Long Non-coding RNA and mRNA Expression Change in Spinal Dorsal Horn After Exercise in Neuropathic Pain Rats

Ge Song¹, Wei-Ming Zhang¹, Yi-Zu Wang¹, Jia-Bao Guo², Yi-Li Zheng³, Zheng Yang⁴, Xuan Su⁵, Yu-Meng Chen⁵, Qing Xie* and Xue-Qiang Wang*⁺

¹ Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ² The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China, ³ Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China, ⁴ Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China, ⁵ Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China

Exercise can help inhibition of neuropathic pain (NP), but the related mechanism remains being explored. In this research, we performed the effect of swimming exercise on the chronic constriction injury (CCI) rats. Compared with CCI group, the mechanical withdrawal threshold of rats in the CCI-Swim group significantly increased on the 21st and 28th day after CCI surgery. Second-generation RNA-sequencing technology was employed to investigate the transcriptomes of spinal dorsal horns in the Sham, CCI, and CCI-Swim groups. On the 28th day post-operation, 306 intersecting long non-coding RNAs (lncRNAs) and 173 intersecting mRNAs were observed between the CCI vs Sham group and CCI-Swim vs CCI groups. Then, the biological functions of lncRNAs and mRNAs in the spinal dorsal horn of CCI rats were then analyzed. Taking the results together, this study could provide a novel perspective for the treatment for NP.

Keywords: swim, spinal dorsal horn, sequencing, neuropathic pain, lncRNA, mRNA

INTRODUCTION

Neuropathic pain (NP) is a primary lesion or disease of the somatosensory system, the symptoms and signs of which include spontaneous pain, allodynia, hyperalgesia, and paresthesia (Jensen and Finnerup, 2014; Colloca et al., 2017; Cavalli et al., 2019). Long-term pain not only reduces the sleep quality of NP patients, but also leads to decreased quality of life and psychological state (Colloca et al., 2017; Wu et al., 2019). Epidemiological surveys show that the prevalence of NP is 7–10% (van Hecke et al., 2014). Global aging has rendered NP a major public health issue and socioeconomic burden (Colloca et al., 2017; Bouhassira, 2019). Previous studies have found that the majority of available NP treatments have mild effects or dose-limiting side effects, and many NP patients have pain that cannot be properly treated (Attal and Bouhassira, 2015; Cooper et al., 2016; Gierthmühlen and Baron, 2016). Therefore, exploring safe and effective treatments for NP is necessary.

Exercise is widely used in the medical field as a therapeutic method and as a new approach to relieve various painful conditions (Dobson et al., 2014; Cooper et al., 2016; Kami et al., 2017; Palandi et al., 2020; Zhao et al., 2020; Zhou et al., 2020; Zheng et al., 2021; Peng et al., 2022; Wu et al., 2022). Previous studies have reported that swimming and treadmill running could significantly
improve mechanical allodynia, cold allodynia, and heat hyperalgesia, while suppress the level of inflammatory cytokines in animal NP models (Cooper et al., 2016; Kami et al., 2017). Swimming, as an effective method of reducing pain in rats, is an attractive form of exercise for patients with NP. Swimming can relieve the load on the aching limbs and coordination problems affected by pain in most patients, especially in the elderly (Cooper et al., 2016; Kami et al., 2017). However, the exact mechanism by which swimming alleviates NP is insufficiently understood and requires further exploration.

Recent developments in RNA-sequencing (RNA-seq) technology have enabled the screening of differentially expressed genes (DEGs) in the NP process and improved the understanding of the mechanism of NP (St John Smith, 2018). Long non-coding RNAs (lncRNAs), as non-protein coding RNAs with more than 200 nucleotides in length, have gene regulation functions. Earlier research established the participation of lncRNAs in the pathological process of NP by modulating pain-associated genes and altering neuronal excitability (Zhou et al., 2017a,b; Wu et al., 2019). Published studies also found that the spinal dorsal horn is the site of greatest concern in basic researches on NP. The spinal dorsal horn is the first station for the central nervous system to receive pain afferent signals (Cohen and Mao, 2014; Tsuda, 2016). After preliminary integration, the information is uploaded to the thalamus, and then the information is further transmitted to the cerebral cortex, thus causing pain. The dorsal horn of spinal cord is an important node for upward transmission of pain signals (Guo and Hu, 2014). However, no study evaluating the function of exercise in spinal dorsal horn transcriptomes in an NP animal model has yet been published. Therefore, in this research, we demonstrate the effect of swimming on the transcriptome of chronic constriction injury (CCI) rats, and utilized RNA-seq technology analyzing DEGs with their biological function. The genetic changes induced by exercise afford potential intervention targets for the development of NP.

