SYSTEMATIC REVIEW AND META-ANALYSIS

Health State Utility Values in People With Stroke: A Systematic Review and Meta-Analysis

Raed A. Joundi, MD, DPhil; Joel Adekanye, MBBS, MPH; Alexander A. Leung, MD, MPH; Paul Ronksley, PhD; Eric E. Smith, MD, MPH; Alexander D. Rebchuk, MD, MSc; Thalia S. Field, MD, MHSc; Michael D. Hill, MD, MSc; Stephen B. Wilton, MD, MSc; Lauren C. Bresee, BScPharm, ACPR, MSc, PhD

BACKGROUND: Health state utility values are commonly used to provide summary measures of health-related quality of life in studies of stroke. Contemporaneous summaries are needed as a benchmark to contextualize future observational studies and inform the effectiveness of interventions aimed at improving post-stroke quality of life.

METHODS AND RESULTS: We conducted a systematic search of the literature using Medline, EMBASE, and Web of Science from January 1995 until October 2020 using search terms for stroke, health-related quality of life, and indirect health utility metrics. We calculated pooled estimates of health utility values for EQ-5D-3L, EQ-5D-5L, AQoL, HUI2, HUI3, 15D, and SF-6D using random effects models. For the EQ-5D-3L we conducted stratified meta-analyses and meta-regression by key subgroups. We screened 14 251 abstracts and 111 studies met our inclusion criteria (sample size range 11 to 12 447). EQ-5D-3L was reported in 78% of studies (study n=87; patient n=56 976). The pooled estimate for EQ-5D-3L at ≥3 months following stroke was 0.65 (95% CI, 0.63–0.67), which was ≈20% below population norms. There was high heterogeneity (I²>90%) between studies, and estimates differed by study size, case definition of stroke, and country of study. Women, older individuals, those with hemorrhagic stroke, and patients prior to discharge had lower pooled EQ-5D-3L estimates.

CONCLUSIONS: Pooled estimates of health utility for stroke survivors were substantially below population averages. We provide reference values for health utility in stroke to support future clinical and economic studies and identify subgroups with lower healthy utility.

REGISTRATION: URL: https://www.crd.york.ac.uk/prospero/. Unique Identifier: CRD42020215942.

Key Words: health-related quality of life ■ meta-analysis ■ quality of life ■ stroke

Stroke is the second most common cause of death1 and a leading cause of disability worldwide. Patient-reported physical and social well-being are important outcomes after stroke.2,3 As such, there has been increasing interest in patient-reported outcomes and capturing health-related quality of life (HRQoL) with validated questionnaires among stroke survivors in observational and interventional studies.4,5 The EuroQol 5 dimensions (EQ-5D) is the most widely used measure of HRQoL in stroke trials.6 Both the EQ-5D-3L (3 levels) and EQ-5D-5L (5 levels) have been validated in patients with stroke and are responsive to change.7-10 HRQoL is impaired across multiple domains in stroke and may be lower in women.11 Health state utility values (HSUVs) represent an individual’s valuation or preference for being in a particular...
CLINICAL PERSPECTIVE

What Is New?
- In this systematic review and meta-analysis of observational studies evaluating health-related quality of life after stroke, EQ-5D-3L was the most common instrument used.
- The pooled health utility index value of EQ-5D-3L at ≥3 months after stroke was 0.65, 95% CI (0.63–0.67), ≈20% below population norms.
- Utility was lower among women, older individuals, and in the early period after stroke.

What Are the Clinical Implications?
- The findings highlight the impaired health-related quality of life in stroke survivors and in specific subgroups.
- Our pooled estimates may be useful as reference values for clinical or economic studies.

Nonstandard Abbreviations and Acronyms

Abbreviation	Definition
15D	15 dimensions
AQOL	assessment of quality of life scale
EQ-5D-3L	EuroQol 5 dimension 3 level
EQ-5D-5L	EuroQol 5 dimension 5 level
HRQOL	health-related quality of life
HSUV	health state utility value
HU12	health Utilities Index Mark 2
HUI3	health Utilities Index Mark 3
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analyses
QWB	quality of well-being scale
SF-6D	short form 6D

Health state HSUVs can be obtained through direct or indirect utility measurement. Indirect utility measures are generic preference-based questionnaires that use conversion equations to transform the questionnaire scores into utilities, whereas direct utility measures elicit preferences directly onto the utility scale using techniques such as time trade off, visual analogue scales, or standard gamble. Indirect health utility measures are easier to administer and more interpretable by patients and providers. Researchers will use a set of conversion weights, either derived from the country of the study or the country with the most similar characteristics, in order to best reflect the societal preferences of the cohort under study.

The final health utility index score attempts to summarize the desirability of a health outcome, where dead is anchored at 0 and 1 is perfect health. A value of <0 signifies a state considered worse than dead.

Indirect health utility metrics commonly used in the stroke literature include the EQ-5D, Health Utilities Index Mark 3 (HUI-3), and the Assessment of Quality of Life (AQoL) scale. HSUVs are important for decision models, economic analyses, calculating quality-adjusted life years, and comparing across diseases or disease states. Therefore high quality estimates of health utility are an important foundation for cost-utility models, decision-making, and determining the effects of new treatments on quality of life.

Prior meta-analyses of pooled HSUVs in stroke are outdated (included studies prior to 2000 only) or focused exclusively on health utility weighting of the modified Rankin Scale score (mRS), and did not evaluate differences by age and sex. An up-to-date and comprehensive evaluation of HSUVs among stroke survivors and differences between relevant subgroups is therefore needed for resource allocation, planning of post-stroke services, and as a benchmark for future clinical and economic analyses.

We conducted a systematic review and meta-analysis to obtain up-to-date estimates of HSUVs, explore potential sources of heterogeneity, and determine how these estimates vary by key characteristics of age, sex, stroke type, and time since stroke.

METHODS

Study Design

The study was developed and reported based on the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and registered online on PROSPERO (ID: CRD42020215942). Title and abstract screening were completed independently by two investigators (R.J. and J.A.). Full text review (through manual review and automatic PDF search with keywords), full text abstraction, and risk of bias assessment were completed by R.J. All data abstraction was verified a second time by R.J., and a 25% random sample was additionally verified by J.A. All conflicts were resolved by consensus.

Search Strategy

Medline, EMBASE, and Web of Science were searched from January 1995 (publication of pivotal NINDS trial on stroke thrombolysis) until October 25, 2020, with no language limitations. The search strategy was developed in consultation with University of Calgary...
techniques as mapping algorithms can be unreliable. Scale), or utilities obtained using mapping tech-

vert to utilities (item short form survey, Stroke estimates, studies using tools which do not con-

these are highly reliant on the scenarios used in the

reporting primary data, studies of direct utility mea-

in this diagnostic category will have ischemic stroke.

Participants were required to be ≥18 years of

stroke type included ischemic stroke, hem-

orrhagic stroke (may include intracerebral hem-

orrhage or combined intracerebral hemorrhage/

subarachnoid hemorrhage), or unspecified stroke.

Unspecified stroke was included as a large majority

cluded studies exclusively reporting transient ischemic attack or subarachnoid hemorrhage, stud-

ies which included stroke as a subset of another

condition, study protocols, case series, studies not

reporting primary data, studies of direct utility mea-

sures such as standard gamble or time trade off as

these are highly reliant on the scenarios used in the

estimates, studies using tools which do not con-

vert to utilities (item short form survey, Stroke Specific Quality of Life Scale, EQ-Visual Analogue Scale), or utilities obtained using mapping tech-

iques as mapping algorithms can be unreliable.

Studies were also excluded if only adjusted, rather

than crude values, of health utility were reported, or

if there was no measure of variance reported.

Data Extraction

Variables extracted included important study and sample characteristics (Table S4). We extracted HSUV type, tariff used, how the survey was administered (eg, in-person, phone, mail), mean or median utility index score, measure of variance (SD, SE, interquartile range, or 95% CIs), and number of subjects.

Risk of Bias Assessment

We adapted criteria from the “National Institute for Health and Care Excellence Decision Support Unit Technical Support Document: Identification, Review

and Synthesis of Health State Utility Values from the Literature” for risk of bias assessments. The criteria facilitate assessment of sample size, respondent selection, inclusion/exclusion criteria, response rates, loss to follow-up, and missing data. We also added a category to assess proxy responses. For each study, we assigned the categories to low, medium, or high risk of bias (see Table S5 for explanation of criteria). Lastly, we documented whether the study excluded people who died, assigned a utility value of 0 for being dead, or was not applicable (ie, cross-sectional study of stroke survivors).

Statistical Analysis

We described study and sample characteristics with proportions and means. If distributions were only re-

ported separately for subgroups within a study, we manually calculated the mean and SD for the entire group using fixed effect meta-analysis. If studies re-

ported HSUVs longitudinally at multiple time points, we used the time point closest to 3 months. If the study

reported HSUVs pre- and post- intervention (such as a non-randomized rehabilitation intervention), we re-

ported the HSUV prior to the intervention. In the vast majority of cases, mean HSUVs were reported in the

studies. If median with interquartile range or range was reported, approximate corresponding mean and

SD were calculated using published methods. We

pooled estimates only if there were at least 2 relevant

studies.

Our primary outcome was health utility in peo-

ple with stroke at 3 months or more after stroke. We

chose this endpoint due to the large improvement in

health utility that may occur between stroke onset

and 3 months. Studies with population-based com-

munity surveys were included in this outcome due to the high likelihood that most subjects were ≥3 months

after stroke. Our secondary outcomes were health

utility in other time bands or specific time points: (1) prior to acute care discharge (hospital or rehabilita-

tion), (2) prior to hospital discharge, (3) after acute hospitalization and prior to in-patient rehabilitation
discharge, (4) at 3 months (3–3.9 months) from stroke onset, (5) from 3 to <12 months from stroke onset, (6) at 12 months (12–12.9 months) from stroke onset, (7) 12 months and over from stroke onset, and (8) at 5 years (+/- 1 year) from stroke onset. Our primary outcome was calculated for all health utility tools but there were only sufficient number of studies for EQ-

5D-3L for the secondary outcomes. Additional sec-

ondary outcomes for EQ-5D-3L were health utility ≥3 months after stroke stratified by age (<65, 50–64, 61–74, and 71+), sex, stroke type (ischemic and hemorrhagic). We also stratified by time point (prior to acute care discharge, <4 months, 6 to <12 months,
and 12+ months), only including those studies that stratified by these variables. The common bands for age and time points were chosen to allow all studies with stratified values to be included. We did not include a subgroup by mRS as a recent meta-analysis focused specifically on healthy utility weighting of the mRS and demonstrated high variability in health utility scores for each mRS level. 4 We conducted meta-analyses using DerSimonian and Laird random effects models 34 to estimate the pooled health utility and 95% CIs in people with stroke.

We compared the pooled HSUV estimates to population norms. Heterogeneity was quantified with the I² statistic. We explored for potential sources of heterogeneity with stratified analysis according to sample size, case definition (self-report or medical diagnosis of stroke), and country.

Sensitivity Analyses

We conducted multiple sensitivity analyses on the primary outcome to account for potential sources of bias. First, we excluded studies with a high probability of similar or overlapping cohorts (ie, registry, hospital-based, or survey data from the same region with same or overlapping years). We selected the potential duplicate study with the greatest number of subjects for inclusion. Second, we excluded studies that assigned 0 as a value for dead rather than excluding deaths, and also conducted a separate meta-analysis of only those studies. Third, we excluded studies with >1 category with a high risk of bias. Fourth, to explore for potential sources of heterogeneity, we performed random effects meta-regression across studies by incorporating percent female, mean/median study age, and publication date as separate covariates. Meta-regression of percent female was also adjusted by mean/median study age, and vice-versa. Fifth, we repeated the meta-analysis of each utility metric and the different time points of EQ-5D-3L using fixed effect meta-analysis. This was done to obtain an “average effect parameter” where weights are not redistributed from big to small studies as in random effects meta-analysis, and is analogous to combining individual level data. 35

All analyses were conducted in Stata version 17.0 (College Station, TX). Data available from the corresponding author upon reasonable request.

RESULTS

Study Assembly and Study Descriptions

The PRISMA flow diagram showing the study selection process is depicted in Figure S1. Our search strategy identified 14,251 abstracts after duplicates were removed. A total of 211 studies were selected for full text review, and 111 fulfilled the inclusion criteria after full text review (Supplemental Material). There was a random agreement probability of 97.4% and moderate inter-observer agreement (Cohen’s Kappa 0.45) for abstract review. All disagreements were resolved through consensus. There was a total of 64,571 individuals in the included studies.

Characteristics of each study in the systematic review are shown in Table S4, and mean values of baseline characteristics across studies weighted by sample size are in Table S6 for all studies & Table S7 for studies of EQ-5D-3L. The mean age across studies was 68.1 years (SD 5.7), mean follow-up time was 13.0 months (SD 15.7), mean proportion of women was 44.2% (SD 6.2), and mean proportion with ischemic stroke was 85.5% (SD 8.3). The majority of studies reported the EQ-5D-3L (78%); studies were international with the greatest representation from Australia, the Netherlands, the UK, and Korea, and the number of publications increased over time from 1995 to 2020 (Figure S2).

Risk of Bias Assessments

All meta-analyses had very high heterogeneity (I²>90%), except for the HUI3 which was 0%. Risk of bias is reported in Table S8 and the proportion of studies with low, medium, and high risk of bias for each category are shown in Table S9. Missing data were not addressed in 63% of studies, and presence/rate of proxy response was not reported in 71% of studies.

Overall Pooled Estimates

Among studies using the EQ-5D-3L, case definition of stroke was based on self-report in 14 studies (16.1%) and on medical diagnosis in 73 studies (83.9%). Twelve (13.8%) studies included ischemic stroke only, 1 (1.2%) included hemorrhagic stroke only, and 74 studies (85.1%) included both or undefined stroke types. The distribution of EQ-5D-3L across studies is shown in Figure S2D.

The pooled EQ-5D-3L index estimate at ≥3 months after stroke across all available studies was 0.65, 95% CI: 0.63 to 0.67 (I²=99.0%; study n=73, patient n=52,614; Figure S3), which is ≈20% below the UK population norms for age 65 to 74 36 (Figure 1). The pooled value for studies that only included patients with ischemic stroke was similar (0.63, 95% CI 0.56–0.69; study n=73, patient n=52,614; Figure S3), which is ≈20% below the UK population norms for age 65 to 74 36 (Figure 1). The pooled value for studies that only included patients with ischemic stroke was similar (0.63, 95% CI 0.56–0.69; study n=11, patient n=7,476). Pooled EQ-5D-3L estimates at specific time points are shown in Table S10, with lowest utility during hospitalization (0.39, 95% CI 0.23–0.54), and sequentially higher values at rehabilitation (0.57, 95% CI 0.47–0.67), 3 months (0.65, 95% CI 0.61–0.70), and 5 years after stroke (0.70, 95% CI 0.64–0.76).

The pooled utility value for EQ-5D-5L was 0.68 (95% CI 0.61–0.76; 10 studies), for the AQLoL was...
There were sufficient studies that reported utility by sub-group strata for EQ-5D-3L only. Utility estimates were lower for women compared with men in 12 out of 13 studies that included sex-stratified utility values at ≥3 months after stroke (Figure S11). The pooled estimate for women was 0.62 (95% CI 0.57–0.67) and for men was 0.71 (95% CI 0.66–0.75; Figure 3A).

Utility was lower over age 70 (0.65, 95% CI 0.58 to 0.72) compared with age 65 and under (0.75, 95% CI 0.74 to 0.77; Figure S12; Figure 3B).

