Influence of sugarcane growth stages on bird diversity and community structure in an agricultural-savanna environment

Sifiso M. Lukhele, Julie Teresa Shapiro, Themb'alilahlwa A.M. Mahlab, Muzi D. Sibiya, Robert A. McCleery, Robert J. Fletcher Jr., Ara Monadjem

ARTICLE INFO
Keywords:
Temporal variability
Functional diversity
Beta diversity
Line transects

ABSTRACT
Agricultural intensification is a threat to terrestrial ecosystems around the world. Agricultural areas, especially monocultures, create homogenous landscapes for wildlife. However, certain crops, such as sugarcane, are harvested in phases, creating a mosaic of fields in different stages of growth. We investigated changes in avian communities across four different sugarcane growth stages: emerging, short, medium and tall sugarcane, as well as control sites that represented native savanna habitat in northeast Eswatini prior to conversion to agriculture. In total, we sampled nine sites in sugarcane fields (at different growth stages) and three in native savanna. We conducted bird counts at 5-week intervals along 200m line transects over both the breeding and non-breeding seasons. We recorded a total of 124 bird species belonging to 58 families. Bird species richness and diversity were higher in savannas compared to any stages of growth in sugarcane. In contrast, functional beta diversity and uniqueness were higher in sugarcane than in savanna. Community composition was also different between the two land-uses. While there was overlap in bird species composition between different sugarcane growth stages, there was high beta diversity and high turnover between sites, indicative of the high temporal and spatial variability in bird communities in sugarcane fields. We demonstrated that the spatial and temporal variability created by the different growth stages of sugarcane promotes the occurrence of species with different traits, which may contribute to ecosystem functioning and promote the conservation of bird species as sugarcane fields can provide resource complementation for species with different needs.

1. Introduction
The expansion and intensification of agriculture is one of the principal threats to biodiversity, especially in tropical and sub-tropical regions of the world (Foley et al., 2005; Laurance et al., 2013). Crop agriculture typically involves clearing native vegetation (Matson et al., 1997), which homogenizes the environment both in terms of fine-scale vegetation structure and broad-scale variation across landscapes (Altieri, 1999). Recent studies have demonstrated that homogenization of vegetation structure in African savannas results in the decline of species diversity (Ke et al., 2018; McCleery et al., 2018) and changes the distribution of feeding guilds (Azman et al., 2011; Gray et al., 2019).

Despite the significant alterations that agriculture entails, such areas are increasingly recognized as important components of landscapes that may still provide habitat or resources for some species (Gayer et al., 2019; Tscharntke et al., 2005). However, one aspect of agricultural systems that has been largely overlooked is the inherent spatial and temporal variability of cropping (Vasseur et al., 2013). This variability is typically introduced by agricultural management that includes sowing, planting, harvest of crops, or ploughing of the soil (Gheler-Costa et al., 2013), which creates different structural variation across crop fields (spatial heterogeneity) or over time (temporal heterogeneity) in the same
field. Hence, agricultural areas are best considered as a mosaic of different crops, crops at different stages of growth, fallow fields, or crops together with remnant patches of native vegetation.

One of the major cash crops grown in tropical and subtropical Africa is sugarcane, which is often cultivated in large commercial monoculture plantations (Kalinda and Chisanga, 2014). Commercial sugarcane plantations tend to favour generalist species, while specialists often do not persist, thus reducing biodiversity (Hurst et al., 2013; Reynolds et al., 2018; Smith et al., 2015). While this highlights the broad-scale effects of agricultural landscapes, there is still limited information regarding how heterogeneity within a particular farm or plantation may alter these outcomes (Mamba et al., 2019). In southern Africa, as in other tropical and subtropical countries such as Brazil and India, sugarcane has a long growing season lasting roughly ten months from planting to harvest. Because individual fields are planted at different times, each ostensibly homogeneous sugarcane plantation is, in fact, a mosaic of sugarcane at different growth stages and as such presents different fine-scale vegetation structure. Understanding how ecological communities respond to this heterogeneity is important for informing conservation management in such commercial agro-ecosystems yet studies looking at this effect are lacking.

Birds are a valuable taxonomic group as bio-indicators (Lawton et al., 1998; Ndang’ang’a et al., 2013) that also reflect changes in other components of biodiversity (Schulze et al., 2004; Skowmo and Bond, 2003). Bird community structure is closely tied to physiognomic attributes of the vegetation and there are well known relationships between species richness and structural diversity of the habitat which is important to birds (MacArthur and MacArthur, 1961; Macnally, 1990; Monadjem and Virani, 2016; Tu et al., 2020; Wiens and Rotenberry, 1981), as well as other taxa (McCleery et al., 2018; Rivera-Pedroza et al., 2019; Thompson and Gese, 2013; Verdu et al., 2011). In addition, birds provide a wide range of important ecosystem services, such as pest control and pollination (Chain-Guadarrama et al., 2019; Sekercioglu, 2006).

Phenotypic traits of species play a critical role in determining their contribution to ecosystem services and functioning (Clare et al., 2016; Norberg et al., 2001; Tilman, 2001). Functional diversity describes the variation of these traits (Mason et al., 2005; Tilman, 2001), and may, therefore, be useful for understanding how their persistence or loss may affect ecosystem-level processes (Petchey and Gaston, 2006). Likewise, beta diversity, the change in diversity across sites or over time, may provide insights into the interactions of abiotic and biotic factors in shaping species communities (Hu et al., 2018; Si et al., 2015). Although beta diversity has traditionally been studied across spatial dimensions (Legendre and Condit, 2019), it can also be applied to changes of species in the same area over time (Barton et al., 2013). Bird communities, in particular, vary substantially over both time and space (Sekercioglu, 2012), and understanding how this variation affects their functional diversity and beta diversity has implications for their conservation and maintaining the ecosystem functions they provide. We determined how changing growth stages within sugarcane fields may influence the structure of bird communities. Our objectives were threefold. First, we compared species richness and diversity of birds in sugarcane fields to native savanna, which was cleared to make way for these plantations. We predicted that species richness and diversity would be higher in native

Figure 1. Map of Eswatini showing the sampling sites in the savanna (protected areas in grey) and sugarcane plantations (green). Red triangles represent the twelve sites surveyed: nine in the sugarcane and three in savanna. Photos show the four different growth stages from A–D: emerging, short, medium, and tall sugarcane, respectively.
savanna compared with sugarcane. Second, we compared the species composition of birds in sugarcane fields of different growth stages, with each other and with native savanna. We predicted that bird communities would change as the sugarcane in the fields grew to maturation, with the tallest fields having their composition most closely resembling that of neighboring savanna communities. Third, we compared taxonomic and functional beta diversity of bird communities in sugarcane fields with those in native savanna. We predicted that functional beta diversity would be higher in sugarcane fields compared with native savanna because of the extensive changes in habitat structure in the fields (the different growth stages), allowing birds with different traits to inhabit the same field at different stages of crop maturation. We also predicted that taxonomic beta diversity over time would be higher in sugarcane fields as a result of increased turnover as species associated with bare ground give way to those associated with short grasslands (short sugarcane), and then with shrub habitats (medium and tall sugarcane).

