On transverse hyperplanes to self-similar Jordan arcs.

Andrey Tetenov

May 11, 2014

Abstract

We consider self-similar Jordan arcs γ in \mathbb{R}^d, different from a line segment and show that they cannot be projected to a line bijectively. Moreover, we show that the set of points $x \in \gamma$, for which there is a hyperplane, intersecting γ at the point x only, is nowhere dense in γ.

MSC classification: Primary 28A80

Andrey Tetenov
Gorno-Altaisk state university
649000 Gorno-Altaisk, Russia
e-mail: atet@mail.ru

1 Introduction.

The first examples of self-similar fractals which appeared in the beginning of XX century were the constructions of self-similar curves with predefined geometrical properties [10] [15]. Though the study of geometrical properties of self-similar curves is so close to historical origins of fractal geometry, some of their elementary geometric properties were established only in recent times.

For example, it was a common opinion that self-similar curves have no tangent at any of their points. But in 2005 A.Kravchenko [11] found that there are self-affine curves which are differentiable everywhere and therefore

*Supported by Russian Foundation of Basic Research project 13-01-00513.
have a tangent at any of their points. In 2011 the problem of differentiability for self-affine curves with 2 generators and the problem of existence of tangent subspaces for self-similar sets found their exhaustive solution in the paper of Ch. Bandt and A. Kravchenko [3].

In this note we study the projections of self-similar Jordan arcs in \mathbb{R}^d to the real line along families of parallel hyperplanes. Analysing the case when there is a bijective projection of a self-similar Jordan arc γ to a straight line segment, we show that this is possible only when the arc is a straight line segment itself.

Theorem 1 Let γ be a self-similar Jordan arc in \mathbb{R}^d. Suppose there is such hyperplane σ, that for any $x \in \gamma$ the parallel copy of σ passing through the point x intersects γ only once, then γ is a straight line segment.

Really, we prove a much more general statement, in which transverse hyperplanes $\sigma(x)$ at different points x of γ need not be parallel to each other, and transversality is understood in the sense of Definition 6:

Theorem 2 Let γ be a self-similar Jordan arc in \mathbb{R}^d. Suppose there is a dense subset $D \subset \gamma$ such that for any $x \in D$ there is a hyperplane σ, which is weakly transverse to γ at the point x, then γ is a straight line segment.

The proof is based on a simple and almost obvious observation (Theorem 5), that the invariant set of a multizipper of similarity dimension 1 is always a collection of straight line segments. We prove it in Section 3.

The author is thankful to V.V. Aseev for numerous fruitful discussions of the topic.

2 Preliminaries.

We give some definitions needed in current paper. Some of them are slightly different from generally accepted ones, but they are best fit for our further argument.

Self-similar arcs. A contraction similarity S in \mathbb{R}^d is a map of the form $S(x) = q \cdot O(x - x_0) + x_0$, where x_0 is the fixed point of S, $q \in (0, 1)$ is the contraction ratio, and O is the orthogonal transformation called the **orthogonal part** of S.

Let $\mathcal{S} = \{S_1, ..., S_m\}$ be a system of contraction similarities in \mathbb{R}^d. A compact set K is called the **invariant set** or the **attractor** of the system \mathcal{S},
if \(K = \bigcup_{i=1}^{m} S_i(K) \). If this invariant set is an arc \(\gamma \) we call \(\gamma \) a **self-similar arc** defined by the system \(S \).

We denote the semigroup generated by \(S_1, \ldots, S_m \) by \(G(S) \).

Directed multigraphs. A directed multigraph (or digraph) \(\Gamma \) is defined by a set of vertices \(V(\Gamma) \), a set of edges \(E(\Gamma) \) and maps \(\alpha, \omega : E(\Gamma) \to V(\Gamma) \). Here \(\alpha(e) \) is the **beginning** of the edge \(e \) and \(\omega(e) \) is its **end**.

By \(E_{uv} \) we denote the set of all edges \(e \in E \) for which \(\alpha(e) = u, \omega(e) = v \), and by \(E_u = \bigcup_{v \in V} E_{uv} \) — the set of all edges with the starting point at \(u \).

