RESEARCH ARTICLE

Birth weight and nutritional status of children under five in sub-Saharan Africa

Richard Gyan Aboagye1, Bright Opoku Ahinkorah2, Abdul-Aziz Seidu3,4, James Boadu Frimpong5, Anita Gracious Archer6, Collins Adu7, John Elvis Hagan, Jr5,8, Hubert Amu9, Sanni Yaya10,11

1 Department of Family and Community Health, School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana, 2 School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia, 3 Center for Gender and Advocacy, Takoradi Technical University, Takoradi, Ghana, 4 College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia, 5 Department of Health, Physical Education, and Recreation, University of Cape Coast, Cape Coast, Ghana, 6 School of Nursing and Midwifery, University of Health and Allied Sciences, Ho, Ghana, 7 Department of Health Promotion, Education and Disability Studies, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 8 Neurocognition and Action-Biomechanics-Research Group, Faculty of Psychology and Sport Sciences, Bielefeld University, Bielefeld, Germany, 9 Department of Population and Behavioural Sciences, School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana, 10 School of International Development and Global Studies, University of Ottawa, Ottawa, Canada, 11 The George Institute for Global Health, Imperial College London, London, United Kingdom

Abstract

Introduction

Over the past three decades, undernutrition has become a major cause of morbidity and mortality among children under five years globally. Low birth weight has been identified as a risk factor for child morbidity and mortality, especially among children under five years in sub-Saharan Africa. There is, however, a paucity of empirical literature establishing the association between low birth weight and undernutrition in sub-Saharan Africa. We examined the association between birth weight and nutritional status of children under five in sub-Saharan Africa.

Methods

Our analyses were performed on a weighted sample of 110,497 children under five years from 32 countries in sub-Saharan Africa. Data were obtained from the Demographic and Health Surveys conducted from 2010 to 2019. We reported the prevalence of low birth weight and nutritional status (stunting, wasting, and underweight) for all the 32 countries using percentages. We used multilevel binary logistic regression to examine the association between birth weight and nutritional status (stunting, wasting, and underweight) of the children, controlling for covariates. The results of the regression analyses were presented using adjusted odds ratios (aOR) with 95% confidence intervals. Statistical significance was set at p<0.05.

Results

The prevalence of low birth weight was 5.4%, with the highest (13.1%) and lowest (0.9%) reported in South Africa and Chad, respectively. The pooled prevalence of wasting,
underweight, and stunting were 8.1%, 17.0%, and 31.3%, respectively. Niger had the highest prevalence of wasting (21.5%) and underweight (37.1%), whereas Burundi had the highest prevalence of stunting (51.7%). We found that children with low birth weight were more likely to be stunted [aOR = 1.68, 95% CI = 1.58–1.78], underweight [aOR = 1.82, 95% CI = 1.70–1.94], and wasted [aOR = 1.35, 95% CI = 1.20–1.38] after controlling for covariates.

Conclusion
Our study has demonstrated that low birth weight is a key determinant of undernutrition among children under five in sub-Saharan Africa. Policymakers need to give special attention to improving the nutritional status of children under-five years in sub-Saharan Africa by implementing measures aimed at enhancing the weight of children. To accelerate progress towards the achievement of the Sustainable Development Goal 3.2 target of ending preventable deaths of newborns and under-five by 2030, it is imperative for countries in sub-Saharan Africa to intensify interventions aimed at improving maternal and child nutrition. Specific nutrition interventions such as dietary modification counselling should be prioritized.

Introduction
Over the past three decades, malnutrition has become a major cause of morbidity and mortality among children under five years [1]. Malnutrition has both short and long-term consequences which pose serious health issues to the smooth growth and development of children [2–5]. Research shows that compared with well-nourished children, malnourished children are physically, intellectually, and emotionally under productive and are at a higher risk of experiencing chronic ailments and disabilities [6–9]. Additionally, malnutrition has been identified as one of the causes of anthropometric deficits in children under the age of five in most low- and middle-income countries [LMICs] [10, 11].

Despite the availability of interventions aimed at eliminating undernutrition among children, the phenomenon remains a health burden LMICs [12–15]. In sub-Saharan Africa (SSA), for instance, stunting, wasting, and underweight are highest in Burundi (57.7%), Niger (18.0%), and Burundi (28.8%) [12]. This accentuates the continuous need to direct the focus of research to ascertain the factors that account for the high rates of undernutrition among children under-five years, and to design appropriate interventions to avert the trend.

Low birth weight has also been identified as a risk factor for child morbidity and mortality especially among children under age five [16–19]. A study in Bangladesh revealed that children with low birth weight were at a higher risk of experiencing undernutrition compared to their normal birth weight peers [20]. Previous studies also found child’s age, mother’s educational level, low birth weight, household wealth index, place of residence, low maternal height, type of toilet facility, and type of cooking oil as associated factors of undernutrition among children under five years [12, 20–24].

Notwithstanding, an exclusive search of the available literature showed that up until now, no study has examined the association between low birth weight and undernutrition indicators among children under-five years using nationally representative data in SSA. This makes it difficult for policymakers and health organizations to develop and implement policies, programs, and interventions aimed at reducing the rates and the detrimental effects of undernutrition among children under age five at the sub-regional level. This presents a wide research gap, which this study seeks to address.
Therefore, the study assessed the association between birth weight and nutritional status (stunting, wasting, and underweight) of children under-five years using data from Demographic and Health Surveys (DHS) conducted in 32 countries in SSA. The findings of this study are expected to assist direct policies, programmes, and interventions that will lead to a reduction in the prevalence of undernutrition in SSA.

Materials and methods

Data source and study design

This study involved cross-sectional analyses of data from the DHS of 32 countries in SSA. Only the data from the most recent surveys (2010–2019) from these countries were analysed. Specifically, we utilised data from the Child’s Recode (KR File) from the 32 countries. DHS is a countrywide representative survey conducted to collect data on health indicators such as nutrition, maternal, and child health among others [25]. Since the inception of the DHS, it has practically been conducted in over 85 LMICs globally [25]. The DHS utilised a two-stage sampling technique to recruit respondents for the study. A detailed explanation of the data collection methods and sampling techniques has been published elsewhere [26]. A total of 110,497 children under five years with complete cases of variables of interest were included in the study. Table 1 shows a description of the study sample included in the analysis per country.

Study variables

Outcome variables. Three anthropometric indices (stunting [height-for-age z-scores], wasting [weight-for-height z-scores], and underweight [weight-for-age z-scores]) were the outcome variables in our study. The classification of child’s nutritional status was informed by the World Health Organization’s Growth Reference for children under-five years [27].

In classifying stunting, children with height-for-age z-scores below minus 2 (−2.0 SD) standard deviations (SD) less than the mean on the reference standard (moderately or severely stunted) and children with height-for-age z-scores below minus 3 (−3.0 SD) less than the mean on the reference standard (severely stunted) were categorised as stunted and was recoded as “1”. Children whose height-for-age z-scores were greater than minus 2 (−2.0 SD) above the mean on the reference standard were categorized as “Normal” and recoded as “0”.

With wasting, children with weight-for-height z-scores below minus 2 (−2.0 SD) (moderately or severely wasting) and those with weight-for-height z-scores below minus 3 (−3.0) standard deviations (SD) (severely wasting) were classified as wasted. Also, those whose weight-for-height z-scores were greater than minus 2 (−2.0 SD) greater than the mean on the reference standard were considered as “Normal”. In the final analysis, those who were classified as normal were recoded as “0” whilst those wasted were recoded as “1”.

Based on the WHO Growth Reference, children with weight-for-age z-scores below minus 2 (−2.0 SD) less than the mean on the reference standard (moderately or severely underweight) and those with weight-for-age z-scores below minus 3 (−3.0 SD) less than the mean (severely underweight) categorized as “underweight” and coded as “1”. Children whose weight-for-age z-scores were higher than minus 2 (−2.0 SD), thus, greater than the mean on the reference standard were regarded as “Normal” and were recoded as “0”.

