TCBERT: A Technical Report for Chinese Topic Classification BERT

Ting Han1, Kunhao Pan1, Xinyu Chen2, Dingjie Song3, Yuchen Fan1, Xinyu Gao1, Ruyi Gan1 and Jiaxing Zhang1

1International Digital Economy Academy (IDEA), China
2Beijing University of Posts and Telecommunications, China
3Nanjing University, China

\{hanting, pankunhao, fanyuchen, gaoxinyu, ganruyi, zhangjiaxing\}@idea.edu.cn
chenxiny@bupt.edu.cn, songdj@smail.nju.edu.cn

Abstract

Bidirectional Encoder Representations from Transformers or BERT (Devlin et al., 2019) has been one of the base models for various NLP tasks due to its remarkable performance. Variants customized for different languages and tasks are proposed to further improve the performance. In this work, we investigate supervised continued pre-training (Gururangan et al., 2020) on BERT for Chinese topic classification task. Specifically, we incorporate prompt-based learning and contrastive learning into the pre-training. To adapt to the task of Chinese topic classification, we collect around 2.1M Chinese data spanning various topics. The pre-trained Chinese Topic Classification BERTs (TCBERTs) with different parameter sizes are open-sourced at https://huggingface.co/IDEA-CCNL.

1 Introduction

Deep bidirectional neural networks based on Transformers (Vaswani et al., 2017) have been one of the prevalent structures to encode natural language. BERT (Devlin et al., 2019), as the most representative bidirectional encoder, learns language representations through pre-training on massive text data using the masked language modeling (MLM) objective, a variant of Cloze task (Taylor, 1953). The pre-trained representations achieve remarkable performance across a wide range of NLP tasks through fine-tuning on small specific datasets. The pre-train and fine-tune paradigm of BERT inspires multiple follow-up research work on different tasks (Joshi et al., 2020; Yin et al., 2020; Wu et al., 2020a; Ji et al., 2021), and also different languages (Martin et al., 2020; Sun et al., 2021; Abdul-Mageed et al., 2021).

Recently, Gururangan et al. (2020) demonstrate that continued pre-training on specific domains or tasks before fine-tuning consistently advances the performance of related tasks. Similarly, in this work, we investigate the continued pre-training for the task of Chinese topic classification on BERT. In addition to the MLM objective used in the continued pre-training, we incorporate prompt-based learning to leverage labeled topic information, and contrastive learning to improve sentence representations into the supervised continued pre-training. Specifically, the MLM is only used to predict label information masked in the prompt template while the other input tokens remain intact. To construct positive pairs, a text sentence is paired with its prompt-appended version for contrastive learning. To adapt to Chinese topic classification tasks, we collect 2.1M annotated Chinese data across diverse topics. We evaluate the pre-trained Chinese topic classification BERT (TCBERT) on three few-shot datasets, TNEWS, CSLDCP and IFLYTEK of FewCLUE (Xu et al., 2021), and the experimental results are presented for reference.

2 Related Work

2.1 Supervised Pre-training

Most pre-training approaches (Raffel et al., 2020; Lewis et al., 2020; Liu et al., 2019; Devlin et al., 2019) adopt unsupervised learning on large-scale general corpus to bypass data annotation procedures which are costly in supervised learning. With more large-scale annotated datasets have become accessible, a few works (Worsham and Kalita, 2020; Aghajanyan et al., 2021; Dosovitskiy et al., 2020) show that supervised pre-training can also achieve competitive or even better performance compared to unsupervised pre-training. In this work, we conduct continued supervised pre-training based on models pre-trained by unsupervised learning for Chinese topic classification using around 2.1M annotated Chinese topic data.
2.2 Contrastive Learning

Contrastive learning, first proposed by Hadsell et al. (2006), has been successfully extended in computer vision (Chen et al., 2020; He et al., 2020) and natural language processing (Gao et al., 2021b; Meng et al., 2021) for representation learning. The core of contrastive learning to learn representations is to form contrastive pairs. In NLP, multiple operations (Gao et al., 2021b; Zhang et al., 2021; Fang et al., 2020; Wu et al., 2020b; Yan et al., 2021; Wang et al., 2021) are proposed to construct the contrastive pairs. In applying contrastive learning to the supervised continued pre-training, we are mainly inspired by SimCSE (Gao et al., 2021b) and MOCO (He et al., 2020).