To make the further argument more convenient, the set \(V \) will be supposed to be equal to \(\{1, 2, \ldots, n\} \), where \(n = \#V \). In this case \(u \in V \) means the same as \(1 \leq u \leq n \). We also denote the numbers \(\#E_{uv} \) by \(m_{uv} \) and \(\#E_u \) by \(m_u \).

A **path** \(\sigma \) from a vertex \(\alpha(e_1) = u \) to \(\omega(e_n) = v \) in a digraph \(\Gamma \) is a sequence of edges \(\sigma = e_1e_2 \ldots e_n \), with \(\omega(e_i) = \alpha(e_{i+1}) \) for every \(1 \leq i \leq n-1 \). The set of all paths \(\sigma \) of the length \(n \) with the beginning \(u \) and the end \(v \) is denoted by \(E(n)_{uv} \) and \(E^*(uv) = \bigcup_{n=1}^{\infty} E(n)_{uv} \) is the set of all paths from \(u \) to \(v \).

A digraph \(\Gamma \) is **strongly connected** if for every two vertices \(u \) and \(v \) it has a path from \(u \) to \(v \).

Graph-directed systems of contraction similarities.

A **graph-directed system of contraction similarities** \(\mathcal{S} \) with **structural graph** \(\Gamma = \langle V, E, \alpha, \omega \rangle \) is a finite collection of metric spaces \(\{X_v\}_{v \in V} \), together with a collection of contraction similarities \(\{S_e : X_{\omega(e)} \to X_{\alpha(e)}\}_{e \in E} \).

We denote the contraction ratios of the similarities by \(q_e = \text{Lip}(S_e) \).

Throughout this paper all the spaces \(X_u \) will be different copies of the same space \(\mathbb{R}^d \) for certain \(d \).

A graph-directed system of similarities \(\mathcal{S} \) is called **regular**, if its structural graph \(\Gamma \) is strongly connected.

A finite collection of compact subsets \(\{K_v\}_{v \in V} \), is called the **invariant set**, or the **attractor** of the system \(\mathcal{S} \), if for every \(v \in V \)

\[
K_u = \bigcup_{\alpha(e) = u} S_e(K_{\omega(e)}). \tag{1}
\]

The sets \(\{K_u\}_{u \in V} \) are called the **components of the attractor** of the system \(\mathcal{S} \).

We use the following definition of a similarity dimension of graph-directed system of similarities \([5],[14]\):
Definition 3 Let S be a regular graph-directed system of similarities with a structure graph $\Gamma = (V, E, \alpha, \omega)$. For each positive real number s, let $B(s)$ be the matrix (with rows and columns indexed by V) with entry $B_{uv}(s) = \sum_{e \in E_{uv}} q^s_e$ in row u column v. Let $\Phi(s) = r(B(s))$ be the spectral radius of $B(s)$. The unique solution $s_1 \geq 0$ of $\Phi(s) = 1$ is the similarity dimension of the system S.

3 Multizippers of similarity dimension 1.

A method of construction of self-similar curves, used by many authors [15, 13, 9] was studied in 2002 by V.V.Aseev [1] as a zipper construction. This construction proved to be an efficient tool in the investigation of geometrical properties of self-similar curves and continua [2]. Its graph-directed version was introduced by the author in 2006 and was called a multizipper construction; it gives a complete description of self-similar Jordan arcs in \mathbb{R}^d [16, Theorem 4.1]:

Theorem 4 Let S be a regular graph directed system of similarities in \mathbb{R}^d with Jordan attractor $\vec{\gamma}$. If one of the components γ_u of the attractor $\vec{\gamma}$ is different from a straight line segment, then there is a multizipper Z such that the set of the components of the attractor of Z contains each of the arcs γ_u.

Definition of a multizipper. Consider a graph-directed system Z of similarities with structural graph Γ, which satisfies the following conditions:

MZ1. In each of the spaces $X_u, u \in V$, a chain of points $\{z^{(u)}_0, \ldots, z^{(u)}_{m_u}\}$, is specified. These chains are defined in such a way that

$$\|z^{(u)}_i - z^{(u)}_{i-1}\| < \|z^{(v)}_{m_v} - z^{(v)}_0\|$$

for any $u, v \in V, i = 1, \ldots, m_u$.

MZ2. There is a bijection ϵ from the set of all pairs $\{(u, i), u \in V, 1 \leq i \leq m_u\}$ to the set E.

