Differential distributions of *Synechococcus* subgroups across the California current system

Ryan W. Paerl1*, Kenneth S. Johnson2, Rory M. Welsh2, Alexandra Z. Worden2, Francisco P. Chavez2 and Jonathan P. Zehr1

1 Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
2 Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA

D Correspondence: Ryan W. Paerl, Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street EMS D402, Santa Cruz, CA 95064, USA. e-mail: rpaerl@ucsc.edu

Synechococcus is an abundant marine cyanobacterial genus composed of different populations that vary physiologically. *Synechococcus narB* gene sequences (encoding for nitrate reductase in cyanobacteria) obtained previously from isolates and the environment (e.g., North Pacific Gyre Station ALOHA, Hawaii or Monterey Bay, CA, USA) were used to develop quantitative PCR (qPCR) assays. These qPCR assays were used to quantify populations from specific *narB* phylogenetic clades across the California Current System (CCS), a region composed of dynamic zones between a coastal-upwelling zone and the oligotrophic Pacific Ocean. Targeted populations (narB subgroups) had different biogeographic patterns across the CCS, which appear to be driven by environmental conditions. Subgroups C_C1, D_C1, and D_C2 were abundant in coastal-upwelling to coastal-transition zone waters with relatively high to intermediate ammonium, nitrate, and chl. a concentrations. Subgroups A_C1 and F_C1 were most abundant in coastal-transition zone waters with intermediate nutrient concentrations. E_O1 and G_O1 were most abundant at different depths of oligotrophic open-ocean waters (either in the upper mixed layer or just below). E_O1, A_C1, and F_C1 distributions differed from other narB subgroups and likely possess unique ecologies enabling them to be most abundant in waters between coastal and open-ocean waters. Different CCS zones possessed distinct *Synechococcus* communities. Core California current water possessed low numbers of narB subgroups relative to coastal *Synechococcus* cells, and coastal-transition waters contained high abundances of *Synechococcus* cells and total number of narB subgroups. The presented biogeographic data provides insight on the distributions and ecologies of *Synechococcus* present in an eastern boundary current system.

Keywords: *Synechococcus*, picocyanobacteria, biogeography, CCS, eastern-Pacific, qPCR, narB

INTRODUCTION

The picocyanobacterial (uncellular cyanobacteria <2 μm in diameter) genus *Synechococcus* is considered to be cosmopolitan in the ocean, occurring at concentrations ranging from ~10^2 to 10^6 cells ml^-1 in open-ocean and coastal waters (Waterbury et al., 1979, 1986; Partensky et al., 1999). Multiple lineages of *Synechococcus* are present in the ocean (Herdman et al., 2001; Rocap et al., 2002; Dufresne et al., 2008) and isolates from these lineages vary physically in regards to their pigmentation, motility, responses to light, and ability to assimilate nitrogen (N) forms (Waterbury et al., 1985; Palenik, 2001; Moore et al., 2002; Fuller et al., 2003; Ahlgren and Rocap, 2006; Six et al., 2007).

Nitrate is one N form that can be assimilated by many, but not all, *Synechococcus* isolates (Moore et al., 2002; Fuller et al., 2003; Scanlan et al., 2009). Nitrate is important in the ocean because it fuels a significant amount of “new” production, particularly in upwelling influenced environments (Dugdale and Goering, 1967). The narB gene, which encodes for a cyanobacterial assimilatory nitrate reductase enzyme (Rubio et al., 1996), has been used to selectively study *Synechococcus* potentially capable of nitrate assimilation (Ahlgren and Rocap, 2006; Jenkins et al., 2006; Paerl et al., 2008). Some *Synechococcus* strains lack the narB gene (e.g., RS9917, Dufresne et al., 2008), therefore examining narB sequence diversity is complementary to the use of more common phylogenetic markers used for studying complete *Synechococcus* diversity (e.g., the 16S rRNA gene, 16S-23S ITS region, rpoC gene; Palenik, 1994; Rocap et al., 2002; Fuller et al., 2003). This approach of studying the narB gene can provide information on the diversity and gene expression of nitrate-assimilating *Synechococcus* populations.

The spatial distribution of different *Synechococcus* clades has not been studied across the transition zones of an upwelling-influenced, eastern-boundary current system such as the California Current System (CCS). Recently, abundances of 16S rRNA-defined *Synechococcus* clades have been tracked on a northwest Arabian Sea transect (Fuller et al., 2006) and on large-scale open-ocean transects (Zwirglmaier et al., 2007, 2008). In this study, we targeted populations (called narB subgroups) belonging to different narB clades that were initially found in either coastal or open-ocean habitats (Jenkins et al., 2006; Paerl et al., 2008). Subgroup abundances were tracked across distinct water masses of the CCS to further investigate their biogeography and how distributions are related to the dynamics of coastal systems. The CCS was an ideal system for examining *Synechococcus* biogeography because it possesses several chemically and biologically distinct regions.
(Chavez et al., 1991; Collins et al., 2003), all of which are anticipated to harbor *Synechococcus* populations (Collier and Palenik, 2003; Worden et al., 2004; Tai and Palenik, 2009). Multiple *narB* subgroup abundance profiles were obtained using newly developed *narB* quantitative PCR (qPCR) assays and applying them to depth profile samples from different regions of the CCS.

MATERIALS AND METHODS

SAMPLE COLLECTION

Seawater samples were collected from depth using a SeaBird 12 PVC Niskin bottle conductivity–temperature–depth (CTD) rosette while onboard the R/V Western Flyer (October 1–10, 2007; cruise CN207). CTD profiles were conducted at six stations on CalCOFI line 67 (Lynn et al., 1982) and six cyclonic eddy stations (Fig 1). Core oceanographic CTD samplings (for nutrients, chl. a) were performed with greater frequency than nucleic acid filtrations. Light measurements were recorded directly from the CTD during rosette deployments.

CORE OCEANOGRAPHIC MEASUREMENTS

Seawater samples collected for nitrate, nitrite, and phosphate analysis were frozen and stored at −20°C onboard immediately after collection from the CTD rosette. Nutrient concentrations in these samples were analyzed in the laboratory by automated chemical analysis using standard colorimetric methods (Sakamoto et al., 1990). Ammonium was determined onboard as described by Plant et al. (2003). Chl. a and phaeopigments were determined fluorometrically using a Turner Designs Model 10-005 R fluorometer that was calibrated with a commercial chl. a standard (Sigma, St. Louis, MO, USA). Samples for determination of pigments were filtered onto 25 mm GF/F glass fiber filters (Whatman, Piscataway, NJ, USA) and extracted in 90% (v/v) acetone in a −20°C freezer for between 24 and 30 h (Venrick and Hayward, 1984). Other than the modification of the extraction procedure, the method used is the conventional fluorometric procedure of Holm-Hansen et al. (1965) and Lorenzen (1966).

