Irreducibility of the Hilbert scheme of smooth curves in \mathbb{P}^4 of degree $g + 2$ and genus g

Changho Keem and Yun-Hwan Kim

Abstract. We denote by $\mathcal{H}_{d,g,r}$ the Hilbert scheme of smooth curves, which is the union of components whose general point corresponds to a smooth irreducible and non-degenerate curve of degree d and genus g in \mathbb{P}^r. In this note, we show that any non-empty $\mathcal{H}_{g+2,g,4}$ is irreducible without any restriction on the genus g. Our result augments the irreducibility result obtained earlier by Hristo Iliev (2006), in which several low genus $g \leq 10$ cases have been left untreated.

Mathematics Subject Classification (2010). Primary 14H10; Secondary 14C05.

Keywords. Hilbert scheme, algebraic curves, linear series.

1. An overview, preliminaries and basic set-up

Given non-negative integers d, g and $r \geq 3$, let $\mathcal{H}_{d,g,r}$ be the Hilbert scheme of smooth curves parametrizing smooth irreducible and non-degenerate curves of degree d and genus g in \mathbb{P}^r.

After Severi asserted that $\mathcal{H}_{d,g,r}$ is irreducible for $d \geq g + r$ in [14, Anhang G, p. 368] with an incomplete proof, the irreducibility of $\mathcal{H}_{d,g,r}$ has been studied by several authors. Most noteworthy result regarding the irreducibility of $\mathcal{H}_{d,g,r}$ is due to L. Ein, who proved Severi’s claim for $& r = 4$ (& for $r = 3$ as well); cf. [7, Theorem 7] & [6, Theorem 4], see also [11, Theorem 1.5], [13, Proposition 2.1 & Proposition 3.2], [9, Theorem 3.1], [10, Theorem 2.1] for a different proof and several extensions concerning the irreducibility of $\mathcal{H}_{d,g,3}$ in the range $d \geq g$.

For smooth curves in \mathbb{P}^4, the irreducibility of $\mathcal{H}_{g+3,g,4}$ ($g \geq 5$) and $\mathcal{H}_{g+2,g,4}$ ($g \geq 11$) has been pushed forward by Hristo Iliev [9, Theorem 3.2] beyond the range $d \geq g + 4$ which has been known by a work of L. Ein [7, Theorem 7]. However, the irreducibility of $\mathcal{H}_{g+2,g,4}$ (and the non-emptyness as well) for lower genus $g \leq 10$ has been left unsettled. In this article, we...
show that $H_{g+2,g,4}$ is non-empty and irreducible for $7 \leq g \leq 10$ which in turn implies (together with [9, Theorem 3.2(b)]) that any non-empty $H_{g+2,g,4}$ is irreducible without any restriction on the genus g; cf. Theorem 2.1, Corollary 2.2 and Remark 2.5.

Before proceeding, we recall several related results which are rather well-known; cf. [1] and [2]. Let M_g be the moduli space of smooth curves of genus g. For any given isomorphism class $[C] \in M_g$ corresponding to a smooth irreducible curve C, there exist a neighborhood $U \subset M_g$ of the class $[C]$ and a smooth connected variety M which is a finite ramified covering $h : M \rightarrow U$, as well as varieties C, W_d and G_d proper over M with the following properties:

1. $\xi : C \rightarrow M$ is a universal curve, i.e. for every $p \in M$, $\xi^{-1}(p)$ is a smooth curve of genus g whose isomorphism class is $h(p)$.
2. W_d parametrizes the pairs (p, L) where L is a line bundle of degree d and $h^0(L) \geq r + 1$ on $\xi^{-1}(p)$,
3. G_d parametrizes the couples (p, D), where D is possibly an incomplete linear series of degree d and dimension r on $\xi^{-1}(p)$ - which is usually denoted by g^r_d.

Let \tilde{G} be the union of components of G_d whose general element (p, D) corresponds to a very ample linear series D on the curve $C = \xi^{-1}(p)$. Note that an open subset of $H_{d,g,r}$ consisting of points corresponding to smooth irreducible and non-degenerate curves is a $\mathbb{PGL}(r+1)$-bundle over an open subset of \tilde{G}. Hence the irreducibility of \tilde{G} guarantees the irreducibility of $H_{d,g,r}$. We also make a note of the following well-known facts regarding the scheme G_d; cf. [1], [4, Chapt. 21, §3, 5, 6, 11, 12] and [8, §2.a, p. 67].

