Information geometry in cosmology

Eileen Giesel,a Robert Reischke,a,b,c,d Björn Malte Schäfer,d and Dominic Chiaa

aAstronomisches Rechen-Institut, Zentrum für Astronomie der Universitäit Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany
bInstitut für Kernphysik, Karlsruher Institut für Technologie, 76344 Eggenstein-Leopoldshafen, Germany
cDepartment of Physics, Technion, Haifa 32000, Israel
dDepartment of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra’anana 4353701, Israel

E-mail: e.giesel@stud.uni-heidelberg.de, r.reischke@technion.ac.il

\textbf{Abstract.} Statistical inference more often than not involves models which are non-linear in the parameters thus leading to non-Gaussian posteriors. Many computational and analytical tools exist that can deal with non-Gaussian distributions, and empirical Gaussianisation transforms can reduce the amount of non-Gaussianity in a distribution. Alternatively, in this work, we employ methods from information geometry. The latter formulates a set of probability distributions for some given model as a manifold employing a Riemannian structure, equipped with a metric, the Fisher information. In this framework we study the differential geometrical meaning of non-Gaussianities in a higher order Fisher approximation, and their respective transformation behaviour under re-parameterisation, which corresponds to a chart transition on the statistical manifold. While weak non-Gaussianities vanish in normal coordinates in a first order approximation, one can in general not find transformations that discard non-Gaussianities globally. As an application we consider the likelihood of the supernovae distance-redshift relation in cosmology for the parameter pair (Ω_m, w). We demonstrate the connection between confidence intervals and geodesic length and demonstrate how the Lie-derivative along the degeneracy directions gives hints at possible isometries of the Fisher metric.

\textbf{Key words:} Fisher Approximation - Information Geometry - Gram-Charlier Series - Non-Gaussianities
Contents

1 Introduction 1

2 Concepts of information geometry 3
 2.1 Statistical manifold 3
 2.2 Divergences and invariant metric 3
 2.3 Connection and cubic tensor 4
 2.4 Integration on manifolds 6

3 Gaussianisation from an information geometric viewpoint 6
 3.1 Weak non-Gaussianites in the Gram-Charlier-limit: A first approach 7
 3.2 Curvature, Gaussianisation and the DALI expansion 8

4 An illustrative example: The Supernovae likelihood 10
 4.1 The invariant metric 10
 4.2 Differential geometric quantities 10

5 Summary 14

A Remarks on the multivariate Gram-Charlier series 15

B Multivariate Hermite polynomials 16

1 Introduction

Any predictive physical model contains a set of finitely many parameters which need to be determined by experiment. These parameters can be both physical parameters of interest, or nuisance parameters taking care of e.g. instrumental systematics which will eventually be marginalised. In cosmology, these physical parameters can be, for example, the matter density Ω_m, the Hubble-Lemaître constant h, or the dark energy equation of state w. Depending on the construction of the model, the measurement method and the data volume, a cosmological model can be constrained to a certain domain in parameter space which might or might not be well approximated to be a linear space.

Both in a Bayesian as well as in a Frequentist framework the central object is the joint probability density function $p(x, \theta)$ of the parameters, θ, and the data x. The true model is then suspected to be the one that could have brought about the data with the highest likelihood, i.e. the choice of the parameters that is able to maximise $p(x, \theta)$. Bayesian inference will interpret $p(\theta|x)$ rather in terms of confidence in a particular set of parameters given a single realisation of the data. Cosmological inference usually follows this route since, by nature, the data is only available in a single realisation, casting a Frequentist interpretation questionable.

Values of model parameters are given with confidence intervals which describe the degree of belief that the best fit value is indeed the true value. These intervals are usually determined with two main techniques: For forecasting, where the best fit values of the parameters are assumed to be known, mainly the Fisher-matrix analysis [e.g. 1] or higher order schemes [2, 3] are employed. Instead, when facing real data or for more accurate confidence contours without an assumption of (near) Gaussianity or single modality of the likelihood, one relies on Monte-Carlo Markov-chain (MCMC) methods.
Approximating a likelihood as being Gaussian has tremendous computational advantages compared to MCMC-techniques, and requires only a small number of calls of the likelihood for finite differencing, at the expense of not representing the likelihood faithfully enough.

The origin of non-Gaussian features of a likelihood are non-linearities in the dependence of the model on its parameters or a non-Gaussian error process for the individual data points, giving rise as well to constraints and degeneracies that vary as a function of the fiducial model [9]. If the data is well-constraining, these non-linear relationships can be linearised, which render the χ^2-functional parabolic and cast the likelihood to be Gaussian. When a model is extended to include new parameters, the corresponding likelihood covers a larger fraction of the parameter space and a linearisation of the model might not be applicable, in which case the likelihood veers again away from the Gaussian shape. This effect can be counteracted by accumulating more data, by collecting data with smaller errors, or by combining different measurement methods with the potential of breaking degeneracies.

Whether it is possible to re-parameterise a model such that an otherwise non-Gaussian likelihood assumes a Gaussian shape is an interesting question and has a clear answer in one dimension, where this can always be achieved. For multivariate distributions, this can only be done approximately [10, 11], making the likelihood accessible to arguments reserved to Gaussian distributions, for instance their unbiasedness and their fulfilment of the Cramér-Rao-bound, but also the perfect decoupling of all degeneracies by transforming the parameter space into the eigensystem of the Gaussian’s covariance matrix. Whether a perfect Gaussianisation can in principle be achieved is an interesting question on its own and it can be answered using the tools of information geometry. In information geometry, the Fisher-matrix (or, the inverse parameter covariance) takes on the role of the metric on a statistical manifold [12] and can be derived from a statistical divergence defined in an axiomatic way. In this setting the parameters of the statistical model are merely a choice of coordinates and one should be able to change the parameterisation by chart transition maps in an invertible and differentiable way. In this context, Gaussian likelihoods correspond to flat manifolds (although there might be unfortunate parameter choices where they appear to be non-Gaussian) while actual non-Gaussian ones induce a non-trivial geometry. Hence, using the concepts of information geometry leads to an understanding of non-Gaussianities as inherent geometrical properties of a non-flat manifold which is defined by a statistical model, in particular the presence of curvature. In the case of non-flat manifolds it is in general not possible to find a coordinate change to obtain a constant Fisher information corresponding to a Gaussian likelihood in the parameters. Additionally, by employing additional methods of differential geometry it could still be possible to find for instance isometries of the Fisher information and consequently integral curves in parameter space along which the metric is constant, leading to a geometric interpretation of the degeneracies of a model and indicating parameter choices where Gaussianity of the likelihood is established.

In this work we will apply the concepts of information geometry to typical statistical models encountered in cosmology. As a working example we will choose the statistical manifold defined by supernova observations [13–17] and investigate its differential geometric properties in the context of a flat ΛCDM-cosmology, and restrict the inference on the matter density Ω_m and a constant dark energy equation of state w. Furthermore, we will discuss Gaussianisation transformations, as well as the relation between the DALI-approximation [3] and the Gram-Charlier series with geometric properties of statistical manifolds in the limit of weak non-Gaussianities, providing relationships between these fundamental descriptions of non-Gaussian distributions. Of course, scientists do not only intend to measure the model parameters of a single model as accurate as possible, but also look out for new phenomena beyond the accepted model. In that, we will take the point of view that a model class is already selected, for instance with concepts of Bayesian evidence or through a strong
physical argument, and we are asking how well different parameter choices within this model class are compatible with data.

