Rural-Urban Differences in the Associations Between Aging and Disability Services and COVID-19 Vaccination Rates Among Older Adults

Yue Sun and Danielle C. Rhubart

Abstract
Aging services were poised to play an important role in supporting the COVID-19 vaccination rollout for older adults. In this study, we use ordinary least squares regression models of county-level data (N = 3086) to examine if density of aging and disability services is associated with COVID-19 vaccination rates for older adults in rural and urban areas of the United States. We find that net of compositional characteristics, county-level density of aging and disability services is associated with higher older adult vaccination rates. However, in the rural-urban stratified models, this only remained consistently true for rural counties. Given higher risk of COVID-19 mortality for older adults and larger relative shares of older adults in rural areas, rural counties with low vaccination rates should invest in supporting and/or expanding older adult services to facilitate vaccination.

Keywords
COVID-19, health behaviors, rural, aging services

What this paper adds
- County-level aging and disability services are associated with higher older adult vaccination rates.
- The county-level relationship between aging and disability services and vaccination rates is more consistent in rural counties.

Applications of study findings
- In rural counties, investing in aging and disability services may help increase older adult vaccination rates.

Older adults (age 65+) are at higher risk of hospitalization and death from COVID-19 than any other age group (CDC, 2021; Sharma, 2021). Vaccination is a proven method of decreasing morbidity and mortality from COVID-19 for older adults (CDC, 2021b). While the overall older adult vaccination rate is 88.8% in the United States, county-level rates vary substantially across the United States, ranging from 24.2% to 95.0% as of March 1, 2022 (CDC, 2021a). Substantial research shows that lower county-level vaccination rates are associated with larger relative shares of Black residents, smaller shares of Hispanic residents, lower socioeconomic status, fewer physicians, and larger shares of Trump voters (Agarwal et al., 2021; Brown et al., 2021; Callow & Callow, 2021; Sun & Monnat, 2021; Tolbert et al., 2021). However, less attention has been given to if and how the built environment has helped shape disparities in vaccination rates.

Local organizations that serve older adult populations (e.g., Area Agencies on Aging) were poised to play a critical role in promoting and improving access to the COVID-19 vaccine (CDC, 2021d). These local organizations could distribute information, provide transportation, and in some cases act as vaccination sites or operate mobile vaccination sites (CORE, 2021). However, it is not clear if the availability of older adult services in a county is associated with higher vaccination rates among older adults.

Manuscript received: November 23, 2021; final revision received: June 29, 2022; accepted: July 25, 2022.

1Department of Sociology and Lerner Center for Public Health Promotion, Maxwell School of Citizenship and Public Affairs, Syracuse University, NY, USA
2Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA

Corresponding Author:
Yue Sun, 314 Lyman Hall, Syracuse University, Syracuse, NY 13244, USA.
Email: ysun46@syr.edu
In addition, COVID-19 vaccination rates are lagging in rural America (Sun & Monnat, 2021; Tolbert et al., 2021). This is concerning because rural areas have larger relative shares of older adults, lower access to health care infrastructure, and higher COVID-19 mortality (Putzer et al., 2012; Rogan & Lewis, 2020; Sun et al., 2022). Therefore, understanding if an association between older adult service density and older adult vaccination rates exists across rural and urban contexts has potentially useful policy implications for boosting older adult vaccination rates. Our objectives are to determine if density of older adult services is associated with county-level COVID-19 vaccination rates among older adults and if this association varies by rural-urban status.

Methods

We use a cross-sectional design with county-level publicly available data from the United States to address our research objectives. Specifically, we used older adult (age 65+) vaccination rates from the CDC as of March 1, 2022 (CDC, 2021c) and aging and disability services (ADS) data from the National Neighborhood Data Archive (NaNDA) Social Services and Health Care Services databases (Finlay et al., 2020; Khan et al., 2020). The ADS data include senior centers, adult day care centers, disability support groups, non-medical home care and homemaker services, nursing care, continuing care, and assisted living facilities. NaNDA does not disaggregate aging services from disability services. While aging services specifically target older adults, disability services are typically available to a wider age range, including older adults. We aggregated NaNDA tract-level data to create county-level counts and then calculated an ADS density variable (i.e., per 1000 population).

