STORIES IN THE EYE: CONTEXTUAL VISUAL INTERACTIONS FOR EFFICIENT VIDEO TO LANGUAGE TRANSLATION

Anirudh Goyal
Center for Visual Information Technology
International Institute of Information and Technology, Hyderabad
anirudh.goyal@students.iiit.ac.in

Marius Leordeanu
Institute of Mathematics of the Romanian Academy
21 Calea Grivitei, Bucharest, Romania
leordeanu@gmail.com

ABSTRACT

Integrating higher level visual and linguistic interpretations is at the heart of human intelligence. As automatic visual category recognition in images is approaching human performance, the high level understanding in the dynamic spatiotemporal domain of videos and its translation into natural language is still far from being solved. While most works on vision-to-text translations use pre-learned or pre-established computational linguistic models, in this paper we present an approach that uses vision alone to efficiently learn how to translate into language the video content. We discover, in simple form, the story played by main actors, while using only visual cues for representing objects and their interactions. Our method learns in a hierarchical manner higher level representations for recognizing subjects, actions and objects involved, their relevant contextual background and their interaction to one another over time. We have a three stage approach: first we take in consideration features of the individual entities at the local level of appearance, then we consider the relationship between these objects and actions and their video background, and third, we consider their spatiotemporal relations as inputs to classifiers at the highest level of interpretation. Thus, our approach finds a coherent linguistic description of videos in the form of a subject, verb and object based on their role played in the overall visual story learned directly from training data, without using a known language model. We test the efficiency of our approach on a large scale dataset containing YouTube clips taken in the wild and demonstrate state-of-the-art performance, often superior to current approaches that use more complex, pre-learned linguistic knowledge.

1 INTRODUCTION

The connection between visual interpretation and linguistic expression is at the heart of our mind - it is a link incompletely understood in science and artificial intelligence today. The association between vision and language bridges our perception of the world to the way we communicate with each other. Solving this scientific challenge from a computational perspective would have a significant impact in the way we understand our own way of thinking. Moreover, it would help in the development of a wide variety of new technologies with great potential to improve the quality of life. We, humans, are able to effortlessly interpret a visual scene or event and then describe it concisely in just a few words. The usual case is that of a subject performing an activity and interacting with objects or other subjects. From a quick glance at the visual world, we immediately understand the essence of what is going on around us: from seeing objects, interpreting their interaction and the overall setting, or scene of the story, to predicting activities, intentions and the future course of events. Often we agree on the high level description of events that occur in a given video sequence,
despite the natural variation in our individual experiences and points of view. When we do not use exactly the same words to describe a situation, we usually use very related ones that describe semantically similar events. This is exactly the problem we tackle here. Can we have an automatic way to learn directly from the raw visual data to classify different subjects, objects and verbs that describe short events? Can we take in consideration their interactions and relation to the contextual scene in a pure visual sense, without using a language model, in order to provide an accurate linguistic description in the form of Subject-Verb-Object triplet? Learning to translate visual data into basic (subject, verb, object) translations is an interesting challenge, a first step that could shed some light on the possibility of learning natural language directly from vision.

The task of describing images or videos with text has received a growing attention during the last few years. Most existing research that integrates vision and language has been studying the description of static images (Kulkarni et al. (2011); Li et al. (2011); Farhadi et al. (2010); Yao et al. (2010); Feng & Lapata (2013); Ordonez et al. (2011)). The problem is still far from being solved, with linguistic descriptions usually being limited to simple and rather strict descriptions. They usually have a single atomic action, one main actor acting upon a single object. This is also the case we study here, our method being focused on video to (subject(S), verb(V), object(O)) translations - a task tackled by a considerable number of recent works (Thomason et al. (2014); Guadarrama et al. (2013); Xu et al. (2015); Venugopalan et al. (2014); Barbu et al. (2012); Das et al. (2013); Rohrbach et al. (2013); Senina et al. (2014); Yu & Siskind (2013)).

