SuFExable Isocyanides for Ugi Reaction: Facile Synthesis of Sulfonyl Fluoro Peptides

Shuheng Xu¹, and Sunliang Cui¹*

¹ Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China. E-mail: slcui@zju.edu.cn

Abstract: The sulfur(VI) fluoride exchange (SuFEx) reaction has become a good click chemistry transformation and acted as a powerful tool in medicinal chemistry and materials science. Therefore, the investigation of versatile SuFExable synthon and SuFEx compatible reactions is highly desirable. Herein, the sulfonyl fluoro isocyanides were first developed as a new type of SuFExable synthon, and used as flexible building blocks in the Ugi four-component reaction (U-4CR). Hence, the preparation methods of differential SuFExable isocyanides were set up, including both aryl and alkyl sulfonyl fluoro isocyanides. Meanwhile, the sulfonyl fluoro tolerable Ugi reaction was established and the substrate scope was investigated, and various sulfonyl fluoro α-amino amides and peptides could be reached in a one-step synthesis. Therefore, this protocol opens a new vision for SuFExable building block and click chemistry, and also provides a distinct approach to sulfonyl fluoro peptides.

The sulfur(VI) fluorides exhibit unique physical and chemical properties, and their distinctive reactivities were discovered in early times¹⁻⁵. Recently, the sulfur(VI) fluoride exchange (SuFEx) reaction has been revived by Sharpless as another good click chemistry transformation⁶. In typical, the reaction between S–F moiety and silyl-protected phenol has become a powerful and enabling connective technology for a wealth of applications (Fig. 1)⁷⁻¹². For example, the sulfonyl fluoride group was revealed as an alternative Michael acceptor in covalent drug discovery with distinctive pharmacological properties.
(Fig. 1a), and there are many reports concerning the sulfonyl fluoro structured protease inhibitor, human adenosine A$_3$ receptor antagonist and lysine-targeting covalent inhibitor$^{13-21}$. Besides, it also serve as a type of polysulfate unit which could constitute a practical approach to polysulfates and polysulfonates material with high molecular weight, narrow polydiversity and excellent functional group tolerance (Fig. 1b)$^{22-24}$.

a) SuFEx chemistry in drug discovery

b) SuFEx chemistry in materials science

Fig. 1 Sulfonyl fluoro chemistry. a SuFEx chemistry in drug discovery. b SuFEx chemistry in materials science.

Accordingly, the investigation of SuFExable building blocks and SuFEx compatible reactions received much attention (Fig. 2a). The classical SuFExable synthon is sulfuryl fluoride (SO$_2$F$_2$)$^{7-12, 25-28}$. In recent time, Sharpless and coworkers disclosed that SOF$_4$ was another SuFEx connector.$^{29-30}$ They revealed that ethylenesulfonyl fluoride (ESF) was a selectively addressable bis-electrophillic SuFExable building block$^{31-33}$, and its bromo derivative (BESF) was also found as a SuFExable reagent$^{34-35}$. More recently, Moses reported that the 2-substituted alkynyl-1-sulfonyl fluoride (SASF) could serve as flexible and SuFExable synthon in diversity oriented click reaction36. Therefore, the development of versatile
SuFExable building blocks remains continuous interesting and importance.

Ugi reaction is a well-known multicomponent reaction which rapidly assembles aldehydes, amines, carboxylic acids and isocyanides to form α-amino amides as peptide units37. It has been widely used in organic synthesis, drug discovery and materials science38-39. Recently, the asymmetric version of Ugi reaction has also been established40-44. Respecting to the mechanism, the isocyanides serve as essential and bifunctional C1 synthon in this process45-46. Moreover, the functional group tethered isocyanides such as α-boryl isocyanides were used in Ugi reaction to furnish boropeptides47. This indicated that an additional functionality in isocyanides and Ugi reaction could significantly expand the chemical space of products. Recently, Sharpless and Kelly reported that the fluorosulfated tyrosine could be used as building block in solid-phase synthesis toward sulfotyrosine-containing peptides, which would bestow the peptides with distinctive sulfonyl fluoro functionalities48. In continuation of our interests in multicomponent reaction and drug discovery49-53, we hypothesized that the sulfonyl fluoro group and isocyanide moiety could be merged in a molecule to render a versatile sulfonyl fluoro-containing synthon, which might enable the combination of SuFEx click reaction and Ugi reaction to achieve SuFExable peptides directly. Herein, we describe the development of sulfonyl fluoro isocyanides which were used as flexible building blocks in Ugi reaction for facile synthesis of sulfonyl fluoro peptides and peptide units (Fig. 2b).
a) reported SuFExable building block

