The Complexity of Rerouting Shortest Paths

Paul Bonsma

Computer Science Department, Humboldt University Berlin,
Unter den Linden 6, 10099 Berlin. bonsma@informatik.hu-berlin.de

Abstract. The Shortest Path Reconfiguration problem has as input a graph G (with unit edge lengths) with vertices s and t, and two shortest st-paths P and Q. The question is whether there exists a sequence of shortest st-paths that starts with P and ends with Q, such that subsequent paths differ in only one vertex. This is called a rerouting sequence. This problem is shown to be PSPACE-complete. For claw-free graphs and chordal graphs, it is shown that the problem can be solved in polynomial time, and that shortest rerouting sequences have linear length. For these classes, it is also shown that deciding whether a rerouting sequence exists between all pairs of shortest st-paths can be done in polynomial time. Finally, a polynomial time algorithm for counting the number of isolated paths is given.

1 Introduction

In this paper, we study the Shortest Path Reconfiguration (SPR) Problem, introduced by Kamiński et al [16,15]. The input consists of a graph G, with vertices s and t, and two shortest st-paths P and Q. The question is whether P can be modified to Q by changing one vertex at a time, and maintaining a shortest st-path throughout. Edges have unit lengths, so all shortest st-paths have the same number of vertices. We define the following solution graph $SP(G, s, t)$: its vertex set is the set of all shortest st-paths in G. Two paths P and Q are adjacent if they differ in one vertex. SPR can now be reformulated as: does there exist a walk from P to Q in $SP(G, s, t)$? Such a walk is also called a rerouting sequence.

Shortest paths form a central concept in graph theory, optimization, algorithms and networking. Questions related to rerouting (shortest) paths are often studied in networking applications. Hence this is a very natural question, which is likely to have relevant applications. Nevertheless, the main motivation for this study is of a more theoretical nature. Similar reconfiguration problems can be defined based on many different combinatorial problems: Consider all solutions to a problem (or all solutions of at least/at most given weight, in the case of optimization problems), and define a (symmetric) adjacency relation on them. Such problems have been studied often in recent literature. Examples include reconfiguration problems based on satisfiability problems [10], independent sets [11,13,17], vertex colorings [13,15,16], matchings [13], list edge-colorings [14], matroid bases [13], subsets of a (multi)set of numbers [19]. Of course, to obtain a reconfiguration problem, one needs to define an adjacency relation between
solutions. Usually, the most natural adjacency relation is considered, e.g. two independent sets \(I \) and \(J \) are considered adjacent in \([13]\) if \(J \) can be obtained from \(I \) by removing one vertex and adding another; boolean assignments are considered adjacent in \([10]\) if exactly one variable differs, etc. We remark that in the context of local search, similar problems have been studied earlier, with the important distinction that the neighborhood is not symmetric, and the objective is to reach a local optimum, instead of a given target solution, see e.g. \([18]\).

An initial motivation of these questions was to explore the solution space of NP-hard problems, to study e.g. the performance of heuristics \([10]\) and random sampling methods \([4]\). This has revealed interesting, often recurring patterns in the complexity behavior of these problems. This is perhaps best exemplified by the known results on the reconfiguration of vertex colorings using \(k \) colors: in the problem \(k \)-Color Path, two \(k \)-colorings of a graph are given, and the question is whether one can be modified to the other by changing one vertex color at a time, and maintaining a \(k \)-coloring throughout. This problem is polynomial time solvable for \(k \leq 3 \) \([6]\), and PSPACE-complete for \(k \geq 4 \) \([3]\). Note that the corresponding decision problem of deciding whether a graph admits a \(k \)-coloring is polynomial time solvable for \(k \leq 2 \), and NP-complete for \(k \geq 3 \). This gives an example of the following common pattern: for instance classes for which deciding whether a solution exists is in P, the reconfiguration problem is often in P as well. See \([10,12,13]\) for more extensive examples. This motivated Ito et al. \([12]\) to ask for examples of reconfiguration problems that break this pattern. Secondly, it has been observed that there is a strong correlation between the complexity of reconfiguration problems and the diameter of the components of the solution graph: for all known ‘natural’ reconfiguration problems in P, the diameter is polynomially bounded (see e.g. \([1,6,10,13,17]\)), and for all PSPACE-complete reconfiguration problems, the diameter may be superpolynomial or exponential (see e.g. \([3,10]\)). The latter is unsurprising, since polynomial diameter would imply NP=–PSPACE (assuming that the property of being a solution and adjacency of solutions can be tested in polynomial time, which holds for all aforementioned problems). One can easily construct artificial instance classes of reconfiguration problems such that the problem is in P, but has exponential diameter \([3]\), but to our knowledge no natural examples are known. (That is, not constructed specifically to prove something about the reconfiguration problem at hand.)

With the goal of breaking one of these patterns, Kamiński et al. \([15,16]\) introduced the SPR problem. Finding a shortest path can be done in polynomial time. Nevertheless, in \([15,16]\) examples were constructed where the solution graph has exponential diameter. This shows that regardless of whether SPR is in P or PSPACE-complete, one of the patterns is broken. The main open question from \([16]\) was therefore that of determining the complexity of SPR.

In this paper, we answer that question by showing that SPR is PSPACE-complete. Therefore, this also answers the question posed in \([12]\), by giving a rare example of a PSPACE-complete reconfiguration problem based on a decision problem in P. We remark that it is not the first example: in \([3]\) it is shown that
4-Color Path is also PSPACE-hard for bipartite graphs. Since every bipartite graph is 2-colorable, the corresponding decision problem is trivial. Our PSPACE-completeness result is presented in Section 3. We remark that our PSPACE-completeness result, after it appeared in a preprint [2], has already proved its usefulness for showing PSPACE-completeness of other problems: in [17], the result has been applied to show that Independent Set Reconfiguration remains PSPACE-hard even when restricted to perfect graphs.

We give the following positive results on SPR. We show that when G is chordal or claw-free, SPR can be decided in polynomial time. A graph is chordal if it contains no induced cycles of length more than 3. This is a well-studied class of perfect graphs, which includes for instance k-trees and interval graphs [8]. A graph is claw-free if it contains no induced $K_1,3$ subgraph. This is again a well-studied graph class, see e.g. [7]. We also show that for these graph classes, the diameter of components of SP(G, s, t) is always linearly bounded. For chordal graphs, we can actually construct a shortest rerouting sequence in polynomial time. In contrast, in [15], it was shown that for general graphs, finding a shortest rerouting sequence is NP-hard, even for graph classes where there always exists one of polynomial length.

In the context of reconfiguration problems, other types of questions are commonly studied as well. Above, we considered the reachability question: can one given solution be reached from another given solution? The related connectivity question has also been well-studied [10,11,19]: is the solution graph connected? For chordal graphs G, we show that SP(G, s, t) is always connected. If G is claw-free, we show that it can be decided in polynomial time whether SP(G, s, t) is connected. Our results on chordal graphs are presented in Section 4 and the results on claw-free graphs in Section 5.

Another type of question that has been studied in this context is related to the existence of isolated states [9]. In the case of SPR, an isolated st-path is a shortest st-path in G that has no neighbors in SP(G, s, t). The reader may observe that deciding whether a given path is an isolated st-path is a trivial problem, that can be decided in linear time. Similarly, deciding whether all shortest st-paths are isolated can trivially be done in polynomial time as well. The problem of deciding whether there exists an isolated st-path is less trivial. In Section 6 we give an algorithm for this problem. In fact, we give a polynomial time algorithm for the more general problem of counting the number of isolated paths. Statements for which (more detailed) proofs can be found in the appendix are marked with a star.

