Swallowing safety and efficiency after open partial horizontal laryngectomy: A videofluoroscopic study

This is the author's manuscript

Original Citation:

Availability:
This version is available [link to hdl.handle.net]

Published version:
DOI:10.3390/cancers11040549

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Swallowing safety and efficiency after open partial horizontal laryngectomy: a videofluoroscopic study

Nicole Pizzorni 1,*; Antonio Schindler 1, Micol Castellari 1, Marco Fantini 2, Erika Crosetti 2 and Giovanni Succo 2,3

1 Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via GB Grassi 74, 20154 Milano, Italy; antonio.schindler@unimi.it, nicole.pizzorni@virgilio.it, micol.castellari@live.it
2 Head and Neck Service, FPO IRCCS Candiolo cancer Institute, Strada Provinciale 142 km 95, 10060 Candiolo Torino, Italy; marcofantiini8811@hotmail.it; erikacro73@yahoo.com, giovannisucco@hotmail.com
3 Oncology Department, University of Turin, Italy
* Correspondence: nicole.pizzorni@unimi.it; Tel.: +39 02 3043526

Abstract: Dysphagia is common after open partial horizontal laryngectomy (OPHL). Mechanisms causing lower airways’ invasion and pharyngeal residue are unclear. The study aims to examine physio-pathological mechanisms affecting swallowing safety and efficiency after OPHL. Nineteen patients who underwent an OPHL type IIa and arytenoid resection were recruited. Videofluoroscopic examination of swallowing was performed. Ten spatial, temporal, and scalar parameters were analyzed. Swallowing safety and efficiency were assessed through the Dynamic Imaging Grade of Swallowing Toxicity (DIGEST) scale. Swallowing was considered unsafe or inefficient for a DIGEST safety or efficiency grade=2, respectively. Videofluoroscopic measurements were compared between safe vs. unsafe swallowers, and efficient vs. inefficient swallowers. Seven patients (36.8%) showed an unsafe swallowing and 6 patients (31.6%) an inefficient swallowing. Unsafe swallowers had worse laryngeal closure (p=0.028). Inefficient swallowers presented a longer pharyngeal transit time (p=0.009), a shorter hyoidomandibular distance during swallowing (p=0.046) coupled with reduced pharyngoesophageal segment opening lateral (p=0.012), and a worse tongue base retraction (p=0.017). In conclusion, swallowing safety was affected by incomplete laryngeal closure, while swallowing efficiency was affected by increased pharyngeal transit time, reduced hyoid elevation together with upper esophageal sphincter opening, and incomplete tongue base retraction. Rehabilitative and surgical approaches should target the identified physio-pathological mechanisms.

Keywords: open partial horizontal laryngectomy, supracricoid laryngectomy, dysphagia, swallowing, videofluoroscopy

1. Introduction

Open partial horizontal laryngectomies (OPHLS) are conservative surgical techniques aimed to the treatment of laryngeal carcinomas in early-intermediated T stage [1]. Conversely to total laryngectomies, main laryngeal functions (i.e., respiration, phonation, and swallowing) are preserved, thanks to the sparing of at least one functioning crico-arytenoid unit with the corresponding arytenoid and the intact inferior laryngeal nerve of the same side; therefore, the need of a permanent tracheostoma is avoided. Among the OPHLS, OPHL type II is characterized by the resection of the entire thyroid cartilage, with the inferior limit represented by the upper edge of the cricoid ring. Different types of OPHL type II exists, differentiated by the amount of supraglottis removed, and their extension to include one arytenoid (+ARY). In OPHL type IIa, the thyrohyoid membrane is entered horizontally from above, and the pre-epiglottic space and epiglottic cartilage are transected so that the suprahypoid part of the epiglottis is spared. On both sides, the inferior constrictor muscles are incised, the piriform sinuses dissected, the inferior horns of thyroid cartilage...
cut, and the ventricular and vocal folds divided down to the lower limit of resection in the subglottic region. The trachea is mobilized by blunt dissection along the anterior tracheal wall and a cervico mediastinal release of the trachea is performed. The cricoid is pulled up to the level of the hyoid bone to achieve the laryngeal reconstruction by a cricothyoidoepliglottopy.

Swallowing is a complex sensorimotor behaviour involving the coordinated contraction and inhibition of the musculature of the mouth, the tongue, the pharynx, the larynx, and esophagus bilaterally in a short interval (0.6-1.0 s) [2]. During the oral and the pharyngeal phase of swallowing, different events occur under voluntary or involuntary control. The timing of swallowing events and the intensity of muscular contraction are modulated based on the characteristics of the bolus to swallow, thanks to the sensory-motor integration at the level of the central pattern generator in the brainstem. In case of the failure of the occurrence of a swallowing event, or of an aberrant sequence, timing, and intensity of these events, swallowing safety and efficiency may be impaired. Safety refers to the ability to transfer the bolus from the mouth to the stomach without penetration or aspiration into the lower airways; efficiency refers to the ability to transfer the bolus from the mouth to the stomach without post-swell pharyngeal residue [3]. Pulmonary complications (e.g., aspiration pneumonia) and nutritional complications are consequences of impaired swallowing safety and efficiency, respectively. Moreover, swallowing complications comprise reduction of quality of life, limitations to social participation, and negative affective responses [4].

