Correlators in the supereigenvalue model in the Ramond sector

Ying Chena, Rui Wangb, Ke Wua, Wei-Zhong Zhaoa

aSchool of Mathematical Sciences, Capital Normal University, Beijing 100048, China
bInstitute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Abstract

We investigate the supereigenvalue model in the Ramond sector. We prove that its partition function can be obtained by acting on elementary functions with exponents of the given operators. The Virasoro constraints for this supereigenvalue model are presented. The remarkable property of these bosonic constraint operators is that they obey the Witt algebra and null 3-algebra. The compact expression of correlators can be derived from these Virasoro constraints.

Keywords: Conformal and W Symmetry, Matrix Models, n-algebra

1 Introduction

Matrix models play important roles in physics and mathematics. Generally speaking they are quantum field theories where the field is an $N \times N$ real or complex matrix. Supereigenvalue models can be regarded as supersymmetric generalizations of matrix models. They have attracted considerable attention [1]-[11]. The supereigenvalue model in the Ramond sector is given by [9]

$$Z = \int d^N z d^N \theta \Delta_R(z, \theta)^\beta e^{-\sqrt{\beta} \sum_{a=1}^N V_R(z_a, \theta_a)},$$

where $d^N z d^N \theta = \prod_{a=1}^N dz_a d\theta_a$, N is even, z_a are positive real variables, θ_a are Grassmann variables, $\Delta_R(z, \theta)$ is the Vandermonde-like determinant,

$$\Delta_R(z, \theta) = \prod_{1 \leq a < b \leq N} (z_a - z_b - \frac{1}{2}(z_a + z_b) \frac{\theta_a \theta_b}{\sqrt{z_a z_b}}),$$

and

$$V_R(z, \theta) = V_B(z) + V_F(z) \frac{\theta}{\sqrt{z}}, \quad V_B(z) = \sum_{k=0}^\infty t_k z^k, \quad V_F(z) = \sum_{k=0}^\infty \xi_k z^k,$$

1Corresponding author: zhaowz@cnu.edu.cn
\(\xi_k \) are Grassmann coupling constants, \(V_B(z) \) and \(V_F(z) \) are the bosonic and fermionic potentials, respectively.

The various constraints for matrix models have been constructed, such as Virasoro constraints [12]-[15], \(W^{1+\infty} \) constraints [16, 17] and Ding-Iohara-Miki constraints [18, 19]. They are useful in analyzing the structures of matrix models. For the partition function (1), it is known that there are the super Virasoro constraints [9]

\[
L_n Z = \frac{1}{16} \delta_{n,0} Z, \quad G_n Z = 0, \quad n \in \mathbb{N},
\]

where

\[
L_n = \sum_{k=1}^{\infty} k t_k \frac{\partial}{\partial t_{n+k}} + \sum_{k=0}^{n} \left(\frac{n}{2} \xi_k \frac{\partial}{\partial \xi_{k+n}} + \frac{h^2}{2} \sum_{k=0}^{n} \frac{\partial}{\partial t_{n-k}} \frac{\partial}{\partial t_k} + \frac{h^2}{4} n^2 \frac{\partial}{\partial \xi_0} \frac{\partial}{\partial \xi_n} \right.
\]

\[
+ \left. \frac{1}{2} \sum_{k=1}^{n-1} k \left(\frac{\partial}{\partial \xi_{n-k}} \frac{\partial}{\partial \xi_k} \right) + \frac{h}{2\sqrt{\beta}} (1 - \beta)(n + 1) \frac{\partial}{\partial t_n} + \frac{1}{16} \delta_{n,0}. \right)
\]

\[
G_n = \sum_{k=1}^{\infty} k t_k \frac{\partial}{\partial \xi_{n+k}} + \sum_{k=0}^{n} \xi_k \frac{\partial}{\partial t_{n+k}} + \frac{h^2}{2} \frac{\partial}{\partial \xi_0} \frac{\partial}{\partial t_n} + \frac{h^2}{4} \sum_{k=1}^{n} \frac{\partial}{\partial \xi_k} \frac{\partial}{\partial t_{n-k}}
\]

\[
- \frac{h}{\sqrt{\beta}} (1 - \beta)(n + 1) \frac{\partial}{\partial t_n}.
\]

The operators (5) and (6) obey the super Virasoro algebra

\[
[L_m, L_n] = (m - n)L_{m+n}, \quad (7a)
\]

\[
[L_m, G_n] = \frac{m - 2n}{2} G_{m+n}, \quad (7b)
\]

\[
\{G_m, G_n\} = 2L_{m+n} - \frac{1}{8} \delta_{m+n,0}. \quad (7c)
\]

Recently a formal supereigenvalue model in the Ramond sector is investigated [11]

\[
\tilde{Z} = \int \prod_{a=1}^{2N} dz_a d\theta_a \Delta(z, \theta) e^{-\frac{N}{2} \sum_{a=1}^{2N} \left(z_a^2 + V_B(z_a^2) + V_F(z_a^2) \theta_a^2 \right)}, \quad (8)
\]

where

\[
\Delta(z, \theta) = \prod_{1 \leq a < b \leq 2N} \left(z_a^2 - z_b^2 - \frac{\theta_a \theta_b}{2} (z_a^2 - z_b^2) \right), \quad (9)
\]

and the bosonic variables \(z_a \) are integrated from \(-\infty\) to \(+\infty\). To calculate the correlation functions of the model (8), the recursive formalism has been derived. It was found that the correlation functions obtained from the recursion formalism have no poles at the irregular ramification point due to a supersymmetric correction.
The partition functions of various matrix models can be obtained by acting on elementary functions with exponents of the given operators, such as Gaussian Hermitian and complex matrix models and the given W operators called W-representations \[20\] - \[23\]. For the case of supersymmetric generalizations, to our best knowledge, it has not been reported so far in the existing literature. In this letter, we investigate the supereigenvalue model in the Ramond sector and derive its W-representations. We also give the correlators in this matrix model.

