(Sub)clinical cardiovascular disease is associated with increased bone loss and fracture risk; a systematic review of the association between cardiovascular disease and osteoporosis

Debby den Uyl1, Mike T Nurmohamed2,3*, Lilian HD van Tuyl1, Hennie G Raterman1, Willem F Lems1,3

Abstract

Introduction: Both cardiovascular disease and osteoporosis are important causes of morbidity and mortality in the elderly. The co-occurrence of cardiovascular disease and osteoporosis prompted us to review the evidence of an association between cardiovascular (CV) disease and osteoporosis and potential shared common pathophysiological mechanisms.

Methods: A systematic literature search (Medline, Pubmed and Embase) was conducted to identify all clinical studies that investigated the association between cardiovascular disease and osteoporosis. Relevant studies were screened for quality according to guidelines as proposed by the Dutch Cochrane Centre and evidence was summarized.

Results: Seventy studies were included in this review. Due to a large heterogeneity in study population, design and outcome measures a formal meta-analysis was not possible. Six of the highest ranked studies (mean $n = 2,000$) showed that individuals with prevalent subclinical CV disease had higher risk for increased bone loss and fractures during follow-up compared to persons without CV disease (range of reported risk: hazard ratio (HR) 1.5; odds ratio (OR) 2.3 to 3.0). The largest study ($n = 31,936$) reported a more than four times higher risk in women and more than six times higher risk in men. There is moderate evidence that individuals with low bone mass had higher CV mortality rates and incident CV events than subjects with normal bone mass (risk rates 1.2 to 1.4). Although the shared common pathophysiological mechanisms are not fully elucidated, the most important factors that might explain this association appear to be, besides age, estrogen deficiency and inflammation.

Conclusions: The current evidence indicates that individuals with prevalent subclinical CV disease are at increased risk for bone loss and subsequent fractures. Presently no firm conclusions can be drawn as to what extent low bone mineral density might be associated with increased cardiovascular risk.

Introduction

Cardiovascular (CV) disease and osteoporosis are both important causes of morbidity and mortality in aging men and women. They share common risk factors, such as increased age and inactivity, and are frequently found in the same individuals, suggesting a possible relationship. Results from epidemiological studies indicate an association between CV disease and osteoporosis. Prevalent CV disease and subclinical atherosclerosis have been found to be related to low bone mass and increased fracture risk [1-4]. Similarly, low bone mineral density (BMD) has been related to increased cardiovascular risk [5-8]. This relationship is often regarded as a result of aging; however, recent evidence suggests a direct association, independent of age and traditional cardiovascular risk factors and accumulating evidence from experimental research indicates a shared pathogenesis. A variety of factors that influence bone metabolism

* Correspondence: mt.nurmohamed@planet.nl
2 Department of Internal Medicine, VU Medical Centre, De Boelelaan 1117, 1081 NV Amsterdam, The Netherlands
Full list of author information is available at the end of the article

© 2011 den Uyl et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
are involved in the development of vascular disease, for example, atherosclerosis and vascular calcification. Interestingly, several bone-related proteins are implicated in the calcification process resulting in mineral deposition [9]. This is important as calcification of the arterial wall may be a marker for CV disease and was shown to predict CV events [10]. Given the importance of identifying a person at risk for CV events or fractures, evidence for an association of CV disease with osteoporosis might have implications for screening decisions in patients with low bone mass and vice versa. This review aims to summarize all the present clinical literature about the association between CV disease and osteoporosis and to describe common pathophysiological mechanisms. The results of this review are grouped into two topics: clinical results, discussing the relationship between 1) cardiovascular disease and osteoporosis and 2) vice versa. In addition, the possible pathophysiological links of CV disease and osteoporosis will be discussed.

Materials and methods

Search strategy

A systematic search (in Medline, Pubmed and Embase) was conducted to identify all clinical studies from 1966 to January 2010 (last updated 8 June 2010) that investigated the association between cardiovascular disease and osteoporosis. The following search terms for cardiovascular disease were used: cardiovascular diseases, cerebrovascular diseases and peripheral vascular diseases. These searches were each combined with an osteoporosis search block and duplicates were removed. Searches were limited to human studies in the English, Dutch and German languages. The complete Medline search is available in Additional file 1. In addition, references from the retrieved articles were scanned for additional relevant studies.

Selection criteria

Abstracts were screened by one reviewer (DdU) and studies were included in the review if they fulfilled the following inclusion criteria: epidemiological studies (including prospective, cross-sectional, case-control, or retrospective studies) reporting the association between CV disease and osteoporosis in the general population or in patients with prevalent CV disease or low bone mass. Cardiovascular disease was defined as coronary heart disease (CHD) (myocardial infarction, angina pectoris, coronary insufficiency or ischemic heart disease), cerebrovascular disease (stroke, transient ischemic attacks), peripheral arterial disease (PAD) (lower extremity claudication, arterial thrombosis/embolism, ankle brachial index (ABI) <0.90) or subclinical atherosclerosis measured as intima media thickness (IMT) or vascular calcification. In addition, bone mass had to be assessed as bone mineral density or bone quality, and osteoporosis was defined as low bone mass (T-score ≤-2.5) or increased fracture risk (vertebral and non-vertebral). Exclusion criteria were: reviews, letters, case-reports, intervention studies and biomechanical studies. Studies in patients with co-morbidity other than osteoporosis or CV disease were also excluded. Finally, investigations using risk factors of CV disease or osteoporosis as outcome measurements, such as hypertension, metabolic syndrome, atrial fibrillation, bone markers, and calcium supplementation were not included.

Assessment of study quality

The quality of each manuscript was systematically assessed with a checklist for cohort studies as proposed by the Dutch Cochrane Collaboration [11] (Additional file 2). Quality assessment included a scoring of the following components: definition of study population, the likelihood of bias, adequate blinding, the accuracy of outcome measurements, duration of follow-up and selective loss-to follow-up, the appropriateness of the statistical analysis and the clinical relevance. All items had the following answer options: yes/no/too little information to answer the question. We considered incomplete information or data important criteria for study quality. Therefore, if the answer could not be given because the study provided too little information, a negative score (for example, “no”) was given. Each “no” was scored and an equal weight was given to each item. A maximum of 10 points could be given. The scores of each study are given in Tables 1 and 2.

Statistical analysis

A formal meta-analysis of the prospective studies investigating the association between bone mass and risk for cardiovascular events and mortality was not possible due to extended heterogeneity between studies with respect to the study population and methods used. Furthermore, the number of prospective studies that were eligible for pooling was too small for analysis. For this reason, narrative summaries are provided in the results section and quantitatively presented in Tables 1 and 2. The heterogeneity between studies in terms of study population and outcome measures is shown in Tables 1 and 2. Moreover, cross-sectional studies are shown in Table 3.

Results

Studies included

Our search strategy resulted in 2,886 references. The search strategy resulted in 70 relevant articles, including 9 studies prospectively assessing the relationship between CV disease and osteoporosis and 18 prospective
Study	Study population (years follow-up)	Number of cases (% women)	Postmenopausal women	CV disease excluded	Mean age	Outcome CV disease	Outcome bone mass	Results #	Quality
Sennerby, 2009 [13]	Population-based (20)	31,936 (NA)	NA	Yes	67.9 to 74.4	CV disease by National patient registry, ICD-9 codes	Incident hip fracture by National patient registry, ICD-9 codes	Women: HR: 4.42 (95% CI 3.49 to 5.61)	3
Szulc, 2008 [14]	Population-based (10)	781 (0%)	No	No	65	AC by X-spine	Incident fracture by hospital records or X-ray	OR: 2.54 to 3.04 (P < 0.005 to 0.001)	3
Naves, 2008 [4]	Population-based (4)	624 (51%)	NA	No	65	AC by X-spine	BMD lumbar spine and femur by DXA Incident fracture by hospital record or X-ray	Change BMD spine in progression AC vs no progression AC: -1.48% vs 1.43% (P < 0.001) Change BMD hip in progression AC and no progression AC: -0.48% vs 0.23% (P = 0.315) Incident fracture: OR: 2.13 (95% CI 0.85 to 5.31)	3
Von Muhlen, 2009 [15]	Population-based (4)	1,332 (60%)	NA	No	73.8	PAD by ABI	BMD lumbar spine and hip by DXA and incident fracture by X-ray	Women: Change BMD in PAD vs no PAD: 59.2% vs 43.5% (P < 0.05) Incident non-vert fracture: OR: 0.84 (95% CI 0.31 to 2.26) Men: Change BMD in PAD vs no PAD: 43.5% vs 35.3% (P = 0.20) Incident non-vert fracture: OR: 1.52 (95% CI 0.30 to 7.45)	3
Collins, 2009 [2]	Population-based (5.4)	4,302 (0%)	NA	No	73.5	PAD by ABI	BMD hip by DXA Incident fractures by x-ray and hospital records	Change BMD in PAD vs no PAD: -0.60% vs -0.32% (P < 0.001) PAD and non-vert fracture risk: HR = 1.47 (95% CI 1.07 to 2.04)	3
Hak, 2000 [3]	Population-based (9)	236 (100%)	No (100%)	No	49	AC by X-spine	MCA by radiogrammetry	MCA in patients with AC progression vs no AC progression -3.5 mm vs -2.0 mm (P < 0.01)	3
Samelson, 2007 [12]	Population-based (21)	2,499 (58%)	No	61	AC by X-spine	Incident hip fracture by hospital records and death certificates	Women: HR: 1.4 (0.8 to 2.3) Men: HR: 1.2 (0.2 to 5.7)	4	
Bagger, 2006 [1]	Population-based (7.5)	2,262 (100%)	Yes (100%)	No	65	AC by X-spine	BMD lumbar spine and hip and incident fractures by hospital records or X-ray	Change hip BMD AC score ≥3 vs <3: -0.38% vs -0.25% (P < 0.001) AC and hip fracture: OR: 2.3 (95% CI 1.1 to 4.8) AC and vert fracture: OR: 1.2 (95% CI 1.0 to 1.5)	4
Schulz, 2004 [17]	Clinic-based (8)	228 (100%)	Yes	No	65.2	AC by CT-scan of spine	BMD spine by CT-scan	Change BMD AC vs no AC: -5.3% vs -1.3% (P < 0.001)	6