The paper is structured as follows: We will recapitulate the basic concepts of information geometry in section 2. Section 3 will be devoted to the geometrical interpretation of Gaussianity and its transformation properties. In section 4 we will apply these ideas to the example of cosmological constraints from type-Ia supernovae. Finally, we summarise our results in section 5.

2 Concepts of information geometry

In this section we will briefly summarise the basic concepts of information geometry [12]. We will introduce the statistical manifold, M, under consideration, the divergence which itself induces a metric g on M. Additional structure is then be provided by choosing a particular linear connection ∇ such that concepts like curvature tensors and curvature scalars can be introduced on the triple (M, g, ∇). The manifold M will turn out to be of Riemannian type equipped with a positive definite metric g in contrast to relativity where a pseudo-Riemannian manifold with a metric of Lorentzian signature is considered: This is due to the fact that in relativity the concept of hyperbolic spacetimes is central along with a geometric notion of causality, both of which is irrelevant to statistical manifolds.

2.1 Statistical manifold

At the heart of inference is a statistical model which can be described as a set

$$M = \{p(x, \theta)\},$$

where θ are the model parameters, x the data and p is a probability or probability density, in the case of a continuum of parameters. This set has the structure of a d-dimensional topological manifold [12], that is a paracompact Hausdorff topological $(\tau, a$ suitable topology) space (M, τ) such that $\forall p \in M$ there exists an open neighbourhood U with a homeomorphism $U \to U' \subseteq \mathbb{R}^d$. Here, the dimensionality is given by the dimensions of the parameter space. In physics the homeomorphism is usually referred to as a coordinate system. As the statistical model is described by a set of parameters θ, they can be seen as the coordinate system parameterising the manifold. We will assume here that the manifold is smooth, i.e. that all chart transition maps in its atlas are C^∞.

2.2 Divergences and invariant metric

Distances between points on M are described by divergences, which quantify the dissimilarity of the distributions associated with every point of the likelihood. For $p, q \in M$ we write θ_i as the corresponding coordinate. A divergence is then given by

$$D[p : q] = D[\theta_p, \theta_q],$$

where the following criteria must hold:

1. $D[p : q] \geq 0$.
2. $D[p : q] = 0$ if and only if $p = q$.
3. $D[p : q]$ can be Taylor expanded in the local coordinate system if p and q are sufficiently close to each other:

$$D[\theta_p, \theta_p + d\theta] = \frac{1}{2} g_{ij}(\theta_p) d\theta^i d\theta^j,$$

where the matrix g is positive definite.
Clearly, the squared infinitesimal distance can thus be written as
\[ds^2 = 2D[\theta_p, \theta_p + d\theta], \]
providing a Riemannian structure on \(M \). The natural divergence between two points \(p \) and \(q \) can be derived by demanding
\[D[p : q] \geq D'[p : q], \]
where \(D' \) denotes the divergence associated to another random variable \(y = \phi(x) \). The statistic \(y \) is called sufficient if the equality in (2.4) holds. Clearly any one-to-one mapping provides a sufficient statistic.

The divergence between two points \(p \) and \(q \) measures the mutual information between the two distributions at those two points. An invariant information measure can be introduced [18] called the \(f \)-divergence:
\[D_f[\theta_p, \theta_q] = \int dx \ p(x|\theta_p) f\left(\frac{q(x)}{p(x)}\right), \]
with a differentiable and convex function satisfying \(f(1) = 0 \). This divergence can be shown to be invariant. A typical example for an \(f \)-divergence is the Kullback-Leibler divergence for which \(f(x) = -\log(x) \). Using the properties of a divergence it is clear that the positive definite matrix \(g \) of the \(f \)-divergence provides a natural invariant metric on \(M \). It can be seen easily that any \(f \)-divergence, provided \(f'(1) = 0 \) and \(f''(1) = 1 \), i.e. if \(f \) is standard, yields the same Riemannian metric which is the Fisher information matrix:
\[
D_f[\theta_p, \theta_q + d\theta] = \int dx \ p(x|\theta_p) \left[f''(1) \frac{dp}{d\theta^j} \frac{dp}{d\theta^i} \right]_{\theta^i=0 \ p(x|\theta_p)^2} \left(\frac{\theta^i}{p(x|\theta_p) \frac{\partial \ln p(x|\theta_p)}{\partial \theta^i}} \right),
\]
\[
= \frac{1}{2} \int dx \ p(x|\theta_p) \left(\frac{dp}{d\theta^j} \frac{dp}{d\theta^i} - \frac{dp}{d\theta^i} \frac{dp}{d\theta^j} \right)_{\theta=0} \left(\frac{\partial \ln p(x|\theta_p)}{\partial \theta^i} \right) \left(\frac{\partial \ln p(x|\theta_p)}{\partial \theta^j} \right) dx.
\]
Comparing this result to the third property of the divergence we will therefore write the metric as:
\[
g_{ij} = \left(\frac{\partial \log p(x, \theta)}{\partial \theta^i} \frac{\partial \log p(x, \theta)}{\partial \theta^j} \right) = \int dx \ p(x, \theta) \partial_i \log p(x, \theta) \partial_j \log p(x, \theta). \tag{2.7}
\]
More importantly this metric is unique up to a constant factor. In [12] the geometrical inner product \(g_{ij} = \langle e_i, e_j \rangle \) is identified with the statistical Fisher information such that the tangent vectors \(e_i \) can be related to the score functions \(e_i \sim \partial \log p(x, \theta) / \partial \theta^j \) as derivative of the logarithmic likelihood. As a side remark the Riemannian structure on \(M \) and hence the positive definiteness of the metric is also vital for the validity of the Cramér-Rao inequality which states that the inverse Fisher information evaluated at the likelihoods best fit is a lower bound for the parameter covariance [e.g. 1].

2.3 Connection and cubic tensor

The statistical manifold (2.1) is equipped with a metric (2.7) and thus assumes the structure of a Riemannian manifold \((M, g)\). We also introduce an affine connection \(\nabla \) which allows for the notion of parallel transport, geodesics and curvature on the object \((M, g, \nabla)\). It should be noted that the connection \(\nabla \) is completely general. However, we will assume parallel transport to not affect the magnitude of vectors, thus restricting ourself to metric connections. Furthermore, the connection is assumed to be symmetric [12] what corresponds to the absence of torsion. If metricity is presumed
one can even give an argument for the connection to be symmetric as follows: In a chart representation
with \(\{ e_i \} = \{ \partial/\partial \theta^i \} \) as coordinate basis of the tangent space \(T_p M \) the connection coefficient functions \(\Gamma^i_{jk} \) are in general defined as \(\nabla_i e_j = \Gamma^k_{ji} e_k \) [19, p.250], and in case of metricity this definition even simplifies to the partial derivative \(\partial_i e_j = \Gamma^k_{ji} e_k \) [20, p.63]. For the definition of the basis vectors \(e_j \) in information geometry this becomes \(\partial_i e_j = \Gamma^k_{ji} e_k = \partial^2 \log p(x, \theta)/\partial \theta^i \partial \theta^j \) what is clearly symmetric in the lower two indices \(i \) and \(j \). Thus the connection is given by the torsion free Levi-Civita connection. In this latter case geodesic lines trace curves of minimal distances between two points on \(M \), if they are affinely parameterised.

