EXPLOITING CONVOLUTIONAL REPRESENTATIONS FOR MULTISCALE HUMAN SETTLEMENT DETECTION: PRELIMINARY RESULTS

Dalton Lunga, Dilip Patlolla, Hsiuhan Lexie Yang, Jeanette Weaver, and Budhendra Bhadhuri

Computational Sciences and Engineering Division
Oak Ridge National Laboratory

ABSTRACT
We test this premise and explore representation spaces from a single deep convolutional network and their visualization to argue for a novel unified feature extraction framework. The objective is to utilize and re-purpose trained feature extractors without the need for network retraining on three remote sensing tasks i.e. super-pixel mapping, pixel-level segmentation and semantic based image visualization. By leveraging the same convolutional feature extractors and viewing them as visual information extractors that encode different settlement representation spaces, we demonstrate a preliminary inductive transfer learning potential on multiscale experiments that incorporate edge-level details up to semantic-level information.

Index Terms—settlement mapping, segmentation, representation learning, convolutional neural networks, inductive transfer learning.

1. INTRODUCTION

Even though the problem of image understanding has a long history in computer vision applications; recent breakthroughs in high performance computing and the availability of large overhead imagery are leading the cause for its surging appeal for disruptive remote sensing (RS) applications. Fueled by the success of methods including deep convolutional neural networks (CNN) in multimedia image classification, similar efforts are being sought for high resolution RS applications that not only achieve human level performance in terrestrial object classification but achieve semantic labeling and building extraction at large scale. However, due to its spatio-temporal nature, RS data offers unique challenges that necessitates the design of new deep neural architectures. For example, by treating building extraction as an object localization challenge, a deep learning implementation requires that both spatial and semantic image representations are combined towards training a convolutional classifier for accurate building-level detection [1]. Theoretical frameworks for understanding CNN architectures are yet to be fully explored. However, in the past few years, visualization technologies have emerged to close the gap by providing valuable insights on the information extraction stages of CNNs. Such crucial understanding has significantly contributed to a variety of top performing deep CNNs [2, 3]. Training deep CNNs is computationally expensive and requires elusive knowledge on hyper-parameter tuning. Mild efforts are being directed to study the potential for multiple tasks to leverage on shared image CNN representations [4].

It is with the above motivation that this paper seeks to explore multiscale image representations towards image-level classification, pixel-level segmentation and semantic neighborhood mapping while re-using the same CNN feature extractors. An investigation is conducted by visually seeking to understand image representations via probing of internal activation maps during the CNN forward pass process. Preliminary results shows that with limited labeling information, a unified representation learning of human settlement structures with overhead imagery has greater potential. Re-purposing of CNN feature extractors from coarse labels (or image-level) to fine-grained(or pixel-level) and semantic mapping tasks seeks to inform their wide applicability in RS. Using the visual understanding of CNNs, we highlight the following: (1) transfer learning capabilities with a unified representation feature extractor toward multiple human settlement mapping tasks, (2) use semantic representational space to understand a collection of images, and (3) seeking maximal activation maps to obtain insights on per-class image characteristics to inform unique design of RS driven CNN architectures.

2. RELATED WORK

Visual understanding of deep neural network architectures has enabled the capability to extract valuable insights on the internal transformations performed by the CNN filtering process in many computer vision tasks. Visual probing for insight extraction in CNNs can be traced back to the early work in [5], where a direct projection of first layer filters to the image space was per-
formed to assess the learning capacity of the network. A technique to project intermediate and deeper CNN activation maps was demonstrated in [6] via a deconvolution process to yield reconstructed image encodings that were interpreted via the discriminant strong information from the input image pixels. In [2], image patches that maximize selected neuron activation maps were sought by performing a gradient ascent in the image space with the goal of studying their pixel level characteristics. In [7], the authors extend the method towards seeking input images that trigger similar neural stimulation for a given layer. The work in [3] sought to visualize in a more comprehensive manner the representation spaces constructed by all filters of a layer.

We draw lessons from this body of literature to seek insights on the representation spaces constructed by CNNs with 0.5-meter single band remote sensing imagery. Our main goal is to leverage the representation spaces obtained with image-level ground truth toward assessing fine-grained settlement detection and mapping of images onto a semantic topological geometry.

