Abstract We prove that the basic intersection cohomology $\mathbb{H}^p_\pi(M/F)$, where F is the singular foliation determined by an isometric action of a Lie group G on the compact manifold M, is finite dimensional.

Keywords Basic intersection cohomology · Lie group actions

Mathematics Subject Classification (2000) 57S20 · 55N33

1 Introduction

This paper deals with an action $\Phi: G \times M \rightarrow M$ of a Lie group on a compact manifold preserving a riemannian metric on it. The orbits of this action define a singular foliation F on M. Putting together the orbits of the same dimension we get a stratification of M. This structure is still very regular. The foliation F is in fact a conical foliation and we can define the basic intersection cohomology $\mathbb{H}^p_\pi(M/F)$ (cf. [10]). This invariant becomes the basic cohomology $H^\pi_\pi(M/F)$ when the action Φ is almost free, and the intersection cohomology $\mathbb{H}^p_\pi(M/G)$ when the Lie group G is compact.

The aim of this work is to prove that this cohomology $\mathbb{H}^p_\pi(M/F)$ is finite dimensional. This result generalizes [3] (almost free case), [11] (abelian case) and [10] (compact case).
The paper is organized as follows. In Sect. 2 we present the foliation \(\mathcal{F} \). The basic intersection cohomology \(\mathbb{H}_p^*(M/\mathcal{F}) \) associated to this foliation is studied in Sect. 3. Twisted products are studied in Sect. 4. The finiteness of \(\mathbb{H}_p^*(M/\mathcal{F}) \) is proved in Sect. 5.

In the sequel \(M \) is a connected, second countable, Hausdorff, without boundary and smooth (of class \(C^\infty \)) manifold of dimension \(m \). All the maps are considered smooth unless something else is indicated.

2 Killing foliations determined by isometric actions

We study in this work the foliations induced by isometric actions: the Killing foliations. These foliations are examples of the conical foliations for which the basic intersection cohomology has been defined (see [10,11]). We present this geometrical framework in this section.

2.1 Killing foliations

A smooth action \(\Phi: G \times M \rightarrow M \) of a Lie group \(G \) on a manifold \(M \) is a isometric action when there exists a riemannian metric \(\mu \) on \(M \) preserved by \(G \).

The connected components of the orbits of the action \(\Phi \) determine a partition \(\mathcal{F} \) on \(M \). In fact, this partition is a singular riemannian foliation that we shall call Killing foliation (cf. [7]). Notice that \(\mathcal{F} \) is also a conical foliation in the sense of [10,11]. Classifying the points of \(M \) following the dimension of the leaves of \(\mathcal{F} \) one gets the stratification \(S_\mathcal{F} \) of \(\mathcal{F} \). It is determined by the equivalence relation \(x \sim y \iff \dim G_x = \dim G_y \). The elements of \(S_\mathcal{F} \) are called strata.

In the particular case where the closure of \(G \) in the isometry group of \((M, \mu)\) is a compact Lie group we shall say that the action \(\Phi \) is a tame action. In fact, a smooth action \(\Phi: G \times M \rightarrow M \) is tame if and only if it extends to a smooth action \(\Phi: K \times M \rightarrow M \) where \(K \) is a compact Lie group containing \(G \) (cf. [6]). The group \(K \) is not unique, but we always can choose \(K \) in such a way that \(G \) is dense in \(K \). We shall say that \(K \) is a tamer group. Here the strata of \(S_\mathcal{F} \) are \(K \)-invariant closed submanifolds of \(M \).

Since the aim of this work is the study of \(\mathcal{F} \) and not the action \(\Phi \) itself, we can consider that the Lie group \(G \) is connected. Let us see that.

Proposition 1 Let \(\Phi: G \times M \rightarrow M \) be a tame action. Let \(G_0 \) be the connected component of \(G \) containing the unity element. The Killing foliation defined by the restriction \(\Phi: G_0 \times M \rightarrow M \) is also \(\mathcal{F} \).

Proof The partition \(\mathcal{F} \) is defined by this equivalence relation:

\[x \sim y \iff \exists \text{ continuous path } \alpha: [0, 1] \rightarrow G(x) \text{ such that } \alpha(0) = x \text{ and } \alpha(1) = y. \]

Since the map \(\Delta: G \rightarrow G(x) \), defined by \(\Delta(g) = \Phi(g, x) = g \cdot x \), is a submersion (see for example [2]) then

\[x \sim y \iff \exists \text{ continuous path } \beta: [0, 1] \rightarrow G \text{ such that } \beta(0) = e \text{ and } \beta(1) \cdot x = y, \]

and by definition of \(G_0 \)

\[x \sim y \iff \exists \text{ continuous path } \beta: [0, 1] \rightarrow G_0 \text{ such that } \beta(0) = e \text{ and } \beta(1) \cdot x = y. \]

This gives the result.

1 This is always the case when the manifold \(M \) is a compact.
When G is connected, the tamer group K has richer properties.

Proposition 2 Let G be a connected Lie subgroup of a compact Lie group K. If G is dense in K then $G \triangleleft K$ and the quotient group K / G is commutative.

Proof The Lie algebra \mathfrak{g} is Ad_G-invariant and hence, by density, Ad_K-invariant. Then \mathfrak{g} is an ideal of \mathfrak{k}. The connectedness of G gives that G is a normal subgroup of K. Since Ad_G acts trivially on $\mathfrak{k}/\mathfrak{g}$, $\mathfrak{k}/\mathfrak{g}$ is abelian (see for example [8, p. 628]). \qed

2.2 Particular tame actions

A **trio** is a triple (K, G, H), with K a compact Lie group, G a normal subgroup of K and H a closed subgroup of K. We present now some tame actions associated to a trio (K, G, H). They are going to be intensively used in this work. First of all we need some definitions.

- The action $\Phi_l : K \times K \to K$ is defined by $\Phi_l(g, k) = g \cdot k$. For each element u of the Lie algebra \mathfrak{t} of K, we shall write X_u the associated (right invariant) vector field. It is defined by $X_u(k) = L_k(u)$ where $L_k : K \to K$ is given by $L_k(\ell) = \ell \cdot k$.

- The action $\Phi_r : K \times K \to K$ is defined by $\Phi_r(g, k) = k \cdot g^{-1}$. For each element $u \in \mathfrak{t}$ of K, we shall write X_u the associated (left invariant) vector field. It is defined by $X_u(k) = \mathfrak{t}_e L_k(u)$ where $L_k : K \to K$ is given by $L_k(\ell) = k \cdot \ell$.

- The action $\Psi : K \times K / H \to K / H$ is defined by $\Psi(g, k H) = (g \cdot k) H$. For each element $u \in \mathfrak{t}$, we shall write Y_u the associated vector field. Since the canonical projection $\pi : K \to K / H$ is a K-equivariant map, then we have $\pi_\ast X_u = Y_u$ for each $u \in \mathfrak{t}$.

- The action $\Gamma : H \times H \to H$ is defined by $\Gamma(g, h) = g \cdot h$. For each element u of the Lie algebra \mathfrak{h} of H we write Z_u the associated (right invariant) vector field.

The associated actions we are going to use are the following.

(a) The restriction $\Phi_l : G \times K \to K$, which induces the regular Killing foliation \mathcal{K}.

