Identification of new sources of resistance to resistance-breaking isolates of tomato spotted wilt virus

Aylin Kabas a, Hakan Fidan b, M. Batuhan Demirel c

a Akdeniz University, Manavgat Vocational School, Antalya, Turkey
b Akdeniz University, Faculty of Agriculture, Department of Plant Protection, Antalya, Turkey
c Antalya Agriculture Production Consultancy and Marketing Company, Antalya, Turkey

Abstract

The tomato as both a fresh consumption and industrial product is one of the most profitable vegetables and has a large cultivation area in the world. Parallel to intense production activities, Tomato Spotted Wilt Virus (TSWV), like viral diseases, results in significant economic losses every year. Use of resistant cultivars is the most efficient and environmental-friendly method of fighting against these diseases. This study was conducted to develop new tomato genetic resources resistant to TSWV because of the Sw-5 resistance breaking (RB) isolates that were determined in tomato cultivation areas. In this study, a total of 40 tomato materials including 15 lines, 9 commercial varieties and 16 wild genotypes were tested with molecular and biological testing methods. Mechanical inoculation method was used for biological testing and SCAR marker was used in molecular analysis. S. penellii, S. chmielewskii, S. habrochaites, S. peruvianum and S. sitiens, LA0716, LA1028, LA1777, LA2744 and LA4110 genotypes were found as resistant against breaking isolates of Tomato Spotted Wilt Virus. These genotypes may be a good resistance source for the future breeding studies in tomato.

© 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The tomato (Solanum lycopersicum L.) belongs to the Solanaceae family and has 2n = 24 chromosomes (Peralta et al., 2006). The tomato originated from Peru, Equator, Galapagos Islands and mountainous sections of Chili (Chetelat et al., 2009). There are about 200 diseases which include viruses, bacteria, nematodes and fungi in the tomato (Agrios, 1988; Jones et al., 1991). Among the viruses, Tomato Spotted Wilt Virus (TSWV) was first encountered in 1906 and designated as “spotted wilt of tomato” by Brittlebank in 1919 (Stevens et al., 1992). Tomato Spotted Wilt Virus (TSWV) is placed in the second position among the top 10 virus diseases (Scholthof et al., 2011). TSWV is known to cause an average loss of yield of 1 billion dollars each year and is one of the most intensively studied plant viruses due to the future economic importance of TSWV. TSWV is large geographically widespread over the tomato cultivated lands and a large series of hosts, thus resulting in serious economic losses (German et al., 1992; Krishna Kumar et al., 1993; Mumford et al., 1996). The disease may result in 60–100% yield loss (Roselló et al., 1996). Infected tomatoes exhibit diverse symptoms such as empurpling in veins over the surface of lower leaves and rarely purple spots in between the veins. Normally, in a short period after infection, small yellowish necrotic spots are common over the surfaces of upper leaves. Then, spots get a characteristic bronze color (Roselló et al., 1996). Frankliniella occidentalis and Thrips tabaci are the most effective vectors in the spread of TSWV, and they are common in field and greenhouse tomatoes (Coutts and Jones, 2005). TSWV is also transmitted by the seeds (Le, 1970; Ming, 1993). The chemical control of TSWV is difficult due to its transmissibility by thrips species, which is a large host. The development and use of resistant cultivars are one of the best alternatives in controlling TSWV due to its positive impacts on environment and human health (Zitter and Daughtrey, 1989). The resistant varieties against some isolates of TSWV were found in Solanum esculentum and S. pimpinellifolium (Finlay, 1953; Maluf et al., 1991; Roselló et al., 1997). Resistance was also reported in S. hirsutum, S. chilense and S. peruvianum (Roselló et al., 1998; Canady et al., 2001; Stevens et al., 1992). However, S. peruvianum was found to have broad resistance to all TSWV isolates.
(Paterson et al., 1989; Maluf et al., 1991; Kumar and Irlapappan, 1992; Stevens et al., 1994). It was reported that the resistance in *S. peruvianum* is controlled by a single dominant gene *Sw-5* which is more stable and less isolate specific (Stevens et al., 1992, Stevens et al., 1995). Therefore, this resistance source has been widely used in tomato breeding programs (de Oliveira et al., 2018). The *Sw-5* has been genetically mapped between the markers CT71 and CT220 on chromosome 9 (Stevens et al., 1995). In addition, Spassova et al. (2001) found that the *Sw-5* gene has five alleles along the chromosome 9, named *Sw5-a* to *Sw5-e*, and among them, *Sw5-b* is the functional allele for conferring resistance to TSWV. Molecular markers such as RFLP, RAPD, CAPs and SCAR are linked to *Sw-5* locus (Stevens et al., 1995; Chagué et al., 1996, Smiech et al., 2000; Langella et al., 2004; Dianese et al., 2010). The presence of *Sw-5* gene in tomato plants confers resistance to TSWV by a hypersensitive defense response that causes local lesions on the leaf, preventing the spread of the virus from the infection site through the plant (Aramburu et al., 2000). In addition, some isolates like TSWV6 from Spain and Italy have been reported to overcome the resistance provided by *Tsw* gene (Saidi and Warade, 2008). Aramburu and Marti (2003) reported that five isolates broke the *Sw-5* resistance in north-east Spain. It was reported that the *Sw-5* resistance breaking (RB) isolates were determined in tomato cultivation areas in Antalya province (Fidan and Sari, 2019a,b). As a result of the efforts to obtain a new resistance sources, *Sw-7* gene was determined which was conferred by a single dominant gene not linked to *Sw-5* and *S. chilense* was used as a source of this resistance gene (Stevens et al., 2007). It is important to identify different resistance sources against the TSWV virus (Saidi and Warade, 2008).

