UNIQUENESS OF E_∞ STRUCTURES FOR CONNECTIVE COVERS

ANDREW BAKER AND BIRGIT RICHTER

Abstract. We refine our earlier work on the existence and uniqueness of E_∞ structures on K-theoretic spectra to show that at each prime p, the connective Adams summand ℓ has a unique structure as a commutative S-algebra. For the p-completion ℓ_p we show that the McClure-Staffeldt model for ℓ_p is equivalent as an E_∞ ring spectrum to the connective cover of the periodic Adams summand L_p. We establish a Bousfield equivalence between the connective cover of the Lubin-Tate spectrum E_n and $BP(n)$.

Introduction

The aim of this short note is to establish the uniqueness of E_∞ structures on connective covers of certain periodic commutative S-algebras E, most prominently for the connective p-complete Adams summand. It is clear that the connective cover of an E_∞ ring spectrum inherits a E_∞ structure; there is even a functorial way of assigning a connective cover within the category of E_∞ ring spectra [9, VII.3.2]. But it is not obvious in general that this E_∞ multiplication is unique.

Our main concern is with examples in the vicinity of K-theory; we apply our uniqueness theorem to real and complex K-theory and their localizations and completions and to the Adams summand and its completion.

The existence and uniqueness of E_∞ structures on the periodic spectra KU, KO and L was established in [5] by means of the obstruction theory for E_∞ structures developed by Goerss-Hopkins [8] and Robinson [12]. Note however, that obstruction theoretic methods would fail in the connective cases. Let e be a commutative ring spectrum. If e satisfies some Künneth and universal coefficient properties [12, proposition 5.4], then the obstruction groups for E_∞ multiplications consist of André-Quillen cohomology groups in the context of differential graded E_∞ algebras applied to the graded commutative e_\ast-algebra $e_\ast e$. Besides problems with non-projectivity of $e_\ast e$ over e_\ast, the algebra structures of $ku_\ast ku$, $ko_\ast ko$ and $\ell_\ast \ell$ are far from being étale and therefore one would obtain non-trivial obstruction groups. One would then have to identify actual obstruction classes in these obstruction groups in order to establish the uniqueness of the given E_∞ structure – but at the moment, this seems to be an intractable problem. Thus an alternative approach is called for.

In Theorem 1.3 we prove that a unique E_∞ structure on E gives rise to a unique structure on the connective cover if E is obtained from some connective spectrum via a process of Bousfield localization. In particular, we identify the E_∞ structure on the p-completed connective Adams summand ℓ_p provided by McClure and Staffeldt in [10] with the one that arises by taking the unique E_∞ structure on the periodic Adams summand $L = E(1)$ developed in [5] and taking its connective cover.

Our Theorem applies as well to the connective covers of the Lubin-Tate spectra E_n and we prove in section 2 that these spectra are Bousfield equivalent to the truncated Brown-Peterson spectra $BP(n)$. Unlike other spectra that are Bousfield equivalent to $BP(n)$, such as the connective cover of the completed Johnson-Wilson spectrum, $\tilde{E}(n)$, the connective cover of

2000 Mathematics Subject Classification. 55P43; 55N15.

We are grateful to John Rognes who suggested to exploit the functoriality of the connective cover functor to obtain uniqueness of E_∞ structures. The first author thanks the Max-Planck Institute and the mathematics department in Bonn. The second author was partially supported by the Strategisk Universitetsprogram i Ren Matematikk (SUPREMA) of the Norwegian Research Council.
Let us first make explicit what we mean by uniqueness of E_∞ structures. We admit that this is an \textit{ad hoc} notion, but it suffices for the examples we want to consider.

\textbf{Definition 1.1.} In the following, we will say that an E_∞ structure on some homotopy commutative and associative ring spectrum E is unique if whenever there is a map of ring spectra $\varphi: E' \to E$ from some other E_∞ ring spectrum E' to E which induces an isomorphism on homotopy groups, then there is a morphism in the homotopy category of E_∞ ring spectra $\varphi': E' \to E$ such that $\pi_*(\varphi) = \pi_*(\varphi')$.

