6mA-Pred: Identifying DNA N6-methyladenine sites based on deep learning

Qianfei Huang Equal first author, 1, Wenyang Zhou Equal first author, 2, Fei Guo 1, Lei Xu Corresp., 3, Lichao Zhang Corresp. 4

1 College of Intelligence and Computing, Tianjin University, Tianjin, China, Tianjin, China
2 School of Life Science and Technology, Harbin Institute of Technology, Harbin, China, Harbin, China
3 School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China, Shenzhen, China
4 School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China, Shenzhen, China

Corresponding Authors: Lei Xu, Lichao Zhang
Email address: csleixu@szpt.edu.cn, lczhang5354@szu.edu.cn

With the accumulation of data on 6mA modification sites, an increasing number of scholars have begun to focus on the identification of 6mA sites. Despite the recognized importance of 6mA sites, methods for their identification remain lacking, with most existing methods being aimed at their identification in individual species. In the present study, we aimed to develop an identification method suitable for multiple species.

Based on previous research, we propose a method for 6mA site recognition. Our experiments prove that the proposed 6mA-Pred method is effective for identifying 6mA sites in genes from taxa such as rice, Mus musculus, and human. A series of experimental results show that 6mA-Pred is an excellent method. We provide the source code used in the study, which can be obtained from http://39.100.246.211:5004/6mA_Pred/
6mA-Pred: Identifying DNA N6-Methyladenine Sites Based on Deep Learning

Qianfei Huang¹,#, Wenyang Zhou²,#, Fei Guo¹, Lei Xu³,* , Lichao Zhang⁴,*

1. College of Intelligence and Computing, Tianjin University, Tianjin, China
2. School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
3. School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
4. School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China

*corresponding author: csleixu@szpt.edu.cn, lczhang5354@szu.edu.cn

#equally contributed

Abstract

With the accumulation of data on 6mA modification sites, an increasing number of scholars have begun to focus on the identification of 6mA sites. Despite the recognized importance of 6mA sites, methods for their identification remain
lacking, with most existing methods being aimed at their identification in individual species. In the present study, we aimed to develop an identification method suitable for multiple species.

Based on previous research, we propose a method for 6mA site recognition. Our experiments prove that the proposed 6mA-Pred method is effective for identifying 6mA sites in genes from taxa such as rice, Mus musculus, and human. A series of experimental results show that 6mA-Pred is an excellent method. To facilitate people to use the model proposed in this experiment, we have established a Web server, the website is http://39.100.246.211:5004/6mA_Pred/. This web server contains experimental code and data and can make simple predictions.

Keyword: 6mA, Deep Learning, LSTM.

Introduction

DNA modification sites play vital roles in multiple biological processes and are attracting increasing research attention. Methylation continues to be a hot topic in epigenetics, and 5mC methylation has been extensively studied (Liu et al. 2019b). With the advancement of sequencing technology, 6mA methylation has slowly attracted increasing attention. 6mA methylation not only affects gene expression
but also regulates development in plants and animals (Xu et al. 2020a). Many diseases, including cancer, are related to 6mA methylation (Chen et al. 2019a; Chen et al. 2019b; Xu et al. 2019a). With the progress of 6mA methylation-related research, large amounts of data have been collected. However, effective methods for 6mA site identification are lacking.

Methods for identifying modification sites have consistently been a hot spot in bioinformatics. Many methods have been studied and have achieved good results. Although research on 4mC (He et al. 2019) and 5mC is mature, research on the identification of 6mA modification sites has just begun. The computational method i6mA-Pred was used to identify 6mA modification sites in the rice genome with high accuracy. Several methods for identifying 6mA loci in the rice genome have been proposed, such as MM-6mAPred, iDNA-6mA-rice (Hao et al. 2019), SDM6A (Basith et al. 2019), i6mA-DNCP (Kong & Zhang 2019) and SNNRice6mA (Yu & Dai 2019). In addition, methods for the identification of 6mA sites in Mus musculus and humans have gradually emerged, such as iDNA6mA-PseKNC (Feng et al. 2019), csDMA (Liu et al. 2019c), SICD6mA, and 6mA-Finder (Xu et al. 2020b). Several datasets are publicly available, and many desirable features and models have been proposed. Application of the feature algorithms NCP and one-hot, feature fusion and deep learning methods has greatly
accelerated the identification of 6mA-modified sites. Among the employed algorithms, SVM and RF exhibit stable performance and perform well on some datasets (Liu et al. 2019a; Shen et al. 2019b; Sun et al. 2020; Wang et al. 2020a; Wang et al. 2020b; Yan et al. 2020; Zhou et al. 2018; Zhou et al. 2017). In addition, the Markov model has achieved excellent results in predicting 6mA sites in the rice genome. In the application of feature methods, most researchers use multiple feature fusion methods and analyze various features. In general, the different methods have achieved good results and provided direction for subsequent research.