Swallowing function after OPHL type II has been extensively investigated in the literature [5-6]. The incidence of dysphagia is approximately of 100% immediately after surgery, but, usually, swallowing function recovers spontaneously in 3 to 6 months post-operatively, with the majority of the patients achieving a free oral diet [6]. Nevertheless, chronic aspiration, especially with liquids, and post-swell residue, especially with solids, are often detected even in the long-term, and increase the risk of aspiration pneumonia and death [7]. Studies investigating swallowing function in patients who underwent an OPHL mainly focus on signs of dysphagia (i.e., penetration, aspiration, residue). However, there is a paucity of studies assessing the mechanisms causing these signs. In 1996, Woisard et al analyzed the pathophysiology of swallowing in 14 patients one year after OPHL. Several mechanisms were found, the most frequent being reduced tongue base retraction, reduced laryngeal elevation, reduced laryngeal anteriorization and faulty in the backward movement of the epiglottis [8]. However, the mechanisms underlying reduced safety and efficiency were not investigated. In 2005, Yüçeturk et al used videofluoroscopy to assess swallowing in 10 patients who underwent an OPHL type IIb (with the resection of the whole epiglottis) at least 6 months after surgery [9]. Nine spatial and one temporal measures were analyzed and compared to those of 13 healthy controls. Results showed a statistically significant difference between the two groups for the hyoidomandibular distance during swallowing and at rest, higher in patients than in controls, and for the hyoidovertebral distance during swallowing, lower in patients than in controls. Due to the small sample size and the low number (2/10) of patients with aspiration, no comparisons were made between patients with and without signs of dysphagia. In 2008, Lewin and colleagues assessed swallowing outcomes in 27 patients who underwent an OPHL type II using videofluoroscopy [10]. Patients were on average assessed at 4 weeks after the surgery, and re-assessed after 7 weeks from the first videofluoroscopic study. Three mechanisms (hyolaryngeal excursion, tongue base retraction, and neoglottic competency) were rated as normal or impaired. No temporal or biomechanical objective measurements were gained. At the first assessment, reduced hyolaryngeal excursion was identified in 45% of the patients, decreased base of tongue retraction in 27% of the patients, and neoglottic incompetence in 100% of the patients. Results were stable at the second assessment. To the best of our knowledge, no studies investigated the association between mechanisms and the presence of signs of dysphagia in patients with an OPHL type Ila. Therefore, mechanisms causing lower airways’ invasion and post-swell pharyngeal residue in this population are still unclear.

The study aims to examine videofluoroscopic variables associated with the impairment of swallowing safety and efficiency after OPHL type Ila +ARY. Based on the previous studies, the hypothesis is that the hyoidomandibular and the hyoidovertebral distances during swallowing, the tongue base retraction, and the laryngeal closure may be significantly impaired in patients with an
unsafe or inefficient swallowing compared to those with a safe and efficient swallowing. The knowledge of the mechanisms causing dysphagia in the long-term will provide a basis to identify targeted and effective rehabilitative and surgical strategies to improve functional outcomes, potentially reducing the rate of pulmonary complications and the impact of quality of life.

2. Results

Based on the Dynamic Imaging Grade of Swallowing Toxicity (DIGEST) scores [11], 7 (36.8%) patients who underwent an OPHL type IIa +ARY showed an unsafe swallowing (DIGEST safety profile ≥2) and 6 (31.6%) patients had an inefficient swallowing (DIGEST efficiency profile ≥2). Only 1 patient had no signs of dysphagia (total DIGEST score 0) at the videofluoroscopic assessment of swallowing. The distribution of the 19 patients in the DIGEST levels is reported in Figure 1. Four patterns of swallowing proficiency were identified and depicted in Figure 2.

![Figure 1. Distribution of the 19 patients with OPHL type IIa +ARY in the DIGEST levels](image1)

![Figure 2. Swallowing patterns of the 19 patients with OPHL type IIa +ARY](image2)
2.1. Swallowing safety: comparison of videofluoroscopic variables

Patients with safe swallowing had comparable age to patients with unsafe swallowing (median 65 IQ range 10.5 vs median 71 IQ range 15, p=0.340), whereas had a significantly longer follow-up period (median 31.5 months IQ range 29.3 vs median 7 months IQ range 15, p=0.017). Comparisons of videofluoroscopic measures between patients with safe and unsafe swallowing are reported in Table 1. A significant difference was found only for the laryngeal closure (LC) with liquids and solids.

Patients with unsafe swallowing showed a more impaired laryngeal closure during swallowing than patients with safe swallowing.

