Synergistic Influence of Bio-Fertilizers, Growth Regulator and Micronutrients on Yield and Economics of Sapota cv. Kalipatti

P. K. Modi1*, A. P. Patel1, A. R. Patel1, A. N. Patel1, T. R. Ahir1, K. D. Bisane1 and B. M. Naik1

1Fruit Research Station, Navsari Agricultural University, Gandevi (Gujarat)-396360, India.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/IJPSS/2021/v33i2130661
Editor(s):
(1) Prof. Alejandro Hurtado Salazar, Universidad de Caldas, Colombia.
(1) Janilson Pinheiro de Assis, Federal Rural University of the Semi-arid Region, Brazil.
(2) Kilonz Jackson, Kenya Agricultural and Livestock Research Organization, Kenya.
(3) Honoré Muhindo Siwako, Institut Facultaire des sciences Agronomiques de Yangambi, Republic of Congo.
Complete Peer review History: https://www.sdiarticle4.com/review-history/72104

Received 12 July 2021
Accepted 18 September 2021
Published 18 October 2021

Original Research Article

ABSTRACT

An experiment laid down to evaluate the effect of biofertilizers, growth regulator gibbralic acid (GA3) and micronutrients on yield and yield attributes of Sapota cv. Kalipatti at Fruit Research Station, Navsari Agricultural University, Gandevi, Gujarat. The treatments of recommended dose of fertilizer (RDF), i.e.100 kg FYM and 1000:500:500 g/plant NPK along with application of biofertilizers (Azospirillum + PSB), growth regulator (GA3) and micronutrients. The pooled results of 75% RDF + biofertilizers- Azospirillum + PSB @ 40 ml/tree + GA3 @ 50 ppm + Grade 4 (micronutrient @ 0.5%) were exhibited significantly higher number of fruit (2815.45), yield (20.61 t/ha) along with net return (Rs. 3,03,951/ha) and Benefit Cost Ratio (2.81). The said application enhanced fruit yield up to 43.41% over control comprising RDF only. However, significantly higher fruit weight (81.34 g) was recorded in application of 100% RDF + biofertilizers- Azospirillum + PSB @ 40 ml/tree + GA3 @ 50 ppm + Grade-4 (micronutrient @ 0.5%).

Keywords: Sapota; micronutrients; growth regulator; bio-fertilizer.

*Corresponding author: E-mail: pmodi.horti@gmail.com, pmodi.horti@nau.in;
1. INTRODUCTION

Sapota (Manilkara zapota Mill. Fosberg.) is a hardy tropical fruit crop that prefers warm but moist weather and grows in both dry and humid areas [1]. It is low land fruit tree, and its cultivation is limited to tropical or near tropical region, becomes one of the important fruits in southern and western part of the India due to its wide range of adaptability, low production cost and reasonable economic returns with very less pest and disease susceptibility [2]. India is considered to be the largest producer of sapota in the World. In India, Navsari district of Gujarat having highest area (8,132 ha) producing the largest amount of sapota fruits (1,01,894 ton) in India [3].

In Indian fruit orchards, poor soil health and imbalance nutrient application are major cause of low orchard efficiency resulting in poor productivity. Also, proper nutrition of sapota orchards is very essential and crucial order to boost up the growth and productivity of plants which is lacking in many parts [4]. Thus, integrated nutrient management (INM) through combination of organic, inorganic, biofertilizers and growth hormones can fulfill the requirement of plant nutrients for quantitative as well as qualitative production. Organic source of nutrients are known to improve fruit quality and soil health by increasing the rhizosphere micro flora. The soil rhizosphere, micro flora and fauna plays very important role in growth and development process of plant. In integrated approach, biofertilizers are partial alternate source of chemical fertilizers. Among them, Azospirillum fixing the atmospheric nitrogen in soil and prevents the pollution in environment for extended sustainable agriculture. Phosphate-solubilizing bacteria are able to solubilize the insoluble phosphate from organic and inorganic phosphate sources [5]. In growth hormone, GA3 induces early flowering, prolonged flower life and fruit development. In addition, micronutrients play vital role for metabolic activity in vegetative and reproductive phase of plants. They are important co-factor found in the structure of certain enzymes and hormones, due to that management of micronutrients in fruit crops for better vegetative and reproductive growth as well as physiological parameters [6]. In line, micronutrient G-4 (Micro mix) content 5 micronutrients viz. Zn (6%), Fe (4%), Cu (0.5%), Mn (1%) and B (0.5%). The research literature based information on symbiotic effect of bio-fertilizers, PGR’s and micronutrients in combination with recommended dose of fertilizers in sapota was not tested widely and is very scanty. Considering the importance and future scope of sustainable sapota production, soil health and reduction in chemical fertilizer dose, the present experiment was framed to overview the impact of these above inputs under field condition.

