INTRODUCTION

Patients in hospital intensive care units are at risk of acquiring nosocomial infections due to the use of invasive devices and/or extended hospital stay (Streit et al., 2004). Long-term hospitalization may further complicate patient health by exposure to various antimicrobial agents. Additionally, the indiscriminate use of antibiotics in treating infections promotes bacterial evolution and emergence of resistance strains (Palmer and Kishony, 2013; Tavares et al., 2013). Staphylococcus aureus is an important pathogen associated with nosocomial human infections, and this microorganism has successfully evolved numerous strategies to resist different antibiotics (Coutinho et al., 2009; Chung et al., 2011). Such increases in antibiotic resistant S. aureus strains drives research discovery of new antimicrobial agents and the development of alternative therapeutic strategies. These include plant extracts, which have considerable antimicrobial potential (Leite et al., 2006; da Silva et al., 2013; Zakavi et al., 2013).

Medicinal plants are important health and economic components used by many cultures for thousands of years (Agra et al., 2008; Silva et al., 2012). According to the World Health Organization approximately 80% of the global population uses medicinal plants or herbal medicine for primary health care (Pereira et al., 2012). Brazil has the highest plant diversity of any country and represents 20% of biodiversity in the world. Indigofera suffruticosa Mill (Fabaceae, Papilionidae) is a plant originally from Antilles and Central America, popularly known as “anileira” or “anil,” and was introduced into Brazil for the extraction of indigo, a blue dye blue (Indigo Blue) widely used by the textile industry. Although some toxic effects are reported for this plant, such as hemolytic anemia and hemoglobinuria in...
Table 1 | Pharmacological potential of Indigofera suffruticosa.

Scientific account	Related compounds
Gastroprotective agent acute ulcer stimulating prostaglandin, mucus and HSP70. (Luiz-Ferreira et al., 2011)	Ethyl acetate fraction from methanolic extract showed the best action and the authors highlighted the role of flavonoids and alkaloids presents in AcF as active compounds
In vivo action against Pediculosis capitis (Garcia Calixto et al., 2011)	An effective treatment using 5% I. suffruticosa Mill tincture was reported in a patient infested with Pediculosis capitis
Immunostimulatory and antitumoral activities in vitro (Lopes et al., 2011)	This study evaluated the action of both alkaloid fraction and pure indigo. Indigo showed high activity which suggest that it is the major active principle in I. suffruticosa
Antimycobacterial (Carli et al., 2010)	These authors did not isolate or detected any compounds. The methanolic extract showed better activity than dichloromethane
Anticonvulsant effect (Almeida et al., 2013)	Alkaloids, flavonoids, steroids, proteins, carbohydrates, indigo carmine and essential oils (Linalool and Pinene) were detected in the methanolic extract
Anti-inflammatory property in vivo (Chen et al., 2013a)	Eight phenolic compounds were quantified: salicylic acid, syringic acid (major compounds) p-coumaric acid, vanilin, syringaldehyde, quercetin, isoquiritigenin, formononetin. Salicylic acid was found in the plasma of mice fed with I. suffruticosa extracts
In vivo increase of Phase II detoxification enzyme and glutathione levels (Chen et al., 2013b)	The authors reported the same compounds quantified by Chen et al. (2013a). Ethanolic extracts showed the best action on the induction of phase II detoxification enzyme, and syringic acid was the most active among phenolic compounds detected, however, it was less potent than ethanolic extracts

Given this background, our study aimed to define the antimicrobial activities of different organic extracts from I. suffruticosa leaves against S. aureus strains (MRSA and MSSA), and then to examine synergistic actions with erythromycin.

MATERIALS AND METHODS

CHEMICALS

Dimethylsulfoxide (DMSO), erythromycin and 7-hydroxy-3H-phenoxazin-3-one-10-oxide sodium salt (Resazurin) was purchased from Sigma-Aldrich Chemical Company, St. Louis, MO, while Mueller-Hinton Agar and Nutrient Agar medium were from HIMEDIA Laboratories®. Diethyllether, chloroform and acetone were obtained from Merck, Darmstadt, Germany.

PLANT MATERIAL AND PREPARATION OF ORGANIC EXTRACTS

Leaves of I. suffruticosa were collected in São Caetano, Pernambuco, Brazil (latitude: 08° 19’ 33” S; longitude: 36° 04’ 21” W) between 10 and 11 a.m. The plant was identified by Dr. Marlene Carvalho Alencar Barbosa (Department of Botany, UFPE) and a voucher specimen deposited at the UFP Geraldo Mariz Herbarium-UFPE (identification number 45.217).