In the research mentioned above, most methods have employed machine learning (Patil & Chouhan 2019; Zou 2019; Zou & Ma 2019) and detailed analysis of different feature methods. There are some good models that use deep learning methods, such as SNNRice6mA and SICD6mA. SNNRice6mA employs CNN (Ren et al. 2019) to build a network that works well. SICD6mA uses GRU to achieve a good network structure and has been applied extensively to datasets of two species. In this paper, through a summary of the previous research work, we found that LSTM+Attention can identify the modification sites very well, and a large number of experimental results suggest that this is a very good method.
MATERIALS AND METHODS

Datasets

Much research has aimed to identify 6mA sites in rice. In reviewing research from the past two years, we found that the amount of data on 6mA sites is increasing. We obtained datasets for three species. The first dataset is a rice dataset obtained from 6mA-RicePred (Huang et al. 2020b). This dataset was first used in i6mA-Pred (Chen et al. 2019c) and was provided by the author (Hu et al. 2019). The second dataset is a Mus musculus dataset obtained from iDNA-PseKNC, and it has achieved good results with this dataset. The third dataset is a human dataset obtained from SICD6mA and is the largest of the three datasets. Table 1 provides a summary of each dataset. The lengths of their sequences are all the same: 41bp. Details of these datasets are provided in their source papers. We have organized the datasets, which can be obtained from https://github.com/huangqianfei0916/6ma-rice.

All three data sets use CD-HIT to remove redundancy. Sequences with the similarity above 80% were excluded by using the CD-HIT program. All negative samples were 41bp in length and the center was A, but not being detected by the SMRT sequencing technology as of 6mA. Moreover, the rice dataset collected negative samples based on the ratio of GAGG, AGG and AG motifs in the positive
samples. the mouse dataset removed positive samples with modQV greater than 30.

Feature encoding and classification algorithms

One-hot encoding has been used by many researchers for sequence processing with good results (Cheng 2019b; Cheng et al. 2018a; Li et al. 2020; Liu & Li 2019; Zou et al. 2019). One-hot encoding encodes each nucleotide separately. A disadvantage of one-hot is the lack of timing. Therefore, we used Kmer word segmentation instead of one-hot to capture the relationship between bases (Zuo et al. 2017). The role of Kmer was to help Embedding generate better word vectors. We investigated both normal word segmentation and Kmer word segmentation, and the experimental results showed that Kmer word segmentation achieved superior performance. Fig. 1 shows the process of Kmer word segmentation. Our test for the selection of the k value revealed three to be the most suitable value. the experimental results are shown in Fig. 2. When k is 3, the dictionary size is 64; this is not a large parameter. In the feature extraction stage, the embedding layer is used to extract features. we chose the init method for our experiment. The effect of using init or fine-tune is almost the same, and in some cases, the init method is superior. If there is an excellent pretrained model, it is also a good choice. The quality of the features largely determines the effect of the model. Embedding is a very important module in deep learning, and word2vec is one of the best
embedding methods. The encoding of features can be learned dynamically, and a method of secondary learning called finetune can be achieved in deep learning. In this paper, we use simple Init embedding and Kmer word segmentation.

Most methods currently employed for 6mA site recognition are machine learning methods, and most of them are only effective for a single species (Cheng 2019a; Cheng et al. 2019). In reviewing the latest research, we found that there are many similarities between the attention mechanism and the recognition of 6mA sites. Furthermore, LSTM has achieved excellent performance in dealing with sequence problems (Huang et al. 2020a). In constructing the model, we did not adopt a particularly complex structure, and the complexity and effect of the model are not directly related. After feature extraction with the embedding layer, bidirectional LSTM is used to process the sequence features (Xia et al. 2019). The sequence information obtained after LSTM processing can be used to obtain a good feature vector, and this feature is a representation of the overall sequence information. Each time step of LSTM has an output that represents the sequence information up to the current time. The LSTM algorithm can be formulated as follows:

\[i_t = \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{t-1} + b_{hi}) \] \hspace{1cm} (1)

\[f_t = \sigma(W_{if}x_t + b_{if} + W_{hf}h_{t-1} + b_{hf}) \] \hspace{1cm} (2)
\[g_t = \tanh (W_{ig}x_t + b_{ig} + W_{hg}h_{t-1} + b_{hg}) \] (3)
\[o_t = \sigma(W_{io}x_t + b_{io} + W_{ho}h_{t-1} + b_{ho}) \] (4)
\[c_t = f_t \cdot c_{t-1} + i_t \cdot g_t \] (5)
\[h_t = o_t \cdot \tanh (c_t) \] (6)

