On the k-free divisor problem

Jun FURUYA and Wenguang ZHAI

Jun Furuya,
Department of Integrated Arts and Science,
Okinawa National College of Technology,
Nago, Okinawa, 905-2192, Japan
E-mail: jfuruya@okinawa-ct.ac.jp

Wenguang Zhai,
School of Mathematical Sciences,
Shandong Normal University,
Jinan, Shandong, 250014, P.R.China
E-mail: zhaiwg@hotmail.com

Acta Arith.123 (2006), 267-287

Abstract. Let $\Delta^{(k)}(x)$ denote the error term of the k-free divisor problem for $k \geq 2$. In this paper we establish an asymptotic formula of the integral $\int_{T}^{T} |\Delta^{(k)}(x)|^2 dx$ for each $k \geq 4$.

1 Introduction

Let $d(n)$ denote the divisor function. Dirichlet first proved that the error term

$$\Delta(x) := \sum_{n \leq x} d(n) - x \log x - (2\gamma - 1)x, \quad x \geq 2$$

satisfies $\Delta(x) = O(x^{1/2})$. The exponent $1/2$ was improved by many authors. The latest result is due to Huxley [4], who proved that

$$\Delta(x) = \left(x^{131/416} (\log x)^{26957/8320} \right).$$

It is conjectured that

$$\Delta(x) = O(x^{1/4+\varepsilon}), \quad (1.1)$$

2000 Mathematics Subject Classification: 11N37.
Key Words: Dirichlet divisor problem, k-free divisor problem.

The second-named author is supported by National Natural Science Foundation of China(Grant No. 10301018).
which is supported by the classical mean-square result
\[
\int_1^T \Delta^2(x)dx = \frac{(\zeta(3/2))^4}{6\pi^2\zeta(3)}T^{3/2} + O(T\log^5 T)
\] (1.2)
proved by Tong [15].

Let \(k \geq 2 \) denote a fixed integer. An integer \(n \) is called \(k \)-free if \(p^k \) does not divide \(n \) for any prime \(p \). Let \(d^{(k)}(n) \) denote the number of \(k \)-free divisors of the positive integer \(n \) and define
\[
D^{(k)}(x) := \sum_{n \leq x} d^{(k)}(n).
\]

Then the expected asymptotic formula of \(D^{(k)}(x) \) is
\[
D^{(k)}(x) = C_1^{(k)} x \log x + C_2^{(k)} x + \Delta^{(k)}(x),
\]
where \(C_1^{(k)}, C_2^{(k)} \) are two constants, \(\Delta^{(k)}(x) \) is the error term. In 1874 Mertens [9] proved that \(\Delta^{(2)}(x) \ll x^{1/2} \log x \). In 1932 Hölder [4] proved that
\[
\Delta^{(k)}(x) \ll \begin{cases}
 x^{1/2}, & \text{if } k = 2, \\
 x^{1/3}, & \text{if } k = 3, \\
 x^{33/100}, & \text{if } k \geq 4.
\end{cases}
\]

For \(k = 2, 3 \), it is very difficult to improve the exponent \(1/k \) in the bound \(\Delta^{(k)}(x) \ll x^{1/k} \), unless we have substantial progress in the study of the zero-free region of \(\zeta(s) \). Therefore it is reasonable to get better improvements by assuming the truth of the Riemann Hypothesis (RH). Such results were given in [1, 2, 9, 12, 13, 14]. Especially in [2] R. C. Baker proved \(\Delta^{(2)}(x) \ll x^{4/11+\varepsilon} \) and in [9] Kumchev proved \(\Delta^{(3)}(x) \ll x^{27/85+\varepsilon} \) under RH. For \(k \geq 4 \), it is easy to show that if \(\Delta(x) \ll x^\alpha \) is true, then the estimate \(\Delta^{(k)}(x) \ll x^\alpha \log x \) follows.

We believe that the estimate
\[
\Delta^{(k)}(x) = O(x^{1/4+\varepsilon})
\] (1.3)
would be true for any \(k \geq 2 \), which is an analogue of (1.1). For \(k \geq 4 \) it is easily seen that if the conjecture (1.3) is true, then so is (1.3). For \(k = 2, 3 \), we cannot deduce the conjecture (1.3) from (1.1) directly; in this case we don’t know the truth of (1.3) even if both (1.1) and RH are true. However for any \(k \geq 2 \), the conjecture (1.3) cannot be proved by the present method.

In this paper we shall study the mean square of \(\Delta^{(k)}(x) \) for \(k \geq 4 \), from which the truth of the conjecture (1.3) \((k \geq 4) \) is supported partly. Our result is an analogue of (1.2).

Theorem 1. We have the asymptotic formula
\[
\int_1^T |\Delta^{(k)}(x)|^2dx = \frac{B_k}{6\pi^2}T^{3/2} + \begin{cases}
 O(T^{3/2}e^{-c\delta(T)}), & \text{for } k = 4, \\
 O(T^{\delta_k+\varepsilon}), & \text{for } k \geq 5,
\end{cases}
\]

where
\[B_k := \sum_{m=1}^{\infty} g_k^2(m)m^{-3/2}, \quad g_k(m) := \sum_{m=nd^k} \mu(d)d(n)d^{k/2}, \]
\[\delta(u) := (\log u)^{3/5}(\log \log u)^{-1/5}, \]
\[\delta_5 := 75/52, \quad \delta_k := 3/2 - 1/2k + 1/k^2 \quad (k \geq 6), \]
and where \(c > 0 \) is an absolute constant.

Corollary 1. If \(k \geq 4 \), then we have
\[\Delta^{(k)}(x) = \Omega(x^{1/4}). \]

By the same method we can study the mean square of \(\Delta(1, 1, k; x) \), which is defined by
\[\Delta(1, 1, k; x) := \sum_{n \leq x} d(1, 1, k; n) - x \{ \zeta(k) \log x + k\zeta'(k) + (2\gamma - 1)\zeta(k) \} - \zeta^2\left(\frac{1}{k}\right)x^{1/k}, \]
where \(d(1, 1, k; n) = \sum_{n=m_1m_2d^k} 1 \) and \(\gamma \) is the Euler constant. This is a special three-dimensional divisor problem. From the formula (5.3) of Ivić [7] we have
\[\int_1^T \Delta^2(1, 1, k; x)dx \ll T^{3/2+\varepsilon}. \quad (1.4) \]

From Krätzel [8] we know that
\[\Delta(1, 1, k; x) = \Omega(x^{1/4}) \quad (1.5) \]
if \(k \geq 5 \).

Now we prove the following Theorem 2, which improves (1.4).

Theorem 2. Suppose \(k \geq 3 \) is a fixed integer. Then we have
\[\int_1^T \Delta^2(1, 1, k; x)dx = \frac{C_k}{6\pi^2} T^{3/2} + \left\{ \begin{array}{ll}
O(T^{53/36} \log^3 T), & \text{if } k = 3, \\
O(T^{29/20} \log^{503} T), & \text{if } k = 4, \\
O(T^{75/52} \log^{1000} T), & \text{if } k = 5, \\
O(T^{3/2-1/2k+1/k^2+\varepsilon}), & \text{if } k \geq 6,
\end{array} \right. \]
where
\[C_k := \sum_{m=1}^{\infty} f_k^2(m)m^{-3/2}, \quad f_k(m) := \sum_{m=nd^k} d(n)d^{k/2}. \]

Corollary 2. The formula (1.5) holds for \(k = 3, 4 \).

