Yield, Phytochemical Constituents, and Antibacterial Activity of Essential Oils from the Leaves/Twigs, Branches, Branch Wood, and Branch Bark of Sour Orange (Citrus aurantium L.)

Mohammad K. Okla 1, Saud A. Alamri 1, Mohamed Z.M. Salem 2,*, Hayssam M. Ali 1,3, Said I. Behiry 4, Ramadan A. Nasser 2, Ibrahim A. Alraaidh 1, Salem M. Al-Ghtani 5 and Walid Soufan 6

1 Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; malokla@ksu.edu.sa (M.K.O.); saualamri@ksu.edu.sa (S.A.A.); hayhassan@ksu.edu.sa (H.M.A.); ilaaraidh@ksu.edu.sa (I.A.A.)
2 Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; nasser67@ksu.edu.sa
3 Timber Trees Research Department, Sabahia Horticulture Research Station, Horticulture Research Institute, Agriculture Research Center, Alexandria 21526, Egypt
4 Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt; behiry_2006@yahoo.com
5 Biology Department, University College of Taymma, University of Tabuk, Taymma, Tabuk P. O. Box 741, Saudi Arabia; salghtani@ut.edu.sa
6 Plant Production Department, Faculty of Food & Agriculture Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; waoufan@ksu.edu.sa
* Correspondence: zidan_forest@yahoo.com; Tel.: +20-1012456137

Received: 11 May 2019; Accepted: 27 May 2019; Published: 11 June 2019

Abstract: In the present work, essential oils (EOs) extracted from different parts of sour orange Citrus aurantium (green leaves/twigs, small branches, wooden branches, and branch bark) were studied through gas chromatography coupled with mass spectrometry (GC/MS). Furthermore, the EOs in the amounts of 5, 10, 15, 20, and 25 µL were studied for their antibacterial activity against three pathogenic bacteria, Agrobacterium tumefaciens, Dickeya solani, and Erwinia amylovora. The main EO compounds in the leaves/twigs were 4-terpineol (22.59%), D-limonene (16.67%), 4-carvomenthene (12.84%), and linalool (7.82%). In small green branches, they were D-limonene (71.57%), dodecane (4.80%), oleic acid (2.72%), and trans-palmitoleic acid (2.62%), while in branch bark were D-limonene (54.61%), γ-terpinene (6.68%), dodecane (5.73%), and dimethyl anthranilate (3.13%), and in branch wood were D-limonene (38.13%), dimethyl anthranilate (8.13%), (−)-β-fenchol (6.83%), and dodecane (5.31%). At 25 µL, the EO from branches showed the highest activity against A. tumefaciens (IZ value of 17.66 mm), and leaves/twigs EO against D. solani and E. amylovora had an IZ value of 17.33 mm. It could be concluded for the first time that the wood and branch bark of C. aurantium are a source of phytochemicals, with D-limonene being the predominant compound in the EO, with potential antibacterial activities. The compounds identified in all the studied parts might be appropriate for many applications, such as antimicrobial agents, cosmetics, and pharmaceuticals.

Keywords: GC–MS; hydrodistillation; antibacterial activity; clevenger; Citrus aurantium; phytochemical; essential oils
1. Introduction

Natural extracts and essential oils (EOs) extracted from aromatic and indigenous plants have a broad spectrum of biological activities such as antibacterial, antifungal, antioxidant, anticancer [1–8]. EOs from Citrus spp., especially from peels, have been studied extensively in many research projects over the past few decades [9–11]. They have exhibited bioactivity potentials against the growth of pathogenic bacteria, fungi, and insects [12,13]. The main chemical compounds identified in the EOs from Citrus were limonene, α-pinene, β-pinene, citral, linalool, myrcene, γ-terpinene, eugenol methyl ether, neral, geranial, neryl acetate, and β-caryophyllene [14–18]. The Citrus plants have many biological and aromatic properties because of the occurrence of EOs, alkaloids, glycosides, flavonoids, tannins, and other compounds in its various parts [19,20].

Citrus aurantium L. (Rutaceae), known as sour or bitter orange, is extensively consumed in Mediterranean countries as marmalade and a flavoring agent [21]. The extracted oils have been recognized as safe for their wide uses as antibacterial, antifungal antioxidant, anti-inflammatory, and anxiolytic effects [22–25], and have analgesic activity [26].

Limonene was determined as the main component of bitter orange peel EO, followed by β-myrcene, linalool, β-pinene, and α-pinene [27]. The major compound in Tunisian neroli EO extracted from *C. aurantium* blossoms is 25.7% linalool [28]. The (R)-(-)-linalool was 59–64% in *Citrus* (south and south-central Brazil), whereas the hydrolate (orange water) of *C. aurantium* has nootkatone (17%), α-terpineol (10%), linalool (10%), and limonene (0.8%) [29].

At maturity, limonene exhibited the highest level, with several minor compounds, including linalool, myrcene, and α-terpinene, in the EOs from bitter orange peel [30]. Limonene (92–95%) with linalool and linalyl acetate (together 0.3–3.2%) were identified in the EOs from living (fruits that are still on the tree) bitter orange peel [31]. Shen et al. [32] showed the anti-inflammatory potential of EO from blossoms of *C. aurantium* L. var. *amara* Engl with major constituents of linalool, α-terpineol, (R)-limonene, and linalyl acetate [32]. *C. aurantium* zest EO is composed of limonene (85.22%), β-myrcene, and α-pinene as the main compounds [13]. EO of sweet orange zest consisted of limonene as the main compound, followed by myrcene, α-farnesene, and γ-terpinene [33,34], whereas the EO of sweet orange zest from Uganda and Rwanda contained limonene, myrcene, α-pinene, and linalool [35]. Using the hydrodistillation method, the linalool and terpenes were found to be the main compounds in Neroli blossom EO, whereas, in water recovered oils, linalool, linalyl acetate, geraniol, α-terpineol, and neral were the main compounds [36]. In flowers, the oil showed the presence of camphor, thymol, linalool, carvacrol, and borneol as main compounds with significant anti-oxidant effect [37].

The goal of the present work was to identify the aromatic chemical profile and antibacterial activity of the EOs from different parts of *C. aurantium* that could be suitable for different industrial purposes.

2. Materials and Methods

2.1. Plant Material of *C. aurantium*

Fresh branches of *C. aurantium* were collected in 2019, from Alexandria, Egypt, during pruning process for the trees. The resultant materials were separated to leaves/twigs, small green branches, branch wood, and branch bark. The wood and bark of branches were separated. All the materials were washed with tape water to remove the dust, then cut to small pieces by using scissors to facilitate the extraction process of essential oils (EOs).