2 Preliminaries

For graph theoretical notions not defined here, we refer to [8]. We will consider undirected and simple graphs throughout. A walk of length k from v_0 to v_k in a graph G is a vertex sequence v_0, \ldots, v_k, such that for all $i \in \{0, \ldots, k-1\}$, $v_i v_{i+1} \in E(G)$. It is a path if all vertices are distinct. It is a cycle if $k \geq 3$, $v_0 = v_k$, and v_0, \ldots, v_{k-1} is a path. With a path or cycle $W = v_0, \ldots, v_k$ we
associate a subgraph of G as well, with vertex set $V(W) = \{v_0, \ldots, v_k\}$ and edge set $E(W) = \{v_iv_{i+1} \mid i \in \{0, \ldots, k-1\}\}$. A path from s to t is also called an \textit{st-path}. The \textit{distance} from s to t is the length of a shortest \textit{st-path}. The \textit{diameter} of a graph is the maximum distance from s to t over all vertex pairs s, t.

A hypergraph $H = (V, E)$ consists of a vertex set V, and a set E of hyperedges, which are subsets of V. A walk in H of length k is a sequence of vertices v_0, \ldots, v_k such that for every i, there exists a hyperedge $e \in E$ with $\{v_i, v_{i+1}\} \subseteq e$. Using this notion of walks, connectivity and components of hypergraphs are defined the same as for graphs.

Throughout this paper, we will consider a graph G with vertices $s, t \in V(G)$. We will only be interested in shortest \textit{st}-paths in G, and use d to denote their length. For $i \in \{0, \ldots, d\}$, we define $L_i \subseteq V(G)$ to be the set of vertices that lie on a shortest \textit{st}-path, at distance i from s. So $L_0 = \{s\}$, and $L_d = \{t\}$ (even if there may be more vertices at distance d of s). A set L_i is also called a \textit{layer}. With respect to a given layer L_i, the \textit{previous layer} is L_{i-1}, and the \textit{next layer} is L_{i+1}. Clearly, if there is an edge $xy \in E(G)$ with $x \in L_i$ and $y \in L_j$, then $|j-i| \leq 1$. Note that a shortest \textit{st}-path P contains exactly one vertex from every layer. For $i \in \{0, \ldots, d\}$, this vertex will be called the L_i-\textit{vertex} of P.

The graph G will be undirected, so we use the notation $N(v)$ to denote the set of neighbors of a vertex $v \in V(G)$. However, if $v \in L_i$, then we will use $N^-(v)$ to denote $N(v) \cap L_{i-1}$, and call these neighbors the \textit{in-neighbors} of v. Similarly, $N^+(v)$ denotes $N(v) \cap L_{i+1}$, and these are called the \textit{out-neighbors} of v.

Recall that a rerouting sequence from P to Q is a sequence Q_0, \ldots, Q_k of shortest \textit{st}-paths with $Q_0 = P$, $Q_k = Q$, such that for every $j \in \{0, \ldots, k-1\}$, Q_j and Q_{j+1} differ in at exactly one vertex. Let L_i be the layer in which they differ, and $u = L_i \cap V(Q_j)$ and $v = L_i \cap V(Q_{j+1})$. Then we also say that Q_{j+1} is obtained from Q_j with a rerouting step $u \rightarrow v$ in layer L_i.

3 PSPACE-completeness

In this section we prove that the SPR problem is PSPACE-complete. A \textit{k-color assignment} α for a graph G is a function $\alpha : V(G) \rightarrow \{1, \ldots, k\}$. A \textit{k-coloring} α for a graph G is a color assignment such that for all $uv \in E(G)$, $\alpha(u) \neq \alpha(v)$. For a given graph G, the \textit{k-color graph} $C_k(G)$ has vertex set consisting of all k-colorings of G, where two colorings are adjacent if they differ only in one vertex. A walk in $C_k(G)$ from α to β will also be called a \textit{recoloring sequence} from α to β. The problem \textit{k-Color Path} has as input a graph G, with two k-colorings α and β. The question is whether there exists a walk from α to β in $C_k(G)$. k-Color Path has been shown to be PSPACE-complete in \cite{3}.

Let G, α, β be an instance of 4-Color Path, with $V(G) = \{v_1, \ldots, v_n\}$. We will now describe how to construct an equivalent SPR instance G' with two shortest \textit{st}-paths P_α and P_β. Every shortest \textit{st}-path in G' will correspond to a 4-color assignment for G (though not necessarily a 4-coloring!). To indicate this correspondence, some vertices of G' will be colored with the four colors $\{1, 2, 3, 4\}$. The other vertices will be colored with a fifth color, namely \textit{black}. Note that this
5-color assignment for G' will not be a coloring of G'. G' will consist of one main strand, which contains the paths P_a and P_b, and 6n recoloring strands: one for every combination of a vertex $v_i \in V(G)$ and two colors $\{c_1, c_2\} \subset \{1, 2, 3, 4\}$.

![Fig. 1. Different variants of the gadgets H_i and H_i^* used in the construction.](image)

The construction of G' starts by introducing the vertices s and t. The main strand is constructed as follows. For each $v_i \in V(G)$, introduce a vertex gadget H_i as shown in Figure [1] (a). The leftmost vertex of H_i is labeled s_i, and the rightmost vertex t_i. These vertices are colored black. H_i consists of four disjoint s_it_i-paths of length 4, one for each color. All internal vertices of the paths are colored in the color assigned to the path. The four vertices of H_i that are neither adjacent to s_i nor to t_i are called middle vertices of H_i. These gadgets H_i are connected as follows: add edges ss_1 and t_st_4, and for every $i \in \{1, \ldots, n-1\}$, add an edge t_is_{i+1}. At this point the graph is connected, and every vertex lies on a shortest st-path. Observe that the distance from s to s_i (t_i) is $5i - 4$ (resp. $5i$), and the distance from s to t is $5n + 1$. Hence this defines for every vertex the layer L_i that it is part of, for $i \in \{0, \ldots, 5n + 1\}$.

We now define the recoloring strands. For each $v_i \in V(G)$ and each color pair $\{c_1, c_2\} \subset \{1, 2, 3, 4\}$, we introduce a recoloring strand called the $v_i, \{c_1, c_2\}$-strand, defined as follows. Let $\{c_3, c_4\} = \{1, 2, 3, 4\}\\{c_1, c_2\}$. First we introduce gadgets H_j^* for every $j \in \{1, \ldots, n\}$. (Whenever we mention gadgets H_j^* or vertices s_j^*, t_j^*, l and r below, this refers to the gadgets and vertices for the given $v_i, \{c_1, c_2\}$-strand.)

- If $j \neq i$ and $v_iv_j \notin E(G)$, then define H_j^* to be isomorphic to H_j (see Figure [1] (a)), with the same 5-color assignment. The leftmost and rightmost (black) vertices are now labeled s_j^* and t_j^* respectively.
- If $j \neq i$ and $v_iv_j \in E(G)$, then define H_j^* to be as shown in Figure [1] (b).

The leftmost and rightmost (black) vertices are labeled s_j^* and t_j^* again. Now there are only two disjoint paths from s_j^* to t_j^*, which are colored with the colors c_3 and c_4.

- H_j^* is the gadget shown in Figure [1] (c). Here s_j^* has one neighbor labeled l, and t_j^* has one neighbor labeled r.

