Electronic Supplementary Information

Solvent-assisted coordination driven assembly of a supramolecular architecture featuring two types of connectivity from discrete nanocages

Zheng Niua,b, Lei Wanga, Sheng Fangb, Pui Ching Lana, Briana Aguilaa, Jason Permana, Jian-Gong Maa,b, Peng Chengb, Xiaopeng Lia and Shengqian Ma*a

aDepartment of Chemistry, University of South Florida, CHE 205A, 4202 E. Fowler Avenue, Tampa, Florida 33620, U. S. A.

bCollege of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China

E-mail: sqma@usf.edu (S. Ma); mvbasten@nankai.edu.cn (J.-G. Ma)
Experimental Details

1. Materials and General methods

All chemical reagents were obtained from commercial sources and, unless otherwise noted, were used as received without further purification. Elemental analysis was performed on a Perkin–Elmer 240 CHN elemental analyzer. IR spectra were recorded on a Perkin Elmer UATR TWO FT-IR spectrophotometer. Powder X-ray diffraction measurements (PXRD) were recorded on a Bruker D8 Advance X-ray diffractometer using Cu Ka radiation. The simulated powder patterns were calculated by using Mercury 2.0. The NMR tests were performed on the Varian Unity Inova 400 spectrometer. Gas adsorption measurement was tested by Micromeritics ASAP 2020 surface area and porosity analyzer. Thermogravimetric analysis was performed on a Labsys NETZSCH TG 209 Setaram apparatus with a heating rate of 10°C min\(^{-1}\) under a nitrogen atmosphere.

2. Crystallographic studies and refinement of the crystal structures

Crystallographic data of 1 and 2 were collected with a SuperNova, Single source at offset, Eos diffractometer with a Mo Kα radiation (\(\lambda= 0.71073 \text{ Å}\)). All the structures were solved by direct methods and refined anisotropically by full-matrix least-squares techniques based on \(F^2\) using the SHELXS-97 and SHELXL-97 programs\(^1\) contained on Olex 2\(^2\). The electron density of disordered guest molecules in 1 and 2 were treated as a diffuse contribution using the program SQUEEZE\(^3\). The number of whole guest molecules in 1 and 2 was determined on the basis of TGA and EA. Anisotropic thermal parameters were assigned to all non-hydrogen atoms. The hydrogen atoms of the ligand were generated geometrically; the hydrogen atoms of the water molecules were located in Fourier-difference electron density maps and refined with isotropic temperature factors. The large amount of disorder solvent leads to the weak diffraction in the high angel area, thus makes the relative low resolution. This is very common phenomenon in the compound with big unit cell. Crystal data as well as details of data collection and refinement for the complexes are summarized in Table S1 and S2.
Table S1. Crystal data and structure refinement for 1 (0D nanocage, without solvent)

Property	Value
CCDC Number	1569639
Chemical formula	C$_{228}$H$_{204}$Cu$_{24}$N$_{12}$O$_{144}$
Formula weight	6940.98
Radiation	Mo Kα
Wavelength (Å)	0.71073
Crystal system, space group	tetragonal, $I4/m$
Unit cell parameter	$a = 28.6201(10)$ alpha = 90
	$b = 28.6201(10)$ beta = 90
	$c = 39.803(2)$ gamma = 90
Volume (Å3)	32603(3)
Z, Calculated density (g/cm3)	2, 0.707
F(000)	7008
Crystal size (mm)	0.5x0.4x0.2
Completeness (to theta)	0.993 (25.01)
Refinement method	Full-matrix least-squares on F2
Goodness-of-fit on F2	0.819
Final R indices [I>2sigma(I)]	$R = 0.0795$, $wR2 = 0.1971$
Largest diff. Peak and hole	0.53, -0.7
Table S2. Crystal data and structure refinement for 2 (3D nanocage architecture, without solvent)	