MATERIALS AND METHODS

Animals and Exercise Training

The SLAC Laboratory (Shanghai, China) afforded us with Sprague Dawley rats. The rats were all 6-week-old males weighing between 180 and 200 g. The rats were given standard water and rat chow. Their ambient temperature was controlled at 24±1°C, and the light and dark cycle was 12/12 h. All experimental processes were authorized by the Ethics Committee of Scientific Research of Shanghai University of Sport.

The rats (n = 18) were grouped randomly into three groups: the Sham group (n = 6), the CCI group (n = 6), and the CCI-Swim group (n = 6). Adaptive feeding was conducted for 1 week. The rats in Sham and CCI groups were routinely fed and did not participate in swimming exercise, while rats in the CCI-Swim group were adapted to swim for 1 week preoperatively. Swimming time gradually increased from 10 min on day 1 to 60 min on day 6. On the third day after the CCI operation, rats in the CCI-Swim group were made to swim for a total of 19 sessions, and the swimming time was gradually increased. The first and second sessions involved swimming for 30 min each day, the third and fourth sessions involved swimming for 40 min each day, and the fifth and sixth sessions involved swimming for 50 min each day. In the seventh to ninth sessions, the rats swam for 60 min each time (Figure 1). This swimming training program is based on a previously published animal swimming exercise program that was improved by our research group. The rats were made to swim in a plastic box (82 cm × 60 cm × 59 cm) at a temperature of 35–37°C. After swimming, the rats are caught and dried with a heat blower (Almeida et al., 2015).

Chronic Constriction Injury Models

We performed CCI on the sciatic nerve of the rats on the basis of a previous study (Jaggi et al., 2011). First, we anesthetized the animal with 5% isoflurane. Then, the skin of the rats’ right lower limb was cut, and the muscle and connective tissue were bluntly dissected to locate the sciatic nerve. Four chromic catguts bluntly dissected to locate the sciatic nerve. Four chromic catguts

TABLE 1 | The primers utilized in qRT-PCR.

Primer	Forward	Reverse
XLOC_274480	AGATACCAGCTATCTCT	CGAGACATGTCATCATG
	ACCTGC	GAGTCA
XLOC_105980	CCGTCTCAAGTATGTTA	GGCACCGGAGAAAGAA
	TCCAC	TTGAAC
XLOC_134372	AGTGAATACATTGTGT	CACTGGAGGATGTTG
	CCTGTG	TAAGGCA
AABR07047899.1	TGATCCAAAAGGTCG	QAACAGATTCTGCTG
	CCAGCA	GACA
	TCCTGTCACTGTCGCC	QAGTCCTCTCCAT
	ATCCT	CCACCA
	Sgk1	ATCCCGGTCGAAAGAA
	ATGATACACGGTGTTG	TGAGGAGGTTGTG
	CACCA	TCTGAAA
	ATGATACACGGTGTTG	TCTGAAA
	CAACCA	TCTGAAA
	Vwa3a	TACCTGACAGACTT
	ATGATACACGGTGTTG	TCTGAAA
	U6	TCTGAAA
	CTGCCTGCC	TCTGAAA
	GCCCAACTA	TCTGAAA
	β-Actin	TCTGAAA
	TGTAACCAACTG	TCTGAAA
	GACGATA	TCTGAAA

FIGURE 1 | Protocol for swimming exercise. Swimming was included 1-week habituation before CCI surgery and 4-week formal training after CCI surgery.
(4.0 silk) were ligated on the sciatic nerve at an interval of approximately 1 mm. The sciatic nerve of rats in the Sham group was exposed but not ligated. The skin was then sewn with 5.0 silk sutures, and the rats were allowed a recovery period after the operation.

Mechanical Withdrawal Threshold

We performed mechanical withdrawal threshold (MWT) tests before and after CCI at 3, 7, 14, 21, and 28 days. The rats were placed in transparent glass boxes for 20 min to acclimatize before each behavioral test. The MWT test was performed by harmless stimulation to the posterior plantar of the rats. Von Frey wires (4–180 g, Aesthesio, Danmic Global, United States) were applied to the right hind paw, and the intensity of the Von Frey wires increased from small to large until the rats exhibited the desired behavior. Each rat was tested at least three times, at 5 min intervals.