Table 1. Comparisons of videofluoroscopic measures in patients with safe and unsafe swallowing

	SAFE	UNSAFE			
	median	IQ range	median	IQ range	p
TPT					
solid	0.32	0.08	0.32	0.40	0.711
semisolid	0.32	0.10	0.36	0.20	0.299
liquid	0.40	0.11	0.36	0.04	0.650
POD					
solid	0.24	0.08	0.24	0.08	0.482
semisolid	0.24	0.07	0.28	0.04	0.837
liquid	0.28	0.04	0.24	0.08	1
POL					
solid	8.5	2.75	8	3	0.837
semisolid	12	4	11	5	0.196
liquid	11	4.5	12	4	0.592
HMS					
solid	4	8	2	14	0.837
semisolid	1	35	6	14	0.100
liquid	0	15	4	6	0.196
HMR					
solid	27	7.5	26	12	0.773
semisolid	27	12.5	32	1	0.482
liquid	26	10.5	22	16	0.384
HVS					
solid	65	11	62	4	0.384
semisolid	66	12.5	64	1	0.967
liquid	66	15	60	2	0.482
LC					
solid	1	1.75	3	1	0.013*
semisolid	1	1.75	3	3	0.227
liquid	2.5	1.75	4	1	0.028*
EM					
solid	1	1	2	0	0.068
semisolid	1	0.75	2	1	0.100
liquid	1	1	2	0	0.120
IPS					
solid	0	0.75	0	1	0.837
semisolid	0	0	0	0	0.837
liquid	0	1	0	0	0.432
TBR					
solid	1	0.75	2	1	0.261
semisolid	1	1	2	1	0.196
liquid	2	1	2	1	0.650

LEGEND. TPT total pharyngeal transit time, POD pharyngoesophageal segment (PES) opening duration, POL PES opening lateral, HMS hyoidomandibular distance during swallowing, HMR hyoidomandibular distance during swallowing.

*p<0.05
distance at rest, HVS hyoidovertebral distance during swallowing, LC laryngeal closure, EM epiglottic movement, IPS initiation of pharyngeal swallowing, TBR tongue base retraction

2.2. Swallowing efficiency: comparison of videofluoroscopic variables

Analogously to the safety analysis, patients with efficient swallowing had comparable age to patients with inefficient swallowing (median 66 IQ range 11 vs median 67.5 IQ range 15, p=0.701), but a significantly longer follow-up period (median 30 months IQ range 26.5 vs median 6.5 months IQ range 15, p=0.009). Comparisons of videofluoroscopic parameters between patients with efficient and inefficient swallowing are shown in Table 2. Significant differences were found for 4 videofluoroscopic measures; patients with inefficient swallowing had a longer total pharyngeal transit time (TPT) with semisolids, a narrower pharyngoesophageal segment opening lateral (POL) with semisolids, a greater hyoido-mandibular distance during swallowing (HMS) with liquids, and a more incomplete tongue base retraction (TBR) with solids.

Table 2. Comparisons of videofluoroscopic measures in patients with efficient and inefficient swallowing

	EFFICIENT		INEFFICIENT		
	median	IQ range	median	IQ range	p
TPT (s) solid	0.32	0.08	0.36	0.37	0.152
TPT (s) semisolid	0.32	0.08	0.40	0.19	0.009*
TPT (s) liquid	0.40	0.14	0.36	0.06	0.898
POD (s) solid	0.24	0.1	0.24	0.1	0.898
POD (s) semisolid	0.24	0.04	0.28	0.05	0.072
POD (s) liquid	0.28	0.08	0.28	0.07	0.831
POL (mm) solid	9	3.5	8	3	0.639
POL (mm) semisolid	12	4	9.5	4	0.012*
POL (mm) liquid	12	5	10.5	3.5	0.467
HMS (mm) solid	4	8	2	12.5	0.898
HMS (mm) semisolid	2	4	6	12.5	0.282
HMS (mm) liquid	12	1	6	1	0.046*
HMR (mm) solid	28	8	26	14.25	0.831
HMR (mm) semisolid	28	1	33	13	0.210
HMR (mm) liquid	24	8.5	29	13.5	0.416
HVS (mm) solid	66	9.5	6	0.75	0.072
HVS (mm) semisolid	66	12	6.3	1.05	0.282
HVS (mm) liquid	66	15	6.1	0.7	0.179
LC solid	2	2	3	3	0.323
LC semisolid	1	1.5	3.5	3	0.087
LC liquid	3	2.5	3.5	2	0.467
EM solid	1	1	2	1	0.521
EM semisolid	1	1	2	1	0.244
EM liquid	2	1	2	1	0.701
IPS solid	0	0	0.5	1.25	0.210
IPS semisolid	0	0	0.25	0.75	0.765
IPS liquid	0	1	0	1.5	0.898
LEGEND. TPT total pharyngeal transit time, POD pharyngoesophageal segment opening duration, POL pharyngoesophageal segment opening lateral, HMR hyoidomandibular distance during swallowing, HMR hyoidomandibular distance at rest, HVS hyoidovertebral distance during swallowing, LC laryngeal closure, EM epiglottic movement, IPS initiation of pharyngeal swallowing, TBR tongue base retraction