CCDC Number	1569640
Chemical formula	C_{198}H_{145}Cu_{24}O_{139}S
Formula weight	6305.15
Radiation	Mo Kα
Wavelength (Å)	0.71073
Crystal system, space group	triclinic, P-1
Unit cell parameter	$a = 24.5209(10)$ \(\alpha = 88.010(2) \)
	\(b = 25.3703(7) \) \(\beta = 79.070(3) \)
	\(c = 37.0128(12) \) \(\gamma = 75.949(3) \)
Volume (Å³)	21930.1(13)
Z, Calculated density (g/cm³)	2, 0.955
F(000)	6314
Crystal size (mm)	0.3×0.3×0.2
Completeness (to theta)	0.995 (20.816)
Refinement method	Full-matrix least-squares on F²
Goodness-of-fit on F²	0.841
Final R indices [I>2sigma(I)]	$R = 0.0840$, $wR2 = 0.2263$
Largest diff. Peak and hole	1.36, -0.67
Fig. S1. Connectivity between two neighboring nanocages in 2 and the orbicular connection unit.

3. The thermogravimetric analysis and powder X-ray diffraction measurement

Fig. S2. Thermogravimetric analysis of nanocage 1. The 44.06 % weight loss at 170 °C corresponds to the loss of fifty-nine guest DMF molecules and thirty-six guest MeOH molecules per cell, which is accord with the molecular formulation of 1.
Fig. S3. Thermogravimetric analysis of nanocage architecture 2. The 35.82 % weight loss at 240 °C corresponds to the loss of eighteen guest DMSO molecules and sixty-six guest MeOH molecules per cell, which is accord with the molecular formulation of 2.

Fig. S4. Comparison of experimental and simulated powder XRD patterns of 2.
Fig. S5. The powder XRD patterns of 2 before the catalysis reaction and after the catalysis reaction.

4. ESI measurements.

ESI-MS was conducted on Waters Synapt G2 mass spectrometer under the following conditions: ESI capillary voltage, 4.5 kV; sample cone voltage, 15 V; extraction cone voltage, 0.3 V; source temperature 120 °C; desolvation temperature, 150 °C; cone gas flow, 15 L/h; desolvation gas flow, 700 L/h (N₂).
Fig. S6. ESI-MS spectra of reaction mixture a) before heating and b) after heating for 1h.

Fig. S7. Isotope pattern (blue for calculated value and red for measured value) of the individual nanocage ([Cu_{24}(C_8O_5H_4)_{24}(DMF)_n(H_2O)_6+2H^+])^{2+} n=0,1,2 from left to right).
Fig. S8. Isotope pattern (blue for calculated value and red for measured value) of the nanocage dimer ([Cu$_{48}$(C$_8$O$_5$H$_4$)$_{48}$(DMSO)$_n$(H$_2$O)$_{19}$ + 3H^+])$^{3+}$ n=1, 2, 3, 4, 5, 6 from left to right).
Fig. S9. Isotope pattern (blue for calculated value and red for measured value) of the nanocage dimer (\(\text{[Cu}_{48}(\text{C}_8\text{O}_5\text{H}_4)_{48}(\text{DMSO})_{n}(\text{H}_2\text{O})_{19}+3\text{H}^+\]^{3+}\)) \(n=1, 2, 3, 4, 5, 6\) from left to right).
5. Low-Pressure Gas Sorption Measurements.

The CO$_2$ (99.999 %) adsorption/desorption isotherms were measured volumetrically using a Micromeritics ASAP 2020 surface area analyzer. Before analysis, nanocage architecture 2 were soaked in EtOH for 6 hours with replacing the solvent with fresh EtOH every 1 hour. Then, the samples were processed by using Tousimi Samdri PVT-30 critical point dryer. After that, the samples were charged into a sample tube and activated at 40 °C for 2 hours by using the “outgas” function of the surface area analyzer, respectively. Helium (99.999 %) was used for the estimation of the free space (dead volume). In the CO$_2$ adsorption isotherms measurement at 195K, to provide the relative pressure P/P$_0$ accurately at each data point, the saturation pressure P$_0$ was monitored and measured throughout the gases’ analyses by a dedicated saturation pressure transducer. The specific surface areas were determined using the Brunauer-Emmett-Teller (BET) from the CO$_2$ sorption data. When applying the BET theory, we made sure that our analysis satisfied the two consistency criteria as detailed by Walton and co-workers4.

