Antibacterial Activity and Time-kill Assay of *Terminalia catappa* L. and *Nigella sativa* L. against Selected Human Pathogenic Bacteria

Sowmya and Koteshwar Anandrao Raveesha

1Center for Innovative Studies in Herbal Drug Technology, Department of Studies in Botany, University of Mysore, Mysuru - 570 006, Karnataka, India.
2Department of Water and Health, Faculty of Life Sciences, JSS Academy of Higher Education and Research Sri Shivaratreeshwara Nagara, Mysuru - 570 015, Karnataka, India.

Abstract

The current investigation aims to test the susceptibility of human pathogenic clinical isolates and MTCC strains to leaf and seed extracts of *Terminalia catappa* and *Nigella sativa*. Disc diffusion assay, microdilution assay and minimum Bactericidal Concentration investigated the susceptibility of bacteria to the test extracts. The active extract was subjected to phytochemical screening, separation of the phytochemicals by Thin Layer Chromatography, bioactivity guided assay and Time-kill assay. Acetone and methanol extracts of *T. catappa* revealed significant inhibition of clinical origin *Staphylococcus aureus* followed by *Proteus vulgaris* and the MTCC strains *Staphylococcus aureus*, *Salmonella typhi*, *Pseudomonas aeruginosa* and *Bacillus subtilis*. *Nigella sativa* inhibited the growth of clinical origin *Staph. aureus* and MTCC strain of *Staph. aureus*, *Salmonella typhi* and *B. subtilis*. Minimum inhibitory concentration for all the test bacteria was reported in the range of 5000μg/ml to 9 μg/ml in *T. catappa* extract. Most sensitive being the clinical isolate *Staph. aureus* and *Proteus vulgaris*. The bactericidal concentration for the test bacteria was found to be between 5000μg/ml and 625μg/ml. Phytochemical analysis of leaf extracts of *T. catappa* found to have dominated by polyphenols (Terpenoids, steroids, flavonoids, flavones, saponins and tannins) and *N. sativa* extracts recorded the presence of alkaloids, proteins and oils and fats. TLC profiling of the acetone extract revealed many antibacterial active bands. Bands having Retention factor 0.47 and 0.52 were active against the test bacteria. Time kill assay of the acetone extract of *T. catappa* were carried out for the first time. The extract exhibited dose dependent bactericidal and bacteriostatic activity against the clinical isolates.

Keywords: Combretaceae, Terpenoids, Polyphenols, Thymoquinone, Bioautography, Time-kill assay
INTRODUCTION

Recently there has been increase in the spread of untreatable microbial infections and bacteria cause 90% of the infections1 World Health Organization reports that infectious diseases cause 50% deaths. The non-selective use of synthetically originated antibiotics, microorganisms have led to the development of multidrug resistance, which poses a serious health concern2. The resistance to drug may be caused mostly by the unregulated use of antibiotics and poor hygienic conditions and affects severely in every aspect of life 3. The escalating resistance in microorganisms is due to the phenomenon of genetic mutations or acquired antibiotic resistant genes influenced by ill-suited use of antibiotics1. Additionally antibiotics are associated with unfavorable consequences on the host including hypersensitivity, allergic reactions and immune-suppression4. The multiple drug resistance has enforced researchers in search of new drugs with antimicrobial property from different sources like medicinal plants, which serve as acceptable source of novel antimicrobial agents5. Rational localization of biologically active components from folk medicines and systemic evaluation will result in finding of novel efficacious drugs, which are potentially active against pathogens6. Antimicrobial drugs with efficacious mode of action should be developed in order to surpass the downside of current antimicrobial drugs7. A large number of medicinal plants are reported to exhibit antimicrobial activity2. Reports of WHO states that medicinal plants would be the best root to acquire diverse of drugs5. In this context, plants promise a source of natural antimicrobial agents8. Antimicrobial activities of plants are ascribed to the presence of phytochemicals like tannins, phenols, alkaloids, terpenoids and flavonoids9. The application of plant based drugs in the treatment against pathogens is obtaining great acceptance because of scientific interest and non toxicity properties 10.

Approximately 119 drugs isolated from plants are used in treating infectious diseases worldwide11. Not less than 50% of the drugs which are used in treating clinically infectious diseases accounts to have originated from natural and natural product derivatives12. Since phytochemicals have the ability to inhibit the growth of infectious microbes, many plants are still being used for their antimicrobial properties and many other biological activities. Inspite of existence of vigorous antimicrobial drugs, the emergence of resistance microbes has created an immense interest in the exploration and the outcome of efficacious drugs13.

Terminalia catappa is a large tropical tree of the family Combretaceae. Different parts of the plant are used in folklore medicine and studies have revealed various medicinal properties15. Various research disclose the medicinal uses like microbial inhibition of leaf aqueous and methanolic extract of the plant16. Bacterial inhibitory activity of leaf aqueous extract17, anti-inflammatory property of leaf ethanolic extract18, wound healing activity of bark, antioxidant and radical scavenging activity of leaf aqueous extract, anticancer and anti-aging activity of ethanol and aqueous extract of leaves have also been reported19. Anti-methicillin potential of phytochemicals of T.catappa have also been evident20. Insilico studies of compounds from T. catappa are responsible for hepatoprotective and hepatotoxic properties21. Extracts of the leaves of the plant also possess anticancer, anti-HIV reverse transcriptase, hepatoprotective, Anti-inflammatory, Anti-hepatitis and Aphrodisiac effects22. Phytochemicals include tannins (Punicalagin, Punicalin, Chebulagic acid, geranin, granitin B), flavonoids (Vitexin, Rutin, Isovitexin), and Terpenoids (Usolic acid, Asiatic acid) which are responsible for therapeutic activity23.