2. Methods

2.1. Materials and methods

2.1.1. Study area

Our study was conducted in the Lowveld physiographic region of Eswatini, a low-lying region situated between the northern Drakensberg Escarpment in the west and the Lubombo Mountain range to the east; the Eswatini, a low-lying region situated between the northern Drakensberg and the Lubombo Mountain range. The region experiences hot, wet summers and cool, dry winters with mean daily temperatures of 26°C. The region receives a mean annual rainfall of 574 mm and about 80% of the rain is received during the wet season. The study area encompassed three large sugarcane estates (Simunye, Mhlume and Tambankulu) covering over 20,000 ha (Terry and Ogg, 2017) adjacent to three protected areas (Hlane Royal National Park, Mlawula Nature Reserve and Mbuluzi Game Reserve) that have a heterogeneous landscape of native savanna vegetation (McCleery et al., 2018; Monadjem, 2005). The growing cycle of sugarcane in Eswatini is roughly ten months from planting to harvest. The size of each field varies between 5 and 32 ha (Table 1), in which sugarcane is planted once and allowed to sprout after harvest for a number of years before replanting. Because different fields are planted at different times, together they represent a mosaic of different sugarcane growth stages at any one time. This provided us with a unique study design to determine the response of birds to these different growth stages, independent of season.

2.1.2. Study design

We conducted the study in two land-uses: commercial sugarcane plantations (hereafter sugarcane) and native savanna (hereafter savanna). We randomly selected nine sites within sugarcane, and three sites in neighbouring savanna (Mbuluzi Game Reserve) to serve as controls to reflect reference native vegetation that was cleared for sugarcane. Our sampling sites were situated between 26° 0’ 32” and 26° 11’ 55”S; and 32° 0’ 26” and 31° 59’ 51”E (Table 1). Sites were 1–10 km apart from each other, and those in sugarcane were at least 500 m away from any patches of native habitat. To capture the different stages of growth, we classified sugarcane fields into four categories in each survey session: emerging (fields that were either bare or had recently sprouted plants; sugarcane was 0–0.29 m tall), short (0.30–0.99 m), medium (1.00–1.99 m) and tall (>2.00 m). Sugarcane height was measured (to the nearest

Land-use	Sites	Latitude	Longitude	Sugarcane field size (ha)
Savanna	N1	26.1412	32.0072	-
Savanna	N2	26.1436	31.9977	-
Savanna	N3	26.1558	31.9966	-
Sugarcane	S1	26.1594	31.9643	5.5
Sugarcane	S2	26.1467	31.9637	14.9
Sugarcane	S3	26.1560	31.9586	9.8
Sugarcane	S4	26.1224	31.9442	10.6
Sugarcane	S5	26.1078	31.9336	31.2
Sugarcane	S6	26.1199	31.9499	22.9
Sugarcane	S7	26.1974	31.9605	14.8
Sugarcane	S8	26.1988	31.9703	18.3
Sugarcane	S9	26.2146	31.9644	22.4

Session	Date	Emerging	Short	Medium	Tall	Savanna
1st	12 Jun – 6 Jul 2017	8	4	0	24	12
2nd	30 Jul – 6 Aug 2017	4	8	0	24	12
3rd	4 Sep – 11 Sep 2017	4	4	8	20	12
4th	10 Oct – 17 Oct 2017	4	8	12	12	12
5th	14 Nov – 21 Nov 2017	12	8	12	4	12
6th	16 Dec – 23 Dec 2017	0	8	16	12	12
7th	24 Jan – 1 Feb 2018	0	0	4	32	12
8th	27 Feb – 6 Mar 2018	0	0	0	36	12
9th	15 Apr – 22 Apr 2018	4	0	0	32	12
10th	11 May – 19 May 2018	12	0	0	24	12
Total	48	40	52	220	240	
0.1 m) once in every session by using a 5 m ruler. We repeatedly surveyed birds and sampled vegetation on one 200 m transect per site (n = 12, Tables 2 and 3).

2.1.3. Bird counts

We commenced bird counts in June 2017 and repeated them every 5th week through to May 2018 resulting in 10 sampling sessions that covered both wet (November to April) and dry (May to October) seasons (Table 2). Each season comprised of five sampling sessions. During each session, we conducted counts along line transects for four consecutive mornings. All bird counts were conducted by the same observer (SML) following standard procedures outlined in Bibby et al. (2000). We randomized the sequence in which sites were visited. Before commencing a transect, we waited 1 min to allow the birds to settle, after which, we walked at a constant pace recording every bird heard and seen within 100 m on either side, a process that took about 15 min per transect. Following McCleery et al. (2018), we did not record birds flying over-head unless they were specifically using that land-use for foraging (such as swifts and swallows foraging repeatedly over the same area, as opposed to birds flying above the site that were clearly transiting from one area to another). All bird counts were conducted in the morning between sunrise and five hours thereafter. Bird surveys were not conducted under rainy or windy weather conditions (Bibby et al., 2000).

2.1.4. Species richness and diversity

To determine how completely we had surveyed our sites, we created species-accumulation curves for the sugarcane (and separate curves for each growth stage) and savanna sites using the function ‘specaccum’ in the R package vegan (Oksanen et al., 2016). To understand the response of birds to change in sugarcane height we calculated species richness per transect across all sessions using the Chao species richness estimator in the vegan function estimated species richness across all sessions using the Chao species richness estimator in the vegan function. We also used a Poisson log link function for species richness and Gaussian identity link function for species diversity. Site was included as a random effect. Habitat (the four growth stages of sugarcane and the savanna) and season (dry and wet) were included as explanatory variables, as was the interaction between habitat and season. The Akaike Information Criterion (AICc) value was used to compare models, with the best model chosen based on the lowest AICc value while those with ΔAICc < 2 were considered to be competing models (Burnham and Anderson, 2004; Johnson and Omland, 2004). All analyses were conducted in R version 3.3.4 (R Core Team, 2018).

2.1.7. Functional beta diversity and functional redundancy

To quantify changes in species trait composition among sites and over time, we estimated functional beta diversity by selecting traits of birds that included: wing, beak, and tarsus length, and body mass since these...
traits are associated with the functional role of a species (Coetzee and Chown, 2016). Species trait data were extracted from Hockey et al. (2005). Following the methods proposed by Baselga (2010; 2013), we first performed a principal component analysis (PCA) on the species traits to create four PCA axes. We used the species presence-absence data together with the PCA axes to compute functional beta diversity. The calculations were done using the function `function.beta.pair` in the package betapart (Baselga and Orme, 2012). We conducted a Kruskal-Wallis test to test for differences in functional beta diversity between the two land-uses (savanna and sugarcane). We then used Dunn's multiple comparison test if the null hypothesis was rejected.

