Constraining Supersymmetry

Tilman Plehn

Universität Heidelberg

IPA Orsay, September 2016
Global fits with SFitter

SFitter history and physics motivation

2007: MSSM setup [never just CMSSM!]
2009: Higgs setup
2010: MSSM unification study
2010: MSSM cross sections included
2012: Higgs couplings post-discovery
2013: Higgs at ILC
2013: MSSM global fit [Henrot-Versille etal]
2015: Higgs run I legacy
2015: NMSSM Hooperon [Butter etal]
2016: Higgs-gauge EFT run I legacy

Many similar SUSY tools

- Fittino: really very similar
- MasterCode: very similar
- Bertone-de Austri-Trotta...: Bayesian
- Sheffield: Bayesian

and many more, but we are of course the best and coolest
Ingredients: light Higgs

Higgs fit [SFit]

- search for BSM effects in Higgs@LHC
- assume: narrow CP-even scalar
 - Standard Model operators
 - loop-induced operators suppressed [Freitas, TP, Lopez-Val]

- Lagrangian

\[
L = L_{\text{SM}} + \Delta_W g m_W H W^\mu W_\mu + \Delta_Z \frac{g}{2c_w} m_Z H Z^\mu Z_\mu - \sum_{\tau, b, t} \Delta_f \frac{m_f}{v} H (\bar{f}_R f_L + \text{h.c.})
+ \Delta g F_G \frac{H}{v} G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \frac{H}{v} A_{\mu\nu} A^{\mu\nu} + \text{invisible}
\]

- electroweak renormalizability through MSSM completion

\[
gg \rightarrow H
qq \rightarrow qqH
gg \rightarrow ttH
qq' \rightarrow VH
\]

\[
g_{HXX} = g_{HXX}^{\text{SM}} (1 + \Delta x)
\]

\[
H \rightarrow ZZ
H \rightarrow WW
H \rightarrow b\bar{b}
H \rightarrow \tau^+\tau^-
H \rightarrow \gamma\gamma
\]
Ingredients: light Higgs

Higgs fit [SFitter]

- search for BSM effects in Higgs@LHC
- assume: narrow CP-even scalar
 Standard Model operators
 loop-induced operators suppressed [Freitas, TP, Lopez-Val]

- Lagrangian

\[
\mathcal{L} = \mathcal{L}_{SM} + \Delta_W g m_W H W^\mu W_\mu + \Delta_Z \frac{g}{2 c_W} m_Z H Z^\mu Z_\mu - \sum_{\tau, b, t} \Delta_f \frac{m_f}{v} H (\bar{f}_R f_L + h.c.)
\]
\[
+ \Delta_g F_G \frac{H}{v} G_{\mu\nu} G^{\mu\nu} + \Delta_A F_A \frac{H}{v} A_{\mu\nu} A^{\mu\nu} + \text{invisible}
\]

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties

![Graph showing data and SM expectations with a shaded region indicating 68% CL limits for ATLAS + CMS](image)
Ingredients: light Higgs

Higgs fit [SFitter]

- search for BSM effects in Higgs@LHC
- assume: narrow CP-even scalar
 Standard Model operators
 loop-induced operators suppressed [Freitas, TP, Lopez-Val]
- Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} + \Delta W g m_W H W^\mu W_\mu + \Delta Z \frac{g}{2c_W} m_Z H Z^\mu Z_\mu - \sum_{\tau, b, t} \Delta_f \frac{m_f}{V} H (\bar{f}_R f_L + \text{h.c.})$$

$$+ \Delta g F_G \frac{H}{V} G_{\mu\nu} G^{\mu\nu} + \Delta_\gamma F_A \frac{H}{V} A_{\mu\nu} A^{\mu\nu} + \text{invisible}$$

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- g_γ with new loops

$$L = 4.5-5.1(7 \text{ TeV}) + 19.4-20.3(8 \text{ TeV}) \text{ fb}^{-1} \text{, } 68\% \text{ CL: ATLAS + CMS}$$

$$g_x = g_{SM}^x (1 + \Delta x)$$
Ingredients: light Higgs

Higgs fit [SFitter]