Complete the strand by adding edges ss_1^*, t_n^*t and $t_j^*s_{j+1}^*$ for every $j \in \{1, \ldots, n-1\}$. Note that if we add edges from l and r to a main strand vertex in layer L_{5i-2}, which we will do below, then all vertices of the new strand lie on st-paths of length $5n + 1$ as well, and no shorter st-paths have been created. This defines for every vertex in the new strand which distance layer it is part of. We will refer to these layers in the next step, where we show how to connect the vertices of
this recoloring strand to the main strand; see Figure 2. For all $j < i$, add the following edges: Add edges between s_j^* and every main-strand vertex in the next layer that has a color that is also used in H_j^*. Next, for every non-black vertex v of H_j^*, add an edge between v and the main-strand vertex in the next layer that has the same color as v, or is black. Finally, add an edge $t_j^* s_{j+1}$. For all $j > i$, edges between H_j^* and the main strand are added similarly, except that vertices of H_j^* are connected to vertices in the previous layer. (See H_4^* in Figure 2 for an example.) For H_i^* we add edges as follows: Connect s_i^* (t_i^*) to the main strand vertices in the next (resp. previous) layer with colors c_1 and c_2. Finally, add an edge $t_i^* l$. For all $j > i$, edges between H_j^* and the main strand are added similarly, except that vertices of H_j^* are connected to vertices in the previous layer. (See H_4^* in Figure 2 for an example.) For H_i^* we add edges as follows: Connect s_i^* (t_i^*) to the main strand vertices in the next (resp. previous) layer with colors c_1 and c_2. Finally, connect both remaining vertices l and r of H_i^* to both middle vertices of H_i that have colors c_1 and c_2. Introducing such a $v_i, \{c_1, c_2\}$-strand for every $v_i \in V(G)$ and $\{c_1, c_2\} \subset \{1, 2, 3, 4\}$ completes the construction of G'.

We now show how to construct a path P_γ for any given 4-coloring γ of G; see Figure 2. The path P_γ contains only main strand vertices. Since it should be a shortest st-path, it contains exactly one vertex of every layer. Every layer contains vertices of a unique gadget H_i of the main strand. In the case that the layer contains a single black vertex from H_i, this is the vertex that is included in P_γ. In the case that the layer contains vertices of colors $1, \ldots, 4$ of H_i, use the vertex of color $\gamma(v_i)$ for P_γ. This way, we define the paths P_α and P_β, using the given colorings α and β, respectively.

The purpose of the recoloring strands is as follows: Consider two adjacent colorings α and β. Suppose they differ only in vertex v_i, where their respective colors are $c_1 = \alpha(v_i)$ and $c_2 = \beta(v_i)$. Then all neighbors of v_i are colored with colors in $\{1, 2, 3, 4\} \setminus \{c_1, c_2\}$. Therefore, P_α can be rerouted to a shortest st-path P' that lies entirely in the $v_i, \{c_1, c_2\}$-strand, except for the vertex in layer L_{5i-2}. This rerouting is done by making rerouting steps in layers L_1, \ldots, L_{5i-1} in increasing order, and subsequently in layers L_{5n}, \ldots, L_{5i-3} in decreasing order. Note that the path P' must use vertices that have the same color as the P_α-vertex of the same layer. Then, with a single rerouting step, the color of the
vertex in layer L_{5i-2} can be changed from c_1 to c_2. Rerouting the path back to
the main strand, in reversed layer order, then gives P_β. This can be done for
every pair of adjacent colorings, so a recoloring sequence from α to β gives a
rerouting sequence from P_α to P_β. This yields:

Lemma 1 (*) If there is a recoloring sequence for G from α to β, then there is
a rerouting sequence from P_α to P_β for G'.

With any shortest st-path P' in G', we associate a color assignment where
$v_i \in V(G)$ receives the same color as the (middle) vertex in $L_{5i-2} \cap V(P')$.
The converse of Lemma 1 can then be proved as follows: a rerouting step can
only change the L_{5i-2}-vertex of a shortest st-path P' from a vertex of color
c_1 to a vertex of color c_2 if the vertices of P' in the previous and next layer
are part of the $v_i, \{c_1, c_2\}$-strand. In that case, all vertices of P' except the
L_{5i-2}-vertex must be part of this strand, which shows that P' corresponds to
a 4-color assignment in which the neighbors of v_i are not colored with c_1 or c_2.
Hence if P' corresponds to a 4-coloring, then the shortest st-path resulting from
the rerouting step corresponds again to a 4-coloring. Therefore, any rerouting
sequence from P_α to P_β can be mapped to a recoloring sequence from α to β.

Lemma 2 (*) If there is a rerouting sequence from P_α to P_β for G', then there is
a recoloring sequence in G from α to β.

Theorem 3 SPR is PSPACE-complete.

Proof: 4-Color Path is PSPACE-complete [3]. Our transformation from G to G'
is polynomial. By Lemma 1 and 2, G, α, β is a YES-instance for 4-Color Path if
and only if G', P_α, P_β is a YES-instance for SPR. This proves PSPACE-hardness.
Membership in PSPACE follows from Savitch’s Theorem [19] which states that
PSPACE = NPSPACE; the problem is easily seen to be in NPSPACE. □

4 Chordal graphs

We will show in this section that for chordal graphs G, the SPR problem can be
decided in polynomial time. In fact, we prove that if G is chordal, then $\text{SP}(G, s, t)$
is connected and has diameter at most $d-1$, where d is the distance from s to t.

Theorem 4 (*) Let G be a chordal graph, and let P and Q be two shortest st-paths
in G, of length d. Then a rerouting sequence from P to Q exists, of length
at most $|V(P)\setminus V(Q)| \leq d - 1$.

Proof sketch: We prove the statement by induction over $c = |V(P)\setminus V(Q)|$. The
case $c = 0$ is obvious, so now assume that $c \geq 1$. Let $P = u_0, u_1, \ldots, u_d$, and
$Q = v_0, v_1, \ldots, v_d$. Let i be the lowest index such that $u_i \neq v_i$. Let j be the
lowest index with $j > i$ such that $u_j = v_j$. If $j = i + 1$, then both u_i and u_i are
adjacent to both u_{i-1} and u_{i+1}, so to P we can apply the rerouting step $u_i \rightarrow v_i,$
to obtain a new shortest st-path P' in G that has one more vertex in common with Q. So by induction, the distance from P' to Q in $\text{SP}(G,s,t)$ is at most $c - 1$. Then the distance from P to Q is at most c. This proves the statement in the case $j = i + 1$, so now assume that $j \geq i + 2$.

Note that then $C = u_{i-1}, u_i, \ldots, u_j-1, u_j, v_{j-1}, \ldots, v_i, v_{i-1}$ is a cycle in G, of length at least 6. Using C and using that G is chordal, it can be shown that G contains an edge e with $e = u_iv_{i+1}$ or $e = u_{i+1}v_i$. If $e = u_{i+1}v_i$, then both u_i and v_i are adjacent to both u_{i-1} and u_{i+1}, so to P we may apply the rerouting step $u_i \rightarrow v_i$, to obtain a new shortest st-path P' that has at least one more vertex in common with Q. Then the proof can be concluded the same as before. The remaining case where $e = u_iv_{i+1}$ is symmetric; a rerouting step $v_i \rightarrow u_i$ can be applied to Q.

The above proof gives a polynomial time algorithm for constructing the rerouting sequence. Obviously a rerouting sequence from P to Q requires at least $|V(P)\setminus V(Q)|$ rerouting steps, so we may conclude:

Corollary 5 Let G be a chordal graph with shortest st-paths P and Q. In polynomial time, a shortest rerouting sequence from P to Q can be constructed.

5 Claw-free graphs

In this section we show that deciding SPR, and deciding whether $\text{SP}(G,s,t)$ is connected can both be done in polynomial time in the case where G is claw-free. A claw is a $K_{1,3}$ graph. A graph G is *claw-free* if it contains no claws as induced subgraphs. In other words, G is not claw-free if and only if it contains a subgraph H that consists of one vertex c of degree 3, and three leaves l_1, l_2, l_3, such that the leaves are pairwise nonadjacent in G. Such an induced subgraph will be called a c-claw with leaves l_1, l_2, l_3 for short.

Let $u \in L_i$. We say that u has **maximal in-neighborhood** if there is no $v \in L_i$ with $N^-(u) \subset N^-(v)$. (Note that we distinguish between subset \subseteq and strict subset \subset.) In that case, $N^-(u)$ is a **maximal in-neighborhood** in L_{i-1}. These notions are defined analogously for out-neighborhoods. With a layer L_i, we associate the following hypergraph \mathcal{H}_i: \mathcal{H}_i has vertex set L_i, and the edges correspond to the maximal in-neighborhoods in L_i. So for every $e \in E(\mathcal{H}_i)$, there exists a vertex $a \in L_{i+1}$ with $N^-(a) = e$.

