Crystalline phases in Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$ intermetallics; Investigations by perturbed angular correlation spectroscopy and ab initio calculations

S.K. Dey1,2, C.C. Dey1,2,*, S. Saha1,2, G. Bhattacherjee1,2, J. Belošević-Čavor3, D. Toprek3

1Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700 064, India
2Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
3Institute of Nuclear Sciences Vinca, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia

Abstract

Crystalline phases formed in stoichiometric Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$ have been studied by perturbed angular correlation (PAC) spectroscopy, XRD and TEM/SAED measurements. In Zr$_9$Ni$_{11}$, the phases Zr$_9$Ni$_{11}$ (~89%) and Zr$_8$Ni$_{21}$ (~11%) have been found at room temperature from PAC measurements. At 773 K, Zr$_9$Ni$_{11}$ partially decomposes to Zr$_7$Ni$_{10}$ and at 973 K, it is completely decomposed to ZrNi and Zr$_7$Ni$_{10}$. In Hf$_9$Ni$_{11}$, a predominant phase (~81%) due to HfNi is found at room temperature while the phase Hf$_9$Ni$_{11}$ is produced as a minor phase (~19%). No compositional phase change at higher temperature is found in Hf$_9$Ni$_{11}$. Phase components found from XRD and TEM/SAED measurements are similar to those observed from PAC measurements. Electric field gradients in Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$ have been calculated.

*corresponding author

Email addresses: skumar.dey@saha.ac.in (S.K. Dey1,2), chandicharan.dey@saha.ac.in (C.C. Dey1,2), satyajit.saha@saha.ac.in (S. Saha1,2), gourab.bhattacherjee@saha.ac.in (G. Bhattacherjee1,2), cjeca@vin.bg.ac.rs (J. Belošević-Čavor3), toprek@vin.bg.ac.rs (D. Toprek3)

Preprint submitted to Journal of Solid State Chemistry October 29, 2018
by density functional theory (DFT) using all electron full potential (linearized)
augmented plane wave plus local orbitals [FP-(L)APW+lo] method in order to assign
the phase components.

Keywords: A. Intermetallics; B. Hydrogen absorbing materials; C. Perturbed
angular correlation; D. Phase stability; E. Site occupancy; F. Density functional
theory

1. Introduction

The Zr-Ni intermetallic compounds are widely used to synthesize advanced materi-
als [1–4]. The compounds $\text{Zr}_8\text{Ni}_{21}$, $\text{Zr}_7\text{Ni}_{10}$, $\text{Zr}_9\text{Ni}_{11}$ and ZrNi are, particularly,
important due to their potential application as gaseous hydrogen storage materials.
The electrochemical properties of these compounds were extensively studied earlier
[5–8]. These alloys absorb gaseous hydrogen in their interstitial sites to form nickel
metal hydrides (NiMH). These metal hydrides are used as negative electrode in NiMH
rechargeable batteries. It was found that the hydrogen absorption/desorption prop-
erties of many Laves phase and quaternary/ternary hydriding alloys are improved
due to the presence of non-Laves Zr-Ni binary alloys [9–14]. The NiMH batteries
have high energy density compared to nickel-cadmium batteries and are more envi-
ronmentally friendly. Recently, hydrogen absorption/desorption properties in ZrNi
alloy were investigated [14] by partial substitution of Zr with Ti for differen
t Ti concentra-
tion. Also, in case of $\text{Zr}_9\text{Ni}_{11}$, unusual magnetic properties were reported by
Provenzano et al. [15]. Its crystal structure is known to be body-centered tetragonal
with space group $I4/m$ [8, 14, 16, 21] which is reported to be isostructural to $\text{Zr}_9\text{Pt}_{11}$
[18, 22, 23]. The lattice parameters of $\text{Zr}_9\text{Ni}_{11}$ were found to be $a = 9.88(1) \, \text{Å}$ and
$c = 6.61(1) \, \text{Å}$ [16]. The $\text{Hf}_9\text{Ni}_{11}$ was found to be isostructural to $\text{Zr}_9\text{Ni}_{11}$, with the
lattice parameters $a = 9.79 \, \text{Å}$ and $c = 6.53 \, \text{Å}$ [17, 24, 25].
The phase diagram of Zr-Ni system\[17, 20, 21, 26, 27\] shows at least eight binary compounds. From a recent study\[28\], all these phases were found through the interdiffusion process by annealing the Zr-Ni interface zone at different temperatures. It is found that the phases Zr2Ni7, Zr2Ni, and ZrNi melt congruently while Zr8Ni21, Zr9Ni11, Zr7Ni10, and ZrNi5 phases form peritectically. The phase ZrNi3 forms by peritectoid reaction. The room temperature formation of these phases are due to nucleation by rapid quenching from the liquid alloy\[14, 26\]. Stalick et al.\[29\] found that the Zr9Ni11 sample, prepared by argon arc melting, contained 10% of ZrNi and at 700 °C, it transformed to ZrNi (37%), Zr7Ni10 (57%) and Zr9Ni11 (7%). At 1000 °C, this sample reformed again to produce 90% Zr9Ni11 and 10% ZrNi. The compounds with Zr or Hf as a constituent element are very suitable for perturbed angular correlation (PAC) measurements using the probe 181Hf. Due to chemical similarity, the probe 181Hf occupies the Zr sites of the compound. Different Zr-Ni and Hf-Ni intermetallic compounds viz., (Zr/Hf)8Ni21\[30\], (Zr/Hf)2Ni7\[31, 32\], (Zr/Hf)Ni3\[33\] were studied earlier by PAC technique. However, any report of PAC measurements in the (Zr/Hf)9Ni11 systems are not available in literature. The technological applications of Zr9Ni11 and absence of PAC measurements, prompted the study of Zr9Ni11 and Hf9Ni11 compounds to determine the electric field gradients (EFG) at the Ta impurity sites, obtained after radioactive decay of 181Hf and also the structural stability of the compounds. The measured EFG and asymmetry parameters can be directly compared to the calculated values obtained from first-principles density functional theory (DFT), which helps assigning the component phases produced in the sample.

The time-differential perturbed angular correlation (TDPAC), also called PAC, is a nuclear technique based on the interaction of electromagnetic moments (electric quadrupole or magnetic dipole) of a specific nuclear level with the electric field gradient or the magnetic field generated at the nuclear level by the surrounding en-
vironment of the nucleus. Electric field gradient strongly depends upon the lattice parameters and the crystal structure of the lattice. This technique is sensitive to the change of local field environment of the probe nucleus. Production of multiphase components can be identified by this technique from the observation of different quadrupole frequencies. In the present report, phase stability and structural phase transformation in Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$ have been studied by observing the temperature dependence of PAC parameters. Additionally, we have carried out X-ray diffraction (XRD) and transmission electron microscopy (TEM)/selected area electron diffraction (SAED) measurements to determine the phase components in these samples. Calculations of EFG and asymmetry parameter (η) at 181Ta impurity site have also been carried out in Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$ to compare with the experimental results from PAC measurements and therefrom to assign these phases.

