Solar neutrino detectors as sterile neutrino hunters

To cite this article: Marco Pallavicini et al 2017 J. Phys.: Conf. Ser. 888 012018

View the article online for updates and enhancements.

Related content
- Radiochemical solar neutrino experiments, successful and otherwise
 Richard L Hahn
- The neutrino hunter
 Koichiro Nishikawa
- The detection of neutrino interactions in the emulsion/lead target of the OPERA experiment
 N Agafonova, A Anokhina, S Aoki et al.
Solar neutrino detectors as sterile neutrino hunters

Marco Pallavicini
Dipartimento di Fisica dell’Università di Genova - via Dodecaneso 33, I-16146 Genova, Italy
E-mail: marco.pallavicini@ge.infn.it

on behalf of the Borexino-SOX Collaboration:

M. Agostinia, K. Altenmüllerb,ad, S. Appelb, V. Atroshchenkoc,
G. Bellinid, J. Benzigere, N. Bertonad, D. Bickf, G. Bonfinig,
D. Bravoh, B. Caccianigad, F. Calapriceg, A. Caminataa, M. Carlinig,
P. Cavalcanteh,gi, A. Chepurnovh, K. Choii, O. Clouéad, M. Cribierad,
D. D’Angelog, S. Daviniaj, A. Derbinc, L. Di Notod, I. Drachevav,
M. Dureroad, A. Etenkoc, S. Farinouj, V. Fischerad, K. Fomenkoo,
D. Francom, F. Gabrieleg, J. Gaffiotad, C. Galbiatii,
M. Gschwenderaf, C. Ghianoi, M. Giannamarchii, M. Goeger-Neffa,
A. Gorettii, M. Gromovk, C. Hagnerf, Th. Houdym,ad,
E. Hungerforda, Aldo Iannig, Andrea Iannia, A. Janyd,
K. Jedrzejczakd, D. Jeschkeb, N. Jonquèresac, V. Kobychevv,
D. Korableva, G. Korgab, V. Kornoukhovmgs, D. Krynm,
T. Lachenmaieraf, T. Lasserread, M. Laubensteinb, B. Lehnerta,
J. Linkh, E. Litvinovichcd, F. Lombardig, P. Lombardid,
L. Ludhovaaw, G. Lukyanchenkoc, I. Machulinic, r, S. Maneckiw, h,
W. Maneschga, S. Marcoccii, J. Maricic, G. Mentionad, E. Meronid,
M. Meyerf, L. Miramontid, M. Misiaszekda, d, M. Montuschiv,
F. Mosteirob, V. Muratovav, R. Musenichb, B. Neubaur,d
L. Oberauerb, F. Orticac, L. Pappb, A. Pocara, aa, G. Ranuccid,
A. Razetog, A. Red, Y. Reinertad, A. Romanib, R. Roncinm, d,
N. Rossig, S. Schönerb, L. Scaload, D. Semenovm, M. Skorokhvatovdr, c,
O. Smirnovo, A. Sotnikovo, Y. Suvorovak, c, R. Tartagliaa, G. Testeraa,
J. Thurna, M. Toropovac, E. Unzhakova, C. Veyssiéread,
A. Vishnevao, M. Vivierad, R.B. Vogelaarb, F. von Feilitzschb, H. Wangab,
S. Weinzc, J. Winterac, c, M. Wojcikg, M. Wurmae, Z. Yokleyh,
O. Zaimidorogaa, S. Zavatarellil, K. Zubera, G. Zuzela
a) Gran Sasso Science Institute (INFN), 67100 L’Aquila, Italy
b) Physik-Department and Excellence Cluster Universe, Technische Universität München, 85748 Garching, Germany
c) National Research Centre Institute, 123182 Moscow, Russia
d) Dipartimento di Fisica, Università degli Studi e INFN, 20133 Milano, Italy
e) Chemical Engineering Department, Princeton University, Princeton, NJ 08544, USA
f) Institut für Experimentalphysik, Universität, 22761 Hamburg, Germany
g) INFN Laboratori Nazionali del Gran Sasso, 67010 Assergi (AQ), Italy
h) Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
i) Physics Department, Princeton University, Princeton, NJ 08544, USA
j) Dipartimento di Fisica, Università degli Studi e INFN, Genova 16146, Italy
k) Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, 119234 Moscow, Russia
l) Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA
m) AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris Cedex 13, France
n) St. Petersburg Nuclear Physics Institute NRC Kurchatov Institute, 188350 Gatchina, Russia
o) Joint Institute for Nuclear Research, 141980 Dubna, Russia
p) Department of Physics, University of Houston, Houston, TX 77204, USA
q) M. Smoluchowski Institute of Physics, Jagiellonian University, 30059 Krakow, Poland
r) Institute for Nuclear Research, 03680 Kiev, Ukraine
s) Department of Physics, Technische Universität Dresden, 01062 Dresden, Germany
t) National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
u) IKP-2 Forschungszentrum Jülich, 52428 Jülich, Germany
v) RWTH Aachen University, 52062 Aachen, Germany
w) Physics Department, Queen’s University, Kingston ON K7L 3N6, Canada
x) Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
y) Dipartimento di Fisica e Scienze della Terra Università degli Studi di Ferrara e INFN, Via Saragat 1-44122, Ferrara, Italy
z) Dipartimento di Chimica, Biologia e Biotecnologie, Università e INFN, 06123 Perugia, Italy
aa) Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, MA 01003, USA
ab) Physics and Astronomy Department, University of California Los Angeles (UCLA), Los Angeles, California 90095, USA
ac) Institute of Physics and Excellence Cluster PRISMA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
ad) Commissariat à l’Energie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette, France
ae) Commissariat à l’Energie Atomique et aux Énergies Alternatives, Centre de Saclay, DEN/DMS2/SEMT/BCCR, 91191 Gif-sur-Yvette, France
af) Kepler Center for Astro and Particle Physics, Universität Tübingen, 72076 Tübingen, Germany
ag) Institute for Theoretical and Experimental Physics, 117218 Moscow, Russia

