Generalized total least squares for identification of electromagnetic parameters of an induction motor

D V Ivanov¹, I L Sandler¹², N V Chertykovtseva¹

¹Samara State University of Transport, 2v, Svobody ave., Samara, 443066, Russia
²Samara State Technical University, Ulica Molodogvardejskaya 244, Samara, Russia, 443100

E-mail: dvi85@list.ru

Abstract. This paper proposes an algorithm for electromagnetic parameters with errors in variables. The estimates obtained by the ordinary least squares (OLS) are biased due to errors in the variables. It is shown that even if there are errors in all variables with the same variance, the problem is reduced to generalized total least squares (GTLS). To find a solution to the generalized total least squares problem, an augmented system of equations is used that is equivalent to a biased normal system. This approach improves the conditionality of the system of equations being solved in comparison with the biased normal system and requires less memory compared to the solution based on the right singular vector. The simulation results show that the GTLS estimates are much more accurate than OLS estimates. Based on the proposed approach, recursive algorithms can be created for evaluating the parameters of an asynchronous electric motor online.

1. Introduction

The parameters of the induction motor can vary greatly over time, the active rotor and stator resistance in different modes can change by half [1]. The reasons for changing the parameters may vary: environmental conditions, change in operating modes, aging, and wear of the electric motor, in addition, the parameters of specific specimens differ within the error from the parameters given in the passport.

Changes in the parameters of an induction motor can significantly degrade the quality of control. In this regard, the problem of experimental determination of the characteristics of an asynchronous electric motor is urgent. There are two ways to improve the accuracy of the estimated parameters:

1. The use of measuring instruments of higher accuracy, as well as the protection of measuring instruments from external noise, leads to a significant increase in cost and increases the complexity of the implementation of the induction motor control system.

2. Application of noise-proof algorithms for identifying the parameters of induction motors.

Today, methods for identifying the parameters of induction motor based on equivalent circuits are being actively developed. Estimations of induction motor parameters based on ordinary least squares and their recursive modifications are considered in [2], [3]. The application of the total least squares method and its recursive modifications was considered in [3], [4], [5], [6].

In [7], a method for estimating electromagnetic parameters based on the generalized total least squares method is proposed. In this paper, left-hand differences are used to approximate the derivatives. This approach can introduce a significant error in the estimation of derivatives and require a very small
sampling step. Also, the estimation of \(K \) parameters of an asynchronous motor is associated with poor conditionality of the problem (Problem K2 [2], [3], [5]). The minimization of the generalized Rayleigh ratio has low numerical stability.

In [4], a method of generalized total least squares is proposed for estimating the parameters of an induction motor, but the parameterization of the model of an induction motor has a higher dimension than \(K \) parameters.

This paper proposes a generalized total least squares method for estimating \(K \) parameters of an induction motor, as well as its effective numerical implementation based on an augmented system of equations for an equivalent biased normal system.

2. Problem Statement

The mathematical model for the asynchronous traction motor can be expressed in the fixed coordinates \((\alpha, \beta, 0)\) as the following equations:

\[
\frac{d i^{(\alpha)}}{dt} = \frac{1}{\sigma L_s} U^{(\alpha)} - \frac{\beta}{T_r} \Psi^{(\alpha)} + p \beta \omega \Psi^{(\beta)},
\]

\[
\frac{d i^{(\beta)}}{dt} = \frac{1}{\sigma L_s} U^{(\beta)} - \frac{\beta}{T_r} \Psi^{(\beta)} + p \beta \omega \Psi^{(\alpha)},
\]

\[
\frac{d \Psi^{(\alpha)}}{dt} = \frac{L_m}{T_r} i^{(\alpha)} - \Psi^{(\alpha)} - p \omega \Psi^{(\beta)},
\]

\[
\frac{d \Psi^{(\beta)}}{dt} = \frac{L_m}{T_r} i^{(\beta)} - \Psi^{(\beta)} - p \omega \Psi^{(\alpha)},
\]

\[
M = \frac{3}{2} \frac{L_m}{\sigma L_s} (\Psi^{(\alpha)} i^{(\beta)} - \Psi^{(\beta)} i^{(\alpha)}),
\]

\[
\frac{d \omega}{dt} = \frac{p}{J} (M - M_c),
\]