#adjusted for confounders; NA, not available; AC, aortic calcification; BMD, bone mineral density; DXA, dual-energy x-ray absorptiometry; PAD, peripheral arterial disease; ABI, ankle brachial index; MCA, metacarpal cortical area.
Study	Study population (years follow-up)	Number of cases (% women)	Postmenopausal women	CV disease excluded	Mean age (years)	Race	Outcome osteoporosis	Outcome CV disease	Results	Quality
Mussolino, 2007 [69]	Population-based (9)	5,272 (NA)	NA	Yes	60.9 to 69.4	Caucasian (NA %), black and Mexican-American	BMD proximal femur by DXA	CV and stroke mortality by death certificates	Women: BMD and CV mortality RR: 1.26 (95% CI 0.88 to 1.80) BMD and stroke mortality: RR: 1.34 (95% CI 0.86 to 2.07) Men: BMD and CV mortality: RR: 1.05 (95% CI 0.79 to 1.39) BMD and stroke mortality: RR: 0.73 (95% CI 0.43 to 1.23)	3
Farhat, 2007 [6]	Population-based (5.4)	2,310 (55%)	Yes (58%) and black	Yes	73.5	Caucasian	BMD total hip, femoral neck and trochanter by DXA BMD spine by CT-scans	Incident CV disease by hospital records and death certificates	Women: BMD fem neck and incident CV disease: HR: 1.24 (95% CI 1.02 to 1.52) Men: BMD fem neck and incident CV disease: HR: 1.04 (95% CI 0.89 to 1.21)	3
Tamaki, 2009 [75]	Population-based (10)	609 (100%)	Yes (60%)	No	55.9	Japanese	BMD lumbar spine and total hip by DXA	IMT values	<10 YSM: IMT OP vs normal bone mass: 1.55 vs 1.19 (P < 0.05) ≥15 YSM: IMT OP vs normal bone mass: 1.53 vs 1.28 (P < 0.05)	3
Browner, 1991 [5]	Population-based (2.8)	9,704 (100%)	No	NA	70% Japanese	BMD distal radius, prox radius and calcaneus by single photon absorptiometry	Overall mortality and CV mortality by death certificates	BMD and risk overall mortality: RR: 1.22 (95% CI 1.01 to 1.47) BMD and stroke mortality: RR: 1.75 (95% CI 1.15 to 2.65) BMD and CV mortality: RR: 1.17 (95% CI 0.92 to 1.51)	3	
Trone, 2007 [68]	Population-based (7.6)	1,580 (60%)	Yes (NA %)	No	71.9	Caucasian	Prevalence vertebral fracture by lateral spine radiographs	Overall mortality by death certificates	Women: prevalent vertebral fracture and overall mortality: HR: 1.15 (95% CI 0.83 to 1.59) Men: prevalent vertebral fracture and overall mortality: HR: 0.98 (95% CI 0.55 to 1.74)	3
Kado, 2000 [64]	Population-based (3.5)	6,018 (100%)	Yes	No	76.5	Caucasian	BMD total hip by DXA	Overall and CV mortality by death certificates	BMD and overall mortality: RR: 1.3 (95% CI 1.1 to 1.4) BMD and CV mortality: RR: 1.3 (95% CI 1.0 to 1.9)	4
Trivedi, 2001 [67]	Population-based (6.7)	1,002 (0%)	No women included	No	69.7	NA	BMD total hip by DXA	Overall and CV mortality by death certificates	BMD and overall mortality: RR: 0.79 (95% CI 0.65 to 0.97) BMD and CV mortality: RR: 0.72 (95% CI 0.56 to 0.93)	4
Tanko, 2005 [76]	Clinic-based (4)	2,576 (100%)	Yes	No	66.5	NA	BMD lumbar spine and femoral neck by DXA	Incidence CV events self-reported and confirmed by primary documents	HR: 3.9 (95% CI 2.0 to 7.7)	4
Study	Design	N (Follow-up)	Follow-Up (%)	Ethnicity	Sex	BMD Site	Outcome	HR/RR (95% CI)		
-----------------------	-----------------------	---------------	----------------	-----------	-----	--	---	-------------------------		
Pinheiro, 2006 [66]	Population-based (5)	208 (100%)	Yes	Caucasian	No	BMD lumbar spine, femoral neck and trochanter by DXA	Overall and CV mortality by death certificates	1.44 (1.06 to 2.21)		
							BMD and overall mortality: HR: 1.28 (1.08 to 2.26)			
							Women: RR: 1.19 (1.02 to 1.39)	4		
							Men: RR: 1.23 (1.10 to 1.41)			
Johansson, 1998 [7]	Population-based (7)	1,468 (56%)	Yes	Caucasian	No	BMD calcaneus by DPA	Overall mortality by death certificates	1.28 (1.08 to 2.26)		
							Women: RR: 1.19 (1.02 to 1.39)	4		
							Men: RR: 1.23 (1.10 to 1.41)			
Mussolino, 2003 [65]	Population-based (18.5)	3,402 (NA)	Yes	Caucasian	NA	BMD phalangeal by single photon absorption	Stroke mortality by death certificates	1.28 (1.08 to 2.26)		
							Women: RR: 1.19 (1.02 to 1.39)	4		
							Men: RR: 1.23 (1.10 to 1.41)			
Sameelson, 2004 [70]	Population-based (30)	2,059 (60%)	Yes (85,3-94%)	NA	60.2	Second MCA by radiogrammetry	Incidence coronary heart disease by hospital records and death certificates	1.28 (1.08 to 2.26)		
							Women: RR: 1.19 (1.02 to 1.39)	4		
							Men: RR: 1.23 (1.10 to 1.41)			
Kiel, 2001 [77]	Population-based (25)	554 (66%)	No	NA	54.4	Second MCA by radiogrammetry	AC by radiograph of the lumbar spine	1.28 (1.08 to 2.26)		
							Women: Sign association % change in MCA and change AC index (P = 0.01)	4		
							Men: No association % change MCA and change AC index (P = 0.50)			
Browner, 1993 [62]	Population-based (1.88)	4,024 (100%)	Yes	NA	NA	BMD distal radius and calcaneus by single photon absorptiometry	Incident strokes by hospital records and death certificates	1.31 (1.03 to 1.67)		
Von der Recke, 1999 [8]	Clinic-based (17)	1,063 (100%)	Yes	NA	50 and 70	BMD distal forearm by single photon absorptiometry with 125I source	CV mortality by death certificates, hospital records and autopsy reports	1.31 (1.03 to 1.67)		
							Early menopause: RR: 2.3 (1.95 CI 1.0 to 5.3)	5		
							Late menopause: RR: 1.3 (0.9 to 1.8)			
Silverman, 2004 [71]	Clinic-based (3)	2,565 (100%)	Yes	Caucasian	No	67	Prevalence vertebral fracture by lateral spine radiographs	Incident event rate women with prevalent vertebral fracture vs no vertebral fracture: 15.1 vs 8.3 (P = 0.55)	1.31 (1.03 to 1.67)	
Varosy, 2003 [73]	Clinic-based (4.1)	2,763 (100%)	Yes	NA	NA	Prevalent and incident skeletal fracture self-reported. Incident fractures were confirmed by radiological reports	Incident coronary event by hospital records	1.31 (1.03 to 1.67)		
Gonzalez-Macias, 2009 [63]	Clinic-based (3)	5,201 (100%)	Yes	Caucasian	No	72.3	eBMD calcaneus by QUS	Overall and CV mortality by medical records	1.31 (1.03 to 1.67)	