Notations. For a real number \(u \), \([u]\) denotes the integer part of \(u \), \(\{u\} \) denotes the fractional part of \(u \), \(\psi(u) = \{u\} - 1/2 \), \(\|u\| \) denotes the distance from \(u \) to the
integer nearest to \(u \). \(\mu(d) \) is the Möbius function. Let \((m, n)\) denote the greatest common divisor of natural numbers \(m \) and \(n \). \(n \sim N \) means \(N < n \leq 2N \). \(\varepsilon \) always denotes a sufficiently small positive constant which may be different at different places. \(SC(\Sigma) \) denotes the summation condition of the sum \(\Sigma \).

2 The expression of \(\Delta^{(k)}(x) \)

In order to prove Theorem 1, we shall give a simple expression of \(\Delta^{(k)}(x) \) in this section.

Lemma 2.1. There exists an absolute constant \(c_1 > 0 \) such that the estimate

\[
M(u) := \sum_{n \leq u} \mu(n) \ll u e^{-c_1 \delta(u)}
\]

holds for \(u \geq 2 \).

This is Theorem 12.7 of Ivić [6]. Now we prove the following

Lemma 2.2. Suppose \(10 \leq y \ll x^{1/k} \), then we have

\[
\Delta^{(k)}(x) = \sum_{d \leq y} \mu(d) \Delta \left(\frac{x}{d^k} \right) + O \left(x y^{1-k} e^{-c_1 \delta(y)} \log x \right).
\]

Proof. We have

\[
D^{(k)}(x) = \sum_{d \leq y} \sum_{n \leq x} \mu(d) = \sum_{d \leq y} \mu(d) \sum_{n \leq x} \mu(n)
\]

\[
= \sum_{d \leq y} \mu(d) D \left(\frac{x}{d^k} \right) + \sum_{n \leq x/y^k} d(n) M \left(\frac{x}{n} \right)^{1/k} - D \left(\frac{x}{y^k} \right) M(y)
\]

\[
= \sum_1 + \sum_2 - \sum_3,
\]

say. From Lemma 2.1 and the estimate \(D(u) \ll u \log u \) directly we have

\[
\sum_3 \ll x y^{1-k} e^{-c_1 \delta(y)} \log x.
\]

From Lemma 2.1, the estimate \(D(u) \ll u \log u \) and partial summation we have

\[
\sum_2 \ll x y^{1-k} e^{-c_1 \delta(y)} \log x
\]

if we note that \(e^{-c_1 \delta((x/n)^{1/k})} \leq e^{-c_1 \delta(y)} \) for all \(n \leq x/y^k \). By Lemma 2.1 and simple calculations we have

\[
\sum_1 = \sum_{d \leq y} \mu(d) \left\{ \frac{x}{d^k} \log \frac{x}{d^k} + (2\gamma - 1) \frac{x}{d^k} \right\} + \sum_{d \leq y} \mu(d) \Delta \left(\frac{x}{d^k} \right)
\]

\[
= \text{(Main term)} + \sum_{d \leq y} \mu(d) \Delta \left(\frac{x}{d^k} \right) + O \left(x y^{1-k} e^{-c_1 \delta(y)} \log x \right).
\]

Whence Lemma 2.2 follows. \(\square \)
3 Proof of Theorem 1(Beginning)

Suppose $T \geq 10$ is large. It suffices for us to evaluate the integral $\int_{T}^{2T} |\Delta^{(k)}(x)|^2 dx$.

Let $T^\varepsilon \ll y \ll T^{1/k - \varepsilon}$, $T^\varepsilon \ll z \ll T^{1 - \varepsilon}$ be two parameters to be determined later. Let

$$
\Delta_1(u) := \frac{u^{1/4}}{\pi \sqrt{2}} \sum_{n \leq z} \frac{d(n)}{n^{3/4}} \cos \left(4\pi \sqrt{n u} - \frac{\pi}{4} \right), \quad \Delta_2(u; z) := \Delta(u) - \Delta_1(u).
$$

Then by Lemma 2.2 we can write

$$
\Delta^{(k)}(x) = R_1^{(k)}(x) + R_2^{(k)}(x) + R_3^{(k)}(x), \tag{3.1}
$$

where

$$
R_1^{(k)}(x) := \frac{x^{1/4}}{\pi \sqrt{2}} \sum_{d \leq y} \frac{\mu(d)}{d^{k/4}} \sum_{n \leq z} \frac{d(n)}{n^{3/4}} \cos \left(4\pi \sqrt{n x d} - \frac{\pi}{4} \right),
$$

$$
R_2^{(k)}(x) := \sum_{d \leq y} \mu(d) \Delta_2 \left(\frac{x}{d^k}; z \right) \quad \text{and} \quad R_3^{(k)}(x) := O \left(xy^{1-k} e^{-c_1 \delta(y) \log x} \right).
$$

Lemma 3.1. Suppose $A > 0$ is any fixed constant, $T^\varepsilon \ll V \ll T^A$. Then we have

$$
\int_{V}^{2V} \Delta_2^2(u; z) du \ll V^{3/2} z^{-1/2} \log^2 V + V \log^5 V.
$$

Proof. Suppose $\min(z, V^{11}) < N \ll V^B$ is a large parameter, where $B > 0$ is a constant suitably large. By Lemma 3 of Meurman [11] we have

$$
\Delta_2(u; z) = \frac{u^{1/4}}{\pi \sqrt{2}} \sum_{z < n \leq N} \frac{d(n)}{n^{3/4}} \cos \left(4\pi \sqrt{n u} - \frac{\pi}{4} \right) + \Delta_2(u; N),
$$

where $\Delta_2(u; N) \ll u^{-1/4}$ if $\|u\| \gg u^{5/2} N^{-1/2}$, and $\Delta_2(u; N) \ll u^\varepsilon$ otherwise. Thus we have

$$
\int_{V}^{2V} \Delta_2^2(u; z) du \ll \int_1 + \int_2,
$$

where

$$
\int_1 = \int_{V}^{2V} \left| \frac{u^{1/4}}{\pi \sqrt{2}} \sum_{z < n \leq N} \frac{d(n)}{n^{3/4}} \cos \left(4\pi \sqrt{n u} - \frac{\pi}{4} \right) \right|^2 du, \quad \int_2 = \int_{V}^{2V} \Delta_2^2(u; N) du
$$
For \(f_1 \) we have
\[
\int_1 \ll \int_V^{2V} |u^{\frac{1}{3}} \sum_{z < n \leq N} \frac{d(n)}{n^{\frac{3}{4}}} e(2\sqrt{nu})|^2 du
\]
\[
\ll T^{3/2} \sum_{z < n \leq N} \frac{d^2(n)}{n^{3/2}} + V \sum_{z < m < n \leq N} \frac{d(n)d(m)}{(mn)^{3/4}(\sqrt{n} - \sqrt{m})}
\]
\[
\ll \frac{V^{3/2} \log^3 V}{z^{1/2}} + V \log^5 V,
\]
where we used the well-known estimates
\[
\sum_{n \leq u} d^2(n) \ll u \log^3 u, \tag{3.2}
\]
\[
\sum_{z < m < n \leq N} \frac{d(n)d(m)}{(mn)^{3/4}(\sqrt{n} - \sqrt{m})} \ll \log^5 N \ll \log^5 V.
\]

For \(f_2 \) we have
\[
\int_2 \ll V(V^{5/2+\varepsilon} N^{-1/2} + V^{-1/4}) \ll V^{7/2+\varepsilon} N^{-1/2} + V^{3/4} \ll V.
\]

