Phenotypically defined subpopulations of circulating follicular helper T cells in common variable immunodeficiency

Sait Yesillik | Sudhir Gupta

Division of Basic and Clinical Immunology, University of California, Irvine, California

Correspondence
Sudhir Gupta, Division of Basic and Clinical Immunology, University of California at Irvine, Medical Sciences C-240, Irvine, CA 92697. Email: sgupta@uci.edu

Funding information
Unrestricted funds from Division of Basic and Clinical Immunology, University of California, Irvine, CA

Present address
Sait Yesillik, Division of Immunology and Allergy, Health Sciences University Gulhane Training and Research Hospital, Ankara, Turkey

Abstract

Background: Common variable immunodeficiency (CVID) is characterized by low immunoglobulin G and IgA/IgM, decreased switched memory B cells, impaired response to vaccine, and an increased susceptibility to infections and autoimmunity. T_{FH} cells play an important role in germinal center reaction where it supports isotype switching, somatic hypermutation, generation of memory B cells, and differentiation of B cells to plasma cells. The objective was to study the distribution of three subsets of T_{FH} cells and their relationship with autoimmune diseases associated with CVID.

Methods: T_{FH} cells have been divided into T_{FH1} (interleukin 21 [IL-21] and interferon γ), T_{FH2} (IL-21 and IL-4), and T_{FH17} (IL-21 and IL-17) cells. Mononuclear cells from 25 patients with CVID and age and gender-matched controls were stained with various monoclonal antibodies (anti-CD4 APC, anti-CXCR5 FITC, anti-CCR6 PerCP, and anti-CXCR3 PE) and isotype controls and analyzed for T_{FH1} (CD4⁺CXCR5⁺CXCR3⁻CCR6⁻), T_{FH2} (CD4⁺CXCR5⁺CXCR3⁻CCR6⁻), and T_{FH17} (CD4⁺CXCR5⁺CXCR3⁻CCR6⁺) cells by multicolor flow cytometry. Twenty thousand cells were acquired and analyzed by FlowJo software. Statistical analysis of comparison of patients and healthy controls was performed by paired t test using PRISM 7 software.

Results: T_{FH2} and T_{FH17} cells subpopulations of T_{FH} cells were significantly decreased (P < .003 and P < .006, respectively) in CVID as compared with controls. No significant difference was observed in any of T_{FH} cell subpopulations between CVID with and those without autoimmunity group.

Conclusion: Alterations in T_{FH} cell subpopulation may play a role in defects in B cell compartment in CVID.

KEYWORDS

autoimmunity, CVID, follicular helper T cells
1 | INTRODUCTION

Common variable immunodeficiency (CVID) is heterogeneous and most common primary immunodeficiency disease in adults characterized by low serum immunoglobulins immunoglobulin G (IgG), IgA, and/or IgM, impaired specific antibody response to vaccines, and increased susceptibility to recurrent infections.1-5 In addition, patients with CVID have increased prevalence of allergic, autoimmune, and granulomatous disorders, and malignancy, the majority being lymphoreticular malignancy.5-10

A number of gene mutations have been reported in CVID; however, they account for less than 20% of CVID patients.11-13 Therefore, in majority of patients with CVID cause(s) is unknown. The predominant defects appear to be in the B cell compartment including impaired immunoglobulin isotype switching and differentiation of B cells into plasma cells despite normal number of B cells; postgerminatal center B cells are defective and switched memory B cells are reduced.14-16

The follicular helper (T\textsubscript{FH}) cells are major CD4+ T helper subset that are essential for B cell differentiation into immunoglobulin producing plasma cells, and for the generation of memory B cells in the germinal center (GC).17,18 GCs are primary sites for class-switched recombination and affinity maturation. T\textsubscript{FH} cells regulate GC formation, and selection of high-affinity antibody-producing B cells and support isotype class switching.19,20 An increased cT\textsubscript{FH} cells response in the GC is associated with the expansion of low affinity and autoreactive B cells.21,22

