Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.

Magnetic Resonance Imaging–Guided Focused Ultrasound Thalamotomy in Spinocerebellar Ataxia Type 12

Spinocerebellar ataxias (SCAs) are progressive, neurodegenerative disorders generally associated with a variety of symptoms. The SCA12 is typically associated with action tremor of the upper extremity, and symptomatic treatment is challenging.1

Stereotactic neurosurgery is performed to treat severe, therapy-refractory tremor, mainly in essential tremor and Parkinson’s tremor. In addition, transcranial high-intensity magnetic resonance–guided focused ultrasound (MRgFUS) is a new technique for interventional neuromodulation. Tremor reduction is achieved through targeted thermal lesion of the Nucleus ventralis intermedius (VIM) of the thalamus or the cerebello-thalamo-cortical tract (CTT).2

Single case reports previously demonstrated the effective use of DBS for the treatment of tremor or dystonia in SCAs.3,4 However, to our knowledge, no patient with SCA12 has been treated with MRgFUS so far.

Herein, we report on a patient suffering from SCA12 with severe, therapy-refractory tremor and favorable outcome after lesioning the CTT by MRgFUS.

A 60-year-old man with severe action tremor of the upper extremity and positive family history (Supporting Information Fig. S1) was diagnosed with SCA12 in 2014 after genetic analysis, which demonstrated a CAG repeat expansion in the PPP2R2B gene of 15/58. After written informed consent, unilateral treatment with MRgFUS was performed targeting the CTT using 3-T diffusion tensor imaging as described previously5 (Supporting Information Fig. S2). A total of five ablative sonication peaks (peak temperature > 56°C) at two locations (first: 1 mm superior to AC-PC plane, 14 mm lateral to midline, 25% of the AC-PC distance anterior to PC; second: 0.5 mm laterally and 0.5 mm anteriorly in relation to the first target) were performed. A near-total tremor reduction in the right arm was obtained. Within the first days after treatment, gait disturbances occurred but resolved completely within 3 months. The Supporting Information Videos S3–S6 show the tremor before and 3, 90, and 320 days after MRgFUS. On the Fahn-Tolosa-Marin Tremor Scale, tremor score improved from 90/260 to 51/260 after 3 days and remained stable after 11 months (47/260). On the Scale for the Assessment and Rating of Ataxia, no worsening of ataxia was apparent (21.5/40 at baseline, 20/40 after 11 months) (Fig. 1A, Supporting Information Fig. S7A–C).

Using a triaxial accelerometer (SOMNOwatch plus; SOMNOmedics, Randersacker, Germany), tremor was recorded and Fourier transformed (Software DOMINO light; SOMNOmedics). After MRgFUS, a significant reduction of tremor power was observed in the right upper extremity (Supporting Information Table S8, Fig. 1B). The analysis of diffusion tensor imaging indicated a reduction of the fiber tract streamline count from 4039 before to 569 after MRgFUS.

Unilateral thalamotomy using MRgFUS appears to provide a safe and efficient means for tremor reduction in SCA12. Comparably with stereotactic treatments in essential tremor, the VIM or CTT can serve as an appropriate target for tremor reduction in cerebellar degeneration; moreover, no persistent worsening of ataxia or disruption of microstructural integrity in other regions than the CTT-related regions was observed within 11 months of follow-up. This is consistent with previous reports in patients with SCA receiving deep brain stimulation of the VIM.3,4,6

In conclusion, we consider MRgFUS a promising, incisionless alternative to treat severe action tremor also in rare diseases, such as SCA12.

Acknowledgments: This study was supported by a Deutsche Forschungsgemeinschaft project grant (INST 1172/64-1). Open Access funding enabled and organized by Projekt DEAL.

Data Availability Statement

Data available on request from the authors.
Veronika Purrer, MD,1,2* Neeraj Upadhyay, PhD,2,3 Claus Christian Pieper, MD,3 Thomas Klockgether, MD,1,2 Henning Boecker, MD,2,3 Ullrich Wüllner, MD,1,2 and Valeri Borger, MD4

1 Department of Neurology, University Hospital Bonn, Bonn, Germany, 2 German Centre of Neurodegenerative Diseases (DZNE), Bonn, Germany, 3 Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany, and 4 Department of Neurosurgery, University Hospital Bonn, Bonn, Germany

References

1. Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Primers 2019;5(1):24. https://doi.org/10.1038/s41572-019-0074-3
2. Elias WJ, Lipsman N, Ondo WG, et al. A randomized trial of focused ultrasound Thalamotomy for essential tremor. N Engl J Med 2016;375(8):730–739. https://doi.org/10.1056/NEJMoa1600159
3. Oyama G, Thompson A, Foote KD, et al. Deep brain stimulation for tremor associated with underlying ataxia syndromes: a case series and discussion of issues. Tremor Other Hyperkinet Mov (N Y) 2014;4:228. https://doi.org/10.7916/D8542KQ5
4. Freund H-J, Barnikol UB, Nolte D, et al. Subthalamic-thalamic DBS in a case with spinocerebellar ataxia type 2 and severe tremor—a unusual clinical benefit. Mov Disord 2007;22(5):732–735. https://doi.org/10.1002/mds.21338
5. Purrer V, Upadhyay N, Borger V, et al. Lesions of the cerebello-thalamic tract rather than the ventral intermediate nucleus determine the outcome of focused ultrasound therapy in essential tremor: a 3T and 7T MRI study. Parkinsonism Relat Disord 2021;91:105–108. https://doi.org/10.1016/j.parkreldis.2021.09.013
6. Hashimoto T, Muralidharan A, Yoshida K, et al. Neuronal activity and outcomes from thalamic surgery for spinocerebellar ataxia. Ann Clin Transl Neurol 2018;5(1):52–63. https://doi.org/10.1002/acn3.508

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher's web-site.