Key explanatory variable. Birth weight was the main explanatory variable. For this study, only numerical birth weight data contained in the DHS survey for the most recent children were considered. The birth weight data were classified into two groups: normal weight (birth weight ≥2500 g) and low birth weight (birth weight <2500 g). Previous studies have used similar classifications [20, 28, 29].
We included a total of 18 covariates in our study. We selected the variables based on their availability in the DHS dataset and their association with childhood undernutrition from previous studies [20, 28, 30]. The variables were categorised into individual level factors, household factors, and contextual factors. The individual level factors consisted of sex of child (male and female), age of the child (0, 1, 2, 3, and 4), birth order (1, 2–4, and 5+), and perceived size at birth (large, average, and small). Other individual level factors were educational level (no formal education, primary, secondary, and higher), current working status (yes and no), and postnatal checks within 2 months (yes and no). Maternal age (15–19 and 20–49), antenatal visits during pregnancy (0, 1–3 and 4 or more), place of delivery (home, health facility, other), and marital status (single and married). The household factors consisted of the source of drinking water (improved and unimproved), type of toilet facility (improved and unimproved), household size (small, medium, and large), exposure to media (yes, no), type of cooking fuel (clean and unclean) and wealth index (poorest, poorer, middle, median, richer, and richest). The contextual factors included region of residence and country of origin.

Table 1. Description of study sample.

| Countries  | Year of survey | Weighted N | Weighted % |
|------------|----------------|------------|------------|
| Angola     | 2015–16        | 3,538      | 3.20       |
| Burkina Faso | 2010         | 4,474      | 4.05       |
| Benin      | 2017–18        | 7,686      | 6.96       |
| Burundi    | 2016–17        | 4,178      | 3.78       |
| DR Congo   | 2013–14        | 4,739      | 4.29       |
| Congo      | 2011–12        | 2,589      | 2.34       |
| Cote d’Ivoire | 2011–12   | 2,106      | 1.91       |
| Cameroon   | 2018           | 2,863      | 2.59       |
| Ethiopia   | 2016           | 6,553      | 5.93       |
| Gabon      | 2012           | 1,932      | 1.75       |
| Ghana      | 2014           | 1,901      | 1.72       |
| Gambia     | 2013           | 752        | 0.68       |
| Guinea     | 2018           | 2,212      | 2.00       |
| Kenya      | 2014           | 6,016      | 5.44       |
| Comoros    | 2012           | 1,276      | 1.16       |
| Liberia    | 2013           | 1,959      | 1.77       |
| Lesotho    | 2014           | 1,011      | 0.92       |
| Mali       | 2018           | 5,437      | 4.92       |
| Malawi     | 2015–16        | 4,007      | 3.63       |
| Nigeria    | 2018           | 7,322      | 6.63       |
| Niger      | 2012           | 3,033      | 2.74       |
| Namibia    | 2013           | 892        | 0.81       |
| Rwanda     | 2014–15        | 1,346      | 1.22       |
| Sierra Leone | 2019         | 2,657      | 2.40       |
| Senegal    | 2010–11        | 1,943      | 1.76       |
| Chad       | 2014–15        | 5,879      | 5.32       |
| Togo       | 2013–14        | 2,209      | 2.00       |
| Tanzania   | 2015–16        | 6,038      | 5.46       |
| Uganda     | 2016           | 2,852      | 2.58       |
| South Africa | 2016         | 854        | 0.77       |
| Zambia     | 2018           | 6,249      | 5.66       |
| Zimbabwe   | 2015           | 3,994      | 3.61       |

All countries 110,497 100.0

https://doi.org/10.1371/journal.pone.0269279.t001

Covariates. We included a total of 18 covariates in our study. We selected the variables based on their availability in the DHS dataset and their association with childhood undernutrition from previous studies [20, 28, 30]. The variables were categorised into individual level factors, household factors, and contextual factors. The individual level factors consisted of sex of child (male and female), age of the child (0, 1, 2, 3, and 4), birth order (1, 2–4, and 5+), and perceived size at birth (large, average, and small). Other individual level factors were educational level (no formal education, primary, secondary, and higher), current working status (yes and no), and postnatal checks within 2 months (yes and no) were maintained. Maternal age (15–19 and 20–49), antenatal visits during pregnancy (0, 1–3 and 4 or more), place of delivery (home, health facility, other), and marital status (single and married). The household factors consisted of the source of drinking water (improved and unimproved), type of toilet facility (improved and unimproved), household size (small, medium, and large), exposure to media (yes, no), type of cooking fuel (clean and unclean) and wealth index (poorest, poorer, middle,
richer, and richest). The contextual factors include the place of residence (urban and rural) and geographical sub-regions (West, East, Central, and Southern).

Data analyses
First, frequencies and percentages to show the prevalence of low birth weight and undernutrition (stunting, wasting, and underweight) among children under-five years in the selected sub-Saharan African countries were determined. After, we performed cross-tabulation to determine the distribution of each undernutrition indicator across birth weight and the covariates. Also, we used the Pearson’s chi-square test of independence $\chi^2$ at a $p$-value of less than 0.05 to show significant variables associated with each undernutrition indicator. Further, a multilevel binary logistic regression analysis to examine the association between birth weight and each undernutrition indicators, controlling for the covariates. Model O showed the variance in each undernutrition indicator attributed to the clustering of the primary sampling units (PSUs) without the explanatory variables. Model I and Model II contained the individual and household level factors, respectively, while Model III contained the contextual level factors. The final model (Model IV) had all the individual, household, and contextual level factors. The Stata command “melogit” was used in fitting these models. We used Akaike’s Information Criterion (AIC) tests for Model comparison. All the results were presented using adjusted odds ratios (aOR) with 95% Confidence Interval (CI). Sample weight (v005/1,000,000) and the ‘svy’ command were used to correct for over and under-sampling, including the complex survey design to improve our findings’ generalizability. The paper followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines.

Ethical consideration. No ethical clearance was sought in this study because the DHS dataset is freely available in the public domain. Prior to the commencement of this study, permission to use the dataset was sought from the Monitoring and Evaluation to Assess and Use Results Demographic and Health Surveys (MEASUREDHS). All ethical consideration concerning the use of secondary dataset for publication were adhered to. Detailed information about the DHS data usage and ethical standards are available at http://goo.gl/ny8T6X.

Results
Prevalence of low birth weight, stunting, wasting, and underweight in sub-Saharan Africa
The prevalence of low birth weight in the 32 countries considered in this study was 5.4%, with the highest (13.1%) and lowest (0.9%) in South Africa and Chad, respectively. The prevalence of wasting, underweight, and stunting were 8.1%, 17.0%, and 31.3%, respectively. The highest prevalence of wasting (21.5%) and underweight (37.1%) were found in Niger while the highest prevalence of stunting (51.7%) was found in Burundi (Table 2).

Distribution of stunting, wasting, and underweight across the explanatory variables
Table 3 shows the distribution of stunting, wasting, and underweight across the low birth weight. The results showed significant disparities in stunting, wasting, and underweight across the birth weight. Specifically, stunting was higher among children with below 2.5kg birth weight (42.2%), compared to those with 2.5kg and above (30.7%). Similarly, underweight was higher among children with below 2.5kg birth weight (26.5%), compared to those whose weight was 2.5kg and above (16.5%). Finally, wasting was higher among children whose weight was below 2.5kg (10.5%), compared to those whose weight was 2.5kg and above (8.0%). In
terms of the covariates, significant differences were observed in the prevalence of stunting for all the categories of the covariates except mother’s age, current working status, and marital status. All the categories of the covariates showed significant differences for underweight, except mother’s age. For wasting, significant differences were identified within all the categories of the covariates.

