Abstract. We study totally disconnected, locally compact (t.d.l.c.) groups from an algorithmic perspective. We give various approaches to defining computable presentability of a t.d.l.c. group, and show their equivalence. In the process, we obtain an algorithmic Stone-type duality between t.d.l.c. groups and certain countable ordered groupoids given by the compact open cosets. Several natural groups, such as Aut(T_d) and SL_n(Q_p), have computable presentations. We provide a criterion based on the duality when a computable presentation of a t.d.l.c. group is unique up to computable isomorphism. We show that many constructions leading from t.d.l.c. groups to new t.d.l.c. groups have algorithmic versions that stay within the class of computably presented t.d.l.c. groups; most prominently, quotients by computable closed normal subgroups. We study whether objects associated with computably t.d.l.c. groups are computable: the modular function, the scale function, and Cayley-Abels graphs in the compactly generated case.

Contents
1. Introduction
2. Computably locally compact subtrees of N^*
3. Defining computable t.d.l.c. groups via closed subgroups of S_\infty
4. Defining computably t.d.l.c. groups via meet groupoids
5. Uniform equivalence of two definitions of computably t.d.l.c.
6. Computable functions on the set of paths of computable trees
7. Defining computably t.d.l.c. groups via Baire presentations
8. More on the equivalences of notions of computable presentation
9. Closure properties of the class of computably t.d.l.c. groups
10. Uniqueness of computable presentations
11. Appendix 1 (with G. Willis): a computable presentation of a t.d.l.c. group with a non-computable scale
12. Appendix 2: abelian t.d.l.c. groups
References

1. Introduction

Algorithmic aspects of totally disconnected, locally compact (t.d.l.c.) groups play a considerable role in recent research such as Willis [55]. We develop a general algorithmic theory of t.d.l.c. groups. This establishes a theoretical framework for these aspects, and also enables us to prove non-computability results, such as the existence of an algorithmically t.d.l.c. group with a non-computable scale function.

E-mail addresses: sasha.melnikov@vuw.ac.nz, andre@cs.auckland.ac.nz.
2020 Mathematics Subject Classification. 03D80,22D05.
The first author was supported by Rutherford Discovery Fellowship RDF-VUW1902 of the Royal Society Te Aparangi. The second author was supported by the Royal Society Te Aparangi under the standard Marsden grant UOA-1931. The authors would like to thank Stephan Tornier and George Willis for very helpful discussions and insights.
We assume that all topological groups in this paper have a countable basis. Our theory will address the following:

Questions 1.1.

(a) How can one define a computable presentation of a t.d.l.c. group?
(b) Which t.d.l.c. groups have such a presentation?
(c) Given a computable presentation, which associated objects (such as the rational valued Haar measures) are computable?
(d) Do constructions that lead from t.d.l.c. groups to new t.d.l.c. groups have algorithmic versions?
(e) When is a computable presentation of a t.d.l.c. group unique up to computable isomorphism?

We begin with an informal summary of our main results, and the extent to which they answer these questions. (The order they are addressed in the paper will differ from the one given here.) Then we proceed to some background on t.d.l.c. groups and on computability. We will discuss the questions and results in more detail in the dedicated Subsections 1.4–1.8 of the introduction.

1.1. Informal summary of answers to the questions.

(a) We will introduce two approaches to defining a computable presentation of a t.d.l.c. group. Each of them addresses, in different ways, the problem that the domain is generally uncountable. One approach, which we call Baire presentation, employs computation based on approximations, as is done in the field of computable analysis. The other approach uses a duality between t.d.l.c. groups and certain countable structures we call meet groupoids. We will show that the two approaches are equivalent, in the sense that a group has a computable Baire presentation if, and only if, it has a computable presentation via its meet groupoid. This duality is a core technique towards answering the remaining questions. It also shows that Baire presentations can be “enhanced” to presentations as closed subgroups of S_{nc}: then the group operations are canonically computable, because they are given by the operations of composition and inverse on permutations of the natural numbers.

(b) Our thesis is that all “natural” countably based groups that are considered in the field of t.d.l.c. groups have computable presentations. We use our methods to collect evidence for this thesis. For instance, we show that the groups of the form $\text{PGL}_n(\mathbb{Q}_p)$ are computable.

(c) Haar measure, modular function, and Cayley-Abels graphs (for the compactly generated case) are computable, while the scale function can fail to be computable.

(d) Many important constructions have algorithmic versions. This is expected for constructions such as taking closed subgroups and forming local direct products. It is more surprising for taking quotients by closed normal subgroups, given that in the uncountable case there is no canonical set of coset representatives. The full power of the duality will be needed.

(e) While we stop short of giving a full answer to the question, we provide a criterion, based on the duality, of when a computable presentation of a t.d.l.c. group is unique up to computable isomorphism. We apply this to show that the split extension of \mathbb{Q}_p by \mathbb{Z} with the action of a generator given by $x \mapsto xp$ has a unique computable presentation.

We hope that the first five sections of the paper will be accessible to readers with only basic knowledge of computability theory; as we progress, we will explain some notions from computability theory that are more advanced.

Future work could use our framework to address the resource bounded level, and even the practice of computation in t.d.l.c. groups. Several recent works study these topics for particular groups. We mention Matthew Conder [5, 4.1]: given a non-Archimedean local field K such as $\mathbb{Q}_p,$ an algorithm is described to determine whether two input elements x, y of $\text{SL}_2(K)$ (or $\text{PSL}_2(K)$) generate a discrete free subgroup. Conder subsequently discussed the implementation in the computer algebra system MAGMA. Such systems can only work with approximations to the elements in the uncountable domain, so some theoretical underpinning is needed for claims that such algorithms run efficiently. Future work could also explore the possibility to directly compute with the countable dual structure in MAGMA or GAP.
1.2. Background on t.d.l.c. groups. Van Dantzig [49] showed that each t.d.l.c. group has a neighbourhood basis of the identity consisting of compact open subgroups. With Question 1.1(a) in mind, we discuss some examples of t.d.l.c. groups. We will return to them repeatedly during the course of the paper. (i) All countable discrete groups and all profinite groups are t.d.l.c. (ii) \mathbb{Q}_p, the additive group of p-adic numbers for a prime p, is a t.d.l.c. group in neither of the two classes above. (iii) The semidirect product $\mathbb{Z} \rtimes \mathbb{Q}_p$ corresponding to the automorphism $x \mapsto px$ on \mathbb{Q}_p is t.d.l.c. (iv) Algebraic groups over local fields, such as $\text{SL}_n(\mathbb{Q}_p)$ for $n \geq 2$, are t.d.l.c. (v) Finally, given a connected countable undirected graph such that each vertex has finite degree, its automorphism group is t.d.l.c. The stabiliser of any vertex forms a compact open subgroup. By an undirected tree we mean a connected graph without cycles. For $d \geq 3$, by T_d one denotes the undirected tree where each vertex has degree d. The group $\text{Aut}(T_d)$ was first studied by Tits [48].

Towards Question 1.1(b), we will review some objects that are associated with a locally compact group G.

Modular function. The left and right Haar measures on G are treated in standard textbooks such as [16]. Recall that for any left Haar measure μ on G and any $g \in G$, one obtains a further left Haar measure μ_g by defining $\mu_g(A) = \mu(gA)$. By the uniqueness up to a multiplicative constant of the left Haar measure, there is a real $\Delta(g) > 0$ such that $\mu_g(A) = \Delta(g)\mu(A)$ for each measurable A. The function $\Delta: G \to \mathbb{R}^+$, called the modular function for G, is a group homomorphism.

Scale function. Willis [53] introduced the scale function $s: G \to \mathbb{N}^+$. Let $g \in G$. For a compact open subgroup V of G, let $m(g, V) = |gVg^{-1} : V \cap gVg^{-1}|$. Let $s(g)$ be the minimum value of $m(g, V)$ over all V. It is not hard to show that $\Delta(g) = s(g)/s(g^{-1})$. If a group has a normal compact open subgroup, as for Examples (i)–(iii) above, the scale function is constant of value 1. The group $\mathbb{Z} \rtimes \mathbb{Q}_p$ of a prime p is among the simplest examples of a t.d.l.c. group with a nontrivial scale function: $s(t) = p$ for the generator t of \mathbb{Z} such that $tat^{-1} = \alpha/p$ for each $\alpha \in \mathbb{Q}_p$.

Cayley-Abels graphs. We first discuss a guiding principle in the study of a t.d.l.c. group G: it has a topological aspect that captures the small-scale (or local) behaviour, and a geometric aspect that captures the large-scale (or global) behaviour. The small-scale aspect is given by a compact open subgroup U (provided by van Dantzig’s theorem). Note that any two such subgroups are commensurable.

For the large-scale aspect, recall that in the discrete setting, Gromov and others initiated a geometric theory of finitely generated groups via their Cayley graphs. Given two generating sets, the corresponding graphs are quasi-isometric: there is a map ϕ from one vertex set to the other that only distorts distances affinely, and for some constant c, each vertex has at most distance c from the range of ϕ. For a t.d.l.c. group G, the generalisation of being f.g. is being algebraically generated by a compact subset. Given such a group G and a compact open subgroup U, note that G is algebraically generated by $U \cup S$ for some finite set S closed under inversion. The Cayley-Abels graph $\Gamma_{U,S}$ (e.g. Krön and Möller [23, Definition 3]) is a graph on the left cosets of U generalising the Cayley-graph for discrete G (where one can take $U = \{e\}$). As in the discrete case, any two such graphs for the same group are quasi-isometric. So, one can think of any Cayley-Abels graph as capturing the large-scale aspect of a compactly generated group.

Wesolek [52] provides further background and references on the topics discussed above. Also see the record of the 2022 conference on computational aspects of t.d.l.c. groups in Newcastle, Australia. The following will be needed in several places.

Remark 1.2. The open mapping theorem for Hausdorff groups says that every surjective continuous homomorphism from a σ-compact group G onto a Baire group H is open. This applies in particular when G, H are countably based t.d.l.c. groups.

1.3. Background on computable mathematics. A general goal of computable mathematics is to study the algorithmic content of areas such as algebra [1, 10], analysis [41, 50], or topology [44]. A first step is invariably to define what a computable presentation of a mathematical structure in that area is, such as a computable group, a complete metric space, or a separable Banach space. (Note that “computable” is the commonly accepted adjective used with presentations, rather than “algorithmic”.) One also introduces and studies computability for objects related
to the structure. For instance, in computable analysis one uses rational approximations to reals in order to define what it means for a function $f: \mathbb{R} \to \mathbb{R}$ to be computable (see below for further detail). A large body of results addresses the algorithmic content of classical results. There are also interesting new questions with no pendant in the classical setting. How difficult is it to recognize whether two computable presentations present the same structure? How hard is it to determine whether the structure presented has a certain property? (E.g., determine whether a computably presented group is torsion-free.) The basic distinction is "decidable/undecidable". Mathematical logic provides a bevy of descriptive complexity classes, with corresponding completeness notions, for a more detailed answer in the undecidable case. For instance, torsion-freeness is of maximum complexity within the co-recursively enumerable properties.

Towards defining computable presentations, we first recall the definition of a computable function on natural numbers, slightly adapted to our purposes in that we allow the domain not only \mathbb{N}^k but also any computable subset of \mathbb{N}^k.

Definition 1.3. Given a set $S \subseteq \mathbb{N}^k$, where $k \geq 1$, a function $f: S \to \mathbb{N}$ is called computable if there is a Turing machine that on inputs n_1, \ldots, n_k decides whether the tuple of inputs (n_1, \ldots, n_k) is in S, and if so outputs $f(n_1, \ldots, n_k)$. We say that S is computable if the function with domain S and constant value 0 is computable.

One version of the Church-Turing thesis states that computability in this sense is the same as being computable by some algorithm. We note that without the restriction that the TM can decide membership in S, the function is called partial computable. The domain of a partial computable function is a recursively enumerable relation.

A structure in the model theoretic sense consists of a nonempty set D, called the domain, with relations and functions defined on it. The following definition was first formulated in the 1960s by Mal’cev [27] and Rabin [42], independently.

Definition 1.4. A computable structure is a structure such that the domain is a computable set $D \subseteq \mathbb{N}$, and the functions and relations of the structure are computable. A countable structure S is called computably presentable if some computable structure W is isomorphic to it. In this context we call W a computable copy of S.

Next, we discuss how to define that an uncountable structure has a computable presentation. In the field of computable analysis, one represents all the elements of the structure by "names" which are directly accessible to computation, and requires that the functions and relations are computable on the names. For detail see e.g. Pauly [38] or Schröder [44]. Names usually are elements of the set $[T]$ of infinite paths on some computable subtree T of \mathbb{N}^*, the tree of strings with natural number entries. (Henceforth all paths will be infinite paths on rooted trees, starting at the root.) For instance, a standard name of a real number r is a path coding a sequence of rationals $(q_n)_{n \in \mathbb{N}}$ such that $|q_n - q_{n+1}| \leq 2^{-n}$ and $\lim_n q_n = r$. Using so-called "oracle Turing machines", one can define computability of functions on $[T]$; we will provide detail in Section 6. This indirectly defines computability on spaces relevant to computable analysis; for instance, one can define that a function on \mathbb{R} is computable. The example above shows that names and the object they denote can be of quite a different kind. In contrast, each totally disconnected Polish space is homeomorphic to $[T]$ for some subtree T of \mathbb{N}^*, which is advantageous because in principle there is no need to distinguish between names and objects in our setting.

An ad hoc way to define computability often works for particular classes of uncountable structures: impose algorithmic constraints on the definition of the class. For instance, the following is due to Smith [46] and La Roche [24].

Definition 1.5. A profinite group G is computable $G = \lim_{\to i \in \mathbb{N}} (A_i, \psi_i)$ for a computable diagram $(A_i, \psi_i)_{i \in \mathbb{N}}$ of finite groups and epimorphisms $\psi_i: A_i \to A_{i-1}$ ($i > 0$).

The aforementioned approach to profinite groups of Smith and la Roche admits equivalent formulations that work beyond this class. One such reformulation, in terms of effectively branching subtrees of \mathbb{N}^*, already is in Smith [46]. For the other, in terms of computably compact metric spaces, see Thm. 4.33 of the recent work [6]. Results of this sort indicate that the respective notion of computable presentability is robust for the class.

The remaining sections of the introduction discuss the questions posed at the beginning of the paper in more detail.
1.4. Computable presentations of t.d.l.c. groups. We aim at a robust definition of the class of (countably based) t.d.l.c. groups with a computable presentation. We want this class to have good algorithmic closure properties, and also ask that our definition extend the existing definitions for discrete, and for profinite groups.

We provide three types of computable presentations: type S and the more general type B are based on computation with approximations, while the separate type M is based on reduction to a countable structure via a duality. They will all turn out to be equivalent: a t.d.l.c. group has a computable presentation of one type iff it has one of the other type. The equivalences are algorithmically uniform.

Type S (for “symmetric group”) is based on the fact that each t.d.l.c. group G is isomorphic to a closed subgroup of S_∞. We represent such subgroups by subtrees of \mathbb{N}^* in a particular way to be described below. We impose algorithmic conditions on the tree to define when the presentation is computable. This approach is consistent with earlier work [15] on computable subgroups of S_∞.

Type M (for “meet groupoid”) is based on an algebraic structure $W(G)$ on the countable set of compact open cosets in G. This structure is a partially ordered groupoid, with the usual set inclusion and multiplication of a left coset of a subgroup U with a right coset of U. The intersection of two compact open cosets is such a coset itself, unless it is empty. So, after adjoining \emptyset as a least element (which does not interact with the groupoid structure), we obtain a meet semilattice. A Type M computable presentation of G is a computable copy of the meet groupoid of G such that the index function on compact open subgroups, namely $U,V \mapsto |U : U \cap V|$, is also computable. The idea to study appropriate Polish groups via an algebraic structure on their open cosets appeared in [22], and was further elaborated in a paper on the complexity of the isomorphism problem for oligomorphic groups [36]. There, approximation structures called “coarse groups” are used that are given by the ternary relation “$AB \subseteq C$”, where A, B, C are certain open cosets. In the present work, it will be important that we have explicit access to the combination of the groupoid and the meet semilattice structures (which coarse groups don’t provide).

As a further example of the usefulness of meet groupoids, in Proposition 5.7 we will show that the meet groupoid of G can be used to understand the topological group of continuous automorphisms of G.

Type B (for “Baire”) of computable presentation generalizes Type S. For computable Baire presentations, one asks that the domain of G is what we call a computably locally compact subtree of \mathbb{N}^* (the tree of strings with natural number entries), and the operations are computable in the sense of oracle Turing machines. This approach generalizes one of the definitions in [46] from profinite groups to t.d.l.c. groups. It also works for t.d.l.c. structures other than groups. We postpone this approach until Section 7, because it requires more advanced notions from computability theory. In particular, it relies on computable functions on the set of paths of a computable tree. These notions will be provided in Section 6.

Among our main results is that the various approaches to computable presentations are equivalent. This will be stated formally in Theorem 5.1 and its extension Theorem 7.6. Indeed, the approaches are equivalent in the strong sense that from a presentation of one type, one can effectively obtain a presentation of the other type for the same t.d.l.c. group. Below, we will initially say that a t.d.l.c. group is computably t.d.l.c. of a particular type, for instance via a closed subgroup of S_∞, or via a Baire presentation. Once the equivalences have been established, we will often omit this. These results suggest that our approach to computability for t.d.l.c. groups is natural and robust. We will later support this thesis with examples that show that many widely studied t.d.l.c. groups are computably t.d.l.c.

Evidence for the robustness is also given in [34, Thm. 1.2], where it is shown that the notion of computable presentability for general locally compact Polish groups in their Definition 2.16 restricts to our notion in the totally disconnected case.

Baire presentations appear to be the simplest and most elegant notion of computable presentation for general totally disconnected Polish groups. However, computable Baire presentations are hard to study because the domain is usually uncountable (while the meet groupoids are countable), and there are no specific combinatorial tools available (unlike the case of permutations of \mathbb{N}). In the proofs of several results, notably Theorem 9.9, we will work around this by replacing a Baire presentation by a more accessible presentation of Type M or S.
The operation that leads from a t.d.l.c. group to its meet groupoid has an inverse operation. Both operations are functorial for the categories with isomorphisms. This yields a duality between t.d.l.c. groups and a certain class of countable meet groupoids (similar to the duality in [36] between oligomorphic groups and the “coarse groups”). This class of meet groupoids can be described axiomatically. The equivalence of computable presentations of Type B and Type M can be extended to a computable version of that duality. We will elaborate on this in Remark 10.5.

1.5. Which t.d.l.c. groups \(G \) have computable presentations? Discrete groups, as well as profinite groups, have a computable presentation as t.d.l.c. groups if and only if they have one in the previously established senses of Definition 1.3 and Definition 1.5, respectively. For discrete groups this will be shown in Example 4.8. For profinite groups this will be obtained by combining Proposition 7.3 and Proposition 12.6. We will provide several examples of computable presentations for t.d.l.c. groups outside these two classes. The various equivalent approaches to computable presentations will be useful for this, because they allow us to construct a presentation of the type most appropriate for a given group. For a group of automorphisms such as \(\text{Aut}(T_d) \), we will use Type S (presentations as closed subgroups of \(S_{\infty} \)). For \((\mathbb{Q}_p, \cdot)\), we use Type M (meet groupoids). For \(\text{SL}_n(\mathbb{Q}_p)\), we use Type B (computable Baire presentations). The first author has shown how to give an equivalent definition of a computable t.d.l.c. group in terms of an ‘effectively \(\sigma \)-compact metric’. Using this can generalize the latter example to other algebraic groups over \(\mathbb{Q}_p \). For an outline of this work, see [9, Section 4]. Neretin’s groups \(\mathcal{N}_d \) of almost automorphisms of \(T_d \), for \(d \geq 3 \) [20], are computable by upcoming work of Ferov, Skipper and Willis.

1.6. Associated computable objects. Recall that to a t.d.l.c. group \(G \) we associate its meet groupoid \(W(G) \), an algebraic structure on its compact open cosets. If \(G \) is given by a computable Baire presentation, then we construct a copy \(W = W_{\text{comp}}(G) \) that is computable in a strong sense, essentially including the condition that some (and hence any) rational valued Haar measure on \(G \) is computable when restricted to a function \(W \to \mathbb{R} \). We will show in Theorem 8.2 that the left, and hence also the right, action of \(G \) on \(W \) is computable. We conclude that the modular function on \(G \) is computable.

If \(G \) is compactly generated, for each Cayley-Abels graph one can determine a computable copy, and any two copies of this type are computably quasi-isometric (Theorem 8.5). Intuitively, this means that the large-scale structure of \(G \) is a computable invariant.

Assertions that the scale function is computable have been made for particular t.d.l.c. groups in works such as Glöckner [13] and Willis [54, Section 6]; see the survey [55]. In these particular cases, it was generally clear what it means that one can compute the scale \(s(g) \): provide an algorithm that shows it. One has to declare what kind of input the algorithm takes; necessarily it has to be some approximation to \(g \), as \(g \) ranges over a potentially uncountable domain. Our new framework allows us to give a precise meaning to the question whether the scale function is computable for a particular computable presentation of a t.d.l.c. group, thus also allowing for a negative answer. In Theorem 11.1, which is joint with George Willis, we provide a computable presentation of a t.d.l.c. group \(G \) such that the scale function fails to be computable for this presentation.

It remains open whether for some computably presented \(G \), the scale is non-computable for each of its computable presentations. An even stronger negative result would be that such a \(G \) can be chosen to have a unique computable presentation (see the discussion in Section 1.8 below).

1.7. Algorithmic versions of constructions that lead from t.d.l.c. groups to new t.d.l.c. groups. Section 9 shows that the class of computably t.d.l.c. groups is closed under suitable algorithmic versions of many constructions that have been studied in the theory of t.d.l.c. groups. In particular, the constructions (1), (2), (3) and (6) described in Wesolek [51, Thm. 1.3] can be phrased algorithmically in such a way that they stay within the class of computably t.d.l.c. groups; this provides further evidence that our class is robust. These constructions are suitable versions, in our algorithmic topological setting, of passing to closed subgroups, taking group extensions via continuous actions, forming “local” direct products, and taking quotients by closed normal subgroups (see [51, Section 2] for detail on
these constructions). The algorithmic version of taking quotients (Theorem 9.9) is the most demanding; it uses extra insights, provided in Theorem 8.2, from the proofs that the various forms of computable presentation are equivalent.

Several constructions lead to new examples of t.d.l.c. groups with computable presentations. For instance, after defining a computable presentation of $\text{SL}_{n+1}(\mathbb{Q}_p)$ $(n \geq 2, p$ a prime) directly in Proposition 7.8, we proceed to a computable presentation of $\text{GL}_n(\mathbb{Q}_p)$ via taking a closed subgroup, and then to $\text{PGL}_n(\mathbb{Q}_p)$ via taking the quotient by the centre.

1.8. When is a computable presentation unique? Citing Willis, [55, Section 5], “it is a truism that computation in a group depends on the description of the group”. In the present article, we apply our notion of computable presentability of a t.d.l.c. group to give a formal version of this statement. We also give some examples where the general statement fails. Viewing a computable Baire presentation as a description, we are interested in the question whether such a description is unique, in the sense that between any two of them there is a computable isomorphism. Adapting terminology for countable structures going back to Mal’cev, we will call such a group autostable. If a t.d.l.c. group is autostable, then computation in the group can be seen as independent of its particular description.

