Applicability of reanalysis data to diagnosis of snow avalanches in the Caucasus Mountains

N E Kuksova¹, P A Toropov¹, A D Olenikov¹ and G V Surkova¹

¹ Department of Meteorology and Climatology, Faculty of Geography, Lomonosov Moscow State University, 119991, Leninskie gory, 1, bld.1, Moscow, Russia
E-mail: kuksova_97@mail.ru

Abstract. This work is devoted to assessing the use of reanalysis data for diagnosing the danger of avalanches using the Caucasus Mountains as an example. This method is applicable to entire mountain regions, not individual slopes, and uses the results of both observations and numerical modeling in the atmosphere. A comparison of observational and reanalysis data of Era-Interim, CFSR, and NCEP-NCAR is performed based on a classification of winters by using air temperature and precipitation data to assess avalanche hazard. The accuracy of the temperature and precipitation data and their influence on avalanche hazard are analyzed.

1. Introduction

Snow avalanches are a widespread natural phenomenon that significantly complicates the economic development of mountainous regions and poses a threat to human life. This determined the need for a detailed study of the conditions of loss of stability of snow masses on mountain slopes, the origin and movement of avalanches, the development of methods for predicting avalanche danger, and improving the methods of protection against avalanches. A snow avalanche is a dangerous glaciological phenomenon and, thus, not only its operational forecast, but also projection of the future climate changes would be of interest. Climate change scenarios can be used to determine future avalanche characteristics. For example, the avalanche characteristics in the Kamchatka mountains and Tien Shan were calculated [1], and the avalanche activity decreasing by the middle of the 21st century for Kamchatka and increasing in Tien Shan was shown. When assessing the avalanche danger throughout the world [2], general patterns were revealed: in the continental little snow mountain regions the avalanche activity decrease is expected, in contrast to snowy mountains.

In particular, for the Caucasus, the snow cover thickness decrease (by more than 30 cm), the recurrence of avalanche situations, and the duration of the avalanche-dangerous period are predicted [3]. The Caucasus is part of the southern mountain belt characterized by 3 avalanche genesis types: fresh snow, snow slabs, and advective process.

The characteristic features of this area are a large amount of precipitation and the snow cover thickness averaging 1-3 meters, the heterogeneity of the precipitation field, relatively cold winters, however, with a high frequency of intense and prolonged thaws, mountain-valley circulation (foehn effects), and snow drift. The Central Caucasus region is most densely populated, and the tourism sector has been actively developed in it over the past decades. This necessitates monitoring and forecasting the avalanche danger in the region.

An important role in the avalanche formation is played by circulation factors that determine the temperature and precipitation regime. To identify the circulation factors contributing to the occurrence of avalanches, the avalanche events were compared with various circulation indices [4]. The division
into elementary circulation mechanisms (ECMs) by B.L. Derzievsky [5] is widely used. For Caucasus, heavy precipitation in winter most often occurs during ECMs 13s, 8gs, 11a, and 12a [6]. Such a configuration of atmospheric processes corresponds to the emergence of a Mediterranean cyclone on the Black Sea and its blocking by an anticyclone in the south of the European territory of Russia, which additionally increases the precipitation. There are also other indices that have a significant impact on the circulation of the atmosphere in the European territory of Russia. In [7], correlation analysis was used to analyze the relationship of some indices with the temperature and precipitation in the Teberda Reserve and other stations in the North Caucasus region.

In paper [8], a simple statistical ratio between the air temperature-precipitation parameters and the avalanche danger during the cold period is presented. This method allows, among snowy winters, to establish those seasons that are accompanied by massive catastrophic avalanches. The classification is based on a correlation matrix principle, according to which its winters were divided into four groups (in terms of temperature conditions and moisture supply): by air temperature: A - abnormally warm (t1); B - moderately warm (t2); B - moderately cold (t3); G - abnormally cold (t4); by precipitation: 1 - abnormally dry (x1); 2 - with a deficit of precipitation (x2); 3 - with precipitation above normal (x3); 4 - abnormally moist (x4). Deviations are calculated with the mean seasonal temperature value (the sum of precipitation for the season) and the standard deviation of this value. The ratio of hydrothermal conditions in the matrix determines 16 possible types of winters (Figure 1).