Organic extracts were prepared by successively extracting dried leaves of I. suffruticosa (100g) with 200 mL of diethyl ether, chloroform or acetone, common solvents arranged in order of increasing polarity. Briefly, the leaf powder was homogenized firstly with 200 mL of diethyl ether for 2 h in a mechanical stirrer, kept refrigerated overnight (4°C) and filtered with Whatman...
the remaining powder was submitted to acetone extraction to produce acetone extract. All dried organic extracts of I. suffruticosa were stored at −20°C until use and dissolved in dimethyl sulfoxide (DMSO, 1%) before each test.

PHYTOCHEMICAL SCREENING

An approximate amount of diethyl ether, chloroform and acetone extracts from I. suffruticosa leaves were subjected to phytochemical analysis to ascertain the presence of secondary metabolites such as alkaloids, flavonoids, phenylpropanoids, triterpenoids and volatile oil in according to Wagner and Bladt (2009). Briefly, compounds classes were visualized as thin layer chromatography (TLC) on silicagel 60 F254 silicagel. The solvent was then removed under reduced pressure in a rotary evaporator at 45°C to produce diethyl ether extract. The plant material which was not extracted by diethyl ether was then homogenized with 200 mL chloroform and all extraction process was repeated generating the chloroform extract. Finally, the remaining powder was submitted to acetone extraction to produce acetone extract. All dried organic extracts of I. suffruticosa were stored at 4°C to produce acetone extract.

ANTIMICROBIAL ASSAYS

Staphylococcus aureus strains

The antimicrobial activity was tested against the following microorganisms provided by the Departamento de Antibióticos, Universidade Federal de Pernambuco (UFPEDA): *Staphylococcus aureus* (UFPEDA 02), and some isolated strains of *S. aureus* originally obtained from: vaginal secretion (UFPEDA 660); catheter tip (UFPEDA 663); urine sample (UFPEDA 670); blood sample (UFPEDA 672); prostate secretion (UFPEDA 676); wound secretion (UFPEDA 677 and 679); ocular secretion (UFPEDA 687). Strains UFPEDA 670 and 672 are classified as MRSA strains (Table 2). All strains were and maintained in Mueller-Hinton Agar (MHA) and stored at 4°C.

UFPEDA Source	Susceptibility to antibiotics			
	Oxacillin	Cefoxitin	Erythromycin	Clindamycin
02 ATCC 6538	S	S	S	S
660 Vaginal secretion	S	S	S	S
663 Catheter tip	S	S	S	S
670a Urine sample	R	R	R	R
672a Blood sample	R	R	R	R
676 Prostate secretion	S	S	S	S
677 Wound secretion	S	R	S	S
679 Wound secretion	S	S	R	S
687 Ocular secretion	S	S	S	S

R, resistant; S, sensitive. *Data provided by UFPEDA Collection.* MRSA.

Determination of antibacterial activity using the disc diffusion method

The antibacterial activity of the organic extracts of I. suffruticosa leaves was determined by the disc diffusion method (de Oliveira et al., 2012). Briefly, all clinically isolated *S. aureus* strains were grown on MHA medium at 37°C for 18 h, suspended in distilled water (approximately 1.5 × 10⁸ CFU/mL) and 100 μL aliquots of bacterial suspension were immediately inoculated in Petri dishes containing MHA medium. Sterile paper discs (6 mm diameter) containing 20 μL organic extracts of I. suffruticosa (100 mg/mL) were applied to the agar and the Petri dishes incubated at 37°C for an additional 18 h. Following incubation, the diameter of the inhibition zone (DIZ) of growth was measured, using DMSO as negative control.

Effects of temperature and pH on antimicrobial activity

The antimicrobial activity of each I. suffruticosa extract against *S. aureus* UFPEDA 02 was determined. Samples were placed in sterile tubes and kept for 30 min at different temperatures (28, 30, 60, and 100°C), or were stored at a different pH for 30 min at 25°C, using 1M NaOH or 1M HCl to adjust the pH range between 3 and 10. The antibacterial activity of treated extracts was tested using the disc diffusion method, as described above.

Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)

The minimal inhibitory concentration (MIC) was determined by a microdilution broth susceptibility assay (Clinical and Laboratory Standards Institute, 2011). Two-fold serial dilutions of the organic extracts of I. suffruticosa containing 50–0.20 mg/mL in DMSO were prepared in Mueller-Hinton Broth (MHB; 200 μL) in a 96-well microtiter plate. Bacterial suspensions were prepared from each *S. aureus* strains freshly grown in Mueller-Hinton broth (Merck) (approximately 1.5 × 10⁸ CFU/mL) and 10 μL of this suspension was added to each well. After incubation at 37°C for 24 h, bacterial growth was recorded using a Resazurin solution (0.01%). MIC was the lowest concentration at which no color change (from purple to pink) was observed. Afterwards, cultures were seeded in MHA medium and incubated for 24 h at 37°C to determine the minimum bactericidal concentration (MBC), which corresponds to the lowest amount of extract that kills *S. aureus*. All experiments were performed in triplicate.

Evaluation of combinatory effects of extracts and erythromycin

Combinatory effects between organic extracts of I. suffruticosa and erythromycin were assessed using the checkerboard test against the strain UFPEDA 02. Briefly, samples with different proportions of plant extract:drug (final volume: 20 μL) were prepared from stock solutions of each extract (50 mg/mL) and erythromycin (1 mg/mL) and antibacterial activity was tested as described for MIC determination (da Silva et al., 2013). The Fractional Inhibitory Concentration (ΣFIC) was calculated according to the equation:

\[
ΣFIC = (MICE + D/MICE) + (MICD + E/MICD)
\]
MICE+D: minimal inhibitory concentration of extract in combination with erythromycin; MICID+E: minimal inhibitory concentration of erythromycin in combination with extract. Results were considered: synergistic (\(\Sigma \text{FIC} < 0.5 \)); additive (0.5 < \(\Sigma \text{FIC} < 1 \)); non-interactive (1 < \(\Sigma \text{FIC} < 4 \)); or antagonist (\(\Sigma \text{FIC} > 4 \)) (Vuuren and Viljoen, 2011).

Statistical Analysis

Each experiment was performed in triplicate and results are expressed as the mean ± standard deviation (SD). Statistical analyses were performed by ANOVA and unpaired Student’s t-test. All analyses were carried out using software StatView, version 4.5, Abacus Concept, Inc, Berkeley, CA. Differences were considered significant at \(p < 0.05 \). The correlation indices were calculated using the Pearson coefficient (\(\rho \)).

Results

Phytochemical Analysis

TLC analysis revealed the presence of flavonoids, phenylpropanoids, triterpenoids and volatile oils in all three extracts.

Compounds class	Indigofera suffruticosa extracts		
	Ether	Chloroform	Acetone
Alkaloids	-	+	-
Flavonoids	+	+	++
Phenylpropanoids	++	+	+
Triterpenoids	+	+	+
Volatile oils	+	++	+

(-) absent, (+) weak, (+++) strong.

Table 4 | Antimicrobial activity of organic extracts from leaves of Indigofera suffruticosa against Staphylococcus aureus strains.

S. aureus strains	Organic extracts of leaves of Indigofera suffruticosa DIZ		
	Ether	Chloroform	Acetone
02	34.7 ± 0.6^{a,1}	36.0 ± 0.0^{a,1}	35.7 ± 1.1^{a,1}
660	29.9 ± 1.7^{b,h,1}	28.0 ± 2.0^{b,h,1}	28.0 ± 2.0^{b,h,1}
663	28.7 ± 0.6^{b,h,1}	27.7 ± 0.6^{b,h,1}	26.7 ± 0.6^{b,h,1}
670	32.7 ± 1.1^{a,h,1}	27.7 ± 2.5^{a,h,2}	30.7 ± 0.6^{a,2}
672	32.6 ± 1.1^{a,h,1}	32.3 ± 0.6^{a,h,1}	31.0 ± 3.0^{a,h,1}
676	27.3 ± 0.6^{b,h,1}	25.3 ± 0.6^{b,h,1}	26.3 ± 0.6^{b,h,1}
677	30.0 ± 1.0^{a,h,1}	29.0 ± 1.7^{b,h,1}	29.7 ± 0.6^{b,h,1}
679	29.0 ± 1.0^{a,h,1}	26.3 ± 2.3^{a,h,1}	25.7 ± 2.1^{a,h,1}
687	26.7 ± 2.3^{a,h,1}	26.0 ± 2.6^{a,h,1}	25.3 ± 2.1^{a,h,1}

Average DIZ: 30.08 ± 2.7, 28.7 ± 3.4, 28.78 ± 3.4

DIZ values are expressed in mm.