The aim of the present study was to determine the reactions of different wild tomato genotypes and lines against TSWV with molecular and biological tests to find new resistance sources.

2. Material and methods

2.1. Material

Forty tomato genotypes consisting of 15 pure lines, 9 commercial hybrids and 16 wild genotypes were used as plant material. The experiment was conducted at the Akdeniz University Faculty of Agriculture (36° 53’ 58.7544” and 30° 39’ 4.7556”) (Table 1).

Table 1

Genotype	Species	Origin	Genotype	Species	Origin
4	*S. lycopersicum*	BATEM	Torry F1	*S. lycopersicum*	SYGENTA SEED
6	*S. lycopersicum*	BATEM	Verty F1	*S. lycopersicum*	MULTI SEED
38	*S. lycopersicum*	BATEM	LA0116	*S. lycopersicum*	TGRC
70	*S. lycopersicum*	BATEM	LA0121	*S. pimpinellifolium*	TGRC
15	*S. lycopersicum*	BATEM	LA0247	*S. neorickii*	TGRC
228 2/1	*S. lycopersicum*	BATEM	LA0369	*S. pimpinellifolium*	TGRC
A218	*S. lycopersicum*	BATEM	LA0716	*S. penellii*	TGRC
9	*S. lycopersicum*	BATEM	LA1028	*S. chmielewskii*	TGRC
34	*S. lycopersicum*	BATEM	LA1777	*S. habrochatae*	TGRC
50	*S. lycopersicum*	BATEM	LA1959	*S. chilense*	TGRC
141	*S. lycopersicum*	BATEM	LA1969	*S. chilense*	TGRC
191	*S. lycopersicum*	BATEM	LA2157	*S. arcuam*	TGRC
207/1	*S. lycopersicum*	BATEM	LA2623	*S. lycopersicum*	TGRC
229 1/2	*S. lycopersicum*	BATEM	LA2744	*S. pimpinellifolium*	TGRC
Yeliz F1	*S. pimpinellifolium*	MONSANTO SEED	LA2931	*S. chilense*	TGRC
7870 F1	*S. pimpinellifolium*	PROTO SEED	LA3667	*S. lycopersicum*	TGRC
Tayfun F1	*S. lycopersicum*	ANTALYA SEED	LA4110	*S. sittens*	TGRC
Vitellio F1	*S. lycopersicum*	SYGENTA SEED			
Bigmek F1	*S. lycopersicum*	MARS SEED			
Ipeke F1	*S. lycopersicum*	BATEM			
Landolina F1	*S. lycopersicum*	SYGENTA SEED			

Batem = Bati Akdeniz Agricultural Research Institute, Tgrc = Tomato Genetics Resources Center, Monsanto, Proto, Antalya Seed, Sygenta, Mars Seed = Private Sector.
2.2.3. Molecular marker and PCR Amplifications

