EDITORIAL
276 Biomarkers and a tailored approach for immune monitoring in kidney transplantation
Salcido-Ochoa F, Allen JC Jr

REVIEW
285 De novo glomerular diseases after renal transplantation: How is it different from recurrent glomerular diseases?
Abbas F, El Kossi M, Jin JK, Sharma A, Halawa A

301 Recurrence of primary glomerulonephritis: Review of the current evidence
Abbas F, El Kossi M, Jin JK, Sharma A, Halawa A

MINIREVIEWS
317 Hepatocyte transplantation: Consider infusion before incision
Heath RD, Erem F, Romana BS, Ibdah JA, Tahan V

324 Elderly donor graft for liver transplantation: Never too late
Chela H, Yousef MH, Albarrak AA, Romana BS, Hudhud DN, Tahan V

329 Polyoma virus nephropathy in kidney transplantation
Scadden JRW, Sharif A, Skordilis K, Borrows R

339 Human leukocyte antigen typing and crossmatch: A comprehensive review
Althaf MM, El Kossi M, Jin JK, Sharma A, Halawa AM

ORIGINAL ARTICLE
349 Risk factors and clinical indicators for the development of biliary strictures post liver transplant: Significance of bilirubin
Forrest EA, Reiling J, Lipka G, Fawcett J

CASE REPORT
359 Mucocele mimicking a gallbladder in a transplanted liver: A case report and review of the literature
Chaly T, Campsen J, O’Hara R, Hardman R, Gallegos-Orozco JF, Thiesset H, Kim RD
World Journal of Transplantation

Volume 7 Number 6 December 24, 2017

EDITORS FOR
THIS ISSUE

Responsible Assistant Editor: Xiang Li
Responsible Science Editor: Jin-Xin Kong
Responsible Electronic Editor: Xiu-Xia Song
Proofing Editorial Office Director: Jin-Lei Wang

Wo Word Journal of Transplantation Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501,
Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

COPYRIGHT
© 2017 Baishideng Publishing Group Inc. Articles published by this Open-Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-commercial and is otherwise in compliance with the License.

SPECIAL STATEMENT
All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS
http://www.wjgnet.com/bpg/gerinfo/204

ONLINE SUBMISSION
http://www.f6publishing.com

NAME OF JOURNAL
World Journal of Transplantation

ISSN
ISSN 2220-3230 (online)

LAUNCH DATE
December 24, 2011

FREQUENCY
Bimonthly

EDITOR-IN-CHIEF
Maurizio Salvadori, MD, Professor, Renal Unit, Careggi University Hospital, Florence 50139, Italy

EDITORIAL BOARD MEMBERS
All editorial board members resources online at http://www.wjgnet.com/2220-3230/editorialboard.htm

EDITORIAL OFFICE
Xiu-Xia Song, Director

ABOUT COVER
Editorial Board Member of World Journal of Transplantation, Kevin Lu, MD, Chief Doctor, Institute of Urology, Asia University Hospital, Taichung city 41354, Taiwan

AIM AND SCOPE

World Journal of Transplantation (World J Transplant, WJT, online ISSN 2220-3230, DOI: 10.5500) is a peer-reviewed open access academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

WJT covers topics concerning organ and tissue donation and preservation; tissue injury, repair, inflammation, and aging; immune recognition, regulation, effector mechanisms, and opportunities for induction of tolerance, thoracic transplantation (heart, lung), abdominal transplantation (kidney, liver, pancreas, islets), transplantation of tissues, cell therapy and islet transplantation, clinical transplantation, experimental transplantation, immunobiology and genomics, and xenotransplantation. The current columns of WJT include editorial, frontier, diagnostic advances, therapeutics advances, field of vision, mini-reviews, review, topic highlight, medical ethics, original articles, case report, clinical case conference (Clinicopathological conference), and autobiography.

AIM AND SCOPE

World Journal of Transplantation is now indexed in PubMed, PubMed Central.

FLYLEAF

I-IV Editorial Board
Recurrence of primary glomerulonephritis: Review of the current evidence

Fedaey Abbas, Mohsen El Kossi, Jon Kim Jin, Ajay Sharma, Ahmed Halawa

Fedaey Abbas, Department of Nephrology, Jaber El Ahmed Military Hospital, Safat 13005, Kuwait

Fedaey Abbas, Mohsen El Kossi, Jon Kim Jin, Ajay Sharma, Ahmed Halawa, Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom

Mohsen El Kossi, Doncaster Royal Infirmary, Doncaster DN2 5LT, United Kingdom

Jon Kim Jin, Nottingham Children Hospital, Nottingham NG7 2UH, United Kingdom

Ajay Sharma, Royal Liverpool University Hospitals, Liverpool L7 8XP, United Kingdom

Ahmed Halawa, Department of Transplantation Surgery, Sheffield Teaching Hospitals, Sheffield S5 7AU, United Kingdom

ORCID number: Fedaey Abbas (0000-0001-8673-4344); Mohsen El Kossi (0000-0002-2499-2784); Jon Kim Jin (0000-0003-4307-8513); Ajay Sharma (0000-0003-4050-6586); Ahmed Halawa (0000-0002-7305-446X).

Author contributions: Abbas F designed the study, executed data collection, and writing the manuscript; El Kossi M, Jin JK and Sharma A reviewed and edited the manuscript; Halawa A contributed to conceptualization, designing of the study, supervising of the data collection and reviewing and editing of the manuscript.

Conflict-of-interest statement: None.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Abstract

In view of the availability of new immunosuppression strategies, the recurrence of allograft glomerulonephritis (GN) are reported to be increasing with time post transplantation. Recent advances in understanding the pathogenesis of the GN recurrent disease provided a better chance to develop new strategies to deal with the GN recurrence. Recurrent GN diseases manifest with a variable course, stubborn behavior, and poor response to therapy. Some types of GN lead to rapid decline of kidney function resulting in a frustrating return to maintenance dialysis. This subgroup of aggressive diseases actually requires intensive efforts to ascertain their pathogenesis so that strategy could be implemented for better allograft survival. Epidemiology of native glomerulonephritis as the cause of end-stage renal failure and subsequent recurrence of individual glomerulonephritis after renal transplantation was evaluated using data from various registries, and pathogenesis of individual glomerulonephritis is discussed. The following review is aimed to define current protocols of the recurrent primary glomerulonephritis therapy.

Key words: Recurrent glomerulonephritis; Renal transplantation; Primary glomerulonephritis
Core tip: Renal transplantation is the best-known therapy for end stage renal disease, with the glomerulonephritis represents a major etiology for its prevalence. Unfortunately, recurrence of the glomerulonephritis (GN) disease after renal transplantation represents a real devastating impact on allograft survival. A clear understanding of their pathogenesis, will help not only in ameliorating GN recurrence, but also improves allograft survival.

INTRODUCTION

The impact of glomerulonephritis (GN) recurrence varies widely from mild or negligible effect, e.g., IgA nephropathy (IgAN), to a real detrimental impact on graft survival, e.g., Focal Sclerosing Glomerulosclerosis (FSGS) and membranoproliferative GN (MPGN)\[1\]. Since it has been early recognized, the deleterious impact of the recurrent GN on allograft longevity, continuous efforts have been exerted to determine its real prevalence, clear pathogenesis and to tailor the best strategies for treatment and prevention\[2\]. Recently, several mechanisms have been postulated to address a clear pathogenesis of GN recurrence\[1\]. The prevalence of GN as an etiology of end-stage renal disease (ESRD) was reported to be exceeding 48% in China\[3,4\], 50% in Australian-New Zealand\[2\] and 30% according to USRDS 2015 report\[5\]. The frequent lack of kidney biopsy resulted in underestimation of the real prevalence of the GN recurrence\[6\]. Moreover, the distinction between recurrent GN and the de novo disease is not widely applied. Compared to an early (within the first year) post transplantation assessment of prevalence of about 4%, a value of 13% after 7.5 years\[6\], and 18% in other studies\[7,8\] have been recorded\[2\]. The reported wide variations in prevalence may be attributed to the variability in follow up periods of various studies\[9\].

The advent of the new immunosuppressive strategies in kidney transplantation have been reflected on the rates of acute and chronic rejection, but unfortunately has little (impact on the prevalence rates of GN recurrence as well as the de novo GN disease\[10\]). The expected improved allograft survival rate will be ultimately reflected in the future on the prevalence of the recurrent GN after kidney transplantation. It is noteworthy to mention that GN disease with a seemingly benign course, e.g., IgAN is known to recur in 40% of patients but leads to graft loss only in 10%\[11,12\]. The magnitude of challenge, at times, seems insurmountable despite the progress in understanding the pathogenesis of certain recurrent GN, e.g., permeability factors (suPAR in FSGS and anti-PLA2R AB in MN).

In this review, the authors have identified the most recent progress in understanding the pathogenesis of GN recurrence and its impact on the renal allograft survival. Further insights on the available strategies for treatment and prevention of GN recurrence, particularly so in the main primary GN is will be addressed.