Now Lemma 3.1 follows from the above estimates. \(\square \)

By Cauchy’s inequality and Lemma 3.1 we get
\[
\int_T^{2T} |R_2^{(k)}(x)|^2 dx = \int_T^{2T} \left| \sum_{d \leq y} \mu(d)d^{-1/2}d^{1/2} \Delta_2 \left(\frac{x}{d^k}; z \right) \right|^2 dx \tag{3.3}
\]
\[
\ll \int_T^{2T} \left(\sum_{d \leq y} d^{-1} \right) \left(\sum_{d \leq y} d \Delta_2 \left(\frac{x}{d^k}; z \right) \right)^2 dx
\]
\[
\ll \sum_{d \leq y} d \int_T^{2T} \left| \Delta_2 \left(\frac{x}{d^k}; z \right) \right|^2 dx \log y
\]
\[
\ll \sum_{d \leq y} d^{k+1} \int_{T/d^k}^{2T/d^k} \left| \Delta_2(u; z) \right|^2 du \log y
\]
\[
\ll \sum_{d \leq y} d^{k+1} \left(\left(\frac{T}{d^k} \right)^{3/2} z^{-1/2} \log^3 T + T d^{-k} \log^5 T \right) \log y
\]
\[
\ll T^{3/2} z^{-1/2} \sum_{d \leq y} d^{1-k/2} \log^4 T + Ty^2 \log^6 T
\]
\[
\ll \begin{cases}
T^{3/2} z^{-1/2} y^{1/2} \log^4 T + Ty^2 \log^6 T, & \text{if } k = 3,
T^{3/2} z^{-1/2} \log^5 T + Ty^2 \log^6 T, & \text{if } k \geq 4.
\end{cases}
\]
If $k = 4$, we take $y = T^{1/4}e^{-c_2\delta(T)}$, where $c_2 = c_1/4^{8/5}$. It is easy to see that $R^{(k)}_3(x) \ll T^{1/4}e^{-c_3\delta(T)}$ holds for all $T \leq x \leq 2T$, where $0 < c_3 < c_1/4^{8/5}$ is an absolute constant. Hence

$$\int_T^{2T} |R^{(4)}_3(x)|^2 dx \ll T^{3/2}e^{-2c_3\delta(T)}.$$ \hfill (3.4)

If $k \geq 5$, then we have

$$\int_T^{2T} |R^{(k)}_3(x)|^2 dx \ll T^3y^{2-2k}.$$ \hfill (3.5)

Now we consider the mean square of $R^{(k)}_1(x)$. By the elementary formula

$$\cos u \cos v = \frac{1}{2}(\cos(u - v) + \cos(u + v))$$

we may write

$$|R^{(k)}_1(x)|^2 = \frac{x^{1/2}}{2\pi^2} \sum_{d_1,d_2 \leq y} \frac{\mu(d_1)\mu(d_2)}{(d_1d_2)^{k/4}} \sum_{n_1,n_2 \leq z} \frac{d(n_1)d(n_2)}{(n_1n_2)^{3/4}}$$

$$\times \cos \left(4\pi \sqrt{\frac{n_1x}{d_1} - \frac{n_2x}{d_2}} - \frac{\pi}{4}\right) \cos \left(4\pi \sqrt{\frac{n_1x}{d_1} - \frac{n_2x}{d_2}} - \frac{\pi}{4}\right),$$

$$= S_1(x) + S_2(x) + S_3(x),$$

where

$$S_1(x) = \frac{x^{1/2}}{4\pi^2} \sum_{d_1,d_2 \leq y; n_1,n_2 \leq z} \frac{\mu(d_1)\mu(d_2)}{(d_1d_2)^{k/4}} \frac{d(n_1)d(n_2)}{(n_1n_2)^{3/4}},$$

$$S_2(x) = \frac{x^{1/2}}{4\pi^2} \sum_{d_1,d_2 \leq y; n_1,n_2 \leq z} \frac{\mu(d_1)\mu(d_2)}{(d_1d_2)^{k/4}} \frac{d(n_1)d(n_2)}{(n_1n_2)^{3/4}} \cos \left(4\pi \sqrt{x \left(\sqrt{\frac{n_1x}{d_1}} - \sqrt{\frac{n_2x}{d_2}}\right)}\right),$$

$$S_3(x) = \frac{x^{1/2}}{4\pi^2} \sum_{d_1,d_2 \leq y; n_1,n_2 \leq z} \frac{\mu(d_1)\mu(d_2)}{(d_1d_2)^{k/4}} \frac{d(n_1)d(n_2)}{(n_1n_2)^{3/4}} \sin \left(4\pi \sqrt{x \left(\sqrt{\frac{n_1x}{d_1}} + \sqrt{\frac{n_2x}{d_2}}\right)}\right).$$

We have

$$\int_T^{2T} S_1(x) dx = \frac{B_k(y,z)}{4\pi^2} \int_T^{2T} x^{1/2} dx,$$

$$B_k(y,z) := \sum_{d_1,d_2 \leq y; n_1,n_2 \leq z} \frac{\mu(d_1)\mu(d_2)}{(d_1d_2)^{k/4}} \frac{d(n_1)d(n_2)}{(n_1n_2)^{3/4}}.$$
By the first derivative test we get

\[
\int_0^T S_2(x) \, dx \ll T E_k(y, z),
\]

(3.8)

where

\[
E_k(y, z) = \sum_{d_1, d_2 \leq y; n_1, n_2 \leq z \atop n_1 d_2 \neq n_2 d_1} \frac{d(n_1)d(n_2)}{(d_1d_2)^{k/4}(n_1n_2)^{3/4}} \min \left(T^{1/2}, \frac{1}{\sqrt{\frac{n_1}{d_1^2} - \frac{n_2}{d_2^2}}} \right).
\]

By the first derivative test again we get

\[
\int_0^T S_3(x) \, dx \ll \sum_{d_1, d_2 \leq y; n_1, n_2 \leq z} \frac{d(n_1)d(n_2)}{(d_1d_2)^{k/4}(n_1n_2)^{3/4}} \frac{1}{\sqrt{\frac{n_1}{d_1^2} + \frac{n_2}{d_2^2}}}^{1/2}
\]

\[
\ll \sum_{d_1, d_2 \leq y; n_1, n_2 \leq z} \frac{d(n_1)d(n_2)}{n_1n_2} \ll y^2 \log^4 z,
\]

where the inequality \(ab \geq 2\sqrt{ab}\) and the estimate \(D(u) \ll u \log u\) were used.

Now the problem is reduced to evaluating \(B_k(y, z)\) and estimating \(E_k(y, z)\).