We face three main challenges: 1) first, the problem of video classification has not been solved yet. The recognition of object classes occurring in a video, the understanding of what they do (actions) and how they relate and interact with each other, are problems that are difficult to model and compute efficiently. The vast sources of variation in illumination, changes in pose, occlusions, intra- and inter-class differences, make even object detection very hard. However, recent advances with hierarchical recognition models, such as the highly successful Deformable Part Model (Felzenszwalb et al. (2010)) and the deep learning approaches with neural networks (Krizhevsky et al. (2011); Simonyan & Zisserman (2014); Szegedy et al. (2014)) show great promise towards solving the object categorization and detection part, fast approaching the human performance. 2) While image recognition is enjoying a great success, recognition in video is different and it is not clear yet how the spatiotemporal consistency that is naturally present in a video could be best used for improved recognition. Moreover, the larger data available in a video contains important and relevant information about the main objects of interest as well as about the contextual scene in which the events take place. How could we best take advantage of the contextual relationships between objects, and between objects and the scene for superior classification. In video, the foreground and background can be better separated automatically (Stretcu & Leordeanu (2015)), and considering both their contrasting properties and their interdependence could benefit recognition. 3) Once we have a reasonably accurate way of recognizing subjects, objects and their potential interactions separately, it is still not clear, just from visual information alone, how we could produce a coherent and meaningful SVO triplet without prior linguistic knowledge. Language inherently contains semantic relations that reflect dependencies which exist in the real world. An interesting question arises here: to what extent it is possible, just from visual information to learn these dependencies and bypass a strong linguistic model learned or known a priori, in order to recover the correct SVO triplet?

2 Relation to Prior Work

The approaches that are most similar to our method are the recent works of Guadarrama et al. (2013); Xu et al. (2015); Venugopalan et al. (2014); Thomason et al. (2014), which are able to translate videos into SVO triplets with a relatively numerous vocabulary of concepts learned from a large set of training videos taken in the wild. Guadarrama et al. (2013) propose a method based on semantic hierarchies. They take a language driven approach in which semantic relationships are learned between different labels by mining large corpus of text and then clustering semantically related concepts based on their correlations and co-occurrences in human annotated text descriptions (Pereira et al. (1993)). Thomason et al. (2014) use a factor graph model that combines state-of-the-art visual recognition systems with probabilistic knowledge mined from large text corpora that are independent of the video dataset. Following a similar direction, Venugopalan et al. (2014) employ a two layer LSTM model on top of visual features learned with the Convolutional Neural Network model available in Caffe (Jia et al. (2014)), a minor variant of AlexNet (Krizhevsky et al. (2011)).
and trained on ILSVRC-2012 classification subset of ImageNet (Russakovsky et al. (2014)). The Long Short Term Memory model uses the CNN features as inputs and is, for best performance, pre-trained on other two large image datasets Flickr30k (Young et al. (2014)) and Microsoft COCO 2014 (Lin et al. (2014)), then fine-tuned on the video dataset used in experiments. One limitation of this approach (Venugopalan et al. (2014)) is that its video representation exploits only weakly temporal information, as it accumulates CNN feature responses over time by mean pooling. While the previously mentioned works explore language modeling on a fixed visual model, the work of Xu et al. (2015) goes a step further by combining a compositional semantics language model with a deep video model into a single unified framework.

Compared to the three previous works above, we rely only on visual classifiers and model explicitly contextual relationships at several levels, that of individual subjects, verbs and objects, their relation to the surrounding spatiotemporal context (e.g. global features from the video that contains them), as well as relations between the different entities. It is important to emphasise that we do not learn language statistics from external sources and we do not model language knowledge explicitly. All the linguistic relationships are indirectly captured by the visual information and the contextual interaction between the video scene and the visual classifiers, which fire separately or together, in a video at different relative moments in time. The visual cues we start from are pre-trained CNN features from the superior, second to last fully connected (fc7) layer of (Jia et al. (2014)). Instead of pooling these features over the entire video (a common approach), we also perform key frames and feature selection for modeling foreground, and thus capture an effective foreground-background contextual relationship.

