An Annotated Corpus of Film Dialogue for Learning and Characterizing
Character Style

Marilyn A. Walker, Grace I. Lin, Jennifer E. Sawyer

University of California Santa Cruz
Natural Language and Dialogue Systems Lab, Computer Science Dept.
maw|glin|jsawyer@soe.ucsc.edu

Abstract

Interactive story systems often involve dialogue with virtual dramatic characters. However, to date most character dialogue is written by hand. One way to ease the authoring process is to (semi-)automatically generate dialogue based on film characters. We extract features from dialogue of film characters in leading roles. Then we use these character-based features to drive our language generator to produce interesting utterances. This paper describes a corpus of film dialogue that we have collected from the IMDb archive and annotated for linguistic structures and character archetypes. We extract different sets of features using external sources such as LIWC and SentiWordNet as well as using our own written scripts. The automation of feature extraction also eases the process of acquiring additional film scripts. We briefly show how film characters can be represented by models learned from the corpus, how the models can be distinguished based on different categories such as gender and film genre, and how they can be applied to a language generator to generate utterances that can be perceived as being similar to the intended character model.

Keywords: dialogue, expressive, natural language generation, film, archetype theory

1. Introduction

Conversation is an essential component of social behavior, one of the primary means by which humans express emotions, moods, attitudes and personality. Thus a key technical capability for interactive narrative systems (INS) is the ability to support natural conversational interaction. To do so, natural language processing can be used to process the user’s input to allow users flexibility in what they say to the system (Johnson et al., 2005; Mateas and Stern, 2003; Louchart et al., 2005). However, in most interactive narrative systems to date, character dialogue is highly handcrafted. Although this approach offers total authorial control and produces high quality utterances, it suffers from problems of portability and scalability (Walker and Rambow, 2002), or what has been called the authoring bottleneck (Mateas, 2007). Moreover, handcrafting makes it difficult, if not impossible, to personalize the dialogue interaction, but personalization leads to perceptions of greater player agency (Murray, 1997; Hayes-Roth and Brownston, 1994; Mott and Lester, 2006; Thue et al., 2010).

Expressive Natural Language Generation (ENLG) promises a solution to these problems, but the ENLG engine must be able to produce variations in linguistic style that clearly manifest differences in dramatic character. Therefore the first requirement for building an ENLG for dialogue for dramatic characters, is a method or a theory that systematically and comprehensively quantifies the most important individual and stylistic differences in behavior, the way they affect linguistic output in dialogue, and the predicted effect on the perceptions of the listener. Previous work on ENLG has explored parameters and models based on Brown and Levinson’s theory of politeness, the Big Five theory of personality, and dramatic theories of archetypes, (Piwek, 2003; André et al., 2000; Mairesse and Walker, 2010; Gupta et al., 2007; Walker et al., 1997; Wang et al., 2005; Rowe et al., 2008; Cavazza and Charles, 2005) inter alia. Here we describe a new annotated corpus of film dialogue and how we have used it to learn character models of linguistic style that incorporate some concepts from the dramatic theory of archetypes. We believe that the stylized, crafted aspects of film dialogue are actually useful for our purposes because it is authored deliberately in order to convey the feelings, thoughts and perceptions of the character being portrayed. Furthermore, the screenplay often specifies the emotion of an utterance with psychological state descriptors. In addition, the dialogue is constructed to reveal or focus the viewer’s attention on the character’s personality and the key plot events involving a character and their perceptions, especially in dramatic films as opposed to action.

In the first section we will describe the content of the film corpus and the methods we used to create it. Next we will discuss some of our recent applications of the corpus. We have used the corpus to train character models for generating expressive dialogue with the PERSONAGE generator and performed a perceptual study indicating that subjects were able to discern similar personality traits between original film dialogue utterances and generated dialogue for another domain. Finally, we discuss possible ways in which we could augment the film corpus for future work.