There was a lower pooled utility estimate in those with hemorrhagic versus ischemic stroke in 6 out of 7 studies that reported both stroke types (pooled estimate 0.58, 95% CI 0.39 to 0.77 in hemorrhagic stroke versus 0.68, 95% CI 0.60–0.76 in ischemic stroke; Figure S13; Figure 3C).

Lastly, in studies that reported multiple time points there was a markedly lower utility prior to discharge from acute hospitalization or rehabilitation (0.41, 95% CI 0.23–0.58), compared with at <4 months follow-up (0.63, 95% CI 0.50–0.75), with a smaller increase within 6–12 months (0.66, 95% CI 0.61–0.71) and by 12+ months (0.69, 95% CI 0.62–0.76; Figure S14; Figure 3D).

Meta-Regression

Meta-regression across studies with EQ-5D-3L at ≥3 from stroke demonstrated lower utility score with higher percentage female in the study (P=0.017; Figure S15). The association remained significant when adjusting for mean/median study age (P=0.018). There was no significant difference in utility by study age, with (P=0.3) or without (P=0.2) adjusting for percent female. There was no significant change in utility by publication date (P=0.6). After meta-regression, large amounts of heterogeneity remained (I²>99%), indicating that there were other unexplained factors present giving rise to between-study differences.

DISCUSSION

We conducted a comprehensive systematic review and meta-analysis of health-related quality of life after stroke as calculated with indirect utility measures. We obtained pooled estimates for seven indirect healthy utility measures taken at least 3 months after stroke and showed that all estimates were substantially below population norms, although there was a high degree of between-study heterogeneity. The EQ-5D-3L was the most commonly used tool with a pooled utility of 0.65 at ≥3 months after stroke, ≈20% below population norms. We were able to pool EQ-5D-3L studies which stratified by key characteristics, demonstrating lower health utility among individuals >70 years of age.
and among patients assessed during hospitalization or rehabilitation. Utility increased substantially between acute care and 3 months after stroke with incremental improvements at longer follow-up. Furthermore, women had a lower pooled health utility estimate compared with men. The pooled estimates in this meta-analysis can be used in future economic evaluations and offer a greater understanding of health utility estimates in stroke and differences across important characteristics, although should be interpreted with caution due to high heterogeneity.

Previous meta-analyses synthesizing HSUVs in stroke included studies up until the year 2000 only, and pooled estimates from different metrics. Therefore, we did not seek to directly compare utility values to these studies. There has been a substantial increase in the number of publications on health utility in stroke over the last two decades, a time period characterized by marked improvements in stroke systems of care and development of new therapies such as mechanical thrombectomy. A recent meta-analysis suggested the need to capture both mRS and health utility in clinical trials. Our study therefore aimed to synthesize the observational literature in the past 25 years, provide reference estimates of health utility in stroke to assist in economic analyses, and support the planning and interpretation of observational studies and clinical trials which incorporate HSUVs. Our pooled estimate of 0.65 for EQ-5D-3L was ≈20% lower than the UK population norm for those aged 65 to 74, and lower than pooled estimates for other chronic conditions such as 0.75 in psoriasis, 0.76 for coronary artery disease, or 0.71 for severe chronic obstructive pulmonary disease, suggesting substantial impairment in quality of life among survivors of stroke. Furthermore, there was no significant change in health utility estimate across study years.

This result is compatible with a longitudinal study of HRQoL among survivors of stroke in the United Kingdom showing no significant changes over time. While an assessment of utility across study years is limited by the high heterogeneity between studies, the lack of change over time may also represent persistent impairment in most survivors of stroke or improved survival among disabled patients. In addition, improvements in objective disability over time may not correspond directly with patient-reported quality of life, given that domains such as cognition, emotion, and pain are not specifically captured by traditional motor or activity-focused disability scales. HRQoL is a multi-dimensional construct that overlaps with objective disability but may be influenced by shifts in societal and patient expectations of quality of life and changes in HRQoL in the general population, which may partly explain the lack of change over time.

The age and sex differences seen in our study are consistent in direction with large epidemiological studies. Lower HRQoL for women may be due to increased anxiety or depression, pain and discomfort, or decreased mobility compared with men. Women are also older on average at stroke onset compared with men, have higher stroke severity, and there are known disparities such that women are less likely to receive thrombolysis and in-hospital interventions. In our meta-analysis, age over 70 was associated with lower pooled health utility. These results are expected as elderly individuals have lower utility in the general population, greater co-morbidities, higher stroke severity, longer lengths of stay, and are less likely to be discharged home after stroke. Lastly, health utility during acute hospitalization was also very low (≈0.4), likely driven by severity of deficits at onset. There are also likely to be more proxy responses in the early time period which are associated with lower utility.
We saw a large increase in health utility by 3 to 4 months which stabilized and increased only slightly into later time periods, possibly driven by early mortality in those with the worst HRQoL or early time- and rehabilitation-dependent recovery after stroke. These results are compatible with prior longitudinal studies showing most functional recovery occurring by 3 months in those with ischemic stroke.54,55 As the minimally clinically importance difference of EQ-5D-3L in stroke is estimated to be 0.08 to 0.12, the age- and time-dependent differences were clinically meaningful although the sex difference may be of borderline clinical significance.56

Our study has potential limitations. We did not evaluate adjusted estimates of health utility, as most studies reported crude estimates, and our objective was to identify the actual health-related quality of life among survivors of stroke, regardless of potential confounders. Our meta-analyses had high levels of unexplained heterogeneity and therefore may limit generalizability. The heterogeneity was an expected finding due to pooling observational studies of survivors.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Pooled health utility value for EQ-5D-3L stratified by sex (A), age group (B), stroke type (C), and time after stroke (D). UK population norms are shown for sex groups and display a greater reduction in utility in women with stroke. UK population age norms were selected to correspond closest to the pooled study groups: 45 to 54 years norm for age ≤65 group, 55 to 65 years norm for age 50 to 64 group, 65 to 74 years norm for age 61 to 74 group, and 75+ years norm for age 71+ group. There is a greater difference in utility in stroke survivors compared to norms with older age. There is lower pooled utility for hemorrhagic compared with ischemic stroke, and a large increase in utility between acute care and <4 month follow-up. White number indicates number of studies. Red number indicates pooled estimate.}
\end{figure}
of stroke from different countries, using different health utility tariffs, and inherent clinical and study-level heterogeneity (eg, sample sizes, differences in timing of assessment, or method of elicitation). Due to the high heterogeneity, the results should be interpreted with caution and with acknowledgment of the uncertainty in the pooled values, in particular less commonly used utility metrics and stratified meta-analyses with smaller number of studies. There is also uncertainty surrounding the methodology of combining health utility estimates. However, we avoided combining utility values from different instruments, and therefore all secondary analyses were limited to the EQ-5D-3L which was reported most often within our included studies. Finally, we pooled utilities across countries, as has been done in previous publications on multiple chronic conditions including heart disease, lung disease, psychiatric disease, cancer, and others, and provided country-specific estimates where possible. However, given the differences in health state valuation between countries, researchers should be aware of high heterogeneity, be cautious in the interpretation of results and use in future decision modeling, and use country-specific utility values when available.

In summary, our pooled estimates do not precisely represent utility for people with stroke but rather are the rough center of a range of health utility values from different settings, populations, countries, social environments, and conditions of survey administration. Due to these differences, we pre-specified the use of random effects meta-analysis. However, the random effects meta-analysis assigns greater relative weight to smaller studies which may be less reliable, and which in our stratified analysis were associated with lower utility values. As such, a sensitivity analysis using fixed effect meta-analysis expectedly showed higher utility values, although CIs were too narrow and do not reflect the underlying uncertainty in the estimates. As both estimates were presented, researchers can use those that are best suited to their needs. We did not pre-plan any stratification by acute stroke treatment given that few observational studies addressed treatment effects and a more appropriate comparison would require data from clinical trials. We did not stratify health utility by mRS as a recent meta-analysis specifically addressed health utility weighting of the mRS. We did not conduct any comparative evaluation of different indirect utility measures in stroke. The EQ-5D-5L had a higher pooled estimate compared with EQ-5D-3L, compatible with prior studies in stroke and the general population. Although the EQ-5D-5L has more response options than the EQ-5D-3L, a comparison of the accuracy of the EQ-5D-3L versus the EQ-5D-5L, including validity, reliability, and responsiveness to clinical change is out of the scope of this meta-analysis. Furthermore, we are unable to determine how the characteristics of the individual tests influence the utility results, such as the content of the questions or the number of items in the survey, and this could be the focus of future research. Lastly, these pooled utilities may not be representative of people likely to be excluded from studies where proxies were not present, such as those with severe aphasia and those in long-term care institutions. Studies often did not report handling of missing data or inclusion of proxy respondents; future studies should focus on improving the reporting of these factors to better understand selection bias and explore methods to incorporate information from those with severe deficits such as aphasia.

Patient-reported outcomes are increasingly being used to capture the patient experience among survivors of stroke in a more wholistic manner and complement standard disability scales. Recent initiatives have focused on developing standardized sets of patient-centered outcome measures to improve quality of care, such as the International Consortium for Health Outcomes Measurement. To comprehensively evaluate stroke outcomes, incorporating an indirect utility measure to estimate health utilities may be useful in order to evaluate impairment in light of societal preferences, easily measure change over time, assess the impact of different disease states and treatments, and compare with other diseases.

In this systematic review and meta-analysis of 111 observational studies, we provide pooled estimates for indirect health utility metrics among survivors of stroke and found significantly lower health utility than population norms. There was high heterogeneity between studies. Women, the elderly, and patients in the acute stroke period have overall worse healthy utility and may be targets for specific interventions and support. Our results assist in understanding age, sex, and time-dependent differences in health-related quality of life and may be used as reference for future population-based studies, clinical trials, and economic analyses.

ARTICLE INFORMATION

Received December 10, 2021; accepted February 21, 2022.

Affiliations

Division of Neurology, Hamilton Health Sciences, McMaster University & Population Health Research Institute, Hamilton, Ontario, Canada (R.A.J.); Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (R.A.J., J.A., A.A.L., P.R., E.E.S., M.D.H., S.B.W. and L.C.B.); Department of Clinical Neurosciences, University of Calgary (R.A.J., E.E.S.); Department of Medicine, University of Calgary (A.A.L.); Department of Cardiac Sciences, University of Calgary (S.B.W.); Department of Radiology, University of Calgary (M.D.H.); University of British Columbia, Vancouver, British Columbia, Canada (A.D.R., T.S.F.).

Acknowledgments

We thank librarians Diane Lorenzetti and Heather Ganshorn for their assistance with study design and search strategy.

Sources of Funding

RAJ is supported by a Canadian Institutes of Health Research Fellowship Grant.
42. Ganesh A, Lindsay P, Fang J, Kapral MK, Côté R, Joiner I, Hakim AM, Hill MD. Integrated systems of stroke care and reduction in 30-day mortality. Neurology. 2016;88:989–904. doi: 10.1212/WNL.0000000000002443

43. Yang Z, Li S, Wang X, Chen G. Health state utility values derived from EQ-5D in psoriatic patients: a systematic review and meta-analysis. J Dermatol Treat. 2020;1–8. doi: 10.1080/09546634.2020.180571

44. Stevanović J, Pečiljvanoglović P, Kampinga MA, Krabbe PFJ, Postma M. Multivariate meta-analysis of preference-based quality of life values in coronary heart disease. PLoS One. 2016;11:e0152030. doi: 10.1371/journal.pone.0152030

45. Einaron TR, Bereza BG, Nielsen TA, Hemels MEH. Utilities for asthma and COPD according to category of severity: a comprehensive literature review. J Med. 2015;18:550–563. doi: 10.1113/1366.998.2015.1025793

46. Sheidenker A, Crichton S, Douiri A, Rudd AG, Wolfe CDA, Chen R. Temporal trends in health-related quality of life after stroke: analysis from the South London Stroke Register 1995–2011. Int J Stroke. 2014;9:721–727. doi: 10.1016/j.jisc.2014.06.027

47. Lannin N, Anderson C, Kim J, Kijkenny M, Bernhardt J, Lev C, Dewey H, Bladin C, Hand P, Castley H, et al. Treatment and outcomes of working aged adults with stroke: results from a national prospective registry. Neuroepidemiology. 2017;49:113–120. doi: 10.1159/000484141

48. Bushnell CD, Chaturvedi S, Gage KR, Herson PS, Hurn PD, Jiménez MC, Kittner SJ, Madsen TE, McCullough LD, McDermott M, et al. Sex differences in stroke: challenges and opportunities. J Cereb Blood Flow Metab. 2018;38:2179–2191. doi: 10.1038/s41600-018-0245-5

49. Reeves MJ, Black S. Stroke in the very elderly: hospital care, case management, and outcomes. Lancet Neurol. 2008;7:915–926. doi: 10.1016/S1474-4422(08)70193-8

50. Gur AY, Tanne D, Bornstein NM, Milo R, Auriel E, Shopin L, Koton S. Hemiplegic shoulder pain reduces quality of life after stroke. Int J Stroke. 2014;9:1877–1883.

51. Saposnik G, Cote R, Phillips S, Gubitz G, Bayer N, Minuk J, Black S. Stroke outcome in those over 80: a multicenter cohort study across Canada. Stroke. 2008;39:2310–2317. doi: 10.1161/STROKEAHA.107.511402

52. Saposnik G, Black S. Stroke in the very elderly: hospital care, case fatality and disposition. Cerebrovasc Dis. 2009;28:537–543. doi: 10.1159/000102412

53. Pickard AS, Johnson JA, Feeny DH, Bornstein NM, Tanne D, Shopin L, Koton S, Arima H, Anderson CS. Comparison of recovery patterns and prognostic indicators for ischemic and hemorrhagic stroke in China. Stroke. 2010;41:1877–1883.

54. Jørgensen HS, Nakayama H, Raaschou HO, Vælberg Larsen J, Støier M, Abrahamyan L, Pečiljvanoglović P, Sigurdson JW, Duncan PW, Lynch G, Khatiwoda A, Lisabeth L. Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol. 2008;7:915–926. doi: 10.1016/S1474-4422(08)70193-8

55. Mohiuddin S, Payne K. Utility Values for adults with unipolar depression: systematic review and meta-analysis. Med Decis Making. 2014;34:666–685. doi: 10.1177/0272989X14529990

56. Magnus A, Isaranuwatchai W, Mihalopoulos C, Brown V, Carter R. A systematic review and meta-analysis of prostate cancer utility values of patients and partners between 2007 and 2016. MDM Policy Practice. 2019;4:238146319852322. doi: 10.1177/238146319852322

57. Malinowski KP, Kavalec P. Health utility of patients with Crohn’s disease and ulcerative colitis: a systematic review and meta-analysis. Expert Rev Pharmacoeconomics Outcomes Res. 2016;16:441–453. doi: 10.1080/14737715.2016.1190644

58. Yang Z, Li S, Wang X, Chen G. A systematic review and meta-analysis of health state utility values in psoriasis. Value in Health. 2018;21:S107. doi: 10.1016/j.jval.2018.07.810

59. Xia Q, Campbell JA, Ahmad H, Si L, de Graaff B, Otaheh P, Palmer AJ. Health state utilities for economic evaluation of bariatric surgery: a comprehensive systematic review and meta-analysis. Obes Rev. 2020;21:e13028. doi: 10.1111/obr.13028

60. Tran BX, Nguyen LH, Chinhma A, Maher RM, Nong VM, Latkin CA. Longitudinal and cross sectional assessments of health utility in adults with HIV/AIDS: a systematic review and meta-analysis. BMC Health Serv Res. 2015;15:17. doi: 10.1186/s12913-014-0640-3

61. Malinowski KP, Kavalec P. Health utility of patients with Crohn’s disease and ulcerative colitis: a systematic review and meta-analysis. Expert Rev Pharmacoeconomics Outcomes Res. 2016;16:441–453. doi: 10.1080/14737715.2016.1190644

62. Joundi et al. Health Utility in Stroke. J Am Heart Assoc. 2022;11:e024296. DOI: 10.1161/JAHA.121.024296

63. Joundi et al. Health Utility in Stroke. J Am Heart Assoc. 2022;11:e024296. DOI: 10.1161/JAHA.121.024296
from the North East Melbourne Stroke Incidence Study (NEMESIS), 2010:8.

