Small asymptotic translation lengths of pseudo-Anosov maps on the curve complex

Eiko Kin
Department of Mathematics, Osaka University Toyonaka
kin@math.sci.osaka-u.ac.jp

Hyunshik Shin
Department of Mathematical Sciences, KAIST,
hshin@kaist.ac.kr

Abstract

Let M be a hyperbolic fibered 3-manifold with $b_1(M) \geq 2$ and let S be a fiber with pseudo-Anosov monodromy ψ. We show that there exists a sequence (R_n, ψ_n) of fibers and monodromies contained in the fibered cone of (S, ψ) such that the asymptotic translation length of ψ_n on the curve complex $\mathcal{C}(R_n)$ behaves asymptotically like $1/|\chi(R_n)|^2$. As applications, we can reprove the previous result by Gadre–Tsai that the minimal asymptotic translation length of a closed surface of genus g asymptotically behaves like $1/g^2$. We also show that this also holds for the cases of hyperelliptic mapping class group and hyperelliptic handlebody group.

Keywords: pseudo-Anosov, curve complex, asymptotic translation length, fibered 3-manifold, hyperelliptic mapping class group, handlebody group

Mathematics Subject Classification (2010). 57M99, 37E30

1 Introduction

Let $S_{g,n}$ be an orientable surface of genus g with n punctures. We will simply denote it by S. The mapping class group of S, denoted $\text{Mod}(S)$, is the group of isotopy classes of orientation-preserving homeomorphisms of S. By Nielsen–Thurston classification theorem, each element of $\text{Mod}(S)$, called a mapping class, is either periodic, reducible, or pseudo-Anosov.

For a non-sporadic surface S, that is, the surface with $3g - 3 + n \geq 2$, the curve complex $\mathcal{C}(S)$ is defined to be a simplicial complex whose vertex set $\mathcal{C}^0(S)$ is the set of homotopy classes of essential simple closed curves in S, and whose k-simplices are formed by $k + 1$ distinct vertices whose representatives can be chosen to be pairwise disjoint. We will restrict our attention to the 1-skeleton $\mathcal{C}^1(S)$ of
Theorem A. For all sufficiently large n, $R_n = \tilde{S}/\langle h^n \tilde{\psi} \rangle$ is a fiber of M with $|\chi(R_n)| \asymp n$ whose pseudo-Anosov monodromy ψ_n satisfies

$$\ell_C(\psi_n) \lesssim \frac{1}{|\chi(R_n)|^2}.$$
The above family of fibers in a fibered 3-manifold was first considered by McMullen and he proved the following theorem providing short geodesics on the moduli space when S is a closed surface.

Theorem 1.1 (McMullen, Theorem 10.2 in [McM00]). For all n sufficiently large,

$$R_n = \tilde{S}/\langle h^n \tilde{\psi} \rangle$$

is a closed surface of genus $g_n \simeq n$, and $h^{-1}: \tilde{S} \to \tilde{S}$ descends to a pseudo-Anosov mapping class $\psi_n \in \text{Mod}(R_n)$ with

$$\log \lambda(\psi_n) \asymp \frac{1}{g_n},$$

where $\lambda(\psi_n)$ is the stretch factor of ψ_n.

Although McMullen dealt with closed hyperbolic 3-manifolds in Theorem 1.1, we can adopt the same proof for the general case of fibers of cusped hyperbolic 3-manifolds. In such case, we have to say $\log \lambda(\psi_n) \asymp 1/|\chi(R_n)|$ and $|\chi(R_n)| \asymp n$.

As a consequence of Theorem A, we can determine the behaviour of minimal asymptotic translation lengths of a few subgroups of mapping class groups. First of all, the fact that $L_C(\text{Mod}(S_g)) \asymp 1/g^2$ also follows from Theorem A by considering genus 2 surface and any mapping class fixing a nontrivial cohomology class. For instance, consider the mapping class $\psi = T_{a_1} T_{a_2} T_{a_3} T_{b_1}^{-1} T_{b_2}^{-1}$ of the closed surface of genus 2 as in Figure 1, where T_{γ} is the left-handed Dehn twist about a simple closed curve γ. In this figure, $[c]$ is a homology dual to the cohomology class fixed by ψ.

Furthermore, we improve the upper bound for the minimal asymptotic translation length for S_g.

Proposition 1.2. For closed surfaces S_g with $g \geq 3$,

$$L_C(S_g) \leq \frac{1}{g^2 - 2g - 1}.$$

We remark that for $g \geq 3$, this is a sharper upper bound than Gadre–Tsai’s. The proof is contained in Appendix.

Valdivia [Val14] showed that fixing $g \geq 2$ as $n \to \infty$,

$$L_C(\text{Mod}(S_{g,n})) \asymp \frac{1}{n}.$$
For any fixed \(g \geq 2 \), \(\text{Mod}(S_{g,n}) \)
\(\cong \frac{1}{n^2} \) [Val14]
\(\leq \frac{1}{n} \) [GT11]

\(L_C(\cdot) \)	\(\text{Mod}(S_{0,n}) \)	\(\text{Mod}(S_{1,2n}) \)	For any fixed \(g \geq 2 \), \(\text{Mod}(S_{g,n}) \)
\(\geq \frac{1}{n^2} \) [Val14]	\(\geq \frac{1}{n^2} \) [GT11]	\(\geq \frac{1}{n} \) [Val14]	

Table 1: Minimal asymptotic translation lengths.

For the remaining cases of \(g = 0 \) and \(1 \) as \(n \to \infty \), see Table 1.

Let \(D_n \) be the closed disk \(D \) with \(n \)-punctures and let \(\text{Mod}(D_n) \) be the mapping class group of \(D_n \) fixing the boundary \(\partial D \) of the disk \(D \) pointwise. We have a natural homomorphism
\[
c : \text{Mod}(D_n) \to \text{Mod}(S_{0,n+1})
\]
collapsing the boundary \(\partial D \) of the disk to the \((n+1) \)th puncture of \(S_{0,n+1} \). By definition, \(c(\text{Mod}(D_n)) \) is the subgroup of \(\text{Mod}(S_{0,n+1}) \) which fixes one of the punctures of \(S_{n+1} \). Hence we have \(L_C(c(\text{Mod}(D_n)) \geq L_C(\text{Mod}(S_{0,n+1})) \). As an application of Theorem A, we have the following results.

Theorem B (cf. Table 1). We have

1. \(L_C(c(\text{Mod}(D_n))) \geq \frac{1}{n^2} \) and
2. \(L_C(\text{Mod}(S_{1,n})) \geq \frac{1}{n^2} \).

Let \(\mathcal{H}(S_g) \) be the hyperelliptic mapping class group and let \(\text{Mod}(\mathbb{H}_g) \) be the handlebody group of genus \(g \). We consider the hyperelliptic handlebody group
\[
\mathcal{H}(\mathbb{H}_g) = \text{Mod}(\mathbb{H}_g) \cap \mathcal{H}(S_g).\]

Theorem C. We have
\[
L_C(\mathcal{H}(\mathbb{H}_g)) \geq \frac{1}{g^2}.
\]

The following is an immediate corollary of the previous theorem.