Indeed, the Levi-Civita connection is the unique torsion free affine connection preserving the norm of a vector under parallel transport. However, if we write the inner product of two vectors \(u, v \), which are parallel transported, in the following way [12]:

\[
\langle u, v \rangle = g(u, v) = (\nabla u, \nabla^* v),
\]

if the two connections \(\nabla \) and \(\nabla^* \) are chosen such that they do not change the inner product they are said to be dually coupled. In the case that \(\nabla = \nabla^* \) the Levi-Civita connection is recovered. For the general case, one can show the following relation [12]:

\[
\Gamma_{ijk} = \partial_i g_{jk} - \Gamma^*_{ikj},
\]

where \(\Gamma_{ijk} = g_{il} \Gamma^l_{ij} \) and \(\Gamma^*_{ijk} = g_{il} \Gamma^l_{ij} \) are the connection coefficients associated with \(\nabla \) and \(\nabla^* \) respectively with indices lowered by metric contraction. Defining the tensor

\[
T_{ijk} = \Gamma^*_{ijk} - \Gamma_{ijk},
\]

and comparing expression (2.9) to the first derivative of the metric expressed in terms of the Levi-Civita connection

\[
\partial_t g_{jk} = \Gamma^LC_{ijk} + \Gamma^LC_{ikj},
\]

the connection coefficients are obtained as

\[
\Gamma_{ijk} = \Gamma^LC_{ijk} - \frac{1}{2} T_{ijk}, \quad \Gamma_{ijk} = \Gamma^LC_{ijk} + \frac{1}{2} T_{ijk},
\]

with \(\Gamma^LC_{ijk} \) being the connection coefficients of the Levi-Civita connection, namely the Christoffel symbols. The invariant cubic tensor \(T_{ijk} \) derived from an \(f \)-divergence is given by

\[
T_{ijk} = \alpha \left(\frac{\partial \log p(x, \theta)}{\partial \theta^i} \frac{\partial \log p(x, \theta)}{\partial \theta^j} \frac{\partial \log p(x, \theta)}{\partial \theta^k} \right),
\]

with \(\alpha = 2 f'''(1) + 3 \). In this sense the statistical manifold (2.1) can also be thought of as given by the triple \((M, g, T)\). However, in special cases like for a likelihood of the form

\[
p(x|\mu(\theta)) = \frac{1}{\sqrt{(2\pi)^n \det C}} \exp(-\frac{1}{2} x^T C^{-1} x),
\]

with a constant data covariance \(C \) and data vector \(X := x - \mu(\theta) \) the cubic tensor vanishes. In this case, the score functions are proportional to \(X \) and odd moments of a (multivariate) Gaussian vanish due to Isserlis’ Theorem [21]. This will turn out to be important for the examples considered in section 3.

– 5 –
2.4 Integration on manifolds

An invariant volume element, $d\Omega_M$, on a manifold is a d-form:

$$d\Omega_M = \sqrt{\det g} \, d\theta^1 \wedge \cdots \wedge d\theta^d.$$ \hfill (2.15)

The factor $\sqrt{\det g}$ ensures that the volume element is invariant and can be directly interpreted: Consider for example the normalisation condition of a Gaussian distribution with zero mean, which does not restrict the generality of the argument,

$$\int d^d\theta \sqrt{\det F} \frac{1}{(2\pi)^d} \exp \left(-\frac{1}{2} \theta^i F \theta \right) = 1.$$ \hfill (2.16)

Comparing the two expressions show that effectively the co-volume factor $\sqrt{\det F}$ is merged with the with the Euclidean volume element $d^d\theta$ to form the invariant volume element $d\Omega_M$, such that a reparameterisation does not change the normalisation. Furthermore, F becomes the Fisher metric which is constant in case of Gaussian likelihoods. It should be noted that the averaging not only removes the explicit dependence on the data, but also ensures that a canonical volume form on the statistical manifold is given.

3 Gaussianisation from an information geometric viewpoint

As outlined Section 2, the invariant infinitesimal distance between two neighbouring points on the statistical manifold (M, F) is given by $ds^2 = F_{ij} d\theta^i d\theta^j$, where the metric is derived from the divergence, eq. (2.2). Here, a specific coordinate system, or parameter set, $\{\theta_i\}$ has been chosen. A Gaussian distribution with respect to the parameters would correspond to the case where F is independent from the parameters, θ. This, however, is a parameter dependent statement as the components of F transform as:

$$F'_{ij}(\theta') = J^a_i(\theta') J^b_j(\theta') F_{ab}(\theta),$$ \hfill (3.1)

with the Jacobian $J^a_b := \partial \theta^a / \partial \theta^b$. If we are to find any transformation eq. (3.1) which leads to a globally parameter independent Fisher matrix, the manifold (M, F) would be flat and there would be a global Gaussianisation transformation. Using this argument in the opposite way, even a likelihood described by a flat manifold can show non-Gaussian structure, depending on the chosen coordinate system. In particular, for an originally uncorrelated Gaussian distribution with unit variance one could generate non-Gaussianities through the transformation

$$F'_{ijk}(\theta') = J^a_{ik}(\theta') J^a_j(\theta') + J^a_{jk}(\theta') J^a_l(\theta').$$ \hfill (3.2)

Here, we denote the partial derivative as $\partial_a f \equiv f_{,a}$. The commonly used Fisher matrix approach to forecast the sensitivity of future experiments by virtue of the Cramér-Rao bound assumes that the pair (M, F) is a flat manifold, if not extended to deal with non-Gaussianities [2, 3, 9]. Going beyond the Fisher approximation thus includes terms which might be attributed to the non-vanishing curvature of the statistical manifold, and we aim to derive relations between this geometric point of view and conventional descriptions of non-Gaussianity.
3.1 Weak non-Gaussianities in the Gram-Charlier-limit: A first approach

Returning to the invariant infinitesimal element \(d\Delta^2 = F_{ij} d\theta^i d\theta^j \) the distance between any two points \(P \) and \(Q \) along a curve \(c(\lambda) \) is

\[
D(P, Q) \propto \left(\int_{\lambda(P)}^{\lambda(Q)} d\lambda \sqrt{\sum_{\alpha} F[\dot{c}(\lambda), \ddot{c}(\lambda)]} \right)^2 \tag{3.3}
\]

where the dot refers to the derivative with respect to the curve parameter \(\lambda \). For \(D(P, Q) \) to be the shortest distance, \(c(\lambda) \) has to be a geodesic of the metric \(F \). Equation (3.3) is of particular insight when considering a Gaussian (in the data) likelihood, because in this case \(D(P, Q) \propto d\chi^2(P, Q) \), thus we can stipulate that the likelihood for the parameters to be \(P(\theta) \propto \exp(-D(P, Q)/2) \), such that \(\theta \) is the image of \(Q \) under some chart. The point \(P \) is just for reference and can be absorbed in the proportionality constant, reflecting the fact that only differences in \(\chi^2 \) are of any relevance. Since a likelihood with Gaussian distributed data is considered, we can assume that the cubic tensor (2.13) vanishes as argued in section 2.3. Thus we can assume the Levi-Civita connection in our further calculations instead of the dually coupled ones.

