Microalgae cultivation in wastewater from agricultural industries to benefit next generation of bioremediation: a bibliometric analysis

Jessica Muniz Melo1,2 · Marina Ronchesel Ribeiro1,2 · Tiago Santos Telles1,2 · Higo Forlan Amaral2,3 · Diva Souza Andrade1,2

Received: 21 April 2021 / Accepted: 4 November 2021 / Published online: 19 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The aim of this study was to provide a bibliometric analysis and mapping of existing scientific papers, focusing on microalgae cultivation coupled with biomass production and bioremediation of wastewater from agricultural industries, including cassava, dairy, and coffee. Using the Web of Science (WoS) database for the period 1996–2021, a search was performed using a keyword strategy, aiming at segregating the papers in groups. For the first search step, the keywords “wastewater treatment”, AND “microalgae”, AND “cassava” OR “dairy” OR “coffee” were used, resulting in 59 papers. For the second step, the keywords “wastewater treatment” AND “biomass productivity” AND “microalgae” AND “economic viability” OR “environmental impacts” were used, which resulted in 34 articles. In these papers, keywords such as “carbon dioxide biofixation” and “removal of nutrients by the production of biomass by microalgae” followed by “environmental and economic impacts” were highlighted. Some of these papers presented an analysis of the economic feasibility of the process, which reveal the state-of-the-art setup required to make the cultivation of microalgae economically viable. Researches focusing on the efficiency of microalgae biomass harvesting are needed to improve the integration of microalgae production in industrial eco-parks using wastewater to achieve the global goal of bioremediation and clean alternatives for renewable energy generation.

Keywords Algae · Effluent · Environmental impact · Coffee industry · Cassava industry · Dairy industry

Abbreviations
WoS Web of Sciences
COD Chemical oxygen demand
LCA Life cycle assessment
GGE Greenhouse gas emissions

Introduction
Microalgae are photosynthetic microorganisms capable of growing in industrial effluents, producing a biomass rich in oils and carbohydrates, which are the raw materials for generating clean energy and biofertilizers; they contribute to the bioremediation process simultaneously (Andrade et al. 2021; Woertz et al. 2009). Wastewater can be used to grow microalgae in the chain production process as a sustainable water source and as a medium rich in nutrients, containing organic carbon source for the heterotrophic and mixotrophic groups (Andrade et al. 2020; Lowrey et al. 2015). For instance, the *Scenedesmus obliquus* cultivated in municipal wastewater achieved higher lipid and carbohydrate than those grown in synthetic medium (Ansari et al. 2019). For palm oil mill wastewater treatment, Emparan et al. (2020) indicated *Nannochloropsis* sp. as an option to produce microalgal biomass simultaneously.
Our study analyzed articles that focused on the cultivation of microalgae in wastewater from three types of agro-industrial companies that processed soluble coffee, cassava, and dairy products. Coffee is one of the most consumed beverages in the world (Mussatto et al. 2011); the industrial processing of coffee beans generates enormous amounts of wastewater having high contents of organic matter, known to induce severe environmental risks (Panchangam and Janakiraman 2015). Wastewater from cassava (Manihot esculenta Crantz) contains a higher concentration of organic and inorganic chemicals, such as carbohydrates, ammonia, calcium, chloride, inorganic phosphate, magnesium, nitrate, organic carbon, organic phosphorus, potassium, sodium, and sulfate (Selvan et al. 2019). Wastewater from the dairy industry has been described as an excellent source of nutrients for microalgae growth (Gonçalves et al. 2017). The cultivation of microalgae in dairy effluents (which is rich in C:N:P) replaces the culture medium containing mineral nutrients and fresh water generally used for microalgae cultivation, thereby reducing the cost of production (Kumar et al. 2020). According to Valizadeh and Davaran (2020), biological purification of dairy effluents is an efficient and essential approach that leads to a healthy and clean environmental ecosystem.

According to the search terms, textual mining scanning is important in identifying scientific publications and still allows mapping of scientific development, in addition to showing the growing interest in the topic addressed. In our study, bibliometric mapping was applied to verify the main topics discussed in the existing literature and investigate the associations among the most cited words, such as the association of “bioremediation of agro-industrial effluents” with “microalgae cultivation” along with understanding the economic and environmental viability of these projects. Bibliometric studies have re-explored the research in microalgae on a global scale (Garrido-Cardenas et al. 2018), with a focus on microalgae bioproducts (de Souza et al. 2019), highlighting the microalgae biomass market and their products (Rumin et al. 2020), microalgae-derived biodiesel (Ma et al. 2018), microalgae wastewater bioremediation (Pacheco et al. 2020) and algal species, products, and pretreatment techniques used for extraction (de Carvalho et al. 2020).

In this framework, our study aimed to perform a temporal analysis of articles focused on the cultivation of microalgae coupled with the bioremediation of wastewater from cassava, dairy, and coffee industries to identify specific and relevant publications in the literature using specific terms and examining their connections with different countries and the most cited articles.

Methodology

For bibliometric analysis, it was applied the procedures described by Cobo et al. (2011) as follows: (i) detect the topics treated by research fields, (ii) search by keywords in the literature/data collection, (iii) quality/preprocessing evaluation, (iv) visualize themes and thematic links, (v) visualize the different map elements (clusters) and network, (vi) synthesis and data analysis, and (vii) interpretation of the results. Bibliometric analysis was performed in the main collection of WoS of the Thomson Reuters Institute of Scientific Information (ISI), from January 1996 to September, 2021, using two steps. For the first step, the keywords “wastewater treatment” AND “microalgae” AND “cassava” OR “dairy” OR “coffee” were used (Fig. 1). For the second step, we consider the following keywords: “wastewater treatment”, AND “microalgae”, AND “economic viability” OR “environmental impacts”, in addition to the same set of research included for the term “biomass productivity”, being, therefore, “wastewater treatment”, AND “biomass productivity”, AND “microalgae”, AND “economic viability” OR “environmental impacts” (Fig. 2).