Graft survival in recurrent GN disease after renal transplantation. General Concepts

An assumed underestimation of the real prevalence of the GN recurrence has been proved By application of the “Protocol Biopsy” that defined as: biopsy at fixed time, with no relation to a clinical guide. Protocol biopsy delineates a higher incidence of GN recurrence (5%, 18%, 21%, 35%, 42% at 1, 3, 5, 8 and 10 years respectively)\[3\]. Many explanations have been postulated in this concept to shed the light on the reported discrepancy in prevalence of the GN recurrence: (1) absence of clear native kidney disease diagnosis; (2) absence of valid biomarker for GN recurrence; (3) difficulty in differential diagnosis from other pathological entities, e.g., CAN and drug intoxication; (4) absence of clear stratification and characterization of GN recurrence nature in view of the advent of the new therapeutic approaches\[13-15\]; (5) the decision of biopsy is not always performed routinely whenever indicated (e.g., proteinuria/hematuria, renal impairment); (6) IF/EM techniques are not routinely performed after each biopsy; (7) a wide discrepancy is found in certain diseases, e.g., IgAN, between histopathologic characteristic changes and the appearance of clinical manifestations; (8) a trend to differentiate and isolate de novo disease from a true recurrent disease is usually not eventually attempted; (9) absence of basal data as regard etiology of ESRF and the native renal biopsy in many cases; and (10) data inconvenience may result in misdiagnosis of a recurrent disease as a de novo disease, which is in fact a true recurrence\[2\].

The detrimental impact of GN recurrence on allograft survival is irrefutable. The consideration of this impact relies on three points: (1) impact of recurrence of particular types of GN before transplantation on graft survival, e.g., FSGS and MPGN Type I vs other types of GN. A significantly higher risk of graft failure in these types\[9,16\]. The proper evaluation should involve a fairly large number of patients studied and followed for an enough period of time\[2\]; (2) evaluation of the risk of graft failure in case of GN recurrence: The etiology of graft failure should be considered, membranous nephropathy (MN), for example, has high recurrence rate leading to hazardous effect on graft survival\[17\]; and (3) global allograft GN particularly recurrent disease and its relation
understand primary and secondary GN recurrence, histological recurrence can be titrated with the frequent no hematuria/proteinuria could be observed; only after the confirmation of recurrence in the third month, within 1-2 mo after transplantation. At that time and of transmitted GN diseases of the early course changes in some transmitted GN of the protocol biopsy could be observed in identification 3 years biopsy is performed serially at discharge, then after 3 wk, 3-6 mo, 12 mo and after early anticipated. An intraoperative basal kidney biopsy, discovered and the native GN disease recurrence can be that the earliest changes in allograft histology can be observed with the previously named MPGN II (adapted from Alasfar et al[30] with permission).

Figure 1 Kaplan-Meier renal allograft survival

Number at risk	Non-recurrent	Recurrent
	19	16
0	17	11
2	12	8
4	5	1
6	1	
8	1	

Kaplan-Meier renal allograft survival

Probability of remaining free of graft loss

Risk of recurrence is not constant, it should be considered a time-dependent variable for a better and proper evaluation[21]. As reported by Cosio et al[7] in the American Transplant Congress, 2015, Type I MPGN and FSGS showed the highest rate of GN recurrence with subsequent increased risk of allograft loss, followed by IgAN. These data are supported by some studies[12], but not agreed by others[6,9]. It was assumed that 18%-22% of the death-censored kidney allograft losses was attributed to allograft GN (de novo and recurrent)[7], the second most common cause of death-censored graft losses[18] and third most prevalent cause of uncensored graft losses[9,16]. However, Mashaly et al[10] observed that the best allograft survival of kidney transplantation was stage due to polycystic kidney disease followed by those who had urologic disease and then those who had GN as the cause of renal failure. The recurrent GN disease has a wide variety of drawbacks deranging allograft function, which made it occupy the third most common etiology of allograft loss after death with a functioning graft and chronic allograft glomerulopathy, an assumption that was agreed by Fairhead and Knoll[20] (2010) who declared that the recurrent GN disease is a major determinant of the long term graft survival (Figure 1). On the other hand, Toledo et al[21] (2011) denied the presence of any difference between GN recurrence and other causes of allograft dysfunction as regard their influence on long term allograft survival. This discrepancy could be a statistical artefact attributed to the small number of patients in their study, racial impacts and the different immunosuppression strategies.

SIGNIFICANCE OF “PROTOCOL BIOPSY” FOR EARLY DIAGNOSIS OF RECURRENT GN

A full detailed map of allograft deterioration due to GN recurrence, can be obtained through a standard protocol biopsy, a widely applied strategy in many centers, so that the earliest changes in allograft histology can be discovered and the native GN disease recurrence can be early anticipated. An intraoperative basal kidney biopsy, at discharge, then after 3 wk, 3-6 mo, 12 mo and after 3 years biopsy is performed serially[22]. The importance of the protocol biopsy could be observed in identification of the early course changes in some transmitted GN diseases, e.g., IgAN, which accounts for more than 90% of transmitted GN[20]. Early recurrence can be detected within 1-2 mo after transplantation. At that time and after the confirmation of recurrence in the third month, no hematuria/proteinuria could be observed; only histological recurrence can be titrated with the frequent specimens[23].

Japanese pathologists pioneered protocol biopsy to understand primary and secondary GN recurrence, e.g.,

Graft survival in MPGN type I recurrence

Green et al[23,24] (2015) reported that the risk of recurrence is higher in MPGN Type I, with the following factors: (1) the HLA B49, HLA DR4; (2) previous transplantations; (3) acute tubular necrosis after transplantation; (4) shorter duration of dialysis before transplantation; and (5) Arab origin was all associated with decreased graft and patient survival[24].

A better allograft survival is expected in MPGN Type I, with the following factors: (1) unrelated living donors; and (2) absence of recurrence in the first year post transplantation. The advent of the new concepts declaring the role of the alternative complement pathway in the pathogenesis of MPGN was addressed in appearance of the new classification of MPGN. It depends on the mechanism of glomerular injury instead of deposits distribution, which will be ultimately reflected on development of the new therapeutic policies (see therapy of GN recurrence) and its clinical interpretations[26]. So, MPGN will be immune complex mediated (ICGN), encompassing immune complexes and complement compounds, or complement-mediated (CGN) containing only complement, without immune complex (Table 1). Old studies were based on the old classification and data in this subject were very limited owing to the limited number of patients and short follow up durations. The highest prevalence rate has been observed with the previously named MPGN II[26,32].

Risk factors of MPGN recurrence

According to Alasfar et al[30] (2016) (Figure 2), the following risk factors have been proposed to be associated with more liability for MPGN recurrence: (1) preemptive renal transplantation[30]; (2) the living related donation[30]; (3) presence of monoclonal immunoglobulins[30]; (4) diminished complement levels[33]; (5) a higher level of proteinuria[32]; (6) human leukocyte antigen type: HLA B8, DR 3[34]; and (7) evidence of crescents in the original biopsy[34].

The advent of the new concepts declaring the role of the alternative complement pathway in the pathogenesis of MPGN was addressed in appearance of the new classification of MPGN. It depends on the mechanism of glomerular injury instead of deposits distribution, which will be ultimately reflected on development of the new therapeutic policies (see therapy of GN recurrence) and its clinical interpretations[26]. So, MPGN will be immune complex mediated (ICGN), encompassing immune complexes and complement compounds, or complement-mediated (CGN) containing only complement, without immune complex (Table 1). Old studies were based on the old classification and data in this subject were very limited owing to the limited number of patients and short follow up durations. The highest prevalence rate has been observed with the previously named MPGN II[26,32].
Table 1: The membranoproliferative glomerulonephritis new classification depends on the mechanism of glomerular injury instead of deposits distribution[30]

No	Type	Criteria	Prevalence
1	ICGN	Contains immune complexes + complement compounds	More common (most of the recurrent cases are ICGN)
2	CGN	Contains complement compounds only	Less prevalent (change from one type to another is possible)

ICGN: Immune complex-mediated glomerulonephritis; CGN: Complement-mediated glomerulonephritis.

Impact of HLA typing on prevalence of MPGN recurrence: Green et al.[34] (2013) concluded that the risk of recurrence is higher in MPGN Type I, with certain human leukocyte antigen, i.e., HLA B49, HLA DR4. Andresdottir et al.[30] (1997) reported an increased risk of recurrence of MBGN Type I was observed in patients with the HLA haplotype B8 DR3.

Graft survival in “recurrent MN”

The recurrence of primary MN after renal transplantation is obviously has deleterious impact on graft survival. For better evaluation of the death censored survival, timing of GN recurrence should be considered[17].

Anti-PLA2R autoantibodies in recurrent MN and graft survival: The pivotal role of anti-phospholipase A2 receptor (PLA2R) auto antibodies in the pathogenesis of primary MN before as well as after renal transplantation has an impressing popularity. The prevalence of anti-PLA2R antibodies in primary MN is approaching 70% and nearly the same percentage in RTR (70%-80%)[17,35,36], with about half of the patients are liable for recurrence after renal transplantation[17,37]. Patients with anti-PLA2R antibodies before transplantation have a 60%-76% chance of histologic recurrence, while absence of these autoantibodies decreases their risk of recurrence to less than 30%[17,36,38,39]. After transplantation the anti-PLA2R antibodies absorbed rapidly into the allograft and as a result of decreased antibodies production due to the immunosuppression medications leading to decline of their level in up to 50% of patients[38]. This decline is definitely associated not only by a lower risk of recurrence, but also by a slower rate of progression if MN does recur[36]. On the other hand, the significance of the anti-PLA2R post transplantation is greatly observed in their predictive value of recurrence and disease progression which is exceeding 80%[36], a high anti-PLA2R is usually accompanied by an increased risk of recurrence, rapid disease progression and probably more resistance to drug therapy[36,38].

Impact of anti-PLA2R on graft survival: Serial survey of the anti-PLA2R antibodies titer is of utmost importance for the following indications[2]: (1) evaluating the magnitude of recurrence risk; (2) determining the rate of disease progression; (3) prediction of the response to treatment[2]; and (4) differential diagnosis of proteinuria in recipients with native primary MN.