(b) The restriction $\Phi_r : G \times K \to K$, which induces the regular Killing foliation \mathcal{K}.

Since $G \triangleleft K$, the foliation \mathcal{K} is determined by the family of vector fields $\{X_u / u \in \mathfrak{g}\}$, where \mathfrak{g} is the Lie algebra of G, and also by the family $\{X_u / u \in \mathfrak{g}\}$. The orbits $G(k) = Gk = kG$ have the same dimension $\dim G$.

(c) The restriction $\Psi : G \times K / H \to K / H$, which induces the regular Killing foliation \mathcal{D}.

The foliation \mathcal{D} is determined by the family of vector fields $\{Y_u / u \in \mathfrak{g}\}$. The orbits $G(k H)$ have the same dimension $\dim G - \dim (G \cap H)$.

(d) The restriction $\Gamma : (G \cap H) \times H \to H$, which induces the regular Killing foliation \mathcal{C}.

The foliation \mathcal{C} is determined by the family of vector fields $\{Z_u / u \in \mathfrak{g} \cap \mathfrak{h}\}$. The orbits $(G \cap H)(k)$ have the same dimension $\dim (G \cap H)$.

(e) The restriction $\Phi_r : G H \times K \to K$, which induces the regular Killing foliation \mathcal{E}.

Notice that $G H$ is a Lie group since G is normal in K. The foliation \mathcal{E} is, in fact, determined by the vector fields $\{X_u / u \in \mathfrak{g} + \mathfrak{h}\}$. The orbits $(G H)(k)$ have the same dimension $\dim G + \dim H - \dim (G \cap H)$.
2.3 Twisted product

In order to prove the finiteness of the basic intersection cohomology we decompose the manifold in a finite number of simpler pieces. These are the twisted products we introduce now.

We fix a trio \((K, G, H)\) and a smooth action \(\Theta : H \times N \to N\) of \(H\) on the manifold \(N\). The twisted product is the quotient \(K \times_H N\) of \(K \times N\) by the equivalence relation \((k, z) \sim (k \cdot h^{-1}, \Theta(h, z) = h \cdot z)\). The element of \(K \times_H N\) corresponding to \((k, z) \in K \times N\) is denoted by \(\langle k, z \rangle\). This manifold is endowed with the tame action

\[
\Phi : G \times (K \times_H N) \longrightarrow (K \times_H N),
\]

defined by \(\Phi(g, \langle k, z \rangle) = \langle g \cdot k, z \rangle\). We denote by \(\mathcal{W}\) the induced Killing foliation.

We also use the following tame action, namely, the restriction

\[
\Theta : (G \cap H) \times N \to N
\]

whose induced Killing foliation is denoted by \(\mathcal{N}\).

The canonical projection \(\Pi : K \times N \to K \times_H N\) relates the involved foliations as follows:

(a) \(\Pi_\mathcal{W}(K \times \mathcal{I}) = \mathcal{W}\), where \(\mathcal{I}\) is the pointwise foliation (since the map \(\Pi\) is \(G\)-equivariant).

(b) \(S_{\mathcal{W}} = \{\Pi(K \times S) / S \in S_{\mathcal{N}}\} = \Pi([K] \times S_{\mathcal{N}})\) (since \(G_{<k,z>} = k(G \cap H)_z k^{-1}\)).

3 Basic intersection cohomology

In this section we recall the definition of the basic intersection\(^2\) cohomology and we present the main properties we are going to use in this work. For the rest of this section, we fix a conical foliation \(\mathcal{F}\) defied on a manifold \(M\). The associated stratification is \(S_{\mathcal{F}}\). The regular stratum of is denoted by \(R_{\mathcal{F}}\). We shall write \(m = \dim M, r = \dim \mathcal{F}\) and \(s = m - r = \codim_M \mathcal{F}\).

We are going to deal with differential forms on a product \((\text{manifold}) \times [0, 1]^p\), they are restrictions of differential forms defined on \((\text{manifold}) \times \} - 1, 1]^p\).

3.1 Perverse forms

Recall that a conical chart is a foliated diffeomorphism \(\varphi : (\mathbb{R}^{m-n-1} \times cS^n, \mathcal{H} \times cG) \to (U, \mathcal{F}_U)\) where \((\mathbb{R}^{m-n-1}, \mathcal{H})\) is a simple foliation and \((S^n, G)\) is a conical foliation without 0-dimensional leaves. We also shall denote this chart by \((U, \varphi, S)\) where \(S\) is the stratum of \(S_{\mathcal{F}}\) verifying \(\varphi(\mathbb{R}^{m-n-1} \times \{\emptyset\}) = U \cap S\).

The differential complex \(\Omega^\ast_{\mathcal{F}}(M \times [0, 1]^p)\) of perverse forms of \(M \times [0, 1]^p\) is introduced by induction on depth \(S_{\mathcal{F}}\). When this depth is 0 then

\[
\Omega^\ast_{\mathcal{F}}(M \times [0, 1]^p) = \Omega^\ast(M \times [0, 1]^p).
\]

Consider now the generic case. A perverse form of \(M \times [0, 1]^p\) is first of all a differential form \(\omega \in \Omega^\ast(R_{\mathcal{F}} \times [0, 1]^p)\) such that,

\[
\begin{cases}
\text{the pull-back} & (\varphi \times \mathbb{I}_{[0,1]^p})^\ast \Omega \in \Omega^\ast(\mathbb{R}^{m-n-1} \times R_{\mathcal{G}} \times [0, 1[^p] \\
\text{extends to} & \omega_\varphi \in \Omega^\ast_{\mathcal{H} \times S^n}(\mathbb{R}^{m-n-1} \times S^n \times [0, 1[^{p+1}])
\end{cases}
\]

\(^2\) We refer the reader to [10,11] for details.
Finally, we define the perverse degree $\Pi^{|\cdot|}$ local perverse degree space. A differential form ω is bounded by the perversity π local perverse degree space of the complex of basic perverse forms whose perverse degree (and that of the their derivative) ω is π, with $\omega_\pi(v_0, \ldots, v_p, -) \equiv 0$ where the vectors $\{v_0, \ldots, v_p\}$ are tangent to the fibers of $P_\pi : \mathbb{R}^{m-1} \times R^*_\pi \times \{0\} \to U \cap S^4$.

This number does not depend on the choice of the conical chart (cf. [11, Proposition 1.3.1]). Finally, we define the perverse degree $||\omega||_S$ by

$$||\omega||_S = \sup \{ ||\omega||_U \text{ / (U, } \varphi, S \text{ conical chart }) \}.$$

The perverse degree of $\omega \in \Omega^*(M)$ verifies $||\omega||_S \leq 0$ for any singular stratum $S \in S_{\mathcal{F}}$ (cf. 3.1).

3.3 Basic cohomology

The basic cohomology of the foliation \mathcal{F} is an important tool to study its transversal structure and plays the role of the cohomology of the orbit space M/\mathcal{F}, which can be a wild topological space. A differential form $\omega \in \Omega^*(M)$ is basic if $i_X \omega = i_X d\omega = 0$, for each vector field X on M tangent to the foliation \mathcal{F}. For example, a function f is basic iff f is constant on the leaves of \mathcal{F}. We shall write $\Omega^*(M/\mathcal{F})$ for the complex of basic forms. Its cohomology $H^*(M/\mathcal{F})$ is the basic cohomology of (M, \mathcal{F}). We also use the relative basic cohomology $H^*(M, F)/\mathcal{F}$, that is, the cohomology computed from the complex of basic forms vanishing on the saturated set $F \subset M$. The basic cohomology does not use the stratification $S_{\mathcal{F}}$.