81. Cadilhac DA, Kilkenny MF, Lannin NA, Dewey HM, Levi CR, Hill K, Grabbsch B, Grimley R, Blacker D, Thrift AG, et al. Outcomes for patients with in-hospital stroke: a multicenter study from the Australian stroke clinical registry (AuSCR). J Stroke Cerebrovasc Dis. 2019;28:1532–1545. doi: 10.1016/j.jstrokecerebro.2019.01.026

82. Cao Y, Tang X, Yang L, Li N, Wu Y, Fan W, Liu J, Yu L, Xu H, Liu W, et al. Influence of chronic diseases on health related quality of life in middle-aged and elderly people from rural communities: application of EQ-5D scale on a Health Survey in Fangshan, Beijing. Zhonghua Liu Xing Bing Xue Za Zhi. 2012;33:17–22.

83. Chang WH, Sohn MK, Lee J, Kim DY, Lee S-G, Shin Y-L, Oh G-J, Lee Y-S, Joo MC, Han EY, et al. Predictors of functional level and quality of life 6 months after a first-ever stroke: the KOSCO study. J Neurol. 2016;263:1166–1177. doi: 10.1007/s00415-016-1199-y

84. Chen C-J, Ding D, Buell TD, Testai FD, Koch S, Woo D, Worrall BB. Changes among Canadians with stroke between 1996 and 2005. J Am Heart Assoc. 2022;11:e024296. DOI: 10.1161/JAHA.121.024296

85. Chen C, Ding D, Buell TD, Testai FD, Koch S, Woo D, Worrall BB. Restarting antipateptide therapy after spontaneous intracerebral hemorrhage: Functional outcomes. Neurology. 2018;91:e26–e36. doi: 10.1212/ WNL.0000000000005742

86. Chen P, Lin K-C, Ling R-J, Wu C-Y, Chen C-L, Chang K-C. Validity, responsiveness, and minimal clinically important difference of EQ-5D-5L in stroke patients undergoing rehabilitation. Qual Life Res. 2016;25:1555–1596. doi: 10.1007/s11136-015-1196-z

87. Cheung YB, Tan-HX, Luo N, Wei HL, Koh GCH. Mapping the Shaft-modified Barthel Index to the Health Utility Index Mark III by the mean rank method. Qual Life Res. 2019;28:3177–3185. doi: 10.1007/s11136-019-02554-0

88. Cramm JM, Stoker MMH, Nieboer AP. Satisfaction with care as a quality-of-life predictor for stroke patients and their caregivers. Qual Life Res. 2012;21:1719–1725. doi: 10.1007/s11136-011-0107-1

89. Cup EHC, Scholte op Reimer WJM, Thijssen MCE, van Kuyk-Minis M. Rehabilitation: Eine prospektive Studie zur Ermittlung von Prädiktoren für das Überleben zuhause bis 5 Jahre nach Entlassung. Rehabilitation. 2019;58:296–303. doi: 10.1055/a-0652-0446

90. Groeneveld IF, Goossens PH, van Meijeren-Pont W, Arwert HJ, Meesters J, Rambaran Mishre AD, Van Vree F, Vliet Vlieland TPM. Value-based stroke rehabilitation: feasibility and results of patient-reported outcome measures in the first year after stroke. J Stroke Cerebrovasc Dis. 2019;28:499–512. doi: 10.1016/j.jstrokecerebrovascdis.2018.10.033

91. De Graaf J, Kuijpers M, Visser-Meily J, Thijssen MCE, van Kuyk-Minis M. Reliability and validity of the Canadian Occupatie189onal performance measure in stroke patients. Clin Rehabil. 2003;17:402–409. doi: 10.1177/02692155030315005a

92. Darlington A-SE, Dippel DWJ, Ribbers GM, van Balen R, Passchier J, Dippel DWJ. Coping strategies on quality of life after ischemic stroke. Health Qual Life Outcomes. 2019;17:31. doi: 10.1186/s12955-018-1069-6

93. Dornan P. Are the modified “simple questions” a valid and reliable measure of health related quality of life after stroke? J Neurol Neurosurg Psychiatry. 2000;69:487–493. doi: 10.1136/jnnp.69.4.487

94. Dornan PJ, Wadell F, Slattery J, Dennis M, Sandercock P. Are proxy assessments of health status after stroke with the euroqol questionnaire feasible, accurate, and unbiased? Stroke. 1997;28:1883–1887. doi: 10.1161/01.STR.1997.28.10.1883

95. Du X-D, Zhu P, Li M-E, Wang J, Meng H-D, Zhu C-R. [Health Utility of Patients with Stroke Measured by EQ-5D and SF-6D]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2018;49:252–257.

96. Edwards JD, Koehoorn M, Boyd LA, Levy AR. Is health-related quality of life improving after stroke? A comparison of health utilities indices among Canadians with stroke between 1996 and 2005. Stroke. 2001;40:996–1000. doi: 10.1161/STROKEAHA.109.576678

97. Fischer U, Anca D, Arnold M, Nedelitchev K, Kappeller L, Ballinati P, Schroth G, Mattie HP. Quality of life in stroke survivors after local intraarterial thrombolysis. Cerebrovasc Dis. 2008;25:438–444. doi: 10.1055/s-0028-1089517
158. Sand KM, Wilhelmsen G, Naess H, Midelfart A, Thomassen L, Hoff JM. Vision problems in ischemic stroke patients: effects on life quality and disability. *J Eur Neurol*. 2016;23:1–7. doi: 10.1111/ene.12848

159. Sasaki S, Kanai M, Shinoda T, Morita H, Shimada S, Izawa KP. Relation between health utility score and physical activity in community-dwelling ambulatory patients with stroke: a preliminary cross-sectional study. *Topics in Stroke Rehabilitation*. 2018;25:475–479. doi: 10.1080/10749576.2018.1492776

160. Slaughter KB, Meyer EG, Bambhroliya AB, Meeks JR, Ahmed W, et al. Psychosocial predictors of quality of life in patients with large hemispheric infarctions. *J Stroke Cerebrovasc Dis*. 2020;29:105358. doi: 10.1016/j.jstrokecerebrovasdis.2020.105358

161. Sturm JW, Donnan GA, Dewey HM, Macdonell RAL, Gilligan AK, Slaughter KB, Meyer EG, Bambhroliya AB, Meeks JR, Ahmed W, et al. Psychosocial predictors of quality of life in patients with large hemispheric infarctions. *J Stroke Cerebrovasc Dis*. 2020;29:105358. doi: 10.1016/j.jstrokecerebrovasdis.2020.105358

162. Sturm JW, Osborne RH, Dewey HM, Donnan GA, Macdonell RAL, Thrift AG. Brief comprehensive quality of life assessment after stroke: the assessment of quality of life instrument in the North East Melbourne stroke incidence study (NEMESIS). Stroke. 2004;35:2340–2345. doi: 10.1161/01.STR.0000141977.18520.3b

163. Szöcs I, Dobi B, Lám J, Orbán-Kis K, Hákkinen U, Belicza É, Bereczki D, Vastagh I. Health related quality of life and satisfaction with care of stroke patients in Budapest: a substudy of the EuroHOPE project. *PLoS One*. 2020;15:e0241059. doi: 10.1371/journal.pone.0241059

164. Teoh V, Sims J, Milgrom J. Psychosocial predictors of quality of life in a sample of community-dwelling stroke survivors: a longitudinal study. *Topics in Stroke Rehabilitation*. 2009;16:157–166. doi: 10.1310/tsr1602-157

165. Tran PL, Leigh Blizzard C, Srikanth V, Hanh VTX, Liem NTK, Thang NH, Gall SL. Health-related quality of life after stroke: reliability and validity of the Duke Health Profile for use in Vietnam. *Qual Life Res*. 2015;24:2807–2814. doi: 10.1007/s11136-015-1016-5

166. Vahberg B, Cederholm T, Lindmark B, Zetterberg L, Hellström K. Factors related to performance-based mobility and self-reported physical activity in individuals 1–3 years after stroke: a cross-sectional cohort study. *J Stroke Cerebrovasc Dis*. 2013;22:e426–e434. doi: 10.1016/j.jstrokecerebrovasdis.2013.04.028

167. vanEeden M, van Heugten C, van Mastigirt GQP, van Mierlo M, Visser-Meily JMA, Evers SMAA. The burden of stroke in the Netherlands: estimating quality of life and costs for 1 year poststroke. *BMJ Open*. 2015;5:e008220.

168. Visser MM, Heijenbrok-Kal MH, Spijkers AV, Oostra KM, Busschbach JJ, Ribbers GM. Coping, problem solving, depression, and health-related quality of life in patients receiving outpatient stroke rehabilitation. *Arch Phys Med Rehabil*. 2015;96:1492–1498. doi: 10.1016/j.apmr.2015.04.007

169. Wartenberg KE, Henkner J, Brandt S, Zierz S, Müller TJ. Effect of reca- nalization on cerebral edema, long-term outcome, and quality of life in patients with large hemispheric infarctions. *J Stroke Cerebrovasc Dis*. 2020;29:105358. doi: 10.1016/j.jstrokecerebrovasdis.2020.105358

170. White J, Magin P, Atta J, Sturm J, McEllduff P, Carter G. Predictors of health-related quality of life in community-dwelling stroke survivors: a cohort study. *FAMPRJ*. 2016;33:382–387. doi: 10.1093/fampra/cmw011

171. Wu M, Brazier JE, Kearns B, Relton C, Smith C, Cooper CL. Examining the impact of 11 long-standing health conditions on health-related quality of life using the EQ-SD in a general population sample. *Eur J Health Econ*. 2015;16:141–151. doi: 10.1007/s10198-013-0559-z

172. Wu M, Brazier J, Relton C, Cooper C, Smith C, Blackburn J. Examining the incremental impact of long-standing health conditions on subjective well-being alongside the EQ-SD. *Health Qual Life Outcomes*. 2014;12:61. doi: 10.1186/1477-7525-12-61

173. Xie J, Wu EQ, Zheng Z-J, Croft JB, Greenlund KJ, Mensah GA, Labarthe DR. Impact of stroke on health-related quality of life in the noninstitutionalized population in the United States. *Stroke*. 2006;37:2567–2572. doi: 10.1161/01.STR.0000240506.34861.10

174. Yan P, Zhan F, Hou L, Guo J, He L, Liu D, Zhu C. [Lesion Locations and Quality of Life in Patients with Ischemic Stroke]. *Sichuan Da Xue Xue Bao Yi Xue Ban*. 2015;46:860–865.

175. Yang Y-N, Kim B-R, Uhm KE, Kim SJ, Lee S, Oh-Park M, Lee J. Life space assessment in stroke patients. *Ann Rehabil Med*. 2017;41:761. doi: 10.5535/arm.2017.41.5.761

176. Yeoh YS, Koh G-H, Tan CS, Lee KE, Tu TM, Singh R, Chang HM, De Silva DA, Ng YS, Ang YH, Yap P, et al. Health-related quality of life loss associated with first-time stroke. *PLoS One*. 2019;14:e0211493. doi: 10.1371/journal.pone.0211493

Joundi et al Health Utility in Stroke
SUPPLEMENTAL MATERIAL
Table of Contents

Table S1. PRISMA 2020 item checklist
Table S2. Search Strategy
Table S3. Indirect health utility metrics
Table S4. Characteristics of studies included in systematic review
Table S5. Risk of bias assessment criteria
Table S6. Weighted baseline characteristics across studies
Table S7. Weighted baseline characteristics across studies for EQ-5D-3L
Table S8. Risk of bias assessment
Table S9. Summary statistics of risk of bias assessment
Table S10. Pooled EQ-5D-3L values for different time ranges and time points
Table S11. Sensitivity analyses
Table S12. Comparison of summary estimates using random effects and fixed effect meta-analysis
Figure S1. PRISMA flowchart
Figure S2. Characteristics of included papers
Figure S3. Random effects meta-analysis for EQ-5D-3L utility values
Figure S4. Fixed effects meta-analysis for EQ-5D-3L utility values
Figure S5. Random effects meta-analysis for EQ-5D-5L
Figure S6. Random effects meta-analysis for AQoL
Figure S7. Random effects meta-analysis for HUI2
Figure S8. Random effects meta-analysis for HUI3
Figure S9. Random effects meta-analysis for 15D
Figure S10. Random effects meta-analysis for SF-6D
Figure S11. Sex-stratified random effects meta-analysis for EQ-5D-3L
Figure S12. Age-stratified random effects meta-analysis for EQ-5D-3L
Figure S13. Stroke type-stratified random effects meta-analysis for EQ-5D-3L
Figure S14. Time-stratified random effects meta-analysis for EQ-5D-3L
Figure S15. Meta-regression analyses of mean EQ-5D-3L utility score by sex, age, and publication date
References – studies included in systematic review
Table S1. PRISMA 2020 item checklist

Section and Topic	Item #	Checklist Item
TITLE	1	Identify the report as a systematic review.
ABSTRACT	2	See the PRISMA 2020 for Abstracts checklist (Table 2).
INTRODUCTION		
Rationale	3	Describe the rationale for the review in the context of existing knowledge.
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.
METHODS		
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis.
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.
	13e	Describe any methods used to explore possible causes of heterogeneity among study results.
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.
Section and Topic	Item #	Checklist Item
---------------------------	--------	---
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.
RESULTS		
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram (see Figure 1).
	16b	Cite studies that met many but not all inclusion criteria (‘near-misses’) and explain why they were excluded.
Study characteristics	17	Cite each included study and present its characteristics.
Risk of bias in studies	18	Present assessments of risk of bias for each included study.
Results of individual	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.
syntheses		
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.
	20c	Present results of all investigations of possible causes of heterogeneity among study results.
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.
DISCUSSION		
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.
	23b	Discuss any limitations of the evidence included in the review.
	23c	Discuss any limitations of the review processes used.
	23d	Discuss implications of the results for practice, policy, and future research.
OTHER INFORMATION		
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.
	24c	Describe and explain any amendments to information provided at registration or in the protocol.
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.
Competing interests	26	Declare any competing interests of review authors.
Availability of data, code	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.
Table S2. Search Strategy

Search Strategy 1: Global search (using Medline syntax)

