ON EIGENVALUES OF THE SCHRÖDINGER OPERATOR WITH A COMPLEX-VALUED POLYNOMIAL POTENTIAL

PER ALEXANDERSSON AND ANDREI GABRIELOV

ABSTRACT. In this paper, we generalize a recent result of A. Eremenko and A. Gabrielov on irreducibility of the spectral discriminant for the Schrödinger equation with quartic potentials. We consider the eigenvalue problem with a complex-valued polynomial potential of arbitrary degree d and show that the spectral determinant of this problem is connected and irreducible. In other words, every eigenvalue can be reached from any other by analytic continuation.

We also prove connectedness of the parameter spaces of the potentials that admit eigenfunctions satisfying $k > 2$ boundary conditions, except for the case d is even and $k = d/2$. In the latter case, connected components of the parameter space are distinguished by the number of zeros of the eigenfunctions.

CONTENTS

1. Introduction
1.1. Some previous results
1.2. Acknowledgements
2. Preliminaries
2.1. Cell decompositions
2.2. From cell decompositions to graphs
2.3. The standard order
2.4. Properties of graphs and their face labeling
2.5. Describing trees and junctions
3. Actions on graphs
3.1. Definitions
3.2. Properties of the actions
3.3. Contraction theorems
4. Irreducibility and connectivity of the spectral locus
5. Alternative viewpoint
6. Appendix
6.1. Examples of monodromy action
References

Date: November 29, 2010.
2000 Mathematics Subject Classification. Primary 34M40, Secondary 34M03,30D35.
Key words and phrases. Nevanlinna functions, Schroedinger operator.
1. Introduction

In this paper we study analytic continuation of eigenvalues of the Schrödinger operator with a complex-valued polynomial potential. In other words, we are interested in the analytic continuation of eigenvalues $\lambda = \lambda(\alpha)$ of the boundary value problem for the differential equation

$$-y'' + P_\alpha(z)y = \lambda y,$$

where

$$P_\alpha(z) = z^d + \alpha_{d-1}z^{d-1} + \cdots + \alpha_1z$$

where $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_{d-1})$, $d \geq 2$.

The boundary conditions are given by either (2) or (3) below. Namely, set $n = d + 2$ and divide the plane into n disjoint open sectors of the form:

$$S_j = \{z \in \mathbb{C} \setminus \{0\} : |\arg z - 2\pi j/n| < \pi/n\}, \quad j = 0, 1, 2, \ldots, n-1.$$

These sectors are called the Stokes sectors of the equation (1). It is well-known that any solution y of (1) is either increasing or decreasing in each open Stokes sector S_j, i.e. $y(z) \to 0$ or $y(z) \to \infty$ as $z \to \infty$ along each ray from the origin in S_j, see [Sib75]. In the first case, we say that y is subdominant, and in the second case, dominant in S_j. We impose the boundary conditions that for two non-adjacent sectors S_j and S_k, i.e. for $j \neq k \pm 1 \mod n$:

$$y \text{ is subdominant in } S_j \text{ and } S_k.$$

For example, $y(\infty) = y(-\infty) = 0$ on the real axis, the boundary conditions usually imposed in physics for even potentials, correspond to y being subdominant in S_0 and $S_{n/2}$. The existence of analytic continuation is a classical fact, see e.g. references in [EG09a].

The main results of this paper are:

Theorem 1. For any eigenvalue $\lambda_k(\alpha)$ of equation (1) and boundary condition (2), there is an analytic continuation in the α-plane to any other eigenvalue $\lambda_m(\alpha)$.

We also prove some stronger results in the case where y is subdominant in more than two sectors:

Theorem 2. Given $k < n/2$ non-adjacent Stokes sectors S_{j_1}, \ldots, S_{j_k}, the set of all $(\alpha, \lambda) \in \mathbb{C}^d$ for which the equation $-y'' + (P_\alpha - \lambda)y = 0$ has a solution with

$$y \text{ subdominant in } S_{j_1}, \ldots, S_{j_k}$$

is connected.

Theorem 3. For n even and $k = n/2$, the set of all $(\alpha, \lambda) \in \mathbb{C}^d$ for which $-y'' + (P_\alpha - \lambda)y = 0$ has a solution with

$$y \text{ subdominant in } S_0, S_2, \ldots, S_{n-2}$$

is disconnected. Additionally, the solutions to (1), (3) have finitely many zeros, and the set of α corresponding to given number of zeros is a connected component of the former set.

The method we use is based on the “Nevanlinna parameterization” of the spectral locus introduced in [EG09a] (see also [EG09b] and [EG10]).
1.1. **Some previous results.** In the foundational paper [BW69], C. Bender and T. Wu studied analytic continuation of λ in the complex β-plane for the problem

$$-y'' + (\beta z^4 + z^2)y = \lambda y, \quad y(-\infty) = y(\infty) = 0.$$

Based on numerical computations, they conjectured for the first time the connectivity of the sets of odd and even eigenvalues. This paper generated considerable further research in both physics and mathematics literature. See e.g. [Sim70] for early mathematically rigorous results in this direction.

In [EG09a], which is the motivation of the present paper, the even quartic potential $P_a(z) = z^4 + az^2$ and the boundary value problem

$$-y'' + (z^4 + az^2)y = \lambda a y, \quad y(\infty) = y(-\infty) = 0$$

was considered. It is known that the problem has discrete real spectrum for real a, with $\lambda_1 < \lambda_2 < \cdots \to +\infty$. There are two families of eigenvalues, those with even index and those with odd. The main result of [EG09a] is that if λ_j and λ_k are two eigenvalues in the same family, then λ_k can be obtained from λ_j by analytic continuation in the complex α-plane. Similar results have been obtained for other potentials, such as the PT-symmetric cubic, where $P_\alpha(z) = (iz^3 + i\alpha z)$, with $y(z) \to 0$, as $z \to \pm\infty$ on the real line. See for example [EG09b].

Remark 4. After this project was finished, the authors found out that a result similar to Theorem 2 was proved in a hardly ever quoted Ph.D thesis, [Hab52], page 36. On the other hand, this result is formulated in the setting of Nevanlinna theory, with no connection to properties of (1).

