Variation in the Stable Carbon and Nitrogen Isotope Composition of Plants and Soil along a Precipitation Gradient in Northern China

Jian-Ying Ma1,2, Wei Sun3*, Xiao-Ning Liu1, Fa-Hu Chen2

1 Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, People’s Republic of China, 2 Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou, People’s Republic of China, 3 Institute of Grassland Science, Key Laboratory of Vegetation Ecology (Ministry of Education), Northeast Normal University, Changchun, People’s Republic of China

Abstract

Water availability is the most influential factor affecting plant carbon (δ13C) and nitrogen (δ15N) isotope composition in arid and semi-arid environments. However, there are potential differences among locations and/or species in the sensitivity of plant δ13C and δ15N to variation in precipitation, which are important for using stable isotope signatures to extract paleovegetation and paleo-climate information. We measured δ13C and δ15N of plant and soil organic matter (SOM) samples collected from 64 locations across a precipitation gradient with an isotherm in northern China. δ13C and δ15N for both C3 and C4 plants decreased significantly with increasing mean annual precipitation (MAP). The sensitivity of δ13C to MAP in C3 plants (-0.6 ± 0.07‰/100 mm) was twice as high as that in C4 plants (-0.3 ± 0.08‰/100 mm). Species differences in the sensitivity of plant δ13C and δ15N to MAP were not observed among three main dominant plants. SOM became depleted in 13C with increasing MAP, while no significant correlations existed between δ15N of SOM and MAP. We conclude that water availability is the primary environmental factor controlling the variability of plant δ13C and δ15N and soil δ13C in the studied arid and semi-arid regions. Carbon isotope composition is useful for tracing environmental precipitation changes. Plant nitrogen isotope composition can reflect relative openness of ecosystem nitrogen cycling.

Introduction

In drought-prone ecosystems, water availability controls ecosystem structure and processes by affecting long-term balances between ecosystem inputs and outputs of elements and the cycling of carbon and nutrients within ecosystems [1]. The effects of water availability on nutrient cycling in ecosystems are complex. Studies along natural gradients of water availability are helpful and can address these controls [2]. Plant performance along environmental gradients offers one way to evaluate potential plant responses to climate change [3]. Stable carbon and nitrogen isotopic signatures (δ13C and δ15N) of plants and soil can serve as valuable non-radioactive tracers and nondestructive integrators of how plants today and in the past have integrated with and responded to their abiotic and biotic environments [4,5,6].

Plants discriminate against 13CO2 during photosynthetic CO2 fixation in ways that reflect plant metabolism and environmental conditions. Differences between carboxylation reactions induce the disparate photosynthetic 13C fractionation and response to changes in environmental conditions between the C3 and C4 photosynthetic pathways [7]. Carbon isotopic composition is affected by the ratio of ambient and intercellular humidities and should therefore reflect changes in the energy budgets of leaves, which are themselves influenced by stomatal conductance [8]. C3 plants growing under water-stressed conditions are expected to be enriched in 13C compared to plants growing under optimal water conditions [8]. Indeed, negative correlations between mean annual precipitation (MAP) and δ13C value of C3 plants have been demonstrated in a number of studies [5,9,10,11]. In contrast to C3 plants, the δ13C values of C4 plants are expected to be less sensitive to water stress [12]. Accordingly, no correlation between the δ13C values of C4 plants and water availability (e.g. precipitation) is commonly observed [5,10,13].

The 13C/12C ratios of soil organic matter (SOM) are influenced by both the relative abundance and δ13C values of C3 and C4 species as plants are the primary C sources of SOM. Therefore, the δ13C values of SOM in loess and paleosols can be used to extract paleoclimate and associated vegetation composition information [10,14]. However, paleovegetation reconstruction using δ13C of SOM could introduce errors without correction for the effects of precipitation on plant δ13C [10].

