ABSTRACT

Vaccines constitute a potential new therapeutic approach for a range of human cancers. Unlike other therapeutics, vaccines initiate a dynamic process in the host immune system that can be exploited with subsequent therapies. Indeed, recent preclinical and clinical studies with cancer vaccines have provided evidence that this unique therapeutic modality should lead to consideration of new paradigms in both clinical trial design and endpoints and in combination therapies. The present article reviews and sets out a rationale for these new paradigms, with a focus on prostate cancer.

KEY WORDS

Immunotherapy, vaccine, clinical protocols, prostate cancer, cancer vaccine, combination therapy

1. INTRODUCTION

Cancer vaccines initiate a dynamic process by activating the host’s own immune system—an approach that differentiates them from other, more conventional therapies. This process could potentially influence the evaluation of patients’ responses to initial therapy and to subsequent therapies post vaccination. No therapeutic cancer vaccine has yet been approved by the U.S. Food and Drug Administration (FDA), but the field of cancer vaccines is currently in a state of active preclinical and clinical investigation. Recent preclinical and clinical studies with cancer vaccines have provided evidence that this unique therapeutic modality should lead to consideration of new paradigms in both clinical trial design and endpoints and in combination therapies. Cancer vaccines may well ultimately be employed for the therapy of many types of cancer (Table I).

2. DISCUSSION

2.1 Tumour Response Versus Patient Response

In our opinion, cancer vaccines will become the therapeutic modality in which greater emphasis will be placed on “patient response” than on “tumour response,” two phenomena that are not always mutually inclusive.

Standardization of response criteria is of course critical for any given clinical trial; however, it must be emphasized that the use of only one criterion for all therapeutics, cancer types, and disease stages can be misleading. In 2000, an international committee formulated the Response Evaluation Criteria in Solid Tumors (RECIST) as a means of measuring tumour response 1,2. The use of RECIST criteria has served the oncology community well in evaluating passive therapeutic modalities such as chemotherapeutic agents and radiation therapy. With the advent of new targeted therapies, including cancer vaccines, the sole use of RECIST criteria has now been called into question by several cooperative groups, among others 2–5. An excellent example is found in the evaluation of sorafenib (Nexavar: Onyx Pharmaceuticals, Emeryville, CA, U.S.A.) in clinical trials of patients with advanced renal cell carcinoma. In those trials, increases in patient survival were seen with low

TABLE I New paradigms for vaccine efficacy as compared with those for conventional therapeutics

| Efficacy of vaccines can be enhanced by biologic adjuvants |
| Tumour cell phenotype can be altered to enhance vaccine efficacy |
| Vaccines induce a dynamic process (important in combination scheduling) |
| As compared with tumour response (RECIST), patient response (survival) may be the more important criterion for efficacy |

RECIST = Response Evaluation Criteria in Solid Tumors.
tumour response levels and only 1 complete response from among 451 patients. It is clear from these results and others that RECIST criteria do not always adequately assess the clinical benefit to patients.

A recent article characterized stable disease and longer-than-expected survival as “soft criteria” in the evaluation of cancer vaccines as compared with the “standard” or RECIST criteria of measuring tumour volume. In contrast, the tumour volume reduction observed in some melanoma patients treated with adoptive T-cell transfer techniques was proposed as a modality that satisfies RECIST criteria. The findings arising from the use of antigen-specific adoptive-transfer T-cell techniques are important and extremely innovative, and the therapy may well benefit certain subsets of patients. However, consideration must be given to the fact that, over the course of 20 years,

- no randomized trial of adoptive cell transfer techniques using either lymphokine-activated killer cells or tumour-infiltrating lymphocytes has demonstrated a statistically significant survival benefit over that seen with interleukin 2 alone.
- no randomized trial using adoptive transfer of “antigen-specific” T cells to demonstrate a survival benefit in any patient population has been conducted; and
- studies of adoptive transfer of antigen-specific T cells have been carried out only in select institutions and have not been successfully translated to enable numerous cancer centres to carry out multicentre randomized trials.

In addition, other factors associated with this therapy must be considered, including toxicities and the labour- and cost-intensive efforts required by this therapy. It is thus suggested that adoptive-transfer T-cell therapy may be more applicable to patients with advanced disease, and that vaccine therapy may be more applicable to patients with a lower tumour burden or at an earlier stage in the disease process. As will be discussed shortly in this article, several randomized clinical trials have been conducted with a range of cancer vaccines that are now showing evidence of clinical benefit in terms of patient survival. It is thus important to consider different paradigms for measuring patient benefit when various therapeutics are used in varying patient populations.