2.2. Extraction of EOs

Approximately 100 g from each of leaves/twigs, branches, the wood of branches, and branch bark from *C. aurantium* were soaked in 2 L flasks with 1500 mL of water and hydrodistilled for 3 h in a Clevenger-type apparatus [38]. The distillates of the EOs were dried over anhydrous Na$_2$SO$_4$, filtrated, and measured with respect to the mass of fresh weight of raw material (Table 1). The EOs
from leaves/twigs (Petitgrain), branches (2–4 cm in diameter), the wood of branches, and branch bark were kept dry in sealed Eppendorf tubes and stored at 4 °C prior to chemical analyses.

Table 1. Oil yield from different parts of *Citrus aurantium*.

Part Used	Oil Yield (mL/100 g Material)
Leaves/twigs	3.45
Branches	1.55
Wood of branches	1.15
Branch bark	1.10

2.3. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis

The chemical composition of the essential oils was determined using a Trace GC Ultra-ISQ mass spectrometer (Thermo Scientific, Austin, TX, USA) with a direct capillary column TG–5MS (30 m × 0.25 mm × 0.25 µm film thickness). Initially, the column oven temperature was held at 45 °C, then increased by 5 °C/min to 250 °C and held for 2 min, then increased to 280 °C by 10 °C/min. The injector and MS transfer line temperatures were kept at 250 °C. Helium was used as a carrier gas at a constant flow rate of 1 mL/min. The solvent delay was 2 min and diluted samples of 1 µL were injected automatically using an Autosampler AS1310 coupled with the GC in the split mode. EI mass spectra were collected at 70 eV ionization voltages over a range of m/z of 40–600 in full scan mode. The ion source was set at 200 °C. Identification of the constituents was performed on the basis of their retention times and by comparing the mass spectra with those found in the library search (NIST and Wiley) [39]. Type threshold values contained in Xcalibur 3.0 data system of GC/MS were used as match factors and to confirm that all mass spectra are appended to the library with measuring the Standard Index (SI) and Reverse Standard Index (RSI), where the value ≥650 is acceptable to confirm the compounds [40].

2.4. Antibacterial Activity

Antibacterial evaluation of the EOs was assayed against three phytopathogenic bacteria, *Agrobacterium tumefaciens*, *Dickeya solani*, and *Erwinia amylovora* (Microbiology Laboratory, Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Egypt). The antibacterial evaluation test of the studied four EOs was performed by measuring the inhibition zones (IZs) in millimeters around the loaded filter papers with different amounts of oils (5, 10, 15, 20, and 25 µL) using disc diffusion method [40,41]. Sterile filter paper discs (Whatman filter paper no. 1) with a diameter of 4 mm loaded with different amounts of the studied EOs were placed on the surface of prepared agar plates. All the plates were incubated in incubator at 30 °C for 24 h. Negative control discs were left without any EO. All of the tests were performed in triplicate and the values of the IZs (the clear zones with no bacterial growth around the loaded discs) were reported including the diameter of the disc.

2.5. Statistical Analysis

Values of the bacteria’s inhibition zones were statistically analyzed with analysis of variance (ANOVA) in completely randomized design with two factors (oil type and oil amount) using a computer program, Statistical Analysis System [42], and compared with those of the control. Means were compared with L.S.D. test at \(p < 0.05 \) levels.
3. Results

3.1. Chemical Composition of the EOs

Table 2 presents the chemical composition of EOs from *C. aurantium* green leaves/twigs. The main compounds were 4-terpineol (22.59%), D-limonene (16.67%), 4-carvomenthenol (12.84%), linalool (7.82%), methyl methanthranilate (4.41%), *cis*-4-thujanol (3.72%), *γ*-terpinene (3.58%), tetraneurin-α-diol (2.61%), 6,9,12,15-docosatetraenoic acid methyl ester (2.48%), and linalyl acetate (2.28%).

Compound	Relative Quantity (%)	Molecular Formula	Molecular Weight (g/mol)	SI 1	RSI 2
Myrcene	0.30	C10H16	136	803	833
β-Pinene	1.21	C10H16	136	804	862
α-Limonene	16.67	C10H16	136	934	936
2-Carene epoxide	0.45	C11H24	156	863	920
Undecane	0.92	C11H16	136	927	938
γ-Terpinene	3.58	C10H16	136		
cis-4-Thujanol	3.72	C10H18	154	936	947
Octadecyl vinyl ether	0.76	C20H36	296	760	766
4-Terpineol	22.59	C10H18	154	961	966
Dodecane	1.59	C12H26	170	883	883
cis-para-2-Menthen-1-ol	0.71	C10H18	154	847	886
trans,*trans*-5-Caranol	0.52	C10H18	154	772	841
2,6,10-Trimethyltetradecane	0.56	C17H36	240	768	795
4-Carvomenthenol	12.84	C10H18	154	932	943
Linalool	7.82	C20H18	154	839	861
5,9-Dimethyl-4,8-decadienal	0.42	C12H2O	180	770	805
Linalyl acetate	2.28	C13H20O2	196	825	888
α-Terpineol	0.96	C10H18	154	762	790
Vitamin A aldehyde (Retinal)	0.32	C20H32O	284	704	807
Ascaridol	0.97	C10H16O2	168	765	850
4,7-Octadecadienoic acid methyl ester	0.48	C10H32O2	290	691	712
Arachidonic acid methyl ester	0.54	C20H32O3	318	740	777
Thymol	0.90	C10H14O	150	774	864
6,9,12-Octadecatrienoic acid methyl ester	0.53	C10H32O2	292	719	764
2-(7-Heptadecen-2-yl) tetrahydro-2H-pyran (Z)-Pseudosolasodine diacetate	0.83	C31H46NO4	499	680	717
Methyl methanthranilate	4.41	C9H14NO2	165	819	929
3′,4′,7-Trimethylquercetin	0.41	C15H16O7	344	661	690
2-[4-Methyl-6-(2,6,6-trimethylcyclohex-1-enyl)hexa-1,3,5-trienyl]cyclohex-1-en-1-carboxaldehyde	1.38	C23H32O	324	717	761
Ethyl iso-allocholate	0.61	C20H44O3	436	717	744
Oleic acid	0.87	C18H34O2	282	685	754
6,9,12,15-Docosatetraenoic acid methyl ester	2.48	C23H38O2	346	713	797
Tetraneurin-α-diol	2.61	C15H20O3	280	697	786

Table 3 shows the chemical composition of EOs from *C. aurantium* small green branches. The main compounds in small branches were D-limonene (71.57%), dodecane (4.80%), oleic acid (2.72%), *trans*-palmitoleic acid (2.62%), undecane (2.28%), 1-nonadecanol (2.11%), *γ*-terpinene (1.97%), 4-terpineol (2.13%), and *α*-terpineol (1.04%).
Table 3. Chemical composition of essential oil from *Citrus aurantium* small branches.