In general, LSTM can be used to obtain an output at each time step and obtain a feature containing the sequence information (Liu et al.). We can analyze these features to obtain our expected results. The typical approach is to average this information or take the last one and then apply the fully connected layer to obtain the result. Many scholars have added other layers after LSTM to obtain good features. However, the design of these levels of network structure varies according to the specific application scenarios and problems. 6mA-Pred applies the attention mechanism to the output of LSTM and connects the fully connected layer after the attention layer.

The attention layer is added after the LSTM, and the output of the LSTM is analyzed with attention. The inner output of the final output of LSTM and the results of the previous time step can be used to generate the corresponding
then, the Softmax layer is added to the attention layer to obtain the weight. The output of LSTM and this weight are weighted to obtain the final context vector. The last layer of the network is the fully connected layer, and this layer can obtain the probability of each category. Fig. 1 shows the structure of the entire network and describes the Kmer word segmentation and attention mechanism. The attention mechanism adopted by 6mA-Pred is not complicated and acts directly on the output of LSTM. The purpose of 6mA-Pred is to obtain the final feature through the difference between global information and local information. We know that the feature corresponding to the sequence containing the modification site is very different from the feature corresponding to the sequence not containing the modification site. Because of the differences, their final context vectors differ. We used the inner product method to obtain the attention score to reflect the intersection of global information and local information. The inner product is not the only option; other operations are possible. Self-attention in Transformer is also a good choice, but the network structure of the model is more complicated. Dot product can get the intersection between different sequences. 6mA-Pred uses this structure to increase the amount of local information in the final feature.
Performance Evaluation

A good model evaluation standard is crucial for assessing the utility of a model. Different indicators can be used to reveal the advantages and disadvantages of a model from different perspectives. Sensitivity (Sn), specificity (Sp), accuracy (Acc), and Mathew’s correlation coefficient (MCC) are used to evaluate models in machine learning (Chu et al. 2019; Deng et al. 2020; Gong et al. 2019; Jin et al. 2019; Shan et al. 2019; Su et al. 2019a; Su et al. 2019b; Wei et al. 2018a; Wei et al. 2018b; Xu et al. 2018a; Xu et al. 2018b; Xu et al. 2018c; Zhang et al. 2019a; Zhang et al. 2019b). These metrics are formulated as follows:

\[
Sn = \frac{TP}{TP + FN} \quad (7)
\]

\[
Sp = \frac{TN}{TN + FP} \quad (8)
\]

\[
Acc = \frac{TP + TN}{TP + TN + FP + FN} \quad (9)
\]

\[
MCC = \frac{TP * TN - FP * FN}{\sqrt{(TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)}} \quad (10)
\]

TP, TN, FP and FN represent true positive, true negative, false positive, and false negative, respectively. Sn, Sp, Acc, and MCC can be calculated from these indicators. In addition, AUC (area under the ROC curve) was used to evaluate our model (Cheng & Hu 2018; Cheng et al. 2018b; Ding et al. 2019a; Ding et al. 2019b;
Shen et al. 2019a). For further experiments, Table 2 records the hyperparameters of the model.

Performance Comparison with Different Datasets

Methods for identifying sites in the rice genome include iDNA6mA-Rice and SNNRice6mA, which are excellent models. After comparing different features in feature extraction, the developers of iDNA6mA-Rice chose binary encoding, and they chose RF (random forest) for the classifier. Both the choice of feature method and the performance of the classifier are excellent. iDNA6mA-Rice was applied to various scale segmentation experiments on a rice dataset and achieved very good results. 6mA-Pred was applied in a similar experiment with the rice dataset. The results are shown in Fig 3. The performance of 6mA-Pred was better than iDNA6mA-Rice at all ratios. However, iDNA6mA-Rice is also a very good model, and the performance difference between the two models was very small. SNNRice6mA also performs very well for rice genes. Unlike iDNA6mA-Rice, SNNRice6mA uses a deep learning model. SNNRice6mA uses one-hot in the feature encoding stage and has achieved good results. Regarding the overall network structure, SNNRice6mA uses a stack structure of CNN (convolutional neural networks). The network structure of SNNRice6mA was adjusted to derive...
SNNRice6mA-large, which also achieved good results. SNNRice6mA and SNNRice6mA-large were employed for five-fold cross-validation on the rice dataset. Table 3 shows the results of comparisons among the different models. The performance of 6mA-Pred was excellent compared to that of the other models.