4 Evaluation of \(B_k(y, z)\)

In this section we shall evaluate \(B_k(y, z)\). We have

\[
B_k(y, z) = \sum_{d_1, d_2 \leq y; n_1, n_2 \leq z \atop n_1 d_2 = n_2 d_1} \frac{\mu(d_1)\mu(d_2)d(n_1)d(n_2)(d_1d_2)^{k/2}}{(n_1d_2^k n_2 d_1^k)^{3/4}}
\]

\[
= \sum_{m \leq zy^k} g^2(m; y, z)m^{-3/2},
\]

where

\[
g_k(m; y, z) := \sum_{\substack{m = nd^k \atop n \leq z; d \leq y}} \mu(d) n^{d^{k/2}}.
\]

Let

\[
g_k(m) = \sum_{\substack{m = nd^k \atop n \leq z}} \mu(d) n^{d^{k/2}}, \quad g_0(m) = f_k(m) = \sum_{\substack{m = nd^k \atop n = 1}} d(n)n^{d^{k/2}}.
\]
Let $z_0 := \min(y, z)$. Obviously,
\[g_k(m; y, z) = g_k(m), \quad m \leq z_0, \]
\[|g_k(m; y, z)| \leq g_0(m), |g_k(m)| \leq g_0(m), m \geq 1. \]

Thus
\begin{equation}
B_k(y, z) = \sum_{m \leq z_0} g_k^2(m) m^{-3/2} + \sum_{z_0 < m \leq zy^k} g_k^2(m; y, z) m^{-3/2} \tag{4.1}
\end{equation}

\[= \sum_{m \leq z_0} g_k^2(m) m^{-3/2} + O \left(\sum_{z_0 < m \leq zy^k} |g_0^2(m)| m^{-3/2} \right). \]

For any $1 < U < V < \infty$, we shall estimate the sum
\[W_k(U, V) := \sum_{U < m \leq V} |g_0^2(m)| m^{-3/2}. \]

Obviously $g_0(m)$ is a multiplicative function. So for $m > 1$, we have
\[g_0(m) = \prod_{p^\alpha \| m} g_0(p^\alpha). \]

If $1 \leq \alpha \leq k - 1$, then $g_0(p^\alpha) = \alpha + 1$, which implies that if n is k-free then $g_0(n) = d(n)$.

Now suppose $ek \leq \alpha < (e + 1)k$ for some integer $e \geq 1$. It can be easily seen that if we write p^α in the form $p^\alpha = nd^k$, then $n = p^{\alpha - jk}$, $d = p^j$, $j = 0, 1, 2, \ldots, e$.

Then we have
\[g_0(p^\alpha) = \sum_{j=0}^e (\alpha - jk + 1)p^{jk/2} = p^{ek/2} \sum_{j=0}^e (\alpha - jk + 1)p^{-(e-j)k/2} \]
\[\leq (\alpha + 1)p^{ek/2} \sum_{j=0}^e p^{-(e-j)k/2} = (\alpha + 1)p^{ek/2} \sum_{j=0}^e p^{-jk/2} \]
\[\leq (\alpha + 1)p^{ek/2} \sum_{j=0}^\infty 2^{-jk/2} \leq 2(\alpha + 1)p^{\alpha/2}, \]

which implies that if l is k-full, then
\[g_0(l) \leq \prod_{p^\alpha \| l} 2(\alpha + 1)p^{\alpha/2} = 2^{\omega(l)}d(l)l^{1/2} \leq d^2(l)l^{1/2}. \]

Let $\delta_k(n)$, $\delta^{(k)}(n)$ denote the characteristic function of k-free and k-full numbers, respectively. Each integer m can be uniquely written as $m = nl$, $(n, l) = 1$, $\delta_k(n) =$
Thus we have
\[
W_k(U, V) = \sum_{\substack{u \leq n \leq V \\ (n, l) = 1}} g_0^2(n) g_0^2(l) \delta(k)(n) \delta(k)(l) (nl)^{-3/2}
\]
\[
\ll \sum_4 + \sum_5,
\]
where
\[
\sum_4 := \sum_{l \leq U/3, U < nl \leq V} g_0^2(n) g_0^2(l) \delta(k)(n) \delta(k)(l) (nl)^{-3/2},
\]
\[
\sum_5 := \sum_{l > U/3, U < nl \leq V} g_0^2(n) g_0^2(l) \delta(k)(n) \delta(k)(l) (nl)^{-3/2}.
\]

Lemma 4.1. We have the estimate
\[
\sum_{n \leq u} d^4(n) \delta(k)(n) \ll u^{1/k} \log^{(k+1)4} u, u \geq 2. \tag{4.2}
\]

Proof. For \(\Re s > 1/k \), it is easy to show that
\[
\sum_{n=1}^{\infty} d^4(n) \delta(k)(n) n^{-s} = \zeta(k+1)^4 (ks) G_k(s),
\]
where \(G_k(s) \) is absolutely convergent for \(\Re s > 1/(1 + k) \). And whence (4.2) follows. \(\square \)

By (3.2), partial summation and Lemma 4.1 we have
\[
\sum_4 \ll \sum_{l \leq U/3} g_0^2(l) \delta(k)(l) l^{-3/2} \sum_{U/l < n \leq V/l} g_0^2(n) n^{-3/2}
\]
\[
\ll \sum_{l \leq U/3} g_0^2(l) \delta(k)(l) l^{-3/2} (U/l)^{-1/2} \log^3 U
\]
\[
\ll U^{-1/2} \log^3 U \sum_{l \leq U/3} d^4(l) \delta(k)(l)
\]
\[
\ll U^{-1/2+1/k} \log^{(k+1)4+2} U
\]
and
\[
\sum_5 \ll \sum_{l > U/3} g_0^2(l) \delta(k)(l) l^{-3/2} \sum_m g_0^2(n) n^{-3/2}
\]
\[
\ll \sum_{l > U/3} d^4(l) \delta(k)(l) l^{-1/2}
\]
\[
\ll U^{-1/2+1/k} \log^{(k+1)4+2} U.
\]
Thus
\[
W_k(U, V) \ll U^{-1/2+1/k} \log^{(k+1)^4+2} U.
\] (4.3)

From (4.1) and (4.3) we immediately get
\[
B_k(y, z) = \sum_{m=1}^{\infty} g_k^2(m)m^{-3/2} + O \left(z_0^{-1/2+1/k} \log^{(k+1)^4+2} z_0 \right).
\] (4.4)

5 Estimation of \(E_k(y, z) \)

In this section we shall estimate \(E_k(y, z) \). By a splitting argument, we have
\[
E_k(y, z) \ll E_k(D_1, D_2, N_1, N_2) z^\varepsilon \log^2 y
\] (5.1)
for some \((D_1, D_2, N_1, N_2)\) with \(1 \ll D_j \ll y, 1 \ll N_j \ll z, j = 1, 2\), where
\[
E_k(D_1, D_2, N_1, N_2) = \sum \frac{1}{(d_1d_1)^{k/4}(n_1n_2)^{3/4}} \min \left(T^{1/2}, \frac{1}{|\sqrt{d_1} - \sqrt{d_2}|} \right).
\]

We write
\[
E_k(D_1, D_2, N_1, N_2) = \sum_6 \frac{1}{(d_1d_1)^{k/4}(n_1n_2)^{3/4}} \min \left(T^{1/2}, \frac{1}{|\sqrt{d_1} - \sqrt{d_2}|} \right)
+ \sum_7 \frac{1}{(d_1d_1)^{k/4}(n_1n_2)^{3/4}} \min \left(T^{1/2}, \frac{1}{|\sqrt{d_1} - \sqrt{d_2}|} \right),
\]
where

\[
SC(\sum_6) : d_1 \sim D_1, d_2 \sim D_2, n_1 \sim N_1, n_2 \sim N_2,
\]

\[
\left| \sqrt{n_1} - \sqrt{n_2} \right| \geq \left(\sqrt{n_1} \sqrt{d_1} \sqrt{n_2} \right)^{1/2} / 10,
\]

\[
SC(\sum_7) : d_1 \sim D_1, d_2 \sim D_2, n_1 \sim N_1, n_2 \sim N_2,
\]

\[
\left| \sqrt{n_1} - \sqrt{n_2} \right| < \left(\sqrt{n_1} \sqrt{d_1} \sqrt{n_2} \right)^{1/2} / 10.
\]

Trivially we have
\[
\sum_6 \ll \sum_{d_j \sim D_j, n_j \sim N_j} \frac{1}{(d_1d_1)^{k/4}(n_1n_2)^{3/4}} \left(\sqrt{n_1} \sqrt{d_1} \sqrt{n_2} \right)^{-1/2} \ll D_1D_2 \ll y^2.
\] (5.2)
Suppose $\delta > 0$, and let $\mathcal{A}(D_1, D_2, N_1, N_2; \delta)$ denote the number of the solutions of the inequality
\[
\left| \sqrt{\frac{n_1}{d_1^2}} - \sqrt{\frac{n_2}{d_2^2}} \right| \leq \delta, d_1 \sim D_1, d_2 \sim D_2, n_1 \sim N_1, n_2 \sim N_2.
\]

In order to estimate \sum_{i}, we need an upper bound of $\mathcal{A}(D_1, D_2, N_1, N_2; \delta)$.

