Abstract

We prove the existence of N distinct pairs of nontrivial solutions for critical p-Laplacian problems in \mathbb{R}^N, as well as in bounded domains. To overcome the difficulties arising from the lack of compactness, we use a recent global compactness result of Mercuri and Willem.
1 Introduction

Consider the problem
\[-\Delta_p u = a(x) |u|^{p-2} u + |u|^{p^*-2} u, \quad u \in D^{1,p}(\mathbb{R}^N),\]
where $1 < p < N$, $p^* = Np/(N - p)$ is the critical Sobolev exponent, and $a \in L^{N/p}(\mathbb{R}^N)$ satisfies
\[\inf_{u \in D^{1,p}(\mathbb{R}^N), |\nabla u| = 1} \int_{\mathbb{R}^N} (|\nabla u|^p - a(x) |u|^p) \, dx > 0\]
and
\[\text{ess inf}_{x \in B_\delta(x_0)} a(x) > 0\]
for some open ball $B_\delta(x_0) \subset \mathbb{R}^N$. Here $|\cdot|_q$ denotes the norm in $L^q(\mathbb{R}^N)$. Let
\[S = \inf_{u \in D^{1,p}(\mathbb{R}^N) \setminus \{0\}} \frac{\int_{\mathbb{R}^N} |\nabla u|^p \, dx}{\left(\int_{\mathbb{R}^N} |u|^{p^*} \, dx \right)^{p/p^*}}\]
be the best constant in the Sobolev inequality. We prove the following multiplicity result.

Theorem 1.1. Assume that $N \geq p^2$, and (1.2) and (1.3) hold. If
\[|a^+|_{N/p} < \left(1 - 2^{-p/N} \right) S,\]
where a^+ is the positive part of a defined by $a^+(x) = \max \{a(x), 0\}$, then problem (1.1) has at least N pairs of nontrivial solutions.

Sufficient conditions for the existence of a positive solution of problem (1.1) when $p \geq 2$ and $a(x) \leq 0$ for all $x \in \mathbb{R}^N$ were given by Alves [1]. Related multiplicity results for the subcritical scalar field equation in \mathbb{R}^N can be found in Clapp and Weth [5] and Perera [12].

We prove the multiplicity result in Theorem 1.1 in bounded domains also (see Theorem 3.1). In particular, we have the following corollary for the problem
\[-\Delta_p u = \lambda |u|^{p-2} u + |u|^{p^*-2} u, \quad u \in W^{1,p}_0(\Omega),\]
where Ω is a smooth bounded domain in \mathbb{R}^N and $1 < p < N$.

2
Corollary 1.2. If $N \geq p^2$ and

$$0 < \lambda < (1 - 2^{-p/N}) S |\Omega|^{-p/N},$$

where $|\Omega|$ is the Lebesgue measure of Ω, then problem (1.6) has at least N pairs of nontrivial solutions.

See Devillanova and Solimini [8] for the semilinear case $p = 2$. For $N > p^2 + p$, Cao et al. [4] have recently shown that problem (1.6) has infinitely many solutions for all $\lambda > 0$ (see also Wu and Huang [17] and Perera et al. [13]). The multiplicity result in Corollary 1.2 is new when $p \neq 2$ and $p^2 \leq N \leq p^2 + p$.

From a technical point of view, we first use a recent global compactness result of Mercuri and Wilen [11] to prove that suitable Palais-Smale sequences of the energy functional associated with problem (1.1) are weakly compact; see Lemma 2.2. Estimates of critical levels arising from Krasnoselskii’s genus are then provided; see Lemmas 2.3–2.6. In both cases, the so called Talenti’s functions [15] play a basic role.

2 Proof of Theorem 1.1

Weak solutions of problem (1.1) coincide with critical points of the C^1-functional

$$\Phi(u) = \int_{\mathbb{R}^N} \left[\frac{1}{p} (|\nabla u|^p - a(x) |u|^p) - \frac{1}{p^*} |u|^{p^*} \right] dx, \quad u \in D^{1,p}(\mathbb{R}^N)$$

restricted to the Nehari manifold

$$\mathcal{M} = \left\{ u \in D^{1,p}(\mathbb{R}^N) \setminus \{0\} : \int_{\mathbb{R}^N} (|\nabla u|^p - a(x) |u|^p) dx = \int_{\mathbb{R}^N} |u|^{p^*} dx \right\}.$$

We note that \mathcal{M} is bounded away from the origin in $D^{1,p}(\mathbb{R}^N)$ in view of (1.2) and the continuity of the Sobolev imbedding $D^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p^*}(\mathbb{R}^N)$.

