Non-cyclic graphs of (non)orientable genus one

XUANLONG MA

Sch. Math. Sci. & Lab. Math. Com. Sys.,
Beijing Normal University, 100875, Beijing, China.

Abstract

Let G be a finite non-cyclic group. The non-cyclic graph Γ_G of G is the graph whose vertex set is $G \setminus \text{Cyc}(G)$, two distinct vertices being adjacent if they do not generate a cyclic subgroup, where $\text{Cyc}(G) = \{a \in G : \langle a, b \rangle \text{ is cyclic for each } b \in G\}$. In this paper, we classify all finite non-cyclic groups G such that Γ_G has (non)orientable genus one.

Keywords: Non-cyclic graph, finite non-cyclic group, genus.
MSC 2010: 05C25, 05C10.

1 Introduction

All graphs in this paper are undirected, with no loops or multiple edges. A graph Γ is called a planar graph if Γ can be drawn in the plane so that no two of its edges cross each other, and in this case we say that Γ can be embedded in the plane. For a non-planar graph, it can be embedded in some surface obtained from the sphere by attaching some handles or crosscaps. We denote by S_k a sphere with k handles and by N_k a sphere with k crosscaps. Note that both S_0 and N_0 are the sphere itself, and S_1 and N_1 are the torus and the projective plane, respectively. The smallest non-negative integer k such that a graph Γ can be embedded on S_k (resp. N_k) is called the orientable genus or genus (resp. nonorientable genus) of Γ, and is denoted by $\gamma(\Gamma)$ (resp. $\overline{\gamma}(\Gamma)$).

The problem of finding the graph genus is NP-hard [9]. The (non)orientable genera of some graphs constructed from some algebraic structures have been studied, for instance, see [3–5, 7, 10].

E-mail addresses: xuanlma@mail.bnu.edu.cn.
All groups considered in this paper are finite. Denote by \mathbb{Z}_n and D_{2n} the cyclic group of order n and the dihedral group of order $2n$, respectively. Let G be a non-cyclic group. The cyclicizer $\text{Cyc}(G)$ of G is
\[\{ a \in G : \langle a, b \rangle \text{ is cyclic for each } b \in G \} . \]
and is a normal subgroup of G (see [6]). The non-cyclic graph Γ_G of G is the graph whose vertex set is $G \setminus \text{Cyc}(G)$, and two distinct vertices being adjacent if they do not generate a cyclic subgroup. The non-cyclic graph Γ_G was first considered by Abdollahi and Hassanabadi [1] and they studied the properties of the graph and established some graph theoretical properties (such as regularity) of this graph in terms of the group ones. In [2], Abdollahi and Hassanabadi classified all non-cyclic groups G such that Γ_G is planar.

A natural question is the following: Which finite non-cyclic groups have their non-cyclic graphs have (non)orientable genus one? The goal of the paper is to find all non-cyclic graphs of (non)orientable genus one. Our main results are the following theorems.

Theorem 1.1. Let G be a finite non-cyclic group. Then Γ_G has genus one if and only if G is isomorphic to one of the following groups:
\[\mathbb{Z}_3^2, \mathbb{Z}_2^3, \mathbb{Z}_2 \times \mathbb{Z}_4, \ D_8, \ \mathbb{Z}_2 \times \mathbb{Z}_6. \] (1)

Theorem 1.2. Let G be a finite non-cyclic group. Then Γ_G has nonorientable genus one if and only if G is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_4$ or D_8.

2 Preliminaries

An element of order 2 in a group is called an *involution*. Let G be a group and g be an element of G. Denote by $|G|$ and $|g|$ the orders of G and g, respectively. We denote the symmetric group on n letters and the quaternion group of order 8 by S_n and Q_8, respectively. Also \mathbb{Z}_n^m is used for the m-fold direct product of the cyclic group \mathbb{Z}_n with itself. In the following, we state some results which we need in the sequel.

Lemma 2.1. ([2, Proposition 4.3]) Γ_G is planar if and only if G is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$, S_3 or Q_8.

Let Γ be a graph. Denote by $V(\Gamma)$ and $E(\Gamma)$ the vertex set and the edge set of Γ, respectively. We use the notation $\lceil x \rceil$ to denote the least integer that is greater than or equal to x. Denote by K_n and $K_{m,n}$ the complete graph of order n and the complete bipartite graph, respectively. The following result from [11] gives the (non)orientable genus of a complete graph and a complete multipartite graph.
Lemma 2.2. ([11]) Let \(n \) be an integer at least 3. Then

(a) \(\gamma(K_n) = \left\lceil \frac{1}{12}(n-3)(n-4) \right\rceil \).

