Title: The Prevention and Control of Cancer by Metformin in Patients with Type 2 Diabetes: A Systematic Mapping Review

Authors: Albania Mitchell, Michelle Price, Gabriela Cipriano

Gabriela Cipriano, Pharm.D, BCACP

- Associate Professor, Department of Pharmacy Practice, Wegmans School of Pharmacy, St. John Fisher College, Rochester, New York, United States of America

Albania Mitchell, Pharm.D

- Wegmans School of Pharmacy Alumna, St. John Fisher College, Rochester, New York, United States of America

Michelle Price, MLS, MA

- Lavery Library, St. John Fisher College, Rochester, New York, United States of America

Keywords: Metformin, Cancer, Type 2 Diabetes, Systematic Review, Prevention and Control, Mapping Review

Conflicts of Interest and Source of Funding: The authors have no conflict of interest and sources of funding to declare.
ABSTRACT

Objective: Metformin is commonly used as a first line therapy for type 2 diabetes; however, existing evidence suggests an influence in oncology. The objective of this systematic mapping review was to describe current literature regarding metformin and its role in preventing and/or controlling cancer in patients with type 2 diabetes.

Method: We searched PubMed, Cochrane Library, and ClinicalTrials.gov in February 2018 and April 2019 to identify research studies, systematic reviews and meta-analyses. Of the 318 citations identified, 156 publications were included in this analysis.

Results: The most common cancer types researched were colorectal, liver, prostate, lung and breast with the United States contributing the most to this data. Author teams averaged six members and most studies were funded. Only 68% of the articles were available open access. Ovarian and esophageal cancers were amongst the least studied, but the most costly for care.
Introduction

Cancer is a compilation of related disease states that can exist as hematologic or solid tumors; and can range from being benign to malignant. Cancer occurs when a cell abnormally and exponentially proliferates, and/or when apoptosis is inhibited. Approximately, 34.4% of the population will have cancer at some point in their lifetime. Cancer is the second most common cause of death in the United States. Mortality is higher amongst men compared to women (196.8 per 100,000) with the highest prevalence being amongst African American men (239.9 per 100,000). In 2017, national spending for cancer care in the United States was $147.3 billion and is expected to increase over time.¹

Diabetes is primarily characterized by symptoms of hyperglycemia. Type 2 diabetes, the most common type, occurs when the body does not properly utilize insulin to maintain normal blood glucose. Hemoglobin A1c (HgbA1c), fasting plasma glucose, and an oral glucose tolerance test are diagnostic tools used to confirm diagnosis of diabetes in the absence of hyperglycemia symptoms.² According to the Centers for Disease Control and Prevention National Diabetes Statistics Report, in 2020, 34.2 million Americans have diabetes. The diagnosis of diabetes affects all facets of life. The average medical expenditure for patients with diabetes is more than double of those without diabetes.³

Inadequate treatment and management of this chronic disease state can lead to a plethora of life altering micro- and macro-vascular complications, such as retinopathy, nephropathy, neuropathy, and cardiovascular disease. Inadequate perfusion often contributes to poor wound healing, foot complications, and infection. Patients with diabetes are more likely to have various
cardiovascular complications, such as an increased risk of high blood pressure, heart disease and stroke. Severe uncontrolled diabetes is the leading cause of adult blindness, kidney failure and non-traumatic amputations.4

Patients with Type 2 diabetes are at an increased risk of liver, pancreas, endometrium, colon/rectum, breast, and bladder cancer. Conversely, diabetes is also correlated with a reduced risk of prostate cancer.5 Both disease states, cancer and diabetes, share common risk factors like aging, obesity, diet and a sedentary lifestyle. Although this is still a developing area of research, possible ways that diabetes has an influence on cancer prevalence is hyperinsulinemia, hyperglycemia, and inflammation.6 A study conducted by Ranc et al. concluded that pre-existing diabetes at the time of cancer diagnosis increases mortality, compared with cancer patients without diabetes.7

Metformin is a biguanide antidiabetic agent currently recommended as the first-line agent to treat type 2 diabetes mellitus (T2DM) according to the American Diabetes Association.2 Metformin, unlike most other antidiabetic drugs, does not increase insulin secretion to decrease blood glucose levels. Through the activation of the activated protein kinase, 5’ AMP-activated protein kinase, metformin is able to decrease hepatic glucose production, decrease intestinal absorption of glucose, and improve insulin sensitivity by increasing peripheral glucose uptake and utilization. This reduces the risk of hyperinsulinemia, which is thought to increase cancer risk among diabetic patients. Metformin’s ability to lower blood glucose without causing hypoglycemia, unlike sulfonylureas, in combination with its affordable price makes it a favored
choice amongst healthcare professionals and patients living with diabetes. It is fairly tolerable, with the most common side effect being dose-dependent gastrointestinal disturbances.8

A mapping review categorizes existing literature on a specific topic. It is used to inform policy-makers, funders and researchers on the quantity of literature existing to address a topic, as well as, illuminate variables such as population size, study design, and location. The resulting data can inform researchers of the subsets of data available for further review, including those topics with enough homogenous data for a meta-analysis. Finally, a systematic mapping review reveals popular subtopics and data gaps to allow for prioritized funding based on evidence.9,10

Both cancer and diabetes have been known to decrease life expectancy while increasing medical expenditures. The use of metformin in diabetes has been revolutionary in providing a medication with recognized efficacy, small side effect profile, and a minimal financial burden. Metformin and its use in cancer could improve patient outcomes in those with or at risk of both disease states.5 This review is intended to be used as a tool for clinical application and a stepping stone for further research. It will contribute to providers by supplying key information needed in order to make evidence-based clinical decisions in the intervention of metformin in a cancer and diabetic medical regimen. Information present in this review is also crucial in deciding where investments will be allocated in primary research in order to fill gaps in knowledge, or continue further development in areas of interest.11

\textbf{Materials and Methods}
At the time of publication, PROSPERO, an international registry of Systematic Reviews, was not accepting submissions of Systematic Mapping Reviews. Therefore, the protocol for this review, although created according to the Prospero Guidelines12, was published in an institutional repository.13 We performed a systematic mapping review and the reporting is in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.14

Search Strategy

The following databases were searched for all available dates, PubMed, Cochrane Library (Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Cochrane Central Register of Controlled Trials, Cochrane Methodology Register, Health Technology Assessment Database, NHS Economic Evaluation Database) and Clinicaltrials.gov. The initial search was performed in February 2018. Separate search strategies were created for each database based on the search terms diabetes mellitus type 2, cancer and metformin. An update on the search was conducted in October of 2019. At that time Cochrane library had updated its databases to include only the Cochrane Database of Systematic Reviews, and the Cochrane Central Register of Controlled Trials.15 Additionally, Cochrane Central began to include clinical trial information from The World Health Organization’s International Clinical Trials Registry Platform (ICTRP) in April of 2019.16 While scoping the research question, it was discovered that Chin-Hsiao Tseng from the National Taiwan University College of Medicine, has produced several published articles on the use of metformin and cancer. The full bibliography of works as listed in the ORCID profile was searched in October 2019.17 All PubMed searches were completed with legacy PubMed. (Appendix 1).
Study Selection

Research studies, including systematic reviews and meta-analysis, were included. Non-systematic reviews were excluded. There were no restrictions on the date of publication. Articles published in English and Spanish were considered. Adult patients with or without cancer that had type 2 diabetes were the target population. The study had to include metformin as an intervention and address the prevention or control of cancer.

Interrater reliability was established by conducting a review of five articles using the established inclusion and exclusion criteria prior to the study screening (GC, AM). All titles and abstracts were then assessed independently to identify articles requiring full-text review (GC, AM). Any discrepancies were resolved by the third author (MP). Two reviewers assessed the full-text of the articles (GC, AM) and the third author again resolved discrepancies (MP). This same procedure was completed for the updated search.

Results

We identified 318 citations, 263 from the first search and 55 from the updated search. Seven duplicates were removed and 311 titles and abstracts were screened. There were 209 articles excluded and 102 reviewed in full-text for eligibility. During the full-text screening, 40 articles were excluded; 24 were the wrong study type, six were not available in English or Spanish, five articles contained duplicate studies, two did not have metformin as the intervention, one was an ongoing clinical trial, one did not have cancer as an outcome, and one did not have the
prevention or control of cancer. From the included references, 94 additional articles were identified; 75 from the first search and 19 from the updated search. A total of 156 articles were included in the analysis (figure 1).

Of the 156 articles, there was a mixture of study types; 76 were retrospective cohorts5,18-92, 27 were case-control studies93-119, 15 were meta-analyses120-134, 15 were prospective cohorts135-149, 11 were systematic reviews with a meta-analysis150-160, seven were nested case-control161-167, two were randomized control studies168-169, two were systematic reviews170-171, and one was a cross-sectional study172.

