DeePCG: constructing coarse-grained models via deep neural networks

Lin Feng Zhang and Jiequn Han
Program in Applied and Computational Mathematics,
Princeton University, Princeton, NJ 08544, USA

Han Wang
Institute of Applied Physics and Computational Mathematics,
Fenghao East Road 2, Beijing 100094, P.R. China and
CAEP Software Center for High Performance Numerical Simulation, Huangyan Road 6, Beijing 100088, P.R. China

Roberto Car
Department of Chemistry, Department of Physics,
Program in Applied and Computational Mathematics,
Princeton Institute for the Science and Technology of Materials,
Princeton University, Princeton, NJ 08544, USA

Weinan E
Department of Mathematics and Program in Applied and Computational Mathematics,
Princeton University, Princeton, NJ 08544, USA and
Beijing Institute of Big Data Research, Beijing, 100871, P.R. China

We introduce a general framework for constructing coarse-grained potential models without ad hoc approximations such as limiting the potential to two- and/or three-body contributions. The scheme, called Deep Coarse-Grained Potential (abbreviated DeePCG), exploits a carefully crafted neural network to construct a many-body coarse-grained potential. The network is trained with full atomistic data in a way that preserves the natural symmetries of the system. The resulting model is very accurate and can be used to sample the configurations of the coarse-grained variables in a much faster way than with the original atomistic model. As an application we consider liquid water and use the oxygen coordinates as the coarse-grained variables, starting from a full atomistic simulation of this system at the ab initio molecular dynamics level. We find that the two-body, three-body, and higher-order oxygen correlation functions produced by the coarse-grained and full atomistic models agree very well with each other, illustrating the effectiveness of the DeePCG model on a rather challenging task.

Keywords:

I. INTRODUCTION

In molecular dynamics (MD), we are often faced with two types of coarse-graining tasks. In a first set of applications we are interested in evaluating the Landau free energy, which is a function of a small subset of coarse-grained (CG) variables. In this case the CG variables are either scalar or low dimensional vector variables. In a second set of applications we are interested in sampling with molecular dynamics (MD) or with Monte Carlo the configurations of an extensive set of CG variables. In this case the dimensionality of the CG space is proportional to the size of the system but is reduced relative to the full space of atomistic coordinates. The first type of CG variables is typically adopted to study problems like phase transitions, where the objective is to perform detailed analyses of the Landau free energy surface by finding the metastable states, the free energy barriers between these states, the transition pathways, etc. Take the melting of a solid as an example, the Steinhardt order parameters \[\text{Steinhardt order parameters} \] have been used as CG variables to differentiate solid (crystal) and liquid phases. The second type of CG variables is typically used to accelerate configurational sampling relative to full atomistic simulations. For example, one may coarse-grain a polymer by replacing the monomers with point-like particles, or beads, connected by springs.

For a good description of the Landau free energy surface one needs to find good order parameters acting as CG variables and address the issues associated with crossing high energy barriers. Typically these approaches are limited to a few CG variables, but recent work demonstrated that machine learning methods allow us to describe the functional dependence of the Landau free energy surface on several CG variables. When considering extensive CG variables, the difficulty is often associated with finding an accurate free energy function in the space of the CG variables. Such free energy function usually depends on the CG variables in a complex and nonlinear way. Therefore, finding a good representation of this function often requires sub-
stational physical/chemical intuition. In principle, machine learning methods can address this problem more accurately and in an automated way, but most machine learning approaches so far have focused on the representation of the potential energy surface in the space of the atomistic degrees of freedom rather than the representation of the free energy surface in the space of the CG variables. For example, the Deep Potential method, a model based on deep neural networks, has made it possible to parametrize an atomistic potential energy function derived from quantum mechanics without ad hoc approximations. A subsequent development of this approach, called Deep Potential Molecular Dynamics (DeePMD), has allowed us to perform MD simulations of comparable quality to ab initio molecular dynamics (AIMD) at the cost of classical empirical force fields.

The free energy surface, rather than the potential energy surface, is the key physical quantity that we need to represent when dealing with CG variables. In this work, we introduce the Deep Coarse-Grained Potential (DeePCG) scheme, an approach that generalizes the Deep Potential and DeePMD methods to representations of the free energy surface in the space of the CG variables, a quantity that will be called the CG potential in the following. A related method to represent the many-body character of the CG potential in molecules was recently reported in Ref. 32. In our approach, similar to the Deep Potential and DeePMD methods, no ad hoc approximations are required, in addition to the network model itself, to represent the CG potential. The scheme is very accurate as demonstrated by the almost perfect agreement of the many-body correlations extracted from CG simulations with the corresponding correlations extracted from the original atomistic model. In the present work, we use liquid water as an example to illustrate the approach. We choose AIMD as the underlying atomistic model, and replace the individual water molecules with point-like particles located at the oxygen sites in the CG model. The excellent agreement of the second-, third-, and higher-order correlation functions between CG and atomistic models shows the promise of the DeePCG approach.

