Assessment of the Adequacy of Curriculum Content of Mechanical Technology Programme Implementation in Technical Colleges of Kaduna and Niger States, Nigeria

Ishaya Ibrahim Bature, Umar Abubakar

Abstract—The purpose of this study was to assess the adequacy of the curriculum content of mechanical technology programme implementation in technical colleges of Kaduna and Niger states, Nigeria. To conduct the study a research question was formulated. Descriptive survey design was adopted for the study. The population was 61 comprising 49 mechanical technology teachers and 12 heads of department. There was no sampling as the population size was manageable. A structured questionnaire containing 67 items was used for data collection. The instrument was face validated by three experts. Mean was used to answer the one research question. One of the major findings of the study revealed that the curriculum content of mechanical technology was inadequate. The study recommended among others that the curriculum content of mechanical technology be reviewed in order to meet up with the present technological challenges affecting all facets of human endeavours globally.

Index Terms—Assess, Adequacy, Curriculum Content, Mechanical Technology Technical Colleges, Kaduna and Niger States, Nigeria.

I. INTRODUCTION

Highlight In order to ascertain the adequacy of curriculum content of any training programme being implemented in a technical college, it has to be assessed. That is, one has to make judgement about the quality of the programme. By adequacy of curriculum content here we mean those things which the students have to learnt at a stipulated time in the course of their studies, should have an indepth coverage of subject matter relevant to their teaching-learning needs.

If the curriculum content is inadequate the learners will become half-baked at the end of the training programme (Bature, 2011). Hence, the students would not be able to acquire the necessary skills that could warrant them employment opportunity or for further education.

Undoubtedly, one of the objectives of implementing mechanical technology in the technical colleges according to Mupinga in Bature (2011) is to develop in the learner the ability to do something to earn a living. That is, the students should be able to manufacture those things that are useful in the society. Also, during their course of studies the students were expected to be able to produce among other things simple engineering components using various tools, machines and equipment. However, as observed in 2016 by the researchers most of the graduates of mechanical technology from technical colleges of Kaduna and Niger states were seeing roaming about the streets of towns and villages without being employed. These graduands were supposed to be self-employed or hired. But the reverse is the case in Kaduna and Niger states.

It would seem there are a number of factors that might have contributed to the students lack of been self-employed or hired. Bature (2011) observed that most of the technical colleges are faced with the following problems, especially during implementation namely:

1. Insufficient funds
2. Insufficient practical materials
3. Insufficient machines, equipment and tools
4. Insufficient qualified and experienced technical teachers.

Consequently, if the problems mentioned above are not solved there is the tendency that the students are bound to become half-baked trained graduants.

Furthermore, apart from the problem of inadequate training facilities as observed by the researchers (2017), one other big challenge could be attributed to the curriculum content of the mechanical technology is whether it has wide and indepth coverage which meets the needs of the students. Hence the need of this present study is to assess the adequacy of the curriculum content of mechanical technology programme implementation in technical colleges of Kaduna and Niger states, Nigeria.

Purpose of the Study

The purpose of this study was to assess the adequacy of curriculum content of mechanical technology programme implementation in technical colleges of Kaduna and Niger states, Nigeria.

Research Question

How adequate are the curriculum contents of mechanical technology programme implementation in technical colleges of Kaduna and Niger states, Nigeria in meeting the job requirements of the industries where the graduates will work?

Hypothesis

The following null hypothesis was formulated and tested.
at the 0.05 level of significance in the study.

Ho: There is no significant difference between the mean response of teachers and heads of department on the adequacy of the curriculum content of mechanical technology.

II. METHODOLOGY

An 67-item questionnaire was developed for this study by the researchers through an intensive literature review. This study adopted a descriptive survey research design. The study was conducted in Kaduna and Niger states, Nigeria. The population for this study comprises of 49 teachers and 12 heads of department. Thus the entire population was 61. The whole population was used since the size of the population was manageable. Therefore there was no sampling. Three experts from the Department of Industrial Technical Education University of Nigeria Nsukka validated the instrument. The analysis of data for this study was done using mean. Thus any item with a mean value or greater than 3.00 were accepted otherwise rejected.

III. RESULTS

The results of the research question are presented in the table below.

Research Question

How adequate are curriculum contents of mechanical technology programme implementation in Technical Colleges of Kaduna and Niger states, Nigeria in meeting the job requirement of the industries where the graduates will work?

Answers to this research question are presented in table 1 below.