Lastly, we used species abundance data and traits data to calculate two measures of functional redundancy: functional alpha diversity (Rao's index Q; which integrates the abundances and a measure of taxonomic distance between species by using species functional traits) and functional uniqueness (U) using the ‘uniqueness’ function in Ricotta et al. (2016). Functional uniqueness is summarized as the ratio between Rao index Q and the Simpson index which considers all species as equally and

![Species accumulation curves for: (a) birds surveyed in the savanna (red curve) and sugarcane (blue curve). The black curve represents all birds (i.e. both savanna and the sugarcane); (b) birds surveyed in the four growth stages: emerging (blue curve), short (red curve), medium (green curve), and tall (purple curve) sugarcane, and native savanna (brown curve) habitats in north-eastern Eswatini.](image-url)
Table 4. A list of the bird species recorded in the savanna and sugarcane growth stages in north-eastern Eswatini. The different sugarcane growth stages are represented by emerging, short, medium, and tall. The numbers represent the number of individuals per sugarcane growth stage and savanna recorded across all sessions. The asterisks (*) represent ground foraging bird. Species are ordered alphabetically by scientific name.

Scientific name	English name	Emerging	Short	Medium	Tall	Savanna
Acrocephalus baeticatus	African Reed-Warbler	11	0	17	373	0
Alopochen aegyptiaca	Egyptian Goose	0	0	0	0	1
Andropadus importunus	Sombre Greenbul	0	0	0	0	28
Anthus cinamomeus	African Pipit*	156	37	38	14	0
Apalis flavida	Yellow-breasted Apalis	0	0	0	0	26
Apus caffer	White-rumped Swift	0	4	0	1	0
Ardea melanoccephula	Black-headed Heron	2	0	1	4	2
Batis motor	Chinspot Batis	0	0	0	0	102
Bastrychia hagedash	Hadeda Ibis	0	0	0	19	3
Bradypterus baboecula	Little Rush-Warbler	0	0	22	266	0
Budorcas irbis	Cattle Egret*	80	1	0	8	0
Buphagus erythrorhynchus	Red-billed Oxpecker	0	0	0	0	60
Burhinus capensis	Spotted Thick-knee	9	0	0	0	0
Buteo vulgaris	Steppe Buzzard	0	2	2	2	2
Bycanistes buecator	Trumpeter Hornbill	0	0	0	0	5
Camaroptera brachyura	Green-backed Camaroptera	0	0	0	0	28
Campophaga flavia	Black Cuckoo-drive	0	0	0	0	10
Campherina abingeni	Golden-tailed Woodpecker	0	0	0	0	27
Cecropis abyssinica	Lesser Striped Swallow	8	8	4	14	0
Cecropis semirufa	Red-breasted Swallow	0	0	6	0	0
Centropus burchelli	Burchell's Coucal	2	0	0	13	17
Cecotrichus leucophrys	White-browed Scrub-Robin	0	0	0	0	110
Chalcocites amethystina	Amethyst Sunbird	0	0	0	0	6
Chalcocites senegalensis	Scarlet-chested Sunbird	0	0	0	0	29
Charadrius pecuarius	Kittlitz's Plover	13	0	0	0	0
Charadrius tricoloris	Three-banded Plover	0	1	0	0	0
Chrysococcyx caprius	Didierick Cuckoo	0	0	0	0	3
Chrysococcyx kiau	Klaas's Cuckoo	0	0	0	0	1
Ciconia episcopus	Woolly-necked Stork*	5	1	0	2	0
Cinnyricinclus leucogaster	Violet-backed Starling	0	0	0	0	5
Cinnyris marianensis	Marico Sunbird	0	0	0	0	4
Cinnyris talatala	White-bellied Sunbird	0	0	0	0	59
Cisticola chiniana	Rattling Cisticola	0	0	0	0	1020
Cisticola erythropus	Red-faced Cisticola	0	0	0	1	0
Cisticola juncidis	Zitting Cisticola	0	13	93	104	0
Cisticola notatalis	Croaking Cisticola	0	0	0	1	1
Clamator jacobinus	Jacobin Cuckoo	0	0	0	0	2
Colius striatus	Speckled Mousebird	0	0	0	18	0
Corvus albus	Pied Crow	1	0	1	5	0
Cassypha heuglini	White-browed Robin-Chat	0	0	0	1	0
Coturnix delegorgue	Harlequin Quail	14	0	5	19	9
Criithagra galeris	Streaky-headed Seedeater	0	0	0	0	1
Criithagra mosambicus	Yellow-fronted Canary	8	3	18	78	192
Cuscuus clamator	Black Cuckoo	0	0	0	0	1
Cuscuus solitarius	Red-chested Cuckoo	0	0	0	0	12
Cypsiurus parvus	African Palm-Swift	3	7	7	8	2
Dendroicos fuscescens	Cardinal Woodpecker	0	0	0	0	23
Dendroicos namaqua	Bearded Woodpecker	0	0	0	0	15
Dicrurus adsimilis	Fork-tailed Drongo	1	5	0	2	75
Dryoscopus cabla	Black-backed Puffback	0	0	0	0	52
Elanus axillaris	Black-shouldered Kite	0	3	3	3	0
Emberiza flaviventris	Golden-breasted Bunting	0	0	0	0	71
Estrilda aurolilus	Common Waxbill	2	1	164	286	25
Euplectes albonotatus	White-winged Widowbird	0	0	6	10	11
Euplectes ardens	Red-collared Widowbird	0	0	2	20	9
Euplectes axillaris	Fan-tailed Widowbird	20	24	207	390	28
Euplectes orix	Southern Red Bishop	0	0	26	44	0