1.2. **Acknowledgements.** The second author was supported by NSF grant DMS-0801050. Sincere thanks to Prof. A. Eremenko for pointing out the potential relevance of [Hab52].

The first author would like to thank the Mathematics department at Purdue University, for their hospitality in Spring 2010, when this project was carried out. Also, many thanks to Boris Shapiro for being a great advisor to the first author.

2. **Preliminaries**

First, we recall some basic notions from Nevanlinna theory.

Lemma 5 (see [Sib75]). Each solution $y \neq 0$ of (1) is an entire function, and the ratio $f = y/y_1$ of any two linearly independent solutions of (1) is a meromorphic function, with the following properties:

(I) For any j, there is a solution y of (1) subdominant in the Stokes sector S_j. This solution is unique, up to multiplication by a non-zero constant.

(II) For any Stokes sector S_j, we have $f(z) \to w \in \mathbb{C}$ as $z \to \infty$ along any ray in S_j. This value w is called the asymptotic value of f in S_j.

(III) For any j, the asymptotic values of f in S_j and S_{j+1} (index taken modulo n) are different. The function f has at least 3 distinct asymptotic values.

(IV) The asymptotic value of f is zero in S_j if and only if y is subdominant in S_j. It is convenient to call such sector subdominant as well. Note that the boundary conditions in (2) imply that the two sectors S_j and S_k are subdominant for f when y is an eigenfunction of (1), (2).
(V) f does not have critical points, hence $f : \mathbb{C} \to \mathbb{C}$ is unramified outside the asymptotic values.

(VI) The Schwartzian derivative S_f of f given by

$$S_f = \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'} \right)^2$$

equals $-2(P_\alpha - \lambda)$. Therefore one can recover P_α and λ from f.

From now on, f always denotes the ratio of two linearly independent solutions of (1), with y being an eigenfunction of the boundary value problem (1), with conditions (2), (3) or (4).

2.1. Cell decompositions. Set $n = d + 2$, $d = \deg P$ where P is our polynomial potential and assume that all non-zero asymptotic values of f are distinct and finite. Let w_j be the asymptotic values of f, ordered arbitrarily with the only restriction that $w_j = 0$ if and only if S_j is subdominant. For example, one can denote by w_j the asymptotic value in the Stokes sector S_j.

We will later need different orders of the non-zero asymptotic values, see section 2.3.

Consider the cell decomposition Ψ_0 of $\overline{\mathbb{C}} w$ shown in Fig. 1a. It consists of closed directed loops γ_j starting and ending at ∞, where the index is considered mod n, and γ_j is defined only if $w_j \neq 0$. The loops γ_j only intersect at ∞ and have no self-intersection other than ∞. Each loop γ_j contains a single non-zero asymptotic value w_j of f. For example, the boundary condition $y \to 0$ as $z \to \pm \infty$ for $z \in \mathbb{R}$ for even n implies that $w_0 = w_{n/2} = 0$, so there are no loops γ_0 and $\gamma_{n/2}$. We have a natural cyclic order of the asymptotic values, namely the order in which a small circle around ∞ counter-clockwise intersects the associated loops γ_j, see Fig. 1a.

We use the same index for the asymptotic values and the loops, which motivates the following notation:

$$j_+ = j + k$$

where $k \in \{1, 2\}$ is the smallest integer such that $w_{j+k} \neq 0$.

Thus, γ_{j+} is the loop around the next to w_j (in the cyclic order mod n) non-zero asymptotic value. Similarly, γ_{j-} is the loop around the previous non-zero asymptotic value.

2.2. From cell decompositions to graphs. We may simplify our work with cell decompositions with the help of the following:

Lemma 6 (See Section 3 [EG09a]). Given Ψ_0 as in Fig. 1a, one has the following properties:

(a) The preimage $\Phi_0 = f^{-1}(\Psi_0)$ gives a cell decomposition of the plane \mathbb{C}_z. Its vertices are the poles of f, and the edges are preimages of the loops γ_j. These edges are labeled by j, and are called j-edges.

(b) The edges of Φ_0 are directed, their orientation is induced from the orientation of the loops γ_j. Removing all loops of Φ_0, we obtain an infinite, directed planar graph Γ, without loops.

(c) Vertices of Γ are poles of f, each bounded connected component of $\mathbb{C} \setminus \Gamma$ contains one simple zero of f, and each zero of f belongs to one such bounded connected component.
ON EIGENVALUES OF THE SCHRODINGER OPERATOR

\[w_n - w_j - w_j^* + \Gamma_n - \Gamma_j^* \]

(a) \[\Psi_0 \]

(b) \[A_j(\Psi_0) \]

\[w_0 = 0, w_1 = 0, w_2 = 0, w_3 = 0, w_4 = 0, w_5 = 0, \Gamma_0 = 0, \Gamma_1 = 0, \Gamma_2 = 0, \Gamma_3 = 0, \Gamma_4 = 0, \Gamma_5 = 0, T^* \Gamma \]

(d) There are at most two edges of \(\Gamma \) connecting any two of its vertices. Replacing each such pair of edges with a single undirected edge and making all other edges undirected, we obtain an undirected graph \(T_\Gamma \).

(e) \(T_\Gamma \) has no loops or multiple edges, and the transformation from \(\Phi_0 \) to \(T_\Gamma \) can be uniquely reversed.

An example of the transformation from \(\Gamma \) to \(T_\Gamma \) is presented in Fig. 2.

A junction is a vertex of \(\Gamma \) (and of \(T_\Gamma \)) at which the degree of \(T_\Gamma \) is at least 3. From now on, \(\Gamma \) refers to both the directed graph without loops and the associated cell decomposition \(\Phi_0 \).

2.3. The standard order. For a potential of degree \(d \), the graph \(\Gamma \) has \(d + 2 = n \) infinite branches and \(n \) unbounded faces corresponding to the Stokes sectors. We defined earlier the ordering \(w_0, w_1, \ldots, w_{n-1} \) of the asymptotic values of \(f \).

If each \(w_j \) is the asymptotic value in the sector \(S_j \), we say that the asymptotic values have the standard order and the corresponding cell decomposition \(\Gamma \) is a standard graph.
Lemma 7 (See Prop 6. [EG09a]). If a cell decomposition Γ is a standard graph, the corresponding undirected graph T_Γ is a tree.