Abstract. The large size and the very low radioactive background of solar neutrino detectors such as Borexino at the Gran Sasso Laboratory in Italy offer a unique opportunity to probe the existence of neutrino oscillations into new sterile components by means of carefully designed and well calibrated anti-neutrino and neutrino artificial sources. In this paper we briefly summarise the key elements of the SOX experiment, a program for the search of sterile neutrinos (and other short distance effects) by means of a 144Ce-144Pr anti-neutrino source and, possibly in the medium term future, with a 51Cr neutrino source.

1. Introduction

Neutrinos have often been the object of important discoveries, - and sometimes of truly unexpected results -, since the theoretical prediction of their existence in the 30’s. The impressive sequence of measurements made by solar [1][2][3][4][5], atmospheric [6], reactor [7] and accelerator experiments [8][9][10] (complemented by pivotal theoretical and global analysis efforts, which have been crucial for the correct interpretation of the data, see e.g. [11] [12]) have proved that neutrino masses are tiny but not zero, have measured the three mixing angles, and
have established that neutrinos in matter exhibit resonant oscillations and flavour regeneration similar to $K_0 - \bar{K}_0$ regeneration in the quark sector. Matter oscillations [13] are crucial for the understanding of the suppression of solar neutrino flux and will be beneficial for next generation oscillation experiments aiming at the mass hierarchy determination and the search of CP violation.

The standard three neutrino scenario established by oscillation experiments is still incomplete. We do not know the size of the Dirac CP-violating phase and therefore the relevance of CP violation in the lepton sector, a parameter which might control far reaching cosmological consequences; we lack the knowledge of the neutrino mass hierarchy, whose importance is particularly relevant for next generation neutrino-less double beta decay experiments and for the construction of flavour-mass models; last, but surely not least, we do know whether neutrinos are truly neutral (Majorana) particles or Dirac fermions like all other fermions in the standard model. Future generation experiments like T2K, Nova, JUNO, ORCA, DUNE and all forthcoming neutrino-less double beta decay experiments will try to complete the picture.