Compound	Relative Quantity (%)	Molecular Formula	Molecular Weight (g/mol)	SI ¹	RSI ²
α-Pinene	0.52	C₁₀H₁₆	136	873	934
Decane	0.72	C₁₀H₂₂	142	859	937
Myrcene	1.08	C₁₀H₁₆	136	819	836
2-Methyldecan-1-ol	0.46	C₁₃H₂₈O	200	788	835
n-Limonene	71.57	C₁₀H₁₆	136	940	941
(E)-2,3-Epoxycarane	0.49	C₁₀H₁₆O	152	759	817
Undecane	2.28	C₁₁H₂₄	156	928	950
γ-Terpinene	1.97	C₁₀H₁₆	136	878	910
Myristyl alcohol	0.57	C₁₄H₃₀O	214	774	777
1-Nonadecanol	2.11	C₁₉H₄₀O	284	766	775
4-Terpineol	2.13	C₁₀H₁₈O	154	897	942
Dodecane	4.80	C₁₂H₂₆	170	919	934
Tetradecane	0.84	C₁₄H₃₀	198	780	788
α-Terpinol	1.04	C₁₀H₁₈O	154	832	880
3,6-Octadecadienoic acid	0.49	C₁₉H₃₄O₂	294	729	777
methyl ester					
Octahydro-1,2,4-metheno-1H-	0.46	C₁₀H₁₂O₂	164	712	778
cyclobuta[c]pentalen-3,5-diol					
cis-Z-α-Bisabolene epoxide	0.96	C₁₅H₂₄O	220	735	759
Oleic acid	2.72	C₁₆H₃₄O₂	282	762	781
Arachidonic acid methyl	0.82	C₂₁H₴₄O₂	318	753	815
ester					
(E)-Acrylic acid,	0.66	C₁₂H₁₆O₄	224	604	688
3-(3-methoxycarbonyl-1-cyclohexen-4-yl)-methylester					
trans-Palmitoleic acid	2.62	C₁₆H₃₀O₂	254	760	807
Ethyl iso-allocholate	0.66	C₂₆H₄₄O₅	436	743	772

¹ SI: Standard Index. ² RSI: Reverse Standard Index.

The chemical constituents of *C. aurantium* branch bark is shown in Table 4. The main components were D-limonene (54.61%), γ-terpinene (6.68%), dodecane (5.73%), dimethyl anthranilate (3.13%), undecane (3.00%), tetradecyloxirane (2.08%), ethyl iso-allocholate (1.96%), 4-terpineol (1.59%), myrcene (1.53%), and 1,3-diolein (1.52%).

Table 4. Chemical composition of essential oil from *Citrus aurantium* branch bark.

Compound	Relative Quantity (%)	Molecular Formula	Molecular Weight (g/mol)	SI ²	RSI ¹
α-Pinene	1.28	C₁₀H₁₆	136	884	938
Decane	1.27	C₁₀H₂₂	142	817	929
Myrcene	1.53	C₁₀H₁₆	136	812	841
β-Pinene	1.38	C₁₀H₁₆	136	855	899
2,7-Dimethyl-2,6-octadien-1-ol	0.45	C₁₀H₁₈O	154	703	740
1-Decene	0.52	C₁₀H₂₀	140	765	786
1-Tetradecanol	0.66	C₁₄H₃₀O	214	770	776
n-Limonene	54.61	C₁₀H₁₆	136	938	940
(E)-2,3-Epoxycarane	0.96	C₁₀H₁₆O	152	774	829
Undecane	3.00	C₁₁H₂₄	156	894	930
γ-Terpinene	6.68	C₁₀H₁₆	136	908	945
cis-p-2-Menthen-1-ol	0.41	C₁₀H₁₈O	154	754	822
Hexahydrofarnesol	1.2	C₁₅H₃₂O	228	750	740
Tetradecyloxirane	2.08	C₁₆H₃₂O	240	743	809
Table 4. Cont.

Compound	Relative Quantity (%)	Molecular Formula	Molecular Weight (g/mol)	SI	RSI
4-Terpineol	1.59	C_{10}H_{18}O	154		
Dodecane	5.73	C_{12}H_{26}	170	893	923
2,6,10-Trimethyltetradecane	1.17	C_{17}H_{36}	240	754	782
4-Carvomenthol	1.20	C_{10}H_{18}O	154	782	800
α-Terpineol	1.15	C_{10}H_{18}O	154	825	884
Methyl hexadecanoate	0.41	C_{17}H_{30}O	266	716	723
trans-(Z)-α-Bisabolene epoxide	0.61	C_{15}H_{24}O	220	729	801
4,7-Octadecadienoic acid, methyl ester	0.61	C_{16}H_{30}O	290	707	730

Table 4 shows the chemical compounds identified in C. aurantium branch wood. The main compounds in the EO were D-limonene (38.13%), dimethyl anthranilate (8.13%), (-)-β-fenchol (6.83%), dodecane (5.31%), 4-carvomenthol (4.21%), γ-terpinene (3.62%), cis-4-thujanol (3.49%), thymol (3.30%), valencene (3.30%), linalool (2.94%), 6,7-dihydrogeraniol (2.15%), and undecane (2.13%).

Table 5. Chemical composition of essential oil from Citrus aurantium branch wood.

Compound	Relative Quantity (%)	Molecular Formula	Molecular Weight (g/mol)	SI	RSI
α-Pinene	1.50	C_{10}H_{16}	136	941	948
Decane	0.65	C_{10}H_{22}	142	880	939
Myrcene	0.96	C_{10}H_{16}	136	837	906
β-Pinene	1.54	C_{10}H_{16}	136	909	939
D-Limonene	38.13	C_{10}H_{16}	136	940	941
p-Cymene	0.72	C_{10}H_{14}	134	805	823
Undecane	2.13	C_{11}H_{24}	156	934	951
γ-Terpinene	3.62	C_{10}H_{16}	136	901	935
4-Terpineol	0.95	C_{10}H_{18}O	154	866	906
1-Dodecanol	0.54	C_{12}H_{26}O	186	769	798
1-Eicosanol	1.69	C_{20}H_{42}O	298	769	776
Linalool	2.94	C_{10}H_{18}O	154	873	898
cis-4-Thujanol	3.49	C_{10}H_{18}O	154	933	945
Dodecane	5.31	C_{12}H_{26}	170	926	939
7-Methyl pentadecane	1.12	C_{16}H_{34}	226	850	885
4-Carvomenthol	4.21	C_{10}H_{18}O	154	898	907
Capraldehyde	0.93	C_{10}H_{20}O	156	823	885
(-)-β-Fenchol	6.83	C_{10}H_{18}O	154	932	937
6,7-Dihydrogeraniol	2.15	C_{10}H_{20}O	156	886	897
β-Citrylidenethanol	0.45	C_{12}H_{20}O	180	730	742
trans-Carveol	0.83	C_{10}H_{18}O	152	820	864
(Z)-Citral	1.42	C_{10}H_{16}O	152	782	830
The GC–MS chromatograms of the identified compounds of EOs from the studied different parts of C. aurantium are shown in Figure 1.

