Data Article

Data representing applicability of developed growth hormone 1 (GH1) gene detection method for detecting Atlantic salmon (Salmo salar) at high specificity to processed salmon commodities

Keisuke Soga a, Kosuke Nakamura a,*, Takumi Ishigaki a, Shinya Kimata a, Kiyomi Ohmori b, Masahiro Kishine c, Junichi Mano c, Reona Takabatake c, Kazumi Kitt a, Hiroyuki Nagoya d, Kazunari Kondo a

a National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 215-9501, Japan
b Chemistry Division, Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki, Kanagawa, 253-0087, Japan
c Division of Analytical Science, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305–8642, Japan
d Research Center for Aquatic Breeding, National Research Institute of Aquaculture, Fisheries Research and Education Agency, 224-1 Hiruta, Tamaki-cho, Mie, 519-0423, Japan

ABSTRACT

This article is referred to the research article entitled “Development of a novel method for specific detection of genetically modified Atlantic salmon, AquAdvantage, using real-time polymerase chain reaction” by Soga et al. (2020). Applicability of the developed growth hormone 1 (GH1) and 18S ribosomal DNA (18S rDNA) detection methods using real-time polymerase chain reaction (PCR) for detecting Atlantic salmon (Salmo salar) to processed food commodities was examined. DNAs extracted and purified from 24 commodities labelled to include salmon as an ingredient were used as template. Yield and purity of
Real-time polymerase chain reaction (PCR)
Growth hormone 1
Processed foods
Detection method

DNA samples were quantified by measuring the UV absorption at 260 nm (A260) using ND-1000 spectrophotometer. The quality of the samples was estimated from the UV absorption ratios at 260 and 280 nm (A260/A280) and 260 and 230 nm (A260/A230). For real-time PCR analysis, the baseline was set to cycles 3 through 15. The ΔRn threshold for plotting the cycle threshold (Cq) values was set to 0.2 during exponential amplification. Reactions with the Cq value of less than 48 and exponential amplification plots were scored as positive. If the Cq value could not be obtained, the reaction was scored as negative. Reactions with the Cq value of less than 48, but without exponential amplification as judged by visual inspection of the respective ΔRn plots and multi-component plots were scored as negative.

Data source location
Institution: National Institute of Health Sciences
City/Town: Kawasaki/Kanagawa
Country: Japan

Data accessibility
With the article

Related research article
Author's name: Keisuke Soga, Kosuke Nakamura, Takumi Ishigaki, Shinya Kimata, Kiyomi Ohmori, Masahiro Kishine, Junichi Mano, Reona Takabatake, Kazumi Kitta, Hiroyuki Nagoya, Kazunari Kondo
Title: Development of a novel method for specific detection of genetically modified Atlantic salmon, AquAdvantage, using real-time polymerase chain reaction
Journal: Food Chemistry
DOI: https://doi.org/10.1016/j.foodchem.2019.125426

Value of the Data
- These data provide information concerning applicability of GH1 and 18S rDNA detection methods to various processed salmon commodities to detect Salmo salar (Atlantic salmon) ingredient.
- The data are beneficial for researchers who are trying to detect or confirm the presence of Atlantic salmon derived ingredient in foods.
- These data show potential of developed real-time PCR detection method to monitor Atlantic salmon in various processed salmon commodities at high sensitivity and specificity.
- The data provide information concerning DNA yield and purification efficiency from various processed salmon commodities that were produced worldwide and applicability of developed GH1 detection method [1] that was more sensitive than the original method described [2] to the commodities.
1. Data

Table 1 summarizes the information on processed salmon commodities, including food processing type, production country, food ingredient labelled in Japan and recommended preservation state. Table 2 is the list of information on sequences of real-time PCR primer pairs and probes used in this dataset. Table 3 presents the specificity test data using developed 18S rDNA detection method. Table 4 shows the data of DNA yields and purity obtained from 24 kinds of processed salmon commodities, and of real-time PCR tests using 18S rDNA and GH1 detection methods.