- search for BSM effects in Higgs@LHC
- assume: narrow CP-even scalar
 Standard Model operators
 loop-induced operators suppressed [Freitas, TP, Lopez-Val]
- Lagrangian

\[
\mathcal{L} = \mathcal{L}_{\text{SM}} + \Delta_W \ g m_W H \ W^\mu W_\mu + \Delta_Z \ \frac{g}{2c_W} m_Z H Z^\mu Z_\mu - \sum_{\tau, b, t} \Delta_f \ \frac{m_f}{v} H (\bar{f}_R f_L + \text{h.c.}) \\
+ \Delta_g F_G \ \frac{H}{V} G_{\mu\nu} G^{\mu\nu} + \Delta_{\gamma} F_A \ \frac{H}{V} A_{\mu\nu} A^{\mu\nu} + \text{invisible}
\]

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- \(g_\gamma \) with new loops
- \(g_g \) vs \(g_t \) barely possible

\[
L = 4.5 - 5.1(7 \text{ TeV}) + 19.4 - 20.3(8 \text{ TeV}) \text{ fb}^{-1}, \ 68\% \text{ CL: ATLAS + CMS}
\]

\[
g_x = g_x^{\text{SM}} (1 + \Delta_x)
\]
Ingredients: light Higgs

Higgs fit [SFitter]

- search for BSM effects in Higgs@LHC
- assume: narrow CP-even scalar
 Standard Model operators
 loop-induced operators suppressed [Freitas, TP, Lopez-Val]
- Lagrangian

\[
\mathcal{L} = \mathcal{L}_{\text{SM}} + \Delta W g m_W H W^\mu W_\mu + \Delta Z \frac{g}{2c_w} m_Z H Z^\mu Z_\mu - \sum_{\tau, b, t} \Delta_f \frac{m_f}{v} H (\tilde{f}_R f_L + \text{h.c.}) \\
+ \Delta g F_G \frac{H}{V} G_{\mu \nu} G^{\mu \nu} + \Delta_\gamma F_A \frac{H}{V} A_{\mu \nu} A^{\mu \nu} + \text{invisible}
\]

Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch]

- assume SM-like [secondary solutions possible]
- SFitter: correct theory uncertainties
- \(g_\gamma\) with new loops
- \(g_g\) vs \(g_t\) barely possible
- including invisible decays
 \(\Rightarrow\) no hint of supersymmetry

\[
L=4.5-5.1(7\text{ TeV})+19.4-20.3(8\text{ TeV})\text{ fb}^{-1}, 68\%\text{ CL: ATLAS + CMS}
\]
Ingredients: LHC anomalies
Ingredients: relic density

Dark matter EFT fit [Tait etal]

- combine limits from collider, direct, indirect detection
- choose dark matter candidate [Majorana/Dirac fermion, scalar, dark photon]
- consider D6 scattering process $\chi\chi \rightarrow \text{SM SM}$
- relic density from non-relativistic annihilation $[m_\chi / T \sim 30]$
- indirect detection even less relativistic
- direct detection totally non-relativistic $[E \sim 10 \text{ MeV}]$
- LHC tricky: single scale $m_\chi \ll m_{\text{mediator}}$? [Felix Kahlhöfer’s talk]
- example: scalar dark matter [they did not do Majorana fermions]

Label	Coefficient	Operator	$\sigma_{\text{SI}} \langle \sigma \text{ann} \rangle^V$
Real scalar			
R1 $\lambda_1 \sim 1/(2M^2)$	$mq\chi^2\bar{q}q$	✓ s-wave	
R2 $\lambda_2 \sim 1/(2M^2)$	$imq\chi^2\bar{q}\gamma^5 q$	s-wave	
R3 $\lambda_3 \sim \alpha_s/(4M^2)\chi^2 G_{\mu \nu} G^{\mu \nu}$	✓ s-wave		
R4 $\lambda_4 \sim \alpha_s/(4M^2)i\chi^2 G_{\mu \nu} \tilde{G}^{\mu \nu}$	s-wave		
Complex scalar			
C1 $\lambda_1 \sim 1/(M^2)$	$mq\chi^\dagger \bar{q}q$	✓ s-wave	
C2 $\lambda_2 \sim 1/(M^2)$	$imq\chi^\dagger \bar{q}\gamma^5 q$	s-wave	
C3 $\lambda_3 \sim 1/(M^2)$	$\chi^\dagger \partial_\mu \chi \bar{q} \gamma^\mu q$	✓ p-wave	
C4 $\lambda_4 \sim 1/(M^2)$	$\chi^\dagger \partial_\mu \chi \bar{q} \gamma^\mu \gamma^5 q$	p-wave	
C5 $\lambda_5 \sim \alpha_s/(8M^2)\chi^\dagger \chi G_{\mu \nu} G^{\mu \nu}$	✓ s-wave		
C6 $\lambda_6 \sim \alpha_s/(8M^2)i\chi^\dagger \chi G_{\mu \nu} \tilde{G}^{\mu \nu}$	s-wave		
Ingredients: relic density