Based on the keywords, after applying the exclusion criteria for duplication and review papers, 59 and 34 papers were selected from the first and second steps (Tables 1 and 2), respectively, and used for cluster analyses. Based on the text data from the previously exported from WoS database, the VOSviewer 1.6.13 software was used for cluster analyses. Two word-clouds were generated by the keyword-terms (previous described) and by “complete record” and “cited references,” and the binary count used was based on the term minimum occurrence (Figs. 1 and 2).

Results and discussion

Microalgae biomass using wastewater

The clusters obtained in the first step showed significant clustering matching to microalgae bioremediation of dairy, cassava, and coffee wastewater themes. The main link among the clusters is due to the term “microalgae” and “growth.” The keywords of the articles were as follows: (i) dairy wastewater related to the removal of nutrients and associated with C. vulgaris, biomass production (red and blue cluster); and (ii) wastewater associated with nutrient removal and biodiesel production (green and yellow clusters) (Fig. 1). Understanding the connections among the groups is important because they refer to the use of microalgae for the bioremediation of agro-industrial effluents.
A large part of the studies on bioremediation of wastewater from agroindustry associated with the cultivation of microalgae shows that dairy is the most researched using microalgae species of the genus *Chlorella* and followed by species of *Scenedesmus* (Table 3). It is noteworthy that the main results of these studies are to produce microalgae biomass, aiming at removing nutrients from effluents, highlighting the production of bioenergy and carbon dioxide fixation. Cyanobacteria are also used for growth in agro-industrial wastewater, highlighting the species of *Arthrospira platensis, pseudoanabaena*, among others, which have been used to produce co-products of biomass and enzymes (Table 3).

Studies that used microalgae for dairy wastewater treatment aimed to develop a technology to produce raw materials for low-cost biodiesel production. For instance, Woertz...
et al. (2009) investigated the lipid productivity and the removal of nutrients by green microalgae cultivated in dairy wastewater, which was supplemented by CO₂ due to carbon limitation that accelerated microalgae growth. In addition, Johnson and Wen (2010) cultivated *Chlorella* sp. in dairy wastewater using foam to perform cell fixation, which resulted in better biomass and fatty acid yield. Additionally, Kothari et al. (2012) used *C. pyrenoidosa* in two stages: in the first stage, the wastewater quality parameters were evaluated, and nutrient removal was assessed for nitrogen and phosphorus; in the second stage, high oil and fat production was verified. Labbé et al. (2017) reported that *Chlorella* sp. and *Scenedesmus* sp. were capable of growing in different dairy farm effluents, showing that there is potential in using microalgae growth for treating these effluents and improving the finances of small and medium dairy farms.

There are few publications on the cultivation of microalgae in cassava wastewater (“manipueira”), aiming at the treatment of this effluent through algal biomass production. Yang et al. (2008) used cassava powder as a raw material for *C. pyrenoidosa* cultivation in undiluted wastewater from ethanol fermentation to generate biomass, regulate the pH, and reduce the chemical oxygen demand (COD). However, the focus of some related studies on cassava is on organic carbon supplementation in the microalgae culture medium to increase biomass production. The use of this organic carbon source is justified by the reduction in costs, in addition to increasing biomass production and lipid accumulation (Wei et al. 2009).

Publications address the use of microalgae in the industrial process of manufacturing cassava, aiming at the improvement, simplification, and optimization of production

Table 1 Summary of the geographical distribution of country affiliations of publications and the number of citations related to the following terms of the research 1: “wastewater treatment”, AND “microalgae”, AND “cassava”, OR “dairy” OR “coffee” in the WoS database, from January 1, 1996, to September, 2021

N°	Reference	Citation	Country	N°	Reference	Citation	Country
1	Audu et al. (2021)	00	USA	31	Ferreira et al. (2018)	33	Portugal
2	Bolognesi et al. (2021)	03	Italy	32	Hena et al. (2018)	37	Australia
3	Gumbi et al. (2021)	01	South Africa	33	Hülsen et al. (2018)	60	Australia
4	Khalaji et al. (2021)	01	Iran	34	Tsolcha et al. (2018)	13	Greece
5	Pishbin et al. (2021)	00	Iran	35	Dębowksi et al. (2017)	18	Poland
6	Samiotis et al. (2021)	00	Greece	36	Labbé et al. (2017)	16	Spain
7	Tsolcha et al. (2021)	01	Greece	37	Zamanpour et al. (2017)	34	Iran
8	Zapata et al. (2021)	00	Colombia	38	Chang et al. (2016)	31	China
9	Zkeri et al. (2021)	03	Greece	39	Choi (2016)	24	South Korea
10	Ahmad et al. (2020)	07	India	40	Qin et al. (2016)	53	China
11	Asadi et al. (2020)	05	Iran	41	Calicioglu and Demirer (2015)	06	USA
12	Barsanti et al. (2021)	01	Italy	42	Hena et al. (2015)	22	Malaysia
13	Chawla et al. (2020)	11	India	43	Gentili (2014)	75	Sweden
14	Feng et al. (2020)	02	China	44	Posadas et al. (2014)	48	Spain
15	Handayani et al. (2020)	00	Indonesia	45	Tricolicci et al. (2014a)	09	Romania
16	Katam and Bhattacharryya (2020)	00	India	46	Tricolicci et al. (2014b)	24	Romania
17	Lorentz et al. (2020)	02	Brazil	47	Uggetti et al. (2014)	160	France
18	Oubssassi et al. (2020)	01	Morocco	48	Jermigan et al. (2013)	17	USA
19	Pang et al. (2020)	01	China	49	Zhu et al. (2013)	92	China
20	Valizadeh and Davarpanah (2020)	20	Iran	50	Christenson and Sims (2012)	197	USA
21	Asadi et al. (2019)	16	Iran	51	Kothari et al. (2012)	111	India
22	Beigbeder et al. (2019)	06	Canada	52	Zhang et al (2012)	113	China
23	Daneshvar et al. (2019)	55	Finland	53	Cho et al. (2011)	207	South Korea
24	Hadiyanto et al. (2019)	06	Indonesia	54	Levine et al. (2011)	114	USA
25	Hemalatha et al. (2019)	32	India	55	Johnson and Wen (2010)	231	USA
26	Ling et al. (2019)	20	China	56	Woertz et al., (2009)	385	USA
27	Makut et al. (2019)	23	India	57	Bernal et al. (2008)	26	Mexico
28	Zhu et al. (2019)	16	China	58	González et al. (1997)	267	Mexico
29	Ahmad et al. (2018)	18	India	59	Lincoln et al. (1996)	64	USA
30	Daneshvar et al. (2018)	51	Finland				
steps; for example, a study implements the simultaneous saccharification of cassava starch (using enzymes) and fermentation (using *C. protothecoides*) to avoid hydrolysis in several stages of the process (Lu et al. 2010). Another study reported that when *C. vulgaris* was grown mixotrophically in hydrolyzed cassava waste powder, the protein content and protein productivity of the biomass increased (Abreu et al. 2012). A study by Romaidi et al. (2018) using *Scenedesmus* sp., which was cultured to enhance the lipid production and nutrient removal from tapioca wastewater, showed the high potential of using microalgae to produce raw material for bioenergy and wastewater bioremediation.

