SUPPLEMENTARY MATERIAL

Nine sesquiterpenes from *Solanum torvum*

Pulong Yuan, Fujiang Guo, Kaikai Zheng, Kaixian Chen, Qi Jia* and Yiming Li*

*Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China

Correspondence to: Qi Jia, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.

E-mail: q_jia@126.com

Correspondence to: Yiming Li, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.

E-mail: ymlius@163.com
Nine sesquiterpenes from *Solanum torvum*

Abstract: Three new sesquiterpenes, namely, 3\(\beta\),11-dihydroxy-4,14-oxideenantioeudesmane (1), 1\(\beta\),10\(\beta\),12,14-tetrahydroxy-*allo*-aromadendrane (2), and 1\(\beta\),10\(\beta\),13,14-tetrahydroxy-*allo*-aromadendrane (3), along with six known sesquiterpenes (4–9), were isolated from the roots of *Solanum torvum*. Compound 4 and 5 are epimers, their main difference lies in the C-11 configuration. Normally, epimers do not make a huge difference in CNMR spectra, but in this kind of structure of A, B, C rings, and C ring is sterically strained structure, stericall effects influence strongly the \(^{13}\)C NMR chemical shifts, when C-11 configuration changed, it makes a huge difference in the three-ring of structure, such as C-6, C-7, C-11. New compound 2 and 3 are epimers and similar to compound 4 and 5, their just increase a hydroxy in C-1 and have a same regular pattern in CNMR spectra, otherwise, compound 5 was firstly confirmed by single-crystal X-ray diffraction.

Key word: *Solanum torvum*; \(^{13}\)C NMR; sesquiterpenes; epimers
Supporting information

Figure S1. Key HMBC, COSY and NOESY correlations of compound 1.

Figure S2. Key HMBC, COSY and NOESY correlations of compound 2.

Figure S3. Key HMBC, COSY and NOESY correlations of compound 3.

Figure S4. X-ray crystallographic structure of compound 5

Table S1. 13C-NMR data of 1-3 (at 100 MHz, δ in ppm, CH$_n$ fragment from DEPT)

Table S2. 1H-NMR data of 1-3 (at 400 MHz; δ in ppm, J in Hz)

Table S3. X-ray data of compound 5.

Figure S5. Original spectra of compound 1. (H NMR, C NMR, DEPT, HSQC, HMBC, COSY, NOESY)

Figure S6. Original spectra of compound 2. (H NMR, C NMR, DEPT, HSQC, HMBC, COSY, NOESY)

Figure S7. Original spectra of compound 3. (H NMR, C NMR, DEPT, HSQC, HMBC, COSY, NOESY)
Figure S1. Key HMBC (from H to C), COSY and NOESY correlations of compound 1.

Figure S2. Key HMBC (from H to C), COSY and NOESY correlations of compound 2.

Figure S3. Key HMBC (from H to C), COSY and NOESY correlations of compound 3.
Figure S4. X-ray crystallographic structure of compound 5.

Table S1. 13C-NMR data of 1-3 (at 100 MHz, δ in ppm, CH$_n$ fragment from DEPT)

