Using of Neuro-Indexes by Search Engines

Valerii Garnaga
Information Technologies
Kuban State University
Krasnodar, 350040, Stavropolaskaya st, 149, Russia

Abstract
The article describes a new data structure called neuro-index. It is an alternative to well-known file indexes. The neuro-index is fundamentally different because it stores weight coefficients in neural network. It is not a reference type like "keyword–position in a file".

Keywords: neuro-index, neuroindex, neural network, search, index

1. Introduction

Information is one of the most powerful resources available to the organization. It is known that the ability to find the information quickly and efficiently increases the size of profits and is an important competitive advantage. The enterprise information infrastructure quality can be judged on the effectiveness of the use of information. The high-tech software allows you to quickly find the data required for the business development, which is an attribute of a successful enterprise.

It is very interesting to improve an efficiency of obtaining data relevant criteria of a user request using intelligent search and associative semantic information based on artificially neural networks (ANN). The effective neuro-index structure and the algorithm for the intelligent information retrieval have established the researches in the areas of artificial intelligent technologies and distributed computing environments. The implemented prototype is based on the results of the researches. The implementation is targeted for use in corporate networks, cloud and distributed processing. It can reduce the cost of information technology through the using of a new approach to intelligent information retrieval.

It should be noted that the results of described technologies are qualitatively different from the results obtained from the use of fuzzy search algorithms. For instance, it is different from the based on the Levenshtein distance (Levenshtein, 1966).

There are two types of file indexing:
1. Lexical indexing is designed to optimize logical requests.
2. Vector indexing allows queries by similarity.

At the late 80’s Salton proposed a vector model (Salton, 1989) as an alternative to the lexical context-free indexing. Latent Semantic Indexing (LSI) was developed in 1990 for verbal noise suppression and better response relevancy (Deerwester et al., 1990). The model used singular value decomposition (SVD) for the transition from a sparse matrix of words to a compact matrix of principal eigenvalues (Golub and Loan, 1989). LSI showed considerable superiority in the results (Dumais, 1991) compared to the lexical method. However, the complexity of the model often leads to significant loss in speed on large collections compared...
with traditional logical techniques. Michael Berry and Todd Letsche founded most workable systems based on the LSI at Berkeley in 1995 (Letsche and Berry, 1997).

Essentially, these are two completely different paradigm indexing – Lexical indexing and Vector indexing. The only one thing that unites them is the vector of occurrences of keywords in documents, which is called “classical index”.

2. Materials and methods

Let’s show a difference between neuro-index and classical index (Dumais, 1991). The classical index can be established by the vector shown below.

\[
\begin{pmatrix}
(k_1, (p_{1,1}, p_{1,2}, \ldots, p_{1,N_1}))_1, \\
(k_2, (p_{2,1}, p_{2,2}, \ldots, p_{2,N_2}))_2, \\
\vdots, \\
(k_M, (p_{M,1}, p_{M,2}, \ldots, p_{M,N_M}))_M
\end{pmatrix}
\]

Here \(k_i\) are keywords and \(p_{i,j}\) are positions of keyword \(k_i\). The \(M\) value is a number of keywords. The \(N_i\) value is a number of positions of keyword in a file.

The neuro-index can be established by the matrix shown below.

\[
W = \begin{bmatrix}
w_{1,1} & \cdots & w_{1,I} \\
\vdots & \ddots & \vdots \\
w_{I,1} & \cdots & w_{I,I}
\end{bmatrix}
\]

Here \(W\) is a square matrix and \(I\) is a number of neural network neurons. The \(w_{i,j}\) is a weight coefficient from neuron number \(i\) to neuron number \(j\). Also we can use zero values for \(i\) and \(j\). This case will be described further in this article.

Let’s see a mathematical model of used neural network. A neuron can be established by the equation shown below (Galushkin, 2002).

\[
y = f \left(\sum_{n=1}^{N} v_n x_n + b \right)
\]

Here \((x_1, x_2, \ldots, x_N)\) is an input vector for the neuron. The vector \((v_1, v_2, \ldots, v_N)\) consists of neuron weight coefficients. The value of \(N\) is a dimension of input signal. The value of \(b\) is an offset value. The \(f()\) is an activation function for a non-linear parameter transformation. The \(y\) is an output value.

The neurons described in Equation 2 can be united in the layers based on Equation 1. The equation for neurons in layer is established by the next equation.

\[
y_{m_j}^j = f_{m_j}^j \left(\sum_{n_j=1}^{N_j} w_{m_j n_j}^j x_{n_j}^j + b_{m_j}^j \right), \quad m_j = 1, \ldots, M_j, \quad j = 1, \ldots, J
\]

Here the value of \(m\) is a number of neurons in a layer. The value of \(y_m\) is an output signal of the neuron number \(m\) in a layer. The value of \(M\) is a number of neurons in a layer. The vector \(x = (x_1, x_2, \ldots, x_N)\) is an input signal for a layer. The matrix \(W = \|w_{mn}\|\)
is the neurons weight coefficients. The vector \(b = (b_1, b_2, \ldots, b_M) \) consists of offset values. The \(f() \) is an activation function for the neuron number \(m \) in a layer.

