Immunotherapy with myeloid cells for tolerance induction
Mercedes Rodriguez-Garcíaa, Peter Borosb, Jonathan S. Brombergc and Jordi C. Ochandoa,c

Introduction
A major challenge in transplantation is to control the strong immune responses to foreign antigens that are responsible for graft rejection. Although immunosuppressive drugs efficiently inhibit acute graft rejection, a substantial proportion of patients suffer chronic rejection leading to functional loss of the graft. Induction of immunological tolerance constitutes more than just a laboratory solution for the need of lifelong treatment with immunosuppressive drugs for transplant recipients [1], and immunotherapy with myeloid dendritic cells and their precursors represent a promising tool for the establishment of indefinite allograft survival [2]. Over the last years there have been an increasing number of articles that manipulated myeloid dendritic cell precursors to influence the immune response towards tolerance. Some of these articles also investigated the induction of antigen-specific tolerance using particular in-vitro culture conditions that cause T-cell hyporesponsiveness and promote regulatory T-cell (Tregs) development. We have reviewed numerous strategies that are available to generate stable myeloid dendritic cells with tolerogenic properties, which include their modification with chemicals [3], cytokines [4], peptides [5], via gene modification [6], small interfering RNA [7], and immunosuppressive drugs [8], which have already given promising results in macaques [9].

Generation of tolerogenic myeloid cells in vitro
Immunosuppressants
Rapamycin
Most of the experimental research with rapamycin-conditioned dendritic cells for the induction of transplantation tolerance comes from Angus Thomson laboratory, which initially reported that rapamycin-treated alloantigen-pulsed dendritic cells infused 1 week before transplantation inhibits antigen-specific T-cell responsiveness and prolongs skin graft survival [10]. Similar studies reported indefinite vascularized skin allograft survival in recipient rats treated with antilymphocyte serum and cyclosporin, together with rapamycin-conditioned...
dendritic cells cultured with donor-derived peptide [11]. Interestingly, T cells from long-surviving grafts in these mice exhibit donor-specific hyporesponsiveness and expression of Foxp3 [11], which is consistent with a recent study which suggests that inhibition of mammalian target of rapamycin (mTOR) signaling during T-cell activation by rapamycin induces foxp3 in synergy with TGF-β [12].

Mycophenolic acid

Human dendritic cells cultured with granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-4, TNF-α, and mycophenolic acid (MPA) results in the generation of alloantigen-specific and contact-dependent suppressive Foxp3-expressing Tregs that secrete large amounts of IL-10 and TGF-β, and have high expression of CD25, glucocorticoid-induced tumor necrosis factor receptor (TNFR) [GITR], CTLA-4, and CD95 [13].

Cyclosporine A

It has been recently proposed that cyclosporine A increases the production of IL-10 in dendritic cells, and inhibits dendritic cell allostimulatory capacity by up-regulating B7 expression [14].

Dexamethasone

Human myeloid dendritic cells cultured with GM-CSF, dexamethasone, and lipopolysaccharide (LPS) produce high levels of IL-10 and reduce Th1 cytokine production [15]. Likewise, dexamethasone-stimulated human monocytes become tolerogenic dendritic cells that stimulate CD4+ T lymphocytes to become Treg, which inhibit antigen-specific immune responses by secreting IL-10 [16]. In rats, in-vitro-generated dendritic cells cultured with GM-CSF, IL-4, and dexamethasone bone marrow cells expand Treg, whereas human blood monocytes cultured with GM-CSF, IL-4, dexamethasone, and LPS induce T-cell anergy [17]. With regards to transplantation, donor hyporesponsive dendritic cells can be generated from rat bone marrow cells with GM-CSF, IL-4, and Flt3L in the presence of dexamethasone and LPS, although they do not prolong fully allogeneic allotransplantation survival [18].

Prostaglandin

Dendritic cells generated in the presence of GM-CSF, IL-2, and prostaglandin are more efficient than anti-CD3/CD28 mAbs in expanding Treg and in preventing unwanted immune reactions to allografts, as only infusion of dendritic cell-expanded Treg suppresses recipient response to donor alloantigens [19].

