Cerebral Venous Sinus Thrombosis in Adults with Prothrombotic Conditions: A Systematic Review and a Case from Our Institution

Jack Komro 1, Dawood Findakly 2

1. Internal Medicine, Kirksville College of Osteopathic Medicine, A. T. Still University, Kirksville, USA 2. Internal Medicine, Creighton University Arizona Health Education Alliance/Valleymere Health Medical Center, Phoenix, USA

Corresponding author: Dawood Findakly, dawood_findakly@yahoo.com

Abstract

Cerebral venous sinus thrombosis (CVST) is a rare condition characterized by elevated intracranial pressure due to impaired cerebral venous drainage, potentially leading to life-threatening consequences. We searched the PubMed electronic database for ‘cerebral venous sinus thrombosis’ and ‘prothrombotic’ cases reported in adults (≥19 years) and conducted a systematic review for the published literature in the English language pooled with a case from our institution. Data were analyzed regarding patient demographics, risk factors, clinical features, treatment modalities, and outcomes when available.

Thirty cases of CVST were identified (29 case reports, of whom two were described in a case series, and the case one from our institution). The patients’ mean age was 39 years (range: 19–65). The male:female ratio was 1.14:1. The majority (75.3%) had at least one preexisting risk factor, with prescription drug use being the most common risk factor (33.3%) shared among all patients. Most patients (83.3%) presented with at least two symptoms. The most common presenting symptoms were headache (70%), gastrointestinal disturbance (50%), and seizures (40%). Focal deficits (36.7%), vision disturbances (30%), and altered consciousness (20%) were the remaining presenting complaints. Twelve cases (40%) commented on papilledema, with 10 (83.3%) having papilledema present. Anticoagulation abnormalities were examined in 26 cases (86.7%), out of which four cases (15.4%) had isolated protein S (PS) deficiency, three cases (11.5%) had isolated antithrombin III (ATIII) deficiency, and one case (3.8%) had isolated protein C (PC) deficiency. The most common initial imaging modality (22 cases, 73.3%), and most commonly used overall (23 cases, 76.7%), was computed tomography (CT). Magnetic resonance imaging (MRI) was the second most common imaging modality for initial use (five cases, 16.7%), diagnosis or confirmation of CVST (eight cases, 26.7%), and overall (21 cases, 70%). Heparin treatment was involved in the treatment of 18 cases (60%), and warfarin treatment was used in 10 cases (33.3%). Heparin-warfarin combination treatment was utilized in eight cases (26.7%). Most patients survived (28 cases, 93.3%), while the two remaining patients died secondary to brain death from the CVST (6.7%).

The findings from this study highlight the clinical characteristics of CVST. Therefore, this study aims to increase awareness of this rare entity. Physicians should maintain a high index of suspicion in order to diagnose patients presenting in the proper clinical context, given this case shares various forms of presentations with other common clinical conditions but requires long-term anticoagulation.

Introduction And Background

Cerebral venous sinus thrombosis (CVST) is a relatively uncommon, but potentially life-threatening condition, that has variable and non-specific forms of clinical presentations [1-2]. Anticoagulants, mainly heparin agents, are used as first-line therapy, with most patients attaining an excellent response [3]. This study’s objective is to review the patient characteristics, risk factors, clinical features, treatment modalities, and outcomes of CVST, a rare and life-threatening condition in patients with prothrombotic states.

Review

Methods

Search Strategy

The present study protocol adheres to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines for reporting systematic review protocols. The PubMed database was searched for adults (≥19 years old) and case reports in English using the terms ‘cerebral sinus venous thrombosis’ and ‘prothrombotic’ as keywords. Reference lists were also examined to identify relevant case reports. All full-text published cases were selected, and the authors independently assessed cases for inclusion.

Data Extraction and Analysis

All studies evaluating CVST with prothrombotic abnormalities were screened, with the selection of only those reports containing data on demographic information, clinical features, prothrombotic laboratory results, and diagnostic imaging. Unrelated case reports and those without prothrombotic lab results were excluded (Figure 1). Data are expressed in descriptive statistics using central tendency and dispersion measures.
Results

A total of 42 case reports of CVST with prothrombotic laboratory results were screened, with 28 publications ultimately included [4-31]. One case series described two cases, both of which were included, yielding 29 cases for this systematic review. With the addition of a case from our institution, a total of 30 case reports were analyzed. The demographics, clinical features, and outcomes of the 30 cases are summarized in Table 1.