Lemma 5.1. We have
\[
\mathcal{A}(D_1, D_2, N_1, N_2; \delta) \ll \delta(D_1 D_2)^{1 + k/4} (N_1 N_2)^{3/4} + (D_1 D_2 N_1 N_2)^{1/2} \log 2D_1 D_2 N_1 N_2,
\]
where the implied constant is absolute.

Proof. We shall use an idea of Fouvry and Iwaniec [3]. Suppose u and v are two positive integers and let $\mathcal{A}_{u,v}(D_1, D_2, N_1, N_2; \delta)$ denote the number of the solutions of the inequality (5.3) with $(n_1, n_2) = (u, d_1, d_2) = v$. Set $n_j = m_j u, d_j = l_j v (j = 1, 2)$, then (m_1, m_2, l_1, l_2) satisfies
\[
\left| \sqrt{\frac{m_1}{m_2}} - \sqrt{\frac{k_1}{k_2}} \right| \leq 2^{k/2} \delta D_1^{k/2} N_2^{-1/2}
\]
and
\[
\left| \sqrt{\frac{m_2}{m_1}} - \sqrt{\frac{k_2}{k_1}} \right| \leq 2^{k/2} \delta D_2^{k/2} N_1^{-1/2}.
\]

It is easy to show that $\sqrt{\frac{m_1}{m_2}}$ is $u^2 N_2^{-3/2} N_1^{-1/2}$-spaced, so from (5.4) we get
\[
\mathcal{A}_{u,v}(D_1, D_2, N_1, N_2; \delta) \ll \frac{D_1 D_2}{v^2} \left(1 + \frac{\delta D_1^{k/2} N_2^{1/2}}{u^2} \right) + \frac{D_1 D_2}{u^2} \frac{\delta D_1^{k/2} N_2^{1/2}}{v^2 u^2}.
\]

Similarly, since $\sqrt{\frac{m_2}{m_1}}$ is $u^2 N_1^{-3/2} N_2^{-1/2}$-spaced, from (5.5) we get
\[
\mathcal{A}_{u,v}(D_1, D_2, N_1, N_2; \delta) \ll \frac{D_1 D_2}{v^2} + \frac{\delta D_1 D_2^{k/2} N_1^{1/2}}{u^2 v^2}.
\]

From the above two estimates we get
\[
\mathcal{A}_{u,v}(D_1, D_2, N_1, N_2; \delta) \ll \frac{D_1 D_2}{v^2} + \frac{\delta D_1 D_2}{u^2 v^2} \min(D_1^{k/2} N_2^{1/2}, D_2^{k/2} N_1^{1/2}) + \frac{\delta (D_1 D_2)^{1 + k/4} (N_1 N_2)^{3/4}}{u^2 v^2}
\]

(5.6)
if we note that \(\min(a, b) \leq a^{1/2}b^{1/2} \).

It is easy to show that \((l_1/l_2)^{k/2}\) is \(v^2D_2^{-2}(D_1/D_2)^{k/2-1}\)-spaced, from (5.4) we get

\[
A_{u,v}(D_1, D_2, N_1, N_2; \delta) \ll \frac{N_1N_2}{u^2}(1 + \delta D_1^{k/2}N_2^{-1/2}v^{-2}D_2^2(D_1/D_2)^{-k/2+1}) \\
\ll \frac{N_1N_2}{u^2} + \frac{\delta D_1D_2D_2^{k/2}N_2^{1/2}}{u^2v^2}.
\]

Similarly from (5.5) we get

\[
A_{u,v}(D_1, D_2, N_1, N_2; \delta) \ll \frac{N_1N_2}{u^2} + \frac{\delta D_1D_2D_1^{k/2}N_2^{1/2}}{u^2v^2}.
\]

From the above two estimates we have

\[
A_{u,v}(D_1, D_2, N_1, N_2; \delta) \ll \frac{N_1N_2}{u^2} + \frac{\delta(D_1D_2)^{1+k/4}(N_1N_2)^{3/4}}{u^2v^2},
\]

which combining (5.6) gives

\[
A_{u,v}(D_1, D_2, N_1, N_2; \delta) \ll \frac{\delta(D_1D_2)^{1+k/4}(N_1N_2)^{3/4}}{u^2v^2} + \min\left(\frac{N_1N_2}{u^2}, \frac{D_1D_2}{v^2}\right).
\]

Summing over \(u\) and \(v\) completes the proof of Lemma 5.1. \(\square\)

Now we estimate \(\Sigma_7\). Let \(\Omega = \sqrt{\frac{m_1}{d_1}} - \sqrt{\frac{m_2}{d_2}}\). By Lemma 5.1 the contribution of \(T^{1/2}\) is (note that \(|\Omega| \leq T^{-1/2}\)

\[
\ll \frac{T^{1/2}}{(D_1D_2)^{k/4}(N_1N_2)^{3/4}} A_{u,v}(D_1, D_2, N_1, N_2; T^{-1/2}) \\
\ll \frac{T^{1/2} \log T}{(D_1D_2)^{k/4-1/2}(N_1N_2)^{1/4}} + D_1D_2.
\]

Divide the remaining range into \(O(\log T)\) intervals of the form \(T^{-1/2} < \delta < |\Omega| \leq 2\delta\). By Lemma 5.1 again we find that the contribution of \(1/|\Omega|\) is

\[
\ll \log T \max_{\delta > T^{-1/2}} \frac{A_{u,v}(D_1, D_2, N_1, N_2; 2\delta)}{(D_1D_2)^{k/4}(N_1N_2)^{3/4}\delta} \\
\ll \frac{T^{1/2} \log^2 T}{(D_1D_2)^{k/4-1/2}(N_1N_2)^{1/4}} + D_1D_2 \log T.
\]

From the above two estimates we get

\[
\sum_7 \ll \frac{T^{1/2} \log^2 T}{(D_1D_2)^{k/4-1/2}(N_1N_2)^{1/4}} + y^2 \log T. \tag{5.7}
\]
Now we give another estimate of \sum_7. By noting that $\sqrt{n_1\delta_1} \approx \sqrt{n_2\delta_2}$ we get

$$\frac{1}{|\Omega|} = \frac{\sqrt{n_1\delta_1} + \sqrt{n_2\delta_2}}{|n_1\delta_1 - n_2\delta_2|} \ll \frac{(d_1d_2)^k(\sqrt{n_1\delta_1} + \sqrt{n_2\delta_2})}{|n_1d_2^k - n_2d_1^k|} \ll (d_1d_2)^k(\sqrt{n_2\delta_2})^{1/2} \ll (d_1d_2)^{3k/4}(n_1n_2)^{1/4} \ll (D_1D_2)^{3k/4}(N_1N_2)^{1/4}.$$

The range of Ω can be divided into $O(\log T)$ intervals of the form

$$(D_1D_2)^{-3k/4}(N_1N_2)^{-1/4} \ll \delta \leq |\Omega| \leq 2\delta.$$

By Lemma 5.1 we have

$$\sum_7 \ll \frac{1}{(D_1D_2)^{k/4}(N_1N_2)^{3/4}} \sum_\Omega \frac{1}{|\Omega|} \ll \sum_\Omega \frac{\log T}{(D_1D_2)^{k/4}(N_1N_2)^{3/4}} \max_\delta \frac{A_{a,v}(D_1, D_2, N_1, N_2; \delta)}{\delta} \ll (D_1D_2)^{(k+1)/2} \log^2 T,$$

if we note that $\delta \gg (D_1D_2)^{-3k/4}(N_1N_2)^{-1/4}$.