We used the USDA Economic Research Service Rural-Urban Continuum Codes (RUCC) to classify counties as urban (RUCCs 1–3) and rural (RUCCs 4–9) (USDA ERS, 2020). County-level sociodemographic data are from the 2015–2019 American Community Survey (US Census Bureau, 2021), including older adult population size, percent non-Hispanic [NH] Black, percent Hispanic, percent of residents age 25+ with a bachelor degree or more, median household income, and percent without health insurance. Physician rates (per 100,000 residents) as of 2018 are from the Area Health Resources Files (HRSA, 2020). The county-level share of voters who voted for Donald Trump in the 2020 General Election are from Tony McGovern’s GitHub repository (McGovern, 2021).

The final sample included 3086 U.S. counties (1929 rural; 1157 urban). We dropped 56 counties because of missing data in vacation rates and percent of voters who voted for Trump, including all Alaska and Hawaii counties, 8 California counties, 2 Texas counties, 3 Massachusetts counties, and 9 Virginia counties. Of the dropped counties, 9 are urban counties and 47 are rural.

ADS density, percent of residents age 25+ with a bachelor degree or more, median household income, percent without health insurance, physician rates, and percent Trump vote were recoded as quartiles because of the significant associations between the quadratic terms of these variables and vaccination rates. Quartile breaks were kept consistent across all analyses to allow for comparability. Racial-ethnic composition was modeled as continuous variables (percent NH Black and percent Hispanic). Supplementary Appendix Table 1 presents the numbers of rural and urban counties in each quartile of ADS density. Supplementary Appendix Table 2 provides medians and interquartile ranges for all covariates across quartiles of ADS density.

Because older adult vaccination rates are normally distributed (mean = 78.1; median = 79.7; standard deviation = 11.6), we used ordinary least squares (OLS) regressions to examine the association between older adult vaccination rates and ADS density for all counties. To determine if the relationship varies across rural and urban counties, rural-urban stratified models are also used. We weighted all models by county-level older adult population size and controlled for state fixed effects to account for unobserved state-level variations such as vaccine-related policies. Two sets of sensitivity analyses were conducted: (1) replacing ADS density quartiles with deciles and (2) dropping all counties with vaccination rates more than 3 standard deviations from the mean. Supplementary Appendix Tables 3–6 present the two series of sensitivity analyses. All analyses were performed in Stata 17.0. This manuscript follows STROBE guidelines (Elm et al., 2008). Because data are publicly available and aggregated to the county-level, IRB approval was not required.

Results

Figure 1 presents older adult vaccination rates by ADS density quartiles. Counties with the third quartile of ADS density have the highest vaccination rates, followed by the second and fourth quartiles, while the first quartile is associated with the lowest vaccination rates. This pattern is consistent among rural and urban counties.

Table 1 presents the results of OLS regression models predicting older adult vaccination rates for all counties. The unadjusted model only controls for state fixed effects. Compared to the lowest quartile of ADS density, all other quartiles of ADS density have significantly higher vaccination rates (Q2 $\beta = 2.86, p < 0.001$; Q3 $\beta = 3.93, p < 0.001$; Q4 $\beta = 1.18, p = 0.042$). In the fully adjusted model, only the fourth quartile of ADS density is associated with higher vaccination rates (Q4 $\beta = 1.03, p = 0.026$).

Table 2 presents the results of rural-urban stratified OLS regression models predicting older adult vaccination rates. In the rural models, compared to the lowest quartile of ADS density, rural counties with higher ADS densities have significantly higher older adult vaccination rates. The
Figure 1. Average COVID-19 vaccination rates for older adults by quartiles of ADS density. Note. Rates are unadjusted. Vaccination rates are current as of March 1, 2022. ADS density ranges of four quartiles: 0–1.13, 1.13–1.64, 1.64–2.30, and 2.30–12.99. N = 3086 U.S. counties. Q = quartile.

Table 1. Results from OLS Regression Models Predicting Older Adults’ COVID-19 Vaccination Rates for All Counties.

