Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short Communication

Discovery of new salivary gland – A substantial histological analysis

N.B. Pushpaa, Kumar Satish Ravib,c,*, Prashant Durgapald

aDepartment of Anatomy, JSS Medical College, JSSAHER, Mysore; bDepartment of Anatomy, All India Institute of Medical Sciences Rishikesh; cNational Journal of Clinical Anatomy; and dDepartment of Pathology, All India Institute of Medical Sciences Rishikesh, India

\section*{Article info}

\textbf{Article history:}
Received 27 March 2021
Received in revised form 1 June 2021
Accepted 3 June 2021
Available online 10 June 2021

\textbf{Keywords:}
Salivary glands
Immunohistochemistry
Tubarial glands
Sublingual gland
COVID-19

Regardless of the COVID-19 pandemic in 2020, discovering a new salivary gland turned into all the rage among the medical fraternity. The significance of the disclosure has been correlated with its clinical relevance in radiotherapy of oropharyngeal carcinoma. However, there are views against this new revelation, owing to the lack of substantial evidence. We have endeavoured to illuminate Tubarial glands with potential shreds of evidence.

\section*{Materials & method}
With these two different schools of thought in mind, we meticulously dissected a small tissue of tubarial glands bilaterally (Fig. 1), from a male cadaver of about 60 years old, obtained by body donation program (AIIMS, Rishikesh) and stained that tissue with H & E and Periodic acid-Schiff (PAS) stains to look into the minor details of the same. We also used Immuno-histochemical markers CD-10 and S-100 mainly to check myoepithelial cells.

\section*{Discussion}
Optimal knowledge of the normal anatomy and function of salivary glands is essential for better interpretation of the images [5]. As such, it is pretty challenging to visualize the minor salivary glands by Conventional imaging techniques and, more so, these newly discovered remotely placed submucous glands (including its duct opening) and interpretation of the same as salivary gland. Salivary glands can be better visualized by positive emission tomography (PET) or computed tomography (CT) with radio-labeled ligands for the PMSA [6]. Even after treatment, to assess the salivary gland’s presence and function by PMSA PET/CT, the thorough knowledge regarding its quantitative physiologic uptake patterns is vital and is presently not well understood. Most
of the time, the imaging experts may not be aware of such obscure structures, limiting the ability to protect their viability during treatment [7,8]. However, Valstar et al., in their study, demonstrated a clearly defined bilateral PMSA positive area along the posterior lateral wall of the nasopharynx extending from the skull base down on the inner side of the superior constrictor muscle in the scans. Since the aforesaid area of interest was predominantly present on the torus tubarius (Eustachian cushion), they called them Tubarial glands. The stained tissue showed predominantly mucous glands with macroscopic ducts opening onto the dorsolateral wall of the nasopharynx. The cells exhibited nearly 100% cytoplasmic expression of PSMA with a preference towards the luminal side and PSMA-ligand uptake, like mucous acini of minor salivary glands present in the palate. They lacked amylase expression indicating the meager count of serous acini, which is on par with sublingual glands [9].

Fig. 1. Schematic representation to show the proposed site of new salivary gland.

Fig. 2. H&E staining of Tubarial glands (10×) represented within the yellow arrows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Tubarial glands stained with PAS stain (40×).

Fig. 4. (a) CD 100 staining showing diffuse basal positivity for Myoepithelial cells (40×) represented by yellow arrow. (b) S-100 staining showing diffuse basal positivity for Myoepithelial cells (40×) represented by yellow arrow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Xerostomia is a much-known side effect of lutetium-177-PSMA treatment. The tracer uptake depends on the expression of the PSMA epitome in the glands and directly proportional to the gland’s volume and function [10,11]. It is believed that these tubarial glands play a significant role in nasopharyngeal lubrication and failure of protecting them during radiotherapy treatment of patients with cancers of the head and neck; it can aggravate radiation-induced dysphagia and xerostomia [12,13].

Conclusion

The discovery of the salivary gland sparks a scientific interest that opens the door for further dig on the thrust area with more evidence from physiological studies. The findings of our study indeed add substantial evidence to the much-debated presence of a new salivary gland and the discovery of the same.

