Phylogeny and biogeography of the American live oaks (*Quercus* subsection *Virentes*): a genomic and population genetics approach

JEANNINE CAVENDER-BARES,* ANTONIO GONZÁLEZ-RODRÍGUEZ,† DEREN A. R. EATON,‡ ANDREW A. L. HIPP,§¶ ANNE BEULKE* and PAUL S. MANOS**

*Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA, †Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, 58190 Michoacán, México, ‡Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA, §The Morton Arboretum, Lisle, IL 60532, USA, ¶The Field Museum, Chicago, IL 60605, USA, **Department of Biology, Duke University, Raleigh, NC 27708, USA

Abstract

The nature and timing of evolution of niche differentiation among closely related species remains an important question in ecology and evolution. The American live oak clade, *Virentes*, which spans the unglaciated temperate and tropical regions of North America and Mesoamerica, provides an instructive system in which to examine speciation and niche evolution. We generated a fossil-calibrated phylogeny of *Virentes* using RADseq data to estimate divergence times and used nuclear microsatellites, chloroplast sequences and an intron region of nitrate reductase (NIA-i3) to examine genetic diversity within species, rates of gene flow among species and ancestral population size of disjunct sister species. Transitions in functional and morphological traits associated with ecological and climatic niche axes were examined across the phylogeny. We found the *Virentes* to be monophyletic with three subclades, including a southwest clade, a southeastern US clade and a Central American/Cuban clade. Despite high leaf morphological variation within species and transpecific chloroplast haplotypes, RADseq and nuclear SSR data showed genetic coherence of species. We estimated a crown date for *Virentes* of 11 Ma and implicated the formation of the Sea of Cortés in a speciation event ~5 Ma. Tree height at maturity, associated with fire tolerance, differs among the sympatric species, while freezing tolerance appears to have diverged repeatedly across the tropical–temperate divide. Sympatric species thus show evidence of ecological niche differentiation but share climatic niches, while allopatric and parapatric species conserve ecological niches, but diverge in climatic niches. The mode of speciation and/or degree of co-occurrence may thus influence which niche axis plants diverge along.

Keywords: conservation, ecological and climatic niches, fossil calibration, genomic data, introgression, phylogeography, RADseq, Sea of Cortés, *Virentes*

Received 3 January 2015; revision received 15 May 2015; accepted 1 June 2015

Introduction

Understanding drivers of speciation and adaptive shifts along multiple dimensions of species niches is a longstanding concern in ecology and evolution. Studies of species complexes that span tropical and temperate regions help elucidate how historical and environmental factors influence speciation and adaptive evolution. Here, we undertook a synthetic examination of the phylogeny, functional ecology and biogeographic history of the live oak clade (*Quercus* subsection *Virentes*) that spans the temperate and dry tropical zones of unglaciated North America, Central America and Cuba (Nixon...
EVOLUTIONARY HISTORY OF THE AMERICAN LIVE OAKS

& Muller 1997; Manos et al. 1999; Cavender-Bares et al. 2011), to gain insight into the factors that drive speciation and shifts in species ecological niches.

The Virentes fall within a diverse and ecologically important woody genus in this geographic region but also a group notorious for introgressive gene flow (Whittmore & Schaal 1991; Howard et al. 1997; Dumolin-Lapègue et al. 1999; Belahbib et al. 2001; Dodd & Kashani 2003; Valbuena-Carabana et al. 2005; de Dios et al. 2006; Curtu et al. 2007a) and are sister to the more diverse and widespread white oaks of section Quercus. Hybridization between Virentes and other white oaks is possible but uncommon (Muller 1961a,b; Nixon 1985).

The clad of seven named species (Quercus virginiana Miller, Quercus geminata Small, Quercus minima Small, Quercus brandegeei Goldm., Quercus fusiformis Small, Quercus oleoides S. C. and Q. sagraeana Nutt.) is strikingly distinct phylogenetically and morphologically from the other white oaks (Nixon 1985; Manos et al. 1999; Cavender-Bares et al. 2004a; Pearse & Hipp 2009; Hubert et al. 2014) and includes widespread and narrow endemic species that collectively cover the southeastern US, eastern Mexico, southern Baja California, Central America and Cuba (Fig. 1) (Muller 1961a; Nixon 1985; Nixon & Muller 1997).

Species of Virentes vary widely in range size and in the degree of contact with other species in the lineage; three have broad distributions (Q. fusiformis, Q. virginiana and Q. oleoides), and two are geographically isolated and narrowly distributed (Q. brandegeei and Q. sagraeana) (Fig. 1). The three southeastern US species are sympatric (Q. virginiana, Q. geminata and Q. minima), while the remaining species are parapatric or allopatric. Previous studies reveal contrasting mechanisms that limit gene flow between sympatric and parapatric species. For example, differences in flowering time are implicated in limiting gene flow between sympatric species (Q. geminata and Q. minima) (Cavender-Bares & Pahlich 2009), while differences in freezing tolerance are implicated in asymmetrical gene flow between tropical Q. oleoides and temperate Q. virginiana (Cavender-Bares et al. 2011). Geographic barriers to gene flow were associated with the isolation and formation of the Cuban oak, Q. sagraeana (Gugger & Cavender-Bares 2013), as well as the fixation of a single chloroplast haplotype at the southern range limit of Q. oleoides in Costa Rica (Cavender-Bares et al. 2011). No attempt has yet been made to link phylogeographic patterns of populations within species to the phylogenetic relationships among them to address how biogeographic processes and limits to gene flow influence macroevolution, mechanisms of speciation and niche evolution across species.

The lineage is unusual within the oaks in being restricted to low-elevation habitats and occurring largely on well-drained sandy soils or volcanic tuff (Muller 1961a; Boucher 1983; Nixon 1985; Cavender-Bares et al. 2004a). Virentes are distinguished by the synapomorphies of fused cotyledons and fused stellate trichomes (Candolle 1862; Engelmann 1876-1877; Lewis 1911; Coker 1912; Camus 1936-1938). All species are wind-pollinated and interfertile (Nixon 1985; Nixon & Muller 1997) and have unusually high wood density. Virentes maintain a green or mostly green canopy through the winter (southeastern US and Texas) or during the dry season (Central America) with a leaf lifespan of approximately 1 year (Nixon 1985; Cavender-Bares & Holbrook 2001).

Climatic distributions and exposure to freezing temperatures vary among species (Fig. 1), but Virentes are restricted to temperate climates with mild winters or seasonally dry tropical climates. Variation in vulnerability to freezing and tolerance of drought likely influences distribution and migration patterns (Cavender-Bares 2007; Cavender-Bares & Pahlich 2009; Koehler et al. 2012). Species also have contrasting life history traits and growth forms, varying from fire-dependent shrubs with underground rhizomes (Q. minima) to drought-adapted, fire-tolerant short trees with pubescent leaves resistant to water loss (Q. geminata) and large fire-intolerant trees (to 20 m) that are less drought tolerant (Q. virginiana) (Cavender-Bares et al. 2004a).

The IUCN-red-listed Q. brandegeei in the Cape of southern Baja California and its geographically most proximate relative Quercus fusiformis in eastern central Texas and northern Mexico (Fig. 1) represent one of the broadest disjunctions known in American Quercus and are hypothesized to have split from a once-widespread taxon (Muller 1967; Nixon 1985). Estimating the divergence time between these two species would provide insight into the causes of vicariance and speciation, including the potential role of the formation of the Sea of Cortés, which separated Baja California from continental Sonora, and was complete by about 5 million years ago (Riddle et al. 2000; Garry et al. 2009). A second disjunction occurs within Q. oleoides between the isolated population at the southern range limit in Costa Rica and Honduras across the Nicaraguan Depression, which has increasingly been implicated as the vicariant event associated with a common phylogeographic break in many different kinds of taxa (Arrivillaga et al. 2002; Gutiérrez-Garcia & Vázquez-Domínguez 2013; Pouls & Hamrick 2013; Rodríguez-Correa et al. 2015). A previous study hypothesized that local climatic change associated with the rise of mountain chains in northwestern Costa Rica was a primary factor in the initiation and persistence of a disjunct Q. oleoides population there (Cavender-Bares et al. 2011). Synthesizing prior and new data, this study addresses four outstanding questions:

© 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
1 What are the major clades and sister-species relationships within the Virentes?