II. METHODOLOGY

A. Basic Theory

We consider a d-dimensional system with N atoms in the constant-volume canonical (NVT) ensemble. The coordinates of the atoms, in the laboratory frame, are $\mathbf{q} = \{q_1, q_2, \ldots, q_{dN}\} \in \mathbb{R}^{dN}$. The configurational distribution function is defined by

$$p(\mathbf{q}) = \frac{1}{Z} e^{-\beta V(\mathbf{q})},$$

where $Z = \int e^{-\beta V(\mathbf{q})} d\mathbf{q}$ is the partition function.

The coarse-grained variables $\mathbf{\xi}(\mathbf{q}) = \{\xi_1(\mathbf{q}), \xi_2(\mathbf{q}), \ldots, \xi_M(\mathbf{q})\}$ are a reduced set of coordinates ($M < dN$). M can be finite and independent of the system size or it can be extensive with the system size, as in the two cases discussed in the introduction. When M is finite the CG variables are the so-called order parameters of the system. When M is extensive, the CG variables replace molecular objects with simpler sub-objects. The configurational distribution of the CG system is the projection of the configurational distribution of the microscopic (atomistic) system onto the space of the CG variables:

$$p(\mathbf{\xi}) = \frac{1}{Z} \int e^{-\beta V(\mathbf{\xi}(\mathbf{q}))} \delta(\mathbf{\xi}(\mathbf{q}) - \mathbf{\xi}) d\mathbf{q}. \quad (2)$$

The probability distribution in Eq. (2) allows us to define the CG potential and the forces acting on the CG variables as:

$$U(\mathbf{\xi}) = -\frac{1}{\beta} \ln p(\mathbf{\xi}), \quad (3)$$

and

$$F(\mathbf{\xi}) = -\nabla_{\mathbf{\xi}} U(\mathbf{\xi}), \quad (4)$$

respectively. Eq. (3) tells us that a good CG potential should reproduce accurately the full configurational distribution of the CG variables in the atomistic model. Testing the quality of the full configurational distribution of the CG variables is difficult, and, typically tests have been based only on two- and three-body correlation functions.

$U(\mathbf{\xi})$ is uniquely specified by the underlying atomistic model and the definition of the CG degrees of freedoms. Therefore, constructing a CG model involves two steps: (1) the choice of an appropriate CG-potential representation, and (2) the optimization of the parameters that define the potential representation. The way in which these two issues are addressed differentiates alternative schemes.

We notice that, even if we knew exactly $U(\mathbf{\xi})$, we would not have a closed deterministic form for the equation of motion of the CG variables due to the $dN - M$ missing degrees of freedom in the CG potential. The issue of the dynamics of the CG variables has been addressed in the literature. See, e.g., Refs. 13, 16, 17, 21. Further assumptions, like a time-scale separation between the CG variables and the remaining degrees of freedom, are usually required to recover dynamical information of the atomistic model. In the following we shall focus on the accurate construction of the CG potential. We will leave to future studies the investigation of CG dynamics.

B. CG potential representation

We adopt a neural network representation $U^w(\mathbf{\xi})$ for the CG potential $U(\mathbf{\xi})$. Here w are the parameters to
be optimized by the training process. $U^w(\xi)$ should be constructed using in input only the generalized coordinates ξ, without any human intervention in the optimization process. The $U^w(\xi)$ constructed in this way should preserve the symmetry properties of $U(\xi)$. In this manuscript we limit ourselves to considering CG objects that behave as point particles and have only positional dependence. In this case, the ξ variables are the coordinates of the CG particles. More general choices of the CG objects have been suggested in the literature when dealing with, e.g., polymers, biological molecules, or colloidal particles. In these cases it may be useful to consider rods, ellipsoids, particles connected by springs, etc., as the CG objects. In principle, all these cases could be treated with the present formalism. In the setup adopted here of point-like CG objects, the CG potential U^w is extensive, intrinsically many-body, and should preserve the translational and rotational invariance, as well as the permutational symmetry of the CG objects.

All the properties of the CG potential described above are preserved by the Deep Potential model. To illustrate how it works, we use the example of liquid water. We write the CG potential as a sum of the local contributions of the CG particles, i.e., $U^w(\xi) = \sum_i U^w_i(\xi_i)$. $U^w_i(\xi_i)$, the potential contribution of the CG particle i, is constructed in two steps. First, the coordinates of the CG particle i and its neighbors within a cut-off radius R_c are transformed into the descriptors $\{D_{ij}\}$ of the local environment of the CG particle i. We call this procedure local frame transformation and refer to Fig. 1 for more details. In the following we use the symbol D_i to denote the entire set of descriptors for atom i. Next, as illustrated in Fig. 2, the descriptors D_i are given in input to a fully connected feedforward neural network to compute the potential contribution of the CG particle i. The mathematical formulation of the network structure is also presented in Fig. 2, where the operation of each layer of the network corresponds to a linear mapping of the output from the previous layer combined with a nonlinear mapping. The translational and rotational symmetries are preserved by the local frame transformation. The permutational symmetry is preserved because: (a) for each CG particle i, its descriptors D_{ij} are sorted in ascending order according to the distance between particles i and j; (b) the subnetworks associated with the same type of particles share the same parameters w; (c) $U^w(\xi) = \sum_i U^w_i(\xi_i)$ is an additive relationship. More details on the Deep Potential method can be found in Refs. 30, 31. Due to the adoption of a finite cutoff radius, the simulation cost of the DeePCG model scales linearly with the system size.

