Assessment of Genetic Diversity of Chinese Sand Pear Landraces (Pyrus pyrifolia Nakai) Using Simple Sequence Repeat Markers

Zhengweng Jiang and Feiyan Tang
Wuhan Botanical Garden/Wuhan Institute of Botany, Chinese Academy of Sciences, Wuhan, Hubei 430074, China

Hongwen Huang1
South China Botanical Garden/South China Institute of Botany, Chinese Academy of Sciences, Guangzhou, Guangzhou, Guangdong 510650, China

Hongju Hu and Qiliang Chen
Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430209, China

Additional index words. Pyrus pyrifolia, microsatellites, landrace, genetic diversity, sand pear germplasm

Abstract. The sand pear (Pyrus pyrifolia Nakai) is an important fruit crop in China. In this study, simple sequence repeats (SSRs) were used to estimate the level and pattern of genetic diversity among 233 sand pear landraces collected from 10 different geographic regions in China. The results demonstrated that the SSR technique is an effective tool for assessing genetic diversity and the geographic pattern of genetic variation among sand pear landraces of different origins. A total of 184 putative alleles was detected using 14 primer pairs with an average of 13.1 alleles per locus. The mean expected heterozygosity and observed heterozygosity across all loci were 0.705 and 0.671, respectively. High genetic diversity was found in all populations except for that originated from Jiangxi \((A_e = 3.149; H_e = 0.655)\), whereas at the regional level, those from central China were less diverse than those from other regions. Analysis of molecular variance showed that most genetic differences resided among landraces within populations. Additionally, un-weighted pair group with arithmetic average clustering and principal component analysis plotting based on Nei’s genetic distance revealed distinct gene pools in agreement with geographic distribution.

The sand pear (Pyrus pyrifolia Nakai) is one of the most important fruit tree crops in China and is extensively cultivated in central and southwest China. The species occurs naturally in southern and western China, recognized as the center of origin of the genus Pyrus (Rubtsov, 1944). There are very many landraces (local cultivars) of P. pyrifolia owing to nearly 3000 years of cultivation and the complex climatic and geographical variation in China. Many landraces have unique traits. For example, ‘Puguali’, from Zhejiang Province, is a large-fruited cultivar with a mean weight of 553 g and a maximum weight of 950 g. The skin is green when mature and covered with brown russet, which turns reddish brown when fruit are fully ripe. ‘Cangxili’, named after its place of origin, Cangxi county in Sichuan Province, is a traditional landrace with maximum fruit weight of 1850 g (average, 321.3 g), smooth skin, and crisp and tender flesh, which is sweet and juicy and of high quality. The rich genetic resources in sand pear provide great potential for cultivar improvement and enhancement of the sustainability of the pear industry. However, many traditional local cultivars have been threatened with extinction by the changes that have occurred in the modern Chinese fruit industry over the past three decades. There has been large-scale cultivation of a few elite cultivars and top-grafting or replacement of old cultivars or landraces. This genetic loss could lead to serious erosion of the gene pool of the cultivated sand pear. To conserve and manage the diversity of sand pear landraces and cultivars, the Wuhan Sand Pear Germplasm Repository (WSPGR) was established in 1986 as the national repository for sand pears, and since then, an exhaustive collection of local cultivars and landraces of Chinese sand pear has been assembled.

Molecular techniques are useful tools for evaluating genetic diversity and for defining genetic relationships in fruit tree crops. In pear, chloroplast polymerase chain reaction–restriction fragment length polymorphisms (RFLPs) were used to examine relationships between east Asian species (Iketani et al., 1998). Dominant nuclear markers, random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and intersimple sequence repeat (ISSR) were used in an investigation of genetic relationships among species and for pear cultivar fingerprinting (Cao et al., 2007; Shen et al., 2006; Teng et al., 2001, 2002; Zhang et al., 2007), and nuclear and chloroplast DNA sequences have been used to identify pear cultivars (Kimura et al., 2003; Lee et al., 2004). Of the DNA marker systems currently available, simple sequence repeat (SSRs) have been considered one of the most useful for assessment of genetic diversity and cultivar fingerprinting at the intraspecific level because of their abundance, hyperpolymorphism, and codominant inheritance (Morgante and Olivieri, 1993; Tautz, 1989). However, the published work to date reported the use of a set of SSRs isolated from apple for verifying the transferability of SSRs between apple and pear (Yamamoto et al., 2001) and the cultivar identification by SSRs in a limited number of cultivars developed in Japan (Kimura et al., 2002). SSR markers have been proved as a robust tool for revealing genetic diversity in sand pear (Cao et al., 2007; Kimura et al., 2002, 2003), red-skin sand pear (Zhang et al., 2007), and some other pears in west China (Fan et al., 2007).