In different work, Yao et al. (2015) addresses the limitations of Venugopalan et al. (2014) by employing a 3-D convnet model (which is pre-trained on different video datasets of action recognition) in order to incorporate spatiotemporal motion features. For capturing changes and movement, they extract dense trajectory features over the video. They also include an attention mechanism that learns to weight the features non-uniformly over frames, rather than blandly averaging them. We propose a simpler approach for exploiting temporal consistency in a video. Instead of using a complex LSTM model, we take advantage of co-firing of different visual classifiers, at different relative temporal sections in the video. Different from Yao et al. (2015) we do not use features that are specific for motion, such as cues computed from optical flow. All our features are trained on a per static image basis, such that accurate verb predictions are the result of the visual context from the scene and from the other classes present. Our relatively simpler model, proves its effectiveness and generally outperforms our competitors by an important margin on a large video dataset (Chen & Dolan (2011)).

3 OVERVIEW OF OUR APPROACH

We address the problem of linguistic video interpretation by first creating classifiers to predict the different concepts, subject, object and verb from pure visual information that we extract from deep AlexNet-like CNNs pre-trained on the large ILSVRC-2012 image classification dataset (Jia et al. (2014); Krizhevsky et al. (2011)). In particular, we use features from the last fully-connected layer (fc7). As shown in our experiments these features are often able to predict video content, such as the presence of specific subjects, objects and even verbs, without using any explicit motion information. The correct prediction of verbs is due to the fact that higher level concepts, such as words in a sentence, are strongly interconnected and the presence of one will influence the expectation of another. For example the appearance of a boy could raise the expectation for the verb "play" and the object "ball", among other probable choices. We show that at this first level of interpretation it is important to take in consideration mostly the key frames and only a few of the CNN features, which are more likely to belong to the foreground than to the scene elements in the background.

For the automatic discovery of frames and features that are likely to belong to the foreground objects and actions, we propose an efficient method for unsupervised selection. The relevant foreground frames are usually different from the average frames in the video in the sense that they have strong feature responses, and those responses also come from salient features. These salient features are also those with strong average response over time. The discovery of salient foreground cues is related to many works in video and image understanding, based on similar principles. For detecting foreground regions in images related ideas can be found in the works of (Borji et al. (2012); Cheng.
Figure 1: Our visual story system, as a model in which individual subjects, objects and the video scene interact visually to form more coherent and meaningful translations. Our system has three levels, from the detection of single entities (level L1), to capturing the relationship with the overall scene (level L2) and the interactions between the different (S,O,V) elements (level L3). Each node is a linear classifier, trained with linear SVM, getting its inputs from the features or classifiers below in the hierarchy.

Interestingly enough, even though we first need to remove the background in order to emphasize aspects of the foreground, at a second stage, we need to add overall scene information back. The importance of global scene context was recognized in computer vision for a long time (Oliva & Torralba (2001)), while recent findings in psychology suggest that contextual scene information is crucial for recognition, independent of the attentional focus Munneke et al. (2013). This suggests that scene recognition happens before the detection of individual objects.

What is important at this stage, is our ability to separate the foreground from the background, but both types of information matter, in different ways, as our experiments clearly show. Thus, by augmenting our foreground descriptors with descriptors from the background we consistently and significantly improve recognition (Tables 1, 2). These foreground-background descriptors are the ones fed into the L2-FG-BG classifiers. The background, taken in this case as information over all features from the remaining frames, constitutes the other part of the story, the scene and context in which the subject, verb and object co-exist. While putting the whole background into a single pot, without separating yet information from other individual classes, we capture the scene gist - which is able to add important ingredients for the prediction of a particular subject, verb or object.
responses at level 2 for all three types, subjects, verbs and objects, we then form level 3 descriptors from these responses and learn linear models, using linear SVM, that could predict, at level 3, from level 2 inputs. We show that by doing so we boost the performance, as we now take in consideration not only the individual visual appearance of these words, but also interactions between them. These relationships, as expected, improve the logic of the output triplets.

Let us take an example: imagine we are at the beach with people enjoying their vacation in the sun. We can take a person detector to get a few candidate locations for people in the scene - these are the L1-FG classifier responses. Then the background, the overall scene, could improve the recognition of people: we expect that at the beach there are many people during the summer, so, in this case, the context will encourage the detection of people around the region belonging to the sandy beach - and these are the L2-FG-BG detections. After we get context-improved people, who happen to play volleyball, by further using L2-FG-BG classifiers of other classes, for verbs such as play and for objects such as ball, as inputs to the next level, we could get improved L3-FG-BG people detections.