If E and F are spectra whose E_∞ structure was provided by the obstruction theory of Goerss and Hopkins \cite{G-H II}, then we can compare our uniqueness notion with theirs. Note that examples of such E_∞ ring spectra include E_n \cite[7.6]{G-H I}, KO, KU, L and $E(n)$ \cite{S}. In such cases the Hurewicz map

\begin{equation}
\text{Hom}_{E_\infty}(E, F) \xrightarrow{h} \text{Hom}_{F_*-\text{alg}}(F_*E, F_*)
\end{equation}

is an isomorphism. Assume that we have a mere ring map φ as above between E and F. This gives rise to a map of F_*-algebras from F_*E to F_* by composing $F_*(\varphi)$ with the multiplication μ in F_*F. The left hand side in (1.1) denotes the derived space of E_∞ maps from E to F. In presence of a universal coefficient theorem we have $\text{Hom}_{F_*-\text{hom}}(F_*E, F_*) = [E, F]$, therefore the element $\mu \circ F_*(\varphi)$ gives rise to a homotopy class of maps of ring spectra $\tilde{\varphi}$ from E to F. We can assume that we have functorial cofibrant replacement $Q(-)$, hence we obtain a ring map $Q(\tilde{\varphi})$ from $Q(E)$ to $Q(F)$. Via the isomorphism (1.1) this gives a map of E_∞ spectra from $Q(E)$ to $Q(F)$, Φ, therefore we obtain a zigzag

\[
\begin{array}{ccc}
Q(E) & \xrightarrow{\Phi} & Q(F) \\
\sim & & \sim \\
E \xrightarrow{\varphi} & F
\end{array}
\]

of weak equivalences of E_∞ spectra from E to F. Thus in such cases our definition agrees with the uniqueness notion that is natural in the Goerss-Hopkins setting.

For the rest of the paper we assume the following.

\textbf{Assumption 1.2.} Let E be a periodic commutative S-algebra with periodicity element $v \in E_*$ of positive degree. We will view E as being obtained from a connective commutative S-algebra e by Bousfield localization at $e[v^{-1}]$ in the category of e-modules. Furthermore we assume that the localization map induces an isomorphism between the homotopy groups of e and the homotopy groups of the connective cover of E.

Let us denote the connective cover functor from \cite[VII.3.2]{H} by $c(-)$. For any E_∞ ring spectrum A, there is a weakly equivalent commutative S-algebra $B(\mathbb{P}, \mathbb{P}, \mathbb{L})(A)$, with equivalence

\[
\lambda: B(\mathbb{P}, \mathbb{P}, \mathbb{L})(A) \xrightarrow{\sim} A,
\]

in the E_∞ category \cite[XII.1.4]{H}. Here $B(\mathbb{P}, \mathbb{P}, \mathbb{L})$ is a bar construction with respect to the monad associated to the linear isometries operad L and the monad for commutative monoids in the category of S-algebras \mathbb{P}. We will denote the composite $B(\mathbb{P}, \mathbb{P}, \mathbb{L}) \circ c$ by \bar{c}. For a commutative S-algebra R and an R-module M, let $L_M^R(-)$ denote Bousfield localization at M in the category of R-modules and we denote the localization map by $\sigma: E \to L_M^R(E)$ for any R-module E.

\textbf{Theorem 1.3.} Assume that we know that the E_∞ structure on E is unique. Then the E_∞ structure on $c(E)$ is unique.
Proof. Each commutative \(\mathcal{S} \)-algebra can be viewed as an \(E_\infty \) ring spectrum. Let \(e' \) be a model for the connective cover \(c(E) \), i.e., \(e' \) is an \(E_\infty \) ring spectrum with a map of ring spectra \(\varphi \) to \(c(E) \), such that \(\pi_* \varphi \) is an isomorphism. Write \(v \in e'_p \) for the isomorphic image of \(v \) under the inverse of \(\pi_* \varphi \). As \(\varphi \) is a ring map it will induce a ring map on the corresponding Bousfield localizations. But as the \(E_\infty \) structure on \(E \) is unique by assumption, this map can be replaced by an equivalent equivalence, \(\xi \), of \(E_\infty \) ring spectra. We abbreviate \(\mathcal{B}(\mathcal{P}, \mathcal{P}, \mathcal{L})(e') \) to \(B(e') \).