**Association between birth weight and nutritional status of children under five in sub-Saharan Africa**

Model IV of Tables 4–6 show the results of the association between birth weight and nutritional status of children under five. We found that children with low birth weight were more likely to be stunted [aOR = 1.68, 95% CI = 1.58–1.78], underweight [aOR = 1.82, 95% CI = 1.70–1.94], and wasted [aOR = 1.35, 95% CI = 1.20–1.38]. With the covariates, the
### Table 3. Bivariate analysis birth weight and undernutrition among children in sub-Saharan Africa.

| Variables                        | Weighted N | Weighted % | Stunted | Underweight | Wasted | P-value |
|----------------------------------|------------|------------|---------|-------------|--------|---------|
| **Birth Weight**                 |            |            |         |             |        |         |
| 2500g and above                  | 104,531    | 94.6       | 30.7    | 16.5        | 8.0    | <0.001  |
| Below 2.5                        | 5,966      | 5.4        | 42.2    | 26.5        | 10.4   | <0.001  |
| **Individual-level factors**     |            |            |         |             |        |         |
| **Sex of child**                 |            |            |         |             |        |         |
| Male                             | 55,780     | 50.5       | 34.0    | 18.5        | 9.0    | <0.001  |
| Female                           | 54,717     | 49.5       | 28.5    | 15.5        | 7.3    | <0.001  |
| **Age of child**                 |            |            |         |             |        |         |
| 0                                | 33,702     | 30.5       | 16.8    | 13.0        | 10.7   | <0.001  |
| 1                                | 31,381     | 28.4       | 36.3    | 19.7        | 9.5    | <0.001  |
| 2                                | 22,366     | 20.2       | 43.4    | 20.3        | 6.1    | <0.001  |
| 3                                | 13,917     | 12.6       | 37.4    | 16.7        | 4.4    | <0.001  |
| 4                                | 9,131      | 8.3        | 28.4    | 15.4        | 4.4    | <0.001  |
| **Birth order**                  |            |            |         |             |        |         |
| 1                                | 21,832     | 19.8       | 29.5    | 14.7        | 7.3    | <0.001  |
| 2–4                              | 53,012     | 48.0       | 29.8    | 15.8        | 7.7    | <0.001  |
| 5+                               | 35,653     | 32.2       | 34.7    | 20.3        | 9.2    | <0.001  |
| **Size of child at birth**       |            |            |         |             |        |         |
| Large                            | 38,515     | 34.9       | 27.0    | 12.9        | 6.4    | <0.001  |
| Average                          | 54,469     | 49.3       | 31.4    | 16.5        | 8.0    | <0.001  |
| Smaller                          | 17,513     | 15.8       | 40.3    | 27.8        | 12.4   | <0.001  |
| **Mother’s age (years)**         |            |            |         |             |        |         |
| 0–14                            | 7,903      | 7.2        | 31.0    | 17.0        | 9.4    |         |
| 15–19                           | 102,594    | 92.8       | 31.3    | 17.0        | 8.0    |         |
| **Maternal educational level**   |            |            |         |             |        |         |
| No education                     | 43,126     | 39.0       | 37.3    | 24.4        | 11.6   | <0.001  |
| Primary                          | 36,081     | 32.6       | 32.8    | 14.8        | 6.3    | <0.001  |
| Secondary                        | 27,574     | 25.0       | 22.7    | 10.0        | 5.6    | <0.001  |
| Higher                           | 3,716      | 3.4        | 11.0    | 6.0         | 4.6    | <0.001  |
| **Current working status**       |            |            |         |             |        |         |
| No                               | 41,318     | 37.4       | 30.9    | 18.0        | 9.6    | <0.001  |
| Yes                              | 69,179     | 62.6       | 31.5    | 16.4        | 7.3    | <0.001  |
| **Number of antenatal care visits** |         |            |         |             |        |         |
| 0                                | 11,668     | 10.6       | 41.8    | 28.7        | 13.1   | <0.001  |
| 1–3                              | 37,922     | 34.3       | 34.4    | 18.7        | 9.0    | <0.001  |
| 4 or more                        | 60,907     | 55.1       | 27.3    | 13.7        | 6.6    | <0.001  |
| **Place of delivery**            |            |            |         |             |        |         |
| Home                             | 35,054     | 31.7       | 38.4    | 24.6        | 11.3   | <0.001  |
| Health facility                  | 74,154     | 67.1       | 27.8    | 13.4        | 6.7    |         |
| Other                            | 1,289      | 1.2        | 34.8    | 18.9        | 7.0    |         |
| **Postnatal care visits**        |            |            |         |             |        |         |
| No                               | 64,025     | 57.9       | 33.3    | 18.7        | 8.5    | <0.001  |
| Yes                              | 46,472     | 42.1       | 28.5    | 14.7        | 7.6    | <0.001  |
| **Marital status**               |            |            |         |             |        |         |
| Single                           | 14,610     | 13.2       | 31.3    | 14.9        | 6.3    | <0.001  |
| Married                          | 95,887     | 86.8       | 31.3    | 17.4        | 8.4    |         |
| **Household factors**            |            |            |         |             |        |         |

(Continued)
The likelihood of stunting was higher among older children, children with small size at birth, children whose mothers lived in large households, those who live in rural areas, and Central Africa. The likelihood of underweight was higher among older children, children with small size at birth, those who live in households with unimproved toilet facility, children whose mothers lived in large households, those who live in rural areas, and Central Africa. The odds of wasting were higher among children whose size at birth was small, those who lived in households with unimproved toilet facilities, those whose mothers were of the richest wealth quintile, and those who lived in rural areas.

**Discussion**

The study examined the association between birth weight and nutritional status as well as factors associated with undernutrition among children under five years using data from DHS.
Table 4. Fixed and random effects results on the association between birth weight and stunting among children in sub-Saharan Africa.

| Fixed effects | Model O | Model I | Model II | Model III | Model IV |
|---------------|---------|---------|----------|-----------|----------|
| aOR [95% CI]  | aOR [95% CI] | aOR [95% CI] | aOR [95% CI] | aOR [95% CI] |
| Birth Weight  |         |         |          |           |          |
| 2500g and above | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Below 2.5     | 1.65* [1.55, 1.75] | 1.68* [1.58, 1.78] |         |           |          |
| Sex of child  |         |         |          |           |          |
| Male          | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Female        | 0.75** [0.71, 0.75] | 0.72** [0.70, 0.74] |         |           |          |
| Age of child  |         |         |          |           |          |
| 0             | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| 1             | 2.98*** [2.87, 3.09] | 3.01*** [2.89, 3.12] |         |           |          |
| 2             | 4.12*** [3.96, 4.29] | 4.23*** [4.06, 4.40] |         |           |          |
| 3             | 3.32*** [3.17, 3.48] | 3.43*** [3.28, 3.60] |         |           |          |
| 4             | 2.20*** [2.08, 2.33] | 2.31*** [2.18, 2.44] |         |           |          |
| Birth order   |         |         |          |           |          |
| 1             | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| 2–4           | 0.89*** [0.86, 0.93] | 0.90*** [0.87, 0.94] |         |           |          |
| 5+            | 0.95*** [0.91, 0.98] | 0.92*** [0.88, 0.96] |         |           |          |
| Size of child at birth |         |         |          |           |          |
| Large         | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Average       | 1.22*** [1.19, 1.26] | 1.23*** [1.19, 1.27] |         |           |          |
| Small         | 1.67*** [1.61, 1.74] | 1.67*** [1.60, 1.74] |         |           |          |
| Maternal educational level |         |         |          |           |          |
| No education  | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Primary       | 0.90*** [0.88, 0.93] | 0.86*** [0.83, 0.89] |         |           |          |
| Secondary     | 0.59*** [0.56, 0.61] | 0.65*** [0.63, 0.68] |         |           |          |
| Higher        | 0.26*** [0.24, 0.29] | 0.40*** [0.35, 0.44] |         |           |          |
| Number of antenatal care visits |         |         |          |           |          |
| 0             | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| 1–3           | 0.89*** [0.85, 0.93] | 0.92*** [0.88, 0.97] |         |           |          |
| 4 or more     | 0.74*** [0.70, 0.77] | 0.79*** [0.76, 0.83] |         |           |          |
| Place of delivery |         |         |          |           |          |
| Home          | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Health facility | 0.80*** [0.77, 0.82] | 0.88*** [0.85, 0.91] |         |           |          |
| Others        | 1.06 [0.94, 1.20] | 1.07 [0.94, 1.21] |         |           |          |
| Postnatal care visits |         |         |          |           |          |
| No            | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Yes           | 0.87*** [0.85, 0.89] | 0.90*** [0.88, 0.93] |         |           |          |
| Mass media exposure |         |         |          |           |          |
| No            | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Yes           | 0.77*** [0.75, 0.79] | 0.87*** [0.84, 0.89] |         |           |          |
| Toilet facility |         |         |          |           |          |
| Improved      | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Unimproved    | 1.06*** [1.03, 1.09] | 1.00 [0.97, 1.03] |         |           |          |
| Drinking water source |         |         |          |           |          |
| Improved      | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Unimproved    | 0.99 [0.97, 1.02] | 0.97 [0.94, 1.00] |         |           |          |

