Genetic and Proteomic Characterization of rpoB Mutations and Their Effect on Nematicidal Activity in Photorhabdus luminescens LN2

Xuehong Qiu, Xun Yan, Mingxing Liu, Richou Han*

Guangdong Entomological Institute, Guangzhou, Guangdong, China

Abstract

Rifampin resistant (RifR) mutants of the insect pathogenic bacterium Photorhabdus luminescens LN2 from entomopathogenic nematode Heterorhabditis indica LN2 were genetically and proteomically characterized. The RifR mutants showed typical phase one characters of Photorhabdus bacteria, and insecticidal activity against Galleria mellonella larvae, but surprisingly influenced their nematicidal activity against axenic infective juveniles (IJs) of H. bacteriophora H06, an incompatible nematode host. 13 out of 34 RifR mutants lost their nematicidal activity against H06 IJs but supported the reproduction of H06 nematodes. 7 nematicidal-producing and 7 non-nematicidal-producing RifR mutants were respectively selected for rpoB sequence analysis. rpoB mutations were found in all 14 RifR mutants. The rpoB (P564L) mutation was found in all 7 mutants which produced nematicidal activity against H06 nematodes, but not in the mutants which supported H06 nematode production. Allelic exchange assays confirmed that the Rif-resistance and the impact on nematicidal activity of LN2 bacteria were conferred by rpoB mutation(s). The non-nematicidal-producing RifR mutant was unable to colonize in the intestines of H06 IJs, but able to colonize in the intestines of its indigenous LN2 IJs. Proteomic analysis revealed different protein expression between wild-type strain and RifR mutants, or between nematicidal-producing and non nematicidal-producing mutants. At least 7 putative proteins including DsbA, HlpA, RhlE, RplC, NamB (a protein from T3SS), and 2 hypothetical proteins (similar to unknown protein YgdH and Yggc of Escherichia coli respectively) were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes. This hypothesis was further confirmed by creating insertion-deletion mutants of three selected corresponding genes (the downregulated rhlE and namB, and upregulated dsbA). These results indicate that the rpoB mutations greatly influence the symbiotic association between the symbionts and their entomopathogenic nematode hosts.

Introduction

Rifampin (Rif), first introduced in 1972 as an antitubercular drug, was initially extremely effective against Mycobacterium tuberculosis, and other bacteria [1–2]. With its widespread and extended use, the number of bacterial isolates resistant to Rif has increased. Most Rif-resistance mutations in M. tuberculosis as well as in Escherichia coli and Staphylococcus aureus were conferred by a set of restrictive mutations in the rpoB gene, which encoded the β-subunit of RNA polymerase (RNAP) in bacteria [3–4]. DNA-dependent RNAP, which contains an essential catalytic core enzyme (α2ββ′α′) and one of the sigma (σ) factors, is the central enzyme for expression of genomic information in all organisms. Rif inhibits transcription initiation by blocking the σ70 subunit of bacterial RNAP [5–6]. E. coli rpoB mutations that suppress the auxotrophy due to lack of stringent response were demonstrated to affect the transcription of stringently controlled genes by destabilizing the RNAP-stable RNA promoter complex [7]. The Rif resistant (RifR) M. tuberculosis mutations of the rpoB gene were found in nearly 95% of clinical isolates [4]. Most of the mutations were located from nucleotides 1276 to 1356 (codon 432–458 in M. tuberculosis rpoB gene and codon 307–333 in E. coli rpoB gene). An 81 bp core region was called the Rif resistance determining region (RRDR) of rpoB [8–10]. However, a significant number of RifR mycobacteria with no mutations in the rpoB gene have been isolated from different clinical samples [11–14]. A 191A/C mutation in the Rv2629 gene was reported to be significantly associated with Rif-resistance in M. tuberculosis [15]. Recently, it was reported that the K1 uptake regulator TrkA played an important role in intrinsic and acquired antibiotic resistance in mycobacteria [16]. Besides Rif-resistance, the rpoB mutation (Δ621E) conferred dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus [17], but most rpoB mutations were involved in reduced vancomycin susceptibility [18]. It suggested that different rpoB mutations may have different effect on bacteria.

Photorhabdus and Xenorhabdus bacteria belonging to the Enterobacteriaceae are symbiotically associated respectively with entomopathogenic Heterorhabditis and Steinernema nematodes, which are used as a commercial bioinsecticide for many economically important insect pests [19]. The association between the
Characterization of Mutants and Wild-type Bacterial Strain

Colonial Characterization of the Mutants and Wild-type Bacterial Strain

Colonization was determined on LB1 agar, NBTA, and MacConkey agar plates. pH-sensitive pigment production in LB1 was determined by addition of 1 M NaOH or 1 M HCl. Tests for the production of antibiotic substances were conducted as previously described [48], using Bacillus subtilis as test organism, and scored positive when a growth inhibition zone of >3 mm was measured around the P. luminescens colonies at 96 h after inoculation of the overlay culture. Bioluminescence was observed by dark-adapted eyes in a dark room. Cell morphology was observed microscopically. Catalase activity was tested by introducing 0.1 ml 3% hydrogen peroxide into the bacterial cultures and observing the release of oxygen. For all assays, both wide-type and mutant colonies were characterized on the same agar plate ad positive and negative controls. At least three plates for each medium were established.
Plasmid DNA preparation, extraction of genomic DNA, restriction enzyme digestions, and ligations were carried out as previously described [49]. Restriction enzymes (Promega, USA) and T4 ligase (Novagen, Germany) were used according to the manufacturer’s instructions. Plasmids were extracted from *E. coli* with QIAprep Spin Miniprep kit (Qiagen, Netherlands). When required, DNA fragments were extracted and purified from agarose gels using E.Z.N.A.™ Gel Extraction kit (Omega, USA). The genomic DNA was isolated from *P. luminescens* bacteria using E.Z.N.A.™ Bacterial DNA Kit (Omega).

Table 1. Bacterial strains and plasmids used in this study.

Strain/plasmid	Description, relevant characteristics	Reference or source
Photorhabdus luminescens strains		
LN2/LN2-W	Wild-type isolate from host nematode H. indica LN2	Ralf-Udo Ehlers
LN2-R1—LN2-R34	Spontaneous RifR mutant of wild-type strain LN2; RifR	This study
LN2-A	Spontaneous AmpR mutant of wild-type strain LN2; AmpR	This study
LN2-M1	Tn5 insertion mutant of LN2; AmpR, KmR	[41]
H06	Wild-type isolate from host nematode H. bacteriophora H06	Laboratory stock
HNA	Wild-type isolate from host nematode H. megidis HNA	Dr Wim Wouts
LN2-WΔrpoB-LR31	LN2-W containing the mutant rpoB allele from LN2-R31	This study
LN2-R31ΔrpoB-LW	LN2-R31 containing the wild-type rpoB allele from LN2-W	This study
LN2ΔrhlE	LN2-A rhlE::Cm	This study
LN2ΔnamB	LN2-A namB::Cm	This study
LN2ΔdsbA	LN2-A dsbA::Cm	This study
Escherichia coli strains		
DH5α	Host of plasmids	TaKaRa
S17-1 (ispI)	*E. coli* lysogenized with ispI, replication of ori R6K	[51]
TOP10	Cloning strain	Invitrogen
Plasmids		
pMini-Tns	oriT, oriR6K, delivery plasmid for mini-Tns; KmR	[52]
pCR4-TOPO	Cloning vector; AmpR, KmR	Invitrogen
pMD-18T	Cloning vector; AmpR	TaKaRa
pMD-19T	Cloning vector; AmpR	TaKaRa
pUC19-egfp	pUC19 carrying egfp; AmpR	Laboratory stock
pMD-egfp	pMD-18T carrying ribosome binding site and egfp gene; AmpR	This study
pMD-lac-egfp	pMD-19T carrying ribosome binding site, lacZ promoter and egfp gene; AmpR	This study
pMini-lac-egfp	pMini-Tns carrying a NotI fragment containing ribosome binding site, lacZ promoter and egfp gene; KmR	This study
pPHU281	lacZ' mob(RP4), TcR derivative of pUC18 with oriT	[50]
pPHU281ΔrpoB-LW	pPHU281 carrying a BamHI-PstI fragment containing rpoB gene from wild-type strain of *P. luminescens* LN2	This study
pPHU281ΔrpoB-LR31	pPHU281 carrying a BamHI-PstI fragment containing rpoB gene from RifR mutant of *P. luminescens* LN2	This study
pNG101	R6K Ori, sacB, SmR	[56]
pNG101ΔrhlE::Cm	pNG101 carrying a rhlE::Cm fragment, SmR, KmR	This study
pNG101ΔnamB::Cm	pNG101 carrying a namB::Cm fragment, SmR, KmR	This study
pNG101ΔdsbA::Cm	pNG101 carrying a dsbA::Cm fragment, SmR, KmR	This study

DNA Manipulation

Plasmid DNA preparation, extraction of genomic DNA, restriction enzyme digestions, and ligations were carried out as previously described [49]. Restriction enzymes (Promega, USA) and T4 ligase (Novagen, Germany) were used according to the manufacturer’s instructions. Plasmids were extracted from *E. coli* with QIAprep Spin Miniprep kit (Qiagen, Netherlands). When required, DNA fragments were extracted and purified from agarose gels using E.Z.N.A.™ Gel Extractio kit (Omega, USA). The genomic DNA was isolated from *P. luminescens* bacteria using E.Z.N.A.™ Bacterial DNA Kit (Omega).

