Observation of two charged bottomonium-like resonances in $\Upsilon(5S)$ decays

A. Bondar,1 A. Garmash,1 R. Mizuk,16 D. Santel,3 K. Kinoshita,3 I. Adachi,10 H. Aihara,52 K. Arinstein,1
D. M. Asner,41 T. Aushev,16 T. Aziz,48 A. M. Bakich,47 E. Barberio,29 K. Belous,14 V. Bhardwaj,42
M. Bischofberger,32 A. Bozek,36 M. Brato,17 T. E. Browder,19 M.-C. Chang,4 P. Chang,35 A. Chen,33
B. G. Cheon,8 K. Chilikin,16 R. Chistov,16 I.-S. Cho,57 K. Cho,20 S.-K. Choi,7 Y. Choi,46 J. Dalseno,28, 49
M. Danilov,16 Z. Doležal,2 A. Drutskoy,16 S. Eidelman,1 D. Epifanov,1 J. E. Fast,41 V. Gaur,48 N. Gabyshev,1
Y. M. Goh,8 B. Golob,25, 17 T. Hara,10 K. Hayasaka,31 Y. Hoshi,50 H. J. Hyun,23 T. Iijima,31, 30 K. Inami,30
A. Ishikawa,51 M. Iwabuchi,57 Y. Iwasaki,10 T. Ishiwata,32 T. Julius,29 J. H. Kang,57 T. Kawasaki,38
H. Kichimi,10 C. Kiesling,2 B. Golob,1 C. Kiesling,2 S. Koblitz,1 J. S. Lange,28, 49
M. Danilov,16 Z. Doležal,2 A. Drutskoy,16 S. Eidelman,1 D. Epifanov,1 J. E. Fast,41 V. Gaur,48 N. Gabyshev,1
Y. M. Goh,8 B. Golob,25, 17 T. Hara,10 K. Hayasaka,31 Y. Hoshi,50 H. J. Hyun,23 T. Iijima,31, 30 K. Inami,30
A. Ishikawa,51 M. Iwabuchi,57 Y. Iwasaki,10 T. Ishiwata,32 T. Julius,29 J. H. Kang,57 T. Kawasaki,38
H. Kichimi,10 C. Kiesling,2 B. Golob,1 C. Kiesling,2 S. Koblitz,1 J. S. Lange,28, 49
M. Danilov,16 Z. Doležal,2 A. Drutskoy,16 S. Eidelman,1 D. Epifanov,1 J. E. Fast,41 V. Gaur,48 N. Gabyshev,1
Y. M. Goh,8 B. Golob,25, 17 T. Hara,10 K. Hayasaka,31 Y. Hoshi,50 H. J. Hyun,23 T. Iijima,31, 30 K. Inami,30
A. Ishikawa,51 M. Iwabuchi,57 Y. Iwasaki,10 T. Ishiwata,32 T. Julius,29 J. H. Kang,57 T. Kawasaki,38
H. Kichimi,10 C. Kiesling,2 B. Golob,1 C. Kiesling,2 S. Koblitz,1 J. S. Lange,28, 49

We report the observation of two narrow structures in the mass spectra of the $\pi^\pm \Upsilon(nS)$ ($n = 1, 2, 3$) and $\pi^\pm h_\delta(mP)$ ($m = 1, 2$) pairs that are produced in association with a single charged pion in $\Upsilon(5S)$ decays. The measured masses and widths of the two structures averaged over the five final states are $M_1 = (10607.2 \pm 2.0)$ MeV/$c^2$, $\Gamma_1 = (18.4 \pm 2.4)$ MeV and $M_2 = (10652.2 \pm 1.5)$ MeV/$c^2$, $\Gamma_2 = (11.5 \pm 2.2)$ MeV. The results are obtained with a 121.4 fb$^{-1}$ data sample collected with the Belle detector in the vicinity of the $\Upsilon(5S)$ resonance at the KEKB asymmetric-energy $e^+e^-$ collider.