Plant and soil nitrogen isotopic composition (δ15N) is related to the environmental variables and availability of nutrients and water; therefore, it can be used as an indicator of ecosystem N cycling on different spatial and temporal scales [6,15]. The changes in δ15N values in both soils and plants along natural
precipitation gradients can be used to identify the pattern of nitrogen losses relative to turnover among these sites [2]. An enrichment of 15N in soil and plant samples has been demonstrated for precipitation gradients within the arid desert environments [16,17,18]. Following rain events, processes that cause the loss of N discriminate against the heavier 15N isotope, favoring larger proportional loss of 14N and increasing 15N of the remaining N in ecosystems [19]. Handley et al. [17] proposed that the observed negative correlations between plant δ^{15}N values and precipitation are a product of water availability and soil N sources during plant growth. As a result of difference in mycorrhizal association and presence or absence of N$_2$-fixing symbiosis, species-dependent sensitivity of δ^{15}N to variation in MAP may confound correlations between plant δ^{15}N values and precipitation [5,13,20,21]. For example, δ^{15}N in N$_2$-fixing plant is expected to be not sensitive to changes in precipitation [21,22].

Water availability, measured as rainfall, is argued to be the most influential factor affecting plant δ^{13}C and δ^{15}N in semi-arid and arid environments [5,11,15,21]. The relationships between rainfall and plant C and N isotopic composition have been demonstrated in many regions, but the sensitivity of plant C and N isotopic composition to variation in precipitation varies significantly among different locations and/or different species composition [10]. In this study, in order to eliminate the temperature influence and focus on precipitation effect, we examined large-scale patterns in δ^{13}C and δ^{15}N of plant and soil organic matter across a regional precipitation gradient along an isotherm with mean annual temperature of 8°C in northern China (Fig. 1). Questions addressed include: what is the response of C and N isotopic signatures in both plant and soil to a precipitation gradient in northern China; how do C$_3$ and C$_4$ plants differ in their response to changes in precipitation; and whether there are species specific differences in the response of stable carbon and nitrogen isotopic signatures to the precipitation gradient.

Results

Plant Carbon and Nitrogen Stable Isotope Composition

The δ^{13}C values of all samples ranged from -31.1% to -11.6% and fell into two distinct groups. The δ^{13}C values of C$_4$ plants varied from -31.1% to -29.9%, while the δ^{13}C values of C$_3$ plants had a much narrower range from -15.3% to -11.6% (Table S1). The δ^{15}N values of C$_3$ and C$_4$ plants ranged from -5.1% to 13.0% and from -3.2% to 12.4%, respectively (Table S1). Although plant δ^{13}C and δ^{15}N values were significantly correlated, the model explained very little of the variation ($R^2<0.2$, $P<0.05$). There were no significant differences between C$_3$ and C$_4$ photosynthetic pathways in the slope of linear correlation (Table 1; $P=0.45$).

Correlations between Mean Annual Precipitation and Plant Stable Isotope Composition

Significant negative correlations were found between plant δ^{13}C values and mean annual precipitation in both C$_3$ (Fig. 3; $R^2=0.35$, $P<0.01$) and C$_4$ (Fig. 3; $R^2=0.31$, $P<0.01$) plants. The regression slope of δ^{13}C to precipitation (Table 1; $P<0.01$) in C$_3$ plants ($-0.6\pm0.07\%/100$ mm) was significantly greater than that of C$_4$ plants ($-0.3\pm0.08\%/100$ mm).

Plant δ^{15}N showed a significantly negative correlation with precipitation (Fig. 4; $R^2=0.26$, $P<0.01$). The regression slope of δ^{15}N to precipitation is $-1.0\pm0.1\%/100$ mm. The δ^{13}C value of three dominant C$_3$ species was correlated negatively with the amount of precipitation (Fig. 5a). There were no differences among *Nitraria sibirica* Pall., *Reaumuria soongarica* (Pall.) Maxim. and *Hedysarum mongolicum* Turcz. in the sensitivity of leaf δ^{13}C and δ^{15}N to variation in precipitation (Table 1; $P>0.05$). The δ^{15}N values of *H. mongolicum* (Fig. 5b; $R^2=0.67$, $P=0.002$) and *R. soongarica* (Fig. 5b; $R^2=0.31$, $P=0.003$) were significantly negatively correlated with mean annual precipitation. No significant correlation existed between δ^{15}N values of *N. sibirica* (Fig. 5b; $R^2=0.002$, $P=0.83$) and mean annual precipitation.

Correlations between Mean Annual Precipitation and the Carbon and Nitrogen Isotope Composition of Soil Organic Matter

The δ^{13}C and δ^{15}N values of soil organic matter were plotted against mean annual precipitation in Fig. 6. Soil organic matter δ^{13}C and δ^{15}N tended to decrease with increasing mean annual precipitation, but only the relationship between the δ^{13}C values of soil organic matter and precipitation was significant (Fig. 6a; $R^2=0.17$, $P=0.003$). The response of soil δ^{13}C to precipitation amount is $-0.4\pm0.1\%/100$ mm for the precipitation range of 25–600 mm. No significant correlations existed between δ^{15}N values of soil organic matter and mean annual precipitation (Fig. 6b; $R^2=0.012$, $P=0.45$).

