Intrusion Detection System for Energy Efficient Cluster based Vehicular Adhoc Networks

M V B Murali Krishna M¹, Dr. C. Anbu Ananth², Dr. N. Krishna Raj³
Research Scholar: Department of CSE, FEAT, Annamalai University, Chidambaram-608002, India¹
Associate Professor: Department of CSE, FEAT, Annamalai University, Chidambaram- 608002, India²
Associate Professor, School of Computing, SRM Inst. of Sci & Tech, Kattankulathur- 603203, Tamil Nadu, India³

Abstract—A vehicular Adhoc Network, a subfield of Mobile Adhoc Network is defined by its high mobility and by demonstrating dissimilar mobility patterns. So, VANET clustering techniques are needed with the consideration of the mobility parameters amongst nearby nodes to construct stable clustering techniques. At the same time, security is also a major design issue in VANET which can be resolved by the Intrusion Detection Systems. In contrast to the conventional IDS, VANET based IDS are required to be designed in such a way that the functioning of the system does not affect the real-time efficiency of the performance of VANET applications. With this motivation, this paper presents an efficient Fuzzy Logic based Clustering with optimal Fuzzy Support Vector Machine, called FLC-OFSVM based Intrusion Detection System for VANET. The proposed FLC-OFSVM model involves two stages of operations namely clustering and intrusion detection. Primarily, FLC technique is employed to select an appropriate set of cluster heads and construct clusters. Besides, a lightweight anomaly IDS model named FSVM optimized with krill herd optimization algorithm is developed to detect the existence of malevolent attacks in VANET. The KH algorithm which is based on the herding behavior of krill is used to optimally tune the parameters of the FSVM model. In order to investigate the performance of the FLC-OFSVM model, an extensive set of simulations are carried out and the results are investigated in terms of several performance measures.

Keywords—Clustering; intrusion detection; vehicular communication; VANET; machine learning; krill herd optimization; fuzzy logic

I. INTRODUCTION

Vehicle ad hoc networks (VANET) were developed as a part of a mobile ad hoc network (MANET) [1] application. It is deliberated a significant method for intelligent transportation systems (ITS). Recently, it is an emphasis of many scientists in the field of wireless mobile data transmission. In VANET, vehicles are utilized as network nodes. It contains three main kinds of data transmission feasible in VANET: a) Vehicle to Vehicle (V2V), b) Vehicle to Infrastructure (V2I), and c) Hybrid. However, this current data transmission kind suffers from several drawbacks like huge amount of Road Side Units (RSU) are required at standard location in V2I data transmission that aren’t financially possible, security and privacy problems in V2V based data transmissions [2], hence clustering data transmission is chosen currently that has benefits on above three data transmission types [3]. This method is very congested traffic scenario that increases further load on cluster head (CH) that finally presents delay in the data transmission and affect entire network performances. For handing this, a novel clustering framework stimulated from dolphin swarm behavior was introduced in this study where many nodes could perform as a CH in a cluster and therefore could allocate their load in heavy traffic situations which enhances the entire network efficiency. Fig. 1 depicts the architecture of cluster VANET.

VANET provides several applications and services to the clients that are involved with the security of the navigational aid, drivers, and infotainment. It contains 2 kinds of data allocated in VANET: safety (curve warning, vehicle speed warning) and non-safety data (value added comfort application) [4]. Standard safety data provides high priority in VANET related to non-safety data, then safety data informs driver of predictable danger to permit earlier response. In spite of the advantages provided by VANET, it has several problems based on transmitted messages, security, and privacy of clients. Since vehicles exit and enter highways, they need specific safety information’s like traffic road conditions and congestions, decision making on that route for taking to their destination. It is vital that this data be sent at an appropriate time; or else, it can lead to delay in attaining the destination securely [5]. In particular conditions, few malicious nodes refuse to transmit or even purposefully change the needed safety message beforehand transferring to the requested client that can lead to long delays or mortalities. Moreover, the features of VANET (such as volatility, higher mobility) are different from other wireless data transmission networks that

Fig. 1. Architecture of Clustered VANET.
have made VANET vulnerable to several external and internal attacks [6]. Because of the dynamic topology and decentralized structure of VANET, the safety of the vehicles, clients, and data become significant, as the detection of faulty nodes/malicious/user becomes complex [7].

