Genome sequence of the Litoreibacter arenae type strain (DSM 19593T), a member of the Roseobacter clade isolated from sea sand

Thomas Riedel1,2, Anne Fiebig3, Jörn Petersen3, Sabine Gronow3, Nikos C. Kyrpides4, Markus Göker3*, Hans-Peter Klenk3

1 UPMC Université Paris 6, UMR 7621, Observatoire Océanologique, Banyuls-sur-Mer, France
2 CNRS, UMR 7621, LOMIC, Observatoire Océanologique, Banyuls-sur-Mer, France
3 Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
4 DOE Joint Genome Institute, Walnut Creek, California, USA

*Correspondence: Markus Göker (mgo08@dsmz.de)

Keywords: marine, rod-shaped, sea sand, sediment, motile, strictly aerobic, mesophile, chemoorganotrophic, halophilic, virus-like structures, carbon monoxide utilization, sulfur oxidation, Rhodobacteraceae, Alphaproteobacteria, Thalassobacter arenae

Litoreibacter arenae Kim et al. 2012 is a member of the genomically well-characterized Rhodobacteraceae clade within the Roseobacter clade. Representatives of this clade are known to be metabolically versatile and involved in marine carbon-producing and biogeochemical processes. They form a physiologically heterogeneous group of Alphaproteobacteria and were mostly found in coastal or polar waters, especially in symbiosis with algae, in microbial mats, in sediments or together with invertebrates and vertebrates. Here we describe the features of L. arenae DSM 19593T, including novel aspects of its phenotype, together with the draft genome sequence and annotation. The 3,690,113 bp long genome consists of 17 scaffolds with 3,601 protein-coding and 56 RNA genes. This genome was sequenced as part of the activities of the Transregional Collaborative Research Centre 51 funded by the German Research Foundation (DFG).

Introduction
Strain GA2-M15T (= DSM 19593 = KACC 12675) is the type strain of the species Litoreibacter arenae [1,2]. The genus Litoreibacter is a member of the highly abundant marine Roseobacter lineage, which plays an important role in the global carbon and sulfur cycles, and thus for the climate on Earth. Phylogenetically, this alphaproteobacterial genus is related to the genera Jannaschia, Octadecabacter and Thalassobius [1]. Strain GA2-M15T was isolated from a sea-sand sample from the coast of Homi Cape, Pohang City, South Korea as Thalassobacter arenae [1], which was later on reclassified into Litoreibacter arenae [2]. The name for the genus Litoreibacter was constructed from litoreus (‘belonging to the seashore’) and bacter (‘a rod’) [3]. The species epithet arenae refers to the Neolatin adjective arenae, ‘of sand’. Current PubMed records do not indicate any follow-up research with strain GA2-M15T after the initial description of T. arenae [1] and its reclassification into L. arenae [2]. Here we present a summary classification and a set of features for L. arenae DSM 19593T, including novel aspects of its phenotype, together with the description of the genomic sequencing and annotation.
Classification and features

16S rRNA gene analysis

A representative genomic 16S rRNA gene sequence of *Litoreibacter arenæ* DSM 19593\(^\text{T}\) was compared using NCBI BLAST [4,5] under default settings (e.g., considering only the high-scoring segment pairs (HSPs) from the best 250 hits) with the most recent release of the Greengenes database [6] and the relative frequencies of taxa and keywords (reduced to their stem [7]) were determined, weighted by BLAST scores. The most frequently occurring genera were *Jannaschia* (38.1%), *Thalassobacter* (15.4%), *Octadecabacter* (11.7%), *Roseovarius* (10.7%) and *Roseobacter* (10.2%) (28 hits in total). Regarding the three hits to sequences from other members of the genus, the average identity within HSPs was 96.0%, whereas the average coverage by HSPs was 98.7%. Among all other species, the one yielding the highest score was *Octadecabacter orientus* (DQ167247), which corresponded to an identity of 99.2% and an HSP coverage of 99.6%. (Note that the Greengenes database uses the INSDC (= EMBL/NCBI/DDBJ) annotation, which is not an authoritative source for nomenclature or classification). The highest-scoring environmental sequence was FJ664800 (Greengenes short name 'Quantitative dynamics cells plankton-fed microbial fuel cell clone plankton D11'), which showed an identity of 97.0% and an HSP coverage of 99.6%. (Note that the Greengenes database uses the INSDC (= EMBL/NCBI/DDBJ) annotation, which is not an authoritative source for nomenclature or classification). The highest-scoring environmental sequence was FJ664800 (Greengenes short name 'Quantitative dynamics cells plankton-fed microbial fuel cell clone plankton D11'), which showed an identity of 97.0% and an HSP coverage of 99.6%. The most frequently occurring keywords within the labels of all environmental sequences (reduced to their stem [7]) were determined, weighted by BLAST scores. The most frequently occurring keywords within the labels of all environmental sequences were 'lake' (9.9%), 'tin' (9.8%), 'xiaochaidan' (9.4%), 'microbi' (2.6%) and 'sea' (2.5%) (222 hits in total). Environmental samples which yielded hits of a higher score than the highest scoring species were not found.