The main result of this section is proved as follows. We first give some simple reduction rules. These are based on the fact that it is safe to delete a vertex v, if we know that it is not part of any shortest st-path that can be reached from the given shortest st-path P. We give two ways to identify such vertices. For reduced, claw-free SPR instances G', P, Q that do not have such vertices, we actually show that $\text{SP}(G',s,t)$ is connected. Proposition follows from this observation: whenever a rerouting step $x \rightarrow y$ in layer L_i is made, there is a vertex $z \in L_{i+1}$ with $x, y \in N^-(z)$, so x and y are in the same component of \mathcal{H}_i.

8
Proposition 6 Let P be a shortest st-path in a graph G. For every shortest st-path Q that is reachable from P in $SP(G, s, t)$ and every i, the L_i-vertex is part of the same component of H_i as the L_i-vertex of P.

Proposition 7 Let P be a shortest st-path of length d in a claw-free graph G, in which every vertex lies on a shortest st-path. For every shortest st-path Q that is reachable from P in $SP(G, s, t)$ and every $i \in \{2, \ldots, d - 2\}$, the L_i-vertex of Q is adjacent to the L_i-vertex of P.

Proof: Consider a rerouting sequence Q_0, \ldots, Q_k from $Q_0 = P$ to $Q_k = Q$, and let x_j be the L_i-vertex of Q_j, for every $j \in \{0, \ldots, k\}$. Assume that the claim is not true, so then we may choose ℓ to be the lowest index such that $x_0x_\ell \notin E(G)$.

If x_0 and x_ℓ have a common neighbor z in either $L_{\ell-1}$ or $L_{\ell+1}$, then a z-claw with leaves x_0, x_ℓ and y exists, for some vertex $y \in L_{\ell-2}$ or $y \in L_{\ell+2}$, respectively. (z has such a neighbor y since it lies on a shortest st-path.) So since G is claw-free, we may conclude that $N^-(x_0) \cap N^-(x_\ell) = \emptyset$, and $N^+(x_0) \cap N^+(x_\ell) = \emptyset$.

If $x_{\ell-1}$ has a neighbor $y \in L_{\ell-1}\setminus N^-(x_0)$ and a neighbor $z \in L_{\ell+1}\setminus N^+(x_0)$, then an $x_{\ell-1}$-claw with leaves x_0, y, z exists. So w.l.o.g. we may assume that $N^-(x_{\ell-1}) \subseteq N^-(x_0)$. But then $N^-(x_{\ell-1}) \cap N^-(x_\ell) = \emptyset$, which contradicts that a rerouting step $x_{\ell-1} \rightarrow x_\ell$ is possible. \hfill \square

Definition 8 Let G be a claw-free graph with vertices s and t at distance d from each other. Then G is called st-reduced if

- all vertices lie on a shortest st-path,
- for every $i \in \{1, \ldots, d-1\}$, H_i is connected, and
- for every $i \in \{2, \ldots, d-2\}$, L_i is a clique.

Propositions 6 and 7 can be used to identify in polynomial time vertices that are not part of any shortest st-path that is reachable from a given path P. Deleting these, together with vertices not on shortest st-paths, gives an st-reduced instance.

Lemma 9 (*) Let G be a claw-free graph, with shortest st-path P. In polynomial time, we can construct an induced claw-free subgraph G' such that (i) G' is st-reduced, and (ii) a shortest st-path Q of G is reachable from P in $SP(G, s, t)$ if and only if $V(Q) \subseteq V(G')$, and Q is reachable from P in $SP(G', s, t)$.

The last property from Definition 8 shows that every pair of vertices in one layer is adjacent; this makes it much easier in our proofs to obtain a contradiction by exhibiting an induced claw. We use this to prove Lemmas 10 and 11.

Lemma 10 Let P be a shortest st-path of length d in a claw-free st-reduced graph G. In polynomial time, a rerouting sequence of length at most $d - 1$ can be constructed, from P to a shortest st-path P' in which every vertex has maximal out-neighborhood. The same holds for the case of maximal in-neighborhoods.
Proof: Let \(P = u_0, u_1, \ldots, u_{d-1}, u_d \). Define \(v_0 := u_0(= s) \). For \(i = 1, \ldots, d-1 \), in increasing order, we change the \(L_i \)-vertex \(u_i \) of \(P \) as follows. If the out-neighborhood of \(u_i \) is not maximal, then choose \(v_i \in L_i \) with \(N^+(u_i) \subset N^+(v_i) \), and \(N^+(v_i) \) maximal. If possible, choose \(v_i \) such that \(v_i \in N^+(v_{i-1}) \). Then, apply the rerouting step \(u_i \rightarrow v_i \). If \(u_i \) already has maximal out-neighborhood then simply define \(v_i = u_i \).

It remains to show that \(u_i \rightarrow v_i \) is in fact a rerouting step. By definition, \(u_{i+1} \in N^+(v_i) \), so the \(L_{i+1} \)-vertex of the current path \(v_0, \ldots, v_i, u_i, u_{i+1}, \ldots, u_d \) poses no problem. It might however be that \(v_i \) is not adjacent to \(v_{i-1} \). In that case, \(i \geq 2 \). Choose a vertex \(x \in N^-(v_i) \). Since \(v_i \in N^+(x) \setminus N^+(v_{i-1}) \), but \(N^+(v_{i-1}) \) is maximal, there exists at least one \(y \in N^+(v_{i-1}) \setminus N^+(x) \). By choice of \(v_i \), there exists at least one \(z \in N^+(v_i) \setminus N^+(y) \), otherwise \(y \) has maximal out-neighborhood as well, and we would have chosen \(v_i = y \) (since we gave preference to out-neighbors of \(v_{i-1} \)). This however gives a \(v_i \)-claw with leaves \(x, y, z \), a contradiction. The in-neighborhood case is analog. \(\square \)

Maximal in- and out-neighborhoods are required to apply the next lemma, which is concerned with rerouting a single layer \(L_i \).

Lemma 11 (*) Let \(G \) be a claw-free, st-reduced graph, with distance \(d \) between \(s \) and \(t \). Let \(P = u_0, \ldots, u_d \) be a shortest \(st \)-path. Let \(i \in \{1, \ldots, d-1\} \) such that \(u_{i-1} \) has maximal out-neighborhood and \(u_{i+1} \) has maximal in-neighborhood. Then for every \(w \in N^+(u_{i-1}) \), using at most \(2|L_i| \) rerouting steps, \(P \) can be modified to a shortest \(st \)-path \(P' = v_0, \ldots, v_d \) with \(v_i = w \), and \(v_j = u_j \) for all \(j \in \{0, \ldots, d\} \setminus \{i, i+1\} \).