We consider the following diagram whose dotted lines provide a zigzag of \(E_\infty \) equivalences and hence a map in the homotopy category of \(E_\infty \) ring spectra.

\[
\begin{array}{c}
\mathcal{B}(e') & \xrightarrow{c} & c(B(e')) \\
\sigma & \xrightarrow{c} & c(e) \\
L_{B(e')}^{B(e')} & \xrightarrow{c} & E \\
\sigma & \xrightarrow{c} & c(\xi) \\
\end{array}
\]

\(\square\)

Real and complex \(K \)-theory, \(ko \) and \(ku \), have \(E_\infty \) structures obtained using algebraic \(K \)-theory models \([3] \) VIII, §2. The connective Adams summand \(\ell \) has an \(E_\infty \) structure because it is the connective cover of \(E(1) \). In the following we will refer to these models as the standard ones. The \(E_\infty \) structures on \(KO \) and \(E(1) \) are unique by \([3] \) theorems 7.2, 6.2. In all of these cases, the periodic versions are obtained by Bousfield localization \([7] \) VIII.4.3.

Corollary 1.4. The \(E_\infty \) structures on \(ko \), \(ku \) and \(\ell \) are unique.

In \([10] \), McClure and Staffeldt construct a model for the \(p \)-completed connective Adams summand using algebraic \(K \)-theory of fields. Let \(\hat{\ell} = K(\mathbb{F}) \), the algebraic \(K \)-theory spectrum of \(\mathbb{F} = \bigcup_i \mathbb{F}_{q^i} \), where \(q \) is a prime which generates the \(p \)-adic units \(\mathbb{Z}_p^\times \). Then the \(p \)-completion of \(\hat{\ell} \) is additively equivalent to the \(p \)-completed connective Adams summand \(\ell_p \) \([10] \) proposition 9.2. For further details see also \([2] \) §1. Note that the \(p \)-completion \(\ell_p \) inherits an \(E_\infty \) structure from \(\ell \) because \(p \)-completion is Bousfield localization with respect to \(HF_p \) and therefore preserves commutative \(\mathcal{S} \)-algebras \([7] \) VIII.2.2. An a priori different model for the \(p \)-completion of the connective Adams summand can be obtained by taking the connective cover of the \(p \)-complete periodic version \(L = E(1) \). This is consistent with the statement of Corollary 1.4 because \(p \)-completion and Bousfield localization of \(\ell \) in the category of \(\ell \)-modules with respect to \(L \) are compatible in the following sense. Consider \(\ell = \tilde{c}(L) \) and its \(p \)-completion

\[\lambda_L: \ell \to \ell_p = (\tilde{c}(L))_p.\]

The \(p \)-completion map \(\lambda \) is functorial in the spectrum, therefore the following diagram of solid arrows commutes.

\[
\begin{array}{c}
\ell = \tilde{c}(L) & \xrightarrow{\lambda_L} & \ell_p = \tilde{c}(L)_p & \xrightarrow{\lambda} & \tilde{c}(L)_p \\
L & \xrightarrow{\lambda_L} & L_p
\end{array}
\]

The universal property of the connective cover functor ensures that there is a map in the homotopy category of commutative \(\mathcal{S} \)-algebras from \(\ell_p \) to \(\tilde{c}(L_p) \) which is a weak equivalence. In the following we will not distinguish \(\ell_p \) from \(\tilde{c}(L_p) \) anymore and denote this model simply by \(\ell_p \).
Proposition 1.5. The McClure-Staffeldt model $\tilde{\ell}_p$ of the p-complete connective Adams summand is equivalent as an E_∞ ring spectrum to ℓ_p.

Remark 1.6. If E is a commutative S-algebra with naive G-action for some group G, then neither the connective cover functor $\tilde{c}(-)$ nor Bousfield localization of E has to commute with taking homotopy fixed points. As an example, consider connective complex K-theory ku with the conjugation action by C_2. The homotopy fixed points ku^{hc_2} are not equivalent to ko, but on the periodic versions we obtain $KU^{hc_2} \simeq KO$.