Sample no.	Food processing type	Commodity name	Production country	Ingredient on the food label in Japan	Recommended preservation state
1	Smoked	Smoked salmon	Chile	Atlantic salmon, Salt, Sugar	Frozen
2	Smoked	Smoked salmon	Japan	Chilean cultured Atlantic salmon, Salt, Sugar, Spice	Frozen
3	Smoked	Smoked salmon	Japan	Norwegian Atlantic salmon, Seaweed salt, White superior soft sugar, Onion powder, (A part of the ingredients contains a salmon.)	Frozen
4	Sliced	Atlantic salmon baked slice	Vietnam	Norwegian cultured Atlantic salmon	Frozen
5	Daily dish	Daily dish	Japan	Atlantic salmon	Frozen
6	Smoked salmon slice	Vietnam	Norwegian Atlantic salmon	Frozen	
7	Canned	Atlantic salmon backbone boiled in water	Vietnam	Norwegian Atlantic salmon, Salt	Room temperature
8	Processed salmon	Thailand	Atlantic salmon, Soybean oil, Salt, Garlic paste, Vegetables extract, Spice/Seasoning (Amino acids etc.), Thickener (Guar Gum)	Room temperature	
9	Processed fish	France	Atlantic salmon, Food with milk etc., Smoked Atlantic salmon, Wheat flour, Tomato paste, Mustard, Processed milk protein, Salt, Pepper, Allspice, Coriander	Room temperature	
10	Salmon midrib boiled in water	Japan	Silver salmon midrib (Oncorhynchus kisutch), Salt	Room temperature	
11	Smoked Atlantic salmon with oil	Japan	Atlantic salmon, Soybean oil, Salt, Sake	Room temperature	
12	Pink salmon boiled in water	Japan	Pink salmon (Oncorhynchus gorbuscha), Salt	Room temperature	
13	Dried Fishery dried products	Japan	Norwegian Atlantic salmon, Chilean Rainbow trout (Oncorhynchus mykiss), Rice vinegar, Seasoning (Amino acids etc.), (A part of the ingredients contains soybean and wheat.)	Room temperature	
14	Salmon flakes	Japan	Chum salmon (Oncorhynchus keta), Vegetable fats and oils (Rapeseed oil, Soybean oil), Reduced sugar syrup, Salt, Bonito extract powder, Kelp extract/Trehalose, Seasoning (Amino acids etc.), Antioxidant (Vitamin E), Emulsifier, Colorants (Red 102, Yellow 5), (A part of the ingredients contains salmon, soybean and fish sauce.)	Room temperature	
15	Salmon flakes	Japan	Chum salmon (Oncorhynchus keta), Vegetable fats and oils, Sugar, Salt, Reduced sugar syrup/Seasoning (Inorganic salt etc.), Colorants (Monascus, Carotinoid), (A part of the ingredients contains salmon and soybean,)	Room temperature	
16	Pasta sauce	Japan	Salmon sauce (Shortening [Rapeseed oil, Palm oil, Palm kernel oil]), Atlantic Salmon, Dextrin, Salt, Seafood extract, Sugar, Dried bonito	Room temperature	

(continued on next page)
2. Experimental design, materials, and methods

Twenty-four processed salmon commodities including six types (smoked, sliced, canned, dried, roe and pickled) were purchased through the Internet in Japan. Details of food ingredients labelled, production country and recommended preservation state were described in Table 1. The commodities were selected taking into account that a wide range of salmonids species is covered in the test, based on the phylogeny identified in salmonid species [3].

Sampling weight was 1 g for smoked, sliced, canned, roe and pickled commodities, and 0.5 g for dried commodities. DNA extraction and purification were done using GM quicker 3 kit (Nippon gene, Toyama, Japan) for smoked, sliced, canned and dried commodities. Genomic-tip 20/G (Qiagen, Hilden,
Germany) was used for salmon roe and pickled commodities. The quantity and the quality of DNA obtained were estimated from the ultraviolet (UV) absorption at 260 nm and its ratios at 260 and 280 nm (A$_{260}$/A$_{280}$) and 260 and 230 nm (A$_{260}$/A$_{230}$), respectively, using ND-1000 spectrophotometer (Thermo Fisher Scientific).

