HST IMAGES DO NOT SUPPORT THE PRESENCE OF THREE HIGH VELOCITY, LOW-MASS RUNAWAY STARS IN THE CORE OF THE ORION NEBULA CLUSTER

C. R. O’DELL
Department of Physics and Astronomy, Box 1807-B, Vanderbilt University, Nashville, TN 37235; cr.odell@vanderbilt.edu

ARCADIO POVEDA AND CHRISTINE ALLEN
Instituto de Astronomía, UNAM, Apdo. Postal 70-264, 04510 México DF, Mexico

AND

MASSIMO ROBBERTO
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218

Received 2005 September 5; accepted 2005 October 3; published 2005 October 14

ABSTRACT

A recent article has employed the determination from ground-based images of high proper motions in the Orion Nebula cluster to argue that JW 349, JW 355, and JW 451 are high-velocity (38, 89, and 69 km s\(^{-1}\), respectively) low-mass runaway stars. We report on the measurement of the proper motions of these stars using images made by the Hubble Space Telescope’s WFPC2 imager and find that there is no evidence of motions above 6.2 km s\(^{-1}\) for JW 349 or above 7.9 km s\(^{-1}\) for JW 355, while the motion of 5.5 km s\(^{-1}\) for JW 451 is only slightly larger than the measurement uncertainty of 3.9 km s\(^{-1}\). We conclude that there is no observational support for these stars being high-velocity runaway stars.

Subject headings: astrometry — stars: kinematics — stars: pre–main-sequence

1. INTRODUCTION

A recent study of proper motions of stars near the center of the Orion Nebula cluster (ONC, sometimes referred to as the Trapezium cluster) revealed the fact that three low-mass stars appear to be moving at high tangential velocities (Poveda et al. 2005). These high velocities naturally raise the possibility that these are runaway stars that have obtained their velocities through a dynamic process involving close young stars (Poveda et al. 1967). Recent studies have firmly established (Rodriguez et al. 2005; Gómez et al. 2005) the presence of high-velocity objects in the BN/KL grouping of infrared stars that is embedded northwest from the center of the ONC but have successfully disputed the arguments for these objects presented by Tan (2004).

The Poveda study (Poveda et al. 2005, hereafter PAH-A) used the results of the photographic astrometry of Jones & Walker (1988, hereafter JW). JW used 47 images made at the prime focus of the Lick Observatory Shane 3 m reflector over the intervals 1960.1–1961.9 and 1981.8–1983.0. Because of the high Galactic latitude of the cluster (\(b = -20^\circ\)) and the fact that it is located on the near side of a molecular cloud that is optically thick even at the near-infrared wavelengths (103a–U or I-N emulsions) used for the imaging, there are relatively few field stars contaminating the sample, and most of the stars lie within a proper-motion vector of 0.2 per century. Stars with motions lying far outside of this value were classified as field stars, rather than cluster members. It was only appropriate that PAH-A would reassess the astrometric results with the intention of seeing if any of the high proper motion stars were actually cluster members with high spatial velocities. They identified three candidate stars (JW 349, JW 355, and JW 451) as being runaways. These objects not only have large proper motions in JW but must be members of the ONC because the presence of associated ionized gas indicates that they are proplyds, ionized by the O6 star \(\theta^1\) Ori C in the Trapezium cluster (O’Dell & Wen 1994).

The importance of this result, i.e., that there are objects in the ONC identified as runaway stars, is such that it seemed appropriate to examine the observational arguments for this conclusion. Fortunately, the Wide Field Planetary Camera 2 (WFPC2; Holtzman et al. 1995) on the Hubble Space Telescope (HST) has been used frequently for imaging the ONC since soon after its installation in 1993 December, so that the time base of observations for astrometry can be about 10 years. This is only about half of the time base for the JW observations, but the resolution of the WFPC2 images is more than 10 times better than that of the Shane telescope without compensation for seeing. Not only does the better resolution allow us a more accurate determination of the position of the ONC, but it also allows us to avoid confusing it with other objects in the vicinity, such as structure in the nebula. This means that the WFPC2 observations potentially offer us valuable information that allows us to test the reliability of the reported high proper motion stars.

2. OBSERVATIONS

In this study, we draw upon two sets of observations, the first clustered soon after installation of the WFPC2 and the second being quite recent, giving us the widest possible time base for comparison of first- and second-epoch images. Three early image sets were made under programs GO 5085 (PI: C. R. O’Dell), GO 5193 (an Early Release Observations program), and GO 5469 (PI: J. Bally). Two recent programs have reimaged the same areas near the Trapezium cluster (GO 9141, PI: C. R. O’Dell; GO 10246, PI: M. Robberto).