Corollary 1.3. We have
\[
L_C(\mathcal{H}(S_g)) \geq \frac{1}{g^2} \text{ and } L_C(\text{Mod}(\mathbb{H}_g)) \geq \frac{1}{g^2}.
\]

Acknowledgement

We thank Hyungryul Baik, Mladen Bestvina, Ki Hyoung Ko, Ken’ichi Ohshika, and Balázs Strenner for helpful conversations. The first author was supported by Grant-in-Aid for Scientific Research (C) (No. 15K04875), Japan Society for the Promotion of Science. The second author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2016R1C1B1006843).
In this section, we begin with the following simple observation.

Lemma 2.1. Let \(f \in \text{Mod}(S) \) be a pseudo-Anosov mapping class and let \(\alpha \) be any essential simple closed curve in \(S \). If \(d_C(\alpha, f^m(\alpha)) = 1 \) for some \(m \in \mathbb{N} \), then \(\ell_C(f) \leq \frac{1}{m} \).

Proof. By the triangle inequality, we have

\[
\ell_C(f^m) = \liminf_{j \to \infty} \frac{d_C(\alpha, f^{jm}(\alpha))}{j} \\
\leq \liminf_{j \to \infty} \frac{\sum_{i=1}^{j} d_C(f^{(i-1)m}(\alpha), f^{im}(\alpha))}{j} \\
= \liminf_{j \to \infty} \frac{j \cdot d_C(\alpha, f^{m}(\alpha))}{j} = 1
\]

Since \(\ell_C(f^m) = m \ell_C(f) \), this completes the proof. \(\square \)

Now we prove our main theorem.

Proof of Theorem A. Since the lower bound was established by Gadre–Tsai, it is enough to show that there exists some constant \(C \) such that

\[
\ell_C(\psi_n) \leq \frac{C}{|\chi(R_n)|^2}.
\]

First, assume that \(S \) is a closed surface. Let \(c \) be a simple closed curve whose homology class is dual to the primitive cohomology class \(\xi_0 \) fixed by \(\psi \). Then the \(\mathbb{Z} \)-cover \(\tilde{S} \) corresponding to \(\xi_0 \) can be obtained by cutting \(S \) along \(c \) and pasting \(\mathbb{Z} \)-copies of \(S \setminus \{c\} \) together. Let \(\Sigma_i \) be the copies of \(S \setminus \{c\} \) on \(\tilde{S} \) such that the generator \(h : \tilde{S} \to \tilde{S} \) for the deck transformation group is given by \(h(\Sigma_i) = \Sigma_{i+1} \) for all \(i \) (See Figure 2).

Due to Theorem 1.1, \(h^{-1} \) induces a pseudo-Anosov mapping class in \(\text{Mod}(R_n) \). Choose a lift \(\tilde{\psi} \) and determine a constant \(k = k(\tilde{\psi}) \) such that

\[
\tilde{\psi}(\Sigma_0) \subset \Sigma_{-k} \cup \ldots \cup \Sigma_{k-1} \cup \Sigma_k.
\]
(One can choose a lift \(\tilde{\psi}\) so that \(k\) becomes minimal and such minimal \(k\) is an expanding rate in a sense that the number of copies of \(\Sigma_i\) in which \(\tilde{\psi}(\Sigma_0)\) is contained. In Figure 3, \(k = 1\).)

Let \(\alpha\) be a simple closed curve contained in \(\Sigma_0\) and let \([\alpha]\) be the \(\langle h^n \tilde{\psi}\rangle\)-orbit of \(\alpha\) in \(\tilde{S}\). By construction, if we can find \(m\) such that one of the representative curves in \([h^{-m}(\alpha)]\) is contained in \(\Sigma_1 \cup \Sigma_2 \cup \ldots \cup \Sigma_{n-k-1}\), then it is disjoint from both \(\alpha\) and \(h^n\psi(\alpha)\) in \(\tilde{S}\) and hence \([h^{-m}(\alpha)]\) is a disjoint curve from \([\alpha]\) in \(R_n\) (Notice that \(h\) and \(\tilde{\psi}\) commute with each other). Note that \(\tilde{\psi}^m(\alpha)\) is contained in \(\Sigma_{mk} \cup \ldots \cup \Sigma_{mk}\) and hence \(h^{mk+1} \tilde{\psi}^m(\alpha)\) lies in \(\Sigma_1 \cup \ldots \cup \Sigma_{2mk+1}\). Therefore the possible maximum \(m\) is determined by \(2km + 1 \leq n - k - 1\) and we have

\[
m = \left\lfloor \frac{n - k - 2}{2k} \right\rfloor.
\]

Since \([h^{mk+1} \tilde{\psi}^m(\alpha)] = [h^{-(n-k)m+1}(\alpha)]\) and \(h^{-1}\) descends to the pseudo-Anosov mapping class \(\psi_n\) in \(\text{Mod}(R_n)\), we have \(dC\left(\psi_n^{(n-k)m-1}(\alpha), [\alpha]\right) = 1\). By Lemma 2.1 and the fact that \(\chi(R_n)\) is a linear function in \(n\), we have

\[
\ell_C(\psi_n) \leq \frac{1}{(n-k)m-1},
\]

and hence \(\ell_C(\psi_n) \leq C/|\chi(R_n)|^2\) for some \(C > 0\).

For a punctured surface \(S\), the same argument as above also works except for the case when we cannot find a simple closed curve contained in one fundamental region, say \(\Sigma_0\). In such case, it is enough to choose a simple proper arc in \(\Sigma_0\) and compute the asymptotic translation length on the arc and curve complex \(\mathcal{AC}(R_n)\). It is because there is a retraction map \(r : \mathcal{AC}(R_n) \to C(R_n)\) which is 2-bilipschitz (see, for instance, [MM00, Lemma 2.2] or [HPW15]). This implies that the asymptotic translation lengths \(\ell_{\mathcal{AC}}(f)\) and \(\ell_C(f)\) of each pseudo-Anosov
mapping class \(f \) on the 1-skeletons \(\mathcal{AC}^1(S) \) and \(\mathcal{C}^1(S) \), respectively, have the same asymptotic behaviour, that is,

\[
\ell_{\mathcal{AC}}(f) \asymp \ell_{\mathcal{C}}(f).
\]

Then the same proof in the previous paragraph works for \(\mathcal{AC}(R_n) \) and this completes the proof.

\(\square \)

3 Applications

In this section we prove Theorems B and C by using Theorem A.

Consider a pseudo-Anosov mapping class \(\psi \in \text{Mod}(S) \). Let \(\Psi : S \to S \) be any representative of \(\psi \). The mapping torus \(M_\psi \) is defined by

\[
M_\psi = S \times [0,1]/\sim,
\]

where \(\sim \) identifies \((x,1)\) with \((\Psi(x),0)\) for each \(x \in S \). Then a fibered 3-manifold \(M_\psi \) is hyperbolic by Thurston’s hyperbolization theorem. Suppose that there is a primitive cohomology class \(\xi_0 \in H^1(S;\mathbb{Z}) \) fixed by \(\psi \). This implies that \(b_1(M_\psi) \geq 2 \). Then Theorem A says that for \(n \) sufficiently large, \(R_n = S/(\sim h^n \psi) \) is a fiber of \(M_\psi \) with \(\chi(R_n) \asymp 1/|\chi(R_n)|^2 \).

