УДК 378+629.7.07

ОПЕРАТОР СКЛАДНИХ СИСТЕМ УПРАВЛІННЯ: СУТНІСТЬ ПРОФЕСІЙНОЇ ДІЯЛЬНОСТІ

Ковтун О.В.

Вимоги до операторів складних систем управління змінювалися впродовж історичного поступу цієї професії. В межах даної статті спробуємо розкрити основні етапи становлення професії, показати залежність вимог до оператора від науково-технічного прогресу та розвитку інженерно-психологічної думки. В основу аналізу покладемо діяльність авіаційного оператора.

У жодній галузі народного господарства науково-технічний прогрес не диктує таких жорстких вимог до відбору фахівців як в авіації. Оскільки в період зарождення авіації літаководіння було пов’язане зі значним ризиком для життя пілотів та великими фізичними навантаженнями основна увага у відборі й підготовці майбутніх авіаторів приділялася їхнім психофізіологічним даним, з-поміж них: відсутність страху, розгубленості й нервозності; наполегливість, професійна витримка; дисциплінованість; фізична підготовка, спритність, спортивність [5, с. 133]. З поступом науково-технічного прогресу вимоги до льотного складу змінюються. Розвиток автоматизації призводить до «надзвичайного ускладнення трудової діяльності, її інтелектуалізації» (О.М.Леонтьєв), переходу від «сенсорно-рухової до сенсорно-смислової діяльності» (А.А.Крилов). Технічний прогрес обумовлює ускладнення аналізу й оцінки обстановки людиною у її професійній діяльності внаслідок одночасного управління нею «все більшою і більшою кількістю об’єктів (і їх параметрів)»; дистанціювання з об’єктами управління, що призводить до опосередкованого керування, необхідності «декодування інформації», яка тепер
не сприймається безпосередньо від об’єкта, а подається «цілою системою технічних пристроїв»; значне збільшення «швидкості процесів, що підлягають управлінню» (О.М. Леонтьєв, Б.Ф. Ломов).

З 60-х років минулого століття зміни в трудовій діяльності людини, що взаємодіє з автоматикою, починають досліджуватися з позицій системного підходу. У ньому виокремлюють три ланки: «машина – людина – середовище». Робота людини у цій системі зазвичай розглядається як діяльність оператора. Важливою методологічною засадою організації ефективної діяльності оператора є визначення його ролі в зазначеній системі. В свій час у науці розгорнулася широка дискусія з означеного питання. На ранніх етапах вивчення системи «людина – машина» людину намагалися розглядати як відносно просту її ланку. Згідно з таким, машиноцентричним підходом, поведінка оператора описується за принципом «стимул – реакція». Він сприймає покази приборів, розшифровує їх і виконує ту чи іншу дію. Сигнал, що виникає в результаті реакції, перетворюється і потрапляє на об’єкт управління, змінює стан. Новий стан об’єкта викликає нові сигнали і т. д. У практичному плані такий підхід – підхід «від машини до людини» – визначав установку на спрощення (симпліфікацію) праці як основний шлях узгодження техніки з людиною. Головним тут виступало завдання правильно «вписати» людину в контур технічної системи управління. Проте, як зауважують Б.Ф. Ломов і К.К. Платонов, у ході накопичення конкретних експериментальних даних і їх перевірки на практиці виявилася «обмеженість машиноцентричного підходу, оскільки він редукує реальну діяльність людини до елементарних реакцій». Учені переконують у тому, що не все, що виходило в лабораторному експерименті, побудованому за принципом «стимул – реакція», підтверджувалося «в умовах реальної діяльності». Учені переконують у тому, що не все, що виходило в лабораторному експерименті, побудованому за принципом «стимул – реакція», підтверджувалося «в умовах реальної діяльності» [12, с. 11]. Відтак, набув розвитку новий антропоцентричний підхід, що спирається на розуміння взаємовідносин між людиною і машиною як взаємовідносин між суб’єктом і знаряддям праці (Б.Ф. Ломов). З позицій цього підходу головним в описі системи «людина – машина» стає діяльність людини, яка розглядається як основна «складова» всього процесу управління. Згідно з цим підходом, людина, сприймаючи сигнали від систем відображення інформації,
оцінює стан об’єкта, порівнює його з образом-метою, аналізує можливі способи діяльності, приймає рішення і виконує дії з управління. За цього підходу людина також лишається ланкою, але це якісно відмінна ланка, така, що «організує всю систему і спрямовує її на досягнення визначеного, попередньо заданого результату» [12, с. 12]. Саме на такому підході до розуміння ролі людини в системі базується вітчизняна наука. Відтак, розуміння активної позиції людини у системі стимулювало впровадження у науковий обіг такого феномена як «активний оператор» [4, с. 5], який ми вважатимемо однією з методологічних засад у дослідженні діяльності авіаційних операторів.