2.1. First-Epoch Observations

The first-epoch field for JW 349 was taken from the GO 5085 (pointing 5; O’Dell & Wong 1996) F656N image in CCD2. This was composed from two 200 s images combined

1 Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
to produce a good cosmic-ray event correction. They were made on 1995 January 19. The first-epoch field for JW 355 was taken from the GO 5469 (LV3 pointing; O’Dell & Wong 1996) F547M image in CCD2. This was composed from three 30 s images combined to produce a good cosmic-ray event correction. They were made on 1995 March 21. The first-epoch field for JW 451 was taken from the GO 5193 F547M image in CCD4. This was composed from two 100 s images combined to produce a good cosmic-ray event correction. They were made on 1993 December 29.

2.2. Second-Epoch Observations

The second-epoch observations used in our analysis were drawn from two recent programs. Program GO 9141 (O’Dell et al. 2003) imaged a single field centered southwest of the Trapezium cluster. The much larger program GO 10246 (Roberto et al. 2004) has recently imaged over 100 fields that cover the entire inner region of the Orion Nebula cluster with both the WFPC2 and the Advanced Camera for Surveys and partially cover this same field with the Near-Infrared Camera and Multi-Object Spectrometer. The second-epoch field for JW 349 was the WFPC2 F656N image in CCD4 of program GO 9141, this image having been made at the same pointing with a pair of 140 s exposures on 2002 January 22. The second-epoch field for JW 355 used the WFPC2 F336W, F439W, and F814W images in CCD3 of program GO 10246 (position 38), combined to produce a good cosmic-ray event correction and increase the signal as the exposures were 400 (twice), 80, and 10 s, respectively. These were made on 2005 April 10. The same field was used for the second-epoch image of JW 451, except that it was selected from CCD2.

3. DETERMINATION OF PROPER MOTIONS OF THE THREE TARGETED STARS

The WFPC2 images are quite stable within a single CCD detector, but the relative positions of the CCDs on the plane of the sky drift with time. This means that one cannot use the entire mosaic for the alignment of the first- and second-epoch images. We have therefore adopted a procedure used previously for the measurement of shocks and jets (Bally et al. 2000; Doi et al. 2005) find from radio astrometry that the spatial motion of the cluster is 5.4 ± 0.6 km s⁻¹ toward the south-southeast and that absolute motions for our stars would have to be corrected for this small value of the cluster motion.

3.1. JW 349

In the case of JW 349, the vector sum of the errors along the two axes from the geomat fit was 0.20 pixels, and the measured difference of position of the star was 0.17 pixels in the direction of the position angle (P.A. = 223°). This means that the formal value of the motion is less than the probable error of measurement. The difference of epoch of the observations was 7.01 yr, so that we can conclude that the motion of JW 349 is no more than 0.28 per century or 6.3 km s⁻¹.

3.2. JW 355

The vector sum of the errors of the geomat fit for JW 355 reference stars was 0.36 pixels, and the measured difference of the star’s position was 0.16 pixels toward P.A. = 190°. The difference of time in the observations was 10.06 yr, so that we conclude that the motion of JW 355 is no more than 0.36 per century or 7.9 km s⁻¹.

3.3. JW 451

The vector sum of the errors along the two axes of the fit was 0.20 pixels, and the measured difference of the star’s position was 0.28 pixels toward P.A. = 233°. Since the difference in time of the observations was 11.28 yr, this means that the measured motion was only slightly greater than the errors in its determination (3.9 km s⁻¹) and corresponds to 0.25 per century or 5.5 km s⁻¹.

4. SUMMARY AND CONCLUSIONS

The motions given in § 3 are in marked contrast to those reported in JW. That publication gave vector motions of 1.72 per century (38 km s⁻¹) for JW 349, 4.701 per century (89 km s⁻¹) for JW 355, and 3.078 per century (69 km s⁻¹) for JW 451. The probable errors given in JW for these three stars are much larger than almost all the stars in their study, with vector-summed errors of 0.38 per century, 0.41 per century, and 1.71 per century, respectively. The differences between this HST study and JW are large and outside the assigned errors of both studies.