Discussion

Carbon Isotopes

Plants balance their needs between CO$_2$ intake for photosynthesis and conservation of water by adjusting the conductance of their leaf stomata. An increase in precipitation (water availability) would result in an increase in the stomatal conductance that in turn causes a decrease in the plant δ^{13}C value [10,12]. For C$_3$ species, significant negative correlation between plant δ^{13}C and water availability, indicated by precipitation, has been observed in many regions [3,9,10,11,23,24,25,26]. Similarly, we observed that plant δ^{13}C correlated negatively with MAP across a rainfall gradient ranging from 25 mm to 600 mm in northern China. The sensitivity of δ^{13}C response of C$_3$ plants to annual precipitation ($-0.6\pm0.07\%$/100 mm) in our study was comparable with that reported for the Chinese Loess Plateau (-0.7%/100 mm) [10]. Negative correlations between plant δ^{13}C and MAP may have resulted from water availability associated variation in photosynthetic discrimination.

Some uncertainties still exist in the correlation between δ^{13}C of C$_4$ plants and environmental factors. Depending on how much CO$_2$ and HCO$_3^-$ in bundle sheath cells leak out into mesophyll cells (ϕ-leakiness), the response of C$_4$ photosynthetic carbon isotope discrimination to precipitation can be positive, zero or negative [27]. Positive correlations between C$_4$ photosynthetic carbon isotope discrimination and precipitation suggest ϕ values above 0.34, as ϕ will affect the discrimination of Rubisco against 13C [28,29]. In southern Africa, the δ^{13}C values of C$_4$ plants are not sensitive to changes in the MAP [5]. Van de Water et al. [3] reported a significant decrease of δ^{13}C value in a C$_4$ species *Atriplex confertifolia* with elevation (precipitation increase with elevation) in the Southwest United States. Wang et al [30] found that δ^{13}C of C$_4$ plants in the dry season was lower than in the wet season, which suggests that there is a positive correlation between δ^{13}C of C$_4$ plants and precipitation in the Loess Plateau of China. We observed that δ^{13}C value of C$_4$ plants was negatively correlated with MAP ($-0.3\pm0.08\%$/100 mm), which is comparable to the results of Liu et al (-0.3%/100 mm) [10]. Positive correlations between C$_4$ photosynthetic carbon isotope discrimination and precipitation suggest leakiness values above 0.34 [28,29], which were likely given the studied C$_4$ plants are growing in water-limited areas [31]. Further studies are needed to determine the
importance of leakiness in determining the response of \(\delta^{13}C \) of C\(_3\) plants to environmental factors. The regression slope of \(\delta^{13}C \) of C\(_4\) plants (~0.3±0.08%/100 mm) on precipitation was much lower than that of C\(_3\) plants (~0.6±0.07%/100 mm), which suggests that \(\delta^{13}C \) of C\(_4\) plants is less sensitive to variation in environmental water availability than that of C\(_3\) plants.

The sensitivity of leaf \(\delta^{13}C \) to changes in water availability also varies substantially among locations or C\(_3\) species. In eastern Australia, leaf \(\delta^{13}C \) of C\(_3\) species exhibited significant negative correlation with precipitation from 300 to 1700 mm [9], while in northern Australia, the response of plant \(\delta^{15}C \) to precipitation was shown only within a precipitation range from 200 to 450 mm, whereas average plant \(\delta^{15}C \) of sites remained constant between 450 and 1800 mm precipitation [13]. In addition, Miller et al [25]

Figure 1. Location of study area in China. The thin solid dark blue lines are isolines of mean annual precipitation. Triangles are sampling sites. doi:10.1371/journal.pone.0051894.g001

Figure 2. Correlations between \(\delta^{13}C \) and \(\delta^{15}N \) values of the studied C\(_3\) (filled circles) and C\(_4\) plants (open circles). Linear regression equations, \(R^2 \) and \(P \) values are provided. doi:10.1371/journal.pone.0051894.g002