Nigella sativa, belongs to the family Ranunculaceae24. It is native to Mediterranean regions such as South west Asia, Southern Europe and North Africa25. Seeds contain yellowish volatile oil, fixed oil, alkaloids, saponins, minerals and vitamins26. The reported studies related to Nigella sativa have illustrated wide range of biological activities such as antioxidant27, anti-inflammatory28, antidiabetic29, anti prostate cancer effects30, antibacterial31, immunomodulatory effect32, and hepatoprotective33.

Secondary metabolite analysis found that seeds contain two types of alkaloids, isoquinone alkaloids (Nigellimine – N oxide) and pyrazole alkaloids (Nigelicine and Nigellidine)34. Essential phytoconstituents also include thymoquinone,
P-cymene, 4- Terpineol, carvacrol, t- anethol, longifoline, thymol, thymohydroquinone and dithymoquinone additionally they have a water soluble pentacyclic triterpene, alpha- hedarin and saponins as anticancer agents 35.

MATERIALS AND METHODS
Preparation of the plant extract
Mature leaf material was collected from fields in and around Mysuru, Karnataka. The leaves were shade dried and powdered using laboratory blender. N. sativa seeds were collected from the local market, powdered and used for successive solvent extraction by soxhlet extractor using polar and non-polar solvents. After extraction the solvents were evaporated to dryness under reduced pressure and preserved the extracts at 4°C for future analysis.

Microorganisms and growth conditions:
Human pathogenic bacteria were obtained from MTCC Chandigarh, Viz, B.subtilis (MTCC 121), B.cereus (MTCC 1272), Pseudo.aeruginosa (MTCC424) Salm. typhi (MTCC 733), Escherichia coli (MTCC 7410) and Staph.aureus (MTCC 7443). Human pathogenic clinical isolates were provided by Microbiology department, Government Medical College, Mysuru, Viz, Escherichia coli, Proteus vulgaris, Klebsiella pneumoniae, Staphylococcus aureus and Salmonella typhi. The pathogens were maintained on Muller Hinton agar in glass tubes. Bacteria were resuscitated by sub culturing from stock onto Muller Hinton agar plates followed by incubation overnight for their optimum growth.

Antibacterial activity of the plant extracts
Antibacterial susceptibility test by Disc diffusion assay
Antibacterial potency of the test plant extracts were done by disc diffusion method employing the CLSI M02-A document 36. Inoculums were prepared and adjusted to McFarland standard with cell density of 1to 1-2 X10^8 CFU/ml. Standardized inoculum (0.1ml) was swabbed to the previously solidified MH agar plate. Sterile discs were loaded with test plant extract (100mg/ml) and impregnated onto the plates followed by incubation for 18-24 hours at 35 ±2°C. Standard antibiotics and solvents were employed as positive and negative control. All experiments were carried out in triplicates. Zone of inhibition (ZOI) around the disc was measured in mm.

Microbroth dilution method for determining Minimum inhibitory concentration (MIC) and Minimum Bactericidal Concentration (MBC)
MIC was established by employing 96 well microtiter plate according to the CLSI M07-A9 document 37. The test plant extract, which showed the inhibitory activity, were selected for determining MIC and MBC. The test plant extract were serially diluted two fold to obtain concentration of 5000-9µg/ml. The experimental set up included reference drug controls and solvent as positive and negative controls respectively. Aliquot of standardized inoculum (1.5 X 10^8 colony forming units/ml) was added to all the wells. The micro dilution plate was covered to avoid drying followed by incubation. Inhibition of bacterial growth was confirmed by addition of 20µl of aqueous solution of 2, 3,5-Triphenyl tetrazolium chloride (TTC) and re-incubated for 4-5h. The colorless well was designated as the MIC, which inhibited the growth of bacteria. Change of colour from colourless to pink indicated the presence of viable cells. MBC was ascertained by sub culturing 10µl of test dilution from the lowest concentration well by streaking on the previously sterilized and solidified MH agar with overnight incubation at optimum temperature. The well, which gave no bacterial colony on the agar medium, was designated as MBC.

Phytochemical composition of the active test extracts
The test extracts were subjected to qualitative phytochemical analysis according to the established procedures to determine the presence of different class of secondary phytochemicals 38,39. Thin layer chromatography (TLC) of the active extracts
The active extracts were subjected for separation of phytochemicals. Based on the review of literature and slight modification, EMW (Ethyl acetate: methanol: water) with 40:5.4:4 ratio showed better separation of the compounds and it was best-suited eluent system for the separation of phytocompounds from members of Combretaceae. The retention factor (Rf) of the separated phytochemicals was calculated 40.

TLC bioautography
Agar overlay technique 41 was adopted with minor modifications to locate the antibacterial bands. The TLC plates (silica gel G f^254, Merk) were
spotted with test plant extract (acetone extract) and developed in the pre saturated developing chamber using EMW as eluent system. After the solvent front reached the optimum distance the chromatogram was removed and visualized under long and short UV to locate the separated compounds. The chromatogram was dried overnight and subjected to overlay bioautography. One milliliter of standardized test inoculum was mixed with 10ml molten Muller Hinton agar. TLC chromatograms were placed in the sterilized plates and thin layer of media inoculated with the test bacteria was flooded on the chromatogram. Plates were incubated overnight at 37°C. ZOI around the separated phytochemicals can be seen as a clear area without the growth of the test bacteria.