Non-anti-PLA2R MN recurrence: Not all the patients with primary MN express anti-PLA2R antibodies, 30% of these patients are negative to these antibodies. Instead, few patients have been reported to have antibodies against other types like cationic bovine serum albumin and thrombospondin type 1 [40] but data, however, concerned with the real significance of these mediators are still deficient[40-42].

Of note that if the anti-PLA2R antibody titer is negative, we should search for the “glomerular PLA2R” staining, in such a case there is associated anti-PLA2R MN with negative anti-PLA2R serum level, which is present in 30% of cases[36,43].

Graft survival in recurrent “primary focal segmental”

Primary focal segmental (FSGS) is proved to be one of the highest glomerulonephritis (GN) in recurrence rate after kidney transplantation (KTx), with a percentage of prevalence exceeding 30% in the most recent series[2], with an expected very poor graft survival rate[43]. It can recur immediately post-transplantation, or recur lately, where its diagnosis is usually masked by the secondary FSGS resulting from the reduced total nephron mass, or due to other causes, e.g., iatrogenic[40,44]. Of all causes of the FSGS, “genetic” subtype showed the least incidence of recurrence[10,45,46]. On the other hand, podocin mutations did not show a decreased risk of recurrence[45]. However, revising the recent series, there is consensus about certain clinical parameters that is considered the paramount risk factors for FSGS recurrence: (1) White race[43]; (2) higher level of proteinuria[46,47]; (3) rapid progression to ESRD (< 3 years); (4) younger age (< 15 years old) at time of diagnosis[46]; and (5) the most
The reported incidence if recurrent IgAN is quite variable according to the considered diagnosis and period of follow up. IgAN can remain silent for 5 years before it became clinically evident. So, an average incidence of 30% has been reported[48]. The histologic recurrence is by far more prevalent and discovered earlier before the disease became clinically evident. Rarely, crescentic disease with a rapidly progressing course can occur, which ultimately is associated with poor prognosis[46, 50]

A growing body of evidence that three markers of an active disease indicates a great liability for recurrence:
1. galactose-deficient IgA1;
2. IgA-IgG immune complexes; and
3. lower levels of IgA-soluble CD89 circulating complexes, the myeloid cell receptor for IgA[51]. The only defect in considering these components is that they were considered on a clinically evident base of IgAN recurrence, therefore, silent disease - a quite common IgAN behavior - will be definitely missed, which means an easily missed diagnosis of IgAN recurrence[47].

Risk factors of IgAN recurrence include:
1. young RTR;
2. aggressive course of the disease before transplantation; and
3. lower levels of IgA-soluble CD89 circulating complexes, the myeloid cell receptor for IgA[51]. The only defect in considering these components is that they were considered on a clinically evident base of IgAN recurrence, therefore, silent disease - a quite common IgAN behavior - will be definitely missed, which means an easily missed diagnosis of IgAN recurrence[47].

The advent of a new classification of MPGN including the classic morphology as well as the other features enables not only a better understanding of the course of this disease, but also delineates the best tools of prevention and therapy of recurrence, which will be ultimately reflected on the allograft survival[72, 73]. This fact is evolved from the observed wide discrepancy in the behavior of each subtype (see below) as regard the incidence and the intensity of recurrence as well as its impact on allograft survival[3].

One of the largest series about post-transplant MPGN recurrence in the literature was admitted by Alasfar et al[30], it was the first study that applied the new MPGN classification in evaluating post-transplant MPGN recurrence (Table 1, Figure 3). Despite the absence of worse survival in the recurrent cohort of Alasfar et al[30], the rate of allograft loss was higher (Figure 1).
Abbas F et al. Recurrence of primary glomerulonephritis

Impact of the new classification on therapeutic options

MPGN with Ig deposits: We should focus in suppression of the antibody production, but there are no controlled trials.

MPGN with monoclonal Ig deposits: The anti-CD20 antibodies are proved to be effective in uncontrolled trials in native as well as in allograft recurrence74. Monoclonal deposits are proved to be associated with a higher rate of recurrence75. This association may suggest they have their role in the pathogenesis of MPGN, consequently, two important steps have been suggested: (1) meticulous screening for “monoclonal gammopathy” during preparation of a patient with MPGN for renal transplantation; and (2) a “hematologist consultation” may be advised with strict follow up in such situation for long periods30.

MPGN C3GN: The use anti C5 monoclonal antibodies, eculizumab, is shown to be effective with mixed results76,80, depending on the success of this drug in preventing the recurrence of atypical HUS, which own a similar pathogenesis80-83.

Impact of subtype's behavior on therapeutic options

MPGN with polyclonal Ig deposits: Usually presented late, within the first 5 years, with a relatively benign course as regard low risk of recurrence and slow progression. Interestingly, the morphology of the lately recurred MPGN with polyclonal Ig deposits is difficult to be differentiated from the de novo GN which can behave similarly as regard the late presentation post transplantation as well as the presence of polyclonal Ig deposits48. The former group has C4d deposits in their glomeruli, fortunately help in differential diagnosis. Also, a higher risk of recurrence could be expected with the presence of reduced complement level (C3 and C4) level30 (Figure 5).

C3GN: C3 glomerular deposits are abundant with absence or minimal Ig deposits84,85. The risk of recurrence in C3GN is very high, exceeding 70%, can be presented early with a very aggressive course that ultimately ends by graft failure in nearly half of the cases. It is noteworthy to remind that some of the reclassified cases may change their microscopy by time. Unfortunately, the latter change could be difficult to differentiate from a de novo GN disease, which will be ultimately resulted in a difficulty on choosing the mode of therapy30.

They explained this discrepancy by the small sample size. Unfortunately, the response to immunosuppressive therapy in this study was poor, as less than 50% of their patients treated by high dose steroid therapy, rituximab and/or plasmapheresis, or eculizumab could attain allograft function stability and prevent graft loss (Figure 4). An assumed benefit of ACEi/ARBs therapy in prevention of graft loss was suggested by this study, which should be considered cautiously regarding the small number of cases30. Alasfar et al30, however, showed that 43% of their patients who developed MPGN recurrence were of the immune complex-mediated GN (ICGN) type and were complicated by graft loss. On the other hand, one of the two patients with GN recurrence and subtyped as complement-mediated GN (CGN) developed graft loss. The average time of graft loss was 6.5 mo (2-18 mo). Interpreting these results showed non-significant results between recurrent and non-recurrent groups, despite the presence of tendency to worse survival30. Also, no significance could be detected with other factors, e.g., age, race, gender, mismatching degree, graft source, pre-emptive transplantation and degree of proteinuria. In contrary to other factors and despite of non-significance, ACEi/ARB therapy could ameliorate the tendency of graft loss (Figure 4). For more specified specific therapy, all the old biopsies before the advent of the new classification, should be reclassified. The CGN is generally less prevalent, on the other hand, ICGN is more common (Table 1) and most of the native as well as the recurrent MPGN appear to be classified as ICGN. It is noteworthy to remind that some of the reclassified cases may change their microscopy by time. Unfortunately, the latter change could be difficult to differentiate from a de novo GN disease, which will be ultimately resulted in a difficulty on choosing the mode of therapy30.

Impact of the new classification on therapeutic options

MPGN with Ig deposits: We should focus in suppression of the antibody production, but there are no controlled trials.

MPGN with monoclonal Ig deposits: The anti-CD20 antibodies are proved to be effective in uncontrolled trials in native as well as in allograft recurrence74. Monoclonal deposits are proved to be associated with a higher rate of recurrence75. This association may suggest they have their role in the pathogenesis of MPGN, consequently, two important steps have been suggested: (1) meticulous screening for “monoclonal gammopathy” during preparation of a patient with MPGN for renal transplantation; and (2) a “hematologist consultation” may be advised with strict follow up in such situation for long periods30.

MPGN C3GN: The use anti C5 monoclonal antibodies, eculizumab, is shown to be effective with mixed results76,80, depending on the success of this drug in preventing the recurrence of atypical HUS, which own a similar pathogenesis80-83.

Impact of subtype's behavior on therapeutic options

MPGN with polyclonal Ig deposits: Usually presented late, within the first 5 years, with a relatively benign course as regard low risk of recurrence and slow progression. Interestingly, the morphology of the lately recurred MPGN with polyclonal Ig deposits is difficult to be differentiated from the de novo GN which can behave similarly as regard the late presentation post transplantation as well as the presence of polyclonal Ig deposits48. The former group has C4d deposits in their glomeruli, fortunately help in differential diagnosis. Also, a higher risk of recurrence could be expected with the presence of reduced complement level (C3 and C4) level30 (Figure 5).

C3GN: C3 glomerular deposits are abundant with absence or minimal Ig deposits84,85. The risk of recurrence in C3GN is very high, exceeding 70%, can be presented early with a very aggressive course that ultimately ends by graft failure in nearly half of the
Dense deposit disease subtype: The rate of recurrence of this subtype is extremely high (80%-90%), leading to reduced graft survival\cite{32,92}. Two criteria characterize this subtype: It is usually slowly progressive with minimal or absent clinical manifestation, and the timing of recurrence is mostly delayed\cite{92,93}. Both DDD and C3GN usually express an alteration in the alternative pathway with resultant overproduction of the activated C3\cite{94,95}. Recently, polymorphism of the complement...
regulating proteins, especially in alternative pathway, are found to be propagated mostly in all subtypes of MPGN, with a possible alterations related to renal outcome were assumed[86]. In DDD and other C3 glomerulopathies: Eculizumab or anti-auto antibodies activating complement cascade therapy have been suggested[97].

