A NOTE ON RESOLUTION QUIVERS

DAWEI SHEN

Abstract. Recently, Ringel introduced the resolution quiver for a connected Nakayama algebra. It is known that each connected component of the resolution quiver has a unique cycle. We prove that all cycles in the resolution quiver are of the same size. We introduce the notion of weight for a cycle in the resolution quiver. It turns out that all cycles have the same weight.

1. Introduction

Let A be a connected Nakayama algebra without simple projective modules. All modules are left modules of finite length. We denote the number of simple A-modules by $n(A)$. Let $\gamma(S) = \tau \text{soc} P(S)$ for a simple A-module S [5], where $P(S)$ is the projective cover of S and $\tau = DTr$ is the Auslander-Reiten translation [1].

Ringel [5] defined the resolution quiver $R(A)$ of A as follows: the vertices correspond to simple A-modules and there is an arrow from S to $\gamma(S)$ for each simple A-module S. The resolution quiver gives a fast algorithm to decide whether A is a Gorenstein algebra or not, and whether it is CM-free or not; see [5].

Using the map f introduced in [3], the notion of resolution quiver applies to any connected Nakayama algebra. It is known that each connected component of $R(A)$ has a unique cycle.

Let A be a connected Nakayama algebra and C be a cycle in $R(A)$. Assume that the vertices of C are S_1, S_2, \cdots, S_m. We define the weight of C to be $\sum_{k=1}^{m} c_k n(A)$, where c_k is the length of the projective cover of S_k. The aim of this note is to prove the following result.

Proposition 1.1. Let A be a connected Nakayama algebra. Then all cycles in its resolution quiver are of the same size and of the same weight.

As a consequence of Proposition 1.1, if the resolution quiver has a loop, then all cycles are loops; this result is obtained by Ringel [5, 6]. The proof of Proposition 1.1 uses left retractions of Nakayama algebras studied in [2].

2. The proof of Proposition 1.1

Let A be a connected Nakayama algebra. Recall that $n = n(A)$ is the number of simple A-modules. Let S_1, S_2, \cdots, S_n be a complete set of pairwise non-isomorphic simple A-modules and P_i be the projective cover of S_i. We require that $\text{rad} P_i$ is a factor module of P_{i+1}. Here, we identify $n + 1$ with 1.

Recall that $c(A) = (c_1, c_2, \cdots, c_n)$ is an admissible sequence for A, where c_i is the length of P_i; see [1, Chapter IV. 2]. We denote $p(A) = \min\{c_1, c_2, \cdots, c_n\}$. The algebra A is called a line algebra if $c_n = 1$ or, equivalently, the valued quiver of A is a line; otherwise, A is called a cycle algebra or, equivalently, the valued quiver of...
A is a cycle. Then \(A \) is a cycle algebra if and only if \(A \) has no simple projective modules.

Following [3], we introduce a map \(f_A : \{1, 2, \cdots, n\} \to \{1, 2, \cdots, n\} \) such that \(n \) divides \(f_A(i) - (c_i + i) \) for \(1 \leq i \leq n \). The resolution quiver \(R(A) \) of \(A \) is defined as follows: its vertices are \(1, 2, \cdots, n \) and there is an arrow from \(i \) to \(f_A(i) \). Observe that for a cycle algebra \(A \) we have \(\gamma(S_i) = S_{f_A(i)} \). Then by identifying \(i \) with \(S_i \), the resolution quiver \(R(A) \) coincides with that in [5].

Assume that \(A \) is a cycle algebra which is not self-injective. After possible cyclic permutations, we may assume that its admissible sequence \(c(A) = (c_1, c_2, \cdots, c_n) \) is normalized [2], that is, \(p(A) = c_1 = c_n - 1 \). Recall from [2] that there is an algebra homomorphism \(\eta : A \to L(A) \) with \(L(A) \) a connected Nakayama algebra such that its admissible sequence \(c(L(A)) = (c'_1, c'_2, \cdots, c'_{n-1}) \) is given by \(c'_i = c_i - \left\lceil \frac{c_i + i - 1}{n} \right\rceil \) for \(1 \leq i \leq n - 1 \); in particular, \(n(L(A)) = n(A) - 1 \). Here, for a real number \(x \), \([x] \) denotes the largest integer not greater than \(x \). The algebra homomorphism \(\eta \) is called the left retraction [2] of \(A \) with respect to \(S_n \).