These study articles were analyzed for various study characteristics, such as number of authors identified in each article, study type and number of participants (table 1), as well as the type or title of the journal the study was published in. For the 156 studies included in the data extraction and analysis, the number of authors for each of these articles ranged from 1-21. The included articles had both an average and median of six authors. The systematic reviews and meta-analysis study types, yielded the same number of authors including a mode of 5 for all study type data sets. The number of participants in each study were also included and extracted by study type. Of the 156 studies, the retrospective and prospective cohorts had the highest number of participants with an average of 127,466 and 60,061 participants, respectively. Survival analysis or time to event data had the least number of participants with an average of 1131. The average number of studies included in the systematic reviews, 32, was about doubled that of the meta-analysis, 14 (Table 1).
Cancer Type

Of the 156 articles, 115 were about a single cancer, 41 were about various cancers and seven articles did not specify in any determinable way. Of the 115 single cancer studies, there were 25 colorectal, 17 liver, 14 prostate, 14 lung, 14 breast, six pancreatic, four ovarian, three endometrial, two esophageal, two gastric, and only one each for bladder, cervical, intrahepatic cholangiocarcinoma, kidney, laryngeal, nasopharyngeal, oral, skin and thyroid (figure 2). There were 40 studies that addressed various cancer types. The following is the number of occurrences of each type in those articles; colorectal 28, breast 26, any/all cancer types 25, pancreatic 24, prostate 24, liver 20, lung 18, esophageal seven, bladder six, Ovarian six, Gastric five, Skin five, Cervical four, endometrial three, laryngeal two, oral two, Nasopharyngeal one, and thyroid had one occurrence (figure 3).

Funding

For the purposes of our review, funding is defined as monetary and non-financial support of research. A majority of the studies had at least one (mode) source of funding, 67% (104 out of 156). The average number of funding sources for studies funded was 2.34. The highest amount of funding for a single study was nine sources. This was for a case-control study out of Finland about prostate cancer115.

Out of the 104 studies that were funded, 28 were funded by organizations based out of the United States, almost always to use data from the United States. Hagberg163 was the exception. This study received funding from the Intramural Research Program of the National Institutes of Health, National Cancer Institute to analyze data from the United Kingdom (UK) Clinical Practice
Research Datalink (CPRD). Of the 28 studies that were funded out of the United States, 22 of them were funded by the National Institute of Health.18, 20,21,42,56,62,64, 91, 101,103-107,109,111,116,119,129,137,147,163.

This systematic mapping review analyzed the common study types that were published about this topic, this is described elsewhere. The authors also took into consideration that the type of study may have impacted funding. All study types with more than one article published were included in this analysis. The highest average of funding sources belonged to nested case control (2.57 funding sources), case control (1.96 funding sources) and retrospective cohort (1.9 funding sources). The lowest average of funding sources belonged to systematic reviews and time-to-event studies. Both averaged 0.5 of funding sources.

Diabetes is known to cause an increased risk in certain cancer types, such as bladder, breast, endometrial, liver, and pancreatic cancer. Conversely, it can also cause a decreased risk of prostate cancer. Taking that into consideration it is important to analyze funding sources under the lense of cancer type.

The most common cancer types are prostate, lung, and colon cancer173. This is reflected in the studies that were included the most in this systematic mapping review. The studies that were published the most pertained to colorectal cancer (25), liver (17), lung (14), prostate (14) and breast cancer (13). Each of those received funding 64\%, 65\%, 50\%, 93\%, and 54\% of the time respectively. Although the one study on thyroid cancer was funded, amongst cancers with more than one publication, prostate cancer was the most frequently funded. The cancer types that
only contributed one study each to this systematic mapping review includes bladder, cervical, kidney, laryngeal, oropharyngeal, oral, skin and thyroid cancer. All of these studies received one source of funding except laryngeal and skin cancer.

Country of Data Source

To summarize the origin source of the data that was analyzed during this systematic mapping review we included all literature that was not a systematic review or meta analysis. This resulted in a total of 129 articles out of 156. Overall, three countries contributed the most literature about metformin and its impact on cancer. The top three countries with the most publishings were the United States (35 or 27%), Taiwan (30 or 23%), and the United Kingdom (21 or 16%). It is interesting to note that over 50% of the literature published that originated in Taiwan came from one single author, Tseng, over the span of six years (2012 to 2018).

Journals and Open Access

There were several journals that had publications on the topic of metformin use and its association with cancer outcomes. Of the 156 articles that data was extracted from for our analysis, *Diabetes Care* had the highest number of publications, regarding metformin use and cancer occurrence or outcomes, followed by *Cancer Epidemiology, Biomarkers and Prevention*, which had eight. The majority of the journals had only one published article describing findings relating to metformin use and cancer (see Appendix 3).
There were 74 articles accessible via PubMed Central, which accounts for 47% of the total articles. There were 100 articles directly accessible via open access on the Publisher’s website, or 64% of the total. Combining the two methods of open access, 106 or 68% of the total articles were available open access, the rest remained behind a paywall. There were 25 instances, where articles were open access on the publisher’s website, but not available in PubMed Central. Of those 25 instances, there were four journals that were represented at least twice: American Journal of Epidemiology; Cancer, Epidemiology, Biomarkers, & Prevention; Diabetes Care; and Diabetologia.

Publication Dates

The publication dates of the articles ranged from 2004-2018, the bulk being published between 2011 and 2014. From 2004-2009, there were only articles published using data from the United States. Continuing from 2010 to present, the United States represented at least 60% of the total publications, except for in 2010, when the percentage contributed by the United States dropped to fifty. The first systematic review or meta-analysis was published in 2010, ranging from one to six publications a year until 2017. In 2016 and 2017 systematic reviews and meta-analyses represented a third of all articles published on the topic (figure 5 and appendix 4).

Limitations

Due to the small number of authors available for this manuscript, elements of a rapid review were incorporated into the research methods. Specifically, only subject headings were used in the PubMed search and not keywords. We believe this decision was justified as other searching
Techniques were used to offset this choice. The search used the subset cancer, which is a filter created by the National Library of Medicine and the National Cancer Institute, containing headings, keywords, and journal titles to facilitate searching for cancer. It contains over 1,000 terms in the search. The subheading prevention and control was floated in the search, allowing it to attach itself to any term in the search, including the ones in the large cancer subset. Systematic Reviews and Meta-Analyses were included publications, so mining those articles for relevant references was also a strategy used to make a comprehensive and replicable search.

There were a couple of limitations in the analysis of the origins of the data. First, there were four articles that listed themselves as “international” studies but did not disclose what countries specifically. Those four articles were excluded from the country analysis. Also 20 studies listed themselves as taking place in the United Kingdom. The United Kingdom consists of four countries, England, Scotland, Wales and Northern Ireland. Since it could not be discerned which country within the United Kingdom it came from, the 20 studies were listed under the United Kingdom. Any studies that specified countries within the United Kingdom were also added to this group. Overall there was no data coming from African, Caribbean, Central and South American countries, which makes extrapolating results found in studies to those patient populations difficult.

There were limitations in the analysis of funding sources by cancer type. Many studies listed the cancer type they were focusing on as “various.” It is complex to report the funding of
these studies by cancer type because these were funded as multi-cancer studies. In addition, seven studies \(^{22,23,31,34,46,141,172}\) did not specify what cancers they were focusing on which similarly made it difficult to analyze.

In the original protocol, there was the intent to identify the professions of the authors to map out which professions are actively participating in the research and publishing on this topic. However, most articles did not include that information and attempts to extract that data from websites produced inconsistent or non-existent data. During the mapping review process, information relating to metformin, such as dose and duration of use, were also considered. However, there were several variations of how these parameters were measured across the studies which made it difficult to analyze and report.

Discussion

Metformin was first introduced into the USA in 1995. In 1998 the United Kingdom Prospective Diabetes Study (UKPDS) was published and it defined metformin's place in therapy in the management of type 2 diabetes. Ten years later, a follow-up study was published and demonstrated continuous cardiovascular benefit of metformin when initiated early in the pharmacologic management of diabetes. In 2011, metformin was included in the essential medicines list published by the World Health Organization (WHO). This list is published every two years and presents minimum medication needs for a basic-health care system, and essential medicines for priority diseases\(^{175}\). This may explain the dramatic increase in the number of publications in 2012 and 2013.
The cancers represented in this review mirror those with the highest incidence in the United States. In 2019176 the cancers with the highest new cases were breast (#1 in female), prostate (#1 in male), lung (#2 in both genders) and colon cancer (#3 in both genders). This systematic mapping review shows that the most reviewed single cancers were colorectal (#1), prostate (#3), lung (#4) and breast (#5). The cancers that are in this review seem to mirror those most prevalent in the United States.

