GRAPH REDUCTION TECHNIQUES AND
THE MULTIPlicity OF THE LAPLACIAN EIGENVALUES

ASGHAR BAHMANI AND DARIUSH KIANI

Abstract. Let $M = [m_{ij}]$ be an $n \times m$ real matrix, ρ be a nonzero real number, and A be a symmetric real matrix. We denote by $D(M)$ the $n \times n$ diagonal matrix $\text{diag} (\sum_{j=1}^{m} m_{1j}, \ldots, \sum_{j=1}^{m} m_{nj})$ and denote by L^ρ_A the generalized Laplacian matrix $D(A) - \rho A$. A well-known result of Grone et al. states that by connecting one of the end-vertices of P_3 to an arbitrary vertex of a graph, does not change the multiplicity of Laplacian eigenvalue 1. We extend this theorem and some other results for a given generalized Laplacian eigenvalue μ. Furthermore, we give two proofs for a conjecture by Saito and Woei on the relation between the multiplicity of some Laplacian eigenvalues and pendant paths.

1. Introduction

Let A be a real symmetric matrix. There exists a unique weighted graph G such that the adjacency matrix of G, is A; i.e. for $i \neq j$, A_{ij} is the weight of the edge $\{i, j\}$ and A_{ii} is twice of the weight of the loop at the vertex i. In this paper, we look at real symmetric matrices in this point of view.

For a positive integer n, we denote by $\text{Sym}_n(\mathbb{R})$, the set of real symmetric matrices of order n and denote by $[n]$ the set $\{1, \ldots, n\}$. The multiplicity of an eigenvalue λ of A is denoted by $m_A(\lambda)$ and a λ-eigenvector of A is an eigenvector of A corresponding to λ. For two positive integers i and j, J_n and e_i, denote the all 1’s vector and the vector with a 1 in the i^{th} coordinate and 0’s elsewhere, respectively, in \mathbb{R}^n. The restriction of a vector x to any index set I is denoted by x_I and we denote the entry of x corresponding to an index u, by $x(u)$. The identity matrix is denoted by I_n or briefly I. The path, the cycle, and the star graph on n vertices are denoted by P_n, C_n, and S_n, respectively.

Let $M = [m_{ij}]$ be an $n \times m$ real matrix. The transpose of M is denoted by MT and we denote by $D(M)$, the $n \times n$ diagonal matrix $\text{diag} (\sum_{j=1}^{m} m_{1j}, \ldots, \sum_{j=1}^{m} m_{nj})$. For $\rho \in \mathbb{R} - \{0\}$, we denote by L^ρ_A, the generalized Laplacian matrix $D(A) - \rho A$. If $\rho = 1$ ($\rho = -1$) and $A(G)$ is the adjacency matrix of a given graph G, then we have the Laplacian matrix $L^1_{A(G)} = L(G)$ (signless Laplacian matrix $L^{-1}_{A(G)} = Q(G)$, respectively).

Let μ be a Laplacian eigenvalue of G. We consider the results about the relation between $m_{L(G)}(\mu)$ and $m_{L(H)}(\mu)$, for a particular subgraph H of G. We recall some of these results:

Theorem 1. [6] If G' is a graph obtained from G by connecting one of the end-vertices of P_3 to an arbitrary vertex of G, then we have $m_{L(G)}(1) = m_{L(G')}(1)$.

Theorem 2. [8] Let G be any graph with a simple Laplacian eigenvalue μ. Let u be a vertex of G such that an eigenvector corresponding to μ is nonzero on u. Let H be any graph, and let G' be the graph formed by joining an arbitrary vertex of H to u. Then $m_{L(H)}(\mu) = m_{L(G')}(\mu)$.

2010 Mathematics Subject Classification. 05C50.
Key words and phrases. weighted graph; Laplacian matrix; signless Laplacian matrix; eigenvalue.
A connected sum of two graphs G_1 and G_2 is any graph G where $V(G) = V(G_1) \cup V(G_2)$ and $E(G)$ differs from $E(G_1) \cup E(G_2)$ by the addition of a single edge joining some (arbitrary) vertex of $V(G_1)$ to some vertex of $V(G_2)$, and is denoted by $G = G_1 \# G_2$ [6].

Theorem 3. [6] Let G be a nonempty graph on n vertices. Let $H = G \# S_k$ be a connected sum of G with the star on $k > 1$ vertices. Then $m_{L(G)}(k) = m_{L(H)}(k)$

A cluster of a graph G is an independent set of two or more vertices of G, each of which has the same set of neighbours. The degree of a cluster is the cardinality of its shared set of neighbours, i.e., the common degree of each vertex in the cluster. A d-cluster is a cluster of degree d. The number of vertices in a d-cluster is its order. A collection of two or more d-clusters is independent if the sets of vertices comprising the d-clusters are pairwise disjoint [5].

Theorem 4. [5] Let G be a graph with k independent d-clusters of orders r_1, \ldots, r_k. Then $m_{L(G)}(d) \geq \sum_{i=1}^{k} r_i - k$.

Among other results, we generalize these results for weighted graphs and an arbitrary generalized Laplacian eigenvalue μ.

A pendant path of a graph G is a path such that one of its end vertices has degree one and all the internal vertices have degree two and other end vertex has degree greater than two. $p_k(G)$ denotes the number of pendant paths of length k, and $q_k(G)$ the number of vertices of degree greater than three which are an end vertex of some pendant paths of length k. If $k = 1$, we have the well-known result of Faria [3] that $m_{L(G)}(1) \geq p_1(G) - q_1(G)$. Saito and Woei [9] conjectured that for any positive integer k, any graph G has some Laplacian eigenvalue with multiplicity at least $p_k(G) - q_k(G)$ and proved it for $k = 2$. The following generalization of the conjecture has been proved in [4]. We give two proofs for this theorem in the next sections.