(continued on next page)
Scientific name	English name	Emerging	Short	Medium	Tall	Savanna
Falco subbuteo	Eurasian Hobby	0	0	0	0	6
Gallinetta porphyrolophus	Purple-crested Turaco	0	0	0	0	31
Glareola pratincola	Collared Pratincole	0	3	1	0	0
Halcyon albiventris	Brown-hooded Kingfish	0	0	0	0	28
Halcyon chelicuti	Striped Kingfish	0	0	0	0	23
Halcyon senegalensis	Woodland Kingfish	0	0	0	0	15
Haliastur vocifer	African Fish-Eagle	0	0	0	0	6
Hirundo albicilla	White-throated Swallow	11	13	63	11	0
Hirundo rustica	Barn Swallow	25	5	63	282	10
Hirundo smithii	Wire-tailed Swallow	0	2	0	9	0
Indicator indicator	Greater Honeyguide	0	0	0	0	1
Lagonosticta rubricata	African Firefinch	0	0	0	0	33
Lamprotornis nitens	Cape Glossy Starling	0	1	0	5	20
Laniarius ferrugineus	Southern Boubou	0	0	0	1	5
Lanius collurio	Red-backed Shrike	0	0	0	14	1
Leptoptilos crumeniferus	Marabou Stork	1	0	0	0	0
Lissotis melanogaster	Black-bellied Bustard	0	0	1	0	9
Lybius torquatus	Black-collared Barbet	0	0	0	0	57
Macronyx croceus	Yellow-throated Lorglaw	0	0	0	0	13
Malacopterus blanchoti	Grey-headed Bush-Shrike	0	0	0	0	46
Melanornis pammelaima	Southern Black Flycatcher	0	0	0	1	34
Merops apivaster	European Bee-eater	0	0	0	2	56
Merops bullockoides	White-fronted Bee-eater	0	0	0	0	2
Merops pusillus	Little Bee-eater	0	0	0	0	7
Millvus migrans	Black Kite	1	1	1	1	1
Motacilla aguimp	African Pied Wagtail	0	0	0	3	2
Muscicapa caeruleascens	Ashy Flycatcher	0	0	0	0	6
Muscicapa striata	Spotted Flycatcher	0	0	0	0	1
Nicator galaris	Eastern Nicator	0	0	0	0	14
Nilaus afer	Brubru	0	0	0	0	38
Numida meleagris	Helmeted Guineafowl*	120	46	15	0	22
Oena capensis	Namaqua Dove	0	0	0	1	0
Oriolus larvatus	Black-headed Oriole	0	0	0	0	33
Parus niger	Southern Black Tit	0	0	0	0	26
Passer diffuss	Southern Grey-headed Sparrow	0	0	0	0	8
Petronia superciliaris	Yellow-throated Petronia	0	0	0	0	49
Phoeniculus purpureus	Green Wood-Hoopoe	0	0	0	0	14
Phylliscopus trochilus	Willow Warbler	0	0	0	0	4
Plocerus ocellaris	Spectacled Weaver	1	0	0	1	2
Polyboroides tigris	African Harrier-Hawk	0	3	1	1	0
Prinia subflava	Tawny-flanked Prinia	8	8	43	99	94
Prionops plumatus	White-crested Helmet-Shrike	0	0	0	0	17
Piornisits natalensis	Natal Spurfowl	0	0	0	0	7
Piornisits swavisinii	Swainson's Spurfowl	0	0	0	0	2
Pycnonotus tricolor	Dark-capped Bulbul	2	0	1	72	262
Quelea quelea	Red-billed Quelea	0	0	0	0	132
Rhinopomastus cyanomelas	Common Scimitarbill	0	0	0	0	30
Saxicolora torquata	African Stonechat	4	1	0	55	0
Scopus umbretta	Hamerkop	1	0	0	0	1
Spermestes cucullatus	Bronze Mannikin	0	0	2	11	8
Streptopelia capicola	Cape Turtle-Dove	2	2	2	0	106
Streptopelia semitorquata	Red-eyed Dove	0	1	0	5	29
Streptopelia senegalensis	Laughing Dove	0	0	0	5	12
Sylvia rufescens	Long-billed Crombec	0	0	0	0	33
Tchagra australis	Brown-crowned Tchagra	0	0	0	0	23
Tchagra senegalus	Black-crowned Tchagra	0	0	0	0	74
Telophorus sulphureus	Orange-breasted Bush-Shrike	0	0	0	0	33
Terathopius ecaudatus	Bateleur	0	0	0	0	1
Teriphaene viridis	African Paradise-Flycatcher	0	0	0	0	11

(continued on next page)
Table 4 (continued)

Scientific name	English name	Emerging	Short	Medium	Tall	Savanna
Tockus alternatus	Crowned Hornbill	0	0	0	0	2
Trachyphonus vaillantii	Crested Barbet	0	0	0	0	21
Terrornis calvus	African Green-Pigeon	0	0	0	0	4
Turdoides jardinei	Arrow-marked Babbler	0	0	0	0	4
Turdus lipophrys	Kurrichiane Thrush	0	0	0	0	29
Turtur sybius	Kurrichiane Buttonquail	0	1	8	24	8
Uraeginthus angolensis	Emerald-spotted Wood-Dove	0	0	0	0	2
Uraeginthus angolensis	Village Hoopoe	0	0	0	0	7
Uraeginthus angolensis	Blue Waxbill	0	0	0	0	1
Urocolius indicus	Red-faced Mousebird	0	0	0	0	131
Vanellus coronatus	Crowned Lapwing*	61	5	0	2	0
Vanellus senegallus	African Wattled Lapwing*	68	17	3	0	1
Vidua chalybeata	Village Indigobird	0	0	0	0	1
Vidua macroura	Pin-tailed Whydah	0	1	6	4	0

maximally dissimilar (Ricotta et al., 2016; Ricotta and Marignani, 2007). We used a t-test to determine if functional alpha diversity and functional uniqueness differed between the two land-uses.

3. Results

3.1. Species richness and diversity

We recorded a total of 7,350 detections of birds belonging to 124 species and 58 families. Of these, 103 species from 52 families were recorded in savanna compared with 55 species from 31 families in sugarcane. The species accumulation curve for sugarcane (overall) was approaching the asymptote whereas that for savanna was still rising, although the rate of increase appeared to be decreasing and had passed the inflection point (Figure 2a). The species accumulation curves for each sugarcane growth stage did not appear to have reached an asymptote suggesting that the entire community was not detected (Figure 2b). The emerging fields were dominated by ground bird species which included lapwings and other species of plovers (Charadriidae), guineafowls (Numididae), and pipits (Motacillidae), which were almost entirely absent in native savanna (Table 4). Bird species richness per transect was 3–5 species in sugarcane and 13–19 species in savanna (Figure 3a, Figure 3c and Figure 4a), a three-to-five-fold difference. The Chao estimated species richness was higher than the recorded species richness, however, the two measures showed the same trend (Figure 3e). Overall, species richness increased with sugarcane growth (from emerging to medium) and then decreased again in the tall sugarcane, yielding a slightly hump-shaped curve (Figure 3a and Figure 3c). Our results suggested that variation in species richness was best explained by a model that included an interaction between habitat and season (AICc = 2067.1) (Table 5). Based on this model, species richness in emerging and tall sugarcane growth stages were lower than that in the other growth stages, and highest in savanna, and species richness was higher in the wet season than the dry season, with a marginally significant interaction between the short growth stage and season (Figure 3a, Table 6).

A similar pattern was observed for bird species diversity with $H' = 0.9–1.5$ per transect in sugarcane and 2.0–3.0 per transect in savanna (Figure 3b, Figure 3d and Figure 4b), a difference of about twofold. The Simpson diversity index also showed the same trend (Figure 4c). As observed with species richness, species diversity (Shannon diversity) also increased with the growth of sugarcane and then decreased again in the tall sugarcane (Figure 3b and Figure 3d). The GLMM showed that the Shannon diversity index was best explained by a model that included an interaction between habitat and season (AICc = 501.3) (Table 5). Based on this model, species diversity was lower in emerging and tall sugarcane than in the other growth stages and highest in the savanna; furthermore, species diversity was higher in the wet season than the dry season and there was a significant interaction between the wet season and short sugarcane (Table 6).