Author agreement

All authors have seen and approved the final version of the manuscript being submitted. They warrant that the article is the authors’ original work, hasn’t received prior publication and isn’t under consideration for publication elsewhere.

Conflict of interest

No conflict of interest.

Declaration of interest

There’s no financial/personal interest or belief that could affect the objectivity.

Funding source declaration

No funding.

References

[1] Holingsinger CF. Anatomy, function, and evaluation of the salivary glands. In: Myers EN, Ferris RL, editors. Salivary gland disorders. Springer-Verlag Berlin Heidelberg; 2007. p. 1–16.
[2] Richardson MS. Non-neoplastic lesions of the salivary glands. In: Thompson L, editor. Head and neck pathology (a volume of foundations in diagnostic pathology). Elsevier Saunders; 2013: p. 228.
[3] Iwanaga J, Ibaragi S, Nakano K, Takeshita Y, Tubbs RS. No convincing evidence for the presence of tubarial salivary glands: A letter to the editor regarding “The tubarial salivary glands: A potential new organ at risk for radiotherapy.”. Radiother Oncol 2021;154:321–2. https://doi.org/10.1016/j.radonc.2020.12.007.
[4] Klein Nulent TJW, Valstar MH, de Keizer B, Willems SM, Smit LA, Al-Mamgani A, et al. Physiologic distribution of PSMA-ligand in salivary glands and seromucous glands of the head and neck on PET/CT. Oral Surg Oral Med Oral Pathol Oral Radiol 2018;125:478–86. https://doi.org/10.1016/j.oooo.2018.01.011. Epub 2018 Jan 31. PMID: 29523427.
[5] Valstar MH, Owers EC, Al-Mamgani A, Smelee LE, van de Kamer JB, Sonke JJ, et al. Prostate-specific membrane antigen positron emission tomography/computed tomography as a potential tool to assess and guide salivary gland irradiation. Phys Imaging Radiat Oncol 2019;9:65–8. https://doi.org/10.1016/j.piorc.2019.02.004. PMID: 33458427; PMCID: PMC7807566.
[6] Dave M. New salivary gland organs discovered. Br Dent J 2020;229:573. https://doi.org/10.1038/s41415-020-2386-9.
[7] Mandel ID. The role of saliva in maintaining oral homeostasis. J Am Dent Assoc 1989;119:298–304.
[8] Hand AR, Pathmanathan D, Field RB. Morphological features of the minor salivary glands. Arch Oral Biol 1999;44:53–510.
[9] Valstar MH, de Bakker BS, Steenbakkers RJHM, de Jong KH, Smit LA, Klein Nulent TJW, et al. The tubarial salivary glands: a potential new organ at risk for radiotherapy. Radiother Oncol 2021;154:292–8. https://doi.org/10.1016/j.radonc.2020.09.024. Epub 2020 Sep 23. PMID: 32976871.
[10] Rahbar K, Ahmadzadehfar H, Kratchochil C, et al. German multicentre study investigating 177 Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 2017;85:85–90.
[11] Gensheimer MF, Liao JJ, Garden AS, Laramore GE, Parvathaneni U. Submandibular gland sparing radiation therapy for locally advanced oropharyngeal squamous cell carcinoma: patterns of failure and xerostomia outcomes. Radiat Oncol 2014;9:255.
[12] Price RE, Ang KK, Stephens LC, Peters LJ. Effects of continuous hyperfractionated accelerated and conventionally fractionated radiotherapy on the parotid and submandibular salivary glands of rhesus monkeys. Radiat Oncol 1995;34:39–46. https://doi.org/10.1007/BF00984044. PMID: 7792397.
[13] Radfar L, Sirois DA. Structural and functional injury in minipig salivary glands following fractionated exposure to 70 Gy of ionizing radiation: an animal model for human radiation-induced salivary gland injury. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;96:267–74. https://doi.org/10.1016/s1079-2104(03)00369-x. PMID: 12973282.