A CO₂ adsorption-enhanced semiconductor/metal-complex hybrid photoelectrocatalytic interface for efficient formate production†

Xiaofeng Huang, Qi Shen, Jibo Liu, Nianjun Yang* and Guohua Zhao*

In photoelectrochemical CO₂ conversion, the concentration of fixed CO₂ on the photocathode surface is of primary concern. Herein, a CO₂ adsorption-enhanced semiconductor/metal-complex hybrid photoelectrocatalytic interface was established by utilizing a carbon aerogel as the CO₂ fixation substrate. In CO₂ reduction photoelectrocatalysis, Co₃O₄ was employed as the light harvester, and Ru(bpy)₂dppz was utilized as the electron transfer mediator and CO₂ activator. The CO₂ surface concentration exhibited a 380-fold increase on this hybrid interface than that on Co₃O₄/FTO. The CO₂ conversion to formate occurred at an onset potential of −0.45 V (vs. normal hydrogen electrode, NHE) under photoelectrochemical conditions, 160 mV more positive than its thermodynamic redox potential. At an applied potential of −0.60 V (vs. NHE), the selectivity of the formate yield reached 99.95%, with a production rate of approximately 110 μmol cm⁻² h⁻¹ and a Faradaic efficiency of 86%. Such a conversion has an electron transfer rate of 2.94 × 10⁻³ cm s⁻¹. The CO₂ conversion to formate was confirmed to be an instantaneous proton-coupled electron transfer process, originating from the rapid photoelectrochemical activation of bpy and dppz in Ru(bpy)₂dppz as well as the synergic effect of the promoted CO₂ adsorption and the applied molecular catalysis.

Introduction

Natural photosynthesis converts CO₂ into a series of intermediate products (e.g., malate and pyruvate) and finally to glucose with the assistance of solar light.¹ In such a carbon recycling process, CO₂ is fixed by ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCo) and then reduced by a regulated proton-coupled electron transfer process. Thus, there are three aspects to achieve a highly effective process of CO₂ conversion to fuels by mimicking natural photosynthesis: enhanced CO₂ adsorption, rapid electron transfer, and decreased energy input. For a high CO₂ surface concentration, molecular catalysts, such as Ru(II) bipyridyl complexes, are promising candidates due to their unique properties in CO₂ binding affinity. The application of photoelectrochemical methods that integrate photocatalysis with electrocatalysis provides a promising strategy for CO₂ reduction at a low overpotential. This study demonstrates the use of highly porous and adsorptive carbon aerogels (CA) to promote CO₂ fixation as well as the employment of a robust visible-light harvester Co₃O₄ photoelectrocatalyst and Ru(bpy)₂dppz as a molecular catalyst to accelerate electron transfer for CO₂ reduction. This interface enables high CO₂ adsorption, a rapid electron transfer rate and a high yield of formate, an important industrial C₁ stock. This reduction occurred at a relatively low onset potential under photoelectrochemical conditions and with a moderate Faradaic efficiency, originating from the multiple synergies among the enhanced CO₂ adsorption from CA, the distinguished photocatalytic activity of Co₃O₄ and the rapid electrochemical kinetics of Ru(bpy)₂dppz.
concentration in aqueous solution is only approximately 0.034 M, which severely deteriorates the aqueous heterogeneous reduction. Although various CO$_2$ absorptive materials have been proposed,$^{9-11}$ their CO$_2$ adsorption performance and mechanism during catalytic processes have not been investigated in-depth. Moreover, the obtained efficiency for the CO$_2$ reduction still remains to be further increased.

Semiconductor-based photoelectrochemical methods are currently popular and have been successful for CO$_2$ reduction in that the synergetic conjunction of photoelectrocatalysis (namely, electrocatalysis and photocatalysis) facilitates the separation of photo-induced electrons and holes under applied electric fields.6,7 Light irradiation-induced band bending compensates the required overpotential for CO$_2$ reduction, causing the CO$_2$ conversion to occur at relatively positive potentials. Surprisingly, the majority of semiconductors exhibited non-specific CO$_2$ surficial binding. In other words, the CO$_2$ concentration on the surface of the semiconductors was rather low. Therefore, only slow reduction kinetics were reported.6,7 In addition, the majority of semiconductors have poor conductivities, which deteriorated the electron transfer rate as well. Thus, photoelectrochemical CO$_2$ reduction still occurred at relatively negative potentials in these systems, for example, at -1.0 V for MoS$_2$/TiO$_2$ and InP/TiO$_2$ (vs. normal hydrogen electrode, NHE, the same as below),12,13 at -1.1 V for ZnTe,5 at -1.2 V for p-GaP and GaAs,14 and at -0.9 V for Mg-CuFeO$_2$. Furthermore, inevitable hydrogen evolution was observed, leading to relatively low Faradaic efficiency.

As an alternative to those semiconductors, molecular catalysts, such as Ru(n) or Re(n) bipyridyl complexes, have been employed because they present unique properties in CO$_2$ binding affinity, and high CO$_2$ surface concentrations are expected.15,16 Furthermore, the formation of a chemical bond between CO$_2$ and the metal centre will lead to a high turnover rate and high selectivity of CO$_2$ conversion during a catalytic cycle.15,16 The main drawback of these catalysts is that additional pathways are required to activate these molecular catalysts. In most cases, an extremely negative potential is required. For example, potentials of -1.52, -1.6, and -1.73 were applied for Ru(bpy)$_2$(tpy)(NCCH$_3$)$_2$,17 Re(bu-bpy)(CO)$_7$Cl,18 and Re(pbn)(CO)$_3$Cl,19 respectively, to achieve the catalytic reduction of CO$_2$. These molecular catalysts encountered destabilization (e.g., dimerization or dissolution) during a long-term electrolysis process, resulting in rapidly reduced photoelectrochemical activity for CO$_2$ conversion.20,21