In 2010, the national cost of cancer care was highest for breast, colorectal, lymphoma, lung and prostate cancer respectively177. However, a similar study using data from 2007-2012, found that esophageal cancer was the second most expensive cancer at the initial phase and end of life care. Overall costs for cancer care annually were highest for esophageal at $25,508 for men and $23,007 for women. Additionally ovarian cancer had the highest cost for continuing care. 178 Although the published literature of metformin and cancer has mirrored the incidence rates of cancer, perhaps more studies and funding are now needed to address the most costly cancers.

Metformin and its use to control or prevent cancer has the potential to be groundbreaking. Considering we can only extrapolate these results to populations that were represented in each of the studies some groups of people may be excluded from these findings. Those that would be included would be people from the represented countries stated in Figure 4, with cancers that were studied in abundance as shown in Figures 2 and 3. Results from this systematic mapping review may be less impactful in patients with rare cancers or from countries/regions that were not widely represented. This can be seen in the Caribbean as well as Central and South America, even though Spanish was included as a language in our search strategy.
The mean number of authors for the included systematic reviews and meta-analyses was one higher than the mean of five found by Borah in review of Prospero registries.179 Systematic reviews were also the lowest funded study types suggesting that this study design for metformin and cancer is more laborious than the global average, but not well supported financially, which might be a disincentive for authors to participate in this type of study.

Despite efforts to obtain large data sets for retrospective cohort studies in the United States, studies were limited by the segregated infrastructure of hospital systems and the difficulty of extracting and cleaning the meta-data from separate systems. Nation states that have a single payer healthcare system, like Taiwan, are able to analyze the entire population, not just segments, resulting in much more comprehensive data.

The review revealed no studies from the Caribbean, Central and South America despite Spanish being an inclusion criteria. Future research could build searches in the Spanish language and employ databases such as SciELO, Scientific Electronic Library Online, that caters to mostly Central and South American countries. Future reviews could also have no language limitations and contract out for translators to screen and extract data.

Conclusion:

Type 2 diabetes is a chronic disease state that has been known to increase the risk of contracting various cancers. Metformin as the first line treatment has made its mark on the diabetes community. Not only is it preferred due to effectiveness, cost, and side effect profile...
has also been extensively researched in its impact in the prevention and control of cancer. This systematic mapping review categorizes this literature. A total of 156 articles were included in the analysis.

Colorectal, liver, prostate, lung, and breast cancer were the most researched and most funded cancers. A majority of studies included received at least one source of funding. The country with the most literature published was the United States. Only 68% of all studies were available open access. Especially since the number of publications has decreased annually since 2014, future research efforts and funding need to be judicious and address not only mortality and prevalence, but total cancer cost as well as underrepresentation when choosing a cancer to pursue. Additionally, those practitioners working with underrepresented cancers as identified in this systematic mapping review, have to rely on scarce data or indirect evidence from other studies, negating their ability to use evidenced-based care regarding metformin and cancer to their patients.

Funding: None.

Duality of Interest: No potential conflicts of interest relevant to this article were reported.

Author Contributions:

- Designed the Review/Conceived the Review - MP
- Built Search Strategy - MP
- Literature Extraction - MP
- Screened Titles - GC, AM
- Extracted Data - GC, AM, MP
- Wrote First Draft/Drafted the Manuscript - GC, AM, MP
- Researched & Interpreted Data - GC, AM, MP
- Reviewed Draft/Manuscript Revision- GC, AM, MP
- Reviewed Final manuscript for Intellectual Content- GC, AM, MP
- Approved Final Draft - GC, AM, MP

Reference List

1. Cronin KA, Lake AJ, Scott S, et al. Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics. *Cancer*. 2018;124(13):2785-2800.

2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. *Diabetes Care*. 2020;43(Suppl 1):S14-s31.

3. Center for Disease Control and Prevention. National Diabetes Statistics Report 2020: Estimates of Diabetes and Its Burden in the United States. https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf. Accessed May 31, 2020.

4. Cusick M, Meleth AD, Agrón E, et al. Associations of mortality and diabetes complications in patients with type 1 and type 2 diabetes: early treatment diabetic retinopathy study report no. 27. *Diabetes Care*. 2005;28(3):617-625.

5. Hense HW, Kajuter H, Wellmann J, Batzler WU. Cancer incidence in type 2 diabetes patients - first results from a feasibility study of the D2C cohort. *Diabetology & Metabolic Syndrome*. 2011;3:6.

6. Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. *Bmj*. 2015;350:g7607.
7. Ranc K, Jorgensen ME, Friis S, Carstensen B. Mortality after cancer among patients with diabetes mellitus: effect of diabetes duration and treatment. *Diabetologia*. 2014;57(5):927-934.

8. Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2 diabetes. *Diabetologia*. 2017;60(9):1586-1593.

9. Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. *Health Info Libr J*. 2009;26(2):91-108.

10. Sutton A, Clowes M, Preston L, Booth A. Meeting the review family: exploring review types and associated information retrieval requirements. *Health Info Libr J*. 2019;36(3):202-222.

11. Littell JH, Corcoran J, Pillai VK. *Systematic Reviews and Meta-Analysis*. Oxford: Oxford University Press; 2008.

12. Guidance Notes for Registering a Systematic Review Protocol with PROSPERO. https://www.crd.york.ac.uk/prospero/documents/Registering%20a%20review%20on%20PROSPERO.pdf. Accessed May 31, 2020.

13. The Prevention and Control of Cancer by Metformin in Patients with Type 2 Diabetes: A Systematic Mapping Review Protocol. https://fisherpub.sjfc.edu/library_pub/54/. Accessed May 31, 2020.

14. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009;6(7):e1000097.

15. Centre for Reviews and Dissemination (CRD) Databases. https://www.cochranelibrary.com/about/CRD-database-info. Accessed May 31, 2020.

16. How Central is Created. https://www.cochranelibrary.com/central/central-creation. Accessed May 31, 2020.

17. CHIN-HSIAO TSENG. https://orcid.org/0000-0001-9545-7123. Accessed October 15, 2019.
18. Allott EH, Abern MR, Gerber L, et al. Metformin does not affect risk of biochemical recurrence following radical prostatectomy: results from the SEARCH database. *Prostate Cancer Prostatic Dis.* 2013;16(4):391-397.

19. Bayraktar S, Hernadez-Aya LF, Lei X, et al. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. *Cancer.* 2012;118(5):1202-1211.

20. Bhat M, Chaiteerakij R, Harmsen WS, et al. Metformin does not improve survival in patients with hepatocellular carcinoma. *World Journal of Gastroenterology.* 2014;20(42):15750-15755.

21. Bradley MC, Ferrara A, Achacoso N, Ehrlich SF, Quesenberry CP, Habel LA. A Cohort Study of Metformin and Colorectal Cancer Risk among Patients with Diabetes Mellitus. *Cancer Epidemiology Biomarkers & Prevention.* 2018;27(5):525-530.

22. Bo S, Ciccone G, Rosato R, et al. Cancer mortality reduction and metformin: a retrospective cohort study in type 2 diabetic patients. *Diabetes Obes Metab.* 2012;14(1):23-29.

23. Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. *Diabetes Care.* 2006;29(2):254-258.

24. Buchs AE, Silverman BG. Incidence of malignancies in patients with diabetes mellitus and correlation with treatment modalities in a large Israeli health maintenance organization: a historical cohort study. *Metabolism.* 2011;60(10):1379-1385.

25. Chan KM, Kuo CF, Hsu JT, et al. Metformin confers risk reduction for developing hepatocellular carcinoma recurrence after liver resection. *Liver International.* 2017;37(3):434-441.
26. Chen TM, Lin CC, Huang PT, Wen CF. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. *J Gastroenterol Hepatol.* 2011;26(5):858-865.

27. Cho YH, Ko BM, Kim SH, et al. Does metformin affect the incidence of colonic polyps and adenomas in patients with type 2 diabetes mellitus? *Intest Res.* 2014;12(2):139-145.

28. Chung HH, Moon JS, Yoon JS, Lee HW, Won KC. The Relationship between Metformin and Cancer in Patients with Type 2 Diabetes. *Diabetes Metab J.* 2013;37(2):125-131.

29. Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. *Diabetologia.* 2009;52(9):1766-1777.

30. Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL. Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. *Diabetes Care.* 2012;35(2):299-304.

31. Currie CJ, Poole CD, Evans M, Peters JR, Morgan CL. Mortality and other important diabetes-related outcomes with insulin vs other antihyperglycemic therapies in type 2 diabetes. *J Clin Endocrinol Metab.* 2013;98(2):668-677.

