Xylanase Activity of *Streptomyces violascences* BF 3.10 on Xylan Corncobs and its Xylooligosaccharide Production

W. Salupia, Yopib, & A. Meryandinic,d,*

aMajor Program of Biotechnology, Graduate School, Bogor Agricultural University
bBiocatalyst and Fermentation Laboratory, Research Center for Biotechnology, Indonesian Institute of Science Jalan Raya Bogor Km. 46 Cibinong, Indonesia
cBiology Department, Faculty of Mathematics and Natural Science, Bogor Agricultural University
dResearch Center for Bioresources and Biotechnology Kampus IPB Dramaga, Bogor 16680, Indonesia

(Received 12-05-2014; Reviewed 05-06-2014; Accepted 27-08-2014)

ABSTRACT

Corn is one of the important carbohydrate sources in Indonesia that is mainly used for food and industrial materials. In addition, the byproducts of corn, such as corncobs, have been reported as xylan-containing materials that can be utilized as substrate in xylooligosaccharides (XOS) production. XOS are natural prebiotic fibers that can enhance the performance of animal’s digestive system. The main objective of this study was to exploit xylan from corncobs to produce XOS. The research consisted of extraction and production of xylan from corncobs and the synthesis of XOS from corncob-produced xylan. The corncob and *Streptomyces violascens* BF 3.10 xylanase is a collection of PPSHB IPB Laboratory. Corncobs xylan extracted by using alkaline method and reducting sugar was analyzed by dinitrosalicylic acid method. The xylan extraction from corncobs could produce 7.93% (w/w) of xylan. The activity of *S. violascens* BF 3.10 xylanase on the substrate of concorb-produced xylan was 6.4 U/mL at the optimum temperature of 60 °C in 50 mM phosphate buffer with pH 5.5. The thin layer chromatography analysis indicated that 1% (w/v) corn-cob xylan could produce XOS with degree of polymerization (DP) 3.92. XOS, with DP ranging from 2-4, could be used as a livestock feed mixture to stimulate the growth of normal microbes in the gastrointestinal tract of livestock.

Key words: corncobs, *Streptomyces violascens* BF 3.10, xylan, xylanase

ABSTRAK

Jagung merupakan sumber karbohidrat penting di Indonesia, khususnya untuk makanan dan bahan baku industri. Tongkol jagung adalah limbah prospektif yang mengandung xilan tinggi sehingga dapat digunakan sebagai substrat untuk memproduksi xiloooligosakarida (XOS). XOS adalah serat prebiotik alami yang dapat membantu kesehatan saluran pencernaan. Penelitian ini bertujuan untuk memanfaatkan xilan dari limbah tongkol jagung untuk menghasilkan XOS. Penelitian ini meliputi ekstraksi xilan tongkol jagung, produksi xilanase dan produksi XOS dari xilan tongkol jagung. Tongkol jagung dan xilanase *Streptomyces violascens* BF 3.10 merupakan koleksi dari Laboratorium PPSHB IPB. Ekstraksi xilan tongkol jagung menggunakan metode alkali dan kadar gula dianalisa menggunakan metode *dinitrosalicylic acid*. Ekstraksi xilan dari tongkol jagung menghasilkan rendemen xilan 7,93%. Aktivitas *Streptomyces violascens* BF 3.10 xilanase pada xilan tongkol jagung sebesar 6,4 U/mL pada suhu optimum 60 °C dalam 50 mM bufer fosfat pH 5.5. Hasil analisis kromatografi lapis tipis, 1% xilan tongkol jagung pada kondisi optimum menghasilkan xiloooligosakarida dengan nilai derajat polimerisasi (DP) 3,92. Xiloooligosakarida (dengan DP antara 2-4) dapat digunakan sebagai campuran pakan ternak untuk merangsang pertumbuhan flora normal dalam saluran pencernaan ternak.

