The BFP (Benford-Fibonacci-Perez) method validates the consistency of COVID-19 epidemiological data in France and Italy

Jean-Claude Perez, PhD Maths § Computer Science Bordeaux University, RETIRED interdisciplinary researcher (IBM Emeritus, IBM European Research Center on Artificial Intelligence Montpellier), Bordeaux metropole, France, jeanclaudeperez2@gmail.com

Abstract

The Benford method can be used to detect manipulation of epidemiological or trial data during the validation of new drugs. We extend here the Benford method after having detected particular properties for the Fibonacci values 1, 2, 3, 5 and 8 of the first decimal of 10 runs of official epidemiological data published in France and Italy (positive cases, intensive care, and deaths) for the periods of March 1 to May 30, 2020 and 2021, each with 91 raw data. This new method – called “BFP” for Benford-Fibonacci-Perez - is positive in all 10 cases (i.e. 910 values) with an average of favorable cases close to 80%, which, in our opinion, would validate the reliability of these basic data.

Introduction

On the one hand, there is Benford's law (http://www.fusioninvesting.com/2009/11/benfords-law-and-fibonacci-numbers/) which stipulates that the majority of series of measurements more or less linked to natural or biological phenomena are confirmed, if they are now, to this law which is defined as follows:

In (http://www.fusioninvesting.com/2009/11/benfords-law-and-fibonacci-numbers/) we note:

« Benford’s law, also called the first-digit law, states that in lists of numbers from many real-life sources of data, the leading digit is distributed in a specific, non-uniform way. According to this law, the first digit is 1 almost one third of the time, and larger digits occur as the leading digit with lower and lower frequency, to the point where 9 as a first digit occurs less than one time in twenty.

This counter-intuitive result has been found to apply to a wide variety of data sets, like electricity bills, street addresses, stock prices, population numbers, death rates, lengths of rivers, physical and biological (which are very common in nature).

It is named after physicist Franck Benford, who stated it in 1938, although it had been previously stated by Simon Newcomb in 1881. Particularly, in epidemiology and health drugs trials, this law permits to validate accuracy and réalité of basic data ».

This law is used in various areas like stock exchange, social phenomena, epidemiology etc... (Sarkar, 2018).
This can therefore help detect fraud in scientific publications as well as unintentional errors in these datasets.

Often, we present the Fibonacci sequence as an example of a distribution obeying my Benford law fairly well.

On the other hand, there is, precisely, this Fibonacci law:

Well known in natural forms: nautilus spiral, sunflower flowers, pineapple, palm trees or pine cones, Fibonacci numbers also control the relative proportions of TCAG nucleotides in DNA: we had already demonstrated this 30 years ago (Perez, 1991), (Perez, 1997).

More recently, we have shown that these same Fibonacci proportions of the genome of the mitochondria, the energy source of the human cell, are deteriorated by mutations associated with various cancers (Perez, 2017). We also demonstrate how these same Fibonacci proportions of DNA make it possible to distinguish a genome of a real bacterium from its attempt at a synthetic chimera (Perez, 2019).

In the field of SARS-CoV2, its mRNA vaccines, and its multiple variants, we have demonstrated since the start of the COVID-19 pandemic how these Fibonacci numbers offered a new angle for the analysis of mRNA sequences and mutations of SARS-CoV2: a biomathematic point of view of the genome (Perez, 2020), (Perez & Montagnier, 2020), mRNA vaccines or variants (Perez, 2021a), or the last Indian variant "Delta" B.1.617.2 (Perez, 2021b).

The paradox which is at the source of our method:

On the one hand, Benford's law is often illustrated by its "good correlation" when applied to the Fibonacci sequence, which everyone knows is at the root of many forms of nature.

On the other hand, when we observe this same histogram, taken as proof of Benford's law by the primes, I note, on the contrary, that the (Fibonacci) numbers 1 2 3 5 and 8 differ in this histogram other numbers 4 6 7 and 9 (see Figures 2 § 3, and Table 1).

It is this observation which will be at the root of our method, then illustrated by this article.
Figure 2 - percentages of Benford's law over the first 200 Fibonacci numbers.

Table 1 - percentages of Benford's law over the first 500 Fibonacci numbers.

d	% théorique	% observé
1	30.100	30.130
2	17.600	17.560
3	12.490	12.570
4	09.691	09.381
5	07.918	07.984
6	06.694	06.586
7	05.799	05.788
8	05.115	05.389
9	04.575	04.391
Benford Law applied to the 500 first Fibonacci Numbers

Evidence of a specificity for Fibonacci digits 1 2 3 5 8

Figure 3 - percentages of Benford's law over the first 500 Fibonacci numbers.

