Communication

Sabina Semiz*

SIT1 transporter as a potential novel target in treatment of COVID-19

https://doi.org/10.1515/bmc-2021-0017
received October 31, 2021; accepted November 29, 2021.

Abstract: Studies published earlier this year demonstrated the association of the solute carrier SLC6A20 gene with the risk and severity of COVID-19. The SLC6A20 protein product (Sodium-dependent Imino Transporter 1 (SIT1)) is involved in the transport of amino acids, including glycine. Here we summarized the results of recent studies demonstrating the interaction of SIT1 with the ACE2 receptor for SARS-CoV-2 as well as an observed association of SLC6A20 with the risk and traits of Type 2 diabetes (T2D). Recently, it was also proposed that SLC6A20 represents the novel regulator of glycine levels and that glycine has beneficial effects against the proinflammatory cytokine secretion induced by SARS-CoV-2 infection. Ivermectin, as a partial agonist of glycine-gated chloride channels, was also recently suggested to interfere with the COVID-19 cytokine storm by inducing the activation of glycine receptors. Furthermore, plasma glycine levels are found to be decreased in diabetic patients. Thus, further clinical trials are warranted to confirm the potential favorable effects of targeting the SIT1 transporter and glycine levels in the treatment of COVID-19, particularly for the severe case of disease associated with hyperglycemia, inflammation, and T2D. These findings suggest that SIT1 may potentially represent one of the missing pieces in the complex puzzle observed between these two pandemic diseases and the potential novel target for their efficient treatment.

Keywords: SLC6A20; SARS-CoV-2; Diabetes; Glycine; Ivermectin.

Introduction

In search of potential genetic factors associated with the development of the coronavirus disease 2019 (COVID-19), studies published earlier this year identified the solute carrier SLC6A20 as one of the few genes associated with the risk and severity of COVID-19 [1,2]. The protein product of SLC6A20 is Sodium-dependent Imino Transporter 1 (System IMINO transporter (SIT1)), which is involved in the transport of amino acids, including glycine [3] and proline [4]. Interestingly, the SIT1 transporter is reported to co-express with the angiotensin-converting enzyme 2 (ACE2) receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the human small intestine [5,6]. It is also demonstrated that SIT1 heterodimerizes with ACE2, which appears to be required for formation of quaternary structures able to function as binding sites for SARS-CoV-2 spike glycoproteins [7]. Thus, these findings indicate that the interaction of the SIT1 transporter with the ACE2 receptor is required for viral entry and the consequent development of SARS-CoV-2 infection. The modes of SIT1 and ACE2 interaction, particularly in the case of severe COVID-19 associated with hyperglycemia and other traits of Type 2 diabetes (T2D), are still not well understood and the potential mechanisms are discussed in the chapters below.

Association of SIT1 and COVID-19

In addition to the recent reports of the association of the solute carrier SLC6A20 gene with the risk and severity of COVID-19 [1,2], the results of the genome-wide association study (GWAS) demonstrated that the SLC6A20 gene, located in an intronic region of chromosome 3, locus 3p21.31, with the minor rs11385942(A) allele, yielded the strongest association signal across the genome for COVID-19 respiratory failure [8] (Table 1). Furthermore, it was reported that SLC6A20 is predominantly expressed in alveolar type 2 cells and that changes in the SLC6A20 expression in these cells appear to impact the severity of the infection of the lungs with SARS-CoV-2 [9].
Previous studies indicated the functional interaction of SIT1 with key players involved in the SARS-CoV-2 infection, including its ACE2 receptor [6,10]. The SIT1 transporter and ACE2 receptor were reported to co-localize in the human small intestine [5,6]. The authors showed that ACE2 expression promotes SIT1 levels, its localization to plasma membrane and its function in amino acid transport [6]. Furthermore, it was demonstrated that ACE2 protein heterodimerizes with SLC6A20/SIT1 and its close relative SLC6A19, encoding the Broad neutral Amino acid Transporter 1 (B0AT1), which seems to enable these transporters to function as binding sites for SARS-CoV-2 spike glycoproteins [7]. Thus, these findings suggest that in addition to targeting the ACE2 receptor as recently suggested [11], SIT1 may also represent a potential novel target for COVID-19 treatment.