*Same superscript letter (^{a,b,h}) indicates no significant difference (\(p > 0.05 \)) between DIZ values from different strains for each solvent (same column).

Same superscript number (^{1,2}) indicates no significant difference (\(p > 0.05 \)) between DIZ values from different solvents against each strain (same row).

In most of the tests performed, only quantitative differences were found. Thus, flavonoids, phenylpropanoids and volatile oils predominated in acetone, ether and chloroform extracts, respectively. Alkaloids or nitrogen-containing compounds were detected only in the chloroform extract of *I. suffruticosa* (Table 3).

Antibacterial Activity of Organic Extracts from Leaves of I. Suffruticosa

All organic extracts of leaves of *I. suffruticosa* showed antimicrobial activity against different *S. aureus* strains. However, the inhibition varied according to the extract and test strain with DIZ values ranging from 25.3 ± 2.1 to 36.0 ± 1.0 mm (Table 4). All extracts were active against both MRSA strains (UFPEDA 670 and UFPEDA 672) with DIZ values >30.0 mm, except for the chloroform extract which gave a DIZ of 27.7 ± 2.5 mm for strain UFPEDA 670. Diethyl ether extracts showed the best inhibition (30.08 ± 2.69 mm), followed by acetone (28.79 ± 3.35 mm) and chloroform (28.7 ± 3.42 mm), however no significant differences were observed between these average DIZ values (\(p > 0.05 \)). Furthermore, strong correlations were found between the DIZ of all extracts with \(\rho \)-values of 0.86, 0.94, and 0.92 for ethyl/chloroform, and chloroform/acetone ethyl/acetone extracts, respectively. The antimicrobial activity of the extracts was not affected (\(p > 0.05 \)) after high temperature treatment (Figure 1A) or variation of pH (Figure 1B), except for the ether extract which was notably more active at pH 8 (\(p > 0.05 \)).

Figure 1 | Stability of organic extracts of leaves of Indigofera suffruticosa. (A) Effect of temperature on the stability of organic extracts of *I. suffruticosa*. (B) Effect of pH on the stability of organic extracts of *I. suffruticosa*. DIZ—inhibition zone diameter. *Significant differences in relation to control.*
Table 5 | Minimum inhibitory concentration and minimum bactericidal concentration of organic extracts from leaves of *Indigofera suffruticosa* against *Staphylococcus aureus* strains.

S. aureus strains	Ether	Chloroform	Acetone						
MIC	MBC	MBC/MIC	MIC	MBC	MBC/MIC	MIC	MBC	MBC/MIC	
02	3.12	12.5	4	3.12	12.5	4	1.56	3.12	2
660	6.25	12.5	2	6.25	25.0	4	1.56	6.25	4
663	6.25	25.0	4	6.25	25.0	4	3.12	12.5	4
670	6.25	25.0	4	6.25	25.0	4	1.56	12.5	8
672	6.25	12.5	2	6.25	12.5	2	3.12	6.25	2
676	6.25	12.5	2	3.12	12.5	4	3.12	3.12	1
677	6.25	25.0	4	3.12	6.25	2	3.12	6.25	2
679	6.25	12.5	2	3.12	6.25	2	1.56	6.25	4
687	6.25	12.5	2	6.25	12.5	2	0.78	12.5	16

MIC₅₀ | 6.25 | 12.5 | 1.56 |

Average MIC | 5.9 ± 1.0 | 4.85 ± 1.6 | 2.16 ± 0.9 |
Average MBC | 16.67 ± 6.2 | 15.27 ± 7.7 | 763 ± 3.8 |

MIC, minimal inhibitory concentration; MBC, minimal bactericidal concentration.

MIC₅₀, concentration able to inhibit 50% of strains; MBC₅₀, concentration able to kill 50% of strains.

MIC, MBC₅₀, MBC and MBC₅₀ are expressed in mg/mL.