Theorem 5. [4] Let G be a graph. Then $4 \cos^2(\frac{\pi i}{2k+1})$ for any $k \geq 1$ and $i = 1, \ldots, k$, is both a Laplacian and a signless Laplacian eigenvalue of G with multiplicity at least $p_k(G) - q_k(G)$.

Let $A \in \text{Sym}_n(\mathbb{R})$ and λ be an eigenvalue of A of multiplicity k. A set $U \subseteq [n]$ is a star set for λ (or λ-star set) of A if $|U| = k$ and λ is not an eigenvalue of the submatrix of A obtained by removing rows and columns with index in U. It is known that for every eigenvalue λ there exists a λ-star set [2].

We recall the following theorem about star sets that we use in the next sections.

Theorem 6. [2, Theorem 7.2.6] Let U be a λ-star set of A. If $m_A(\lambda) = k$, then there exists a basis of eigenvectors $\{\alpha_s : s \in U\}$ such that $\alpha_s(t) = \delta_{st}$, whenever $s, t \in U$ and δ is the Kronecker delta function; its value is 1 if $s = t$, and 0 otherwise.

2. **Type I Reductions: Edge Deleting**

In this section, for a given eigenvalue μ, we remove a particular subgraph corresponding to μ and consider the multiplicity of μ of remaining graph.

First, we state this following Edge Principle Theorem.

Theorem 7. [7] Let μ be a Laplacian eigenvalue of G afforded by eigenvector \mathbf{x}. If $x_i = x_j$, then μ is an eigenvalue of G' afforded by \mathbf{x}, where G' is the graph obtained from G by deleting or adding $e = \{i, j\}$ depending on whether or not it is an edge of G.
Now, we state a weighted version of theorem above, for the Laplacian and the signless Laplacian of weighted graphs:

Lemma 8. Let \(n \in \mathbb{N}, \rho \in \{-1, 1\}, A \in \text{Sym}_n(\mathbb{R}) \), and \(\mu \) be an eigenvalue of \(L^\rho_A \) with a \(\mu \)-eigenvector \(x \). Suppose that \(a \in \mathbb{R} \) and \(x_i = \rho x_j \), for some \(i, j \in [n], i \neq j \). If \(A' \) is the matrix obtained from \(A \) by setting \(A'_{ij} = A_{ij} + a \), then \(x \) is a \(\mu \)-eigenvector of \(L^\rho_{A'} \).

Proof. We have \(L^\rho_A = L^\rho_{A'} - \frac{i}{j} (a - \rho a) \). So,

\[
\mu x = L^\rho_A x = L^\rho_{A'} x - \frac{i}{j} (a - \rho a) x = L^\rho_{A'} x - \frac{i}{j} (ax_i - \rho ax_j) = L^\rho_{A'} x.
\]

\(\square \)

The following theorem is the main theorem of this section.

Theorem 9. Let \(\mu \in \mathbb{R}, \rho \in \{-1, 1\} \), and \(H, L \) be real symmetric matrices with row and column indices \(I = I_1 \cup I_2 \cup I_3 \) and \(J = J_1 \cup J_2 \), respectively. Suppose that \(I_1 \cup I_2 \) is a \(\mu \)-star set of \(L^\rho_H \). If \(X, G, \) and \(E \) are matrices given below,

\[
X = \frac{1}{1} \begin{array}{cccc}
I_{11} & x_1 & 0 & \ldots & 0 \\
I_{12} & 0 & x_2 & \ldots & 0 \\
& \vdots & \vdots & \ddots & \vdots \\
I_{1|I|} & 0 & 0 & \ldots & x_{|I|}
\end{array},
\quad
G = \frac{1}{1} \begin{array}{cccc}
I_1 & I_2 & I_3 & I_1 \\
I_2 & H & 0 & 0 \\
I_3 & 0 & 0 & 0 \\
I_1 & X^T & 0 & 0 \\
J_2 & A^T & 0 & 0
\end{array},
\quad
E = \frac{1}{1} \begin{array}{cccc}
I_1 & I_2 & I_3 & 0 \\
I_2 & H & 0 & 0 \\
I_3 & 0 & 0 & 0 \\
J_1 & 0 & 0 & 0 \\
J_2 & A^T & 0 & 0
\end{array},
\]

for nowhere-zero vectors \(\{x_i\} \) and a matrix \(A \), where \(D(A) = 0 \) and \(A^T \alpha = 0 \), for every \(\mu \)-eigenvector \(\alpha \) of \(L^\rho_H \), then \(m_{L^\rho_G}(\mu) = m_{L^\rho_H}(\mu) + |I_1| \).

![Figure 1. The graphs of Theorem 9.](image)

In Theorem 9, by putting \(A = 0 \), we conclude the following corollary for the (signless) Laplacian matrix of simple graphs:

Corollary 10. Let \(\mu \in \mathbb{R}, \rho \in \{-1, 1\} \), and \(H \) be a graph and \(\{u_1, \ldots, u_t\} \) be a subset of a \(\mu \)-star set of \(L^\rho_H \). If \(L \) is an arbitrary graph disjoint from \(H \), and \(G \) is the graph formed by joining the vertex \(u_i \) to an arbitrary vertex \(v_i \) of \(L \) (not necessarily disjoint), \(i \in [t] \), then \(m_{L^\rho_G}(\mu) = m_{L^\rho_L}(\mu) + m_{L^\rho_H}(\mu) - t \).
Proof. Assume that \(L_G^\mu = u \begin{pmatrix} \alpha^T \\ M \end{pmatrix} \) and \(\alpha \) is a \(\mu \)-eigenvector of \(L_G^\mu \) such that \(\alpha(u) \neq 0 \). It is sufficient to show that \(\{u\} \) is a \(\mu \)-star set of \(L_G^\mu \). On the other hand, we show \(m_M(\mu) = 0 \). Suppose, by contradiction, \(M \) has a \(\mu \)-eigenvector \(\beta \). If \(\beta^T \beta = 0 \), then \(y \) is a \(\mu \)-eigenvector of \(L_G^\mu \), where \(y(v) = \begin{cases} \beta(v) & v \neq u, \\ 0 & v = u. \end{cases} \) Since \(\alpha(u) \neq 0 \), the vectors \(\alpha \) and \(y \) are independent and we have a contradiction with \(m_M(\mu) = 1 \). If \(\beta^T \beta \neq 0 \), then

