Classification of continuously transitive circle groups

JAMES GIBLIN
VLADIMIR MARKOVIC

Let G be a closed transitive subgroup of $\text{Homeo}(S^1)$ which contains a non-constant continuous path $f : [0, 1] \to G$. We show that up to conjugation G is one of the following groups: $\text{SO}(2, \mathbb{R})$, $\text{PSL}(2, \mathbb{R})$, $\text{PSL}_d(2, \mathbb{R})$, $\text{Homeo}_d(S^1)$, $\text{Homeo}(S^1)$. This verifies the classification suggested by Ghys in [5]. As a corollary we show that the group $\text{PSL}(2, \mathbb{R})$ is a maximal closed subgroup of $\text{Homeo}(S^1)$ (we understand this is a conjecture of de la Harpe). We also show that if such a group $G \subset \text{Homeo}(S^1)$ acts continuously transitively on k–tuples of points, $k > 3$, then the closure of G is $\text{Homeo}(S^1)$ (cf [1]).

37E10; 22A05, 54H11

1 Introduction

Let $\text{Homeo}(S^1)$ denote the group of orientation preserving homeomorphisms of S^1 which we endow with the uniform topology. Let G be a subgroup of $\text{Homeo}(S^1)$ with the topology induced from $\text{Homeo}(S^1)$. We say that G is transitive if for every two points $x, y \in S^1$, there exists a map $f \in G$, such that $f(x) = y$. We say that a group G is closed if it is closed in the topology of $\text{Homeo}(S^1)$. A continuous path in G is a continuous map $f : [0, 1] \to G$.

Let $\text{SO}(2, \mathbb{R})$ denote the group of rotations of S^1 and $\text{PSL}(2, \mathbb{R})$ the group of Möbius transformations. The first main result we prove describes transitive subgroups of $\text{Homeo}(S^1)$ that contain a non constant continuous path.

Theorem 1.1 Let G be a transitive subgroup of $\text{Homeo}(S^1)$ which contains a non constant continuous path. Then one of the following mutually exclusive possibilities holds:

1. G is conjugate to $\text{SO}(2, \mathbb{R})$ in $\text{Homeo}(S^1)$.
2. G is conjugate to $\text{PSL}(2, \mathbb{R})$ in $\text{Homeo}(S^1)$.
3. For every $f \in \text{Homeo}(S^1)$ and each finite set of points $x_1, \ldots, x_n \in S^1$ there exists $g \in G$ such that $g(x_i) = f(x_i)$ for each i.

Published: 18 September 2006 DOI: 10.2140/gt.2006.10.1319
(4) G is a cyclic cover of a conjugate of $\text{PSL}(2, \mathbb{R})$ in $\text{Homeo}(S^1)$ and hence conjugate to $\text{PSL}_k(2, \mathbb{R})$ for some $k > 1$.

(5) G is a cyclic cover of a group satisfying condition 3 above.

Here we write $\text{PSL}_k(2, \mathbb{R})$ and $\text{Homeo}_k(S^1)$ to denote the cyclic covers of the groups $\text{PSL}(2, \mathbb{R})$ and $\text{Homeo}(S^1)$ respectively, for some $k \in \mathbb{N}$.

The proof begins by showing that the assumptions of the theorem imply that G is continuously 1–transitive. This means that if we vary points $x, y \in S^1$ in a continuous fashion, then we can choose corresponding elements of G which map x to y that also vary in a continuous fashion. In Theorems 3.8 and 3.10 we show that this leads us to two possibilities, either G is conjugate to $\text{SO}(2, \mathbb{R})$, or G is a cyclic cover of a group which is continuously 2–transitive.

We then analyse groups which are continuously 2–transitive and show that they are in fact all continuously 3–transitive. Furthermore, if such a group is not continuously 4–transitive, we show that it is a convergence group and hence conjugate to $\text{PSL}(2, \mathbb{R})$. On the other hand if it is continuously 4–transitive, then we use an induction argument to show that it is continuously n–transitive for all $n \geq 4$. This implies that for every $f \in \text{Homeo}(S^1)$ and each finite set of points $x_1, \ldots, x_n \in S^1$ there exists a group element g such that $g(x_i) = f(x_i)$ for each i.

The remaining possibilities, namely cases 2 and 3, arise when the aforementioned cyclic cover is trivial.

In the case where the group G is also closed we can use Theorem 1.1 to make the following classification.

Theorem 1.2 Let G be a closed transitive subgroup of $\text{Homeo}(S^1)$ which contains a non constant continuous path. Then one of the following mutually exclusive possibilities holds:

1. G is conjugate to $\text{SO}(2, \mathbb{R})$ in $\text{Homeo}(S^1)$.
2. G is conjugate to $\text{PSL}_k(2, \mathbb{R})$ in $\text{Homeo}(S^1)$ for some $k \geq 1$.
3. G is conjugate to $\text{Homeo}_k(S^1)$ in $\text{Homeo}(S^1)$ for some $k \geq 1$.

The above theorem provides the classification of closed, transitive subgroups of $\text{Homeo}(S^1)$ that contain a non-trivial continuous path. This classification was suggested by Ghys for all transitive and closed subgroups of $\text{Homeo}(S^1)$ (See [5]).

One well known problem in the theory of circle groups is to prove that the group of Möbius transformations is a maximal closed subgroup of $\text{Homeo}(S^1)$. We understand
that this is a conjecture of de la Harpe (see [1]). The following theorem follows directly from our work and answers this question.

Theorem 1.3 \(\text{PSL}(2, \mathbb{R}) \) is a maximal closed subgroup of \(\text{Homeo}(\mathbb{S}^1) \).

In the following five sections we develop the techniques needed to prove our results. Here we prove the results about the transitivity on \(k \)-tuples of points. In Section 7 we give the proofs of all the main results stated above.

2 Continuous Transitivity

Let \(G < \text{Homeo}(\mathbb{S}^1) \) be a transitive group of orientation preserving homeomorphisms of \(\mathbb{S}^1 \). We begin with some definitions which generalize the notion of transitivity.

Set,
\[
P_n = \{(x_1, \ldots, x_n) : x_i \in \mathbb{S}^1, x_i = x_j \iff i = j \}
\]
to be the set of distinct \(n \)-tuples of points in \(\mathbb{S}^1 \). Two \(n \)-tuples
\[
(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in P_n
\]
have matching orientations if there exists \(f \in \text{Homeo}(\mathbb{S}^1) \) such that \(f(x_i) = y_i \) for each \(i \).

Definition 2.1 \(G \) is \(n \)-transitive if for every pair \((x_1, \ldots, x_n), (y_1, \ldots, y_n) \in P_n \) with matching orientations there exists \(g \in G \) such that \(g(x_i) = y_i \) for each \(i \).

Definition 2.2 \(G \) is uniquely \(n \)-transitive if it is \(n \)-transitive and for each pair \((x_1, \ldots, x_n), (y_1, \ldots, y_n) \in P_n \) with matching orientations there is exactly one element \(g \in G \) such that \(g(x_i) = y_i \). Equivalently, the only element of \(G \) fixing \(n \) distinct points is the identity.

Endow \(\mathbb{S}^1 \) with the standard topology and \(P_n \) with the topology it inherits as a subspace of the \(n \)-fold Cartesian product \(\mathbb{S}^1 \times \cdots \times \mathbb{S}^1 \). These are metric topologies. With the topology on \(P_n \) being induced by the distance function
\[
d_{P_n}((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \max\{d_{\mathbb{S}^1}(x_i, y_i) : i = 1, \ldots, n\},
\]
where \(d_{\mathbb{S}^1} \) is the standard Euclidean distance function on \(\mathbb{S}^1 \).
We have the following lemma. We will call a pair of paths $\gamma: [0, 1] \to X$. If $\gamma: [0, 1] \to P_n$ is a path in P_n, we will write $x_i(t) = π_i \circ γ(t)$, where $π_i$ is projection onto the i-th component of $\mathbb{S}^1 \times \cdots \times \mathbb{S}^1$, so that we can write $γ(t) = (x_1(t), \ldots, x_n(t))$. We will call a pair of paths $\gamma, \delta: [0, 1] \to P_n$ compatible if there exists a path $h: [0, 1] \to \text{Homeo}(\mathbb{S}^1)$ with $h(t)(x_i(t)) = y_i(t)$ for each i and t.

Definition 2.3 G is continuously n–transitive if for every compatible pair of paths $\gamma, \delta: [0, 1] \to P_n$ there exists a path $g: [0, 1] \to G$ with the property that $g(t)(x_i(t)) = y_i(t)$ for each i and t.

Definition 2.4 A continuous deformation of the identity in G is a non constant path of homeomorphisms $f_t \in G$ for $t \in [0, 1]$ with $f_0 = \text{id}$.

We have the following lemma.

Lemma 2.5 For $n \geq 2$ the following are equivalent:

1. G is continuously n–transitive.
2. G is continuously $n - 1$–transitive and the following holds. For every $n - 1$–tuple $(a_1, \ldots, a_{n-1}) \in P_{n-1}$ and $x \in \mathbb{S}^1 \setminus \{a_1, \ldots, a_{n-1}\}$ there exists a continuous map $F_x: I \to G$ satisfying the following conditions,
 - (a) $F_x(y)$ fixes a_1, \ldots, a_{n-1} for all $y \in I_x$
 - (b) $(F_x(y))(x) = y$ for all $y \in I_x$
 - (c) $F_x(x) = \text{id}$
 where I_x is the component of $\mathbb{S}^1 \setminus \{a_1, \ldots, a_{n-1}\}$ containing x.
3. G is continuously $n - 1$–transitive and there exists $(a_1, \ldots, a_{n-1}) \in P_{n-1}$ with the following property. There is a component I of $\mathbb{S}^1 \setminus \{a_1, \ldots, a_{n-1}\}$, a point $\tilde{x} \in I$ and a continuous map $F_{\tilde{x}}: I \to G$ satisfying the following conditions,
 - (a) $F_{\tilde{x}}(y)$ fixes a_1, \ldots, a_{n-1} for all $y \in I$
 - (b) $(F_{\tilde{x}}(y))(\tilde{x}) = y$ for all $y \in I$
 - (c) $F_{\tilde{x}}(\tilde{x}) = \text{id}$.
(4) \(G \) is continuously \(n-1 \)-transitive and there exists \((a_1, \ldots, a_n) \in P_{n-1} \) with the following property. There is a component \(I \) of \(S^1 \setminus \{a_1, \ldots, a_n\} \), such that for each \(x \in I \) there exists a continuous deformation of the identity \(f_t \), satisfying \(f_t(a_i) = a_i \) for each \(t \) and \(i \) and \(f_t(x) \neq x \) for some \(t \).