3. SETTLEMENT MAPPING WITH OVERHEAD IMAGES

Remote sensing overhead image data reside on a spatio-temporal grid and this is in contrast to independent and identically distributed sample-based methodologies widely adopted in traditional machine learning. Human settlement mapping is a typical challenge that requires that an image representation framework should take into consideration the grid nature of the data. CNNs have demonstrated their applicability in leveraging the spatial image grid [5, 8]. Given the range and complex nature of human settlement understanding with overhead imagery, a transfer learning approach may seek to exploit visualization driven insights and demonstrate the re-purposing of CNN feature extractors on: (one) super-pixel labeling of homogeneous regions into single categories, (two) pixel-level segmentation to seek fine-grained detection of settlement structure boundaries and (three) using image-patches to compute for semantic level neighbourhood mapping.

Image-level ground truth acquired from 0.5-meter overhead imagery is used to train a CNN features with the target task of superpixel labeling. The training data consists of 40,000 image patches, each of size 144 × 144 pixels, that are equally split between two classes, i.e. the settlement and non-settlement classes. The corresponding binary label is defined to characterize the presence or absence of settlement(s) from the input image. Herein, a single settlement structure is observed to span a block region of 16 × 16 pixels. We further conduct a neighborhood mapping illustration on a different geographic location with an additional 20,000 image patches. The CNN architecture consists of 7-weight layers including 4-convolutional (conv) layers, 2-fully connected (fc) layers, and 3-maxpooling (pool) layers. Pool layers are configured after each conv layer. CNN model parameters are obtained via a stochastic gradient descent (SGD) technique based on the back-propagation framework. The SGD learning rate is set to 0.00273 via a full hyper-parameter gridsearch, while the activation is performed with ReLU, filter weights initialized from a normal distribution, and the batch size set to 150. We present our early observations and highlight the essentials of probing CNN maps to inform multiscale tasking with a single representational learning framework.

Figure 1 illustrates the generalized conceptual architecture for the envisioned unified representational learning framework with overhead imagery.

3.1. Superpixel based settlement detection

Homogeneous region classification is emerging in popularity with remote sensing imagery. Clear-cut boundaries are sought to distinguish classes (e.g. urban vs forest)[9]. Given a large image tile, the settlement mapping process involves sliding and cropping out a 144 × 144 pixel window with stride 16 in both spatial dimensions. Each input patch is presented to the CNN for label prediction. The predicted label is assigned to the center 16 × 16 superpixel block as labeling of the corresponding input patch. Pursuing this process and using a large volume of local homogeneous patch level ground truth for training the representation learning framework, one could offer greater potential to stimulate automatic learning of coherent local structures that are characteristic and common with overhead imagery containing human settlements. The hierarchical and deeper feature abstraction by CNNs could efficiently generate scale invariant representations that are favourable for seeking homogeneous
regions. Figure 2(a) and (b) illustrate the superpixel based mapping generated with a softmax classification on the fc features of the CNN.

3.2. Hypercolumns for settlement detection

It is inarguable that, at large, recognition algorithms based on CNNs typically use the output of the fc layer as a feature representation. However, as shown by the example in Figure 1, the information from the top conv layers and the fc layers appears to be too coarse spatially to enable precise pixel level settlement segmentation. As first demonstrated in [4] and also reflected in Figure 1, lower conv layers do retain edge detection information that may be precise in detecting settlement boundaries albeit not capture higher level semantic details to describe the settlement as a whole. Using the approach of [4], we define the hypercolumn at a pixel as the vector of activations of all CNN layers above that pixel. Using the hypercolumns as pixel descriptors, we leverage on image level trained CNN feature extractor to generate the fine-grained mapping shown in Figure 2(c) and (d). The algorithmic implementation utilizes a mini-batch K-means clustering algorithm to generate the pixel-level segmentation results. Figure 2(c) shows the pixel-segmentation results detecting additional settlements that are appear to be omissions in the top-left corner of the superpixel mapping in (a).