2. Experimental details

The intermetallic compounds Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$ have been prepared in argon arc furnace using the stoichiometric amounts of constituent elements procured from Alfa Aesar. The purity of Zr (excluding Hf), Hf (excluding Zr) and Ni were 99.2%, 99.95% and 99.98%, respectively. The probe 181Hf was produced in Dhruba reactor, Mumbai by irradiating natural Hf metal (\sim30% 180Hf) with thermal neutron for 7 days (flux \sim1013/cm2/s). For PAC measurements, this active Hf metal was added with \sim0.3 at% to the compounds and remelted in the arc furnace. It can be considered that addition of this very small impurity concentration will not affect stoichiometry of the samples and the sample properties. Separate inactive samples were produced in similar manners for structural characterization by XRD and TEM/SAED measurements. Barring in Hf$_9$Ni$_{11}$ PAC sample, no appreciable mass loss of other samples were found during arc melting. In all cases, shiny globule
samples were formed. The X-ray diffraction measurements have been carried out using Rigaku X-ray diffractometer TTRAX-III and Cu Kα radiation. Transmission electron microscopy (TEM) measurements were carried out using FEI, Tecnai G2 F30, S-Twin microscope equipped with a high angle annular dark-field (HAADF) detector, a scanning unit and a energy dispersive X-ray spectroscopy (EDX) unit to perform the scanning transmission electron microscopy (STEM-HAADF-EDX).

The 181Hf probe is introduced into the investigated sample (Zr/Hf)9Ni11 which replaces Zr/Hf atoms in the matrix. This probe atom 181Hf β− decays to 181Ta (T1/2 = 42.4 d) and populates the 615 keV excited level of 181Ta. The daughter nucleus 181Ta comes to ground state through the successive gamma rays of 133 and 482 keV passing through the 482 keV intermediate level. The intermediate level has a half-life of 10.8 ns and a spin angular momentum I = 5/2ℏ[34]. Since the β− decay half life of 181Hf is 42.4 d, the PAC measurements are generally performed within 1-2 months of probe activation i.e. before the probe is decayed to a very low activity level. The extra-nuclear electric field gradient (EFG) present in the sample interacts with the quadrupole moment of the probe nucleus and perturbs the γ-γ angular correlation. Thus, through the PAC technique, the EFG in a sample is actually measured at the 181Ta impurity atom.

The perturbation function in a polycrystalline sample for I=5/2 ℏ is given by\[35, 36\]

\[G_2(t) = S_{20}(\eta) + \sum_{i=1}^{3} S_{2i}(\eta)\cos(\omega_i t)\exp(-\delta \omega_i t).\] (1)

The frequencies ωi denote the transition frequencies between the m-sublevels of the intermediate state. These sublevels become non-degenerate in energies due to hyperfine splitting. The damping in PAC spectrum is represented by δ (Lorentzian distribution) which arises due to lattice imperfections and chemical inhomogeneities.
of the sample. The three \(\omega_i \)'s in the perturbation function \(G_2(t) \) are related to \(V_{zz} \), the maximum component of EFG in the principle axis system, through the quadrupole frequency given by

\[
\omega_Q = \frac{eQV_{zz}}{4I(2I - 1)\hbar}.
\]

(2)

In the above Eqn. 2, \(Q \) represents the quadrupole moment of the intermediate level (2.36 b [37]). For an axially symmetric EFG \((\eta = 0) \), the \(\omega_Q \) is related to \(\omega_1, \omega_2 \) and \(\omega_3 \) by

\[
\omega_Q = \omega_1/6 = \omega_2/12 = \omega_3/18.
\]

(3)

The principal EFG components obey the relations

\[
V_{xx} + V_{yy} + V_{zz} = 0 \quad \text{and} \quad |V_{zz}| \geq |V_{yy}| \geq |V_{xx}|.
\]

(4)

The EFG can therefore be designated by two parameters only viz. \(V_{zz} \) and \(\eta \). The asymmetry parameter \(\eta \) is defined as

\[
\eta = \frac{(V_{xx} - V_{yy})}{V_{zz}}, \quad 0 \leq \eta \leq 1.
\]

(5)

For \(\eta \neq 0 \), a more general relation between \(\omega_Q \) and \(\omega_i \)'s is found [36].

A slow-fast coincidence set up comprising two \(\text{LaBr}_3(\text{Ce}) \) and two \(\text{BaF}_2 \) detectors has been built to acquire data simultaneously at 180° and 90° in a coplanar arrangement. Crystal sizes were 38×25.4 mm² for \(\text{LaBr}_3(\text{Ce}) \) and 50.8×50.8 mm² for \(\text{BaF}_2 \) scintillators. The low energy \(\gamma \)-rays (133 keV) of the probe nucleus were captured in \(\text{LaBr}_3(\text{Ce}) \) detectors. A typical prompt time resolution of \(\sim 800 \) ps has been observed for the \(\text{LaBr}_3(\text{Ce}) \)-\(\text{BaF}_2 \) detector combination selecting the 133-482 keV \(\gamma \)-rays of \(^{181}\text{Hf} \). The perturbation function \(G_2(t) \) is obtained from the four coincidence spectra taken at 180° and 90° [38].
Temperature (K)	Component	ω_Q (Mrad/s)	η (\%)	δ (\%)	f (\%)	Assignment
77	1	41(1)	0.80(10)	17(3)	84(3)	Zr$_9$Ni$_{11}$
	2	76.8(8)	0.53(3)	0	16(3)	Zr$_8$Ni$_{21}$
298	1	39.2(5)	0.64(3)	15(2)	89(3)	Zr$_9$Ni$_{11}$
	2	77.5(7)	0.52(2)	0	11(3)	Zr$_8$Ni$_{21}$
373	1	39.0(8)	0.74(5)	12(3)	80(3)	Zr$_9$Ni$_{11}$
	2	76.8(7)	0.51(2)	0	20(3)	Zr$_8$Ni$_{21}$
473	1	39.4(8)	0.59(3)	17(3)	85(3)	Zr$_9$Ni$_{11}$
	2	75.5(7)	0.58(3)	0	15(3)	Zr$_8$Ni$_{21}$
573	1	39.9(5)	0.58(2)	12(2)	82(3)	Zr$_9$Ni$_{11}$
	2	75.9(5)	0.57(2)	0	18(3)	Zr$_8$Ni$_{21}$
673	1	37.5(5)	0.57(3)	12(2)	81(3)	Zr$_9$Ni$_{11}$
	2	75.3(6)	0.51(2)	0	19(3)	Zr$_8$Ni$_{21}$
773	1	38.4(4)	0.48(3)	2(1)	45(3)	Zr$_9$Ni$_{11}$
	2	73.3(8)	0.61(3)	0	20(3)	Zr$_8$Ni$_{21}$
	3	45.8(8)	0.57(6)	0	27(3)	Zr$_7$Ni$_{10}$
	3	99(2)	0	0	7(3)	
873	1	38.5(7)	0.38(4)	8(4)	54(3)	Zr$_9$Ni$_{11}$
	2	76.8(8)	0.66(2)	0	18(3)	Zr$_8$Ni$_{21}$
	3	46.0(9)	0.60(8)	0	16(3)	Zr$_7$Ni$_{10}$
	4	96(1)	0	0	11(3)	
973	1	17.9(6)	0.36(4)	0	55(3)	ZrNi
	2	38.2(4)	0.52(5)	0	32(3)	Zr$_9$Ni$_{11}$
	3	45(1)	0.72(12)	0	13(3)	Zr$_7$Ni$_{10}$
298a	1	26.2(6)	0.40(3)	8(2)	63(3)	ZrNi
	2	74.2(4)	0	0	17(3)	ZrNi
	3	77(1)	0.68(4)	0	11(3)	Zr$_8$Ni$_{21}$
	4	62(1)	0.60(8)	0	9(3)	Zr$_7$Ni$_{10}$

