A categorical approach to algebras and coalgebras

Robert Wisbauer

University of Düsseldorf, Germany

Yamanashi, October 2017
Overview

- Category theory
Overview

- Category theory
- Adjoint functors
Overview

- Category theory
- Adjoint functors
- Monads and comonads
Overview

- Category theory
- Adjoint functors
- Monads and comonads
- Adjoints and (co)monads
Overview

- Category theory
- Adjoint functors
- Monads and comonads
- Adjoints and (co)monads
- Adjoint endofunctors
Overview

- Category theory
- Adjoint functors
- Monads and comonads
- Adjoint endofunctors
- Distributive laws
Overview

- Category theory
- Adjoint functors
- Monads and comonads
- Adjoint and (co)monads
- Adjoint endofunctors
- Distributive laws
- Hopf monads
Category theory

Eilenberg - Mac Lane,
General Theory of natural equivalences
Trans. AMS 1945
Category theory

Eilenberg - Mac Lane,
General Theory of natural equivalences
Trans. AMS 1945

Category \mathcal{A}: objects and morphisms $\text{Mor}_\mathcal{A}(A, A')$

- functors $F : \mathcal{A} \rightarrow \mathcal{B}$;
- $f : A \rightarrow A'$ sent to $F(f) : F(A) \rightarrow F(A')$ of \mathcal{B},
Category theory

Eilenberg - Mac Lane,
General Theory of natural equivalences
Trans. AMS 1945

Category \mathbb{A}: objects and morphisms $\text{Mor}_\mathbb{A}(A, A')$

- functors $F : \mathbb{A} \rightarrow \mathbb{B}$;
- $f : A \rightarrow A'$ sent to $F(f) : F(A) \rightarrow F(A')$ of \mathbb{B},
- $\varphi_F : \text{Mor}_\mathbb{A}(A, A') \rightarrow \text{Mor}_\mathbb{B}(F(A), F(A'))$,
- φ_F monomorph (epimorph) def. F faithful (full)
Category theory

Eilenberg - Mac Lane,
General Theory of natural equivalences
Trans. AMS 1945

Category \mathbb{A}: objects and morphisms $\text{Mor}_\mathbb{A}(A, A')$

- functors $F : \mathbb{A} \to \mathbb{B}$;
- $f : A \to A'$ sent to $F(f) : F(A) \to F(A')$ of \mathbb{B},
- $\varphi_F : \text{Mor}_\mathbb{A}(A, A') \to \text{Mor}_\mathbb{B}(F(A), F(A'))$,
- φ_F monomorph (epimorph) def. F faithful (full)

Natural transformations $\psi : F \to G$, $F, G : \mathbb{A} \to \mathbb{B}$

\[
\begin{array}{ccc}
A & \xrightarrow{F(A)} & G(A) \\
\downarrow h & & \downarrow G(h) \\
A' & \xrightarrow{F(A')} & G(A')
\end{array}
\]

$\xrightarrow{\psi_A} \quad \xrightarrow{\psi_{A'}}$
Adjoint pair of functors $F : A \to B$, $G : B \to A$, bijection

$$\text{Mor}_B(F(A), B) \xrightarrow{\sim} \text{Mor}_A(A, G(B)),$$
Adjoint pair of functors	**F : A → B, G : B → A, bijection**
$\text{Mor}_B(F(A), B) \cong \text{Mor}_A(A, G(B))$, unit $\eta : 1 \to GF$	counit $\varepsilon : FG \to 1$
Adjoint pair of functors $F : A \rightarrow B$, $G : B \rightarrow A$, bijection

$$\text{Mor}_B(F(A), B) \cong \text{Mor}_A(A, G(B)),$$

unit $\eta : 1 \rightarrow GF$

counit $\varepsilon : FG \rightarrow 1$

$$F \xrightarrow{F\eta} FGF \xrightarrow{\varepsilon F} F = 1_F, \quad G \xrightarrow{\eta G} GFG \xrightarrow{G\varepsilon} G = 1_G$$

F preserves epimorphisms and coproducts

G preserves monomorphisms and products

η and ε isomorphisms

F is equivalence

ε epi-(iso-)morphism

G faithful (and full)

ε split epimorphism

G is separable

η mono-(iso-)morphism

F faithful (and full)

η split monomorphism

F is separable

η extr. epi-, ε monomorph

(F, G) pair of \ast-functors
Adjoint pair of functors $F : \mathcal{A} \to \mathcal{B}$, $G : \mathcal{B} \to \mathcal{A}$, bijection

| bijection | $\text{Mor}_\mathcal{B}(F(A), B) \xrightarrow{\sim} \text{Mor}_\mathcal{A}(A, G(B))$ | unit $\eta : 1 \to GF$ | counit $\varepsilon : FG \to 1$ |
|-----------|---------------------------------|----------------.|-----------------|

| $F \xrightarrow{F\eta} FGF \xrightarrow{\varepsilon F} F = 1_F$, | $G \xrightarrow{\eta G} GFG \xrightarrow{G\varepsilon} G = 1_G$ |

- F preserves epimorphisms and coproducts
Eilenberg-Moore: Adjoint functors and triples, 1965

Adjoint pair of functors $F : A \to B$, $G : B \to A$, bijection

$\text{Mor}_B(F(A), B) \cong \text{Mor}_A(A, G(B))$, unit $\eta : 1 \to GF$

counit $\varepsilon : FG \to 1$

$F \xrightarrow{F\eta} FGF \xrightarrow{\varepsilon F} F = 1_F$, $G \xrightarrow{\eta G} GFG \xrightarrow{G\varepsilon} G = 1_G$

F preserves epimorphisms and coproducts

G preserves monomorphisms and products
Eilenberg-Moore: Adjoint functors and triples, 1965

Adjoint pair of functors $F : A \to B$, $G : B \to A$, bijection

$$\text{Mor}_B(F(A), B) \xrightarrow{\cong} \text{Mor}_A(A, G(B)),$$

unit $\eta : 1 \to GF$

counit $\varepsilon : FG \to 1$

\[
F \xrightarrow{F\eta} FGF \xrightarrow{\varepsilon F} F = 1_F, \quad G \xrightarrow{\eta G} GFG \xrightarrow{G\varepsilon} G = 1_G
\]

F preserves epimorphisms and coproducts

G preserves monomorphisms and products

η and ε isomorphisms F is equivalence
Adjoint pair of functors $F : \mathcal{A} \to \mathcal{B}$, $G : \mathcal{B} \to \mathcal{A}$, bijection

$$\text{Mor}_\mathcal{B}(F(A), B) \cong \text{Mor}_\mathcal{A}(A, G(B)),$$

unit $\eta : 1 \to GF$

counit $\varepsilon : FG \to 1$

$$F \xrightarrow{F\eta} FGF \xrightarrow{\varepsilon F} F = 1_F, \quad G \xrightarrow{\eta G} GFG \xrightarrow{G\varepsilon} G = 1_G$$

F preserves epimorphisms and coproducts

G preserves monomorphisms and products

η and ε isomorphisms

ε epi-(iso-)morphism

ε split epimorphism

F is equivalence

G faithful (and full)

G is separable
Adjoint pair of functors $F : A \to B$, $G : B \to A$, bijection

\[\text{Mor}_B(F(A), B) \xrightarrow{\sim} \text{Mor}_A(A, G(B)), \quad \text{unit} \quad \eta : 1 \to GF, \]
\[\text{counit} \quad \varepsilon : FG \to 1 \]

\[F \xrightarrow{F\eta} FGF \xrightarrow{\varepsilon F} F = 1_F, \quad G \xrightarrow{\eta G} GFG \xrightarrow{G\varepsilon} G = 1_G \]

- F preserves epimorphisms and coproducts
- G preserves monomorphisms and products

- η and ε isomorphisms
- ε epi-(iso-)morphism
- ε split epimorphism
- η mono-(iso-)morphism
- η split monomorphism

- F is equivalence
- G faithful (and full)
- G is separable
- F faithful (and full)
- F is separable
Adjoint pair of functors $F : \mathcal{A} \to \mathcal{B}$, $G : \mathcal{B} \to \mathcal{A}$, bijection

$$\text{Mor}_\mathcal{B}(F(A), B) \cong \text{Mor}_\mathcal{A}(A, G(B)), \quad \text{unit } \eta : 1 \to GF$$

$$\text{counit } \varepsilon : FG \to 1$$

$$F \xrightarrow{F \eta} FGF \xrightarrow{\varepsilon F} F = 1_F, \quad G \xrightarrow{\eta G} GFG \xrightarrow{G \varepsilon} G = 1_G$$

F preserves epimorphisms and coproducts

G preserves monomorphisms and products

η and ε isomorphisms

ε epi-(iso-)morphism

ε split epimorphism

η mono-(iso-)morphism

η split monomorphism

η extr. epi-, ε monomorph

F is equivalence

G faithful (and full)

G is separable

F faithful (and full)

F is separable

(F, G) pair of $*$-functors
Adjoint functors

Module categories

\[R M \otimes_S - : S M \to R M, \quad \text{Hom}_R(M,-) : R M \to S M \]
Adjoint functors

Module categories

\[R \mathcal{M} \otimes_S - : \mathcal{S} \mathcal{M} \to R \mathcal{M}, \quad \text{Hom}_R(M, -) : R \mathcal{M} \to \mathcal{S} \mathcal{M} \]

- **counit** \(\varepsilon_X : M \otimes_S \text{Hom}_R(M, X) \to X \),
- **unit** \(\eta_Y : Y \to \text{Hom}_R(M, M \otimes_S Y) \).

\(U = \text{Hom}_R(M, \mathbb{Q}) \), \(\mathbb{Q} \) cogenerator in \(\text{Gen}(M) \)
Adjoint functors

Module categories

Module category	Expression
\(R^M \otimes_S - : S^M \to R^M \), \(\text{Hom}_R(M, -) : R^M \to S^M \)	

- **Counit** \(\varepsilon_X : M \otimes_S \text{Hom}_R(M, X) \to X \),
- **Unit** \(\eta_Y : Y \to \text{Hom}_R(M, M \otimes_S Y) \).

Isomorphisms

- \(\eta \) and \(\varepsilon \) isomorphisms: \(R^M \) progenerator
 \(R^M \cong S^M \), Morita equivalence
- \(\varepsilon \) isomorphism: \(R^M \) generator
Adjoint functors

Module categories

\[R^M \otimes_S - : S^M \to R^M, \quad \text{Hom}_R(M, -) : R^M \to S^M \]

- **counit** \(\varepsilon_X : M \otimes_S \text{Hom}_R(M, X) \to X \),
- **unit** \(\eta_Y : Y \to \text{Hom}_R(M, M \otimes_S Y) \).

- \(\eta \) and \(\varepsilon \) isomorphisms: \(R^M \) progenerator
 \(R^M \simeq S^M \), Morita equivalence
- \(\varepsilon \) isomorphism: \(R^M \) generator
- \(\eta \) isomorphisms: \(M_S \) faithfully flat
 \(S^M \simeq \text{Pres}(R^M) \), Sato equivalence
Adjoint functors

Module categories

\[R\mathcal{M} \otimes_S \mathcal{M} \rightarrow \mathcal{R}\mathcal{M}, \quad \text{Hom}_R(M, -) : \mathcal{R}\mathcal{M} \rightarrow \mathcal{S}\mathcal{M} \]

- **Counit** \(\varepsilon_X : M \otimes_S \text{Hom}_R(M, X) \rightarrow X \),
- **Unit** \(\eta_Y : Y \rightarrow \text{Hom}_R(M, M \otimes_S Y) \).

- \(\eta \) and \(\varepsilon \) isomorphisms: \(R\mathcal{M} \) progenerator
 \(R\mathcal{M} \cong S\mathcal{M} \), Morita equivalence

- \(\varepsilon \) isomorphism: \(R\mathcal{M} \) generator

- \(\eta \) isomorphisms: \(M_S \) faithfully flat
 \(S\mathcal{M} \cong \text{Pres}(R\mathcal{M}) \), Sato equivalence

- \(\varepsilon \) monomorph and \(\eta \) epimorph (tilting theory)
 \(\text{Gen}(M) \cong \text{Cog}(S\mathcal{U}) \), Brenner-Butler equivalence
 \(U = \text{Hom}(M, Q) \), \(Q \) cogenerator in \(\text{Gen}(M) \)
Monads and comonads

Monads: $T : A \to A$ endofunctor

natural transformations: $m : TT \to T$, $e : 1_A \to T$,
with associativity and unitality conditions
Monads and comonads

Monads: \(T : \mathcal{A} \rightarrow \mathcal{A} \) endofunctor

natural transformations: \(m : TT \rightarrow T, \ e : 1_\mathcal{A} \rightarrow T, \) with associativity and unitality conditions

\(T \)-modules: \(\varrho : T(A) \rightarrow A \)

with associativity and unitality conditions.