When using different sources of organic carbon in microalgae heterotrophic growth, the C/N ratio of wastewater should be carefully examined to gather valuable information on how to optimize and control the performance of cultivation systems. The C/N ratio of cassava starch appears to be a significant factor affecting the metabolism performance of cyanobacterium *Aphanthece microscopica Nägeli* (Santos et al. 2017). The feasibility of increasing bioenergy production by fermentation of non-detoxified cassava bagasse hydrolysate as an alternative carbon source for microalgae biomass production was highlighted by Lu et al. (2010) using *C. protothecoides* and by Liu et al. (2018) with a consortium of *C. pyrenoidosa* and red yeast *Rhodotorula glutinis*.

Using different residues, Sun et al. (2019) showed that the addition of *C. pyrenoidosa* biomass to rice residue and in thermo-chemical hydrolysis and biological acidification processes enhanced gaseous biofuel production during the anaerobic digestion of the raw material mixture in a short time.

Among the publications that address microalgae growing in coffee wastewater, a study by Posadas et al. (2014) was identified that evaluated a consortium of microalgae (*Phormidium*, *Oocystis*, and *Microspora*) and bacteria from activated sludge in five distinct fresh effluents from different agro-industries, one of them being from a lyophilized-coffee manufacturing factory. The authors detected low biodegradability, but found interesting results for nutrient recovery and microbial biomass generation.

Economic and environmental analyses associated with microalgae cultivation

The clusters obtained in the second search show the different approaches identified by the keywords related to terms such as “economic viability” and “environmental impacts.” Three groups were identified: (i) red cluster: microalgae cultivation for biomass and oil productivity, and techno-economic analysis, (ii) green cluster: microalgae for energy production, and clean and renewable energy sources; (iii) blue cluster: biodiesel production from biomass generated through microalgae cultivation (Fig. 2).

The integration of microalgae cultivation using the treatment of agro-industrial wastewater in the production of biofuels is a promising solution. The main link among the clusters is due to the term’s “growth” and “biodiesel production”. In addition to microalgae cultivation, the growth term

N°	Reference	Citation	Country	N°	Reference	Citation	Country
1	Marangon et al. (2021)	03 Brazil	18	Ge et al. (Ge et al. 2018)	62 Canada		
2	Rebello et al. (2021)	01 Brazil	19	Khiewwijit et al. (2018)	09 Netherlands		
3	Silveira et al. (2021)	01 Brazil	20	Juneja and Murthy (2017)	22 USA		
4	Singh and Patidar (2021)	02 India	21	Roostaei and Zhang (2017)	36 USA		
5	Thielemann et al. (2021)	02 Germany	22	Silveira et al. (2017)	18 Brazil		
6	Tua et al. (2021)	03 Italy	23	Colloita et al (2016)	11 Italy		
7	Ummalyma et al. (2021)	04 India	24	Lee et al (2015)	03 Canada		
8	Couto et al. (2020)	11 Brazil	25	Miranda et al. (2015)	22 Australia		
9	Ruiz-Marin et al. (2020)	03 Mexico	26	Muradov et al. (2015)	104 Australia		
10	Tavakoli and Barkdell (2020)	04 USA	27	Roberts et al. (2015)	20 USA		
11	Yadav et al. (2020)	02 India	28	Fortier et al. (2014)	121 USA		
12	Al Ketife et al. (2019)	19 Qatar	29	Mu et al. (2014)	66 USA		
13	Chan (2019)	01 China	30	Steele et al. (2014)	13 USA		
14	Cruce and Quinn (2019)	27 USA	31	Udom et al. (2013)	111 USA		
15	Hess et al. (2019)	03 USA	32	Demirbas (2011)	67 Turkey		
16	Pacheco et al. (2019)	02 Brazil	33	Levine et al. (2011)	124 USA		
17	Arashiro et al. (2018)	77 Spain	34	Clarens et al. (2010)	760 USA		
Table 3 Summary of some published studies using wastewater, microalgae species, and main products and results