2 Generation of the supereigenvalue model in the Ramond sector by \hat{W}-operator

Let us consider the supereigenvalue model in the Ramond sector

\[
\mathcal{Z} = \frac{1}{\Lambda} \int d^N z d^N \theta \Delta_R(z, \theta)^\beta e^{-\frac{\sqrt{\beta}}{\hbar} \sum_{a=1}^N (V_R(z_a, \theta_a) + z_a)},
\]

which can be obtained by taking the shift $t_1 \to t_1 + 1$ in the bosonic potential $V_B(z)$ of (1), the normalization factor Λ is given by

\[
\Lambda = \int d^N z d^N \theta \Delta_R(z, \theta)^\beta e^{-\frac{\sqrt{\beta}}{\hbar} \sum_{a=1}^N z_a}.
\]

We note that the partition function (10) is invariant under

\[
z_a \to z_a + \epsilon \sum_{n=0}^{\infty} (n + 1) t_{n+1} z_a^{n+1}, \quad \theta_a \to \theta_a + \epsilon \sum_{n=0}^{\infty} \frac{n(n + 1)}{2} t_{n+1} z_a^n \theta_a,
\]

with an infinitesimal bosonic parameter ϵ. It leads to the bosonic loop equation

\[
\sum_{n=0}^{\infty} (n + 1) t_{n+1} < -\frac{\sqrt{\beta}}{\hbar} \sum_{a=1}^N z_a^{n+1} - \frac{\sqrt{\beta}}{\hbar} \sum_{k=0}^{\infty} (k + \frac{n}{2}) \xi_k \sum_{a=1}^N z_a^{k+n} \frac{\theta_a}{\sqrt{z_a}}
\]

\[
- \frac{\sqrt{\beta}}{\hbar} \sum_{k=1}^{\infty} k t_k \sum_{a=1}^N z_a^{n+k} + \frac{\beta}{2} \sum_{k=0}^n \sum_{a,b=1}^N z_a^{n-k} \frac{\theta_a \theta_b}{\sqrt{z_a z_b}} + \frac{\beta}{4} \sum_{a,b=1}^N z_a^n \frac{\theta_a \theta_b}{\sqrt{z_a z_b}}
\]

\[
+ \frac{\beta}{2} \sum_{k=1}^{n-1} \sum_{a,b=1}^N k z_a^{n-k} \frac{\theta_a \theta_b}{\sqrt{z_a z_b}} + \frac{1 - \beta}{2} (n + 1) \sum_{a=1}^N z_a^n \geq 0,
\]

where the expectation value is taken with respect to the partition function (10). The loop equation (13) can be derived by applying the following differential operators to the partition function (10)

\[
(\hat{W}_1 + \hat{D}_1) \mathcal{Z} = 0,
\]

3
where
\[
\hat{D}_1 = \sum_{k=1}^{\infty} \hbar t_k \frac{\partial}{\partial t_k},
\]
\[
\hat{W}_1 = \sum_{n,k=1}^{\infty} nkt_n t_k \frac{\partial}{\partial t_{n+k-1}} + \sum_{n=1}^{\infty} \frac{\hbar^2}{4} \sum_{n=1}^{\infty} n(n-1)t_n \frac{\partial}{\partial t_{n-1}} \frac{\partial}{\partial \xi_{n-1}}.
\]

Similarly, (17) can be also obtained by applying the following differential operators to the partition function
\[
\beta = \hat{W}^{\beta} + \hat{D}^{\beta} + \hat{D}^{\beta} \hat{W}^{\beta}.
\]

The partition function (10) is also invariant under
\[
z_a \to z_a + \epsilon \sum_{n=0}^{\infty} (n+1)\xi_{n+1}^n \sqrt{z_a} \theta_a, \quad \theta_a \to \theta_a - \epsilon \sum_{n=0}^{\infty} (n+1)\xi_{n+1}^n \sqrt{z_a},
\]
which leads to another bosonic loop equation
\[
\sum_{n=0}^{\infty} (n+1)\xi_{n+1} < - \frac{\sqrt{\beta}}{\hbar} \sum_{a=1}^{N} z_a^{n+1} \frac{\theta_a}{\sqrt{z_a}} + \frac{\sqrt{\beta}}{\hbar} \sum_{k=0}^{\infty} kt_k \sum_{a=1}^{N} \xi_{a}^k \frac{\xi}{\sqrt{z_a}} - \frac{\hbar^2}{2} \sum_{k=0}^{\infty} \sum_{a=1}^{N} \xi_{a}^k \sum_{a=1}^{N} \xi_{a}^k
\]
\[
+ \frac{\beta}{2} \sum_{a,b=1}^{N} \frac{\theta_a}{\sqrt{z_a}} z_b + \beta \sum_{k=1}^{N} \sum_{a,b=1}^{N} k \frac{\theta_a}{\sqrt{z_a}} z_{a,k}^n + (1 - \beta)(n + 1) \frac{1}{2} \sum_{a=1}^{N} \frac{\theta_a}{\sqrt{z_a}} z_a^n >= 0.
\]