\(T \)-morphisms \((A, \varrho) \xrightarrow{f} (A', \varrho'), T(A) \xrightarrow{T(f)} T(A') \)

\((\text{Eilenberg-Moore}) \) category of \(T \)-modules \(\mathcal{M}_T \)
Monads and comonads

Monads: $T : \mathcal{A} \to \mathcal{A}$ endofunctor

natural transformations: $m : TT \to T$, $e : 1_{\mathcal{A}} \to T$,
with associativity and unitality conditions

T-modules: $\varrho : T(A) \to A$

with associativity and unitality conditions.

T-morphisms $(A, \varrho) \xrightarrow{f} (A', \varrho')$, $T(A) \xrightarrow{T(f)} T(A')$

\[\begin{array}{ccc}
T(A) & \xrightarrow{T(f)} & T(A') \\
\varrho & \downarrow & \varrho' \\
A & \xrightarrow{f} & A'
\end{array}\]

(Eilenberg-Moore) category of T-modules \mathcal{M}_T

Free and forgetful functor - adjoint

$\phi_T : \mathcal{A} \to \mathcal{A}_T$, $A \mapsto (T(A), m_A : TT(A) \to T(A))$,

$U_T : \mathcal{A}_T \to \mathcal{A}$, $(A, \varrho_A) \mapsto A$.
Monads and comonads

Monads: $T : \mathcal{A} \to \mathcal{A}$ endofunctor

natural transformations: $m : TT \to T$, $e : 1_\mathcal{A} \to T$, with associativity and unitality conditions

T-modules: $\varrho : T(A) \to A$

with associativity and unitality conditions.

T-morphisms $(A, \varrho) \xrightarrow{f} (A', \varrho')$, $T(A) \xrightarrow{T(f)} T(A')$

(Eilenberg-Moore) category of T-modules \mathcal{M}_T

Free and forgetful functor - adjoint

$\phi_T : \mathcal{A} \to \mathcal{A}_T$, $A \mapsto (T(A), m_A : TT(A) \to T(A))$,

$U_T : \mathcal{A}_T \to \mathcal{A}$, $(A, \varrho_A) \mapsto A$.

$\text{Mor}_{\mathcal{A}_T}(\phi_T(A), B) \xrightarrow{\sim} \text{Mor}_\mathcal{A}(A, U_T(B))$, $f \mapsto f \circ \eta_A$.
Monads and comonads

Comonads: \(T : A \rightarrow A \) endofunctor

natural transformations: \(\delta : T \rightarrow TT, \quad \varepsilon : T \rightarrow 1_A, \)
with coassociativity and counitality conditions
Monads and comonads

Comonads: $T : A \rightarrow A$ endofunctor

natural transformations: $\delta : T \rightarrow TT$, $\varepsilon : T \rightarrow 1_A$, with coassociativity and counitality conditions

T-comodules: $\omega : A \rightarrow T(A)$

with coassociativity and counitality conditions.

T-morphisms $(A, \omega) \xrightarrow{g} (A', \omega')$,

\[
\begin{array}{ccc}
A & \xrightarrow{g} & A' \\
\downarrow{\omega} & & \downarrow{\omega'} \\
T(A) & \xrightarrow{T(g)} & T(A')
\end{array}
\]

(Eilenberg-Moore) category of T-comodules \mathbb{M}^T
Monads and comonads

Comonads: \(T : \mathbb{A} \to \mathbb{A} \) endofunctor

natural transformations: \(\delta : T \to TT, \quad \varepsilon : T \to 1_\mathbb{A}, \)
with coassociativity and counitality conditions

\(T \)-comodules: \(\omega : A \to T(A) \)
with coassociativity and counitality conditions.

\(T \)-morphisms \((A, \omega) \xrightarrow{g} (A', \omega') \),

\[
\begin{array}{ccc}
A & \xrightarrow{g} & A' \\
\downarrow \omega & & \downarrow \omega' \\
T(A) & \xrightarrow{T(g)} & T(A')
\end{array}
\]

(Eilenberg-Moore) category of \(T \)-comodules \(\mathbb{M}^T \)

Forgetful and free functor - adjoint

\(\phi^T : \mathbb{A} \to \mathbb{A}^T, \quad A \mapsto (T(A), \delta_A), \)

\(U^T : \mathbb{A}^T \to \mathbb{A}, \quad (A, \omega) \mapsto A. \)
Monads and comonads

Comonads: $T : A \to A$ endofunctor

natural transformations: $\delta : T \to TT$, $\varepsilon : T \to 1_A$,

with coassociativity and counitality conditions

T-comodules: $\omega : A \to T(A)$

with coassociativity and counitality conditions.

T-morphisms $(A, \omega) \xrightarrow{g} (A', \omega')$, $A \xrightarrow{g} A'$

$\omega \downarrow \downarrow \omega' \quad T(A) \xrightarrow{T(g)} T(A')$

(Eilenberg-Moore) category of T-comodules \mathbb{M}^T

Forgetful and free functor - adjoint

$\phi^T : \mathbb{A} \to \mathbb{A}^T$, $A \mapsto (T(A), \delta_A)$,

$U^T : \mathbb{A}^T \to \mathbb{A}$, $(A, \omega) \mapsto A$.

$\text{Mor}^T(A, T(X)) \cong \text{Mor}_A(U^T(A), X)$, $h \mapsto \varepsilon_X \circ h$
Adjoints and (co)monads

Adjoint pair: $F : A \to B$, $G : B \to A$

$$\eta : 1_A \to GF, \quad \varepsilon : FG \to 1_B$$

Related monad on A $T = GF$:

$$A \to A$$

Product $m : GFGF \to GF$,

Unit $\eta : 1_A \to GF$.

$$(T, m : TT \to T, \eta : 1_A \to T)$$ is a monad on A.

Related comonad on B $K = FG$:

$$B \to B$$

Coproduct $\delta : FG \to FGFG$,

Counit $\varepsilon : FG \to 1_B$.

$$(K, \delta : K \to KK, \varepsilon : K \to 1_B)$$ is a comonad on B.
Adjoints and (co)monads

Adjoint pair: \(F : \mathcal{A} \to \mathcal{B}, \ G : \mathcal{B} \to \mathcal{A} \)

\[\eta : 1_{\mathcal{A}} \to GF, \quad \varepsilon : FG \to 1_{\mathcal{B}} \]

Related monad on \(\mathcal{A} \)

\(T = GF : \mathcal{A} \to \mathcal{A}, \) product \(m : GFGF \xrightarrow{G\varepsilon F} GF, \)

unit \(\eta : 1_{\mathcal{A}} \to GF. \)
Adjoints and (co)monads

Adjoint pair: \(F : A \to B, \ G : B \to A \)

\[\eta : 1_A \to GF, \quad \varepsilon : FG \to 1_B \]

Related monad on \(A \)

\[T = GF : A \to A, \quad \text{product} \quad m : GFGF \xrightarrow{G\varepsilon F} GF, \]

\[\text{unit} \quad \eta : 1_A \to GF. \]

\((T, m : TT \to T, \eta : 1_A \to T)\) is a \textbf{monad} on \(A \).
Adjoint pair: \(F: A \rightarrow B, \ G: B \rightarrow A \)

\[
\begin{align*}
\eta & : 1_A \rightarrow GF, \\
\varepsilon & : FG \rightarrow 1_B
\end{align*}
\]

Related monad on \(A \)

\[
T = GF : A \rightarrow A, \quad \text{product} \quad m : GFGF \xrightarrow{G\varepsilon F} GF, \\
\text{unit} \quad \eta : 1_A \rightarrow GF.
\]

\((T, m : TT \rightarrow T, \eta : 1_A \rightarrow T)\) is a **monad** on \(A \).

Related comonad on \(B \)

\[
K = FG : B \rightarrow B, \quad \text{coproduct} \quad \delta : FG \xrightarrow{F\eta G} FGFG, \\
\text{counit} \quad \varepsilon : FG \rightarrow 1_B.
\]
Adjoints and (co)monads

Adjoint pair: \(F : A \to B, \ G : B \to A \)

\[\eta : 1_A \to GF, \ \varepsilon : FG \to 1_B \]

Related monad on \(A \)

\(T = GF : A \to A, \) product \(m : GFGF \xrightarrow{G\varepsilon F} GF, \) unit \(\eta : 1_A \to GF. \)

\((T, m : TT \to T, \eta : 1_A \to T)\) is a monad on \(A.\)

Related comonad on \(B \)

\(K = FG : B \to B, \) coproduct \(\delta : FG \xrightarrow{F\eta G} FGFG, \) counit \(\varepsilon : FG \to 1_B. \)

\((K, \delta : K \to KK, \varepsilon : K \to 1_B)\) is a comonad on \(B.\)
Adjoint pair: $F \dashv G : \mathcal{B} \to \mathcal{A}$, $\eta : 1_{\mathcal{A}} \to GF$, $\varepsilon : FG \to 1_{\mathcal{B}}$
Adjoint pair: $F \vdash G : \mathcal{B} \to \mathcal{A}$, $\eta : 1_{\mathcal{A}} \to GF$, $\varepsilon : FG \to 1_{\mathcal{B}}$

ε split epi (G separable): monad $T = GF : \mathcal{A} \to \mathcal{A}$

coproduct $\delta' : GF \xrightarrow{G\varepsilon^{-1}F} GFGF$, $m \circ \delta' = 1_{GF}$
Adjoints and (co)monads

Adjoint pair: $F \dashv G : \mathcal{B} \to \mathcal{A}$, $\eta : 1_{\mathcal{A}} \to GF$, $\varepsilon : FG \to 1_{\mathcal{B}}$

ε split epi (G separable) : monad $T = GF : \mathcal{A} \to \mathcal{A}$

Coproduct $\delta' : GF \xrightarrow{G\varepsilon^{-1}F} GFGF$, $m \circ \delta' = 1_{GF}$

(T, m, δ') with Frobenius condition (without counit)

\[
\begin{array}{ccc}
TT & \xrightarrow{\delta T} & TTT \\
m \downarrow & & \downarrow \text{Tm} \\
T & \xrightarrow{\delta} & TT,
\end{array}
\quad
\begin{array}{ccc}
TT & \xrightarrow{T \delta} & TTT \\
m \downarrow & & \downarrow \text{mT} \\
T & \xrightarrow{\delta} & TT,
\end{array}
\]

T separable monad

η split mono (F separable) : comonad $K = FG : \mathcal{B} \to \mathcal{B}$

Product $m' := FGFGF$, $m' \circ \delta = 1_{FG}$

(K, δ, m') with Frobenius condition (without unit)

\[
\begin{array}{ccc}
TT & \xrightarrow{\delta T} & TTT \\
m \downarrow & & \downarrow \text{Tm} \\
T & \xrightarrow{\delta} & TT,
\end{array}
\quad
\begin{array}{ccc}
TT & \xrightarrow{T \delta} & TTT \\
m \downarrow & & \downarrow \text{mT} \\
T & \xrightarrow{\delta} & TT,
\end{array}
\]
Adjoints and (co)monads

Adjoint pair: \(F \dashv G : \mathbb{B} \to \mathbb{A}, \ \eta : 1_\mathbb{A} \to GF, \ \varepsilon : FG \to 1_\mathbb{B} \)

\(\varepsilon \) split epi (\(G \) separable): monad \(T = GF : \mathbb{A} \to \mathbb{A} \)

Coproduct \(\delta' : GF \xrightarrow{G\varepsilon^{-1}F} GFGF, \ m \circ \delta' = 1_{GF} \)

\((T, m, \delta')\) with Frobenius condition (without counit)

\[
\begin{align*}
T T & \xrightarrow{\delta T} T T T \\
m & \downarrow \quad T m & m & \downarrow \quad m T \\
T & \xrightarrow{\delta} T T, & T & \xrightarrow{\delta} T T,
\end{align*}
\]
Adjoints and (co)monads

Adjoint pair: \(F \dashv G : \mathcal{B} \to \mathcal{A}, \; \eta : 1_\mathcal{A} \to GF, \; \varepsilon : FG \to 1_\mathcal{B} \)

\(\varepsilon \) split epi (\(G \) separable): monad \(T = GF : \mathcal{A} \to \mathcal{A} \)