Current germplasm evaluation in China mostly focuses on morphological descriptions and documenting pomological traits. The exchange of plants between repositories or commercial orchards raises problems in that some individual sand pear landraces or cultivars may be known by several different names or the one name may be used for different landraces or cultivars. The information from current evaluation of sand pears was not sufficient. Furthermore, detailed morphological descriptions and comparisons of plants are time-consuming and fruit-related traits cannot be observed until plants are mature to produce fruit. Genetic characterization of the gene pool of the cultivated sand pears in the WSPGR collection has not previously been attempted but is urgently needed for formulating management strategies for the WSPGR and for furnishing useful genetic information for future sand pear breeding efforts. This should provide a better understanding of the genetic diversity that exists in the gene pool of the cultivated sand pears and the diverse sources of useful genes in the germplasm repository. Therefore, the objectives of the present investigation were to determine the genetic diversity of the overall gene pool of sand pear landraces and assess the genetic variation among sand pear landrace groups in relation to their geographic distribution in China.

Materials and Methods

A total of 233 landraces originating from 10 provinces (designated as populations in this study) was obtained from the WSPGR...
Table 1. Chinese landraces of sand pear evaluated.

Accession number	Landrace	District	Province (population)	Region
001	Fu’andaxuei	Fu’an	Fujian	East China
002	Qingpizhongli	Jian’ou	Fujian	East China
003	Aijiali	Jianyang	Fujian	East China
004	Bingzili	Jianyang	Fujian	East China
005	Huangpizhongli	Jianyang	Fujian	East China
006	Chiupi	Jianyang	Fujian	East China
007	Eli	Jianyang	Fujian	East China
008	Pingguoli	Jianyang	Fujian	East China
009	Shuli	Jianyang	Fujian	East China
010	Bannamwuli	Pingnan	Fujian	East China
011	Mandingxuei	Pucheng	Fujian	East China
012	Puchengxuei	Pucheng	Fujian	East China
013	Puli	Shouning	Fujian	East China
014	Liuyuehuangzongli	Shunchang	Fujian	East China
015	Muli	Shunchang	Fujian	East China
016	Baiyu	Jiujiang	Jiangxi	East China
017	Hehua	Shangrao	Jiangxi	East China
018	Huangxiexiong	Shangrao	Jiangxi	East China