C. CG potential optimization

The construction of the CG potential $U^w(\xi)$, introduced in Subsection B, has many similarities with the construction of the potential energy $V(q)$, using the DeePMD method. There is, however, a very important difference in the two cases. In the DeePMD case the potential energy $V(q)$ is directly available from the underlying AIMD simulations. In the DeePCG case, the CG potential is a free energy and is not directly available. Therefore, the optimization for the CG potential requires a specific formulation. We adopt a force-matching scheme like the one in the multi-scale coarse-graining method introduced by Voth et al. In addition, we pay special attention to the fact that a neural network representation $U^w(\xi)$ may have tens of thousands, or more, variational parameters, and a suitable optimization algorithm is needed.

A straightforward force-matching approach would consist in fitting accurate mean forces from atomistic simula-
perbolic tangent for the nonlinear function from the last hidden layer to with an instantaneous force estimator by Ciccotti et al. [40], in which a set of 42. Of particular interest is a simple formula proposed tions. There have been many efforts in this direction [40– of interest at the thermodynamic conditions of the atomistic simulation. For example, the sample could include, in an enhanced way, accessible CG configurations that have a small probability of occurrence at the thermodynamic conditions of interest, such as in the case of rare events. We stress, however, that the sampling of the microscopic degree of freedom orthogonal to ξ in Eq. (6) must be done at the appropriate thermodynamic conditions. In practice, the different configurations ξ_n in the dataset can be extracted from unconstrained MD or Monte Carlo (MC) simulations of the microscopic atomistic model at different temperatures.

The above straightforward approach is not convenient when the conditional expectation values in Eq. (6) require computationally expensive constrained/restrained simulations. In this situation we find it more convenient to approximate the ensemble average (⋯) with the average (∑^D_{n=1} ⋯) over the configurations ξ_n (see Eq. (10) below). The latter average does not require constrained/restrained simulations, but it requires ξ_n to be extracted from equilibrium atomistic simulations at the temperature selected in Eq. (4). Then the mean force F_i in the loss function (8) can be replaced by the instantaneous force F_i. In other words, this corresponds to using an instantaneous version of the loss function

\[\hat{L}^{\text{ins}}(w) = \frac{1}{dDM} \sum_{n=1}^{D} \sum_{i=1}^{dM} |F_i(\xi_n) + \partial_i U^w(\xi_n)|^2. \] (9)

With a sufficiently large representative dataset, we expect that the ensemble average of the difference between predicted and instantaneous forces should be approximated quite well by \(\hat{L}^{\text{ins}}(w) \), i.e.:

\[L^{\text{ins}}(w) := \frac{1}{dM} \sum_{i=1}^{dM} \langle |F_i(\xi(q)) + \partial_i U^w(\xi(q))|^2 \rangle_q \approx \hat{L}^{\text{ins}}(w). \] (10)

This amounts to an ergodicity requirement for the atomistic system and is always valid if the system samples an equilibrium thermodynamic state.

By definition, \(\hat{L}^{\text{ins}}(w) \) is much easier to compute than \(\hat{L}(w) \). Below we argue that \(L^{\text{ins}}(w) \) is also a valid loss function to optimize CG potential. To see this, note that the instantaneous force can be viewed as the mean force plus a random error R, which depends on the microscopic configuration q, i.e.,

\[F_i(q) = F_i(\xi(q)) + R_i(q). \] (11)

By using Eq. (11), the average \(\langle R_i(q) \rangle_{\xi=\xi(q)} \) in the constrained ensemble vanishes, so the average \(\langle R_i(q) \rangle_q \) also

where \(D \) is the number of configurations of CG variables \(\xi_n \) in the dataset and the mean force \(F_i(\xi_n) \) is estimated with Eq. (4). We notice that the sample of CG configurations in Eq. (5) is very general in the sense that it does not need to be an equilibrium sample at the thermodynamic conditions of the atomistic simulation. For example, the sample could include, in an enhanced way, accessible CG configurations that have a small probability of occurrence at the thermodynamic conditions of interest, such as in the case of rare events. We stress, however, that the sampling of the microscopic degree of freedom orthogonal to \(\xi \) in Eq. (6) must be done at the appropriate thermodynamic conditions. In practice, the different configurations \(\xi_n \) in the dataset can be extracted from unconstrained MD or Monte Carlo (MC) simulations of the microscopic atomistic model at different temperatures.