2.2 Vaccine Trials in Prostate Cancer

An earlier review listed 21 clinical trials in which a range of cancer vaccines provided evidence of clinical benefit in various patient populations. Here, we discuss recent clinical findings resulting from the use of several different vaccine types in the therapy of prostate cancer.

Prostate cancer is a disease well suited for an analysis of the efficacy of cancer vaccines for several reasons:

- Prostate tumours are relatively slow-growing.
- Recurrence is often diagnosed early in the disease state.
- The doubling time of serum prostate specific antigen (PSA) acts as a surrogate marker for disease prognosis and outcome (Arlen PM, Bianco F, Dahut WL, et al. Prostate-specific Antigen Working Group’s guidelines on PSA doubling time. Submitted to J Urol).
- After definitive primary therapy (surgery or radiation, or both), few standard-of-care therapies exist that achieve long-lasting therapeutic effects.
- A range of prostate cancer–associated antigens have been identified and characterized.
- Early clinical studies have shown that patients will mount immune responses to the prostate cancer–associated antigens post vaccination.

Perhaps the most mature of the prostate cancer vaccines in terms of clinical trials is sipuleucel-T. Sipuleucel-T consists of autologous antigen-presenting cells and a fusion protein composed of prostatic acid phosphatase and granulocyte–macrophage colony-stimulating factor (GM-CSF). A placebo-controlled, randomized phase III trial using sipuleucel-T (Table II) was recently conducted in patients with metastatic, asymptomatic (without cancer-related pain), hormone-refractory prostate cancer (HRPC). Progression-free survival (the primary endpoint) was not statistically significant, but overall survival between the vaccine and the placebo groups (25.9 months vs. 21.4 months) reached statistical significance (p = 0.01).

Another prostate cancer vaccine employed in advanced clinical trial testing is Gvax (Cell Genesys, San Francisco, CA, U.S.A.). Gvax consists of two irradiated allogeneic prostate cancer cell lines engineered to secrete GM-CSF. Its mode of action is proposed as the uptake of the ex vivo X-irradiated tumour cells by APC and cross-presentation of tumour-associated antigens to T cells in draining lymph nodes. Two phase II clinical studies have now been completed in patients with asymptomatic metastatic HRPC. In the first trial (n = 34), Gvax was given at two dose levels. In the second trial, using the same patient population (n = 80), vaccine was given to five dose-level cohorts: two low-dose cohorts (n = 33), one intermediate-dose cohort (n = 25), and two high-dose cohorts (n = 22). In the low-dose cohorts, the median survival of patients was 23.1 months; in the intermediate-dose cohort, it was 20.0 months. The median survival of the high-dose cohorts is 35 months (Table II). No dose-limiting toxicities were observed in either trial.

Onyxv-P vaccine (Onyxvax, London, U.K.) is another whole tumour-cell vaccine for prostate
A U.S. National Cancer Institute (NCI)—sponsored Eastern Cooperative Oncology Group randomized phase II trial was then carried out using two different PSA poxvirus vectors in various prime-and-boost regimens: recombinant fowlpox rF–PSA (F) alone or combined with rV–PSA (V) in patients \((n = 64) \) with biochemical progression after local therapy for prostate cancer. At the 2-year follow-up, median time to PSA or clinical progression, or both, was 9.2 months in the cohort that received four vaccinations with F (FFFF), 9.0 months in the cohort that received a V vaccination after three F vaccinations (FFFV), and not yet reached in the cohort that received three F vaccinations after a V vaccination (VFFF)\(^\text{25}\). Moreover, a recent update report\(^\text{26}\) on the trial, with a median follow-up of 50 months, revealed a median time to PSA progression of 9.2 months and 9.1 months for the FFFF and FFFV cohorts respectively, and 18.2 months for the VFFF cohort.

