First report of *Entamoeba moshkovskii* in human stool samples from symptomatic and asymptomatic participants in Kenya

Cecilia Kyanya¹²*, Fredrick Eyase¹², Elizabeth Odundo¹, Erick Kipkiri¹, Nancy Kipkemoi¹, Ronald Kirera¹, Cliff Philip¹, Janet Ndonye¹, Mary Kirui¹, Abigail Ombogo¹, Margaret Koech¹, Wallace Bulimo¹ and Christine E. Hulseberg³

Abstract

Entamoeba moshkovskii is a member of the *Entamoeba* complex and a colonizer of the human gut. We used nested polymerase chain reaction (PCR) to differentiate *Entamoeba* species in stool samples that had previously been screened by microscopy. Forty-six samples were tested, 23 of which had previously been identified as *Entamoeba* complex positive by microscopy. Of the 46 specimens tested, we identified nine (19.5%) as *E. moshkovskii*-positive. In seven of these nine *E. moshkovskii*-positive samples, either *E. dispar* or *E. histolytica* (or both) were also identified, suggesting that co-infections may be common. *E. moshkovskii* was also detected in both symptomatic and asymptomatic participants. To the best of our knowledge, this is the first report of *E. moshkovskii* in Kenya.

Keywords: *Entamoeba*, *Entamoeba moshkovskii*, Diarrhea, Kenya, Nested PCR

Introduction

Entamoeba moshkovskii is a member of the *Entamoeba* complex and is morphologically indistinguishable from *E. dispar* and the pathogenic *E. histolytica*. WHO recommends treatment of both symptomatic (diarrheal) and asymptomatic (non-diarrheal) forms of *E. histolytica* infection only [1]. Metronidazole or tinidazole followed by iodoquinol or paromomycin is used for treatment of symptomatic *E. histolytica* infections whereas asymptomatic infections are treated using and iodoquinol or paromomycin [2]. Initially considered a free-living amoeba [3], there have been colonization reports of *E. moshkovskii* in humans over the years from Yemen [4], India [5], Indonesia, Colombia [6], Malaysia [7], Tunisia [8], Tanzania [9], and Australia [10]. Beck et al., [9] identified *E. moshkovskii* carriage in a Tanzanian population. In India, *E. moshkovskii* was reported not to cause diarrhea but as a cause of mild abdominal discomfort [5], while in Malaysia *E. moshkovskii* was isolated from both symptomatic and asymptomatic participants [7]. A 2012 study by Shimokawa and colleagues [11] pointed to the possible pathogenicity of *E. moshkovskii* as a cause of diarrhea in mice and infants. Few studies have investigated the distribution of *E. moshkovskii* in Africa. We sought to screen for *E. moshkovskii* in stool samples from an ongoing surveillance study on enteric pathogens in Kenya using a PCR based assay.

Materials and methods

The current study is a retrospective lab-based study nested in an ongoing case-control enteric surveillance study under the US Army Medical Research Directorate Africa at the Microbiology Hub. Archived stool samples collected between April 2013 and September 2014 from out-patient participants enrolled in a ‘Surveillance of Enteric Pathogens Causing Diarrheal Illness in Kenya’ study across seven participating public hospitals were analysed. Out-patients across all age-groups qualified to be enrolled as case participants (symptomatic) if they presented with 3–4 diarrheal episodes within 24 h and lasting less than 14 days. Out-patients presenting in the same hospitals with no diarrheal episodes within the last 14 days were enrolled as age-matched controls (asymptomatic). Stool
 aliquots for analysis of parasitic pathogens were suspended in the Mini Parasep® SF fecal parasite concentrator (Apacor, Wokingham, United Kingdom) and shipped at 2–8 °C. On arrival at the lab, the samples were centrifuged and a wet-preparation of the filtrate examined under light microscopy. A sample was reported as positive for the Entamoeba complex by either visualizing the trophozoites and/or spherical cysts with 1–4 nuclei. By microscopy, 23 samples were detected as positive for Entamoeba complex.