Chemicals

Vitamin D3

Vitamin D3 (VD3)-matured dendritic cells are able to convert CD4+ T cells into IL-10-secreting antigen-specific Tregs that suppress proliferation of effector T cells [20]. When combined with LPS, human monocyte cultured in the presence of GM-CSF, IL-4, VD3, and dexamethasone generates tolerogenic dendritic cells that retain a semimature phenotype with an anti-inflammatory cytokine profile, which is important for optimizing their therapeutic potential [21]. This factor is of special interest, as some of the critical aspects for immunotherapy with myeloid cells suggest that tolerogenic dendritic cell maturation must be impaired, especially during potential infections or inflammatory episodes following their adoptive transfer [22,23]. With regards to the effects of VD3 on T cells, it has been recently suggested that VD3 induces a transient expression of CTLA-4 and FoxP3 in cultured human CD4+CD25+ T cells [24].

Aspirin

Aspirin-treated human dendritic cells are resistant to maturation and exhibit a reduced expression of costimulatory molecules, such as CD40, CD80, and CD86, and increased expression of immunoglobulin-like transcript-3 (ILT3), which induces de-novo generation of Treg and promotes transplantation tolerance [3]. This finding is consistent with previous data, which suggest that tolerogenic myeloid cells must express low levels of cell-surface costimulatory molecules to regulate the immune response [25].

Aryl hydrocarbon receptor

Recipient-derived mouse bone marrow cells cultured in the presence of GM-CSF, LPS, and an activator of the aryl hydrocarbon receptor, prevents islet allotransplant rejection by reducing antigen specific T-cell responses in the draining lymph node [26**].

Interleukins/cytokines

Pioneer studies from Austin and colleagues suggested that low doses of GM-CSF in the absence of IL-4 generates allogeneic immature dendritic cells in vitro that are resistant to different maturation stimuli, induce T-cell unresponsiveness in vitro, and promote alloantigen-specific graft acceptance [27]. Similarly, human monocytes cultured with GM-CSF in the absence of IL-4 generate semimature myeloid cells with low stimulatory activity [28]. Torres-Aguilar and colleagues [4] have recently reported different ways of generating tolerogenic dendritic cells from culturing human monocytes with GM-CSF and IL-4 simultaneously with IL-10 ± IL-6 ± TGF-β1, which enhanced the expression of the regulatory molecules, and induced strong antigen-specific anergy in memory T cells. Others have suggested that GM-CSF, IL-4, and IFN-γ human monocytes develop into maturation-resistant dendritic cells that express DC-SIGN, Langerin, and CD123, and promote nonspecific Treg development [29]. With regards to transplantation, alloantigen-activated CD4+ T cells
cultured in the presence of IFN-γ promotes the generation of CD25+ CD62L+ Foxp3+ T cells capable of preventing allograft rejection following adoptive transfer [30,31]. Semimature dendritic cells generated from murine bone marrow progenitors cultured with GM-CSF, IL-4, TNF-α, and LPS, secrete low levels of IL-6 and IL-12p70, induce effector T-cell hyporesponsiveness in vitro, expand Foxp3+ Treg in vitro, prolonging skin allograft survival [32]. Murine bone marrow cells cultured with GM-CSF, IL-10, and LPS generates alternatively activated donor dendritic cells that express high levels of PD-L1, display a reduced alloreactive T-cell-stimulating capacity, and expand Foxp3+ Treg in vitro, prolonging skin allograft survival [33*]. More recently, Thomson and colleagues reported that coculture of Treg with immature donor-derived dendritic cells in medium with GM-CSF and IL-4, induces potent alloantigen-specific Treg that prolong more than 80% over 150 days cardiac graft survival in mice when combined with low-dose rapamycin [34], which suggest a feedback loop between myeloid dendritic cells and Tregs [35]. In rats, immature dendritic cells cultured with GM-CSF and donor lysates are able to induce peripheral immune tolerance to hind limbs when combined with rapamycin and antilymphocyte serum [36]. Syngeneic adherent rat bone marrow cells cultured in the presence of GM-CSF express high levels of HO-1, are poor stimulators of allogeneic T cells, and prolonged cardiac allograft survival [37*].