Dark matter EFT fit [Tait et al]

- combine relic density with Hooperon
- choose dark matter candidate [Majorana/Dirac fermion, scalar, dark photon]
- consider D6 scattering process $\chi\chi \rightarrow \text{SM SM}$
- relic density from non-relativistic annihilation $[m_\chi / T \sim 30]$
- indirect detection even less relativistic
- direct detection totally non-relativistic $[E \sim 10 \text{ MeV}]$
- LHC tricky: single scale $m_\chi \ll m_{\text{mediator}}$? [Felix Kahlhöfer’s talk]
- example: scalar dark matter [they did not do Majorana fermions]

Label	Coefficient	Operator	$\sigma_{SI} / \langle \sigma \text{ann} v \rangle$
		Real scalar	s-wave
R1	$\lambda_1 \sim 1/(2M^2)$	$m_q \chi^2 \bar{q}q$	✓
R2	$\lambda_2 \sim 1/(2M^2)$	$i m_q \chi^2 \bar{q} \gamma^5 q$	s-wave
R3	$\lambda_3 \sim \alpha_s / (4M^2)$	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	✓ s-wave
R4	$\lambda_4 \sim \alpha_s / (4M^2)$	$i \chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	s-wave
		Complex scalar	
C1	$\lambda_1 \sim 1/(M^2)$	$m_q \chi^\dagger \chi \bar{q}q$	✓ s-wave
C2	$\lambda_2 \sim 1/(M^2)$	$i m_q \chi^\dagger \chi \bar{q} \gamma^5 q$	s-wave
C3	$\lambda_3 \sim 1/(M^2)$	$\chi^\dagger \partial_\mu \chi \bar{q} \gamma_\mu q$	✓ p-wave
C4	$\lambda_4 \sim 1/(M^2)$	$\chi^\dagger \partial_\mu \chi \bar{q} \gamma_\mu \gamma^5 q$	p-wave
C5	$\lambda_5 \sim \alpha_s / (8M^2)$	$\chi^\dagger \chi G_{\mu\nu} G^{\mu\nu}$	✓ s-wave
C6	$\lambda_6 \sim \alpha_s / (8M^2)$	$i \chi^\dagger \chi G_{\mu\nu} \tilde{G}^{\mu\nu}$	s-wave
Ingredients: relic density

Relic density plus Hooperon [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]

- default input: relic density
- scalar dark matter

Label	Coefficient	Operator	$\sigma_{SI} \langle \sigma_{\text{ann}} v \rangle$
R1	$\lambda_1 \sim 1/(2M^2)$	$m_q \chi^2 \bar{q}q$	s-wave
R2	$\lambda_2 \sim 1/(2M^2)$	$im_q \chi^2 \bar{q} \gamma^5 q$	s-wave
R3	$\lambda_3 \sim \alpha_s/(4M^2) \chi^2 G_{\mu\nu} G^{\mu\nu}$	\check{s}-wave	
R4	$\lambda_4 \sim \alpha_s/(4M^2) i \chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	s-wave	

- profile likelihood
- flat prior on log λ_i [prior $1/\lambda_i$]
- Dirichlet prior prefering similar-sized Wilson coefficients
Ingredients: relic density

Relic density plus Hooperon [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]

- default input: relic density
- scalar dark matter

Label	Coefficient	Operator	$\sigma_{SI} \langle \sigma_{ann} v \rangle$
R1	$\lambda_1 \sim 1/(2M^2)$	$m_q \chi^2 \bar{q} q$	s-wave
R2	$\lambda_2 \sim 1/(2M^2)$	$im_q \chi^2 \bar{q} \gamma^5 q$	s-wave
R3	$\lambda_3 \sim \alpha_s/(4M^2) \chi^2 G_{\mu\nu} G^{\mu\nu}$		s-wave
R4	$\lambda_4 \sim \alpha_s/(4M^2) i \chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$		s-wave

