O

Oral cancer is a life-threatening disease. It is the world’s eighth most common cancer in men.[1] Nowadays, the incidence of the oral cancer is high in developing countries, mainly in the Southern Central Asian region. In India, oral squamous cell carcinoma (OSCC) is the third most common cancer with an incidence rate of 52,000 annually. In developed countries such as the United States of America despite having accessibility to diagnostic and screening facility, the incidence is 13% with 30,000 newer cases every year. Most of the cases are diagnosed at an advanced stage with a poor overall survival rate of 5 years.[2]

In head and neck region, about 90% of the cancer is OSCC. The affected individuals are adults of sixth to seventh decades. Squamous cell carcinoma is defined as “a malignant epithelial neoplasm exhibiting squamous differentiation as characterized by the formation of keratin and/or the presence of intercellular bridges.”[3-5]

Oral cancer refers to cancer occurring in mouth and pharynx including cancers of lips, tongue, floor of the mouth, palate, gingiva, alveolar mucosa, tonsils, uvula, or salivary glands. Oral cancer (OSCC) to a larger extent is a self-induced disease as it is a multifactorial disease; understanding the factors will provide the knowledge of preventing and planning the treatment for better prognosis. In the postantibiotic era, oral cancer remains the disease of higher mortality in countries where the use of tobacco habits, in the form of chewing and/or smoking, with or without alcohol intake, has the greater risk of developing oral cancer; globally, it is recognized as the sixth most common cancer in this region. Recent studies show that the younger adults are affected more by OSCC.[6-9]

The genetic DNA level of mutation causes the alteration in the amino acid and protein produced by the cells. Several
mutations are necessary for the malignant change which leads to an increased cell proliferation in potentially malignant disorders, and when the cell escapes growth control, it becomes autonomous and malignant. The characteristic feature of basement break is seen in malignant lesion with a distant metastasis through the lymphatic and blood to lymph nodes. The involved organ shows dysfunction and death.[10]

Influence of the Immune Response on Malignant Disease

Increased incidence of malignant disease with aging

In older age individuals, there is a decreased cell mediated immune response to various antigens like dinitrochlorobenzenes, and lectins such as phytohemagglutinin (PHA). There is an increased incidence of the malignancy in the old age individuals, which may be related to the immunosuppression. Although many factors are involved in malignancy, the increased incidence of neoplasia in primary immune deficiency cases validates the concept of immune surveillance and supports the immunodeficiency’s role in malignancy. In patients with primary immune deficiencies, the incidence of malignant disease is more than 100 times that of the general population.[9,11]

The neonatally thymectomized animals which are immune compromised spontaneously develop neoplasia caused by polyomavirus.[11-15] this observation holds a strong argument against the concept of “immunologic surveillance.” The fact that such T-cell-deficient animals are susceptible to virus-induced tumors does not indicate that T-lymphocytes are involved in the development of other types of tumor. The most common malignancies in immunodeficiency are lymphoid system. Carcinoma at various sites is with selective immunoglobulin A (IgA) deficiency, a common variable immunodeficiency.[16] Oral neoplasia is less reported in primary immunodeficiency’s patients with severe degrees of immunodeficiency succumb at an early age, but the possibility that minor immune deficiencies underlying oral neoplasia has not been fully explored.[17]

Increased incidence of neoplasia in secondary immune deficiencies

The recipient in organ transplantation has an increased risk of malignancy at about 80 times that of matched controls due to immunosuppression. Similar to the primary immune suppression, the neoplasia is mainly of lymphomas and leukemia. In immune compromised patient there is an increased incidence of cancer in the lip and skin which are exclusively in sun-exposed areas. A short period review of 16,290 renal transplanted patients who are immunosuppressed showed no oral malignancy. But a long-term follow-up is necessary for exempting oral cancer incidence in these patients.[18,20]

Relationship between the Mononuclear Cell Infiltrate and Lymph Node Reactivity in Head and Neck Carcinoma and Prognosis