The complementary combination of a semiconductor and a molecular catalyst was then developed for photoelectrochemical CO$_2$ conversion.$^{14,22-24}$ These combinations accelerated electron transfer generation and lowered the activation barriers for both molecular catalysts and CO$_2$ binding. The highly efficient and highly selective generation of hydrocarbon fuels, such as methanol and formic acid, has been reported on these systems.$^{14,22-24}$ However, these systems have shown significant flaws, such as high overpotentials (e.g., -1.0 V on H$_2$–Si–Re(bu-bpy)(CO)$_7$Cl),22 poor selectivity of reduction products (e.g., the simultaneous formation of HCOOH, H$_2$ and CO on Ag/TaON–Ru(bpy)$_2$–(CH$_2$)$_2$–Ru(bpy)(CO)$_3$Cl$_2$, while HCOOH occupies only 56.5%)23 and low Faradaic efficiency (e.g., only 62.3% on [Ru(dcbpy)$_2$(CO)$_3$]$_2$–p-InP–Zn).24

Thus, the aim of this work is to construct an adsorptive photoelectrochemical interface for CO$_2$ reduction with better performance. The constructed interface is schematically shown in Scheme 1. In our concept, CO$_2$ fixation is promoted by utilizing an adsorptive substrate, a conductive, micropore-dominated three-dimensional carbon aerogel (CA) with a high surface area (up to 1815 m2 g$^{-1}$); solar light is efficiently harvested by Co$_3$O$_4$ micro-flowers, a visible-light driven and robust photocatalyst. These highly index-faceted Co(n)-enriched $[121]$ structures are grown epitaxially inside CA networks. An enzyme-mimicking molecular catalyst, Ru(bpy)$_2$dpzp, is immobilized on Co$_3$O$_4$/CA to accelerate and regulate the electron transfer for CO$_2$ reduction. Using such an interface, the CO$_2$ conversion to formate has been achieved at an onset reduction potential under photoelectrochemical conditions as low as -0.45 V, with a yield of approximately 110 mol cm$^{-2}$ h$^{-1}$, a selectivity of 99.95%, and a Faradaic efficiency of 86% at -0.60 V.

Experimental section

Fabrication of the Ru(bpy)$_2$dpzp-Co$_3$O$_4$/CA photocathode

Monolith bulky CA was synthesized via an ambient pressure resorcinol-formaldehyde (RF) drying method. The detailed synthesis process of CA is shown as Scheme S1 in the ESL.† A solvothermal reaction was utilized to synthesize Co$_3$O$_4$/CA. In a 50 mL acetone–water mixture ($V_{acetone}$: V_{water} = 5 : 45), 1.4552 g of Co(NO$_3$)$_2$ 6H$_2$O, 0.2593 g of NH$_4$F, and 1.4019 g of hexamethylenetetramine were added. Magnetic stirring of this mixture for 10 min led to the formation of a pink transparent solution. The solution was then transferred to a Teflon-lined stainless steel autoclave, where one slide of CA (4 \times 1.5 cm2) was located. The solvothermal reaction was conducted at 95 °C for 24 h. After cooling down to room temperature, deposition (pink to violet colour) occurred on the CA. The as-prepared
sample was carefully rinsed with acetone and then dried under vacuum at 60 °C for 2 h, followed by a calcination process in a N₂ atmosphere at 450 °C for 2 h. The ramping rate was 10 °C min⁻¹. After such a calcination process, the Co₃O₄/CA sample was synthesized. The amount of Co₃O₄/CA loading, averaged over the geometric area of the CA, was typically 8 mg cm⁻². A similar procedure was applied for the preparation of the control sample (Co₃O₄/FTO). The loading density of Co₃O₄ on FTO was 5 mg cm⁻².

In order to evaluate the performance of Ru(bpy)₂dppz-Co₃O₄/CA, which was conducted in a home-made H-type cell with a maximum volume of 100 mL. The as-prepared Ru(bpy)₂dppz-Co₃O₄/CA working electrode and the Ag/AgCl (filled with saturated KCl) reference electrode were placed in the cathodic chamber, while the counter electrode, a graphite plate (4 × 1 cm²), was placed in the anodic chamber. The two chambers were connected with 0.1 M NaHCO₃ but separated with a Nafion-117 proton exchange membrane (Dupont). Prior to the experiments, the electrolyte in the cathodic chamber was purged with high-purity CO₂ (99.999%) gas for more than 30 min at a flow rate of 20 mL min⁻¹. Negative potentials (0.0, −0.2, −0.4, −0.6, −0.8, −1.0 V) were applied to the photocathode through the electrochemical workstation. An APLS-SXE300 xenon lamp with a UV cutoff (λ > 420 nm, light intensity at 9 mW cm⁻²) was used as the light source and illuminated on the Ru(bpy)₂dppz-Co₃O₄/CA photocathode upon the addition of negative potential.

After such constant potential photoelectrolysis for 8 h, the reduction products were collected and quantitatively determined by HPLC and GC using the same procedure as described previously. For the products in the aqueous phase, 0.2 mL of the liquid sample was collected and transferred into a 10 mL test tube. The pH of the sample was adjusted to neutral by adding 0.2 mL of pH 7.6 phosphate buffer solution. Subsequently, 2,3,4,5,6-pentafluorobenzyl bromide (20 g L⁻¹, 1.0 mL) was added. The mixture was shaken for 1 min and then kept at 60 °C for another 1 h. The esterification product was extracted with 2.0 mL of n-hexane and centrifuged at 3000 rpm for 5 min. The upper layer was the organic phase, which was filtered through a 0.45 μm membrane. A C18 column was used with a mobile phase consisting of 65% methanol and 35% H₂O at a flow rate of 1.0 mL min⁻¹. The detection wavelength was 225 nm. For gaseous products, 1.0 mL of the gas sample was collected through a syringe. The detection conditions were an injection inlet temperature of 130 °C, an oven temperature of 80 °C, a detector temperature of 150 °C, N₂ carrier gas, and a gas flow rate of 0.2 L min⁻¹.

Prior to an isotopic ¹³C experiment, ¹³CO₂ (¹³C enrichment 98%) was purged into 0.1 M NaH¹³CO₃ (¹³C enrichment 98%) electrolyte solution for at least 30 min in order to fully expel oxygen and other impurity gases. The photoelectrochemical reduction of ¹³CO₂ saturated NaH¹³CO₃ (0.1 M) was identical to the procedure described in the Experimental section, holding the constant potential at −1.2 V vs. Ag/AgCl. Blank experiments using nitrogen purged Na₂SO₄ (0.1 M) were also conducted using an identical procedure. After reduction, 0.5 mL of catholyte solution was mixed with 0.1 mL of D₂O (Sigma Aldrich) containing 0.5 μL of DMSO as the internal standard. A one-dimensional ¹H nuclear magnetic resonance (NMR) spectrum was recorded with water suppression using a pre-saturation method.