Що ж являє собою операторська діяльність? Якими є основні професійні функції оператора складних систем управління? У чому переваги людини над автоматами, а де вона поступається їм? Відповіді на ці питання ми шукали у процесі дослідження праць вітчизняних і зарубіжних науковців (М.Банджейова, В.Г.Денисов, Н.Д.Завалова, О.М.Леонтьєв, Б.Ф.Ломов, В.Ф.Онищенко, К.К.Платонов, В.О.Пономаренко, О.В.Скрипець та ін.) [1; 3; 4; 8; 12]. Операторська діяльність, за визначенням Б.Ф.Ломова і К.К.Платонова, – специфічний вид трудової діяльності, що виник на певному етапі розвитку техніки і виробництва загалом [12, с. 19]. Ця діяльність характеризується всіма ознаками, що притаманні будь-якій діяльності, та специфічними, властивими тільки їй. Б.Ф.Ломов виділяє у діяльності оператора чотири основних етапи. З-поміж них: «1) прийом інформації, що подається на органи відчуттів людини, 2) її переробка, 3) прийняття рішення; 4) виконання прийнятого рішення» [9, с. 55]. Учені (Б.Г.Ананьєв, Л.С.Виготський, О.М.Леонтьєв, Б.Ф.Ломов, О.Р.Лурія, К.К.Платонов) зауважують, що основна відмінність діяльності людини від роботи інших систем, які переробляють інформацію, полягає в тому, що людина до початку діяльності подумки «будує» образ майбутнього результату. Відтак, для ефективної роботи оператор повинен мати мету, яка є образом майбутнього результату діяльності і є її регулятором; вміти переробляти інформацію згідно з концептуальною моделлю, що являє собою «уявний образ майбутньої діяльності» (Б.Л.Покровський); уміти планувати діяльність та приймати рішення. Образ-мета і концептуальна модель формуються на
базі «випереджувального відображення», дослідженої в теорії функціональних систем П.К.Анохіним. Згідно з цією теорією, у склад системи входить акцептор результатів дії, в якому формується модель майбутнього результату і який забезпечує його оцінку. Образ-мета визначає критерії селекції інформації про поточний стан об’єкта управління, а також її інтеграції. Те, які сигнали з загального потоку буде вибирати оператор у першу чергу і як він буде об’єднувати їх, залежить від характеру образу майбутнього стану об’єкта управління. Цей образ також визначає способи перекодування інформації, її оцінки, формування гіпотез і прийняття рішення. Отже, всі етапи діяльності людини-оператора, наголошує Б.Ф.Ломов, опосередковуються концептуальною моделлю, яка так чи інакше впливає на показники ефективності і надійності її дій [9, с. 57].

У зв’язку з визначенням місця людини в системі «людина – машина», науковці порівнювали роботу кожної складової системи. Правильне визначення переваг і недоліків цих складових дозволяє підвищити ефективність системи в цілому. Зупинимось на таких основних моментах. По-перше, людина в системі здійснює інтегральну функцію. У цьому людина має переваги над машиною, оскільки може оцінити її дії на основі найрізноманітніших критеріїв, виявлених за допомогою практичного досвіду. Переваги людини обумовлюються такими її якостями, як «зdatність оптимізувати поведінку і діяльність у широкому діапазоні варіювання умов, приймати правильні рішення на основі навіть неповної інформації про умови, знаходити якісно нові рішення у непередбачуваних ситуаціях і т. ін.» [4, с. 3]. По-друге, перевагою є «сенсорний вхід» людини, який характеризується широтою та пластичністю. М.Банджейова з цього приводу зазначає, що «людина зdatна сприймати інформацію, яка не поступає безпосередньо через канал зв’язку, неповну і неочікувану» [1, с. 197]. По-третьє, за різноманітністю обробки інформації людина має перевагу над машиною (різноманітні методи аналізу і синтезу). По-четверте, виконання моторних дій, а також інших функцій здійснюється людиною значно пластичніше, ніж машиною [1, с. 198]. Загалом науковці досягають висновку, що провідна функція в системі «людина – машина» належить саме людині, оскільки «порівняння повністю автоматизованих систем управління із системами, що
включають людину-оператора, свідчить, що останні працюють надійніше і володіють ширшими можливостями, ніж перші» [4, с. 3], саме людина «програмує, управляє і контролює» [10, с. 7].