The sensitivity of leaf \(\delta^{13}C \) to changes in water availability also varies substantially among locations or C\(_3\) species. In eastern Australia, leaf \(\delta^{13}C \) of C\(_3\) species exhibited significant negative correlation with precipitation from 300 to 1700 mm [9], while in northern Australia, the response of plant \(\delta^{15}C \) to precipitation was shown only within a precipitation range from 200 to 450 mm, whereas average plant \(\delta^{15}C \) of sites remained constant between 450 and 1800 mm precipitation [13]. In addition, Miller et al [25]

Table 1. Degrees of freedom (df), F and P values from slope comparison analysis to assess differences in sensitivity between C\(_3\) and C\(_4\) species, as well as among the three studied shrubs: Nitraria sibirica (NS), Reaumuria soongorica (RS) and Hedysarum mongolicum (HM).

	df	F	P
Sensitivity of \(\delta^{13}C \) to MAP			
C\(_3\) vs C\(_4\)	1	7.78	<0.01
NS vs RS	1	0.91	0.35
NS vs HM	1	1.39	0.25
RS vs HM	1	0.46	0.50
Sensitivity of \(\delta^{15}N \) to MAP			
NS vs RS	1	0.88	0.35
NS vs HM	1	2.05	0.16
RS vs HM	1	0.37	0.55
Correlation between \(\delta^{13}C \) and \(\delta^{15}N \)			
C\(_3\) vs C\(_4\)	1	0.72	0.45

doi:10.1371/journal.pone.0051894.t001
The observed sensitivity of leaf

dependence of species within the usual range of C3 whole-leaf

Plant

The observed negative correlations between plant

Nitrogen Isotopes

The observed mean leaf nitrogen isotope values are comparable to the published data set collected from the Loess Plateau of China [33] and Mount Kinabalu, Borneo [34]. The range of variation in leaf

\[\delta^{15}N = (-5.1\%o to 13.0\%o) \] (Table S1) is greater than that in Chinese Loess Plateau [33] and Mount Kinabalu [34], however the observed shifts in leaf

\[\delta^{15}N \] from >-10\%o to <15\%o reported by Craine et al. [21]. The observed large variation in leaf

\[\delta^{15}N \] is possible given that we sampled multiple plant species across a broad range of climate and ecosystem types.

The observed negative correlations between plant

Plant

Figure 3. Plant

Figure 4. Plant

\[y = -0.006x - 25.11 \]
\[R^2 = 0.35, P < 0.0001 \]
Moreover, plant δ^{15}N differed among mycorrhizal types, with δ^{15}N in arbuscular mycorrhizal plants greater than ectomycorrhizal plants. In our study, we observed that the average δ^{15}N in non-mycorrhizal plants (3.6%) is greater than mycorrhizal plants (1.9%), which is in agreement with the result of Craine et al. [21]. Lower δ^{15}N values in mycorrhizal plants suggests mycorrhizal fungi create 15N-depleted compounds that are subsequently transferred to host plants [36].

The δ^{15}N values of *H. mongolicum* ($-1.6\pm0.4\%/100$ mm; $R^2 = 0.67$, $P = 0.002$) showed the most significant correlation and the steepest regression slope across the precipitation gradient than that of the other two species *R. soongarica* ($-1.2\pm0.4\%/100$ mm; $R^2 = 0.31$, $P = 0.003$) and *N. sibirica* ($-0.3\pm1.1\%/100$ mm; $R^2 = 0.002$, $P = 0.027$), which is contrary to our prediction. Legume species obtain their N through symbiotic N$_2$-fixing bacteria, therefore the δ^{15}N of N$_2$-fixing plants might be independent of climate and not reflect soil processes [21,22]. However, the observed significant correlation between leaf δ^{15}N and MAP in legume species *H. mongolicum* suggests potential shift in the reliance of legume species on N$_2$-fixing bacteria as N source in high nitrogen availability habitats.

We observed no significant correlation between δ^{15}N values of soil organic matter and mean annual precipitation, which is inconsistent with the results of previous studies [15,18,33]. Strong negative correlations of δ^{15}N values of soil organic matter and mean annual precipitation have been observed in the Chinese Loess Plateau ($1.31\%/100$ mm) [33] and in the Kalahari region of southern Africa ($0.56\%/100$ mm) [18]. In general, δ^{15}N values of soils and plants depleted with increasing precipitation suggests that accumulated losses of nitrogen relative to pools are greater in the drier sites. Nitrogen cycling is more open in drier sites and becomes less open with increasing precipitation [2]. Although N cycling on a regional scale involves numerous and complex processes, our study showed that spatial variability of precipitation play a significant role on isotopic signatures and the N cycle in the soil-plant system [18].