Mutation Analysis of the rpoB Gene from Different Strains

To examine the rpoB sequence from the RifR mutants and wild-type strain (LN2-W), together with a spontaneous AmpR mutant LN2-A and the namA mutant LN2-M1 [41], the gene was amplified from the genomic DNA of different strains, by PCR with PfuUltra™ II Fusion HS DNA Polymerase (Stratagene, Germany), using the primers rpoB-BamHI-F (5’-GCTGGATC-CATGGTTTACTCCTATACCGAG-3’) and rpoB-PstI-R (5’-GCATGAGTTATTCGTCTTCCCAGTGCGATG-3’). The amplified gene was cloned into pCR4-TOPO vector (Invitrogen, USA), and transformed into *E. coli* TOP10 (Invitrogen). DNA sequencing was performed by Invitrogen Trading (Shanghai) Co. Ltd. All strains were sequenced at least twice. The sequence data of the rpoB gene were assembled and analyzed with DNAstar and CLUSTAL W program. The rpoB sequence data from wild-type strain of *P. luminescens* LN2 has been submitted to the GenBank database under accession number (JN177303).

Allelic Exchange Mutagenesis of the rpoB Gene

The plasmids of pCR4-TOPO-rpoB-LW and pCR4-TOPO-rpoB-LR31 containing corresponding rpoB genes from LN2-W and LN2-R31, were digested with BamHI (GGATCC) and PstI (GCATGAGTTATTCGTCTTCCCAGTGCGATG).
(CTGCAG), respectively. The resulting rpob fragments were purified and ligated into the suicide vector pPHU281 [50] digested with BamHI and PsI to yield plasmids pPHU281-rpob-LW and pPHU281-rpob-LR31. The resulting plasmids were transferred into E. coli S17-1 (lpir) [51]. Strains LN2-WΔrpob-LR31 (LN2-W containing the mutant rpob allele from LN2-R31) and LN2-R31Δrpob-LW (LN2-R31 containing the wild type rpob allele from LN2-W) were created by allelic exchange with pPHU281-rpob-LR31 and pPHU281-rpob-LW, respectively, using biparental mating method. RifR.AmpR.TcS exconjugants of LN2-WΔrpob-LR31 and RifS.AmpR.TcS exconjugants of LN2-R31Δrpob-LW were selected on LB1 agar plates with appropriate antibiotics. The exconjugants had undergone allelic exchange and lost the wild-type or mutated copy of rpob and the plasmid vehicle. The mutants were verified for the presence of the appropriate rpob allele by sequencing rpob gene as described above. The resulting confirmed allelic exchange mutants were determined for the nematicidal activities against the IJs of H06 as described above.

Table 2. rpob mutations of the RifR mutants and their effect on H06 nematode growth.

Bacterial mutants	Nucleotide change	Amino acid change	Effect on the growth of H06 nematodes
LN2-R2	G436T	V146F	+
LN2-R6			
LN2-R12	C938A	A313D	+
	C1585T	R529C	
LN2-R28	C1535T	S512F	
LN2-R33	C1537A	Q513K	+
LN2-R3	C1691T	P564L	
LN2-R7			
LN2-R11			
LN2-R16			
LN2-R25			
LN2-R5	C521T	A174V	-
	C1691T	P564L	
LN2-R8	C826T	Q276*	-
	C1691T	P564L	
LN2-A	No change	No change	
LN2-M1	No change	No change	

* Nematode production;
+ No nematode production and nematode died after 7 days;
2 No nematode production and nematode died after 7 days;
*stop code.
doi:10.1371/journal.pone.0043114.t002

Insecticidal Injection Assays

To check the insecticidal activity of the RifR mutants, the wild-type strain and RifR mutants of P. luminescens LN2 were grown overnight in LB1 broth without antibiotics, subcultured into fresh LB1 broth with 1% of bacterial culture, and incubated at 25°C for 24 h prior to injection. These cultures were washed and diluted to concentrations of 10, 100, 1000 CFU/µL in sterile phosphate buffered saline (PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM NaHPO4, 2 mM KH2PO4, pH 7.4). Last instar larvae of greater wax moth Galleria mellonella were incubated on ice for approximately 3 min. 10 µL of the diluted cultures or sterile PBS were injected into the first proleg of each of 10 insect larvae using a 30-gauge syringe (Hamilton, Reno, NV). Three replicates with 10 insect larvae per replicate were established. Insects were monitored every 6 h for 120 h post injection. Dead insects were observed to confirm the presence of red color and bioluminescence.

Colonizations of H06 IJs by the GFP-labelled Mutants

To observe the colonization of IJ nematodes by the RifR mutant bacteria, the RifR mutant LN2-R31 positive for the growth of H06 nematodes was labeled with GFP by transposon mutagenesis of a pMini-Tn5 [52] containing an expressed egfp gene (pMini-lac-egfp). The pMini-lac-egfp was constructed as follows. A fragment containing an egfp gene and ribosome binding site (GAAGGTTTAGACATGGGCAAAGGAGA) was obtained from pUC19-egfp with primers egfp-SD2 (59- GAAGGTTTAGACATGGGCAAAGGAGA-39) and egfp-rev (59- TAACGCGGCCGCTTATTTGTATAGTTCATC-39) (NotI). The amplified 750 bp PCR product was cloned into the pMD-18T vector (TaKaRa, Japan) and transformed into E. coli DH5a. Green clone on LB2 plates with ampicillin was selected to extract the plasmid pMD-egfp. A NotI-NotI fragment containing the lac promoter and egfp gene from pMD-egfp was cloned into pMD-19T Simple vector (TaKaRa) to generate pMD-lac-egfp, with primers lac-F (59- ACGCGGCCGCTTATTTGTATAGTTCATC-39) (NotI) and egfp-rev (NotI). After transformed into E. coli DH5a, clones (AmpR) expressing GFP were detected using epifluorescence microscope (Nikon Eclipse 80i). To construct a transposon delivery vector pMini-lac-egfp, a NotI-NotI fragment containing the lac promoter and egfp gene from pMD-lac-egfp was cloned into the pMD-18T vector (TaKaRa). The automated 750 bp PCR product was cloned into the pMini-Tn5 vector (TaKaRa, Japan) and transformed into E. coli S17-1 (lpir). Clones

PLOS ONE | www.plosone.org 4 August 2012 | Volume 7 | Issue 8 | e43114

rpoB Mutation and Nematicidal Activity
homogenized nematodes on LB1 agar plates. was determined by plating dilutions of surface-sterilized and presence of the GFP-labeled bacteria retained in the IJs intestines.

To check the colonization of H06 IJs by the RifR mutant LN2-R31, the nematodes were cultured on sponge medium [30], inoculated with GFP-labeled LN2-R31 as described above, respectively. The IJs were extracted from the sponge and observed for GFP-labeled bacteria. The IJs were also homogenized with a sterile glass homogenizer after surface sterilization with 0.1% merthiolate and 5-time rinse with sterile distilled water. The presence of the GFP-labeled bacteria retained in the IJs intestines was determined by plating dilutions of surface-sterilized and homogenized nematodes on LB1 agar plates.

2-DE Analysis and Protein Identification by MALDI-TOF-MS

The 48 h old bacterial cells of the wild-type strain and RifR mutants (one negative mutant LN2-R16 and three positive mutants LN2-R2, LN2-R31 and LN2-R33, for H06 growth) grown on LB1 plates at 25°C were harvested and washed three times with cold PBS by centrifugation (6000 g, 10 min, 4°C). The cell pellets were resuspended in lysis buffer (0.1 M urea, 0.2% w/v Bio-Lyte 3/10 Ampholyte (Bio-Rad, USA), 4% CHAPS, 65 mM DTT) containing Protease Inhibitor Cocktail (Calbiochem, Germany) and Benzonase (Novagen, Germany) and disrupted by liquid nitrogen freezing-thawing three times. Cell debris was removed by centrifugation (20000 g, 60 min, 4°C). The supernatant (total cell protein) was divided into aliquots and stored at -80°C until use. Protein concentrations were determined by the Bradford method using Modified Bradford Protein Assay Kit (Sangon, China).