A few experimental facts, however, seems to sing out of tune. The LSND collaboration in Los Alamos has published in 2001 [14] the observation of an excess of electron type anti-neutrino events in a beam obtained from stopping positive muons. The result is completely incompatible with the standard three flavours scenario mentioned above. Besides, a relatively recent reanalysis of calibration data of Gallium based solar neutrino experiments [15] obtained by means of 51Cr and 36Ar radioactive sources [16] and a new determination of reactor neutrino fluxes [17] indicate that short distance oscillation experiments with L/E of the order of one m/MeV yield systematically lower counting rates. These facts have led many authors to consider the hypothesis that these deficits are due to the existence of low mass (i.e. eV scale) sterile neutrinos mixed with standard neutrinos, although no simple theoretical model seems to be able to accomodate all results.

Some recent experimental results have strongly reduced the allowed parameter space for a single sterile neutrino [18]. However, it should be underlined that a single confirmed anomaly is sufficient to claim the failure of the Standard Model, so a thorough experimental assessment of the situation is mandatory. It is therefore highly desirable to test the existence of short distance neutrino oscillation anomalies in a clear and unambiguous way.

Existing large size ultra-pure solar neutrino detectors offer a unique opportunity to perform such a test. In particular, the Borexino experiment has developed the cleanest existing liquid scintillator detector ever built so far, and it has demonstrated the capability to measure both neutrino and anti-neutrino fluxes with extremely low background, good energy resolution, and good position reconstruction resolution.

In the following, we show that an experiment made with a well calibrated anti-neutrino or neutrino source located a short distance from Borexino or from a similar liquid scintillator detector may probe the reactor and gallium anomalies in a clear way, either confirming the existence of short distance neutrino oscillation anomalies or discarding this hypothesis down to mixing angles of the order of 10^{-2} with δm^2 of the order of 0.05 - 10 eV2. Future large volume detector, such as e.g. JUNO, could very easily go much further, probing the existence of oscillations even with mixing angles as small as a few 10^{-4} δm^2 of the order of 0.01 eV2 or less.

2. The Borexino detector and the SOX experiment

As an example of the concept outlined, we describe here the only approved experiment of this kind, the SOX experiment (Short distance neutrino Oscillations with BoreXino) at the Laboratori Nazionali del Gran Sasso in Italy.

Borexino, a large volume ultra-pure liquid scintillator detector, has recently measured several low energy solar neutrino components [5] [19] [20] and has performed the first un-ambiguous detection of geophysical $\bar{\nu}_e$ [21]. Because of its extremely low background, even the tiny signal
Figure 1. Layout of the SOX experiment. The 144Ce-144Pr anti-neutrino source will be located beneath the Borexino detector in a special tunnel foreseen at the time of construction. The source will be nominally at 8.502 m from the center of the liquid scintillator core. The large Borexino size and the good spatial resolution (about 12 cm for anti-neutrino events) will allow oscillation waves detection from 3.5 to 12.5 m from the source.

of pep [19] and pp [20] solar ν_e could be observed. These features, together with its large radius (up to 11 m of active diameter with $\bar{\nu}_e$), a good light collection (about 500 p.e. / MeV) and a
good spatial resolution ($\sigma=12$ cm at 1 MeV) make Borexino a perfect environment for a short distance oscillation experiment.

SOX will be carried out by using, in a first instance, a 144Ce–144Pr anti-neutrino source with a total activity of about 150 kCi deployed at 8.25 m from the center of the Borexino detector (see Fig. 1). The large size of the scintillator volume (contained in a nylon vessel of 4.25 m radius immersed and floating in a 6.85 m radius Stainless Steel Sphere) allows the detection of the order of a few 10^4 events and, even more important, the direct detection of hypothetical oscillations waves, as described in [22][23]. This feature is what makes SOX rather unique compared to other disappearance experiments made close to reactors or with neutrino beams.