MZ3. For any pair (u, i), the map S_e, corresponding to the edge $e = \epsilon(u, i)$ with $v = \omega(e)$, sends two-point set $\{z^{(v)}_{m_v}, z^{(v)}_0\}$ to the set $\{z^{(u)}_{i-1}, z^{(u)}_i\}$.

The graph-directed system Z, satisfying the conditions MZ1—MZ3 is called a multizipper with structural graph Γ and node points $z^{(u)}_i$.

Let $L^{(u)}$ be the polygonal line specified by the sequence $\{z^{(u)}_0, z^{(u)}_1, \ldots, z^{(u)}_{m_u}\}$ of the nodes of the multizipper Z. Denote the distance $\|z^{(u)}_{m_u} - z^{(u)}_0\|$ by l_u.

4
Observe that if \(S_e(\{ z_0^{(u)}, z_m^{(u)} \}) = \{ z_{i-1}^{(u)}, z_i^{(u)} \} \), then \(||z_i^{(u)} - z_{i-1}^{(u)}|| = q_e l_v \). So, the length of the polygonal line \(L^{(u)} \) is equal to \(\sum_{v=1}^{n} \sum_{e \in E_{uv}} q_e l_v \).

Theorem 5 Let \(Z \) be a regular self-similar multizipper whose similarity dimension is 1. Then all the components \(\gamma^{(u)} \) of its invariant set are line segments.

Proof. Suppose there is a component \(\gamma^{(u)} \) of the attractor of \(Z \), which is not a line segment. Since \(Z \) is regular, for any \(v \in V \) there is a path \(\sigma = e_1 \ldots e_k \in E^{(v)}_{vu} \), so the similarity \(S_\sigma = S_{e_1} \cdots S_{e_k} \) maps the arc \(\gamma^{(u)} \) to a subarc of \(\gamma^{(v)} \). Therefore, each \(\gamma^{(v)} \) is also different from a straight line.

Then, choosing appropriate refinement of the multizipper \(Z \), we may suppose that all the polygonal lines \(L^{(u)} \) are different from a straight line. For each component \(\gamma^{(u)} \) we have:

\[
\gamma^{(u)} = \bigcup_{v=1}^{n} \bigcup_{e \in E_{uv}} S_e(\gamma^{(v)}).
\]

The similarity dimension of the multizipper \(Z \) is equal to such value of a parameter \(s \), that the spectral radius of the matrix \(B(s) \) whose entries are \(B_{uv}(s) = \sum_{e \in E_{uv}} q_e^s \), is equal to 1.

So, the spectral radius of the matrix \(B(1) \) with entries \(B_{uv}(1) = \sum_{e \in E_{uv}} q_e \) is equal to 1.

Since all the polygonal lines \(L^{(u)} \) are not straight lines, they obey the inequality

\[
l_u < \sum_{v=1}^{n} \sum_{e \in E_{uv}} q_e l_v = (B(1)\vec{l})_u.
\]

Therefore, for a vector \(\vec{l} = (l_1, \ldots, l_n) \) and for the matrix \(B(1) \) we have the inequality

\[
\min_{1 \leq u \leq n} \frac{(B\vec{l})_u}{l_u} > 1.
\]

The structural graph of the system \(Z \) is strongly connected. Then the matrix \(B(1) \) is a positive irreducible matrix. According to [8, Remark 4, §2, Ch.XIII] its spectral radius is equal to

\[
r = \max_{\vec{l} \neq 0} \min_{1 \leq u \leq n} \frac{(B\vec{l})_u}{l_u}.
\]
So, if \(r = 1 \), then for any \(l \), there is such \(u \), that \(\frac{(B\bar{l})_{u}}{l_{u}} \leq 1 \).

The contradiction shows that all \(L^{(u)} \) are straight line segments, so all \(\gamma^{(u)} \) are straight line segments too. \(\blacksquare \)

4 Theorem on transverse hyperplanes.

Jordan arcs and transverse hyperplanes. Let \(\gamma : [0, 1] \to \mathbb{R}^{d} \) be a Jordan arc in \(\mathbb{R}^{d} \). For any point \(x = \gamma(t) \) we define the half-open subarcs \(\gamma_{x}^{+} = \gamma((t, 1]) \) and \(\gamma_{x}^{-} = \gamma([0, t)) \).