Results and discussion

Enhanced CO₂ adsorption

For photoelectrochemical CO₂ conversion, the surface concentration of CO₂ on the photocathode, namely, CO₂ fixation, is a
chief concern. A high surface concentration of CO₂ on the photocathode accelerates the photoelectrochemical kinetics. Herein, the surface concentration of CO₂ (I_{ads}), the normalized amount of adsorbed CO₂ with the electrochemical active surface area (S_{EASA}), was adopted as the parameter to evaluate the efficiency of CO₂ fixation on the photocathodes.

The results in Table S1 (ESI†) demonstrate the advantage of using a CA substrate for CO₂ fixation. This statement is further supported by the EQCM results of CA in a CO₂-saturated electrolyte under negative potentials, as shown in Fig. S1 (ESI†). The mass addition is 6–10 times heavier on activated CA than that on an Au electrode. For example, at −0.4 V, a mass addition of 174 ng cm⁻² was obtained on a CA substrate, whereas it was barely observed on an Au quartz substrate. At −0.6 V, the mass addition on the CA substrate was 8.2-fold larger than that on the Au quartz substrate. At −0.9 V, the mass addition reached 143.5 ng cm⁻² on the CA substrate. When the applied potentials were more negative than −0.9 V, the mass addition on the CA substrate was even larger than that on the Au quartz substrate. CA is not capable of reducing CO₂ electrochemically; thus, the mass addition on the CA substrate is mainly ascribed to the promoted electro-sorption of carbonaceous species (e.g., CO₂ and HCO₃⁻) from the electrolyte. The carbonaceous species are significantly promoted because the micropores contributed a high Brunauer–Emmett–Teller surface area (S_{BET}) of up to 1815 m² g⁻¹ (Fig. S2, ESI†).

This high S_{BET} offers numerous sites for CO₂ adsorption, as indicated by Fujishima et al. and Yaghi et al., as CO₂ molecules tend to be adsorbed in the micropores of a material. This value is also higher than that of common porous carbon materials, such as ordered mesoporous carbon (812.3 m² g⁻¹), commercially available Vulcan (237.9 m² g⁻¹) and carbon nanocoil (233 m² g⁻¹). The superior performance of CA supports the notion that CO₂ adsorption on other high-surface-area carbon materials (e.g., activated carbon, carbon nanotubes) might result from the following aspects. First, the microporous feature of CA (Fig. S2, ESI†) offers numerous sites for CO₂ adsorption. Second, the activated CA possesses a relatively high surface area (1815 m² g⁻¹), which provides many sites for CO₂ loading. According to our measurements, the CO₂ loading amount was increased to 8 mg cm⁻² compared to 5 mg cm⁻² on FTO. The S_{EASA} of Co₃O₄/CA of 713 m² g⁻¹ (Fig. S2a, ESI†) is considerably higher than that of commonly designed porous inorganic semiconductor electrodes. This result is further supported by the well-maintained micropore domination of the electrode (Fig. S2b, ESI†). Based on the voltammetry (Fig. S3, ESI†) and chronocoulometry (Fig. S4, ESI†) for Co₃O₄/CA, I_{ads} exhibits a 20-fold increment (0.25 pmol cm⁻²) compared to that (0.01 pmol cm⁻²) of Co₃O₄/FTO. The electrochemically active surface area (S_{EASA}) was determined to be 8015 cm² (Table S1, calculated from Fig. S5, ESI†) with respect to that of Co₃O₄/FTO (316 cm²). Experimental tests on the effects on CO₂ fixation of other porous carbon-based substrates are currently in progress.

As shown in the scanning electron microscopic (SEM) images of Co₃O₄/CA (Fig. S6, ESI†), the CA backbone is clearly visible even after the solvothermal growth of Co₃O₄ microflowers. The XRD patterns of both CA and Co₃O₄ in Co₃O₄/CA can also be clearly observed (Fig. S7, ESI†). In other words, such an epitaxial growth pattern fully exposes the adsorption sites to CO₂, which results in an increase in the I_{ads} for CO₂. Moreover, the 3D structure of CA allows for the penetration of electrolytes into the pores of the electrode, leading to an increase in the interfacial area between the electrode and the electrolyte. Finally, CA possesses a high conductivity (electrical resistivity < 40 mΩ), similar to those of carbon nanotubes and graphene.

I_{ads} further increases to 3.79 pmol cm⁻² when Co₃O₄/CA is coated with a molecular catalyst, Ru(bpy)₂dppz, which is 15.2 and 300 times larger compared to those on Co₃O₄/CA and Co₃O₄/FTO, respectively. However, the S_{EASA} of Co₃O₄/CA is approximately 4 times larger than that of Ru(bpy)₂dppz/Co₃O₄/CA, likely due to the blockage of Co(ii) active sites by immobilized Ru(bpy)₂dppz during the chemical polymerization. Nonetheless, the active area of this electrode is maintained at 1.64 × 10⁻² cm² (Table S1 and Fig. S3, ESI†). The existence of the Ru(bpy)₂dppz molecular catalyst promotes CO₂ fixation on the photocathode with an enhancement factor of 300. I_{ads} was also normalized by the catalyst weight (Table S1, ESI†) and exhibited the same trends as that normalized by S_{EASA}. Hence, the enhancement of CO₂ adsorption and photoelectrochemical density is in fact the synergistic effect of multiple factors: the electro sorption from the CA substrate, the Co(ii) sites from the high index faceted Co₃O₄ on CA and the electrochemical activity of Ru(bpy)₂dppz. These results confirm that CA, Co₃O₄ and Ru(bpy)₂dppz co-promote CO₂ fixation and lead to a high CO₂ surface concentration on such an interface. Thus, accelerated kinetics are expected for photoelectrochemical CO₂ conversion.