The above straightforward approach is not convenient when the conditional expectation values in Eq. (6) require computationally expensive constrained/restrained simulations. In this situation we find it more convenient to approximate the ensemble average (⋯) with the average (∑^D_{n=1} ⋯) over the configurations \(\xi_n \) (see Eq. (10) below). The latter average does not require constrained/restrained simulations, but it requires \(\xi_n \) to be extracted from equilibrium atomistic simulations at the temperature selected in Eq. (4). Then the mean force \(F_i \) in the loss function (8) can be replaced by the instantaneous force \(F_i \). In other words, this corresponds to using an instantaneous version of the loss function

\[\hat{L}^{\text{ins}}(w) = \frac{1}{dDM} \sum_{n=1}^{D} \sum_{i=1}^{dM} |F_i(\xi_n) + \partial_i U^w(\xi_n)|^2. \] (9)

With a sufficiently large representative dataset, we expect that the ensemble average of the difference between predicted and instantaneous forces should be approximated quite well by \(\hat{L}^{\text{ins}}(w) \), i.e.:

\[L^{\text{ins}}(w) := \frac{1}{dM} \sum_{i=1}^{dM} \langle |F_i(\xi(q)) + \partial_i U^w(\xi(q))|^2 \rangle_q \approx \hat{L}^{\text{ins}}(w). \] (10)

This amounts to an ergodicity requirement for the atomistic system and is always valid if the system samples an equilibrium thermodynamic state.

By definition, \(\hat{L}^{\text{ins}}(w) \) is much easier to compute than \(\hat{L}(w) \). Below we argue that \(L^{\text{ins}}(w) \) is also a valid loss function to optimize CG potential. To see this, note that the instantaneous force can be viewed as the mean force plus a random error R, which depends on the microscopic configuration q, i.e.,

\[F_i(q) = F_i(\xi(q)) + R_i(q). \] (11)

By using Eq. (11), the average \(\langle R_i(q) \rangle_{\xi=\xi(q)} \) in the constrained ensemble vanishes, so the average \(\langle R_i(q) \rangle_q \) also
vanishes. By inserting (11) into (10), the instantaneous loss function (10) becomes

\[L_{\text{ins}}(w) = L(w) + \frac{1}{dM} \sum_{i=1}^{dM} \langle R_i^2(q) \rangle_q, \]

with

\[L(w) := \frac{1}{dM} \sum_{i=1}^{dM} \langle |F_i(\xi(q)) + \partial_q U^w(\xi(q))|^2 \rangle_q. \]

Since the second term on the right hand side of Eq. (12) is independent of \(w \), \(L_{\text{ins}}(w) \) and \(L(w) \) have the same minimizer. This equivalence justifies our usage of \(\hat{L}_{\text{ins}}(w) \) as the loss function.

In the application example that we discuss in the next section we use CG variables that depend linearly on the microscopic coordinates, similar to Ref. [15]. However, the method that we have illustrated in Eqs. (6) and (7) can deal with non-linear dependencies as well, as in the method discussed in Ref. [17].

In practice, we find that the stochastic gradient descent method is very efficient to optimize loss function (9), which is a highly non-convex function corresponding to a rugged landscape in the large parameter space due to the nonlinearity of the neural network interpolation. This ruggedness does not seem to constitute an essential difficulty since the different levels of CG can achieve equally well the physics associated to the target body distribution functions of the CG variables still show non-negligible deviations from the corresponding target microscopic distributions [19, 20].

Constructing effective interactions to achieve this goal has usually required a large amount of human effort combined with substantial physical/chemical intuition. For example, in the mW monatomic potential [18], which has been successfully used to study crystallization of water [43], a specially designed Lennard-Jones-like form is used for two-body interactions while three-body interactions are adopted from the Stillinger-Weber potential [19]. In principle, coarse graining approaches that do not require physical/chemical intuition are possible by exploiting general variational principles, such as the one adopted in the multi-scale coarse-graining (MS-CG) [15] or the iterative Boltzmann inversion [12] methods. However, even when using general variational principles to bridge atomistic and CG scales, the faithfulness of distribution of the CG variables may still depend on the CG representation. For example, in the applications of the MS-CG method to liquid water, the two- and three-body distribution functions of the CG variables still show non-negligible deviations from the corresponding target microscopic distributions [19, 20].

III. COARSE-GRANING OF LIQUID WATER

To show how we construct the CG potential for an extensive CG system, we use the coarse graining of a liquid water model from an \textit{ab initio} density functional theory (DFT) [44] based simulation into effective “water particles” as an example. Because of its importance as a solvent in chemical and biological systems and its unique properties, the study of water is of wide interest. The DFT potential energy surface is intrinsically many-body. Developing an accurate CG model that represents a water molecule by a single particle is an ever-evolving and ongoing quest [9, 12, 15, 20].