Similarly, (17) can be also obtained by applying the following differential operators to the partition function
\[
(\hat{W}_2 + \hat{D}_2) \hat{Z} = 0,
\]
where
\[
\hat{D}_2 = \sum_{k=1}^{\infty} k\xi_k \frac{\partial}{\partial \xi_k},
\]
\[
\hat{W}_2 = \sum_{n,k=1}^{\infty} nkt_k \xi_n \frac{\partial}{\partial \xi_{n+k-1}} + \sum_{n=1}^{\infty} \frac{\hbar^2}{2} \sum_{n=1}^{\infty} n\xi_n \frac{\partial}{\partial \xi_0} \frac{\partial}{\partial t_{n-1}} - \frac{\hbar^2}{2} \sum_{n=1}^{\infty} n\xi_n \frac{\partial}{\partial \xi_{n-1}} \frac{\partial}{\partial t_{n-1}}.
\]

Combining (14) and (15), we have
\[
(\hat{W} + \hat{D}) \hat{Z} = 0,
\]
where \(\hat{D} = \hat{D}_1 + \hat{D}_2, \hat{W} = \hat{W}_1 + \hat{W}_2\) and their commutation relation is
\[
[\hat{D}, \hat{W}] = \hat{W}.
\]
Since the partition function (10) only depends on even numbers of the fermionic variables, it can be formally expanded as

\[\bar{Z} = \sum_{s=0}^{\infty} \bar{Z}^{(s)} = e^{-\frac{\beta}{N} N t_0} \left[1 - \frac{\sqrt{3}}{\hbar} C_{k_1} t_{k_1} + \frac{1}{2!} \left(\frac{\sqrt{3}}{\hbar} \right)^2 C_{k_1, k_2} t_{k_1} t_{k_2} - \frac{1}{3!} \left(\frac{\sqrt{3}}{\hbar} \right)^3 C_{s_1, s_2} \xi_{s_1} \xi_{s_2} - \cdots \right], \tag{22} \]

where

\[\bar{Z}^{(s)} = e^{-\frac{\beta}{N} N t_0} \left[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} (-1)^{m(m+1)} \frac{2^n}{n! m!} \sum_{k_1, \ldots, k_n \geq 1, s_1, \ldots, s_m \geq 0} C_{k_1, \ldots, k_n} t_{k_1} \cdots t_{k_n} \xi_{s_1} \cdots \xi_{s_m} \right], \tag{23} \]

\(m \) is even and the coefficients \(C_{s_1, \ldots, s_m} \) are the correlators defined by

\[C_{s_1, \ldots, s_m} = \frac{1}{\Lambda} \int d^N z d^N \theta \Delta_R(z, \theta)^{\beta} e^{-\frac{\beta}{N} \sum_{a=1}^{N} z_a} \sum_{a_1, \ldots, a_n = 1}^{N} z_{a_1}^{k_1} \cdots z_{a_n}^{k_n} \prod_{b_1, \ldots, b_m = 1}^{N} \frac{\theta_{b_1}}{\sqrt{z_{b_1}}} \cdots \frac{\theta_{b_m}}{\sqrt{z_{b_m}}}. \tag{24} \]

For the cases of \(m = 0 \) and \(n = 0 \) in (24), respectively, we denote

\[C_{k_1, \ldots, k_n} = \frac{1}{\Lambda} \int d^N z d^N \theta \Delta_R(z, \theta)^{\beta} e^{-\frac{\beta}{N} \sum_{a=1}^{N} z_a} \sum_{a_1, \ldots, a_n = 1}^{N} z_{a_1}^{k_1} \cdots z_{a_n}^{k_n}, \tag{25} \]

and

\[C_{s_1, \ldots, s_m} = \frac{1}{\Lambda} \int d^N z d^N \theta \Delta_R(z, \theta)^{\beta} e^{-\frac{\beta}{N} \sum_{a=1}^{N} z_a} \sum_{b_1, \ldots, b_m = 1}^{N} \frac{\theta_{b_1}}{\sqrt{z_{b_1}}} \cdots \frac{\theta_{b_m}}{\sqrt{z_{b_m}}}. \tag{26} \]

Due to the properties of the fermionic variables, we have

\[C_{k_1, \ldots, k_n} = 0, \quad m > N, \tag{27} \]

and

\[C_{s_1, \ldots, s_m} = 0, \quad s_i = s_j. \tag{28} \]

The operator \(\hat{D} \) acting on \(\bar{Z}^{(s)} \) gives

\[\hat{D} \bar{Z}^{(s)} = s \bar{Z}^{(s)}. \tag{29} \]

By means of (20), (21) and (29), we obtain

\[\hat{W} \bar{Z}^{(s)} = -(s + 1) \bar{Z}^{(s+1)}. \tag{30} \]
The partition function (10) is graded by the total \((t, \xi)\)-degree. From (29) and (30), we see that the \(\hat{D}\) and \(\hat{W}\) are indeed the operators preserving and increasing the grading, respectively. In terms of the operator \(\hat{W}\), (22) can be rewritten as

\[
\hat{Z} = \hat{Z}^{(0)} - \hat{W} \hat{Z}^{(0)} + \frac{1}{2!} \hat{W}^2 \hat{Z}^{(0)} - \frac{1}{3!} \hat{W}^3 \hat{Z}^{(0)} + \ldots
\]

\[
= e^{-\hat{W}} \cdot e^{-\frac{N}{\hbar} N \hat{t}_0},
\]

(31)

It indicates that the supereigenvalue model in the Ramond sector can be obtained by acting on elementary functions with exponents of the given bosonic operators \(\hat{W}\).