Kata kunci: *Streptomyces violascens* BF 3.10, tongkol jagung, xilan, xilanase
INTRODUCTION

Corn is one of the carbohydrate sources in Indonesia especially for feed and industrial raw materials. Based on its sugar composition, hemicellulose is classified as xylan, mannan, arabinoxylan, and arabian. Corn cobs consist of 38.99% (w/w) crude fiber with the highest content of xylan (12.4%) as compared to other agricultural products such as rice straw, oil palm kernel, bagasse, cotton stalk, sorghum, tobacco stalk and soybean kernel (Richana et al., 2004). Xylan, which is the most abundant hemicellulose in monocotyledonous plants and hard wood, is also reported to interact with cellulose. Compared to xyloglucan, information about its critical backbone length required for interaction with cellulose, as well as about the influence of xylan substrates on this interaction is limited (Kabel et al., 2007). Xylan from corn cobs can be used as a carbon source for the growth of xylanase producing bacteria.

Xylanase is a xylan hydrolytic enzyme. It can also hydrolyze the polymer of either xylose or xylooligosaccharides (XOS). Several actinomycetes that have been reported to produce xylanase are Streptomyces (S.) galbus (Kansoh & Nagieb, 2004), S. albus; S. chromofuscus (Rifaat, 2005), S. cyaneus SN32 (Ninaweé & Kudad 2005), Streptomyces sp. 451-3 (Meryandini et al., 2007), S. lividans (Arias et al., 2007), S. bunglandelhensis (Al-Bari et al., 2007), Streptomyces sp. OM 09 (Ray, 2010), S. megasperiis DSM 41476 (Qu et al., 2010), Streptomyces sp. RCK-2010 (Kumar et al., 2010), Streptomyces sp. SWU10 (Deesukon et al., 2011), S. rameus (Bhosale et al., 2011), S. chartreusis L1105 (Zhu et al., 2012), S. griseorubens LH-3 (Cheng et al., 2013) and Streptomyces sp. ESRAA-301097 (El-Gendy & El-Bondkly, 2014).

The products of hydrolyzing agricultural waste by xylanase are xylooligosaccharides. Xylooligosaccharides (XOS) have high economic value as food additive. XOS consumption in piglet can improve fermentation in the digestive tract so that it improves the growth of normal content of xylan (12.4%) as compare to other agricultural waste. XOS produced from corn cobs can be used as a dietary supplement to improve the health of the digestive tract in cattle.

MATERIALS AND METHODS

Microorganism

The S. violascens BF 3.10 is a collection of PPSHB IPB Laboratory isolated from Bukit Dua Belas, Jambi. This isolate was used as a xylanase producing bacteria. For this purpose, S. violascens BF 3.10 was grown on the xylan media containing 0.5% xylan substrate from corn cobs, 0.2% (w/v) yeast extract; 0.5% (w/v) MgSO₄; 0.05% (w/v) K₂HPO₄; 0.075% (w/v) KNO₃; 0.002% (w/v) FeSO₄.7H₂O; 0.004% (w/v) CaCl₂; 0.1% (w/v) glucose.

Xylan Extraction

Corn cobs used in this experiment were “Silangan Dramaga 3”. Delignification of corncob was performed by immersing 40 mesh corncobs flour in 1% (w/v) NaOCl for 5 h at room temperature and the decanted was rinsed with aquadest and filtered. The solid part was a delignified corncob. The delignified corncobs were dried under the sun for 48 h. Chemical analyzes were conducted to determine water, lignin, dry weight, hemicellulose and cellulose levels.

Corncobs xylan extraction was conducted by using a modified method of Richana et al. (2007). The dried delignified flour was immersed in 15% (w/v) NaOH for 24 h at room temperature and filtered. The filtrate was neutralized with 37% (w/v) HCl which was then centrifuged at 6000 rpm for 30 min. Ninety five percent (v/v) ethanol was added to the pellet with the proportion of pellet and ethanol was 1:3 and centrifuged at 6000 rpm for 30 min to obtain pure xylan. The xylan was dried by using oven at 50°C for 48 h and crushed to the size of 80 mesh.