019	Kuixingmake	Shangrao	Jiangxi	East China
020	Xiuhapingtouqing	Shangrao	Jiangxi	East China
021	Jiangwanxipili	Wuyuan	Jiangxi	East China
022	Bayuexue	Wuyuan	Jiangxi	East China
023	Wuyuanbali	Wuyuan	Jiangxi	East China
024	Wuyuanansli	Wuyuan	Jiangxi	East China
025	Wuyanxuei	Wuyuan	Jiangxi	East China
026	Yousi	Wuyuan	Jiangxi	East China
027	Danenl	Leqing	Zhejiang	East China
028	Dahuangren	Leqing	Zhejiang	East China
029	Huangqieli	Leqing	Zhejiang	East China
030	Juzhongli	Leqing	Zhejiang	East China
031	Puguali	Leqing	Zhejiang	East China
032	Yandangxuei	Leqing	Zhejiang	East China
033	Zhenxiangli	Leqing	Zhejiang	East China
034	Hanghong	Unknown	Zhejiang	East China
035	Huahong	Unknown	Zhejiang	East China
036	Yuanli	Unknown	Zhejiang	East China
037	Ruanxuei	Unknown	Zhejiang	East China
038	Sanhui	Unknown	Zhejiang	East China
039	Shanghaixuei	Unknown	Zhejiang	East China
040	Nuodaoli	Yiwu	Zhejiang	East China
041	Yiwulizi	Yiwu	Zhejiang	East China
042	Zaosanhua	Yiwu	Zhejiang	East China
043	Xihuaxuei	Yunhe	Zhejiang	East China
044	Yunshibianli	Yunhe	Zhejiang	East China
045	Yunhuxuei	Yunhe	Zhejiang	East China
046	Fengkaihuizouli	Fengkai	Guangdong	South China
047	Xinghuadayinli	Fengkai	Guangdong	South China
048	Yeshenli	Fengkai	Guangdong	South China
049	Hehuali	Fengkai	Guangdong	South China
050	Gaoyaoxshuili	Gaoyao	Guangdong	South China
051	Gaoyaohuangli	Gaoyao	Guangdong	South China
052	Gaoyaoqinli	Gaoyao	Guangdong	South China
053	Jianyeli	Gaoyao	Guangdong	South China
054	Huiyanghuangli	Huiyang	Guangdong	South China
055	Huiyangxuani	Huiyang	Guangdong	South China
056	Xihuahongli	Huiyang	Guangdong	South China
057	Xiangshuili	Huiyang	Guangdong	South China
058	Qinghui	Lianzheng	Guangdong	South China
059	Sianjiangpili	Lianzheng	Guangxi	South China
060	Beilihuangli	Beilu	Guangxi	South China
061	Beiliumili	Beilu	Guangxi	South China
062	Beiliquingli	Beilu	Guangxi	South China
063	Xiangjiaoli	Debao	Guangxi	South China
064	Huangpichangbatangli	Gongcheng	Guangxi	South China
065	Huangpichuanli	Gongcheng	Guangxi	South China
066	Huangpixuei	Gongcheng	Guangxi	South China
067	Qingpisuani	Gongcheng	Guangxi	South China
068	Xipitangli	Gongcheng	Guangxi	South China
069	Cupitangli	Guanyang	Guangxi	South China
070	Guanyanghuangli	Guanyang	Guangxi	South China
071	Guanyangshuili	Guanyang	Guangxi	South China
072	Guanyangshuanli	Guanyang	Guangxi	South China

