Research Article

Pham Minh Quan*, Le Thi Thuy Huong, Tran Quoc Toan, Nguyen Phi Hung, Pham Hai Nam, Ngo Tuan Kiet, Nguyen Xuan Ha, Dang Thi Thanh Le, Ton Nu Thuy An, Pau Loke Show, Hai Ha Pham Thi*

*Cannabis sativa L. chemical compositions as potential plasmodium falciparum dihydrofolate reductase-thymidinesynthase enzyme inhibitors: An in silico study for drug development

https://doi.org/10.1515/chem-2021-0102
received December 11, 2020; accepted November 2, 2021

Abstract: This study contributes to anti-malarial research effort by conducting in silico assessment of 125 compounds originated from Cannabis sativa L. against plasmodium falciparum dihydrofolate reductase-thymidinesynthase (pfDHFR-TS) enzyme for potential inhibition activity. Drug-like and pharmacokinetic criteria were used to assess the drug-like properties of the studied compounds. AutoDock4.2.6 and AutoDock Vina software were used to calculate the possible binding pose of the studied compounds to pfDHFR-TS enzyme. The docking procedure was validated using two known inhibitors cycloguanil and WR99210. 65 out of 125 compounds violated no more than 2 of Lipinski’s rule of five and were sorted out as favorable for drug development. Amongst these 65 compounds, pharmacokinetic properties and toxicity evaluation identified 60 compounds that meet the criteria of drug-like properties and were subjected to further docking studies. Docking outcomes identified 10 compounds including compounds 4, 9, 19, 22, 23, 25, 30, 42, 43, and 59 as potential candidates for inhibiting the function of pfDHFR-TS at the active site through hydrogen bonds with Ile14, Asp54, and Ile 164 residues. Compound 9 is considered as the top “hit” with docking energy far more exceeding those of the standard compounds. High correlation coefficient between the docking energy of AutoDock4.2.6 and AutoDock Vina was recorded with the value of $R^2 = 0.74$.

Keywords: virtual screening, molecular docking, pfDHFR-TS, anti-malarial compounds, Cannabis sativa L., Plasmodium falciparum

1 Introduction

Malaria represents a considerable threat to public health, not only in the past, but also in recent period where the disease was reported to be responsible for approximately 405,000 death worldwide [1,2]. The etiologies of malaria is explored due to the development of protozoan parasite of the genus plasmodium in erythrocytes through a bite of female anopheles mosquito [3]. According to literature studies, it is well recognized that Plasmodium falciparum and P. vivax (accounts for 99.7% of all cases in 2018) have developed resistance to nearly all the currently available antimalarial drugs, such as sulfadoxine/pyrimethamine,
mefloquine, halofantrine, and quinine, thus posing significant threat to malarial control and results in increased malarial morbidity and mortality.

Amongst current treatment methods, folate metabolism is known as one of the best targets for drug development [4]. It includes two important enzymes, dihydrofolate reductase-thymidinesynthase (DHFR-TS) and dihydropterotate synthase. The inhibition of these two enzymes might abrogate essential folate cofactors for DNA synthesis and metabolism of several amino acids [5]. Up to date, many antifolate drugs have been developed for the treatment; however, it is increasingly susceptible to the resistance in malaria parasite. Mutations occur in the active site of the two enzymes, directly affecting the binding ability of drugs and resulting in diminished long-term efficiency [6]. In addition, these types of drugs were reported to have several side effects on bone marrow, skin, and hair [7]. Due to the burden this disease causes to the health and social systems, more novel agents are still in urgent need, especially the one originated from natural sources with less side effects during treatment. Cannabis sativa L. has been well studied in terms of chemical composition with hundreds of compounds being identified so far and they are rich in cannabinoids, flavonoids, sophoroside, etc. Amongst them, several flavonoids were reported in previous studies for potential antimalarial activity [8,9], thus, suggesting this species is an interesting natural source for further investigation. In this study, a set of 125 compounds from Cannabis sativa L. were assessed for drug-like and pharmacokinetic properties and then, molecular docking study was conducted against enzyme pfDHFR-TS to find potential inhibitors for further drug development.