Proof We start by showing \([1 \Rightarrow 4]\). As \(G \) is continuously \(n \)-transitive, it will automatically be continuously \(n-1 \) transitive. Take \((a_1, \ldots, a_n) \in P_{n-1} \) and \(x \in S^1 \setminus \{a_1, \ldots, a_n\} \). Let \(I_x \) be the component of \(S^1 \setminus \{a_1, \ldots, a_n\} \) which contains \(x \). Take \(y \in I_x \setminus \{x\} \) and let \(x_t \) be an injective path in \(I_x \) with \(x_0 = x \) and \(x_1 = y \).

Let \(\lambda : [0, 1] \to P_n \) be the constant path defined by \(\lambda(t) = (a_1, \ldots, a_n, x_0) \) and let \(\gamma : [0, 1] \to P_n \) be the path defined by \(\gamma(t) = (a_1, \ldots, a_n, x_t) \). Then since \(x_t \in I_y \) for every time \(t \) these form an compatible pair of paths. Consequently, there exists a path \(g_t \in G \) which fixes each \(a_i \) and such that \(g_t(x) = (x_t) \). Defining \(f_t = g_t \circ (g_0)^{-1} \) gives us the required continuous deformation of the identity.

We now show that \([4 \Rightarrow 3]\). For \(\tilde{x} \in I \) set \(K_{\tilde{x}} \) to be the set of points \(x \in I \) for which there is a path of homeomorphisms \(f_t \in G \) satisfying,

1. \(f_0 = \text{id} \)
2. \(f_t(a_i) = a_i \) for each \(i \) and \(t \)
3. \(f_t(\tilde{x}) = x \).

Obviously, \(K_{\tilde{x}} \) will be a connected subset of \(I \) and hence an interval for each \(\tilde{x} \in I \).

Choose \(\tilde{x} \in I \) and take \(x \in K_{\tilde{x}} \). Let \(f_t \) and \(g_t \) be continuous deformations of the identity which fix the \(a_i \) for all \(t \) and such that \(f_{t_0}(x) \neq x \) for some \(t_0 \in (0, 1] \) and \(g_1(\tilde{x}) = x \). \(f_t \) exists by the assumptions of condition 4, and \(g_t \) exists because \(x \in K_{\tilde{x}} \). The following paths show that the interval between \(f_{t_0}(x) \) and \((f_{t_0})^{-1}(x) \) is contained in \(K_{\tilde{x}} \):

\[
 h_1(t) = \begin{cases}
 g_{2t} & t \in [0, 1/2] \\
 f_{t_0(2t-1)} \circ g_1 & t \in [1/2, 1]
 \end{cases}
\]

\[
 h_2(t) = \begin{cases}
 g_{2t} & t \in [0, 1/2] \\
 (f_{t_0(2t-1)})^{-1} \circ g_1 & t \in [1/2, 1]
 \end{cases}
\]

As \(x \) is contained in this interval and cannot be equal to either of its endpoints we see that \(K_{\tilde{x}} \) is open for every \(\tilde{x} \in I \). On the other hand, \(\tilde{x} \in K_{\tilde{x}} \) for each \(\tilde{x} \in I \) and if \(x_1 \in K_{\tilde{x}_2} \) then \(K_{\tilde{x}_1} = K_{\tilde{x}_2} \). Consequently, the sets \(\{K_{\tilde{x}} : \tilde{x} \in I\} \) form a partition of \(I \) and hence \(K_{\tilde{x}} = I \) for every \(\tilde{x} \in I \).
We now construct the map $F_{\bar{x}}$. To do this, take a nested sequence of intervals $[x_n, y_n]$ containing \bar{x} for each n and such that x_n, y_n converge to the endpoints of I as $n \to \infty$. We define $F_{\bar{x}}$ inductively on these intervals. Since $K_{\bar{x}} = I$ we can find a path of homeomorphisms $f_t \in G$ satisfying,

1. $f_0 = \text{id}$
2. $f_t(a_i) = a_i$ for each i and t
3. $f_1(\bar{x}) = x_1$.

We now show that there exists a path $\tilde{f}_t \in G$, which also satisfies the above, but with the additional condition that the path $\tilde{f}_t(\bar{x})$ is simple.

To see this, let $[x^*, \bar{x}]$ be the largest subinterval of $[x_1, \bar{x}]$ for which there exists a path $\tilde{f}_t \in G$ which satisfies,

1. $\tilde{f}_0 = \text{id}$
2. $\tilde{f}_t(a_i) = a_i$ for each i and t
3. $\tilde{f}_1(\bar{x}) = x^*$
4. $\tilde{f}_t(\bar{x})$ is simple.

We want to show that $x^* = x_1$. Assume for contradiction that $x^* \neq x_1$. Then since $x^* \in [x_1, \bar{x}]$ there exists $s \in [0, 1]$ such that $f_s(\bar{x}) = x^*$ and for small $\epsilon > 0$, we have that $f_{s+\epsilon}(\bar{x}) \notin [x^*, \bar{x}]$. Then if we concatenate the path \tilde{f}_t with $f_{s+\epsilon} \circ f_{s-1} \circ \tilde{f}_1$ for small ϵ we can construct a simple path satisfying the same conditions as \tilde{f}_t but on an interval strictly bigger than $[x^*, \bar{x}]$, this contradicts the maximality of x^* and we deduce that $x^* = x_1$.

We can use the path \tilde{f}_t to define a map $F_{x^*}^1: [x_1, y_1] \to G$ satisfying,

1. $F_{x^*}^1(y)$ fixes each a_i for each $y \in I$
2. $(F_{x^*}^1(y))(\bar{x}) = y$ for all $y \in I$
3. $F_{x^*}^1(\bar{x}) = \text{id}$.

by taking paths of homeomorphisms that move \bar{x} to x_1 and y_1 along simple paths in S^1.

Now assume we have defined a map $F_{x^*}^k: [x_k, y_k] \to G$ satisfying,

1. $F_{x^*}^k(y)$ fixes each a_i for each $y \in I$
2. $(F_{x^*}^k(y))(\bar{x}) = y$ for all $y \in I$
3. $F_{x^*}^k(\bar{x}) = \text{id}$.
We can use the same argument used to produce $F^1_\bar{x}$ to show that there exists a map $\bar{\xi}_x: [x_{k+1}, x_k] \to G$ such that \(\bar{\xi}_x(x) \) fixes the a_i for each x, $\bar{\xi}_x(x_k) = \text{id}$ and $(\bar{\xi}_x(x))(x_k) = x$. Similarly there exists a map $\bar{\xi}_y: [y_k, y_{k+1}] \to G$ such that $\bar{\xi}_y(x)$ fixes the a_i for each x, $\bar{\xi}_y(y_k) = \text{id}$ and $(\bar{\xi}_y(x))(y_k) = x$.

This allows us to define, $F^{k+1}_x: [x_{k+1}, y_{k+1}] \to G$ by:

$$
F^{k+1}_x(x) = \begin{cases}
F^k_{\bar{x}}(x) & x \in [x_k, y_k] \\
(\bar{\xi}_x(x)) \circ F^k_{\bar{x}}(x_k) & x \in [x_{k+1}, x_k] \\
(\bar{\xi}_y(x)) \circ F^k_{\bar{x}}(y_k) & x \in [y_k, y_{k+1}]
\end{cases}
$$

Inductively, we can now define the full map $F_x: I \to G$.

We now show that $[3 \Rightarrow 2]$. So take $x' \in I$ with $x' \neq \bar{x}$ and define $F_{x'}: I \to G$ by

(1) $F_{x'}(y) = F_{\bar{x}}(y) \circ (F_{\bar{x}}(x'))^{-1}$

Then $F_{x'}$ satisfies,

(1) $F_{x'}(y)$ fixes a_1, \ldots, a_{n-1} for all $y \in I$

(2) $(F_{x'}(y))(x') = y$ for all $y \in I$

(3) $F_{x'}(x') = \text{id}$.

Moreover, we can use (1) to define a map $F: I \times I \to G$ which is continuous in each variable and satisfies,

(1) $F(x, y)$ fixes a_1, \ldots, a_{n-1} for all $x, y \in I$

(2) $(F(x, y))(x) = y$ for all $x, y \in I$

(3) $F(x, x) = \text{id}$ for all $x \in I$.

Now take x' to be a point in $S^1 \setminus I \cup \{a_1, \ldots, a_{n-1}\}$ and let I' be the component of $S^1 \setminus \{a_1, \ldots, a_{n-1}\}$ which contains x'. Then since G is continuously $n - 1$–transitive there exists $g \in G$ which permutes the a_i so that $g(I) = I'$. Define $F_{x'}: I' \to G$ by

$$
F_{x'}(y) = g \circ F_{g^{-1}(x')}(g^{-1}(y)) \circ g^{-1}
$$

for $y \in I'$. Then $F_{x'}$ satisfies,

(1) $F_{x'}(y)$ fixes a_1, \ldots, a_{n-1} for all $y \in I$

(2) $(F_{x'}(y))(x') = y$ for all $y \in I'$

(3) $F_{x'}(x') = \text{id}$.

Geometry & Topology 10 (2006)
Now let \((b_1, \ldots, b_{n-1}) \in P_{n-1}\) have the same orientation as \((a_1, \ldots, a_{n-1})\) then since \(G\) is continuously \(n-1\)-transitive there exists \(g \in G\) so that \(g(a_i) = b_i\) for each \(i\). Let \(x' \in S^1 \setminus \{b_1, \ldots, b_{n-1}\}\) and let \(I'\) be the component of \(S^1 \setminus \{b_1, \ldots, b_{n-1}\}\) in which it lies. Define \(F_{x'} : I' \to G\) by
\[
F_{x'}(y) = g \circ F_{g^{-1}(x')}(g^{-1}(y)) \circ g^{-1}
\]
for \(y \in I'\). Then \(F_{x'}\) satisfies,

1. \(F_{x'}(y)\) fixes \(b_1, \ldots, b_{n-1}\) for all \(y \in I\)
2. \((F_{x'}(y))(x') = y\) for all \(y \in I'\)
3. \(F_{x'}(x') = \text{id}\)

and we have that \([3 \Rightarrow 2]\)

Finally we have to show that \([2 \Rightarrow 1]\). Let \(\mathcal{X}, \mathcal{Y} : [0, 1] \to P_n\) be an compatible pair of paths. We define \(\mathcal{X}' : [0, 1] \to P_{n-1}\) by
\[
\mathcal{X}'(t) = (x_1(t), \ldots, x_{n-1}(t))
\]
and \(\mathcal{Y}' : [0, 1] \to P_{n-1}\) by
\[
\mathcal{Y}'(t) = (y_1(t), \ldots, y_{n-1}(t)).
\]
Notice that \(\mathcal{X}'\) and \(\mathcal{Y}'\) will also be a compatible pair of paths. Furthermore, as \(G\) is continuously \(n-1\)-transitive there will exist a path \(g' : [0, 1] \to G\) such that \(g'(t)(x_i(t)) = y_i(t)\) for \(1 \leq i \leq n-1\).