Figure 1 shows the phylogenetic neighborhood of *Litoreibacter arenæ* in a 16S rRNA sequence based tree. The sequence of the single 16S rRNA gene in the genome does not differ from the previously published 16S rDNA sequence (EU342372).

Morphology and physiology

Cells of strain GA2-M15\(^\text{T}\) are Gram-negative short rods (0.7–1.2 µm in width and 1.2–2.4 µm in length) and contain a polar flagellum for motility [1], [Figure 2]. Polyhydroxybutyrte is accumulated in the cells. Colonies are deep-brown, circular and contain clear margins. The strain is catalase and oxidase positive [1]. Growth occurs at 5–35 °C with an optimum at 30 °C. Cells were successfully grown on marine agar (MA), nutrient agar (NA, weak growth), salt tolerance agar (STA, containing 1% (w/v) tryptone, 0.3% (w/v) yeast extract and 1.5% (w/v) agar supplemented with salts) as well as on basal medium agar (BMA, recipe after [1]). No growth was observed on Reasoner's 2A agar (R2A), trypticase soy agar (TSA) or MacKonkey agar. The salinity range for growth is 0.85–8% NaCl (w/v), but the strain does not grow below 0.34% or at above 10% NaCl (w/v). The pH range for growth is pH 6–9 with an optimum at pH 7 [1].

Cells hydrolyze aesculin and tyrosine weakly, but do not show any hydrolysis of alginic acid, casein, chitin, CM-cellulose, DNA, gelatin, pectin, starch or urea [1]. They assimilate citrate, D-fructose, D-galactose, D-glucose, L-glutamate, glycerol, β-hydroxybutyrate, D-mannitol, D-mannose, melibiose, propionate, pyruvate, L-serine, L-tyrosine and D-xylene, but not L-alanine, L-arabinose, L-aspartate, cellobiose, glycine, L-histidine, lactose, L-leucine, maltose, L-rhamnose, D-ribose, sucrose, L-threonine or trehalose. Cells are positive for β-galactosidase, esterase (C4), esterase lipase (C8), leucine arylamidase, naphthol-AS-BI-phosphohydrolase, α-glucosidase and β-glucosidase, but negative for indole production, arginine dihydrolase, alkaline phosphatase, lipase (C14), valine arylamidase, cystine arylamidase, trypsin, α-chymotrypsin, acid phosphatase, α-galactosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fucosidase [1].

The substrate utilization and resistance patterns of *Litoreibacter arenæ* DSM 19593\(^\text{T}\) were also determined for this study using Generation-III microplates in an OmniLog phenotyping device (BIOLOG Inc., Hayward, CA, USA). The microplates were inoculated at 28°C with a cell suspension at a cell density of 95–96% turbidity and dye IF-A. Further additives were vitamin, micronutrient and sea salt solutions. The exported measurement data were further analyzed with the opm package for R [26,27], using its functionality for statistically estimating parameters from the respiration curves such as the maximum height, and automatically translating these values into negative, ambiguous, and positive reactions. The strain was studied in two independent biological replicates, and reactions with a different behavior between the two repetitions, if any, were regarded as ambiguous.
Figure 1. Phylogenetic tree highlighting the position of *L. arenae* relative to the type strains of the type species of the other genera within the family *Rhodobacteraceae*. The tree was inferred from 1,330 aligned characters [8,9] of the 16S rRNA gene sequence under the maximum likelihood (ML) criterion [10]. Rooting was done initially using the midpoint method [11] and then checked for its agreement with the current classification (Table 1). The branches are scaled in terms of the expected number of substitutions per site. Numbers adjacent to the branches are support values from 650 ML bootstrap replicates [12] (left) and from 1,000 maximum-parsimony bootstrap replicates [13] (right) if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [14] are labeled with one asterisk, those also listed as 'Complete and Published' with two asterisks [15].