The U.S. NCI has now developed recombinant Vaccinia and fowlpox vectors containing the transgenes for PSA and three human co-stimulatory molecules (CD80, intracellular adhesion molecule 1, and lymphocyte function–associated antigen 3, designated “TRICOM”)\(^{27,28}\). Recent phase I and II trials involving patients with metastatic and locally advanced prostate cancer have shown clinical responses and drops in serum PSA\(^{27,28}\). A multicentre randomized phase II study\(^\text{19}\) in 125 patients with metastatic androgen-independent asymptomatic prostate cancer did not meet its primary endpoint of progression-free survival, but the patients’ overall survival data are currently being accumulated, with provocative results (Table II). Median overall survival thus

Table II Evidence of vaccine-mediated enhanced survival in prostate cancer clinical trials

Reference	Patient population	Study arm	Patients (n)	Result
Small et al., 2006\(^\text{15}\)	Metastatic asymptomatic HRPC	APC/PAP/GM-CSF	82	Median OS: 25.9 mo.
		Placebo	45	21.4 mo.
Simons et al., 2006\(^\text{16};\) Small et al., 2006\(^\text{17};\) and Simons et al., 2005\(^\text{18}\)	Metastatic asymptomatic HRPC	Whole tumour cell (Gvax): high dose	22	35 mo.
		mid/low dose	25/33	20.0/23.1 mo.
Kantoff et al., 2006\(^\text{19}\)	Metastatic HRPC	PSA/TRICOM	84	24.4 mo.
		Vector control	41	16.3 mo.
Petrylak et al., 2006\(^\text{20}\)	Metastatic HRPC	Vaccine (APC/PAP/GM-CSF), then docetaxel	51	50% (approx.) at 36 mo.
		Control, then docetaxel	31	25% (approx.) at 36 mo.
Arlen et al., 2005\(^\text{21};\) and Madan et al., 2007\(^\text{22}\)	Non-metastatic HRPC	Vaccine (rV–PSA/B7.1, rF–PSA), with or without nilutamide\(^a\)	21	59% at 5 years
		Nilutamide, with or without vaccine	21	38% at 5 years

\(^a\) Nilutamide is a second-line hormone receptor antagonist.

HRPC = hormone refractory prostate cancer; APC = antigen-presenting cell; PAP = prostatic acid phosphatase; GM-CSF = granulocyte–macrophage colony stimulating factor; OS = overall survival; PSA = prostate-specific antigen.

Cancer that is also demonstrating promising clinical results. Onyvax-P consists of three irradiated allogeneic prostate cell lines. These cell lines have been shown to express a broad range of prostate- and prostate cancer–associated antigens, in a manner similar to the Gvax vaccine. A phase II Onyvax-P trial has now been completed in HRPC patients\(^\text{23}\). Of 26 patients, 11 showed a statistically significant prolonged reduction in PSA velocity, and no patient had a statistically significant increase in PSA velocity post vaccination. Mean time to tumour progression was 58 weeks as compared with the approximately 28 weeks seen with recent studies of other agents and with historical control values. Artificial neural network analysis of the immunologic profiles of cytokines correlated with the PSA velocity responses\(^\text{23}\).

Several trials with vaccines using poxvirus vectors have exhibited evidence of clinical benefit. Poxviruses [Vaccinia \((rV\text{"}) \), modified Vaccinia strain Ankara (MVA), and fowlpox \((rF\text{"}) \)] have the ability to accept and express multiple transgenes and can thus be engineered to express not only tumour-associated antigens, but also various immunostimulatory molecules. Modified Vaccinia Ankara is a replication-competent Vaccinia virus\(^\text{24}\). The recombinant MVA called TG4010 expresses both Muc1 (a higher-molecular-weight mucin that is overexpressed in most carcinomas, including prostate carcinoma) and IL-2. A randomized phase II study\(^\text{24}\) of TG4010 has been completed in prostate cancer patients with biochemical progression and no evidence of metastatic disease after local therapy (PSA doubling time of less than 10 months). Of 38 patients, 27 (71%) had a lengthened PSA doubling time after vaccination.
Cancers (predominantly colorectal and lung) were
phoma 31, melanoma 32,33, lung cancer 34, and other
therapy 37. As many predicted, this trial failed to meet
cancer who had already failed prior gemcitabine
administered to patients with metastatic pancreatic
(Therion Biologics, Cambridge, MA, U.S.A.) were
antigen (CEA)–Muc1–TRICOM, called Panvac-VF
Patients (n = 84).

2.3 Separating Vaccine Efficacy from Poor Clinical
Trial Design
Clinical studies have now validated what had previ-
ously been predicted by many:

- A direct correlation is evident between the can-
cer patient’s ability to mount an immune response
to a vaccine and the length of time since the
patient’s last therapy, and
- an inverse correlation is evident between the can-
cer patient’s ability to mount an immune response
to a vaccine and the patient’s number of prior
therapies 35,36.