The 2-DE was performed according to the methods described previously [53] and the manufacturer’s instruction. The first dimension (isoelectric focusing) was conducted using the IGPPhor IEF system (Bio-Rad) at 20°C. For analytical gels, 350 μg protein was solubilized in 400 μL rehydration solution (8M urea, 0.2% w/v Bio-Lyte 3/10 Ampholyte, 4% CHAPS, 65 mM DTT, 0.01% w/v bromophenol blue), and loaded onto a 17 cm pH 3–10 NL IPG strip (Bio-Rad). Focusing was performed for 13 h at 50V, 1 h at 500 V, 1 h at 1000 V, and 5 h and 30 min at 8000 V (total = 45 kVh). The IPG strips were equilibrated as previously described [53]. The second dimension was performed with 12% (w/v) SDS-polyacrylamide gels using the Protean II xi 2D protein separation system (Bio-Rad). The IPG strips were equilibrated as previously described. The supernatant (total cell protein) was divided into aliquots and stored at -80°C until use. Protein concentrations were determined by the Bradford method using Modified Bradford Protein Assay Kit (Sangon, China).

2-DE Analysis and Protein Identification by MALDI-TOF-MS

The 48 h old bacterial cells of the wild-type strain and RifR mutants (one negative mutant LN2-R16 and three positive mutants LN2-R2, LN2-R31 and LN2-R33, for H06 growth) grown on LB1 plates at 25°C were harvested and washed three times with cold PBS by centrifugation (6000 g, 10 min, 4°C). The cell pellets were resuspended in lysis buffer (0.1 M urea, 0.2% w/v Bio-Lyte 3/10 Ampholyte (Bio-Rad, USA), 4% CHAPS, 65 mM DTT) containing Protease Inhibitor Cocktail (Calbiochem, Germany) and Benzonase (Novagen, Germany) and disrupted by liquid nitrogen freezing-thawing three times. Cell debris was removed by centrifugation (20000 g, 60 min, 4°C). The supernatant (total cell protein) was divided into aliquots and stored at -80°C until use. Protein concentrations were determined by the Bradford method using Modified Bradford Protein Assay Kit (Sangon, China).

The 2-DE was performed according to the methods described previously [53] and the manufacturer’s instruction. The first dimension (isoelectric focusing) was conducted using the IGPPhor IEF system (Bio-Rad) at 20°C. For analytical gels, 350 μg protein was solubilized in 400 μL rehydration solution (8M urea, 0.2% w/v Bio-Lyte 3/10 Ampholyte, 4% CHAPS, 65 mM DTT, 0.01% w/v bromophenol blue), and loaded onto a 17 cm pH 3–10 NL IPG strip (Bio-Rad). Focusing was performed for 13 h at 50V, 1 h at 500 V, 1 h at 1000 V, and 5 h and 30 min at 8000 V (total = 45 kVh). The IPG strips were equilibrated as previously described [53]. The second dimension was performed with 12% (w/v) SDS-polyacrylamide gels using the Protean II xi 2D protein separation system (Bio-Rad). The IPG strips were equilibrated as previously described. The supernatant (total cell protein) was divided into aliquots and stored at -80°C until use. Protein concentrations were determined by the Bradford method using Modified Bradford Protein Assay Kit (Sangon, China).

The 2-DE was performed according to the methods described previously [53] and the manufacturer’s instruction. The first dimension (isoelectric focusing) was conducted using the IGPPhor IEF system (Bio-Rad) at 20°C. For analytical gels, 350 μg protein was solubilized in 400 μL rehydration solution (8M urea, 0.2% w/v Bio-Lyte 3/10 Ampholyte, 4% CHAPS, 65 mM DTT, 0.01% w/v bromophenol blue), and loaded onto a 17 cm pH 3–10 NL IPG strip (Bio-Rad). Focusing was performed for 13 h at 50V, 1 h at 500 V, 1 h at 1000 V, and 5 h and 30 min at 8000 V (total = 45 kVh). The IPG strips were equilibrated as previously described [53]. The second dimension was performed with 12% (w/v) SDS-polyacrylamide gels using the Protean II xi 2D Multicell system (Bio-Rad). Proteins were stained with silver nitrate, and gels were digitized using Image ScannerII (Amersham Biosciences). Digitized 2-DE gel patterns were edited and matched using the PDQUEST software package (PDI, Humington Station). Triplicate experiments were run to confirm the reproducibility of results.

Spots of interest in gels staining with silver nitrate were cut out, washed, reduced, S-alkylated with iodoacetamide and in-gel digested at 37°C overnight with sequencing grade porcine trypsin (Promega, USA). After extraction in extractant of 50% ACN (Fisher) and 2.5% TFA (Sigma), peptide mixtures were analyzed using a saturated solution of 5 mg/mL 2-cyano-4-hydroxycinnamic acid (CHCA, Sigma) in ACN containing 0.1% TFA (Sigma) (50/50 v/v) using a 4800 Proteomics Analyzer equipped with matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) (Applied Biosystems, Framingham, MA, USA). For MS calibration, the trypsin autolysis peptides were used as internal calibrants. Monoisotopic peak masses were automatically determined within the mass range of 800–4000 Da, with a minimum S/N of 50. Five of the most intense ion signals were selected as precursors for MS/MS acquisition. Combined MS and MS/MS queries were performed with the Mascot search engine (V2.1, Matrix Science, UK) embedded in GPS-Explorer Software (V3.6, Applied Biosystems), using the P. luminescens database (Gene DB). Mascot protein scores (based on combined MS and MS/MS spectra) of greater than 61 were considered statistically significant (p < 0.05). The individual MS/MS spectrum with statistically significant (confidence interval >95%) best ion score (based on MS/MS spectra) were also accepted.

Insertion-deletion Mutations of the Corresponding Genes from Differentially Expressed Proteins

Compared with the nematicidal-producing mutant LN2-R16 and wild type strain, four proteins including RplC, RhlE, NamB (a putative transport and binding protein from type III secretion system), and a hypothetical protein similar to unknown protein YgdH of E. coli were downregulated in the non-nematicidal-producing mutants LN2-R2, LN2-R31 and LN2-R33 (Table 3–4, Figure S1, S2, S3, S4, S5). At least these 7 putative proteins were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes.

To confirm these results, the downregulated rhlE and namB, and upregulated dsbA, HlpA, and a hypothetical protein highly similar to unknown protein YgdH of E. coli were upregulated in the non-nematicidal-producing mutants LN2-R2, LN2-R31 and LN2-R33 (Table 3–4, Figure S1, S2, S3, S4, S5). At least these 7 putative proteins were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes.