DNA COLLECTION AND EXTRACTION

Environmental DNA was obtained using the collection and extraction methods described by Paerl et al. (2008). Briefly, seawater was collected from the CTD rosette and emptied into polycarbonate bottles. Collected seawater was filtered using a peristaltic pump with in-line 25 mm, 10 and 0.22 μm pore size filters. Filters were stored onboard in liquid nitrogen immediately after filtration. DNA was extracted from cells collected upon filters using a modified DNeasy Plant Kit (Qiagen, Valencia, CA, USA) procedure as detailed by Paerl et al. (2008).

PHYLOGENETIC ANALYSIS AND *narB* qPCR PRIMER PROBE DESIGN

Prior to designing *narB* qPCR primer probe sets, *narB* gene sequences from *Synechococcus* cultures and uncultivated environmental populations were compiled into a database and aligned using the ARB software package (Ludwig et al., 2004) as described by Paerl et al. (2008). Sequences were exported from ARB and phylogenetic trees were constructed using the MEGA3 program (Kumar et al., 2004). Seven different qPCR primer-probe sets (with dual-labeled oligonucleotide probes) were designed using Primer Express 3.0 software (Applied Biosystems, Carlsbad, CA, USA) and sequences from different *Synechococcus* narB gene clades (Table 1; Fig 2). Target *narB* sequences for qPCR assays were considered to be *narB* sequences with less than three mismatches to the qPCR assay oligonucleotides (three total mismatches across primers and probe; listed in Table A1 in Appendix). Three mismatches were determined to be the appropriate cutoff based on previous qPCR amplification efficiency tests that showed three total mismatches between template and qPCR oligonucleotides results in approximately an order of magnitude underestimation of the template concentration (Short and Zehr, 2005). Two mismatches between template and qPCR oligonucleotides have no effect on the quantification of target concentrations (K. Turk and J. Zehr, unpublished). Names for each *narB* qPCR assay corresponds to a targeted *narB* clade (Paerl et al., 2008; Fig 2). The C (coastal) or O (open-ocean) designation in the assay name indicates whether targeted sequences for the assay include those originally obtained from coastal or open-ocean sites.

Figure 1 A map of nucleic acid sampling stations on cruise CN207, which follow CalCOFI line 67. The coastal-upwelling zone station H3 is marked by an X, coastal-transition zone stations 67–70 and 67–85 are marked with solid and hollow circles, core California Current (CC) station 67–105 is marked by a solid square, CC transition station 67–135 is marked with a solid diamond and oligotrophic open-ocean station 67–155 is marked with a hollow square. Upward and downward triangles and hexagons mark individual cyclonic eddy stations. The map was generated using OMC (http://www.aquarius.ifm-geomar.de).

narB qPCR ASSAYS

Quantitative PCR reactions were performed using the plasmid standard curve approach described by Short and Zehr (2005) with modifications. Plasmid standards were synthesized by ligating a specific *narB* PCR product into a pGEM vector (Promega; Madison, WI, USA). The vector plus insert was used to transform JM109 (*E. coli*) competent cells following the protocol of the manufacturer (Promega). JM109 cells possessing a pGEM vector plus insert were screened from LB agar plates containing X-GAL, carbenicillin, and...
IPTG. White colonies were selected from plates and grown overnight in liquid SOC media plus carbenicillin at 37°C with shaking at 320 rpm. Purified plasmid was recovered from transformed cells using the QiAprep Spin Miniprep Kit (Qiagen).

In vitro primer probe cross-reactivity tests were conducted in duplicate using a dilution series (10⁰–10⁸ or 10⁹) using the QIAprep Spin Miniprep Kit (Qiagen).

In this study we assumed abundance estimates from the *narB* gene copies ml^{−1} equate to cells ml^{−1} since all complete cyanobacterial genomes sequenced to-date possess single copies of the *narB* gene. This assumption could lead to overestimation of *narB* subgroups if targeted *narB* genes are also on multiple genomes, plasmids, and/or viral genomes within a single *Synechococcus* cell.

FLOW CYTOMETRY BASED SYNECHOCCUS COUNTS

Flow cytometry (FCM) samples were collected and fixed with glutaraldehyde (0.25%, final concentration) in parallel with collected nucleic acid samples at stations 67–70, 67–85, 67–105, 67–155, EDDY-2, EDDY-3, and EDDY-4. Additional FCM samples were collected from C1 (MBARI mooring), 67–65, 67–95, 67–155, and 67–115 (data not shown). Samples were analyzed on a Becton Dickinson (Franklin Lakes, NJ, USA) InFlux flow cytometer (formerly Cytopeia) equipped with a 488-nm laser (200 mW output).
A phylogenetic tree of aligned \textit{narB} sequences from \textit{Synechococcus} isolates and environmental samples. The tree was constructed using a neighbor-joining, Jukes-Cantor corrected method in MEGA3 (Kumar et al., 2004). Bootstrap values were obtained from the generation of 1000 replicate trees initialized with a random seed. Bootstrap values <50 are not shown. Next to collapsed branches are abbreviated sequence names (unique to the sampling site, e.g., ATL, N. Atlantic) and the number of these sequences in branch. \textit{narB} cluster names are from Paerl et al. (2008) and are next to bracketed regions of the tree. \textit{Synechococcus} isolates that have been classified into a major \textit{Synechococcus} clade (e.g., based on the 16S rRNA gene, ITS, \textit{rpoC}) are marked with their respective clade numeral. GenBank accession numbers for sequences within \textit{narB} clusters have been omitted for brevity, but are listed in Paerl et al. (2008). GenBank ID's for the \textit{narB} sequences of \textit{Synechococcus} isolates are included in Table A2 in Appendix. \textit{narB} qPCR assay names are in bold text next to identifier symbols, and corresponding symbols are next to targeted clusters of the \textit{narB} tree.
Forward angle light scatter (FALS), right angle light scatter (RALS), orange fluorescence from phycoerythrin (527 ± 27 nm), and red fluorescence from chl. a (692 ± 40 nm) were measured after 488 nm laser excitation. Yellow Green fluorescent beads (0.75 μm diameter) were added to samples prior to analysis for later signal normalization. Samples were delivered at ~25 μl min⁻¹ for 2 min prior to data collection, to ensure equilibration of the sample line. The sample was then stopped, weighed, restarted along with data acquisition, and weighed again at the end of the run to precisely determine the volume run. Data acquisition was triggered on FALS. Data were analyzed using WinList (Verity Software House; Topsham, ME, USA). *Synechococcus* were identified and enumerated on the basis of light scatter and fluorescence signals as described previously (Olson et al., 1990), with orange-fluorescence being a defining characteristic of phycoerythrin containing *Synechococcus*. Small ‘green’ *Synechococcus*-like cells were not used for comparisons with qPCR data in order to avoid including counts that potentially represented picoeukaryotes.