References:

(1) G. M. Sheldrick, Acta Cryst., 2008, A64, 112.

(2) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.

(3) A.L. Spek, Acta Cryst. 2009, D65, 148.
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1

Bond precision:	C-C = 0.0095 Å	Wavelength=0.71073	
Cell:	a=28.6201(10)	b=28.6201(10)	c=39.803(2)
alpha=90	beta=90	gamma=90	
Temperature:	129 K		
Volume	Calculated	Reported	
Space group	I 4/m	I 4/m	
Hall group	-I 4	-I 4	
Moiety formula	C228 H204 Cu24 N12 O144 [+ solvent]	C228 H204 Cu24 N12 O144	
Sum formula	C228 H204 Cu24 N12 O144 [+ solvent]	C228 H204 Cu24 N12 O144	
Mr	6941.24	6940.98	
Dx, g cm−3	0.707	0.707	
Z	2	2	
Mu (mm−1)	0.810	0.810	
F000	7008.0	7008.0	
F000′	7026.99		
h,k,lmax	34,34,47	33,34,47	
Nref	14602	14507	
Tmin,Tmax	0.685,0.850	0.754,1.000	
Tmin’	0.660		

Correction method= # Reported T Limits: Tmin=0.754 Tmax=1.000
AbsCorr = MULTI-SCAN

Data completeness= 0.993 Theta(max)= 25.010

R(reflections)= 0.0795 (5010) wR2(reflections)= 0.2265 (14507)

S = 0.819 Npar= 461
The following ALERTS were generated. Each ALERT has the format
`test-name_ALERT_alert-type_alert-level`
Click on the hyperlinks for more details of the test.

Alert level B
Alert	Description
PLAT026_ALERT_3_B	Ratio Observed / Unique Reflections (too) Low .. 35 %
PLAT355_ALERT_3_B	Long O-H (X0.82,N0.98A) O1D - HIDA .. 1.12 Ang.
PLAT369_ALERT_2_B	Long C(sp2)-C(sp2) Bond C35 - C41 .. 1.59 Ang.
PLAT420_ALERT_2_B	D-H Without Acceptor O1D -- H1DA ... Please Check
PLAT420_ALERT_2_B	D-H Without Acceptor O1D -- H1DB ... Please Check
PLAT420_ALERT_2_B	D-H Without Acceptor O18 -- H18 ... Please Check
PLAT420_ALERT_2_B	D-H Without Acceptor O34 -- H34 ... Please Check
PLAT420_ALERT_2_B	D-H Without Acceptor O47 -- H47 ... Please Check
PLAT420_ALERT_2_B	D-H Without Acceptor O51 -- *H51A ... Please Check
PLAT420_ALERT_2_B	D-H Without Acceptor O51 -- *H51B ... Please Check
PLAT990_ALERT_1_B	Deprecated .res/.hkl Input Style SQUEEZE job ... ! Note