\[
\begin{align*}
\text{SO}_2\text{F}_2 & \quad \text{SOF}_4 \\
\text{ESF} & \quad \text{BESF} \\
\text{SASF} &
\end{align*}
\]

b) this work

\[
\begin{align*}
\text{CN} & \quad \text{SO}_2\text{F} \\
R^1\text{OH} & \quad R^2\text{H} \\
R^3\text{NH}_2 &
\end{align*}
\]

✓ sulfonyl fluoro isocyanides
✓ versatile SuFExable synthon
✓ multi-component reaction
✓ direct synthesis of sulfonyl fluoro peptides

Fig. 2 SuFExable building blocks. a. Reported SuFExable synthon. b. Sulfonl fluoro isocyanides as a new SuFExable building block.

Results

Reaction optimization.

At the beginning, the preparation of SuFExable isocyanides were explored. After various exploration and optimization, four types of preparation methods toward differential SuFExable isocyanides were established with practicability and scalablity (Fig. 3, for details, see Supporting Information). For example, Taurine is a readily available feedstock and could convert to fluorated salt A upon a four-step transformation, and A could convert to the 2-isocyanoothane-1-sulfonyl fluoride with another two-step synthesis. Interestingly, the amino acids could transform to the chiral sulfonl fluorated amino salt B with a eight-step synthesis, and B could transform to the chiral SuFExable isocyanides smoothly. On the other hand, phenylalkyl amines like benzylamine and 2-phenylethyl amine could convert to sulfonl fluorated formylamide C and then reached the corresponding SuFExable aryl isocyanides through another one-step synthesis. Meanwhile, 4-isocyanobenzenesulfonyl fluoride could be easily prepared
from the commercial 4-nitrophenylsulfonyl chloride in a four-step synthetic route. Notably, all these preparation procedures of SuFExable isocyanides are practical and reproducible.

![Chemical structures](image)

Fig. 3 Practical preparation of SuFExable Isocyanides.

When the sulfonyl fluoro isocyanides were obtained, the SuFExable Ugi reaction was then explored. Benzoic acid 1a, benzaldehyde 2a, amine 3a and 2-isocyanooethane-1-sulfonyl fluoride 4a were used as model substrates to investigate the reaction condition. Initially, 2a and 3a were mixed in methanol and kept for 2 hours to deliver imine intermediate, then 1a and 4a were added and kept for 1 h (entry 1). To our delight, a sulfonyl fluoro α-amino amide 5a was truly formed, albeit in a low yield (13% isolated yield). The next survey of solvents showed that DCM, THF, dioxane, CH$_3$CN and toluene, were inferior to decrease the yields (entries 2-6). Gratifyingly, the use of trifluoroethanol (TFE) and
hexafluoroisopropanol (HFIP) as solvent could significantly improve the yield to 45% and 68%, respectively (entry 7-8). We assumed that the weak acidity, polarity and non-nucleophilicity of HFIP could promote the imine intermediate formation and avoid side reaction, thus facilitating the Ugi reaction. Interestingly, adding these four reagents to HFIP simultaneously and kept the reaction at RT for 3 h, the yield of 5a could be further improved (entry 9). However, the addition of 4Å MS would decrease the yield (entry 10). Besides, when the amount of 2a, 3a and 4a was slightly elevated, 5a could be obtained in 85% yield (entry 11).

Table 1. Reaction Optimizationa.

Entry	Solvent	Yield[b]
1	MeOH	13
2	DCM	10
3	THF	<5
4	Dioxane	–
5	MeCN	<5
6	Toluene	<5
7	TFE	45
8	HFIP	68
9c	HFIP	82
10d	HFIP	70
11e	HFIP	85
Reaction conditions: 2a (0.12 mmol) and 3a (0.12 mmol) were added to solvent (1 mL) and kept at RT for 2 h, then 1a (0.1 mmol) and 4a (0.12 mmol) were added and kept for another 1 h.