(Continued)
conducted in 32 countries in SSA. The prevalence of low birth weight was 5.4%. The prevalence of low birth weight recorded in this study is lower compared to what was found in other previous studies in SSA (9.5%) [31], Iran (9%) [32], Ghana (9.7%) [33] and Nepal (9.4%) [34]. This finding could be attributed to the variations in study population and design. Moreover, country variations regarding the prevalence of low birth weight were observed. While South Africa had the highest (13.1%) prevalence, Chad recorded the lowest (0.9%). A possible reason for this finding could be the variations in nutritional, antenatal care attendance, and socio-cultural practices among the countries. For example, in South Africa, a lower proportion of

| Table 4. (Continued) | Model O | Model I | Model II | Model III | Model IV |
|-----------------------|---------|---------|----------|-----------|----------|
|                       | aOR [95% CI] | aOR [95% CI] | aOR [95% CI] | aOR [95% CI] |
| **Household size**    |         |         |          |           |          |
| Small                 | 1.00 [1.00,1.00] | 1.00 [1.00,1.00] |         |           |          |
| Medium                | 1.01 [0.98,1.04] | 1.01 [0.97,1.04] |         |           |          |
| Large                 | 1.10*** [1.05,1.14] | 1.13*** [1.08,1.19] |         |           |          |
| **Cooking fuel**      |         |         |          |           |          |
| Unclean               | 1.00 [1.00,1.00] | 1.00 [1.00,1.00] |         |           |          |
| Clean                 | 0.64*** [0.61,0.68] | 0.74*** [0.70,0.79] |         |           |          |
| **Wealth index**      |         |         |          |           |          |
| Poorest               | 1.00 [1.00,1.00] | 1.00 [1.00,1.00] |         |           |          |
| Poorer                | 0.96 [0.93,1.00] | 0.99 [0.95,1.03] |         |           |          |
| Middle                | 0.88*** [0.85,0.92] | 0.92*** [0.88,0.96] |         |           |          |
| Richer                | 0.77*** [0.74,0.80] | 0.83*** [0.79,0.87] |         |           |          |
| Richest               | 0.52*** [0.50,0.55] | 0.63*** [0.59,0.67] |         |           |          |
| **Place of residence**|         |         |          |           |          |
| Urban                 | 1.00 [1.00,1.00] | 1.00 [1.00,1.00] |         |           |          |
| Rural                 | 1.71*** [1.66,1.76] | 1.10*** [1.06,1.14] |         |           |          |
| **Subregions**        |         |         |          |           |          |
| West                  | 1.00 [1.00,1.00] | 1.00 [1.00,1.00] |         |           |          |
| East                  | 1.10*** [1.07,1.13] | 1.20*** [1.16,1.25] |         |           |          |
| Central               | 1.19*** [1.15,1.24] | 1.28*** [1.23,1.33] |         |           |          |
| Southern              | 0.86*** [0.79,0.94] | 1.15*** [1.04,1.26] |         |           |          |
| **Random effect result** | 0.017 [0.012,0.024] | 0.012 [0.008,0.019] | 0.013 [0.009,0.019] | 0.014 [0.010,0.020] | 0.011 [0.007,0.017] |
| PSU variance (95% CI) | 0.005 | 0.004 | 0.004 | 0.004 | 0.003 |
| ICC                   |         |         |          |           |          |
| LR Test               | 69.41 (<0.001) | 36.84 (<0.001) | 44.93 (<0.001) | 49.59 (<0.001) | 29.71 (<0.001) |
| Wald chi-square       | Reference | 9067.65*** | 2489.23*** | 1402.07*** | 9910.39*** |
| **Model fitness**     |         |         |          |           |          |
| Log-likelihood        | -68760.219 | -63436.358 | -67399.613 | -68030.929 | -62842.461 |
| AIC                   | 137524.4 | 126912.7 | 134823.2 | 136073.9 | 125752.9 |
| N                     | 110497 | 110497 | 110497 | 110497 | 110497 |
| Number of clusters    | 1608 | 1608 | 1608 | 1608 | 1608 |

aOR adjusted odds ratios; CI Confidence Interval; * p < 0.05, ** p < 0.01, *** p < 0.001
1 = Reference category PSU = Primary Sampling Unit; ICC = Intra-Class Correlation; LR Test = Likelihood ratio Test; AIC = Akaike’s Information Criterion

https://doi.org/10.1371/journal.pone.0269279.t004
Table 5. Fixed and random effects results on the association between birth weight and underweight among children in sub-Saharan Africa.

| Variables                     | Model O                  | Model I                  | Model II                 | Model III                | Model IV                 |
|-------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                               | aOR [95% CI]             |
| **Fixed effects**             |                          |                          |                          |                          |                          |
| Birth eight                   |                          |                          |                          |                          |                          |
| 2500g and above               | 1.00 [1.00, 1.00]        | 1.00 [1.00, 1.00]        |                          |                          |                          |
| Below 2.5                     | 1.79** [1.67, 1.91]      | 1.82** [1.70, 1.94]      |                          |                          |                          |
| Sex of child                  |                          |                          |                          |                          |                          |
| Male                          | 1.00 [1.00, 1.00]        | 1.00 [1.00, 1.00]        |                          |                          |                          |
| Sex                           | 0.76*** [0.73, 0.78]     | 0.75*** [0.73, 0.78]     |                          |                          |                          |
| Age of child                  |                          |                          |                          |                          |                          |
| 0                             | 1.00 [1.00, 1.00]        | 1.00 [1.00, 1.00]        |                          |                          |                          |
| 1                             | 1.74*** [1.67, 1.82]     | 1.77*** [1.69, 1.85]     |                          |                          |                          |
| 2                             | 1.84*** [1.76, 1.93]     | 1.90*** [1.81, 1.99]     |                          |                          |                          |
| 3                             | 1.51*** [1.42, 1.59]     | 1.58*** [1.49, 1.67]     |                          |                          |                          |
| 4                             | 1.36*** [1.27, 1.45]     | 1.46*** [1.36, 1.56]     |                          |                          |                          |
| Birth order                   |                          |                          |                          |                          |                          |
| 1                             | 1.00 [1.00, 1.00]        | 1.00 [1.00, 1.00]        |                          |                          |                          |
| 2–4                           | 0.96 [0.91, 1.00]        | 0.97 [0.93, 1.02]        |                          |                          |                          |
| 5+                            | 1.03 [0.98, 1.09]        | 1.02 [0.97, 1.08]        |                          |                          |                          |
| Size of child at birth        |                          |                          |                          |                          |                          |
| Large                         | 1.00 [1.00, 1.00]        | 1.00 [1.00, 1.00]        |                          |                          |                          |
| Average                       | 1.32*** [1.27, 1.37]     | 1.37*** [1.32, 1.43]     |                          |                          |                          |
| Small                         | 2.19*** [2.09, 2.29]     | 2.26*** [2.16, 2.37]     |                          |                          |                          |
| Maternal level of education   |                          |                          |                          |                          |                          |
| No education                  | 1.00 [1.00, 1.00]        | 1.00 [1.00, 1.00]        |                          |                          |                          |
| Primary                       | 0.63*** [0.60, 0.65]     | 0.71*** [0.69, 0.75]     |                          |                          |                          |
| Secondary                     | 0.45*** [0.43, 0.48]     | 0.60*** [0.53, 0.59]     |                          |                          |                          |
| Higher                        | 0.28*** [0.24, 0.32]     | 0.44*** [0.38, 0.51]     |                          |                          |                          |
| current working status        |                          |                          |                          |                          |                          |
| No                            | 1.00 [1.00, 1.00]        | 1.00 [1.00, 1.00]        |                          |                          |                          |
| Yes                           | 0.95*** [0.92, 0.98]     | 0.92*** [0.89, 0.95]     |                          |                          |                          |
| Marital status                |                          |                          |                          |                          |                          |
| Single                        | 1.00 [1.00, 1.00]        | 1.00 [1.00, 1.00]        |                          |                          |                          |
| Married                       | 0.98 [0.93, 1.03]        | 0.97 [0.92, 1.02]        |                          |                          |                          |
| Number of antenatal care visits|                          |                          |                          |                          |                          |
| 0                             | 1.00 [1.00, 1.00]        | 1.00 [1.00, 1.00]        |                          |                          |                          |
| 1–3                           | 0.79*** [0.75, 0.83]     | 0.84*** [0.79, 0.88]     |                          |                          |                          |
| 4 or more                     | 0.68*** [0.65, 0.72]     | 0.74*** [0.70, 0.78]     |                          |                          |                          |
| Place of delivery             |                          |                          |                          |                          |                          |
| Home                          | 1.00 [1.00, 1.00]        | 1.00 [1.00, 1.00]        |                          |                          |                          |
| Health facility               | 0.67*** [0.65, 0.70]     | 0.74*** [0.71, 0.77]     |                          |                          |                          |
| Others                        | 0.94 [0.82, 1.09]        | 1.03 [0.89, 1.19]        |                          |                          |                          |
| Postnatal care visits         |                          |                          |                          |                          |                          |
| No                            | 1.00 [1.00, 1.00]        | 1.00 [1.00, 1.00]        |                          |                          |                          |
| Yes                           | 0.90*** [0.87, 0.93]     | 0.93*** [0.90, 0.96]     |                          |                          |                          |
| Mass media exposure           |                          |                          |                          |                          |                          |
| No                            | 1.00 [1.00, 1.00]        | 1.00 [1.00, 1.00]        |                          |                          |                          |
| Yes                           | 0.69*** [0.67, 0.72]     | 0.84*** [0.81, 0.87]     |                          |                          |                          |