Proof sketch: We assume \(1 \leq i \leq d-2 \), since the case \(i = d-1 \) is trivial. Consider a shortest path \(x_0, \ldots, x_k \) in \(\mathcal{H}_i \) from \(u_i \) to \(w \), so \(x_0 = u_i \) and \(x_k = w \). (This exists since \(G \) is st-reduced.) For \(j \in \{1, \ldots, k\} \), let \(a_j \in L_{i+1} \) be a vertex with maximal in-neighborhood such that \(\{x_{j-1}, x_j\} \in N^-(a_j) \). (Such a vertex exists by the definition of the hypergraph \(\mathcal{H}_i \).) Choose \(a_1 = u_{i+1} \) if \(u_{i+1} \) satisfies this condition. In addition, let \(a_0 = u_{i+1} \). The rerouting sequence from \(P \) to \(P' \) uses the following rerouting steps: If \(a_0 \neq a_1 \), then first replace \(a_0 = u_{i+1} \) by \(a_1 \). Next, replace \(x_0 = u_i \) by \(x_1 \). Next, replace \(a_1 \) by \(a_2 \), and \(x_1 \) by \(x_2 \). Continue making rerouting steps alternatingly in layer \(L_{i+1} \) and \(L_i \) until \(x_{k-1} \) can be replaced by \(x_k = w \), to obtain the desired path \(P' \). Note that by definition of the \(x_j \) and \(a_j \) vertices, at every point the \(L_i \)- and \(L_{i+1} \)-vertex are adjacent. It may however be that at some point, a vertex \(x_j \) is not adjacent to \(u_{i-1} \). In this case, the aforementioned rerouting sequence is preceded by replacing \(u_{i-1} \) by a vertex \(y \in N^-(x_j) \) with maximal out-neighborhood, and succeeded by replacing \(y \) by \(u_{i-1} \) again. Using the fact that \(G \) is claw-free and st-reduced, it can be shown that this way, a shortest \(st \)-path is maintained throughout. \(\square \)

Combining Lemmas 10 and 11 gives the main combinatorial result, for st-reduced claw-free graphs. The main algorithmic results, Theorem 14 and 13 follow easily. Their proofs are similar.
Theorem 12 Let G be an st-reduced claw-free graph on n vertices, with distance d from s to t. Between any two shortest st-paths P and Q in G, a rerouting sequence of length at most $2n + 2d - 6$ exists.

Proof: First apply at most $d - 1$ rerouting steps to P to obtain a shortest st-path P' in which every vertex has a maximal in-neighborhood (Lemma 11). Similarly, apply at most $d - 1$ rerouting steps to Q to obtain a shortest st-path Q' in which every vertex has a maximal out-neighborhood (Lemma 11).

Now P' can be modified to Q' in $d - 1$ stages i, with $i \in \{1, \ldots, d - 1\}$. Denote $P_0 = P' = u_0, \ldots, u_d$, and $Q' = v_0, \ldots, v_d$. At the start of the ith stage, we have a shortest st-path $P_{i-1} = v_0, \ldots, v_{i-1}, a, u_{i+1}, \ldots, u_d$ for some $a \in L_i$ (note that for $i = 1$, P_0 is of this form). Using at most $2|L_i|$ rerouting steps, P_{i-1} can be modified into a shortest st-path $P_i = v_0, \ldots, v_i, a', u_{i+2}, \ldots, u_d$ for some $a' \in L_{i+1}$. This follows from Lemma 11.

After $d - 1$ stages, this procedure terminates with a path $v_0, \ldots, v_{d-1}, u_d$, which equals Q'. The total number of rerouting steps for these stages is at most $\sum_{i \in \{1, \ldots, d-1\}} 2|L_i| = 2(n - 2)$. In total, this shows that P and Q can both be rerouted to a common shortest st-path Q'', in at most $2(n - 2) + (d - 1)$ and $d - 1$ steps, respectively. Combining these rerouting sequences gives a rerouting sequence from P to Q of length at most $2n + 2d - 6$. \hfill \Box

Theorem 13 Let G be a claw-free graph on n vertices, and let P and Q be two shortest st-paths in G, of length d. In polynomial time it can be decided whether Q is reachable from P in $SP(G, s, t)$, and if so, a rerouting sequence of length at most $2n + 2d - 6$ exists.

Proof: By Lemma 11 in polynomial time we can construct an st-reduced induced subgraph G' of G such that any shortest st-path Q' is reachable from P in G if and only if it is reachable from P in G'. So if Q is not a shortest st-path of G' (at least one of its vertices was deleted), we may conclude it is not reachable. Otherwise, Theorem 12 shows that Q is reachable from P, with a rerouting sequence of length at most $2|V(G')| + 2d - 6 \leq 2n + 2d - 6$. \hfill \Box

Theorem 14 (*) Let G be a claw-free graph on n vertices. In polynomial time it can be decided whether $SP(G, s, t)$ is connected.

6 Isolated states

In this section we give a polynomial time algorithm for counting the number of isolated paths. Recall that an isolated st-path is a shortest st-path in G that has no neighbors in $SP(G, s, t)$. For this, we need to consider isolated sy-paths for vertices $y \neq t$. For three vertices s, x, y with $s \neq y$, we use $iso_{sy}(x)$ to denote the number of isolated sy-paths that contain the vertex x. We will use this notation for the case where x is the second-to-last vertex on a shortest sy-path, so it is adjacent to y.

11
Proposition 15 Let y and z be vertices at distance i and $i+1$ of s, respectively, with $i \geq 1$. Then $\text{iso}_{yz}(y) = \sum_x \text{iso}_{xy}(x)$, where the summation is over all vertices x at distance $i-1$ from s such that $N(x) \cap N(z) = \{y\}$.

Proof: Let x be such a vertex. There are $\text{iso}_{xy}(x)$ isolated sy-paths that end with x and y. Since y is the only common neighbor of x and z, extending every one of these paths with the vertex z gives a set of isolated sz-paths that contain y, which are all distinct. All of these paths have x as L_{i-1}-vertex, so when choosing a different L_{i-1}-vertex in the role of x, a different set of sz-paths is obtained. This shows that there are at least $\sum_z \text{iso}_{yz}(y)$ distinct isolated sz-paths that contain y, where the summation is over all vertices x at distance $i-1$ from s such that $N(x) \cap N(z) = \{y\}$.

We conclude the proof by observing that every isolated sz-path that contains y also contains some vertex x at distance $i-1$ from s with $N(x) \cap N(z) = \{y\}$, such that removing z yields an isolated sy-path. Therefore, all isolated sz-paths that contain y are counted this way, and thus we have equality. \qed

Theorem 16 Let G be a graph with $s, t \in V(G)$. In polynomial time, the number of isolated st-paths can be computed.

Proof: Let d be the distance from s to t. As usual, the layers L_i for $i \in \{0, \ldots, d\}$ are defined with respect to s and t. The algorithm works by computing the values $\text{iso}_{yz}(y)$ for various choices of y and z, in increasing distance from s to z. First, for every $z \in L_1$, initialize $\text{iso}_{yz}(s) = 1$ (which is trivially correct). Then, for $i = 2, \ldots, d$, in increasing order of i, do the following. For every $z \in L_i$ and every $y \in L_{i-1}$, compute $\text{iso}_{yz}(y)$ using Proposition 15. Note that the required values $\text{iso}_{xy}(x)$ have all been computed earlier. In the end, return $\sum_{y \in L_{d-1}} \text{iso}_{st}(y)$, which is the total number of isolated st-paths.

Now we analyze the complexity. Let $n = |V(G)|$. Note that the number of combinations of y and z for which $\text{iso}_{yz}(y)$ is computed is less than n^2. For every such combination, evaluating the expression from Proposition 15 can be done in polynomial time. \qed

The following example shows that this counting result is nontrivial: if we choose G'' to be just the main strand of the instance G' constructed in Section 3 (based on a graph G on n vertices), then G'' contains 4^n isolated paths, which is exponential in the number of vertices of G'' (which is $14n + 2$).

7 Discussion

We showed that SPR is PSPACE-complete, which is somewhat surprising since the problem of finding shortest paths is easy. Nevertheless, our results otherwise confirm the typical behavior of reconfiguration problems: for instances where we can decide SPR in polynomial time (chordal and claw-free graphs), the diameter is polynomially bounded – in this case, even linearly bounded. In addition, for these graph classes it can be decided efficiently whether $\text{SP}(G, s, t)$ is connected.
The main question that is left open here is: *What is the complexity of deciding whether SP(G, s, t) is connected, for general graphs G?*

We note that for the SPR instances G', P_5, P_8 constructed in Section 3, the proof of Lemma 2 shows that SP(G', s, t) is always disconnected (unless the 4-Color Path instance G has no edges).