A classic example of the distinction between a
vaccine’s potential efficacy and a poor clinical trial
design is evidenced by an ill-conceived corporate trial
in which TRICOM-based vaccines [carcinoblastic
antigen (CEA)–Muc1–TRICOM, called Panvac-VF
(Therion Biologics, Cambridge, MA, U.S.A.)] were
administered to patients with metastatic pancreatic
cancer who had already failed prior gemcitabine
therapy 37. As many predicted, this trial failed to meet
its primary endpoint of overall survival. Poor clin-
cal trial design was clearly illustrated by

- the median overall survival of less than 3 months
in this patient population;
- the fact that only one drug combination has been
approved by the U.S. FDA for the therapy of pan-
creatic cancer (gemcitabine plus erlotinib), which
extended survival by 0.4 months; and
- twelve randomized trials of various FDA-approved
drug combinations (including bevacizumab plus
gemcitabine) have failed to extend survival in this
patient population.

Thus, failure of a phase III vaccine trial in this
patient population should foremost be considered a
failure in company-sponsored clinical trial design.
In contrast, a U.S. NCI-sponsored trial of a CEA–
TRICOM-based vaccine has recently been completed 38.
Patients (n = 58) with progressing CEA-expressing
cancers (predominantly colorectal and lung) were
accrued into several cohorts. They received rV– and
tF–CEA–TRICOM vaccines with or without GM-CSF.
Among these patients, 40% had stable disease for at
least 4 months, and 14 had prolonged stable disease
(more than 6 months). In 11 patients, serum markers
declined or stabilized, and 1 patient had a pathologic
complete response. A clear trend was also observed
in overall survival in cohorts receiving GM-CSF with
vaccine and in patients who had higher frequencies of
CEA-specific T-cell responses 38.

This protocol also revealed a novel situation:
Patients who achieved stable disease after 6 monthly
TRICOM vaccinations went on to receive vaccines every
3 months. Of those patients, 12 then progressed and
were changed back to monthly vaccinations. Subse-
quently, 6 of the 12 again reverted to disease stabil-
ization 38. This phenomenon of first stabilizing on a
therapeutic, and then progressing, and then re-stabi-
lizing when dose scheduling is changed, underscores
the paradigms that must be investigated in the use of
this relatively new therapeutic modality.

2.4 New Paradigms for Combination Therapies
The five strategies of combination therapies, which
are described in this subsection and which are being
employed with cancer vaccines, have been validated
in preclinical models, and several have provided pre-
liminary evidence of clinical benefit (Table III). As the
field matures, and if and when the U.S. FDA approves
one or more vaccines or other immune stimulants,
progress in this area will undoubtedly be accelerated.

2.4.1 Conventional Combination Therapy
In most combination therapies that use two or more
chemotherapeutic agents or a chemotherapeutic agent
and a targeted therapy, each agent works individu-
ally with the goal of additive antitumour effects.
Additive effects have been demonstrated in numer-
ous preclinical models combining vaccines with che-
motherapeutic agents. Preclinical and early clinical
studies alike have highlighted the following impor-
tant phenomenon: although vaccines are less effec-
tive in patients heavily pretreated with chemotherapy
before vaccine use, no detrimental effects in the im-
mune response to vaccine have been seen in patients
when vaccine is given in combination with chemo-
therapeutic agents such as 5-fluorouracil 39 and
doctelex (even when given with a steroid) 40.

2.4.2 Vaccine in Combination with Agents That Affect
the Host Immune System
Many reagents that act either as immune stimulants and
adjuvants or as inhibitors of immunoregulatory cells
or molecules are currently being used in combination
with vaccines. These reagents have been shown in
multiple preclinical models to enhance the efficacy of
vaccine. Cytokines are well-proven to enhance the im-
mune response. For example, GM-CSF has now been
demonstrated in numerous clinical trials to enhance
TABLE III Cancer vaccine combination therapies