This happens because now the story contains more elements, in which people are strongly anchored into a specific role - as context to the scene and other classifiers - and are harder to miss. Indeed, it is harder to mistake a person for something else, when so many elements start fitting into place. Now, at this level, the beach, the people, the ball and the game of volleyball are all part of a coherent story, which becomes a strong contextual support for all these concepts. If we then move even higher in the contextual hierarchy and consider temporal dependencies, such as which subject or object happened first, or whether they appeared at the same time in the scene (the most common case), the recognition is further improved. In Figure 2 we show some representative qualitative examples of translations at different levels: the first L1-FG level and the last L3-Temporal level, which considers contextual inputs from the scene and the other objects over specific time periods. We will discuss this case in more detail in Sec. 5.

4 Principles and Contributions of the Visual Story Approach

Before we go into the implementation details of our method, we first lay down the basic principles and contributions of our overall approach - an attempt to understand objects, scenes and their interactions in the context of a unified visual story. It is through this story (Schank & Abelson (1995); Connelly & Clandinin (1990); Pahl & Rowsell (2010)) that we aim to understand objects, such as their role will convincingly indicate the identity of each class, through rich contextual connections.

The object-scene duality: The inter-dependence between an object and its scene is a central idea in our approach, and we treat both the object and the scene together for recognition. Here, by object, we mean any physical object or simple, atomic action, which could be denoted by our subjects, verbs or objects. By scene we mean the overall dynamic and static setting in the video, the global spatiotemporal context in which actions and activities take place. We propose two complementary views of an entity: 1) an object, subject or verb is seen and recognized based on its own, intrinsic features such as appearance, shape, movement, or other local feature responses. and 2) that object or verb should also be interpreted from the perspective of the overall scene. The overall larger context around that entity will also tell what that entity is. For example: the car tells that at a specific location should be a wheel. Then, the wheel-only classifier confirms (or not) that hypothesis, but only when it has sufficient information. When it does not, due to bad lighting conditions or other noises, the scene will provide the safety belt of a plausible answer to give a coherent view of the overall image. In the same way, at the higher level of an activity, the game of volleyball and the beach constitute strong indication for the presence of people, the verb play and the object ball, among others.

Classes are context to one another: there are many examples of objects providing contextual information to other objects, for improved visual recognition. A driver could provide context for the car, if, for example, only the drivers face and parts of the windscreen appear in the image. The car can also provide contextual input for the person, when, for instance, the driver can barely be seen when driving, due to very low resolution or bad lighting. E.g., a man is riding a horse, very far away in the field. Then, the person and horse detectors will give contextual inputs to each other and the verb riding, and raise the the confidence of our seeing of a man riding a horse. Thus, at the third level in our system, the first few top detections of subjects, verbs and objects based on the level 2 classifiers, become inputs to all of the potential subjects, verbs, and objects, at level 3.
induces different classifiers per class, at different levels - which is an important contribution of our work, different from current approaches.

Objects and actions play roles in a story Each level in our contextual hierarchy, gathers information from conceptually larger basins of interpretation, to better identify the role played by each player in the larger story. Of course that our system, presented here is a relatively simple implementation of the principle discussed here, but it is a useful and effective step in our endeavor to treat objects and actions as elements with a clear contribution to a large context, in both space, time and meaning.

Feature selection and re-using prior knowledge is important: the problem of efficient feature selection becomes more important as we move towards higher levels of interpretation, such as activities in video. If at the lower levels dense systems could be learned by considering all information at once, we believe that at the higher level of objects and actions there is more freedom of movement and representation, and effective feature selection could considerably reduce the exponentially growing number of possibilities. In our case feature selection is performed at two levels: first, we perform unsupervised feature selection by pooling the salient frames and features in order to detect the potential foreground elements and cues. The same salient pooling is performed at the next level, when we take the top detections from level 2 classifiers as inputs to the classifiers from level 3. Selecting in an unsupervised manner potentially interesting regions and features is also related to approaches in object recognition, in which segmentation cues are used in order to guide the process of attention (Girshick et al. (2014)).