32. Evans JMM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. *Bmj-British Medical Journal.* 2005;330(7503):1304-1305.

33. Garrett CR, Hassabo HM, Bhadkamkar NA, et al. Survival advantage observed with the use of metformin in patients with type II diabetes and colorectal cancer. *Br J Cancer.* 2012;106(8):1374-1378.

34. Geraldine N, Marc A, Carla T, et al. Relation between diabetes, metformin treatment and the occurrence of malignancies in a Belgian primary care setting. *Diabetes Research and Clinical Practice.* 2012;97(2):331-336.
35. Hou G, Zhang S, Zhang X, Wang P, Hao X, Zhang J. Clinical pathological characteristics and prognostic analysis of 1,013 breast cancer patients with diabetes. *Breast Cancer Res Treat.* 2013;137(3):807-816.

36. Hsieh MC, Lee TC, Cheng SM, Tu ST, Yen MH, Tseng CH. The influence of type 2 diabetes and glucose-lowering therapies on cancer risk in the Taiwanese. *Exp Diabetes Res.* 2012;2012:413782.

37. Hwang A, Narayan V, Yang YX. Type 2 diabetes mellitus and survival in pancreatic adenocarcinoma: a retrospective cohort study. *Cancer.* 2013;119(2):404-410.

38. Home PD, Kahn SE, Jones NP, et al. Experience of malignancies with oral glucose-lowering drugs in the randomised controlled ADOPT (A Diabetes Outcome Progression Trial) and RECORD (Rosiglitazone Evaluated for Cardiovascular Outcomes and Regulation of Glycaemia in Diabetes) clinical trials. *Diabetologia.* 2010;53(9):1838-1845.

39. Jacob L, Kostev K, Rathmann W, Kalder M. Impact of metformin on metastases in patients with breast cancer and type 2 diabetes. *Journal of Diabetes and Its Complications.* 2016;30(6):1056-1059.

40. Jain D, Chhoda A, Uribe J. Effect of Insulin and Metformin Combination Treatment on Colon Adenoma and Advanced Adenoma Among DM II. *J Gastrointest Cancer.* 2016;47(4):404-408.

41. Kang WH, Tak E, Hwang S, et al. Metformin-associated Chemopreventive Effects on Recurrence After Hepatic Resection of Hepatocellular Carcinoma: From In Vitro to a Clinical Study. *Anticancer Research.* 2018;38(4):2399-2407.

42. Keating NL, Zaslavsky AM, Herrinton LJ, Selby JV, Wolf RE, Ayanian JZ. Quality of diabetes care among cancer survivors with diabetes. *Med Care.* 2007;45(9):869-875.
43. Knapen LM, Dittrich ST, de Vries F, et al. Use of biguanides and the risk of colorectal cancer: a register-based cohort study. *Curr Drug Saf.* 2013;8(5):349-356.

44. Ko EM, Walter P, Jackson A, et al. Metformin is associated with improved survival in endometrial cancer. *Gynecol Oncol.* 2014;132(2):438-442.

45. Chen TM, Lin CC, Huang PT, Wen CF. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. *J Gastroenterol Hepatol.* 2011;26(5):858-865.

46. Kowall B, Rathmann W, Kostev K. Are Sulfonylurea and Insulin Therapies Associated With a Larger Risk of Cancer Than Metformin Therapy? A Retrospective Database Analysis. *Diabetes Care.* 2015;38(1):59-65.

47. Lai SW, Chen PC, Liao KF, Muo CH, Lin CC, Sung FC. Risk of hepatocellular carcinoma in diabetic patients and risk reduction associated with anti-diabetic therapy: a population-based cohort study. *Am J Gastroenterol.* 2012;107(1):46-52.

48. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. *Diabetes Care.* 2009;32(9):1620-1625.

49. Lin HC, Kachingwe BH, Lin HL, Cheng HW, Uang YS, Wang LH. Effects of Metformin Dose on Cancer Risk Reduction in Patients with Type 2 Diabetes Mellitus: A 6-Year Follow-up Study. *Pharmacotherapy.* 2014;34(1):36-45.
50. Lin CM, Huang HL, Chu FY, et al. Association between Gastroenterological Malignancy and Diabetes Mellitus and Anti-Diabetic Therapy: A Nationwide, Population-Based Cohort Study. Plos One. 2015;10(5):11.

51. Margel D, Urbach DR, Lipscombe LL, et al. Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes. J Clin Oncol. 2013;31(25):3069-3075.

52. Margel D, Urbach D, Lipscombe LL, et al. Association between metformin use and risk of prostate cancer and its grade. J Natl Cancer Inst. 2013;105(15):1123-1131.

53. Marks AR, Pietrofesa RA, Jensen CD, Zebrowski A, Corley DA, Doubeni CA. Metformin Use and Risk of Colorectal Adenoma after Polypectomy in Patients with Type 2 Diabetes Mellitus. Cancer Epidemiology Biomarkers & Prevention. 2015;24(11):1692-1698.

54. Medairos RA, Clark J, Holoubek S, et al. Metformin exposure is associated with improved progression-free survival in diabetic patients after resection for early-stage non-small cell lung cancer. Journal of Thoracic and Cardiovascular Surgery. 2016;152(1):55-+.

55. Monami M, Lamanna C, Pala L, et al. Treatment with insulin secretagogues and cancer-related mortality in type 2 diabetic patients a retrospective cohort study. Exp Clin Endocrinol Diabetes. 2008;116(3):184-189.

56. Morden NE, Liu SK, Smith J, Mackenzie TA, Skinner J, Korc M. Further exploration of the relationship between insulin glargine and incident cancer: a retrospective cohort study of older Medicare patients. Diabetes Care. 2011;34(9):1965-1971.

57. Muszynska-Oglaza A, Zarzycka-Lindner G, Olejniczak H, Polaszewska-Muszynska M, Junik R. Use of metformin is associated with lower incidence of cancer in patients with type 2 diabetes. Endokrynologia Polska. 2017;68(6):652-+.
58. Patel T, Hruby G, Badani K, Abate-Shen C, McKiernan JM. Clinical outcomes after radical prostatectomy in diabetic patients treated with metformin. *Urology*. 2010;76(5):1240-1244.

59. Peeters PJ, Bazelier MT, Vestergaard P, et al. Use of metformin and survival of diabetic women with breast cancer. *Curr Drug Saf*. 2013;8(5):357-363.

60. Redaniel MT, Jeffreys M, May MT, Ben-Shlomo Y, Martin RM. Associations of type 2 diabetes and diabetes treatment with breast cancer risk and mortality: a population-based cohort study among British women. *Cancer Causes Control*. 2012;23(11):1785-1795.

61. Rieken M, Kluth LA, Xylinas E, et al. Association of diabetes mellitus and metformin use with biochemical recurrence in patients treated with radical prostatectomy for prostate cancer. *World J Urol*. 2014;32(4):999-1005.

62. Romero IL, McCormick A, McEwen KA, et al. Relationship of type II diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. *Obstet Gynecol*. 2012;119(1):61-67.

63. Ruiter R, Visser LE, van Herk-Sukel MP, et al. Lower risk of cancer in patients on metformin in comparison with those on sulfonylurea derivatives: results from a large population-based follow-up study. *Diabetes Care*. 2012;35(1):119-124.

64. Sadeghi N, Abbruzzese JL, Yeung SC, Hassan M, Li D. Metformin use is associated with better survival of diabetic patients with pancreatic cancer. *Clin Cancer Res*. 2012;18(10):2905-2912.

65. Sakoda LC, Ferrara A, Achacoso NS, et al. Metformin Use and Lung Cancer Risk in Patients with Diabetes. *Cancer Prevention Research*. 2015;8(2):174-179.
66. Sandulache VC, Hamblin JS, Skinner HD, Kubik MW, Myers JN, Zevallos JP. Association between metformin use and improved survival in patients with laryngeal squamous cell carcinoma. *Head Neck*. 2014;36(7):1039-1043.

67. Spillane S, Bennett K, Sharp L, Barron TI. A cohort study of metformin exposure and survival in patients with stage I-III colorectal cancer. *Cancer Epidemiol Biomarkers Prev*. 2013;22(8):1364-1373.

68. Spillane S, Bennett K, Sharp L, Barron TI. Metformin exposure and disseminated disease in patients with colorectal cancer. *Cancer Epidemiol*. 2014;38(1):79-84.

69. Spratt DE, Zhang C, Zumsteg ZS, Pei X, Zhang Z, Zelefsky MJ. Metformin and prostate cancer: reduced development of castration-resistant disease and prostate cancer mortality. *Eur Urol*. 2013;63(4):709-716.