2. MATERIALS AND METHODS

A field experiment was conducted in the already established 29 year old sapota (cv. Kalipatti) plantation (1987) at Fruit Research Station (ICAR-AICRP on Fruits) Navsari Agricultural University, Gandevi, Dist. Navsari (Gujarat) during five consecutive years from 2014-15 to 2019-2020. The experimental site located at 20.807545º N 73.022260º E. The soil of the experimental site is Clay (heavy black) having soil pH of about 6.80 with electrical conductivity of 0.21 dSm⁻¹ and 0.71% organic carbon.

The experiment was designed in Randomized Block Design (RBD) with 3 replications and 9 treatments. The treatments were: T1 (100% RDF-1000:500:500 g NPK + 100 kg FYM/plant), T2 (100% RDF + Bio fertilizers (Azospirillum + PSB @ 40 ml/tree), T3 (100% RDF + GA3 @ 50 ppm), T4 (100 % RDF + Grade 4 (micronutrients @ 0.5%)), T5 (100% RDF + biofertilizers (Azospirillum + PSB @ 40 ml/tree + GA3 @ 50 ppm + Grade 4 (micronutrients @ 0.5%)), T6 (75% RDF + Biofertilizers (Azospirillum + PSB @ 40 ml/tree), T7 (75% RDF + GA3 @ 50 ppm), T8 (75% RDF + Grade 4 (micronutrients @ 0.5%)) and T9 (75% RDF + bio-fertilizers (Azospirillum + PSB @ 40 ml/tree + GA3 @ 50 ppm + Grade 4 (micronutrients @ 0.5%)).

The application of fertilizers was done in June and October month (Two equal splits), bio-fertilizer applied in July, GA3 spray in November and Grade 4 micronutrients spray in December.

The observations on growth, yield and quality parameters were recorded. The fruits were harvested from month of November to May. Fertilizers were applied between the radial distances 150 to 200 cm away from trunk, 15-25 cm deep and then properly covered with soil. Bio fertilizers were applied by mixing in FYM two week after application of inorganic fertilizers. For recording the fruit quality parameters observation, five mature fruits were randomly selected from each observational tree. The soil of experimental site was well drained clayey soil.
Irrigation method during experiment was ridge and furrow system.

3. RESULTS AND DISCUSSION

The effect of different treatments on growth parameters viz., plant height, stem girth and canopy volume were found non-significant (Table 1). The yield attributes revealed the significantly higher number of fruits (3738.17, 3067.02, 2215.95, 2759.78, 2296.33 and 2815.45), yield per tree (258.9, 214.6, 170.3, 212.7, 173.9 and 206.1 kg), yield per ha (25.89, 21.46, 17.03, 21.27, 17.39 and 20.61 ton) recorded in T9 (75% RDF + Biofertilizers- Azospirillum + PSB @ 40 ml/tree + GA3 @ 50 ppm + Grade 4 micronutrient @ 0.5%) (Table 2, 3 and 4) in 2015-16, 2016-17, 2017-18, 2018-19, 2019-20 and pooled, followed by treatment T5. Moreover, number of fruits and yield per tree recorded higher over control were recorded with treatment T9 (Fig.1 and 2).

Meanwhile, Yield per tree in percentage was recorded maximum in treatment T9 (43.41%) followed by treatment T5 (32.82%) over control (Table-3)

The improvement of yield parameters in the presence of Azospirillum, might be due to its dual nature in nitrogen fixation, production of phytohormone substances and increase uptake of nutrient such as nitrogen [7]. GA3 increased number flowers per shoot, fruit set and fruit retention in sapota cv. Kalipatti [8]. Micronutrients helps in reduce flower drop and increase the fruit retention (Zn), chlorophyll production (Fe), flower development and pollen germination, pollen tube growth, flower fertilization, fruit set and early fruit development (B) [9], photosynthesis process (Cu and Mn) [6]. Appropriate quantity of micronutrients is necessary for better growth, flowering, higher fruit set, yield and quality of horticultural crops [10], while its deficiency leads lowering the productivity [11].