#1	exp Stroke/ OR exp Cerebral Infarction/ or exp Brain Infarction/ or exp brain ischemia/ or cerebral hemorrhage/ OR (stroke* OR cerebral infarction OR brain infarction OR brain ischemia OR h?emorrhagic stroke* or cerebral h?emorrhage* or intracerebral h?emorrhage* or brain h?emorrhage*).tw,kf.
#2	exp "Quality of Life"/ OR (euroqol or euro qol or eq5d* eq-5d* or short form 6 dimension or short form six dimension or sf-6D* or hui or hui2 or hui3 or health utilit* or assessment of quality of life or aqol* or quality of well being or qwb or 15D).tw,kf.
#3	(#1) AND (#2)
#4	(#3) and NOT (address or autobiography or bibliography or biography or case reports or dataset or dictionary or directory or duplicate publication or editorial or "expression of concern" or festschrift or interactive tutorial or interview or lecture or legal case or legislation or news or newspaper article or patient education handout or periodical index or personal narrative or portrait or technical report or twin study or video-audio media or webcast or letter)
#5	1995 until day October 26, 2020
HRQoL questionnaire	Description	Range of possible scores
EuroQol five dimensions three levels	Five dimensions (mobility, self-care, usual activities, pain/discomfort, anxiety/depression), each of which is assigned one of three levels, allowing 243 health states	-0.59 to 1.00 (Europe)
(EQ-5D-3L) \(^{22}\) (main text)		
EuroQol five dimensions five levels	Adaptation of EQ-5D-5L with 5 levels for each dimension, allowing 3,125 possible health states.	-0.28 to 1.00 (UK)
(EQ-5D-5L) \(^{23}\) (main text)		
Short form six dimensions (SF-6D) \(^{26}\) (main text)	Six dimensions (physical functioning, role limitations, social functioning, pain, mental health, vitality), with four to six levels, allowing 18 000 health states.	0.30 to 1.00 (UK)
Health utilities index mark 2	Seven dimensions (sensory, mobility, emotion, cognitive, self-care, pain, fertility), with three to five levels, allowing 24 000 health states.	-0.03 to 1.00 (Canada)
(HUI2) \(^{25}\) (main text)		
Health utilities index mark 3	Eight dimensions (vision, hearing, speech, ambulation, dexterity, emotion, cognition, pain), with five to six levels, allowing 972 000 health states.	-0.36 to 1.00 (Canada)
(HUI3) \(^{25}\) (main text)		
15D (15 dimensions) \(^{28}\) (main text)	Fifteen dimensions (mobility, vision, hearing, breathing, sleeping, eating, speech, elimination, usual activities, mental function, discomfort and symptoms, depression, distress, vitality, and sexual activity), with five grades of severity, allowing 3.1 x 10\(^{10}\) health states.	0 to 1 (Finland)
Assessment of Quality of Life	Five dimensions (illness, independent living, social relationships, physical senses, psychological well-being), with four levels, allowing for 1.1 billion health states.	0 to 1 (Australia)
(AQOL) \(^{24}\) (main text)		
Quality of Well-Being (QWB)* \(^{27}\) (main text)	Three dimensions (mobility, physical activity, social activity).	0 to 1 (USA)

No included studies in this systematic review had QWB
Table S4. Characteristics of studies included in systematic review

Author	Citation	Year	Country	Stroke type	Self-report or diagnosis	Percent ischemic	Percent left hemisphere	Location	Mean or median age	Mean or median time	Percent inattention	Percent distraction	Percent difficulty controlling	Percent prior stroke	Percent prior infarction	Instrumentation	Cortolol & or LA	Torvail strength	Survey method		
Adey-Wakeling	34	2016	Australia	B	D	88.3	NI	C	NR	NR	NI	NI	NR	NR	NR	E	3		Australia		
Appou	24	2019	Canada	B	D	NR	NR	C	71.5 (3.28)	NR	At 3 months	NR	NR	NR	NR	NR	NR	E	NR		
Arronside	26	2019	Spain	B	S	NR	NR	NR	C	NR	NR	NI	NR	NR	NR	E	5		Spanish		
Arwert	14	2017	Netherlands	B	D	83 (50%	C	47.7 (17.7)	Mean 50 months	13 (4)	NR	NR	NR	NR	NR	E	3		Netherlands		
Barton	27	2008	UK	B	S	NR	NR	C	NR	NR	NR	NI	NR	NR	NR	E	6		UK		
Brooks	38	2019	France	B	D	80 (64)	C	69 (2)	At 12 months	32	13	14	E	3	Frisez	M	M				
Burton	19	2014	UK	B	D	94 (68%)	C	70 (112)	Mean 27.5 months	9 (6)	NR	NR	NR	NR	NR	E	3		UK		
Bushnell	11	2014	USA	I	D	77.4	NR	C	65 (50.56-75)	46.1	At 3 and 12 months	30 (14.50)	75.2	27.9	24.7	24.2	23	10.8	USA		
CadHer 1	46	2016	Australia	B	D	77.7	NR	C	78 (68-80) stroke unit; 76.0 (62-84) Non stroke unit	44.4	Median 101 days (67-207)	NR	NR	NR	NR	14	24	NR	E	3	Australia
CadHer 2	40	2010	Australia	B	D	NR	NR	C	80.2	At 12 months and 5 years	NR	NR	NR	NR	NR	NR	NR	E	3		
Cao	33	2012	China	B	D	NR	NR	C	NR	NR	NR	NR	NR	NR	NR	E	3		NR		
Chang	44	2016	Korea	B	D	80.1	NR	C	64.3 (52.8)	At 6 months	NR	NR	NR	23.2	27.8	6.4	NR	10.3	Korea		
Chen 1	42	2015	Taiwan	U	D	NR	NR	10.7	12.8 (8.11-16)	Median 19.7 months (9.4-46)	NR	NR	NR	NR	NR	NR	NR	NR	E	5	Japan
Chen 2	43	2018	USA	H	D	NR	NR	10.7	85 (50.57-75)	Revascularization group: 62 (83) non revascularization group	38.8	At 3 months	90.1	31.7	43.2	5.5	11.5	12.2	E	3	
Cheung	45	2019	Singapore	B	D	87	NR	C	62.7 (0.9)	32.4	At 3 months or 12 months	NR	NR	NR	NR	NR	NR	HS (6)	N/A	Canadian	
Craven	27	2012	Netherlands	U	D	NR	NR	H	88.13 (14.24)	At 6 months	NR	NR	NR	NR	NR	NR	NR	E	3	Netherlands	
Cup	46	2001	Netherlands	B	D	NR	NR	C	68 (15)	At 6 months	NR	NR	NR	NR	NR	NR	NR	E	3		
Year	Country	Gender	Age	Diagnosis	Inpatient Stay	Outpatient Stay	Discharge Outcomes														
------	---------------	--------	-----	-----------	----------------	----------------	-------------------														
2019	Sweden (M)	31	71	Cancer	10	12	5														
2018	Germany (F)	54	67	Diabetes	20	10	7														
2017	Spain (M)	56	72	Stroke	15	10	5														
2016	UK (F)	44	68	Depression	12	10	7														
2015	Japan (M)	65	82	Liver	30	10	5														
2014	Italy (F)	30	70	Alzheimer	20	10	5														

Note
- Gender: M = Male, F = Female
- Inpatient Stay: Days
- Outpatient Stay: Days
- Discharge Outcomes: %

This table represents the inpatient and outpatient stays, discharge outcomes, and other relevant data for patients from various countries over the years 2019 to 2016.
| Year | Country | Region | Language | Score | Score | Median (IQR) | Rebound | Duration | Outcome | Region | Other | Score | Score | Score | Score |
|------|---------|--------|----------|-------|-------|--------------|----------|----------|---------|--------|-------|-------|-------|-------|
| 2017 | Korea | B | D | 67 | NR | C | 65 (11) | 45.7 | Mean 25.5 | NR | E | No | No | No | No |
| 2015 | Germany | B | D | 82 | NR | C | 67.4 (11.3) | 40 | Mean 37 | NR | E | No | No | No | No |
| 2017 | USA | I | D | 100 | NR | C | 63.5 (5.4) | 46 | Median 50| NR | E | No | No | No | No |
| 2014 | USA | I | D | 100 | 27% | F | 55 (8-63) | 64 | Median 20| NR | E | No | No | No | No |
| 2012 | Thailand| B | D | 56.5 | NR | H | 60.9 (12.6) | 42 | <2 weeks | NR | E | No | No | No | No |
| 2013 | Korea | B | S | NR | NR | C | 64.4 (5.2) | 44.3 | NR | NR | E | No | No | No | No |
| 2017 | Korea | B | S | NR | NR | C | 67.4 (5.3) | 50.9 | NR | NR | E | No | No | No | No |
| 2017 | Japan | U | S | NR | NR | C | 75.8 (5.58) | 36.7 | NR | NR | E | No | No | No | No |
| 2007 | Japan | B | D | NR | NR | C | 60.9 (3.6) | NR | Median 30 | NR | E | No | No | No | No |
| 2003 | Japan | B | D | 75 | NR | C | 71.6 (9.8) | NR | NR | NR | E | No | No | No | No |
| 2003 | Japan | B | D | 61.4 | NR | C | 64.8 (6.0) | 42.6 | NR | NR | E | No | No | No | No |
| 2017 | Australia| B | D | 64 | NR | C | 71 (21.5) | 30.3 | Median 3 | NR | E | No | No | No | No |
| 2010 | Australia| B | D | 76.3 | NR | R/D | 64.8 (12.2) | 36.6 | Median 1 | NR | E | No | No | No | No |
| 2004 | UK | B | D | 76.8 | NR | R/C/N | 79.9 (7.3) | 74 | NR | NR | E | No | No | No | No |
| 2007 | Sweden | B | D | 64.4 | NR | C | 64.9 (6.3) | 48.4 | At 3/6/9/12 | NR | E | No | No | No | No |
| 2012 | Spain | U | D | 67.1 | NR | C | 67.1 (12.2) | 43.1 | Median 10 | NR | E | No | No | No | No |
| 2016 | Taiwan | B | D | NR | NR | R | 45.3 (13.7) | 37.9 | NR | NR | E | No | No | No | No |
| 2011 | UK | B | D | 83 | NR | C | 75 (12) | 51 | 10/12 months | NR | E | No | No | No | No |

Notes:
- **Fernandez**
- **Lopez**
- **Lindgren**
- **Leeds**
- **Lee**
- **Leach**
- **Lannin**
- **Labberton**
- **Kwon**
- **Kuwano**
- **Kuroda**
- **Kuroda**
- **Kim**
- **Kil**
- **Katzan**
- **Katona**
- **Jeon**
- **Bastida**
- **UK**
- **I**
| Lunde | 142 | 2012 | No | Norway | U | D | NR | NR | C | 48.7 (12.9) | 36 | Mean 22.2 (18.3) | NR | 1, 10D | 3 | UK | M | | | | | | | | | | | |
| Mohideh | 143 | 2019 | No | Sri Lanka | U | D | NR | NR | R/O | NR | NR | At 28-32 days | NR | E | 3 | Sri Lanka | I |
| Mar 1 | 144 | 2015 | No | Spain | B | D | NR | NR | H/C | 72.1 (3.2) | 45.2 | At 3/12 months | NR | 50.2 | E | 3 | NR | I |
| Mar 2 | 145 | 2005 | No | Spain | B | D | 57.8 | NR | C | 70.9 (13.2) | 38.5 | At 1 year | NR | B2 | E | 3 | NR | I |
| Mathias | 146 | 1997 | No | USA | B | D | NR | NR | C | 61 | Within 3 months | NR | H2 | N/A | NR | I |
| McDonnell | 147 | 2014 | No | Australia | B | S | NR | NR | C | 70 | (range 55- | 80) | 25.9 | NR | A | N/A | NR | I |
| Min | 148 | 2015 | No | Korea | B | S | NR | NR | C | NR | H2 | N/A | NR | I |
| Mittmann 1 | 149 | 2001 | No | Canada | U | S | NR | NR | C | NR | H3 | N/A | NR | U/P |
| Mittmann 2 | 150 | 1998 | No | Canada | B | S | NR | NR | C | NR | H3 | N/A | NR | U/P |
| Mulhern | 151 | 2018 | No | UK | B | S | NR | NR | C | NR | 3, 5 | UK | F |
| Ommenraad | 152 | 2019 | No | Netherlands | I | D | 100 | NR | C | 74 (IQR 64-83) | 43 | At 3 months | Median 4 (IQR 2-12) | 53 | 4 | 22 | 10 | 27 | NR | E | 5 | Dutch | U/P |
| Olson 1 | 153 | 2007 | No | Sweden | B | D | 70 | 46 | C | 50 | 48 | Median 32 months (range 27- | 66) | NR | E | 3 | NR | I |
| Olson 2 | 154 | 2006 | No | Sweden | B | D | 71.2 | 44 | B | 51.3 (18.3) | 46.1 | Mean (SD) | days (range 20- | 47) | NR | E | 3 | NR | I |
| Park | 155 | 2011 | No | Korea | B | D | NR | NR | C | 69 (17) | 38 | At 3 months | NR | 67 | 34 | 41 | S | NR | 2 | E | 3 | Korean | I |
| Pau | 156 | 2001 | No | Australia | B | D | NR | NR | C | 75.5 (2.8) | 50% | At 1 years | NR | A | N/A | Australia | I |
| Pang | 157 | 2019 | No | Taiwan | B | D | 80 | NR | H | 65.6 (SD 11.7-70) | 37.1 | NR | E | 3 | Taiwan | I |
| Petersson | 158 | 2007 | No | Sweden | B | S | NR | NR | C | 67 (range 43-81) | 31 | NR | E | 3 | NR | I |
| Peters | 159 | 2014 | No | UK | B | S | NR | NR | C | NR | E | 3 | UK | M |
| Phase 1 | 160 | 2020 | No | Australia | B | D | NR | NR | C | 72.1 (SD 62-79) | max.77.1 | 65.7-84 | women | 44 | Median 11.5 months | (IQR 10.5-13.4) | NR | 72.7 | 19.6 | 21.5 | 24.2 | NR | 34.7 | E | 3 | NR | NR |
| Phase 2 | 161 | 2019 | No | Australia | B | D | 88.8 | NR | C | 86.6 (SD 80-90) | 69 (53) for AQoL | 66.7 (SD 49.2 | for AQoL | At 1 year and 5 years | NR | 66.7 | (Oxford sample) | 12.5 | NR | 11.5 | NR | 15.5 | F, A | 3 | UK for EQ- | 5D/Austral | is for AQoL | I |
| Pickford 1 | 162 | 2001 | No | Canada | I | D | NR | NR | H/C | 87 (15) | 48 | Before discharge | (50%-50% or 2 weeks of stroke) | NR | H2, H3 | 3 | NR | S |
| Pickard 2 | 14 | 2004 | No | Canada | I | D | NR | NR | H/C | 68.3 (14.6) | 47% | At 1/3/6 months | NR | E, H | 3 | UK | NR |
| Pisano | 152 | 2011 | No | Brand | B | D | NR | NR | D | 50.9 (13.3) | 55.2 | Mean 38 months | NR | E | 3 | NR | I |
| Price | 153 | 2018 | No | Australia | B | S | NR | NR | C/O | 62.9 (10.9) | 48.8 | Mean 18 months | NR | A | Nordic | NR | I |
| Remirez- Moreno | 154 | 2018 | No | Spain | B | D | NR | NR | C/O | 59.5 (18.2) | 23.5 | At 3 months | NR | 58.7 | 30.4 | 64.8 | NR | 27.2 | 12 | E | 5 | NR | I |
| Ran | 155 | 2015 | Y | China | I | D | NR | NR | NR | 63.9 (12.3) | 60.9 | NR | E | 3 | NR | I |
| Rivero-Arias | 156 | 2009 | No | UK | B | D | NR | NR | C | 72.8 | 53 | NR | E | 3 | UK | I |
| Saetre | 157 | 2006 | No | Finland | B | S | NR | NR | C | 70 | 48 | NR | E, 13D | 5 | UK | I |
| Saliseon | 158 | 2014 | No | Finland | H | D | D | NR | C | 70.5 (10.5) | 48 | At 3 months | Median 1 | NR | 13.7 | NR | 10.1 | 18.8 | 24.6 | E, 110 | 5 | Crosswalk | I/IM |
| Sanchez- Rio | 159 | 2017 | No | Spain | B | S | NR | NR | NR | 6 | NR | E | 5 | Spain | NR |
| Sad | 160 | 2015 | No | Norway | I | D | NR | NR | C | 52.8 (4.9) | 37.3 | Mean 372 days | Range 185-573 | Mean 5.9 (6.4) vision problems | 3.8 (4.2) | Mean 1.7 (1.5) | 0.6 | 58.8 | 13.6 | 13.5 | NR | E, 130 | 3 | NR | M |
| Sasuki | 161 | 2018 | No | Japan | B | D | NR | NR | D | 69.5 (12.7) | 27.3 | Mean 0.3 months | (0.2) | Medians 11 (IQR 3-22) | 90.1 | 22.7 | NR | NR | NR | E | 3 | Japan | S |
| Slaughter | 162 | 2019 | No | USA | H | D | NR | NR | C | 63.9 (14.9) | 27.3 | At 3 months | Median 1 | NR | 15.1 | 10.8 | 26.2 | 11.1 | E | 5 | NR | P |
| Sturm 1 | 163 | 2004 | No | Australia | B | D | B5 | NR | C | 71 (0.9%) | 49 | Mean 377 days | Range 46.0-488 | Mean 7.38 (8.37) | NR | A | Nordic | NR | I |
| Sturm 2 | 164 | 2002 | No | Australia | B | D | NR | NR | C | 72.2 (28.8) | 55 | At 3 months | NR | A | Nordic | NR | I |
| Snos | 165 | 2020 | No | Budapest | I | D | NR | NR | C | 68.5 (2.9) | 44 | At 3 months | NR | E | 130 | 5 | NR | UP |
| Tsuk | 166 | 2009 | No | Australia | B | D | 76.5 | NR | C | 67.5 (14.3) | 32% | Mean 17.7 months | (6.8) | Mean 7.1 (5.6) | NR | A | Nordic | NR | N |
| Tran | 167 | 2015 | No | Vietnam | B | D | 72.7 | NR | C | 60.9 (12.1) | 49.1 | At 3 months | NR | E | 3 | South Korea | S |
| Valkberg | 168 | 2013 | No | Sweden | B | D | NR | NR | C | 74 (5.2) | 29.2 | 2.3 years after | NR | 64 | 16 | 15 | 12 | 21 | 22 | E | 3 | NR | I |
| Van Eeden | 169 | 2015 | No | Netherlands | B | D | NR | NR | C | 92.9 | 38.2 | H/C | 60.8 (12-27) | 35.2 | At 2/6/12 months | Mean 2.6 (2.96) | NR | E | 3 | Netherlands | I/OS/N |
| Voser | 170 | 2015 | No | Cyprus | B | D | 73.5 | 40.3 | R | 52.6 | 10.9 | 47 | 83.7% 15 year post stroke | NR | E | 5 | NR | NR |
| Warteburg | 171 | 2020 | No | Germany | I | D | NR | NR | C | 42.1 (22.6) | 46.8 | At 12 months | Median 2 (IQR 12-36) | 74.4 | 27.9 | 13.6 | 18.3 | 0 | E | 3 | NR | M |
| White | 172 | 2016 | No | Australia | B | D | NR | NR | R/C | 75 (12) | 55 | NR | A | Nordic | NR | I |
| Wu 1 | 173 | 2014 | No | UK | B | S | NR | NR | C | NR | E | 3 | NR | M |
No.	Author	Year	Country	Stroke Type	Diagnosis	Time	Outcome	Reference	Notes
174	Wu	2015	No	UK	B	NR	NR	NR	NR
175	Xie	2006	No	USA	B	NR	NR	C	NR
176	Yan	2015	Y	China	B	D	NR	NR	NR
177	Yeoh	2018	No	Singapore	B	D	NR	R	NR