70. Tan BX, Yao WX, Ge J, et al. Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes. *Cancer*. 2011;117(22):5103-5111.

71. Tsai MJ, Yang CJ, Kung YT, et al. Metformin decreases lung cancer risk in diabetic patients in a dose-dependent manner. *Lung Cancer*. 2014;86(2):137-143.

72. Tseng CH. Diabetes, metformin use, and colon cancer: a population-based cohort study in Taiwan. *European Journal of Endocrinology*. 2012;167(3):409-416.

73. Tseng CH. Metformin may reduce bladder cancer risk in Taiwanese patients with type 2 diabetes. *Acta Diabetologica*. 2014;51(2):295-303.

74. Tseng CH. Metformin may reduce breast cancer risk in Taiwanese women with type 2 diabetes. *Breast Cancer Research and Treatment*. 2014;145(3):785-790.
75. Tseng CH. Metformin Reduces Thyroid Cancer Risk in Taiwanese Patients with Type 2 Diabetes. *Plos One*. 2014;9(10):7.

76. Tseng CH. Metformin reduces ovarian cancer risk in Taiwanese women with type 2 diabetes mellitus. *Diabetes-Metabolism Research and Reviews*. 2015;31(6):619-626.

77. Tseng CH. Metformin and endometrial cancer risk in Chinese women with type 2 diabetes mellitus in Taiwan. *Gynecologic Oncology*. 2015;138(1):147-153.

78. Tseng CH. Metformin significantly reduces incident prostate cancer risk in Taiwanese men with type 2 diabetes mellitus. *European Journal of Cancer*. 2014;50(16):2831-2837.

79. Tseng CH. Metformin may reduce oral cancer risk in patients with type 2 diabetes. *Oncotarget*. 2016;7(2):2000-2008.

80. Tseng CH. Use of metformin and risk of kidney cancer in patients with type 2 diabetes. *European Journal of Cancer*. 2016;52:19-25.

81. Tseng CH. Metformin use and cervical cancer risk in female patients with type 2 diabetes. *Oncotarget*. 2016;7(37):59548-59555.

82. Tseng CH. Metformin reduces gastric cancer risk in patients with type 2 diabetes mellitus. *Aging-Us*. 2016;8(8):1636-1649.

83. Tseng CH. Metformin and esophageal cancer risk in Taiwanese patients with type 2 diabetes mellitus. *Oncotarget*. 2017;8(12):18802-18810.

84. Tseng CH. Metformin and lung cancer risk in patients with type 2 diabetes mellitus. *Oncotarget*. 2017;8(25):41132-41142.

85. Tseng CH. Metformin is associated with decreased skin cancer risk in Taiwanese patients with type 2 diabetes. *Journal of the American Academy of Dermatology*. 2018;78(4):694-700.
86. Tseng C-H. Metformin and risk of hepatocellular carcinoma in patients with type 2 diabetes. *Liver International.* 2018;38(11):2018-2027.

87. Tseng C-H. Metformin and Risk of Developing Nasopharyngeal Cancer in Patients With Type 2 Diabetes Mellitus. *Metabolism.* 2018;85:223-226.

88. Tsilidis KK, Capothanassi D, Allen NE, et al. Metformin does not affect cancer risk: a cohort study in the U.K. Clinical Practice Research Datalink analyzed like an intention-to-treat trial. *Diabetes Care.* 2014;37(9):2522-2532.

89. van Staa TP, Patel D, Gallagher AM, de Bruin ML. Glucose-lowering agents and the patterns of risk for cancer: a study with the General Practice Research Database and secondary care data. *Diabetologia.* 2012;55(3):654-665.

90. Wang CP, Lorenzo C, Habib SL, Jo B, Espinoza SE. Differential effects of metformin on age related comorbidities in older men with type 2 diabetes. *Journal of Diabetes and Its Complications.* 2017;31(4):679-686.

91. Xu H, Aldrich MC, Chen QX, et al. Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. *Journal of the American Medical Informatics Association.* 2015;22(1):179-191.

92. Yang YX, Hennessy S, Lewis JD. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients. *Gastroenterology.* 2004;127(4):1044-1050.

93. Becker C, Jick SS, Meier CR, Bodmer M. Metformin and the risk of endometrial cancer: a case-control analysis. *Gynecol Oncol.* 2013;129(3):565-569.

94. Bodmer M, Becker C, Meier C, Jick SS, Meier CR. Use of antidiabetic agents and the risk of pancreatic cancer: a case-control analysis. *Am J Gastroenterol.* 2012;107(4):620-626.
95. Bodmer M, Becker C, Meier C, Jick SS, Meier CR. Use of metformin and the risk of ovarian cancer: a case-control analysis. *Gynecol Oncol.* 2011;123(2):200-204.

96. Bodmer M, Becker C, Meier C, Jick SS, Meier CR. Use of metformin is not associated with a decreased risk of colorectal cancer: a case-control analysis. *Cancer Epidemiol Biomarkers Prev.* 2012;21(2):280-286.

97. Bodmer M, Meier C, Krahenbuhl S, Jick SS, Meier CR. Long-term metformin use is associated with decreased risk of breast cancer. *Diabetes Care.* 2010;33(6):1304-1308.

98. Bodmer M, Becker C, Jick SS, Meier CR. Metformin does not alter the risk of lung cancer: a case-control analysis. *Lung Cancer.* 2012;78(2):133-137.

99. Bosco JL, Antonsen S, Sorensen HT, Pedersen L, Lash TL. Metformin and incident breast cancer among diabetic women: a population-based case-control study in Denmark. *Cancer Epidemiol Biomarkers Prev.* 2011;20(1):101-111.

100. Cardel M, Jensen SM, Pottegard A, Jorgensen TL, Hallas J. Long-term use of metformin and colorectal cancer risk in type II diabetics: a population-based case-control study. *Cancer Med.* 2014;3(5):1458-1466.

101. Chaiteerakij R, Yang JD, Harmsen WS, et al. Risk factors for intrahepatic cholangiocarcinoma: association between metformin use and reduced cancer risk. *Hepatology.* 2013;57(2):648-655.

102. Chen H-P, Shieh J-J, Chang C-C, et al. Metformin Decreases Hepatocellular Carcinoma Risk in a Dose-Dependent Manner: Population-Based and in Vitro Studies. *Gut* 2013;62(4):606-615.

103. Hassan MM, Curley SA, Li D, et al. Association of diabetes duration and diabetes treatment with the risk of hepatocellular carcinoma. *Cancer.* 2010;116(8):1938-1946.
104. He XX, Tu SM, Lee MH, Yeung SC. Thiazolidinediones and metformin associated with improved survival of diabetic prostate cancer patients. *Ann Oncol.* 2011;22(12):2640-2645.

105. He X, Esteva FJ, Ensor J, Hortobagyi GN, Lee MH, Yeung SC. Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer. *Ann Oncol.* 2012;23(7):1771-1780.

106. Henderson D, Frieson D, Zuber J, Solomon SS. Metformin Has Positive Therapeutic Effects in Colon Cancer and Lung Cancer. *American Journal of the Medical Sciences.* 2017;354(3):246-251.

107. Kaushik D, Karnes RJ, Eisenberg MS, Rangel LJ, Carlson RE, Bergstralh EJ. Effect of metformin on prostate cancer outcomes after radical prostatectomy. *Urol Oncol.* 2014;32(1):43.e41-47.

108. Kowall B, Stang A, Rathmann W, Kostev K. No reduced risk of overall, colorectal, lung, breast, and prostate cancer with metformin therapy in diabetic patients: database analyses from Germany and the UK. *Pharmacoepidemiol Drug Saf.* 2015;24(8):865-874.

109. Kumar S, Meuter A, Thapa P, et al. Metformin intake is associated with better survival in ovarian cancer: a case-control study. *Cancer.* 2013;119(3):555-562.

110. Lee JH, Kim TI, Jeon SM, Hong SP, Cheon JH, Kim WH. The effects of metformin on the survival of colorectal cancer patients with diabetes mellitus. *Int J Cancer.* 2012;131(3):752-759.

111. Li DH, Yeung SCJ, Hassan MM, Konopleva M, Abbruzzese JL. Antidiabetic Therapies Affect Risk of Pancreatic Cancer. *Gastroenterology.* 2009;137(2):482-488.
112. Little MW, Pugh TF, Carey FJ, et al. The potential protective effect of metformin against pancreatic cancer: preliminary results from a case-control study in two UK centres. *Gut*. 2011;60:A78-A79

113. Mazzone PJ, Rai H, Beukemann M, Xu M, Jain A, Sasidhar M. The effect of metformin and thiazolidinedione use on lung cancer in diabetics. *BMC Cancer*. 2012;12:410.