a after measurement at 973 K
Figure 1: Figure in the left shows the background subtracted XRD powder pattern in the stoichiometric sample of Zr$_9$Ni$_{11}$. The line represents the fit to the measured data. The vertical bars A, B denote the Bragg angles corresponding to Zr$_9$Ni$_{11}$ and Zr$_7$Ni$_{10}$, respectively. The bottom line shows the difference between the observed and the fitted pattern. Figure in the right shows a comparison of ICDD pattern of Zr$_9$Ni$_{11}$ (A), Zr$_7$Ni$_{10}$ (B) with the experimental XRD pattern of Zr$_9$Ni$_{11}$.

Figure 2: Selected area electron diffraction pattern from the stoichiometric Zr$_9$Ni$_{11}$ particle shown in the inset.
Figure 3: PAC spectra in the stoichiometric sample of Zr$_9$Ni$_{11}$ at different temperature. Left panel shows the time spectra and the right panel shows the corresponding Fourier cosine transforms. The PAC spectrum at room temperature designated by 298° K is taken after the measurement at 973 K.
Figure 4: Variations of quadrupole frequency (ω_Q), asymmetry parameter (η), frequency distribution width (δ) and site fraction $f(\%)$ with temperature for the components of $\text{Zr}_9\text{Ni}_{11}$, $\text{Zr}_8\text{Ni}_{21}$ and $\text{Zr}_7\text{Ni}_{10}$.
3. Results and discussion

3.1 \(\text{Zr}_{9}\text{Ni}_{11} \)

The XRD powder pattern in \(\text{Zr}_{9}\text{Ni}_{11} \) is shown in Fig. 1. The peaks were identified (Fig. 1) using ICDD database, 2009. Presence of tetragonal \(\text{Zr}_{9}\text{Ni}_{11} \) [PDF Card No.: 00-033-0963] and orthorhombic \(\text{Zr}_{7}\text{Ni}_{10} \) [PDF Card No.: 01-072-3501] phases have been found in the XRD spectrum. Analysis of the X-ray powder pattern (Fig. 1) was carried out by FullProf software package \([39]\) using the known crystallographic data of \(\text{Zr}_{9}\text{Ni}_{11} \) with space group \(I4/m \) \([16]\) and \(\text{Zr}_{7}\text{Ni}_{10} \) \([40]\). The presence of a minor phase \(\text{Zr}_{7}\text{Ni}_{10} \) in the stoichiometric sample of \(\text{Zr}_{9}\text{Ni}_{11} \) was also observed from x-ray
The presence of Zr$_9$Ni$_{11}$, Zr$_8$Ni$_{21}$ and Zr$_7$Ni$_{10}$ phases in this stoichiometric sample of Zr$_9$Ni$_{11}$ have been observed from TEM/SAED measurement (Fig. 2). The SAED pattern obtained from a region marked by a dotted circle in the stoichiometric sample of Zr$_9$Ni$_{11}$ is shown in Fig. 2. The interplanar spacing (d_{hkl}) is obtained by measuring the distance (Δq) of a particular spot from the central bright spot using the formula $d_{hkl} = 1/\Delta q$. Some of the measured d_{hkl} from the SAED pattern are 1.39 Å, 1.30 Å, 1.21 Å, 3.45 Å, 0.99 Å and 1.84 Å. These measured interplanar spacings are very close to the (710), (613), (741), (220), (680) and (422) interplanar spacings of tetragonal Zr$_9$Ni$_{11}$ (JCPDS # 33-0963), respectively. This further confirms the presence of Zr$_9$Ni$_{11}$ phase in the sample. Few of the measured d_{hkl} from the SAED pattern are 2.29 Å and 4.34 Å which are very close to the (231) and (-110) interplanar spacings of triclinic Zr$_8$Ni$_{21}$ (ICDD PDF Card No.: 01-071-2622), respectively. The presence of Zr$_8$Ni$_{21}$ phase in the sample is thus confirmed. Some of the measured interplanar spacings from the SAED pattern, 2.32 Å and 1.55 Å, are found to be very close to
the (511) and (800) interplanar spacings of orthorhombic Zr\textsubscript{7}Ni\textsubscript{10} (ICDD PDF card No.:01-072-3501), respectively, which confirms the presence of Zr\textsubscript{7}Ni\textsubscript{10} phase in the stoichiometric sample of Zr\textsubscript{9}Ni\textsubscript{11}.