of Proposition 1.6 Consider the algebraic K-theory model for connective complex K-theory, $ku = K(k)$, with $k = \bigcup_i \mathbb{F}_{q^i(p-1)}$. The canonical inclusions $\mathbb{F}_{q^i} \hookrightarrow \mathbb{F}_{q^i(p-1)}$ assemble into a map $j: k' \to k$. The Galois group C_{p-1} of k over k' acts on k and induces an action on algebraic K-theory. As k' is fixed under the action of C_{p-1} there is a factorization of $K(j)_p$ as

$$K(k')_p \xrightarrow{i} (K(k)_p)^{hc_{p-1}} \to K(k)_p \to KU_p.$$

and i yields a weak equivalence of commutative S-algebras, where $K(k)_p^{hc_{p-1}}$ is a model for the connective p-complete Adams summand which is weakly equivalent to ℓ_p (see [2, §1]).

Consider the composition of the following chain of maps between commutative S-algebras:

$$K(k')_p \xrightarrow{i} (K(k)_p)^{hc_{p-1}} \to K(k)_p \to KU_p.$$

The target KU_p is as well the target of the map $\tilde{c}(KU_p) \to KU_p$. Note that the universal property of $\tilde{c}(-)$ yields a zigzag $\varsigma: K(k)_p \leftrightarrow \tilde{c}(KU_p)$ of equivalences between $K(k)_p$ and $\tilde{c}(KU_p)$ in the category of commutative S-algebras.

As KU_p is the Bousfield localization of $K(k)_p$ in the category of $K(k)_p$-modules with respect to the Bott element,

$$KU_p = L_{K(k)_p[\beta^{-1}]}^K K(k)_p,$$

it inherits the C_{p-1}-action on $K(k)_p$. The functoriality of the connective cover lifts this action to an action on $\tilde{c}(KU_p)$.

The connective cover functor is in fact a functor in the category of commutative S-algebras with multiplicative naive G-action for any group G. To see this we have to show that the map $\tilde{c}(A) \to A$ is G-equivariant if A is a commutative S-algebra with an underlying naive G-spectrum. The functor $B(\mathbb{P}, \mathbb{P}, L)$ does not cause any problems. Proving the claim for the functor c involves chasing the definition given in [3, VII, §3].

The prespectrum underlying $c(A)$ applied to an inner product space V is defined as $T(A_0)(V)$, where A_0 is the zeroth space of the spectrum A and T is a certain bar construction involving suspensions and a monad consisting of the product of a fixed E_∞ operad with the partial operad of little convex bodies \mathcal{K}. For a fixed V the suspension ΣV and the operadic term \mathcal{K}_V are used. As the G-action is compatible with the E_∞ and the additive structure of A, the evaluation map $T(A_0)(V) \to A(V)$ is G-equivariant. For varying V, these maps constitute a map of prespectra and its adjoint on the level of spectra is $c(A) \to A$. As the spectification functor preserves G-equivariance, the claim follows. Therefore the resulting zigzag $\varsigma: K(k)_p \leftrightarrow \tilde{c}(KU_p)$ is C_{p-1}-equivariant and we obtain an induced zigzag on homotopy fixed points,

$$\varsigma^{hc_{p-1}}: (K(k)_p)^{hc_{p-1}} \leftrightarrow (\tilde{c}(KU_p))^{hc_{p-1}}.$$

As ς is an isomorphism in the homotopy category and is C_{p-1}-equivariant, $\varsigma^{hc_{p-1}}$ yields an isomorphism as well. □
Goerss and Hopkins proved in \[3\] that the Lubin-Tate spectra \(E_n\) with
\[
(E_n)_* = W(F_p^n)[[u_1, \ldots, u_{n-1}]][u^{-1}]
\]
possess unique \(E_\infty\) structures for all primes \(p\) and all \(n \geq 1\). The connective cover \(c(E_n)\) has coefficients
\[
(c(E_n))_* = W(F_p^n)[[u_1, \ldots, u_{n-1}]][u^{-1}] \quad \text{with} \quad |u_i| = 0 \quad \text{and} \quad |u| = -2.
\]
Of course \(c(E_n)((u^{-1})^{-1}) \sim E_n\).