This property is essential in the present paper, and we classify cell decompositions of this type by describing the associated trees.

Below we define the action of the braid group that permute non-zero asymptotic values of Ψ_0. This induces the corresponding action on graphs. Each unbounded face of Γ (and T_Γ) will be labeled by the asymptotic value in the corresponding Stokes sector. For example, labeling an unbounded face corresponding to S_k with w_j or just with the index j, we indicate that w_j is the asymptotic value in S_k.

From the definition of the loops γ_j, a face corresponding to a dominant sector has the same label as any edge bounding that face. The label in a face corresponding to a subdominant sector S_k is always k, since the actions defined below only permute non-zero asymptotic values. We say that an unbounded face of Γ is (sub)dominant if the corresponding Stokes sector is (sub)dominant.

For example, in Fig. 2, the Stokes sectors S_0 and S_3 are subdominant since the corresponding faces have label 0. We do not have the standard order for Γ, since w_2 is the asymptotic value for S_4, and w_4 is the asymptotic value for S_2. The associated graph T_Γ is not a tree.

2.4. Properties of graphs and their face labeling.

Lemma 8 (see [EG09a]). The following holds:

(I) Two bounded faces of Γ cannot have a common edge, since a j-edge is always at the boundary of an unbounded face labeled j.

(II) The edges of a bounded face of a graph Γ are directed clockwise, and their labels increase in that order. Therefore, a bounded face of T_Γ can only appear if the order of w_j is non-standard.

(As an example, the bounded face in Fig. 2 has the labels 1, 2, 4 (clockwise) of its boundary edges.)

(III) Each label appears at most once in the boundary of any bounded face of Γ.

(IV) Unbounded faces of Γ adjacent to its junction u always have the labels cyclically increasing counterclockwise around u.

(V) To each graph T_Γ, we associate a tree by inserting a new vertex inside each of its bounded faces, connecting it to the vertices of the bounded face and removing the boundary edges of the original face. Thus we may associate a tree T^*_Γ with any cell decomposition, not necessarily with standard order, as in Fig. 2(c). The order of w_j above together with this tree uniquely determines Γ. This is done using the two properties above.

(VI) The boundary of a dominant face labeled j consists of infinitely many directed j-edges, oriented counterclockwise around the face.

(VII) If $w_j = 0$ there are no j-edges.

(VIII) Each vertex of Γ has even degree, since each vertex in $\Phi_0 = f^{-1}(\Psi_0)$ has even degree, and removing loops to obtain Γ preserves this property.

Following the direction of the j-edges, the first vertex that is connected to an edge labeled j_+ is the vertex where the j-edges and the j_+-edges meet. The last such vertex is where they separate. These vertices, if they exist, must be junctions.
Definition 9. Let Γ be a standard graph, and let $j \in \Gamma$ be a junction where the j-edges and j_+-edges separate. Such junction is called a j-junction.

There can be at most one j-junction in Γ, the existence of two or more such junctions would violate property (III) of the face labeling. However, the same junction can be a j-junction for different values of j.

There are three different types of j-junctions, see Fig. 3.

- **(a) I-structure.**

- **(b) V-structure.**

- **(c) Y-structure.**

FIGURE 3. Different types of j-junctions.

Case (a) only appears when $w_{j+1} \neq 0$. Cases (b) and (c) can only appear when $w_{j+1} = 0$. In (c), the j-edges and $j_+\text{-edges}$ meet and separate at different junctions, while in (b), this happens at the same junction.

Definition 10. Let Γ be a standard graph with a j-junction u. A structure at the j-junction is the subgraph Ξ of Γ consisting of the following elements:

- The edges labeled j that appear before u following the j-edges.
- The edges labeled j_+ that appear after u following the j_+-edges.
- All vertices the above edges are connected to.

If u is as in Fig. 3a, Ξ is called an I-structure at the j-junction. If u is as in Fig. 3b, Ξ is called a V-structure at the j-junction. If u is as in Fig. 3c, Ξ is called a Y-structure at the j-junction.

Since there can be at most one j-junction, there can be at most one structure at the j-junction.

A graph Γ shown in Fig. 4 has one (dotted) I-structure at the 1-junction v, one (dotted) I-structure at the 4-junction u, one (dashed) V-structure at the 2-junction v and one (dotdashed) Y-structure at the 5-junction u.

Note that the Y-structure is the only kind of structure that contains an additional junction. We refer to such junctions as Y-junctions. For example, the junction marked y in Fig. 4 is a Y-junction.
2.5. Describing trees and junctions. Let Γ be a graph with n branches, and Λ be the associated tree with all non-junction vertices removed. The dual graph $\hat{\Lambda}$ of Λ, is an n-gon where some non-intersecting chords are present. The junctions of Λ is in one-to-one correspondence with faces of $\hat{\Lambda}$ and vice versa. Two vertices are connected with an edge in $\hat{\Lambda}$ if and only if the corresponding faces are adjacent in Λ.

The extra condition that subdominant faces do not share an edge, implies that there are no chords connecting vertices in Λ corresponding to subdominant faces. For trees without this condition, we have the following lemma:

Lemma 11. The number of $n+1$-gons with non-intersecting chords is equal to the number of bracketings of a string with n letters, such that each bracket pair contains at least two symbols.

Proof. See Theorem 1 in [SS00].

The sequence $s(n)$ of bracketings of a string with $n+1$ symbols are called the small Schröder numbers, see [SS00]. The first entries are $s(n)_{n \geq 0} = 1, 1, 3, 11, 45, 197, \ldots$.

The condition that chords should not connect vertices corresponding to subdominant faces, translates into a condition on the first and last symbol in some bracket pair.

