Chronology of cellular events related to mitochondrial burnout leading to cell death in Fuchs endothelial corneal dystrophy

Sébastien J. Méthot1,2, Stéphanie Proulx1,2,3, Isabelle Brunette4,5 & Patrick J. Rochette1,2,3*

Fuchs endothelial corneal dystrophy (FECD) is a degenerative eye disease characterized by corneal endothelial cell (CEC) death and the formation of guttae, an abnormal thickening of CEC’s basement membrane. At the tissue level, an oxidative stress causing mitochondrial damage and CEC death have been described to explain FECD pathogenesis. At the cellular level, our group has previously observed significant variability in the mitochondrial mass of FECD CECs. This led us to hypothesize that mitochondrial mass variability might play a key role in the chronology of events eventually leading to CEC death in FECD. We thus used different fluorescent markers to assess mitochondrial health and functionality as a function of mitochondrial mass in FECD corneal endothelial explants, namely, intra-mitochondrial calcium, mitochondrial membrane potential, oxidation level and apoptosis. This has led us to describe for the first time a sequence of events leading to what we referred to as a mitochondrial burnout, and which goes as follow. FECD CECs initially compensate for endothelial cell losses by incorporating mitochondrial calcium to help generating more ATP, but this leads to increased oxidation. CECs then resist the sustained need for more ATP by increasing their mitochondrial mass, mitochondrial calcium and mitochondrial membrane potential. At this stage, CECs reach their maximum capacity and start to cope with irreversible oxidative damage, which leads to mitochondrial burnout. This burnout is accompanied by a dissipation of the membrane potential and a release of mitochondrial calcium, which in turn leads to cell death by apoptosis.

The cornea is composed of three cellular layers, i.e. the epithelium, the stroma and the endothelium1. The stroma needs to be maintained partially dehydrated to allow for the optimal arrangement of its collagen fibrils necessary to ensure its transparency2. This ATP-demanding function is achieved mainly by the corneal endothelium, a leaky cell monolayer that pumps fluid out of the stroma, into the anterior chamber, maintaining the proper hydration of the corneal stroma3,4. Fuchs endothelial corneal dystrophy (FECD) is characterized by a loss of corneal endothelial cells (CECs), abnormal extracellular matrix deposition on its basal membrane (Descemet’s membrane) leading to the formation of excrescences called guttae, and changes in cellular morphology4. The loss of CECs ultimately compromises the role of the endothelium to preserve corneal deturgescence. This leads to corneal edema and vision loss4. FECD affects 4 percent of the US populations over 40 years old5 and the only treatment currently available for FECD is corneal transplantation6,7.

Although the exact cause of FECD is not yet determined, there is growing evidence that oxidative stress and mitochondria are major contributors8,9. The mechanism and the sequence of events leading to mitochondrial dysfunction and cell loss still remain to be elucidated. Manifestations of cumulative oxidative damage and mitochondrial dysfunction in FECD cells have been described by our group and others, including mtDNA deletion accumulation and telomere shortening9–11 and it is known that when mitochondrial damage is severe enough to cause a loss of function, apoptosis is triggered12. Indeed, using an immortalized cultured endothelial cell line as model of FECD, it has been previously shown that increasing endogenous oxidative stress via menadione

1Centre de Recherche du CHU de Québec – Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, Canada. 2Centre de recherche en organogénèse expérimentale de l’Université Laval/LOEX, Québec, Canada. 3Université Laval, Faculté de Médecine, Département d’Ophtalmologie, Université Laval, Québec, Canada. 4Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada. 5Department of Ophthalmology, University of Montreal, Montreal, Québec, Canada. *email: Patrick-J.Rochette@crchudequebec.ulaval.ca
treatment leads to rosette formation, mitochondrial dysfunction and activation of apoptosis in FECD cells. Moreover, subsequent work by the same group showed that the loss of mitochondria in FECD would be caused by the activation of mitophagy. We also know that since CECs do not proliferate in vivo, the remaining cells adapt their morphology to occupy the space left by the dead cells in the tissue. Moreover, many genes coding for mitochondrial antioxidant have been found downregulated in FECD. Thus, in addition to being more exposed to oxidative stress via the decompensation of CECs, the mitochondrial antioxidant defenses of FECD cells are also less effective to cope with this oxidative stress.