For the \((l + 1)\)-th power of \(\hat{W}\), it can be formally expressed as

\[
\hat{W}^{l+1} = \sum_{a,b,c,d=0}^{2l} \sum_{i_1,\ldots,i_n=0}^\infty \sum_{s_1,\ldots,s_d=0}^\infty \hat{P}^{(k_1,\ldots,k_d|s_1,\ldots,s_d)}_{(1_1,\ldots,1_d|j_1,\ldots,j_b)} t_{k_1} \cdots t_{k_d} \xi_{s_1} \cdots \xi_{s_d} \frac{\partial}{\partial t_{j_1}} \cdots \frac{\partial}{\partial t_{j_b}} \frac{\partial}{\partial \xi_{j_1}} \cdots \frac{\partial}{\partial \xi_{j_b}},
\]

(32)

where \(\rho = \sum_{\mu=1}^a i_\mu + \sum_{\nu=1}^b j_\nu + l + 1\), the coefficients \(\hat{P}^{(k_1,\ldots,k_d|s_1,\ldots,s_d)}_{(1_1,\ldots,1_d|j_1,\ldots,j_b)}\) are polynomials with respect to \(i_\mu, j_\nu, k_\bar{\mu}\) and \(s_\rho, \bar{\mu} = 1, \ldots, c, \nu = 1, \ldots, d\).

Substituting (32) into (31), comparing the coefficients of \(t_{k_1} \cdots t_{k_n} \xi_{s_1} \cdots \xi_{s_m}\) with \(\sum_{\mu=1}^n k_\mu + \sum_{\nu=1}^m s_\nu = l + 1, k_\mu \geq 1, s_\nu \geq 0\) in (31) and (22), we obtain

\[
\begin{align*}
&\frac{(-1)^{l+1}}{(l+1)!} e^{-\frac{N}{\hbar} N \hat{t}_0} \sum_{\alpha=1}^2 \sum_{\sigma_{1,\sigma_2}} \left(-\frac{\sqrt{\beta}}{\hbar} N \right)^\alpha (-1)^{\tau(\sigma_2(s_1),\ldots,\sigma_2(s_m))} \hat{P}^{(\sigma_2(s_1),\ldots,\sigma_2(s_m))}_{(0,\ldots,0)} \\
&= \frac{(-1)^{\frac{m(m+1)}{2}}}{n!m!} e^{-\frac{N}{\hbar} N \hat{t}_0} \sum_{\sigma_{1,\sigma_2}} (-1)^{\tau(\sigma_2(s_1),\ldots,\sigma_2(s_m))} C^{\sigma_2(s_1),\ldots,\sigma_2(s_m)}_{\sigma_1(k_1),\ldots,\sigma_1(k_n)} \\
&= \frac{(-1)^{\frac{m(m+1)}{2}}}{n!m!} e^{-\frac{N}{\hbar} N \hat{t}_0} \lambda_{(k_1,\ldots,k_n)} \lambda_{(s_1,\ldots,s_m)} C^{s_1,\ldots,s_m}_{k_1,\ldots,k_n},
\end{align*}
\]

(33)

where \(\sigma_1\) denotes all the distinct permutations of \((k_1,\ldots,k_n)\), \(\sigma_2\) is all the distinct permutations of \((s_1,\ldots,s_m)\) and its inverse number is denoted as \(\tau(\sigma_2(s_1),\ldots,\sigma_2(s_m))\), \(\lambda_{(k_1,\ldots,k_n)}\) and \(\lambda_{(s_1,\ldots,s_m)}\) are the numbers of distinct permutations of \((k_1,\ldots,k_n)\) and \((s_1,\ldots,s_m)\), respectively.

Then we obtain the correlators from (33)

\[
C^{s_1,\ldots,s_m}_{k_1,\ldots,k_n} = \frac{(-1)^{l+1+m(m+1)/2}}{(l+1)!\lambda_{(k_1,\ldots,k_n)} \lambda_{(s_1,\ldots,s_m)}} \sum_{\alpha=1}^m \left(-\frac{\sqrt{\beta}}{\hbar} N \right)^\alpha \hat{P}^{(\sigma_2(s_1),\ldots,\sigma_2(s_m))}_{(0,\ldots,0)},
\]

(34)

where \(\hat{P}^{(\sigma_2(s_1),\ldots,\sigma_2(s_m))}_{(0,\ldots,0)} = \sum_{\sigma_1,\sigma_2} (1)^{\tau(\sigma_2(s_1),\ldots,\sigma_2(s_m))} \hat{P}^{(\sigma_1(k_1),\ldots,\sigma_1(k_n)|\sigma_2(s_1),\ldots,\sigma_2(s_m))}_{(0,\ldots,0)} \sum_{\mu=1}^n k_\mu + \sum_{\nu=1}^m s_\nu = l + 1, k_\mu \geq 1 \) and \(s_\nu \geq 0\).
Substituting (39) into (34), (35) and (36), we obtain

$$C_{k_1,\ldots,k_n} = (-1)^{l+1}n!\left(-\frac{\hbar}{\sqrt{\beta}}\right)^n \sum_{\alpha=1}^{2(l+1)} \left(-\frac{\sqrt{\beta}}{\hbar}N\right)^\alpha P_{(\alpha,\ldots,0)}^{(k_1,\ldots,k_n)},$$

$$C_{s_1,\ldots,s_m} = (-1)^{l+1}m!\left(-\frac{\hbar}{\sqrt{\beta}}\right)^m \sum_{\alpha=1}^{2(l+1)} \left(-\frac{\sqrt{\beta}}{\hbar}N\right)^\alpha P_{(0,\ldots,0)}^{(s_1,\ldots,s_m)}. \quad \text{(35)}$$

For examples, let us list some correlators.