Adjusted for age; AC, aortic calcification; BMD, bone mineral density; DPA, dual photon absorptiometry; DXA, dual-energy x-ray absorptiometry; IMT, intima media thickness; MCA, metacarpal relative cortical area; NA, not available; QUS, quantitative ultrasonography; YSM, years since menopause.
Study	Study population	Number of cases	% women	Outcome bone mass	Outcome CV disease	Main results
Frye, 1992 [35]	Population-based	200	100%	BMD lumbar spine	AC by x-ray	Association AC and BMD lumbar spine: β-2.213 (P < 0.05)
				and hip by single photon absorptiometry		Association AC and BMD hip: β-0.661 (NS)
Barengolts, 1998 [32]	Clinic-based	45	100%	BMD lumbar spine	Coronary calcium score by EBT	Correlation BDM hip and calcium score: r-0.34 (P = 0.022)
				and hip by DXA		Correlation BMD spine and calcium score: r-0.28 (P = 0.056)
Jorgensen, 2001 [27]	Clinic-based	63	52%	BMD femoral neck	Incident stroke	Women: OR: 6.6 (95% CI 1.8 to 24.8)
				by DXA		Men: OR: 0.6 (95% CI 0.1 to 2.3)
Aoyagi, 2001 [40]	Population-based	524	100%	BMD distal and proximal radius, calcaneus single photon absorptiometry	AC by x-ray	BMD distal radius and AC: OR: 1.1 (95% CI 0.9 to 1.3)
						BMD calcaneus and AC: OR: 1.1 (0.9 to 1.3)
Van der Klift, 2002 [29]	Population-based	5,268	57%	BMD lumbar spine	PAD by ABI	Women: PAD and BMD hip: OR: 1.35 (95% CI 1.02 to 1.79)
				and hip by DXA		Men: PAD and BMD hip: OR: 0.89 (95% CI 0.64 to 1.23)
Tanko, 2003 [39]	Population-based	963	100%	BMD hip and lumbar spine by DXA	AC by x-ray	AC and BMD hip: β-0.10, 9 (P = 0.004)
Hirose, 2003 [56]	Clinic-based	7,865	9%	OSI calcaneus	baPWV	Women: β-0.11 (P < 0.01)
						Men: β-0.07 (P < 0.01)
Pennisi, 2004 [50]	Clinic-based	36	44%	BMD total body, lumbar spine, and hip by DXA and calcaneus by QUS	IMT and presence of plaque in carotid artery	63% patients with BMD spine T <-1
						93% patients with BMD hip T <-1
Jorgensen, 2004 [47]	Population-based	5,296	52%	BMD distal radius by single x-ray absorptiometry	IMT and prevalent plaque	BMD and IMT: NS
						BMD and prevalent plaque: OR: 0.90 (95% CI 0.75 to 1.07)
Montalcini, 2004 [49]	Clinic-based	157	100%	BMD calcaneus by QUS	IMT	BMD and IMT: NS
Magnus, 2005 [23]	Population-based	5,050	36%	BMD hip by DXA	Self reported CV events	Women: OR: 1.22 (0.80 to 1.86)
						Men: OR: 1.39 (95% CI 1.03 to 1.87)
Bakhireva, 2005 [31]	Population-based	366	51%	BMD lumbar spine	CAC by CT scan	Women: BMD hip and CAC: OR: 0.69 (95% CI 0.51 to 0.93)
				and hip by DXA		Men: BMD hip and CAC: OR: 1.03 (0.75 to 1.41)
Wong, 2005 [30]	Population-based	3,998	50%	BMD lumbar spine	PAD by ABI	Per SD increase in ABI sign associated with hip BMD: 0.5 (95% CI 0.02 to 0.9)
				and hip by DXA		BMD lumbar spine and FA-IMT: ρ-0.117 (P < 0.005)
Yamada, 2005 [53]	Clinic-based	260	59%	BMD lumbar spine	IMT carotid artery and femoral artery	AC and BMD: OR: 1.68 (95% CI 1.06 to 2.68)
Farhat, 2006 [34]	Population-based	490	100%	vBMD spine by CT scan	AC and CAC by CT scan	CAC and BMD: OR: 1.19 (95% CI 0.81 to 1.74)
Farhat, 2006 [19]	Population-based	1,489	51%	BMD hip by DXA	Prevalent CV disease self reported Prevalent PAD by ABI	Women: Prevalent CV disease and BMD hip: OR: 1.22 (95% CI 1.03 to 1.43)
				vBMD lumbar spine by QCT		PAD and BMD hip: NS Men: Prevalent CV disease and BMD hip: NS
						PAD and BMD hip: OR: 1.39 (95% CI 1.03 to 1.84)
Study	Population	Subjects	BMD Sites	Additional Measurements	IMT and PWV Associations	
------------------------	------------	----------	-----------	--------------------------	--------------------------	
Yamada, 2006 [54]	Population-based	149	100%	BMD lumbar spine by DXA and vBMD calcaneus by QCT	IMT and PWV: FA-IMT and BMD spine: β-0.067 (P < 0.05)	
Sumino, 2006 [60]	Clinic-based	315	100%	BMD lumbar spine by DXA	baPWV Association baPWV and BMD: β-0.265 (P = 0.002)	
Sinnott, 2006 [43]	Clinic-based	480	65%	BMD lumbar spine by QCT	Calcium score by CT-scan No correlation CAD and BMD in women and men	
Shaffer, 2007 [51]	Population-based	870	61%	BMD lumbar spine, hip and distal radius by DXA	IMT Women >60 years: IMT and BMD spine: β-73.0 (P < 0.001) IMT and BMD hip: β-62.4 (P < 0.001) Men >60 years: IMT and BMD radius: β-27.0 (P < 0.001)	
Sumino, 2007 [61]	Clinic-based	85	100%	BMD lumbar spine by DXA	Brachial arterial endothelial function (FMD) Correlation FMD and BMD: r .034 (P < 0.01) Association FMD and BMD: β 0.40 (P < 0.01)	
Hyder, 2007 [36]	Clinic-based	365	64%	BMD lumbar spine by CT-scan	Atherosclerotic calcium in carotid, coronary and iliac arteries by CT-scan Women: Calcium score aorta and BMD: OR: 3.14 (95% CI 1.55 to 6.38) Calcium score iliac arteries and BMD: OR: 2.20 (95% CI 1.13 to 4.29) Men: Calcium score carotid and BMD: OR: 2.85 (95% CI 1.02 to 7.96) Calcium score aorta and BMD: OR: 5.90 (95% CI 1.78 to 19.6)	
Shen, 2007 [42]	Population-based	682	56%	BMD lumbar spine and hip by DXA	CAC by CT scan CAC and BMD spine: -0.105 ± 0.132 (NS) CAC and BMD hip: 0.022 ± 0.142 (NS)	
Siocka, 2007 [24]	Clinic-based	21	0%	BMD lumbar spine and hip by DXA	CAD by angiography BMD in severe CAD vs no CAD: 77.8% vs 37.5%, P = ?	
Sumino, 2008 [52]	Clinic-based	175	100%	BMD lumbar spine by DXA	IMT BMD and IMT β-0.313 (P = 0.001)	
Kim, 2008 [48]	Clinic-based	194	100%	BMD lumbar spine and hip by DXA	Prevalent vertebral fracture IMT and prevalent plaque BMD and IMT: NS	
Frost, 2008 [45]	Clinic-based	54	100%	Lumbar spine and hip by DXA	IMT and PWV BMD spine and IMT: r -0.25 (P = 0.26) BMD hip and IMT: r-0.17 (NS) BMD and PWV: NS	
Mangiafico, 2008 [57]	Clinic-based	182	100%	BMD lumbar spine and hip DXA	PWA (Alx and PWV) BMD hip and Alx: β-5.46 (P < 0.0001) BMD spine and Aix: β-3.29 (P < 0.0001)	
Tekin, 2008 [25]	Clinic-based	227	100%	BMD lumbar spine by DXA	Prevalence CAD CAD and low BMD: OR: 0.68 (95% CI 0.39 to 1.28)	
Broussard, 2008 [18]	Population-based	3,881	51%	BMD total femur by DXA	Framingham CHD risk score by Framingham CHD prediction model BMD and IMT: NS BMD and plaque: NS Vertebral fracture and plaque: OR: 2.8 (95% CI 1.17 to 7.12)	
Chow, 2008 [41]	Population-based	693	54%	vBMD lumbar spine and hip by QCT and vBMD distal radius by HRpQCT	AC by CT-scan Women: NS Men: NS	
Hyder, 2009 [37]	NA	1,909	50%	vBMD lumbar spine by CT-scan	CAC and AAC score Women: vBMD and CAC (P-trend <0.002) vBMD AND AAC (P-trend <0.004) Men: vBMD and CAC (P-trend <0.034) vBMD and AAC (P-trend <0.001)	
Hnamouchi, 2009 [46]	Clinic-based	72	100%	BMD lumbar spine and hip by DXA	IMT in carotid artery and femoral artery CA-IMT and BMD hip: r-0.330 (P < 0.05) FA-IMT and BMD hip: NS IMT and BMD lumbar spine: NS	
Mikumo, 2009 [58]	Clinic-based	143	100%	BMD lumbar spine by DXA	PWV BMD and PWV: r-99.78 (NS)	
The relationship between CV disease and fracture risk

Seven population-based cohort studies assessed the relationship between CV disease and fracture risk [1,2,4,12-15] (Table 1). An increased risk of incident fractures was observed in four studies with risk rates ranging from 1.2 to 6.7 [1,2,13,14].

The largest study included more than 30,000 twins with a follow-up duration of 20 years [13]. In this study, twins, without prevalent CV disease, were included at the age of 50 years and followed up until a first hip fracture, death or end of follow-up period. Twins were considered unexposed until the first CV event. An increased hip fracture risk was found after all diagnoses of CV disease in both men (hazard ratio (HR) 6.65; 95% CI 4.82 to 9.19) and women (HR 4.42; 95% CI 3.49 to 5.61).

Furthermore, this study showed that CHD was associated with an increased fracture risk (HR 2.32; 95% CI 1.91 to 2.84) as was cerebral vascular disease (HR 5.09 95% CI 4.18 to 6.20) [13]. This was confirmed in a large population case-control study. This case-control study was conducted using the Dutch PHARMO Record Linkage System database. Patients (n = 6,763) with a hip fracture were compared with age- and sex-matched patients without a hip fracture (n = 26,341), with the objective to evaluate the association between stroke and risk of hip fracture [16]. The prevalence of stroke was 3.3% in cases versus 1.5% in control patients. The risk for a hip fracture was increased in patients who experienced a stroke before the index date (OR 1.96; 95% CI 1.66 to 2.33).

Three studies looked at the association between PAD and fracture risk. PAD was associated with increased risk for non-vertebral fractures (HR 1.47; 95% CI 1.07 to 2.04) [2] and hip fractures (HR 3.20; 95% CI 2.28 to 4.50) [13]. In contrast, a smaller study in men and women, with shorter follow-up time, did not find an association between PAD and non-vertebral fracture risk [15]. Time of follow-up might be an important factor explaining different results, for the risk of fractures

Table 3 Cross-sectional studies investigating relationship CV disease and low BMD (Continued)

Study	Study Design	n	Gender	BMD measurement	CV Disease	Osteoporosis	Odds Ratio (95% CI)
Marcowitz, 2005 [20]	Clinic-based	209	88%	Lumbar spine, hip and distal radius by DXA	CAD	Osteoporosis: OR: 5.58 (95% CI 2.59 to 12.0) for CAD	
Ness, 2006 [38]	Clinic-based	1,000	100%	Diagnosis osteoporosis or osteopenia by electronic medical records	AVD	Prevalence AVD osteoporosis vs osteopenia: 60% vs 35% (P < 0.001)	
Gupta, 2006 [78]	Clinic-based	101	100%	BMD lumbar spine and total hip by DXA	Prevalent CV disease	Prevalent CV disease in low BMD vs normal BMD: 61% vs 38% (P < 0.025)	
Mangifico, 2006 [28]	Clinic-based	345	100%	BMD lumbar spine and femoral neck by DXA	PAD by ABI	PAD and BMD lumbar spine: OR: 1.01 (95% CI 0.97 to 1.03)	
Erbilen, 2007 [33]	Clinic-based	74	0%	BMD lumbar spine and hip by DXA	CAD	Association BMD and CAD: OR: 5.4 (95% CI 1.66 to 17.49)	
Senerby, 2007 [21]	Clinic-based	1,327	100%	Incident hip fracture by X-ray and hospital record	Prevalent CV disease by questionnaire	OR: 2.38 (95% CI 1.92 to 2.94)	
Varma, 2008 [22]	Clinic-based	198	74%	Lumbar spine and hip by DXA	Obstructive CAD	Prevalence CAD osteoporosis vs osteopenia: 76% vs 68% (P < 0.01)	
Seo, 2009 [59]	Clinic-based	253	100%	BMD lumbar spine and hip by DXA	baPWV	Sign association BMD hip and baPWV: B=0.123 (P < 0.005)	
Pouwels, 2009 [16]	Clinic-based	6,763	73%	Incident hip fracture	Incident stroke by ICD	Risk hip fracture after stroke: Women: OR: 2.12 (95% CI 1.73 to 2.59)	

#adjusted for confounders; BMD, bone mineral density; AC, aortic calcification; DXA, dual-energy x-ray absorptiometry; PAD, peripheral arterial disease; ABI, ankle brachial index; OSI, osteosono assessment index; baPWV, brachial-ankle pulse wave velocity; IMT, intimal medial thickness; CAC, coronary artery calcium; QCT, quantitative computerized tomography; PWV, pulse wave velocity; CAD, coronary artery disease; PWA, pulse wave analysis; AIx, augmentation index; CHD, coronary heart disease; AVD, atherosclerotic vascular disease.
was highest more than 10 years after the diagnosis of PAD [13].

