Long-term outcomes from the phase II L-MIND study of tafasitamab (MOR208) plus lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma

Johannes Duell, Kami J. Maddocks, Eva González-Barca, Wojciech Jurczak, Anna Marina Liberati, Sven de Vos, Zsolt Nagy, Aleš Obr, Gianluca Gaidano, Pau Abrisqueta, Nagesh Kalakonda, Marc André, Martin Dreyling, Tobias Menne, Olivier Tournilhac, Marinela Augustin, Andreas Rosenwald, Marc Dirnberger-Hertweck, Sumeet Ambarkhane and Gilles Salles

1Medizinische Klinik und Poliklinik II, Universitätsklinik Würzburg, Würzburg, Germany; 2Department of Internal Medicine, Arthur G James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH, USA; 3Department of Hematology, Institut Catalá d’Oncologia (ICO), Hospital Duran i Reynals, Universitat de Barcelona, Barcelona, Spain; 4Maria Sklodowska–Curie National Research Institute of Oncology, Kraków, Poland; 5Università degli Studi di Perugia, Azienda Ospedaliera Santa Maria di Terni, Terni, Italy; 6Department of Medicine, Ronald Reagan UCLA Medical Center, Santa Monica, CA, USA; 71st Department of Internal Medicine, Semmelweis University, Budapest, Hungary; 8Department of Hemato-Oncology, Palacký University and University Hospital, Olo­mouc, Czech Republic; 9Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy; 10Department of Hematology, Vail d’Hebron Institute of Oncology (VHIO), Vail d’Hebron University Hospital, Barcelona, Spain; 11Molecular and Clinical Cancer Medicine, University of Liverpool and The Clatterbridge Cancer Centre, Liverpool, UK; 12Department of Haematology, Université Catholique de Louvain, CHU UCL Namur, Yvoir, Belgium; 13Department of Medicine III, LMU University Hospital, Munich, Germany; 14Department of Haematology, Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, New­castle Upon Tyne, UK; 15Service d’Hématologie Clinique et de Thérapie Cellulaire, CHU Estaing, Clermont-Ferrand, France; 16Department of Hematology and Oncology, Paracelcus Medical University, Klinikum Nürnberg, Nürnberg, Germany; 17Institute of Pathology, University of Würzburg, Würzburg, Germany; 18MorphoSys AG, Planegg, Germany and 19Hématologie, Hospices Civils de Lyon and Université de Lyon, Lyon, France.

*Current address: Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2020.275958

Received: November 13, 2020.
Accepted: May 11, 2021.
Pre-published: July 1, 2021.
Correspondence: GILLES SALLES - sallesg@mskcc.org
Supplementary Material

ST1. Refractoriness to last prior line (N=35, FAS)

Last prior treatment line	N (%)
1	6 (17.1)
2	25 (71.4)
3 or 4	4 (11.4)

Last prior treatment regimen – category	N (%)
Chemotherapy-based	34 (97.1)†
Platinum-based	18 (51.4)†
Non-platinum-based*	16 (45.7)†
Chemotherapy-free regimens	1 (2.9)†
HD-chemo/BEAM/ASCT	2 (5.7)‡
Rituximab-containing	28 (80)‡

*Composition: predominantly R-CHOP, cyclophosphamide ± doxorubicin, and R-BEN; †Percentages are also referring to the N=35 patients refractory to their last treatment line; ‡Patients are also represented among categories ‘chemotherapy-based’ and ‘chemotherapy-free regimens’.