Author (Yr)	Age (Yr)	Gender	Medical History	Duration of Symptoms Before Presentation	Presenting Symptoms	Initial Physical Examination Findings	Anticoagulation Abnormality	Diagnostic Imaging	Treatments Provided	Follow-Up Period	Outcome	Complications	Final Diagnosis
Heistinger [4] (1992)	38	F	Multiple episodes of UE phlebitis and DVT post-delivery, appendectomy, tobacco	NR	Seizure, meningismus, cranial nerve deficits, R corneal reflex, facial palsy, R arm loss	Normal AT III, normal PC, decreased PS	Initial imaging: CT; Additional imaging: b/l carotid angiography (confirmed)	Heparin	NR	Alive	None	CVST d/t hereditary PS deficiency	
Musio [5] (1993)	24	M	UC	NR	Hematochezia, weight loss, fulminant NAs, GCTE	Yes	Initial imaging: CT; Additional imaging: MR (confirmed)	IV methylprednisolone & oral sulfasalazine (for acute UC); phenytoin, anti-platelet therapy , acetazolamide; recanalization of thrombosed venous sinus	NR	Alive	None	CVST associated with UC	
Tuite [6] (1993)	24	M	Chronic LBP	NR	R arm focal motor seizures; HAs, neck pain, photophobia, unilateral sensory loss	Decreased AT III, normal PC, normal PS	Initial imaging: CT; Additional imaging: MR (confirmed)	IV mannitol and dexamethasone, IV furosemide	NR	Brain dead, life support terminated	Elevated ICP, ARF	CVST d/t hereditary AT III deficiency	
Vayá [7] (1995)	42	M	Anemia	6 days	Anemia	No neurological deficits	Yes	Initial imaging: CT; Additional imaging: MR (confirmed)	LP, leukocytosis, elevated platelets, superior ophthalmal vein thrombosis	NR	Encephalopathy death	Elevated ECP, ARF	

FIGURE 1: The PRISMA flow diagram for the systematic review detailing the association of CVST with prothrombotic abnormalities

CVST: cerebral venous sinus thrombosis; PRISMA: preferred reporting items for systematic reviews and meta-analyses
Name	Age	Gender	Skin Color	Marital Status	Height	Weight	Blood Pressure	Associated Medical Conditions	Medications	Presenting Symptoms	Initial Imaging	Outcome	Follow-up	Additional Notes
Rufa [15]	2007	Rufa	M	Female	57 / M	None	140 / 90	None	None	None	None	Alive	None	None
Muthukumar [20]	2007	Muthukumar	M	Female	38 / M	None	160 / 90	None	None	None	None	Alive	None	None
Akatsu [12]	1999	Akatsu	M	Female	19 / M	None	160 / 90	None	None	None	None	Alive	None	None
Lefebvre [9]	2001	Lefebvre	M	Female	40 / F	None	160 / 90	None	None	None	None	Alive	None	None
Singhal [9]	1998	Singhal	M	Female	42 / M	None	160 / 90	None	None	None	None	Alive	None	None
Bowen [11]	1998	Bowen	M	Female	65 / F	None	160 / 90	None	None	None	None	Alive	None	None
Atluri [12]	2003	Atluri	M	Female	3 / F	None	160 / 90	None	None	None	None	Alive	None	None
Ricoza [12]	2005	Ricoza	M	Female	3 / F	None	160 / 90	None	None	None	None	Alive	None	None
Tiranay [1]	2000	Tiranay	M	Female	3 / F	None	160 / 90	None	None	None	None	Alive	None	None
Multanar [20]	2004	Multanar	M	Female	3 / F	None	160 / 90	None	None	None	None	Alive	None	None
Ruus [11]	2005	Ruus	M	Female	3 / F	None	160 / 90	None	None	None	None	Alive	None	None
Case	Date	Sex	Age	History	Symptoms	Imaging	Treatment	Outcome						
------	------	-----	-----	---------	----------	---------	-----------	---------						
Opara [17] (2008)	53 / M													
Verma [20] (2012)	28 / F													
Kolacki [19] (2012)	65 / M													
Sharpe [16] (2011)	35 / M													
Nayak, Kumar [21] (2011)	23 / M													
Shiek [21] (2011)	23 / F													
Kadam [21] (2011)	30 / F													
Iwama [21] (2011)	30 / M													