Based on what is known in the literature, we have derived a hypothetical vicious circle in which the mitochondrion is central. Mitochondrial oxidative stress and/or the reduced capacity to cope with oxidation lead to a loss of mitochondrial membrane potential (ΔΨm) and/or the formation of mitochondria permeability transition pores (MPTP), resulting in a loss of mitochondrial membrane potential [ΔΨm] and elimination of altered mitochondria by mitophagy or induction of cell death by apoptosis. When FECD CEC die [Cells], the amount of energy globally required to maintain corneal deturgescence remains the same, therefore increasing ATP demand on remaining cells, in turn promoting mitochondrial exhaustion. Although all cells are not affected to the same degree, each additional cell death feeds the vicious cycle.

In this hypothetical vicious circle, mitochondria allow for a compensation mechanism for cell depletion, but this eventually leads to an energetic exhaustion that we call “mitochondrial burnout”. We previously showed that, in the same FECD explant, individual CECs present different levels of mitochondrial mass, suggesting that each CEC is not at the same stage of the vicious circle. In an attempt to decipher the chronology of events that leads to cell death in FECD, we analyzed the different elements of the vicious circle using human FECD corneal endothelial explants. We used mitochondrial mass as a marker of progression of individual CECs in the vicious circle and we assessed different cellular markers of mitochondrial and cellular functionality, i.e. oxidation level, apoptosis, ΔΨm and mitochondrial calcium. The great variation in mitochondrial mass within the same FECD explant was confirmed. A lower mitochondrial mass was associated with apoptotic CECs and a loss of mitochondrial mass and calcium. Mitochondrial mass and calcium increase the amount of ATP available by respectively making more components of the electron transport chain and making these components more efficient. As a consequence, oxidative phosphorylation is increased, as well as the production of by-products such as reactive oxygen species (ROS), resulting in oxidative stress. Elevated mitochondrial calcium and oxidative stress also result in the opening of mitochondrial permeability transition pores, which dissipates the ΔΨm unsuitable for transplantation were obtained from our local eye.

Materials and Methods

All experiments in this study were performed in accordance with the Declaration of Helsinki, and the research protocol received approval by the CIUSSS-EMTL (Montréal) and the CHU de Québec-Université Laval (Québec) institutional ethics committees for the protection of human subjects with written informed patient consent for study participation. No tissue samples were procured from prisoners. FECD explants (corneal endothelium and Descemet’s membrane) were collected from 13 consenting patients (age 55–90 years; median 70; SD ± 9.3) with late stage FECD at the time of their corneal transplantation (Centre universitaire d’ophthalmologie (CUO), Hôpital Maisonneuve-Rosemont (HMR) and CUO – Hôpital du Saint-Sacrement, Québec, Canada). Twelve healthy corneas (age 56–82 years; median 67; SD ± 9.8) unsuitable for transplantation were obtained from our local eye.

Figure 1. Vicious cycle of FECD pathogenesis. The CEC Na+/K+-ATPase pump, required to maintain corneal deturgescence, uses 30% of the cellular ATP, this high energetic demand is met by increasing the number of mitochondria and/or by increasing mitochondrial calcium intake. However, this leads to oxidative stress and/or the formation of mitochondria permeability transition pores (MPTP), resulting in a loss of mitochondrial membrane potential [ΔΨm] and elimination of altered mitochondria by mitophagy or induction of cell death by apoptosis. When FECD CEC die [Cells], the amount of energy globally required to maintain corneal deturgescence remains the same, therefore increasing ATP demand on remaining cells, in turn promoting mitochondrial exhaustion. Although all cells are not affected to the same degree, each additional cell death feeds the vicious cycle.
bank (Banque d’Yeux du Centre universitaire d’ophthalmologie, Québec, Canada) and their Descemet’s membrane (with attached endothelium) were isolated. Every cellular portion of each FECD explant was analyzed and no discrimination between central and peripheral portion of the explant was done. Age, sex and clinical diagnosis of all donors from whom corneal tissue was used in this study are listed in Supplementary Material (Table S1).