(Continued on next page)
Table 1. (Continued) Chinese landraces of sand pear evaluated.

Accession number	Landrace	District	Province (population)	Region
073	Guanyangtangli	Guanyang	Guangxi	South China
074	Guanyangxuexi	Guanyang	Guangxi	South China
075	Guanyangzaoheli	Guanyang	Guangxi	South China
076	Huangpieli	Guanyang	Guangxi	South China
077	Quanzhoulou	Guilin	Guangxi	South China
078	Yanshanhuangpixiao	Guilin	Guangxi	South China
079	Yanshanliuyueyou	Guilin	Guangxi	South China
080	Yanshangpingxuexi	Guilin	Guangxi	South China
081	Hengxianjinpaoli	Hengxian	Guangxi	South China
082	Hengxianlingshanli	Hengxian	Guangxi	South China
083	Hengxiannili	Hengxian	Guangxi	South China
084	Nanningdashali	Hengxian	Guangxi	South China
085	Jingxuingzi	Jingxi	Guangxi	South China
086	Jingxixuei	Jingxi	Guangxi	South China
087	Shanggangli	Leye	Guangxi	South China
088	Lipuhuangpili	Lipu	Guangxi	South China
089	Lipuxuei	Lipu	Guangxi	South China
090	Liuchengfengshanli	Liucheng	Guangxi	South China
091	Liuchengxuexi	Liucheng	Guangxi	South China
092	Sammenjianghuangli	Liucheng	Guangxi	South China
093	Guihuali	Longsheng	Guangxi	South China
094	Huangyupili	Longsheng	Guangxi	South China
095	Huangxipili	Longsheng	Guangxi	South China
096	Napoqingpili	Tianyang	Guangxi	South China
097	Bingtangli	Unknown	Guangxi	South China
098	Bellihulou	Wuming	Guangxi	South China
099	Cangwudashali	Wuzhou	Guangxi	South China
100	Badongjingli	Badong	Hubei	Central China
101	Jianshichengtouli	Jianshi	Hubei	Central China
102	Jianshichixianfeng	Jianshi	Hubei	Central China
103	Jianshizaoquli	Jianshi	Hubei	Central China
104	Lichuaxiangshi	Lichuan	Hubei	Central China
105	Suizhouzaoquli	Suizhou	Hubei	Central China
106	Huishuqingjia	Unknown	Hubei	Central China
107	Houzuli	Unknown	Hubei	Central China
108	Huangpixiang	Unknown	Hubei	Central China
109	Make	Unknown	Hubei	Central China
110	Zaomili	Wuhan	Hubei	Central China
111	Wanyanjingxi	Xianfeng	Hubei	Central China
112	Xianfengbajie	Xianfeng	Hubei	Central China
113	Xianfengchentouli	Xianfeng	Hubei	Central China
114	Xianfenghongjili	Xianfeng	Hubei	Central China
115	Xianfengxuepingli	Xianfeng	Hubei	Central China
116	Xianfengyangdongli	Xianfeng	Hubei	Central China
117	Xueping	Xianfeng	Hubei	Central China
118	Xuanenchengtouli	Xuan'ne	Hubei	Central China
119	Xuanenxuei(2)	Xuan'ne	Hubei	Central China
120	Xuanenyangdongli	Xuan'ne	Hubei	Central China
121	Jinbangtou	Yuan'an	Hubei	Central China
122	Longtuani	Yuan'an	Hubei	Central China
123	Shilixiang	Yuan'an	Hubei	Central China
124	Suantianou	Yuan'an	Hubei	Central China
125	Wangshuihai	Yuan'an	Hubei	Central China
126	Huailuxiangshi	Anjiang	Hunan	Central China
127	Baojingyangdong	Baojing	Hunan	Central China
128	Daguoqing	Jinxian	Hunan	Central China
129	Tanghuangqiang	Jinxian	Hunan	Central China
130	Yadianqiang	Jinxian	Hunan	Central China
131	Gengzhouqiang	Linwu	Hunan	Central China
132	Qingli	Linwu	Hunan	Central China
133	Shexiangli	Linwu	Hunan	Central China
134	Xiangheli	Linwu	Hunan	Central China
135	Xianghuli	Linwu	Hunan	Central China
136	Zamali	Linwu	Hunan	Central China
137	Longhuqilu	Longhu	Hunan	Central China
138	Duanbazaos	Yizhang	Hunan	Central China
139	Qingqiao	Yizhang	Hunan	Central China
140	Tianxiaoli	Yizhang	Hunan	Central China
141	Metianjingai	Meitan	Guizhou	Southwest China
142	Metianmugua	Meitan	Guizhou	Southwest China
143	Fanli	Weining	Guizhou	Southwest China
144	Weiningbajie	Weining	Guizhou	Southwest China

(Continued on next page)
Table 1. (Continued) Chinese landraces of sand pear evaluated.