Table 5. Cont.

Compound	Relative Quantity (%)	Molecular Formula	Molecular Weight (g/mol)	SI ¹	RSI ²
6-Methyltetraline	0.57	C₁₁H₁₄	146	777	841
Dihydro cuminyl alcohol	0.91	C₁₀H₁₆O	152	805	854
Thymol	3.30	C₁₀H₁₄O	150	904	917
Farnesol	1.05	C₁₅H₂₆O	222	801	813
Nerolidyl acetate	0.66	C₁₇H₂₆O₂	264	805	825
Valencene	3.30	C₁₅H₂₄	204	931	958
Dimethyl anthranilate	8.13	C₉H₁₁NO₂	165	909	940

¹ SI: Standard Index. ² RSI: Reverse Standard Index.
3.2. Antibacterial Activity of the EOs

From the main effects of the extracted oils from different parts of *C. aurantium* (Figure 2a), oil from leaves/twigs showed the highest activity against all the studied three phytopathogenic bacteria. The main effects of oil amount from all the studied plant parts (Figure 2b) showed that increasing the amount of oil (µL) also increased the antibacterial activity, as measured by the inhibition zone (IZ).

Table 6 presents the antibacterial activity of the studied EOs from different parts of *C. aurantium*. The highest activity against the growth of *A. tumefaciens* was observed by the application of EO from branches at 25 µL (IZ value of 17.66 mm), followed by oil from leaves/twigs at 20 and 25 µL with IZ value of 15.66 mm. On the other hand, EOs from bark and branch wood did not show any activity against *A. tumefaciens*. At 25 µL of leaves/twigs EO, the highest activity (17.33 mm) against *D. solani* was reported, followed by the application of branch EO at 25 µL (16.66 mm) and 20 µL (16.66 mm).

For the antibacterial activity of EOs against the growth of *E. amylovora* at oil amount of 20 and 25 µL from leaves/twigs, the highest IZ value was observed (17.33 mm), followed by branch EO at 25 µL with IZ value of 15.33 mm. Also, the EO from leaves/twigs at 10 and 15 µL showed good activity against *E. amylovora* with IZ value of 15.00 mm.
against *A. tumefaciens*. At 25 µL of leaves/twigs EO, the highest activity (17.33 mm) against *D. solani* was reported, followed by the application of branch EO at 25 µL (16.66 mm) and 20 µL (16.66 mm).

For the antibacterial activity of EOs against the growth of *E. amylovora* at oil amount of 20 and 25 µL from leaves/twigs, the highest IZ value was observed (17.33 mm), followed by branch EO at 25 µL with IZ value of 15.33 mm. Also, the EO from leaves/twigs at 10 and 15 µL showed good activity against *E. amylovora* with IZ value of 15.00 mm.

Figure 2. The main effects of oils from different parts of *C. aurantium* (a) and their amounts (b) on the growth of *A. tumefaciens*, *D. solani*, and *E. amylovora*.

![Graph showing inhibition zones for *A. tumefaciens*, *D. solani*, and *E. amylovora* against extracts from different parts of *C. aurantium* and different oil amounts.](image-url)
Table 6. Antibacterial activity of essential oils from C. aurantium against three phytopathogenic bacteria.

Extracted Oil	Oil Amount (µL)	Inhibition Zone Values (mm)	A. tumefaciens	D. solani	E. amylovora
Leaves/twigs	0	0.00	0.00	0.00	0.00
	5	0.00	9.33 ± 0.57	12.66 ± 0.57	
	10	10.00 ± 0.00	14.66 ± 0.57	15.00 ± 0.00	
	15	11.66 ± 0.57	15.00 ± 0.00	15.00 ± 0.00	
	20	15.66 ± 0.57	16.66 ± 0.57	17.33 ± 0.57	
	25	15.66 ± 0.57	17.33 ± 0.57	17.33 ± 0.57	
Branches	0	0.00	0.00	0.00	0.00
	5	0.00	11.33 ± 0.57	12.00 ± 0.00	
	10	6.00 ± 0.00	11.33 ± 0.57	12.00 ± 0.00	
	15	10.00 ± 0.00	14.33 ± 0.57	12.33 ± 0.57	
	20	10.00 ± 0.00	16.66 ± 1.52	14.66 ± 0.57	
	25	17.66 ± 0.57	16.66 ± 0.57	15.33 ± 0.57	
Branch bark	0	0.00	0.00	0.00	0.00
	5	0.00	0.00	6.00 ± 0.00	
	10	0.00	0.00	10.00 ± 0.00	
	15	0.00	2.00 ± 3.46	10.00 ± 0.00	
	20	0.00	7.66 ± 0.57	11.66 ± 0.57	
	25	0.00	9.66 ± 0.57	12.33 ± 0.57	
Branch wood	0	0.00	0.00	0.00	0.00
	5	0.00	0.00	6.00 ± 0.00	
	10	0.00	10.00 ± 0.00	6.33 ± 0.57	
	15	0.00	10.66 ± 0.57	10.00 ± 0.00	
	20	0.00	10.66 ± 0.57	11.33 ± 0.57	
	25	0.00	13.66 ± 0.57	12.00 ± 0.00	

p-value < 0.0001 < 0.0001 < 0.0001

4. Discussion

The results of the present work showed the variation in the chemical composition of the EOs from different parts of C. aurantium. Most previous studies have focused on the identification of chemical composition of EOs from the peels, pericarp, blossoms, and leaves, and no core results have been reported from branches, wood, or bark. Additionally, the trials of antimicrobial activities of the EOs were measured against human pathogenic bacteria and plant pathogenic fungi, with no results about the activity against plant bacterial pathogens.