Going back to the definition of the distance between two points on the manifold, eq. (3.3), one can use the expansion of the metric, \(F \) to write the distance in terms of Gaussian and non-Gaussian contributions

\[
D(P, Q) \approx \left(\int_{\lambda(P)}^{\lambda(Q)} d\lambda \sqrt{\sum_{\alpha} F^0_{ab} + F^0_{ab,g} \Delta \theta^g + \frac{1}{2} F^0_{ab,gd} \Delta \theta^g \Delta \theta^d} \right)^2 \tag{3.4}
\]

where the superscript 0 denotes evaluation at the point \(P \) (for instance the best-fit point) and \(\Delta \theta^g := \theta^g - \theta(P)^g \). The latter equation can be rearranged using the inverse metric and thus to split everything into Gaussian and perturbatively non-Gaussian parts:

\[
D(P, Q) \approx \left(\int_{\lambda(P)}^{\lambda(Q)} d\lambda \sqrt{\sum_{\alpha} F^0_{ib} \delta^i_a + F^0_{ibg} \delta^i_a \Delta \theta^g + \frac{1}{2} F^0_{ibg} F^0_{ar,g} \Delta \theta^g \Delta \theta^r} \right)^{1/2} \tag{3.5}
\]

This expression is of course very similar to a multidimensional Gram-Charlier series, which expands a distribution around its Gaussian part, assuming that higher order cumulants are small (compared to the variance). We now choose normal coordinates at the point \(\theta_0 \). In these coordinates geodesics are again Euclidean straight lines and \(\dot{\theta}^a = a^a \) while the connection coefficient functions \(\Gamma^i_{jk} \) vanish locally [22]. Equation (3.5) can now be expanded further and then integrated trivially to find:

\[
D(P, Q) \approx \left(F^0_{ab} \Delta \theta^a \Delta \theta^b + \frac{1}{2} F^0_{ab,g} \Delta \theta^a \Delta \theta^b \Delta \theta^g + \frac{1}{6} F^0_{ab,gd} \Delta \theta^a \Delta \theta^b \Delta \theta^g \Delta \theta^d \right). \tag{3.6}
\]

The remaining terms can be simplified further: the first term, which just includes the first derivative of the metric and as such depends on the connection \(\Gamma^i_{jk} \) according to relation (2.11), again vanishes in normal coordinates. For the second one, a bit more work is required: First we note that in normal coordinates we can write

\[
F^0_{ab,gd} = -\frac{1}{3} \left(R_{agbd} - R_{adbg} \right). \tag{3.7}
\]

Here \(R_{agbd} = g_{ae} R^e_{gbd} \) denotes the components of the Riemann curvature tensor which is here defined with respect to the Levi-Civita connection. Contracting the expression (3.7) with \(\Delta \theta^g \Delta \theta^r \Delta \theta^d \) can be shown to vanish in a straightforward calculation due to the symmetries of the Riemann tensor.
(especially $R_{agbd} = -R_{gabd}$ and $R_{agbd} = -R_{agdb}$). This shows that non-Gaussianities can only play a role at second order in a suitable chosen coordinate system.

The expansion scheme of the likelihoods’ exponent in terms of the Riemannian distance is a first effective approach. One decisive advantage is that $D(P, Q)$ is positive definite by definition and allows for a first and fast estimate of the effect of non-Gaussianity for a non constant Fisher information. In fact it was shown [12] that there is a close relation between a symmetrised Kullback-Leibler divergence and Riemannian distances. However, the full Kullback-Leibler divergence is asymmetric in general. Thus we now need to turn to a different expansion scheme, which also complies with information due to this asymmetry.

3.2 Curvature, Gaussianisation and the DALI expansion

There are alternative expansions of non-Gaussian likelihoods [3]: In particular the integrand of eq. (3.3) can be expanded in terms of higher order derivatives of the Fisher Information. Put differently one can say that it is an expansion of the Fisher matrix around the best fit point θ_0. However in [3] not the Fisher information but more generically the logarithmic likelihood L itself is expanded around the best fit θ_0 and only afterwards one performs a data average over the expansion coefficients. In particular one defines the flexion and the quarxion as:

$$S^0_{abg} = \langle L_{abg} \rangle_{\theta_0}, \quad Q^0_{abgd} = \langle L_{abgd} \rangle_{\theta_0},$$

respectively. Expanding the likelihood this way, allows for the calculation of the Kullback-Leibler divergence relative to the fiducial point. The likelihood for the parameters can now be written as

$$p(\theta) \propto \exp \left[-\frac{1}{2} F^0_{ab} \Delta \theta^a \Delta \theta^b - \frac{1}{3!} S^0_{abg} \Delta \theta^a \Delta \theta^b \Delta \theta^g - \frac{1}{4!} Q^0_{abgd} \Delta \theta^a \Delta \theta^b \Delta \theta^g \Delta \theta^d \right],$$

with a logarithmic likelihood expansion up to fourth order. In this sense, it is an expansion of the distribution $p(\theta)$ relative to some fiducial distribution $p(\theta_0)$. In particular the average over the data is again necessary to measure the divergence between the two distributions. Crucially, this expansion is different from the one presented in section 3.1 since it works directly on the level of the Kullback-Leibler divergence and is there not symmetric, that is the integrand in eq. (2.5) is expanded before the averaging is carried out. Therefore, this expansion is not necessarily symmetric. In contrast the expansion in section 3.1 relies on the expansion of a Riemannian distance measure, which of course is symmetric.