Accession number	Landrace	District	Province (population)	Region
145	Weiningshugulian	Weinig	Guizhou	Southwest China
146	Weiningshiguli	Weinig	Guizhou	Southwest China
147	Weiningshiguli	Weinig	Guizhou	Southwest China
148	Weiningshiguli	Weinig	Guizhou	Southwest China
149	Weiningshiguli	Weinig	Guizhou	Southwest China
150	Weiningshiguli	Weinig	Guizhou	Southwest China
151	Weiningshiguli	Weinig	Guizhou	Southwest China
152	Weiningshiguli	Weinig	Guizhou	Southwest China
153	Weiningshiguli	Weinig	Guizhou	Southwest China
154	Weiningshiguli	Weinig	Guizhou	Southwest China
155	Weiningshiguli	Weinig	Guizhou	Southwest China
156	Weiningshiguli	Weinig	Guizhou	Southwest China
157	Weiningshiguli	Weinig	Guizhou	Southwest China
158	Weiningshiguli	Weinig	Guizhou	Southwest China
159	Weiningshiguli	Weinig	Guizhou	Southwest China
160	Weiningshiguli	Weinig	Guizhou	Southwest China
161	Weiningshiguli	Weinig	Guizhou	Southwest China
162	Weiningshiguli	Weinig	Guizhou	Southwest China
163	Weiningshiguli	Weinig	Guizhou	Southwest China
164	Weiningshiguli	Weinig	Guizhou	Southwest China
165	Weiningshiguli	Weinig	Guizhou	Southwest China
166	Weiningshiguli	Weinig	Guizhou	Southwest China
167	Weiningshiguli	Weinig	Guizhou	Southwest China
168	Weiningshiguli	Weinig	Guizhou	Southwest China
169	Weiningshiguli	Weinig	Guizhou	Southwest China
170	Weiningshiguli	Weinig	Guizhou	Southwest China
171	Weiningshiguli	Weinig	Guizhou	Southwest China
172	Weiningshiguli	Weinig	Guizhou	Southwest China
173	Weiningshiguli	Weinig	Guizhou	Southwest China
174	Weiningshiguli	Weinig	Guizhou	Southwest China
175	Weiningshiguli	Weinig	Guizhou	Southwest China
176	Weiningshiguli	Weinig	Guizhou	Southwest China
177	Weiningshiguli	Weinig	Guizhou	Southwest China
178	Weiningshiguli	Weinig	Guizhou	Southwest China
179	Weiningshiguli	Weinig	Guizhou	Southwest China
180	Weiningshiguli	Weinig	Guizhou	Southwest China
181	Weiningshiguli	Weinig	Guizhou	Southwest China
182	Weiningshiguli	Weinig	Guizhou	Southwest China
183	Weiningshiguli	Weinig	Guizhou	Southwest China
184	Weiningshiguli	Weinig	Guizhou	Southwest China
185	Weiningshiguli	Weinig	Guizhou	Southwest China
186	Weiningshiguli	Weinig	Guizhou	Southwest China
187	Weiningshiguli	Weinig	Guizhou	Southwest China
188	Weiningshiguli	Weinig	Guizhou	Southwest China
189	Weiningshiguli	Weinig	Guizhou	Southwest China
190	Weiningshiguli	Weinig	Guizhou	Southwest China
191	Weiningshiguli	Weinig	Guizhou	Southwest China
192	Weiningshiguli	Weinig	Guizhou	Southwest China
193	Weiningshiguli	Weinig	Guizhou	Southwest China
194	Weiningshiguli	Weinig	Guizhou	Southwest China
195	Weiningshiguli	Weinig	Guizhou	Southwest China
196	Weiningshiguli	Weinig	Guizhou	Southwest China
197	Weiningshiguli	Weinig	Guizhou	Southwest China
198	Weiningshiguli	Weinig	Guizhou	Southwest China
199	Weiningshiguli	Weinig	Guizhou	Southwest China
200	Weiningshiguli	Weinig	Guizhou	Southwest China
201	Weiningshiguli	Weinig	Guizhou	Southwest China
202	Weiningshiguli	Weinig	Guizhou	Southwest China
203	Weiningshiguli	Weinig	Guizhou	Southwest China
204	Weiningshiguli	Weinig	Guizhou	Southwest China
205	Weiningshiguli	Weinig	Guizhou	Southwest China
206	Weiningshiguli	Weinig	Guizhou	Southwest China
207	Weiningshiguli	Weinig	Guizhou	Southwest China
208	Weiningshiguli	Weinig	Guizhou	Southwest China
209	Weiningshiguli	Weinig	Guizhou	Southwest China
210	Weiningshiguli	Weinig	Guizhou	Southwest China
211	Weiningshiguli	Weinig	Guizhou	Southwest China
212	Weiningshiguli	Weinig	Guizhou	Southwest China
213	Weiningshiguli	Weinig	Guizhou	Southwest China
214	Weiningshiguli	Weinig	Guizhou	Southwest China
215	Weiningshiguli	Weinig	Guizhou	Southwest China
216	Weiningshiguli	Weinig	Guizhou	Southwest China

(Continued on next page)
found by Kimura et al. (2002), SSRs are particularly useful for assessing levels of genetic variation in cultivated sand pears. All except two of the primer pairs tested allowed reliable scoring of alleles across 233 landraces. The 14 primer pairs used all allowed reliable scoring of alleles across 233 landraces. The 14 primer pairs used all allowed reliable scoring of alleles across 233 landraces.