(Continued)
Table 5. (Continued)

| Variables               | Model O | Model I | Model II | Model III | Model IV |
|-------------------------|---------|---------|----------|-----------|----------|
|                         | aOR [95% CI] |
| **Toilet facility**     |         |         |          |           |          |
| Improved                | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Unimproved              | 1.33*** [1.28, 1.38] | 1.11*** [1.06, 1.15] |         |           |          |
| **Drinking water source** |       |         |          |           |          |
| Improved                | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Unimproved              | 1.00 [0.97, 1.04] | 0.95** [0.91, 0.98] |         |           |          |
| **Household size**      |         |         |          |           |          |
| Small                   | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Medium                  | 1.10*** [1.07, 1.14] | 1.01 [0.98, 1.05] |         |           |          |
| Large                   | 1.33*** [1.27, 1.40] | 1.10*** [1.05, 1.16] |         |           |          |
| **Cooking fuel**        |         |         |          |           |          |
| Unclean                 | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Clean                   | 0.57*** [0.53, 0.62] | 0.69*** [0.64, 0.76] |         |           |          |
| **Wealth index**        |         |         |          |           |          |
| Poorest                 | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Poorer                  | 0.92*** [0.88, 0.96] | 0.96 [0.92, 1.00] |         |           |          |
| Middle                  | 0.90*** [0.86, 0.95] | 0.96 [0.91, 1.01] |         |           |          |
| Richer                  | 0.84*** [0.79, 0.88] | 0.94* [0.89, 0.99] |         |           |          |
| Richest                 | 0.69*** [0.64, 0.73] | 0.91*** [0.84, 0.97] |         |           |          |
| **Place of residence**  |         |         |          |           |          |
| Urban                   | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Rural                   | 1.85*** [1.78, 1.92] | 1.17*** [1.12, 1.23] |         |           |          |
| **Subregions**          |         |         |          |           |          |
| West                    | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| East                    | 0.66*** [0.63, 0.68] | 0.76*** [0.73, 0.79] |         |           |          |
| Central                 | 1.04 [1.00, 1.08] | 1.10*** [1.05, 1.15] |         |           |          |
| Southern                | 0.42*** [0.37, 0.48] | 0.66*** [0.57, 0.76] |         |           |          |
| **Random effect result** |       |         |          |           |          |
| PSU variance (95% CI)   | 0.021 [0.015, 0.031] | 0.012 [0.007, 0.021] | 0.017 [0.011, 0.026] | 0.024 [0.017, 0.034] | 0.015 [0.009, 0.024] |
| ICC                     | 0.006 | 0.004 | 0.005 | 0.007 | 0.005 | |
| LR Test                 | 52.35 (<0.001) | 18.83 (<0.001) | 35.22 (<0.001) | 60.01 (<0.001) | 26.58 (<0.001) | |
| Wald chi-square         | Reference | 6415.28*** | 2167.25*** | 1649.01*** | 6887.51*** | |
| Model fitness           |         |         |          |           |          |
| Log-likelihood          | -51178.564 | -47677.997 | -49984.975 | -50289.332 | -47322.165 | |
| AIC                     | 102361.1 | 95398.19 | 99993.95 | 100590.7 | 94716.33 | |
| N                       | 110497 | 110497 | 110497 | 110497 | 110497 | |
| Number of clusters      | 1608 | 1608 | 1608 | 1608 | 1608 | |

aOR adjusted odds ratios; CI Confidence Interval;

*p < 0.05,
**p < 0.01,
***p < 0.001;

1 = Reference category PSU = Primary Sampling Unit; ICC = Intra-Class Correlation; LR Test = Likelihood ratio Test; AIC = Akaike’s Information Criterion

https://doi.org/10.1371/journal.pone.0269279.t005
### Table 6. Fixed and random effects results on the association between birth weight and wasting among children in sub-Saharan Africa.

| Variables                        | Model O | Model I | Model II | Model III | Model IV |
|----------------------------------|---------|---------|----------|-----------|----------|
|                                  | aOR [95% CI] |
| **Fixed effects**                |         |         |          |           |          |
| **Birth Weight**                 |         |         |          |           |          |
| 2500g and above                  | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |
| Below 2.5                        | 1.35*** [1.23, 1.48] | 1.35*** [1.23, 1.48] | 1.35*** [1.23, 1.48] | 1.35*** [1.23, 1.48] |
| **Sex of child**                 |         |         |          |           |          |
| Male                             | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |
| Female                           | 0.74*** [0.71, 0.78] |         | 0.74*** [0.71, 0.77] |         | 0.74*** [0.71, 0.77] |
| **Age of child**                 |         |         |          |           |          |
| 0                                | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |
| 1                                | 0.91*** [0.87, 0.96] |         | 0.92*** [0.87, 0.97] |         | 0.92*** [0.87, 0.97] |
| 2                                | 0.55*** [0.51, 0.58] |         | 0.55*** [0.52, 0.59] |         | 0.55*** [0.52, 0.59] |
| 3                                | 0.41*** [0.37, 0.44] |         | 0.41*** [0.38, 0.45] |         | 0.41*** [0.38, 0.45] |
| 4                                | 0.43*** [0.38, 0.47] |         | 0.44*** [0.40, 0.49] |         | 0.44*** [0.40, 0.49] |
| **Birth order**                  |         |         |          |           |          |
| 0                                | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |
| 2–4                              | 1.02 [0.95, 1.09] |         | 1.02 [0.95, 1.10] |         | 1.02 [0.95, 1.10] |
| 5+                               | 1.07 [0.99, 1.16] |         | 1.07 [0.98, 1.15] |         | 1.07 [0.98, 1.15] |
| **Size of child at birth**       |         |         |          |           |          |
| Large                            | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |
| Average                          | 1.24*** [1.18, 1.31] |         | 1.29*** [1.23, 1.36] |         | 1.29*** [1.23, 1.36] |
| Small                            | 1.79*** [1.68, 1.91] |         | 1.85*** [1.73, 1.97] |         | 1.85*** [1.73, 1.97] |
| **Maternal age (years)**         |         |         |          |           |          |
| 15–19                            | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |
| 20–49                            | 0.96 [0.87, 1.05] |         | 0.99 [0.91, 1.09] |         | 0.99 [0.91, 1.09] |
| **Maternal educational level**   |         |         |          |           |          |
| No education                     | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |
| Primary                          | 0.58*** [0.55, 0.61] |         | 0.68*** [0.64, 0.72] |         | 0.68*** [0.64, 0.72] |
| Secondary                        | 0.55*** [0.52, 0.59] |         | 0.63*** [0.59, 0.68] |         | 0.63*** [0.59, 0.68] |
| Higher                           | 0.48*** [0.40, 0.57] |         | 0.59*** [0.49, 0.70] |         | 0.59*** [0.49, 0.70] |
| **Current working status**       |         |         |          |           |          |
| No                               | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |
| Yes                              | 0.82*** [0.79, 0.86] |         | 0.80*** [0.77, 0.84] |         | 0.80*** [0.77, 0.84] |
| **Marital status**               |         |         |          |           |          |
| Single                           | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |
| Married                          | 1.10*** [1.02, 1.18] |         | 1.06 [0.99, 1.15] |         | 1.06 [0.99, 1.15] |
| **Number of antenatal care visits** |         |         |          |           |          |
| 0                                | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |
| 1–3                              | 0.79*** [0.73, 0.74] |         | 0.82*** [0.77, 0.88] |         | 0.82*** [0.77, 0.88] |
| 4 or more                        | 0.68*** [0.64, 0.73] |         | 0.71*** [0.66, 0.77] |         | 0.71*** [0.66, 0.77] |
| **Place of delivery**            |         |         |          |           |          |
| Home                             | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |
| Health facility                  | 0.77*** [0.74, 0.82] |         | 0.80*** [0.76, 0.84] |         | 0.80*** [0.76, 0.84] |
| Other                            | 0.74*** [0.64, 0.73] |         | 0.81 [0.65, 1.02] |         | 0.81 [0.65, 1.02] |
| **Postnatal care visits**        |         |         |          |           |          |
| No                               | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |         | 1.00 [1.00, 1.00] |
| Yes                              | 1.09*** [1.04, 1.14] |         | 1.10*** [1.05, 1.15] |         | 1.10*** [1.05, 1.15] |