The primer pair and probe targeting GH1 were used as described previously [1,2]. The primer pair and probe targeting 18S rDNA were designed using Primer Express Software (Thermo Fisher Scientific, Version 3.0.1), based on the sequence given by NCBI (Salmo salar 18S ribosomal RNA gene, partial sequence, GenBank accession no. FJ710886) (Table 2). The probes were labelled with 6-carboxyfluorescein (FAM) at 5’ terminus and with 6-carboxytetramethylrhodamine (TAMRA) at 3’

Table 2
List of oligonucleotide primers and probes used.

Detection method	Target region (GenBank accession no.)	Name	Nucleotide sequences (5’ → 3’)a	Amplicon (bp)	Reference
GH1	Growth hormone 1 (X61938)	AM5F	AAGGTGCAAAAAACCATGTTGCTTCT	176	[1]
		AM5R	ATGTGACGTCTCTAGGTCTAGAC		
		AM5PR-2	[FAM]TTGGTTTCTTGTGCTTCT		
			ATTGCAGAAGTA[TAMRA]		
18S rDNA	18S ribosomal DNA (FJ710886)	18S-F	TGGCCGCTAGAGGTGAAATT	61	This dataset
		18S-R	GCAATAATCCTTCCGCTTCTCG		
		18S-P	[FAM]TTGGACCGGC		
			GCAAGACCG[TAMRA]		

a FAM, 6-carboxyfluorescein; TAMRA, 6-carboxytetramethylrhodamine.

The primer pair and probe targeting GH1 were used as described previously [1,2]. The primer pair and probe targeting 18S rDNA were designed using Primer Express Software (Thermo Fisher Scientific, Version 3.0.1), based on the sequence given by NCBI (Salmo salar 18S ribosomal RNA gene, partial sequence, GenBank accession no. FJ710886) (Table 2). The probes were labelled with 6-carboxyfluorescein (FAM) at 5’ terminus and with 6-carboxytetramethylrhodamine (TAMRA) at 3’

Table 3
Specificity test for 18S rDNA real-time PCR method.

Organism name	NCBI taxonomy ID	Real-time PCR detectiona	
Plants			
Allium cepa L.	4679	–	–
Apium graveolens	117781	–	–
Arachis hypogaea L.	3818	–	–
Brassica napus L.	3708	–	–
Brassica rapa var. perviridis	344680	–	–
Capsicum annuum var. annuum	40321	–	–
Carica papaya L.	3649	–	–
Citrus limon (L.) Burm.f.	2708	–	–
Cucurbita L.	3660	–	–
Daucus carota L.	4039	–	–
Glycine max (L.) Merr.	3847	–	–
Oryza sativa L.	4530	–	–
Solarium lycopersicum	4081	–	–
Solarium melongena L.	4111	–	–
Solarium tuberosum L.	4113	–	–
Triticum aestivum L.	4565	–	–
Zea mays L.	4577	–	–
Animals			
Bos taurus	9913	40.80	40.56
Sus scrofa	9823	40.54	42.18
Fishes			
Hyperoglyphe japonica	171196	18.28	18.32
Oncorhynchus keta	8018	19.73	19.63
Oncorhynchus kisutch	8019	19.59	19.48
Oncorhynchus masou ishikawae	8021	20.68	20.69
Oncorhynchus mykiss	8022	20.45	20.51
Pagrus major	143350	19.01	19.01
Scomber japonicus	13676	18.70	18.73
Salmo salar (Atlantic salmon)	8030	19.53	19.71
No template control	–	–	–

a Cq values obtained from a duplicate test per a sample were indicated.

$^-$. The reaction was scored as negative.
terminus. Oligonucleotide sequences of primer pairs and probes used in this dataset are shown in Table 2.

Fifty nanograms of extracted and purified DNA were used as template for real-time PCR analysis in duplicate tests per a sample. The fluorescence intensity when amplifying targeted DNA sequences was monitored by ABI PRISM 7900 Sequence Detection System (Thermo Fisher Scientific). Thermal cycling conditions were 95 °C for 10 min, followed by 50 cycles of 15 sec at 95 °C and 1 min at 57 °C. The baseline was set to cycles 3 through 15. The ΔRn threshold for plotting the cycle threshold (Cq) values was set to 0.2 during exponential amplification.