The model also performed well on the *Mus musculus* dataset. iDNA6mA-PseKNC has achieved good results in predicting 6mA loci in the *Mus musculus* genome and uses machine learning methods for analysis. iDNA6mA-PseKNC uses NCP as the feature algorithm, and many experiments have been conducted for this feature. In addition, iDNA6mA-PseKNC employs the SVM classifier and achieved very good results. 6mA-Pred is also effective in identifying 6mA sites in the *Mus musculus* genome. In this study, two experiments were conducted with 6mA-Pred, one involving five-fold cross-validation on the dataset, and one involving independent testing by splitting the dataset. Table 4 shows the results of these two experiments and the results for iDNA6mA-PseKNC. iDNA6mA-PseKNC was evaluated via the jackknife test; for deep learning methods, leave-one-out cross-validation is time consuming and not representative. For evaluation of 6mA-Pred, five-fold cross-validation (Fang et al. 2019; He et al. 2018a; Liu 2019; Xiong et al. 2018; Xu et al. 2019b; Zhu et al. 2019) and segmentation of the dataset were employed. As shown in Table 4, the performance of 6mA-Pred remained good.
Among the models used for identifying the 6mA sites of human genes, SICD6mA is currently the best model. SICD6mA is a deep learning model and uses GRU as the basic unit. SICD6mA performs well not only for human genes but also for rice genes. The developers of SICD6mA contributed data and performed extensive data processing. We used the training set and test set provided by SICD6mA’s developers for our experiments. SICD6mA does not use one-hot for encoding; rather, it uses 3-mer. Two basic units, BGRU and UGRU, are used in the network model structure, and a two-layer fully connected layer and a Softmax layer are used to improve the network. The experimental results revealed that the performance of SICD6mA was very good. Table 5 shows the experimental results for 6mA-Pred, which were very similar to the SICD6mA results. These findings proved that 6mA-Pred is very effective in identifying 6mA sites in human genes.

According to the previous conclusions, we conducted related experiments on traditional machine learning methods. NCP and KMER were used in experiments as excellent feature extraction methods. SVM, RF and XGB were excellent algorithms and performed well in previous studies. Therefore, we use them to carry out further experiments. The experimental results are shown in Fig. 4.

Conclusion
Through the analysis of current studies and the performance of a large number of experimental comparisons, we found that 6mA-Pred is an effective method for identifying 6mA sites. LSTM performs well in processing sequence features and can obtain good features. In addition, the attention mechanism we used is effective for identifying 6mA sites. The combination of LSTM and Attention mechanism can produce a theoretically excellent model, and the experiment proves that this conclusion is correct. Related methods will be considered for RNA and protein modification prediction (Dou et al. 2020; He et al. 2018b; Huang & Li 2018) in the future.

The previous studies on this topic are excellent and provide theoretical and experimental support for our research. The attention mechanism in 6mA-Pred can be improved; for example, self-attention or a combination of two attention mechanisms could be used to obtain a better context vector. It is also possible to use a combination of CNN and attention mechanism to obtain an excellent method (Su et al. 2014). These possibilities warrant investigation.
Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 61902259), the Natural Science Foundation of Guangdong province (grant no. 2018A0303130084).

Declarations

Conflict of Interest sections

There is no conflict of interest in this paper and the data is available, which can be obtained from https://github.com/huangqianfei0916/6ma-rice.

Author Contributions

Qianfei Huang and Wenyang Zhou are mainly responsible for the development of experimental models and other work. Fei Guo, Lei Xu and Lichao Zhang's main task was to guide the experiment.
References

Basith S, Manavalan B, Shin TH, and Lee G. 2019. SDM6A: A web-based integrative machine-learning framework for predicting 6mA sites in the rice genome. *Molecular Therapy-Nucleic Acids* 18:131-141.

Chen J, Han G, Xu A, and Cai H. 2019a. Identification of multidimensional regulatory modules through multi-graph matching with network constraints. *IEEE Transactions on Biomedical Engineering* 67:987-998.