The correlation between precipitation gradient and community-averaged plant C and N isotope values provide insights into the cycling of terrestrial N and water status of plants in response to climatic change. Given that plant isotope value is a biological expression of environmental conditions integrated over time, it may indeed provide us a more meaningful measure of water availability than rainfall data [9]. In this respect, we can argue that the δ^{13}C and δ^{15}N of plants might be used as an indicator of environmental influences on plant functioning, and further evaluate how plants respond to their habitats.

In conclusion, along the precipitation gradient with an isotherm in northern China, δ^{13}C and δ^{15}N values of C$_3$ and C$_4$ plants were significantly negatively correlated with MAP. The δ^{13}C values of C$_3$ plants are more sensitive to variation in MAP than δ^{13}C values of C$_4$ plants. There were no species differences in the sensitivity of plant δ^{13}C and δ^{15}N to MAP among three dominant species *H. mongolicum*, *R. soongarica* and *N. sibirica*. The δ^{13}C values of soil organic matter became significantly more depleted with increasing
MAP, while no significant correlations existed between δ15N values of soil organic matter and MAP. We concluded that water availability is the primary environmental factor controlling the variability of plant δ13C and δ15N and soil δ13C in the arid and semi-arid regions. Water-limited systems in northern China are more open in terms of nutrient cycling compared to those that have adequate water supply and therefore the resulting natural abundance of foliar 15N in these systems is enriched.

Materials and Methods

Study Area

The study area is located in northern China with latitudes ranging from 35°36’ to 42°54’, and longitudes from 99°25’ to 113°42’ (Fig. 1). The climate of the study area is temperate arid and semi-arid. The dominant control over the amount of precipitation is the strength of East Asian monsoon system, which is mostly accompanied with cool, dry winters and hot, wet summers, with most of the rain falling in the summer season [38]. From southeast to northwest of the study area, the amount of annual rainfall decreases from 600 mm to 25 mm along an isotherm of 8°C. The meteorological data were obtained from the Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. The vegetation is dominated by shrubs and grasses of both C3 and C4 plants in this region. In general, the vegetation of the study area changes progressively from forest steppe, dry steppe to desert steppe with decreasing precipitation [39].

Field Sampling

In September 2006, leaf and soil samples were collected from 64 sites along the southeast to northwest precipitation gradient with an isotherm (Fig. 1). Detailed information of the sampling sites, including location, vegetation and precipitation is provided in Table S1. In each sampling site, fully expanded leaves of each dominant species were collected from three different individuals 5 m apart from each other and pooled into one sample. During the sampling period, most of the sampled plant species were at their late growing stage. Leaf samples were air-dried in the field, rinsed and oven-dried to a constant weight at 60°C in the laboratory, and finely ground with a ball mill. During the field campaign, 576 individuals of 31 dominant species were collected. Soil samples at a depth of 2–3 cm were collected using a corer (wiping off the superficial soil in 0.5 cm depth) from each of the 64 sampling sites. For each sampling site, three soil samples (each has a volume about 100 ml) were collected and pooled into one sample. The soil samples were passed through a 2 mm sieve to remove roots and gravels. Subsamples of the sieved soil were ground to a fine powder in a mortar and pestle, acidified in 6N HCl to remove coexisting carbonate, rinsed in deionized H2O, and dried through lyophilization [40]. Ground leaf samples and pre-treated soil samples were measured on a mass spectrometer for stable isotope composition analysis (described below). Sampling sites were selected from undisturbed land to avoid potential effects of anthropogenic activities on plant and soil δ13C and δ15N values.

No specific permits were required for the described field studies. No specific permissions were required for the use of sampling locations and collecting of soil and leaf samples because the sampling locations are not privately-owned or protected in any way and the field studies did not involve endangered or protected species.

Isotopic Analysis

δ13C and δ15N analysis were done using a Finningan Delta Plus XP continuous flow inlet isotope ratio mass spectrometer attached to a Costech EA 1108 Element Analyzer at the University of Wyoming Stable Isotope Facility. Precision of repeated measurements of laboratory standard was <0.1‰. δ13C values are reported relative to V-PDB and δ15N to AIR in parts per thousand (%o) as:

\[
\delta = \frac{R_{\text{sample}} - R_{\text{standard}}}{R_{\text{standard}}} \times 1000
\]

where \(\delta\) is [13C] or [15N] and \(R = [13C] / [12C] \text{ or } [15N] / [14N}\) [41].