TBR	solid	1	0	2	0.25	0.017*
	semisolid	1	1	2	0.25	0.072
	liquid	2	1	2	0.25	0.323

*p<0.05

3. Discussion

This study firstly investigated mechanisms underlying an impairment of the safety and the efficiency of swallowing in patients with OPHL type IIa +ARY, through the analysis of temporal, spatial and ordinal videofluoroscopic measurements. Thus, it provides a better understanding of the physio-pathological changes of swallowing in this population and their clinical relevance.

The age and the time from surgery to videofluoroscopic assessment were compared between patients with an impaired safety or efficiency and patients with functional swallowing. The age was comparable in patients with safe vs. unsafe swallowing, and in patients with efficient vs. inefficient swallowing. The literature shows inconsistent findings on the effect of age on functional outcomes after OPHL. Two studies have demonstrated no significant influence of age at surgery on swallowing function [12-13]. On the other hand, Benito and colleagues demonstrated that the risk of aspiration increases in patients who underwent an OPHL >70 [14]. Analogously, Naudo and colleagues reported a significantly association between age and aspiration [15]. Time from surgery to follow-up significantly differed in both the safety and the efficiency comparisons. Although patients had at least a 5 months follow-up period, and studies in the literature show that the recovery of swallowing is generally completed within 3-6 months after surgery [5-6], compensatory mechanisms may consolidate even after this time period.

Swallowing safety was impaired in the 36.8% of the sample, with a statistically significant difference only for the laryngeal closure parameter. Patients with unsafe swallowing had poorer laryngeal closure. Normally, the closure of the laryngeal vestibule during swallowing is achieved thanks to the concomitant epiglottic inversion, hyo-laryngeal elevation, arypepiglottic fold bunching, arytenoid adduction, base of tongue posterior movement, and pharyngeal constriction [16-18]. Due to the anatomical changes of this district, after an OPHL type IIa +ARY, the sphincteric action of the neolarynx is provided by the approximation of the mobile arytenoid cartilage (rotating forward and inward) and the epiglottis (tilting backward) [8]. Other configurations are described in the literature, but are rarely observed [19]. Analogously to our findings, an inadequate closure of the laryngeal vestibule entry was observed by Logemann et al in patients who were not eating at 2 weeks after an OPHL type I (or supraglottic laryngectomy), when compared to the patients who restored oral feeding at the same time-point [20]. Indeed, they identified two critical factors in the recovery of swallowing: (a) the airway closure at the laryngeal entrance (i.e. the space between the arytenoid cartilage and the base of the tongue), and (b) the contact of the base of tongue with the posterior pharyngeal wall.

The closure of laryngeal vestibule may be targeted through both a swallowing therapy and surgical rehabilitative approaches. Supraglottic and super-supraglottic maneuvers are two breath-holding swallowing maneuvers aiming to improve the extent and the duration of the laryngeal vestibule closure. Their efficacy on both swallowing kinematics and the rate of laryngeal penetration and aspiration was proved in a cohort of patients with oropharyngeal dysphagia from different etiologies and a cohort of patients with radiation-induced dysphagia [21-22]. Surgical approaches comprise the endoscopic injection of different materials into the preserved arytenoid or into the superior face of the cricoid ring [23]. The choice of the most appropriate injection site and the material is based on a careful fiberoptic endoscopic examination of swallowing. Preliminary results from a case series of 7 patients with an OPHL type IIa +ARY showed a complete recovery of the lower
airways’ protection during swallowing in 4 patients, and a partial recovery with occasional aspiration
with liquids in 2 patients [23].

Swallowing was considered inefficient in the 31.6% of the sample. Patients with inefficient
swallowing had a longer total pharyngeal transit time, a narrower upper esophageal sphincter (UES)
lateral opening, a greater hyoidomandibular distance during swallowing, and a poorer contract
between tongue base and posterior pharyngeal wall. An interaction between these mechanisms can
be found, highlighting their cooperation in reducing swallowing efficiency. Indeed, the opening of
the UES not only relies on the inhibition of the cricopharyngeus muscle’s contraction, but also on the
generation of adequate pharyngeal pressures and the anterior-superior motion of the hyolaryngeal
complex [24-26]. Pharyngeal pressures depends on the action of the velopharyngeal valve, the
protrusion of tongue base, and the contraction of pharyngeal constrictors [27]. Pharyngeal pressures
influence the pharyngeal transit time [28]. Therefore, it can be speculated that incomplete tongue base
retraction resulted in a reduced pharyngeal pressure, prolonging the duration of the total transit time
and reducing the UES lateral opening. The increased hyoidomandibular distance during swallowing
coupled with a comparable distance at rest suggests a deficit in the hyoid elevation in patients with
an inefficient swallowing, resulting in a further negative impact on the UES opening. The reduced
UES opening and the incomplete tongue base retraction lead to post-swallow residue in pyriform
sinuses and valleculae. No studies have assessed the association between videofluoroscopic
measurements and post-swallow residue in patients after OPHL; however, studies exist on other
populations. Pauloski and colleagues highlighted an association between a reduced tongue base or
posterior pharyngeal wall movement and the pharyngeal residue in patients with head and neck
cancer after the completion of radiotherapy [29]. Another study on patients with oropharyngeal
dysphagia found a reduction of the mean peak pharyngeal pressure in patients with an incomplete
tongue retraction, and a strong association with the presence of post-swallow pharyngeal residue
[30].