PACS numbers: 14.40.Pq, 13.25.Gv, 12.39.Pn

Recent studies of heavy quarkonium have produced a number of surprises and puzzles \cite{1}, including some associated with $\Upsilon(5S)$ decays to non-$B\bar{B}$ final states. The Belle Collaboration reported the observation of anomalously high rates for $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ ($n = 1, 2, 3$) \cite{2} and $\Upsilon(5S) \rightarrow h_\delta(mP)\pi^+\pi^-$ ($m = 1, 2$) \cite{3} transitions. If the $\Upsilon(nS)$ signals are attributed entirely to $\Upsilon(5S)$ decays, the measured partial decay widths $\Gamma[\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-] \sim 0.5$ MeV are about two orders of magnitude larger than typical widths for dipion transitions among the four lower $\Upsilon(nS)$ states. Furthermore, the processes $\Upsilon(5S) \rightarrow h_\delta(mP)\pi^+\pi^-$, which require a heavy-quark spin flip, are found to have rates that are comparable to those for the heavy-quark spin conserving transitions $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ \cite{4}. These observations differ from apriori theoretical expectations and strongly suggest that exotic mechanisms are contributing to $\Upsilon(5S)$ decays. We report results of resonant substructure studies of $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ ($n = 1, 2, 3$) and $\Upsilon(5S) \rightarrow h_\delta(mP)\pi^+\pi^-$ ($m = 1, 2$) decays \cite{4}. We use a 121.4 fb$^{-1}$ data sample collected on or near the peak of the $\Upsilon(5S)$ resonance ($\sqrt{s} \sim 10.865$ GeV) with the Belle detector at the KEKB asymmetric energy $e^+e^-$ collider \cite{4}.

The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector, a central drift chamber, an array of aerogel threshold Cherenkov counters, a barrel-like arrangement of time-of-flight scintillation counters, and an electromagnetic calorimeter comprised of CsI(Tl) crystals located inside a superconducting solenoid that provides a 1.5 T magnetic field. An iron flux-return located outside the coil is instrumented to detect $K^0_L$ mesons and to identify muons. The detector is described in detail elsewhere \cite{5}.

To reconstruct $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$, $\Upsilon(nS) \rightarrow \mu^+\mu^-$ candidates we select events with four charged tracks with zero net charge that are consistent with coming from the interaction point. Charged pion and muon candidates are required to be positively identified. Exclusively reconstructed events are selected by the requirement $|M_{\text{miss}}(\pi^+\pi^-) - M(\mu^+\mu^-)| < 0.2$ GeV/$c^2$, where $M_{\text{miss}}(\pi^+\pi^-)$ is the missing mass recoiling against the $\pi^+\pi^-$ system calculated as $M_{\text{miss}}(\pi^+\pi^-) = \sqrt{(E_\text{c.m.} - E^*_\pi^+\pi^-)^2 - p^2_{\pi^+\pi^-}}$, $E_\text{c.m.}$ is the center-of-mass (c.m.) energy and $E^*_\pi^+\pi^-$ and $p^*_{\pi^+\pi^-}$ are the energy and momentum of the $\pi^+\pi^-$ system measured in the c.m. frame. Candidate $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ events are selected by requiring $|M_{\text{miss}}(\pi^+\pi^-) - m_{\Upsilon(nS)}| < 0.05$ GeV/$c^2$, where $m_{\Upsilon(nS)}$ is the mass of an $\Upsilon(nS)$
Sideband regions are defined as $0.05\text{GeV}/c^2 < |M_{\text{miss}}(\pi^+\pi^-) - m_{\Upsilon(nS)}| < 0.10\text{GeV}/c^2$. To remove background due to photon conversions in the innermost parts of the Belle detector we require $M^2(\pi^+\pi^-) > 0.20/0.14/0.10\text{GeV}/c^2$ for a final state with an $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, respectively.

Amplitude analyses of the three-body $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ decays reported here are performed by means of unbinned maximum likelihood fits to two-dimensional $M^2[\Upsilon(nS)\pi^+]$ vs. $M^2[\Upsilon(nS)\pi^-]$ Dalitz distributions. The fractions of signal events in the signal region are determined from fits to the corresponding $M_{\text{miss}}(\pi^+\pi^-)$ spectrum and are found to be $0.937 \pm 0.015\text{(stat.)}$, $0.940 \pm 0.007\text{(stat.)}$, $0.918 \pm 0.010\text{(stat.)}$ for final states with $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, respectively. The variation of reconstruction efficiency across the Dalitz plot is determined from a GEANT-based MC simulation.

The distribution of background events is determined using events from the $\Upsilon(nS)$ sidebands and found to be uniform (after efficiency correction) across the Dalitz plot.