The spectra \(BP(n)\) can be built from the Brown-Peterson spectrum \(BP\) by killing all generators of the form \(v_m\) with \(m > n\) in \(BP_* = \mathbb{Z}(p)[v_1, v_2, \ldots]\). Using for instance Angeltveit’s result \[1\] theorem 4.2 one can prove that the \(BP\) spectra are \(A_\infty\) spectra and from \[3\] it is known that this \(S\)-algebra structure can be improved to an \(MU\)-algebra structure. On the other hand, Strickland showed in \[13\] that \(BP(n)\) with \(n \geq 2\) is not a homotopy commutative \(MU\)-ring spectrum for \(p = 2\). We offer \(c(E_n)\) as a replacement for the \(p\)-completion \(BP(n)_p\) of \(BP(n)\).

We also need to recall that in the category of \(MU\)-modules, \(E(n)\) is the Bousfield localization of \(BP(n)\) with respect to \(BP(n)[v_n^{-1}]\), hence by \[7\] it inherits the structure of an \(MU\)-algebra and the natural map \(BP(n) \to E(n)\) is a morphism of \(MU\)-algebras. Furthermore, the Bousfield localization of \(E(n)\) with respect to the \(MU\)-algebra \(K(n)\) is the \(I_n\)-adic completion \(\widehat{E(n)}\), which was shown to be a commutative \(S\)-algebra in \[5\], and the natural map \(\widehat{E(n)} \to E(n)\) is a morphism of commutative \(S\)-algebras, see for example \[6\] example 2.2.6. Thus there is a morphism of ring spectra \(BP(n) \to E_n\) which lifts to a map \(BP(n) \to c(E_n)\).

Proposition 2.1. The spectra \(BP(n)\) and \(BP(n)_p\) are Bousfield equivalent to \(c(E_n)\).

Proof. On coefficients, we obtain a ring homomorphism \((BP(n)_p)_* \to (c(E_n))_*\) which on homotopy is given by
\[
v_k \mapsto \begin{cases} u_1^{-p^k}u_k & \text{for } 1 \leq k \leq n-1, \\ u_1^{-p^n} & \text{for } k = n. \end{cases}
\]
extending the natural inclusion of the \(p\)-adic integers \(\mathbb{Z}_p = W(F_p)\) into \(W(F_p^n)\). This homomorphism is induced by a map of ring spectra.

Recall from \[3\] that \(E(n)\) and \(\widehat{E(n)}\) are Bousfield equivalent as \(S\)-modules, and it follows that \(E_n\) is Bousfield equivalent to these since it is a finite wedge of suspensions of \(\widehat{E(n)}\).

If \(X\) is a \(p\)-local spectrum with torsion free homotopy groups then its \(p\)-completion \(X_p\) is Bousfield equivalent to \(X\), i.e., \(\langle X_p \rangle = \langle X \rangle\). This follows using the cofibre triangles (in which \(M(p)\) is the mod \(p\) Moore spectrum and the circled arrow indicates a map of degree one)

\[
\begin{array}{ccc}
X & \overset{p}{\longrightarrow} & X \\
\downarrow & & \downarrow \\
X \wedge M(p) & & X_p \\
\end{array}
\]

\[
\begin{array}{ccc}
X & \overset{p}{\longrightarrow} & X_p \\
\downarrow & & \downarrow \\
X \wedge M(p) & & X_p \\
\end{array}
\]

together with the fact that the rationalization \(p^{-1}X\) is a retract of \(p^{-1}(X_p)\). In particular, we have \(\langle BP(n)_p \rangle = \langle BP(n) \rangle\) and \(\langle E(n)_p \rangle = \langle E(n) \rangle\).

From \[11\] theorem 2.1, the Bousfield class of \(BP(n)\) is
\[
\langle BP(n) \rangle = \langle E(n) \rangle \vee \langle HF_p \rangle.
\]