Chen J, Peng H, Han G, Cai H, and Cai J. 2019b. HOGMNC: a higher order graph matching with multiple network constraints model for gene–drug regulatory modules identification. *Bioinformatics* 35:602-610.

Chen W, Lv H, Nie F, and Lin H. 2019c. i6mA-Pred: Identifying DNA N6-methyladenine sites in the rice genome. *Bioinformatics* 35:2796-2800.

Cheng L. 2019a. Computational and Biological Methods for Gene Therapy. *Curr Gene Ther* 19:210. 10.2174/156652321904191022113307

Cheng L. 2019b. Computational and Biological Methods for Gene Therapy. *Current Gene Therapy* 19:210-210.

Cheng L, and Hu Y. 2018. Human Disease System Biology. *Curr Gene Ther* 18:255-256. 10.2174/1566523218666181010101114

Cheng L, Hu Y, Sun J, Zhou M, and Jiang Q. 2018a. DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function. *Bioinformatics* 34:1953-1956. 10.1093/bioinformatics/bty002

Cheng L, Zhao H, Wang P, Zhou W, Luo M, Li T, Han J, Liu S, and Jiang Q. 2019. Computational Methods for Identifying Similar Diseases. *Molecular therapy Nucleic acids* 18:590-604.

Cheng L, Zhuang H, Yang S, Jiang H, Wang S, and Zhang J. 2018b. Exposing the Causal Effect of C-Reactive Protein on the Risk of Type 2 Diabetes Mellitus: A Mendelian Randomization Study. *Front Genet* 9:657. 10.3389/fgene.2018.00657

Chu Y, Kaushik AC, Wang X, Wang W, Zhang Y, Shan X, Salahub DR, Xiong Y, and Wei DQ. 2019. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features. *Briefings in Bioinformatics*. 10.1093/bib/bbz152

Deng Y, Xu X, Qiu Y, Xia J, Zhang W, and Liu S. 2020. A multimodal deep learning framework for predicting drug-drug interaction events. *Bioinformatics*. 10.1093/bioinformatics/btaa501
Ding Y, Tang J, and Guo F. 2019a. Identification of drug-side effect association via multiple information integration with centered kernel alignment. *Neurocomputing* 325:211-224.

https://doi.org/10.1016/j.neucom.2018.10.028

Ding Y, Tang J, and Guo F. 2019b. Identification of Drug-Side Effect Association via Semisupervised Model and Multiple Kernel Learning. *IEEE Journal of Biomedical and Health Informatics* 23:2619-2632.

10.1109/jbhi.2018.2883834

Dou LJ, Li XL, Ding H, Xu L, and Xiang HK. 2020. Is There Any Sequence Feature in the RNA Pseudouridine Modification Prediction Problem? *Molecular Therapy-Nucleic Acids* 19:293-303.

10.1016/j.omtn.2019.11.014

Fang T, Zhang Z, Sun R, Zhu L, He J, Huang B, Xiong Y, and Zhu X. 2019. RNAm5CPred: Prediction of RNA 5-Methylcytosine Sites Based on Three Different Kinds of Nucleotide Composition. *Mol Ther Nucleic Acids* 18:739-747. 10.1016/j.omtn.2019.10.008

Feng P, Yang H, Ding H, Lin H, Chen W, and Chou K-C. 2019. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. *Genomics* 111:96-102.

Gong Y, Niu Y, Zhang W, and Li X. 2019. A network embedding-based multiple information integration method for the MiRNA-disease association prediction. *BMC Bioinformatics* 20:468. 10.1186/s12859-019-3063-3

Hao L, Dao F-Y, Guan Z-X, Zhang D, Tan J-X, Zhang Y, Chen W, and Lin H. 2019. iDNA6mA-Rice: a computational tool for detecting N6-methyladenine sites in rice. *Frontiers in Genetics* 10:793.

He J, Fang T, Zhang Z, Huang B, Zhu X, and Xiong Y. 2018a. PseUI: Pseudouridine sites identification based on RNA sequence information. *BMC Bioinformatics* 19:306. 10.1186/s12859-018-2321-0

He W, Jia C, and Zou Q. 2019. 4mCPred: Machine Learning Methods for DNA N4-methylcytosine sites Prediction. *Bioinformatics* 35:593-601. 10.1093/bioinformatics/bty668

He W, Wei L, and Zou Q. 2018b. Research Progress in Protein Post-Translational Modification Site Prediction. *Briefings in Functional Genomics* 18:220-229.