With respect to yield attributes, the significantly higher fruit weight (79.49, 77.66, 78.64, 78.04, 92.88 and 81.34 g) was recorded in 2015-16, 2016-17, 2017-18, 2018-19, 2019-20 and pooled obtained with treatment T5 [100% RDF + Biofertilizers (Azospirillum + PSB @ 40 ml/tree + GA3 @ 50 ppm + Grade 4 (micronutrient @ 0.5%)], followed by treatment T3 (Table 5). Fruit weight and fruit size are highly correlated with dry matter content and balance level of hormones. Superior physical fruit quality may be due to fact that, organic manures and microbial fertilizers enhances the nutrient availability by enhancing the capability of plants to better solute uptake from rhizosphere, also these nitrogen fixers are known for accumulation of dry matter and their translocation as well as synthesis of different growth regulators [12,13]. Azospirillum derive positive benefit in terms of enhancement in uptake of NO3-, NH4+, H2PO4-, K+ and Fe 2+ increase nitrate reductase activity in the plants [14]. Azospirillum and PSB increase availability

| Table 1. Combine effect of bio fertilizers, GA3 and micronutrients on growth parameters of sapota cv. Kalipatti |
|--|----------------|----------------|------------------|
| Treatment* | Plant height (m) | Stem girth (cm) | Tree canopy volume (m^3) |
| T1 (100% RDF-1000:500:500:500 g NPK + 100 kg FYM/plant), T2 (100% RDF + Bio fertilizers (Azospirillum + PSB @ 40 ml/tree), T3 (100% RDF + GA3 @ 50 ppm), T4 (100 % RDF + Grade 4 (micronutrimnet @ 0.5%), T5 (100% RDF + biofertilizers(Azospirillum + PSB @ 40 ml/tree + GA3 @ 50 ppm + Grade 4 (micronutrimnet @ 0.5%)), T6 (75% RDF + Biofertilizers (Azospirillum + PSB @ 40 ml/tree), T7 (75 % RDF + GA3 @ 50 ppm), T8 (75% RDF + Grade 4 (micronutrimnet @ 0.5%) and T9 (75% RDF + biofertilizers (Azospirillum + PSB @ 40 ml/tree + GA3 @ 50 ppm + Grade 4 (micronutrimnet @ 0.5%)) |
T1	10.80	110.03	370.34
T2	10.64	121.67	330.07
T3	10.94	110.24	358.70
T4	11.24	118.21	374.94
T5	11.30	114.93	349.69
T6	10.81	111.54	319.21
T7	10.61	115.61	325.19
T8	10.87	111.21	373.82
T9	11.04	117.23	352.81
CD 5%	NS	NS	NS
CV %	9.36	13.45	28.25

* Each value is the mean of three replicates. *CD* = Coefficient of Determination.
Table 2. Effect of biofertilizers, growth regulator and micronutrients on number of fruits per tree/year of Sapota cv. Kalipatti

Treatment	I year	II year	III year	IV Year	V year	Pooled
T1	2516.55	2289.21	2028.66	2228.51	1422.68	2097.12
T2	2693.16	2473.62	2145.72	2335.05	1734.51	2276.41
T3	2773.36	2710.67	2150.12	2371.09	1565.83	2314.21
T4	2679.45	2502.27	2030.98	2118.3	1210.52	2148.30
T5	3043.87	2396.86	2142.37	2625.87	1696.33	2381.06
T6	2567.38	2315.72	2013.15	2209.24	1348.5	2148.30
T7	2834.39	2574.62	2060.33	2409.58	1814.67	2338.72
T8	2540.96	2325.16	1998.09	2272.04	1402.83	2107.82
T9	3738.17	3067.02	2215.95	2759.78	2296.33	2815.45
CD 5%(T)	373.08	459.74	NS	314.79	479.20	198.49
CV%(T)	7.64	10.55	8.53	7.60	17.19	11.22
CD@ 5%(Y)	--	--	--	--	--	120.59
CV%(Y x T)	--	--	--	--	--	9.71

* T1 (100% RDF-1000:500:500 g NPK + 100 kg FYM/plant), T2 (100% RDF + Bio fertilizers (Azospirillum + PSB @ 40 ml/tree), T3 (100% RDF + GA3 @ 50 ppm), T4 (100% RDF + Grade 4 (micronutrient @ 0.5%)), T5 (100% RDF + biofertilizers (Azospirillum + PSB @ 40 ml/tree + GA3@ 50 ppm + Grade 4 (micronutrient @ 0.5%)), T6 (75% RDF + Biofertilizers (Azospirillum + PSB @ 40 ml/tree), T7 (75% RDF + GA3 @ 50 ppm), T8 (75% RDF + biofertilizers (Azospirillum + PSB @ 40ml/tree + GA3@ 50 ppm + Grade 4 (micronutrient @ 0.5%)).