- Coproduct \(\delta' : GF \xrightarrow{G\varepsilon^{-1}F} GFGF, \quad m \circ \delta' = 1_{GF} \)
- \((T, m, \delta')\) with Frobenius condition (without counit)

\[
\begin{array}{cccc}
TT & \xrightarrow{\delta T} & TTT & \xrightarrow{T\delta} & TTT \\
\downarrow m & & \downarrow Tm & & \downarrow mT \\
T & \xrightarrow{\delta} & TT, & & T & \xrightarrow{\delta} & TT,
\end{array}
\]

\(\eta \) split mono (\(F \) separable): comonad \(K = FG : \mathcal{B} \to \mathcal{B} \)

- Product \(m' := FGFG \xrightarrow{F\eta^{-1}G} FG, \quad m' \circ \delta = 1_{FG} \)
Adjoint pair: \(F \dashv G : B \to A, \) \(\eta : 1_A \to GF, \) \(\varepsilon : FG \to 1_B \)

\(\varepsilon \) split epi (\(G \) separable): monad \(T = GF : A \to A \)

coproduct \(\delta' : GF \xrightarrow{G\varepsilon^{-1}F} GFGF, \) \(m \circ \delta' = 1_{GF} \)

\((T, m, \delta')\) with Frobenius condition (without counit)

\[
\begin{array}{ccc}
TT & \xrightarrow{\delta T} & TTT \\
\downarrow m & & \downarrow Tm \\
T & \xrightarrow{\delta} & TT,
\end{array}
\]

\[
\begin{array}{ccc}
TT & \xrightarrow{T\delta} & TTT \\
\downarrow m \downarrow mT & & \downarrow mT \\
T & \xrightarrow{\delta} & TT,
\end{array}
\]

\(T \) separable monad

\(\eta \) split mono (\(F \) separable): comonad \(K = FG : B \to B \)

product \(m' := FGFG \xrightarrow{F\eta^{-1}G} FG, \) \(m' \circ \delta = 1_{FG} \)

\((K, \delta, m')\) with Frobenius condition (without unit)
Adjoint pair: $F \dashv G : \mathbb{B} \rightarrow \mathbb{A}$, $\eta : 1_\mathbb{A} \rightarrow GF$, $\varepsilon : FG \rightarrow 1_\mathbb{B}$

ε split epi (G separable): monad $T = GF : \mathbb{A} \rightarrow \mathbb{A}$

Coproduct $\delta' : GF \xrightarrow{G\varepsilon^{-1}F} GFGF$, $m \circ \delta' = 1_{GF}$

(T, m, δ') with Frobenius condition (without counit)

$$
\begin{array}{ccc}
TT & \xrightarrow{\delta T} & TTT \\
m \downarrow & & \downarrow Tm \\
T & \xrightarrow{\delta} & TT,
\end{array}
\quad
\begin{array}{ccc}
TT & \xrightarrow{T\delta} & TTT \\
m \downarrow & & \downarrow mT \\
T & \xrightarrow{\delta} & TT,
\end{array}
$$

T separable monad

η split mono (F separable): comonad $K = FG : \mathbb{B} \rightarrow \mathbb{B}$

Product $m' : =: FGFG \xrightarrow{F\eta^{-1}G} FG$, $m' \circ \delta = 1_{FG}$

(K, δ, m') with Frobenius condition (without unit)

K coseparable comonad
Module categories - \(R M_S \)

\[M \otimes_S - : SM \rightarrow RM, \quad \text{Hom}_R(M, -) : RM \rightarrow SM \]
Adjoint pairs

Module categories - RM_S

Homomorphism	Description
$M \otimes_S -$: $SM \to RM$	Homomorphism
$\text{Hom}_R(M, -) : RM \to SM$	Homomorphism

Monad and Comonad

- **Monad**
 - $\text{Hom}_A(M, M \otimes_S -) : SM \to SM$,
 - $M \otimes_S \text{Hom}_R(M, -) : RM \to RM$

- **Comonad**
 - $\eta : (-) \to \text{Hom}_R(M, M \otimes_S -)$,
 - $\varepsilon : M \otimes_S \text{Hom}_R(M, -) \to (-)$,
Adjoint pairs and (co)monads

Module categories \(-RM_S\)

\[M \otimes_S - : S \mathcal{M} \to \mathcal{R} \mathcal{M}, \quad \text{Hom}_R(M, -) : \mathcal{R} \mathcal{M} \to S \mathcal{M} \]

\[\eta : (-) \to \text{Hom}_R(M, M \otimes_S -), \]
\[\varepsilon : M \otimes_S \text{Hom}_R(M, -) \to (-), \]

monad \(\text{Hom}_A(M, M \otimes_S -) : S \mathcal{M} \to S \mathcal{M}, \)
comonad \(M \otimes_S \text{Hom}_R(M, -) : \mathcal{R} \mathcal{M} \to \mathcal{R} \mathcal{M} \)

\(\varepsilon \) isomorphisms: \(R \mathcal{M} \) generator

\(M_S \) fin. gen., projective, \(R \simeq \text{End}(M_S) \): comonad

\[M \otimes_S \text{Hom}_R(M, -) \simeq M \otimes_S M^* \otimes_R (-) : \mathcal{R} \mathcal{M} \xrightarrow{\sim} \mathcal{R} \mathcal{M} \]
Adjoint pairs and (co)monads

Module categories \(- \mathcal{M}_S\)

Monad	\(\text{Hom}_A(M, M \otimes_S -) : \mathcal{M}_S \to \mathcal{M}_S\),
Comonad	\(M \otimes_S \text{Hom}_R(M, -) : \mathcal{M}_R \to \mathcal{M}_R\),

\[\eta : (-) \to \text{Hom}_R(M, M \otimes_S -),\]
\[\varepsilon : M \otimes_S \text{Hom}_R(M, -) \to (-),\]

\[\varepsilon\text{ isomorphisms: } \mathcal{M}_R \text{ generator}\]

\(M_S\) fin. gen., projective, \(R \simeq \text{End}(M_S)\): comonad

\[M \otimes_S \text{Hom}_R(M, -) \simeq M \otimes_S M^* \otimes_R - : \mathcal{M}_R \xrightarrow{\sim} \mathcal{M}_R\]

Adjoint pair for \(\mathcal{M}^*_R\): comonad

\[M^* \otimes_R \text{Hom}_S(M^*, -) \simeq M^* \otimes_R M \otimes_S - : \mathcal{M}_S \to \mathcal{M}_S\]
Adjoints and (co)monads

Module categories - $R M_S$

$M \otimes_S - : sM \to R M$, \quad $\text{Hom}_R(M, -) : R M \to sM$

$\eta : (-) \to \text{Hom}_R(M, M \otimes_S -)$, \quad $\varepsilon : M \otimes_S \text{Hom}_R(M, -) \to (-)$,

monad $\text{Hom}_A(M, M \otimes_S -) : sM \to sM$, \quad comonad $M \otimes_S \text{Hom}_R(M, -) : R M \to R M$

ε isomorphisms: $R M$ generator

M_S fin. gen., projective, $R \simeq \text{End}(M_S)$: comonad

$M \otimes_S \text{Hom}_R(M, -) \simeq M \otimes_S M^* \otimes_R - : R M \xrightarrow{\simeq} R M$

Adjoint pair for sM^*_R: comonad

$M^* \otimes_R \text{Hom}_S(M^*, -) \simeq M^* \otimes_R M \otimes_S - : sM \to sM$

$M \otimes_S M^*$ R-coring, \quad $M^* \otimes_R M$ S-coring
Module categories - $_RM_S$

| $_M \otimes_S - : _S_M \to _R_M$ | $\text{Hom}_R(M, -) : _R_M \to _S_M$ |
Adjoint and (co)monads

Module categories - $\mathcal{R} \mathcal{M}_S$
$\mathcal{M} \otimes_S - : \mathcal{S}\mathcal{M} \rightarrow \mathcal{R}\mathcal{M}$, $\text{Hom}_\mathcal{R}(\mathcal{M}, -) : \mathcal{R}\mathcal{M} \rightarrow \mathcal{S}\mathcal{M}$

$\eta : (-) \rightarrow \text{Hom}_\mathcal{R}(\mathcal{M}, \mathcal{M} \otimes_S -)$ isomorphism
$\mathcal{M} \otimes_S \text{Hom}_\mathcal{R}(\mathcal{M}, -) : \mathcal{R}\mathcal{M} \rightarrow \mathcal{R}\mathcal{M}$, idempotent comonad,
Adjoint functors and (co)monads

Module categories - $R M_S$

\[M \otimes_S - : S M \to R M, \quad \text{Hom}_R(M, -) : R M \to S M \]

\[\eta : (-) \to \text{Hom}_R(M, M \otimes_S -) \text{ isomorphism} \]

\[M \otimes_S \text{Hom}_R(M, -) : R M \to R M, \text{ idempotent comonad,} \]
\[\text{left exact, commutes with products, for } Q \in \text{Pres}(M) \text{ cogenerator} \]

\[M \otimes_S \text{Hom}_R(M, -) \cong \text{Hom}_R(M \otimes_S \text{Hom}_R(M, Q), -) \]
Adjoints and (co)monads

Module categories - \(R \mathcal{M}_S \)

\[M \otimes_S - : \mathcal{M}_S \to R\mathcal{M}, \quad \text{Hom}_R(M, -) : R\mathcal{M} \to \mathcal{M}_S \]

\(\eta : (-) \to \text{Hom}_R(M, M \otimes_S -) \) isomorphism

\[M \otimes_S \text{Hom}_R(M, -) : R\mathcal{M} \to R\mathcal{M}, \text{ idempotent comonad, left exact, commutes with products, for } Q \in \text{Pres}(\mathcal{M}) \text{ cogenerator} \]

\[M \otimes_S \text{Hom}_R(M, -) \cong \text{Hom}_R(M \otimes_S \text{Hom}_R(M, Q), -) \]

\(R \) cogenerator in \(R\mathcal{M} \)

\[\text{Hom}_R(M \otimes_S M^*, -) \cong \text{Hom}_R(M \otimes_S M^*, \text{Hom}_R(M \otimes_S M^*, -)) \]

\[\cong \text{Hom}_R(M \otimes_S M^* \otimes_R M \otimes_S M^*, -) \]

\(M \otimes_S M^* \) is \(R \)-ring
Adjoint monads and comonads

Adjoint endofunctors $F : \mathbb{A} \to \mathbb{A}$, $G : \mathbb{A} \to \mathbb{A}$

$\text{Mor}_\mathbb{A}(F(X), Y) \xrightarrow{\varphi} \text{Mor}_\mathbb{A}(X, G(Y))$, \hspace{1em} $\eta : 1_\mathbb{A} \to GF$, \hspace{1em} $\varepsilon : FG \to 1_\mathbb{A}$.
Adjoint monads and comonads

Adjoint endofunctors \(F : \mathcal{A} \to \mathcal{A}, \ G : \mathcal{A} \to \mathcal{A} \)

\[
\text{Mor}_\mathcal{A}(F(X), Y) \xrightarrow{\varphi} \text{Mor}_\mathcal{A}(X, G(Y)), \quad \eta : 1_\mathcal{A} \to GF,
\]

\[
\varepsilon : FG \to 1_\mathcal{A}.
\]

\(F \) monad, \(m : FF \to F, \ e : I_\mathcal{A} \to F \)

\[
\text{Mor}_\mathcal{A}(F(X), Y) \xrightarrow{\varphi_{X,Y}} \text{Mor}_\mathcal{A}(X, G(Y))
\]

\[
\begin{array}{c}
\text{Mor}(m_X, Y) \\
\downarrow
\end{array}
\]

\[
\text{Mor}_\mathcal{A}(FF(X), Y) \xrightarrow{\simeq} \text{Mor}_\mathcal{A}(X, GG(Y))
\]

\[
\begin{array}{c}
\text{Mor}(X, ?) \\
\downarrow
\end{array}
\]

implies \(G \) comonad, \(\delta : G \to GG, \ \varepsilon : G \to I_\mathcal{A} \).
Adjoint monads and comonads

Adjoint endofunctors \(F : \mathbb{A} \to \mathbb{A}, \ G : \mathbb{A} \to \mathbb{A} \)

\[
\text{Mor}_\mathbb{A}(F(X), Y) \xrightarrow{\phi} \text{Mor}_\mathbb{A}(X, G(Y)), \quad \eta : 1_\mathbb{A} \to GF, \\
\varepsilon : FG \to 1_\mathbb{A}.
\]