Clinical Details
- **Opara [17] (2008)**: Single ectopic kidney with UVR.
 - Transplantation: 3 years prior.
 - Immunosuppressive therapy: prednisolone, cyclosporine, azathioprine.
 - Transplantation: kidney with VUR.

- **Verma [20] (2012)**: Sildenafil occurred within 24 hours of thrombosis.
 - 14 days prior to kidney transplantation.

- **Kolacki [19] (2012)**: Pregnant, AT III deficiency.
 - 3rd trimester pregnancy.

- **Sharpe [16] (2011)**: NuvaRing from 2002-2006 without complications.
 - Intermittent use.

- **Nayak, Kumar [21] (2011)**: Known cerebrovascular accident, loss of consciousness.
 - Unsteadiness.

- **Shiek [21] (2011)**: Coughing.
 - Decreased AT III and PC.

- **Kadam [21] (2011)**: Acute kidney failure.
 - Chronic kidney disease.

- **Iwama [21] (2011)**: CVST d/t PS induced by NuvaRing.
 - cvt.

Symptoms
- **Opara [17] (2008)**: None.
 - Weakness.

- **Verma [20] (2012)**: None.
 - Nystagmus.

- **Kolacki [19] (2012)**: None.
 - Photosensitivity.

- **Sharpe [16] (2011)**: None.
 - Loss of PS.

- **Nayak, Kumar [21] (2011)**: None.
 - Persistent L hemiparesis.

- **Shiek [21] (2011)**: None.
 - Thrombosis.

- **Kadam [21] (2011)**: None.
 - Persistent L hemiparesis.

- **Iwama [21] (2011)**: None.
 - Thrombosis.

Imaging
- **Opara [17] (2008)**: Initial imaging: CT head.
 - Additional imaging: MRV.

- **Verma [20] (2012)**: Initial imaging: CT head.
 - Additional imaging: MRV.

- **Kolacki [19] (2012)**: Initial imaging: CT head.
 - Additional imaging: MRV.

- **Sharpe [16] (2011)**: Initial imaging: CT head.
 - Additional imaging: MRV.

- **Nayak, Kumar [21] (2011)**: Initial imaging: CT head.
 - Additional imaging: MRV.

- **Shiek [21] (2011)**: Initial imaging: CT head.
 - Additional imaging: MRV.

- **Kadam [21] (2011)**: Initial imaging: CT head.
 - Additional imaging: MRV.

- **Iwama [21] (2011)**: Initial imaging: CT head.
 - Additional imaging: MRV.

Treatment
- **Opara [17] (2008)**: Enoxaparin, dicoumarol.
 - Steroids, decongestive therapy, thalidomide.

- **Verma [20] (2012)**: Enoxaparin, dicoumarol.
 - Steroids, decongestive therapy.

- **Kolacki [19] (2012)**: Enoxaparin, dicoumarol.
 - Steroids, decongestive therapy.

- **Sharpe [16] (2011)**: Enoxaparin, dicoumarol.
 - Steroids, decongestive therapy.

- **Nayak, Kumar [21] (2011)**: Enoxaparin, dicoumarol.
 - Steroids, decongestive therapy.

- **Shiek [21] (2011)**: Enoxaparin, dicoumarol.
 - Steroids, decongestive therapy.

- **Kadam [21] (2011)**: Enoxaparin, dicoumarol.
 - Steroids, decongestive therapy.