Markers used on FECD and healthy endothelium explants. Corneal endothelium on their Descemet’s membrane were kept overnight at 37 °C in growth medium, as previously described10. Explants were then washed with Opti-Mem-I (for all markers but CM-H2DCFDA; Invitrogen, Burlington, ON, Canada) or PBS (for CM-H2DCFDA). Mitotracker Deep Red FM (Invitrogen) was used in combination with JC-1 (Invitrogen), CellEvent Caspase-3/7 Green Detection Reagent (Invitrogen) and CM-H2DCFDA (Invitrogen) at a concentration of 80 nM. Mitotracker Green FM (Invitrogen) was used with Rhod-2 AM at a concentration of 80 nM. JC-1 was used to measure mitochondrial membrane potential at a concentration of 2.5 μM. Rhod-2 AM was used to measure mitochondrial calcium, at a concentration of 3 μM. CellEvent Caspase-3/7 Green Detection was used to measure caspase-3/7 activity marker, at a concentration of 5 μM. CM-H2DCFDA was used to measure ROS presence, at a concentration of 2.5 μM. The explants were put in staining solution of PBS (for CM-H2DCFDA), PBS with 5% fetal bovine serum (for caspase-3/7 activity marker) or Opti-Mem-I (for JC-1 and Rhod-2) containing the markers with their appropriate mitochondrial probe. The explants were then incubated for 30 minutes at 37 °C and 8% CO2, washed with Opti-Mem-I or PBS, put on a microscope slide, observed and imaged. Solvents for each marker (PBS, PBS with 5% FBS or Opti-Mem-I) was determined according to the manufacturer’s recommendations.

Image analysis. The signal produced by the different markers was quantified using AxioVision 4.8.2 software (Zeiss, Germany). Cells were individually analyzed for each marker and their corresponding mitochondrial staining. Background was measured and removed from the signal of the different markers.

Statistical analysis. To generate statistical analysis, Kaleida graph version 4.1.3 software (Synergy software, Readint, PA, USA) was used. Differences between groups were assessed with the two-tailed homoscedastic Student’s t-test. A p-value ≤ 0.05 was defined as statistically significant. Differences in variation between groups

Figure 2. Higher variability of mitochondrial mass in FECD explants. (A) A marker of mitochondrial mass (mitotracker) was used in healthy and FECD endothelial explants. The typical CEC loss and the enlargement of remaining CECs in the FECD explants (right) compared to the healthy explants (left) is well illustrated. (B) Quantification of the mitotracker signal showed no statistically significant difference in mitochondrial mass between healthy and FECD explants. However, FECD cells presented more variation (Coefficient of variation (CV) = 0.44) than the Healthy cells (CV = 0.17). Scale bar = 40 μm. Median and standard deviation are reported. Experiments were performed with 3 different explants from Healthy (1200 cells analyzed, N = 3) and 3 FECD patients (1176 cells analyzed, N = 3).
were assessed by comparing the coefficient of variation (the ratio between the standard deviation and the mean). Box plot showing median values has been used to present data.

Results

Mitochondrial mass variability is increased in FECD CECs compared to Healthy CECs. The mitochondrial mass was measured FECD explants and compared it to healthy endothelial explants. An important variability in mitochondrial mass was observed among CECs of each FECD explant (Fig. 2A). This was corroborated by the quantification of the Mitotracker signal (Fig. 2B). Median mitochondrial mass of healthy (9.7 a.u.) and FECD (10.4 a.u.) explants were not statistically significantly different, but FECD CECs presented more variation (Coefficient of variation (CV) = 0.44) than Healthy CEC (CV = 0.17).
Caspase-3/7 activity is linked to mitochondrial mass depletion in FECD CECs. We measured caspase-3/7 activity as a direct marker of apoptosis in conjunction with mitochondrial mass to determine if there is a correlation between mitochondria depletion and cell death in FECD (Fig. 3A). A positive control of caspase 3/7 apoptosis labeling can be found in Supplementary Material (Fig. S1). The mitochondrial mass signal measured for caspase-3/7 positive and negative cells is presented in Fig. 3B. All cells in healthy explants were caspase-3/7 negative, while in the FECD explants, only 48% of the cells were caspase-3/7 negative and 52% were caspase-3/7 positive. The median mitochondrial mass was higher (9.6 a.u.) in caspase-3/7 negative than in caspase-3/7 positive (4.1 a.u.) FECD cells. Mitochondrial mass (6.7 a.u.) in healthy cells was intermediate between that of caspase-3/7 positive and caspase-3/7 negative FECD CECs. A small percentage (9%) of FECD cells were caspase-3/7 positive without a detectable mitochondrial mass. Cells with mitochondrial mass between caspase-3/7 positive and negative medians represented 46% of FECD CECs and were referred to as having a "normal mitochondrial mass". Caspase-3/7 negative cells with a mitochondrial mass above the "normal level" composed 27% of the FECD CECs and were therefore referred to as "Low mitochondrial mass". These results indicate that an association can be made between mitochondrial mass and cell death in FECD CECs, as cells with lower mitochondrial mass were apoptotic, while cells with higher mitochondrial mass were not apoptotic.