Longitudinal analysis in healthy postmenopausal women \((n = 2,262) \) showed that aortic calcifications (AC) represented a strong predictor for fragility fractures: AC predicted a 2.3-fold increased risk for hip fracture [1]. Not only women, but also men with advanced AC have a two- to three-fold increased fracture risk [14]. However, a large population-based study with 21 years follow-up, found no evidence that severity of vascular calcification, measured as AC, is associated with an increased risk of incident hip fracture [12]. Conflicting results might be due to differences in population and methodology. The incident fracture rates were equal in comparison to the other studies.

Hence, although heterogeneity makes it difficult to draw firm conclusions, there is evidence that subjects with atherosclerotic disease are at an increased risk for frailty fractures. There are insufficient data to draw conclusions about fracture risk in patients with prevalent coronary or cerebral CV disease.

Cardiovascular disease and bone loss Longitudinal data about CV disease and bone loss were available from six studies [1-4,15,17]. All studies showed that prevalent CV disease was associated with an increased bone loss during follow-up, independent of age and traditional risk factors. In addition, several cross-sectional studies similarly reported that prevalent CV disease is associated with low BMD [18-22]. In the next section the results are presented per subcategory of CV disease.

The association of CHD and BMD was only addressed in cross-sectional studies and all but one found an association with low BMD [20,22-25]. Several studies reported increased bone loss after an incident stroke. Particularly patients who are wheelchair-bound or have paretic limbs as a result of the stroke have significant bone loss within months after the stroke [26]. These studies were not included in this review, for the underlying pathogenesis is obvious. One study looked at bone density immediately after the stroke and found that female stroke patients have lower BMD than controls [27]. Since the BMD measurement was assessed within
six days after the stroke, one may assume that the possible differences are not a result of immobilisation.

A large prospective study found that men with prevalent PAD had an increased rate of hip bone loss compared with men without PAD (-0.6% vs -0.3%, P < 0.001) [2]. In another, smaller, study the association between PAD and bone loss in women was weaker and not observed in men [15]. In addition, a number of cross-sectional studies showed that women and/or men with PAD have decreased BMD [19,28-30].

Numerous reports have looked at the association between subclinical atherosclerosis and osteoporosis. Men and women with progression of AC have significantly higher bone loss in the lumbar spine compared with subjects without AC progression (-1.5% vs 1.4%) [4]. This is in line with other studies where AC progression is associated with higher rates of bone loss in the proximal femur and metacarpal bones [1,3]. Furthermore, several studies confirmed the prospective data and showed that subjects with calcifications in the aorta, coronary arteries, carotid arteries or femoral arteries have significant lower BMD compared with controls [31-39]. Only a few studies fail to find an association [40-43]. In recent years, many studies have examined the association between atherosclerosis and osteoporosis. An increased IMT has been associated with severity of atherosclerosis and increased cardiovascular risk and considered useful in identifying subjects with increased risk [44]. An association between IMT and BMD was studied intensively and most of the studies reported an association of increased IMT with low bone density [45-54]. Endothelial dysfunction is considered to be an early phase of atherosclerosis and one way to measure this is to focus on arterial compliance. The endothelium plays an important role in determining vascular tone and dysfunction will result in increased arterial stiffness [55]. In line with earlier discussed results, an increased arterial stiffness is associated with low BMD [45,54,56-61].

Altogether, the results strongly suggest that subjects with subclinical atherosclerosis and early CV disease are at increased risk of bone loss. Again, there were insufficient data to reach conclusions about bone loss in patients with prevalent coronary or cerebral CV disease.

The relationship between osteoporosis and CV disease

Eighteen studies, most of moderate quality, reporting about the relationship between osteoporosis and CV disease were included. Results will be discussed per subcategory of CV disease, when possible.

Low bone mineral density and cardiovascular mortality

The association of osteoporosis with CV mortality was studied in 10 prospective studies [5,7,8,62-68] (Table 2). Low bone mass was inversely related with CV mortality in seven studies [5,7,8,62-64,66,67]. Postmenopausal women with a low BMD had a 1.2- to 2.3-fold increased risk of dying from CV events, independent of traditional CV risk factors [7,8,66]. Similar results were found in elderly men [7,67]. Studies in postmenopausal women with relative short follow-up periods (around three years) showed no or minimally significant elevated mortality rates [5,63,64]. Two large population-based studies in elderly men and women did not reveal a significant association between low bone mass and CV mortality [65,69]. The most recent and largest study determined the risk of CV mortality in 5,272 persons [69]. Women with low BMD had higher risk for CV mortality; however, this did not reach significance (relative risk (RR) 1.26; 95% CI 0.88 to 1.80). No association was found in men.

Focusing on the few studies that reported the results per CV subcategory, women with low bone mass had no or a small increased risk for mortality by coronary heart disease (RR 1.17; 95% CI 0.92 to 1.51) and (relative hazard 1.3; 95% CI 1.0 to 1.8), respectively [5,64] and two out of three studies showed that men and women with low BMD had a 1.3- to 1.7-fold increased risk for stroke mortality [5,62,65].

Low bone mineral density and incident cardiovascular disease

A total of six studies assessed the risk of incident CV events in persons with osteoporosis [6,62,70-73]. Most of them show a significant inverse relationship between BMD and incident CV events in women (HR 1.23 to 3.9) [6,39,62,70] but not in men [6,70]. Two studies related the prevalence of vertebral fractures with future CV events and were unable to find any association [68,71]. Surprisingly, one study showed that women with prevalent fractures and known CHD had a reduced risk for CV events [73].

Few articles assessed incident CV events separated per CV category. Three studies assessed the risk for CHD. Two studies showed an association with increased risk for CHD in postmenopausal women [72,73]. One study could not find an association in elderly men and women [70]. Cerebrovascular events were studied in two articles. Both found an increased risk for stroke in postmenopausal women with low BMD with hazard ratios of 1.31 and 4.1 [62,72].

There was a considerable heterogeneity in measurement of osteoporosis. It is shown that the specificity and sensitivity of the densitometry tests differs greatly, and the site of measurement plays an important role in diagnosing osteoporosis as well [74]. Only six studies used dual energy absorptiometry (DXA) measurements to assess BMD [6,64,66,67,69,75,76], while in the other studies BMD was measured with older techniques such as single photon absorptiometry, dual photon absorptiometry (DPA) or quantitative ultrasonography (QUS). Most studies measured BMD of the hip and lumbar spine, but
also distal radius and heel were measured and in some the phalangeals.

Low bone mineral density and subclinical atherosclerosis In addition to associations with CV events, low BMD has also been shown to be associated with surrogate markers of CV disease, such as vascular calcification. In women with the largest decrease in metacarpal cortical area during a 25-year follow-up, the most severe progression of aortic calcification was observed [77] and women with a prevalent vertebral fracture had a higher IMT measured 10 years later [75]. Moreover, results from several cross-sectional studies confirmed that both women and men with low bone mass, compared to subjects with normal bone mass, have significantly more subclinical atherosclerosis [20,28,31-34,37,38,45,48, 49,51,52,78,79], increased risk of peripheral arterial disease [28,29,34,54] and other surrogate end markers for CV disease [57,60,61].

Taken together, there is some evidence that persons with low BMD are at increased risk for CV events and subsequent CV mortality. However, variations in study design, for example, study population and outcome measures, limits interpretation. Since only a few studies assessed the CV outcome divided per CV subcategory, no conclusions can be drawn concerning a relationship between osteoporosis and specific categories of CV disease.

Links between CV disease and osteoporosis

Common pathogenesis

CV disease is preceded by atherosclerosis, for example, arterial disease. Atherosclerosis is a long-term process in which deposits of cholesterol, cellular waste products and calcium accumulate in the arterial wall causing it to thicken. Clinically, atherosclerosis is manifested by coronary heart disease, cerebrovascular disease and peripheral arterial disease. Endothelial dysfunction is the first step in the pathogenesis of atherosclerosis and predicts future CV events [80]. Calcification in the aorta and coronary arteries, for example, vascular calcification, may be a surrogate marker for atherosclerosis and increased CV risk [81]. In a recent meta-analysis patients with calcifications were found to have an increased risk for CV mortality and events [10]. Presently, vascular calcification is regarded as an active process, regulated by factors known to be involved in the process of osteogenesis, such as bone morphogenetic protein (BMP), alkaline phosphatase (ALP), osteopontin (OPN) and matrix GLA protein (MGP) [82-85] (Figure 2). Accumulating evidence suggests that calcification is a consequence of active bone formation by osteoblast-like cells [86]. Vascular smooth muscle cells (VSMCs) are able to re-differentiate towards osteoblast-like cells and a subpopulation, that is, calcifying vascular cells (CVCs), were shown to form nodules and mineralisation spontaneously [87]. *In vitro*, these osteoblastic cells produce hydroxyapatite, a mineral important in bone formation [88]. In the following paragraphs some of the bone-related factors that are involved in vascular calcification will be discussed in more detail.