Photoelectrochemical CO₂ conversion

The reactivity of Ru(bpy)₂dppz as a homogenous catalyst toward electrochemical CO₂ conversion was first studied in CO₂-saturated NaHCO₃ solution. As shown in Fig. S8 (ESI†), the CO₂ reduction potential remains at −0.40 V in the current aqueous solution, which is at least 950 mV more positive than those reported in organic solvents. This is the first time that a molecular catalyst, polybipyridyl Ru(n), was observed to convert/reduce CO₂ at such a low potential, indicating the high electron transfer ability of Ru(bpy)₂dppz toward CO₂ conversion.

CO₂ conversion on Ru(bpy)₂dppz-Co₃O₄/CA was investigated in detail using a potentiodynamic mode. As seen in Fig. 1a, CO₂ conversion/reduction occurs at an onset potential of −0.45 V under photoelectrochemical conditions (red line). This potential is an “underpotential” of approximately 160 mV with respect to the thermodynamic redox potential for CO₂ to formic acid. The peak potential is approximately −0.61 V, considerably lower than other reported values, e.g., −1.33 V on p-Cu₂O immobilized by Re(Ru-bipy)₂(CO)₃Cl₂ and −0.6 V on p-InP-Zn decorated by [Ru(decbpy)₂(CO)]₂n. On Co₃O₄/CA, the reduction potential is approximately −0.62 V with an onset potential of −0.52 V under photoelectrochemical conditions (dashed lines). Moreover, a second peak appears at −0.73 V. On Co₃O₄/FTO, the onset potential is −0.67 V (dotted lines), indicating an entirely
different photoelectrochemical reduction pathway. The positive shift of the CO₂ reduction potential on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA is likely due to the increased surface concentration of CO₂ and the catalytic role of Ru(bpy)$_2$dpdz. Based on these peak potentials, the heterogeneous electron transfer rate constant (k_e) for CO₂ reduction was calculated using a method provided in the literature. k_e is 2.94 × 10$^{-3}$ cm2 s$^{-1}$ for Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA, which is 26% larger than that (2.19 × 10$^{-3}$ cm2 s$^{-1}$) for Co$_3$O$_4$/CA.

This higher k_e value suggests an accelerated and enhanced electron transfer on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA. Such a method to evaluate the efficiency of CO₂ conversion is entirely new. According to our knowledge, this method has not been presented in the literature to date. Considering the CO₂ reduction potential and k_e on both electrodes, the catalytically active centre for CO₂ reduction is Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA, not Co(III). This statement is further demonstrated from the Tafel plots described below.

The current density reaches approximately 8.1 mA cm$^{-2}$ on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA, which is considerably more intense than sole Ru(bpy)$_2$dpdz and those reported using similar molecular catalyst–semiconductor composites. For instance, on Ru(dcbpy)$_2$(CO)$_3$/p-InP and CO-dehydrogenase/p-NiO, the photocurrent density reached only the level of μA cm$^{-2}$ at similar potentials. A photocurrent density larger than −2.0 mA cm$^{-2}$ was obtained on a Re(bu-bpy)(CO)$_3$/Cl/Cu$_2$O photocathode, but a potential of −2.0 V was applied. So, photoelectrochemical CO₂ conversion on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA occurs at a low overpotential but with a high photocurrent density.

The current densities shown in this paper were obtained using the geometric areas of the electrodes. Due to their porous structures, CA-based photoelectrodes will have a higher S_{EASA} value. Their S_{EASA} values were determined using surface-sensitive redox probes of Fe(CN)$_6^{3-}/4-$ (Table S1 and Fig. S3, ESI†). A 2.7-fold enhancement was observed after loading the same amount of Co$_3$O$_4$ onto FTO. The current densities were then re-calculated using their S_{EASA} values. The magnitude of the current densities followed the same trend, namely, in the order of Co$_3$O$_4$/FTO < Co$_3$O$_4$/CA < Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA, the same as that obtained from the current densities normalized by the geometric area. To compare our results with those obtained using other porous materials presented in the literature, the current densities shown throughout the paper were then calculated using the geometric areas of the photoelectrodes, the most frequently applied approach for electrochemical and photoelectrochemical CO₂ reduction.

Fig. 1b shows the LSVs on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA in 0.1 M NaHCO$_3$ solution purged with N$_2$ or CO$_2$. The pH value of 0.1 M NaHCO$_3$ is in the range of 8.3–8.5 after being purged with N$_2$. Once it was saturated with CO$_2$, the pH value decreased to the range of 6.5–7.0. Such a weak acidic environment provides a favourable protic environment for CO₂ reduction using a Ru(bpy)$_2$dpdz catalyst. Notably, the peak potential for CO₂ reduction is 50 mV more positive than that of its N$_2$-purged counterpart, with the peak current density doubled. These results confirm the involvement of protons in CO₂ reduction.

The current density increases with (dashed line)/without (dash-dotted line) light irradiation, and CO2 - saturated 0.1 M Na$_2$SO$_4$ at a potential of 0.40 V. The lines were shifted in the Y-axis direction for comparison.

Fig. 1b shows the LSVs on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA in 0.1 M NaHCO$_3$ solution purged with N$_2$ or CO$_2$. The pH value of 0.1 M NaHCO$_3$ is in the range of 8.3–8.5 after being purged with N$_2$. Once it was saturated with CO$_2$, the pH value decreased to the range of 6.5–7.0. Such a weak acidic environment provides a favourable protic environment for CO₂ reduction using a Ru(bpy)$_2$dpdz catalyst. Notably, the peak potential for CO₂ reduction is 50 mV more positive than that of its N$_2$-purged counterpart, with the peak current density doubled. These results confirm the involvement of protons in CO₂ reduction.