S/No	Items	Adequacy of Curriculum Contents of Mechanical Technology	N=61	S.D	Decision
	Bench Work				
1	Principles of bench clamping devices such as bench vice, leg vice etc	3.21	.97	Fairly adequate	
2	Methods of controlling clamping pressure	2.96	1.10	Not adequate	
3	The identification of description of the types of grinders	2.64	.91	Not adequate	
4	Characteristics of good grinding stone	2.89	.99	Not adequate	
5	Bench operations of shaping metals to size, etc.	2.71	1.05	Not adequate	
6	Common fitting tools their cutting actions and uses.	2.96	.88	Not adequate	
7	The basic action of cutting metals by sawing, shearing	2.61	.88	Not adequate	
8	The types and parts of tools like, chisel, hacksaw, scissors, etc	2.57	.88	Not adequate	
9	Cutting principles of shearing metals to size	2.68	1.06	Not adequate	
10	The principle of filing and filing actions.	2.93	.84	Not adequate	
11	The principles of shaping metals by chiseling	3.04	1.20	Fairly adequate	
12	Highlight on the importance, types and uses of hammers in metal fitting	3.00	.90	Fairly adequate	
	Fabrication/Welding				
13	The equipment used in gas welding	2.82	.86	Not adequate	
14	The equipment used in metals arc welding	2.86	.97	Not adequate	
15	The safety precautions to be observed and applied to welding situations	2.86	1.04	Not adequate	
16	The procedures to be employed in welding surfaces using oxy-acetylene torch	2.82	.77	Not adequate	
17	The procedures to be implored in welding surfaces using electric arc.	3.14	.89	Fairly adequate	
	Forging				
18	The main features of the blacksmith’s forge	3.07	.86	Fairly adequate	
19	The working principles of the blacksmith forge.	3.14	.85	Fairly adequate	
20	The uses of common forging tools such as anvil, swage blocks, etc	3.11	.83	Fairly adequate	
21	The procedures to be implored in carry out forging operations such as upsetting, drawing down etc.	2.92	.90	Not adequate	
	Foundry				
22	The factory safety act for foundry practices	2.71	.90	Not adequate	
23	The use of productive equipment in the foundry shop.	3.14	.71	Fairly adequate	
24	The identification of foundry tools and devices	3.21	.79	Fairly adequate	
25	The principles, types and techniques of foundry works.	3.07	.98	Fairly adequate	
26	The uses of pattern in foundry works	3.14	.93	Fairly adequate	
27	The characteristics of patterns	3.14	.76	Fairly adequate	
28	The working principles of common pattern making tools	3.14	.76	Fairly adequate	
	Lathe Machine Work				
29	The identification of the types of lathe machines	3.00	.98	Fairly adequate	
The working principles of lathe machine
The function and constructional details of the component parts of each type of lathe machine and its accessories.
The problems associated with the machining of plastics
The various types of working/holding equipment used on the centre lathe
Explanation on how to determine a work plan from turning job

Milling Machine Work
The Identification of the types of Milling Machines
The working principles of a milling machine
The basic maintenance activities on a milling machine
The functions and constructional details of component parts of each milling machine and its accessories

Shaping Machine Work
The identification of the types of shaping machine and set up tools
How to set and operate the shaper to produce various components
How to maintain the shaping machine
The functions and constructional details of the main components of the shaper machine

Design
The principle of basic design
The identification of materials used in design
The identification and description of tools used in design

Finishing
The procedures of finishing up a stock with a portable filing machine
The procedures of finishing up a stock with an abrasive bell grinder.
The procedures of finishing up a stock with a buffing machine

Soldering/Brazing
The composition of soft solders
The principles of soldering
The identification of factors that determine if a job is to be soldered.
The description of soldering equipment and their functions
The description of the purpose of fluxes
The description of how to test soldered joints for rigidity and leakage
How to differentiate between the melting points of solder and metal

Hammering Metal Work
The procedures for annealing
The procedures for hollowing
The procedures for sinking
The procedures for rising
The identification of equipment and tools used in foundry

Measuring/Marking out
The essential features and use of measuring tools such as micrometer screw gauge, etc
How to care and maintain measuring and making out tools
The functions and application of making tools such as rule, dividers, caliper etc

Riveting
The procedures of cold riveting a work piece on the work bench
The procedures of hot riveting a work piece with a hand riveting machine
The procedures of riveting a work piece using a powered riveting machine
The procedures of riveting a work piece using a portable pneumatic press.

