane. If the internal structure of the peptide planes is assumed to be rigid, the flexibility in the bond angle ϑ_{NC} remains the only coordinate that can contribute to the bending of the backbone. Consequently a systematic secondary structure dependence, as displayed in figure 7, is to be expected. It could be that the lack of any observable secondary structure dependence in ϑ_{NC} and ϑ_{CB} suggests that existing validation methods distribute all refinement tension on ϑ_{NC}.

C_β atoms

The side chains are connected to the C_α backbone by the covalent bond between C_α and C_β. Consequently the precision, and high level of localization in the C_β map becomes pivotal for the construction of accurate higher level side chain maps.

C_β at termini:

We have analyzed those C_β atoms that are located in the immediate proximity of the N and the C termini in the PDB data. For this, we have considered the first two C_β atoms starting from the N terminus, and the last two C_β atoms that are before the C terminus.

Residue	EH-1	EH-2	AK	TV
ϑ_{NC} (PRO)	112.1 ± 2.6	112.8 ± 3.0		
ϑ_{NC} (REST)	110.5 ± 2.7	110.4 ± 3.3	111.0 ± 3.0	
ϑ_{CB}	110.1	110.1 ± 2.9		
ϑ_{BN}	111.2	110.1 ± 2.8		

TABLE III: Some average values of the angles in figure 7 reported by various authors, together with their one-\sigma standard deviations.

In Figure 9 we compare the individual proline contributions in our data set with the C_β background in figure 5 a). In figure 9 a) we show the trans-proline, and in figure 9 b) we show the cis-proline. The trans-proline has a very good match with the background. There are very few outliers. These are predominantly located in the same region as in figure 8 towards the left from the main distribution i.e. towards increasing longitude. We
FIG. 8: (Color online) The distribution of Cβ directions in the first two and last two residues along PDB structures that have been measured using diffraction data with better than 1.0 Å resolution. There is no visible difference to the Figure 3 a). In particular, there are very few clear outliers, and they are located mainly in the region left of the main region.

FIG. 9: (Color online) The distribution of Cβ in prolines. Figure a) is trans-PRO and figure b) is cis-PRO. The grey background is given by Figure 5 a).

We observe that all the cis-proline are located outside of the main Cβ distribution, towards the increasing longitude from the main distribution.

In figures 10 a)-d) we display the Cβ carbons that are located either immediately after or right before a proline. We observe the following:

In figure 10 a) we have the Cβ that are immediately after the trans-proline. The distribution matches the background, with very few outliers that are located mostly in the same region as in figures 8 b) i.e. towards increasing longitude. But there is a very high density peak in the figure, that overlaps with the α-helical region. We remind that proline is commonly found right before the first residue in a helix.

In figure 10 b) we display those Cβ atoms which are immediately after the cis-proline. There is again a good match with the background. But unlike in figure 10 a) we also observe a shift towards increasing longitude. In particular, the high density region now coincides with the β-stranded region in the background. There are very few outliers, again mainly towards increasing longitude.

In figure 10 c) we have those Cβ that are right before a trans-proline. There is a clear match with the background distribution. But there are relatively few entries in the α-helical position: It is known that helices rarely end in a proline. The intensity is very large in the loop region that overlaps the β-stranded region. There are also a few outliers. Again, the outliers are mainly located in the region towards increasing longitude.

In Figure 10 d) we show the Cβ distribution for residues that are right before a cis-proline. There are no entries in the background region of figure 5 a). The distribution is almost fully located in the previously observed outlier region, towards the left of the background in the figure. In addition, we observe an extension of this region towards increasing latitude, reaching all the way to the south-pole.

Finally, we recall that in figure 5 b) the region that corresponds to the effect of cis-prolines in the preceding C rotamer, is clearly visible. But in the case of Cβ and N atoms, we do not observe any similar high density isolated cis-region. Consequently the question arises whether the structure of the Cα centered covalent tetrahedron is deformed:
TABLE IV: Average values of the angles in figure 11, together with their one-σ standard deviations.