Histological Examination

On the 28th day after CCI operation, three rats in each group (i.e., Sham, CCI, and CCI-Swim groups) were killed, and the spinal cord was collected for histopathological analysis. The spinal cord was fixed in 4% paraformaldehyde solution at 4°C for 90 min. After phosphate-buffered saline (PBS) cleaning for 15 min, the samples were then respectively soaked in 15 and 30% sucrose solution for 24 and 48 h. The tissue samples were placed in compound compounds (SAKURA, 4583), sliced (14 µm thick), and dyed with hematoxylin and eosin (HE). The slices were rinsed with PBS for 5 min, soaked in hematoxylin staining solution (Servicbio, G1005-1) for 4 min, and then washed under running water for 20 min. After washing, 1% hydrochloric acid solution was used for differentiation for 3 s. Rinsing was repeated for 15 min. The slides were kept in 0.1% eosin staining solution (Servicbio, G1005-2) for 3 min and then soaked in 85, 95, and 100% alcohol solutions for 1 min in sequence. After soaking in xylene I and xylene II for 1 min, the tissue samples were sealed with neutral resin and then observed under an Olympus BX53 microscope (Tokyo, Japan).

Sample Collection and RNA-Sequencing

On the 28th day after surgery, the remaining rats (n = 9, three in each group) were anesthetized with 3% pentobarbital sodium and instilled with saline (250 mL, 4°C) via the aorta. The corresponding positions of L4–L6 were located on the surgical side of the spine, and the spinal canal was opened to remove the L4–L6 spinal dorsal horn. TRIzol reagent was utilized to extract total RNA from the spinal dorsal horn. RNA quantification and qualification were conducted prior to sequencing. We established sequencing libraries through NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, United States) and appended the index code to attribute sequence of each sample. Then, the PCR products were purified by AMPure XP system, and the library quality was evaluated on Agilent Bioanalyzer 2100 system. Finally, the library preparation was sequenced by Illumina Hiseq platform.

Differentially Expressed Genes and Bioinformatics Analysis

The DESeq2 R package (1.10.1) was utilized to analyze the identified DEGs. DEG selection criteria is P-values < 0.05 and | log2 Fold Change (FC) | > 1.

Gene Ontology (GO) analysis was executed by the clusterProfiler R package. The KEGG database allows for genome deciphering, which enables a better understanding and analysis of the interactions, reactions, and relational networks of biomolecules produced by sequencing experimental techniques. The ClusterProfiler R package was utilized to detect DEGs enrichment in KEGG pathways. The significant enrichment criterion for GO analysis and KEGG pathway analyses was P < 0.05.

Validation by Quantitative Real-Time PCR

Quantitative real-time PCR (qRT-PCR) was used to detect the DEGs to verify the accuracy of the sequencing results. Total RNA was reverse transcribed into cDNA by Evo M-MLV RT Kit with gDNA Clean for qPCR II (Cat. No. AG11711). The qRT-PCR was executed by SYBR® Green Premix Pro Taq HS qPCR Kit II (Cat. No. AG11702) and run in a real-time system (Thermo Fisher Scientific, CA, United States). U6 and β-actin were identified as internal controls for lncRNAs and mRNAs, respectively, and the 2−ΔΔCt approach was applied to describe relative expression ratios. The specific primer sequences in this work are listed Table 1.

Statistics

Two-way repeated-measures analysis of variance with Tukey's post hoc analysis was conducted to evaluate the results of the statistical analysis.
weight measurement and behavioral tests. The results of qRT-PCR were determined by independent-sample \(t \)-tests. All of the data were analyzed by Graphpad Prism 9.0 and presented as mean ± standard error of the mean (SEM). The standard of statistical significance was \(P < 0.05 \).

RESULTS

Chronic Constriction Injury Model Identification and Mechanical Withdrawal Threshold Analysis

In this study, the NP model of rats involved CCI on the right hind limb. MWT test was performed in all three groups before and after operation (Figure 2). No significant difference in body weight among the three groups. Contrast to rats in the Sham group, animals in CCI group showed higher mechanical allodynia sensitivity from day 3 to 28 after CCI surgery; the CCI-Swim group also exhibited higher MWT on days 3, 7, and 14 after surgery. MWT was significantly improved in the CCI-Swim group on the day 21 and 28 after operation in contrast to the CCI group.

Histological Examination of the Spinal Dorsal Horn

The HE staining results showed that the spinal dorsal horn neurons in the Sham group were intact, regular, and orderly and that the nucleolus \(\text{in vivo} \) was distinct. In the CCI group,
the spinal dorsal horn neurons were damaged and denatured, with pyknosis, fragmentation, and dissolution of the nucleus, as well as loose surrounding tissues. These features indicate that the CCI model had been successfully prepared. Compared with the CCI group, the CCI-Swim group showed a slightly irregular arrangement of sensory neurons in the spinal dorsal horn and relatively dense surrounding tissues. In general, the histological features of the spinal cord in this group were better than those of the CCI group overall (Figure 3).

Table 2 | The top 20 DE lncRNAs in CCI group vs Sham group.