There is a cofibre triangle
\[
\Sigma^2 c(E_n) \overset{c}{\longrightarrow} \longrightarrow (c(E_n) \\
\downarrow & & \downarrow \\
HW(F_p^n)[[u_1, \ldots, u_{n-1}]] & & \}
\]
in which \(\text{HW}(\mathbb{F}_p^n)[[u_1, \ldots, u_{n-1}]] \) is the Eilenberg-MacLane spectrum. More generally we can construct a family of Eilenberg-MacLane spectra with \(W(\mathbb{F}_p^n)[[u_1, \ldots, u_k]] \) as coefficients for \(k = 0, \ldots, n - 1 \) which are related by cofibre triangles

\[
\text{HW}(\mathbb{F}_p^n)[[u_1, \ldots, u_k]] \xrightarrow{u_k} \text{HW}(\mathbb{F}_p^n)[[u_1, \ldots, u_{k-1}]] \]

such that for \(k = 0 \) we obtain \(\text{HW}(\mathbb{F}_p^n) \). With the help of these cofibre sequences we can identify \(\langle \text{HW}(\mathbb{F}_p^n)[[u_1, \ldots, u_k]] \rangle \) with \(\langle \text{HW}(\mathbb{F}_p^n)[[u_1, \ldots, u_{k-1}]] \rangle \lor \langle \text{HW}(\mathbb{F}_p^n)[[u_1, \ldots, u_k]][u_k^{-1}] \rangle \).

In general, if \(R \) is a commutative ring, then the ring of finite tailed Laurent series \(R((x)) \) is faithfully flat over \(R \) and therefore we have

\[
\langle \text{HR}((x)) \rangle = \langle \text{HR} \rangle.
\]

Using this auxiliary fact we inductively get that

\[
\langle \text{HW}(\mathbb{F}_p^n)[[u_1, \ldots, u_k]] \rangle = \langle \text{HW}(\mathbb{F}_p^n)[[u_1, \ldots, u_{k-1}]] \rangle.
\]

This reduces the Bousfield class of \(c(E_n) \) to \((E_n) \lor (\text{HW}(\mathbb{F}_p^n)) \). As \(W(\mathbb{F}_p^n) \) is a finitely generated free \(\mathbb{Z}_p \)-module and as \(\langle H\mathbb{Z}_p \rangle = \langle H\mathbb{Q} \rangle \lor \langle H\mathbb{F}_p \rangle \) this leads to

\[
\langle c(E_n) \rangle = \langle E(n) \lor H\mathbb{Q} \lor H\mathbb{F}_p \rangle = \langle E(n) \lor H\mathbb{F}_p \rangle = \langle BP\langle n \rangle \rangle.
\]

References

[1] V. Angeltveit, A\(_{\infty}\)-obstruction theory and the strict associativity of \(E/I \), preprint (2004); http://hopf.math.purdue.edu/cgi-bin/generate?/Angeltveit/Ainfinity

[2] C. Ausoni, Topological Hochschild homology of connective complex \(K \)-theory, Amer. J. Math. 127 (2005) 1261–1313.

[3] A. Baker, \(I_n \)-local Johnson-Wilson spectra and their Hopf algebroids, Documenta Math. 5 (2000) 351–364.

[4] A. Baker & A. Jeanneret, Brave new Hopf algebroids and extensions of \(MU \)-algebras, Homology, Homotopy and Applications 4 (2002) 163–173.

[5] A. Baker & B. Richter, \(\Gamma \)-cohomology of rings of numerical polynomials and \(E_{\infty} \) structures on \(K \)-theory, Comment. Math. Helv. 80 (4) (2005) 691–723.

[6] A. Baker & B. Richter, Realizability of algebraic Galois extensions by strictly commutative ring spectra, to appear in the Transactions of the AMS.

[7] A. Elmendorf, I. Kriz, M. Mandell & J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47 (1997).

[8] P. G. Goerss & M. J. Hopkins, Moduli spaces of commutative ring spectra, in ‘Structured Ring Spectra’, eds. A. Baker & B. Richter, London Math. Lecture Notes, 315, Cambridge University Press (2004) 151–200.

[9] J. P. May, \(E_{\infty} \) ring spaces and \(E_{\infty} \) ring spectra, With contributions by F. Quinn, N. Ray & J. Tornehave, Lecture Notes in Mathematics 577 (1977).

[10] J. E. McClure & R. E. Staffeldt, On the topological Hochschild homology of \(bu \), I, Amer. J. Math. 115 (1993) 1–45.

[11] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984) 351–414.

[12] A. Robinson, Gamma homology, Lie representations and \(E_{\infty} \) multiplications, Invent. Math. 152 (2003) 331–348.

[13] N. Strickland, Products on \(MU \)-modules, Trans. Amer. Math. Soc. 351 (1999) 2569–2606.