where \(i^{(\alpha)} \) and \(i^{(\beta)} \) are projections of stator current on the axes \(\alpha \) and \(\beta \), respectively; \(U^{(\alpha)} \) and \(U^{(\beta)} \) are projections of stator voltage on the axes \(\alpha \) and \(\beta \), respectively; \(\Psi^{(\alpha)} \) and \(\Psi^{(\beta)} \) are projections of rotor flux linkages on the axes \(\alpha \) and \(\beta \), respectively; \(\sigma = 1 - L_s^2/(L_s L_r) \) is a total dispersion coefficient; \(L_m, L_s, L_r \) are mutual induction, stator induction, and rotor induction, respectively; \(R_s \) and \(R_r \) represent active stator and rotor resistance; \(T_r \) is the time constant for the rotor; \(p \) is the number of pole pairs; \(\omega \) is the rotor rotation speed; \(J \) is the equivalent moment of inertia for the motor; \(M \) is an electromagnetic moment; \(M_c \) is a motion resistance moment; and \(\gamma \) and \(\beta \) are certain coefficients that depend on the induction and active resistance of the motor.

It is noteworthy that the equation parameters are dependent, and to unequivocally identify the asynchronous motor, one only needs to determine \(R_s, L_s, \sigma, \) and \(T_r \).

The identification of parameters requires excluding the unmeasurable projections of rotor flux linkages from the equations. Assuming that \(\frac{d \omega}{dt} = 0 \) after the transformations, we obtain [5]:

\[
- \left(\frac{d^2 i^{(\alpha)}}{dt^2} + p \omega \frac{d i^{(\beta)}}{dt} \right) = K_1 \frac{d i^{(\alpha)}}{dt} + K_2 i^{(\alpha)} + K_3 \rho \omega \psi^{(\beta)} - K_4 \left(\frac{d U^{(\alpha)}}{dt} + p \omega U^{(\beta)} \right) - K_5 U^{(\alpha)},
\]

\[
\frac{d^2 i^{(\beta)}}{dt^2} - p \omega \frac{d i^{(\alpha)}}{dt} = - K_1 \frac{d i^{(\beta)}}{dt} - K_2 i^{(\beta)} + K_3 \rho \omega \psi^{(\alpha)} + K_4 \left(\frac{d U^{(\beta)}}{dt} + p \omega U^{(\alpha)} \right) + K_5 U^{(\beta)}. \]
Using coefficients $K_1, K_2, K_3, K_4,$ and K_5, one can find R_s, L_s, σ and T_s:

$$T_s = \frac{K_4}{K_5}, \quad R_s = \frac{K_3}{K_4}, \quad L_s = \frac{K_1 - K_5}{K_3}, \quad \sigma = \frac{K_5}{K_4 (K_1 - K_5)}.$$

As the parameters are identified digitally, it is convenient to move from differential equations to difference equations.

$$D^{i(\alpha)}_k + \rho_0 D^{i(\beta)}_k = -K_i D^{i(\alpha)}_k - K_i j^{i(\alpha)}_k - K_i \rho_0 j^{i(\beta)}_k + K_i \left(D U^{i(\alpha)}_k + \rho_0 j^{i(\beta)}_k\right) + K_i U^{i(\alpha)}_k,$$ \hspace{1cm} (9)

$$D^{i(\beta)}_k - \rho_0 D^{i(\alpha)}_k = -K_i D^{i(\beta)}_k - K_i j^{i(\beta)}_k + K_i \rho_0 j^{i(\alpha)}_k + K_i \left(D U^{i(\beta)}_k - \rho_0 j^{i(\alpha)}_k\right) + K_i U^{i(\beta)}_k,$$ \hspace{1cm} (10)

where $D^{i(\alpha)}_k, D^{i(\beta)}_k, D U^{i(\alpha)}_k, D U^{i(\beta)}_k, D^{i(\alpha)}_k, D^{i(\beta)}_k$ are values of derivatives at time k.

Let us note that in identification systems, voltage and current values and their derivatives are measured with errors; that is,

$$\tilde{i}^{(\alpha)}_k = i^{(\alpha)}_k + \xi^{(\alpha)}_k, \quad \tilde{i}^{(\beta)}_k = i^{(\beta)}_k + \xi^{(\beta)}_k,$$ \hspace{1cm} (11)

$$\tilde{U}^{(\alpha)}_k = U^{(\alpha)}_k + \xi^{(U\alpha)}_k, \quad \tilde{U}^{(\beta)}_k = U^{(\beta)}_k + \xi^{(U\beta)}_k,$$ \hspace{1cm} (12)

$$D^{i(\alpha)}_k = D_i^{(\alpha)} + \xi^{(D\alpha)}_k, \quad D^{i(\beta)}_k = D_i^{(\beta)} + \xi^{(D\beta)}_k,$$ \hspace{1cm} (13)