2 Given the phylogenetic relationships of the Virentes, do population-level markers reveal concordant structure and species coherence across the entire range of Virentes?

3 Can major geographic events, such as the formation of the Sea of Cortés separating Baja California from

Fig. 1 (a) Distribution map of Virentes based on species occurrences. Legend: purple circles = Quercus brandegeei, dark green squares = Quercus fusiformis, orange triangles = Quercus geminata, green diamonds = Quercus minima, red triangles = Quercus oleoides, cyan hexagons = Quercus sagræana, and blue circles = Quercus virginiana. (b) Leaf-level photos of each Virentes species. (c) Species climatic distributions are shown for mean annual precipitation (cm) and mean minimum temperature of the coldest month (°C) for each species based on occurrence data and WorldClim bioclimatic variables 6 and 12 (Hijmans et al. 2005) using two-dimensional kernel density estimation. Red colours indicate climatic regions with highest density of occurrence. Photos were taken by J.C.B., except Q. fusiformis, taken by F. Hoerner.

© 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
continental Mexico or the Nicaraguan Depression in Central America, be implicated in genetic isolation and/or speciation events within the *Virentes*?

4 How do functional traits, ecological habitats and climatic distributions shift among species throughout the distribution of the clade among sympatric and allopatric species?

To address these questions, we generated a phylogenetic hypothesis for the *Virentes* using restriction site associated DNA sequences (RADseq) and examined population genetic diversity, structure and isolation, using simple sequence repeats (SSRs), chloroplast sequences and a low-copy intron region of nitrate reductase (NIA-i). We also generated a fossil-calibrated phylogeny using RAD sequence data to infer divergence times and biogeographic historical events involved in speciation. Finally, we examined leaf morphological traits, growth form (tree height) and vulnerability to freezing to examine shifts in functional traits that are linked to ecological and climatic niches. We tested biogeographic hypotheses using both a phylogenomic approach with many loci but limited individuals and population-level analyses with many individuals but fewer loci. We applied a previously developed RADseq data processing pipeline (Eaton 2014) to generate a concatenated data matrix and used two phylogenetic methods for reconstructing the phylogeny. The first approach allowed us to test for species coherence, while the second allowed us to calibrate the phylogeny using minimum fossil ages.

Methods

Taxon sampling

Individual trees of each *Virentes* species were sampled throughout their ranges. Identification of species was based on leaf, bark and stem height characters following Muller (1961a), Nixon & Muller (1997) and Kurz & Godfrey (1962). A list of the total samples and their geographic localities is provided on Dryad (doi:10.5061/dryad.855 pg). Of these, 27 from across the major geographic regions were selected for RAD sequencing (Table S1, Supporting information) but chosen randomly within regions, excluding individuals from the putative hybrid zone between *Quercus fusiformis* and *Quercus oleoides*. Voucher specimens are housed in the University of Minnesota Bell Museum of Natural History. Permit and collection authorizations are provided in Appendix S1 (Supporting information). DNA extraction and sequencing methods followed Hipp et al. 2014 (see Appendix S1, Supporting information for details).

RADseq data

Illumina sequencing. A RAD sequencing library was prepared at Floragenex Inc. (Eugene, Oregon) as described in Hipp et al. (2014) using PstI restriction enzyme. Samples were pooled into a multiplexed library and sequenced on an Illumina HiSeq 2000 to generate 100-bp single-end reads. Data from eight additional *Quercus* species (Q. acutissima Carruth., Q. chrysolepis Liebm., Q. durata Jeppson, Q. douglasii Hook. & Arn., Q. arizonica Sarg., Q. englemannii Greene, Q. hemisphaerica Bartram ex Willd. and Q. nigra L.), generated by Hipp et al. (2014), were included as outgroup taxa. The libraries for these data were generated by the same technique. Seven are 100-bp single-end reads from a lane Illumina HiSeq 2000, and one is 60-bp single-end read run on an Illumina GAIIx. All sequencing was done at Floragenex Inc. (Eugene, OR, USA).

Data filtering. Raw sequence data were analysed in the software pipeline PYRAD v.1.4 (Eaton & Ree 2013), which filters and clusters RAD sequences to identify putatively orthologous loci. This pipeline is suited to the phylogenetic scale of our study because of its use of global alignment clustering which can cluster highly divergent sequence while taking into account indel variation. Filtering parameters were set to replace base calls of Q < 20 with an ambiguous base (N) and discard sequences containing more than three Ns. Reads clustered at 85% and 92% similarity yielded similar results; therefore, we reported only analyses run at 85% clustering similarity. Consensus base calls were made for clusters with a minimum depth of coverage >5. After correcting for errors, loci containing more than two alleles were excluded as potential paralogs since all taxa in the study are diploid. Consensus loci were then clustered across samples at Floragenex Inc. and aligned. A final filtering step excluded loci that contain any site that is heterozygous across more than three samples, as this is more likely to represent a fixed difference among clustered paralogs than a true polymorphism at the scale of this study.

RADseq data sets. The samples sequenced for this study had an average of 895 ± 544 K reads that passed quality filtering. These clustered into an average of 45 ± 15 K clusters per sample, with a mean depth of 15.4, giving rise to 41 ± 15K consensus sequences per sample (Table S2, Supporting information). When clustered across samples, the largest data set ‘All_min4’ contains 74K RADseq loci with ~63% missing data. The other data sets contain fewer loci, but with less missing sequence.

Phylogenetic analyses

Maximum-likelihood trees were inferred for each concatenated supermatrix, with missing data coded as ‘N’s,
Analyses were run three times with different starting trees using the GTR + GAMMA nucleotide substitution model.

Divergence times. To estimate divergence times, we inferred fossil-calibrated time trees using BEAST v.1.75 enabled by parallel processing with BEAGLE (2009–2013 Phylogenetic Likelihood Working Group) at the University of Minnesota Supercomputing Institute (MSI) facilities. A subset of the total taxa was used, including one to three individuals from each species within the Virentes, and eight outgroup taxa, to reduce run time for convergence of the Markov Chain Monte Carlo (MCMC). A total of 25 taxa were included, of which 17 were Virentes individuals, with 817 555 bp of concatenated sequences (sub_c85d6m20p3, dx.doi.org/10.5061/dryad.524mf). A lognormal relaxed molecular clock was enforced with a Yule process tree prior. It was not possible to partition the concatenated sequences by individual loci (>8175); thus, we assumed a common mutation rate across the genome. The MCMC length was 100 000 000 thinned every 10 000 for analysis.

Genetic diversity and structure

SSRs. We extracted DNA and amplified eleven previously published microsatellite loci located on seven chromosomes: QpZAG 1/2, QpZAG 1/5, QpZAG 9, QpZAG 15, QpZAG 16, QpZAG 36, QpZAG 46, QpZAG 102, QpZAG 110 (Steinkeller et al., 1997), QrZAG 11 and QrZAG 30 (Kampfer et al., 1998), for individuals of Quercus minima (N = 38), Q. fusiformis (N = 92) and Q. branqueta (N = 35), following methods described in Cavender-Bares & Pahlich (2009). These data were combined with previously published data for Quercus geminata, Q. virginiana, Q. oloides and Q. sagrana (Cavender-Bares & Pahlich 2009; Cavender-Bares et al. 2011; Gugger & Cavender-Bares 2013) for a total of 672 individuals across all species.

Samples were assigned to eight population groups, which included the seven morphological/geographic species and an unnamed but genetically distinct Costa Rican population of Q. oloides previously identified (Cavender-Bares et al. 2011). For each of these groups, we estimated the number of alleles, \(N_A \), the effective number of alleles, \(N_{Ae} \) the allelic richness expressed as the expected number of alleles among two gene copies, \(A_R (k = 2) \); and the gene diversity corrected for sample size, \(H_e \) (Nei, 1978). The SPAGEDI software (Hardy & Vekemans, 2002) was used for these calculations. Pairwise and overall genetic differentiation (\(F_{ST} \)) among the groups was determined with the method of Weir (1996) implemented in the TRENA program (Chapuis & Estoup, 2007). A bootstrapping procedure over loci with 1000 replicates was performed to obtain mean \(F_{ST} \) values and their 95% confidence intervals. This software was also used to estimate the frequency of null alleles for each locus and group with the expectation-maximization algorithm (Dempster et al. 1977).