Let \(x, y \in \gamma \), and \(y \in \gamma_{x}^{+} \). We denote the open subarc \(\gamma_{x}^{+} \cap \gamma_{y}^{-} \) by \((x, y) \) and \(\gamma_{x}^{+} \cap \gamma_{y}^{-} \) by \([x, y]\).

A hyperplane containing the origin 0 is denoted by \(\sigma \), while \(V^{+}(\sigma) \) and \(V^{-}(\sigma) \) are open half-spaces, defined by \(\sigma \). A hyperplane parallel to \(\sigma \) and containing \(x \) is denoted by \(\sigma(x) \) or \(\sigma + x \). The open half-spaces defined by \(\sigma(x) \) are denoted by \(V^{+}(\sigma, x) \) and \(V^{-}(\sigma, x) \) or \(V^{+}(\sigma) + x \) and \(V^{-}(\sigma) + x \).

Definition 6 We say a hyperplane \(\sigma \) is weakly transverse to the arc \(\gamma \) at the point \(x \), if \(\gamma_{x}^{+} \subset \bar{V}^{-}(\sigma, x) \), \(\gamma_{x}^{-} \subset \bar{V}^{+}(\sigma, x) \).

We say a hyperplane \(\sigma \) is transverse to the arc \(\gamma \) at the point \(x \), if \(\gamma_{x}^{+} \subset V^{+}(\sigma, x) \), \(\gamma_{x}^{-} \subset V^{-}(\sigma, x) \).

The cones \(Q^{+} \) and \(Q^{-} \). By \(Q^{+}(x, y) \) (respectively, \(Q^{-}(x, y) \)) we denote the intersection of all closed half-spaces \(V^{+}(\sigma, z) \) (resp. \(V^{-}(\sigma, z) \)) corresponding to the hyperplanes \(\sigma(z) \), weakly transverse to \(\gamma \) at the points \(z \in [x, y] \). These sets are convex and closed and they satisfy the relations

\[\gamma^{+}(y) \subset Q^{+}(x, y) \quad \text{and} \quad \gamma^{-}(x) \subset Q^{-}(x, y). \]

Taking \(x = y \) we come to the sets \(Q^{+}(x) \) (\(Q^{-}(x) \)) which are the intersections of all closed half-spaces \(V^{+}(\sigma, x) \) (\(V^{-}(\sigma, x) \)) corresponding to hyperplanes \(\sigma(x) \), weakly transverse to \(\gamma \) at the point \(x \). We can also consider the set \(Q^{+}(x) \cup Q^{-}(x) \) as the intersection of all unions \(Q^{+}_{i} \cup Q^{-}_{i} \) of pairs of convex closed cones symmetric with respect to \(x \) which satisfy relations \(\gamma^{+}(x) \subset Q^{+}_{i} \) and \(\gamma^{-}(x) \subset Q^{-}_{i} \).

Lemma 7 Let \(\gamma \) be a Jordan arc in \(\mathbb{R}^{n} \). Suppose a sequence of points \(x_{n} \in \gamma \) converges to a point \(x_{0} \), while a sequence of hyperplanes \(\sigma_{n} \), weakly transverse to \(\gamma \) at points \(x_{n} \), converges to a hyperplane \(\sigma_{0} \). Then \(\sigma_{0} \) is weakly transverse to \(\gamma \) at the point \(x_{0} \).
For any \(n \), \(\bar{\gamma}^+ + x_n \subset V^+ (\sigma_n, x_n) \). Since \(x_n \to x_0 \), \(\sigma_n \) converge to \(\sigma_0 \) if and only if \(\sigma_n (x_n) \) converge to \(\sigma_0 (x_0) \). Taking the closed half-spaces, corresponding to \(\sigma_n (x_n) \), we get \(\lim_{n \to \infty} V^+ (\sigma_n, x_n) = V^+ (\sigma_0, x_0) \). At the same time, \(\lim_{n \to \infty} \bar{\gamma}^+_{x_n} = \bar{\gamma}^+_{x_0} \). Therefore, \(\bar{\gamma}^+_{x_0} \subset V^+ (\sigma_0, x_0) \). The same way we get \(\bar{\gamma}^-_{x_0} \subset V^- (\sigma_0, x_0) \). ■

Denote by \(\Sigma (x) \) the set of all hyperplanes, weakly transverse to the arc \(\gamma \) at the point \(x \in \gamma \). This set is a compact subset of \(\mathbb{RP}^d \). It follows from the Lemma 7, that \(\Sigma (x) \supset \limsup_{y \to x, y \in \gamma} \Sigma (y) \).