COVID-19 and Type 2 diabetes

The evidence has been accumulating to demonstrate that patients with severe COVID-19 are more likely to have a history of diabetes, hypertension, and/or cardiovascular disease [12-14]. The diabetic patients are exposed to an enhanced risk of serious complications, such as cardiac arrest [15,16], neurological disorders [17,18], and venous thromboembolism [19], as well as to an increased severity of this devastating disease [20]. A chronic low-grade inflammation and a more rapid ageing of the immune system have been suggested as the potential mechanisms associated with the higher susceptibility to serious COVID-19 outcomes in T2D patients [21,22]. Furthermore, it was shown that patients with a more severe progression of diabetes seem to have a worse prognosis of COVID-19 as compared to diabetic patients with a milder stage of disease [23]. In addition, it was reported that uncontrolled hyperglycemia augments the risk of poor prognosis [24] and may be a strong predictor of mortality and adverse outcomes in COVID-19 patients [25-28]. Figure 1 illustrates the potential components/mechanisms having a role in COVID-19 and Type 2 diabetes puzzling interconnection, whose roles and regulation are still not completely understood.

It was recommended that patients with diabetes and COVID-19 should be closely monitored and adequately treated to prevent or minimize the development of the potential deleterious effects associated with the co-presence of these diseases [29]. Interestingly, recent studies showed that metformin treatment of Type 2 diabetic patients was associated with reduced mortality for COVID-19 [30-32]. Different mechanisms are implicated so far among protective roles of metformin, including an improvement of insulin resistance [33], regulation of the blood glucose levels [34], regulation of the renin-angiotensin-aldosterone system (RAAS) [35] and ACE2 receptor [34] that is a part of the RAAS [36], and decreasing levels of circulating cytokines [21,37].

Association of SIT1 and Type 2 Diabetes

Strikingly, Ling et al. demonstrated a highly significant association of the rs13062383 variant of the SLC6A20 gene with Type 2 diabetes in Caucasian and Chinese population [38] (Table 2). SLC6A20 has been reported to regulate the RAAS and water/salt reabsorption [38,39]. RAAS antagonists are known to reduce the risk of diabetes development [40,41] and improve glycemic control in diabetic patients [42], suggesting that the potential targeting of SLC6A20/SIT1 may perhaps produce beneficial effects in T2D patients by affecting the RAAS. Interestingly, the pharmacological targeting of SLC6A19/BOAT1 transporter, which is a close relative of SLC6A20/SIT1 transporter, has been recently suggested as a target in treatment of Type 2 diabetes [43]. Although decreased expression of SLC6A20 mRNA levels is reported in the kidneys of nonhuman primate and mouse models of T2D [44], further studies are pertinent to analyze the expression profile and regulation of SIT1 in diabetic patients.
As mentioned earlier, the SIT1 transporter and ACE2 receptor for SARS-CoV-2 were reported to co-localize and interact with each other in vitro [6]. Decreased kidney expression of ACE2 was also observed in patients with Type 2 diabetes [45,46], which was suggested to contribute to poor prognosis in COVID-19 patients [47]. Furthermore, ACE2 knockout mice were more prone to high-fat diet-induced pancreatic β-cell dysfunction and had impaired glucose tolerance/diabetes [48]. Since it was also shown that the activation of the ACE2/(A1-7)/Mas axis can improve insulin resistance and increase glucose uptake in the liver [49] as well as regulate the insulin/Akt signaling pathway, ACE2 was proposed to be a novel drug target for treating insulin resistance [50]. Furthermore, SIT1 (SLC6A20) and ACE2 may potentially regulate the mechanistic link associated with the severity of COVID-19 in Type 2 diabetic subjects [20] and difficult-to-treat hyperglycemia cases in COVID-19 patients [26,51].

Regulation of glycine levels in COVID-19

In order to further clarify the function of the SIT1 protein, earlier this year Bae et al. developed the SLC6A20a−/− knockout mouse model for SIT1 and reported that these knockout mice had a decreased survival rate [3]. Interestingly, the extracellular levels of brain glycine were strongly increased in the SLC6A20a−/− mice brain and the antisense knockdown of SLC6A20 expression also increased the glycine concentration in the brain [3], suggesting that SLC6A20 is a novel regulator of glycine levels which may play an important role in COVID-19 development (Figure 2).

