Deep Sylvian Meningioma without Dural Attachment – A Case Report

Masayuki Yamagishi,1* Manoj Bohara,1* Soichiro Komasaku,1 Masahiko Yamada,1 Dan Kawahara,1 Yuko Sadamura,1 Masanao Mori,1 Yosuke Nishimuta,1 Takeshi Ishii,1 and Hiroshi Tokimura1

Deep Sylvian meningiomas are rare, accounting for 0.3–0.4% of all meningiomas, and mostly present in young adults and children. We report on a 32-year-old man who presented with headache but had no neurological deficits. Computed tomography of brain revealed a 24 × 19 × 21 mm3 mass lesion in the right Sylvian fissure with calcification. Magnetic resonance imaging showed that the lesion was isointense on T1- and T2-weighted images (WI), with homogenous enhancement on post-gadolinium T1WI. The lesion was surgically removed via right fronto-temporal craniotomy. The tumor was located in deep Sylvian fissure and had no dural attachment. Histopathological examination of the lesion revealed both meningothelial and fibroblastic features, thereby suggesting the diagnosis of transitional meningioma (WHO grade I), with Ki-67 labeling index of 6.9%. Thus, meningioma should be considered as a differential diagnosis of enhancing mass lesions in the Sylvian fissure even in the absence of dural tail sign, especially in young adults and children.

Keywords: deep Sylvian meningioma, meningioma without dural attachment, Sylvian fissure

Introduction

Meningioma without dural attachment is rare, accounting for 12.5% of all meningiomas.1 Among these, deep Sylvian meningioma represents one of the subtypes and comprises 0.3–0.4% of all meningiomas.2–3 It was first identified by Cushing and Eisenhardt in 1938.4–5 To the best of our knowledge, 36 cases of deep Sylvian meningioma have been reported so far. We here report on a 32-year-old man with deep Sylvian meningioma and review the literature regarding clinical, radiological, surgical and histopathological features.

Case Report

A 32-year-old man presented with history of pulsatile headache especially in the right occipital region. He had past history of syphilis and hepatitis B. Clinical examination revealed no focal neurological deficits. Computed tomography (CT) of brain revealed a 24 × 19 × 21 mm3 mass lesion in the right Sylvian fissure with calcification (Fig. 1). Magnetic resonance imaging (MRI) showed that the lesion was isointense on T1- and T2-weighted images (WI), with homogenous enhancement on post-gadolinium T1WI(Figs. 2A–2C). Dural tail sign was not observed. MR angiogram demonstrated no supply from middle meningeal artery (Fig. 2D). Considering these preoperative investigations, the differential diagnoses included meningioma without dural attachment and glioma. Considering his young age and symptom of headache, surgical resection was planned.

The lesion was surgically removed via right fronto-temporal craniotomy. The tumor was located in deep Sylvian fissure and had no dural attachment. Most of the tumor was free from the arachnoid layer except for the deeper portion that was adherent to the arachnoid but the pia mater was intact. After coagulation of small feeding arteries branching from right middle cerebral artery (MCA), we removed the tumor in one piece (Fig. 3A). Histopathological examination of the lesion revealed both meningothelial and fibroblastic features, thereby suggesting the diagnosis of transitional meningioma (WHO grade I) (Figs. 3B and 3C). No malignant cells were evident and Ki-67 labeling index was 6.9% (Fig. 3D). The patient had no postoperative neurological deficits and MRI performed on the 3rd postoperative day revealed complete removal of the tumor (Fig. 2E).

Discussion

Meningiomas are mostly benign, slow-growing and dural-based tumors, which are thought to originate from meningotheelial or arachnoid cap cells in the meningeal arachnoid layer.5–7 Meningiomas without dural attachment are uncommon tumors. Cushing and Eisenhardt divided these into three major subtypes: intraventricular, subcortical, and deep Sylvian.6–8 Zhang et al.6–8 classified meningiomas without dural attachment, based on their locations, into five supratentorial types (intraventricular, pineal region, deep Sylvian, intraparenchymal or subcortical and others) and four infratentorial types (intraventricular, inferior telachoroidae, cisterna magna and intraparenchymal). Deep Sylvian meningiomas probably originate from the arachnoid cap cells in the arachnoid and pia of the Sylvian fissure or Virchow–Robin space along the branches of the middle cerebral artery.7–8 These are mostly located in the distal Sylvian fissure in close proximity with the insula and the M2 and M3 branches of MCA; however, these are also found in proximal Sylvian fissure in some patients.7–8 Thus, the venous return may be via superficial or deep Sylvian veins depending on the location of the tumor.