BMPs are members of the transforming growth factor-β superfamily and important factors in the regulation of osteoblast differentiation. BMP acts through upregulation of transcription factors important in bone metabolism, such as core binding factor-α1 (Cbfa1), also known as runt-related transcription factor 2 (Runx2), and msh homeobox 2 (Msx2). BMP appears to be an important mediator in vascular calcification. An increased expression of BMP2 and BMP4 is found in atherosclerotic lesions in endothelial cells, foam cells and VSMCs [88,89]. *In vitro* studies showed that several factors that are known to induce CV disease, such as oxidative stress, oxidized low-density lipoprotein (ox-LDL) and tumor necrosis factor alpha (TNF-α), are able to upregulate BMP expression in endothelial cells [90,91].

MGP is a calcium-binding protein and requires vitamin K to function. MGP is found to be expressed in areas with arterial calcification [92] and may be an important calcification inhibitor. MGP knock-out mice developed extensive calcification in coronary arteries [93]. Recently the mechanism by which MGP inhibits calcification has become clear. *In vitro*, MGP has been shown to inhibit calcification by binding to BMP2, thereby blocking the induction of osteoblasts [94].

OPN is a glycoprotein that accumulates in the extracellular matrix of bone tissue where it binds to hydroxyapatite and calcium. In bone, OPN is expressed by (pre-) osteoblasts and osteoclasts and is also found to be highly expressed in the atherosclerotic artery [89,92]. Whether it promotes or inhibits calcification in the arterial wall is not completely clear [95]. While high OPN serum levels are associated with vascular calcification [96] and vitamin increases OPN and subsequent calcification in bovine VSMC’s [97], OPN is also shown to inhibit calcification by inhibiting *de novo* hydroxyapatite production [98].

ALP is found on the surface of osteoblasts and is often used as a marker for bone turnover. ALP is an enzyme that catalyses the hydrolysis of phosphate esters. Hydrolysis of pyrophosphate, which is an inhibitor of hydroxyapatite formation, is especially needed to facilitate normal mineralisation [99]. *In vitro* studies in VSMC’s showed that the ALP expression is increased in response to inflammatory markers, LDL and oxidative stress and this increased expression was associated with increased mineralisation [100-102].
The recent identification of receptor activator of nuclear factor-kB (RANK), osteoprotegerin (OPG) and RANK ligand (RANKL) provides more insight into bone metabolism [103]. Most interestingly, there is increasing evidence that OPG is a key regulator in the pathogenesis of osteoporosis and vascular calcification. OPG production by osteoblastic cells is regulated by a number of factors, including BMP-2, inflammation, estrogen, vitamin D and oxidative stress [104]. OPG is expressed in various tissues, including the skeleton and vascular wall, and serves as a soluble decoy for RANKL [105]. Interestingly, OPG knock-out mice show, in addition to early-onset osteoporosis, increased vascular calcification [106]. In vitro studies have shown that OPG appears to be important for endothelial cell survival [107] and may inhibit active calcification [108]. Surprisingly, while experimental studies showed that OPG might protect against vascular calcification, OPG levels appear to be elevated in patients with CV disease. Several, but not all, clinical studies found a correlation of high OPG serum levels and more severe CV disease [45,50,62,109-111]. Other pathways interacting with OPG might explain this discrepant finding. Estrogen deficiency results in an increased vascular OPG/RANKL ratio with subsequent increased calcification in an animal model [112]. Furthermore, pro-inflammatory cytokines are shown to elevate OPG levels in patients with CV disease [113]. Thus, while OPG appears to play a role in the pathogenesis of atherosclerosis, the exact mechanism remains to be elucidated.

Another important mechanism linking CV disease and osteoporosis is Wnt signalling, a combination of the genes Wg (wingless) and Int. Animal models showed the important role of Wnt signalling in bone formation.
through lipoprotein receptor-related protein 5 (LRP5), lipoprotein receptor-related protein 6 (LRP6) and β-catenin [114]. Wnt signalling is suggested to play an important role in bone formation and bone adaptation to mechanical loading [115,116]. Interestingly, TNF-α [117], oxidative stress [118] and vitamin D [119] are shown to promote vascular calcification through the Wnt signalling pathway and this supports the hypothesis that Wnt signalling is an interesting new molecular mechanism that influences bone and vascular metabolism.

Common risk factors

CV disease and osteoporosis are both common diseases in elderly men and women. While the increased prevalence of both conditions is often attributed to aging, most of the associations found in observational studies remain significant after adjustment for age. Other important traditional risk factors are also shared, such as inactivity, smoking, estrogen deficiency and chronic inflammation, explaining part of the link between CV disease and osteoporosis [9].

Estrogen deficiency is considered an important risk factor for osteoporosis [120] and some studies suggest estrogen deficiency to be a cardiovascular risk factor [121-123]. Estrogen regulates bone turnover and the CV system directly and indirectly through the effects on the immune system, antioxidant system and other risk factors. After menopause, estrogen levels decrease rapidly resulting in an upregulated osteoclast formation and differentiation, inducing high bone turnover and accelerated bone loss [124]. Furthermore, following estrogen withdrawal the production and secretion of the pro-inflammatory cytokines interleukin-6 (IL-6), interleukin-1 and TNF-α is increased [116,125].

Presently, inflammation is considered to play an important role in the process of atherosclerosis [126,127]. Both cellular and humoral pathways of the immune response contribute to an important part in the pathogenesis of atherosclerosis [128]. Markers of inflammation, such as pro-inflammatory cytokines and C-reactive protein (CRP), are involved in the development of atherosclerosis and CRP predicts cardiovascular events independently of other CV risk factors [129,130]. There is accumulating evidence that inflammation influences bone metabolism and is considered to be the most important cause of postmenopausal osteoporosis. Pro-inflammatory cytokines enhance bone resorption directly through an induction of osteoclastogenesis or through the OPG pathway [116,131].

Recent research has identified new common mediators for vascular calcification and bone loss, such as hyperlipidemia, oxidative stress and vitamin D deficiency. An abnormal lipid profile, that is, high levels of total cholesterol, LDL and triglycerides and low levels of high-density lipoprotein (HDL), is known to play a key role in development of atherosclerosis and CV disease [132,133]. Interestingly, HDL is able to regulate the calcification of VSMCs [134]. HDL inhibited the spontaneous and cytokine induced osteogenic differentiation of CVCs *in vitro*. The role of lipids in the regulation of bone mass is more complicated. While experimental studies showed that ox-LDL influences bone metabolism [135], results in observational studies are contradictory [1,136-138].

Oxidative stress is believed to increase with age and is associated with hypertension and atherosclerosis [139]. Free radicals have important effects on osteoclast differentiation and function [140] and oxidative stress markers are significantly associated with BMD [141]. *In vitro*, minimally oxidized low-density lipoprotein (MM-LDL) enhances the differentiation of VSMC’s towards osteoblastic cells. Interestingly, antioxidants inhibited these effects [100].

The prevalence of vitamin D deficiency is high among elderly men and women [142] and associated with osteoporosis and increased fracture risk [143]. Observational studies showed an inverse association of vitamin D deficiency with hypertension and CV events, suggesting a role for low vitamin D [144-148]. Proposed mechanisms are effects on myocardial gene expression, the renin-angiotensin axis or through secondary hyperparathyroidism. Important risk factors as physical condition and immobility were rarely assessed. Animal models and *in vitro* studies on the other hand, demonstrated that toxic levels of vitamin D induce vascular calcification [97,149]. Interestingly, osteoprotegerin has been shown to inhibit the vitamin-induced calcifications in an animal model [150]. It has been suggested that vitamin D has a biphasic relation with vascular calcification and that both vitamin D deficiency and vitamin D excess results in increased vascular calcification.

Genetic studies

In complex, multifactorial diseases genetic factors are believed to play an important role in the pathogenesis in addition to environmental influences. Identifying candidate genes offers opportunities to gain more insight into possible shared pathogenesis and common risk factors in CV disease and osteoporosis. Many candidate genes have been examined, mainly genes coding for known factors, such as cytokines, bone-associated factors and receptors. The genes that might be involved in both diseases will be discussed here.

Polymorphism in the *IL-6* gene, a cytokine involved in bone metabolism and CV disease, might be an interestingly candidate gene. A G174C polymorphism in the promoter region of the *IL-6* gene was shown to be associated with low bone mass in the radius in postmenopausal
women [151] and with a high blood pressure and increased CV risk in men [152].

Vitamin D receptor polymorphisms have been associated in many studies with bone density [153,154]. Although this could not be replicated in a large meta-analysis, it did show that the Cdx2 polymorphism was associated with risk for vertebral fractures [155]. In addition, the BsmI polymorphism was associated with IMT and myocardial infarction (MI) [156,157], strengthening the possible role of vitamin D in linking CV disease and osteoporosis.

One of the most interesting candidate genes to mention is the **OPG** gene, located on chromosome 8 and several single nucleotide polymorphisms (SNPs) are identified in this gene. So far, studies were able to associate different SNPs with either bone density or vascular disease. SNPs A163G and T245G were associated with osteoporotic fractures [158]. The linked polymorphisms T950C and C1181C within the promoter region of the OPG gene were associated with an increased risk for CAD in men [159]. In addition, C1181C was also associated with first-ever intracerebral haemorrhage [160]. Furthermore, another SNP in the promoter region in the TATA box was related to vascular morphology and function [161].

A genetic defect in the Wnt signalling pathway was recently discovered in a family with features of metabolic syndrome and early onset coronary artery disease [162]. This rare mutation in the **LRP6** gene is associated with dyslipidemia, hypertension and diabetes. This finding supports further research for mutations in genes involved in the Wnt signalling pathway.

Collagen type I is an important protein in the mineralisation matrix and connective tissue. Mutations in this gene are associated with low BMD and fracture risk [163]. Interestingly, besides low BMD, individuals with a SNP in the **COL1A1** gene (rs42524) had an increased prevalence of stroke and MI [164].

The calcium-sensing receptor (CASR) is a receptor involved in the regulation of calcium homeostasis. A SNP in the **CARS** gene (A9865S) was associated with higher serum calcium and increased prevalence of coronary artery disease (CAD) and MI [165]. This SNP was also associated with low BMD in premenopausal women [166]. However, the role in postmenopausal osteoporosis is not clear, since several studies showed no association of this SNP with BMD or fracture risk in postmenopausal women [167,168].