Fig. 1 & 2. Antibacterial activity of Acetone extract (Fig:1) and Methanol extract (Fig:2) of *T.catappa* on human pathogenic clinical isolates. Data are represented in mean ±SEM. Different letters in the bars depict the significant difference at P<0.05. Error bars signify standard error. Inhibition zones are presented in millimeter (mm).

Fig. 3 & 4. Antibacterial activity of Methanol extract (Fig:3) and Acetone extracts (Fig:4) of *T.catappa* on human pathogenic bacteria (MTCC). Data are represented in mean ±SEM. Different letters in the bars indicate statistical difference (P<0.05). Error bars signify standard error. Inhibition zones are presented in millimeter (mm).
a confirmatory test the chromatograms were flooded with microbiological agar containing TTC and further incubates for 30 minutes for optimum colour development. The ZOI is seen as white zone against the pink background.

Time kill assay

Protocol of kill time assay was adopted with slight modifications. The active extract of *T. catappa* was set at a concentration of 4MIC and 8MIC. A control tube was maintained without the test extracts. Each tube was then inoculated with standardized suspension of clinical isolates of *S.aureus* and *P.vulgaris* At prefixed time points aliquots were withdrawn from each concentration diluted serially (10⁻¹ to 10⁻⁴) and aliquots were plated on agar plates. Colony counts were performed after overnight incubation at 37°C in ambient air. Colony counts were averaged and expressed as log_{10} cfu/ml.

Statistical analysis

Values are presented as Mean ±SEM. ANOVA was employed to determine the difference in specific means followed by tukey’s post hoc test at P<0.05. Graphpad prism (version 8) and Microsoft excel 2007 was used in generating graphs and analyzing the data.

RESULTS

Disc diffusion assay

The test organisms exhibited different sensitivity for the extracts tested which is shown in Fig. 1 to 4. All the test pathogens exhibited significant sensitivity towards acetone and methanol extracts of *T.catappa*. Acetone extract had good inhibitory activity against the test organisms in contrast with the methanol extract. Significant inhibition was observed against the clinical isolate *Staph.aureus* (22.5mm) followed

![Fig. 5. MIC of active extracts of *T. catappa* on human pathogenic bacteria.](image)

![Fig. 6. MIC of active extracts of *T. catappa* on human pathogenic clinical isolates.](image)
by *P. vulgaris* (20.5mm), *Salm. typhi* and *Kleb. pneumoniae* with inhibition zone 16.4mm and 12.4mm respectively. The MTCC strains also exhibited sensitivity towards the acetone and methanol extracts with zone of inhibition ranging between 11.7mm and 23.3mm. Hexane extract of *N. sativa* inhibited the growth of clinical isolate of *Staph. aureus* with inhibition zone 19.08mm,

Micro dilution assay

Considering the results obtained from disc diffusion assay, deducing the lowest inhibitory concentration (MIC) of active extracts was considered necessary and the results are shown in Fig. 5 and 6.

Of all the organisms tested, the clinical isolate *Staph. aureus* and *P. vulgaris* was the

Table 1. Minimum Inhibitory and Minimum Bactericidal Concentration and of acetone and methanol extract of *T. catappa* on human pathogenic bacteria (MTCC)

MTCC strains	Acetone extract	Methanol extract		
	MIC	MBC	MIC	MBC
S. aureus	9	*	78	*
S. typhi	9	625	78	5000
B. cereus	1250	2500	2500	5000
B. subtilis	1250	*	1250	*
P. aeruginosa	625	5000	625	5000

FN: Values presented in μg/ml; *: Indicates no MBC established

Table 2. Minimum Inhibitory and Minimum Bactericidal Concentration of acetone and methanol extract of *T. catappa* on human pathogenic clinical isolates

Clinical isolates	Acetone extract	Methanol extract		
	MIC	MBC	MIC	MBC
S. aureus	39	1250	78	5000
P. vulgaris	312	5000	312	5000
K. pneumoniae	1250	5000	1250	5000
S. typhi	625	5000	625	5000

FN: Values presented in μg/ml
most sensitive to the acetone extract with lowest concentration of 39μg/ml and 312μg/ml respectively, *Kleb. pneumoniae* and *Salm. typhi* were less susceptible with concentration 1250μg/ml and 625μg/ml respectively. The acetone extract also exhibited inhibitory effect at the lowest concentration against all the MTCC strains tested except *E. coli* with concentrations between 125μg/ml and 9μg/ml.

Methanol extract showed inhibitory activity towards the test pathogens but slightly less effective compared to the acetone extract having concentration between 5000μg/ml and 625μg/ml for clinical isolated bacteria. The minimum concentration of methanol extracts required against *B. subtilis* (MTCC 121) *Salm. typhi* (MTCC 733), *Staph. aureus* (MTCC 7443), *Pseudo. aeruginosa* (MTCC 424), and *B. cereus* (MTCC 1272) was in the range between 1250μg/ml and 78μg/ml.