Gene name	Log₂FC	P-value	Regulation
AABR07015080.2	−12.81	<0.001	Down
XLOC_097933	14.21	<0.001	Up
XLOC_309240	−13.00	<0.001	Down
XLOC_176078	−13.45	<0.001	Down
XLOC_314732	12.62	<0.001	Up
XLOC_085264	−11.83	<0.001	Down
XLOC_234469	11.47	<0.001	Up
XLOC_173719	11.46	<0.001	Up
XLOC_305707	−11.04	<0.001	Down
LOC102546683	11.01	<0.001	Up
AABR07053749.1	−12.70	<0.001	Down
XLOC_023534	1.71	<0.001	Up
XLOC_122558	−10.70	<0.001	Down
XLOC_244676	10.74	<0.001	Down
LOC108348298	−12.39	<0.001	Down
AABR07067076.1	−11.79	<0.001	Down
XLOC_312531	12.16	<0.001	Up
XLOC_032459	−11.70	<0.001	Down
XLOC_305707	−11.04	<0.001	Down
LOC120546683	11.01	<0.001	Up
AABR07071299.1	−10.99	<0.001	Down
XLOC_097273	14.90	<0.001	Up
XLOC_2343724	14.93	<0.001	Up
XLOC_314732	−10.98	<0.001	Down
XLOC_244676	2.01	<0.001	Up
XLOC_044460	−10.43	<0.001	Down
XLOC_119427	10.25	<0.001	Up

DE, differentially expressed; **FC**, fold change.

Table 3 | The top 20 DE lncRNAs in CCI-Swim group vs CCI group.

Gene name	Log₂FC	P-value	Regulation
AABR07015080.2	10.90	<0.001	Up
XLOC_309240	14.03	<0.001	Up
LOC108348298	−12.39	<0.001	Down
XLOC_023534	−12.35	<0.001	Down
AABR07053749.1	−12.70	<0.001	Down
XLOC_097273	14.90	<0.001	Up
XLOC_244676	14.93	<0.001	Up
XLOC_312531	−10.98	<0.001	Down
XLOC_032459	2.01	<0.001	Up
XLOC_033171	−11.65	<0.001	Down
XLOC_096101	11.72	<0.001	Up
XLOC_189377	−10.99	<0.001	Down
XLOC_2343724	14.90	<0.001	Up
XLOC_244676	14.93	<0.001	Up
XLOC_044460	−10.43	<0.001	Down
XLOC_097273	−10.72	<0.001	Down
XLOC_244676	10.36	<0.001	Up
AABR07071299.1	−10.51	<0.001	Down
AABR07015080.1	1.27	<0.001	Up
XLOC_119427	10.25	<0.001	Up

DE, differentially expressed; **FC**, fold change.
Differentially Expressed Gene Expression in the Spinal Dorsal Horn

The quality of the RNA-seq results was evaluated. Comparison of the Sham and CCI groups (Figure 4A) revealed a total of 734 DE IncRNAs, among which 385 IncRNAs were upregulated and 349 were downregulated. The top 20 DE IncRNAs in the Sham vs CCI group are shown in Table 2. There were 758 DE IncRNAs were noted in the CCI-Swim vs CCI group (Figure 4B) and the top 20 DE are listed in Table 3. The Venn diagram indicated 306 intersecting IncRNAs in the two comparisons (Figure 5). Hierarchical cluster analysis revealed the clustering patterns of the three groups of DE IncRNAs (Figure 6).

Figure 7 shows differences in mRNA expression among the three groups. Compared with the Sham group, 442 mRNAs were significantly changed in the CCI group, including 286 upregulated mRNAs and 156 downregulated mRNAs (Figure 7A). The top 20 DE mRNAs in the Sham and CCI groups are listed in Table 4. A total of 401 DE mRNAs were observed in the CCI-Swim and CCI groups (126 upregulated and 275 downregulated; Figure 7B). The top 20 DE mRNAs in the CCI vs CCI-Swim group are detailed in Table 5. The Venn diagram obtained showed 173 intersecting mRNAs, which are listed in Figure 8. Hierarchical clustering analysis of the three groups of DE mRNAs revealed their clustering patterns (Figure 9).