An interesting candidate gene to mention is the **klotho** gene. Defects in the klotho gene have been shown to result in arteriosclerosis and increased IMT in klotho deficient mice [169]. A SNP in this gene (G395A) was associated with CAD. Surprisingly, this same SNP was associated with bone density [170] and was suggested to be involved in the pathophysiology of bone loss. This SNP in the promoter region resulted in impaired function of the gene. What makes this gene interesting is that it might offer a new treatment approach, because the abnormalities seen in klotho-deficient mice can be reversed by restoring the klotho expression [171].

Finally, polymorphisms in the apolipoprotein E (**APOE**) gene has been studied intensively. It has been associated with hypertension, atherosclerotic disease and CV disease [172-174]. Furthermore, APOE gene polymorphisms have been suggested to be associated with low BMD and fracture risk. However, a recent meta-analysis was unable to show a strong and consistent association with BMD and fracture incidence [175].

Discussion

Our study is the first to systematically review the epidemiological literature about the association between CV disease and osteoporosis. An extensive literature search yielded 27 prospective studies addressing this relationship. Due to considerable heterogeneity in study design and outcome measurements the results could not be pooled. Focusing on the methodologically strongest studies (those with minimal selection bias and the appropriate assessments, that is, a methodological score of more than 3), our review indicates that the prevalent subclinical CV disease predicts future fractures and bone loss [2-4,13-15] (Table 4).

Furthermore, there is some evidence that low bone mass predicts CV mortality and CV events [6,62,68,69,75].

Interestingly, several studies demonstrated shared risk factors, supporting the existence of a direct association between vascular calcification and bone biology.

Due to the substantial diversity of patients and study methods, pooled analysis was not considered appropriate. Although numerous efforts were made to investigate the association between CV disease and osteoporosis, a vast majority of studies used secondary outcome measurements, while a limited number of studies used primary outcome measurements such as incident CV events or osteoporosis. Furthermore, the population studied varied with respect to age, sex, baseline risk for CV events or fractures and ethnicity. Larger prospective studies in elderly persons, men and women, are needed to answer this question. To reduce heterogeneity we encourage that in new studies well-defined outcome

Table 4 Summary of findings in high quality prospective studies

	Association	No association
CV disease and OP	N = 6	N = 0
Bone mass and CV events	N = 3	N = 2
measures should be incorporated, such as incident CV disease presented per subcategory of CV disease and measurement of BMD by DXA-scans on regular interval periods.

Conclusions
The current evidence indicates that individuals with prevalent (sub)clinical CV disease are at increased risk for bone loss and subsequent fractures. Presently, no firm conclusions can be drawn to which extent low BMD might be associated with increased cardiovascular risk. Age, estrogen deficiency and inflammation represent the most important common risk factors and the discovery of new pathways, for example, OGP/RANKL and Wnt signalling, might provide interesting new therapeutic options. Altogether our results suggest that bone density screening could be recommended in patients with prevalent CV disease.

Additional material

Additional file 1: Medline search. Complete medline search on 8 June 2010.

Additional file 2: Quality assessment cohort studies. List of quality assessment of cohort studies as proposed by the Dutch Cochrane Collaboration.

Abbreviations
ABI: ankle brachial index; ACR: acral calcifications; ALP: alkaline phosphatase; APOE: apolipoprotein E; BMD: bone mineral density; BMP: bone morphogenetic protein; CAD: coronary artery disease; CASR: calcium-sensing receptor; Cbfa1: core binding factor-α1; CDH: coronary heart disease; CRP: C-reactive protein; CV: cardiovascular; CVC: calcifying vascular cells; DXA: dual photon absorptiometry; DNA: dual energy absorptiometry; HDL: high density lipoprotein; HR: hazard ratio; IL-6: interleukine-6; IMT: intima media thickness; LRF5: lipoprotein receptor-related protein 5; LRP6: lipoprotein receptor-related protein 6; MGP: matrix GLA protein; MI: myocardial infarction; MM-LDL: minimally oxidized low-density lipoprotein; Msx2: msh homeobox 2; OPG: osteoprotegerin; OPN: osteopontin; OR: odds ratio; ox-LDL: oxidized low density lipoprotein; PAD: peripheral arterial disease; QUS: quantitative ultrasonography; RANK: receptor activator of nuclear factor-κB; RANKL: receptor activator of nuclear factor-κB ligand; RR: relative risk; Runx2: runt-related transcription factor 2; SNP: single nucleotide polymorphism; TNF-α: tumour necrosis factor alpha; VSMC: vascular smooth muscle cell; Wnt: combination of wingless and Int.

Acknowledgements
We would like to thank Hans Ket (Clinical Library, VU medical centre, Amsterdam) for his assistance in collecting the literature for this systematic review.

Author details
1Department of Rheumatology, VU Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands. 2Department of Immunology, VU Medical Centre, Amsterdam, The Netherlands. 3Department of Rheumatology, Jan van Breemen Research Institute/Reade, Dr Jan van Breemenstraat 2, 1056 AB Amsterdam, The Netherlands.

Authors’ contributions
DU conducted the data collection, interpretation and analysis of the data and drafted the manuscript. LT participated in interpretation and analysis of the data and helped to draft the manuscript. WL conceived of the hypothesis of the manuscript and participated in study design and coordination. MT, HR and WL helped to draft the manuscript. All authors critically reviewed, contributed to and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 17 June 2010 Revised: 12 November 2010 Accepted: 17 January 2011 Published: 17 January 2011

References
1. Bagger YZ, Tanko LB, Alexandersson P, Qin G, Christiansen C: Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med 2006, 259:589-605.
2. Collins TC, Ewing SK, Diem SJ, Taylor BC, Oxlund ES, Cummings SR, Strotmeyer ES, Ensrud KE: Peripheral arterial disease is associated with higher rates of hip bone loss and increased fracture risk in older men. Circulation 2009, 119:2305-2312.
3. Hak AE, Pols HA, van Hemert AJM, Hofman A, Witteman JC: Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol 2000, 20:1926-1931.
4. Naves M, Rodriguez-Garcia M, Diaz-Lopez JB, Gomez-Alonso C, Cannata-Andia JB: Progression of vascular calcifications is associated with greater bone loss and increased bone fractures. Osteoporos Int 2008, 19:1161-1166.
5. Browner WS, Seeley DG, Vogt TM, Cummings SR: Non-trauma mortality in elderly women with low bone mineral density. Study of Osteoporotic Fractures Research Group. Lancet 1991, 338:335-338.
6. Farhat GN, Newman AB, Sutton-Tyrrell K, Matthews KA, Boudreau RM, Schwartz AV, Harris T, Tylavsky F, Visser M, Cauley JA: The association of bone mineral density measures with incident cardiovascular disease in older adults. Osteoporos Int 2007, 18:999-1008.
7. Johansson C, Black D, Johnell O, Oden A, Mellstrom D: Bone mineral density is a predictor of survival. Calcif Tissue Int 1998, 63:190-196.
8. von der Recke P, Hansen MA, Hassager C: The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 1999, 106:273-278.
9. Doherty TM, Fitzpatrick LA, Inoue D, Qiao JH, Fishbein MC, Detrano RC, Shah PK, Rajavashisth TB: Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev 2004, 25:629-672.
10. Rennenberg RJ, Kessels AG, Schurgers LJ, van Engelshoven JM, de Leeuw PW, Kroon AA: Vascular calcifications as a marker of increased cardiovascular risk: a meta-analysis. Vasc Health Risk Manag 2009, 5:185-197.
11. Checklist quality assessment cohort studies. Dutch Cochrane Centre; 2010.
12. Samelson EL, Cupples LA, Broe KE, Hannan MT, ODonnell CJ, Kiel DP: Vascular calcification in middle age and long-term risk of hip fracture: the Framingham Study. J Bone Miner Res 2007, 22:1449-1454.
13. Sennerby L, Melhus H, Gedeberg R, Byberg L, Garmo H, Ahlbom A, Pedersen NL, Michaessen E: Cardiovascular diseases and risk of hip fracture. JAMA 2009, 302:1666-1673.
14. Szkut P, Kiel DP, Delmas PD: Calcifications in the abdominal aorta predict fractures in men: MINDS study. J Bone Miner Res 2008, 23:95-102.
15. von Mühlen D, Allison M, Jassal SK, Barrett-Connor E: Peripheral arterial disease and osteoporosis in older adults: the Rancho Bernardo Study. Osteoporos Int 2009, 20:2071-2078.
16. Poulwels S, Lalmohamed A, Leufkens B, de Boer A, Roer C, van Staa T, de Vries F: Risk of hip/femur fracture after stroke: a population-based case-control study. Stroke 2009, 40:2281-2286.
17. Schultz E, Arfa K, Liu Y, Sayre J, Gilsanz V: Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab 2004, 89:4246-4253.
18. Broussard DL, Magnus JH: Coronary heart disease risk and bone mineral density among U.S. women and men. J Women’s Health (Larchmt) 2008, 17:479-490.
19. Farhat GN, Strotmeyer ES, Newman AB, Sutton-Tyrrell K, Bauer DC, Harris T, Johnson KC, Taaffe DR, Cauley JA: Volumetric and areal bone mineral density measures are associated with cardiovascular disease in older men and women: the health, aging, and body composition study. Calcif Tissue Int 2006, 79:102-111.
20. Marcovitz PA, Tran HH, Franklin BA, O'Neill WW, Yerkey M, Bora J, Kleerekoper M, Dickson CZ. Usefulness of bone mineral density to predict significant coronary artery disease. *Am J Cardiol* 2005, 96:1039-1063.

21. Sennerby U, Farahmand B, Ahlborn A, Ljunghall S, Michaelsson K. Cardiovascular diseases and future risk of hip fracture in women. *Osteoporos Int* 2007, 18:1355-1362.

22. Varma R, Aronow WS, Basser Y, Singh T, Kalapatapu K, Weiss MB, Pucillo AL, Monsen CE. Relation of bone mineral density to frequency of coronary heart disease. *Am J Cardiol* 2008, 101:1103-1108.

23. Magnus H, Brousard DL. Relationship between bone mineral density and myocardial infarction in US adults. *Osteoporos Int* 2005, 16:2053-2062.