From (5.7) and (5.8) we get

$$\sum_7 \ll y^2 \log T + \min \left(T^{1/2} \frac{T^{1/2}}{(D_1D_2)^{k/4-1/2}(N_1N_2)^{1/4}}, (D_1D_2)^{(k+1)/2} \log^2 T \right) \ll y^2 \log T + \left(T^{1/2} \frac{T^{(2k+2)/3k}}{(D_1D_2)^{k/4-1/2}(N_1N_2)^{1/4}} \right) ((D_1D_2)^{(k+1)/2})^{(k-2)/3k} \log^2 T \ll y^2 \log T + T^{(k+1)/3k} \log^2 T.$$

Finally, from (5.1), (5.2) and (5.9) we have

$$E_k(y, z) \ll y^2 z^\varepsilon \log^4 T + T^{(k+1)/3k} z^\varepsilon \log^4 T.$$

(5.10)

6 Proof of Theorem 1(Completion)

First consider the case $k = 4$. Take $z = e^{10c_3\delta(T)}$, where c_3 was the constant in (3.4).

From (3.3) and (3.4) we get

$$\int_T^{2T} |R_2^{(4)}(x) + R_3^{(4)}(x)|^2 dx \ll T^{3/2} e^{-2c_3\delta(T)}.$$
From (3.6)-(3.9), (4.4) and (5.10) we get
\[
\int_T^{2T} |R_1^{(4)}(x)|^2 \, dx = \frac{B_4}{4\pi^2} \int_T^{2T} x^{1/2} \, dx + O(T^{3/2} z_0^{-1/4} \log^{627} T) + O(T y^2 \varepsilon \log^{5} T + T^{17/12} \varepsilon \log^{6} T)
\]
\[
= \frac{B_4}{4\pi^2} \int_T^{2T} x^{1/2} \, dx + O(T^{3/2} e^{-2c_3\delta(T)}).
\]

From the above two estimates and Cauchy’s inequality we get
\[
\int_T^{2T} R_1^{(4)}(x)(R_2^{(4)}(x) + R_3^{(4)}(x)) \, dx \ll T^{3/2} e^{-c_3\delta(T)}.
\]

From the above three estimates we get
\[
\int_T^{2T} |\Delta^{(4)}(x)|^2 \, dx = \int_T^{2T} |R_1^{(4)}(x)|^2 \, dx + 2 \int_T^{2T} R_1^{(4)}(x)(R_2^{(4)}(x) + R_3^{(4)}(x)) \, dx \quad (6.1)
\]
\[
= \int_T^{2T} |R_2^{(4)}(x) + R_3^{(4)}(x)|^2 \, dx
\]
\[
= \frac{B_4}{4\pi^2} \int_T^{2T} x^{1/2} \, dx + O(T^{3/2} e^{-c_3\delta(T)}),
\]

which implies the case \(k = 4 \) of Theorem 1.

Now suppose \(k \geq 5 \). Take \(z = T^{1-\varepsilon} \). From (3.3) and (3.5) we get
\[
\int_T^{2T} |R_2^{(k)}(x) + R_3^{(k)}(x)|^2 \, dx \ll T^{1+\varepsilon} y^2 + T^{3} y^{2-2k}.
\]

From (3.6)-(3.9), (4.4) and (5.10) we get
\[
\int_T^{2T} |R_1^{(k)}(x)|^2 \, dx = \frac{B_k}{4\pi^2} \int_T^{2T} x^{1/2} \, dx + O(T^{3/2+\varepsilon} y^{1/k-1/2})
\]
\[
+ O(T^{1+\varepsilon} y^2 + T^{1+(k+1)/3k+\varepsilon}).
\]

The above two estimates imply
\[
\int_T^{2T} R_1^{(k)}(x)(R_2^{(k)}(x) + R_3^{(k)}(x)) \, dx \ll T^{5/4+\varepsilon} y + T^{9/4} y^{1-k}.
\]

From the above three estimates we get
\[
\int_T^{2T} |\Delta^{(k)}(x)|^2 \, dx = \frac{B_k}{4\pi^2} \int_T^{2T} x^{1/2} \, dx + O(T^{1+(k+1)/3k+\varepsilon})
\]
\[
+ O(T^{5/4+\varepsilon} y + T^{9/4} y^{1-k} + T^{3/2+\varepsilon} y^{1/k-1/2}).
\]

Now on taking \(y = T^{5/26} \) if \(k = 5 \) and \(y = T^{1/k-\varepsilon} \) if \(k \geq 6 \), we get
\[
\int_T^{2T} |\Delta^{(k)}(x)|^2 \, dx = \frac{B_k}{4\pi^2} \int_T^{2T} x^{1/2} \, dx + O(T^{\delta_k+\varepsilon}), \quad (6.2)
\]
where \(\delta_k \) was defined in Section 1. The case \(k \geq 5 \) of Theorem 1 now follows from (6.2).
7 An expression of $\Delta(1, 1, k; x)$

In order to prove Theorem 2, we shall give an expression of $\Delta(1, 1, k; x)$ in this section. We write

$$D(1, 1, k; x) = \sum_{nd^k \leq x} d(n)$$

$$= \sum_{d \leq y} D\left(\frac{x}{d^k}\right) + \sum_{n \leq \frac{x}{yk}} d(n) \left[\left(\frac{x}{n}\right)^{1/k}\right] - D\left(\frac{x}{y^k}\right) [y]$$

$$= \sum_8 + \sum_9 - \sum_{10}$$

say, where $x^\varepsilon \ll y \ll x^{1/k-\varepsilon}$ is a parameter.