5 Algorithm Implementation

Our method has three stages. First, we perform feature selection and create L1-FG classifiers. At the second stage we create L2-FG-BG classifiers by considering also background information as discussed before. Third, we consider L2-BG-FG responses over the whole video, to create L3-FG-BG classifiers (by using the top c detections from the previous stage L2 as inputs to stage L3). Another option, which considers, additionally, temporal relationships is: we get the level 2 classifier responses over different parts of the video (first, middle and last), get top responding classifiers for each video part and each type, subject, verb or object, as inputs to the third classification level (L3-Temp. classifiers). The classifiers that take temporal relations in consideration are performing the best, on average. The steps of our approach are, in more detail, as follows:

1) **Foreground descriptor:** create a foreground descriptor that selects in ununsupervised manner top k features and top q frames. The top k features are selected as the strongest ones, based on their response for each frame. Values are averaged over the whole video and then the final ordering is done and the top k are selected from the entire video. Then, using the average value of the selected top-k features as a measure of frame saliency, we then select the top-q frames with the top q averages of the top-k selected features. We consider this top-q group of frames as the most salient frames and our results confirm the usefulness of the idea. In the experiments section we discuss in more detail the effectiveness of the frames and feature selection procedure. By taking the average responses of the top k features over the top q frames, we construct a foreground descriptor over the corresponding video region (over which the selection and averaging was performed). This foreground descriptor produces the first L1-FG classifiers in combination with linear SVM, for recognizing subjects, verbs and objects, individually. As mentioned before, note that we do not use any explicit motion features. All our features (1000 in number) are collected from the last fully connected layer (fc7) of deep CNNs trained on static images, as discussed before.

2) **Foreground-Background descriptor:** we augment the foreground descriptor with a descriptor computed from averages over the entire sequences of frames, minus the selected top-q. We show that by augmenting the initial descriptor with the background information the performance increases significantly. Again we use linear SVMs to obtain our augmented L2-FG-BG classifiers. While feature selection and background removal helps at the first level, adding background information back and treating it separately, further improves performance at the second level.

3) So far we have not considered temporal ordering, even though we could expect that different parts of the video will be represented by different classifier outputs. For example, when a child plays with the ball, we could expect the child to appear first, then the ball and then all three classifiers could
Figure 2: Representative qualitative SVO translations using classifiers at different levels, L1-FG and the final, best performing L3-Temp. Note that at the third level classifications are much closer to the ground truth, as the contextual relationships between classes helps in creating a more coherent SVO triplet.

fire: child, play and ball somewhere close to the middle of the video. By considering contextual information at different moments in time we could hope to improve classification even more. The temporal ordering is considered by computing separate responses for each L2 classifier and for each subject, verb and object over different temporal regions in the video. In these experiments we divide videos in three parts, such that the first part overlaps over half the frames with the middle part, which in turn overlaps for half the frames with the third part. At this third level we consider top-c responses for subjects, verbs and objects of the L2 classifiers, for the different parts of the video, to obtain a descriptor with 9c non-zero values (each of the three video parts will get c responses from the top c subjects, verbs and objects). These will be passed to the final L3-Temp. classifiers. When the temporal information is not considered, then the descriptors will have only 3c non-zero values (responses are considered over the whole undivided video), to become inputs to the L3-FG-BG classifiers. All classifiers in our system are learned with linear SVMs over the corresponding input features.
Table 1: Average binary accuracy of predicting the most common word. The accuracy of the models when their prediction for each sentence component is considered correct only if it is the word (subject, verb and object) most commonly used by human annotators to describe the video. In parenthesis: average binary accuracy of predicting any given word. The accuracy of the models when the prediction is considered correct if used by any of the annotators to describe the video. Note how each level in our contextual, visual story hierarchy gives an extra boost in performance.

Method	S%	V%	O%
n-gram	76.57(86.87)	11.04(19.25)	11.19(21.94)
HVC	76.57(86.57)	22.24(38.66)	11.94(22.09)
FGM	76.42(86.27)	21.34(37.16)	12.39(24.63)
LSTM-YT	71.19(79.40)	19.40(35.52)	9.70(20.59)
Guardamman	78.51	22.09	12.84
L1 - FG	74.96(86.18)	16.98(38.59)	9.19(25.20)
L2 - FG-BG	75.85(86.73)	19.82(41.87)	10.58(26.08)
L3 - FG-BG	76.61(87.12)	20.87(41.88)	12.11(26.41)
L3 - Temp.	74.51(85.69)	21.45(42.13)	11.77(23.98)

6 Experimental Analysis

We test our method on the task of Subject-Verb-Object prediction from video and compare to current methods, which use both visual as well as language models. We test on the dataset containing YouTube videos made available by Chen and Dolan, 2011. This dataset contains 1970 video clips all having several text descriptions. We use the same training and testing split as in previous works: there are 1299 training videos and 671 testing videos, as in (Guadarrama et al. 2013).