Yield refers to isolated product.

Four reagents were added simultaneously and kept for 3 h.

4Å MS (15 mg) was added.

1a (0.1 mmol), 2a (0.15 mmol), 3a (0.15 mmol) and 4a (0.15 mmol) were added simultaneously and kept for 3 h.

Reaction scope study. With the optimized reaction condition in hand, we next tested the scope of this SuFExable Ugi reaction. As shown in Fig. 4, various substituted benzoic acids could well engage in this process to deliver the products, and the electron-withdrawing substitution could give higher yields than those electron-donating substitution (5b-5e). The heteroaryl carboxylic acids like nicotinic acid, furan-2-carboxylic acid, thiophene-2-carboxylic acid, and indole-2-carboxylic acid, could participate in this SuFExable Ugi reaction to give the sulfonyl fluoro α-amino amides in excellent yields (5f-5i). Besides, the unsaturated carboxylic acids like cinnamic acid and 3-phenylpropionic acid were also tolerable (5j-5k). The aliphatic carboxylic acids with the functionalities like cyclopropane, bromo, alkene and ketone, were compatible in this process (5l-5p). Besides, these functionalities could offer ample opportunities for further functionalization. Respecting to aldehydes, a series of substituted benzaldehydes with the substitution of fluoro, chloro, bromo, methoxy, cyano, nitro, could undergo the Ugi reaction smoothly to give the products in good to excellent yields (5q-5u), and the electron-deficient benzaldehydes could give higher yields than those electron-rich benzaldehydes. The naphthyl aldehyde and heterocyclic aldehydes including pyridine-3-aldehyde, thiophene-2-aldehyde, N-tosyl pyrrole-2-aldehyde, N-Boc indole-2-aldehyde, could well engage in this multicomponent reaction process to deliver sulfonyl fluoro
α-amino amides in moderate to excellent yields (5v-5z). Furthermore, the structure of 5y was confirmed by X-ray analysis. The aliphatic carboxaldehydes were also subject to this Ugi reaction. For instance, the pivalic aldehyde and cyclohexanal were applicable in this process to give the products in almost quantitative yields (5aa-5ab). Moreover, the ethyl oxoacetate could also proceed well to furnish the product (5ac). On the other hand, a series of amines were explored. For example, various anilines with differential substitutions like methoxy, chloro, bromo, trifluoromethyl, and nitro, could well tolerate and the electron-rich substitution could facilitate the reaction to give excellent yields (5ad-5ah). The naphthyl amine could also engage in this process to give the product 5ai with a d.r. value of 3.7:1. In addition, a variety of alkyl amines with diverse functionalities like alkene, alkyne, sulfone, protected alcohol, trifluoromethyl and cyclopropane, could undergo this multicomponent reaction smoothly to deliver the sulfonyl fluoro α-amino amides in moderate to excellent yields (5aj-5ao). When the chiral (S)-1-phenylethan-1-amine was used, the product 5ap could be formed in 84% yield with a d.r. value of 1.3:1. Furthermore, the amino acids like methyl glycine, and methyl L-Aspartic acid were also applicable to deliver the products in excellent yields (5aq-5ar).
Fig. 4. Scope of Ugi Reaction for Synthesis of Sulfony Fluoro α-Amino Amides. Reaction condition:
1 (0.1 mmol), 2 (0.15 mmol), 3 (0.15 mmol) and 4a (0.15 mmol) were added to HFIP (1 mL) and kept at
RT for 3 h. Yield refers to isolated products, and d.r. value was determined by 1H NMR.