The Criterion 10.2 reduces the problem of whether a t.d.l.c. group is autostable to the a similar problem in the countable setting of meet groupoids. We apply it to show that $(\mathbb{Q}_p, +)$ is autostable, and so is $\mathbb{Z} \ltimes \mathbb{Q}_p$. Proving the autostability of these groups requires more effort than the reader would perhaps expect. For other groups, such as $\text{SL}_n(\mathbb{Q}_p)$ for $n \geq 2$ and $\text{Aut}(T_d)$, we leave open whether a computable presentation is unique up to computable isomorphism.

1.9. Some context.

Related work on autostability. A countable structure is called autostable (or computably categorical) [10, 1] if it has a computable copy, and such a copy is unique up to computable isomorphism. For example, any computable finitely generated algebraic structure is autostable because any homomorphism $A \to B$ for such structures A, B can be reconstructed from the images of generators of A, and is therefore computable. In contrast, there is a discrete 2-step nilpotent group with exactly two computable presentations up to computable isomorphism [14]. For t.d.l.c. groups, in the discrete case our notion of autostability reduces to the established one.

A profinite abelian group is autostable if and only if its Pontryagin dual is autostable [31]; note that this dual is a discrete, torsion abelian group. Autostability of the latter type of groups is characterized in [33]. In this way one obtains a characterization of autostability for profinite abelian groups.

Pour El and Richards [41] gave an example of a Banach space with two computable presentations so that there is no computable linear isometry between them. Works such as [30] and then [4, 18, 29] systematically study autostability in separable spaces, using tools of computable (discrete) algebra.

Other related work. Our work [26] with Lupini focuses on abelian locally compact groups. We introduce two notions of computable presentation for abelian t.d.l.c. groups that take into account their specific structural properties: The first is based on the fact that such groups are pro-countable, the other on the fact that such a group is an extension of a discrete group by a profinite group. Both notions can be used to provide examples of computable abelian t.d.l.c. groups that are neither discrete nor compact. The same work [26] states that in the abelian case, the notion of computable presentability given in the present paper is equivalent to these notions, referring to the present paper. We prove this in Section 12.

An approach to computability for Polish groups was suggested in [32] and then developed in, e.g., [31, 39] and the aforementioned [34]. In that approach, a Polish group is said to be computable if the underlying topological space is computably, completely metrized and the group operations are computable operators (functionals) on this space. By [31]) there is computably metrized profinite group that does not possess a computable presentation as in the sense of Definition 1.5. However, if we additionally assume that the underlying computably metrized space is ‘computably compact’ (equivalently, the Haar measure is computable [39, 6]), then we can produce a computable presentation of the group in that sense; see [6] for a proof.
Acknowledgements. The second author was partially supported by the Marsden fund of New Zealand, UOA-1931.

2. Computably locally compact subtrees of \mathbb{N}^*

Definition 2.4 of this section introduces computably locally compact trees. This purely computability-theoretic concept will matter for the whole paper. For basics on computability theory see, e.g., the first two chapters of [47], or the first chapter of [37] which also contains notation on strings and trees. Our paper is mostly consistent with the terminology of these two sources. They also serve for basic concepts such as Turing programs, computable functions, as well as partial computable (or partial recursive) functions, which will be needed from Section 6 onwards. In this section we will review some more specialized concepts related to computability.

Notation 2.1. Let \mathbb{N}^* denote the set of strings with natural numbers as entries. We use letters σ, τ, ρ etc. for elements of \mathbb{N}^*. The set \mathbb{N}^* can be seen as a directed tree: the empty string is the root, and the successor relation is given by appending a number at the end of a string. One writes $\sigma \preceq \tau$ to denote that σ is an initial segment of τ, and $\sigma \prec \tau$ to denote that σ is a proper initial segment. For $k \leq |\tau|$, by $\tau[0,1]$ one denotes the initial segment of τ that has length k. We can also identify finite strings of length $n+1$ with partial functions $\mathbb{N} \to \mathbb{N}$ having finite support $\{0, \ldots, n\}$. We then write τ_j instead of $\tau(i)$. By max(τ) we denote $\max\{\tau_i : i \leq n\}$.

Let $h: \mathbb{N}^* \to \mathbb{N}$ be the canonical encoding given by $h(w) = \prod_{i<k} p_{i}^{w_i+1}$, where $w = (w_0, \ldots, w_{|w|-1})$, and p_i is the i-th prime number. By convention $h() = 1$.

Definition 2.2 (Strong indices for finite sets of strings). For a finite set $u \subseteq \mathbb{N}^*$ let $n_u = \sum_{\eta \in u} 2^{|\eta|}$; one says that n_u is the strong index for u.

We will usually identify a finite subset of \mathbb{N}^* with its strong index.

Remark 2.3. Why “strong index”? In computability theory, by an index one usually means a (code for a) Turing program that decides a set or computes a function. Such an index can be obtained from a strong index as defined above. However, a strong index tells us more about the finite set, such as its size. This is not true for an index as a Turing program.

Unless otherwise mentioned, by a (rooted) tree T of \mathbb{N}^* we mean a nonempty subset T of \mathbb{N}^* such that $(\sigma \in T \land \rho \prec \sigma) \to \rho \in T$. For $k \in \mathbb{N}$ we write

$$T^{\geq k} = \{\sigma \in T : |\sigma| \geq k\}.$$

By $[T]$ one denotes the set of (infinite) paths of a tree T starting at the root. Our trees usually have no leaves, so $[T]$ is a closed set in Baire space $\mathbb{N}^\mathbb{N}$ equipped with the usual product topology. Note that $[T]$ is compact if and only if each level of T is finite, in other words, iff T is finitely branching. For $\sigma \in T$, let

$$[\sigma]_T = \{X \in [T] : \sigma \prec X\}.$$

That is, $[\sigma]_T$ is the cone of paths on T that extend σ. One says that T is computable if the set $\{h(\sigma) : \sigma \in T\}$ is computable.

Definition 2.4 (computably locally compact trees). Let T be a computable subtree of \mathbb{N}^* without leaves. We say that T is computably locally compact (c.l.c.) if for some $k \in \mathbb{N}$ there is a computable function $H: \mathbb{N}^k \times \mathbb{N} \to \mathbb{N}$ such that

$$\rho(i) \leq H(\rho[0,i] \mapsto i)$$

for each $\rho \in T$ of length $|\rho| > i$ and each $i < |\rho|$. In particular, $\sigma \in T^{\geq k} \to \{i : \sigma i \in T\}$ is finite.

Frequently we will have $k = 1$, so that only the root can have infinitely many successors. In this case the condition says that there is a computable function $H: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that $\rho(i) \leq H(\rho(0),i)$ for each positive $i < |\rho|$.

Given a c.l.c. tree T, the compact open subsets of $[T]$ can be algorithmically encoded by natural numbers. The notation below will be used throughout.

Definition 2.5 (Code numbers for compact open sets). Suppose that the tree T is c.l.c. tree via $k \in \mathbb{N}$. For a finite set $u \subseteq T^{\geq k}$, let

$$K_u = \bigcup_{\eta \in u}[\eta]_T.$$

By a code number for a compact open set $K \subseteq [T]$ we mean the strong index for a finite set u of strings such that $K = K_u$.

Clearly, each compact open subset K of $[T]$ is of the form K_u for some u. Such a code number is not unique (unless K is empty). So we will need to distinguish between the actual compact open set, and any of its code numbers. Note that one can decide, given $u \mathbb{N}$ as an input, whether u is a code number.
The following lemma shows that the basic set-theoretic relations and operations are decidable for sets of the form K_u, similar to the case of finite subsets of \mathbb{N}.

Lemma 2.6. Let T be a c.l.c. tree via $k \in \mathbb{N}$. Given code numbers u, w,

(i) one can compute code numbers for $K_u \cup K_w$ and $K_u \cap K_w$;

(ii) one can decide whether $K_u \subseteq K_w$. So one can, given a code number $u \in \mathbb{N}$, compute the minimal code number $u^* \in \mathbb{N}$ such that $K_u^* = K_u$.

Proof. (i) The case of union is trivial. For the intersection operation, it suffices to consider the case that u and w are singletons. For strings $\alpha, \beta \in T$, one has $[\alpha]T \cap [\beta]T = \emptyset$ if α, β are incompatible, and otherwise $[\alpha]T \cap [\beta]T = [\gamma]T$ where γ is the longest common initial segment of α, β.

(ii) Let H be a computable binary function as in Definition 2.4. It suffices to consider the case that u is a singleton. Suppose that $\alpha \in T^{[2k]}$. The algorithm to decide whether $[\alpha]T \subseteq K_w$ is as follows. Let N be the maximum length of a string in w. Answer "yes" if for each $\beta \geq \alpha$ of length N such that $\beta(i) \leq H(\alpha|k, k)$ for each $i < N$, there is $\gamma \in w$ such that $\gamma \preceq \beta$. Otherwise, answer "no".

Definition 2.7. Given a c.l.c. tree T, let E_T denote the set of minimal code numbers for compact open subsets of $[T]$. By the foregoing lemma, E_T is decidable.

3. Defining Computable T.D.L.C. Groups via Closed Subgroups of S_∞

This section, in particular Definition 3.3, spells out Type S of computable presentations of t.d.l.c. groups. It was informally described in Section 1.4.

3.1. Computable closed subgroups of S_∞.

We first provide a computable presentation of the group of permutations of \mathbb{N}. It is related to the computable presentation in [15, Def 1.2], where the group is viewed as a topological group with a computable compatible metric. However, in our presentation, an element of the group is given as a path on a tree that encodes a pair (h, h^{-1}) where h is a permutation of \mathbb{N}. This enables us to define a computable tree, denoted $Tree(S_\infty)$, each path of which corresponds to a permutation of \mathbb{N}.

Suppose strings $\sigma_0, \sigma_1 \in \mathbb{N}^*$ both have length N. By $\sigma_0 \oplus \sigma_1$ we denote the string of length $2N$ that alternates between σ_0 and σ_1. That is,

$$(\sigma_0 \oplus \sigma_1)(2i + b) = \sigma_0(i) \text{ for } i < N, b = 0, 1.$$

Similarly, for functions f_0, f_1 on \mathbb{N}, we define a function $f_0 \oplus f_1$ on \mathbb{N} by

$$(f_0 \oplus f_1)(2i + b) = f_0(i).$$

Informally, $Tree(S_\infty)$ is the tree of strings such that it is consistent that the map given by the entries at odd positions extends to an inverse of the map given by entries at even positions. Formally, let $Tree(S_\infty) = \{(\sigma \oplus \tau): \sigma, \tau \text{ are 1-1 and } \sigma(\tau(k)) = k \wedge \tau(\sigma(i)) = i \text{ whenever defined}\}$.

We view S_∞ as a group on the set of paths of $Tree(S_\infty)$. Its domain is the set of functions of the form $h \oplus h^{-1}$ where h is a permutation of \mathbb{N}; if $f = f_0 \oplus f_1$ and $g = g_0 \oplus g_1$ in S_{∞}, we define $f^{-1} = f_1 \oplus f_0$ and $gf = (g_0 \circ f_0) \oplus (f_1 \circ g_1)$. We will verify in Fact 6.6 below that these group operations are computable (in the sense of Definition 6.3).

Definition 3.1. We say that a closed subgroup C of S_∞ is computable if its corresponding tree, namely $Tree(C) = \{\eta \in Tree(S_\infty): [\eta]T \cap C = \emptyset\}$ is computable.

Remark 3.2. It is well known that the closed subgroups of S_∞ are precisely the automorphism groups of structures M with domain \mathbb{N}. Suppose that M is a computable structure, and there is an algorithm to decide whether a bijection between finite subsets of M (encoded by a strong index) can be extended to an automorphism. Then the automorphism group of M is computable. To see this, one uses that a string $\eta = \sigma \oplus \tau$ on $Tree(S_\infty)$ determines the finite injective map

$$\alpha_\eta = \{(i, k): \sigma(i) = k \vee \tau(k) = i\}$$

between finite subsets of M. This map is extendible to an automorphism of M if and only if $\eta \in Tree(C)$.

For instance, assuming a computable bijection between \mathbb{Q} and \mathbb{N}, the group $C = \text{Aut}(\mathbb{Q}, <)$ is computable: By Cantor’s back and forth argument, a bijection between finite subsets of \mathbb{Q} can be extended to an automorphism of C if and only if it preserves the ordering. There is an algorithm to decide the latter condition.

COMPUTABLY TOTALLY DISCONNECTED LOCALLY COMPACT GROUPS 9
3.2. **First definition of computably t.d.l.c. groups.** If a subgroup C of S_∞ is locally compact, then there is an $n \in \mathbb{N}$ such that $C \cap V_n$ is compact, where V_n is the group of elements of S_∞ fixing $0, \ldots, n-1$. Thus all the 1-orbits for the natural action of $C \cap V_n$ on \mathbb{N} are finite, which implies that in $\text{Tree}(C)$ each string of length $\geq 2n$ has only finitely many successors. This motivates the following definition.

Definition 3.3. Let G be a t.d.l.c. group. We say that G is computably t.d.l.c. (via a closed subgroup of S_∞) if there is a closed subgroup C of S_∞ such that $G \cong C$, and the tree

$$\text{Tree}(C) = \{ \eta \in \text{Tree}(S_\infty) : [\eta] \cap C \neq \emptyset \}$$

is c.l.c. in the sense of Definition 2.4.

In this context we will often ignore the difference between G and C. That is, we will assume that G itself is a closed subgroup of S_∞.

Recall from the introduction that $\text{Aut}(T_d)$ is the group of automorphism of the undirected tree T_d where each vertex has degree d.

Example 3.4. Let $d \geq 3$. The t.d.l.c. group $G = \text{Aut}(T_d)$ is computably t.d.l.c. via a closed subgroup of S_∞.

Proof. Via an effective encoding of the vertices of T_d by the natural numbers, we can view G itself as a closed subgroup of S_∞. A finite injection α on T_d can be extended to an automorphism of T_d if and only if it preserves distances, which is a decidable condition. Each $\eta \in \text{Tree}(S_\infty)$ corresponds to an injection on T_d via (1). So we can decide whether $[\eta]_{\text{tree}(G)} \neq \emptyset$.

We show that $\text{Tree}(G)$ is c.l.c. via $k = 1$. Note that if $\sigma \in \text{Tree}(G)$ maps $x \in T_d$ to $y \in T_d$, then every extension $\eta \in \text{Tree}(G)$ of σ maps elements in T_d at distance n from x to elements in T_d at distance n from y, and conversely. This yields a computable bound H as required in Definition 2.4. \qed

We supply a lemma showing that, given a group G as in Definition 3.3, the group operations are algorithmic when applied to its compact open subsets.

Lemma 3.5. Suppose G is computably t.d.l.c. via a closed subgroup of S_∞ (identified with G). Write $T = \text{Tree}(G)$, which by hypothesis is c.l.c. via some $k \in \mathbb{N}^+$. Recall from Definitions 2.5 and 2.7 that K_n denotes the open subset of T with code number n, where u is a strong index for a finite subset of T; $E_T \subseteq \mathbb{N}$ denotes the computable set of minimal code numbers for compact open subsets of T.

(i) There is a computable function $I : E_T \to E_T$ such that $K_{I(u)} = (K_u)^{-1}$ for each $u \in E_T$.

(ii) There is a computable function $M : E_T \times E_T \to E_T$ such that $K_{M(u,v)} = K_uK_v$ for each $u, v \in E_T$.

Proof. We will use Lemma 2.6 without special mention. For (i), let $I(u)$ be the least strong index for the set $\{ \sigma_1 \oplus \sigma_0 : \sigma_0 \oplus \sigma_1 \in u \}$. For (ii), first note that since $\text{Tree}(G)$ is c.l.c. via k, we can computably replace each string σ in u by its set of extensions on $\text{Tree}(G)$ of a given length $N \geq |\sigma|$. So we may assume that all the strings in $u \cup v$ have the same length. Hence it suffices to define $M(u,v)$ in case that $u = \{ \sigma \}$ and $v = \{ \tau \}$ where $|\sigma| = |\tau| = n$.

For such σ, τ let $m = 1 + \max(|\sigma|, |\tau|)$; that is, $m - 1$ is the maximum number occurring in any of the two strings. For strings $\gamma, \delta \in \mathbb{N}^+$ such that $|\delta| \geq 1 + \max(\gamma)$, by $\delta \cdot \gamma$ we denote the string $\langle \delta(\gamma(i)) \rangle_{i < |\gamma|}$. We will verify that for each $f \in G$,

$$f \in [\sigma][\tau] \iff \exists \beta \succ \tau \exists \alpha > \sigma \beta, \alpha \in T \land |\beta| = 2m \land |\alpha| = 2 \max(\beta) + 2 \land \beta_0 \cdot \sigma_0 \prec f_0 \land \alpha_1 \cdot \beta_1 \prec f_1,$$

where $\alpha = \alpha_0 \oplus \alpha_1$, $\beta = \beta_0 \oplus \beta_1$, and $f = f_0 \oplus f_1$ as usual. Given this, we let $M(u,v)$ be the least strong index for the set of strings $(\beta_0 \cdot \sigma_0 \oplus \alpha_1 \cdot \tau_1)$ as above, which we can compute from u and v by the hypothesis on T. This will complete the proof of (ii) of the claim.

If the left hand side of (2) holds, then $f = hg$ for some $g, h \in G$ such that $\sigma \prec g$ and $\tau \prec h$. Then the right hand side holds via $\beta = h \uparrow 2m$ and $\alpha = g \uparrow (2 \max(\beta) + 2)$.

Now suppose that the right hand side of (2) holds. Since $\beta \in T$, there is $h \in G$ such that $h \succ \beta$. Let $g = h^{-1}f$. Then $g \in G$. Since $h \succ \tau$, it suffices to show that $g \succ \sigma$. Note that by definition $f = f_0 \oplus f_1$ where $f_1 = (f_0)^{-1}$, and similarly $g = g_0 \oplus g_1$ and $h = h_0 \oplus h_1$. We have $g_0 = h_1 \circ f_0$ and $g_1 = f_1 \circ h_0$.

We check that $g_0 \succ \sigma_0$ as follows: for each $i < n$ we have $\beta_0(\sigma_0(i)) = f_0(i)$ by hypothesis. Hence $h_0(\sigma_0(i)) = f_0(i)$, so $\sigma_0(i) = h_1(f_0(i)) = g_0(i)$.

\[\]
Next, we check that $g_i \succ \sigma_i$: using $\alpha_i \cdot \beta_i \prec f_i$, for each $i < n$ we have

$$g_i(i) = f_i(h_0(i)) = f_i(\tau_0(i)) = \alpha_1(\beta_1(\tau_0(i))).$$

Since $\beta \in T$, $\beta_0 \succ \tau_0$ and $|\beta_1| > \max(\tau_0)$, we have $\beta_1(\tau_0(i)) = i$. So the value of the rightmost term is $\alpha_1(i)$, which equals $\sigma_1(i)$. □

4. Defining computably t.d.l.c. groups via meet groupoids

This section provides the detail for the second type (Type M) of computable presentations of t.d.l.c. groups described in Section 1.4.

4.1. The meet groupoid of a t.d.l.c. group. Intuitively, the notion of a groupoid generalizes the notion of a group by allowing that the binary operation is partial. A groupoid is given by a domain W on which a unary operation $(\cdot)^{-1}$ and a partial binary operation, denoted by “·”, are defined. These operations satisfy the following conditions:

(a) associativity in the sense that $(A \cdot B) \cdot C = A \cdot (B \cdot C)$, with either both sides or no side defined (and so the parentheses can be omitted);
(b) $A \cdot A^{-1}$ and $A^{-1} \cdot A$ are always defined;
(c) if $A \cdot B$ is defined then $A \cdot B \cdot B^{-1} = A$ and $A^{-1} \cdot A \cdot B = B$.

It follows from (c) that a groupoid satisfies the left and right cancellation laws. One says that an element $U \in W$ is idempotent if $U \cdot U = U$. Clearly this implies that $U = U \cdot U^{-1} = U^{-1} \cdot U$ and so $U = U^{-1}$ by cancellation. Conversely, by (c) every element of the form $A \cdot A^{-1}$ or $A^{-1} \cdot A$ is idempotent.

Definition 4.1. A meet groupoid is a groupoid $(W, (\cdot)^{-1})$ that is also a meet semilattice (W, \cap, \emptyset) of which \emptyset is the least element. Writing $A \subseteq B \iff A \cap B = A$ and letting the operation · have preference over ∩, it satisfies the conditions

(d) $\emptyset^{-1} = \emptyset = \emptyset \cdot \emptyset$, and $\emptyset \cdot A$ and $A \cdot \emptyset$ are undefined for each $A \neq \emptyset$,
(e) if U, V are idempotents such that $U \cdot V \neq \emptyset$, then $U \cap V \neq \emptyset$,
(f) $A \subseteq B \iff A^{-1} \subseteq B^{-1}$, and
(g) if A_i, B_i are defined $(i = 0, 1)$ and $A_0 \cap A_1 \neq \emptyset \neq B_0 \cap B_1$, then

$$(A_0 \cap A_1) \cdot (B_0 \cap B_1) = A_0 \cdot B_0 \cap A_1 \cdot B_1.$$ From (g) it follows and that the groupoid operations are monotonic: if $A_i \cdot B_i$ are defined $(i = 0, 1)$ and $A_0 \subseteq A_1, B_0 \subseteq B_1$, then $A_0 \cdot B_0 \subseteq A_1 \cdot B_1$. Also, if U and V are idempotent, then so is $U \cap V$ (this can also be verified based on (a)-(f) alone).

Given meet groupoids W_0, W_1, a bijection $h: W_0 \rightarrow W_1$ is an isomorphism if it preserves the three operations. Given a meet groupoid W, the letters A, B, C will range over elements of W, and the letters U, V, W will range over idempotents.

We use set theoretic notation for the meet semilattice because the ordering for the motivating examples of meet groupoids are given by set inclusion:

Definition 4.2. Let G be a t.d.l.c. group. We define a meet groupoid $W(G)$. Its domain consists of the compact open cosets in G (i.e., cosets of compact open subgroups of G), as well as the empty set. We define $A \cdot B$ to be the usual product AB in case that $A = B = \emptyset$, or A is a left coset of a subgroup V and B is a right coset of V; otherwise $A \cdot B$ is undefined.

The intersection of two cosets is empty, or again a coset. The following is easy to verify using elementary group theory.

Fact 4.3. $W(G)$ is a meet groupoid with the groupoid operations · and inversion, and the usual intersection operation ∩.

We note that $W(G)$ satisfies the axioms of inductive groupoids defined in Lawson [25, page 109]. See [8, Section 4] for more on an axiomatic approach to meet groupoids. We will apply the usual group theoretic terminology to elements of an abstract meet groupoid W. If U is an idempotent of W we call U a subgroup, if $AU = A$ we call A a left coset of U, and if $UB = B$ we call B a right coset of U.

Based on the axioms, one can verify that if $U \subseteq V$ for subgroups U, V, then the map $A \mapsto A^{-1}$ induces a bijection between the left cosets and the right cosets of U contained in V.

