Assessment of bias in carbon isotope composition of organic leaf matter due to pre-analysis milling methods

Worne, S.1, Lacey, J.H.1, Barr, C.2, Schulz, C.3, Leng, M. J.1,4

1National Environmental Isotope Facility, British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
2University of Adelaide, Department of Geography, Environment and Population, Adelaide, SA 5005, Australia
3Department of Environment and Science, Queensland Government, Brisbane City, Queensland 4000, Australia
4School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK

Short Title: Assessing the impact of pre-analysis milling on leaf carbon isotopes

Abstract:
Rationale: Stable isotope analysis of leaf material has many applications including assessment of plant water-use efficiency and paleoclimatology. To facilitate interpretations of small shifts in the carbon isotope composition (δ¹³C) of leaves, accurate and repeatable results are required. Pre-sample homogenisation is essential to ensure a representative sample is analysed, but can also introduce error.

Methods: We investigate how different grinding methods (freezer-milling and ball-milling) affect the carbon content and δ¹³C of tree leaves from a wetland in Queensland, Australia, commenting on how increased temperature, sample contamination, sample loss, or poor homogenisation may impact results.

Results: No alteration of leaf δ¹³C is observed due to different milling methods, although there may be a significant increase in %C of samples processed using ball-milling.

Conclusions: We suggest %C variability is possibly due to contamination from abraded plastic vials or insufficient homogenisation during ball-milling, with no significant impact on δ¹³C. Overall, we suggest that intermittent ball-milling may be the best solution to reduce costs, preparation time and use of liquid nitrogen, aiming to achieve complete homogenisation using the shortest possible duration of milling.

Keywords: Stable Isotope Analysis, Ball-Milling, Freezer-Milling, Homogenisation, Mass Spectrometry
1 Introduction

Stable isotope analysis of leaf matter is commonly undertaken in a range of environmental and biological research fields, where the carbon isotope composition (δ\(^{13}\)C) of a leaf is primarily determined by fractionation of carbon dioxide (CO\(_2\)) during uptake\(^1,2\). The δ\(^{13}\)C of a leaf is therefore a reflection of gas exchange and chemical processes associated with plant photosynthesis and respiration\(^1-5\). More specifically, δ\(^{13}\)C of leaf matter is dependent on a range of biological pathways including CO\(_2\) assimilation\(^2\), stomatal limitations during photosynthetic activity\(^2,26\), leaf metabolism\(^7\) and post-photosynthetic fractionation including Rubisco carboxylation\(^3,8\). This information, sometimes in combination with other stable isotope analyses (primarily oxygen and nitrogen isotopes) is then used to better understand the relationship between water use and transpiration efficiency in all plant types (C3 or C4 plants)\(^1,9-13\) and can be used to optimise genotypes for crop breeding. \(^9\). δ\(^{13}\)C can also be used to reconstruct palaeo-climatic conditions, where the preserved δ\(^{13}\)C of fossil remains are a reflection of the atmospheric CO\(_2\) supply and environmental conditions during the lifespan of the leaf\(^14,15\). As the range of δ\(^{13}\)C values in leaf material due to result of environmental or physiological variability can be relatively small (~ 4‰ range for C4 plants)\(^1,10,16\), it is essential that reliable and accurate stable isotope measurements are made.

Analytical error can be introduced in a number of steps during stable isotope analysis. While the analytical precision from mass spectrometry is typically <0.1‰ with sample repeatability <1‰\(^17\), a much larger proportion of the error in isotope values may occur as a result of the sample preparation process. Unlike in other environmental sample types, leaf material does not typically require chemical pre-treatment as it is almost entirely organic in composition, therefore the most notable introduction of error is likely to occur during homogenisation of samples\(^18\). It has been shown that carbon and nitrogen content (%C and %N, respectively), as well as the δ\(^{13}\)C and nitrogen isotope composition (δ\(^{15}\)N), are highly variable within different density fractions of soil materials, which is related to degradation processes\(^19,20\). Similarly, for δ\(^{15}\)N analysis, analytical precision is increased by fine grinding of soil and plant materials (<0.053 mm)\(^21-25\). It is also important to homogenise whole leaf samples to attain an accurate representation of total leaf carbon, as δ\(^{13}\)C can vary between the bottom and top of the leaf sample, for example an intra-leaf variability of ~1‰ was found in fossil leaves from Gujarat, western India\(^26\). Therefore to overcome variable allocation of carbon within a leaf\(^26-28\), as well as variable alteration of organic carbon during leaf senescence\(^13,29\), samples must be homogenised to ensure that a representative sample is analysed.