Proposition 1.1. For non-negative integers d, g and r, let $\rho(d,g,r) := g - (r+1)(g-d+r)$ be the Brill-Noether number.

1. The dimension of any component of G_d is at least $3g - 3 + \rho(d,g,r)$ which is denoted by $\lambda(d,g,r)$.
2. G_d is smooth and irreducible of dimension $\lambda(d,g,1)$ if $g > 1$, $d \geq 2$ and $d \leq g + 1$.

We will utilize the following upper bound of the dimension of a certain irreducible component of W_d, which was proved and used effectively in [9].

Proposition 1.2 ([9, Proposition 2.1]). Let d, g and $r \geq 2$ be positive integers such that $d \leq g + r - 2$ and let W be an irreducible component of W_d. For a general element $(p, L) \in W$, let b be the degree of the base locus of the line bundle $L = |D|$ on $C = \xi^{-1}(p)$. Assume further that for a general $(p, L) \in W$ the curve $C = \xi^{-1}(p)$ is not hyperelliptic. If the moving part of $L = |D|$ is very ample and $r \geq 3$, then

$$\dim W \leq 3d + g + 1 - 5r - 2b.$$
For notations and conventions, we usually follow those in [3] and [4]; e.g., \(\pi(d, r) \) is the maximal possible arithmetic genus of an irreducible and non-degenerate curve of degree \(d \) in \(\mathbb{P}^r \); \(\pi(d, r) := \left(\frac{m}{2} \right)(r - 1) + m \epsilon \) where \(m = \left\lceil \frac{d - 1}{r - 1} \right\rceil \) and \(d - 1 = m(r - 1) + \epsilon \). Throughout we work over the field of complex numbers.

2. Irreducibility of \(\mathcal{H}_{g+2, g, 4} \)

We first recall that the irreducibility of \(\mathcal{H}_{g+3, g, 4} \) for \(g \geq 5 \) has been shown by Hristo Iliev; [9, Theorem 3.2(a)]. We also remark that this result of Hristo Iliev has been stated with the fullest possible generality; note that \(\pi(g + 3, 4) < g \) for \(g \leq 4 \) and hence \(\mathcal{H}_{g+3, g, 4} = \emptyset \) if \(g \leq 4 \).

In the same vein, one may easily see that \(\mathcal{H}_{g+2, g, 4} = \emptyset \) for \(g \leq 6 \); by the Castelnuovo genus bound, one checks that there is no smooth and non-degenerate curve in \(\mathbb{P}^4 \) of degree \(g + 2 \) and genus \(g \) if \(g \leq 6 \). Therefore in conjunction with the theorem of Hristo Iliev [9, Theorem 3.2(b)], i.e. \(\mathcal{H}_{g+2, g, 4} \) being irreducible for \(g \geq 11 \), we shall assume \(7 \leq g \leq 10 \) for the rest of this section. The main result of this article is the following theorem.

Theorem 2.1. \(\mathcal{H}_{g+2, g, 4} \) is irreducible for any \(g \) with \(7 \leq g \leq 10 \).

Consequently Theorem 2.1 together with a result of Hristo Iliev [9, Theorem 3.2(b)] readily imply the following statement.

Corollary 2.2. Any non-empty \(\mathcal{H}_{g+2, g, 4} \) is irreducible.

Remark 2.3. It is worthwhile to note that the genus range \(g \geq 11 \) in [9, Theorem 3.2(b)] is exactly the range where the Brill-Noether number \(\rho(g + 2, g, 4) \) is strictly positive so that there exists a unique component of the Hilbert scheme \(\mathcal{H}_{g+2, g, 4} \) dominating the moduli space \(\mathcal{M}_g \). For curves of genus \(g \) in the range \(7 \leq g \leq 10 \) – in which case \(\rho(g + 2, g, 4) \leq 0 \) – we will see in Remark 2.5 that \(\mathcal{H}_{g+2, g, 4} \neq \emptyset \) and the unique component of \(\mathcal{H}_{g+2, g, 4} \) is indeed the component which dominates the irreducible locus \(\mathcal{M}^1_{g,g-4} \) in \(\mathcal{M}_g \) consisting of \((g - 4)\)-gonal curves.