Alternatively, different from conventional Intrusion Detection Systems (IDS), VANET based IDS should be placed with care in this manner where the process shouldn’t delay the real-time efficiency of VANET application. It contains several based resolutions for VANET in survey [8]. Mostly, it contains challenges such as higher false positives, lower detection rate, additional overhead on the network, higher detection time, and so are related with them. But it cannot detect modified and newer attacks. Abnormality based IDS has benefits over rule based IDS in the manner that it can detect novel attacks where the signature isn’t existing in the database. However, this class of IDS requires settings of an optimum threshold and large trained set to make it proficient for differentiating among the normal and malicious nodes.

This paper presents an efficient Fuzzy Logic based Clustering with optimal fuzzy support vector machine (FSVM), called FLC-OFSVM based Intrusion Detection System for VANET. The proposed FLC-OFSVM model involves FLC technique with different input parameters to select cluster heads (CHs) and organize clusters. In addition, a lightweight anomaly IDS model named FSVM optimized with krill herd (KH) optimization algorithm is developed to detect the existence of malevolent attacks in VANET. For optimal tuning of the parameters involved in the FSVM model, the KH algorithm is employed in such a way that the intrusion detection ate can be enhanced. For examining the outcomes of the FLC-OFSVM model, a comprehensive set of experimental analyses were performed and the results are inspected for verifying the efficacy of the proposed model.

Section 2 describes the Literature Survey and Section 3 briefly explains proposed model followed by performance evaluation in section 4, finally section 5 discusses with conclusion and future directions.

II. LITERATURE REVIEW

Several security systems have been presented by numerous scientists for addressing privacy and security problems in VANETs. This segment emphasizes few present methods which focus on related issues in VANET with same methods. An anonymous and lightweight authentication system smart card (ASC) is presented in Ying and Nayak [9] for addressing privacy preserving issues like legitimacy of the user and message transferred over the network. The verification of user and message is made by low-cost cryptographic operation. This protocol doesn’t authenticate the user identity and also verify transmitted messages, however it assures privacy of user. Wazid et al. [10] introduced a decentralized lightweight authentication and key agreement protocol (LAKAP) for VANET, that utilizes bitwise exclusive OR (XOR) operation and one way hash function.

Rajput et al. [11] presented a hybrid method for privacy preserving authentication scheme (HEPPA), that integrates the feature of pseudonym and group signature based methods, with conditional anonymity. This technique utilizes lightweight and simple pseudonyms that provide conditional privacy. Tangade and Manvi [12] presented an efficient, scalable, and privacy preserving authentication (ESPA) protocol by a hybrid cryptography method for inter-vehicle data transmissions.

Cui et al. [13] projected a secure privacy preserving authentication scheme for VANET with cuckoo filter (SPACF) for enhancing the privacy and security of clients, and reduce data transmission overhead. Moreover, the investigators projected a novel authentication system with no bilinear pairings that could lead to heavy computation costs. The cuckoo filter is a data structure which gives an optimum search time and searches accuracy and utilizes hash function. The present methods deliberated have been chosen as the standard protocol for this work since this approach focuses on improving security and privacy preserving of user in the network. It is viewed that the present methods mainly focus on authentication and privacy preserving systems. But, another security necessity of VANET like non-repudiation, availability, and integrity, wasn’t paid more interest. This provides a gap for additional development in VANET security with the deliberation of executing a novel security-based technique which is available in the present times. Hence, the resolution presented in this work tries to enhance the VANET security by employing a modern technology which can tackle the security needs and enhance road security with the help of vehicles resource and data transmission scheme.