CORRELATION AND MULTI-DIMENSIONAL SCALING ANALYSIS

All CN207 data was log (1 + x) transformed before formation of correlation matrices and multi-dimensional scaling (MDS) plots. Spearman correlation matrices and MDS plots were generated in XLSTAT (Addinsoft; New York, NY, USA). Spearman matrices were used because the majority of measured variables failed multiple normality tests. An absolute MDS model was run in XLSTAT using a Spearman proximity similarity matrix, and the MDS model utilized a random initial configuration, a 2–4 dimension evaluation and 500 cumulative iterations.

RESULTS

qPCR CROSS-REACTIVITY TESTS

Quantitative PCR specificity tests with non-target standards (listed in Table 1) yielded either no amplification signal or an amplification signal at a Cₚ number (the cycle in which amplification of template crosses the exponential amplification threshold) larger than the Cₚ number obtained from amplification of a target standard (Figure 3). Non-target standards yielded equivalent Cₚ numbers to target standards when the concentrations of non-target plasmid standards were ~1000 times greater than target standards. For example, the *narB* subgroup D_C1 assay exhibited non-specific amplification (false positive) from 10⁴ copies of the subgroup F_C1 target plasmid (a mean Cₚ value of ~37, equivalent to ~10 *narB* gene copies of subgroup D_C1; Figure 3).

HYDROGRAPHIC CONDITIONS

Contrasting chemical and biological conditions were evident among sampling stations (Figure 4), all of which are generally consistent with prior oceanographic observations made along line 67 (Collins et al., 2003). Coastal-upwelling zone surface waters (station H3) had high concentrations of nitrate (~10 μmol l⁻¹) and chl. a (>2 μg l⁻¹).

Coastal-transition zone profiles (stations 67–70 and 67–85) possessed slightly lower chl. a concentrations (>0.50 μg l⁻¹) in the upper surface layer and a more dramatic nitracline (where nitrate surpassed 1 μmol l⁻¹) at ~0–30 m. At stations 67–70 and 67–85 entrainment of higher salinity water from below was evident to a depth of 100 m (Figure 4), indicating these waters were likely part of a filament of previously upwellled seawater transported offshore. Open-ocean conditions were present at stations 67–105 to 67–155, as they possessed deep chl. a maxima and nitraclines (~60–90 m) with very low chl. a (<0.20 μg l⁻¹) and nitrate (<0.20 μmol l⁻¹) concentrations in the upper ~40 m (Figure 4). However, conditions varied among these open-ocean stations. Station 67–105 was located within the core of the California Current (CC), as seen by the low salinity (<33) feature in the upper 100 m, 300 to 600 km offshore (Figure 4). Station 67–135 was in a transition from CC conditions to N. Pacific gyre-like conditions, based on the increase in salinity in the upper 100 m and deepening of the chl. maximum (~100 m) relative to station 67–105. Salinity in the upper 100 m of station 67–155 increased further and conditions are closest to those of oligotrophic N. Pacific water gyre water (Figure 4).

Core cyclonic eddy waters (EDDY-3, EDDY-4) possessed physical and chemical conditions comparable to those observed in the coastal-transition zone (stations 67–85, 67–70), including a shallow nitracline (~50 m), high chl. a (>0.5 μg l⁻¹) in the upper 40 m, and high salinity water in the upper 60 m (Figure 5). Outside of the eddy core (stations EDDY-1, EDDY-2, EDDY-5, and EDDY-6), the halocline and nitracline were deeper (~125 m) resembling conditions at open-ocean sites along the CN207 transect (e.g., 67–135 and 67–155; Figures 4 and 5).

narB SUBGROUP DISTRIBUTIONS

Abundances of subgroups E_O1 and G_O1 were highest at open-ocean station 67–155 (76 and 285 copies ml⁻¹ respectively, Figure 7). These subgroups were also detected in at station 67–85 and core eddy profiles, but in concentrations below quantifiable limits (Figures 7 and 8). Abundance maxima of the open-ocean subgroups (called O subgroups herein) occurred at different depths, with subgroup G_O1 being most prominent in the upper mixed layer (upper 40 m) and subgroup E_O1 most abundant just below subgroup G_O1 (~60 m; Figure 7). This distribution disparity was also evident in periphery cyclonic eddy profiles (Figure 8).
of the subgroup D_C1 probe set with F_C1 and D_C2 targets may have contributed a false positive for this subgroup at stations 67–85, 67–70, and EDDY-2 where F_C1 and D_C2 target abundances were close to 10^4 copies ml$^{-1}$ (Figures 7 and 8). Subgroup A_C1 and F_C1 distributions contrasted with those of D_C1, D_C2, and C_C1, as they were most abundant at <25 m of transitional stations 67–70 and 67–85. Of the two, F_C1 reached a higher maximum abundance (7.0×10^3 versus 2.3×10^3 copies ml$^{-1}$) in profile samples and was present over a broader range of stations and depths (Figures 7 and 8).

MDS ANALYSIS

Measured variables (triangles) clustered differently in the MDS coordinate space (Figure 9). The spacing of variables in the MDS plot is a visual representation of the Spearman correlation matrix (Table 3). Subgroup C_C1 clustered relatively close to chl a, ammonium, and nitrate, but was distant from temperature. Subgroups D_C1, D_C2 clustered close to subgroup C_C1, and one another while also being close to ammonium,
nitrate, and chl. a. Subgroups A_C1 and F_C1 clustered with each other and with PAR (photosynthetically active radiation), but were more distant from ammonium, nitrate and chl. a than subgroups D_C1 and D_C2. Subgroups E_O1 and G_O1 both clustered distantly from inorganic nutrients and C subgroups, but differed in their spacing along dimension two in which clustered distantly from inorganic nutrients and C subgroups, but differed in their spacing along dimension two in which depth was strongly positive (Figure 9A). Total narB subgroup abundances clustered with environmental variables in a similar fashion to D_C2 and F_C1, the two most abundant narB subgroups (Figure 9A).

The relationship between nitrate, a nutrient found to significantly correlate with subgroup abundances (Table 3), was examined further with a second bubble MDS plot (Figure 9B), and in scatter plots (Figure 10). The bubble MDS plot (based on abundance data only) indicated narB subgroups were separated in the projection space as seen in the initial MDS plot (spacing is randomized, so their coordinate placement differs), and that three different correlation types were evident: strongly positive, weakly positive, and strongly negative. Subgroups A_C1 and F_C1 had weak correlation coefficients of ~0.18 that were not significant (p > 0.05; Figure 9B; Table 3). Scatter plots of subgroup abundance versus nitrate vary congruently with the MDS bubble plot (Figure 9B), and data points were either closer to being positively linear, negatively linear, or non-monotonic (Figure 10). Comparable results were seen when ammonium values were examined instead of nitrate, and when phosphate was compared, correlations and fits on the scatter plots (r² values) were weaker (data not shown), which was expected based on the initial MDS plot and correlation matrix (Figure 9A; Table 3).