Figure 2. Micrograph of *L. arenae* DSM 19593T.
Litoreibacter arenae DSM 19593^T^ showed positive reactions for pH 6, 1% NaCl, 4% NaCl, D-galactose, 3-O-methyl-D-glucose, D-fructose, L-fucose, L-rhamnose, 1% sodium lactate, myo-inositol, rifamycin SV, L-aspartic acid, L-glutamic acid, L-histidine, L-serine, D-glucuronic acid, glucuronamide, quinic acid, L-lactic acid, citric acid, α-keto-glutaric acid, D-malic acid, L-malic acid, naldixid acid, lithium chloride, acetic acid and sodium formate. No reaction was found for dextrin, D-maltose, D- trehalose, D-cellobiose, β-gentiobiose, sucrose, D- turanose, stachyose, pH 5, D-raffinose, α-D-lactose, D- melibiose, β-methyl-D-galactoside, D-salicin, N-acetyl- D-glucosamine, N-acetyl-β-D-mannosamine, N-acetyl- D-galactosamine, N-acetyl-neuraminic acid, 8% NaCl, D-glucose, D-mannose, D-fructose, inosine, fusidic acid, D-serine, D-sorbitol, D-mannitol, D-arabitol, glycerol, D-glucose-6-phosphate, D-fructose-6- phosphate, D-aspartic acid, D-serine, treoleandomycin, minocycline, gelatin, glycyll-L-proline, L-alanine, L- arginine, L-pyroglobutamic acid, lincomycin, guanidine hydrochloride, niaproof, pectin, D-galacturonic acid, L- galactonic acid-γ-lactone, D-gluconic acid, mucic acid, D-saccharic acid, vancomycin, tetrazolium violet, tetrazolium blue, p-hydroxy-phenylacetic acid, methyl pyruvate, D-lactic acid methyl ester, bromo-succininic acid, potassium tellurite, tween 40, γ-amino-n-butryic acid, α-hydroxy-n-butryic acid, β-hydroxy-n-butyric acid, α-keto-n-butyric acid, acetoacetic acid, propionic acid, astrenonam, butyric acid and sodium bromate.

The measured utilization of carbon sources differs in some aspects from the one recorded in [1]. L-histidine and L-rhamnose were reported in [1] not to support bacterial growth, whereas in the Omniolog measurements both substrates yielded a positive reaction. This may be due to the higher sensitivity of respiratory measurements [28]. The utilization of propionate, D-fructose, D-glucose, D-mannose, D- mannitol, melibiose and glycerol reported by [1] could not be confirmed by the Omniolog measurements. Changes in the substrate-utilization pattern may arise from distinct cultivation conditions such as growth medium and temperature.

Chemotaxonomy

The principal cellular fatty acids of strain GA2-M15^T^ are C_{18:1} ω7c (74.3%), C_{16:0} (10.4%), C_{18:1} ω9c 11-methyl (5.9%), C_{10:0} 3-OH (3.7%) as well as an unknown fatty acid 11.799 (3.0%) [1]. In comparison to *Thalassobacter stenotrophicus* DSM 16310^T^ [29,30], strain GA2-M15^T^ reflected a higher content of C_{16:0} (1.1% vs 10.4%) [1]. The predominant polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylincholine [1].

Genome sequencing and annotation

Genome project history

The strain was first chosen for genome sequencing in the *Genomic Encyclopedia of Bacteria and Archaea* (GEBA) phase I project according the GEBA criteria [31,32], but then sequenced as part of the “Ecology, Physiology and Molecular Biology of the *Roseobacter* clade project: Towards a Systems Biology Understanding of a Globally Important Clade of Marine Bacteria” funded by the German Research Council (DFG). Project information is stored in the Genomes OnLine Database [33]. The Whole Genome Shotgun (WGS) sequence is deposited in Genbank and the Integrated Microbial Genomes database (IMG) [34]. A summary of the project information is shown in Table 2.