2 Experimental methods

2.1 Protein and ligand preparation

Among 14 structures of enzyme pfDHFR-TS available from Protein Data Bank (RCSB PDB), the best structure with PDB ID: 1J3I was selected for research with a resolution of 2.33 Å [10,11]. The protein structure was prepared using the Graphical User Interface program named AutoDock Tools to produce accurate representation of amino acid residues in terms of ionization and tautomeric states [12]. Procedures of the protein preparation process included removal of water molecules, addition of polar hydrogen atoms, and assignment of Kollman united atom partial charges and salvation parameters. Obtained atomic coordinates of the protein were then exported into a PDBQT file which will be used for execution of AutoGrid and AutoDock.

The chemical structure of 125 compounds isolated from Cannabis Sativa L. were collected from published literature [8,9,13] (Figure S1). Chemical structures of these compounds were visualized using Marvin software. The 3D structure of the compounds were built using Pymol 2.2.2 [14]. The energy minimization was carried out using Gabedit 2.5.0 [15]. Open bioactivity prediction online server Molinspiration and ProTox-II were utilized to evaluate the drug-like properties and the acute toxicity of all the research compounds.

2.1.1 Docking using AutoDock4.2.6

A computer equipped with Intel® Core™ i7-9700K CPU @ 3.60 GHz, with 32 GB DDR4 RAM, was utilized to perform docking runs. Docking results were analyzed by different packages including PyMOL [14], Discovery Studio Visualizer [16], LigPlus [17], and Maestro [18]. Distances of hydrogen bonds between the hydrogen and its assumed binding partner were calculated based on the analyzed result.

Compilation of AutoDock4.2.6 and docking was performed under Ubuntu-Linux 14.04.6 LTS operating system [11]. The grid box that encloses amino acid domains had dimensions of $62 \times 68 \times 72$ Å ($x \times y \times z$) with grid spacing of 0.375 Å. AutoGrid and AutoDock was used to calculate the pre-calculated binding affinity of each ligand’s atom type and to perform molecular docking simulation, respectively. The parameters of the Lamarckian genetic algorithm were: 50 runs; elitism of 1; the mutation rate of 0.02; the population size of 300; a crossover rate of 0.80; number of generations of 27,000; the energy evaluations of 50,000,000, and the root-mean-square cluster tolerance was set to 2.0 Å in each run. The ligand conformation with the lowest free energy of binding, chosen from the most favored cluster, was selected for further analysis.

2.1.2 Docking using AutoDock Vina

AutoDock Vina was employed to perform molecular docking with global searching exhaustiveness of 400. Difference in energy between the worst and best docking modes was allowed to vary up to 7 kcal/mol. The grid center was selected such that it incorporates the amino acids domain involved in binding with standard ligand. The grid size was set to $15 \times 19 \times 14$ Å3, which is large enough to cover the entire target active site [19].
3 Results and discussion

3.1 Validation docking

Two co-crystallized ligand cycloguanil and WR99210 redocked as references with pfDHFR-TS resulted in dock score of -9.32 and -9.92 kcal/mol, respectively. These two inhibitors were both shown to form hydrogen bonds with Ile14, Asp54, and Ile164, as indicated previously in the literature [20] (Figure 1).

Obtained results show that these inhibitors share the common residues interaction similar to previously published studies, suggesting that the procedure and the set parameters were suitable for docking simulation and are reproducible.

3.2 Drug-like and pharmacokinetic properties assessment

As part of the in silico screening, the drug-like properties of 125 compounds were assessed by subjecting them to Lipinski’s rule of five (Table S1). This rule includes criteria that determine which compound is considered to be drug-like in nature, such as molecular weight (MW) < 500 Da, number of hydrogen bond donors (HBD) ≤5, number of hydrogen bond acceptors (HBA) ≤10, octanol-water partition coefficient (log P) < 5, and molar refractivity (MR) value between 40–130. Compounds that satisfy these rules would be considered to be drug-like in nature. The obtained results help in providing essential information regarding the development and discovery of new drugs.