To test for underlying genetic structure and admixture among the populations and to determine how well the genetic structure in the molecular data corresponds to species designations, we used a Bayesian clustering algorithm implemented in the program STRUCTURE v.
2.3.1 (Prichard et al. 2000). We used the admixture model and the correlated model with a burn-in length of 1 000 000 iterations with 100 000 MCMC replicates. We allowed K to range from 1 to 14. For each K, we ran 10 iterations and averaged the log probabilities (Ln P) of the data (D) [Ln P(D)]. We followed the method of Evanno et al. (2005) to examine the most probable value of K as determined by the maximum value of ΔK, which represents a large magnitude second derivative of the log likelihood.

Chloroplast DNA. Of the individuals in this data set, 391 sequences were available for a region within trnD-trnT (newly sequenced for Q. minima, Q. fusiformis and Q. brandegeei or previously published, Cavender-Bares et al. 2011), and 327 were available for the rpl32-trnlUAG chloroplast region (Shaw et al., 2007) (newly sequenced for Q. minima, Q. fusiformis and Q. brandegeei or previously published, Gugger & Cavender-Bares 2013). Sequences for both regions were available for 215 individuals and were concatenated for a total of 1450 bp. Parsimony networks with insertion-deletions coded as a fifth state and ignoring poly-A repeats were constructed for each chloroplast region separately as well as for the concatenated sequences using the haploNet function in the PEGAS package (Paradis et al. 2010) in R. The networks were constructed using an infinite site model. All three haplotype networks were qualitatively very similar, but the concatenated data set resolved the highest three haplotype networks were qualitatively very similar. All networks were constructed using an infinite site model. All three haplotype networks were qualitatively very similar, but the concatenated data set resolved the highest number of haplotypes, and only the concatenated network is reported. For each of the eight populations, we determined the total number of haplotypes, N_{H}, the rarified haplotype richness, H_{R}, and the haplotype diversity with unordered alleles, h (Pons & Petit 1996), with SPAGEDI (Hardy & Vekemans, 2002). This program was also used to estimate pairwise and overall cpDNA haplotype differentiation (G_{ST}) among groups according to Pons & Petit (1996). Significance of the G_{ST} values was determined by 10 000 random permutations of individuals among groups (Hardy & Vekemans, 2002). Genetic diversity (H) was also calculated based on RADseq data as the proportion of heterozygous base calls across all sites with sufficient coverage across all loci that passed paralog filtering.

Ancestral population size

To examine whether there was evidence of range retrac-tion in Q. fusiformis and Q. brandegeei from a common ancestor of these two sister taxa, we used the isolationwith-migration model in IMa (February 2008 version; Hey & Nielsen, 2007) to estimate the effective population sizes before and after the split between the two species. The input data included the two chloroplast regions described above (trnD-trnT: 616 bp, $N = 56$; rpl32: 815 bp, $N = 54$); an intron region of the low-copy nuclear gene nitrate reductase (NIA-i3: 945 bp, $N = 23$); and nine nuclear microsatellites described above (Zag110, Zag16, Zag46, Zag15, Zag9, Zag102, Zag1x5, Zag11 and Zag36, N range = 170–214). We sequenced NIA-i3 using primers published by Howarth & Baum (2002) following the methods described in Cavender-Bares et al. 2011. Despite introgression of Q. fusiformis with other taxa, IMa estimates have been found to be quite robust to moderate violations of the model assumptions (Strasburg & Rieseberg 2010). A burn-in period of 10 000 000 was used (following Cavender-Bares et al. 2011), and Metropolis coupling was implemented using 40 chains. The analysis was repeated three times at MSI facilities; each showed convergence and yielded very similar results. We were most interested in comparing current effective population sizes with the ancestral effective population size rather than predicting actual numbers of individuals. Results are thus reported as Θ values, where $\Theta = 4N\mu$, N is the effective population size, and μ is the mutation rate. As such, it is not necessary to estimate a mutation rate.

Leaf morphometric analysis, tree height, freezing vulnerability and climatic distributions

Leaf morphology. For a subsample of individuals from each site, ten dried, pressed leaves were scanned and analysed per individual for laminar leaf area and leaf shape using the leaf imaging software SHAPE 1.2 (Iwata & Ukai 2002) for a total of 5762 leaves from 580 individuals. This program employs a geometric morphometrics approach based on a quantitative evaluation of the contour shape of each leaf with elliptic Fourier descriptors (EFDs) (Viscosi et al. 2009). This software also performs a principal components analysis to summarize the information contained in the EFDs, so that the scores of principal components can be used as observed values of morphological traits in subsequent analysis (Iwata & Ukai 2002).

Tree height. Height values for a total of 110 trees from all species were available from their full-range extents, estimated using a clinometer or extendible pole from reproductive individuals.

Vulnerability to freezing. Predicted vulnerability to freezing temperatures (VF) at $-15^\circ C$ was calculated from mean minimum temperature of the coldest month (Bioclim variable BIO6) at the location of each collected specimen. The relationship is based on an empirical regression ($R^2 = 0.67$) between experimentally determined vulnerability to freezing and mean minimum
temperature of the coldest month of source populations of saplings grown from seed for four species (Q. gaminata, Q. virginiana, Q. fusiformis and Q. oleoides) using the electrolyte leakage method of freezing injury in a previous study (Koehler et al. 2012). The study showed genetically based variation in freezing tolerance both within and across species in controlled environments that was strongly associated with climate of origin. Specifically, FV = 100 –(81.202 – 1.4075X), where X is the mean minimum temperature of the coldest month in the source location. Any negative values were assumed to indicate zero vulnerability to freezing at –15°C.

Climatic distributions. Species climatic distributions are described based on bioclimatic variables from the WorldClim data (Hijmans et al. 2005), including mean minimum temperature of the coldest month (BioClim 6) and mean annual precipitation (BioClim 12) using two-dimensional kernel density estimation with the kde2d function in the MASS version 7.3–34 R package (Ripley et al. 1998). The approach estimates the density of each species in two-dimensional climatic niche space based on locality data from collections reported in this study and cleaned GBIF data (http://www.gbif.org/, 7 July 2008) reported in Cavender-Bares et al. 2011.

Results

Phylogenetic reconstruction

The Raxml analyses showed that Virentes are monophyletic, with strong support for three subclades: a southwest clade (Quercus fusiformis, Q. brandegeei), which is sister to all other Virentes; a Florida clade (Q. virginiana, Q. minima, Quercus geminata); and a Central American clade that groups Q. oleoides and the Cuban oak Quercus sagraeana (Fig. 2a). The same topology was recovered with the reduced taxon matrix in BEAST. Accessions of Q. fusiformis were inferred to be paraphyletic, with sampled populations from Mexico appearing more closely related to accessions of Q. brandegeei than to accessions of Q. fusiformis from Texas. Similarly, accessions of the Cuban oak Q. sagraeana appear paraphyletic with Central American samples of Q. oleoides nested within it.

Comparison of population-wide markers and RADseq data

STRUCTURE analyses of the nuclear SSR data assign almost all individuals from each of the named species in the Virentes to a distinct ancestral population, with some evidence of mixed ancestry or misclassifications (Fig. 2b). This degree of species coherence aligns closely with previous work in the genus (e.g. Bacilieri et al. 1995; Craft et al. 2002; González-Rodríguez et al. 2004a,b; Curtu et al. 2007b; Hipp & Weber 2008; Cavender-Bares & Pahlich 2009; Aldrich & Cavender-Bares 2011), which suggests that morphologically defined oak species are largely genetically coherent despite introgressive hybridization. The RADseq data similarly suggest that species in the Virentes are predominantly monophyletic with the exclusion of a few probable hybrids (Fig. 2a), as found in previous phylogenetic analyses of the genus (Nixon 1985; Pearse & Hipp 2009).