$$D^{\tilde{U}^{(\alpha)}_k} = D U^{(\alpha)}_k + \xi^{(Du\alpha)}_k, \quad D^{\tilde{U}^{(\beta)}_k} = D U^{(\beta)}_k + \xi^{(Du\beta)}_k,$$ \hspace{1cm} (14)

$$D^{\tilde{i}^{(\alpha)}_k} = D^{i(\alpha)}_k + \xi^{(Di\alpha)}_k, \quad D^{\tilde{i}^{(\beta)}_k} = D^{i(\beta)}_k + \xi^{(Di\beta)}_k,$$ \hspace{1cm} (15)

where $i^{(\alpha)}_k, i^{(\beta)}_k, D_i^{(\alpha)}_k; D_i^{(\beta)}_k; D^{i(\alpha)}_k; D^{i(\beta)}_k$ are true values for stator-current projections, $\tilde{i}^{(\alpha)}_k, \tilde{i}^{(\beta)}_k, D^{\tilde{i}^{(\alpha)}_k} ; D^{\tilde{i}^{(\beta)}_k}; D^{\tilde{i}^{(\alpha)}_k}; D^{\tilde{i}^{(\beta)}_k}$ are noisy values for stator-current projections, respectively; $U^{(\alpha)}_k, U^{(\beta)}_k, D U^{(\alpha)}_k, D U^{(\beta)}_k$ are true values for stator-voltage projections, respectively; $\tilde{U}^{(\alpha)}_k; \tilde{U}^{(\beta)}_k, D^{\tilde{U}^{(\alpha)}_k}; D^{\tilde{U}^{(\beta)}_k}$ are noisy values for stator-voltage projections, respectively; $\xi^{(\alpha)}_k; \xi^{(\beta)}_k; \xi^{(U\alpha)}_k; \xi^{(U\beta)}_k; \xi^{(D\alpha)}_k; \xi^{(D\beta)}_k; \xi^{(Du\alpha)}_k; \xi^{(Du\beta)}_k$ are measurement errors for the corresponding values.

Thus, the problem of identifying parameters can be formulated as one of finding coefficient estimates for $K_1, K_2, K_3, K_4, \text{and} K_5$ in equations (9), (10) according to noisy observations (10)-(15).

3. Identification Criterion

Let us assume that the following conditions are satisfied:

1. $\zeta^{(u\alpha)}_k, \zeta^{(u\beta)}_k, \zeta^{(D\alpha)}_k, \zeta^{(D\beta)}_k, \zeta^{(Du\alpha)}_k, \zeta^{(Du\beta)}_k, \zeta^{(Di\alpha)}_k, \zeta^{(Di\beta)}_k$ are sequences with

$$E \left(\zeta^{(u\alpha)}_k \right) = E \left(\zeta^{(u\beta)}_k \right) = E \left(\zeta^{(Du\alpha)}_k \right) = E \left(\zeta^{(Du\beta)}_k \right) = E \left(\zeta^{(Di\alpha)}_k \right) = E \left(\zeta^{(Di\beta)}_k \right) = 0,$$

where E is an expectation operator.

2. Noise sequences have limited dispersion

$$E \left(\left(\zeta^{(u\alpha)}_k \right)^2 \right) = E \left(\left(\zeta^{(u\beta)}_k \right)^2 \right) = \sigma^2_u,$$

$$E \left(\left(\zeta^{(Du\alpha)}_k \right)^2 \right) = E \left(\left(\zeta^{(Du\beta)}_k \right)^2 \right) = \sigma^2_{Du},$$

$$E \left(\left(\zeta^{(Di\alpha)}_k \right)^2 \right) = E \left(\left(\zeta^{(Di\beta)}_k \right)^2 \right) = \sigma^2_{Di}.$$

In [7], for identification with uncorrelated observational noises, a criterion was proposed for finding an estimate of the vector of parameters K.
\[
\min_k \left\| \mathbf{Y} - \Phi \mathbf{K} \right\|_2^2
\]

where \(\mathbf{K} = \begin{pmatrix} K_1 & K_2 & K_3 & K_4 & K_5 \end{pmatrix}^T \),

\[
\Phi = \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}, \quad \mathbf{Y} = \begin{pmatrix} \frac{\mathbf{Y}}{\mathbf{Y}} \end{pmatrix}, \quad h_0 = \sigma_{\mathbf{d}^2}^2 + p^2 \sigma_{\mathbf{d}^2} \mathbf{K}^T \mathbf{H} \mathbf{K}.
\]