Alert level C
Alert	Description
PLAT018_ALERT_1_C	_diffrn_measured_fraction_theta_max .NE. *_full ! Check
PLAT220_ALERT_2_C	Non-Solvent Resd 1 C Ueq(max)/Ueq(min) Range 3.6 Ratio
PLAT241_ALERT_2_C	High ‘MainMol’ Ueq as Compared to Neighbors of O32 Check
PLAT241_ALERT_2_C	High ‘MainMol’ Ueq as Compared to Neighbors of O45 Check
PLAT241_ALERT_2_C	High ‘MainMol’ Ueq as Compared to Neighbors of C1 Check
PLAT242_ALERT_2_C	Low ‘MainMol’ Ueq as Compared to Neighbors of Cu1 Check
PLAT242_ALERT_2_C	Low ‘MainMol’ Ueq as Compared to Neighbors of Cu2 Check
PLAT242_ALERT_2_C	Low ‘MainMol’ Ueq as Compared to Neighbors of Cu4 Check
PLAT242_ALERT_2_C	Low ‘MainMol’ Ueq as Compared to Neighbors of O5 Check
PLAT242_ALERT_2_C	Low ‘MainMol’ Ueq as Compared to Neighbors of N48 Check
PLAT242_ALERT_2_C	Low ‘MainMol’ Ueq as Compared to Neighbors of C15 Check
PLAT242_ALERT_2_C	Low ‘MainMol’ Ueq as Compared to Neighbors of C31 Check
PLAT250_ALERT_2_C	Large U3/U1 Ratio for Average U(i,j) Tensor ... 2.1 Note
PLAT34_ALERT_2_C	Small Average Benzene C-C Dist. C22 -C27 1.37 Ang.
PLAT341_ALERT_3_C	Low Bond Precision on C-C Bonds................. 0.0095 Ang.
PLAT369_ALERT_2_C	Long C(sp2)-C(sp2) Bond C6 - C12 .. 1.54 Ang.
PLAT369_ALERT_2_C	Long C(sp2)-C(sp2) Bond C10 - C15 .. 1.54 Ang.
PLAT369_ALERT_2_C	Long C(sp2)-C(sp2) Bond C22 - C28 .. 1.53 Ang.
PLAT369_ALERT_2_C	Long C(sp2)-C(sp2) Bond C26 - C31 .. 1.54 Ang.
PLAT369_ALERT_2_C	Long C(sp2)-C(sp2) Bond C39 - C44 .. 1.54 Ang.

Alert level G
Alert	Description
PLAT002_ALERT_2_G	Number of Distance or Angle Restraints on AtSite 2 Note
PLAT003_ALERT_2_G	Number of Uiso or Uij Restrained non-H Atoms ... 4 Report
PLAT005_ALERT_3_G	No Embedded Refinement Details found in the CIF Please Do !
PLAT007_ALERT_5_G	Number of Unrefined Donor-H Atoms 7 Report
PLAT300_ALERT_4_G	Atom Site Occupancy of H51A is Constrained at 0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H51B is Constrained at 0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H53A is Constrained at 0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H53B is Constrained at 0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H53C is Constrained at 0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H55A is Constrained at 0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H55B is Constrained at 0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H55C is Constrained at 0.5 Check
PLAT606_ALERT_4_G	VERY LARGE Solvent Accessible VOID(S) in Structure ! Info
PLAT720_ALERT_4_G	Number of Unusual/Non-Standard Labels 5 Note
PLAT789_ALERT_4_G	Atoms with Negative _atom_site_disorder_group # 3 Check
PLAT802_ALERT_4_G	CIF Input Record(s) with more than 80 Characters 1 Info
0 ALERT level A = Most likely a serious problem - resolve or explain
12 ALERT level B = A potentially serious problem, consider carefully
21 ALERT level C = Check. Ensure it is not caused by an omission or oversight
18 ALERT level G = General information/check it is not something unexpected

2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
29 ALERT type 2 Indicator that the structure model may be wrong or deficient
5 ALERT type 3 Indicator that the structure quality may be low
13 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 2

Bond precision: C-C = 0.0201 Å

Wavelength=0.71073

Cell:
\[a = 24.5209(10) \quad b = 25.3703(7) \quad c = 37.0128(12) \]
\[\alpha = 88.010(2) \quad \beta = 79.070(3) \quad \gamma = 75.949(3) \]

Temperature: 128 K

Calculated
Reported

Volume: 21930.1(13)
21930.1(13)