2. Corpus Description

Our corpus consists of 862 film scripts from The Internet Movie Script Database (IMDb) website (http://www.imdb.com/), representing 7,400 characters, with a total of 664,000 lines of dialogue and 9,599,000 tokens. Our snapshot of IMDb is from May 19, 2010. Figure 1 provide example dialogues in the corpus. We used The Internet Movie Database (IMDB) ontology to define groupings of character types according to the following attributes: GENRE, DIRECTOR, YEAR, and CHARACTER GENDER. See Table 1. Previous work suggests that females and males in each genre might have different lin-
ANNY: Uh ... you wanna lift?
ANNIE: Turning and aiming her thumb over her shoulder
Oh, why uh ... y-y-you gotta car?
ANNY: No, um ... I was gonna take a cab.
ANNIE: Laughing Oh, no. I have a car.
ANNY: You have a car?
Annie smiles, hands folded in front of her
ANNY: So ... Clears his throat
ANNY: I don’t understand why ... if you have a car, so
then-then wh-why did you say “Do you have a car?”... like
you wanted a lift?

INDY: Let’s get out of here!
MARION: Not without that piece you want!
MARION: Pointing. There! She breaks away from him, darts back and picks the hot medallion up in
the loose cloth of her blouse.
INDY: Let’s go!
MARION: (looking around) You burned down my place!
INDY: I owe you plenty!
MARION: You owe me plenty!
INDY: smiles You’re something!
MARION: I am something. And I’ll tell you exactly what -
She holds up the medallion possessively.
I’m your partner!

Table 1: Film Categories

Group	Categories
Genre	drama, thriller, crime, comedy, action, romance, adventure
Gender	male, female
Film Year	year ≥ 2000, 1995 > year ≥ 2001, 1990 > year ≥ 1985, 1985 > year ≥ 1990, 1980 > year ≥ 1985, older
Film Director	Michael Mann, Wes Craven, Steven Spielberg, Stanley Kubrick, Ridley Scott, Frank Capra, Steven Soderbergh, David Fincher, Alfred Hitchcock, Robert Zemeckis, David Lynch, James Cameron, Joel Coen, Martin Scorsese, Quentin Tarantino

Table 2: Automatically Annotated Linguistic Features

Feature	Description
Basic	Number of sentences, sentences per turn, number of verbs, number of verbs per sentence, etc.
Polarity	Overall polarity, polarity of sentences, etc.
Dialogue Act	Trained with NPS Chat Corpus with 15 dialogue act types such as “Accept”, “Clarify”, “Emotion”, and “ynQuestion”.
First Dialogue Act	Look at the dialogue act of the first sentence of each turn.
Passive Sentence Ratio	Using a third party software (see text) to detect passive sentences.
Concession polarity	Polarity for concessions
LIWC Word Categories	Word categories from the Linguistic Inquiry and Word Count (LIWC) text analysis software.
Pragmatic Markers	Word categories and examples: taboo (tuck, shut, hell, damn), sequence (first, second, third), opinion (think, feel), aggregation (with, also, because), soft (somewhat, quite, around), emphasis (really, basically, actually), acknowledge (yes, right, ok), pauses (i mean, you know), concession (but, yet, although, even though, on the other hand), concede (although, but, though, even if), justify (because, since, so), contrast (while, but, however, on the other hand), conjunction (for, and, nor, but, or, yet, so), etc.
Tag Question Ratio	Amount of tag questions
Word Length	Average content word length
Verb Strength	Averaged sentiment values of verbs

Table 3: Polarity score with SentiWordNet

Polarity assigned	Range of score (s)
String Positive	s > 2/3
Positive	1/3 < s < 2/3
Weak Positive	0 < s < 1/3
Neutral	s = 0
Weak Negative	-1/3 ≤ s < 0
Negative	-2/3 ≤ s < -1/3
Strong Negative	s ≤ -2/3

Figure 1: Scenes from Annie Hall and Indiana Jones and the Raiders of the Lost Ark.

Gusstaff’s POS Tagger, we convert Penn tags to WordNet tags. Then we approximate the sentiment value of a word with a label (no word sense disambiguation) using weights. For example, if there are three values (v1, v2, v3), where v1 is associated with the most common sentiment value, associated with a particular word, then the score is calculated as \(\frac{1}{3}v_1 + \frac{1}{2}v_2 + \frac{1}{3}v_3 \). For more than one word (in a sentence or entire dialogue), simply average the scores. The polarity is assigned based on the range defined in Table 3.
Dialogue Act: Different types of characters use different dialogue acts to take the initiative or in response. Dialogue act type is detected with a dialogue act tagger trained on the NPS Chat Corpus 1.0 (Forsyth and Martell, 2007).

First Dialogue Act: The Dialogue Act of the first sentence of each turn.

Merge Ratio. To detect merging of sentences (merge of subject and verb of two propositions), we use a grammar that looks for verb+noun+conjunction+noun.