(b) \(\tau(K_n) = \left\lceil \frac{1}{3}(n-3)(n-4) \right\rceil \) if \(n \neq 7 \) and \(\tau(K_7) = 3 \).

(c) \(\gamma(K_{m,n}) = \left\lceil \frac{1}{4}(m-2)(n-2) \right\rceil \).

(d) \(\tau(K_{m,n}) = \left\lceil \frac{1}{2}(m-2)(n-2) \right\rceil \).

(e) \(\gamma(K_{n,m,n}) = \frac{1}{2}(n-1)(n-2) \).

(f) \(\gamma(K_{n,n,m,n}) = (n-1)^2 \) for \(n \neq 3 \) and \(\gamma(K_{3,3,3,3}) = 5 \).

Lemma 2.3. ([8, pp. 252, Theorem 9.7.3]) Suppose that \(G \) is a \(p \)-group for some prime \(p \) and has a unique subgroup of order \(p \). If \(p = 2 \), then \(G \) is cyclic or generalized quaternion. If \(p > 2 \), then \(G \) is cyclic.

The following result is one of Sylow theorems.

Theorem 2.4. Suppose that \(G \) is a group and \(p \) is a prime divisor of \(|G| \). Then the number of Sylow \(p \)-subgroups is congruent to 1 modulo \(p \). In particular, the number of subgroups of order \(p \) is congruent to 1 modulo \(p \).

Denote by \(\varphi \) the Euler’s totient function.

Lemma 2.5. Let \(G \) be a non-cyclic group, \(p, q \) two distinct primes and \(m \) a positive integer at least 1. If \(\gamma(\Gamma_G) = 1 \), the each of the following statements does not hold:

(a) \(G \) has 4 cyclic subgroups of order \(p^m \) and an element of order \(q \), where \(\varphi(p^m) \geq 2 \).

(b) \(G \) has 4 cyclic subgroups of order 3 and \(|G| \geq 10 \).

(c) \(G \) has 3 cyclic subgroups of order 4 and an element of order \(q^m \), where \(\varphi(q^m) \geq 3 \) and \(q \neq 2 \).

(d) \(G \) has 7 cyclic subgroups of order 2 and an element of order \(q \), where \(q \neq 2 \).

(e) \(G \) has 3 cyclic subgroups of order \(p^m \), where \(\varphi(p^m) \geq 4 \).

(f) \(G \) has 2 cyclic subgroups of order \(p^m \), where \(\varphi(p^m) \geq 5 \).

Proof. (a) Suppose, for a contradiction, that (a) holds. Let \(\langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle \) be 4 cyclic subgroups of order \(p^m \) of \(G \) and \(g \) be an element of order \(q \). If \(g \) and each element of \(\{a, a^{-1}, b, b^{-1}, c, c^{-1}, d, d^{-1}\} \) cannot generate a cyclic subgroup, then the induced subgraph by \(\{a, a^{-1}, b, b^{-1}, c, c^{-1}, d, d^{-1}, g\} \) has a subgraph isomorphic to \(K_{4,5} \) that has partition sets \(\{c, c^{-1}, d, d^{-1}\} \) and \(\{a, a^{-1}, b, b^{-1}, g\} \) and so \(\gamma(\Gamma_G) \geq \gamma(K_{4,5}) = 2 \), a contradiction. Thus, we may suppose that \(g \) and an element of \(\{a, a^{-1}, b, b^{-1}, c, c^{-1}, d, d^{-1}\} \) can generate a cyclic subgroup \(\langle h \rangle \). Without loss of generality, let \(\langle a, g \rangle = \langle h \rangle \). Then \(h \in V(\Gamma_G) \) and thereby, the induced subgraph by \(\{a, a^{-1}, b, b^{-1}, c, c^{-1}, d, d^{-1}, h\} \) has a subgraph isomorphic to \(K_{4,5} \) that has partition
sets \(\{c, c^{-1}, d, d^{-1}\} \) and \(\{a, a^{-1}, b, b^{-1}, h\} \). So \(\gamma(\Gamma_G) \geq \gamma(K_{4,5}) > 1 \), also a contradiction.

It is similar to the proof of (a), we can prove (b), (c) and (d).