STRUCTURE results. The largest ΔK values with the full data set indicated most probable K values of 2 and 3. These ancestral groups delineate clades rather than individual species. The next highest ΔK was for K = 6. Results for K = 6 and K = 7 are highly similar (Appendix S2, Supporting information), although the latter distinguishes the Cuban group, Q. sagraeana, and provides a level of structure best associated with species boundaries. Partitioning the data into the two or three major groups delimited by the analysis when K = 2 or K = 3 and running those data sets individually yield the same seven ancestral groups shown in Fig. 2b (see Appendix S2, Supporting information).

Quercus minima and Q. gaminata could not be distinguished on the basis of the SSR data although the RADseq data did separate them. Some admixture was evident between Q. virginiana and the Q. minima + Q. gaminata clade, particularly at the Big Shoals site in northern central Florida. Considerable admixture was found between Q. fusiformis and Q. oleoides, particularly in the mixed zone where their ranges overlap in northeastern Mexico. Quercus sagraeana was found to be a genetically distinct group, despite admixture with Q. oleoides and Q. virginiana, as previously reported (Gugger & Cavender-Bares 2013).

Quercus brandegeei was genetically distinct based on SSR data. The species harbours a unique chloroplast haplotype that is one mutation away from an ancestral haplotype that is widespread within the Virentes and also found within Q. fusiformis (Fig. 3). The combined data support Q. brandegeei as a distinct species. The Quercus oleoides population in Costa Rica also forms a distinct group, as was reported previously (Cavender-Bares et al. 2011). In the RADseq phylogenetic analysis, the two Costa Rican samples were clustered, but were nested within the Q. oleoides + Q. sagraeana clade.

Genetic diversity and differentiation of species

The 11 nuclear SSRs revealed that the eight morphological/geographic groups differ in their genetic diversity (Table 1). In general, the three groups with a restricted
distribution range (Q. brandegeei, Q. sagraeana and the isolated Costa Rican population of Q. oleoides) have lower genetic variation than the other five groups. Metrics of genetic diversity from chloroplast and SSR markers were significantly predicted by estimates of current range size (mean R^2 values were 0.51, range: 0.43–0.61; mean $P = 0.035$, range: 0.019–0.051) with variation depending on the metric of diversity and the range size.

Fig. 2 (a) Phylogenetic tree inferred from RADseq (min20) data for 27 Virentes individuals (8 outgroup taxa not shown) using RAxML. (b) Results of STRUCTURE analysis showing proportion of ancestry ($K = 7$) for 672 individuals across all species based on 11 nuclear SSRs. Ancestral groups corresponding to species groups are given the same colours as in (a), except that Quercus minima and Quercus geminata were not differentiated using SSRs and are both shown with orange. Lines connect the individuals in the phylogenetic tree to the same individuals in the STRUCTURE analysis. Species names or abbreviations are shown to the right of the groups. (c) Geographic distribution of ancestral groups ($K = 7$). Pie charts show ancestral group proportions, averaged by site for each collection site and morphological species. (d) Q. geminata and (e) Q. minima are shown separately for clarity. Abbreviations are as follows: VI = Quercus virginiana; OL = Quercus oleoides; FU = Quercus fusiformis; BR = Quercus brandegeei; SA = Quercus sagraeana; MN = Quercus minima; GE = Quercus geminata.

Fig. 3 (a) Chloroplast haplotypes within the Virentes. Circle size is proportional to sample size of the haplotype. Pie charts show haplotype proportions, averaged for site locations. Morphological species are indicated with abbreviations and are the same as in the Fig. 2 legend. (b) Quercus minima and (c) Q. geminata are shown separately for clarity. (d) The minimum-spanning network for 26 haplotypes constructed using an infinite-sites model.

© 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
estimation method. In contrast, the heterozygosity of diversity of nonconserved loci in the RADseq data (H-RAD), measured as the proportion of sites within an individual that were called heterozygous, did not covary with range size (Table 1; methods in Appendix S1, Supporting information). All interspecific genetic differentiation values (FST) were significantly different from zero.

Two major chloroplast lineages are apparent, one of which is restricted to north and east of northern Mexico; one major chloroplast haplotype is shared among four species, including all of the widespread species (Fig. 3). The number of chloroplast haplotypes in each of the morphological/geographic groups varied considerably (Table 1). The groups with restricted geographic range had one (Costa Rican population of Q. geminata + Q. sagraeana) or two haplotypes (Q. brandegeei), while Q. virginiana had seven, Q. fusiformis nine and Q. oleoides eleven haplotypes. However, after rarefaction, haplotype richness was highest in Q. fusiformis, followed by Q. oleoides and Q. virginiana. From the 26 haplotypes identified, six were shared between two or more groups and the rest were exclusively found in one group. Genetic differentiation (GST) was significant for all pairwise comparisons except between Q. geminata and Q. minima and between Q. virginiana and Q. minima, but values were fairly low (Table 2). Significant values ranged from 0.10 (Q. geminata and Q. virginiana) to 1.0 (between Q. sagraeana and the Costa Rican population of Q. oleoides). Chloroplast haplotypes thus show geographic patterns but do not separate along species boundaries, given that genetic differentiation among species groups is low.

Range retraction of Q. fusiformis and Q. brandegeei ancestor

Estimates from IMa of ancestral population size of the common ancestor of Q. fusiformis and Q. brandegeei indicate at least a 30-fold larger effective population size than current estimates for both species combined (Fig. 4), indicating a once-broader distribution.

Node dates and divergence times

The estimated divergence of *Virentes* from the rest of the white oaks is on the order of 28 million years ago (27–31 Ma) with the crown age of the *Virentes* estimated at 11 Ma (8.4–14.1 Ma 95% HPD; Fig. 5a). The split between the southeastern US clade and the Q. sagraeana + Q. oleoides clade is estimated at 9.3 Ma (6.9–11.7 Ma 95% HPD). The divergence of Q. brandegeei from Q. fusiformis is estimated at 5.2 Ma (2.6–8.1 Ma 95% HPD). At the southern range limit of *Virentes*, the divergence of the geographically disjunct Costa Rican population from the Honduran population of Q. oleoides is estimated at 1.9 Ma (1.0–3.1 Ma 95% HPD), earlier than previously estimated (Cavender-Bares et al. 2011).

Functional and morphological traits

Differentiation in freezing vulnerability and leaf morphology was associated with divergence in climatic distributions among allopatric species, while growth form and tree height (Myers 1990; Cavender-Bares et al. 2004b), associated with fire tolerance, diverged among sympatric species in the southeastern US clade (Fig. 5c–e).

Table 1 Indices of genetic diversity from 11 nuclear microsatellite simple sequence repeats (SSR) for a total of 672 individuals and chloroplast haplotypes for a total of 215 individuals across the seven *Virentes* species and the geographically isolated Costa Rican population of *Quercus oleoides*. Geographic range sizes are estimated by a minimum convex polygon (MCP) of occurrence points. Abbreviations are as follows: NA_SSR, number of SSR alleles; NAe, effective number of SSR alleles (Nielsen et al. 2003); AR(k = 2)_SSR, allelic richness (expected number of alleles among 2 gene copies); He, gene diversity corrected for sample size (Nei, 1978). H-RAD is the heterozygocity (proportion of sites within an individual that were heterozygous) averaged across all sampled individuals in the taxon; SD is the standard deviation. Indices of genetic diversity from chloroplast DNA sequences are abbreviated as follows: Nh, number of haplotypes; Hr, haplotype richness (rarefacted); h, gene diversity with unordered alleles (Pons & Petit 1996).