Remark 4.4. It is well-known [17] that one can view groupoids as small categories in which every morphism has an inverse. The elements of the groupoid are the morphisms of the category. The idempotent morphisms correspond to the objects of the category. One has $A: U \rightarrow V$ where $U = A \cdot A^{-1}$ and $V = A^{-1} \cdot A$. Thus, in $W(G)$, $A: U \rightarrow V$ means that A is a right coset of U and a left coset of V.
4.2. Second definition of computably t.d.l.c. groups.

Definition 4.5 (Haar computable meet groupoids). A meet groupoid \mathcal{W} is called **Haar computable** if

(a) its domain is a computable subset D of \mathbb{N};

(b) the groupoid and meet operations are computable in the sense of Definition 1.3; in particular, the relation $\{(x, y) \colon x, y \in D \land x \cdot y \text{ is defined}\}$ is computable;

(c) the partial function with domain contained in $D \times D$ sending a pair of subgroups $U, V \in \mathcal{W}$ to $|U : U \cap V|$ is computable.

Here $|U : U \cap V|$ is defined abstractly as the number of left, or equivalently right, cosets of the nonzero idempotent $U \cap V$ contained in U; we require implicitly that this number is always finite. Note that by (b), the partial order induced by the meet semilattice structure of \mathcal{W} is computable. Also, (b) implies that being a subgroup is decidable when viewed as a property of elements of the domain D; this is used in (c). The condition (c) corresponds to the computable bound $H(\sigma, i)$ required in (3) of Definition 2.4. For ease of reading we will say that $n \in D$ denotes a coset A, rather than saying that n “is” a coset.

Definition 4.6 (Computably t.d.l.c. groups via meet groupoids). Let G be a t.d.l.c. group. We say that G is **computably t.d.l.c.** via a meet groupoid if $\mathcal{W}(G)$ has a Haar computable copy \mathcal{W}. In this context, we call \mathcal{W} a computable presentation of G (in the sense of meet groupoids).

Remark 4.7. In this setting, Condition (c) of Definition 4.5 is equivalent to saying that every Haar measure μ on G that assigns a rational number to some compact open subgroup (and hence is rational-valued) is computable on \mathcal{W}, in the sense that the function assigning to a compact open coset A the rational $\mu(A)$ is computable. Consider left Haar measures, say. First suppose that (c) holds. Given A, compute the subgroup V such that $A = AV$, i.e., A is a left coset of V. Compute $W = U \cap V$. We have $\mu(A) = \mu(V) = \mu(U \cdot |V : W|/|U : W|)$.

Conversely, if the Haar measure is computable on \mathcal{W}, then (c) holds because $|U : V| = \mu(U)/\mu(V)$.

For discrete groups, the condition (c) can be dropped, as the proof of the following shows.

Example 4.8. A countable discrete group G is computably t.d.l.c. via a meet groupoid $\Leftrightarrow G$ has a computable copy in the usual sense of Definition 1.4.

Proof. For the implication \Leftarrow, we may assume that G itself is computable; in particular, we may assume that its domain is a computable subset of \mathbb{N}. Each compact coset in G is finite, and hence can be represented by a strong index for a finite set of natural numbers. Since the group operations are computable on the domain, this implies that the meet groupoid of G has a computable copy. It is then trivially Haar computable.

For the implication \Rightarrow, let \mathcal{W} be a Haar computable copy of $\mathcal{W}(G)$. Since G is discrete, \mathcal{W} contains a least subgroup U. The set of left cosets of U is computable, and forms a group with the groupoid and inverse operations. This yields the required computable copy of G. \hfill \Box

By \mathbb{Q}_p we denote the additive group of the p-adics. By the usual definition of semidirect products ([43, p. 27]), $\mathbb{Z} \ltimes \mathbb{Q}_p$ is the group defined on the Cartesian product $\mathbb{Z} \times \mathbb{Q}_p$ via the binary operation $(z_1, a_1) \cdot (z_2, a_2) = (z_1 + z_2, p^{-e}a_1 + a_2)$. This turns $\mathbb{Z} \ltimes \mathbb{Q}_p$ into a topological group with the product topology.

Proposition 4.9. For any prime p, the additive group \mathbb{Q}_p and the group $\mathbb{Z} \ltimes \mathbb{Q}_p$ are computably t.d.l.c. via a meet groupoid.

Proof. We begin with the additive group \mathbb{Q}_p. Note that its open proper subgroups are of the form $U_r := p^r\mathbb{Z}_p$ for some $r \in \mathbb{Z}$. Let $C_{p,\infty}$ denote the Prüfer group $\mathbb{Z}[1/p]/\mathbb{Z}$, where $\mathbb{Z}[1/p] = \{zp^{-k} \colon z \in \mathbb{Z} \land k \in \mathbb{N}\}$. For each r there is a canonical epimorphism $\pi_r: \mathbb{Q}_p \to C_{p,\infty}$ with kernel U_r: if $\alpha = \sum_{i=-n}^{\infty} s_ip^i$ where $0 \leq s_i < p$, $n \in \mathbb{N}$, we have

$$\pi_r(\alpha) = \mathbb{Z} + \sum_{i=-n}^{r-1} s_ip^{i-r};$$

here an empty sum is interpreted as 0. (Informally, $\pi_r(\alpha)$ is obtained by taking the “tail” of α from the position $r - 1$ onwards to the last position, and shifting it in order to represent an element of $C_{p,\infty}$.) So each compact open coset in \mathbb{Q}_p can
be uniquely written in the form \(D_{r,a} = \pi_r^{-1}(a) \) for some \(r \in \mathbb{Z} \) and \(a \in C_p^{\infty} \). The domain \(S \subseteq \mathbb{N} \) of the Haar computable copy \(W \) of \(W(\mathbb{Q}_p) \) consists of the natural numbers encoding such pairs \((r,a)\) according to some fixed encoding. They will be identified with the cosets they denote.

The groupoid operations are computable because we have \(D_{r,a}^{-1} = D_{-r,-a} \) and \(D_{r,a} \cdot D_{s,b} = D_{r,a+b} \) if \(r = s \), and undefined otherwise. It is easy to check that \(D_{r,a} \subseteq D_{s,b} \) iff \(r \geq s \) and \(p^{r-s}a = b \). So the inclusion relation is decidable. We have \(D_{r,a} \cap D_{s,b} = \emptyset \) unless one of the sets is contained in the other, so the meet operation is computable. Finally, for \(r \leq s \), we have \(|U_r : U_s| = p^{s-r} \) which is computable.

Next, let \(G = Z \rtimes \mathbb{Q}_p \); we build a Haar computable copy \(V \) of \(W(G) \). We will extend the listing \((D_{r,a})_{r \in \mathbb{Z}, a \in C_p^{\infty}} \) of compact open cosets in \(\mathbb{Q}_p \), given above. For each compact open subgroup \(U \) of \(G \), the projection onto \(Z \) is a compact open subgroup of \(\mathbb{Z} \), and hence trivial. So the only compact open subgroups of \(G \) are of the form \(U_r \). Let \(g \in G \) be the generator of \(\mathbb{Z} \) such that \(g^{-1}ag = pa \) for each \(a \in \mathbb{Q}_p \) (where \(\mathbb{Z} \) and \(\mathbb{Q}_p \) are thought of as canonically embedded into \(G \)). Each compact open coset of \(G \) has a unique form \(g^z D_{r,a} \) for some \(z \in \mathbb{Z} \). Formally speaking, the domain of the computable copy of \(W(G) \) consists of natural numbers encoding the triples \((z,r,a)\) corresponding to such cosets according to some fixed encoding; as before they will be identified with the cosets they denote.

To show that the groupoid and meet operations are computable, note that we have \(g D_{r,a} = D_{-r-1,a}g \) for each \(r \in \mathbb{Z}, a \in C_p^{\infty} \), and hence \(g^z D_{r,a} = D_{r-z,a}g^z \) for each \(z \in \mathbb{Z} \). Given two cosets \(g^z D_{r,a} \) and \(g^w D_{s,b} = D_{s-w,b}g^w \), their composition is defined iff \(r = s-w \), in which case the result is \(g^{r+w} D_{s,a+b} \). The inverse of \(g^z D_{r,a} \) is \(D_{r-z,a}g^{-z} = g^{-z} D_{r-z,-a} \).

To decide the inclusion relation, note that we have \(g^z D_{r,a} \subseteq g^w D_{s,b} \) iff \(z = w \) and \(D_{r,a} \subseteq D_{s,b} \), and otherwise, they are disjoint. Using this, one can show that the meet operation is computable (by an argument that works in any computable meet groupoid \(V \)): if \(A_0, A_1 \in V \), \(A_0 \cup A_1 \rightarrow V \), and \(A_0, A_1 \) are not disjoint, then \(A_0 \cap A_1 \) is the unique \(C \in V \) such that \(C \cup U_0 \cap U_1 \rightarrow V_0 \cap V_1 \). Since \(V \) satisfies Condition (c) in Definition 4.5, and \(V \) has no subgroups beyond the ones present in \(V \), we conclude that \(V \) is Haar computable.

5. Uniform equivalence of two definitions of computably t.d.l.c.

We show that Definitions 3.3 and 4.6 of computably t.d.l.c. groups are equivalent in a computationally uniform way. This provides a first evidence for the robustness of this class of t.d.l.c. groups.

Theorem 5.1.

A group \(G \) is computably t.d.l.c. via a closed subgroup of \(S_\infty \) \iff \(G \) is computably t.d.l.c. via a meet groupoid. Moreover, from a presentation of \(G \) of one type, one can effectively obtain a presentation of \(G \) of the other type.

Proof. “\(\Rightarrow \)”: Suppose that \(G \) is computably t.d.l.c. as a closed subgroup of \(S_\infty \). To save on notation, we may assume that \(G \) itself is a closed subgroup of \(S_\infty \), showing this. We will obtain a Haar computable copy of its meet groupoid \(W(G) \).

Recall from Definition 2.7 that \(E = E_{\text{tree}}(G) \subseteq \mathbb{N} \) is the decidable set of minimal code numbers for compact open subsets of \(G \). For \(u \in E \) we can decide whether \(K_u \) is a subgroup: this is the case precisely when \(K_{M(u,u)} = K_u \) and \(K_{I(u)} = K_u \), where the computable functions \(I,M \) were defined in Lemma 3.5. We can also decide whether \(B = K_v \) is a coset: this is the case precisely when \(BB^{-1} \) is a subgroup \(U \) (in which case \(B \) is its right coset). Equivalently, \(K_{M(v,I(v))} = K_{M(v,I(v))} \), which is a decidable condition.

The domain \(D \) of the computable copy of \(W(G) \) is the subset of \(E \) consisting of the the code numbers for cosets. For cosets \(A = K_u, B = K_v \in W(G) \) recall that \(A \cdot B \) is defined iff \(A \) is a left coset of a subgroup \(V \) such that \(B \) is a right coset of \(V \). Equivalently, \(K_{M(v,I(v))} = K_{M(v,I(v))} \), which is a decidable condition. So the groupoid operations and meet operation are computable.

It remains to show that, \(u,v \in D \) coding subgroups \(U,V \), one can compute \(|U : U \cap V| \). To do so, one enumerates (code numbers in \(D \) of) left cosets of \(U \cap V \) contained in \(U \), until their union equals \(U \). (There is an algorithm to decide the latter condition by Lemma 2.6(i).) Then one outputs the number of cosets found.
whose paths can be viewed as permutations.

To carry this out, we introduce an operator G_{comp} from meet groupoids to permutation groups that will be needed frequently later on. In case that W is a copy of the meet groupoid of G, the operator produces the permutation group given by this left action of G. However, the operator can be defined based on the meet groupoid alone, and thus can be seen as a dual of the operator $G \to \mathcal{W}(G)$ obtained in the first part of the proof.

We emphasise that the elements of S_∞ are not actually permutations, but paths p on $\text{Tree}(S_\infty)$ encoding pairs consisting of a permutation and its inverse. Nonetheless, if $A \in W$ is denoted by x, below we often suggestively write $p(A)$ for the element of W denoted by $p(2x)$.

Definition 5.2. Given a meet groupoid W with domain $D \subseteq \mathbb{N}$, let $\tilde{G} = G_{\text{comp}}(W)$ be the closed subgroup of S_∞ consisting of elements p such that $p(2x), p(2x + 1) \in D$ for each $x \in D$, $p(2x) = p(2x + 1) = x$ for each $x \notin D$, and

1. p preserves the meet operation of W.
2. $p(A) \cdot B = p(A \cdot B)$ whenever $A \cdot B$ is defined.

The formal conditions expressing (a) and (b) state that: for all $x, y \in D$, we have $p(2(x \cap y)) = p(2x) \cap p(2y)$; if $x \cdot y$ is defined then so is $p(2x) \cdot y$, and $p(2x) \cdot y = p(2(x \cdot y))$. Note that such p can be identified with the automorphisms of the structure obtained from W which, instead of composition, for each B has the partial unary operation $A \mapsto A \cdot B$.

Suppose now that W is as in Definition 4.6. Then there is an isomorphism of meet groupoids $W \to \mathcal{W}(G)$, which below we will use to identify W and $\mathcal{W}(G)$. We can make the assumptions that $0 \in D$, and that 0 denotes a subgroup U in W, without affecting the uniformity statement of the theorem: otherwise we can search W for the least n such that n is a subgroup, and then work with a new copy of $\mathcal{W}(G)$ where the roles of 0 and n are swapped.

We note that for each subgroup $U \in \mathcal{W}(G)$, the set $B = p(U)$ is a left coset of U since $B \cdot U = p(U) \cdot U = p(U \cdot U) = B$. Define a group homomorphism $\Phi: G \to \tilde{G}$ by letting $\Phi(g)$ be the element of S_∞ corresponding to the left translation by g, i.e. $A \mapsto gA$ where $A \in \mathcal{W}(G)$. (See the comment after Definition 5.2.) Note that Φ is injective because the compact open subgroups form a neighbourhood basis of 1: if $g \neq 1$ then $g \notin U$ for some compact open subgroup U, so that $\Phi(g)(U) \neq U$.

Claim 5.3. $\Phi: G \to \tilde{G}$ is an isomorphism of topological groups.

To show that Φ is onto, let $p \in \tilde{G}$. Clearly the subgroups form a filter in $\mathcal{W}(G)$. Using (a) this implies that $\{p(U) : \ U \in \mathcal{W}(G)\}$ is also a filter on $\mathcal{W}(G)$. Since this filter contains a compact set, there is an element g in its intersection. Then $\Phi(g) = p$, since the set $B = p(U)$ is a left coset of U, it equals gU. So, if A is a right coset of U, then $p(A) = p(U \cdot A) = B \cdot A = gA$.

To show that Φ is continuous at 1 (and hence continuous), note that a basis of neighbourhoods of the identity in \tilde{G} is given by the open sets

$$\{p \in \tilde{G} : \forall i \leq n [p(A_i) = A_i]\},$$

where $A_1, \ldots, A_n \in \mathcal{W}(G)$. Given such a set, suppose A_i is a right coset of U_i, and let $U = \bigcap U_i$. If $g \in U$ then $gA_i = A_i$ for each i. By the open mapping theorem for Hausdorff groups Remark 1.2 Φ is open. This verifies the claim.

To complete the proof of the implication “\Leftarrow” of the theorem, we now show that Tree(\tilde{G}) is c.l.c. as in Definition 2.4, so that \tilde{G} is a computable presentation of G via a closed subgroup of S_∞ as required. The following claim will be used to show that Tree(\tilde{G}) is computable, using the assumption that W is a computable meet groupoid. As usual by A, B we denote compact open cosets of G, identified here with elements of $D \subseteq \mathbb{N}$, the domain of W.

Claim 5.4. A finite injection α on \mathbb{N} can be extended to some $p \in \tilde{G} \iff \alpha(x) = x$ for each $x \notin D$, and
is decidable. Clearly \(\exists x \): Let \(g \) be an element of the intersection. Then \(gA = B \cdot A^{-1} \cdot A = B = \alpha(A) \) for each \(A \in \text{dom}(\alpha) \), \(\Rightarrow \): Suppose \(p \in \tilde{G} \) extends \(\alpha \). By Claim 5.3, there is \(g \in G \) such that \(p = \Phi(g) \). Then \(gA = p(A) = B \) for each \(A,B \) such that \(\alpha(A) = B \). Such \(A,B \) are right cosets of the same subgroup. Hence \(B \cdot A^{-1} \) is defined, and clearly \(g \) is in the intersection. This establishes the claim.

Recall from (1) in Subsection 3.1 that a string \(\sigma \oplus \tau \in \text{Tree}(S_\infty) \) gives rise to a finite injection \(\alpha_{\sigma \oplus \tau} \), defined by \(\alpha_{\sigma \oplus \tau}(r) = s \) iff \(\sigma(r) = s \lor \tau(s) = r \). So
\[
S = \{ \sigma \oplus \tau : \alpha_{\sigma \oplus \tau} \text{ can be extended to some } p \in \tilde{G} \}
\]
is a subtree of \(\text{Tree}(S_\infty) \) with no leaves that is computable because the condition in Claim 5.4 is decidable. Clearly \(\tilde{G} = [S] \), and hence \(S = \text{Tree}(\tilde{G}) \).

Claim 5.6 below will verify that \(S \) is a c.l.c. tree in the sense of Definition 2.4 by providing a computable bound \(H \). The following lemma does the main work, and will also be used later on, such as the proof of Prop. 8.2 below. Informally, it says that given some subgroup \(U \in W \), if one declares that \(p \in \tilde{G} \) has a value \(L \in W \) at \(U \), then one can compute for any \(F \in W \) the finite set of possible values of \(p \) at \(F \).

Lemma 5.5. Suppose that \(U \in W \) is a subgroup and \(L \) is a left coset of \(U \). Let \(F \in W \). One can uniformly in \(U, L, F \) compute a strong index for the finite set \(\mathcal{L} = \{ p(F) : p \in [S] \land p(U) = L \} \).

To see this, first one computes \(V = F^{-1}F \), so that \(F \) is a right coset of the subgroup \(V \). Next one computes \(k = |U : U \cap V| \), the number of left cosets of \(U \cap V \) in \(U \). Note that \(\mathcal{L}_0 = \{ p(U \cap V) : p \in [S] \land p(U) = L \} \) is the set of left cosets of \(U \cap V \) contained in \(L \). Clearly this set has size \(k \). By searching \(W \) until all of its elements have appeared, one can compute a strong index for this set. Next one computes a strong index for the set \(\mathcal{L}_1 \) of left cosets \(E \) of \(V \) such that \(C \subseteq E \) for some \(C \in \mathcal{L}_0 \) (this uses that, given \(C \), one can compute \(E \)). Finally one outputs a strong index for the set \(\{ EF : E \in \mathcal{L}_1 \} \), which equals \(\mathcal{L} \). This proves the lemma.

For the following recall that the computable set \(D \subseteq \mathbb{N} \) is the domain of \(W \), and that \(0 \in D \) denotes a subgroup \(U \). If \(a, b \in D \) denote left cosets \(L_0, L_1 \) of \(U \), then the string \((a, b) \) is extended by a path \(p \in [S] \) iff \(p(U) = L_0 \) and \(p^{-1}(U) = L_1 \).

Claim 5.6. There is a computable binary function \(H \) such that, if \(\sigma \) is the string \((a, b) \) and \(\alpha \in S \) (so that \(a, b \in D \)), and \(\rho \in S \) extends \(\sigma \), then \(\rho(i) \leq H(\sigma, i) \) for each \(i < |\rho| \). Thus, the tree \(S \) is c.l.c. via the parameter \(k = 2 \).

To see this, let \(v = [i/2] \). If \(v \notin D \), let \(H(\sigma, i) = i \). Otherwise, let \(F \) be the coset denoted by \(v \). If \(i = 2v \), let \(L \) be the coset denoted by \(a \). If \(i = 2v + 1 \), let \(L \) be the coset denoted by \(b \). Applying Lemma 5.5 to \(U, L, F \), one can compute \(H(\sigma, i) \) as the greatest number denoting an element of \(\{ p(F) : p \in [S] \land p(U) = L \} \).

Understanding the automorphism group via the meet groupoid. The meet groupoid \(W(G) \) might turn out to be a useful tool for studying \(G \), independently of algorithmic considerations. For a general locally compact group \(G \), the group \(\text{Aut}(G) \) becomes a Polish group via the Braconnier topology, given by the sub-basis of identity neighbourhoods of the form
\[
\Delta(K, U) = \{ \alpha \in \text{Aut}(G) : \forall x \in K[\alpha(x) \in Ux \land \alpha^{-1}(x) \in Ux] \},
\]
where \(K \) ranges over the compact subsets of \(G \), and \(U \) over the identity neighbourhoods of \(G \). As noted in [3, Appendix A], \(\text{Aut}(G) \) with this topology is Polish (assuming that \(G \) is countably based). For a t.d.l.c. group \(G \), the following shows that \(\text{Aut}(G) \) can be viewed as the automorphism group of a countable structure.

Proposition 5.7. Let \(G \) be a t.d.l.c. group. The group \(\text{Aut}(G) \) with the Braconnier topology is topologically isomorphic to \(\text{Aut}(W(G)) \), via the map \(\Gamma \) that sends \(\alpha \in \text{Aut}(G) \) to its action on \(W(G) \), that is, \(B \mapsto \alpha(B) \).

Proof. It is clear that \(\Gamma \) is an injective group homomorphism. To show that \(\Gamma \) is continuous, consider an identity neighbourhood of \(\text{Aut}(W(G)) \), which we may assume to have the form \(\{ \beta : \beta(A_i) = A_i, i = 1, \ldots, n \} \) where \(A_i \in W(G) \). Let \(U = \bigcap_i A_i^{-1} \) and \(K = \bigcup A_i \). Then \(\alpha \in \Delta(K, U) \) implies \(\alpha(A_i) = A_i \) for each \(i \).

It remains to show that \(\Gamma \) is onto: then, since \(\text{Aut}(G) \) and \(\text{Aut}(W(G)) \) are Polish, \(\Gamma \) is open (see e.g. [12, Th. 2.3.3]), and hence a topological group isomorphism. For a direct argument that \(\Gamma \) is onto, see Prop 8.5 on the 2022 Logic Blog posted on arXiv.
Given the work already done, here it is easier, however, to derive ontoness using the isomorphism $\Phi : G \to \tilde{G}$ defined in the proof of the implication "⇒" of Theorem 5.1. The map Φ can be defined in the absence of algorithmic considerations. (We can now choose $D = \mathbb{N}$, ignoring the trivial case that G is finite. Furthermore, in the argument below we may ignore the fact that the elements of \tilde{G} are not literally permutations of \mathbb{N}.)