\[
0 = (\mu I - L_G^\mu) \alpha = (\mu I - M) \alpha|_{V(G) - \{u\}} \Rightarrow \alpha(u) \beta^T x = \beta^T (\mu I - M) \alpha|_{V(G) - \{u\}} = 0 \Rightarrow \beta^T x \neq 0 \Rightarrow \alpha(u) = 0,
\]

and we have a contradiction. This completes the proof. \(\square \)

Remark 12. By Corollary 10, since \(m_L(P_3)(1) = 1 \) and the value of a 1-eigenvector is nonzero on every pendant vertex of \(P_3 \), we have Theorem 1. Also, \(m_L(S_k)(k) = 1 \) and every \(k \)-eigenvector of \(S_k \) is nowhere-zero, hence we have Theorem 3.

2.1. Edge Switching. In the following theorem, for a given eigenvalue \(\mu \), a particular subgraph, and given weights of the edges, we delete some edges and switch some weights from a section of graph to another section and give the relation between the multiplicity of \(\mu \) for two graphs.

Theorem 13. Let \(\mu \in \mathbb{R} \), \(\rho \in \mathbb{R} - \{0\} \) and \(\mathcal{H}, \mathcal{L} \) be real symmetric matrices with row and column indices \(I = I_1 \cup I_2 \cup I_3 \) and \(J = J_1 \cup J_2 \), respectively. Suppose that \(S \in \text{Sym}_{|I_1|}(\mathbb{R}) \) and \(I_1 \cup I_2 \) is a \(\mu \)-star set of \(L_H^\rho \). If \(\tilde{\mathcal{H}}, \tilde{\mathcal{L}}, \tilde{\mathcal{G}}, \) and \(\tilde{\mathcal{E}} \) are symmetric matrices given below,

\[
\tilde{\mathcal{H}} = \mathcal{H} + \begin{pmatrix} I_1 & I_2 \\ \rho \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & I_3 \end{pmatrix},
\tilde{\mathcal{L}} = \mathcal{L} - \begin{pmatrix} S' \\ 0 \end{pmatrix},
\tilde{\mathcal{G}} = \begin{pmatrix} I_1 & I_2 & I_3 \\ X & J_1 & J_2 \\ J_3 \end{pmatrix},
\tilde{\mathcal{E}} = \begin{pmatrix} I_1 & I_2 & I_3 \\ J_1 & J_2 \\ J_3 \end{pmatrix},
\]

for some matrices \(\mathcal{X} \) and \(X \), where \(D(\mathcal{A}) = 0 \), \(\mathcal{A}^T \alpha = 0 \), for every \(\mu \)-eigenvector \(\alpha \) of \(\mathcal{H} \), and \(S' \) is a solution of the equation \(L_S^\rho + D(X^T) = \rho^2 X^T (L_S^\rho + D(X))^{-1} X \), then \(m_{L_{\tilde{\mathcal{H}}}^\rho}(\mu) = m_{L_H^\rho}(\mu) + |I_1| \).

In particular, if \(L_S^\rho \) is invertible, then \(m_{L_{\tilde{\mathcal{H}}}^\rho}(\mu) = m_{L_H^\rho}(\mu) - |I_1| \).
For any $\rho \in \mathbb{R} \setminus \{0,1\}$ and $L \in \text{Sym}_n(\mathbb{R})$, it is easy to see that the equation $L = L_M^\rho$ has a unique solution $M \in \text{Sym}_n(\mathbb{R})$. Thus, for given S ans X such that there exists $(L_S^\rho + D(X))^{-1}$, the equation $L_S^\rho + D(X^T) = \rho^2X^T(L_S^\rho + D(X))^{-1}X$ has a solution for S'.

Corollary 15. Let $H = A(G)$, $L = A(L)$, $A = 0$, and consider the following two cases:

1. $X = I_{|I|}$ and $-S$ is a permutation matrix corresponding to an involution,
2. for a given S, suppose that X is a solution of $X = L_S^\rho + D(X)$.

Then, for both cases, $S' = S$ is a solution and $m_{L_G}(\mu) + |I_1| = m_{L_H}(\mu) + m_{L_L}(\mu)$.

Since for a non-bipartite graph H, the signless Laplacian matrix $Q(H)$ is invertible, by a particular case of Theorem 13, if we set $S = \pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then we can conclude the next corollary.

Corollary 14 (Edge Switching). Let $\rho^2 = 1$ and L, H be two disjoint graphs. With the notations of Theorem 13, put $\mathcal{H} = A(H)$, $\mathcal{L} = A(L)$, $A = 0$, and consider the following two cases:

1. $X = I_{|I|}$ and $-S$ is a permutation matrix corresponding to an involution,
2. for a given S, suppose that X is a solution of $X = L_S^\rho + D(X)$.

Then, for both cases, $S' = S$ is a solution and $m_{L_G}(\mu) + |I_1| = m_{L_H}(\mu) + m_{L_L}(\mu)$.