Angle	ϑ_{NC}	ϑ_{Cβ}	ϑ_{βN}
average	109.3 ± 2.2	110.1 ± 1.8	110.0 ± 2.6

In figure 11 we show the distribution of the three angles; see also Table 4. We observe a small deviation in the distribution in the case of histidine. The figure 11 a) shows that there is a very good match with the statistical background distribution. There are only a few apparent outliers. Some of them have been encircled, as examples. One of the apparent outliers corresponds to the residue number 312 (HIS) in the PDB entry 2PF8. The latitude is anomalously small. The residue is located relatively close to the C-terminal of the backbone. But comparison with figure 8 proposes that this is not the cause for its anomalous latitude position. The PDB file of 2PF8 reveals that this C_β atom has two alternative positions. The one we have displayed (312A) is in an atypical position. The other is not. This is also supported by the Frenet frame orientation of the same C_β atom 312 in a different PDB entry of the same protein, with code 2PEV. The C_β atom 312 of 2PEV is located in the highly populated α-helical region. The reason for the atypical positioning of 312A in 2PF8 remains to be understood.

In figure 11 b) we plot those HIS that precede a cis-PRO i.e. are also present in Figure 10 d). There are five such entries in HIS. They are all located in the rotamer that appears to be statistically favored in figure 10 d).

Level-γ rotamers

Standard rotamers:

We proceed upwards along the side-chain, to the level-γ heavy atoms that are covalently bonded to C_β. Conventionally, these atoms are described by the side-chain dihedral angle ρ_1. This angle is determined by the three covalently bonded heavy atoms C_α, C_β and N. The angle ρ_1 determines the dihedral orientation of the level-γ carbon atom, in terms of these three atoms.

We remind that ALA and GLY do not contain any level-γ atoms. In the case of ILE and VAL we have two C_γ, while in the case of CYS there is a S_γ atom.

We first define a X_1-framing, where the rotamer angle ρ_1 appears as a dihedral coordinate. For this we introduce the following C_α based orthonormal triplet

\[
\mathbf{t}_{X1} = \frac{\mathbf{r}_β - \mathbf{r}_α}{|\mathbf{r}_β - \mathbf{r}_α|} \quad (11)
\]

\[
\mathbf{n}_{X1} = \frac{s - \mathbf{t}_{X1}(s \cdot \mathbf{t}_{X1})}{|s - \mathbf{t}_{X1}(s \cdot \mathbf{t}_{X1})|} \quad \text{where} \quad s = \mathbf{r}_α - \mathbf{r}_N \quad (12)
\]

\[
\mathbf{b}_{X1} = \mathbf{t}_{X1} \times \mathbf{n}_{X1} \quad (13)
\]

with \(\mathbf{r}_α, \mathbf{r}_β \) and \(\mathbf{r}_N \) the coordinates of the pertinent C_α, C_β and N atoms, respectively. This constitutes our X_1-framing, with C_α at the origin. We introduce a sphere around C_α, oriented so that the north-pole is in the direction of \(\mathbf{t}_{X1} \). Now the dihedral \(\rho_1 \) coincides with the ensuing longitude angle.
In figures 13 we show the distribution of level-\(\gamma\) carbon atoms. The figure 13 a) shows the distribution on the surface of the C\(_\alpha\) centered two-sphere. In figure 13 b) we use the stereographic projection (6) with the choice

\[
f(\kappa) = \frac{1}{1 + \exp\{\kappa^2\}}
\]

in equation (7). The three rotamers gauche\(\pm\) (g\(\pm\)) and trans (t) have been identified in this figure. The prolins are also visible, as rotamers. In addition, in figure 13 b) we have a circle that shows the average distance of the data points from the north-pole (origin) on the stereographic plane. A number of apparent outliers are visible in fig. 13 b).

We note that the underlying secondary structure of the backbone is not visible in figures 13. This is a difference between figures 5 and 13 in the former the underlying backbone secondary structure is visible in the density profile.

In figures 14 we show how the C\(_\gamma\) atoms are seen by the observer who is located at the C\(_\alpha\) atom, and oriented according to the backbone Frenet frames; these are the frames used in figures 5. Now both the rotamer structure and the various backbone secondary structures are clearly seen.