The result in table 1 shows that the respondents rated the following items in the mechanical technology curriculum content as fairly adequate: 1, 11, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 32, 46, 53, 54, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, and 67. However, items 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 21, 22, 30, 31, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 55, 57, and 65 were rated as being inadequate.

Hypothesis
There is no significant difference between the mean response of teachers and heads of department on the adequacy of the curriculum content of mechanical technology.

Data for H_0 is presented in table 2.
Table 2: T-test of difference between the mean responses of Teachers and Heads of Department regarding the Adequacy of Curriculum Content of Mechanical Technology programme in Technical Colleges

Dependent variables	Status	N	Mean	Std Deviation	Std. Error Mean	Df.	t- Cal	t- Crit	Decisions	
1 Work on Bench	Item 1	HOD	12	3.5000	1.259099	.64550	59	0.746	1.960	NS
	Teachers	49	3.1667	.91683	.18715					
	Item 2	HOD	12	2.7500	.99743	.47871	59	0.211	1.960	NS
	Teachers	49	3.0000	1.4208	.23313					
	Item 3	HOD	12	3.0000	.81650	.40825	59	0.817	1.960	NS
	Teachers	49	2.5833	.92861	.18955					
	Item 4	HOD	12	3.5000	1.0000	.50000	59	.494	1.960	NS
	Teachers	49	2.7917	.977098	.19945					
	Overall	HOD	12	3.1875	.87500	.43750	59	0.817	1.960	NS
	Teachers	49	2.8854	.84692	.17288					
2 Fitting Work	Item 5	HOD	12	3.2500	1.25831	.62916	59	2.093	1.960	S
	Teachers	49	2.6250	1.01350	.20688					
	Item 6	HOD	12	3.2500	1.50000	.75000	59	0.300	1.960	NS
	Teachers	49	2.9167	.77553	.15830					
	Item 7	HOD	12	2.50000	1.29099	.64550	59	-0.081	1.960	NS
	Teachers	49	2.6250	.82423	.16824					
	Item 8	HOD	12	2.2500	.95743	.47871	59	-0.351	1.960	NS
	Teachers	49	2.6250	.87539	.17869					
	Item 9	HOD	12	2.2500	.95743	.47871	59	-0.471	1.960	NS
	Teachers	49	2.7500	1.07239	.21911					
	Item10	HOD	12	2.50000	1.29099	.64550	59	0.408	1.960	NS
	Teachers	49	3.0000	.88465	.1805					
	Item11	HOD	12	.81650	.81650	.40825	59	1.288	1.960	NS
	Teachers	49	1.1919	1.29100	.24311					
	Item12	HOD	12	3.2500	.25000	.2500	59	0.432	1.960	NS
	Teachers	49	2.9583	.95458	.19485					
	Item13	HOD	12	3.2500	.50000	25000	59	.0532	1.960	NS
	Teachers	49	2.7500	.89685	.18307					
3 Fabrication/ Welding	Item14	HOD	12	3.0000	1.15470	.57735	59	3.444	1.960	S
	Teachers	49	2.8333	.96309	.19659					
	Item15	HOD	12	2.5000	1.29099	.64550	59	-0.330	1.960	NS
	Teachers	49	2.9167	1.01795	.20779					
	Item16	HOD	12	2.5000	1.00000	.50000	59	-0.349	1.960	NS
	Teachers	49	2.8750	.74089	.15123					
	Item17	HOD	12	3.2500	.95743	.47871	59	-0.160	1.960	NS
	Teachers	49	3.1250	.89988	.18369					
	Overall	HOD	12	2.9000	.82462	.41321	59	0.717	1.960	NS
	Teachers	49	2.9000	.71748	.14646					
4 Forging	Item18	HOD	12	3.0000	.00000	.00000	59	-3.087	1.960	NS
	Teachers	49	3.0833	.92861	.18955					
	Item19	HOD	12	3.50000	5.7735	.28808	59	0.580	1.960	NS
	Teachers	49	3.0833	.88055	.17974					
	Item20	HOD	12	3.0000	.00000	.00000	59	-1.32	1.960	NS
	Teachers	49	3.1250	.89986	.18369					
	Item21	HOD	12	3.2500	.95743	.47871	59	0.415	1.960	NS
	Teachers	49	2.8750	.89988	.18369					
	Overall	HOD	12	3.1875	.31458	.15729	59	0.285	1.960	NS
	Teachers	49	3.0417	.70190	.14329					
5 Foundry	Item22	HOD	12	3.0000	.00000	.00000	59	0.012	1.960	NS
	Teachers	49	2.6667	.96309	.19659					
	Item23	HOD	12	3.5000	.57735	.28868	59	0.045	1.960	NS
Item	Work	Teachers	Overall							
------	------	----------	---------							
11	HOD	3.2500	3.2500							
12	HOD	3.2500	3.2500							
13	HOD	3.2500	3.2500							
14	HOD	3.2500	3.2500							
15	HOD	3.2500	3.2500							
16	HOD	3.2500	3.2500							
17	HOD	3.2500	3.2500							
18	HOD	3.2500	3.2500							
19	HOD	3.2500	3.2500							
20	HOD	3.2500	3.2500							
21	HOD	3.2500	3.2500							
22	HOD	3.2500	3.2500							
23	HOD	3.2500	3.2500							
24	HOD	3.2500	3.2500							
25	HOD	3.2500	3.2500							
26	HOD	3.2500	3.2500							
27	HOD	3.2500	3.2500							
28	HOD	3.2500	3.2500							
29	HOD	3.2500	3.2500							
30	HOD	3.2500	3.2500							
31	HOD	3.2500	3.2500							
32	HOD	3.2500	3.2500							
33	HOD	3.2500	3.2500							
34	HOD	3.2500	3.2500							
35	HOD	3.2500	3.2500							
36	HOD	3.2500	3.2500							
37	HOD	3.2500	3.2500							
38	HOD	3.2500	3.2500							
39	HOD	3.2500	3.2500							
40	HOD	3.2500	3.2500							
41	HOD	3.2500	3.2500							
42	HOD	3.2500	3.2500							
43	HOD	3.2500	3.2500							
44	HOD	3.2500	3.2500							
45	HOD	3.2500	3.2500							