1Department of Neurosurgery, Kagoshima City Hospital, Kagoshima, Japan

Received: September 4, 2018; Accepted: November 7, 2018

Copyright© 2019 by The Japan Neurosurgical Society
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives International License.

*These authors contributed equally to this work.
Fig. 1 Plain axial (A), coronal, (B) and sagittal (C) computed tomography brain scans showing a 24 × 19 × 21 mm³ mass lesion in the right Sylvian fissure with calcification.

Fig. 2 Post-gadolinium axial (A), coronal, (B) and sagittal (C) magnetic resonance imaging demonstrating homogenous enhancement of the lesion. MR angiogram (D) showing no supply from middle meningeal artery. Intraoperative picture (E) demonstrating en bloc removal of the tumor.

Fig. 3 Postoperative gadolinium-enhanced axial magnetic resonance imaging (A) showing complete removal of the tumor. Hematoxylin and eosin staining (B and C) of the lesion showing both meningothelial and fibroblastic features, suggesting transitional meningioma (WHO grade I), with Ki-67 labelling index of 6.9% (D).
Table 1: Reported cases of deep Sylvian meningioma

No.	Authors (year)	Age/Sex	Clinical features	Size	Edema	Removal	Histopathology	Follow-up
1	Cushing et al. (1938)^a	8/M	Epilepsy	5 cm	NA	Partial	Psammomatous	5 y: died
2	Cushing et al. (1938)^b	4/M	Epilepsy	8 × 7 cm²	NA	Partial	Psammomatous	1 d: died
3	Baca-Goyanes et al. (1953)^c	24/F	Epilepsy	5 cm	N/A	Partial	Psammomatous	3 y: died
4	Mori et al. (1977)^d	48/M	Epilepsy	8 × 7 cm²	N/A	Subtotal	Transitional	5 y: no recurrence
5	Saito et al. (1979)^e	20/F	Epilepsy	1.7 cm	N/A	Gross total	Psammomatous	N/A
6	Tsuchida et al. (1981)^f	46/M	Headache	N/A	N/A	Gross total	Transitional	4 y: no recurrence
7	Awa et al. (1982)^g	16/M	Headache	N/A	N/A	Gross total	Meningothelial	2 y: no recurrence
8	Okamoto et al. (1985)^h	27/F	Headache	N/A	N/A	Gross total	Psammomatous	N/A
9	Hirao et al. (1986)ⁱ	20/F	Epilepsy	6 cm	NA	Subtotal	Transitional	N/A
10	Drake et al. (1986)^j	3/F	Headache, vomiting	5 cm	N/A	Gross total	Fibrous	5 m: mild left hemiparesis, hemianopia
11	Silbergeld et al. (1988)^k	4/F	Epilepsy	N/A	N/A	Subtotal + RT	Meningothelial	N/A
12	Cho et al. (1990)^l	4/F	Epilepsy	N/A	N/A	Gross total	Transitional	N/A
13	Coyle et al. (1990)^m	3/F	Headache, vomiting	17 × 1.4 cm²	N/A	Gross total	Transitional	N/A
14	Churchill et al. (1994)ⁿ	3/F	Headache	6 cm	N/A	Gross total	Transitional	N/A
15	Mooney et al. (1999)^o	3/F	Headache	3 × 3 × 4 cm³	N/A	Gross total	Transitional	N/A
16	Cooper et al. (1999)^p	4/F	Epilepsy	4.7 cm	N/A	Gross total	Transitional	N/A
17	Cooper et al. (1999)^q	4/F	Epilepsy	4.5 cm	N/A	Gross total	Transitional	N/A
18	Cooper et al. (1999)^r	4/F	Epilepsy	3.5 cm	N/A	Gross total	Transitional	N/A
19	Cooper et al. (1999)^s	4/F	Epilepsy	5 cm	N/A	Gross total	Transitional	N/A
20	Cooper et al. (1999)^t	4/F	Epilepsy	4.9 × 3.9 × 4 cm³	N/A	Total	WHO grade I	N/A
21	Cooper et al. (1999)^u	4/F	Epilepsy	2.5 cm	N/A	Total	Atypical	N/A
22	Cooper et al. (1999)^v	4/F	Epilepsy	7 cm	N/A	Total	Transitional	N/A
23	Cooper et al. (1999)^w	4/F	Epilepsy	7 cm	N/A	Total	Atypical	N/A
24	Cooper et al. (1999)^x	4/F	Epilepsy	7 cm	N/A	Total	Transitional	N/A
25	Cooper et al. (1999)^y	4/F	Epilepsy	7 cm	N/A	Total	Atypical	N/A
26	Cooper et al. (1999)^z	4/F	Epilepsy	7 cm	N/A	Total	Transitional	N/A