Secondary structure dependent level-\(\gamma\) rotamers:

In the C\(_\alpha\) Frenet frame figures 14 the secondary structure dependence is visible. But unlike figure 13 a) the C\(_\alpha\) Frenet frame figures 14 lack an apparent symmetry. This complicates the implementation of the stereographic projection, such as the one shown in figure 13 b). We proceed to introduce a new set of frames, that enables us to analyze the secondary structure dependence of the \(\gamma\)-level atoms in terms of the stereographic projection:

We choose the unit length vector \(t_\beta\), to coincide with the unit vector that points from C\(_\alpha\) at point \(r_\alpha\) towards C\(_\beta\) at point \(r_\beta\).

\[
t_\beta = \frac{r_\beta - r_\alpha}{|r_\beta - r_\alpha|}
\]

We use the next C\(_\alpha\) atom along the backbone, to define the following unit length vector

\[
n_\beta = \frac{t_\beta \times t_\alpha}{|t_\beta \times t_\alpha|}
\]

Here \(t_\alpha\) is the vector \(1\). The orthonormal triplet is completed by

\[
b_\beta = t_\beta \times n_\beta
\]

We may choose either C\(_\alpha\) or C\(_\beta\) to coincide with the origin; the C\(_\alpha\) centered coordinate system is the original roller coconut observer while the C\(_\beta\) centered coordinate system corresponds to an observer who has climbed ”one-step-up” along the side chain. We map the level-\(\gamma\) atoms on the surface of the pertinent, surrounding two-spheres. In figures 15 a) and b) we show the results. There is very little qualitative difference between the C\(_\alpha\) and C\(_\beta\) centered distributions, except for latitude i.e. the distance from the north-pole. The distributions resemble those in figure 13 a), except that there is additional fine structure: The secondary structures are now clearly separated from each other into disparate rotamers.

In figure 16 we have stereographic projected figure 15 b), in combination with the map 14. In figures 17 we identify the rotamers according to the \(\alpha\)-helical and \(\beta\)-stranded regions, and the rotamers for prolins.

The \(\alpha\)-helical rotamer distribution in figure 17 a) and \(\beta\)-stranded distribution in figure 17 b) have essentially
FIG. 15: (Color online) The level-γ atoms as seen in the coordinates (15)-(15). In a) the origin coincides with the Cα atom, in b) it coincides with the Cβ atom.

FIG. 16: (Color online) Stereographic projection of level-γ rotamers in the frame of figure 15 b) in combination with (14).

the same latitude angle. But there is a visible difference in the longitudes. Each has a trimodal structure, and we again denote the rotamers as g± and t. The distributions are related to each other by 120° longitudinal rotations. It is noteworthy how the prolines shown in figures 17 c) and d) also reflect the backbone secondary structure, as assigned by PDB. In these figures we have also highlighted some apparent outlying prolines. These are located in two clusters.

There are also outliers that are outside of the range of the stereographic projection in figures 17. The projection - to the extent it has been plotted - covers a disk-like region around the north-pole i.e. around the tip of vector t in the figure. The far-away outliers can be visualized by properly rotating the sphere. The rotated sphere is shown in figure 18. A number of far-away outliers are now visible. As an example, we have encircled one group of outliers. It pertains to the mutually related PDB entries 1FN8, 1FY4, 1FY5, 1GDN and 1GDQ. These outliers all have the same residue number 65 in the PDB data. It is a multiple position entry and the figure shows that one of these (A) is atypical.

Finally, as a concrete example of an amino acid we consider threonine, where the level-γ consists of a Cγ and Oγ pair. In figure 19 a) we display (in blue) those Oγ atoms where the backbone is in a β-strand position according to PDB. In 19 b) we have (in blue) those Oγ where the backbone is in an α-helical position. In figures 19 c) and d) we have the corresponding distributions for Cγ. The (green) background is made of all Oγ and Cγ atoms in our data set. Both the trimodal rotamer structure and its secondary structure dependence are clearly visible, both in Oγ and in Cγ. For the latter, the distribution matches that displayed in Figures 17 a) and b). Some apparent outliers have also been highlighted in Figures 19 by encircling them (with red).

Level-δ rotamers

Standard dihedral angle:

We proceed upwards along the side-chain, to describe level-δ atoms. We start with a coordinate frame which is centered at the Cγ atom. We note that in the case of ILE, two alternatives exist and we choose the Cγ carbon which is covalently bonded to the Cδ atom.