Example 17. In Corollary 16:
\begin{itemize}
 \item $n = 3$ and $k = 1$: A path with three vertices of valency 2 in a graph G can be replaced by an edge, without changing the Laplacian multiplicity of 3 and the signless Laplacian multiplicity of 1.
 \item $n = 4$ and $k = 1$: A path with four vertices of valency 2 in a graph G can be replaced by an edge, without changing the (signless) Laplacian multiplicity of 2.
\end{itemize}

3. Type II Reductions: Deleting Subgraphs

In this section we generalize Theorem 4 for a given generalized Laplacian eigenvalue μ.

Theorem 18. Let $\mu \in \mathbb{R}, \rho \in \mathbb{R} - \{0\}, r \in \mathbb{N}$, and $\mathcal{H}, \{\mathcal{H}_i\}_{i=1}^{r-1}, \mathcal{L}, \{\mathcal{L}_i\}_{i=1}^{r-1}, \mathcal{K}$ be symmetric matrices. Suppose that $L^\rho_{\mathcal{E}_i}$ has a μ-eigenvector γ^i such that $\gamma_i^i \neq 0$ and $\gamma_i^i \neq 0, i \in \{r - 1\}$, and $L^\rho_{\mathcal{E}}$ has independent μ-eigenvectors β^i such that $\beta_i^i = 0, i \in \{s\}$. Then $m_{L^\rho_{\mathcal{E}}} (\mu) \geq s + r - 1$, where $m_{L^\rho_{\mathcal{E}}} (\mu) = \sum_{i=1}^r (r_i - 1) = \sum_{i=1}^k r_i - k$.

Corollary 19. [5] Let G be a graph with k independent d-clusters of orders r_1, \ldots, r_k. Then $m_{L(G)} (d) \geq \sum_{i=1}^k r_i - k$.

Proof. With the notations of Theorem 18, we put $\rho = 1, \mathcal{H} = \mathcal{H}_i = [0]_{1 \times 1}, \mathcal{L} = [0]_{d \times d},$ and $\mathcal{A} = B^T = j_d$, then $m_{L^\rho_{\mathcal{E}_i}} (d) = 1$, for $d \neq 2$, and $m_{L^\rho_{\mathcal{E}_i}} (d) = 2$, for $d = 2$, and $\gamma_i^i = (1, 0, \ldots, 0, -1)^T$ is a d-eigenvector. Since d-clusters are independent, by using Theorem 18, k times, we have $m_{L^\rho_{\mathcal{E}}} (d) \geq \sum_{i=1}^k (r_i - 1) = \sum_{i=1}^k r_i - k$. \square

Now, we give our first proof for Theorem 5. First, we need the following lemma on eigenvectors of the path graph.

Lemma 20. [10] Let n be a positive integer. Then $4 \cos^2 \left(\frac{l \pi}{2n} \right)$ for $j \in [n]$ ($4 \sin^2 \left(\frac{l \pi}{2n} \right)$ for $0 \leq l \leq n - 1$) is a Laplacian eigenvalue of P_n with the corresponding eigenvector v_j, where $v_j (u) = \cos \left(\frac{u-j \pi}{2n} \right)$, for $u \in [n]$.

Since the signless Laplacian matrix and the Laplacian matrix of a path are similar, it is easy to see that w_j is a signless Laplacian eigenvector corresponding to $4 \cos^2 \left(\frac{l \pi}{2n} \right)$, where $w_j (u) = (-1)^u v_j (u)$, for $j, u \in [n]$.
First proof of Theorem 5: By Lemma 20, if \(n = 2k + 1, j = 2t, \) and \(u = k + 1, \) then \(v_j(u) = 0. \) With
the notations of Theorem 18, we put \(\mu = 4 \cos^2\left(\frac{2\pi}{2k+1}\right), \rho = 1, \mathcal{H} = \mathcal{H}_i = A(P_k), \mathcal{L}_i = [0]_{1 \times 1}, A = e_k, \) and
\(B_i^T = e_1, \) then we have \(E_i = A(P_{2k+1}). \) If we put \(\gamma^i = v_j, \) then by using Theorem 18, \(q_k(G) \) times, we have
\(m_{L_i}^e(4 \cos^2\left(\frac{2\pi}{2k+1}\right)) \geq p_k(G) - q_k(G), \) \(t \in [k]. \) By similar proof, we have the statement is true for \(\rho = -1. \)

4. TYPE III REDUCTIONS: SPLITTING VERTICES

In this section, we state a splitting method to simplify graphs for a generalized Laplacian eigenvalue \(\mu \) and
a particular subgraph corresponding to it.

Theorem 21. Let \(\mu \in \mathbb{R}, \rho \in \mathbb{R} - \{0\} \) and \(\mathcal{H}, \mathcal{L} \) be real symmetric matrices. Suppose that \(m_{L_i}^e + D(\mathbf{x}) = 1. \)
If \(\mathbf{x}^T \alpha \neq 0, \) for a \(\mu \)-eigenvector \(\alpha \) of \(L_i^p + D(\mathbf{x}), \) then \(m_{L_i}^e(\mu) = m_{L_i}^e(\mu), \) where

\[
\mathcal{G} = \begin{pmatrix}
I & \mathcal{H} \\
\mathcal{L} & 0
\end{pmatrix} \quad \mathbf{y} = \begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_{|J|}
\end{pmatrix}
\]

Figure 6. The splitting method: Theorem 21.