T\textsubscript{FH} cells are characterized by the expression of CXCR5 and transcription factor B cell lymphoma 6 (Bcl6), and production of their signature cytokine, the interleukin 21 (IL-21).23-25 CXCR5 plays an important role in the migration of B cells to germinal follicles to support immunoglobulin production.26 Although T\textsubscript{FH} cells are predominantly found in lymph nodes and spleen, a small proportion of these cells are also found in the circulation. Vella et al27 compared T\textsubscript{FH} cells from lymph nodes, thoracic duct lymph, and blood and showed that they share TCR clonotype, phenotype, and transcriptional signature, and therefore cT\textsubscript{FH} represents T\textsubscript{FH} cells in GC.

Morita et al28 also reported that blood CXCR5+ CD4+ T cells induce naive B cells differentiation and class switching more than CXCR5− CD4+ T cells. According to the expression of CXCR3 and CCR6 on CD4+ CXCR5, they identified three different subsets of T\textsubscript{FH} cells with different functions. In addition to IL-21, these different cT\textsubscript{FH} subsets can also produce, albeit in lower amounts, IL-4, interferon γ (IFN-γ), and IL-17. cT\textsubscript{FH}1 (CXCR5+CXCR3+CCR6−) produce IFN-γ, cT\textsubscript{FH}2 (CXCR5−CXCR3−CCR6−) produce IL-21 and IL-4, and cT\textsubscript{FH}17 (CXCR5−CXCR3−CCR6+) produce IL-21 and IL-71A; all of them are able to efficiently induce antibody response by memory B cells.

A role of T\textsubscript{FH} cells in antibody-mediated autoimmune disease has been established in both mice and humans.21,22 Because T\textsubscript{FH} cells play a role in class switching and autoimmunity, and an observed deficiency of switched memory B cells and increased autoimmunity in CVID, we evaluated cT\textsubscript{FH}1, cT\textsubscript{FH}2, and cT\textsubscript{FH}17 cells in CVID patients and examined their relationship with autoimmune diseases associated with CVID.

2 | MATERIALS AND METHODS

2.1 | Subjects

A total of 25 patients (seven men and 18 women, aged 15-82 years) with CVID and 25 healthy controls (13 men and 12 women, aged, 20-67 years) were enrolled in the study. Pan American and ESID Criteria were used to diagnose CVID patients.1 Clinical and immunological features of these patients have been published.29 All patients were receiving immunoglobulin replacement treatment. Blood samples were drawn at trough level. The Institutional Review Board committee (human research), University of California at Irvine approved this study protocol. Written and signed informed consent was obtained from all subjects.

2.2 | Antibodies

Anti-C4 APC, anti-CXCR5 (CD185) FITC (clone-2G8), anti-CCR6 (CD196) PerCP (clone-11A9), anti-CXCR3 (CD183) PE (clone-1C6/CXCR3) monoclonal antibodies, and isotype control antibodies were purchased from Pharmingen BD Sciences, San Jose, CA.

2.3 | Immunophenotyping

Ten ml of heparinized blood was diluted with Hank’s buffered salt solution (HBSS). Mononuclear cells (MNC) were separated by Ficoll-Hypaque density gradient using lymphocyte separation medium. Cells were suspended in HBSS and used for immunophenotyping. Cells were incubated with different monoclonal antibodies and isotype controls (below) for 30 minutes on ice in the dark. Cells were washed and cT\textsubscript{FH}1, cT\textsubscript{FH}2, and cT\textsubscript{FH}17 analyses were performed by multicolor flow cytometry.
controls to defined T\textsubscript{FH}1, T\textsubscript{FH}2, and T\textsubscript{FH}17 subsets of follicular helper T cells and analyzed with multicolor flow cytometry using FACSCelesta. Data are expressed as mean ± SD. Statistical analysis was performed with GraphPad Prism version 8.4.3 for Windows (GraphPad Software, San Diego, CA).