Routinely used homogenization methods often employ milling of samples into a fine powder, which can then be weighed out for micro-analysis\(^30\). Although there are a range of methods used to homogenise leaf tissues, it is imperative that the stable isotope composition of the organic compounds is not altered during this process. Common methods of milling samples often include mechanical grinding, through either the use of a ball-mill or cryogenic-milling techniques, where the latter includes either grinding by hand in a pestle and mortar in the presence of liquid nitrogen or using a mechanical freezer-mill.

Mechanical freezer-milling grinds a sample using a solenoid that is oscillated back and forth inside a metal vial. This method provides better homogenisation relative to ball-milling or hand grinding, and reduces the likelihood of loss of volatile organic material (as CO\(_2\)) and its carbon isotope composition.
the generation of black carbon18 as the samples are ground in a bath of liquid nitrogen at \textasciitilde 196 °C. However, this method can be time-consuming, expensive, and only a small number of samples can be ground at the same time. Furthermore, use of liquid nitrogen also has specific safety and staff training requirements.

Conversely, ball-milling can process multiple samples in a short period of time and does not require the use of liquid nitrogen. However, this process may introduce heat to the samples through friction with the ball bearings as the sample is pulverized. The heat that builds up will be dependent on the duration of the milling and the quantity and material of the ball bearings used (the larger the number or density of ball bearings, the greater the friction)31,32. Although a previous study which assessed the alteration during hydrothermal decay of fossil plant samples showed there was no isotopic change before samples reached 200°C33, lower temperatures are routinely used for drying samples in an oven (<40°C). This minimises the loss of volatile components prior to analysis, which may alter the δ13C of the organic carbon fraction18,34. To overcome heating during ball-milling, intermittent milling can be used to allow the samples to cool in between milling periods to help prevent or reduce potential isotope fractionation31.

To date, there have been no investigations on the impact of pre-analysis sample homogenisation on leaf carbon, specifically. A similar study on the homogenisation of wood samples for tree-ring analysis using ball-milling31, which varied the duration of milling, the number of ball bearings, and also the impact of intermittent milling, demonstrated no significant δ13C alteration, indicating that any heat development during ball-milling had no distinguishable effect on isotope values31. Although this study did not report the temperature samples reached as a result of ball-milling, typically mixer ball-mills have been shown to increase temperatures up to 50°C after 1 hour of milling in a SPEX mixer mill35, although higher temperatures of up to 66°C have also been reported36. This range of temperatures likely results from different milling ball materials, densities and sizes, as well as the material of mill itself32. On the other hand, ball-milled soils showed \textasciitilde 8% higher total C compared to a gentler roller mill method. This was attributed to abrasion of the ball bearings and grinding vessel, although the resultant impact on isotope values was not assessed30. Similar studies that assess δ13C alteration in cellulose and wood samples that were homogenized using freezer-milling showed negligible difference with the initial sample and within the processed sample37.

Aside from temperature concerns, other issues that result from these pre-analysis sample homogenization methods include sample contamination, sample loss, and cost. For example, a δ13C bias of around 7‰ was found in ball-milled wood samples due to contamination from polypropylene plastic vials38. Furthermore, \textasciitilde 28% sample loss was reported following freezer-milling of cellulose samples, as well as excessive time and cost associated with the labour-intensive cleaning of the freezer-mill using compressed air37. Indeed, the cost of a freezer-mill in itself is high, costing up to approximately £20,000, as well as substantial operating costs due to the infrastructure requirements and the replenishment of liquid nitrogen. In comparison, the ball-mill used in this experiment (Retch MM400) cost approximately £8,500, and has significantly lower running costs as a larger number of samples can be analysed per run.
Overall, it is essential to evaluate the impact of pre-analysis sample homogenisation using milling on the stable isotope composition of organic materials to facilitate the continued use of these analyses in socio-economic important research fields including agricultural and environmental sciences. This is particularly relevant for the continued development of the δ13C proxy in leaves, which can provide essential information on water-stress and water-use efficiency in regions which are vulnerable to drought. Therefore, this study aims to quantify the variable impact of ball-milling and freezer-milling on the δ13C of leaf samples in order to provide recommendations for future analysis of leaf sample material.