Results

Isolation and Characterization of the RifR Mutants of P. luminescens LN2

Several hundreds of the RifR mutants of P. luminescens LN2 were isolated and 34 mutants were randomly selected for further study. The wild type strain and the selected mutants showed the typical
Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein MW	Ratio					
Ribosomal protein												
6	30S ribosomal protein S8	*P. luminescens* TT01	*rpsH*	Binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit	9.35	14205.6	1 0.7 0.8 0.27 1.03					
15	50S ribosomal protein L17, plu4701	*P. luminescens* TT01	*rplQ*	A component of the macrolide binding site in the peptidyl transferase center	11.04	14708.8	1 0.5 1.27 0.69 1.34					
26	50S ribosomal protein L3, plu4726	*P. luminescens* TT01	*rplC*	Binds directly near the 3’ end of the 23S rRNA, where it nucleates assembly of the 50S subunit; essential for peptidyltransferase activity; mutations in this gene confer resistance to tiamulin	9.87	22328.9	1 0 0.41 0 0					
44	50S ribosomal protein L9, plu4570	*P. luminescens* TT01	*rplI*	In *E. coli* this protein is wrapped around the base of the L1 stalk	6.13	15872.5	1 2.38 2.23 0.92 1.37					
45	50S ribosomal protein, L9, plu4570	*P. luminescens* TT01	*rplI*	In *E. coli* this protein is wrapped around the base of the L1 stalk	6.13	15872.5	1 1.82 3.29 0.51 1.23					
Adaptations conditions												
7	Hypothetical protein, plu2032	*P. luminescens* TT01	Similar to Unknown protein YbdQ of *E. coli*; Similar to universal stress protein (pfam00582: Usp)	6.19	15907.4	1 3.79 2.9 1.46 4.83						
9	Hypothetical protein, plu2030	*P. luminescens* TT01	Similar to Unknown protein YbdQ of *E. coli*; Similar to universal stress protein (pfam00582: Usp)	5.76	15283.2	1 1.71 1.21 0.2 0.45						
48	Alkyl hydroperoxide reductase, small subunit (antioxidant), plu3907	*P. luminescens* TT01	*ahpC*	Alkyl hydroperoxide reductase, small subunit (antioxidant)	5.92	22259.3	1 0.8 0.82 0.9 0.47					
Secondary metabolites												
12	Crystalline inclusion protein CipB	*P. luminescens* TT01	*cipB*	Unknown, similar to crystalline inclusion protein type II	6.08	11281.6	1 0.12 0 0.51 0					
25	Crystalline inclusion protein CipA, plu1576	*P. luminescens* TT01	*cipA*	Crystalline inclusion protein CipA	6.06	11710.9	1 0 0.08 0.74 0					
32	Unknown	*P. luminescens*	Similar to hemolysin from *Fusobacterium nucleatum* clinical isolate found in GenBank, Accession Number AF525507	5.61	39995.2	1 0.9 1.7 0.44 0.8						
62	Hypothetical protein, plu4211	*P. luminescens* TT01	Highly similar to Hcp protein	6.29	18482.5	1 11.43 14.91 19.98 3.24						
Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein MW	W/W	R2/W	R16/W	R31/W	R33/W	
----------	-----------------	----------	------	----------	------------	------------	------	------	-------	-------	-------	
Metabolism of amino acids and related molecules												
30	Ethanolamine ammonia-lyase small subunit, plu2971	P. luminescens TT01	euC	Catalyzes the formation of acetaldehyde from ethanolamine	6.37	31188.4	1	4.17	0.5	1.1	1.2	
36	Tryptophan synthase subunit beta, plu2466	P. luminescens TT01	trpB	Catalyzes the formation of L-tryptophan from L-serine and 1-indol-3-ylglycerol 3-phosphate	6.2	43098	1	1.22	0.25	0.41	0.58	
46	Serine/arginine repetitive matrix protein 2		Srm2	Converts cis-3-(3-carboxyethyl)-3,5-cyclohexadiene-1,2-diol (PP-dihydrodiol) into 3-(2,3-dihydroxy/phenyl) propionate	12.02	294500.8	1	0.72	1.7	0.89	0.9	
50	2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase, plu2207	P. luminescens TT01	hcaB	Convert 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase	5.43	29519.1	1	0.37	0.3	0.49	0.9	
51	Hypothetical protein, plu4676	P. luminescens TT01		Similar to 3-oxoacyl-[acyl-carrier-protein] synthase II (beta-ketoacyl-ACP synthase II) (KAS II)	5.58	45407.3	1	3.29	3.0	0.01	0.01	
52	Serine hydroxymethyltransferase, plu2931	P. luminescens TT01	glyA	Catalyzes the reaction of glycine with 5,10-methylenetetrahydrofolate to form L-serine and tetrahydrofolate	5.92	45229.8	1	3.74	4.55	2.93	5.6	
54	Hypothetical protein, plu2040	P. luminescens TT01	ureG	Urease accessory protein	5.04	22865.2	1	4.2	2.98	5.17	6.66	
55	3-oxoacyl-(acyl carrier protein) synthase III, plu2835	P. luminescens TT01	fabH	FabH; beta-ketoacyl-acyl carrier protein synthase III; converts 3-oxoacyl-ACP to initiate cycles of fatty acid elongation; differs from 3-oxoacyl-(acyl carrier protein) synthase I and II in that it utilizes CoA thioesters as primers rather than acyl-ACPs	5.33	34189.6	1	5.12	6.14	3.85	6.77	
Nucleosides and nucleotides biosynthesis and metabolism												
1	Hypothetical protein, plu3994	P. luminescens TT01		Similar to putative membrane protein YqjD (carboxyl transferase) of E. coli	7.93	11042	1	4.03	0.57	2.91	1.2	
3	IS630 family transposase, plu0720	P. luminescens TT01	ISPlu3Y	Transposase, IS630 family	9.33	39771.5	1	0.38	0.17	0.02	0.11	
18	Nucleoside diphosphate kinase, plu1372	P. luminescens TT01	ndk	Catalyzes the formation of nucleoside triphosphate from ATP and nucleoside diphosphate	5.35	15591.8	1	1.43	1.96	2.48	2.53	
57	Uracil phosphoribosyl transferase, plu2279	P. luminescens TT01	upp	Catalyzes the formation of uracil and 5-phospho-alpha-D-ribofuranose 1-diphosphate from UMP and diphosphate	5.46	22489	1	1.59	2.81	1.83	0.95	
Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein MW	Ratio W/W	R2/W	R16/W	R31/W	R33/W	
---------	-----------------	---------	------	----------	------------	------------	-----------	------	-------	-------	-------	
58	Reverse gyrase	*Leptospirillum* sp. Group II UBA			9.31	56458	1	0.41	0.08	0.19	0.08	
							Cell wall/membrane biogenesis					
8	Karst CG12008-PA, isoform A	*Drosophila melanogaster*	*kst*	Kst-PA; spectrin beta-heavy chain; beta-H spectrin;	5.93	471351.1	1	2.20	1.8	1.33	1.16	
43	Hypothetical protein, plu3994	*P. luminescens* TT01	Similar to putative membrane protein YqjD of *E. coli*	7.93	11042	1	0.21	0.05	0.1	0.08		
5	Periplasmic chaperone, plu0681	*P. luminescens* TT01	hlpA	Histone-like protein HLP-1 precursor	9.43	18476.8	1	2.63	0.81	2.11	2.64	
							Transport and binding proteins					
10	Unknown	*P. luminescens* W14	From (type III secretion system, partial sequence) GI:27550090	6.1	16883.6	1	0	1.53	0	0		
64	Unknown	*P. luminescens* W14	From (type III secretion system, partial sequence) GI:27550090	6.1	16883.6	1	0.1	0.91	0.11	0.15		
65	Unknown	*P. luminescens* W14	From (type III secretion system, partial sequence) GI:27550090	6.1	16883.6	1	0.11	0.93	0.11	0.16		
11	Hypothetical protein, plu1886	*P. luminescens* TT01	Hypothetical transmembrane protein	5.88	15588.6	1	1.53	2.83	1.57	0.43		
13	Macrolide transporter subunit	*P. luminescens* TT01	macA	Probable macrolide-specific ABC transporter; confers macrolide resistance via active drug efflux	40743.2	1	1	0	0	0	0	
17	Sec-independent protein translocase protein, plu4410	*P. luminescens* TT01	tatA	Sec-independent protein translocase protein	6.18	9289.9	1	0.76	0.81	0.72	0.23	
42	Na-binding protein HU-alpha (NS2) (HU-2), plu0492	*P. luminescens* TT01	dbhA	Na-binding protein HU-alpha (NS2) (HU-2)	9.1	9407	1	2.1	2.3	0.59	0.99	
							Information and regulatory pathways					
14	DNA-binding transcriptional regulator HexR, plu2121	*P. luminescens* TT01	*hexR*	Represses the expression of the zwf, eda, glp and gap	6.97	31694.5	1	2.2	1.96	1.92	0.91	
16	DnaK transcriptional regulator DksA, plu0876	*P. luminescens* TT01	*dksA*	DnaK transcriptional regulator DksA	5.04	17415.8	1	0	0.05	0.65	0	
20	Nucleotide-binding protein, plu3881	*P. luminescens* TT01	Similar to Unknown protein YajQ of *E. coli*	5.77	18311.4	1	1.47	0.89	1.48	1.09		
22	Transcriptional repressor MprA, plu1277	*P. luminescens* TT01	mprA	DNA-binding transcriptional repressor of microcin B17 synthesis and multidrug efflux; negative regulator of the multidrug operon emrAB”	20365.5	1	1.67	1.18	1.38	1.09		
27	Hypothetical protein, plu0318	*P. luminescens* TT01	Similar to AidA protein of *Ralstonia solanacearum*	5.7	22068.3	1	1.03	1.68	0.86	0.87		
Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein MW	W/W	R2/W	R16/W	R31/W	R33/W	
---------	-----------------	----------	------	----------	------------	------------	-----	-----	-------	-------	-------	
49	Periplasmic protein disulfide isomerase I, plu0381	*P. luminescens* TT01	*dbbA*	Disulfide interchange protein DsbA precursor	7.7	22954.8	1	3.8	1.57	3.49	3.62	
37	Protease precursor DegQ, plu4018	*P. luminescens* TT01	*degQ*	Protease precursor DegQ	9.12	48028.9	1	0	0	0	0	
38	Protease precursor DegQ, plu4018	*P. luminescens* TT01	*degQ*	Protease precursor DegQ	9.12	48028.9	1	0	0	0	0	