(e) Assume, to the contrary, that (e) holds. Take 4 generators in every cyclic subgroup of order \(p^m \). Then it is easy to see that the induced subgraph by the generators has a subgraph isomorphic to \(K_{4,4,4} \) that has genus 3 by Lemma 2.2, a contradiction.

(f) It is similar to the proof of (e).

\[\square \]

Lemma 2.6. Let \(G \) be a non-cyclic \(p \)-group, where \(p \) is a prime. Then \(\gamma(\Gamma_G) = 1 \) if and only if \(G \) is isomorphic to one of the following groups:

\[\mathbb{Z}_3^2, \mathbb{Z}_2^3, \mathbb{Z}_2 \times \mathbb{Z}_4, D_8. \]

(2)

Proof. Note that \(\Gamma_{\mathbb{Z}_3^2} \cong K_{2,2,2,2}, \Gamma_{\mathbb{Z}_2^3} \cong K_7 \) and each of \(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_4} \) and \(\Gamma_{D_8} \) is a subgraph of \(K_7 \). By Lemma 2.2, we see that \(\Gamma_G \) has genus one for each group \(G \) in (2). We next assume that \(\gamma(\Gamma_G) = 1 \).

Suppose that \(p \geq 3 \). Then, by Lemma 2.3 and Theorem 2.4 we have that \(G \) has at least 4 subgroups of order \(p \). It follows from (e) and (b) of Lemma 2.5 that \(|G| \leq 9 \). This implies that \(G \cong \mathbb{Z}_3^2 \), as desired.

Now suppose that \(p = 2 \). If \(|G| \leq 8 \), then \(G \) is isomorphic to \(\mathbb{Z}_2^2, Q_8, \mathbb{Z}_2^3, \mathbb{Z}_2 \times \mathbb{Z}_4 \) or \(D_8 \) and by Lemma 2.1 we get the desired result. Thus, we may suppose that \(|G| \geq 16 \). If \(G \) is generalized quaternion, then \(G \) has a subgroup \(\langle x \rangle \) of order 8 and contains at least 4 elements \(y_1, \ldots, y_4 \) of order 4 that do not belong to \(\langle x \rangle \), and so \(\Gamma_G \) has a subgraph isomorphic to \(K_{6,4} \) that has partition sets \(\{x^i : 0 < i < 8, i \neq 4\} \) and \(\{y_j : j = 1, \ldots, 4\} \), a contradiction by Lemma 2.2. Therefore, by Lemma 2.3 we may assume that \(G \) has at least 3 involutions.

Case 1. \(G \) has an element \(g \) of order 8.

Suppose that \(G \) has two distinct subgroups \(\langle g \rangle, \langle h \rangle \) of order 8. Then we may pick an involution \(a \) in \(G \setminus (\langle g \rangle \cup \langle h \rangle) \). Now we get a subgraph of \(\Gamma_G \) isomorphic to \(K_{5,4} \) that has partition sets \(\{g, g^3, g^5, a\} \) and \(\{h, h^3, h^5, h^7\} \), a contradiction by Lemma 2.2.

Thus, we may suppose that \(G \) has a unique subgroup \(\langle u \rangle \) of order 8, which is normal in \(G \). Take an involution \(b \) that does not belong to \(\langle u \rangle \). Then \(\langle u, b \rangle \) is a subgroup of order 16 and has precisely one subgroup of order 8. Since \(b \notin \langle u \rangle, \langle u, b \rangle \) is not cyclic. Note that \(G \) is not generalized quaternion. By verifying the groups of order 16, we get that \(G \cong D_{16} \) or \(QD_{16} \), where \(QD_{16} = \langle a, b : a^8 = b^2 = 1, bab = a^3 \rangle \). If \(G \cong D_{16} \), then \(G \) has 9 involutions which induce a subgraph isomorphic to \(K_9 \), \(\gamma(\Gamma_G) \geq \gamma(K_9) = 3 \) by Lemma 2.2, a contradiction. Note that \(QD_{16} \) has only 6
elements of order 4. If $G \cong QD_{16}$, then the subgraph induced by 6 elements of order 4 and 4 elements of order 8 has a subgraph isomorphic to $K_{6,4}$, also a contradiction.

Case 2. G has no elements of order 8.