In oral cancer OSCC, the dysplastic epithelial cells show infiltration of mononuclear cell in the connective tissue.[21-23] The density of the inflammatory cell infiltrate is greater with the degree of severity of the dysplasia. On correlating with the histological view, the prognosis of the disease is increased where there is a dense mononuclear cell infiltrate in relation to the tumor. Lymphocytic cytotoxicity is increased in patients with head and neck cancer where there is a strong mononuclear cell infiltrate related to the tumor. The mononuclear cell infiltrate is largely of T-lymphocytes which are cell-mediated immune response for the tumor. The reactivity of the regional lymph nodes is also related to the prognosis of the disease.[24] In oral cancer, the predominance of lymphocytes pattern in regional lymph nodes with “active” and expanded inner cortex is increased number of germinal centers.[25] The prognosis is interestingly not related to the stage and grade of tumor.

Studies on lymphocytes using the surface Ig, complement receptor, and Ig Fc receptor show cells of T-lymphocyte characteristics and capable of normal lymph proliferative and mixed lymphocyte responses. However, the nodal lymphocytes appear to be unable to mediate cytolyis of antibody-coated target cells; presumably, there are therefore changes in T-lymphocyte subpopulations.[26]

Immunologic Defects Associated with Head and Neck Cancer

The most obvious immunologic change associated with head and neck cancer is a depression in the cell-mediated immune responses which are not significant in other carcinomas. Although it is not clear that the immune response alteration is primary or secondary to the neoplasm, the cellular responses remain depressed after surgical treatment of the tumor in patients with head and neck cancer, but it recovers in patients with adenocarcinomas, melanomas, or sarcomas. Therefore, it is possible that the immune defect in those with head and neck cancer is a primary event. However, exogenous factors may impair cell-mediated response.[26-30]

Immunologic Changes

In *vivo* studies on cell-mediated immunity show the impaired immunity in head and neck cancer. In a head and neck cancer patient, 56-70% of cases showed impairment in delayed hypersensitivity to dinitrochlorobenzene (DNCB) while the control had only 5%. The immune reactivity decreases by the advancement of the tumor. Although the relation is not specific, it shows that there is a correlation in early cancer (Stage I and Stage II) but not in advanced cancer.[31]

Eilber and Morton identified a strong correlation between a positive DNCB response and a good prognosis; the OSCC
cases with anergic response of 80% had a poor prognosis of 1 yr while the DNCB reactive cases showed a better response to radiotherapy, and the regression by 75% The survival rate is of >2 years for 95% of the patients; DNCB reactivity is not an invariable predictor of treatment success. Techniques for testing DNCB reactivity need standardized methods and results compared with closely matched controls.\(^{[34,35]}\)

Delayed hypersensitivity reactions to various antigens to which the patient is likely to have been exposed previously (recall antigens) may also be impaired in patients with head and neck cancer. The skin reactivity to purified protein derivative (PPD) of tuberculin is a better predictor for short-term survival than DNCB.\(^{[36]}\)

The recall antigen tests were less number of positive antigen used which are anergic to antigens such as PPD, mumps antigen, candidal antigens, or streptokinase streptodornase. Forty-five percent of the patients with cancer of the head and neck are anergic to one or more recall antigens as compared with anergy in only 8% of the controls; in summary, the prognosis in patients with cancer of the head and neck appears best where in vivo testing reveals intact cell-mediated immune response.\(^{[37,38]}\)

In vitro tests of cell-mediated immunity

In OSCC patients with increased serum concentrations of IgA and IgE with normal levels of IgG, IgM and IgD. The concentration IgA and IgE are increased in the saliva of OSCC patients is not known clearly may be due to the cell mediated immunity the production of both immunoglobulins being regulated by T-lymphocyte activity.\(^{[39,40]}\)