Continued...
Meningiomas without dural attachment are mostly present in young patients, with a male predominance, in contrary to the prevalence of classic meningioma mostly in middle-aged females. To the best of our knowledge, 37 cases of deep Sylvian meningioma including ours have been reported (Table 1). These patients included 25 male and 12 female with the average age of 26.32 years. Majority of the patients (26 of 37 patients; 70.3%) presented with epilepsy, followed by symptoms of increased intracranial pressure such as headache, vomiting, and visual disturbance. Although the tumor lies in close proximity to MCA and its branches, hemiparesis was rarely observed (3 of 37 patients; 8.1%).

The radiological features are almost similar to the meningiomas in other locations. They are mostly iso- to hyperdense on CT scan with homogenous enhancement, with or without calcifications. MRI demonstrates iso- to hypointensity on both T1WI and T2WI with homogeneous enhancement and frequently peritumoral edema. Internal carotid artery angiogram may reveal arterial blush in the Sylvian region but no supply has been reported from external carotid artery. Mori et al. reported enhancement along the MCA branch, similar to the dural tail seen in classic meningiomas. The non-specific radiological findings and rarity of deep Sylvian meningioma can make the preoperative diagnosis difficult. The differential diagnoses include glioma, metastasis, lymphoma, and cavernous angioma.

Optimal surgical resection is the treatment of choice. This tumor is in close anatomical proximity to the branches of MCA; thus, subtotal resection may be performed in case of severe adherence to these arteries to avoid the postoperative complications. Adjuvant radiotherapy is advocated in cases of incomplete resection. Most of the reported deep Sylvian meningiomas are WHO grade I, the most frequent subtypes being transitional, psammomatous, fibroblastic, and meningothelial. Five cases of WHO grade II deep Sylvian meningioma have been reported (four atypical and one chordoid) whereas only one case of WHO grade III (malignant) type has been reported (Table 1).

Deep Sylvian meningioma without dural attachment is a rare tumor, which mainly affects young adults and pediatric population. Meningioma should be considered as a differential diagnosis of enhancing mass lesions in the Sylvian fissure even in the absence of dural tail sign, especially in young adults and children presenting with epilepsy.

Conflicts of Interest Disclosure

All authors report no conflicts of interest regarding this article.

References

1. Okamoto S, Handa H, Yamashita J, Tokuriki Y: Deep sylvian meningiomas. Surg Neurol 23: 303–308, 1985
2. Samson Sujit Kumar G, Rajshekhar V: Deep sylvian meningioma: a case report and review of literature. Childs Nerv Syst 25: 129–132, 2009
3. Drake JM, Hendrick E, Becker LE, Chuang SF, Hoffman HJ, Humphreys RP: Intracranial meningiomas in children. Pediat Neurosci 12: 134–139, 1985–1986
4. Cushing H, Eisenhardt L: Meningiomas: their classification, regional behaviour, life history and surgical end results. Springfield: Charles C. Thomas, 1938; 133–165.
Deep Sylvian Meningioma

5) Chiocca EA, Boviatsis EJ, Westmark RM, Short MP, Richardson EP, Zervas NT: Deep sylvian fissure meningioma without dural attachment in an adult: case report. Neurosurgery 35: 944–946, 1994

6) Zhang J, Chi LY, Meng B, Li F, Zhu SG: Meningioma without dural attachment: case report, classification, and review of the literature. Surg Neurol 67: 535–539, 2007

7) Cecchi PC, Campello M, Rizzo P, Mair K, Schwarz A: Atypical meningioma of the sylvian fissure. J Clin Neurosci 16: 1234–1239, 2009

8) Mitsuyama T, Kasuya H, Kubo O, Hirashima Y, Horie Y, Takaku A: Deep sylvian meningioma in a one-year-eight-month old child. No Shinkei Geka 28: 459–464, 2000 (Japanese)

9) Mori Y, Shibuya M, Sugita K, Nagasaka T: [Deep sylvian meningioma: a case report of a child]. No Shinkei Geka 22: 1147–1151, 1994 (Japanese)

10) Silbergold D, Berger M, Griffin B: Sylvian fissure meningioma in a child: case report and review of literature. Pediatr Neurosurg 14: 50–53, 1988