Minimum Bactericidal Concentration

Acetone extract reported bactericidal effect at 1250μg/ml for clinical isolate *Staph. aureus* where as the bactericidal effect for *Kleb.*

![Agar overlay bioautography of acetone extract of T.catappa leaf showing inhibition of S.aureus (MTCC 7443) at Rf values 0.47, 0.2 and 0.07.](image1)

![Agar overlay bioautography of acetone extract of T.catappa leaf showing inhibition of S.typhi (MTCC 733) at Rf values 0.92, 0.79, 0.59, 0.52, 0.47, 0.39, 0.2 and 0.07.](image2)

![Agar overlay bioautography of acetone extract of T.catappa leaf showing inhibition of S.aureus (clinical isolate) at Rf values 0.47, 0.39, 0.2 and 0.07.](image3)
pneumoniae, Salm. typhi and P. vulgaris was 5000μg/ml. MBC against Salm. typhi (MTCC 733), B. cereus (MTCC 1272) and Pseudo. aeroginosa (MTCC 424) was at the concentration of 625 μg/ml, 2500 μg/ml and 5000 μg/ml respectively. On the contrast bactericidal action of methanol extract was 5000μg/ml for all the bacterial clinical isolates and the MTCC strains except Staph. aureus (MTCC 7443) and B. subtilis (MTCC 121), which did not show any bactericidal activity at the tested concentration.

Results of phytochemical analysis presented in Table 3. Broad group of phytochemicals were present in the acetone and methanol extract like terpenoids, flavonoids, saponins, cardiac glycosides, phenols and tannins. Hexane extract of Nigella sativa was dominated by alkaloids, oils and fats.**

TLC profiling and bioautography

Thin layer chromatography of acetone extract using EMW solvent system was capable of eluting bands with Rf values 0.07, 0.20, 0.39, 0.47, 0.52, 0.59, 0.71, 0.79, 0.88 and 0.92. Agar overlay bioautography of acetone extract of T. catappa showed clear zone of inhibition at Rf values 0.47, 0.2 and 0.07 against clinical isolate S. aureus (Fig. 11) and Proteus vulgaris (Fig. 8) was inhibited by the bands with Rf values 0.71, 0.59 and 0.47. S.typhi (MTCC 733) (Fig. 10) was also inhibited by the bands with Rf value 0.92, 0.79, 0.59, 0.52, 0.47, 0.39, 0.2 and 0.07. Bands with Rf value of 0.47, 0.2 and 0.07 strongly inhibited the Staph. aureus (MTCC 7443) (Fig. 9). Clear zone of inhibition around the separated bands was indicative of antibacterial property of the compounds present.

Colorless areas indicate inhibition of the test organisms by the separated phytocompounds.

Kill time assay

The time kill profile for clinical isolates Staph. aureus and P. vulgaris are presented in Table 4 showing the reduction in viable cell counts at particular time intervals. For both bacterial strains a separate time kill profile was produced over a period of 24 hours of incubation following inoculation. Difference in the viable counts for both bacterial strains were more after 4h post inoculation. At concentration corresponding to 8MIC bactericidal activity as observed at time point of 2-4h for Staph. aureus (Fig. 13) after which regrowth of the bacteria was observed indicating concentration dependent killing of the test bacteria. However, 4MIC concentration did not kill the bacteria but slowed down the growth compared to initial control. For P. vulgaris (Fig. 12) maximum reduction of viable cell counts was seen after 24h of incubation at 8 MIC concentration with near bactericidal effect of 3.37 log10 CFU/ml and 4MIC concentration reduced the viable cell counts after 8h of incubation with 3.9log10

Table 3. Qualitative phytochemical analysis of the test plants

Secondary metabolites	Tests	T.catappa	N.sativa	
	Acetone Methanol N-hexane			
Terpenoids	Salkowski test	+	+	-
	Liebermann test	+	+	-
Alkaloids	Mayers test	-	-	+
	Wagners test	-	-	+
Flavonoids	Lead acetate test	+	+	-
	Shinoda test	+	+	-
	Alkaline test	+	+	-
Saponins	Froth test	+	+	-
Tannins	Gelatin test	+	+	-
Oils and fats	Oils and fats	-	-	+
Phenols	Fed3 test	+	+	-
Cardiac glycosides	Killer-kellani test	+	+	-

FN: +: Present; --: Absent
Cfu/ml exhibiting the bacteriostatic action of the extract. For both the bacteria tested the viable colonies were reduced post inoculation after which the colonies regrew until the end of time course. However, there was delay in the exponential growing phases of the test bacteria. 8MIC concentration was more effective than 4MIC for both the test bacteria indicating the extract is dose and time dependent killing effect irrespective of the bacteria.

DISCUSSION

The present investigation reports the acetone and methanol extract of *T.catappa* leaf and hexane extract of *N.sativa* seeds demonstrated the antibacterial activity against the human...
pathogenic bacteria and clinical isolates. The preliminary method for evaluating the sensitivity of the test bacteria towards the plant extract is inhibition zone testing by disc and well diffusion assay. However, to test the efficacy of the extracts, broth dilution assays are also used preferably microbroth dilution assay. Acetone and methanol extract of _T. catappa_ demonstrated varying level of activity with inhibition zones ranging between 11.66 and 23.33 mm for all the test bacteria.

The results are in accordance with the previous reports where in polar solvent (methanol and aqueous) extracts of _T. catappa_ leaves in addition to twenty other plants were evaluated against bacteria (Gram positive and gram negative) and found that majority of the test strains were susceptible to methanol extract having inhibition zone 5-18mm. The differences in the antibacterial activity can be due to the different chemical composition and the distinct mechanism of action of their bioactive constituents. The results can also be attributed with previous reports, which recorded the aqueous extracts of _T. catappa_ leaves in concordance with the previous studies. The hexane extract of _N. sativa_ on selected human pathogenic bacteria was evaluated and found that the test microbes were inhibited by both extract and seed oil of _N. sativa_ on selected human pathogenic bacteria was evaluated and found that the test microbes were inhibited by both extract and seed oil of _N. sativa_. The results obtained in the study are in concordance with the previous studies. The methanol extracts obtained from the seeds were evaluated for antibacterial activity by and found that _Staph. aureus_ and _P. vulgaris_ showed strong antibacterial inhibition by polar solvent extracts (acetone and methanol) of _T. catappa_ against clinical isolate _Staph. aureus_ followed by _Salm. typhi_ (MTCC 733), _Staph. aureus_ (MTCC 7443) and _B. subtilis_ (MTCC 121). The hexane extract of _N. sativa_ showed susceptibility against gram positive and negative bacteria indicating wide range inhibitory activity. The results are in agreement with other workers where methanol and N-hexane extract of _N. sativa_ showed considerable good activity against the test pathogens showing varying zone of inhibition with varying dilutions. Gram-positive _S. epidermidis_ was most sensitive to the extracts. Aqueous and alcoholic extract of seeds of _N. sativa_ against bacteria and fungi was reported and all the extracts posed different efficacy against the test organisms.