3.4 Basic intersection cohomology

A perversity is a map $\overline{\pi} : S^\sigma_{\mathcal{F}} \to \mathbb{Z} \cup \{-\infty, \infty\}$, where $S^\sigma_{\mathcal{F}}$ is the family of singular strata. The constant perversity ι is defined by $\iota(S) = \iota$, where $\iota \in \mathbb{Z} \cup \{-\infty, \infty\}$.

The basic intersection cohomology appears when one considers basic perverse forms whose perverse degree is controlled by a perversity. We shall put

$$\Omega^\iota_{\overline{\pi}}(M/\mathcal{F}) = \left\{ \omega \in \Pi^*(M) \text{ / } \omega \text{ is basic and } \max \{ ||\omega||_S, ||d\omega||_S \} \leq \overline{\pi}(S) \ \forall S \in S^\sigma_{\mathcal{F}} \right\}$$

the complex of basic perverse forms whose perverse degree (and that of the their derivative) is bounded by the perversity $\overline{\pi}$. The cohomology $H^\iota_{\overline{\pi}}(M/\mathcal{F})$ of this complex is the basic intersection cohomology5 of (M, \mathcal{F}) relatively to the perversity $\overline{\pi}$.

3 Through the restriction $\omega \mapsto \omega_{\mathcal{F}}$.

4 The map $P_\varphi : \mathbb{R}^{m-1} \times \mathbb{S}^n \times [0, 1] \to U$ is defined by $P_\varphi(x, y, t) = \varphi(x, [y, t])$.

5 BIC for short.
Consider a twisted product $K \times_{\mu} N$. Perversities on $K \times_{\mu} N$ and $K \times N$ are determinate by perversities on N by the formula (cf. 2.3 (b)):

$$\overline{p}(K \times S) = \overline{p}(\Pi(K \times S)) = \overline{p}(S).$$

(1)

3.5 Mayer-Vietoris

This is the technique we use in order to decompose the manifold in nicer pieces. An open covering $\{U, V\}$ of M by saturated open subsets is a basic covering. It possesses a subordinated partition of the unity made up of basic functions defined on M (see [9]). For a such covering we have the Mayer-Vietoris short sequence

$$0 \to \Omega^*(M/\mathcal{F}) \to \Omega^*(U/\mathcal{F}) \oplus \Omega^*(V/\mathcal{F}) \to \Omega^*((U \cap V)/\mathcal{F}) \to 0,$$

where the map are defined by $\omega \mapsto (\omega, \omega)$ and $(\alpha, \beta) \mapsto \alpha - \beta$. The third map is onto since the elements of the partition of the unity are controlled functions, i.e., elements of $\Omega^0_\pi(-)$ (cf. 3.2). Thus, the sequence is exact. This result is not longer true for more general coverings.

We shall use in this work the two following local calculations (see [11, Proposition 3.5.1 and Proposition 3.5.2] for the proofs).

Proposition 3 Let $((\mathbb{R}^k, \mathcal{H})$ be a simple foliation. Consider \overline{p} a perversity on M and define the perversity \overline{p} on $(\mathbb{R}^k \times M) \times (\mathbb{R}^k \times M) = \overline{p}(S)$. The canonical projection $pr : \mathbb{R}^k \times M \to M$ induces the isomorphism

$$\mathbb{H}_p^*(M/\mathcal{F}) \cong \mathbb{H}_\pi^*(\mathbb{R}^k \times M / \mathcal{H} \times \mathcal{F}).$$

Proposition 4 Let \mathcal{G} be a conical foliation without 0-dimensional leaves on the sphere \mathbb{S}^n. A perversity \overline{p} on $c\mathbb{S}^n$ gives the perversity \overline{p} on \mathbb{S}^n defined by $\overline{p}(S) = \overline{p}(S \times \{0, 1\})$. The canonical projection $pr : \mathbb{S}^n \times \{0, 1\} \to \mathbb{S}^n$ induces the isomorphism

$$\mathbb{H}_p^j(c\mathbb{S}^n / c\mathcal{G}) = \begin{cases} \mathbb{H}_p^j(\mathbb{S}^n / \mathcal{G}) & \text{if } i \leq \overline{p}(\{0\}) \\ 0 & \text{if } i > \overline{p}(\{0\}) \}. $$

In the next section we shall need the following technical Lemma.

Lemma 1 Let $\Phi : K \times M \to M$ be a smooth action, where K is a compact Lie group, and let V be a fundamental vector field of this action. Consider a normal subgroup G of K and write \mathcal{F} the associated conical foliation on M. Then, the interior operator $i_{\nu} : \Omega^*(M/\mathcal{F}) \to \Omega^{*-1}_\pi(M/\mathcal{F})$ is well defined, for any perversity \overline{p}.

Proof Since the question is a local one, then it suffices to consider the case where M is a twisted product $K \times_{\mu} N$.

6 Notice that the blow up $\Pi : \mathbb{R}_{\mathcal{F}}^n \to M$ is a K-equivariant map relatively to the action $\ell \cdot (k, z) = (\ell \cdot k, z)$. This gives $\Pi_u(X^u, 0) = V$ for some $u \in \mathcal{F}$. From Lemma 2 we know that it suffices to prove that the operator

$$i_{(X^u, 0)} : \Omega^*_\pi(K \times N / G \times N) \to \Omega^{*-1}_\pi(K \times N / G \times N)$$

is well defined. Since $G < K$ then the vector field X^u preserves the foliation \mathcal{K}. So, it suffices to prove that the operator

$$i_{(X^u, 0)} : \Omega^*_\pi(K \times N) \to \Omega^{*-1}_\pi(K \times N)$$

In fact, N is an euclidean space \mathbb{R}^d et Θ is an orthogonal action.
is well defined. This comes from the fact that X^u acts on the K-factor while the perversions conditions are measured on the N-factor (cf. (1)).

4 The BIC of a twisted product

We compute now the BIC of a twisted product $K \times_H N$ (cf. 2.3) for a perversity Π (cf. (1)).

Lemma 2 The natural projection $\Pi: K \times N \to K \times_H N$ induces the differential monomorphism

$$\Pi^*: \Omega^*_\Pi(K \times_H N / W) \longrightarrow \Omega^*_\Pi(K \times N / K \times N).$$

Moreover, given a differential form ω on $K \times_H R_W$, we have:

$$\Pi^* \omega \in \Omega^*_\Pi(K \times N / K \times N) \iff \omega \in \Omega^*_\Pi(K \times_H N / W).$$

Proof Notice that the injectivity of Π^* comes from the fact that Π is a surjection. For the rest, we proceed in several steps.

(a) A foliated atlas for $\pi: K \to K / H$.