We evaluate the methods in two ways. First, we test their capability to recognize the exact subject, verb and object given by the human annotators (Table 1). One variant is to predict the most common word in any extracted human annotated triplet. The other variant (shown in parenthesis in the tables) is to predict any of the words given. Another way to test the accuracy of the predictions is to evaluate the words given at a higher, more semantic level of abstraction, by comparing the meanings of the words generated with the ones provided by the human annotators, by using WUP scores. Again, we also have two sub-variants, by predicting the most common or any given word, respectively (Table 1).

The tests showed a few interesting properties of our approach versus the others. First, we see that in the case of raw predictions, all methods perform very similarly for subjects and objects, while the performance differs more on verbs. The cause of this is worth investigating further. We believe it has to do with the fact that the poorly performing methods do not use movement information, when verbs are guessed from static information alone, as also it is the case in our system.

However, when semantic similarity relationships are used at higher levels of interpretation using WUP scores (Table 2), we see that most methods in fact predict words with meanings that are much close to the ground truth, with the same similar performance for both subjects, object and verbs. Note that the increase in performance after semantic similarity is considered is very significant. In this case, however, our method outperforms most of the others by a great margin. This means that our method finds verbs with much better meanings, even if it does not match the exact word. The accuracy at the level of meaning comes from the contextual interplay of high level visual features, considered by our approach. Our experiments validate the intuition that the interactions at higher level of context, occurrence among strong responding classifiers and temporal ordering is important. It strongly suggests that interactions and spatiotemporal context should be considered for a fuller understanding of the events taking place in videos.

Foreground feature selection: selecting the top k features proved to be very effective in our experiments. As we mentioned before, we consider the average feature responses over the whole video and select the features with the top-k average response as the foreground ones. These features represent the output of the $fc7$ layer (of 1000 values) from the AlexNet-type CNN pre-trained on...
Table 2: Average WUP score of predicting most common word - the accuracy of the models when the prediction is considered correct if the word most commonly used by human annotators to describe the video. In brackets: average WUP score of predicting any given word - the accuracy of the models when the prediction is considered correct if used by any of the annotators to describe the video. We believe the large difference in the WUP case is due to a combination of factors, such as efficient foreground frames and feature selection as well as the use of contextual relationships between subjects, verbs, objects and the overall scene. Note: the WUP case is the one in which an answer is correct if it is close, in meaning to the human ground truth, even if it is not the exact same word. Also note how each level in our contextual hierarchy gives an extra boost in performance.

Method	S%	V%	O%
n-gram	89.00	41.56	44.01
HVC	89.09	48.85	43.99
FGM	89.01	47.05	45.29
Guardamma	88.94	43.56	36.77
L1 - FG	92.10	69.44	61.77
L2 - FG-BG	92.39	71.38	61.84
L3 - FG-BG	92.51	71.51	62.09
L3 - Temp.	92.43	72.67	62.24

ImageNet. These features, being at the top of the deep network hierarchy, are highly semantic and are indicative of video content. Thus, we expect the features with strong responses to be related to the classes of interest. Instead of using 1000 features, selecting a small group proved to be much more powerful. Our experiments showed that by selecting the top 60 features from the video, and zero-ing out the outputs of all the others, the recognition performance increased by a very significant 20% (relative to the recognition rate when all 1000 were used). Then, by using the average outputs of the selected features, we selected the frames with top-\(q\) averages of the top-\(k\) features selected. Then, the final foreground video descriptor was computed by averaging (mean pooling) the output of the top-\(k\) features only over the selected top-\(q\) frames. Values corresponding to all other features in the descriptor were set to 0. In our experiments, the optimal \(q\) validated over the training set was 50, giving an improvement of extra 10% at test time, over the case when all frames were considered. Therefore, overall, the selection of the most salient frames and features increased our performance by 30% (in relative terms).