Xylanase Activity and Xylanase Assay

The 96 h culture of S. violascens BF 3.10 was inoculated in 100 mL of liquid medium containing 0.5% (w/v) xylan corncobs by using crock borer (1 cm in diameter). The culture was incubated for 96 h at room temperature with agitation of 150 rpm (Stuart orbital incubator s1500, Staffordshire, United Kingdom) (Meryandini et al., 2008). The enzymatic activity of the supernatant (assumed as a crude enzyme) was measured by using dinitrosaliclyclic (DNS) method (Meryandini et al., 2008; Akpinar et al., 2009; Utami et al., 2013) with xylose as a standard. Xylanase activity was tested by incubating crude enzyme in 0.5% beechwood xylan (50 mM phosphate buffer pH 6). The reaction was stopped by immersing the tubes in boiling water for 20 min. Reducing sugar produced was measured at a wavelength of 540 nm (Hitachi, U-3900H, Tokyo, Japan). One unit xylanase activity was defined as consuming one microgram of xylose per minute at pH 8.
as the amount of enzyme producing 1 µmol xylose per minutes.

pH and Temperature Dependencies of Xylanase Activity

Effect of pH on xylanase activity of the crude enzyme was examined at pH 3-4.5 (50 mM sodium citrate buffer), pH 5-6.5 (50 mM sodium phosphate buffer) and pH 7-10 (50 mM glycine NaOH buffer). Meanwhile, the effect of temperature on the xylanase activity was tested by reacting the enzyme with substrate at temperature ranging from 30-100 °C, at the obtained-optimum pH, for 30 min. The xylanase activity was measured by DNS method (Miller, 1959). The stability of crude enzyme was analyzed by incubating the crude enzyme without substrate at different temperatures (4 °C, 30 °C and obtained-optimum temperature) for 0, 3, 24, 72, and 96 h.

Xylanase Production

Production of xylanase was induced by cultivating one crock borer (1 cm diameter, 96 hours old) into 100 mL 0.5% xylan-containing corn cobs liquid. The culture was incubated with agitation (Stuart orbital incubator s1500, Staffordshire, United Kingdom) at room temperature for 96 h. The crude enzyme was separated from its pellet by centrifugation at 12000 rpm 4 °C for 20 min. The enzyme activity assay was analyzed by using DNS method (Meryandini et al., 2008).

Xylan Hydrolysis Using Xylanase

Enzymatic hydrolysis was performed by adding xylan corn cobs 1% (w/v) with 12.8 U xylanase S. violaescens BF 3.10 and incubated at room temperature with agitation (150 rpm). One milliliter of sample produced from hydrolysis was collected at 0, 3, 6, 12, 24 h. The total sugar content was measured by Fenol H$_2$SO$_4$ method (Dubois et al., 1956) and the reducing sugar was measured by DNS method (Miller, 1959), respectively. Polymerization degree was calculated according to the proportion of the total sugar content and reducing sugar.

Table 1. Composition of corn cobs fiber before and after delignification

Composition	Before delignification (%)	After delignification (%)
Dry weight	89.58	91.67
Crude fiber	25.15	26.09
Cellulose	33.10	34.07
Hemicellulose	17.90	37.92
Lignin	21.00	16.70
Ash	2.59	1.46
Water	7.99	5.11

Note: Analysis in Laboratory of Feed Science and Technology, Department of Nutrition and Technology, Faculty of Animal Science, Bogor Agricultural University and Research Centre for Bioresources and Biotechnology, Institute of Research and Community Empowerment, Bogor Agricultural University.

Thin Layer Chromatography

Hydrolitic product was detected on chromatography paper (silica gel 60F254 Merck Art 20-20 cm, Darmstadt, Germany). The eluents used were n-butanol, acetic acid and aquadest with the proportion of 2:1:1, respectively. The sugar content was detected by heating the plate at 120 °C for 10 min after spraying with diphenilamine, anillyn, acetone and phosphoric acid (DAP).

Statistical Analysis

The data were analyzed descriptively to describe the effect of pH and temperature on xylanase activity.