114. Monami M, Lamanna C, Balzi D, Marchionni N, Mannucci E. Sulphonylureas and cancer: a case-control study. *Acta Diabetol*. 2009;46(4):279-284.

115. Murtola TJ, Tammela TL, Lahtela J, Auvinen A. Antidiabetic medication and prostate cancer risk: a population-based case-control study. *Am J Epidemiol*. 2008;168(8):925-931.

116. Paulus JK, Williams CD, Cossor FI, Kelley MJ, Martell RE. Metformin, Diabetes, and Survival Among U.S. Veterans With Colorectal Cancer. 2016;25(10):1418-1425.

117. Agrawal S, Patel P, Agrawal A, Makhijani N, Markert R, Deidrich W. Metformin Use and the Risk of Esophageal Cancer in Barrett Esophagus. *Southern Medical Journal*. 2014;107(12):774-779.

118. Sehdev A, Shih YC, Vekhter B, Bissonnette MB, Olopade OI, Polite BN. Metformin for primary colorectal cancer prevention in patients with diabetes: a case-control study in a US population. *Cancer*. 2015;121(7):1071-1078.

119. Wright JL, Stanford JL. Metformin use and prostate cancer in Caucasian men: results from a population-based case-control study. *Cancer Causes Control*. 2009;20(9):1617-1622.

120. Col NF, Ochs L, Springmann V, Aragaki AK, Chlebowski RT. Metformin and breast cancer risk: a meta-analysis and critical literature review. *Breast Cancer Research and Treatment*. 2012;135(3):639-646.
121. Deng D, Yang Y, Tang XJ, et al. Association between metformin therapy and incidence, recurrence and mortality of prostate cancer: evidence from a meta-analysis. *Diabetes-Metabolism Research and Reviews*. 2015;31(6):595-602.

122. Hou YC, Hu Q, Huang J, Fang JY, Xiong H. Metformin therapy and the risk of colorectal adenoma in patients with type 2 diabetes: A meta-analysis. *Oncotarget*. 2017;8(5):8843-8853.

123. Hwang IC, Park SM, Shin D, Ahn HY, Rieken M, Shariat SF. Metformin Association With Lower Prostate Cancer Recurrence in Type 2 Diabetes: A Systematic Review and Meta-Analysis. *Asian Pacific Journal of Cancer Prevention:ACJCP*. 2015;16(2):595-600.

124. Lega IC, Shah PS, Margel D, Beyene J, Rochon PA, Lipscombe LL. The effect of metformin on mortality following cancer among patients with diabetes. *Cancer Epidemiol Biomarkers Prev.* 2014;23(10):1974-1984.

125. Ma SJ, Zheng YX, Xiao YN, Zhou PC, Tan HZ. Meta-analysis of studies using metformin as a reducer for liver cancer risk in diabetic patients. *Medicine.* 2017;96(19):9.

126. Nie ZH, Zhu HL, Gu MJ. Reduced colorectal cancer incidence in type 2 diabetic patients treated with metformin: a meta-analysis. *Pharmaceutical Biology.* 2016;54(11):2636-2642.

127. Rokkas T, Portincasa P. Colon neoplasia in patients with type 2 diabetes on metformin: A meta-analysis. *European Journal of Internal Medicine.* 2016;33:60-66.

128. Soranna D, Scotti L, Zambon A, et al. Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. *Oncologist.* 2012;17(6):813-822.

129. Thakkar B, Aronis KN, Vamvini MT, Shields K, Mantzoros CS. Metformin and Sulfonylureas in Relation to Cancer Risk in Type II Diabetes Patients: A Meta-analysis using primary data of published studies. *Metabolism.* 2013;62(7):922-934.
130. Wan GX, Yu XJ, Chen P, et al. Metformin therapy associated with survival benefit in lung cancer patients with diabetes. *Oncotarget*. 2016;7(23):35437-35445.

131. Wu Y, Liu HB, Shi XF, Song Y. Conventional Hypoglycaemic Agents and the Risk of Lung Cancer in Patients with Diabetes: A Meta-Analysis. *Plos One*. 2014;9(6):10.

132. Zhang H, Gao C, Fang L, Zhao HC, Yao SK. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients: a meta-analysis. *Scand J Gastroenterol*. 2013;48(1):78-87.

133. Zhang ZJ, Zheng ZJ, Kan HD, et al. Reduced Risk of Colorectal Cancer With Metformin Therapy in Patients With Type 2 Diabetes A meta-analysis. *Diabetes Care*. 2011;34(10):2323-2328.

134. Zhu N, Zhang YY, Gong Y, He J, Chen XD. Metformin and lung cancer risk of patients with type 2 diabetes mellitus: A meta-analysis. *Biomedical Reports*. 2015;3(2):235-241.

135. Chen CI, Kuan CF, Fang YA, et al. Cancer risk in HBV patients with statin and metformin use: a population-based cohort study. *Medicine (Baltimore)*. 2015;94(6):e462.

136. Chlebowski RT, McTiernan A, Wactawski-Wende J, et al. Diabetes, metformin, and breast cancer in postmenopausal women. *J Clin Oncol*. 2012;30(23):2844-2852.

137. Cossor FI, Adams-Campbell LL, Chlebowski RT, et al. Diabetes, metformin use, and colorectal cancer survival in postmenopausal women. *Cancer Epidemiol*. 2013;37(5):742-749.

138. Donadon V, Balbi M, Ghersetti M, et al. Antidiabetic therapy and increased risk of hepatocellular carcinoma in chronic liver disease. *World J Gastroenterol*. 2009;15(20):2506-2511.

139. Donadon V, Balbi M, Dal Mas M, Casarin P, Zanette G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. *Liver International*. 2010;30(5):750-758.
140. Kim YI, Kim SY, Cho SJ, et al. Long-term metformin use reduces gastric cancer risk in type 2 diabetics without insulin treatment: a nationwide cohort study. *Alimentary Pharmacology & Therapeutics*. 2014;39(8):854-863.

141. Kong APS, Yang XL, So WY, et al. Additive effects of blood glucose lowering drugs, statins and renin-angiotensin system blockers on all-site cancer risk in patients with type 2 diabetes. *Bmc Medicine*. 2014;12:11.

142. Lai SW, Liao KF, Chen PC, Tsai PY, Hsieh DP, Chen CC. Antidiabetes drugs correlate with decreased risk of lung cancer: a population-based observation in Taiwan. *Clin Lung Cancer*. 2012;13(2):143-148.

143. Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO, Bilo HJ. Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. *Diabetes Care*. 2010;33(2):322-326.

144. Lee JH, Jeon SM, Hong SP, Cheon JH, Kim TI, Kim WH. Metformin use is associated with a decreased incidence of colorectal adenomas in diabetic patients with previous colorectal cancer. *Digestive and Liver Disease*. 2012;44(12):1042-1047.

145. Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. *BMC Cancer*. 2011;11:20.

146. Lega IC, Austin PC, Gruneir A, Goodwin PJ, Rochon PA, Lipscombe LL. Association between metformin therapy and mortality after breast cancer: a population-based study. *Diabetes Care* 2013; 36(10): 3018-26.
147. Lehman DM, Lorenzo C, Hernandez J, Wang CP. Statin Use as a Moderator of Metformin Effect on Risk for Prostate Cancer Among Type 2 Diabetic Patients. *Diabetes Care.* 2012;35(5):1002-1007.

148. Mellbin LG, Malmberg K, Norhammar A, Wedel H, Ryden L. Prognostic implications of glucose-lowering treatment in patients with acute myocardial infarction and diabetes: experiences from an extended follow-up of the Diabetes Mellitus Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) 2 Study. *Diabetologia.* 2011;54(6):1308-1317.

149. Yang XL, So WY, Ma RCW, et al. Low HDL Cholesterol, Metformin Use, and Cancer Risk in Type 2 Diabetes The Hong Kong Diabetes Registry. *Diabetes Care.* 2011;34(2):375-380.

150. Gandini S, Puntoni M, Heckman-Stoddard BM, et al. Metformin and cancer risk and mortality: a systematic review and meta-analysis taking into account biases and confounders. *Cancer Prev Res (Phila).* 2014;7(9):867-885.

151. He XK, Su TT, Si JM, Sun LM. Metformin Is Associated With Slightly Reduced Risk of Colorectal Cancer and Moderate Survival Benefits in Diabetes Mellitus: A Meta-Analysis. *Medicine.* 2016;95(7):10.

152. Liu FF, Yan LJ, Wang Z, et al. Metformin therapy and risk of colorectal adenomas and colorectal cancer in type 2 diabetes mellitus patients: A systematic review and meta-analysis. *Oncotarget.* 2017;8(9):16017-16026.