\[
\Phi_1 = \begin{pmatrix} -D_{11}^{\alpha \alpha} & -p \omega_{1}^{\alpha \beta} & D_{11}^{\alpha \alpha} + p \omega_{1}^{\alpha \beta} & U_{1}^{\alpha \alpha} \\ -D_{12}^{\alpha \alpha} & -p \omega_{1}^{\alpha \beta} & D_{12}^{\alpha \alpha} + p \omega_{1}^{\alpha \beta} & U_{2}^{\alpha \alpha} \\ \vdots & \vdots & \vdots & \vdots \\ -D_{N1}^{\alpha \alpha} & -p \omega_{N}^{\alpha \beta} & D_{N1}^{\alpha \alpha} + p \omega_{N}^{\alpha \beta} & U_{N}^{\alpha \alpha} \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} -D_{11}^{\beta \beta} & -p \omega_{1}^{\beta \alpha} & D_{11}^{\beta \beta} - p \omega_{1}^{\beta \alpha} & U_{1}^{\beta \beta} \\ -D_{12}^{\beta \beta} & -p \omega_{1}^{\beta \alpha} & D_{12}^{\beta \beta} - p \omega_{1}^{\beta \alpha} & U_{2}^{\beta \beta} \\ \vdots & \vdots & \vdots & \vdots \\ -D_{N1}^{\beta \beta} & -p \omega_{N}^{\beta \alpha} & D_{N1}^{\beta \beta} - p \omega_{N}^{\beta \alpha} & U_{N}^{\beta \beta} \end{pmatrix}, \quad \mathbf{Y}_1 = \begin{pmatrix} D_{11}^{\alpha \alpha} + p \omega_{1}^{\alpha \beta} \\ D_{12}^{\alpha \alpha} + p \omega_{1}^{\alpha \beta} \\ \vdots \\ D_{N1}^{\alpha \alpha} + p \omega_{N}^{\alpha \beta} \end{pmatrix}, \quad \mathbf{Y}_2 = \begin{pmatrix} D_{11}^{\beta \beta} - p \omega_{1}^{\beta \alpha} \\ D_{12}^{\beta \beta} - p \omega_{1}^{\beta \alpha} \\ \vdots \\ D_{N1}^{\beta \beta} - p \omega_{N}^{\beta \alpha} \end{pmatrix}.
\]

The Cholesky decomposition for the matrix is

\[
\mathbf{H} = \mathbf{L}^T \mathbf{L},
\]

We introduce new vectors of variables

\[
\mathbf{K}' = \mathbf{L} \mathbf{K}, \quad \mathbf{K} = \mathbf{L}^{-1} \mathbf{K}'.
\]

Criterion (16) using a new vector of variables is

\[
\min_k \left\| \mathbf{Y} - \Phi \mathbf{L}^{-1} \mathbf{K}' \right\|_2^2
\]

Minimum (20) can be found as a solution to the augmented system of equations [8], [9]:

\[
\begin{pmatrix} \sigma_{\mathbf{d}^2}^2 & 0 & 0 & 0 & 0 \\ 0 & \sigma_i^2 & 0 & 0 & 0 \\ 0 & 0 & p^2 \omega^2 \sigma_i^2 & 0 & 0 \\ 0 & 0 & 0 & \sigma_{\mathbf{d}^2}^2 + p^2 \omega^2 \sigma_i & 0 \\ 0 & 0 & 0 & 0 & \sigma_{\mathbf{d}^2}^2 \end{pmatrix}
\]
\[
\begin{pmatrix}
I_{2N} & 0 & m\Phi L^{-1} \\
0 & I_3 & jm\sigma_{\min} I_5 \\
(m\Phi L^{-1})^T & jm\sigma_{\min} I_5 & 0
\end{pmatrix}
\begin{pmatrix}
m\tilde{e} \\
m\tilde{Y} \\
0
\end{pmatrix}
= \begin{pmatrix}
I_0 \\
0 \\
0
\end{pmatrix},
\]

(21)

where \(m \) is an arbitrary positive factor, the choice of factor is considered in [9]; \(\sigma_{\min} \) is minimal singular values of a matrix \((\Phi L^{-1}, Y)\). \(I_1, I_3, I_{2N} \) are unit matrices of corresponding dimensions, \(j = \sqrt{-1} \).

4. Simulation Results
The algorithm based on criterion (21) was compared with the ordinary least squares, total least square. The values of currents and voltages were obtained using a Matlab Simulink model of the asynchronous motor. The motor had the following technical characteristics: nominal rated power \(P_n = 37kW \); nominal linear voltage \(U_n = 400V \); nominal rotation frequency \(n = 1480 \) rot/min.