RESULTS AND DISCUSSION

Xylan Extraction

The chemical compositions before and after delignification are shown in Table 1. The water content observed in this study was less than that reported by Richana et al. (2007) which was 6.43% (w/w). Meanwhile, ash content found in this study was higher than that reported by Koswarra (1991), which was 1.33% (w/w). Water content was influenced by drying process, longer drying process yielded in little water content. Ash content could be influenced by mineral content. Ash content decreased after delignification process showed that the delignification process can reduce the mineral content.

Richana et al. (2004) stated that fiber content in corn cobs was approximately 25% to 39% (w/w), while in this study the fiber content was 26.09% (w/w). The difference in fiber content in this study was related to the variety and the harvesting time of corn.

Delignification by using 1% (w/v) NaOCl as a solvent could cleave carbon linkage on lignin structure. It could also open the linkage between lignin and polysaccharide so that the bacteria are able to use xylan easier (Lehninger, 1982). In this study, the level of hemicellulose after delignification increased to 37.92% (w/w). The use of NaOCl in delignification process was able to dissolve hemicellulose that finally increased its delignification concentration (Richana et al., 2007). Fifteen percent of NaOCl concentration could degrade cell wall structure and increase hemicellulose solubility. Compare to other solvents such as hot water, cold water, or HCl, NaOH has been proved to have ability to dissolve xylan at high concentration. Beside NaOCl and NaOH, ethanol can also increase hemicellulose content after delignification. The concentration ratio of 1:3 (supernatant : ethanol) could produce the highest yield (Richana et al., 2007).

In this study, the extraction of 500 g corn cobs produced 39.65 g of xylan (7.93%). When compared with the fiber content, which was 26.09% (w/w) (Table 1) so that the ratio of pure xylan was 29.47% (w/w). The result found in this study was similar to that reported by Thu & Preston (1999) who found the ratio of corn cob xylan was 28% (w/w). The ratio of corn cob xylan may vary depends on the extraction process, the age of maize and maize varieties.
Xylanase Production from *S. violascens* BF 3.10

Daily production of xylanase from *S. violascens* BF 3.10 and its activity measured at pH 5.5 under room temperature incubation is presented in Figure 1. Exponential growth of *S. violascens* BF 3.10 was observed until 48 h followed by the stationary phase which was ended after 72 h. Moreover, *S. violascens* BF 3.10 secreted extracellular xylanases at a low rate in the exponential phase and achieved the maximum xylanase production at the end of the stationary phase (72 h, Figure 1). These enzymes were optimally expressed at the end of the exponential phase, but after the stationary phase (72 h), the xylanase activity was gradually decreased. The decreased xylanase activity could be due to the hydrolysis by autolysing protease in the decline phase as were reported previously in *Paenibacillus* sp. strain NF1 (Zheng, 2014), *Fomitopsis pinicola* KMJ812 (Shin et al., 2010), *Paenibacillus campinasensis* G1-1 (Zheng et al., 2012) and *Streptomyces* spp. SKK1-8 (Meryandini et al., 2006).

The enzyme activity of xylanase from *S. violascens* BF 3.10 was optimum at 96th hour, while the biomass of *S. violascens* BF 3.10 cells reached the highest level at 72nd hour. These results showed that the optimum activity was not always at the time of optimum cell growth. Enzyme production of xylanase *S. violascens* BF 3.10 reached the optimum level when the growth rate and metabolic activity were in balance. The reduced carbon and nutrients availabilities promoted the death of cells.

Effects of pH and Temperature on Xylanase Activity

The effect of pH on the xylanase activity produced by *S. violascens* BF 3.10 is shown in Figure 2. The xylanase showed a remarkable activity on a wide range of pH, from 4 to 10, in which the optimum activity was observed at pH 5.5. The effect of temperature on the enzyme activity was observed by incubating the enzyme with the substrate at several temperature ranges for 30 minutes and optimum pH 5.5 (Figure 3). Xylanase produced by *S. violascens* BF 3.10 displayed a remarkable activity at temperature range from 30 to 80 °C with maximum activity observed at 60 °C. The highest enzyme activity was reached at pH 5.5 and temperature of 60 °C. and his condition was similar to that reported by Ratanakhanokchau et al. (2009). The difference in enzyme activity at several temperature and pH levels could occur due to the variety of chemical interactions on protein (Bataillon, 2000).