Energy production and conversion

Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein MW	W/W	R2/W	R16/W	R31/W	R33/W
24	GD22749	Dracophila simulans	Dism/ GD22749	Chromosome segregation ATPases (Cell division and chromosome partitioning): COG1196	5.23	76326.8	1	1.39	0	<0.01	<0.01
23	Hypothetical protein, plu2075	*P. luminescens* TT01	*deG*	Similar to 3-oxoacyl-[acyl-carrier protein] reductase	8.55	25032.6	1	0.12	0.31	0.45	0.33
35	WblA protein, plu4796	*P. luminescens* TT01	*wblA*	Probable lipoplysaccharide biosynthesis protein; Similar to putative UDP-glucose/GDP-mannose dehydrogenase	5.86	48484	1	2.1	0	2.07	0.05
40	Catalase, plu3068	*P. luminescens* TT01	*katE*	Catalase	6.92	55509.5	1	0	0	0	0
41	Catalase plu3068	*P. luminescens* TT01	*katE*	Catalase	6.92	55509.5	1	0	0	0	0
56	Phosphoglycero mutase, plu1471	*P. luminescens* TT01	*gpmA*	Catalyzes the interconversion of 2-phosphoglycerate to 3-phosphoglycerate	5.62	28396.7	1	1.64	2.88	2.02	3.5

Phage-related proteins

Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein MW	W/W	R2/W	R16/W	R31/W	R33/W
28	Hypothetical protein, plu3012	*P. luminescens* TT01	*katE*	Probable phage protein; Similar to tail fiber assembly protein from bacteriophage	4.67	21467.8	1	0.68	0.88	2.36	0.44
29	Hypothetical protein, plu2035	*P. luminescens* TT01	*katE*	Some similarities with putative tail fiber protein of phage	4.23	23641.5	1	0	3	0.42	0.88
39	Hypothetical protein, plu3803	*P. luminescens* TT01	*katE*	Some similarities with prophage tail fiber protein	6.37	66850.4	1	0.23	0.5	0.1	0
60	Hypothetical protein, plu3032	*P. luminescens* TT01	*katE*	Putative bacteriophage protein; Some similarities with Unknown protein of *Photorhabdus*	6.08	22021.6	1	1.93	2.55	2.14	4.66
63	Hypothetical protein, plu3012	*P. luminescens* TT01	*katE*	Probable phage protein; Similar to tail fiber assembly protein from bacteriophage	4.67	21467.8	1	1.66	1.72	5.27	0.48

Flagellin

Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein MW	W/W	R2/W	R16/W	R31/W	R33/W
31	Flagellin, plu1954	*P. luminescens* TT01	*flic*	Structural flagella protein	5.19	38183.6	1	0	0.1	0.87	0

Post-translational modification

Spot No.	Protein Name/plu	Organism	Gene	Function	Protein PI	Protein MW	W/W	R2/W	R16/W	R31/W	R33/W
61	PTS system, N-acetyl-galactosamine-specific IIB component 2 (EIIb-AGA) (N-acetyl-galactosamine-perme, plu0835)	*P. luminescens* TT01	*agaV*	Probable PTS system; Highly similar to PTS system, cytoplasmic, N-acetyl/galactosamine-specific	6.51	17774.4	1	3.87	2.18	4.31	1.5
Table 4. Total proteins with altered level of synthesis in the nematicidal-producing and non nematicidal-producing mutants.

Spot No.	Protein Name/plu	Organism	Gene	Function	Ratio nematicidal-producing strains	Ratio non nematicidal-producing strains			
					W/W	R16/W	R2/W	R31/W	R33/W
26	50S ribosomal protein L3, plu4726	*P. luminescens* TT01	*rplC*	Binds directly near the 3' end of the 23S rRNA, where it nucleates assembly of the 50S subunit; essential for peptidyltransferase activity; mutations in this gene confer resistance to tiamulin	1	0.41	0	0	0
4	ATP-dependent RNA helicase RhlE, plu1511	*P. luminescens* TT01	*rhlE*	This helicase is not essential for cell growth	1	0.52	0.05	0.04	0.02
19	ATP-dependent RNA helicase RhlE, plu1511	*P. luminescens* TT01	*rhlE*	This helicase is not essential for cell growth	1	1.43	0	0.2	0
5	Periplasmic chaperone, plu0681	*P. luminescens* TT01	*hlpA*	Histone-like protein HLP-1 precursor	1	0.81	2.63	2.11	2.64
10	Unknown	*P. luminescens* WI4	From (type III secretion system, partial sequence)	1	1.53	0	0	0	
64	Unknown	*P. luminescens* w14	From (type III secretion system, partial sequence)	1	0.91	0.1	0.11	0.15	
65	Unknown	*P. luminescens* w14	From (type III secretion system, partial sequence)	1	0.93	0.11	0.11	0.16	
49	Periplasmic protein disulfide isomerase I,	*P. luminescens* TT01	*dsbA*	Disulfide interchange protein DsbA precursor	1	1.57	3.8	3.49	3.62
2	Hypothetical protein, plu0661	*P. luminescens* TT01	Highly similar to Unknown protein YgdH of *E. coli*	1	0.81	2.74	2.51	1.76	
33	Hypothetical protein, plu3611	*P. luminescens* TT01	Similar to Unknown protein YggE of *E. coli*	1	2.33	0	0.2	0.4	

doi:10.1371/journal.pone.0043114.t004
characteristics of phase one bacteria as described: uptake of dye from NBTA and MacConkey agar, production of pH-sensitive pigments, occurrence of inclusion bodies, antibiotic activity, and bioluminescence.

The Effects of the RifR Mutants on the Growth of H06 Nematodes

13 of 34 RifR \textit{P. luminescens} LN2 mutants were able to support the growth of H06 IJs, with hermaphrodites containing living juveniles inside and outside after 12 days on the agar plates, while 21 of them were negative for the growth of H06 nematodes. On the bacterial lawns with those mutants or the wild-type, which did not support the nematode production, all the nematodes did not grow beyond adults and died after 7 days.

The Mutation Loci of \textit{rpoB} Gene in the RifR Mutants

7 positive mutants (LN2-R2, LN2-R6, LN2-R12, LN2-R15, LN2-R28, LN2-R31 and LN2-R33) and 7 negative mutants (LN2-R3, LN2-R5, LN2-R7, LN2-R8, LN2-R11, LN2-R16 and LN2-R25) for H06 nematode growth (Table 2) were randomly selected for \textit{rpoB} gene sequencing. The entire \textit{rpoB} sequences of 14 selected RifR mutants, wild type strain, LN2-A and LN2-M1 were sequenced at least twice. The \textit{rpoB} gene from all colonies was 4029 bp in length, the same to that of \textit{P. luminescens} subsp. laumontii TT01 [57]. The identity of \textit{rpoB} genes between the wild-type strain of LN2 and TT01 was 96.13\%. All of the 14 RifR mutants carried mutations in the \textit{rpoB} gene. 10 mutants showed a single nucleotide mutation resulting in an amino acid substitution, and 2 mutants presented two nucleotide mutations resulting in two amino acid substitutions, but only one mutant displayed three nucleotide mutations resulting in two amino acid substitutions (Table 2). No mutation was observed in the \textit{rpoB} gene of AmpR mutant LN2-A and \textit{napA} mutant LN2-M1.

The \textit{rpoB} (P564L) mutation was found in all 7 mutants which produced nematocidal activity against H06 nematodes, but not in the mutants which supported H06 nematode production. While the single mutations of V146F, S112F, Q513K and double mutations of A313D and R529C were detected respectively in the mutants which supported H06 nematode production (Table 2). The single and double mutations resulted in loss of nematocidal activity against H06 nematodes and ability to supported H06 nematode production.

Allelic Exchange Assays

The recombinant LN2-WΔ\textit{rpoB}-LR31 (LN2-W strain containing the mutant \textit{rpoB} allele from LN2-R31) and the LN2-R31Δ\textit{rpoB}-LW (LN2-R31 containing the wild type \textit{rpoB} allele from LN2-W) were selected on AmpR RifE Tec and AmpR RifE Tec LB1 agar plates, respectively.

Successful homologous recombination of \textit{rpoB} gene in the recipient strains was verified by randomly selecting three colonies from each recipient and checking their \textit{rpoB} gene sequences by PCR and DNA sequencing. The sequences of \textit{rpoB} gene from three colonies of each recipient were 100\% identical.

The recombinant LN2-WΔ\textit{rpoB}-LR31 showed Rif resistance and lost the nematocidal activity against H06 IJs, while LN2-R31Δ\textit{rpoB}-LW was sensitive to Rif and restored the nematocidal activity. These results clearly indicated that \textit{rpoB} mutation was responsible for the Rif-resistance and the absence of nematocidal activity of LN2-R31.

