Anxiety and Food Addiction in Men and Women: Results From the Longitudinal LIFE-Adult-Study

Felix S. Hussenoeder1†*, Alexander Pabst1†*, Ines Conrad1, Margrit Löbner1, Christoph Engel2,3, Samira Zeynalova2, Nigar Reyes2, Heide Glaesmer4, Andreas Hinz4, Veronica Witte6, Matthias L. Schroeter6, Kerstin Winkner4, Toralf Kirsten2,7, Markus Löffler2, Arno Villringer5 and Steffi G. Riedel-Heller1

1 Institute of Social Medicine, Occupational Health and Public Health, Leipzig University, Leipzig, Germany, 2 Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany, 3 Leipzig Research Centre for Civilization Diseases, Leipzig University, Leipzig, Germany, 4 Department of Medical Psychology and Medical Sociology, Leipzig University, Leipzig, Germany, 5 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 6 Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany, 7 Department for Medical Data Science, University Hospital Leipzig, Leipzig, Germany

*Correspondence:
Felix S. Hussenoeder
Felix.Hussenoeder@medizin.uni-leipzig.de
Alexander Pabst
Alexander.Pabst@medizin.uni-leipzig.de

†These authors share first authorship

Background: Anxiety is a widespread phenomenon, and it is connected to disordered eating and obesity. We want to analyze the connection between anxiety and food addiction (FA) over two points in time to better understand the directionality of the association. Since there are gender differences with regard to anxiety and eating, we are also interested in differences between men and women.

Methods: We used data from the population-based LIFE-Adult-Study (N = 1,474) at time 1 (baseline) and time 2 (first follow-up) to analyze the connections between anxiety (GAD-7) and FA (YFAS) using a multiple group latent cross-lagged panel model with female and male participants as groups. We controlled for age, marital status, socioeconomic status and social support.

Results: Anxiety (women: \(\beta = 0.50, p \leq 0.001 \); men: \(\beta = 0.59, p \leq 0.001 \)) as well as FA (women: \(\beta = 0.37, p \leq 0.001 \); men: \(\beta = 0.58, p \leq 0.001 \)) exhibited stability over time for both genders. We found a significant association between anxiety at time 1 and FA at time 2 for women (\(\beta = 0.25, p \leq 0.001 \)) but not for men (\(\beta = 0.04, p = 0.10 \)), and significant associations between FA at time 1 and anxiety at time 2 for women (\(\beta = 0.23, p \leq 0.001 \)) as well as men (\(\beta = 0.21, p \leq 0.001 \)).

Conclusion: Food addiction longitudinally affects anxiety, independent of gender and other sociodemographic variables. In addition, anxiety affects subsequent FA as well, but only in women. Interventions that address FA could reduce anxiety in men and women, while interventions that mitigate anxiety could help prevent FA in women.

Keywords: gender, GAD-7, YFAS, anxiety, longitudinal, food addiction
INTRODUCTION

Anxiety and anxiety symptoms are a widespread phenomenon (1, 2). For example, studies report a lifetime prevalence of generalized anxiety disorder (GAD) of around 3.7% (3), and of sub-threshold GAD of around 12.4% (4).

Anxiety is associated with eating-related health outcomes, as research links it to disordered, emotional, uncontrolled, and binge eating behaviors (5–8). In addition, studies show associations with obesity (9, 10) as well as bulimia, binge eating disorder and night eating syndrome that all involve excessive forms of eating behavior and food consumption (8, 11, 12).

While cross-sectional studies suggest an empirical connection between anxiety and eating, the direction of the connection is not clear to date, due to the lack of longitudinal studies in the field. Do increased levels of anxiety contribute to problematic eating behaviors, e.g., as a way of coping, or do problematic forms of eating longitudinally increase anxiety, e.g., via disturbing physiological homeostasis? It may also be that both phenomena are mutually dependent on each other in a longitudinal perspective.