At this stage, we turned our attention to this SuFExable Ugi reaction using the N-protected amino acids as carboxylic acid component for synthesis of sulfonyl fluoro peptides. As shown in Fig. 5, the N-tosyl glycine could assemble with aldehyde, amine and differential SuFExable isocyanides to deliver the sulfonyl fluoro peptides in excellent yields (6a-6d). Meanwhile, the N-Cbz L-alanine could engage in this process to deliver the structural divergent peptides efficiently with excellent yields (6e-6h), and the chiral SuFExable isocyanides were found well applicable to furnish the protease inhibitor analogues tethering with sulfonyl fluoro moiety. Meanwhile, the N-Cbz L-leucine and N-Boc L-proline could also undergo the Ugi reaction smoothly (6i-6j). Considering the wealth of sulfonyl fluoro peptides in medicinal chemistry$^{19, 20, 55}$, this protocol provides a direct approach to these molecules with high efficiency, structural diversity and molecular complexity.
Fig. 5. Synthesis of Sulfonyl Fluoro Peptides. Reaction condition: 1 (0.1 mmol), 2 (0.15 mmol), 3 (0.15 mmol) and 4 (0.15 mmol) were added to HFIP (1 mL) and kept at RT for 3 h. Yield refers to isolated products, and d.r. value was determined by 19F NMR. PMP = para-methoxyphenyl.

Synthetic applications and mechanism study. To showcase the utility of this protocol, the synthetic application was conducted. Those complex molecules such as drugs are amenable to the transformation
upon this SuFExable Ugi reaction. For example, the approved drugs like Indometacin and Tranilcyromine could be derived to 7 and 8 upon this method, and 7 could be prepared in gram-scale (Fig. 6a). Meanwhile, the Ugi reaction-derived compound 9 was discovered as a heat shock transcription factor 1 inhibitor to induce apoptosis in multiple myeloma cells56, and this protocol could deliver the sulfonyl fluoro derivative 10 in one-step which could significantly facilitate the covalent drug discovery (Fig. 6b). Furthermore, the peptide 6 which was tethered with an alkyne moiety and a sulfonyl fluoro moiety, could enables a Huisgen click reaction and a SuFEx click reaction for selective entry to 11 and 12 (Fig. 6c). This would offer ample opportunity for small molecule biological probes development.
Fig. 6. Synthetic applications. a. Synthesis of drug derivatives and gram-scale reaction. b. Synthesis of a heat shock transcription factor 1 inhibitor derivative. c. Click reaction with sulfonylefluoro peptide 6.
Discussion

In summary, the sulfonyl isocyanides were developed as a new type of SuFExable synthon, which were used as flexible building block in the Ugi four-component reaction. Therefore, various sulfonyl fluoro α-amino amides and peptides could be achieved in a direct and efficient manner. This protocol opens a new vision for the discovery of SuFExable building blocks and SuFEx click chemistry, and would be useful in drug discovery and materials science.

Methods

General procedure for the synthesis of 5. A 5 ml vial was charged with acid 1 (0.1 mmol), aldehyde 2 (0.15 mmol), amine 3 (0.15 mmol) and isocyanide 4a (0.15 mmol), HFIP (1.0 mL) was added as solvent. The solution was stirred at room temperature for 3 hours. Afterwards, the solvent was evaporated under vacuum, and the residues were purified by flash column chromatography on silica gel using ethyl acetate / petroleum ether (v / v, 1:2 to 1:1) as eluent to give 5.

General procedure for the synthesis of 6. A 5 ml vial was charged with acid 1 (0.1 mmol), aldehyde 2 (0.15 mmol), amine 3 (0.15 mmol) and isocyanide 4 (0.15 mmol), HFIP (1.0 mL) was added as solvent. The solution was stirred at room temperature for 3 hours. Afterwards, the solvent was evaporated under vacuum, and the residues were purified by flash column chromatography on silica gel using ethyl acetate / petroleum ether (v / v, 1:3 to 1:1) as eluent to give 6.

Data availability

Data for the crystal structures reported in this paper have been deposited at the Cambridge Crystallographic Data Center (CCDC) under the deposition numbers CCDC: 2046088 (5y). Copies of these data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. All other data supporting the findings of this study, including experimental procedures and compound characterization,
are available within the paper and its Supplementary Information files, or from the corresponding authors on request.

Acknowledgement

We are grateful for the financial support by the National Natural Science Foundation of China (21971222), Leading Talent of “Ten Tousand Plan”-National High-Level Talents Special Support Plan. We thank Dr. Zhenjun Mao (Department of Chemistry, Zhejiang University) and Jianyang Pan (Research and Service Center, College of Pharmaceutical Sciences, Zhejiang University) for performing NMR spectrometry for structure elucidation

Author contributions

S. Xu performed experiments. S. Cui conceived and directed the project and wrote the paper. All authors discussed the results and commented on the manuscript.