Growth conditions and DNA isolation

A culture of DSM 19593^T^ was grown aerobically in DSMZ medium 514 [35] at 28°C. Genomic DNA was isolated using Jetflex Genomic DNA Purification Kit (GENOMED 600100) following the standard protocol provided by the manufacturer but modified by an incubation time of 60 min, incubation on ice overnight on a shaker, the use of additional 50 µl proteinase K, and the addition of 100 µl protein precipitation buffer. DNA is available from DSMZ through the DNA Bank Network [36].

Genome sequencing and assembly

The genome was sequenced using one Illumina PE library (Table 2). Illumina sequencing [37] was performed on a GA IIx platform with 150 cycles. The paired-end library contained 520 bp insert size. To correct sequencing errors and improve quality of the reads, clipping was performed using fastq-mcf [38] and quake [39]. After this step, 4,717,610 reads with a median length of 124 bp were assembled using velvet [40]. The resulting draft genome consisted of 71 contigs organized in 45 scaffolds. The initial draft sequences were separated into artificial Sanger reads of 1,000 nt size plus 75 nt overlap. The number of gaps was reduced by manual editing in phred/phrap/consed version 20.0 [41]. The final assembly was composed of 17 contigs organized in 15 scaffolds. (The version deposited at Genbank contains two scaffolds less, which did not meet the requirements for the minimal contig length. The additional fragments 'thalar_Contig12.1' and 'thalar_Contig18_1.4' can be found in the IMG database). The combined sequences provided a 195× coverage of the genome.
Table 1. Classification and general features of *L. arenae* DSM 19593\(^T\) according to the MIGS recommendations [16] published by the Genome Standards Consortium [17].

MIGS ID	Property	Term	Evidence code
	Domain	*Bacteria*	TAS [18]
	Phylum	*Proteobacteria*	TAS [19]
	Class	*Alphaproteobacteria*	TAS [20,21]
	Current classification	Order *Rhodobacterales*	TAS [21,22]
		Family *Rhodobacteraceae*	TAS [21,23]
		Genus *Litoreibacter*	TAS [2,3]
		Species *Litoreibacter arenae*	TAS [2]
MIGS-7	Subspecific genetic lineage (strain)	GA2-M15\(^T\)	TAS [1]
MIGS-12	Reference for biomaterial	Kim *et al.* 2009	TAS [1]
	Gram stain	negative	TAS [1]
	Cell shape	rod-shaped	TAS [1]
	Motility	motile	TAS [1]
	Sporulation	non-sporulating	NAS
	Temperature range	mesophilic (5°C-35°C)	TAS [1]
	Optimum temperature	30°C	TAS [1]
	Salinity	halophilic, 0.85-8% NaCl (w/v)	TAS [1]
MIGS-22	Relationship to oxygen	strictly aerobic	TAS [1]
	Carbon source	yeast extract, peptone	TAS [1]
MIGS-6	Habitat	sea sand, sediment, seawater	TAS [1]
MIGS-6.2	pH	6 – 9	TAS [1]
MIGS-15	Biotic relationship	free living	TAS [1]
	Biosafety level	1	TAS [24]
MIGS-23.1	Isolation	sea sand	TAS [1]
MIGS-4	Geographic location	Coast of Homi Cape, Pohang City, South Korea	TAS [1]
MIGS-4.1	Latitude	36.085	NAS
MIGS-4.2	Longitude	129.556	NAS
MIGS-4.3	Depth	not reported	NAS

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). Evidence codes are from the Gene Ontology project [25].

http://standardsigenomics.org
Litoreibacter arenae type strain (DSM 19593T)

Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Non-contiguous finished
MIGS-28	Libraries used	One Illumina PE library (520 bp insert size)
MIGS-29	Sequencing platforms	Illumina GA IIx, Illumina MiSeq
MIGS-31.2	Sequencing coverage	195 × Illumina
MIGS-30	Assemblers	velvet version 1.1.36, consed version 20.0
MIGS-32	Gene calling method	Prodigal
GOLD ID		Gi11991
NCBI project ID		178144
INSDC ID		AONI00000000
Genbank Date of Release		March 13, 2013
IMG Taxon OID		2518285519
MIGS-13	Source material identifier	DSM 19593
Project relevance		Tree of Life, biodiversity

Genome annotation

Genes were identified using Prodigal [42] as part of the JGI genome annotation pipeline [43]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Identification of RNA genes were carried out by using HMMER 3.0rc1 [44] (rRNAs) and tRNAscan-SE 1.23 [45] (tRNAs). Other non-coding genes were predicted using INFERNAL 1.0.2 [46]. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [34]. CRISPR elements were detected using CRT [47] and PILER-CR [48].

