Abstract

Qigong, a common form of "Breathing and Relaxation Exercise", has been adopted by many Asian cancer patients as a complementary treatment in parallel with their conventional cancer management. Research has been conducted in many different centres not limited to Asian countries and reported in many scientific literatures. Most of these studies found short-term Qigong is able to achieve statistically significant clinical benefits as reported in cancer patients’ self-reported quality of life including relieving chronic fatigue and many other psychological parameters. However there is limited unequivocal evidence on the clinical effects on the precise mechanism through which Qigong is able to achieve an overall general health enhancement for cancer patients. This mini-review aims to summarize the published specific immunological data about the innate as well as the adaptive anti-cancer immune bioactivities for cancer patients who practice Qigong in comparison with various control groups. We aim to relate the various biological components of the changes of specific immune populations including their number and activities, with the marked changes of the cytokine profiles as well as the circulating blood inflammation markers expression. This paper addresses the current research gap in the lack of sophisticated understanding of the mechanistic of Qigong leading to enhanced immunity. Furthermore, this review provides a map of future global collaborative efforts in conducting carefully design randomised control trials on selected commonly used Qigong exercises in cancer management.

Keywords: Qigong; Qi; BRE; Cancer; Immunology

Introduction

Qigong is a general term for a number of different traditional Chinese energy exercises which have been practiced by millions of people in China for thousands of years. Research studies have shown that the practicing of Qigong has the following benefits of: Decreased heart rate [1]; Decreased blood pressure [2]; Lowered lipid levels [3]; and Decreased levels of circulating stress hormones [4].

Qigong, same as the other Breathing and Relaxation Exercises, consists of three major components: physical exercise, breathing, and meditation. The study conducted by Larkey et al. [5] aimed to examine the differences between these three components together versus physical exercise alone for the clinical beneficial effects of Qigong using a double-blind, randomized controlled trial over 12 weeks of Qigong/TCE versus Sham Qigong on fatigue, depression, and sleep among 87 postmenopausal, fatigued breast cancer survivors, stages 0–III, age 40–75. The researchers concluded that gentle exercise – that is, simply getting breast cancer survivors moving – may be beneficial in reducing a number of symptoms and boosting well-being of breast cancer survivors (depression and sleep quality). Furthermore, Qigong with breath/meditation focus has the advantage of improving one of the most recalcitrant symptoms for these survivors – persistent fatigue.

Based on the Traditional Chinese Medicine theory, Qigong is considered to be able to strengthen or balance the subtle energy (qi) circulating throughout a person’s entire body, achieve the optimal wellbeing of harmonising the body, mind and spirit of a person, and thus improve overall health and fence off diseases. It has been postulated that while blockage or stagnation of energy flow in the energy channel in the human body will lead to discomfort, pain and sickness; then a restoration of a free flow and balance energy will lead to health improvement or even prevention of diseases [6].

There are many comprehensive studies showing Qigong can improve a person’s overall health conditions. These psychological and physiological aspects include bone density, cardiopulmonary effects, physical function, falls, balance and related risk factors, QOL, self-efficacy, anxiety, depression, immunity, and inflammation-related responses [7-10].

For instance, according to Wang et al. [9], a meta-analysis on 3 studies of Diabetes type 2 patients suggested that Qigong was effective in reducing depression, and anxiety, and in improving psychological well-being. However, the researchers have also pointed out that due to the limitation of the research methodology, these studies were not able to dissect the contribution of Qigong alone from the effects of the other components of BRE such as peer learning, social support and positive expectations – collectively
leading to the overall beneficial psychological wellbeing after the Qigong practice.

In relation to cancer treatment, there has been many systematic reviews conducted studying the benefits of Qigong for cancer patients [11-15]. Many studies have shown that Qigong is able to offer a variety of benefits to cancer patients such as improvements in sleep, fatigue and QOL [6, 16, 17] and improvements in mood status and reduce specific side-effects of treatment [6].

Recurring concluding remarks in many reviews examining the multiple completed QOL studies echo the inherent problems of research methodological limitations and small sample sizes. For instance, Oh et al. [18] urged the need of more robust evidence in the form of randomised controlled trials with larger sample sizes.

Another important gap of clear evidence is the lack of a complete mechanistic understanding of how Qigong works because of little quantitative and objective measurements in most of the studies reported so far, with the exception of the inflammation biomarker CRP. In a 162-patient randomised clinical trial study conducted in Australia and USA, CRP expression was statistically significantly down regulated in the blood from patients who completed a 10-week Medical Qigong [MQ] program in comparison with the control group who had not participated in a program [6].