- **Iwama [21] (2011)**: Enoxaparin, dicoumarol.
 - Steroids, decongestive therapy.
| Name | Age | Gender | Duration | Symptoms/History | Diagnosis/Imaging | Treatment | Outcome |
|-----------------|-----|--------|----------|-----------------|------------------|-----------|---------|
| **Case 1** | 50 F | Diabetes, obesity | 8 weeks | None | Unremarkable | | Married |
| **Case 2** | 25 F | History of thrombophlebitis | 3 days | None | Unremarkable | | Alive |
| **Case 3** | 70 F | History of stroke | 6 months | None | Unremarkable | | Alive |
| **Case 4** | 45 F | History of stroke | 1 year | None | Unremarkable | | Alive |
| **Case 5** | 65 F | History of stroke | 2 years | None | Unremarkable | | Alive |
| **Case 6** | 55 F | History of stroke | 3 months | None | Unremarkable | | Alive |
| **Case 7** | 60 F | History of stroke | 1 year | None | Unremarkable | | Alive |

Note: *NR* = Not Recorded

Diagnosis:
- Diabetes
- Obesity
- Stroke
- Thrombophlebitis
- Thrombosis

Treatment:
- Anticoagulants
- Antihypertensives
- Antibiotics
- Corticosteroids

Outcome:
- Married
- Alive
- NR

References:
- Varner M, Ganeshan V, Qadir A, et al. (2018). *Cureus*, 10(4): e7963. DOI 10.7759/cureus.7963
- Gleichgerrcht M, Sugie N, et al. (2015). *Cureus*, 7(11): e631. DOI 10.7759/cureus.631
- Varner M, Ganeshan V, Qadir A, et al. (2014). *Cureus*, 6(9): e422. DOI 10.7759/cureus.422
The mean age at presentation was 39 years old (range: 19 - 65), with 24 (80%) being less than 50 years old. There were 16 male (53.3%) and 14 female (46.7%) patients (Figure 2). The majority (73.3%) had at least one preexisting risk factor (Figure 3). Prescription drugs were the most common risk factor (33.3%) shared among all patients. A history of tobacco smoking was reported in four cases (13.3%).

TABLE 1: Summary of the Clinical Characteristics, Risk Factors, Diagnostic, Management, and Outcomes of CVST Case Reports Included in the Systematic Review

Study	Present	ET / M	negative cocci ag	7 days	None	Blurry vision	HTN	Yes	Decreased AT	3.0, normal, PC, normal PS, negative P	G2O105, gamma	Antiphospholipid antibody	Alive	None	Papiolo	Alive	None	Papiolo
Among females, 11 (78.6%) reported having gender-specific risk factors. Six (54.5%) were receiving exogenous estrogen hormone therapy (EEHT), four (36.3%) were pregnant or puerperal patients, and one (9.1%) was receiving norethisterone therapy. Three case reports (10%) involved mechanical precipitants. Other disorders, including congenital heart disease, thyroid disease, Evans syndrome, diabetes, and cirrhosis, were reported in three cases (10%). The least common risk factors were a preexisting hematologic condition (two cases, 6.7%) or inflammatory disease (one case, 3.3%).

Of the 20 cases (66.7%) that reported the duration of symptoms, most (55%) had symptoms between two to seven days at presentation. Four patients (20%) presented earlier with symptoms up to one day, while five patients (25%) presented later with symptoms lasting at least eight days. One patient (5%) had symptoms more than two weeks, not presenting until two months after symptom onset (Table 2).

TABLE 2: The Duration of Symptoms Before the Patients' Presentation

Duration	The fraction in each category (%)
0 - 1 day	4/20 (20.0%)
2 - 7 days	11/20 (55.0%)
8 - 14 days	4/20 (20.0%)
> 2 weeks	1/20 (5.0%)

Most patients (83.3%) presented with at least two symptoms (Figure 4). The most common presenting symptoms were headache (70%), gastrointestinal disturbance (50%), and seizures (40%). Focal deficits (36.7%), vision disturbances (30%), and altered consciousness/confusion/disorientation (20%) were the remaining presenting complaints. Twelve cases (40%) commented on papilledema, with 10 patients (83.3%) having papilledema present.
Anticoagulation abnormalities were examined in 26 cases (86.7%). Four cases were excluded as they did not mention at least one of the following levels: antithrombin III (AT III), protein C (PC), or protein S (PS). AT III, PC, and PS were all normal in 11 cases (42.3%). An abnormality in at least two out of the three anticoagulants was reported in six patients (23.1%). Isolated AT III (three cases, 11.5%), PC (one case, 3.8%), or PS (four cases, 15.4%) deficiency was noted in the remaining cases (Figure 5).