3.2 | cT\textsubscript{FH} subpopulations in CVID with and without autoimmunity

cT\textsubscript{FH} cells play a role in autoimmunity and autoimmune diseases.\cite{21,22,30} Therefore, we analyzed our data for the presence and absence of autoimmunity in CVID. Data are shown in Figure 2. cT\textsubscript{FH}17 cells tended to be higher in CVID patients with autoimmunity as compared with those without autoimmunity. However, we observed no significant difference in cT\textsubscript{FH}1, cT\textsubscript{FH}2, and cT\textsubscript{FH}17 cells between CVID patients with or without autoimmune disease (P > .754, P > .177, P > .230, respectively). There were only seven of 25 CVID patients with autoimmune disease.

4 | DISCUSSION

Patients with CVID display increased susceptibility to recurrent infections, and increased incidence of autoimmune and inflammatory disorders, and malignancy.\cite{2,10}
The hallmark of defect in CVID is an impaired specific antibody response to vaccine, decreased switched memory B cells, and impaired differentiation of B cells to plasma cells that takes place in GCs of follicles.14-16

T\textsubscript{FH} cells are specialized helper T cells that provide help to B cells and are essential for the formation of GC B cells, affinity maturation, and generation of high-affinity antibodies and memory B cells. T\textsubscript{FH} cells17-28,31 are characterized by high expression of the transcription factor Bcl6, CXCR5, and IL-21 production.24,26 The GC is also regulated by T follicular regulatory cells.17

CVID is the most common and genetically heterogeneous antibody deficiency disorder in adults. However, with the use of genome-wide association studies and next-generation sequencing have delineated several gene mutations in CVID including CD19, CD20, CD21, CD81, TACI (TNFRSF13B), BAFF (TNFRSF13C), PTEN, PI3KD, PIK3R1, TWEAK, TRNT1, TTC37, NFKB1, NFKB2, IKZF1, IRF2BP, ATP6AP1, ITPKB, PRKCD, LRBA, and ICOS.13,32,33 However, these genetic mutations contribute to less than 20% of CVID patients. Therefore, in majority of patients with CVID genetic basis and pathogenesis remain unclear.

Bossaller et al34 and Grimbacher et al35 reported decreased proportions of CXCR5+CD4+ cTFH cells in CVID patients with inducible T cell costimulator (ICOS) deficiency. Cunill et al14 observed increased CD4+CXCR5+cT\textsubscript{FH} cells in CVID as compared with controls; however, these differences were observed only between CVID with low-switched B cells (smB−) vs normal controls. Coraglia et al15 reported no difference in CD4+CXCR5+cT\textsubscript{FH} cells that expressed IL-10, IL-21, or IL-4 between CVID with and without autoimmune diseases as compared with controls. However, they observed increased proportions of PD1+CCR7+ T\textsubscript{FH} in CVID with autoimmune diseases as compared with CVID without autoimmune diseases and controls. Cunill et al14 when used expression of CXCR3 and CCR6 to define cT\textsubscript{FH1}, cT\textsubscript{FH2}, and cT\textsubscript{FH17}, observed increased cT\textsubscript{FH1} cells, and decreased T\textsubscript{FH17} cells in CVID with low-switched memory B cells as compared with CVID with normal switched memory B cells and healthy controls. No difference was observed in T\textsubscript{FH2} cells. Unger et al17 also observed increased T\textsubscript{FH1} and decreased T\textsubscript{FH17} cells in CVID patient. Increased T\textsubscript{FH1} cells were observed in patients with autoimmune manifestations and strongest shift in T\textsubscript{FH1} cells was observed in CVID with increased CD21low B cells. Turpin et al38 reported higher proportions of cT\textsubscript{FH1}, cT\textsubscript{FH17} and low cT\textsubscript{FH2} in CVID and low cT\textsubscript{FH2} in CVID patients than control subjects. Increased IFN-\gamma-producing TFH1 cells in CVID were observed in CVID with noninfectious manifestations. However, Le Coz et al39 did not observed increased IFN\gamma producing T\textsubscript{FH} cells in CVID. They observed increased IL-21 producing T\textsubscript{FH} cells and imbalance in TFH1/TFH2 to TFH17. We observed significantly decreased cTFH2 in CVID that is in agreement with report by Turpin et al.39 Our observations of decreased TFH17 cells in CVID are in agreement with reports of Cunill et al14 and Unger et al.37 However, similar to Le Coz et al,39 we did not observed any significant difference in TFH1 cells in CVID. Our results are different from those of increased TFH1 cells reported by Cunill et al14 and Unger et al.15 However, we did not analyze our data in relation to switched B cells. The role of T\textsubscript{FH1} cells in the pathogenesis of CVID is questionable.