FCM SYNECHOCOCUS COUNTS
Synechococcus cell abundances ranged from ~10³ to 10⁵ cells ml⁻¹ in the upper mixed layer of line 67 and cyclonic eddy station profiles. At all stations, maximal Synechococcus cell abundances occurred in the upper water column and decreased below 40–60 m (Figure 6). The highest abundance of Synechococcus cells in a single sample was observed at 0 m of station 67–85 (8.6 × 10⁴ cells ml⁻¹). Synechococcus cell abundances in the upper water column were higher in coastal-upwelling and coastal-transition zones than in open-ocean waters (e.g., at 0 m of station 67–155, ~2 × 10⁶ cells ml⁻¹; Figure 6). Similarly, Synechococcus abundances were higher (5.2 × 10⁶ cells ml⁻¹) in the surface waters of core cyclonic eddy stations EDDY-3 and -4 (0–20 m, Figure 6), and fewer in surface waters of outer eddy station EDDY-2 (0 m, 8.2 × 10⁵ cells ml⁻¹; data not shown).

DISCUSSION
DIFFERENT DISTRIBUTIONS OF O AND C SUBGROUPS
Contour plots of abundance and environmental data indicate that narB subgroups inhabited different water masses along the CCS transect (Figures 7 and 8). Previous studies showed that Synechococcus narB sequence diversity differed between coastal and open-ocean sampling sites (Jenkins et al., 2006;
across the CCS. Also, the occurrence of strong seasonal upwelling (in the spring) is expected to affect narB subgroup distributions. Abundances of all narB subgroups were notably low in the core CC (around station 67–105) suggesting that they are unable to thrive in this water mass (Figure 7). During the late fall (as sampled in this study) and winter, the core CC narrows and migrates offshore. This potentially broadens the coastal-transition zone where multiple C subgroups appear able to thrive (Figure 7). Additionally during the fall, surface seawater temperatures are at their warmest and mixing is reduced (upwelling is at a minimum), which favors increased cyanobacterial growth. Therefore, C narB subgroups are anticipated to be most abundant and occupy the largest area of the CCS (the coastal-upwelling and coastal-transition zones) during the fall. In the late fall and winter, a pole-ward surface flow occurs off the CA coast (Lynn and Simpson, 1987). This flow is expected to lead to increased mixing in the coastal-upwelling zone (along with winter storms) and narrow the coastal-transition zone where subgroups A_C1 and F_C1 are present (and presumably adapted to conditions of the transitional waters, see Figure 7). Greatest narrowing of the coastal-transition zone is expected to occur during the spring, when the CC broadens and migrates toward the coast, and maximal upwelling occurs in the coastal-upwelling zone. Lastly, non-seasonal variation in C subgroup abundances is also expected in the region between core CC water and the coastal-upwelling zone due to the frequent occurrence of eddies (as seen in this study) and meanderings of the CC (Lynn and Simpson, 1987).
The distinct distributions of *narB* subgroups across the CCS presumably result from selection by different environmental conditions. Subgroups D_C1, D_C2, and C_C1 are able to persist in coastal-upwelling and coastal-transition zone waters containing relatively high to intermediate nutrients, cooler temperatures, higher salinity, and elevated chl. *a* (Figures 4, 7, and 9). Based on *narB* gene sequences, these subgroups cluster with isolates belonging to clades I and IV (Figure 2), which are common clades in temperate, coastal waters (Zwirglmaier et al., 2008; Tai and Palenik, 2009). These subgroups varied in their abundances at depth within the coastal-transition zone, suggesting light or some other factor(s) related to depth may differentially affect their numbers. For example, abundances of D_C1 were low relative to C_C1 and D_C2. It is unknown whether D_C1 reaches higher abundances at other times of the year or are more abundant in waters closer to the coast than station H3 (Figure 7).

Subgroups A_C1 and F_C1 were most abundant in the upper water column (<25 m) of the coastal-transition zone where levels of nutrients, chl. *a* and/or covarying factors were lower than in coastal waters. Previous studies have associated increases of *Synechococcus* or a specific clade to increased nutrient concentrations in natural systems (Lindell and Post, 1995; DuRand et al., 2001; Fuller et al., 2006), but none have specifically linked increases in *Synechococcus* abundance with “intermediate” nutrient conditions, which appears to be the case with subgroups F_C1 and A_C1 (Figure 10). Subgroups F_C1 and A_C1 are not represented by an isolate based on current *narB* phylogeny (Figure 2). Potentially they fit as “opportunists,” as has been suggested for *Synechococcus* clades V, VI, and VII (Fuller et al., 2006; Zwirglmaier et al., 2008; Dufresne et al., 2008), but specifically these “opportunists” appear to reach highest numbers in waters with intermediate levels of nitrate, ammonium and/or covarying factors (Figures 4, 7, and 9). Subgroup F_C1 in particular may be ecologically important in the coastal-transition zone since its abundance was comparable to or greater than abundances of subgroups D_C2 and C_C1 in this zone (Figure 7).

O subgroups persisted at different depths of N. Pacific gyre-like waters with low nutrients and low phytoplankton biomass (chl. *a*). Subgroup G_O1 was most abundant in the upper mixed layer (Figures 7 and 8) as has been previously described for clade II *Synechococcus* (Toledo and Palenik, 2003; Zwirglmaier et al., 2008). G_O1 also clusters with clade II isolates based on *narB* gene phylogeny (Figure 2). A factor or factors related to depth enables subgroup F_O1 to be most abundant in relatively deep euphotic waters just below the upper mixed layer (Figures 7 and 8). This distribution is consistent with additional observations from the subtropical N. Pacific station ALOHA and an oligotrophic open-ocean station (26.5°N, 110.3°W) off the coast of Baja, Mexico (R.W. Paerl, R.A. Foster and J.P. Zehr, unpublished). The E_O1 distribution pattern contrasts with that of G_O1 (Figures 7 and 8), but also the typical near-uniform abundances of *Synechococcus* cells in the upper mixed layer of open-ocean depth profiles (Waterbury et al., 1986; Partensky et al., 1999).