2.3 Prompt-based Learning

Natural language descriptions or task descriptions are applied to solve either few-shot (Schick and Schütze, 2021; Brown et al., 2020) or zero-shot (Radford et al., 2019; Wei et al., 2021) NLP tasks. Since then, a new paradigm (Liu et al., 2021a) termed prompt-based learning has been a trendy research topic in the NLP community. On prompt design, continuous prompts (Li and Liang, 2021; Vu et al., 2022; Gu et al., 2022; Liu et al., 2021b) are easy to be combined with gradient descent but uninterruptable to humans (Khashabi et al., 2022) while discrete prompts (Tam et al., 2021; Petroni et al., 2019; Schick and Schütze, 2021; Jiang et al., 2020; Gao et al., 2021a; Liu et al., 2022) are human-readable but introduce an extra step to either manually create or automatically generate the prompts. In this work, we mainly follow the format of manually created prompts in PET (Schick and Schütze, 2021) for supervised continued pre-training.

3 Topic Classification BERT

3.1 Model Structure

Topic classification BERT or TCBERT taking a similar structure of BERT is shown in Figure 1. We pre-train TCBERT with three different sizes: TCBERT-base of 110M parameters, TCBERT-large of 330M parameters and TCBERT-1.3B (Shoeybi et al., 2019) of 1.3B parameters. The pre-training objectives which are based on prompts are detailed in the following sections.

3.2 Prompt-based Mask Language Modeling

As shown in Figure 1, each input sentence \(\text{sent}_t \) consists of a prompt template and a text sentence \(u_t \). Prompt-based mask language modeling is to output the [MASK] tokens in the input sentence to the label of the text sentence. For instance, TCBERT will output "餐馆" for the [MASK] tokens in the input sentence (top one in green in Figure 1) as "餐馆" is the label of the text sentence. The MLM loss is computed as follows:

\[
\mathcal{L}_{\text{MLM}} = - \frac{1}{N} \sum_{m=1}^{M} \log P(x_m),
\]

where \(M \) is the total number of masked input tokens and \(P(x_m) \) is the predicted probability of the masked token \(x_m \) over the vocabulary.

3.3 Prompt-based Contrastive Learning

Inspired by SimCSE (Gao et al., 2021b), we introduce a contrastive training objective in addition to
the L_{MLM} loss:

$$L_{CL} = - \sum_{i=1}^{N} \log \frac{\exp(\text{sim}(\mathbf{h}_i, \mathbf{h}_i)/\tau)}{\sum_{j=1}^{N} \exp(\text{sim}(\mathbf{h}_i, \mathbf{h}_j)/\tau)},$$

(2)

where τ is a temperature hyperparameter and N is the number of input sentences in a batch. $\text{sim}(\mathbf{h}_i, \mathbf{h}_j)$ is the cosine similarity score of the representations \mathbf{h}_i and \mathbf{h}_j. As shown in Figure 1, positive pairs for contrastive learning are the text sentence u_i and its prompt version sent_i. In this case, \mathbf{h}_i and \mathbf{h}_i denotes the representations of sent_i and u_i, respectively. To encode the sentences, we try both single-encoder and dual-encoder approaches for pre-training. Similar to SimCSE, we first try to encode the pairs using a single encoder. For the dual-encoder, we try MOCO (He et al., 2020) and use the momentum encoder to encode the text sentences u_i. As in Figure 1, denoting $E2$ as the momentum encoder and $E1$ as the normal encoder, the parameters of $E2$ are updated as follows:

$$\theta_{E2} = \lambda_m \theta_{E2} + (1 - \lambda_m) \theta_{E1},$$

(3)

where θ_{E2} and θ_{E1} are the parameters of $E2$ and $E1$, and $\lambda_m \in [0, 1]$ is a momentum coefficient. Note that only the parameters θ_{E1} are updated by backpropagation during pre-training. The two losses are equally weighted for pre-training:

$$L_{PCL} = L_{MLM} + L_{CL}.$$

(4)