Statistical Analyses

Simple linear regression analyses were used to estimate relationships between mean annual precipitation and δ13C and δ15N values of leaf and soil. All statistical analyses were carried out using SAS version 9.0 (SAS Institute Inc. Cary, NC, USA).

Supporting Information

Table S1 Sample sites information (Location, Altitude, Mean annual precipitation, Vegetation type and collected species) being presented.

(DOC)

Acknowledgments

We sincerely thank two anonymous reviewers for their helpful comments on earlier drafts of this manuscript which greatly improved this paper. We also thank Prof. Dunsheng Xia and Dr. Haitao Wei (Key Laboratory of Western China’s Environmental Systems, Ministry of Education, Lanzhou University) for their comments and assistance in field work.

Author Contributions

Conceived and designed the experiments: JYM WS FHC. Performed the experiments: JYM XNL WS. Analyzed the data: JYM WS XNL. Contributed reagents/materials/analysis tools: JYM WS. Wrote the paper: JYM WS XNL FHC.

References

1. Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, et al. (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141: 254–268.
2. Austin AT, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113: 519–529.
3. Van de Water PK, Leavitt SW, Betancourt JL (2002) Leaf

4. Wittmer MHOM, Auerswald K, Bai YF, Schaufele R, Schnyder H (2010) Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Global Change Biology 16: 605–610.
5. Swap RJ, Arainab JR, Dowty PR, Gilhooly WP, Macko SA (2004) Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Global Change Biology 10: 350–358.
6. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annual Review of Ecology and Systematics 33: 507–559.
7. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20: 553–567.
8. Farquhar GD, Sharkey TD (1982) Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 33: 317–345.
9. Stewart GR, Turnbull MH, Schmidt S, Erskine PD (1993) U2C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Australian Journal of Plant Physiology 22: 51–55.
10. Liu WG, Feng XH, Niug YF, Zhang QL, Cao YN, et al. (2005) δ13C variation of C3 and C4 plants across an Asian monsoon rainfall gradient in arid northwestern China. Global Change Biology 11: 1094–1100.
11. Hartman G, Danin A (2010) Isotopic values of plants in relation to water availability in the Eastern Mediterranean region. Oecologia 162: 837–852.
12. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9: 121–137.
13. Schulze ED, Williams RJ, Farquhar GD, Langridge J, et al. (1998) Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Australian Journal of Plant Physiology 25: 413–425.
14. Balesdent J, Girardin C, Mariotti A (1993) Site-related 13C of tree leaves and soil organic matter in a temperate forest. Ecology 74: 1713–1721.
15. Anandkumar, R., Austin AT, Schuur EAG, Yoo K, Matzek V, et al. (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17: 1–10.
16. Aranibar JN, Anderson IC, Epstein HE, Feral CJW, Swap RJ, et al. (2008) Nitrogen isotope composition of soils, C3 and C4 plants along land use gradients in southern Africa. Journal of Arid Environments 72: 326–337.
17. Handley LL, Austin AT, Robinson D, Scrimgeour CM, Raven JA, et al. (1999) The δ15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Australian Journal of Plant Physiology 26: 185–199.
18. Aranibar JN, Otter L, Macko SA, Feral CJW, Epstein HE, et al. (2004) Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands. Global Change Biology 10: 359–373.
19. Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell and Environment 15: 963–983.
20. Spear RW, Davis MB, Shane LCK (1994) Late Quaternary History of Low-Elevation and Mid-Elevation Vegetation in the White Mountains of New-Hampshire. Ecological Monographs 64: 85–109.
21. Craine JM, Elmose AJ, A aider MMP, Bustamante M, Davison TE, et al. (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183: 980–992.
22. Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytologist 157: 115–126.
23. Robinson D, Handley LL, Scrimgeour CM (1998) A theory for 15N/14N fractionation in nitrate-grown vascular plants. Plant 205: 309–406.
24. Ding YH (1994) Monsoon over China. Kluwer Academis Publishers, Dordrecht.
25. Wang T (2003) Desert and desertification in China. Hebei Science and Technology Press, Shijiazhuang.
26. Mass Spectrometry 25: 2538–2560.
27. Copen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in