4-terpineol (22.59%) and D-limonene (16.67%) were the most predominate components abundant in green leaves/twigs of C. aurantium, while D-limonene with percentages of 71.57%, 54.61%, and 38.13% was found in small green branches, branch bark, and branch wood, respectively. Results from Wolffenbuttel et al. [29] showed that limonene (39.5–92.7%) and linalool (14.2–24.8%) are the main components of the pericarp and leaves, respectively, of citrus oils obtained by steam distillation, hydrodistillation, or cold press extraction. Linalyl acetate, linalool, a-terpineol, geranyl acetate, geraniol, and geranial as oxygenated monoterpene hydrocarbons were primarily identified in petitgrain oil of C. aurantium var. amara [12], whereas limonene was present only at a concentration of 1.4%.
Terpinen-4-ol, α-pinene, β-pinene, 1,8-cyneol, linalool, and 4-terpineol and their mixture have been shown to have potent antifungal activity [12,43,44]. The most abundant compounds in Tunisian oil were linalool with lower amounts of linalyl acetate and α-terpinol [45]. Algerian C. aurantium leaf EO showed linalool, γ-terpinene, and α-terpineol with percentages of 18.6, 6.9, and 15.1%, respectively, while in peel EO were linalool, cis-linalool oxide, trans-carveol, endo-fenchyl acetate, and carvone with percentages of 12, 8.1, 11.9, 5.5, and 5.8%, respectively [46]. Previously, α-terpineol from *Cinnamomum longepaniculatum* decreased cell size and irregular cell shape, cell wall, and membrane of *E. coli* [47]. α-terpineol, terpinen-4-ol, terpinolene, and α-terpineol had strong antibacterial activities against *Propionibacterium acnes* and *Staphylococcus aureus* [48].

Linalool acetate was present in Sicilian petitgrain oil with a lower amount of linalool [49]. Linalyl acetate and linalool were the main components in petitgrain oil from Turkey [50]. EOs of the peels, flowers, and leaves from *C. aurantium*, collected from northern Greece, exhibited the primary compounds linalool (29.14%), β-pinene (19.08%), *trans*-β-ocimene (6.06%), and *trans*-farnesol (5.14%) [51]. The EOs from blossoms of *C. aurantium* growing in the Darab region in Fars Province, Iran, showed that geraniol, α-terpineol, linalool, and benzene acetaldehyde were the main compounds [52]. Myrcene was found in low percentage of the present work and previously it was reported that myrcene, which found in the EO, is known to possess cytotoxic activity [53,54]. DI-limonene with 94.81% is the main compound identified in peel EO from C. aurantium with promising larvicidal against Anopheles stephensi [9]. Limonene, (E)-nerolidol, α-terpineol, α-terpinyl acetate, and (E,E)-farnesol were the main compounds in the flower EO of *C. aurantium* with good antibacterial activity against *Pseudomonas aeruginosa* [10]. α-terpineol and terpinene-4-ol, found in the leaf EO from *C. hystrix*, were more active against *Acinetobacter baumannii*, *Streptococcus* spp., and *Haemophilus influenzae* than crude oil, while limonene, the most abundant component of *C. hystrix* oil, had lower antibacterial activity [55].

Zest EO had limonene (85.22%), β-myrcene (4.3%), and α-pinene (1.29%) as the main components, and the EO showed higher antioxidant activity than did limonene alone with a potential for antibacterial activity against *Staphylococcus aureus*, *Salmonella* sp., *Pseudomonas aeruginosa*, *Bacillus subtilis*, and *Escherichia coli* [13]. Among 34 kinds of citrus EOs, four EOs from *C. aurantium* zest presented good antioxidant activities, as measured by a DPPH assay [16]. Strong fungicidal activity was exhibited by limonene and (E)-nerolidol present in the EO of the flowers of *C. aurantium* L. var. amara [56].

Considering that limonene is the major compound of the EO of *Citrus*, this compound has good antioxidant properties [57]. Additionally, other compounds, such as linalool and bornol, have antitumor effects; sabine and pinene have anti-inflammatory activity; and citral exhibits analgesic functions [58–62].

Although cis-β-terpineol, D-limonene, 4-carvomenthol, and linalool were the main compounds in petitgrain EO in the present study, the compounds of linalyl acetate, linalool, α-terpineol, and geranyl acetate [12,18,63] were the main compounds in petitgrain EO, which exhibited good antibacterial and antifungal activity, especially against *Bacillus subtilis*, *Aspergillus niger*, and *Penicillium expansum*, whereas the weakest fungicidal effects were observed for *Candida krusei* [12]. A mixture of terpenoid containing terpine-4-ol and linalool exhibited high antifungal activity against *Trichophyton mentagrophytes*, *T. rubrum*, *Microsporum gypseum*, *A. niger*, and *A. flavus* [43].

Limonene, linalool, citronellal, and citronellol were the main constituents of EO from *C. aurantifolia* leaves and fruit peels and exhibited promising antibacterial activity against oral pathogenic bacteria *Streptococcus mutans* and *Lactobacillus casei* [64].

Leaves EO of *C. aurantium* grown in Shiraz (south of Iran) showed the presence of limonene, linalool, and *trans*-β-ocimene as major components and exhibited strong antioxidant activity [65]. EO obtained by cold pressing of *C. aurantium* fruits with high percentage of limonene (77.90%) and minor percentages of β-pinene (3.40%) and myrcene (1.81%) was inactive against *Escherichia coli* and *Pseudomonas*, while moderately active against *Staphylococcus aureus* [66]. Limonene from linalool-rich essential oil inhibits *S. aureus* [67].

The variations in the chemical composition of the EOs could be explained by various extraction processes and plant parts used. Furthermore, they are affected by various soils and climatic characteristics.
of the regions where the *C. aurantium* trees grow [36,45,68–71]. For example, the ranges of linalool acetate, linalool, farnesol, nerolidol, and geranyl acetate at 12.2–28.9%, 22.9–54%, 0.2–10.4%, 0.4–21.4%, and 0.97–9.3%, respectively, in *C. aurantium* blossom EO were observed by seven different methods of oil extraction [71].

5. Conclusions

In the present study, variations in essential oils composition from different parts of *C. aurantium* were reported. 4-terpineol, followed by D-limonene, were the main constituents in EO from the leaves/twigs, while D-limonene was the main constituent in small green branches, the branch wood, and the branch bark. EOs from leaves and small branches promised to be potential antibacterial activates against *Agrobacterium tumefaciens*, *Dickeya solani*, and *Erwinia amylovora*. The EOs obtained from different parts of *C. aurantium* displayed bioactive compounds, which have the potential for application as biopreservative agents, antioxidants, antimicrobial compounds, cosmetics, and pharmaceuticals.