An amperometric photocurrent response was further investigated at a fixed potential of −0.40 V. As shown in Fig. 1c, the steady photocurrent density reaches approximately 1.5 mA cm$^{-2}$
on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA, with a stabilizing time of only 40 s, whereas on Co$_3$O$_4$/CA, the peak photocurrent intensity decreases by approximately 7 times compared to Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA. However, the peak photocurrent intensity is 8–10 times higher than that on Co$_3$O$_4$/FTO. The stabilization times for Co$_3$O$_4$/CA and Co$_3$O$_4$/FTO are 150 and 200 s, respectively. The potentiodynamic voltammograms in 0.1 M Na$_2$SO$_4$ also reflected that Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA showed a distinguished photoelectrochemical activity. The difference between the photocurrent (j_{PEC}) and dark current (j_{EC}), denoted as $j_{\text{PEC}} - j_{\text{EC}}$, is summarized in Fig. S10 (ESI†). $j_{\text{PEC}} - j_{\text{EC}}$ is approximately 10 times higher on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA than on FTO. This result could be explained by several reasons. First, the {121} crystal facet of Co$_3$O$_4$ (with an inter-planar spacing of 0.286 nm) being finely exposed (Fig. S11, ESI†), which enriches triply uncoordinated Co(II) sites. Such a high-index-facet Co$_3$O$_4$ facilitates the photoelectrochemical reduction of CO$_2$, as our previous work has indicated. 4 Second, the epilayer growth manner of high-index-facet Co$_3$O$_4$ on CA provided a direct electron transfer channel. Photo-induced holes could rapidly transfer to the highly conductive CA network. Electrons and holes are efficiently separated. Finally, the ingenious merging of photocatalysis and electrocatalysis on a single surface has been found to efficiently separate the photo-induced carriers, resulting in a reduction of the overpotential for CO$_2$ conversion. 2,4 The applied negative potential creates a more upward bending for Co$_3$O$_4$, a p-type semiconductor. Then, the driving force for photoelectrons to cross the semiconductor–electrolyte junction is enlarged, resulting in an enhanced photocurrent density. In the meantime, the light-induced upward band-bending of Co$_3$O$_4$/CA lifts the Fermi level, which compensates part of the required applied negative potential under dark conditions, yielding a reduced overpotential for CO$_2$ reduction. All of these effects reveal the essential role of Co$_3$O$_4$ as the photoelectrocatalyst in a photoelectrochemical strategy for CO$_2$ conversion.

Comparing the cyclic voltammograms of different photoelectrodes, the lowest overpotential and the highest photocurrent density for CO$_2$ conversion were obtained on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA. Apart from the respective contributions from the enhanced adsorption on CA and distinguished photoelectrochemical properties of Co$_3$O$_4$/CA, the molecular catalyst Ru(bpy)$_2$dpdz also exhibits excellent electrochemical reductive activity toward CO$_2$ reduction, as suggested by the above-mentioned j_{PEC}. The synergistic effect among those effects exerted on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA has superiority in magnifying the photocurrent density, reducing the overpotential, and accelerating and regulating the electron transfer pathway for the photoelectrochemical CO$_2$ reduction process.

The photoelectrochemical CO$_2$ conversion on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA was further studied in CO$_2$-saturated 0.1 M NaHCO$_3$ by varying the applied potential. Its variation with the potentials applied is summarized in Fig. 2a. The amplitude of j(CO$_2$)−j(N$_2$) increases when the potential is more negative, following the order of CO$_3$O$_4$/FTO < Co$_3$O$_4$/CA < Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA. A sharp increase in the amplitude of j(CO$_2$)−j(N$_2$) occurs at −0.4 V. At a reduction potential of −0.6 V, the net photocurrent reaches −0.35 mA cm$^{-2}$. This value is twice as high as that on Co$_3$O$_4$/CA and nearly 10 times higher than that on Co$_3$O$_4$/FTO.

Under identical photoelectrolysis conditions, the yield rate of formate on these four photocathodes is in the order of Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA > Co$_3$O$_4$/CA > Ru(bpy)$_2$dpdz/Co$_3$O$_4$/CA > Co$_3$O$_4$/FTO at the same applied potentials, as shown in Fig. 2b. For example, 869.8 µmol formate was produced at a potential of −0.6 V on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA. This value is considerably higher than that presented previously (384 µmol) on hierarchical Co$_3$O$_4$, even at −0.7 V. 5 If the electrode area is considered, the predicted yield rate of formate on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA is approximately 450 µmol cm$^{-2}$ at the onset potential of −0.45 V under photoelectrochemical conditions. At −0.7 V, the yield rate of formate reaches approximately 900 µmol cm$^{-2}$. Considering the reduction time span further, the yield rate of formate reaches nearly 110 µmol cm$^{-2}$ h$^{-1}$, even at a reduction potential of −0.6 V. The yield rate of formate on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA is higher than most reported values, e.g., nearly 29-, 5.2-, and 2-fold higher than that on Ru(II)–Re(i) multinuclear complexes, 22 Ru(II) electro-polymerized p-InP–Zn, 24 and Cu$_2$ZnSnS$_4$ 35 respectively. The estimated Faradaic efficiency for the yield of formate is approximately 86%, which is comparable to that on semiconductor–molecular photocatalytic systems as well as on other semiconductor-based photocatalytic systems, such as Mg-doped CuFeO$_3$ 3 and Au/ZnO/ZnTe. 5 Notably, formate yield rates on the Ru(bpy)$_2$dpdz/Co$_3$O$_4$/CA were lower than that on the Co$_3$O$_4$/CA at each investigated potential, the reason is described below.
To confirm the carbon source for the reduction product of formate, isotopic measurements were conducted using 13CO$_2$-saturated NaH13CO$_3$ (0.1 M) electrolyte solution. Control experiments were also performed in N$_2$-purged Na$_2$SO$_4$ (0.1 M) solutions. These related 1H-NMR spectra are shown as Fig. 2c. The spectrum obtained from the N$_2$-purged Na$_2$SO$_4$ (0.1 M) solutions is featureless (Fig. 2c-I) in the chemical shift range of 9.2 to 7.7, indicating that no formate is produced when no carboxenone species (e.g., CO$_2$, HCO$_3^-$) are present. In Fig. 2c-II, a singlet peak at the chemical shift value of 8.42 is detected, likely resulting from the yield of HCOO$^-$ from CO$_2$-saturated NaHCO$_3$. When 13CO$_2$-saturated NaH13CO$_3$ solution is used, a doublet peak is shown at the chemical shift values of 8.64 and 8.25 (Fig. 2c-III). This doublet peak indicates the production of H13COO$^-$. In other words, formate is obtained from the 13C species in the electrolyte rather than from the impurities in the electrolyte or on the surface of the photocathode. Photoelectrochemical CO$_2$ reduction thus occurs on the adsorption-enhanced molecular catalysis–semiconductor hybrid interface.