Let $\Phi^* : \text{Aut}(G) \to \text{Aut}(\tilde{G})$ be the isomorphism induced by $\Phi : G \to \tilde{G}$, namely,

$$\Phi^*(\alpha) = \Phi \circ \alpha \circ \Phi^{-1}.$$

Let $\Theta : \text{Aut}(\mathcal{W}(G)) \to \text{Aut}(\tilde{G})$ be the 1-1 map given by

$$\Theta(\beta)(p) = \beta \circ p \circ \beta^{-1},$$

for any $\beta \in \text{Aut}(\mathcal{W}(G))$ and $p \in \tilde{G}$. It is clear that $\Theta(\beta)(p) \in \tilde{G}$, and $\Theta(\beta)$ is a continuous automorphism of \tilde{G}. The following diagram summarizes the maps.

$$\begin{array}{ccc}
\text{Aut}(\tilde{G}) & \xrightarrow{\Phi^*} & \text{Aut}(\mathcal{W}(G)) \\
\circ & & \circ \\
\text{Aut}(G) & \xrightarrow{\Theta} & \text{Aut}(\tilde{G})
\end{array}$$

To verify that Γ is onto, we show that $\Theta \circ \Gamma = \Phi^*$. We use letters p,q,r for elements of \tilde{G}. Let $p \in \tilde{G}$, $\alpha \in \text{Aut}(G)$ and $C \in \mathcal{W}(G)$ be arbitrary. Firstly, note that $\Theta(\Gamma(\alpha))$ is the map sending p to q and $C \in \mathcal{W}(G)$ is arbitrary. Secondly, recall from the proof of Theorem 5.1 that $\{\Phi^{-1}(p)\} = \bigcap_U \alpha(U)$ where U ranges through the compact open subgroups of G. So $\Phi^*(\alpha)(p)$ is the map r sending C to $\bigcap_U \alpha(pU)\alpha^{-1}(C)$.

We verify that $q = r$. If B is a left coset of a subgroup W, we have $p(B) = \bigcap_U \alpha(U)\alpha^{-1}(C)$. Both sides are left cosets of W, and we have $p(B) = p(V)B \supseteq \bigcap_U \alpha(U)\alpha^{-1}(C)$. Letting $B = \alpha^{-1}(C)$ yields

$$q(C) = r(C).$$

Applying α to both sides of this equation shows that $q(C) = r(C)$. \hfill \Box

6. Computable functions on the set of paths of computable trees

This section provides preliminaries on computability of functions that are defined on the set of paths of computable trees without leaves. These preliminaries will be used in Section 7 to introduce computable Baire presentations of t.d.l.c. groups, as well as in much of the rest of the paper. Most of the content of this section can either be seen as a special case of known results in abstract computable topology, or can be derived from such results. These results stem from the study of computably compact metric spaces; some of them need to be extrapolated to the locally compact setting. They can be found in the recent surveys [19, 6]. However, with the reader in mind who has little background in computability or computable topology, we prefer to provide intuition and elementary proofs for the computability notions and results that are needed later on, rather than referring to such more general results.

Let T be a computable subtree of \mathbb{N}^* without leaves. To define that a function which takes arguments from the potentially uncountable domain $[T]$ is computable, one descends to the countable domain of strings on T, where the usual computability notions work. The first definition, 6.1 below, will apply when we show in Corollary 8.4 that the modular function on a computable presentation of a t.d.l.c. group is computable. As a further example, in Fact 8.6 we will show that given a computable presentation of a t.d.l.c. group via a closed subgroup of S_∞, the function $m(g,V)$ related to the scale function, defined in the introduction, is computable. For the notion of partial computable functions on \mathbb{N}, see the remark after Definition 1.3. We assume some standard effective encoding of strings by numbers.

We define what it means to say that $\Phi : [T] \times \mathbb{N} \to \mathbb{N}$ is computable. The intuition is that a partial computable function P_Φ represents the behaviour of a so-called oracle Turing machine computing Φ. Given $f \in [T]$, the machine has the list of the values $f(0), f(1), f(2), \ldots$ written on a special “oracle” tape, and attempts to find the value $\Phi(f,w)$ via queries of the type “what is the value of $f(q)$?”, where q is determined during the computation. If a string σ is an initial
segment of \(f \) and \(P_\sigma(\sigma,w) = m \), then with the answers given by \(\sigma \), the machine can find this value \(m \). Clearly any extension \(\tau \) of \(\sigma \) will then yield the same value: this is Condition (1). Condition (2) says that sufficiently many queries will lead to an answer. By \(f \mid n \) one denotes the length \(n \) initial segment of \(f \).

Definition 6.1. (a) A function \(\Phi : [T] \times \mathbb{N} \to \mathbb{N} \) is computable if there is a partial computable function \(P_\Phi \) defined on a subset of \(T \times \mathbb{N} \), with values in \(\mathbb{N} \), such that

1. If \(\sigma \preceq \tau \in T \), then \(P_\Phi(\sigma,n) = k \) implies \(P_\Phi(\tau,n) = k \);
2. If \(f \in [T] \), then \(\Phi(f,w) = k \) iff there is an \(n \) such that \(P_\Phi(f \mid n, w) = k \).

(b) A function \(\Psi : [T] \to \mathbb{N} \) is computable if the function \(\Phi(f,n) = \Psi(f) \) (which ignores the number input) is computable in the sense above.

By (2), \(\Phi \) is continuous (where \(\mathbb{N} \) carries the discrete topology).

Example 6.2. Let \(T = \mathbb{N}^+ \). The function \(\Phi(f,n) = \sum_{i=0}^{n} f(i) \) is computable. The oracle Turing machine, with \(f \) “written” on the oracle tape, queries the values of \(f(i) \) for \(i = 0, \ldots, n \) one by one and adds them.

We next rephrase Definition 6.1 in a form that will matter when we discuss computability for groups where the domain can be of the form \([T]\) for any computable tree without leaves. We will need to express that the group operations are computable. In the setting of closed subgroups of \(S_\infty \), this is the case automatically; for the inversion operation, it is due to the particular presentation of \(S_\infty \) we chose (Fact 6.6 below).

Given a computable tree \(R \) without leaves, there is a computable tree without leaves \(T = R^2 \) such that \([T]\) can be canonically identified with \([R] \times [R] \): namely, \(T \) consists of the initial segments of strings \(\sigma_0 \sqcup \sigma_1 \) where \(\sigma_i \in R \) have the same length. Given this identification, a path \(f \) on \(T \) can be written as \(\langle f_0, f_1 \rangle \) where \(f_i \in [R] \).

Definition 6.3 (Computable functions on the set of paths). Let \(R, S, T \) be computable trees without leaves. A function \(\Phi : [T] \to [S] \) is called computable if the function \(\tilde{\Phi} : [T] \times \mathbb{N} \to \mathbb{N} \) given by \(\tilde{\Phi}(g,n) = \Phi(g)(n) \) is computable in the sense of Definition 6.1. A function \(\Psi : [R] \times [R] \to [S] \) is computable if the function \(\tilde{\Psi} : R^2 \to [S] \) is computable, where \(\tilde{\Psi}(\langle f_0, f_1 \rangle) = \Psi(f_0,f_1) \).

It is intuitively clear, and not hard to check from the definitions, that the composition of computable unary functions on sets of paths is again computable. The topology on the space \([T]\) is induced by a complete metric: for instance, for \(f \neq g \), let \(d(f,g) = 1/n \) where \(n \) is least such that \(f(n) \neq g(n) \). Taking the usual “\(\varepsilon, \delta \)” definition, one sees that \(\Phi : [T] \to [S] \) is continuous at \(f \) if for each \(k \) there is \(n \) such that for each \(g \in [T] \), if \(f \mid n \preceq g \mid n \) then \(\Phi(f) \mid \kappa = \Phi(g) \mid \kappa \). The definitions above can be seen as algorithmic versions of continuity, where one can compute the output \(\Phi(f) \) up to \(k \) from a sufficiently long part of the input \(f \).

Notation 6.4. Suppose that a function \(P \) is as in 6.1 above, and suppose that for each \(\sigma \in T \), the value \(P(\sigma,n) \) is only defined for finitely many \(n \). We write \(P(\sigma) = \rho \) if \(\rho \in \mathbb{N}^+ \) is the string of maximal length such that \(P(\sigma,n) = \rho(n) \) for each \(n < \|\rho\| \).

Clearly \(P \) as a function on strings is monotonic: if \(\sigma \preceq \tau \) then \(P(\sigma) \preceq P(\tau) \). While \(P \) is not partial computable in general, we can think of \(P(\sigma) \) as the eventual output of a finite process depending on computations \(P(\sigma,k) \) converging for larger and larger \(k \).

Remark 6.5. Suppose instead we start by defining a monotonic partial computable function \(P \) on strings such that \(\Psi(f) = \bigcup_{\kappa} \{P(f \mid \kappa) : f \mid \kappa \in \text{dom}(P)\} \). Then defining the partial computable function \(P(\sigma,n) \) as \(P(\sigma)(n) \) for any \(n < P(\sigma) \) shows that \(\Psi \) is computable in the sense of 6.1. In the algebraic applications below such as Proposition 7.8, we will usually proceed in this way. In fact, the domain of \(P \) will usually be a computable set given by a simple combinatorial condition. So the function \(P \) is computable in the sense of Definition 1.6.

Recall that in Section 3.1 we introduced a special way of presenting the elements of \(S_\infty \) as paths \(f = f_0 \sqcup f_1 \) on a directed tree \(\text{Tree}(S_\infty) \) that keep track of both the permutation \(f_0 \) and its inverse \(f_1 \). For \(f, g \in [\text{Tree}(S_\infty)] \), we defined the group operations of \(S_\infty \) by \(f^{-1} = f_1 \sqcup f_0 \) and \(gf = (g_0 \circ f_0) \sqcup (f_1 \circ g_1) \).

Fact 6.6. The group operations of \(S_\infty \) are computable.

Proof. We define partial computable monotonic functions \(P_1 \) and \(P_2 \) on \(\text{Tree}(S_\infty) \) and \(\text{Tree}(S_\infty)^2 \), respectively, according to Remark 6.5. For the inverse, let \(P_1(\sigma_0 \sqcup \sigma_1) = \sigma_1 \sqcup \sigma_0 \).
\(\sigma_1 = \sigma_1 \oplus \sigma_0 \), where \(|\sigma_0| = |\sigma_1| \). For the binary group operation, given strings \(\tau = \tau_0 \oplus \tau_1 \) and \(\sigma = \sigma_0 \oplus \sigma_1 \) of the same, even length, let \(t \) be greatest such that for each \(r < t \), \(\rho_0(r) := \tau_0(\sigma_0(r)) \) and \(\rho_1(r) := \tau_1(\sigma_1(s)) \) are defined. Let \(P_2(\tau, \sigma) = \rho_0 \oplus \rho_1 \), a string of length \(2t \).

The following lemma is an algorithmic version of the fact that each continuous function defined on a compact space is uniformly continuous. This is well-known in computable analysis. Here we restrict ourselves to the setting of paths spaces \([K]\) that are compact in an effective way (as given by the bound \(H \) below).

Lemma 6.7. Suppose that \(K \) and \(S \) are computable trees without leaves. Suppose further that there is a computable function \(H \) such that \(\sigma(i) < H(i) \) for each \(\sigma \in K \) and \(i < |\sigma| \). Let \(\Phi: [K] \to [S] \) be computable via a partial computable function \(P: K \times N \to N \).

(i) There is a computable function \(g \) as follows: for each \(n \),

\[\forall \rho \in K \forall i < n \ [|\rho| = g(n) \to P(\rho, i) \text{ is defined}] \]

Moreover, \(g \) is obtained uniformly in \(K \) and \(h \).

(ii) If \(\Phi \) is a bijection then \(\Phi^{-1} \) is computable, via a partial computable function that is obtained uniformly in \(K, H, S \) and \(P \).

Intuitively, given the metric on \([K]\) discussed above, the function \(g \) in (i) computes the “\(\delta \)” in the definition of uniform continuity from the “\(\varepsilon \)”: if \(\delta = 1/n \) we have \(\varepsilon = 1/g(n) \). In computability terms, this means that, to obtain \(n + 1 \) output symbols, we need at most \(g(n) \) input symbols.

Proof. (i) Given \(i \in N \), consider the subtree of \(K \) consisting of the strings \(\rho \) such that \(P(\rho, i) \) is undefined. If this subtree is infinite, then there is a path \(f \in [K] \) such that \(\Phi(f)(i) \) is undefined, contradiction. Thus for each \(n \) a possible value \(g(n) \) as above exists. Using the hypotheses on \(K \), given \(n \) one can search for the least such value and output it as \(g(n) \).

(ii) To show \(\Phi^{-1} \) is computable, we define a partial computable function \(Q: [S] \times N \to N \). Clearly \([S]\) is compact and \(\Phi^{-1} \) is continuous. Hence there is a computable function \(h \) with \(h(t) \geq t \) for each \(t \) as follows: given \(s \in N \), for each \(\rho \in K \) of length \(g(h(s)) \), the values \(P(\rho, i) \) for \(i < h(s) \) together determine \(\rho[\ast \ast] \). For a string \(\beta \in S \) of length \(h(s) \) and \(k < s \), define \(Q(\beta, k) = \rho(k) \) where \(\rho \in K \) is a string of length \(g(h(s)) \) with \(P(\rho, i) = \beta(i) \) for each \(i < h(s) \). It is easy to verify that \(Q \) shows that \(\Phi^{-1} \) is computable, and that \(Q \) is obtained uniformly in the given data. For a proof in a more general setting see [7, Thm. 4.2.48].

The rest of this section discusses computable functions on the set of paths of c.l.c. trees. Given such a tree \(T \), recall from Definition 2.5 that by \(K_u \) we denote the compact open subset of \([T]\) with code number \(u \in N \). That is, \(u \) is the strong index for a set of strings \(\{\alpha_1, \ldots, \alpha_r\} \subseteq T \) such that \(K_u = \bigcup_{i \leq r} [\alpha_i]_T \). If there is more than one tree under discussion, we will write \(K_{u,T} \) for the subset of \([T]\) with code number \(u \). First, we establish a useful interaction between computable functions \([T] \to [S] \) and such sets. This generalizes Lemma 2.6(ii) where \(\Phi \) is the identity function.

Lemma 6.8. Let \(T \) and \(S \) be c.l.c. trees. Suppose a function \(\Phi: [T] \to [S] \) is computable via a partial computable function \(P_\Phi \). Given code numbers \(u, w \), one can decide whether \(\Phi(\mathcal{K}_u^T) \subseteq \mathcal{K}_w^S \).

Proof. Suppose that \(u \) is a strong index for the set of strings \(\{\alpha_1, \ldots, \alpha_r\} \subseteq T \), and \(w \) is a strong index for the set of strings \(\{\beta_1, \ldots, \beta_s\} \subseteq S \). Let \(K \) be the subtree of \(T \) consisting of the prefixes, or extensions, of some \(\alpha_i \). Clearly one can uniformly obtain a computable bound \(h \) for this \(K \) in Lemma 6.7. Let \(n = \max_{i \leq r} |\beta_i| \). Let \(N = g(n) \) be the length computed from \(n \) through that Lemma. Then \(\Phi(\mathcal{K}_u^T) \subseteq \mathcal{K}_w^S \) if and only if for each \(\alpha \in K \) of length \(N \), there is an \(i \) such that \(P_\Phi(\alpha) \supseteq \beta_i \). By Lemma 6.7, this condition is decidable.

To prove Proposition 7.8 below, we will need a criterion on whether, given a computable subtree \(S \) of a c.l.c. tree \(T \) (where \(S \) potentially has leaves), the maximally pruned subtree of \(S \) with the same set of paths is computable.

Proposition 6.9. Let \(T \) be a c.l.c. tree such that only the root is infinitely branching. Let \(S \) be a computable subtree of \(T \), and suppose that there is a uniformly computable dense sequence \(\{f_i\}_{i \in N} \) in \([S]\). Then the tree \(\tilde{S} = \{\sigma : [\sigma]_S \neq \emptyset\} \) is decidable. (It follows that \(\tilde{S} \) is c.l.c. Of course, \([\tilde{S}] = [S] \).)
7. Defining computably t.d.l.c. groups via Baire presentations

This section spells out the third type of computable presentations of t.d.l.c. groups described in Section 1.4, Type B, which generalises Type S. We call them computable Baire presentations.

It is well-known that each 0-dimensional Polish space \(X \) is homeomorphic to the path space \([T]\) for some tree \(T \subseteq \mathbb{N}^*\); see [21, I.7.8]. Clearly \(X \) is locally compact if and only if for each \(f \in [T] \) there is an \(n \) such that the tree above \(f[n] \) is finitely branching. Considering the set of prefix minimal strings \(\sigma \in T \) such that \([\sigma]_T \) is compact, it is easy to see that we may replace \(T \) by a tree such that only the root can have infinitely many successors. So in our effective setting, it is natural to work with a domain of the presentation that has the form \([T]\) for a c.l.c. tree \(T \), and require that the group operations on \([T]\) be computable. (In fact, while the previous types of computable presentation were group-specific, in the present setting the same approach would work for other types of algebraic structure defined on \([T]\).) We will show in Thm. 7.6 that the resulting notion of computably t.d.l.c. group is equivalent to the previous ones.

Despite this equivalence, as presentations, computable Baire presentations offer more flexibility than the first type (Type S), which relied on closed subgroups of \(S_\infty \). This will be evidenced by our proofs that some algebraic groups over local fields, such as \(SL_n(Q_p) \), are computable.

Definition 7.1. A computable Baire presentation is a topological group of the form \(H = ([T], \text{Mult}, \text{Inv}) \) such that

1. \(T \) is computably locally compact as defined in 2.4;
2. \(\text{Mult} : [T] \times [T] \to [T] \) and \(\text{Inv} : [T] \to [T] \) are computable.

We say that a t.d.l.c. group \(G \) is computably t.d.l.c. (via a Baire presentation) if \(G \cong H \) for such a group \(H \).

We verify next that for profinite groups and for countable discrete groups, our notion of computable presentability (type B) for t.d.l.c. groups coincides with the notions established in the literature. First we provide the formal definition of a computable profinite presentation.

Definition 7.2 (la Roche [24], Smith [46]). A computable profinite presentation of a profinite group \(G \) is a uniformly computable sequence of strong indices of finite groups \(A_i \) and finite surjective maps \(\phi_i : A_i \to A_{i-1} \) such that \(G = \lim_{\leftarrow i} (A_i, \phi_i) \).

Proposition 7.3. Given a computable profinite presentation of \(G \), one can effectively obtain a computable Baire presentation of \(G \).

Proof. We use the notation of Definition 7.2. Let \(n_i = |A_i| \). By the hypotheses one can effectively identify the elements of \(A_i \) with \(\{0, \ldots, n_i - 1\} \). Let

\[
T = \{ \sigma \in \mathbb{N}^*: \forall i < |\sigma| [\sigma(i) < n_i \land |i| > 0 \rightarrow \phi_i(\sigma(i)) = \sigma(i - 1)] \}.
\]

It is clear from the hypotheses that \(T \) is c.l.c. via \(k = 0 \) (Definition 2.4). To show that the binary group operation \(\text{Mult} \) on \([T]\) is computable, for strings \(\sigma_0, \sigma_1 \) on \(T \) of the same length \(k + 1 \), let \(P_2(\sigma_0, \sigma_1) \) be the unique string \(\tau \in T \) of length \(k + 1 \) such that in \(A_k \) one has \(\sigma_0(k)\sigma_1(k) = \tau(k) \). The inversion operation \(\text{Inv} \) on \([T]\) is computable by a similar argument. \(\square \)

We will see in Prop. 12.6 that the converse holds as well. So, for profinite groups our definition of computably t.d.l.c. group coincides with the existing one. We note that Smith [46] already obtained this equivalence, using a different terminology.

Proposition 7.4. A discrete group \(G \) has a computable presentation in the usual sense of Definition 1.4 if and only if it has a computable Baire presentation.

Proof. “\(\Rightarrow \)”: Let the computable set \(D \subseteq \mathbb{N} \) be the domain of the computable presentation. For the computable Baire presentation, we take the c.l.c. tree

\[
T_G = \{ r0^k : r \in D \land k \in \mathbb{N} \},
\]
and the operations canonically defined on $[T_G]$ via partial computable functions that only regard the first entry of the oracle strings.

“⇒”: By Theorem 7.6 proved shortly below, G has a computable presentation via a meet groupoid. It now suffices to invoke Example 4.8. \hfill \Box

By Fact 6.6, each computable presentation of G as a closed subgroup of S_∞ (Definition 3.3) is a computable Baire presentation. Lemma 3.5 showed that for a computable presentation as a closed subgroup of S_∞, the group theoretic operations on compact open sets are algorithmic. In the more general setting of computable Baire presentations, a weak version of Lemma 3.5 still holds. Recall from Definition 2.7 that given a c.l.c. tree T, by E_T we denote the set of minimal code numbers u such that K_u is compact.

Lemma 7.5. Let G be computably t.d.l.c. via a computable Baire presentation $([T],\text{Mult},\text{Inv})$.

(i) There is a computable function $I: E_T \to E_T$ such that for each $u \in E_T$, one has $K_{I(u)} = (K_u)^{-1}$. (ii) Given $u,v,w \in E_T$, one can decide whether $K_u K_v \subseteq K_w$.

Proof. (i) By Lemma 6.8 one can decide whether $K_u \subseteq (K_w)^{-1}$. The equality $K_u = (K_w)^{-1}$ is equivalent to $K_u \subseteq (K_w)^{-1} \land K_w \subseteq (K_u)^{-1}$. So one lets $I(u)$ be the least index v such that this equality holds. (ii) Let \widetilde{T} be the tree of initial segments of strings of the form $\sigma_0 \oplus \sigma_1$, where $\sigma_0, \sigma_1 \in T$ have the same length. Then \widetilde{T} is a c.l.c. tree, $[\widetilde{T}]$ is naturally homeomorphic to $[T] \times [T]$, and Mult can be seen as a computable function $[\widetilde{T}] \to [T]$. Now one applies Lemma 6.8. \hfill \Box

As discussed at the beginning of this section, the following adds a further equivalent condition to Theorem 5.1.

Theorem 7.6.

A group G is computably t.d.l.c. via a Baire presentation \iff G is computably t.d.l.c. via a meet groupoid.

From a presentation of G of one type, one can effectively obtain a presentation of G of the other type.

Proof. “⇐”: This follows from the corresponding implication in Theorem 5.1. “⇒”: We build a Haar computable copy W of the meet groupoid $W(G)$ as required in Definition 4.6. By Lemma 7.5, one can decide whether $u \in E_T$ is the code number (Definition 2.5) of a subgroup. Furthermore, one can decide whether $B = K_w$ is a left coset of a subgroup $U = K_u$: this holds iff $BU \subseteq B$ and $BB^{-1} \subseteq U$, and the latter two conditions are decidable by Lemma 7.5. Similarly, one can decide whether B is a right coset of U.

It follows that the set $V = \{w \in E_T: K_w$ is a coset$\}$ can be obtained via an existential quantification over a computable binary relation; in other words, V is recursively enumerable (r.e.). A basic fact from computability theory states that from a description of V as an r.e. set one can uniformly obtain a computable set $\hat{D} \subseteq N^+$ and a computable bijection $\theta: \hat{D} \to V$. (Here \hat{D} is the set of “stages” at which new elements are enumerated into V; one can assume that at each stage $n \in \hat{D}$ exactly one element $\theta(n)$ is enumerated.) Write $A_n = K_{\theta(n)}$ for $n \in \hat{D}$, and $A_0 = \emptyset$.

The domain of W is $D = \hat{D} \cup \{0\}$. By Lemma 2.6 the intersection operation on W is computable, i.e., there is a computable binary function c on N such that $A_{c(n,k)} = A_n \cap A_k$. Given $n,k \in N \setminus \{0\}$ one can decide whether A_n is a right coset of the same subgroup that A_k is a left coset of. In that case, one can compute the number r such that $A_r = A_n \cdot A_k$; one uses that A_r is the unique coset C such that

(a) $A_n A_k \subseteq C$, and
(b) C is a right coset of the same subgroup that A_k is a right coset of.