Y = Yes; I=Ischemic only; H=Hemorrhagic only; B=Both ischemic and hemorrhagic; U=Unknown stroke type; S=Self-report of stroke; D=Diagnosis of stroke; C=Community based; R=Rehabilitation facility; H=Hospital; O=Outpatient clinic; E=EQ-5D; A=AQoL; H2=HUI2; H3=HUI3; M=Mail; P=Phone; I=In-person interview; NR=Not reported; N/A=Not applicable.

Numbers in brackets denote standard deviation unless specifically indicated otherwise.
Item	Description
Sample size	Very small <50
Small 50-99	
Medium size 100-999	
Large ≥1000	
Respondent selection and recruitment*	Does this result in a population comparable to that being modelled?
Is this sample broadly representative of stroke patients or skewed towards one subgroup?	
Was the selection of patients consecutive or population-based, or is there evidence of enrollment bias?	
Inclusion/exclusion criteria*	Does this study exclude important groups, i.e. very elderly, young adult, severe or mild strokes, or include only a narrow or select group of patients (i.e. hemispheric infarcts).
Response rates to instrument used	Are response rates reported and if so, are the rates likely to be a threat to validity?
Loss to follow-up	How large is the loss to follow-up and are these reasons given? Are these likely to threaten the validity of the estimates?
Missing data	What are the levels of missing data and how are they dealt with? Could they threaten the validity of the estimates?
Proxy responses	Is the presence, proportion, and method of proxy responses reported?

*A high risk of bias does not necessarily imply methodological or quality concerns, as the objective of the study may have been to report utility in a specific sub-group (i.e. patients with hemisphere stroke), but this value would be less representative of stroke patients as a whole.
Table S6. Baseline characteristics across all studies weighted by study size, among studies where variables were reported

Variable	Pooled mean (SD) weighted by study size	Number of studies for pooled mean
Mean Age	68.1 (5.7)	90
Percent Female	44.2 (6.2)	91
Mean Follow-up time	13.0 months (15.7)	69
Mean National Institutes of Health Stroke Scale score	6.5 (4.1)	19
Percent Ischemic stroke	85.5 (8.3)	50
Percent Left hemisphere	43.9 (5.2)	14
Percent Hypertension	68.8 (10.3)	27
Percent Diabetes	22.6 (9.2)	29
Percent Smoking	24.5 (9.3)	20
Percent Coronary artery disease	19.2 (8.9)	19
Percent Prior stroke	20.7 (5.9)	17
Percent Atrial fibrillation	24.1 (12.0)	17
Table S7. Baseline characteristics across studies reporting EQ-5D-3L weighted by study size, among studies where variables were reported

Variable	Pooled mean (SD) weighted by study size	Number of studies for pooled mean									
Mean Age	68.2 (5.7)	65									
Percent Female	44.3 (5.8)	64									
Mean Follow-up time	10.9 months (11.1)	49									
Mean National Institutes of Health Stroke Scale score	6.2 (4.3)	14									
Percent Ischemic stroke	85.2 (8.3)	40									
Percent Left hemisphere	43.6 (5.8)	10									
Percent Hypertension	69.0 (10.3)	23									
Percent Diabetes	22.7 (9.4)	23									
Percent Smoking	24.7 (8.9)	17									
Percent Coronary artery disease	19.6 (9.1)	14									
Percent Prior stroke	20.5 (5.8)	12									
Percent Atrial fibrillation	25.0 (12.1)	12									
Author	Sample size	Respondent selection/recruitment	Inclusion/Exclusion	Response rates	Loss to FU	Missing data	Proxy responses	Death			
----------------------	-------------	----------------------------------	--------------------	---------------	------------	--------------	----------------	----------			
Adey-Wakeling	100-999	Low risk	Low risk	Low risk	Medium risk*	?	Low risk				
Appau	100-999	Medium risk	Low risk	?	?	?	?				
Arrospide	100-999	Medium risk	Low risk	Low risk	Low risk	Medium risk	N/A				
Arwert	<50	Medium risk	Medium risk	High risk	?	?	?	N/A			
Barton	50-99	Medium risk	Medium risk	Medium risk	N/A	Medium risk	?	N/A			
Broussy	100-999	Medium risk	Low risk	Low risk	Low risk	Low risk	Low risk	N/A			
Burton	50-99	Medium risk	Medium risk	High risk	N/A	Medium risk	Low risk	N/A			
Bushnell	1000+	Low risk	Low risk	Low risk	Medium risk	Medium risk	Low risk	N/A			
Cadilhac 1	100-999	Low risk	Medium risk	Low risk	Medium risk	Low risk	?	N/A			
Cadilhac 2	100-999	Low risk	?	?	?	?	?	N/A			
Cao	100-999	Low risk	Medium risk	?	N/A	?	?	N/A			
Chang	1000+	Low risk	Low risk	Low risk	Medium risk	Medium risk	?	N/A			
Chen 1	50-99	Medium risk	Medium risk	Low risk	N/A	Low risk	?	N/A			
Chen 2	100-999	Medium risk	Medium risk	Low risk	Medium risk	?	?	Low risk			
Cheung	100-999	Medium risk	Low risk	High risk	Medium risk	?	?	N/A			
Cramm	100-999	High risk	High risk	High risk	N/A	Low risk	N/A				
Cup	<50	Medium risk	Medium risk	Low risk	N/A	?	?	N/A			
Darlington 1	50-99	Medium risk	Medium risk	Medium risk	Low risk	Medium risk	Medium risk	Low risk			
Darlington 2	50-99	Medium risk	Medium risk	Medium risk	Medium risk	Medium risk	Medium risk	Low risk			
de Graaf	100-999	Low risk	Low risk	?	N/A	?	?	N/A			
Deb-Chatterji	100-999	High risk	High risk	Low risk	Low risk	Low risk	Low risk	Low risk			
Dewilde	100-999	Medium risk	Low risk	?	N/A	?	?	N/A			
Dorman 1	100-999	Medium risk	Low risk	Low risk	N/A	?	Low risk	N/A			
Name	Value	Risk 1	Risk 2	Risk 3	Risk 4	Risk 5	Risk 6				
----------	---------	--------	--------	--------	--------	--------	--------				
Dorman 2	100-999	Medium	Low	Low	N/A	?	Low				
Du	100-999	Medium	Low	Low	N/A	?	N/A				
Edwards	100-999	Medium	Low	?	N/A	?	N/A				
Espuela	100-999	Medium	Medium	Medium	Medium	?	Medium				
Fischer	100-999	Medium	High	Low	N/A	Low	Medium				
Ghatnekar	100-999	Low	Low	?	N/A	?	N/A				
Golicki 1	100-999	Medium	Low	Low	Low	Low	Medium				
Golicki 2	100-999	Medium	Medium	Low	N/A	Low	Medium				
Graessel	100-999	High	Medium	Low	N/A	?	Low				
Grasel	100-999	High	Medium	Low	N/A	?	Medium				
Groeneveld	100-999	Medium	Medium	High	N/A	Medium	Low				
Groeneveld	100-999	Medium	Medium	Medium	Low	?	Low				
Guo	50-99	Medium	Low	Medium	Medium	?	Low				
Haacke	50-99	Medium	Low	Medium	Medium	?	Low				
Hansson	100-999	Medium	Medium	Medium	Medium	?	Medium				
Hokstad	50-99	Medium	Low	Medium	Medium	?	Medium				
Jeon	<50	High	Medium	Medium	N/A	?	N/A				
Katona	100-999	High	Medium	Low	Medium	?	Medium				
Katzan	1000+	Medium	Medium	Low	N/A	?	N/A				
Kelly	<50	High	High	High	High	High	High				
Khiaocharoen	100-999	Medium	Medium	Medium	N/A	?	N/A				
Kil	<50	Medium	High	?	N/A	Medium	N/A				
Kim 1	100-999	Medium	Low	?	N/A	?	N/A				
Kim 2	100-999	Medium	Low	?	N/A	Low	N/A				
Kuo	100-999	Medium	Low	?	N/A	Low	N/A				
Kuroda 1	100-999	Medium	Low	Medium	Medium	?	Medium				
Kuroda 2	100-999	Medium	Low	Medium	Medium	?	Medium				
Kuwano	100-999	High	Medium	Medium	Medium	?	Medium				
Name	Min	Risk 1	Risk 2	Risk 3	Risk 4	Risk 5	Risk 6	Risk 7	Risk 8	Risk 9	Risk 10
---------------	-----	--------	--------	--------	--------	--------	--------	--------	--------	--------	---------
Kwon	100-999	Medium risk	Low risk	?	N/A	?	?	N/A			
Labbenton	100-999	Medium risk	Low risk	Medium risk	Medium risk	Low risk	Low risk	Medium risk			
Lannin	1000+	Low risk	Low risk	Medium risk	Medium risk	?	?	Low risk			
Leach	100-999	Low risk	High risk								
Lee	100-999	Medium risk	Low risk	Low risk	High risk	?	?	Medium risk			
Leeds	50-99	High risk	Medium risk	Medium risk	Medium risk	?	?	Medium risk			
Lindgren	100-999	Low risk	Medium risk	N/A	?	Medium risk	N/A				
Lopez-Bastida	100-999	Low risk	Low risk	Medium risk	N/A	Medium risk	?				
Lu	100-999	Medium risk	High risk	Low risk	Medium risk	Medium risk	?				
Luengo-Fernandez	100-999	Low risk	Low risk	Medium risk	Medium risk	Medium risk*	?	N/A			
Lunde	100-999	Medium risk	Low risk	Medium risk	N/A	Low risk	?	N/A			
Mahesh	100-999	Medium risk	Medium risk	?	N/A	?	Low risk	N/A			
Mar 1	100-999	Low risk	Low risk	Low risk	Low risk	?	?	Low risk			
Mar 2	100-999	Medium risk	Low risk	High risk	Medium risk	?	?	Medium risk			
Mathias	<50	Medium risk	High risk	Low risk	N/A	Low risk	Low risk	N/A			
McDonnell	<50	High risk	High risk	Low risk	N/A	?	?	N/A			
Min	1000+	Medium risk	Low risk	Low risk	N/A	Low risk	?	N/A			
Mittmann 1	50-99	Medium risk	Medium risk	?	N/A	High risk	?	N/A			
Mittmann 2	50-99	Medium risk	Medium risk	?	N/A	?	?	N/A			
Mulhern	50-99	Medium risk	Medium risk	?	N/A	?	?	N/A			
Oemrawsingh	1000+	Medium risk	Low risk	?	High risk	High risk	?	?			
Olsson 1	50-99	High risk	High risk	?	N/A	?	?	Low risk			
Olsson 2	50-99	High risk	High risk	?	N/A	?	?	N/A			
Park	100-999	High risk	High risk	Medium risk	N/A	?	?	N/A			
Paul	100-999	Low risk	Low risk	Medium risk	Medium risk	?	Medium risk	High risk			
Peng	1000+	Medium risk	High risk	?	?	?	?	N/A			
Peterrsson	<50	High risk	High risk	Low risk	Medium risk	?	?	N/A			
Name	Range	Low risk	Medium risk	High risk	N/A	?	?	N/A			
---------------	-----------	----------	-------------	-----------	---------	---------	---------	---------			
Peters	50-99	Medium	Low	High	N/A	Medium	Medium	N/A			
Phan 1	1000+	Low	Low	Medium	Medium	Medium	Medium	N/A			
Phan 2	1000+	Low	Low	Medium	Medium	Medium	Low	N/A			
Pickard 1	50-99	Medium	Medium	Low	Medium	Medium	Low	N/A			
Pickard 2	100-999	Medium	Medium	Medium	Low	Low	Medium	N/A			
Pinto	50-99	Medium	High	N/A	Medium	Medium	Low	N/A			
Price	<50	Medium	Medium	?	N/A	?	?	N/A			
Ramirez-Moreno	50-99	High	High	Medium	?	?	?	?			
Ran	100-999	Medium	Medium	Low	?	?	?	?			
Rivero-Arias	1000+	Low	Medium	Low	Medium	Medium	Low	N/A			
Saarni	100-999	Medium	Low	Low	N/A	?	?	N/A			
Sallinen	100-999	Medium	Medium	Medium	Low	Medium	Medium	Medium			
Sanchez-Iriso	100-999	Medium	Low	?	N/A	?	?	N/A			
Sand	100-999	Medium	Low	Medium	Medium	Medium	?	?			
Sasaki	<50	High	High	High	N/A	?	?	N/A			
Slaughter	100-999	Medium	Medium	Medium	?	Medium	Medium	Medium			
Sturm 1	100-999	Low	Low	Medium	?	Medium	Medium	Medium			
Sturm 2	100-999	Low	Low	Medium	?	Medium	Medium	Medium			
Szocs	100-999	Medium	Low	Medium	Medium	Medium	?	Medium			
Teoh	100-999	Medium	Medium	High	N/A	?	?	Low			
Tran	100-999	Medium	Medium	Medium	?	?	Low	?			
Vahlberg	100-999	Medium	High	Medium	N/A	?	?	N/A			
van Eeden	100-999	Medium	Low	Low	N/A	Medium	Medium	?			
Visser	100-999	High	High	Medium	N/A	?	?	N/A			
Wartenberg	<50	High	High	?	N/A	?	?	N/A			
Name	Age Range	Risk Category	Follow-up	Follow-up	Follow-up	Follow-up		*Notes*			
-------	-----------	---------------	-----------	-----------	-----------	-----------	*8 studies used imputation for missing data: Adey-Wakeling, Luengo-Fernandez, Phan 1, Phan 2, Pickard 1, Szocs, van Eeden, Yeoh 1				
White	100-999	Medium risk	Low risk	Medium risk	?	?	Medium risk				
Wu 1	100-999	Medium risk	Low risk	High risk	N/A	?	N/A				
Wu 2	100-999	Medium risk	Low risk	High risk	N/A	?	N/A				
Xie	1000+	Medium risk	Low risk	?	N/A	Low risk	Medium risk	N/A			
Yan	100-999	Medium risk	Medium risk	?	Medium risk	?	?	Medium risk			
Yang	<50	High risk	High risk	?	N/A	?	?	N/A			
Yeoh 1	100-999	Medium risk	Low risk	?	Medium risk*	?	Low risk				
Yeoh 2	100-999	Medium risk	Low risk	Medium risk	Medium risk	Low risk	Low risk				

