An Improved Approximation for k-median, and Positive Correlation in Budgeted Optimization

Jaroslaw Byrka 1 Thomas Pensyl 2 Bartosz Rybicki 1
Aravind Srinivasan 2 Khoa Trinh 2

1University of Wroclaw, Poland
2University of Maryland, USA

ISMP 2015
k-median

- **Input:**
 - set of facilities \(\mathcal{F} \)
 - set of clients \(\mathcal{C} \)
 - symmetric distance metric \(d \) on \(\mathcal{C} \cup \mathcal{F} \)
 - an integer \(k > 0 \)

- **Goal:** pick \(k \) facilities which minimize total connection cost of clients.

- **Example:** \(k = 2 \), open facilities A, C and pay cost \(2 + 2 + 3 = 7 \).
Uncapcitated Facility Location

- **Input:**
 - set of facilities \mathcal{F}
 - set of clients \mathcal{C}
 - symmetric distance metric d on $\mathcal{C} \cup \mathcal{F}$
 - each facility has an opening cost

- **Goal:** pick some facilities which minimize total opening cost and connection cost.

- **Example:** open facilities A, C and pay cost $2 + 2 + 3 + 3 + 1 = 11$.

![Diagram of facility placement and connection costs](attachment:facility_diagram.png)
Bi-point solution as middle step

Bi-point solution: a feasible solution which is a convex combination of two integral solutions.

- Step I: Construct a bi-point solution.
 - Use some special UFL algorithms to get a “cheap” bi-point solution.
- Step II: Round bi-point solution to integral one.
Previous Work

Year	Authors	Bi-point Construction	Bi-point Rounding	k-median Approximation
‘99	Charikar et. al.	(LP Rounding)	6.667	
‘99	Jain & Vazirani	3 + ε	2	6 + ε
‘02	Jain, Mahdian & Saberi	2 + ε	2	4 + ε
‘01	Arya et. al.	(Local Search)	3 + ε	
‘12	Li & Svensson	2 + ε	1.366 + ε	2.732 + ε
‘15	Our work	2 + ε	1.337 + ε	2.674 + ε
Again, bi-point solution is convex combination of two integral solutions, \mathcal{F}_1 and \mathcal{F}_2.

$a|\mathcal{F}_1| + b|\mathcal{F}_2| = k$, where $(a, b > 0, a + b = 1)$
Form stars by attaching each facility in \mathcal{F}_1 to closest facility in \mathcal{F}_1.

\[\mathcal{F}_1 \]

\[\mathcal{F}_2 \]
Li-Svensson’s rounding algorithm

- Key property: “if some leaf is closed then its root must be open”.
- \(\Pr[i_1 \text{ is open}] \approx a \) for all \(i_1 \in \mathcal{F}_1 \)
- \(\Pr[i_2 \text{ is open}] \approx b \) for all \(i_2 \in \mathcal{F}_2 \)
- approximation factor \(= \frac{1+\sqrt{3}}{2} \approx 1.366 \)
- \#open facilities \(= a|\mathcal{F}_1| + b|\mathcal{F}_2| + O(1) = k + O(1) \).
Distance bounds

- There is an open facility in \(\{i_1, i_2, i_3\} \)
- \(d_3 \leq d_2 + d(i_2, i_3) \leq d_1 + 2d_2 \)
- The total (expected) connection cost is a (non-linear) function of cost \((\mathcal{F}_1) \), cost \((\mathcal{F}_2) \), \(a, b \) which can be related to \(\text{OPT} \).
Tight Instance

- In tight case, almost all stars have exactly 1 leaf.
- BUT still many clients near 2-leafed stars.
Tight Instance