As in the corresponding implication in the proof of Theorem 5.1, for subgroups U,V, one can compute $[U: U \cap V]$ by finding in W further and further distinct left cosets of $U \cap V$ contained in U, until their union reaches U. The latter condition is decidable. \hfill \Box

Notation 7.7. Given a computable Baire presentation G, by $W_{\text{comp}}(G)$ we denote the computable copy of $W(G)$ obtained in the proof above.
Proposition 7.8. Let p be a prime, and let $n \geq 2$. Let \mathbb{Q}_p and $F_p(t)$ denote the rings of p-adic numbers, and Laurent series over \mathbb{F}_p, respectively. The t.d.l.c. groups $\text{SL}_n(\mathbb{Q}_p)$ and $\text{SL}_n(F_p(t))$ have computable Baire presentations.

Proof. We provide the proof for the groups $\text{SL}_n(\mathbb{Q}_p)$, and then indicate the changes that are necessary for the groups $\text{SL}_n(F_p(t))$. We begin by giving a computable Baire presentation of \mathbb{Q}_p as a ring.

Let Q be the tree of strings $\sigma \in \mathbb{N}^*$ such that all the entries, except possibly the first, are among $\{0, \ldots, p-1\}$, and $r0 \not\in \sigma$ for each $r > 0$. Clearly Q is c.i.c. via $k = 1$ (Definition 2.4). We think of a string $\sigma \in Q$ as denoting the rational number $p^r\sigma \in \mathbb{Z}[1/p]$, where $n\sigma$ is the natural number that has σ as a p-ary expansion, written in reverse order:

$$n\sigma = \sum_{i<|\sigma|} p^i\sigma(i).$$

The condition that $r0 \not\in \sigma$ for each $r > 0$ expresses that p does not divide $n\sigma$ unless $r = 0$. Let σ, τ be strings over $\{0, \ldots, p-1\}$ of the same length ℓ. By $\sigma + \tau$ we denote the string ρ of the same length ℓ such that $n\rho = n\sigma + n\tau \mod p^\ell$. By $\sigma \cdot \tau$ we denote the string ρ of length 2ℓ such that $n\rho = n\sigma n\tau \mod p^{2\ell}$.

We now provide partial computable functions P, P_1, P_2, P_3 according to Remark 6.5 that are defined on computable subsets of the trees Q or Q^2, in order to show that various operations on $[Q]$ are computable according to Definition 6.3. For a string of the form $rr\sigma$ let

$$P(rr\sigma) = (r-k)\tau,$$

where $k \in \mathbb{N}$ is maximal such that $k \leq r$ and $0^k \leq \sigma$, and τ is the rest, i.e. $0^k\tau = \sigma$. To show the computability of the function $q \rightarrow -q$, let

$$P_1(rr\sigma) = \tau \tau \text{ where } |\tau| = |\sigma| \text{ and } \sigma + \tau = 0 \mod p|\sigma|.$$

To show that the addition operation is computable, if $r, s \in \mathbb{N}$ and σ, τ are strings such that $r + |\tau| = s + |\sigma|$, let

$$P_2(r\sigma, s\tau) = \begin{cases} P(s(0^{s-r}\sigma + \tau)) & \text{if } r \leq s \\ P(r(\sigma + 0^{s-r}\tau)) & \text{otherwise.} \end{cases}$$

To show that the multiplication operation is computable, let

$$P_3(r\sigma, s\tau) = \begin{cases} P((2s)(0^{s-r}\sigma \cdot \tau)) & \text{if } r \leq s \\ P((2r)(\sigma \cdot 0^{s-r}\tau)) & \text{otherwise.} \end{cases}$$

P_2 and P_3 are the correct functions because, say for $r \leq s$, in $\mathbb{Z}[1/p]$ one has $p^{r-1}n\sigma + p^{s-r}n\tau = p^{s-s-r}n\sigma + p^{s-r}n\tau$, and $p^{r-1}n\sigma p^{s-r}n\tau = p^{2s-r}n\sigma n\tau$.

We next provide a computable Baire presentation $([T], \text{Mult}, \text{Inv})$ of $\text{SL}_n(\mathbb{Q}_p)$ as in Definition 7.1. Let T be the c.i.c. tree that is an n^2-fold “power” of Q. More precisely, $T = \{\sigma : \forall i < n^2 [\sigma^i \in Q]\}$, where σ^i is the string of entries of σ in positions of the form $\ell n^2 + i$ for some $\ell, i \in \mathbb{N}$. Clearly, $[T]$ is c.i.c. via $k = n^2$, and T can be naturally identified with the matrix algebra $M_n(\mathbb{Q}_p)$. By the computability of the ring operations on Q_p as verified above, the matrix product is computable as a function $[T] \times [T] \rightarrow [T]$, and the function $\text{det} : [T] \rightarrow [Q]$ is computable.

Note that for any c.i.c. trees T and R, any computable path f of R, and any computable function $\Phi : [T] \rightarrow [R]$, there is a computable subtree S of T such that $[S]$ equals the pre-image $\Phi^{-1}(f)$. (In the language of computable analysis, the pre-image is effectively closed.) To see this, suppose that Φ is computable according to Definition 6.3 via a partial computable function L taking pairs in $T \times N$ to N. Let S consists of the strings $\sigma \in T$ of length t such that t steps of the attempted computations $L(\sigma, k)$ don’t yield a contradiction to the hypothesis that the output of the oracle Turing machine equals f. More formally,

$$S = \{ \sigma \in T : \forall k < |\sigma|[L_{|\sigma|}(\sigma, k) \text{ is defined } \rightarrow L_{|\sigma|}(\sigma, k) = f(k)] \}.$$

In our setting, applying this to the function $\text{det} : [T] \rightarrow [Q]$ and the path $f = 01000 \ldots$ that denotes $1 \in \mathbb{Q}_p$, we obtain a computable subtree S of T such that $[S]$ can be identified with $\text{SL}_n(\mathbb{Q}_p)$.

It is well-known that $\text{SL}_n(\mathbb{Z}[1/p])$ is dense in $\text{SL}_n(\mathbb{Q}_p)$. This is a special case of strong approximation for algebraic groups (see [40, Ch. 7]), but can also be seen in an elementary way using Gaussian elimination. The paths on S corresponding to matrices in $\text{SL}_n(\mathbb{Z}[1/p])$ are precisely the ones that are 0 from some point on. Clearly there is a computable listing (f_i) of the set of such paths. So by Proposition 6.9 one can replace S by a c.i.c. tree \tilde{S} such that $[\tilde{S}] = [S]$.

To obtain a computable Baire presentation based on \(\tilde{S} \), note that matrix multiplication on \([\tilde{S}]\) is computable as the restriction of matrix multiplication on \([T]\). To define the matrix inversion operation \(\text{Inv} \), we use the fact that the inverse of a matrix with determinant 1 equals its adjugate matrix; the latter can be obtained by computing determinants on minors.

Next we treat \(SL_n(\mathbb{F}_p((t))) \). To give a Baire presentation of \(\mathbb{F}_p((t)) \) as a ring, we use the same tree \(T \) as above, but now think of a string \(\sigma \tau \) as representing the finite Laurent series \(t^{-r} n_\sigma \in \mathbb{Z}/[1/p] \), where \(n_\sigma = \sum_{t < |\sigma|} t^i \sigma(i) \). For strings \(\sigma, \tau \) over \(\{0, \ldots, p-1\} \) and of the same length \(\ell \), by \(\sigma + \tau \) we denote the string \(\rho \) of length \(\ell \) such that \(n_\rho = n_\sigma + n_\tau \mod p^\ell \). By \(\sigma \cdot \tau \) we denote the string \(\rho \) of length \(2\ell \) such that \(n_\rho \equiv n_\sigma n_\tau \mod p^{2\ell} \). Now the ring operations are computable via the partial computable functions defined as for the case of \(\mathbb{Q}_p \), but with the new interpretation of the symbols ‘+’ and ‘∗’ as operations on strings. The remainder of the proof didn’t use any particulars about the computable Baire presentation of the ring \(\mathbb{F}_p((t)) \), besides the fact that the path denoting 1 is computable; this carries over to the present case. It is known that \(SL_n(\mathbb{F}_p((t))) \), the group of matrices over finite Laurent series with determinant 1, forms a dense subgroup of \(SL_n(\mathbb{F}_p((t))) \), so from here on we can argue as before.

□

8. More on the equivalences of notions of computable presentation

Theorem 5.1 and its extension Theorem 7.6 showed that our various notions of computable presentation of a t.d.l.c. group are equivalent. This section obtains extra information from the proofs of these equivalences. The main result of this section, Thm. 8.2 will show that, given a computable Baire presentation \([T], \text{Mult}, \text{Inw}\) of a t.d.l.c. group \(G \), one can effectively obtain a computable presentation of \(G \) via a closed subgroup \(\tilde{G} \) of \(S_\infty \), with an isomorphism \(\Phi: [T] \to \tilde{G} \) so that both \(\Phi \) and \(\Phi^{-1} \) are computable. The presentation based on a closed subgroup of \(S_\infty \) can be seen as an “improved” computable Baire presentation. For instance, the group operations on compact open subsets of \(G \) are fully computable by Lemma 3.5, while in the general case we only have the weaker form Lemma 7.5.

The section then proceeds to two applications of Thm. 8.2: computability of the modular function, and computability of Cayley-Abels graphs. For a compactly generated t.d.l.c. group \(G \), its Cayley-Abels graphs are generalisations of the usual Cayley graphs in the setting of a (discrete) finitely generated group. We will show that each Cayley-Abels graph can be interpreted via first-order formulas with parameters in the meet groupoid of \(G \). The interpretation is constructed in such a way that if \(G \) is computably t.d.l.c., the graphs are computable in a uniform way.

In Section 8.3 we apply Thm. 8.2 to obtain an upper bound on the computational complexity of the scale function. As a further application, in Section 10 we will obtain an equivalent criterion on whether a t.d.l.c. group \(G \) has a unique computable Baire presentation up to computable group homeomorphism: any two Haar computable copies of its meet groupoid \(\mathcal{W}(G) \) are computably isomorphic. This is useful because uniqueness of a computable presentation is easier to show for countable structures. In Theorem 10.6 we will apply the criterion to show the uniqueness of a computable Baire presentation for the additive groups of the \(p \)-adic integers and the \(p \)-adic numbers, as well as for \(\mathbb{Z} \times \mathbb{Q}_p \).

Besides the computability theoretic concepts introduced in Section 6, we will need a fact on continuous, open functions on the set of paths of c.l.c. trees. It deduces the computability of such a function from the hypothesis that its action on the compact open sets is computable in terms of their code numbers. Similar to the results in Section 6, this is a special case of a result in the field of computable topology; see [6, Lemma 2.13]. However, we prefer to present a short, elementary proof.

Proposition 8.1. Let \(T \) and \(S \) be c.l.c. trees (see Definition 2.4), and let the function \(\Phi: [T] \to [S] \) be continuous and open. Suppose that there is a computable function \(f: \mathbb{N} \to \mathbb{N} \) such that for each code number \(u \) one has \(\Phi(K^T_u) = K^S_{f(u)} \). Then

(i) \(\Phi \) is computable;
(ii) if \(\Phi \) is a bijection then \(\Phi^{-1} \) is computable as well.

Proof. (i) To show \(\Phi \) is computable, we define a partial computable function \(P_\Phi \) on \(T \) with values in \(S \) according to Remark 6.5. Given \(\sigma \in T \) such that \([\sigma]_T \) is compact, compute \(u \) such that \(K^T_u = [\sigma]_T \). Let \(\{\beta_1, \ldots, \beta_s\} \subseteq S \) be the finite set
with strong index \(f(u) \). Let \(\eta = P_g(\sigma) \) be the longest common initial segment of the strings \(\beta_i \). Note that with the standard ultrametric on \([S]\), the set \([\eta]_S\) is a closed ball centred at any element of \(K^S_{f(u)} \), with the same diameter as \(K^S_{f(u)} \). So if \(\sigma \preceq \tau \in T \) then \(|P_g(\sigma)|_S \geq |P_g(\tau)|_S \). This shows that \(P_g \) is monotonic. Since \(\Phi \) is continuous, one has

\[
\Phi(f) = \bigcup_n \{ P_k(f \mid _n) : f \mid _n \in \text{dom}(P_k) \}
\]
as required.

(ii) By Lemma 2.6 applied to \(S \), there is a computable function \(g \) that is “inverse” to \(f \) in the sense such that for each \(\sigma \) such that \(\Phi^{-1}(K^S_{\sigma}) = K^T_{g(\sigma)} \). Now one applies (i) to \(\Phi^{-1} \) and \(g \).

\[\square \]

8.1. Computable action on the meet groupoid. Towards the main result of this section, let \(G = ([T], \text{Mult}, \text{Inv}) \) be a computable Baire presentation of a t.d.l.c. group. Let \(W \) be the computable copy of \(W(G) \) with domain \(D \) given by the proof of “\(\Rightarrow \)” in Thm. 7.6. Recall (Notation 7.7) that we write \(W = W_{\text{comp}}(G) \). Let \(\tilde{G} = G_{\text{comp}}(W) \) as in Definition 5.2. Let \(\Phi \colon G \to \tilde{G} \) be given by the action \((g,A) \mapsto gA \); see near the end of the proof of the implication “\(\Leftarrow \)” of Thm. 5.1.

Theorem 8.2. Let \(G, W, \tilde{G} \) and the homeomorphism \(\Phi \colon G \to \tilde{G} \) be as defined above.

(i) \(\Phi \) is computable, with a computable inverse.

(ii) The action \([T] \times D \to D \), given by \((g,A) \mapsto gA \), is computable.

Proof.

(i) Write \(S = \text{Tree}(\tilde{G}) \). By Prop 8.1 it suffices to show that there is a computable function \(f \) such that \(\Phi(K^S_{\sigma}) = K^T_{f(\sigma)} \) for each code number \(u \).

We may assume that \(\Phi(K^T_\sigma) \) is of the form \(A \cap B \) where \(A \) is a left coset of a subgroup \(U \) such that \(B \) is a right coset of \(U \): trivially a group \(G \) is the union of the right cosets of any given subgroup; hence such sets form a basis of the topology of \(G \). And by Lemma 2.6, given a general compact set \(K^T_{\sigma} \) one can effectively write it as a finite union of sets of this form.

If \(K^T_{\sigma} \) is of the form \(A \cap B \) as above, we have

\[
\Phi(K^T_{T(\sigma)}) = \{ p \in \tilde{G} : p(U) = A \land p^{-1}(U) = B \}.
\]

Given any \(F \in W \), by Lemma 5.5 we can compute bounds on \(p(F) \) and \(p^{-1}(F) \) whenever \(p \in \Phi(K^S_{\sigma}) \), letting \(L = A \) and \(L = B \) respectively. Recall the set \(E_T \) from Definition 2.7, and recall from the proof of “\(\Rightarrow \)” in Thm. 7.6 that \(\theta \colon D \to E_T \) is a 1-1 function with range the minimal code numbers of compact open cosets in \(G \); we write \(A_n \) for the coset with code number \(\theta(n) \), and often identify \(A_n \) with \(n \).

Suppose that \(U = A_n \). Let \(f(u) \) be a strong index for the finite set of strings \(\beta \in S \) of length \(2n + 2 \) such that

(a) \(A_{2n} = A \) and \(A_{2n+1} = B \),

(b) for \(r < 2n \) of the form \(2i \), \(\beta(r) \) is less than the bound on \(p(F) \) given by Lemma 5.5 where \(\theta \) is the same for \(L = A \) and \(F = A_i \),

(c) for \(r < 2n \) of the form \(2i + 1 \), \(\beta(r) \) is less than the bound on \(p^{-1}(F) \) given by Lemma 5.5 where \(\theta \) is the same for \(L = B \) and \(F = A_i \).

Then \(\Phi(K^T_{T(\sigma)}) = K^T_{f(\sigma)} \) as required.

(ii) Formally, by Definition 6.3, the left action is computable iff \(\Phi \) is computable. Informally speaking, we use an oracle Turing machine that has as an oracle a path \(g \) on \([T]\), and as an input an \(A \in W \). If \(A \) is a left coset of a subgroup \(V \), it outputs the left coset \(B \) of \(V \) such that it can find a string \(\sigma < g \) with \([\sigma]T.A \subseteq B \).

\[\square \]

Note (ii) implies that the right action is also computable, using that \(Ag = (g^{-1}A^{-1})^{-1} \) and inversion is computable both in \(G \) and in \(W \).

We apply the theorem to obtain a computable version of the open mapping theorem for t.d.l.c. groups (Remark 1.2) in the case of a bijection. (This shows that the inverse of \(\Phi \) in (i) of the theorem is in fact automatically computable.)

Corollary 8.3. Let \(G, H \) be t.d.l.c. groups given by computable Baire presentations, and let \(\Psi \colon G \to H \) be a computable bijection that is a group homomorphism. Then \(\Psi^{-1} \) is computable.

Proof. Since \(\Psi \) is a continuous group isomorphism, it is open by the open mapping theorem. Fix a compact open subgroup \(U \) of \(G \). Then \(V = \Psi(U) \) is a compact open subgroup of \(H \). Let \(\langle a_i \rangle_{i \in \mathbb{N}} \) be a uniformly computable sequence of left coset
We can choose representatives of U in G. To obtain this, fix an effective numbering $(\sigma_k)_{k \in \mathbb{N}}$ of $\text{Tree}(G)$, and let k_ℓ be a uniformly computable path of $\text{Tree}(G)$ extending σ_k. Let $(a_i)_{i \in \mathbb{N}}$ be the subsequence of $(k_\ell)_{\ell \in \mathbb{N}}$ obtained by deleting k_ℓ if $k_\ell U = bU$ for some $\ell < k$. Now $(\Psi(a_i))_{i \in \mathbb{N}}$ is a uniformly computable sequence of left coset representatives for V in H. By (ii) of the theorem, the sequences of (code numbers for) compact open cosets $K_i := a_i U$ and $S_i := \Psi(K_i) = \Psi(a_i) V$ are uniformly computable.

By Lemma 6.7(ii), we have a “local” computable inverse $\Theta_i: S_i \to K_i$ of the restriction $\Psi_i|_{K_i}$, given by uniformly partial computable functions Q_i with arguments in $\text{Tree}(H) \times \mathbb{N}$, according to Definition 6.3. To show that Ψ^{-1} is computable, intuitively, using a path $h \in H$ as an oracle, compute the i such that $h \in S_i$, and output $\Theta_i(h)$. More formally, define a partial computable function Q as follows: given $\sigma \in \text{Tree}(H)$ and $n \in \mathbb{N}$, search for i such that $[\sigma]_{\text{Tree}(H)} \subseteq S_i$. If i is found, simulate the computation for $Q_i(\sigma, n)$ and give the corresponding output. \hfill \qed

8.2. Modular function, and Cayley-Abels graphs. In Subsection 1.2 we discussed the modular function $\Delta: G \to \mathbb{R}^+$. As our second application of Theorem 8.2, we show that for any computable presentation, the modular function is computable.

Corollary 8.4. Let G be computably t.d.l.c. via a Baire presentation $([T], \text{Mult}, \text{Inv})$. Then the modular function $\Delta: [T] \to \mathbb{Q}^+$ is computable.

Proof. We use the notation of Theorem 8.2. Let $V \in W$ be any subgroup. Given $g \in [T]$, by (ii) of the theorem compute $A = gV$. Compute $U \in W$ such that A is a right coset of U, and hence $A = Ug$. For any left Haar measure μ on G, we have

$$
\Delta(g) = \mu(A)/\mu(U) = \mu(V)/\mu(U).
$$

By Remark 4.7 we can choose μ computable; so this suffices to determine $\Delta(g)$. \hfill \qed

Our third application of the theorem is to show computability of the Cayley-Abels graphs, discussed in the introduction. Let G be a t.d.l.c. group that is compactly generated, i.e., algebraically generated by a compact subset. Then there is a compact open subgroup U, and a set $S = \{s_1, \ldots, s_k\} \subseteq G$ such that $S = S^{-1}$ and $U \cup S$ algebraically generates G. The Cayley-Abels graph $\Gamma_{S,U} = (V_{S,U}, E_{S,U})$ of G is given as follows. The vertex set $V_{S,U}$ is the set $L(U)$ of left cosets of U, and the edge relation is

$$
E_{S,U} = \{(gU, gsU) : g \in G, s \in S\}.
$$

Some background and original references are given in Section 5 of [55]. For more detailed background see Part 4 of [52], or [23, Section 2]. If G is discrete (and hence finitely generated), then $\Gamma_{S,\{1\}}$ is the usual Cayley graph for the generating set S. Any two Cayley-Abels graphs of G with the shortest path distance are quasi-isometric. Here a quasi-isometry between metric spaces (X,d_X) and (Y,d_Y) is a map $\psi: X \to Y$ such that for some $k, c \in \mathbb{N}^+$, one has $\forall y \in Y \exists x \in X d_Y(\psi(x), y) \leq c$, and $\forall x, x' \in X [d_X(x,x') - c \leq d_Y(\psi(x),\psi(x')) \leq k d_X(x,x') + c]$. Also see [23, Definition 3] or [52].

Theorem 8.5. Suppose that G is computably t.d.l.c. and compactly generated.

(i) Each Cayley-Abels graph $\Gamma_{S,U}$ of G has a computable copy \mathcal{L}. Given a Haar computable copy W of the meet groupoid $\mathcal{W}(G)$, one can obtain \mathcal{L} effectively from $U \in W$ and the left cosets $C_i = s_i U$, where $\{s_1, \ldots, s_k\}$ is as above.

(ii) If $\Gamma_{S',V}$ is another Cayley-Abels graph obtained as above, then $\Gamma_{S,U}$ and $\Gamma_{S',V}$ are computably quasi-isometric.

(iii) Given a computable Baire presentation of G based on a tree $[T]$, let $W = W_{\text{comp}}(G)$ be the computable copy of its meet groupoid as in Notation 7.7. Then the left action $[T] \times \mathcal{L} \to \mathcal{L}$ is also computable.

Proof. (i) For the domain of the computable copy \mathcal{L}, we take the computable set of left cosets of U. We show that the edge relation is first-order definable from the parameters in such a way that it can be verified to be computable as well.

Let $V_i = C_i \cdot C_i^{-1}$ so that C_i is a right coset of V_i. Let $V = U \cap \bigcap_{i \leq \ell \leq k} V_i$. To first-order define E_G in \mathcal{W} with the given parameters, the idea is to replace the elements g in the definition of E_G by left cosets P of V, since they are sufficiently accurate approximations to g. It is easy to verify that $(A, B) \in E_G \iff$

$$
\exists \ell \leq k \exists P \in L(V) \exists Q \in L(V_i) [P \subseteq A \land P \subseteq Q \land B = Q \cdot C_i],
$$
where \(L(U) \) denotes the set of left cosets of a subgroup \(U \): For the implication \(\Leftarrow \)
let \(g \in P \); then we have \(A = gU \) and \(B = gsU \). For the implication \(\Rightarrow \),
given \(A = gU \) and \(B = gsU \), let \(P \in L(V) \) such that \(g \in P \).