For a Gaussian sampling distribution, DALI expands the likelihood in terms of derivatives with respect to the mean or the covariance, depending which of them carries the parameter dependence. This ensures that the remaining distribution is still a proper probability distribution function. In particular the flexion and the quarxion contracted with sufficiently many $\Delta \theta^a$’s can be shown to be always positive definite. Since both the flexion and the quarxion contain non-Gaussian information at third and fourth order about the likelihood a naive guess would be to relate them to the higher order cumulants of the expansion. Indeed, one can derive the following relations using a Gram-Charlier ansatz, i.e. for weak non-Gaussianities:

$$\kappa^a = -\frac{1}{6} S^0_{ijk} A_{ijk}^a,$$

$$\kappa^{abc} = -S^0_{ijk} B_{ijk}^{abc},$$

$$\kappa^{ab} = F^{ab} - \frac{1}{12} Q^0_{ijkl} D_{ijkl}^{ab},$$

$$\kappa^{abg} = -Q^0_{ijkl} D_{ijkl}^{abg}.$$

(3.10)
Here we have introduced the following abbreviations:

\[A_{abcd} := F^{ab} F^{cd} + F^{ac} F^{bd} + F^{ad} F^{cb}, \]

\[B_{abcd ij} := F^{ab} F^{cd} F^{ij}, \]

\[D_{abcd ij} := B^{abc\hat{d}ij} + B^{abd\hat{c}ij} + B^{ad\hat{b}ci d} + F^{ci A_{abcd ij}}, \]

\[F_{abcd ijkl} := F^{ai} B^{bjckdl}. \]

(3.11)

Thus all additional terms are proportional to the Fisher matrix and thus scale with different powers on \(\sigma^{-2} \). In appendix A more details are given about the multivariate Gram-Charlier expansion and we sketch in more detail how the expressions (3.10) can be derived from that. An alternative way to arrive at these expressions is to use directly the Faà di Bruno formula, relating flexion and quarxion directly to the moments.

We will now compare the quarxion and the flexion to differential geometric quantities on the statistical manifold. We first start from the definition of the flexion and rewrite it as

\[S_{abc} = \Gamma^{0, \text{LC}}_{cab} + \Gamma^{0, \text{LC}}_{acb} + \Gamma^{0, \text{LC}}_{bac} + \frac{1}{2} \langle L_a L_b L_c \rangle, \]

(3.12)

where \(\Gamma^{0, \text{LC}}_{cab} = g^{ic} \Gamma^{0, \text{LC}}_{i ab} \) are the Christoffel symbols, which are defined in terms of derivatives of the Fisher metric, and we evaluate everything again at the best fit point \(\theta_0 \), where we can identify the last term as the cubic tensor. Thus, in normal coordinates, where the Christoffel symbols vanish, the flexion is completely sourced by the cubic tensor. For a likelihood as discussed in relation (2.14) in section 2.3 the cubic tensor, and hence the flexion vanishes completely in normal coordinates. A similar exercise can be performed for the quarxion, where we seek a relationship with the second derivatives of the metric. In particular it can be shown that the quarxion vanishes in normal coordinates to first order in the second derivatives of the metric:

\[Q_{ijkl} = \frac{-1}{3} \left(R_{ik jl} + R_{il jk} - R_{ik jl} + R_{ik jk} + R_{kijl} + R_{ijkl} - R_{kl ij} - R_{kl jk} - R_{ik jl} + R_{ik jk} - R_{ik jl} - R_{ik jk} \right) = 0 + O(L_{ijk}), \]

(3.13)

where we used the symmetry properties of the Riemann tensor, which can be expressed, in normal coordinates, in terms of second derivatives of the metric for the Levi-Civita connection. Both results, for the flexion and the quarxion, apply for the dependence of the covariance on the parameters as well as for the case where the mean depends on the parameters. \((L_{ijk})\) refers to terms which contain proper third derivatives of the quantities carrying the parameter dependence. The results presented in this section only hold for weak non-Gaussianities, i.e. up to first order. However, the curvature does not depend on derivatives of third order. For definiteness let’s assume a likelihood of the form eq. (4.1), where the parameter dependence is only carried by \(\mu \) such that

\[R_{ijkl} = \mu^{T}_{ij} C^{-1} \mu_{jk} - \mu^{T}_{ij} C^{-1} \mu_{jk}. \]

(3.14)

Finally, using concepts from information geometry we found an interpretation of non-Gaussianities as inherent geometrical properties of a statistical manifold. These can in general only be remedied for a flat manifold by a non-linear coordinate transformation. For a non-flat manifold they only vanish in normal coordinates in first order approximation, so one can in principle not find a non-linear coordinate transformation to make them vanish completely. However, one could still search for isometries of the Fisher information as will be discussed in the next section, where we consider the example a likelihood on \(\Omega_m \) and \(w \) from supernova data.
4 An illustrative example: The Supernovae likelihood

In this section we will discuss a simple cosmological example in the context of information geometry: distance measurements with supernova-observations. We will investigate the geometrical properties of the manifold defined by the likelihood, especially geodesics and the Ricci scalar $R = g^{ik} R_{ik} = g^{ik} g^{jl} R_{ijkl}$, and investigate the Lie-derivatives to search for isometries of the Fisher information.

4.1 The invariant metric

As an example we consider the Gaussian likelihood for a supernovae measurement. It has the following simple form \[\mathcal{L}(D|\theta) \propto \exp(\mu^T C^{-1} \mu), \] (4.1)
with the vector \[\mu := m - m_{\text{theory}}. \] (4.2)

The two vectors m and m_{theory} bundle the observed values for the distance modulus and the corresponding model prediction for a given set of parameters $\{\theta\}$ at n redshifts z_i respectively. The errors of different measurements are encoded in the covariance matrix defined as $C := (\mu \otimes \mu)$. Finally, the distance modulus is defined as

\[m(z|\{\theta\}) = 5 \log d_{\text{lum}}(z|\{\theta\}) + \text{const}, \] (4.3)

where the luminosity distance can be calculated from the background cosmology as

\[d_{\text{lum}}(z|\{\theta\}) = c \int_0^z \frac{(1 + z')dz'}{H(a(z')|\{\theta\})}, \] (4.4)

where the Hubble function $H(a) = \dot{a}/a$ is given by,

\[\frac{H^2(a)}{H_0^2} = \frac{\Omega_{m0}}{a^3} + \frac{1 - \Omega_{m0}}{a^3(1+w)}, \] (4.5)

for a constant equation of state function w [23–25]. We will assume the covariance in Eq. (4.1) to be diagonal and parameter independent:

\[C = \text{diag}(\sigma_1^2, \ldots, \sigma_n^2). \] (4.6)

The corresponding Fisher matrix is easily derived to be

\[F_{ab}(\{\theta\}) = \sum_{i=1}^n \frac{\partial m(z_i)}{\sigma_i} \frac{\partial m(z_i)}{\sigma_i} \bigg|_{\{\theta\}}. \] (4.7)

4.2 Differential geometric quantities

We will now treat the supernova likelihood as a statistical manifold (M, g) with the metric given by eq. (4.7). As discussed in section 2.3 the cubic tensor of the likelihood in our example, given by eq. (4.1) vanishes, so we can assume the Levi-Civita connection. For illustrative purposes we show the exact likelihood together with the the Fisher approximation in the (Ω_m, w)-plane in fig. 1, illustrating deviations from Gaussianity caused by the nonlinear degeneracy between Ω_m and w.

Figure 2 illustrates the Ricci-curvature as a function of the coordinates Ω_m and w as they would result from the supernova-measurement. The nonzero values are indicative of the non-Gaussian shape of the likelihood and the failure of the Fisher-approximation.
Figure 1. Exact likelihood, eq. (4.1), and its Fisher approximation using eq. (4.7). The Fisher ellipse contours denote the values of the likelihood relative to its peak (80%, 30% and 5%) that the model parameters fit the data.