![Figure 1. Identification of avalanche-dangerous winters in the Caucasus (1936-1987) according to [8]: A - abnormally warm; B - moderately warm; B - moderately cold; G - abnormally cold; numbers in circles: 1 - abnormally dry; 2 - with a deficit of precipitation; 3 - with precipitation above normal; 4 - abnormally moist; avalanche danger of winters: 1 - weak; 2 - medium; 3 - strong; 4 - abnormally strong.](image)

The authors draw attention to the predominance of winters with little snow in the last 6 years, which they associate with an increase in the blocking anticyclonic situations over the Caucasus mountains.

2. Materials and methods
To calculate the avalanche danger, meteorological reanalysis of different generations was used (Table 1).

Reanalysis name	Time period	characteristic of grids
NCEP-NCAR	1948-now	2.5° x 2.5°
CFSR/CFS	1979-2010/2010-now	Temperature: 0.312° x ~0.312°, 0.205° x ~0.204°; Precipitation: 0.5° x 0.5°
To assess the feasibility of using reanalysis data for such tasks in the mountainous region, a comparison was made with the actual observational data at the Vladikavkaz, Zelenchugskaya, Kislovodsk, Klukhorskiy Pereval, Krasnaya Polyana, Sochi, Shatzhatmaz, and Sulak stations (Table 2).

Table 2. Weather stations characteristic.

Number	Name	Latitude	Longitude	Height above sea level, m
37228	Vladikavkaz	43.03	44.68	702
37112	Zelenchugskaya	43.87	41.57	928
37123	Kislovodsk	43.9	42.72	943
37196	Klukhorskiy Pereval	43.25	41.83	2037
37107	Krasnaya Polyana	43.68	40.2	564
37099	Sochi	43.58	39.77	142
37461	Sulak	42.37	46.25	2927
37126	Shatzhatmaz	43.73	42.67	2070

To compare the reanalysis data with the weather stations, the values at the reanalysis grid-points were interpolated into the points of meteo stations (with the station coordinates); the linear interpolation method was used. The temperature value was converted from the gradient of the standard atmosphere (0.65 °C/100m) to the actual height of the weather station. We calculated the average errors of the seasonal values and the correlation coefficients between the data on air temperature and the amount of precipitation for the cold period (Figure 2). This result is in good agreement with the assessments of the quality of reanalyses in the mountains carried out in [9, 10, 11]. According to the temperature data, more than a half of the stations have a high correlation coefficient, the exceptions are the highest stations (Klukhorskiy Pereval and Terskol) and Sochi. Most likely, the local orographic effects (temperature changes associated with the orientation of slopes, convex and concave landforms) play a decisive role at these stations. The Era-Interim reanalysis always reproduces the temporal dynamics of temperature better, but the average error for it and the CFSR is, on average, the same. The NCEP-NCAR reanalysis has the largest error value.
The correlation coefficients of precipitation are much lower (only a few points with $r \geq 0.6$). The temporal variability was most similar at the Sochi station. The error of the values of the sum of seasonal precipitation as a percentage of the annual sum was also calculated. It varies from 2 to 44.3%, but at most stations it does not exceed 30%, which is quite good for a mountainous area. The worst reproduction is the precipitation totals at the Shatzhatmaz station.

3. Results
Let us analyze the degree of avalanche danger according to the reanalysis data. In the Greater Caucasus, winters with extreme avalanches were observed in 1953-1954, 1955-1956, 1967-1968, 1971-1972, 1975-1976, 1986-1987, 1988-1989, and 1992-1993 (statistics are presented from 1951 to 1993). According to Oleinikov's classification [8], when calculating the degree of avalanche danger in these winters, 4 of them fell into the gradation very strong, and 2 - strong. The same calculations were carried out for all three reanalyses, and a comparison was made with the results for the Terskol meteorological station. It should be noted that according to the results of calculations based on reanalysis in the last 20 years, 4 degrees of avalanche danger have practically not been observed. Thus, in the last 20 years we have seen a decrease in the number of extreme avalanches.