The MIC and MBC values ranged from 0.78 to 6.25 mg/mL and 3.12 to 25.0 mg/mL, respectively, with the acetone extract having the lowest values (Table 5). The MIC₅₀ (minimum concentration able to inhibit 50% of strains) was 1.56 mg/mL for the acetone extract, and 6.25 mg/mL for both ether and chloroform extracts. Similarly, the MBC₅₀ (minimum concentration able to kill 50% of strains), for the acetone extract was 6.25 mg/mL, but 12.5 mg/mL for ether and chloroform extracts. Additionally, the average MIC and MBC of acetone extract (2.16 ± 0.9 and 7.63 ± 3.8, respectively) were lower (p > 0.05) than other extracts (4.85 ± 1.6 and 15.27 ± 7.7 for ether extract; and 5.9 ± 1.0 mg/mL and 16.67 ± 6.2 mg/mL for chloroform). The three extracts also differed in their MBC/MIC ratio (Pankey and Sabath, 2004); although ether and chloroform extracts showed exclusively bactericidal effects (MBC/MIC ratios ranged from 2 to 4), the acetone extract had both bactericidal and bacteriostatic actions, however this extract was a bactericidal agent for almost all *S. aureus* strains tested (77.78%).

COMBINATORY EFFECTS OF ORGANIC EXTRACTS OF *I. SUFFRUTICOSA* AND ERYTHROMYCIN

When the antimicrobial actions of erythromycin and *I. suffruticosa* organic extracts were tested in combination, additive, synergistic and non-interactive actions were observed (Table 6); importantly, no antagonistic effects were noted. Acetone extract and erythromycin showed synergistic effects (in five ratios (55.56%; ΣFIC values ranged from 0.3 to 0.5), additive effects (0.6 ≤ ΣFIC ≤ 0.8) in three and a non-interactive effect in only one (ratio of 1:9, drug:extract; ΣFIC = 1.7). For the chloroform extract and erythromycin combinations both synergistic (0.2 ≤ ΣFIC ≤ 0.4) and additive (0.7 ≤ ΣFIC ≤ 0.9) effects were equally found in four ratios and only one ratio gave a non-interaction (1:9, drug:extract; ΣFIC = 1.7). No synergistic effect was seen with ether extracts, but 8 ratios resulted in additive effects (0.6 ≤ ΣFIC ≤ 0.9) and 1 ratio a non-interactive effect (3:7, drug:extract; ΣFIC = 1.2). Strong correlations were observed between ΣFIC values from erythromycin/acetone and erythromycin/chloroform combinations (r = 0.82), although no significant difference was found between the mean of their ΣFIC values (0.68 ± 0.46 and 0.64 ± 0.44; p < 0.05). The best ΣFIC values were 0.2 for erythromycin/chloroform at 5:5, followed by 0.3 for all these combinations: erythromycin/acetone (at 7:3 and 3:7) and for erythromycin/chloroform (at 3:7 and 6:4).
DISCUSSION

S. aureus is a pathogen long-recognized to be capable of developing drug resistance which increases patient treatment time, rate of morbidity and mortality, and associated financial costs (Pantosti, 2012). These factors make the search for new active agents against *S. aureus* highly relevant. In contrast to the well-known antimicrobial effects of *I. suffruticosa* (Leite et al., 2006; Carli et al., 2010), our present work is the first to evaluate organic solvent extracts for activity against clinical isolates of *S. aureus* strains (including two MRSA strains), as well their combinatory effects with a macrolide drug (erythromycin).

The organic extracts from *I. suffruticosa* leaves showed antimicrobial activity against all tested strains of *S. aureus* and, importantly, high inhibition zones were found against MRSA strains (UFPEDA 670 and UFPEDA 672). These two strains were isolated from different sources and exhibited multidrug-resistant profile (oxacillin-cefoxitin-erythromycin-clindamycin). The best anti-*S. aureus* activity was shown by the acetone extract, since its MIC₅₀ was 4-fold lower than the MIC₅₀ values of the other two extracts. From chemical point of view, the acetone extract contains more flavonoids than ether and chloroform extracts. It is known that different species of genus *Indigofera* including *I. suffruticosa* are rich source of bioactive flavonoids (Hasan et al., 1993; Narendrer et al., 2006; Varanda et al., 2011; Perez et al., 2013). Previous chemical analysis from *I. suffruticosa* resulted in the identification of four quercetin derivatives. Although our result revealed that the antimicrobial properties might be associated with the presence of flavonoids, a characterization of acetone extract is necessary, even though this has not been our major focus.

We also showed that high temperature (up to 100°C) had negligible effect on the anti-*S. aureus* activity of each extract, which may explain the effective traditional usage of *I. suffruticosa* in infusions prepared by prolonged boiling of its leaves (Corrêa, 1984). Similarly, the antimicrobial activities of our three organic extracts showed little change when submitted to pH values ranging from pH 3 to pH 10. Thermal and pH stabilities are noteworthy factors for development of new antimicrobial formulations by the cosmetic, food and pharmaceutical industries, and our findings encourage further research into use of our organic extracts.