3.1 Fibered 3-manifolds from braids

Let \(B_n \) be the the braid group with \(n \) strands. In this paper braids are depicted vertically. We define the product \(\beta \beta' \) of \(\beta, \beta' \in B_n \) in the usual way, namely, we stuck \(\beta \) on \(\beta' \) and concatenate the bottom \(i \)th end point of \(\beta \) with the top \(i \)th end point of \(\beta' \) for each \(i = 1, \cdots, n \). Then we obtain \(n \) strands. The product \(\beta \beta' \) is the resulting \(n \)-braid after rescaling.

Here we briefly review a relation between \(B_n \) and \(\text{Mod}(D_n) \). To do this we assign an orientation for each \(n \)-braid from the bottom endpoints to the top endpoints (see Figure 5(2)). We take a natural basis \(t_i \in H_1(D_n;\mathbb{Z}) \), where a representative of \(t_i \) is a small oriented loop in \(D_n \) centered at the \(i \)th puncture of \(D_n \) for \(i = 1, \cdots, n \). Let \(c_i \) be a simple proper arc in \(D_n \) which connects the \(i \)th puncture of \(D_n \) to the boundary \(\partial D \) as in Figure 5(1). Then there is an isomorphism

\[
\Gamma : B_n \to \text{Mod}(D_n)
\]

which sends the generator \(\sigma_i \) of \(B_n \) to the left-handed half twist \(h_i \) (see Figure 5(2) and (3)). The orientation of braids as we described above induces the motion of \(n \) punctures in the disk, which defines the above map \(\Gamma \).

Let us recall the homomorphism \(\epsilon : \text{Mod}(D_n) \to \text{Mod}(S_{0,n+1}) \) defined in Section 11. We sometimes identify \(f \in \text{Mod}(D_n) \) with \(\epsilon(f) \in \text{Mod}(S_{0,n+1}) \). We simply denote by \(\beta \), both mapping classes \(\Gamma(\beta) \in \text{Mod}(D_n) \) and \(\epsilon(\Gamma(\beta)) \in \text{Mod}(S_{0,n+1}) \).
Figure 5: (1) Arcs c_i in the n-punctured disk D_n. (2) Generators σ_i. (3) Half twist h_i: ($c'_i = h_i(c_i)$ and $c'_{i+1} = h_i(c_{i+1})$.)

The closure $\overline{\beta}$ of $\beta \in B_n$ is a knot or link in the 3-sphere S^3. Let \mathcal{A} be a braid axis of β which is an unknot in S^3. Then $\overline{\beta}$ runs around the unknot \mathcal{A} in a monotone manner. We set $\text{br}(\beta) = \overline{\beta} \cup \mathcal{A}$ which is a link in S^3 whose number of the components is greater than or equal to 2, and let us set $M_\beta = S^3 \setminus \text{br}(\beta)$. The 3-manifold M_β is homeomorphic to the interior of the mapping torus of the monodromy $\beta \in \text{Mod}(D_n)$, and $b_1(M_\beta) \geq 2$. A spanning disk by the unknot \mathcal{A} embedded in M_β has n punctures, and it is a fiber of M_β with monodromy β.

3.2 Subgroups of mapping class groups

The hyperelliptic mapping class group $\mathcal{H}(S_g)$ is the subgroup of $\text{Mod}(S_g)$ consisting of isotopy classes of orientation preserving homeomorphisms of S_g that commute with some fixed hyperelliptic involution $S : S_g \to S_g$ (Figure 6(1)). The handlebody group $\text{Mod}(\mathbb{H}_g)$ is the subgroup of $\text{Mod}(S_g)$ consisting of isotopy classes of orientation preserving homeomorphisms of S_g that extend to homeomorphisms on the handlebody \mathbb{H}_g of genus g. We let

$$\mathcal{H}(\mathbb{H}_g) = \text{Mod}(\mathbb{H}_g) \cap \mathcal{H}(S_g)$$

and call it the hyperelliptic handlebody group.

Let SB_m be the spherical m-braid group. We now introduce the subgroup SW_{2n} of SB_{2n}. Let A_1, A_2, \ldots, A_n be n disjoint unknotted arcs properly embedded in the 3-ball D^3 so that $A = A_1 \cup \cdots \cup A_n$ is unlinked, see Figure 7(1). The boundary ∂A is the set of $2n$ points in the 2-sphere ∂D^3.

For $b \in SB_{2n}$, we stick b on A, and concatenate the bottom endpoints of b with the endpoints of A. As a result we obtain n disjoint (knotted) arcs bA properly embedded in D^3, see Figure 7(2). The wicket group SW_{2n} is the subgroup of SB_{2n} generated by braids bA’s such that bA is isotopic to A relative to ∂A. It is easy to see that the braid $w \in SB_6$ as shown in Figure 7(3) is an element of SW_6.
There is a spherical version of the isomorphism $\Gamma : B_n \to \text{Mod}(D_n)$, namely we have a surjective homomorphism $SB_m \to \text{Mod}(S_{0,m})$ which sends the generator σ_i of SB_m to the left-handed half twist between the ith and $(i+1)$st punctures (cf. Figure 5(2)(3)). We also denote this homomorphism by

$$\Gamma : SB_m \to \text{Mod}(S_{0,m})$$

Its kernel is isomorphic to $\mathbb{Z}/2\mathbb{Z}$ generated by a full twist $\Delta^2 \in SB_m$, where Δ is a half twist (also known as Garside element). When $m = 2n$ the image $\Gamma(SW_{2n})$ of SW_{2n} under the map Γ is a subgroup of $\text{Mod}(S_{0,2n})$ which is so-called Hilden group, denoted by SH_{2n}, and

$$SH_{2g+2} \simeq SW_{2g+2}/\langle \Delta^2 \rangle$$

holds (see [SE17]).

There is a close connection between the wicket group and the hyperellitic handlebody group which we explain below. We first recall a fundamental theorem by Birman and Hilden which relates $\mathcal{H}(S_g)$ to $\text{Mod}(S_{0,2g+2})$. Each homeomorphism
on S_g which commutes with the hyperelliptic involution $S : S_g \to S_g$ preserves the set of fixed points of S consisting of $2g + 2$ points. Such a homeomorphism induces a homeomorphism on a sphere S_g/S which preserves these fixed points (Figure 6(2)). Thus we have a map

$$q : \mathcal{H}(S_g) \to \text{Mod}(S_{0,2g+2})$$

by choosing a representative of each mapping class of $\mathcal{H}(S_g)$ which commutes with S. It is shown in [BH71] that the map q is well-defined and it is a surjective homomorphism whose kernel is generated by $\iota = [S] \in \mathcal{H}(S_g)$. In particular we have

$$\mathcal{H}(S_g)/\langle \iota \rangle \simeq \text{Mod}(S_{0,2g+2}) \simeq SB_{2g+2}/\langle \Delta^2 \rangle.$$

On the other hand, it is proved in [SE17] that there is a surjective homomorphism

$$Q : \mathcal{H}(H_g) \to SH_{2g+2}$$

whose kernel is generated by ι. The map Q is given by the restriction

$$q|_{\mathcal{H}(H_g)} : \mathcal{H}(H_g) \to SH_{2g+2} < \text{Mod}(S_{0,2g+2}).$$

Putting all things together, we have

$$\mathcal{H}(H_g)/\langle \iota \rangle \simeq SH_{2g+2} \simeq SW_{2g+2}/\langle \Delta^2 \rangle.$$

Thus an element $f \in SH_{2g+2}$ can be described by a braid $v \in SW_{2g+2}$, i.e., $f = \Gamma(v)$. Moreover a lift \hat{f} of f under the map $q|_{\mathcal{H}(H_g)} = Q$ is an element of $\mathcal{H}(H_g)$.