	Unadjusted Model	Full Model				
	β	SE	p	β	SE	p
Aging and disability services per 1000 population (Ref: Q1)						
Q2	2.86	0.36	<0.001	0.39	0.29	0.178
Q3	3.93	0.38	<0.001	0.61	0.32	0.058
Q4	1.18	0.58	0.042	1.03	0.47	0.026
Rural (Ref: urban)				-0.26	0.34	0.456
% Non-Hispanic Black				-0.10	0.01	<0.001
% Hispanic				0.08	0.01	<0.001
% Residents age 25+ with bachelor degree+ (Ref: Q1)						
Q2	0.87	0.51	0.086	0.39	0.29	0.178
Q3	1.65	0.55	0.003	1.03	0.47	0.026
Q4	3.45	0.62	<0.001	1.03	0.47	0.026
Median household income (Ref: Q1)						
Q2	1.04	0.47	0.026	1.04	0.47	0.026
Q3	1.55	0.50	0.002	1.55	0.50	0.002
Q4	2.42	0.54	<0.001	2.42	0.54	<0.001
% No health insurance (Ref: Q1)						
Q2	-2.55	0.30	<0.001	-2.55	0.30	<0.001
Q3	-4.57	0.37	<0.001	-4.57	0.37	<0.001
Q4	-5.70	0.54	<0.001	-5.70	0.54	<0.001
Physicians per 100,000 population (Ref: Q1)						
Q2	2.41	0.50	<0.001	2.41	0.50	<0.001
Q3	3.06	0.50	<0.001	3.06	0.50	<0.001
Q4	4.28	0.53	<0.001	4.28	0.53	<0.001
% Trump vote, 2020 (Ref: Q1)						
Q2	-3.12	0.33	<0.001	-3.12	0.33	<0.001
Q3	-6.64	0.47	<0.001	-6.64	0.47	<0.001
Q4	-10.56	0.64	<0.001	-10.56	0.64	<0.001
Constant	74.28	0.98	<0.001	80.82	1.11	<0.001
Adjusted R²	0.285			0.590		

Note. N = 3086; Q = quartile; SE = standard error.
Discussion

We used a cross-sectional study design with publicly available county-level data to determine if ADS is associated with higher vaccination rates among older adults and if such a relationship varies across rural and urban counties. We presented unadjusted and fully adjusted models that control for important covariates in order to ensure that a relationship between ADS density and vaccination rates cannot be explained by other factors. Findings show that ADS density is only consistently associated with higher older adult vaccination rates in rural counties, though decile models reveal threshold effects in these associations. In urban counties, ADS density is not significant, net of controls.

These results suggest that higher densities of ADS—which is more common in rural counties (Supplementary Appendix Table 1)—may be playing an important role in

Table 2. Results from OLS Regression Models Predicting Older Adults’ COVID-19 Vaccination Rates for Rural and Urban Counties.
Rural Models (N = 1929)
Unadjusted Model
β
Aging and disability services per 1000 population (Ref: Q1)
Q2
Q3
Q4
% Non-Hispanic Black
Q2
% Residents age 25+ with bachelor degree+ (Ref: Q1)
Q2
% Hispanic
Q2
Median household income (Ref: Q1)
Q2
Q3
Q4
% No health insurance (Ref: Q1)
Q2
Q3
Q4
Physicians per 100,000 population (Ref: Q1)
Q2
Q3
Q4
% Trump vote, 2020 (Ref: Q1)
Q2
Q3
Q4
Constant
Adjusted R²

Note. Q = quartile; SE = standard error.

reduced effect sizes in the full model indicate that the associations are partially explained by covariates. In the urban models, the second and third quartiles of ADS densities are associated with higher vaccination rates among older adults (Q2 β = 2.03, p < 0.001; Q3 β = 3.19, p < 0.001) (unadjusted model). In full urban model, ADS densities are no longer significant, which means the associations between ADS density and vaccination rates are fully explained by covariates.