The PAC spectrum found at room temperature in the stoichiometric sample of Zr\textsubscript{9}Ni\textsubscript{11} is shown in Fig. 3. The predominant component (89\%) produces values of \(\omega_Q = 39.2(5)\) Mrad/s \((V_{zz} = 4.4(1) \times 10^{21} V/m^2)\), \(\eta = 0.64(3)\) with a large frequency distribution width \(\delta = 15\%\). Apart from this, a minor component is also observed (Table II). The predominant component has been assigned to Zr\textsubscript{9}Ni\textsubscript{11} by comparing the results with DFT calculations (discussed later). The minor component found can be attributed to Zr\textsubscript{8}Ni\textsubscript{21} by comparing the values of \(\omega_Q\) and \(\eta\) with the results from our recent investigation \[30\] for a particular crystallographic site in Zr\textsubscript{8}Ni\textsubscript{21}. It was found \[20\] that the phases Zr\textsubscript{2}Ni\textsubscript{7}, Zr\textsubscript{2}Ni and ZrNi melt congruently. The phase Zr\textsubscript{8}Ni\textsubscript{21} was formed at \(\sim 1453\) K from the liquid by peritectic reaction \(L + Zr\textsubscript{2}Ni_7 \rightarrow Zr\textsubscript{8}Ni\textsubscript{21}\) \[20\]. Kirkpatrick and Larson \[17\] reported that the phase Zr\textsubscript{9}Ni\textsubscript{11} was produced peritectically by the reaction \(L + ZrNi \rightarrow Zr\textsubscript{9}Ni\textsubscript{11}\) at 1443 K \[20\] and this phase was found to decompose eutectoidally \(Zr\textsubscript{9}Ni\textsubscript{11} \rightarrow ZrNi + Zr\textsubscript{7}Ni\textsubscript{10}\) at \(\sim 1248\) K \[20\]. In the process of arc-melting, the production of Zr\textsubscript{9}Ni\textsubscript{11} phase at room temperature is due to rapid solidification from the liquid melt. To find any structural change in this compound or its phase stability with temperature, PAC measurements have been performed in the sample at high temperatures also (up to 973 K). The results show (Table I) that up to 673 K, the phase due to Zr\textsubscript{9}Ni\textsubscript{11} remains stable and the component fractions do not change appreciably. At 773 K, however, the sample compositions change. At this temperature, a new component (\(\sim 27\%\)) appears at the expense of Zr\textsubscript{9}Ni\textsubscript{11}. This has been attributed to Zr\textsubscript{7}Ni\textsubscript{10} by comparing with the previous PAC results in Zr\textsubscript{7}Ni\textsubscript{10} \[41\]. Kosorukova et al. \[21\] reported that the phase Zr\textsubscript{7}Ni\textsubscript{10} was produced by peritectic reaction \(L + Zr\textsubscript{9}Ni\textsubscript{11} \rightarrow Zr\textsubscript{7}Ni\textsubscript{10}\) at 1393 K. The
component fraction due to Zr$_8$Ni$_{21}$ at 773 K, however, does not change. Another new component with a small fraction (Table I) also appears which could not be assigned. At 873 K, the phase due to Zr$_9$Ni$_{11}$ slightly increases to 54% at the cost of Zr$_7$Ni$_{10}$ component. At a temperature of 973 K, the sample composition changes drastically. At this temperature, the predominant component (∼55%) is found to have $\omega_Q = 17.9(6)$ Mrad/s, $\eta = 0.36(4)$, $\delta = 0$ and this can be attributed to ZrNi by comparing the results found in ZrNi from previous PAC measurements [42]. At this temperature, the Zr$_8$Ni$_{21}$ phase vanishes and the Zr$_9$Ni$_{11}$ phase reduces to 32%. It was reported [17, 20] that the phase ZrNi was formed by the decomposition of Zr$_9$Ni$_{11}$ phase eutectoidally at ∼1248 K. We have carried out a re-measurement in the sample at room temperature after the measurement at 973 K to find the change in sample composition before and after heating the sample. In the re-measurement, a new component (∼17%) with $\omega_Q = 74.2(4)$ Mrad/s, $\eta = 0$ is found. This new component can be attributed to ZrNi$_3$ by comparing the results reported from our recent PAC investigations in ZrNi$_3$ [33]. It is known that ZrNi$_3$ was formed by the peritectoid reaction (Zr$_2$Ni$_7$ + Zr$_8$Ni$_{21}$ → ZrNi$_3$) at 1193 K [20] and at 1261 K [21]. The predominant phase due to ZrNi (63%) is found to be produced here which was first observed at 973 K in the sample. Appearance of ZrNi as a secondary phase in the synthesized Zr$_9$Ni$_{11}$ alloy was also found earlier [8, 9, 13, 29]. The remaining phases in the sample can be identified as Zr$_8$Ni$_{21}$ (∼11%) and Zr$_7$Ni$_{10}$ (∼9%). Interestingly, no phase due to Zr$_9$Ni$_{11}$ is found here and the sample is transformed completely.

The Zr$_9$Ni$_{11}$ compound was studied by Stalick et al. [29] earlier using transmission electron microscopy and powder neutron diffraction in the temperature range 4-1273 K. At room temperature, these authors reported a mass fraction of 90% Zr$_9$Ni$_{11}$ and 10% ZrNi in Zr$_9$Ni$_{11}$. From present PAC measurements, however, no ZrNi phase is found at lower temperatures (below 873 K). The ZrNi phase is found only at 973
K. Stalick et al. [29] reported a sharp enhancement of this phase at 973 K and the production of a new phase of Zr$_7$Ni$_{10}$. The phase fractions were reported to be 37% ZrNi, 57% Zr$_7$Ni$_{10}$ and 7% Zr$_9$Ni$_{11}$ at 973 K [29]. We have also found phase components of ZrNi, Zr$_7$Ni$_{10}$ and Zr$_9$Ni$_{11}$ at 973 K although the phase fractions are found to be different (Table 1). An agreement between the results of Stalick et al. [29] and present results at high temperature are thus observed. Stalick et al. [29] found also a phase reformation at 1273 K where the sample was again 90% Zr$_9$Ni$_{11}$ and 10% ZrNi. Production of Zr$_7$Ni$_{10}$ and ZrNi can also be explained from the Zr-Ni phase diagram due to their proximity to Zr$_9$Ni$_{11}$ phase and very small homogeneity range of this phase [8, 16, 17, 20].

The variations of ω_Q, η, δ and phase fraction (f) with temperature for the Zr$_9$Ni$_{11}$, Zr$_8$Ni$_{21}$ and Zr$_7$Ni$_{10}$ phases are shown in Fig. 4. A very weak temperature dependence of quadrupole frequency for the Zr$_9$Ni$_{11}$ phase is found in this compound. Values of ω_Q for the Zr$_9$Ni$_{11}$ phase shows a linear variation with temperature and it is fitted using the following relation

$$\omega_Q(T) = \omega_Q(0)[1 - \alpha T].$$

The fitted results are found to be $\omega_Q(0) = 40.5(5)$ Mrad/s ($V_{zz} = 4.5(1) \times 10^{21}$ V/m2) and $\alpha = 0.7(2) \times 10^{-4}$ K$^{-1}$. The quadrupole frequency for the Zr$_8$Ni$_{21}$ phase follows $T^{3/2}$ temperature dependence given by the following formula

$$\omega_Q(T) = \omega_Q(0)[1 - \beta T^{3/2}].$$

The fitting produces values of $\omega_Q(0) = 77.1(8)$ Mrad/s ($V_{zz} = 8.6(2) \times 10^{21}$ V/m2) and $\beta = 1.2(6) \times 10^{-6}$ K$^{-3/2}$. In our recent PAC investigation in Zr$_8$Ni$_{21}$ [30], similar temperature dependence was found.

Temperature evolution of electric quadrupole frequency in metals and intermetallic compounds following a T and $T^{3/2}$ relation are generally found in literature
In most cases, the EFG decreases with temperature. The coefficient \(\alpha \) depends on crystal structure and the lattice parameters. A very weak temperature dependence of EFG in Zr\(_9\)Ni\(_{11}\), probably, indicates that lattice parameters or lattice volume does not change much with temperature.