We simply denote by v, the element $\Gamma(v)$ in the Hilden group SH_{2g+2}.

Lemma 3.1. Let $f \in \text{Mod}(S_{0,2g+2})$ and let $\hat{f} \in \mathcal{H}(S_g)$ be a lift of f under the map $q : \mathcal{H}(S_g) \to \text{Mod}(S_{0,2g+2})$. We take any $\alpha \in \mathcal{A}^0(S_{0,2g+2})$, i.e., α is a homotopy class of an arc or simple closed curve in $S_{0,2g+2}$. Suppose that $d_\mathcal{A}(\alpha, f^m(\alpha)) = 1$ for some $m \in \mathbb{N}$, where $d_\mathcal{A}$ is the path metric on $\mathcal{A}(S_{0,2g+2})$. Then

$$\ell_C(\hat{f}) \leq \frac{1}{m}.$$

It is well-known and not hard to see that if $f \in \text{Mod}(S_{0,2g+2})$ is pseudo-Anosov, then $\hat{f} \in \mathcal{H}(S_g)$ is also pseudo-Anosov. We use Lemma 3.1 for some pseudo-Anosov elements of $SH_{2g+2} < \text{Mod}(S_{0,2g+2})$ in the proof of Theorem [C].

Proof of Lemma 3.1 By abuse of the notation, a representative of $\alpha \in \mathcal{A}^0(S_{0,2g+2})$ is denoted by the same α. Let $\hat{\alpha} \subset S_g$ be a lift of a simple arc or simple closed curve α in $S_{0,2g+2}$ under the map q. Then $\hat{\alpha} \in \mathcal{A}(S_g)$, that is $\hat{\alpha}$ is a simple closed curve, and the assumption implies that $d_\mathcal{C}(\hat{\alpha}, (\hat{f})^m(\hat{\alpha})) = 1$. The claim follows from Lemma 2.1.

□
Figure 8: (1) $\beta = \sigma_1^{-2}\sigma_2 \in B_3$, (2) \mathbb{Z}-cover \tilde{S} over $S = D_3$ corresponding to the dual to $c = c_1$. (3) c, $\beta(c)$ and $\beta^2(c)$.

Figure 9: Illustration of $h^2\tilde{\psi} : \tilde{S} \to \tilde{S}$. Shaded regions in (1)(2) and (3) are Σ_i, $\tilde{\psi}(\Sigma_i)$ and $h^2\tilde{\psi}(\Sigma_i)$ respectively.
3.3 Proofs of Theorems B and C

Proof of Theorem B (1). We consider the pseudo-Anosov braid $\beta = \sigma_1^{-2}\sigma_2 \in B_3$ (Figure 3(1)) and the fibered hyperbolic 3-manifold M_β. We take a fiber $S = D_3$ with monodromy $\psi = \beta$ of M_β. Let $\xi_0 \in H^1(S; \mathbb{Z})$ be the primitive cohomology class which is dual to the homology class of the proper arc $c = c_1$ in S (Figure 3(1)). Observe that the induced homomorphism $\psi_* : H_1(D_3; \mathbb{Z}) \to H_1(D_3; \mathbb{Z})$ maps the generator t_1 to itself. This tells us that ξ_0 is fixed by ψ. Figure 3(2) illustrates the \mathbb{Z}-cover \tilde{S} corresponding to ξ_0. We consider the canonical lift $\tilde{\psi} : \tilde{S} \to \tilde{S}$ of ψ which means that $\tilde{\psi}$ fixes the preimage $p^{-1}(\partial D)$ of the (outer) boundary of the 3-punctured disk pointwise. (In Figure 3(1)(2), the set $p^{-1}(\partial D) \cap \Sigma_i$ is thickened.) Choose a lift $\tilde{c}(i)$ of c under the projection $p : \tilde{S} \to S$ so that $\tilde{c}(i) = \Sigma_{i-1} \cap \Sigma_i$, see Figure 3(2). In other words, \tilde{c}_i and \tilde{c}_{i+1} bound the copy Σ_i. The proper arc $\beta(c)$ (see Figure 3(3)) determines the image $\tilde{\psi}(\tilde{c}_i)$ for $i \in \mathbb{Z}$. (Observe (from Figure 3(1) and (2))) that

$$\tilde{\psi}(\Sigma_i) \subset \Sigma_{i-1} \cup \Sigma_i \quad \text{and} \quad \tilde{\psi}^{-1}(\Sigma_i) \subset \Sigma_i \cup \Sigma_{i+1}.$$

Hence for each $n \geq 0$

$$h^n\tilde{\psi}(\Sigma_i) \subset \Sigma_{i-1+n} \cup \Sigma_{i+n} \quad \text{and} \quad (h^n\tilde{\psi})^{-1}(\Sigma_i) = h^{-n}\tilde{\psi}^{-1}(\Sigma_i) \subset \Sigma_{i-n} \cup \Sigma_{i-n+1}.$$

For $\ell > 0$, we have

$$(h^n\tilde{\psi})^\ell(\Sigma_i) \subset \Sigma_{i-\ell+\ell n} \cup \cdots \cup \Sigma_{i+\ell n} \cup \Sigma_{i+\ell n},$$

$$(h^n\tilde{\psi})^{-\ell}(\Sigma_i) \subset \Sigma_{i-\ell n} \cup \Sigma_{i-\ell n+1} \cup \cdots \cup \Sigma_{i-\ell n+\ell}.$$

Notice that if we fix $n \geq 2$, then $(h^n\tilde{\psi})^\ell(\Sigma_i) \cap \Sigma_i = \emptyset$ for each $\ell > 0$, and hence $R_n = \tilde{S}/(h^n\tilde{\psi})$ is a surface. In fact R_n is a disk with $2n$ punctures, and hence we can think of R_n as a sphere with $2n + 1$ punctures. See Figures 9 and 10. Note that one of the punctures of R_n, say p_∞ comes from the preimage of the boundary of the disk under the projection $p : \tilde{S} \to S = D_3$. By Theorem 1.1 we know h^{-1} descends to the monodromy ψ_n, and we see that ψ_n maps p_∞ to itself. Thus $\psi_n \in \epsilon(\text{Mod}(D_3))$. By Theorem 4 we have $\ell_C(\psi_n) \leq C/n^2$ for some constant C, and hence $L_C(\epsilon(\text{Mod}(D_2n))) \leq C/n^2$.