As mentioned earlier, the SIT1 transporter and ACE2 receptor for SARS-CoV-2 were reported to co-localize and interact with each other in vitro [6]. Decreased kidney expression of ACE2 was also observed in patients with Type 2 diabetes [45,46], which was suggested to contribute to poor prognosis in COVID-19 patients [47]. Furthermore, ACE2 knockout mice were more prone to high-fat diet-induced pancreatic β-cell dysfunction and had impaired glucose tolerance/diabetes [48]. Since it was also shown that the activation of the ACE2/(A1-7)/Mas axis can improve insulin resistance and increase glucose uptake in the liver [49] as well as regulate the insulin/Akt signaling pathway, ACE2 was proposed to be a novel drug target for treating insulin resistance [50]. Furthermore, SIT1 (SLC6A20) and ACE2 may potentially regulate the mechanistic link associated with the severity of COVID-19 in Type 2 diabetic subjects [20] and difficult-to-treat hyperglycemia cases in COVID-19 patients [26,51].

SIT1 association with T2D risk and traits	Type of Study	References
SLC6A20 rs13062383 SNP associated with increased T2D risk	Prospective, population-based study	(38)
Decreased expression of SLC6A20 mRNA levels in T2D	Nonhuman primate model of T2D	(44)
SIT1 regulates glycine levels; (glycine levels are decreased in T2D (79-81)).	In vivo animal (SLC6A20a−/− knockout mouse)	(3)

Table 2: Relevant publications dealing with association of SLC6A20/SIT1 with Type 2 Diabetes (T2D).
It has become a subject of many controversies regarding its potential use for the treatment of COVID-19. Earlier this year it has been proposed that IVM can be used for this treatment [56,57] following the results of an in vitro study, which suggested that IVM may act against SARS-CoV-2 by blocking the nuclear import of viral proteins [57]. Since then, several recent systematic reviews [58-60] and other research reports [61,62] indicated the efficacy of ivermectin in the treatment and prevention of SARS-CoV-2 infection [58,63], while several other recent reports called for additional studies to clarify its use in COVID-19 treatment [64-67]. IVM has also demonstrated antiviral activity against other RNA and DNA viruses [68].

The proposed beneficial effect of IVM in the treatment of COVID-19 would accompany the enormous impact that this drug has already made in the treatment of a variety of parasitic infections that led to the Nobel Prize in 2015 and to its inclusion to the World Health Organization’s Essential Medicines list [60,62,69]. IVM was found to be a highly effective, broad-spectrum, safe, and well tolerated drug [70], which, like other macrolide compounds, exhibited extremely wide diverse actions [71]. The inhibition of protease SARS-CoV-2 3CLProactivity that appears essential for viral replication [72,73] and the competitive binding of IVM with the viral S protein [74], were suggested as additional potential mechanisms that inhibit viral binding to ACE2 receptors and prevent consequent infection. In addition, it has been also reported that IVM has anti-inflammatory properties [75,76], which can interfere with the COVID-19 cytokine storm by inducing the activation of glycine receptors on leukocytes and vascular endothelium [77]. The results of a recent study demonstrated a high sensitivity of neuronal glycine receptors to IVM [78]. Thus, in line with the diverse biological functions of IVM, it would be important to further study its effects on glycine levels and whether regulation of glycine concentration perhaps includes the potential inhibition/silencing of the SIT1/SLC6A20 that may contribute to the treatment of COVID-19.

Figure 2: Schematic representation of a potential role of SLC6A20 protein product SIT1 in regulation of glycine levels as well as in treatment of COVID-19 and Type 2 diabetes (T2D). The interaction of SIT1 with the ACE2 receptor for SARS-CoV-2 (6) as well as with the risk and traits of T2D (38) were proposed; The SIT1 transporter is involved in the transport of amino acids, including glycine (3), which appears to have beneficial effects against the proinflammatory cytokine secretion induced by SARS-CoV-2 infection (53) and in prognosis of T2D (82); Ivermectin, as a partial agonist of glycine-gated chloride channels, was recently suggested to interfere with the COVID-19 cytokine storm by inducing the activation of glycine receptors (GlyR) (77).