Species	NA_SSR	NAe_SSR	AR(k = 2)_SSR	He_SSR	H-RAD	SD	Nh_cp	Hr_cp	h_cp	Range (MCP)
Quercus brandegeei	6.91	2.93	1.59	0.59	0.35	0.01	2	1.97	0.44	1660
Quercus fusiformis	11.91	6.03	1.71	0.71	0.45	0.01	9	5.26	0.85	676 070
Quercus geminata	15	7.2	1.73	0.73	0.38	0.04	2	1.94	0.39	217 876
Quercus minima	11.82	6.2	1.76	0.76	0.41	0.13	4	4	0.64	274 344
Quercus oleoides	17.27	6.66	1.77	0.77	0.34	0.04	11	5.24	0.87	624 469
Quercus oleoides Costa Rica	9.45	4.05	1.65	0.65	0.30	0.01	1	1	0.00	
Quercus sagraeana	6.91	3.94	1.61	0.61	0.39	0.06	1	1	0.00	1431
Quercus virginiana	18.73	7.22	1.8	0.80	0.37	0.05	7	4.18	0.74	1 117 033

© 2015 The Authors. *Molecular Ecology* Published by John Wiley & Sons Ltd.
Leaf traits. Leaf size and shape are associated with both climate and resource acquisition (Wright et al. 2004). The tropical species with high mean annual precipitation (MAP) (Fig. 1c), *Q. oleoides* and *Q. sagraeana*, had significantly larger leaves than all other species (Fig. 5b). *Quercus oleoides* had the largest leaf size (1628.7 mm2) and was significantly differentiated from *Q. sagraeana* (1272.5 mm2), which had the next largest leaf size. *Quercus brandegeei* had the smallest leaf size (461.4 mm2), followed by *Q. geminata* and *Q. fusiformis*, and its leaves were significantly smaller than all species except *Q. geminata*. These three species occur either in areas with low MAP (*Q. brandegeei* and *Q. fusiformis*) or in xeric soils (*Q. geminata*). *Quercus minima* and *Q. virginiana* had intermediate leaf sizes (Fig. 5b).

The first principal component of the Fourier descriptors of leaf shape (Appendix S3, Supporting information) also showed significant differentiation among all species.
species, with the exception that Q. virginiana was not differentiated from Q. brandegeei or Q. fusiformis, and Q. minima and Q. geminata were not differentiated. Within the sympatric species in the southeastern US clade, the three coexisting species were significantly differentiated with respect to leaf morphology and size. However, morphology was highly variable within species and also varied significantly among sites (Appendix S2, Supporting information).

Tree height was also differentiated among the coexisting species (Fig. 5e, rightmost panel). Quercus minima is a short, fire-dependent shrub, while Q. geminata is a fire-tolerant short-to-intermediate tree and Q. virginiana is a fire-intolerant large tree. All of the other species in the Virentes have similar tree heights to Q. virginiana. Within the Virentes species in the United States, the species that do not get tall place their trunks and the majority of their biomass belowground (Kurz & Godfrey 1962). The only ones to do this are in Florida, primarily Q. minima, and to a lesser extent Q. geminata. The relationship between tree height and fire tolerance strategies was reported in previous work showing that tree height has a negative relationship with rhizome resprouting and belowground investment in biomass that is protected from aboveground fire in oaks in the southeastern US (Myers 1990; Cavender-Bares et al. 2004b).

Predicted freezing vulnerability separates species across the tropical–temperate divide. The tropical Q. oleoides, Q. sagraeana and Q. brandegeei have higher freezing vulnerability than their temperate counterparts. Quercus fusiformis has the lowest freezing vulnerability of any of the Virentes species, and the southeastern US clade also has low freezing vulnerability (Koehler et al. 2012). In contrast, Q. oleoides has high vulnerability and lacks any freezing tolerance. Data from such a small number of tips are unlikely to support any ancestral character state reconstructions conclusively. However, our data are compatible with freezing tolerance as the ancestral state in the Virentes, as additionally supported by the fact that the root of the American oak clade appears to be North American, not Mexican (Pearse & Hipp 2009; Hipp et al. 2014). If this inference is correct, then freezing tolerance was
lost twice within the Virentes, once in the ancestor of Q. oleoides and Q. sagraeana and once in Q. brandegeei (Fig. 5c).

Discussion

Phylogenetic hypothesis: major clades and sister-species relationships within the Virentes

We present a robust phylogenetic reconstruction of the Virentes based on RADseq data. While there have been previous efforts to understand the phylogenetic and biogeographic history of particular Virentes species (Nixon 1985; Manos et al. 1999; Cavender-Bares et al. 2004a, 2011; Cavender-Bares & Pahlich 2009; Pearse & Hipp 2009; Gugger & Cavender-Bares 2013), no study to date has included all seven species in a molecular analysis. Here, we show evidence for two main clades. The first is the Mexican–Texas clade comprising Quercus fusiformis and Quercus brandegeei, spanning the Atlantic Coast to central Mexico and Texas and including the endemic species of Q. brandegeei in southern Baja California. The second clade comprises species of the southeastern US, including the widespread Quercus virginiana, Quercus geminata and Quercus minima, and its sister clade that includes the Cuban oak, Quercus sagraeana, and the widespread Quercus oleoides that extends from northern Mexico to Costa Rica. There is strong support for a sister relationship between Q. geminata and Q. minima that form a clade sister to Q. virginiana. The crown age of Virentes based on fossil calibration is estimated at 11.1 Ma (8.4–14.1 95% HPD), indicating a fairly recent diversification of the clade and providing evidence against a hypothesized ancient origin (MacGinitie 1953) although the stem lineage of Virentes is the same age as its sister group (section Quercus, the white oaks) dated to be at least 30 Ma. We acknowledge that it is unknown how the inability to model rate heterogeneity among loci in the RADseq data influences branch length estimates.

Nixon (1985) proposed three possible clades within the group based on phenetic characters: (i) Q. oleoides, Q. geminata and Q. sagraeana (which he called Q. oleoides var. sagraeana); (ii) Q. virginiana and Q. minima, with the latter possibly a derivative of a Q. virginiana -like ancestor; and (iii) Q. brandegeei and Q. fusiformis. Muller (1961b), in contrast, interpreted Q. fusiformis as a reticulate derivative of Q. virginiana and Q. brandegeei. Nixon (1985) further suggested that Q. geminata was more closely related to Q. minima than to Q. virginiana given that Q. geminata and Q. minima share characters of the leaves and pistillate flowers, including ‘reflexed styles with a pronounced stigmatic groove’ extending from the surface of the stigma that contrast the straight styles of all other live oak species. The placement of the Cuban oak, Q. sagraeana, as paraphyletic to Q. oleoides is consistent with Nixon’s (1985) hypothesis, although in contrast to that view, Q. oleoides does not fall out in the same clade as Q. geminata.

Phylogeographic patterns, genetic diversity and population structure

The largely monophyletic or paraphyletic relationships of populations within species based on the RADseq data provide evidence for coherence at the species level, despite introgression. Significant but low differentiation (Fst) between species using nuclear SSR and chloroplast sequence data for many individuals, sampled widely across species ranges, tells a similar story of species coherence with porous boundaries. Morphologically, leaf traits reveal high variation within species and high overlap in leaf shape and size across all species. Nevertheless, significant differences were found in leaf traits among species (Appendix S3, Supporting information) indicating that species show morphological cohesion.

Introgression among sympatric species in the southeastern US clade. Earlier flowering time in Q. virginiana than in Q. geminata has been consistently observed (Sargent 1918; Nixon 1985; Cavender-Bares & Pahlich 2009). However, Q. minima and Q. geminata have similar flowering times (Nixon 1985; Cavender-Bares et al. 2004b) and probably do not have phenological isolating mechanisms. Quercus minima and Q. virginiana occur in different ecological habitats, whereas Q. minima and Q. geminata can co-occur, although they differ ecologically in being fire dependent vs fire tolerant (Kurz & Godfrey 1962; Cavender-Bares et al. 2004b). Both the ecological overlap and lack of an isolating mechanism may explain why the two species cannot be separated with SSR (Fig. 2) or chloroplast data (Fig. 3).

