Manipulative’s of Function Translation

E Sudihartinih* and T Purniati

Department of Mathematics Education, Universitas Pendidikan Indonesia, Jln. Dr. Setiabudhi No. 229 Bandung, Jawa Barat, Indonesia 40154

*eyuss84@upi.edu

Abstract. Translation of function is important in mathematics. But there are obstacles in learning the Conceptions of function translation. One alternative to overcome this obstacle is to use manipulatives. Through the lecture mathematics learning media, we have designed manipulatives of function translation. This article will present the manipulatives that have been developed and describe how to use this manipulatives of function translation.

1. Introduction

Function is important and fundamental mathematical concept. Therefore, teaching and learning of functions has been an important focus in mathematics education [1,2]. Functions are used in every branch of mathematics as geometry, calculus, algebra, statistics, and analysis. Function as a gateway to advanced mathematics and higher education. Furthermore, function knowledge and skills are relevant in daily and professional life either. Functions are all around us, for example, functions for financial plans to calculate such things as accrued interest and income, to interpretations of local and world demographics and population growth for economic planning and development [3].

But the fact there are obstacles in learning of function. The reports on case study of a 16-year-old student working on transformations of functions in a computer based multi-representational environment [4]. Their study aim to investigate reflections horizontal and vertical lines, horizontal and vertical translations, and horizontal, vertical and stretches of functions. The student try to interpret the horizontal translation of a parabola are presented as “problematic”. Zazkis have studied on the difficulty — acknowledged in the aforementioned previous study — show by a horizontal of function translation [1]. Their aim as to inquire how teachers and students with that difficulty. The findings, any epistemological obstacles Concept of function translation, learners’ experiences with numbers suggest that subtracting 3 (or adding negative 3) results in translation in the negative direction (left), when adding 3 to a variable results in a translation in the positive direction (right). And alike that a view is an over-generalization of previous impression of subtracting and adding numbers on the number line.

Sari recommend that one way to improve mathematics understanding is use manipulatives [5]. Ball [6] suggested manipulatives as crucial to the improvement of mathematics learning. The 3D kit serves as a useful instrument in the teaching of multivariable calculus [7]. Their result, first, for the involved symbolic algebraic manipulation, there were no statistically significant differences between students who used or did not make use the manipulative. Second, geometric orientation of students using the manipulatives did significantly better. Third, the behaviour of students in calculus of multivariable, were extremely positive against the 3D kit as a visualization tool. Heddens [8] shows Research in
Japan, England, China, and the United States endorse the idea that student mathematics understanding and mathematics learning will be more effective if manipulatives are used. Boggan et al report manipulatives is important for children to have a variety of materials to manipulate and explore if students are to develop mathematical knowledge and the opportunity to weed out, pile, classify, scale [9]. Munger shows Children learn and retain math better using manipulatives [10].

The research of [11] invent that on three of four lessons studied manipulative materials use was turned to an end in and of itself, than a tool, and that in the fourth lesson manipulative use hindered till helped student learning. These matter with manipulative use by teachers in the teaching and learning prepare useful guidance for planning of future professional development for mathematics teaching. The conclusion contains suggestion for successful implementation of manipulatives for teachers and professional developers. Next we will present how to use this tool.

2. Results and discussion

This manipulative is made of wood plastered with melamine plywood designed like a chess board, so it can be folded and in it is useful for storing graphs drawn on acrylic. The size of the tool that is (108x52x1) cm in the state of the board is open, while in the folded condition the size becomes (54x52x2) cm. As for the graph drawn on the geogebra software and then printed, then paste on the acrylic with the desired size. In order to stick to the board, paste the magnet with glue on the acrylic. Here is an example of using the tool.

Suppose known function \(f(x) = x^2 \) is the following picture.

![Figure 1](image1.png)

Next we will show the graph \(y=(x-2)^2 \), so that the graph \(f(x) = x^2 \) (in figure 1) shift two units to the right is shown by the following figure.

![Figure 2](image2.png)

Represent the graph \(y = (x +2)^2 \), so that the graph \(f(x) = x^2 \) (in figure 1) change two units to the left is shown by the following figure.

![Figure 3](image3.png)
The graph $y = x^2 - 2$ is obtained by means of the graph $f(x) = x^2$ (in figure 1) move two units upward shown by the following figure.