What about the “BFP” method running on the firsts Fibonacci numbers?

Table 2 – 2 clusters partition of the 34 firsts Fibonacci numbers and BFP digits (Benford-Fibonacci-Perez).

Fibonacci BFP digit	1 1
1 1	
2 2	
3 3	
5 5	
8 8	
13 1	
21 2	
34 3	
55 5	
89 1	
144 1	
233 2	
377 3	
610 6	
987 9	
1597 1	
2584 2	
4181 4	
It seems that our “BFP” law is all the more clear that the Fibonacci numbers are small here 27 on the first 34 = 79.41%.

Methods and datas

Fibonacci numbers:
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040 1346269 2178309 3524578 5702887

For any whole number in the list, consider only its decimal with the highest weight decimal.

Example:
13 ==> 1
3398 ===> 3
4765 ===> 4

If the selected decimal digit belongs to fibonacci 1 2 3 5 8 do +1
Otherwise 4 6 7 9 0 do +0

We then calculate the% of positives / total.

Basic datas:

Main data sources from:
for France,
https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
and for Italy:

https://www.sciencedirect.com/science/article/pii/S2352340920304200

Table 3 - Italy: from 1 March to 30 May 2020 and 2021.

Positive cases	Death	Intensive care			
2020	2021	2020	2021	2020	2021
566	13114	12	246	140	2289
342	17083	11	343	166	2327
466	20884	27	347	229	2411
587	22865	28	339	295	2475
769	24036	41	297	351	2525
778	23641	49	307	462	2571
1247	20765	36	207	567	2700
1492	13902	133	318	650	2700
1797	19749	97	376	733	2756
977	22409	168	332	877	2827
2313	25673	196	373	1028	2859
2651	26824	189	380	1153	2914
2547	26062	250	317	1328	2982
3497	21315	175	264	1518	3082
3590	15267	368	354	1672	3157
3233	20396	349	502	1851	3256
3526	23059	345	431	2060	3317
4207	24935	475	423	2257	3333
5322	25735	427	386	2498	3364
5986	23832	627	401	2655	3387
6557	20159	793	300	2857	3448
5560	13846	651	386	3009	3510
4789	18765	601	551	3204	3546
5249	21267	743	460	3390	3588
5210	23798	683	460	3489	3620
6203	23987	712	457	3612	3628
5909	23839	919	380	3732	3635
5974	19611	889	297	3856	3679
5217	12916	756	417	3906	3721
4050	16017	812	529	3981	3716
4053	23904	837	467	4023	3710
4782	23649	727	501	4035	3681
4668	21932	760	481	4053	3704
4585	21261	766	376	4068	3714
4805	18025	681	326	3994	3703
4316	10680	525	296	3977	3737
3599	7767	636	421	3898	3743
3039	13708	604	627	3792	3683
3836	17221	542	487	3693	3663
4204	18938	610	718	3605	3603
3951	17567	570	344	3497	3588
4694	15746	619	331	3381	3585
4092	9789	431	358	3343	3593
3153	13447	566	476	3260	3526
2972	16168	602	469	3186	3490
2667	16974	578	380	3079	3417
3786	15943	525	429	2936	3366
3493	15370	575	310	2812	3340
3491	12694	482	251	2733	3311
3047	8864	433	316	2635	3244
2256	10274	454	390	2573	3151
Table 4 - France: from 1 March to 30 May 2020 and 2021.

Positive cases	Death
2020 2021 2020 2021	0 114 0 75
43 20412 0 114	
23 20453 0 75	
48 19786 1 410	
34 21912 1 322	
73 13157 0 278	
138 2364 3 405	
179 29327 2 196	
103 23466 1 127	
410 23706 9 358	
286 23945 11 356	
371 26255 3 264	
497 17026 15 265	
586 4135 13 290	
Results and Discussion

BASIC RESULTS:

Here is the expected result on the public data covid19 in France and in Italy between March 1 and May 30 in 2020 and in 2021. Then, having the RELIABILITY of these basic data, we will illustrate an example of application: bravais correlations pearson in France (data smoothed over 7 sliding days) on time between positive test and death.

Synthetic results: Test "BFP" method to validate SARS-CoV2 epidemiologic data.

Italy:
Positive cases 2020: 65 / 91 = 71.4%
Death 2020: 53 / 91 = 58.2%
Positive cases 2021: 80 / 91 = 87.9%
Death 2021: 71 / 91 = 78.02%
Intensive care 2020: 73 / 91 = 80.2%
Intensive care 2021: 91 / 91 = 100%

France:
Positive cases 2020: 63 / 91 = 69.2%
Death 2020: 83 / 91 = 91.2%
Positive cases 2021: 65 / 91 = 71.4%
Death 2021: 81 / 91 = 89%
Average 725 / 910 = 79.67% for 10 batches with 91 cases each, then a total of 910 cases.