The paths \(\mathcal{X}', \mathcal{Y}' : [0, 1] \to P_{n-1}\) will also be compatible with the constant paths,
\[
\mathcal{X}'_0 : [0, 1] \to P_{n-1}
\]
\[
\mathcal{X}'_0(t) = \mathcal{X}'(0)
\]
and
\[
\mathcal{Y}'_0 : [0, 1] \to P_{n-1}
\]
\[
\mathcal{Y}'_0(t) = \mathcal{Y}'(0)
\]
respectively. So that there exist paths \(g'_x, g'_y : [0, 1] \to G\) with \(g'_x(x_i(0)) = x_i(t)\) and \(g'_y(y_i(0)) = y_i(t)\) for \(1 \leq i \leq n-1\). Furthermore, by pre composing with \((g'_x(0))^{-1}\) and \((g'_y(0))^{-1}\) if necessary, we can assume that \(g'_x(0) = g'_y(0) = \text{id}\).

We now construct a path \(g_x : [0, 1] \to G\) which satisfies,
\[
g_x(t)(x_i(0)) = x_i(t)
\]
for \(1 \leq i \leq n\). To do this let \(I\) be the component of \(S^1 \setminus \{x_1(0), \ldots, x_{n-1}(0)\}\) containing \(x_n(0)\). By assumption we have a continuous map \(F_{x_n(0)} : I \to G\) satisfying

\[\text{Geometry & Topology 10 (2006)}\]
(1) \(F_{x_n(0)}(y) \) fixes \(x_1(0), \ldots, x_{n-1}(0) \) for all \(y \in I \)

(2) \((F_{x_n(0)}(y))(x) = y \) for all \(y \in I \)

(3) \(F_{x_n(0)}(x) = \text{id.} \)

Define \(g_x : [0, 1] \to G \) by

\[
g_x(t) = g_y'(t) \circ (F_{x_n(0)}((g_x'(t))^{-1}(x_n(t))))^{-1}.\]

Then \(g_x(t)(x_i(0)) = x_i(t) \) for \(1 \leq i \leq n \). We can repeat this process with \(g_y' \) to construct a path \(g_y : [0, 1] \to G \) satisfying \(g_y(t)(y_i(0)) = y_i(t) \) for \(1 \leq i \leq n \).

The map \(g'(0) \) which we defined earlier will map \(x_i(0) \) to \(y_i(0) \) for \(1 \leq i \leq n - 1 \). Moreover, \(g'(0)(x_n(0)) \) will lie in the same component of \(S^1 \setminus \{y_1(0), \ldots, y_{n-1}(0)\} \) as \(y_n(0) \). So we have a map \(F_{g'(0)(x_n(0))}(y_n(0)) \) which maps \(g'(0)(x_n(0)) \) to \(y_n(0) \) and fixes the other \(y_i(0) \). Putting all of this together allows us to define \(g : [0, 1] \to G \) by

\[
g(t) = g_y(t) \circ F_{g'(0)(x_n(0))}(y_n(0)) \circ g'(0) \circ (g_x(t))^{-1}.
\]

This is a path in \(G \) which satisfies \(g_x(t)(x_i(t)) = y_i(t) \) for each \(i \) and \(t \). Since we can do this for any two compatible paths, \(G \) is continuously \(n \)-transitive and we have shown that \(2 \Rightarrow 1 \).

Proposition 2.6 If \(G \) is \(1 \)-transitive and there exists a continuous deformation of the identity \(f_t : [0, 1] \to G \) in \(G \), then \(G \) is continuously \(1 \)-transitive.

Proof Let \(x_0 \in S^1 \) be such that \(f_{t_0}(x_0) \neq x_0 \) for some \(t_0 \in [0, 1] \). Take \(x \in S^1 \) then there exists \(g \in G \) such that \(g(x) = x_0 \). Consequently, \(g^{-1} \circ f_t \circ g \) is a continuous deformation of the identity which doesn’t fix \(x \) for some \(t \). Since these deformations exist for each \(x \in S^1 \) the proof follows in exactly the same way as \(4 \Rightarrow 1 \) from the proof of Lemma 2.5.

From now on we will assume that \(G \) contains a continuous deformation of the identity, and hence is continuously \(1 \)-transitive.

3 The set \(J_x \)

Definition 3.1 For \(x \in S^1 \) we define \(J_x \) to be the set of points \(y \in S^1 \) which satisfy the following condition. There exists a continuous deformation of the identity \(f_t \in G \) which fixes \(x \) for all \(t \) and such that \(f_{t_0}(y) \neq y \) for some \(t_0 \in [0, 1] \).
It follows directly from this definition that \(x \not\in J_x \).

Lemma 3.2 \(J_{f(x)} = f(J_x) \) for every \(f \in G \) and \(x \in \mathbb{S}^1 \).

Proof Let \(y \in J_{f(x)} \) and let \(f_t \) be the corresponding continuous deformation of the identity with \(f_{t_0}(y) \neq y \). Then \(f^{-1} \circ f_t \circ f \) is also a continuous deformation of the identity which now fixes \(x \), and for which \(f_{t_0}(f^{-1}(y)) \neq f^{-1}(y) \). This means that \(f^{-1}(y) \in J_x \) and hence \(y \in f(J_x) \) so that \(J_{f(x)} \subset f(J_x) \). The other inclusion is an identical argument. \(\square \)

Lemma 3.3 \(J_x \) is open for every \(x \in \mathbb{S}^1 \).

Proof Let \(y \in J_x \) and take \(f_t \) to be the corresponding continuous deformation of the identity with \(f_{t_0}(y) \neq y \) for some \(t_0 \in [0, 1] \). Then since \(f_{t_0} \) is continuous there exists a neighborhood \(U \) of \(y \) such that \(f_{t_0}(z) \neq z \) for all \(z \in U \). This implies that \(U \subset J_x \) and hence that \(J_x \) is open. \(\square \)

Lemma 3.4 \(J_x = \emptyset \) for every \(x \in \mathbb{S}^1 \) or \(J_x \) has a finite complement for every \(x \in \mathbb{S}^1 \).

To prove this lemma we will use the Hausdorff maximality Theorem which we now recall.

Definition 3.5 A set \(P \) is partially ordered by a binary relation \(\leq \) if,

1. \(a \leq b \) and \(b \leq c \) implies \(a \leq c \)
2. \(a \leq a \) for every \(a \in P \)
3. \(a \leq b \) and \(b \leq a \) implies that \(a = b \).

Definition 3.6 A subset \(Q \) of a partially ordered set \(P \) is totally ordered if for every pair \(a, b \in Q \) either \(a \leq b \) or \(b \leq a \). A totally ordered subset \(Q \subset P \) is maximal if for any member \(a \in P \setminus Q \), \(Q \cup \{a\} \) is not totally ordered.

Theorem 3.7 (Hausdorff Maximality Theorem) Every nonempty partially ordered set contains a maximal totally ordered subset.

We now prove Lemma 3.4.
Proof Assume that there exists \(x \in S^1 \) for which \(J_x = \emptyset \). Then for every \(y \in S^1 \) there exists a map \(g \in G \) such that \(g(x) = y \). Consequently,

\[
J_y = J_{g(x)} = g(J_x) = g(\emptyset) = \emptyset
\]

for every \(y \in S^1 \).

Assume that \(J_x \neq \emptyset \) for every \(x \in S^1 \) and let \(S_x = S^1 \setminus J_x \) denote the complement of \(J_x \). This means that \(S_x \) consists of the points \(y \in S^1 \) such every continuous deformation of the identity which fixes \(x \) also fixes \(y \). The set \(P = \{ S_x : x \in S^1 \} \) is partially ordered by inclusion so that by Theorem 3.7 there exists a maximal totally ordered subset, \(Q = \{ S_x : x \in A \} \), where \(A \) is the appropriate subset of \(S^1 \).

If we set \(S = \bigcap_{x \in A} S_x \) then we have the following:

1. \(S \neq \emptyset \)
2. if \(x \in S \) then \(S_x = S \).

1 follows from the fact that \(S \) is the intersection of a descending family of compact sets, and hence is nonempty.

To see that 2 is also true, fix \(x \in S \). Then from the definition of \(S \), we will have \(x \in S_a \) for each \(a \in A \). In other words, if we take \(a \in A \), then every continuous deformation of the identity which fixes \(a \) will also fix \(x \). Furthermore, if \(y \in S_x \) then every continuous deformation of the identity which fixes \(a \) not only fixes \(x \) but \(y \) too, so that \(S_x \subset S_a \). This is true for every \(a \in A \) so that \(S_x \subset S \). On the other hand, by the maximality of \(Q \), it must contain \(S_x \). Consequently, if \(x \in S \) then \(S_x = S \).

Fix \(x_0 \in S \) and assume for contradiction that \(S_{x_0} \) is infinite. Take a sequence \(x_n \in S_{x_0} \) and let \(x_{n_k} \) be a convergent subsequence with limit \(x' \). This limit will also be in \(S_{x_0} \) as it is closed. As \(J_{x_0} \) is a nonempty open subset of \(S^1 \) it will contain an interval \((a, b)\) with \(a, b \in S_{x_0} \). Take maps \(g_a, g_b \in G \) so that \(g_a(x') = a \) and \(g_b(x) = b \). Since \(x', a \in S_{x_0} \) we have that,

\[
g_a(S_{x_0}) = g_a(S_{x_0}) = S_{g_a(x')} = S_a = S_{x_0}
\]

and similarly for \(g_b \). As a result \(g_a(x_n), g_b(x_n) \in S_{x_0} \) for each \(n \), but \(g_a, g_b \) are orientation preserving homeomorphisms so that at least one of these points will lie in \((a, b)\), a contradiction.

We have shown that \(S_{x_0} \) is finite. If we now take any other point \(x \in S^1 \) then there exists a map \(g \in G \) such that \(g(x_0) = x \). This means that the set \(S_x = S_{g(x_0)} = g(S_{x_0}) \) will also be finite and we are done.

Theorem 3.8 If \(J_x = \emptyset \) for all \(x \in S^1 \) then \(G \) is conjugate in \(\text{Homeo}(S^1) \) to the group of rotations \(\text{SO}(2, \mathbb{R}) \).

Geometry & Topology 10 (2006)
We require the following lemma for the proof of this Theorem.

Lemma 3.9 If \(f : \mathbb{R} \to \mathbb{R} \) is a homeomorphism which conjugates translations to translations, then it is an affine map.