The cause of these differences is unknown; however, the background nebular emission is bright in the region of each, and the lower angular resolution of the ground-based material could have made it difficult to measure the stars’ positions. The reason may be that the three stars are all bright proplyds; i.e., each has an extended ionized region surrounding it, thus making them more difficult to measure at ground-based resolution. We note that 65 similar proplyds in the JW study have

2 IRAF is distributed by the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science foundation.
a vector uncertainty of 0.83 per century, whereas the 648 JW stars that are not known proplyds and that have a probability of membership in the cluster of more than 90% also have a vector uncertainty of only 0.16 per century. This summary of results from the JW study indicates that, systematically, there is a larger uncertainty of the position of the proplyds, and this may contribute to the large errors in the three stars of this study.

Another way of addressing the situation is to predict the changes on the HST images from the ground-based–determined values. In this case, the expected motions would have been 1.2 pixels (JW 349), 4.3 pixels (JW 355), and 3.5 pixels (JW 451). Motions of the size of the latter two predicted shifts would have been easily visible when comparing the first- and second-epoch WFPC2 images, and the value of 1.2 pixels predicted for JW 349 is much larger than the uncertainties in the HST measurement (0.2 pixels). On the basis of the quality of the WFPC2 images, we conclude that there is no evidence that any of these three stars have a high velocity in the plane of the sky.

Therefore, we are forced to conclude that the discussion of the status of JW 349, JW 355, and JW 455 as low-mass runaway stars as presented in PAH-A is not valid, since the observations upon which they are founded are not supported by our new HST results.

Gómez et al. (2005) find large motions for two of their radio sources near the ONC center. Source 7 (GMR 14 [Garay et al. 1987], proplyd 155-338 [O’Dell & Wong 1996]) and source 14 (Zappata 46 [Zappata et al. 2004], JW 503, and proplyd 160-353 [O’Dell & Wong 1996]) have values of 16.5 ± 2.4 and 23.0 ± 4.9 km s⁻¹, respectively. They question the former’s high velocity on the basis that it could be due to changes in the structure of this extended source, and they question the latter’s velocity because of possible confusion with the signal from a nearby separate source. This leaves evidence of high-velocity motion for only the sources near the BN/KL region.

Although this study disputes the measurements for the three optical candidate runaway stars, a search for others using the WFPC2 would be worthwhile. This would require duplicating the pointing of the first-epoch images, so that good astrometry could be performed over entire CCD fields, rather than the fractional fields employed in this investigation.

We wish to acknowledge that partial support for this work came from the Space Telescope Science Institute program GO 10246. That program and the timely production of its large amount of data would not have been possible without the special effort of the Orion Treasury Team at the Space Telescope Science Institute, in particular, David Soderblom and Eddie Bergeron. We are grateful to Luis Rodríguez for suggesting that we examine the WFPC2 images for runaway objects. We particularly appreciate the efforts of Lick Observatory’s Burton Jones for reassessing the errors in his ground-based study of this region and his encouragement to proceed with publishing these new results.

Facilities: HST(WFPC2)

REFERENCES

Bally, J., O’Dell, C. R., & McCaughrean, M. J. 2000, AJ, 119, 2919

Doi, T., O’Dell, C. R., & Hartigan, P. 2002, AJ, 124, 445

Garay, G., Moran, J. M., & Reid, M. J. 1987, ApJ, 314, 535

Gómez, L., Rodríguez, L. F., Loinard, L., Lizano, S., Poveda, A., & Allen, C. 2005, ApJ, in press

Holtzman, J. A., Burrows, C. J., Casertano, S., Hester, J. J., Trauger, J. T., Watson, A. M., & Worthey, G. 1995, PASP, 107, 1065

Jones, B. F., & Walker, M. F. 1988, AJ, 95, 1755 (JW)

O’Dell, C. R., Peimbert, M., & Peimbert, A. 2003, AJ, 125, 2590

O’Dell, C. R., & Wen, Z. 1994, ApJ, 436, 194

O’Dell, C. R., & Wong, S.-K. 1996, AJ, 111, 846

Poveda, A., Allen, C., & Hernández-Alcántara, A. 2005, ApJ, 627, L61 (PAH-A)

Poveda, A., Ruiz, J., & Allen, C. 1967, Bol. Obs. Tonantzintla Tacubaya, 4, 86, http://www.astrosmo.unam.mx/~luisfr/Poveda67.pdf

Robberto, M., et al. 2004, AAS Meeting, 205, 117.3

Rodríguez, L. F., Poveda, A., Lizano, S., & Allen, C. 2005, ApJ, 627, L65

Tan, J. C. 2004, ApJ, 607, L47

Zappata, L. A., Rodríguez, L. F., Kurtz, S. E., & O’Dell, C. R. 2004, AJ, 127, 2252