Oxidative stress correlates with mitochondrial mass level in FECD CECs. We measured oxidative stress in conjunction with mitochondrial mass to determine whether an association can be made between mitochondrial mass and ROS accumulation. CM-H$_2$DCFDA labeling of ROS clearly showed an oxidative stress in FECD CECs, while none was detectable in healthy CECs (Fig. 4A). Signal quantification of CM-H$_2$DCFDA also demonstrated that the ROS level was statistically significantly higher in FECD (36.8 a.u.) than in healthy (0.6 a.u.) cells (Fig. 4B). However, 24.5% of the FECD cells presented very low ROS levels, comparable to those found in healthy cells.
A strong positive correlation was observed between oxidative stress level and mitochondrial mass ($R^2 = 0.514$; $p < 0.0001$) (Fig. 4C). We then categorized FECD cells according to their mitochondrial mass following the same 3 categories described above for caspase-3/7 activity (i.e. High (27% of FECD cells), Normal (46%) and Low (27%) mitochondrial mass). As expected, the level of mitochondria in healthy cells fell into the “Normal mitochondrial mass” category. Median levels of CM-H$_2$DCFDA in each category were: High: 61.3 a.u., Normal: 39.5 a.u., Low: 4.4 a.u. (Fig. 4D). This confirmed that a higher level of mitochondrial mass is associated with a higher level of oxidative stress. Moreover, since mitochondrial levels strongly correlate with ROS levels, it can be extrapolated from the associations documented between mitochondrial mass and caspase-3/7 (Fig. 3) that FECD cells with lower ROS levels are apoptotic while those with higher ROS levels are not apoptotic.

Mitochondrial calcium levels are increased in FECD CECs compared to healthy CECs.

Mitochondrial calcium was then measured in conjunction with mitochondrial mass in order to determine whether there was an association between the two. Rhod-2 labeling of intra-mitochondrial calcium was higher in FECD than in Healthy CECs (Fig. 5A). This was confirmed by signal quantification, with mitochondrial calcium levels significantly higher in FECD (median: 2.2 a.u.) than in healthy (0 a.u.) cells (Fig. 5B). However, 24.2% of FECD CECs presented a mitochondrial calcium level comparable to that of the healthy cells. The mitochondrial calcium level was plotted against mitochondrial mass (Fig. 5C), and a weak correlation was observed ($R^2 = 0.020$; $p < 0.001$). FECD cells were then categorized according to their mitochondrial level following the same 3 categories determined for caspase-3/7 activity (Fig. 5D). This revealed that only the category with a high mitochondrial mass had a calcium level significantly higher than that of the other two categories. Scale bar = 40 μm. Experiments were performed with 3 different explants from Healthy (800 cells analyzed, $N=3$) and 4 FECD patients (710 cells analyzed, $N=4$). *$p < 0.01$ and **$p < 0.001$.