References

1. Steinkopf, W. Über Aromatische Sulfofluoride. *J. Prakt. Chem.* **117**, 1-82 (1927).
2. Steinkopf, W. & Jaeger, P. Über Aromatische Sulfonfluoride. II. Mitteilung. *J. Prakt. Chem.* **128**, 63-88 (1930).
3. Lange, W. Reichspatent 532394, 27 Aug., 1931
4. Lange, W. & Müller, E. Aromatic fluorosulfonates. *Chem. Ber.* **63**, 2653-2657 (1930).
5. Suter, C. M. The Organic Chemistry of Sulfur, Wiley, New York, 1944, pp. 453-572.
6. Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. *Angew. Chem., Int. Ed.* **53**, 9430-9448 (2014).
7. Ykman, P. & Hall, H. K. One-step conversion of alkoxytrimethylsilanes to alkyl benzenesulfonates. *J. Organomet. Chem.* **116**, 153-159 (1976).
8. Niederprüm, H. Voss, P. & Beyl, V. Aryl perfluorooalkanesulfonates. *Liebigs Ann. Chem.* **1**, 20-32 (1973).
9. Bennua-Skalmowski, B. & Vorbrüggen, H. A facile conversion of primary or secondary alcohols with n-perfluorobutane-sulfonyl fluoride/1,8-diazabicyclo[5.4.0]undec-7-ene into their corresponding fluorides. *Tetrahedron Lett.* **36**, 2611-2614 (1995).
10. Vorbrüggen, H. The Conversion of Primary or Secondary Alcohols with Nonaflyl Fluoride into Their Corresponding Inverted Fluorides. *Synthesis* **2008**, 1165-1174 (2008).
11. Yeom, C.-E., Kim, H. W., Lee, S. Y. & Kim, B. M. DBU-Mediated Mild and Chemoselective Deprotection of Aryl Silyl Ethers and Tandem Biaryl Ether Formation. *Synlett* **2007**, 0146-0150 (2007).
12. Gembus, V., Marsais, F. & Levacher, V. An Efficient Organocatalyzed Interconversion of Silyl Ethers to Tosylates Using DBU and p-Toluenesulfonyl Fluoride. *Synlett* **2008**, 1463-1466 (2008).
13. Mortenson, D. E. et al. “Inverse Drug Discovery” Strategy To Identify Proteins That Are Targeted by Latent Electrophiles As Exemplified by Aryl Fluorosulfates. *J. Am. Chem. Soc.* **140**, 200-210 (2018).
14. Liu, Z. et al. SuFEx Click Chemistry Enabled Late-Stage Drug Functionalization. J. Am. Chem. Soc. 140, 2919-2925 (2018).
15. Wang, N. et al. Genetically Encoding Fluorosulfate-l-tyrosine To React with Lysine, Histidine, and Tyrosine via SuFEx in Proteins in Vivo. J. Am. Chem. Soc. 140, 4995-4999 (2018).
16. Wan, X. et al. Discovery of Lysine-Targeted eIF4E Inhibitors through Covalent Docking. J. Am. Chem. Soc. 142, 4960-4964 (2020).
17. Cuesta, A., Wan, X., Burlingame, A. L. & Taunton, J. Ligand Conformational Bias Drives Enantioselective Modification of a Surface-Exposed Lysine on Hsp90. J. Am. Chem. Soc. 142, 3392-3400 (2020).
18. Yang, X. et al. Development of Covalent Ligands for G Protein-Coupled Receptors: A Case for the Human Adenosine A3 Receptor. J. Med. Chem. 62, 3539-3552 (2019).
19. Artschwager, R. et al. Potent and Highly Selective Inhibitors of the Proteasome Trypsin-like Site by Incorporation of Basic Side Chain Containing Amino Acid Derived Sulfonfyl Fluorides. J. Med. Chem. 61, 5395-5411 (2018).
20. Baggio, C. et al. Aryl-fluorosulfate-based Lysine Covalent Pan-Inhibitors of Apoptosis Protein (IAP) Antagonists with Cellular Efficacy. J. Med. Chem. 62, 9188-9200 (2019).