Lemma 22. Let \(n \in \mathbb{N}, a, \mu \in \mathbb{R}, \rho \in \mathbb{R} - \{0\}, \mathcal{H} \in \text{Sym}_n(\mathbb{R}), \) and \(\mathbf{x} \in \mathbb{R}^n. \) The following statements are equivalent:

(i) \(m_{L_i}^e + D(\mathbf{x}) = 1 \) and \(\mathbf{x}^T \alpha \neq 0, \) for a \(\mu \)-eigenvector \(\alpha \) of \(L_i^p + D(\mathbf{x}); \)
(ii) \(m_{L_i}^e(\mu) = 1 \) and \(\beta(\mathbf{v}) = 0, \) for a \(\mu \)-eigenvector \(\beta \) of \(L_i^p. \)

Furthermore, (i) and (ii) imply \(m_{L_i}^e(\mu) = 0, \) where

\[
\mathcal{K} = \begin{pmatrix}
I & \mathcal{H} \\
\mathcal{L} & 0
\end{pmatrix} \quad \text{and} \quad \tilde{\mathcal{H}} = \begin{pmatrix}
I & \mathcal{H} \\
\mathcal{L} & 0
\end{pmatrix}.
\]

Figure 7. The graphs of Lemma 22.
Proof. Suppose that α, β, γ are μ-eigenvectors of $L^\rho_H + D(x)$, L^ρ_K, and L^ρ_H, respectively.

(i) \Rightarrow (ii): For the index I of L^ρ_K, we have

\[(\mu I - L^\rho_H - D(x))\beta_{11} = -\rho \left(\begin{array}{c} x \\ 0 \end{array} \right) \left(\frac{\beta(v)}{\beta_{11}} \right). \]

Multiplying relation (1) by α^T from the left, we obtain

\[0 = \alpha^T (\mu I - L^\rho_H - D(x))\beta_{11} = -\rho \alpha^T \alpha \beta(v). \]

Hence, $\beta(v) = 0$ and $\beta_{11} = a_1 \alpha$ and similarly $\beta_{11'} = a_2 \alpha$, for some $a_1, a_2 \in \mathbb{R}$. For the index v of L^ρ_K, we have

\[(\mu - a + \rho a - 2D(x^T))\beta(v) = \beta_{11} \beta(v) = -\rho (z^T \beta_{11} + z^T \beta_{11'}) = -\rho (a_1 + a_2) z^T \alpha. \]

Hence $a_2 = -a_1$ and the proof is done.

(ii) \Rightarrow (i): It follows by the relations above in a similar manner.

Now, we show that $m_{L^\rho_K}(\mu) = 0$. We have

\[(\mu I - L^\rho_H - D(x))\gamma_{11} = -\rho \alpha \gamma(v). \]

Multiplying relation (2) by α^T from the left, we obtain $\gamma(v) = 0$ and $\gamma_{11} = b \alpha$, for $b \in \mathbb{R}$. For the index v of L^ρ_H, we have

\[(\mu - a + \rho a - D(x^T))\gamma(v) = -\rho \alpha^T \gamma_{11} = -\rho \alpha^T \alpha. \]

Hence $b = 0$ and $m_{L^\rho_H}(\mu) = 0$. \qed

The following corollary is a straightforward consequence of Theorem 21 and Lemma 22.

Corollary 23. Let $\mu \in \mathbb{R}, \rho \in \mathbb{R} - \{0\}$ and H, L be two disjoint graphs and $u \in V(H)$ and $v \in V(L)$. Suppose that H_1, \ldots, H_t are t copies of H and E, K, G are graphs as shown below (see Figure 8). If $m_{L^\rho_K}(\mu) = 1$ and $\beta(v') = 0$, for a μ-eigenvector β of L^ρ_K, then $m_{L^\rho_E}(\mu) = m_{L^\rho_H}(\mu) + t - 1$.

\[\text{Figure 8. The graphs of Corollary 23.} \]

Now, we give the second proof for Theorem 5.

Second proof of Theorem 5: For brevity, we set $q_k(G) = q$, $p_k(G) = p$. With the notations of Corollary 23, we put $\mu = 4 \cos^2 \left(\frac{2\pi}{2k+1} \right)$, $\rho = \pm 1$, $H = P_k$, then by using the splitting method of Corollary 23, for q vertices of G, q times, we have $m_{L^\rho_E}(4 \cos^2 \left(\frac{2\pi}{2k+1} \right)) = m_{L^\rho_E}(4 \cos^2 \left(\frac{2\pi}{2k+1} \right)) + p - q \geq p - q$, for $t \in [k]$.

Example 24. $\mu = 4 \cos^2 \left(\frac{2\pi}{2k+1} \right)$: Suppose that $k \in \mathbb{N}$ and G, E are the graphs as shown below (see Figure 9). Then $m_{L(G)}(\mu) = m_{L(E)}(\mu)$ and $m_{Q(G)}(\mu) = m_{Q(E)}(\mu)$.
\[\mu = 4 \cos^2 \left(\frac{\pi}{2m+1} \right); \quad t \in [k]. \]

Figure 9. The graphs of Example 24.

5. Proofs of the Main Theorems

For an \(n \times m \) matrix \(M \) and \(I \subseteq [n], J \subseteq [m], \) let \(M[I|J] \) denote the submatrix of \(M \) formed by rows with index in \(I \) and columns with index in \(J \).

Proof of Theorem 9. Suppose that \(m_{L^E_H}(\mu) = k \) and \(\alpha^1, \ldots, \alpha^k \) are the eigenvectors of \(L^E_H \) corresponding to \(I_1 \cup I_2 \) by Theorem 6. We set

\[
E = \left(\begin{array}{c|c} \alpha^1 & \cdots & \alpha^k \end{array} \right)^T = \left(\begin{array}{c|c} I_k & * \end{array} \right)
\]

and extend \(\alpha^i \) to \(\hat{\alpha}^i = \frac{l_j}{\bar{\rho}} \left(\begin{array}{c} \alpha^i \\ 0 \end{array} \right) \) for \(i \in [k] \). It is easy to check that \(\hat{\alpha}^1, \ldots, \hat{\alpha}^k \) are \(k \mu \)-eigenvectors of \(L^E \).