“Monoclonal gammopathy with renal significance”: Both C3 GN and DDD lack C4d, indicating alternative pathway activation[86]. Any MPGN subtype associated with monoclonal Ig deposits usually complicated by GN recurrence in 66% of cases and expressing a very aggressive course often complicated by allograft failure[99]. Interestingly, 70% of these cases do not express monoclonal IG either in serum or in urine, without any evidence of plasma cell dyscrasia in bone marrow and with low risk of progress into multiple myeloma[100,101].

Monoclonal proteins: Monoclonal proteins are present in 30% of cases with MPGN with monoclonal Ig deposits have serum monoclonal proteing[100] despite absence of any evidence of multiple myeloma. A subtype name of this group of patients called “monoclonal gammopathy with renal significance”[100,101], which obviously will express a very high risk of recurrence[104].

Stem cell transplantation: It is noteworthy to declare that in monoclonal gammopathy, stem cell transplantation can reverse the renal dysfunction through elimination of the light chain and immunoglobulins, with an expected general improvement. The observed link between C3GN and monoclonal and the complement (alternative pathway) activation by λ-light chain has been recorded in previous reports[105-107].

Recommendations for a better management
Extrapolating the aggressive behavior of these recurrent diseases, especially in the presence of monoclonal deposits and C3GN, rigorous precautions should be considered to strive against its activity. A prophylactic protocol to guard against MPGN with monoclonal deposits recurrence utilizing an anti-CD20 AB before transplantation is currently under evaluation by Cosio et al[2], with promising preliminary results. It is assumed that the C3GN remains silent until they exposed to a certain event, e.g., ischemia/reperfusion injury of transplantation that results in dysregulation of complement activation with evolution of the pathological events associated to its aggressive course[108-110]. So, it is essential to reclassify the MPGN based on the recent MPGN classification, which will help not only in designing a therapeutic protocol, but also in instituting a prophylactic policy. It is noteworthy mentioning that the clinical course of MPGN pre- and post-transplantation are not the same, i.e., slow preoperative course is not necessarily applied to the post-transplantation behavior[22].

TREATMENT OF RECURRENT MN

RTR with recurrent MN are better to be under RAAS-blockade as well as symptomatic therapy in the form of diuretics, statins and anticoagulants. Other lines include were listed below.

CNI
Referring to its efficacy in MN in the native kidney disease, many RTR with recurrent MN are utilizing CNI therapy relevant to the recent advances in understanding the pathogenesis of MN recurrence[111].

Corticosteroid/alkylating agents (cyclophosphamide or chlorambucil) combination
Again effective in both native and recurrent MN disease[112]. Unfortunately, leukopenia could be quite troublesome, so, holding MMF while commencing the alkylating agents’ therapy is advised[112].

Anti-CD20 antibody
Rituximab is also successful in treating the native as well as the recurrent MN disease[113-117]. More than 80% of cases could achieve partial or complete remission, while 40% of cases could express subendothelial deposits resolution[17,117]. Despite the increased risk of infection with anti-CD20 therapy[17,113], rituximab is generally safe, effective, simpler to utilize and more tolerated as compared to alkylating agents. So, the anti-CD20, rituximab, is recommended as a primary line in treating MN recurrence, without alterations in the immunosuppression protocol and regardless the anti-PLA2R antibody level[3].

Resistant cases
Alternative therapy between rituximab and alkylating agents is suggested, once one of them failed, then shift to the other line[17,115]. As the level change of anti-PLA2R antibodies titre precedes the decline of proteinuria after rituximab therapy, serial follow up of the antibody titre can be used to anticipate the magnitude of response to therapy as well as the possibility of relapse[113].

Timing of therapy
Early intervention-in contrary to native MN[116] - with anti-CD20 therapy is recommended, exactly when the proteinuria approaching one gram per 24 h. A very high rate of success would be expected[17], which will be ultimately reflected on reduction of the rate of death censored allograft failure related to MN recurrence (45%).

Prophylaxis history
The anti-CD20 was used effectively by Cosio et al[2], to prevent MN recurrence in two patients with a previous allograft loss due to MN recurrence, with serial follow up through a protocol biopsy.
TREATMENT OF RECURRENT FSGS

The recent progress in understanding the pathogenesis of FSGS recurrence was unfortunately not supported by evidence-based controlled trials.

Plasmapheresis
In 1985 treating FSGS with plasmapheresis (PE) sessions has been commenced with variable success[119]. Plasmapheresis has the ability to induce remission in 70% of children and 63% of adults as reported by Ponticelli et al.[120]. An overestimation of these reports is postulated due to retrospective nature of the study, short follow up period and lack of controlled design. Once the disease recurrence become clinically evident, we can extrapolate a satisfactory response with commencing the PE sessions early after transplantation. PE is usually prescribed as one to two times plasma volume exchanges, three times per week, with total 8-12 treatments until remission has been established. An intensified course for longer period was suggested by other researchers[121].

Prophylactic PE
Gohh et al.[122] has admitted preoperative PE for eight sessions in ten patients. In case of living donation, the recipient received PE one week before and one week after the operation. In case of deceased donation, PE was only given 24 h preoperatively. No one case of FSGS recurrence has been diagnosed in the high risk group and only half of his patients has had their allograft failed. They concluded these results were less than previous reports[122], while others denied any benefits for the prophylactic PE[121,123]. A combination of PE and immunosuppressive agents has been proposed with limited data[124,125].

Higher dose of CyA
Only the intensified dose of CyA can reduce the proteinuria level, in contrary to the standard dose that can do nothing for FSGS recurrence[126]. Relevant to its lipophilic criteria, CyA has the ability to bind the LDL receptors on the cell surface of the peripheral lymphocytes. As a result of the rich lipid content (LDL cholesterol) in the nervous system, blood level of the drug is reduced, which could only be overcome through a higher dose augmentation. At this base, i.v. CyA 3 mg/kg/d for 3-4 wk, followed by oral route aiming at preserving the blood level at 250-350 ng/mL, have been successful in induction of remission[127]. However, this policy has been hampered by the multiple untoward effects of the high dosage.

Rituximab
An anti-CD20 chimeric monoclonal antibody depleting the B cells with a direct protective effect on the podocytes. It has the ability to abort the downregulation of sphingomyelin phosphodiesterase acid-like 3b (SMPDL-3b) protein and the acid sphingomyelinase (ASMase), both of them were documented to be present in the podocyte exposed to the sera of recipients with recurrent FSGS[128]. In 2006, beneficial benefits of rituximab in treating the recurrent FSGS post transplantation was suggested[129]. A remission rate of 64%, either partial or complete, has been reported with rituximab therapy[129]. A better response is expected with a normal albumin serum level, and fewer administered infusions as well as in young age recipients[130]. It is not well-proved if titrating rituximab dosage will be the best policy to deplete the B-cell or not. The typical published dosage of rituximab is 375 mg/m²/dose/2-6 doses, with 1-2 wk apart.

PE and rituximab combination
An augmented benefit was assumed to be expected with the combined therapy including PE in addition to rituximab[131,132]. Tsagalis et al.[131] utilized one gram rituximab per dose, in two doses with two wk apart with PE not performed before 72 h. Two of his patients commenced complete remission and the other two have a partial remission with a stable renal profile and absence of severe complications for 18-60 mo of follow up.

While the resolution of recurrent FSGS was assumed to be possible[2] through the use of the anti-CD 20 AB, rituximab[133], this efficacy, unfortunately, is not consistent but rather limited to certain subtypes. The use PE proved to be effective in removing the circulating permeability factors[134]. For instance, we cannot rely only on this effect in case of recurrent FSGS disease. On the other hand, rituximab was proved in a small pediatric group with recurrent FSGS to be effective in achieving PE independence successfully. The variability in response of recurrent FSGS to both PE as well as anti-CD 20 AB (rituximab) therapy is widely spread[135-137], which indicates a variable response that varied according to different subtypes. Despite the absence of well-designed randomized prospective studies, some trials attempted to prove an effective response of removing a putative permeability factor through PE sessions to guard against FSGS recurrence, which was not confirmed by others. A new strategy has been tailored by Cosio et al.[2] to evaluate the ability of the anti-CD25, rituximab, before transplantation to prevent/decrease FSGS recurrence rate has been commenced with encouraging early results.

Renin-angiotensin system blockade
Few case reports have proved the efficacity of renin-
angiotensin system blockade on reducing proteinuria in recurrent FSGS, which shed the light on the fact that the recurrent FSGS is not completely pure immunological in origin, but additional factors including the primary as well as the adaptive form of FSGS have been incorporated.

Ability of “galactose infusion” therapy
In ameliorating the toxicity of the circulating permeability factor has been shown in one case series. Galactose therapy has been proposed by Savin et al. as a non-toxic agent for treatment of the FSGS-associated nephrotic syndrome. The focal segmental permeability factor (FSPF) has a high affinity to galactose. The latter has the ability to inactivate and clear FSPF from the circulation. In addition, the FSPF-galactose complex has a high liability to uptake and catabolism.

Cyclophosphamide
In addition to its untoward toxic manifestations with prolonged use, conflicting results have been determined with cyclophosphamide therapy. Kershaw et al. used a high dose of cyclophosphamide in three pediatric patients with recurrent FSGS, two achieved complete remission and the third one have had partial response. Coch et al. reported sustained remission through a regimen composed of pulse steroid, cyclophosphamide and plasmapheresis. Cheong et al. reported sustained remission only in two of six patients with recurrent FSGS through a similar protocol. Dall’Amico et al. achieved sustained remission in seven of eleven pediatric patients through utilization of steroid pulse-free protocol composed of cyclophosphamide and PE only. Three major toxicities hampered the widespread use of cyclophosphamide, the immunosuppression burden, gonadal toxicities and the risk of malignancy.