Regulation of glycine levels in Type 2 Diabetes

Recent metabolomic and genetic studies confirmed a strong association of T2D with decreased glycine levels in human subjects [79-81]. Furthermore, additional studies reported that plasma glycine concentration were decreased in obese and diabetic patients, and that the improved insulin sensitivity led to increased plasma glycine levels [82]. It appears that hypoglycinemia occurs even during the prediabetic state, however the effects of decreased glycine levels on T2D development are still not completely understood [82]. In addition, insulin sensitizer therapy with the combination of pioglitazone and metformin increased plasma glycine concentration as compared to the placebo treatment [83]. Furthermore, it was shown that IVM treatment enhanced the gene expression of two subunits of the glycine receptor, significantly modulated the mRNA expression of key markers in adipogenesis and fatty acid metabolism, as well as indicated an improved insulin sensitivity in vitro [84].

Conclusions

Recent studies demonstrated the association of SLC6A20 gene with the risk and severity of SARS-Cov-2 infection, where the preexisting hyperglycemia and diabetes diagnosis appear to be a strong predictor of mortality and adverse outcomes in COVID-19 patients. Previous reports also showed an association of SLC6A20 with Type 2 diabetes development. Based on these findings, SLC6A20/ SIT1 may represent a novel target in the treatment of COVID-19, particularly in severe cases associated with T2D traits.
Furthermore, it was also recently proposed that SLC6A20 represents the novel regulator of glycine levels and that glycine has beneficial effects against the proinflammatory cytokine secretion induced by SARS-CoV-2 infection. It would be pertinent to further explore the possible mechanisms involved in the regulation of glycine levels, including the proposed inhibition of the SIT1 transporter and the activation of the glycine receptors by IVM or other potential drug candidates, which would result in increased levels of glycine. Hypoglycemia has been found to be strongly associated with T2D, so it would be also important to analyze the glycine levels in COVID-19 patients, which seem not be studied yet. Therefore, additional clinical investigation is in order to confirm the potential favorable effects of targeting the SIT1 transporter and glycine levels for the efficient treatment of both, COVID-19 and Type 2 diabetes.

Conflict of interest: The author declares no conflict of interest.

Funding: The author received no specific funding for this work.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