Водночас людина постукається машині у швидкості сприйняття і обробки інформації, а також у точності одержуваних результатів. Як слабка ланка у системі людина може також розглядатися з тих позицій, що її надійність обумовлюється часовими вимірами, оскільки відносно високий і стабільний рівень її працездатності може утримуватися лише в обмеженому часовому проміжку. Відтак, доходимо висновку, що оператор має як переваги, так і певні обмеження в системі, які повинні ураховуватися в організації його діяльності.

Одним з «найскладніших і найдинамічніших» (К.К.Платонов) різновидів операторської діяльності є льотна робота. Учений зазначає з цього приводу, що льотний склад сучасного повітряного судна працює на межі людських можливостей. Так, наприклад, при виконанні посадки пілот здійснює 20 рухів у хвилину руками, одночасно спостерігає за приладами, визначає знесення повітряного судна і вправляє його за допомогою рулив, веде радіообмін, постійно аналізує інформацію і виконує операції відповідно до її змісту і повітряної обстановки.

З чим же пов’язані основні труднощі в роботі авіаційного оператора? З-поміж останніх, насамперед, відзначимо такі: перенавантаження інформаційного поля, ліміт і дефіцит часу на прийняття рішення, робота в умовах стресу, обмежені можливості оператора. Охарактеризуємо ці положення дещо докладніше.

Ми вже зазначали, що оператор особливо складних систем віддалений від об’єкту управління, взаємодія між ним і об’єктом управління опосередковується численними інформаційними системами, які подають інформацію про стан системи в кожний конкретний момент роботи. Відтак, екіпаж літака здійснює управління не фізичним об’єктом як таким, а його інформаційною моделлю (О.М.Леонтьєв). Оскілька обладнання сучасного літального апарату дозволяє здійснювати пілотування практично за приборами, змінюється й сам процес пілотування. Діяльність оператора повітряного судна може бути представлена у такій структурі: 1) етап збирання й перекодування інформації; 2) етап переробки інформації й
прийняття рішення; 3) етап виконавських впливів оператора [3, с. 96]. Інакше кажучи, на першому етапі відбувається цілеспрямований інформаційний пошук, виокремлення з загального інформаційного потоку сигналів, які необхідні для прийняття рішення. Другий етап характеризується перетворенням інформації за змістом, тобто на «виході» оператора з’являється якісно нова інформація, якої не було на «вході». На третьому етапі оператор реалізує у вигляді управлінських впливів на органи управління літаком або мовленнєвих сигналів рішення, прийняте на основі сприйнятої та опрацьованої інформації. Відтак, циркуляція і переробка інформації мають в авіації фундаментальне значення.

Швидкозмінювані умови польоту постійно ставлять перед пілотом питання, що потребують від нього не лише правильних, але й дуже швидких рішень. Напруження в роботі авіаційного оператора тісно пов’язане з лімітом і дефіцитом часу, необхідного для прийняття рішення і виконання дій з управління. Жорсткий ліміт і дефіцит часу обумовлюють «вимушений і безперервний швидкий темп роботи» (К.К. Платонов). Вчені відзначають також специфічність сприйняття часу пілотами, зокрема «в критичній ситуації час може суб’єктивно розтягуватися, або стягуватися» (С.М. Зіньковська).

Важливим для розуміння специфіки льотної роботи і визначення адекватних підходів щодо підготовки льотного складу є урахування того, що льотна діяльність як професія належить до категорії «небезпечних професій». Авіаційним операторам часто доводиться працювати в екстремальних умовах (Г. Т. Береговой, В. О. Пономаренко), в умовах стресу (Б. Л. Покровський), в аварійних ситуаціях (К. К. Платонов), в ускладненій обстановці польоту (Н. Д. Завалова, В. О. Пономаренко). Вчені зазначають, що найкритичнішими для надійності дій оператора є стресові умови. Науковці зосереджують увагу на тому, як мінімалізувати вплив стресової ситуації на діяльність пілота, а, оскільки такі ситуації, на жаль, не можна повністю виключити з операторської діяльності, ще й на тому, як підготувати його до роботи в умовах стресу.