3.2. Community composition

The NMDS ordination had a stress value of 0.15 and hence conveyed a good representation of the data. Bird species composition differed significantly between the various growth stages of sugarcane and savanna (ANOSIM, R = 0.603, p < 0.001). Bird species composition in savanna was distinct from that in sugarcane, irrespective of growth stage (Figure 5). Within sugarcane fields, species composition exhibited significant overlap between growth stages, but emerging and short fields were mostly separated from medium and tall fields (Figure 5).

3.3. Taxonomic beta diversity

Taxonomic (spatial) beta diversity, as measured by changes in species composition between sites, was low when comparing sites within savanna or within sugarcane but was high when comparing sites in savanna with those in sugarcane (Figure 6a). The turnover component of beta diversity accounted for most of its variation (Figure 6c), with nestedness values being much lower (Figure 6e). Taxonomic (temporal) beta diversity, as measured by changes in species composition at the same site over time, was higher in sugarcane than in savanna (Figure 7a, W = 12153, p < 0.001).

3.4. Functional beta diversity

There was a tendency for functional beta diversity to be highest between savanna and sugarcane sites, but this was masked by significant variation within sugarcane sites (Figure 6b). There was significant variation in functional beta diversity between sites; these values were consistently low in savanna sites but varied greatly in sugarcane sites (Figure 6b). In contrast to the pattern observed for taxonomic beta diversity, the turnover component of functional beta diversity did not account for most of its variation, with nestedness values being similar to those of turnover (Figure 6d and Figure 6f). This can also be seen by the comparison of functional beta diversity between habitats, which was low within savanna sites, but high between savanna and sugarcane, as well as within sugarcane (H = 9.128, df = 2, P = 0.010) (Figure 7b). The Dunn’s multiple comparison test showed that functional beta diversity only differed significantly when we compared results for sites within savanna with those between savanna and sugarcane (p = 0.018). However, none of the other comparisons were significant (Table 7).

Functional alpha diversity (as measured by Rao’s index Q) was higher in sugarcane than in savanna (Figure 7c). There was little variation in this index in savanna sites; in contrast, this index varied greatly in sugarcane
Figure 3. Mean number of: (a) species; and (b) Shannon diversity index recorded per transect in the two land-uses in the dry and wet season. Mean number of: (c) species; and (d) Shannon diversity recorded per habitat across all sessions. Error bars represent standard error. Boxplot showing: (e) a comparison of the observed bird species richness and estimated species richness (Chao estimator) for the savanna and sugarcane sites, with “emerging”, “short”, “medium”, and “tall” represent the different growth stages in the sugarcane.
sites. Furthermore, this index differed significantly between the two land-uses \(t = 4.053, df = 9.621, p = 0.003 \). The functional uniqueness index (U) was higher in sugarcane than in savanna \(t = 4.560, df = 9.561, p = 0.001 \) (Figure 7d).

4. Discussion

We examined bird communities in sugarcane fields of different growth stages and compared these with the communities in neighbouring native savanna. We recorded more bird species in the savanna than in any of the growth stages of sugarcane. However, despite the presumed homogeneity of monocultures, our study demonstrated that the different growth stages of sugarcane created spatial and temporal variability, thus allowing distinctly different bird communities to persist in this agricultural landscape. This is the first study to show such heterogeneity in avian communities in a monoculture crop (due to variation in growth stages), although such a pattern has previously been reported in North American grasslands that were burned in patches, creating a similar mosaic to that seen in Eswatini sugarcane plantations (Coppedge et al., 2008; Farneda et al., 2019). It is also worth mentioning that the pattern shown by our results may also be applicable to other monoculture crops that have significant structural variation in growth stages. However, to the best of our knowledge, such studies looking at the influence of different growth stages of crops on avian diversity have not been conducted in other cropping systems.

The fact that sugarcane changes drastically in structure over the growing season may explain the higher taxonomic beta diversity and functional uniqueness here compared with native savanna, which changes less in the same space of time. This pattern appears largely driven by the fact that bare fields (i.e. those that had recently been planted) harboured birds associated with open-ground, such as species belonging to the families Motacillidae, Numididae, and Charadriidae (Hockey et al., 2005), which are a good predictor for grassland species (Fisher and Davis, 2010). This implies that sugarcane agro-ecosystems provide an important habitat for ground foraging bird species, which is currently limited in neighbouring savanna landscapes, perhaps as a result of bush encroachment (Monadjem, 2005; Sirami and Monadjem, 2012). This may also extend to ground-nesting species (Narwade et al., 2010).

Table 5. The generalised linear mixed models used to test the response of species richness and diversity to the fixed effects of habitat (i.e. growth stages of sugarcane fields and native savanna) and season. Also reported are the number of parameters (K), the cumulative corrected Akaike’s Information Criteria (AICc), differences in AICc of models compared to the top model (Delta_AICc), model weights (AICcWt), and the -2 log-likelihood yield for each model (Res.LL).

Model	K	AICc	Delta_AICc	AICcWt	Cum.Wt	Res.LL
Species richness						
Season × habitat	11	2067.1	0.000	0.999	0.999	-1022.3
Habitat	6	2080.3	13.2	0.001	1.00	-1034.1
Season	3	2115.7	48.4	0.000	1.00	-1054.8
Null	2	2132.2	65.1	0.000	1.00	-1064.1
Shannon diversity						
Season × habitat	12	501.3	0.00	0.984	0.984	-238.3
Habitat	7	509.6	8.25	0.016	1.00	-247.7
Season	4	563.0	61.6	0.000	1.00	-277.4
Null	3	574.0	72.7	0.000	1.00	-284.0
and tall sugarcane
sugarcane, was an order of magnitude more abundant in the medium
Euplectes axillaris

Furthermore, Bradypterus baboecala, Acrocephalus baeti-
and cover. These included
dominated by small sized species that prefer densely vegetated areas
Vanellus senegallus
were recorded in sugarcane were typically generalist species such as
Stylophonus maderaspatae
sugarcane
field
Bubulcus ibis
Vanellus coronatus
Savanna
Eswatini, the occurrence of nearly all bird species was negatively asso-
ciated with sugarcane plantations (Stanton et al., 2020). The lower di-
versity in sugarcane compared to savanna may be due to the fact that
Anthus dumicola, Aegithalos concinnus, and Cisticola juncidis.

but this requires further study. However, because habitat structure in
sugarcane is transient, with short residence time of any one particular
growth phase of the crop, these fields may end up being a sink habitat
(Pulliam, 1988) or even worse, an ecological trap (Battin, 2004) that
cannot support populations in the long-term; this requires further re-
search attention. Additionally, our study provides evidence of high
taxonomic (spatial) turnover when comparing sites in the savanna to
those in sugarcane, while it was low when comparing sites within the
sugarcane. This indicates the negative impact that sugarcane has on
avian and other faunal assemblages (Rivera-Pedroza et al., 2019) because
in general, sugarcane plantations are a homogenous environment with
greatly reduced variation. Higher taxonomic temporal turnover was
observed in sugarcane compared to savanna, which may be a result of the
bird assemblage responding to rapid changes in the growth stages of
sugarcane fields.