(I) When \(l = 0 \) in (32), we have

$$P^{(1)}_{(0,0)} = \frac{\hbar^2}{4}, \quad P^{(1)}_{(0,0)} = -\frac{\hbar}{2\sqrt{\beta}}(1-\beta), \quad P^{(1,0)}_{(0,0)} = 1. \quad \text{(37)}$$

Substituting (37) into (35) and (36), we obtain

$$C_1 = \frac{1}{\lambda(1)} \left[-NP^{(1)}_{(0)} + \frac{\sqrt{\beta}}{\hbar}N^2P^{(1)}_{(0,0)} \right] = \frac{\hbar}{2\sqrt{\beta}}N\tilde{N},$$

$$C^{1,0} = -\frac{2\hbar}{\sqrt{\beta}}N \frac{\lambda(1)}{\lambda(0)}P^{(1,0)}_{(0,0)} = -\frac{\hbar}{\sqrt{\beta}}N, \quad \text{(38)}$$

where \(\lambda(1) = 1, \lambda(1,0) = 2, \tilde{N} = \beta N + (1-\beta) \).

(II) When \(l = 1 \) in (32), we have

$$P^{(1,1)}_{(0,0,0)} = \frac{\hbar^4}{4}, \quad P^{(1,1)}_{(0,0,0)} = -\frac{\hbar^3}{2\sqrt{\beta}}(1-\beta), \quad P^{(1,1)}_{(0,0,0)} = \frac{\hbar^2}{4}(1-\beta)^2 + \frac{\hbar^2}{2},$$

$$P^{(2)}_{(0,0,0)} = \frac{\hbar^4}{4}, \quad P^{(1,1)}_{(0,0,0)} = -\frac{\hbar^3}{2\sqrt{\beta}}(1-\beta), \quad P^{(2)}_{(0,0,0)} = \frac{2\hbar^3}{\sqrt{\beta}}(1-\beta),$$

$$P^{(1,1,0)}_{(0,0,0)} = \frac{\hbar^2}{4}, \quad P^{(2)}_{(0,0,0)} = \frac{\hbar^2}{\beta}(1-\beta)^2 + \frac{\hbar^2}{2}, \quad P^{(1,1,0)}_{(0,0,0)} = -\frac{\hbar}{\sqrt{\beta}}(1-\beta),$$

$$P^{(2,0)}_{(0,0,0)} = 3\hbar^2, \quad P^{(2,0)}_{(0,0,0)} = -4\frac{\sqrt{\beta}}{\hbar}(1-\beta), \quad P^{(2,0)}_{(0,0,0)} = 2. \quad \text{(39)}$$

Substituting (39) into (34), (35) and (36), we obtain

$$C_2 = -\frac{\hbar}{2\sqrt{\beta}} \sum_{\alpha=1}^{3} \left(-\frac{\sqrt{\beta}}{\hbar}N\right)^\alpha P^{(2)}_{(\alpha,\ldots,0)}$$

$$= \frac{\hbar^2}{4\beta} N(2\tilde{N}^2 + \beta),$$

$$C_{1,1} = \frac{h^2}{\beta\lambda(1,1)} \sum_{\alpha=1}^{4} \left(-\frac{\sqrt{\beta}}{\hbar}N\right)^\alpha P^{(1,1)}_{(\alpha,\ldots,0)}$$

$$= \frac{\hbar^2}{4\beta} \tilde{N} N(\tilde{N} N + 2),$$
\[C^{2,0} = -\frac{\hbar^2}{\beta\lambda(2,0)} \sum_{\alpha=1}^{2} (-\sqrt{\beta} N)^\alpha P_{(0,\ldots,0)}^{(2,0)}(\alpha) \]
\[= -\frac{\hbar^2}{2\beta} N(3\tilde{N} + 1 - \beta), \]
\[C^{1,0} = \frac{\hbar^4}{\lambda(1,\lambda)} \sum_{\alpha=1}^{3} (-\sqrt{\beta} N)^\alpha P_{(0,\ldots,0)}^{(1,1,0)}(\alpha), \]
\[= -\frac{\hbar^2}{2\beta} N(N\tilde{N} + 2), \quad (40) \]

where \(\lambda(2) = \lambda(1,1) = 1, \lambda(2,0) = 2. \)

(III) When \(l = 2 \) in (32), by direct calculations, it is easy to obtain the precise expression of the 3-th power of \(\hat{W} \). Then we have the final results from (34)