In swallowing therapy, the Shaker head lift exercise [31] and the Mendelsohn maneuver [32] are
strengthening exercise proved to increase the hyoid elevation and the UES opening in patients with
oropharyngeal dysphagia. Moreover, the effortful swallow [33] and the tongue hold swallow [34]
were found to improve the contact between the base of tongue and the posterior pharyngeal wall. As
for laryngeal closure, fat injections have been proposed in patients who underwent an OPHL type I
for the correction of the tissue loss at the level of the base of tongue, with promising results on the
improvement of the swallowing efficiency [35-36].

Strengths of the study are the highly homogeneous cohort and the use of objective measures for
the study of swallowing mechanisms. Only patient who underwent an OPHL type IlA +ARY, which
is the most performed type of OPHL [37] in our caseload, were included. Objective videofluoroscopic
measures are reliable and repeatable, reducing the subjectivity related to the use of perceptual
variables. Although the fiberoptic endoscopic evaluation of swallowing and the videofluoroscopy
are both considered gold-standard for the assessment of swallowing function [38], only the
videofluoroscopy can allow to investigate the pathophysiological mechanisms causing the signs of
dysphagia. Nevertheless, the study has some limitations. First of all, the sample size is limited to 19
patients. The sample size in comparable or even larger than other studies in the literature assessing
swallowing mechanisms after an OPHL [9-10]. However, the statistical power may be inadequate to
highlight some of the differences that were found not to be statistically significant in the study.
Moreover, the number of patients with a safe vs. unsafe swallow and an efficient vs. inefficient
swallow was not equally balanced.

Future studies may expand the analysis of the mechanisms affecting swallowing safety and
efficiency to other types of OPHL. An assessment of swallowing with high-resolution impedance
manometry may provide a better understanding of these mechanisms. Interventional studies should
be performed to verify the efficacy of rehabilitative and surgical strategies targeting the identified
mechanisms on swallowing safety and efficiency in patients with an OPHL type IlA +ARY.
4. Materials and Methods

The cross-sectional study was carried out according to the Declaration of Helsinki. All subjects enrolled in the study gave their written informed consent; all data were collected prospectively.

4.1. Patients

Patients were recruited at the Otorhinolaryngology Service of the Martini Hospital (Turin, Italy) during their follow-up assessment, over a 5 months period. Selection criteria were: OPHL type IIa + ARY, subjective swallowing complaints, no evident disease at the last follow-up, preservation of respiration and speech, absence of a tracheostomy, no salvage total laryngectomy performed and at least 3 months follow-up. For the homogeneity of the sample, only male patients who underwent an OPHL type IIa + ARY were included. Nineteen patients were recruited. Median age was 66 (range 51-82), median time from surgery to last follow-up was 23 months (range 5-54). Tumors’ stage was T2N0 tumor in 12 patients, T3N0 in 6 patients, and T4N0 in 1 patient. Only one patient underwent radiotherapy after surgery.

4.2. Videofluoroscopic study of swallowing

Patients underwent a standardized videofluoroscopic assessment of swallowing with the Digital Subtraction Angiography Unit (Advantix LC Plus, General Electric) at 25 frames/second. Patients were seated in lateral viewing plane. Videofluoroscopic studies were digitally recorded, downloaded, and de-identified for subsequent data analyses. A liquid 10ml barium bolus, a semisolid 10 ml barium bolus, and half biscuit were administered.

4.3. Dynamic imaging grade of swallowing toxicity (DIGEST)

The DIGEST is a validated five-point ordinal scale that provides an overall rating of pharyngeal swallowing function assessed through videofluoroscopy [11]. The DIGEST includes a total score and two subscores: (i) the safety profile, derived by assigning the maximum Penetration-Aspiration scale [39] score across the different swallowing trials, (ii) the efficiency profile, derived by estimating the maximum percentage of the pharyngeal post-swallow residue. Both the total DIGEST score and the subscores range from 0 to 4 (0 = no pharyngeal dysphagia, 1 = mild, 2 = moderate, 3 = severe, 4 = life threatening).