Since $\pi: K \to K / H$ is a H-principal bundle then it possesses an atlas $A = \{ \varphi: \pi^{-1}(U) \to U \times H \}$ made up with H-equivariant charts: $\varphi(k \cdot h^{-1}) = (\pi(k), h \cdot h_0)$ if $\varphi(k) = (\pi(k), h_0)$. We study the foliation $\mathcal{F}_\pi K$. This equivariance property gives $\varphi_* X_u = (0, Z^u)$ for each $u \in g \cap H$. Thus, the trace of the foliation $\mathcal{F}_\pi K$ on the fibers of the canonical projection $pr: U \times H \to U$ is \mathcal{C}. On the other hand, since the map π is a G-equivariant map then $\pi_* \mathcal{K} = \mathcal{D}$, which gives $\varphi_* \mathcal{K} = \mathcal{D}$. We conclude that $\mathcal{F}_\pi \subset \mathcal{D} \times \mathcal{C}$. By dimension reasons we get $\mathcal{F}_\pi \subset \mathcal{D} \times \mathcal{C}$. The atlas A is an H-equivariant foliated atlas of π.

(b) A foliated atlas for $\Pi: K \times N \to K \times_H N$.

We claim that $A_\Pi = \{ \overline{\varphi}: \pi^{-1}(U) \times_H N \to U \times N / (U, \varphi) \in A \}$ is a foliated atlas of $K \times_H N$ where the map $\overline{\varphi}$ is defined by $\overline{\varphi}(< k, z >) = (\pi(k), (\Theta((\varphi^{-1}(\pi(k), e))^{-1} \cdot k), z))$. This map is a diffeomorphism whose inverse is $\overline{\varphi^{-1}}(u, z) = < \varphi^{-1}(u, e), z >$. It verifies

$$\overline{\varphi_\pi N} \overset{2.3(a)}{=} \overline{\varphi_* \Pi_{\mathcal{K}} (K \times \mathcal{I})} = \overline{\varphi_* \Pi_{\mathcal{K}} (\varphi^{-1} \times \mathcal{I} N)} (\mathcal{D} \times \mathcal{C} \times \mathcal{I}).$$

A straightforward calculation shows $\overline{\theta_{\mathcal{C}}(\varphi^{-1} \times \mathcal{I} N)} = (\mathcal{I} U \times \Theta)$. Since \mathcal{C} is defined by the action Γ then $\theta_{\mathcal{C}}(\mathcal{I} \times \mathcal{I} = \mathcal{N}$. Finally we obtain $\overline{\varphi_* N} = \mathcal{D} \times \mathcal{N}$.

(c) Last Step. Given $(U, \varphi) \in A_\Pi$, we have the commutative diagram

$$\begin{array}{ccc}
U \times H \times N & \xrightarrow{\varphi^{-1} \times \mathcal{I} N} & K \times N \\
\downarrow Q & & \downarrow \Pi \\
U \times N & \xrightarrow{\overline{\varphi^{-1}}} & K \times_H N
\end{array}$$

where $Q(u, h, z) = (u, h^{-1} \cdot z)$. $\Pi^{-1} (\text{Im } \overline{\varphi^{-1}}) = \text{Im } (\varphi^{-1} \times \mathcal{I} N)$ and the rows are foliated imbeddings. Now, since (2) and (3) are local questions then it suffices to prove that
4.2 Two actions of H with pr 0 defined by

This comes from the fact that the map

\[\nabla : (U \times H \times N, D \times C \times N) \rightarrow (U \times H \times N, D \times C \times N), \]

defined by $\nabla (u, h, z) = (u, h, h^{-1} \cdot z)$, is a foliated diffeomorphism and $Q = \text{pr}_0 \circ \nabla$, with $\text{pr}_0 : U \times H \times N \rightarrow U \times N$ canonical projection (cf. Proposition 3).

4.1 The Lie algebra \mathfrak{t}

We suppose in this paragraph that G is also dense on K. Choose ν a bi-invariant riemannian metric on K, which exists by compactness. Consider

\[B = \{ u_1, \ldots, u_d, u_{a+1}, \ldots, u_{b}, u_{b+1}, \ldots, u_{c}, u_{c+1}, \ldots, u_f \} \]

an orthonormal basis of the Lie algebra \mathfrak{t} of K with \{u_1, \ldots, u_b\} basis of the Lie algebra \mathfrak{g} of G and \{u_{a+1}, \ldots, u_c\} basis of the Lie algebra \mathfrak{h} of H. For each indice $1 \leq i \leq f$ we shall write $X_i \equiv X_{ui}$ and $X^i \equiv X^{ui}$ (cf. 2.2).

Let $\gamma_l \in X^i (K)$ be the dual form of X_i, that is, $\gamma_l = i_{X_i} \nu$. Notice that $\delta_{ij} = \gamma_j (X_i)$. These forms are invariant by the left action of K. Since the flow of X^j is the multiplication on the left by $\exp(tu_j)$ then $L_{X_j} \gamma_l = 0$ for each $1 \leq j \leq f$.

For the differential, we have the formula $d\gamma_l = \sum_{1 \leq i < j \leq f} C_{ij}^l \gamma_i \wedge \gamma_j$, where $[X_i, X_j]$ is $\sum_{l=1}^f C_{ij}^l X_l$, and $1 \leq i, j, l \leq f$. We have several restrictions on these coefficients. Since $G \triangleleft K$ then \mathfrak{g} is an ideal of \mathfrak{t} and therefore we have

\[C_{ij}^l = 0 \quad \text{for} \quad i \leq b < l. \]

Since K/G is an abelian group (cf. Proposition 2) then the induced bracket on $\mathfrak{t}/\mathfrak{g}$ is zero and therefore we have

\[C_{ij}^l = 0 \quad \text{for} \quad b < i, j, l \leq f. \]

These equations imply that

\[d\gamma_l = 0 \quad \text{for each} \quad b < l. \]

The \mathcal{E}-basic differential forms in $\bigwedge^*(\gamma_1, \ldots, \gamma_f)$ are exactly $\bigwedge^*(\gamma_{c+1}, \ldots, \gamma_f)$ since they are cycles and the family $\{X_1, \ldots, X_c\}$ generates the foliation \mathcal{E}. This gives

\[H^*(K/\mathcal{E}) = \bigwedge^*(\gamma_{c+1}, \ldots, \gamma_f). \]

4.2 Two actions of H/H_0

The Lie group H preserves the foliation \mathcal{N} since the Lie group $G \cap H$ is a normal subgroup of H. Put H_0 the connected component of H containing the unity element. Since it is a connected compact Lie group then a standard argument shows that

\[\left(\Omega^*_\mathfrak{t}(N/\mathcal{N}) \right)^{H_0} = H^* \left(\Omega^*_\mathfrak{h}(N/\mathcal{N}) \right)^{H_0} = \Omega^*_\mathfrak{t}(N/\mathcal{N}) \]

\[\text{Since } G \cap H \triangleleft H. \]
(cf. [5, Theorem I, Ch. IV, vol. II]). We conclude that the finite group H/H_0 acts naturally on $H^*_p(N/N)$.

Since H_0 is a connected Lie subgroup of GH then $(H^*(K/E))^{H_0} = H^*(K/E)$. We conclude that the finite group H/H_0 acts naturally on $H^*(K/E)$.