The layers based on Equation 3 are connected to a neural network. The number of layers in the neural network is equal to \(J \). The equation for neuron number \(m \) in the layer number \(j \) is established by the next equation.

\[
y_{m_j}^{j} = f_{m_j}^{j} \left(\sum_{n_j=1}^{N_j} w_{m_j n_j}^{j} x_{n_j}^{j} + b_{m_j}^{j} \right), \quad m_j = 1, \ldots, M_j, \quad j = 1, \ldots, J
\]

The layers can be interconnected by connections of different types. Let’s assume that an input layer has number 0. In general, a signal from an output layer number \(j \) will be sent to an input layer number \(j+s \). In this case we can establish three types of neural networks:

1. \(s=1 \) – feedforward neural network;
2. \(s>1 \) – neural network with cross-layer connections;
3. \(s<1 \) – recurrent neural network.

Input values for an input layer is a keyword, a keyword match number and a degree of intelligence. They should be sent to an input of layer. In this case using Equation 4 the \(y_{m_j}^{j} \) will be output values for a position in a file and a number of keyword matches.

I suggest using artificial neural networks for the search indexes creation. For instance, the type of indexing artificial neural networks (IANN) can be a feedforward neural network. Hidden layers are used because they are necessary for a large volume of information processing. Quantitative factors for neural network can be done in different ways. It may be heuristic, genetic algorithms or an experimental selection of parameters. In addition to keywords as input values of the neural network there is a possibility of using the additional parameters.

A teaching process of IANN is based on the temporary stored classical index. But I am going to change it in future. Now the classical index should be generated using in-memory NoSQL DB. Back-propagation teaching algorithm for IANN is used on the basis of the keywords and generated classical index.

The input of IANN gets one keyword from the dictionary and the serial number of occurrences of a keyword in a file. The output of the neural network is a keyword occurrence position formed in a file. If the occurrence of the specified sequence number does not exist then IANN returns a non-existent value (for example -1).

I propose to take IANN initialized weights as an initial IANN for training on any file. It allows recognizing the keywords regardless of their form. Specially prepared initial IANN is used at the beginning of the teaching process. It is trained on the set consisting of all known keywords and on the keywords that vary according to the grammatical rules. At the end of training (for indexing process) the IANN is checked for grammar validity. This is another step in testing the resulting values for the IANN.

Using the so-called “any-time algorithm” (Boddy and Dean, 1989) will improve the search system efficiency. The essence of “any-time algorithm” is to gradually improve the partial results. This capability is achieved through the use of neural network technology.
The resulting weights of the IANN are index information for each file. ANN Kohonen vector quantization is trained with a teacher (Kohonen, 1989). It used to speed up the search process in the index information according to the following steps:

1. Selection of the next observation is carried out after a file indexing. A vector representing the inputs and outputs of the IANN makes the observation.
2. Finding the best node on the ANN Kohonen map. It should be the vector which weight is less than the weight of all different vectors. This weight should be based on a minimum distance metric between the terms and frequency of their occurrences and synonyms.
3. Determination of the number of neighbors and training and changing weights of the vectors and its neighbors to bring them closer to the observation.
4. Determination of the error map.
5. Re-training according to algorithm DLVQ Fundamentals (Stefano et al., 2006).

Let’s describe the sample process of a search system based on neuro-indexes:

1. Search phrase is divided into pairs of terms. For example, the phrase ”what to buy for a holiday” can be split into a pair of (what buy), (buy holiday).
2. Search priority to define pairs of corresponding direct order of the search query (what buy), (buy holiday).
3. Using Kohonen ANN to look for a set of indices, which includes the pairs.
4. Ranking the files according to the results of the IANS about the proximity of keywords derived from the weights of the neuro-index information with couples.

Search system teaching that is based on neuro-indexes requires more computing resources than classical indexing process. This problem can be solved by using of distributed computing. However, the search process that is based on neuro-indexes is much faster than the search process that is based on classical indexes and give us additional advantages.

3. Results

Using the neuro-indexes instead of classical indexes demonstrates a lot of innovative advantages. Bogdan Trofimov and I have implemented the test-stand for comparison of these ideas. We have implemented the text-search systems based on classical index and neuro-index and compared them according to three criteria:

(i) storage size

File number	Term number	Size of classical index (Kb)	Size of neuro-index (Kb)
20	107 443	19 632	9 408
200	450 244	202 656	72 120
2000	1 694 056	1 762 776	513 032

Table 1. Storage sizes for classical index and neuro-index.

The Table 1 shows that the sizes of indexes depend on term and file numbers.
Using of Neuro-Indexes

Figure 1 shows that the size of classical index grows up dramatically in comparison with the size of neuro-index.

(ii) search time

Files number	Terms number	Search speed for classical index (milliseconds)	Search speed for neuro-index (milliseconds)
20	107 443	46	154
200	450 244	453	269
2000	1 694 056	4 150	3 823

Table 2. Search speed for classical index and neuro-index.