3. Actions on graphs

3.1. Definitions. Let us now return to the cell decomposition Ψ_0 in Fig. 1a. Let w_j be a non-zero asymptotic value of f. Choose non-intersecting paths $\beta_j(t)$ and $\beta_{j+}(t)$ in C_w with $\beta_j(0) = w_j$, $\beta_j(1) = w_{j+}$ and $\beta_{j+}(0) = w_{j+}$, $\beta_{j+}(1) = w_j$ so that they do not intersect γ_k for $k \neq j, j+$ and such that the union of these paths is a simple contractible loop oriented counterclockwise. These paths define a continuous deformation of the loops γ_j and γ_{j+} such that the two deformed loops contain $\beta_j(t)$ and $\beta_{j+}(t)$, respectively, and do not intersect any other loops during the deformation (except at ∞).
We denote the action on \(\Psi_0 \) given by \(\beta_j(t) \) and \(\beta_{j_+}(t) \) by \(A_j \). Basic properties of the fundamental group of a punctured plane, allows one to express the new loops in terms of the old ones:

\[
A_j(\gamma_k) = \begin{cases}
 \gamma_j \gamma_{j_+} \gamma_j^{-1} & \text{if } k = j \\
 \gamma_j & \text{if } k = j_+ \\
 \gamma_k & \text{otherwise}
\end{cases}, \quad A_j^{-1}(\gamma_k) = \begin{cases}
 \gamma_{j_+} & \text{if } k = j \\
 \gamma_j \gamma_{j_+} \gamma_j^{-1} & \text{if } k = j_+ \\
 \gamma_k & \text{otherwise}
\end{cases}
\]

Let \(f_t \) be a deformation of \(f \). Since a continuous deformation does not change the graph, the deformed graph corresponding to \(f_t^{-1}(A_j(\Psi_0)) \) is the same as \(\Gamma \). Let \(\Gamma' \) be this deformed graph with labels \(j \) and \(j_+ \) exchanged. Then the \(j \)-edges of \(\Gamma' \) are \(f_t^{-1}(A_j(\gamma_j)) = f_t^{-1}(\gamma_j) \), hence they are the same as the \(j \)-edges of \(A_j(\Gamma) \). The \(j_+ \)-edges of \(\Gamma' \) are \(f_t^{-1}(A_j(\gamma_{j_+})) \). Since \(\gamma_{j_+} = \gamma_{j_+}^{-1} A_j(\gamma_j) \gamma_j \), (reading left to right) this means that a \(j_+ \)-edge of \(A_j(\Gamma) \) is obtained by moving backwards along a \(j \)-edge of \(\Gamma' \), then along a \(j_+ \)-edge of \(\Gamma' \), followed by a \(j \)-edge of \(\Gamma' \).

These actions, together with their inverses, generate the Hurwitz (or sphere) braid group \(\mathcal{H}_m \), where \(m \) is the number of non-zero asymptotic values. For a definition of this group, see \[LZ04\]. The action \(A_j \) on the loops in \(\Psi_0 \) is presented in Fig. 4.

The property \(\text{V} \) of the eigenfunctions implies that each \(A_j \) induces a monodromy transformation of the cell decomposition \(\Phi_0 \), and of the associated directed graph \(\Gamma \).

Reading the action right to left gives the new edges in terms of the old ones, as follows:

Applying \(A_j \) to \(\Gamma \) can be realized by first interchanging the labels \(j \) and \(j_+ \). This gives an intermediate graph \(\Gamma' \). A \(j \)-edge of \(A_j(\Gamma) \) starting at the vertex \(v \) ends at a vertex obtained by moving from \(v \) following first the \(j \)-edge of \(\Gamma' \) backwards, then the \(j_+ \)-edge of \(\Gamma' \), and finally the \(j \)-edge of \(\Gamma' \). If any of these edges does not exist, we just do not move. If we end up at the same vertex \(v \), there is no \(j \)-edge of \(A_j(\Gamma) \) starting at \(v \). All \(k \)-edges of \(A_j(\Gamma) \) for \(k \neq j \) are the same as \(k \)-edges of \(\Gamma' \).

An example of the action \(A_1 \) is presented in Fig. 5. Note that \(A_2 \) preserves the standard cyclic order.

3.2. Properties of the actions.

Lemma 12. Let \(\Gamma \) be a standard graph with no \(j \)-junction. Then \(A_j^2(\Gamma) = \Gamma \).

Proof. Since we assume \(d > 2 \), lemma \[8\] implies that the boundaries of the faces of \(\Gamma \) labeled \(j \) and \(j_+ \) do not have a common vertex. From the definition of the actions in subsection \[8\] the graphs \(\Gamma \) and \(A_j(\Gamma) \) are the same, except that the labels \(j \) and \(j_+ \) are permuted. Applying the same argument again gives \(A_j^2(\Gamma) = \Gamma \). \(\square \)

Theorem 13. Let \(\Gamma \) be a standard graph with a \(j \)-junction \(u \). Then \(A_j^2(\Gamma) \neq \Gamma \), and the structure at the \(j \)-junction is moved one step in the direction of the \(j \)-edges under \(A_j^2 \). The inverse of \(A_j^2 \) moves the structure at the \(j \)-junction one step backwards along the \(j_+ \)-edges.
Proof. There are three cases to consider, namely I-structures, V-structures and Y-structures resp.

Case 1: The structure at the j-junction is an I-structure and Γ is as in Fig. 6a. The action A_j first permutes the asymptotic values w_j and w_j+, then transforms the new j- and $j+$-edges, as defined in subsection 3. The resulting graph $A_j(\Gamma)$ is shown in Fig. 6b. Applying A_j to $A_j(\Gamma)$ yields the graph shown in Fig. 6c.

Case 2: The structure at the j-junction is a V-structure and Γ is as in Fig. 7a. The graphs $A_j(\Gamma)$ and $A_j(\Gamma)$ are as in Fig. 7b and in Fig. 7c respectively.

Case 3: The structure at the j-junction is a Y-structure and Γ is as in Fig. 8a. The graphs $A_j(\Gamma)$ and $A_j(\Gamma)$ are as in Fig. 8b and in Fig. 8c respectively.

The statement for A_j^{-2} is proved similarly.

Examples of the actions are given in Appendix, Figs. 16, 17 and 18.

3.3. Contraction theorems.

Definition 14. Let Γ be a standard graph and let u_0 be a junction of Γ. The u_0-metric of Γ, denoted $|\Gamma|_{u_0}$ is defined as

$$|\Gamma|_{u_0} = \sum_v (\deg(v) - 2) |v - u_0|$$

where the sum is taken over all vertices v of $T\Gamma$. Here $\deg(v)$ is the total degree of the vertex v in $T\Gamma$ and $|v - u_0|$ is the length of the shortest path from v to u_0 in $T\Gamma$. (Note that the sum in the right hand side is finite, since only junctions make non-zero contributions.)