2 Method

2.1 Leaf Sample Material

Leaves of the tree species *Melaleuca quinquenervia*, a broad-leaved paperbark (family *Myrtaceae*), were collected from Swallow Lagoon on Minjerribah (North Stradbroke Island) (27.499°S, 153.455°E)16. Fragments of *M. quinquenervia* have been preserved in wetland sediments at this location and have been used in previous studies to investigate the palaeoclimate of the region and elucidate the relationship between climate and leaf δ13C in subtropical environments39. Leaves were collected from the same branch of the same tree at roughly monthly intervals over several years. The leaves were refrigerated immediately after collection before being freeze-dried to preserve the organic fraction and prevent degradation.

The data presented here are from 40 samples taken from this archive. For each sample, the tips (10 – 15 mm) of the five smallest leaves within each collection were cut and split in half, with half of each leaf sample to be homogenised by freezer-milling and the other half to be processed by ball-milling. In this way, each homogenised sample analysed was a composite of five leaves from each collection. Leaves were sampled in this manner with the aim of gaining a representative sample of the most recent leaves, and avoid inter-leaf variation dominating the carbon isotope composition.

2.2 Homogenisation using ball-milling

The cut leaf tips were broken up and (Figure 1) placed in 2 ml polypropylene tubes with three stainless steel ball bearings (approximately 4 mm in size). The tubes were then placed into a Retsch MM400 ball-mill 'rack' (capacity of 48 samples) that was shaken back and forth at a frequency of 30 Hz for 20 seconds. Samples were then left to rest for 5 minutes and this was repeated 5 times (Supplementary Table 1). The 5-minute rest interval was used to keep frictional temperatures low; this method is henceforth termed “intermittent ball-milling”.

To investigate how the higher temperatures caused by more aggressive ball-milling would affect δ13C, a subsample of the homogenised leaf samples was re-milled an additional 5 times at a frequency of 30 Hz for 45 seconds, with only 1 minute rest between milling intervals (Supplementary Table 1). This latter method will henceforth be termed “ball-milling”.

2.3 Homogenisation using freezer-milling

Prior to sample homogenisation, all milling equipment was washed thoroughly with deionised water before being dried in a sterile crucible. Leaf tip samples were broken up and transferred into stainless steel tubes (diameter 8 mm, length 51 mm). A stainless steel rod (diameter 4 mm, length 18 mm) was placed into each tube and the ends were then sealed with stainless steel caps. Three metal tubes were placed inside a larger polypropylene tube (diameter 21 mm, length 91 mm), which was capped at both ends and positioned inside a SPEX Certiprep 6850 Freezer-mill, which had been cooled in a bath of liquid nitrogen at −196 °C. Four polypropylene
tubes can be housed in the freezer-mill (12 samples per run) and each tube casing has several holes to aid flow of liquid nitrogen to cool the sample material. The metal rods were oscillated at a speed of 10 impactor movements per second for 2 minutes (Supplementary Table 1). Once complete, samples were left to warm to room temperature before being removed from the tubes and transferred to vials.

2.4 Stable isotope analysis

Around 0.8 mg of each homogenised sample was weighed directly into Sn capsules (8 x 5 mm; Sercon Ltd.) using a microbalance (Sartorius Cubis® II), with their weight recorded to the 0.001 mg level, and transferred to a multicell sample tray. Analysis was undertaken using an Elementar vario ISOTOPE cube elemental analyser (EA) coupled to an isoprime precisION isotope ratio mass spectrometer (IRMS) with an onboard centrION continuous flow interface system. The sample isotope ratio 13C/12C is reported in delta (δ) notation in per mill (‰) and was calibrated to the VPDB international reference scale using a multi-point calibration against USGS24 (−16.0‰), USGS61 (−35.0‰), and a laboratory working standard BROC3 (−27.6‰). The working reference material BROC3 has been calibrated for δ13C using IAEA-CH-6 (−10.4‰), USGS54 (−24.4‰), USGS40 (−26.4‰), and B2174 (urea, Elemental Microanalysis Ltd.; −36.5‰). BROC3 (41.3 %C and 4.9 %N) was also used to calculate the carbon and nitrogen elemental content of samples. External precision (1σ) is <0.05‰ for δ13C based on replicate analyses of the reference materials. Given the lower %N of sample, there was not enough material to analyse δ15N. Also, given that previous studies found there was no significant difference in δ15N or %N due to milling technique of soils30, repeat analyses for δ13C (which requires considerably less material) was prioritised for this study. All samples processed by each method (120 in total) were run in duplicate (240 data points), with outlier samples and samples exhibiting high variability (~10% of samples) being run in triplicate (Supplementary Table 1), to create a total of 270 data points. Repeatability for sample material is discussed below.