Figure 5. Higher mitochondrial calcium is found in FECD cells. (A) A marker of intra-mitochondrial calcium (Rhod-2; red) was measured in conjunction with mitochondrial mass marker (mitotracker; green) in healthy and FECD explants. Rhod-2 labelling allows the observation that CECs were much larger in the FECD than in the healthy explant and numerous guttae (star) are seen, disorganizing the architecture of the endothelial mosaic. (B) Quantification of intra-mitochondrial calcium showed a significantly higher level of calcium in the FECD CECs, with no detectable level in healthy CECs. (C) Rhod-2 and mitotracker signal levels were plotted, each dot representing a single CEC (blue for healthy cells and red for FECD). A weak correlation was observed ($R^2 = 0.020$; $p < 0.001$). (D) Quantification of Rhod-2 in FECD CEC populations according to their mitochondrial mass, i.e. low, normal and high mitochondrial level categories as depicted in Fig. 3, revealed that only the category with a high mitochondrial mass had a calcium level significantly higher than that of the other two categories. Scale bar = 40 μm. Experiments were performed with 3 different explants from Healthy (800 cells analyzed, $N=3$) and 4 FECD patients (710 cells analyzed, $N=4$). *$p < 0.01$ and **$p < 0.001$.

Dissipation of $\Delta \Psi_M$ in FECD CEC and its correlation with mitochondrial mass. $\Delta \Psi_M$ was measured in conjunction with mitochondrial mass in order to determine whether there was an association between
mitochondrial mass and $\Delta \Psi_m$. JC-1 staining of the $\Delta \Psi_m$ showed a high variability among FECD CECs, unlike healthy cells (Fig. 6A). Quantification of $\Delta \Psi_m$ showed a high level of membrane potential in healthy cells, indicating of a normal capacity to generate ATP. On the other hand, a clear qualitative decrease in $\Delta \Psi_m$ in FECD CEC, indicating a lower capacity to produce ATP in these cells. (C) Signal of $\Delta \Psi_m$ and mitotracker mass were plotted, each dot representing a single CEC (blue for healthy cells and red for FECD). A weak positive correlation was found between mitochondrial mass and $\Delta \Psi_m$ in healthy cells ($R^2 = 0.235; P < 0.0001$) while that correlation was negligible in FECD cells ($R^2 = 0.038; P < 0.0001$). (D) Distribution of the $\Delta \Psi_m$ values of FECD CECs according to their mitotracker mass category (low, normal and high) as depicted in Fig. 3, revealed that $\Delta \Psi_m$ was lowest in the “Low” and highest in the “High” mitochondrial level cell populations. Scale bar $= 40 \mu m$. Experiments were performed with 3 different explants from Healthy (1176 cells analyzed, N = 3) and 3 FECD patients (1200 cells analyzed, N = 3). *$p < 0.01$; **$p < 0.001$; ***$p < 0.0001$.

Discussion

In this study, we provide evidence about the chronology of a series of cellular events leading to mitochondria exhaustion and CEC death in FECD. The mitochondrial mass variability in FECD CECs (Fig. 2) strongly suggest that each individual cell is at different stage of the pathology. We used this variability in mitochondrial content to help us draw a clearer picture of the evolution of the pathology.

Our hypothesis, which is a more detailed version of the preliminary vicious cycle previously described8,27, is depicted in Fig. 1. FECD CEC loss by cell death induces an increase in the level of mitochondria in the remaining living CECs. Each remaining cell increases its mitochondrial mass in order to fill the increased ATP demand necessary to preserve proper deturgescence through the ATP-dependent ion pumping process28,29. But sustaining a high level of ATP production puts a strain on the cells and results in mitochondrial exhaustion/burnout22-24. There eventually is a depletion in mitochondria via mitophagy that remove non-functional mitochondria17.
In order to demonstrate this hypothesis, we categorized FECD CECs in 3 categories according to their mitochondrial content, i.e. Low, Normal and High (Fig. 3). Using these categories, we determined the level of different markers of mitochondrial and cellular health in an attempt to decipher the series of events occurring in FECD pathology.