Passive Sentence Ratio. Passive sentences are detected using scripts from [source](http://code.google.com/p/narorumu), under source/browse/trunk/passive. These scripts implement the rule that if a to-be verb is followed by a non-gerund, the sentence is probably in passive voice.

Concession Polarity. Find the polarity for concession part of the sentence, if exists, using the Polarity feature set.

LIWC Word Categories: The Linguistic Inquiry Word Count (LIWC) tool provides a lexical hierarchy that tells us how frequently characters use different types of words such as words associated with anger or happiness, as well as more subtle linguistic cues like the frequent use of certain pronouns. Examples of the LIWC word categories are given in Table 4. These features may correspond to particular themes that a character pursues in their discussions, or whether the character fits within a particular archetype style. For example, one prediction would be that the archetype SHADOW would use more negative emotion and more anger words.

LIWC Category	Sample words
Anger words	hate, kill, passed
Metaphysical issues	God, heaven, cotton
Physical state/function	ache, breast, sleep
Inclusive words	with, and, include
Social processes	talk, in, friend
Family members	mom, brother, cousin
Past tense verbs	walked, were, had
References to friends	pal, buddy, coworker

Table 4: Examples of LIWC word categories and sample words

Pragmatic Markers: Since pragmatic markers are particularly important part of linguistic style, we develop features to count them (Brown and Levinson, 1987). These include both categories of pragmatic markers and individual word count/ratio.

Tag Question Ratio. Tag questions are detected by using regular expressions to parse sentences.

Average Content Word Length. Use WordNet’s tag to find content words (noun, adjective, adverb, and verb), then average the length of words (number of letters).

Verb Strength. Average sentiment scores of all verbs.

We have also carried out an annotation study on a number of characters and scenes in our IMSDb (Internet Movie Script Database) corpus. The idea was to first classify film characters into particular archetypes, and then derive corpus-based models from the archetypes. We asked three annotators to classify 17 film characters into one of the 13 archetypes described in (Faber and Mayer, 2009). The list of film characters and archetypes are in Table 5.

One advantage of this approach is that it lets us indirectly incorporate observations about types of characters from Archetype Theory. (Faber and Mayer, 2009). Archetype Theory provides a number of stock characters, such as HERO, SHADOW, or CAREGIVER, who have typical roles and personalities that can be re-used in different types of narrative (Rowe et al., 2008).

3. Application of the Film Corpus: Learning Character Models

We utilize the film corpus in our work (Lin and Walker, 2011) and (Walker et al., 2011) to develop statistical models of character linguistic style and use these models to control the parameters of the PERSONAGE generator (Mairesse and Walker, 2011; Mairesse and Walker, 2010). We find that the models learned from film dialogue are generally perceived as being similar to the character that the model is based on. Our experimental method can be summarized as follows:

1. Collect movie scripts from The Internet Movie Script Database (IMSDb).
2. Parse each movie script to extract dialogic utterances, producing an output file containing utterances of exactly one character of each movie (e.g., *pulp-fiction-vincent.txt* has all of the lines of the character Vincent).
3. Select characters from those with more than 60 turns of dialogue.
4. Extract features representing the linguistic behaviors of each character.
5. Learn models of character linguistic styles based on these features.
6. Use character models to control parameters of the PERSONAGE generator.
7. Evaluate human perceptions of dialogic utterances generated using the character models.

The extracted features can be used to train models which represent individual film characters or groups of characters. To represent a group of characters, we can use machine learning techniques to distinguish groups such genre, gender, directors, and film period. Selected top results for discriminating distinct classes of two-class GENER-X, DIRECTOR, GENDER X DIRECTION, five-class GENDER X FILM, and five-class GENDER X FILM PERIOD, are shown in Table 6. The results show that we can discriminate two-class GENER-X, GENDER categories of characters using binary classification models with accuracies over 70% as opposed to baselines of around 50%.

Film Characters (17): Bruce: *Batman Returns*, Rae: *Black Snake Moan*, Neil: *Dead Poets Society*, Costello: *The Departed*, Tyler: *Fight Club*, Carter: *Final Destination*, Hooper: *Jaws*, Scott Smith: *MilK*, Parsino: *Mystery Men*, Pete: *O Brother, Where Art Thou?*, Morris: *Purple Rain*, Paul: *Rachel Getting Married*, Plato: *Rebel without a cause*, Agnis: *The Shipping News*, Rose: *Titanic*, Goose: *Top Gun*, Spud: *Transamerica*.