Thermal stability was important in characterization of an enzyme. Thermal stability of xylanase produced by *S. violascens* BF 3.10 examined by incubation at 4 °C, 30 °C, and 60°C are shown in Figure 4. The enzyme was relatively stable upon incubation at 4 °C and 30 °C for 96 h. However, the increased incubation temperature to 60 °C resulted in a decrease in activity up to 20%. The rapid decrease in enzyme activity when it was incubated at 60 °C was caused by the inactivation of the enzyme by high temperature. Xylanase activity was unstable in preservation temperature more than 50 °C (Chapla et al. 2010). Protein stability is influenced by environmental conditions such as pH and temperature. Appropriate pH...
and temperature will increase the interaction between the enzyme proteins that will prevent them from denaturation (Nath & Rao, 2001).

Hidrolysis of Xylan

The pattern of xylan hydrolysis could be qualitatively seen on thin layer chromatography (TLC). The TLC plat showed that most of the hydrolysis product was XOS with spot located under the standard xylose (Figure 5). The result also indicated that XOS was produced at least after 3 hours of hydrolysis reaction. However, little amount of xylose was also produced. The increasing amount of the hydrolysis product was observed as indicated by thicker spots after 3 h incubations as compared to that of shorter incubation time. Following 3 h incubation, short xylooligosaccharide was started to be produced and thickened along with the addition of the incubation time up to 24 h. The spots observed in our TLC showed a variety of short xylooligosaccharide chains produced upon the hydrolysis. This result might be due to multiple substrate binding sites of the enzymes, as reported by Collins et al. (2005), to produce several polysaccharides chains.

Based on the results reported by Chapla et al. (2012), using different concentrations of substrate at different incubation times played important role in enzymatic hydrolysis during XOS production. Increased xylan concentration in the reaction, from 1% (w/v) to 3% (w/v), did not increase the production of XOS. However, reduction of substrate concentration from 1.0% (w/v) to 0.1% (w/v) decreased the production of XOS. The reduction of XOS production at high substrate concentration (more than 3%) is probably due to saturation of the binding sites of xylanase occupied by the substrates and the decreased number of water molecules assisting hydrolysis reactions. In addition to substrate and hydrolysis time, the possible factors affecting hydrolysis process were bacterial properties and environmental condition.

The degree of polymerization (DP) expressed the number of polysaccharide chains that can be cleaved into monosaccharide. Smaller number of DP showed the polysaccharides were depolymerized into shorter chain compounds. After 3 h of incubation the DP did not decrease. Longer hydrolysis time up to 24 h did not affect the DP (Table 2).

According to Wang (2009), production of xylooligosaccharides as a major product of the hydrolysis indicates that the enzyme is very active to digest xylose chain. These properties are characteristic of the endotype xylanase enzyme (endoxylanase). There are different characteristics of xylanase from variety of microorganisms, the xylanase of Bacillus sp. X13 has the capacity to produce cellobiose (Aygan & Arikan, 2009).

Corncobs as an agricultural by product that could be utilized as a substrate for xylanase produced by S.violascentis BF 3.10 to produce XOS. According to Richana et al. (2007), corncobs is considered as a prospective raw material for either xylan industry or agricultural waste management. As xylan production from corncobs is considerably high, it is also promising to be developed for several oligosaccharide products, including prebiotic. The application of this product as a prebiotic was reported in cattle. This is because microbes in the cattle’s rumen were able to produce xylanase that had the same characteristics as those obtained in this experiment, i.e. the xylanase optimum pH was 6-7, and optimum 50-60 °C (Budiansyah et al., 2010).