F monad, \(m : FF \to F, \ e : I_\mathbb{A} \to F \)

\[
\text{Mor}_\mathbb{A}(F(X), Y) \xrightarrow{\phi_{X,Y}} \text{Mor}_\mathbb{A}(X, G(Y)) \\
\text{Mor}(m_X,Y) \downarrow \quad \quad \quad \quad \quad \downarrow \text{Mor}(X,?) \\
\text{Mor}_\mathbb{A}(FF(X), Y) \xrightarrow{\sim} \text{Mor}_\mathbb{A}(X, GG(Y))
\]

implies **G comonad,** \(\delta : G \to GG, \ \varepsilon : G \to I_\mathbb{A} \)

\[
\delta : G \xrightarrow{\eta^G} GFG \xrightarrow{G\eta^G} GGFFG \xrightarrow{GGm^G} GGFG \xrightarrow{GG\varepsilon} GG, \\
\varepsilon : G \xrightarrow{e^G} FG \xrightarrow{\varepsilon} 1_\mathbb{A}.
\]
Adjoint endofunctors

(F, m, e) monad, F ⊣ G

(G, δ, ε) is comonad, equivalence of categories

\[\mathbb{A}_F \simeq \mathbb{A}_G \]

\[F(A) \xrightarrow{h} A \quad \leftrightarrow \quad A \xrightarrow{\eta_A} GF(A) \xrightarrow{G(h)} G(A) \]
Adjoint endofunctors

\[(F, m, e) \text{ monad, } F \dashv G \]

\((G, \delta, \varepsilon)\) is comonad, equivalence of categories

\[\mathbb{A}_F \cong \mathbb{A}_G \]

\[F(A) \xrightarrow{h} A \iff A \xrightarrow{\eta_A} GF(A) \xrightarrow{G(h)} G(A) \]

\[F \dashv F \text{ (Frobenius monad)} \Rightarrow \mathbb{A}_F \cong \mathbb{A}_F \]
Adjoint endofunctors

\[(F, m, e) \text{ monad, } F \dashv G\]

\[(G, \delta, \varepsilon) \text{ is comonad, equivalence of categories} \quad \mathbb{A}_F \simeq \mathbb{A}^G\]

\[F(A) \xrightarrow{h} A \iff A \xrightarrow{\eta_A} GF(A) \xrightarrow{G(h)} G(A)\]

\[F \dashv F \text{ (Frobenius monad)} \quad \Rightarrow \quad \mathbb{A}_F \simeq \mathbb{A}^F\]

\[(G, \delta, \varepsilon) \text{ comonad, } G \dashv F\]

\[(F, m, e) \text{ is monad, equival. of Kleisli categories} \quad \mathbb{A}^G \simeq \mathbb{A}_F\]
Adjoint endofunctors

\[(F, m, e) \text{ monad, } F \dashv G\]

\[(G, \delta, \varepsilon) \text{ is comonad, equivalence of categories } \mathcal{A}_F \simeq \mathcal{A}^G\]

\[F(A) \xrightarrow{h} A \iff A \xrightarrow{\eta_A} GF(A) \xrightarrow{G(h)} G(A)\]

\[F \dashv F \text{ (Frobenius monad) } \Rightarrow \mathcal{A}_F \simeq \mathcal{A}^F\]

\[(G, \delta, \varepsilon) \text{ comonad, } G \dashv F\]

\[(F, m, e) \text{ is monad, equival. of Kleisli categories } \tilde{\mathcal{A}}^G \simeq \tilde{\mathcal{A}}_F\]

\[\text{Mor}_{\tilde{\mathcal{A}}^G}(\phi^G(A), \phi^G(A')) \simeq \text{Mor}_A(G(A), A')\]
Adjoint endofunctors

\((F, m, e)\) monad, \(F \dashv G\)

\((G, \delta, \varepsilon)\) is comonad, equivalence of categories \(\mathbb{A}_F \simeq \mathbb{A}^G\)

\(F(A) \xrightarrow{h} A \iff A \xrightarrow{\eta_A} GF(A) \xrightarrow{G(h)} G(A)\)

\(F \dashv F\) (Frobenius monad) \(\Rightarrow \mathbb{A}_F \simeq \mathbb{A}^F\)

\((G, \delta, \varepsilon)\) comonad, \(G \dashv F\)

\((F, m, e)\) is monad, equival. of Kleisli categories \(\tilde{\mathbb{A}}^G \simeq \tilde{\mathbb{A}}_F\)

\(\text{Mor}_{\mathbb{A}^G}(\phi^G(A), \phi^G(A'))\) \(\simeq\) \(\text{Mor}_{\mathbb{A}}(G(A), A')\)

\(\simeq\) \(\text{Mor}_{\mathbb{A}}(A, F(A'))\)
Adjoint endofunctors

\((F, m, e)\) \text{ monad, } F \dashv G

\((G, \delta, \epsilon)\) is comonad, equivalence of categories \(\mathbb{A}_F \simeq \mathbb{A}^G\)

\[
F(A) \xrightarrow{h} A \quad \leftrightarrow \quad A \xrightarrow{\eta_A} GF(A) \xrightarrow{G(h)} G(A)
\]

\(F \dashv F\) (Frobenius monad) \(\Rightarrow\) \(\mathbb{A}_F \simeq \mathbb{A}^F\)

\((G, \delta, \epsilon)\) \text{ comonad, } G \dashv F

\((F, m, e)\) is monad, equival. of Kleisli categories \(\tilde{\mathbb{A}}^G \simeq \tilde{\mathbb{A}}_F\)

\[
\text{Mor}_{\mathbb{A}^G}(\phi^G(A), \phi^G(A')) \simeq \text{Mor}_{\mathbb{A}}(G(A), A') \\
\text{Mor}_{\mathbb{A}}(A, F(A')) \simeq \text{Mor}_{\mathbb{A}^F}(\phi_F(A), \phi_F(A'))
\]
Module categories

Adjoint endofunctors

\[A \otimes_R (-), \text{Hom}_R(A, -) : \text{RMod} \to \text{RMod} \]

\[\text{Hom}_R(A \otimes_R X, Y) \cong \text{Hom}_R(X, \text{Hom}_R(A, Y)) \]
Module categories

Adjoint endofunctors \(A \otimes_R - \), \(\text{Hom}_R(A, -) : R\text{M} \to R\text{M} \)

\[
\text{Hom}_R(A \otimes_R X, Y) \cong \text{Hom}_R(X, \text{Hom}_R(A, Y))
\]

\(A \otimes_R - \) monad \(\iff \) \(\text{Hom}_R(A, -) \) comonad, \(M_A \cong M^{\text{Hom}(A, -)} \)
Module categories

Adjoint endofunctors \(A \otimes_R - \), \(\text{Hom}_R(A, -) : R\mathcal{M} \to R\mathcal{M} \)

\[
\text{Hom}_R(A \otimes_R X, Y) \xrightarrow{\sim} \text{Hom}_R(X, \text{Hom}_R(A, Y))
\]

\(A \otimes_R - \) monad \(\Leftrightarrow \) \(\text{Hom}_R(A, -) \) comonad, \(\mathcal{M}_A \simeq \mathcal{M}^{\text{Hom}(A,-)} \)

Frobenius monad \(A \otimes_R - \simeq \text{Hom}_R(A, -) \), \(\mathcal{M}_A \simeq \mathcal{M}^A \)
Module categories

Adjoint endofunctors	\(A \otimes_R - \), \(\text{Hom}_R(A, -) : R\text{M} \to R\text{M} \)
\(\text{Hom}_R(A \otimes_R X, Y) \overset{\sim}{\to} \text{Hom}_R(X, \text{Hom}_R(A, Y)) \)	

| \(A \otimes_R - \) monad | \(\Leftrightarrow \) | \(\text{Hom}_R(A, -) \) comonad, \(\tilde{M}_A \simeq \tilde{M}^{\text{Hom}(A,-)} \) |

| Frobenius monad | \(A \otimes_R - \simeq \text{Hom}_R(A, -) \), \(\tilde{M}_A \simeq \tilde{M}^A \) |

| \(A \otimes_R - \) comonad (\(R \)-coring) | \(\Leftrightarrow \) | \(\text{Hom}_R(A, -) \) monad |
| \(\tilde{M}^A \simeq \tilde{M}_{\text{Hom}_R(A,-)} \), \(A \otimes_R X \leftrightarrow \text{Hom}_R(A, X) \) |
Module categories

Adjoint endofunctors

\[
\text{Adjunct endofunctors } A \otimes_R -, \; \text{Hom}_R(A, -) : R^M \to R^M
\]

\[
\text{Hom}_R(A \otimes_R X, Y) \cong \text{Hom}_R(X, \text{Hom}_R(A, Y))
\]

Frobenius monad

\[
A \otimes_R - \text{ monad } \iff \text{Hom}_R(A, -) \text{ comonad}, \quad M_A \simeq M^{\text{Hom}(A, -)}
\]

Frobenius monad

\[
A \otimes_R - \simeq \text{Hom}_R(A, -), \quad M_A \simeq M^A
\]

Frobenius monad

\[
A \otimes_R - \text{ comonad (R-coring) } \iff \text{Hom}_R(A, -) \text{ monad}
\]

\[
\tilde{M}^A \simeq \tilde{M}^{\text{Hom}_R(A, -)}, \quad A \otimes_R X \mapsto \text{Hom}_R(A, X)
\]

RA fin. gen., projective

\[
\text{Hom}_R(A, -) \simeq A^* \otimes_R -
\]

\[
A \otimes_R - \text{ monad } \iff \quad A^* \otimes_R - \text{ comonad}
\]

\[
A \otimes_R - \text{ comonad } \iff \quad A^* \otimes_R - \text{ monad}
\]

Frobenius \quad A \simeq A^*, \quad M_A \simeq M^A
Hopf algebras

Heinz Hopf

Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen, 1941

Bialgebra: \mathbb{R}-algebra (A, m, ι), \mathbb{R}-coalgebra (A, δ, ε)

$\delta: A \to A \otimes \mathbb{R}$,
$\varepsilon: A \to \mathbb{R}$

algebra morphisms

Hopf algebra: antipode

$S: A \to A \otimes A \delta \otimes A \xrightarrow{m^{-1}} A \otimes A = 1_{A \otimes A}$

equivalence

$A \otimes R \xrightarrow{M_R} A M_R$ (Hopf modules)
Hopf algebras

Heinz Hopf

Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen, 1941

Bialgebra: \(R \)-algebra \((A, m, \iota)\), \(R \)-coalgebra \((A, \delta, \varepsilon)\)

\[\delta : A \rightarrow A \otimes_R A, \quad \varepsilon : A \rightarrow R \quad \text{algebra morphisms} \]
Hopf algebras

Heinz Hopf

Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen, 1941

Bialgebra: R-algebra $(A, m, ι)$, R-coalgebra $(A, δ, ε)$

$δ : A \to A \otimes_R A, \quad ε : A \to R$ algebra morphisms

Hopf algebra: antipode $S : A \to A$

$A \otimes A \xrightarrow{δ \otimes A} A \otimes A \otimes A \xrightarrow{A \otimes m} A \otimes A = 1_{A \otimes A}$
Heinz Hopf

Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen, 1941

Bialgebra: \(R \)-algebra \((A, m, \iota)\), \(R \)-coalgebra \((A, \delta, \varepsilon)\)

\[
\delta : A \rightarrow A \otimes_R A, \quad \varepsilon : A \rightarrow R \quad \text{algebra morphisms}
\]

Hopf algebra: antipode \(S : A \rightarrow A \)

\[
A \otimes A \xrightarrow{\delta \otimes A} A \otimes A \otimes A \xrightarrow{A \otimes m} A \otimes A = 1_{A \otimes A}
\]

equivalence \(A \otimes_R - : \text{\textbf{M}}_R \rightarrow \text{\textbf{A}}^\text{\textbf{M}} \) (Hopf modules)
Composition of monads and comonads

Tensor product of R-algebras $(A, m, e), (B, m', e')$

\[A \otimes B \otimes A \otimes B \xrightarrow{A \otimes \tau \otimes B} A \otimes A \otimes B \otimes B \xrightarrow{m \otimes m'} A \otimes B \]

Distributive law: $\tau : B \otimes_R A \rightarrow A \otimes_R B$

\[B \otimes B \otimes A \xrightarrow{m' \otimes A} B \otimes A \]

\[B \otimes A \otimes B \xrightarrow{\tau \otimes B} A \otimes B \otimes B \xrightarrow{A \otimes m'} A \otimes B, \]

\[A \xrightarrow{e' \otimes A} B \otimes A \]

\[A \otimes e' \xrightarrow{A \otimes e'} A \otimes B. \]
Composition of monads and comonads

Tensorproduct of R-algebras $(A, m, e), (B, m', e')$

$$A \otimes B \otimes A \otimes B \xrightarrow{A \otimes \tau \otimes B} A \otimes A \otimes B \otimes B \xrightarrow{m \otimes m'} A \otimes B$$

Distributive law: $\tau : B \otimes_R A \rightarrow A \otimes_R B$

$$B \otimes B \otimes A \xrightarrow{m' \otimes A} B \otimes A \xrightarrow{\tau} B \otimes A \xrightarrow{e' \otimes A} A \otimes A \xrightarrow{\tau} A \otimes B.$$ $\tau = A \otimes B \otimes -$

Lifting of endofunctors

$$B^M \xrightarrow{?} B^M \xrightarrow{U_B} M, A \otimes_R - \xrightarrow{A \otimes \tau} A \otimes B \otimes M \xrightarrow{U_B} M,$$
Composition of monads and comonads

Liftings of endofunctors

$F, G : A \to A$, (F, m, e) monad, consider the diagram

$$
\begin{array}{ccc}
A & \xrightarrow{GF} & A \\
\downarrow{U_F} & & \downarrow{U_F} \\
\text{A} & \xrightarrow{G} & \text{A}
\end{array}
$$

Questions:
- Does a lifting G exist?
- F and G monads, when is G a monad?
- F monad, G comonad, when is G a comonad?