Author Contributions: M.K.O., S.A.A., M.Z.M.S., S.I.B., H.M.A. and R.A.N. designed the experiment, conducted laboratory analyses, wrote parts of the manuscript, and interpreted the results; I.A.A., S.M.A.-G., and W.S. contributed reagents and materials; and M.Z.M.S. visualized and revised the article.

Funding: This research was funded by Dean of Scientific Research, King Saud University, through the research group project number PRG-1439-63.

Acknowledgments: We extend our appreciation to the Dean of Scientific Research, King Saud University, for funding the work through the research group project number PRG-1439-63. The authors also thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sanei-Dehkordi, A.; Soleimani-Ahmadi, M.; Akbarzadeh, K.; Abadi, Y.S.; Paksa, A.; Gorouhi, M.A.; Mohammadi-Azni, S. Chemical composition and mosquito larvicidal properties of essential oil from leaves of an Iranian indigenous plant *Zhumeria majdae*. *J. Essen. Oil Bear. Plant*. 2016, 19, 1454–1461. [CrossRef]
2. Tayeb, A.H.; Sadeghifara, H.; Hubbe, M.A.; Rojas, O.J. Lipoxygenase-mediated peroxidation of model plant extractives. *Ind. Crops Prod.* 2017, 104, 253–262. [CrossRef]
3. EL-Hefny, M.; Mohamed, A.A.; Salem, M.Z.M.; Abd El-Kareem, M.S.M.; Ali, H.M. Chemical composition, antioxidant capacity and antibacterial activity against some potato bacterial pathogens of fruit extracts from *Phylolaca dioica* and *Ziziphus spina-christi* grown in Egypt. *Sci. Horticul.* 2018, 233, 225–232. [CrossRef]
4. EL-Hefny, M.; Ashmawy, N.A.; Salem, M.Z.M.; Salem, A.Z.M. Antibacterial activity of the phytochemicals-characterized extracts of *Callistemon viminalis*, *Eucalyptus camaldulensis* and *Coryza dicordiodes* against the growth of some phytopathogenic bacteria. *Microb. Pathog.* 2017, 113, 348–356. [CrossRef][PubMed]
5. Elghandour, M.M.Y.; Salem, M.Z.M.; Greiner, R.; Salem, A.Z.M. Effects of natural blends of garlic and eucalypt essential oils on biogas production of four fibrous feeds at short term of incubation in the ruminal anaerobic biosystem. *J. Sci. Food Agric.* 2018, 98, 5313–5321. [CrossRef][PubMed]
6. Salem, M.Z.M.; Behiry, S.I.; EL-Hefny, M. Inhibition of *Fusarium culmorum*, *Penicillium chrysogenum* and *Rhizoctonia solani* by n-hexane extracts of three plant species as a wood-treated oil fungicide. *J. Appl. Microbiol.* 2019, 126, 1683–1699. [CrossRef][PubMed]
7. Medina, M.F.E.; Alaba, P.A.; Estrada-Zuñiga, M.E.; Velázquez-Ordoñez, V.; Barbabosa-Pliego, A.; Salem, M.Z.M.; Alonso-Frés, M.U.; Camacho-Díaz, L.M.; Salem, A.Z.M. Anti-staphylococcal properties of four plant extracts against sensitive and multi-resistant bacterial strains isolated from Cattle and Rabbits. *Microb. Pathog.* 2017, 113, 286–294. [CrossRef]
8. Tavakoli, S.; Vatandoost, H.; Zeidabadinezhad, R.; Hajighaee, R.; Hadijakhoordi, A.; Abai, M.R.; Yassa, N. Gas Chromatography, GC/Mass analysis and bioactivity of essential oil from aerial parts of *Ferulago trifida*. Antimicrobial, antioxidant, AChE inhibitory, general toxicity, MTT assay and larvicidal activities. *J. Arthropod Borne Dis.* 2017, 11, 414–426.
9. Sanei-Dehkordi, A.; Sedaghat, M.M.; Vatandoost, H.; Abai, M.R. Chemical compositions of the peel essential oil of *Citrus aurantium* and its natural larvicidal activity against the malaria vector *Anopheles stephensi* (Diptera: Culicidae) in comparison with *Citrus paradise*. *J. Arthropod Borne Dis.* 2016, 10, 577–585.
10. Haj Ammar, A.; Bouajila, J.; Lebrhi, A.; Mathieu, F.; Romdhane, M.; Zagrouba, F. Chemical composition and in vitro antimicrobial and antioxidant activities of *Citrus aurantium* L. flowers essential oil (Neroli oil). *Pak. J. Biol. Sci.* 2012, 15, 1034–1040. [CrossRef]

11. Radan, M.; Parčina, A.; Burčul, F. Chemical composition and antioxidant activity of essential oil obtained from bitter orange peel (*Citrus aurantium* L.) using two methods. *Croat. Chem. Acta* 2018, 91, 125–128. [CrossRef]

12. Gni ewosz, M.; Kraśniewska, K.; Kosakowska, O.; Pobiega, K.; Wolska, I. Chemical compounds and antimicrobial activity of petitgrain (*Citrus aurantium* L. var. amara) essential oil. *Herba Pol.* 2017, 63, 18–25. [CrossRef]

13. Teneva, D.; Denkova-Kostova, R.; Goranov, B.; Hristova-Ivanova, Y.; Slavchev, A.; Denkova, Z.; Kostov, G. Chemical composition, antioxidant activity and antimicrobial activity of essential oil from *Citrus aurantium* L. zest against some pathogenic microorganisms. *Z Naturforsch C* 2019, 74, 105–111. [CrossRef] [PubMed]

14. Kamal, G.M.; Anwar, F.; Hussain, A.I.; Sarri, N.; Ashraf, M.Y. Yield and chemical composition of *Citrus* essential oils as affected by drying pretreatment of peels. *Int. Food Res. J.* 2011, 18, 1275–1282.

15. Ahmad, M.M.; Rehman, S.; Iqbal, Z.; Anjum, F.M.; Sultan, J.I. Genetic variability to essential oil composition in four *Citrus* fruit species. *Pak. J. Bot.* 2006, 38, 319–324.