Time (h)	Total sugar (mg/mL)	Reducing sugar (mg/mL)	Degree of polymerization
0	12.75	0.82	15.40
3	10.82	2.30	4.70
6	9.50	1.89	5.00
12	10.83	2.50	4.30
24	6.41	1.63	3.90

Tabel 2. Degree of polymerization of hydolyis product of corncobs by S. violascentis BF 3.10

Figure 4. Stability curve of S. violascentis BF 3.10 xylanase at various temperatures. The enzyme activity was measured at pH 5.5 and 4 °C (–○–), 30 °C (–––) and 60 °C (–––). The initial activity was 8.72 U/mL and adjusted as 100%.

Figure 5. Thin layer chromatography analysis of corncobs hydrolysis product. The reaction was done by using 1% of corncobs with 1.6 U/mL enzyme S. violascentis BF 3.10 at various incubation times (0, 3, 6, 12, and 24 h).
CONCLUSION
Utilization of xylan as a substrate for xylanase to produce XOS is an interesting field to be explored. In this research, 500 g of corncobs could produce 39.65 g of xylan with 7.93% (w/w) yield. Further, xylan extracted from corncobs can be used as a substrate for the growth of S. violascens BF 3.10. The optimum time of xylanase activity of S. violascens BF 3.10 (pH 5.5, 60 °C) to hydrolyze 1% (w/v) corncobs substrate was 24 hour with the hydrolysis product is xylooligosaccharides (XOS) with polymerization degree of 3.92. Since XOS is considered as a prebiotic, xylan corncobs can be used as substrates to produce this prebiotic in a larger scale.

ACKNOWLEDGEMENT
Part of the research was funded by BOPTN for Anja Meryandini in 2014 and Start Up program from CRC 990. The authors express high gratitude to Misbachul Munir for language editing.