For tests, reactions with the Cq value of less than 48 and exponential amplification plots were scored as positive. If the Cq value was more than 48 or could not be obtained, the reaction was scored as negative. Reactions with the Cq value of less than 48, but without exponential amplification as judged by visual inspection of the respective ΔRn plots and multi-component plots were scored as negative. Specificity test of 18S rDNA method was performed using 17 kinds of plants, 2 kinds of animals and 8 kinds of fishes (Table 3).

Acknowledgments

This project was conducted under the support of the Ministry of Health, Labour and Welfare of Japan.

Table 4
DNA yield and purity obtained from the processed salmon commodities.

Sample No.	Salmon type	DNA yield (ng/g)a	DNA purity	Real-time PCR detectionb	18S rDNA method	GH1 method		
		A260/A280c	A260/A230d					
1	Salmo salar	87,375	1.53	2.77	17.03	16.90	27.49	27.38
2	(Atlantic salmon)	95,125	1.56	2.73	16.81	16.71	27.71	27.65
3	63,875	1.50	2.79	17.03	16.99	27.22	27.12	
4	64,625	1.50	2.77	16.51	16.45	27.13	27.08	
5	120,600	1.53	2.68	16.99	16.96	27.60	27.53	
6	101,800	1.55	2.61	17.12	16.99	27.90	28.03	
7	40,700	1.56	2.48	19.96	20.01	35.12	35.92	
8	84,400	1.52	2.64	18.98	18.99	31.16	31.27	
9	48,250	1.49	2.90	19.05	19.16	32.48	32.63	
11	158,250	1.52	2.72	19.42	19.45	32.92	32.92	
13	325,000	1.45	2.70	19.55	19.49	31.35	31.50	
16	38,750	1.48	2.99	18.06	17.97	27.42	27.37	
24	89,500	1.62	2.64	18.44	18.89	28.35	28.79	
10	Oncorhynchus kisutch	68,250	1.46	3.05	21.24	21.30	–	–
12	Oncorhynchus gorbuscha	171,250	1.53	2.70	19.34	19.29	–	–
14	Oncorhynchus keta	143,500	1.46	2.79	19.26	19.11	–	–
15	146,000	1.45	2.76	21.03	20.84	–	–	
22	Oncorhynchus nerka	47,200	1.56	2.64	19.30	19.12	–	–
17	Unknown	2,063	1.51	1.33	24.76	24.85	–	42.14
18	56,400	1.49	2.21	20.53	20.22	–	–	
19	84,000	1.55	2.62	19.00	18.80	–	–	
20	20,400	1.47	2.64	20.28	20.43	–	–	
21	20,500	1.45	2.71	19.42	19.43	–	–	
23	16,200	1.49	2.63	22.66	22.39	–	–	

a The reaction was scored as negative.
b According to the information on food label.
c DNA yield (ng) per 1 g sample.
d Absorbance ratio at 260 and 280 nm.
e Absorbance ratio at 260 and 230 nm.
f Cq values obtained from a duplicate test per a sample were indicated.
Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] K. Soga, K. Nakamura, T. Ishigaki, S. Kimata, K. Ohmori, M. Kishine, J. Mano, R. Takabatake, K. Kitta, H. Nagoya, K. Kondo, Development of a novel method for specific detection of genetically modified Atlantic salmon, AquAdvantage, using real-time polymerase chain reaction, Food Chem. 305 (2020) 125426, https://doi.org/10.1016/j.foodchem.2019.125426.

[2] A.B. Hafsa, N. Nabi, M.S. Zellama, K. Said, M. Chaouachi, A new specific reference gene based on growth hormone gene (GH1) used for detection and relative quantification of Aquadvantage® GM salmon (Salmo salar L.) in food products, Food Chem. 190 (2016) 1040–1045, https://doi.org/10.1016/j.foodchem.2015.06.064.

[3] S. Murata, N. Takasaki, M. Saitoh, H. Tachida, N. Okada, Details of retropositional genome dynamics that provide a rationale for a generic division: the distinct branching of all the Pacific salmon and Trout (Oncorhynchus) from the Atlantic salmon and trout (Salmo), Genetics 142 (1996) 915–926.