(Continued)
### Table 6. (Continued)

| Variables                  | Model O | Model I | Model II | Model III | Model IV |
|----------------------------|---------|---------|----------|-----------|----------|
|                            | aOR [95% CI] | aOR [95% CI] | aOR [95% CI] | aOR [95% CI] |
| Mass media exposure        |         |         |          |           |          |
| No                         | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Yes                        | 0.75***[0.71, 0.78] | 0.87***[0.83, 0.92] |         |           |          |
| Toilet facility            |         |         |          |           |          |
| Improved                   | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Unimproved                 | 1.44***[1.37, 1.52] | 1.20***[1.14, 1.27] |         |           |          |
| Drinking water source      |         |         |          |           |          |
| Improved                   | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Unimproved                 | 0.98 [0.94, 1.03] | 0.93***[0.89, 0.98] |         |           |          |
| Household size             |         |         |          |           |          |
| Small                      | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Medium                     | 1.11***[1.06, 1.17] | 1.01 [0.96, 1.06] |         |           |          |
| Large                      | 1.35***[1.26, 1.44] | 1.03 [0.96, 1.11] |         |           |          |
| Cooking fuel               |         |         |          |           |          |
| Unclean                    | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Clean                      | 0.68***[0.61, 0.75] | 0.77***[0.69, 0.86] |         |           |          |
| Wealth index               |         |         |          |           |          |
| Poorest                    | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Poorer                     | 0.89***[0.83, 0.94] | 0.92***[0.87, 0.98] |         |           |          |
| Middle                     | 0.94 [0.88, 1.00] | 1.00 [0.94, 1.07] |         |           |          |
| Richer                     | 0.99 [0.93, 1.07] | 1.10***[1.03, 1.19] |         |           |          |
| Richest                    | 1.02 [0.94, 1.11] | 1.27***[1.16, 1.40] |         |           |          |
| Place of residence         |         |         |          |           |          |
| Urban                      | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| Rural                      | 1.43***[1.36, 1.51] | 1.07***[1.01, 1.14] |         |           |          |
| Subregions                 |         |         |          |           |          |
| West                       | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |         |           |          |
| East                       | 0.56***[0.54, 0.59] | 0.68***[0.64, 0.72] |         |           |          |
| Central                    | 0.92***[0.88, 0.98] | 0.98**[0.92, 1.04] |         |           |          |
| Southern                   | 0.50***[0.42, 0.59] | 0.80***[0.67, 0.96] |         |           |          |
| Random effect result       |         |         |          |           |          |
| PSU variance (95% CI)      | 0.020 [0.011, 0.035] | 0.016 [0.008, 0.032] | 0.018 [0.010, 0.033] | 0.021 [0.012, 0.036] | 0.017 [0.009, 0.033] |
| ICC                        | 0.006 | 0.005 | 0.005 | 0.006 | 0.005 |
| LR Test                    | 16.11 (<0.001) | 11.24 (<0.001) | 13.29 (<0.001) | 17.14 (<0.001) | 12.41 (<0.001) |
| Wald chi-square            | Reference | 3086.69*** | 723.34*** | 705.46*** | 3360.41*** |
| Model fitness              |         |         |          |           |          |
| Log-likelihood             | -31566.216 | -29934.673 | -31186.784 | -31194.6 | -29762.046 |
| AIC                        | 63136.43 | 59915.35 | 62397.57 | 62401.2 | 59598.09 |
| N                          | 110497 | 110497 | 110497 | 110497 | 110497 |
| Number of clusters         | 1608 | 1608 | 1608 | 1608 | 1608 |

aOR adjusted odds ratios; CI Confidence Interval; 
* p < 0.05, ** p < 0.01, *** p < 0.001
1 = Reference category PSU = Primary Sampling Unit; ICC = Intra-Class Correlation; LR Test = Likelihood ratio Test; AIC = Akaike’s Information Criterion

https://doi.org/10.1371/journal.pone.0269279.t006
women attend 5 or more antenatal care visits [35] and this could increase their chances of giving birth to low birth weight babies.

The study also found that the prevalence of wasting, underweight, and stunting to be 8.1%, 17.0%, and 31.3%, respectively. The prevalence of undernutrition (i.e., wasting, stunting, and underweight) recorded in this study is similar to what was reported in a previous study [12], which found that the prevalence of wasting, stunting, and underweight were 7.1%, 33.2%, and 16.3% respectively. However, compared to another study in Bangladesh [20], this study has a relatively lower prevalence of undernutrition. The highest prevalence of wasting (21.5%) and underweight (37.1%) were found in Niger while the highest prevalence of stunting (51.7%) was found in Burundi. A similar observation was made in another previous study in SSA [12].

This finding could be that the countries (Niger and Burundi) are faced with great geographical disadvantages in accessing arable land for agricultural purposes [36]. It could also be that the countries encounter issues of adverse climatic conditions (e.g., desertification, hot temperatures) that make it impossible for the successful farming related activities and limited food supply [37]. The finding of the study indicates that undernutrition among children under five years in countries in SSA persists with contextual variations. Therefore, policymakers should direct more efforts in the development and implementation of nutrition-sensitive programs (e.g., complimentary feeding, dietary supplementation) that will help reduce or at best eliminate the problem in countries in SSA [38].

Similar to other previous studies [20–22, 24, 25], this study found that children with low birth weight were more likely to be stunted. One of the major factors that account for low birth weight among children in developing countries is intra-uterine growth retardation (IUGR) [39]. Usually, babies who suffer from IUGR are medically born to be malnourished [20]. Research has shown that most of the cases of IUGR in developing countries emanate from mother’s malnutrition status, low maternal weight, and stature during conception [40]. Iron deficiency has been found to have a linkage with IUGR, hence with low birth weight [41]. Another possible reason for the finding could be that mothers do not provide children with the appropriate food supplementation as children transition from the exclusive breastfeeding stage to the weaning stage where complementary foods should be provided [22]. This finding indicates that parents still need to be educated about the need to provide children with complementary foods as the children are weaned from the breast. This will help reduce the rate of stunting among children under five years in SSA.

Consistent with findings of previous studies [20, 21, 38, 42], this study found that children with low birth weight were more likely to be underweight. Children with low birth weight could be prone to contracting diseases and infections such as diarrhea, anemia, and respiratory infections, thereby increasing their likelihood of becoming underweight [20]. Also, the low utilization of maternal health services such as antenatal care and postnatal care could contributed to the observed association found in this study [38]. This finding suggests that there is a strong association between low birth weight and underweight. Therefore, policy makers should intensify efforts to reduce the rate of low birth rate among children under five years through education as this will help address underweight among under five children in SSA.

Similar to other previous studies [20, 42], this study found that children with low birth weight were more likely to be wasted. A plausible reason for this finding could be that there is a change in nutritional pattern in recent years as a result of the economic instabilities in countries in SSA, increasing the rate of nutritional problems [42]. The present association could be that the mothers are not empowered, therefore, their ability to cater for their nutritional needs and that of their children is curtailed, making them give birth to children with low birth weight which is directly linked to wasting [43]. This finding indicates that mothers should be empowered before, during, and after birth in order for them to be able to provide the
appropriate nutrition for their children as this will help reduce wasting among children under five years in SSA.