Proteins–peptides
Vasoactive intestinal peptide
Vasoactive intestinal peptide (VIP) generates anergic T cells by inducing cell cycle arrest and inhibiting cytokine production in allogeneic human T cells. VIP also generates Foxp3-expressing Treg from CD4+ CD25+ T cells after allogenetic stimulation, which exerts a protective role in a mouse model of acute graft-versus-host disease (GvHD) [38]. Interestingly, dendritic cell differentiated in the presence of VIP generates IL-10-secreting CD4+ and CD8+ T cells [39], and impair allogeneic antigen-specific responses of donor CD4+ T cells in mice receiving bone marrow transplants by inducing Treg in the graft [40].

Low-dose peptide
Turner and colleagues [41] recently reported that both, GM-CSF-derived immature dendritic cells, and GM-CSF- and IL-4-derived mature dendritic cells presenting low dose of antigen expand Foxp3+ Treg, which depends on IL-6 production following dendritic cell–T-cell interactions.

Viral induced molecules
Pioneer studies from Cattral and colleagues demonstrated that transfection of donor-derived bone marrow-derived dendritic cells with FasL induced hyporesponsiveness to alloantigen in vivo and prolonged for 15 days the graft survival of fully mismatched cardiac allografts [42]. In mice, donor-derived dendritic cells transfected with recombinant adenovirus encoding human CTLA4Ig reduces the allogeneic T-cell stimulation in vitro, and prolongs cardiac allograft survival for 40 days when injected intravenously [43]. George and colleagues demonstrated that transfecting human dendritic cells with CTLA4 fused to the endoplasmic reticulum retention signal sequence induces antigen-specific anergy in responding T cells by preventing dendritic cell expression of CD80 and CD86 in the cell surface [6]. One of the most promising results used donor-derived immature dendritic cells transfected to express soluble TNF receptor, which are resistant to maturation, are unable to present antigen due to their low phagocytic properties, promote the development of IL-10 Treg in vitro, and induce long-term survival of cardiac allografts of 50% of the grafts when transferred before transplantation without further treatment [44**]. The same laboratory, also investigated the induction of tolerance with IL-10 dendritic cell gene transfection, although only a 30-day graft survival prolongation was observed [45]. Several studies by Vassalli and colleagues reported that gene transfer of programmed death ligand-1 (PD-L1) Ig, indoleamine 2,3-dioxygenase, soluble IL-1R Ig fusion protein, and IL-18 binding protein to donor dendritic cells attenuates cardiac allograft rejection and prolongs cardiac allograft survival by 1 week [46–48]. More recently, lentiviral vectors have been used to genetically engineer VIP-expressing bone marrow-derived dendritic cells that reduce dendritic cell expression of proinflammatory cytokines and increase their IL-10 production following local delivery [49].

Immunoglobulins
Human dendritic cells generated in vitro in the presence of CTLA4-Ig suppress T-cell proliferation by up-regulating the levels of HLA-G5 in plasma of CTLA4-Ig-treated patients [50].

Embryonic stem cells
There is also a great interest in the manipulation of the immune response using myeloid cells derived from stem cell progenitors in vitro. Human embryonic stem cells (ESCs) cultured with bone morphogenetic protein-4, GM-CSF, stem cell factor and vascular endothelial growth factor (VEGF) in serum-free media generate hESC-derived monocytic cells that can be further differentiated into mature dendritic cells with GM-CSF, TNF-alpha, IL-1β, IFN-γ and prostaglandin E2 (PGE2) that generate unlimited numbers of immunogenic dendritic cells [51]. Chen and colleagues have recently reported a protocol to generate myeloid-derived suppressive cells (MDSC) from murine embryonic stem
cells in a three-step differentiation strategy that generated embryonic bodies from HoxB4-transduced ESCs cultured with c-kit ligand conditioned medium, IL-6, and WEHI-3, followed by c-kit ligand conditioned medium, thrombopoietin, VEGF, and Flt-3L. The resulting MDSC exhibited a strong suppressive capacity in vitro, and were able to induce indefinite allograft survival of allogeneic bone marrow transplants [52*].

Generation of tolerogenic myeloid cells in vivo

One potential risk of immunotherapy with tolerogenic dendritic cells generated in vitro is that they may switch to a T-cell-activating phenotype when encountering inflammatory signals in vivo, as the local microenvironment plays an important role in the modulation of dendritic cells [53]. Complex myeloid dendritic cell–T-cell interactions occur in defined micro-anatomic domains within secondary lymphoid organs that lead either to successful T-cell priming or T-cell unresponsiveness, due to regulatory mechanisms that include energy, deletion, or induction of Treg. Here we summarize recent data regarding the in-vivo induction of tolerogenic dendritic cells.