The humoral response of the head and neck cancer shows collection of plasma cells beneath the tumor islands.\(^{[41]}\) Deposition of IgG the C3 complement component on the tumor cells indicates that an immune response has occurred although it is unclear whether the IgG is deposited as antibody directed against tumor-associated antigens or as immune (antigen-antibody) complexes.\(^{[42]}\) Circulation of immune complex was detected in 75% of cancer patients, but the antigen responsible for the immune complexes remains unidentified. There is a reduction of the Fc fragments Ig receptors in the cells in head and neck cancer cells.\(^{[43]}\)

The humoral immune responses may therefore enhance tumor formation by the production of blocking factors in the serum antibody or the tumor-associated antigen and affect immune-mediated response.\(^{[44]}\) Other humoral factors of cell-mediated immune responses include several immunoreactive proteins, particularly certain serum glycoproteins such haptoglobin, α1, acid glycoproteins, and α1 antitrypsin.\(^{[45]}\)

The glycoprotein\(^{[46]}\) level in the serum is inversely related with the anergy to DNBC and defective lymphoproliferative responses to PHA; the levels of other proteins, such as prealbumin and α2 h glycoprotein\(^{[47]}\) are related directly with both the parameters. The α2 globulins in particular appear to impair the various cell-mediated immune responses both in vivo and in vitro. It is evident that humoral factors may suppress cell-mediated immune responses, and various suppressors of leukocytes may regulate cell-mediated immune responses in patients with head and neck cancer.\(^{[48]}\)

Immunologic Changes in Relation to Possible Viral Etiology in Oral Cancer

The serum IgA concentration increases in patients with head and neck cancer may be accounted for by specific antibody responses. There is a rise in titers of serum IgA antibodies to the herpes virus and Epstein–Barr virus (EBV) were seen in OSCC, nasopharyngeal carcinoma and not seen in other carcinoma.\(^{[49-52]}\). Nuclear-associated antigens of EBV (EBNA) found in nasopharyngeal carcinoma show antibodies to diffuse components of an early antigen of EBV.\(^{[53]}\) Titors of serum IgA antibodies (but not IgG or IgM antibodies) to HSV\(^{[54,55]}\) are increased in patients with head and neck cancer and the titer of such antibodies parallels the cell-mediated immune defect, suggesting that the virus might either cause the immune defect or be associated with it.

Tumor-associated Antigens in Head and Neck Cancer

Among the changes associated with neoplasia, there are changes in cellular antigens, including the reappearance of some fetal antigens. Carcinoembryonic antigen,\(^{[55]}\) an oncocytopetal antigen, is described to reappear in chemically induced oral cancer in animals and OSCC of human beings. The B2 microglobulin, a low-molecular-weight constituent of cell surface histocompatibility antigens (HLA antigens), is seen in small quantities of the serum in normal persons and in increased amounts in patients with oral cancer and premalignant lesions.\(^{[56]}\) The increased release of β2 microglobulin may reflect an immunological response to the tumor or changes in cell recognition associated with neoplasia.\(^{[57]}\)

In other tumors, the onset of malignancy is associated with the loss of some cell surface HLA antigens.\(^{[58,59]}\) The cellular antigens which may be lost in oral cancer include the blood group isoantigens A and B and receptors for the lectin Ricinus communis, indicating the changes in carbohydrate composition of the plasma membranes of the oral malignant cells.\(^{[60]}\)

Exogenous Factors Influencing Immune Responses

Several defined exogenous factors may decrease the immune reactivity in patients with head and neck cancer. These factors include particularly alcohol,\(^{[61]}\) especially if there is liver damage,\(^{[62]}\) malnutrition, smoking, chemotheraphy, anesthesia and surgery, and radiation therapy.\(^{[62-65]}\)

Financial support and sponsorship

Nil.
Conflicts of interest

There are no conflicts of interest.