4 Experimental Setups

4.1 Data

To pre-train TCBERT, we collect around 2.1M Chinese data annotated with various topics including travel, movie, finance, etc. Three evaluation datasets, TNEWS, CSLDCP and IFLYTEK, are adopted from FewCLUE (Xu et al., 2021) to demonstrate the performance of TCBERT.

4.2 Data Pre-processing

Prompt templates for pre-training and fine-tuning TCBERT are listed in Figure 2. For pre-training, we use one prompt template for all data. If one data sample is annotated with multiple topic labels, we process the data into multiple input sentences but with different topic labels for MLM predictions. For fine-tuning, we slightly modify the pre-training prompt template according to the topic of each evaluation datasets. Inspired by Webson and Pavlick (2022), we devise prompt-2 that is different from prompt-1 and includes more punctuation marks.

Prompt	Pre-training	Fine-tuning
Prompt-1	下面是一条关于__的内容：	TNEWS
Prompt-1	下面是一则关于__的新闻：	CSLDCP
Prompt-2	接下来的新，是跟__相关的內容：	IFLYTEK
Prompt-2	这一句描述__的内容如下：	
Prompt-2	接下来的学科，是跟__相关：	
Prompt-2	接下来的生活内容，是跟__相关：	

Figure 2: Prompt templates for pre-training and fine-tuning.

4.3 Prompt-based Fine-tuning

Similar to the pre-training stage, the prompt-based mask language modeling, L_{MLM}, is also adopted for fine-tuning. In addition, TCBERT is fine-tuned under supervised signals for classification as follows:

$$L_{TC} = - \frac{1}{N} \sum_{j=1}^{T} \sum_{i=1}^{N} \log P(T_j | \text{sent}_i),$$

(5)

where $P(T_j | \text{sent}_i)$ denotes predicted probability of the input sentence sent_i belonging to the topic class T_j. We jointly train the two losses:

$$L_{PTC} = L_{MLM} + L_{TC},$$

(6)

and the two losses are equally weighted during fine-tuning.

4.4 Prompt-based Sentence Similarity

Instead of fine-tuning the parameters of TCBERT for topic classification, we directly classify each test sample based on sentence similarity. The similarity-based method is different from zero-shot learning since the inference is performed using all training samples, and the parameters are not required to be updated by training samples, which is the typical manner of few-shot learning. The classification metric is as follows:

$$\text{score}_{m,k} = \cos(R(\text{sent}_m), R(\text{sent}_k)),$$

(7)

where $R(\cdot)$ is the pooling method to extract sentence representation. Specifically, we average the last hidden layers of TCBERT as the sentence representation. \cos denotes the cosine similarity of
Table 1: Testing results of fine-tuning TCBERTs. ♦, ♣ and ♠ denote the TCBERTs are pre-trained with prompt-based MLM, prompt-based contrastive learning and prompt-based MOCO objectives, respectively.