Discussion

In this section we aim to consolidate some published data – quantitative and objective about how Qigong impacts on cancer management. These areas include cancer patients’ overall survival data; and effects of blood immune populations and cytokine profiles in healthy subjects and cancer patients respectively. We then relate these findings with the current knowledge of our body’s anti-cancer natural immunity mechanisms. With these understanding, this mini-review paper also aims to draw an overall picture to inform future research directions for evidence-based medicine of using Qigong in cancer management.

Cancer patients’ overall survival data

We have summarized three of the survival studies of Qigong patients in Table 1. One of the studies showed that 17% of the lung cancer patients who practiced Qigong were able to attain a 5-year survival rate, while the non-Qigong patients attained a 7% 5-year survival rate only [19]; while another study showed 30% of the Qigong patients attained the 5-year survival rate [20]. Yet, another study highlighted that cancer patients who received Qigong exercise plus operation and herbal medicine were able to achieve a median survival period of 48 months as compare to another group of patients who only received operation and herbal medicine achieving a median survival period of 36.5 months only [21]. This implies Qigong exercise is able to achieve a minimum 30% improvement in both cases. However, all these studies were not able to provide a biomedical explanation as to what caused these results. Therefore, it is of high priority for researchers to understand the biological mechanisms of the human body, in particular how and why Qigong can achieve prolonged survival rate for cancer patients.

Table 1: Survival Table of Qigong Cancer Patients in 3 selected studies.

Reference	Study Design	Cancer Type & Sample Size	Qigong Intervention	Measure(s)	Key Findings of the Beneficial Effects of Qigong Exercise on Survival
Fu et. al.	Randomised CT N=186 Four groups	Gastric adenocarcinoma	All groups had operation	Survival rate in years 1, 3 and 5	• Gp 1: 80%, 33%, 21%; Median Survival: 36 months
			Gp 1: no further treatment	5 years	• Gp 2: 86%, 45%, 23%; Median Survival: 37 months
			Gp 2: chemo only		• Gp 3: 85%, 44%, 26%; Median Survival: 30 months
			Gp 3: herbal only		• Gp 4: 86%, 64%, 34%; Median Survival: 48 months
			Gp 4: herbal plus qigong		
Zhang et. al.	Not randomised; no control CT N=1,648	Various advanced cancers	Self-control Qigong with standard treatment for advanced cancer patients for 8 years	Survival rate 5 years	• More than 30% survived
Zheng et. al.	Controlled CT, not randomised N=100	Various advanced cancers including liver, lung and gastric	Qigong group versus No Qigong group for 5 years for lung and gastric cancers; Median survival period for liver cancer		• Lung cancer: Qigong group 1- and 5-year survival rates were 83% and 17% (Control Group 5-year of 7%)
					• Gastric cancer: Qigong group 1- and 5-year survival rates were 83% and 23% (Control Group 5-year of 12%)
					• Liver cancer: Qigong group median survival period was 20.7 months % (Control Group of 3.5 months p<0.01)

Citation: Man-yuen Sze D, Chan V, Wu MB, Xu J, Chi-keung Ng A (2017) Critical Review in Qigong & Immunity Cancer Research. Int J Complement Alt Med 7 (3): 00227. DOI: 10.15406/ijcam.2017.07.00227
Effects of blood immune populations and cytokine profiles in healthy subjects

The effect of Qigong in enhancing human immune functions has been widely studied [22-24]. Ryu et al. [22] reported an increase in T-lymphocytes while Lee et al. [23] reported that the growth hormone (GH) concentrations and O2− production by neutrophils (PMNs) was significantly increased for Qigong practitioners as compared to the base group. On the other hand, Manzaneque et al. [24] have found lower number of total WBC and eosinophil numbers and % of monocytes, as well as C3 complement concentration and a lower number of leukocytes in the Qigong group. The lower leukocyte counts also consisted, specifically, of a reduction of phagocytic cells.

This finding of lower concentration of C3 complement and neutrophils supports the result of lower inflammation cases for the Qigong group as compared to the control group. This is also supported by the findings reported by Oh et al. [6] examining the effects in cancer patients.

Effects of blood immune populations and cytokine profiles in cancer patients

Oh et al. [6,17] reported that the use of a 10-week practice of MQ intervention in comparison with the control group has demonstrated statistically significant clinical benefits as shown in 162 cancer patients’ self-reported chronic fatigue, QOL, and reduction of the inflammatory marker CRP in blood samples. However, the researchers also admitted that they did not find a significant association between CRP and self-reported chronic fatigue. Also, we believe the 10-week duration of Qigong practice is insufficient to reflect the trend how Qigong lowers inflammation. Therefore an increased IFNy: IL10 ratio from cancer patients who practice Guolin Qigong can be taken as initial evidence of enhanced adaptive immunity in relation to Qigong practice for cancer patients.