- Why not close some 1-leafed stars to open more leaves of the 2-leafed stars?
Consider any 1-leafed star \((i_2, i_3)\) and let \(i_4\) be the closest leaf of a 2-leafed star to \(i_3\). Then the star \((i_2, i_3)\) is long if

\[
dx(i_2, i_3) \geq gd(i_3, i_4),
\]

for some constant \(g > 0\).
Long 1-leafed stars can be closed

\[
\begin{align*}
 d_1 & \leq d_1 + d_2 \\
 \frac{d_1 + d_2}{g} & \leq \frac{d_1 + d_2}{g}
\end{align*}
\]
Bi-point Rounding

Improved Bi-point rounding algorithm:

- Consists of 8 different rounding strategies.
- Analysis uses a non-linear factor revealing program.
- Approximation ratio: 1.337.
Dependent Rounding

Given a vector $P = (p_1, \ldots, p_n)$ with $0 \leq p_i \leq 1$, Dependent Rounding algorithm rounds P into a 0-1 vector X such that

- the sum is preserved: $\sum_{i=1}^{n} X_i = \sum_{i=1}^{n} p_i$,
- the marginals are preserved: $\Pr[X_i = 1] = p_i$,
- negative correlation between X_i’s: e.g.
 - $\Pr[X_i = 1 \land X_j = 1] \leq p_i p_j$
 - $\Pr[X_i = 0 \land X_j = 0] \leq (1 - p_i)(1 - p_j)$
A Typical Example of Negative Correlation in Facility Location Problems

Assume that we have a client \(j \) and a set \(S \) of facilities that are close to \(j \). Each facility \(i \in S \) has an *opening variable* \(y_i \). Applying dependent rounding to opening variables in \(S \) gives

\[
\Pr[\text{all facilities in } S \text{ are closed}] = \Pr \left[\bigwedge_{i \in S} \{i \text{ is closed}\} \right] \\
\leq \prod_{i \in S} (1 - \Pr[i \text{ is open}]) \\
\leq \exp \left(- \sum_{i \in S} y_i \right).
\]
For each root $i \in \mathcal{F}_1$, let X_i be the indicator whether i or its leaves is opened.
For each root $i \in \mathcal{F}_1$, let X_i be the indicator whether i or its leaves is opened.

We want to upper-bound $E[\text{cost}(j)]$:

$$E[\text{cost}(j)] \leq \Pr[X_{i_3} = 0]d_2 + \Pr[X_{i_3} = 1 \land X_{i_1} = 1]d_1$$
$$+ \Pr[X_{i_3} = 1 \land X_{i_1} = 0]d_3$$
Positive Correlation

For each root $i \in \mathcal{F}_1$, let X_i be the indicator whether i or its leaves is opened.

We want to upper-bound $\mathbb{E}[\text{cost}(j)]$:

$$\mathbb{E}[\text{cost}(j)] \leq \Pr[X_{i_3} = 0]d_2 + \Pr[X_{i_3} = 1 \land X_{i_1} = 1]d_1$$

$$+ \Pr[X_{i_3} = 1 \land X_{i_1} = 0]d_3$$

$$\Pr[X_{i_3} = 1 \land X_{i_1} = 1] \leq \Pr[X_{i_3} = 1] \Pr[X_{i_1} = 1] = a^2$$, by negative correlation
Positive Correlation

For each root $i \in \mathcal{F}_1$, let X_i be the indicator whether i or its leaves is opened.

We want to upper-bound $E[\text{cost}(j)]$:

$$E[\text{cost}(j)] \leq \Pr[X_{i_3} = 0]d_2 + \Pr[X_{i_3} = 1 \land X_{i_1} = 1]d_1$$
$$+ \Pr[X_{i_3} = 1 \land X_{i_1} = 0]d_3$$

$\Pr[X_{i_3} = 1 \land X_{i_1} = 1] \leq \Pr[X_{i_3} = 1] \Pr[X_{i_1} = 1] = a^2$, by negative correlation

How about $\Pr[X_{i_3} = 1 \land X_{i_1} = 0]$?
Near Independence

- Independence:
 \[\Pr[A \land B \land C] = p_A p_B p_C \]