The DFT dataset in our example comes from Ref. [45]. The electronic structure of the water system is modeled by DFT with the PBE0 exchange-correlation functional [46] and includes the long-range dispersion interactions self-consistently using the Tkatchenko-Schefleu model [47]. The corresponding AIMD simulation [48] adopts periodic boundary conditions and deuterons replace protons for a large integration time step (0.5 fs). The simulation data consist of snapshots from a 20 ps-long trajectory in the NVT ensemble, where \(N = 192 \) (64 \(\text{H}_2\text{O} \) molecules), \(V = 1.9275 \text{ nm}^3 \) (simple cubic periodic simulation cell), and \(T = 330 \) K. In total 40,000 snapshots are recorded. The important difference between training DeePMD and DeePCG is that in DeePCG one is attempting to estimate mean forces that correspond to conditioned averages of fluctuating atomic forces for fixed CG configurations, while in DeePMD one is attempting to estimate the deterministic atomic force in a fixed atomic configuration. Therefore, a short AIMD trajectory is not sufficient to train a DeePCG model with satisfactory accuracy, but this difficulty is circumvented by constructing a DeePMD model [49] from the AIMD data and sampling the configurations with a much longer DeePMD trajectory (15 ns). Figs. 3 and 5 com-
pare DeePMD and AIMD configurations in terms of the O-O radial distribution function (RDF), O-O-O angular distribution functions (ADFs), and the distributions of two averaged local Steinhardt parameters (defined in Appendix A) [19], respectively. It is observed that the configurations sampled by DeePMD are in almost perfect agreement with the AIMD data. Therefore, when considering the oxygen configurations, training with the data generated by DeePMD is essentially indistinguishable from that with data generated by AIMD.

Now we construct the DeePCG model. We use oxygen as the CG particle. We define the local environment of an O atom with the same cutoff radius adopted in the DeePMD model, i.e., \(R_c = 6 \text{Å} \). We use the full radial and angular information for the 16 CG particles closest to the particle at the origin (see, e.g., particle \(j \) in Fig. 1), while retaining only radial information for all the other particles within \(R_c \), (see, e.g., particle \(k \) in Fig. 1). Next, the local environment of each CG particle defines a sub-network, and we use 4 hidden layers with decreasing number of nodes per layer, i.e., 120, 60, 30, and 15 nodes from the innermost to the outermost layer, to construct the corresponding contribution to the CG potential.

The training process minimizes \(\hat{L}_{\text{ins}}(w) \) defined in Eq. (9). The force on each oxygen in the atomistic model serves as the instantaneous estimator \(\hat{F}_i \) in Eq. (7). We employ the stochastic gradient descent method with the Adam optimizer [51] to update the parameters of each layer, with a batch size of 4 and a learning rate that exponentially decays with the training step. In our current implementation, the training process requires 15 hours on a ThinkPad p50 laptop computer with an Intel Core i7-6700HQ CPU and 32 GB memory. The DeePMD-kit [52] is used for optimizations and MD simulations of both the DeePMD and the DeePCG models.

After training, we perform an NVT simulation on the CG variables. The initial snapshot for this simulation is taken directly from a snapshot selected along the AIMD trajectory. The CG force is generated directly by analytical gradient of the CG potential, the volume and the angular information for the 16 CG particles closest to the particle at the origin (see, e.g., particle \(j \) in Fig. 1). We define the local environment of each CG particle defines a sub-network, and we use 4 hidden layers with decreasing number of nodes per layer, i.e., 120, 60, 30, and 15 nodes from the innermost to the outermost layer, to construct the corresponding contribution to the CG potential.

The training process minimizes \(\hat{L}_{\text{ins}}(w) \) defined in Eq. (9). The force on each oxygen in the atomistic model serves as the instantaneous estimator \(\hat{F}_i \) in Eq. (7). We employ the stochastic gradient descent method with the Adam optimizer [51] to update the parameters of each layer, with a batch size of 4 and a learning rate that exponentially decays with the training step. In our current implementation, the training process requires 15 hours on a ThinkPad p50 laptop computer with an Intel Core i7-6700HQ CPU and 32 GB memory. The DeePMD-kit [52] is used for optimizations and MD simulations of both the DeePMD and the DeePCG models.

After training, we perform an NVT simulation on the CG variables. The initial snapshot for this simulation is taken directly from a snapshot selected along the AIMD trajectory. The CG force is generated directly by analytical gradient of the CG potential, the volume and the temperature are the same of the AIMD simulation, and the temperature is controlled using a Langevin thermostat with a damping time \(\tau = 0.1 \text{ps} \). In addition, using the same strategy, we perform an NVT simulation on 512 CG particles, where the only difference is that the number of CG variables and the size of the simulation region are 8 times larger than those of the AIMD simulation.

IV. DISCUSSION

In Figs. 3, 4, and 5 we show that the DeePCG model reproduces very well the oxygen correlation functions of the atomistic DeePMD model and, by extension, of the underlying AIMD model. In addition to comparing 2- and 3-body correlations, as done in standard protocols [19, 20], we also perform tests on how well the DeePCG model preserves higher order distribution properties. In this regard, we calculate the sample averaged local Steinhardt bond order parameters \(\hat{q}_b \) and \(\hat{q}_s \), and find satisfactory agreement between the DeePCG and DeePMD models.