Beck, J., *Distributive laws*, 1969
Composition of monads and comonads

Liftings of endofunctors

\(F, G : \mathbb{A} \to \mathbb{A}, \ (F, m, e) \) monad, consider the diagram

\[
\begin{array}{ccc}
\mathbb{A} & \xrightarrow{\overline{G}} & \mathbb{A} \\
\downarrow U_F & & \downarrow U_F \\
\mathbb{A} & \xrightarrow{G} & \mathbb{A}
\end{array}
\]

Questions

- does a lifting \(\overline{G} \) exist?
Composition of monads and comonads

Liftings of endofunctors

$F, G : A \rightarrow A$, (F, m, e) monad, consider the diagram

\[
\begin{array}{ccc}
A_F & \xrightarrow{\overline{G}} & A_F \\
U_F \downarrow & & \downarrow U_F \\
A & \xrightarrow{G} & A,
\end{array}
\]

Questions

- does a lifting \overline{G} exist?
- F and G monads, when is \overline{G} a monad?

References

Beck, J., *Distributive laws*, 1969
Composition of monads and comonads

Liftings of endofunctors

$F, G : \mathbb{A} \rightarrow \mathbb{A}$, (F, m, e) monad, consider the diagram

\[
\begin{array}{ccc}
\mathbb{A}F & \xrightarrow{\overline{G}} & \mathbb{A}F \\
U_F \downarrow & & \downarrow U_F \\
\mathbb{A} & \xrightarrow{G} & \mathbb{A},
\end{array}
\]

Questions

- does a lifting \overline{G} exist?
- F and G monads, when is \overline{G} a monad?
- F monad, G comonad, when is \overline{G} a comonad?
Composition of monads and comonads

Liftings of endofunctors

$F, G : \mathbb{A} \to \mathbb{A}$, (F, m, e) monad, consider the diagram

$$
\begin{array}{ccc}
\mathbb{A} & \xrightarrow{\bar{G}} & \mathbb{A} \\
\downarrow{U_F} & & \downarrow{U_F} \\
\mathbb{A} & \xleftarrow{G} & \mathbb{A}
\end{array}
$$

Questions

- does a lifting \bar{G} exist ?
- F and G monads, when is \bar{G} a monad ?
- F monad, G comonad, when is \bar{G} a comonad ?

Beck, J., *Distributive laws*, 1969

$F, G : \mathbb{A} \to \mathbb{A}$ natural transformations $\lambda : FG \to GF$
Mixed distributive law (entwining): \((F, m, e), (G, \delta, \varepsilon)\)

lifting \(\overline{G}\) comonad \(\iff\ \lambda : FG \to GF\) with comm. diagrams
Mixed distributive law (entwining): \((F, m, e), (G, \delta, \varepsilon)\)

lifting \(\overline{G}\) comonad \(\iff\) \(\lambda : FG \to GF\) with comm. diagrams

\[
\begin{align*}
FFG & \xrightarrow{m_G} FG & FG & \xrightarrow{F\delta} FGG & \xrightarrow{\lambda_G} GFG \\
F\lambda & \downarrow & \lambda & \downarrow & G\lambda \\
FGF & \xrightarrow{\lambda_F} GFF & \xrightarrow{GM} GF, & GF & \xrightarrow{\delta_F} GGF, \\
\end{align*}
\]
Mixed distributive law (entwining): \((F, m, e), (G, \delta, \varepsilon)\)

lifting \(\overline{G}\) comonad \(\iff\) \(\lambda : FG \to GF\) with comm. diagrams

\[
\begin{align*}
FFG \xrightarrow{m_G} FG & \quad FG \xrightarrow{F\delta} FGG \xrightarrow{\lambda_G} GFG \\
F\lambda \downarrow & \quad \lambda \downarrow & \quad \lambda \downarrow \\
FGF \xrightarrow{\lambda_F} GFF \xrightarrow{Gm} GF, & \quad GFG \xrightarrow{G\lambda} GGF, \\
G \xrightarrow{e_G} FG & \quad FG \xrightarrow{F\varepsilon} F \\
Ge \downarrow & \quad \varepsilon_F \downarrow \\
GF, & \quad GF.
\end{align*}
\]
Mixed distributive law (entwining): \((F, m, e), (G, \delta, \varepsilon)\)

lifting \(\overline{G}\) comonad \(\iff\ \lambda : FG \to GF\) with comm. diagrams

Diagram:

\[
\begin{align*}
FFG & \xrightarrow{m_G} FG & FG & \xrightarrow{F\delta} FGG & \xrightarrow{\lambda_G} GFG \\
F\lambda & \downarrow & \lambda & \downarrow & G\lambda \\
FGF & \xrightarrow{\lambda_F} GFF & G & \xrightarrow{G\varepsilon} GGF, \\
F\varepsilon & \downarrow & \varepsilon_F & \downarrow & \\
G & \xrightarrow{e_G} FG & G & \xrightarrow{\delta_F} GGF, \\
Ge & \downarrow & \lambda & \downarrow & \\
& GF, & & GF. \\
\end{align*}
\]

Mixed modules: \(\varrho_A : F(A) \to A, \ \varrho : A \to G(A)\), category \(\Delta^G_F\)

\[
\begin{align*}
F(A) & \xrightarrow{\varrho_A} A & \xrightarrow{\varrho^A} G(A) \\
F(\varrho^A) & \downarrow & \lambda_A & \downarrow \varrho(\varrho_A) \\
FG(A) & \xrightarrow{\lambda_A} GF(A). \\
\end{align*}
\]
Bimonad $B : \mathbb{A} \to \mathbb{A}$, $(B, m, e), (B, \delta, \varepsilon)$

mixed distributive law $\lambda : BB \to BB$, compatibility

$$
\begin{array}{ccc}
BB & \xrightarrow{m} & B \\
\downarrow{B\delta} & & \downarrow{\delta} \\
BBB & \xrightarrow{\lambda_B} & BBB.
\end{array}
$$

$B(A) \in \mathbb{A}^B_B$

$\eta : 1_{\mathbb{A}} \to B$ monad morphism, $\varepsilon : B \to 1_{\mathbb{A}}$ comonad morphism
Bimonad $B : \mathbb{A} \to \mathbb{A}, (B, m, e), (B, \delta, \varepsilon)$

mixed distributive law $\lambda : BB \to BB$, compatibility

\[\begin{align*}
BB & \xrightarrow{m} B \xrightarrow{\delta} BB \\
\downarrow B\delta & \quad & \quad \downarrow Bm \\
BBB & \xrightarrow{\lambda_B} BBB.
\end{align*} \]

$B(\mathfrak{A}) \in \mathbb{A} B^B$

$\eta : 1_\mathbb{A} \to B$ monad morphism, $\varepsilon : B \to 1_\mathbb{A}$ comonad morphism

Category of (mixed) B-bimodules \mathbb{A}^B_B - free functor

$\phi^B_B : \mathbb{A} \to \mathbb{A}^B_B$, $A \leftrightarrow BB(\mathfrak{A}) \xrightarrow{m_A} B(\mathfrak{A}) \xrightarrow{\delta_A} BB(\mathfrak{A})$.
Bimonad $B : \mathbb{A} \to \mathbb{A}$, $(B, m, e), (B, \delta, \varepsilon)$

mixed distributive law $\lambda : BB \to BB$, compatibility

\[
\begin{align*}
BB & \xrightarrow{m} B \xrightarrow{\delta} BB \\
B\delta & \downarrow \quad Bm \quad \lambda_B \\
BBB & \xrightarrow{\lambda_B} BBB.
\end{align*}
\]

$\eta : 1_{\mathbb{A}} \to B$ monad morphism, $\varepsilon : B \to 1_{\mathbb{A}}$ comonad morphism

Category of (mixed) B-bimodules \mathbb{A}_B^B - free functor

$\phi_B^B : \mathbb{A} \to \mathbb{A}_B^B$, $A \mapsto BB(A) \xrightarrow{m_A} B(A) \xrightarrow{\delta_A} BB(A)$.

full and faithful by

$\text{Mor}_B^B(B(A), B(A')) \simeq \text{Mor}_B(B(A), A') \simeq \text{Mor}_A(A, A')$
Bimonad $B : \mathbb{A} \rightarrow \mathbb{A}$, $(B, m, e), (B, \delta, \varepsilon)$

mixed distributive law $\lambda : BB \rightarrow BB$, compatibility

$$
\begin{align*}
BB & \xrightarrow{m} B \xrightarrow{\delta} BB \\
B\delta & \downarrow \\
BBB & \xrightarrow{\lambda_B} BBB.
\end{align*}
$$

$\eta : 1_\mathbb{A} \rightarrow B$ monad morphism, $\varepsilon : B \rightarrow 1_\mathbb{A}$ comonad morphism

Category of (mixed) B-bimodules \mathbb{A}^B_B - free functor

$$
\phi_B^B : \mathbb{A} \rightarrow \mathbb{A}^B_B, \quad A \mapsto BB(A) \xrightarrow{m_A} B(A) \xrightarrow{\delta_A} BB(A).
$$

full and faithful by

$$
\text{Mor}_B^B(B(A), B(A')) \simeq \text{Mor}_B(B(A), A') \simeq \text{Mor}_A(A, A')
$$

Hopf monads (antipode $S : B \rightarrow B$)

$$
\phi_B^B \text{ equivalence} \iff \quad BB \xrightarrow{B\delta} BBB \xrightarrow{mB} BB
$$
Bimonads

Bimonad on Set

- $G \times - : \text{Set} \to \text{Set}, A \mapsto G \times A$

Mixed $G \times -$-modules Set

$G \times -$ is a monad, $G \times -$ is a comonad,

$\delta : G \to G \times G, g \mapsto (g, g)$

entwining $\psi : G \times G \to G \times G, (g, h) \mapsto (gh, g)$

Hopf monads on Set

For bimonad $G \times -$ there are equivalent:

$\varphi_G : \text{Set} \to \text{Set}$ is an equivalence;

$G \times -$ has an antipode;

G is a group.
Bimonads

Bimonad on Set

- $G \times - : \text{Set} \to \text{Set}, A \mapsto G \times A$
- $G \times -$ monad, G is monoid
Bimonads

Bimonad on Set

- $G \times - : \mathbf{Set} \to \mathbf{Set}$, $A \mapsto G \times A$
- $G \times -$ is monad, G is monoid
- $G \times -$ is comonad, $\delta : G \to G \times G$, $g \mapsto (g, g)$
Bimonads

Bimonad on Set
$G \times - : \textbf{Set} \to \textbf{Set}$, $A \mapsto G \times A$
$G \times -$ monad, G is monoid
$G \times -$ comonad, $\delta : G \to G \times G$, $g \mapsto (g, g)$
entwining $\psi : G \times G \to G \times G$, $(g, h) \mapsto (gh, g)$
Bimonads