DNA was extracted from fresh leaves using a modified CTAB extraction protocol (Doyle and Doyle, 1990). Extraction buffer, which consisted of 1.4 M of NaCl, 20 mM of EDTA, 100 mM of Tris-HCL (pH 8), 2% CTAB, and 0.2% of beta-mercapto ethanol, was added in 0.6 mL of 0.2 g of fresh tomato tissue. The suspension was mixed with vortex and incubated at 60 °C for an hour. Next, chloroform–isooamyl alcohol (24:1) extraction was added to the solution, which was mixed with vortex for 10 s and centrifuged at 10000 rpm for 3 min. The supernatant was transferred to a fresh tube, and cold isopropanol (− 20 °C) was added inside the micro tubes. The pellet formed after centrifugation at 13,100 g for 10 min was washed twice with 0.75 mL of 76% ethanol and 10 mM of ammonium acetate, and then re-suspended in sterile distilled water. The solution was incubated at 37 °C for 1 h and, afterwards stored at − 20 °C until use.

Sw5-2 primer in Table 2 was used for identification of Sw-5 gene expressing resistance to TSWV (Dianese et al., 2010). Amplifications were performed in thermal cycler in a 10 µL final volume, containing 1 µL genomic DNA, 1X reaction buffer, 0.6 mM of MgCl₂, 0.7 mM of each dNTP, 0.5 µM of each primer and 0.1 µL of Taq DNA polymerase. For the marker of Sw-5, after initial denaturation for 2 min at 94°C, the PCR profile was as follows: 28 cycles of 30 s at 94°C, 1 min 50°Cs, 30 s 72°C and a final extension of 5 min at 72°C. PCR products were separated on a 1.5% agarose gel (Sigma, St. Louis, MO) and, visualized with ethidium bromide under UV light. In this study, the genotypes were identified as homozygote and heterozygote-resistant or susceptible according to their locus (Table 2).

3. Results

3.1. Biological testing results

Mechanical inoculation technique is a simple and quick method to screen a number of tomato genotypes simultaneously (Roselló et al., 1997). Symptoms were initially identified as small black spots over the upper leaves, then general dwarfing and dry out in plants. Plants were scored based on the presence or absence of the symptoms (Oguz, 2010). The results of mechanically tested tomato genotypes by TSWV mechanically was given in Table 3. Symptoms include numerous small brownish ringspots (see photo 1 Fig. 1b and c), that may be so prevalent that the leaves exhibit a bronzed appearance, purpling and upward rolling of leaves and stunting of leaves and plants. According to biological testing, 15 genotypes resistant and 25 genotypes susceptible genotypes were determined. The first detectable TSWV symptoms were observed in Ipelke F1 plants which were used as susceptible controls in experiment.

3.2. Molecular testing results

The Sw5-2 marker was used in screening for Sw-5 gene. Molecular marker results are given in Table 3. According to molecular selection, tomato genotypes were evaluated susceptible, homozygote resistance and heterozygote resistance 10, 23 and 7 respectively. Heterozygote resistant genotypes were yielded bands at 464–575 bp and 510–575 bp, susceptible genotypes and homozygote resistant genotypes were yielded bands at 464 bp and 575 bp respectively (Fig. 2).

4. Discussion

The Sw-5 gene was conferred as dominant resistance to Tomato Spotted Wilt Virus and originated from S. peruvianum (Stevens et al., 1995). Environmental conditions such as high soil temperature is one of the most important factors in disturbing the resistance of the gene because foe example Mi gene loses its effectiveness at soil temperatures above 28 °C (Hu et al., 2015). De Ronde et al. (2019) describes a new class of temperature-sensitive resistance-breaking TSWV isolates that can be break up to 28 °C. Disease symptom development on leaves were determined at five days after inoculation (Fig. 1). As a result of molecular analyses on leaf samples that didn't show disease symptoms, the presence of infection was confirmed (Fidan and Sari, 2019a,b).

Present findings of molecular markers were similar with the results of Dianese et al. (2010). Three bands with different sizes were obtained in the PCR reaction. The first group (Stevens', 'Viradoro' and 'Santa Clara R' cultivars) was S. peruvianum 'PI 128660', and the genotypes bearing Sw-5 resistance gene homozygous yielded bands only at 575 bp. The second group ('Nemonetta' and 'Ohio 8245' sensitive genotypes) yielded bands at 510 bp. The third group ('IPA-5' isogenic line and 'Santa Clara S' cultivar and 6 selfed lines obtained from commercial cultivars) yielded bands at 464 bp. Researchers indicated the marker they used as co-dominant.