References

1. Burnet FM. Immunological surveillance in neoplasia. Transplant Rev 1971;7:3-25.
2. Klein G. Tumour immunology: A general appraisal. In: Symington T, Carter RL, editors. Scientific Foundations of Oncology. London: W. Heinemann; 1976. p. 497-504.
3. Boyle P, Scully C, Gillis C. Oral Cancer in Scotland: Incidence (1963-1977) and Mortality (1911-1978). Int J Cancer. [In press].
4. Binnie WM. Oral cancer. In: Dolby AE, editor. Oral Mucosa in Health and Disease. Oxford: Blackwell Scientific Publications; 1975. p. 301-34.
5. Gross L. Immunological defect in aged population and its relationship to cancer. Cancer 1965;18:201-4.
6. Waldorf DS, Willkens RF, Decker JL. Impaired delayed hypersensitivity in an aging population. Association with antinuclear activity and rheumatoid factor. JAMA 1968;203:831-4.
7. Giannini D, Sloan RS. A tuberculin survey of 1286 adults with special reference to the elderly. Lancet 1967;272:525-6.
8. Piscicotta AV, Westring DW, DePrev C, Walsh B. Mitogenic effect of phytohaemagglutinin at different ages. Nature 1967;215:193-4.
9. Gatti RA, Good RA. Aging, immunity, and malignancy. Geriatrics 1970;25:158-68.
10. Vandepitte M, Denys P Jr., Leyten R, De Somer P. The oncocogenic activity of the polyoma virus in thymectomized rats. Life Sci 1973;7:475-8.
11. Ting RC, Law LW. Thymic function and carcinogenesis. Prog Exp Tumor Res 1967;9:165-91.
12. Möller G, Möller E. The concept of immunological surveillance against neoplasia. Transplant Rev 1976;28:3-16.
13. Gatti RA, Good RA. Occurrence of malignancy in immunodeficiency diseases. A literature review. Cancer 1971;28:89-98.
14. Kersey JH, Spector BD, Good RA. Primary immunodeficiency diseases and cancer: The immunodeficiency-cancer registry. Int J Cancer 1973;12:333-47.
15. Stiehm ER, Fulginiti VA, editors. Immunologic Disorders in Infants and Children. Philadelphia: W. B. Saunders Company; 1973.
16. Gotoff SP, Aminmokri E, Liebner EJ. Ataxia telangiectasia. Neoplasia, untoward response to radiation, and tuberous sclerosis. Am J Dis Child 1967;114:617-25.
17. Scully C, Lehner T. Disorders of immunity. In: Jones JH, Mason DK, editors. Oral Manifestations of Systemic Disease. London: W. B. Saunders Company; 1980. p. 102-74.
18. Penn I, Starzl TE. Malignant tumors arising de novo in immunosuppressed organ transplant recipients. Transplantation 1972;14:407-17.
19. Hoover R, Fraumeni JF Jr. Risk of cancer in renal-transplant recipients. Lancet 1973;2:55-7.
20. Penn I. Immunosuppression and cancer. Importance in head and neck surgery. Arch Otolaryngol 1975;101:667-70.
21. Johnson NW. The role of histopathology in diagnosis and prognosis of oral squamous cell carcinoma. Proc R Soc Med 1976;69:740-7.
22. Loning T, Burkhardt A. Plasma cells and immunoglobulin-synthesis in oral precancer and cancer. Correlation with dysplasia, cancer differentiation, radio- and chemotherapy. Virchows Arch A Pathol Anat Histol 1979;384:109-20.
23. Bjerregaard H Jr, Bonner S, Brown AS, Graham WP 3rd, Lehr HB. Lymph node metastases in oral carcinoma. A correlation of histopathology with survival. Plast Reconstr Surg 1974;53:158-66.
24. Malicka K. Attempt at evaluation of defensive activity of lymph nodes on the basis of microscopic and clinical studies in cases of laryngeal cancer. Pol Med J 1971;10:154-84.