Table 1 TON and TOF compared to results presented in the literature

Catalyst	Condition	TON (TOF)
Ru[bpy]$_2$dpzp-Co$_3$O$_4$/CA	0.6 V vs. NHE, 9 mW cm$^{-2}$ Xe lamp, 8 h	978.7 (122)
Ru[bpy-HPO$_2$]/(CO)$_2$Cl$_2$-C$_2$N$_4$	400 W Hg lamp (λ > 400 nm), 20 h	HCOO$^-$
Ru[bpy]$_2$-(CH$_2$)$_2$-Re(CH$_2$-bpy)[CO]$_2$Cl	Hg lamp (λ > 500 nm), 24 h	HCOOH
Ru(H$_2$PO$_6$-C$_2$H$_4$-bpy)/N-Ta$_2$O$_5$ mpg C$_3$N$_4$	450 W Hg lamp (λ > 400 nm), 20 h	HCOOH
InP[MCE2-A + MCE4]	AM 1.5G, 24 h	HCOOH \geq 17 (0.7)
Ru(dcbpy)/N-Ta$_2$O$_5$	Xe lamp (410 $< \lambda < 750$ nm), 20 h	HCOO$^-$
NIO-RuRe complex	-1.2 V vs. Ag/AgCl, 300 W Xe lamp, 5 h	CO
Zn–TPP–Re complex	200 W Hg lamp, λ > 375 nm, 50 h	CO
Re[bpy][CO]$_2$Cl$_2$	-1.25 V vs. SHE, 14 h	CO
[CoCLRCl][ClO$_4$]	LED light strip (λ > 460 nm), 22 h	CO

The hydrogen evolution potentials were further estimated based on the potential-dependent hydrogen evolution profiles shown in Fig. 2b and Fig. S12a–d (ESI†). The potentials on Ru[bpy]$_2$dpzp-Co$_3$O$_4$/CA, Co$_3$O$_4$/CA, Ru(bpy)$_2$dpzp/CA and Co$_3$O$_4$/FTO are -0.6 V vs. NHE, -0.7 V and -0.9 V vs. NHE, respectively. However, there are no clear cathodic peaks shown in Fig. 1 for hydrogen evolution because the [Ru(n)] centre on the molecular catalyst Ru(bpy)$_2$dpzp has fully coordinated to the nitrogen atoms from two 2,2′-bipyridine and dpzp ligands. Then, both the bipyridine ligand and dpzp are not able to dissociate from Ru(n) during the electrochemical processes. In other words, there will be no opportunity to generate any catalytic wave for hydrogen evolution. These results indicate that this unwanted reaction has not been involved in our system during CO$_2$ reduction. Thus, an improved conversion efficiency and high selectivity are expected.

The stability of the proposed photoelectrocatalytic interface was examined by recording the XRD patterns and cyclic voltammograms of Ru[bpy]$_2$dpzp-Co$_3$O$_4$/CA before and after a long-term photoelectrochemical CO$_2$ reduction. The XRD patterns of both CA and Co$_3$O$_4$ do not vary after the 8 h photoelectrochemical reduction of CO$_2$ (Fig. S13, ESI†). The peak current density of Ru[bpy]$_2$dpzp-Co$_3$O$_4$/CA is slightly enhanced after 100 cycles of cyclic voltammetry (Fig. S14, ESI†). These facts confirm the high stability of our molecular catalyst–semiconductor-assembled photocathode.

The underlying mechanism of such a synergetic effect, the high selectivity for formate and its relation to the photoelectrochemical CO$_2$ reduction is discussed. Prior to this discussion, the interfacial energetics between the two components were analysed. The bandgap (Fig. S15, ESI†) and the flat-band potential (Fig. S16, ESI†) of Co$_3$O$_4$/CA were estimated to be 1.87 V and 0.37 V, respectively.

The TON value was increased with the negative shift of the potential. Table 1 summarizes the comparable TON values for both CA and Co$_3$O$_4$ do not vary after the 8 h photoelectrochemical reduction of CO$_2$ (Fig. S13, ESI†). The peak current density of Ru(bpy)$_2$dpzp-Co$_3$O$_4$/CA is higher than those of Co$_3$O$_4$/CA. Among these, the high stability of our molecular catalyst–semiconductor hybrid interface.

The stability of the proposed photoelectrocatalytic interface was examined by recording the XRD patterns and cyclic voltammograms of Ru(bpy)$_2$dpzp-Co$_3$O$_4$/CA before and after a long-term photoelectrochemical CO$_2$ reduction. The XRD patterns of both CA and Co$_3$O$_4$ do not vary after the 8 h photoelectrochemical reduction of CO$_2$ (Fig. S13, ESI†). The peak current density of Ru(bpy)$_2$dpzp-Co$_3$O$_4$/CA is slightly enhanced after 100 cycles of cyclic voltammetry (Fig. S14, ESI†). These facts confirm the high stability of our molecular catalyst–semiconductor-assembled photocathode.

The underlying mechanism of such a synergetic effect, the high selectivity for formate and its relation to the photoelectrochemical CO$_2$ reduction is discussed. Prior to this discussion, the interfacial energetics between the two components were analysed. The bandgap (Fig. S15, ESI†) and the flat-band potential (Fig. S16, ESI†) of Co$_3$O$_4$/CA were estimated to be 1.87 V and 0.37 V, respectively.

The TON value was increased with the negative shift of the potential. Table 1 summarizes the comparable TON values for both CA and Co$_3$O$_4$ do not vary after the 8 h photoelectrochemical reduction of CO$_2$ (Fig. S13, ESI†). The peak current density of Ru(bpy)$_2$dpzp-Co$_3$O$_4$/CA is higher than those of Co$_3$O$_4$/CA. Among these, the high stability of our molecular catalyst–semiconductor hybrid interface.

The stability of the proposed photoelectrocatalytic interface was examined by recording the XRD patterns and cyclic voltammograms of Ru(bpy)$_2$dpzp-Co$_3$O$_4$/CA before and after a long-term photoelectrochemical CO$_2$ reduction. The XRD patterns of both CA and Co$_3$O$_4$ do not vary after the 8 h photoelectrochemical reduction of CO$_2$ (Fig. S13, ESI†). The peak current density of Ru(bpy)$_2$dpzp-Co$_3$O$_4$/CA is slightly enhanced after 100 cycles of cyclic voltammetry (Fig. S14, ESI†). These facts confirm the high stability of our molecular catalyst–semiconductor-assembled photocathode.