**Strengths and limitations**

This was a comprehensive study that showed the association between low birth weight and undernutrition indices among children under-five across 32 countries in SSA. The current study provides useful epidemiological insights and add to existing literature on child nutrition. Given the use of nationally representative datasets and the use of a robust statistical method that considered individual, household and contextual level factors, findings are important and generalizable. However, due to the cross-sectional nature of the design, causal link on the associations noted cannot be established. The time when the surveys were conducted varied by up to nine years across studied countries and needs to be considered as it may affect the comparisons due to the time effect.

**Conclusions**

Our study has demonstrated that low birth weight is a key determinant for undernutrition among children under-five in SSA. Current findings point to the need for policy makers to give special attention to improving the nutritional status of children under five in SSA by implementing measures (e.g., regular nutritional counselling) and other nutrition-sensitive interventions (e.g., complementary feeding, nutritional supplementation, dietary diversity initiatives) aimed at enhancing the weight of children. Empowering women could also play a significant role in fighting undernutrition among children under five years in SSA. Future research could target intervention programmes to address low birth weight and undernutrition among children under five in SSA countries using longitudinal designs.

**Acknowledgments**

We are grateful to Measure DHS for granting us access to the data used for this study.

**Author Contributions**

**Conceptualization:** Richard Gyan Aboagye, Bright Opoku Ahinkorah, Abdul-Aziz Seidu.

**Data curation:** Richard Gyan Aboagye, Bright Opoku Ahinkorah, Abdul-Aziz Seidu.

**Formal analysis:** Richard Gyan Aboagye, Bright Opoku Ahinkorah, Abdul-Aziz Seidu.

**Funding acquisition:** John Elvis Hagan, Jr.

**Investigation:** Richard Gyan Aboagye, Bright Opoku Ahinkorah, Abdul-Aziz Seidu, James Boadu Frimpong, Anita Gracious Archer, Collins Adu, John Elvis Hagan, Jr, Hubert Amu, Sanni Yaya.

**Methodology:** Richard Gyan Aboagye, Bright Opoku Ahinkorah, Abdul-Aziz Seidu, James Boadu Frimpong, Anita Gracious Archer, Collins Adu, John Elvis Hagan, Jr, Hubert Amu, Sanni Yaya.

**Software:** Richard Gyan Aboagye, Bright Opoku Ahinkorah, Abdul-Aziz Seidu.

**Supervision:** Bright Opoku Ahinkorah, John Elvis Hagan, Jr.

**Validation:** Richard Gyan Aboagye, Bright Opoku Ahinkorah, Abdul-Aziz Seidu, James Boadu Frimpong, Anita Gracious Archer, Collins Adu, John Elvis Hagan, Jr, Hubert Amu, Sanni Yaya.
Visualization: Richard Gyan Aboagye, Bright Opoku Ahinkorah, Abdul-Aziz Seidu, James Boadu Frimpong, Anita Gracious Archer, Collins Adu, John Elvis Hagan, Jr, Hubert Amu, Sanni Yaya.

Writing – original draft: Richard Gyan Aboagye, Bright Opoku Ahinkorah, Abdul-Aziz Seidu, James Boadu Frimpong, Anita Gracious Archer, Collins Adu, John Elvis Hagan, Jr, Hubert Amu, Sanni Yaya.

Writing – review & editing: Richard Gyan Aboagye, Bright Opoku Ahinkorah, Abdul-Aziz Seidu, James Boadu Frimpong, Anita Gracious Archer, Collins Adu, John Elvis Hagan, Jr, Hubert Amu, Sanni Yaya.

References

1. Majamanda J., Maureen D., Munkhondi A. T. M., & Carrier J. The effectiveness of community-based nutrition education on the nutrition status of under-five children in developing countries. A systematic review. Malawi Medical Journal 2014; 26(4):115–118. PMID: 26167260

2. Ahmed T., & Ahmed A. S. Reducing the burden of malnutrition in Bangladesh. Bmj 2009; 339.

3. Jesmin A., Yamamoto S. S., Malik A. A., & Haque M. A. Prevalence and determinants of chronic malnutrition among preschool children: a cross-sectional study in Dhaka City, Bangladesh. Journal of Health, Population, and Nutrition 2011; 29(5): 494. https://doi.org/10.3329/jhpn.v29i5.8903 PMID: 22106755

4. Abuya B. A., Ciera J., & Kimani-Murage E. Effect of mother’s education on child’s nutritional status in the slums of Nairobi. BMC pediatrics 2012; 12(1): 1–10. https://doi.org/10.1186/1471-2431-12-80 PMID: 22721431

5. Hoelscher D. M., Kirk S., Ritchie L., Cunningham-Sabo L., & Academy Positions Committee. Position of the Academy of Nutrition and Dietetics: interventions for the prevention and treatment of pediatric overweight and obesity. Journal of the Academy of Nutrition and Dietetics 2013; 113(10): 1375–1394. https://doi.org/10.1016/j.jand.2013.08.004 PMID: 24054714

6. Khanam R., Nghiem H. S., & Rahman M. M. The impact of childhood malnutrition on schooling: evidence from Bangladesh. Journal of Biosocial Science 2011; 43(4): 437–451. https://doi.org/10.1017/S0021932011000149 PMID: 21450120

7. Rahman M. S., Mushifquee M., Masud M. S., & Howlader T. Association between malnutrition and anemia in under-five children and women of reproductive age: Evidence from Bangladesh Demographic and Health Survey 2011. PloS one 2019; 14(7): e0219170. https://doi.org/10.1371/journal.pone.0219170 PMID: 31269082

8. Rahman M. S., Rahman M. A., Maniruzzaman M., & Howlader M. H. Prevalence of undernutrition in Bangladeshi children. Journal of Biosocial Science 2020; 52(4): 596–609. https://doi.org/10.1017/S0021932019000683 PMID: 31658911

9. Gulati J. K. Child malnutrition: trends and issues. The Anthropologist 2010; 12(2): 131–140.

10. Bhutta Z. A., Berkley J. A., Bandsma R. H., Kerac M., Trehan I., & Briand A. Severe childhood malnutrition. Nature Reviews Disease Primers 2017; 3(1):1–18. https://doi.org/10.1038/nrdp.2017.67 PMID: 28933421

11. McDonald C. M., Olofin I., Flaxman S., Fawzi W. W., Spiegelman D., Caulfield L. E., & Nutrition Impact Model Study. The effect of multiple anthropometric deficits on child mortality: meta-analysis of individual data in 10 prospective studies from developing countries. The American Journal of Clinical Nutrition 2013 97(4): 896–901. https://doi.org/10.3945/ajcn.112.047639 PMID: 23426036

12. Akombi B. J., Agho K. E., Hall J. J., Wall N., Renzaho A., & Merom D. Stunting, wasting and underweight in sub-Saharan Africa: a systematic review. International Journal of Environmental Research and Public Health 2017; 14(8): 863. https://doi.org/10.3390/ijerph14080863 PMID: 28788108

13. Akombi B. J., Agho K. E., Merom D., Renzaho A. M., & Hall J. J. Child malnutrition in sub-Saharan Africa: A meta-analysis of demographic and health surveys (2006–2016). PloS One 2017; 12(5): e0177338. https://doi.org/10.1371/journal.pone.0177338 PMID: 28494007

14. Kimani-Murage E. W., Muthuri S. K., Oti S. O., Mutua M. K., Van De Vijver S., & Kyobutungi C. Evidence of a double burden of malnutrition in urban poor settings in Nairobi, Kenya. PloS One 2015; 10 (6): e0129943. https://doi.org/10.1371/journal.pone.0129943 PMID: 26098561

15. Kolčič I. Double burden of malnutrition: A silent driver of double burden of disease in low–and middle–income countries. Journal of Global Health 2012; 2(2). https://doi.org/10.7189/jogh.02.020303 PMID: 23289074
16. Kusuda S., Fujimura M., Uchiyama A., Totsu S., & Matsunoki K. Trends in morbidity and mortality among very-low-birth-weight infants from 2003 to 2008 in Japan. *Pediatric Research* 2012; 72(5): 531–538. https://doi.org/10.1038/pr.2012.114 PMID: 22927747

17. Hong R., & Ruiz Beltran M. Low birth weight as a risk factor for infant mortality in Egypt. *EMJH-Eastern Mediterranean Health Journal* 2008; 14 (5): 992–1002, 2008. PMID: 19161070

18. Ratnasiri A. W., Parry S. S., Ariel V. N., DeLacy I. H., Halliday L. A., DiLibero R. J., et al. Recent trends, risk factors, and disparities in low birth weight in California, 2005–2014: a retrospective study. *Maternal Health, Neonatology and Perinatology* 2018; 4(1):1–13.