Wastewaters	Microalgae	Outcome	Ref
Dairy	Chlorella protothecoides, *Tetraselmus obliquus*, *Rhizoclonium sp.*,	Biomass, bio-oil, lipid, plant biostimulants, β-galactosidase, chemical	Viegas et al. (2021); Audu et al. (2021); Khalaji et al. (2021);
	Stigemonium sp., *Cladophora sp.*, *Gomphonema sp.*, *Oscillatoria sp.*,	oxigen demand, nutrient removal, biofuel, phytohormones	Pishbin et al. (2021); Samiotis et al. (2021); Zapata et al. (2021);
	C. vulgaris, *Synechococcus elongatus*, *Spirulina (Arthrospira) plat-		Zkeri et al. (2021); Barsanti et al. (2021); Santos et al. (2021);
	ensis*; Euglena gracilis WZSL mutant; *C. sorokiniana* (2); *C. pyrenoidosa*;		Ahmad et al. (2020); Asadi et al. (2020); Feng et al. (2020);
	Scenedesmus, *Pseudanabaena galeata*, *Scenedesmus dimorphus*, *C. polypynoideum*, *C. sorokiniana*, *C. protothecoides*; *S. obliquus*		Handayani et al. (2020); Lorentz et al. (2020); Ouhassi et al. (2020);
Dairy and fish	*Chroococcus* sp., *Haematococcus pluvialis*, *Dunaliella sp.*, *Coelastrae saipanensis*, *Chlorella* sp.	Carbohydrates, protein, lipid, Carotenoids	Vidya et al. (2021)
Dairy and poultry	Chlorella sp.	Lipid, protein and carbohydrates	Gumbi et al. (2021)
Dairy and winery	Leptolyngbya sp.	Biomass, bioethanol	Tsolcha et al. (2021)
Slaughterhouse, municipal and dairy	*C. vulgaris*, *C. minutissima*, *C. pyrenoidosa*, *Chroococcus sp.*, *Spirulina* sp.	Biomass and nutrient removal	Chawla et al. (2020)
Tapioca and cassava ethanol	*S. platensis*, *C. pyrenoidosa*	Bioelectricity and biomass	Hadiyanto et al. (2019); Yang et al. (2008)
Poultry, swine, cattle, brewery, urban and dairy	*S. obliquus*	Biomass biohydrogen (BioH2), nutrient removal	Ferreira et al. (2018)
Potato, fish animal feed, yeast and coffee	*Phormidium*, *Oocystis*, *Mirospora*	Nutrient removal	Posadas et al. (2014)
Municipal and dairy	*Arthrospira jenneri*, *Coccomonas sp.*, *Polytomella sp.*, *P. tetralatre*, *Chlamydomonas caeca*, *Geitlerinema*, *Synecho-	Lipid, biomass, nutrient removal	Woertz et al. (2009); Bernal et al. (2008)
is associated with the selection of strains that best adapt to the medium and thus, obtain higher biomass productivity; therefore, the other prominent term is “biodiesel produc-
tion,” which is directly linked to the microalgal biomass acquisi-
tion process. This is because, with the decrease in fossil fuel reserves and environmental deterioration, stud-
ies involving microalgae and renewable energy sources are gaining prominence because they offer more economic and sustainable technologies.

Algae biodiesel has been the target of numerous studies because of the reduction of greenhouse gases compared to fossil fuels (Benemann et al. 2012). In addition, microalgae can be used to generate other derived chemicals, such as bioethanol, biokerosene, bioplastics, hydrogen biofuels, and biogas (Chisti and Yan 2011).

Biofuels derived from microalgae are still not commerci-
ally viable because their costs are higher than gasoline (Cruce and Quinn 2019). Thus, the sustainability of pro-
jects that aim to cultivate microalgae for the production of biofuels and other bioproducts is generally evaluated using technoeconomic analysis and/or life cycle assessment (LCA) (Grierson et al. 2013). One of the main “bottlenecks” high-
lighted by several authors with respect to the implementation of microalgae cultivation systems are the high costs arising from these processes. These can be defined as the sum of used energy, installation, pond downtime, capital costs (investment), operational, maintenance, and environmental issues, among others (Dusan et al. 2019; Strazza et al. 2015), and determinants for the implementation of algal biomass production systems (because they can result in negative eco-

Most recent publications on the economic feasibility and environmental impacts using agro-industrial wastewater for microalgae cultivation and bioremediation are related to life cycle analysis (Table 2). In part of these studies, the eco-

Aiming increase the production of biofuels from microal-
gae, future studies should focus on the areas of biotechnol-
yogy and synthetic biology related to the efficient production of several bioproducts of economic interest, overcoming the previously mentioned bottleneck (Chen et al. 2019). Besides the economic aspects, microalgae projects are garnering interest due to the reduction in their environmental impacts. Agro-industrial residues are abundant and easily available. When not treated, wastewater contains nitrogen and phosphorus, which can lead to eutrophication and environmental problems, affecting bio-system recycling (Umamaheswari and Shanthakumar 2016). The irregular disposal of waste-
water compromises the environment because the soil, when

receiving constant loads above the necessary, can change its characteristics and consequently the water bodies that its holds. The changes in water quality are mainly due to the polluting agents in the water; changing the water quality from the presence of nutrients leads to the eutrophication process (disordered growth of algae and macrophytes) that interferes with water use and ecosystem balance.

Microalgae are photosynthetic microorganisms and reduce greenhouse by CO₂ fixation, even when they are growing mixotrophically using organic carbon from waste-
water (De Bhowmick et al. 2014); for instance, the produc-
tion of 1.0 kg of microalgal biomass can fix up to 1.83 kg of CO₂ (Jiang et al. 2013).