21. Pettinger, J., Carter, M., Jones, K. & Cheeseman, M. D. Kinetic Optimization of Lysine-Targeting Covalent Inhibitors of HSP72. J. Med. Chem. 62, 11383-11398 (2019).
22. Dong, J., Sharpless, K. B., Kwisnek, L., Oakdale, J. S. & Fokin, V. V. SuFEx-Based Synthesis of Polysulfates. Angew. Chem., Int. Ed. 53, 9466-9470 (2014).
23. Wang, H. et al. SuFEx-Based Polysulfonate Formation from Ethenesulfonyl Fluoride–Amine Adducts. Angew. Chem., Int. Ed. 56, 11203-11208 (2017).
24. Gao, B. et al. Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates. Nat. Chem. 9, 1083-1088 (2017).
25. Zhang, E. et al. Chemoselective Synthesis of Polysubstituted Pyridines from Heteroaryl Fluorosulfates. Chem.-Eur. J. 22, 5692-5697 (2016).
26. Hanley, P. S., Ober, M. S., Krasovskiy, A. L., Whiteker, G. T. & Kruper, W. J. Nickel- and Palladium-Catalyzed Coupling of Aryl Fluorosulfonates with Aryl Boronic Acids Enabled by Sulfuryl Fluoride. ACS Catal. 5, 5041-5046 (2015).
27. Schimler, S. D. et al. Nucleophilic Deoxyfluorination of Phenols via Aryl Fluorosulfonate Intermediates. J. Am. Chem. Soc. 139, 1452-1455 (2017).
28. Guo, T. et al. A New Portal to SuFEx Click Chemistry: A Stable Fluorosulfuryl Imidazolium Salt Emerging as an “F–SO₂⁺” Donor of Unprecedented Reactivity, Selectivity, and Scope. Angew. Chem., Int. Ed. 57, 2605-2610 (2018).
29. Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. Multidimensional SuFEx Click Chemistry: Sequential Sulfur(VI) Fluoride Exchange Connections of Diverse Modules Launched From An SOF4 Hub. Angew. Chem., Int. Ed. 56, 2903-2908 (2017).
30. Brighty, G. J. et al. Using sulfururamidimidoyl fluorides that undergo sulfur(vi) fluoride exchange for inverse drug discovery. Nat. Chem. 12, 906-913 (2020).
31. Qin, H.-L., Zheng, Q., Bare, G. A. L., Wu, P. & Sharpless, K. B. A Heck–Matsuda Process for the Synthesis of β-Arylethenesulfonyl Fluorides: Selectively Addressable Bis-electrophiles for SuFEx Click Chemistry. Angew. Chem., Int. Ed. 55, 14155-14158 (2016).
32. Zha, G.-F. et al. Palladium-Catalyzed Fluorosulfonylvinylation of Organic Iodides. Angew. Chem., Int. Ed. 56, 4849-4852 (2017).
33. Giel, M.-C. et al. Metal-Free Synthesis of Functional 1-Substituted-1,2,3-Triazoles from Ethenesulfonyl Fluoride and Organic Azides. Angew. Chem., Int. Ed. 59, 1181-1186 (2020).
34. Thomas, J. & Fokin, V. V. Regioselective Synthesis of Fluorosulfonyl 1,2,3-Triazoles from Bromovinylsulfonyl Fluoride. Org. Lett. 20, 3749-3752 (2018).
35. Leng, J. & Qin, H.-L. 1-Bromoethene-1-sulfonyl fluoride (1-Br-ESF), a new SuFEx clickable reagent, and its application for regioselective construction of 5-sulfonylfluoro isoxazoles. Chem. Commun. 54, 4477-4480 (2018).
36. Smedley, C. J. et al. Diversity Oriented Clicking (DOC): Divergent Synthesis of SuFExable Pharmacophores from 2-Substituted-Alkynyl-1-Sulfonyl Fluoride (SASF) Hubs. Angew. Chem., Int. Ed. 59, 12460-12469 (2020).
37. Madhavachary, R. et al. Two-Step Synthesis of Complex Artificial Macroyclic Compounds. Angew. Chem., Int. Ed. 56, 10725-10729 (2017).