The outcomes indicate that amongst the studied molecules, 65 candidates were sorted out as favorable for drug development (Table 1). These compounds were then further evaluated for pharmacokinetic properties and toxicity prediction using Molinspiration and ProTox-II cheminformatic server (Table S2) [21]. In general, the studied compounds showed interesting results regarding calculated toxicity. From Table S2, compounds 5, 54, and 60 were classified as non-toxic with very high LD$_{50}$ (6,000, 10,000 and 13,500 mg/kg, respectively). Ten compounds were positioned at rank 5 and could be considered as safe. Forty-five compounds were classified as compounds with low toxicity (rank 4) which is equivalent to the toxic prediction of cycloguanil and WR99210. On the other hand, it is observed that three compounds 5, 17, and 63 had their milog P value lain in minus values (-0.9, -1.99, and -4.3, respectively) which suggest their inability to bind with pfDHFR-TS enzyme. In addition, the enzyme inhibitory potential value of compounds 29 and 62 were −0.14 and −0.32, respectively, indicating that these compounds are not likely to exhibit inhibition activity toward target enzyme. Thus, these five ligands were excluded and

![Figure 1: Hydrogen bonding patterns of cycloguanil and WR99210 inhibitors with enzyme pfDHFR-TS (PDB ID: 1J3J). (a) Cycloguanil and (b) WR99210.](image-url)
Table 1: List of compounds with drug-like properties satisfying with Lipinski's rule

ID	Compound name	MW	HBD	HBA	log P	MR
1	(1’S)-Hydroxycannabinol	342	3	4	4.69	97.15
2	4,5-Dihydroxy-2,3,6-trimethoxy-9,10-dihydrophenanthrene	302	2	5	2.66	81.34
3	4,7-Dimethoxy-1,2,5-trihydroxyphenanthrene	286	3	5	2.74	77.97
4	8,9-Dihydroxy-delta6α,10α-Tetrahydrocannabinol	362	4	5	2.93	100.22
5	Uracil	112	2	4	-0.66	25.81
6	5’-Methyl-4-pentylphenyl-2,6,2’-triol	286	3	3	4.51	84.84
7	6-Prenylapigenin	338	3	5	3.93	93.95
8	7-Methoxycannabiniprone	260	0	3	3.03	73.02
9	7-oxo-9α-Hydroxyhexahydrocannabinol	346	2	4	4.11	97.14
10	8,9-Dihydroxy-delta-6α-tetrahydrocannabinol	346	3	4	3.96	98.83
11	8-Hydroxycannabinol	298	2	3	4.42	86.66
12	8-Hydroxycannabinolic acid A	326	2	4	4.23	92.05
13	8-oxo-Delta9-tetrahydrocannabinol	328	1	3	4.91	95.65
14	Tetrahydrocannabinabirin	286	1	2	4.96	86.03
15	Secoisolariciresin	362	4	6	2.12	97.88
16	Quercetin	304	5	7	1.19	73.25
17	Quebrachitol	194	5	6	-3.18	40.83
18	9,10-Dihydro-2,3,5,6-tetramethoxyphenanthrene-1,4-dione	330	0	6	1.83	84.91
19	9α-Hydroxy-10-oxo-deltaα,10α-tetrahydrocannabinol	344	2	4	4.16	97.83
20	9β,10β-Epoxyhexahydrocannabinol	330	1	3	4.95	94.79
21	9a-Hydroxyhexahydrocannabinol	332	2	3	4.93	96.75
22	10α-Hydroxy-10-oxo-delta8-tetrahydrocannabinol	344	2	4	4.02	96.81
23	10α-Hydroxy-delta9,11-hexahydrocannabinol	330	2	3	4.71	96.65
24	Chrysin	254	2	4	2.71	69.15
25	Cannabitetrol	362	4	5	2.93	99.27
26	Cannabiripsol	348	3	4	3.90	98.14
27	Pyrimethamine	248	4	4	2.52	70.68
28	8-Hydroxy-isohexahydrocannabivirin	298	2	3	4.78	89.36
29	Mannitol	174	2	2	1.52	50.83
30	Luteolin	286	4	6	2.13	72.48
31	Chrysoeriol	300	3	6	2.43	77.37
32	Lariciresin	360	3	6	2.65	95.78
33	Isocannabspiradienone	242	1	3	2.28	67.94
34	Cannabinodivarin	282	1	2	4.76	86.65
35	Cannabimovone	346	3	4	4.08	98.84
36	Cannabicyclovarian	286	1	2	4.89	83.34
37	Kaempferol	286	4	6	2.31	72.39
38	Cannabielsoin	330	2	3	4.71	96.65
39	C3-Cannabielsoin	302	2	3	3.93	87.42
40	Cannabielsoic acid B	358	2	4	4.52	102.04
41	Cannabielsoic acid A	358	2	4	4.52	102.04
42	10α-Hydroxyhexahydrocannabinol	332	2	3	4.79	96.68
43	10αR-Hydroxyhexahydrocannabinol	332	2	3	4.79	96.68
44	10-Ethoxy-9-hydroxy-delta-6α-tetrahydrocannabinol	374	2	4	5.00	108.23
45	Cannabichromanones B	362	2	5	3.82	99.79
46	Cannabichromanones C	344	0	4	4.33	97.12
47	Cannabielsoic acid B-C3	330	2	4	3.74	92.81
48	Cannabidivarinic acid	314	2	3	4.88	93.19
49	Cannabielsoin	330	2	3	4.71	96.65
50	Cannabielsoin acid A	330	3	4	4.76	94.76
51	Cannabidiocol	258	2	2	4.42	78.54
52	Cannabichromanone-C5	332	1	4	4.46	93.78
53	Cannabichromanone-C7	304	1	4	3.68	84.54
54	Catechin	290	5	6	1.55	72.62
55	Cannabigerovarinic acid	332	3	4	4.98	96.85
56	Carmagerol	350	4	4	4.23	102.00
only 60 amongst 65 compounds possess pharmacokinetic properties and toxic ranking suitable for further docking studies.