I. Conventional combination therapy	Each agent has independent antitumour effects
Vaccine plus agent or agents that augment the host immune response	
a. Immune potentiators:	
• Cytokines—for example, granulocyte–macrophage colony stimulating factor, interleukin 7, interleukin 15	
• Danger signals—for example, CpG motifs, Bacillus Calmette–Guerin, imiquimod cream	
• Androgen deprivation therapy	
b. Regulation of immune inhibitors:	
• Denileukin diftitox	
• Cyclophosphamide	
• Anti-CTLA-4 antibody	
II. Vaccine plus agent or agents that augment the host immune response	
a. Diversified prime–boost regimens—for example, DNA–modified Vaccinia ankara, Vaccinia–fowlpox	
b. Combinations targeting various tumour antigens	
III. Multiple vaccine therapies	
a. Phenotypic alteration of tumour cells to enhance T cell–mediated lysis	
a. Irradiation of tumour or tumour cells:	
• External-beam	
• Radiolabelled MAb	
• Chelated radionuclide	
b. Certain chemotherapeutics:	
• 5-Fluorouracil, cisplatin	
IV. Dose scheduling of vaccine in relation to combination therapy	
a. Vaccines initiate a dynamic process, which can be potentiated by subsequent therapies	
b. Several reports suggest better clinical efficacy of certain agents post vaccine:	
• Docetaxel	
• Androgen receptor antagonist (nilutamide)	
• Other chemotherapeutics	

vaccine efficacy\(^{15,18,29,30,38}\). Other immune stimulants such as Bacillus Calmette–Guerin, CpG motifs, and imiquimod are also currently being employed clinically with vaccines. One agent that is showing great promise is the monoclonal antibody anti–cytotoxic T lymphocyte–associated antigen 4 (anti-CTLA-4)\(^{41,42}\), CTLA-4 being the molecule expressed by antigen-primed activated T cells. Although the exact mechanism by which this agent works with vaccines has never been shown clinically, preclinical studies have clearly shown that the use of anti-CTLA-4 with vaccines results in higher-avidity antigen-specific T cells\(^{43}\).

Based on numerous preclinical studies and recent clinical studies, it has become apparent that control of immune inhibitory entities will play an important role in vaccine-mediated therapies. Preclinical and clinical studies\(^{44–46}\) have shown that denileukin diftitox (a fusion protein of diphtheria toxin and IL-2) can kill CD4/CD25/Foxp3 regulatory T cells (“T regs”) and enhance vaccine efficacy in inducing greater T-cell responses. The chemotherapeutic agent cyclophosphamide has also been shown in both preclinical and clinical studies to enhance vaccine efficacy. Cyclophosphamide reduces not only the number of T regs, but also their functionality\(^{47,48}\).

2.4.3 Multiple Vaccine Therapies

The use of multiple vaccines may ultimately prove advantageous because

- various types of vaccines have been shown to enhance various entities of the host immune system—that is, to produce greater increases in CD4, CD8, or natural killer cells, or antibodies.
- each vaccine can carry different tumour-associated antigens.
- vaccine therapy has been associated with limited toxicities.
- some vaccines will induce host immune responses to the vaccine vehicle (viral vectors, for example), limiting their continued use.

2.4.4 Dose Scheduling of Vaccine with Other Therapies

The administration of a vaccine initiates a dynamic process of host immune response that may be exploited in subsequent therapies. This is perhaps the most unique feature of vaccine therapy.

Among the clinical studies that have provided evidence of this phenomenon are three randomized clinical trials in prostate cancer. The U.S. NCI has now completed studies with a diversified prime–boost strategy involving priming with PSA–Vaccinia recombinants (rV–PSA plus rV–CD80) followed by multiple booster vaccinations with PSA–fowlpox recombinants. In the first trial\(^{40}\), 28 patients with metastatic androgen-independent prostate cancer were randomized to receive vaccine alone or vaccine plus docetaxel. Patients on the vaccine arm alone were allowed to cross over to receive docetaxel at the time of progression. Median progression-free survival on docetaxel was 6.1 months for the crossover patients as compared with 3.7 months in the patients that started on docetaxel with the same regimen and the same patient population at the same institution. Similar findings were observed in a separate trial of the sipuleucel-T vaccine. In the randomized multicentre sipuleucel-T study described earlier\(^{12}\), patients in both the vaccine arm (n = 51) and the placebo arm (n = 31) went on to receive docetaxel at progression. A striking and statistically significant (p = 0.023) increase in overall survival was observed with docetaxel treatment in patients who received the vaccine as compared with those who received placebo (Table II)\(^20\).