Definition 15. A standard graph Γ is in ivy form if Γ is the union of the structures connected to a junction u. Such junction is called a root junction.

Lemma 16. The graph Γ is in ivy form if and only if all but one of its junctions are Y-junctions.

Proof. This follows from the definitions of the structures. □
Theorem 17. Let Γ be a standard graph. Then there is a sequence of actions $A^* = A_{j_1}^{\pm 2}, A_{j_2}^{\pm 2}, \ldots$, such that $A^*(\Gamma)$ is in ivy form.

Proof. Assume that Γ is not in ivy form. Let U be the set of junctions in Γ that are not Y-junctions. Since Γ is not in ivy form, $|U| \geq 2$. Let $u_0 \neq u_1$ be two junctions in U such that $|u_0 - u_1|$ is maximal. Let p be the path from u_0 to u_1 in T_Γ. It is unique since T_Γ is a tree. Let v be the vertex immediately preceding u_1 on the path p. The edge from v to u_1 in T_Γ is adjacent to at least one dominant face with label j such that $w_j \neq 0$. Therefore, there exists a j-edge between v and u_1 in Γ. Suppose first that this j-edge is directed from u_1 to v. Let us show that in this case u_1 must be a j-junction, i.e., the dominant face labeled j_+ is adjacent to u_1.

Since u_1 is not a Y-junction, there is a dominant face adjacent to u_1 with a label $k \neq j, j_+$. Hence no vertices of p, except possibly u_1 may be adjacent to j_+-edges. If u_1 is not a j-junction, there are no j_+-edges adjacent to u_1.
This implies that any vertex of Γ adjacent to a j_+-edge is further away from u_0 than u_1.

Let u_2 be the closest to u_1 vertex of Γ adjacent to a j_+-edge. Then u_2 should be a junction of T_Γ, since there are two j_+-edges adjacent to u_2 in Γ and at least one more vertex (on the path from u_1 to u_2) which is connected to u_2 by edges with labels other than j_+. Since u_2 is further away from u_0 than u_1 and the path p is maximal, u_2 must be a Y-junction. If the j-edges and j_+-edges would meet at u_2, u_1 would be a j-junction. Otherwise, a subdominant face labeled $j + 1$ would be adjacent to both u_1 and u_2, while a subdominant face adjacent to a Y-junction cannot be adjacent to any other junctions.

Hence u_1 must be a j-junction. By Theorem 13, the action A_j^2 moves the structure at the j-junction u_1 one step closer to u_0 along the path p, decreasing $|\Gamma|_{u_0}$ at least by 1.

The case when the j-edge is directed from v to u_1 is treated similarly. In that case, u_1 must be a j_--junction, and the action A_j^{-2} moves the structure at the j_--junction u_1 one step closer to u_0 along the path p.

\[w_{j+1} = 0 \]

(a) Graph Γ with a V-structure

\[w_{j+1} = 0 \]

(b) Graph $A_j(\Gamma)$

\[w_{j+1} = 0 \]

(c) Graph $A_j^2(\Gamma)$

Figure 7. Case 2, moving a V-structure.
We have proved that if $|U| > 1$ then $|\Gamma|_{u_0}$ can be reduced. Since it is a non-negative integer, after finitely many steps we must reach a stage where $|U| = 1$, hence the graph is in ivy form.

Remark 18. The outcome of the algorithm is in general non-unique, and might yield different final values of $|A^*(\Gamma)|_{u_0}$.

Lemma 19. Let Γ be a standard graph with a junction u_0 such that u_0 is both a j_--junction and a j-junction. Assume that the corresponding structures are of
types Y and V, in any order. Then there is a sequence of actions from the set \{A_j^2, A_{j-}^2, A_j^{-2}, A_{j-}^{-2}\} that interchanges the Y-structure and the V-structure.

Proof. We may assume that the Y- and V-structures are attached to \(u_0\) counterclockwise around \(u_0\), as in Fig. 9, otherwise we reverse the actions. By Theorem 13, the action \(A_j^{2k}\) moves the V-structure \(k\) steps in the direction of the \(j\)-edges. Choose \(k\) so that the V-structure is moved all the way to \(u_1\), as in Fig. 10. Then \(u_1\) becomes both a \(j_\text{-}\)-junction and \(j\)-junction, with two V-structures attached. Proceed by applying \(A_{j-}^{2k}\) to move the V-structure at the \(j_\text{-}\)-junction \(u_1\) up to \(u_0\), as in Fig. 11. □

Lemma 20. Let \(\Gamma\) be a standard graph with a junction \(u_0\), such that \(u_0\) is both a \(j_\text{-}\)-junction and a \(j\)-junction, with the corresponding structures of type I and Y,
in any order. Then there is a sequence of actions from the set \{A^2_j, A^{-2}_j, A^2_{j-}, A^{-2}_{j-}\} converting the Y-structures to a V-structure.

Proof. We may assume that the I- and Y-structures are attached to \(u_0\) counterclockwise around \(u_0\), as in Fig. 12, otherwise, we just reverse the actions. By Theorem 13, we can apply \(A^{-2}_{j-}\) several times to move the I-structure down to \(u_1\). (For example, in Fig. 12 we need to do this twice. This gives the configuration shown in Fig. 13.) Now \(u_1\) becomes a \(j-\)-junction and a \(j\)-structure, with the I- and V-structures attached. Applying \(A^{2k}_j\), we can move the V-structure at \(u_1\) up to \(u_0\). (In our example, this final configuration is presented in Fig. 14.) Thus the Y-structure has been transformed to a V-structure. \(\square\)

Theorem 21. Let \(\Gamma\) be a standard graph with at least two adjacent dominant faces. Then there exists a sequence of actions \(A^* = A^{\pm 2}_{j_1} A^{\pm 2}_{j_2} \ldots\) such that \(A^*(\Gamma)\) have only one junction.