Evaluation of essential oil for antibacterial activity, which showed the suppression of test pathogens exhibiting varying zone of inhibition. The results can be related to other reports where the essential oil and oleoresins exhibited the significant inhibition of test organisms. _N. sativa_ extract and seed oil of _N. sativa_ on selected human pathogenic bacteria was evaluated and found that the test microbes were inhibited by both extract and oil. The results obtained in the study are in concordance with the previous studies. The methanol extracts obtained from the seeds were evaluated for antibacterial activity by and found that _Staph. aureus_ and _P. vulgaris_ were sensitive to the extracts. _N. sativa_ was evaluated for their invitro susceptibility activity where methanol extract showed considerable inhibition of _Staph. aureus_, _Escherichia coli_ and _Salm. enterica_. The efficacy of _N. sativa_ oil is attributed to its quinone constitutes in the fixed and essential oil, which is, endowed with thymoquinone a significant bioactive constituent making up 30-48% of total constituents. Other functional constituents include p-cymene, carvacrol, thymohydroquinone, dihydrothymoquinone, thymol, α-thujene, t-anthole, β-pinene, α pinene and γ-terpinene.

The MIC values of _T. catappa_ showed, that...
acetone extract was more potent in inhibiting the test bacteria and methanol extract was slightly less potent than the acetone extract. However, hexane and chloroform extract had no activity against the test strains owing to the fact that polar component of the extract is posing the antibacterial action. The acetone extract showed strong inhibition of clinical isolate Staph. aureus (MIC; 39μg/mL) and P. vulgaris (MIC; 625μg/mL). MIC values of acetone extract for MTCC bacteria ranged between 9μg/mL and 1250μg/mL. Methanol extract posed the lowest inhibitory concentration (MIC) from 78μg/mL to 1250μg/mL for both clinical isolates and MTCC strains. However, the methanol extract exhibited moderate inhibitory activity compared to acetone extract. MBC values were more than the MIC. When higher concentration used there might result in bactericidal effect. Some researchers have reported the antimicrobial agents having MIC values between 1.60μg/mL to 8μg/mL as frail microbial inhibitors. None of the extracts showed MIC values greater than 8μg/mL. In agreement with our study, the previous reports where the MIC values greater than 8μg/mL. In agreement with the earlier work60-63. The leaves of Terminalia catappa contain chebulagic acid corilagin, gentisic acid, geranin, granatin B, kaempferol, punicalagin, punicalin, quer cetin, terfavin A and terfavin B70. The study is in agreement with the 71 wherein quercetin was identified in the leaves of Terminalia catappa along with other components like flavonoids, carotenoids and other phenolic compounds, which is responsible for the traditional use of the plant.

Hexane extract of N. sativa revealed the presence of alkaloid, which is the major component of the seeds. The results are in accordance with the earlier work72, which reported the occurrence of tannins, alkaloids, flavonoids and sterols.

TLC bioautography helps in locating the antibacterial active spots on the chromatogram. EMW solvent system was capable in eluting the antibacterial compound in acetone extract of with Rf value of 0.59, 0.52, 0.47 and 0.39. Bioautography studies revealed that most of the separated compounds had antibacterial potential, which can be due to the occurrence of polyphenols in the test plant extract, which is also confirmed from the qualitative phytochemical analysis. Time kill studies are important because they provide information about pharmacodynamics of the antibacterial agent73. Extracts showed variable kinetics against test bacteria. Time kill findings displayed different levels of time dependent
and concentration dependent inhibition of the organisms. Bacteriostatic and bactericidal activity was displayed by the extract mainly against clinical isolates but regrowth of the test bacteria occurred after specific time interval which could be attributed to the use of lesser concentration of the extracts and also the gram positive and negative bacteria differ in cell wall and the membrane composition which regulate their susceptibilities to plant metabolites. At higher concentration bactericidal activity may be achieved invitro. Time kill kinetics of \textit{T.catappa} against selected human pathogenic bacteria was carried out for the first time, however there are fewer reports related to time kill kinetics of fungi\(^2\) but, reports on bacteria are scarce to the best of our knowledge.

CONCLUSION

The results achieved in this study indicate that \textit{T.catappa} and \textit{N.sativa} are potential sources of antibacterial agents against the bacterial clinical isolates in particular. The acetone extract of \textit{T.catappa} exhibited wide spectrum activity against (gram-positive and gram-negative) MTCC and clinical isolates. The extracts also inhibited the test bacteria at a very minimal concentration. Bioautography profile of acetone extract resulted in potent antibacterial bands, which exhibited inhibition both MTCC and clinical isolates was observed. Time kill assays indicated time and concentration dependent activity. Both bacteriostatic and bactericidal activity was observed against clinical isolates. Use of higher concentrations could lead to bactericidal activity against the test bacteria. The extracts can be employed in improving human health in the prevention of treatment of infectious diseases and to fight the emergence and spread of resistant organisms. Further pure compound isolation, structure elucidation and mechanism of action of the isolated molecule followed by invivo toxicity studies may lead to potential drug in the ongoing search for antimicrobial botanicals.