3 Results and Discussion

3.1 %C and %N of leaf matter

The average %C of all leaf samples was 53.27% (±0.55%), ranging from 43.31 to 62.85%. The average %C of freezer-milled samples was slightly lower, but within error, at 52.03% (±0.48%), while the %C was higher for both intermittent and ball-milling methods (53.63% and 54.12%, respectively; ±0.60 and 0.58%, respectively) (Table 1). Higher %C is observed with increasing duration of ball-milling. This suggests that the method of homogenisation may cause a shift in the %C of the leaf, with ball-milling producing an increase of ~2% relative to freezer-milling, as well as increasing %C with duration of ball-milling. Results here show that the %N did not follow the trend observed in %C, with similar %N occurring in intermittently ball-milled (0.66%), freezer-milled (0.64%) and continuously ball-milled samples (0.56%). Although the %N is too low to accurately assess the impact of milling using the small sample sizes analysed in this study (~0.8 mg per sample), this result is in line with previous studies which suggest that N concentrations are not affected by particle size20 or by the method of milling30.

Previous studies found that grinding soils using mechanical ball-milling caused an average increase of 8% in total C content compared to gentler methods, with an additional 3.5% total C content found after re-milling, attributed to abrasion of steel ball bearings30. In a similar
study, the contamination of samples by abraded metal was also identified as a potential cause in altering the concentration of a range of elements in leaf and stem material during grinding, in particular the finer fraction of the homogenised sample20. This contamination could have occurred from either micro-particles remnant in the abraded metal from previously homogenised samples or from the metal itself. However, it was also acknowledged by both studies that uneven distribution of elements in the original plant tissue and variable levels of homogenisation could also have caused the different elemental composition of different size fractions20,30. The larger particles that are more resistant to crushing are also more likely to contain higher organic concentrations30. In this study, although 5 leaves were combined for each collection, there is still potential inter-leaf variability within a sample collection, which may have caused a range of values to be preserved within a homogenised sample.

Alternatively, contamination of samples from the polypropylene tubes used during ball-milling is also a potential cause of change in %C38. To quantify the potential contamination, shavings of a 2 mL polypropylene transport tube used for ball-milling were analysed and returned a %C of \pm84.06\% (\pm0.07%, $n = 3$). To cause the 2.09\% increase in %C observed in continuously ball-milled samples (compared to freezer-milled samples which were processed in stainless steel vessels), this would require 6.5\% of the measured sample to be from plastic contamination. Given that samples were weighed at \sim0.8 mg, this corresponds with 0.05 mg polypropylene. Decreased %N in the continuously ball-milled samples some support for potential plastic contamination, as polypropylene contains no nitrogen. Although it seems very unlikely that such a significant proportion of the sample would result from abrasion of the polypropylene during ball-milling, plastic contamination may be, at least in part, responsible for the shift in %C.

3.2 δ^{13}C of leaf matter
The average δ^{13}C of all leaf samples analysed including duplicates and triplicates was \sim31.78\%\textsubscript{oo} ($n = 270$), with similar average values and standard deviations for each method of homogenisation (Table 2). The range and distribution of values was also similar (Figure 2), with one-way ANOVA analysis undertaken using R statistical computing software40 indicating there was no significant difference in the variability of the data for each milling method ($f = 0.73$, $p > 0.05$).

As the %C data indicated potential contamination of samples from the abrasion of the polypropylene tubes during ball-milling, the potential impact on δ^{13}C was also assessed. The δ^{13}C of the tubes used in this experiment was measured to be \sim27.68\%\textsubscript{oo} (\pm0.06\%, $n = 3$). Using the previously calculated contamination of 6.5\%, a \pm0.26\% shift should have occurred in the ball-milled samples compared to freezer-milled. However, results here suggest that the δ^{13}C of leaf material is not affected by the method of homogenisation, where both freezer-milling and ball-milling produce average δ^{13}C values which are not statistically different. Furthermore, the repeatability of the data is excellent, with an average standard deviation of 0.05\% across duplicate and triplicate data. Similarly, t-test analysis of averaged duplicate/triplicate data also revealed there was no significant difference in δ^{13}C between any of the methods of homogenisation (Table 3). Given that it is extremely unlikely that such a large amount of plastic would be abraded from the vials during ball-milling, and that there was not a consistent change to higher δ^{13}C with increased duration of ball-milling, we suggest that it is unlikely that polypropylene derived from vial abrasion during ball-milling is the main cause of observed
%C. Further work to quantify the exact quantity of polypropylene abraded from vials that enters the sample during ball-milling, as well as assessing the impact on results is required.