In another phase II trial at the U.S. NCI, 42 patients with nonmetastatic HRPC and rising levels of PSA were randomized to receive either vaccine (rV–PSA/CD80 prime and rF–PSA boosts; n = 21) or nilutamide (n = 21), an androgen receptor antagonist. After 6 months, patients with a rising PSA and no evidence of metastasis by radiographic criteria
were allowed to “cross over” and receive a combination of both therapies. From the initial randomized population \(n = 21 \) per cohort, 5-year overall survival was 38% for the patients who received nilutamide first (nilutamide alone or nilutamide and then vaccine) as compared with 59% for the patients who received vaccine first (vaccine alone or nilutamide plus vaccine; Table 1). The foregoing trials and others at different institutions using different vaccines and patient populations have all provided evidence of the same phenomenon: patients who receive vaccine (and who mount immune responses as a result) have enhanced outcomes with subsequent therapies. This phenomenon may be attributable to one or a combination of factors:

- The subsequent therapy may be reducing suppressor cell populations, thus allowing for enhancement of earlier-established T-cell responses.
- The subsequent therapies may be lysing some tumour cells that are then, as a consequence of cross-priming, activating relatively dormant T cells to elicit an antitumour response.
- The subsequent therapy may alter the phenotype of tumour cells or, as in androgen deprivation therapy, enhance T-cell levels (next subsection).

2.4.5 Phenotype Alterations in Tumour Cells

Yet another paradigm to exploit in vaccine combination therapies is the phenomenon of certain standard-of-care therapeutics actually altering the phenotype of tumour cells to render them more susceptible to lysis mediated by T cells. Phenotype alteration has been shown in a series of preclinical studies involving murine models in vivo, and in a large series of human tumour cell lines in vitro. Sublethal doses of X-irradiation delivered to tumours have been shown to upregulate one or a combination of tumour-associated antigens, fas, or adhesion molecules, or to downregulate anti-apoptotic genes (or both), subsequently rendering the phenotypically altered tumour cells more susceptible to antigen-specific T-cell-mediated lysis. Similar alterations of tumour-cell phenotype and subsequent susceptibility to T-cell-mediated lysis have also been induced by sublethal doses of certain chemotherapeutic agents. These findings may ultimately lead to another paradigm shift in vaccine combination therapies: That is, when a drug or radiation treatment fails to produce a response because of inability to lyse tumour cells, such a treatment may continue to be used with vaccine therapy because of its ability to augment vaccine-induced T-cell lysis of tumour.

3. CONCLUSIONS

Here, we have reviewed only a few of the vaccine vehicles that are currently being used with evidence of clinical benefit. Allogeneic whole tumour cells, peptide- or protein-pulsed antigen-presenting cells (including dendritic cells), recombinant DNA and viral vectors, and recombinant Saccharomyces (yeast) are all in active clinical trial development. Moreover, a vast array of newly defined potential tumour-associated targets are available for cancer vaccine development, including those involved in the neoplastic or tumour progression processes.

In our view, the field of therapeutic cancer vaccines is alive and thriving. As new paradigms in clinical trial design and endpoints and in combination therapies are realized, cancer vaccines may ultimately become a standard component in the management of several types of cancer.

4. ACKNOWLEDGMENT

The authors thank Debra Weingarten for her editorial assistance in the preparation of this manuscript.

5. REFERENCES

1. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92:205–16.
2. Therasse P, Eisenhauer EA, Verweij J. RECIST revisited: a review of validation studies on tumour assessment. Eur J Cancer 2006;42:1031–9.
3. Tuma RS. Sometimes size doesn’t matter: reevaluating RECIST and tumor response rate endpoints. J Natl Cancer Inst 2006;98:1272–4.
4. Gore ME, Escudier B. Emerging efficacy endpoints for targeted therapies in advanced renal cell carcinoma. Oncology (Williston Park) 2006;20(suppl 5):19–24.
5. Hoos A, Parmiani G, Hege K, et al. A clinical development paradigm for cancer vaccines and related biologics. J Immunother 2007;30:1–15.
6. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007;356:125–34.
7. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004;10:909–15.
8. Dillman RO. Lymphocyte therapy of renal cell carcinoma. Expert Rev Anticancer Ther 2005;5:1041–51.
9. Figlin RA, Thompson JA, Bukowski RM, et al. Multicenter, randomized, phase II trial of CD8+ tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma. J Clin Oncol 1999;17:2521–9.
10. Rosenberg SA, Lotze MT, Yang JC, et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 1993;85:622–32. [Erratum in: J Natl Cancer Inst 1993;85:1091]
11. Hodge JW, Schlom J, Abrams SI. Vaccines and immunostimulants. In: Kufe DW, Bast RC Jr, Hait WN, et al., eds. Holland–Frei Cancer Medicine 7. 7th ed. Hamilton, ON: BD
12. Slovin SF, Wilton AS, Heller G, Scher HI. Time to detectable metastatic disease in patients with rising prostate-specific antigen values following surgery or radiation therapy. *Clin Cancer Res* 2005;11:8669–73.