? = information not provided; N/A = follow-up not applicable, typically due to cross-sectional design
Table S9. Summary statistics of risk of bias assessment

Category	Percent with high risk	Percent with medium risk	Percent with low risk	Percent with missing information
Sample size	10.8	79.3	9.91	0
Respondent selection	17.1	64.9	18.0	0
Inclusion/Exclusion	18.0	33.3	48.7	0
Response rates	10.8	36.0	27.0	26.1
Loss to follow-up*	2.7	36.0	5.4	6.3
Missing data	2.7	17.1	17.1	63.1
Proxy responses	0.90	12.6	15.3	71.2

*Question not applicable in 49.6% due to cross-sectional nature of study
Table S10. Pooled EQ-5D-3L values for different time ranges and time points

Time category	Pooled health utility value (95% CI)	Number of studies	Patient N
Ranges			
Prior to acute care discharge (hospital or in-patient rehabilitation)	0.45 (0.33-0.58)	16	4764
Prior to hospital discharge	0.39 (0.23-0.54)	10	3517
Prior to in-patient rehabilitation discharge	0.47 (0.33-0.67)	6	1247
≥ 3 months	0.65 (0.63-0.67)	73	52614
3 to <12 months	0.66 (0.63-0.68)	54	48020
12 months and over	0.66 (0.62-0.69)	31	7610
Specific time points			
3 months	0.65 (0.61-0.70)	20	11624
12 months	0.65 (0.59-0.71)	17	4917
5 years	0.70 (0.64-0.76)	6	2455
Table S11. Sensitivity analyses

Utility metric and sensitivity analysis	Pooled health utility value	Number of studies
EQ-5D-3L		
Exclude studies with similar/overlapping cohorts	0.66 (0.64-0.68)	65
Exclude studies that assigned subjects who died to a utility of 0	0.66 (0.64-0.68)	70
Include only studies assigning subjects who died to a utility of 0	0.50 (0.33-0.67)	3
Exclude studies with >1 high risk of bias category	0.68 (0.65-0.70)	50
EQ-5D-5L		
Exclude studies with similar/overlapping cohorts	0.68 (0.60-0.76)	9
Exclude studies that assigned subjects who died to a utility of 0	N/A	
Include only studies assigning subjects who died to a utility of 0	N/A	
Exclude studies with >1 high risk of bias category	0.66 (0.59-0.74)	9
AQOL		
Exclude studies with similar/overlapping cohorts	0.54 (0.41-0.66)	7
Exclude studies that assigned subjects who died to a utility of 0	N/A	
Include only studies assigning subjects who died to a utility of 0	N/A	
Exclude studies with >1 high risk of bias category	0.49 (0.44-0.54)	5

*Sensitivity analyses not performed for certain categories above and for HUI2, HUI3, and 15D due to small number of studies
	Random effects	Fixed effect
Main (EQ-5D-3L)	0.65 (0.63-0.67)	0.73 (0.73-0.73)
Ranges (EQ-5D-3L)		
Prior to acute care discharge (hospital or in-patient rehabilitation)	0.45 (0.33-0.58)	0.40 (0.39-0.40)
Prior to hospital discharge	0.39 (0.23-0.54)	0.28 (0.27-0.29)
Prior to in-patient rehabilitation discharge	0.57 (0.47-0.67)	0.59 (0.58-0.61)
≥3 months	0.65 (0.63-0.67)	0.73 (0.73-0.73)
3 to <12 months	0.66 (0.63-0.68)	0.73 (0.73-0.73)
12 months and over	0.66 (0.62-0.69)	0.71 (0.70-0.71)
Specific time points (EQ-5D-3L)		
3 months	0.65 (0.61-0.70)	0.76 (0.76-0.77)
12 months	0.65 (0.59-0.71)	0.78 (0.77-0.78)
5 years	0.70 (0.64-0.76)	0.72 (0.71-0.74)
Other metrics		
EQ-5D-5L	0.68 (0.61-0.76)	0.72 (0.71-0.73)
AQOL	0.51 (0.42-0.61)	0.40 (0.39-0.41)
HUI2	0.65 (0.62-0.68)	0.65 (0.62-0.68)
HUI3	0.64 (0.54-0.73)	0.71 (0.69-0.72)
15D	0.81 (0.78-0.84)	0.82 (0.82-0.83)
SF-6D	0.70 (0.63-0.78)	0.73 (0.72-0.75)
Figure S1. PRISMA flowchart

Records identified through database searching (n = 18132)

Records after duplicates removed (n = 14251)

Records screened (n = 14251)

Records excluded (n = 14042)

Records identified through reference lists (n = 2)

Full-text articles assessed for eligibility (n = 211)

Studies included in systematic review (n = 111)

Full-text articles excluded, with reasons (n = 100)

55 No indirect health utility value
14 RCT
9 No N/SD/SE/95% CI
8 Adjusted value only
7 Duplicate
4 Main cohort not stroke
3 Case report/case series
Figure S2. General characteristics of the included papers, showing frequency of studies with each health utility instrument (A), frequency of studies by country (B), frequency of studies by year from 1995 to October 2020 (C), and distribution of EQ-5D-3L values from 3 months onwards (D).
Figure S3. Random effects meta-analysis for EQ-5D-3L utility values
Figure S4. Fixed effect meta-analysis for EQ-5D-3L utility values
Figure S5. Random effects meta-analysis for EQ-5D-5L

Author	Utility (95% CI)
Arrospide	0.66 (0.61, 0.70)
Golicki 1	0.69 (0.64, 0.75)
Hokstad	0.72 (0.69, 0.75)
Mulhern	0.61 (0.55, 0.66)
Ramirez-Moreno	0.84 (0.81, 0.87)
Salinnen	0.58 (0.53, 0.63)
Sanchez-Iriso	0.77 (0.73, 0.81)
Slaughter	0.43 (0.39, 0.47)
Szocs	0.73 (0.68, 0.78)
de Graaf	0.78 (0.76, 0.80)
Overall (I-squared = 97.6%, p < 0.001)	0.68 (0.61, 0.76)

NOTE: Weights are from random effects analysis
Figure S6. Random effects meta-analysis for AQoL

Author	Utility (95% CI)
Cadilhac 2	0.57 (0.53, 0.60)
Leach	0.51 (0.48, 0.54)
McDonnell	0.30 (0.29, 0.31)
Paul	0.50 (0.46, 0.54)
Phan 2	0.51 (0.48, 0.54)
Price	0.77 (0.64, 0.90)
Sturm 1	0.47 (0.42, 0.52)
Sturm 2	0.40 (0.34, 0.47)
Teoh	0.67 (0.63, 0.71)
White	0.47 (0.40, 0.53)
Overall (I-squared = 98.6%, p < 0.001)	0.51 (0.42, 0.61)

NOTE: Weights are from random effects analysis
Figure S7. Random effects meta-analysis for HUI2

Author	Utility (95% CI)
Haacke	0.67 (0.62, 0.72)
Mathias	0.64 (0.58, 0.70)
Pickard 1	0.64 (0.59, 0.69)
Overall *(I-squared = 0.0%, p = 0.667)*	0.65 (0.62, 0.68)

NOTE: Weights are from random effects analysis
Figure S8. Random effects meta-analysis for HUI3

Author	Utility (95% CI)
Cheung	0.59 (0.56, 0.62)
Edwards	0.73 (0.71, 0.74)
Haacke	0.47 (0.38, 0.56)
Mittmann 1	0.87 (0.83, 0.91)
Mittmann 2	0.68 (0.65, 0.71)
Pickard 1	0.44 (0.37, 0.51)
Overall	0.64 (0.54, 0.73)

NOTE: Weights are from random effects analysis
Figure S9. Random effects meta-analysis for 15D

Author	Utility (95% CI)
Lunde	0.83 (0.81, 0.85)
Saarni	0.80 (0.78, 0.82)
Sallinen	0.80 (0.77, 0.82)
Sand	0.85 (0.84, 0.86)
Szocs	0.77 (0.74, 0.80)

Overall (I-squared = 90.2%, p < 0.001) 0.81 (0.78, 0.84)

NOTE: Weights are from random effects analysis
Figure S10. Random effects meta-analysis for SF-6D

Author	Utility (95% CI)
Barton	0.66 (0.62, 0.70)
Du	0.74 (0.73, 0.75)
Overall (I-squared = 91.7%, p = 0.001)	0.70 (0.63, 0.78)

NOTE: Weights are from random effects analysis
Figure S11. Sex-stratified random effects meta-analysis for EQ-5D-3L

Author	Male Utility (95% CI)	Female Utility (95% CI)
Adey-Wakeling	0.53 (0.46, 0.61)	0.41 (0.34, 0.48)
Arspide	0.72 (0.67, 0.77)	0.58 (0.52, 0.65)
Bushnell	0.87 (0.86, 0.88)	0.79 (0.78, 0.80)
Espuela	0.66 (0.65, 0.73)	0.45 (0.32, 0.58)
Katzan	0.81 (0.80, 0.82)	0.74 (0.73, 0.75)
Kil	0.69 (0.50, 0.87)	0.75 (0.57, 0.93)
Kuwano	0.73 (0.68, 0.78)	0.64 (0.55, 0.73)
Olsson 1	0.51 (0.43, 0.59)	0.35 (0.28, 0.42)
Phan 1	0.68 (0.67, 0.69)	0.83 (0.61, 0.84)
Phan 2	0.76 (0.72, 0.80)	0.66 (0.61, 0.71)
Tran	0.68 (0.60, 0.76)	0.67 (0.59, 0.75)
Vahberg	0.74 (0.69, 0.79)	0.72 (0.66, 0.74)
Xie	0.72 (0.70, 0.74)	
Subtotal (I-squared = 98.6%, p < 0.001)	0.71 (0.66, 0.75)	

NOTE: Weights are from random effects analysis
Figure S12. Age-stratified random effects meta-analysis for EQ-5D-3L

Author	Utility (95% CI)
65 and under	
Adey-Wakeling	0.83 (0.73, 0.94)
Du	0.81 (0.78, 0.84)
Katzan	0.74 (0.73, 0.75)
Kuwano	0.79 (0.71, 0.87)
Lannin	0.75 (0.74, 0.76)
Phan 1	0.71 (0.70, 0.73)
Phan 2	0.79 (0.74, 0.83)
Xie	0.73 (0.69, 0.77)
Subtotal (I-squared = 80.9%, p < 0.001)	0.75 (0.74, 0.77)
50-64	
Adey-Wakeling	0.74 (0.61, 0.87)
Du	0.76 (0.75, 0.81)
Kuwano	0.76 (0.69, 0.83)
Phan 1	0.68 (0.67, 0.70)
Phan 2	0.79 (0.74, 0.84)
Xie	0.67 (0.65, 0.69)
Subtotal (I-squared = 89.5%, p < 0.001)	0.73 (0.69, 0.78)
61-74	
Adey-Wakeling	0.72 (0.61, 0.83)
Du	0.77 (0.73, 0.81)
Katzan	0.78 (0.77, 0.79)
Kuwano	0.68 (0.59, 0.77)
Lannin	0.69 (0.68, 0.70)
Phan 1	0.69 (0.68, 0.71)
Phan 2	0.74 (0.70, 0.79)
Xie	0.72 (0.70, 0.74)
Subtotal (I-squared = 98.5%, p < 0.001)	0.73 (0.69, 0.77)
71+	
Du	0.75 (0.71, 0.79)
Kuwano	0.55 (0.43, 0.67)
Phan 1	0.59 (0.58, 0.60)
Phan 2	0.64 (0.58, 0.70)
Xie	0.69 (0.67, 0.71)
Subtotal (I-squared = 96.3%, p < 0.001)	0.65 (0.58, 0.72)

NOTE: Weights are from random effects analysis
Figure S13. Stroke type-stratified random effects meta-analysis for EQ-5D-3L

Author	Utility (95% CI)
Ischemic	
Adey-Wakeling	0.51 (0.46, 0.57)
Chang	0.82 (0.82, 0.83)
Golicki 1	0.55 (0.51, 0.58)
Kuwano	0.72 (0.67, 0.77)
Labberton	0.70 (0.66, 0.74)
Lee	0.74 (0.72, 0.76)
Luengo-Fernandez	0.70 (0.66, 0.74)
Subtotal (I-squared = 98.4%, p < 0.001)	0.68 (0.60, 0.76)
Hemorrhagic	
Adey-Wakeling	0.30 (0.15, 0.45)
Chang	0.83 (0.81, 0.85)
Golicki 1	0.40 (0.36, 0.44)
Kuwano	0.64 (0.54, 0.74)
Labberton	0.63 (0.52, 0.74)
Lee	0.60 (0.52, 0.68)
Luengo-Fernandez	0.65 (0.50, 0.80)
Subtotal (I-squared = 98.7%, p < 0.001)	0.58 (0.39, 0.77)

NOTE: Weights are from random effects analysis
Figure S14. Random effects meta-analysis for EQ-5D-3L stratified from time from stroke