Figure 2. The Ricci scalar, i.e. the curvature scalar $R = g^{ij}R_{ij}$, for the statistical manifold with the metric given by the supernova-measurement eq. (4.7). Since R is a scalar it is invariant under a change of coordinates and therefore provides a measure of the non-Gaussianity of the underlying statistical model irrespective of the choice of parameters.

Clearly, the Fisher approximation does not capture the complete shape of the likelihood. However, good agreement can be already achieved with the first two terms using the DALI approximation [2]. In the right panel the absolute value of the Ricci scalar is shown. Notably, the scalar curvature does not vanish, showing that the non-Gaussianity of the likelihood is inherent to the manifold and is not due to a pure, although physically motivated, choice of parameters.
Figure 3. Solutions to the geodesic equation on the statistical manifold of supernovae measurements, where initial velocities are chosen isotropically around the fiducial value in Ω_m and w. The red line represents the boundary where the geodesic distance reaches unity.

Figure 4. Dependence of the Fisher-metric on the parameters Ω_m and w, represented as ellipses together with their eigensystems at different points. The area of the ellipses is downscaled by a factor of 0.25 for a more convenient representation, and the solid lines depict the integral curves constructed from the eigenvectors.

Next, we solve the geodesic equation [19]

$$\ddot{\theta}^a (\lambda) + \Gamma^a_{bc} a \dot{\theta}^b (\lambda) \dot{\theta}^c (\lambda) = 0,$$

(4.8)

and calculate the geodesic distance, eq. (3.3), for the geodesic with respect to the fiducial value. The initial conditions for the geodesics are chosen such that they all start at the fiducial cosmology with parameter values ($\Omega_{m0} = 0.28, w = -1.0$) and the normalised initial velocities are chosen in all directions. In fig. 3, blue dashed lines show the solution to the geodesic equation for different
We will now use these two vector fields to calculate the Lie-derivative \(\mathcal{L}_{X_\mu} g \). For a Gaussian likelihood one can gain an understanding of the geodesic distances are invariant under a Killing vector field generated by the major axis of the Fisher matrix. The integral curves of Killing vector fields of eigenvectors \(X_1 \). These findings indicate that a Killing vector field of this geometry should be closely aligned with the vector field generated by the major axis of the Fisher matrix. The integral curves of Killing vector fields are invariant under the same Killing vector field of the geodesic distances are symmetric by definition, while the Kullback-Leibler divergence as a traditional measure for information difference is in general asymmetric. For a Gaussian likelihood one can gain an understanding of the geodesic distance. Indeed if the geodesic distance reaches unity, one can identify this with the 1-\(\sigma \) region.

Figure 4 shows the metric represented as ellipses as a function of the coordinates on the statistical manifold. The area of these ellipses is a measure for the square root of the determinant of the pointwise evaluated inverse Fisher information [9]. Additionally the eigensystem of the metric is shown together with the corresponding integral curves of the eigenvectors \(X_1 \) and \(X_2 \) (minor and major axis respectively). We will now use these two vector fields to calculate the Lie-derivative \(\mathcal{L}_{X_\mu} g \) of the metric along them [19]:

\[
(\mathcal{L}_{X_\mu} g)_{ab} = X^c_\mu \partial_c g_{ab} + \partial_a X^c_\mu g_{cb} + \partial_b X^c_\mu g_{ac} = \partial_a X_b + \partial_b X_a - 2 \Gamma^c_{ab} X_c, \tag{4.9}
\]

where \(X_\mu \) is either of the two fields of eigenvectors. For the numerical evaluation the second expression in eq. (4.9) was used. We normalise the components of the Lie-derivative to the Frobenius matrix norm \(\|g\|^2 = \text{tr}(g \, g') \) of the metric and show the components in fig. 5. One can clearly see that the Lie-derivative with respect to the vector field defined via the minor axis is larger than the one with respect to the major axis. This confirms the observation that the metric changes more strongly along \(X_1 \). These findings indicate that a Killing vector field of this geometry should be closely aligned with the vector field generated by the major axis of the Fisher matrix. The integral curves of Killing vector fields...
fields are symmetry transformations of the metric, i.e. isometries, meaning that the Lie-derivative of the metric along these vector fields vanishes. Consequently, they give a direct indication how a non-linear transform should be structured to transform the likelihood into an approximately more Gaussian shape. However, as we have already seen earlier, there is no transformation to make the likelihood completely Gaussian globally.

5 Summary

In this paper we have studied likelihood spaces in cosmology from a differential geometric point of view, introduced by [12]. We described the methods of information geometry and used them to investigate certain approximations of likelihoods made in cosmology. In particular we looked at weak non-Gaussianities in the Gram-Charlier limit and identified non-Gaussian contributions with the Riemann curvature tensor. Furthermore, we studied the relation between the DALI expansion scheme of likelihoods [3] and showed the connection between its expansion coefficients and geometric objects on the statistical manifold. As an example we studied the likelihood of supernovae in a two-dimensional plane. Our main findings are the following:

i) Local non-Gaussianities in the Gram-Charlier limit can be related to local geometric properties, such as the connection coefficients and the Riemann curvature tensor.

ii) The expansion coefficients of the DALI expansion scheme are directly proportional to higher order cumulants contracted with the Riemannian metric. Furthermore, it can be shown that the flexion, i.e. the first non-trivial expansion coefficient, is related to the cubic tensor. The next order can, however, be shown to vanish in the case of weak non-Gaussianities.

iii) By applying the concepts of information geometry to the supernovae likelihood we could show that it is genuine non-Gaussian in the (Ω_m, w)-plane, since the scalar curvature vanishes nowhere. We further investigated the (normalised) Lie-derivatives along the degeneracy directions of the Fisher matrices. Along the vector field generated by the directions of the major axes of the Fisher matrices the Lie-derivative was very small.

The last point indicates that, if there was an isometry of the Fisher information in this specific example, the respective integral curve should be aligned to the vector field generated by the major axes of the Fisher ellipses. This could lead to an indication of non-linear coordinate transformations to achieve an approximative Gaussianisation, since a global Gaussianisation is not possible. To study this further one should however derive the Killing vector fields numerically by solving the Killing equation, i.e. find the vector fields for which the Lie-derivative of the metric vanishes identically (if a solution even exists). This could be done by finite differences methods in the parameter domain of interest, choosing appropriate boundary conditions. The partial differential equation can then be expressed in terms of a system of difference equations and solved numerically.