Proof Let \(f \) be a homeomorphism which conjugates translations to translations and set \(f_1 = T \circ f \) where \(T \) is the translation that sends \(f(0) \) to 0. Then \(f_1 \) fixes 0 and also conjugates translations to translations. In particular there exists \(\alpha \) such that \(f_1 \) conjugates \(x \mapsto x + 1 \) to the map \(x \mapsto x + \alpha \). Notice that \(\alpha \neq 0 \) since the identity is only conjugate to itself.

Now define \(f_2 = f_1 \circ M_\alpha \) where \(M_\alpha(x) = \alpha x \). A simple calculation shows that \(f_2 \) conjugates \(x \mapsto x + 1 \) to itself and conjugates translations to translations. Since \(f_2 \) fixes 0, we see that \(f_2 \) must fix all the integer points.

Now, for \(n \in \mathbb{N} \) let \(\gamma \in \mathbb{R} \) be such that \((f_2)^{-1} \circ T_{1/n} \circ f_2 = T_\gamma \) where \(T_\alpha(x) = x + \alpha \). It follows that,

\[
T_1 = (f_2)^{-1} \circ (T_{1/n})^n \circ f_2 = ((f_2)^{-1} \circ T_{1/n} \circ f_2)^n = (T_\gamma)^n
\]

so that \(\gamma = 1/n \) and \((f_2)^{-1} \circ T_{1/n} \circ f_2 = T_{1/n} \) for every \(n \in \mathbb{N} \). Combining this with the fact that \(f_2 \) fixes 0, we deduce that \(f_1 \) and hence \(f \) are affine. \(\square \)

We can now prove Theorem 3.8.

Proof Let \(\hat{G} < G \) denote the path component of the identity in \(G \). We are going to show that \(\hat{G} \) is a compact group. Proposition 4.1 in [5] will then imply that it is conjugate in \(\text{Homeo}(S^1) \) to a subgroup of \(\text{SO}(2, \mathbb{R}) \). Moreover, as \(\hat{G} \) is 1–transitive it will be equal to the whole of \(\text{SO}(2, \mathbb{R}) \).

For \(x \in S^1 \) let \(\pi_x : \mathbb{R} \to S^1 \) be the usual projection map which sends each integer to \(x \) and for each integer translation \(T : \mathbb{R} \to \mathbb{R} \) satisfies \(\pi_x \circ T = \pi_x \).

If we fix \(x \in S^1 \) then since \(G \) is continuously 1–transitive we can choose a continuous path \(g : [0, 1] \to G \) such that \(g(t)(x) = \pi_x(t) \) and \(g(0) = \text{id} \). Notice that this path is contained in \(\hat{G} \) and \(g(1) \) is not necessarily the identity even though it fixes \(x \).

For \(x \in S^1 \) we define a continuous map \(F_x : \mathbb{R} \to \hat{G} \) by

\[
F_x(t) = g(t - \lfloor t \rfloor) \circ g(1)^{\lfloor t \rfloor}
\]

where \(\lfloor t \rfloor \) is the greatest integer less than or equal to \(t \). Set \(f = F_x(1) \). Note that \(F_x(n) = f^n \) for every \(n \in \mathbb{Z} \).

We claim that \(F_x \) has the following properties,
Assume now that the sequence \(s_n \) exists a unique \(x \) such that
\[
s_n \xrightarrow{m \to \infty} x.
\]

(1) \(F(x)(t) = \pi_s(t) \) for every \(t \in \mathbb{R} \)
(2) \(F_x(0) = \text{id} \)
(3) The map \(F_x \) is a surjection, that is \(F_x(\mathbb{R}) = \hat{G} \)
(4) If the map \(f = F_x(1) \) is not equal to the identity map then \(F_x \) is a bijection

The first two properties follow directly from the definition. To see that the third property holds, let \(h_s \) be a path in \(\hat{G} \), \(s \geq 0 \), \(h_0 = \text{id} \). Let \(\alpha(s) = h_s(x) \). We have that \(\alpha \) is a continuous map from the non-negative reals \(\mathbb{R}^+ \) into the circle. Since the set \(\mathbb{R}^+ \) is contractible we can lift the map \(\alpha \) into the universal cover of the circle. That is, there is a map \(\beta: \mathbb{R}^+ \to \mathbb{R} \) such that \(\pi \circ \beta = \alpha \). We have \(F_x(\beta(s))(x) = h_s(x) \).

Then \(h_s^{-1} \circ F_x(\beta(s))(x) = x \). It follows from the assumption of the theorem that \(F_x(\beta(s)) = h_s \) and \(F_x \) is surjective. The map \(F_x \) is injective for \(0 \leq t < 1 \), because \(F_x(t)(x) = \pi_s(t) \). If \(F_x(1) \) is not the identity, and since \(F_x(1)(x) = x \) we have that \(F_x(m) = F_x(n) \) if and only if \(m = n \), for every two integers \(m, n \). This implies the fourth property.

It follows from (\(\ast \)), and the surjectivity of \(F_x \), that \(\hat{G} \) is a compact group if and only if the cyclic group generated by \(F_x(1) = f \) is a compact group. We will prove that \(f = \text{id} \).

Assume that \(f \) is not the identity map. Since \(F_x \) is a bijection for each \(t \in \mathbb{R} \), there exists a unique \(s_n(t) \in \mathbb{R} \) such that,
\[
f^n \circ F_x(t) \circ f^{-n} = F_x(s_n(t)). \tag{**}
\]

This defines a function \(s_n: \mathbb{R} \to \mathbb{R} \) which we claim is continuous for each \(n \). To see this, fix \(n \) and let \(t_m \in \mathbb{R} \) be a convergent sequence with limit \(t' \). Since \(F_x \) is continuous,
\[
f^n \circ F_x(t_m) \circ f^{-n} \xrightarrow{m \to \infty} f^n \circ F_x(t') \circ f^{-n}
\]
and so \(F_x(s_n(t_m)) \to F_x(s_n(t')) \) as \(m \to \infty \).

Now, if \(s_n(t_m) \) is a convergent subsequence, with limit \(t_0 \), then using continuity \(F_x(s_n(t_m)) \) will converge to \(F_x(t_0) \). Since \(F_x \) is a bijection this gives us that \(t_0 = s_n(t') \). Consequently, if the sequence \(s_n(t_m) \) were bounded, then it would converge to \(t' \).

Assume now that the sequence \(s_n(t_m) \) is unbounded and take a divergent subsequence \(s_n(t_{m_k}) \). Consider the corresponding sequence,
\[
F_x(s_n(t_{m_k})) = g(s_n(t_{m_k}) - [s_n(t_{m_k})]) \circ f[s_n(t_{m_k})].
\]

Since \(s_n(t_{m_k}) - [s_n(t_{m_k})] \in [0, 1) \) for each \(m \), there exists a subsequence \(t_{m_{k_i}} \) of \(t_{m_k} \) such that \(s_n(t_{m_{k_i}}) - [s_n(t_{m_{k_i}})] \) converges to some \(t_0 \in [0, 1] \). Now since \(g \) is continuous and the sequence \(F_x(s_n(t_{m_k})) \) converges to a homeomorphism \(F_x(s_n(t')) \) we have that
$f^{[s_n(t_m)]}$ converges to a homeomorphism as $l \to \infty$. However, as $s_n(t_m)$ is divergent $[s_n(t_m)]$ will be divergent too.

Let S_f denote the set of fixed points of f. Note that $x \in S_f$. Since we assume that f is not the identity we have that $S^1 \setminus S_f$ is non-empty. Let J be a component of $S^1 \setminus S_f$ and let $a, b \in S^1$ be its endpoints. Since f fixes J, and has no fixed points inside J we deduce that on compact subsets of J the sequence $f^{[s_n(t_m)]}$ converges to one of the endpoints and consequently, can not converge to a homeomorphism. This is a contradiction, so $s_n(t_m)$ can not be unbounded and s_n is continuous.

Notice that $s_n(0) = 0$ and if $t \in \mathbb{Z}$ then $F_x(t)$ will commute with the f^n so we have $s_n(m) = m$ for all $m \in \mathbb{Z}$. This yields that $s_n([0, 1]) = [0, 1]$ for every $n \in \mathbb{Z}$.

Let $U_f \subset S^1$ be the set defined as follows. We say that $y \in U_f$ if there exists an open interval I, $y \in I$, such that $|f^n(I)| \to 0$, $n \to \infty$. Here $|f^n(I)|$ denotes the length of the corresponding interval. The set U_f is open. We show that U_f is non-empty and not equal to S^1. As before, let J be a component of $S^1 \setminus S_f$ and let $a, b \in S^1$ be its endpoints. Since f fixes J, and has no fixed points inside J we deduce that on compact subsets of J the sequence f^n converges to one of the endpoints, say a. This shows that $J \subset U_f$. Also, this shows that the point b does not belong to U_f.

Let $y \in U_f$, and let I be the corresponding open interval so that $y \in I$ and $|f^n(I)| \to 0$, $n \to \infty$. Set $f^n(I) = I_n$. Consider the interval $F_x(s_n(t))(I_n)$, $t \in [0, 1]$. Since $s_n([0, 1]) = [0, 1]$ we have that $F_x(s_n([0, 1]))$ is a compact family of homeomorphisms. This allows us to conclude that $|F_x(s_n(t))(I_n)| \to 0$, $n \to \infty$, uniformly in n and $t \in [0, 1]$. Set $J_t = F_x(t)(I)$. From (**) we have that $|f^n(J_t)| \to 0$, $n \to \infty$, for a fixed $t \in [0, 1]$. This implies that the point $F_x(t)(y)$ belongs to the set U_f for every $t \in [0, 1]$.

Let J be a component of U_f, and let a, b be its endpoints. Note that the points a, b do not belong to U_f. Since $F_x(t)$ is a continuous path and $F_x(0) = id$, for small enough t we have that $F_x(t)(J) \cap J \neq \emptyset$. Since $F_x(t)(J) \subset U_f$, and since a, b are not in U_f we have that $F_x(t)(J) = J$. By continuity this extends to hold for every $t \in [0, 1]$. But this means that $F_x(t)(a) = a$ for every $t \in [0, 1]$. However, for appropriately chosen inverse $t_0 = \pi^{-1}_x(a)$, we have that $F_x(t_0)(x) = a$, which contradicts the fact that $F_x(t_0)$ is a homeomorphism. This shows that $f = id$, and therefore we have proved that \hat{G} is a compact group.