In our study, we want to add to the literature by applying a cross-lagged design with two time points in order to evaluate the direction of the effects of the associations between anxiety and food addiction (FA). We chose FA for our analysis since, compared to eating disorders and obesity, it is more common in the general population and more accessible in terms of prevention measures. A current review shows a clear empirical connection between FA and binge eating disorder, bulimia nervosa, and obesity (13). FA has been validated in multiple international studies (14–16), and it is associated with typical addiction phenomena, i.e., brain reward dysfunction, preoccupation, risky use, impaired control, tolerance/withdrawal, social impairment, chronicity, and relapse (17). FA has already been connected to anxiety in cross-sectional research (18–20).

Since the literature shows that women are more likely than men to exhibit anxiety (21, 22) and FA (23, 24) and that the connection between anxiety and disordered eating could be moderated by gender (25, 26), we will further analyze whether the cross-lagged effects between anxiety and FA differ by gender.

MATERIALS AND METHODS

Study Design and Participants

The Adult Study of the Leipzig Research Centre for Civilization Diseases (LIFE) is a population-based cohort study in the city of Leipzig, Germany. It is a collaboration of several clinical and epidemiological research teams, for which 10,000 participants between 18 and 80 years were recruited through age- and gender-stratified random selection by the local residents’ registry office. The only exclusion criterion was being pregnant. The majority of participants (84.9%) were above 40 years of age. The LIFE-Adult baseline examination was carried out between 2011 and 2014, when every participant provided written informed consent prior to participation. Participants underwent a set of assessments, including interviews, questionnaires, and medical examinations.

Details on study design, methods and assessments can be found elsewhere (27). The follow up examination took place between 2017 and 2021 with a total of 5,665 individuals completing the postal questionnaires.

For our analyses we included those 1,934 participants that were asked for their eating behaviors and took part in the baseline assessment (time 1) as well as in the follow-up (time 2). We excluded participants who were living in retirement/nursing homes, with relatives or in some form of supported living because we assumed that this would affect their eating behaviors (N = 60). In addition, we excluded individuals with diabetes, and those that stated they were treated for a disease, when treatment or disease were likely to have an impact on eating behavior, like ulcer or cancer (N = 361). In addition, another 39 individuals had to be excluded due to missing information on covariates, resulting in a final analytical sample size of N = 1,474. There was no significant age difference between our sample and the other participants from the LIFE study at baseline, but our sample contained slightly less female participants (53.0% vs. 48.2%).

Ethics

The LIFE-Adult Study complies with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. The study was approved by the ethics committee of the University of Leipzig.

Measures

Anxiety

In order to measure anxiety, we used the Generalized Anxiety Disorder Scale-7 (GAD-7), (28, 29) which contains seven items that can be answered on a scale from “0” (=never) to “3” (=almost every day). The items refer to typical anxiety symptoms, like worrying, nervousness, and irritability, and higher scores represent higher levels of anxiety.

Food Addiction

We used the Yale Food Addiction Scale (YFAS); (30, 31) to assess FA. The scale contains 25 items with mixed response categories (dichotomous and Likert-type). The seven subscales of the YFAS represent the criteria for an eating addiction in line with the guidelines for substance dependence according to DSM-IV, like control over consumption and withdrawal. They were computed using the algorithm proposed in Gearhardt et al. (30). The eighth item (clinical significance) was excluded, so that the YFAS measurement resembles a symptom count without diagnosis at both times. Scores range from 0 to 7 with higher scores representing higher levels of FA.

Sociodemographic Variables and Covariates

Participants were asked for information on age, gender, marital status, and medical history in standardized interviews by trained study personnel. They also provided information on education, equivalent household income, and occupational status that was used to compute socioeconomic status (low, medium, and high); (32). We assessed social support via the 5-item ENRICH-D Social Support Scale (33). We decided to include social support as a
covariate based on our own theoretical considerations as well as on the literature (34).

Statistical Analyses

Descriptive statistics of the analytical sample were estimated using Stata version 16 SE (Stata Corp., College Station, TX, United States). In particular, gender-stratified means with SDs and numbers of cases with percentages were reported for quantitative and qualitative measures, respectively.