Although 14 tomato genotypes had Sw-5 gene, seven tomato lines (15, 9, 31, 50, 141, 191, 229 1/2) and seven wild genotypes (LAI0369, LA1930, LA1959, LA1969, LA2157, LA2931 and LA3667) showed disease symptoms in the experiment (Table 3). Although Sw-5 reported as stable resistance against TSWV (Gullino et al., 2020) and this gene is deployed in commercial cultivars worldwide (Pappu et al., 2009), hypersensitive reactions were observed in studies even if this gene was present (Aramburu et al., 2000). When the plants are infected with disease, necrotic local lesions may appear on inoculated leaves even on plants carrying Sw-5 gene (John et al., 2000).

In addition, some studies have reported that high aggressivity and virulence isolates overcame the resistance conferred by Sw-5 gene. Therefore, it is necessary to continue searching for new sources of resistance (Roselló et al., 1997). However, plants carrying Sw-5 gene indicate that a small percentage of plants can be infected (Roselló et al., 2001). Sw-5 resistance-breaking (SRB) isolates have been detected in Australia, Italy, Spain, California and Turkey (Latham and Jones, 1998; Aramburu and Martí, 2003; Ciuffo et al., 2005; Batuman et al., 2017; Deligoz et al., 2014). Fidan and Sari (2019a,b) identified the cause of the resistance-breaking genetic mutations on the virus genome, and a new resistance source is needed to protect the tomato from new RB strains. Our results confirm the Sw-5 resistance-breaking isolates of TSWV.

It was determined that the symptoms on some varieties were evaluated very late and the plants didn't show any symptoms until the fruit stage (Mandal et al., 2017).

Table 2

Gene	Primer Sequence	Homozygote resistant (bp)	Heterozygote-resistance (bp)	Susceptible (bp)	Literature
Sw-5	F: AAT TAG CTT CTT GAA GCC CAT CT	575	464–575, 510–575	464, 510, 464–510	Dianese et al., 2010
In studies to find different genetic resources, Sw-7, which is a single dominant gene, has been identified as a resistance gene source identified from S. chilense (Stevens et al., 1994). This wild genotype is suitable for use as a resistance source against TSWV in field conditions (Canady et al., 2001). It has also been determined that Sw-7 is not associated with Sw-5. (Stevens et al., 2007).

Table 3

Genotype	Species	Biological Test	Molecular Test	Elisa Test	
4	S. lycopersicum	S	S	+	
6	S. lycopersicum	S	S	+	
38	S. lycopersicum	S	S	+	
70	S. lycopersicum	S	S	+	
15	S. lycopersicum	S	R	–	
228/21	S. lycopersicum	R	R	–	
A218	S. lycopersicum	S	S	+	
9	S. lycopersicum	S	R	–	
31	S. lycopersicum	S	R	–	
34	S. lycopersicum	R	R	–	
50	S. lycopersicum	S	R	–	
141	S. lycopersicum	S	R	–	
191	S. lycopersicum	S	R	–	
207/1	S. lycopersicum	R	R	–	
229 1/2	S. lycopersicum	S	R	–	
Yelz F1	S. lycopersicum	R	HR	–	
7870 F1	S. lycopersicum	R	HR	–	
Tayfun F1	S. lycopersicum	R	HR	–	
Vettio F1	S. lycopersicum	R	HR	–	
Bigmek F1	S. lycopersicum	R	HR	–	
Ipekele F1	S. lycopersicum	S	Susceptible Control	+	S
Landolina F1	S. lycopersicum	S	S	+	
Torry F1	S. lycopersicum	S	HR	–	
Verry F1	S. lycopersicum	S	S	+	
LA0121	S. pimpinellifolium	R	R	–	
LA0247	S. neorickii	R	R	–	
LA0369	S. pompelinifolium	S	R	–	
LA0716	S. penellii	R	R	–	
LA1028	S. chmielewski	R	R	–	
LA1777	S. habrochaites	R	HR	–	
LA1930	S. chilense	S	R	–	
LA1959	S. chilense	S	R	–	
LA1969	S. chilense	S	R	–	
LA2157	S. arcanum	S	R	–	
LA2623	S. lycopersicum	S	S	–	
LA2744	S. peruvianum	R	R	–	
LA2931	S. chilense	S	R	–	
LA3657	S. lycopersicum	S	R	–	
LA4110	S. sitiens	R	R	–	

Fig 1. Mechanical inoculation on plants and disease symptoms, (a) Mechanical inoculation, (b) (c) Disease symptoms development on leaves.