Resistant recurrent FSGS to PE and rituximab therapy
A case report recorded a complete remission using the T-cell costimulatory protein B7-1 blocker abatacept, which was not confirmed by others.

TREATMENT OF IGAN
There is no recommended specific therapy in treating the recurrent IgAN. Treatment of recurrent IgAN is similar to that in native disease in non-transplant patient. However, the following maneuvers have been reported.

ATG induction
The use of ATG as induction therapy is shown to be associated with less risk of IgA recurrence.

Low-dose steroids after transplantation
A protective impact against IgAN recurrence was reported.

“Tonsillectomy”
As advocated by the Japanese, a better prognosis post-tonsillectomy could be expected.

ACE inhibitors
The use of ACE is proved to be of no benefit in improving the allograft survival. Only the anti-proteinuric effect could be beneficial to the allograft. All patients of the study of Floege et al. received ACEI with graft failure occurred in more the half of them.

Methylprednisolone pulse
In of the study of Floege et al., only 20% of patients received steroid pulses; again more than half have had their graft lost.

Maintenance immunosuppression
No benefit could be expected with any alterations on the immunosuppressive policy in regard to improvement of graft survival. However, Moroni et al. assumed that immunosuppressive protocols including less than three agents is an independent risk factor of recurrence, however, this theory is still debatable. The choice of immunosuppressive strategy members has nothing to do with IgAN recurrence after renal transplantation.

CONCLUSION
One of the most challenges for renal allograft survival is the GN recurrence after renal transplantation. With improving long-term renal allograft survival, recurrent disease has increased prominence as a significant contributor to late graft loss. Knowledge on the risk factors for recurrence, onset time and impact on graft function is prerequisite to informed decisions. There are minimal data on the risk of recurrent disease with new immunosuppressive agents. The early recognition would slow down deterioration of renal function even if it may not slow down the course of progression of GN. Each of the GN types has a very unique natural history in renal allograft. With more advancement in understanding its pathogenesis in the future, prophylactic treatment for prevention of GN recurrence might be effective.

ACKNOWLEDGMENTS
Authors do acknowledging Dr. Sami Alasfar et al for permitting us adapting their graphs.

REFERENCES
1 Sprangers B. Kuypers DR. Recurrence of glomerulonephritis after renal transplantation. Transplant Rev (Orlando) 2013; 27: 126-134 [PMID: 23954034 DOI: 10.1016/j.trre.2013.07.004]
2 Cosio FG, Cattran DC. Recent advances in our understanding of recurrent primary glomerulonephritis after kidney transplantation. Kidney Int 2017; 91: 304-314 [PMID: 27837947 DOI: 10.1016/j.kint.2016.08.030]
3 Liu ZH. Nephrology in china. Nat Rev Nephrol 2013; 9: 523-528 [PMID: 23877587 DOI: 10.1038/nrneph.2013.146]
4 Li L. End-stage renal disease in China. Kidney Int 1996; 49: 287-301 [DOI: 10.1038/ki.1996.41]
Abbas F et al. Recurrence of primary glomerulonephritis

University. Exp Clin Transplant 2016; 14: 157-165 [PMID: 26788876 DOI: 10.6020/exc.2015.0200]

Fairhead T, Knoll R. Recurrent glomerular disease after kidney transplantation. Curr Opin Nephrol Hypertens 2016; 19: 578-585 [PMID: 26307958 DOI: 10.1097/MNH.0000000000000494]

Toledo K, Pérez-Sáez MJ, Navarro MD, Ortega R, Redondo MD, Agüera ML, Rodríguez-Benot A, Aljama P. Impact of recurrent glomerulonephritis on renal graft survival. Transplant Proc 2011; 43: 2182-2186 [PMID: 21839228 DOI: 10.1016/j.transproceed.2011.05.010]

Morozumi K, Takeda A, Otsuka Y, Horike K, Gotoh N, Watarai Y. Recurrent glomerular disease after kidney transplantation: an update of selected areas and the impact of protocol biopsy. Nephrology (Carlton) 2014; 19 Suppl 3: 6-10 [PMID: 24842814 DOI: 10.1111/nep.12255]

Suzuki K, Honda K, Tanabe K, Toma H, Nihei H, Yamaguchi Y. Incidence of latent mesangial IgA deposition in renal allograft donors in Japan. Kidney Int 2003; 63: 2286-2294 [PMID: 12753320 DOI: 10.1046/j.1523-1755.63.6s.2.x]

Green H, Rahamimov R, Rozen-Zvi B, Pertsov B, Tobar A, Lichtenberg S, Gafur U, Mor E. Recent membranoproliferative glomerulonephritis type I after transplantation. Transplantation 2015; 99: 1172-1177 [PMID: 25340602 DOI: 10.1097/TP.0000000000000459]

Shimizu A, Higo S, Fujita E, Mita A, Kaneko T. Focal segmental glomerulosclerosis after renal transplantation. Clin Transplant 2011; 25 Suppl 23: 6-14 [PMID: 21623907 DOI: 10.1111/j.1399-0012.2011.01452.x]

Takauchi O, Okawa T, Usami T, Koyama K, Takeda A, Uchida K, Morozumi K. A case of IgA nephropathy after ABO-incompatible living kidney transplantation. Clin Transplant 1999; 13 Suppl 1: 38-42 [PMID: 10751055]

Moriyama T, Nitta K, Suzuki K, Honda K, Horita S, Uchida K, Yumura W, Tanabe K, Toma H, Nihei H, Yamaguchi Y. Latent IgA deposition from donor kidney is the major risk factor for recurrent IgA nephropathy in renal transplantation. Transplant Proc 2005; 37 Suppl 1: 41-48 [PMID: 15955168 DOI: 10.1111/j.1399-0012.2005.00403.x]

Watanabe S, Yamaguchi Y, Suzuki T, Ikezoe M, Matsumoto N, Chikamoto H, Nagauchi H, Horita S, Hattori M, Shiraga H, Tokumoto T, Tanabe K, Toma H, Ito K. Inherited factor H dysfunction and complement-associated glomerulonephritis in renal grafts of first and second transplantations. Clin Transplant 2001; 15 Suppl 5: 45-50 [PMID: 11791795 DOI: 10.1399/0012.2001.0545.x]

Horike K, Takeda A, Otsuka Y, Inaguma D, Goto N, Watarai Y, Uchida K, Morozumi K. A case of recurrent light chain deposition disease after living-related renal transplantation - detailed process of the recurrence. Clin Transplant 2012; 26 Suppl 24: 64-69 [PMID: 22747479 DOI: 10.1111/j.1399-0012.2012.01674.x]

Alasfar S, Carter-Monroe N, Rosenberg AZ, Montgomery RA, Alachkar N. Membranoproliferative glomerulonephritis recurrence after kidney transplantation: using the new classification. BMC Nephrol 2016; 17: 7 [PMID: 26754737 DOI: 10.1186/s12882-015-0219-x]

Appel GB, Cook HT, Hageman G, Jennette JC, Kasugarian M, Kirschrink M, Lambris JD, Lanning L, Lutz HU, Meri S, Rose NR, Salant DJ, Sethi S, Smith RJ, Smoyer W, Tully HF, Tully SP, Walker P, Welsh M, Würzner R, Zifčič PF. Membranoproliferative glomerulonephritis type II (dense deposit disease): an update. J Am Soc Nephrol 2005; 16: 1392-1403 [PMID: 15800116 DOI: 10.1681/ASN.2005001078]

Braun MC, Stablein DM, Hamwiaka LA, Bell L, Bartosh SM, Strife CF. Recurrence of membranoproliferative glomerulonephritis type II in renal allografts: The North American Pediatric Renal Transplant Cooperative Study experience. J Am Soc Nephrol 2005; 16: 2225-2233 [PMID: 15888559 DOI: 10.1681/ASN.2005020175]

Lorenz EC, Sethi S, Leung N, Dispensieri A, Fervenza FC, Cosio FG. Recurrent membranoproliferative glomerulonephritis after kidney transplantation. Kidney Int 2010; 77: 721-728 [PMID: 20111810]
Recurrence of primary glomerulonephritis

Abbas F et al. Recurrence of primary glomerulonephritis. WJIT 2013;30531 DOI: 10.1038/ki.2010.1.34

Andresdottir MB, Assmann KJ, Hoitsma AJ, Koene RA, Wetzelz JP. Recurrence of type 1 membranoproliferative glomerulonephritis after renal transplantation: analysis of the incidence, risk factors, and impact on graft survival. Transplantation 1997; 63: 1626-1633 [PMID: 9197358]

Beck LH Jr, Fervenza FC, Beck DM, Bonegio RG, Malik FA, Ericsson SB, Cosio FG, Catrann DC, Salant DJ. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranoproliferative. J Am Soc Nephrol 2011; 22: 1543-1550 [PMID: 21784988 DOI: 10.1681/ASN.2010111125]

Kattah A, Ayalon R, Beck LH Jr, Sethi S, Sandor DG, Cosio FG, Gandhi M, Lorenz EC, Salant DJ, Fervenza FC. Anti-phospholipase A2 receptor antibodies in recurrent membranous nephropathy. Am J Transplant 2015; 15: 1349-1359 [PMID: 25767590 DOI: 10.1111/ajt.13133]