The underlying mechanism of such a synergetic effect, the high selectivity for formate and its relation to the photoelectrochemical CO$_2$ reduction is discussed. Prior to this discussion, the interfacial energetics between the two components were analysed. The bandgap (Fig. S15, ESI†) and the flat-band potential (Fig. S16, ESI†) of Co$_3$O$_4$/CA were estimated to be 1.87 V and 0.37 V, respectively.
Provided that the valence band of Co$_3$O$_4$ is 0.1 V more positive than the flat band potential, the valence band of Co$_3$O$_4$ was estimated to be 0.47 V. So the conduction band of Co$_3$O$_4$/CA was estimated to be -1.40 V vs. NHE ($E_F = [E_{CB} - E_{CB}]$). In contrast, the energy difference between the HOMO and the LUMO for Ru(bpy)$_2$dpzp is approximately 2.29 eV, as calculated using the intersection wavelength at 540.8 nm from its normalized UV-vis and fluorescence spectra in acetonitrile (ESI†). According to the Ru(II)/Ru(III) redox potential (Fig. S17b, ESI†), the LUMO energy level of Ru(bpy)$_2$dpzp was calculated to be -0.71 V. Ru(bpy)$_2$dpzp’s LUMO energy level is then 0.69 V more positive than the conduction band of Co$_3$O$_4$/CA. Therefore, the photo-induced electrons on Co$_3$O$_4$ transfer to the LUMO of the molecular catalyst, as confimed by various reports.24,32,35,40,41 Although the value of the conduction band LUMO of the molecular catalyst, as confirmed by various spectroelectrochemical spectra (Fig. 3a), the upward IR peaks at 1419 and 1446 cm$^{-1}$, assigned to the A1 mode of the C–C–H deformation bending vibration on bpy* and dpzp*,50,51 validate such a statement. A relatively strong broad upward peak at 1716 cm$^{-1}$ displays the same trend. This peak likely arises from the stretching of C–O from the as-formed formates.52,53 These facts suggest that the electrons are transferred from the excited Co$_3$O$_4$ to Ru(bpy)$_2$dpzp, and then take part in photoelectrochemical CO$_2$ reduction. As a result of such a photo-induced electron transfer to the LUMO of Ru(bpy)$_2$dpzp, CO$_2$ conversion/reduction occurs in the adsorptive substrate CA, the photocatalyst Co$_3$O$_4$ and the molecular catalyst Ru(bpy)$_2$dpzp-Co$_3$O$_4$/CA, exactly as illustrated in Scheme 1. Such an electron transfer process is the core of such an interface. Note that Ru(bpy)$_2$dpzp in its activated form is capable of reducing CO$_2$ into formate with a two-electron process. The potential of its singly reduced form, Ru(bpy)$_2$(dpzp*), is -0.95 V vs. NHE in MeCN.38 Its doubly reduced state, Ru(bpy)$_2$(bpy*)$_2$(dpzp*), is possible to be obtained by merging Ru(bpy)$_2$dpzp and Co$_3$O$_4$. This is because the electrons at the conduction band of Co$_3$O$_4$ bear only an energy of -1.40 V. In the presence of Co$_3$O$_4$, the formation of a band-alignment interface based on Ru(bpy)$_2$dpzp and Co$_3$O$_4$ allows the direct injection of photo-induced electrons to the LUMO of Ru(bpy)$_2$dpzp, which greatly suppresses the quenching of the molecular catalyst in the pure water phase.49 Eventually, the photocatalytic activity of Ru(bpy)$_2$dpzp is remarkably improved. This is further supported by the fact that the rate yield of formate, along with the TON/TOF values of the Ru(bpy)$_2$dpzp-Co$_3$O$_4$/CA after 8 h of reduction was almost 20 times higher than that on the Ru(bpy)$_2$dpzp/CA (Fig. 2b). And on the basis of the Marcus–Gerischer model,54,55 the negative bias applied to the Ru(bpy)$_2$dpzp-Co$_3$O$_4$/CA (circles) and Co$_3$O$_4$/CA (squares) at a scan rate of 50 mV s$^{-1}$ all of these electrochemical measurements were conducted in CO$_2$-saturated 0.1 M NaHCO$_3$. It also noteworthy that the absence of the stretching vibrations of Ru–H, N–H, and C–H in the IR spectra indicates that the protons are not directly bonded to Ru(bpy)$_2$dpzp.56,57 A broad peak at approximately 3691 cm$^{-1}$ emerges from the featureless IR spectra when the applied potential is higher than -0.6 V vs. NHE (Fig. 3a).
This newly emerged upward peak is assigned to the stretching vibration of a non-hydrogen bonded hydroxyl. Water molecules are attracted and nearly dissociate from their bulky form due to the existence of localized electrons on the bpy ligand in Ru(bpy)$_2$dpdz, thus causing the appearance of the peak at 3691 cm$^{-1}$. Hydrodynamic voltammograms using rotating glassy carbon disk electrodes were recorded using the electrode coated with Ru(bpy)$_2$dpdz (Fig. S18a, ESI†) and Co$_3$O$_4$ (Fig. S18b, ESI†). Fig. 3b shows the related Koutecky–Levich plot for the electrode coated with Ru(bpy)$_2$dpdz, indicating its non-linear features. This non-linearity is quite helpful for CO$_2$ conversion in that it indicates that CO$_2$ and the surrounding water fix into the outer sphere of Ru(bpy)$_2$dpdz, apart from its diffusion and surface reaction with Ru(bpy)$_2$dpdz under hydrodynamic conditions.58

Taking a Langmuir–Hinshelwood bimolecular reaction mechanism as a model,59 these results clearly confirm the enzyme-mimicking role of the molecular catalyst, Ru(bpy)$_2$dpdz, for CO$_2$ conversion. In contrast, a linear reaction is observed on the electrode coated with Co$_3$O$_4$ (Fig. S18c, ESI†), indicating different electrokinetics between Co$_3$O$_4$ and Ru(bpy)$_2$dpdz.