The 144Ce–144Pr $\bar{\nu}_e$ source, first proposed in [23], can be made by extracting Ce from exhausted nuclear fuel and by pressing CeO_2 powder within a properly designed stainless steel capsule. A few % of the Ce powder will be made of 144Ce, but a few g of 144Ce suffice to provide the necessary activity, so the total amount of Ce powder is of the order of 1 kg. The capsule is then sealed according to international regulations for the use and transportation of radioactive materials and inserted into a very thick W container (minimum thickness 19 cm) to virtually stop all unwanted radiation (mainly γs). Stringent requirements are put on the purity of the CeO_2 purity to limit the emission of neutrons. The source will be manufactured by the PA Mayak company in Russia and delivered to Gran Sasso by means of a special container certified for the transportation of high activity radioactive materials. Transportation from the manufacturing site in Russia will happen by train to St. Petersbourg, by ship to France, and then by truck from France to Gran Sasso.

Right beneath the Borexino detector, there is a cubical pit (side 105 cm) accessible through a small squared tunnel (side 95 cm) that was built at the time of construction with the purpose of housing possible neutrino sources. The existence of this tunnel is one of the reasons why SOX can be performed with no changes to the Borexino layout. The tunnel will be continuously ventilated and during data taking the source will be kept at constant temperature by means of a carefully controlled water cooling system to avoid transfer of heat from the source itself to the Borexino scintillator, whose extremely low background is known to be very sensitive to temperature variation, which triggers convection flows.

SOX will be at the same time a standard neutrino disappearance experiment and an innovative experiment for the direct detection of oscillation waves. The 144Ce–144Pr $\bar{\nu}_e$ source will be precisely calibrated (at 1% level or better) by measuring with a high accuracy thermal calorimeter the heat released by the source [24]. Neutrino oscillations to invisible components (e.g. sterile neutrinos) effectively modulates the distribution of the events within the detection volume in a way that can unambiguously prove the existence of such oscillations. Fig. 2 (below) shows (dashed line) the sensitivity obtained by means of this model independent and intensity independent approach, while the same figure above shows the very specific dependence of the event count rate from the distance from the source and from the anti-neutrino energy. Such a pattern may prove the existence of oscillations beyond any reasonable doubt. The 144Ce–144Pr $\bar{\nu}_e$ energy spectrum, particularly above the 1.8 MeV inverse beta decay threshold will be measured with dedicated experiments. This is important to be able to translate the calorimetric measurement into an uncertainty on the anti-neutrino flux above detection threshold and take properly into account the spectral shape of the emitted anti-neutrino. This ancillary measurement is not easy at all and is an important aspect of the project but we have no space here to cover this matter. Taking into account an additional global error of 1.5% due to liquid scintillator fiducial volume determination, a precise disappearance experiment becomes possible, yielding a combined sensitivity to a single sterile neutrino oscillations parameters shown as solid curve in Fig. 2. For more details see also [22][23].

The delivery of the source at Gran Sasso is currently foreseen for January 2018 and data taking will continue for 18 months, so first physics results will arrive in late 2018 or 2019.
Figure 2. Above: the count rate distribution as a function of the distance from the anti-neutrino source and as a function of the energy. The existence of a single sterile neutrino mixed with electron anti-neutrinos could be clearly proved by the observation of such oscillations. Below: the sensitivity of the SOX experiment compared to the allowed region of the reactor anomaly. The blue, red and black bands show the sensitivity intervals for waves analysis only (blue), rate analysis only (red) and combined waves+rate analysis (black). For each band, the rightmost curve corresponds to a source activity of 100 kCi while the left-most curve corresponds to 150 kCi. The discovery power of the experiment if the reactor anomaly is indeed due to neutrino oscillations to sterile components is quite clear, being the wave analysis an essentially model independent and quite unique approach.
The SOX project includes as well a neutrino program by means of a 51Cr source similar to that used in the 90s by the Gallex and SAGE collaborations. The enriched 50Cr metal is available in Italy and a feasibility study is in progress to understand whether there is a viable way to irradiate the material and deliver to Gran Sasso a 2-4 MCi source. This part of the project is currently not funded and will be considered after the completion of the 144Ce-144Pr anti-neutrino phase and the results of other sterile neutrino experiments.