Desjardins et al40 demonstrated that an addition of exogenous IFN\gamma to cultures of B cells had no effect on B cells from CVID patients. We did not observed significant difference in any of subsets of cT\textsubscript{FH} cells between CVID patients with and without autoimmune disease. In various autoimmune diseases including SLE, IgG4-related diseases, Sjogren’s syndrome, rheumatoid arthritis, myasthenia

\textbf{FIGURE 2} T\textsubscript{FH} cell subsets relations to autoimmune diseases in CVID. T\textsubscript{FH1}, T\textsubscript{FH2}, and T\textsubscript{FH17} subsets and T\textsubscript{FH1}/T\textsubscript{FH17} ratio were compared for CVID patients with autoimmune diseases (n = 7) and without autoimmune diseases (n = 18). CVID, common variable immunodeficiency.
More recently, cTFR has been reported to decrease in CVID cells in patients, suggesting a critical role of IL-21R expression or mutations in IL-21 gene in CVID. However, they demonstrated that a combination of IL-21, IL-4, and anti-CD40 induced class-switched recombination and differentiation of B cells to immunoglobulin secreting cells in CVID. IL-21R/IL-4 double deficient mice exhibit a CVID phenotype with low IgG and IgA and normal IgM, supporting a critical role of IL-21, that is produced by cTFFH cells, in regulating immunoglobulin isotype switch.47

In summary, a decreased in TFFH cell subsets may play a role in poor GC reactions including decreased isotype switching, impaired affinity maturation, generation of memory B cells, and B cell differentiation to plasma cells that are characteristics of CVID. To understand the pathogenesis of defects in B cell compartment and autoimmunity and inflammatory manifestations, further comprehensive studies of all phenotypic and functionally defined subsets cTFFH cells, including cTFR, in homogenously subclassified groups of CVID patients are needed.

ACKNOWLEDGMENTS
Authors thank Dr Sastry Gollapudi for supervising Sait Yesillik and Sudhanshu Agrawal with graphing of data. This study was supported by unrestricted funds from Division of Basic and Clinical Immunology, University of California, Irvine, CA.

CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS
YS performed the experiments, collected and analyzed the data, and wrote preliminary draft. SG conceived the idea, supervised YS, and edited the manuscript.