Gene Ontology Functional Analysis

Gene Ontology analysis was conducted on the target genes with significant changes in DE IncRNAs. Between the CCI and Sham groups, the target genes were enriched in biological process (BP) terms such as muscle structure development, positive regulation of BP, and muscle organ development ($P < 0.05$). The cellular component (CC) terms were significantly related to Z disc, I band, and sarcomere ($P < 0.05$). Molecular functions (MFs) were

Gene name	Log$_2$FC	P-value	Regulation
AABR07015080.2	-12.81	<0.001	Down
LOC100910708	10.66	<0.001	Up
Trtn	12.79	<0.001	Up
LOC685716	11.02	<0.001	Up
LOC100910990	13.64	<0.001	Up
C3	1.47	<0.001	Up
AABR07053749.1	-12.70	<0.001	Down
Senp1	-13.23	<0.001	Down
LOC100910270	3.51	<0.001	Up
LOC100910021	12.69	<0.001	Up
AABR07051731.1	-9.88	<0.001	Down
C3r3	2.12	<0.001	Up
AABR07043288.1	5.90	<0.001	Up
LOC685699	3.17	<0.001	Up
Adgre1	1.13	<0.001	Up
AABR07017658.1	-11.57	<0.001	Down
Themis	11.57	<0.001	Up
Sgk1	-1.34	<0.001	Down
Vgf	2.15	<0.001	Up

DE, differentially expressed; FC, fold change.
TABLE 5 | The top 20 DE mRNAs in CCI-Swim group vs CCI group.

Gene name	Log2 FC	P-value	Regulation
LOC100910882	−15.35	<0.001	down
AABR07015080.2	10.90	<0.001	Up
Fam111a	6.08	<0.001	Up
LOC108348298	−12.39	<0.001	Down
Tex11	−12.25	<0.001	Down
Trdn	−12.74	<0.001	Down
Myo3b	−3.32	<0.001	Down
Rgs13	−12.87	<0.001	Down
LOC6896716	−10.97	<0.001	Down
LOC100910143	14.94	<0.001	Up
LOC100910990	−13.59	<0.001	Down
Ak7	−2.84	<0.001	Down
Senp1	13.26	<0.001	Up
AABR07015078.1	1.27	<0.001	Up
Plk3c2g	−1.56	<0.001	Down
LOC103690114	−12.83	<0.001	Down
AABR07052585.1	−10.39	<0.001	Down
Nhp2	−12.31	<0.001	Down
Noxred1	−9.58	<0.001	Down
AABR07042937.1	−12.16	<0.001	Down

DE, differentially expressed; FC, fold change.

DE mRNAs in the CCI and Sham groups were enriched in BP terms such as positive T cell selection, negative T cell selection, and membrane fusion; DE mRNAs were also enriched in CC terms such as proteasome core complex, beta-subunit complex, proteasome core complex, and COP9 signalosome (P < 0.05). The most enriched MF terms were sarcosine oxidase activity, oxidoreductase activity, and threonine-type endopeptidase activity (P < 0.05). The DEGs of mRNAs in the CCI vs CCI-Swim group were focused on BPs terms such as nucleoside triphosphate biosynthetic process, sodium ion export from cell, and establishment or maintenance of transmembrane electrochemical gradient (P < 0.05). The CC terms were enriched in the sodium:potassium-exchanging ATPase complex. Finally, DE mRNAs were significantly enriched in MF terms such as cation-transporting ATPase activity, ATPase activity, coupled to transmembrane movement of ions, and sodium:potassium-exchanging ATPase activity (P < 0.05; Figure 11).

KEGG Pathway Enrichment Analysis
Figure 12 shows the KEGG pathways of the target genes of DE lncRNAs in the CCI vs Sham groups. The top five KEGG pathways were hypertrophic cardiomyopathy (HCM), dilated...
cardiomyopathy, ribosome, asthma, and PPAR signaling pathway ($P < 0.05$). In the CCI-Swim vs CCI groups, the top five enriched KEGG pathways were HCM, dilated cardiomyopathy, olfactory transduction, ribosome, and cytokine–cytokine receptor interaction ($P < 0.05$). For mRNAs, DEGs in the CCI and Sham groups focused on aldosterone-regulated sodium reabsorption and B cell receptor signaling pathway. DE mRNAs in the CCI-Swim and CCI groups were significantly enriched in the KEGG pathways of metabolic pathways, oxidative phosphorylation, Parkinson’s disease, proximal tubule bicarbonate reclamation, glycosylphosphatidylinositol–anchor biosynthesis, and cAMP signaling pathway ($P < 0.05$; Figure 13).

Quantitative Real-Time PCR Analysis
We verified four IncRNAs (i.e., XLOC_274480, XLOC_105980, XLOC_137372, and AABR07047899.1) and four mRNAs (i.e., C3, Sgk1, Dnah7, and Vwa3a) to demonstrate the accuracy of the RNA-seq results. According to Figures 14, 15, the expression changes of the eight DEGs were consistent with the RNA-seq result.

DISCUSSION
In this study, we found remarkable differences in the expression of IncRNAs and mRNAs in the spinal dorsal horn of rats in the Sham, CCI, and CCI-Swim groups. We also predicted the potential functions of these DEGs by GO and KEGG pathway analyses. The findings are helpful in further explorations of the potential therapeutic targets of NP.