Dalitz distributions of events in the $\Upsilon(2S)$ sidebands and signal regions are shown in Figs. 1a and 1b, respectively, where $M(\Upsilon(nS)\pi)$ is the maximum invariant mass of the two $\Upsilon(nS)\pi$ combinations. This is used to combine $\Upsilon(nS)\pi^+$ and $\Upsilon(nS)\pi^-$ events for visualization only. Two horizontal bands are evident in the $\Upsilon(2S)\pi$ system near 112.6 GeV/$c^2$ and 113.3 GeV/$c^2$, where the distortion from straight lines is due to interference with other intermediate states, as demonstrated below. One-dimensional invariant mass projections for events in the $\Upsilon(nS)$ signal regions are shown in Fig. 2 where two peaks are observed in the $\Upsilon(nS)\pi$ system near 10.61 GeV/$c^2$ and 10.65 GeV/$c^2$. In the following we refer to these structures as $Z_b(10610)$ and $Z_b(10650)$, respectively.

We parameterize the $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ three-body decay amplitude by:

$$M = A_{Z_1} + A_{Z_2} + A_{f_0} + A_{f_2} + A_{nr},$$

where $A_{Z_1}$ and $A_{Z_2}$ are amplitudes to account for contributions from the $Z_b(10610)$ and $Z_b(10650)$, respectively. Here we assume that the dominant contributions come from amplitudes that preserve the orientation of the spin of the heavy quarkonium state and, thus, both pions in the cascade decay $\Upsilon(5S) \rightarrow Z_b\pi \rightarrow \Upsilon(nS)\pi^-\pi^-$ are emitted in an $S$-wave with respect to the heavy quarkonium system. As demonstrated in Ref. [3], analytical analyses support this assumption. Consequently, we parameterize the observed $Z_b(10610)$ and $Z_b(10650)$ peaks with an $S$-wave Breit-Wigner function

$$BW(s,M,\Gamma) = \frac{\sqrt{\frac{\Gamma}{s-M_s-M}}}{s-M_s-M},$$

where we do not consider possible $s$-dependence of the resonance width. To account for the possibility of $\Upsilon(5S)$ decay to both $Z_b^-\pi^+$ and $Z_b^+\pi^-$, the amplitudes $A_{Z_1}$ and $A_{Z_2}$ are symmetrized with respect to $\pi^+$ and $\pi^-$ transposition. Using isospin symmetry, the resulting amplitude is written as

$$A_{Z_k} = a_{Z_k}e^{i\delta_{Z_k}}(BW(s_1,M_k,\Gamma_k) + BW(s_2,M_k,\Gamma_k)).$$

The logarithmic likelihood function $\mathcal{L}$ is then constructed as

$$\mathcal{L} = -2\sum \log(f_{\text{sig}}S(s_1,s_2) + (1 - f_{\text{sig}})B(s_1,s_2)),
\text{ where } S(s_1,s_2) \text{ is the density of signal events } |M(s_1,s_2)|^2
\text{ convolved with the detector resolution function, } B(s_1,s_2)
\text{ describes the combinatorial background that is considered to be constant and } f_{\text{sig}} \text{ is the fraction of signal events in the data sample. Both } S(s_1,s_2) \text{ and } B(s_1,s_2) \text{ are efficiency corrected.}
\text{In the fit to the } \Upsilon(1S)\pi^+\pi^- \text{ and } \Upsilon(2S)\pi^+\pi^- \text{ samples, the amplitudes and phases of all of the components are allowed to float. However, in the } \Upsilon(3S)\pi^+\pi^- \text{ samples the}
available phase space is significantly smaller and contributions from the $f_0(980)$ and $f_2(1270)$ channels are not well constrained. Since the fit to the $\Upsilon(3S)\pi^+\pi^-$ signal is insensitive to the presence of these two components, we fix their amplitudes at zero. Due to the very limited phase space available in the $\Upsilon(5S)\rightarrow\Upsilon(3S)\pi^+\pi^-$ decay, there is a significant overlap between the two processes $\Upsilon(5S)\rightarrow Z^0_b\pi^-$ and $\Upsilon(5S)\rightarrow Z^0_b\pi^+$. Results of the fits to $\Upsilon(5S)\rightarrow \Upsilon(nS)\pi^+\pi^-$ signal events are shown in Fig. 2 where one-dimensional projections of the data and fits are compared. Numerical results are summarized in Table I where the relative normalization is defined as $a_{Z_2}/a_{Z_1}$ and the relative phase as $\delta_{Z_2} - \delta_{Z_1}$. The combined statistical significance of the two peaks exceeds 10 $\sigma$ for all tested models and for all $\Upsilon(nS)\pi^+\pi^-$ channels.