16. Choi, H.S.; Sawamura, M. Composition of the essential oil of *Citr us tamurana* Hort. ex Tanaka (Hyuganatsu). *J. Agric. Food Chem.* 2000, 48, 4868–4873. [CrossRef] [PubMed]

17. Vekiari, S.A.; Protopapadakis, E.E.; Parthena, P.; Dimitrios, P.; Panou, C.; Vamvakias, M. Composition and seasonal variation of the essential oil from leaves and peel of a Cretan lemon variety. *J. Agric. Food Chem.* 2002, 50, 147–153. [CrossRef] [PubMed]

18. Lota, M.L.; de Rocca Serra, D.; Jacquemond, C.; Tomi, F.; Casanova, J. Chemical variability of peel and leaf essential oils of sour orange. *Flavour Frag. J.* 2001, 16, 89–96. [CrossRef]

19. Souza, E.; Stamford, T.; Lima, E.; Trajano, V.; Filho, J. Antimicrobial effectiveness of spices: An approach for use in food conservation systems. *Braz. Arch. Biol. Technol.* 2005, 48, 549–558. [CrossRef]

20. De Masi, L.; Castaldo, D.; Pignone, D.; Servillo, L.; Facchiano, A. Experimental evidence and in silico identification of tryptophan decarboxylase in *Citrus* genus. *Molecules* 2017, 22, 272. [CrossRef] [PubMed]

21. Rusef, P.; Perez-Cacho, R. Citrus flavor. In *Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability*, 1st ed.; Berger, R.G., Ed.; Springer: Berlin, Germany, 2000; pp. 346–351.

22. Caccioni, D.R.; Guizzardi, M.; Biondi, D.M.; Renda, A.; Ruberto, G. Relationship between volatile components of citrus fruit essential oils and antimicrobial action on *P. digitatum* and *P. italicum* growth. *Int. J. Food Microbiol.* 1998, 43, 73–79. [CrossRef]

23. Giampieri, L.; Fraternelle, D.; Ricci, D. The in vitro action of essential oils on different organisms. *Essent. Oil Res.* 2002, 14, 312–318. [CrossRef]

24. Pultrini Ade, M.; Galindo, L.A.; Costa, M. Effects of the essential oil from *Citrus aurantium* L. in experimental anxiety models in mice. *Life Sci.* 2006, 78, 1720–1725. [CrossRef] [PubMed]

25. Gruenwald, J.; Brendler, T.; Jaenicke, C. *PDR for Herbal Medicines*, 2nd ed.; Medical Economics Company: Montvale, NJ, USA, 2000; pp. 346–351.

26. Abdi-Azar, H.; Maleki, S.A. Comparison of the anesthesia with thiopental sodium alone and their combination with *Citrus aurantium* L. (Rutaceae) essential oil in male rat. *Bull. Environ. Pharmacol. Life Sci.* 2014, 3, 37–44.

27. Gö lükü, M.; Toker, R.; Tokgöz, H.; Turgut, D.Y. Bitter orange (*Citrus aurantium* L.) peel essential oil compositions obtained with different methods. *Derin* 2015, 32, 161–170. [CrossRef]

28. Dhifi, W.; Mnif, W.; Jelali, N.; El Beyrouthy, M.; Ben Salem, N. Citrus aurantium (bitter orange) blossoms essential oil and methanolic extract: Composition and free radical scavenging activity. *Acta Hortic.* 2013, 997, 195–200. [CrossRef]

29. Wolffenbuttel, A.N.; Zamboni, A.; dos Santos, M.K.; Borille, B.T.; Augustin, O.A.; de Cassia Mariotti, K.; Leal, M.B.; Limberger, R.P. Chemical components of citrus essential oils from Brazil. *Nat. Prod. J.* 2015, 5, 14–27. [CrossRef]

30. Vahid, R.; Sharareh, N. Changes of peel essential oil composition of *Citrus aurantium* L. during fruit maturation in Iran. *J. Essent. Oil Bear. Plants* 2015, 18, 1006–1012. [CrossRef]

31. Boelens, M.H.; Jimene, R. The chemical composition of the peel oils from unripe and ripe fruits of bitter orange, *Citrus aurantium* L. ssp. Amara. *Engl. Flavour Fragr. J.* 1989, 4, 139–142. [CrossRef]
32. Shen, C.Y.; Jiang, J.G.; Zhu, W.; Ou-Yang, Q. Anti-inflammatory effect of essential oil from Citrus aurantium L. var. amara. Engl. J. Agric. Food Chem. 2017, 65, 8586–8594. [CrossRef]

33. Tao, N.; Liu, Y.; Zhang, M. Chemical composition and antimicrobial activities of essential oil from the peel of bingtang sweet orange (Citrus sinensis Osbeck). Int. J. Food Sci. Technol. 2009, 44, 1281–1285. [CrossRef]

34. Azar, A.P.; Nekoei, M.; Larijani, K.; Bahraminasab, S. Chemical composition of the essential oils of Citrus sinensis cv. Valencia and a quantitative structure-retention relationship study for the prediction of retention indices by multiple linear regression. J. Serb. Chem. Soc. 2011, 76, 1627–1637. [CrossRef]

35. Njoroge, S.M.; Phi, N.T.; Sawamura, M. Chemical composition of peel essential oils of sweet oranges (Citrus sinensis) from Uganda and Rwanda. J. Essent. Oil Bear Plants 2009, 12, 26–33. [CrossRef]

36. Ines, E.; Hajer, D.; Rachid, C. Aromatic quality of Tunisian sour orange essential oils: Comparison between traditional and industrial extraction. Nat. Volatiles Essent. Oils 2014, 1, 66–72.

37. Sadeghimanesh, A.; Khalaji-Pirbalouty, V.; Lorigooini, Z.; Rafieian-Kopaei, M.; Torki, A.; Rabiei, Z. Phytochemical and neuroprotective evaluation of Citrus aurantium essential oil on cerebral ischemia and reperfusion. Bangladesh J. Pharmacol. 2018, 13, 353–361. [CrossRef]

38. Salem, M.Z.M.; Ali, H.M.; El-Shanhorey, N.A.; Abdel-Megeed, A. Evaluation of extracts and essential oil from Callistemon viminalis leaves: Antibacterial and antioxidant activities, total phenolic and flavonoid contents. Asian Pac. J. Trop. Med. 2013, 6, 785–791. [CrossRef]

39. NIST/EPA/NIH Mass Spectral Library (NIST 14) and NIST Mass Spectral Search Program, (Version 2.0g); Standard Reference Data Program; U.S. Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, May 2014.

40. Salem, M.Z.M.; Mansour, M.M.A.; Elansary, H.O. Evaluation of the effect of inner and outer bark extracts of Sugar Maple (Acer saccharum var. saccharum) in combination with citric acid against the growth of three common molds. J. Wood Chem. Technol. 2019, 39, 136–147. [CrossRef]

41. NCCLS–National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Disk Susceptibility Tests Sixth Edition: Approved Standard M2-A6; NCCLS: Villanova, PA, USA, 1997.