In studies to find different genetic resources, Sw-7, which is a single dominant gene, has been identified as a resistance gene source identified from S. chilense (Stevens et al., 1994). This wild genotype is suitable for use as a resistance source against TSWV in field conditions (Canady et al., 2001). It has also been determined that Sw-7 is not associated with Sw-5. (Stevens et al., 2007).

Padmanabhan et al. (2019) determined that the PR5 gene controls the strength and extensibility of the plant primary cell wall, and this gene restricts virus movement from cell to cell through induction of callose deposition in the cell wall, resulting in resistance to TSWV. As a result, virus particles do not cause the systemic infections.
According to the results, new resistance sources were determined against TSWV from the tomato germplasm which include *S. penellii*, *S. chmielewski*, *S. habrochaites*, *S. peruvianum* and *S. sitiens*. The genotypes LA0716, LA1028, LA1777, LA2744 and LA4110 respectively can be used as a resistance source in breeding studies.

5. Conclusion

Tomato Spotted Wilt Virus (TSWV) is one of the most destructive viruses in the world, and it is known to cause damage on cultivated plants such as pepper, tomato, eggplant and lettuce. Sw-5 gene refers to resistance of this disease, but activated plants such as pepper, tomato, eggplant and lettuce. It is known to cause damage on cultivate varieties in the world, and it is known to cause damage on cultivar strains of TSWV that break Tsw-based resistance in a temperature-dependent manner. Plant Pathol. 68 (1), 60–71.

References

Aramburu, J., Marti, M., 2003. The occurrence in north-east Spain of a variant of tomato spotted wilt virus (TSWV) that breaks resistance in tomato (*Lycopersicon esculentum*) containing the Sw-5 gene. Plant Pathol 52, 407.

Agrios, G.N., 1988. Plant Pathology. Academic Press Inc, New York, p. 803.

Batuman, O., Turini, T.A., Oliveira, P.V., Rojas, M.R., Macedo, M., Mellingier, H.C., Gilbertson, R.L., 2017. First report of a resistance-breaking strain of Tomato spotted wilt virus infecting tomatoes with the Sw-5 tospovirus-resistance gene in California. Plant Dis. 101 (4), 637 637.

Canady MA, Stevens MR, Barineau MS, Scott JW, 2001. Tomato spotted wilt virus (TSWV) resistance in tomato derived from Lycopersicon chilenense Dun. LA 1938. Euphytica 167 (1), 77–93.

Ciufla, M., Finetti-Sialer, M.M., Gallitelli, D., Turina, M., 2005. First report in Italy of a resistance-breaking strain of Tomato spotted wilt virus infecting tomato cultivars carrying the Sw-5 resistance gene. Plant Pathol. 54, 564.

Aramburu, J., Rodriguez, M., Arino, J., 2000. Effect of tomato spotted wilt tospovirus (TSWV) infection on the fruits of tomato (*Lycopersicon esculentum*) plants of cultivars carrying the sw-5 gene. J. Phytopathol. 148 (11–12), 569–574.

Canady MA, Stevens MR, Barineau MS, Scott JW, 2001. Tomato spotted wilt virus (TSWV) resistance in tomato derived from Lycopersicon chilenense Dun. LA 1938. Euphytica 167 (1), 19-25.

Chagüé, V., Mercier, J.C., Guénard, M., De Courcel, A., Vedel, F., 1996. Identification and mapping on chromosome 9 of RAPD markers linked to Sw-5 in tomato by bulked segregant analysis. Theor. Appl. Genet. 92 (8), 1045–1051.

Chetletat, R.T., Pertuzé, R.A., Faúndez, L., Graham, E.B., Jones, C.M., 2009. Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama Desert region of northern Chile. Euphytica 167 (1), 77–93.
Mandal, B., Gawande, S.J., Renukadevi, P., Holkar, S.K., Krishnareddy, M., Ravi, K.S., Jain, R.K., 2017. The occurrence, biology, serology and molecular biology of tospoviruses in Indian agriculture. In A Century of Plant Virology in India. Springer, Singapore, pp. 445–474.