The main source of systematic uncertainties in the analysis of $\Upsilon(5S)\rightarrow \Upsilon(nS)\pi^+\pi^-$ channels is due to uncertainties in the parameterization of the decay amplitude. We fit the data with modifications of the nominal model (described in Eq. 1). In particular, we vary the $M(\pi^+\pi^-)$ dependence of the non-resonant amplitude $A_{\text{NR}}$, include a $D$-wave component into $A_{\text{F}}$, include the $f_0(600)$ state, etc. The variations in the extracted $Z_b$ parameters determined from fits with modified models are taken as estimates of the model uncertainties. Other major sources of systematic error include variation of the reconstruction efficiency over the Dalitz plot and uncertainty in the c.m. energy. Systematic effects associated with uncertainties in the description of the combinatorial background are found to be negligible. The overall systematic errors are quoted in Table I.

To study the resonant structure of the $\Upsilon(5S)\rightarrow h_b(nP)\pi^+\pi^-(m = 1, 2)$ decays we measure their yield as a function of the $h_b(1P)\pi^\pm$ invariant mass. The decays are reconstructed inclusively using the missing mass of the $\pi^\pm\pi^-$ pair, $M_{\text{miss}}(\pi^+\pi^-)$. We fit the $M_{\text{miss}}(\pi^+\pi^-)$ spectra in bins of $h_b(1P)\pi^\pm$ invariant mass, defined as the missing mass of the opposite sign pion, $M_{\text{miss}}(\pi^\mp)$. We combine the $M_{\text{miss}}(\pi^+\pi^-)$ spectra for the corresponding $M_{\text{miss}}(\pi^\pm)$ and $M_{\text{miss}}(\pi^\mp)$ bins and we use half of the available $M_{\text{miss}}(\pi)$ range to avoid double counting.

Selection requirements and the $M_{\text{miss}}(\pi^+\pi^-)$ fit procedure are described in detail in Ref. 3. We consider all well reconstructed and positively identified $\pi^\pm\pi^\mp$ pairs in the event. Continuum $e^+e^-\rightarrow q\bar{q}$ ($q = u, d, s$) background is suppressed by a requirement on the ratio of the second to zeroth Fox-Wolfram moments $R_2 < 0.3$ 13. The fit function is a sum of peaking components due to dipion transitions and combinatorial background. The positions of all peaking components are fixed to the values measured in Ref. 3. In the case of the $h_b(1P)$ the peaking components include signals from $\Upsilon(5S)\rightarrow h_b(1P)$ and $\Upsilon(5S)\rightarrow \Upsilon(2S)$ transitions, and a reflection from the $\Upsilon(3S)\rightarrow \Upsilon(1S)$ transition, where the $\Upsilon(3S)$ is produced inclusively or via initial state radiation. Since the $\Upsilon(3S)\rightarrow \Upsilon(1S)$ reflection is not well constrained by the fits, we determine its normalization relative to the $\Upsilon(5S)\rightarrow \Upsilon(2S)$ signal from the exclusive $\mu^+\mu^-\pi^+\pi^-$ data for every $M_{\text{miss}}(\pi)$ bin. In case of the $h_b(2P)$ we use a smaller $M_{\text{miss}}(\pi^+\pi^-)$ range than in Ref. 3, $M_{\text{miss}}(\pi^+\pi^-) < 10.34$ GeV/$c^2$, to exclude the region of the $K^0_S\rightarrow \pi^+\pi^-$ reflection. The peaking components include the $\Upsilon(5S)\rightarrow h_b(2P)$ signal and a $\Upsilon(2S)\rightarrow \Upsilon(1S)$ reflection. To constrain the normalization of the $\Upsilon(2S)\rightarrow \Upsilon(1S)$ reflection we use exclusive $\mu^+\mu^-\pi^+\pi^-$ data normalized to the total yield of the
reflection in the inclusive data. Systematic uncertainty in the latter number is included in the error propagation. The combinatorial background is parameterized by a Chebyshev polynomial. We use orders between 6 and 10 for the $h_0(1P)$ [the order decreases monotonically with the $M_{\text{miss}}(\pi)$] and orders between 6 and 8 for the $h_0(2P)$.