- profile likelihood
- flat prior on log λ_i [prior $1/\lambda_i$]
- Dirichlet prior prefering similar-sized Wilson coefficients
- Fermi: GCE plus dwarf galaxies

\Rightarrow finally, one or two observable(s)
Ingredients: MSSM relic density

Majorana neutralino, different mediators [Henrot-Versille etal, Michael Tytgat’s talk]

- SM Z-boson $\chi\chi \rightarrow Z \rightarrow \text{jets}$ [hard to get to work]
- SM-like Higgs $\chi\chi \rightarrow h \rightarrow b\bar{b}$ [$\Gamma/m = 1/25000$]
- heavy Higgs $H, A \rightarrow b\bar{b}, t\bar{t}$ [possibly wide]
- t-channel chargino $\chi\chi \rightarrow WW \rightarrow \text{jets}$ [e.g. focus point]
- stau co-annihilation $\tilde{\tau}\chi \rightarrow \tau + X$ [10% in mass]
- stop co-annihilation $\tilde{t}\chi \rightarrow t + X$ [10% in mass]
- chargino co-annihilation $\chi^0\chi^\pm \rightarrow W$ [10% in mass]
Ingredients: MSSM relic density

Majorana neutralino, different mediators
[Henrot-Versille etal, Michael Tytgat’s talk]

- SM Z-boson $\chi\chi \rightarrow Z \rightarrow \text{jets}$
 [hard to get to work]
- SM-like Higgs $\chi\chi \rightarrow h \rightarrow b\bar{b}$
 [$\Gamma/m = 1/25000$]
- heavy Higgs $H, A \rightarrow b\bar{b}, t\bar{t}$
 [possibly wide]
- t-channel chargino $\chi\chi \rightarrow WW \rightarrow \text{jets}$
 [e.g. focus point]
- stau co-annihilation $\tilde{\tau}\chi \rightarrow \tau + X$
 [10% in mass]
- stop co-annihilation $\tilde{t}\chi \rightarrow t + X$
 [10% in mass]
- chargino co-annihilation $\chi^0\chi^\pm \rightarrow W$
 [10% in mass]

\Rightarrow some killed by direct detection
Ingredients: MSSM relic density

Majorana neutralino, different mediators [Henrot-Versille etal, Michael Tytgat’s talk]

- SM Z-boson $\chi\chi \rightarrow Z \rightarrow \text{jets}$ [hard to get to work]
- SM-like Higgs $\chi\chi \rightarrow h \rightarrow b\bar{b}$ [$\Gamma/m = 1/25000$]
- heavy Higgs $H, A \rightarrow b\bar{b}, t\bar{t}$ [possibly wide]
- t-channel chargino $\chi\chi \rightarrow WW \rightarrow \text{jets}$ [e.g. focus point]
- stau co-annihilation $\tilde{\tau}\chi \rightarrow \tau + X$ [10% in mass]
- stop co-annihilation $\tilde{t}\chi \rightarrow t + X$ [10% in mass]
- chargino co-annihilation $\chi^0\chi^\pm \rightarrow W$ [10% in mass]

\Rightarrow some killed by direct detection

Constraints [Henrot-Versille etal]

measurement	value and errors
m_h	$(126 \pm 0.4 \pm 0.4 \pm 3)$ GeV
Ω_{cdm} Planck	$0.1187 \pm 0.0017 \pm 0.012$
Ω_{cdm} WMAP-9year	$0.1157 \pm 0.0023 \pm 0.012$
$\text{BR}(B_s \rightarrow \mu^+\mu^-)$	$(3.2^{+1.5}_{-1.2} \pm 0.2) \times 10^{-9}$
$\text{BR}(b \rightarrow X_s\gamma)$	$(3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$
Δa_μ	$(287 \pm 63 \pm 49 \pm 20) \times 10^{-11}$
m_t	$(173.5 \pm 0.6 \pm 0.8)$ GeV

\Rightarrow fixing sign of μ, plus likelihood offset
Ingredients: MSSM relic density

Majorana neutralino, different mediators
[Henrot-Versille et al, Michael Tytgat’s talk]