4.4. Videofluoroscopic measures

Videofluoroscopic recordings were assessed by a blinded speech and language pathologist using the Carestream software (Carestream Health, Inc.). Overall, 10 parameters were selected from the literature for the videofluoroscopic analysis [9, 26, 40, 41]. They included 4 spatial measures, 2 temporal measures and 4 ordinal variables. Definitions used to rate the 10 parameter are reported in Tables 3 and 4. Spatial measurements were made after calibration of the digitized image to the size of a standard coin taped to the submandibular region of the patients during the swallowing study. For temporal parameters, the number of frames was counted and then transformed into seconds (number of frames : 25).

Measure	Abbreviation	Unit of measurement	Definition
Total pharyngeal transit time	TPT	s	Time from when bolus head first passes posterior nasal spine to time when bolus tale exits PES
Ordinal variable	Abbreviation	Operational definitions	
--	--------------	--	
PES opening duration	POD	Time from when PES first opens for bolus entry to when it first closes behind the bolus	
PES opening (lateral)	POL	Distance at the narrowest point of opening between C3 and C6 (upper esophageal sphincter) on lateral fluoroscopic view	
Hyoidomandibular distance during swallowing	HMS	Distance between the upper margin of the hyoid bone and lower margin of the mandible during swallowing	
Hyoidomandibular distance at rest	HMR	Distance between the upper margin of the hyoid bone and lower margin of the mandible at the standing point immediately prior to swallowing	
Hyoidovertebral distance during swallowing	HVS	Distance between the anterior border of vertebral spine and hyoid bone during swallowing	

Table 4. Ordinal videofluoroscopic variables
4.5. Statistical analysis

Considered the small sample size, results are reported as median and interquartile (IQ) range and non-parametric statistics were conducted. Statistical analysis was performed with the IBM SPSS Statistics 25.0® package for Windows (SPSS Inc, Chicago, IL). Swallowing was judged as unsafe if the patient scored ≥2 on the DIGEST safety profile and as inefficient if the patient scored ≥2 on the DIGEST efficiency profile. The age, the time from surgery to follow-up, and videofluoroscopic measures were compared in: (i) patients with safe swallowing vs. patients with unsafe swallowing; (ii) patients with efficient swallowing vs. patients with inefficient swallowing. The statistical significance was set at p<0.05.

5. Conclusions

The mechanisms underlying swallowing impaired safety and efficiency have been analyzed in a group of patients who underwent an OPHL IIa + ARY. An incomplete laryngeal closure affects swallowing safety leading to laryngeal penetration and aspiration. An increased total pharyngeal transit time and hyoidomandibular distance during swallowing, a reduced UES lateral opening, and an incomplete tongue base retraction cause post-swallow pharyngeal residue, thus, reducing the swallowing efficiency. A swallowing evaluation after an OPHL type IIa + ARY should focus on the assessment of these mechanisms, in addition to the identification of signs of dysphagia. Rehabilitative and surgical approaches targeting these mechanisms may improve swallowing function in this population.

Author Contributions: conceptualization, Antonio Schindler, Giovanni Succo; methodology, Nicole Pizzorni, Antonio Schindler; formal analysis, Nicole Pizzorni, Micol Castellari; investigation, Erika Crosetti, Marco Fantini, Micol Castellari; resources, Erika Crosetti, Marco Fantini, Giovanni Succo; data curation, Nicole Pizzorni, Micol Castellari; writing—original draft preparation, Nicole Pizzorni; writing—review and editing, Nicole Pizzorni, Antonio Schindler, Micol Castellari, Marco Fantini, Erika Crosetti, Giovanni Succo; visualization, Nicole Pizzorni, Antonio Schindler; supervision, Antonio Schindler; project administration, Antonio Schindler, Giovanni Succo.

Funding: No funding was received for the present study.

Acknowledgments: The authors thank Dr. Cesare Bosio, Radiologist who performed the videofluoroscopic assessment of swallowing, and Dr. Nicola Toma, ENT resident, for assistance in data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Succo, G.; Peretti, G.; Piazza, C.; Remacle, M.; Eckel, H.E.; Chevalier, D.; Simo, R.; Hantzakos, A.G.; Rizzotto, G.; Lucioni, M.; Crosetti, E.; Antonelli, A.R. Open partial horizontal laryngectomies: a proposal for classification by the working committee on nomenclature of the European Laryngological Society. *Eur Arch Otorhinolaryngol* 2014, 271, 2489-2496.
2. Ertekin, C.; Aydogdu, I. Neurophysiology of swallowing. *Clin Neurophysiol* 2003, 114, 2226-2244.
3. Rofes, L.; Arreola, V.; Almirall, J.; Cabré, M.; Campins, L.; García-Peris, P.; Speyer, R.; Clavé, P. Diagnosis and management of oropharyngeal dysphagia and its nutritional and respiratory complications in the elderly. *Gastroenterol Res Pract* 2011, 2011, 818979.
4. Ekberg, O.; Hamdy, S.; Woisard, V.; Wutte-Hannig, A.; Ortega, P. Social and psychological burden of dysphagia: its impact on diagnosis and treatment. *Dysphagia* 2002, 17, 139-146.
5. Lips, M.; Speyer, R.; Zumach, A.; Kross, K.W.; Kremer, B. Supracricoid laryngectomy and dysphagia: a systematic literature review. *Laryngoscope* 2015, 125, 2143-2156.
6. Schindler, A.; Pizzorni, N.; Mozzanica, F.; Fantini, M.; Ginocchio, D.; Bertolin, A.; Crosetti, E.; Succo, G. Functional outcomes after supracricoid laryngectomy: what do we not know and what do we need to know? *Eur Arch Otorhinolaryngol* 2016, 273, 3459-3475.
7. Gallo, O.; Deganello, A.; Gitti, G.; Santoro, R.; Senesi, M.; Scala, J.; Boddi, V.; De Campana, E. Prognostic role of pneumonia in supracricoid and supraglottic laryngectomies. *Oral Oncol* 2009, 45, 30-38.