Hu B, Zheng L, Long C, Song M, Li T, Yang L, and Zuo Y. 2019. EmExplorer: a database for exploring time activation of gene expression in mammalian embryos. *Open Biol* 9:190054. 10.1098/rsob.190054

Huang GH, and Li JC. 2018. Feature Extractions for Computationally Predicting Protein Post-Translational Modifications. *Current Bioinformatics* 13:387-395. 10.2174/1574893612666170707094916
Huang Q, Zhang Y, Peng H, Dan T, Weng W, and Cai H. 2020a. Deep Subspace Clustering to Achieve Jointly Latent Feature Extraction and Discriminative Learning. *Neurocomputing*.

Huang QF, Zhang J, Guo F, and Zou Q. 2020b. 6mA-RicePred: A method for identifying DNA N6-methyladenine sites in the rice genome based on feature fusion. *Frontiers in Plant Science* 11:4.

Jin Q, Meng Z, Pham TD, Chen Q, Wei L, and Su R. 2019. DUNet: A deformable network for retinal vessel segmentation. *Knowledge-Based Systems* 178:149-162.

Kong L, and Zhang L. 2019. i6mA-DNCP: computational identification of DNA N6-methyladenine sites in the rice genome using optimized dinucleotide-based features. *Genes* 10:828.

Li J, Pu Y, Tang J, Zou Q, and Guo F. 2020. DeepAVP: a dual-channel deep neural network for identifying variable-length antiviral peptides. *IEEE Journal of Biomedical and Health Informatics*:1 - 1. 10.1109/JBHI.2020.2977091

Liu B. 2019. BioSeq-Analysis: a platform for DNA, RNA, and protein sequence analysis based on machine learning approaches. *Briefings in Bioinformatics* 20:1280-1294.

Liu B, Gao X, and Zhang H. 2019a. BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA, and protein sequences at sequence level and residue level based on machine learning approaches. *Nucleic Acids Research* 47:e127.

Liu B, Li C, and Yan K. DeepSVM-fold: Protein fold recognition by combining Support Vector Machines and pairwise sequence similarity scores generated by deep learning networks. *Briefings in Bioinformatics* DOI: 10.1093/bib/bbz098.

Liu B, and Li K. 2019. iPromoter-2L2.0: identifying promoters and their types by combining Smoothing Cutting Window algorithm and sequence-based features. *Molecular Therapy-Nucleic Acids* 18:80-87.

Liu D, Li G, and Zuo Y. 2019b. Function determinants of TET proteins: the arrangements of sequence motifs with specific codes. *Brief Bioinform* 20:1826-1835. 10.1093/bib/bby053

Liu Z, Dong W, Jiang W, and He Z. 2019c. csDMA: an improved bioinformatics tool for identifying DNA 6 mA modifications via Chou’s 5-step rule. *Scientific reports* 9:1-9.

Patil K, and Chouhan U. 2019. Relevance of Machine Learning Techniques and Various Protein Features in Protein Fold Classification: A Review. *Current Bioinformatics* 14:688-697. 10.2174/1574893614666190204154038

Ren F, Yang C, Qiu Q, Zou N, Cai C, Hou C, and Zou Q. 2019. Exploiting Discriminative Regions of Brain Slices
based on 2D CNNs for Alzheimer’s Disease Classification. *Ieee Access* 7:181423 - 181433.

Shan X, Wang X, Li CD, Chu Y, Zhang Y, Xiong Y, and Wei DQ. 2019. Prediction of CYP450 Enzyme-Substrate Selectivity Based on the Network-Based Label Space Division Method. *Journal of Chemical Information and Modeling* 59:4577-4586. 10.1021/acs.jcim.9b00749

Shen Y, Ding Y, Tang J, Zou Q, and Guo F. 2019a. Critical evaluation of web-based prediction tools for human protein subcellular localization. *Briefings in Bioinformatics*. 10.1093/bib/bbz106

Shen Y, Tang J, and Guo F. 2019b. Identification of protein subcellular localization via integrating evolutionary and physicochemical information into Chou’s general PseAAC. *Journal of Theoretical Biology* 462:230-239. https://doi.org/10.1016/j.jtbi.2018.11.012

Su J, Wang Y, Xing X, Liu J, and Zhang Y. 2014. Genome-wide analysis of DNA methylation in bovine placentas. *BMC Genomics* 15:12. 10.1186/1471-2164-15-12

Su R, Liu X, Wei L, and Zou Q. 2019a. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response. *Methods* 166:91-102. 10.1016/j.ymeth.2019.02.009

Su R, Wu H, Xu B, Liu X, and Wei L. 2019b. Developing a Multi-Dose Computational Model for Drug-induced Hepatotoxicity Prediction based on Toxicogenomics Data. *IEEE/ACM Transactions on Computational Biology and Bioinformatics* 16:1231-1239.