- SM Z-boson $\chi\chi \rightarrow Z \rightarrow \text{jets}$
 [hard to get to work]
- SM-like Higgs $\chi\chi \rightarrow h \rightarrow b\bar{b}$
 [$\Gamma/m = 1/25000$]
- heavy Higgs $H, A \rightarrow b\bar{b}, t\bar{t}$
 [possibly wide]
- t-channel chargino $\chi\chi \rightarrow WW \rightarrow \text{jets}$
 [e.g. focus point]
- stau co-annihilation $\tilde{\tau}\chi \rightarrow \tau + X$
 [10% in mass]
- stop co-annihilation $\tilde{t}\chi \rightarrow t + X$
 [10% in mass]
- chargino co-annihilation $\chi^0\chi^\pm \rightarrow W$
 [10% in mass]

\Rightarrow some killed by direct detection

Constraints
[Henrot-Versille et al]
Motivating invisible Higgs searches

MSSM Higgs boson [Butter et al]

- take LHC hints and decouple squarks and gluinos
- decouple sleptons/squarks and their co-annihilation channels
- mass parameters: M_1, M_2, μ

SM-like Higgs coupling requiring higgsino fraction

$$g_{H\tilde{\chi}\tilde{\chi}} \bigg|_{\text{MSSM}} = (g_1 N_{11} - g_2 N_{12}) \left(\sin \alpha N_{13} + \cos \alpha N_{14} \right)$$

1. require $m_h = 125$ GeV in M_1 vs μ [tan $\beta = 40$]
Motivating invisible Higgs searches

MSSM Higgs boson [Butter et al]

- take LHC hints and decouple squarks and gluinos
- decouple sleptons/squarks and their co-annihilation channels
- mass parameters: \(M_1, M_2, \mu \)

SM-like Higgs coupling requiring higgsino fraction

\[
g_{H\tilde{\chi}\tilde{\chi}} \big|_{\text{MSSM}} = (g_1 N_{11} - g_2 N_{12}) (\sin \alpha N_{13} + \cos \alpha N_{14})
\]

1. require \(m_h = 125 \text{ GeV} \) in \(M_1 \) vs \(\mu \) \([\tan \beta = 40]\)

2. add LEP chargino mass limit
Motivating invisible Higgs searches

MSSM Higgs boson [Butter etal]

- take LHC hints and decouple squarks and gluinos
- decouple sleptons/squarks and their co-annihilation channels
- mass parameters: M_1, M_2, μ

SM-like Higgs coupling requiring higgsino fraction

$$g_{H\tilde{\chi}\tilde{\chi}}\bigg|_{\text{MSSM}} = (g_1 N_{11} - g_2 N_{12}) (\sin \alpha N_{13} + \cos \alpha N_{14})$$

1. require $m_h = 125$ GeV in M_1 vs μ \[\tan \beta = 40\]
2. add LEP chargino mass limit
3. add relic density
Motivating invisible Higgs searches

MSSM Higgs boson [Butter etal]

- take LHC hints and decouple squarks and gluinos
- decouple sleptons/squarks and their co-annihilation channels
- mass parameters: M_1, M_2, μ

SM-like Higgs coupling requiring higgsino fraction

\[
g_{H\tilde{\chi}\tilde{\chi}} \bigg|_{\text{MSSM}} = (g_1 N_{11} - g_2 N_{12}) \left(\sin \alpha N_{13} + \cos \alpha N_{14} \right)
\]

1. require $m_h = 125$ GeV in M_1 vs μ [tan $\beta = 40$]
2. add LEP chargino mass limit
3. add relic density
4. add direct detection

\[
\text{BR}(H_{125} \rightarrow \tilde{\chi}\tilde{\chi}) \lesssim 50\% \quad \text{for} \quad \mu = 100 \text{ GeV}, \quad M_1 = 45 \text{ GeV},
\]

\Rightarrow not generic, but possible...
Hooperon — fun with dark matter

Galactic center excess in FERMI data, by theorists

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by DM annihilation with photons
- $m_\chi \sim 30$ GeV from spectrum

![Graph](image-url)
Hooperon — fun with dark matter

Galactic center excess in FERMI data, by theorists
[Goodenough & Hooper, Gabrijela Zaharijas’ talk]

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by DM annihilation with photons
- $m_\chi \sim 30$ GeV from spectrum

Kind of confirmed by FERMI
[Murgia et al (2015)]

- analysis with all uncertainties
- fit without dark matter not good
Hooperon — fun with dark matter