19. Cole C. R., Hansen N. I., Higgins R. D., Ziegler T. R., & Stoll B. J. Very low birth weight preterm infants with surgical short bowel syndrome: incidence, morbidity and mortality, and growth outcomes at 18 to 22 months. *Pediatrics* 2008; 122(3):e573–e582. https://doi.org/10.1542/peds.2007-3449 PMID: 18762491

20. Rahman M. S., Howlader T., Masud M. S., & Rahman M. L. Association of low-birth weight with malnutrition in children under five years in Bangladesh: do mother’s education, socio-economic status, and birth interval matter?. *PloS One* 2016; 11(6):e0157814. https://doi.org/10.1371/journal.pone.0157814 PMID: 27356862

21. Khang H. T., Nomura S., Yoneoka D., Ueda P., & Shibuya K. Risk factors and regional variations of malnutrition among children under 5 in Myanmar: cross-sectional analyses at national and subnational levels. *BMJ Open* 2019; 9(9): e030894. https://doi.org/10.1136/bmjopen-2019-030894 PMID: 31501127

22. Nshimiyiro A., Hedd-Gauthier B., Mutaganzwa C., Kirk C. M., Beck K., Ndayisaba A., et al. Risk factors for stunting among children under five years: a cross-sectional population-based study in Rwanda using the 2015 Demographic and Health Survey. *BMC Public Health* 2019; 19(1):1–10. https://doi.org/10.1186/s12889-019-6504-z PMID: 30744614

23. Amare Z. Y., Ahmed M. E., & Mehari A. Determinants of nutritional status among children under age 5 in Ethiopia: further analysis of the 2016 Ethiopia demographic and health survey. *Globalization and Health* 2019; 15(1):1–11. https://doi.org/10.1186/s12992-019-0505-7 PMID: 31694661

24. Titaley C. R., Ariawan I., Hapsari D., Muasyaroh A., & Dibley M. J. Determinants of the stunting of children under two years old in Indonesia: a multilevel analysis of the 2013 Indonesia Basic Health Survey. *Nutrients* 2019; 11(6):1106. https://doi.org/10.3390/nu11051106 PMID: 31109058

25. Corsi D. J., Neuman M., Finlay J. E., & Subramanian S. Demographic and health surveys: a profile. *International Journal of Epidemiology* 2012; 41(6): 1602–1613. https://doi.org/10.1093/ije/dys184 PMID: 23146108

26. Allaga, A., & Rullin, R. *Cluster optimal sample size for demographic and health surveys*. Paper presented at the 7th International Conference on Teaching Statistics–ICOTS. 2006.

27. World Health Organization. *WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age* methods and development. World Health Organization. 2006.

28. Ntenda P. A. M. Association of low birth weight with undernutrition in preschool-aged children in Malawi. *Nutrition Journal* 2019; 18(1):1–15. https://doi.org/10.1186/s12888-019-6504-z PMID: 31477113

29. Sinha B., Taneja S., Chowdhury R., Mazumder S., Rongsen-Chandola T., Upadhyay R. P., et al. Low-birthweight infants born to short-stature mothers are at additional risk of stunting and poor growth velocity: Evidence from secondary data analyses. *Maternal & Child Nutrition* 2018; 14(1):e12504. https://doi.org/10.1111/mcn.12504 PMID: 28840655

30. Aboagye RG, Seidu AA, Ahinkorah BO, Arthur-Holmes F, Cadri A, Dadzie LK, et al. Dietary Diversity and Undernutrition in Children Aged 6–23 Months in Sub-Saharan Africa. *Nutrients*. 2021; 13(10):3431. https://doi.org/10.3390/nu13103431 PMID: 34684435

31. Tessem A. T., Tamirat K. S., Tessema Z. T., Tamirat K. S., Teshale A. B., & Tesema G. A. Prevalence of low birth weight and its associated factor at birth in Sub-Saharan Africa: A generalized linear mixed model. *PloS One* 2021; 16(3): e0248417. https://doi.org/10.1371/journal.pone.0248417 PMID: 33705473

32. Sharifi N., Dolatian M., Pakzad R., & Yadegari L. The relationship of the structural and intermediate social determinants of health with low birth weight in Iran: A systematic review and meta-analysis. *Scientific Journal of Kurdistan University of Medical Sciences* 2018; 23(2): 21–36.

33. Agbozo F., Abubakari A., Der J., & Jahn A. Prevalence of low birth weight, macrosomia and stillbirth and their relationship to associated maternal risk factors in Hohoe Municipality, Ghana. *Midwifery* 2016; 40: 200–206. https://doi.org/10.1016/j.midw.2016.06.016 PMID: 27474932

34. Kandel K. P., & Kafle S. Risk factors associated with low birth weight among deliveries at bharatpur hospital. *Journal of Nepal Health Research Council* 2017; 15(2): 169–173. https://doi.org/10.3126/jnhrc.v15i2.18208 PMID: 29016589
35. Tshotetsi L., Dzikiti L., Hajison P., & Feresu S. Maternal factors contributing to low birth weight deliveries in Tshwane District, South Africa. *PloS one* 2019; 14(3): e0213058. https://doi.org/10.1371/journal.pone.0213058 PMID: 30822317

36. Chigbu U. E. Masculinity, men and patriarchal issues aside: How do women’s actions impede women’s access to land? Matters arising from a peri-rural community in Nigeria. *Land Use Policy* 2019; 81:39–48.

37. Ogilvie A., Mahe G., Ward J., Serpantie G., Lemoalle J., Morand P., et al. Water, agriculture and poverty in the Niger River basin. *Water International* 2010; 35(5): 594–622.

38. He Z., Bishwajit G., Yaya S., Cheng Z., Zou D., & Zhou Y. Prevalence of low birth weight and its association with maternal body weight status in selected countries in Africa: a cross-sectional study. BMJ Open 2018; 8(8): e020410. https://doi.org/10.1136/bmjopen-2017-020410 PMID: 30158218

39. Alisjahbana B., Rivami D. S., Octavia L., Susilawati N., Pangaribuan M., Alisjahbana A., et al. Intrauterine growth retardation (IUGR) as determinant and environment as modulator of infant mortality and morbidly; the Tanjungsari Cohort Study in Indonesia. *Asia Pacific Journal of Clinical Nutrition* 2019; 28 (Supplement 1). https://doi.org/10.6133/apjcn.201901_28(S1).0002 PMID: 30729772

40. Keyes L. E., Armaza F. J., Niermeyer S., Vargas E., Young D. A., & Moore L. G. Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia. *Pediatric research* 2003; 54(1): 20–25. https://doi.org/10.1203/01.PDR.0000069846.64389.DC PMID: 12700368

41. Abu-Ouf N. M., & Jan M. M. The impact of maternal iron deficiency and iron deficiency anemia on child’s health. *Saudi Medical Journal* 2015; 36(2):146. https://doi.org/10.15537/smj.2015.2.10289 PMID: 25719576

42. Yaya S., Uthman O. A., Ekholuenetale M., Bishwajit G., & Adjivanou V. Effects of birth spacing on adverse childhood health outcomes: evidence from 34 countries in sub-Saharan Africa. *The Journal of Maternal-Fetal & Neonatal Medicine* 2020; 33(20): 3501–3508. https://doi.org/10.1080/14767058.2019.1576623 PMID: 30696314

43. Yaya S., Odusina E. K., Uthman O. A., & Bishwajit G. What does women’s empowerment have to do with malnutrition in Sub-Saharan Africa? Evidence from demographic and health surveys from 30 countries. *Global Health Research and Policy* 2020; 5(1): 1–11.