Genome properties

The genome statistics are provided in Table 3 and Figure 3. The genome consists of a 3.56 Mbp chromosome with a G+C content of 60%, and a 140 kbp plasmid with a G+C content 59%. Of the 3,657 genes predicted, 3,601 were protein-coding genes, and 56 RNAs. The majority of the protein-coding genes (81.8%) were assigned a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

Table 3. Genome Statistics

Attribute	Number	% of Total
Genome size (bp)	3,690,113	100.00
DNA coding region (bp)	3,376,611	91.50
DNA G+C content (bp)	2,222,524	60.23
Number of scaffolds	17	
Extrachromosomal elements	1	100.00
Total genes	3,657	100.00
RNA genes	56	1.53
rRNA operons	1	
tRNA genes	43	1.18
Protein-coding genes	3,601	98.47
Genes with function prediction	2,990	81.76
(proteins)		
Genes in paralog clusters	1,040	28.44
Genes assigned to COGs	2,873	78.56
Genes assigned Pfam domains	3,047	83.32
Genes with signal peptides	347	9.49
Genes with transmembrane helices	836	22.86
CRISPR repeats	0	

122 Standards in Genomic Sciences
Figure 3. Graphical map of the largest scaffold. From bottom to top: genes on forward strand (color by COG categories), genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.

Table 4. Number of genes associated with the general COG functional categories

Code	Value	%age	Description
J	164	5.2	Translation, ribosomal structure and biogenesis
A	0	0.0	RNA processing and modification
K	197	6.3	Transcription
L	135	4.3	Replication, recombination and repair
B	3	0.1	Chromatin structure and dynamics
D	32	1.0	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	46	1.5	Defense mechanisms
T	97	3.1	Signal transduction mechanisms
M	176	5.6	Cell wall/membrane/envelope biogenesis
N	32	1.0	Cell motility
Z	2	0.1	Cytoskeleton
W	0	0.0	Extracellular structures
U	73	2.3	Intracellular trafficking and secretion, and vesicular transport
O	121	3.8	Posttranslational modification, protein turnover, chaperones
C	195	6.2	Energy production and conversion
G	200	6.4	Carbohydrate transport and metabolism
E	358	11.4	Amino acid transport and metabolism
F	82	2.6	Nucleotide transport and metabolism
H	138	4.4	Coenzyme transport and metabolism
I	146	4.6	Lipid transport and metabolism
P	141	4.5	Inorganic ion transport and metabolism
Q	99	3.1	Secondary metabolites biosynthesis, transport and catabolism
R	410	13.0	General function prediction only
S	303	9.6	Function unknown
-	784	21.4	Not in COGs

http://standardsingenomics.org
Insights into the genome

The genome comprises a single extrachromosomal element (with not yet validated circularity), 'thalar_Contig204.17', which is 139.9 kbp in size containing 130 protein-coding genes including a large RTX-toxin gene and a F0F1-type ATPase operon. It contains the typical replication modules. Its replication system is of the ABC-9 type with the compatibility group RepC-9 [49]. This type of repABC operon was found in two representatives of the genera Octadecabacter and Roseobacter, respectively, as well as in Dinoroseobacter shibae [49]. The presence of the replication-initiation gene DnaA (Thalar_03034) reveals the chromosomal origin of the largest scaffold, namely, the 1.091 Mbp long scaffold 'thalar_Contig148.14'. However, the scaffold harbors neither a plasmid stability module nor a type IV secretion system.