Exploring combinatory effects of antimicrobial agents and natural products is an attractive strategy to overcome bacterial resistance (Betoni et al., 2006; Wink et al., 2012). Diverse targets are involved in the synergistic effects of drugs and plant-derived products such as enzymes and substrates, metabolites, receptors, ion channels, transport proteins, DNA and RNA (Wagner, 2011; Yang et al., 2014). Our study establishes that all organic extracts from *I. suffruticosa* induce at least additive effects with erythromycin. In addition to its more potent antimicrobial activity, the synergistic effect of the acetone extract was higher than that of the chloroform extract, although this did not reach statistical significance and the S_{FIC} values of the two were strongly correlated. In contrast, the *I. suffruticosa* ether extract only showed additive effects or, in one tested ratio, a non-interactive effect. These results suggest these as a promising source of potential compounds to be used in combination of erythromycin (and other members of MLSB family).

I. suffruticosa extracts have been target of a various studies in order to prove their medicinal potential. Most of these works have shown that polar solvent extracts are more active (*Table 1*) as they are rich in phenolic compounds, flavonoids, carbohydrates, glycoproteins, indigo, alkaloids, and triterpenes (Leite et al., 2006; Carli et al., 2010; Lopes et al., 2011; Luiz-Ferreira et al., 2011; Almeida et al., 2013; Chen et al., 2013a,b). Furthermore, extracts from *I. suffruticosa* have been also shown key features to be used as a medicine such as lethal dose 50% (1600 mg/kg (ip) in mice (Almeida et al., 2013) and induction of phase II detoxification enzyme and increase of glutathione levels in rat Clone 9 liver cells (Chen et al., 2013b).

In summary this paper showed that organic extracts of *I. suffruticosa* are promising natural products for the development of new anti-*S. aureus* formulation given their antimicrobial inhibiting MRSA strains and their combination with erythromycin seems to be very perspective, thus deserving further studies in order to understand their mechanism of action.

ACKNOWLEDGMENTS

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Ciência do Estado de Pernambuco (FACEPE) for the financial support to this study. We express our gratitude to Prof. James Stuart Owen, from University College of London, for correcting the English language.

REFERENCES

Agra, M. F., Silva, K. N., Basilio, D. I. J. L., Freitas, P. E., and Barbosa-Filho, J. M. (2008). Survey of medicinal plants used in the region Northeast of Brazil. Rev. Bras. Farmacogn. 10, 472–508. doi: 10.1590/S0102-695X2008000300023

Almeida, E. R., Chaves, T. M., Luna, R. L. A., Silva, A. R., Aragão-Neto, A. C., Silva, L. L. S., et al. (2013). Antimutagenic effect of *Indigofera suffruticosa* Mill: indication of involvement of the GABAergic system. Afr. J. Pharm. Pharmacol. 7, 622–628. doi: 10.5897/AJP12.1262

Barros, G. M. C. C., and Teixeira, S. D. P. (2008). Pharmacobotanical studies of wild indigo species (*Indigofera suffruticosa* and *Indigofera truxillensis*, Leguminosae,) with pharmacological properties. Rev. Bras. Farmacogn. 18, 287–294. doi: 10.1590/S0102-695X2008000200024

Betoni, J. E. C., Mantovani, R. P., Barbosa, L. N., Di Stasi, L. C., and Fernandes, A. Jr. (2006). Synergism between plant extract and antimicrobial drugs used on *Staphylococcus aureus* diseases. Mem. Inst. Oswaldo Cruz 101, 387–390. doi: 10.1590/S0074-02762006000400007

Carli, C. B. A., Quilles, M. B., Maia, D. C., Lopes, F. C., Santos, R. Jr., Fujimura-Leite, C. Q., et al. (2010). Antimycobacterial activity of *Indigofera suffruticosa* with activation potential of the innate immune system. Pharm. Biol. 48, 878–882. doi: 10.3109/13880974.2010.505932

Chan, B. C., Han, X. Q., Liu, S. L., Wong, C. W., Wang, T. B., Cheung, D. W., et al. (2015). Combating against methicillin−resistant *Staphylococcus aureus* two fatty acids from Purslane (*Portulaca oleracea L.*) exhibit synergistic effects with erythromycin. J. Pharm. Pharmacol. 67, 107–116. doi: 10.1111/jphp.12131