In relation to the activation of NK cells which are one of the most important cell types in our body’s innate immunity, Gruber et al. [29] asserted that even though the number of CD56 & NK cells has not changed, the NK cell activity increased as indicated by increase in the secretion of IFNy. Cai et al. [30] concurred with Gruber et al. [19] that Qigong exercise can improve the WBC, CD20, IL-2 and NK activities. Wang [31] has shown that the status of psychological state of cancer patients can exert a significant effect. The researchers showed that the ratio of CD4/CD8 and NK cell number are closely related with depression in digestive cancer patients.

Collectively, these evidence shows that Qigong may enhance both the patients’ innate immunity via the increased NK cell activities as well as restoration of the partially defective adaptive immunity through the enhancement of co-stimulatory functionality of the specific DC subsets. These immunity enhancements may be partially explained by the change of patients’ expression profiles of blood cytokines that may act as important messengers or even cross-talk mediators in these two immune pathways. Therefore it will be important in future studies to carefully assess the blood cytokine profiles, in particular the levels of IL-10 & TGF-β versus IL-12 and IFNy, for the patients before and after the Qigong programs.

Conclusion

Based on our assertions made in the above, we see an urgent need for scientific Qigong and immunity cancer research which aims to address the gap in the lack of understanding of the underlying bioactivity mechanism of actions achieved by Qigong exercise through a global collaborative systematic evidence-based scientific study.

According to Lee et al. [11], most of the controlled clinical trials on Qigong for cancer treatment suffered generally poor and greatly varied methodological quality. They also found two trials...
suggested effectiveness in prolonging life of cancer patients; but another one failed to do so. The effectiveness of Qigong in cancer care is not yet supported by the evidence from large scale carefully designed randomised clinical trials in multiple centres.

Therefore, we plan to conduct randomised control trials on selected commonly used Qigong in cancer management to provide high quality quantitative data derived from rigorous clinical observations supported by mechanistic laboratory investigations. Future research should be designed to meet the need for more rigorous clinical trials to confirm how Qigong can improve cancer patients’ immune functions and to examine the underlying mechanisms of how it improves the immune function of cancer patients.

In addition, we will aim to study the patient’s overall survival data and the improvement of patients’ QOL through the collaborative development of a robust QOL survey. Furthermore, we will validate our hypothesis by studying the changes in patients’ innate immunity (i.e. measuring the number and functionality of various blood NK subsets), changes in patients’ adaptive immunity (i.e. measuring the number and functionality of various blood DC subsets and monoclonal T cells), as well as changes in the blood cytokine profile (in particular the levels of IL-10 & TGFβ versus IL-12 and IFNγ). Furthermore, future studies also seek evidence of Qigong in relation to the changes of the blood Micro-RNA profiles that affect the summative micro RNAs produced from various immunological populations in blood not limited to the NK cells and DCs mentioned above.

References

1. Lee MS, Kim MK, Lee YH (2005) Effects of Qi-therapy (external Qigong) on cardiac autonomic tone: a randomized placebo controlled study. Int J Neurosci 115(9): 1345-1350.

2. Lee MS, Lee MS, Kim HJ, Moon SR (2003) Qigong reduced blood pressure and catecholamine levels of patients with essential hypertension. Int J Neurosci 113(12): 1691-1701.

3. Lee MS, Lee MS, Kim HJ, Choi ES (2004) Effects of qigong on blood pressure, high-density lipoprotein cholesterol and other lipid parameters in essential hypertension patients. Int J Neurosci 114(7): 777-786.

4. Ryu H, Lee HS, Shin YS, Chung SM, Lee MS, et al. (1996) Acute effect of qigong training on stress hormonal levels in man. Am J Chin Med 24(02): 193-198.

5. Larkey LK, Roe DJ, Wehls KL, Jahnke R, Lopez AM, et al. (2015) Randomized controlled trial of Qigong/Tai Chi Easy on cancer-related fatigue in breast cancer survivors. Am Behav Med 49(2): 165-176.

6. Oh B, Butow P, Mullan B, Clarke S, Beale P, et al. (2010) Impact of medical Qigong on quality of life, fatigue, mood and inflammation in cancer patients: a randomized controlled trial. Ann Oncol 21(3): 608-614.

7. Jahnke R, Larkey L, Rogers C, Enieri J, Lin F (2010) A comprehensive review of health benefits of qigong and tai chi. Am J Health Promot 24(6): e1-e25.

8. Yang Y, Verkuilen J, Rosengren KS, Mariani RA, Reed M, et al. (2007) Effects of a Taiji and Qigong intervention on the antibody response to influenza vaccine in older adults. Am J Chin Med 35(04): 597-607.