We verify that the edge relation \(E_T \) is computable. Since \(W \) is Haar computable,
by the usual enumeration argument we can obtain a strong index for the set of left cosets
of \(V \) contained in \(A \). Given \(P \) in this set and \(i \leq k \), the left coset \(Q = Q_{P,i} \)
of \(V_i \) in the expression above is unique and can be determined effectively. So we
can test whether \(\langle A, B \rangle \in E_T \) by trying all \(P \) and all \(i \leq k \) and checking whether
\(B = Q_{P,i} \cdot C_i \).

It is clear from the argument that we obtained \(\mathcal{L} \) effectively from the parameters
\(U \) and \(C_i \).

(ii) First suppose that \(V \subseteq U \). There is a computable map \(\psi: L(U) \to L(V) \)
such that \(\psi(A) \subseteq A \) for each \(A \in L(U) \). The proof of [23, Thm. 2+] shows that
\(\psi: \Gamma_{S,U} \to \Gamma_{S',V} \) is a quasi-isometry. In the general case, let \(R \subseteq G \) be a
finite symmetric set such that \((U \cap V) \cup R \) algebraically generates \(G \). There are
computable quasi-isometries \(\phi: \Gamma_{S,U} \to \Gamma_{R,U \cap V} \) and \(\psi: \Gamma_{S',V} \to \Gamma_{R,U \cap V} \) as above.
There is a computable quasi-isometry \(\theta: \Gamma_{R,U \cap V} \to \Gamma_{S',V} \) inverting \(\psi \): given a
vertex \(y \in L(U \cap V) \), let \(x = \theta(y) \) be a vertex in \(L(V) \) such that \(\psi(x) \) is at distance
at most \(c \) from \(y \), where \(c \) is a constant for \(\psi \) as above. Then \(\theta \circ \phi \) is a quasi-isometry
as required. (iii) follows immediately from Theorem 8.2(ii).

8.3. Algorithmic properties of the scale function. In Subsection 1.2 we discussed the
define function \(s: G \to \mathbb{N}^+ \) for a t.d.l.c. group \(G \), introduced by Willis [53].
Recall that for a compact open subgroup \(V \) of \(G \) and an element \(g \in G \) one defines
\(m(g,V) = |gVg^{-1}:V \cap gVg^{-1}| \), and
\(s(g) = \min\{m(g,V): V \text{ is a compact open subgroup}\} \).

Willis proved that the scale function is continuous, where \(\mathbb{N}^+ \) carries the discrete
topology. He introduced the relation that a compact open subgroup \(V \) is tidiy for \(g \),
and showed that this condition is equivalent to being minimizing for \(g \) in the sense that
\(s(g) = m(g,V) \). Möller [35] used graph theoretic methods to show that \(V \) is
minimizing for \(g \) if and only if \(m(g^k,V) = m(g,V)^k \) for each \(k \in \mathbb{N} \). He also
derived the “spectral radius formula”: for any compact open subgroup \(U \), one has
\(s(g) = \lim_k m(g^k,U)^{1/k} \).

For this section, fix a computable Baire presentation \([T],\text{Mult},\text{Inv})\) of a t.d.l.c.
group \(G \) as in Definition 7.1. Let \(W = W_{\text{comput}}(G) \) be the Haar computable copy
of \(W(G) \) given by Notation 7.7. Recall that the domain of \(W \) is a computable
set \(D \). Via \(W \), we can identify compact open cosets of \(G \) with natural numbers.
The following is immediate from Theorem 7.6 and Theorem 8.2.

Fact 8.6. The function \(m: [T] \times D \to D \) (defined to be 0 if the second argument
is not a subgroup) is computable.

Here and in Section 11, we will study whether the scale function, seen as a
function \(s: [T] \to \mathbb{N} \), is computable in the sense of Definition 6.1. We note that
neither Möller’s spectral radius formula, nor the tidiyng procedure of Willis (see
again [55]) allow to compute the scale in our sense. The scale is computable iff one
can algorithmically decide whether a subgroup is minimizing:

Fact 8.7. The scale function on \([T]\) is computable iff the following function \(\Phi \)
is computable in the sense of Definition 6.1: if \(g \in [T] \) and \(V \) is a compact open
subgroup of \(G \), then \(\Phi(g,V) = 1 \) if \(V \) is minimizing for \(g \); otherwise \(\Phi(g,V) = 0 \).

Proof. \(\Rightarrow \): An Oracle Turing machine with oracle \(g \) searches for the first \(V \)
that is minimizing for \(g \), and outputs \(m(g,V) \).

\(\Leftarrow \): For oracle \(g \), given input \(V \) check whether \(m(g,V) = s(g) \). If so output 1,
otherwise 0. \(\square \)

We next provide a fact restricting the complexity of the scale function. We say that
a function \(\Psi : [T] \to \mathbb{N} \) is computably approximable from above if there is a
computable function \(\Theta : [T] \times \mathbb{N} \to \mathbb{N} \) such that \(\Theta(f,r) \geq \Theta(f,r+1) \) for each
\(f \in [T], r \in \mathbb{N} \), and
\(\Psi(f) = k \) iff \(\lim_r \Theta(f,r) = k \).

Fact 8.8. The scale function is computably approximable from above.

Proof. Let \(\Theta(f,r) \) be the minimum value of \(m(f,s) \) over all \(s \leq r \). \(\square \)
The following example is well-known ([55, Example 2]); we include it to show that our framework is adequate as a general background for case-based approaches to computability for t.d.l.c. groups used in earlier works.

Example 8.9 (with Stephan Tornier). For \(d \geq 3 \), the scale function on \(Aut(T_d) \) in the computable presentation of Example 3.4 is computable.

Proof. An automorphism \(g \) of \(T_d \) has exactly one of three types (see [11]):

1. \(g \) fixes a vertex \(v \): then \(s(g) = 1 \) because \(g \) preserves the stabilizer of \(v \), which is a compact open subgroup.
2. \(g \) inverts an edge: then \(s(g) = 1 \) because \(g \) preserves the set-wise stabilizer of the set of endpoints of this edge.
3. \(g \) translates along an axis (a subset of \(T_d \) that is a homogeneous tree of degree 2): then \(s(g) = (d - 1)^{\ell} \) where \(\ell \) is the length. To see this, for \(\ell = 1 \) one uses as a minimizing subgroup the compact open subgroup of automorphisms that fix two given adjacent vertices on the axis. For \(\ell > 1 \) one uses that \(s(r^k) = s(r)^k \) for each \(k \) and \(r \in Aut(T_d) \); see again [53].

The oracle machine, with a path corresponding to \(g \in Aut(T_d) \) as an oracle, searches in parallel for a witness to (1), a witness to (2), and a sufficiently long piece of the axis in (3) so that the shift becomes visible. It then outputs the corresponding value of the scale. \(\square \)

9. Closure properties of the class of computably t.d.l.c. groups

All computable presentations in this section will be Baire presentations (see Definition 7.1), and we will usually view a t.d.l.c. group \(G \) concretely as a computable Baire presentation. Extending the previous notation in the setting of closed subgroups of \(S_\infty \), by \(Tree(G) \) we denote the c.l.c. tree underlying this computable Baire presentation. The following is immediate.

Fact 9.1 (Computable closed subgroups). Let \(G \) be a computably t.d.l.c. group. Let \(H \) be a closed subgroup of \(G \), and note that \(Tree(H) \) is a subtree of \(Tree(G) \). Suppose that \(Tree(H) \) is computable, and hence c.l.c. Then \(H \) is computably t.d.l.c. via the Baire presentation based on \(Tree(H) \), with the operations of \(G \) restricted to \(H \).

For instance, consider the closed subgroups \(U(F) \) of \(Aut(T_d) \) introduced by Burger and Mozes [2], where \(d \geq 3 \) and \(F \) is a subgroup of \(S_2 \). By Example 3.4 together with the preceding fact, each group \(U(F) \) is computably t.d.l.c. For another example, consider the computable Baire presentation of \(SL_2(\mathbb{Q}_p) \) given by Proposition 7.8. Let \(S \) be the c.l.c. subtree of \(T \) whose paths describe matrices of the form \(\begin{pmatrix} r & 0 \\ 0 & s \end{pmatrix} \) (so that \(s = r^{-1} \)). This yields a computable Baire presentation of the group \((\mathbb{Q}_p^*)^2 \).

Proposition 9.2. For each prime \(p \) and \(n \geq 2 \), the group \(GL_n(\mathbb{Q}_p) \) is computably t.d.l.c.

Proof. We employ the embedding \(F: GL_n(\mathbb{Q}_p) \to SL_{n+1}(\mathbb{Q}_p) \) which extends a matrix \(A \) to the matrix \(B \) where the new row and new column vanish except for the diagonal element (which necessarily equals \((\det A)^{-1} \)). Clearly there is a c.l.c. subtree \(S \) of the c.l.c. subtree of \(T \) in Proposition 7.8 for \(n + 1 \) such that \([S] = \text{range}(F) \). Now we apply Fact 9.1. \(\square \)

A further construction staying within the class of t.d.l.c. groups is the semidirect product based on a continuous action. In the effective setting, we use actions that are computable in the sense of Section 6. For computable actions in the more general context of Polish groups, see [32].

Proposition 9.3 (Closure under computable semidirect products). Let \(G, H \) be computably t.d.l.c. groups. Suppose \(\Gamma: G \times H \to H \) is a computable function (as in Definition 6.3) that specifies an action of \(G \) on \(H \) via topological automorphisms. Then the topological semidirect product \(L = G \rtimes \Gamma H \) is computably t.d.l.c.

Proof. Let \(T \) be the tree obtained by interspersing strings of the same length from the trees of \(G \) and \(H \), i.e.

\[T = \{ \sigma \oplus \tau : \sigma \in Tree(G) \land \tau \in Tree(H) \}. \]

It is clear that \(T \) is a c.l.c. tree. Via the natural bijection

\[[T] \to [Tree(G)] \times [Tree(H)], \]
one can write elements of L in the form (g,h) where $g \in \text{[Tree}(G)]$ and $h \in \text{[Tree}(H)]$.

By the standard definition of a semidirect product ([43, p. 27]), writing the operations for G and H in the usual group theoretic way, we have

\[
\begin{align*}
\text{Mult}(g_1, h_1), (g_2, h_2) &= (g_1 g_2, \Gamma(g_2, h_1) h_2) \\
\text{Inv}(g, h) &= (g^{-1}, (\Gamma(g^{-1}, h))^{-1}).
\end{align*}
\]

This shows that Mult and Inv are computable, and hence yields a computable Baire presentation $([T], \text{Mult}, \text{Inv})$ for L.

\[\square\]

Remark 9.4. The foregoing proposition leads to a different proof that $\text{GL}_n(Q_p)$ is computably t.d.l.c. (Proposition 9.2). To simplify notation we let $n = 2$; it is not hard to generalise the argument below to a general n. As mentioned after Fact 9.1, there is a computable Baire presentation of (Q_p^*, \cdot).

We have $\text{GL}_2(Q_p) = Q_p^* \times Q \text{SL}_2(Q_p)$ via the inclusion embedding of $\text{SL}_2(Q_p)$, the embedding $q \to \begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix}$ of Q_p^*, and the computable action $\Phi(q, \begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \begin{pmatrix} a & q^{-1}b \\ qc & d \end{pmatrix}$.

Note that the two computable Baire presentations of $\text{GL}_2(Q_p)$ obtained above are computably isomorphic: one maps $(q, \begin{pmatrix} a & b \\ c & d \end{pmatrix})$ to $\begin{pmatrix} qa & qb \\ c & d \end{pmatrix}$, for each $q \to \begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix}$.

Given a sequence of t.d.l.c. groups $(G_i)_{i \in \mathbb{N}^+}$, the direct product $\prod_{i \in \mathbb{N}^+} G_i$ is not t.d.l.c. in general. In [51, Definition 2.3] a local direct product is described that retains the property of being t.d.l.c. This construction depends on the choices of compact open subgroups U_i of G_i, for each i: let $G = \bigoplus_i (G_i, U_i)$ consist of the elements $f \in \prod_i G_i$ such that $f(i) \in U_i$ for sufficiently large i. We have $G = \bigcup_{i \in \mathbb{N}} H_i$ where $H_i = \prod_{j < i} U_j$ and for $k > 0$, $H_k = G_1 \times \ldots \times G_k \times \prod_{j > k} U_j$. The groups H_i are equipped with the product topology. A set $W \subseteq G$ is declared open if $W \cap H_k$ is open for each k. (In particular, $\prod J U_i$ is a compact open subgroup.)

Fix a computable bijection $(\ldots) : \mathbb{N} \times \mathbb{N}^+ \to \mathbb{N}$ such that $(a,b) \geq \max(a,b)$. For a string $\sigma \in \mathbb{N}^+$ and $i > 0$, by $\sigma(i)$ we denote the string τ of maximum length such that $\tau(k) = \sigma([k,i])$ for each $k < |\tau|$. Similarly, for $f : \mathbb{N} \to \mathbb{N}$ we define $f(i)$ to be the function such that $f(i)(k) = f([k,i])$ for each k. Given uniformly computable subobjects B_i of \mathbb{N}^+, by $B = \prod_i B_i$ we denote the computable tree $\{\sigma : \forall i[\sigma(i) \in B_i]\}$. Note that $[B]$ is canonically homeomorphic to $\prod_i |B_i|$ via $f \to (f(i))_{i \in \mathbb{N}}$. So we can specify a path f of B by specifying all the $f(i)$.

Proposition 9.5 (Local direct products). Let $(G_i)_{i \in \mathbb{N}^+}$ be computable Baire presentations $(\binom{T_i}{\text{Mult}}, \text{Inv})$ uniformly in i, and suppose that there is $k \in \mathbb{N}^+$ such that each T_i is c.l.c. via k. Suppose further that U_i is a compact open subgroup of G_i, uniformly in i. Then $G = \bigoplus_{i \in \mathbb{N}^+} (G_i, U_i)$ is computably t.d.l.c.

Proof. The uniformity hypothesis on the U_i means that there is a computable function q such that $\mathcal{K}^T_{[q]} = U_i$. We use these data to build a computable Baire presentation $([T], \text{Mult}, \text{Inv})$ of G. We aim at defining uniformly c.l.c. trees V_i such that as topological spaces, $[V_i]$ is homeomorphic to H_0 defined above, and for $r > 0$, V_r is homeomorphic to $H_r - H_{r-1}$. All these homeomorphism are canonically given, as can be seen during the construction of the V_r. Our Baire presentation of G will be based on the c.l.c. tree

\[T = \{r\sigma : r \in \mathbb{N} \land \sigma \in \mathcal{V}_k\}.
\]

It is easy to verify that $[T]$ is homeomorphic to G, using that the H_r are open subgroups of G.

Towards defining the trees V_r, let R_i be the subtree of T_i without leaves such that $[R_i] = U_i$, and let S_i be the subtree of T_i such that $[S_i] = [T_i] - U_i$.

Claim 9.6. The trees R_i, S_i are c.l.c. trees uniformly in $i \in \mathbb{N}^+$.

To check this, it suffices to show that these trees are uniformly computable. Given i, let $F_i \subseteq \mathbb{N}^+$ be the finite set with strong index $q(i)$. Note that R_i consists of the strings compatible with a string in F_i, which is a decidable condition uniformly in i. To determine whether $\tau \in S_i$,

(i) first check whether some prefix of τ is in F; if so, answer “no”.
(ii) Otherwise, using the conditions defining c.l.c. trees check whether \([\tau]_{T_i} \) is compact; if not answer “yes”. If so, check whether \(\tau \) has an extension longer that any string in \(F_i \) that is not in \(S_i \); if so answer “yes”, otherwise “no”.

This shows the claim.

Now let \(V_0 = \prod_i R_i \), and for \(r > 0 \) let

\[
V_r = \prod_{1 \leq i < r} T_i \times S_r \times \prod_{i > r} R_i,
\]

interpreted as subtrees of \(\prod_i T_i \) in the obvious way. (So, \(f \) is a path of \(V_r \) iff \(f(i) \) is a path of \(T_i \) for \(1 \leq i < r \), \(f(r) \) is not in \(U_r \), but \(f(i) \) is in \(U_i \) for \(i > r \).) It is easy to check that the trees \(V_r \) are uniformly c.l.c.

Uniformly in \(r \), on \([V_r] \) we have a computable function \(L_r \) given by \(L_r(f(i)) = \text{Inv}(f(i)) \). So there is a computable function \(\text{Inv} \) on \([T] \) given by

\[
\text{Inv}(rf) = rL_r(f).
\]

Next, for \(r, s \in \mathbb{N} \) and \(rf, sg \in [T] \), let

\[
\text{Mult}(rf, sg) = th,
\]

where \(h \) is the function given by \(h(i) = \text{Mult}_i(f(i), g(i)) \), and \(t \leq \max(r, s) \) is the least number such that \(t = 0 \), or \(t > 0 \) and \(h(i) \mid_{\max(F_i)} \in S_i \). That is, we compute the binary group operation componentwise, and then check which tree \(V_t \) the overall result is a path of; this can be done because from \(\max(r, s) \) on, the component of the result will be in the relevant compact open subgroup.

It should be clear that, via the homeomorphism of the spaces \([T]\) and \(G \) outlined above, \(([T], \text{Mult}, \text{Inv})\) is a computable Baire presentation of \(G \).

We note that the hypothesis that \(T_i \) is c.l.c. via a fixed \(k \) is one of notational convenience; what matters is that given \(i \) we can compute \(\ell_i \) such that \(T_i \) is c.l.c. via \(\ell_i \). This is so because, given a tree \(T \) that is c.l.c. via \(\ell \), we can uniformly transform it into an equivalent tree \(\tilde{T} \) that is c.l.c. via \(1 \), by “skipping” the levels \(1, \ldots, \ell - 1 \).

The hardest result in this section will be tackled last: being computably t.d.l.c. is preserved under taking quotients by computable normal closed subgroups. As an application we will show that the groups \(PGL_n(\mathbb{Q}_p) \) are computably t.d.l.c. For \(n = 2 \) these groups have been the subject of much research; for instance, they are homeomorphic to closed subgroups of \(\text{Aut}(T_{p+1}) \) as shown by Serre [45, Section II.1].

First we need some notation and preliminaries. The variables \(\alpha, \beta \) etc. will range over strings in \(\mathbb{N}^* \) without repetitions. The variables \(P, Q, R \) range over permutations of \(\mathbb{N} \). Recall from Section 3.1 that in our setup the elements of \(S_\infty \) have the form \(P \ominus P^{-1} \) where \(P \) is a permutation of \(\mathbb{N} \). It appears that a crucial “finetization” argument, Claim 9.11, is best shown in the setting of true permutations, rather than elements of \(S_\infty \) in our setup. So we need two lemmas allowing us to pass back and forth between the two.

We adopt the setting of Theorem 8.2: let \(G = ([T], \text{Mult}, \text{Inv}) \) be a computable Baire presentation, let \(W \) be a Haar computable copy of \(W(G) \) with domain \(\mathbb{N} \), and let \(\tilde{G} \) be as detailed there; in particular, \(S = \text{Tree}(\tilde{G}) \) is c.l.c. via \(k = 2 \), so that \([\sigma]\) is compact for each string \(\sigma \) of length \(\geq 2 \). Let

\[
S_0 = \{ \emptyset \} \cup \{ \alpha : \exists \beta \mid |\alpha| = |\beta| > 0 \land \alpha \oplus \beta \in S \}.
\]

The first lemma verifies that \(S_0 \) is computable, and shows that from a nonempty string in \(S_0 \) one can compute the set of elements of \([S]\) with first component extending it.

Lemma 9.7. (i) \(S_0 \) is a computable tree.

(ii) There is a computable function \(B : S_0 - \{ \emptyset \} \to \mathbb{N} \) such that

\[
K_{B(\alpha)} = \{ f \in [S] : \alpha \prec f_0 \text{ where } f = f_0 \oplus f_1 \}.
\]

Proof. (i) We first show that there is a computable bound \(H(k) \) on \(\beta(k) \) that is uniformly obtained from \(\alpha \). Since \(\alpha \) is nonempty, we have \(\alpha(A) = B \) for some \(A, B \in W \). Hence \(f(AA^{-1}) = BA^{-1} \) for any \(f \in \tilde{G} \) such that \(\alpha \prec f \). By Lemma 5.5 with \(U = AA^{-1}, L = BA^{-1} \) and \(F \) the coset denoted by \(k \), we obtain a bound \(H(k) \) as required. This shows that from \(\alpha \) one can compute a finite set of possible candidates for \(\beta \). So \(S_0 \) is computable.

(ii) Given a nonempty \(\alpha \in S_0 \), by the argument above we can compute a strong index \(B(\alpha) \) for the set of strings of the form \(\alpha \oplus \beta \in S \). \(\square \)
The second lemma takes a string in $S^{[\geq 2]}$ and writes the paths of S extending it in terms of a finite set of strings in S_0.

Lemma 9.8. Given $\sigma \in S$ such that $|\sigma| \geq 2$, one can compute (a strong index for) a finite set $F \subseteq S_0$ such that

$$[\sigma]_S = \bigcup \{K_{B(\alpha)} : \alpha \in F\}.$$

Proof. Let $n = \max(\sigma) + 1$. Let F consist of the strings $\alpha \in S_0$ of length n such that viewed as an injection, α extends the injection α_σ associated with σ as in (1). Since $|\sigma| \geq 2$, by Lemma 5.5 we can compute a strong index for F. If $\alpha \in F$ and $P \succ \alpha$, then $P \oplus P^{-1} \in [\sigma]_S$, because P extends α_σ. Conversely, if $P \oplus P^{-1} \in [\sigma]_S$, then $P |_n \in F$. \square

Theorem 9.9. Let G be computably t.d.l.c. Let N be a closed normal subgroup of G such that $\text{Tree}(N)$ is a computable subtree of $\text{Tree}(G)$. Then G/N is computably t.d.l.c.

Proof. We continue to adopt the setting of Theorem 8.2. Recall that $S = \text{Tree}(\tilde{G})$, and $S_0 = \{\emptyset\} \cup \{\alpha : \exists \beta(\alpha \mid \beta) = |\beta| > 0 \land \alpha \oplus \beta \in S\}$. Let $M = \Phi(N)$ where Φ is the bicomputable homeomorphism $G \rightarrow \tilde{G}$ established in Theorem 8.2. Note that $\text{Tree}(M)$ is a computable subtree of S; given $\tau \in S$, one can search for a string $\sigma \in \text{Tree}(G)$ such that $P_\sigma(\sigma) \geq \tau$; then $\tau \in \text{Tree}(M)$ iff $\sigma \in \text{Tree}(N)$.

We will build a Haar computable copy V of $W(\tilde{G}/M)$. We use that each compact open subset of \tilde{G}/M has the form MK where K is a compact open subset of \tilde{G}. In the first step, we will show that the pre-ordering $"K \subseteq ML"$ is decidable, where K, L range over compact open sets. In the second step, we will use as the domain of V the least numbers in the classes of the computable equivalence relation associated with this pre-ordering.