Suppose that \(\beta \) is a \(\mu \)-eigenvector of \(L^E_G \). We show that \(\beta|_{I_1} = \rho \beta(v_j)j, j \in [J_1] \). We have

\[
(\mu I - \mu L^E_G)|_{I_1} \beta|_{I_1} = -\rho \left(\begin{array}{c|c} X & 0 \\ 0 & A \end{array} \right) \beta|_{I_1}
\]

and

\[
(\mu I - \mu L^E_H - D \left(\begin{array}{c|c} X & 0 \\ 0 & A \end{array} \right) \beta|_{I_1} = -\rho \left(\begin{array}{c|c} X & 0 \\ 0 & A \end{array} \right) \beta|_{I_1}.
\]

Multiplying relation (3) by \(E \) from the left, we obtain

\[
0 = E(\mu I - \mu L^E_H)\beta|_{I_1} = \left(\begin{array}{c|c} D(X)^T \beta|_{I_1} & 0 \\ 0 & 0 \end{array} \right) - \rho E(A \beta|_{I_1} = \left(\begin{array}{c|c} D(X)^T \beta|_{I_1} - \rho \beta|_{I_1} X & 0 \\ 0 & 0 \end{array} \right).
\]

Since, \(x_j \) is nowhere-zero, hence, we have

\[
\beta|_{I_1} = \rho \beta(v_j)j, j \in [I_1].
\]

Thus \(\beta \) is a \(\mu \)-eigenvector of \(L^E \) by Lemma 8.

Now, we show that \(m_{L^E}(\mu) \geq m_{L^E_G}(\mu) + |I_1| \). Assume that \(m_{L^E_G}(\mu) = r \) and \(\beta^1, \ldots, \beta^r \) are independent eigenvectors of \(L^E_G \). We show that \(\beta^1, \ldots, \beta^r, \alpha^1, \ldots, \alpha^{|I_1|} \) are independent. Suppose that for some \(c_1, \ldots, c_r, d_1, \ldots, d_{|I_1|} \in \mathbb{R} \),

\[
\sum_{i=1}^{r} c_i \beta^i = \sum_{i=1}^{|I_1|} d_i \alpha^i.
\]

Hence \(\sum_{i=1}^{r} c_i \beta^i = \sum_{i=1}^{|I_1|} d_i \alpha^i = (d_1, \ldots, d_{|I_1|}, *, *, \ldots, *)^T \).

Thus \((\mu I - \mu L^E_G)(\sum_{i=1}^{|I_1|} d_i \alpha^i) = \mathbf{0} \). From relation (4), \((d_1, \ldots, d_{|I_1|})^T = \mathbf{0} \) and so \(c_1 = \cdots = c_r = 0 \) and \(m_{L^E}(\mu) \geq m_{L^E_G}(\mu) + |I_1| \).

Next, we show that \(m_{L^E}(\mu) \leq m_{L^E_G}(\mu) + |I_1| \).
\(\alpha^1, \ldots, \alpha^{|I_1|} \) are \(|I_1| \) \(\mu \)-eigenvectors of \(L^p_E \). Suppose that \(m_{L^p_E}(\mu) = s + |I_1| \) and \(\alpha^1, \ldots, \alpha^{|I_1|}, \gamma^1, \ldots, \gamma^s \) are independent \(\mu \)-eigenvectors of \(L^p_E \). For \(i \in [s] \), we define \(\gamma^i \) as below,

\[
\gamma^i = \gamma^i + \frac{I}{J_2} \left(\frac{\sum_{j \in |I_1|} E^T[I | I_1](\mu \gamma^j | I_1, i) - \gamma^i | I_1, i)}{0} \right)
\]

We show that \(\gamma^1, \ldots, \gamma^s \) are \(s \) independent \(\mu \)-eigenvectors of \(L^p_E \). We have

\[
L^p_E \gamma^i = \sum_{j \in |I_1|} D(X) \gamma^j | I_1, i) + \mu \gamma^i | I_1, i) - \gamma^i | I_1, i) + L^p_E \gamma^i | I_1, i) = 0
\]

Now, suppose that

\[
0 = \sum_{i=1}^s c_i \gamma^i = \sum_{i=1}^s c_i \gamma^i + \frac{\sum_{j \in |I_1|} E^T[I | I_1](\mu \gamma^j | I_1, i) - \gamma^j | I_1, i)}{0}
\]

for some \(c_1, \ldots, c_s \in \mathbb{R} \). So, \(\sum_{i=1}^s c_i \gamma^i = \sum_{i \in |I_1|} \gamma^i | I_1, i) \), and hence \(m_{L^p_E}(\mu) \leq m_{L^p_E}(\mu) + |I_1| \).

Proof of Theorem 13. Suppose that \(m_{L^p_E}(\mu) = k \) and \(\alpha^1, \ldots, \alpha^k \) are the eigenvectors of \(L^p_H \) corresponding to \(I_1 \cup I_2 \) by Theorem 6. We set \(E = \left(\begin{array}{ccc} \alpha^1 & \cdots & \alpha^k \end{array} \right)^T = \left(\begin{array}{c} I_1 \end{array} \right) \) and extend \(\alpha^i \) to \(\tilde{\alpha}^i = \frac{I}{J} \left(\alpha^i \right) \), for \(i \in [k] \). It is easy to check that \(\tilde{\alpha}^1, \ldots, \tilde{\alpha}^k \) are \(k \) \(\mu \)-eigenvectors of \(L^p_E \).