24. Sioka C, Goudevenos J, Pappas K, Bougias C, Papadopoulos A, Grammatikopoulos K, Fotopoulou A. Bone mineral density and coronary atherosclerosis. *Calcif Tissue Int* 2007, 81:333.

25. Tekin GO, Kekilli E, Yagmur A, Uckan A, Yagmur C, Alkoy A, Tusun H, Yetkin E. Evaluation of cardiovascular risk factors and bone mineral density in post menopausal women undergoing coronary angiography. *Int J Cardiol* 2008, 131:66-69.

26. Sato Y, Kuno H, Kaji M, Ohshima Y, Asoh T, Oizumi K. Bone mineral density in acute stroke patients: low bone mineral density may predict first stroke in women. *Stroke* 2001, 32:427-51.

27. Mangiafico RA, Russo E, Riccobene S, Pennisi P, Mangiafico M, D’Amico F, Fiore CE. Increased prevalence of peripheral arterial disease in osteoporotic postmenopausal women. *J Bone Miner Metab* 2004, 22:125-131.

28. van der Kruit M, Pols HA, de Laet CE, Hofman A, Witteman JC, van der Klift M. Bone mineral density and the risk of peripheral arterial disease: the Rotterdam Study. *Calcif Tissue Int* 2002, 70:443-449.

29. Wong SY, Kwock T, Woo J, Lynn H, Griffith JF, Leung J, Tang YY, Leung PC. Bone mineral density and the risk of peripheral arterial disease in men and women: results from Mr. And Ms. Os, Hong Kong. *Osteoporos Int* 2005, 16:1933-1938.

30. Baharvina LN, Barnett-Connor EL, Laughlin GA, Kritz-Silverstein D. Differences in association of bone mineral density with coronary artery calcification in men and women: the Rancho Bernardo Study. *Menopause* 2005, 12:691-698.

31. Borengoltz EI, Berman M, Kukreja SC, Kouznetsova T, Lin C, Chomka EV. Osteoporosis and coronary atherosclerosis in asymptomatic postmenopausal women. *Calcif Tissue Int* 1998, 62:209-213.

32. Ervikten E, Yacza S, Ozhun H, Bulur S, Ordu S, Yada M. Relationship between angiographically documented coronary artery disease and low bone mass in men. *Circ J* 2007, 71:1095-1098.

33. Farhat GN, Cauley JA, Matthews KA, Newman AB, Johnston J, Mackey R, Edmundowicz D, Sutton-Tyrrell K. Calcium with lumbar bone density: the MESA Abdominal Aortic Calcium Study. *Am J Epidemiol* 2004, 160:549-556.

34. Frye MA, Melton LJ III, Bryant SC, Fitzpatrick LA, Wahner HW, Schwartz RS, Monsen CE. Coronary calcium with lumbar bone density in postmenopausal women undergoing coronary angiography. *Circulation* 2004, 110:538-545.

35. Sennerby U, Farahmand B, Ahlbom A, Ljunghall S, Michaelsson K. Coronary events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. *J Am Coll Cardiol* 2010, 55:186-194.

36. Shaffer JR, Kamermeier CM, Rainwater DL, O’Reary DH, Bruder JM, Bauer RL, Mitchell BD. Decreased bone mineral density is correlated with increased subclinical atherosclerosis in older, but not younger, Mexican American women and men: the San Antonio Family Osteoporosis Study. *Calcif Tissue Int* 2007, 81:430-441.

37. Sumino H, Ichikawa S, Kasama S, Takahashi T, Sakamoto H, Kumakura H, Takayama Y, Kanda T, Murakami M, Kurabayashi M. Relationship between carotid atherosclerosis and lumbar spine bone mineral density in postmenopausal women. *Hypertens Res* 2008, 31:1191-1197.

38. Yamada S, Inaba M, Goto H, Nagata M, Ueda M, Nakatuka K, Tahara H, Yokoyama H, Emoto M, Shoji T, Nishizawa Y. Significance of intima-media thickness in femoral artery in the determination of calcaneal osteo-sono index but not of lumbar spine bone mass in healthy Japanese people. *Osteoporos Int* 2005, 16:641-648.

39. Yamada S, Inaba M, Goto H, Nakagata-Sakurai M, Kumeda Y, Imanishi Y. Associations between physical activity, peripheral atherosclerosis and bone status in healthy Japanese women. *Atherosclerosis* 2006, 188:196-202.

40. Vlachopoulos C, Azmaouidis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. *J Am Coll Cardiol* 2010, 55:1318-1327.

41. Hirose K, Tominaya H, Okazaki R, Arai T, Koji Y, Zaydun G, Hori S, Yamashina A. Increased pulse wave velocity associated with reduced calcaneal quantitative osteo-sono index: possible relationship between atherosclerosis and osteopenia. *J Clin Endocrinol Metab* 2003, 88:2573-2578.

42. Mikumo M, Nakamura A, Oishi K, Kishi T. Association between lumbar bone mineral density and vertebral fractures in postmenopausal women. *Osteoporos Int* 2008, 19:69-74.

43. Mancuso M, Blondel D, Beltran J, Hagen A, Borengoltz E. Atherosclerosis in postmenopausal women undergoing chest computed tomography. *Am J Cardiol* 2004, 94:358-363.

44. Kim SH, Kim YM, Cho MA, Ryee Y, Hur KY, Kang ES, Cha BS, Lee EJ, Lee HC, Lim SK. Echogenic carotid artery plaques are associated with vertebral fractures in postmenopausal women with low bone mass. *Calcif Tissue Int* 2008, 82:411-417.

45. Montalban T, Ermannueve Y, Ceravolo R, Gargone G, Sesti G, Perticone F, Riuja A. Relation of low bone mineral density and carotid atherosclerosis in postmenopausal women. *J Am Coll Cardiol* 1998, 32:1059-1063.

46. Pennisi P, Signorelli SS, Riccobene S, Celotto G, Di Pino L, La Malfa T, Fiore CE. Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels. *Osteoporos Int* 2004, 15:389-395.

47. Aoyagi K, Ross PD, Orloff J, Davis JW, Katagiri H, Wasnich RD. Increased prevalence of atherosclerotic vascular disease in postmenopausal women with osteoporosis or osteopenia. *Calcif Tissue Int* 2005, 76:266-269.

48. Kim SH, Kim YM, Cho MA, Ryee Y, Hur KY, Kang ES, Cha BS, Lee EJ, Lee HC, Lim SK. Echogenic carotid artery plaques are associated with vertebral fractures in postmenopausal women with low bone mass. *Calcif Tissue Int* 2008, 82:411-417.
60. Sumino H, Ichikawa S, Kasama S, Takahashi T, Kumakura H, Takayama Y, Kanda T, Sakamoto T, Kuriyama M: Elevated arterial stiffness in postmenopausal women with osteoporosis. Maturitas 2006, 55:212-218.

61. Sumino H, Ichikawa S, Kasama S, Takahashi T, Sakamoto H, Kumakura H, Takayama Y, Kanda T, Murakami M, Kuriyama M: Relationship between brachial arterial endothelial function and lumbar spine bone mineral density in postmenopausal women. Circ J 2007, 71:1555-1559.

62. Browner WS, Pressman AR, Nevitt MC, Cauley JA, Cummings SR: Association between low bone density and stroke in elderly women. The study of osteoporotic fractures. Stroke 1993, 24:940-946.

63. González-Marcias J, Martín F, Vila J, Carriaco E, Benavides P, Castell MV, Magaña JE, Chivada F, Diaz-Pérez A, ECOSAP: Relationship between bone quantitative ultrasound and mortality: a prospective study. Osteoporos Int 2009, 20:257-264.

64. Kado DM, Huang MH, Kildal UM, Gentile F, Wisnaint JP, Webers DO, Seward JB: Independent association of high blood pressure and aortic atherosclerosis: A population-based study. Circulation 2000, 102:2087-2093.

65. Mody N, Tintut Y, Leung AW, Demer LL: Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 2004, 24:1161-1170.

66. Bostrom K, Watson KE, Stanford WP, Demer LL: Atherosclerotic calcification: relation to developmental osteogenesis. Ann J Cardiol 1995, 75:888-918.

67. Trivedi DP, Khaw KT: Bone mineral density at the hip predicts mortality in elderly men. Osteoporos Int 2001, 12:259-265.

68. Trone DW, Kritz-Silverstein D, von Muhlen DG, Wingard DL, Barrett-Connor E: Is radiographic vertebral fracture a risk factor for new osteoporotic fracture and total cardiovascular mortality: a 5-year population-based study of Brazilian elderly women. J Gerontol A Biol Sci Med Sci 2006, 61:196-203.

69. Tintut Y, Demer LL: Recent advances in multifactorial regulation of vascular calcification. Curr Opin Lipidol 2001, 12:555-560.

70. Trone DW, Kritz-Silverstein D, von Muhlen DG, Wingard DL, Barrett-Connor E, Greendale GA: Is radiographic vertebral fracture a risk factor for mortality? J Clin Invest 1995, 91:1800-1805.

71. Trone DW, Kritz-Silverstein D, von Muhlen DG, Wingard DL, Barrett-Connor E: Is radiographic vertebral fracture a risk factor for mortality? J Clin Invest 1995, 91:1800-1805.

72. Drze CR, Cleugens JP, Lutgens E, Cleugens KG, Geusens PP, Kitiiaj P, Todoj H, Sperm W, Veerm C, Daemen M: Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2001, 21:1998-2003.

73. Cola C, Almeida M, Li D, Romeo F, Mehta JL: Regulatory role of endothelin in the expression of genes affecting arterial calcification. Biochem Biophys Res Commun 2004, 320:424-427.

74. Sorescu GP, Song H, Treslev SL, Hwang J, Dikalov S, Smith DA, Boyd NL, Platt MD, Lasagge B, Greineld K, Ho J: Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a non-1 oxidase. Circ Res 2004, 95:773-779.

75. Shnanan CM, Cary NR, Metcalfe JC, Weissberg P: High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2001, 21:1998-2003.

76. Falon WM, Gentile F, Wisnaint JP, Webers DO, Seward JB: Independent association of high blood pressure and aortic atherosclerosis: A population-based study. Circulation 2000, 102:2087-2093.