25. Berlinger NT, Tsakralides V, Pollack K, Adams GL, Yang M, Good RA. Immunologic assessment of regional lymph node histology in relation to survival in head and neck cancer. Cancer 1976;37:697-705.
26. Heinemann W. Lymphoid subpopulation changes in regional lymph nodes in squamous head and neck cancer. Cancer Res 1977;37:1154-8.
27. Saxen A, Portis J. Preservation of in vitro biological functions in regional lymph node lymphocytes in squamous head and neck cancer. Cancer Res 1977;37:1159-64.
28. O’Toole C, Saxen A, Bolner R. Human node lymphocytes fail to lyse antibody coated cells. Clin Exp Immunol 1978;3:663-84.
29. Samarut C, Brochier J, Revillard JP. Distribution of cells binding erythrocyte-antibody (EA) complexes in human lymphoid populations. Second J Immunol 1976;5:221-31.
30. Lichtenstein A, Zigelboim J, Dorey F, Brossman S, Fahey JL. Comparison of immune derangements in patients with different malignancies. Cancer 1980;45:2090-5.
31. Cataldi WJ, Chretien RB. Abnormalities of quantitative thyrotropin-basaloid benzene sensitization in cancer patients: Correlation with tumor stage and histology. Cancer 1973;35:353-6.
32. Chretien PB, Cataldi WJ, Twomey PL, Sample WF. Correlation of immune reactivity and clinical status in cancer. Ann Clin Lab Sci 1974;4:331-8.
33. Chretien PB, Twomey PL, Cataldi WJ, Hansling RL. Immunologic defects associated with squamous carcinoma. Cancer 1975;36:3-8.
34. Elfer FR, Morton DL. Impaired immunologic reactivity and recurrence following cancer surgery. Cancer 1970;25:362-7.
35. Elfer FR, Morton DL, Ketcham AS. Immunologic abnormalities in head and neck cancer. Am J Surg 1974;128:534-8.
36. Bosworth JL, Ghosein NA, Brooks TL. Delayed hypersensitivity in patients treated by curative radiotherapy. Its relation to tumor response and short-term survival. Cancer 1975;36:353-6.
37. Gilbert HA, Kagan AR, Miles J, Flores L, Nussbaum H, Rao AR, et al. The usefulness of pretreatment DNCB in 85 patients with squamous cell carcinoma of the upper aerodigestive tract. J Surg Oncol 1978;10:73-7.
38. Stefano S, Kerman R, Abbate J. Serial studies of immunocompetence in head and neck cancer patients undergoing radiation therapy. AJR Am J Roentgenol 1976;126:880-6.
39. CloUGH JD, Mims LH, Strober W. Deficient IgA antibody responses to arsanic acid bovine serum albumin (BSA) in neonatally thymectomized rabbits. J Immunol 1971;106:1624-9.
40. Wanebo HJ, Jun MY, Strong EW, Oetgen H. T-cell deficiency in patients with squamous cell cancer of the head and neck. Am J Surg 1975;130:445-51.
41. Heimer R, Klein G. Circulating immune complexes in sera of patients with Burkett’s lymphoma and nasopharyngeal carcinoma. Int J Cancer 1976;18:310-6.
42. Wolf GT, Chretien PB, Elias EG, Makuch RW, Baskes AM, Spiegel HE, et al. Serum glycoproteins in head and neck squamous carcinoma: Correlations with tumor extent, clinical tumor stage, and T-cell levels during chemotherapy. Am J Surg 1979;188:489-500.
43. Sjögren HO, Hellström I, Bansal SC, Hellström KE. Suggestive evidence that the “blocking antibodies” of tumor-bearing individuals may be antigen – Antibody complexes. Proc Natl Acad Sci U S A 1971;68:1372-5.
44. Stutman O. Lymphocyte sequestration: Its possible role in tumor immunity. Transplant Proc 1972;5:969-73.
45. Arora PK, Miller HC, Aronson LD. alpha1-Antitrypsin is an effector of immunological status. Nature 1978;274:589-90.