It is anticipated that the E_O1 subgroup is composed of *Synechococcus*, not *Prochlorococcus*. To our knowledge, no *Synechococcus* strain, clade, or ecotype is currently recognized to...
predominate below the upper mixed layer of oligotrophic open-ocean waters. Some *Prochlorococcus* populations appear to possess the *narB* gene (Martiny et al., 2009) and some also persist at depth (West and Scanlan, 1999; Johnson et al., 2006), but the majority of *Prochlorococcus* *narB* genes identified thus far resemble high light (HL) *Prochlorococcus* in their percentage G+C content (∼30–40%; Martiny et al., 2009), and a few linked to low light (LL) *Prochlorococcus* strains have percentage G+C ∼40%. All of these *Prochlorococcus* associated *narB* genes have lower percentage G+C than *narB* clade Group E sequences (∼60%; Paerl et al., 2009). We have constructed several amino acid phylogenetic trees based on clustalW aligned portions of NarB sequences from environmental samples (Jenkins et al., 2006; Paerl et al., 2008), *Synechococcus* genomes, and putative HL *Prochlorococcus* NarB sequences identified by Martiny et al. (2009). In these trees *Prochlorococcus* NarB sequences are clearly divergent from *Synechococcus* isolate sequences as reported by Martiny et al. (2009), but also *narB* clade E amino acid sequences (data not shown).

Other environmental conditions that were not measured could also influence the distribution of *narB* subgroups. Metal concentrations were not measured, yet metals such as Fe can be introduced into the euphotic zone via vertical mixing in waters off the coast of CA (Martin and Gordon, 1988) and the effects of metal species (e.g., Cu²⁺ and Ni) could be stimulatory or deleterious to *Synechococcus* growth (Brand et al., 1986; Dupont et al., 2008; Stuart et al., 2009). Zooplankton grazing and viral lysis were not measured at CN207 stations, but should be examined in future studies as they could also alter *Synechococcus* abundances in the CCS.

THE POTENTIAL ROLE FOR NR ENCODED BY THE narB GENE

The *Synechococcus* NR encoded by the *narB* gene could be used in nitrate assimilation or in the reduction of intracellular energy generated by photosynthesis (e.g., ferredoxin, ATP). Natural *Synechococcus* populations (off the FL coast) assimilated ¹⁵NO₃⁻ in on-deck incubation experiments (Wawrik et al., 2009), so presumably *narB* is being expressed, translated, and the NR enzyme is reducing nitrate.
for the synthesis of macromolecules like DNA. However, it is still feasible that nitrate reduction could be used as mechanism to deplete intracellular energy from the photosystem, especially under conditions of high irradiance and high nitrate, as has been observed in coastal diatoms (Lomas and Glibert, 1999). In the open-ocean, it is unlikely that nitrate reduction is being used as a mechanism for dissipating energy from the photosystem, largely because concentrations of nitrate are very low and the complete assimilation of nitrate to glutamine would also be an effective sink of reductant and ATP while helping to alleviate N-based growth limitation.

narB genes are present in the euphotic, oligotrophic open-ocean (Jenkins et al., 2006; Paerl et al., 2008; Martiny et al., 2009), and it is anticipated that the nitrate reductase encoded by these narB genes are used in the assimilation of nitrate, which may periodically become available via ammonia oxidation, eddies, or vertical mixing (McGillicuddy et al., 2007; Yool et al., 2007; Johnson et al., 2010). It does appear that the highest genetic potential for nitrate reduction by narB subgroups is in coastal-transition and coastal-upwelling zones of the CCS containing relatively intermediate to high concentrations of nitrate (Figure 6). Total narB subgroup abundance also clustered close to ammonium (and somewhat with nitrite) in the MDS analysis (Figure 8), which emphasizes that there is also a greater potential for these Synechococcus to assimilate N forms other than nitrate as well (Figure 8).

COMPARISONS OF narB SUBGROUP ABUNDANCE AND FCM-BASED SYNECHOCOCUS COUNTS

Total narB copies to FCM cell abundances as a percentage (narB copies/FCM counts × 100%) on average across comparable samples was ~11% (data in Figure 6), which suggests that Synechococcus not targeted by our qPCR assays were present in our samples. This is not unexpected since the qPCR assays target a portion of the total Synechococcus diversity (Figure 2). However, this percentage value is actually difficult to interpret because for one, we are assuming that one narB copy equates to one cell, which may not be the case (as mentioned in narB qPCR Assays), and two, Synechococcus abundances determined by qPCR do not equate to FCM cell counts (qPCR estimates...
were found to be ∼40% of FCM estimates based on narB qPCR analysis of sorted Synechococcus CC9311 cells; data not shown). Relative changes in this percentage appear more useful and indicate Synechococcus community composition differs between CCS habitats. Specifically, in core CC waters (station 67–105) the percentage of total narB copies to FCM counts was low relative to the average from other stations (∼3 versus 13% in the upper 10 m; Figure 6). The southerly flowing CC core (seen as the fresher, cooler water around station 67–105, Figure 4)
The results of this study indicate that *Synechococcus* subpopulations are distributed differently across the CCS, an upwelling-influenced, eastern boundary current system. Some of the *narB* subgroup distributions did not follow a clear open-ocean, coastal-ocean dichotomy. The "transitional" waters of the CCS appear to contain distinct *Synechococcus* populations relative to adjacent waters. The predominance of E_O1 below the upper mixed layer of open-ocean waters and A_C1 and F_C1 in the coastal-transition zone suggests that these *narB* subgroups possess unique ecologies relative to other *narB* subgroups and *Synechococcus* clades found primarily in the coastal or open-ocean.

There is a large diversity of *Synechococcus* in the ocean (including populations not yet isolated), but the different phenotypes attributed to this large diversity and the ecological benefits of these phenotypes are still being identified and described. The biogeographic data presented here contributes valuable observations related to the ecology of picocyanobacteria in the oceans. Such data will be useful for validating recent models that examine the relationship among species distributions, diversity, and ecology (e.g., the Darwin

CONCLUSION

The results of this study indicate that *Synechococcus* subpopulations are distributed differently across the CCS, an upwelling-influenced, eastern boundary current system. Some of the *narB* subgroup distributions did not follow a clear open-ocean, coastal-ocean dichotomy. The "transitional" waters of the CCS appear to contain distinct *Synechococcus* populations relative to adjacent waters. The predominance of E_O1 below the upper mixed layer of open-ocean waters and A_C1 and F_C1 in the coastal-transition zone suggests that these *narB* subgroups possess unique ecologies relative to other *narB* subgroups and *Synechococcus* clades found primarily in the coastal or open-ocean.

There is a large diversity of *Synechococcus* in the ocean (including populations not yet isolated), but the different phenotypes attributed to this large diversity and the ecological benefits of these phenotypes are still being identified and described. The biogeographic data presented here contributes valuable observations related to the ecology of picocyanobacteria in the oceans. Such data will be useful for validating recent models that examine the relationship among species distributions, diversity, and ecology (e.g., the Darwin

FIGURE 10 Scatter plots of *narB* subgroup abundance [log (x + 1) transformed] versus nitrate concentrations [log (x) transformed] in CN207 samples at the DCM or above. Fits are plotted to emphasize pattern differences in the data associated with each subgroup (e.g., changes in r^2 and direction of the slope). Non-linear fits are plotted as dashed lines. The r^2 values are provided for all plotted fits.
model; Follows et al., 2007; Goebel et al., 2010). Additionally, the presented distribution data allows future studies to more effectively target several interesting Synechococcus subgroups in the natural environment.