The following lemma, which is an intermediate step toward the proof of the irreducibility of \(\mathcal{H}_{g+2, g, 4} \), asserts that a general element in any component of \(\mathcal{H}_{g+2, g, 4} \) corresponds to a smooth curve in \(\mathbb{P}^4 \) which is linearly normal.

Lemma 2.4. Let \(G \subset G^4_{g+2} \) be an irreducible component whose general element \((p, D)\) is a very ample linear series \(D \) on the curve \(C = \xi^{-1}(p) \) and assume \(7 \leq g \leq 10 \). Then

1. \(D \) is complete and \(\dim G = 4g - 13 \).
2. a general element of the component \(\mathcal{W}^V \subset \mathcal{W}^1_{g-4} \) consisting of the residual series (with respect to the canonical series on the corresponding curve) of those elements in \(G \) is a complete pencil.
Proof. By Proposition 1.1, we have
\[\lambda(g + 2, g, 4) = 3g - 3 + \rho(g + 2, g, 4) = 4g - 13 \leq \dim \mathcal{G}. \]
We set \(r := h^0(C, |D|) - 1 \) for a general \((p, D) \in \mathcal{G}\). Let \(\mathcal{W} \subset \mathcal{W}_{g+2}^r \) be the component containing the image of the natural rational map \(\mathcal{G} \rightarrow \mathcal{W}_{g+2}^r \) with \(\iota(D) = |D| \). Since \(\dim \mathcal{G} \leq \dim \mathcal{W} + \dim \mathbb{G}(4, r) \), it follows by Proposition 1.2 that
\[\lambda(g + 2, g, 4) = 4g - 13 \leq \dim \mathcal{G} \leq (4g + 7 - 5r) + 5(r - 4) = 4g - 13, \]
hence
\[\dim \mathcal{G} = 4g - 13 \quad \text{and} \quad \dim \mathcal{W} = 4g + 7 - 5r. \quad (2.1) \]

Let \(\mathcal{W}^c \subset \mathcal{W}_{g-4}^{r-3} \) be the locus consisting of the residual series (with respect to the canonical series on the corresponding curve) of those elements in \(\mathcal{W} \), i.e. \(\mathcal{W}^c = \{(p, \omega_C \otimes L^{-1}) : (p, L) \in \mathcal{W}\} \).

Assume that \(r \geq 5 \) and we will argue by contradiction for each \(g \) with \(7 \leq g \leq 10 \).

(a) \(g = 7 \): We have \(g_5^2 \) on \(C = \xi^{-1}(p) \) corresponding to an element in \(\mathcal{W}^c \subset \mathcal{W}_{g-4}^{r-3} \), contradicting Clifford’s theorem.

(b) \(g = 8 \): We have \(g_5^2 \) on \(C = \xi^{-1}(p) \) corresponding to an element in \(\mathcal{W}^c \subset \mathcal{W}_{g-3}^{r-4} \), hence \(C \) is hyperelliptic by Clifford’s theorem. However a hyperelliptic curve of genus \(g \) cannot have a very ample \(g_{g+2}^4 \).

(c) \(g = 9 \): We have \(g_5^2 \) on \(C = \xi^{-1}(p) \) and since \(C \) is not a plane quintic, our \(g_5^2 \) has a base point and hence \(C \) is a hyperelliptic curve, which cannot have a very ample \(g_{g+2}^4 \).

(d) \(g = 10 \): In this case, we have either a \(g_5^2 \) (when \(r = 5 \)) or a \(g_5^3 \) (when \(r = 6 \)) on \(C = \xi^{-1}(p) \) corresponding to an element in \(\mathcal{W}^c \subset \mathcal{W}_{g-4}^{r-3} \).