This inclusion implies that the cones \(Q^+ (x) \) and \(Q^- (x) \) satisfy the following semicontinuity condition:

Lemma 8 Let \(\gamma \) be a Jordan arc in \(\mathbb{R}^d \) and \(x \in \gamma \). Then,

\[
Q^+ (x) \subset \liminf_{y \to x, y \in \gamma} Q^+ (y).
\]

Proof. Since

\[
Q^+ (x) = \bigcap_{\sigma \in \Sigma (x)} \bar{V}^+ (\sigma, x),
\]

using basic properties of upper and lower limits[12, §29], we can write

\[
Q^+ (x) = (\bigcup_{\sigma \in \Sigma (x)} V^- (\sigma, x))^c \subset (\limsup_{y \to x, y \in \gamma} \bigcup_{\sigma \in \Sigma (y)} V^- (\sigma, y))^c = \\
= \liminf_{y \to x, y \in \gamma} (\bigcup_{\sigma \in \Sigma (y)} V^- (\sigma, y))^c = \liminf_{y \to x, y \in \gamma} Q^+ (y). ■
\]

Lemma 9 Let \(\gamma \) be a self-similar Jordan arc. If for any \(x \in \gamma \) there is a hyperplane, weakly transverse to \(\gamma \) at the point \(x \), then there is a hyperplane \(\sigma \), which is transverse to \(\gamma \) at any point \(x \in \gamma \).

Proof. Suppose the affine hull of \(\gamma \) is \(\mathbb{R}^d \) so it is not contained in a hyperplane.

Take some \(\delta > 0 \).

Consider the family of all the cones \(A = \{ Q^+ (x), x \in \gamma \} \). Taking the parallel copy of each cone \(Q^+ (x) \) having the vertex at the center 0 of the unit ball \(B \subset \mathbb{R}^d \), we denote its intersection with the ball \(B \) by \(Q(x) \). This turns the family \(A \) to a subset of the hyperspace \(Conv (B) \) of compact convex
subsets of the unit ball B. Observe that the inclusion $Q(x) \subset \liminf_{y \to x, y \in \gamma} Q(y)$ in the statement of Lemma 8 holds for the cones $Q(x)$ as well.

Let S be a contraction similarity, for which $S(\gamma) \subset \gamma$. Let x_0 be its fixed point. Let O be the orthogonal part of the similarity S.

Since $Q(x_0) \subset \liminf_{x \to x_0} Q(x)$, there is an open subarc $(y, z) \ni x_0$ such that for any $x \in (y, z)$, the cone $Q(x_0)$ is contained in δ–neighborhood $N_\delta(Q(x))$ of a cone $Q(x)$.

For some sufficiently large k, the subarc $S^k(\gamma)$ is contained in (y, z). Then for any $\xi \in \gamma$, the point $x = S^k(\xi)$ lies in (y, z) and $N_\delta(Q(x)) \supset Q(x_0)$. Since $Q(x) = O^k_s(Q(\xi))$, and $Q(x_0) = O^k_s(Q(x_0))$ and O^k_s is an isometry, $N_\delta(Q(\xi))$ must also contain $Q(x_0)$.

Thus, if $S : \gamma \to \gamma$ is a similarity and $\text{fix}(S) = x$, then for any $\delta > 0$ and any $\xi \in \gamma$, $N_\delta(Q(\xi)) \supset Q(x)$. Therefore, $Q(\xi) \supset Q(x)$ for all $\xi \in \gamma$. If we take for ξ a fixed point of some other similarity $S' : \gamma \to \gamma$, we get that $Q(\xi) = Q(x)$. Thus, the minimal cone $Q(x)$ is the same, no matter which fixed point we choose, and we denote it by Q. If x is not a fixed point of any $S \in G(S)$, then $Q(x) \subset Q$. If $\sigma(x)$ is a support hyperplane to the cone $Q^+(x)$ at some fixed point x, then for any $\xi \in \gamma$ parallel hyperplane $\sigma(\xi)$ is a support hyperplane for $Q^+(\xi)$ and is thus weakly transverse to γ at the point ξ.