Insecticidal Activity

The RifR mutants, including nematocidal-producing LN2-R16 and non nematocidal-producing LN2-R2, LN2-R31 and LN2-R33, together with wild-type of \textit{P. luminescens} LN2 caused 100\% mortality of \textit{G. mellonella} at the concentrations of 1000 CFU/\muL after 24 h, 100 CFU/\muL after 30 h, and 10 CFU/\muL after 36 h. No insect mortality was recorded in the control after 120 h. It appeared that the mutant bacteria also displayed insecticidal activity against \textit{G. mellonella} larvae.

IJ Colonization of the GFP-labelled Mutants

No H06 IJs from the culture with GFP-labeled LN2-R31 mutant contained GFP-labeled bacteria in their intestines. No GFP-labeled bacteria were also observed from the mechanically disrupted H06 IJs. However, the IJs of \textit{H. indica} LN2 from GFP-labeled LN2-R31 mutant contained GFP-labeled bacteria in their intestines. Bacterial colonization of the intestines of IJs is an important process in the nematode-bacterium symbiosis. The present result demonstrated that the mutation of \textit{rpoB} gene restored the nutrient suitability of the LN2 bacteria for the reproduction of H06 nematodes by silencing the nematocidal activity of the bacteria, but did not establish the environment for bacterial colonization of the IJs.

The Proteomic Analysis of the Mutants and Wild-type

The effects of \textit{rpoB} mutations on the nematocidal activity of LN2 bacteria were further investigated by identifying the differentially expressed proteins by 2-DE. The parental and selected \textit{rpoB} mutant strains grown on LB1 agar plates were collected after 48 h. Cells were disrupted and whole cell proteins were separated on 2-DE gels spanning the pH 3–10, silver stained, and analyzed by MS. Protein levels were expressed as percentage volume, which corresponds to the percentage ratio between the volume of a single spot and the total volume of all spots present in a gel. The mean values of spot intensity were calculated using at least three gels. Spots showing more than 15% variation were not considered (Student’s test, with 7 degrees of freedom, p<0.05). Little deviation was observed in the patterns on replica gels.

Approximately 900 spots were revealed on the silver-stained 2-DE patterns of the whole cell proteins from wild type strain LN2-W and the mutant strains of LN2-R16, LN2-R2, LN2-R31 and LN2-R33 (Figure S1, S2, S3, S4, S5). Protein spots were distributed over the 3–10 pH range, with most spots in the 4–7 pH range.

Major differences were detected from different \textit{rpoB} mutants (Figure S1, S2, S3, S4, S5, Table 3). Comparing to the wild type strain, 19, 12 and 13 spots were differentially upregulated, downregulated or missing, respectively, by a factor of at least two in the \textit{rpoB} mutant LN2-R2; 19, 12 and 9 spots in the LN2-R16; 17, 19 and 8 spots in the LN2-R31; and 13, 19 and 14 spots in the LN2-R33.

The spots with intensity changes by a factor of at least two were selected for MALDI-TOF-MS analysis (Table 3), using NCBI website and the PhotoList database (http://genolist.pasteur.fr/PhotoList/).

The proteins identified could be classified into thirteen categories based on functions: (1) ribosomal protein, (2) adaptation conditions, (3) secondary metabolites, (4) metabolism of amino acids and related molecules, (5) nucleosides and nucleotides biosynthesis and metabolism, (6) cell wall/membrane biogenesis, (7) transport and binding proteins, (8) information and regulation pathways, (9) energy production and conversion, (10) phase-related proteins, (11) flagellin, (12) post-translational modification,
and (13) other functions and unknown. A list of the proteins affected by *rpoB* mutation was shown in Table 3.

Proteomic analysis revealed major difference between wild-type strain and RifR mutants, and between nematicidal-producing and non-nematicidal-producing mutants. In all the analyzed *rpoB* mutants, 15 putative proteins (*YbdQ*, *Hep*, *GlyA*, *UreG*, *VioB*, *FabH*, *Ndk*, *Upp*, *Kst*, *MprA*, *DsbA*, *GpmA*, *AgnV*, one bacteriophage protein and one unknown protein) were upregulated, and 11 (*AbiC*, *CipA*, *cipB*, *HcaB*, *ISPP324Y*, *ISPs10*, *YqiB*, *TatA*, *DksA*, *Flc*, and three hypothetical proteins) were downregulated. In particular, the following putative proteins were not detected from all the analyzed *rpoB* mutants: *macA* (probable macrolide-specific ABC transporter, spot 13); *DegQ* (protease precursor, spot 37, 38); and *KatE* (catelase, spot 40, 41).

Interestingly, an unknown function protein *BrecD* (similar to breast cancer type 2 susceptibility protein, spot 21) was not present in the mutants, but present in the wild type strain. It appeared that the absence of these proteins was due to the *rpoB* mutation rather than the antibiotic pressure, because they were also absent from a *namA* disruption mutant of LN2 [41] without *rpoB* mutation in the culture without any rifampin (unpublished data).

Compared with the nematicidal-producing mutant LN2-R16 and wild type strain, four proteins in the non-nematicidal-producing mutants (LN2-R2, LN2-R31 and LN2-R33) were downregulated at least a 2-fold difference in expression, including *RplC* (putative ribosomal protein, spot 26), *RhlE* (putative nucleosides and nucleotides biosynthesis and metabolism protein, spot 4, 19), *NamB* (a putative transport and binding protein from type III secretion system, part of T3SS, spot 10, 64, 65) and a hypothetical protein (similar to unknown protein *YggE* of *E. coli*, spot 33); three proteins including *DsbA* (periplasmic protein disulfide isomerase I involved in involvement and regulatory pathways, spot 49), *HlpA* (periplasmic chaperone involved in cell wall/membrane biogenesis, spot 5), and a hypothetical protein (highly similar to unknown protein *YghH* of *E. coli*, spot 2) were upregulated in the non-nematicidal-producing mutants (LN2-R2, LN2-R31 and LN2-R33) (Table 4, Figure S1, S2, S3, S4, S5). It was suggested that at least these 7 proteins were involved in the nematicidal activity of LN2 bacteria against H06 nematodes.

Genetic Confirmation of Differentially Expressed Proteins

LN2*AshIE*, LN2*NamB* and LN2*AdhA* mutants showed the typical characteristics of phase one bacteria as the wild type strain. No mutation in *rpoB* gene was observed in these mutants. LN2*AshIE* and LN2*NamB* mutants were able to support the growth of H06 IJs, with hermaphrodites containing living juveniles inside and outside after 12 days on the agar plates, while LN2*AdhA* mutant was negative for the growth of H06 nematodes as the wild type strain. The results confirmed the involvement of these selected genes in the nematicidal activity against H06 nematodes.

Discussion

In this study, a similar mechanism determining Rif-resistance in *E. coli* and *M. tuberculosis* [3,11,58] was verified in *Photorhabdus* bacteria. Surprisingly, the RifR mutations influenced the nematicidal activity of *P. luminescens* LN2 bacteria against a different nematode, *H. bacteriophora* H06. Furthermore, some but not all *rpoB* mutants of LN2 bacteria lost nematicidal activity against H06 IJs. The *rpoB* mutation was demonstrated to be responsible for the Rif-resistance and the effect on the nematicidal activity in the RifR mutants of LN2. There are fundamental connections between rifampin resistance, RNA polymerase structure and function and global gene expression in the literatures. Rif mutations in *E. coli* affected a wide variety of phenotypes, including altered growth properties and stimulated secondary metabolism [59]. A novel *rpoB* mutation in *B. subtilis* showed a unique spectrum of effects on growth and various developmental events [60]. An *rpoB* mutation in *Streptomyces lividans* activated antibiotic production and reduced growth rate [61]. A spontaneous RifR mutation isolated from *Saccharopolyspora erythraea* stimulated bacterial secondary metabolism and was severely impaired in erythromycin production [62].

To the best of our knowledge, this is the first report that *rpoB* mutations influenced the nematicidal activity of a nematode symbiont on a non-cognate nematode partner. The symbiosis between the entomopathogenic nematodes and their associated bacteria will be also influenced by the *rpoB* mutations. However, how *rpoB* mutations affect this nematicidal activity needs to be further explored.

The mutants exhibited several phenotypes of phase one variant as previously described [47], e.g. absorption of the dye from NBTA and MacConkey agar, production of bioluminescence and occurrence of crystalline inclusion proteins in the cells. It was reported that the nematicidal activity occurred only in phase one of *P. luminescens* LN2 [31]. Apparently, the loss of nematicidal activity in the LN2 mutants against H06 nematodes was not the result of a typical phase variation. The physiological status of symbiotic *Photorhabdus* and *Xenorhabdus* bacteria (such as phase variation, mutants) may influence their fitness for nematode production. As *rpoB* mutations were associated with the nematode growth, screening of *rpoB* mutants of symbiotic bacteria of entomopathogenic nematodes may provide a way to select beneficial *rpoB* mutants by Rif for effective mass production of the nematodes.