Let us consider in more detail the comparison of the avalanche hazard indicator according to reanalyses with the data of meteorological observations (Figure 3). Most often the degree of avalanche activity is the same for both types of data. For NCEP-NCAR data we have no more than a two-category discrepancy, unlike the other reanalyses. It can be noted that NCEP-NCAR data based on calculations overestimate the avalanche danger most often, while the CFSR, on the contrary, often underestimates it (but to a lesser extent). No such regularities were found in the Era-Interim reanalysis.

According to preliminary results, winters with a large number of catastrophic avalanches were associated exclusively with the below-zero temperature anomaly at heights of 850, 700, and 500 hPa.
(Figure 4a). Since the middle of the 20th century, a decrease in the integral moisture content in the air column has been observed, while catastrophic avalanches were associated precisely with a negative moisture content anomaly (Figure 4b).

4. Conclusions
We showed that reanalysis data can be used to estimate the characteristics of avalanche hazard at least qualitatively. The reanalysis data can give an avalanche danger assessment in the Caucasus Mountains with acceptable accuracy. No large deviations of the NCEP-NCAR data from observations have been observed. A decrease in the number of winters with extreme avalanches over the past 20 years due to an increase in the frequency of warm winters has been observed. A key factor in the occurrence of extreme avalanches in the Central Caucasus is the temperature: the strongest avalanche events have occurred against the background of deep negative temperature anomalies, but not positive anomalies of the atmospheric moisture content.

Acknowledgments
This research was partially supported by the Russian Foundation of Basic Research (project no. 12 20-05-00280).

References
[1] Glazovskaya T G and Seliverstov U G 2004 Dolgosrochnyy prognoz izmeneniya lavinnoy aktivnosti na osnove stsenariyev klimaticheskikh izmeneniy Materialy glyatsiologicheskikh issledovaniy 225–30
[2] Glazovskaya T G 1998 Global distribution of snow avalanches and changing activity in the Northern Hemisphere due to climate change Annals of Glaciology 26 337–42
[3] Glazovskaya T G and Troshkina E S 1998 Vliyaniye global’nogo izmeneniya klimata na lavinnyy rezhim na territorii byvshego Sovetskogo Soyuza Materialy glyatsiologicheskikh issledovaniy 88–91
[4] Sezin V M 1982 Sinopticheskiye usloviya shkoda snezhnykh lavin v gorakh Zapadnogo Tyan’-Shanya Materialy glyatsiologicheskikh issledovaniy 94–100
[5] Dzerdzeyevskiy B L, Kurganskaya V M and Vitvitskaya Z M 1946 Tipizatsiya tsirkulyatsionnykh mekhanizmov v Severnom polusharii i kharakteristika sinopticheskikh sezonov 21
[6] Kononova N K 2012 Tsirkulyatsiya atmosfery kak faktor stikhionykh bedstviy na Severnom Kavkaze v XXI veke Geopolitika i ekogeoedinamika regionov 8
[7] Bagrova T N and Drozdov V V 2010 Influence of large-scale atmospheric circulation on climatic parameters of the Western Caucasus (Teberdinsky state reserve) Uchenyye Zapiski Rossisskogo Gosudarstvennogo Gidrometeorologicheskogo Universiteta
[8] Oleinikov A D 2002 Snezhnye laviny na Bol’shom Kavkaze v usloviyah potepleniya klimata Materialy glyatsiologicheskikh issledovaniy 67–72
[9] Hardy D R, Vuille M and Bradley R S 2003 Variability of snow accumulation and isotopic
composition on Nevado Sajama, Bolivia *J. Geophys. Res.* 108 2003JD003623

[10] Toropov P A, Aleshina M A and Grachev A M 2019 Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century *Int J Climatol* 39 4703–20

[11] Toropov P A, Mikhalenko V N, Kutuzov S S, Morozova P A and Shestakova A A 2016 Temperature and radiation regime of glaciers on slopes of the Mount Elbrus in the ablation period over last 65 years *Lëd i sneg* 56 5–19