The integration of microalgae cultivation with wastewater treatment significantly reduces the environmental impacts because it is an emerging technology, and the use of agricultural and industrial waste for microalgae cultivation ensures sustainability and reduces the high costs of cultivation (Fig. 3). Agroindustry integration through microalgal cultivation is an economically feasible and ecologically sus-
tainable approach for wastewater treatment, bioenergy pro-
duction chain, and the food industry (Andrade et al. 2020; de Carvalho et al. 2020).

Geographical distribution of publications

From the first step in the WoS database from January 1, 1996, to September, 2021, on the use of microalgae in the wastewater treatment of instant coffee, dairy, and cassava flour industries, 59 articles were analyzed (Table 1). The geographic distribution of these studies among the 23 coun-
tries to which the authors are affiliated shows that the ones that stand out are the USA and China with 13.5% each, fol-
lowed by India (11.8%), Iran (10.2%), and Greece (6.8%),
which can be explained by the importance of the agro-
industrial sector and research investments in these countries. In step 2, most of the 34 articles were with authors affiliated with institutions in the USA (35.3%), Brazil (17.8%), and India (8.9%) followed by Canada and Italy with 5.9% each. In general, the publications have the participation of researchers from more than one institution and/or country, which highlights the importance of the role of networks in research.

Future research trends on microalgae cultivation

Studies that associate microalgae life cycle evaluation and economic technical analysis are essential to identify the paths to follow and achieve sustainability in bioenergy generation and bioproducts. The particularities and diversity of agro-industrial effluents can provide economic, environmen-
tal, and social resources from the use of microalgae in biore-
mediation and biomass production. The challenge of making
the production of microalgae biofuels more accessible is due to the integration of biorefineries with respect to exploring other bioproducts of higher value, thus compensating the process production costs. For algae biofuels, electricity coproduction and high protein value products are the most studied in the literature, especially the study of algae flour as a food source (Cruce and Quinn 2019).

Brazil is considered a pioneer in the development of technologies to produce renewable biofuels, although the country has fewer investments compared to the USA and European countries (Roth et al. 2020). Fossil energy use is the main contributor to greenhouse gas emissions (GGE), and carbon dioxide emissions are the most common gas released by human activities, representing three-quarters of the global emissions of GGE (Dasan et al. 2019). Therefore, there is a need to develop renewable energy sources to meet the energy demands of the world.

In addition, public policies that benefit the cultivation of microalgae in agro-industrial effluents, through taxes on production (subsidies), financing for the sector, and carbon credits, are important to stimulate research, development, and innovation and integrate universities and public and private research agencies, while adding more and more research efforts to explore the cultivation of microalgae and their bioproducts.

To increase wastewater bioremediation systems with microalgae cultivation, a survey of fractional harvest of algal biomass in each cycle is suggested. In addition to cycle implementation with semi-continuous feeding, the option of using consortia of microalgae and methodologies for previous adaptation of species to be used in wastewater must be studied. Studying methods for harvesting microalgae biomass on a large-scale using wastewater should be a concern to solve one of the bottlenecks in the algae production chain.

Other alternatives to improve microalgae growth include cell suspension aeration and pH adjustment to adequate values for microbial cell multiplication. Concerning pH correction and/or nutrient complementation, the mixture of two or more different effluents should be further investigated in order to benefit the agroindustry involved.

The construction of eco parks for the benefit of one or more agroindustry is a solution for effluent treatment with reuse water, that is, when consortia are used, enabling the achievement of economic and environmental objectives within the sector. Therefore, the feasibility and sustainability of these projects are closely linked to the economic feasibility analysis, allowing a better understanding of the costs incurred by their implementation and the development of technologies that include wastewater treatment to obtain microalgae biomass.

Conclusion

The use of agro-industry wastewater in the microalgae production chain for biomass generation is a promising alternative to reduce costs and decrease environmental impacts. Large-scale research on microalgae production in agro-industrial effluents is essential to enable bioproduct generation projects and achieve sustainable and low-cost production of microalgae biomass.

Economic and environmental analyses should be integrated to allow a large-scale project performance evaluation because the technologies arising from microalgae cultivation systems are essential to improve the viability of projects for bioproduct generation, resulting in environmental, economic, and social gains.
Bibliometric analysis, as based on the Web of Science (WoS) database, which addresses the cultivation of microalgae and the treatment of agro-industrial wastewater, shows scientific gains regarding the development of alternative technologies to produce microalgae biomass, especially in the treatment of dairy wastewater. There is a gap in the publications indexed with the topic of cultivating microalgae to treat wastewater from the industrialization of cassava and coffee.

Further research is needed to optimize the biomass/lipid accumulation in microalgae cultivation and better understand the mechanisms underlying the enhanced wastewater treatment. Studies related to algal biomass harvesting should be part of studies on microalgae cultivation using wastewater in industrial eco-parks to reduce costs.

Acknowledgements JMM acknowledges MSc. scholarship from the National Council for the Improvement of Higher Education (CAPES).

Author contribution DSA and TST: conceptualization, methodology, JMM and MRR: writing—original draft. DSA, TST, and HFA: supervision writing, review & editing. All authors read and approved the final manuscript.

Funding This study was partially supported by the National Council for the Improvement of Higher Education (CAPES, 001) and by the INCT-CNpq (Brazilian National Council for Scientific and Technological Development) (MPCPAgro 465133/2014–2). DSA and TST are also research fellows of CNPq (315060/2020–4) and (315529/2020–2), respectively.