Sun J, Zhang Z, Bao S, Yan C, Hou P, Wu N, Su J, Xu L, and Zhou M. 2020. Identification of tumor immune infiltration-associated lncRNAs for improving prognosis and immunotherapy response of patients with non-small cell lung cancer. *J Immunother Cancer* 8. 10.1136/jitc-2019-000110

Wang H, Ding Y, Tang J, and Guo F. 2020a. Identification of membrane protein types via multivariate information fusion with Hilbert-Schmidt Independence Criterion. *Neurocomputing* 383:257-269. 10.1016/j.neucom.2019.11.103

Wang Z, He W, Tang J, and Guo F. 2020b. Identification of Highest-Affinity Binding Sites of Yeast Transcription Factor Families. *Journal of Chemical Information and Modeling* 60:1876-1883. 10.1021/acs.jcim.9b01012

Wei L, Hu J, Li F, Song J, Su R, and Zou Q. 2018a. Comparative analysis and prediction of quorum-sensing peptides using feature representation learning and machine learning algorithms. *Briefings in Bioinformatics*. 10.1093/bib/bby107

Wei L, Zhou C, Chen H, Song J, and Su R. 2018b. ACPred-FL: a sequence-based predictor based on effective feature representation to improve the prediction of anti-cancer peptides. *Bioinformatics* 34:4007-4016.
Xia W, Xu J, Yu G, Yao G, Xu K, Ma X, Zhang N, Liu B, Li T, Lin Z, Chen X, Li L, Wang Q, Shi D, Shi S, Zhang Y, Song W, Jin H, Hu L, Bu Z, Wang Y, Na J, Xie W, and Sun YP. 2019. Resetting histone modifications during human parental-to-zygotic transition. *Science* 365:353-360. 10.1126/science.aaw5118

Xiong Y, Wang Q, Yang J, Zhu X, and Wei DQ. 2018. PredT4SE-Stack: Prediction of Bacterial Type IV Secreted Effectors From Protein Sequences Using a Stacked Ensemble Method. *Front Microbiol* 9:2571. 10.3389/fmicb.2018.02571

Xu A, Chen J, Peng H, Han G, and Cai H. 2019a. Simultaneous interrogation of cancer omics to identify subtypes with significant clinical differences. *Frontiers in Genetics* 10:236.

Xu B, Liu D, Wang Z, Tian R, and Zuo Y. 2020a. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family. *Cell Mol Life Sci*. 10.1007/s00018-020-03594-9

Xu H, Hu R, Jia P, and Zhao Z. 2020b. 6mA-Finder: a novel online tool for predicting DNA N6-methyladenine sites in genomes. *Bioinformatics* 36:3257-3259.

Xu L, Liang G, Liao C, Chen G-D, and Chang C-C. 2018a. An Efficient Classifier for Alzheimer’s Disease Genes Identification. *Molecules* 23:3140.

Xu L, Liang G, Liao C, Chen G-D, and Chang C-C. 2019b. k-Skip-n-Gram-RF: A Random Forest Based Method for Alzheimer's Disease Protein Identification. *Frontiers in Genetics* 10. 10.3389/fgene.2019.00033

Xu L, Liang G, Shi S, and Liao C. 2018b. SeqSVM: A Sequence-Based Support Vector Machine Method for Identifying Antioxidant Proteins. *International Journal of Molecular Sciences* 19:1773.

Xu L, Liang G, Wang L, and Liao C. 2018c. A Novel Hybrid Sequence-Based Model for Identifying Anticancer Peptides. *Genes* 9:158.

Yan C, Zhang Z, Bao S, Hou P, Zhou M, Xu C, and Sun J. 2020. Computational Methods and Applications for Identifying Disease-Associated lncRNAs as Potential Biomarkers and Therapeutic Targets. *Mol Ther Nucleic Acids* 21:156-171. 10.1016/j.omtn.2020.05.018

Yu H, and Dai Z. 2019. SNNRice6mA: a deep learning method for predicting DNA N6-methyladenine sites in rice genome. *Frontiers in genetics* 10:1071.