1. Kasela S, Daniloski Z, Bollepalli S, Jordan TX, tenOever BR, Sanjana NE, et al. Integrative approach identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the 3p21.31 locus. Genome Biol. 2021 Aug;22(1):242.
2. Yao Y, Ye F, Li K, Xu P, Tan W, Feng Q, et al. Genome and epigenome editing identify CCR9 and SLC6A20 as target genes at the 3p21.31 locus associated with severe COVID-19. Signal Transduct Target Ther. 2021 Feb;6(1):85.
3. Bae M, Roh JD, Kim Y, Kim SS, Han HM, Yang E, et al. SLC6A20 transporter: a novel regulator of brain glycine homeostasis and NMDAR function. EMBO Mol Med. 2021 Feb;13(2):e12632.
4. Takanaga H, Mackenzie B, Suzuki Y, Hediger MA. Identification of mammalian proline transporter SIT1 (SLC6A20) with characteristics of classical system imino. J Biol Chem. 2005 Mar;280(10):8974–84.
5. Perlot T, Penninger JM. ACE2 - from the renin-angiotensin system to gut microbiota and malnutrition. Microbes Infect. 2013 Nov;15(13):866–73.
6. Vuille-dit-Bille RN, Camargo SM, Emmenegger L, Sasse T, Kummer E, Jando J, et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids. 2015 Apr;47(4):693–705.
7. Camargo SM, Vuille-dit-Bille RN, Meier CF, Verrey F. ACE2 and gut amino acid transport. Clin Sci (Lond). 2020 Nov;134(21):2823–33.
8. Ellingham D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, et al.; Severe Covid-19 GWAS Group. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020 Oct;383(16):1522–34.
9. Wang A, Chiou J, Poirion OB, Buchanan J, Valdez MJ, Verheyden JM, et al.; NHLBI LungMap Consortium. Single-cell multimetric profiling of human lungs reveals cell-type-specific and age-dynamic control of SARS-CoV2 host genes. eLife. 2020 Nov;9:9.
10. Camargo SM, Singer D, Makrides V, Huggel K, Pos KM, Wagner CA, et al. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology. 2009 Mar;136(3):872–82.
11. Kaur U, Acharya K, Mondal R, Singh A, Saso L, Chakrabarti S, et al. Should ACE2 be given a chance in COVID-19 therapeutics: A semi-systematic review of strategies enhancing ACE2. Eur J Pharmacol. 2020 Nov;887:173545.
12. Erener S. Diabetes, infection risk and COVID-19. Mol Metab. 2020 Sep;39:101044.
13. Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al.; China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020 May;55(5):2000547.
14. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al.; the Northwell COVID-19 Research Consortium. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020 May;323(20):2052–9.
15. Shao F, Xu S, Ma X, Xu Z, Lu Y, Ng M, et al. In-hospital cardiac arrest outcomes among patients with COVID-19 pneumonia in Wuhan, China. Resuscitation. 2020 Jun;151:18–23.
16. Lim ZJ, Ponnapa Reddy M, Curtis JR, Afroz A, Billah B, Sheth S, et al. A Systematic Review of the Incidence and Outcomes of In-Hospital Cardiac Arrests in Patients With Coronavirus Disease 2019. Crit Care Med. 2021 Jun;49(6):901–11.
17. Whitaker A, Anson M, Harky A. Neurological Manifestations of COVID-19: A systematic review and current update. Acta Neurol Scand. 2020 Jul;142(1):14–22.
18. O’Loughlin L, Alvarez Toledo N, Budrie L, Waechter R, Rayner J. A Systematic Review of Severe Neurological Manifestations in Pediatric Patients with Coexisting SARS-CoV-2 Infection. Neurrol Int. 2021 Aug;13(3):410–27.
19. Tufano A, Rendina D, Abate V, Casoria A, Marra A, Buonanno P, et al. Venous Thromboembolism in COVID-19 Compared to Non-COVID-19 Cohorts: A Systematic Review with Meta-Analysis. J Clin Med. 2021 Oct;10(21):4925.
20. Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021 Jan;17(1):11–30.
21. Bonafé M, Prattichizzo F, Giuliani A, Storci G, Sabbatinielli J, Olivieri F. Inflamm-aging: why older men are the most susceptible to SARS-CoV-2 complicated outcomes. Cytokine Growth Factor Rev. 2020 Jun;53:33–7.
22. Prattichizzo F, Sabbatinielli J, de Candia P, Olivieri F, Ceriello A. Tackling the pillars of ageing to fight COVID-19. Lancet Healthy Longev. 2021 Apr;2(2):e191.
with COVID-19 severity and death: a living systematic review and meta-analysis. Diabetologia. 2021 Jul;64(7):1480–91.

24. Zhu Z, Mao Y, Chen G. Predictive value of HbA1c for in-hospital adverse prognosis in COVID-19: A systematic review and meta-analysis. Prim Care Diab. 2021 Aug;15(6):S1751-9918(21)00130-3. https://doi.org/10.1016/j.pcd.2021.07.013.

25. Yang Y, Cai Z, Zhang J. Hyperglycaemia at admission is a strong predictor of mortality and severe/critical complications in COVID-19 patients: a meta-analysis. Biosci Rep. 2021 Feb;41(2):BSR20203584. https://doi.org/10.1042/BSR20203584.

26. Lazarus G, Audrey J, Wangsaputra VK, Tamara A, Tahapary DL. High admission blood glucose independently predicts poor prognosis in COVID-19 patients: A systematic review and dose-response meta-analysis. Diabetes Res Clin Pract. 2021 Jan;171:108561.

27. Chen J, Wu C, Wang X, Yu J, Sun Z. The Impact of COVID-19 on Blood Glucose: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2020 Oct;11:574541.

28. Prattichizzo F, de Candia P, Nicolucci A, Ceriello A. Elevated HbA1c levels in pre-COVID-19 infection increases the risk of mortality: A systematic review and meta-analysis. Diabetes Metab Res Rev. 2021 May;***:e3476.