To finish the argument, it remains to show that $G = \hat{G}$. Let $\Phi \in \text{Homeo}(S^1)$ be a map which conjugates \hat{G} to $\text{SO}(2, \mathbb{R})$ and take $g \in G \setminus \hat{G}$. Since \hat{G} is a normal subgroup of G, $\Phi \circ g \circ \Phi^{-1}$ conjugates rotations to rotations. Lifting to the universal cover we get that every lift of $\Phi \circ g \circ \Phi^{-1}$ conjugates translations to translations. If we choose one...
then by Lemma 3.9 it will be affine. On the other hand, it must be periodic, and hence is a rotation. So that $\Phi \circ g \circ \Phi^{-1}$ is itself a rotation and we are done.

\begin{theorem}
If $J_x \neq \emptyset$ then one of the following is true:

1. $J_x = S^1 \setminus \{x\}$ in which case G is continuously 2–transitive.
2. There exists $R \in \text{Homeo}(S^1)$ which is conjugate to a finite order rotation and satisfies $R \circ g = g \circ R$ for every $g \in G$. Moreover, G is a cyclic cover of a group G_1 which is continuously 2–transitive, where the covering transformations are the cyclic group generated by R.

\end{theorem}

\textbf{Proof} If $J_x = S^1 \setminus \{x\}$ then we are in case 4 of Lemma 2.5 with $n = 2$. In this situation we know that G will be continuously 2–transitive.

We already know that $S_x = S^1 \setminus J_x$ must contain x and by Lemma 3.4 must be finite. Moreover, as $f(J_x) = J_{f(x)}$ the sets S_x contain the same number of points for each $x \in S^1$. Define $R : S^1 \rightarrow S^1$ by taking $R(x)$ to be the first point of S_x you come to as you travel anticlockwise around S^1. Now take $g \in G$ and $x \in S^1$, then since $J_{g(x)} = g(J_x)$ and g is orientation preserving $R \circ g(x) = g \circ R(x)$ for all $x \in S^1$.

We now show that R is a homeomorphism. To see this take any continuous path $x_t \in S^1$, we will show that $R(x_t) \rightarrow R(x_0)$ as $t \rightarrow 0$. Since G is continuously 1–transitive, there exists a continuous path $g_t \in G$ satisfying $g_t(x_0) = x_0$, so that,

$$
\lim_{t \rightarrow 0} R(x_t) = \lim_{t \rightarrow 0} (g_t)^{-1}(R(g_t(x_t))) = \lim_{t \rightarrow 0} (g_t)^{-1}(R(x_0)) = R(x_0),
$$

where the first equality follows from the fact that $R \circ g(x) = g \circ R(x)$ for all $x \in S^1$. This shows that R is continuous. If we take $y \notin J_x$ then $J_x \subset J_y$, and hence $S_x \supset S_y$ but in this case since S_x and S_y contain the same number of points they will be equal. Consequently, R has an inverse defined by taking $R^{-1}(x)$ to be the first point of S_x you come to by traveling clockwise around S^1 and this inverse is continuous by the same argument as for R. Consequently, $R \in \text{Homeo}(S^1)$. Furthermore, R is of finite order equal to the number of points in S_x and hence conjugate to a rotation.

Let Γ denote the cyclic subgroup of $\text{Homeo}(S^1)$ generated by R. Define $\pi : S^1 \rightarrow S^1/\Gamma \cong S^1$, in the usual way with $\pi(x)$ being the orbit of x under Γ. Since $R \circ g(x) = g \circ R(x)$ for all $x \in S^1$, each $g \in G$ defines a well defined homeomorphism of the quotient space S^1/Γ which we call g_Γ. This gives us a homomorphism $\pi_\Gamma : G \rightarrow \text{Homeo}(S^1)$, defined by $\pi_\Gamma(g) = g_\Gamma$. Let G_Γ denote the image of G under π_Γ, then G is a cyclic cover of G_Γ.

\textit{Geometry & Topology 10 (2006)}
It remains to see that $G\Gamma$ is continuously 2–transitive. This follows from the fact that if we take $x_0 \in S^1$ then $J_{\pi(x_0)} = \pi(J_{x_0})$, where $J_{\pi(x_0)}$ is the set of points that can be moved by continuous deformations of the identity in $G\Gamma$ which fix $\pi(x_0)$. Consequently, $J_{\pi(x_0)} = S^1 \setminus \{x_0\}$ so that $G\Gamma$ is continuously 2–transitive by the first part of this proposition.

4 Implications of continuous 2–transitivity

We now know that if G is transitive and contains a continuous deformation of the identity then it is either conjugate to the group of rotations $SO(2, R)$, is continuously 2–transitive, or is a cyclic cover of a group which is continuously 2–transitive. For the rest of the paper we assume that G is continuously 2–transitive and examine which possibilities arise.

For $n \geq 2$ and $(x_1 \ldots x_n) \in P_n$ we define $J_{x_1 \ldots x_n}$ to be the subset of S^1 containing the points $x \in S^1$ which satisfy the following condition. There exists a continuous deformation of the identity $f_i \in G$, with $f_i(x_i) = x_i$ for each i and t and such that there exists $t_0 \in [0, 1]$ with $f_{x_0}(x) \neq x$. This generalizes the earlier definition of J_x and we get the following analogous results.

Lemma 4.1 $J_{f(x_1) \ldots f(x_n)} = f(J_{x_1 \ldots x_n})$ for every $f \in G$.

Lemma 4.2 $J_{x_1 \ldots x_n}$ is open.

We also have the following.

Lemma 4.3 If $J_{x_1 \ldots x_n}$ is nonempty and G is continuously n–transitive, then it is equal to $S^1 \setminus \{x_1 \ldots x_n\}$.

Proof Assume that $J_{x_1 \ldots x_n} \subset S^1 \setminus \{x_1, \ldots, x_n\}$ is nonempty. By Lemma 4.2 it is also open and hence is a countable union of open intervals. Pick one of these, and call its endpoints b_1 and b_2. Assume for contradiction that at least one of b_1 and b_2 is not one of the x_i. Interchanging b_1 and b_2 if necessary we can assume that this point is b_1. Since G is continuously n–transitive there exist elements of G which cyclically permute the x_i. Using these elements and the fact that $J_{f(x_1) \ldots f(x_n)} = f(J_{x_1 \ldots x_n})$ for every $f \in G$, we can assume without loss of generality that b_1 and hence the whole interval lies in the component of $S^1 \setminus \{x_1, \ldots, x_n\}$ whose endpoints are x_1 and x_2.

Geometry & Topology 10 (2006)
We now claim that \(J_{b_1, b_2, x_3, \ldots, x_n} \supset J_{x_1, x_2} \). To see this, take \(x \in J_{x_1, x_2} \), then there exists a continuous deformation of the identity \(f_t \) which fixes \(x_1, \ldots, x_n \) and for which there exists \(t_0 \) such that \(f_{t_0}(x) \neq x \). Now since \(b_1, b_2 \not\in J_{x_1, x_2} \), \(f_t \) must also fix \(b_1 \) and \(b_2 \) for all \(t \), consequently we can use \(f_t \) to show that \(x \in J_{b_1, b_2, x_3, \ldots, x_n} \). In particular, this means that \(J_{b_1, b_2, x_3, \ldots, x_n} \) contains the whole interval between \(b_1 \) and \(b_2 \).

Take \(g \in G \) which maps \(\{ b_1, b_2 \} \) to \(\{ x_1, x_2 \} \) and fixes the other \(x_i \), such an element exists as \(G \) is continuously \(n \)–transitive. Then,

\[
J_{x_1, x_2, x_3, \ldots, x_n} = J(g(b_1), g(b_2), g(x_1), \ldots, g(x_n)) = g(J_{b_1, b_2, x_3, \ldots, x_n})
\]

so that \(J_{x_1, x_2, x_3, \ldots, x_n} \) must contain the whole interval between \(x_1 \) and \(x_2 \). This is a contradiction, since \(b_1 \) lies between \(x_1 \) and \(x_2 \) but is not in \(J_{x_1, x_2} \).

Proposition 4.4 Let \(G \) be continuously \(n \)–transitive for some \(n \geq 2 \) and suppose there exist \(n \) distinct points \(a_1, \ldots, a_n \in S^1 \) and a continuous deformation of the identity \(g_t \in G \), which fixes each \(a_t \) for all \(t \). Then \(G \) is continuously \(n + 1 \)–transitive.

Proof \(J_{a_1, \ldots, a_n} \neq \emptyset \) so by Lemma 4.3 \(J_{a_1, \ldots, a_n} = S^1 \setminus \{ a_1, \ldots, a_n \} \). We can now apply Lemma 2.5 to see that \(G \) is continuously \(n + 1 \)–transitive.

Corollary 4.5 If \(G \) is continuously 2–transitive and there exists \(g \in G \setminus \{ \text{id} \} \) with an open interval \(I \subset S^1 \) such that the restriction of \(g \) to \(I \) is the identity, then \(G \) is continuously \(n \)–transitive for every \(n \geq 2 \).

Proof Let \(I \subset S^1 \) be a maximal interval on which \(g \) acts as the identity, so that if \(I' \supset I \) is another interval containing \(I \) then \(g \) doesn’t act as the identity on \(I' \). Let \(a \) and \(b \) be the endpoints of \(I \) and let \(a_t \) and \(b_t \) be continuous injective paths with \(a_0 = a, b_0 = b \) and \(a_t, b_t \not\in I \) for each \(t \neq 0 \). This is possible because \(g \neq \text{id} \) so that \(S^1 \setminus I \) will be a closed interval containing more than one point. Let \(g_t \) be a continuous path in \(G \) so that \(g_0 = \text{id}, g_t(a) = a_t \) and \(g_t(b) = b_t \), such a path exists as \(G \) is continuously 2–transitive. Consider the path \(h_t = g_t^{-1} \circ g_t \circ g_t^{-1} \) since \(g_0 = \text{id} \) we get \(h_0 = \text{id} \). Now \(g_t \circ g_t^{-1} \) acts as the identity on the interval between \(a_t \) and \(b_t \) and by maximality of \(I \), \(g_t^{-1} \) will not act as the identity for \(t \neq 0 \). Consequently, \(h_t \) is a continuous deformation of the identity which acts as the identity on \(I \). So if \(G \) is continuously \(k \)–transitive for \(k \geq 2 \), by taking \(k \)–points in \(I \) and using Proposition 4.4 we get that \(G \) is \(k + 1 \)–transitive. As a result, since \(G \) is continuously 2–transitive it will be \(n \)–transitive for every \(n \geq 2 \).

\(\text{SO}(2, \mathbb{R}) \) is an example of a subgroup of \(\text{Homeo}(S^1) \) which is continuously 1–transitive but not continuously 2–transitive. However, as the next result shows, there are no subgroups of \(\text{Homeo}(S^1) \) which are continuously 2–transitive but not continuously 3–transitive.
Proposition 4.6 If G is continuously 2–transitive, then it is continuously 3–transitive.

Proof Let $a, b \in S^1$ be distinct points. Construct two injective paths $a(t), b(t)$ in S^1 with disjoint images, such that $a(0) = a$, $b(0) = b$ and such that $a(t)$ and $b(t)$ lie in the same component of $S^1 \setminus \{a, b\}$ for $t \in (0, 1]$. We label this component I and the other I'.