Р. М. Макаров виокремлює чотири групи екстремальних факторів, що визначають специфіку роботи авіаційних операторів. Це, зокрема: надмірна
кількість конфліктних ситуацій, нерозв’язаних своєчасно проблем, нервово-психічне перенапруження, пов’язане з відповідальністю за результат польоту; посилене навантаження на аналізаторні й ефекторні функціональні системи організму (перевантаження зорового і слухового аналізаторів тощо); вплив факторів, що викликають в організмі мобілізацію адаптаційних ресурсів (перевантаження, радіація, гіпоксія тощо); десинхроноз, викликаний умовами професійної діяльності і засобами пересування, що призводить до порушень функціонування основних життєзабезпечувальних систем організму [10, с. 3].

Поведінка людини під впливом екстремальних факторів може характеризуватися: 1) різким підвищенням збуджуваності, що виявляється в імпульсивності дій, порушенні чи втраті навичок, чи 2) гальмуванням і навіть припиненням активності (Н.Д. Завалова). Обидві форми реакції призводять до дезорганізації раціональної діяльності оператора. Одним з головних факторів, що може викликати стрес у оператора, є недосконалість інформації. Відомо, що ефективність дій оператора, спосіб його поведінки і в нормальних умовах діяльності багато в чому визначаються особливостями інформаційної моделі. «Неповнота, двозначність, невизначеність інформації можуть не лише погіршити часові й точністні характеристики оператора, але й викликати стрес і помилкові дії, і, як результат, призвести до аварійної обстановки» (Н.Д. Завалова).

Зазначені вище особливості роботи авіаційного оператора (інформаційне перевантаження, вимушено високий темп роботи через ліміт і дефіцит часу, робота в стресових умовах) посилюються тим, що людина як ланка складної системи «повітряне судно – оператор – середовище», хоч і виконує в ній інтегральну роль, все ж має свої обмеження. Означені фактори призводять до виникнення помилок в роботі, провокають створення аварійних ситуацій.

Помилки в діяльності оператора складних систем управління досліджено в науці і висвітлені у відповідній літературі досить повно. Особливої уваги надається вивченню помилок в авіації, оскільки саме в авіації, «як у фокусі, сконцентровані всі проблеми прикладної психології» [2, с. 135].
Перші дослідження авіаційних помилок і аварій, пов’язаних з людським чинником, були здійснені вже майже століття тому [Див: 7]. Загальна концепція психологічного аналізу аварій була сформульована Г. Андерсеном. Згідно з нею, кожна аварія являє собою новий урок, що повинен враховуватися для запобігання нещасних випадків у майбутньому. Значення перших досліджень помилок в діяльності оператора в авіації полягають у тому, що на їх основі були одержані рекомендації з їх запобігання.

Другий період «досліджень на матеріалі помилок» безпосередньо пов’язаний з виокремленням проектування як сфери соціальної діяльності. Він стимулював виникнення нової дослідницької позиції, що вбачала основною причиною помилок людини-операатора проектні рішення. У цей період був свідомо здійснений перехід з позиції «людина може все» до позиції, що вимагала визначення «можливостей людини і її обмежень як основи для проектних рішень». Якщо раніше причина була внутрішньою для суб’єкта – психофізіологічні недоліки, то з того часу вона почала розглядатися як зовнішня – помилки в конструкції системи (Н.Д. Завалова, В. О. Пономаренко). Означене обумовило й зміну типу категоризації помилок оператора, наприклад, помилки переплутування, помилки регулювання і т. ін. [2, с. 140]. На цьому етапі оператор розглядався як компонент системи і задавався сукупністю таких параметрів, як передаточна функція, пропускна здатність тощо.

На третьому етапі дослідження помилок в авіації акценти змістилися у бік визначення вимоги надійності. Оскільки на сучасному етапі розвитку системотехнічного проектування людина розглядається як компонент системи, то основні поняття теорії надійності специфіковані і для людини-операатора. Проблема надійності фахівців екстримального профілю досліджувалася в роботах К. М. Гуревича, В. П. Загрядського, Г. М. Зараковського, В. В. Козлова, А. А. Крилова, Б. Ф. Ломова, Р. М. Макарова, В. Л. Марищузка, В. Д. Небиліцина, Г. С. Нікіфорова, К. К. Платонова, В. І. Шостака та ін. Надійність людини-операатора розглядається як «зда́тність до збереження необхідних якостей в умовах можливого ускладнення обстановки, або ж як «збережуваньство», стійкість робочих параметрів індивіда» [11]. Як наслідок проблема помилок оператора була включена в більш широкий контекст
надійності системи в цілому, а власне помилки оператора почали розглядатися як
особливий вид «відмов» у системі.