We introduce a map \(\pi : \{1, 2, \cdots, n\} \to \{1, 2, \cdots, n - 1\} \) such that \(\pi(i) = i \) for \(i < n \) and \(\pi(n) = 1 \). The following result is contained in the proof of [2, Lemma 3.7].

Lemma 2.1. Let \(A \) be a cycle algebra which is not self-injective. Then \(\pi f_A(i) = f_{L(A)} \pi(i) \) for \(1 \leq i \leq n \).

Proof. Let \(c_i + i = kn + j \) with \(k \in \mathbb{N} \) and \(1 \leq j \leq n \). In particular, \(f_A(i) = j \).

For \(i < n \), we have

\[
(1) \quad c'_i = c_i + i - \left\lfloor \frac{c_i + i - 1}{n} \right\rfloor = kn + j - \left\lfloor \frac{kn + j - 1}{n} \right\rfloor = k(n-1) + j.
\]

Then \(\pi f_A(i) = \pi(j) \) and \(f_{L(A)} \pi(i) = f_{L(A)}(i) = \pi(j) \).

For \(i = n \), we have

\[
(2) \quad c'_n = c_n - 1 + n - \left\lfloor \frac{c_n - 1}{n} \right\rfloor = kn + j - 1 - \left\lfloor \frac{kn + j - n - 1}{n} \right\rfloor = k(n-1) + j.
\]

Then \(\pi f_A(n) = \pi(j) \) and \(f_{L(A)} \pi(n) = f_{L(A)}(1) = \pi(j) \). \(\square \)

The previous lemma gives rise to a unique morphism of resolution quivers

\[
\tilde{\pi} : R(A) \longrightarrow R(L(A))
\]

such that \(\tilde{\pi}(i) = \pi(i) \). Then \(\tilde{\pi} \) sends the unique arrow from \(i \) to \(f_A(i) \) to the unique arrow in \(R(L(A)) \) from \(\pi(i) \) to \(f_{L(A)} \pi(i) = f_{L(A)}(i) \). The morphism \(\tilde{\pi} \) identifies the vertices \(1 \) and \(n \) as well as the arrows starting from \(1 \) and \(n \). Because \(1 \) and \(n \) are in the same connected component of \(R(A) \), we infer that \(R(A) \) and \(R(L(A)) \) have the same number of connected components.

Let \(A \) be a connected Nakayama algebra and \(C \) be a cycle in \(R(A) \). The size of \(C \) is the number of vertices in \(C \). We recall that the weight of \(C \) is given by \(w(C) = \sum_{v \in V(C)} \frac{1}{\pi(v)} \), where \(k \) runs over all vertices in \(C \). We mention that \(w(C) \) is an integer; see [3]. A vertex \(x \) in \(R(A) \) is said to be cyclic provided that \(x \) belongs to a cycle.

Lemma 2.2. Let \(A \) be a cycle algebra which is not self-injective. Then \(\tilde{\pi} \) induces a bijection between the set of cycles in \(R(A) \) and the set of cycles in \(R(L(A)) \), which preserves sizes and weights.

Proof. We observe that for two vertices \(x \) and \(y \) in \(R(A) \), \(\pi(x) = \pi(y) \) if and only if \(x = y \) or \(\{x, y\} = \{1, n\} \). Note that \(f_A(1) = f_A(n) \). So the vertices \(1 \) and \(n \) are in the same connected component of \(R(A) \) and they are not cyclic at the same time.
Let C be a cycle in $R(A)$ with vertices x_1, x_2, \cdots, x_s such that $x_{i+1} = f_A(x_i)$. Here, we identify $s + 1$ with 1. Since the vertices 1 and n are not cyclic at the same time, we have that $\pi(x_1), \pi(x_2), \cdots, \pi(x_s)$ are pairwise distinct and $\pi(C)$ is a cycle in $R(L(A))$. Hence π induces a map from the set of cycles in $R(A)$ to the set of cycles in $R(L(A))$. Obviously the map is injective. On the other hand, recall that $R(L(A))$ and $R(A)$ have the same number of connected components, thus they have the same number of cycles. Hence π induces a bijection between the set of cycles in $R(A)$ and the set of cycles in $R(L(A))$ which preserves sizes.