Hyperhomocysteinemia (HHcy) was found among three (21.4%) female patients where it was associated with a G20210A prothrombin gene mutation in the first, low PS in second, and normal AT III, PC, and PS in the third patient. Moreover, among females with HHcy, one was puerperal, the second was using EEHT, and one was puerperal and had a two-year history of EEHT use.

The G20210A prothrombin gene mutation was found among three (9.4%) patients overall, out of which one was a male with low AT III and two were females (one with normal AT III, PC, and PS, and the other with no reported data on AT III, PC, and PS testing).

The most common initial imaging modality (22 cases, 73.3%) and most commonly used overall (23 cases, 76.7%) was computed tomography (CT) scan (Figure 6). Magnetic resonance venogram (MRV) was the most common modality that diagnosed or confirmed CVST (10 cases, 33.3%). Magnetic resonance imaging (MRI) was the second most common imaging modality for initial use (five cases, 16.7%), diagnosis or confirmation of CVST (eight cases, 26.7%), and overall (21 cases, 70%).

FIGURE 4: The presenting symptoms of cerebral venous sinus thrombosis (CVST)
*The percentage of papilledema out of 12 cases with available data

FIGURE 5: The prevalence of different prothrombotic conditions in patients with CVST
AT III: antithrombin III; CVST: cerebral sinus venous thrombosis; PC: protein C; PS: protein S
FIGURE 6: Imaging modalities used when evaluating patients with suspected CVST

Initial (blue): first imaging used to evaluate the patients. Diagnosis/Confirmation (orange): the ultimately used imaging to diagnose or confirm the diagnosis of CVST. Overall (grey): the percentage of cases where imaging used at any point in patients’ evaluation.

CVST: cerebral sinus venous thrombosis

Heparin agents were involved in the treatment of 18 cases (60%), and warfarin agents were used in 10 cases (33.3%). A heparin-warfarin combination treatment was utilized in eight cases (26.7%). Ten cases (33.3%) reported using other anticoagulants either with or without the use of heparin and/or warfarin agents (Figure 7). Surgical intervention occurred in three cases (10%).

FIGURE 7: Treatments used for patients with cerebral sinus venous thrombosis (CVST)

Most patients survived (28 cases, 93.3%), while the two remaining patients died secondary to brain death from the CVST (6.7%). The two patients (100%) that died were administered mannitol and corticosteroids during their treatment course, and neither were given warfarin. One other patient who survived and recovered fully was given mannitol (Table 3).

Outcome	No. of patients/Total (%)
Alive	28/30 (93.3%)
Dead	2/30 (6.7%)

TABLE 3: Survival outcome among cerebral sinus venous thrombosis (CVST) patients

CVST occurs with similar frequency in males and females, and the symptom presentation often leads to a broad differential diagnosis.
Discussion

In this systematic review of CVST cases, several findings are notable. CVST is a rare condition that represents a unique challenge to physicians. It occurs at a similar frequency in both men and women and has a wide variety of symptoms that are clinically indistinguishable from other common clinical conditions, which most often lead to a broad differential diagnosis [1, 32-33].

Most cases had at least one preexisting risk factor indicating multifactorial etiology with multiple mechanisms involved in its pathogenesis. Prescription drug use was the most common risk factor, including those involved in oral contraceptive use. Among females, 10 (71.4%) reported having gender-specific risk factors. Four (40%) were pregnant or puerperal patients and six (60%) were getting EEHT.

Exogenous hormone therapy, pregnancy, and puerperium were the common risk factors for transient prothrombotic states and present in 78.6% of the female patients [34-36]. Tobacco use being the most common risk factor identified. More than half of the cases had symptoms between two to seven days before the presentation [37-38].