BEAM, carmustine, etoposide, cytarabine, melphalan; BEN, bendamustine; HD-chemo, high dose chemotherapy; R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, prednisolone.
ST2. Selected infection- and rash-related adverse events

Changes compared with the primary analysis are indicated by an arrow

Event	All Grades, n (%)	Grade 1, n (%)	Grade 2, n (%)	Grade 3, n (%)	Grade 4, n (%)	Grade ≥3, n (%)
Infective pneumonia*						
All infective pneumonia	8 (9.9) → 12 (14.8)	0	1 (1.2) → 2 (2.5)	6 (7.4) → 9 (11.1)	1 (1.2)	7 (8.6) → 10 (12.3)
Pneumonia	6 (7.4) → 10 (12.3)	0	1 (1.2) → 2 (2.5)	5 (6.2) → 8 (9.9)	0	5 (6.2) → 8 (9.9)
Bronchopulmonary aspergillosis	1 (1.2)	0	0	0	1 (1.2)	1 (1.2)
Lung infection	1 (1.2) → 0‡	0	0	1 (1.2) → 0‡	0	1 (1.2) → 0‡
Sepsis†						
All sepsis	4 (4.9)	0	0	2 (2.5)	2 (2.5)	4 (4.9)
Klebsiella sepsis	1 (1.2)	0	0	1 (1.2)	0	1 (1.2)
Neutropenic sepsis	1 (1.2)	0	0	1 (1.2)	0	1 (1.2)
Sepsis	1 (1.2)	0	0	0	1 (1.2)	1 (1.2)
Streptococcal sepsis	1 (1.2)	0	0	0	1 (1.2)	1 (1.2)
Urinary tract infection‡						
All urinary tract infection	14 (17.2) → 17 (21.0)	2 (2.5)	7 (8.6) → 9 (11.1)	3 (3.7)	1 (1.2)	4 (4.9)
Urinary tract infection	7 (8.6) → 10 (12.3)	2 (2.5)	3 (3.7) → 6 (7.4)	1 (1.2)	1 (1.2)	2 (2.5)
Escherichia urinary tract infection	4 (4.9)	0	3 (3.7)	1 (1.2)	0	1 (1.2)
Bacterial urinary tract infection	2 (2.5)	0	2 (2.5)	0	0	0
Enterococcal urinary tract infection	1 (1.2)	0	0	1 (1.2)	0	1 (1.2)
Rash†	37 (45.7) → 40 (49.4)	18 (22.2) → 19 (23.5)	12 (14.8) → 14 (17.3)	7 (8.6)	0	7 (8.6)
--------	------------------------	------------------------	------------------------	--------	---	--------
Pruritus	8 (9.9)	4 (4.9)	3 (3.7)	1 (1.2)	0	1 (1.2)
Rash	6 (7.4) → 7 (8.6)	2 (2.5)	4 (4.9) → 5 (6.2)	0	0	0
Allergic dermatitis	4 (4.9)	0	1 (1.2)	3 (3.7)	0	3 (3.7)
Maculo-papular rash	4 (4.9)	3 (3.7)	0	1 (1.2)	0	1 (1.2)
Dry skin	3 (3.7)	2 (2.5)	1 (1.2)	0	0	0
Erythema	3 (3.7)	3 (3.7)	0	0	0	0
Dermatitis	1 (1.2)	1 (1.2)	0	0	0	0
Eczema	1 (1.2) → 2 (2.4)	1 (1.2)	0 → 1 (1.2)	0	0	0
Papule	1 (1.2)	1 (1.2)	0	0	0	0
Psoriasis	1 (1.2)	0	0	1 (1.2)	0	1 (1.2)
Erythematous rash	1 (1.2)	0	0	1 (1.2)	0	1 (1.2)
Pruritic rash	1 (1.2)	1 (1.2)	0	0	0	0
Rebound psoriasis	1 (1.2)	0	1 (1.2)	0	0	0
Skin lesion	1 (1.2) → 2 (2.5)	0 → 1 (1.2)	1 (1.2)	0	0	0
Toxic skin eruption	1 (1.2)	0	1 (1.2)	0	0	0

*Defined by Standard Medical Dictionary for Regulatory Activities query, narrow scope. Neither Pneumocystis jirovecii pneumonia nor Pneumocystis carinii pneumonia prophylaxis was administered; †Defined by customized Medical Dictionary for Regulatory Activities query; ‡At the time of data cut-off, the Preferred Term ‘lung infection’ had been discontinued. This case was re-coded and is now reported under the Preferred Term ‘pneumonia’.
Supplementary Methods

Eligibility criteria

Eligible patients were aged >18 years with histologically-confirmed R/R DLBCL (including transformed indolent lymphoma with a subsequent DLBCL relapse), had received 1–3 prior systemic regimens including ≥1 anti-CD20 therapy, had Eastern Cooperative Oncology Group performance status 0–2, and were not candidates for high-dose chemotherapy and subsequent ASCT.