3.3 Docking studies

To explore the inhibition potential of 60 selected ligands with enzyme pfDHFR-TS model, AutoDock4.2.6 and AutoDock Vina were utilized for docking studies. Table 2 exhibits the dock score of the studied compounds.

ID	Compound name	MW	HBD	HBA	log P	MR	AutoDock4.2.6	AutoDock Vina
4	8,9-Dihydroxy-delta6a,10a-tetrahydrocannabinol	268	1	2	4.56	81.31	−8.32	−8.50
9	7-oxo-9a-Hydroxyhexahydrocannabinol	254	1	2	4.30	76.67	−8.91	−9.10
13	8-oxo-Delta9-tetrahydrocannabinol	346	3	4	3.96	98.83	−8.77	−9.00
19	9a-Hydroxy-10-oxo-delta6a,10a-tetrahydrocannabinol	346	3	4	3.96	98.83	−9.18	−9.40
21	10a-Hydroxy-10-oxo-delta8-tetrahydrocannabinol	346	3	4	3.96	98.83	−8.77	−9.00
22	10a-Hydroxy-delta9,11-hexahydrocannabinol	346	3	4	3.96	98.83	−9.18	−9.50
25	Cannabitetrol	282	1	2	4.95	85.93	−7.77	−8.91
28	8-Hydroxy-isohexahydrocannabinivirin	282	1	2	4.95	85.93	−7.77	−8.91
30	Luteolin	30	0	3	5.08	91.20	−7.77	−8.91
41	Cannabielsoic acid A	30	0	3	5.08	91.20	−7.77	−8.91
42	10a-Hydroxyhexahydrocannabinol	30	0	3	5.08	91.20	−7.77	−8.91
43	10aR-Hydroxyhexahydrocannabinol	30	0	3	5.08	91.20	−7.77	−8.91
45	Cannabichromanones B	30	0	3	5.08	91.20	−7.77	−8.91
59	Cannabidriol	30	0	3	5.08	91.20	−7.77	−8.91
61	10-oxo-Delta6a,10a-tetrahydrocannabinol	30	0	3	5.08	91.20	−7.77	−8.91
65	Cannabichromanones D	30	0	3	5.08	91.20	−7.77	−8.91

The bold rows indicate data for standard ligands.

Cycloguanil and WR99210 were used as reference inhibitors with dock score obtained from AutoDock4.2.6 being −7.77 and −8.91 kcal/mol and dock score of AutoDock Vina being −8.50 and −9.10 kcal/mol, respectively. Thus, ligand has docking energy fall within these range or more negative would be considered as potential inhibitor of pfDHFR-TS. In general, according to the obtained results, 16 out of 60 screened compounds were identified as potential inhibitors (Table 2). Compounds 9 and 61 are the top two ligands with docking energy far more exceeding those of standard compounds. The rest 14 hits presented dock
scores that matched the selection criteria and had dock score ranging from -7.85 to -9.06 kcal/mol, and from -8.5 to -9.4 kcal/mol, obtained from AutoDock and AutoDock Vina, respectively. On the other hand, a high correlation coefficient between the docking energy of AutoDock4.2.6 and AutoDock Vina was recorded with the value of $R^2 = 0.74$ (Figure 2) that supports for the accuracy of the docking study.