Fig. 1. Sixty-six geographic origins of 233 sand pear landraces evaluated in this study. 1) Yiwu; 2) Lishui; 3) Yunhe; 4) Leqing; 5) Shouning; 6) Fuan; 7) Pingnan; 8) Pucheng; 9) Jianyang; 10) Jianou; 11) Shunchang; 12) Jingjiang; 13) Jiujiang; 14) Wuyuan; 15) Yangling; 16) Lianping; 17) Huyang; 18) Gaoyao; 19) Fengkai; 20) Wuzhou; 21) Guanyang; 22) Gengchong; 23) Longsheng; 24) Guilin; 25) Lipu; 26) Belliu; 27) Liucheng; 28) Fengxian; 29) Wuming; 30) Leye; 31) Baise; 32) Tianyang; 33) Debao; 34) Jingxi; 35) Linwu; 36) Yizhang; 37) Longhui; 38) Jingxian; 39) Anjiang; 40) Baojing; 41) Wuhan; 42) Suzhou; 43) Yuanan; 44) Madong; 45) Jiangxi; 46) Xuanen; 47) Xinjiang; 48) Lichuan; 49) Meitan; 50) Zunyi; 51) Xingyi; 52) Weining; 53) Tongliang; 54) Cangxi; 55) Jianyan; 56) Jinchuan; 57) Luding; 58) Hanyuan; 59) Huili; 60) Lijiang; 61) Dali; 62) Fuyuan; 63) Mdu; 64) Kumming; 65) Chuxiong; 66) Chonggong.
Table 2. Estimates of genetic diversity of sand pear in different provinces and regions.

Population	N°	A° ± se	A° ± se	H° ± se	F ± se°
East China	45	9.85 ± 0.694	5.08 ± 0.404	0.78 ± 0.027	1.824 ± 0.080
Fujian	15	7.50 ± 0.511	4.76 ± 0.377	0.77 ± 0.018	1.716 ± 0.072
Jiangxi	11	5.64 ± 0.038	3.14 ± 0.258	0.65 ± 0.027	1.322 ± 0.066
Zhejiang	19	7.42 ± 0.500	4.58 ± 0.377	0.74 ± 0.018	1.641 ± 0.072
South China	54	8.87 ± 0.653	5.24 ± 0.425	0.78 ± 0.036	1.794 ± 0.096
Guangdong	13	6.07 ± 0.530	3.91 ± 0.380	0.71 ± 0.021	1.482 ± 0.085
Guangxi	41	8.50 ± 0.532	5.07 ± 0.541	0.73 ± 0.024	1.765 ± 0.090
Central China	41	8.785 ± 0.800	4.115 ± 0.437	0.73 ± 0.021	1.617 ± 0.086
Hubei	26	7.857 ± 0.762	3.956 ± 0.511	0.71 ± 0.023	1.552 ± 0.088
Hunan	15	6.429 ± 0.571	3.832 ± 0.369	0.706 ± 0.028	1.477 ± 0.093
Southwest China	93	11.428 ± 0.850	5.400 ± 0.507	0.78 ± 0.033	1.863 ± 0.099
Guizhou	32	8.500 ± 0.769	4.953 ± 0.541	0.773 ± 0.024	1.675 ± 0.097
Sichuan	26	8.286 ± 0.653	4.628 ± 0.546	0.742 ± 0.031	1.550 ± 0.099
Yunnan	35	8.357 ± 0.427	4.380 ± 0.360	0.740 ± 0.033	1.651 ± 0.082

Table 3. Simple sequence repeat (SSR) primers and estimates of SSR polymorphism parameters based on 233 Chinese sand pear landraces.

Locus code	Size range (bp)	A° ± se	H° ± se	V ± se	PD ± se	
NH001c	118–160	9	0.661	0.500	0.154	0.88
NH002b	148–200	13	0.718	0.733	0.152	0.92
NH004a	78–130	17	0.748	0.844	0.124	0.86
NH005b	304–350	9	0.527	0.554	0.136	0.77
NH007b	120–152	15	0.679	0.738	0.130	0.88
NH008b	188–215	10	0.747	0.669	0.120	0.93
NH009b	138–170	16	0.694	0.518	0.136	0.92
NH011b	151–196	18	0.736	0.695	0.133	0.94
NH013a	190–225	12	0.695	0.451	0.105	0.90
NH014a	60–130	21	0.825	0.802	0.097	0.97
NH015b	100–136	13	0.715	0.740	0.116	0.94
NH017a	88–120	13	0.717	0.731	0.156	0.94
CH01F02*	163–184	12	0.743	0.672	0.106	0.95
CH01H10°	97–123	6	0.666	0.747	0.136	0.90
Mean	13.1	0.705	0.671	0.129	0.91	

Table 4. Unique simple sequence repeat alleles in eight pear landrace populations.