It seems that “BFP” law is all the more clear that the Fibonacci numbers are small here 27 on the first 34 = 79.41%.
We notice that everything is > in 2021 than in 2020.

2020:
64 + 53 + 73 + 63 + 65 = 318/455 = 69.89%

2021:
80 + 71 + 91 + 83 + 81 = 406/455 = 89.23%

How to explain?
It may be because the 2021 values are > the 2021 values.
So the method would prefer larger values?

COMPARING WITH RANDOM VALUES:

The results obtained here, that is to say nearly 80% success for 910 real values cumulating 10 races of 91 values each coming from epidemiological measurements in France and Italy, are they GREATER than what would be produced by CHANCE? To answer this question, we performed 100 random batches, each simulating 910 representative random values, for a total of 91,000 random tests. Here are the results:
While the number of successes of real cases is 725 favorable cases (first significant number = 1,2,3,5 or 8), the 100 batches produce an average number of successes of 667.96 with random values between 641 and 697 (Figure 4).
Figure 4 – Comparing the 910 real France§Italy results with 100 RANDOM RUNS, each simulating 910 random values between 1 and max value France§Italy (i.e. [1, 53843]).

EXAMPLE OF APPLICATION:

Table 5 – Comparing France Covid-19 March to May years 2020 and 2021, distances between positive case and death using Bravais-Pearson method on 7 days average splines values.

TEST TO DEATH	2020	2021
7days	7514	6625
8days	8063	7154
9days	8577	7647
10days	9067	7883
11days	9408	8042
12days	9658	8212
13days	9832	8364
14 DAYS	9836	8419
15days	9731	8458
16days	9530	8482
17days	9187	8506
18days	8795	8496
19days	8308	8422
20days	7708	8338
21days	7103	8195
Conclusions

Benford's law already makes it possible to validate or doubt the relevance, reliability and non-manipulation of batches of natural or medical data.
What we are proposing today is beyond this Benford law, it is a PARTITION of the first 9 digits (or 10 when, as here, there is also some null data) in 2 clusters: Fibonacci cluster (1 2 3 5 8) and non-Fibonacci cluster (0 4 6 7 9).
We suggest that the Fibonacci numbers cluster are all the more in the majority the more the data set is reliable and real.
This constitutes a breakthrough in the analysis of natural, social and medical data. This method and the prospects that it should now be consolidated and deepened.

Finally, we have demonstrated by 91,000 random values draws that the "BFP" law applied to the 910 COVID-19 epidemiological values of France and Italy studied here produces results which cannot result from mere chance.

Acknowledgements

My thanks:
To Dr Gérard Maudrux (https://blog-gerard.maudrux.fr/ who suggested to me) compare these epidemiological data for France and Italy between 2020 and 2021.

To Marc Niaufre (ex MICROSOFT international product manager for Excel) which introduced me to the Benford method and its subtle links with the Fibonacci sequence.

Thanks also for fructuous discussions about this article to Megawaty Tan (A private researcher based in South Sumatera, Indonesia), Robert Freeman M D. (author of "Nature's secret nutrient, golden ratio biomimicry, for PEAK health, performance and longevity), Philippe Risby (initiator of "Learning to Survive") project in Portugal, Valère Lounnas, (Free lance researcher at CMBI European Molecular Biology Laboratory (EMBL) Heidelberg), Dr Daniel Favre, independent researcher, Brent, Switzerland, Christian Marc, (retired, MSEE-Dipl-Eng Physics, MBA (Beta Gamma Sigma, USA), Harvard HBS Alumn, General Director https://www.caravanedelapaix.com/, and Ethirajan Govindarajan (adjunct Professor, Department of Cybernetics, School of Computer Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India, Director, PRC Global Technologies Inc., Ontario, Canada, President, Pentagram Research Centre Pvt. Ltd., Hyderabad, India) and Xavier Azalber, Director FRANCE-SOIR newspaper (https://www.francesoir.fr/info-en-direct).

Particularly, this work is the result of multiple exchanges and advice, since the very beginning of the COVID-19 pandemic, for which I must thank Professor Luc Montagnier (Nobel prizewinner for his discovery of HIV, Fondation Luc Montagnier Quai Gustave-Ador 62 1207 Geneva, Switzerland).