Proof. By Theorem 17 we may assume that \(\Gamma\) is a graph in ivy form with the root junction \(u_0\). The existence of two adjacent dominant faces implies the existence of an I-structure. If there are only I-structures and V-structures, then \(u_0\) is the only junction of \(\Gamma\). Assume that there is at least
one Y-structure. By Lemma 19 we may move a Y-structure so that it is counterclockwise next to an I-structure. By Lemma 20 the Y-structure can be transformed to a V-structure, and the Y-junction removed. This can be repeated, eventually removing all junctions of Γ except u_0. □

Lemma 22. Let Γ be a standard graph with a junction u_0, such that u_0 is both a $j-$junction and a $j-$junction, with two adjacent Y-structures attached. Then there is a sequence of actions from the set \{ $A_{j_1}^2$, $A_{j_2}^2$, $A_{j_1}^{-2}$, $A_{j_2}^{-2}$ \} converting one of the Y-structures to a V-structure.

Proof. This can be proved by the arguments similar to those in the proof of Theorem 21. □

Theorem 23. Let Γ be a standard graph such that no two dominant faces are adjacent. Then there exists a sequence of actions $A^* = A_{j_1}^{2,2}, A_{j_2}^{2,2}, \ldots$, such that $A^*(\Gamma)$ is in ivy form, with at most one Y-structure.

Proof. One may assume by Theorem 17 that Γ is in ivy form, with the root junction u_0. Since no two dominant faces are adjacent, there are only V- and Y-structures attached to u_0. If there are at least two Y-structures, we may assume, by Lemma 19 that two Y-structures are adjacent. By Lemma 22 two adjacent Y-structures can be converted to a V-structure and a Y-structure. This can be repeated until at most one Y-structure remains in Γ. □
Lemma 24. Let \(\Gamma \) be a standard graph such that no two dominant faces are adjacent. Then the number of bounded faces of \(\Gamma \) is finite and does not change after any action \(A_j^0 \).

Proof. The bounded faces of \(\Gamma \) correspond to the edges of \(T_\Gamma \) separating two dominant faces. Since no two dominant faces are adjacent, any two dominant faces have a finite common boundary in \(T_\Gamma \). Hence the number of bounded faces of \(\Gamma \) is finite. Lemma 22 and Theorem 13 imply that this number does not change after any action \(A_j^0 \). □

4. IRREDUCIBILITY AND CONNECTIVITY OF THE SPECTRAL LOCUS

In this section, we prove the main results stated in the introduction. We start with the following statements.

Lemma 25. Let \(\Sigma \) be the space of all \((\alpha, \lambda) \in \mathbb{C}^d\) such that equation (1) admits a solution subdominant in non-adjacent Stokes sectors \(S_{j_1}, \ldots, S_{j_k}, \) \(k \leq (d+2)/2 \). Then \(\Sigma \) is a smooth complex analytic submanifold of \(\mathbb{C}^d \) of the codimension \(k - 1 \).

Proof. Let \(f \) be a ratio of two linearly independent solutions of (1), and let \(w = (w_0, \ldots, w_{d+1}) \) be the set of asymptotic values of \(f \) in the Stokes sectors \(S_0, \ldots, S_{d+1} \). Then \(w \) belongs to the subset \(Z \) of \(\mathbb{C}^{d+2} \) where the values \(w_j \) in adjacent Stokes sectors are distinct and there are at least three distinct values among \(w_j \). The group \(G \) of fractional-linear transformations of \(\mathbb{C} \) acts on \(Z \) diagonally, and the quotient \(Z/G \) is a \((d - 1)\)-dimensional complex manifold.

Theorem 7.2, [Bak77] implies that the mapping \(W : \mathbb{C}^d \to Z/G \) assigning to \((\alpha, \lambda)\) the equivalence class of \(w \) is submersive. More precisely, \(W \) is locally invertible on the subset \(\{\alpha_{d-1} = 0\} \) of \(\mathbb{C}^d \) and constant on the orbits of the group \(C \) acting on \(\mathbb{C}^d \) by translations of the independent variable \(z \). In particular, the preimage \(W^{-1}(Y) \) of any smooth submanifold \(Y \subset Z/G \) is a smooth submanifold of \(\mathbb{C}^d \) of the same codimension as \(Y \).

The set \(\Sigma \) is the preimage of the set \(Y \subset Z/G \) defined by the \(k - 1 \) conditions \(w_{j_1} = \cdots = w_{j_k} \). Hence \(\Sigma \) is a smooth manifold of codimension \(k - 1 \) in \(\mathbb{C}^d \). □

Proposition 26. Let \(\Sigma \) be the space of all \((\alpha, \lambda) \in \mathbb{C}^d\) such that equation (1) admits a solution subdominant in the non-adjacent Stokes sectors \(S_{j_1}, \ldots, S_{j_k} \). If at least two remaining Stokes sectors are adjacent, then \(\Sigma \) is an irreducible complex analytic manifold.

Proof. Let \(\Sigma_0 \) be the intersection of \(\Sigma \) with the subspace \(\mathbb{C}^{d-1} = \{\alpha_{d-1} = 0\} \subset \mathbb{C}^d \). Then \(\Sigma \) has the structure of a product of \(\Sigma_0 \) and \(\mathbb{C} \) induced by translation of the independent variable \(z \). In particular, \(\Sigma \) is irreducible if and only if \(\Sigma_0 \) is irreducible.

Let us choose a point \(w = (w_0, \ldots, w_{d+1}) \) so that \(w_{j_1} = \cdots = w_{j_k} = 0 \), with all other values \(w_j \) distinct, non-zero and finite. Let \(\Psi_0 \) be a cell decomposition of \(\mathbb{C} \setminus \{0\} \) defined by the loops \(\gamma_j \) starting and ending at \(\infty \) and containing non-zero values \(w_{j_j} \), as in Section 2.1.

Nevanlinna theory (see [Nev32, Nev33]), implies that, for each standard graph \(\Gamma \) with the properties listed in Lemma 8 there exists \((\alpha, \lambda) \in \mathbb{C}^d \)
and a meromorphic function $f(z)$ such that f is the ratio of two linearly independent solutions of (1) with the asymptotic values w_j in the Stokes sectors S_j, and Γ is the graph corresponding to the cell decomposition $\Phi = f^{-1}(\Psi_0)$. This function, and the corresponding point (α, λ) is defined uniquely up to translation of the variable z. We can choose f uniquely if we require that $\alpha_{d-1} = 0$ in (α, λ). Conditions on the asymptotic values w_j imply then that $(\alpha, \lambda) \in \Sigma'$. Let f_Γ be this uniquely selected function, and $(\alpha_\Gamma, \lambda_\Gamma)$ the corresponding point of Σ'.