Author	Utility (95% CI)
Before discharge	
Darlington 2	0.63 (0.56, 0.68)
Giossoli 1	0.68 (0.51, 0.84)
Gravel	0.61 (0.56, 0.64)
Leeds	0.34 (0.30, 0.39)
Mer	0.57 (0.53, 0.61)
Olsson 1	0.32 (0.30, 0.34)
Peng	-0.00 (-0.02, 0.02)
Pickard 1	0.31 (-0.25, 0.93)
Pickard 2	0.31 (0.24, 0.38)
Subtotal (I-squared = 90.5%, p = 0.001)	0.41 (0.33, 0.58)
6-12 months	
Bushnell	0.86 (0.85, 0.87)
Darlington 2	0.68 (0.63, 0.75)
Giossoli 1	0.69 (0.64, 0.74)
Guo	0.94 (0.85, 0.92)
Kelly	0.20 (0.14, 0.25)
Labberton	0.63 (0.58, 0.68)
Lentigone	0.80 (0.73, 0.77)
Luengo-Fernandez	0.64 (0.51, 0.71)
Mar	0.62 (0.58, 0.66)
Peng	0.30 (0.28, 0.32)
Pickard 1	0.81 (0.75, 0.87)
Yech 1	0.83 (0.80, 0.86)
Yech 2	0.82 (0.77, 0.87)
van Eeden	0.73 (0.67, 0.79)
Subtotal (I-squared = 90.5%, p = 0.001)	0.82 (0.56, 0.75)
6 to <12 months	
Darlington 2	0.72 (0.67, 0.77)
Kelly	0.69 (0.54, 0.84)
Leeds	0.54 (0.47, 0.62)
Lentigone	0.62 (0.54, 0.70)
Luengo-Fernandez	0.70 (0.67, 0.73)
Pickard 1	0.82 (0.75, 0.88)
Pickard 2	0.62 (0.55, 0.69)
van Eeden	0.74 (0.68, 0.80)
Subtotal (I-squared = 81.1%, p < 0.001)	0.66 (0.61, 0.71)
12+ months	
Bushnell	0.86 (0.85, 0.87)
Gravel	0.66 (0.63, 0.70)
Guo	0.57 (0.48, 0.67)
Labberton	0.69 (0.60, 0.73)
Lentigone	0.66 (0.60, 0.73)
Luengo-Fernandez	0.68 (0.64, 0.73)
Mar	0.65 (0.62, 0.71)
Olsson 1	0.44 (0.38, 0.50)
Yech 1	0.63 (0.59, 0.68)
Yech 2	0.78 (0.74, 0.82)
van Eeden	0.74 (0.68, 0.80)
Subtotal (I-squared = 90.1%, p = 0.001)	0.69 (0.60, 0.76)

NOTE: Weights are from random effects analysis.
Figure S15. Meta-regression analyses of mean EQ-5D-3L utility score across percentage females, mean/median age, and publication date. Higher percentage female in the study is associated with lower health utility.
9. Golicki D, Niewada M, Buczek J, Karlińska A, Kobayashi A, Janssen MF, Pickard AS. Validity of EQ-5D-5L in stroke. Qual Life Res. 2015;24:845–850 (Golicki 2)

10. Pickard A, Johnson JA, Feeny DH. Responsiveness of generic health-related quality of life measures in stroke. Qual Life Res. 2005;14:207–219

11. Bushnell CD, Reeves MJ, Zhao X, Pan W, Prvu-Bettger J, Zimmer L, Olson D, Peterson E. Sex differences in quality of life after ischemic stroke. Neurology. 2014;82:922–931

47. Lannin NA, Anderson CS, Kim J, Kilkenny M, Bernhardt J, Levi C, Dewey HM, Bladin C, Hand P, Castley H, Hill K, Faux S, Grimley R, Grabsch B, Middleton S, Donnan G, Cadilhac DA. Treatment and Outcomes of Working Aged Adults with Stroke: Results from a National Prospective Registry. Neuroepidemiology. 2017;49:113–120

53. Pickard AS, Johnson JA, Feeny DH, Shuaib A, Carriere KC, Nasser AM. Agreement Between Patient and Proxy Assessments of Health-Related Quality of Life After Stroke Using the EQ-5D and Health Utilities Index. Stroke. 2004;35:607–612 (Pickard 2)

70. Mulhern B, Feng Y, Shah K, Janssen MF, Herdman M, van Hout B, Devlin N. Comparing the UK EQ-5D-3L and English EQ-5D-5L Value Sets. Pharmacoeconomics. 2018;36:699–713

73. Adey-Wakeling Z, Liu E, Crotty M, Leyden J, Kleinig T, Anderson CS, Newbury J. Hemiplegic Shoulder Pain Reduces Quality of Life After Acute Stroke: A Prospective Population-Based Study. American Journal of Physical Medicine & Rehabilitation. 2016;95:758–763

74. Appau A, Lencucha R, Finch L, Mayo N. Further validation of the Preference-Based Stroke Index three months after stroke. Clin Rehabil. 2019;33:1214–1220

75. Arrospide A, Machón M, Ramos-Goñi JM, Ibarrondo O, Mar J. Inequalities in health-related quality of life according to age, gender, educational level, social class, body mass index and chronic diseases using the Spanish value set for Euroqol 5D-5L questionnaire. Health Qual Life Outcomes. 2019;17:69

76. Arwert HJ, Schults M, Meesters JIL, Wolterbeek R, Boiten J, Vliet Vlieland T. Return to Work 2–5 Years After Stroke: A Cross Sectional Study in a Hospital-Based Population. J Occup Rehabil. 2017;27:239–246

77. Barton GR, Sach TH, Doherty M, Avery AJ, Jenkinson C, Muir KR. An assessment of the discriminative ability of the EQ-5Dindex, SF-6D, and EQ VAS, using sociodemographic factors and clinical conditions. Eur J Health Econ. 2008;9:237–249
78. Broussy S, Saillour-Glenisson F, García-Lorenzo B, Rouanet F, Lesaine E, Maugeais M, Aly F, Glize B, Salamon R, Sibon I. Sequelae and Quality of Life in Patients Living at Home 1 Year After a Stroke Managed in Stroke Units. Front. Neurol 2019;10:907

79. Burton CR, Fargher E, Plumpton C, Roberts GW, Owen H, Roberts E. Investigating preferences for support with life after stroke: a discrete choice experiment. BMC Health Serv Res. 2014;14:63

80. Cadilhac DA, Dewey HM, Vos T, Carter R, Thirth AG. The health loss from ischemic stroke and intracerebral hemorrhage: evidence from the North East Melbourne Stroke Incidence Study (NEMESIS). 2010;8.

81. Cadilhac DA, Kilkenny MF, Lannin NA, Dewey HM, Levi CR, Hill K, Grabsch B, Grimley R, Blacker D, Thirth AG, et al. Outcomes for Patients With In-Hospital Stroke: A Multicenter Study From the Australian Stroke Clinical Registry (AuSCR). Journal of Stroke and Cerebrovascular Diseases. 2019;28:1302–1310 (Cadilhac 2)

82. Cao Y, Tang X, Yang L, Li N, Wu Y, Fan W, Liu J, Yu L, Xu H, Liu W, et al. [Influence of chronic diseases on health related quality of life in middle-aged and elderly people from rural communities: application of EQ-5D scale on a Health Survey in Fangshan, Beijing]. Zhonghua Liu Xing Bing Xue Za Zhi. 2012;33:17–22

83. Chang WH, Sohn MK, Lee J, Kim DY, Lee S-G, Shin Y-I, Oh G-J, Lee Y-S, Joo MC, Han EY, et al. Predictors of functional level and quality of life at 6 months after a first-ever stroke: the KOSCO study. J Neurol. 2016;263:1166–1177

84. Chen P, Lin K-C, Liing R-J, Wu C-Y, Chen C-L, Chang K-C. Validity, responsiveness, and minimal clinically important difference of EQ-5D-5L in stroke patients undergoing rehabilitation. Qual Life Res. 2016;25:1585–1596

85. Chen C-J, Ding D, Buell TJ, Testai FD, Koch S, Woo D, Worral BB, for the ERICH Investigators. Restarting antiplatelet therapy after spontaneous intracerebral hemorrhage: Functional outcomes. Neurology. 2018;91:e26–e36 (Chen 2)

86. Cheung YB, Tan HX, Luo N, Wee HL, Koh GCH. Mapping the Shah-modified Barthel Index to the Health Utility Index Mark III by the Mean Rank Method. Qual Life Res. 2019;28:3177–3185

87. Cramm JM, Strating MMH, Nieboer AP. Satisfaction with care as a quality-of-life predictor for stroke patients and their caregivers. Qual Life Res. 2012;21:1719–1725
88. Cup EHC, Scholte op Reimer WJM, Thijssen MCE, van Kuyk Minis MAH. Reliability and validity of the Canadian Occupational Performance Measure in stroke patients. Clin Rehabil. 2003;17:402–409

89. Darlington A, Dippel D, Ribbers G, van Balen R, Passchier J, Busschbach J. A prospective study on coping strategies and quality of life in patients after stroke, assessing prognostic relationships and estimates of cost-effectiveness. J Rehabil Med. 2009;41:237–241

90. Darlington A-SE, Dippel DWJ, Ribbers GM, van Balen R, Passchier J, Busschbach JJV. Coping Strategies as Determinants of Quality of Life in Stroke Patients: A Longitudinal Study. Cerebrovasc Dis. 2007;23:401–407 (Darlington 2)

91. de Graaf J, Kuipers M, Visser-Meily J, Kappelle L, Post M. Validity of an enhanced EQ-5D-5L measure with an added cognitive dimension in patients with stroke. Clin Rehabil. 2020;34:545–550

92. Deb-Chatterji M, Konnopka A, Flottmann F, Leischner H, Fiehler J, Gerloff C, Thomalla G. Patient-reported, health-related, quality of life after stroke thrombectomy in clinical practice. Neurology. 2020;95:e1724–e1732

93. Dewilde S, Annemans L, Lloyd A, Peeters A, Hemelsoet D, Vandermeeren Y, Desfontaines P, Brouns R, Vanhooren G, Cras P, et al. The combined impact of dependency on caregivers, disability, and coping strategy on quality of life after ischemic stroke. Health Qual Life Outcomes. 2019;17:31

94. Dorman P. Are the modified “simple questions” a valid and reliable measure of health related quality of life after stroke? Journal of Neurology, Neurosurgery & Psychiatry. 2000;69:487–493.

95. Dorman PJ, Waddell F, Slattery J, Dennis M, Sandercock P. Are Proxy Assessments of Health Status After Stroke With the EuroQol Questionnaire Feasible, Accurate, and Unbiased? Stroke. 1997;28:1883–1887. (Dorman 2)

96. Du X-D, Zhu P, Li M-E, Wang J, Meng H-D, Zhu C-R. [Health Utility of Patients with Stroke Measured by EQ-5D and SF-6D]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2018;49:252–257

97. Edwards JD, Koehoorn M, Boyd LA, Levy AR. Is Health-Related Quality of Life Improving After Stroke?: A Comparison of Health Utilities Indices Among Canadians With Stroke Between 1996 and 2005. Stroke. 2010;41:996–1000
98. López Espuela F, Portilla Cuenca JC, Párraga Sánchez JM, Gamez-Leyva G, Casado Naranjo I. Sex differences in long-term quality of life after stroke: Influence of mood and functional status. Neurologia (Engl Ed). 2020;35:470–478

99. Fischer U, Anca D, Arnold M, Nedeltchev K, Kappeler L, Ballinari P, Schroth G, Mattle HP. Quality of Life in Stroke Survivors after Local Intra-Arterial Thrombolysis. Cerebrovasc Dis. 2008;25:438–444

100. Ghatnekar O, Eriksson M, Glader E-L. Mapping health outcome measures from a stroke registry to eq-5d weights. Health Qual Life Outcomes. 2013;11:34

101. Golicki D, Niewada M, Karlinska A, Buczek J, Kobayashi A, Janssen MF, Pickard AS. Comparing responsiveness of the EQ-5D-5L, EQ-5D-3L and EQ VAS in stroke patients. Qual Life Res. 2015;24:1555–1563

102. Graessel E, Schmidt R, Schupp W. Stroke patients after neurological inpatient rehabilitation: a prospective study to determine whether functional status or health-related quality of life predict living at home 2.5 years after discharge. International Journal of Rehabilitation Research 2014;37:212–219

103. Gräßel E, Schupp W, Schmidt R. Schlaganfallpatienten nach stationärer neurologischer Rehabilitation: Eine prospektive Studie zur Ermittlung von Prädiktoren für das Überleben zuhause bis 5 Jahre nach Entlassung. Rehabilitation. 2019;58:296–303

104. Groeneveld IF, Goossens PH, van Braak I, van der Pas S, Meesters JJJL, Rambaran Mishre RD, Arwert HJ, Vliet Vlieland TPM. Patients’ outcome expectations and their fulfilment in multidisciplinary stroke rehabilitation. Annals of Physical and Rehabilitation Medicine. 2019;62:21–27

105. Groeneveld IF, Goossens PH, van Meijeren-Pont W, Arwert HJ, Meesters JJJL, Rambaran Mishre AD, Van Vree F, Vliet Vlieland TPM. Value-Based Stroke Rehabilitation: Feasibility and Results of Patient-Reported Outcome Measures in the First Year After Stroke. Journal of Stroke and Cerebrovascular Diseases. 2019;28:499–512 (Groeneveld 2)

106. Guo YE, Togher L, Power E, Heard R, Luo N, Yap P, Koh GCH. Sensitivity to change and responsiveness of the Stroke and Aphasia Quality-of-Life Scale (SAQOL) in a Singapore stroke population. Aphasiology. 2017;31:427–446

107. Haacke C, Althaus A, Spottke A, Siebert U, Back T, Dodel R. Long-Term Outcome After Stroke: Evaluating Health-Related Quality of Life Using Utility Measurements. Stroke. 2006;37:193–198
108. Hansson EE, Beckman A, Wihlborg A, Persson S, Troein M. Satisfaction with rehabilitation in relation to self-perceived quality of life and function among patients with stroke - a 12 month follow-up: Rehabilitation in Malmö. Scandinavian Journal of Caring Sciences. 2013;27:373–379

109. Hokstad A, Indredavik B, Bernhardt J, Langhammer B, Gunnes M, Lundemo C, Bovim M, Askim T. Upright activity within the first week after stroke is associated with better functional outcome and health-related quality of life: A Norwegian multi-site study. J Rehabil Med. 2016;48:280–286

110. Jeon H, Sohn MK, Jeon M, Jee S. Clinical Characteristics of Sleep-Disordered Breathing in Subacute Phase of Stroke. Ann Rehabil Med. 2017;41:556

111. Katona M, Schmidt R, Schupp W, Graessel E. Predictors of health-related quality of life in stroke patients after neurological inpatient rehabilitation: a prospective study. Health Qual Life Outcomes. 2015;13:58

112. Katzan IL, Thompson NR, Lapin B, Uchino K. Added Value of Patient-Reported Outcome Measures in Stroke Clinical Practice. JAHA [Internet]. 2017 [cited 2021 Feb 15];6 Available from: https://wwwahajournals.org/doi/101161/JAHA1165356

113. Kelly ML, Rosenbaum BP, Kshettry VR, Weil RJ. Comparing clinician- and patient-reported outcome measures after hemicraniectomy for ischemic stroke. Clinical Neurology and Neurosurgery. 2014;126:24–29

114. Khiaocharoen O, Pannarunothai S, Riewpaiboon W, Ingsrisawang L, Teerawattananon Y. Economic Evaluation of Rehabilitation Services for Inpatients with Stroke in Thailand: A Prospective Cohort Study. Value Health Reg Issues. 2012;1:29–35

115. Kil S-R, Lee S-I, Yun S-C, An H-M, Jo M-W. The Decline of Health-Related Quality of Life Associated with Some Diseases in Korean Adults. J Prev Med Public Health. 2008;41:434

116. Kim Y, Moon H. Association between quality of life and sleep time among community-dwelling stroke survivors: Findings from a nationally representative survey. Geriatr. Gerontol Int 2019;19:1226–1230