Bimonad on Set

- \(G \times - : Set \to Set, A \mapsto G \times A \)
- \(G \times - \) monad, \(G \) is monoid
- \(G \times - \) comonad, \(\delta : G \to G \times G, g \mapsto (g, g) \)
- entwining \(\psi : G \times G \to G \times G, (g, h) \mapsto (gh, g) \)

Mixed \(G \times - \)-modules \(Set_G^G \)

\[A \in Set, \quad G \times A \to A \to G \times A \]
Bimonads

Bimonad on Set

- $G \times - : \mathbf{Set} \to \mathbf{Set}$, $A \mapsto G \times A$
- $G \times -$ monad, G is monoid
- $G \times -$ comonad, $\delta : G \to G \times G$, $g \mapsto (g, g)$
- Entwining $\psi : G \times G \to G \times G$, $(g, h) \mapsto (gh, g)$

Mixed $G \times -$-modules \mathbf{Set}_G

$A \in \mathbf{Set}$, $G \times A \to A \to G \times A$

Hopf monads on Set

For bimonad $G \times -$ there are equivalent:

- $\phi^G : \mathbf{Set} \to \mathbf{Set}_G^G$ is an equivalence;
Bimonads

- **Bimonad on Set**
 - $G \times - : \text{Set} \rightarrow \text{Set}, \ A \mapsto G \times A$
 - $G \times -$ monad, G is monoid
 - $G \times -$ comonad, $\delta : G \rightarrow G \times G, \ g \mapsto (g, g)$
 - Entwining $\psi : G \times G \rightarrow G \times G, \ (g, h) \mapsto (gh, g)$

- **Mixed $G \times -$-modules Set_G^G**
 - $A \in \text{Set}, \ G \times A \rightarrow A \rightarrow G \times A$

- **Hopf monads on Set**
 - For bimonad $G \times -$ there are equivalent:
 - $\phi_G^G : \text{Set} \rightarrow \text{Set}_G^G$ is an equivalence;
 - $G \times -$ has an antipode;
Bimonads

Bimonad on Set
- \(G \times - : \text{Set} \to \text{Set}, A \mapsto G \times A \)
- \(G \times - \) monad, \(G \) is monoid
- \(G \times - \) comonad, \(\delta : G \to G \times G, g \mapsto (g, g) \)
- entwining \(\psi : G \times G \to G \times G, (g, h) \mapsto (gh, g) \)

Mixed \(G \times - \)-modules \(\text{Set}_G \)
- \(A \in \text{Set}, \quad G \times A \to A \to G \times A \)

Hopf monads on Set
For bimonad \(G \times - \) there are equivalent:
- \(\phi^G_G : \text{Set} \to \text{Set}_G^G \) is an equivalence;
- \(G \times - \) has an antipode;
- \(G \) is a group.
Finite dimensional algebras: $\text{Hom}_K(A, -) \simeq A^* \otimes_K -$

- **Adjoint pair**: $(A \otimes_K -, A^* \otimes_K -)$,
- **Counit**: $\varepsilon: A \otimes_K A^* \to K$, $a \otimes f \mapsto f(a)$,
- **Unit**: $\eta: K \to A^* \otimes_K A$, $1 \mapsto \sum a_i^* \otimes a_i$ (dual basis).
Finite dimensional algebras: $\text{Hom}_K(A, -) \simeq A^* \otimes_K -$

- **Adjoint pair**: $(A \otimes_K -, A^* \otimes_K -)$,
- **Counit**: $\varepsilon : A \otimes_K A^* \to K$, $a \otimes f \mapsto f(a)$,
- **Unit**: $\eta : K \to A^* \otimes_K A$, $1 \mapsto \sum a_i^* \otimes a_i$ (dual basis).

- $A \otimes_K -$ monad $\iff A^* \otimes_R -$ comonad, $A M \simeq A^* M$
Finite dimensional algebras: $\text{Hom}_K(A, -) \simeq A^* \otimes_K -$

adjoint pair $(A \otimes_K -, A^* \otimes_K -)$,
counit $\varepsilon : A \otimes_K A^* \rightarrow K$, $a \otimes f \mapsto f(a)$,
unit $\eta : K \rightarrow A^* \otimes_K A$, $1 \mapsto \sum a_i^* \otimes a_i$ (dual basis).

$A \otimes_K -$ monad $\iff A^* \otimes_R -$ comonad, $A^!M \simeq A^*M$

entwining $\tau : A \otimes_K A^* \rightarrow A^* \otimes_K A$, $A^!M \simeq A^* \otimes A^!M$,
A-coring $A^* \otimes_K A \otimes_A -$: $A^!M \rightarrow A^!M$,
A^*-ring $A \otimes_K A^* \otimes A^*$ $-$: $A^!M \rightarrow A^!M$
Finite dimensional algebras: $\text{Hom}_K(A, -) \simeq A^* \otimes_K -$

adjoint pair $(A \otimes_K -, A^* \otimes_K -)$,
counit $\varepsilon : A \otimes_K A^* \to K$, $a \otimes f \mapsto f(a)$,
unit $\eta : K \to A^* \otimes_K A$, $1 \mapsto \sum a_i^* \otimes a_i$ (dual basis).

$A \otimes_K -$ monad $\iff A^* \otimes_R -$ comonad, $A M \simeq A^* M$

entwining $\tau : A \otimes_K A^* \to A^* \otimes_K A$, $A^* M \simeq A^* \otimes A M$,
A-coring $A^* \otimes_K A \otimes A -$: $A M \to A M$,A^*-ring $A \otimes_K A^* \otimes A^* -$: $A^* M \to A^* M$

$A \otimes_K -$ comonad $\iff A^* \otimes_K -$ monad, $A \tilde{M} \simeq A^* \tilde{M}$
Finite dimensional algebras: $\text{Hom}_K(A, -) \simeq A^* \otimes_K -$

adjoint pair $(A \otimes_K -, A^* \otimes_K -),$
counit $\varepsilon: A \otimes_K A^* \to K, a \otimes f \mapsto f(a),$
unit $\eta: K \to A^* \otimes_K A, 1 \mapsto \sum a_i^* \otimes a_i$ (dual basis).

$A \otimes_K -$ monad $\iff A^* \otimes_R -$ comonad, $A \tilde{M} \simeq A^* M$

entwining $\tau: A \otimes_K A^* \to A^* \otimes_K A,$ $A \tilde{M} \simeq A^* \otimes A \tilde{M},$
A-coring $A^* \otimes_K A \otimes_A -: A \tilde{M} \to A \tilde{M},$
A*-ring $A \otimes_K A^* \otimes A^* -: A^* \tilde{M} \to A^* \tilde{M}$

$A \otimes_K -$ comonad $\iff A^* \otimes_K -$ monad, $A \tilde{\tilde{M}} \simeq A^* \tilde{\tilde{M}}$

entwining $\tau: A \otimes_K A^* \to A^* \otimes_K A,$ $A \tilde{\tilde{M}} \simeq A^* \tilde{\tilde{M}},$
monad $A \tilde{\tilde{M}} \to A \tilde{\tilde{M}},$ $A \otimes X \mapsto A \otimes A^* \otimes X$
Finite dimensional algebras: \(\text{Hom}_K(A, -) \cong A^* \otimes_K - \)

Adjoint pair	\((A \otimes_K -, A^* \otimes_K -)\)
Counit \(\varepsilon \)	\(A \otimes_K A^* \to K, a \otimes f \mapsto f(a) \)
Unit \(\eta \)	\(K \to A^* \otimes_K A, 1 \mapsto \sum a_i^* \otimes a_i \) (dual basis)

\(A \otimes_K - \) monad \(\iff \) \(A^* \otimes_R - \) comonad, \(\tilde{A}M \cong A^* M \)

Entwining \(\tau \)	\(A \otimes_K A^* \to A^* \otimes_K A, \quad \tilde{A}M \cong A^* \tilde{M} \)
A-coring	\(A^* \otimes_K A \otimes A \dashv: \quad \tilde{A}M \to A\tilde{M} \)
A*-ring	\(A \otimes_K A^* \otimes A^* \dashv: \quad \tilde{A}M \to A^* \tilde{M} \)

\(A \otimes_K - \) comonad \(\iff \) \(A^* \otimes_K - \) monad, \(\tilde{A}\tilde{M} \cong A^* \tilde{M} \)

Entwining \(\tau \)	\(A \otimes_K A^* \to A^* \otimes_K A, \quad \tilde{A}\tilde{M} \cong A^* \tilde{M} \)
Monad	\(\tilde{A}\tilde{M} \to \tilde{A}\tilde{M}, \quad A \otimes X \mapsto A \otimes A^* \otimes X \)
Comonad	\(A^* \tilde{M} \to A^* \tilde{M}, \quad A^* \otimes Y \mapsto A^* \otimes A \otimes Y \)
Finite dimensional algebras: $\text{Hom}_K(A, -) \cong A^* \otimes_K -$

Nakayama functors, $D(-) := (-)^*, \ D(A) = A^*$

\[
\begin{align*}
\nu(-) & \coloneqq D \text{Hom}_A(-, AA) : \ A - \text{mod} \to A - \text{mod} \\
\nu^-(-) & \coloneqq \text{Hom}_A(D(-), A_A) : \ A - \text{mod} \to A - \text{mod} \\
\nu(X) & \coloneqq D \text{Hom}_A(X, AA) \cong D(A) \otimes_A X, \\
\nu^-(X) & \coloneqq \text{Hom}_A(D(X), A_A) \cong \text{Hom}_A(D(A), X),
\end{align*}
\]
Finite dimensional algebras: $\text{Hom}_K(A, -) \simeq A^* \otimes_K -$

Nakayama functors, $D(-) := (-)^*, D(A) = A^*$

Function	Description	Domain	Codomain
$\nu(-)$	$D \text{Hom}_A(-, AA)$	$A - \text{mod}$	$A - \text{mod}$
$\nu^\perp(-)$	$\text{Hom}_A(D(-), AA)$	$A - \text{mod}$	$A - \text{mod}$
$\nu(X)$	$D \text{Hom}_A(X, AA)$	\simeq	$D(A) \otimes_A X,$
$\nu^\perp(X)$	$\text{Hom}_A(D(X), AA)$	\simeq	$\text{Hom}_A(D(A), X),$

Adjoint pair

$\text{Hom}_A(D(A), -)$: $A - \text{mod} \to A - \text{mod},$

$D(A) \otimes_A -$: $A - \text{mod} \to A - \text{mod}$
Thank you!
Bimonads

Antipode - natural transformation $S : B \to B$

- $B \xrightarrow{\varepsilon} I \xrightarrow{\eta} B$
- $BB \xrightarrow{S_B} BB$
- $\delta : B \to I$
- $\mu : BB \to B$

Equivalent:
- (a) B has an antipode;
- (b) γ is an isomorphism.
Bimonads

Antipode - natural transformation $S : B \rightarrow B$

$$
\begin{array}{ccc}
B & \xrightarrow{\varepsilon} & I \\
\downarrow{\delta} & & \uparrow{\mu} \\
BB & \xrightarrow{S_B} & BB
\end{array}
$$

Natural map

$$
\gamma : BB \xrightarrow{\delta_B} BBB \xrightarrow{B_m} BB
$$

Equivalent:

(a) B has an antipode;

(b) γ is an isomorphism.
Bimonads

Antipode - natural transformation $S : B \to B$

$$
\begin{array}{ccc}
B & \xrightarrow{\varepsilon} & I \\
\downarrow{\delta} & & \downarrow{\eta} \\
BB & \xrightarrow{S_B} & BB \\
\end{array}
$$

Natural map

$$\gamma : BB \xrightarrow{\delta_B} BBB \xrightarrow{Bm} BB$$

Equivalent

(a) B has an antipode;
(b) γ is an isomorphism.
Braided bimonads

Consider $\mathcal{B} = (B, m, e, \delta, \varepsilon)$, where $B : A \to A$ is such that $\underline{B} = (B, m, e)$ is a monad and $\overline{B} = (B, \delta, \varepsilon)$ is a comonad.

Double entwinings

natural transformation $\tau : BB \to BB$ such that

1. τ is a mixed distributive law from the monad \underline{B} to the comonad \overline{B};
2. τ is a mixed distributive law from the comonad \overline{B} to the monad \underline{B}.

These conditions are obviously equivalent to

3. τ is a monad distributive law for the monad \underline{B};
4. τ is a comonad distributive law for the comonad \overline{B}.
Braided bimonads

Consider $\mathcal{B} = (B, m, e, \delta, \varepsilon)$, where $B : \mathbb{A} \to \mathbb{A}$ is such that $\underline{B} = (B, m, e)$ is a monad and $\overline{B} = (B, \delta, \varepsilon)$ is a comonad.