Data availability Not applicable.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

References

Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66. https://doi.org/10.1016/j.biortech.2012.05.055

Ahmad S, Kothari R, Pathania D, Tyagi V (2020) Optimization of nutrients from wastewater using RSMfor augmentation of Chlorella pyrenoidosa with enhanced lipid productivity FAME content, and its quality assessment using fuel quality index. Bio- mass Convers Bioref 10:495–512. https://doi.org/10.1007/s13399-019-00443-z

Ahmad S, Pathak VV, Kothari R, Kumar A, Naidu Krishna SB (2018) Optimization of nutrient stress using C. pyrenoidosa for lipid and biodiesel production in integration with remediation in dairy industry wastewater using response surface methodology. 3 Bio- tech 8:326–326. https://doi.org/10.1007/s13205-018-1342-8

Al Ketife AMD, Almomani F, El-Naas M, Judd S (2019) A techno-economic assessment of microalgal culture technology implementation for combined wastewater treatment and CO2 mitigation in the Arabian Gulf. Process Saf Environ Prot 127:90–102. https://doi.org/10.1016/j.psep.2019.05.003

Andrade DS et al. (2021) Microalgae: cultivation, biotechnological, environmental, and agricultural applications. In: Maddela N, Cruzatzy LG, Chakraborty S (eds) Advances in the Domain of Environmental Biotechnology. Environmental and Microbial Biotechnology. Springer, Singapore, 635–701. https://doi.org/10.1007/978-981-15-8999-7-23

Andrade DS, SantosTelles T, Castro GHL (2020) The Brazilian microalgae production chain and alternatives for its consolidation. J Clean Prod 250:119526. https://doi.org/10.1016/j.jclepro.2019.119526

Ansari FA, Ravindran B, Gupta SK, Nasr M, Rawat I, Bux F (2019) Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obtliquus microalgae. J Environ Manage 240:293–302. https://doi.org/10.1016/j.jenvman.2019.03.123

Arashiro LT, Montero N, Ferrer I, Acién FG, Gómez C, Garfi M (2018) Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Sci Total Environ 622–623:1118–1130. https://doi.org/10.1016/j.scitotenv.2017.12.051

Asadi P, Rad HA, Qaderi F (2019) Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents. Environ Sci Pollut Res 26:29473–29489. https://doi.org/10.1007/s11356-019-06051-8

Asadi P, Rad HA, Qaderi F (2020) Lipid and biodiesel production by cultivation isolated strain Chlorella sorokiniana pa.91 and Chlorella vulgaris in dairy wastewater treatment plant effluents. J Environ Health Sci Eng 18:573–585. https://doi.org/10.1007/s40201-020-00483-y

Audu M et al (2021) Ash-Pretreatment and Hydrothermal Liquefaction of Filamentous Algae Grown on Dairy Wastewater. Algal Res 57:102282. https://doi.org/10.1016/j.algal.2021.102282

Barsanti L, Ciurli A, Birindelli L, Gualtieri P (2021) Remediation and co-production of bio-commodities through finely tuned β-glucan production. J Appl Phycol 33:431–441. https://doi.org/10.1007/s10811-020-02314-x

Beigbeder J-B, Boboescu I-Z, Lavoie J-M (2019) Thin stillage treatment and co-production of bio-commodities through finely tuned Chlorella vulgaris cultivation. J Clean Prod 216:257–267. https://doi.org/10.1016/j.jclepro.2019.01.111

Benemann J, Woertz I, Lundquist T (2012) Life cycle assessment for microalgae oil production Disruptive. Sci Technol 1:68–78. https://doi.org/10.1089/dst.2012.0013

Bernal CB, Vázquez G, Quintal JB, Bussy AL (2008) Microalgal dynamics in batch reactors for municipal wastewater treatment containing dairy sewage water. Water Air Soil Pollut 192:110263. https://doi.org/10.1007/s11270-004-03214-x

Bolognesi S, Ceconnet D, Callegari A, Capodaglio AG (2021) Combined microalgae photobioreactor/microbial fuel cell system: performance analysis under different process conditions. Environ Res 192:110263. https://doi.org/10.1016/j.envres.2020.110263

Caliucioiu O, Demirer GN (2015) Integrated nutrient removal and biogas production by Chlorella vulgaris cultures J Renew Sustain. Energy 7:033123. https://doi.org/10.1063/1.4922231

Chan H (2019) Pollutants from fish feeding recycled for microalgae production as sustainable, renewable and valuable products. Energy 7:033123. https://doi.org/10.1016/j.energy.2019.01.111

Chang H-X et al (2016) An annular photobioreactor with ion-exchange membrane for non-touch microalgae cultivation with wastewater. Bioresour Technol 219:668–676. https://doi.org/10.1016/j.biortech.2016.08.032
Hadiyanto H, Christwardana M, da Costa C (2019) Electrogenic and biomass production capabilities of a Microalgae–Microbial fuel cell (MMFC) system using tapioca wastewater and *Spirulina platensis* for COD reduction. Energy Sources, Part A: Recovery, Util Environ Eff 1–12 https://doi.org/10.1080/15567036.2019.1668085

Handayani T, Mulyanto A, Priyanto FE, Nugroho R (2020) Utilization of dairy industry wastewater for nutrition of microalgae *Chlorella vulgaris*. J Phys Conf Ser 1655:1–7. https://doi.org/10.1088/1742-6596/1655/1/012123

Hemalatha M, Sravan JS, Min B, Venkata Mohan S (2019) Microalgae-biorefinery with cascading resource recovery design associated to dairy wastewater treatment. Bioresearch Technol 284:424–429. https://doi.org/10.1016/j.biortech.2019.03.106

Hena S, Fatihah N, Tabassum S, Ismail N (2015) Three stage cultivation process of facultative strain of *Chlorella sorokiniana* for treating dairy farm effluent and lipid enhancement. Water Res 80:346–356. https://doi.org/10.1016/j.watres.2015.05.001

Hena S, Znad H, Heong KT, Judd S (2018) Dairy farm wastewater treatment and lipid accumulation by *Arthrosira platensis*. Water Res 128:267–277. https://doi.org/10.1016/j.watres.2017.10.057