ACKNOWLEDGMENTS
We thank the officers and crew of the R/V Western Flyer (2007) for field assistance. Many thanks for laboratory and field assistance to: Z. Wisotsky, S. Sakamoto, Z. Kolber, A. Engman, and M. Blum.

REFERENCES
Ahlgren, N. A., and Rocap, G. (2006). Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and physiological characteristics. Appl. Environ. Microbiol. 72, 7193–7204.

Bernstein, R. L., Breiteneder, C., and Blum, P. (2003). Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740.

Brand, L. E., Sunda, S. G., and Guillard, R. R. L. (1986). Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96, 225–250.

Brink, K. H., and Cowles, T. J. (1991). The coastal transition zone program. J. Geophys. Res. 96, 14637–14647.

Chavez, F. P., Barber, R. T., Kosorok, P. M., Huyer, A., Ramp, S. R., Stanton, T. P., and Mediola de, B. R. (1991). The coastal transition zone program. Ecol. Monogr. 61, 99–133.

Collins, C. A., Pennington, J. T., Castro, C. G., Rago, T. A., and Chavez, F. P. (2003). The California current system off Monterey, California: physical and biological coupling. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 2389–2404.

Collier, J. L., and Palenik, B. (2003). Phycoerythrin-containing pico-plankton in the Southern California Bight. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 2405–2422.

Collins, C. A., Pennington, J. T., Castro, C. G., Rago, T. A., and Chavez, F. P. (2003). The California current system off Monterey, California: physical and biological coupling. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 2389–2404.

Dufresne, A., Ostrowski, M., Scanlan, D. J., Garzarek, L., Mazzoldi, S., Palenik, B. P., Pauleen, I. T., de Marsac, N. T., Wincker, P., Dossat, C., Ferrier, S., Johnson, J., Post, A. F., Hess, W. R., and Partensky, F. (2008). Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 9, R90.

Dugdale, R. C., and Goering, J. I. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12, 196–206.

Dupont, C. L., Barbeau, K., and Palenik, B. (2008). Ni uptake and limitation in marine Synechococcus strains. Appl. Environ. Microbiol. 74, 23–31.

DuRand, M. D., Olson, R. J., and Chisholm, S. W. (2001). Phytoplankton population dynamics at the Bermuda Atlantic timeseries station in the Sargasso Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 1983–2003.

Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W. (2007). Emergent biogeography of microbial communities in a model ocean. Science 315, 1866–1869.

Fuller, N. J., Marie, D., Partensky, F., and Vaulot, D., Post, A. F., and Scanlan, D. J. (2003). Glade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl. Environ. Microbiol. 69, 2430–2443.

Garczarek, L., Mazard, S., Palenik, B., P., DuRand, M. D., Olson, R. J., and Chisholm, S. W. (2001). “The cyanobacteria: sub- lineages,” in “The cyanobacteria: sub- lineages,” in Wettstein 1924, emend. Rippka, A., Stuckmann, N., Vilbig, A., Lenke, R., and Richter, L., 493–514.

Herman, S., Jost, R., König, A., Liss, P., Li, Q., and Steinberg, D. K. (2007). Eddy/wind interactions triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 50, 1130–1141.

Homas, M. W., and Glibert, P. M. (1999). Temperature regulation of nitrate uptake: an hypothesis about nitrate uptake and regulation in cold-water diatoms. Limnol. Oceanogr. 44, 556–572.

Lomas, M. W., and Glibert, P. M. (1999). Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and regulation in cold-water diatoms. Limnol. Oceanogr. 44, 556–572.

Lorenzen, C. J. (1966). A method for the continuous measurement of vivo chlorophyll concentration. Deep Sea Res. 13, 223–227.

Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Madhukumar, R., Buchner, A., Lai, T., Stepp, S., Jobb, G., Foster, W., Brettske, I., Gerber, S., Ginahrt, A., Gross, O., Grummann, S., Hermann, S., Jost, R., König, A., Liss, T., Lüssem, R., May, M., Nonhoff, B., Reichel, B., Steinhov, R., Stamatakis, A., Stucknim, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., and Schleifer, K. H. (2004). ARB: a softw environment for sequence data. Nucleic Acids Res. 32, 1363–1371.

Lynn, R. J., Bliss, K. A., and Eber, L. E. (1982). Vertical and horizontal distributions of seasonal mean temperature, salinity, sigma-t, stability, dynamic height, oxygen, and oxygen saturation in the California Current, 1950–1978. California Cooperative Oceanic Fisheries Investigations, Atlas, 30, 513.

Lynn, R. J., and Simpson, J. I. (1987). The California current system: the seasonal variability of its physical characteristics. J. Geophys. Res. 92, 12947–12966.

Martin, J. H., and Gordon, R. M. (1988). Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep Sea Res. 35, 177–196.

McGillivrdy, D. J., Jr., Anderson, L. A., Bates, N. R., Ribby, T., Bueser, K. C., Carlson, L. C., C., C., Ewart, C., Fasanko, P. G., Gokhweit, S. A., Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V. K., Ledwell, J. R., Li, Q. P., Siegel, D. A., and Steinberg, D. K. (2007). Eddy/wind interactions stimu- late extraordinary midocean plankton blooms. Science 316, 1021–1026.

Moore, L. R., Post, A. F., Rocap, G., and Chisholm, S. W. (2002). Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996.

Olson, R. J., Zettler, E. R., Armbrust, E. V., and Chisholm, S. W. (1990). Pigment, size, and distribution of Synechococcus in the North Atlantic and Pacific oceans. Limnol. Oceanogr. 35, 45–58.

Paerl, R. W., Foster, R. A., Jenkins, B. D., Montoya, J. P., and Zehr, J. P. (2008). Phylogenetic diversity of cyanobacte- rial narI genes from various marine habitats. Environ. Microbiol. 10, 3377–3387.

Palenik, B. (1994). Cyanobacterial community structure as seen from RNA polymerase gene sequence analysis. Appl. Environ. Microbiol. 60, 3212–3219.

Partensky, F., Blanchot, J., and Vaulot, D. (1999). Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67, 991–994.

Partensky, F., Blancfort, J., and Vaulot, D. (1999). Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull. Inst. Oceanogr. Monaco Numero Spec. 19, 457–475.

Plant, J. N., Johnson, K. S., Needoba, J. A., and Coletti, L. J. (2009). NH4–Digsican: an in situ and laboratory ammonium analyzer for estuarine, coastal and shelf waters. Limnol. Oceanogr. Methods. 7, 144–156.

Rocap, G., Distel, D. L., Waterbury, J. B., and Chisholm, S. W. (2002). Resolution of Prochlorococcus and Synechococcus.
ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequence. Appl. Environ. Microbiol. 68, 1180–1191.