Genome analysis of strain DSM 19593T revealed the presence of genes encoding proteins associated to carbon monoxide utilization (thalar_00241, thalar_00242, thalar_02265, thalar_03324, thalar_03325, thalar_03395, thalar_03397) as well as genes forming a putative operon, which are involved in the oxidation of sulfur (thalar_01786 to_01792) indicating the oxidation of sulfur to produce energy. Additional gene sequences of interest encode a homogentisate 1,2-dioxygenase (thalar_03573), several haloacid dehalogenase superfamily proteins (thalar_00489, thalar_00580, thalar_01120, thalar_01943, thalar_02401) and a 2-haloalkanoic acid dehalogenase type II (thalar_00287). The presence of such genes could indicate the respiratory degradation of recalcitrant compounds by strain DSM 19593T in its ecological niche.

Further genes encoding a N-acyl-L-homoserine lactone synthetase (thalar_00160) and a response regulator (thalar_00161) associated to quorum sensing were observed [50-53]. Genome analysis of strain DSM 19593T also revealed the presence of genes encoding a bacteriophage associated genes (e.g., thalar_00003 to 00007). A gene encoding a sensor of blue light using FAD (BLUF, thalar_02670) was also detected, indicating possible blue-light dependent signal transduction.

Acknowledgements

The authors gratefully acknowledge the assistance of Iljana Schröder for technical assistance and Evelyne-Marie Brambilla for DNA extraction and quality control (both at the DSMZ). This study was supported by the German Research Foundation (DFG) Transregio-SFB 51.

References

1. Kim BY, Weon HY, Son JY, Lee CM, Hong SB, Jeon YA, Koo BS, Kwon SW. Thalassobacter arenae sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 2009; 59:487-490. PubMed http://dx.doi.org/10.1099/ijs.0.65841-0

2. Kim YO, Park S, Nam BH, Kang SJ, Hur YB, Kim DG, Oh TK, Yoon JH. Description of Litoreibacter meonggei sp. nov., isolated from the sea squirt Halocynthia roretzi, reclassification of Thalassobacter arenae as Litoreibacter arenae comb. nov. and emended description of the genus Litoreibacter Romanenko et al. 2011. Int J Syst Evol Microbiol 2012; 62:1825-1831. PubMed http://dx.doi.org/10.1099/ijs.0.035113-0

3. Romanenko LA, Tanaka N, Frolova GM, Svetashev VI, Mikailov VV. Litoreibacter albidus gen. nov., sp. nov. and Litoreibacter janthinus sp. nov., members of the Alphaproteobacteria isolated from the seashore. Int J Syst Evol Microbiol 2011; 61:148-154. PubMed http://dx.doi.org/10.1099/ijs.0.019513-0

4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403-410. PubMed

5. Korf I, Yandell M, Bedell J. BLAST, O'Reilly, Sebastopol, 2003.

6. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl Environ Microbiol 2006; 72:5069-5072. PubMed http://dx.doi.org/10.1128/AEM.03006-05

7. Porter MF. An algorithm for suffix stripping. Program: electronic library and information systems 1980; 14:130-137.

8. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics 2002; 18:452-464. PubMed http://dx.doi.org/10.1093/bioinformatics/18.3.452
Litoreibacter arenae type strain (DSM 19593T)

Date. *Bioinformatics* 2013; 29:1823-1824. PubMed http://dx.doi.org/10.1093/bioinformatics/btt291

28. Bochner BR. Global phenotypic characterization of bacteria. *FEBS Microbiol Rev* 2009; 33:191-205. PubMed http://dx.doi.org/10.1111/j.1574-6976.2008.00149.x

29. Macián MC, Arahal DR, Garay E, Ludwig W, Schleifer KH, Pujalte MJ. *Thalassobacter stenotrophicus* gen. nov., sp. nov., a novel marine alphaproteobacterium isolated from Mediterranean sea water. *Int J Syst Evol Microbiol* 2005; 55:105-110. PubMed http://dx.doi.org/10.1099/ijs.0.63275-0

30. Pujalte MJ, Macián MC, Arahal DR, Garay E. *Thalassobacter stenotrophicus* Macian et al 2005 is a later synonym of *Jannaschia cystaegens* Adachi et al. 2004, with emended description of the genus *Thalassobacter*. *Int J Syst Evol Microbiol* 2005; 55:1959-1963. PubMed http://dx.doi.org/10.1099/ijs.0.63617-0

31. Göker M, Klenk HP. Phylogeny-driven target selection for genome-sequencing (and other) projects. *Stand Genomic Sci* 2013; 8:360-374. PubMed http://dx.doi.org/10.4056/sigs.3446951

32. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven Genomic Encyclopaedia of Bacteria and Archaea. *Nature* 2009; 462:1056-1060. PubMed http://dx.doi.org/10.1038/nature08656

33. Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Res* 2012; 40:D571-D579. PubMed http://dx.doi.org/10.1093/nar/gkr1100

34. Markowitz VM, Ivanova NN, Chen IM, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; 25:2271-2278. PubMed http://dx.doi.org/10.1093/bioinformatics/btp393

35. List of growth media used at the DSMZ: http://www.dmsz.de/catalogues/catalogue-microorganisms/culture-technology/list-of-media-for-microorganisms.html

36. Gemeinholzer B, Dröge G, Zetzsche H, Haszprunar G, Klenk HP, Güntsch A, Berendsohn WG, Wägele JW. The DNA Bank Network: the start from a German initiative. *Biopreserv Biobank* 2011; 9:51-55. PubMed http://dx.doi.org/10.1089/bio.2010.0029

37. Bennett S. Solexa Ltd. *Pharmacogenomics* 2004; 5:433-438. PubMed http://dx.doi.org/10.1517/14622416.5.4.433

38. Aronesty E. ea-utils: Command-line tools for processing biological sequencing data; 2011 http://code.google.com/p/ea-utils.

39. Kelley DR, Schatz MC, Salzberg SL. Quake: quality-aware detection and correction of sequencing errors. *Genome Biol* 2010; 11:R116. PubMed http://dx.doi.org/10.1186/gb-2010-11-11-r116

40. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res* 2008; 18:821-829. PubMed http://dx.doi.org/10.1101/gr.074492.107

41. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. *Genome Res* 1998; 8:195-202. PubMed http://dx.doi.org/10.1101/gr.8.3.195

42. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics* 2010; 11:119. PubMed http://dx.doi.org/10.1186/1471-2105-11-119

43. Mavromatis K, Ivanova NN, Chen IM, Szeto E, Markowitz VM, Kyrpides NC. The DOE-JGI Standard operating procedure for the annotations of microbial genomes. *Stand Genomic Sci* 2009; 1:63-67. PubMed http://dx.doi.org/10.4056/sigs.632

44. Finn DR, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. *Nucleic Acids Research* 2011, Web Server Issue 39:W29-W37.

45. Lowe TM, Eddy SR. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. *Nucleic Acids Res* 1997; 25:955-964. PubMed

46. Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: Inference of RNA alignments. *Bioinformatics* 2009; 25:1335-1337. PubMed http://dx.doi.org/10.1093/bioinformatics/btp157

47. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. *BMC Bioinformatics* 2007; 8:209. PubMed http://dx.doi.org/10.1186/1471-2105-8-209
48. Edgar RC. PILER-CR: Fast and accurate identification of CRISPR repeats. *BMC Bioinformatics* 2007; 8:18. PubMed http://dx.doi.org/10.1186/1471-2105-8-18

49. Petersen J, Brinkmann H, Pradella S. Diversity and evolution of repABC type plasmids in *Rhodobacterales*. *Environ Microbiol* 2009; 11:2627-2638. PubMed http://dx.doi.org/10.1111/j.1462-2920.2009.01987.x

50. Wagner-Döbler I, Thiel V, Eberl L, Allgaier M, Bodor A, Meyer S, Ebner S, Hennig A, Pukall R, Schulz S. Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host-associated marine alphaproteobacteria. *ChemBioChem* 2005; 6:2195-2206. PubMed http://dx.doi.org/10.1002/cbic.200500189

51. Bassler BL. How bacteria talk to each other: regulation of gene expression by quorum sensing. *Curr Opin Microbiol* 1999; 2:582-587. PubMed http://dx.doi.org/10.1016/S1369-5274(99)00025-9

52. Henke JM, Bassler BL. Bacterial social engagements. *Trends Cell Biol* 2004; 14:648-656. PubMed http://dx.doi.org/10.1016/j.tcb.2004.09.012

53. Waters CM, Bassler BL. Quorum Sensing: Cell-to-Cell Communication in Bacteria. *Annu Rev Cell Dev Biol* 2005; 21:319-346. PubMed http://dx.doi.org/10.1146/annurev.cellbio.21.010270.131001