III. THE PROPOSED MODEL

The overall system architecture of the proposed FLC-OFSVM model is demonstrated as under. Initially, the vehicles in the VANET are placed randomly in the target area. Then, the network initialization process takes place where the single hop neighboring vehicles interact with one another. Next, the FLC technique is performed to optimally select the CHs and construct clusters proficiently. Followed by, the FSVM model is employed for the identification of intrusions in the network. Finally, the KH algorithm is used to optimally choose the parameters involved in the FSVM model.

A. Design of FLC Technique

At this stage, the FLC technique with three input parameters is utilized to select CHs, as shown in Fig. 2. In this presented scheme, every node transmits its mobility data, average velocity to its neighbor via HELLO packet with the succeeding formats: Average Velocity, Node ID, Direction, and Location.
1) Node degree: The amount of the velocity variances between adjacent vehicles is the main problem to construct relatively stable clustering topology. The neighborhood relation is made by the location data embedding from periodic message transmits by vehicles. Vehicles transmit their present state to every node with their broadcast range R:

$$N_i = \{v_j; \text{dis}_{i,j} \leq R\}$$ \hspace{1cm} (1)

Whereas $\text{dis}_{i,j}$ denotes average distance among vehicles i and j. According to this determination, they acquire other terms named node degree of a node (ψ_i), that is determined by overall amount of R-neighbors. Then clusters are made with vehicles travel in a similar direction, every R-neighboring vehicle travel in the opposite direction isn’t deliberated [14]. Thus, every R-neighboring nodes utilized in this analyses are restricted to this vehicle travels in a similar direction, located in other lanes and estimated by:

$$\psi_i = |N_i|$$ \hspace{1cm} (2)

2) Average velocity differences: In all time intervals, every vehicle, have data regarding each vehicle with its transmission range and therefore, it would estimate its average velocity variance ϕ_i from every vehicle by:

$$\phi_i = \frac{1}{\psi_i-1} \sum_{j=1}^{\psi_i-1} |v_j - v_i|$$ \hspace{1cm} (3)

Whereas j denotes possible neighboring vehicle, and v_i, v_j indicates velocity of vehicle i and j, correspondingly in m/s. The node could attain its velocity by commercial navigation services, like Garmin Traffic.

3) Relative velocity: For building relative stable cluster, they assume the vehicles related to optimum neighborhood degree (ψ_i). A low relatively velocity simply implies that the neighbor of a particular node has consumed a long time in its broadcast range. Thus, they could accomplish that the stated node comprises additional stable situations. The relative velocity of a node i is estimated by:

$$\omega_i = \frac{\phi_i}{v_i}$$ \hspace{1cm} (4)

The lesser the value of ω_i, the nearer the velocity of node for an average velocity of their neighbour that improves neighbourhood steadiness. In this presented system, every node calculates its neighbors based on link connectivity, average velocity difference, and relative velocity. If a node should transmit a packet, the node utilized FL for calculating fit factor value for every neighbor in terms of link connectivity duration, average absolute distance, and average velocity.

4) Fuzzification process: Fuzzification is the procedure of transforming mathematical values to fuzzified values by a MF. The transmitter node utilizes average absolute distance and MF for calculating the degree to which the distance factors belong to Large, Small, and Medium. The transmitter node utilizes average velocity and MF for calculating that degree the average velocity comes under Fast, Slow, Medium. The transmitter node utilizes link connectivity duration and MF for calculating the link connectivity. When the fuzzy values of link connectivity, duration average absolute distance, and average velocity were estimated, fuzzy inference engine map the fuzzy values to the IF or THEN rules and restricted in the knowledge base for calculating the fit factor for every node. The fuzzy inference scheme is implemented according to twenty seven rules are introduced. Therefore, their equivalent calculation result should be integrated.