One of the important characters in *Photorhabdus* bacteria is their insecticidal activities towards different insects [32–33,35]. The present result indicated that the *rpoB* mutations did not change the expression of the toxin genes, at least in the tested mutants, for the mutants also displayed the insecticidal activity against *G. mellonella* larvae.

Different *rpoB* mutations were associated with their ability to support H06 nematode production. However, the P564L mutation was not associated with the loss of nematicidal activity. The reasons why the mutations affect the physiology and metabolism of the bacterial mutants are not known. The RNA polymerase complex may contact every promoter in the genome, thus any change in critical portions of the enzyme can lead to global changes in gene transcription. Mutations within the Rif binding pocket of *rpoB* gene may alter the structure of RNA polymerase and hence its regulated interaction with specific promoters, and hence physiology and metabolism [63].

Proteomic analysis revealed at least 7 putative proteins including *DsbA*, *RhlE*, *NamB* (a protein from T3SS), *HlpA*, *RplC* and 2 hypothetical proteins *YggE* and *YghH* might be involved in the nematicidal activity. All these proteins may play different roles in different organisms (64–71). In the present study, it was hard to establish the functional relationship among these proteins in the nematicidal activity of LN2 bacteria. Further work is needed to explore this system to understand the molecular mechanism on the trans-specific nematicidal activity of incompatible symbions.
Supporting Information

Figure S1 2-DE map of total cell proteins from *Photorhabdus luminescens* LN2 wild type strain. A representative gel shows the identified differentially expressed protein spots. 350 μg of total cell proteins was loaded onto a 17 cm pH 3–10 NL IPG strip, separated in the second dimension by SDS-polyacrylamide gel electrophoresis on a 12% gel and stained with silver nitrate. (TIF)

Figure S2 2-DE map of total cell proteins from *Photorhabdus luminescens* LN2 Rif⁺ mutant LN2-R2. A representative gel shows the identified differentially expressed protein spots. 350 μg of total cell proteins was loaded onto a 17 cm pH 3–10 NL IPG strip, separated in the second dimension by SDS-polyacrylamide gel electrophoresis on a 12% gel and stained with silver nitrate. (TIF)

Figure S3 2-DE map of total cell proteins from *Photorhabdus luminescens* LN2 Rif⁺ mutant LN2-R16. A representative gel shows the identified differentially expressed protein spots. 350 μg of total cell proteins was loaded onto a 17 cm pH 3–10 NL IPG strip, separated in the second dimension by SDS-polyacrylamide gel electrophoresis on a 12% gel and stained with silver nitrate. (TIF)

Figure S4 2-DE map of total cell proteins from *Photorhabdus luminescens* LN2 Rif⁺ mutant LN2-R31. A representative gel shows the identified differentially expressed protein spots. 350 μg of total cell proteins was loaded onto a 17 cm pH 3–10 NL IPG strip, separated in the second dimension by SDS-polyacrylamide gel electrophoresis on a 12% gel and stained with silver nitrate. (TIF)

Table S1 Oligonucleotide sequences used to generate *Photorhabdus luminescens* LN2 mutant constructs in this study. (DOC)

Acknowledgments

We would like to thank Li Gao and Xiaoling Liu for help in nematode culture.

Author Contributions

Conceived and designed the experiments: RCH XHQ. Performed the experiments: XHQ XY MXL. Analyzed the data: XHQ RCH. Wrote the paper: RCH XHQ. Obtained the funding, planned and supervised the project: RCH XHQ.

References

1. Woodlely CL, Kilburn JO, David HL, Silcox VA (1972) Susceptibility of mycobacteria to rifampin. Antimicrob Agents Chemother (2): 245–249.
2. Mitchison DA (1985) Mechanism of drug action in short-course chemotherapy. Bull Int Union Against Tuber 65: 30–37.
3. Telenti A, Imboden P, Marchesi F, Lionce D, Cole S, et al. (1993) Detection of rifampicin resistance mutations in *Mycobacterium tuberculosis*. Lancet 341: 647–650.
4. Musser JM (1995) Antimicrobial agent resistance in mycobacteria - molecular-genetic insights. Clin Microbiol Rev 8: 496.
5. Zhang GY, Campbell EA, Minakin L, Richter C, Severinov K, et al. (1999) Crystal structure of *Thermus aquaticus* core RNA polymerase at 3.3 angstrom resolution. Cell 98: 811–824.
6. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, et al. (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104: 901–912.
7. Zhou YN, Jin DJ (1998) The *spolI* mutants destabilizing initiation complexes at stringently controlled promoters behave like "stringent" RNA polymerases in *Escherichia coli*. Proc Natl Acad Sci U S A 95: 2908–2913.
8. Miller N, Hernandez SG, Cleary TJ (1994) Evaluation of gen-probe amplified direct test and pcr for direct-detection of mycobacterium-tuberculosis strains isolated in Australia. J Clin Microbiol 32: 393–397.
9. Ramaswamy S, Musser JM (1998) Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis. Clin Microbiol Rev 8: 496.
10. Zhang Y, Telenti A (2000) Molecular genetics of mycobacteria; Washington DC: ASM Press. 235–254.
11. Yuen LK, Leslie D, Coloe JF (1999) Bacteriological and molecular analysis of rifampin-resistant *Mycobacterium tuberculosis* strains isolated in Australia. J Clin Microbiol 37: 3844–3850.
12. Riska PF, Jacobs WRJ, Alland D (2000) Bacteriological determinants of drug resistance in tuberculos. Int J Tuberc Lung Dis 4: S4–10.
13. Herrera L, Jimenez S, Valverde A, Garcia-Aranda MA, Saez-Nieto JA (2003) Gene analysis of rifampin-resistant *Mycobacterium tuberculosis* isolated in Spain (1986–2001). Description of new mutations in the *spolI* gene and review of the literature. Int J Antimicrob Agents 21: 403–408.
14. Zhang Y, Yew WW (2009) Mechanisms of drug resistance in *Mycobacterium tuberculosis*. Int J Tuberc Lung Dis 13: 1320–1330.
15. Wang Q, Yue J, Zhang L, Xu Y, Chen J, et al. (2007) A Newly identified 191A/C mutation in the Rv2629 gene that was significantly associated with rifampicin resistance in *Mycobacterium tuberculosis*. J Proteome Res 6: 4564–4571.
16. Castaneda-Garcia A, Do TT, Blazquez J (2011) The Kv⁺ uptake regulator TrkA controls membrane potential, pH homeostasis and multidrug susceptibility in *Mycobacterium smegmatis*. J Antimicrob Chemother 66: 1489–1496.
17. Cui L, Liu T, Fokiida M, Ochiai T, Neoh HM, et al. (2010) An RpoB mutation confers dual heteroresistance to daptomycin and vancomycin in *Staphylococcus aureus*. Antimicrob Agents Chemother 54: 5222–5233.
18. Watanabe Y, Cui L, Katayama Y, Konoe K, Hirataku M (2011) Impact of *spolI* Mutations on Reduced Vancomycin Susceptibility in *Staphylococcus aureus*. J Clin Microbiol 49: 2660–2664.
19. Georgis R, Koppenholfer AM, Lacey LA, Belair G, Dunce LW, et al. (2006) Failures and successes in the use of parasitic nematodes for pest control. Biol Control 30: 105–123.
20. Poinar GOJr, Thomas GM (1966) Significance of *Achromobacter nemophilis* Poinar and Thomas (*Achromobacteriae*: Eubacteriales) in the development of the nematode *DD-136* (*Nospedecta sp.*, Steinernematidae). Parasitol 56: 385–390.
21. Ciche TA, Darby C, Ehlers R-U, Forst S, Goodrich-Blair H (2006) Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biol Control 38: 22–46.
22. Goodrich-Blair H, Clarke DJ (2007) Mutualism and pathogenesis in *Xenorhabdus* and *Photorhabdus* two roads to the same destination. Mol Microbiol 64: 260–268.
23. Akhurst RJ (1983) *Xenorhabdus* spp. strains as *Neoplectana* and *Steinernematidae*). Parasitol 56: 385–390.
24. Akhurst RJ, Boemare NE (1990) Biology and taxonomy of *Xenorhabdus*. In: Gaugler R, Kaya HK, editors. *Entomopathogenic Nematodes in Biological Control*. Florida: CRC press. 75–90.
25. Ehlers R-U, Stoesell S, Wysa U (1990) The influence of phase variants of *Xenorhabdus* spp. and *Escherichia coli* (*Enterobacteriaceae*) on the propagation of entomopathogenic nematodes of the genera *Steinernema* and *Heterorhabditis*. Revue de Nematologie 13: 417–424.
26. Han RC, Wouts WM, Li LY (1990) Development of *Heterorhabditis* spp. strains. In: *Characteristics of possible *Xenorhabdus luminescens* subspecies*. Revue de Nematologie 13: 411–415.
27. Han RC, Wouts WM, Li LY (1990) Development and virulence of *Heterorhabditis* spp. strains associated with different *Xenorhabdus* luminescens isolates. J Invertebr Pathol 58: 27–32.
28. Gerritsen LJM, Smits PH (1995) Variation in pathogenicity of recombinations of *Heterorhabditis* and *Xenorhabdus* luminescens strains. Fund Appl Nematol 16: 367–373.
29. Gerritsen LJM, Smits PH (1997) The influence of *Photonhabdus luminescens* strains and form variants on the reproduction and bacterial retention of *Heterorhabditis* nymphi. Fund Appl Nematol 20: 317–322.
30. Han RC, Ehlers R-U (1998) Cultivation of axenic *Heterorhabditis* spp. dauer juveniles and their response to non-specific *Photonhabdus luminescens* food signals. Nematologica 44: 425–435.
31. Han RC, Elders R-U (2001) Effect of Photorhabdus luminescens phase variants on in vivo and in vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. TEMS Microbiol Ecol 35: 239–247.