The potential hits were further analyzed for ligand efficiency (LE) and binding poses (Table 3). LE is a useful metric for the selection of lead compounds in drug discovery and has been widely used as a measurement for the binding energy of the ligand per atom, which is calculated according to the equation (1):

$$\Delta g = \frac{\Delta G}{N_{\text{non-hydrogen atoms}}}.$$

where Δg is the ligand efficiency and ΔG is the docking energy.

Statistically, compounds with LE varying within $0.3 < \text{LE} < 0.5$ are more potential for further optimization. Calculated LE of 16 hit compounds in this study ranged from -0.39 to -0.47, suggesting their considerable potential for drug development.

For inhibition to occur, interaction is needed on key amino acid residues Ile14, Asp54, and Ileu164 at the active site of the enzyme [20]. As indicated in Table 3, although having better docking energy than standard cycloguanil and WR99210, compounds 13, 28, 45, 61, and 65 did not form hydrogen bonds with any of three key residues, therefore, these ligands were assumed as non-specific for pDHFR-TS inhibition potential. Regarding the toxicity prediction (Table 2), compound 41 was excluded due to high toxicity (LD$_{50}$ value of 3 mg/kg). Compounds 30 and 61 were highlighted for their safe class of toxicity (LD$_{50}$ value of 3,919 and 2,647 mg/kg, respectively) (Table S1). The hydrogen bonding patterns and stereo view of binding mode of ten potential pDHFR-TS inhibition compounds are shown in Figures S2 and S3.

Table 3: The LE and hydrogen bond interactions between 16 potential compounds and pDHFR-TS

ID	Compound name	LE	No. of H-bonds	Interacting residues
4	8,9-Dihydroxy-delta6a,10a-tetrahydrocannabinol	-0.41	5	Ala16; Tyr170; Ile164
9	7-oxo-9a-Hydroxyhexahydrocannabinol	-0.39	3	Ser111; Ile164
13	8-oxo-Delta9-tetrahydrocannabinol	-0.39	1	Ala16
19	9a-Hydroxy-10-oxo-delta6a,10e-tetrahydrocannabinol	-0.42	3	Ser108; Ile14; Tyr170
22	10aa-Hydroxy-10-oxo-delta8-tetrahydrocannabinol	-0.42	3	Ser108; Ser111; Ile164
23	10o-Hydroxy-delta9,11-hexahydrocannabinol	-0.42	3	Ala16; Asp54; Tyr170
25	Cannabitetrol	-0.43	5	Ile164; Tyr170
28	8-Hydroxy-isohexahydrocannabinivirin	-0.47	3	Tyr170; Ala16
30	Luteolin	-0.46	3	Val145; Asp54
41	Cannabielsoic acid A	-0.41	3	Ala16; Leu40; Ile164
42	10o-Hydroxyhexahydrocannabinol	-0.45	1	Ile164
43	10oR-Hydroxyhexahydrocannabinol	-0.43	3	Tyr170; Ile164
45	Cannabichromanones B	-0.40	4	Thr107; Ser108; Ser167
59	Cannabinol	-0.45	3	Tyr170; Ile164
61	10-oxo-Delta6a,10e-tetrahydrocannabinol	-0.43	2	Tyr170
65	Cannabichromanones D	-0.41	1	Ser167
66	Cycloguanil	-0.45	5	Ile164; Ile14; Cys15; Thr185; Asp54
	WR99210	-0.38	5	Cys15; Asp54; Ile14; Ile164

The bold rows indicate data for standard ligands.
4 Conclusion

In this study, computational molecular simulation and drug-like properties assessment were used to gain insight into the binding ability of phytoconstituents of Cannabis sativa L. on enzyme pfDHFR-TS. Among 125 studied compounds, 10 compounds including compounds 4, 9, 19, 22, 23, 25, 30, 42, 43, and 59 were identified as potential candidates for inhibiting the function of pfDHFR-TS at the active site through hydrogen bonds with Ile14, Asp54, and Ile 164 residues. Compound 9 is considered as the top “hit” regarding binding affinity to target enzyme and drug-like properties. The LE value of these compounds ranged from −0.39 to −0.47, suggesting their promising opportunities for further optimization in drug development. These findings shed light on the potential anti-malarial activity of compounds isolated from Cannabis sativa L.