Double entwinings

natural transformation $\tau : BB \to BB$ such that

(i) τ is a mixed distributive law from the monad \underline{B} to the comonad \overline{B};

(ii) τ is a mixed distributive law from the comonad \overline{B} to the monad \underline{B}.

These conditions are obviously equivalent to

(iii) τ is a monad distributive law for the monad \underline{B};

(iv) τ is a comonad distributive law for the comonad \overline{B}.
Braided bimonads

Consider $\mathcal{B} = (B, m, e, \delta, \varepsilon)$, where $B : A \to A$ is such that $\underline{B} = (B, m, e)$ is a monad and $\overline{B} = (B, \delta, \varepsilon)$ is a comonad.

Double entwinings

natural transformation $\tau : BB \to BB$ such that

(i) τ is a mixed distributive law from the monad \underline{B} to the comonad \overline{B};

(ii) τ is a mixed distributive law from the comonad \overline{B} to the monad \underline{B}.
Braided bimonads

Consider $\mathcal{B} = (B, m, e, \delta, \varepsilon)$, where $B : \mathbb{A} \to \mathbb{A}$ is such that $\underline{B} = (B, m, e)$ is a monad and $\overline{B} = (B, \delta, \varepsilon)$ is a comonad.

Double entwinings

natural transformation $\tau : BB \to BB$ such that

(i) τ is a mixed distributive law from the monad \underline{B} to the comonad \overline{B};

(ii) τ is a mixed distributive law from the comonad \overline{B} to the monad \underline{B}.

These conditions are obviously equivalent to

(iii) τ is a monad distributive law for the monad \underline{B};

(iv) τ is a comonad distributive law for the comonad \overline{B}.
Braided bimonads

Let $\tau : BB \to BB$ be a double entwining - commutative

$$BB \xrightarrow{m} B \xrightarrow{\delta} BB$$

$$\delta \delta$$

$$BBBB \xrightarrow{B\tau B} BBBB,$$

Then $\overline{\tau} : BB \xrightarrow{\delta B} BBB \xrightarrow{B\tau} BBB \xrightarrow{mB} BB$ is a **mixed distributive law** from the monad B to the comonad \overline{B}.

$$BB \xrightarrow{B\varepsilon} B$$

$$m \downarrow \quad \varepsilon \downarrow \quad e \downarrow \quad \delta$$

$$B \xrightarrow{\varepsilon} 1,$$

$$1\xleftarrow{e} B \xrightarrow{\varepsilon} 1,$$

$$1 \xrightarrow{e} B \xrightarrow{\varepsilon} 1.$$
Braided bimonads

\(\tau^2 = 1 \) and \(\tau \) satisfies the Yang-Baxter equation

\[
\begin{array}{c}
\text{BBB} \xrightarrow{\tau B} \text{BBB} \xrightarrow{B\tau} \text{BBB} \\
\downarrow B\tau \quad \quad \quad \quad \downarrow \tau B
\end{array}
\]

BBB then

\[
\begin{array}{c}
\text{BBB} \xrightarrow{\tau B} \text{BBB} \xrightarrow{B\tau} \text{BBB} \\
\downarrow B\tau \quad \quad \quad \quad \downarrow \tau B
\end{array}
\]

BBB
Braided bimonads

\(\tau^2 = 1\) and \(\tau\) satisfies the Yang-Baxter equation

\[
\begin{align*}
BBB & \xrightarrow{\tau B} BBB \xrightarrow{B\tau} BBB \\
& \xrightarrow{B\tau} BBB \xrightarrow{\tau B} BBB
\end{align*}
\]

then

\[
\begin{align*}
BBB & \xrightarrow{\tau B} BBB \xrightarrow{B\tau} BBB \\
& \xrightarrow{B\tau} BBB \xrightarrow{\tau B} BBB
\end{align*}
\]

\(BB\) is a bimonad

with multiplication, comultiplication and entwining structure

\[
\begin{align*}
BBBB & \xrightarrow{B\tau B} BBBBB \xrightarrow{mm} BB \\
BB & \xrightarrow{\delta\delta} BBBBB \xrightarrow{B\tau B} BBBBB, \\
BBBB & \xrightarrow{B\tau B} BBBBB \xrightarrow{\tau\tau} BBBBB \xrightarrow{B\tau B} BBBBB
\end{align*}
\]
Given τ as above, an opposite bimonad B^{op} can be defined for B with multiplication

$$m \cdot \tau : BB \xrightarrow{\tau} BB \xrightarrow{m} B$$

and comultiplication

$$\tau \cdot \delta : B \xrightarrow{\delta} BB \xrightarrow{\tau} BB.$$

If B has an antipode S, then $S : B^{\text{op}} \to B$ is a bimonad morphism provided that

$$\tau \cdot BS = SB \text{ and } \tau \cdot BS = SB.$$
Module categories

Coalgebras - comultiplication and counit, $C \otimes_R \cdot : R M \to R M$

$\Delta : C \to C \otimes_R C, \quad \varepsilon : C \to R,$

with coassociativity and counitality conditions.
Module categories

Coalgebras - comultiplication and counit, $C \otimes_R - : R\text{M} \rightarrow R\text{M}$

$\Delta : C \rightarrow C \otimes_R C, \quad \varepsilon : C \rightarrow R,$

with coassociativity and counitality conditions.

C-comodules - category ^CM

$q^M : M \rightarrow C \otimes_R M,$

with compatibility conditions.
Module categories

Coalgebras - comultiplication and counit, $C \otimes_R - : R^M \rightarrow R^M$

$\Delta : C \rightarrow C \otimes_R C$, $\varepsilon : C \rightarrow R$, with coassociativity and counitality conditions.

C-comodules - category C_M

$q^M : M \rightarrow C \otimes_R M$, with compatibility conditions.

Adjoint functors - $M \in R^M$, $X \in ^C_M$

$U^C : ^C_M \rightarrow R^M$, $C \otimes_R - : R^M \rightarrow ^C_M$, $Hom_C(M, C \otimes_R X) \rightarrow Hom_R(M, X)$, $f \mapsto \varepsilon_X \circ f$.
Module categories

Coalgebras - comultiplication and counit, $C \otimes_R - : \mathcal{R}M \to \mathcal{R}M$

$$\Delta : C \to C \otimes_R C, \quad \varepsilon : C \to R,$$

with coassociativity and counitality conditions.

C-comodules - category $\mathcal{C}M$

$$\rho^M : M \to C \otimes_R M,$$

with compatibility conditions.

Adjoint functors - $M \in \mathcal{R}M, X \in \mathcal{C}M$

$$U^C : \mathcal{C}M \to \mathcal{R}M, \quad C \otimes_R - : \mathcal{R}M \to \mathcal{C}M,$$

$$\text{Hom}^C(M, C \otimes_R X) \to \text{Hom}_R(M, X), \quad f \mapsto \varepsilon_X \circ f.$$
Modules and comodules on R^M

Equivalent for $C \in R^M$:

(a) $C \otimes_R - : R^M \to R^M$ is a comonad (C is an R-coalgebra);
(b) $\text{Hom}_R(C, -) : R^M \to R^M$ is a monad.
Modules and comodules on \mathbb{R}^M

Equivalent for $C \in \mathbb{R}^M$:

(a) $C \otimes_R - : \mathbb{R}^M \to \mathbb{R}^M$ is a comonad (C is an R-coalgebra);

(b) $\text{Hom}_R(C, -) : \mathbb{R}^M \to \mathbb{R}^M$ is a monad.

The category \mathbb{C}^M

1. \mathbb{C}^M has colimits, coproducts and cokernels;
Modules and comodules on R^M

Equivalent for $C \in R^M$:

(a) $C \otimes_R - : R^M \rightarrow R^M$ is a comonad (C is an R-coalgebra);
(b) $\text{Hom}_R(C, -) : R^M \rightarrow R^M$ is a monad.

The category C^M

(1) C^M has colimits, coproducts and cokernels;
(2) C^M is abelian provided C_R is flat;
Modules and comodules on R^M

Equivalent for $C \in R^M$:

(a) $C \otimes_R - : R^M \to R^M$ is a comonad (C is an R-coalgebra);
(b) $\text{Hom}_R(C, -) : R^M \to R^M$ is a monad.

The category C^M

(1) C^M has colimits, coproducts and cokernels;
(2) C^M is abelian provided C_R is flat;
(3) monomorphisms need not be injective maps.
Modules and comodules on $\mathbb{R}^{\mathbb{M}}$

Equivalent for $C \in \mathbb{R}^{\mathbb{M}}$:

(a) $C \otimes_{\mathbb{R}} - : \mathbb{R}^{\mathbb{M}} \to \mathbb{R}^{\mathbb{M}}$ is a comonad (C is an \mathbb{R}-coalgebra);

(b) $\text{Hom}_{\mathbb{R}}(C, -) : \mathbb{R}^{\mathbb{M}} \to \mathbb{R}^{\mathbb{M}}$ is a monad.

The category $\mathbb{C}^{\mathbb{M}}$:

(1) $\mathbb{C}^{\mathbb{M}}$ has colimits, coproducts and cokernels;

(2) $\mathbb{C}^{\mathbb{M}}$ is abelian provided $C_{\mathbb{R}}$ is flat;

(3) monomorphisms need not be injective maps.

The category $\mathbb{M}[C, -]$:

(1) $\mathbb{M}[C, -]$ has limits, products and kernels;
Modules and comodules on R^M

Equivalent for $C \in R^M$:

(a) $C \otimes_R - : R^M \to R^M$ is a comonad (C is an R-coalgebra);
(b) $\text{Hom}_R(C, -) : R^M \to R^M$ is a monad.

The category $^C M$

(1) $^C M$ has colimits, coproducts and cokernels;
(2) $^C M$ is abelian provided C_R is flat;
(3) monomorphisms need not be injective maps.

The category $M[C, -]$

(1) $M[C, -]$ has limits, products and kernels;
(2) $M[C, -]$ is abelian provided C_R is projective;
Modules and comodules on R^M

Equivalent for $C \in R^M$:

(a) $C \otimes_R - : R^M \to R^M$ is a comonad (C is an R-coalgebra);
(b) $\text{Hom}_R(C, -) : R^M \to R^M$ is a monad.

The category C^M

1. C^M has colimits, coproducts and cokernels;
2. C^M is abelian provided C_R is flat;
3. monomorphisms need not be injective maps.

The category $M[C,-]$

1. $M[C,-]$ has limits, products and kernels;
2. $M[C,-]$ is abelian provided C_R is projective;
3. epimorphisms need not be surjective maps.
Monads and Comonads in R^M

Correspondence of categories

$$\text{Hom}^C(C, -) : {^CM} \rightarrow {^M[C, -]}, \quad M \mapsto \text{Hom}^C(C, M).$$

has left adjoint (contratensor product).
Monads and Comonads in $\mathcal{R}^\mathcal{M}$

Correspondence of categories

$\text{Hom}^C(C, -) : \mathcal{C}^\mathcal{M} \to \mathcal{M}_{[C, -]}$, $M \mapsto \text{Hom}^C(C, M)$.

has left adjoint (contratensor product).