Conclusion

Stable isotope analysis of leaves is a commonly used proxy which can be applied in a multitude of research fields, however, application of δ¹³C leaf data is reliant on accurate and repeatable results to facilitate interpretation of small shifts in isotope values. Our results show that, although there may be a slight increase in %C as a result of ball-milling during pre-analysis homogenisation, the δ¹³C is unaffected by choice of grinding method. There are various explanations for why ball-milling may have caused an increase in %C, including sample contamination as a result of abrasion of the polypropylene plastic vials and metal ball bearings, insufficient homogenisation where larger particles are likely to have higher organic C content, or variable carbon storage between and within leaves from the same collections that were homogenised into one sample. Overall, although freezer-milling techniques are often considered the best method for processing plant samples for δ¹³C analysis, as they do not introduce heat/friction to the pre-analysis, we show that homogenisation using ball-milling can be equally as effective and does not influence the δ¹³C results. Given that ball-milling is a cheaper and quicker process, and also reduces human exposure to chemicals hazardous to health, we suggest that ball-milling is a suitable alternative to freezer-milling for analysing sample for δ¹³C. Given the observed shift in %C with increased duration of ball-milling, we suggest that intermittent or continuous ball-milling be used for the shortest possible duration, to somewhat reduce potential influence on %C. However, using any method, it is of critical importance that complete homogenisation is achieved to ensure representative and accurate results are produced.

Acknowledgements

We acknowledge Minjerribah (North Stradbroke Island) and the surrounding waters as Quandamooka Country and thank the Quandamooka Yoolooburrabee Aboriginal Corporation for support to undertake research on Country. This project was supported by the Australian Research Council (grant DP190102782). Ball-milling was completed by CB. Freezer-milling and stable isotope analyses were completed by JL and SW. SW led data reduction, statistical analysis, and writing the manuscript, with all authors contributing to interpretation and manuscript preparation. We thank Jonathan Tyler and John Tibby of The University of Adelaide for input during preliminary discussions of this project. Finally, a very special thanks to Dr John Monaghan (Editor-in-Chief, Rapid Communications in Mass Spectrometry 2002-2021). John has been a great supporter of publication of new and improved techniques in stable isotope geoscience. We wish him a happy retirement.

Data Availability

All data presented in this paper are present in the Supplementary Materials.
References

1. Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. *New Phytol.* 2013;200(4):950-965. doi:10.1111/nph.12423

2. Farquhar G. Carbon Isotope Discrimination And Photosynthesis. *Annu Rev Plant Physiol Plant Mol Biol.* 1989;40(1):503-537. doi:10.1146/annurev.arplant.40.1.503

3. O'Leary MH. Carbon Isotopes in Photosynthesis Fractionation techniques may reveal new aspects of carbon dynamics in plants. *Bioscience.* 1988;38(5):328-336.

4. Farquhar GD. On the nature of carbon isotope discrimination in C4 species. *Aust J Plant Physiol.* 1983;10(2):205-226. doi:10.1071/PP9830205

5. Farquhar GD, O’Leary MH, Berry JA. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. *Aust J Plant Physiol.* 1982;9(2):121-137. doi:10.1071/PP9820121

6. Ehleringer JR, Field CB, Lin Z fang, Kuo C yen. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. *Oecologia.* 1986;70(4):520-526. doi:10.1007/BF00379898

7. Von Caemmerer S, Ghannoum O, Pengelly J JL, Cousins AB. Carbon isotope discrimination as a tool to explore C 4 photosynthesis. *J Exp Bot.* 2014;65(13):3459-3470. doi:10.1093/jxb/eru127

8. Brüggemann N, Gessler A, Kayler Z, et al. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. *Biogeosciences.* 2011;8:3457-3489. doi:10.5194/bg-8-3457-2011

9. Farquhar GD, Richards RA. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. *Aust J Plant Physiol.* 1984;11(6):539-552. doi:10.1071/PP9840539