In the example that we discussed above we use \(\hat{L}_{\text{ins}}(w) \) to optimize a CG model of water. We find that to base the optimization on \(\hat{L}(w) \) defined in Eq. (8) is significantly less efficient. This is because when the oxygens are the CG variables, very long constrained simulations using Eq. (8) are required to sample exhaustively the allowed configurations of the hydrogen bond network (HBN). Typically, when the oxygen positions are fixed, as in a constrained simulation, different HBN configurations are compatible with the fixed oxygen configurations, but it takes a very long time, typically of the order of a few nanoseconds, for the system to sample different HBN configurations.
configurations. This is because of the long-range correlations imposed on the HBN by the Pauling ice rules (i.e., each oxygen has two nearer and two more distant hydrogen neighbors) \cite{53}. Thus, the scheme used here for matching the on-the-fly instantaneous forces is much more efficient.

It is well-known that neural network models are highly nonlinear functions of the parameters \(w \). Multiple local minima exist in the landscape of the loss functions \(L(w) \) or \(L^{\text{ins}}(w) \). Indeed, different initializations of the weights often lead to different local minimizers of the loss function. This, however, does not seem to be a serious problem as demonstrated by the test described below.

In this test, we prepare 1000 configurations randomly selected from the DeePMD data and pick up oxygen positions to define the CG particle configurations. For a CG particle \(i \) in each configuration, we define the model deviation \(\Sigma_i \) to be the standard deviation of the force on CG particle \(i \) predicted by CG models that only differ among themselves by the initialization of the simulation procedure, i.e.,

\[
\Sigma_i = \sqrt{\langle \|\nabla_i U^w - \langle \nabla_i U^w \rangle_w \|^2 \rangle_w}, \tag{15}
\]

where the ensemble average \(\langle \cdots \rangle_w \) is taken with respect to models obtained from the same training process, the same training data set \cite{54}, but different initialization of the parameters \(w \). In this way, 64,000 instances of the model deviation \(\Sigma_i \) are computed, and they are used to show the consistency of the predictions of different DeePCG models quantitatively. As shown by Fig. 6 with DeePMD data corresponding to 6 independent 2.5 ns-long trajectories, 99.3% of the model deviations, i.e., a large majority of them, are below 50 meV/Å. Moreover, the deviations do not become more significant when the magnitude of the CG force is large (inset in Fig. 6). Therefore, the differences of the CG forces predicted by different DeePCG models are generally consistent. Indeed the configurational distribution functions generated by DeePCG models that differ only in the initialization are indistinguishable. If we use shorter trajectories, the model deviations increase, as shown in Fig. 6 for DeePMD data corresponding to 2 independent 2.5 ns-long trajectories, and for DeePMD data corresponding to a single 2 ns-long trajectory. This confirms that longer trajectories give better approximations of the ensemble average for \(L^{\text{ins}}(w) \).

In terms of computational cost and scalability, in the current implementation, DeePCG accelerates DeePMD 7.5 times. Since all the physical quantities in DeePCG are sums of local contributions, upon training, the DeePCG model can be directly applied to much larger systems with linear scaling of cost. To test the reliability of DeePCG for larger systems, we perform a 1 ns-long NVT CG MD simulation on a system containing 512 water beads. This system is at the same temperature of the original DeePMD data, but is 8 times larger than the system used to construct the DeePCG model. The corresponding RDF, as shown in Fig. 6, is only very slightly less structured than the DeePCG result with 64 water beads, but tends to unity at large separation with a longer tail as we expect. This is consistent with the result in Ref. \cite{54}, which shows that the pair correlation function is almost converged in a 64-water fixed-cell system and larger cells only loosen the structure very slightly.

Finally, like in the case of the Deep Potential and DeePMD schemes \cite{53,51}, in our implementation discontinuities are present in the forces, due to adoption of a sharp cutoff radius, limitation of angular information to a fixed number of atoms, and abrupt changes in the atomic lists due to sorting. Upon training, these discontinuities become much smaller than the thermal fluctua-
tions and can be subsumed in the thermal noise applied by the stochastic thermostat used to sample the canonical ensemble. The accuracy of the canonical distributions of the CG variables reported in Figs. 3, 4, and 5 relative to the corresponding canonical distributions in the underlying atomistic simulation, validates our approach. While irrelevant for canonical sampling, the discontinuities make the CG potential a piece-wise continuous function of the CG coordinates, whereas in principle it should be a fully continuous function. We have recently generalized the present neural network representation in order to construct potentials that are fully continuous both in the space of the microscopic variables and in that of the CG degrees of freedom \[55\]. We leave to future work a discussion of applications using the fully continuous (smooth) version of our approach.