The bidirectional relationships between FA and anxiety were examined using a latent autoregressive cross-lagged panel model with multiple groups, estimated in Mplus 8.6 (35). The model consists of three parts: the autoregressive paths a_1 and a_2 indicate the intraindividual stability of FA and anxiety over time (Figure 1). The two cross-lagged paths b_1 and b_2 represent the reciprocal effect of FA at time 1 on anxiety at time 2 and vice versa. Finally, the cross-sectional paths c_1 and c_2 model the covariance between FA and anxiety within each wave of assessment. The multiple-group option in Mplus allows estimating and comparing the depicted cross-lagged path model between men and women simultaneously.

Individual items of the GAD-7 and the subscale scores of the YFAS were entered as ordered categorical in Mplus and the constructs were modeled as latent variables. First, both constructs were evaluated separately using confirmatory factor analysis (CFA). With regard to the YFAS, the subscale “attempts” did not significantly predict the latent variable at time 1 ($\beta = 0.197$, $p = 0.056$) and time 2 ($\beta = 0.010$, $p = 0.937$) and was subsequently excluded from the analyses. Second, measurement invariance across time (i.e., time 1 and time 2) and across groups (i.e., men and women) was evaluated by introducing equality constraints on model parameters (e.g., factor loadings, intercepts, and variances) in a series of models with increasingly restrictive hypotheses. Parameters that proved not invariant, as indicated by model fit indices and chi-square difference tests in Mplus, were allowed to vary across time and groups. Error terms of the GAD-7 items and the YFAS subscales were set to be pairwise correlated over time, and factor means of the latent variables were allowed to vary by gender. Next, the partially invariant measurement models for FA and anxiety were combined to estimate the cross-lagged panel model shown in Figure 1. The model was finally adjusted for age, marital status, SES and social support at time 1. Results are presented as fully standardized (STDYX) regression coefficients with 95% confidence intervals for the paths a_1 to c_2 in the final cross-lagged model.

Since items of the GAD-7 and the computed subscale scores of the YFAS were ordered categorical, the WLSMV estimator in Mplus was used for the estimation of effects. Missingness on single indicators of the GAD-7 and the YFAS were handled using Full Information Maximum Likelihood (FIML) estimation, as implemented in Mplus. As indices of goodness-of-fit, the Tucker-Lewis fit index (TLI), the comparative fit index (CFI) and the root mean square error of approximation (RMSEA) were computed, with values below 0.06 for the RMSEA, and values above 0.95 for the TLI and CFI indicating a good model fit (36). All tests were two-tailed with $p < 0.05$ indicating statistical significance.

RESULTS

Our sample included 711 (48.2%) female and 763 (51.8%) male participants with an average age of 57.6 (female) and 58.4 (male) years. Table 1 gives an overview of the general characteristics of our sample.

Table 2 depicts the correlations between key variables of our analysis, and shows that all of them are significantly correlated.

Model Fit

After adjustment for covariates, the final multiple-group cross-lagged panel model with partial measurement invariance yielded an excellent fit of the data ($\chi^2(988) = 1,372.07, p > 0.001; \text{CFI} = 0.971; \text{TLI} = 0.970; \text{RMSEA} = 0.023$). This model with
TABLE 1 | General characteristics of the study population.

	Women (N = 711)	Men (N = 763)	Total (N = 1,474)
Age n.s.	57.6 (14.5)	58.4 (14.9)	58.0 (14.7)
Marital status*			
Married	431 (60.6%)	515 (67.5%)	946 (64.2%)
Single	148 (20.8%)	160 (21.0%)	308 (20.9%)
Divorced	80 (11.3%)	65 (8.5%)	145 (9.8%)
Widowed	52 (7.3%)	23 (3.0%)	75 (5.1%)
Socioeconomic status*			
Low	119 (16.7%)	100 (13.1%)	219 (14.9%)
Medium	436 (61.3%)	443 (58.1%)	879 (59.6%)
High	156 (21.9%)	220 (28.8%)	376 (25.5%)
Social Support	22.5 (3.2)	22.3 (3.4)	22.4 (3.3)
Anxiety (GAD-7; 0 – 21)			
Time 1***	3.5 (3.2)	2.5 (2.9)	3.0 (2.9)
Time 2***	3.7 (3.5)	2.7 (2.8)	3.2 (3.2)
Food addiction (YFAS; 0 – 7)			
Time 1 n.s.	1.4 (0.9)	1.3 (0.7)	1.3 (0.8)
Time 2*	1.4 (0.9)	1.3 (0.7)	1.3 (0.8)