10. Twohey RJ, Roberts LM, Studer AJ. Leaf stable carbon isotope composition reflects transpiration efficiency in Zea mays. *Plant J.* 2019;97(3):475-484. doi:10.1111/tpj.14135

11. Stokes VJ, Morecroft MD, Morison JIL. Comparison of leaf water use efficiency of oak and sycamore in the canopy over two growing seasons. *Trees - Struct Funct.* 2010;24(2):297-306. doi:10.1007/s00468-009-0399-8

12. Vitória AP, Ávila-Lovera E, De Oliveira Vieira T, et al. Isotopic composition of leaf carbon (δ13C) and nitrogen (δ15N) of deciduous and evergreen understorey trees in two tropical Brazilian Atlantic forests. *J Trop Ecol.* 2018;34(2):145-156. doi:10.1017/S0266467418000093

13. Spangenberg JE, Schweizer M, Zufferey V. Shifts in carbon and nitrogen stable isotope composition and epicuticular lipids in leaves reflect early water-stress in vineyards. *Sci Total Environ.* 2020;739:140343. doi:10.1016/j.scitotenv.2020.140343

14. Arens NC, Jahren AH, Amundson R. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? *Paleobiology.* 2000;26(1):137-164. doi:10.1666/0094-8373(2000)026<0137:ccpfrt>2.0.co;2
15. Kohn MJ. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. *Proc Natl Acad Sci U S A*. 2010;107(46):19691-19695. doi:10.1073/pnas.1004933107

16. Tibby J, Barr C, McInerney FA, et al. Carbon isotope discrimination in leaves of the broad-leaved paperbark tree, *Melaleuca quinquenervia*, as a tool for quantifying past tropical and subtropical rainfall. *Glob Chang Biol*. 2016;22(10):3474-3486. doi:10.1111/gcb.13277

17. International Atomic Energy Agency. *Reference and Intercomparison Materials for Stable Isotopes of Light Elements*. Vol IAEA-TECDO.; 1995.

18. Brodie CR, Leng MJ, Casford JSL, et al. Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. *Chem Geol*. 2011;282(3-4):67-83. doi:10.1016/j.chemgeo.2011.01.007

19. Baisden WT, Amundson R, Cook AC, Brenner DL. Turnover and storage of C and N in five density fractions from California annual grassland surface soils. *Global Biogeochem Cycles*. 2002;16(4):641-64-16. doi:10.1029/2001gb001822

20. Mozafar A, Oertli JJ, Ambuehl B. Particle size and element concentration in ground plant material. *Commun Soil Sci Plant Anal*. 1990;21(13-16):1619-1632. doi:10.1080/00103629009368327

21. Schepers JS, Francis DD, Thompson MT. Simultaneous determination of total C, total N, and 15N on soil and plant material. *Commun Soil Sci Plant Anal*. 1989;20(9-10):949-959. doi:10.1080/00103628909368128

22. Smith JL, Um MH. Rapid Procedures For Preparing Soil And Kcl Ex-Tracts For 15N Analysis. *Commun Soil Sci Plant Anal*. 1990;21(17-18):2173-2179. doi:10.1080/00103629009368368

23. Craswell ET, Eskew DL. Nitrogen and Nitrogen-15 Analysis Using Automated Mass and Emission Spectrometers. *Soil Sci Soc Am J*. 1991;55(3):750-756. doi:10.2136/sssaj1991.03615995005500030019x

24. Jensen ES. Evaluation of automated analysis of 15N and total N in plant material and soil. *Plant Soil*. 1991;133(1):83-92. doi:10.1007/BF00011902

25. McGee EA, Vohman DD, White SA, Thompson TL. Rapid method for fine grinding soils for organic nitrogen and 15nitrogen analysis. *Commun Soil Sci Plant Anal*. 1999;30(3-4):419-426. doi:10.1080/00103629909370213

26. Chakraborty S, Jana BN, Bhattacharya SK, Robertson I. Carbon isotopic composition of fossil leaves from the early cretaceous sediments of Western India. *J Earth Syst Sci*. 2011;120(4):703-711. doi:10.1007/s12040-011-0098-x

27. Evans RD. Physiological mechanisms influencing plant nitrogen isotope composition. *Trends Plant Sci*. 2001;6(3):121-126. doi:10.1016/S1360-1385(01)01889-1