32. Bowers DJ, Ensign JC (1998) Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl Environ Microbiol 64: 3029–3035.

33. Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, et al. (1998) Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280: 2129–2132.

34. Ensign JC, Bowen DJ, Tenser J, Petell JK, Orr GL, et al. (2002) Insecticidal protein toxins from Xenorhabdus. PCT Patent, No. US6271994 B1.

35. Yang G, Dowling AJ, Geurke U, ffrench-Constant RH, Waterfield NR (2006) Photorhabdus virulence causettes confer injectable insecticidal activity against the wax moth. J Bacteriol 188: 2254–2261.

36. ffrench-Constant RH, Dowling A, Waterfield NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49: 436–451.

37. Hu K, Li J, Webster JM (1995) Mortality of plant-parasitic nematodes caused by bacterial (Xenorhabdus spp. and Photorhabdus luminescens) cultures. J Nematol 27: 502–503.

38. Sicard M, Hering S, Schulte R, Gauld R, Schulerburg H (2007) The effect of Photorhabdus luminescens (Enterobacteriaceae) on the survival, development, reproduction and behaviour of Caenorhabditis elegans (Nematoda: Rhabditidae). Environ Microbiol 9: 12–25.

39. Sicard M, Ferdy JB, Pagès S, Le Brun N, Godelle B, et al. (2004) When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Photorhabdus (bacteria). J Evol Biol 17: 985–993.

40. Han RC, Elders R-U (1999) Trans-specific nematocidal activity of Photorhabdus luminescens. Nematology 1: 687–693.

41. Qiu XH, Han RC, Yan X, Liu MX, Li C, et al. (2009) Identification and characterization of a novel gene involved in the trans-specific nematocidal activity of Photorhabdus luminescens LN2. Appl Environ Microbiol 75: 4221–4223.

42. Heungens K, Cowles CE, Goodrich-Blair H (2002) Identification of Xenorhabdus nematiphila genes required for mutualistic colonization of Steinernema carpocapsae nematodes. Mol Microbiol 45: 1337–1353.

43. Joyce SA, Clarke DJ (2003) A hrcA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Mol Microbiol 47: 1445–1457.

44. Cowles CE, Goodrich-Blair H (2004) Characterization of a lipoprotein, NAcC, required by Xenorhabdus nematiphila for mutualism with its nematode host. Mol Microbiol 54: 464–477.

45. Martin E, Goodrich-Blair H (2005) The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematiphila associates during colonization initiation. Cell Microbiol 7: 1723–1733.

46. Chalabaev S, Turlin E, Charles JF, Namane A, Pagès S, et al. (2007) The HcrR regulatory protein of Photorhabdus luminescens affects the production of proteins involved in oxidative stress and toxemia. Proteomics 7: 4499–4510.

47. Akhurst RJ (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoheterorhabditis and Heterorhabditis. J Gen Microbiol 121: 503–509.

48. Akhurst RJ (1982) Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128: 3061–3065.

49. Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual, 3rd ed. NewYork: Cold Spring Harbor Laboratory Press. 2344 p.

50. Hübner P, Masengohl B, Klipp W, Bickle TA (1993)orf gene expression studies in Rhodobacter capsulatus: ntrC-independent repression by high ammonium concentrations. Mol Microbiol 10: 123–132.

51. Simon R, Priifer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1: 784–791.

52. Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172: 6557–6567.

53. Gorg A, Postel W, Domseit A, Günther S (1988) Two-dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgare): method, reproducibility and genetic aspects. Electrophoresis. 9: 681–692.

54. An R, Grewal PS (2010) Molecular mechanisms of persistence of mutualistic bacterial Photorhabdus in the entomopathogenic nematode host. Palaeo 5: e13134.

55. Jiang QY, Zhou ZH, Shen SE, Jin RZ, Huang YD, et al. (1990) Construction of recombinant plasmid of Tn 5-mIf having conjugal mobilization of broad host range. Chinese Science Bulletin (in Chinese) 35: 302–305.

56. Karanja K, Delor J, Cornelis GR (1991) A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blad gene of Yersinia enterocolitica. Gene 109: 137–141.

57. Duchaud E, Rasmic K, Frangeul L, Buchrieser C, Givaudan A, et al. (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21: 1307–1313.

58. Jin D, Gross C (1988) Mapping and sequencing of mutations in the Escherichia coli spoII gene that leads to rifampicin resistance. J Mol Biol 202: 45–50.

59. Jin DJ, Gross CA (1989) Characterization of the pleiotropic phenotypes of rifampin-resistant spoIIA mutants of Escherichia coli. J Bacteriol 171: 3229–3231.

60. Maughan H, Galeano B, Nicholson WL (2004) Novel spoIIA mutations conferring rifampin resistance on Bacillus subtilis: global effects on growth, competence, sporulation, and germination. J Bacteriol 186: 2481–2486.

61. Lai C, Xu J, Tzouwa Y, Omamoto-Hosoya Y, Yao X, et al. (2002) Genetic and physiological characterization of spoIIA mutations that activate antibiotic production in Staphylococcus lactis. J Antimicrob Chemother 51: 2048–2052.

62. Carata E, Peano C, Tredici SM, Ferrari F, Tala A, et al. (2009) Phenotypes and gene expression profiles of Staphylophuspes pyogenes rifampicin-resistant (rif) mutants affected in erythromycin production. Microbial Cell Factories 8: 18.

63. Perkins AE, Nicholson WL (2008) Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant spoIIA mutants. J Bacteriol 190: 807–814.

64. Shoulder SR, Heras B, Walden PM, Totsuka M, Schembri MA, et al. (2011) Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid Redox Signal 14: 1729–1760.

65. Jain C (2008) The E. coli RhlE RNA helicase regulates the function of related RNA helicases during ribosome assembly. RNA 14: 381–389.

66. Carrier G, Lorieux F, Allemand F, Dreyfus M, Bizebard T (2010) Cold adaptation in DEAD-box proteins. Biochemistry 49: 2636–2646.

67. Gentry DR, Rittenhouse SF, McCloskey L, Holmes DJ (2007) Stepwise exposure of Staphylococcus aureus to pleurotolimulin is associated with stepwise acquisition of mutations in spoIIA and minimally affects susceptibility to retapamulin. Antimicrob Agents Chemother 51: 2048–2052.

68. Brugiraud-Ricard K, Duchaud E, Givaudan A, Girard PA, Kunst F, et al. (2005) Site-specific antiphageic function of the Photorhabdus luminescens type III secretion system during insect colonization. Cell Microbiol 7: 363–371.

69. Schmidt MA, Balsamelli F, Faoro H, Cruz LM, Wassem R, et al. (2012) The type III secretion system is necessary for the development of a pathogenic and endophytic interaction between Herbaspirillum rubrisubalbicans and Hordeum. BMC Microbiol 12: 98.

70. Kim SY, Nishida M, Hayashi S, Honda H, Kohayashi T, et al. (2005) The gene spoF functions in restoring physiological defects of Escherichia coli cultivated under oxidative stress conditions. J Appl Environ Microbiol 71: 2762–2765.

71. Simou MV, McLaughlin R, Chesi SH, Juarez ZE, Barnard J (1998) Streptococcal histone-like protein: primary structure of hlfA and protein binding to lipoteichoic acid and epithelial cells. Infect Immun 66: 239–265.