Introgression between parapatric species. Significant introgression between Q. fusiformis and Q. virginiana at the range boundary in Texas and at the range boundary between Q. fusiformis and Q. oleoides in northern Mexico is apparent (Figs 2 and 3). Nixon (1985) noted introgression between the species where they come into close proximity but suggested that climatic and water availability differences associated with elevation might limit gene flow. In Texas, Q. fusiformis occurs in more xeric, higher elevation sites than Q. virginiana, which is found more in wetter coastal environments; similarly, in Mexico, Q. fusiformis occurs on higher elevation piedmont and Q. oleoides on lower elevations near the coast. Transpecific chloroplast haplotypes in
the southeast US clade and *Q. sagraeana* clearly indicate gene flow from Florida to Cuba, as detected previously (Gugger & Cavender-Bares 2013). Transpecific patterns of haplotype variation reflect a combination of introgression and ancestral polymorphism. This is a longstanding issue in *Quercus* biology and one that has been addressed multiple times in multispecies studies of oaks (see Muir & Schlotterer 2005). Previous multispecies oak surveys have revealed that haplotype variation is more associated with geography than species delineations (Whittemore & Schaal 1991; Dumolin-Lapègue et al. 1997, 1999; Manos et al. 1999; Petit et al. 2002). Within the *Virentes*, only *Q. brandegeei* seems completely isolated from gene flow, as indicated by the SSR data, although it shares a putatively ancestral chloroplast haplotype that is widespread within the *Virentes*.

Genetic diversity patterns. We found a significant association between range size and genetic diversity, similar to classic patterns theorized and observed for terrestrial plant populations (Stebbins 1942; Hamrick & Godt 1989, 1996; Ellstrand & Elam 1993; Frankham 1997; Gitzendanner & Soltis 2000). A previous study of the population history of the most widespread species, *Q. virginiana* and *Q. oleoides*, indicated that historical differences in climatic stability from the tropics to the temperate zone were likely influential in driving higher genetic differentiation among populations in *Q. virginiana* relative to *Q. oleoides* and higher genetic diversity within populations in the tropics (Cavender-Bares et al. 2011). Despite these trends, the range size of *Q. virginiana* is nearly double that of *Q. oleoides*, which may explain its higher genetic diversity.

The low genetic diversity of the endemic species in Baja California and Cuba is of particular concern. *Quercus brandegeei* occurs in a very narrow geographic range only in sites adjacent to ephemeral river beds that we believe fill up after hurricanes, given the high number that reach the Cape region of Baja California (Fig. 2a–c). Hurricane systems develop over the warm waters off the west coast of southern and central Mexico from July through November, but there is very little precipitation in other parts of the year (Turner & Brown 1982). As a consequence, recruitment is likely highly episodic or very limited; we (JCB and AGR) saw no evidence of seedling recruitment or juvenile regeneration other than vegetative root sprouts directly connected to the mother trees (Fig. 2d).

Biogeographic inferences and vicariance

Inception of the Sea of Cortés and formation of the Baja California Peninsula. Separation between the Baja California peninsula and adjacent continental Mexico has been repeatedly implicated in animal phylogeographic studies as a prominent vicariance event critical to biotic diversification in the region (e.g. Case & Cody 1983; Riddle et al. 2000; Grismer 2002; Crews & Hedlin 2006; Douglas et al. 2006; Riddle & Hafner 2006; Ross & Markow 2006; Pfeifer et al. 2007). Between 8 and 13 million years ago, most of Baja California was submerged beneath the Pacific Ocean against the northwest coast of mainland Mexico. By 6 Ma, a shallow epicontinental seaway had formed (Grismer 2002), and by about 5.5 Ma, the Baja California peninsula began to separate from the Mexican mainland as a result of plate-boundary expansion between the North American and Pacific plates, leading to inception of the Sea of Cortés and permanent separation of the peninsula by 5 Ma. At the same time, peninsula ranges were uplifted, causing rain shadows and severe localized drying trends in Baja California. The peninsula was also likely fragmented by transpeninsular seaways connecting the Pacific Ocean and Sea of Cortés. Marine transgressions and seaways have provided a basis for explaining late Neogene (5.5–1 Ma) biogeographic disjunctions in vertebrates (Grismer 2000; Riddle et al. 2000).

Overall drying trends in North America accompanied global cooling trends (Fig. 5b) beginning during the Eocene and continued through the Neogene. Intermitent glacial periods of the Pleistocene and rain shadows caused by the uplift of the Peninsular Ranges brought severe localized drying trends to Baja California. Miocene climates were probably favourable to the dispersal of *Virentes* populations across the continent; however, repeated drying and cooling trends may have caused intervening populations to disappear, leaving the Baja California population isolated from the rest of the *Virentes*. Muller (1967) provided fossil evidence that the tree flora of Baja California likely consists of relictual populations that were once more broadly distributed; he cited putative fossil equivalents of *Q. brandegeei* in Miocene deposits at Tehachapi in southern California, USA (as *Quercus mohavensis* Axelrod), 1500 km northward of the current range limit, as evidence for the range retraction hypothesis. Vicariance caused by the drying of the interior of North America coupled with the formation of the Sea of Cortés would explain our estimated divergence time between *Q. brandegeei* and *Q. fusiformis* of 5.17 Ma with a 95% probability density interval of 2.6–8.1 Ma. The presence of a previously widespread ancestor of *Q. fusiformis* and *Q. brandegeei* that experienced severe range retraction due to climate change is supported by the IMa results indicating a much larger ancestral effective population size than current effective population size estimates of both species combined (Fig. 4e and f).
Changes in environmental conditions that accompanied Pleistocene and Holocene climatic fluctuations are known to have influenced other plant species distributions (Grismer 2000, 2002), and range shifts of Sonoran Desert floral communities have been inferred from plant macrofossils in packrat middens (Vandevender et al. 1994; Holmgren et al. 2011). In the plant genus Guaiacum (Zygophyllaceae), vicariance from a common ancestor was demonstrated using nuclear SSRs, likely due to range retraction as a consequence of climatic drying. The Baja California shrub Guaiacum unijugum shows similar ecological and reproductive patterns to Q. brandegeei occurring only along occasional waterways and showing very limited seedling recruitment (McCauley et al. 2011). Other distribution shifts consistent with climatic drying include the northward expansion of columnar cacti along the Baja California peninsula (Nason et al. 2002; Clark-Tapia & Molina-Freaner 2003) and the expansion of the desert plant Euphorbia lomelii along the north–south axis of the peninsula (Garrick et al. 2009).

Nicaraguan depression. Divergence of the Costa Rican population of Q. oleoides from the Central American widespread population, estimated at 1.9 Ma with a 95% probability density interval of 0.99 to 3.11 Ma, appears to be older than previously estimated (Cavender-Bares et al. 2011). This timing implicates the formation of the Nicaraguan Depression and associated volcanic activity as the cause of vicariance, rather than the rise of the Guanacaste cordillera associated with the decline of wet tropical forest and spread of dry tropical forest species. Three main tectonic phases affected the Nicaraguan Depression including Miocene convergence, Pliocene extension, and Pleistocene-to-present transtensional deformation (Funk et al. 2009). Lake Nicaragua may have divided an already dispersed population or prevented dispersion, with one or more long-distance dispersal events giving rise to the current Costa Rican population whose single chloroplast haplotype reveals long-term isolation.