Suppose that \(\beta \) is a \(\mu \)-eigenvector of \(L^p_E \). We have

\[
0 = (\mu I - L^p_E) \beta | I_1 = - \rho \left(\begin{array}{c} X \\ 0 \\ 0 \end{array} \right) \beta | I_1
\]

Multiplying relation (5) by \(E \) from the left, we obtain

\[
0 = E (\mu I - L^p_H) \beta | I_1 = \left(\begin{array}{c} (L^p_E + D(X)) \beta | I_1 \\ 0 \\ 0 \end{array} \right) - \rho E \left(\begin{array}{c} X \beta | I_1 \\ 0 \\ 0 \end{array} \right) - \rho E A \beta | I_1 = \left(\begin{array}{c} (L^p_E + D(X)) \beta | I_1 + \rho X \beta | I_1 \end{array} \right).
\]

Hence,

\[
\beta | I_1 = \rho (L^p_E + D(X))^{-1} X \beta | I_1.
\]

So, \(\rho X^T \beta | I_1 = (L^p_E + D(X)) \beta | I_1 \) and it is easy to see that \(\beta \) is a \(\mu \)-eigenvector of \(L^p_E \).
Now, we show that $m_{L^0_\rho}(\mu) \geq m_{L^0_\rho}(\mu) + |I_1|$. Assume that $m_{L^0_\rho}(\mu) = r$ and β^1, \ldots, β^r are independent eigenvectors of L^0_ρ. We show that $\beta^1, \ldots, \beta^r, \alpha^1, \ldots, \alpha^{|I_1|}$ are independent. Suppose that for some $c_1, \ldots, c_r, d_1, \ldots, d_{|I_1|} \in \mathbb{R}$,

$$\sum_{i=1}^r c_i \beta^i = \sum_{i=1}^{|I_1|} d_i \alpha^i = (d_1, \ldots, d_{|I_1|}, *, *, \ldots)^T.$$

Thus $(\mu I - L^0_\rho)(\sum_{i=1}^{|I_1|} d_i \alpha^i) = 0$. From relation (6), $(d_1, \ldots, d_{|I_1|})^T = 0$ and so $c_1 = \cdots = c_r = 0$. Hence, $m_{L^0_\rho}(\mu) \geq m_{L^0_\rho}(\mu) + |I_1|$.

Next, we show that $m_{L^0_\rho}(\mu) \leq m_{L^0_\rho}(\mu) + |I_1|$.

$\alpha^1, \ldots, \alpha^{|I_1|}$ are $|I_1|$ μ-eigenvectors of L^0_ρ. Suppose that $m_{L^0_\rho}(\mu) = s + |I_1|$ and $\alpha^1, \ldots, \alpha^{|I_1|}$, $\gamma^1, \ldots, \gamma^s$ are independent μ-eigenvectors of L^0_ρ. For $i \in [s]$, we define γ^i as below,

$$\gamma^i = \gamma^i + \frac{I}{J} \left(E^T[I] I_1 (\rho L^0_\rho + D(X)^{-1} X \gamma^i|_{I_1} - \gamma^i|_{I_1}) \right).$$

We show that $\gamma^1, \ldots, \gamma^s$ are s independent μ-eigenvectors of L^0_ρ. We have

$$L^0_\rho \gamma^i = (L^0_\rho + D(X)) \gamma^i + \left(E^T[I] I_1 (\rho L^0_\rho + D(X)^{-1} X \gamma^i|_{I_1} - \gamma^i|_{I_1}) \right) + \left(\rho X \gamma^i|_{I_1} - (L^0_\rho + D(X)) \gamma^i|_{I_1} \right)$$

$$= \mu \gamma^i.$$

Now, suppose that

$$0 \in \sum_{i=1}^s c_i \gamma^i = \sum_{i=1}^s c_i \gamma^i + \left(E^T[I] I_1 (\rho L^0_\rho + D(X)^{-1} X \sum_{i=1}^s c_i \gamma^i|_{I_1} - \sum_{i=1}^s c_i \gamma^i|_{I_1}) \right).$$

for some $c_1, \ldots, c_s \in \mathbb{R}$. So, $\sum_{i=1}^s c_i \gamma^i = \sum_{i \in [s], i \in |I_1|} d_{ij} \alpha^i$, for some real numbers d_{ij}. Thus $c_1 = \cdots = c_s = 0$ and hence $m_{L^0_\rho}(\mu) \leq m_{L^0_\rho}(\mu) + |I_1|$. This inequality implies that $m_{L^0_\rho}(\mu) = m_{L^0_\rho}(\mu) + |I_1|$. Finally, to prove $m_{L^0_\rho}(\mu) = m_{L^0_\rho}(\mu) - |I_1|$, it suffices to put $X = 0$ and $L = 0$. \hfill \square

Proof of Theorem 18. We extend β^i to $\hat{\beta}^i$ and γ^i to $\hat{\gamma}^i$, where

$$\hat{\beta}^i = \begin{bmatrix} I & \beta^i |_{I_1} \\ I_1 & 0 \\ \vdots & \vdots \\ J_{i-1} & 0 \\ J_i & \beta^i |_{I_1} \end{bmatrix}, \quad i \in [s], \quad \hat{\gamma}^i = \begin{bmatrix} I & \gamma^i |_{I_1} \\ I_1 & 0 \\ \vdots & \vdots \\ J_{i-1} & 0 \\ J_i & \gamma^i |_{I_1} \end{bmatrix}, \quad i \in [r - 1].$$

It is easy to check that $\{\hat{\beta}^i\}_{i=1}^s$ and $\{\hat{\gamma}^i\}_{i=1}^{r-1}$ are μ-eigenvectors of L^0_ρ. By the definitions, the independence of these eigenvectors is obvious. \hfill \square
Proof of Theorem 21. Suppose that α is the μ-eigenvector of $L^p_\mu + D(\mathbf{x})$ such that $\mathbf{x}^T \alpha = 1$ and β is a μ-eigenvector of L^p_α. We have

$$
(\mu I - L^p_\alpha) \beta_{ij} = -\rho \left(\mathbf{x} \mid 0 \right) \left(\frac{\beta(v)}{\beta_{ij}} \right)
$$