ACKNOWLEDGMENTS

Authors are thankful to Center for Innovative Studies in Herbal Drug Technology, Department Of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka for providing the facilities and to the Department of Microbiology, Mysore Medical College and Research Center for providing the clinical bacterial isolates.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

AUTHORS’ CONTRIBUTION

All authors have made substantial, direct and intellectual contribution to the work and approved it for publication.

FUNDING

Authors are thankful to ICMR-New Delhi and VGST-CISEE, Government of Karnataka for financial assistance. funding grant number No.45/19/2018/TM/BMS

DATA AVAILABILITY

All datasets analyzed during this study are included in the manuscript.

ETHICS STATEMENT

Not applicable.

REFERENCES

1. Mozirandi W, Mukanganyama S. Antibacterial activity and mode of action of \textit{Veronia adoensis} (Asteracea) extracts against \textit{Staphylococcus aureus} and \textit{Pseudomonas aeroginosa}. \textit{Journal of Biologically Active Products form Nature}. 2017;7(5):341-357. doi: 10.1080/22311866.2017.1378922

2. Tang QL, Kang AR, Lu C X. Phytochemical analysis , antibacterial activity and mode of action of methanolic extract of \textit{Scuterillaria barbata} against various clinically important bacterial pathogens. \textit{Intl J Pharmacol. (IJP)}. 2016;12(2):116-125. doi: 10.3923/ijp.2016.116.125

3. Nijmoh DL, Assob JCN , Mokake SE Nyhalah DJ Yinda CK, Sandjon B. Antimicrobial activity of a Plethora of medicinal plant extract and hydrolates against human pathogenic and their potential to reverse antibiotic resistance. \textit{Int J Microbiol}. 2015;2015:547156. doi: 10.1155/2015/547156

4. Saranraj P , Sivasakthi S. Medicinal plants and its antimicrobial properties: A review. \textit{Global Journal of Pharmacology}. 2014;8(3):316-327.

5. Karaman I, Sahin F, Gulluce M, Ogutcu H, Sengul M, Adiguzel A. Antimicrobial activity of aqueous and methanol extracts of \textit{Junipers oxycedrus} L. J \textit{Ethnopharmacol}. 2003;85(2-3):231-235. doi: 10.1016/S0378-8741(03)00006-0

6. Ghosh A, Das B K, Roy A Mandal B, Chandra G. Antibacterial activity of some medicinal plant extracts.
15. Venkatalakshmi P, Brinda P. Antimicrobial activities of leaf extracts of Terminalia catappa Linn. J Nat Med. 2008;62(2):259-262. doi: 10.1007/s11418-007-0216-x
16. Nair R, Chanda S. Antimicrobial activity of Terminalia catappa Linn. Indian J Pharm Anal. 2013;3(6):460-465. doi: 10.1016/j.ijpha.2013.07.001
17. Zengin G, Uysal A, Gunes E, Aktumsek A. Survey of phytochemical compositions and biological effects of three extracts from wild plant (Cotoneaster nummularia Fisch. Et Mey.). A potential source for functional food ingredients and drug formulations. PLoS ONE. 2014;9(11):e113527. doi: 10.1371/journal.pone.0113527
18. Gobalakrishnan R, Kandavel D, Kannan L. Screening of wild plants species for antibacterial activity and phytochemical analysis of Tragia involucrate L. J Pharm Anal. 2013;3(6):460-465. doi: 10.1016/j.ijpha.2013.07.001
19. Eddy NO, Ekwumemgba PO, Mamza PAP. Ethanol extract of Terminalia catappa as a green inhibitor for the corrosion of mild steel in H2SO4. Green Chem Lett Rev. 2009;2(4):223-231. doi: 10.1016/j.gcl.2009.09.002
20. Zhao J, Xu F, Huang Z, et al. evaluation on Anti-infective potential of total saponins from Nigella glandulifera seeds. J Ethnopharmacol. 2019;26(5):985-998. doi: 10.1016/j.jep.2018.12.010
21. Packiri swamy V, Vijayalakshi K. Molecular docking studies of the compounds form Pergularia daemia and Terminalia catappa. Int J Pharm Sci. 2009;22(1):37-42. doi: 10.4314/tjpr.v18i1.6
22. Ramadan MF. nutritional value and applications of Nigella sativa essential oil. A mini review. Journal of Essential Oil Research. 2015;27(4):271-275. doi: 10.1080/10412905.2015.1045564
23. Andlousi AB, Martinear LC, Vallerand P, et al. Multiple molecular targets underlie the antidiabetic effect of Nigella sativa seed extract in skeletal muscle adipocytes and liver cells. Diabetes Obes Metab. 2010;12(2):148-157. doi: 10.1111/j.1463-1326.2009.01311.x
24. Fan YM, Xu LZ, Gao J, et al. Phytochemical and antiinflamatory studies on Terminalia catappa. Fitoterapia. 2004;75(3-4):253-260. doi: 10.1016/j.fitote.2003.11.007
25. Anand AV, Divya N, Kotti PP. Pharmacogn Rev. An updated review of Terminalia catappa. Pharmacogn Rev. 2015; 9(18): 93-98. doi: 10.4103/0973-7847.162103
26. Ravi L, Jindam D, Kumaresan S, Selvaraj VV, Reddy J. Anti-methicillin resistant Staphylococcus aureus potential of phytochemicals in Terminalia catappa and their proposed insilico mechanism of action. Asian J Pharm Clin Res. 2019;12(10):133-137. doi: 10.22159/ajpcr.2019.v12i10.34705
27. Divya N, Rengarajan RL, Radhakrishnan R, et al. Phytotherapeutic efficacy of medicinal plant Terminalia catappa L. Saudi J Biol Sci. 2019;26(5):985-998. doi: 10.1016/j.sjbs.2018.12.010
28. Minninel FS, Junior CSL, Espanha LG, et al. Characterization and quantification of compounds in the hydroalcoholic extract of leaves for Terminalia catappa Linn. (Combretaceae) and their mutagenic activity. J Evid Based Complementary Altern Med. 2014;2014:1-11. doi: 10.1155/2014/676902
sativa L. and Urtica dioica L. on lipid peroxidation, antioxidant enzyme systems and some liver enzymes in cdcl4- treated rats. J Vet Med. 2003;50(5):264-268. doi: 10.1046/j.1439-0440.2003.00537.x