We may assume that $K = [\sigma]_S$ for some string $\sigma \in S$ of length at least 2. So the following suffices for the first step:

Lemma 9.10. Given strings $\sigma, \tau_1, \ldots, \tau_r \in S$ of length at least 2, one can decide whether the inclusion $[\sigma]_S \subseteq \bigcup_i M[\tau_i]_S$ holds.

To verify the lemma, let $M_0 = \{P : P \oplus P^{-1} \in M\}$. For each $\alpha \in S_0$, let

$$\overline{\alpha} = \{P \in [S_0] : \alpha \prec P\}.$$

Recall here that P is a permutation of \mathbb{N}, not merely a path of S_0 (which in general could fail to be onto). Let

$$T_0 = \{\alpha : \overline{\alpha} \cap M_0 \neq \emptyset\}.$$

By Lemma 9.8, it is sufficient to decide whether a version of the inclusion holds that only refers to the permutations, not directly to their inverses.

Claim 9.11. For $\alpha, \beta_1, \ldots, \beta_k \in S_0$, one can decide whether $\overline{\alpha} \subseteq \bigcup_i M_0 \overline{\beta_i}$.

We may assume that $|\alpha| \geq m := 1 + \max_i \max(|\beta_i|)$. We show that m is the maximum height on T_0 relevant for this inclusion: for each i,

\begin{equation} \exists Q \in M_0[\overline{\alpha} \subseteq Q \circ \overline{\beta_i}] \iff \exists \eta \in T_0[|\eta| = m \land \overline{\alpha} \subseteq \eta \circ \overline{\beta_i}]. \end{equation}

For the implication “\Rightarrow”, simply let $\eta = Q |_m$. For the implication “\Leftarrow”, fix a permutation $Q \succ \eta$ such that $Q \in M_0$. Given $P \in \overline{\alpha}$, we can choose $R \in \eta$ and $R' \in \overline{\beta_i}$ such that $P = R \circ R'$. Since $R, Q \succ \eta$ and $|\eta| = m > \max(\beta_i)$, we have $Q^{-1} \circ R \circ R' > \beta_i$. So $P \in M_0 \overline{\beta_i}$ via Q. This verifies the equivalence (3).

Using (3), if $\overline{\alpha} \subseteq \bigcup_i M_0 \overline{\beta_i}$, then because $|\alpha| > \max_i |\beta_i|$, we have $\overline{\alpha} \subseteq M_0 \overline{\beta_i}$ for some single i. If η works on the right-hand side of (3) then $|\eta(\beta_i)| = \alpha(0)$. So by Lemma 5.5 again, there is a computable bound $H(\eta(k))$ on $\eta(k)$ that is uniformly obtained from the values $\alpha(0), \beta_1(0), \ldots, \beta_k(0)$. This shows that one can compute a strong index for a finite set containing all potential witnesses η on the right-hand side of (3). For each such η, using Lemma 9.7(ii), it is equivalent to decide whether $K_{B(\alpha)} \subseteq K_{B(\eta)}K_{B(\beta_i)}$, which can be done using Lemma 7.5(ii). This shows the claim and hence verifies Lemma 9.10.

By the lemma (and the discussion preceding it), the equivalence relation on \mathbb{N} given by

$$A \sim B \text{ if } AM = BM$$
is computable; recall here that \(W \) has domain \(\mathbb{N} \). As the domain \(D \) of the computable copy \(V \) of \(W(G/M) \), we use the computable set of least elements of equivalence classes.

We think of an element \(A \) of \(D \) as denoting the compact open coset \(AM \) of \(\tilde{G}/M \). Given \(A, B \in W \), we have \((AM)^{-1} = A^{-1}M \) and \((AM)(BM) = (AB)M \). In particular, one can decide whether \(AM \), viewed as a subset of \(\tilde{G}/M \), is a left coset of a subgroup of \(\tilde{G}/M \) that \(BM \) is a right coset of. So by Lemma 3.5 the groupoid operations are computable on \(D \).

For the computability of the met operation, suppose \(A, B \in W \) are given. One has \(AN \cap BN = (A \cap BN)N \). Suppose \(A \) is a left coset of the subgroup \(U \) and \(B \) is a left coset of the subgroup \(V \). Then \(A \cap BN \) is a left coset of the compact open subgroup \(U \cap VN \). Note that

\[
A \cap BN = \bigcup \{ L : L \subseteq A \wedge L \text{ is left coset of } U \cap V \wedge L \sim B \}.
\]

(The inclusion \(\supseteq \) is trivial. For \(\subseteq \), if \(x \in A \cap BN \), then \(x \in L \) for some left coset of \(U \cap V \). Since \(x = bn \) for some \(b \in B \), \(n \in M \) we have \(LN = BN \).) So one can compute \(C \in W \) such that \(C = A \cap BN \) using Lemma 2.6. Then one outputs the element \(C'' \) of \(D \) such that \(C' \sim C \).

Finally, to show that \(V \) is Haar computable, note that \(|U : UN \cap VN| = |U : U \cap VN| \). By the above (in the special case that \(A \) and \(B \) are subgroups) one can compute \(U \cap VN \in W \). So one can compute the index using that \(W \) is Haar computable.

Example 9.12. For each prime \(p \) and each \(n \geq 2 \), the group PGL\(_n\)(\(\mathbb{Q}_p \)) is computably t.d.l.c.

Proof. We use the computable Baire presentation \((T, Mult, Inv)\) of GL\(_n\)(\(\mathbb{Q}_p \)) obtained in Proposition 9.2. In this presentation, the centre \(N \) of GL\(_n\)(\(\mathbb{Q}_p \)) is given by the diagonal \((n+1) \times (n+1)\) matrices such that the first \(n \) entries of the diagonal agree. So clearly Tree\((N)\) is a computable sub-tree of the tree \(S \) in Proposition 9.2. Hence we can apply Theorem 9.9. \(\square \)

10. Uniqueness of Computable Presentations

As discussed in Subsection 1.8, in computable structure theory a countable structure is called autostable or computably categorical if it has a computable copy, and all its computable copies are computably isomorphic. We adapt this notion to the present setting.

Definition 10.1. A computably t.d.l.c. group \(G \) is called autostable if for any two computable Baire presentations of \(G \), based on trees \(T, S \subseteq \mathbb{N}^* \), there is a computable group homeomorphism \(\Psi : [T] \rightarrow [S] \).

Note that \(\Psi^{-1} \) is also computable by Corollary 8.3. For abelian profinite groups, the notion of autostability used in [31] is equivalent to our definition. This follows from the proofs of Prop. 12.5 and Prop. 12.6, which show that in the abelian case the correspondence between Baire presentations and procountable presentations is uniform and witnessed by uniformly obtained group-isomorphisms between these presentations. The first author [31, Cor. 1.11] characterizes autostability for abelian compact pro-\(p \) groups given by computable procountable presentations with effectively finite kernels: such a group is autostable if its Pontryagin - van Kampen dual is autostable. For instance, \((\mathbb{Z}_p, +)\) is autostable because its dual is the Prüfer group \(\mathbb{Q}_p^\times \), which is easily seen to be autostable as a countable structure (see the proof of Theorem 10.6 below).

We provide a criterion for autostability, and evidence its usefulness through various examples.

Criterion 10.2. A computably t.d.l.c. group \(G \) is autostable if and only if any two Haar computable copies of its meet groupoid \(W(G) \) are computably isomorphic.

We will only apply the implication \(\Rightarrow \). However, the converse implication is interesting on its own right because it shows that our notion of autostability is independent of whether we use computable Baire presentation, or computable presentations based on meet groupoids. In fact, the proof of the converse implication shows that we could also use presentations based on closed subgroups of \(S_\infty \).
Proof. We may assume that G itself is a computable Baire presentation. As before, let $\mathcal{W} = \mathcal{W}_{\text{comp}}(G)$ as in Notation 7.7, and let $\tilde{G} = \mathcal{G}_{\text{comp}}(\mathcal{W})$ as in Definition 5.2. Let $\Phi: G \to \tilde{G}$ be the group homeomorphism given by Theorem 8.2.

“\Rightarrow”: Let H be a computable Baire presentation such that $G \cong H$. Let $\mathcal{V} = \mathcal{W}_{\text{comp}}(H)$, and let $\tilde{H} = \mathcal{G}_{\text{comp}}(\mathcal{V})$. Clearly $G \cong H$ implies $\mathcal{W} \cong \mathcal{V}$. Since \mathcal{V} is Haar computable, by hypothesis there is a computable isomorphism $\theta: \mathcal{W} \to \mathcal{V}$; note that θ is a permutation of \mathbb{N}, so θ^{-1} is also computable. We define a computable groupoid isomorphism $\tilde{\theta}: \tilde{G} \to \tilde{H}$ as follows. Given $p = f \oplus f^{-1} \in \tilde{G}$, let

$$
\tilde{\theta}(p) = (\theta \circ f \circ \theta^{-1} \oplus \theta \circ f^{-1} \circ \theta^{-1}).
$$

Using that θ is an isomorphism of meet groupoids, it is easy to verify that $\tilde{\theta}$ is a homeomorphism. Clearly $\tilde{\theta}$ is computable. The inverse of $\tilde{\theta}$ is given by exchanging θ and θ^{-1} in the above, and hence is computable as well.

Let $\Psi: H \to \tilde{H}$ be the homeomorphisms given by Theorem 8.2 with H in place of G. We have a group homeomorphism $\Psi^{-1} \circ \tilde{\theta} \circ \Phi: G \to H$, which is computable as a composition of computable maps. Also, its inverse is computable because the inverse of $\tilde{\theta}$ is computable.

“\Leftarrow”: Suppose \mathcal{V} is a Haar computable meet groupoid such that $\mathcal{W} \cong \mathcal{V}$ via an isomorphism β. We need to show that \mathcal{W} and \mathcal{V} are computably isomorphic. To this end, let $\tilde{H} = \mathcal{G}_{\text{comp}}(\mathcal{V})$, which is a computable Baire presentation of a t.d.l.c. group (Claim 5.6). Let $\tilde{W} = \mathcal{W}_{\text{comp}}(\tilde{G})$ and $\tilde{V} = \mathcal{W}_{\text{comp}}(\tilde{H})$. Let $\alpha_W: \mathcal{W} \to \tilde{W}$ and $\alpha_V: \mathcal{V} \to \tilde{V}$ be the maps given by

$$
\alpha_W(A_U) = \{p \in \tilde{G}: p_0(U) = A\} \quad \text{and} \quad \alpha_V(B_U) = \{q \in \tilde{H}: q_0(U) = B\},
$$

where the notation A_U indicates that A is a left coset of U, and as usual $p = p_0 \oplus p_1$, etc. Informally, \tilde{W} is the double dual of W, and α_W maps W into its double dual; a similar statement holds for \tilde{V}, \mathcal{V} and α_V.

An argument similar to the one in the proof of Lemma 9.7(ii) shows that the maps α_W and α_V are computable.

Since $\Phi: G \to \tilde{G}$ is a group homeomorphism, its dual $\Phi^*: \mathcal{W} \to \tilde{W}$ is a meet groupoid isomorphism, where $\Phi(A) = \{\Phi(g): g \in A\}$. The following argument uses that $\mathcal{W} \cong \mathcal{W}(G)$ for the t.d.l.c. group G (and hence cannot be carried out for α_V).

Claim 10.3. α_W is a meet groupoid isomorphism.

It suffices to show that $\alpha_W = \Phi^*$. To see this, let $A_U \in \mathcal{W}$. For the inclusion $\Phi(A) \subseteq \alpha_W(A)$, if $g \in A$ then clearly $\Phi(g)(U) = gU = A$, so $\Phi(g) \in \alpha_W(A)$. For the converse inclusion, suppose $p_0(U) = A$ for $p \in \tilde{G}$, and let $g = \Phi^{-1}(p)$. Then $g \in A$ because $\Phi(g)(U) = p_0(U) = A$. This verifies the claim.

Let $\Gamma: \tilde{W} \to \tilde{V}$ be the “double dual” of the isomorphism $\beta: \mathcal{W} \to \mathcal{V}$; that is, $\Gamma(A) = \{\tilde{\beta}(p): p \in A\}$, where $\tilde{\beta}$ is the dual of β defined as in Eq. (4) with β in place of θ. Note that Γ is an isomorphism of meet groupoids.

Claim 10.4. The diagram

$$
\begin{array}{ccc}
\tilde{W} & \xrightarrow{\Gamma} & \tilde{V} \\
\downarrow{\alpha_W} & & \downarrow{\alpha_V} \\
\mathcal{W} & \xrightarrow{\beta} & \mathcal{V}
\end{array}
$$

Hence α_V is an isomorphism of meet groupoids.

To see this, if $A_U \in \mathcal{W}$, then

$$
\Gamma(\alpha_W(A)) = \{p^\beta: p \in \tilde{G} \land p_0(U) = A\} = \{q \in \tilde{H}: q_0(\beta(U)) = \beta(A)\} = \alpha_V(\beta(A)),
$$

where $p^\beta := \beta \circ f \circ \beta^{-1} \oplus \beta \circ f^{-1} \circ \beta^{-1}$, for $p = f \oplus f^{-1}$, similar to Eq. (4).

Since G is autostable by hypothesis, and $\Psi: \tilde{G} \to \tilde{H}$ is bicomputable, \tilde{G} is autostable. Since β is an isomorphism, we have $\tilde{G} \cong \tilde{H}$. Hence there is a bi-computable isomorphism $\tilde{G} \to \tilde{H}$. Inspecting the construction in the proof of the implication “\Rightarrow” of Theorem 5.1 shows that there is a computable isomorphism $\mathcal{W} \to \mathcal{V}$. So there is a computable isomorphism $\mathcal{W} \to \mathcal{V}$, as required. \qed
Remark 10.5 (Computable duality between t.d.l.c. groups and meet groupoids). The post [8, Section 4], which will be included in a separate paper, axiomatizes the class \(\mathcal{M} \) of countable meet groupoids \(W \) that are isomorphic to \(W(G) \) for some t.d.l.c. group \(G \). Note that Definition 5.2 of \(\mathcal{G}_{\text{comp}}(W) \) makes sense for any meet groupoid \(W \) with domain \(\mathbb{N} \). Besides some basic algebraic axioms on meet groupoids (such as saying that different left cosets of the same subgroup are disjoint), one needs an axiom ensuring local compactness of \(\mathcal{G}_{\text{comp}}(W) \): there is a subgroup \(K \) such that each subgroup \(U \subseteq K \) has only finitely many left cosets contained in \(K \). Furthermore, one needs to say that the map \(\alpha_W: W \to W \) in Claim 10.3 is onto.

In general, this could fail: consider the meet groupoid obtained from a computable copy of \(W(\mathbb{Z}_p) \) by deleting all cosets of subgroup of the form \(p^{2^{i+1}} \mathbb{Z}_p \); its double dual \(W \) is isomorphic to \(W(\mathbb{Z}_p) \). The required “completeness axiom” avoiding this situation, called CLC in [8, Section 4], states that if \(N \in W \) is normal (i.e., each left coset of \(N \) is also a right coset), then \(S \subseteq L(N) \) is finite and closed under inverse and product, then there is a subgroup \(V \in W \) such that \(C \subseteq V \land C \in S \).

These axioms are sufficiently simple to imply that \(\mathcal{M} \) is an arithmetical class in the sense of descriptive set theory.) Using the methods to prove Criterion 10.2 one can proceed to showing that the operators \(W_{\text{comp}} \) and \(\mathcal{G}_{\text{comp}} \), restricted to the Haar computable meet groupoids in \(\mathcal{M} \), are inverses of each other. That is, composing one with the other leads to a computable copy of the original structure that is computably isomorphic to it.

Theorem 10.6. The computably t.d.l.c. groups \(\mathbb{Q}_p \) and \(\mathbb{Z} \times \mathbb{Q}_p \) are autostable.

Proof. In Proposition 4.9 we obtained a Haar computable copy \(W \) of the meet groupoid \(W(\mathbb{Q}_p) \). Recall that the elements of \(W \) are given as cosets \(D_{r,a} = \pi_r^{-1}(a) \) where \(r \in \mathbb{Z} \), \(\pi_r: \mathbb{Z}_p \to C_p^\infty \) is the canonical projection with kernel \(U_r = p^r \mathbb{Z}_p \), and \(a \in C_p^\infty \).

By the criterion above, it suffices to show that any Haar computable copy \(\tilde{W} \) of \(W(\mathbb{Q}_p) \) is computably isomorphic to \(W \). By hypothesis on \(W \) there is an isomorphism \(\Gamma: W \to \tilde{W} \). Let \(\tilde{U}_r = \Gamma(U_r) \) for \(r \in \mathbb{Z} \). We will construct a computable isomorphism \(\Delta: W \to \tilde{W} \) which agrees with \(\Gamma \) on the set \(\{U_r: r \in \mathbb{Z}\} \).

First we show that from \(r \) one can compute the subgroup \(\tilde{U}_r \in \tilde{W} \).

(a) If \(\tilde{U}_r \) has been determined, \(r \geq 0 \), compute \(\tilde{U}_{r+1} \) by searching for the unique subgroup in \(\tilde{W} \) that has index \(p \) in \(\tilde{U}_r \).

(b) If \(\tilde{U}_r \) has been determined, \(r \leq 0 \), compute \(\tilde{U}_{r-1} \) by searching for the unique subgroup in \(\tilde{W} \) which has \(\tilde{U}_r \) as parameters.

The shift homeomorphism \(S: \mathbb{Q}_p \to \mathbb{Q}_p \) is defined by \(S(x) = px \). Note that \(B \to S(B) \) is an automorphism of the meet groupoid \(W \). Using the notation of Proposition 4.9 (recalled above), for each \(\alpha \in \mathbb{Q}_p, r \in \mathbb{Z} \), one has \(\pi_{r+1}(S(\alpha)) = \pi_r(\alpha) \), and hence for each \(a \in C_p^\infty \),

\[
S(D_{r,a}) = D_{r+1,a}.
\]

We show that \(S \) is definable within \(W \) by an existential formula using subgroups \(U_r \) as parameters. Recall that given a meet groupoid \(W \), by \(L(U) \) we denote the set of left cosets of a subgroup \(U \). For \(D \in L(U_r) \) we write \(D^k \) for \(D \cdot \ldots \cdot D \) (with \(k \) factors), noting that this is defined, and in \(L(U_r) \).

Claim 10.7. Let \(B \in L(U_r) \) and \(C \in L(U_{r+1}) \). Then

\[
C = S(B) \iff \exists D \in L(U_{r+1}) \left[D \subseteq B \land D^p = C \right].
\]

\(\Leftarrow \): If \(x \in C \) then \(x = py \) for some \(y \in B \), so \(x \in S(B) \). So \(C \subseteq S(B) \) and hence \(C = S(B) \) given that \(B \) is a subgroup in \(U_{r+1} \).

\(\Rightarrow \): Let \(x \in C \), so \(x = S(y) \) for some \(y \in B \). Let \(y \in D \) where \(D \in L(U_{r+1}) \). Then \(D \subseteq B \). Since \(D^p \) and \(C \) are finite, these two (left) cosets of \(U_{r+1} \) coincide. This shows the claim.

We use this to show that the function \(S = \Gamma \circ S \circ \Gamma^{-1} \) defined on \(\tilde{W} \) is computable.

Since \(\Gamma(U_r) = \tilde{U}_r \), \(r \in \mathbb{Z} \), \(S \) satisfies the claim when replacing the \(U_r \) by the \(\tilde{U}_r \). Since the meet groupoid \(W \) is computable, given \(B \in \tilde{W} \), one can search \(\tilde{W} \) for a witness \(D \in L(\tilde{U}_{r+1}) \) as on the right hand side, and then output \(C = S(B) \). So the function \(S \) is computable.

We build the computable isomorphism \(\Delta: W \to \tilde{W} \) in four phases. The first three phases build a computable isomorphism \(L(U_0) \to L(\tilde{U}_0) \), where \(L(\tilde{U}_0) \subseteq \tilde{W} \),
denotes the group of left cosets of \bar{U}_0. (This group is isomorphic to C_{p^∞}, so this amounts to defining a computable isomorphism between two computable copies of C_{p^∞}.) The last phase extends this isomorphism to all of W, using that \bar{S} is an automorphism of \bar{W}.

For $q \in \mathbb{Z}[1/p]$ we write $[q] = \mathbb{Z} + q \in C_{p^\infty}$. We define $\bar{D}_{r,[q]} = \Delta(D_{r,a})$ for $r \in \mathbb{Z}, q \in \mathbb{Z}[1/p]$.

(a) Let $\bar{D}_{0,[p^{-1}]}$ be an element of order p in $L(\bar{U}_0)$.

(b) Recursively, for $m > 1$ let $\bar{D}_{0,[p^{-m}]}$ be an element of order p^m in $L(\bar{U}_0)$ such that $(\bar{D}_{0,[p^{-m}]})^p = \bar{D}_{0,[p^{-m+1}]}$.

(c) For $a = [kp^{-m}]$ where $0 \leq k < p^m$ and p does not divide k, let $\bar{D}_{0,a} = (\bar{D}_{0,[p^{-m}]})^k$.

(d) For $r \in \mathbb{Z} - \{0\}$ let $\bar{D}_{r,a} = \bar{S}^r(\bar{D}_{0,a})$.

One can easily verify that $\Delta: W \to \bar{W}$ is computable and preserves the meet groupoid operations. To verify that Δ is onto, let $B \in \bar{W}$. We have $B \in L(\bar{U}_r)$ for some r. There is a least m such that $B = (\bar{D}_{r,[p^{-m}]})^k$ for some $k < p^m$. Then p does not divide k, so $B = \bar{D}_{r,[kp^{-m}]}$.

We next treat the case of $G = \mathbb{Z} \ltimes \mathbb{Q}_p$. Let V be the Haar computable copy of $W(G)$ obtained in Proposition 4.9, and let \bar{V} be a further Haar computable copy of $W(G)$. Using the notation of Proposition 4.9, let

$$E_{z,r,a} = g^z D_{r,a}$$

for each $z, r \in \mathbb{Z}, a \in C_{p^\infty}$.

We list some properties of these elements of V that will be needed shortly. Note that we can view W as embedded into V by identifying (r,a) with $(0,r,a)$. Also note that $E_{z,r,a}: U_{r-z} \to U_r$ (using the category notation of Remark 4.4). Since $D_{r+1,a} \subseteq D_{r+pa}, we have

$$E_{z,r+1,a} \subseteq E_{z,r,pa}. \quad (6)$$

Furthermore,

$$E_{z,r,0} = g^z U_r = U_{r+z} g^z = (g^{-z} U_{r-z})^{-1} = (E_{-z,r,z,0})^{-1}. \quad (7)$$

By hypothesis on \bar{V}, there is a meet groupoid isomorphism $\Gamma: V \to \bar{V}$. Since G has no compact open subgroups besides the ones present in $W(\mathbb{Q}_p)$, the family $(\bar{U}_r)_{r \in \mathbb{Z}}$, where $\bar{U}_r = \bar{T}(U_r)$, is computable in \bar{V} by the same argument as before.

The set of elements A of \bar{V} that are a left and a right coset of the same subgroup is computable by checking whether $A^{-1} A = 1$. The operations of \bar{V} induce a Haar computable meet groupoid \bar{W} on this set. Clearly the restricted map $\Gamma = \bar{T} | W$ is an isomorphism $W \to \bar{W}$. So by the case of \mathbb{Q}_p, there is a computable isomorphism $\Delta: W \to \bar{W}$.