Suppose for some x and w in γ, $w \in \gamma^+(x)$ and $w \in \sigma(x)$. Then $\sigma(x) = \sigma(w)$ and $V^+ (\sigma, x) = V^+ (\sigma, w)$. By weak transversality of σ at the points x and w, the subarc $[x, w]$ lies in $V^+ (\sigma, x) \cap V^-(\sigma, w) = \sigma$. Then the whole arc γ lies in a hyperplane. The contradiction shows that the hyperplanes parallel to $\sigma(x)$ are transverse to γ at any point.\blacksquare

Lemma 10 Let γ be a self-similar Jordan arc, which has a hyperplane transverse to γ at any of its points. Then there is such transverse hyperplane σ, that for any similarity $S_i \in S$, $O_i(\sigma) = \sigma$.

Proof. Let G_O be a group generated by orthogonal parts O_i of the similarities $S_i \in S$. For any $O \in G_O$, the image $O(Q)$ is either Q or $-Q$. The space \mathbb{R}^d is a direct sum of two orthogonal subspaces $X_0 \oplus X_1$, where X_0 is the space of all such x that for any $O \in G_O$, $O(\{x, -x\}) = \{x, -x\}$ and $X_1 = X_0^\perp$.

Consider the intersection $X_0 \cap Q$. This intersection is a convex cone Q' in X_0. Take a support hyperplane Y to the cone Q' at the point 0 in the space X_0. Then $Y + X_1$ is a support hyperplane for Q in \mathbb{R}^d.

Suppose contrary. Then there is some $z \in (Y + X_1) \cap \bar{Q}$. The point z has unique representation in the form $z = x + y$, where $x \in X_1$, $x \neq 0$ and
\(y \in Y \). Consider the convex hull \(W \) of the orbit \(G_O(x) \). It’s barycenter is fixed by the group \(G_O \), therefore it is 0. Then the barycenter of the convex hull of the orbit \(G_O(z) \) is \(y \).

Take a ball \(B(z, \varepsilon) \subset Q \). The convex hull of \(\bigcup_{O \in G_O} O(B(z, \varepsilon)) \) contains the ball \(B(y, \varepsilon) \), therefore \(y \in \hat{Q} \), which is impossible. So \(\hat{Q} \cap (Y + X_1) = \emptyset \).

At the same time, for any \(O \in G_O \) the transformation \(O \) sends the hyperplane \(Y + X_1 \) to itself.

\[\blacksquare \]

The proof of Theorem 2

Let \(\gamma \) be a self-similar Jordan arc, which is not a line segment. By Theorem 4.1 in [16], the arc \(\gamma \) may be represented as a component \(\gamma^{(u)} \) of the invariant set of some multizipper \(Z \), for which the maps \(S_e, e \in E \) are the elements of the semigroup \(G(S) \). Let \(z_i^{(u)} \) be the node points and \(\Gamma = \langle V, E, \alpha, \omega \rangle \) be the structural graph of \(Z \). Passing, if necessary, to a subarc of \(\gamma \), we may suppose that the graph \(\Gamma \) is strongly connected and the multizipper \(Z \) is regular.

If \(\gamma \) contains such dense subset \(D \subset \gamma \), that for any \(x \in D \) there is a hyperplane \(\sigma(x) \), weakly transverse to \(\gamma \), then by Lemma [7] such hyperplane \(\sigma(x) \) exists for any \(x \in \gamma \). By Lemma [9] there is a hyperplane \(\sigma \), transverse to \(\gamma \) at any \(x \in \gamma \).

By Lemma [10] there is a hyperplane \(\sigma \), transverse to \(\gamma \) at any of its points, which is preserved by any of \(O_i \in G_O \). Then the duplicates of \(\sigma \) are transverse to the components \(\gamma^{(u)}, u \in V \) of the attractor of the multizipper \(Z \) at any of their points and are preserved by the orthogonal parts \(O_e \) of the similarities \(S_e \).