Під помилкою оператора, що обслуговує авіаційну техніку, прийнято розуміти
подію, «яка призвела чи може призвести до втрати ерготичною системою здатності
впродовж певного часу і за визначених умов роботи виконувати задані функції» [3,
c. 109]. Природа помилок пов’язана з характером і особливостями діяльності
людини в процесі управління повітряним судном. Існують різні класифікації
помилок оператора (В.І.Жулєв, Г.С.Карапетян, Б.Ф.Ломов, С.І.Пичко,
К.К.Платонов; А.І.Стариков та ін.). Стосовно місця виявлення помилки розрізняють:
помилки сприйняття (зорового, слухового, кінестетичного); пам’яті (збереження,
сприйняття, оперативної, довготривалої); прийняття рішення (у діях з органами
КПР, в логічних умовах, мовленнєвих відповідях, запам’ятовуванні і т. ін.). З позицій
порушень у діяльності оператора розрізняють помилки: у переробці інформації
(нестача інформації, надмірний потік інформації, неправильна оцінка інформації); у
розподілі уваги (неправильний розподіл уваги чи її перемикання, надмірна /
недостатня концентрація уваги на тому чи іншому об’єкті і т. ін.); професійних рухів
(перенесення неприйнятного досвіду, недостатня навичка, помилки перемикання
навички тощо) (А.І.Стариков, В.Я.Зачеса, Н.Н.Зінковський). З погляду впливу на
систему можна виокремити: 1) помилки часу виконання дії (охоплюють повністю
невиконані або несвоєчасно виконані дії. Перші (напр., внаслідок пропуску сигнала)
зазвичай є відмовами у системі. До причин, що викликають подібні помилки,
належать недоліки в конструкції і компонуванні панелей управління, неуважність
оператора, дефіцит часу і т. ін.); 2) помилки технології виконання дії, що стосуються
відхилень у значеннях параметрів (напр., помилки, що призводять до відхилень
літака від ВПС і т. ін.); 3) помилки операторів типу «промахів», що пов’язані з
професійною непідготовленістю оператора, його втомою, дегенерованістю.
Означений клас помилок, зазвичай, є відмовою для системи [3, c. 109-110].

Усвідомлення того, що людина-оператор має певні обмеження, які
позначаються на роботі системи і призводять до відмов у ній, тобто безпосередньо
впливають на безпеку польоту, загострило увагу авіафахівців на понятті «людський
фактор». Невеликий екскурс в історію авіації свідчить, що означене питання вже давно хвилює науковців, оскільки ще у 1910 р. М.Є.Жуковський зазначав, що особистісні характеристики льотчика безпосередньо пов’язані з його професійною надійністю. Через вісім років особистий фактор запропонували враховувати в аналізі авіаційних подій. Особистий фактор в аварійності визначали як «співвідношення особистих якостей і неправильних дій льотчика, що були причиною аварії» (К.К.Платонов). В понятті «особистий фактор» підкреслюється зв’язок помилки з індивідуальними якостями людини. Найчастіше це негативні риси конкретного льотчика: недисциплінованість, емоційна нестійкість, халатність, недостатня підготовленість. У подальшому з’явилось ширше і більш ємне поняття «людський фактор». У науковий обіг означене поняття увійшло завдяки працям Н.М.Добротворського, Н.Д.Завалової, К.К.Платонова, В.О.Пономаренка, Л.М.Шварца, А.Г.Шишова та ін. у зв’язку з урахуванням при проектуванні техніки взаємодії людини-оператора з літальним апаратом і середовищем. У понятті «людський фактор» входять психофізіологічні характеристики людини, що притаманні всім людям, як-от: можливості й обмеження, що характерні для всіх авіаційних операторів за наявності об’єктивних труднощів. Введення поняття «людських фактор» дає можливість відокремити дійсну провину пілота від помилки, пов’язаної з технічними (ергономічними) недоліками обладнання чи обмеженістю людських можливостей. Вченими з’ясовано, що в авіації є певні умови, що провокують помилку працездатного і підготовленого льотчика. Зокрема, «закономірними» є помилки в таких випадках: надходження сигналів, що мають слабкий ефект привертання уваги; надходження невизначеної чи неповної інформації; виконання дій, що є протилежними відносно раніше набутих навичок (інтерференція навичок); прийняття рішень, що вимагають надмірного напруження пам’яті; виконання суміщених дій [12, с. 259]. Відтак, стосовно авіації поняття «людський фактор» визначають як перемінні, що впливають на надійність і ефективність взаємодії льотчика з використовуваною технікою.