The results for the yield of $\Upsilon(5S) \rightarrow h_0(mP)\pi^+\pi^-$ ($m = 1, 2$) decays as a function of the $M_{\text{miss}}(\pi)$ are shown in Fig. 3. The distribution for the $h_0(1P)$ exhibits a clear two-peak structure without a significant non-resonant contribution. The distribution for the $h_0(2P)$ is consistent with the above picture, though the available phase-space is smaller and uncertainties are larger. We associate the two peaks with the production of the $Z_b(10610)$ and $Z_b(10650)$. To fit the $M_{\text{miss}}(\pi)$ distributions we use the expression

$$BW_1(s, M, \Gamma) = \frac{\sqrt{s}}{M_{\text{miss}}(\pi)} B_1(s, M, \Gamma),$$

where $B_1(s, M, \Gamma)$ is a phase-space factor, $s$ is the c.m. energy, $M$ is the mass of the decay channel, and $\Gamma$ is the width. The function $B_1(s, M, \Gamma)$ is convolved with the detector resolution function $\Gamma$, integrated over the $M_{\text{miss}}(\pi)$ histogram bin, and corrected for the reconstruction efficiency. The fit results are shown as solid histograms in Fig. 3 and are summarized in Table I. We find that the non-resonant contribution is consistent with zero [significance is 0.3 $\sigma$ for both the $h_0(1P)$ and $h_0(2P)$] in accord with the expectation that it is suppressed due to heavy quark spin-flip. In case of the $h_0(2P)$ we improve the stability of the fit by fixing the non-resonant amplitude to zero. The C.L. of the fit is 81% (61%) for the $h_0(1P)$ [$h_0(2P)$]. The default fit hypothesis is favored over the phase-space fit hypothesis at the 18 $\sigma$ [6.7 $\sigma$] level for the $h_0(1P)$ [$h_0(2P)$].

To estimate the systematic uncertainty we vary the order of the Chebyshev polynomial in the fits to the $M_{\text{miss}}(\pi)$ spectra; to study the effect of finite $M_{\text{miss}}(\pi)$ binning we shift the binning by half bin size; to study the model uncertainty in the fits to the $M_{\text{miss}}(\pi)$ distributions we remove [add] the non-resonant contribution in the $h_0(1P)$ [$h_0(2P)$] case; we increase the width of the resolution function by 10% to account for possible difference between data and MC simulation. The maximum change of parameters for each source is used as an estimate of its associated systematic error. We estimate an additional 1 MeV/$c^2$ uncertainty in mass measurements based on the difference between the observed $\Upsilon(nS)$ peak positions and their world averages 3. The total systematic uncertainty presented in Table I is the sum in quadrature of contributions from all sources. The significance of the $Z_b(10610)$ and $Z_b(10650)$ including systematic uncertainties is 16.0 $\sigma$ [5.6 $\sigma$] for the $h_0(1P)$ [$h_0(2P)$].

In conclusion, we have observed two charged bottomonium-like resonances, the $Z_b(10610)$ and $Z_b(10650)$, with signals in five different decay channels, $\Upsilon(nS)\pi^\pm$ ($n = 1, 2, 3$) and $h_0(mP)\pi^\pm$ ($m = 1, 2$). The parameters of the resonances are given in Table I. All channels yield consistent results. Weighted averages over all five channels give $M = 10607.2 \pm 2.0$ MeV/$c^2$, $\Gamma = 18.4 \pm 2.4$ MeV for the $Z_b(10610)$ and $M = 10652.2 \pm 1.5$ MeV/$c^2$, $\Gamma = 11.5 \pm 2.2$ MeV for the $Z_b(10650)$, where statistical and systematic errors are added in quadrature. The $Z_b(10610)$ production rate is similar to that of the $Z_b(10650)$ for each of the five decay channels. Their relative phase is consistent with zero for the final states with the $\Upsilon(nS)$ and consistent with 180 degrees for the final states with $h_0(mP)$. Production of the $Z_b$'s saturates the $\Upsilon(5S) \rightarrow h_0(mP)\pi^+\pi^-$ transitions and accounts for the high inclusive $h_0(mS)$ production rate reported in Ref. 3. Analyses of charged pion angular distributions 4 favor the $J^P = 1^+$ spin-parity assignment for both the $Z_b(10610)$ and $Z_b(10650)$. Since the $\Upsilon(5S)$ has negative $G$-parity, the $Z_b$ states have positive $G$-parity due to the emission of the pion.