Model	Prompt-1			Prompt-2		
	TNEWS	CLSDCP	IFLYTEK	TNEWS	CLSDCP	IFLYTEK
Macbert-base	55.02	57.37	51.34	54.78	58.38	50.83
Macbert-large	55.77	58.99	50.31	56.77	60.22	51.63
Erlangshen-1.3B	57.36	62.35	53.23	57.81	62.80	52.77
TCBERT-base♦	55.57	58.60	49.63	54.58	59.16	49.80
TCBERT-large♦	56.17	60.06	51.34	56.22	61.23	50.77
TCBERT-1.3B♦	57.41	65.10	53.75	57.41	64.82	53.34
TCBERT-base♣	55.47	59.61	50.20	54.33	59.72	50.77
TCBERT-large♣	55.27	61.34	51.63	55.62	60.90	50.60
TCBERT-1.3B♣	56.92	63.31	52.43	56.92	63.14	52.83
TCBERT-base♠	54.68	59.78	49.40	54.68	59.78	49.40
TCBERT-large♠	55.32	62.07	51.11	55.32	62.07	51.11
TCBERT-1.3B♠	57.46	65.04	53.06	56.87	65.83	52.94

Table 2: Hugging Face model cards of six TCBERTs.

Hugging Face Model Cards
IDEA-CCNL/Erlangshen-TCBert-110M-Classification-Chinese
IDEA-CCNL/Erlangshen-TCBert-330M-Classification-Chinese
IDEA-CCNL/Erlangshen-TCBert-1.3B-Classification-Chinese
IDEA-CCNL/Erlangshen-TCBert-110M-Sentence-Embedding-Chinese
IDEA-CCNL/Erlangshen-TCBert-330M-Sentence-Embedding-Chinese
IDEA-CCNL/Erlangshen-TCBert-1.3B-Sentence-Embedding-Chinese

4.5 Training Details

TCBERTs with different sizes of parameters are initialized from MacBERT-base (Cui et al., 2020), MacBERT-large and Erlangshen-MegatronBert-1.3B (Wang et al., 2022), respectively. The training parameters are optimized by AdamW (Loshchilov and Hutter, 2017) with a learning rate of 1e-5. We use a warmup rate of 0.001 and a weight decay of 0.1. TCBERTs are pre-trained 4 epochs with a batch size of 128 for TCBERT-base, and 32 for both TCBERT-large and TCBERT-1.3B. A maximum sequence length of 128 is applied to all pre-trainings. We fine-tune TCBERTs 50 epochs with the same learning rate. The batch size for fine-tuning is set to 4 for TNEWS and 2 for both CLSDCP and IFLYTEK with 512 as the maximum number of input tokens. All pre-training experiments are conducted on a single A100 GPU with 80GB memory, and the fine-tuning experiments are run on a single A100 GPU with 40G memory.

4.6 TCBERTs at Hugging Face

We open-source six pre-trained TCBERTs with different parameter sizes at Hugging Face. The model cards are listed in Table 2. "Classification" denotes the pre-training objective is prompt-based MLM and "Sentence-Embedding" is prompt-based MOCO.

5 Results

Table 1 and Table 3 present the testing accuracy scores of the three evaluation datasets for fine-tuning and sentence similarity, respectively. We report the highest score of all fine-tuning experiments using the same seed.

As shown in Table 1, despite that different datasets may prefer different pre-training methods or prompts, we can still observe that prompt-based MLM or prompt-based MOCO for pre-training, and prompt-1 for fine-tuning are the most preferable combinations.
Table 3: Testing results of sentence similarity. ♦, ♣ and ♠ denote the TCBERTs are pre-trained with prompt-based MLM, prompt-based contrastive learning and prompt-based MOCO, respectively. The difference between "reference" and "whitening" is whether the extracted representation is whitened or not.

Table 3 presents the classification results using sentence similarity. We also adopt the whitening method (Su et al., 2021) on the extracted representations before calculating the sentence similarity. The similarity score by whitening is denoted as "whitening" in Table 3 while the "reference" denotes similarity scores without whitening operations. Differing from the fine-tune results of which representation learning, i.e., contrastive learning, sentence similarity benefits from the representation learning in most cases, no matter pre-training methods or prompt versions. The whitening operation further improves the similarity scores, especially for TCBERT-1.3B.

From Table 1 and Table 3, we can observe noticeable performance gaps between the two classification methods. The fine-tuning scores are higher but it normally takes more time, like hours, for training. The sentence similarity only takes a few minutes to obtain the classification results once the representation is completely extracted, and the extraction is a one-time operation.