34. Kooti W, Noohi ZH, Alvazi NS, Samabi MA, Larky DA. Phytochemistry Pharmacology and therapeutic uses of black seed (Nigella sativa). Chi J Nat Med. 2016;14(10):0732-0745. doi: 10.1016/S1875-5364(16)30088-7

35. Ameedy TH, Omaran R. Antimicrobial activity of Nigella sativa extract against some bacteria and fungal species. Journal of University of Babylon of Pure and Applied Sciences. 2019;27(1):277-286

36. CLSI performance standard for antimicrobial disk susceptibility test, approved standard. 7th ed. CLSI document M02-A11. Clinical and laboratory standard institute. 950, west valley road, suite 2500, Wayne Pennsylvania 19087, USA. 2012.

37. CLSI methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard. 2012. 9th ed. CLSI document M07-A9. Clinical and laboratory standard institute. 950, west valley road, suite 2500, wayne Pennsylvania 19087, USA.

38. Harbone JB. Phytochemical methods: a guide to modern techniques of plant analysis. Chapmann and hall publications, London. 1998.

39. Evans WC, Trease GE. 11th ed. Bailliere, Tindall, Hall publications, London. 1998.

40. Mahlo SM, Chauke HR, Mc Graw LJ, Elloff JN. Antioxidant and antifungal activity of selected plant spp used in traditional medicine. J Med Plant Res. 2013;7(33):2444-2450.

41. Ahmad I, Aquil F. In vitro efficacy of bioactive extracts of 15 medicinal plants against ESbeta- producing multidrug resistant enteric bacteria. Microbiol Res. 2007;162(3):264-275. doi: 10.1016/j. micres.2006.06.010

42. Joray MB, Rollan MDR Ruiz GM, Palacios SM, Carpinella MC. Antibacterial activity of extracts form plants of central Argentina- isolation of active principle from Achyronyne sativureoides. Planta Med. 2011;77(1):95-100. doi: 10.1055/s-0030-1250133

43. Mambe FT, Igor K, Beng VP, Kuete V. Antibacterial activity of the extracts derived from Terminalia catappa, Alchornea cordifolia and four other camaroonian plants against MDR phenotypes. Journal of Taibah University Medical Sciences. 2016;11(2):121-127. doi: 10.1016/j. jumed.2015.12.001

44. Jagessar RC, Alleyne R. Atimicrobial potency of aqueous extracts of leaves of Terminalia catappa. ARInt. 2011;1(3):362-371.

45. Sahina N, Ahmad S, Rasool SA. In vitro antibacterial activity of the extracts derived from Terminalia catappa. Res J Microbiol. 2007;2(8):180-184. doi: 10.3923/jm.2007.180.184

46. Babayi H, Kolo J, Okogun JI, Ijah UJJ. The antimicrobial activities of methanol extracts of Eucalyptus camaldulensis and Terminalia catappa against some pathogenic microorganisms. Bioimistri. 2004;16(2):106-111. doi: 10.4314/biokem.v16i12.32578

47. Chibane LB, Forquet V, Lanteri D, et al. Antibacterial properties of polyphenols: characterization and QSAR (Qualitative structure activity relationship models). Front Microbiol. 2019;10:829. doi: 10.3389/fmicb.2019.00829

48. Zhang XR, Kaunda JS, Zhu HT, Wang D, Yang CR, Zhang YJ. The Genus Terminalia (Combretaceae): An Ethnopharmacological Phytochemical and Pharmacological review. Nat Prod Bioprospect. 2019;9:357-392. doi: 10.1055/s-0039-162223-3

49. Shinde SI, Junne SB Wadje SS, Baig MMV. Diversity of antibacterial compounds of Terminalia spp. (Combretaceae). Pak J Biol Sci. 2009;12(22):1483-1486. doi: 10.3923/pjbs.2009.1483.1486

50. Sanghvi R, Venkatalakshmi P, Brinda P. Antibacterial activity of Terminalia catappa bark against some bacterial pathogens. World J Pharm Sci. 2015;4(9):987-992.