29. Ceriello A, Prattichizzo F. Pharmacological management of COVID-19 in type 2 diabetes. J Diabetes Complications. 2021 Jul;35(7):107927.

30. Bramante CT, Ingraham NE, Murray TA, Marmor S, Hovertsen S, Gronski J, et al. Metformin and risk of mortality in patients hospitalised with COVID-19: a retrospective cohort analysis. Lancet Healthy Longev. 2021 Jan;2(1):e34–41.

31. Lalau JD, Al-Salameh A, Hadjadj S, Goronflot T, Wiernsperger N, Pichelin M, et al.; CORONADO investigators. Metformin use is associated with a reduced risk of mortality in patients with diabetes hospitalised for COVID-19. Diabetes Metab. 2021 Sep;47(5):101216.

32. Li Y, Yang X, Yan P, Sun T, Zeng Z, Li S. Metformin in Patients With COVID-19: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2021 Aug;8:704666.

33. Penlioglou T, Papachristou S, Papanas N. COVID-19 and Diabetes Mellitus: May Old anti-diabetic Agents Become the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020 May;126(10):1456–74.

34. Bramante CT, Ingraham NE, Murray TA, Marmor S, Hovertsen S, Gronski J, et al. Observational Study of Metformin and Risk of Mortality in Patients Hospitalised with Covid-19. medRxiv. 2020. https://doi.org/10.1101.2020.06.19.20135095.

35. Sharma S, Ray A, Sadasivam B. Metformin in COVID-19: A possible role beyond diabetes. Diabetes Res Clin Pract. 2020 Jun;164:108183.

36. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020 May;126(10):1456–74.

37. Prattichizzo F, Giuliani A, Mensà E, Sabbatinelli J, De Nigris V, Rippo MR, et al. Pleiotropic effects of metformin: shaping the microbiome to manage type 2 diabetes and postpone ageing. Ageing Res Rev. 2018 Dec;48:87–98.

38. Ling Y, van Herpt TT, van Hoek M, Dehghan A, Hofman A, Uitterlinden AG, et al. A genetic variant in SLC6A20 is associated with Type 2 diabetes in white-European and Chinese populations. Diabet Med. 2014 Nov;31(11):1350–6.

39. Gemmati D, Tisato V. Genetic Hypothesis and Pharmacogenetics Side of Renin-Angiotensin-System in COVID-19. Genes (Basel). 2020 Sep;11(9):E1044.

40. Abuissa H, Jones PG, Marso SP, O’Keefe JH Jr. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol. 2005 Sep;46(5):821–6.

41. Niklason A, Hedner T, Niskanen L, Lanke J; Captopril Prevention Project Study Group. Development of diabetes is retarded by ACE inhibition in hypertensive patients—a subanalysis of the Captopril Prevention Project (CAPPP). J Hypertens. 2004 Mar;22(3):645–52.

42. Yusuf S, Gerstein H, Hoogwerf B, Pogue J, Bosch J, Wolffenbuttel BH, et al.; HOPE Study Investigators. Ramipril and the development of diabetes. JAMA. 2001 Oct;286(15):1882–5.

43. Cheng Q, Shah N, Bröer A, Fairweather S, Jiang Y, Schmoll D, et al. Identification of novel inhibitors of the amino acid transporter B3 AT1 (SLC6A19), a potential target to induce protein restriction and to treat type 2 diabetes. Br J Pharmacol. 2017 Mar;174(6):468–82.

44. Patterson AD, Bonzo JA, Li F, Krausz KW, Eichler GS, Aslam S, et al. Metabolomics reveals attenuation of the SLC6A20 kidney transporter in nonhuman primate and mouse models of type 2 diabetes mellitus. J Biol Chem. 2011 Jun;286(23):19511–22.

45. Reich HN, Oudit GY, Penninger JM, Scholey JW, Herzenberg AM. Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease. Kidney Int. 2008 Dec;74(12):1610–6.

46. Mizuiri S, Hemmi H, Arita M, Ohashi Y, Tanaka Y, Miyagi M, et al. Expression of ACE and ACE2 in individuals with diabetic kidney disease and healthy controls. Am J Kidney Dis. 2008 Apr;51(4):613–23.