Table 3. Effect of biofertilizers, growth regulator and micronutrients on fruit yield/tree/year (kg) of Sapota cv. Kalipatti

Treatment	I year	II year	III year	IV Year	V year	Pooled
T1	155.11	139.2	136.6	160.08	112.43	140.68
T2	168.86	153.85	148.35	170.83	146.23	157.62
T3	190.6	178.13	162.43	181.23	137.15	169.91
T4	179.86	163.6	150.6	174.59	100.82	153.89
T5	239.04	186.42	168.85	204.91	156.7	191.18
T6	165.3	143.85	141.78	165.05	119.2	147.04
T7	187.63	164.15	151.72	182.63	147.38	166.70
T8	166.77	145.05	143.99	170.51	126.97	150.66
T9	258.95	214.6	170.28	212.68	173.87	206.08
CD 5%(T)	15.87	28.18	21.11	21.55	36.61	11.91
CV%(T)	4.82	9.84	7.98	6.91	15.59	9.33
CD@ 5%(Y)	--	--	--	--	--	7.99
CV%(Y x T)	--	--	--	--	--	23.96

* T1 (100% RDF-1000:500:500 g NPK + 100 kg FYM/plant), T2 (100% RDF + Bio fertilizers (Azospirillum + PSB @ 40 ml/tree), T3 (100% RDF + GA3 @ 50 ppm), T4 (100% RDF + Grade 4 (micronutrient @ 0.5%)), T5 (100% RDF + biofertilizers (Azospirillum + PSB @ 40 ml/tree + GA3@ 50 ppm + Grade 4 (micronutrient @ 0.5%)), T6 (75% RDF + Biofertilizers (Azospirillum + PSB @ 40 ml/tree), T7 (75% RDF + GA3 @ 50 ppm), T8 (75% RDF + biofertilizers (Azospirillum + PSB @ 40ml/tree + GA3@ 50 ppm + Grade 4 (micronutrient @ 0.5%)).
Table 3. Increase yield in percentage over control (Continued)

Treatment*	I year	II year	III year	IV Year	V year	Pooled
T_1	--	--	--	--	--	--
T_2	8.86	10.52	8.60	6.72	30.06	12.04
T_3	21.02	25.30	17.41	12.38	16.90	18.54
T_4	12.99	13.70	8.62	8.01	-8.47	7.77
T_5	46.66	28.86	21.41	25.68	43.91	32.82
T_6	4.26	2.49	3.07	2.43	4.32	3.33
T_7	19.67	17.34	10.66	13.66	29.32	17.70
T_8	6.21	3.56	4.87	5.71	9.87	5.99
T_9	62.27	51.98	23.39	30.85	48.39	43.41

*T_1 (100% RDF-1000:500:500 g NPK + 100 kg FYM/plant), T_2 (100% RDF + Bio fertilizers (Azospirillum + PSB @ 40ml/tree), T_3 (100% RDF + GA_3 @ 50 ppm), T_4 (100% RDF + Grade 4 (micronutrient @ 0.5%)), T_5 (100% RDF + biofertilizers (Azospirillum + PSB@40ml/tree + GA_3 @ 50 ppm + Grade 4 (micronutrient @ 0.5%)), T_6 (75% RDF + Biofertilizers (Azospirillum + PSB @ 40ml/tree), T_7 (75% RDF + GA_3 @ 50 ppm), T_8 (75% RDF + Grade 4 (micronutrient @ 0.5%)) and T_9 (75% RDF + biofertilizers (Azospirillum + PSB@40ml/tree + GA_3 @ 50 ppm + Grade 4 (micronutrient @ 0.5%))
Table 4. Effect of biofertilizers, growth regulator and micronutrients on fruit yield/ha/year (t/ha) of Sapota cv. Kalipatti