We showed that FECD CECs containing a high mitochondrial mass are not apoptotic (Fig. 3), that they contain higher amounts of mitochondrial calcium (Fig. 5), higher amounts of ROS (Fig. 4) and that their ΔΨm is lower than healthy CECs (Fig. 6). These FECD cells are “resisting”, by increasing their ATP production in response to the loss of surrounding cells. The higher mitochondrial calcium could be a consequence of a high energetic need, which drives calcium uptakes, but without mitochondrial permeability transition pore opening to drive the exit20,26. This high mitochondrial mass and mitochondrial calcium lead to an increased in ROS production through oxidative phosphorylation by-products22–24. The lower ΔΨm is most likely a consequence of the sustained increase in ROS causing mitochondrial damage and affecting their function30. These FECD CECs with high mitochondrial mass are thus “resisting” but their near future is compromised by the sustained production of ROS and the increase in intra-mitochondrial calcium. Mitochondria will eventually reach the burnout state, which will lead to cell death.

We also showed that FECD CECs containing a low mitochondrial mass are apoptotic (Fig. 3), they show an increase in mitochondrial calcium (Fig. 5), a lower ROS content (Fig. 4) and the lowest ΔΨm of all categories (Fig. 6). Mitochondria have reached the burnout state and the CECs are dying. Very low ΔΨm indicates that their mitochondrial functionality is affected because of sustained ROS damaging and apoptotic signal12,30. These mitochondria are most likely eliminated by mitophagy, which explains their low amount. This is in agreement with previously published work showing that an increase in endogenous oxidative stress in endothelial cells leads to mitochondrial damage, loss in ΔΨm, activation of apoptosis and mitophagy14. The apoptotic cells might also be losing their ΔΨm because of an opening of mitochondrial permeability transition pore31. The low ROS level is the result of lower mitochondrial mass reducing the production of oxidative phosphorylation by-products22–24. While the mitochondrial calcium level is higher than Healthy cells, it is lower than the “High mitochondrial mass” category most likely because of an opening of the mitochondrial permeability transition pore30,26.

FECD CECs containing normal mitochondrial mass showed characteristics between those of cells with low and high mitochondrial mass: (i) A similar proportion of apoptotic and non-apoptotic cells was observed in this category (Fig. 3); (ii) the levels of ROS and ΔΨm were higher than for the “low mitochondrial mass” but lower than the “high mitochondrial mass” categories of CECs (Figs. 4 and 6); and (iii) they show a decrease in mitochondrial calcium compared to the “high mitochondrial” containing CEC but similar to the “low”. FECD
CECs containing a relative normal level of mitochondria are in fact transitioning from the "high mitochondrial" containing CEC to the "low" or from unaffected to the "high".

Using the observations we made on FECD endothelial cell and mitochondria functional status, we were able to describe different states of FECD CEC functional status, from fully functionality to dead. We then categorized FECD CECs using the investigated markers according to the burnout stages (Fig. 7). (1) Compensation stage: FECD CECs containing a normal mitochondrial mass, high mitochondrial calcium and high oxidative stress but that have not shown apoptotic sign. These cells are compensating for the loss of cell in FECD by incorporating mitochondrial calcium to help providing more ATP. This results in an oxidative stress, which leads to a decrease in ΔΨm. (2) Resistance stage: FECD CECs containing the highest mitochondrial mass, a further increased in mitochondrial calcium and oxidative stress. The membrane potential is also increased compared to the other phases but lower than in healthy CEC. These cells resist the sustained need for more ATP caused by the depletion in the surrounding cells in the tissue. The increase in mitochondrial mass leads to an increase in oxidative stress. At this stage, cells have reached their maximum capacity and start to cope with irreversible damage. (3) Burnout stage: These FECD CECs are showing a normal mitochondrial mass, and ΔΨm, ROS and mitochondrial calcium levels lower than CECs in the resistance stage. The loss in ΔΨm and mitochondrial calcium suggest the opening of the mitochondrial permeability transition pore, which leads to the initiation of apoptosis. (4) Death stage: Apoptotic FECD CECs with low mitochondrial mass, low oxidation stress and depleted ΔΨm. Mitochondrial damage leads to a mitochondrial mass through mitophagy and loss of ΔΨm through the opening of the mitochondrial permeability transition pore. We believe that this better understanding of the chronology of events in FECD will make it possible to find new curative or preventive treatment for this pathology.