Cosyns JP, Couchoud C, Poulet-Noble C, Squiflet JP, Pirson Y. Recurrence of membranous nephropathy after renal transplantation: probability, outcome and risk factors. Clin Nephrol 1998; 50: 104-113 [PMID: 9776417]

Qintanta LF, Bisco L, Serez M, Perez NS, Lopez-Hoyos M, Villarreal P, Rodrigo E, Vivas O, Ercilla G, Dieckmann F, Gomez-Roman JJ, Fernandez-Fresneo G, Oppenheimer F, Arias M, Campistol JM. Anti-phospholipase A2 Receptor Antibody Levels Predict the Risk of Posttransplantation Recurrence of Membranous Nephropathy. Transplantation 2015; 99: 1709-1714 [PMID: 25657198 DOI: 10.1097/TP.0000000000000630]

Seitz-Polski B, Payre C, Ambrosetti D, Albano L, Cassuto-Viguiar E, Berggini M, Jeribi A, Thouret MC, Bernard G, Benzaken S, Lambreau G, Esnault VL. Prediction of membranoproliferative nephropathy recurrence after transplantation by monitoring of anti-PLA2R1 (M-type phospholipase A2 receptor) autoantibodies: a case series of 15 patients. Nephrol Dial Transplant 2014; 29: 2334-2342 [PMID: 25063424 DOI: 10.1093/ndt/gfu225]

Tomàs NM, Beck LH Jr, Meyer-Schwesinger C, Seitz-Polski B, Ma H, Zahner G, Dolla G, Hoxta E, Hielmench U, Dabet-Gay AS, Debyele D, Merchant M, Klein JS, Salant DJ, Stahl RAK, Lambreau G. Thrombospinidine type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 2014; 371: 2277-2287 [PMID: 25394321 DOI: 10.1056/NEJMoa1403954]

Ronco P, Debie H. Pathogenesis of membranous nephropathy: recent advances and future challenges. Nat Rev Nephrol 2012; 8: 203-213 [PMID: 22371247 DOI: 10.1038/nmr.2688]

Debie H, Lefeu F, Kemper MJ, Niaudet P, Deschênes G, Remuzzi G, Tomino Y, Walker PD, Weening JJ, Yoshikawa N, Zhang H. The Oxford classification of IgA nephropathy: rationale, clinical-pathological correlations, and classification. Kidney Int 2010; 77: 728-737 [PMID: 19788266 DOI: 10.1111/j.1399-0628.2007.07370.x]

Andresdottir MB, Haasnote GW, Persijn GG, Claas FH, HLX-BS, DR3: a new risk factor for graft failure after renal transplantation in patients with undergoing immunoglobulin A nephropathy. Clin Transplant 2009; 23: 660-665 [PMID: 19674013 DOI: 10.1111/j.1399-0628.2009.01059.x]

Sutherland S, Li L, Concepcion W, Salvatierra O, Sarwal MM. Steroid-free immunosuppression in pediatric renal transplantation: rationale for and [corrected] outcomes following conversion to steroid based therapy. Transplantation 2009; 87: 1744-1748 [PMID: 19502970 DOI: 10.1097/TP0b013e3181fa5d60]

Von Visger JR, Gunay Y, Andreoni KA, Bhatt UY, Nori US, Pesavento TE, Elkharmas EA, Winters HA, Nadassy T, Singh N. The risk of recurrent IgA nephropathy in a steroid-free protocol and other modifying immunosuppression. Clin Transplant 2014; 28: 845-854 [PMID: 24869763 DOI: 10.1111/citr.12389]

Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Catran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Trojanov S, Alpers CE, Amore A, Barratt J, Berthelot L, Beck LH Jr, Vuiibiet V, Tabary T, Bracconier A, Dramé M, Toupane O, Rieu P, Monteiro RC, Tøre F. Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int 2015; 88: 815-822 [PMID: 26061544 DOI: 10.1038/ki.2015.158]

Han SS, Huh W, Park SK, Ahn C, Han JS, Kim S, Kim YS. Impact of recurrent disease and chronic allograft nephropathy on the long-term allograft outcome in patients with IgA nephropathy. Transpl Int 2010; 23: 169-175 [PMID: 19761553 DOI: 10.1111/j.1343-2277.2009.09966.x]

McDonald SP, Russ GR. Recurrence of IgA nephropathy among renal allograft recipients from living donors is greater among those with zero HLA mismatches. Transplantation 2006; 82: 759-762 [PMID: 17006322 DOI: 10.1097/01.tp.0000230131.66971.45]

Bantis C, Heering PJ, Aker S, Schwandt C, Grabensee B, Ivens K. Influence of interleukin-10 gene G-1082A polymorphism on recurrent IgA nephropathy. J Nephrol 2008; 21: 941-946 [PMID: 19034880]

Coppo R, Amore A, Chiesa M, Lombardo F, Cirina P, Andrali S, Passerini P, Cunti G, Peruzzi L, Gitari R, Messina M, Segoloni G, Piccioni C. Serological and genetic factors in early recurrence of IgA nephropathy after renal transplantation. Clin Transplant 2007; 21: 728-737 [PMID: 17988266 DOI: 10.1111/j.1399-0628.2007.07370.x]

Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Catran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Trojanov S, Alpers CE, Amore A, Barratt J, Berthelot L, Beck LH Jr, Vuiibiet V, Tabary T, Bracconier A, Dramé M, Toupane O, Rieu P, Monteiro RC, Tøre F. Recurrence of IgA nephropathy with crescents in kidney transplant recipients. Am J Kidney Dis 2005; 45: 167-175 [PMID: 15969657 DOI: 10.1056/ajkd.2004.09.030]

Tang Z, Ji SM, Chen DR, Wen JQ, Chen JS, Liu ZH, Li LS. Recurrent or de novo IgA nephropathy with crescent formation after renal transplantation. Ren Fail 2008; 30: 611-616 [PMID: 18661411 DOI: 10.1080/08860200801234156]

Berthelot L, Robert T, Vuiibiet V, Tabary T, Bracconier A, Dramé M, Toupane O, Rieu P, Monteiro RC, Tøre F. Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int 2015; 88: 815-822 [PMID: 26061544 DOI: 10.1038/ki.2015.158]

Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Catran DC, Coppo R, Cook HT, Trojanov S, Alpers CE, Amore A, Barratt J, Berthelot L, Beck LH Jr, Vuiibiet V, Tabary T, Bracconier A, Dramé M, Toupane O, Rieu P, Monteiro RC, Tøre F. Recurrence of IgA nephropathy with crescents in kidney transplant recipients. Am J Kidney Dis 2005; 45: 167-175 [PMID: 15969657 DOI: 10.1056/ajkd.2004.09.030]
definitions, correlations, and reproducibility. Kidney Int 2009; 76: 546-556 [PMID: 19571790 DOI: 10.1038/ki.2009.168]

61 Soler MJ, Mir M, Rodriguez E, Orfila A, Munne A, Vázquez S, Lloveras J, Puig JM. Recurrence of IgA nephropathy and Henoch-Schönlein purpura after kidney transplantation: risk factors and graft survival. Transplant Proc 2005; 37: 3705-3709 [PMID: 16386512 DOI: 10.1016/j.transproceed.2005.09.172]

62 Kanaan N, Mourad G, Thervet E, Peeters P, Hourmant M, Vanrenterghem Y, De Meyer M, Mourad M, Maréchal C, Goffin E, Pirson Y. Recurrence and graft loss after kidney transplantation for henoch-schönlein purpura nephritis: a multicenter analysis. Clin J Am Soc Nephrol 2011; 6: 1768-1772 [PMID: 21734091 DOI: 10.2215/CJN.05201111]

63 Samuel JP, Bell CS, Molony DA, Braun MC. Long-term outcome of renal transplantation patients with Henoch-Schönlein purpura. Clin J Am Soc Nephrol 2011; 6: 2034-2040 [PMID: 21700827 DOI: 10.2215/CJN.01402111]

64 Clayton P, McDonald S, Chadban S. Steroids and recurrent IgA nephropathy after kidney transplantation. Am J Transplant 2011; 11: 1645-1649 [PMID: 21379974 DOI: 10.1111/j.1600-6143.2010.03667.x]

65 Moroni G, Galletti B, Quaglini S, Leoni A, Banfi G, Passerini P, Montagnino G, Messa P. Long-term outcome of renal transplantation in patients with idiopathic membranous glomerulonephritis (MN). Nephrol Dial Transplant 2010; 25: 3408-3415 [PMID: 20646669 DOI: 10.1093/ndt/gfq223]

66 Choy BY, Chan TM, Lai KN. Recurrent glomerulonephritis after kidney transplantation. Am J Transplant 2006; 6: 2535-2542 [PMID: 16959521 DOI: 10.1111/j.1600-6143.2006.01502.x]

67 Lochhead KM, Pirshgird R, D’Alessandro AM, Knechtle SJ, Kalayoglu M, Sollinger HW, Belzer FO. Risk factors for renal allograft loss in patients with systemic lupus erythematosus. Kidney Int 1996; 49: 512-517 [PMID: 8821838]

68 Geetha D, Einir A, True K, Valentina Inazabal M, Specks U, Seo P, Nachman P, Fervenza FC. Renal transplantation in antineutrophil cytoplasmatic antibody-associated vasculitis: a multicenter experience. Transplantation 2011; 91: 1370-1375 [PMID: 21508899 DOI: 10.1097/TP.0b013e318218baa]