38. Compendium Organic Name Reactions and Reagents, By Z. Wang, John Wiley & Sons, Inc. 2010, pp 2830-2837.
39. Sharma, U. K., Sharma, N., Vachhani, D. D. & Van der Eycken, E. V. Metal-mediated post-Ugi transformations for the construction of diverse heterocyclic scaffolds. Chem. Soc. Rev. 44, 1836-1860 (2015).
40. Zhang, J. et al. Asymmetric phosphoric acid–catalyzed four-component Ugi reaction. Science 361, eaas8707 (2018).
41. Wang, Q., Wang, D.-X., Wang, M.-X. & Zhu, J. Still Unconquered: Enantioselective Passerini and Ugi Multicomponent Reactions. Acc. Chem. Res. 51, 1290-1300 (2018).
42. Zhang, Y. et al. Chiral Phosphoric Acid Catalyzed Asymmetric Ugi Reaction by Dynamic Kinetic Resolution of the Primary Multicomponent Adduct. Angew. Chem., Int. Ed. 55, 5282-5285 (2016).
43. Zhao, W., Huang, L., Guan, Y. & Wulff, W. D. Three-Component Asymmetric Catalytic Ugi Reaction—Concinnity from Diversity by Substrate-Mediated Catalyst Assembly. Angew. Chem., Int. Ed. 53, 3436-3441 (2014).
44. Shaabani, S. & Dömling, A. The Catalytic Enantioselective Ugi Four-Component Reactions. Angew. Chem., Int. Ed. 57, 16266-16268 (2018).
45. Dömling, A. & Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem., Int. Ed. 39, 3168-3210 (2000).
46. Lygin, A. V. & de Meijere, A. Isocyanides in the Synthesis of Nitrogen Heterocycles. Angew. Chem., Int. Ed. 49, 9094-9124 (2010).
47. Zajdlik, A. et al. α-Boryl Isocyanides Enable Facile Preparation of Bioactive Boropeptides. Angew. Chem., Int. Ed. 52, 8411-8415 (2013).
48. Chen, W. et al. Synthesis of Sulfotyrosine-Containing Peptides by Incorporating Fluorosulfated Tyrosine Using an Fmoc-Based Solid-Phase Strategy. Angew. Chem., Int. Ed. 55, 1835-1838 (2016).
49. Wang, C., Lai, Z., Xie, H. & Cui, S. Triazenyl Alkynes as Versatile Building Blocks in Multicomponent Reactions: Diastereoselective Synthesis of β-Amino Amides. Angew. Chem., Int. Ed. 60, anie.202014686 (2021).
50. Zeng, L. et al. Skeletal reorganization divergence of N-sulfonyl ynamides. Nat. Commun. 11, 5639 (2020).
51. Huang, B., Zeng, L., Shen, Y. & Cui, S. One-Pot Multicomponent Synthesis of β-Amino Amides. Angew. Chem., Int. Ed. 56, 4565-4568 (2017).
52. Shen, Y., Huang, B., Zeng, L. & Cui, S. Single Reactant Replacement Approach of Passerini Reaction: One-Pot Synthesis of β-Acylxoyamides and Phthalides. Org. Lett. 19, 4616-4619 (2017).
53. Chen, R., Liu, Y. & Cui, S. 1,4-Conjugate addition/esterification of ortho-quinone methides in a multicomponent reaction. Chem. Commun. 54, 11753-11756 (2018).
54. CCDC 2046088.
55. Brouwer, A. J., Ceylan, T., Linden, T. v. d. & Liskamp, R. M. J. Synthesis of β-aminoethanesulfonyl fluorides or 2-substituted taurine sulfonyl fluorides as potential protease inhibitors. *Tetrahedron Lett.* **50**, 3391-3393 (2009).

56. Bach, M. et al. Ugi Reaction-Derived α-Acyl Aminocarboxamides Bind to Phosphatidylinositol 3-Kinase-Related Kinases, Inhibit HSF1-Dependent Heat Shock Response, and Induce Apoptosis in Multiple Myeloma Cells. *J. Med. Chem.* **60**, 4147-4160 (2017).