51. Neelavathi P, Venkatalakshmi P, Brinda P. Antibacterial activity against aqueous and ethanolic extracts of Terminalia catappa leaves and bark against some pathogenic bacteria. Int J Pharm Sci. 2013;5(1):114-120

52. Khan AR, Kour K. Wide spectrum antibacterial activity of niggela sativa seeds. IOSR Journal of Pharmacy. 2016;5(7):11-16. doi: 10.9790/3013-06721216

53. Benlafya K, Karrouchi K, Charkouei Y, Karbane ME, Ramli Y. antimicrobial activity of aqueous, ethanolic, methanolic cyclohexanec extracts and essential oil of Nigella sativa seeds. J Chem Pharm Res. 2014;6(8):9-11.

54. Amina B, Rachida A. Molecular composition and antibacterial effect of essential oil of Nigella sativa. Afr J Biotechnol. 2013;12(20):3006-3012.

55. Singh C, Das SS, Singh G, Schuffc De lampasona MP, Catalan CAN. compositon, in vitro antioxidant and antimicrobial activities of essential oil and oleoresins obtained from black cumin seeds (Nigella sativa L.). Biomed Res Int. 2014;918209. doi: 10.1155/2014/918209

56. Sudhir SP, Rohitkumar, S, Verma RN. Study of antimicrobial potential, chemical composition and free radical scavenging property of Nigella sativa seed cold pressed oil and N-hexane extract from different geographies. Int J Pharm Biol Sci. 2017;7(2):131-144.

57. Zuridah H, Fairuz ARM, Zakri AZH, Rahim MNA. In vitro antibacterial activity of Nigella sativa against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Bacillus cereus. Asian J Plant Sci. 2008;7(3):331-333. doi: 10.3923/ajps.2008.331.333

58. Tpocagic A, Zeljikovi, SC Karalija E, Galijasevic, SC, Sofic E. Evaluation of phenolic profile, enzyme inhibition and antimicrobial activity of Nigella sativa loaded seed extracts. Bosn J Basic Med Sci. 2017;4:286-294. doi: 10.17305/bjbms.2017.2049

59. Sahak MKZ, Kabir N, Abbas G, Daraman S, Hashim NH, Adli DSH. Role of Nigella sativa and its active constituents in learning and memory. Evid Based Complementary Altern Med. 2016. doi: 10.1155/2016/6075679

60. Mogana R, Adhikari A, Tzas MN, Ramli R, Wiart C. Antimicrobial activity of the extracts fractions and...
isolated compounds from Canarium patentinerium Miq. Against bacterial clinical isolates. BMC Complement Altern Med. 2020; 20:55. doi: 10.1186/s12906-020-2837-5

61. Klucek P, Polesny Z, Svobodova B, Vlaskova E, Kokesla L. Antibacterial screening of some Peruvian medicinal plants used in calleria district. J Ethnopharmacol. 2005;99:309-312. doi: 10.1016/j.jep.2005.01.062

62. Akharaiyi FC, Ilori RM, Adesida JA. Antibacterial effect of Terminalia catappa on some selective pathogenic bacteria. Int J Pharm Biomed Res. 2011;2(2):64-67.

63. Cock IE, Vuuren SFV. A composition of the antimicrobial activity and toxicity of six Combretum and two Terminalia spp from southern Africa. Phcog Mag. 2015;11(41):208-218. doi: 10.4103/0973-1296.149740

64. Toghueo R, Boyom FF. Enophytic fungi from Terminalia species. A comprehensive review. J Fungi. 2019;5(2):43. doi: 10.3390/jof5020043

65. Opara FN, Angufooru HU, Okechukwu RI, Mgbemena IC, Akuyobic O, Adjew A. A preliminary phytochemical screening and antibacterial activity of leaf extracts of Terminalia catappa. JETEAS. 2012;3(3):424-428.

66. Mbengui RD, Guessennd NK, M’Boh GM, et al. Phytochemical screening and study of comparative antibacterial activity of aqueous and alcoholic extracts of the leaves and barks of Terminalia catappa on multi resistant strains. J Applied Biosci. 2013;66:5040-5048. doi: 10.4314/jab.v66i0.95000

67. Muhammad A, Mudi SY. Phytochemical screening and antimicrobial activity of Terminalia catappa leaf extracts. Biokemistri. 2011;23(1):35-39.

68. Ahmed MS, VeerabhadrSwamy BM, Dhanpal PGR, Chandrashekara VM. Antidiabetic activity of Terminalia catappa L. leaf extracts in alloxan-induced diabetic rats. UPT. 2005;4(1):36-39.

69. Dukes A. Phytochemical and ethnobotanical database. 2008:11.

70. Mndloi S, Mishra R, Varma R, Varugheese B, Tripathi. A study on phytochemical and antifungal activity of leaf extracts of Terminalia catappa. J Int J Pharm Biosci. 2013;4(4):1385-1393.

71. Reddy HS, Al-kalbani AS, Al-Rawahi AS. Studies on phytochemical screening and GC-MS characterization, antimicrobial, antioxidant assay of black cumin seeds and Senna alexandria solvent extracts. Int J Pharm Sci. 2018;9(2):490-497.

72. Desai SD, Saheb SH, Das KK, Haseena S. Phytochemical analysis of Nigella sativa and its antidiabetic effect. J Pharm Sci Res. 2015;7(8):527-532.

73. Yadav A, Yadav M, Kumar S, Yadav JP. Bactericidal effect of Acacia nilotica: In vitro antibacterial and time kill kinetic studies. International Journal of Current Research. 2015;7(11):22289-22294.

74. Ngouana TK, Mbouna CDJ, Kuipou RMT, et al. Potent and synergistic extract combination from Terminalia catappa, Terminalia mentaly and Monodora tenuifolia against pathogenic yeasts. Medicines. 2015;2(3):220-235. doi: 10.3390/medicines2030220