Supplementary Appendix Tables 3–6 present the results of sensitivity analyses. After changing the breaks for ADS densities or dropping counties with vaccination rates more than 3 standard deviations from the mean, the results were robust in both sensitivity analyses. However, ADS density deciles are not consistently associated with higher vaccination rates in models for all and for rural counties, which indicates non-linear relationships.
boosting vaccination rates in rural America. These findings affirm ADSs can play an important role in the resilience of rural counties (Peters, 2020), especially for supporting older adult around COVID-19. Rural counties with low vaccination rates and/or sparse aging services should invest in supporting and/or expanding ADSs to facilitate vaccination. This could take many different forms including sharing information on the vaccine, providing transportation to a vaccination location, or through hosting vaccination clinics or providing mobile clinics (Bergal, 2021).

Older adult vaccination rates were not consistently higher in urban counties with higher densities of ADS. Moreover, the effects of ADS density were fully explained by sociodemographic, health care, and political ideology differences. This suggests that in urban counties, other compositional and contextual factors are driving vaccination rates and that policy efforts should be focused on those (e.g., expanding health care resources, working with marginalized communities, and spreading accurate information). This finding may reflect that counties are too large for assessing service seeking in urban contexts.

This study has three important limitations. First, it is ecological. We cannot make conclusions about individual level utilization of ADSs and vaccine uptake. Moreover, counties may not be an appropriate level of analysis for capturing service utilization in urban areas. Second, the variable capacity of ADS is unknown. Understaffing and other challenges facing local residents (e.g., food insecurity and being homebound) may result in vaccination efforts being deprioritized. Third, while previous literature was used to inform the choice of model covariates, other unmeasured factors may be at play. For example, counties with more services may also have more robust public health infrastructure.

COVID-19 is associated with over 557,000 deaths of older adults (NCHS, 2021) and enormous well-being lost. Vaccination is a proven method of decreasing morbidity and mortality from COVID-19 for older adults (CDC, 2021b). The role of ADSs in the vaccination of rural older adults should not be neglected. Federal, state, and local governments with oversight of rural communities should further invest and facilitate in ADS for promoting COVID-19 vaccination.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following support for the research, authorship, and/or publication of this article: This work was supported by the NIA-funded Interdisciplinary Network on Rural Population Health and Aging [R24 AG065159]; the NICHD-funded Population Research Institute at Penn State [P2CHD041025]; the USDA Agricultural Experiment Station Multistate Research Project: W4001, Social, Economic and Environmental Causes and Consequences of Demographic Change in Rural America; and the Syracuse University Lerner Center for Public Health Promotion.

ORCID iD
Yue Sun https://orcid.org/0000-0002-2380-8892

Supplemental Material
Supplemental material for this article is available online.

Note
1. Since 12/9/2021, CDC has capped vaccination rates at 95% to adjust for overestimates resulting from mismatched records and reporting errors.

References
Agarwal, R., Dugas, M., Ramaprasad, J., Luo, J., Li, G., & Gao, G. (2021). Socioeconomic privilege and political ideology are associated with racial disparity in COVID-19 vaccination. Proceedings of the National Academy of Sciences, 118(33), Article e2107873118. https://doi.org/10.1073/pnas.2107873118

Bergal, J. (2021). Without a ride, many in need have No shot at covid-19 vaccine. The Daily Yonder. http://dailyyonder.com/without-a-ride-many-in-need-have-no-shot-at-covid-19-vaccine/2021/02/09/

Brown, C. C., Young, S. G., & Pro, G. C. (2021). COVID-19 vaccination rates vary by community vulnerability: A county-level analysis. Vaccine, 39(31), 4245–4249. https://doi.org/10.1016/j.vaccine.2021.06.038

Callow, M. A., & Callow, D. D. (2021). Older adults’ behavior intentions once a COVID-19 vaccine becomes available. Journal of Applied Gerontology, 40(9), 943–952. https://doi.org/10.1177/07334648211019205

CDC. (2021a). COVID data tracker. Centers for Disease Control and Prevention. https://covid.cdc.gov/covid-data-tracker

CDC. (2021b). COVID-19 risks and vaccine information for older adults. Centers for Disease Control and Prevention. https://www.cdc.gov/aging/covid19/covid19-older-adults.html

CDC. (2021c). COVID-19 vaccinations in the United States, county. Centers for Disease Control and Prevention. https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkk-amqh

CDC. (2021d). COVID-19 vaccinations in the United States, county. Centers for Disease Control and Prevention. https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkk-amqh