*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; n.s., not significant (referring to differences between female and male participants). Continuous variables are given as mean (standard deviation), and p-values refer to independent t-tests; categorical variables are displayed as numbers (percentages), and p-values refer to Chi 2 tests.

TABLE 2 | Correlations of key variables for women and men.

	1	2	3	4
Women				
1. Anxiety time 1	–			
2. Anxiety time 2	0.52***	–		
3. Food addiction time 1	0.23***	0.27***	–	
4. Food addiction time 2	0.24***	0.20***	0.28***	–
Men				
1. Anxiety time 1	–			
2. Anxiety time 2	0.52***	–		
3. Food addiction time 1	0.16***	0.16***	–	
4. Food addiction time 2	0.09*	0.10*	0.23***	–
Total				
1. Anxiety time 1	–			
2. Anxiety time 2	0.53***	–		
3. Food addiction time 1	0.21***	0.23***	–	
4. Food addiction time 2	0.19***	0.17***	0.26***	–

Pearson’s correlation, two-tailed. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.

gender-specific paths for the autoregressive, cross-sectional and cross-lagged effects fitted the data statistically better than a model with each of the effects constrained across gender (χ²(4) = 17.33, p = 0.002). Standardized coefficients and standard errors of the significant paths obtained from the final model are shown for both genders in **Figure 2**.

Autoregressive Paths

Autoregressive paths (a₁, a₂) represent the stability of a concept over time. Both autoregressive effects for anxiety (women: β = 0.50, p ≤ 0.001; men: β = 0.59, p ≤ 0.001) as well as for FA (women: β = 0.37, p ≤ 0.001; men: β = 0.58, p ≤ 0.001) were statistically significant for both genders.

Cross-Sectional Paths

Cross-sectional paths (c₁, c₂) represent correlations between concepts at either time 1 or time 2. Female participants showed a significant correlation between anxiety and FA at time 1 (r = 0.37, p ≤ 0.001) but no significant correlation at time 2 (r = −0.02, p = 0.78), while male participants exhibited significant correlations at time 1 (r = 0.28, p ≤ 0.001) and time 2 (r = 0.25, p ≤ 0.05).

Cross-Lagged Paths

Cross-lagged paths (b₁, b₂) represent prospective bidirectional associations between one concept and the other over the two points of time. We found an association between anxiety at time 1 and FA at time 2 for women (β = 0.25, p ≤ 0.001) but not for men (β = 0.04, p = 0.69). In addition, there were significant associations between FA at time 1 and anxiety at time 2 for women (β = 0.23, p ≤ 0.001) as well as men (β = 0.21, p ≤ 0.001).

DISCUSSION

Our study addressed the associations between anxiety and FA in a longitudinal design, showing the significant stability of both constructs over time. There was a significant effect of FA at time 1 on anxiety at time 2 for both genders. Vice versa, only women showed a significant effect of anxiety at time 1 on FA at time 2.

The stability of anxiety (37, 38) and FA (39, 40) over time that we have obtained from our data is also reflected in the literature. In addition, the higher levels of anxiety in women at both times of measurement resonate with other international studies (41, 42). With regard to FA, we found no gender difference at time 1 but a significantly yet only slightly higher score for women at time 2. These results are in line with the literature that suggest either no gender effects (43, 44) or higher values for women (24, 45).

We found a cross-sectional association between anxiety and FA for women as well as men at time 1 and for men at time 2, which matches with other studies that suggest associations between FA and a higher prevalence of anxiety disorders in obese patients seeking bariatric surgery (46) and between FA and anxiety in general (19). The results indicate that both concepts are interrelated, and the lack of a significant association for women at time 2 that is not reflected in the correlational analysis (Table 2) can be seen as a consequence of the inclusion of control variables.