ORCID
Sudhir Gupta http://orcid.org/0000-0001-7422-1453

REFERENCES
1. Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999;93:190-197.
2. Dong J, Liang H, Wen D, Wang J. Adult common variable immunodeficiency. Am J Med Sci. 2016;351:239-243.
3. Saikia B, Gupta S. Common variable immunodeficiency. Indian J Pediatr. 2016;83:338-344.
4. Bonilla FA, Barlan I, Chapel H, et al. International consensus document (ICON): common variable immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016;4:38-59.
5. Gathmann B, Mahlaoui N, European Society for Immunodeficiencies Registry Working Party, et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 134, 2014:116-126. https://doi.org/10.1016/j.jaci.2013.12.1077
6. Jorgensen SF, Fevang B, Aukrust P. Autoimmunity and Inflammation in CVID: a possible crosstalk between immune activation, gut microbiota, and epigenetic modifications. J Clin Immunol. 2019;39:30-36.
7. Allenspach E, Torgerson TR. Autoimmunity and primary immunodeficiency disorders. J Clin Immunol. 2016;36(suppl 1): 5-67.
8. Haymore BR, Mikita CP, Tsokos GC. Common variable immune deficiency (CVID) presenting as an autoimmune disease: role of memory B cells. Autoimmun Rev. 2008;7:309-312. https://doi.org/10.1016/j.autrev.2007.11.024
9. Patuzzo G, Barbieri A, Tinazzi E, et al. Autoimmunity and infection in common variable immunodeficiency (CVID). Autoimmun Rev. 2016;15:877-882. https://doi.org/10.1016/j.autrev.2016.07.011
10. Salavoura K, Kolialexi A, Tsangaris G, Mavrou A. Development of cancer in patients with primary immunodeficiencies. Anticancer Res. 2008;28:1263-1269.
11. Maffucci P, Filion CA, Boisson B, et al. Genetic diagnosis using whole exome sequencing in common variable immunodeficiency. Front Immunol. 2016;7:220. https://doi.org/10.3389/fimmu.2016.00220
12. de Valles-Ibáñez G, Esteve-Solé A, Piquer M, et al. Evaluating the genetics of common variable immunodeficiency: monogenetic model and beyond. Front Immunol. 2018,9:636. https://doi.org/10.3389/fimmu.2018.00636
13. Louis AG, Yel L, Cao JN, Agrawal S, Gupta S. Common variable immunodeficiency associated with microdeletion of chromosome 1q42.1-q42.3 and inositol 1,4,5-trisphosphate kinase B (ITPKB) deficiency. Clin Transl Immunology. 2016;5(1):e59. https://doi.org/10.1038/cti.2015.41
14. Cunill V, Clemente A, Lario N, et al. Follicular T cells from common variable immunodeficiency patients skew toward a Th1 phenotype. Front Immunol. 2017:8:174.
15. Piquéras B, Lavenu-Bombled C, Galicier L, et al. Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects. J Clin Immunol. 2003;23:385-400. https://doi.org/10.1023/A:1025373601374
16. Warnatz K, Denz A, Drüger R, et al. Severe deficiency of switched memory B cells (CD27+(+IgM(−)/IgD(−))) in subgroups of patients...
with common variable immunodeficiency: a new approach to classify a heterogeneous disease. Blood. 2002;99:1544-1551.

17. Crotty S. Follicular helper CD4+ T cells (TFH). Annu Rev Immunol. 2011;29:621-663.

18. Uneo H. Human circulating T follicular helper cell subsets in health and disease. J Clin Immunol. 2016;36(suppl 1):34-39.

19. Victoria GD, Schwickert TA, Fooskman DR, et al. Germinai center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell. 2010;143:592-605.

20. Zhu Y, Zou L, Liu YC. T follicular helper cells, T follicular regula- tory cells and autoimmunity. Int Immunol. 2016;28:173-179.

21. Ueno H, Banchereau J, Vinuesa CG. Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol. 2015;16:142-152.

22. Vinuesa C, Linterman MA, Yu D, MacLennan IC. Follicular helper T cells. Annu. Rev. Immunol. 2016;34:335-368.

23. Schmitt N, Bentebibel S-E, Ueno H. Phenotype and function of memory Th cells in human blood. Trend. Immunol. 2014;35:434-442.

24. Schraerl P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicu- lar homing T cells with B cell helper function. J Exp Med. 2000;192:1553-1562.