We turn to the pseudo-Anosov braid $\phi = \beta^2 \in B_3$. The hyperbolic fibered 3-manifold M_ϕ has a fiber $S = D_3$ with monodromy ϕ. The dual to $c = c_1$ is the primitive cohomology class fixed by ϕ. Consider \mathbb{Z}-cover \tilde{S} corresponding to this cohomology class. We set $\tilde{\phi} = (\tilde{\psi})^2 : \tilde{S} \to \tilde{S}$ which is the canonical lift of ϕ. By using the proper arc $\phi(c) = \beta^2(c)$ (see Figure 3(3)), we find how each copy Σ_i maps on \tilde{S} under $\tilde{\phi}$. By the same argument as above, we see that $\tilde{S}/(h^n\tilde{\phi})$ is a sphere with $2n + 2$ punctures which is a fiber of M_ϕ for n large. Also we see that ϕ_n fixes one of the punctures of the fiber (which comes form the preimage of the boundary of the disk). Thus $\phi_n \in \epsilon(\text{Mod}(D_2n+1))$. By Theorem 4 we have $\ell_C(\phi_n) \leq C'/n^2$ for some constant $C' > 0$. This tells us that $L_C(\epsilon(\text{Mod}(D_2n+1))) \leq C'/n^2$. This completes the proof. \qed
Figure 10: (1) Shaded region descends to $R_2 \simeq S_{0.5}$. See also Figure 9. (2) Shaded region descends to $R_3 \simeq S_{0.7}$. (Note that $[\tilde{c}_i] = [h^n\tilde{\psi}(\tilde{c}_i)]$ in R_n.)

Figure 11: Two small circles indicate punctures of $S_{1.2}$. (1) A basis $\alpha, \beta, \gamma \in H_1(S_{1.2};\mathbb{Z})$. (2) m, ℓ in $S_{1.2}$. (3) Image of c under $\psi = T_m^{-1}f_\ell$.

13
and 11(3). By the same argument as in the proof of Theorem B(1), we verify that we prove it by using Theorem A for the convenience of readers. Let \(L \) be as before, i.e., \(L = \mathbb{Z} \) and \(\xi \) be a simple closed curve in \(S \). Consider the mapping torus \(M = \psi \S \). The induced map \(\psi \) is pseudo-Anosov and fixed by \(\psi \). Then the cohomology class \(a \) is dual to \(\xi \). For more details.

We set \(\tilde{\psi} : \tilde{S} \to \tilde{S} \) of the lift \(\tilde{\psi} \) with \(\tilde{\psi}(\Sigma_i) \subset \Sigma_{i-1} \cup \Sigma_i \). A copy \(\Sigma_i \) and \(\tilde{\psi}(\Sigma_i) \) are shaded.

Proof of Theorem B(2). Let \(L_W \) be the Whitehead link in \(S^3 \). The complement \(S^3 \setminus L_W \) is a fibered hyperbolic 3-manifold with a fiber \(S_{1,2} \). We now recall its pseudo-Anosov monodromy \(\psi \) defined on the fiber \(S_{1,2} \), see [KR, Appendix B] for more details.

We use a basis \(\alpha, \beta, \gamma \in H_1(S_{1,2}; \mathbb{Z}) \) in Figure 11(1). Let \(m \) be a be simple closed curve in \(S_{1,2} \), and \(\ell \) an oriented loop based at one of the punctures of \(S_{1,2} \). Let \(c \) be a representative of the generator \(\beta \in H_1(S_{1,2}; \mathbb{Z}) \), see Figure 11. We set \(\psi = T_m^{-1}f_\ell \in \text{Mod}(S_{1,2}) \) where \(f_\ell \) is the mapping class which represents the point-pushing map along \(\ell \), see Figure 11(3). Then \(\psi \) is the monodromy of a fibration on \(S^3 \setminus L_W \), i.e., \(M_\psi \) is homeomorphic to \(S^3 \setminus L_W \). In particular \(\psi \) is pseudo-Anosov since \(S^3 \setminus L_W \) is hyperbolic. Observe that the induced map \(\psi_* : H_1(S_{1,2}; \mathbb{Z}) \to H_1(S_{1,2}; \mathbb{Z}) \) sends \(a, \beta \) and \(\gamma \) to \(\alpha - \beta - \gamma, \beta + \gamma \) and \(\gamma \) respectively. Then the cohomology class \(\xi_0 \in H^1(S_{1,2}; \mathbb{Z}) \) which is dual to \(c \) is primitive and fixed by \(\psi \). We consider \(\mathbb{Z} \)-cover \(\tilde{S} \) over \(S = S_{1,2} \) corresponding to \(\xi_0 \), and we take a lift \(\tilde{\psi} : \tilde{S} \to \tilde{S} \) such that \(\tilde{\psi}(\Sigma_i) \subset \Sigma_{i-1} \cup \Sigma_i \), see Figures 12 and 11(3). By the same argument as in the proof of Theorem B(1), we verify that \(R_n \) is a torus with \(2n + 1 \) punctures if \(n \geq 2 \). By Theorem A we conclude that \(L_c(\text{Mod}(S_{1,2n+1})) \leq C/n^2 \) for some constant \(C > 0 \).

It is observed by Gadre and Tsai [GT11] that \(L_c(\text{Mod}(S_{1,2n})) \propto 1/n^2 \). We prove it by using Theorem A for the convenience of readers. Let \(a \) and \(b \) be simple closed curves in \(S_{1,2} \) as in Figure 13(1), and let \(c \) be as before, i.e., \(\beta = [c] \). Consider \(\psi = T_{-a} \in \text{Mod}(S_{1,2}) \) which is pseudo-Anosov by Penner’s criterion. The induced map \(\psi_* \) maps a basis \(a, \beta \) and \(\gamma \) of \(H_1(S_{1,2}; \mathbb{Z}) \) to \(\alpha + \beta + \gamma \), and \(\gamma \), respectively. Thus \(\psi \) fixes a primitive cohomology class \(\xi_0 \in H^1(S_{1,2}; \mathbb{Z}) \) which is dual to \(a \). Consider \(\mathbb{Z} \)-cover \(\tilde{S} \) over \(S \) corresponding to \(\xi_0 \) (Figure 13(2)) and pick a lift of \(\tilde{\psi} : \tilde{S} \to \tilde{S} \) of \(\psi \). We can apply Theorem A for the fiber \((S_{1,2}, \psi) \) of the mapping torus \(M_\psi \) together with \(\xi_0 \in H^1(S_{1,2}; \mathbb{Z}) \) fixed by \(\psi \). Theorem 1.1 says that for all \(n \) sufficiently large, \(R_n \) is a fiber of \(M_\psi \). In this case \(R_n \) is a torus with \(2n + n_0 \) punctures, where \(n_0 \) is an even number which depends on the choice of the lift \(\tilde{\psi} \). By Theorem A we conclude that \(L_c(\text{Mod}(S_{1,2n})) < C'/n^2 \) for some
constant $C' > 0$. This completes the proof. \hfill \square

Proof of Theorem C. First of all we introduce spherical braids $x_{2k}, y_{2k} \in SB_{2k}$ for $k \geq 5$ as shown in Figure 14. It is easy to verify that they are elements of SW_{2k}. We define $w_{2k} \in SW_{2k}$ for each $k \geq 5$ as follows.