It remains to prove that $w(C) = w(\pi(C))$. We assume that $e_{x_i} + x_i = k_i n + x_{i+1}$ with $k_i \in \mathbb{N}$. Then we have

$$w(C) = \sum_{i=1}^s \frac{c_{x_i}}{n} = \sum_{i=1}^s k_i.$$

Recall that $\eta(L(A)) = n - 1$. We note that $c'_{\pi(x_i)} + x_i = k_i(n - 1) + x_{i+1}$; see (1) and (2). Hence $\sum_{i=1}^s c'_{\pi(x_i)} = (n - 1) \sum_{i=1}^s k_i$ and the assertion follows. □

Recall from [2, Theorem 3.8] that there exists a sequence of algebra homomorphisms

$$A = A_0 \xrightarrow{\eta_0} A_1 \xrightarrow{\eta_1} A_2 \rightarrow \cdots \rightarrow A_{r-1} \xrightarrow{\eta_{r-1}} A_r,$$

such that each A_i is a connected Nakayama algebra, $\eta_i : A_i \rightarrow A_{i+1}$ is a left retraction and A_r is self-injective.

We now prove Proposition 1.1.

Proof of Proposition 1.1 Assume that A is a connected self-injective Nakayama algebra with $n(A) = n$ and admissible sequence $c(A) = (c, c, \cdots, c)$. Then a direct calculation shows that $R(A)$ consists entirely of cycles and each cycle is of size $\frac{n}{(n,c)}$ and of weight $\frac{c}{(n,c)}$, where (n,c) is the greatest common divisor of n and c. In particular, all cycles in $R(A)$ are of the same size and of the same weight.

In general, let A be a connected Nakayama algebra whose admissible sequence is $c(A) = (c_1, c_2, \cdots, c_n)$. Take A' to be a connected Nakayama algebra with admissible sequence $c(A') = (c_1 + n, c_2 + n, \cdots, c_n + n)$. Then $R(A) = R(A')$ and for any cycle C in $R(A)$, the corresponding cycle C' in $R(A')$ satisfies $w(C') = w(C) + s(C)$, where $s(C)$ denotes the size of C. The statement for A holds if and only if it holds for A'.

We now assume that A is a connected Nakayama algebra with $p(A) > n(A)$. One proves by induction that each A_i in the sequence (4) satisfies $p(A_i) > n(A_i)$. In particular, each A_i is a cycle algebra. We can apply Lemma 2.2 repeatedly. Then the statement for A follows from the statement for the self-injective Nakayama algebra A_r, which is already proved above. □

We conclude this note with a consequence of the above proof.

Corollary 2.3. Let A be a connected Nakayama algebra of infinite global dimension. Then we have the following statements.

1. The number of cyclic vertices of the resolution quiver $R(A)$ equals the number of simple A-modules of infinite projective dimension.

2. The number of simple A-modules of infinite projective dimension equals the number of simple A-modules of infinite injective dimension.

Proof. (1) All the algebras A_i in the sequence (4) have infinite global dimension; see [2, Lemma 2.4]. In particular, they are cycle algebras. We apply Lemma 2.2 repeatedly and obtain a bijection between the set of cyclic vertices of $R(A)$ and the set of cyclic vertices of $R(A_r)$. Recall that all vertices of $R(A_r)$ are cyclic,
and \(n(A_r) \) equals \(n(A) \) minus the number of simple \(A \)-modules of finite projective dimension; see [2, Theorem 3.8]. Then the statement follows immediately.

(2) Recall from [3, Corollary 3.6] that a simple \(A \)-module \(S \) is cyclic in \(R(A) \) if and only if \(S \) has infinite injective dimension. Then (2) follows from (1). \(\square \)

Acknowledgements

The author thanks his supervisor Professor Xiao-Wu Chen for his guidance and Professor Claus Michael Ringel for his encouragement.

References

[1] M. Auslander, I. Reiten and S.O. Smalø, *Representation Theory of Artin algebras*, Cambridge Studies in Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1995.

[2] X.-W. Chen and Y. Ye, *Retractions and Gorenstein homological properties*, arXiv: 1206.4415.

[3] W. H. Gustafson, *Global dimension in serial rings*, J. Algebra 97 (1985), 14-16.

[4] D. Madson, *Projective dimensions and Nakayama algebras*, In: Representations of algebras and related topics 247-265, Fields Inst. Commun. 45, Amer. Math. Soc., Providence, RI, 2005.

[5] C. M. Ringel, *The Gorenstein projective modules for the Nakayama algebras. I*, preprint, http://www.math.uni-bielefeld.de/~ringel/opus/nakayama.pdf, 2012.

[6] C. M. Ringel, *The Gorenstein projective modules for the Nakayama algebras. II*, In preparation.

Dawei Shen
School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
URL: http://home.ustc.edu.cn/~sdw12345