Long-distance dispersal and origins of the Cuban oak. Phylogenetic results indicate a Central American origin of Q. sagraeana. The origin of the Cuban oak has long been of interest to biogeographers (Muller 1955, 1961a; Lopez-Almirall 1979; Nixon 1985; Gugger & Cavender-Bares 2013). It was originally described as a distinct species by Nuttall (1842) based on a specimen collected by R. de la Sagra. Later taxonomists described it as a subspecies of Q. oleoides and suggested a hybrid origin of the Cuban oak from Q. oleoides in the Yucatán region of Mexico and Q. geminata (Muller 1955, 1961a; Nixon 1985) or Q. virginiana (Lopez-Almirall 1979) from Florida based on morphological evidence. Vicariance caused by the separation of Cuba from Central America can be ruled out (Muller 1955; Nixon 1985; Gugger & Cavender-Bares 2013), given Cuba has been isolated since the early Cretaceous >35 Ma (Pindell & Dewey 1982; Iturralde-Vincenta 2006), making long-distance dispersal the only plausible scenario. Nixon (1985) hypothesized that long-distance dispersal by passenger pigeons (Ectopistes migratorius L.) could have transported propagules from Florida and Yucatán during periods of low sea level. Gugger & Cavender-Bares (2013) found molecular support for a Florida origin from Q. virginiana during the Pleistocene based on nuclear SSR and chloroplast data, despite introgression with Q. oleoides in Central America. While the single chloroplast haplotype in Q. sagraeana is shared by the Florida species (Fig. 3), the RADseq data contradict the earlier interpretation and indicate a Central American origin (Figs 2 and 5). Introgression with the southeastern US clade could distort relationships, however (see Eaton et al. 2015). One possible scenario is that ancestral Virentes was structured phylogenetically into western and eastern groups spread across North America. At a time of low sea level, the eastern population was distributed across what is now the southeast US, Cuba, Yucatán and other parts of Central America; with sea level rise, this population became disjunct with isolated populations in Central America, Cuba and the southeast US. Note that Yucatán does not currently support Virentes, nor any other oak species, perhaps due to saline edaphic conditions, but it may have in the past. Thus Q. oleoides and Q. sagraeana were likely formed from a widespread ancestral population that also gave rise to the southeastern US clade.

Evolution of life history traits and morphology

A readily apparent pattern in the ecological data reveals that the three sympatric species that form the southeastern US clade show much greater ecological niche differentiation than the allopatric and parapatric species. This pattern is consistent with some degree of adaptive radiation involving interspecific competition or the development of ecologically based reproductive isolating mechanisms. Niche differences within this clade are apparent given their sharply contrasting growth forms (shrub, short tree, tall tree, Fig. 5), reflecting differentiation in fire responses, that is, fire dependence (Q. minima), fire tolerance (Q. geminata) and fire intolerance (Q. virginiana) (Kurz & Godfrey 1962). Only Q. minima forms a rhizomatous shrub in large clonal patches rarely taller than 0.5 m (Fig. 5), although other Virentes can produce rhizomatous stems (see Fig. 4). The rhizomatous shrub habit has been considered an adaptation to fire (Myers 1990). These niche differences are paral-
of the evolutionary history of a small but widespread clade allowed us to gain insight into the contrasting factors that drive shifts along ecological vs climatic niche axes (cf. Emery et al. 2012) but not in growth form (Fig. 5). Allopatric speciation is implicated in the split between Q. fusiformis and Q. brandegeei, between the southeastern US clade and the Central America + Cuba clade, and between Q. olenoides and Q. sagraeana within that clade.

Conclusions

The biogeographic history of Virentes has been shaped primarily by geologic and climatic events, including the formation of the Sea of Cortés, and an increasingly drier climate in coastal and inland areas of North and Mesoamerica. Range retraction, population migration and long-distance dispersal have been important processes in the diversification of the Virentes. Close examination of the evolutionary history of a small but widespread clade allowed us to gain insight into the contrasting factors that drive shifts along ecological vs climatic niche axes (cf. Emery et al. 2012; Ackerly et al. 2006). In this system, we observed that sympatric species have evolved traits that allow habitat differentiation as would be expected in adaptive radiations to avoid resource competition (Schluter 2000), limit gene flow (Levin 2006) and reduce density-dependent mortality due to phylogenetically conserved pests and pathogens (Webb et al. 2006; Gilbert & Webb 2007), while allopatric and parapatric species diverge in their climatic niches but maintain very similar ecological niches. Thus, while allopatric and parapatric species evolve niches to adapt to local climates, which may subsequently limit gene flow between them, sympatric species show divergence in traits that allow ecological niche partitioning within a given climatic region. These patterns suggest that the nature of speciation and degree of coexistence are critical in determining which niche axis shows most divergence. If allopatric speciation allows for climatic niche evolution, sympatry fosters ecological differentiation. Future investigations can test whether these patterns hold for oaks, generally, and in other biological systems.

Acknowledgements

We thank Hernando Rodríguez-Correa, John McVay, Matthew Kaproth, Elizabeth Fallon, Kari Koehler, Ben Lowe, Nicholas Deacon, Will Pearse, José Meireles, Shan Kothari and Anna Schweiger for comments and/or technical support. We thank the National Science Foundation IOS: 0843665 and DEB: 1146380 for funding and the Minnesota Supercomputing Institute.

References

Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology, 87, 550–561.
Aldrich PR, Cavender-Bares J (2011) Genomics and breeding of oaks and their slightly less-domesticated wild oak relatives. In: Wealth of Wild Species: Genetic, Genomic and Breeding Resources (ed. Kole C), pp. 89–130. Springer-Verlag, New York city, New York.
Arrivillaga J, Norris D, Feliciangeli M, Lanzaro G (2002) Phylogeography of the neotropical sand fly Lutzomyia longipalpis inferred from mitochondrial DNA sequences. Infection, Genetics and Evolution, 2, 83–95.
Bacilieri R, Ducousso A, Kremer A (1995) Genetic, morphological, ecological and phenological differentiation between Quercus petraea (Matt) Liebl and Quercus robur L in a Mixed Stand of Northwest of France. Silva Genetica, 44, 1–10.
Belahbib N, Pemonge MH, Ouassou A, Sbay H, Kremer A, Petit RJ (2001) Frequent cytoplasmic exchanges between oak species that are not closely related: Quercus suber and Q. ilex in Morocco. Molecular Ecology, 10, 2003–2012.
Borgardt SJ, Pigg KB (1999) Anatomical and developmental study of petrified Quercus (Fagaceae) fruits from the middle Miocene, Yakima Canyon, Washington, USA. American Journal of Botany, 86, 307–325.
Boucher DH (1983) Quercus olenoides (Roble Encino, Oak). In: Costa Rican Natural History (ed. Janzen DH), pp. 319–322. The University of Chicago Press, Chicago, Illinois.
Camus A (1936-1938) Monographie du Genre Quercus, Vol. 1. Sous-Genre Cyclobalanopsis. Sous-Genre Euquercus, Sections Cerris et Mesobalanus. Lechevalier, Paris.
Candolle AD (1862) Note sur un nouveau caractère observé dans le fruit des chênes. Archives des Sciences Physiques et Naturelles, Genève, 15, 89–101.
Case TJ, Cody ML (1983) Island Biogeography in the Sea of Cortez. University of California Press, Berkeley.
Cavender-Bares J (2007) Chilling and freezing stress in live oaks (Quercus section Virentes): Intra- and interspecific variation in PS II sensitivity corresponds to latitude of origin. Photosynthesis Research, 94, 437–453.
Cavender-Bares J, Holbrook NM (2001) Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant Cell and Environment, 24, 1243–1256.

© 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Cavender-Bares J, Pahlisch A (2009) Molecular, morphological and ecological niche differentiation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae). American Journal of Botany, 96, 1690–1702.

Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA (2004a) Phylogenetic overdispersion in Floridian oak communities. American Naturalist, 163, 823–843.

Cavender-Bares J, Kitajima K, Bazzaz FA (2004b) Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecological Monographs, 74, 635–662.

Cavender-Bares J, Gonzalez-Rodriguez A, Pahlisch A, Koehler K, Deacon N (2011) Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from the tropics to the temperate zone. Journal of Biogeography, 38, 962–981.

Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution, 24, 621–631.

Clark-Tapia R, Molina-Freaner F (2003) The genetic structure of a columnar cactus with a disjunct distribution: Stenocereus gummosus in the Sonoran desert. Heredity, 90, 443–450.

Coker WC (1912) The seedlings of the live oak and white oak. Journal of the Elisha Mitchell Scientific Society, 28, 34–41.

Craft KJ, Ashley MV, Koenig WD (2002) Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. American Journal of Botany, 89, 1792–1798.

Crews SC, Hedin M (2006) Studies of morphological and molecular phylogeographic divergence in spiders (Aranaeae: Homalonychus) from the American southwest, including divergence along the Baja California Peninsula. Molecular Phylogenetics and Evolution, 38, 470–487.

Curtu AL, Gailing O, Finkeldey R (2007a) Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evolutionary Biology, 7, 218.

