Sampling Conditioned Hypoelliptic Diffusions

Jochen Voss

University of Leeds

16th August 2010

Joint work with Martin Hairer and Andrew Stuart
Outline

Sampling on Path Space

Main Result

Remarks about the Proof
Sampling on Path Space
The solution of an SDE, e.g. of the form
\[
dX_t = b(X_t)\, dx + a(X_t) \, dW_t \quad \forall \, t \in [0, T],
\]
defines a probability distribution \(\mu \) on the space \(C([0, T], \mathbb{R}^d) \).

Idea. Use a MCMC method, i.e. find a stochastic process \(x \) with values in \(C([0, T], \mathbb{R}^d) \) whose stationary distribution coincides with the target distribution \(\mu \). Assuming ergodicity, we can probe all statistical properties of \(\mu \) using ergodic averages:
\[
\int_{C([0,T],\mathbb{R}^d)} f(x) \, d\mu(x) = \lim_{S \to \infty} \frac{1}{S} \int_0^S f(x_\tau) \, d\tau.
\]

This point of view is particularly useful, if there are additional contraints on the solution \(X \) which destroy the basic Markovian structure of the process. Example: sampling bridges with \(X(0) = a \) and \(X(T) = b \).
basic example: sampling Brownian bridges

The stochastic heat equation

$$\partial_\tau x(\tau, t) = \partial^2_t x(\tau, t) + \sqrt{2} \partial_\tau w(\tau, t)$$

with Dirichlet boundary conditions

$$x(\tau, 0) = 0, \quad x(\tau, T) = 0$$

has the distribution of a Brownian bridge on $[0, T]$ as its stationary distribution.

- $\partial_\tau w$ is space-time white noise
- $t \in [0, T]$ is physical time ("space" of the SPDE, time of the Brownian bridge)
- $\tau \in [0, \infty)$ is algorithmic time (time of the SPDE)
One can obtain results like the following:

Theorem 1. Let X be the solution of

$$dX_t = f(X_t) \, dt + dW_t, \quad X(0) = 0, \, X(T) = 0.$$

Then the stationary distribution of

$$\partial_\tau x(\tau, t) = \partial_t^2 x(\tau, t) - \left(ff' + \frac{1}{2} f'' \right)(x) + \sqrt{2} \partial_\tau w(\tau, t)$$

with Dirichlet boundary conditions

$$x(\tau, 0) = 0, \quad x(\tau, T) = 0$$

coincides with the distribution of X on $C([0, 1], \mathbb{R})$.

The result needs (among other assumptions) that f is a gradient.
Main Result
We consider hypoelliptic diffusions of the form

\[m\ddot{X}_t = F(X_t) - \dot{X}_t + \sqrt{2/\beta} \dot{W}_t \]

where \(X_t \in \mathbb{R}^d \) for \(t \in [0, T] \), \(F : \mathbb{R}^d \to \mathbb{R}^d \), \(\beta > 0 \) and \(\dot{W} \) is white noise. This could, for example, describe a physical system with friction and noise.

Example. We can consider the case \(F = -V' \) where \(V \) is a double-well potential:

\[V(x) = (x-1)^2(x+1)^2 \quad \forall x \in \mathbb{R}. \]

Depending on the amount of noise, the system exhibits metastable behaviour.
\[m\ddot{X}_t = F(X_t) - \dot{X}_t + \sqrt{2/\beta} \dot{W}_t \quad X_0 = 0 \]
Sometimes we want to simulate the dynamics of the system conditioned on certain events.

Examples.

- We can study the transitions between meta-stable states by simulating paths conditioned on a transition happening.
- In signal processing we want to find the conditional distribution of the system given (noisy) observations.

Problem. How can we sample from the distribution μ of

$$m \ddot{X}_t = F(X_t) - \dot{X}_t + \sqrt{2/\beta} \dot{W}_t,$$

conditioned on $X_0 = x_-$ and $X_T = x_+$?
\[m\ddot{X}_t = F(X_t) - \dot{X}_t + \sqrt{2/\beta} \dot{W}_t \quad X_0 = -1, \quad X_{1000} = +1 \]
Main Result

Theorem 2. Let $x : \Omega \times \mathbb{R}_+ \to C([0, T], \mathbb{R}^d)$ be the solution of

$$
\partial_\tau x(\tau, t) = \mathcal{L}(x(\tau, t) - \bar{x}(t)) + \mathcal{N}(x) + \sqrt{2} \partial_\tau w(\tau, t)
$$

where $\mathcal{L} = -\frac{\beta}{2}(m^2 \partial^4_t - \partial^2_t)$ with certain boundary conditions,

$$
\mathcal{N}_k(x) = -\frac{\beta}{2} F_i(x) \partial_k F_i(x) + \frac{m\beta}{2} \partial_t x_i \partial_t x_j \partial^2_{ij} F_k(x)
$$

$$
- \frac{\beta}{2} \partial_t x_j (\partial_j F_k(x) - \partial_k F_j(x))
$$

$$
+ \frac{m\beta}{2} \partial^2_t x_j (\partial_j F_k(x) + \partial_k F_j(x))
$$