Chan, B. C., Ip, M., Gong, H., Lui, S. L., See, R. H., Jolivalt, C., et al. (2013). Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant *Staphylococcus aureus* (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine 20, 611–614. doi: 10.1016/j.phymed.2013.02.007

Chen, C. C., Liu, C. S., Li, C. C., Tsai, C. W., Yao, H. T., Liu, T. C., et al. (2013b). *Indigofera suffruticosa* Mill extracts up-regulate the expression of...
the π class of glutathione S-transferase and NAD (P) H: quinone oxidoreductase 1 in rat Clone 9 liver cells. Food Chem. Toxicol. 59, 610–617. doi: 10.1016/j.fct.2013.06.042

Chen, T. Y., Sun, H. L., Yao, H. T., Lii, C. K., Chen, H. W., Chen, P. Y., et al. (2013a). Suppressive effects of Indigofera suffruticosa Mill extracts on lipopolysaccharide-induced inflammatory responses in murine RAW 264.7 macrophages. Food Chem. Toxicol. 55, 257–264. doi:10.1016/j.fct.2012.12.056

Chung, P. Y., Navaratnam, P., and Chung, L. Y. (2011). Synergistic antimicrobial activity between pentaacyl triterpenoids and antibiotics against Staphylococcus aureus strains. Ann. Clin. Microbiol. Antimicrob. 10, 1–6. doi: 10.1186/1476-0711-10-25

Clinical and Laboratory Standards Institute (2011). Performance Standards for Antimicrobial Susceptibility Testing; Twenty First Informational Supplement, M100S21. Wayne, PA.

Corrêa, M. P. (ed.). (1984). “Dicionário de plantas úteis do Brasil e das exóticas cultivadas,” in Dicionário de Plantas úteis do Brasil e das Exóticas Cultivadas (Brasilia: Imprensa Nacional), 1–172.

Coutinho, H. D. M., Costa, J. G. M., Lima, E. O., Falcão-Silva, V. S., and Junior, J. P. S. (2009). Herbal therapy associated with antibiotic therapy; potentiation of the antibiotic activity against methicillin-resistant Staphylococcus aureus by Turnera ulmifolia L. BMC Complement. Altern. Med. 9:13. doi: 10.1186/1472-6882-9-13

da Silva, L. C. N., Sandes, J. M., de Paiva, M. M., de Araújo, J. M., Figueiredo, R. C. B. Q. D., da Silva, M. V., et al. (2013). Anti-Staphylococcus aureus action of three Caatinga fruits evaluated by electron microscopy. Nat. Prod. Res. 27, 1492–1496.

de Oliveira, Y. L., Nascimento da Silva, L. C., da Silva, A. G., Macedo, A. J., de Araújo, J. M., Correia, M. T. S., et al. (2012). Antimicrobial activity and phytochemical screening of Buchenavia tetraphylla (Aubl.) R. A. Howard (Combretaceae: Combretoidae). Sci. World J. 2012, 1–6. doi: 10.1100/2012/849302

Garcia Calixto, T., Rodriguez Gonzalez, E. M., Pinera Wiltshire, M. C., Martinez Monier, M. A., Santana Suarez, Y., and Hernandez Contreras, N. (2011). Effective treatment of a patient infected with pediculus capitis by using 5% Indigofera suffruticosa Mill tincture. Rev. Cabana Med. Trop. 63, 275–277.

Hasan, A., Farman, M., and Ahmed, I. (1993). Flavonoid glycosides from Indigofera hebepetalas. Phytochemistry 35, 275–276. doi: 10.1016/S0031-9422(00)90532-1

Leite, S. P., Vieira, J. R. C., Medeiros, P. L., Leite, R. M. P., Lima, V. L. M., Xavier, H. S., et al. (2006). Antimicrobial activity of Indigofera suffruticosa. Evid. Based Complement. Alternat. Med. 3, 261–265. doi:10.1093/ecam/nel010

Lopes, F. C., Calvo, T. R., Colombo, L. L., Vilgas, W., and Carlos, I. Z. (2011). Immunostimulatory and cytotoxic activities of Indigofera suffruticosa Mill tincture. Rev. Cabana Med. Trop. 63, 275–277.