9. Wang F, Man JK, Lee EK, Wu T, Benson H, et al. (2013) The effects of qigong on anxiety, depression, and psychological well-being: a systematic review and meta-analysis. Evid Based Complement Alternat Med 2013: 152738.

10. Oh B, Choi SM, Inamori A, Rosenthal D, Yeung A (2013) Effects of qigong on depression: a systemic review. Evid Based Complement Alternat Med 2013: 134737.

11. Lee MS, Chen KW, Sancler KM, Ernst E (2007) Qigong for cancer treatment: a systematic review of controlled clinical trials. Acta Oncol 46(6): 717-722.

12. Zeng Y, Luo T, Xie H, Huang M, Cheng AS (2014) Health benefits of qigong or tai chi for cancer patients: a systematic review and meta-analyses. Complement Ther Med 22(1): 173-186.

13. Chen K, Yeung R (2002) Exploratory studies of qigong therapy for cancer in China. Integr Cancer Ther I(4): 345-370.

14. Chen K, Yeung R (2002) A review of qigong therapy for cancer treatment. Journal International Society of Life Information Science 20(2): 532-542.

15. Chan CL, Wang CW, Ho RT, Ng SM, Chan JS, et al. (2012) A systematic review of the effectiveness of qigong exercise in supportive cancer care. Supportive Care Cancer 20(6): 1121-1133.

16. Liu W, Schaffer L, Herrs N, Chollet C, Taylor S (2015) Improved sleep after Qigong exercise in breast cancer survivors: A pilot study. Asia Pac J Oncol Nurs 2(4): 232-239.

17. Oh B, Butow PN, Mullan B, Clarke S, Beale P, et al. (2012) Effect of medical Qigong on cognitive function, quality of life, and a biomarker of inflammation in cancer patients: a randomized controlled trial. Supportive Care Cancer 20(6): 1235-1242.

18. Oh B, Butow P, Mullan B, Hale A, Lee MS, et al. (2012) A critical review of the effects of medical Qigong on quality of life, immune function, and survival in cancer patients. Integr Cancer Ther 11(2): 101-110.

19. Zheng R (1990) Observation of 100 cases with comprehensive qigong therapy for treating later-stage cancer. World Qigong 3(19): 198.

20. Zhang X (1995) Chinese Encyclopedia of Qigong [in Chinese]: Beijing.

21. Fu JZ, Fu SL, Qin JT (1996) Effect of qigong and anticancer bodybuilding herbs on the prognosis of postoperative patients with cardiac adenocarcinoma. Third World Conference on Medical Qigong, China.

22. Ryu H, Jun CD, Lee BS, Choi BM, Kim HM, et al. (1995) Effect of qigong training on proportions of T lymphocyte subsets in human peripheral blood. Am J Chin Med 23(01): 27-36.

23. Lee, M.S., M.K. Kim, and H. Ryu (2005) QI-training (qigong) enhanced immune functions: what is the underlying mechanism? Int J Neurosci, 115(8): 1099-1104.

24. Manzaneque, J.M., F.M. Vera, E.F. Maldonado, G. Carranque, V.M. Cubero, et al. (2004) Assessment of immunological parameters following a qigong training program. Medical Science Monitor, 10(6): CR264-CR270.

25. Yeh ML, Lee TL, Chen HH, Chao TY (2006) The influences of Chan-Chuang qi-gong therapy on complete blood cell counts in breast cancer patients treated with chemotherapy. Cancer Nurs 29(2): 149-155.

26. Jones BM (2001) Changes in cytokine production in healthy subjects practicing Guolin Qigong: a pilot study. BMC Complement Altern Med 1(1): 8.
27. Brown RD, Pope B, Murray A, Esdale W, Sze DM, et al. (2001) Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-β1 and interleukin-10. Blood 98(10): 2992-2998.

28. Brown, R. A. Murray, B. Pope, D.M. Sze, J. Gibson, et. al. (2004) Either interleukin-12 or interferon-γ can correct the dendritic cell defect induced by transforming growth factor β1 in patients with myeloma. Br J Haematol 125(6): 747-748.

29. Gruber BL, Hersh SP, Hall NR, Waletzky LR, Kunz JF, et al. (1993) Immunological responses of breast cancer patients to behavioral interventions. Biofeedback and Self-regulation 18(1): 1-22.

30. Cai G, Zhang Y, Zhu Q, Zhang Q, Yuan Z, et al. (2001) The changes of multiple immune indicators after Guo-Lin Qigong practice among cancer patients. Eighth International Symposium on Qigong, China.

31. Wang W, Wu Y, Zhao Y, Yasutomo I, Haruki Y(2004) Effect of Guolin Qigong on psychological states and the immune functioning of lung cancer patients. The Relevance of the Wisdom Traditions in Contemporary Society: The Challenge to Psychology, China, pp. 209.