Hess D, Wendt LM, Wahlen BD, Aston JE, Hu H, Quinn JC (2019) Techno-economic analysis of ash removal in biomass harvested from algal turf scrubbers. Biomass Bioenerg 123:149–158. https://doi.org/10.1016/j.biombioe.2019.02.010

Hülsen T, Hsieh K, Lu Y, Tait S, Batstone DJ (2018) Simultaneous treatment and single cell protein production from agri-industrial wastewaters using purple phototrophic bacteria or microalgae—a comparison. Bioresearch Technol 254:214–223. https://doi.org/10.1016/j.biortech.2018.01.032

Jernigan A et al (2013) Effects of drying and storage on year-round production of butanol and biodiesel from algal carbohydrates and lipids using algae from water remediation Environ Prog Sustain. Energy 32:1013–1022. https://doi.org/10.1002/ep.11852

Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of *Scenedesmus dimorphus*. Bioresearch Technol 128:359–364. https://doi.org/10.1016/j.biortech.2012.10.119

Johnson MB, Wen Z (2010) Development of an attached microalgae growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534. https://doi.org/10.1007/s00253-009-2133-2

Juneca A, Murthy GS (2017) Evaluating the potential of renewable diesel production from algae cultured on wastewater: techno-economic analysis and life cycle assessment. Energy Sustain Soc 8:10. https://doi.org/10.1198/20150016

Katam K, Bhattacharyya D (2020) Effect of Sملs retention time on the performance of alga-activated sludge association in municipal wastewater treatment and biofuel production. J Appl Phycol 32:1803–1812. https://doi.org/10.1007/s10811-020-02076-6

Khajali M, Hosseini SA, Ghorbani R, Agh N, Rezaei H, Kornaros M, Koutra E (2021) Treatment of dairy wastewater by microalgae *Chlorella vulgaris* for biofuels production. Biomass Conver Biorefin. https://doi.org/10.1007/s13399-021-01287-2

Khiwewijit R, Rijnaarts H, Temmink H, Keessman KJ (2018) Glocal assessment of integrated wastewater treatment and recovery concepts using partial nitrification/Anammox and microalgae for environmental impacts. Sci Total Environ 628–629:74–84. https://doi.org/10.1016/j.scitotenv.2018.01.334

Kothari R, Pathak VV, Kumar V, Singh DP (2012) Experimental study for growth potential of unicellular alga *Chlorella pyrenoidosa* on dairy waste water: an integrated approach for treatment and biofuel production. Bioresearch Technol 116:466–470. https://doi.org/10.1016/j.biortech.2012.03.121

Kothari R, Prasad R, Kumar V, Singh DP (2013) Production of biodiesel from microalgae *Chlamydomonas polypleuroidea* grown on dairy industry wastewater. Bioresour Technol 144:499–503. https://doi.org/10.1016/j.biortech.2013.06.116

Kumar AK, Sharma S, Dixit G, Shah E, Patel A (2020) Techno-economic analysis of microalgae production with simultaneous dairy effluent treatment using a pilot-scale High Volume V-shape pond system Renew. Energy 145:1620–1632. https://doi.org/10.1016/j.renene.2019.07.087

Labbé JI, Ramos-Suárez JL, Hernández-Pérez A, Baeza A, Hansen F (2017) Microalgae growth in polluted effluents from the dairy Industry for biomass production and phytoremediation. J Environ Chem Eng 5:635–643. https://doi.org/10.1016/j.jece.2016.12.040

Lee R, Jessop PG, Champagne P (2015) Carbon dioxide pressure-induced coagulation of microalgae. Philos Trans Royal Soc A PHILOS T R SOC 373:20150016. https://doi.org/10.1098/rsta.2015.0016

Levine RB, Costanza-Robinson MS, Spatafora GA (2011) *Neochloris soleaeobundus* grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenerg 35:40–49. https://doi.org/10.1016/j.biombioe.2010.08.035

Lincoln EP, Wilkie AC, French BT (1996) Cyanobacterial process for renovating dairy wastewater. Biomass Bioenerg 10:63–68. https://doi.org/10.1016/0961-8534(95)00055-0

Ling Y, Sun L-p, Wang S-y, Lin CSK, Sun Z, Zhou Z-g (2019) Cultivation of oleaginous microalga *Scenedesmus obliquus* coupled with wastewater treatment for enhanced biomass and lipid production. Biochem Eng J 148(162):169. https://doi.org/10.1016/j.biochemengj.2019.05.012

Liu L, Chen J, Lim P-E, Wei D (2018) Enhanced single cell oil production by mixed culture of *Chlorella pyrenoidosa* and *Rhodotorula glutinis* using cassava bagasse hydrolysate as carbon source. Bioresearch Technol 255:140–148. https://doi.org/10.1016/j.biortech.2018.01.114

Lorentz JF, Calijuri ML, Assemany PP, Alves WS, Pereira OG (2020) Microagal biomass as a biofertilizer for pasture cultivation: plant productivity and chemical composition. J Clean Prod 276:124130. https://doi.org/10.1016/j.jclepro.2020.124130

Lowrey J, Brooks MS, McGinn PJ (2015) Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges - a critical review. J Appl Phycol 27:1485–1498. https://doi.org/10.1007/s11356-014-0459-3

Lu Y, Zhao Y, Liu M, Wu Q (2010) Biodiesel production from algal oil using cassava (*Manihot esculenta* Crantz) as feedstock. J Appl Phycol 22:573–578. https://doi.org/10.1007/s10659-009-0496-8