We will extend Δ to a computable isomorphism $\bar{\Delta}: V \to \bar{V}$. The following summarizes the setting:

$$\begin{array}{ccc}
V & \bar{T} & \bar{V} \\
\subseteq & \subseteq & \subseteq \\
W & \Gamma, \Delta & \bar{W}
\end{array}$$

In five phases we define a computable family $\bar{E}_{z,r,a} (z, r \in \mathbb{Z}, a \in C_{p^\infty})$, and then let $\bar{\Delta}(E_{z,r,a}) = \bar{E}_{z,r,a}$. As before write $\bar{D}_{r,a} = \Delta(D_{r,a})$.

(a) Let $\bar{E}_{0,a} = \bar{D}_{r,a}$. Choose $F_0 := \bar{E}_{-1,0,0}: \bar{U}_1 \to \bar{U}_0$.

(b) compute $F_r := \bar{E}_{-1,r,0}: U_{r+1} \to U_r$ by recursion on $|r|$, where $r \in \mathbb{Z}$, in such a way that $\bar{E}_{r+1} \subseteq \bar{F}_r$ for each $r \in \mathbb{Z}$; this is possible by (6) and since $V \cong V$ via \bar{T}.

(c) For $z < -1$, compute $\bar{E}_{z,r,0}: U_{r-z} \to U_r$ as follows:

$$\bar{E}_{z,r,0} = F_{r-z-1} \cdot F_{r-z-2} \cdot \ldots \cdot F_r.$$

(d) For $z > 0$ let $\bar{E}_{z,r,0} = (\bar{E}_{-z,r-z,0})^{-1}$; this is enforced by (7).

(e) Let $\bar{E}_{z,r,a} = \bar{E}_{z,r,0} \cdot \bar{D}_{r,a}$.
One verifies that Σ preserves the meet groupoid operations (we omit the formal detail). To show that Σ is onto, suppose that $\tilde{E} \in \mathcal{V}$ is given. Then $\tilde{E} = \Gamma(E_{z,r,a})$ for some z, r, a. By (6) we may assume that $z < 0$. Then $E_{z,r,0} = \prod_{s=1}^{\infty} E_{-1,r-z-s,i,0}$ as above. So, writing F_s for $E_{-1,s,0}$, we have $\Gamma(E_{z,r,0}) = \prod_{s=1}^{\infty} F_{r-z-1,s-i,a}$ for some $a_i \in C_{\mathcal{P}K}$.

Note that $\tilde{S}(D) = F \cdot D \cdot F^{-1}$ for each $D \in \mathcal{L}(\hat{\mathcal{U}}_r) \cap \hat{\mathcal{W}}$ and $F : \mathcal{U}_{r+1} \to \hat{\mathcal{U}}_r$. For, the analogous statement clearly holds in \mathcal{V}; then one uses that $\tilde{S} = \Gamma \circ \sigma \circ \Gamma^{-1}$, and that $\Gamma : \mathcal{V} \to \mathcal{V}$ is an isomorphism. Since $\mathcal{D}_{r+1} = \tilde{S}(\mathcal{D}_{r,a})$, we may conclude that $\mathcal{D}_{r+1} = F \cdot \mathcal{D}_{r,a}$ for each such F. We can use these “quasi-commutation relations” to simplify the expression $\prod_{i=1}^{s} F_{r-z-i,s+a_i}$ to $E_{z,r,0} \mathcal{D}_{s,0}$ for some $b \in C_{\mathcal{P}K}$. Hence $\tilde{E} = \tilde{E}_{z,r,0} \mathcal{D}_{r,a}$. This shows that \tilde{E} is in the range of Σ, as required.

11. Appendix 1 (with G. Willis): a computable presentation of a t.d.l.c. group with a non-computable scale function

Let F be some finite field; for notational simplicity we will assume that $|\mathbb{F}| = 2$. We write H for the additive group of $\mathbb{F}((t))$. The group $\text{Aut}(H)$ is equipped with the usual Braconnier topology recalled before Proposition 5.7. For $\pi \in \text{Aut}(H)$ let $s(\pi) = \min_{\tau \in \mathcal{V}} \{|\tau \cap \pi(V)| : V \cap \pi(V)\}$ where as usual V ranges over compact open subgroups. Willis [55, Example 1] showed that $s : \text{Aut}(H) \to \mathbb{N}^+$ is not continuous.

He defined automorphisms π_t ($t \in \mathbb{N}$) and π of H such that $\lim_t \pi_t = \pi$, $s(\pi_t) = 1$ and $s(\pi) = 2$. Starting from his example we show the following.

Theorem 11.1 (with George Willis). There is a computable Baire presentation $(T, \text{Mult, Inv})$ of a t.d.l.c. group G and a computable sequence of paths $(\mathcal{F}_t)_{t \in \mathbb{N}^+}$ on T such that the function $i \mapsto s(\mathcal{F}_i)$ is non-computable. Moreover, G is elementary in the sense of [51].

Proof. We begin with a brief outline. Let $K \subseteq \mathbb{N}$ denote the usual halting problem, a standard undecidable set in computability theory. Uniformly in $i \in \mathbb{N}^+$ we will build a computably t.d.l.c. group G_i with a computable element g_i so that $s(g_i) = 2$ if $i \notin K$, and $s(g_i) = 1$ else. Along with G_i, uniformly in i we determine a open subgroup U_i. Then the statement of the theorem holds for the t.d.l.c. group $G = \bigoplus_{i \in \mathbb{N}^+} (G_i, U_i)$, with the computable presentation according to the proof of Proposition 9.5, where \mathcal{F}_i is the image of g_i under the canonical embedding $G_i \to G$.

We let G_i be the split extension $\mathbb{Z} \times H$ for the action of \mathbb{Z} corresponding to an automorphism $\hat{\beta}_i$ of H. To define $\hat{\beta}_i$ we combine the technique of Willis with an argument from computability theory. Informally speaking, if i enters K at stage t, the approximation of $\hat{\beta}_i$ changes from “following” π to following π_t. We have $s(\mathcal{F}_i) = s(\hat{\beta}_i)$ where $g_i \in G_i$ is the element such that conjugation by g_i induces the automorphism \mathcal{F}_i on H.

We proceed to the details. We use the computable Baire presentation $(Q, \text{Mult, Inv})$ of H given by the proof of Proposition 7.8. Recall that strings on Q other than the root are of the form σr where $r \in \mathbb{N}$, $\sigma \in \{0,1\}^+$ is a binary string, and if $r > 0$ then σ does not start with 0. We think of σ as denoting the formal Laurent polynomial $x^{-r} \sum_{0 \leq k < |\sigma|} \sigma(k) x^k$; note that σ is allowed to end in 0.

For $c \in \mathbb{N}$, we say that a permutation α of \mathbb{Z} is c-bounded if $|\alpha(z) - z| \leq c$ for each $z \in \mathbb{Z}$. In this case the function $\hat{\alpha}$ defined on H by

$$\hat{\alpha}(\sum_{k \in \mathbb{Z}} r_k x^k) = \sum_{k \in \mathbb{Z}} r_{\alpha(k)} x^{\alpha(k)}$$

is a continuous automorphism of H.

Claim 11.2. Let α be a computable c-bounded permutation of \mathbb{Z}. Then $\hat{\alpha} : [Q] \to [Q]$ is computable, uniformly in c and a Turing machine index for computing α.

We verify this by defining a monotonic computable function L on the tree Q according to Remark 6.5. For $r \in \mathbb{N}$ and a binary string σ such that $|\sigma| \geq 2c + 1$, we declare that $L(\sigma r) = s \tau$ where

(a) $-s$ is the minimum of 0 and the values $\alpha(k-r), k \leq 2c + 1$ such that $\sigma(k) \neq 0$; if there is no such value (and hence $r = 0$) let $s = 0$;
(b) τ is obtained by searching for the maximal $\ell = |\tau|$ such that for each $k < \ell$ the value
\[
\tau(k) = \sigma(\alpha^{-1}(k - s) + r)
\]

is defined.

If \(s > 0 \) then \(\tau(0) = \sigma(k) = 1 \) where \(k - r \) is the position at which the minimal value is taken in (a), so indeed \(s \tau \in Q \). Clearly \(L \) is monotonic. Since \(\alpha \) is \(c \)-bounded, given \(r \in \mathbb{N} \) and \(\sigma \) with \(|\sigma| \geq 2c + 1 \), we have \(L(r \sigma) = s \tau \) for some \(s \in \mathbb{N} \) and \(\tau \) such that \(|\tau| \geq |\sigma| - c \). Using this, one verifies that \(L \) is as required. This shows the claim.

Since \(\mathcal{K} \) is recursively enumerable, \(\mathcal{K} = \bigcup_i \mathcal{K}_t \) for a computable sequence of strong indices for finite subsets of \(\mathbb{N} \). For technical reasons we will assume that \(\mathcal{K}_t - \mathcal{K}_{t-1} \neq \emptyset \) implies that \(t \) is even. We also let \(\mathcal{K}_t = \emptyset \) for \(t < 0 \). The following defines a computable function \(\mathbb{N}^+ \times \mathbb{Z} \rightarrow \mathbb{Z} \) via \((i, t) \mapsto \beta_i(t)\):

\[
\beta_i(t) = \begin{cases}
 t + 2 & \text{if } t \text{ is even and } i \notin \mathcal{K}_t \\
 t - 2 & \text{if } t \text{ is odd and } i \notin \mathcal{K}_t \\
 t + 1 & \text{if } t \text{ is even and } i \in \mathcal{K}_t - \mathcal{K}_{t-1} \\
 t & \text{if } i \in \mathcal{K}_{t-1}
\end{cases}
\]

If \(i \notin \mathcal{K} \) then \(\beta_i \) is the permutation of \(\mathbb{Z} \) that adds 2 to even numbers, and subtracts 2 from odd numbers. So \(s(\beta_i) = 2 \). If \(t \) is least such that \(i \in \mathcal{K}_t \) then the nontrivial cycle of \(\beta_i \) “turns around” at position \(t \). Hence \(\beta_i \) leaves invariant the compact open subgroup consisting of the Laurent series that begin at position \(t + 2 \). So \(s(\beta_i) = 1 \).

Now let \(G_t = \mathbb{Z} \times \gamma_t, H \), where \(\gamma_t \) is the action \(\mathbb{Z} \times H \rightarrow H \) given by \(\gamma(z, h) = \overline{\beta_i}(h) \). Let \(\mathbb{Z} \) have a computable Baire presentation according to Proposition \(7.4 \). By Claim \(11.2 \), \(\gamma_t \) is computable. So the proof of Proposition \(9.3 \) yields a computable Baire presentation of \(G_t \). Note that \(U = F[[t]] \) is a compact open subgroup of each \(G_t \). All the assertions in this paragraph hold uniformly in \(i \).

Let \(g_i \) be the generator of \(\mathbb{Z} \) in \(G_t \) whose conjugation action on \(H \) induces \(\beta_i \). Then \(s_G(g_i) = s_H(\beta_i) \) because \(G_t \) and \(H \) have the same compact open subgroups.

Let \(G = (T, \text{Mult}, \text{ Inv}) \) be the computable Baire presentation of the local direct product \(G = \bigoplus_{i \in \mathbb{N}^+} (G_i, U) \) obtained in the proof of Proposition \(9.5 \). It is clear that the sequence \((\overline{\beta}_i) \) of paths of \(T \) such that \(\overline{\beta_i} \) represents \(g_i \) viewed as an element of \(G \) is uniformly computable. It is easy to check that \(s_G(\overline{\beta}_i) = s_G(g_i) \) for each \(i \). (The canonical projection \(G \rightarrow G_t \) is open, and to each compact open subgroup \(V_i \) of \(G_i \) corresponds a compact open subgroup \(W \) of \(G \) where \(W = \prod_{k \in \mathbb{N}^+} V_k \) with \(V_k = U \) for \(k \neq i \).) Thus \(s_G(\overline{\beta}_i) = 1 \) iff \(i \in \mathcal{K} \), as required.

12. Appendix 2: Abelian t.d.l.c. Groups

In recent work [26], joint with Lupini, we study locally compact abelian groups with computable presentations. In particular, we investigate the algorithmic content of Pontryagin – van Kampen duality for such groups. Each abelian t.d.l.c. group is pro-countable, i.e., an inverse limit of countable groups. This enabled us in [26] to use a notion of computable presentation for t.d.l.c. abelian groups convenient for the given context. This notion, which in the present paper we will call a computably pro-countable presentation with effectively finite kernels, is reviewed in Definition 12.3 below. The main purpose of this short section is to show that in the abelian case, the definition of computably t.d.l.c. groups in [26] is equivalent to the one given here.

12.1. Procountable groups. We review some concepts mainly from [26, Section 3]. Suppose we are given a sequence of groups \((A_i)_{i \in \mathbb{N}} \) such that each \(A_i \) is countable discrete. Suppose we are also given epimorphisms \(\phi_i : A_i \rightarrow A_{i-1} \) for each \(i > 0 \). Then \(\lim_{\leftarrow} (A_i, \phi_i) \) can be concretely defined as the closed subgroup of the topological group \(\prod_{i \in \mathbb{N}} A_i \) consisting of those \(g \) such that \(\phi_i(g(i)) = g(i - 1) \) for each \(i > 0 \).

Definition 12.1. A topological group \(G \) is called pro-countable if \(G \cong \lim_{\leftarrow} (A_i, \phi_i) \) for some sequence \((A_i, \phi_i)_{i \in \mathbb{N}} \) as above.

The t.d.l.c. groups that are pro-countable are precisely the SIN groups (where SIN stands for “small invariant neighbourhoods); see [51, Section 2.2].

Remark 12.2. Let \(G \) be a closed subgroup of \(S_\infty \), let \((N_i)_{i \in \mathbb{N}} \) be a descending sequence of open normal subgroups of \(G \) with trivial intersection, and let \(A_i = \)
7.2 holds. Also, the kernel of ϕ_i is the canonical maps. This is well-known; see [28, Lemma 2].

12.2. Computably procountable groups. Extending Definition 7.2 of computable profinite presentations, (2) below allows the A_i to be discrete computable groups, while retaining the condition that the kernels of the connecting maps be finite and given by strong indices.

Definition 12.3 ([26], Definition 3.4).

(1) A computable presentation of a procountable group G is a sequence $(A_i, \phi_i)_{i \in \mathbb{N}}$ of discrete groups A_i and epimorphisms $\phi_i : A_i \to A_{i-1}$ (for $i > 0$) such that $G \cong \varprojlim_{i > 0} (A_i, \phi_i)$, each group A_i is uniformly computable as a discrete group, and the sequence of maps $(\phi_i)_{i \in \mathbb{N}^+}$ is uniformly computable.

(2) Suppose that $\ker \phi_i$ is finite for each i, so that G is locally compact by [26, Fact 3.2]. We say that $(A_i, \phi_i)_{i \in \mathbb{N}}$ is a computably procountable presentation with effectively finite kernels if in addition, from i one can compute a strong index for $\ker \phi_i$ as a subset of A_i.

Fact 12.4. If G is compact and has a computable procountable presentation with effectively finite kernels, then this presentation is a computable profinite presentation.

Proof. Since G is compact, the A_i are finite. All we need is strong indices for the A_i as groups. Since the A_i are computable groups uniformly in i, it suffices to compute the size of A_i uniformly in i. One can do this recursively, using that $|A_i| = |\ker \phi_i| \times |A_i-1|$.

Proposition 12.5. If a t.d.l.c. group G has a procountable presentation $(A_i, \phi_i)_{i \in \mathbb{N}}$ with effectively finite kernels, then G has a computable Baire presentation.

Proof. This is a straightforward extension of the argument in the profinite setting, Proposition 7.3. For simplicity we may assume that A_0 is infinite. So we can effectively identify the elements of A_i with \mathbb{N}, and hence view ϕ_i as a map $\mathbb{N} \to \mathbb{N}$. As before,

$$ T = \{ \sigma \in \mathbb{N}^* : \forall i < |\sigma| [\sigma(i) \wedge \phi_i(\sigma(i)) = \sigma(i-1) \text{ if } i > 0] \}. $$

It is clear from the hypotheses that $[\sigma]_T$ is compact if σ is a nonempty string, and hence that T is computably locally compact via $k = 1$. The rest is as before, using that the A_i are computable groups uniformly in i.

For abelian, as well as for compact, t.d.l.c. groups, we can provide a converse to the foregoing observation. The compact case essentially restates [46, Thm. 1] for the recursively profinite case.

Proposition 12.6. Let G be an infinite computably t.d.l.c. group that is abelian or compact. Then G has a computably procountable presentation with effectively finite kernels.

Proof. Suppose that the meet groupoid $W(G)$ has a Haar computable copy W as in Definition 4.6. We may assume that its domain is all of \mathbb{N}, and that 0 denotes a (compact open) subgroup. In the framework of that copy one can compute a descending sequence $(U_i)_{i \in \mathbb{N}}$ of compact open subgroups of G, such that U_0 is the group denoted by 0 and, for each compact open U, there is an i with $U_i \subseteq U$. In the abelian case, trivially each U_i is normal; in the case that G is compact, we effectively shrink the U_i so that they are also normal. To do so, by the hypothesis that W is Haar computable, we can compute from i a strong index for the set $\{B_1, \ldots, B_k\}$ of distinct right cosets of U_i; now replace U_i by $\bigcap_{r=1}^k B_r^{-1} \cdot U_i \cdot B_r$.

Let A_i be the automorphism group of the object U_i in the groupoid W viewed as a category; that is, A_i is the set of cosets of U_i, with the groupoid operations restricted to it. For $i > 0$ let $\phi_i : A_i \to A_{i-1}$ be the map sending $B \in A_i$ to the unique coset of U_{i-1} that contains B. Since W is Haar computable, the condition in (1) of Definition 12.3 holds. Also, the kernel of ϕ_i is the set of cosets of U_i contained in U_{i-1}. By Definition 4.6(b) we can compute the number of such cosets, so we can compute a strong index for the kernel. Hence the condition in (2) of Definition 12.3 also holds.

We complete the proof by verifying the following claim.

Claim 12.7. $G \cong \varprojlim_{i > 0} (A_i, \phi_i)$.

As in Definition 5.2, let \(\hat{G} \) be the closed subgroup of \(S_\infty \) of elements \(p \) that preserve the inclusion relation on \(W \) in both directions, and satisfy \(p(A) \cdot B = p(A \cdot B) \) whenever \(A \cdot B \) is defined. Recall that \(\hat{G} \cong G \). So it suffices to show that \(\hat{G} \cong \lim_{i>0} (A_1, \phi_i) \).

Let \(N_i \) be the stabilizer of \(U_i \), which is a compact open subgroup of \(\hat{G} \). Since each \(p \in \hat{G} \) preserves the inclusion relation, we have \(N_i \subseteq N_{i-1} \) for \(i > 0 \). By the choice of the \(U_i \), the intersection of the \(N_i \) is trivial. Each \(N_i \) is normal: if \(p \in N_i \) and \(q \in \hat{G} \), let \(B = q(U_i) \), a left, and hence also right, coset of \(U_i \). Then
\[
q^{-1}pq(U_i) = q^{-1}p(U_iB) = q^{-1}(U_iB) = q^{-1}(B)U_i = U_i.
\]
So \(q^{-1}pq \in N_i \).

For each \(i \), the map \(\hat{G} \to A_i \) sending \(p \) to \(p(U_i) \) induces a group isomorphism \(\hat{G}/N_i \to A_i \). For each \(i > 0 \) the natural map \(\alpha_i : \hat{G}/N_i \to \hat{G}/N_{i-1} \) induced by the identity on \(\hat{G} \) corresponds to \(\phi_i \) via these isomorphisms. Thus \(\lim_{i>0} (\hat{G}/N_i, \alpha_i) \cong \lim_{i>0} (A_i, \phi_i) \). The claim now follows in view of Remark 12.2. \(\square \)

References

[1] C. Ash and J. Knight. *Computable structures and the hyperarithmetic hierarchy*, volume 144 of *Studies in Logic and the Foundations of Mathematics*. North-Holland Publishing Co., Amsterdam, 2000.
[2] M. Burger and S. Mozes. Groups acting on trees: from local to global structure. *Mathematical Proceedings of the Cambridge Philosophical Society*, volume 144, pages 1–29, 2008.
[3] P.-E. Caprace and N. Monod. Decomposing locally compact groups into simple pieces. *Pacific Journal of Mathematics*, 276(2):365–383, 2015.
[4] J. Chabert, M. Darnel, and J. Delahaye. The theory of partial symmetries. World Scientific, 1998.
[5] M. Lupini, A. Melnikov, and A. Nies. Computable topological abelian groups. *J. Algebra*, 543:28–69, 2021.
[6] A. Malcev. *Constructive algebras. I*. Uspekhi Mat. Nauk, 16(39):3–60, 1961.
[28] M. Malicki. Abelian pro-countable groups and orbit equivalence relations. *Fundamentae Mathematicae*, 233, 2014. arXiv preprint arXiv:1405.0693.

[29] T. H. McNicholl. Computable copies of ℓ_p. *Computability*, 6(4):391–408, 2017.

[30] A. Melnikov. Computably isometric spaces. *J. Symbolic Logic*, 78(4):1055–1085, 2013.

[31] A. Melnikov. Computable topological groups and Pontryagin duality. *Trans. Amer. Math. Soc.*, 370(12):8799–8737, 2018.

[32] A. Melnikov and A. Montalbán. Computable Polish group actions. *J. Symb. Log.*, 83(2):443–460, 2018.

[33] A. Melnikov and K. M. Ng. Computable torsion abelian groups. *Adv. Math.*, 325:864–907, 2018.

[34] A. Melnikov and K. M. Ng. Separating notions in effective topology. *International Journal of Algebra and Computation*, 33(08):1687–1711, 2023.

[35] R. Möller. Structure theory of totally disconnected locally compact groups via graphs and permutations. *Canadian Journal of Mathematics*, 54(4):795–827, 2002.

[36] A. Nies, P. Schlicht, and K. Tent. Coarse groups, and the isomorphism problem for oligomorphic groups. *Journal of Mathematical Logic*, page 2150029, 2021.

[37] André Nies. *Computability and randomness*, volume 51 of *Oxford Logic Guides*. Oxford University Press, Oxford, 2009.

[38] A. Pauly. On the topological aspects of the theory of represented spaces. *Computability*, 5(2):159–180, 2016.

[39] A. Pauly, D. Seon, and M. Ziegler. Computing Haar Measures. In Maribel Fernández and Anca Muscholl, editors, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020), volume 152 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pages 34:1–34:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[40] V. Platonov and A. Rapinchuk. *Algebraic groups and number theory*. Academic press, 1993.

[41] M. Pour-El and I. Richards. Computability and noncomputability in classical analysis. *Trans. Amer. Math. Soc.*, 275(2):539–560, 1983.

[42] J. P. Serre. Trees. Springer–Verlag, 1980.

[43] J. Tits. Sur le groupe des automorphismes d’un arbre. In Essays on topology and related topics, pages 188–211. Springer, 1970.

[44] G. Willis. The structure of totally disconnected, locally compact groups. *Mathematische Annalen*, 300(1):341–363, 1994.

[45] G. Willis. Computing the scale of an endomorphism of a totally disconnected locally compact group. *Axioms*, 6(4):27, 2017.