5) Defuzzification process: Defuzzification is the procedure of generating a numerical result on the basis of output MF and equivalent membership degree. Now, they utilize center of gravity (CoG) technique for defuzzifying the fuzzy results. Particularly, they cut the output MF with a straight horizontal line based on equivalent degree, and eliminate the top part. Later, they estimate the Centroid of this shape.

B. Design of IDS Technique

Once the vehicles in the VANET are clustered, the next stage is to identify the presence of intruders in the network using the OFSVM model. In addition, the KH algorithm is employed to optimally tune the parameters of the FSVM model in such a way that the intrusion detection ate can be enhanced.

1) FSVM model: In conventional SVM, every data point is deliberated with equivalent significance and allocated a similar penal variable in its objective function. To resolve this problem, the system of FSVM was presented by [15]. Fuzzy membership to every instance point is presented; thus, distinct instance points could create various contributions to the creation of decision surface. Assume the trained instance is

$$S = \{(x_i, y_i, s_i), i = 1, \ldots, N\}$$ \hspace{1cm} (5)

Whereas $x_i \in \mathbb{R}^n$ denotes n -dimension instance point, $y_i \in \{-1, +1\}$ denotes class label, and $s_i(i = 1, \ldots, N)$ indicates fuzzy membership that fulfills $\sigma \leq s_i \leq 1$ with adequately smaller constant $\sigma > 0$. Re quadratic optimization problem for classification is deliberated by:

$$\min_{\omega, s, \xi} \frac{1}{2} \omega^T \omega + C \sum_{i=1}^{N} s_i \xi_i$$ \hspace{1cm} (6)

s. t. $y_i(\omega^T x_i + b) \geq 1 - \xi_i, \xi_i \geq 0, i = 1, \ldots, l$.

Whereas ω denotes normal vector of the splitting hyperplane, b indicates bias term, and C represents variable that should be defined before for controlling the trade-off among classification margin and cost of misclassification error [16]. Then s_i denotes attitude of equivalent point x_i to single class and the slack parameters ξ_i denotes measure of error, later the expression $s_i \xi_i$ is deliberated a measure of error with distinct weights. It can be stated that the larger s_i is, the more prominently the equivalent point is processed; the lesser the s_i is, the lesser prominently the equivalent point is processed; therefore, distinct input points could create various contributions to learn of decision surface. Hence, FSVM could detect stronger hyperplane by increasing the margin allowing few misclassifications of lesser significant points.
To resolve the FSM optimum problem, (6) is converted to the succeeding two problems by presenting Lagrangian multipliers α_i:

$$\max \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_i x_j$$ \tag{7}

$$s.t. \sum_{i=1}^{N} \gamma_i \alpha_i = 0, 0 \leq \alpha_i \leq s_i C, i = 1, ..., N.$$ \tag{8}

Related to regular SVM, the aforementioned representation has a slight variance, that is the upper bound of the values of α_i. By resolving these two problems in (3) for optimum α_i, w, and b are recovered in a similar manner as in the regular SVM.

2) Overview of KH Algorithm: The KH algorithm is a type of swarm intelligence technique that is inspired by the herding characteristics of krills. In the procedure of predation, the predator would alter the distribution of krill population, that would create them to move quickly, and later causes their distribution density for decreasing and the distance among the predator and the food becomes farther that is the first stage of KH. In this method, the distribution of krill population is defined as the succeeding 3 conditions: the impact of other krill individuals, arbitrary diffusion, and behavior of getting food. The KH method is defined by:

$$dX_i dt = N_i + F_i + D_i$$ \tag{9}

Whereas N_i denotes impact of another krill individuals, F_i represents behavior of getting food, and D_i indicates behavior of arbitrary diffusion; $i = 1, 2, ..., N$, and N represents the population size.