Let \(\Lambda^{(u)} \) be a line, orthogonal to \(\sigma \) in the copy \(X^{(u)} \) of the space \(\mathbb{R}^d \). Let \(\gamma^{(u)} \) be the component of the invariant set of \(Z \) lying in \(X^{(u)} \). Consider the orthogonal projection \(\pi \) of each arc \(\gamma^{(u)} \) to the \(\Lambda^{(u)} \).

Since the similarities \(S_e \) send the hyperplanes, parallel to \(\sigma \), to the hyperplanes, parallel to \(\sigma \), for each similarity \(S_e \in Z, S_e : \gamma^{(u)} \rightarrow \gamma^{(u)} \) there is a similarity \(\hat{S}_e : \Lambda^{(u)} \rightarrow \Lambda^{(u)} \), satisfying the condition

\[\pi \circ S_e = \hat{S}_e \circ \pi. \]

Due to this condition each map \(\hat{S}_e \) sends the set \(\{\pi(z_i^{(u)}), \pi(z_{i+m}^{(u)})\} \) to the set \(\{\pi(z_i^{(u)}), \pi(z_{i+m}^{(u)})\} \).

The system \(\hat{Z} \) is a linear multizipper with node points \(z_i^{(u)} = \pi(z_i^{(u)}) \).
Since for any S_e, $\text{Lip}(\hat{S}_e) = \text{Lip}(S_e)$ the similarity dimension of the multizipper \mathcal{Z} is equal to the similarity dimension of $\hat{\mathcal{Z}}$ and therefore it is equal to 1. By Theorem 5 its invariant set is a collection of straight line segments. ■

References

[1] V. V. Aseev, On the regularity of self-similar zippers. – ”The 6-th Russian-Korean Int. Symp. on Sci. and Technology. KORUS-2002 (June 24-30, 2002. Novosibirsk State Techn. Univ., Russia). Part 3 (Abstracts)”, p.167

[2] V. V. Aseev, A. V. Tetenov and A. S. Kravchenko, On Selfsimilar Jordan Curves on the Plane., Siberian Math.J. 44, No. 3 (2003), 379-386.

[3] Ch. Bandt, A. Kravchenko. Differentiability of fractal curves, Nonlinearity, 2011, 24, pp. 2717-2728.

[4] L. Bartholdi, R. I. Grigorchuk, V. V. Nekrashevych. From fractal groups to fractal sets., Arxiv.org preprint [math.GR/0202001]2002.

[5] G. A. Edgar, Measure, Topology, and Fractal Geometry, Springer-Verlag, 1990.

[6] G. A. Edgar, M. Das. Separation properties for graph-directed self-similar fractals., Top. appl. ,2005, V.152, p.138–156.

[7] K. J. Falconer. Fractal geometry: mathematical foundations and applications. – J. Wiley and Sons, New York, 1990.

[8] F. R. Gantmacher, The Theory of Matrices., Volume 2, Chelsea, 1959, Chapter XIII: Matrices with non-negative elements.

[9] J. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J., 1981, V. 30, No. 5, pp. 713–747.

[10] H. von Koch, Sur une courbe continue sans tangente, obtenue par une construction geometrique elementaire.// Archiv for Matemat., Astron. och Fys., 1904, V. 1, p. 681–702.

[11] A. Kravchenko, Smooth self-affine curves (in Russian), Preprint No. 161, Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 2005.
[12] K. Kuratowski. Topology. Volume I. Academic Press/Polish Scientific Publishers, New York/London/Warszawa 1966.

[13] P. Levy. Les courbes planes ou gauches et les surfaces composees de parties semblables au tout., J. Ecole Polytechn., III. Ser. 1938. V. 144, P. 227–247 et 249–291

[14] R. D. Mauldin, S. C. Williams. Hausdorff dimension in graph directed constructions., Trans. Amer. Math. Soc. 1988, V. 309, pp. 811–829.

[15] W. Sierpinski. Sur une courbe dont tout point est un point de ramification// Compt. Rendus Acad. Sci. Paris, 1915, V. 160, pp. 302–305.

[16] A. V. Tetenov. Self-similar Jordan arcs and graph-directed systems of similarities, Siberian.Math.J., 47, No.5 (2006), pp. 940-949.