69 Boardman R, Tofel J, Alloway R, Rogers C, Roy-Chaudhury P, Cardi M, Sfaadir S, Groene B, Buell J, Hanaway M, Thomas M, Alexander W, Munda R, Woodle ES. Early steroid withdrawal does not increase risk for recurrent focal segmental glomerulosclerosis. Transplant Proc 2005; 37: 817-818 [PMID: 15848542 DOI: 10.1016/j.transproceed.2004.12.065]

70 Ibrahim H, Rogers T, Casingal V, Sturdevant M, Tan M, Humar A, Gillingham K, Matas A. Graft loss from recurrent glomerulonephritis is not increased with a rapid steroid discontinuation protocol. Transplantation 2006; 81: 214-219 [PMID: 16436965 DOI: 10.1097/01.TP.0000188656.44326.53]

71 Briggs JD, Jones E. Recurrence of glomerulonephritis following renal transplantation. Scientific Advisory Board of the ERA-EDTA Registry. European Renal Association-European Dialysis and Transplant Association. Nephrol Dial Transplant 1999; 14: 564-565 [PMID: 10193799 DOI: 10.1093/ndt/14.3.564]

72 Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis—a new look at an old entity. N Engl J Med 2012; 366: 1119-1131 [PMID: 22435371 DOI: 10.1056/NEJMra1108178]

73 Sethi S, Haas M, Markowitz GS, D’Agati VD, Rennke HG, Jennette JC, Bajema IM, Alpers CE, Chang A, Cornell LD, Cosio FG, Fogo AB, Glassock RJ, Hanrnan S, Kambham N, Lager DJ, Leung N, Mengel M, Nath KA, Roberts IS, Rovin BH, Seshan SV, Trofe J, Alloway R, Rogers C, Roy-Chaudhury P, Cardi M, Sfaadir S, Groene B, Buell J, Hanaway M, Thomas M, Alexander W, Munda R, Woodle ES. Early steroid withdrawal does not increase risk for recurrent focal segmental glomerulosclerosis. Transplant Proc 2005; 37: 817-818 [PMID: 15848542 DOI: 10.1016/j.transproceed.2004.12.065]

74 Guiraud E, Karras A, Plaisier E, Duong Van Huyen JP, Fakhouri F, Rougier JP, Noel LH, Callard P, Delhouasse M, Ronco P. Patterns of noncycroglobulinemic glomerulonephritis with monoclonal Ig deposits: correlation with IgG subclass and response to rituximab.
dense-deposit disease. N Engl J Med 2012; 366: 1161-1163 [PMID: 22435382 DOI: 10.1056/NEJMoa1112273]

89 Vivarelli M, Pasini A, Emma F. Eculizumab for the treatment of dense-deposit disease. N Engl J Med 2012; 366: 1163-1165 [PMID: 22435383 DOI: 10.1056/NEJMoa1110669]

90 Radhakrishna S, Lunn A, Kirschmink M, Thorrner P, Hebert D, Langlois V, Pluthero F, Licht C. Eculizumab and refractory membranoproliferative glomerulonephritis. N Engl J Med 2012; 366: 1165-1166 [PMID: 22435384 DOI: 10.1056/NEJMoa1110669]

91 Athanassiou Y, Voskarides K, Gale DP, Damianou L, Patissas C, Zavros M, Maxwell PH, Cook HT, Demosthenous P, Hadjivasileas A, Kyriacou K, Zouvani I, Peierides A, Deltas C. Familial C3 glomerulopathy associated with CHFRS mutations: clinical characteristics of 91 patients in 16 pedigrees. Clin J Am Soc Nephrol 2011; 6: 1436-1446 [PMID: 21566112 DOI: 10.2215/CJN.09541010]

92 Eddy A, Sibley R, Mauer SM, Kim Y. Renal allograft failure due to recurrent dense intramembranous disease. Clin Nephrol 1984; 21: 305-313 [PMID: 6380848]

93 Curtis JJ, Wyatt RJ, Bhathena D, Lucas BA, Holland NH, Luke RG. Renal transplantation for patients with type I and type II membranoproliferative glomerulonephritis: serial complement and nephritic factor measurements and the problem of recurrence of disease. Am J Med 1979; 66: 216-225 [PMID: 373195 DOI: 10.1016/0002-9343(79)90530-8]

94 Fakhouri F, Frémeaux-Bacchi V, Noël LH, Cook HT, Pickering MC. C3 glomerulopathy: a new classification. Nat Rev Nephrol 2010; 6: 494-499 [PMID: 20666628 DOI: 10.1038/nrneph.2010.85]

95 Sethi S, Fervenza FC, Zhang Y, Zand L, Vrana JA, Nasr SH, Thesin JD, Dogan A, Smith RJ. C3 glomerulonephritis: clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up. Kidney Int 2012; 82: 465-473 [PMID: 22673887 DOI: 10.1016/j.kint.2012.12.012]

96 Iatropoulos P, Noris M, Mele C, Piras R, Valoti E, Bresin E, Curreri M, Mondo E, Zito A, Gamba S, Bettoni S, Murer D, Frémeaux-Bacchi V, Vivarelli M, Emma F, Daina E, Remuzzi G. Complement gene variants determine the risk of immunoglobulin-associated MPGN and C3 glomerulopathy and predict long-term renal outcome. Mol Immunol 2016; 71: 131-142 [PMID: 26895476 DOI: 10.1016/j.molimm.2016.01.010]

97 Chen Q, Müller D, Rudolph H, Hartmann A, Kuwertz-Bröking A, Wu K, Kirschmink M, Sterka C, Zippel PF. Combined C3b and factor B autoantibodies and MPGN type II. N Engl J Med 2011; 365: 2340-2342 [PMID: 22166663 DOI: 10.1056/NEJMoa1107448]

98 Sethi S, Nasr SH, De Vriese AS, Fervenza FC. C3d as a Diagnostic Tool in Proliferative GN. Am J Nephrol 2015; 41: 2852-2859 [PMID: 25991041 DOI: 10.1681/ASN.2014404046]

99 Nasr SH, Sethi S, Cornell LD, Fidler ME, Boelkins M, Fervenza FC, Cosio FG, D’Agati VD. Proliferative glomerulonephritis with monoclonal IgG deposits recurs in the allograft. J Am Soc Nephrol 2012; 23: 1165-1166 [PMID: 22435384 DOI: 10.1056/NEJMc1110559]

100 Collard CD, Väkevä A, Morrissey MA, Agah A, Rollins SA, Reenstra WR, Buras JA, Meri SJ, Stahl GL. Complement activation after oxidative stress: role of the lectin complement pathway. Kidney Int 2015; 87: 1006-1017 [PMID: 25906487 DOI: 10.1038/ki.2015.61]

101 Ferec C, Zucchielli P, Passerini P, Cesana B, Locatelli F, Pasquali S, Sadelleti M, Redaelli B, Grassi C, Pozzi C. A 10-year follow-up of a randomized study with methylprednisolone and chlorambucil in membranoproliferative glomerulonephritis. Kidney Int 1995; 48: 1600-1604 [PMID: 8544420]

102 El-Zoghby ZM, Grande JP, Fraile MG, Norby SM, Fervenza FC, Cosio FG. Recurrent idiopathic membranous nephropathy: early diagnosis by protocol biopsies and treatment with anti-CD20 monoclonal antibodies. Am J Transplant 2009; 9: 2800-2807 [PMID: 19845581 DOI: 10.1111/j.1600-6143.2009.02851.x]

103 Raggenen P, Chiuriu C, Brusegan V, Abbate M, Picken MM, Herrera GA, Kastritis E, Merli GT, Roussel M, Kastritis E, Merlini G, Rizzardi GP, Tufarelli T, Dillen JP, Snijders J, Spies N, Collard CD,拴onck JF, Leung N, Nasr SH, Fervenza FC. Recurrent idiopathic membranous nephropathy: a one-year prospective study. J Am Soc Nephrol 2003; 14: 1848-1940 [PMID: 12160412 DOI: 10.1093/jasn/jng155.2003.0590710841]

104 Zou W, Farrar CA, Abe K, Pratt JR, Marsh JE, Wang Y, Stahl GL, Sacks SH. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest 2000; 105: 1363-1371 [PMID: 10811844]

105 Collard CD, Väkevä A, Morrissey MA, Agah A, Rollins SA, Reenstra WR, Buras JA, Meri SJ, Stahl GL. Complement activation after oxidative stress: role of the lectin complement pathway. Am J Pathol 2000; 156: 1549-1556 [PMID: 10793066]

106 Thurman JM, Royer PA, Ljubanovic D, Dursun B, Lenderink AM, Edelstein CL, Holers VM. Treatment with an inhibitory monoclonal antibody to mouse factor B protects mice from induction of apoptotic and renal ischemia/reperfusion injury. J Am Soc Nephrol 2006; 17: 707-715 [PMID: 16467447 DOI: 10.1681/ASN.2005070698]

107 El-Zoghby ZM, Grande JP, Fraile MG, Norby SM, Fervenza FC, Cosio FG. Recurrent idiopathic membranous nephropathy: early diagnosis by protocol biopsies and treatment with anti-CD20 monoclonal antibodies. Am J Transplant 2009; 9: 2800-2807 [PMID: 19845581 DOI: 10.1111/j.1600-6143.2009.02851.x]

108 Ruggenenti P, Chiuriu C, Brusegan V, Abbate M, Picken MM, Herrera GA, Kastritis E, Merli GT, Roussel M, Kastritis E, Merlini G, Rizzardi GP, Tufarelli T, Dillen JP, Snijders J, Spies N, Collard CD,拴onck JF, Leung N, Nasr SH, Fervenza FC. Recurrent idiopathic membranous nephropathy: a one-year prospective study. J Am Soc Nephrol 2003; 14: 1851-1857 [PMID: 12891245 DOI: 10.1097/01ASN.0000001115135221B3]