To closely examine the phase transitions, a remeasurement of X-ray powder diffraction pattern (Fig. 5) has been carried out after heating the sample for two days at 1073 K. Peaks in the XRD spectrum were identified (Fig. 5) using ICDD database, 2009. It is found (Fig. 5) from XRD analysis using FullProf software \(^{39}\) that the sample after heating gives the phase components Zr\(_9\)Ni\(_{11}\) (\cite{29}, PDF Card No.: 00-033-0963), ZrNi (\cite{44}, PDF Card No.: 01-072-6477), Zr\(_8\)Ni\(_{21}\) (\cite{15}, PDF Card No.: 01-071-2622) and Zr\(_7\)Ni\(_{10}\) (\cite{40}, PDF Card No.: 01-072-3501) as the constituent phase fractions. The phase transformation of Zr\(_9\)Ni\(_{11}\) found at 973 K to ZrNi, therefore, can be supported from XRD measurements also. However, from PAC measurement, no phase due to Zr\(_9\)Ni\(_{11}\) has been found at remeasured room temperature (Table 1). Possibly, in this case, the phase Zr\(_9\)Ni\(_{11}\) is completely transformed to ZrNi due to prolonged heating at successive higher temperatures up to 973 K.

The presence of Zr\(_9\)Ni\(_{11}\), ZrNi, Zr\(_8\)Ni\(_{21}\), ZrNi\(_3\) and Zr\(_7\)Ni\(_{10}\) phases in this stoichiometric sample of Zr\(_9\)Ni\(_{11}\) after annealing the sample at 1073 K for 2 days have been observed from TEM/SAED measurement (Fig. 6). The SAED pattern obtained from a region marked by a dotted circle in the stoichiometric sample of Zr\(_9\)Ni\(_{11}\) is shown in Fig. 6. Some of the measured interplanar spacings \(d_{hkl} \) from the SAED pattern are 3.32 Å and 2.27 Å. These measured \(d_{hkl} \) are very close to the (002) and (132) interplanar spacings of tetragonal Zr\(_9\)Ni\(_{11}\) (JCPDS # 33-0963), respectively. This further confirms the presence of Zr\(_9\)Ni\(_{11}\) phase in the sample. Few of the measured \(d_{hkl} \) from the SAED pattern are found to be 2.33 Å and 1.70 Å which are very
close to the (130) and (150) interplanar spacings of orthorhombic ZrNi (JCPDS # 65-7465), respectively. The presence of ZrNi phase in the sample is thus confirmed. Some of the measured interplanar spacings from the SAED pattern, 2.75 Å and 1.70 Å, are found to be very close to the (103) and (-203) interplanar spacings of triclinic Zr$_8$Ni$_{21}$ (ICDD PDF Card No.: 01-071-2622), respectively. This confirms the presence of Zr$_8$Ni$_{21}$ phase in the sample. Few of the measured interplanar spacings (d-spacing) from the SAED pattern are 2.32 Å and 1.67 Å. These measured d_{hkl} are very close to the (200) and (112) interplanar spacings of hexagonal ZrNi$_3$ (JCPDS # 65-1968), respectively. Hence, the presence ZrNi$_3$ phase in the sample is confirmed. Measured values of some of the interplanar spacings (d-spacing) are 1.77 Å, 2.30 Å and 2.26 Å which are found to be very close to the (151), (004) and (023) interplanar spacings of Zr$_7$Ni$_{10}$ (ICDD PDF Card No.:01-072-3501), respectively. Therefore, the presence of Zr$_7$Ni$_{10}$ phase in this sample is confirmed.

3.2 Hf$_9$Ni$_{11}$

The powder X-ray diffraction pattern in Hf$_9$Ni$_{11}$ is shown in Fig. 7. Presence of Hf$_9$Ni$_{11}$ and HfNi phases have been found (Fig. 7) in the XRD spectrum by comparing with the ICDD PDF Card No.: 00-033-0963 of Zr$_9$Ni$_{11}$ and JCPDS # 47-1414 of HfNi, respectively. Analysis of the X-ray powder pattern (Fig. 7) was carried out by FullProf software package [39] using the known crystallographic data of body-centered tetragonal Hf$_9$Ni$_{11}$ [17, 24, 25] and base-centered orthorhombic HfNi [17, 25, 44] phases. The presence of HfNi phase in this stoichiometric sample of Hf$_9$Ni$_{11}$ has been observed from TEM/SAED measurement (Fig. 8). Selected area electron diffraction (SAED) pattern obtained from a region marked by a dotted circle in the stoichiometric sample of Hf$_9$Ni$_{11}$ is shown in Fig. 8. One of the measured interplanar spacing from the SAED pattern is 2.03 Å which is found to be very
Table 2: Results of PAC measurements in Hf$_9$Ni$_{11}$

Temperature (K)	Component	ω_Q (Mrad/s)	η	$\delta(\%)$	$f(\%)$	Assignment
298	1	25.7(3)	0.37(3)	12(1)	81(3)	HfNi
	2	39.5(5)	0.64(4)	0	19(3)	Hf$_9$Ni$_{11}$
373	1	22(1)	0.39(7)	0	55(3)	HfNi
	2	40.9(9)	0.59(7)	0	45(3)	Hf$_9$Ni$_{11}$
473	1	19.3(9)	0.26(8)	0	64(3)	HfNi
	2	40.0(8)	0.59(6)	0	36(3)	Hf$_9$Ni$_{11}$
573	1	18(1)	0.25(fixed)	0	76(3)	HfNi
	2	41(2)	0.59(12)	0	24(3)	Hf$_9$Ni$_{11}$
673	1	18.7(5)	0.18(7)	0	67(3)	HfNi
	2	41.7(6)	0.58(3)	0	33(3)	Hf$_9$Ni$_{11}$
773	1	18.4(5)	0.30(4)	0	61(3)	HfNi
	2	42.6(4)	0.57(2)	0	39(3)	Hf$_9$Ni$_{11}$
873	1	17.2(4)	0.19(5)	0	68(3)	HfNi
	2	41.9(4)	0.54(2)	0	32(3)	Hf$_9$Ni$_{11}$
298a	1	24.3(4)	0.38(2)	3(1)	75(3)	HfNi
	2	42.5(5)	0.68(3)	0	25(3)	Hf$_9$Ni$_{11}$

a after measurement at 873 K
Figure 7: Figure in the left shows the background subtracted XRD powder in the stoichiometric sample of Hf$_9$Ni$_{11}$. The line represents the fit to the measured data. The vertical bars A, B denote the Bragg angles corresponding to Hf$_9$Ni$_{11}$ and HfNi, respectively. The bottom line shows the difference between the observed and the fitted pattern. Figure in the right shows a comparison of ICDD pattern of Zr$_9$Ni$_{11}$ (A), HfNi (B) with the experimental XRD pattern of the as-cast Hf$_9$Ni$_{11}$ sample. In the database, no ICDD pattern file was found for Hf$_9$Ni$_{11}$. Therefore, ICDD pattern of isostructural Zr$_9$Ni$_{11}$ [17, 24, 25] has been used for identifying Hf$_9$Ni$_{11}$ phase.

close to the (002) interplanar spacing of orthorhombic HfNi (JCPDS # 47-1414). This further confirms the presence of HfNi phase in the sample. The phase Hf$_9$Ni$_{11}$ could not be identified from SAED pattern in the stoichiometric sample of Hf$_9$Ni$_{11}$ due to non-availability of X-ray diffraction data of interplanar spacings (d_{hkl}) and corresponding crystallographic planes (hkl) for Hf$_9$Ni$_{11}$.