Archetypes (13): Caregiver, Creator, Everybody/everywoman, Explorer, Hero, Innocent, Jester, Lover, Magician, Outlaw, Ruler, Sage, Shadow.
The five-way discriminatory models for combinations of directors, gender and years are much more complex, and the accuracies are amazingly high, given baselines around 20%. We can easily develop distinct character models for different directors and gender/director combinations. Also, interestingly, the results show that the year of the film has a large impact on style, and that combinations of gender and time period can be discriminated with accuracies as high as 83%.

To represent individual characters, we derive distinctive features for that character by normalizing these feature counts against a representative population. For each feature x_i, the normalized value z_i, is calculated as:

$$z_i = \frac{x_i - \bar{x}}{\sigma_x}$$

There are many choices for the population of characters used for normalization. For example, for a female character, we could use all female characters or all female action characters. For our work we chose the gender population of character. Any z-score greater than 1 or less than -1 is more than one standard deviation away from the mean. We consider all features with z-score > 1 or < -1 as being significant, and these features are mapped to one or more PERSONAGE generation parameters.

Sample character models derived from the procedure above are provided in Table 7. Table 8 illustrates the result of applying these models of character to a different story domain, SpyFeet (Reed et al., 2011), and shows some of the variation that we are currently able to produce. We wanted to test the character models and mappings as described above. The simplest way to do this is to ask human participants to rate a set of utterances produced using different models in terms of their similarity of linguistic style to the mimicked character. This is carried out in (Walker et al., 2011). We use six film characters for this study: Alvy and Annie from Annie Hall, Indy and Marion from Indiana Jones - Raiders of the Lost Ark, and Mia and Vincent from Pulp Fiction.

For each film character model, we generate a page showing the user (1) selected original film scenes with dialogue for each character; and (2) all of the generated utterances using all of the film character models. Then we ask users to judge on a scale of 1...7 how similar the generated utterance is to the style of the film character as illustrated in the three scenes. Users are instructed to use the whole scale, and thus effectively rank the generated utterances for similarity to the film character.
We would like to augment our current corpus with dialogue from long running television series. This would allow us to collect enough dialogue to learn very detailed models.

With scripts from television series, we could also investigate whether the same character, when scripted by different authors as often happens in a television series, differs stylistically and to what degree.

Additionally, we would like to more thoroughly evaluate the accuracy of our automatically generated annotations. For the purposes of our initial generation experiments, precise annotation was not essential, however this data would be valuable for future work and for anyone wishing to use our corpus.

5. Conclusion

We have presented a new annotated corpus of film dialogue and how we have used it to learn character models for generating expressive dialogue. In our perceptual study using generated utterances from these character models, we found that subjects were able to discern similar personality traits between original film dialogue and generated dialogue for another domain.

We believe that our current work on identifying character styles in film, as well as our continuing work on expressive dialogue generation, take important steps towards building tools to assist in the creative process which will help alleviate the authoring bottleneck for content rich applications such as interactive stories. These techniques could also be applied to other domains, such as task-oriented dialogue systems or recommender systems. We hope that by releasing our film corpus, we may enable others to explore the possibilities in their respective domains of interest. Our corpus will be released at http://nlds.soe.ucsc.edu/software.

6. References

E. André, T. Rist, S. van Mulken, M. Klesen, and S. Baldes. 2000. The automated design of believable dialogues for animated presentation teams. In J. Sullivan S. Prevost J. Cassell and E. Churchill, editors, Embodied conversational agents, pages 220–255. MIT Press, Cambridge, MA.

P. Brown and S. Levinson. 1987. Politeness: Some universals in language usage. Cambridge University Press.

M. Cavazza and F. Charles. 2005. Dialogue generation in character-based interactive storytelling. In AAAI First Annual Artificial Intelligence and Interactive Digital Entertainment Conference, Marina del Rey, California, USA.

M.A. Faber and J.D. Mayer. 2009. Resonance to archetypes in media: There’s some accounting for taste. Journal of Research in Personality, 43(3):307 – 322.

E.N. Forsyth and C.H. Martell. 2007. Lexical and discourse analysis of online chat dialog. IEEE Computer Society.

A. Furnham. 1990. Language and personality. In H. Giles and W. Robinson, editors, Handbook of Language and Social Psychology. Winley.