Саме з людським фактором пов’язується сучасне бачення феномена «безпека польотів», яку пропонують розуміти насамперед як «високу професійну надійність
пілота (екіпажу)» [6, с. 39]. Р.М.Макаров зазначає, що «низька професійна надійність льотного складу (80 – 85%) зводиться до недостатньої психологічної готовності, низьких морально-вольових якостей, недостатньої стійкості до екстремальних факторів середовища» [10, с. 4].

Відтак, особливої уваги необхідно приділити розвитку професійних та психологічних можливостей пілота. Аналіз практичної діяльності операторів авіаційних систем, вивчення літератури з проблеми дозволили дійти висновку, що на сучасному етапі робота з формування надійності авіаційних операторів повинна відбуватися в напрямку формування професійної готовності, що охоплює професійну, психофізіологічну і психічну підготовку.

Література:

1. Банджейова М. Инженерная психология / М.Банджейова // Психология труда. – М.: Профиздат, 1979. – С. 190 – 201.
2. Гущин Ю.Ф. Проблема «отказов» и ошибок человека-оператора / Ю.Ф.Гущин, А.А.Пископпель // Психологические исследования. Вып. 5. Под ред. А.Н.Леонтьева, А.Р.Лурия. – М.: Изд-во Моск. ун-та, 1975. – С. 133 – 148.
3. Денисов В.Г. Авиационная инженерная психология / В.Г.Денисов, В.Ф.Онищенко, А.В Скрипец. – М.: Машиностроение, 1983. – 232 с.
4. Завалова Н.Д. Принцип активного оператора и распределение функций между человеком и автоматом / Н.Д.Завалова, Б.Ф.Ломов, В.А.Пономаренко //Вопросы психологии. – 1971. – № 3. – С. 3 – 12.
5. К истории отечественной авиационной психологии / Отв. ред. К.К. Платонов. – М.: Наука, 1981. – 320 с.
6. Козлов В.В. Новое понятие: потенциал надежности пилот / В.В.Козлов // Вестник МНАПЧАК. – 2005. – № 3 (19). – С. 39 – 42.
7. Кона М. Психофизиология летчика / М.Кома, Г.Андерсен. – М.: Издательство ОДВФ РСФСР, 1925.
8. Леонтьев А.Н. Человек и техника / А.Н.Леонтьев, Б.Ф.Ломов //Вопросы психологии. – 1963. – № 5. – С. 29 – 37.
9. Ломов Б.Ф. Деятельность человека-оператора в системах «человек – машина» / Б.Ф. Ломов // Вестник АН РСФСР. – 1975. – № 1. – С. 51 – 60.

10. Макаров Р.Н. Основы формирования надежности летного состава гражданской авиации: Учебное пособие / Р.Н. Макаров. – М.: Воздушный транспорт, 1990. – 384 с.

11. Небылицын В.Д. Надежность работы оператора в сложной системе управления / В.Д. Небылицын // Инженерная психология. – М.: Изд-во МГУ, 1964. – С. 358 – 367.

12. Экспериментально-психологические исследования в авиации и космонавтике / Отв. ред. Б.Ф. Ломов, К.К. Платонов. – М.: Наука, 1978. – 304 с.

Ковтун О.В. Оператор складних систем управління: сутність професійної діяльності.

У статті визначено сутність професійної діяльності оператора складних систем управління. В діахронічному аспекті розкрито вимоги до авіаційного оператора на різних етапах розвитку операторської діяльності.

Ключові слова: автоматизация, операторская діяльність, оператор складних систем управління, авіаційний оператор, помилки оператора, підготовка авіаційного оператора.

Ковтун Е.В. Оператор сложных систем управления: сущность профессиональной деятельности.

В статье определяется сущность профессиональной деятельности оператора сложных систем управления. В диахроническом аспекте раскрыты требования к авиационному оператору на разных этапах развития операторской деятельности.

Ключевые слова: автоматизация, операторская деятельность, оператор сложных систем управления, авиационный оператор, подготовка авиационного оператора.
Kovtun O. Operator of complex control systems: essence of professional activity.

The article determines the essence of professional activity of an operator of complex control systems. Requirements to an aviation operator at different stages of development of operator’s activity are presented diachronically.

Key words: automation, operator’s activity, aviation operator, operator of complex control systems, training of aviation operator.