Chemicals

Vitamin D3

In-vivo administration of VD3 prevents dendritic cell maturation independently of Toll-like receptor (TLR) stimulation [54], and topically applied VD3 increases the suppressive capacity of Foxp3+ Treg in the draining lymph nodes [55]. Vitamin D analogs also prevent antigen-specific priming of alloreactive CD8+ T cells and expand antigen-specific Foxp3+ Treg following immunization [56]. In transplantation, pioneer studies of Deluca and colleagues demonstrated that in-vivo administration of VD3 markedly increases allograft survival in both murine and rat vascularized and nonvascularized transplant models [57]. A possible explanation for this finding is that activation of VD3 receptor reprograms dendritic cell maturation to differentiate them into tolerogenic cells [58], which can be used in vivo to induce Treg-dependent antigen-specific transplantation tolerance to murine islet allografts [59].

Aryl hydrocarbon receptor

In-vivo activation of aryl hydrocarbon receptor induces antigen-specific long-term islet allograft acceptance by promoting Treg survival and function [26**].

Interleukins/cytokines

GM-CSF: In-vivo administration of mouse GM-CSF promoted the development of CD11b+Gr-1+ myeloid-derived suppressor cells that prevent the CD8+ T-cell-mediated immune response [60]. Interestingly, GM-CSF promotes the expansion of specific MDSC subsets in the spleen of tumor-bearing mice that were responsible for tolerance [61].

Proteins–peptides

Delivering antigens specifically to DEC205 targets MHC class I T-cell responses, whereas targeting dendritic cells via 33D1 preferentially modulates MHC class II T-cell responses [62]. Lechler and colleagues have recently conjugated the 33D1 mAb with the K+ cation, which deletes antigen-specific T cells, promotes Foxp3 Treg development, and induces indefinite skin graft survival when combined with anti-CD8 mAb [63*].

Conclusion

There is a growing interest in taking dendritic cells into medicine [2]. The International Society for Dendritic Cell and Vaccine Science has recently been created (http://www.dc-vaccine.org/), and the next international symposium on dendritic cells will focus on the importance of developing dendritic cell vaccines. Dendritic cell immunotherapy in transplantation utilizes dendritic cells matured in vitro under specific culture conditions that are injected intravenously later on as tolerogenic dendritic cells. This approach may not give satisfactory results in transplantation simply because myeloid dendritic cells are poorly specialized in migrating to the lymph nodes via high endothelial venules (HEVs) (reviewed in [64]). This factor is of great interest as Lakkis and colleagues [65] reported 10 years ago, that the immune response to transplant antigens leading to graft rejection can be triggered in the spleen and the lymph nodes. Therefore, we think that immunotherapy with dendritic cells to induce antigen-specific transplantation tolerance must consider that tolerogenic dendritic cells need to migrate to the peripheral sites where antigen-specific T cells proliferate, namely the spleen and the lymph nodes [66]. For nonvascularized skin transplants, we would like to propose injections of ex-vivo-matured tolerogenic dendritic cells in the skin, rather than into blood, to augment the tolerogenic responses in specific skin draining lymph nodes. For vascularized cardiac transplants, we would like to propose immunotherapy with blood-circulating cells, such as CD8+ dendritic cells, monocytes, and plasmacytoid dendritic cells (pDC), which potentially control the immune response in the recipients’ lymph nodes and the spleen. This is of special interest, since CD8+ dendritic cells [67], monocytes [68], and pDC [69] have been suggested to participate in Treg development [63*]. Additionally, it is possible that HEVs may need to be activated locally [70], or systemically [71,72] to ensure efficient migration of specific dendritic cell subsets and their precursors to the lymph nodes for successful immunotherapy, bearing in mind that these activators may affect the release of potentially nonregulatory cytokines such as IL-6.
We also believe that a combination of donor and recipient dendritic cells may be necessary to achieve indefinite allograft survival in transplantation using dendritic cell immunotherapy. Acute rejection is mediated by CD8\(^+\) and CD4\(^+\) T lymphocytes that recognize transplant antigens through the direct pathway of allore cognition, whereas chronic rejection is mediated by CD4\(^+\) T cells that recognize transplant antigens through the indirect pathway of allore cognition [73,74]. In this respect, Treg stimulated through both the direct and indirect pathways of allore cognition prevent acute and chronic rejection in recipient mice preconditioned with sublethal irradiation following adoptive transfer [75], which suggests the potential use of Treg for future cell-based immunotherapy in transplantation [76]. Therefore, it seems reasonable to think that a combination of donor dendritic cells that induce direct T-cell hyporesponsiveness, and recipient dendritic cells that induce indirect T-cell hyporesponsiveness and Treg development are both necessary for the induction of transplantation tolerance using dendritic cell immunotherapy.