Treatment	Fruit yield/ha/year(t/ha)	I year	II year	III year	IV Year	V year	Pooled
T₁	15.51	13.92	13.66	16.01	11.24	14.07	
T₂	16.89	15.39	18.44	17.08	14.02	15.76	
T₃	19.06	17.81	16.25	18.13	13.72	16.99	
T₄	17.99	16.36	15.06	17.46	10.08	15.39	
T₅	23.9	18.64	15.06	20.49	15.67	19.12	
T₆	16.53	14.39	14.18	16.51	11.92	14.71	
T₇	18.76	16.42	15.18	18.26	14.74	16.67	
T₈	16.68	14.51	14.40	17.05	12.70	15.07	
T₉	25.9	21.46	17.03	21.27	17.39	20.61	
CD 5%(T)		1.59	2.82	2.11	2.15	3.66	1.19
CV %(T)		4.83	9.84	7.99	6.90	15.59	9.33
CD@ 5%(Y)		--	--	--	--	0.80	
CD 5% (Y x T)		--	--	--	--	2.40	
CV% (Y x T)		--	--	--	--	8.92	

* (100% RDF-1000:500:500 g NPK + 100 kg FYM /plant), T₂ (100% RDF + Bio fertilizers (Azospirillum + PSB @ 40ml/tree), T₃ (100% RDF + GA₃ @ 50 ppm), T₄ (100% RDF + Grade 4 (micronutrimet @ 0.5%)), T₅ (100% RDF + biofertilizers (Azospirillum + PSB@40ml/tree + GA₃ @ 50 ppm + Grade 4 (micronutrimet @ 0.5%)), T₆ (75% RDF + Biofertilizers (Azospirillum + PSB @ 40ml/tree), T₇ (75% RDF + GA₃ @ 50 ppm), T₈ (75% RDF + Grade 4 (micronutrimet @ 0.5%)) and T₉ (75% RDF + biofertilizers (Azospirillum + PSB@40ml/tree + GA₃ @ 50 ppm + Grade 4 (micronutrimet @ 0.5%))

Table 5. Effect of biofertilizers, growth regulator and micronutrients on average fruit weight (g) of Sapota cv. Kalipatti

Treatment*	Fruit weight (g)	I year	II year	III year	IV Year	V year	Pooled
T₁	61.65	60.85	67.27	71.91	80.09	68.35	
T₂	63.1	62.2	69.27	73.12	84.61	70.46	
T₃	68.72	65.69	75.66	76.43	87.51	74.80	
T₄	67.14	65.31	74.22	75.35	83.89	73.18	
T₅	79.49	77.66	78.64	78.04	92.88	81.34	
T₆	64.42	62.2	70.47	74.7	88.59	72.08	
T₇	66.39	63.74	73.64	75.84	82.14	72.35	
T₈	65.84	62.53	72.28	75.25	90.3	73.24	
T₉	69.3	70.45	76.97	77.09	75.65	73.89	
CD 5%(T)	8.24	4.86	6.25	3.37	NS	3.36	
CV %(T)	7.07	4.27	4.93	2.59	7.67	5.92	
CD@ 5%(Y)	--	--	--	--	NS	--	
CD 5% (Y x T)		--	--	--	--	NS	
CV% (Y x T)	--	--	--	--	--	6.03	

* T₁ (100% RDF-1000:500:500 g NPK + 100 kg FYM /plant), T₂ (100% RDF + Bio fertilizers (Azospirillum + PSB @ 40ml/tree), T₃ (100% RDF + GA₃ @ 50 ppm), T₄ (100% RDF + Grade 4 (micronutrimet @ 0.5%)), T₅ (100% RDF + biofertilizers (Azospirillum + PSB@40ml/tree + GA₃ @ 50 ppm + Grade 4 (micronutrimet @ 0.5%)), T₆ (75% RDF + Biofertilizers (Azospirillum + PSB @ 40ml/tree), T₇ (75% RDF + GA₃ @ 50 ppm), T₈ (75% RDF + Grade 4 (micronutrimet @ 0.5%)) and T₉ (75% RDF + biofertilizers (Azospirillum + PSB@40ml/tree + GA₃ @ 50 ppm + Grade 4 (micronutrimet @ 0.5%))
Table 6. Effect of biofertilizers, growth regulator and micronutrients on quality parameters of Sapota cv. Kalipatti