77. Mody N, Tintut Y, Leung AW, Demer LL: Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 2004, 24:1161-1170.

78. Hofbauer LC, Brueck CC, Schpanam CM, Schoppet M, Dobing H: Vascular calcification and osteoporosis from clinical observation towards molecular understanding. Osteoporos Int 2007, 18:251-259.

79. Yoneshima H: Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: evidence for smooth muscle cell-mediated vascular calcification. J Biol Chem 2003, 10:177-183.

80. Yoneshima H, Chaimia E, Schwartz D, Petterson TM, O'Fallon WM, Gentile F, Wisnaint JP, Webers DO, Seward JB: Independent association of high blood pressure and aortic atherosclerosis: A population-based study. Circulation 2000, 102:2087-2093.
110. Schoppet M, Sattler AM, Schaefer JR, Herzum M, Maisch B, Hofbauer LC:

108. Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, Van G,

107. Malyankar UM, Scatena M, Suchland KL, Yun TJ, Clark EA, Giachelli CM:

112. Choi BG, Vilahur G, Cardoso L, Fritton JC, Ibanez B, Zafar MU, Yadegar D,

110. van den Uyl et al

Emerging insights into the pathophysiology of osteoporosis. J Clin Endocrinol Metab 2002, 87:1062-1067.

12. Christian RC, Harrington S, Edwards WD, Oberg AL, Fitzpatrick LA: Estrogen status correlates with the calcium content of coronary atherosclerotic plaques in women. J Clin Endocrinol Metab 2002, 87:1062-1067.

12. van der Schouw YT, van der Graaf Y, Steyerberg EW, Eijsman JC:

12. Banga JD: Age at menopause as a risk factor for cardiovascular mortality. Lancet 1996, 347:714-718.

12. Vogt MT, San VR, Forrest KY, Nevitt MC, Cauley JA: Bone mineral density and aortic calcification: the Study of Osteoporotic Fractures. J Am Geriatr Soc 1997, 45:140-145.

12. Riggs BL: The mechanisms of estrogen regulation of bone resorption. J Clin Invest 2000, 106:1203-1204.

12. Pleitshelter J, Kuzitse R, Plohn M, Schatz H: Changes in proinflammatory cytokine activity after menopause. Endocr Rev 2002, 23:90-119.

12. Hansson GK: Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005, 352:1685-1695.

12. Ross R: Atherosclerosis—an inflammatory disease, N Engl J Med 1999, 341:115-126.

12. Libby P, Ridker PM, Hansson GK: Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 2009, 54:2129-2138.

12. Harri TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH Jr, Heimovitz H, Cohen HJ, Wallace R: Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 1999, 106:506-512.

12. Ridker PM, Hennekens CH, Buring JE, Rifai N: C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000, 342:836-843.

12. Boyle WJ, Simonet WS, Lacey DL: Osteoclast differentiation and activation. Nature 2003, 423:337-342.

12. Parhami F, Barseri B, Hwang J, Tintut Y, Demer LL: High-density lipoprotein regulates calcification of vascular cells. Circ Res 2002, 91:570-576.

12. Tintut Y, Maroney S, Demer LL: Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler Thromb Vasc Biol 2004, 24:66-10.

12. Adami S, Braga V, Zamboni M, Gatti D, Rossini M, Bakri J, Battaglia E: Relationship between lipids and bone mass in 2 cohorts of healthy women and men. Calcif Tissue Int 2004, 74:136-142.

12. Brownbill RA, Ilich JZ: Lipid profile and bone paracrine: higher serum lipids are associated with higher bone mineral density in postmenopausal women. J Womens Health (Larchmt) 2006, 15:261-270.

12. Samelson EL, Cupples LA, Hannan MT, Wilson PW, Williams SA, Vaccarino V, Zhang Y, Kiel DP: Vascular calcification and oxidative stress. JAMA 2006, 295:45-52.

12. Matthews C, Greener L, Scott S, Figg N, Kirkpatrick P, Ritchie A, Goddard M, Bennett M: Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 2006, 99:156-164.

12. van't Hof RJ, Ralston SH: Nitric oxide and bone. Immunology 2001, 103:255-261.

12. Ozgocmen S, Kaya H, Filalioglu E, Aydogan R, Yilmaz Z: Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem 2007, 295:45-52.

12. Lips P: Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001, 22:477-501.

12. Gallacher SJ, McQuillian C, Harkness M, Finlay F, Gallagher AP, Dixon T: Prevalence of vitamin D inadequacy in Scottish adults with non-vertebral fragility fractures. Curr Med Res Opin 2005, 21:1355-1361.

12. Guanacuetti E, Liu Y, Hollis BW, Rinom EB: 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med 2008, 168:1174-1180.

12. Li YQ, Gao G, Uskokovic M, Xiang W, Zheng W, Kong J: Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J Steroid Biochem Mol Biol 2004, 89-90:367-392.
146. Pitz S, Marz W, Wellenstein B, Seelhorst U, Fahrleitner-Paumgartner A, Dimai HP, Boehm BO, Dobning H. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. *J Clin Endocrinol Metab* 2008, 93:3927-3935.

147. Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Larier K, Benjamin EJ, D’Agostino RB, Wolf M, Vasan RS. Vitamin D deficiency and risk of cardiovascular disease. *Circulation* 2008, 117:503-511.

148. Xiang W, Kong J, Chen S, Cao LF, Qiao G, Zheng W, Liu W, Li X, Gardner DG, Li Y. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. *Ann J Physiol Endocrinol Metab* 2005, 288:E125-E132.

149. Kikagawa S, Yamaguchi Y, Kunitomo M, Imai M, Fujimura M. Altered vascular stretch sensibility in vitamin D-induced arteriosclerotic rat aortas. *Jpn J Pharmacol* 1993, 61:285-289.

150. Price PA, June HH, Buckley JR, Williamson MK. Osteoprotegerin gene polymorphisms in men with coronary artery disease and systolic blood pressure in healthy men. *Eur Heart J* 2001, 22:2423-2425.

151. Cooper GS, Umbach DM. Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. *J Bone Miner Res* 1996, 11:1841-1849.

152. Gong G, Stern HS, Cheng SC, Fong N, Mordes J, Deng HW, Recker RR. The association of bone mineral density with vitamin D receptor gene polymorphisms. *Osteoporos Int* 1999, 9:55-64.

153. Uitterlinden AG, Ralston SH, Brandi ML, Carey AH, Grinberg D, Langdahl BL, Humphries SE, Luong LA, Ogg MS, Hawe E, Miller GJ. Lack of association between calcium-sensing receptor gene A986S polymorphism and bone mineral density and postmenopausal bone loss in women: the OFELY study. *Bone* 2002, 31:83-90.

154. Bollerslev J, Wilson SG, Dick IM, Devine A, Dhaliwal SS, Prince RL. Calcium-sensing receptor gene polymorphism A986S does not predict serum calcium level, bone mineral density, calcaneal ultrasound indices, or fracture rate in a large cohort of elderly women. *Calcif Tissue Int* 2004, 74:12-17.

155. Takacs I, Speer G, Bajnok E, Tabak A, Nagy Z, Horvath C, Kovacz K, Lack P. Association between calcium-sensing receptor gene A986S polymorphism and bone mineral density in Hungarian postmenopausal women. *Bone* 2002, 30:849-852.

156. Xin XY, Song YY, Fan CN, Ding JQ, Yang GY, Chen SD. Altered klotho mutant mice: hyperphosphatemia, hypercalcaemia, hyperparathyroidism, and increased bone resorption, but no changes in circulating parathyroid hormone or 1,25-dihydroxyvitamin D levels. *Bone* 2004, 34:1149-1155.

157. Karasik D, Kiel DP, Ordovas JM, Trikalinos TA. Association of vitamin D deficiency with heart disease, myocardial infarction, all-cause, and cardiovascular mortality. *J Clin Endocrinol Metab* 2007, 92:2363-2369.

158. Lorentzon M, Lorentzon R, Lerner LH, Nordstrom P. Calcium-sensing receptor gene polymorphism, circulating calcium concentrations and bone mineral density in healthy adolescent girls. *Eur J Endocrinol* 2001, 144:257-261.

159. Boller J, Wilson SG, Devine A, Dhaliwal SS, Prince RL. Calcium-sensing receptor gene polymorphism A986S does not predict serum calcium level, bone mineral density, calcaneal ultrasound indices, or fracture rate in a large cohort of elderly women. *Calcif Tissue Int* 2004, 74:12-17.

160. Agostino RB, Wolf M, Vasan RS. Effect of vitamin D deficiency on heart disease: a meta-analysis of six studies comprising 1812 cases and 1762 controls. *Hypertens Res* 2009, 32:1060-1066.

161. Paternoster L, Martinez-Gonzalez NA, Chafeton R, Chung M, Lewis S, Sudow CI. Genetic effects on carotid intima-media thickness: systematic assessment and meta-analyses of candidate gene polymorphisms studied in more than 5000 subjects. *Circ Cardiovasc Genet* 2010, 3:15-21.

162. Liu W, Qian Y, Gao P, Zhu D. The relationship between apolipoprotein E epsilon2/3/4 and hypertension: a meta-analysis of six studies comprising 1812 cases and 1762 controls. *Hypertens Res* 2009, 32:1060-1066.

163. Brenner BM, Cooper RS. The association between calcium-sensing receptor gene polymorphisms and bone mineral density and postmenopausal bone loss in women: the OFELY study. *Bone* 2002, 31:83-90.

164. Lindahl K, Rubin CJ, Brandstrom H, Kafsson MK, Holmberg A, Ohlsson C, Mellstrom D, Orwoll E, Mallmin H, Kindmark A, Ljunggren O. Heterozygosity for a coding SNP in COL1A2 confers a lower BMD and an increased fracture risk. *Biochem Biophys Res Commun* 2009, 384:501-505.

165. Wang TJ, Ralston SH, Brandstrom H, Tiran B, Obermayer-Pietzsch B, Renner W, Boehm BO, Ritz E, Hoffmann MW. Alkaline to serine polymorphism at position 986 of the calcium-sensing receptor associated with coronary heart disease, myocardial infarction, all-cause, and cardiovascular mortality. *J Clin Endocrinol Metab* 2007, 92:2363-2369.