153. Nie S-P, Chen H, Zhuang M-Q, Lu M. Anti-diabetic Medications Do Not Influence Risk of Lung Cancer in Patients With Diabetes Mellitus: A Systematic Review and Meta-Analysis. *Asian Pacific Journal of Cancer Prevention: APJCP.* 2014;15(16):6863-6869.
154. Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. *Am J Gastroenterol.* 2013;108(6):881-891; quiz 892.

155. Stevens RJ, Ali R, Bankhead CR, et al. Cancer outcomes and all-cause mortality in adults allocated to metformin: systematic review and collaborative meta-analysis of randomised clinical trials. *Diabetologia.* 2012;55(10):2593-2603.

156. Wang Z, Lai ST, Xie L, et al. Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. *Diabetes Research and Clinical Practice.* 2014;106(1):19-26.

157. Yin M, Zhou J, Gorak EJ, Quddus F. Metformin is associated with survival benefit in cancer patients with concurrent type 2 diabetes: a systematic review and meta-analysis. *Oncologist.* 2013;18(12):1248-1255.

158. Zhang ZJ, Bi YY, Li SY, et al. Reduced Risk of Lung Cancer With Metformin Therapy in Diabetic Patients: A Systematic Review and Meta-Analysis. *American Journal of Epidemiology.* 2014;180(1):11-14.

159. Zhang ZJ, Zheng ZJ, Shi R, Su Q, Jiang QW, Kip KE. Metformin for Liver Cancer Prevention in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. *Journal of Clinical Endocrinology & Metabolism.* 2012;97(7):2347-2353.

160. Zhou YY, Zhu GQ, Liu T, et al. Systematic Review with Network Meta-Analysis: Antidiabetic Medication and Risk of Hepatocellular Carcinoma. *Scientific Reports.* 2016;6:10.
161. Azoulay L, Dell’Aniello S, Gagnon B, Pollak M, Suissa S. Metformin and the incidence of prostate cancer in patients with type 2 diabetes. *Cancer Epidemiol Biomarkers Prev.* 2011;20(2):337-344.

162. Chen H-H, Lin M-C, Muo C-H, Yeh S-Y, Sung F-C, Kao C-H. Combination Therapy of Metformin and Statin May Decrease Hepatocellular Carcinoma Among Diabetic Patients in Asia. *Medicine.* 2015;94(24):1-10.

163. Hagberg KW, McGlynn KA, Sahasrabuddhe VV, Jick S. Anti-diabetic medications and risk of primary liver cancer in persons with type II diabetes. *British Journal of Cancer.* 2014;111(9):1710-1717.

164. Monami M, Colombi C, Balzi D, et al. Metformin and Cancer Occurrence in Insulin-Treated Type 2 Diabetic Patients. *Diabetes Care.* 2011;34(1):129-131.

165. Smiechowski BB, Azoulay L, Yin H, Pollak MN, Suissa S. The use of metformin and the incidence of lung cancer in patients with type 2 diabetes. *Diabetes Care.* 2013;36(1):124-129.

166. Smiechowski B, Azoulay L, Yin H, Pollak MN, Suissa S. The Use of Metformin and Colorectal Cancer Incidence in Patients with Type II Diabetes Mellitus. *Cancer Epidemiology Biomarkers & Prevention.* 2013;22(10):1877-1883.

167. Wang SY, Chuang CS, Muo CH, et al. Metformin and the incidence of cancer in patients with diabetes: a nested case-control study. In: *Diabetes Care.* Vol 36. United States 2013:e155-156.
168. Bordeleau L, Gerstein HC. The Association of Basal Insulin Glargine and/or n-3 Fatty Acids With Incident Cancers in Patients With Dysglycemia. Diabetes Care 2014;37:1360-1366 RESPONSE. Diabetes Care. 2014;37(10):E217-E217.

169. Higurashi T, Hosono K, Takahashi H, et al. Metformin for chemoprevention of metachronous colorectal adenoma or polyps in post-polypectomy patients without diabetes: a multicentre double-blind, placebo-controlled, randomised phase 3 trial. Lancet Oncology. 2016;17(4):475-483.

170. Decensi A, Puntoni M, Goodwin P, et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila). 2010;3(11):1451-1461.

171. Franciosi M, Lucisano G, Lapice E, Strippoli GF, Pellegrini F, Nicolucci A. Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PLoS One. 2013;8(8):e71583.

172. Baur DM, Klotsche J, Hamnvik OP, et al. Type 2 diabetes mellitus and medications for type 2 diabetes mellitus are associated with risk for and mortality from cancer in a German primary care cohort. Metabolism. 2011;60(10):1363-1371.

173. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.

174. Search Strategy Used to Create the PubMed Cancer Filter. https://www.nlm.nih.gov/bsd/pubmed_subsets/cancer_strategy.html. Accessed June 2, 2020.
175. World Health Organization Model List of Essential Medicines.
https://apps.who.int/iris/bitstream/handle/10665/325771/WHO-MVP-EMP-IAU-2019.06-eng.pdf?ua=1. Accessed June 8, 2020.

176. Cancer Facts & Figures 2019. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf#page23. Accessed June 30, 2020.

177. Mariotto AB, Yabroff KR, Shao Y, Feuer EJ, Brown ML. Projections of the cost of cancer care in the United States: 2010-2020. J Natl Cancer Inst. 2011;103(2):117-128.

178. Kaye DR, Min HS, Herrel LA, Dupree JM, Ellimoottil C, Miller DC. Costs of Cancer Care Across the Disease Continuum. Oncologist. 2018;23(7):798-805.

179. Borah R, Brown AW, Capers PL, Kaiser KA. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. BMJ Open. 2017;7(2):e012545.
| Study Characteristic | Mean | Median |
|----------------------|------|--------|
| **Number of Authors**| | |
| All Articles | 6 | 6 |
| Meta Analysis, Systematic Reviews, Systematic Review + Meta-Analysis | 6 | 6 |
| **Number of Participants** | | |
| Case control | 25,670 | 2,763 |
| Cross sectional | 14,345 | 14,345 |
| Nested Case-Control | 12,332 | 1,700 |
| Prospective | 52,301 | 2,924 |
| Retrospective | 125,792 | 27,805 |
| Time to event | 1,131 | 974 |
| **Number of Included Studies** | | |
| Meta-Analysis | 14 | 11 |
| Systematic Review | 32 | 32 |
| Systematic Review + Meta-Analysis | 17 | 14 |

Table 1: Study Details: number of authors, number of participants, number of included studies.
Figure 1. PRISMA flow chart for study selection Study Characteristics
Figure 2: Cancer Type in studies that addressed only one type of cancer.
Figure 3: Cancer types in studies that addressed various cancers.
Figure 4: Included Studies by Country
Figure 5: Total Publications, US Publication and Systematic Review or Meta-Analysis by date.

Appendix 1

Search Strategy for PubMed
1. Metformin[MeSH]
2. "Diabetes Mellitus, Type 2"[MeSH]
3. "prevention and control"[sh]
4. cancer[sb]
5. #1 AND #2 AND #3 AND #4

Search Strategy for Cochrane Library
1. MeSH Descriptor: [Metformin] explode all trees
2. Metformin
3. #1 OR #2
4. MeSH Descriptor: [Diabetes Mellitus, Type 2] explode all trees
5. MeSH Descriptor: [Neoplasms] explode all trees
6. Cancer
7. #5 OR #6
8. #3 AND #4 AND #7
Search Strategy for ClinicalTrials.gov
Condition or Disease: Diabetes Mellitus, Type 2
Other Terms: metformin and cancer