Since G is continuously 2–transitive, there exists a path $g(t) \in G$ such that $g(0) = \text{id}$, $g(t)(a) = a(t)$ and $g(t)(b) = b(t)$ for every t. Now for every t the restriction of $g(t)$ to the closure of I, is a continuous map of a closed interval into itself, and hence must have a fixed point, $c(t)$. This point will normally not be unique, but since $g(t)$ is continuous, for a small enough time interval we can choose it to depend continuously on t. Likewise for the restriction of $g(t)^{-1}$ to the closure of I', for a small enough time interval we can choose a path of fixed points $d(t)$, which must therefore also be fixed points for $g(t)$.

Now pick points $c \in I$ and $d \in I'$. Using continuous 2–transitivity of G construct a path $h(t) \in G$ such that $h(t)(c) = c(t)$ and $h(t)(d) = d(t)$. Then $h(t)^{-1} \circ g(t) \circ h(t)$ is only the identity when $t = 0$ because the same is true of $g(t)$ and we have constructed a continuous deformation of the identity which fixes c and d for all t. Consequently we can use Proposition 4.4 to show that G is continuously 3–transitive. \hfill \Box

5 Convergence Groups

Definition 5.1 A subgroup G of Homeo(S^1)is a convergence group if for every sequence of distinct elements $g_n \in G$, there exists a subsequence g_{n_k} satisfying one of the following two properties:

1. There exists $g \in G$ such that,
 $$\lim_{k \to \infty} g_{n_k} = g \quad \text{and} \quad \lim_{k \to \infty} g_{n_k}^{-1} = g^{-1}$$
 uniformly in S^1.

2. There exist points $x_0, y_0 \in S^1$ such that,
 $$\lim_{k \to \infty} g_{n_k} = x_0 \quad \text{and} \quad \lim_{k \to \infty} g_{n_k}^{-1} = y_0$$
 uniformly on compact subsets of $S^1 \setminus \{y_0\}$ and $S^1 \setminus \{x_0\}$ respectively.

The notion of convergence groups was introduced by Gehring and Martin [4] and they have proceeded to play a central role in geometric group theory. The following theorem has been one of the most important and we shall make frequent use of it.

Geometry & Topology 10 (2006)
Theorem 5.2 \(G \) is a convergence group if and only if it is conjugate in \(\text{Homeo}(\mathbb{S}^1) \) to a subgroup of \(\text{PSL}(2, \mathbb{R}) \).

This Theorem was proved by Gabai in [3]. Prior to that, Tukia [7] proved this result in many cases and Hinkkanen [6] proved it for non discrete groups. Casson and Jungreis proved it independently using different methods [2]. See [2], [3], [7] for references to other papers in this subject.

For the rest of this section we shall assume that \(G \) is continuously \(n \)–transitive, but not continuously \(n + 1 \)–transitive for some \(n \geq 3 \).

Take \((x_1, \ldots, x_{n-1}) \in \mathbb{P}_{n-1}\) and define
\[
G_0 = \{ g \in G : g(x_i) = x_i \quad i = 1, \ldots, n - 1 \}.
\]

Choose a component \(I \) of \(\mathbb{S}^1 \setminus \{x_1, \ldots, x_{n-1}\} \) and denote its closure by \(\bar{I} \). We construct a homomorphism \(\Phi : G_0 \to \text{Homeo}(\mathbb{S}^1) \) as follows. Take \(g \in G_0 \), then since \(g \) fixes the endpoints of \(I \) and is orientation preserving, we can restrict it to a homeomorphism \(g' \) of \(\bar{I} \). By identifying the endpoints of \(\bar{I} \) we get a copy of \(\mathbb{S}^1 \) and we define \(\Phi(g) \) to be the homeomorphism of \(\mathbb{S}^1 \) that \(g' \) descends to under this identification. We label the identification point \(\bar{x} \) and set \(\hat{G}_0 = \Phi(G_0) \) to be the image of \(G_0 \) under \(\Phi \).

In this situation Lemma 2.5 implies the following. For every \(x \in I \), there exists a continuous map \(F_x : \mathbb{S}^1 \setminus \bar{x} \to \hat{G}_0 \) satisfying the properties,

\[
\begin{align*}
(1) & \quad (F_x(y))(x) = y \quad \forall \ y \in \mathbb{S}^1 \setminus \bar{x} \\
(2) & \quad F_x(x) = \text{id}.
\end{align*}
\]

Proposition 5.3 \(\Phi : G_0 \to \hat{G}_0 \) is an isomorphism.

Proof Surjectivity is trivial. If we assume that \(\Phi \) is not injective then there will exist \(g \in G_0 \) which is non-trivial and acts as the identity on \(I \). Then by Corollary 4.5 \(G \) will be \(n + 1 \)–transitive, a contradiction.

Let \(\hat{G}_0 \) denote the path component of the identity in \(G_0 \), we now analyze the group \(\hat{G}_0 = \Phi(G_0) \).

Proposition 5.4 \(\hat{G}_0 \) is a convergence group.

Proof Choose \(x \in I \) then we know there exists a continuous map \(F_x : \mathbb{S}^1 \setminus \bar{x} \to \hat{G}_0 \) satisfying the properties,
(1) \((F_{x}(y))(x) = y \; \forall \; y \in \mathbb{S}^1 \setminus \bar{x}\)

(2) \(F_{x}(x) = \text{id}\).

Now since \(F_{x}(x) = \text{id}\) and \(F_{x}\) is continuous, the image of \(F_{x}\) will lie entirely in \(\hat{G}_0\).

In fact, \(F_{x}\) gives a bijection between \(\mathbb{S}^1 \setminus \bar{x}\) and \(\hat{G}_0\). To see this we first observe that injectivity follows directly from condition 1. To see that it is also surjective, take \(g \in \hat{G}_0\). Then there exists a path \(g_{t} \in \hat{G}_0\) for \(t \in [0, 1]\) with \(g_{0} = \text{id}\) and \(g_{1} = g\). So that \(g_{t}(x)\) is a path in \(\mathbb{S}^1 \setminus \bar{x}\) from \(x\) to \(g(x)\). Consider the path \((F_{x}(g_{t}(x)))^{-1} \circ g_{t} \in \hat{G}_0\), it fixes \(x\) for every \(t\), and so must be the identity for each \(t\). Otherwise, by Proposition 4.4, \(G\) would be continuously \(n + 1\)–transitive, which would contradict our assumptions. As a result \(g = F_{x}(g(x))\) so \(F_{x}\) is a bijection, with inverse given by evaluation at \(x\).

Fix \(x_{0} \in \mathbb{S}^1 \setminus \bar{x}\), let \(g_{n}\) be a sequence of elements of \(\hat{G}_0\) and consider the sequence of points \(g_{n}(x_{0})\), since \(\mathbb{S}^1\) is compact \(g_{n}(x_{0})\) has a convergent subsequence \(g_{n_{k}}(x_{0})\) converging to some point \(x'\). If \(x' \neq \bar{x}\) then by continuity of \(F_{x_{0}}\), \(g_{n_{k}}\) will converge to \(F_{x_{0}}(x')\). Now if there does not exist a subsequence of \(g_{n}(x_{0})\) converging to some \(x' \neq \bar{x}\), then take a subsequence \(g_{n_{k}}\) such that \(g_{n_{k}}(x_{0})\) converges to \(\bar{x}\). If we can show that \(g_{n_{k}}(x)\) converges to \(\bar{x}\) for every \(x \in \mathbb{S}^1 \setminus \bar{x}\) then we shall be done.

Suppose for contradiction that there exists \(x \in \mathbb{S}^1 \setminus \bar{x}\) such that \(g_{n_{k}}(x)\) does not converge to \(\bar{x}\). Then there exists a subsequence of \(g_{n}(x)\) which converges to \(x' \neq \bar{x}\), but then by the previous argument the corresponding subsequence of \(g_{n_{k}}\) will converge to the homeomorphism \(F_{x}(x')\). This is a contradiction since \(F_{x}(x')(x_{0})\) would have to equal \(\bar{x}\).

\begin{proof}
Let \(g\) be an element of \(\hat{G}_0\). If \(g\) fixes a point in \(\mathbb{S}^1 \setminus \bar{x}\) then it is the identity.
\end{proof}

\begin{corollary}
Let \(g\) be an element of \(\hat{G}_0\). If \(g\) fixes a point in \(\mathbb{S}^1 \setminus \bar{x}\) then it is the identity.
\end{corollary}

\begin{proof}
Let \(x \in \mathbb{S}^1 \setminus \bar{x}\) be a fixed point of \(g\). From the previous proof we know that \(F_{x}: I \to \hat{G}_0\) is a bijection. So that \(F_{x}(g(x)) = g\), but \(g\) fixes \(x\) so that \(g = F_{x}(x) = \text{id}\).
\end{proof}

\begin{corollary}
The restriction of the action of \(\hat{G}_0\) to \(\mathbb{S}^1 \setminus \bar{x}\) is conjugate to the action of \(\mathbb{R}\) on itself by translation.
\end{corollary}

\begin{proof}
By Theorem 5.2 and Proposition 5.4 \(\hat{G}_0\) is conjugate in \(\text{Homeo}(\mathbb{S}^1)\) to a subgroup of \(\text{PSL}(2, \mathbb{R})\) which fixes the point \(\bar{x}\). Moreover, from Corollary 5.5 this is the only point fixed by a non trivial element. By identifying \(\mathbb{S}^1\) with \(\mathbb{R} \cup \{\infty\}\) so that \(\bar{x}\) is identified with \(\{\infty\}\) in the usual way, we see that \(\hat{G}_0\) is conjugate to a subgroup of the

\cite{Geometry & Topology 10 (2006)}
Möbius group acting on $\mathbb{R} \cup \{\infty\}$. Since every element will fix $\{\infty\}$, their restriction to \mathbb{R} will be an element of $\text{Aff}(\mathbb{R})$ acting without fixed points, so can only be a translation. On the other hand the group must act transitively on \mathbb{R} and so must be the full group of translations. This gives the result.

Proposition 5.7 The restriction of the action of G_0 to I is conjugate to the action of a subgroup of the affine group $\text{Aff}(\mathbb{R})$ on \mathbb{R}. In particular, each non trivial element of G_0 can act on I with at most one fixed point.

Proof The restriction of \widehat{G}_0 to $S^1 \setminus \bar{x}$ is isomorphic to the restriction of \widehat{G}_0 to I. So that by Corollary 5.6 there exists a homeomorphism $\phi : I \to \mathbb{R}$ which conjugates the restriction of \widehat{G}_0 to I, to the action of \mathbb{R} on itself by translation. Take $h \in G_0 \setminus \widehat{G}_0$ then $h' = \phi \circ h \circ \phi^{-1}$ is a self-homeomorphism of \mathbb{R}. Since \widehat{G}_0 is a normal subgroup of G_0, h' conjugates every translation to another one and so by Lemma 3.9 is itself an affine map and the proof is complete.