Treatment*	Fruit diameter	TSS (%)	Pulp peel ratio	No. of seeds/fruit	Days to ripening
T₁	5.65	20.43	9.09	1.59	6.33
T₂	5.60	20.23	9.01	1.73	6.21
T₃	5.54	20.08	9.15	1.77	6.34
T₄	5.65	20.04	8.89	1.72	6.20
T₅	5.66	19.98	9.45	1.90	6.40
T₆	5.53	20.15	9.03	1.74	6.35
T₇	5.55	20.17	8.74	1.74	6.27
T₈	5.63	20.22	9.20	1.73	6.51
T₉	5.52	20.29	8.52	1.82	6.70

CD 5%(T) NS NS NS NS NS
CV %(T) 3.52 2.28 8.03 14.15 6.93
CD@ 5%(Y) 0.09 0.39 0.39 NS 0.35
CD 5% (Y x T) NS NS NS NS NS
CV% (Y x T) 3.07 3.52 7.87 13.74 10.14

Table 7. Combine effect of bio fertilizers, GA₃ and micronutrients on economics of sapota cv. Kalipatti

Treatment	Cost (A) (Rs.)	Cost (B) (Rs.)	Cost (C) (Rs.)	Income (Rs.)	Net profit (Rs.)	BCR
T₁	61477	80237	80237	281400	201163	2.51
T₂	65217	86230	86230	315200	229248	2.67
T₃	74188	96842	96842	339800	242958	2.51
T₄	67608	88128	88128	307800	219672	2.49
T₅	82647	108140	108140	382400	274538	2.55
T₆	59540	79153	79153	294200	215325	2.73
T₇	69684	91910	91910	333400	241490	2.63
T₈	63103	83197	83197	301400	218203	2.62
T₉	81047	108527	108527	412200	303951	2.81

of atmospheric nitrogen and soil phosphorus by microbial inoculants, synthesis of plant growth hormones at all the essential stages of growth and development by the combined application of biofertilizers and organic manure [15]. The exogenous application of gibberellic acid (GA₃) seemed to be very effective in enhancing growth and fruit development through its important role in enhancement of cell division, cell elongation and regulating the availability of water and nutrients [16]. Application of FeSO₄ and borax at fruit setting stage increase fruit weight, pulp weight, stone weight and pulp stone ratio in ber [17].
The effect of different treatments on quality parameters viz., fruit diameter, TSS, pulp peel ratio, no. of seeds/fruit and days to ripening were found non-significant (Table 6).

The economics of various treatments of biofertilizers, growth regulator and micronutrients showed that the higher income (4.12 lakh) and net return (3.04 lakh) as well as maximum BCR ratio (2.81) was recorded with treatment T₉ [75% RDF + Biofertilizers-Azospirillum + PSB @ 40 ml/tree + GA₃ @ 50 ppm + Grade 4 (micronutrient @ 0.5%) (Table 7).