42. Behiry, S.I.; Okla, M.K.; Alamri, S.A.; EL-Hefny, M.; Salem, M.Z.M.; Alaraidh, I.A.; Ali, H.M.; Al-Ghtani, S.M.; Monroy, J.C.; Salem, A.Z.M. Antifungal and antibacterial activities of Musa paradisiaca L. peel extract: HPLC analysis of phenolic and flavonoid contents. Processes 2019, 7, 215. [CrossRef]

43. SAS. User Guide: Statistics (Release 8.02); SAS Institute: Cary, NC, USA, 2001.

44. Griffin, S.G.; Wyllie, S.G.; Markham, J.L.; Leach, D.N. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Frag. J. 1999, 14, 322–332. [CrossRef]

45. Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003, 95, 853–860. [CrossRef]

46. Ellouze, I.; Abderrabba, M. Kinetics of extraction of Citrus aurantium essential oil by hydrodistillation: Influence on the yield and the chemical composition. J. Mater. Environ. Sci. 2014, 5, 841–848.

47. Li, L.; Shi, C.; Yin, Z.; Ji, R.; Peng, L.; Kang, S.; Li, Z. Antibacterial activity of α-terpineol may induce morphostructural alterations in Escherichia coli. Braz. J. Microbiol. 2014, 45, 1409–1413. [CrossRef] [PubMed]

48. Lee, C.-J.; Chen, L.-W.; Chen, L.-G.; Chang, T.-L.; Huang, C.-W.; Huang, M.-C.; Wang, C.-C. Correlations of the components of tea tree oil with its antibacterial effects and skin irritation. J. Food Drug Anal. 2013, 21, 169–176. [CrossRef]

49. Abderrezak, M.K.; Abaza, I.; Aburjai, T.; Kabouche, A.; Kabouche, Z. Comparative compositions of essential oils of Citrus aurantium growing in different soils. J. Mater. Environ. Sci. 2014, 5, 1913–1918.

50. De Pasquale, F.; Siragusa, M.; Abbate, L.; Tusa, N.; De Pasquale, C.; Alonzo, G. Characterization of five sour orange clones through molecular markers and leaf essential oils analysis. Sci. Hort. 2006, 109, 54–59. [CrossRef]

51. Kirbaslar, G.; Kirbaslar, S.I. Composition of Turkish bitter orange and lemon leaf oils. J. Essent. Oil Res. 2004, 16, 105–108. [CrossRef]

52. Sarrou, E.; Chatzopoulou, P.; Dimassi-Theriou, K.; Therios, I. Volatile constituents and antioxidant activity of peel, flowers and leaf oils of Citrus aurantium L. growing in Greece. Molecules 2013, 18, 10639–10647. [CrossRef]

53. Monsef-Esfahani, H.R.; Amanzade, Y.; Alhani, Z.; Hajimehdipour, H.; Faramarzi, M.A. GC/MS analysis of Citrus aurantium L. hydrolate and its comparison with the commercial samples. Iran J. Pharm. Res. 2004, 3, 177–179.
54. Sibanda, S.; Chigwada, G.; Poole, M.; Gwebu, E.T.; Nolettoj, A.; Schmidt, J.M.; Rea, A.I.; Setzer, W.N. Composition and bioactivity of the leaf essential oil of Heteropyxis delniæ from Zimbabwe. *J. Ethnopharmacol.* 2004, 92, 107–111. [CrossRef]

55. Srisukh, V.; Tribuddharat, C.; Nukoolkarn, V.; Bunyapraphatsara, N.; Chokephaibulkit, K.; Phoomniyom, S.; Chuanphung, S.; Srifuengfung, S. Antibacterial activity of essential oils from *Citrus hystrix* (makrut lime) against respiratory tract pathogens. *ScienceAsia* 2012, 38, 212–217. [CrossRef]

56. Usta, J.; Kreidyiyeeh, S.; Knio, K.; Barnabe, P.; Bou-Moughlabay, Y.; Dagher, S. Linalool decreases HepG2 viability by inhibiting mitochondrial complexes I and II, increasing reactive oxygen species and decreasing ATP and GSH levels. *Chemico-Biol. Interact.* 2009, 180, 39–46. [CrossRef] [PubMed]

57. Hsouna, A.B.; Hamdi, N.; Halima, N.B.; Abdelkafi, S. Characterization of essential oil from *Citrus aurantium* L. flowers: Antimicrobial and antioxidant activities. *J. Oleo Sci.* 2013, 62, 763–772. [CrossRef] [PubMed]

58. Bacanli, M.; Basaran, A.A.; Basaran, N. The antioxidant and antigenotoxic properties of citrus phenolics and their cyclic monoterpene, DL-limonene. *Food Chem. Toxicol.* 2013, 51, 83–89. [CrossRef] [PubMed]

59. El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential oils: From extraction to encapsulation. *Int. Pharmaceut.* 2014, 2013, 115–117. [CrossRef] [PubMed]

60. Marija, M.; Lesjak, I.N. Phytochemical composition and antioxidant, antiinflammatory and antimicrobial activities of *Juniperus macrocarpa*. *J. Funct. Foods* 2013, 62, 349–354. [CrossRef]

61. Miracle, C.; Galbis, B. Impact assessment of carvacrol and citral effect on *Escherichia coli* K12 and *Listeria innocua* growth. *Food Control* 2013, 33, 536–544. [CrossRef]

62. Singh, P.; Shukla, R.; Prakash, B.; Kumar, A.; Singh, S.; Mishra, P.K. Chemical profile, antifungal, anti-aflatoxigenic and antioxidant activity of *Citrus maxima* L. Osbeck essential oils and their cyclic monoterpenes, DL-limonene. *Food Chem. Toxicol.* 2010, 48, 1734–4170. [CrossRef]

63. Valente, J.; Zuzarte, M. Antifungal, antioxidant and anti-inflammatory activities of *Oenanthe crocata* L essential oil. *Food Chem. Toxicol.* 2013, 51, 220–234. [CrossRef] [PubMed]

64. Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. *J. Phys. Chem. Ref. Data* 2011, 40, 1–47. [CrossRef]

65. Lemes, R.S.; Alves, C.C.F.; Estevam, E.B.B.; Santiago, M.B.; Martins, C.H.G.; Santos, T.C.L.D.; Crotti, A.E.M.; Zuzarte, M. Antifungal, antioxidant and anti-inflammatory activities of the essential oil from sour orange (*Citrus aurantium* L.) blossoms by different isolation methods. *Sus. Chem. Pharm.* 2018, 10, 118–124. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).