We also found evidence for cross-lagged effects. There is a significant effect of anxiety at time 1 on FA at time 2 for women, indicating that anxiety has different implications depending on gender. This gender-specific effect could be explained by rumination, a cognitive process and maladaptive strategy for emotion regulation that involves repetitive thoughts about...
negative experiences and emotions. Rumination is empirically associated with both, anxiety and pathological forms of eating (47–49), and it has been connected to a variety of addictive behaviors, e.g., related to alcohol, work, or social media use (50–52). Furthermore, a current study suggests that targeting rumination could be important for reducing disinhibited eating patterns in women with normal body weight (53). Since women are more likely to ruminate than men (54), when men and women experience the same level of anxiety, women will be much more affected by rumination that then contributes to FA. This interpretation is in line with research that suggests that rumination mediated the connection between gender and food craving, binge eating, and eating pathology (55), that rumination can increase problematic alcohol and substance abuse, especially in women (56), and that women are more likely to exhibit emotional eating as a reaction to negative emotions (5, 57). Rumination has repeatedly been associated with exacerbating psychopathology and physiological stress responses, prolonging negative emotional states, increasing negative emotional reactivity, interfering with problem solving, and acting as a transdiagnostic mental vulnerability (56). In that way, rumination that is associated with anxiety at time 1 could, in addition to maintaining anxiety over time as it is reflected in significant and substantial autocorrelations, set the stage for FA at time 2. On an applied level, our results indicate that interventions that address FA behaviors and food consumption could mitigate anxiety in men and women. Studies that address overeating and binge eating behaviors suggest that cognitive interventions that address internal food-related biases and response inhibition training, mindfulness-based interventions, and increasing physical activity could be promising avenues to address FA (71–73). A current study suggests that the treatment of FA could also benefit weight-related self-stigma and binge eating (74).

Limitations

While this study has several advantages, e.g., the large dataset and a longitudinal design, there are also certain limitations. First, FA was assessed via self-report, therefore we cannot rule out that there is a certain bias. Second, while we included established control variables in our model, there could be other variables that affect both anxiety and FA, e.g., specific personality traits, and future research may benefit from including them.

CONCLUSION

Our results show that FA longitudinally affected anxiety in both men and women, and that anxiety affected subsequent FA only in women. Hence, interventions that address FA could reduce...
anxiety in both genders, while interventions that mitigate anxiety could help prevent FA in women.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following licenses/restrictions: The data that support the findings of this study are available from the corresponding author upon reasonable request. Requests to access these datasets should be directed to FH, Felix.Hussenoeder@medizin.uni-leipzig.de.

ETHICS STATEMENT

The LIFE-Adult-Study complies with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. The study was approved by the Ethics Committee of the University of Leipzig. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

FH, AP, IC, and SR-H designed the study. FH and AP conducted the statistical analysis and literature searches. FH wrote the first draft of the manuscript. MGL, CE, SZ, NR, HG, AH, VV, MS, KW, TK, MKL, and AV contributed to the data and/or expertise. All authors contributed to and have approved the final manuscript.

FUNDING

LIFE was funded by means of the European Union, by the European Regional Development Fund (ERDF) and by funds of the Free State of Saxony within the framework of the excellence initiative (project numbers 713-241202, 14505/2470, and 14575/2470). MGL was funded by the @ktivPLUS study (German Federal Ministry of Education and Research, grant number 01GY2108). We acknowledge support from the German Research Foundation (DFG) and Universität Leipzig within the program of Open Access Publishing.

ACKNOWLEDGMENTS

We thank the research teams and the participants of the LIFE-Adult-Study.