If G has no elements of order 4, then Γ_G is isomorphic to $K_{|G|-1}$, a contradiction as $\gamma(K_{|G|-1}) > 1$ for $|G| \geq 16$. Thus, in this case we may assume that $\pi_e(G) = \{1, 2, 4\}$. Note that $|G| \geq 16$. Since all involutions induce a complete graph and $\gamma(K_8) \geq 2$, G has at least 8 elements of order 4. Since a power graph induced by 10 elements of order 4 of a group has a subgraph isomorphic to $K_{6,4}$ that has genus two, G has precisely 8 elements of order 4 and 7 involutions. Take an involution a in G that does not belong to any subgroup of order 4. Then it is easy to see that the subgraph induced by all elements of order 4 and a has a subgraph isomorphic to $K_{5,4}$ that has genus two, a contradiction. \qed

3 Proof of the main theorems

Proof of Theorem 1.1. Note that $\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6}$ has a subgraph isomorphic to $K_{3,3}$. Hence $\gamma(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6}) \geq 1$. On the other hand, we can embed $\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6}$ into the tours as shown in Figure 1. This implies that $\gamma(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6}) = 1$. Now by Lemma 2.6 we see that Γ_G has genus one for any group G in (1).

Now we assume that $\gamma(\Gamma_G) = 1$. If G is a p-group, the desired result follows from Lemma 2.6. Thus, we may assume that G is not a p-group. Let q be an odd prime divisor of $|G|$. If the number of subgroups of order q is not 1, then by Theorem 2.4 G has at least 4 subgroups of order q and by (a) of Lemma 2.5, we have a contradiction. Thus, G has a unique subgroup of order q and thereby, every Sylow q-subgroup of G is cyclic by Lemma 2.3. Similarly, we can get that G has a unique Sylow q-subgroup.
Note that G is not cyclic. Thus, we may assume that $G = P \times Q$, where P is a 2-group and Q is a cyclic group of odd order. We next prove that P is not cyclic.

Suppose to the contrary that P is cyclic. Suppose that $|P| = 2$. Then G is dihedral. By Lemma 2.1, we see that $Q \not\cong \mathbb{Z}_3$ and so $\varphi(|Q|) \geq 4$ and G has at least 5 involutions. This implies that Γ_G has a subgraph isomorphic to $K_{5,4}$ that has two partition sets consisting of 5 involutions and 4 generators of Q, a contradiction. Suppose now that $P \cong \mathbb{Z}_4$. Note that G has at least 3 cyclic subgroups of order 4. By (c) of Lemma 2.5, we get $Q \cong \mathbb{Z}_3$. By checking the groups of order 12, $G \cong \langle a, b : a^6 = b^4 = 1, b^2 = a^3, b^{-1}ab = a^5 \rangle$. It is easy to check that $\gamma(\Gamma_G)$ has a subgraph isomorphic to $K_{4,5}$, a contradiction if $|P| \geq 8$, since P is not normal in G, G has at least 3 Sylow 2-subgroups and since $\varphi(|P|) \geq 4$, a contradiction by (e) of Lemma 2.5. This means that P is not cyclic.

Note that $V(\Gamma_P) \subseteq V(\Gamma_G)$. Then $\gamma(\Gamma_P) = 0$ or 1 and by Lemmas 2.1 and 2.6, P is isomorphic to one of the following groups:

$$\mathbb{Z}_2^3, \mathbb{Z}_2 \times \mathbb{Z}_4, D_8, Q_8, \mathbb{Z}_2^2.$$

First by (d) of Lemma 2.5, we conclude $P \not\cong \mathbb{Z}_2^3$.

Case 1. $P \cong \mathbb{Z}_2 \times \mathbb{Z}_4$.

If P is not normal in G, then G has at least 4 cyclic subgroups of order 4, a contradiction by (a) of Lemma 2.5. Thus, $G \cong P \times Q$ and so G has precisely three involutions and at least two cyclic subgroups of order $4k$ for some odd prime k. Considering the generators of the two cyclic subgroups of order $4k$ and some involution, we have that Γ_G has a subgraph isomorphic to $K_{4,5}$, a contradiction.

Case 2. $P \cong D_8$.

If P is not normal in G, then G has at least 7 involutions in the union of all Sylow 2-subgroups, a contradiction by (d) of Lemma 2.5. Therefore, we may assume that $G \cong P \times Q$. Let g be an element of odd order. Then G has a cyclic subgroup of order $4|g|$, which has at least 4 generators $\{g_1, \cdots, g_4\}$. Now it is easy to see that Γ_G has a subgraph isomorphic to $K_{4,5}$ that has two partition sets 4 involutions and $\{g_1, \cdots, g_4, a\}$ for some involution a, a contradiction.

Case 3. $P \cong Q_8$.