Appendix 2 Funders

Academy of Finland
Alliance for Canadian Health Outcomes Research in Diabetes NET grant/ Canadian Diabetes Association
Astellas Pharma
Aventis, Sweden
Basic Science Research Program through the National Research Foundation of Korea (NRF)/ Ministry of Science
Canadian Breast Cancer Research Foundation
Canadian Cancer Society Research Institute Prevention
Canadian Diabetes Association/Canadian Institutes of Health Research
Canadian Foundation for Innovation
Canadian Institutes for Health Research (CIHR) Institute of Nutrition, Metabolism and Diabetes
CIHR Institute of Circulatory and Respiratory Health
Cancer Care Ontario
Cancer Research Center of Excellence
Cancer Society Research Institute Prevention grant
Cancer Therapy and Research Center of the University of Texas Health Science Center
Center for Pharmacoepidemiology Research and Training
Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania
Chang Gung Medical Research Program
China Medical University Hospital, Academia Sinica Taiwan Biobank, Stroke Biosignature Project
Clinical and Translational Science Award, Comprehensive Cancer Center University of Chicago
Clinical Science Research and Development Service of the VA Office of Search and Development
Clinical Trial and Research Center of Excellence
DARTS Steering Group
Department of Defense, Breast Cancer Research Program of Congressionally Directed Medical Research Programs Synergistic Idea Development Award
Department of Health, Taiwan
Diabetes UK
Dutch Health Insurance Board
Dutch Medicines Evaluation Board
Dutch Ministry of Health
European Foundation for the Study of Diabetes
European Hematology Association (EHA)
European Innovative Medicines Initiative (IMI)
Federal Emergency Management Agency Department of Homeland Security
Finnish Cancer Society
Flemish Government
Fred C. and Katherine B. Andersen Foundation
Fred Hutchinson Cancer Research Center
Fundamental Research Funds for the Central Universities
GlaxoSmithKline
Health and Welfare Surcharge of Tobacco Products, China Medical University Hospital Cancer Research Center of Excellence
Health Research Board Ireland PhD Scholars Programme in Health Services Research
Heart and Stroke Foundation of Canada
Heart and Stroke Foundation of Ontario
Hong Kong Foundation for Research and Development in Diabetes and Liao Wun Yuk Diabetes Memorial Fund of the Chinese University of Hong Kong
Hubei Province Health and Family Planning Scientific Research Project
International Cooperation Ministry of Science and Quantitative Single Cell Analysis in Multi-gene Cancer Research and Diagnosis
International Research Intensive Centers of Excellence in Taiwan
Intramural Research Program of National Institutes of Health, National Cancer Institute
Irja Karvonen Cancer Trust
Italian Association for Cancer Research AIRC
Italian League Against Cancer
Italian Ministry of Health
Italian Ministry for University and Research
Irish Cancer Society Research Scholarship
Irja Karvonen Cancer Trust
Karen Elsie Jensen Foundation
Katsuzo and Kiyo Aoshima Memorial Funds, Japan
Kidney Foundation of Canada
Lilly Foundation
Mayo Clinic Cancer Center
Mayo Clinic Center for Cell Signaling in Gastroenterology
Mayo Foundation
Medical Research Fund of Tampere University Hospital
Merck Serono, France
Ministry of Health, Labour, and Welfare
Ministry of Science and Technology
Ministry of Science and Technology Taiwan and Asia University
Multidisciplinary Research Program Grant from M.D. Anderson Cancer Center
National Cancer Center, Korea
National Cancer Institute (NCI)
National Cancer Institute Breast Specialized Program for Research Excellence Development
National Cancer Institute, Vanderbilt Lung SPORE Career Development Award, Cancer Prevention and Research Institute of Texas
National Cancer Institute, Cancer Care Outcomes Research and Surveillance (CanCORS) Consortium
National Center for Advancing Translational Sciences
National Center for Research Resources Grant
National Health Research Institutes
National Institute on Aging
National Institute of Diabetes and Digestive and Kidney Diseases
National Institute of Drug Abuse
National Institute of Health (NIH)
National Institute of Health Center Grant
National Natural Science Foundation of China
National Natural Science Foundation from China of Hou Xiong Grant
National Natural Science Foundation of China, China-Japan Friendship Hospital, Ministry of Health
National Natural Science Foundation of China, Project of new Century 551 Talent Nurturing in Wen Zhou
National Research Foundation of Korea, Korean Government, Korea Health Industry Development Institute
National Science Council
National Science Council of Taiwan
Nelly B. Connally Breast Cancer Research Fund
--
Netherlands Organization for Health Research and Development (ZonMW)
Norris Cotton Cancer Center
Novo Nordisk
Novo Nordisk Denmark
NRPB Stroke Clinical Trial Consortium
Ontario Institute for Cancer Research
Ontario Ministry of Health and Long Term Care
Pfizer
Pfizer, Karlsruhe, Germany
Pirkanmaa Regional Fund of the Finnish Cultural Foundation
Prostate Cancer Research Foundation
Regione Piemonte, Recirca Sanitaria Finalizzata grant 2009
Reproductive Scientist Development Program NIH, Gynecologic Cancer Foundation, St. Louis Ovarian Cancer Awareness
Research Foundation of Orion Pharma
Research Grants Council Direct Allocation, Hong Kong Foundation for Research and Development in Diabetes, Liao Wun Yuk Diabetes Memorial Fund
Royal Dutch Association for the Advancement of Pharmacy (KNMP)
Sanofi and Pronova BioPharma Norge
Schering Foundation
Scientific research project for young backbone teachers in the School of Public Health and Management of Chongqing Medical University: Epidemiology Research Base Building on Chronic Disease of University and College Staff
Seventh Framework Programme of the European Union
Shanghai Municipal Education Commission, Science and Technology Commission of Shanghai municipality
Sigrid Juselius Foundation
Spore P20 Grant
Stroke Clinical Trial Consortium
Susan G Komen For the Cure, PROMISE grant
Swiss Cancer League
Swiss Cancer League and Research Fund of University of Basel Switzerland
Swiss National Science Foundation
Taipei Medical University, Taiwan
Taiwan Brain Disease Foundation, Taipei, Taiwan
Taiwan Department of Health and Clinical Trial and Research Center for Excellence
Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence
Taiwan National Health Research Institutes and Taichung Veterans General Hospital
Tenovus
Top Institute Pharma
Tri-Service General Hospital and National Science Council of Taiwan
Tseng Lien Lin Foundation, Taichung, Taiwan
United States Public Health Service Grant
Wan Fang Hospital
Weng Yuan Endocrine Fund
Young Scientist Innovation Team Project of Hubei Colleges, Foundation for Innovation Research Team of Hubei University Medicine
Zhejiang Provincial Medical Platform 2015 Specialists Class B, Zhejiang Province Key Science and Technology Innovation Team
Appendix 3 Articles by Journal Title

Number of articles	Journal
16	Diabetes Care
8	Cancer Epidemiology, Biomarkers and Prevention
7	Cancer
7	Oncotarget
5	Diabetologia
4	Gynecologic Oncology; PlosOne; Metabolism; Clinical and Experimental; Medicine
3	American Journal of Gastroenterology; Breast Cancer Research and Treatment; Cancer Prevention Research; Liver International
2	Acta Diabetologica; American Journal of Epidemiology; Annals of Oncology; Asian Pacific Journal of Cancer Prevention; BMC Cancer; British Journal of Cancer; Cancer Causes and Control; Cancer Epidemiology; Current Drug Safety; Diabetes/Metabolism Research and Reviews; Diabetes Research and Clinical Practice; European Journal of Endocrinology; Gastroenterology; Gut; Journal of Clinical Endocrinology and Metabolism; Journal of Clinical Oncology; Lung Cancer; Oncologist; World Journal of Gastroenterology
1	Aging; Alimentary Pharmacology & Therapeutics; The American Journal of the Medical Sciences; Anti-Cancer Research; Biomedical Reports; BMC Medicine; BMJ; Cancer Medicine; Clinical Cancer Research; Clinical Lung Cancer; Diabetologia and Metabolic Syndrome; Diabetes Complications; Diabetes & Metabolism Journal; Diabetes Obesity and Metabolism; Digestive and Liver Disease; Endocrinologia Polyska; Epidemiology/Health Services Research; European Journal of Internal Medicine; European Urology; Experimental Diabetes Research; Experiment and Clinical Endocrinology and Diabetes; Head and Neck; Hepatology; International Journal of Cancer; Intestinal Research; Journal of the American Academy of Dermatology; Journal of the American Medical Informatics; Journal of Diabetes and its...
Complication; Journal of Gastroenterology and Hepatology; Journal of Gastrointestinal Cancer; The Journal of Thoracic and Cardiovascular Surgery: Journal of the National Cancer Institute; Lancet Oncology; Medical Care; Obstetrics and Gynecology; Pharmaceutical Biology; Pharmacoepidemiology and Drug Safety; Pharmacotherapy Publications; Prostate Cancer and Prostatic Disease; Scandavian Journal of Gastroenterology; Scientific Reports; Southern Medical Association Journal; Therapeutics and Clinical Risk Management; Urologic Oncology; Urology; World Journal of Urology	
Appendix 4 Studies Organized by Publication Date

Publication Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Total Publications	1	1	1	1	2	6	8	19	23	25	26	16	14	9	5
US Publications	1	1	1	1	2	4	4	13	14	17	19	13	11	6	4
Systematic Review or Meta-Analysis	0	0	0	0	0	0	1	1	5	5	6	3	5	3	0
US Publications Percent of Total	100%	100%	100%	100%	100%	67%	50%	68%	61%	68%	73%	81%	79%	67%	80%
Systematic Review or Meta-Analysis Percent of Total	0%	0%	0%	0%	0%	0%	13%	5%	22%	20%	23%	19%	36%	33%	0%