Received: 25 December 2019; Accepted: 15 March 2020;
Published online: 02 April 2020

References
1. DeMonte, D. W. & Kim, T. Anatomy and physiology of the cornea. *Journal of catarract and refractive surgery* 37, 588–598, https://doi.org/10.1016/j.jcrs.2010.12.037 (2011).
2. Hassell, J. R. & Birk, D. E. The molecular basis of corneal transparency. *Experimental eye research* 91, 326–335, https://doi.org/10.1016/j.exer.2010.06.021 (2010).
3. Tuft, S. I. & Coster, D. J. The corneal endothelium. *Eye (London, England)* 4(P 3), 389–424, https://doi.org/10.1038/eye.1990.53 (1990).
4. Elhalis, H., Azizi, B. & Jurkunas, U. V. Fuchs endothelial corneal dystrophy. *The ocular surface* 8, 173–184 (2010).
5. Krachmer, J. H., Purcell, J. J. Jr., Young, C. W. & Bucher, K. D. Corneal endothelial dystrophy. A study of 64 families. *Archives of ophthalmology* (Chicago, Ill.: 1960) 96, 2036–2039 (1978).
6. Dobkins, K. R., Price, F. W. Jr. & Whitson, W. E. Trends in the indications for penetrating keratoplasty in the midwestern United States. *Cornea* 19, 813–816 (2000).
7. Darlington, J. K., Adrean, S. D. & Schwab, I. R. Trends of penetrating keratoplasty in the United States from 1980 to 2004. *Ophthalmology* 113, 2171–2175, https://doi.org/10.1016/j.ophtha.2006.06.034 (2006).
8. Jurkunas, U. V., Bitar, M. S., Funaki, T. & Azizi, B. Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy. *The American journal of pathology* 177, 2278–2289, https://doi.org/10.2353/ajpath.2010.100279 (2010).
9. Czarny, P. et al. Mutagenesis of mitochondrial DNA in Fuchs endothelial corneal dystrophy. *Mutation research* 760, 42–47, https://doi.org/10.1016/j.mrfmmm.2013.12.001 (2014).
10. Gendron, S. P., Theriault, M., Proulx, S., Brunette, I. & Rochette, P. J. Restoration of Mitochondrial Integrity, Telomere Length, and Sensitivity to Oxidation by In Vitro Culture of Fuchs’ Endothelial Corneal Dystrophy Cells. *Investigative ophthalmology & visual science* 57, 5926–5934, https://doi.org/10.1167/iovs.16-20551 (2016).
11. Kawanishi, S. & Oikawa, S. Mechanism of telomere shortening by oxidative stress. *Annals of the New York Academy of Sciences* 1019, 278–284, https://doi.org/10.1196/annals.1297.047 (2004).
12. Li, J. D., Grubb, D. R. & Lawen, A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. *Apoptosis: an international journal on programmed cell death* 8, 115–128 (2003).
13. Hallock, A. et al. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy. *Antioxidants & redox signaling* 24, 1072–1083, https://doi.org/10.1089/ars.2015.6532 (2016).
14. Benischke, A. S. et al. Activation of mitophagy leads to decline in Mfn2 and loss of mitochondrial mass in Fuchs endothelial corneal dystrophy. *Scientific reports* 7, 6656, https://doi.org/10.1038/s41598-017-06523-2 (2017).
15. Joyce, N. C. Proliferative capacity of the corneal endothelium. *Progress in retinal and eye research* 22, 359–389 (2003).
16. Santos, J. H., Hunakova, L., Chen, Y., Rortner, C. & Van Houten, B. Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. *The Journal of biological chemistry* 278, 1728–1734, https://doi.org/10.1074/jbc.M208752200 (2003).
17. Kim, I. & Lemasters, J. J. Mitophagy selectively degrades individual damaged mitochondria after photoradiation. *Antioxidants & redox signaling* 14, 1919–1928, https://doi.org/10.1089/ars.2013.3841 (2011).
18. Geroski, D. H., Matsuda, M., Yee, R. W. & Edelhauser, H. F. Pump function of the human corneal endothelium. Effects of age and cornea guttata. *Ophthalmology* 92, 759–763 (1985).
19. McCormack, J. G., Halestrap, A. P. & Denton, R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. *Physiological reviews* 70, 391–425, https://doi.org/10.1152/physrev.1990.70.2.391 (1990).
20. Bhosale, G., Sharpe, J. A., Sundee, S. Y. & Duchen, M. R. Calcium signaling as a mediator of cell energy demand and a trigger to cell death. *Annals of the New York Academy of Sciences* 1350, 107–116, https://doi.org/10.1111/j.1111/nyasa.12885 (2015).
21. Jornayvaz, F. R. & Shulman, G. I. Regulation of mitochondrial biogenesis. *Essays in biochemistry* 47, 69–84, https://doi.org/10.1042/ bse0470069 (2010).
22. Camello-Almaraz, C., Gomez-Pinilla, P. J., Pozo, M. J. & Camello, P. J. Mitochondrial reactive oxygen species and Ca2+ signaling. *American journal of physiology. Cell physiology* 291, C1082–1088, https://doi.org/10.1152/ajpcell.00217.2006 (2006).
23. Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W. & Sheu, S. S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. *American journal of physiology. Cell physiology* 287, C817–833, https://doi.org/10.1152/ajpcell.00139.2004 (2004).
24. Zorov, D. B., Juhassova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. *Physiological reviews* 94, 909–950, https://doi.org/10.1152/physrev.00026.2013 (2014).
25. Bonora, M. & Pinton, P. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. *Frontiers in oncology* 4, 302, https://doi.org/10.3389/onc.2014.00302 (2014).
26. Rasola, A. & Bernardi, P. Mitochondrial permeability transition in Ca(2+)‐dependent apoptosis and necrosis. Cell calcium 50, 222–233, https://doi.org/10.1016/j.cca.2011.04.007 (2011).
27. Jurkunas, U. V. Fuchs Endothelial Corneal Dystrophy Through the Prism of Oxidative Stress. Cornea 37(Suppl 1), S50–S54, https://doi.org/10.1097/ICO.0000000000001775 (2018).
28. Hansson, A. et al. A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain‐deficient mouse hearts. Proceedings of the National Academy of Sciences of the United States of America 101, 3136–3141, https://doi.org/10.1073/pnas.0308710100 (2004).
29. Mirebeau‐Pruzier, D. et al. Estrogen‐related receptor alpha and PGC‐1‐related coactivator constitute a novel complex mediating the biogenesis of functional mitochondria. The FERS journal 277, 713–725, https://doi.org/10.1111/j.1742-4658.2009.07516.x (2010).
30. Shokolenko, I., Venediktova, N., Bochkareva, A., Wilson, G. L. & Alexeyev, M. F. Oxidative stress induces degradation of mitochondrial DNA. Nucleic acids research 37, 2539–2548, https://doi.org/10.1093/nar/gkp100 (2009).
31. Briston, T. et al. Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability. Scientific reports 7, 10492, https://doi.org/10.1038/s41598-017-10673-8 (2017).