The Table 2 shows that the difference between classical index search speed and neuro-index search speed is unambiguous but in big volumes neuro-index search speed is faster than classical index search speed.
Figure 2. Search speed for classical index and neuro-index.

The Figure 2 shows that search speed can be different. It depends on search terms, source files and algorithm implementation. More effective neuro-index algorithms and more accurate results about search speed will be presented in the next article.

(iii) associative search

It is difficult for ordinary user to formulate query keywords especially if there is a non-standard or restricted terminology. If he tries to go beyond the narrow subject category he faces the problems of synonymy and polysemy. Therefore it is very important to take into account the context. The issues of the context representation can be investigated with various approaches. This problem is effectively solved by neural networks (Carpenter and Grossberg, 1987).

Implemented neuro-index search algorithm shows relevance factor for exact match and for values that can have associative relations based on ANN Kohonen map.

4. Discussion

Let’s describe the possible ways of the proposed approach development.

- Increase the speed of IANN teaching.

Using of partially pre-trained neural networks (Hansen and Salamon, 1990) on common examples. This allows to train existing networks. The sample is given in Figure 3.
Selection of the parameters and the structure of the neural network according to the file type algorithms implementation.

- Neural network topology selection.

A network type is based on a problem type and data available for training. Supervised teaching requires "expert" assessment for each element of the sample. Sometimes getting such assessment for a large data set is impossible. In this case the real choice is teaching without a teacher. For example, it can be Kohonen self-organizing map (Kohonen, 1989) or Hopfield neural network (Hopfield, 1982). For other problems solving (such as forecasting of time-series) expert assessment is already contained in the input data and can be used in their processing.

- Selection of network characteristics.

For perceptron neural network it can be a number of layers, a presence or absence of bypass connections, a neurons activation functions. The ability of the network to learn the higher is the larger connections total number between neurons. But the number of connections is limited to the top number of records in the training data.

- Selection of teaching parameters.

After selecting a specific topology it is necessary to selected neural network training parameters. This step is especially important for networks trained by a teacher. Network speed
response convergence to the correct answer depends on the correct choice of parameters. Also the choice of a low teaching rate increases the convergence time but sometimes it leads to network paralysis. Time training increasing can either increase or decrease the convergence time because of the surface shape error. According to the contradictory influence of parameters we can conclude that their values should be chosen experimentally based on the criterion of completion of training. It can be error minimization or teaching time limit.

- Preliminary assessment of information duplication from different files.

In this case it has been proposed to use the same neural network for the files with the same text information as shown in Figure 4.

- Exclusion of the classical indexing step from IANN teaching process.

It has been suggested to implement an algorithm that allows training the neural network using a stream of information from a file. This approach requires a lot of additional research. However it directs neuro-indexing methodology to a new level.

- Research of special types of neural networks for using neuro-indexes.

This research will definitely improve the effectiveness of the proposed neural network search engine. There are many variants of neural network types. These are the basic criteria for their classification:
USING OF NEURO-INDEXES

- types of neurons that make up the network;
- number of layers of neurons;
- direction transmission of signals;
- types of training samples;
- network purpose.

Acknowledgments

The author is very grateful to Yurii Koltsov, the dean of the faculty of computer technologies and applied mathematics of Kuban State University, and to Bogdan Trofimov, the postgraduate student, who works at Kuban State University, for their assistance and feedback, which effected the quality of the article. I also want to express my gratitude to my colleague Valentina Semerzhidi for proofread this paper. This work was supported in part by a grant from Russian Foundation for Basic Research (RFBR) 13-01-00807 A.

References

Mark Boddy and Thomas L. Dean. Solving time-dependent planning problems. 1989.

Gail A. Carpenter and Stephen Grossberg. A massively parallel architecture for a self organizing neural pattern recognition machine. 1987.

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard Harshman. Indexing by latent semantic analysis. 1990.

Susan T. Dumais. Improving the retrieval of information from external sources. 1991.

Alexander I. Galushkin. Neumathematics, series ”Neurocomputers and their application”. M., IPRZHR, book 6 edition, 2002.

Gene H. Golub and Charles F. Van Loan. Matrix computations. 1989.

Lars Kai Hansen and Peter Salamon. Neural network ensembles. 1990.

John Hopfield. Neural networks and physical systems with emergent collective computational abilities. 1982.

Teuvo Kohonen. Self organization and associative memory. 1989.

Todd A. Letsche and Michael W. Berry. Large-scale information retrieval with latent semantic indexing. 1997.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. 1966.

Gerard A. Salton. Automatic text processing. 1989.
Claudio De Stefano, Ciro D’Elia, Angelo Marcelli, and Alessandra Scotto di Freca. Improving dynamic learning vector quantization. 2006.

Dr. Valerii V. Garnaga received PhD degree in 2004 and has worked as associated professor at the Kuban State University, Russia. His research interests are in artificial intelligence, distributed computing, intellectual search engines, cloud computing, distributed calculations, big data analysis. He has more than 15 publications in these areas and participated in number of research projects. Also, he was the chief of the project sponsored by Russian Foundation for Basic Research (RFBR).