Note that Q_8 has 3 cyclic subgroups of order 4. By (a) of Lemma 2.5, we may assume that $G \cong P \times Q$. So G has at least 3 cyclic subgroups of order $4k$ for some odd prime k. By (e) of Lemma 2.5, a contradiction.

Case 4. $P \cong \mathbb{Z}_2^2$.

6
If P is not normal in G, then G has at least 7 involutions, a contradiction by (d) of Lemma 2.5. Now we assume that $G \cong \mathbb{Z}_2^3 \times Q$. If $Q \cong \mathbb{Z}_3$, then as desired. Thus, we may assume that $|Q| \geq 5$. Then it is easy to see that G has at least 3 cyclic subgroups of order $2k$ for some odd number $k \neq 3$. By (e) of Lemma 2.5, a contradiction.

Proof of Theorem 1.2. Since $\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_4}$ and Γ_{D_8} all have some subgraphs isomorphic to $K_{3,3}$, one has that $\gamma(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_4}) \geq 1$ and $\gamma(\Gamma_{D_8}) \geq 1$. On the other hand, we may embed $\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_4}$ and Γ_{D_8} into N_1 as shown in Figures 2 and 3, respectively. So we have $\gamma(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_4}) = \gamma(\Gamma_{D_8}) = 1$.

Now we assume that $\gamma(\Gamma_G) = 1$. By Lemma 2.2 we see that $\gamma(K_{4,4}) = 2$ and $\gamma(K_n) \geq 2$ for $n \geq 7$. Thus, Γ_G has no subgraphs isomorphic to $K_{4,4}$ and K_n for
$n \geq 7$. By the proof of Theorem 1.1, it is easy to see that G is one group of (1). Since $\Gamma_{\mathbb{Z}_3^4}$ has a subgraph isomorphic to $K_{4,4}$ and $\Gamma_{\mathbb{Z}_3^3}$ has a subgraph isomorphic to K_7, one has that $G \cong \mathbb{Z}_2 \times \mathbb{Z}_4$, D_8 or $\mathbb{Z}_2 \times \mathbb{Z}_6$. In order to complete our proof, we next prove $\gamma(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6}) \geq 2$.

Clearly, $\gamma(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6}) \geq 1$. Suppose for a contradiction that $\gamma(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6}) = 1$. Note that $|V(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6})| = 9$ and $|E(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6})| = 27$. Thus, by the Euler characteristic formulas, if $\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6}$ is embedded into the surface of nonorientable genus $\gamma(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6})$, resulting in f faces, then

$$|V(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6})| - |E(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6})| + f = 2 - \gamma(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6}).$$

This implies that $2|E(\Gamma_{\mathbb{Z}_2 \times \mathbb{Z}_6})| \geq 3f$, which is a contradiction as $f = 19$. \hfill \Box

References

[1] A. Abdollahi, A.M. Hassanabadi, Noncyclic graph of a group, Comm. Algebra 35 (2007) 2057–2081.

[2] A. Abdollahi, A.M. Hassanabadi, Non-cyclic graph associated with a group, J. Algebra Appl. 8 (2009) 243–257.

[3] M. Afkhami, M. Farrokhi D.G., K. Khashyarmanesh, Planar, toroidal, and projective commuting and noncommuting graphs, Comm. Algebra 43 (2015) 2964–2970.

[4] H.-J. Chiang-Hsieh, N.O. Smith, H.-J. Wang, Commutative rings with toroidal zero-divisor graphs, Houston J. Math. 36 (2010) 1–31.

[5] A. Doostabadi, M. Farrokh D.G., Embeddings of (proper) power graphs of finite groups, Preprint arXiv:1402.1322 [math.GR] 2014.

[6] K. O’Bryant, D. Patrick, L. Smithline and E. Wepsic, Some facts about cycles and tidy groups, Rose-Hulman Institute of Technology, Indiana, USA, Technical Reprot MS-TR 92–04, (1992).

[7] R. Rajkumar, P. Devi, Toroidality and projective-planarity of intersection graphs of subgroups of finite groups, Preprint arXiv:1505.08094 [math.GR] 2015.

[8] W.R. Scott, Group theory, Prentice-Hall, New Jersey, 1964.

[9] C. Thomassen, The graph genus problem is NP-complete, J. Algorithms 10 (1989) 568–576.
[10] H.-J. Wang, Zero-divisor graphs of genus one. J. Algebra 304 (2006) 666–678.

[11] T. White, Graphs, Groups and Surfaces, North-Holland Mathematics Studies 188, North-Holland, Amsterdam, 1984.