Proposition 5 Let (K, G, H) be a trio with G connected and dense in K. Then

$$H^*_p(K \times H N/W) = \left(H^*(K/E) \otimes H^*_p(N/N) \right)^{H/H_0}.$$

Proof Using the blow up $\Pi : K \times N \to K \times H N$, the computation of $H^*_p(K \times H N/W)$ can be done by using the complex $\text{Im} \left\{ \Pi^* : \Omega^*_p(K \times H N/F) \to \Omega^*_p(K \times N/K \times N) \right\}$ (cf. Lemma 2). We study this complex in several steps. We fix $B = \{ u_1, \ldots, u_f \}$ an orthonormal basis of \mathfrak{t} as in 4.1.

(i) **Description of $\Omega^*_K(K \times R_N)$**.
A differential form $\omega \in \Omega^*_K(K \times R_N)$ is of the form

$$\eta + \sum_{1 \leq i_1 < \cdots < i_\ell \leq f} \gamma_{i_1} \wedge \cdots \wedge \gamma_{i_\ell} \wedge \eta_{i_1, \ldots, i_\ell},$$

where the forms $\eta, \eta_{i_1, \ldots, i_\ell} \in \Omega^*(K \times R_N)$ verify $i_{x_1} \eta = i_{x_1} \eta_{i_1, \ldots, i_\ell} = 0$ for each $1 \leq j \leq f$ and each $1 \leq i_1 < \cdots < i_\ell \leq f$.

(ii) **Description of $\Pi^*_K(K \times N)$**.
Since the foliation \mathcal{K} is regular then we always can construct a conical chart of the form $(U_1 \times U_2, \varphi_1 \times \varphi_2)$ where (U_1, φ_1) is a foliated chart of (K, \mathcal{K}) and (U_2, φ_2) is a conical chart of (N, \mathcal{N}). The local blow up of the chart $(U_1 \times U_2, \varphi_1 \times \varphi_2)$ is constructed from the second factor without modifying the first one. So, the differential forms γ_i are always perverse forms and a differential form $\omega \in \Pi^*_K(K \times N)$ is of the form (7) where $\eta, \eta_{i_1, \ldots, i_\ell} \in \Pi^*_K(K \times N)$ verify $i_{x_j} \eta = i_{x_j} \eta_{i_1, \ldots, i_\ell} = 0$ for each $1 \leq j \leq f$ and each $1 \leq i_1 < \cdots < i_\ell \leq f$.

(iii) **Description of $\Omega^*(K \times R_N/\mathcal{K} \times N)$**.
Take $\omega \in \Omega^*_K(K \times R_N/\mathcal{K} \times N)$. Since \mathcal{K} is generated by the family $\{ X_j / 1 \leq j \leq b \}$ then $L_{X_j} \omega = 0$ for any $1 \leq j \leq b$, or equivalently, $R_{X_j} \omega = \omega$ for each $g \in G$ since G is connected. By density, $R_{X_j} \omega = \omega$ for each $k \in K$ and therefore $L_{X_j} \omega = 0$ for any $1 \leq j \leq f$ since K is connected. We conclude that $L_{X_j} \eta = L_{X_j} \eta_{i_1, \ldots, i_\ell} = 0$ for any $1 \leq j \leq f$ and each $1 \leq i_1 < \cdots < i_\ell \leq f$. This gives $\omega \in \bigwedge^* (\gamma_{b+1}, \ldots, \gamma_f) \otimes \Omega^*(R_N)$. The \mathcal{N}-basic differential forms of $\Omega^*(R_N)$ are exactly $\Omega^*(R_N/\mathcal{N})$. The \mathcal{K}-basic differential forms of $\bigwedge^* (\gamma_{b+1}, \ldots, \gamma_f)$ are exactly $\bigwedge^* (\gamma_{b+1}, \ldots, \gamma_f)$ (cf. (4)). From these two facts, we get

$$\Omega^*(K \times R_N/\mathcal{K} \times N) = \bigwedge^* (\gamma_{b+1}, \ldots, \gamma_f) \otimes \Omega^*(R_N/\mathcal{N})$$

as differential graduate commutative algebras.

(iv) **Description of $\Omega^*_p(K \times N/\mathcal{K} \times N)$**.
From (ii) and (iii) it suffices to control the pervers degree of the forms

$$\sum_{b+1 \leq i_1 < \cdots < i_\ell \leq f} \gamma_{i_1} \wedge \cdots \wedge \gamma_{i_\ell} \wedge \eta_{i_1, \ldots, i_\ell} \in \bigwedge^* (\gamma_{b+1}, \ldots, \gamma_f) \otimes \Pi^*_N(N).$$
Consider S a stratum of S_N^\prime. From $||\gamma^i||_{K \times S} = 0$ and $||\eta||_{K \times S} = ||\eta||_S$, we get $||\gamma^i \wedge \ldots \gamma^i \wedge \eta_{i, \ldots, i}||_{K \times S} = ||\eta_{i, \ldots, i}||_S$. We conclude that

$$\Omega^*_{\mathcal{P}}(K \times N/K \times N) \cong \bigwedge^*(\gamma^b_1, \ldots, \gamma^f) \otimes \Omega^*_{\mathcal{P}}(N/N)$$

(cf. 2.3 (b)).

(iii) Description of $\text{Im} \left\{ \Pi^* : \Omega^*_{\mathcal{P}}(K \times N/F) \rightarrow \Omega^*_{\mathcal{P}}(K \times N/K \times N) \right\}$.

We denote by $\{W_{a+1}, \ldots, W_c\}$ the fundamental vector fields of the action $\Theta : H \times N \rightarrow N$ associated to the basis $\{u_{a+1}, \ldots, u_c\}$. Consider now the action $\Upsilon : H \times (K \times N) \rightarrow (K \times N)$ defined by $\Upsilon(h, (k, z)) = (k \cdot h^{-1}, \Theta(h, z))$. Its fundamental vector fields associated to the basis $\{u_{a+1}, \ldots, u_c\}$ are $\{(X_{a+1}, W_{a+1}), \ldots, (X_c, W_c)\}$. Given $h \in H$, we take $\Upsilon_h : K \times N \rightarrow K \times N$ the map defined by $\Upsilon_h(k, z) = \Upsilon(h, (k, z))$. Then, we have

$$\text{Im} \Pi^* = \left\{ \omega \in \bigwedge^*(\gamma^b_1, \ldots, \gamma^f) \otimes \Omega^*_{\mathcal{P}}(N/N) \begin{array}{c}
(i) i_{X_i} \omega = -i_{W_i} \omega \text{ if } a < i \leq c \\
(ii) L_{\gamma_i} \omega = -L_{W_i} \omega \text{ if } a < i \leq c, \\
(iii) (\Upsilon_h)^* \omega = \omega \text{ for } h \in H.
\end{array} \right\}$$

Let H_0 be the unity connected component of H. Recall that the subgroup H_0 is normal in H and that the quotient H/H_0 is a finite group. Condition (ii) gives that ω is H_0-invariant. So, condition (iii) can be replaced by: (iv) $(\Upsilon_h)^* \omega = \omega$ for $h \in H/H_0$. Therefore

$$\text{Im} \Pi^* = \left\{ \omega \in \bigwedge^*(\gamma^b_1, \ldots, \gamma^f) \otimes \Omega^*_{\mathcal{P}}(N/N) \begin{array}{c}
(i) i_{X_i} \omega = -i_{W_i} \omega \text{ if } a < i \leq c \\
(ii) L_{\gamma_i} \omega = -L_{W_i} \omega \text{ if } a < i \leq c, \\
\end{array} \right\}.$$