\[C_3 = \frac{1}{8}(\frac{\hbar}{\sqrt{\beta}})^3 N[5\tilde{N}^3 + (1 - \beta)\tilde{N}^2 + 10\beta\tilde{N} + 3\beta(1 - \beta)], \]
\[C_{1,2} = \frac{1}{8}(\frac{\hbar}{\sqrt{\beta}})^3 N(2N\tilde{N}^3 + 8\tilde{N}^2 + \beta N\tilde{N} + 4\beta), \]
\[C^{2,1} = \frac{1}{4}(\frac{\hbar}{\sqrt{\beta}})^3 N(-2\tilde{N}^2 + \beta N\tilde{N} + \beta), \]
\[C^{3,0} = \frac{1}{4}(\frac{\hbar}{\sqrt{\beta}})^3 N[-10\tilde{N}^2 - 9(1 - \beta)\tilde{N} - 5\beta - 3(1 - \beta)^2], \]
\[C_{1,1,1} = \frac{1}{8}(\frac{\hbar}{\sqrt{\beta}})^3 N(N\tilde{N} + 2)(N\tilde{N} + 4), \]
\[C^{2,0,1} = \frac{1}{4}(\frac{\hbar}{\sqrt{\beta}})^3 N[-3N\tilde{N}^2 - 12\tilde{N} - (1 - \beta)N\tilde{N} - 4(1 - \beta)], \]
\[C^{1,0,2} = \frac{1}{4}(\frac{\hbar}{\sqrt{\beta}})^3 N[-2N\tilde{N}^2 - 13\tilde{N} - 3(1 - \beta)], \]
\[C^{1,0,1} = \frac{1}{4}(\frac{\hbar}{\sqrt{\beta}})^3 N(-N^2\tilde{N}^2 - 6N\tilde{N} - 8). \quad (41) \]

3 Virasoro constraints for the supereigenvalue model in the Ramond sector

It is known that the partition function (1) is invariant under two pairs of the changes of integration variables \((z_a \to z_a + \epsilon z_a^{n+1}, \theta_a \to \theta_a + \frac{1}{2} \epsilon z_a^n \theta_a) \) and \((z_a \to z_a + \epsilon z_a^n \sqrt{z_a} \theta_a \delta, \theta_a \to \theta_a + \epsilon z_a^n \sqrt{z_a} \delta) \), where \(\epsilon \) and \(\delta \) are the infinitesimal bosonic and fermionic constants, respectively. These invariances, respectively, lead to the bosonic and fermionic loop equations which give the super Virasoro constraints (1). Taking the shift \(t_1 \to t_1 + 1 \) in (1), we have the super Virasoro constraints.
for \((10)\)
\[
\bar{L}_n \bar{Z} = \frac{1}{16} \delta_{n,0} \bar{Z}, \quad \bar{G}_n \bar{Z} = 0, \quad n \in \mathbb{N}.
\]

The super Virasoro algebra \((7)\) still holds for the constraint operators \(\bar{L}_n\) and \(\bar{G}_n\).

From the super Virasoro constraints \((42)\), the recursive formulas for correlators can be obtained. In principle, we can calculate the correlators step by step from the recursive formulas. However, the compact expression of correlators \((34)\) can not be derived from them.

Let us introduce the bosonic operators
\[
\hat{L}_l = \hat{W}^l (\hat{W} + \hat{D}), \quad l \in \mathbb{N}.
\]

These operators are different from \(\bar{L}_n\). They obey not only the Witt algebra \((7a)\), but also the null Witt 3-algebra \([24]\)
\[
[\hat{L}_{l_1}, \hat{L}_{l_2}, \hat{L}_{l_3}] := \hat{L}_{l_1} [\hat{L}_{l_2}, \hat{L}_{l_3}] - \hat{L}_{l_2} [\hat{L}_{l_1}, \hat{L}_{l_3}] + \hat{L}_{l_3} [\hat{L}_{l_1}, \hat{L}_{l_2}] = 0.
\]

The action of the operators \((43)\) on the partition function \((10)\) leads to the Virasoro constraints
\[
\hat{L}_l \bar{Z} = 0.
\]

Recently similar Virasoro constraints without the Grassmann variables have been presented for the Gaussian Hermitian matrix model and they have been used to derive the correlators of the matrix model \([25]\).

Let us first consider the Virasoro constraints \((45)\) with \(l = 0\), i.e., \((20)\). Substituting \((22)\) into \((20)\), by collecting the coefficients of \(t_1^l\) and setting to zero, we obtain
\[
C_1 = \frac{\hbar}{2 \sqrt{\beta}} N \tilde{N},
\]
and the recursive relations
\[
C_{1, \ldots, 1}^l = \frac{\hbar}{2 \sqrt{\beta}} (N \tilde{N} + 2l) C_{1, \ldots, 1}^l.
\]

From \((47)\), it is easy to obtain
\[
C_{1, \ldots, 1}^l = \left(\frac{\hbar}{2 \sqrt{\beta}} \right)^{l+1} \prod_{j=0}^{l} (N \tilde{N} + 2j).
\]
We observe that it is difficult to give the precise expression of \(P_{\omega}(1, \ldots, 1 || 0, \ldots, 0) \) from \(\tilde{W}^{l+1} \).

However, by taking \(n = l + 1 \) and \(k_1 = \cdots = k_n = 1 \) in (55) and using (48), we obtain

\[
P_{\omega}(1, \ldots, 1 || 0, \ldots, 0) = \frac{1}{2l+1}(-\frac{\hbar}{\sqrt{\beta}})^{\alpha} \left[\sum_{2i+j=\alpha-2}^{2i+j=\alpha-1} \beta^{i+1}(1-\beta)^j + \sum_{0 \leq i,j \leq l} \beta^i(1-\beta)^{j+1} \right]
\]

\[
\cdot \sum_{1 \leq r_1 < r_2 < \cdots < r_{l+j} \leq l} \frac{2l-(i+j) \cdot l!}{\prod_{k=0}^{l+j} r_k}, \quad \alpha = 1, \ldots, 2(l+1).
\]

(49)