The PAC spectrum at room temperature in Hf$_9$Ni$_{11}$ is shown in Fig. 9. An analysis of the spectrum produces one predominant component (\sim81%) with values of $\omega_Q = 25.7(3)$ Mrad/s, $\eta = 0.37(3)$ and $\delta = 12(1)\%$ and a minor component (\sim19%) with values of $\omega_Q = 39.5(5)$ Mrad/s, $\eta = 0.64(4)$, $\delta = 0$. Comparing these values with the PAC results in Zr$_9$Ni$_{11}$ at room temperature (Table 1), the minor
component can be assigned to Hf$_9$Ni$_{11}$. Since the crystal structures of Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$ are the same, similar values of ω_Q and η in the two compounds are expected. The predominant component, however, can be attributed to HfNi by comparing these results with the previous reported results in HfNi [46]. In the Hf-Ni phase diagram [25], nine intermediate phases have been found where the phases Hf$_2$Ni$_7$ and HfNi melt congruently, and seven other phases of Hf-Ni binary system, namely, Hf$_9$Ni$_{11}$, α/β-HfNi$_3$, Hf$_8$Ni$_{21}$, Hf$_3$Ni$_7$, Hf$_7$Ni$_{10}$, Hf$_3$Ni, HfNi$_5$ are formed peritectically [25]. The Hf$_9$Ni$_{11}$ phase is formed by peritectic reaction from the liquid melt and HfNi at 1613 K [47, 48]. Kirkpatrick and Larson [17] reported that the Hf-Ni system is analogous to Zr-Ni system. Unlike Zr$_9$Ni$_{11}$, a predominant component due to HfNi is observed in Hf$_9$Ni$_{11}$. This is, probably, due to the fact that in Hf$_9$Ni$_{11}$ PAC sample, a significant mass loss (\sim5.5%) of the sample was observed during its preparation in argon arc furnace. This mass loss can be considered as due to loss of Ni which has a much lower melting and boiling point compared to the other constituent Hf. So, the stoichiometry of the arc melted sample was changed and a Ni deficient compound
was produced by melting. Since, the stoichiometry of Hf$_9$Ni$_{11}$ (Hf/Ni ratio 1:1.22) and HfNi are not very different, the production of HfNi phase in the sample is expected. In this case, the mass loss of the sample was such that its stoichiometry comes closer to HfNi.

The PAC measurements at higher temperatures have also been performed in Hf$_9$Ni$_{11}$. It is found that at 373 K, the fraction due to Hf$_9$Ni$_{11}$ enhances to 45% at the expense of HfNi (Table 2). In the temperature range 373-873 K, the component
fractions do not change much (Fig. 10).

After heating the sample gradually up to 873 K, a re-measurement at room temperature was carried out. The results are found to be almost the same as found before heating. The frequency distribution width for the predominant component, however, decreases (Table 2) as expected due to annealing of the sample. In this case, the values of quadrupole frequencies for the two components are found to change slightly. In the two cases, there are large changes in frequency distribution.

Figure 10: Variations of quadrupole frequency (ω_Q), asymmetry parameter (η) and site fraction $f(\%)$ with temperature for the components of Hf$_9$Ni$_{11}$ and HfNi.
widths which probably affect the results. But unlike Zr$_9$Ni$_{11}$, no change in phases due to heating is observed in Hf$_9$Ni$_{11}$ and the phases are found to be stable up to 873 K.

The variations of quadrupole frequency and asymmetry parameters of two phases found in the stoichiometric sample of Hf$_9$Ni$_{11}$ with temperature are shown in Fig. 10. It is found that the temperature dependence of quadrupole frequency for the Hf$_9$Ni$_{11}$ phase is very weak which is similar to the temperature dependence of quadrupole frequency in Zr$_9$Ni$_{11}$. But, unlike Zr$_9$Ni$_{11}$, ω_Q for Hf$_9$Ni$_{11}$ is found to increase with temperature. Although, the ω_Q for this phase is found to evolve with temperature following a linear temperature dependent relation (Eqn. 6). A fitting to the Eqn. 6 produces values of $\omega_Q(0) = 36.9(9)$ Mrad/s ($V_{zz} = 4.1(1) \times 10^{21}$ V/m2) and $\alpha = -1.9(3) \times 10^{-4}$ K$^{-1}$. Similar unusual temperature dependence of quadrupole frequency was also found in the literature [49]. Here also, a weak temperature dependence of EFG indicates that crystal parameters do not change much with temperature. The ω_Q for the predominant HfNi component is also found to vary linearly with temperature following Eqn. 6. The fitted results are found to be $\omega_Q(0) = 27(2)$ Mrad/s ($V_{zz} = 3.0(2) \times 10^{21}$ V/m2) and $\alpha = 4(1) \times 10^{-4}$ K$^{3/2}$.

4. **Ab initio calculations**

The ab initio density functional theory (DFT) calculations were performed to compare with the experimental results by all-electron full potential (linearized) augmented plane waves plus local orbitals [FP-(L)APW+lo] method, as implemented in WIEN2k [50]. The exchange-correlation potential was calculated using the generalized gradient approximation (GGA) with the parameterization of Perdew-Burke-Ernzerhof (PBE) [51]. The cut-off parameter $R_{mt}K_{max}$ for limiting the number of plane waves, where R_{mt} is the smallest value of all atomic sphere radii and K_{max} is
Table 3: The parameters of the Zr$_{9}$Ni$_{11}$ and Hf$_{9}$Ni$_{11}$ structure. The lattice constants are given in Å.

Compound	Lattice site	Calculated EFG	Calculated η	Measured EFG	Measured η
Zr$_{9}$Ni$_{11}$ (Ta$_{181}$ probe)	Zr1 2a	25.9	0		
	Zr2 8h	-8.4	0.30		
	Zr3 8h	-5.6	0.92	4.6(1)	0.80(10)
	Hf1 2a	20.7	0		
	Hf2 8h	-8.1	0.39		
	Hf3 8h	5.0	0.72	4.7(1)	0.68(3)

Table 4: The calculated and experimental values of EFG (in units of 10^{21} V/m2) and asymmetry parameter (η) for Zr$_{9}$Ni$_{11}$ and Hf$_{9}$Ni$_{11}$.