Rubio, L. M., Herrero, A., and Flores, E. (1996). A cyanobacterial narB gene encodes a ferredoxin-dependent nitrate reductase. Plant Mol. Biol. 30, 845–850.

Sakamoto, C. M., Friederich, G. E., and Codispoti, L. A. (1990). MBARI Procedures for Automated Nutrient Analyses Using a Modified Alken Series 30 Rapid Flow Analyzer. Monterey Bay Aquarium Research Institute, Technical Report 90-2, 84.

Scanlan, D. J., Ostrowski, M., Mazard, S., Dufresne, A., Garczarek, L., Hess, W. R., Post, A. F., Hagemann, M., Paulsen, I., and Partensky, F. (2009). Ecological genomics of marine Picocyanobacteria. Microbiol. Mol. Biol. Rev. 73, 249–299.

Sherr, E. B., Sherr, B. F., and Wheeler, P. A. (2005). Distribution of coccolid cyanobacteria and small eukaryotic phytoplankton in the upwelling ecosystem off the Oregon coast during 2001 and 2002. Deep Sea Res. Part II Top. Stud. Oceanogr. 52, 317–330.

Short, S. M., and Zehr, J. P. (2005). “Quantitative analysis of nifH genes and transcripts from aquatic environments,” in Methods in Enzymology, ed. J. Leadbetter (Amsterdam: Elsevier), 380–394.

Six, C., Thomas, J.-C., Garczarek, L., Ostrowski, M., Dufresne, A., Blot, N., Scanlan, D. J., and Partensky, F. (2007). Diversity and evolution of phytoheterotrophs in marine Synechococcus spp.: a comparative genomics study. Genome Biol. 8, R259.

Stuart, R. K., Dupont, C. L., Johnson, D. A., Paulsen, I. T., and Palenik, B. (2009). Coastal strains of marine Synechococcus species exhibit increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains. Appl. Environ. Microbiol. 75, 5047–5057.

Tai, V., and Palenik, B. (2009). Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J 3, 903–915.

Toledo, G., and Palenik, B. (2003). A Synechococcus serotype is found preferentially in surface marine waters. Limnol. Oceanogr. 48, 1744–1755.

Venrick, E. L., and Hayward, T. L. (1984). Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 277, 293–294.

Waterbury, J. B., Watson, S. W., Guillard, R. R. L., and Brand, L. E. (1979). Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 277, 293–294.

Waterbury, J. B., Watson, S. W., Valois, F. W., and Franks, D. G. (1986). “Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus,” in Phototrophic Picoplankton, ed. W. K. W. Li (Ottawa: Department of Fisheries and Oceans), 71–120.

Waterbury, J. B., Willey, J. M., Franks, D. G., Valois, F. W., and Watson, S. W. (1985). A cyanobacterium capable of swimming motility. Science 230, 74.

Wawrzik, B., Callaghan, A.V., and Bronk, D. A. (2009). Use of inorganic and organic nitrogen by Synechococcus spp. and diatoms on the west Florida shelf as measured using stable isotope probing. Appl. Environ. Microbiol. 75, 6662–6670.

West, N. J., and Scanlan, D. I. (1999). Niche-partitioning of Prochlorococcus populations in a stratified water column in the eastern North Atlantic ocean. Appl. Environ. Microbiol. 65, 2383–2391.

Worden, A. Z., Nolan, J. K., and Palenik, B. (2004). Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49, 168–179.

Yool, A., Martin, A. P., Fernandez, C., and Clark, D. R. (2007). The significance of nitrification for oceanic new production. Nature 447, 999–1002.

Zwirglmaier, K., Jardillier, L., Ostrowski, M., Mazard, S., Garczarek, L., Vaulot, D., Not, F., Massana, R., Ulløa, O., and Scanlan, D. J. (2008). Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biome. Environ. Microbiol. 10, 147–161.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 12 January 2011; paper pending publication: 10 February 2011; accepted: 15 March 2011; published online: 04 April 2011.

Citation: Paerl RW, Johnson KS, Welsh RM, Worden AZ, Chavez FP and Zehr JP (2011) Differential distributions of Synechococcus subgroups across the California current system. Front. Microbio. 2:59. doi: 10.3389/ fnmic.2011.00059

This article was submitted to Frontiers in Aquatic Microbiology, a specialty of Frontiers in Microbiology.

Copyright © 2011 Paerl, Johnson, Welsh, Worden, Chavez and Zehr. This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.
APPENDIX

Table A1 | *narB* sequence targets having ≤2 total mismatches to the primer and probe oligonucleotides of a respective *narB* qPCR assay.

A_C1	C_C1	D_C1	D_C2	E_O1	F_C1	G_O1								
gi	71383811	MB2314L6	gi	EU560574	FEV5848M12_t7	gi	EU560579	FEV5848M19_t7	gi	EU581780	MB2323M9	gi	EU560468	ATL2015M01_t7
gi	EU560583	FEV5848M4_t7	gi	EU560582	FEV5848M3_t7	gi	EU560548	FEV5844M1_t7	gi	EU581737	MB2323M17	gi	EU560469	ATL2015M02_t7
gi	EU560584	FEV5848M5_t7	gi	EU581814	FEV5849M13_t7	gi	EU581781	FEV5844M19_t7	gi	EU581390	MB2322M23	gi	EU560469	ATL2015M03_t7
gi	EU560585	FEV5848M6_t7	gi	EU581821	MB2312L9	MB2310L5	MB2310L7	MB2310L9	MB2310L7	gi	EU581738	ATL2015M04_t7		
gi	EU581817	FEV5849M19_t7	gi	EU581822	MB2322M13	MB2310L7	MB2310L7	MB2310L7	gi	EU581739	ATL2015M05_t7			
gi	EU581819	FEV5849M20_t7	gi	EU581819	MB2312L8	MB2310L7	MB2310L7	MB2310L7	gi	EU581740	ATL2015M06_t7			
gi	EU581821	MB2322M10	gi	EU581821	MB2310L7	MB2310L7	MB2310L7	gi	EU581741	ATL2015M07_t7				
gi	EU581823	FEV5849M6_t7	gi	EU581823	MB2310L7	MB2310L7	MB2310L7	gi	EU581742	ATL2015M08_t7				
gi	EU581825	MB2310L7	gi	EU581825	MB2310L7	MB2310L7	MB2310L7	gi	EU581743	ATL2015M09_t7				
gi	EU581827	MB2310L7	gi	EU581827	MB2310L7	MB2310L7	MB2310L7	gi	EU581744	ATL2015M10_t7				
gi	EU581829	MB2310L7	gi	EU581829	MB2310L7	MB2310L7	MB2310L7	gi	EU581745	ATL2015M11_t7				
gi	EU581831	MB2310L7	gi	EU581831	MB2310L7	MB2310L7	MB2310L7	gi	EU581746	ATL2015M12_t7				
gi	EU581833	MB2310L7	gi	EU581833	MB2310L7	MB2310L7	MB2310L7	gi	EU581747	ATL2015M13_t7				