Note: The table contains data for various work categories, including HOD, Teachers, Overall, and different items ranging from Item 1 to Item 45. Each entry includes three values: the first being a work category (HOD or Teachers), followed by two numerical values, and a letter indicating whether it's a positive or negative outcome. The table appears to be part of a larger dataset, possibly related to educational or research metrics.
Assessment of the Adequacy of Curriculum Content of Mechanical Technology Programme Implementation in Technical Colleges of Kaduna and Niger States, Nigeria

10 Finishing

Item	Teachers	49	2.7024	.42109	.08595				
Item	HOD	12	2.5000	1.29099	.64500	59	0.541	1.960	NS
	Teachers	49	3.1250	.15123					
Item	HOD	12	2.2500	.95743	.47871	59	0.0671	1.960	NS
	Teachers	49	2.9583	.75060	.15322				
Item	HOD	12	2.0000	.81650	.40825	59	-1.171	1.960	NS
	Teachers	49	3.0833	.77553	.15830				
Overall	HOD	12	2.2500	.95743	.47871	59	-0.799	1.960	NS
	Teachers	49	3.0556	.68572	.13997				

11 Soldering/Brazing

Item	Teachers	49	3.1250	.79741	16277				
Item	HOD	12	2.0000	1.41421	70711	59	-0.981	1.960	NS
	Teachers	49	3.1250	.79741	16277				

12 Hammering/Metal Work

Item	Teachers	49	3.1667	.63702	.13003				
Item	HOD	12	2.5000	1.29831	.6251	59	-0.683	1.960	NS
	Teachers	49	2.9167	.65386	.13341				
Overall	HOD	12	2.3929	1.16861	.58430	59	0.560	1.960	NS
	Teachers	49	3.0179	.53004	.10819				
Item	HOD	12	2.5000	1.00000	.50000	59	-0.764	1.960	NS
	Teachers	49	3.2917	.62409	.12739				

13 Measuring/Marking Out

Item	Teachers	49	3.2500	.60792	.12240				
Item	HOD	12	2.5000	1.29099	.64500	59	-0.470	1.960	NS
	Teachers	49	3.0000	.83406	.17025				
Item	HOD	12	2.7500	1.25831	.62915	59	-0.235	1.960	NS
	Teachers	49	3.0417	.69025	.14090				
Item	HOD	12	2.7500	1.25831	.67915	59	-0.312	1.960	NS
	Teachers	49	3.1250	.61237	.12500				
Item	HOD	12	2.5000	1.29099	.64500	59	0.713	1.960	NS
	Teachers	49	3.3333	.564466	.11526				
Overall	HOD	12	2.6000	1.11952	.55976	59	0.502	1.960	NS
	Teachers	49	3.1583	.44126	.09007				
Item	HOD	12	2.5000	1.29099	.64500	59	-0.633	1.960	NS
	Teachers	49	3.2500	.60792	.12240				

14 Riveting

Item	Teachers	49	3.1667	.95743	.47871	59	0.846	1.960	NS
-------	----------	----	--------	--------	--------				
Item	HOD	12	3.7560	.95743	.47871	59	0.846	1.960	NS

www.wjir.org
The Mean Difference is Significant at the .05 levels. Table 2 shows that the result of T-test and data relating to the adequacy of Mechanical Technology Curriculum content indicated there was no significant difference in the response from the two groups of respondents at 0.05 level of significance for all items of the main themes in the table. Except however, there was significant difference in three of the items that is item 5, 14, and 29. Since, majority of the items (i.e. 96 percent) were upheld it then means there was no significant difference from the respondents’ responses. Therefore, hypothesis \(H_0 \) was accepted for the 96 percent of the items and rejected for the remaining 4 percent of the items.

IV. DISCUSSION OF FINDINGS

The findings have shown that the curriculum content of Mechanical Technology in 57.3 percent of the items in those themes is insignificant or rather inadequate. This will no doubt affect the students in acquiring the necessary skills that would enable them to be self-employed or hired or further their education. According to Sara (2008) noted that unless and until the curriculum content of technical college programme is comprehensive and clear, there cannot be meaningful teaching-learning process. If the training needs of the students are not met, they are bound to lose interest in the teaching learning process (Ogwo and Oranu 2006). Consequently the students when graduated would now become half-baked and there by affecting their livelihood.

An adequate Curriculum content of Technical and Vocational Education and Training Programme must, among other things be valid, Significant, Comprehensive, learnable, arrange in sequential order and must be of interest to the learner (Okoro, 1993). Thus the findings have shown that there is need for the curriculum content of Mechanical Technology Programme to be reviewed.

V. CONCLUSION

This study has provided empirical data to show that the mechanical technology programme in technical colleges of Kaduna and Niger states is needful and useful for training individuals for self-employment and for further education in public schools. The mechanical technology programme can be more effective if the curriculum content is adequate and taught by teachers who are professionally qualified, there is no doubt the objectives of implementing the programme can be achieved as desired by all the stakeholders.

VI. RECOMMENDATIONS

Based on the findings of the study, the following recommendations were made:
1. Government should ensure that adequate training facilities are provided. Moreover, government should ensure existing facilities for the implementation of mechanical technology programme in technical colleges are updated.
2. Government should ensure that adequate professionally qualified teachers are employed to teach in the technical colleges. This is to ensure that the right skills, attitude and knowledge are imparted to the students.
3. Government should call curriculum experts to conduct a general review of the content of mechanical technology when the need arose. If this is done, the training needs of the students will be taken care of.

REFERENCES

[1] Bature, I.I. (2011). Evaluation of the mechanical technology programme of technical colleges in Kaduna state, Nigeria. (Unpublished Doctoral Thesis), University of Nigeria, Nsukka.

[2] Bature, I.I. (2006). Technical teacher’s training programme in Nigeria for sustainable national development. Journal of Educational Research and Development. Faculty of Education Ahmadu Bello University Zaria Vol.1 No.3.

[3] Christopher, R. (1996). Curriculum adequacy and quality in high school enrolling fewer than 400 pupils (9 -12). Eric Digest.

[4] Federal Government of Nigeria (2008). National Business and Technical Examination Board (NABTEB). Syllabus. Benin.

[5] Nzewi, U; Okpara,E.N; Akudolu, L.R.& Anyanu, E.N. Eds (1996). Curriculum theory and planning. Nsukka Trust Publishers.

[6] Ogwo, B.A. (1996). System approach in education. In B.A. Ogwo (ed) curriculum development and educational technology. Makarid Onaure Printing & Publishing Co. Ltd.

[7] Ogwo, B.A. & Oranu, R.N. (2006). Methodology in formal and non-formal technical/vocational education. Enugu University of Nigeria Press Ltd.

[8] Olaitan, S.O. & Ali, A. (1997). The making of a curriculum theory, process, product and evaluation. Onitsha cape publishers international.

[9] Okoro, O.M. (1993). Principles and methods in vocational and technical education. Nsukka: University Trust Fund.

[10] Sara, H.A. (2008). Evaluation of vocational training programme in reformatory institutions in Northern Nigeria (unpublished Doctoral Thesis), University of Nigeria, Nsukka.