Let g be a nontrivial element of G_0, then $g \in \widehat{G}_0$ if and only if it acts on each component of $S^1 \setminus \{x_1, \ldots, x_{n-1}\}$ as a conjugate of a non trivial translation. Furthermore, if $g \not\in \widehat{G}_0$ then it acts on each component of $S^1 \setminus \{x_1, \ldots, x_{n-1}\}$ as a conjugate of a affine map which is not a translation, each of which must have a fixed point. This situation cannot actually arise as the next proposition will show.

Proposition 5.8 $G_0 = \widehat{G}_0$

Proof Let $g \in G_0 \setminus \widehat{G}_0$, then g acts on each component of $S^1 \setminus \{x_1, \ldots, x_{n-1}\}$ as a conjugate of a affine map which is not a translation. Consequently, g will have a fixed point in each component of $S^1 \setminus \{x_1, \ldots, x_{n-1}\}$. Label the fixed points of g in the components of $S^1 \setminus \{x_1, \ldots, x_{n-1}\}$ whose boundaries both contain x_1 as y_1 and y_2. Since G is n–transitive, there exists a map g' which sends y_1 to x_1 and fixes all the other x_i. Then $g' \circ g \circ (g')^{-1}$ fixes all the x_i and hence is an element of G_0. On the other hand, $g' \circ g \circ (g')^{-1}$ also fixes $g'(x_1)$ and $g'(y_2)$ which lie in the same component of $S^1 \setminus \{x_1, \ldots, x_{n-1}\}$, this is impossible since every non-trivial element of G_0 can only have one fixed point in each component of $S^1 \setminus \{x_1, \ldots, x_{n-1}\}$.

Corollary 5.9 The restriction of the action of G_0 to I is conjugate to the action of \mathbb{R} on itself by translation. In particular the action is free.
We finish this section by comparing the directions that a non-trivial element of G_0 moves points in different components of $\mathbb{S}^1 \setminus \{x_1, \ldots, x_{n-1}\}$. So endow \mathbb{S}^1 with the anti-clockwise orientation, this gives us an ordering on any interval $I \subset \mathbb{S}^1$, where for distinct points $x, y \in I$, $x \prec y$ if one travels in an anti-clockwise direction to get from x to y in I. Let $g \in G_0 \setminus \{\text{id}\}$ if I is a component of $\mathbb{S}^1 \setminus \{x_1, \ldots, x_{n-1}\}$ then we shall say that g acts positively on I if $x \prec g(x)$ and negatively if $x \succ g(x)$ for one and hence every $x \in I$.

Let I and I' be the two components of $\mathbb{S}^1 \setminus \{x_1, \ldots, x_{n-1}\}$ whose boundaries contain x_i. Labeled so that in the order on the closure of I, $x \prec x_i$ for each $x \in I$, whereas in the order on the closure of I', $x_i \prec x$ for each $x \in I'$. Then we have the following.

Proposition 5.10 Let g be a non-trivial element of G_0, if g acts positively on I then it acts negatively on I' and if g acts negatively on I then it acts positively on I'.

Proof Let $x, x' \in I$ and $y, y' \in I'$ be points such that $x \prec x'$ and $y \succ y'$. There exists $g \in G$ fixing x_1, \ldots, x_{i-1} and x_{i+1}, \ldots, x_{n-1} and sending x to x' and y to y'. This map will have a fixed point \tilde{x} between x' and y', since it maps the interval between them into itself.

Let $g' \in G$ fix x_1, \ldots, x_{i-1} and x_{i+1}, \ldots, x_{n-1} and send \tilde{x} to x_i. Then $g_0 = g' \circ g \circ (g')^{-1}$ will fix x_1, \ldots, x_{n-1} and hence lie in G_0. Moreover, g_0 acts positively on I and negatively on I'.

Now let $g_1 \in G_0$ be any non-trivial element which acts positively on I. Then there exists a path g_t in G_0 from $g_0 = g' \circ g \circ (g')^{-1}$ to g_1, so that $g_t \neq \text{id}$ for any t. Since g_t is never the identity and g_0 acts negatively on I', g_1 must also act negatively on I'.

If $h \in G_0$ is a non-trivial element which acts negatively on I, then h^{-1} will act positively on I. So that, by the above argument, h^{-1} will act negatively on I'. This means that h will act positively on I' as required.

Corollary 5.11 If G is n–transitive but not $n + 1$–transitive for $n \geq 3$ then n is odd.

Proof Let g be a non-trivial element of G_0 which acts positively on some component I of $\mathbb{S}^1 \setminus \{x_1, \ldots, x_{n-1}\}$. Then by Proposition 5.10 as we travel around \mathbb{S}^1 in an anti-clockwise direction the manner in which it acts on each component will alternate between negative and positive. Consequently, if n was even, when we return to I we would require that g acted negatively on I, a contradiction, so n is odd.
6 Continuous 3–transitivity and beyond

We begin this section by analyzing the case where G is continuously 3–transitive but not continuously 4–transitive. We shall show that such a group is a convergence group and consequently conjugate to a subgroup of $\text{PSL}(2, \mathbb{R})$.

Fix distinct points $x_0, y_0 \in S^1$ and define

$$G_0 = \{ g \in G : g(x_0) = x_0, g(y_0) = y_0 \}$$

$$\bar{G} = \{ g \in G : g(x_0) = x_0 \}$$

then we have the following propositions.

Proposition 6.1 G_0 is a convergence group.

Proof From Corollary 5.9, we know that the restriction of G_0 to each of the components of $S^1 \setminus \{x_0, y_0\}$ is conjugate to the action of \mathbb{R} on itself by translation. Let g_n be a sequence of distinct elements of G_0 and take a point $x \in S^1 \setminus \{x_0, y_0\}$. Then the sequence of points $g_n(x)$ will have a convergent subsequence $g_{n_k}(x)$. If this sequence converges to x_0 or y_0, then from Proposition 5.10 so will the sequences $g_{n_k}(y)$ for all $y \in S^1 \setminus \{y_0\}$ or $S^1 \setminus \{x_0\}$ respectively.

Let I_x be the component of $S^1 \setminus \{x_0, y_0\}$ containing x. Assume that the sequence of points $g_{n_k}(x)$ converges to a point $x' \in I_x$. Now let y be a point in the other component, I_y of $S^1 \setminus \{x_0, y_0\}$, and consider the sequence of points $g_{n_k}(y)$ in I_y. If it had a subsequence which converged to x_0 or y_0 then the sequence $g_{n_k}(x)$ would have to as well. This is impossible so $g_{n_k}(y)$ must stay within a compact subset of I_y and hence g_{n_k} has a subsequence, $g_{n_{k_l}}$ for which $g_{n_{k_l}}(y)$ converges to some point $y' \in I_y$.

By Corollary 5.9 there exist self homeomorphisms of I_x and I_y to which the sequence $g_{n_{k_l}}$ converges uniformly on I_x and I_y respectively. Gluing these together at x_0 and y_0 gives us an element of Homeo(S^1) which g_{n_k} converges to uniformly. Consequently, G_0 is a convergence group.

Proposition 6.2 \bar{G} is a convergence group.

Proof Let f_n be a sequence of elements of \bar{G}. If for every $y \in S^1 \setminus \{x_0\}$ every convergent subsequence of $f_n(y)$ converges to x_0 then we would be done. So assume that this is not the case, take $y \in S^1 \setminus \{x_0\}$ such that the sequence of points $f_n(y)$ has a convergent subsequence $f_{n_{k_l}}(y)$ converging to some point $\tilde{y} \neq x_0$. Let I be a small open interval around \tilde{y}, not containing x_0 then since G is continuously 3–transitive, there exists a map $F_{\tilde{y}} : I \to \bar{G}$ satisfying the following,
(1) \(F_\gamma(x)(\gamma) = x \) for all \(x \in I \)
(2) \(F_\gamma(\gamma) \) is the identity.

Let \(g_1, g_2 \in \tilde{G} \) satisfy \(g_1(\gamma) = y_0 \) and \(g_2(y_0) = \gamma \) consider the sequence,
\[
h_k = g_1 \circ F_\gamma(f_n(y))^{-1} \circ f_n \circ g_2
\]
of elements of \(\tilde{G} \). They all fix \(y_0 \), and since \(g_1 \circ F_\gamma(f_n(y))^{-1} \) converges to \(g_1 \) as \(k \to \infty \) we have the following.

(1) If \(h_k \) contains a subsequence \(h_{k_l} \) such that there exists a homeomorphism \(h \) with,
\[
\lim_{l \to \infty} h_{k_l} = h \quad \text{and} \quad \lim_{l \to \infty} (h_{k_l})^{-1} = h^{-1}
\]
then so does \(f_{n_k} \).

(2) Furthermore, if there exist points \(x', y' \in S^1 \) and a subsequence \(h_{k_l} \) of \(h_k \) such that,
\[
\lim_{l \to \infty} h_{k_l} = x' \quad \text{and} \quad \lim_{l \to \infty} (h_{k_l})^{-1} = y'
\]
uniformly on compact subsets of \(S^1 \setminus \{y'\} \) and \(S^1 \setminus \{x'\} \) respectively, then so does \(f_{n_k} \) \((x' \) and \(y' \) will be replaced by \(g_1^{-1}(x') \) and \(g_1^{-1}(y') \)).

Now, since \(G_0 \) is a convergence group, one of the above situations must occur. Consequently, \(\bar{G} = \{ g \in G : g(x_0) = x_0 \} \) is a convergence group. \(\square \)

Proposition 6.3 If \(G \) is a subgroup of \(\text{Homeo}(S^1) \) which is continuously 3–transitive but not continuously 4–transitive then \(G \) is a convergence group.

Proof This proof is almost identical to the previous one but we write it out in full for clarity.

Choose \(x_0 \in S^1 \) and let \(f_n \) be a sequence of elements of \(G \). Then since \(S^1 \) is compact, the sequence of points \(f_n(x_0) \) will have a convergent subsequence, \(f_{n_k}(x_0) \), converging to some point \(\tilde{x} \). Let \(I \) be a small open interval around \(\tilde{x} \), then since \(G \) is continuously 3–transitive, there exists a map \(F_\tilde{x} : I \to G \) satisfying the following,

(1) \(F_\tilde{x}(x)(\tilde{x}) = x \) for all \(x \in I \)
(2) \(F_\tilde{x}(\tilde{x}) \) is the identity.