Population	Locus	Allele (bp)	Landrace (no.)
Fujian	NH004a	83	Eli (007)
	NH014a	110	Panli (013)
	NH009b	164	Jiangwanzhipi (021), Yousu (026)
	NH004a	130	Jiuzhongli (030)
	NH011b	172	Zhenxingzhipi (033)
Guangxi	NH008b	206	Quanzhouli (077)
	NH009b	148	Cangwudashali (099)
	CH01F02*	176	Yanshanhuangpixia (078)
Guizhou	NH004a	98	Weinigzaoli (167)
	NH007b	146	Weinxingzaoxiang (165)
	NH009b	138	Yingxi (170)
	CH01F02*	172	Weinigbaipili (144)
Hubei	NH002b	148	Make (109), Xianfengbaipili (112)
	NH004a	123	Xinianbaipili (112)
	NH017a	120	Lichuanxianshu (104), Wangshuibai (125)
Sichuan	NH002b	160	Hulixianghuang (188)
	NH007b	136	Hanyuanzhaobai (182)
	NH015b	132	Shangengzhipi (185)
Yunnan	NH017a	117	Dalisuanli (205), Miduahuangpi (225)

In summary, the present study has demonstrated that SSR markers provide an effective tool for assessing genetic diversity and relationships within sand pear germplasm. Further work should focus on combining molecular data and pomological traits for delineating a core collection of sand pear and developing effective conservation strategies and breeding programs.
Literature Cited

Allard, R.W. 1988. Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors. J. Hered. 79:225–238.

Brush, S.B. 1995. In situ conservation of landraces in centres of crop diversity. Crop Sci. 35:346–354.

Cao, Y.F., F.Z. Liu, Y. Gao, L.J. Jiang, K. Wang, Z.Y. Ma, and K.C. Zhang. 2007. SSR analysis of genetic diversity of pear cultivars. Acta Hort. Sinica 34:305–310.

Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11–15.

Excoffier, L., P.E. Smouse, and J.M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction sites. Genetics 131:479–491.

Fan, T.W., D.Y. Cai, H.X. Li, F.L. Wang, C.Z. Zhao, and Y.W. Teng. 2007. Simple sequence repeat (SSR) analysis for assessment of genetic variation and relationships in pear germplasm native to the middle area of Gansu province. J. Fruit Science 24:268–275.

Gianfranceschi, L., N. Seglias, and R. Tarchini. 1998. Simple sequence repeats for the genetic analysis of apple. Theor. Appl. Genet. 96:1069–1076.

Gower, J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338.

Hamrick, J.L. and M.J.W. Godt. 1997. Allozyme diversity in cultivated crops. Crop Sci. 37:26–30.

Hamrick, J.L., M.J.W. Godt, and S.L. Sherman-Broyles. 1992. Factors influencing levels of genetic diversity in woody plant species. New For. 6:95–124.

Harlan, J.R. 1975a. Geographic patterns of variability in some cultivated plants. J. Hered. 66:184–191.

Harlan, J.R. 1975b. Our vanishing genetic resources. Science 188:618–621.

Iketani, H., T. Manabe, N. Matsuta, T. Akihama, and T. Hayashi. 1998. Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.). Gene Resour. Crop Ev. 45:533–539.

Kimura, T., H. Iketani, K. Kotobuki, N. Matsuta, T. Akihama, and T. Hayashi. 1998. Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.). Gene Resour. Crop Ev. 45:533–539.

Kimura, T., Z.S. Yong, M. Shoda, K. Kotobuki, N. Matsuta, T. Hayashi, Y. Ban, and T. Yamamoto. 2002. Identification of Asian pear varieties by SSR analysis. Breed. Sci. 52:115–121.