Let us collect the coefficients of \(t_1^l \xi_0 \xi_1 \) in (20) and set to zero, we have

\[
C^{0,1} = \frac{\hbar}{\sqrt{\beta}} N,
\]

and the recursive relations

\[
C_{1, \ldots, 1}^{0,1} = \frac{\hbar}{\sqrt{\beta}(l+1)} [(l+1 + \frac{1}{2} N \tilde{N}) C_{1, \ldots, 1}^{0,1} + N C_{1, \ldots, 1}].
\]

(51)

Substituting (48) into (51) we obtain

\[
C_{1, \ldots, 1}^{0,1} = 2N(\frac{\hbar}{2\sqrt{\beta}})^{l+1} \prod_{j=1}^{l} (N \tilde{N} + 2j).
\]

(52)

Proceeding the similar procedure for the case of the coefficients of \(t_1^l t_2 \) in (20), we have

\[
C_2 = \frac{\hbar}{4\sqrt{\beta}} (2\tilde{N} C_1 + \beta C^{0,1}) = \frac{\hbar^2}{4\beta} N(2\tilde{N}^2 + \beta),
\]

(53)

and the recursive relations

\[
C_{2,1, \ldots, 1}^{0,1} = \frac{\hbar}{\sqrt{\beta}(l+2)}(l+3 + \frac{1}{2} N \tilde{N}) C_{2,1, \ldots, 1}^{0,1} + N C_{2,1, \ldots, 1}^{0,1} + 2 \tilde{N} C_{1, \ldots, 1}^{0,1}.
\]

(54)

Substituting (48) and (52) into (54), we obtain

\[
C_{2,1, \ldots, 1}^{0,1} = (\frac{\hbar}{2\sqrt{\beta}})^{l+2} N(2\tilde{N}^2 + \beta) \prod_{j=1}^{l} (N \tilde{N} + 2j + 2).
\]

(55)

Comparing (52), (53) with (54), we obtain

\[
P_{\omega}(1, \ldots, 1 || 0, \ldots, 0) = P_{\omega}(1, \ldots, 1 || 0, \ldots, 0) = 0, \quad \alpha = 2(l+1),
\]

(56)
and
\[
P^{(1, \ldots, 1 | 0, \ldots, 0)} = \frac{(-1)^{\alpha} (l + 1)}{2^l} \left(\frac{\hbar}{\sqrt{\beta}} \right)^{\alpha - 1} \sum_{2i + j = \alpha - 1}^{\alpha - 1} \sum_{0 \leq i, j \leq l} \beta^i (1 - \beta)^j \sum_{r_0 = 1}^{2l - (i + j) \cdot l!} \prod_{k=0}^{r_0} r_k,
\]
\[
P^{(2, 1, \ldots, 1 | 0, \ldots, 0)} = \frac{l(l + 1)}{2^{l+1}} \left(\frac{\hbar}{\sqrt{\beta}} \right)^{\alpha + 1} \left[\sum_{2i + j = \alpha - 2}^{\alpha - 2} \sum_{0 \leq i, j \leq l - 1} 2\beta^i (1 - \beta)^j + \sum_{2i + j = \alpha - 1}^{\alpha - 1} 4\beta^i (1 - \beta)^j + 1 \right]
\]
\[
+ \sum_{2i + j = \alpha - 1}^{\alpha - 1} \left(2(1 - \beta)^2 + \beta \right)^i (1 - \beta)^j \sum_{2 \leq r_1 < \cdots < r_{l+j} \leq l} \sum_{r_0 = 1}^{2l - (i + j) \cdot l!} \prod_{k=0}^{r_0} r_k,
\]
for \(\alpha = 1, \cdots, 2l + 1 \).

We have derived the special correlators from (20). It is known that the compact expression of correlators (34) can not be derived from the super Virasoro constraints (42). However, it should be pointed out that the special correlators (48), (52) and (55) can be still obtained from (42).

Let us consider the case of (45) with \(l \neq 0 \). By means of (20) and (21), (45) can be rewritten as
\[
\hat{W}^{l+1} \bar{Z} = (-1)^{l+1} \prod_{j=0}^{l} (\hat{D} - j) \bar{Z}.
\]
Substituting (32) into (58), by collecting the coefficients of \(t_{k_1} \cdots t_{k_n} \xi_1 \cdots \xi_m \) with \(\sum_{\mu=1}^{n} k_{\mu} + \sum_{\nu=1}^{m} s_{\nu} = l + 1 \) and setting to zero, we may also derive the correlators (34).

We have achieved the desired correlators from the Virasoro constraints (43). Unlike the operators \(\bar{L}_n \) in (42), the remarkable property of the constraint operators (43) is that these bosonic operators yield the higher algebraic structures. It should be noted that the closure of the super algebra does not hold for (43) and the fermionic operators \(\bar{G}_n \) in (42).

4 Summary

We have investigated the supereigenvalue model in the Ramond sector and proved that its partition function can be obtained by acting on elementary functions with exponents of the \(\hat{W} \) operators. In terms of the operators \(\hat{D} \) and \(\hat{W} \) preserving and increasing the grading, respectively, we have constructed the Virasoro constraints for this supereigenvalue model, where the constraint operators obey the Witt algebra and null 3-algebra. The compact expression of correlators (34) can be derived from these Virasoro constraints. It should be noted that this
desired result can not be derived from the well known super Virasoro constraints \[12\]. For the supereigenvalue model in the Neveu-Schwarz sector, whether its partition function can be expressed in terms of W-representation still deserves further study.