Ming, G.I., 1993. Pollen and seed transmitted virusus and viroid. Ann. Rev. Pytopathol. 31, 375–382.

Mumford, R.A., Barker, J., Wood, K.R., 1996. The biology tospoviruses. Annuals Appl. Biol. 128, 59–83.

Oguz A, 2010. Bazı yerel domates genotiplerinde farklı yöntemler kullanarak, domates lekeli solgunluk virüsü (tomato spotted wilt virus= TSWV)’ne dayanıklılığını ve genetik varyasyonun artırılması (Phd thesis). (in turkish).

Padmanabhan, C., Ma, Q., Shekasteband, R., Stewart, K.S., Hutton, S.F., Scott, J.W., 2019. Comprehensive transcriptome analysis and functional characterization of PR-5 for its involvement in tomato Sw-7 resistance to tomato spotted wilt tospovirus. Sci. Rep. 9 (1), 1–17.

Pappu, H.R., Jones, R.A.C., Jain, R.K., 2009. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res. 141 (2), 219–236.

Paterno, R.G., Scott, S.J., Gergerich, R.C., 1989. Resistance in two Lycopersicon species to an Arkansas isolate of tomato spotted wilt virus. Euphytica 43 (1), 173–178.

Peralta, I.E., Spooner, D.M., Razdan, M.K., Mattoo, A.K., 2006. History, origin and early cultivation of tomato (Solanaceae). Genetic Improvement Solanaceous Crops 2, 1–27.

Roselló, S., Diéz, M.J., Nuez, F., 1996. Viral diseases causing the greatest economic losses to the tomato crop. I. The tomato spotted wilt virus- a review. Sci. Hortic. 67, 117–150.

Roselló, S., Diez, M.J., Lacasa, A., Jordá, C., Nuez, F., 1997. Testing resistance to TSWV introgressed from Lycopersicon peruvianum by artificial transmission techniques. Euphytica 98 (1–2), 93–98.

Roselló, S., Diez, M.J., Nuez, F., 1998. Genetics of tomato spotted wilt virus resistance coming from Lycopersicon peruvianum. Eur. J. Plant Pathol. 104 (5), 499–509.

Roselló, S., Ricarte, B., Diez, M.J., Nuez, F., 2001. Resistance to Tomato spotted wilt virus introgressed from Lycopersicon peruvianum in line UPV 1 may be allelic to Sw-5 and can be used to enhance the resistance of hybrids cultivars. Euphytica 119 (3), 357–367.

Saidi, M., Warade, S.D., 2008. Tomato breeding for resistance to Tomato spotted wilt virus (TSWV): an overview of conventional and molecular approaches. Czech J. Genet. Plant Breed. 44 (3), 83–92.

Scholthof, K.B.G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hemenway, C., 2011. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol 12 (9), 938–954.

Smeioch, M., Rusinowski, Z., Malepszy, S., Niemirowiczszczytt, K., 2000. New RAPD markers of tomato spotted wilt virus (TSWV) resistance in Lycopersicon esculentum Mill. Acta Physiologiae Plantarum 22, 299–303.

Spassova, M.I., Prins, T.W., Folkertima, R.T., Klein-Lankhorst, R.M., Hille, J., Goldbach, R.W., Prins, M., 2001. The tomato gene Sw-5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco. Mol. Breeding 7 (2), 151–161.

Stevens, M.R., Scott, J.J., Gergerich, R.C., 1992. Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum. Mol. Euphytica 59, 9–17.

Stevens, M.R., Scott, S.J., Gergerich, R.C., 1994. Evaluation of seven Lycopersicon species for resistance to tomato spotted wilt virus-Euphytica, 80, 79-84.

Stevens, M.R., Lamb, E.M., Rhoads, D.D., 1995. Mapping the Sw-5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor. Appl. Genet. 90 (3–4), 451–456.

Stevens, M.R., Price, D.L., Memmott, F.D., Scott, J.W., Olson, S.M., 2007. Identification of markers linked to Sw-7 a new Tomato spotted wilt virus resistance gene, derived from S. chilense. Tomato Breeders Roundtable.

Zitter, T.A., Daughtrey, M.L., 1989. A-vegetable Crops “Tomato Spotted Wilt Virus”. Cornell University Vegetable MD Online. Fact Sheet Page 735 (90).