117. Kim Y, Kim M, Park H-S, Cho I-H, Paik JK. Association of the Anxiety/Depression with Nutrition Intake in Stroke Patients. Clin Nutr Res. 2018;7:11 (Kim 2)

118. Kuo L-M, Tsai W-C, Chiu M-J, Tang L-Y, Lee H-J, Shyu Y-IL. Cognitive dysfunction predicts worse health-related quality of life for older stroke survivors: a nationwide population-based survey in Taiwan. Aging & Mental Health. 2019;23:305–310
119. Kuroda A, Kanda T. [Correlation between QOL utility score and VAS score of EuroQol in stroke patients]. Nihon Ronen Igakkai Zasshi. 2007;44:264–266

120. Kuroda A, Kanda T, Asai N. [Health-related quality of life assessed by EuroQol in caregivers of home care stroke patients]. Nihon Ronen Igakkai Zasshi. 2003;40:381–389 (Kuroda 2)

121. Kuwano M, Kanda T, Shimizu K, Asai N, Kuwano M. [Health-related quality of life assessed by EuroQol in home care patients with stroke]. Nihon Ronen Igakkai Zasshi. 2001;38:831–833

122. Kwon S, Park J-H, Kim W-S, Han K, Lee Y, Paik N-J. Health-related quality of life and related factors in stroke survivors: Data from Korea National Health and Nutrition Examination Survey (KNHANES) 2008 to 2014. PLoS ONE. 2018;13:e0195713

123. Labberton AS, Augestad LA, Thommessen B, Barra M. The association of stroke severity with health-related quality of life in survivors of acute cerebrovascular disease and their informal caregivers during the first year post stroke: a survey study. Qual Life Res. 2020;29:2679–2693

124. Leach MJ, Gall SL, Dewey HM, Macdonell RAL, Thrift AG. Factors associated with quality of life in 7-year survivors of stroke. Journal of Neurology, Neurosurgery & Psychiatry. 2011;82:1365–1371

125. Lee H-Y, Hwang J-S, Jeng J-S, Wang J-D. Quality-Adjusted Life Expectancy (QALE) and Loss of QALE for Patients With Ischemic Stroke and Intracerebral Hemorrhage: A 13-Year Follow-Up. Stroke. 2010;41:739–744

126. Leeds L, Meara J, Hobson P. The impact of discharge to a care home on longer term stroke outcomes. Clin Rehabil. 2004;18:924–928

127. Lindgren P, Glader E-L, Jönsson B. Utility loss and indirect costs after stroke in Sweden. Eur J Cardiovasc Prev Rehabil. 2008;15:230–233.

128. Lopez-Bastida J, Moreno JO, Cerezo MW, Perez LP, Serrano-Aguilar P, Montón-Álvarez F. Social and economic costs and health-related quality of life in stroke survivors in the Canary Islands, Spain. 2012;9.

129. Lu W-S, Huang S-L, Yang J-F, Chen M-H, Hsieh C-L, Chou C-Y. Convergent validity and responsiveness of the EQ-5D utility weights for stroke survivors. J Rehabil Med. 2016;48:346–351.
130. Luengo-Fernandez R, Gray AM, Bull L, Welch S, Cuthbertson F, Rothwell PM, Oxford Vascular Study. Quality of life after TIA and stroke: ten-year results of the Oxford Vascular Study. Neurology. 2013;81:1588–1595

131. Lunde L. Can EQ-5D and 15D be used interchangeably in economic evaluations? Assessing quality of life in post-stroke patients. Eur J Health Econ. 2013;14:539–550

132. Mahesh PKB, Gunathunga MW, Jayasinghe S, Arnold SM, Senanayake S, Senanayake C, De Silva LSD, Kularatna S. Construct validity and reliability of EQ-5D-3L for stroke survivors in a lower middle income setting. Ceylon Med. J 2019;64:52

133. Mar J, Masjuan J, Oliva-Moreno J, Gonzalez-Rojas N, Becerra V, Casado MÁ, Torres C, Yebenes M, Quintana M, et al, on behalf of CONOCES Investigators Group, . Outcomes measured by mortality rates, quality of life and degree of autonomy in the first year in stroke units in Spain. Health Qual Life Outcomes. 2015;13:36

134. Mar J, Begiristain JM, Arrazola A. Cost-Effectiveness Analysis of Thrombolytic Treatment for Stroke. Cerebrovasc Dis. 2005;20:193–200 (Mar 2)

135. Mathias SD, Bates MM, Pasta DJ, Cisternas MG, Feeny D, Patrick DL. Use of the Health Utilities Index With Stroke Patients and Their Caregivers. Stroke. 1997;28:1888–1894

136. McDonnell MN, Mackintosh SF, Hillier SL, Bryan J. Regular group exercise is associated with improved mood but not quality of life following stroke. PeerJ. 2014;2:e331

137. Min K -b, Min J -y. Health-related quality of life is associated with stroke deficits in older adults. Age and Ageing. 2015;44:700–704

138. Mittmann N, Chan D, Trakas K, Risebrough N. Health Utility Attributes for Chronic Conditions: Disease Management and Health Outcomes. 2001;9:11–21.

139. Mittmann N, Trakas K, Risebrough N, Liu BA. Utility Scores for Chronic Conditions in a Community-Dwelling Population: PharmacoEconomics. 1999;15:369–376. (Mittmann 2)

140. Omrarsingsh A, van Leeuwen N, Venema E, Limburg M, de Leeuw F-E, Wijffels MP, de Groot AJ, Hilkens PHE, Hazelzet JA, Dippel DWJ, et al. Value-based healthcare in ischemic stroke care: case-mix adjustment models for clinical and patient-reported outcomes. BMC Med Res Methodol. 2019;19:229
141. Olsson BG, Stibrant Sunnerhagen K. Functional and Cognitive Capacity and Health-Related Quality of Life 2 Years After Day Hospital Rehabilitation for Stroke: A Prospective Study. Journal of Stroke and Cerebrovascular Diseases. 2007;16:208–215

142. Olsson BG, Sunnerhagen KS. Effects of Day Hospital Rehabilitation After Stroke. Journal of Stroke and Cerebrovascular Diseases. 2006;15:106–113 (Olsson 2)

143. Park JH, Kim BJ, Bae H-J, Lee J, Lee J, Han M-K, O KY, Park SH, Kang Y, Yu K-H, et al. Impact of Post-Stroke Cognitive Impairment with No Dementia on Health-Related Quality of Life. J Stroke. 2013;15:49

144. Paul SL, Sturm JW, Dewey HM, Donnan GA, Macdonell RAL, Thrift AG. Long-Term Outcome in the North East Melbourne Stroke Incidence Study: Predictors of Quality of Life at 5 Years After Stroke. Stroke. 2005;36:2082–2086

145. Peng L-N, Chen L-J, Lu W-H, Tsai S-L, Chen L-K, Hsiao F-Y. Post-acute care regains quality of life among middle-aged and older stroke patients in Taiwan. Archives of Gerontology and Geriatrics. 2019;83:271–276

146. Peters M, Crocker H, Jenkinson C, Doll H, Fitzpatrick R. The routine collection of patient-reported outcome measures (PROMs) for long-term conditions in primary care: a cohort survey. BMJ Open. 2014;4:e003968

147. Pettersson I, Ahlström G, Törnquist K. The Value of an Outdoor Powered Wheelchair With Regard to the Quality of Life of Persons With Stroke: A Follow-Up Study. Assistive Technology. 2007;19:143–153

148. Phan HT, Gall SL, Blizzard CL, Lannin NA, Thrift AG, Anderson CS, Kim J, Grimley RS, Castley HC, Kilkenney MF, et al. Sex differences in quality of life after stroke were explained by patient factors, not clinical care: evidence from the Australian Stroke Clinical Registry. Eur J Neurol. 2021;28:469–478

149. Phan HT, Blizzard CL, Reeves MJ, Thrift AG, Cadilhac DA, Sturm J, Heeley E, Otahal P, Rothwell P, Anderson CS, et al. Sex Differences in Long-Term Quality of Life Among Survivors After Stroke in the INSTRUCT. Stroke. 2019;50:2299–2306 (Phan 2)

150. Pinto EB, Maso I, Pereira JL, Fukuda TG, Seixas JC, Menezes DF, Cincura C, Neville IS, Jesus PA, Oliveira-Filho J. Differential aspects of stroke and congestive heart failure in quality of life reduction: a case series with three comparison groups. Health Qual Life Outcomes. 2011;9:65
151. Price R, Choy NL. Investigating the Relationship of the Functional Gait Assessment to Spatiotemporal Parameters of Gait and Quality of Life in Individuals With Stroke. Journal of Geriatric Physical Therapy. 2019;42:256–264

152. Ramírez-Moreno JM, Muñoz-Vega P, Alberca SB, Peral-Pacheco D. Health-Related Quality of Life and Fatigue After Transient Ischemic Attack and Minor Stroke. Journal of Stroke and Cerebrovascular Diseases. 2019;28:276–284

153. Ran M, Liu B, Chen L, Zhu C. [Assessing quality of life of patients with stroke using EQ-5D and SF-12]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2015;46:94–98

154. Rivero-Arias O, Ouellet M, Gray A, Wolstenholme J, Rothwell PM, Luengo-Fernandez R. Mapping the Modified Rankin Scale (mRS) Measurement into the Generic EuroQol (EQ-5D) Health Outcome. Med Decis Making. 2010;30:341–354

155. Saarni SI, Härkänen T, Sintonen H, Suvisaari J, Koskinen S, Aromaa A, Lönnqvist J. The impact of 29 chronic conditions on health-related quality of life: a general population survey in Finland using 15D and EQ-5D. Qual Life Res. 2006;15:1403–1414

156. Sallinen H, Sairanen T, Strbian D. Quality of life and depression 3 months after intracerebral hemorrhage. Brain Behav. 2019;9:e01270

157. Sánchez-Iriso E, Errea Rodríguez M, Cabasés Hita JM. Valuing health using EQ-5D: The impact of chronic diseases on the stock of health. Health Economics. 2019;28:1402–1417

158. Sand KM, Wilhelmsen G, Naess H, Midelfart A, Thomassen L, Hoff JM. Vision problems in ischaemic stroke patients: effects on life quality and disability. Eur J Neurol. 2016;23:1–7

159. Sasaki S, Kanai M, Shinoda T, Morita H, Shimada S, Izawa KP. Relation between health utility score and physical activity in community-dwelling ambulatory patients with stroke: a preliminary cross-sectional study. Topics in Stroke Rehabilitation. 2018;25:475–479

160. Slaughter KB, Meyer EG, Bambhroliya AB, Meeks JR, Ahmed W, Bowry R, Behrouz R, Mir O, Begley C, Tyson JE, et al. Direct Assessment of Health Utilities Using the Standard Gamble Among Patients With Primary Intracerebral Hemorrhage. Circ: Cardiovascular Quality and Outcomes [Internet]. 2019 [cited 2021 Feb 15];12 Available from: https://wwwahajournalsorg/doi/101161/CIRCOUTCOMES1195606
161. Sturm JW, Donnan GA, Dewey HM, Macdonell RAL, Gilligan AK, Srikanth V, Thrift AG. Quality of Life After Stroke: The North East Melbourne Stroke Incidence Study (NEMESIS). Stroke. 2004;35:2340–2345

162. Sturm JW, Osborne RH, Dewey HM, Donnan GA, Macdonell RAL, Thrift AG. Brief Comprehensive Quality of Life Assessment After Stroke: The Assessment of Quality of Life Instrument in the North East Melbourne Stroke Incidence Study (NEMESIS). Stroke. 2002;33:2888–2894 (Sturm 2)

163. Szőcs I, Dobi B, Láma J, Orbán-Kis K, Häkkinen U, Belicza É, Bereczki D, Vastagh I. Health related quality of life and satisfaction with care of stroke patients in Budapest: A substudy of the EuroHOPE project. PLoS ONE. 2020;15:e0241059

164. Teoh V, Sims J, Milgrom J. Psychosocial Predictors of Quality of Life in a Sample of Community-Dwelling Stroke Survivors: A Longitudinal Study. Topics in Stroke Rehabilitation. 2009;16:157–166

165. Tran PL, Leigh Blizzard C, Srikanth V, Hanh VTX, Lien NTK, Thang NH, Gall SL. Health-related quality of life after stroke: reliability and validity of the Duke Health Profile for use in Vietnam. Qual Life Res. 2015;24:2807–2814

166. Vahlberg B, Cederholm T, Lindmark B, Zetterberg L, Hellström K. Factors Related to Performance-Based Mobility and Self-reported Physical Activity in Individuals 1-3 Years after Stroke: A Cross-sectional Cohort Study. Journal of Stroke and Cerebrovascular Diseases. 2013;22:e426–e434

167. van Eeden M, van Heugten C, van Mastrigt GAPG, van Mierlo M, Visser-Meily JMA, Evers SMAA. The burden of stroke in the Netherlands: estimating quality of life and costs for 1 year poststroke. BMJ Open. 2015;5:e008220

168. Visser MM, Heijenbrok-Kal MH, Spijker A van’t, Oosta KM, Busschbach JJ, Ribbers GM. Coping, Problem Solving, Depression, and Health-Related Quality of Life in Patients Receiving Outpatient Stroke Rehabilitation. Archives of Physical Medicine and Rehabilitation. 2015;96:1492–1498

169. Wartenberg KE, Henkner J, Brandt S, Zierz S, Müller TJ. Effect of Recanalization on Cerebral Edema, Long-Term Outcome, and Quality of Life in Patients with Large Hemispheric Infarctions. Journal of Stroke and Cerebrovascular Diseases. 2020;29:105358

170. White J, Magin P, Attia J, Sturm J, McEluff P, Carter G. Predictors of health-related quality of life in community-dwelling stroke survivors: a cohort study. FAMPRJ. 2016;33:382–387
171. Wu M, Brazier J, Relton C, Cooper C, Smith C, Blackburn J. Examining the incremental impact of long-standing health conditions on subjective well-being alongside the EQ-5D. Health Qual Life Outcomes. 2014;12:61

172. Wu M, Brazier JE, Kearns B, Relton C, Smith C, Cooper CL. Examining the impact of 11 long-standing health conditions on health-related quality of life using the EQ-5D in a general population sample. Eur J Health Econ. 2015;16:141–151 (Wu2)

173. Xie J, Wu EQ, Zheng Z-J, Croft JB, Greenlund KJ, Mensah GA, Labarthe DR. Impact of Stroke on Health-Related Quality of Life in the Noninstitutionalized Population in the United States. Stroke. 2006;37:2567–2572

174. Yan P, Zhan F, Hou L, Guo J, He L, Liu D, Zhu C. [Lesion Locations and Quality of Life in Patients with Ischemic Stroke]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2015;46:860–865

175. Yang Y-N, Kim B-R, Uhm KE, Kim SJ, Lee S, Oh-Park M, Lee J. Life Space Assessment in Stroke Patients. Ann Rehabil Med. 2017;41:761

176. Yeoh YS, Koh GC-H, Tan CS, Lee KE, Tu TM, Singh R, Chang HM, De Silva DA, Ng YS, Ang YH, et al. Can acute clinical outcomes predict health-related quality of life after stroke: a one-year prospective study of stroke survivors. Health QualLife Outcomes. 2018;16:221

177. Yeoh YS, Koh GC-H, Tan CS, Tu TM, Singh R, Chang HM, De Silva DA, Ng YS, Ang YH, Yap P, et al. Health-related quality of life loss associated with first-time stroke. PLoS ONE. 2019;14:e0211493 (Yeoh 2)