46. Baskes AM, Chretien PB, Wolf GT, Weiss JF. Correlation of serum immunoreactive proteins with clinical tumor stage in patients with squamous carcinoma of the head and neck and nasopharyngeal carcinoma. Surg Forum 1979;30:516-9.
47. Harvey H, Lipton A, Sraa DA, Albright C, DeLong S, Davidson EA. Inhibition of in vitro lymphocyte function by ω1-α-glycoprotein; tumor related glycoprotein and fibrinogen degradation products. J Surg Res 1979;21;10.
48. Hubbard GW, Wanebo H, Fukuda M, Pace R. Defective suppressor cell activity in cancer patients: A defect in immune regulation. Cancer 1981;47:2177-84.
49. Ho HC, Ng MH, Kwan HC, Chau JC. Epstein-Barr-virus-specific IgA and IgG serum antibodies in nasopharyngeal carcinoma. Br J Cancer 1976;34:655-60.
50. de-The G, Ho JH, Ablashi DV, Day NE, Macario AJ, Martin-Berthelon MC, et al. Nasopharyngeal carcinoma. IX. Antibodies to EBNA and correlation with response to other EBV antigens in Chinese patients. Int J Cancer 1975;16:713-21.
51. Henderson BE, Louie E, Bogdanford E, Henie W, Alena B, Henie G. Antibodies to herpes group viruses in patients with nasopharyngeal
and other head and neck cancers. Cancer Res 1974;34:1207-10.
52. Henderson BE, Louie E, Soo-Hoo Jing J, Buell P, Gardner MB. Risk factors associated with nasopharyngeal carcinoma. N Engl J Med 1976;295:1101-6.
53. Halili MR, Spigland I, Foster N, Ghossein NA. Epstein-Barr virus (EBV) antibody in patients treated by radical radiotherapy for head and neck cancer. J Surg Oncol 1978;10:457-63.
54. Notter MF, Docherty JJ. Comparative diagnostic aspects of herpes simplex virus tumor-associated antigens. J Natl Cancer Inst 1976;57:483-8.
55. Tarro G, Flaminio G, Cocchiara R, Di Gioia M, Geraci D. An immune enzymatic assay for purified tumour associated antigen of herpes simplex virus. Cell Mol Biol Incl Cyto Enzymol 1979;25:329-33.
56. Toto PD. Fluorescent antibody detection of CEA in oral squamous carcinoma. J Oral Med 1979;34:45-6.
57. Scully C. Serum beta 2 microglobulin in oral malignancy and premalignancy. J Oral Pathol 1981;10:354-7.
58. Tarpley JL, Chretien PB, Rogentine GN Jr, Twomey PL and Dellon AL. Histocompatibility antigens and solid malignant neoplasms. Arch Surg 1975;110:269-271.
59. Seigler HF, Kremer WB, Metzgar RS, Ward FE, Haung AT, Amos DB. HL-A antigenic loss in malignant transformation. J Natl Cancer Inst 1971;46:577-84.
60. Berenyi MR, Straus B, Cruz D. In vitro and in vivo studies of cellular immunity in alcoholic cirrhosis. Am J Dig Dis 1974;19:199-205.
61. Bernstein IM, Webster KH, Williams RC Jr., Strickland RG. Reduction in circulating T lymphocytes in alcoholic liver disease. Lancet 1974;2:488-90.
62. Brookes GB, Clifford P. Nutritional status and general immune competence in patients with head and neck cancer. J R Soc Med 1981;74:132-9.
63. Bitter K. Immunity suppression by bleomycin-methotrexate combined treatment in patients with epidermoid carcinoma of the oral cavity. J Maxillofac Surg 1974;2:35-9.
64. Tarpley JL, Twomey PL, Catalona WJ, Chretien PB. Suppression of cellular immunity by anesthesia and operation. J Surg Res 1977;22:195-201.
65. Kenady DE, Chretien PB, Potvin C, Simon RM, Alexander JC Jr., Goldstein AL. Effect of thymosin in vitro on T cell levels during radiation therapy: Correlations with radiation portal and initial T cell levels. Cancer 1977;39:642-52.