47. Pal R, Bhadada SK. COVID-19 and diabetes mellitus: an unholy interaction of two pandemics. Diabetes Metab Syndr. 2020 Jul-Aug;14(4):513–7.

48. Lu CL, Wang Y, Yuan L, Li Y, Li XY. The angiotensin-converting enzyme 2/angiotensin (1-7)/Mas axis protects the function of pancreatic β cells by improving the function of islet microvascular endothelial cells. Int J Mol Med. 2014 Nov;34(5):1293–300.

49. Cao X, Yang FY, Xin Z, Xie RR, Yang JK. The ACE2/Ang-(1-7)/Mas axis can inhibit hepatic insulin resistance. Mol Cell Endocrinol. 2014 Aug;393(1-2):30–8.

50. Zhong JC, Yu XY, Lin QX, Li XH, Huang ZX, Xiao DZ, et al. Enhanced angiotensin converting enzyme 2 regulates the insulin/Akt signalling pathway by blockade of macrophage migration inhibitory factor expression. Br J Pharmacol. 2008 Jan;153(1):66–74.

51. Illias I, Zabulien L. Hyperglycemia and the novel Covid-19 infection: possible pathophysiologic mechanisms. Med Hypotheses. 2020 Jun;139:109699.

52. Singer D, Camargo SM, Ramadan T, Schäfer M, Mariotta L, Wiesner A, et al. Defective intestinal amino acid absorption in COVID-19 patients: possible pathophysiologic mechanisms. Med. 2020 Sep;303(6):G686–95.

53. Li CY. Can Glycine Mitigate COVID-19 Associated Tissue Damage and Cytokine Storm? Radiat Res. 2020 Sep;194(3):199–201.
54. Shan Q, Haddrill JL, Lynch JW. Ivermectin, an unconventional agonist of the glycine receptor chloride channel. J Biol Chem. 2001 Apr;276(16):12556–64.

55. Lynagh T, Webb TI, Dixon CL, Cromer BA, Lynch JW. Molecular determinants of ivermectin sensitivity at the glycine receptor chloride channel. J Biol Chem. 2011 Dec;286(51):43913–24.

56. Chosidow O, Bernigaud C, Guillemtree N, Giraudneau B, Lespine A, Changeux JP, et al. Ivermectin as a potential treatment for COVID-19? PLoS Negl Trop Dis. 2021 Jun;15(6):e0009446.

57. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020 Jun;178:104787.

58. Bryant A, Lawrie TA, Dowswell T, Fordham EJ, Mitchell S, Hill SR, et al. Ivermectin for Prevention and Treatment of COVID-19 Infection: A Systematic Review, Meta-analysis, and Trial Sequential Analysis to Inform Clinical Guidelines. Am J Ther. 2021 Jun;28(4):e434–60.

59. Analysis C. Ivermectin: real-time meta analysis of 64 studies. 2021.

60. Kory P, Meduri GU, Varon J, Iglesias J, Marik PE. Review of the Analysis C. Ivermectin for COVID-19: real-time meta analysis of 64 studies. Am J Ther. 2021 Apr;28(3):e299–318.

61. Santin AD, Scheim DE, McCullough PA, Yagisawa M, Borody TJ. Ivermectin: a multifaceted drug of Nobel prize-honoured distinction with indicated efficacy against a new global scourge, COVID-19. New Microbes New Infect. 2021 Aug;43:100924.

62. Yagisawa M, Fajardo, Omura S. Global trends in clinical studies of ivermectin in COVID-19. Japanese J Antib. 2021;74(2).

63. Cobos-Campos R, Apilanzing A, Parraza N, Cordero J, García S, Orruño E. Potential use of ivermectin for the treatment and prophylaxis of SARS-CoV-2 infection. Curr Res Transl Med. 2021 Oct;69(4):103309.

64. Cruciani M, Pati I, Masiello F, Malena M, Puppella S, De Angelis V. Ivermectin for Prophylaxis and Treatment of COVID-19: A Systematic Review and Meta-Analysis. Diagnostics (Basel). 2021 Sep;11(9):1645.