(Continued)
A_C1	C_C1	D_C1	D_C2	E_O1	F_C1	G_O1
gi	71383922] MB2322M15 gi	71402623] HT9013M12 gi	EU560484	ATL20154M52_t7		
gi	71383924] MB2321M17 gi	560641	SPAC34004M32__ sp6 gi	EU560466	ATL20154M59_t7	
gi	71383928] MB2321M12 gi	560641	SPAC34004M36__ sp6 gi	EU851747	ATL20154M61_t7	
gi	71383930] MB2320M8 gi	560641	SPAC34004M41__ sp6 gi	EU560487	ATL20154M62_t7	
gi	71383932] MB2320M5 gi	560641	SPAC34004M42__ sp6 gi	EU851748	ATL20154M63_t7	
gi	71383936] MB2319M13 gi	560641	SPAC34004M43__ sp6 gi	EU560495	ATL20154M88_t7	
gi	113952711	Syn. sp. CC9311 gi	560490	ATL20154M59_t7		
gi	560494	ATL20154M69_t7				
gi	560495	ATL20154M73_t7				
gi	560496	ATL20154M75_t7				
gi	560497	ATL20154M79_t7				
gi	560498	ATL20154M84_t7				
gi	560499	ATL20154M87_t7				
gi	560500	ATL20154M91_t7				
gi	560501	ATL20154M94_t7				
gi	560502	ATL20155M04_t7				
gi	560503	ATL20155M07_t7				
gi	560504	ATL20155M08_t7				
gi	560505	ATL20155M10_t7				
gi	560506	ATL20155M11_t7				
gi	560507	ATL20155M13_t7				
gi	560508	ATL20155M19_t7				

(Continued)
Table A1 | Continued

A_C1	C_C1	D_C1	D_C2	E_O1	F_C1	G_O1

The table continues with various GenBank accessions and their associated identifiers.
Table A1 | Continued

A_C1	C_C1	D_C1	D_C2	E_O1	F_C1	G_O1

- gi|71383747| Syn. sp.
- gi|71383749| Syn. sp.
- gi|71383751| Syn. sp.
- gi|71383753| Syn. sp.
- gi|71383755| Syn. sp.
- gi|71383819| HT9013M64
- gi|71383821| HT9013M65
- gi|71383823| HT9013M66
- gi|71383825| HT9013M68
- gi|71383827| HT9013M70
- gi|71383831| HT9013M72
- gi|71383833| HT9013M73
- gi|71383835| HT9015M80
- gi|71383867| HT9011M21
- gi|71383873| HT9013M2
- gi|71383885| HT9015M7
- gi|71402621| HT9011M6
- gi|85838376| Syn. sp.
- gi|85838384| Syn. sp.
- gi|EU851828| SPAC33964M10_sp6
- gi|EU851829| SPAC33964M12_sp6

(Continued)
Table A1 | Continued

A_C1	C_C1	D_C1	D_C2	E_O1	F_C1	G_O1
gi	EU851830	SPAC33984M13_sp6				
gi	EU851831	SPAC33984M14_sp6				
gi	EU560624	SPAC33984M16_sp6				
gi	EU560625	SPAC33984M19_sp6				
gi	EU851833	SPAC33984M24_sp6				
gi	EU851835	SPAC33984M35_sp6				
gi	EU851836	SPAC33984M40_sp6				
gi	EU560627	SPAC33984M6_sp6				
gi	EU851838	SPAC33984M7_sp6				
gi	EU851839	SPAC33996M15_sp6				
gi	EU851840	SPAC33996M16_sp6				
gi	EU851841	SPAC33996M20_sp6				
gi	EU851842	SPAC33996M23_sp6				
gi	EU851843	SPAC33996M27_sp6				
gi	EU851844	SPAC33996M29_sp6				
gi	EU560629	SPAC33996M2_sp6				
gi	EU851845	SPAC33996M34_sp6				
gi	EU560630	SPAC33996M37_sp6				
gi	EU851847	SPAC33996M41_sp6				
gi	EU560631	SPAC33996M42_sp6				
gi	EU851848	SPAC33996M4_sp6				
gi	EU560634	SPAC33996M9_sp6				
gi	EU560635	SPAC34000M2_sp6				

(Continued)
The GenBank ID for each sequence is listed at the front of each sequence name. Sequences in bold have zero mismatches to the oligonucleotides of the respective qPCR assay.

A_C1	C_C1	D_C1	D_C2	E_O1	F_C1	G_O1
gi	EU560639	SPAC34004M19_sp6				
gi	EU560642	SPAC34024M11_sp6				
gi	EU851858	SPAC34024M14_sp6				
gi	EU560643	SPAC34024M16_sp6				
gi	EU851860	SPAC34024M18_sp6				
gi	EU851861	SPAC34024M19_sp6				
gi	EU851862	SPAC34024M1_sp6				
gi	EU851863	SPAC34024M21_sp6				
gi	EU560644	SPAC34024M2_sp6				
gi	EU851864	SPAC34024M8_sp6				
gi	78211558	Syn. sp. CC9605				
gi	EU851850	SPAC34000M16_sp6				
gi	EU851851	SPAC34000M23_sp6				
Table A2 | GenBank ID’s for cyanobacterial isolates included on the generated narB phylogenetic tree (Figure 2).

Genbank ID	Isolate organism	
gi	148238336	Synechococcus sp. WH7803
gi	887986517	Synechococcus sp. WH7805
gi	71383741	Synechococcus sp. WH8008
gi	71383769	Synechococcus sp. UV179
gi	71383773	Synechococcus sp. WH8101
gi	71402607	Synechococcus sp. UV92
gi	148214099	Synechococcus sp. RCC307
gi	116072916	Synechococcus sp. RS916
gi	71383723	Synechococcus sp. UV105
gi	113952711	Synechococcus sp. CC9311
gi	71383735	Synechococcus sp. WH8020
gi	116071445	Synechococcus sp. BL107
gi	78193684	Synechococcus sp. CC9902
gi	78211558	Synechococcus sp. CC9605
gi	71383731	Synechococcus sp. WH6501
gi	71383745	Synechococcus sp. WH8009
gi	85838376	Synechococcus sp. WH8012
gi	71383749	Synechococcus sp. WH8104
gi	71383753	Synechococcus sp. WH8108
gi	85838384	Synechococcus sp. UV122
gi	85838378	Synechococcus sp. UV69
gi	85838380	Synechococcus sp. UV104
gi	85838382	Synechococcus sp. UV106
gi	33864539	Synechococcus sp. WH8102