Space group: P -1
P -1

Hall group: -P 1
-P 1

Moiety formula:
C198 H145 Cu24 O139 S [+ solvent]
C198 H145 Cu24 O139 S

Sum formula:
C198 H145 Cu24 O139 S [+ solvent]
C198 H145 Cu24 O139 S

Mr: 6305.33
6305.15

Dx, g cm\(^{-3}\): 0.955
0.955

Z: 2
2

\(\mu (\text{mm}^{-1}) \): 1.201
1.201

F(000): 6314.0
6314.0

F(000)': 6333.01

\(h, k, l \text{max} \): 24, 25, 37
24, 25, 36

Nref: 45941
45715

Tmin, Tmax: 0.567, 0.786
0.661, 1.000

Tmin': 0.543

Correction method= # Reported T Limits: Tmin=0.661 Tmax=1.000
AbsCorr = MULTI-SCAN

Data completeness= 0.995
Theta(max)= 20.816

R(reflections)= 0.0840 (18111)
wR2(reflections)= 0.2263 (45715)

S = 0.841
Npar= 2634
The following ALERTS were generated. Each ALERT has the format
\texttt{test-name_ALERT_alert-type_alert-level}.
Click on the hyperlinks for more details of the test.

Alert level A

ALERT	Test Name	Alert Type	Alert Level	Details
THETM01_ALERT_3_A	The value of \(\sin(\theta_{max})/\text{wavelength}\) is less than 0.550			
	Calculated \(\sin(\theta_{max})/\text{wavelength} = 0.5000\)			

Alert level B

ALERT	Test Name	Alert Type	Alert Level	Details
PLAT213_ALERT_2_B	Atom O115	has ADP max/min Ratio	4.7 prolat	
PLAT213_ALERT_2_B	Atom O238	has ADP max/min Ratio	4.3 prolat	
PLAT213_ALERT_2_B	Atom C3	has ADP max/min Ratio	4.2 prolat	
PLAT213_ALERT_2_B	Atom C350	has ADP max/min Ratio	4.8 oblate	
PLAT213_ALERT_2_B	Atom C732	has ADP max/min Ratio	4.4 prolat	
PLAT341_ALERT_3_B	Low Bond Precision on C-C Bonds	\(\ldots\)	0.02015 Ang.	
PLAT369_ALERT_2_B	Long C(sp2)-C(sp2) Bond C1 - C610_g	\(\ldots\)	1.58 Ang.	
PLAT369_ALERT_2_B	Long C(sp2)-C(sp2) Bond C2 - C33_b	\(\ldots\)	1.62 Ang.	
PLAT369_ALERT_2_B	Long C(sp2)-C(sp2) Bond C14 - C489	\(\ldots\)	1.57 Ang.	
PLAT369_ALERT_2_B	Long C(sp2)-C(sp2) Bond C22 - C596	\(\ldots\)	1.61 Ang.	
PLAT369_ALERT_2_B	Long C(sp2)-C(sp2) Bond C42 - C275	\(\ldots\)	1.58 Ang.	
PLAT369_ALERT_2_B	Long C(sp2)-C(sp2) Bond C208 - C721	\(\ldots\)	1.59 Ang.	
PLAT369_ALERT_2_B	Long C(sp2)-C(sp2) Bond C231 - C695	\(\ldots\)	1.59 Ang.	
PLAT369_ALERT_2_B	Long C(sp2)-C(sp2) Bond C340 - C673	\(\ldots\)	1.61 Ang.	
PLAT369_ALERT_2_B	Long C(sp2)-C(sp2) Bond C425 - C715	\(\ldots\)	1.61 Ang.	
PLAT369_ALERT_2_B	Long C(sp2)-C(sp2) Bond C458 - C728	\(\ldots\)	1.57 Ang.	
PLAT414_ALERT_2_B	Short Intra D-H..H-X	H410 - H580	\(\ldots\)	1.86 Ang.
PLAT417_ALERT_2_B	Short Inter D-H..H-D	H6 - H117	\(\ldots\)	2.00 Ang.
PLAT420_ALERT_2_B	D-H Without Acceptor	O1 - H1	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O2 - H2	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O12 - H12A	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O128 - H12C	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O132 - H13A	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O132 - H13B	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O148 - H14A	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O148 - H14B	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O15 - H15A	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O15 - H15B	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O214 - H21A	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O214 - H21B	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O238 - H23A	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O238 - H23B	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O27 - H27	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O305 - H30A	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O35 - H35	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O41 - H41	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O43 - H43	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O452 - H45A	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O452 - H45B	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O50 - H50A	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O50 - H50B	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O55 - H55	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O58 - H58A	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O58 - H58B	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O63 - H63	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O68 - H68	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O72 - H72A	Please Check	
PLAT420_ALERT_2_B	D-H Without Acceptor	O72 - H72B	Please Check	
Alert level C