These samples were then matched with their corresponding microscopy negative symptomatic or asymptomatic sample. A total of 46 specimens, 23 (6 symptomatic and 17 asymptomatic) previously identified as positive for Entamoeba complex by microscopy and their corresponding age-matched symptomatic or asymptomatic participants were screened by PCR for Entamoeba complex species.

Out of the total 46 samples tested 22 were from symptomatic and 24 from asymptomatic participants.

Samples were retrieved from long-term storage at –80 °C and DNA extracted using the QIAamp DNA stool mini-kit®, (QIAGEN, Hilden, Germany) as per manufacturer’s instructions with slight modifications: incubation time with lysis buffer was 10 min at 95 °C, incubation time with InhibitEX was 10 min at room temperature, and incubation time with proteinase-K was 15 min at 70 °C. Species detection was carried out using a nested multiplex PCR previously described [12] using primers as listed below. Cycling conditions were as follows for the genus-specific PCR; 96 °C for 2 min followed by 30 cycles each consisting of 92 °C for 1 min, 56 °C for 1 min and 72 °C for 1 min. For the species-specific PCR, the cycling conditions were maintained and only the annealing temperature adjusted to 48 °C.

The DNA extracts from control strains of E. dispar (SAW 760), E. moshkovskii (Laredo) and E. histolytica (HM-1: IMSS) were a generous gift from Dr. Graham Clark of the London School of Tropical Medicine and Hygiene. Nuclease-free water was included as a negative control for each test run. The unknown samples and controls were run on an agarose gel, and amplicons of the seven samples with fragment sizes corresponding to E. histolytica (439 bp), five samples with fragments corresponding to E. moshkovskii (553 bp) and two samples with fragments corresponding to E. dispar (174 bp) were purified using ExoSAP-IT kit (ThermoFisher Scientific, Massachusetts, USA) kit and sequenced using standard capillary electrophoresis on a 3500xl Genetic Analyzer (Applied BioSystems, California, USA). The secondary PCR species-specific primers (Table 1) were used for sequencing. Chromatograms were visualized on Chromas and sequences analyzed using DNA sequence assembler v3, www.DnaBaser.com. Consensus sequences were compared to those on GenBank using BLASTn and sequences deposited into GenBank under accession numbers MK142734–MK142737 (E. moshkovskii), MH752550–MH752556 (E. histolytica) and MH754938, MH754939 (E. dispar).

Table 1 List of ribosomal 18S primers used in this study

Genus-specific primers (First PCR)	Species-specific primers (Second nested multiplex PCR)
Entamoeba genus	**E. histolytica species**
E-1 5’ TAAGATGCGAGACGAGAAA 3’	EH-1 5’ AAGCATTGTTTCTAGATCTGAG 3’ (forward primer)
E-2 5’ GTAAAAAGGCAGGGAGCTA 3’	EH-2 5’ AAGAGGTCATACCGAAATTAG 3’ (reverse primer)
E. moshkovskii species	**E. dispar species**
EM-1 5’ GAAACCAAGATGTTACACAC 3’	ED-1 5’ TCTAATTTCGATTAGAATCTC 3’ (forward primer)
EM-2 5’ CAATATAAGGCTTGATGAT 3’	ED-2 5’ TCCCTACCTTATTAGACATAGC 3’ (reverse primer)

Results

Out of the 46 samples tested by PCR, 22 (47.8%) were positive for Entamoeba complex. Of these, 16 had initially been identified as positive for Entamoeba complex by microscopy (Table 2). Among the 22 PCR-positives, Entamoeba complex species were identified as follows: nine were E. dispar (40.9%), two were E. moshkovskii (9.1%), and one was E. histolytica (4.5%). Combinations of Entamoeba species detected were: three E. histolytica and E. dispar.