NO.	1* (CDCl$_3$)	2* (CD$_3$OD)	3* (CD$_3$OD)	4 (CD$_3$OD)	5 (CD$_3$OD)
1	37.9 (CH$_2$)	89.5 (C)	89.4 (C)	54.3 (CH)	54.2 (CH)
2	30.4 (CH$_2$)	32.3 (CH$_2$)	32.6 (CH$_2$)	25.3 (CH$_2$)	25.5 (CH$_2$)
3	75.6 (CH$_2$)	29.4 (CH$_2$)	29.6 (CH$_2$)	30.1 (CH$_2$)	30.2 (CH$_2$)
4	87.4 (C)	35.5 (CH)	35.7 (CH)	39.5 (CH)	39.7 (CH)
5	50.1 (CH)	48.2 (CH)	47.6 (CH)	40.8 (CH)	40.3 (CH)
6	24.9 (CH$_2$)	25.4 (CH)	20.7 (CH)	30.4 (CH)	20.1 (CH)
7	47.9 (CH)	31.0 (CH)	27.8 (CH)	24.8 (CH)	27.2 (CH)
8	23.0 (CH$_2$)	18.4 (CH$_2$)	18.3 (CH$_2$)	19.2 (CH$_2$)	19.1 (CH$_2$)
9	30.9 (CH$_2$)	34.0 (CH$_2$)	33.7 (CH$_2$)	32.9 (CH$_2$)	32.7 (CH$_2$)
10	42.4 (C)	78.3 (C)	78.3 (C)	77.2 (C)	77.2 (C)
11	72.7 (C)	25.9 (C)	27.0 (C)	25.4 (C)	26.6 (C)
12	27.3 (CH$_3$)	64.0 (CH$_2$)	12.2 (CH$_3$)	64.0 (CH$_2$)	12.2 (CH$_3$)
13	26.8 (CH$_3$)	24.2 (CH$_3$)	72.7 (CH$_2$)	24.4 (CH$_3$)	73.3 (CH$_2$)
NO.	1 (CDCl₃)	2 (CD₃OD)	3 (CD₃OD)		
-----	-----------	-----------	-----------		
1	1.49 (d, 6.4)	1.97 (m)	1.97 (m)		
	1.32 (m)	1.51 (m)	1.55 (m)		
2	2.07 (m)	1.90 (m)	1.93 (m)		
	1.53 (m)	1.34 (m)	1.34 (m)		
3	3.38 (dd, 5.9, 10.4)	1.76 (dd, 2.5, 5.0,12.7)	0.20 (t, 9.5)		
	1.90 (m)	0.21 (t, 9.5)	1.03 (dd, 2.4, 24.8)		
4	2.68 (m)	2.68 (m)			
5	1.30 (m)	1.71 (m)	1.74 (m)		
6	1.76 (dd, 2.5, 5.0,12.7)	0.20 (t, 9.5)	0.21 (t, 9.5)		
	0.82 (ddd, 6.3, 9.5, 15.8)	1.03 (dd, 2.4, 24.8)			
7	1.26 (t,2.5)	1.13 (dd, 3.9, 12.9)	1.53 (m)		
8	1.68 (ddd, 2.2, 4.4, 12.5)	1.75 (m)	1.65 (m)		
	1.13 (dd, 3.9, 12.9)	1.63 (dd, 2.1, 13.6)	1.53 (m)		
9	1.62 (m)	1.84 (dd, 6.9, 14.0)	1.83 (dd, 6.4, 12.4)		
	1.35 (m)	1.54 (m)	1.57 (m)		
10					
11					
12	1.18 (s)	3.65 (d,11.4)	1.07 (s)		
		3.58 (d,11.4)			
13	1.19 (s)	1.12 (s)	3.03 (d, 11.4)		
			3.57 (d, 11.4)		
14	3.89 (dd, 1.7, 8.0)	3.68 (d, 10.9)	3.40 (d, 10.9)		
3.51 (d, 8.0)	3.39 (d, 10.9)	3.69 (d, 10.9)			
---------------	---------------	---------------			
15 1.22 (s)	0.99 (d, 7.0)	0.94 (d, 7.0)			

Table S3. X-ray datas of compound 5.

	2014038
Project No.	038
Formula	C15 H26 O3
Crystal system	Orthorhombic
Space group	P212121
Temperature (K)	296
a (Å)	7.40260(10)
b (Å)	7.78380(10)
c (Å)	49.7560(7)
a (°)	90.00
β(°)	90.00
γ (°)	90.00
Cell volume (Å3)	2866.96(7)
Calc. density (g/cm3)	1.179
Z	8
m (Cu-Ka)	1.54178
Rint	0.0514
R1(I>2sigma(I))	0.0365
wR2	0.0977
GOF	1.101
The 1H-NMR spectrum of compound 1

The 13C-NMR spectrum of compound 1
The DEPT spectrum of compound 1

The HSQC spectrum of compound 1
The HMBC spectrum of compound 1

The 1H-1H COSY spectrum of compound 1
The NOESY spectrum of compound 1

The HR-EI-MS of compound 1
The specific rotation of compound 1

The IR spectrum of compound 1

Figure S5. Original spectra of compound 1.
The 1H-NMR spectrum of compound 2

The 13C-NMR spectrum of compound 2
The DEPT spectrum of compound 2

The HSQC spectrum of compound 2
The HMBC spectrum of compound 2

The 1H-1H COSY spectrum of compound 2
The NOESY spectrum of compound 2

The HR-ESI-MS of compound 2
The specific rotation of compound 2

S.No	Sample ID	Time	Result	Scale	OR °Arc	WLG	Lg.mm	Conc.	Temp.
1	sqg46	03:40:54 PM	-3.000	SR	-0.006	580	100.00	0.200	24.5
2	sqg46	03:41:00 PM	-3.500	SR	-0.007	580	100.00	0.200	24.5
3	sqg46	03:41:07 PM	-3.500	SR	-0.007	580	100.00	0.200	24.5
4	sqg46	03:41:13 PM	-3.000	SR	-0.006	580	100.00	0.200	24.5
5	sqg46	03:41:19 PM	-3.000	SR	-0.006	580	100.00	0.200	24.5
6	sqg46	03:41:26 PM	-3.000	SR	-0.006	580	100.00	0.200	24.5

The IR spectrum of compound 2

Figure S6. Original spectra of compound 2.
The 1H-NMR spectrum of compound 3

The 13C-NMR spectrum of compound 3
The DEPT spectrum of compound 3

The HSQC spectrum of compound 3
The HMBC spectrum of compound 3

The 1H-1H COSY spectrum of compound 3
The NOESY spectrum of compound 3

The HR-ESI-MS of compound 3
The specific rotation of compound 3

Figure S7. Original spectra of compound 3.