Most patients had symptoms for two to seven days at presentation and had at least two symptoms, with headache, gastrointestinal disturbance, and seizures being the most common presenting symptoms [39]. Normal AT III, PC, and PS were found in 42% of cases. Moreover, at least two of the three anticoagulants were deranged in a quarter of cases with available data [40].

The G20210A prothrombin gene mutation is linked with heightened risk for venous thrombosis, including CVST [40]. In this study, the G20210A prothrombin gene mutation was found in 9.4% of patients overall. Raised serum homocysteine levels are reported in the literature to cause a 4-fold higher risk of CVST [41]. In this study, HHcy was found among three (21.4%) female patients with a mean age of 25 years (range: 21 - 30).

CT scan was the initial modality of choice for most cases and the most commonly used overall, which could be due to its easy accessibility, relatively shorter scan period, and lower cost. MRI and MRV are the second and third most commonly used imaging overall, respectively. MRI and MRV were also the two most common imaging modalities used for diagnosis or confirmation of CVST. Therefore, MRV, in combination with MRI, is a non-invasive, specific modality that has proven reliable in diagnosing CVST [42-43].

Survival rate was 95.3%, and all deceased cases were not given warfarin during their treatment course. Papilledema (optic disc swelling due to high intracranial pressure) was present in 83.3% of the cases with symptomatic cases. Survival rate was 93.3%, and all deceased cases were not given warfarin during their treatment course. Papilledema (optic disc swelling due to high intracranial pressure) was present in 83.3% of the cases with symptomatic cases.

Conclusions

CVST may present with a variety of clinical presentations, which makes it a diagnostic dilemma and could lead to misdiagnosis or delayed diagnosis. Appropriate physical examination by primary care providers combined with a high index of suspicion, especially in the right context, is crucial in diagnosis. We advise for increased utilization of the direct ophthalmoscope to evaluate for papilledema in patients with suspected CVST. Further well-designed studies are warranted to help determine etiologies, as well as diagnostic and management strategies, for identifying CVST cases and to establish trends in patient outcomes.

Additional Information

Disclosures

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Guo X, Sun J, Lu X, Guan S: Intracranial thrombosis for cerebral venous sinus thrombosis: single-center experience. Front Neurosci. 2019, 13:1185. 10.3389/fnens.2019.01185
2. Capecci M, Abhutarita M, Martirelli I: Cerebral venous sinus thrombosis. J Thromb Haemost. 2018, 16:1918-31. 10.1111/jth.14120
3. Luo Y, Tian X, Wang X: Diagnosis and treatment of cerebral venous thrombosis: a review. Front Aging Neurosci. 2018, 10:2. 10.3389/fnagi.2018.00002
4. Heistinger M, Rumpf E, Iliaisch H, Türc K, Kyte PA, Lechner K, Puhlinger I: Cerebral sinus thrombosis in a patient with hereditary protein S deficiency: case report and review of the literature. Ann Hematol. 1992, 64:105-109. 10.1007/bf01715355
5. Musini F, Older SA, Jenkins T, Gregorie EM: Case report: cerebral venous thrombosis as a manifestation of acute ulcerative colitis. Am J Med Sci. 1995, 305:28-35. 10.1097/00000441-199501000-00006
6. Tillie P, Ahmad F, Grant I, Stewart JD, Carpenter S, Ethier R: Cerebral vein thrombosis due to hereditary antithrombin III deficiency. Can J Neurol Sci. 1995, 20:138-41. 10.3389/fneur.2019.01185
7. Vasí A, Larrea I, Gómiz F, Mira Y, Aznar J: Cerebral venous sinus thrombosis associated with refractory anaemia with excess of blasts. Nox Rev Fr Hematol. 1995, 37:201-205.
8. Aktsa H, Vayshrub M, Fervenza F, Peterson I, Jacobs M: Cerebral venous thrombosis in nephrotic syndrome. Clin Nephrol. 1997, 48:517-20.
9. Lefèvre P, Liévent MC, Lenaerts L, et al.: Cerebral venous thrombosis and procoagulant factors—a case study. Angiology. 1998, 49:156-71. 10.1177/000331979804904070
10. Singhal AB, Buonanno F, Rordorf G: Cerebral venous sinus thrombosis associated with hepatic cirrhosis. J Neurol Sci. 1999, 171:65-68. 10.1016/s0022-510x(99)00233-6
11. Boudous P, Kourkouni C, Blake G: Superior sagittal sinus thrombosis occurring at high altitude associated with
protein C deficiency. Acta Haematol. 1999, 102:104-106. 10.1109/000004980