We write \sum_8 as

$$\sum_8 = \sum_{d \leq y} \left(\frac{x}{d^k} \log \frac{x}{d^k} + (2\gamma - 1)\frac{x}{d^k} + \Delta\left(\frac{x}{d^k}\right)\right)$$

$$= x \log x \sum_{d \leq y} \frac{1}{d^k} - kx \sum_{d \leq y} \frac{\log d}{d^k} + (2\gamma - 1)x \sum_{d \leq y} \frac{1}{d^k} + \sum_{d \leq y} \Delta\left(\frac{x}{d^k}\right).$$

By the well-known Euler-Maclaurin’s formula we have

$$\sum_{d \leq y} \frac{1}{d^k} = \zeta(k) - \sum_{d > y} \frac{1}{d^k} = \zeta(k) - \frac{y^{1-k}}{k-1} - \psi(y)y^{-k} + O(y^{-k-1})$$

and

$$\sum_{d \leq y} \frac{\log d}{d^k} = -\zeta'(k) - \sum_{d > y} \frac{\log d}{d^k}$$

$$= -\zeta'(k) + \frac{y^{1-k} \log y}{1-k} - \frac{y^{1-k}}{(k-1)^2} - \frac{\psi(y) \log y}{y^k} + O(y^{-k-1} \log y).$$

From the above three formulas we get

$$\sum_8 = \zeta(k)x \log x - \frac{xy^{1-k} \log x}{k-1} - \psi(y)xy^{-k} \log x$$

$$+ k\zeta'(k)x - \frac{kxy^{1-k} \log y}{1-k} + \frac{xy^{1-k}}{(k-1)^2} + \frac{kx\psi(y) \log y}{y^k}$$

$$+ (2\gamma - 1)\zeta(k)x - (2\gamma - 1)\frac{xy^{1-k}}{k-1} - (2\gamma - 1)\psi(y)xy^{-k}$$

$$+ \sum_{d \leq y} \Delta\left(\frac{x}{d^k}\right) + O(xy^{-k-1} \log x).$$

(7.2)
We write
\[\sum_9 = \sum_{n \leq \frac{x}{y^k}} d(n) \left((x/n)^{1/k} - 1/2 - \psi((x/n)^{1/k}) \right) \]
\[= x^{1/k} \sum_{n \leq \frac{x}{y^k}} d(n)n^{-1/k} - \frac{1}{2}D(x^{-k}) - \sum_{n \leq \frac{x}{y^k}} d(n)\psi((x/n)^{1/k}). \]

By partial summation we get \(M = xy^{-k} \)
\[\sum_{n \leq M} d(n)n^{-1/k} = \int_{1-}^M \frac{dD(u)}{u^{1/k}} = \int_{1-}^M \frac{d(u \log u + (2\gamma - 1)u)}{u^{1/k}} + \int_{1-}^M \frac{d\Delta(u)}{u^{1/k}} \]
\[= \int_{1-}^M \frac{\log u + 1 + 2\gamma - 1}{u^{1/k}} du + \frac{\Delta(M)}{M^{1/k}} + \frac{1}{k} \int_{1-}^M \frac{\Delta(u)}{u^{1+1/k}} du \]
\[= \zeta^2(1/k) + \frac{M^{1-1/k} \log M}{1 - 1/k} - \frac{M^{1-1/k}}{(1 - 1/k)^2} + \frac{M^{1-1/k}}{1 - 1/k} + (2\gamma - 1) \frac{M^{1-1/k}}{1 - 1/k} \]
\[+ \Delta(M)M^{-1/k} + O(M^{-1/k}), \]
where we used the estimate
\[\int_M^\infty \frac{\Delta(u)}{u^{1+1/k}} du \ll M^{-1/k}, \]
which follows from the well-known estimate \(\int_1^t \Delta(u)du \ll t. \)

From the above two formulas we get
\[\sum_9 = \zeta^2(1/k)x^{1/k} + \frac{xy^{1-k} \log xy^{-k}}{1 - 1/k} - \frac{xy^{1-k}}{(1 - 1/k)^2} + \frac{xy^{1-k}}{1 - 1/k} \]
\[+ (2\gamma - 1) \frac{xy^{1-k}}{1 - 1/k} + y\Delta(xy^{-k}) - \frac{1}{2}D(xy^{-k}) \]
\[- \sum_{n \leq \frac{x}{y^k}} d(n)\psi((x/n)^{1/k}) + O(y). \] (7.3)

For \(\sum_{10} \) we have
\[- \sum_{10} = \psi(y)xy^{-k} \log xy^{-k} + (2\gamma - 1)\psi(y)xy^{-k} + \psi(y)\Delta(xy^{-k}) \]
\[+ \frac{1}{2}D(xy^{-k}) - xy^{1-k} \log xy^{-k} - (2\gamma - 1)xy^{1-k} - y\Delta(xy^{-k}). \] (7.4)

From (7.1)–(7.4) we get
\[\Delta(1, 1, k; x) = \sum_{d \leq y} \Delta\left(\frac{x}{y^k}\right) - \sum_{n \leq \frac{x}{y^k}} d(n)\psi((x/n)^{1/k}) + O(y) \]
\[+ O(xy^{-k-1} \log x) + O(|\Delta(xy^{-k})|). \]
From $\Delta(u) \ll u^{1/3}$ we get

$$|\Delta(xy^{-k})| \ll x^{1/3}y^{-k/3} \ll y + xy^{-k-1}.$$}

Thus we get the following Lemma.

Lemma 7.1. Suppose $x^\varepsilon \ll y \ll x^{1/k-\varepsilon}$. Then

$$\Delta(1, 1, k; x) = \sum_{d \leq y} \Delta(\frac{x}{y^k}) - \sum_{n \leq \frac{x}{y}} d(n)\psi\left(\left(\frac{x}{n}\right)^{1/k}\right) + O(x^{y-1}\log x) + O(y).$$

8 Proof of Theorem 2

It suffices for us to evaluate $\int_T^{2T} \Delta^2(1, 1, k; x)dx$ for large T. Suppose $T^\varepsilon \ll y \ll T^{1/k-\varepsilon}$ is a parameter to be determined later and $z = T^{1-\varepsilon}$. For simplicity, we write $L = \log T$ in this section. Similar to (3.1), by Lemma 7.1 we may write

$$\Delta(1, 1, k; x) = R_{1,k}(x) + R_{2,k}(x) - R_{3,k}(x), \quad (8.1)$$

where

$$R_{1,k}(x) := \frac{x^{1/4}}{\sqrt{2\pi}} \sum_{d \leq y} \frac{1}{d^{k/4}} \sum_{n \leq z} \frac{d(n)}{n^{3/4}} \cos\left(4\pi \sqrt{\frac{nx}{d}} - \frac{\pi}{4}\right),$$

$$R_{2,k}(x) := \sum_{d \leq y} \Delta_2(\frac{x}{d^k}; z),$$

$$R_{3,k}(x) := \sum_{n \leq \frac{x}{y^k}} d(n)\psi((x/n)^{1/k}) + O(x^{y-1}\log x) + O(y).$$

Similar to the mean square of $R_1^{(k)}(x)$, we can prove that

$$\int_T^{2T} |R_{1,k}(x)|^2dx = \frac{C_k}{4\pi^2} \int_T^{2T} x^{1/2}dx + O(T^{3/2+\varepsilon}y^{1/k-1/2})$$

$$+ O(T^{1+\varepsilon}y^2 + T^{1+(k+1)/3k+\varepsilon}). \quad (8.2)$$

From (3.3) we have

$$\int_T^{2T} |R_{2,k}(x)|^2dx \ll Ty^2L^6. \quad (8.3)$$

Now we study the mean square of

$$S(x) = \sum_{n \leq \frac{x}{y^k}} d(n)\psi((x/n)^{1/k}).$$
Let $J = [\log^{-1} 2 \log(Ty^{-k}L^{-1})]$, then $J \ll \mathcal{L}$ and we may write
\[S(x) = \sum_{j=0}^{J} S_j(x) + O(\mathcal{L}^2), \]
\[S_j(x) := \sum_{x2^{-j-1}y^{-k} < n \leq x2^{-j}y^{-k}} d(n)\psi((x/n)^{1/k}). \]

Let $1/T \ll \eta < 1/10$ is a real number and let $\eta T = N$. Let
\[M(x, \eta) := \sum_{\eta x < n \leq 2\eta x} d(n)\psi((x/n)^{1/k}). \]
Then $S_j(x) = M(x, 2^{-j-1}y^{-k})$, $j = 0, 1, \ldots, J$. We shall study $\int_T^{2T} M^2(x, \eta)dx$.