65. Deng J, Zhou F, Ali S, Heybati K, Hou W, Huang E, et al. Efficacy and safety of ivermectin for the treatment of COVID-19: A systematic review and meta-analysis. QJM. 2021 Sep;114(9):247. https://doi.org/10.1093/qjmed/hcab247.

66. Hagiya H, Otsuka F. Ivermectin for Coronavirus Disease 2019: Yet to Be Well Evaluated Before Clinical Use. Clin Ther. 2021 Sep;43(9):1622–3.

67. Popp M, Stegemann M, Metzendorf ME, Gould S, Kranke P, Meyerbohm P, et al. Ivermectin for preventing and treating COVID-19. Cochrane Database Syst Rev. 2021 Jul;7:CD015017.

68. Heidary F, Gharebaghi R. Ivermectin: a systematic review from their metabolites. Metabolism. 2015 Jun;64(6):720–8.

69. Qi W, Clark JM, Suvarov A, Park Y. Ivermectin decreases triglyceride accumulation by inhibiting adipogenesis of 3T3-L1 preadipocytes. Food Chem Toxicol. 2019 Sep;131:110576.

70. Sachdeva S, Desai R, Gupta A, Jain A, Aggarwal A. Admission Hyperglycemia in Non-diabetics Predicts Mortality and Disease Severity in COVID-19: a Pooled Analysis and Meta-summary of Literature. SN Compr Clin Med. 2020 Oct;2(11):1–6.

71. Fernández-Fernández C, Donapetry-García C, Domínguez-Montero A. Insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study. J Clin Endocrinol Metab. 2015 Mar;100(3):E463–8.

72. Adeva-Andany M, Souto-Adeva G, Ameneiros-Rodríguez E, Fernández-Fernández C, Donapetry-García C, Domínguez-Montero A. Insulin resistance and glycemia metabolism in humans. Amino Acids. 2018 Jan;50(1):11–27.

73. Irving BA, Carter RE, Soop M, Weymiller A, Syed H, Karakides H, et al. Effect of insulin sensitizer therapy on amino acids and their metabolites. Metabolism. 2015 Jun;64(6):720–8.

74. Qi W, Clark JM, Suvarov A, Park Y. Ivermectin decreases triglyceride accumulation by inhibiting adipogenesis of 3T3-L1 preadipocytes. Food Chem Toxicol. 2019 Sep;131:110576.

75. Sachdeva S, Desai R, Gupta A, Jain A, Aggarwal A. Admission Hyperglycemia in Non-diabetics Predicts Mortality and Disease Severity in COVID-19: a Pooled Analysis and Meta-summary of Literature. SN Compr Clin Med. 2020 Oct;2(11):1–6.

76. Ílasis I, Diamantopoulos A, Pratikaki M, Botoula E, Jahaj E, Athanasiou N, et al. Glycemia, Beta-Cell Function and Sensitivity to Insulin in Mildly to Critically Ill Covid-19 Patients. Medicina (Kaunas). 2021 Jan;57(1):68.

77. Jafar N, Edriss H, Nugent K. The Effect of Short-Term Hyperglycemia on the Innate Immune System. Am J Med Sci. 2016 Feb;351(2):201–11.

78. Shao S, Yang Q, Pan R, Yu X, Chen Y. Interaction of Severe Acute Respiratory Syndrome Coronavirus 2 and Diabetes. Front Endocrinol (Lausanne). 2021 Oct;12:731974.

79. Teuwen LA, Gelhof V, Pasut A, Carmeliët P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020 Jul;20(7):389–91.
90. Burgos-Morón E, Abad-Jiménez Z, Marañón AM, Iannantuoni F, Escribano-López I, López-Domènech S, et al. Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J Clin Med. 2019 Sep;8(9):E1385.

91. Lumpuy-Castillo J, Lorenzo-Almorós A, Pello-Lázaro AM, Sánchez-Ferrer C, Egido J, Tuñón J, et al. Cardiovascular Damage in COVID-19: Therapeutic Approaches Targeting the Renin-Angiotensin-Aldosterone System. Int J Mol Sci. 2020 Sep;21(18):E6471.

92. Bălătu M, Vintilă V, Vintilă M. Renin-Angiotensin-Aldosterone system inhibition in prevention of diabetes mellitus. Rom J Intern Med. 2004;42(2):277–88.