Recall that for $c \in \mathbb{R}$, $(u_j) \subset \mathcal{M}$ is a $(PS)_c$ sequence for Φ (resp. $\Phi|_{\mathcal{M}}$) if $\Phi'(u_j) \rightarrow 0$ (resp. $\Phi'|_{\mathcal{M}}(u_j) \rightarrow 0$) and $\Phi(u_j) \rightarrow c$.

Lemma 2.1. If $(u_j) \subset \mathcal{M}$ is a $(PS)_c$ sequence for $\Phi|_{\mathcal{M}}$, then (u_j) is also a $(PS)_c$ sequence for Φ.

Proof. Since $u_j \in \mathcal{M}$,

$$\Phi(u_j) = \frac{1}{N} \int_{\mathbb{R}^N} (|\nabla u_j|^p - a(x) |u_j|^p) dx,$$
and since \((\Phi(u_j))\) is bounded and \(1.2\) holds, this implies that \((u_j)\) is bounded in \(D^{1,p}(\mathbb{R}^N)\). Since \(\Phi|_\mathcal{M}(u_j) \to 0\), for some sequence of Lagrange multipliers \((\mu_j) \subset \mathbb{R}\),

\[
\int_{\mathbb{R}^N} \left(|\nabla u_j|^{p-2} \nabla u_j \cdot \nabla v - a(x) |u_j|^{p-2} u_j v - |u_j|^{p^*_0-2} u_j v \right) dx \\
- \mu_j \int_{\mathbb{R}^N} \left[p \left(|\nabla u_j|^{p-2} \nabla u_j \cdot \nabla v - a(x) |u_j|^{p-2} u_j v \right) - p^* |u_j|^{p^*_0-2} u_j v \right] dx \\
= o(\|v\|) \quad \forall v \in D^{1,p}(\mathbb{R}^N) \quad (2.1)
\]

Taking \(v = u_j\) and using the fact that \((u_j)\) is a bounded sequence in \(\mathcal{M}\) shows that

\[
\mu_j \int_{\mathbb{R}^N} \left(|\nabla u_j|^p - a(x) |u_j|^p \right) dx \to 0.
\]

Since \(1.2\) holds and \(\mathcal{M}\) is bounded away from the origin, this implies that \(\mu_j \to 0\), so \(\Phi'(u_j) \to 0\) by \(2.1\).

In the absence of a compact Sobolev imbedding, we will use the following compactness type property of \((\mathcal{S})_c\) sequences for \(\Phi|_\mathcal{M}\).

Lemma 2.2. If

\[
\frac{1}{N} S^{N/p} < c < \frac{2}{N} S^{N/p},
\]

then every \((\mathcal{S})_c\) sequence for \(\Phi|_\mathcal{M}\) has a subsequence that converges weakly to a (nontrivial) solution \(v_0\) of problem \((1.1)\) with \(\Phi(v_0) = c\) or \(\Phi(v_0) = c - \frac{1}{N} S^{N/p}\).

Proof. Assume \(2.2\) and let \((u_j) \subset \mathcal{M}\) be a \((\mathcal{S})_c\) sequence for \(\Phi|_\mathcal{M}\). Then \((u_j)\) is also a \((\mathcal{S})_c\) sequence for \(\Phi\) by Lemma 2.1, and by a recent global compactness result of Mercuri and Willem [11, Theorem 5.2] (see also Benci and Cerami [4] and Alves [2]), a renamed subsequence converges weakly to a solution \(v_0 \in D^{1,p}(\mathbb{R}^N)\) of problem \((1.1)\) and there exist nontrivial solutions \(v_1, \ldots, v_k \in D^{1,p}(\mathbb{R}^N), k \geq 0\), of \(-\Delta_p u = |u|^{p^*_0-2} u\) such that

\[
\Phi(v_0) + \sum_{i=1}^k \Phi_\infty(v_i) = c, \quad (2.3)
\]
where
\[
\Phi_\infty(u) = \int_{\mathbb{R}^N} \left(\frac{1}{p} |\nabla u|^p - \frac{1}{p^*} |u|^{p^*} \right) \, dx, \quad u \in D^{1,p}(\mathbb{R}^N).
\]

If \(k = 0 \), then \(\Phi(v_0) = c \) by (2.3) and we are done, so suppose \(k \geq 1 \). We have
\[
\Phi(v_0) = \frac{1}{N} \int_{\mathbb{R}^N} |v_0|^{p^*} \, dx \geq 0, \quad \Phi_\infty(v_i) = \frac{1}{N} \int_{\mathbb{R}^N} |v_i|^{p^*} \, dx > 0, \quad i = 1, \ldots, k.
\]

(2.4)