\[
\begin{align*}
 w_{4n+8} &= x_{4n+8}(y_{4n+8})^n & \text{if } 2k = 4n + 8 \text{ for some } n \geq 1, \\
 w_{4n+10} &= (x_{4n+10})^2(y_{4n+10})^n & \text{if } 2k = 4n + 10 \text{ for some } n \geq 0.
\end{align*}
\]

Consider an element in the Hilden group SH_{2k} corresponding to w_{2k} (see Section 3.2) and its mapping torus $M_{w_{2k}}$. In [SE17] it is shown that when $2k = 4n + 8$ for $n \geq 1$, $M_{w_{2k}}$ is homeomorphic to the mapping torus M_w of the pseudo-Anosov element in SH_6 corresponding to the pseudo-Anosov braid $w \in SW_6$ (Figure 7(3)). In other words M_w is hyperbolic and it has a fiber $S_{0,2k}$ with pseudo-Anosov monodromy w_{2k} when $2k = 4n + 8$. We see that from the construction in [SE17] of these fibers of M_w, a sequence of fibers $(S_{0,4n+10}, w_{4n+10})$ of M_w comes from Theorem A. More precisely, if we remove the 6th strand of w, then we obtain a spherical braid with 5 strands. Regarding such a braid as the one on the disk, we have a 5-braid, say $\psi \in B_5$. Clearly M_{ψ} is homeomorphic to M_w. We consider a fiber $S = D_5$ with monodromy ψ of the mapping torus $M_\psi \simeq M_w$. Since ψ_5 maps the generator t_5 to itself (see the 5th strand of the braid w in Figure 7(3)), the cohomology class $\xi_0 \in H^1(S; \mathbb{Z})$ which is dual to the proper arc $c = c_5$ is fixed by ψ. Let \tilde{S} be the \mathbb{Z}-cover of S corresponding to ξ_0. We consider the canonical lift $\tilde{\psi} : \tilde{S} \to \tilde{S}$ of ψ. Then $R_n = \tilde{S}/(h^n\tilde{\psi})$ is a fiber of M_ψ with monodromy ψ_n for n large. In this case R_n is a sphere with $4n + 8$ punctures and the monodromy ψ_n is given by the braid $w_{4n+8} \in SW_{4n+8}$. By the proof of Theorem A there exist
Figure 14: (1) $x_{2k} \in SW_{2k}$. (2) $y_{2k} \in SW_{2k}$.

$\alpha \in \mathcal{AC}(R_n)^0$ and $m \asymp n^2$ such that $d_{\mathcal{AC}}(\alpha, (\psi_n)^m(\alpha)) = 1$. Then by Lemma 3.1 a lift $\hat{\psi} \in \mathcal{H}(\mathbb{H}_{2n+3})$ satisfies $\ell_c(\hat{\psi}) \leq 1/m$, which implies $\ell_c(\hat{\psi}) \leq C/n^2$ for some constant $C > 0$. Thus we have $L_c(\mathcal{H}(\mathbb{H}_{2n+3})) \leq C/n^2$.

To obtain the upper bound $L_c(\mathcal{H}(\mathbb{H}_{2n+4})) \leq C'/n^2$ for some $C' > 0$, we take the second power $\psi^2 \in B_5$ of the above ψ and we set $\phi = \psi^2$. We consider a fiber $S = D_5$ with monodromy ϕ in the mapping torus M_ϕ. Note that ϕ fixes the same $\xi_0 \in H^1(S; \mathbb{Z})$. Let \tilde{S} be the \mathbb{Z}-cover over S as before and let $\tilde{\phi} = (\tilde{\psi})^2 : \tilde{S} \to \tilde{S}$ which is the canonical lift of ϕ. Now we apply Theorem A for the fiber (S, ϕ) of M_ϕ together with ξ_0. By using the same argument as in [SE17], we find that for n large, $\tilde{S}/(h^n\tilde{\phi})$ is a fiber of M_ϕ which is the sphere with $4n+10$ punctures and its monodromy is described by the braid $w_{4n+10} \in SW_{4n+10}$. In the same manner as above, we obtain the desired upper bound of $L_c(\mathcal{H}(\mathbb{H}_{2n+4}))$. This completes the proof.

A Entropies of pseudo-Anosov mapping classes

A.1 Minimal pseudo-Anosov entropies

Let $T(S)$ be the Teichmüller space of S with the Teichmüller metric d_T. The mapping class group $\text{Mod}(S)$ acts on $T(S)$, and the translation length of $f \in \text{Mod}(S)$ on $T(S)$ is defined by

$$\ell_T(f) = \inf_{X \in T(S)} d_T(X, f(X)).$$

Each pseudo-Anosov element $f \in \text{Mod}(S)$ has a representative $\Phi : S \to S$ which satisfies the followings. There exist a pair of transverse measured foliations (\mathcal{F}^u, μ^u) and (\mathcal{F}^s, μ^s) and a constant $\lambda > 1$ such that

$$\Phi(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \lambda \mu^u) \quad \text{and} \quad \Phi(\mathcal{F}^s, \mu^s) = (\mathcal{F}^s, \lambda^{-1} \mu^s).$$

Such a representative is called a pseudo-Anosov homeomorphism. The constant $\lambda > 1$ does not depend on the choice of a representative Φ, and $\lambda = \lambda(f)$ is called
the stretch factor (or dilatation) of f. The logarithm of $\lambda(f)$ is often called the entropy of f. By the result of Bers [Ber78],
\[\ell_T(f) = \log(\lambda(f)). \]

Arnoux and Yoccoz observed that if we fix S, then the set of entropies
\[\{ \ell_T(f) \mid f \in \text{Mod}(S) \text{ is pseudo-Anosov} \} \]
is a closed and discrete subset of \mathbb{R}, see [Iva92, Lemma 2.12] for example. In particular for any subgroup H of $\text{Mod}(S)$, there exists a minimum of $\ell_T(f)$ over all pseudo-Anosov elements $f \in H$. We denote the minimum by $L_T(H)$. Penner [Pen91] proved that
\[L_T(\text{Mod}(S_g)) \asymp \frac{1}{g}. \]

Table 2 shows other asymptotic behaviors of minimal entropies in the case when g is fixed as $n \to \infty$. For asymptotic behaviors of minimal entropies in the cases of the previous subgroups $\mathcal{H}(S_g)$, $\mathcal{H}(\mathbb{H}_g)$ and $\mathcal{H}(\mathbb{H}_g)$, see Table 3.

A.2 Lipschitz constant to the curve complex

Let $S = S_g$ and let
\[\text{sys} : \mathcal{T}(S) \to C^1(S) \]
be the systole map which assigns a hyperbolic metric one of its shortest simple closed curves. Then syst is (K,C)-coarsely Lipschitz for some $K,C > 0$, that is, for all X and Y in $\mathcal{T}(S)$, we have
\[d_c(\text{sys}(X),\text{sys}(Y)) \leq Kd_T(X,Y) + C. \]

See Masur–Minsky [MM99] for detail. Gadre, Hironaka, Kent and Leininger [GHKL13] study the optimal Lipschitz constant of the systole map
\[\kappa_g = \inf\{K \geq 0 \mid \text{sys is } (K,C)\text{-coarsely Lipschitz for some } C > 0\}, \]
and they establish
\[\kappa_g \asymp \frac{1}{\log(g)}. \]
To prove this, the authors give the upper bound \(\kappa_g \leq C/\log(g) \) for some constant \(C > 0 \). For the lower bound of \(\kappa_g \), they consider the ratio
\[r(f) = \frac{\ell_C(f)}{\ell_T(f)} \]
and prove the inequality
\[r(f) \leq \kappa_g \]
for any pseudo-Anosov \(f \in \text{Mod}(S_g) \). Then they construct a sequence of pseudo-Anosov mapping classes \(f_g \in \text{Mod}(S_g) \) which satisfies \(\ell_C(f_g) \asymp 1/g \) and \(\ell_T(f_g) \asymp \log(g)/g \). These imply that \(r(f_g) \asymp 1/\log(g) \).