REFERENCES
Akpinar, O. K, Erdogan, & S. Bostanci. 2009. Enzyme production of xylooligosaccharide from selected agricultural waste. Food Bioprod. Proc. 87:145-151. http://dx.doi.org/10.1016/j.fbp.2008.09.002
Al-Bari, M. A, M. S, Rahman, M. A, U, Islam, M. E. Flores, & M. S, A, Bhiyani. 2007. Purification and characterization of a l-(1,4)-endoxylanase of Streptomyces bangladeshensis sp. J. Cell Mol. Biol. 1:31-36
Arias, E, H. Li, & R. Morosoli. 2007. Effect of protease mutations on the production of xylanases in Streptomyces lividans. Can. J. Microbiol. 53:695-701. http://dx.doi.org/10.1139/W07-024
Aygan, A, & B. Arikan. 2009. Production and characterization of multifunctional endoxylanase by Bacillus sp. X13. Turkish J. Biol. 33: 231–237
Bataillon, M, A, P, N Cardinali, N. Castillon, & F. Duchiron. 2000. Purification and characterization of a moderately thermostable xylanase from Bacillus sp strain SPS-O. Enz. Microb. Technol. 26:187-192. http://dx.doi.org/10.1016/S0141-0229(00)00143-X
Bhosale, J, H, S, R, Sukalkar, S, M, Z, Uzma, & T, A, Kadam. 2011. Production of xylanase by Streptomyces ramesii grown on agricultural wastes: Biotechnol. Bioinf. Bioeng. 1:505-512
Budiansyah, A, Resmi, K, G, Wiryawan, M, T, Soehartono, Y, Widyawastuti, & N, Ramli. 2010. Isolasi dan karakterisasi enzim karbohidrase cairan rumen sapi asal rumah potong hewan. Med. Pet. 2:36-43
Chapla, D, P, Pratima, & S, Anita. 2012. Production of xylooligosaccharides from corncobs xylan by fungal xylanase and their utilization by probiotics. Biore. Technol. 115:215–221. http://dx.doi.org/10.1016/j.biortech.2011.10.083
Chapla, D, J, Divecha, D, Madamwar, & A, Shah. 2010. Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem. Eng. J. 49:361–369. http://dx.doi.org/10.1016/j.bej.2010.01.012
Cheng, X, G, Chen, S, Huang, & Z, Liang. 2013. Biobleaching effect of crude xylanase Streptomyces griseoruber LH-3 on Eucalyptus kraft pulp. Bioresources. 8:6424-6433. http://dx.doi.org/10.1557/biores.8.4.6424-6433
Collins, T, C, Gerday, & G, Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29:3-23. http://dx.doi.org/10.1016/j.femsre.2004.06.005
Deesukon, W, Y, Nishimura, N, Harada, T, Sakamoto, & W, Sukhumriricharta. 2011. Purification, characterization and gene cloning of two forms of a thermostable endo-xylanase from Streptomyces sp. SWU10. Proc. Biochemistry 46: 2255–2262.
Dubois, M, K, A, Gilles, & J, K, Hamilton. 1956. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28:350-356. http://dx.doi.org/10.1021/ac6011a017
El-Gendy, M, M, A, & A, M, A, El-Bondkly. 2014. Optimization of solid state fermentation and leaching process parameters for improvement xylanase production by Endophytic Streptomyces sp. ESRAA-301097. J. Microb. Biochem. Technol. 6:154-166. http://dx.doi.org/10.4172/2147-5948.1000137
Kabel, M, A, H, Borne, J, P, Vincken, A, G, J, Voragen, & H, A, Schols. 2007. Structural differences of xylans affect their interaction with cellulose. Carbo. Pol. 69:94-105. http://dx.doi.org/10.1016/j.carbpol.2006.09.006
Kansoh, A, L, & Z, A, Nagieb. 2004. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie van Leeuwenhoek 85:103-114. http://dx.doi.org/10.1023/B:ANTO.0000020821.73208.62
Koswara, J, 1991. Budidaya Jagung. Jurusan Budidaya Pertanian. Fakultas Pertanian. Institut Pertanian Bogor.
Kumar, A, R, Gupta, B, Shivastava, Y, P, Khasa, & R, C, Kuhad. 2010. Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK-2010, its characterization and application in saccharification of second generation biomass. J. Mol. Catal. Enzym. 74:170-177. http://dx.doi.org/10.1016/j.molcatb.2011.10.001
Lehninger, A, L, 1982. Principles of Biochemistry. 1st edition. Worth Pub., New York.
Meryandini, A, D, Saprudin, P, A, Prihandono, A, Akhdiya, & T, Hendarwin. 2007. Characterization of Streptomyces spp. 45I-3 Xylanase. Biotropia. 14:32-42.
Meryandini, A, N, Widhyastuti, & Y, Lestari. 2008. Pemurnian dan karakterisasi xilanase Streptomyces sp KK1-8. Makara Sains 12:55-60
Meryandini, A, T, Hendarwin, D, Saprudin, & Y, Lestari. 2006. Characterization of Streptomyces xylanase sp. SKK1-8. Hayati 13:151-155
Miller, G, L, 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31:426-428. http://dx.doi.org/10.1021/ac60174a030
Moura, P, S, Cabanas, P, Lourenco, F, G’rio, M, C, Loureiro-Dias, & M, P, Esteves. 2008. In vitro fermentation of selected xylo-oligosaccharides by piglet intestinal microbiota. Food Sci. Technol. 41:1952-1961
Nath, D, & M, Rao. 2001. pH dependent conformational and structural changes of xylanase from an alkalophilic thermophilic Bacillus sp. NCIM 59. Enz. Microb. Technol. 28:397-403. http://dx.doi.org/10.1016/S0141-0229(00)03599-8
Ninawe S, & R, C, Kuhad. 2005. Use of xylan-rich cost effective agro-residues in the production of xylanase by Streptomyces cyanus SN32. J. App. Microbiol. 99:1141-1148. http://dx.doi.org/10.1111/j.1365-2672.2005.02711.x
Qiu, Z, P, Shi, H, Luo, Y, Bai, T, Yuan, F, Yang, S, Liu, & B, Yao. 2010. A xylanase with broad pH and temperature adaptability from Streptomyces megnasporas DSM 41476, and its potential application in brewing industry. Enz. Microb. Technol. 46:506-512. http://dx.doi.org/10.1016/j.enzmictec.2010.02.003
Ratanakhanokchai, K, K, L, Kyu, & T, Morakot. 2009. Purification and properties of a xylan-binding endoxylanase from

SALLUI ET AL. / Media Peternakan 38(1):27-33

April 2015
alkaliphilic Bacillus sp. Strain K-1. App. Environ. Microbiol. 02:694-697.