We set

\[
\mathbf{t}_{X2} = \frac{\mathbf{r}_{\gamma} - \mathbf{r}_{\beta}}{|\mathbf{r}_{\gamma} - \mathbf{r}_{\beta}|}
\]

and we choose

\[
\mathbf{n}_{X2} = \frac{\mathbf{t}_{X2} \times \mathbf{t}_{X1}}{|\mathbf{t}_{X2} \times \mathbf{t}_{X1}|}
\]
FIG. 18: (Color online) An example of a group of five far away outliers in figure 15 b), made visible by rotating the sphere and highlighting with red circle. They all correspond to the same protein but with different PDB codes: 1FN8, 1FY4, 1FY5, 1GDN and 1GDQ. In each case, the outlier is in the residue number 65 A. Note that there are also several other far away outliers.

The third vector \(b_{\chi_2} \) that completes the right-handed orthonormal triplet is given by

\[
b_{\chi_2} = t_{\chi_2} \times n_{\chi_2}
\]

In figure 20 we show the distribution of heavy atoms in level-\(\delta \), after stereographic projection. The longitude in these figures coincides with the standard \(\chi_2 \) dihedral angle, modulo a global \(\pi/2 \) rotation around the center. In addition, we introduce the following version of (7)

\[
f(\theta) = \frac{1}{1 + \theta^4}
\]

In the figure 20, we have separately displayed the distribution of the aromatic (a) and the non-aromatic (b) amino acids; we find that starting at level-\(\delta \) this is a convenient bisection. A clear trimodal rotamer structure is present in figure 20 b). Some outliers have been highlighted with circles, as generic examples. In figure 21 a) we have the proline contribution to figure 20 b) and in figure 21 b) we show the distribution of the O atoms at level-\(\delta \). The latitude angles in O are highly restrained while the longitudinal angles are quite flexible. Some apparent outliers have been encircled in both figures 21, as generic examples.

Finally, as in figure 13 in figures 20 and 21 there is no visible sign of secondary structure: The standard \(\chi_2 \) dihedral is backbone independent.

However, as in figures 14 in the backbone Frenet frames where the \(C_\alpha \) is located at the center of the sphere, the secondary structure dependence becomes visible in the level-\(\delta \) rotamers. As an example, we show in figure 22 how some of the regions in figure 14 are seen on the surface of the ensuing \(C_\alpha \) centered sphere, by the roller coasting observer. The examples we have displayed are the overlap of the \(\alpha \)-helical structures with the \(g- \) rotamer (marked \(\alpha-g- \) in the figure) and \(t \) rotamer (\(\alpha-t \)), and the overlap of the \(\beta \)-stranded structures with the \(g- \) rotamer (\(\beta-g- \)) and \(t \) rotamer (\(\beta-t \)). A secondary structure dependent trimodal rotamer structure is clearly present, in each of the distributions.
FIG. 21: (Color online) a) The proline contribution to the non-aromatic level-δ atoms in Figure 20 b). Three apparent outliers have been encircled. b) The level-δ distribution of O atoms. The (black) circle denotes the average distance of the distribution from the center. Some outliers have been highlighters with red circles.

Finally,

\[\mathbf{b}_\gamma = \mathbf{t}_\gamma \times \mathbf{n}_\gamma \]

We start with the non-aromatic amino acids. In figure 23 we show the distribution of all the C_δ non-aromatic atoms in our data set. In this figure we have also identified those apparent rotamers that are classified either as α-helical or β-stranded in PDB. The figure shows that there is a clear secondary structure dependence in these rotamers. In figure 24 we display the three level-γ subsets of 23 a). Again, there is a clear secondary structure dependence in the rotamers. We have also encircled some apparent outliers in both figures 23 and 24. Far-away outliers also exist (not shown), these can be located and visualized by rotating the original sphere as in figure 18.

We proceed to the aromatic amino acids. In figure 25 a) we show all level-δ carbons (CD1 in PDB), these are PHE, TYR, TRP. In figures 25 b) and c) we show the subsets of 25 a) that have been classified as α-helical resp. β-stranded in PDB. In 26 a) we show all level-δ carbons (CD2 in PDB) i.e. PHE, TYR, TRP and HIS. In figures 26 b) and c) we show the subsets of 26 a) that have been classified as α-helical resp. β-stranded in PDB. In both figures 25 and 26 the secondary structure dependence is again manifest. In particular, both α-helices and β-strands form clear rotamers. We have also highlighted some outliers, by encircling them.