Acknowledgements

The authors are grateful to the Banque d’Yeux du Centre Universitaire d’Ophtalmologie (Québec City, Canada) and to Hema-Québec’s employees for ongoing collaboration for the procurement of healthy corneas, and to Drs Johanna Choremis (CUO-HMR), Marie‐Ève Légaré (CUO-CRCHU de Québec – U Laval), Michele Mabon (CUO-HMR) and Julia Talajic (CUO-HMR) and the CUO-HMR operating room nurses for their collaboration in obtaining the FECD descemetorhexis specimens. This work was supported by a grant from the Canadian Institutes of Health Research (CIHR) to IB, SP and PJR. PJR and SP are research scholars from the Fonds de Recherche du Québec - Santé (FRQ-S). Procurement of eyes and corneas for research from the CUO Eye bank was possible thanks to an infrastructure from the Vision Health Research Network.

Author contributions

Conceptualization: S.J.M., P.J.R. Data curation: S.J.M., P.J.R. Formal analysis: S.J.M., P.J.R. Funding acquisition: P.J.R., I.B., S.P. Investigation: S.J.M., P.J.R. Methodology: S.M. Project administration: P.J.R. Resources: P.J.R. Software: N/A Supervision: P.J.R. Validation: S.J.M., P.J.R. Visualization: S.J.M., P.J.R. Writing – original draft: S.J.M. Writing – review & editing: S.J.M., P.J.R., I.B., S.P.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-62602-x.

Correspondence and requests for materials should be addressed to P.J.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020