Since the group H/H_0 is a finite one, we get that the cohomology $H^*(\text{Im} \Pi^*)$ is isomorphic to $\left(H^*(A^\prime) \right)^{H/H_0}$, where A^\prime is the differential complex

$$\left\{ \omega \in \bigwedge^*(\gamma^b_1, \ldots, \gamma^f) \otimes \Omega^*_{\mathcal{P}}(N/N) \begin{array}{c}
(i) i_{X_i} \omega = -i_{W_i} \omega \text{ if } a < i \leq c, \\
(ii) L_{\gamma_i} \omega = -L_{W_i} \omega \text{ if } a < i \leq c, \\
\end{array} \right\}.$$

So, it remains to compute $H^*(A^\prime)$. This computation can be simplified by using these three facts:

- $i_{W_i} \omega = L_{W_i} \omega = 0$ for each $a < i \leq b$, since the foliation \mathcal{N} is defined by the action of $G \cap H$.
- $i_{X_i} \gamma_j = \delta_{ij}$ for all i, j (cf. 4.1).
- $d^\gamma_j = 0$ for $b < j$ (cf. (4)).
We get that A^* is the differential complex

$$\left\{ \omega \in \bigwedge^*(\gamma_{b+1}, \ldots, \gamma_f) \otimes \Omega^*_p(N/N) \mid \begin{array}{l}
 (i) \ i_X^* \omega = -i_{W^i} \omega \text{ if } b < i \leq c \\
 (ii) \ 0 = L_{W^i} \omega \text{ if } b < i \leq c
\end{array} \right\}$$

where A^* is isomorphic to

$$\bigwedge^*(\gamma_{c+1}, \ldots, \gamma_f) \otimes \Omega^*_p(N/N)$$

A straightforward computation gives that a form $\omega \in \bigwedge^*(\gamma_{b+1}, \ldots, \gamma_c) \otimes \Omega^*_p(N/N)$ verifying (i) is in fact

$$\omega = \omega_0 + \sum_{b < i_1 < \cdots < i_c \leq c} (-1)^i \gamma_{i_1} \wedge \cdots \wedge \gamma_{i_c} \wedge (i_{W_{i_1}} \cdots i_{W_{i_c}} \omega)$$

for some $\omega_0 \in \Omega^*_p(N/N)$ (cf. Lemma 1).

Consider now $b < i, j \leq c$. Since K/G is an abelian group (cf. Proposition 2) and H is a Lie group then $[W_i, W_j] = \sum_{i=a+1}^b C_{ij} W_i$. Then, $i_{[W_i, W_j]} \omega_0 = 0$ since the foliation \mathcal{N} is defined by the action of $G \cap H$. So, the canonical writing of a form $\omega \in B^*$ is (8) for some $\omega_0 \in \left\{ \eta \in \Omega^*_p(N/N) \mid L_{W_i} \eta = 0 \text{ if } b < i \leq c\right\} = \left(\Omega^*_p(N/N) \right)_{H_0}^H$.

Then, the operator $\Delta : B^* \rightarrow \left(\Omega^*_p(N/N) \right)_{H_0}^H$, defined by $\Delta(\omega) = \omega_0$, is a differential isomorphism. We conclude that the differential complex A^* is isomorphic to $\bigwedge^*(\gamma_{c+1}, \ldots, \gamma_f) \otimes \left(\Omega^*_p(N/N) \right)_{H_0}^H$ and therefore $H^*(A^*) \cong H^* (K/\mathcal{E}) \otimes \mathbb{H}^*_p(N/N)$ (cf. (5) and (6)). Since the operator Δ is (H/H_0)-equivariant (cf. 4.2) then we get

$$H^*_p(K \times H N/\mathcal{W}) = H^* (\text{Im } \Pi^*) = \left(H^* (A^*) \right)^{H/H_0} = \left(H^* (K/\mathcal{E}) \otimes \mathbb{H}^*_p(N/N) \right)^{H/H_0}.$$

This ends the proof. \qed

4.3 Remarks

(a) When the Lie group G is commutative then K is also commutative. Differential forms γ^*_\bullet are K-invariants on the left and on the right, so $\left(H^* (K/\mathcal{E}) \right)^H = H^* (K/\mathcal{E})$ and therefore

$$H^*_p(K \times H N/\mathcal{W}) = H^* (K/\mathcal{E}) \otimes \left(H^*_p(N/N) \right)^{H/H_0} = H^* (K/\mathcal{E}) \otimes \left(\mathbb{H}^*_p(N/N) \right)^{H}$$

as it has been proved in [11, Proposition 3.8.4].

(b) Since the foliation \mathcal{E} is a riemannian foliation defined on a compact manifold then we know that the cohomology $H^* (K/\mathcal{E})$ is finite (cf. [4]). So, the finiteness of $H^*_p(K \times H N/\mathcal{W})$ depends on the finiteness of $H^*_p(N/N)$.

\(\text{Springer}\)

5 Finiteness of the BIC

We prove in this section that the BIC of a Killing foliation on a compact manifold is finite dimensional. First of all, we present two geometrical tools we shall use in the proof: the isotropy type stratification and the Molino’s blow up.

We fix an isometric action $\Phi : G \times M \rightarrow M$ on the compact manifold M. We denote by \mathcal{F} the induced Killing foliation. For the study of \mathcal{F} we can suppose that G is connected (see Lemma 1). We fix K a tamer group. Notice that the group G is normal in K and the quotient K/G is commutative (cf. Proposition 2).

5.1 Isotropy type stratification

The isotropy type stratification $S_{K,M}$ of M is defined by the equivalence relation:

$$x \sim y \Leftrightarrow K_x \text{ is conjugated to } K_y.$$

When depth $S_{K,M} > 0$, any closed stratum $S \in S_{K,M}$ is a K-invariant submanifold of M and then it possesses a K-invariant tubular neighborhood $(T, \tau, S, \mathbb{R}^m)$ whose structural group is $O(m)$. Recall that there are the following smooth maps associated with this neighborhood:

1. The radius map $\rho : T \rightarrow [0, 1]$ defined fiberwise from the assignation $[x, t] \mapsto t$. Each $t \neq 0$ is a regular value of the ρ. The pre-image $\rho^{-1}(0)$ is S. This map is K-invariant, that is, $\rho(k \cdot z) = \rho(z)$.
2. The contraction $H : T \times [0, 1] \rightarrow T$ defined fiberwisely from $([x, t], r) \mapsto [x, rt]$. The restriction $H_t : T \rightarrow T$ is an embedding for each $t \neq 0$ and $H_0 \equiv \tau$. We shall write $H(t, t) = t \cdot z$. This map is K-invariant, that is, $t \cdot (k \cdot z) = k \cdot (t \cdot z)$.

The hyper-surface $D = \rho^{-1}(1/2)$ is the tube of the tubular neighborhood. It is a K-invariant submanifold of T. Notice that the map

$$\nabla : D \times [0, 1[\longrightarrow T,$$

defined by $\nabla (z, t) = (2t \cdot z)$ is a K-equivariant smooth map, where K acts trivially on the $[0, 1]$-factor. Its restriction $\nabla : D \times]0, 1[\longrightarrow T \setminus S$ is a K-equivariant diffeomorphism.