13. D’Amico AV, Chen MH, Roehl KA, Catalona WJ. Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. *N Engl J Med* 2004;351:125–35.

14. Hussain M, Todd N, Higano C, et al. Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). *J Clin Oncol* 2006;24:3984–90.

15. Small EJ, Tangen CM, Higano CS, et al. Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern Cooperative Oncology Group. *J Clin Oncol* 2005;23:3089–94.

16. Emens LA, Jaffee EM. Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. *Cancer Res* 2005;65:8059–64.

17. Small JW, Sacks N. Granulocyte–macrophage colony–stimulating factor–transduced allogeneic cancer cellular immunotherapy: the Gvax vaccine for prostate cancer. *Urol Oncol* 2006;24:419–24.

18. Simons JW, Sacks N. Analysis of prognostic variables in phase II trials of Gvax vaccine for prostate cancer in metastatic hormone refractory prostate cancer [abstract 254]. In: Abstracts of the 2006 Prostate Cancer Symposium; San Francisco, CA; February 24–26, 2006 [Web resource]. Alexandria, VA: American Society of Clinical Oncology; 2006. [Available under “Abstracts & Virtual Meeting” at: www.asco.org; cited: June 12, 2007]

19. Simons JW, Sacks N, Smith D, et al. Clinical and immunologic findings in a phase 2 study of a GM-CSF–secreting prostate cancer cell line vaccine in patients with metastatic hormone-refractory prostate cancer (met HRPC) [abstract 2517]. *Proc Am Soc Clin Oncol* 2005;23.

20. Petrylak DP. Defining the optimal role of immunotherapy and chemotherapy: advanced prostate cancer patients who receive sipuleucel-T (Provenge) followed by docetaxel derive greatest survival benefit [Web resource]. In: Meeting archives of the 14th Annual Meeting of the Chemotherapy Foundation Symposium; November 8–11, 2006; New York, NY, U.S.A. [Available online at: www.chemotherapyfoundation.org/professional_education/meetingarchives_tcf2006_main.html; cited September 5, 2007]

21. Arlen PM, Gulley JL, Todd N, et al. Androgen-deprivation, vaccine and combination therapy in nonmetastatic hormone refractory prostate cancer patients. *J Urol* 2005;174:539–46.

22. Madan RA, Gulley JL, Dahut WL, et al. Analysis of the 5-year overall survival (OS) in non-metastatic androgen independent prostate cancer (AIPC) patients (pts) treated with nilutamide (N), vaccine (V), and combination therapy [abstract 400]. In: Abstracts of the 2007 Prostate Cancer Symposium; February 22–24, 2007; Orlando, FL [Web resource]. Alexandria, VA: American Society of Clinical Oncology; 2007. [Available under “Abstracts & Virtual Meeting” at: www.asco.org; cited: June 12, 2007]

23. Michael A, Ball G, Quatan N, et al. Delayed disease progression after allogeneic cell vaccination in hormone-resistant prostate cancer and correlation with immunologic variables. *Clin Cancer Res* 2005;11:4469–78.

24. Dreicer R, Ahman R, Pantuck A, et al. Vaccine immunotherapy with MVA-Muc1-IL2 (TG4010) in prostate cancer patients with biochemical failure [abstract 4518]. *Proc Am Soc Clin Oncol* 2005;23.

25. Kaufman HL, Wang W, Manola J, et al. Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern Cooperative Oncology Group. *J Clin Oncol* 2004;22:2122–32.

26. Kaufman HL, Wang W, Manola J, et al. Phase II prime/boost vaccination using poxviruses expressing PSA in hormone dependent prostate cancer: follow-up clinical results from ECOG 7897 [abstract 4501]. *Proc Am Soc Clin Oncol* 2005;23.

27. Gulley JL, Todd N, Dahut W, Schlom J, Arlen P. A phase II study of Prostvac-VF vaccine, and the role of GM-CSF, in patients (pts) with metastatic androgen insensitive prostate cancer [abstract 2504]. *Proc Am Soc Clin Oncol* 2005;23.