FIG. 23: (Color online) The level-δ distribution of non-aromatic C atoms, in the stereographic projection. In figure a) we show the entire background, and in b) and c) those that have been classified as α-helical and β-stranded, respectively. Some outliers have also been marked.

Secondary structure dependent level-δ rotamer angles:

Following (15)-(17) and figures 15-17 we proceed to visually inspect secondary structure dependence in the level-δ rotamers. For this, we define an orthonormal frame as follows:

\[\mathbf{t}_\gamma = \frac{\mathbf{r}_\gamma - \mathbf{r}_\beta}{|\mathbf{r}_\gamma - \mathbf{r}_\beta|} \]

\[\mathbf{n}_\gamma = \frac{\mathbf{t}_\gamma \times \mathbf{t}_\alpha}{|\mathbf{t}_\gamma \times \mathbf{t}_\alpha|} \]

FIG. 22: (Color online) Four figures that show the level-δ Frenet frame distributions corresponding to the level-γ distributions in figures 14. The labeling is as follows: α - g stand for α-helical backbone secondary structure in g-rotamer in figures 14 α - t stand for α-helical backbone secondary structure in t rotamer in figures 14 β - g stand for β-stranded backbone secondary structure in g-rotamer in figures 14 and β - t stand for β-stranded backbone secondary structure in t rotamer in figures 14.

Level−ε atoms

We proceed to the level-ε atoms. We follow the previous construction: We introduce a coordinate frame which is based at the C_δ carbon i.e. describes the point-of-view of an imaginary minuscule observer who has climbed up
FIG. 24: (Color online) The level-δ distribution of non-aromatic C atoms, in the stereographic projection and divided according to the level-γ rotamers. In figure a) we show the g-rotamer, in figure b) we show the t rotamer, in figure c) we have the g+ rotamer and in figure d) we show the cis-proline. The radii of the (black) circles coincide with the average latitude in figure 23 a). Some outliers have also been encircled.

FIG. 25: (Color online) Level-δ distribution of aromatic CD1 atoms PHE, TYR and TRP in the stereographic projection. In a) all CD1 atoms in our data set, and in b) and c) the α-helical and β-stranded subsets, with rotamer states encircled. Some outliers have also been encircled in a).

FIG. 26: (Color online) Same as figure 25 but for the CD2 carbons according to PDB classification, including PHE, TYR, TRP and HIS. Some outliers have also been encircled in figure 26 a).

Level-ζ atoms

We continue to level-ζ. We introduce the C_ϵ centered two-sphere with orthonormal triplet given by

\[t_ϵ = \frac{r_ϵ - r_δ}{|r_ϵ - r_δ|} \]

\[n_ϵ = \frac{t_ϵ \times t_α}{|t_ϵ \times t_α|} \]

\[b_ϵ = t_ϵ \times n_ϵ \]

As an example, in figures 28 a) we show the C_ζ carbons for PHE and TYR using stereographic projection. The figure 28 a) shows all C_ζ atoms, and figures 28 b) and c) show the α-helical and β-stranded subsets. In the case of
α-helical secondary structures we identify one rotamer. In the case of β-stranded structures we observe three rotamers. We observe that the β-stranded rotamers are not distributed evenly. The rotamers are not related to each other by (regular) 120° rotations.

Level-η atoms

We continue the process to the level-η which is the final level in proteins. We follow our construction to define the C_ζ centered coordinate system, with

$$t_\zeta = \frac{r_\zeta - r_\epsilon}{|r_\zeta - r_\epsilon|}$$

$$n_\zeta = \frac{t_\zeta \times t_\alpha}{|t_\zeta \times t_\alpha|}$$

$$b_\zeta = t_\zeta \times n_\zeta$$

As before, we also introduce the ensuing stereographic projection.