REFERENCES

1. Duffy ME, Twenge JM, Joiner TE. Trends in mood and anxiety symptoms and suicide-related outcomes among U.S. undergraduates, 2007–2018: evidence from two national surveys. *J Adolesc Health*. (2019) 65:590–8. doi: 10.1016/j.jadohealth.2019.04.033

2. Remes O, Brayne C, van der Linde R, Lafortune L. A systematic review of reviews on the prevalence of anxiety disorders in adult populations. *Brain Behav*. (2016) 6:e00497. doi: 10.1002/brb3.497

3. Ruscio AM, Hallion LS, Lim CC, Aguilar-Gaxiola S, Al-Hamzawi A, Alonso J, et al. Cross-sectional comparison of the epidemiology of DSM-5 generalized anxiety disorder across the globe. *JAMA Psychiatry*. (2017) 74:465–75. doi: 10.1001/jamapsychiatry.2017.0056

4. Haller H, Cramer H, Lauche R, Gass F, Dobos GJ. The prevalence and burden of subthreshold generalized anxiety disorder: a systematic review. *BMC Psychiatry*. (2014) 14:128. doi: 10.1186/1711-244X-14-128

5. Hussenoeder FS, Conrad I, Engel C, Zacharias S, Zeynalova S, Glæsmer H, et al. Analyzing the link between anxiety and eating behavior as a potential pathway to eating-related health outcomes. *Sci Rep*. (2021) 11:14717. doi: 10.1038/s41598-021-94279-1

6. Lee KS, Vaillancourt TA. Four-year prospective study of bullying, anxiety, and disordered eating behavior across early adolescence. *Child Psychiatry Hum Dev*. (2019) 50:815–25. doi: 10.1007/s10578-019-00884-7

7. Janjetic MA, Rossi ML, Acquavía C, Denevi J, Marcolini C, Torresani ME. Association between anxiety level, eating behavior, and nutritional status in adult women. *J Am Coll Nutr*. (2020) 39:200–5. doi: 10.1080/07315724.2019.1633970

8. Rosenbaum DL, White KS. The relation of anxiety, depression, and stress to binge eating behavior. *J Health Psychol*. (2015) 20:887–98. doi: 10.1177/1359105315580212

9. Amiri S, Behnezhad S. Obesity and anxiety symptoms: a systematic review and meta-analysis. *Neuropsychiatr*. (2019) 33:72–89. doi: 10.1007/s40211-019-0302-9

10. Sharafi SE, Garmaroudi G, Ghafoori M, Bafghi SA, Ghafoori M, Tabesh MR, et al. Prevalence of anxiety and depression in patients with overweight and obesity. *Obes Med*. (2020) 17:100169. doi: 10.1016/j.obmed.2019.100169

11. Pineda-García G, Ochoa-Ruiz E, Gómez-Peresmitre G, Platas-Acevedo S. Assessment of alcohol consumption and anxiety as predictors of risk of anorexia and bulimia in non-clinicals samples. *Int J Environ Res Public Health*. (2020) 17:6293.

12. Sevincer GM, Ince E, Taymur I, Konuk N. Night eating syndrome frequency in university students: association with impulsivity, depression, and anxiety. *Bull Clin Psychopharmacol*. (2016) 26:238–47. doi: 10.5455/bcp.20160322093750

13. Oliveira J, Colombaroli MS, Cordás TA. Prevalence and correlates of food addiction: systematic review of studies with the YFAS 2.0. *Obes Res Clin Pract.* (2021) 15:191–204. doi: 10.1016/j.orcp.2021.03.014

14. Chen G, Tang Z, Guo G, Liu X, Xiao S. The Chinese version of the Yale food addiction scale: an examination of its validation in a sample of female adolescents. *Eat Behav*. (2015) 18:97–102. doi: 10.1016/j.eatbeh.2015.05.002

15. Granero R, Jiménez-Murcia S, Gearhardt AN, Agüera Z, Aymami N, Gómez-Peña M, et al. Validation of the Spanish version of the Yale food addiction scale 2.0 (YFAS 2.0) and clinical correlates in a sample of eating disorder, gambling disorder, and healthy control participants. *Front Psychiatry*. (2018) 9:208. doi: 10.3389/fpsyt.2018.00208

16. Meule A, Vögde C, Kühler A. Deutsche übersetzung und validierung der yale food addiction scale-German translation and validation of the Yale food addiction scale. *Diagnostica*. (2012) 58:115–26.