V. CONCLUSION AND FUTURE WORK

In summary, DeePCG is a promising tool for parameterizing the CG potential and sampling CG configurations via MD. Due to the generality of the procedure adopted to construct the CG potential function, we expect DeePCG to be useful for a wide variety of tasks. In the case of water, we note that one reason for the great success of the mW potential is that it allows us to accelerate ice nucleation by several orders of magnitude because the absence of the hydrogen coordinates in the CG coordinate set eliminates the constraint imposed by the Pauling ice rules \[18\]. It would be interesting to investigate whether the CG water model introduced in this paper could describe not only the liquid but also the crystalline ice phase, and whether the freezing temperature of the CG model could approximate closely that of the underlying microscopic model. Direct ice nucleation studies would be greatly facilitated by the CG model.

Coarse grained models are often used to describe the conformations of polymers, represented for example by a sequence of beads and springs. Until now these models are typically constructed phenomenologically by requiring that a small set of force constants match experimental and/or molecular simulation data. The DeePCG model presented here has the potential to completely eliminate phenomenological assumptions such as the restriction to harmonic spring interactions, by systematically constructing a many-body potential for the beads depending on their configurations. We leave these studies and a more rigorous investigation of the dynamical properties of the CG models to future work.

Acknowledgments

The work of L. Zhang, J. Han, and W. E is supported in part by ONR grant N00014-13-1-0338, DOE grants de-sc0008526 and de-sc0009248 and NSFC grants U1430237 and 91530322. The work of R. Car is supported in part by DOE-SciDAC grant de-sc0008026. The work of H. Wang is supported by the National Science Foundation of China under Grants 11501039 and 91530322, the National Key Research and Development Program of China under Grants 2016YFB0201200 and 2016YFB0201203, and the Science Challenge Project No. JCKY2016212A502.

[1] Paul J Steinhardt, David R Nelson, and Marco Ronchetti. Bond-orientational order in liquids and glasses. Physical Review B, 28(2):784, 1983.
[2] T Stecher, N Bernstein, and G Csányi. Free energy surface reconstruction from umbrella samples using gaussian process regression. Journal of chemical theory and computation, 10(9):4079, 2014.
[3] L Monès, N Bernstein, and G Csányi. Exploration, sampling, and reconstruction of free energy surfaces with gaussian process regression. J Chem Theory Comput, 12:5100–5110, 2016.
[4] Tobias Lemke and Christine Peter. Neural network based prediction of conformational free energies—a new routine toward coarse-grained simulation models. Journal of chemical theory and computation, 13(12):6213–6221, 2017.
[5] Raimondas Galvelis and Yuji Sugita. Neural network and nearest neighbor algorithms for enhancing sampling of molecular dynamics. J. Chem. Theory Comput, 13(6):2489–2500, 2017.
[6] Elia Schneider, Luke Dai, Robert Q Topper, Christof Drechsel-Grau, and Mark E Tuckerman. Stochastic neural network approach for learning high-dimensional free energy surfaces. Physical Review Letters, 119(15):150601, 2017.
[7] Linfeng Zhang, Han Wang, and Weinan E. Reinforced dynamics for enhanced sampling in large atomic and molecular systems. The Journal of Chemical Physics, 148(12):124113, 2018.
[8] Julija Zavadlav, Siewert J. Marrink, and Matej Praprotnik. Multiscale simulation of protein hydration using the swinger dynamical clustering algorithm. Journal of Chemical Theory and Computation, 14(3):1754–1761, 2018. PMID: 29439560.
[9] Alexander P Lyubartsev and Aatto Laaksonen. Calculation of effective interaction potentials from radial distribution functions: A reverse monte carlo approach. Physical Review E, 52(4):3730, 1995.
[10] Robert E Rudd and Jeremy Q Broughton. Coarse-grained molecular dynamics and the atomic limit of finite elements. Physical review B, 58(10):R5893, 1998.
[11] I Pagonabarraga and D Frenkel. Dissipative particle dynamics for interacting systems. The Journal of Chemical Physics, 115(11):5015–5026, 2001.
[12] Dirk Reith, Mathias Pütz, and Florian Müller-Plathe. Deriving effective mesoscale potentials from atomistic simulations. Journal of computational chemistry,
24(13):1624–1636, 2003.

[13] Steve O Nielsen, Carlos F Lopez, Goundla Srinivas, and Michael L Klein. Coarse grain models and the computer simulation of soft materials. *Journal of Physics: Condensed Matter*, 16(15):R481, 2004.

[14] Wataru Shinoda, Russell DeVane, and Michael L Klein. Coarse-grained molecular modeling of non-ionic surfactant self-assembly. *Soft Matter*, 4(12):2454–2462, 2008.

[15] WG Noid, Jihih-Wei Chu, Gary S Ayton, Vinod Krishna, Sergei Izvekov, Gregory A Voth, Avishek Das, and Hans C Andersen. The multiscale coarse-graining method. i. a rigorous bridge between atomistic and coarse-grained simulations. *The Journal of chemical physics*, 128(24):244114, 2008.

[16] WG Noid, Pu Liu, Yanting Wang, Jihih-Wei Chu, Gregory A Voth, Hans C Andersen, and Gregory A Voth. The multiscale coarse-graining method. ii. numerical implementation for coarse-grained molecular models. *The Journal of chemical physics*, 128(24):244115, 2008.