Acknowledgements
The authors declare no conflict of interest. This work was supported by the Programa Ramón y Cajal RYC-2006-1588, Ministerio de Educación y Ciencia SAF2007-63579, Programa Jose y Cajal RYC-2006-1588, Ministerio de Educación y Ciencia. The authors declare no conflict of interest. This work was supported by the Programa Ramón y Cajal RYC-2006-1588, Ministerio de Educación y Ciencia SAF2007-63579, Programa Jose y Cajal RYC-2006-1588, Ministerio de Educación y Ciencia. The authors declare no conflict of interest. This work was supported by the Programa Ramón y Cajal RYC-2006-1588, Ministerio de Educación y Ciencia SAF2007-63579, Programa Jose y Cajal RYC-2006-1588, Ministerio de Educación y Ciencia.

References and recommended reading
Papers of particular interest, published within the annual period of review, have been highlighted as:
• of special interest
**• of outstanding interest
Additional references related to this topic can also be found in the Current World Literature section in this issue (p. 538).

1 Wood KJ, Bushell AR, Jones ND. The discovery of immunological tolerance: now more than just a laboratory solution. J Immunol 2010; 184:3–4.
2 Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2008; 454:419–428.
3 Buckland M, Lombardi G. Aspin and the induction of tolerogenic dendritic cells. Handb Exp Pharmacol 2009; 197–213.
4 Torres-Aguilar H, Aguilar-Ruiz SR, Gonzalez-Perez G, et al. Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4\(^+\) T cells. J Immunol 2010; 184:1765–1775.
5 Delgado M. Generating tolerogenic dendritic cells with neuropsychotropes. Hum Immunol 2009; 70:300–307.
6 Tan PH, Yates JB, Xue SA, et al. Creation of tolerogenic human dendritic cells via intracellular CTLA4: a novel strategy with potential in clinical immunosuppression. Blood 2005; 106:2936–2943.
7 Xiang J, Gu X, Zhou Y, et al. Administration of dendritic cells modified by RNA interference prolongs cardiac allograft survival. Microsurgery 2007; 27:320–323.
8 Tunquist HR, Raimondi G, Zahorchak AF, et al. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4\(^+\) T cells, but enrich for antigen-specific Foxp3\(^+\) T regulatory cells and promote organ transplant tolerance. J Immunol 2007; 178:7018–7031.
9 Zahorchak AF, Keen LS, Tokita D, et al. Infusion of stably immune monocyte-derived dendritic cells plus CTLA4Ig modulates alloimmune reactivity in rhesus macaques. Transplantation 2007; 84:196–206.
10 Taner T, Hackstein H, Wang Z, et al. Rapamycin-treated, allograft-pulsed host dendritic cells induce age-specific T cell regulation and prolong graft survival. Am J Transplant 2005; 5:228–236.
11 Horibe EK, Sacks J, Udagak J, et al. Rapamycin-conditioned, allograft-pulsed dendritic cells promote indefinite survival of vascularized cardiac allografts in association with T regulatory cell expansion. Transpl Immunol 2008; 18:307–318.
12 Cobbold SP, Adams E, Farquhar CA, et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci USA 2009; 106:12055–12060.
13 Lagaraine C, Lemoine R, Baron C, et al. Induction of human CD4\(^+\) regulatory T cells by mycophenolic acid-treated dendritic cells. J Leukoc Biol 2008; 84:1057–1064.
14 Geng L, Dong S, Fang Y, et al. Cyclosporin A up-regulates B7.2 expression on dendritic cells in an IL-4-dependent manner in vitro, which is associated with decreased allostimulatory capacity of dendritic cells. Immunopharmacol Immunotoxicol 2008; 30:399–409.
15 Bosma BM, Metselaar HJ, Nijsten NM, et al. Dexamethasone transforms lipopolysaccharide-stimulated human blood myeloid dendritic cells into myeloid dendritic cells that prime interleukin-10 production in T cells. Immunology 2008; 125:91–100.