25. Crotty S. T follicular helper cell biology: a decade of discovery and diseases. Immunity. 2019;50:1132-1148.

26. Breitfeld D, Ohl L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192:1545-1552.

27. Vella LA, Buggert M, Manne S, et al. T follicular helper cells in human efferent lymph retain lymphoid characteristics. J Clin Invest. 2019;129:3185-3200. https://doi.org/10.1172/JCI125628

28. Morita R, Schmitt N, Bentebibel SE, et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34:108-121.

29. Yesillik S, Agrawal S, Gollapudi SV, Gupta S. Phenotypic analysis of CD4+ Treg, CD8 +Treg, and Breg in adult common variable immunodeficiency patients. Int Arch Allergy Immunol. 2019;180:150-158. https://doi.org/10.1159/000501457

30. Kim SJ, Lee K, Diamond B. Follicular helper T cells in systemic lupus erythematosus. Front Immunol. 1793;9:1793. https://doi. org/10.3389/fimmu.2018.01793

31. Ueno H. T follicular helper cells in human autoimmunity. Curr Opin Immunol. 2016;43:24-31.

32. Bousfiha A, Jeddane L, Picard C, et al. Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J Clin Immunol. 2020;40(1):66-81.

33. Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2019 update on the classification from the In- ternational Union of Immunological Societies Expert Com- mittee. J Clin Immunol. 2020;40:24-64.

34. Bossaller L, Burger J, Draeger R, et al. ICOS deficiency is as- sociated with a severe reduction of CXCR5+ CD4 germinal center Th cells. J Immunol. 2006;177:4927-4932.

35. Grimbacher B, Hutflof A, Schlesier M, et al. Homozygous loss of ICOS is associated with adult-onset common variable immu- nomediciency. Nat Immunol. 2003;4:261-268.

36. Coraglia A, Galassi N, Diego S, Fernández Romero DS, et al. Common variable immunodeficiency and circulating Tfh. J Immunol Res. 2016;2016:4951587. https://doi.org/10.1155/2016/ 4951587

37. Unger S, Seidl M, van Schouwenburg P, et al. The Th1 pheno- type of follicular helper T cells indicates an IFNγ-associated immune dysregulation in patients with CD21low common variable immunodeficiency. J Allergy Clin Immunol. 2018;141:730-740.

38. Turpin D, Furudoi A, Parrens M, Blanco P, Viallard JF, Duluc D. Increase of follicular helper T cells skewed toward a Th1 profile in CVID patients with non-infectious clinical complications. Clin Immunol. 2018;197:130-138.

39. Le Coz C, Bengsch B, Khanna C, et al. Common variable immunodeficiency-associated endotoxemia promotes early commitment to the T follicular lineage. J Allergy Clin Immunol. 2019;144:1660-1673.

40. Canete PF, Sweet RA, Gonzalez-Figueroa P, et al. Regulatory role of IL-10 producing human follicular T cells. J Exp Med. 2019;216:1843-1856.

41. Clement RL, Daccche J, Mohammed MT, et al. Follicular reg- ulatory T cells control humoral and allergic immunity by re- straining early B cell responses. Nature Immunol. 2019;20:1360-1371.

42. Fonseca VR, Ribeiro F, Graca L. T follicular regulatory (Tfr) cells: dissecting the complexity of Tfr-cell compartments. Immuno Rev. 2019;288:112-127.

43. Sage PT, Francis LM, Carman CV, Sharpe AH. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat Immunol. 2013;14:152-161.

44. Sage PT, Paterson AM, Lovitch SM, Sharpe AH. The co-inhibitory receptor CTLA4 control B cell responses by modulating T follicular helper, T follicular regulatory, and T reg- ulatory cells. Immunity. 2014;41:1026-1039.

45. Borte S, Hammarstrom P, Liu C, et al. Interleukin-21 restores immunoglobulin production ex vivo in patients with common variable immunodeficiency and selective IgA deficiency. Blood. 2009;114:4089-4098.

46. Ozaki K, Spolski R, Feng CG, et al. A critical role for IL-21 in regulating immunoglobulin production. Science. 2002;298: 1630-1634.