[17] M Scott Shell. The relative entropy is fundamental to multiscale and inverse thermodynamic problems. *The Journal of chemical physics*, 129(14):144108, 2008.

[18] V Molinero, EB Moore, et al. Water modeled as an in-

[19] Wataru Shinoda, Russell DeVane, and Michael L Klein. Coarse grain models and the computer simulation of soft materials. *Journal of Physics: Con-

[20] Wataru Shinoda, Russell DeVane, and Michael L Klein. Coarse grain models and the computer simulation of soft materials. *Journal of Physics: Con-

[21] Mohammadhasan Dinpajooh and Marina G Guenza. On the density dependence of the integral equation coarse-graining effective potential. *The Journal of Physical Chemistry B*, 2017.

[22] Michael R DeLyser and William G Noid. Extending pressure-matching to inhomogeneous systems via local-density potentials. *The Journal of chemical physics*, 147(13):134111, 2017.

[23] Jacob W Wagner, Thomas Dannenhoffer-Lafage, Jae-

[24] Michael R DeLyser and William G Noid. Extending the range of three body coarse-grained force fields. *The Journal of chemical physics*, 136(19):194114, 2012.

[25] Mohammadhasan Dinpajooh and Marina G Guenza. On the density dependence of the integral equation coarse-graining effective potential. *The Journal of Physical Chemistry B*, 2017.

[26] Tanmoy Sanyal and M Scott Shell. Coarse-grained models using local-density potentials optimized with the relative entropy: Application to implicit solvation. *The Journal of chemical physics*, 145(3):034109, 2016.

[27] Joshua D Moore, Brian C Barnes, Sergei Izvekov, Martin Lisal, Michael S Sellers, DeCarlos E Taylor, and John K Brennan. A coarse-grain force field for rdx: Density dependent and energy conserving. *The Journal of Chemical Physics*, 144(10):104501, 2016.

[28] Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-dimensional potential-energy surfaces. *Physical review letters*, 98(14):146401, 2007.

[29] Albert P Bartók, Mike C Payne, Risi Kondor, and Gábor Csányi. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. *Physical review letters*, 104(13):136403, 2010.

[30] Kristof T Schütt, Farhad Arabzadah, Stefan Chmiela, Klaus R Müller, and Alexandre Tkatchenko. Quantum-chemical insights from deep tensor neural networks. *Nature Communications*, 8:13890, 2017.
Appendix A: Definition of the local averaged Steinhardt parameters

The bond orientational order of particle i (atom or molecule) in a condensed environment is often described by a local Steinhardt parameter q_i, defined as

$$q_i = \left(\frac{4\pi}{2l+1} \sum_{m=-l}^{l} |q_{lm}(i)|^2 \right)^{1/2}, \quad (A1)$$

with

$$q_{lm}(i) = \frac{\sum_{j \in N_b(i)} s(r_{ij}) Y_{lm}(\hat{r}_{ij})}{\sum_{j \in N_b(i)} s(r_{ij})}. \quad (A2)$$

Here $N_b(i)$ denotes the set of neighbors of particle i, $Y_{lm}(\hat{r}_{ij})$ are spherical harmonics, and $s(r_{ij})$ is a switching function defined by

$$s(r) = \begin{cases}
1, & r < r_{\text{min}}, \\
\frac{1}{2} (1 + \cos \left(\frac{\pi (r - r_{\text{min}})}{r_{\text{max}} - r_{\text{min}}} \right)), & r_{\text{min}} \leq r < r_{\text{max}}, \\
0, & r \geq r_{\text{max}}.
\end{cases} \quad (A3)$$

In this work we take $r_{\text{min}} = 0.31 \text{ nm}$ and $r_{\text{max}} = 0.36 \text{ nm}$, and adopt the modification of the local Steinhardt parameter proposed by Lechner and Dellago [50], which is more sensitive than the original bond order parameter in distinguishing different crystal structures. The modified Steinhardt parameter is defined by

$$\tilde{q}_i = \left[\frac{4\pi}{2l+1} \sum_{m=-l}^{l} |\tilde{q}_{lm}(i)|^2 \right]^{1/2}, \quad (A4)$$

with

$$\tilde{q}_{lm}(i) = \frac{\sum_{j \in \tilde{N}_b(i)} s(r_{ij}) q_{lm}(j)}{\sum_{j \in \tilde{N}_b(i)} s(r_{ij})}, \quad (A5)$$

where $\tilde{N}_b(i)$ includes $N_b(i)$ and the tagged particle i. In the full expansion of the local averaged Steinhardt parameters, 4-body terms like $Y_{lm}(\hat{r}_{ik}) \cdot Y_{lm}(\hat{r}_{ij})$, $i \neq j \neq k \neq l$ are found. Therefore, the distribution of the value of the local averaged Steinhardt parameters includes the effect of 4-body angular correlations.