For the impact of another krill individuals, the movement $N_{i,new}$ of krill i induced by another krill can be determined:

$$N_{i,new} = N_{max} \alpha_i + \omega_a N_{i,old}$$ \tag{10}

Whereas N_{max} denotes maximal induced velocity, $N_{i,old}$ indicates earlier induced motion, ω_a denotes inertia weight and the value range zero and one and α_i represents individual i is caused by the induction direction of the adjacent neighbors [17].

The succeeding behavior F_i is to get food, by:

$$F_i = V_f \beta_i + \omega_f F_{i,old}$$ \tag{11}

whereas V_f represents maximum foraging speed, and its value is a constant, that is 0.02 (ms$^{-1}$); ω_f indicates inertia weight of foraging motion, and its range is zero and one; $F_{i,old}$ denotes earlier foraging direction; and β_i represents foraging direction. Fig. 3 demonstrates the flowchart of KH technique. The individual D_i in the final behavior is given by:

$$D_i = D_{max} \left(1 - \frac{i}{l_{max}}\right) \delta$$ \tag{12}

Where D_{max} denotes maximal arbitrary diffusion speed; δ indicates direction of arbitrary diffusion; and l and l_{max} denotes present amount and the maximal number of iterations, correspondingly. From aforementioned procedure, they could attain the krill upgrade procedure of the KH method by:

$$X_i(t + \Delta t) = X_i(t) + \Delta t \frac{dx_i}{dt}$$ \tag{13}

$$\Delta t = Ct \sum_{j=1}^{NV} (UB_j - LB_j)$$ \tag{14}

Where Δt denotes time interval relevant to the certain application; NV represents dimension of the decision parameter; step factor Ct indicates constant among (0,2); and UB_j and LB_j denotes upper and lower bounds of equivalent parameter $j(j = 1, 2, ..., NV)$, correspondingly.

Fig. 3. Flowchart of KH.

The process of the KH algorithm (Algorithm 1) is given as follows.

Algorithm1. Pseudo code of KH algorithm

Begin
Step 1: Initiation. Initiate the generation counter G, the population P, V_f, D_{max}, and N_{max}.
Step 2: Fitness evaluation. Evaluate fitness to every krill based on early position.
Step 3: While $G < Max Generation$ do
Arrange the population based on its fitness. for $i = 1:N$ (all krill) do
Execute the succeeding movement evaluation.
Movement induced by other individuals
Foraging movement
Physical diffusion
Execute the genetic operator.
Upgrade the krill location from search space.
Evaluate fitness to every krill based on its novel place end for i
$G = G + 1$.
Step 4: end while.
End.
3) Parameter tuning of FSVM model using KH algorithm:
In OFSVM model, the parameters (weight and bias) in the FSVM model are optimally adjusted by the use of KH algorithm. The FSVM model is trained with the parameters of the KH algorithm. Besides, 10 fold cross validation process is employed for determining the fitness function where the training data is split arbitrarily into 10 parts. Then, 9 sets of data are employed for training process and the final one is utilized for testing process. This process gets iteration ten times; therefore, every set is utilized once to test the model. The fitness function can be represented as 1-CA validation of the 10-fold cross-validation (CV) technique in the training data, as given in Eqs. (14) and (15). Besides, the solution with higher CA validation holds lower fitness value.

\[
Fitness = 1 - CA_{validation}
\]

\[
CA_{validation} = 1 - \frac{1}{10} \sum_{i=1}^{10} \left| \frac{y_i^c}{y_i^c + y_i^f} \right| \times 100
\]

Where \(y_i^c\) and \(y_i^f\) refers the count of true and false classifications correspondingly.