If there were a \(g_5^3 \), \(C \) is an hyperelliptic curve on which there does not exist a very ample \(g_{g+2}^4 \). Therefore \(r = 5 \). Note that our \(g_5^2 \) is base-point-free, for otherwise the same reasoning as in (c) applies. Therefore it follows that \(C \) is either trigonal with a unique trigonal pencil \(g_3^1 \) so that \(2g_3^1 = g_5^2 \) or a smooth plane sextic with \(|K_C - g_6^3| = |2g_6^2| = g_5^{12} \), where \(g_6^2 \) is the unique very ample net of degree 6. Suppose that \(C \) is a smooth plane sextic. We recall that two smooth plane curves of the same degree \(d \geq 4 \) are isomorphic if and only if they are projectively equivalent. Hence the family of smooth plane curves of degree \(d = 6 \) moves in \(\dim \mathbb{P}H^0(\mathbb{P}^2, \mathcal{O}(d)) = \dim \mathbb{P}\text{GL}(3) = \frac{(d+3)(d+2)}{2} - \dim \mathbb{P}\text{GL}(3) = 27 - 8 = 19 \) dimensional locus \(\mathcal{M} \) in \(\mathcal{M}_g \). In the sequence of natural rational maps \(\mathcal{G} \rightarrow \mathcal{W} \rightarrow \mathcal{W}^c \rightarrow \mathcal{M} \subset \mathcal{M}_g \), we note that the rational map \(\zeta \) which takes a complete linear series to its residual series is clearly birational and the projection map \(\eta \) is also birational by the uniqueness of \(g_5^2 \). Therefore we have \(\dim \mathcal{W} = \dim \mathcal{W}^c = \dim \mathcal{M} = 19 \), contradicting (2.1). If \(C \) is trigonal with \(g_5^2 = 2g_3^1 \), we also have a sequence of rational maps \(\mathcal{G} \rightarrow \mathcal{W} \rightarrow \mathcal{W}^c \rightarrow \mathcal{M} \subset \mathcal{M}_g \), where
\(\mathcal{M}_{g,3}^4 \) is the irreducible locus of trigonal curves of genus \(g \). Again the projection map \(\eta \) is birational since there exists a unique trigonal pencil on any trigonal curve of genus \(g \) when \(g \geq 5 \). Hence \(\dim \mathcal{W} = \dim \mathcal{W}^\vee = \dim \mathcal{M}_{g,3}^4 = 2g + 1 = 21 \), again contradicting (2.1).

Therefore it finally follows that \(r = 4 \) and by (2.1), we have

\[
\dim \mathcal{G} = \dim \mathcal{W} = \dim \mathcal{W}^\vee = 4g - 13. \tag{2.2}
\]

The second statement (2) is obvious from (1).

The irreducibility of \(\mathcal{H}_{g+2,g,4} \) follows easily as an immediate consequence of Lemma 2.4 together with Proposition 1.1(2).

Proof of Theorem 2.1. Retaining the same notations as before, let \(\tilde{\mathcal{G}} \) be the union of irreducible components \(\mathcal{G} \) of \(\mathcal{G}_{g+2}^4 \) whose general element corresponds to a pair \((p, D) \) such that \(D \) is very ample linear series on \(C := \xi^{-1}(p) \). Let \(\tilde{\mathcal{W}}^\vee \) be the union of the components \(\mathcal{W}^\vee \) of \(\mathcal{W}_{g-4}^1 \), where \(\mathcal{W}^\vee \) consists of the residual series of elements in a component \(\mathcal{G} \) of \(\tilde{\mathcal{G}} \). By Lemma 2.4 (or (2.2)),

\[
\dim \mathcal{W}^\vee = \dim \mathcal{G} = 4g - 13 = \lambda(g - 4, g, 1) = \dim \mathcal{G}_{g-4}^1. \tag{2.3}
\]

Since a general element of any component \(\mathcal{W}^\vee \subset \tilde{\mathcal{W}}^\vee \subset \mathcal{W}_{g-4}^1 \) is a complete pencil by Lemma 2.4, there is a natural rational map \(\tilde{\mathcal{W}}^\vee \to \mathcal{G}_{g-4}^1 \) with \(\kappa(|D|) = D \) which is clearly injective on an open subset \(\tilde{\mathcal{W}}^\vee \kappa \) of \(\tilde{\mathcal{W}}^\vee \) consisting of those which are complete pencils. Therefore the rational map \(\kappa \) is dominant by (2.3). We also note that there is another natural rational map \(\mathcal{G}_{g-4}^1 \to \tilde{\mathcal{W}}^\vee \) with \(\iota(D) = |D| \), which is an inverse to \(\kappa \) (wherever it is defined). Therefore it follows that \(\tilde{\mathcal{W}}^\vee \) is birationally equivalent to the irreducible locus \(\mathcal{G}_{g-4}^1 \), hence \(\tilde{\mathcal{W}}^\vee \) is irreducible and so is \(\tilde{\mathcal{G}} \). Since \(\mathcal{H}_{g+2,g,4} \) is a \(\mathbb{P}\text{GL}(5) \)-bundle over an open subset of \(\tilde{\mathcal{G}} \), \(\mathcal{H}_{g+2,g,4} \) is irreducible. \(\square \)