As an example, in figures 29 we display the Nη2 distribution in ARG. Now there is a very strong two-fold localization of the distribution, shown in figure 29 a). In figures b)-d) we consider the subsets, consisting of PDB secondary structures that are classified as loops b), β-strands c) and α-helices d). These identify the two rotamers in figure 29 a). Some of the outliers are encircled, as examples, in a).
DISCUSSION

We have utilized recent developments in modern 3D visualization techniques and advances in virtual reality to describe how to construct an entirely Cα geometry based visual library of the backbone and side chain atoms. Our construction is based on progress in visualization that has taken place since the inception of the Ramachandran map. In lieu of a torus, our approach engages the geometry of a sphere and as such it has a direct "what-you-see-is-what-you-have" visual correspondence to the protein structure. In particular, we utilize the geometrically determined discrete Frenet frames of \[\text{[11]} \]. We propose the concept of an imaginary observer, chosen so that the discrete Frenet frames determine the orientation of the observer when she roller-coasts along the backbone and climbs up the side chains. She maps the directions of all the heavy atoms on the surface of a two-sphere that surrounds her, exactly as these atoms are seen in her local frame like stars in the sky.

Since the discrete Frenet frames can be unambiguously determined in terms of the Cα trace only, we can analyze both the backbone atoms and the side chain atoms on equal footing, in a single geometric framework. This is not possible in the conventional Ramachandran approach, that assumes a priori knowledge of the peptide planes, to define the dihedral angles.

As examples of the approach, we have analyzed the orientation of various heavy atoms that are located both along the backbone and in the side chains. Our approach also enables a direct, visual identification of outliers.

In particular, we have found that in terms of the discrete Frenet frames, the secondary structure dependence becomes clearly visible in the rotamer structure, both in the case of the backbone atoms and in the case of the side chain atoms. Apparently this is not always the case, in conventional approaches such as \[\text{[12]} \], \[\text{[28]} \] \[\text{[31]} \] \[\text{[32]} \], according to \[\text{[13]} \] conventional secondary structure dependent rotamer libraries do not provide much more information than backbone-independent rotamer libraries. But by using the Frenet frame coordinate system chosen here, there is a clear correlation between secondary structures and rotamer positions. Thus the approach we have presented, can form a basis for the future development of a novel approach to the Cα trace problem. Unlike the existing approaches \[\text{[28]} \] \[\text{[31]} \] \[\text{[32]} \] the one we envision accounts for the secondary structure dependence in the heavy atom positions that we have revealed, which should lead to an improved accuracy in determining the heavy atom positions.

Acknowledgements

A.J. Niemi thanks A. Elofsson, J. Lee and A. Liwo for a discussion. This research has been supported by a CNRS PEPS Grant, Region Centre Recherche d’Initiative Academique grant, Cai Yuanpei Exchange Program, Qian Ren Grant at BIT, Carl Trygger’s Stiftelse for vetenskaplig forskning, and Vetenskapsrådet.