8. Woiard, V.; Puech, M.; Yardeni, E.; Serrano, E.; Pessey, J.J. Deglutition after supracricoid laryngectomy: compensatory mechanisms and sequelae. *Dysphagia* 1996, 11, 265-269.

9. Yüceürtürk, A.V.; Tarhan, S.; Günhan, K.; Yüksel, P. Videofluoroscopic evaluation of the swallowing function after supracricoid laryngectomy. *Eur Arch Otorhinolaryngol* 2005, 262, 198-203.

10. Lewin, J.S.; Hutcheson, K.A.; Barringer, D.A.; May, A.H.; Roberts, D.B.; Holsinger, F.C.; Diaz, E.M. Functional analysis of swallowing outcomes after supracricoid partial laryngectomy. *Head Neck* 2008, 30, 559-566.

11. Hutcheson, K.A.; Barrow, M.P.; Barringer, D.A.; Knott, J.K.; Lin, H.Y.; Weber, R.S.; Fuller, C.D.; Lai, S.Y.; Alvarez, C.; Raut, J.; Lazarus, C.L.; May, A.; Patterson, J.; Roe, J.W.G.; Starmer, H.M.; Lewin, J.S. Dynamic Imaging Grade of Swallowing Toxicity (DIGEST): scale development and validation. *Cancer* 2017, 123, 62-70.

12. Laccourreye, O.; Brasnu, D.; Périé, S.; Muscatello, L.; Ménard, M.; Weinstein, G. Supracricoid partial laryngectomies in the elderly: mortality, complications, and functional outcome. *Laryngoscope* 1998, 108, 237-242.

13. Schindler, A.; Favero, E.; Capaccio, P.; Albera, R.; Cavalot, A. L.; Ottaviani, F. Supracricoid laryngectomy: age influence on long-term functional results. *Laryngoscope* 2009, 119, 1218-1225.

14. Benito, J.; Holsinger, F.C.; Pérez-Martin, A.; Garcia, D.; Weinstein, G.S.; Laccourreye, O. Aspiration after supracricoid partial laryngectomy: incidence, risk factors, management, and outcomes. *Head Neck* 2011, 33: 679-685.

15. Naudo, P.; Laccourreye, O.; Weinstein, G.; Jouffre, V.; Laccourreye, H.; Brasnu, D. Complications and functional outcome after supracricoid partial laryngectomy with cricohyoidoepiglottopexy. *Otolaryngol Head Neck Surg* 1998, 118, 124-129.

16. Ekberg, O. Closure of the laryngeal vestibule during glottission. *Acta Otolaryngol* 1982, 93, 123-129.

17. Logemann, J.A.; Kahrilas, P.J.; Cheng, J.; Pauloski, B.R.; Gibbons, P.J.; Rademaker, A.W.; Lin, S. Closure mechanisms of laryngeal vestibule during swallowing. *Am J Physiol* 1992, 262, G338-G344.

18. Pearson, W.G.Jr; Taylor, B.K.; Blair, J.; Martin-Harris, B. Computational analysis of swallowing mechanics underlying impaired epiglottic inversion. *Laryngoscope* 2016, 126, 1854–1858.

19. Alicandri-Ciufelli, M.; Piccinini, A.; Bergamini, G.; Ruberto, M.; Ghidini, A.; Marchioni, D.; Presutti, L. Atypical neoglottis after supracricoid laryngectomy: a morphological and functional analysis. *Eur Arch Otorhinolaryngol* 2011, 268, 1029-1234.

20. Logemann, J.A.; Gibbons, P.; Rademaker, A.W.; Pauloski, B.R.; Kahrilas, P.J.; Bacon, M.; Bowman, J.; McCracken, E. Mechanisms of recovery of swallow after supraglottic laryngectomy. *J Speech Hear Res* 1994, 37, 965-974.