Denote S_{min} the union of closed (minimal) strata and choose T_{min} a disjoint family of K-invariant tubular neighborhoods of the closed strata. The union of associated tubes is denoted by D_{min}. Notice that the induced map $\nabla_{min} : D_{min} \times]0, 1[\longrightarrow T_{min} \setminus S_{min}$ is a K-equivariant diffeomorphism.

5.2 Molino’s blow up

The Molino’ blow up [7] of the foliation \mathcal{F} produces a new foliation $\tilde{\mathcal{F}}$ of the same kind but of smaller depth. We suppose depth $S_{K,M} > 0$. The blow up of M is the compact manifold

$$\tilde{M} = \left\{ ((D_{min} \times]0, 1[) \cup \left((M \setminus S_{min}) \times \{-1, 1\} \right) \right\} / \sim,$$

where $(z, t) \sim (\nabla_{min}(z, |t|), t/|t|)$, and the map $\mathcal{L} : \tilde{M} \rightarrow M$ defined by

$$\mathcal{L}(v) = \begin{cases}
\nabla_{min}(z, |t|) & \text{if } v = (z, t) \in D_{min} \times]0, 1[\\
\quad \text{or } v = (z, j) \in (M \setminus S_{min}) \times \{-1, 1\}.
\end{cases}$$

For notions related with compact Lie group actions, we refer the reader to [1].

\[Springer \]
Notice that \mathcal{L} is a continuous map whose restriction $\mathcal{L} : \hat{M} \setminus \mathcal{L}^{-1}(S_{min}) \to M \setminus S_{min}$ is a K-equivariant smooth trivial 2-covering.

Since the map ∇_{min} is K-equivariant then Φ induces the action $\hat{\Phi} : K \times \hat{M} \to \hat{M}$ by saying that the blow-up \mathcal{L} is K-equivariant. The open submanifolds $\mathcal{L}^{-1}(T_{min})$ and $\mathcal{L}^{-1}(T_{min} \setminus S_{min})$ are clearly K-diffeomorphic to $D_{min} \times [1 - 1, 1]$ and $D_{min} \times [0, 1]$ respectively.

The restriction $\hat{\Phi} : G \times \hat{M} \to \hat{M}$ is an isometric action with K as a tamer group. The induced Killing foliation is $\hat{\Phi}$. Foliations \mathcal{F} and $\hat{\Phi}$ are related by \mathcal{L} which is a foliated map. Moreover, if S is a not minimal stratum of $S_{K,M}$ then there exists an unique stratum $S' \in S_{K,\hat{M}}$ such that $\mathcal{L}^{-1}(S) \subset S'$. The family $\{S' / S \in S_{K,M}\}$ covers \hat{M} and verifies the relationship: $S_1 < S_2 \iff S'_1 < S'_2$. We conclude the important property

$$\text{depth } S_{K,\hat{M}} < \text{depth } S_{K,M}. \quad (9)$$

5.3 Finiteness of a tubular neighborhood

We suppose depth $S_{K,M} > 0$. Consider a closed stratum $S \in S_{K,M}$. Take $(T, \tau, S, \mathbb{R}^m)$ a K-invariant tubular neighborhood. We fix a base point $x \in S$. The isotropy subgroup K_x acts orthogonally on the fiber $\mathbb{R}^m = \tau^{-1}(x)$. So, the induced action $\Lambda_x : G_x \times \mathbb{R}^m \to \mathbb{R}^m$ is an isometric action, it gives the Killing foliation \mathcal{N} on \mathbb{R}^m.

Proposition 6 If the BIC of $(\mathbb{R}^m, \mathcal{N})$ is finite dimensional then the BIC of (T, \mathcal{F}) is also finite dimensional.

Proof We proceed in two steps.

(a) $K_y = K_x$ for each $y \in S$.

The canonical projection $\pi : S \to S/K$ is an homogeneous bundle with fiber K/K_x. For any open subset $V \subset S/K$ the pull back $\tau^{-1}\pi^{-1}(V)$ is a K-invariant subset of T, then we can apply the Mayer-Vietoris technics to this kind of subsets (cf. 3.5).

Since the manifold S/K is a compact one then we can find a finite good covering $\{U_i / i \in I\}$ of it (cf. [2]). An inductive argument on the cardinality of I reduces the proof of the Lemma to the case where $T = \tau^{-1}\pi^{-1}(V)$, where V is a contractible open subset of S/K.

Here, the manifold T is K-equivalently diffeomorphic to $V \times (K \times_{K_x} \mathbb{R}^m)$, where K does not act on the first factor. So, the natural retraction of V to a point gives a K-equivariant retraction of T to the twisted product $K \times_{K_x} \mathbb{R}^m$. Now the result comes directly from 4.3(b) since (K, G, K_x) is a trio.

(b) **General case.**

The stratum S is K-equivariantly diffeomorphic to the twisted product $K \times_{N(K_x)} F$ where $N(K_y)$ is the normalizer of K_x on K and $F = S^{K_x}$. So, the tubular neighborhood T is K-equivariantly diffeomorphic to the twisted product $K \times_{N(F)} N$ where N is the manifold $\tau^{-1}(F)$. The previous case gives that the BIC of (N, \mathcal{F}_N) is finite dimensional. Now the result comes directly from 4.3(b) since $(K, G, N(K_x))$ is a trio.

The main result of this work is the following

Theorem 1 The BIC of the foliation determined by an isometric action on a compact manifold is finite dimensional.
Proof Let \mathcal{F} be a Killing foliation defined on a compact manifold M induced by an isometric action $\Phi: G \times M \to M$ where G is a Lie group. Without loss of generality we can suppose that the Lie group G is a connected one (cf. Lemma 1). We fix a tamer group K. We know that G is normal in K and the quotient group K/G is commutative (cf. Proposition 2).

Let us consider the following statement

$$\mathfrak{A}(U, \mathcal{F}) = \text{"The BIC } H^*_\mathcal{F}(U/\mathcal{F}) \text{ is finite dimensional for each perversity } \mathcal{P},\text{"}$$

where $U \subset M$ is a K-invariant submanifold. We prove $\mathfrak{A}(M, \mathcal{F})$ by induction on $\dim M$. The result is clear when $\dim M = 0$. We suppose $\mathfrak{A}(W, \mathcal{F})$ for any K-invariant compact submanifold W of M with $\dim W < \dim M$ and we prove $\mathfrak{A}(M, \mathcal{F})$. We proceed in several steps.

First step: 0-depth. Let us suppose depth $S_{K,M} = 0$. Since $G < K$ and K_x is conjugated to K_y then $G_{x,y}$ is conjugated to $G_y, \forall x, y \in M$. We get that the foliation \mathcal{F} is a (regular) riemannian foliation (cf. [7]). Its BIC is just the basic cohomology (cf. 3.3). Then $\mathfrak{A}(M, \mathcal{F})$ comes from [4].