- Near-Independence:
 \[(1 - \epsilon)p_A p_B p_C \leq \Pr[A \land B \land C] \leq (1 + \epsilon)p_A p_B p_C \]

- Can dependent rounding achieve this property?
 Answer: Yes, but with limits...
Extreme Examples

- Observation 1: if $p_1 = p_2 = \ldots = p_n = 1/2$, we have

 $$\Pr[X_1 = 1 \land X_2 = 0 \land \ldots \land X_n = 0] = 0.$$

 On the other hand, $\Pr[X_1 = 1] \prod_{i=2}^{n} \Pr[X_i = 0] = 2^{-n} > 0$.

 Get around this by considering a “small” subset of events.
Observation 1: if $p_1 = p_2 = \ldots = p_n = 1/2$, we have
\[
\Pr[X_1 = 1 \land X_2 = 0 \land \ldots \land X_n = 0] = 0.
\]
On the other hand, \(\Pr[X_1 = 1] \prod_{i=2}^{n} \Pr[X_i = 0] = 2^{-n} > 0\).
Get around this by considering a “small” subset of events.

Observation 2: if $p_1 = p_2 = \ldots = p_n = 1/n$. Then,
\[
\Pr[X_1 = 1 \land X_2 = 1] = 0.
\]
On the other hand, \(\Pr[X_1 = 1] \Pr[X_2 = 1] = 1/n^2 > 0\).
Get around this by requiring that the values p_i are not too close to 0 or 1.
Modified Dependent Rounding

- **Modification**: randomly permute the variables before applying dependent rounding.

Our results: if there is some $\alpha > 0$ that $\alpha \leq p_i \leq 1 - \alpha$ for all i, then for any t events of the form $X_i = 0$ or $X_i = 1$, their joint probability lies within $(1 - (1 - t^2 n^{\alpha^2}))$ and $(1 + (1 + t n^{\alpha^2})^{t-1})$, of the value it would if these events were independent, in particular, these factors are $(1 + o(1))$ and $(1 - o(1))$ if $t = o(\alpha \sqrt{n})$.
Modified Dependent Rounding

- **Modification:** randomly permute the variables before applying dependent rounding.
- **Our results:** if there is some $\alpha > 0$ that $\alpha \leq p_i \leq 1 - \alpha$ for all i, then for any t events of the form $X_i = 0$ or $X_i = 1$, their joint probability lies within

$$\left(1 - \left(1 - \frac{t^2}{n\alpha^2}\right)\right) \text{ and } \left(1 + \left(1 + \frac{t}{n\alpha^2}\right)^{t-1}\right),$$

of the value it would if these events were independent.
Modified Dependent Rounding

- **Modification:** randomly permute the variables before applying dependent rounding.

- **Our results:** if there is some $\alpha > 0$ that $\alpha \leq p_i \leq 1 - \alpha$ for all i, then for any t events of the form $X_i = 0$ or $X_i = 1$, their joint probability lies within

 $$\left(1 - \left(1 - \frac{t^2}{n\alpha^2}\right)\right) \quad \text{and} \quad \left(1 + \left(1 + \frac{t}{n\alpha^2}\right)^{t-1}\right),$$

 of the value it would if these events were independent.

 - in particular, these factors are $(1 + o(1))$ and $(1 - o(1))$ if $t = o(\alpha \sqrt{n})$.
Modified Dependent Rounding

Application to k-median:
- reduce #extra facilities from $O(1/\epsilon)$ to $O(\log(1/\epsilon))$
- reduce run-time from $n^{O(1/\epsilon^2)}$ to $n^{O(1/\epsilon \log(1/\epsilon))}$.

Open questions

- Closing the gap for k-median?
 - Our algorithm: $(2.674 + \epsilon)$-apx
 - Best known lower bound: $1 + 2/e \approx 1.735$

- Other applications of dependent rounding with near-independence property?
Thank you!