Previous studies demonstrated that the potential mechanisms of NP include abnormal heterotopic activity of the injurious nerve, peripheral and central sensitization, impaired inhibitory regulation, and pathological activation of microglia (Meacham et al., 2017; Inoue and Tsuda, 2018; Tozaki-Saitoh and Tsuda, 2019; Finnerup et al., 2021). The current treatment methods for NP mainly include pharmacology, non-pharmacology and interventional therapy (Nijs et al., 2015; Macone and Otis, 2018). However, most existing treatments are limited in their effectiveness in controlling pain (Gilron et al., 2015; Xu et al., 2016; Szok et al., 2019). Therefore, exploring new alternative treatment methods for NP remains an urgent necessity.

Given the increasing popularity of exercise in the field of medicine, the treatment of NP by exercise has become a research hotspot (Safakhah et al., 2017; Guo et al., 2019; Ma et al., 2019; Palandi et al., 2020). Kuphal et al. (2007) demonstrated that in NP model mice, swimming for 7 days can significantly increase the pain threshold of thermal hyperalgesia, while swimming for 18–20 days can significantly improve the thermal hyperalgesia and cold allodynia in CCI rats. Farzad et al. (2018) reported that after 4 weeks of swimming training could significantly decrease allodynia and hyperalgesia in rats with NP. The authors thus
believed that the improvement of pain tests was associate with GAD65 (Farzad et al., 2018). Another study demonstrate the expressions of inflammatory cytokines IL-4, IL-1RA, and IL-5DE were upregulated in the spinal cord of mice with peripheral nerve injury. Two weeks of treadmill exercise could significantly suppress the expression of inflammatory factors and improve pain behaviors (Bobinski et al., 2018). The results of our own research presented that the mechanical pain threshold of CCI rats significantly increased on day 21 and day 28 after swimming training. These studies have confirmed that exercise has a positive effect on NP.

Previous research showed that lncRNAs participated in the processes of NP and regulate NP-related gene expression (Li et al., 2019; Wu et al., 2019). Zhou et al. (2017a) utilized the second-generation sequencing method to observe the expressions of lncRNA and mRNA in the spinal cord of SNI rats at different time points. The authors’ results showed that lncRNAs and mRNAs in rats changed significantly at each measuring time point measured. The authors then explored the profiles of DEGs in the spinal cord of NP rats through GO and KEGG analyses (Zhou et al., 2017a). Another article employed microarray analysis to show the level of DEGs in the spinal cord of spinal nerve ligation (SNL) rats. A total of 511 DEGs of lncRNAs and 493 DEGs of mRNAs were observed on the 10th day after SNL surgery. Functional analysis indicated that the DEGs most enriched in SNL included immune response,
defense response, and inflammatory response, thus revealing the potential mechanisms in NP (Jiang et al., 2015). Some existing studies have explored DEGs in NP through gene sequencing and gene functional analysis. However, there was few literatures analyzing the potential mechanisms of the improvement of NP through exercise. Hence, we explored DE lncRNAs and mRNAs by means of second-generation sequencing and conducted further functional analysis. Among the two
FIGURE 14 | Quantitative real-time PCR validation. The expression levels of lncRNAs (A) XLOC_274480, (B) XLOC_105980, (C) XLOC_134372, and (D) AABR07047899.1 in the spinal cord of CCI rats at 28 days post operation. Data was analyzed by independent-samples t-test. Values are denoted by mean ± SEM, N = 3 per group. ∗p < 0.05, **p < 0.01.

FIGURE 15 | Quantitative real-time PCR validation. The expression levels of mRNAs (A) C3, (B) Sgk1, (C) Dnah7, and (D) Vwa3a in the spinal cord of CCI rats at 28 days post operation. Data was analyzed by independent-samples t-test. Values are denoted by mean ± SEM, N = 3 per group. **p < 0.01, ***p < 0.001.
In this study, we demonstrated that swimming exercise can relieve NP. RNA-seq analysis was utilized to identify the DEGs of lncRNAs and mRNAs among Sham, CCI, and CCI-Swim groups. The DEGs obtained may be potential treatment targets for NP. We also conducted bioinformatics analysis of dysregulated lncRNAs and mRNAs and obtained information that could lead to a better understanding of the mechanism of exercise in improving NP.

DATA AVAILABILITY STATEMENT

The raw data have been uploaded to the Sequence Read Archive (SRA) database of NCBI under accession number PRJNA768994.

ETHICS STATEMENT

The animal study was reviewed and approved by the Ethics Committee of Scientific Research of Shanghai University of Sport.