CDC. (2021e). COVID-19 risks and vaccine information for older adults. Centers for Disease Control and Prevention. https://www.cdc.gov/aging/covid19/covid19-older-adults.html

CDC. (2021f). Guidance for vaccinating older adults and people with disabilities: Ensuring equitable COVID-19 vaccine access. Centers for Disease Control and Prevention. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/older-adults-and-disability/access.html

CDC. (2021g). Risk for COVID-19 infection, hospitalization, and death by age group. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-age.html
CORE. (2021). Community-based COVID-19 vaccination manual. Community Organized Relief Effort. https://www.coreresponse.org/covid-19

Elm, E. V., Altman, D. G., Egger, M., Pocock, S. J., Gotzsche, P. C., & Vandebroucke, J. P. (2008). The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. *Journal of Clinical Epidemiology, 61*(4), 344–349. https://doi.org/10.1016/j.jclinepi.2007.11.008

Finlay, J., Li, M., Esposito, M., Gomez-Lopez, I., Khan, A., Clarke, P., & Chenoweth, M. (2020). National Neighborhood Data Archive (NaNDA): Social services by census tract, United States, 2003-2017 [data set]. Inter-university Consortium for Political and Social Research (ICPSR). https://doi.org/10.3886/E117163V2

HRSA. (2020). Area health resources files. Health Resources & Services Administration. https://data.hrsa.gov/data/download

Khan, A., Li, M., Finlay, J., Esposito, M., Gomez-Lopez, I., Clarke, P., & Chenoweth, M. (2020). National Neighborhood Data Archive (NaNDA): Health care services by census TractStates, 2003-2017 [data set]. Inter-University Consortium for Political and Social Research (ICPSR). https://doi.org/10.3886/E120907V2

McGovern, T. (2021). United States general election presidential results by county from 2008 to 2020. GitHub https://github.com/tonmcg/US_County_Level_Election_Results_08-20

NCHS. (2021). Provisional COVID-19 deaths by sex and age. Centers for Disease Control and Prevention. https://data.cdc.gov/NCHS/Provisional-COVID-19-Deaths-by-Sex-and-Age/9bhg-hcku

Peters, D. J. (2020). Community susceptibility and resiliency to COVID 19 across the rural urban Continuum in the United States. *The Journal of Rural Health, 36*(3), 446–456. https://doi.org/10.1111/jrh.12477

Putzer, G. J., Koro-Ljungberg, M., & Duncan, R. P. (2012). Critical challenges and impediments affecting rural physicians during a public health emergency. *Disaster Medicine and Public Health Preparedness, 6*(4), 342–348. https://doi.org/10.10101/dmp.2012.59

Rogan, E., & Lewis, J. (2020). Rural health care: Big challenges require big solutions. American Hospital Association. https://www.aha.org/news/insights-and-analysis/2020-01-28-rural-health-care-big-challenges-require-big-solutions

Sharma, A. (2021). Estimating older adult mortality from COVID-19. *The Journals of Gerontology: Series B, 76*(3), Article e68–e74. https://doi.org/10.1093/geronb/gbaa161

Sun, Y., Cheng, K. J. G., & Monnat, S. M. (2022). Rural-urban and within-rural differences in COVID-19 mortality rates. *Journal of Rural Social Sciences, 37*(2), 3. https://egrove.olemiss.edu/jrss/vol37/iss2/3

Sun, Y., & Monnat, S. M. (2021). Rural-urban and within-rural differences in COVID-19 vaccination rates. *The Journal of Rural Health*. Advance online publication. https://doi.org/10.1111/jrh.12625

Tolbert, J., Orgera, K., Garfield, R., Kates, J., & Artiga, S. (2021, May 12). Vaccination is local: COVID-19 vaccination rates vary by county and key characteristics. Kaiser Family Foundation. https://www.kff.org/coronavirus-covid-19/issue-brief/vaccination-is-local-covid-19-vaccination-rates-vary-by-county-and-key-characteristics/

US Census Bureau. (2021). *American Community Survey (ACS).* The United States Census Bureau. https://www.census.gov/programs-surveys/acs

USDA ERS. (2020). *Rural-urban continuum codes.* United States Department of Agriculture Economic Research Service. https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx