PtSRR1, A PUTATIVE PISOLITHUS TINCTORIUS SYMBIOSIS RELATED RECEPTOR GENE IS EXPRESSED DURING THE FIRST HOURS OF MYCORRHIZAL INTERACTION WITH CASTANEA SATIVA ROOTS

B. Acioli-Santos1,2,3, *; E. Malosso1; C. E. Calzavara-Silva2; C. E. P. Lima1; A. Figueiredo3; M. Sebastiana3; M. S. Pais3

1Departamento de Micologia, Universidade Federal de Pernambuco, Recife, PE, Brasil; 2Centro de Pesquisas Aggeu Magalhães, Fundação Instituto Oswaldo Cruz, Departamento de Virologia e Terapia Experimental-LaViTE, Universidade Federal de Pernambuco, Recife, PE, Brasil; 3Unit of Molecular Biology and Plant Biotechnology, ICAT, Faculdade de Ciências de Lisboa, Universidade de Lisboa, Lisboa, Portugal.

Submitted: May 20, 2008; Returned to authors for corrections: September 27, 2008; Approved: March 31, 2009.

ABSTRACT

PtSRR1 EST was previously identified in the first hours of *Pisolithus tinctorius* and *Castanea sativa* interaction. QRT-PCR confirmed *PtSRR1* early expression and *in silico* preliminary translated peptide analysis indicated a strong probability that *PtSRR1* be a transmembrane protein. These data stimulate the *PtSRR1* gene research during ectomycorrhiza formation.

Key words: ectomycorrhiza, symbiosis related genes/proteins, *Pisolithus tinctorius*.

The formation of ectomycorrhiza is a process governed by a complex biochemical and molecular interaction between the two partners before physical contact. Several stages of the ectomycorrhiza formation and maintenance processes from preinfection to the formation of the mantle and the Hartig net have been described, and it is obvious that changes in gene expression have to accompany the processes leading to symbiosis (6,8).

Studies evaluating the fungal transcript pattern during symbiosis formation have demonstrated that mycorrhization induces changes in the expression of genes normally expressed in the free organisms, without the participation of symbiosis specific genes (9). In this paper, we present a fungal cDNA EST representing a gene that is upregulated at 12 h of interaction between *P. tinctorius* and *C. sativa* (1). Its expression, the putative protein structure and its possible function in the symbiosis are discussed.

Biological material acquisition/maintenance and ectomycorrhizal induction is described by Baptista et al. (2007) (2). Micorrhizal stimulated (“myc”) and control mycelium (only in water) were harvested 12 h after contact, snap-frozen in liquid nitrogen and stored at -80ºC. A cDNA library of *P. tinctorius* was constructed from 6 µg of mRNA mix (control and “myc”) using the SMART cDNA Library Construction Kit (BD Clontech, Palo Alto, CA, U.S.A) as presented by Acioli-Santos et al. (2008). For the quantification of the *PtSRR1* mRNAs, the reverse transcription of each target RNA (control RNA and “myc” at 6 h and 12 h of interaction) was carried out (7).

The cloned *PtSRR1* EST fragment is 432 bp long. An untranslated region is observed downstream from the putative open reading frame (Fig. 1). The *PtSRR1* sequence has 70% similarity to a sequence of *Pisolithus microcarpus* (CB010071), a fungus that forms ectomycorrhiza with *Eucalyptus*. The putative *PtSRR1* peptide has 48% similarity to a protein of the fungus *Schizophyllum commune* (AF335537) that is upregulated under low nitrogen conditions. The study of the *PtSRR1* expression using QRT-PCR allowed the confirmation of the up-regulation at 12 h of interaction, revealing positive transcription rates 1350 fold higher than the control. At 6 h of fungus-plant interaction, the relative values were close to one, suggesting that changes in the transcription levels may occur between 6 and 12 h of interaction.

In silico translation of *PtSRR1* nucleotide sequence resulted in a peptide fragment of 75 amino acids (8.2 kDa), without the

*Corresponding Author. Mailing address: Departamento de Micologia, Universidade Federal de Pernambuco. Av. Prof. Nelson Chaves s/n, Cidade Universitária, 50670-420, Recife, PE, Brasil. Phone: +55 81 2126 8865. Fax: +55 81 21268482. E-mail: bartacioli@cpqam.fiocruz.br
PtSRR1, a putative P. tinctorius symbiosis

1 AGT CGT CTG GGA CAC GAG TAC GCC CCT GCA CAA ATC TCA AAT TCA 45
1 S R L G H E Y A P A Q I S N S 15
46 GAG GGA CAG ATT TAT CTC GTC GTA AAC AAC CTC ATC GAT TGC GAC 90
16 E G Q I Y L V V N N L I D F D 30
91 TAC TTG TTG GCA ATG TCC ATT CTC GAT GCC ATC GTC TTG 135
31 Y L L A N D F N I L D G S V M 45
136 GTC ACA GTA CCG GAC GTG CCG ACT GAC ATT TAT GCC ATC GTC TTG 180
46 V T V P D V P T G I Y A I V L 60
181 TTT GGT GAT TCT GGT AAC TTT AGC CAG AAC TCC AC ATC ATA GCG 225
61 F G D S G N F S Q N F T I I A 75
226 TGA TCC CAT CAC GTC CTT GCA ACT TTA TCT CTC TGA ACG ATT TCA 270
76 *
271 TGA ACA ATG ATG AAG GAC TTC TGT TTC GAT CAC TCA GGA CTT 315
316 GGT TTC ATA CAT TAG GAC GAC AAA TAC ACA TGA CTC GGA ACA TTT 360
361 AGC AAT GGA CTT GTA ACC CCC TTT CGC ATT CTG CTG TAC GTA TAT 405
406 GGA CTA GGA TCC GGG ACC ATT CTA CTA 432

Figure 1. The PtSRR1 EST: nucleotide sequence (432 bp) and partial ORF (letters below the codons, totalling 75 amino acids). The termination codon is assigned with an asterisk. The partial ORF was identified using MapDraw (Informatik Inc. USA) and represents the largest translation region for the sequence.

Initial methionine. No cysteine residues were found in the PtSRR1 amino acid sequence. The analyses of the PtSRR1 peptide primary structure (http://ca.expasy.org/cgi-bin/prosite) enabled the identification of four post-translational modification sites as follows: two N-glycosylation sites with high probability of occurrence between the residues 66 to 69 (NFSQ) and 70 to 73 (NFTI), and two Casein Kinase II phosphorylation sites, in the positions 13 to 16 (SNSE) and 47 to 50 (TVPD), respectively (Fig. 2a). No usual protein domains were identified. Secondary PtSRR1 structure analysis showed abundance of beta-structures (Fig. 2a). No helix was detected. The peptide shows a well-defined transmembrane region, despite the low probability suggested by its analysis (http://www.predictprotein.org). It was not possible to obtain a PtSRR1 three-dimensional model based on homology modeling (http://www.swissmodel.expasy.org/SWISS-MODEL.html) (Fig. 2b).

The expression of several genes at 6 h of interaction between *Laccaria bicolor* and *Pinus resinosa* has been reported (4,5). However, most of the differentially expressed fungal genes were observed in later stages of symbiotic development, especially after two or more days of interaction (3,6,9), which is corroborated by the 12 h *PtSRR1* transcription. Therefore, the high relative expression of *PtSRR1* at 12 h favours its investigation. QRT-PCR data confirmed the cDNA microarrays analysis of the fungal *PtSRR1* and its high relative transcription at 12 h of ectomycorrhizal interaction. Transcription of this gene does not occur until 6 h of contact, suggesting that this period between 6 and 12 h can be critical for its expression.

The *PtSRR1* gene is that probably triggered by the low availability of nitrogen that could function as an “indicator” of host root proximity. *PtSRR1* homologue peptide (AF335537) was identified in *Schizophyllum commune*. This homologue peptide presents high expression when the mycelium is growing under low nitrogen availability conditions. Further physiological studies and the acquisition of the complete ORF of this gene are necessary for functionality tests in the symbiosis. These results would allow to understand the real function of the *PtSRR1* protein.

As the *PtSRR1* amino acid sequence is not complete and the three-dimensional protein structure is not known, any conclusion about the role of this protein is premature. However, considering its secondary structure prediction, the *PtSRR1*
Acioli-Santos, B. et al.

seems to be a transmembrane protein with an intracellular segment containing at least one phosphorylation accessible site and an extracellular region containing two glycosylation sites. Thus, there is a possibility that the PtSRR1 acts as membrane receptor/extra-intracellular signal-transducer element through sites of glycosylation and phosphorylation, or be a secreted protein. However, in silico data obtained using the truncated PtSRR1 amino acid sequence would differ from the full-length amino acid sequence. These data strongly stimulate the research of PtSRR1 gene role in the ectomycorrhizal process as a potential marker/regulator of the early stages of symbiotic interaction.

ACKNOWLEDGEMENTS

This work was partially supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/MCT-Brazil) as a Ph.D. scholarship and grant to the first author.
RESUMO

PtSRR1, um possível receptor simbiose-regulado de *Pisolithus tinctorius* é expresso nas primeiras horas de interação ectomicorrízica com raízes de *Castanea sativa*

PtSRR1 foi isolado preliminarmente de *P. tinctorius* nas primeiras horas da interação com raízes de *C. sativa*. Análises de QRT-PCR confirmaram sua expressão positiva (12 h) e seu peptídeo putativo indicou forte possibilidade para proteína transmembranar. Estes dados estimulam o estudo do *PtSRR1* durante a formação de ectomicorrizas.

Palavras-chave: ectomicorriza, genes/proteínas simbiose-regulados, *Pisolithus tinctorius*.

REFERENCES

1. Acioli-Santos, B.; Sebastiana, M.; Pessoa, F.; Sousa, L.; Figueiredo, A.; Fortes, A.M.; Baldé, A.; Maia, L.C.; Pais, M.S. (2008). Fungal transcript pattern during the preinfection stage (12 h) of ectomycorrhiza formed between pisolithus tinctorius and castanea sativa roots, identified using cdna microarrays. *Curr. Microbiol.* (In press)

2. Baptista, P.; Martins, A.; Pais, M.S.; Tavares, R.M.; Lino-Neto, T. (2007). Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between *Castanea sativa* and *Pisolithus tinctorius*. *Mycorrhiza*, 17, 185-193.

3. Duplessis, S.; Courty, P.; Tagu, D.; Martin, F. (2005). Transcript patterns associated with ectomycorrhiza development in *Eucalyptus globulus* and *Pisolithus microcarpus*. *New Phytol.*, 165, 599-611.

4. Kim, S.; Bernreuther, D.; Thumm, M.; Podila, G. (1999). *LB-AUT7*, a novel symbiosis-regulated gene from an ectomycorrhizal fungus, *Laccaria bicolor*, is functionally related to vesicular transport and autophagocytosis. *J. Bacteriol.*, 181, 1963-1967.

5. Kim, S.; Zheng, J.; Hiremath, T.; Podila, G.K. (1998). Cloning and characterization of a symbiosis-related gene from an ectomycorrhizal fungus *Laccaria bicolor*. *Gene*, 222, 203-212.

6. Le Quéré, A.; Wright, D.P.; Söderström, B.; Tunlid, A.; Johansson, T. (2005). Global patterns of gene regulation associated with the development of ectomycorrhiza between Birch (*Betula pendula* Roth.) and *Paxillus involutus*. *Mol. Plant-Microbe Interact.*, 18, 659-673.

7. Santos, B.A. (2006). Expressão gênica no fungo *Pisolithus tinctorius* em etapas iniciais da interação ectomicorrízica com *Castanea sativa*: estudo do padrão de transcrição e de possíveis fatores de regulação da simbiose. *Tese de Doutorado*. Lisboa, 169 p. (Ph. D., Departamento de Biologia Vegetal, Universidade de Lisboa).

8. Tagu, D.; Lapeyrie, F.; Martin, F. (2002). The ectomycorrhizal symbiosis: genetics and development. *Plant Soil*, 244: 97-105.

9. Voiblet, C.; Duplessis, S.; Encelot, L.; Martin, F. (2001). Identifications of symbiosis-regulated genes in *Eucalyptus globulus-Pisolithus tinctorius* ectomycorrhiza by differential hybridization of arrayed cDNAs. *Plant. J.*, 25, 181-191.