12. Aklad G, Dümmer B, Calamari H, Yener GG: A case with cerebral thrombolysis causing tamoxifen treatment. Eur J Neurol. 2001, 8:225-24. 10.1111/j.1468-1331.2001.00877.x

13. Rizzato B, Ferrante F, Pianu A, Diodo M: Recurrent cerebral venous thrombosis in a 24-year-old pauper-former woman. Stroke. 2002, 33:2148-49. 10.1161/01.STR.0000030958.95948.9c

14. Yilmaz S, Oren H, Ince H, Türek M, Yilmaz E, Ada E: Cerebral venous thrombosis in a patient with Evans syndrome: a rare association. Ann Hematol. 2005, 84:124-26. 10.1007/s00277-004-0963-7

15. Muthukumar N: Cerebral venous sinus thrombosis and thrombophlebitis presenting as pseudo-tumour syndrome following mild head injury. J Clin Neurosci. 2004, 11:92-27. 10.1016/j.jocn.2003.03.032

16. Rafat A, Carase, A, Monti L, Dutti MT, Giorgio A, Sicurolli F, Federico A: Recurrent venous thrombosis including cerebral venous sinus thrombosis in a patient taking sildenafil for erectile dysfunction. J Neurol Sci. 2007, 260:275-95. 10.1016/j.jns.2007.03.011

17. Ogata T, Kamouchi M, Rizatun T, et al.: Cerebral venous thrombosis associated with iron deficiency anemia. J Stroke Cerebrovasc Dis. 2008, 17:426-28. 10.1016/j.jstrokecerebrovasdis.2008.04.008

18. Nayak SG, Satith B, Gokulnath: Extensive cerebral venous thrombosis in a renal allograft recipient. Saudi J Kidney Dis Transpl. 2008, 19:90-95.

19. Sharpe CJ, Cowherter MA, Webert RE, Donnyc C: Cerebral venous thrombosis during pregnancy in the setting of type I antithrombin deficiency: case report and literature review. Transfus Med Rev. 2011, 25:61-65. 10.1016/j.tmrv.2010.08.007

20. Nath Kumar TC, Kunchacha R, Kempopewa M, Kulkarni A: Protein S deficiency in a case of superior sagittal vein thrombosis. Indian J Med Sci. 2011, 65:36-39.

21. Skeik N, Stark MM, Tubman DE: Complicated cerebral venous sinus thrombosis with intracranial hemorrhage and mastoiditis. Vasc Endovascular Surg. 2012, 46:585-90. 10.1177/1538441112457473

22. Kolacki C, Rocco V: The combined vaginal contraceptive ring, Nuvaring, and cerebral venous sinus thrombosis: a case report and review of the literature. J Emerg Med. 2012, 42:415-16. 10.1016/j.jemermed.2011.06.011

23. Verma R, Patel TR, Kumar N: Early recanalization of cerebral sinus thrombosis in an unusual case associated with severe protein S deficiency. BMJ Case Rep. 2012, 2012:bcr2012006496. 10.1136/bcr-2012-006496

24. Sahoni CA, Sahoni DC: Hemorrhagic headache in a young adult with type 2 diabetes and migraine: a lesson learnt. Indian J Med Spec. 2014, 5:49-51. 10.7715/ijms.2013.0020

25. Leorenzo Costa B, Shamasna M, Nunez I, Magalhães F, Pelliz AI: Cerebral venous sinus thrombosis: an unexpected complication from spinal surgery. Eur Spine J. 2014, 23:253-56. 10.1007/s00586-013-3147-0

26. Girald G, Atiyeh B, Koenigberg RA: Isolated cortical vein thrombosis associated with prothrombin gene mutation. J Stroke Cerebrovasc Dis. 2014, 23:791-93. 10.1016/j.jstrokecerebrovasdis.2013.06.004