Let $W : \Sigma' \to Y \subset Z/G$ be as in the proof of Lemma 25. Then Σ' is an unramified covering of Y. Its fiber over the equivalence class of w consists of the points $(\alpha_\Gamma, \lambda_\Gamma)$ for all standard graphs Γ. Each action A_Γ^j corresponds to a closed loop in Y starting and ending at w. Since for a given list of subdominant sectors a standard graph with one vertex is unique, Theorem 21 implies that the monodromy action is transitive. Hence Σ' is irreducible as a covering with a transitive monodromy group (see, e.g., [Kho04, §5]).

This immediately implies Theorem 2 and we may also state the following corollary equivalent to Theorem 1.

Corollary 27. For every potential P_α of even degree, with deg $P_\alpha \geq 4$ and with the boundary conditions $y \to 0$ for $z \to \pm \infty$, $z \in \mathbb{R}$, there is an analytic continuation from any eigenvalue λ_m to any other eigenvalue λ_n in the ω-plane.

Proposition 28. Let Σ be the space of all $(\alpha, \lambda) \in \mathcal{C}^d$, for even d, such that equation (1) admits a solution subdominant in the $(d + 2)/2$ Stokes sectors S_0, S_2, \ldots, S_d. Then irreducible components Σ_k, $k = 0, 1, \ldots$ of Σ, which are also its connected components, are in one-to-one correspondence with the sets of standard graphs with k bounded faces. The corresponding solution of (1) has k zeros and can be represented as $Q(z)e^{\phi(z)}$ where Q is a polynomial of degree k and ϕ a polynomial of degree $(d + 2)/2$.

Proof. Let us choose w and Ψ_0 as in the proof of Proposition 26. Repeating the arguments in the proof of Proposition 26, we obtain an unramified covering $W : \Sigma' \to Y$ such that its fiber over w consists of the points $(\alpha_\Gamma, \lambda_\Gamma)$ for all standard graphs Γ with the properties listed in Lemma 8. Since we have no adjacent dominant sectors, Theorem 23 implies that any standard graph Γ can be transformed by the monodromy action to a graph Γ_0 in ivy form with at most one Y-structure attached at its j-junction, where j is any index such that S_j is a dominant sector. Lemma 24 implies that Γ and Γ_0 have the same number k of bounded faces. If $k = 0$, the graph Γ_0 is unique. If $k > 0$, the graph Γ_0 is completely determined by k and j. Hence for each $k = 0, 1, \ldots$ there is a unique orbit of the monodromy group action on the fiber of W over w consisting of all standard graphs Γ with k bounded faces. This implies that Σ' (and Σ) has one irreducible component for each k.

Since Σ is smooth by Lemma 25 its irreducible components are also its connected components.

Finally, let $f_\Gamma = y/y_1$ where y is a solution of (1) subdominant in the Stokes sectors S_0, S_2, \ldots, S_d. Then the zeros of f and y are the same, each such zero belongs to a bounded domain of Γ, and each bounded domain of Γ contains a single zero. Hence y has exactly k simple zeros. Let Q
be a polynomial of degree k with the same zeros as y. Then y/Q is an entire function of finite order without zeros, hence $y/Q = e^{\phi}$ where ϕ is a polynomial. Since y/Q is subdominant in $(d + 2)/2$ sectors, $\deg \phi = (d + 2)/2$.

The above proposition immediately implies Theorem 3.

5. ALTERNATIVE VIEWPOINT

In this section, we provide an example of the correspondence between the actions on cell decompositions with some subdominant sectors and actions on cell decompositions with no subdominant sectors. This correspondence can be used to simplify calculations with cell decompositions. We will illustrate our results on a cell decomposition with 6 sectors, the general case follows immediately.

Let C_6 be the set of cell decompositions with 6 sectors, none of them subdominant. Let $C_6^{\text{03}} \subset C_6$ be the set of cell decompositions such that for any $\Gamma \in C_6^{\text{03}}$, the sectors S_0 and S_3 do not share a common edge in the associated undirected graph T_Γ. Define D_6^{03} to be the set of cell decompositions with 6 sectors where S_0 and S_3 are subdominant.

Lemma 29. There is a bijection between C_6^{03} and D_6^{03}.

Proof. Let $\Gamma \in C_6^{\text{03}}$ be a cell decomposition, and let T_Γ be the associated undirected graph, see section 2.2. Then consider T_Γ as the (unique) undirected graph associated with some cell decomposition $\Delta \in D_6^{\text{03}}$. This is possible since the condition that the sectors 0 and 3 do not share a common edge in Γ, ensures that the subdominant sectors in Δ do not share a common edge. Let us denote this map π. Conversely, every cell decomposition $\Delta \in D_6^{\text{03}}$ is associated with a cell decomposition $\Gamma \in C_6^{\text{03}}$ by the inverse procedure π^{-1}. □

We have previously established that \mathcal{H}_6 acts on C_6 and that \mathcal{H}_4 acts on D_6^{03}. Let B_0, B_1, \ldots, B_5 be the actions generating \mathcal{H}_6, as described in subsection 3, and let A_1, A_2, A_4, A_5 generate \mathcal{H}_4. Let $\mathcal{H}_6^{\text{03}} \subset \mathcal{H}_6$ be the subgroup generated by $B_1, B_2, B_3B_2^{-1}, B_4, B_5B_0B_5^{-1}$, and their inverses. It is easy to see that $\mathcal{H}_6^{\text{03}}$ acts on elements in C_6^{03} and preserves this set.

Lemma 30. The diagrams in Fig. 15 commute.

Proof. Let (a, b, c, d, e, f) be the 6 loops of a cell decomposition Ψ_0 as in Fig. 1, looping around the asymptotic values (w_0, \ldots, w_5). Let Ψ'_0 be the cell decomposition with the four loops (b, c, e, f), such that if $\Gamma \in C_6^{\text{03}}$ is the preimage of Ψ_0, then $\pi(\Gamma)$ is the preimage of Ψ'_0. That is, the preimages of the loops a and d in Ψ_0 are removed under π.