28. Arlen PM, Skarupa L, Pazdur M, et al. Clinical safety of a viral vector based prostate cancer vaccine strategy. *J Urol* 2007;178:1515–20.

29. Emens LA, Jaffee EM. Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. *Cancer Res* 2005;65:8059–64.

30. Laheru D, Jaffee EM. Immunotherapy for pancreatic cancer—science driving clinical progress. *Nat Rev Cancer* 2005;5:459–67.

31. Redfern CH, Guthrie TH, Bessudo A, et al. Phase II trial of idodfent vaccine in previously treated patients with indolent non-Hodgkin’s lymphoma resulting in durable clinical responses. *J Clin Oncol* 2006;24:3107–12.

32. Palucka AK, Ueno H, Connolly J, et al. Dendritict cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. *J Immunother* 2006;29:545–57.

33. Tagawa ST, Cheung E, Banta W, Gee C, Weber JS. Survival analysis after resection of metastatic disease followed by peptide vaccines in patients with stage IV melanoma. *Cancer* 2006;106:1353–7.

34. Carbone DP, Ciennik IF, Kelley MJ, et al. Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. *J Clin Oncol* 2005;23:5099–107.

35. von Mehren M, Arlen P, Tsang KY, et al. Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adenocarcinomas. *Clin Cancer Res* 2000;6:2219–28.

36. von Mehren M, Arlen P, Gulley J, et al. The influence of granulocyte macrophage colony–stimulating factor and prior chemotherapy on the immunological response to a vaccine (Alvac-CEA B7.1) in patients with metastatic carcinoma. *Clin Cancer Res* 2001;7:1181–91.

37. Madan RA, Arlen PM, Gulley JL. Panvac-VF: poxviral-based vaccine therapy targeting CEA and Muc1 in carcinoma. *Expert Opin Biol Ther* 2007;7:543–54.
38. Marshall J, Gulley JL, Arlen PM, et al. Phase I study of sequential vaccinations with fowlpox–CEA (6D)–TRICOM alone and sequentially with Vaccinia–CEA (6D)–TRICOM, with and without granulocyte–macrophage colony– stimulating factor, in patients with carcinoembryonic antigen–expressing carcinomas. J Clin Oncol 2005;23:720–31.

39. Foon KA, John WJ, Chakraborty M, et al. Clinical and immune responses in resected colon cancer patients treated with anti-idiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. J Clin Oncol 2005;23:720–31.

40. Arlen PM, Gulley JL, Parker C, et al. A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin Cancer Res 2006;12:1260–9.

41. Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 2002;3:611–18.

42. Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte–associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 2003;100:8372–7.

43. Hodge JW, Chakraborty M, Kudo–Saito C, Garnett CT, Schlom J. Multiple costimulatory modalities enhance CTL avidity. J Immunol 2005;174:5994–6004. [Erratum in: J Immunol 2005;174:8220]

44. Dannull J, Su Z, Rizzieri D, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005;115:3623–33.

45. Barnett B, Kryczek I, Cheng P, Zou W, Curiel TJ. Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am J Reprod Immunol 2005;54:360–77.

46. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10:942–9.

47. Lutsiak MEC, Semnani RT, De Pascalis R, Kashimi SVS, Schlom J, Sabzevari H. Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 2005;105:2862–8.

48. Machiels JP, Reilly RT, Emens LA, et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage–colony stimulating factor– secreting whole-cell vaccines in HER -2/neu tolerized mice. Cancer Res 2001;61:3689–97.

49. Antonia SJ, Mirza N, Fricke I, et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 2006;12:878–87.

50. Gribben JG, Ryan DP, Boyajian R, et al. Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res 2005;11:4430–6.

51. Chakraborty M, Abrams SL, Coleman CN, Camphausen K, Schlom J, Hodge JW. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 2004;64:4328–37.

52. Garnett CT, Palena C, Chakraborty M, Tsang KY, Schlom J, Hodge JW. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res 2004;64:7985–94.

53. Gelbard A, Garnett CT, Abrams SI, et al. Combination chemotherapy and radiation of human squamous cell carcinoma of the head and neck augments CTL-mediated lysis. Clin Cancer Res 2006;12:1897–905.

Correspondence to: Jeffrey Schlom, Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room 8B09, Bethesda, Maryland 20892 U.S.A. E-mail: js141c@nih.gov

* Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
† Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.