Remark 2.5. We finally remark that \(\mathcal{H}_{g+2,g,4} \neq \emptyset \) for \(7 \leq g \leq 10 \). As was suggested by the proof of Theorem 2.1 one may argue that \(\mathcal{H}_{g+2,g,4} \) dominates (and is a \(\mathbb{P}\text{GL}(5) \)-bundle over) the irreducible locus \(\mathcal{M}_{g,g-4}^4 \) consisting of \((g-4) \)-gonal curves as follows. Recall that the Clifford index \(e \) of a general \((e+2) \)-gonal curve of genus \(g \geq 2e+2 \) can only be computed by the unique pencil computing the gonality as long as \(e \neq 0 \), i.e. there does not exist a \(g_{2r+e} \) with \(2r+e \leq g-1 \), \(r \geq 2 \); cf. [5, Theorem] or [12, Corollary 1]. Therefore on a general \((g-4) \)-gonal curve \(C \), the residual series of the unique \(g_{g-4}^1 \) is a very ample \(g_{g+2}^4 \); for otherwise there exists a \(g_{g-2}^2 = g_{g-4}^1 \otimes \mathcal{O}_C(p+q) \) for some \(p, q \in C \), computing the Clifford index of a general \((g-4) \)-gonal curve contradicting the result just mentioned.
References

[1] E. Arbarello, M. Cornalba, *Su una congetura di Petri*. Comment. Math. Helv., **56** (1981), 1–38.

[2] E. Arbarello and M. Cornalba, *A few remarks about the variety of irreducible plane curves of given degree and genus*. Ann. Sci. École Norm. Sup. (4) **16** (1983), 467–483.

[3] E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, *Geometry of Algebraic Curves Vol.I*. Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1985.

[4] E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, *Geometry of Algebraic Curves Vol.II*. Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 2011.

[5] E. Ballico, *On the Clifford index of algebraic curves*. Proc. Amer. Math. Soc., **97** (1986), 217–218.

[6] L. Ein, *Hilbert scheme of smooth space curves*. Ann. Scient. Ec. Norm. Sup. (4), **19** (1986), no. 4, 469–478.

[7] L. Ein. *The irreducibility of the Hilbert scheme of complex space curves*, in Algebraic geometry, Bowdoin, 1985, Proc. Sympos. Pure Math., 46, Part 1, 83-87, Amer. Math. Soc., 1987.

[8] J. Harris, *Curves in Projective space*. in “Sem. Math. Sup.”, Press Univ. Montréal, Montréal, 1982.

[9] H. Iliev, *On the irreducibility of the Hilbert scheme of space curves*. Proc. Amer. Math. Soc., **134** (2006), no. 10, 2823–2832.

[10] C. Keem and Y. Kim, *Irreducibility of the Hilbert scheme of smooth curves in \mathbb{P}^3 of degree g and genus g*. Archiv der Mathematik, to appear.

[11] C. Keem and S. Kim, *Irreducibility of a subscheme of the Hilbert scheme of complex space curves*. J. Algebra, **145** (1992), no. 1, 240–248.

[12] C. Keem and S. Kim, *On the Clifford index of a general $(e+2)$-gonal curve*. Manuscripta Math., **63** (1989), 83–88.

[13] C. Keem, Y. Kim and A.F. Lopez, *Irreducibility and components rigid in moduli of the Hilbert Scheme of smooth curves*. Preprint, arXiv:1605.00297 [math.AG], available at https://arxiv.org/abs/1605.00297

[14] F. Severi, *Vorlesungen uber algebraische Geometrie*. Teubner, Leipzig, 1921.

Changho Keem
Department of Mathematics, Seoul National University
Seoul 151-742, South Korea
e-mail: ckeem1@gmail.com

Yun-Hwan Kim
Department of Mathematics, Seoul National University
Seoul 151-742, South Korea
e-mail: yunttang@snu.ac.kr