IV. PERFORMANCE VALIDATION

A brief comparative study of the FLC with other techniques in terms of NLT, EC, and throughput is made in Table 1. Fig. 4 examines the NLT analysis of the FLC technique with other methods under varying number of vehicles. The proposed FLC technique has gained maximum NLT under all distinct numbers of vehicles. For instance, with 20 vehicles, the proposed FLC technique has accomplished a higher NLT of 4600 rounds whereas the HEPPA, ASC, and LAKAP techniques have attained a lower NLT of 4400, 4000, and 3800 rounds respectively. In addition, with 60 vehicles, the presented FLC approach has accomplished a superior NLT of 4100 rounds whereas the HEPPA, ASC, and LAKAP techniques have attained a lower NLT of 3700, 3600, and 3500 rounds correspondingly. Also, with 100 vehicles, the proposed FLC technique has accomplished a higher NLT of 4400 rounds whereas the HEPPA, ASC, and LAKAP methodologies have obtained a minimum NLT of 3300, 3200, and 3100 rounds correspondingly.

An EC analysis of the proposed FLC technique with recent methods is made in Fig. 5. The figure has shown that the FLC technique has offered superior results with minimal EC over the other techniques whereas the LAKAP technique has displayed insufficient performance with the maximum EC. For instance, with 20 vehicles, the proposed FLC technique has resulted in the least EC of 32mJ whereas the HEPPA, ASC, and LAKAP techniques have demonstrated a maximum EC of 40mJ, 46mJ, and 56mJ, respectively. Additionally, with 60 vehicles, the proposed FLC method has resulted in the lesser EC of 79mJ whereas the HEPPA, ASC, and LAKAP approaches have showcased a maximal EC of 91mJ, 94mJ, and 114mJ, correspondingly. Besides, with 100 vehicles, the presented FLC algorithm has resulted in the least EC of 103mJ whereas the HEPPA, ASC, and LAKAP techniques have revealed a higher EC of 136mJ, 153mJ, and 172mJ, correspondingly.

Fig. 6 examines the throughput analysis of the FLC technique with other methods under varying number of vehicles. The proposed FLC technique has gained maximum throughput under all distinct number of vehicles. For instance, with 20 vehicles, the proposed FLC technique has accomplished a higher throughput of 67.01Mbps whereas the HEPPA, ASC, and LAKAP techniques have attained a lower throughput of 65.75Mbps, 70.35Mbps, and 57.00Mbps respectively. Moreover, with 60 vehicles, the presented FLC manner has accomplished a maximum throughput of 77.27Mbps whereas the HEPPA, ASC, and LAKAP techniques have achieved a lesser throughput of 74.23Mbps, 69.24Mbps, and 64.72Mbps respectively. Furthermore, with 100 vehicles, the projected FLC technique has accomplished a maximal throughput of 83.91Mbps whereas the HEPPA, ASC, and LAKAP approaches have attained a lower throughput of 80.85Mbps, 78.36Mbps, and 73.48Mbps rounds correspondingly.
A brief comparison study of the FLC with other techniques in terms of PDR and ETE delay is made in Table 2 [18]. Fig. 7 inspects the PDR analysis of the FLC algorithm with other techniques under varying number of vehicles. The presented FLC technique has gained maximal PDR under all distinct number of vehicles. For instance, with 20 vehicles, the proposed FLC technique has accomplished a higher PDR of 0.98% whereas the HEPPA, ASC, and LAKAP techniques have attained a lesser PDR of 0.95%, 0.93%, and 0.82% correspondingly. In the meantime, with 60 vehicles, the proposed FLC method has accomplished a superior PDR of 0.78% whereas the HEPPA, ASC, and LAKAP approaches have achieved minimal PDR of 0.74%, 0.71%, and 0.62% respectively. At the same time, with 100 vehicles, the proposed FLC method has accomplished a higher PDR of 0.69% whereas the HEPPA, ASC, and LAKAP methodologies have attained a lower PDR of 0.63%, 0.55%, and 0.48% correspondingly.