Table 2 Agreement of Entamoeba species identification by PCR and microscopy

Microscopy	Positive (n = 23)	Negative (n = 23)	Total samples
PCR			
Positive	16	6	22
Negative	7	17	24
Total	23	23	46
.dispars (13.6%), two E. histolytica + E. moshkovskii (9.1%), four E. moshkovskii and E. dispar (18.2%) and one E. histolytica and E. dispar and E. moshkovskii (Table 3) (Fig. 1).

E. moshkovskii mono-infection was identified in two samples and in seven samples as co-infection with either E. dispar, E. histolytica or both. Of the nine PCR-positive E. moshkovskii samples, five had previously been identified by microscopy as Entamoeba complex, while the remaining were missed identifications. E. moshkovskii was identified both in symptomatic and asymptomatic participants with no statistically significant differences. Of the nine bands corresponding to E. moshkovskii band size (553 bp), four were very faint and could not be sequenced. This could be attributed to possible low parasite copy number in the stool specimens. One sample failed to sequence thus sequence analysis was performed on only four high-quality bands. Sequence analysis of E. moshkovskii bands revealed 99% identity to the Laredo reference strain of E. moshkovskii (KP722605.1). Reconstruction of phylogenetic relationships revealed distinct species-specific clustering (Fig. 2).

Discussion

This study speciated members of the Entamoeba complex from stool specimens using PCR. We then sequenced the E. moshkovskii-positive samples to confirm proper species identification and constructed a phylogenetic tree. To the best of our knowledge, this is the first survey of the distribution of Entamoeba species in clinical samples originating from Kenyan symptomatic and asymptomatic participants.

Although the number of samples tested in this study is fairly small, co-infections among species of the Entamoeba complex appear to be common. We also detected E. moshkovskii alongside E. dispar and E. histolytica and noted a high frequency of detection for E. dispar. This detection of E. moshkovskii alongside these two species is also consistent with other reports that Entamoeba species co-circulate.

Microscopy Status	E. dispar only	E. moshkovskii only	E. histolytica + E. dispar	E. histolytica + E. moshkovskii	E. dispar + E. moshkovskii	E. histolytica + E. moshkovskii + E. dispar
Positive (n = 23)	9 (40.9)	2 (9.1)	2 (9.1)	2 (9.1)	1 (4.5)	1 (4.5)
PCR Positive (%)	3 (33)	1 (50)	0 (0)	2 (100)	0 (0)	1 (100)
Symptomatic (%)	6 (67)	1 (50)			1 (100)	
Asymptomatic (%)	6 (67)	1 (50)			1 (100)	

Negative (n = 23)	1 (4.5)	1 (4.5)	1 (4.5)	3 (13.6)	2 (67)	1 (100)
PCR Positive (%)	1 (100)	1 (100)	0 (0)	1 (100)	1 (33)	
Symptomatic (%)	0 (0)	1 (100)			0 (0)	
Asymptomatic (%)	0 (0)	0 (0)			0 (0)	
in *Entamoeba* endemic areas [14]. Previous Kenyan studies [15–21] have largely focused on microscopic identification of *Entamoeba* complex and/or molecular identification of *E. histolytica*. This has left a gap in our understanding of the epidemiological distribution of *Entamoeba* species in Kenya. Paucity of differentiation studies has in addition denied important assessments as to whether they contribute to gastrointestinal disease in humans. A recent molecular epidemiological study of *Entamoeba* species, involving asymptomatic children from western Kenya, using a nested PCR assay, did not detect any *E. moshkovskii* infections [17]. Although Matey et al., did not detect *E. moshkovskii* in their study population, it is possible that *E. moshkovskii* infections have been in circulation in Kenya and are only now being identified.