We also want to point out that for the momentum update used in MOCO pre-training, we use the two coefficients of 0.999 and 0.9999 to update the momentum encoder. We did not examine the coefficients of 0.9 and 0.99 for pre-training since the performance using these two coefficients for contrastive fine-tuning is far from comparable. To simplify, we do not decouple the size of the queue in the original MOCO design from the mini-batch size.
6 Conclusion

In the report, we present the pre-training methods and details for Chinese Topic Classification BERTs (TCBERTs) open-sourced at Hugging Face by Cognitive Computing and Natural Language Group, IDEA.

References

Muhammad Abdul-Mageed, AbdelRahim Elmadany, and EL Moatez Bilah Nagoudi. 2021. ARBERT & MARBERT: Deep bidirectional transformers for Arabic. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 7088–7105, Online. Association for Computational Linguistics.

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and Sonal Gupta. 2021. Muppet: Massive multi-task representations with pre-finetuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5799–5811, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 1597–1607. PMLR.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, and Guoping Hu. 2020. Revisiting pretrained models for Chinese natural language processing. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 657–668. Online. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan Ding, and Pengtao Xie. 2020. Cert: Contrastive self-supervised learning for language understanding. arXiv preprint arXiv:2005.12766.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021a. Making pre-trained language models better few-shot learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 3816–3830, Online. Association for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021b. SimCSE: Simple contrastive learning of sentence embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 6894–6910, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. 2022. PPT: Pre-trained prompt tuning for few-shot learning. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8410–8423, Dublin, Ireland. Association for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and Noah A. Smith. 2020. Don’t stop pretraining: Adapt language models to domains and tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8342–8360, Online. Association for Computational Linguistics.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9729–9738.

Tuo Ji, Hang Yan, and Xipeng Qiu. 2021. SpellBERT: A lightweight pretrained model for Chinese spelling check. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3544–3551, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.
Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How can we know what language models know? Transactions of the Association for Computational Linguistics, 8:423–438.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. 2020. SpanBERT: Improving pre-training by representing and predicting spans. Transactions of the Association for Computational Linguistics, 8:64–77.

Daniel Khashabi, Xinxi Lyu, Sewon Min, Lianhui Qin, Kyle Richardson, Sean Welleck, Hannaneh Hajishirzi, Tushar Khot, Ashish Sabharwal, Sameer Singh, and Yejin Choi. 2022. Prompt waywardness: The curious case of discretized interpretation of continuous prompts. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 3631–3643, Seattle, United States. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online. Association for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–4597, Online. Association for Computational Linguistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. 2022. What makes good in-context examples for GPT-3? In Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pages 100–114, Dublin, Ireland and Online. Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2021a. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhihui Yang, and Jie Tang. 2021b. Gpt understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, Éric de la Clergerie, Djamé Seddah, and Benoît Sagot. 2020. Camembert: A tasty French language model. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7203–7219, Online. Association for Computational Linguistics.

Yu Meng, Chenyan Xiong, Payal Bajaj, Paul Bennett, Jiawei Han, Xia Song, et al. 2021. Coco-lm: Correcting and contrasting text sequences for language model pretraining. Advances in Neural Information Processing Systems, 34:23102–23114.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. 2019. Language models as knowledge bases? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2463–2473, Hong Kong, China. Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140):1–67.

Timo Schick and Hinrich Schütze. 2021. Exploiting cloze-questions for few-shot text classification and natural language inference. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 255–269, Online. Association for Computational Linguistics.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter language models using model parallelism. arXiv preprint arXiv:1909.08053.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou. 2021. Whitening sentence representations for better semantics and faster retrieval. arXiv preprint arXiv:2103.15316.

Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu, and Jiwei Li. 2021. ChineseBERT: Chinese pretraining enhanced by glyph and Pinyin information. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, pages 8:423–438, Online. Association for Computational Linguistics.