Zhang W, Jing K, Huang F, Chen Y, Li B, Li J, and Gong J. 2019a. SFLLN: A sparse feature learning ensemble method with linear neighborhood regularization for predicting drug–drug interactions. *Information Sciences* 497:189-201. https://doi.org/10.1016/j.ins.2019.05.017

Zhang W, Li Z, Guo W, Yang W, and Huang F. 2019b. A fast linear neighborhood similarity-based network link...
Zhou M, Hu L, Zhang Z, Wu N, Sun J, and Su J. 2018. Recurrence-Associated Long Non-coding RNA Signature for Determining the Risk of Recurrence in Patients with Colon Cancer. *Mol Ther Nucleic Acids* 12:518-529.

Zhou M, Zhao H, Xu W, Bao S, Cheng L, and Sun J. 2017. Discovery and validation of immune-associated long non-coding RNA biomarkers associated with clinically molecular subtype and prognosis in diffuse large B cell lymphoma. *Mol Cancer* 16:16. 10.1186/s12943-017-0580-4

Zhu X, He J, Zhao S, Tao W, Xiong Y, and Bi S. 2019. A comprehensive comparison and analysis of computational predictors for RNA N6-methyladenosine sites of *Saccharomyces cerevisiae*. *Brief Funct Genomics* 18:367-376. 10.1093/bfgp/elz018

Zou Q. 2019. Latest Machine Learning Techniques for Biomedicine and Bioinformatics. *Current Bioinformatics* 14:176-177. 10.2174/157489361403190220112855

Zou Q, and Ma Q. 2019. The application of machine learning to disease diagnosis and treatment. *Mathematical Biosciences* 320:108305. 10.1016/j.mbs.2019.108305

Zou Q, Xing P, Wei L, and Liu B. 2019. Gene2vec: Gene Subsequence Embedding for Prediction of Mammalian N6-Methyladenosine Sites from mRNA. *rna* 25:205-218. 10.1261/rna.069112.118

Zuo Y, Li Y, Chen Y, Li G, Yan Z, and Yang L. 2017. PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition. *Bioinformatics* 33:122-124. 10.1093/bioinformatics/btw564
Table 1 (on next page)

Table 1 | All datasets.
Dataset	Positive	Negative	Total
Rice	154000	154000	308000
Mus musculus	1934	1934	3868
Human_Train	491885	491885	983770
Human_Test	122971	122971	245942
Table 2 | The parameters of each experiment.

Parameter	Value
Parameter1	Value1
Parameter2	Value2
Parameter3	Value3

(continued on next page)
Experiment	lr	hidden_dim	dropout	Bach_size
Fig 2	0.001	100	0.3	64
Table 3	0.001	100	0.3	64
Table 4-cv	0.005	100	0.3	64
Table 4-ind	0.005	100	0.3	64
Table 5	0.001	100	0.3	64
Table 3 (on next page)

Table 3 | Performance comparison between 6mA-Pred and other methods via 5-fold cross validation based on the rice dataset.
Method	Sn (%)	Sp (%)	Acc (%)	MCC	AUC
SNNRice6mA	93.67	86.74	90.20	0.81	0.96
SNNRice6mA-large	94.33	89.75	92.04	0.84	0.97
iDNA6mA-rice	93.00	90.50	91.70	0.84	0.96
6mA-Pred	95.66	92.38	94.02	0.88	0.981
Table 4	Performance of 6mA-Pred evaluated via 5-fold cross validation and independent testing based on the *Mus musculus* dataset.				
Method	Sn (%)	Sp (%)	Acc (%)	MCC	AUC
-----------------------	--------	--------	---------	-----	-----
6mA-Pred-cv	93.8	98.5	96.1	0.92	0.981
6mA-Pred-ind	87.8	98.4	93.8	0.861	0.949
IDNA6mA-PseKNC	93.28	100	96.73	0.93	-
Table 5 (on next page)

Table 5 | Performance of 6mA-Pred evaluated via independent testing based on the human dataset.
Method	Sn (%)	Sp (%)	Acc (%)	MCC	AUC
6mA-Pred-ind	93.28	94.2	93.34	0.87	0.98
SICD6mA	93.33	95.00	93.66	0.874	-
Figure 1

Figure 1 | A flow chart of the structure of 6mA-Pred.
Figure 2

Figure 2 | Performance of 6mA-Pred evaluated via independent testing based on different k-values.
Figure 3 | Predictive performance at different ratios for the rice dataset.
Figure 4

Figure 4 | Performance comparison between 6mA-Pred and other machine learning methods independent testing based on all datasets.