16 Hamdi H, Godot V, Mailot MC, et al. Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper. Blood 2007; 110:211–219.
17 Fazekasova H, Golshayan D, Read J, et al. Regulation of rat and human T-cell immune response by pharmacologically modified dendritic cells. Transplanta 2009; 87:1617–1628.
18 Staś AM, Gelderman KA, Schlagwein N, et al. Induction of donor-specific T-cell hyporesponsiveness using desamethasone-treated dendritic cells in two fully mismatched rat kidney transplantation models. Transplantation 2008; 86:1275–1282.
19 Zeng M, Guinel E, Nouri-Shinazi M. Comparative analysis of dendritic cells and anti-CD3/CD28 expanded regulatory T cells for application in transplantation. Transpl Immunol 2009; 22:82–92.
20 Unger WW, Laban S, Kleijwegt FS, et al. Induction of Treg by monococyte-derived DC modulated by vitamin D3 or dexamethasone: differential role for PD-L1. Eur J Immunol 2009; 39:3147–3159.
21 Anderson AE, Swan DJ, Sayers BL, et al. LPS activation is required for migratory activity and antigen presentation by tolerogenic dendritic cells. J Leukoc Biol 2009; 85:243–250.
22 Jonuleit H, Schmitt E, Schuler G, et al. Induction of interleukin 10-producing, nonproliferating CD4\(^+\) T cells with regulatory properties by repetitive stimulation of allogeneic immature human dendritic cells. J Exp Med 2009; 192:1213–1222.
23 Peche H, Trinite B, Martinet B, Cuturi MC. Prolongation of heart allograft survival by immature dendritic cells generated from recipient type bone marrow progenitors. Am J Transplant 2005; 5:255–267.
24 Jeffery LE, Burke F, Mura M, et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol 2009; 183:5458–5467.
25 Fu F, Li Y, Qian S, et al. Costimulator molecule-deficient dendritic cell progenitors (MHC class II\(^−\), CD80dim, CD86\(^−\)) prolong cardiac allograft survival in noninmunosuppressed recipients. Transplantation 1996; 62:659–665.
26 Hauben E, Gregory S, Draghič E, et al. Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells. Blood 2008; 112:1214–1222.
27 Hauben and colleagues reported that oral administration of an activator of the aryl hydrocarbon receptor (AhR) reduces graft infiltrating cells and induces in antigen specific tolerance in 70% of islet transplants, and demonstrated that cell therapy with AhR activated dendritic cells prevented allograft rejection.
28 Lutz MB, Suri RM, Nimni M, et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 2000; 30:1813–1822.
29 Chitta S, Santambrogio L, Stern LJ. GM-CSF in the absence of other cytokines sustains human dendritic cell precursors with T cell regulatory activity and capacity to differentiate into functional dendritic cells. Immun Lett 2008; 116:41–54.
30 Eljaafar A, Li YP, Mosspec S. IFN-gamma, as secreted during an allogresponse, induces differentiation of monocytes into tolerogenic dendritic cells, resulting in FoxP3\(^+\) regulatory T cell promotion. J Immunol 2009; 183:2932–2945.
31 Feng G, Gao W, Strom TB, et al. Exogenous IFN-gamma ex vivo shapes the alloreactive T-cell repertoire by inhibition of Th17 responses and generation of functional FoxP3\(^+\) regulatory T cells. Eur J Immunol 2008; 38:2512–2527.
32 Feng G, Wood KJ, Bushell A. Interferon-gamma conditioning ex vivo generates CD25\(^+\)/CD69\(^+\)/FoxP3\(^+\) regulatory T cells that prevent allograft rejection: potential avenues for cellular therapy. Transplantation 2008; 86:589–599.
Immunotherapy with myeloid cells Rodriguez-Garcia et al. 421