(7)

$$
(\mu I - L^p_\mu - D \left(\mathbf{x} \mid 0 \right)) \beta_{ij} = -\rho \left(\mathbf{x} \mid 0 \right) \left(\frac{\beta(v)}{\beta_{ij}} \right).
$$

Multiplying relation (7) by α^T from the left, we obtain

$$
0 = \alpha^T (\mu I - L^p_\alpha - D(\mathbf{x})) \beta_{ij} = -\rho \alpha^T \mathbf{z} \beta(v).
$$

Hence, $\beta(v) = 0$ and $\beta_{ij} = \alpha \beta$ for an $a \in \mathbb{R}$. For the index v of L^p_α, we have

$$
(\mu - a + \rho a - D(\mathbf{x}^T) - D(\mathbf{y}^T)) \beta(v) = -\rho(\mathbf{x}^T \beta_{ij} + \mathbf{y}^T \beta_{ij}).
$$

Hence,

$$
\mathbf{x}^T \beta_{ij} = -\mathbf{y}^T \beta_{ij}, \quad a = -\frac{\mathbf{y}^T \beta_{ij}}{\mathbf{x}^T \alpha} = -\mathbf{y}^T \beta_{ij}.
$$

By similar method, if γ is a μ-eigenvector of L^p_γ, then

$$
\gamma(v_j) = 0, \quad \gamma_{ij} = a_j \alpha, \quad \text{and} \quad a_j = \mathbf{x}^T \gamma_{ij} = -y_J \gamma(j), \quad \text{for} \ j \in [\lceil J \rceil].
$$

Now, we show that $m_{L^p_\gamma}(\mu) \geq m_{L^p_\alpha}(\mu)$. Assume that $m_{L^p_\alpha}(\mu) = r$ and β^1, \ldots, β^r are independent μ-eigenvectors of L^p_α. Put

$$
\hat{\beta}^i = \begin{pmatrix}
I_1 \\
v_1 \\
\vdots \\
v_{i-1} \\
I_{\lceil J \rceil} \\
v_{\lceil J \rceil} \\
J \\
\beta_{ij}^i
\end{pmatrix}, \quad i \in [r].
$$

It is easy to see that $\hat{\beta}^i$ is a μ-eigenvector of L^p_γ. We show that $\hat{\beta}^1, \ldots, \hat{\beta}^r$ are independent. From the relation (8), we can conclude that β^1, \ldots, β^r are independent, if and only if $\beta^1_{ij}, \ldots, \beta^r_{ij}$ are independent. So, $\hat{\beta}^1, \ldots, \hat{\beta}^r$ are independent and hence, $m_{L^p_\gamma}(\mu) \geq m_{L^p_\alpha}(\mu)$.

Next, we show that $m_{L^p_\gamma}(\mu) \leq m_{L^p_\alpha}(\mu)$. Suppose that $m_{L^p_\alpha}(\mu) = s$ and $\gamma^1, \ldots, \gamma^s$ are independent μ-eigenvectors of L^p_α. For $i \in [s]$, put

$$
\hat{\gamma}^i = \begin{pmatrix}
I \\
v \\
J \\
\gamma^i_{ij}
\end{pmatrix}
$$

It is easy to see that $\hat{\gamma}^i$ is a μ-eigenvector of L^p_α. From the relation (9), $\gamma^1, \ldots, \gamma^s$ are independent, if and only if $\gamma^1_{ij}, \ldots, \gamma^s_{ij}$ are independent. So, $\hat{\gamma}^1, \ldots, \hat{\gamma}^s$ are independent and hence $m_{L^p_\gamma}(\mu) \leq m_{L^p_\alpha}(\mu)$. This inequality implies that $m_{L^p_\gamma}(\mu) = m_{L^p_\alpha}(\mu)$. \qed

Acknowledgements. We would like to thank the unknown referee for his/her valuable comments. The authors are indebted to the School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran for the support. The research of the second author were in part supported by grant from IPM (No. 94050116).
References

[1] A. Bahmani, D. Kiani. On the multiplicity of the adjacency eigenvalues of graphs. *Linear Algebra Appl.*, 477:1–20, 2015.

[2] D. Cvetković, P. Rowlinson, S. Simić. *Eigenspaces of Graphs*. Cambridge University Press, Cambridge, 1997.

[3] I. Faria. Permanental roots and the star degree of a graph. *Linear Algebra Appl.*, 64:255-265, 1985.

[4] E. Ghorbani. Proof of a conjecture on the plateau phenomenon of graph Laplacian eigenvalues. 2015. arXiv:1510.05117.

[5] R. Grone, R. Merris. The Laplacian spectrum of a graph II. *SIAM Journal on discrete Mathematics*, 7:221–229, 1994.

[6] R. Grone, R. Merris, V. S. Sunder. The Laplacian spectrum of a graph. *SIAM J. Matrix Anal. Appl.*, 11:218–238, 1990.

[7] R. Merris. Laplacian Graph Eigenvectors. *Linear Algebra Appl.*, 278:221–236, 1998.

[8] M. W. Newman. The Laplacian spectrum of graphs. *Master Diss.* University of Manitoba, Canada, 2000.

[9] N. Saito, E. Woei. Tree simplification and the plateau phenomenon of graph Laplacian eigenvalues. *Linear Algebra Appl.*, 481:263–279, 2015.

[10] D. Spielman. Spectral Graph Theory, The Laplacian. *University Lecture Notes.*, 2009, available at: http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf

Department of Mathematics and Computer Science, Amirkabir University of Technology, 424, Hafez Ave., Tehran 15914, Iran.

E-mail address: asghar.bahmani@aut.ac.ir

Department of Mathematics and Computer Science, Amirkabir University of Technology, 424, Hafez Ave., Tehran 15914, Iran, and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.

E-mail address: dkiani@aut.ac.ir, dkiani7@gmail.com