The rate-determining step of the CO$_2$ conversion was estimated through Tafel analysis (Fig. 3c). For Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA, a Tafel slope of 145 mV dec$^{-1}$ is determined. Due to the porous feature of CA, it is slightly deviated from its classical value of 118 mV dec$^{-1}$.60,61 Therefore the rate-determining step of photoelectrochemical CO$_2$ conversion on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA is the single electron transfer step rather than the proton transfer step. This result is in agreement with our previous study regarding the electrokinetics between Co$_3$O$_4$ and Ru(bpy)$_2$dpdz.62

This finding also supports the notion that the protonation of the reaction intermediate occurs rapidly in CO$_2$-saturated solution. Namely, faster electrode kinetics for CO$_2$ conversion were obtained with the help of Ru(bpy)$_2$dpdz. In contrast, a Tafel slope of 191 mV dec$^{-1}$ is observed for Co$_3$O$_4$/CA, which originates from the porous structure of CA and is indicative of its slow photoelectrochemical kinetics in the absence of Ru(bpy)$_2$dpdz. In addition, the activation energy of the CO$_2$ reduction in our system, defined as the energy required to activate CO$_2$ into its radicals,$^{62-64}$ was calculated to be 1.047 kJ mol$^{-1}$ (see the ESI† for details). This value is presented for the first time in this study and therefore further density functional-based theoretical calculations are required to confirm this value.

Based on the above analysis, the activation of Ru(bpy)$_2$dpdz is accomplished only by the photoelectrochemical process from the irradiated Co$_3$O$_4$/CA. Ru(bpy)$_2$dpdz is actually “catalysed” by Co$_3$O$_4$/CA rather than merely an electron conductor. Therefore, the reduction performance is markedly enhanced with the assistance of the photoelectrocatalyst of Co$_3$O$_4$. Therefore, as schematically shown in Scheme 1, the possible pathways for CO$_2$ conversion on Ru(bpy)$_2$dpdz-Co$_3$O$_4$/CA involve the transfer and mediation of electrons, protons, and the activated form of Ru(bpy)$_2$dpdz.

Conclusions

In summary, an adsorption-enhanced Co$_3$O$_4$/Ru(bpy)$_2$dpdz hybrid photoelectrocatalytic interface has been established. The CO$_2$ adsorption is remarkably increased through the utilization of a high-surface-area and micropore-dominated carbon aerogel substrate. The epitauch growth of high-index-facet Co$_3$O$_4$ along with the intrinsic highly conductive network of the carbon aerogel enables an elevated electron transfer rate with the assistance of a molecular catalyst of Ru(bpy)$_2$dpdz. Eventually, such an interface bears a unique proton-coupled electron-transfer reactivity and rapid electron kinetics toward CO$_2$ reduction. Through the simultaneous activation of the bpy and dppz ligands of the Ru(n) molecular catalyst, the photoelectrochemical conversion of CO$_2$ to formate has been realized on such a photocathode with an onset potential as low as -0.45 V vs. NHE. At a potential of -0.6 V vs. NHE, the yield rate of formate reaches approximately 110 μmol cm$^{-2}$ h$^{-1}$, with a selectivity of 99.95% and a Faradaic efficiency of 86%. The mechanism of such a rapid photoelectrochemical electron transfer process is explained as the synergistic effect of the photoelectrochemical activation of bpy and dppz inside Ru(bpy)$_2$dpdz as well as the remarkably promoted CO$_2$ adsorption on Co$_3$O$_4$/CA. Although future work on the effect of the morphology of Co$_3$O$_4$/CA (e.g., the size, facets, and shape of Co$_3$O$_4$ on CA) and the loading amount of Co$_3$O$_4$/CA (e.g., distribution and density) as well as the light density on the efficiency of the CO$_2$ conversion must be conducted, such an adsorption-enhanced molecular catalytic photoelectrocatalytic interface has potential for application in the production of useful chemicals from CO$_2$ carbon stock in the future.

Acknowledgements

The authors acknowledge Dr Sanjun Zhang (State Key Laboratory of Precision Spectroscopy, East China Normal University) for his assistance with spectral data analysis and discussion on the electron transfer mechanism. G. Z. acknowledges the financial support from the National Natural Science Foundation of China (NSFC) under projects No. 21537003 and 21477085. N. Y. acknowledges the financial support from the German Research Foundation (DFG) under project YA344/1-1.

Notes and references

1. N. J. Brown, C. A. Newell, S. Stanley, J. E. Chen, A. J. Perrin, K. Kajala and J. M. Hibberd, *Science*, 2011, 331, 1436.
2. Q. Shen, Z. Chen, X. Huang, M. Liu and G. Zhao, *Environ. Sci. Technol.*, 2015, 49, 5828.
3. J. Gu, A. Wuttig, J. W. Krizan, Y. A. Hu, Z. M. Detweiler, R. J. Cava and A. B. Bocarsly, *J. Phys. Chem. C*, 2013, 117, 12415.
4. X. F. Huang, T. C. Cao, M. C. Liu and G. H. Zhao, *J. Phys. Chem. C*, 2013, 117, 26432.
5. J.-W. Jang, S. Cho, G. Magesh, Y. J. Jang, J. Y. Kim, W. Y. Kim, J. K. Seo, S. Kim, K.-H. Lee and J. S. Lee, *Angew. Chem., Int. Ed.*, 2014, 53, 5852.
6. J. L. White, M. F. Baruch, J. E. Pander, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan,
59 Y. Kiya, O. Hatozaki, N. Oyama and H. D. Abruna, *J. Phys. Chem. C*, 2007, **111**, 13129.

60 Y. H. Chen and M. W. Kanan, *J. Am. Chem. Soc.*, 2012, **134**, 1986.

61 J. N. Soderberg, A. C. Co, A. H. C. Sirk and V. I. Birss, *J. Phys. Chem. B*, 2006, **110**, 10401.

62 S. Antonello, M. Musumeci, D. D. M. Wayner and F. Maran, *J. Am. Chem. Soc.*, 1997, **119**, 9541.

63 S. Antonello and F. Maran, *J. Am. Chem. Soc.*, 1999, **121**, 9668.

64 C. Ji, M. Ahmida, M. Chahma and A. Houman, *J. Am. Chem. Soc.*, 2006, **128**, 15423.