109 Fervenza FC, Abraham RS, Erickson SB, Izraeal MV, Einrin A, Specks U, Nachman PH, Bergstrahl EJ, Leung N, Cosio FG, Hagon MC, Dillon JJ, Hickson LJ, Li X, Cantrall DC, Mayo Nephrology Collaborative Group. Rituximab therapy in idiopathic membranous nephropathy: a 2-year study. Clin J Am Soc Nephrol 2010; 5: 2188-2198 [PMID: 20705965 DOI: 10.2215/CJN.05080610]

110 Fervenza FC, Cosio FG, Erickson SB, Specks U, Herzenberg AM, Dillon JJ, Leung N, Cohen IM, Wochos DN, Bergstrahl E, Hladunewich M, Cantrall DC. Rituximab treatment of idiopathic membranous nephropathy. Kidney Int 2008; 73: 117-125 [PMID: 18764081]
December 24, 2017 | Volume 7 | Issue 6 | WJTMET | www.wjtmet.com

Abbas F et al. Recurrence of primary glomerulonephritis

17943078 DOI: 10.1038/sj.ki.5002628

117 Sprangers B, Lefkowitz GI, Cohen SD, Stokes MB, Valeri A, Appel GB, Kunis CL. Beneficial effect of rituximab in the treatment of recurrent idiopathic membranous nephropathy after kidney transplantation. Clin J Am Soc Nephrol 2010; 5: 790-797

118 Gallon L, Chhabra D. Anti-CD20 monoclonal antibody (rituximab) for the treatment of recurrent idiopathic membranous nephropathy in a renal transplant patient. Am J Transplant 2006; 6: 3017-3021

119 Zimmerman SW. Plasmapheresis and dipyridamole for recurrent focal glomerular sclerosis. Nephron 1985; 40: 241-245

120 Ponticelli C. Recurrence of focal segmental glomerular sclerosis (FGS) after renal transplantation. Nephrol Dial Transplant 2010; 25: 25-31

121 Hickson LJ, Gera M, Amer H, Iqbal CW, Moore TB, Milliner DS, Cosio FG, Larson TS, Stiegall MD, Ishitani MB, Gloor JM, Griffin MD. Kidney transplantation for primary focal segmental glomerulosclerosis: outcomes and response to therapy for recurrence. Transplantation 2009; 87: 1237-1239

122 Gohr RY, Yango AF, Morrissey PE, Monaco AP, Gautam A, Sharma M, McCarthy ET, Savin VJ. Preemptive plasmapheresis and recurrence of FSGS in high-risk renal transplant recipients. Am J Transplant 2005; 5: 2907-2912

123 Hubbs H, Montané B, Abitbol C, Chandar J, Shariatmadar S, Ciancio G, Burke G, Miller J, Straus J, Zilleruelo G. Recurrent focal glomerulosclerosis in pediatric renal allografts: the Miami experience. Pediatr Nephrol 2005; 20: 210-216

124 Fenc F, Simková E, Vondrák K, Janda J, Chadimová M, Stejskal J, Seeman T. Recurrence of nephrotic proteinuria in children with focal segmental glomerulosclerosis after renal transplantation treated with plasmapheresis and immunoadsorption: case reports. Transplant Proc 2007; 39: 3488-3490

125 Belson A, Yorgrin PD, Al-Uzry AY, Salvaterra O, Higgins J, Alexander SR. Long-term plasmapheresis and protein A column treatment of recurrent FSGS. Pediatr Nephrol 2001; 16: 985-989

126 Cravedi P, Kopp JB, Remuzzi G. Recent progress in the pathophysiology and treatment of FSGS recurrence. Am J Transplant 2013; 13: 266-274

127 Raafat RH, Kalia A, Travis LB, Diven SC. High-dose oral cyclosporin therapy for recurrent focal segmental glomerulosclerosis in children. Am J Kidney Dis 2004; 44: 50-56

128 Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguilón-Prada R, Jauregui AN, Li J, Mattiazzu A, Ciancio G, Chen L, Zilleruelo G, Abitbol C, Chandar J, Seherunovn W, Ricordi C, Ikehata M, Rastaldi MP, Reiser J, Burke GW 3rd. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 2011; 3: 85ra46

129 Araya CE, Dharnidharka VR. The factors that may predict response to rituximab therapy in recurrent focal segmental glomerulosclerosis: a systematic review. J Transplant 2011; 2011: 374213

130 Cravedi P, Ruggenenti P, Remuzzi G. Low-dose rituximab for posttransplant recurrent membranous nephropathy. Am J Transplant 2010; 10: 1336

131 Tsagalis G, Pissimeno E, Nakopoulou L, Lagouganis A. Combination treatment with plasmapheresis and rituximab for recurrent focal segmental glomerulosclerosis after renal transplantation. Arifj Organs 2011; 35: 420-425

132 Hristea D, Hadaya K, Maranon N, Buhrer L, Villard J, Morel P, Martin PY. Successful treatment of recurrent focal segmental glomerulosclerosis after kidney transplantation by plasmapheresis and rituximab. Transplant Int 2007; 20: 102-105

133 Pescevitz MD, Book BK, Sidner RA. Resolution of recurrent focal segmental glomerulosclerosis proteinuria after rituximab treatment. N Engl J Med 2006; 354: 1961-1963

134 Savin VJ, Sharma R, Sharma M, McCarthy ET, Swan SK, Ellis E, Lovell H, Warady B, Gunwar S, Chenkoma AM, Arteo M, Vincenti F. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med 1996; 334: 878-883

135 Poza-Velasco P, Martin PY. Successful treatment of recurrent focal segmental glomerulosclerosis proteinuria after rituximab treatment. Transplantation 2006; 81: 1255-1259

136 Savin VJ, McCarthy ET, Sharma R, Charbá D, Sharma M. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl Res 2008; 151: 288-292

137 Kershaw DB, Sedman AB, Kelsch RC, Bunchman TE. Recurrent focal segmental glomerulosclerosis in pediatric renal transplant recipients: successful treatment with oral cyclophosphamide. Clin Transplant 1994; 8: 546-549

138 Cochard P, Kassir A, Colon S, Glastre C, Tourniaire B, Parchoux B, Martin X, David L. Recurrent nephrotic syndrome after transplantation: early treatment with plasmapheresis and cyclophosphamide. Pediatr Nephrol 1993; 7: 50-54

139 Vinai M, Waber P, Seikaly MG. Recurrence of focal segmental glomerulosclerosis in renal allograft: an in-depth review. Clin J Am Soc Nephrol 2008; 3: 1336

140 Dall'Amico R, Guggeri G, Carraro M, Arteo M, Ghio L, Zamorani E, Zennaro C, Basile G, Montini G, Rivabell L, Carlini M, Scalamogna M, Ginevri F. Prediction and treatment of recurrent focal segmental glomerulosclerosis after renal transplantation in children. Am J Kidney Dis 1999; 34: 1048-1055

141 Venik M, Weber P, Seikaly MG. Recurrence of focal segmental glomerulosclerosis in renal allograft: an in-depth review. Pediatr Transplant 2010; 14: 314-325

142 Garin EH, Reiser J, Cara-Fuentes G, Wei C, Matar D, Wang H, Alachkar N, Johnson RJ. Case series: CTLA4-IgG1 therapy in minimal change disease and focal segmental glomerulosclerosis. Pediatr Nephrol 2015; 30: 469-477

143 Alachkar N, Carter-Monroe N, Reiser J. Abatacept in B7-positive proteinuric kidney disease. N Engl J Med 2014; 370: 1263-1264
Abbas F et al. Recurrence of primary glomerulonephritis

with recurrence of IgA nephropathy after kidney transplantation. Clin Transplant 2009; 23 Suppl 20: 17-22 [PMID: 19594590 DOI: 10.1111/j.1399-0012.2009.01003.x]

Floege J, Gröne HJ. Recurrent IgA nephropathy in the renal allograft: not a benign condition. Nephrol Dial Transplant 2013; 28: 1070-1073 [PMID: 23674835 DOI: 10.1093/ndt/gft077]

Oka K, Imai E, Moriyama T, Akagi Y, Ando A, Hori M, Okuyama A, Toki K, Kyo M, Kokado Y, Takahara S. A clinicopathological study of IgA nephropathy in renal transplant recipients: beneficial effect of angiotensin-converting enzyme inhibitor. Nephrol Dial Transplant 2000; 15: 689-695 [PMID: 10809812 DOI: 10.1093/ndt/15.5.689]

Courtney AE, McNamee PT, Nelson WE, Maxwell AP. Does angiotensin blockade influence graft outcome in renal transplant recipients with IgA nephropathy? Nephrol Dial Transplant 2006; 21: 3550-3554 [PMID: 16968729 DOI: 10.1093/ndt/gfl506]

Rauen T, Eitner F, Fitzner C, Sommerer C, Zeier M, Otte B, Panzer U, Peters H, Benck U, Mertens PR, Kuhlmann U, Witzke O, Gross O, Vielhauer V, Mann JF, Hilgers RD, Floege J, STOP-IgAN Investigators. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N Engl J Med 2015; 373: 2225-2236 [PMID: 26630142 DOI: 10.1056/NEJMoai415463]

P- Reviewer: Kute VBB, Gheith O S- Editor: Kong JX L- Editor: A E- Editor: Yan JL