For future studies, further ideas to achieve an approximate Gaussianisation could be to embed the statistical manifold in a higher dimensional Euclidean space [26], which however requires the use of hyper-parameters and can become arbitrarily complicated: But examples in statistics exist where extending the parameter space does provide computational advantages. Ultimately, differential geometry ensures obtaining a flat manifold in embedding at the latest when the dimensionality of the embedding is twice as high. Vice versa, one could reduce the statistical likelihood to two dimensions by marginalisation or conditionalisation and then take advantage of the fact that every two-dimensional Riemannian manifold is at least conformally flat [19]. Then, the Fisher metric for
a two dimensional statistical manifold could (in principle) be reparametrised to become constant up to a parameter dependent conformal scale factor, and it seems to us that these two avenues are the only ones where a Gaussianisation could be successful, for a genuinely curved statistical manifold. Additionally, we are curious if it was possible to derive that a flat manifold where coordinates can be chosen in a way that the Fisher-information becomes constant, by employing a variational principle: It is a well-known fact that the Shannon-entropy $S = - \int d^n \theta \, p(\theta) \ln p(\theta)$ is maximised by a Gaussian distribution for a fixed variance, and this result might generalise to implying flatness as a generalisation of Gaussianity following from variation. Furthermore, a wider class of entropy measures, for instance Rényi-entropies $S_\alpha = - \int d^n \theta \, p(\theta) \rho^{\alpha-1}(\theta)/(\alpha - 1)$ for $\alpha \neq 1$, can have interesting geometric implications beyond those of Shannon-entropies S.

A Remarks on the multivariate Gram-Charlier series

A way to characterise the properties of a distribution is by its cumulants κ_n which are the expansion coefficients of the logarithm of the characteristic function $K(t) = \ln \phi(t) = \sum_n (i t)^n \kappa_n/n!$ in one dimension [27]. The characteristic function $\tilde{\phi}(t)$ itself is defined as the Fourier transformation of the distribution $p(x)$. For a multivariate Gaussian $G(x)$ one can read off the cumulants, which are just the mean κ^α and the covariance $\kappa^{\alpha\beta}$, from the respective characteristic function $\tilde{\phi}_G(t)$ as:

$$G(x) = \sqrt{\det C^{-1}} \left(\frac{2\pi}{n/2} \right)^{n/2} \left(\frac{2\pi}{n/2} \right)^{n/2} \exp \left(\frac{(x^\alpha - \mu^\alpha) C_{\alpha\beta} (x^\beta - \mu^\beta)}{2} \right) \text{ with } C_{\alpha\beta} := (C^{-1})^{\alpha\beta}, \quad (A.1)$$

$$\tilde{\phi}_G(t) = \exp \left(t^{\alpha} \mu^\alpha - \frac{t^{\alpha\beta} C_{\alpha\beta}}{2} \right) \text{ with } \kappa^\alpha = \mu^\alpha \text{ as mean and } \kappa^{\alpha\beta} = C_{\alpha\beta} \text{ as covariance}. \quad (A.2)$$

Here, x and t generalise to a vector in the random variable space and the respective Fourier space. If a distribution has higher order cumulants this is a clear sign of non-Gaussianity.

For instance one can quantify the asymmetry of a distribution with respect to its peak by the skewness $s \propto \kappa_3$, or $\kappa^{\alpha\beta\delta}$ as multivariate expressions. Furthermore, the kurtosis excess $k \propto \kappa_4$, or $\kappa^{\alpha\beta\gamma\delta}$ which characterises the peak morphology is often considered. For $k > 0$ the peak appears steeper compared to a Gaussian while for $k < 0$ it is flattened. How one can measure these multivariate cumulants is for instance shown in [28].

The higher order cumulants - beyond the mean and covariance - can now be introduced as small perturbations\(^1\) of a Gaussian characteristic function [27]. In the multivariate case this characteristic function with perturbations up to fourth order reads:

$$\tilde{\phi}(t) = \exp \left[i \frac{t^\alpha}{3!} \kappa^{\alpha\beta\gamma} \frac{\partial^3}{\partial x^\alpha \partial x^\beta \partial x^\gamma} + \frac{i}{4!} t^\alpha t^{\beta\gamma\delta} \kappa^{\alpha\beta\gamma\delta} + \mathcal{O}(t^5) \right] \tilde{\phi}_G(t), \quad (A.3)$$

We now perform a Fourier inversion to derive the multivariate Gram-Charlier series. Here the term $i^n t_{\alpha_1} \ldots t_{\alpha_n} \tilde{f}(t)$ is the Fourier transformation of $(-1)^n \frac{\partial}{\partial x^{\alpha_1}} \ldots \frac{\partial}{\partial x^{\alpha_n}} f(x)$ in complete analogy to the one-dimensional case with $f(x)$ being some smooth function.

The multivariate Gram-Charlier series reads (truncating after fourth order in the cumulants):

$$p(x) = \exp \left(-\frac{1}{3!} \kappa^{\alpha\beta\gamma} \frac{\partial^3}{\partial x^\alpha \partial x^\beta \partial x^\gamma} + \frac{1}{4!} \kappa^{\alpha\beta\gamma\delta} \frac{\partial^4}{\partial x^\alpha \partial x^\beta \partial x^\gamma \partial x^\delta} \right) \sqrt{\det C^{-1}} \left(\frac{2\pi}{n/2} \right)^{n/2} \exp \left(\frac{(x^\alpha - \mu^\alpha) C_{\alpha\beta} (x^\beta - \mu^\beta)}{2} \right), \quad (A.4)$$

\(^1\)This means that the non-Gaussianities have to be weak. In one dimension this can be quantified as $\kappa_n / (\sqrt{\alpha})^n << 1$ and generalises accordingly in the multivariate case.
This expression then simplifies to:

\[p(x) = \frac{\sqrt{\det C^{-1}}}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} \sum_{i,j} (x^i - \mu^i) C_{ij} (x^j - \mu^j) \right) \left[1 + \frac{\kappa_{\alpha\beta\gamma\delta}}{3!} (W^{-1})_{\alpha\beta} (W^{-1})_{\gamma\delta} H_3^{\alpha\beta\gamma\delta} + \frac{\kappa_{\alpha\beta\gamma\delta}}{4!} (W^{-1})_{\alpha\beta} (W^{-1})_{\gamma\delta} (W^{-1})_{\epsilon\delta} H_4^{\alpha\beta\gamma\delta} \right]. \]

(A.5)

Here, \(H_3^{\alpha\beta\gamma\delta} \) and \(H_4^{\alpha\beta\gamma\delta} \) are multivariate generalisations of the Hermite polynomials of third and fourth order which are given in Appendix B.

The covariance matrix can be written as \(C_{\alpha\beta} := W_{\alpha\gamma} W_{\gamma\beta} \) with \(W \) being defined as the matrix root, and respectively \(C_{\alpha\beta} := (C^{-1})_{\alpha\beta} = (W^{-1})_{\alpha\gamma} (W^{-1})_{\gamma\beta} \) for the inverse. The relations (3.10) between the multivariate cumulants and the non-Gaussianities of the DALI-expansion (3.9) in section 3.2 can now derive using a similar calculation as for the derivation of the multivariate Gram-Charlier series under the assumption of weak non-Gaussianity. First of all we calculate the characteristic function of the expansion (3.9) by employing the same techniques in terms of the Fourier transformation as for the derivation of the multivariate Gram-Charlier series, however now changing from real to Fourier space. Then the result for the characteristic function will also contain an expansion in multivariate Hermite polynomials in the exponent, which have to be written explicitly and compared to the general cumulant expansion of a multivariate characteristic function. Comparison of coefficients finally leads to the relations (3.10).