Ray, R. R. 2010. Extra cellular endoxylanase production from solid state fermentation of dried grass by Streptomyces sp OM 09. J. Exp. Sci. 1:33-36

Richana, N., P. Lestina, & T. T. Irawadi. 2004. Karakterisasi lignoselulosa dari limbah tanaman pangan dan pemanfaatannya untuk pertumbuhan bakteri RXA III-5 penghasil xilanase. J. Penel. Pert. Tan. Pang. 23:171-176.

Richana, N., T. T. Irawati, N. M. Anwar, S. Illah, S. Khaswar, & A. Yandra. 2007. Ekstraksi xilan dari tongkol jagung. J. Fasccapanen 4: 38-43

Rifaat, H., M. Z. A. Nagieb, & Y. M. Ahmed. 2005. Production of xylanases by Streptomyces species and their bleaching effect on rice straw pulp. App. Eol. Environ. Res. 4:151-160. http://dx.doi.org/10.15666/aer/0401_151160

Roberfroid, M. 2007. Prebiotics: The concept revisited. J. Nutr. 137: 830S–837S

Shin, K., M. Jeya, J. K. Lee, & Y. S Kim. 2010. Purification and characterization of a thermostable xylanase from Fomitopsis pinicola. J. Microbiol. Biotechnol. 20: 1415-1423. http://dx.doi.org/10.4014/jmb.1003.03031

Slavin, J. 2013. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 5: 1417-1435. http://dx.doi.org/10.3390/nu5041417

Thu Ng. V. & T. R. Preston. 1999. Rumen environment and feed degradability in swamp buffaloes fed different supplement. Livestock Research Dev. 11(3). www.cepav.org.co.irrd/Irrd

Utami, W., A. Meryandini, & K. G. Wiriyawan. 2013. Characterization of bacterial mannanase for hydrolyzing palm kernel cake to produce manno-oligosaccharides prebiotics. Med. Pet. 36: 192-196. http://dx.doi.org/10.5398/medpet.2013.36.3.192

Wang, Y. 2009. Prebiotics: Present and future in food and technology. Food Res. Int: 42: 8-12. doi:10.1016/j.foodres.2008.09.001

Yang, C. H, S. F. Yang, & W. H. Liu. 2005. Production of xylooligosaccharides from xylans by extracellular xylanases from Thermobifida fusca. J. Agri. Food Chem. 55: 3955-3959. http://dx.doi.org/10.1021/jf0635964

Yusrizal, Y. 2012. Microbial and oligosaccharides treatments of feces and slurry in reducing ammonia of the poultry farm. Med. Pet. 12:152-156. http://dx.doi.org/10.5398/medpet.2012.35.3.152

Zheng, H. C, Y. H Liu, X. G Liu, J. I. Wang, Y. Han, & F. P Lu. 2012. Isolation, purification, and characterization of a thermostable xylanase from a novel strain, Paenibacillus campinasensis G1-1. J. Microbiol. Biotechnol. 22:930-958. http://dx.doi.org/10.4014/jmb.1110.10060

Zheng, H., M. Sun, L. Meng, H. Pei, X. Zhang, Z. Yan, W. Zeng, J. Zhang, J. Hu, F. Lu, & J. Sun. 2014. Purification and characterization of a thermostable xylanase from Paenibacillus sp. NF1 and its application in xylooligosaccharides production. J. Microbiol. Biotechnol. 24:489-496. http://dx.doi.org/10.4014/jmb.1312.12072

Zhu, Y., X. Li, B. Sun, H. Song, E. Li, & H. Song. 2012. Properties of an alkaline-tolerant, thermostable xylanase from Streptomyces chartreusis L1105, Suitable for xylooligosaccharide production. J. Food Sci.77:506-511. http://dx.doi.org/10.1111/j.1750-3841.2012.02671.x