7 Discussion and Conclusions

We have presented an efficient method for video to language translation, in the form of SVO triplets, that takes in consideration only visual information by integrating higher level contextual interactions between foreground and background, co-occurrence of semantic classifiers as well as temporal ordering of subjects, objects and verbs. One main novelty of our method is to show that visual information alone could outperform at a semantic level, more complex models that integrate both vision and semantics. Another important contribution of our work is to show how contextual relationships, at different levels of visual interpretation, can boost recognition performance, which automatically produces more coherent translations. We concentrate on the general idea of a visual story, in which objects, scenes and interactions are understood in a unified manner. We lay down its basic principles and present an efficient and relatively simple implementation that significantly outperforms more complex systems, such as those based on Long-Short-Term-Memory neural networks. Our paper, by focusing on both visual aspects of interpretation and contextual relationships, could open important doors towards a full, coherent understanding of the visual world, which will also facilitate the translation into natural language.
8 ACKNOWLEDGMENTS

This work was supported in part by CNCS-UEFICSDL, under project PNII PCE-2012-4-0581. The authors would like to thank Dr. Rahul Sukthankar for numerous fruitful discussions and helpful feedback.

REFERENCES

Barbu, A., Bridge, A., Burchill, Z., Coroian, D., Dickinson, S., Fidler, S., Michaux, A., Mussman, S., Narayanaswamy, S., and et al., D. Salvi. Video in sentences out. UAI, 2012.

Borji, Ali, Sihite, Dicky N, and Itti, Laurent. Salient object detection: A benchmark. In ECCV, 2012.

Carlsson, S. and Sullivan, J. Action recognition by shape matching to key frames. In WMECV, 2001.

Chen, David L and Dolan, William B. Collecting highly parallel data for paraphrase evaluation. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 190–200. Association for Computational Linguistics, 2011.

Cheng, Ming, Mitra, Niloy J, Huang, Xumin, Torr, Philip HS, and Hu, Song. Global contrast based salient region detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37(3), 2015.

Connelly, F Michael and Clandinin, D Jean. Stories of experience and narrative inquiry. Educational researcher, 19(5), 1990.

Das, P., Xu, C., Doell, R. F., and Corso, J. J. A thousand frames in just a few words: Lingual description of videos through latent topics and sparse object stitching. In CVPR, 2013.

Ellis, C., Masood, S.Z., Tappen, M.F., Jr., J.J. LaViola, and Sukthankar, R. Exploring the trade-off between accuracy and observational latency in action recognition. IJCV, August 2012.

Farhadi, A., Hejrati, M., Sadeghi, M. A., Young, P., Rashtchian, C., Hockenmaier, J., and Forsyth, D. Every picture tells a story: Generating sentences from images. In ECCV, 2010.

Felzenszwalb, P.F., Girshick, R.B., McAllester, D., and Ramanan, D. Object detection with discriminatively trained part-based models. PAMI, 32(9), 2010.

Feng, Y. and Lapata, M. Automatic caption generation for news images. PAMI, 35(4):797–812, 2013.

Girshick, Ross, Donahue, Jeff, Darrell, Trevor, and Malik, Jagannath. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.

Guadarrama, S., Krishnamoorthy, N., Malkarnenkar, G., Venugopalan, S., Mooney, R., Darrell, T., and Saenko, K. Youtube2text: Recognizing and describing arbitrary activities using semantic hierarchies and zero-shot recognition. In ICCV, 2013.

Hou, Xiaodi and Zhang, Liqing. Saliency detection: A spectral residual approach. In CVPR, 2007.

Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayev, Sergey, Long, Jonathan, Girshick, Ross, Guadarrama, Sergio, and Darrell, Trevor. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM, 2014.

Krizhevsky, A., Sutskever, I., and Hinton, G.E. Imagenet classification with deep convolutional neural networks. In NIPS, 2011.