Our results demonstrate that bird species composition varied
significantly in the different growth stages and savanna habitats as
shown by the NMDS plot (Figure 5). The emerging and short sugar-
cane fields harboured ground dwelling species that included: Anthus
cinamomeus, Numida meleagris, Bubulcus ibis, Vanellus coronatus, and
Vanellus senegallus. The composition of bird species changed with the
height of the sugarcane and medium and tall sugarcane sites were
dominated by small sized species that prefer densely vegetated areas
and cover. These included Brachypodius rabecula, Acrocephalus baeti-
catus, Estrilda astrild, and Cisticola juncidis (Table 4). Furthermore,
Euplectes axillaris, which was recorded in all the growth stages of the
sugarcane, was an order of magnitude more abundant in the medium
and tall sugarcane fields than in savanna (Table 4). Our study showed
that a large proportion of the savanna species did not occur in sug-
cane fields at all or only in tall fields (Table 4), and the few that were
recorded in sugarcane were typically generalist species such as
the Pycnonotus tricolor (Monadjem, 2005; Sirami and Monadjem, 2012).

We also demonstrated that native savanna supported more species of
birds at greater densities and with higher diversity, as well as with a
significantly different community composition than sugarcane fields,
regardless of their stage of growth. Species richness and diversity did not
show a consistent pattern with sugarcane growth. These metrics showed
a hump shaped response increasing from emerging to medium sugarcane
but decreased from medium to tall sugarcane. We do not know the reason
for this, but it may be because tall sugarcane represents an impenetrable
thicket for most savanna-associated birds, that are typically found in
more open habitats. The observed species richness, Chao species richness
estimate and the two species diversity metrics (Shannon and Simpson)
showed the same trend in both the savanna and the four sugarcane
growth stages. Our species accumulation curves (Figure 2a) suggest that
we had sufficiently sampled the sugarcane bird community, but not the
savanna community, indicating that the differences in richness and di-
versity we observed are likely conservative and may be more extreme in
reality. The low number of species observed in sugarcane is consistent
with findings of other studies that have reported a reduction in species
richness and diversity in farmlands compared with native vegetation
(Atkinson et al., 2002; Donald et al., 2001; Norris, 2008). For example, in
Eswatini, the occurrence of nearly all bird species was negatively asso-
ciated with sugarcane plantations (Stanton et al., 2020). The lower di-
versity in sugarcane compared to savanna may be due to the fact that
savanna has a greater variation in vegetation structure and offers a
greater diversity of resources, such as nesting sites and shelter (Casas
et al., 2016; Laube et al., 2008; Norfolk et al., 2017) that are lacking in
sugarcane fields. Additionally, species richness and diversity were higher
in the savanna during the wet than the dry season while seasonality did
not have an influence on bird species richness and diversity in the

| Species richness | β | SE | z value | Pr (>|z|) | Confidence intervals |
|------------------|------|------|---------|---------|---------------------|
| Intercept (sugarcane-emerging, season – dry) | 1.204 | 0.102 | 11.8 | <2e-16 | 0.999 | 1.400 |
| Season-wet | 0.157 | 0.163 | 0.964 | 0.325 | -0.167 | 0.473 |
| Sugarcane -medium | 0.404 | 0.141 | 2.862 | 0.004 | 0.127 | 0.682 |
| Savanna | 1.433 | 0.114 | 12.5 | <2e-16 | 1.209 | 1.661 |
| Sugarcane- short | 0.282 | 0.139 | 2.026 | 0.043 | 0.009 | 0.555 |
| Sugarcane-tall | 0.125 | 0.114 | 1.090 | 0.276 | -0.097 | 0.354 |
| Season-wet x sugarcane-medium | -0.088 | 0.208 | -0.427 | 0.669 | -0.491 | 0.321 |
| Season-wet x savanna | 0.002 | 0.170 | -0.012 | 0.991 | -0.327 | 0.339 |
| Season -wet x sugarcane - short | -0.483 | 0.235 | -2.055 | 0.040 | -0.947 | -0.023 |
| Season -wet x sugarcane-tall | 0.025 | 0.179 | 0.141 | 0.888 | -0.323 | 0.381 |

| Shannon diversity | β | SE | t value | Pr (>|z|) | Confidence intervals |
|-------------------|------|------|---------|---------|---------------------|
| Intercept (sugarcane – emerging, season – dry) | 0.986 | 0.074 | 13.3 | <2e-16 | 0.840 | 1.124 |
| Season-wet | 0.104 | 0.124 | 0.837 | 0.403 | -0.142 | 0.349 |
| Sugarcane -medium | 0.418 | 0.114 | 3.67 | 0.0002 | 0.194 | 0.641 |
| Savanna | 1.415 | 0.096 | 14.8 | <2e-16 | 1.221 | 1.602 |
| Sugarcane- short | 0.137 | 0.084 | 2.00 | 0.046 | 0.004 | 0.427 |
| Sugarcane-tall | 0.104 | 0.124 | 1.63 | 0.105 | -0.032 | 0.303 |
| Season-wet x sugarcane-medium | -0.056 | 0.168 | -0.332 | 0.740 | -0.387 | 0.276 |
| Season-wet x savanna | 0.102 | 0.143 | 0.712 | 0.477 | -0.181 | 0.385 |
| Season -wet x sugarcane - short | -0.353 | 0.177 | -1.994 | 0.047 | -0.702 | -0.005 |
| Season -wet x sugarcane-tall | 0.035 | 0.138 | 0.256 | 0.800 | -0.181 | 0.385 |
Figure 5. Non-metric multi-dimensional scaling ordination showing the composition of bird species in the different habitats as represented by sugarcane growth stages (emerging, short, medium and tall) and savanna in north-eastern Eswatini.
Figure 6. Heatmap showing taxonomic (a, c, e) and functional (b, d, f) beta diversity between sites for bird communities occurring in the sugarcane and savanna sites in north-eastern Eswatini: (a) total taxonomic beta diversity (β_{sor}); (b) functional beta diversity (β_{sor}); (c) taxonomic turnover (β_{sim}); (d) functional turnover; (e) taxonomic nestedness (β_{nes}); and (f) functional nestedness. N1–N3 represent the three sites in savanna and S1–S9 represent the nine sites in the sugarcane.
sugarcane. The increase in species richness in the savanna in the wet season might be due to the influx of summer migrants as well as the availability of food during the wet season due to increase in plant biomass, and the insects that feed on them, as compared to the dry season. On the contrary, the lack of a difference in richness and diversity between seasons in sugarcane might be because these fields are continuously irrigated, reducing any differences in available food resources between the seasons.