We have only constructed the Virasoro constraints for the supereigenvalue model \[10\]. The remarkable property of these bosonic constraint operators is that they yield the higher algebraic structures. It is certainly worth to construct the super (Virasoro) constraints for supereigenvalue models, where the super higher algebraic structures hold for the bosonic and fermionic constraint operators. It would be interesting to study further properties of supereigenvalue models from these constraints.

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Nos. 11875194 and 11871350).

References

[1] L. Álvarez-Gaumé, H. Itoyama, J.L. Manes, A. Zadra, Superloop equations and two-dimensional supergravity, Int. J. Mod. Phys. A 7 (1992) 5337, [arXiv:hep-th/9112018](http://arxiv.org/abs/hep-th/9112018).

[2] L. Álvarez-Gaumé, K. Becker, M. Becker, R. Emparan, J. Manes, Double scaling limit of the super-Virasoro constraints, Int. J. Mod. Phys. A 8 (1993) 2297, [arXiv:hep-th/9207096](http://arxiv.org/abs/hep-th/9207096).

[3] I.N. McArthur, The partition function for the supersymmetric eigenvalue model, Mod. Phys. Lett. A 8 (1993) 3355.

[4] J.C. Plefka, Iterative solution of the supereigenvalue model, Nucl. Phys. B 444 (1995) 333; J.C. Plefka, The supereigenvalue model in the double scaling limit, Nucl. Phys. B 448 (1995) 355.

[5] G. Akemann, J.C. Plefka, The chiral supereigenvalue model, Mod. Phys. Lett. A 12 (1997) 1745, [arXiv:hep-th/9705114](http://arxiv.org/abs/hep-th/9705114).

[6] K. Becker, M. Becker, Nonperturbative solution of the super-Virasoro constraints, Mod. Phys. Lett. A 8 (1993) 1205, [arXiv:hep-th/9301017](http://arxiv.org/abs/hep-th/9301017).
[7] P. Ciosmak, L. Hadasz, M. Manabe, P. Sułkowski, Super-quantum curves from super-eigenvalue models, J. High Energy Phys. 10 (2016) 044, arXiv:1608.02596.

[8] P. Ciosmak, L. Hadasz, M. Manabe, P. Sułkowski, Singular vector structure of quantum curves, arXiv:1711.08031.

[9] P. Ciosmak, L. Hadasz, Z. Jaskólski, M. Manabe, P. Sułkowski, From CFT to Ramond super-quantum curves, J. High Energy Phys. 05 (2018) 133, arXiv:1712.07354.

[10] V. Bouchard, K. Osuga, Supereigenvalue models and topological recursion, J. High Energy Phys. 04 (2018) 138, arXiv:1802.03536.

[11] K. Osuga, Topological recursion in the Ramond sector, J. High Energy Phys. 10 (2019) 286, arXiv:1909.08551.

[12] A. Mironov, A. Morozov, On the origin of Virasoro constraints in matrix models: Lagrangian approach, Phys. Lett. B 252 (1990) 47.

[13] F. David, Loop equations and non-perturbative effects in two-dimensional quantum gravity, Mod. Phys. Lett. A 5 (1990) 1019.

[14] J. Ambjørn, Yu. Makeenko, Properties of loop equations for the hermitian matrix model and for two-dimensional quantum gravity, Mod. Phys. Lett. A 5 (1990) 1753.

[15] R. Dijkgraaf, H.L. Verlinde, E.P. Verlinde, Loop equations and Virasoro constraints in nonperturbative 2D quantum gravity, Nucl. Phys. B 348 (1991) 435.

[16] H. Itoyama, Y. Matsuuo, W_{1+\infty}-type constraints in matrix models at finite N, Phys. Lett. B 262 (1991) 233;
H. Itoyama, Y. Matsuo, Noncritical Virasoro algebra of the d < 1 matrix model and the quantized string field, Phys. Lett. B 255 (1991) 202.

[17] R. Wang, K. Wu, Z.W. Yan, C.H. Zhang, W.Z. Zhao, W_{1+\infty} constraints for the hermitian one-matrix model, Phys. Lett. B 792 (2019) 329, arXiv:1901.10658.

[18] A. Mironov, A. Morozov, Y. Zenkevich, Ding-Iohara-Miki symmetry of network matrix models, Phys. Lett. B 762 (2016) 196, arXiv:1603.05467.
[19] H. Awata, H. Kanno, T. Matsumoto, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, Y. Zenkevich, Explicit examples of DIM constraints for network matrix models, J. High Energy Phys. 07 (2016) 103, arXiv:1604.08366.

[20] A. Mironov, A. Morozov, On the complete perturbative solution of one-matrix models, Phys. Lett. B 771 (2017) 503, arXiv:1705.00976.

[21] A. Morozov, Sh. Shakirov, Generation of matrix models by \hat{W}-operators, J. High Energy Phys. 04 (2009) 064, arXiv:0902.2627.

[22] A. Morozov, A. Popolitov, Sh. Shakirov, On (q, t)-deformation of Gaussian matrix model, Phys. Lett. B 784 (2018) 342, arXiv:1803.11401.

[23] A. Morozov, On W-representations of β-and q, t-deformed matrix models, Phys. Lett. B 792 (2019) 205, arXiv:1901.02811.

[24] T. Curtright, D. Fairlie, X. Jin, L. Mezincescu, C. Zachos, Classical and quantal ternary algebras, Phys. Lett. B 675 (2009) 387, arXiv:0903.4889.

[25] B. Kang, K. Wu, Z.W. Yan, J. Yang, W.Z. Zhao, Exact correlators in the Gaussian Hermitian matrix model, Phys. Lett. B 798 (2019) 134986, arXiv:1903.08310.