4. CONCLUSION

An investigation was carried out to study the synergistic effect of biofertilizers, growth regulator and micronutrients with RDF for enhancing fruit yield and economics of Sapota (Manilkara zapota). The results indicated that reproductive behavior and yield parameters as well as economics were better under application of T₉ [75% RDF + Biofertilizers- Azospirillum + PSB @ 40 ml/tree + GA₃ @ 50 ppm + Grade 4 (micronutrient @ 0.5%)]. This was possibly due to Synergistic effect of organic sources and inorganic fertilizers as well growth regulator, which acted complementary and supplementary to each other and resulted into balance and steady supply of desired nutrients for photosynthesis and carbohydrates metabolism as well as cell enlargement. Thus, T₉ proved to be beneficial over other treatments for obtaining good fruit yield and economics of Sapota plantations in the South Gujarat region.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Chundawat BS. Sapota [Manilkara acharas (Mill.) Fosberg]. Agrotech Publishing Academy, Udaipur. 1998;1-5.
2. Singh HP. Descriptor for sapodilla (Manilakara acharas (Mill.) Fosberg). AICRP on Tropical Fruits, ILHR, Bangalore, India;1991.
3. Anonymous. Director of Horticulture, District wise estimated area & production of fruit crops.2019-20 (gujarat.gov.in); 2020.
4. Meena HR, Somasundram J, Kaushik RA, Sarolia DK, Singh RK, Kala S, Meena GL. Commun. Soil Sci. Pl. Analysis. 2019;50(22):2848-2863.
5. Dalal SR, Gonde VS, Jogdande ND, Moharia A. Response of different levels of nutrients and PSB on fruit yield and economics of sapota. PKV Res. J. 2004;28:126-128.
6. Shanker K, Misra S, Topwal M, Singh VK. A Research Review on Use of Micronutrient in Fruit Crops. Int. J. Curr. Microbiol. App. Sci. 2019;8(08):3014-3025.
7. Govindan M, Purushothaman D. Biomass production, root colonization and phosphatase activity by VA-mycorrhizal fungi in papaya. Agric. Res. J. Kerala. 1984;22:133-138.
8. Namisbjan JV, Desai UT, Kshirsagar DB, Kamamble AB. Effect of plant growth regulators on yield of sapota cv. Kalipatti. J. Maharashtra Agric. Univ. 2007;32(2):280-281.
9. Peryea FJ. Properties and performance of boron spray products for apple. Proceedings of International Symposium on Foliar Nutrition. Acta Horticulture. 2002;594:211-214.
10. Shekhar C, Yadav AL, Singh HK, Singh MK. Influence of micronutrients on plant growth, yield and quality of papaya fruit (Carica papaya L.) cv. Washington. Asian J. Hort. 2010;5(2):326-329.
11. Zagade PM, Munde GR, Shirsath AH. Effect of foliar application of micronutrients on yield and quality of Guava (Psidium guajava L.) cv. Sardar. J Pharmacy and Bio.l Sciences. 2017;12(5):56-58.
12. Gawande SS, Jitonde DJ, Turkhede AB, Darange SO. Effect of organic and inorganic fertilizers on yield and quality of sapota. J. Soils and Crops. 1998;8(1):58-60.
13. Patel DR, Naik AG. Effect of pre-harvest treatment of organic manures and inorganic fertilizers on post harvest shelf life of sapota cv. Kalipatti. Indian J. Horti., 2010;67(3):381-386.
14. Wani SP. Inoculation with Associative Nitrogen-Fixing Bacteria: Role in Cereal Grain Production Improvement.Indian J. Micro. 1990;30(4):363-393.
15. Chattoo MA, Ahmed N, Faheema S, Narayan S, Khan SH, Hussain K. Response of garlic (Allium sativum L.). The Asian J. Horti. 2007;2(2):249-252.
16. Agrawal S, Dixit SN. Studies on the effect of plant growth regulators on growth and yield of sapota (Achras sapota L.) cv. Cricket ball. Indian J. Agri. Res. 2010; 42(3):207-211.

17. Meena VS, Yadav PK, Meena PK. Yield attributes of Ber (Zizyphus Mauritania Lamk) cv. Gola as influenced by foliar application of ferrous sulphate and boron. Agri., Sci., Digest. 2008;28:3.
ANNEXURE-I. Economics of different treatments of biofertilizers, growth regulator and micronutrients in sapota cv. Kalipatti

SN	Particulars	Quantity	Rate	Cost (Rs./ha)	T1	T2	T3	T4	T5	T6	T7	T8	T9	
1	Fixed cost expenditure													
	Land preparation	12 hrs	Rs. 400/hr	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	
	Harrowing	9 hrs	Rs. 300/hr	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	
	Irrigation	11 times	Rs. 40/hr	3520	3520	3520	3520	3520	3520	3520	3520	3520	3520	
	Labour cost for fertilizer application	2 dose	3000/dose	6000	6000	6000	6000	6000	6000	6000	6000	6000	6000	
	Total				15820	15820	15820	15820	15820	15820	15820	15820	15820	
2	Plant protection measures (2000 liter solution)													
	Profenophos	2000 ml	Rs. 675/L	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	
	Lymdaclothin	2000 ml	Rs. 330/kg	660	660	660	660	660	660	660	660	660	660	
	Carbendazim	2000 ml	Rs. 550/kg	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	
	Labour charge for spraying	2 Spray	Rs. 1250	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	
	Total				5610	5610	5610	5610	5610	5610	5610	5610	5610	
3	Treatment cost													
4	Harvesting cost													
5	Working Cost (1+2+3+4)													
6	Interest on working capital 7%													
7	Rental value of own land													
8	Cost-A (5+6)													
9	Cost-B (7+8)													
10	Cost-C													
11	Total income (Rs.)				281400	238400	307800	382400	294200	334300	301400	412200		
12	Net Income (Rs.)				20113	222948	242958	219672	274538	215925	218203	303951		
13	BCR ratio				2.51	2.67	2.51	2.49	2.55	2.73	2.63	2.62	2.81	

© 2021 Modi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle4.com/review-history/72104