AUTHOR CONTRIBUTIONS

X-QW, QX, and GS contributed to conception and design of the study. GS, J-BG, and Y-LZ organized the related experiments. ZY, XS, and Y-MC performed the statistical analysis. GS and X-QW wrote the first draft of the manuscript. QX, J-BG, W-MZ, Y-ZW, and Y-LZ wrote sections of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China (81871844), Shuguang Program supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (18SG48), the Shanghai Key Lab of Human Performance (Shanghai University of Sport) (11DZ2261100), and Shanghai Clinical Research Center for Rehabilitation Medicine (21MC1930200).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnmol.2022.865310/full#supplementary-material
REFERENCES

Ainehband, S., Lindblom, R. P. F., Nimer, F. A., Vijayaraghavan, S., Sandholm, K., Khademi, M., et al. (2015). Complement component C3 and butyrylcholinesterase activity are associated with neurodegeneration and clinical disability in multiple sclerosis. PLoS One 10:e0122048. doi: 10.1371/journal.pone.0122048

Almeida, C., DeMaman, A., Kusuda, R., Cadetti, F., Ravanelli, M. I., Aeinehband, S., Lindblom, R. P. F., Nimer, F. A., Vijayaraghavan, S., Song et al. Exercise for Neuropathic Pain

Gierthmühlen, J., and Baron, R. (2016). Neuropathic pain. Inoue, K., and Tsuda, M. (2018). Microglia in neuropathic pain: cellular and Guo, J. B., Chen, B. L., Wang, Y., Zhu, Y., Song, G., Yang, Z., et al. (2019). Meta-analysis of the effect of exercise on neuropathic pain induced by peripheral nerve injury in rat models. Front. Neurosci. 10:636. doi: 10.3389/fnene.2015.00636

Inoue, K., and Tsuda, M. (2018). Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat. Rev. Neurosci. 19, 138–152. doi: 10.1038/nrn.2018.2

Jaggi, A. S., Jain, V., and Singh, N. (2011). Animal models of neuropathic pain. Fundam. Clin. Pharmacol. 25, 1–28. doi: 10.1111/j.1472-8206.2009.00801.x

Jensen, T. S., and Finnerup, N. B. (2014). Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 13, 924–935. doi: 10.1016/S1474-4422(14)70102-4

Jiang, B. C., Sun, W. X., He, L. N., Cao, D. L., Zhang, Z. J., and Gao, Y. J. (2015). Identification of lncRNA expression profile in the spinal cord of mice following spinal nerve ligation-induced neuropathic pain. Mol. Pain 11:43. doi: 10.1186/s12979-015-0047-9

Kami, K., Tajima, F., and Senba, E. (2017). Exercise-induced hypalgesia: potential mechanisms in animal models of neuropathic pain. Anat. Sci. Int. 92, 79–90. doi: 10.1007/s12565-016-0360-z

Kuphal, K. E., Fibuch, E. E., and Taylor, B. K. (2007). Extended swimming exercise reduces inflammatory and peripheral neuropathic pain in rodents. J. Pain 8, 989–997. doi: 10.1016/j.jpain.2007.08.001

Lang, F., and Shumilina, E. (2013). Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1. FASEB J. 27, 3–12. doi: 10.1096/fj.12-218220

Li, Y., Yin, C., Liu, B., Nie, H., Wang, J., Zeng, D., et al. (2021). Transcriptome profiling of long noncoding RNAs and mRNAs in spinal cord of a rat model of paclitaxel-induced peripheral neuropathy identifies potential mechanisms mediating neuroinflammation and pain. J. Neuroinflamm. 18:48. doi: 10.1186/s12974-021-02098-y

Li, Z., Li, X., Chen, X., Li, S., Ho, I. H. T., Liu, X., et al. (2019). Emerging roles of long non-coding RNAs in neuropathic pain. Cell Prog. 5:e12528. doi: 10.1111/cpr.12528

Ma, X. Q., Qin, J., Li, H. Y., Yan, X. L., Zhao, Y., and Zhang, L. J. (2019). Role of exercise activity in alleviating neuropathic pain in diabetes via inhibition of the pro-inflammatory signal pathway. Biol. Res. Nurs. 21, 14–21. doi: 10.1177/109980081343715

Macone, A., and Otis, J. A. D. (2018). Neuropathic pain. Semin. Neurol. 38, 644–653. doi: 10.1056/s-0038-1673679

Mao, P., Li, C. R., Zhang, S. Z., Zhang, Y., Liu, B. T., and Fan, B. F. (2018). Transcriptomic differential IncRNA expression is involved in neuropathic pain in rat dorsal root ganglion after spared sciatic nerve injury. Braz. J. Med. Biol. Res. 51:e713. doi: 10.1590/1419-443120187113

Meacham, K., Shepherd, A., Mohapatra, D. P., and Haroutounian, S. (2017). Neuropathic pain: central vs. peripheral mechanisms. Curr. Pain Headache Rep. 21, 28:10.0. doi: 10.1186/s11916-017-0629-5

Nijs, J., Apeldoorn, A., Hallegaert, H., Clark, J., Smeets, R., Malfliet, A., et al. (2015). Low back pain: guidelines for the clinical classification of predominant neuropathic, nociceptive, or central sensitization pain. Pain Phys. 18, E333–E346.