We showed that for chordal graphs G, one can even find shortest rerouting sequences in polynomial time. Is this possible for claw-free graphs as well? To be precise, for two shortest st-paths P and Q in a claw-free graph G and $k \in \mathbb{N}$, can it be decided in polynomial time whether a rerouting sequence from P to Q of length at most k exists, or is this problem NP-complete? Recall that for general graphs, the NP-hardness of finding a shortest rerouting sequence was proved in [15]. By our linear diameter result, this (decision) problem lies in NP for claw-free graphs. Finally, it is interesting to search for other graph classes for which SPR can be solved in polynomial time. Graphs of bounded treewidth form a prime candidate.

Acknowledgements The author would like to thank Paul Medvedev and Martin Milanič for the introduction to this problem, and for comments on an earlier version of this paper. This research was supported by DFG grant BO 3391/1-1.

References

1. M. Bonamy, M. Johnson, I. Lignos, V. Patel, and D. Paulusma. On the diameter of reconfiguration graphs for vertex colourings. *Electronic Notes in Discrete Mathematics*, 38:161–166, 2011.
2. P. Bonsma. Shortest path reconfiguration is PSPACE-hard. [arXiv:1009.3217v1], 2010.
3. P. Bonsma and L. Cereceda. Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. *Theoret. Comput. Sci.*, 410(50):5215–5226, 2009.
4. L. Cereceda, J. van den Heuvel, and M. Johnson. Connectedness of the graph of vertex-colourings. *Discrete Appl. Math.*, 308(5–6):913–919, 2008.
5. L. Cereceda, J. van den Heuvel, and M. Johnson. Mixing 3-colourings in bipartite graphs. *European J. Combin.*, 30(7):1593–1606, 2009.
6. L. Cereceda, J. van den Heuvel, and M. Johnson. Finding paths between 3-colorings. *J. Graph Theory*, 67(1):69–82, 2011.
7. M. Chudnovsky and P. Seymour. The structure of claw-free graphs. In *Surveys in combinatorics 2005*, pages 153–171. Cambridge Univ. Press, 2005.
8. R. Diestel. *Graph theory*, volume 173 of *Graduate Texts in Mathematics*. Springer, Berlin, fourth edition, 2010.
9. C.E.J. Eggermont and G.J. Woeginger. Motion planning with pulley, rope, and baskets. In *STACS 2012*, volume 14 of LIPIcs, pages 374–383, 2012.
10. P. Gopalan, P.G. Kolaitis, E. Maneva, and C.H. Papadimitriou. The connectivity of boolean satisfiability: Computational and structural dichotomies. *SIAM J. Comput.*, 38(6), 2009.
11. R.A. Hearn and E.D. Demaine. PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. *Theoret. Comput. Sci.*, 343(1–2):72–96, 2005.
A Detailed proofs for Section 3

Lemma 1 If there is a recoloring sequence for G from α to β, then there is a rerouting sequence from P_{α} to P_{β} for G'.

Proof: It suffices to show that for any two adjacent colorings γ and δ in $C_k(G)$, there is a rerouting sequence from P_{γ} to P_{δ}, where P_{γ} and P_{δ} are the shortest st-paths in G' that are constructed using γ and δ as defined in Section 3. If this can be done for every consecutive pair in the recoloring sequence from α to β, then a rerouting sequence from P_{α} to P_{β} exists. So, let γ and δ be adjacent colorings in $C_k(G)$. Let v_i be the unique vertex in which they differ, and w.l.o.g. assume that $\gamma(v_i) = c_1$ and $\delta(v_i) = c_2$.

P_{γ} can be transformed into P_{δ} as follows. See Figure 3 at the very end of the appendix, which continues on the example of Figure 2. Let H^*_j denote the gadgets of the $v_i, \{c_1, c_2\}$-strand of G'.

First, for the layers $d = 1, \ldots, 5i - 3$, replace the vertex v of P_{γ} in layer L_d by the unique vertex of H_j^* (in the same layer) that has the same color as v. This is possible by making the changes in increasing layer order. Similarly, for the layers $d = 5n, 5n - 1, \ldots, 5i - 1$, replace the vertex v in layer L_d by the vertex of H_j^* with the same color as v. This is possible by making the changes in decreasing layer order. This gives the path shown in Figure 3 (b). Note that these changes are possible if and only if P_{γ} does not use vertices of color c_1 or c_2 from gadgets H_j with $v_iv_j \in E(G)$. The latter property is ensured by the construction of P_{γ} and P_{δ}, since both γ and δ are colorings of G, so all neighbors v_j of v_i have $\gamma(v_j) = \delta(v_j) \notin \{c_1, c_2\}$.
Now we can change the middle vertex of \(H \) that is used in the path: replace the middle vertex of color \(c_1 \) with the one of color \(c_2 \), see Figure 3 (c). Next, we can move the entire path from the \(v_i, \{c_1, c_2\} \)-strand back to the main strand, similar to before (but in reverse order). See Figure 3 (d).

This yields a rerouting sequence from \(P_\gamma \) to \(P_\delta \). Since we can do this for every recoloring step in the recoloring sequence (there is a strand for every \(v_i \) and every \(\{c_1, c_2\} \)), this concludes the proof.

Fig. 3. Paths from a rerouting sequence from \(P_\alpha \) to \(P_\beta \).

Lemma 2 If there is a rerouting sequence from \(P_\alpha \) to \(P_\beta \) for \(G' \), then there is a recoloring sequence in \(G \) from \(\alpha \) to \(\beta \).
Proof: First we define how any shortest st-path \(P \) in \(G' \) is mapped to a color assignment of \(G \): \(v_i \) receives the same color as the vertex of \(P \) in layer \(L_{5i-2} \); this is the layer that contains the middle vertices of \(H_i \). Note that this defines a color assignment for \(G \), but that this is not necessarily a (proper) coloring.

In a rerouting sequence from \(P_\alpha \) to \(P_\beta \), consider a step where the sequence moves from a path \(P \) that corresponds to a color assignment \(\gamma \), to a path \(P' \) that corresponds to a different color assignment \(\delta \). We will prove that if \(\gamma \) is a coloring of \(G \), then \(\delta \) is a coloring of \(G \) as well. (So then \(\gamma \) and \(\delta \) are adjacent vertices in \(C_k(G) \), since a rerouting step changes at most one color.) Say \(\gamma \) and \(\delta \) differ in \(v_i \), where \(\gamma(v_i) = c_1 \) and \(\delta(v_i) = c_2 \).

First we observe that the path \(P \) contains the \(l \) and \(r \) vertices of the \(v_i, \{c_1, c_2\}\)-strand: \(l \) is the only vertex in layer \(L_{5i-3} \) that is adjacent to both a vertex of color \(c_1 \) in \(L_{5i-2} \) and a vertex of color \(c_2 \) in \(L_{5i-2} \). Similarly, \(r \) is the only such vertex in layer \(L_{5i-1} \).

Therefore, all vertices of \(P \) except the one in layer \(L_{5i-2} \) are part of the \(v_i, \{c_1, c_2\}\)-strand. Indeed, the only neighbor of \(l \) in layer \(L_{5i-4} \) is part of this strand (this is \(s'_l \)), and the only neighbor of \(s'_l \) in layer \(L_{5i-5} \) is part of this strand (this is \(t'_{l-1} \)), all neighbors of \(t'_{l-1} \) in layer \(L_{5i-6} \) are part of this strand, etc. Similarly, starting from \(r \) we can argue that the vertices of \(P \) in layers \(5i, 5i+1 \), etc. are part of this strand.

Since we now have that all internal vertices of \(P \) lie in the \(v_i, \{c_1, c_2\}\)-strand, we conclude that for all for neighbors \(v_j \) of \(v_i, \gamma(v_j) \in \{1, 2, 3, 4\}\}. This follows from the construction of the \(v_i, \{c_1, c_2\}\)-strand (recall that for neighbors \(v_j \) of \(v_i, H_i^j \) contains no vertices of color \(c_1 \) or \(c_2 \)).