17. Gordon EL, Ariel-Donges AH, Bauman V, Merlo LJ. What Is the evidence for “food addiction”? A systematic review. *Nutrients*. (2018) 10:477.

18. da Silva Júnior AE, de Lima Macena M, de Oliveira ADS, Praxedes DR, de Oliveira Maranhão Pureza IR, de Menezes Toledo Florêncio TM, et al. Prevalence of food addiction and its association with anxiety, depression, and adherence to social distancing measures in Brazilian university students during the COVID-19 pandemic: a nationwide study. *Eat Weight Disord*. (2022):1–9.
19. Burrows T, Kay-Lambkin F, Pursey K, Skinner J, Dayas C. Food addiction and associations with mental health symptoms: a systematic review with meta-analysis. *J Hum Nutr Diet.* (2018) 31:54–72. doi: 10.1111/jhn.12532

20. Mutlu HH, Sargun M. Food addiction prevalence and related factors among people with obesity: a hospital-based study. *Ankara Med J.* (2021) 21:22–34. doi: 10.5594/ama.2021.59862

21. Byrd-Bredbenner C, Eck K, Quick V, GAD-7, GAD-2, and GAD-mini: psychometric properties and norms of university students in the United States. *Gen Hosp Psychiatry.* (2021) 69:61–6. doi: 10.1016/j.genhosppsych.2021.01.002

22. Sun J, Liang K, Chi X, Chen S. Psychometric properties of the generalized anxiety disorder scale-7 item (GAD-7) in a large sample of Chinese adolescents. *Healthcare (Basel).* (2021) 9:1709.

23. Yu Z, Indelicato NA, Fuglestad P, Tan M, Bane L, Stice C. Sex differences in disordered eating and food addiction among college students. *Appetite.* (2016) 129:12–8. doi: 10.1016/j.appet.2018.06.028

24. Pursey KM, Stanwell P, Gearhardt AN, Collins CE, Burrows TL. The stability of ‘food addiction’ as assessed by the Yale food addiction scale in a non-clinical population over 18-months. *Appetite.* (2016) 96:533–8. doi: 10.1016/j.appet.2015.10.015

25. Türkümen K, Haravuori H, Ranta K, Kihliala-Heino R, Marttunen M. Psychometric properties of the 7-item generalized anxiety disorder scale (GAD-7) in a large representative sample of Finnish adolescents. *Psychiatry Res.* (2019) 272:30–5. doi: 10.1016/j.psychres.2018.12.004

26. Caselli G, Gemelli A, Querci S, Lugli AM, Canfora F, Annovi C, et al. The effect of treating depression and low perceived social support on clinical outcomes. *Eat Weight Disord.* (2021) 26:112–9. doi: 10.1002/erv.2357

27. Hussenoeder et al. Anxiety and Food Addiction...
57. Rosenqvist E, Kiviruusu O, Konttinen H. The associations of socioeconomic status and financial strain with restrained and emotional eating among 42-year-old women and men. *Appetite*. (2022) 169:105795. doi: 10.1016/j.appet.2021.105795.

58. Guo X, Meng Z, Huang G, Fan J, Zhou W, Ling W, et al. Meta-analysis of the prevalence of anxiety disorders in mainland China from 2000 to 2015. *Sci Rep.* (2016) 6:28033. doi: 10.1038/srep28033.

59. Grenier S, Payette M-C, Gunther B, Askari S, Desjardins FF, Raymond B, et al. Association of age and gender with anxiety disorders in older adults: a systematic review and meta-analysis. *Int J Geriatr Psychiatry*. (2019) 34:397–402. doi: 10.1002/gps.5035.

60. Andrews G, Basu A, Cuijpers P, Craske MG, McEvoy P, English CL, et al. Computer therapy for the anxiety and depression disorders is effective, acceptable and practical health care: an updated meta-analysis. *J Anxiety Disord.* (2018) 55:70–8. doi: 10.1016/j.janxdis.2018.01.001.