[1] V.B. Chen, W.B. Arendall III, J.J. Headd, D.A. Keedy, R.M. Immormino, G.J. Kapral, L.W. Murray, J.S. Richardson, D.C. Richardson, Acta Cryst. D66, 12 (2010)
[2] R.A. Laskowski, M.W. MacArthur, D.S. Moss, J.M. Thornton, J. App. Cryst. 26 283 (1993)
[3] X. Qu, R. Swanson, R. Day, J. Tsai,Curr. Protein Pept. Sci. 10 270 (2009)
[4] P.L. Freddolino, C.B. Harrison, Y. Liu, Y. Schulten, Nature Phys. 6 751 (2010)
[5] G.N. Ramachandran, C. Ramakrishnan, V. Sasisekharan, J. Mol. Biol. 7 95 (1963)
[6] O. Carugo, K. Djinovic Carugo, Acta Cryst. D69, 1333 (2013)
[7] J. Janin, S. Wodak, M. Levitt, B. Maigret, J. Mol. Biol. 125 357 (1978)
[8] P.D. Adams, P.V. Afonine, G. Bunkóczi, V.B. Chen, I.W. Davis, N. Echols, J.J. Headd, L.-W. Hung, G.J. Kapral, R.W. Grosse-Kunstleve, A.J. McCoy, N.W. Moriarty, R. Oeffner, R.J. Read, D.C. Richardson, J.S. Richardson, T.C. Terwilliger, P.H. Zwart, Acta Cryst. D66 213 (2010)
[9] G.N. Murshudov, A.A. Vagin, E.J. Dodson, Acta Cryst. D53 240 (1997)
[10] R.A. Engh, R. Huber, Acta Cryst. A47 392 (1991)
[11] R.A. Engh, R. Huber, in International Tables for Crystallography, Vol. F, pages 382–392; edited by M. G. Rossmann and E. Arnold (Kluwer Academic Publishers, Dordrecht, 2001)
[12] J.W. Ponder, F.M. Richards, J. Mol. Biol. 193 775 (1987)
[13] R.L. Dunbrack Jr., Curr. Op. Struc. Biol. 12 431 (2002)
[14] H.M. Berman, J. Westbrook, Z. Feng, G. Gililland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, Nucl. Acids Res. 28 235 (2000)
[15] S.C. Lovell, J. Word, J.S. Richardson, D.C. Richardson, Proteins 40 389 (2000)
[16] R. Chandrasekaran, G.N. Ramachandran, Int. J. Protein Res. 2 223 (1970)
[17] H. Schrauber, F. Eisenhaber, P. Argos, J. Mol. Biol. 230 592 (1993)
[18] R.L. Dunbrack Jr., M. Karpus, J. Mol. Biol. 230 543 (1993)
[19] M.S. Shapovalov, R.L. Dunbrack Jr., Structure 19 844 (2011)
[20] T.A. Jones, J.-Y. Zou, S.W. Cowan, M. Kjeldgaard, Acta Cryst. A47 110 (1991)
[21] I. Sillitoe, A.L. Cuff, B.H. Dessailly, N.L. Dawson, N. Furnham, D. Lee, J.G. Lees, T.E. Lewis, R.A. Studer, R. Rentzsch, C. Yeats, J.M. Thornton, C.A. Orengo, Nucleic Acids Res. 41(D1), D490 (2013)
[22] A.G. Murzin, S.E. Brenner, T. Hubbard, C. Chothia, J.
[23] A. Roy, A. Kucukural, Y. Zhang, Nature Protocols 5 725 (2010)
[24] T. Schwede, J. Kopp, N. Guex, M.C. Peitsch, Nucleic Acids Res., 31 3389 (2003)
[25] Y. Zhang, Curr. Opin. Struct. Biol. 19 145 (2009)
[26] K. Dill, S.B. Ozkan, T.R. Weikl, J.D. Chodera, V.A. Voelz, Curr. Op. Struct. Biol. 17 342 (2007)
[27] H.A. Scheraga, M. Khalili, A. Liwo, Ann. Rev. Phys. Chem. 58 57 (2007)
[28] L. Holm, C. Sander, Journ. Mol. Biol. 218 183 (1991)
[29] M.A. DePristo, P.I.W. de Bakker, R.P. Shetty, T.L. Blundell, Prot. Sci. 12 2032 (2003)
[30] S.C. Lovell, I.W. Davis, W.B. Arendall III, P.I.W. de Bakker, J.M. Word, M.G. Prisant, J.S. Richardson, D.C. Richardson, Proteins 50 437 (2003)
[31] P. Rotkiewicz, J. Skolnick, Journ. Comp. Chem. 29 1460 (2008)
[32] Y. Li, Y. Zhang, Proteins 76 665 (2009)
[33] E.O. Purisima, H.A. Scheraga, Biopolymers 23 1207 (1984)
[34] S. Hu, M. Lundgren, A.J. Niemi, Phys. Rev. E83 061908 (2011)
[35] M. Lundgren, A.J. Niemi, F. Sha, Phys. Rev. E85 061909 (2012)
[36] M. Lundgren, A.J. Niemi, Phys. Rev. E85 061904 (2012)
[37] L. Schäfer, M. Cao, Journ. Mol. Struct. 333 201 (1995)
[38] X. Jiang, C.-H. Yua, M. Cao, S.Q. Newton, E.F. Paulus, L. Schäfer, Journ. Mol. Struct. 403 83 (1997)
[39] D.S. Berkholz, M.V. Shapovalov, R.L. Dunbrack Jr., P.A. Karplus, Structure 17 1316 (2009)
[40] W.G. Touw, G. Vriend, Acta Cryst. D66 1341 (2010)