Let \(g \in G \) send \(\tilde{x} \) to \(x_0 \) and consider the sequence,
\[
h_k = g \circ F_\tilde{x}(f_{n_k}(x_0))^{-1} \circ f_{n_k}
\]
of elements of \(G \). They all fix \(x_0 \), and since \(g \circ F_\tilde{x}(f_{n_k}(x_0))^{-1} \) converges to \(g \) as \(k \to \infty \) we have the following.
(1) If \(h_k \) contains a subsequence \(h_{k_l} \) such that there exists a homeomorphism \(h \) with,
\[
\lim_{l \to \infty} h_{k_l} = h \quad \text{and} \quad \lim_{l \to \infty} (h_{k_l})^{-1} = h^{-1}
\]
then so does \(f_{n_k} \).

(2) Furthermore, if there exist points \(x', y' \in S^1 \) and a subsequence \(h_{k_l} \) of \(h_{k_l} \) such that,
\[
\lim_{l \to \infty} h_{k_l} = x' \quad \text{and} \quad \lim_{l \to \infty} (h_{k_l})^{-1} = y'
\]
uniformly on compact subsets of \(S^1 \setminus \{ y' \} \) and \(S^1 \setminus \{ x' \} \) respectively, then so does \(f_{n_k} \) (\(x' \) and \(y' \) will be replaced by \(g^{-1}(x') \) and \(g^{-1}(y') \)).

Now, since \(\bar{G} = \{ g \in G : g(x_0) = x_0 \} \) is a convergence group \(G \) is too. \(\square \)

We now look at the case where \(G \) is continuously 4–transitive. In this case, we show that \(G \) must be \(n \)–transitive for every \(n \in \mathbb{N} \).

Theorem 6.4 If \(G \) is continuously \(n \)–transitive for \(n \geq 4 \), then it is continuously \(n + 1 \)–transitive.

Proof Fix \(n \geq 4 \) and assume for contradiction that \(G \) is continuously \(n \)–transitive but not continuously \(n + 1 \)–transitive. Take \((a_1, \ldots, a_{n-2}) \in P_{n-2} \) and define,
\[
\tilde{G} = \{ g \in G : g(a_i) = a_i \ \forall i \}
\]

Let \(I \) be a component of \(S^1 \setminus \{ a_1, \ldots, a_{n-2} \} \). Construct a homomorphism \(\Psi : \tilde{G} \to \text{Homeo}(S^1) \) in the same way as \(\Phi : G_0 \to \text{Homeo}(S^1) \) was constructed in Section 5. Explicitly, take \(g \in \tilde{G} \), restrict it to a self homeomorphism of \(\tilde{I} \) and identify the endpoints to get an element of \(\text{Homeo}(S^1) \).

Let \(\tilde{G} \) denote the image of \(\tilde{G} \) under \(\Psi \). Then as in Proposition 5.3 \(\tilde{G} \) is isomorphic to \(\bar{G} \). Using the arguments from the earlier Propositions in this section we can show that \(\tilde{G} \) is a convergence group and hence conjugate to a subgroup of \(\text{PSL}(2, \mathbb{R}) \). On the other hand, \(\tilde{G} \) is 2–transitive on \(I \) and every element fixes the identification point. This means that the action of \(\tilde{G} \) on \(I \) must be conjugate to the action of \(\text{Aff}(\mathbb{R}) \) on \(\mathbb{R} \).

Let \(I \) and \(I' \) be two components of \(S^1 \setminus \{ a_1, \ldots, a_{n-2} \} \) and let \(\phi : I \to \mathbb{R} \) be a homeomorphism which conjugates the action of \(\tilde{G} \) on \(I \) to the action of \(\text{Aff}(\mathbb{R}) \) on \(\mathbb{R} \). Let \(a_{n-1}, a'_{n-1} \) be two distinct points in \(I' \). Consider the groups
\[
G_0 = \{ g \in \tilde{G} : g(a_{n-1}) = a_{n-1} \}
\]

Geometry & Topology 10 (2006)
and

\[G'_0 = \{ g \in \tilde{G} : g(a'_{n-1}) = a'_{n-1} \} \]

They each act transitively on \(I \) and by Corollary 5.5 and Proposition 5.8 without fixed points. Consequently, \(\phi \) conjugates both of these actions to the action of \(\mathbb{R} \) on itself by translation. Let \(g \in G_0 \) and \(g' \in G'_0 \) be elements which are conjugated to \(x \mapsto x + 1 \) by \(\phi \). Then \(g^{-1} \circ g' \) acts on \(I \) as the identity. However, if it is equal to the identity, then \(g' = g \) fixes \(a_{n-1} \) and \(a'_{n-1} \), this is impossible as non-trivial elements of \(\tilde{G} \) can have at most one fixed point in \(I' \). So \(g^{-1} \circ g \) is a non-trivial element of \(G \) which acts as the identity on \(I \) and so by Corollary 4.5 we have that \(G \) is continuously \(n+1 \)-transitive.

\[\square \]

7 Summary of Results

Theorem 7.1 Let \(G \) be a transitive subgroup of \(\text{Homeo}(\mathbb{S}^1) \) which contains a non constant continuous path. Then one of the following mutually exclusive possibilities holds:

1. \(G \) is conjugate to \(\text{SO}(2, \mathbb{R}) \) in \(\text{Homeo}(\mathbb{S}^1) \).
2. \(G \) is conjugate to \(\text{PSL}(2, \mathbb{R}) \) in \(\text{Homeo}(\mathbb{S}^1) \).
3. For every \(f \in \text{Homeo}(\mathbb{S}^1) \) and each finite set of points \(x_1, \ldots, x_n \in \mathbb{S}^1 \) there exists \(g \in G \) such that \(g(x_i) = f(x_i) \) for each \(i \).
4. \(G \) is a cyclic cover of a conjugate of \(\text{PSL}(2, \mathbb{R}) \) in \(\text{Homeo}(\mathbb{S}^1) \) and hence conjugate to \(\text{PSL}_k(2, \mathbb{R}) \) for some \(k > 1 \).
5. \(G \) is a cyclic cover of a group satisfying condition 3 above.

Proof Let \(f : [0, 1] \to G \) be a non constant continuous path. Then

\[f(0)^{-1} \circ f : [0, 1] \to G \]

is a continuous deformation of the identity in \(G \). Consequently, Proposition 2.6 tells us that \(G \) is continuously 1–transitive.

If \(J_x = \emptyset \) for every \(x \in \mathbb{S}^1 \) then by Theorem 3.8 \(G \) is conjugate to \(\text{SO}(2, \mathbb{R}) \) in \(\text{Homeo}(\mathbb{S}^1) \). If \(J_x \neq \emptyset \) for some and hence all \(x \in \mathbb{S}^1 \) then by Theorem 3.10 \(G \) is either continuously 2–transitive or is a cyclic cover of a group \(G' \) which is continuously 2–transitive.

So assume that \(G \) is continuously 2–transitive, then by Proposition 4.6 it is continuously 3–transitive. If moreover \(G \) is not continuously 4–transitive, then by Proposition 6.3
it is a convergence group and hence conjugate to a subgroup of $\text{PSL}(2, \mathbb{R})$. On the other hand, since G is continuously 3–transitive, it is 3–transitive, and hence must be conjugate to the whole of $\text{PSL}(2, \mathbb{R})$.

If we now assume that G is continuously 4–transitive then by Theorem 6.4 it is continuously n–transitive and hence n–transitive for every $n \in \mathbb{N}$. So if we take $f \in \text{Homeo}(\mathbb{S}^1)$ and a finite set of points $x_1, \ldots, x_n \in \mathbb{S}^1$ there exists $g \in G$ such that $g(x_i) = f(x_i)$ and we are done.

Theorem 7.2 Let G be a closed transitive subgroup of $\text{Homeo}(\mathbb{S}^1)$ which contains a non constant continuous path. Then one of the following mutually exclusive possibilities holds:

1. G is conjugate to $\text{SO}(2, \mathbb{R})$ in $\text{Homeo}(\mathbb{S}^1)$.
2. G is conjugate to $\text{PSL}_k(2, \mathbb{R})$ in $\text{Homeo}(\mathbb{S}^1)$ for some $k \geq 1$.
3. G is conjugate to $\text{Homeo}_k(\mathbb{S}^1)$ in $\text{Homeo}(\mathbb{S}^1)$ for some $k \geq 1$.

Proof Since G is a transitive subgroup of $\text{Homeo}(\mathbb{S}^1)$ which contains a non constant continuous path, Theorem 7.1 applies. It remains to show that if G satisfies condition 3 in Theorem 7.1 then its closure is $\text{Homeo}(\mathbb{S}^1)$.

To see this, let f be an arbitrary element of $\text{Homeo}(\mathbb{S}^1)$. If we can find a sequence of elements of G which converges uniformly to f then we shall be done. So let $\{a_n : n \in \mathbb{N}\}$ be a countable and dense set of points in \mathbb{S}^1. Choose a sequence of maps $g_n \in G$ so that $g_n(a_k) = f(a_k)$ for $1 \leq k \leq n$. Then g_n will converge uniformly to f so that the closure of G will equal $\text{Homeo}(\mathbb{S}^1)$.

Theorem 7.3 $\text{PSL}(2, \mathbb{R})$ is a maximal closed subgroup of $\text{Homeo}(\mathbb{S}^1)$.

Proof Let G be a closed subgroup of $\text{Homeo}(\mathbb{S}^1)$ containing $\text{PSL}(2, \mathbb{R})$. Then G is 3–transitive and by applying Theorem 7.2 we can see that $\text{Homeo}(\mathbb{S}^1)$ and $\text{PSL}(2, \mathbb{R})$ are the only possibilities for G.

Geometry & Topology 10 (2006)
References

[1] M Bestvina, Questions in geometric group theory Available at http://www.math.utah.edu/~bestvina/

[2] A Casson, D Jungreis, Convergence groups and Seifert fibered 3–manifolds, Invent. Math. 118 (1994) 441–456 MR1296353

[3] D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992) 447–510 MR1189862

[4] F W Gehring, G J Martin, Discrete quasiconformal groups I, Proc. London Math. Soc. (3) 55 (1987) 331–358 MR896224

[5] É Ghys, Groups acting on the circle, Enseign. Math. (2) 47 (2001) 329–407 MR1876932

[6] A Hinkkanen, Abelian and nondiscrete convergence groups on the circle, Trans. Amer. Math. Soc. 318 (1990) 87–121 MR1000145

[7] P Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988) 1–54 MR961162

Mathematics Institute, University of Warwick
Coventry, CV4 7AL, UK
giblin@maths.warwick.ac.uk, markovic@maths.warwick.ac.uk
http://www.maths.warwick.ac.uk/~giblin/, http://www.maths.warwick.ac.uk/~markovic/

Proposed: David Gabai Received: 12 December 2005
Seconded: Leonid Polterovich, Benson Farb Revised: 22 June 2006

Geometry & Topology 10 (2006)