Now consider a sequence \((R_n, \psi_n)\) of fibers in Theorem A under the assumption that the fibered hyperbolic 3-manifold \(M \) is closed. In this case \(R_n \) is a closed surface with the genus \(g(R_n) \asymp n \). By Theorems A and 1.1, for all \(n \) sufficiently large, we have \(\ell_C(\psi_n) \asymp 1/n^2 \) and \(\ell_T(\psi_n) \asymp 1/n \), and hence
\[r(\psi_n) \asymp \frac{1}{n}. \]
This means that the ratio \(r(\psi_n) \) is strictly smaller than the optimal constant \(\asymp 1/\log(n) \) of the systole map \(\text{sys} : T(R_n) \to C^1(R_n) \).

B Proof of Proposition 1.2

In this appendix, we improve the upper bound of \(L_C(S_g) \).

Proposition 1.2 For \(g \geq 3 \), we have
\[L_C(S_g) \leq \frac{1}{g^2 - 2g - 1}. \]

In the proof of Theorem B1, we showed that \(M_\beta = M_{\sigma_1^{-2}, \sigma_2} \), so called the magic manifold, admits a sequence \((R_n, \psi_n)\) of the fiber \(R_n = D_{2n} \) and the monodromy \(\psi_n \) for \(n \geq 2 \). We use this sequence for the proof. Terminology related to train tracks can be found in [BH95] or [FM12] for example.

We think of \(R_n \) as a sphere with \(2n + 1 \) punctures. An invariant train track \(\tau_n \) and a train track representative \(p_n : \tau_n \to \tau_n \) of \(\psi_n : S_{0,2n+1} \to S_{0,2n+1} \) are studied in [Kim15, Example 4.6]. Figure 13 shows the train track \(\tau_n \subset S_{0,2n+1} \) and its image \(\psi_n(\tau_n) \). Each of monogons of \(S_{0,2n+1} \setminus \tau_n \) (bounded by loop edges of \(\tau_n \)) contains a puncture of \(S_{0,2n+1} \), the \((n-1)\)-gon of \(S_{0,2n+1} \setminus \tau_n \) contains another puncture, and the other connected component of \(S_{0,2n+1} \setminus \tau_n \) contains the other puncture \(p_\infty \) in the proof of Theorem B1. Recall that \(\psi_n \) maps \(p_\infty \) to
Figure 15: Small circles indicate punctures of $S_{0, 2n+1}$. (1) Train track τ_n. (2) $\psi_n(\tau_n)$, where $e' = \psi_n(e)$. (p_∞ is not drawn here.)

itself. Figure 16 gives the directed graph Γ_n of $\psi_n(\tau_n)$. We first prove the following.

Proposition B.1. For $n \geq 4$, we have

$$L_C(\epsilon(\text{Mod}(D_{2n-1}))) \leq \frac{1}{n^2 - 4n + 2} \quad \text{and} \quad L_C(\epsilon(\text{Mod}(D_{2n}))) \leq \frac{1}{n^2 - 4n + 2}.$$

In particular for $n \geq 4$,

$$L_C(S_{0, 2n}) \leq \frac{1}{n^2 - 4n + 2} \quad \text{and} \quad L_C(S_{0, 2n+1}) \leq \frac{1}{n^2 - 4n + 2}.$$

Proof. We assume $n \geq 4$. Let $\mathcal{N}(\tau_n) \subset S_{0, 2n+1}$ be a fibered neighborhood of τ_n (see [PP87, page 360] for the definition) equipped with a retraction $\mathcal{N}(\tau_n) \searrow \tau_n$. For a connected subset $\tau' \subset \tau_n$, we define a fibered neighborhood $\mathcal{N}(\tau')$ of τ' as follows.

$$\mathcal{N}(\tau') = \mathcal{N}(\tau_n) \cap U(\tau'),$$

where $U(\tau')$ is a small neighborhood of τ' in the 2-sphere S^2. We denote by r, p_1, q_1, \cdots, p_{n-1}, q_{n-1}, the non-loop edges of τ_n as shown in Figure 15. We take

19
n points \(v_0, v_1, v_2, \ldots, v_{n-1} \subset \tau_n \), each of which lies on an infinitesimal edge of the \((n-1)\)-gon, see Figure 17(1). For \(1 \leq i < j \leq n-1 \), let \(\tau(i, j) \) be the connected component of \(\tau_n \setminus \{v_i, v_j\} \) containing \(p_i, q_i, p_{i+1}, q_{i+1}, \ldots, p_j, q_j \), see Figure 17(2). Let \(\mathcal{N}(p_i q_i p_{i+1} q_{i+1} \cdots p_j q_j) = \mathcal{N}(\tau(i, j)) \)

For \(1 \leq j \leq n-2 \), let \(\tau(j) \) be the connected component of \(\tau_n \setminus \{v_j, v_{n-1}\} \) containing \(r, p_1, q_1, \ldots, p_j, q_j \), see Figure 17(3). Let \(\mathcal{N}(rp_1 q_1 \cdots p_j q_j) = \mathcal{N}(\tau(j)) \).

We take an essential arc \(c \) connecting the two punctures as in Figure 18(1). Then \(c \) is carried by \(\tau_n \). Notice that if \(i \geq 2 \), then \(\mathcal{N}(p_i q_i p_{i+1} q_{i+1} \cdots p_{n-1} q_{n-1}) \) is disjoint from \(c \). Since \(c \subset \mathcal{N}(rp_1 q_1) \), we have

\[
\psi_n^1(c) \subset \mathcal{N}(p_1 q_1 p_2 q_2), \\
\psi_n^2(c) \subset \mathcal{N}(p_2 q_2 p_3 q_3), \\
\vdots \\
\psi_n^{1+(n-3)}(c) = \psi_n^{n-2}(c) \subset \mathcal{N}(p_{n-2} q_{n-2} p_{n-1} q_{n-1})
\]

(see Figures 16 and 18). Observe that \(\psi_n^2(\psi_n^{n-2}(c)) = \psi_n^n(c) \subset \mathcal{N}(rp_1 q_1 p_2 q_2) \). We have

\[
\psi_n^{n+1}(c) \subset \mathcal{N}(p_1 q_1 p_2 q_2 p_3 q_3), \\
\vdots \\
\psi_n^{(n+1)+(n-4)}(c) = \psi_n^{2n-3}(c) \subset \mathcal{N}(p_{n-3} q_{n-3} p_{n-2} q_{n-2} p_{n-1} q_{n-1})
\]

In the same manner, we have for \(2 \leq k \leq n-2 \),

\[
\psi_n^{(k-1)n-k}(c) \subset \mathcal{N}(p_{n-k} q_{n-k} \cdots p_{n-1} q_{n-1})
\]
Figure 17: (1) Points $v_0, v_1, \ldots, v_{n-1}$. (2) $\tau(2, n-1) \subset N(p_2q_2 \cdots p_{n-1}q_{n-1})$. (3) $\tau(1) \subset N(rp_1q_1)$.