Despite the spatial and temporal variability created by different growth stages of sugarcane, it is well documented that reductions in the structural complexity of the habitat and in heterogeneity caused by intensification of agricultural areas are factors that reduce biodiversity (Senton et al., 2003; Stanton et al., 2020). Sugarcane fields are an example of such a system. Although we found that this variability provided habitat for some bird species, particularly ground-foragers, both species richness and diversity were consistently lower in fields of all stages of sugarcane growth, compared to the adjacent savannas.

5. Conclusion

Our study demonstrates that while native savanna has greater richness and diversity of birds and supports a distinct avian community from that occurring in sugarcane fields, the temporal and spatial variability within sugarcane fields contributes to high taxonomic and functional beta diversity, and functional uniqueness in this land use, likely increasing the number of avian species that sugarcane fields can support. We therefore suggest that sugarcane plantations and other intensely farmed croplands, with similar heterogeneity in crop structure, may be of some value to biodiversity conservation, and should therefore be incorporated into regional conservation management plans.

Declarations

Author contribution statement

Sifiso M. Lukhele: Performed the experiments; Analyzed and interpreted the data; Wrote the paper.
Julie Teresa Shapiro; Muzi D. Sibiya; Robert J. Fletcher Jr: Analyzed and interpreted the data; Wrote the paper.
Themb'alilahlwa A.M. Mahlaba; Robert A. McCleery: Contributed reagents, materials, analysis tools or data; Wrote the paper.
Ara Monadjem: Conceived and designed the experiments; Analyzed and interpreted the data; Wrote the paper.
Funding statement
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement
Data will be made available on request.

Declaration of interests statement
The authors declare no conflict of interest.

Additional information
No additional information is available for this paper.

Acknowledgements
We would like to show great appreciation to the Royal Eswatini Sugar Corporation (RESC), through the office of the Human Resources Manager - Learning & Talent Ms. Sethembele Shiba; who assisted us with access to their lands and advice. We thank Mr Tal Fineberg for facilitating permits to conduct our studies at Mbuluzi Game Reserve and Tongaat Hulet properties. We appreciate the Savanna Research Centre and All Out Af-rica for providing accommodation, field equipment and most importantly critical logistical support that ensured the success of our study.