So if the coloring \(\gamma \) is modified by changing the color of \(v_i \) from \(\gamma(v_i) = c_1 \) to \(\delta(v_i) = c_2 \), then again a coloring of \(G \) is obtained, which is \(\delta \).

We conclude that all paths in the rerouting sequence correspond to colorings, since we started with one that corresponded to a coloring, namely \(P_\alpha \).

\(\square \)

B Proof details for Theorem 4

Proposition 17 provides the missing step in the proof of Theorem 4 as given in the main text. For completeness, subsequently we give the full proof of Theorem 4 again.

Proposition 17 Let \(C = v_0, v_1, \ldots, v_k \) be a cycle in a chordal graph \(G \), of length \(k \geq 4 \). Let \(v_iv_{i+1} \) and \(v_jv_{j+1} \) be edges of \(C \) that share no end vertices, with \(i < j \). Then \(v_iv_j \) or \(v_{i+1}v_{j+1} \) is a chord of \(C \).

Proof: Consider a shortest cycle \(C' \) that contains both of the edges \(e = v_iv_{i+1} \) and \(f = v_jv_{j+1} \), such that \(v_{i+1} \) follows \(v_i \) and \(v_{j+1} \) follows \(v_j \) in the vertex sequence. (Considering \(C \), we know that such a cycle \(C' \) exists.) Since \(e \) and \(f \) share no end vertices, \(C' \) has length at least 4. Because \(G \) is chordal, \(C' \) has a chord \(g \). If this chord \(g \) is not equal to \(v_iv_j \) or \(v_{i+1}v_{j+1} \), then it can be seen that \(g \) can be combined with a part of \(C' \) to find a shorter cycle that contains both \(e \) and \(f \).

16
and f, where v_{i+1} follows v_i and v_{i+1} follows v_j. But that contradicts the choice of C', so g must be one of the aforementioned chords.

Theorem 4 Let G be a chordal graph, and let P and Q be two shortest st-paths in G, of length d. Then a rerouting sequence from P to Q exists, of length at most $|V(P)\setminus V(Q)| \leq d - 1$.

Proof: We prove the statement by induction over $c = |V(P)\setminus V(Q)|$. If $c = 0$ then $P = Q$, so the statement is trivial. So now assume that $c \geq 1$; P and Q differ in at least one vertex. Let $P = u_0, u_1, \ldots, u_d$, and $Q = v_0, v_1, \ldots, v_d$. Let i be the lowest index such that $u_i \neq v_i$ (such an i exists since $c \geq 1$). Let j be the lowest index with $j > i$ such that $u_j = v_j$ (since $u_d = t = v_d$, such a j exists). If $j = i + 1$, then both u_i and v_i are adjacent to both u_{i-1} and u_{i+1}, so to P we can apply the rerouting step $u_i \to v_i$, to obtain a new shortest st-path P' in G that has one more vertex in common with Q. So by induction, the distance from P' to Q in SP(G, s, t) is at most $c - 1$. Then the distance from P to Q is at most c. This proves the statement in the case $j = i + 1$, so now assume that $j \geq i + 2$.

Note that then $C = u_{i-1}, u_i, \ldots, u_{j-1}, u_j, v_j, \ldots, v_i, v_{i-1}$ is a cycle in G, of length at least 6. By applying Proposition 17 to C and the edges u_iu_{i+1} and $v_{i+1}v_i$, we may conclude that G contains an edge e with $e = u_iv_{i+1}$ or $e = u_{i+1}v_i$. If $e = u_{i+1}v_i$, then both u_i and v_i are adjacent to both u_{i-1} and u_{i+1}, so to P we may apply the rerouting step $u_i \to v_i$, to obtain a new shortest st-path P' that has at least one more vertex in common with Q. Then the proof can be concluded the same as before. In the remaining case, $e = u_iv_{i+1}$. Then both u_i and v_i are adjacent to both v_{i-1} and v_{i+1}. So we can obtain a shortest st-path Q' from Q by changing the vertex v_i to u_i. Then by induction, the distance from P to Q' is at most $c - 1$, so the distance from P to Q is at most c.

This covers all cases and concludes the induction step, so we may conclude that the distance from P to Q is at most c.

C Proofs omitted from Section 5

Lemma 9 Let G be a claw-free graph, with shortest st-path P. In polynomial time, we can construct an induced claw-free subgraph G' such that

(i) G' is st-reduced, and

(ii) a shortest st-path Q of G is reachable from P in SP(G, s, t) if and only if $V(Q) \subseteq V(G')$, and Q is reachable from P in SP(G', s, t).

Proof: Let d denote the length of P. If we know that a given vertex v is not part of any shortest st-path that can be reached from P in SP(G, s, t), then it is easily seen that deleting v is safe, i.e. G' satisfies Property 11 from the lemma statement.

To obtain G' from G we delete the following vertices. First, we delete every vertex that does not lie on a shortest st-path, which clearly is safe. Secondly,
for every $i \in \{1, \ldots, d - 1\}$, we delete the vertices that do not lie in the same component of H_i as the L_i-vertex of P. By Proposition 6 this is safe. Finally, for every $i \in \{2, \ldots, d - 2\}$, we delete every vertex in L_i that is not adjacent to the L_i-vertex of P. By Proposition 7 this is safe. Call the resulting graph G'. Clearly, G' is an st-reduced graph. Since we only deleted vertices, G' is an induced subgraph of G, and therefore again claw-free. \hfill \Box

For proving Lemma 11 in detail, we require the following two properties of st-reduced graphs.

Proposition 18 Let G be a claw-free, st-reduced graph, with distance d from s to t. For $i \in \{1, \ldots, d - 1\}$, let x_0, \ldots, x_i be a shortest path in H_i. Then for all $j \in \{1, \ldots, \ell - 1\}$ and $k \in \{0, \ldots, \ell\}$, it holds that $N^-(x_j) \subseteq N^-(x_k)$.

Proof: Suppose to the contrary that there exists a vertex $y \in N^-(x_j) \setminus N^-(x_k)$, for some $j \in \{1, \ldots, \ell - 1\}$ and $k \in \{0, \ldots, \ell\}$. W.l.o.g. we may assume that $k > j$. Let a_0, \ldots, a_{k-1} be vertices in L_{i+1} such that for all $p \in \{0, \ldots, k - 1\}$, \{x_p, x_{p+1}\} $\subseteq N^-(a_p)$. By definition of H_i, such vertices exist.

We now claim that there exists an x_j-claw, with leaves y, a_{j-1}, x_k. These three vertices are all adjacent to x_j (x_k is adjacent since G is st-reduced so L_i is a clique). Clearly, $y \in L_{i-1}$ and $a_{j-1} \in L_{i+1}$ are not adjacent. By choice of y, it is not adjacent to x_k. If $x_k \in N^-(a_{j-1})$, then a shorter path from x_0 to x_k in H_i would exist, namely $x_0, \ldots, x_{j-1}, x_k, \ldots, x_\ell$, a contradiction. Hence this is indeed an induced claw, and thus from this contradiction we may conclude that for all j, k as stated, $N^-(x_j) \subseteq N^-(x_k)$.

Proposition 19 Let G be a claw-free and st-reduced graph. If $u, v \in L_i$ have distinct maximal in-neighborhoods, then $N^+(u) = N^+(v)$. If $u, v \in L_i$ have distinct maximal out-neighborhoods, then $N^-(u) = N^-(v)$.

Proof: Suppose $u, v \in L_i$ have distinct maximal in-neighborhoods, and that there exists $x \notin N^+(u) \setminus N^+(v)$. Then we may choose $y \in N^-(u) \setminus N^-(v)$. This gives a u-claw with leaves x, y, v. Note that $uv \in E(G)$ since G is st-reduced. The other cases are analog. \hfill \Box

Now we can prove Lemma 11 in detail.