Packet Delivery Ratio (%)	Number of Vehicles	Proposed FLC	HEPPA	ASC	LAKAP
	20	0.98	0.95	0.93	0.82
	40	0.87	0.84	0.80	0.71
	60	0.78	0.74	0.71	0.62
	80	0.72	0.67	0.60	0.55
	100	0.69	0.63	0.55	0.48

End-to-End Delay (ms)	Number of Vehicles	Proposed FLC	HEPPA	ASC	LAKAP
	20	7.57	7.97	8.07	10.57
	40	8.13	8.47	8.69	11.11
	60	8.39	9.04	9.57	11.61
	80	8.92	9.80	10.17	12.04
	100	9.38	10.14	10.40	13.11
An ETE delay analysis of the proposed FLC technique with recent techniques is made in Fig. 8. The figure has demonstrated that the FLC approach has offered superior results with the minimal ETE delay over the other methods whereas the LAKAP algorithm has portrayed insufficient performance with the higher ETE delay. For instance, with 20 vehicles, the proposed FLC technique has resulted in a least ETE delay of 7.57ms whereas the HEPPA, ASC, and LAKAP manners have demonstrated a maximal ETE delay of 7.97ms, 8.07ms, and 10.57ms, correspondingly. Meanwhile, with 60 vehicles, the proposed FLC technique has resulted in the least EC of 8.39ms whereas the HEPPA, ASC, and LAKAP techniques have outperformed a higher EC of 9.04ms, 9.57ms, and 11.61ms, correspondingly. Eventually, with 100 vehicles, the projected FLC technique has resulted in the least EC of 9.38ms whereas the HEPPA, ASC, and LAKAP methods have showcased a maximal EC of 10.14ms, 10.4ms, and 13.11ms, correspondingly.

For validating the IDS performance of the OFSVM method, it is tested using NSL-KDD 2015 dataset which includes a set of 125973 instances with 51 class labels and 2 classes. Table 3 and Fig. 9 demonstrate the detailed detection accuracy analysis of the OFSVM with other methods [19]. The table values showcased that the CS-PSO algorithm has gained lowest performance with the accuracy of 75.51% whereas a certainly enhanced performance is obtained by the DNN-SVM and Cuckoo optimization methods with the accuracy of 92.03% and 96.88% correspondingly. Besides, the behaviour based IDS, PSO-SVM, MLIDS, and DBN models have exhibited moderately closer accuracy of 98.89%, 99.1%, 99.93%, and 99.96% respectively. However, the proposed OFSVM model has gained maximum outcome with an accuracy of 99.98%.

TABLE III. RESULT ANALYSIS OF PROPOSED OFSVM METHOD WITH EXISTING METHODS FOR APPLIED DATASET

Methods	Accuracy
Proposed OFSVM	99.98
Deep Belief Network (2020)	99.96
MLIDS (2019)	99.93
CS-PSO (2019)	75.51
PSO-SVM (2019)	99.10
Behaviour Based IDS (2019)	98.89
Cuckoo Optimization (2018)	96.88
DNN+SVM (2018)	92.03

![Fig. 9. Accuracy Analysis of OFSVM Model with Existing Techniques.](image-url)

V. CONCLUSION

This paper has presented an effective FLC-OFSVM model to achieve security and effective communication in VANET. The proposed FLC-OFSVM model begins with the deployment of vehicles in a random way and is initialized together. Then, the FLC technique is executed to determine the proper set of CHs in VANET and neighboring vehicles join the CH to develop the cluster. Moreover, the OFSVM model is applied for identifying the existence of intruders from VANET. In order to optimally tune the parameters involved in the FSVM model, the KH algorithm is employed in such a way that the intrusion detection rate can be enhanced. For examining the outcomes of the FLC-OFSVM model, a comprehensive set of experimental analyses were performed and the results are inspected in terms of several aspects. The resultant experimental values highlighted the promising performance of the FLC-OFSVM model over the state of art methods. As a part of future work, the security of the VANET is improved by the design of secure multihop routing protocols for privacy preserving data transmission with reliable vehicles in VANET.

REFERENCES

[1] M.R.Ghor, K.Z.Zamli,N.Quosthoni, M.Hisyam and M.Montaser, May 2018. Vehicular ad-hoc network (VANET). In 2018 IEEE international conference on innovative research and development (ICIRD) (pp. 1-6). IEEE.