References
Aliteri, M.A., 1999. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 74, 19–31.
Atkinson, P.W., Fuller, R.J., Vickery, J.A., 2002. Large-scale patterns of summer and winter bird distribution in relation to farmland type in England and Wales. Ecoreg. 25, 466–480.
Azman, N.M., Latip, N.S.A., Sah, S.A.M., Akil, M.A.M.M., Sha, N.J., 2017. Avian diversity and feeding guilds in a secondary forest, an oil palm plantation and a paddy field in riparian areas of the Kerian river basin, Perlis, Malaysia. Trop. Life Sci. Res. 22, 45–64.
Barton, P.S., Cunningham, S.A., Manning, A.D., Gibb, H., Lindenmayer, D.B., 2015. Global Ecol. Biogeogr. 24, 639–647.
Baselga, A., 2013. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Meth. Ecol. Evol. 4, 552–557.
Baselga, A., 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecol. Biogeogr. 21, 1223–1232.
Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19, 134–143.
Baselga, A., Orme, D.L., 2012. betapart: an R package for the study of beta diversity. J. Stat. Software 67, 1–48.
Bay, T.G., Vickery, J.A., Wilson, J.D., 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–186.
Bibby, C.J., Burgess, N.D., Hill, D., Mustoe, S., 2000. Bird Censuses Techniques, second ed. The Wilson Bulletin. Academic Press, London.
Burnham, K.P., Anderson, D.R., 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304.
Casas, G., Darski, B., Ferreira, P.M.A., Müller, S.C., 2019. Effects of land-use change on functional and taxonomic diversity of Neotropical bats. Biotropica 1–9, 00.
Fish, R.J., Sell, S.K., 2010. From Wiens to robel: a review of grassland-bird habitat selection. J. Wildl. Manag. 74, 265–273.
Foley, J.A., Defries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Cor, M.T., Daily, G.C., Gibbs, H.K., Helkala, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, C.I., Ramankutty, N., Snyder, P.K., 2005. Global consequences of land use. Science 309, 570–575.
Fayer, R., Kunc, K., Fischer, C., Tischendorf, T., Bitali, P., 2019. Agricultural intensification at local and landscape scales improves farmland birds, but not Skylarks (Alauda arvensis). Agric. Ecosyst. Environ. 277, 21–24.
Fernandez-Castilla, G., Sabino-Santos, G., Amorim, L.S., Rosalino, L.M., Figueiredo, L.T.M., Verdade, L.M., 2013. The effect of pre-harvest fire on the small mammal assemblage in sugarcane fields. Agric. Ecosyst. Environ. 171, 85–89.
Gray, M.A., Baldauf, S.L., Mayhew, P.J., Hill, J.K., 2019. The response of avian feeding guilds to tropical forest disturbance. Conserv. Biol. 21, 133–141.
Hockey, P.A., Dean, W.J., Ryan, P., Maree, S., Brickman, B.M., Hocker, P.A.R., Dean, W.J.R., P.G., 2005. Roberts Birds of Southern Africa, seventh ed. Roberts Birds, Cape Town.
Hu, Y., Ding, Z., Jiang, Z., Quan, Q., Guo, K., Tian, L., Hu, H., Gibson, L., 2018. Birds in the Himalayas: what drives beta diversity patterns along an elevational gradient? Ecol. Evol. 8, 11704–11716.
Hust, R.M., McCleery, R.A., Collier, B.A., Fletcher Jr., R.J., Silvy, N.J., Taylor, P.J., Monadjem, A., 2013. Dynamic edge effects in small mammal communities across a conservation-agricultural interface in Swaziland. PLoS One 8, 1–9.
Johnson, J.B., Omland, K.S., 2004. Model selection in ecology and evolution. Ecol. Evol. 15, 101–108.
Kalinina, T., Chisanga, B., 2014. Sugar value chain in Zambia: an assessment of the growth opportunities and challenges. Asian J. Agric. Sci. 6, 6–15.
Ke, A., Sibuya, M.D., Reynolds, C., McCleery, R.A.M.A., Fletcher Jr., R.J., 2018. Landscape heterogeneity shapes taxonomic diversity of non-birding birds across fragmented savanna landscapes. Biogeosciences 25, 2681–2698.
Lauwe, I., Breibach, N., Bohnlng-Gaese, K., 2008. Avian diversity in a Kenyan agroecosystem: effects of habitat structure and proximity to forest. J. Ornithol. 149, 181–191.
Laurance, W.F., Sayer, J., Cassman, K.G., 2013. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 1–10.
Lawton, J.H., Bignell, D.E., Bolton, B., Bloemers, G.F., Eggleton, P., Hammond, P.M., Hodd, M., Holt, R.D., Larsen, T.B., Mawdsley, N.A., Stork, N.E., Srivastava, D.S., Watt, A.D., 1998. Biodiversity Inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391, 72–76.
Legendre, P., Condit, R., 2019. Spatial and temporal analysis of beta diversity in the Barro Colorado Island forest dynamics plot. Panama. For. Ecosyst. 6, 1–11.
MacArthur, R.H., MacArthur, J.W., 1961. On bird species diversity. Ecology 42, 594–598.
Macnally, R., 1990. The roles of floristics and phylogeny in avian community composition. Aust. J. Ecol. 15, 321–327.
Marmbr, M., Fasel, N.J., Mahalaba, T.A.M., Austin, J.D., McCleery, R.A., Monadjem, A., 2019. Influence of sugarcane plantations on the population dynamics and community structure of small mammals in a savanna-agricultural landscape. Glob. Ecol. Conserv. 20, 1–12.
Monadjem, A., Pouillon, D., Lee, W.G., Wilson, J.B., 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118.
Monadjem, A., Porton, W.J., Power, A.G., Swift, M.J., 1997. Agricultural intensification and ecosystem properties. Science 277, 504–509.
McCleery, R., Monadjem, A., Baisier, B., Fletcher Jr., R.J., Vickers, K., Kruger, L., 2018. Animal diversity declines with broad-scale homogenization of canopy cover in African savannas. Biol. Conserv. 226, 54–62.
Monadjem, A., 2005. Association between avian communities and vegetation structure in a low-lying woodland-savanna ecosystem in Swaziland. Ostrich – J. Afr. Ornithol. 76, 45–55.
Monadjem, A., Virani, M.Z., 2016. Habitat associations of birds at Mara Naboisho conservancy, Kenya. Ostrich – J. Afr. Ornithol. 87, 225–230.
Norwe, S., Fartade, M., 2010. Effect of agricultural activities on breeding success of red-wattled lapwing Vanellus indicus. Natl. J. Life Sci. 7, 31–34.
Nug Jørgens, P.K., Njoroge, J.B.M., Githiru, M., 2013. Vegetable composition and structure influences bird species community assemblies in the highland agricultural landscape of Nyandarua, Kenya. Ostrich – J. Afr. Ornithol. 84, 171–179.
Norberg, J., Swainey, D.P., Dushoff, J., Lin, J., Casagrandi, R., Levin, S.A., 2001. Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework. Proc. Natl. Acad. Sci. Unit. States Am. 98, 11276–11281.
Holme, B., Stig, J., pedal, M., 2017. Birds in the matrix: the role of agriculture in avian conservation in the Taita Hills, Kenya. Afr. J. Ecol. 55, 530–540.
Norrie, K., 2008. Agriculture and biodiversity conservation: opportunity knocks. Conserv. Lett. 1, 2–11.
Noksanen, A.J., Blachert, F.G., Friendly, M., Kinnun, R., Legendre, P., Meilin, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Sloymon, P., Stevens, N., 2016. Vegan: Community Ecology Package. R package version, 2, v. 2, 1.0.
Petchey, O.L., Garton, K.J., 2006. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758.
Pulliam, H.R., 1988. Sources, sinks, and population regulation. Am. Nat. 132, 652–661.
R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Reynolds, C., Fletcher Jr., R.J., Carneiro, C.M., Jennings, N., Ke, A., LaScaleia, M.C., Lukhele, M.B., Mamba, M.L., Sibiya, M.D., Austin, J.D., Magagula, C.N., Mahlaba, T., Monadjem, A., Wisely, S.M., McCleery, R.A., 2018. Inconsistent effects of landscape heterogeneity and land-use on animal diversity in an agricultural mosaic: a multi-scale and multi-taxon investigation. Landsc. Ecol. 33, 241–255.
Ricotta, C., De Bello, F., Moretti, M., Caccianiga, M., Ceabolini, B.E.L., Pavoine, S., 2016. Measuring the functional redundancy of biological communities: a quantitative guide. Meth. Ecol. Evol. 7, 1386–1395.
Ricotta, C., Marignani, M., 2007. Computing β-diversity with Rao’s quadratic entropy: a change of perspective. Divers. Distrib. 13, 237–241.
Rivera-Pedroza, L.F., Escobar, F., Philpott, S.M., Armbrecht, I., 2019. The role of natural vegetation strips in sugarcane monocultures: ant and bird functional diversity responses. Agric. Ecosyst. Environ. 284, 1–10.
Schulze, C.H., Waltert, M., Kessler, P.J.A., Pitopang, R., Shahabuddin, Veddeler, D., Mühlenberg, M., Gradstein, S.R., Leuschner, C., Steffan-Dewenter, I., Tscharntke, T., 2004. Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecol. Appl. 14, 1321–1333.
Sekercioglu, C.H., 2012. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161.
Sekercioglu, C.H., 2006. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21, 464–471.
Si, X., Baselga, A., Ding, F., 2015. Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PloS One 10, 1–19.
Siri, C., Monadjem, A., 2012. Changes in bird communities in Swaziland savannas between 1998 and 2008 owing to shrub encroachment. Divers. Distrib. 18, 390–400.
Skowro, A.L., Bond, W.J., 2003. Bird community composition in an actively managed savanna reserve, importance of vegetation structure and vegetation composition. Biodivers. Conserv. 12, 2279–2294.
Smith, Y.C.E., Smith, D.A.E., Seymour, C.L., Thebault, E., van Veen, F.F.J., 2015. Response of avian diversity to habitat modification can be predicted from life-history traits and ecological attributes. Landsc. Ecol. 30, 1225–1239.
Stanton, R.A., Fletcher, R.J., Sibiya, M., Monadjem, A., McCleery, R.A., 2020. The effects of shrub encroachment on bird occupancy vary with land use in an African savanna. Anim. Conserv. 1–12.
Terry, A., Ogg, M., 2017. Restructuring the Swazi sugar industry: the changing role and political significance of smallholders. J. South Afr. Stud. 43, 585–603.
Thompson, C.M., Gese, E.M., 2001. Functional diversity. Encycl. Biodivers. 3, 109–120.
Tilman, D., 2001. Functional diversity. Encycl. Biodivers. 3, 109–120.
Tscharntke, T., Klein, A.M., Kruse, A., Carsten, T., Steffan-Dewenter, I., Thies, C., 2005. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8, 857–874.
Tu, H.M., Fan, M.W., Ko, J.C.J., 2020. Different habitat types affect bird richness and evenness. Sci. Rep. 10, 1–10.
Vasseur, C.C., Joannon, A., Aviron, S.S., Burel, F.F., Meynard, J.-M.M., Baudry, J., Baudry, J., 2013. The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric. Ecosyst. Environ. 166, 3–14.
Verdú, J.R., Numa, C., Hernández-Cuba, O., 2011. The influence of landscape structure on ants and dung beetles diversity in a Mediterranean savanna - forest ecosystem. Ecol. Indicat. 11, 831–839.
Wiens, J.A., Rotenberry, J.A., 1981. Habitat associations and community structure of birds in shrubsteppe environments. Ecol. Monogr. 51, 21–42.