11) Barcia-Goyanes JJ, Calvo-Garra W: [Meningiomas without arachnoid attachment]. Acta Neurochir (Wien) 3: 240–247, 1953

12) Mori S, Ishihara H, Sagabe T, Kodama Y, Hibino H: [A case of deep sylvian meningioma (author’s transl)]. No Shinkei Geka 5: 385–392, 1977 (Japanese)

13) Saito A, Mizuno Y, Adachi Y, Itoh T: [Deep sylvian psammomeningioma, report of a case (author’s transl)]. No To Shinkei 31: 79–83, 1979 (Japanese)

14) Tsuchida T, Ito J, Sekiguchi K, Honda H, Ueki K: [A case of deep sylvian meningioma with intracerebral hematoma (author’s transl)]. No Shinkei Geka 9: 395–400, 1981 (Japanese)

15) Awa H, Asakura T, Kasamo S, Nakamura K: Cystic sylvian meningioma of young adolescence: a case report. Acta Med Univ Kagoshima 24: 49–59, 1982

16) Hirao M, Oka N, Hirasawa Y, Mohri Y, Takaku A: [Deep sylvian meningioma: case report and review of the literature]. No Shinkei Geka 14: 1471–1478, 1986 (Japanese)

17) Cho BK, Wang KC, Chang KH, Chi JG: Deep sylvian meningioma in a child. Childs Nerv Syst 6: 228–230, 1990

18) Matsumoto S, Yamamoto T, Ban S, et al.: [A case of deep sylvian meningioma presenting temporal lobe epilepsy]. No To Shinkei 47: 503–508, 1995 (Japanese)

19) Cooper JR, Marshman LA, Smith CM, Powell T: Case report: sylvian fissure meningioma without dural attachment in a 4-year-old child. Clin Radiol 52: 874–876, 1997

20) Kaplan SS, Ojemann JG, Park TS: Pediatric sylvian fissure meningioma. Pediatr Neurosurg 36: 275–276, 2002

21) Moon BJ, Choi JY, Park YG, Chung SS: Deep Sylvian meningioma: case report. J Korean Neurosurg Soc 33: 218–221, 2003

22) Chang JH, Kim JA, Chang JW, Park YG, Kim TS: Sylvian meningioma without dural attachment in an adult. J Neurooncol 74: 43–45, 2005

23) McIver JJ, Scheithauer BW, Atkinson JL: Deep Sylvian fissure chordoid meningioma: case report. Neurosurgery 57: E1064, 2005

24) Arita N: [A case report of atypical meningioma in sylvian fissure]. No Shinkei Geka Sokuho 19: 140–145, 2009 (Japanese)

25) Miyahara K, Ichikawa T, Yagishita S, et al.: [Deep sylvian meningioma without dural attachment: a case report]. No Shinkei Geka 39: 1067–1072, 2011 (Japanese)

26) Ma L, Xiao SY, Zhang YK: Atypical meningioma of sylvian fissure with a 20-year history: a rare case report. Neurol Sci 33: 143–145, 2012

27) Chae MP, Song SW, Park SH, Park CK: Experience with 5-aminolevulinic acid in fluorescence-guided resection of a deep sylvian meningioma. J Korean Neurosurg Soc 52: 558–560, 2012

28) Aras Y, Akccakaya MO, Aydoseli A, Izgi N: Staged surgery for sylvian fissure meningiomas without dural attachment: report of two cases. Clin Neurol Neurosurg 115: 1527–1529, 2013

29) Kim YJ, Lee EJ, Chang HW, Jung HR, Kim EM, Kim SP: Deep sylvian meningioma in a 43-year-old man: a case report. J Korean Soc Magn Reson Med 17: 308–311, 2013

30) Fukushima S, Narita Y, Yonezawa M, et al.: Short communication: sclerosing meningioma in the deep sylvian fissure. Brain Tumor Pathol 31: 289–292, 2014

31) Matar N, Maamri Kais, Boubaker A, Kallel J, Jemel H: Deep sylvian meningioma: a case report and review of literature. Indian J Neurosurg 5: 172–175, 2016

32) Donovan DJ, Thavapalan V: Pediatric meningeal tumors of the sylvian fissure region without dural attachment: a series of three patients and review of the literature. Surg J (N Y) 2: e31–e36, 2016

Corresponding author:
Hiroshi Tokimura, MD, PhD, Department of Neurosurgery, Kagoshima City Hospital, 37-1 Uearata-cho, Kagoshima, Kagoshima 890-8760, Japan.
hiroshitok@nag.bbiq.jp