Acknowledgements: The authors are thankful to Prof. Pham Quoc Long and Prof. Pham Thi Hong Minh for further optimization in drug development. These compounds isolated from Cannabis sativa L. on enzyme pfDHFR-TS enzyme inhibitors from Cannabis sativa L.

Author contributions: P.M.Q. and H.H.P.T. conceived and designed the study. P.H.N., N.T.K., N.X.H., and D.T.T.L. performed data collection and data analysis. L.T.T.H., T.Q.T., and N.P.H. performed drug-like and pharmacokinetic properties assessment. P.M.Q., T.N.T.A., P.L.S., and H.H.P.T. performed docking studies and wrote the manuscript. All authors have read and approved the final version of the manuscript.

Conflict of interest: The authors declare no conflict of interest.

Ethical approval: The conducted research is not related to either human or animal use.

Data availability statement: All data generated or analyzed during this study are included in this published article.

References

[1] Farag E, Bansal D, Chehab MAH, Al-Dahshan A, Bala M, Ganesan N, et al. Epidemiology of malaria in the state of Qatar, 2008–2015. Mediterr J Hematol Infect Dis. 2018;10:e2018050.
[2] World Health Organization. World Malaria Report 2019. Geneva: WHO Press; 2019.
[3] Cox FE. History of the discovery of the malaria parasites and their vectors. Parasites Vectors. 2010;3:5.
[4] Singh IV, Mishra S. Molecular docking analysis of Pyrimethane derivatives with Plasmodium falciparum dihydrofolate reductase. Bioinformation. 2018;14:232–5.
[5] Hyde JE. Exploring the folate pathway in Plasmodium falciparum. Acta Tropica. 2005;94:191–206.
[6] Gregson A, Plowe CV. Mechanisms of resistance of malaria parasites to antifolate. Pharmacol Rev. 2005;57:117–45.
[7] Aviôes MO, Mangual JO, Ebner AD, Ritter JA. Isolated swine heart ventricle perfusion model for implant assisted-magnetic drug targeting. Int J Pharm. 2008;361:202–8.
[8] Andre CM, Hausman JF, Guerrieri G. Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci. 2004;7:19.
[9] Brenneisen R. Chemistry and analysis of phytocannabinoids and other Cannabis constituents. In Forensic science and medicine. USA: Humana Press; 2007. p. 17–49.
[10] Yuvaniyama J, Chitnusup P, Kamchonwongpaisan S, Vanichthanankul J, Sirawaraporn W, Taylor P, et al. Insights into antifolate resistance from malarial DHFR-TS structures. Nat Struct Mol Biol. 2003;10:357–65.
[11] Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.
[12] Vanichthanankul J, Taweewchai S, Uttamapinant C, Chitnusup P, Vilaivan T, Yuthavong Y, et al. Combined spatial limitation around residues 16 and 108 of Plasmodium falciparum dihydrofolate reductase explains resistance to cycloguanil. Antimicrob Agents Chemother. 2012;56:3928–35.
[13] ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A. Phytochemistry of Cannabis sativa L. progress in the chemistry of organic natural products. Cham: Springer; 2017. p. 1–36.
[14] Schrodinger LLC. The PyMOL molecular graphics system. Version 2.2.2. 2015.
[15] Allouche AR. Gabedit—a graphical user interface for computational chemistry software. J Comput Chem. 2013;32:174–82.
[16] Dassault Systèmes BIOVIA. Discovery Studio Visualizer v17.2.0.16349. San Diego: Dassault Systèmes; 2019.
[17] Laskowski RA, Swindells MB. Ligplot +: Multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51:2778–86.
[18] Maestro SR. Schrödinger release 2019-4: Maestro. New York: Schrödinger, LLC; 2019.
[19] Trot O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.
[20] Adane L, Bharatam PV. Computer-aided molecular design of 1H-imidazole-2,4-diamine derivatives as potential inhibitors of Plasmodium falciparum DHFR enzyme. J Mol Model. 2011;17:657–67.
[21] Banerjee P, Eckert AO, Schrey AK, Preisssner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46:257–63.