Compound	Lattice site	Calculated EFG	Calculated η	Measured EFG	Measured η
Zr$_{9}$Ni$_{11}$ (Ta$_{181}$ probe)	Zr1 2a	25.9	0		
	Zr2 8h	-8.4	0.30		
	Zr3 8h	-5.6	0.92	4.6(1)	0.80(10)
	Hf1 2a	20.7	0		
	Hf2 8h	-8.1	0.39		
	Hf3 8h	5.0	0.72	4.7(1)	0.68(3)
the largest reciprocal lattice vector used in the plane wave expansion, was set to 7.0. The Brillouin zone integration was achieved via a tetrahedron method \cite{52}. Taking into consideration both the accuracy and the efficiency of the calculations, we have selected a $10 \times 10 \times 10$ point mesh to sample the entire Brillouin-zone (BZ), yielding 143 points in the irreducible Brillouin-zone. The structure was relaxed according to Hellmann-Feynman forces calculated at the end of each self-consistent cycle, until the forces acting on all atoms were less than 0.03 eV/Å (2 mRy/a.u.). During this relaxation, the cell volume was kept fixed to its experimental value. Then the theoretical equilibrium volume was determined by fixing the atomic positions to their optimized values and further keeping c/a ratio fixed. A series of calculations was carried out, changing the volume within $\pm 5\%$ of its experimental value and calculating the total energy as its function. Finally, the c/a ratio was optimized by changing it within $\pm 2\%$ of its experimental value while keeping the optimized volume fixed. The convergence criterion for achieving self-consistency was that the integrated charge difference between last two iterations to be smaller than 5×10^{-5} electron.

Figure 11: Models of cells used in DFT study. The Hf, Ni and Ta atoms are denoted by grey, blue and purple spheres, respectively.
We used the optimal structural parameters to construct $1 \times 1 \times 2$ supercell and then replaced each of the Zr (Hf) nonequivalent host sites by a Ta atom successively (Figure 11, [53]). The point group symmetry around the Ta atom remained the same as around the original atom, but the number of non-equivalent positions enlarged to 18-50, which increased the complexity of the calculations. We used 36-64 k points in the irreducible wedge of the Brillouin zone for these calculations.

Both Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$ have tetragonal $I4/m$ type crystal structure (space group number 87). For Zr$_9$Ni$_{11}$, $P4/m$ structure (space group no. 83) was reported by Stalick et al. [29] only, but other authors found $I4/m$ structure [14, 16, 21] including two recent results by Matsuyama et al. [14] and Kosorukova et al. [21]. We have found $I4/m$ crystal structure from XRD (Table 3, Fig. 11, 5, 7) and TEM/SAED (Figure 2, 6) studies in our samples. So, for DFT calculations, we have considered $I4/m$ crystal structure for both Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$. This structure contains 20 atoms in the primitive cell and three nonequivalent Hf (Zr) crystallographic positions. The theoretically optimized structure parameters together with the experimental values obtained from earlier [16, 21] and present X-ray diffraction measurements are shown in Table 3. We can see that a lattice constants overestimate the experimental ones for about 1%, while the c lattice constants underestimate the measured ones for about 2%. The bulk moduli B, obtained by fitting the data to the Murnaghan’s equation of state [54] are also given in Table 3.

The electric field gradient (EFG) tensor V_{ij} was calculated from the obtained charge density using the method developed in reference [55]. The usual convention is to designate the largest component of the EFG tensor as V_{zz}. The asymmetry parameter η is then given by $\eta = (V_{xx} - V_{yy})/V_{zz}$, where $|V_{zz}| \geq |V_{yy}| \geq |V_{xx}|$. The calculated and experimental EFGs at the Ta probe positions in the Hf$_9$Ni$_{11}$ and Zr$_9$Ni$_{11}$ compounds, along with the corresponding asymmetry parameter values, are
It can be observed that the EFG values for Ta at 2a position are not very different in Hf$_9$Ni$_{11}$ and Zr$_9$Ni$_{11}$. This is the position with largest EFG. The EFGs for Ta at the other two nonequivalent Hf(Zr) positions, 8h, are also similar in both compounds. We see that the calculated result for EFG and η at the Ta probe replacing Zr3 atom (-5.6×10^{21} V/m2 and 0.92) is in agreement with the corresponding values measured at 77 K (4.6×10^{21} V/m2 and 0.80), thus confirming that the mentioned component of the measured PAC spectra originates from Zr$_9$Ni$_{11}$.

The sign of V_{zz} cannot be determined by PAC measurements. Therefore, absolute values of V_{zz} have been compared. In the case of Hf$_9$Ni$_{11}$, the calculated results of EFG (5.0×10^{21} V/m2) and η (0.72) are in better agreement with the measured values of EFG (4.4×10^{21} V/m2) and η (0.64) at room temperature. It is interesting to notice that re-measured values at room temperature after heating (4.7×10^{21} V/m2 and 0.68) exhibit even better agreement with the calculated ones. Possible explanation is that the heating resulted in the better structure arrangement, which is now closer to the ideal one.

5. Conclusion

We have performed PAC measurements and DFT calculations to address the phase components, and phase stability in Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$. In both these compounds, multiphase components have been found which are assigned by comparing with the results from DFT calculations. Three non-equivalent Zr/Hf sites are found from calculations while only one site occupation (Zr3/Hf3) by the probe is obtained experimentally. In Zr$_9$Ni$_{11}$ stoichiometric sample, up to 673 K, the phase due to the Zr$_9$Ni$_{11}$ is found to be predominant, with the minor phase belonging to Zr$_8$Ni$_{21}$. Above 673 K, the Zr$_9$Ni$_{11}$ phase becomes unstable and Zr$_7$Ni$_{10}$ appears. At 973 K, the phase due to ZrNi is produced as a dominating phase. This phase has also been
found to be predominant when remeasured at room temperature after measurement at 973 K.

In the stoichiometric Hf$_9$Ni$_{11}$ sample, the phase due to Hf$_9$Ni$_{11}$ is produced as a minority phase and the HfNi phase is found to be predominantly produced. From our PAC measurements, isostructurality of Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$ has been found. The phases produced in Hf$_9$Ni$_{11}$ are found to be stable up to 873 K.

In both Zr$_9$Ni$_{11}$ and Hf$_9$Ni$_{11}$, very weak temperature dependence of electric field gradients (EFG) have been observed which indicates that the lattice parameters do not change much with temperature. The calculated results of EFG and asymmetry parameter (η) at the Ta impurity atom positions, Zr3 8h in Zr$_9$Ni$_{11}$ and Hf3 8h in Hf$_9$Ni$_{11}$, are found to be in good agreement with our experimental results, thus confirming the origin of the components of our interest in the PAC spectra.

Acknowledgement

The authors acknowledge with thanks A. Karmahapatra and S. Pakhira of Saha Institute of Nuclear Physics, Kolkata for their helps in XRD measurements and data analysis. The present work is supported by the Department of Atomic Energy, Government of India through the Grant no. 12-R&D-SIN-5.02-0102. J. Belošević-Čavor acknowledges support by The Ministry of Education, Science and Technological Development of the Republic of Serbia through the project no. 171001.

References

[1] S.J. Pang, T. Zhang, K. Asami, Mat. Trans. 43, 1771 (2002).
[2] V. Ivanchenko, T. Kosorukova, M. Samohin, S. Samohin, Yu. Butenko, Patent of Ukraine on useful model 26254 (2007).