B_j acts on Ψ_0 and A_j acts on Ψ'_0. (See subsection 3 for the definition.) We have

$$A_1(b, c, e, f) = (bcb^{-1}, e, f), \quad A_4(b, c, d, e) = (b, c, efe^{-1}, e).$$

and

$$B_1(a, b, c, d, e, f) = (a, bcb^{-1}, d, e, f),$$

$$B_4(a, b, c, d, e, f) = (a, b, c, efe^{-1}, e, f).$$
Equation (5) and (6) shows that the left diagrams commute, since applying \(\pi \) to the result from (6) yields (5). We also have that

\[
A_2(b, c, e, f) = (b, cec^{-1}, c, f), \quad A_5(b, c, e, f) = (f, c, e, fbf^{-1}).
\]

We now compute \(B_{-1}B_2B_3(a, b, c, d, e, f) \). Observe that we must apply these actions left to right:

\[
B_{-1}B_2B_3(a, b, c, d, e, f) = B_2B_3(a, b, c, e, e^{-1}de, f) = B_3(a, b, cec^{-1}, c, e^{-1}de, f) = (a, b, cec^{-1}, c(e^{-1}de)c^{-1}, c, f)
\]

A similar calculation gives

\[
B_{-1}B_0B_2(a, b, c, d, e, f) = (f(b^{-1}ab)f^{-1}, f, c, d, e, f, b, f^{-1}),
\]

and applying \(\pi \) to the results (8) and (9) give (7).

\[\blacksquare \]

Remark 31. Note that \(B_{-1}B_{j-1}B_{j}(\Gamma) = B_{j-1}B_{j}B_{-1}(\Gamma) \) for all \(\Gamma \in C_6 \), which follows from basic properties of the braid group.

The above result can be generalized as follows: Let \(C_n \) be the set of cell decompositions with \(n \) sectors such that all sectors are dominant. Let \(C^1_n \subset C_n \), \(1 = \{l_1, l_2, \ldots, l_k\} \) be the set of cell decompositions such that for any \(\Gamma \in C^1_n \), no two sectors in the set \(S_{l_1}, S_{l_2}, \ldots, S_{l_k} \) have a common edge in the associated undirected graph \(T_\Gamma \). Let \(D^1_n \) be the set of cell decompositions with \(n \) sectors such that the sectors \(S_{l_1}, S_{l_2}, \ldots, S_{l_k} \) are subdominant. Let \(\{A_j\}_{j \in \mathbb{Z}} \) be the \(n - k \) actions acting on \(C^1_n \) indexed as in subsection 3. Let \(\{B_j\}_{j=0}^{n-1} \) be the actions on \(C_n \). Let \(\pi : C^1_n \rightarrow D^1_n \) be the map similar to the bijection above, where one obtain a cell decomposition in \(D^1_n \) by removing
edges with a label in l from a cell decomposition in C^n. Then
\[\begin{align*}
\pi(B_j(\Gamma)) &= A_j(\pi(\Gamma)) & \text{if } j, j + 1 \notin l, \\
\pi(B_j^{-1} B_{j-1} B_j(\Gamma)) &= A_j(\pi(\Gamma)) & j \notin l, j + 1 \in l.
\end{align*}\]

Remark 32. There are some advantages with cell decompositions with no subdominant sectors:
- An action A_j always interchanges the asymptotic values w_j and w_{j+1}.
- Lemma 8, item III implies T_1 have no bounded faces iff order of the asymptotic values is a cyclic permutation of the standard order.

6. **APPENDIX**

6.1. **Examples of monodromy action.** Below are some specific examples on how the different actions act on trees and non-trees.

Figure 16. Example action of A_4^{-1} and A_4^{-2} in case 1.

Figure 17. Example action of A_5 and A_5^2 in case 2.
Figure 18. Example action of \(A_5^{-1} \) and \(A_5^{-2} \) in case 3.
REFERENCES

[Bak77] I. Bakken. A multiparameter eigenvalue problem in the complex plane. *Amer. J. Math.*, 99(5):1015–1044, 1977.

[BW69] C. Bender and T. Wu. Anharmonic oscillator. *Phys. Rev. (2)*, 184:1231–1260, 1969.

[EG09a] A. Eremenko and A. Gabrielov. Analytic continuation of eigenvalues of a quartic oscillator. *Comm. Math. Phys.*, 287(2):431–457, 2009.

[EG09b] A. Eremenko and A. Gabrielov. Irreducibility of some spectral determinants. 2009. arXiv:0904.1714.

[EG10] A. Eremenko and A. Gabrielov. Singular perturbation of polynomial potentials in the complex domain with applications to pt-symmetric families. 2010. arXiv:1005.1696v2.

[Hab52] H. Habsch. Die Theorie der Grundkurven und das Äquivalenzproblem bei der Darstellung Riemannscher Flächen. (german). *Mitt. Math. Sem. Univ. Giessen*, 42:i+51 pp. (13 plates), 1952.

[Kho04] A. G. Khovanskii. On the solvability and unsolvability of equations in explicit form. (russian). *Uspekhi Mat. Nauk*, 59(4):69–146, 2004. translation in Russian Math. Surveys 59 (2004), no. 4, 661–736.

[LZ04] S. Lando and A. Zvonkin. *Graphs on Surfaces and Their Applications*. Springer-Verlag, 2004.

[Nev32] R. Nevanlinna. Über Riemannsche Flächen mit endlich vielen Windungspunkten. *Acta Math.*, 58:295–373, 1932.

[Nev53] R. Nevanlinna. *Eindeutige analytische Funktionen*. Springer, Berlin, 1953.

[Sib75] Y. Sibuya. *Global theory of a second order differential equation with a polynomial coefficient*. North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.

[Sim70] B. Simon. Coupling constant analyticity for the anharmonic oscillator. *Ann. Physics*, 58:76–136, 1970.

[SS00] L. W. Shapiro and R. A. Sulanke. Bijections for the schroder numbers. *Mathematics Magazine*, 73(5):369–376, 2000.

DEPARTMENT OF MATHEMATICS, STOCKHOLM UNIVERSITY, SE-106 91, STOCKHOLM, SWEDEN

E-mail address: per@math.su.se

PURDUE UNIVERSITY, WEST LAFAYETTE, IN, 47907-2067, U.S.A.

E-mail address: agabriel@math.purdue.edu