This study focused on identifying three members of the *Entamoeba* complex thus it is possible that some of the microscopy misidentifications could be other members of the broader *Entamoeba* genus. For instance, cysts of *E. hartmanni* can be misidentified as *Entamoeba* complex since despite being relatively smaller, they too possess 1–4 nuclei. Furthermore, the missed identifications

![Phylogenetic reconstruction of *Entamoeba* complex species based upon 18S rRNA.](image)

Fig. 2 Phylogenetic reconstruction of *Entamoeba* complex species based upon 18S rRNA. Samples sequenced in this study were designated with a KEN prefix (EH: *E. histolytica*, ED: *E. dispar*, EM: *E. moshkovskii*) alongside reference sequences from GenBank. Four *E. moshkovskii* (KEN EM2 - KEN EM5) were identified in this study. Branch values show bootstrap support.
by microscopy are often attributable to a low number of cysts in the stool, degraded trophozoites, varying technical skill among technicians, human error and subjectivity.

Phylogenetic analyses showed *Entamoeba* complex spp. were closely related to but genetically distinct from other *Entamoeba* spp. (*E. coli*, *E. polecki*, *E. hartmani*). *E. moshkovskii*, *E. dispar* and *E. histolytica* grouped into distinct clusters. This grouping was evidence of correct species identification and confirmation of the PCR assay results.

There are a number of reasons why it is important to establish the molecular epidemiology of members of the *Entamoeba* complex in Kenya, the most immediate being the burden of *E. moshkovskii* complex in Kenya, the most immediate being

References

1. Amoebiasis. Relevé epidemiologique hebdomadaire. 1997 72(14):97–99. PubMed PMID: 9100475. Epub 1997/04/04. eng.
2. Farthing MJ. Treatment options for the eradication of intestinal protozoa. Nat Clin Pract Gastroenterol Hepatol. 2006;3(8):436–45 PubMed PMID: 16 883348. Epub 2006/08/03. eng.
3. Neal RA. Studies on the morphology and biology of Entamoeba moshkovskii Tshalaia, 1941. Parasitology. 1953;43(3–4):253–68 PubMed PMID: 13111812. Epub 1953/11/01. eng.
4. Al-Areeqi MA, Sady H, Al-Mekhlafi HM, Anuar TS, Al-Adhroye AH, Atroosh WM, et al. First molecular epidemiology of Entamoeba histolytica, E. dispar and E. moshkovskii infections in Yemen: different species-specific associated risk factors. Trop Med Int Health. 2017;22(4):493–504 PubMed PMID: 28151567. Epub 2017/02/06. eng.
5. Parija SC, Khairnar K. Entamoeba moshkovskii and Entamoeba dispar-associated infections in Pondicherry, India. J Health Popul Nutr. 2005;23(3): 292–5 PubMed PMID: 16262027. Epub 2005/11/03. eng.
6. Fonseca JA, Heredia RD, Ortiz C, Mazo M, Clavijo-Ramirez CA, Lopez MC. Identification of Entamoeba moshkovskii in treated waste water used for agriculture. EcoHealth. 2016;13(1):1156–60 PubMed PMID: 26732073. Epub 2016/01/07. eng.
7. Anuar TS, Al-Mekhlafi HM, Ghanii MK, Azreen SN, Salleh FM, Ghazali N, et al. First molecular identification of Entamoeba moshkovskii in Malaysia. Parasitology. 2012;139(12):1521–5 PubMed PMID: 22939193. Epub 2012/09/04. eng.
8. Ayed SB, Aoun K, Maamouri N, Abdallah RB, Bouratbine A. First molecular identification of Entamoeba moshkovskii in human stool samples in Tunisia. Am J Trop Med Hyg. 2008;79(5):706–7 PubMed PMID: 18981508. Epub 2008/11/05. eng.
9. Beck DL, Dodan N, Maro V, Sam NE, Shao J, Houpit ER. High prevalence of Entamoeba moshkovskii in a Tanzanian HIV population. Acta Trop. 2008; 107(1):46–9 PubMed PMID: 18471796.
10. Fotedar R, Stark D, Beebe N, Marriott D, Ellis J, Harkness J. PCR detection of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii in stool samples from Sydney, Australia. J Clin Microbiol. 2007;45(3):1035–7 PubMed PMID: 17229864. Pubmed Central PMCID: PMC1829108. Epub 2007/01/19. eng.
11. Shimokawa C, Kibir M, Taniuchi M, Mondal D, Kobayashi S, Ali IK, et al. Entamoeba moshkovskii is associated with diarrhea in infants and causes diarrhea and colitis in mice. J Infect Dis. 2012;206(5):744–51 PubMed PMID: 22723640. Pubmed Central PMCID: PMC3491739. Epub 2012/06/23. eng.
12. Khairnar SC, Parija SC. A novel nested multiplex polymerase chain reaction (PCR) assay for differential detection of Entamoeba histolytica, E. moshkovskii and E. dispar DNA in stool samples. BMC Microbiol. 2007;7:47 PubMed PMID: 17241135.
13. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21 PubMed PMID: 20525638. Epub 2010/06/09. eng.
14. Heredia RD, Fonseca JA, Lopez MC. Entamoeba moshkovskii perspectives of a new agent to be considered in the diagnosis of amebiasis. Acta Tropica. 2012;123(3):139–45.
15. Mvwendwa F, Mbale CK, Kinyua J, Mulinge E, Mburugu GN, Njiru ZK. Stem loop-mediated isothermal amplification test: comparative analysis with classical LAMP and PCR in detection of Entamoeba histolytica in Kenya. BMC Res Notes. 2017;10(1):12 PubMed PMID: 28359328. Pubmed Central PMCID: PMC5374617. Epub 2017/04/01. eng.
16. Njuguca C, Njuru I, Mgbarg E, Langat D, Makokha A, Onyango D, et al. Enteric pathogens and factors associated with acute bloody diarrhoea, Kenya. BMC Infect Dis. 2016;16:477 PubMed PMID: 27600526. Pubmed Central PMCID: PMC5012060. Epub 2016/09/08. eng.
17. Matey EJ, Tokoro M, Nagamoto T, Mizuno T, Saina MC, Bi X, et al. Lower prevalence of Entamoeba species in children with vertically transmitted HIV infection in Western Kenya. AIDS. 2016;30(3):803–5 PubMed PMID: 26919716. Epub 2016/02/27. eng.
18. Easton AV, Oliveira RG, O’Connell EM, Kepha S, Mwandawiro CS, Njenga SM, et al. Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on