Tumor assessment

Tumor assessment was based on computerized tomography scans conducted after cycles 2, 4, 6, and 9 and positron emission tomography, which was mandatory at baseline and after cycle 12. Central laboratory assessments were performed on day 1 (±2 days) of cycles 1–24. Adverse events were recorded at each visit.

Sample size determination and statistics

The sample size of 80 patients was determined using an exact binomial test with a two-sided significance level of 5% and a power of 85%, assuming a drop-out rate of 10% and that treatment with tafasitamab plus lenalidomide could increase the objective response rate by 15% vs monotherapy.

Descriptive statistics were used to summarize response rates and safety outcomes. Progression-free survival, overall survival, and duration of response were analyzed using the Kaplan–Meier method, and 95% confidence intervals for the median calculated accordingly. The median follow-up for progression-free survival and overall survival was calculated using the reverse Kaplan–Meier method. Statistical analysis was performed using SAS® Software version 9.4 or above (SAS Institute, Cary, NC).
Supplementary Results

Narratives for patients who received stem-cell transplant (SCT) after tafasitamab (n=2)

One patient who received SCT had diffuse large B-cell lymphoma (DLBCL) from marginal zone lymphoma transformation and had received autologous SCT 4 years prior to enrollment progressed after seven cycles of therapy in L-MIND, received further chemotherapy and allogenic SCT and died 4 months after allogenic SCT.

The other patient progressed after three cycles in L-MIND, received a further two lines of chemotherapy and autologous SCT but died 8 days later.

Narratives for patients who received chimeric antigen receptor T-cell therapy (CAR)-T after tafasitamab (n=2)

One patient who received CAR-T therapy had germinal center B-like DLBCL as a result of follicular lymphoma transformation and prior to L-MIND had experienced 2-year complete responses to R-EPOCH (rituximab, etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin) and R-ICE (rituximab, ifosfamide, carboplatin, etoposide); she had also declined autologous SCT. She received six cycles of therapy in L-MIND (with a stable disease response) before progression, received further chemotherapy with R-GemOx for four cycles (with a partial response), then received CAR-T with a complete response 1 month after treatment; this patient had remained in complete response for 1 year but died approximately 2-years post CAR-T treatment due to acute myeloid leukemia.

The other patient had received autologous SCT before enrollment to L-MIND and experienced disease progression in L-MIND after eight cycles; this patient did not respond to further chemotherapy or CAR-T, and died 4 months after CAR-T therapy.
SF1. PFS in patients with (A) primary refractory DLBCL, (B) rituximab-refractory DLBCL, and (C) last-therapy refractory DLBCL

A.

B.
C.

![Graph showing progression-free survival](image)

Median PFS
- Yes: 7.6 months (95% CI: 2.7–NR)
- No: 16.2 months (95% CI: 7.4–NR)

Time (months)	Yes	No
0	35	45
1	32	40
2	23	33
3	17	25
6	13	17
9	13	14
12	11	13
18	8	12
24	4	7
30	2	5
36	1	0
SF2. Swimmer plot of progression-free survival for patients with diffuse large B-cell lymphoma arising from transformation of low-grade lymphoma and double- or triple-hit lymphoma

Both patients ‘Censored: Other Reason’ had received prohibited concomitant medication.

CR, complete response; DHL, double-hit lymphoma; IPI, International Prognostic Index; IRC, independent review committee; PR, partial response; SD, stable disease; THL, triple-hit lymphoma; TL, transformed low-grade lymphoma.