S. Gupta, M.A. Walker, and D.M. Romano. 2007. How rude are you?: Evaluating politeness and affect in interaction. In Proceedings of ACL, pages 203–217.

B. Hayes-Roth and L. Brownston. 1994. Multiagent collaboration in directed improvisation. Technical Report
KSL 94-69, Knowledge Systems Laboratory, Stanford University.

M.E. Ireland and J.W. Pennebaker. 2011. Authors’ gender predicts their characters’ language. In submission.

L. Johnson, R. Mayer, E. André, and M. Rehm. 2005. Cross-cultural evaluation of politeness in tactics for pedagogical agents. In Proceedings of the 12th International Conference on Artificial Intelligence in Education (AIED).

G.I. Lin and M.A. Walker. 2011. All the world’s a stage: Learning character models from film. In Proceedings of the Seventh AI and Interactive Digital Entertainment Conference, AIIDE ’11. AAAI.

S. Louchart, R. Aylett, J. Dias, and A. Paiva. 2005. Unscripted Narrative for affectively driven characters. Proc. First International conference on Artificial Intelligence and Interactive Digital Media.

F. Mairesse and M.A. Walker. 2010. Towards personality-based user adaptation: psychologically informed stylistic language generation. User Modeling and User-Adapted Interaction, pages 1–52.

F. Mairesse and M.A. Walker. 2011. Controlling user perceptions of linguistic style: Trainable generation of personality traits. Computational Linguistics.

F. Mairesse, M.A. Walker, M.R. Mehl, and R.K. Moore. 2007. Using linguistic cues for the automatic recognition of personality in conversation and text. Journal of Artificial Intelligence Research (JAIR), 30:457–500.

M. Mateas and A. Stern. 2003. Façade: An experiment in building a fully-realized interactive drama. In Proceedings of the Game Developers Conference, Game Design track.

M. Mateas. 2007. The authoring bottleneck in creating AI-based interactive stories. In Proceedings of the AAAI 2007 Fall Symposium on Intelligent Narrative Technologies.

B.W. Mott and J.C. Lester. 2006. U-director: a decision-theoretic narrative planning architecture for storytelling environments. Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems, pages 977–984.

J.H. Murray. 1997. Hamlet on the Holodeck: The Future of Narrative in Cyberspace. The Free Press New York, NY, USA.

J.W. Pennebaker and L.A. King. 1999. Linguistic styles: Language use as an individual difference. Journal of Personality and Social Psychology, 77:1296–1312.

P. Piwek. 2003. A flexible pragmatics-driven language generator for animated agents. In Proceedings of Annual Meeting of the European Chapter of the Association for Computational Linguistics (EACL).

A. Reed, B. Samuel, A. Sullivan, R. Grant, A. Grow, J. Lazaro, J. Mahal, S. Kurniawan, M. Walker, and N. Wardrip-Fruin. 2011. A step towards the future of role-playing games: The spyfeet mobile rpg project. In Proc. of the Seventh AIIDE Conf., AAAI.

J. Rowe, E. Ha, and J. Lester. 2008. Archetype-Driven Character Dialogue Generation for Interactive Narrative. In Intelligent Virtual Agents, pages 45–58. Springer.

D. Thue, V. Bulitko, M. Spetch, and T. Romanuik. 2010. Player Agency and the Relevance of Decisions. Interactive Storytelling, pages 210–215.

M.A. Walker and O. Rambow. 2002. Spoken language generation. Computer Speech and Language. Special Issue on Spoken Language Generation, 16(3-4):273–281.

M.A. Walker, J.E. Cahn, and S.J. Whittaker. 1997. Improving linguistic style: Social and affective bases for agent personality. In Proceedings of the 1st Conference on Autonomous Agents, pages 96–105.

M.A. Walker, R. Grant, J. Sawyer, G.I. Lin, N. Wardrip-Fruin, and M. Buell. 2011. Perceived or Not Perceived: Film character Models for Expressive NLG. In Interactive Storytelling: Fourth Joint Conference on Interactive Digital Storytelling, ICIDS 2011.

N. Wang, W. Lewis Johnson, R.E. Mayer, P. Rizzo, E. Shaw, and H. Collins. 2005. The politeness effect: Pedagogical agents and learning gains. Frontiers in Artificial Intelligence and Applications, 125:686–693.