RINTA01_ALERT_3_C The value of Rint is greater than 0.12
Rint given 0.137

PLAT018_ALERT_1_C _diffrn_measured_fraction_theta_max .NE. *_full ! Check
PLAT020_ALERT_3_C The value of Rint is greater than 0.12 0.137 Report
PLAT026_ALERT_3_C Ratio Observed / Unique Reflections (too) Low .. 40 %
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density 2.02 Report
PLAT213_ALERT_2_C Atom O55 has ADP max/min Ratio 4.0 prolat
PLAT213_ALERT_2_C Atom O72 has ADP max/min Ratio 3.1 prolat
PLAT213_ALERT_2_C Atom O133 has ADP max/min Ratio 3.2 prolat
PLAT213_ALERT_2_C Atom O206 has ADP max/min Ratio 3.3 prolat
PLAT213_ALERT_2_C Atom O257 has ADP max/min Ratio 3.8 prolat
PLAT213_ALERT_2_C Atom O384 has ADP max/min Ratio 3.1 prolat
PLAT213_ALERT_2_C Atom C1 has ADP max/min Ratio 3.5 prolat
PLAT213_ALERT_2_C Atom C17 has ADP max/min Ratio 3.2 prolat
PLAT213_ALERT_2_C Atom C20 has ADP max/min Ratio 3.1 prolat
PLAT213_ALERT_2_C Atom C654 has ADP max/min Ratio 4.0 prolat
PLAT220_ALERT_2_C Non-Solvent Resd 1 C Ueq(max)/Ueq(min) Range 5.2 Ratio
PLAT220_ALERT_2_C Non-Solvent Resd 1 O Ueq(max)/Ueq(min) Range 5.3 Ratio
PLAT222_ALERT_3_C Non-Solvent Resd 1 H Uiso(max)/Uiso(min) Range 7.2 Ratio
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 08 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 043 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 093 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0133 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0226 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0270 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0316 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0363 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0408 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0543 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0545 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0607 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 049 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0144 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0486 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0532 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0562 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0590 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0634 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of 0637 Check
PLAT241_ALERT_2_C Low ‘MainMol’ Ueq as Compared to Neighbors of Cu7 Check
Alert level	Description	
G	Number of Distance or Angle Restraints on AtSite	27 Note
G	Number of Uiso or Uij Restained non-H Atoms ...	82 Report
G	Polymeric Structure Found with Maximum Dimension	3 Info
G	No Embedded Refinement Details found in the CIF Please Do !	
G	Number of Unrefined Donor-H Atoms	47 Report
G	Check Large C6 Ring C-C Range C33 -C665	0.17 Ang.
G	Check Large C6 Ring C-C Range C156 -C634	0.20 Ang.
G	Check Large C6 Ring C-C Range C292 -C644	0.17 Ang.
G	Short Inter X...Y Contact O2 .. C612 ..	3.00 Ang.
G	VERY LARGE Solvent Accessible VOID(S) in Structure ! Info	
It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that [full publication checks](#) are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 13/08/2017; check.def file version of 27/07/2017