27. Sugie M, Ishimura Y, Ichikawa H: Cerebral venous thrombosis in antithrombin deficiency. Blood. 2002, 100:1060-62. 10.1182/blood-2002-01-0149

28. Gleichgerrcht E, Lim M, Turan TN: Cerebral venous sinus thrombosis due to low-molecular-weight heparin-induced thrombocytopenia. Neurologist. 2017, 23:241-44. 10.1182/blood-2002-01-0149

29. Qadir H, Rashid A, Adil SN: Cerebral venous sinus thrombosis in a patient with undiagnosed factor VII deficiency. J Coll Physicians Surg Pak. 2017, 27:586-88.

30. Ganesan AS, Chang AO: Cerebral venous sinus thrombosis: two case presentations with different clinical manifestations and multifactorial etiology. Open Sci Int. 2017, 2:1-16. 10.23954/osj.v2i4.1182

31. Vamar CR, Marquardt CW, Pickens PV: Antiphospholipid syndrome in patients with cerebral venous thrombosis: a systematic review of the literature. J Int Med. 2019, 23:169-173. 10.23954/osj.v2i4.1182

32. Saponos G, Barinagarrementeria F, Brown BD Jr, et al.: Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011, 42:1138-92. 10.1161/STR.0b013e318210886d

33. Pabinger I, Grafenhofer H, Kyrle PA, Quehenberger P, Mamhalter C, Lichten K, Kaider A: Temporary increase in the risk for recurrence during pregnancy in women with a history of venous thromboembolism. J Cell Physio. 2008, 217:1366-72. 10.1016/j.jcp.2007.09.013

34. Martinelli E, Cassie F, Landi G, Taibi E, Duca F, Mannucci PM: High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N Engl J Med. 1998, 338:1793-97. 10.1056/NEJM199803183832502

35. Babali M, Santial E: Norethisterone enanthate-induced cerebral venous sinus thrombosis (CVST). BMJ Case Rep. 2017, 2017:221418. 10.1136/bcr-2017-221418

36. Shah CT, Rizqallah J, Olowo O, Kalimn A, Sheagren JN: Delay in diagnosis of cerebral venous and sinus thrombosis: successful use of mechanical thrombectomy and thrombolysis. Case Rep Med. 2011, 2011:612568. 10.1155/2011/612568

37. Wasse M, Kojean S, Dui AL, Bobstz G, Sheik: Headache in cerebral venous thrombosis: incidence, pattern and location in 200 consecutive patients. J Headache Pain. 2010, 11:37-39. 10.1186/1119-1098-11-37

38. AI Hashmi K, AI Wahabi K, AI Khubari M, AI Lamki S: Characteristics and outcomes of patients with cerebral venous sinus thrombosis. Oman Med J. 2019, 34:43-57. 10.5001/oajms.2019.79

39. Mekaj Y, Lisaj S, Daci F, et al.: Prevalence and role of antithrombin III, protein C and protein S deficiencies and activated protein C resistance in Kosovo women with recurrent pregnancy loss during the first trimester of pregnancy. J Hum Reprod Sci. 2015, 8:224-29. 10.4103/0974-1280.170407

40. Kim J, Martinez C, Sicurolli F: Cerebral venous thrombosis. Fed Pract. 2017, 34:35-37.

41. Martinelli E, Battaglioni T, Pedotti P, Cattaneo M, Mannucci PM: Hyperhomocysteinemia in cerebral vein thrombosis. Blood. 2003, 102:1563-66. 10.1182/blood-2003-02-0443

42. Chiwetoe P, Piypaitayoun S, Poungvirun N: Cerebral venous thromboembolism: diagnosis dilemma. Neurol Int. 2011, 3:13. 10.4081/nid.2011.013

43. Goyal G, Charan A, Singh R: Clinical presentation, neuroimaging findings, and predictors of brain parenchymal lesions in cerebral vein and dural sinus thrombosis: a retrospective study. Ann Indian Acad Neurol. 2018, 21:205-208. 10.4103/aim.AIAN.470.17