[3] G. Haour, F. Mollard, B. Lux, and I. G. Wright, Z. Metallk. 69, 149 (1978).

[4] P. Nash, in High-Temperature Ordered Intermetallic Alloys, edited by C. C. Koch, C. T. Liu, and N. S. Stoloff (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 423.

[5] F.C. Ruiz, E.B. Castro, S.G. Real, H.A. Peretti, A. Visintin, W.E. Triaca, Int. J. Hydrogen Energy 33, 3576 (2008).

[6] F. C. Ruiz, E. B. Castro, H. A. Peretti, A. Visitin, Int. J. Hydrogen Energy 35, 9879 (2010).

[7] J. Nei, K. Young, R. Regmi, G. Lawes, S.O. Salley, K.Y.S. Ng, Int. J. Hydrogen Energy 37, 16042 (2012).

[8] J.M. Joubert, M. Latroche, A. Percheron-Guégan, J. Alloys Compd. 231, 494 (1995).

[9] X.-Y. Song, X.-B. Zhang, Y.-Q. Lei, Z. Zhang, Q.-D. Wang, Int. J. Hydrogen Eng. 24, 455 (1999).

[10] Kwo Young, Taihei Ouchi, Michael A. Fetcenko, Willy Mays, Benjamin Reichman, Int. J. Hydrogen Energy 34, 8695 (2009).

[11] Young K, Ouchi T, Liu Y, Reichman B, Mays W, Fetcenko MA., J Alloys Compd. 480, 521 (2009).

[12] K. Young, J. Nei, T. Ouchi, M.A. Fetcenko, Journal of Alloys and Compounds 509, 2277 (2011).
[13] Kwo-hsiung Young and Jean Nei, Materials 6, 4574 (2013).

[14] Akihiro Matsuyama, Hironori Mizutani, Takumi Kozuka, Hiroshi Inoue, J. Alloys Compd. 714, 467 (2017)

[15] V. Provenzano, R.D. Shull, R.M. Waterstrat, L.H. Bennett, E. Della Torre and H. Seyoum, IEEE Trans. Magnetics 46, 502 (2010).

[16] J.L. Glimois, C. Becle, G. Develey, J.M. Moreau, J. Less-Common Met. 64, 87 (1979).

[17] M.E. Kirkpatrick, W.L. Larsen, Trans. Am. Soc. Met. 54, 580 (1961).

[18] S.K. Shadangi, S.C. Panda and S. Bhan, Acta Crystallogr. B 38, 2092 (1982).

[19] Xueyan Song, Ze Zhang, Xiaobin Zhang, Yongquan Lei, and Qidong Wang, J. Mater. Res. 14, 1279 (1999).

[20] P. Nash, C.S. Jayanth, Bulletin of Alloy Phase Diagrams 5, 144 (1984).

[21] T. Kosorukova, V. Ivanchenko, G. Firstov and H. Noël, Solid State Phenomena 194, 14 (2013).

[22] S.C. Panda, S. Bhan, J. Less-Common Met. 34, 344 (1974).

[23] S.C. Panda and S. Bhan, Z. Metallk. 64, 793 (1973) H11.

[24] J.L. Liu, L.L. Zhu, X.M. Huang, G.M. Cai and Z.P. Jin, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 58, 160 (2017).

[25] P. Nash, A. Nash, Bulletin of Alloy Phase Diagrams 4, 250 (1983).

[26] G. Ghosh, J. Mat. Res. 90, 598 (1994).
[27] Lars Bsenko, J. Less-Common Metals 63, 171 (1979).

[28] Xiaoma Tao, Pei Yao, Wenwang Wei, Hongmei Chen, Yifang Ouyang, Yong Du, Yuan Yuan, Qing Peng, Journal of Alloys and Compounds 752, 412 (2018).

[29] J.K. Stalick, L.A. Bendersky and R.M. Waterstrat, J. Phys. Cond. Matt. 20, 285209 (2008).

[30] S.K. Dey, C.C. Dey, S. Saha, J. Belošević-Čavor, Intermetallics 84, 112 (2017).

[31] C. C. Dey and S. K. Srivastava, Physica B 427, 126 (2013).

[32] M. Marszalek, H. Saitovitch, P.R.J. Silva, Z. Naturforsch. 55a, 49 (2000).

[33] S.K. Dey, C.C. Dey, S. Saha, J. Belošević-Čavor, D. Toprek, J. Alloys Compd. 723, 425 (2017).

[34] R.B. Firestone, V.S. Shirley (Eds.), Table of Isotopes, 8th ed., John Wiley and Sons, New York, 1996.

[35] G. Schatz, A. Weidinger, Nuclear condensed matter physics, Nuclear Methods and Application, John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1996, p. 63 (chapter 5).

[36] M. Zacate and H. Jaeger, Defect Diffus. Forum 311, 3 (2011).

[37] T. Butz, A. Lerf, Phys. Lett. A 97, 217 (1983).

[38] C.C. Dey, Pramana 70, 835 (2008).

[39] J. Rodríguez-Carvajal, Physica B 192, 55 (1993).
[40] J.-M. Joubert, R. Černý, K. Yvon, M. Latroche, A.P. Guégan, Acta Crystallogr. C 53, 1536 (1997).

[41] S.K. Dey, C.C. Dey, S. Saha, G. Bhattacharjee, D. Banerjee, J. Belošević-Čavor, D. Toprek (arXiv id: 1809.08114).

[42] C. C. Dey, Rakesh Das and S. K. Srivastava, J. Phys. Chem. Solids 82, 10 (2015).

[43] W. Witthuhn and E. Engel, in Hyperfine Interactions of Radioactive Nuclei, Ed. by J. Christiansen (Springer-Verlag Berlin Heidelberg New York Tokyo, 1983) P. 205.

[44] M.E. Kirkpatrick, D.M. Bailey and J.F. Smith, Acta Cryst. 15, 252 (1962).

[45] J.M. Joubert, R. Černý, K. Yvon, Z. Kristallogr-New Cryst. Struct. 213 227 (1998).

[46] I. Yaar, D. Cohen, I. Halevy, S. Kahane, H. Ettedgui, R. Aslanov, Z. Berant, Hyperfine Interact. 159 351 (2004).

[47] Z. Kejun, J. Zhanpeng, J. Less-Common Met. 166, 21 (1990).

[48] V. N. Svechnikov, A. K. Shurin and G. P. Dmitriyeva, Russ. Metall. Fuels 6, 95 (1967).

[49] P. Wodniecki, B. Wodniecka, A. Kulińska, M. Uhrmacher, K.P. Lieb, J. Alloys Compd. 365, 52 (2004).

[50] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, 2001.
[51] J.P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[52] P.E. Blochl, O. Jepsen and O.K. Andersen, Phys. Rev. B 49, 16223 (1994).

[53] A. Kokalj, J. Mol. Graphics Modeling 17, 176 (1999).

[54] F.D. Murnagahan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).

[55] P. Blaha, K. Schwarz and P. Herzig, Phys. Rev. Lett. 54, 1192 (1985).