For \(i = 1, \ldots, k \), if \(v_i \) is sign-changing, then \(\Phi_\infty(v_i) = \frac{2}{N} S^{N/p} \) (see, e.g., Mercuri et al. [10, Lemma 2.1]), so \(|v_i| > 0 \) by (2.2)–(2.4) and the strong maximum principle. Hence
\[
\Phi_\infty(v_i) = \frac{1}{N} S^{N/p}, \quad k = 1, \ldots, k
\]
by Sciunzi [14, Theorem 1.1] (see also Caffarelli et al. [3], Damascelli et al. [6], and Vétois [16]), and then it follows from (2.2)–(2.4) again that \(k = 1 \) and \(\Phi(v_0) = c - \frac{1}{N} S^{N/p} \).

Let \(\mathcal{A} \) denote the class of all nonempty compact symmetric subsets of \(\mathcal{M} \), let
\[
\gamma(A) = \inf \{ k \geq 1 : \exists \text{ an odd continuous map } A \to \mathbb{R}^k \setminus \{0\} \}
\]
be the Krasnoselskii genus of \(A \in \mathcal{A} \), let
\[
\mathcal{A}_k = \{ A \in \mathcal{A} : \gamma(A) \geq k + 1 \},
\]
and set
\[
c_k := \inf_{A \in \mathcal{A}_k} \max_{u \in A} \Phi(u), \quad k = 0, \ldots, N.
\]

We have
\[
c_0 = \inf_{u \in \mathcal{M}} \Phi(u)
\]
and
\[
c_0 \leq c_1 \leq \cdots \leq c_N,
\]
and we will show that \(\frac{1}{N} S^{N/p} < c_1 \) and \(c_N < \frac{2}{N} S^{N/p} \) in order to apply Lemma 2.2.
Lemma 2.3. Every $A \in A_1$ contains a point u_0 such that $u^\pm_0 \in M$, and hence $c_1 \geq 2c_0$.

Proof. Let $A \in A_1$ and set $\alpha(u) = \int_{\mathbb{R}^N} (|\nabla u|^p - a(x)|u|^p - |u|^{p^*}) \, dx$. Then A contains a point u_0 with $\alpha(u^+_0) = \alpha(u^-_0)$, for otherwise

$$A \to \mathbb{R} \setminus \{0\}, \quad u \mapsto \frac{\alpha(u^+) - \alpha(u^-)}{[\alpha(u^+) - \alpha(u^-)]}$$

is an odd continuous map and hence $\gamma(A) \leq 1$. We also have $\alpha(u^+_0) + \alpha(u^-_0) = \alpha(u_0) = 0$ since $u_0 \in M$, so this implies that $\alpha(u^+_0) = 0$ and hence $u^+_0 \in M$. Then

$$\max_{u \in A} \Phi(u) \geq \Phi(u_0) = \Phi(u^+_0) + \Phi(u^-_0) \geq 2c_0$$

by (2.5), so the second assertion follows.

We have the following lower bound for c_0.

Lemma 2.4. If $|a^+_N| < S$, then

$$c_0 \geq \frac{1}{N} (S - |a^+_N|)^{N/p}.$$

Proof. For all $u \in M$,

$$S \left(\int_{\mathbb{R}^N} |u|^{p^*} \, dx \right)^{p/p^*} \leq \int_{\mathbb{R}^N} |\nabla u|^p \, dx = \int_{\mathbb{R}^N} (a(x)|u|^p + |u|^{p^*}) \, dx \leq \int_{\mathbb{R}^N} (a^+(x)|u|^p + |u|^{p^*}) \, dx \leq |a^+_N| (\int_{\mathbb{R}^N} |u|^{p^*} \, dx)^{p/p^*} + \int_{\mathbb{R}^N} |u|^{p^*} \, dx$$

by (1.4) and the Hölder inequality, so

$$\int_{\mathbb{R}^N} |u|^{p^*} \, dx \geq (S - |a^+_N|^{N/p})^{N/p}.$$

Since

$$\Phi(u) = \frac{1}{N} \int_{\mathbb{R}^N} |u|^{p^*} \, dx,$$

the assertion follows. \qed
Lemma 2.5. $c_1 > \frac{1}{N} S^{N/p}$

Proof. By Lemmas 2.3 and 2.4, and (1.5),
$$c_1 \geq \frac{2}{N} (S - |a^+|_{N/p})^{N/p} > \frac{1}{N} S^{N/p}.$$