Luiz-Ferreira, A., Cola, M., Barbasteфанo, V., Farias-Silva, E., Calvo, T. R., de Almeida, A. B., et al. (2011). Indigofera suffruticosa Mill as new source of healing agent: involvement of prostaglandin and mucus and heat shock proteins. J. Ethnopharmacol. 137, 192–198. doi:10.1016/j.ejep.2011.05.006

Narendra, T., Khaliq, T., Pur, A., and Chander, R. (2006). Antidyslipidemic activity and approaches to study the interaction between natural products. Planta Med. 77, 1168–1182. doi: 10.1055/s-0030-1250736

Perez, L. B., Li, J., Lantvit, D. D., Pan, L., Ninh, T. N., Chai, H. B., et al. (2013). Bioactive Constituents of Indigofera spicata. J. Nat. Prod. 76, 1498–1504. doi: 10.1021/np400567c

Salvador, I. S., Medeiros, R. M. T., Pessoa, C. R. M., Oliveira, D. M., Duarte, A. L. A., Fighera, R. A., et al. (2011). Experimental poisoning of guinea pig (Cavia porcellus) with Indigofera suffruticosa. Toxicon 57, 927–931. doi: 10.1016/j.toxicon.2011.03.007

Silva, M. I. G., Melo, C. T. V., Vasconcelos, L. F., Carvalho, A. M. R., and Souza, F. C. F. (2012). Bioactivity and potential therapeutic benefits of some medicinal plants from the Caatinga (semi-arid) vegetation of Northeast Brazil: a review of the literature. Rev. Bras. Farmacogn. 22, 193–207. doi:10.1590/S0102-695X20110005000171

Striet, J. M., and Jones, R. N., Sader, H. S. (2004). Daptomycin activity and spectrum: a worldwide sample of 6,737 Gram-positive organisms. J. Antimicrob. Chemother. 53, 669–674. doi:10.1093/jac/dkh143

Tavares, L. S., Silva, C. S. F., Souza, V. C., Silva, V., Diniz, C. G., and Santos, M. O. (2013). Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides. Front. Microbiol. 4:412. doi: 10.3389/fmicb.2013.00412

Varanda, E. A., Calvo, T. R., Cardoso, C. R. P., Da Silva Moura, A. C., Dos Santos, L. C., Colus, I. M. S., et al. (2011). Mutagenic activity of Indigofera truxillensis and I. suffruticosa aerial parts. Evid. Based Complement. Alternat. Med. 2011, 1–9. doi:10.1055/00-0030-1250736

Wagner, H. (2011). Synergy research: approaching a new generation of phytopharmaceuticals. Fitoterapia 82, 34–37. doi: 10.1016/j.fitote.2010.11.016

Wagner, H., and Bladt, S. (2009). Plant drug analysis—A thin layer chromatography atlas. Berlin: Springer Verlag.

Wagner, H., and Ulrich-Merzenich, G. (2009). Synergy research: approaching a new generation of phytopharmaceuticals. Phytochemistry 16, 97–110. doi: 10.1016/j.phymed.2008.12.018

Wink, M., Ashour, M. L., and El-Readi, M. Z. (2012). Secondary metabolites from plants inhabiting ABC transporters and reversing resistance of cancer cells and microbes to cytotoxic and antimicrobial agents. Front. Microbiol. 3:130. doi: 10.3389/fmicb.2012.00130

Yang, Y., Zhang, Z., Li, S., Ye, X., Li, X., and He, K. (2014). Synergy effects of herb extracts: pharmacokinetics and pharmacodynamic basis. Fitoterapia 92, 133–147. doi:10.1016/j.fitote.2013.10.010

Zakavi, E., Golspand Hagh, L., Daraeighadikolaei, A., Farajzade Sheikah, A., Daraeighadikolaei, A., and Leilavi Shooshstari, Z. (2013). Antibacterial effect of juglans regia bark against oral pathologic bacteria. Int. J. Dent. 2013,1–5. doi:10.1155/2013/854765

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 31 July 2014; accepted: 06 January 2015; published online: 02 February 2015.

Citation: Bezerra dos Santos AT, Araújo TM, Nascimento da Silva LC, Silva CB, Oliveira AFM, Araújo IM, Correia MTS, Lima VLM (2015) Organic extracts from Indigofera suffruticosa leaves have antimicrobial and synergic actions with erythromycin against Staphylococcus aureus. Front. Microbiol. 6:135. doi: 10.3389/fmicb.2015.00113

This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology. Copyright © 2015 Bezerra dos Santos, Araújo, Nascimento da Silva, Oliveira, Araújo, Correia, Lima. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.