B Multivariate Hermite polynomials

In Appendix A a multivariate expression for the Gram-Charlier series is given in equation (A.5) which contains multivariate Hermite polynomials. These can be generalised compared to the one-dimensional case as follows:

\[H_{\alpha_1...\alpha_n} = (-1)^n W_{\alpha_1\beta} \ldots W_{\alpha_n\gamma} \exp\left(\frac{x^\beta - \mu^\beta}{2} C_{\gamma\delta} \left(x^\delta - \mu^\delta\right)\right) \times \frac{\partial}{\partial x^\beta} \ldots \frac{\partial}{\partial x^\gamma} \exp\left(\frac{x^\beta - \mu^\beta}{2} C_{\gamma\delta} \left(x^\delta - \mu^\delta\right)\right). \]

(B.1)

Evaluation of relation (B.1) up to fourth order will lead to explicit expressions for the multivariate Hermite polynomials:

\[H_0 = 1, \]
\[H_1^\alpha = (W^{-1})_\chi^\alpha \left(x^\chi - \mu^\chi\right), \]
\[H_3^{\alpha\beta\gamma} = (W^{-1})_\chi^\alpha \left(x^\chi - \mu^\chi\right) (W^{-1})_\rho^\beta \left(x^\rho - \mu^\rho\right) (W^{-1})_\tau^\gamma \left(x^\tau - \mu^\tau\right) - [3] \delta^{\alpha\beta\gamma}, \]
\[H_4^{\alpha\beta\gamma\delta} = (W^{-1})_\chi^\alpha \left(x^\chi - \mu^\chi\right) (W^{-1})_\rho^\beta \left(x^\rho - \mu^\rho\right) (W^{-1})_\tau^\gamma \left(x^\tau - \mu^\tau\right) (W^{-1})_\eta^\delta \left(x^\eta - \mu^\eta\right) - [6] \delta^{\alpha\beta\gamma\delta} + [3] \delta^{\alpha\beta\gamma\delta}. \]

(B.2)

Here the short-hand notation \([n]\) means that \(n\) terms with permutation in indices exist, while \(\delta_{\alpha\beta}\) denotes the Kronecker-Symbol.
References

[1] M. Tegmark, A. Taylor and A. Heavens, *Karhunen-Loève eigenvalue problems in cosmology: How should we tackle large data sets?*, *Astrophys. J.* 480 (1997) 22.

[2] E. Sellentin, M. Quartin and L. Amendola, *Breaking the spell of Gaussianity: forecasting with higher order Fisher matrices*, *MNRAS* 441 (2014) 1831 [1401.6892].

[3] E. Sellentin, *A fast, always positive definite and normalizable approximation of non-Gaussian likelihoods*, *MNRAS* 453 (2015) 893.

[4] J. Skilling, *Nested sampling for general Bayesian computation*, *Bayesian Anal.* 1 (2006) 833.

[5] J. Akeret, S. Seehars, A. Amara, A. Refregier and A. Csillaghy, *CosmoHammer: Cosmological parameter estimation with the MCMC Hammer*, *Astronomy and Computing* 2 (2013) 27.

[6] F. Feroz, M. P. Hobson and M. Bridges, *MultiNest: Efficient and Robust Bayesian Inference*, *MNRAS* 398 (2009) 1601.

[7] B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, *Monte Python: Monte Carlo code for CLASS in Python*, *JCAP* 02 (2013) 001A.

[8] J. Goodman and J. Weare, *Ensemble samplers with affine invariance*, *Communications in Applied Mathematics and Computational Science*, Vol. 5, No. 1, p. 65-80, 2010 5 (2010) 65.

[9] B. M. Schäfer and R. Reischke, *Describing variations of the Fisher-matrix across parameter space*, *MNRAS* 460 (2016) 3398.

[10] G. E. P. Box and D. R. Cox, *An analysis of transformations*, *Journal of the Royal Statistical Society. Series B (Methodological)* 26 (1964) 211.

[11] R. L. Schuhmann, B. Joachimi and H. V. Peiris, *Gaussianization for fast and accurate inference from cosmological data*, *Monthly Notices of the Royal Astronomical Society* 459 (2016) 1916 [1510.00019].

[12] S.-i. Amari, *Information Geometry and Its Applications*. Springer Japan, 2016.

[13] A. G. Riess, A. V. Filippenko, P. Challis and et al., *Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant*, *AJ* 116 (1998) 1009.

[14] S. Perlmutter, G. Aldering, M. della Valle, S. Deustua, R. S. Ellis, S. Fabbro et al., *Discovery of a supernova explosion at half the age of the universe*, *Nature* 391 (1998) 51.

[15] S. Perlmutter, G. Aldering, G. Goldhaber and et al., *Measurements of Omega and Lambda from 42 High-Redshift Supernovae*, *ApJ* 517 (1999) 565.

[16] A. G. Riess, L.-G. Strolger, J. Tonry, S. Casertano, H. C. Ferguson and et al., *Type Ia Supernova Discoveries at z ≥ 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution*, *ApJ* 607 (2004) 665.

[17] A. G. Riess, L.-G. Strolger, S. Casertano, H. C. Ferguson, B. Mobasher, B. Gold et al., *New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy*, *ApJ* 659 (2007) 98.

[18] T. Morimoto, *Markov processes and the H-theorem*, *Journal of Physical Society of Japan* 12 (1963) 328.

[19] M. Nakahara, *Geometry, Topology and Physics*. Taylor & Francis Group., 2003.

[20] M.P. Hobson, G. Efstathiou and A. Lasenby, *General Relativity: An Introduction for Physicists*. Cambridge University Press., 2006.

[21] L. Isserlis, *On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables*, *Biometrika* 12 (1918) 134.

[22] D. Lovelock and H. Rund, *Tensors, Differential Forms and Variational Principles*. Dover Publications, Inc. New York., 1998.
[23] M. Chevallier and D. Polarski, *Accelerating Universes with Scaling Dark Matter*, *International Journal of Modern Physics D* **10** (2001) 213 [gr-qc/0009008].

[24] E. V. Linder, *Biased cosmology: Pivots, parameters, and figures of merit*, *Astroparticle Physics* **26** (2006) 102 [astro-ph/0604280].

[25] E. V. Linder, *The dynamics of quintessence, the quintessence of dynamics*, *General Relativity and Gravitation* **40** (2008) 329 [0704.2064].

[26] J. M. Lee, *Introduction to Smooth Manifolds*. Springer, New York., 2003.

[27] F. Capranico, A. Kalovidouris and B. Schaefer, *Extreme value statistics of the weak lensing convergence: I. primordial non-gaussianities*, *Monthly Notices of the Royal Astronomical Society* **000** (2013) 1 [1305.1485].

[28] K. V. Mardia, *Measures of multivariate skewness and kurtosis with applications*, .

Acknowledgments

RR acknowledges funding through the HEiKA-initiative and support by the Israel Science Foundation (grant no. 1395/16 and grant no. 255/18). EG thanks the Studienstiftung des deutschen Volkes and CERN’s Wolfgang-Gentner Programme for financial support. The authors also thank Marie Teich, Rafael Arutjunjan and Nils Fischer for insightful discussion, questions and remarks.