61. Carpenter JK, Andrews LA, Witcraft SM, Powers MB, Smits JA, Hofmann SG. Cognitive behavioral therapy for anxiety and related disorders: a meta-analysis of randomized placebo-controlled trials. *Depress Anxiety*. (2018) 35:502–14. doi: 10.1002/da.22728.

62. Nolan LJ, Jenkins SM. Food addiction is associated with irrational beliefs via trait anxiety and emotional eating. *Nutrients*. (2019) 11:1711.

63. Romero-Blanco C, Hernández-Martínez A, Parra-Fernández ML, Onievazfra MD, Prado-Laguna MD, Rodríguez-Almagro J. Food addiction and lifestyle habits among university students. *Nutrients*. (2021) 13:1332.

64. Borisenkov MF, Tserne TA, Bakutova LA. Food addiction in Russian adolescents: associations with age, sex, weight, and depression. *Eur Eat Disord Rev.* (2018) 26:671–6. doi: 10.1002/erv.2644.

65. Okunogbe A, Nugent R, Spencer G, Ralston J, Wilding J. Economic impacts of overweight and obesity: current and future estimates for eight countries. *BMJ Glob Health*. (2021) 6:e006351. doi: 10.1136/bmjgh-2021-006351.

66. Jacques A, Chaaya N, Beecher K, Ali SA, Belmer A, Bartlett S. The impact of sugar consumption on stress driven, emotional and addictive behaviors. *Neurosci Biobehav Rev*. (2019) 103:178–99. doi: 10.1016/j.neubiorev.2019.05.021.

67. Dutheil S, Ota KT, Wohleb ES, Rasmussen K, Duman RS. High-fat diet induced anxiety and anhedonia: impact on brain homeostasis and inflammation. *Neuropsychopharmacology*. (2016) 41:1874–87. doi: 10.1038/npp.2015.357.

68. Sivanathan S, Thavartnarm K, Arif S, Eleogino T, McGowan PO. Chronic high fat feeding increases anxiety-like behaviour and reduces transcript abundance of glucocorticoid signalling genes in the hippocampus of female rats. *Behav Brain Res.* (2015) 286:265–70. doi: 10.1016/j.bbr.2015.02.036.

69. Puccio F, Fuller-Tyszkiewicz M, Youssef G, Mitchell S, Byrne M, Allen N, et al. Longitudinal Bi-directional effects of disordered eating, depression and anxiety. *Eur Eat Disord Rev.* (2017) 25:351–8. doi: 10.1002/erv.2525.

70. Micali N, Solmi F, Horton NJ, Crosby RD, Eddy KT, Calzo JP, et al. Adolescent eating disorders predict psychiatric, high-risk behaviors and weight outcomes in young adulthood. *J Am Acad Child Adolesc Psychiatry*. (2015) 54:652.e–9.e. doi: 10.1016/j.jaac.2015.05.009.

71. Adams RC, Sedgmond J, Maizey L, Chambers CD, Lawrence NS. Food addiction: implications for the diagnosis and treatment of overeating. *Nutrients*. (2019) 11:2086.

72. Godfrey KM, Gallo LC, Afari N. Mindfulness-based interventions for binge eating: a systematic review and meta-analysis. *J Behav Med.* (2015) 38:348–62. doi: 10.1007/s10865-014-9610-5.

73. Blanchet C, Mathieu M-E, St-Laurent A, Fecteau S, St-Amour N, Drapeau V. A systematic review of physical activity interventions in individuals with binge eating disorders. *Curr Obes Rep.* (2018) 7:76–88. doi: 10.1007/s13679-018-0295-x.

74. Ahorsu DK, Lin C-Y, Imani V, Griffiths MD, Su J-A, Latner JD, et al. A prospective study on the link between weight-related self-stigma and binge eating: role of food addiction and psychological distress. *Int J Eat Disorder*. (2020) 53:442–50. doi: 10.1002/eat.23219.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Hussenoeder, Pabst, Conrad, Löbner, Zeynalova, Reyes, Glaesmer, Hinz, Witte, Schroeter, Wirkner, Kirsten, Löffler, Völlringer and Riedel-Heller. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.