[2] S.K.Biswal, 2014. “On Board unit based authentication for V2V communication in VANET (Doctoral dissertation)”.

[3] H Lu,J.Li and M.Guizani, 2013. “Secure and efficient data transmission for cluster-based wireless sensor networks”. IEEE transactions on parallel and distributed systems, 25(3), pp.750-761.

[4] S. K. Bhoi, P. M. Khilar, M. Singh, R. R. Sahoo and R. R. Swain, 2018. “A routing protocol for urban vehicular ad hoc networks to support non-safety applications”. Digital Communications and Networks, 4(3), pp.189-199.

[5] C. Lai, K. Zhang, N. Cheng, H. Li, and X. Shen, 2016. SIRC: “A secure incentive scheme for reliable cooperative downloading in highway VANETs”. IEEE Transactions on Intelligent Transportation Systems, 18(6), pp.1559-1574.

[6] R. G. Engoulou, M. Bellaiche, S. Pierre and A. Quintero, 2014. “VANET security surveys”. Computer Communications, 44, pp.1-13.

[7] N. J. Patel and R. H. Jhaveri, 2015. “Trust based approaches for secure routing in VANET”: A Survey. Procedia Computer Science, 45, pp.592-601.

[8] O. Depren, M. Topallar, E. Anarim and M. K. Ciliz, 2005. “An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks”. Expert systems with Applications, 29(4), pp.713-722.

[9] B. Ying, and A. Nayak, 2017. “Anonymous and lightweight authentication for secure vehicular networks”. IEEE Transactions on Vehicular Technology, 66(12), pp.10626-10636.

[10] M. Wazid, A. K. Das, N. Kumar, V. Odela, A. G. Reddy, K. Park and Y. Park, 2017. “Design of lightweight authentication and key agreement protocol for vehicular ad hoc networks”. IEEE Access, 5, pp.14966-14980.

[11] U. Rajput, F. Abbas, H. Eun and H. Oh, 2017. “A hybrid approach for efficient privacy-preserving authentication in VANET”. IEEE Access, 5, pp.12014-12030.

[12] S. Tangade and S. S. Manvi, 2016, November. “Scalable and privacy-preserving authentication protocol for secure vehicular communications”. In 2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS) (pp. 1-6). IEEE.

[13] J. Cui, J. Zhang, H. Zhong and Y. Xu, 2017. SPACF: “A secure privacy-preserving authentication scheme for VANET with cuckoo filter”. IEEE Transactions on Vehicular Technology, 66(11), pp.10283-10295.
[14] M.Aissa, B. Bouhdid, A. Ben Mnaouer, A. Belghith and S. AlAhmadi, 2020. SOFCluster: “Safety-oriented, fuzzy logic-based clustering scheme for vehicular ad hoc networks”. Transactions on Emerging Telecommunications Technologies, p.e3951.

[15] C.F. Lin and S.D. Wang, 2002. "Fuzzy support vector machines. IEEE transactions on neural network", 13(2), pp.464-471.

[16] X. Gu, T. Ni and H. Wang, 2014. “New fuzzy support vector machine for the class imbalance problem in medical datasets classification”. The scientific world journal, 2014.

[17] C.L. Wei and G.G. Wang, 2020. “Hybrid Annealing Krill Herd and Quantum-Behaved Particle Swarm Optimization”. Mathematics, 8(9), p.1403.

[18] A.S. Khan, K. Balan, Y. Javed, S. Tarmizi and J. Abdullah, 2019. “Secure trust-based blockchain architecture to prevent attacks in VANET”. Sensors, 19(22), p.4954.

[19] M. Maheswari and R.A. Karthika, 2021. “A Novel QoS Based Secure Unequal Clustering Protocol with Intrusion Detection System in Wireless Sensor Networks”. Wireless Personal Communications, pp.1-23.