28. Mooney HA, Gulmon SL. Environmental and Evolutionary Constraints on the Photosynthetic Characteristics of Higher Plants. In: *Topics in Plant Population Biology*. Macmillan Education UK; 1979:316-337. doi:10.1007/978-1-349-04627-0_14
29. Handley LL, Raven JA. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. *Plant Cell Environ*. 1992;15(9):965-985. doi:10.1111/j.1365-3040.1992.tb01650.x

30. Arnold SL, Schepers JS. A Simple Roller-Mill Grinding Procedure for Plant and Soil Samples. *Commun Soil Sci Plant Anal*. 2004;35(3-4):537-545. doi:10.1081/CSS-120029730

31. Riechelmann DFC, Maus M, Dindorf W, Schöne BR, Scholz D, Esper J. Sensitivity of whole wood stable carbon and oxygen isotope values to milling procedures. *Rapid Commun Mass Spectrom*. 2014;28(12):1371-1375. doi:10.1002/rcm.6912

32. Schmidt R, Martin Scholze H, Stolle A. Temperature progression in a mixer ball mill. *Int J Ind Chem*. 2016;7(2):181-186. doi:10.1007/s40090-016-0078-8

33. Smith AC, Kendrick CP, Moss-Hayes VL, Vane CH, Leng MJ. Carbon isotope alteration during the thermal maturation of non-flowering plant species representative of those found within the geological record. *Rapid Commun Mass Spectrom*. 2017;31(1):21-26. doi:10.1002/rcm.7755

34. Talbot MR, Talbot MR. Nitrogen Isotopes in Palaeolimnology. In: *Tracking Environmental Change Using Lake Sediments*. Vol 2.; 2001:401-439.

35. McKissic KS, Caruso JT, Blair RG, Mack J. Comparison of shaking versus baking: Further understanding the energetics of a mechanochemical reaction. *Green Chem*. 2014;16(3):1628-1632. doi:10.1039/c3gc41496e

36. Takacs L, McHenry JS. Temperature of the milling balls in shaker and planetary mills. *J Mater Sci*. 2006;41(16):5246-5249. doi:10.1007/s10853-006-0312-4

37. Laumer W, Andreu L, Helle G, Schleser GH, Wieloch T, Wissel H. A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. *Rapid Commun Mass Spectrom*. 2009;23(13):1934-1940. doi:10.1002/rcm.4105

38. Isaac-Renton M, Schneider L, Treydte K. Contamination risk of stable isotope samples during milling. *Rapid Commun Mass Spectrom*. 2016;(April):1513-1522. doi:10.1002/rcm.7585

39. Barr C, Tibby J, Leng MJ, et al. Holocene El Niño–Southern Oscillation variability reflected in subtropical Australian precipitation. *Sci Rep*. 2019;9(1):1-9. doi:10.1038/s41598-019-38626-3

40. R Core Team. R: A language and environment for statistical computing. Published online 2017.
Figure 1) Example of a leaf sample analysed in this study. Leaf tips were cut, with half of the sample homogenised by freezer-milling and the other half by ball-milling.
Figure 2) Boxplots of δ^{13}C for 270 leaf samples analysed from 40 leaf collections, categorised by method of homogenisation. The hollow circles represent outliers which are 1.5 times outside the interquartile range.
Table 1) Average %C and %N of 270 samples from 40 collections, categorised by method of homogenisation.

Method	Average % C	±1σ of Duplicates/Triplicates	Average % N	±1σ of Duplicates/Triplicates
Ball-milling	54.12	0.58	0.56	0.05
Intermittent	53.63	0.60	0.66	0.07
Freezer-milling	52.03	0.48	0.64	0.06

Table 2) Average δ¹³C of 270 samples analysed from 40 leaf collections, categorised by method of homogenisation.

Method	Average δ¹³C (‰)	σ of Duplicates/Triplicates (‰)
Ball-milling	−31.78	0.04
Intermittent	−31.82	0.06
Freezer-milling	−31.73	0.04

Table 3) T-test results using averaged duplicate/triplicate δ¹³C data for 40 leaf collections, categorised by method of homogenisation.

Welch 2-sample t test	t	p	99% confidence
Freezer-milling vs. Intermittent Ball-milling	0.77	0.44	Not significantly different
Intermittent Ball-milling vs. Ball-milling	−0.37	0.71	Not significantly different
Freezer-milling vs. Ball-milling	0.40	0.69	Not significantly different