Second step: Inside M. Let us suppose depth $S_{K,M} > 0$. The family $\{M \backslash S_{min}, T_{min}\}$ is a basic covering of M and we get the exact sequence (cf. 3.5)

$$0 \to \Omega^*_p(M/\mathcal{F}) \to \Omega^*_p((M \backslash S_{min})/\mathcal{F}) \oplus \Omega^*_p(T_{min}/\mathcal{F}) \to \Omega^*_p(T_{min} \backslash S_{min}/\mathcal{F}) \to 0.$$

The Five Lemma gives

$$\mathfrak{A}(T_{min} \backslash S_{min}, \mathcal{F}), \mathfrak{A}(T_{min}, \mathcal{F}) \text{ and } \mathfrak{A}(M \backslash S_{min}, \mathcal{F}) \implies \mathfrak{A}(M, \mathcal{F}).$$

Since $T_{min} \backslash S_{min}$ is K-diffeomorphic to $D_{min} \times]0, 1[$ (cf. (5.1)) then $\mathfrak{A}(D_{min}, \mathcal{F}) \implies \mathfrak{A}(T_{min} \backslash S_{min}, \mathcal{F}).$ The inequality $\dim D_{min} < \dim M$ gives

$$\mathfrak{A}(T_{min}, \mathcal{F}) \text{ and } \mathfrak{A}(M \backslash S_{min}, \mathcal{F}) \implies \mathfrak{A}(M, \mathcal{F}).$$

In order to prove $\mathfrak{A}(T_{min}, \mathcal{F})$ it suffices to prove $\mathfrak{A}(T, \mathcal{F})$ where $(T, \tau, S, \mathbb{R}^m)$ a K-invariant tubular neighborhood of closed stratum S of $S_{K,M}$. Following Proposition 6 we have

$$\mathfrak{A}(\mathbb{R}^m, \mathcal{N}) \implies \mathfrak{A}(T, \mathcal{F}) \implies \mathfrak{A}(T_{min}, \mathcal{F}).$$

Consider the orthogonal decomposition $\mathbb{R}^m = \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$, where $\mathbb{R}^{m_1} = (\mathbb{R}^m)^{G_x}$. The only fixed point of the restriction $A_x: G_x \times \mathbb{R}^{m_2} \to \mathbb{R}^{m_2}$ is the origin. So, there exists a Killing foliation G on the sphere S^{m_2-1} with $(\mathbb{R}^{m_1} \times \mathbb{R}^{m_2}, \mathcal{F}) = (\mathbb{R}^{m_1} \times cS^{m_2-1}, \mathcal{I} \times c\mathcal{G}).$ Propositions 3 and 4 give:

$$\mathfrak{A}(S^{m_2-1}, \mathcal{G}) \implies \mathfrak{A}(\mathbb{R}^{m_1} \times cS^{m_2-1}, \mathcal{I} \times c\mathcal{G}) \implies \mathfrak{A}(\mathbb{R}^m, \mathcal{N}).$$

Finally, since $\dim S^{m_2-1} < m \leq \dim T \leq \dim M$ we have

$$\mathfrak{A}(M \backslash S_{min}, \mathcal{F}) \implies \mathfrak{A}(M, \mathcal{F}).$$

Third step: Blow-up. Let us suppose depth $S_{K,M} > 0$. The family $\{\mathcal{L}^{-1}(M \backslash S_{min}), \mathcal{L}^{-1}(T_{min})\}$ is a basic covering of \hat{M} and we get the exact sequence (cf. 3.5)

$$0 \to \Omega^*_p(\hat{M}/\mathcal{F}) \to \Omega^*_p(\mathcal{L}^{-1}(M \backslash S_{min})/\mathcal{F}) \oplus \Omega^*_p(\mathcal{L}^{-1}(T_{min})/\mathcal{F}) \to \Omega^*_p(\mathcal{L}^{-1}(T_{min} \backslash S_{min})/\mathcal{F}) \to 0.$$

Following 5.2 we have that

\[9\] It is given by the orthogonal action $A_x: G_x \times S^{m_2-1} \to S^{m_2-1}$.

 Springer
Finiteness of the basic intersection cohomology of a killing foliation

- $L^{-1} (M \setminus S_{\text{min}})$ is K-diffeomorphic to two copies of $M \setminus S_{\text{min}},$
- $L^{-1} (T_{\text{min}})$ is K-diffeomorphic to $D_{\text{min}} \times [-1, 1[,$
- $L^{-1} (T_{\text{min}} \setminus S_{\text{min}})$ is K-diffeomorphic to $D_{\text{min}} \times (-1, 0 \cup]0, 1[).$

Now, the Five Lemma gives

$$\mathfrak{a}(D_{\text{min}}, \hat{\mathcal{F}}) \text{ and } \mathfrak{a}(\hat{M}, \hat{\mathcal{F}}) \implies \mathfrak{a}(M \setminus S_{\text{min}}, \mathcal{F}).$$

But, the inequality $\dim D_{\text{min}} < \dim M$ gives

$$\mathfrak{a}(\hat{M}, \hat{\mathcal{F}}) \implies \mathfrak{a}(M \setminus S_{\text{min}}, \mathcal{F}).$$

Forth step: Final blow-up. When depth $S_{K,M} = 0$ we get $\mathfrak{a}(M, \mathcal{F})$ from the First step. Let us suppose depth $S_{K,M} > 0.$ From (10) and (11) we get

$$\mathfrak{a}(\hat{M}, \hat{\mathcal{F}}) \implies \mathfrak{a}(M, \mathcal{F}).$$

with depth $S_{K,\hat{M}} < depth S_{K,M}$ (cf. (9)). By iterating this procedure we get

$$\mathfrak{a}(\hat{M}, \hat{\mathcal{F}}) = \mathfrak{a}(\hat{\hat{M}}, \hat{\mathcal{F}}) \implies \cdots \implies \mathfrak{a}(\hat{M}, \hat{\mathcal{F}}) \implies \mathfrak{a}(M, \mathcal{F}),$$

with depth $S_{K,\hat{M}} = 0.$ We finish the proof by applying again the First Step.\blacksquare

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Bredon, G.E.: Introduction to Compact Transformation Groups. Pure Appl. Math., vol. 42, Academic Press, New York (1972)
2. Bredon, G.E.: Topology and Geometry—Graduate Text in Math. vol. 139, Springer, Berlin (1993)
3. El Kacimi, A., Hector, G.: Decomposition de Hodge basique pour un feuilletage riemannien. Ann. Inst. Fourier 36, 207–227 (1986)
4. El Kacimi, A., Sergiescu, V., Hector, G.: La cohomologie basique d’un feuilletage riemannien est de dimension finie. Math. Z. 188, 593–599 (1985)
5. Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature and Cohomology—Pure and Appl. Math., vol. II. Academic Press, New York (1972)
6. Kobayashi, S.: Transformation groups in differential geometry. Classic in Mathematics. Springer, Berlin (1995)
7. Molino, P.: Riemannian Foliations—Progress in Math. vol. 73, Birkhäuser, Basel (1988)
8. Poguntke, D.: Dense Lie group homomorphisms. J. Algebra 169, 625–647 (1994)
9. Royo Prieto, J.J., Saralegi-Aranguren, M., Wolak, R.: Tautness for riemannian foliations on non-compact manifolds. Manus. Math. 126, 177–200 (2008)
10. Saralegi-Aranguren M., Wolak R.: The BIC of a conical fibration. Mat. Zametki 77, 235–257 (2005). Translation in Math. Notes 77, 213–231 (2005)
11. Saralegi-Aranguren, M., Wolak, R.: The BIC of a singular foliation defined by an abelian group of isometries. Annal. Pol. Math. 89, 203–246 (2006)