References

(Perez, 1991), J.C. Perez (1991), "Chaos DNA and Neuro-computers: A Golden Link", in Speculations in Science and Technology vol. 14 no. 4, ISSN 0155-7785, January 1991

https://www.researchgate.net/publication/258439719_JC_Perez_1991_Chaos_DNA_and_Neuro-computers_A_Golden_Link_in_Speculations_in_Science_and_Technologyvol_14_no_4_ISSN_0155-7785

Jean-Claude PEREZ. (2020). WUHAN COVID-19 SYNTHETIC ORIGINS AND EVOLUTION. International Journal of Research - Granthaalayah, 8(2), 285–324. http://doi.org/10.5281/zenodo.3724003

(Perez, 1997), Perez J.C, L'ADN décrypté, Ed. Marco Pietteur, ISBN : 2-87211-017-8, https://www.editionsmarcopietteur.com/resurgence/91-adn-decrypte-9782872110179.html

(Perez, 2009), Perez J.C, Codex biogenesis – Les 13 codes de l'ADN (French Edition) [Jean - Claude ... 2009); Language: French; ISBN -10: 2874340448; ISBN -13: 978-2874340444 https://www.amazon.fr/Codex-Biogenesis-13-codes-ADN/dp/2874340448

(Perez, 2017), J.C Perez, 2017, Sapiens Mitochondrial DNA Genome Circular Long Range Numerical Meta Structures are Highly Correlated with Cancers and Genetic Diseases mtDNA Mutations January 2017 Journal of Cancer Science and Therapy 09(06) DOI: 10.4172/1948-5956.1000469

(Perez, 2018), Perez, J.C. Six Fractal Codes of Biological Life:perspectives in Exobiology, Cancers Basic Research and Artificial Intelligence Biomimetism Decisions
Making. Preprints 2018, 2018090139 (doi: 10.20944/preprints201809.0139.v1). Perez, J.C. Six Fractal Codes of Biological Life: perspectives in Exobiology, Cancers Basic Research and Artificial Intelligence Biomimetism Decisions Making. Preprints 2018, 2018090139 (doi: 10.20944/preprints201809.0139.v1).
https://www.preprints.org/manuscript/201809.0139/v1

(Perez, 2019), Perez, J. Epigenetics Theoretical Limits of Synthetic Genomes: The Cases of Artificials Caulobacter (C. eth-2.0), Mycoplasma Mycoides (JCVI-Syn 1.0, JCVI-Syn 3.0 and JCVI_3A), E-coli and YEAST chr XII. Preprints 2019, 2019070120 (doi: 10.20944/preprints201907.0120.v1).
https://www.preprints.org/manuscript/201907.0120/v1

Perez J.C, (2020). “WUHAN COVID-19 SYNTHETIC ORIGINS AND EVOLUTION.” International Journal of Research - Granthaalayah, 8(2), 285-324. https://doi.org/10.5281/zenodo.3724003

(Perez&Montagnier, 2020a), Perez, j.c, & Montagnier, L. (2020, April 25). COVID-19, SARS and Bats Coronaviruses Genomes unexpected Exogeneous RNA Sequences.
https://doi.org/10.31219/osf.io/d9e5g

(Perez%Montagnier, 2020b), Jean claude Perez, & Luc Montagnier. (2020). COVID-19, SARS AND BATS CORONAVIRUSES GENOMES PECULIAR HOMOLOGOUS RNA SEQUENCES. International Journal of Research - GRANTHAALAYAH ISSN (print): 2394-3629 July 2020, Vol 8(07), 217 – 263 DOI: https://doi.org/10.29121/granthaalayah.v8.i7.2020.678, Vol 8(07), 217 – 263 (Vol 8(07), 217 – 263), Vol 8(07), 217–Vol 8(07), 263. http://doi.org/10.5281/zenodo.3975578

(Perez, 2021) Perez, J. SARS-CoV2 Variants and Vaccines mRNA Spikes Fibonacci Numerical UA/CG Metastructures. Preprints 2021, 2021040034 (doi: 10.20944/preprints202104.0034.v5). Perez, J. SARS-CoV2 Variants and Vaccines mRNA Spikes Fibonacci Numerical UA/CG Metastructures. Preprints 2021, 2021040034 (doi: 10.20944/preprints202104.0034.v5).
https://www.preprints.org/manuscript/202104.0034/v5

Perez, DUF1220 Homo Sapiens and Neanderthal fractal periods architectures breakthrough(2017) SDRP Journal of Cellular and Molecular Physiology 1(1)p:25-49
http://dx.doi.org/10.25177/JCMP.1.1.4

(Sarkar, 2018), Tirthajyoti Sarkar, What is Benford law? Oct 2018, https://towardsdatascience.com/what-is-benfords-law-and-why-is-it-important-for-data-science-312cb8b61048