3.3. Semantic and topological mapping

Semantic image visualization using very high resolution remote sensing imagery has emerged as another challenging application in the past decade. The most recent attempt at this challenge presented a semi-supervised learning framework employing the notion of superpixel tessellation representations of imagery[9]. The image representation utilizes homogeneous and irregularly shaped regions and relies on hand designed features based on intensity histograms, geometry, corner and superpixel density and scale of tessellation. Of relation, we demonstrate the potential of leveraging top layer fc representations, toward a semantic image representation visualization with thousands of image patches cropped from large scenes. Although the intermediate stages of the CNN could offer representations useful in related mapping tasks, the result in Figure 3 reveals a more homogeneous image content mapping based on top level features. By applying clustering methods in the projected space, coarse level neighborhood segmentation map can potentially be generated.

![Fig. 2: Illustrating superpixel mapping(top row) and pixel-level terrain segmentation(bottom row) on 0.5-meter aerial imagery.](image)

4. SETTLEMENT FEATURE EXTRACTION

Each stage of the conv filtering process retains class related discriminatory information with the top conv and fc retaining settlement specific semantic information. Figure 3 shows a large scale semantic patch representation obtained with same CNN model for two different geographic locations. The result in (a) is a manifold embedding and visualization[10, 11] of the fc layer features. The visualization shows patches close(similar in content) in the fc representation space embedded close in the two-dimensional topological space. The gradual information extraction by CNNs can be visualized to gain useful insights for image representation understanding. As shown in (c), highest activation feature maps can be visualized on each layer to reveal discriminatory and useful information for relevant multiscale analysis. Edge-level and semantic level discriminatory information is consistently extracted across the six example patches in (b) containing houses, rocks, roads and trees.

5. CONCLUSION

A preliminary investigation is conducted to exploit image-level (or coarse-level) ground truth towards a single CNN representational model in multiscale human settlement understanding with 0.5-meter resolu-
Fig. 3: Topological and semantic mapping of settlement structures town in Egypt (top row) and town in Afghanistan (bottom row). Column (a) shows the semantic neighborhood embedding plane using fc representations. Column (b) are example patches from (a). Column (c) shows reconstructed maximally activated conv feature extractors for example patches in (b).

The authors would like to thank Dr. Jiangye Yuan and Dr. Mark Coletti for discussions on related topics.

6. REFERENCES

[1] J. Yuan, “Automatic building extraction in aerial scenes using convolutional networks,” CoRR, 2016.

[2] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps,” 2014.

[3] W. Yu, K. Yang, Y. Bai, T. Xiao, H. Yao, and Y. Rui, “Visualizing and comparing alexnet and vgg using deconvolutional layers,” in Proceedings of the 33rd International Conference on Machine Learning Workshop, 2016.

[4] B. Hariharan, P. Andrés Arbeláez, R. B. Girshick, and J. Malik, “Hypercolumns for object segmentation and fine-grained localization,” CoRR, vol. abs/1411.5752, 2014.

[5] A. Krizhevsky, S. Ilya, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, Eds., pp. 1097–1105. 2012.

[6] M.D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks,” CoRR, vol. abs/1311.2901, 2013.

[7] M. Aravindh and V. Andrea, “Understanding Deep Image Representations by Inverting Them,” 2014.

[8] S. Paisitkriangkrai, J. Sherrah, P. Janney, and A. van den Hengel, “Semantic labeling of aerial and satellite imagery,” vol. 9, no. 7, pp. 2868–2881, 2016.

[9] M. Sethi, Y. Yan, A. Rangarajan, R. R. Vatsavai, and S. Ranka, “Scalable machine learning approaches for neighborhood classification using very high resolution remote sensing imagery,” in Proceedings of the 21th International Conference on Knowledge Discovery and Data Mining, Australia, August 10-13, 2015, 2015, pp. 2069–2078.

[10] D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, “Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data,” Signal Processing Magazine, IEEE, , no. 1, pp. 55–66, 2014.

[11] L. van der Maaten and G.E. Hinton, “Visualizing high-dimensional data using t-sne,” Journal of Machine Learning Research, vol. 9: 2579–2605, 2008.

Acknowledgement

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.