In terms of that motor, parameters of the equivalent circuit were specified:
\(R_s = 0.0823\Omega, R_r = 0.0503\Omega, L_s = 0.0278H, L_m = 0.02711H, \sigma = 0.0513, p = 2, \sigma = 0.0513 \)

The true values of \(K \) parameters are:
\(K_1 = 92.8023, K_2 = 104.1040, K_3 = 57.6070, K_4 = 699.7079, \) and \(K_5 = 1264.5 \).

The sampling frequency is \(f_s = 1000 \).

We used the relative mean-square error (RMSE) of parameter estimation as a quality indicator for the model:
\[
\delta K_m = \sqrt{\frac{\| \hat{K}_m - K_m \|^2}{\| K_m \|^2}} \times 100\%.
\]

It was assumed that currents and voltages were measured with noise. The noise was modeled by using independent Gaussian random variables with zero means.

The noise-to-signal ratio for the standard deviations of currents, voltages, and their derivatives is 0.001.

Parameters	True values	OLS	RMSE OLS, %	GTLS	RMSE GTLS, %
\(L_s \)	0.0278	0.292	4.9601	0.0285	2.4651
\(R_s \)	0.0823	0.0842	2.3272	0.0826	0.2712
\(\sigma \)	0.0513	0.0500	5.4469	0.0501	2.7202
\(T_r \)	0.5534	0.5835	2.5427	0.5684	2.4528

The noise-to-signal ratio for the standard deviations of currents, voltages, and their derivatives is 0.005.
Table 3. Estimates of K parameters and their RMSE

Parameters	K_{true}	\hat{K}_{ols}	δK_{ols} %	\hat{K}_{gtls} %	δK_{gtls} %
K_1	92.8023	77.430	16.5636	94.7501	2.0990
K_2	104.104	1122.113	977.877	-21.3507	120.5090
K_3	57.6070	55.39183	3.8452	58.1129	0.8782
K_4	699.708	462.378	33.9184	729.1765	4.2226
K_5	1264.47	321.9110	74.5419	1298.8161	2.6643

Table 4. Estimates of electromagnetic parameters and their RMSE

Parameters	True values	OLS	RMSE OLS,%	GTLS	RMSE GTLS, %
I_s	0.0278	0.685	145.96	0.0282	1.3955
R_s	0.0823	0.1198	45.51	0.0797	3.1986
σ	0.0513	0.0316	38.47	0.0486	5.3681
T_s	0.5534	1.4364	159.56	0.561	1.5071

5. Conclusion

The paper proposes a method for estimating the electromagnetic parameters of an induction motor based on generalized total least squares. To find a solution to the generalized total least squares problem, an augmented system of equations is used that is equivalent to a biased normal system. This approach improves the conditionality of the system of equations being solved in comparison with the biased normal system and requires less memory compared to the solution based on the right singular vector. The simulation results show that the GTLS estimates are highly accurate than OLS estimates.

References

[1] Bose B K 2006 Power Electronics And Motor Drives: Advances and Trends (Academic Press) p 936
[2] Stephan J and Bodson M 1994 Real-time estimation of the parameters and fluxes of induction motors IEEE Transactions on Industry Electronics 30(3) 746–759
[3] Cirrincione M, Pucci M and Vitale G 2012 Power Converters and AC Electrical Drives with Linear Neural Networks (Boca Raton: CRC Press, Taylor & Francis Group) p 661
[4] Moons C and De Moor B 1995 Parameter identification of induction motor drives Automatica 31(8) 1137–47
[5] Cirrincione M, Cirrincione G, Pucci M and Jaafari A 2010 The estimation of the induction motor parameters by the GeTLS EXIN neuron 2010 IEEE Energy Conversion Congress and Exposition 1680–85
[6] Cirrincione G and Cirrincione M 2010 Neural Based Orthogonal Data Fitting: The EXIN Neural Networks Series: Adaptive and Learning Systems for Signal Processing, Communications and Control (New York: Wiley & Sons) p 255
[7] Ivanov D V, Sandler E A, Chertykovtseva N V, Tikhomirov E A and Semenova N S 2019 Identification of induction motor parameters with measurement errors IOP Conf. Ser.: Mater. Sci. Eng. 560 012163
[8] Zhdanov A I, Shararov P A 2000 Direct projection method in the problem of complete least squares Autom. Remote Control. 61(4) 610–620
[9] Ivanov D V, Zhdanov A I 2020 Weighted Total Least Squares for Frequency Estimation of Real Sinusoids Based on Augmented System In 2020 IEEE East-West Design & Test Symposium (EWDTS) (Varna, Bulgaria) 1–5