Equivalence of Kleisli categories

For any $X \in \mathcal{R}^\mathcal{M}$,

$C \otimes_R X \leftrightarrow \text{Hom}^C(C, C \otimes_R X) \simeq \text{Hom}_R(C, X)$,

$\text{Hom}_R(C, X) \leftrightarrow C \otimes_{[C, -]} \text{Hom}_R(C, X) \simeq C \otimes_R X$.
The monads $\mathcal{R}C^* \otimes_R -$ and $[C, -]$

$\beta_M : C^* \otimes_R M \to \text{Hom}_R(C, M), \quad f \otimes m \mapsto [c \mapsto f(c)m].$
The monads $\mathcal{R}(C^* \otimes_R -)$ and $[C, -]$

$\beta_M : C^* \otimes_R M \to \text{Hom}_R(C, M), \quad f \otimes m \mapsto [c \mapsto f(c)m].$

This yields a functor

$$F : \mathcal{M}[C, -] \to C^* \mathcal{M}$$

$$\text{Hom}_R(C, M) \to M \ni [c \mapsto f(c)m] \mapsto C^* \otimes_R M \xrightarrow{\beta_M} \text{Hom}_R(C, M) \to M.$$
Modules and comodules in \mathcal{M}

The monads $R C^* \otimes_R -$ and $[C, -]$

\[\beta_M : C^* \otimes_R M \to \text{Hom}_R(C, M), \quad f \otimes m \mapsto [c \mapsto f(c)m]. \]

This yields a functor

\[F : \mathcal{M}[C, -] \longrightarrow C^* \mathcal{M} \]

\[\text{Hom}_R(C, M) \to M \quad \mapsto \quad C^* \otimes_R M \xrightarrow{\beta_M} \text{Hom}_R(C, M) \to M. \]

The comonads $C \otimes_R -$ and $\text{Hom}_R(C^*, -)$

\[\alpha_M : C \otimes_R M \to \text{Hom}_R(C^*, M), \quad c \otimes m \mapsto [f \mapsto f(c)m]. \]
Modules and comodules in \mathcal{M}

The monads $\mathcal{R}C^* \otimes \mathcal{R} -$ and $[C, -]$

$\beta_M : C^* \otimes \mathcal{R} M \to \text{Hom}_\mathcal{R}(C, M), \quad f \otimes m \mapsto [c \mapsto f(c)m].$

This yields a functor

$F : \mathcal{M}_{[C,-]} \longrightarrow C^*\mathcal{M}$

$\text{Hom}_\mathcal{R}(C, M) \to M \quad \mapsto \quad C^* \otimes \mathcal{R} M \xrightarrow{\beta_M} \text{Hom}_\mathcal{R}(C, M) \to M.$

The comonads $C \otimes \mathcal{R} -$ and $\text{Hom}_\mathcal{R}(C^*, -)$

$\alpha_M : C \otimes \mathcal{R} M \to \text{Hom}_\mathcal{R}(C^*, M), \quad c \otimes m \mapsto [f \mapsto f(c)m].$

This yields a functor

$G : \mathcal{M}^C \longrightarrow \mathcal{M}^{(C^*, -)} \cong C^*\mathcal{M}$

$M \to C \otimes \mathcal{R} M \quad \mapsto \quad M \to C \otimes \mathcal{R} M \xrightarrow{\alpha_M} \text{Hom}_\mathcal{R}(C^*, M).$
Module categories

Adjoint functors between module categories \(R^M, S^M \) by \(R^P_S \)

\[
P \otimes_S - : S^M \to R^M, \quad \text{Hom}_R(P, -) : R^M \to S^M.
\]
Module categories

Adjoint functors between module categories $\mathcal{R}\mathcal{M}$, $\mathcal{S}\mathcal{M}$ by $\mathcal{R}\mathcal{P}\mathcal{S}$

$P \otimes_S - : \mathcal{S}\mathcal{M} \to \mathcal{R}\mathcal{M}$, $\operatorname{Hom}_R(P, -) : \mathcal{R}\mathcal{M} \to \mathcal{S}\mathcal{M}$.

Adjunction - $N \in \mathcal{R}\mathcal{M}$, $X \in \mathcal{S}\mathcal{M}$

$\operatorname{Hom}_R(P \otimes_S X, N) \to \operatorname{Hom}_S(X, \operatorname{Hom}_R(P, N))$, $f \mapsto [x \mapsto f(- \otimes x)]$.
Module categories

Adjoint functors between module categories R^M, S^M by RP_S

\[P \otimes_S - : S^M \to R^M, \quad \text{Hom}_R(P, -) : R^M \to S^M. \]

Adjunction - $N \in R^M$, $X \in S^M$

\[\text{Hom}_R(P \otimes_S X, N) \to \text{Hom}_S(X, \text{Hom}_R(P, N)), \]
\[f \mapsto [x \mapsto f(- \otimes x)]. \]

Count unit and unit

\[\varepsilon_M : P \otimes_S \text{Hom}_R(P, M) \to M, \quad p \otimes f \mapsto f(p), \]
\[\eta_X : X \to \text{Hom}_R(P, P \otimes_S X), \quad x \mapsto [p \mapsto p \otimes x]. \]
Module categories

equivalent

(a) ε_M is an epi(iso)morphism for all $M \in R^M$;
(b) $\text{Hom}_R(P, -) : R^M \to S^M$ is faithful;
(c) P is a generator in R^M.
Module categories

equivalent

(a) ε_M is an epi(iso)morphism for all $M \in R\mathbb{M}$;
(b) $\text{Hom}_R(P, -) : R\mathbb{M} \to S\mathbb{M}$ is faithful;
(c) P is a generator in $R\mathbb{M}$.

equivalent

(a) η_X is an isomorphism for all $X \in S\mathbb{M}$;
(b) $P \otimes_S -$ is full and faithful (faithfully flat).
Module categories

equivalent

- (a) ε_M is an epi(iso)morphism for all $M \in R\mathcal{M}$;
- (b) $\text{Hom}_R(P, -) : R\mathcal{M} \to S\mathcal{M}$ is faithful;
- (c) P is a generator in $R\mathcal{M}$.

equivalent

- (a) η_X is an isomorphism for all $X \in S\mathcal{M}$;
- (b) $P \otimes_S -$ is full and faithful (faithfully flat).

equivalent

- (a) η and ε are isomorphisms;
- (b) $P \otimes_S -$ is an equivalence (with inverse $\text{Hom}_R(P, -)$);
- (c) $R\!P$ is a finitely generated, projective generator and $S = \text{End}_R(P)$.
equivalent if $S = \text{End}_R(P)$

(a) ε_M is a monomorphism for all $M \in R \mathcal{M}$,
η_X is an epimorphism for all $X \in S \mathcal{M}$;

(b) $(P \otimes_S -, \text{Hom}_R(P, -))$ induces an equivalence

\[P \otimes_S - : S \mathcal{M} \text{Hom}_R(P, P \otimes_S -) \longrightarrow R \mathcal{M} P \otimes_S \text{Hom}_R(P, -). \]
Module categories

equivalent if $S = \text{End}_R(P)$

(a) ε_M is a monomorphism for all $M \in \mathcal{R}M$, η_X is an epimorphism for all $X \in \mathcal{S}M$;

(b) $(P \otimes_S -, \text{Hom}_R(P, -))$ induces an equivalence

$$P \otimes_S - : \mathcal{S}M\text{Hom}_R(P, P \otimes_S-) \rightarrow \mathcal{R}M \text{Hom}_R(P, -).$$

In this case P is a \ast-module (in the sense of Menini-Orsatti).
Module categories

Equivalent if $S = \text{End}_R(P)$

(a) ε_M is a monomorphism for all $M \in \mathcal{R}\mathcal{M}$,
η_X is an epimorphism for all $X \in \mathcal{S}\mathcal{M}$;

(b) $(P \otimes_S - , \text{Hom}_R(P, -))$ induces an equivalence

\[P \otimes_S - : \mathcal{S}\mathcal{M}\text{Hom}_R(P, P \otimes_S -) \longrightarrow \mathcal{R}\mathcal{M}P \otimes_S \text{Hom}_R(P, -). \]

In this case P is a \ast-module (in the sense of Menini-Orsatti).

Tilting modules P

P \ast-module and for any $M \in \mathcal{R}\mathcal{M}$, there is monomorphism
$M \rightarrow P \otimes_S X$, for some $X \in \mathcal{S}\mathcal{M}$.

(implies Brenner-Butler equivalence)
Module categories

$\mathbb{R}P$ finitely generated and projective	$\text{Hom}_\mathbb{R}(P, -) \simeq P^* \otimes \mathbb{R} -$
adjoint pair	$(P \otimes \mathbb{R} - , P^* \otimes \mathbb{R} -)$
counit	$\varepsilon : P \otimes \mathbb{R} P^* \rightarrow \mathbb{R}, p \otimes f \mapsto f(p)$
unit	$\eta : \mathbb{R} \rightarrow P^* \otimes \mathbb{R} P, 1 \mapsto \sum p_i^* \otimes p_i$ (dual basis).
Module categories

\[\mathcal{R}P \text{ finitely generated and projective} \]

\[\text{Hom}_\mathcal{R}(P, -) \simeq P^* \otimes_{\mathcal{R}} - \]

- **Adjoint pair** \((P \otimes_{\mathcal{R}} -, P^* \otimes_{\mathcal{R}} -)\),
 - **Counit** \(\varepsilon: P \otimes_{\mathcal{R}} P^* \to \mathcal{R}, \ p \otimes f \mapsto f(p),\)
 - **Unit** \(\eta: \mathcal{R} \to P^* \otimes_{\mathcal{R}} P, \ 1 \mapsto \sum p_i^* \otimes p_i \) (dual basis).

\[P^* \otimes_{\mathcal{R}} P \otimes_S - \text{ is a monad on } \text{Sm} (S\text{-ring}) \]

\[P^* \otimes_{\mathcal{R}} P \overset{\sim}{\longrightarrow} \text{End}_\mathcal{R}(P), \ f \otimes p \mapsto [x \mapsto f(x)p]. \]
R_P finitely generated and projective\hspace{1cm}Hom$_R(P, -) \simeq P^* \otimes_R -$

adjoint pair\hspace{1cm}$(P \otimes_R -, P^* \otimes_R -)$,

\begin{itemize}
 \item counit $\varepsilon : P \otimes_R P^* \to R, \ p \otimes f \mapsto f(p)$,
 \item unit $\eta : R \to P^* \otimes_R P, \ 1 \mapsto \sum p^*_i \otimes p_i$ (dual basis).
\end{itemize}

$P^* \otimes_R P \otimes_S -$ is a monad on $S^\mathbb{M}$ (S-ring)

$P^* \otimes_R P \xrightarrow{\sim} \text{End}_R(P), \ f \otimes p \mapsto [x \mapsto f(x)p].$

$P \otimes_S P^* \otimes_R -$ is a comonad on $R^\mathbb{M}$ (R-coring) - coproduct

$P \otimes_S P^* \to P \otimes_S P^* \otimes_R P \otimes_S P^*, \ p \otimes f \mapsto \sum p \otimes p^*_i \otimes p_i \otimes f.$
Module categories

$P = R^n$	$\text{End}_R(R^n) \simeq M_n(R)$, R commutative
adjoint pair	$(R^n \otimes_R -, (R^n)^t \otimes_R -)$,
counit	$\varepsilon : R^n \otimes_R (R^n)^t \rightarrow R$, evaluation,
unit	$\eta : R \rightarrow (R^n)^t \otimes_R R^n$, $1 \mapsto \sum e_i^* \otimes e_i$.
Module categories

$P = R^n$	$\text{End}_R(R^n) \cong M_n(R)$, R commutative
adjoint pair	$(R^n \otimes_R - , (R^n)^t \otimes_R -)$,
counit	$\varepsilon : R^n \otimes_R (R^n)^t \to R$, evaluation,
unit	$\eta : R \to (R^n)^t \otimes_R R^n$, $1 \mapsto \sum e_i^* \otimes e_i$.

$M_n(R)$ is R-algebra and R-coalgebra.
Module categories

\[P = R^n \quad \text{End}_R(R^n) \cong M_n(R), \ R \text{ commutative} \]

adjoint pair \[(R^n \otimes_R -, (R^n)^t \otimes_R -), \]

counit \[\varepsilon : R^n \otimes_R (R^n)^t \to R, \ \text{evaluation}, \]

unit \[\eta : R \to (R^n)^t \otimes_R R^n, \ 1 \mapsto \sum e_i^* \otimes e_i. \]

\[M_n(R) \text{ is } R\text{-algebra and } R\text{-coalgebra}. \]

Sweedler coring: \[h : R \to A, \ P = AA_R, 1975 \]

\[\delta : A \otimes_R A \to A \otimes_R A \otimes_A A \otimes_R A, \]

\[a \otimes b \mapsto a \otimes 1 \otimes_A 1 \otimes b; \]

\[\varepsilon = m : A \otimes_R A \to A, \]

\[a \otimes b \mapsto ab. \]
References

Beck, J., Distributive laws, in *Seminar on Triples and Categorical Homology Theory*, B. Eckmann (ed.), Springer LNM 80, 119-140 (1969)

Brzeziński, T. and Majid, Sh., Comodule bundles, *Commun. Math. Physics* 191, 467-492 (1998)

Böhm, G., Brzeziński, T. and Wisbauer, R., *Monads and comonads in module categories*, J. Algebra 322(5) (2009), 1719-1747.

Brzeziński, T. and Wisbauer, R., *Corings and Comodules*, Cambridge Univ. Press (2003)

Clark, J. and Wisbauer, R., *Idempotent monads and \(\star\)-functors*, J. Pure Appl. Algebra 215(2) (2011), 145-153.

Eilenberg, S. and Moore, J.C., Adjoint functors and triples, *Ill. J. Math.* 9, 381-398 (1965)