$$
+ \frac{m\beta}{2} (F_k(x-) \partial_t \delta_0 - F_k(x+) \partial_t \delta_T)
$$

and w is a cylindrical Wiener process. Then, in stationarity, the distribution of $t \mapsto x(\tau, t)$ coincides with the target distribution μ.
Remarks about the Proof
As usual, we can rewrite the second order SDE as a system of first order SDEs. Let \(q_t = X_t \) and \(p_t = m \dot{X}_t \), then

\[
\begin{align*}
 dq_t &= \frac{1}{m} p_t \, dt, \quad q_0 = x_- \\
 dp_t &= -\frac{1}{m} p_t \, dt + F(q) \, dt + \sqrt{2/\beta} \, dW_t, \quad p_0 \sim \mathcal{N}(0, \frac{m}{\beta}).
\end{align*}
\]

Remark. \(q \) is a deterministic function of \(p \). Using this function we can solve the second equation to get \(p \). Finally we can compute \(q \) from \(p \).
The linear case \((F = 0)\)

For \(F = 0\), the hypoelliptic SDE simplifies to

\[m\ddot{X}_t = -\dot{X}_t + \sqrt{2/\beta}\dot{W}_t. \]

Since this equation is linear, \(X\) is a Gaussian process and its distribution is completely characterised by the mean \(\bar{x}\) and the covariance operator \(C\).

Lemma. Let \(\mathcal{L}\) be a linear, negative, self-adjoint operator on \(L^2([0, T], \mathbb{R}^d)\) such that \(C = -\mathcal{L}^{-1}\) is trace class and let \(\bar{x} \in L^2([0, T], \mathbb{R}^d)\). Then

\[\partial_\tau x(\tau, t) = \mathcal{L}(x - \bar{x})\,d\tau + \sqrt{2}\partial_\tau w(\tau, t) \]

has stationary distribution \(\mathcal{N}(\bar{x}, C)\).

In our situation we get \(\mathcal{L} = -\frac{\beta}{2}(m^2\partial_t^4 - \partial_t^2)\) (with certain boundary conditions).
The non-linear case ($F \neq 0$)

Lemma (on \mathbb{R}^n). Let μ, ν be probability distributions. Assume that ν is the stationary distribution of

$$dz(\tau) = Lz(\tau) \, d\tau + \sqrt{2} \, dw(\tau).$$

and that $\frac{d\mu}{d\nu} = \varphi$. Then

$$dx(\tau) = Lx(\tau) \, d\tau + \nabla \log \varphi(x(\tau)) + \sqrt{2} \, dw(\tau)$$

has stationary distribution μ.

The result can be carried over to infinite dimensional situations by finite dimensional approximation.

Note. Since the equation for z is linear, we know $\nu = \mathcal{N}(0, -L^{-1})$.
In our case:

- \(\nu \) is the target distribution with \(F = 0 \),
- \(\mu \) is the target distribution with \(F \neq 0 \).

Girsanov's formula gives

\[
\varphi(q) = \exp \left(\sqrt{\frac{\beta}{2}} \int_0^T \langle F(q(t)), dW(t) \rangle - \frac{\beta}{4} \int_0^T |F(q(t))|^2 \, dt \right).
\]

The (variational) derivative of \(\varphi \) is given by

\[
D \log \varphi(q) h = \frac{m\beta}{2} \left(F_k(q_+) h'_k(T) - F_k(q_-) h'_k(0) \right) \\
- \frac{\beta}{2} \int_0^T \left(F_i \partial_k F_i - m\dot{q}_i \dot{q}_j \partial_{ij}^2 F_k \\
+ \dot{q}_j (\partial_j F_k - \partial_k F_j) - m\ddot{q}_j (\partial_j F_k + \partial_k F_j) \right) h_k(t) \, dt \\
= \langle \mathcal{N}(q), h \rangle.
\]
Remarks.

- Existence of local solution follows from the fact that the non-linearity \mathcal{N} is a Lipschitz function from $H^{3/2+\epsilon}$ to $H^{-3/2-\epsilon}$ (for good enough F). One can get the required a-priori bounds to prove the existence of global solutions. The most “dangerous” term in the non-linearity is

$$\partial_t^2 x_j \left(\partial_j F_k(x) + \partial_k F_j(x) \right).$$

- Differently from the earlier result (for first order SDEs), we do not require the drift F to be a gradient.
Conclusion

- The method provides a generic framework to derive sampling equations, many applications are possible (e.g. nonlinear filtering).
- Different from the first-order SDE case, we do not require a gradient structure.
- Interesting problems in the theory of the method, implementation, and applications.

References

- M. Hairer, A.M. Stuart and J. Voss, *Sampling Conditioned Diffusions*. Pages 159–186 in Trends in Stochastic Analysis, Cambridge University Press, vol. 353 of London Mathematical Society Lecture Note Series, 2009.
- M. Hairer, A.M. Stuart and J. Voss, *Sampling Conditioned Hypoelliptic Diffusions*. To appear in the Annals of Applied Probability, 2010.