21. Ohmae, Y., Logemann, J.A., Kaiser, P., Hanson, D.G., Kahrilas, P.J. Effects of two breath-holding maneuvers on oropharyngeal swallow. *Ann Otol Rhinol Laryngol* 1996, 105, 123-131.

22. Logemann, J.A., Pauloski, B.R., Rademaker, A.W., Colangelo, L.A. Super-supraglottic swallow in irradiated head and neck cancer patients. *Head Neck* 1997, 19, 535-540.

23. Ricci Maccarini, A.; Stacchini, M.; Salsi, D.; Padovani, D.; Pieri, F.; Casolino, D. Surgical rehabilitation of dysphagia after partial laryngectomy. *Acta Otorhinolaryngol Ital* 2007, 27, 294-298.

24. Shaw, S.M.; Martino, R. The Normal Swallow Muscular and Neurophysiological Control. *Otolaryngol Clin N Am* 2013, 46, 937-956.

25. Bělaďský, P.C.; Kuhn, M.A. *The clinician’s guide to swallowing fluoroscopy*; Springer: New York, USA, 2014, pp. 51-68.

26. McNenl, F.M. Analysis of pressure generation and bolus transit during pharyngeal swallowing. *Laryngoscope* 1988, 98, 71-78.

27. Omari, T.; Schar, M. High-resolution manometry: what about the pharynx? *Curr Opin Otolaryngol Head Neck Surg* 2018, 26, 382-391.

28. Rademaker, A.W.; Pauloski, B.R.; Logemann, J.A.; Shanahan, T.K. Oropharyngeal swallow efficiency as a representative measure of swallowing function. *J Speech Hear Res* 1994, 37, 314-325.

29. Pauloski, B.R.; Logemann, J.A. Impact of tongue base and posterior pharyngeal wall biomechanics on pharyngeal clearance in irradiated postsurgical oral and oropharyngeal cancer patients. *Head Neck* 2000, 22, 120–131.
30. Knigge, M.A.; Thibeault, S. Relationship between tongue base region pressures and vallecular clearance. *Dysphagia* 2016, 31, 391-397.

31. Shaker, R.; Kern, M.; Bardan, E.; Taylor, A.; Stewart, E.T.; Hoffman, R.G.; Arndorfer, R.C.; Hofmann, C.; Bonnevier, J. Augmentation of deglutitive upper esophageal sphincter opening in the elderly by exercise. *Am J Physiol* 1997, 272, G1518-1522.

32. McCullough, G.H.; Kim, Y. Effects of the Mendelsohn Maneuver on extent of hyoid movement and UES opening post-stroke. *Dysphagia* 2013, 28, 511-519.

33. Lazarus, C.; Logemann, J.A.; Song, C.W.; Rademaker, A.W.; Kahrillas, P.J. Effects of voluntary maneuvers on tongue base function for swallowing. *Folia Phoniatr Logop* 2002, 54, 171-176.

34. Fuji, M.; Logemann, J.A. Effect of a tongue-holding maneuver on posterior pharyngeal wall movement during deglutition. *Am J Speech Lang Pathol* 1996, 5, 23-30.

35. Kraaijenga, S.A.C.; Lapid, O.; van der Molen, L.; Hilgers, F.J.M.; Smeele, L.E.; van den Brekel, M.W.M. Feasibility and potential value of lipofilling in post-treatment oropharyngeal dysfunction. *Laryngoscope* 2016, 126, 2672–2678.

36. Ottaviani, F.; Schindler, A.; Klinger, F.; Scarpini, L.; Succo, G.; Mozzanica, F. Functional fat injection under local anesthesia to treat severe postsurgical dysphagia, case report. *Head & Neck* 2019, 41, E16–E20.

37. Rizzotto, G.; Succo, G.; Lucioni, M.; Piazza, T. Subtotal laryngectomy with tracheohyoidopexy: a possible alternative to total laryngectomy. *Laryngoscope* 2006, 116, 1907-1917.

38. Brady, S.; Donizelli, J. The modified barium swallow and the functional endoscopic evaluation of swallowing. *Otolaryngol Clin North Am* 2013, 46, 1009-1022.

39. Rosenbek, J.C.; Robbins, J.A.; Roecker, E.B.; Coyle, J.L.; Wood, J.L. A penetration-aspiration scale. *Dysphagia* 1996, 11, 93-98.

40. Martin-Harris, B.; Brodsky, M.B.; Michel, Y.; Castell, D.O.; Schleicher, M.; Sandidge, J.; Maxwell, R.; Blair, J. MBS Measurement Tool for Swallow Impairment-MBSImp: establishing a standard. *Dysphagia* 2008, 23, 392-405.

41. Tabor, L.C.; Plowman, E.K.; Romero-Clark, C.; Youssouf, S. Oropharyngeal dysphagia profiles in individuals with oculopharyngeal muscular dystrophy. *Neurogastroenterol Motil* 2018, 30, e13251.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).