The source technique could be adopted by other large volume liquid scintillator detectors, such as SNO+ or JUNO. The latter in particular, thanks to its huge size and high energy and position reconstruction resolution, might in principle perform an experiment one or two orders of magnitude better than SOX, despite the large background induced by the relatively close nuclear reactors.

Acknowledgements

The author wishes to thank the INFN and the Laboratori Nazionali del Gran Sasso for their continual support to the SOX project. A special thank also to CEA-Saclay for their crucial role in the development of the Ce-144 anti-neutrino source, and to all members of the Borexino collaboration for their active role in the development of the project. The SOX project is funded by the European Research Council project ERC-Adv 320873, P.I. Marco Pallavicini. Finally, the author is grateful to the organisers of the Neutrino 2016 conference for their kind hospitality in London.

References

[1] B. T. Cleveland et al., Astroph. J. , 496 (1998) 505-526
[2] P. Anselmann et al. (Gallex Collaboration) Phys. Lett. B285 (1992) 376-389; J. N. Abdurashitov et al. (SAGE Collaboration), Phys. Lett. B328 (1994) 234-248
[3] S. Fukuda et al. (Super-Kamiokande-I Collaboration) Phys. Lett. B539 (2002) 179-187
[4] Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 87 (2001) 071301; Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 89 (2002) 011301
[5] C. Arpesella et al. (Borexino Collaboration), Phys. Lett. B 658 (2008) 101; G. Bellini et al. (Borexino Collaboration) Phys. Rev. Lett. 107 (2011) 141302; G. Bellini et al. (Borexino Collaboration) Phys. Rev. D89 (2014) 112007
[6] Y. Fukuda et al. (Super-Kamiokande-I Collaboration) Phys. Rev. Lett. 81 (1998) 1562-1567
[7] K. Eguchi et al. (KamLAND Collaboration) Phys. Rev. Lett. 90 (2003) 021802
[8] P. Adamson et al. (MINOS Collaboration) Phys. Rev. Lett. 107 (2011) 181802; D.G. Michael et al. (MINOS Collaboration) Phys. Rev. Lett. 97 (2006) 191801
[9] K. Abe et al. (T2K Collaboration) Phys. Rev. Lett. 112 (2014) 061802; K. Abe et al. (T2K Collaboration) Phys. Rev. Lett. 112 (2014) no.18, 181801
[10] N. Agafonova et al. (OPERA Collaboration) Phys. Rev. Lett. 115 (2015) no.12, 121802
[11] J. N. Bahcall et al., Astrophys. J. 555 (2001) 990-1012
[12] G. L. Fogli et al. Phys. Rev. D59 (1999) 033001; G.L. Fogli et al., Phys. Rev. D86 (2012) 013012
[13] L. Wolfenstein, Phys. Rev. D17 (1978) 2369; L. Wolfenstein, Phys. Rev. D20 (1978) 2634; S.P. Mikheyev and A.Y. Smirnov Sov. J. Nucl. Phys. 42 (1985) 1913; S.P. Mikheyev and A.Y. Smirnov Nuovo Cim. 9C (1986) 17
[14] A. Aguilar et al. (LSND Collaboration) Phys. Rev. D64 (2001) 112007
[15] C. Giunti and M. Laveder, Phys. Rev. C 83 (2011) 065504
[16] W. Hampel et al. (Gallex Collaboration) Phys. Lett. B420 (1998) 114-126
[17] G. Menzione et al., Phys. Rev. D 83 (2011) 073006
[18] M. G. Aartsen et al. (IceCube Collaboration) Phys. Rev. Lett. 117 (2016) 071801
[19] G. Bellini et al. (Borexino Collaboration) Phys. Rev. Lett. 108 (2012) 051302
[20] G. Bellini et al. (Borexino Collaboration), Nature 512 (2014) 383.
[21] G. Bellini et al. (Borexino Collaboration) Phys. Lett. B687 (2010) 299.
[22] G. Bellini et al., (Borexino Collaboration) JHEP 08 (2013) 038
[23] M. Cribier et al., Phys. Rev. Lett. 107 (2011) 201801
[24] paper in preparation