Kulkarni, G., Premraj, V., Dhar, S., Li, S., Choi, Y., Berg, A. C., and Berg, T. L. Baby talk: Understanding and generating image descriptions. In CVPR, 2011.
Li, S., Kulkarni, G., Berg, T. L., Berg, A. C., and Choi, Y. Composing simple image descriptions using web-scale n-grams. In *Computational Natural Language Learning*, 2011.

Lin, Tsung-Yi, Maire, Michael, Belongie, Serge, Hays, James, Perona, Pietro, Ramanan, Deva, Dollár, Piotr, and Zitnick, C Lawrence. Microsoft coco: Common objects in context. In *Computer Vision—ECCV 2014*, pp. 740–755. Springer, 2014.

Lv, F. and Nevaita, F. Single view human action recognition using key pose matching and viterbi path searching. In *CVPR*, 2007.

Munneke, Jaap, Brentari, Valentina, and Peelen, Marius V. The influence of scene context on object recognition is independent of attentional focus. *Frontiers in psychology*, 4, 2013.

Oliva, A. and Torralba, A. Modeling the shape of the scene: a holistic representation of the spatial envelope. *IJCV*, 42(3):145–175, 2001.

Ordonez, V., Kulkarni, G., and Berg, T. L. Im2text: Describing images using 1 million captioned photographs. In *Advances in Neural Information Processing Systems*, pp. 1143–1151, 2011.

Pahl, Kate and Rowsell, Jennifer. *Artifactual literacies: Every object tells a story*. Teachers College Press New York, 2010.

Pereira, F., Tishby, N., and Lee, L. Distributional clustering of english words. In *Proceedings of the 31st annual meeting on Association for Computational Linguistics*, 1993.

Rohrbach, M., Qiu, W., Titov, I., Thater, S., Pinkal, M., and Schiele, B. Translating video content to natural language descriptions. In *ICCV*, 2013.

Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma, Sean, Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael, et al. Imagenet large scale visual recognition challenge. *International Journal of Computer Vision*, pp. 1–42, 2014.

Schank, Roger C and Abelson, Robert P. Knowledge and memory: The real story. *Knowledge and memory: The real story. Advances in social cognition*, 8, 1995.

Senina, A., Rohrbach, M., Qiu, W., Friedrich, A., Amin, S., Andriluka, M., Pinkal, M., and Schiele, B. Coherent multi-sentence video description with variable level of detail. *arXiv preprint arXiv:1403.6173*, 2014.

Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.

Stretcu, O. and Leordeanu, M. Multiple frames matching for object discovery in video. In *British Machine Vision Conference*, 2015.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions. *arXiv preprint arXiv:1409.4842*, 2014.

Thomason, J., Venugopalan, S., Guadarrama, S., Saenko, K., and Mooney, R. Integrating language and vision to generate natural language descriptions of videos in the wild. In *International Conference on Computational Linguistics (COLING)*, 2014.

Venugopalan, Subhashini, Xu, Huijuan, Donahue, Jeff, Rohrbach, Marcus, Mooney, Raymond, and Saenko, Kate. Translating videos to natural language using deep recurrent neural networks. *arXiv preprint arXiv:1412.4729*, 2014.

Xu, R., Xiong, C., Chen, W., and Corso, J. J. Jointly modeling deep video and compositional text to bridge vision and language in a unified framework. In *AAAI Conference on Artificial Intelligence*, 2015.

Yao, B., Yang, X., Lin, L., Lee, M.W., and Zhu, S.C. I2t: Image parsing to text description. *Proceedings of the IEEE*, 98(8):1485–1508, 2010.

Yao, Li, Torabi, Atousa, Cho, Kyunghyun, Ballas, Nicolas, Pal, Christopher, Larochelle, Hugo, and Courville, Aaron. Describing videos by exploiting temporal structure. *stat*, 1050:25, 2015.
Young, Peter, Lai, Alice, Hodosh, Micah, and Hockenmaier, Julia. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. *Transactions of the Association for Computational Linguistics*, 2:67–78, 2014.

Yu, H. and Siskind, J. M. Grounded language learning from video described with sentences. In *ACL*, 2013.

Zanfir, Mihai, Leordeanu, Marius, and Sminchisescu, Cristian. The moving pose: An efficient 3d kinematics descriptor for low-latency action recognition and detection. In *Computer Vision (ICCV), 2013 IEEE International Conference on*, 2013.