When $k = n-2$,

$$\psi_n^{(n-3)n-(n-2)} = \psi_n^{n^2-4n+2} \subset N(p_2q_2 \cdots p_{n-1}q_{n-1}).$$

Hence

$$d_{AC}(c, \psi_n^{n^2-4n+2}) = 1.$$

If we consider a regular neighborhood of c in S^2, then we obtain an essential simple closed curve α in S^0_{2n+1} as the boundary of the neighborhood in question. Notice that α is also carried by τ_n and $\alpha \subset N(rp_1q_1)$. The above argument shows that $\psi_n^{n^2-4n+2}(\alpha) \subset N(p_2q_2 \cdots p_{n-1}q_{n-1})$ and α is disjoint from $\psi_n^{n^2-4n+2}(\alpha)$. Recall that ψ_n is defined on $R_n = D_{2n}$. This together with Lemma 2.1 implies that

$$L_C(\psi(\text{Mod}(D_{2n}))) \leq \frac{1}{n^2-4n+2}.$$

To show $L_C(\psi(\text{Mod}(D_{2n-1}))) \leq \frac{1}{n^2-4n+2}$, we fill the hole (i.e., puncture) in the $(n-1)$-gon of $S_{0,2n+1} \setminus \tau_n$. The assumption $n-1 \geq 3$ ensures that τ_n extends to a train track τ_n in $S_{0,2n}$ and $\psi_n : S_{0,2n+1} \to S_{0,2n+1}$ extends to $\psi_n : S_{0,2n} \to S_{0,2n}$ which is still pseudo-Anosov. In particular ψ_n maps the puncture p_∞ to itself. By abuse of notation, we can think of $\psi_n : S_{0,2n} \to S_{0,2n}$ as an element of $\text{Mod}(D_{2n-1})$. The train track representative $p_n : \tau_n \to \tau_n$ also extends to a train track representative $\overline{p}_n : \overline{\tau}_n \to \overline{\tau}_n$ of $\overline{\psi}_n : S_{0,2n} \to S_{0,2n}$. All non-loop edges of $\overline{\tau}_n$ are coming from those of τ_n, and hence the directed graph Γ_n for $\overline{p}_n : \overline{\tau}_n \to \overline{\tau}_n$ is the same as Γ_n for $p_n : \tau_n \to \tau_n$. For the arc $\overline{\tau}$ and the simple
closed curve γ in $S_{0,2n}$ coming from c and α in $S_{0,2n+1}$, the above argument on c and α tells us that

$$d_{AC}(\gamma, \psi_n^{2-4n+2}(\gamma)) = 1 \quad \text{and} \quad d_C(\gamma, \psi_n^{2-4n+2}(\gamma)) = 1. \quad (B.1)$$

The last equality in (B.1) together with Lemma 2.1 gives the desired upper bound.

\[\square\]

Proof of Proposition 1.2. By Lemma 3.1 together with the first equality in (B.1) about $\psi_n : S_{0,2n} \to S_{0,2n}$, we have $L_C(S_{n-1}) \leq \frac{1}{n-4n+2}$ for $n \geq 4$. Thus for $g \geq 3$,

$$L_c(S_g) \leq \frac{1}{(g+1)^2 - 4(g+1) + 2} = \frac{1}{g^2 - 2g - 1}.$$

\[\square\]

References

[Ber78] Lipman Bers. An extremal problem for quasiconformal mappings and a theorem by Thurston. *Acta Math.*, 141(1-2):73–98, 1978.
[BH71] Joan S. Birman and Hugh M. Hilden. On the mapping class groups of closed surfaces as covering spaces. pages 81–115. Ann. of Math. Studies, No. 66, 1971.

[BH95] M. Bestvina and M. Handel. Train-tracks for surface homeomorphisms. Topology, 34(1):109–140, 1995.

[Bow08] Brian H. Bowditch. Tight geodesics in the curve complex. Invent. Math., 171(2):281–300, 2008.

[FM12] Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2012.

[GHKL13] V. Gadre, E. Hironaka, R. P. Kent, IV, and C. J. Leininger. Lipschitz constants to curve complexes. Math. Res. Lett., 20(4):647–656, 2013.

[GT11] Vaibhav Gadre and Chia-Yen Tsai. Minimal pseudo-Anosov translation lengths on the complex of curves. Geom. Topol., 15(3):1297–1312, 2011.

[Hir14] Eriko Hironaka. Penner sequences and asymptotics of minimum dilatations for subfamilies of the mapping class group. Topology Proc., 44:315–324, 2014.

[HK06] Eriko Hironaka and Eiko Kin. A family of pseudo-Anosov braids with small dilatation. Algebr. Geom. Topol., 6:699–738, 2006.

[HPW15] Sebastian Hensel, Piotr Przytycki, and Richard C. H. Webb. 1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs. J. Eur. Math. Soc. (JEMS), 17(4):755–762, 2015.

[Iva92] Nikolai V. Ivanov. Subgroups of Teichmüller modular groups, volume 115 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1992. Translated from the Russian by E. J. F. Primrose and revised by the author.

[Kin15] Eiko Kin. Dynamics of the monodromies of the fibrations on the magic 3-manifold. New York J. Math., 21:547–599, 2015.

[KR] Eiko Kin and Dale Rolfsen. Braids, orderings, and minimal volume cusped hyperbolic 3-manifolds. Preprint is available at arXiv:1619.03241d.

[McM00] Curtis T. McMullen. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations. Ann. Sci. École Norm. Sup. (4), 33(4):519–560, 2000.

[MM99] Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves. I. Hyperbolicity. Invent. Math., 138(1):103–149, 1999.
References

[MM00] H. A. Masur and Y. N. Minsky. Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal., 10(4):902–974, 2000.

[Pen91] R. C. Penner. Bounds on least dilatations. Proc. Amer. Math. Soc., 113(2):443–450, 1991.

[PP87] Athanase Papadopoulos and Robert C. Penner. A characterization of pseudo-Anosov foliations. Pacific J. Math., 130(2):359–377, 1987.

[SE17] Hirose S. and Kin E. The asymptotic behavior of the minimal pseudo-Anosov dilatations in the hyperelliptic handlebody groups. Q. J. Math, 2017.

[Tsa09] Chia-Yen Tsai. The asymptotic behavior of least pseudo-Anosov dilatations. Geom. Topol., 13(4):2253–2278, 2009.

[Val14] Aaron D. Valdivia. Asymptotic translation length in the curve complex. New York J. Math., 20:989–999, 2014.

Department of Mathematics, Graduate School of Science, Osaka University Toyonaka, Osaka 560-0043, JAPAN
E-mail address: kin@math.sci.osaka-u.ac.jp

Department of Mathematical Sciences, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, South Korea
E-mail address: hshin@kaist.ac.kr