Curtu AL, Gailing O, Leinemann L, Finkeldey R (2007b) Genetic variation and differentiation within a natural community of five oak species (Quercus spp.). Plant Biology, 9, 116–126.

Daghlian CP, Crepet WL (1983) Oak catkins, leaves and fruits from the Oligocene Catahoulah formation and their evolutionarily significance. American Journal of Botany, 70, 639–649.

Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38.

Denk T, Grimm GW (2009) Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). International Journal of Plant Sciences, 170, 926–940.

Denk T, Grässlin F, Zetter RJ (2012) Fagaceae from the early Oligocene of Central Europe: persisting new world and emerging old world biogeographic links. Review of Palaeobotany and Palynology, 169, 7–20.

de Dios RS, Benito-Garzon M, Sainz-Oller H (2006) Hybrid zones between two european oaks: a plant community approach. Plant Ecology, 187, 109–125.

Dodds RS, Kashani N (2003) Molecular differentiation and diversity among the California red oaks (Fagaceae; Quercus section Lobatae). TAG Theoretical and Applied Genetics, 107, 884–892.

Douglas ME, Douglas NR, Schuett GW, Porras LW (2006) Evolution of rattlesnakes (Viperidae; Crotalus) in the warm deserts of western North America shaped by Neogene vicariance and Quaternary climate change. Molecular Ecology, 15, 3353–3374.

Dimolins-Lapègue S, Demesure B, Fineschi S, Corre VL, Petit RJ (1997) Phylogeographic structure of white oaks throughout the European continent. Genetics, 146, 1475–1487.

Dimolins-Lapègue S, Kremer A, Petit RJ (1999) Are chloroplast and mitochondrial DNA variation species independent in oaks? Evolution, 53, 1406–1413.

Eaton DAR (2014) PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics, 30, 1844–1849.

Eaton DAR, Ree RH (2013) Inferring phylogeny and introgression using genomic RADseq data: An example from flowering plants (Pedicularis: Orobanchaceae). Systematic Biology, 62, 689–706.

Eaton DAR, Gonzalez-Rodriguez A, Hipp A, Cavender-Bares J (2015) Introgression obscures and reveals historical relationships among the American live oaks. bioRxiv, 016238.

Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size - implications for plant conservation. Annual Review of Ecology and Systematics, 24, 217–242.

Elsik WC, Yancey TE (2000) Palynomorph biozones in the context of changing paleoclimate, middle Eocene to lower Oligocene of the northwest Gulf of Mexico. Palynology, 24, 177–186.

Emery NC, Forrestel EJ, Jui G, Park MS, Baldwin BG, Ackerly DD (2012) Niche evolution across spatial scales: climate and habitat specialization in California Lasthenia (Asteraceae). Ecology, 93, S151–S166.

Engelmann G (1876-1877) About the oaks of the United States. Transactions of the Academy of Science St. Louis, 3, 372–400.

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611–2620.

Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity, 78, 311–327.

Funk J, Mann P, McIntosh K, Stephens J (2009) Cenozoic tec-tonics of the Nicaraguan depression, Nicaragua, and Median trough, El Salvador, based on seismic-reflection profiling and remote-sensing data. Geological Society of America Bulletin, 121, 1491–1521.

Garrick R, Nason J, Meadows C, Dyer R (2009) Not just vicariance: phylogeography of a Sonoran Desert euphorb indicates a major role of range expansion along the Baja peninsula. Molecular Ecology, 18, 1916–1931.

Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen-host range. Proceedings of the National Academy of Sciences of the United States of America, 104, 4979–4983.

Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. American Journal of Botany, 87, 783–792.

González-Rodriguez A, Arias DM, Valencia S, Oyama K (2004a) Morphological and RAPD analysis of hybridization between Quercus affinis and Q. laurina (Fagaceae), two Mexican red oaks. American Journal of Botany, 91, 401–409.

González-Rodriguez A, Bain JF, Golden JL, Oyama K (2004b) Chloroplast DNA variation in the Quercus affinis-Q. laurina complex in Mexico: geographical structure and associations with nuclear and morphological variation. Molecular Ecology, 13, 3467–3476.

Grissino LM (2000) Evolutionary biogeography on Mexico’s Baja California peninsula: a synthesis of molecules and historical
Paridis E, Schliep K, Potts A, Winter D (2010) PEGAS: an R package for population genetics with an integrated-modular approach. Bioinformatics, 26, 419–420.

Pearse IS, Hipp AL (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proceedings of the National Academy of Sciences of the United States of America, 106, 18097–18102.

Petit RJ, Csákal UM, Bordács S et al. (2002) Chloroplast DNA variation in European white oaks: Phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management, 156, 5–26.

Pfeiler E, Erez T, Hurtado LA, Markow TA (2007) Genetic differentiation and demographic history in Drosophila pachea from the Sonoran Desert. Hereditas, 144, 63–74.

Pindell J, Dewey JF (1982) Permo-Triassic reconstruction of western Pangaea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics, 1, 179–211.

Poelchau MF, Hamrick JL (2013) Comparative phylogeography of three common Neotropical tree species. Journal of Biogeography, 40, 618–631.

Pons O, Petit R (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics, 144, 1237.

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

Riddle B, Hafner D (2006) A step-wise approach to integrating phylogeographic and phylogenetic biogeographic perspectives on the history of a core North American warm deserts biota. Journal of Arid Environments, 66, 435–461.

Riddle BR, Hafner DJ, Alexander LF, Jaeger JR (2000) Cryptic vicariance in the historical assembly of a Baja California Peninsula desert biota. Proceedings of the National Academy of Sciences of the United States of America, 97, 14438–14443.

Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D (1998) MASS R Package 7.3-34, Support functions and datasets for Venables and Ripley’s MASS. CRAN.

Rodriguez-Correa H, Oyama K, MacGregor-Fors I, González-Rodríguez A (2015) How are oaks distributed in the Neotropics? A perspective from species turnover, areas of endemicism, and climatic niches. International Journal of Plant Sciences, 176, 222–231.

Ross CL, Markow TA (2006) Microsatellite variation among diverging populations of Drosophila mojavensis. Journal of Evolutionary Biology, 19, 1691–1700.

Sargent CS (1918) Notes on North American trees. 1. Quercus. Botanical Gazette, 65, 423–459.

Schluter D (2000) Introduction to the symposium: species interactions and adaptive radiation. The American Naturalist, 156 (Supplement), S1–S3.

Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany, 94, 275–288.

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.

Stebbins G (1942) The genetic approach to problems of rare and endemic species. Madronia, 6, 241–258.

Steinkeller CL, Turetschek E, Gloessl J (1997) Conservation of (GA)n microsatellite loci between Quercus species. Molecular Ecology, 6, 1189–1194.
(cp rpl32-trnL^UAG); BankIt1824762: KR923115-KR923185 (NIA-i3).
The RADseq data are available on the NCBI SRA in demultiplexed form. All new data generated for this study are listed under project number PRJNA277574. phy files for RADseq-concatenated alignments used for RAxML phylogenetic inferences: Dryad Digital Repository. doi:10.5061/dryad.855 pg
xml files with data assumptions, fossil-based priors and RADseq matrices used in BEAST analyses: Dryad Digital Repository. doi:10.5061/dryad.855 pg
Nuclear SSRs for STRUCTURE analysis including sampling locations and geographic coordinates; concatenated and separate chloroplast sequences for haplotype network analysis; and IMa input files: Dryad Digital Repository. doi:10.5061/dryad.855 pg
Freezing vulnerability, leaf size and shape and tree height data with sampling locations: Dryad Digital Repository. doi:10.5061/dryad.855 pg

Supporting information

Additional supporting information may be found in the online version of this article.

Table S1 List of species, collection locations and geographic coordinates of 27 live oak individuals used for RAD sequencing.

Table S2 RADseq data showing species, collection location, identification code, raw and filtered sequence lengths, average depth, conserved loci, estimated H, and H.

Appendix S1 Additional details on data collection, data processing, and analysis.

Appendix S2 STRUCTURE results.

Appendix S3 Leaf morphological analyses.

© 2015 The Authors. *Molecular Ecology* Published by John Wiley & Sons Ltd.