Palandi, J., Bobinski, F., de Oliveira, G. M., and Ilha, J. (2020). Neuropathic pain after spinal cord injury and physical exercise in animal models: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 108, 781–795. doi: 10.1016/j.neubiorev.2019.12.016

Peng, M. S., Wang, R., Wang, Y. Z., Chen, C. C., Wang, J., Liu, X. C., et al. (2022). Efficacy of therapeutic aquatic exercise vs physical therapy modalities for patients with chronic low back pain: a randomized clinical trial. JAMA Netw. Open 5:e2142069. doi: 10.1001/jamanetworkopen.2021.42069

Safakhah, H. A., Moradi Kor, N., Bazargani, A., Bandegi, A. R., Gholami Pourbadie, H., Khoshkholgh-Sima, B., et al. (2017). Forced exercise attenuates neuropathic pain in chronic constriction injury of male rat: an investigation of oxidative stress and inflammation. J. Diabetes Complicat. 25, 1–28. doi: 10.1111/jdc.12687

Szok, D., Tajti, J., Nyári, A., and Vécsei, L. (2019). Therapeutic approaches for neuropathic pain: an overview of the current treatment and future therapeutic mechanisms to treatment. JAMA Netw. Open 2(4):E346. doi: 10.1001/jamanetworkopen.2019.12.016
Wang, Q., Ai, H., Liu, J., Xu, M., Zhou, Z., Qian, C., et al. (2019). Characterization of novel lnc RNAs in the spinal cord of rats with lumbar disc herniation. *J. Pain Res.* 12, 501–512. doi: 10.2147/jpr.S164604

Wu, B., Zhou, L. L., Chen, C. C., Wang, J., and Wang, X. Q. (2022). Effects of exercise-induced hypoalgesia and its neural mechanisms. *Med. Sci. Sports Exerc.* 54, 220–231. doi: 10.1249/MSS.0000000000002781

Wu, S., Bono, J., and Tao, Y. X. (2019). Long noncoding RNA (lncRNA): a target in neuropathic pain. *Expert Opin. Ther. Targets* 23, 15–20. doi: 10.1080/14728222.2019.1550075

Xu, L., Zhang, Y., and Huang, Y. (2016). Advances in the treatment of neuropathic pain. *Adv. Exp. Med. Biol.* 904, 117–129. doi: 10.1007/978-94-017-7537-3_9

Zhao, L. N., Yang, Y. Q., Wang, W. W., Li, Q., and Xiao, H. (2020). The effects of traditional Chinese medicine combined with chemotherapy on immune function and quality of life in patients with non-small cell lung cancer: a protocol for systematic review and meta-analysis. *Medicine* 99:e22859. doi: 10.1097/md.0000000000022859

Zheng, K. Y., Chen, C. C., Yang, S. Y., and Wang, X. Q. (2021). Aerobic exercise attenuates pain sensitivity: an event-related potential study. *Front. Neurosci.* 15:735470. doi: 10.3389/fnins.2021.735470

Zhou, J., Fan, Y., and Chen, H. (2017a). Analyses of long non-coding RNA and miRNA profiles in the spinal cord of rats using RNA sequencing during the progression of neuropathic pain in an SNI model. *RNA Biol.* 14, 1810–1826. doi: 10.1080/15476286.2017.1371400

Zhou, J., Xiong, Q., Chen, H., Yang, C., and Fan, Y. (2017b). Identification of the spinal expression profile of non-coding RNAs involved in neuropathic pain following spared nerve injury by sequence analysis. *Front. Mol. Neurosci.* 10:91. doi: 10.3389/fnmol.2017.00091

Zhou, J., Ren, Y., Tan, L., Song, X., Wang, M., Li, Y., et al. (2020). Norcantharidin: research advances in pharmaceutical activities and derivatives in recent years. *Biomed. Pharmacother.* 131:110755. doi: 10.1016/j.biopha.2020.110755

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Song, Zhang, Wang, Guo, Zheng, Yang, Su, Chen, Xie and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.