Galactic center excess in FERMI data, by theorists

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by DM annihilation with photons
- $m_\chi \sim 30$ GeV from spectrum

Kind of confirmed by FERMI

- analysis with all uncertainties
- fit without dark matter not good
- improved with NFW contribution
Hooperon — fun with dark matter

Galactic center excess in FERMI data, by theorists [Goodenough & Hooper, Gabrijela Zaharijas’ talk]

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by DM annihilation with photons
- $m_\chi \sim 30$ GeV from spectrum

Kind of confirmed by FERMI [Murgia et al (2015)]

- analysis with all uncertainties
- fit without dark matter not good
- improved with NFW contribution
- even better with modified NFW contribution
Hooperon — fun with dark matter

Galactic center excess in FERMI data, by theorists
[Goodenough & Hooper, Gabrijela Zaharijas’ talk]

- look at gamma ray spectrum in galaxy
- remove all foregrounds
- check radial distributions
- explain by DM annihilation with photons
- $m_\chi \sim 30$ GeV from spectrum

Kind of confirmed by FERMI
[Murgia et al (2015)]

- analysis with all uncertainties
- fit without dark matter not good
- improved with NFW contribution
- even better with modified NFW contribution
- different DM candidates
[Calore et al]

\Rightarrow DM model playground, probably astrophysics...
NMSSM Hooperons

Hooperon in the NMSSM [Berlin, Hooper, McDermott; Butter etal]

- scalars largely decoupled from h_{125} [through A_λ]
- higgsino mass parameter μ
- singlino mass parameter $2\kappa\mu$
- singlino-higgsino mixing parameter λ

$$M_{\tilde{\chi}} = \begin{pmatrix}
M_1 & 0 & -m_Z c_\beta s_w & m_Z s_\beta s_w & 0 \\
0 & M_2 & m_Z c_\beta c_w & -m_Z s_\beta c_w & 0 \\
-m_Z c_\beta s_w & m_Z c_\beta c_w & 0 & -\mu & -m_Z s_\beta \frac{\lambda}{g} \\
m_Z s_\beta s_w & -m_Z s_\beta c_w & -\mu & 0 & -m_Z c_\beta \frac{\lambda}{g} \\
0 & 0 & -m_Z s_\beta \frac{\lambda}{g} & -m_Z c_\beta \frac{\lambda}{g} & 2\kappa\mu
\end{pmatrix}$$

- s-channel mediators
 - Standard Model: Z, h_{125}
 - new: heavy/singlet pseudoscalars
- Fermi: light pseudo-scalar mediator
 - higgsino-admixed singlino DM

⇒ LHC signatures? [Cao, Zurek,...]
Higgs decays to Hooperons

LHC signatures [Butter etal]

- squarks, gluinos, sleptons decoupled [duh!]
 \[\tan \beta = 10, \text{Higgs mass correct},...\]
- singlino vs bino mass parameter space [slice \(\mu = 220 \text{ GeV}\)]
- funnel off-pole annihilation: \(Z\) and \(h_{125}\)
 strips with \(m_{\tilde{\chi}} = 40, 48, 55 \text{ GeV}\)
- Hooperon at \(M_1 \gtrsim 70 \text{ GeV}\)
Higgs decays to Hooperons

LHC signatures [Butter et al]

- squarks, gluinos, sleptons decoupled [duh!]
 \[\tan \beta = 10, \text{Higgs mass correct,...} \]
- singlino vs bino mass parameter space [slice \(\mu = 220 \text{ GeV} \)]
- funnel off-pole annihilation: \(Z \) and \(h_{125} \)
 strips with \(m_{\tilde{\chi}} = 40, 48, 55 \text{ GeV} \)
- Hooperon at \(M_1 \gtrsim 70 \text{ GeV} \)
\[\Rightarrow \text{strong correlation with } h_{125} \rightarrow \text{invisible} \]
Constraining SUSY

Tilman Plehn

Ingredients

Invisible Higgs

Hooperon

Where are we headed?

Global SUSY fits

...are underconstrained [good luck to Gambit]
...only work based on dark matter and indirect constraints
...would need a positive LHC result
...decouple just fine
...answer questions I do not care about [goodness of fit for CMSSM]
...do give us new ideas/justification for searches [simplified models spirit]
...need a physics point