Competing interests

The authors declare that they have no competing interests.

Author details

1 United States Army Medical Research Directorate-Africa, P.O. Box 606-00621, Village Market, Nairobi, Kenya. 2 Jomo Kenyatta University of Science and Technology, P.O. Box 62000-0200, Nairobi, Kenya. 3 United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
the impact of mass deworming. Parasit Vectors. 2016;9:38 PubMed PMID: 26813411. Pubmed Central PMCID: 4729172. Epub 2016/01/28. eng.

19. Mbae CK, Nokes DJ, Mulinge E, Nyambura J, Waruru A, Kariuki S. Intestinal parasitic infections in children presenting with diarrhoea in outpatient and inpatient settings in an informal settlement of Nairobi. Kenya BMC Infect Dis. 2013;13:243 PubMed PMID: 23703776. Pubmed Central PMCID: 3673844. Epub 2013/05/28. eng.

20. Kamau P, Aloo-Obudho P, Kabiru E, Ombacho K, Langat B, Mucheru O, et al. Prevalence of intestinal parasitic infections in certified food-handlers working in food establishments in the City of Nairobi, Kenya. J Biomed Res. 2012;26(2):84–9 PubMed PMID: 23554735. Pubmed Central PMCID: PMC359323. Epub 2013/04/05. eng.

21. Świerczewski BE, Odundo EA, Koech MC, Ndonye JN, Kirera RK, Odhiambo CP, et al. Surveillance for enteric pathogens in a case-control study of acute diarrhea in Western Kenya. Trans R Soc Trop Med Hyg. 2013;107(2):83–90 PubMed PMID: 23222955. Epub 2012/12/12. eng.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.