Lemma 11 Let G be a claw-free, st-reduced graph, with distance d between s and t. Let $P = u_0, \ldots, u_d$ be a shortest st-path. Let $i \in \{1, \ldots, d - 1\}$ such that u_{i-1} has maximal out-neighborhood and u_{i+1} has maximal in-neighborhood. Then for every $w \in N^+(u_{i-1})$, using at most $2|L_i|$ rerouting steps, P can be modified to a shortest st-path $P' = v_0, \ldots, v_d$ with $v_i = w$, and $v_j = u_j$ for all $j \in \{0, \ldots, d\}\setminus\{i, i+1\}$.

Proof: If $i = d - 1$, the proof is trivial: $u_{i+1} = t$, which is adjacent to every vertex in L_{d-1}. Therefore, we may simply apply the single rerouting step $u_i \rightarrow v$, to obtain the desired shortest st-path P'. So now assume that $1 \leq i \leq d - 2$. \hfill 18
Consider a shortest path x_0, \ldots, x_k in \mathcal{H}_i from u_i to w, so $x_0 = u_i$ and $x_k = w$. For $j \in \{1, \ldots, k\}$, let $a_j \in L_{i+1}$ be a vertex with maximal in-neighborhood such that $\{x_{j-1}, x_j\} \in N^{-}(a_j)$. (Such a vertex exists by the definition of the hypergraph \mathcal{H}_i.) Choose $a_1 = u_{i+1}$ if u_{i+1} satisfies this condition. In addition, let $a_0 = u_{i+1}$.

The plan is to use this path to reroute P to P'. In particular, the rerouting sequence that we construct below uses the rerouting steps $x_0 \rightarrow x_1 \rightarrow \ldots \rightarrow x_k$ in layer L_i. But it may be necessary to make changes in layers L_{i-1} and L_{i+1} as well.

Firstly, a rerouting step in L_{i-1} is required if there exists a j with $u_{i-1}x_j \not\in E(G)$. In this case, let $y \in L_{i-1}$ be an in-neighbor of x_j with maximal out-neighborhood. (Note that x_j has at least one in-neighbor y that has maximal out-neighborhood.) We claim that $u_{i-2}y \in E(G)$: this follows since u_{i-1} has maximal out-neighborhood as well, so $N^{-}(u_{i-1}) = N^{-}(y)$ (Proposition 12).

Secondly, Proposition 18 shows that for every ℓ, $y x_\ell \in E(G)$. On the other hand, if u_{i-1} is actually adjacent to every x_j, in particular if $i = 1$, then for the remainder of the proof we simply choose $y = u_{i-1}$. The rerouting sequence from P to P' is given by the following series of modifications (below we prove that these are all actual rerouting steps):

\begin{align*}
(1) & \quad \text{in } L_{i-1}: u_{i-1} \rightarrow y \quad \text{(Skip if } y = u_{i-1}.\text{)} \\
(2) & \quad \text{in } L_{i+1}: a_0 \rightarrow a_1 \quad \text{(Recall that } a_0 = u_{i+1}. \text{ Skip if } a_0 = a_1.\text{)} \\
(3) & \quad \text{in } L_i: x_0 \rightarrow x_1 \quad \text{(Recall that } x_0 = u_i.\text{)} \\
(4) & \quad \text{in } L_{i+1}: a_1 \rightarrow a_2 \\
(5) & \quad \text{in } L_i: x_1 \rightarrow x_2 \\
& \quad \vdots \\
(2k) & \quad \text{in } L_{i+1}: a_{k-1} \rightarrow a_k \\
(2k + 1) & \quad \text{in } L_i: x_{k-1} \rightarrow x_k \quad \text{(Recall that } x_k = w.\text{)} \\
(2k + 2) & \quad \text{in } L_{i-1}: y \rightarrow u_{i-1} \quad \text{(Skip if } y = u_{i-1}.\text{)}
\end{align*}

Let Q_0, \ldots, Q_m be the vertex sequences that result from these changes, starting with with $Q_0 = P$. We first verify that for every $\ell \in \{0, \ldots, m\}$, Q_ℓ is a shortest st-path. In other words, we show that for every ℓ, the ℓth change $p \rightarrow q$ above is a rerouting step; we verify that the vertices of $Q_{\ell-1}$ in the previous and next layer are both also adjacent to q.

As observed above, if $i \geq 2$, then y is adjacent to u_{i-2}, so in every Q_ℓ the L_{i-2}-vertex and L_{i-1}-vertex are adjacent. Furthermore, y is adjacent to every x_j, so it is adjacent to the L_i-vertex of every Q_ℓ. This shows that for every Q_ℓ, the L_{i-1}-vertex and the L_i-vertex are adjacent.

Now we show that L_i-vertex and L_{i+1}-vertex are adjacent in every Q_ℓ. If a rerouting step $x_j \rightarrow x_{j+1}$ is made in layer L_i, then at that point, the vertex in layer L_{i+1} is a_{j+1}, which by definition is adjacent to both x_j and x_{j+1}. Similarly, if a rerouting step $a_j \rightarrow a_{j+1}$ is made in layer L_{i+1}, then at that point the L_i-vertex is x_j, which is adjacent to both.

Finally, we show that the L_{i+1}-vertex and L_{i+2}-vertex are adjacent in every Q_ℓ. We first argue that whenever a rerouting step $a_j \rightarrow a_{j+1}$ is applied, a_j and
\(a_{j+1}\) have distinct maximal in-neighborhoods. For \(j \geq 1\), this follows from the fact that \(x_0, \ldots, x_k\) is a shortest path in \(H_i\), so there is no in-neighborhood that contains both \(x_{j-1}\) and \(x_{j+1}\). For \(a_0\) and \(a_1\) it follows from the choice of \(a_1\): recall that \(a_0 = u_{i+1}\), which we assumed to have a maximal in-neighborhood. So if \(x_1 \notin N^- (a_0)\), then \(a_0\) and \(a_1\) again have distinct maximal in-neighborhoods.

If \(x_1 \in N^- (a_0)\), then we have chosen \(a_1 = a_0\), and in fact no rerouting step is made. Hence we may now conclude that Proposition 19 can be applied for every rerouting step \(a_j \rightarrow a_{j+1}\), which shows that \(N^+(a_j) = N^+(a_{j+1})\) for every \(j\). Therefore, \(u_{i+2}\) is an out-neighbor of every \(a_j\).

This concludes the proof that every \(Q_t\) is a shortest \(st\)-path, so \(Q_0, \ldots, Q_m\) is a rerouting sequence, which results in the path \(Q_m = u_0, \ldots, u_{i-1}, w, a_k, u_{i+2}, \ldots, u_d\), which is of the form we required for \(P'\). Finally, note that this rerouting sequence used at most \(2k+2\) rerouting steps. Since \(k \leq |L_i| - 1\), this proves the statement.

\[\square\]

It remains to prove Theorem 14. The proof is similar to the proof of Theorem 13.

Theorem 14 Let \(G\) be a claw-free graph on \(n\) vertices. In polynomial time it can be decided whether \(SP(G, s, t)\) is connected.

Proof: In polynomial time we can first delete all vertices of \(G\) that do not lie on a shortest \(st\)-path, to obtain \(G'\). Clearly, \(SP(G, s, t) = SP(G', s, t)\), and \(G'\) is again claw-free. Choose an arbitrary shortest \(st\)-path \(P\). Using \(G'\) and \(P\), Lemma 9 can be applied to obtain an \(st\)-reduced subgraph \(G''\) of \(G'\) in polynomial time. If \(G'' = G'\) then Theorem 12 shows that \(SP(G'', s, t) = SP(G', s, t)\) is connected. Otherwise, there exists at least one vertex \(v \in V(G') \setminus V(G'')\), and we may conclude that \(SP(G', s, t)\) is not connected: \(G'\) has a shortest \(st\)-path \(Q'\) with \(v \in V(Q')\), which is not part of \(G''\), but all shortest \(st\)-paths that are reachable from \(P\) are part of \(G''\) (Lemma 9).

\[\square\]