Ma X, Gao M, Gao Z, Wang J, Zhang M, Ma Y, Wang Q (2018) Past, current, and future research on microalgae-derived biodiesel: a critical review and bibliometric analysis. Environ Sci Pollut Res 25:10596–10610. https://doi.org/10.1007/s11356-018-1453-0

Makut BB, Das D, Goswami G (2019) Production of microbial biomass feedstock via co-cultivation of microalgae-bacteria consortium coupled with effective wastewater treatment: a sustainable approach. Algal Res 37:228–239. https://doi.org/10.1016/j.algal.2018.11.020

Marangon BB, Calijuri ML, Castro JdS, Assemany PP (2021) A life cycle assessment of energy recovery using briquette from wastewater grown microalgae biomass. J Environ Manage 285:112171. https://doi.org/10.1016/j.jenvman.2021.112171

Miranda AF, Taha M, Wrede D, Morrison P, Ball AS, Stevenson T, Mouradov A (2015) Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells. Biotechnol Biofuels 8:179. https://doi.org/10.1186/s13068-015-0364-2

Mu D, Min M, Krohn B, Mullins KA, Ruan R, Hill J (2014) Life cycle environmental impacts of wastewater-based algal biofuels.
Vidya D, Nayana K, Sreelakshmi M, Keerthi KV, Mohan KS, Sudivalizadeh K, Davarpanah A (2021) Utilization of biomass derived from cyanobacteria-based agro-industrial wastewater treatment and rainwater residue extract for bioethanol production. Water 13:486. https://doi.org/10.3390/w13040486

Tua C, Ficara E, Mezzanotte V, Rigamonti L (2021) Integration of a side-stream microalgae process into a municipal wastewater treatment plant: a life cycle analysis. J Environ Manage 279:111605. https://doi.org/10.1016/j.jenvman.2020.111605

Udom I, Zarihaf BH, Halfhide T, Gillie B, Dalrymple O, Zhang Q, Tua C, Ficara E, Mezzanotte V, Rigamonti L (2013) Harvesting of microalgae grown on wastewater. Bioreour Technol 139:101–106. https://doi.org/10.1016/j.biortech.2013.04.002

Uggetti E, Sialve B, Lattrille E, Steyer J-P (2014) Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioreour Technol 152:437–443. https://doi.org/10.1016/j.biortech.2013.11.036

Umamaheswari J, Shanthakumar S (2016) Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Rev Environ Sci Biotechnol 15:265–284. https://doi.org/10.1007/s11157-016-9397-7

Ummalyma SB, Sahoo D, Pandey A (2021) Resource recovery through bioremediation of biowastewaters and waste carbon by microalgae: a circular bioeconomy approach. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11645-8

Valizadeh K, Davarpanah A (2020) Design and construction of a micro-photo bioreactor in order to dairy wastewater treatment by micro-algae: parametric study. Energ Source Part A 42:611–624. https://doi.org/10.1080/15567844.2019.1588425

Vidy A, Nayana K, Sreelakshmi M, Keerthi KV, Mohan KS, Sudhakar MP, Arunkumar K (2021) A Sustainable cultivation of microalgae using dairy and fish wastes for enhanced biomass and bio-product production. Biomass Convers Bioref. https://doi.org/10.1007/s13399-021-01817-y

Viegas C, Gouveia L, Gonçalves M (2021) Bioremediation of cattle manure using microalgae after pre-treatment with biomass ash. Bioreour Technol Rep 14:100681. https://doi.org/10.1016/j.biotech.2021.100681

Wei A, Zhang X, Wei D, Chen G, Wu Q, Yang S-T (2009) Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J Ind Microbiol Biotechnol 36:1383. https://doi.org/10.1007/s10295-009-0624-x

Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115–1122. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000129

Yadav G, Panda SP, Sen R (2020) Strategies for the effective solid, liquid and gaseous waste valorization by microalgae: a circular bioeconomy perspective. J Environ Chem Eng 8:104518. https://doi.org/10.1016/j.jece.2020.104518

Yang C-f, Ding Z-y, Zhang K-c (2008) Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation. J Microbiol Biotechnol 24:2919–2925. https://doi.org/10.1007/s11274-008-9833-0

Zamanpour MK, Kariminia H-R, Vosoughi M (2017) Electricity generation, desalination and microalgae cultivation in a biocathode-microalgal desalination cell. J Environ Chem Eng 5:843–848. https://doi.org/10.1016/j.jece.2016.12.045

Zapata D, Arroyave C, Cardona L, Aristizábal A, Poschenrieder C, Llugany M (2021) Phytohormone production and morphology of Spirulina platensis grown in dairy wastewaters. Algal Res 59:102469. https://doi.org/10.1016/j.algal.2021.102469

Zhang Y et al (2012) The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products. Water Res 46:5509–5516. https://doi.org/10.1016/j.watres.2012.07.025

Zhu L et al (2013) Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour Technol 152:318–325. https://doi.org/10.1016/j.biortech.2013.03.144

Zhu S et al (2019) Cultivation of Chlorella vulgaris on unsterilized dairy-derived liquid digestate for simultaneous biofuels feedstock production and pollutant removal. Bioreour Technol 285:121353. https://doi.org/10.1016/j.biortech.2019.121353

Zkeri E et al (2021) Comparing the use of a two-stage MBBR system for biological wastewater treatment by dairy-derived liquid digestate with a methanogenic MBBR coupled with a microalgae reactor for medium-strength dairy wastewater treatment. Bioreour Technol 323:124629. https://doi.org/10.1016/j.biortech.2020.124629

Tsolcha ON, Tekerlekopoulou AG, Akратos CS, Aggelis G, Genitsaris S, Moustaka-Gouni M, Vayenas DV (2018) Agroindustrial wastewater treatment with simultaneous biodiesel production in attached growth systems using a mixed microbial culture. Water 10:1693. https://doi.org/10.3390/w10111693

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.