The minimal quark content of the $Z_b(10610)$ and

---

**TABLE I: Comparison of results on $Z_b(10610)$ and $Z_b(10650)$ parameters obtained from $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ ($n = 1, 2, 3$) and $\Upsilon(5S) \rightarrow h_0(mP)\pi^+\pi^-$ ($m = 1, 2$) analyses.**

| Final state | $\Upsilon(1S)\pi^\pm\pi^-$ | $\Upsilon(2S)\pi^\pm\pi^-$ | $\Upsilon(3S)\pi^\pm\pi^-$ | $h_0(1P)\pi^+\pi^-$ | $h_0(2P)\pi^+\pi^-$ |
|-------------|-----------------------------|-----------------------------|-----------------------------|----------------------|----------------------|
| $M[Z_b(10610)]$, MeV/c$^2$ | $10611 \pm 4 \pm 3$ | $10609 \pm 2 \pm 3$ | $10608 \pm 2 \pm 3$ | $10605 \pm 2 \pm 3$ | $10599 \pm 2 \pm 3$ |
| $\Gamma[Z_b(10610)]$, MeV | $22.3 \pm 7.7 \pm 3.0$ | $24.2 \pm 7.3 \pm 2.0$ | $17.6 \pm 3.0 \pm 3.0$ | $11.4 \pm 4.9 \pm 2.1$ | $13 \pm 10 \pm 9$ |
| $M[Z_b(10650)]$, MeV/c$^2$ | $10657 \pm 6 \pm 3$ | $10651 \pm 2 \pm 3$ | $10652 \pm 1 \pm 2$ | $10654 \pm 3 \pm 1$ | $10651 \pm 2 \pm 3$ |
| $\Gamma[Z_b(10650)]$, MeV | $16.3 \pm 9.8 \pm 6.0$ | $13.3 \pm 3.3 \pm 4.0$ | $8.4 \pm 2.0 \pm 2.0$ | $20.9 \pm 5.5 \pm 2.1$ | $19 \pm 7 \pm 11$ |



---
$Z_b(10650)$ is a four quark combination. The measured masses of these new states are a few MeV$/c^2$ above the thresholds for the open beauty channels $B^+\overline{B}$ (10604.6 MeV$/c^2$) and $B^+\overline{B}^*$ (10650.2 MeV$/c^2$). This suggests a “molecular” nature of these new states, which might explain most of their observed properties [15]. The preliminary announcement of these results triggered intensive discussion of other possible interpretations [16–19].

We are grateful to Alexander Milstein of BINP and Mikhail Voloshin of University of Minnesota for fruitful discussions. We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and SINET4 network support. We acknowledge support from MEXT, JSPS and Nagoya’s TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); MSMT (Czechia); DST (India); MEST, NRF, NSDC of KISTI, and WCU (Korea); MNiSW (Poland); MES and RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (USA).

[1] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011).
[2] K.-F. Chen et al. (Belle Collaboration), Phys. Rev. Lett. 100, 112001 (2008).
[3] I. Adachi et al. (Belle Collaboration), arXiv:1103.3419 [hep-ex].

[4] In the text, for conciseness, we refer to the initial state as the $\Upsilon(5S)$. However it is possible that the final states we discuss have a source that is distinct from the $\Upsilon(5S)$; see K.-F. Chen et al. (Belle Collaboration), Phys. Rev. D 82, 091196R (2010).
[5] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res. Sect. A 499, 1 (2003), and other papers included in this Volume.
[6] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002).
[7] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
[8] R. Brun et al., GEANT 3.21, CERN DD/EE/84-1, 1984.
[9] I. Adachi et al. (Belle Collaboration), arXiv:1105.4583 [hep-ex].
[10] S.M. Flatté, Phys. Lett. B 63, 224 (1976).
[11] A. Garnash et al. (Belle Collaboration), Phys. Rev. Lett. 96, 251803 (2006).
[12] M.B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008). M.B. Voloshin, Phys. Rev. D 74, 054022 (2006) and references therein.
[13] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[14] J. Blatt and V. Weisskopf, Theoretical Nuclear Physics, p.361, New York: John Wiley & Sons (1952).
[15] A.E. Bondar, A. Garmash, A.I. Milstein, R. Mizuk, M.B. Voloshin, Phys. Rev. D 84, 054010 (2011).
[16] D.V. Bugg, arXiv:1105.5402.
[17] I.V. Danilkin, V.D. Orlovsky, Yu.A. Simonov, arXiv:1106.1552.
[18] C.Y. Cui et al., arXiv:1107.1343.
[19] T. Guo, L. Cao, M.-Z. Zhou, H. Chen, arXiv:1106.2284.