Kloosterman, A.D., B. Budowle, and P. Duselar. 1993. PCR amplification and detection of the human D1S80 VNTR locus amplification conditions, population genetics and application in forensic analysis. Intl. J. Legal Med. 105:257–264.

Lee, G.P., C.H. Lee, and C.S. Kim. 2004. Molecular markers derived from RAPD, SCAR, and the conserved 18S rDNA sequences for classification and identification in Pyrus pyrifolia and P. communis. Theor. Appl. Genet. 108:1487–1491.

Morgante, M. and A. Olivieri. 1993. PCR-amplified microsatellites as markers in plant genetics. Plant J. 3:175–182.

Nei, M., F. Tajima, and Y. Tateno. 1983. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19:153–170.

Peakall, R. and P.E. Smouse. 2001. GenAlEx V5.1: Genetic analysis in Excel. Population genetic software for teaching and research. Australian National University, Canberra, Australia. <http://www.anu.edu.au/BoZo/GenAlEx/>.

Rohlf, F.J. 1997. NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version 2.0. Exeter Software, Setauket, NY.

Rubtsov, G.A. 1944. Geographical distribution of the genus Pyrus and trends and factors in its evolution. Am. Nat. 78:358–366.

Sanguinetti, C.J., N.E. Dias, and A.J.G. Simpson. 1994. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:915–919.

Table 5. Genetic distance (D_A, Nei et al., 1983) matrix of 10 populations of Pyrus pyrifolia in China.

Population	Fujian	Jiangxi	Zhejiang	Guangdong	Guangxi	Hubei	Hunan	Guizhou	Sichuan	Yunnan
Fujian	0.000									
Jiangxi	0.659	0.000								
Zhejiang	0.548	0.472	0.000							
Guangdong	0.603	0.792	0.555	0.000						
Guangxi	0.610	0.722	0.529	0.450	0.000					
Hubei	0.641	0.767	0.577	0.598	0.475	0.000				
Hunan	0.645	0.779	0.611	0.582	0.574	0.520	0.000			
Guizhou	0.562	0.744	0.505	0.575	0.544	0.522	0.619	0.000		
Sichuan	0.648	0.733	0.564	0.613	0.584	0.613	0.615	0.595	0.000	
Yunnan	0.535	0.744	0.527	0.541	0.519	0.549	0.567	0.506	0.465	0.000

Fig. 2. Unweighted pair group with arithmetic average dendrograms of 10 populations of sand pear based on Nei et al.’s (1983) genetic distance (D_A).

Fig. 3. Plot of first and second principal components of principal components analysis on 10 populations of sand pear, together accounting for 42.01% of the total variation.
Shen, Y.Y., Y.W. Teng, and K. Tanabe. 2006. RAPD analysis for genetic assessment of some cultivars of Pyrus pyrifolia derived from China and Japan. Acta Hort. Sinica. 33:621–624.

Sneath, P.H.A. and R.R. Sokal. 1973. Numerical taxonomy. Freeman, San Francisco, CA.

Takezaki, N. and M. Nei. 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399.

Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17:6463–6471.

Teng, Y.W., K. Tanabe, F. Tamura, and A. Itai. 2001. Genetic relationships of pear cultivars in Xinjiang, China as measured by RAPD markers. J. Hort. Sci. Biotechnol. 76:771–779.

Teng, Y.W., K. Tanabe, F. Tamura, and A. Itai. 2002. Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. J. Amer. Soc. Hort. Sci. 127:262–270.

Yamamoto, T., T. Kimura, Y. Sawamura, K. Kotobuki, Y. Ban, T. Hayashi, and N. Matsuta. 2001. SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor. Appl. Genet. 102:865–870.

Yamamoto, T., T. Kimura, Y. Sawamura, T. Manabe, K. Kotobuki, T. Hayashi, Y. Ban, and N. Matsuta. 2002a. Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137.

Yamamoto, T., T. Kimura, M. Shoda, Y. Ban, T. Hayashi, and N. Matsuta. 2002b. Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol. Ecol. Notes 2:14–16.

Zhang, D., Q. Shu, Y.W. Teng, M.H. Qiu, L. Bao, and H.J. Hu. 2007. Simple sequence repeat analysis on genetic assessment of Chinese red skinned sand pear cultivars. Acta Hort. Sinica 34:47–52.