According to Vaaler [16], we may write
\[\psi(t) = \sum_{|h| \leq N} a(h)e(ht) + O\left(\sum_{|h| \leq N} b(h)e(ht)\right) \]
with $a(h) \ll 1/|h|$, $b(h) \ll 1/N$. Thus
\begin{align*}
M(x, \eta) &= \sum_{1 \leq |h| \leq N} a(h) \sum_{\eta x < n \leq 2\eta x} d(n)e(h(x/n)^{1/k}) \\
&\quad + O\left(\sum_{|h| \leq N} b(h) \sum_{\eta x < n \leq 2\eta x} d(n)e(h(x/n)^{1/k})\right) \\
&\ll 1 + \sum_{1 \leq h \leq N} h^{-1/2}h^{-1/2} \left|\sum_{\eta x < n \leq 2\eta x} d(n)e(h(x/n)^{1/k})\right|^2.
\end{align*}

By Cauchy’s inequality we get
\[M^2(x, \eta) \ll 1 + \sum_{1 \leq h \leq N} \mathcal{L} \left|\sum_{\eta x < n \leq 2\eta x} d(n)e(h(x/n)^{1/k})\right|^2. \]
Integrating, squaring out and then by the first derivative test we get

\[
\int_T^{2T} M^2(x, \eta) dx \ll T + \sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h} \int_T^{2T} \left| \sum_{\eta x < n \leq 2 \eta x} d(n) e(h(x/n)^{1/k}) \right|^2 dx
\]

\[
= T + \sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h} \int_T^{2T} \sum_{\eta x < n \leq 2 \eta x} d^2(n) dx
\]

\[
+ \sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h} \int_T^{2T} \sum_{\eta x < n, \eta x \leq 2 \eta x} d(m) d(n) e(h x^{1/k} (m^{-1/k} - n^{-1/k})) dx
\]

\[
= O(TN\mathcal{L}^5) + \sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h} \sum_{N<n,m \leq 4N \atop m \neq n} d(m) d(n) \int_{I(m,n)} e(h x^{1/k} (m^{-1/k} - n^{-1/k})) dx
\]

\[
\ll TN\mathcal{L}^5 + \sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h} \sum_{N<n,m \leq 4N \atop m \neq n} T^{1-1/k} d(n) d(m) \frac{T^{1-1/k} d(n) d(m)}{h |m^{-1/k} - n^{-1/k}|}
\]

\[
\ll TN\mathcal{L}^5 + \sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h} \sum_{N<n,m \leq 4N \atop m \neq n} T^{1-1/k} N^{1+1/k} d(n) d(m) \frac{T^{1-1/k} N^{1+1/k} d(n) d(m)}{h |m - n|}
\]

\[
\ll TN\mathcal{L}^5 + T^{1-1/k} N^{2+1/k} \mathcal{L}^5,
\]

where \(I(m, n)\) is a subinterval of \([T, 2T]\).

From Cauchy’s inequality and the above estimate we get

\[
\int_T^{2T} S^2(x) dx \ll \int_T^{2T} \left| \sum_{j=0}^{J} S_j(x) \right|^2 dx + T \mathcal{L}^2
\]

\[
\ll \mathcal{L} \sum_{j=0}^{J} \int_T^{2T} |S_j(x)|^2 dx + T \mathcal{L}^2
\]

\[
\ll (T^2 y^{-k} + T^3 y^{-2k-1}) \mathcal{L}^6,
\]

which implies that

\[
\int_T^{2T} R_{3k}^2(x) dx \ll (T^2 y^{-k} + T^3 y^{-2k-1}) \mathcal{L}^6 + T y^2. \quad (8.4)
\]

From (8.2)-(8.4) and Cauchy’s inequality we get

\[
\int_T^{2T} R_{1k}(x) (R_{2k}(x) + R_{3k}(x)) dx \ll T^{5/4} y \mathcal{L}^3 + T^{7/4} y^{-k/2} \mathcal{L}^3 + T^{9/4} y^{-k-1/2} \mathcal{L}^3. \quad (8.5)
\]
From (8.1)-(8.5) we get

\[
\int_T^{2T} \Delta^2(1,1,k;x)dx = \frac{C_k}{4\pi^2} \int_T^{2T} x^{1/2}dx
\]

\[
+ O(T^{5/4}y\mathcal{L}^3 + T^{7/4}y^{-k/2}\mathcal{L}^3 + T^{9/4}y^{-k-1/2}\mathcal{L}^3)
\]

\[
+ O(T^{3/2}y^{1-k-1/2}\mathcal{L}^{(k+1)^4+2} + T^{1+(k+1)/3k+\varepsilon}).
\]

Now on taking \(y = T^{2/9}\) if \(k = 3\), \(y = T^{1/5}\mathcal{L}^{2496/5}\) if \(k = 4\), \(y = T^{5/26}\mathcal{L}^{10(6^3-1)/13}\) if \(k = 5\) and \(y = T^{1/k-\varepsilon}\) if \(k \geq 6\) we get

\[
\int_T^{2T} \Delta^2(1,1,k;x)dx = \frac{C_k}{4\pi^2} \int_T^{2T} x^{1/2}dx + \begin{cases}
O(T^{53/36}\mathcal{L}^3), & \text{if } k = 3, \\
O(T^{29/20}\mathcal{L}^{503}), & \text{if } k = 4, \\
O(T^{75/52}\mathcal{L}^{1000}), & \text{if } k = 5, \\
O(T^{3/2-1/2k+1/k^2+\varepsilon}), & \text{if } k \geq 6.
\end{cases}
\]

(8.6)

Theorem 2 follows from (8.6) immediately.

References

[1] R. C. Baker, The square-free divisor problem, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 179, 269–277.

[2] R. C. Baker, The square-free divisor problem. II, Quart. J. Math. Oxford Ser. (2) 47 (1996), no. 186, 133–146.

[3] E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), no. 3, 311–333.

[4] O. Hölder, Über einen asymptotischen Ausdruck, Acta Math. 59 (1932), 89–97.

[5] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. 87 (3) (2003), 591–609.

[6] A. Ivić, The Riemann-zeta function, John Wiley & Sons, New York, 1985.

[7] A. Ivić, The general divisor problem, J. Number Theory 27 (1987), no. 1, 73–91.

[8] E. Krätzel, Teilerprobleme in drei dimensionen, Math. Nachr. 42 (1969), 275–288.

[9] A. Kumchev, The \(k\)-free divisor problem, Monatsh. Math. 129 (2000), 321–327.

[10] F. Mertens, Über einige asymptotische Gesetze der Zahlentheorie, J. Reine. Angew. Math. 77 (1874), 289–338.
[11] T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 151, 337–343.

[12] W. G. Nowak, M. Schmeier, Conditional asymptotic formulae for a class of arithmetical functions, Proc. Amer. Math. Soc. 103 (1988), 713–717.

[13] B. Saffari, Sur le nombre de diviseurs ”r-libres” d’un entier, et sur les points à coordonnées entières dans certaines régions du plan, C. R. Acad. Sci. Paris. Sér. A-B 266 (1968), A601–A603.

[14] V. Siva Rama Prasad, D. Suryanarayana, The number of k-free divisors of an integer, Acta Arith. 17 (1970/71), 345–354.

[15] K. C. Tong, On divisor problem III, Acta Math. Sinica 6 (1956), 515-541.

[16] J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183–216.