![Figure 4](image)

The graph $y = x^2 + 2$ is obtained by means of the graph of $f(x) = x^2$ (in figure 1) shifted two units downward shown by the following figure.

![Figure 5](image)

The graphs on the manipulatives are as follows:

$f(x) = x^2$	$x=1$	$f(x)=1$	$f(x)=x$	$f(x) = \frac{x}{x-1}$					
$f(x) = x^3$	$f(x) =	x	$	$f(x) =	x			f(x) = 2^x$	$f(x) = 2 \log x$

Note: The graph is drawn using geogebra software.

The principle of function translation graph is:

Let $c > 0$, obtained 4 kinds of graphs:
- $y = f(x) + c$, move $y = f(x)$ as far asc units up.
- $y = f(x) - c$, movegraphy $f(x)$ as far asc unit down.
- $y = f(x - c)$, move $f(x)$ as far asc units to the right.
- $y = f(x + c)$, move $f(x)$ as far asc units to the left.
3. Conclusion

This manipulative can be used as an alternative as a visualization tool in the concept of function translation. So it is advisable to do further research on the effect of using the manipulatives.

Acknowledgments

The idea of the manipulatives is from us, but tools made by students with our guidance. We acknowledged to Aprilia Rambe, Resti Fitriani, Reza Gumelar, and Siti Maemunah are students of the Department of Mathematics Education at Universitas Pendidikan Indonesia who have made manipulatives on conic concepts.

References

[1] Zazkis R, Liljedahl P and Gadowsky K 2003 Conceptions of function translation: obstacles, intuitions, and reroutin *Journal of Mathematical Behavior* 22 437–450

[2] The IAS/Park City Mathematics Program (PCMI) *The Place of Functions in the School Mathematics Curriculum*. Retrieved August, 30, 2017, from: https://pcmi.ias.edu/files/The%20Place%20of%20Functions%20in%20School%20Mathematics%20Curriculum.pdf

[3] Kalchman M and Koedinger K R *Teaching and Learning Function*. Copyright © National Academy of Sciences. All rights reserved. How Students Learn: Mathematics in the Classroom. Retrieved August, 30, 2017, from: http://www.nap.edu/catalog/11101.html

[4] Borba M C & Confrey J 1996 A students’ construction of transformations of functions in a multirepresentational environment *Educational Studies in Mathematics* 31 3 319–337

[5] Sari P P 2016 Analisis Kasus Rendahnya Prestasi belajar Matematika Siswa pada Materi Irisan Kerucut dan Solusi Pemecahannya di Kelas XI IA 2 SMAIT Nur Hidayah. [Case Analysis of Low Mathematics Learning Outcomes on Conics Concept and The Solution]. *Proceedings at the National Conference on Research on Mathematics and Learning at Muhamadiyah University of Surakarta*

[6] Marshall L and Swan P 2008 Exploring the Use of Mathematics Manipulative Materials: Is It What We Think It Is? *Originally published in the Proceedings of the EDU-COM 2008 International Conference. Sustainability in Higher Education: Directions for Change, Edith Cowan University, Perth Western Australia* 19-21

[7] McGee D, Jr, Moore-Russo D, Ebersole D, Lomen D O and Quintero M 2012 Visualizing Three-Dimensional Calculus Concepts: The Study of a Manipulative’s Effectiveness. *PRIMUS, 22* 4 265–283

[8] Schweyer S R (April 20, 2000). The Effective Use of Manipulatives. (as seen in CORE PLUS). EDC 564 – Core Plus Math 1. Retrieved August, 31, 2017, from: http://gphillymath.org/ExempPaper/Documents/manipulatives.pdf

[9] Boggan M, Harper S, Whitmire A 2017 Using manipulatives to teach elementary mathematics *Journal of Instructional Pedagogies*

[10] Munger D (2007, October 9). Children learn and retain math better using manipulatives. [Msg.1]. Retrieved August, 31, 2017, from Message posted to: http://scienceblogs.com/cognitivedaily/2007/10/09/children-learn-and-retain-math/

[11] Puchner L, Taylor A, O’Donnell B & Fick K 2008 Teacher learning and mathematics manipulatives: A collective case study about teacher use of manipulatives in elementary and middle school mathematics lessons. *School Science and Mathematics*