Lemma 2.6. $c_N < \frac{2}{N} S^{N/p}$

Proof. The infimum in (1.4) is attained by the family of functions
$$u_\varepsilon(x) = \frac{C_{N,p} \varepsilon^{-(N-p)/p}}{1 + \left(\frac{|x|}{\varepsilon}\right)^{p/(p-1)}}^{(N-p)/p}, \quad \varepsilon > 0,$$
where $C_{N,p} > 0$ is chosen so that
$$\int_{\mathbb{R}^N} |\nabla u_\varepsilon|^p dx = \int_{\mathbb{R}^N} u_\varepsilon^{p^*} dx = S^{N/p}.$$

Take a smooth function $\eta : [0, \infty) \to [0, 1]$ such that $\eta(s) = 1$ for $s \leq 1/4$ and $\eta(s) = 0$ for $s \geq 1/2$, and set
$$\bar{u}_\varepsilon(x) = \eta(|x|) u_\varepsilon(x), \quad \varepsilon > 0.$$

We have the well-known estimates
$$\int_{\mathbb{R}^N} |\nabla \bar{u}_\varepsilon|^p dx \leq S^{N/p} + C\varepsilon^{(N-p)/(p-1)}, \quad (2.6)$$
$$\int_{\mathbb{R}^N} \bar{u}_\varepsilon^{p^*} dx \geq S^{N/p} - C\varepsilon^{N/(p-1)}, \quad (2.7)$$
$$\int_{\mathbb{R}^N} \bar{u}_\varepsilon^p dx \geq \begin{cases} \varepsilon^p & \text{if } N > p^2 \\ \frac{C}{\varepsilon^p} & \text{if } N = p^2, \end{cases} \quad (2.8)$$
where $C = C(N, p) > 0$ is a constant (see, e.g., Degiovanni and Lancelotti [7]).
After a translation and a dilation, we may assume that $x_0 = 0$ and $\delta = 1$ in (1.3), so we have
\[
\lambda := \text{ess inf}_{x \in B_1(0)} a(x) > 0. \quad (2.9)
\]

Let S^{N-1} be the unit sphere in \mathbb{R}^N, let
\[
S^N_+ = \{ x = (x'\sqrt{1 - t^2}, t) : x' \in S^{N-1}, t \in [0,1] \}
\]
be the upper hemisphere in R^{N+1}, and consider the map $\varphi : S^N_+ \rightarrow \mathcal{M}$ defined by
\[
\varphi(x) = \pi (\tilde{u}_\varepsilon (\cdot - (1 - (2t - 1)_+ x'/2) - (1 - 2t)_+ \tilde{u}_\varepsilon (\cdot + x'/2)),
\]
where
\[
\pi : \mathcal{D}^{1,p}(\mathbb{R}^N) \setminus \{0\} \rightarrow \mathcal{M}, \quad u \mapsto \left[\frac{\int_{\mathbb{R}^N} (|\nabla u|^p - a(x)|u|^p) \, dx}{\int_{\mathbb{R}^N} |u|^{p^*} \, dx} \right]^{N/p/p^*} u
\]
is the radial projection onto \mathcal{M}. Clearly, φ is continuous. Since
\[
\Phi(\pi(u)) = \frac{1}{N} \left[\frac{\int_{\mathbb{R}^N} (|\nabla u|^p - a(x)|u|^p) \, dx}{\left(\int_{\mathbb{R}^N} |u|^{p^*} \, dx \right)^{p/p^*}} \right]^{N/p}, \quad u \in \mathcal{D}^{1,p}(\mathbb{R}^N) \setminus \{0\},
\]
and $\tilde{u}_\varepsilon (\cdot - (1 - (2t - 1)_+ x'/2)$ and $\tilde{u}_\varepsilon (\cdot + x'/2)$ have disjoint supports in $B_1(0)$, where $a \geq \lambda$ a.e. by (2.3),
\[
\Phi(\varphi(x)) \leq \frac{1}{N} \left[\frac{(1 + (1 - 2t)_+^p) \int_{\mathbb{R}^N} (|\nabla \tilde{u}_\varepsilon|^p - \lambda \tilde{u}_\varepsilon^p) \, dx}{\left(1 + (1 - 2t)_+^{p^*} \right)^{p/p^*} \left(\int_{\mathbb{R}^N} \tilde{u}_\varepsilon^{p^*} \, dx \right)^{p/p^*}} \right]^{N/p} \quad \forall x \in S^N_+.
\]
The right-hand side is nonincreasing in t, and (2.6)–(2.8) give
\[
\int_{\mathbb{R}^N} \left(|\nabla \tilde{u}_\varepsilon|^p - \lambda \tilde{u}_\varepsilon^p \right) \, dx \left(\int_{\mathbb{R}^N} \tilde{u}_\varepsilon^{p^*} \, dx \right)^{p/p^*} \leq \begin{cases} S - \frac{\lambda \varepsilon^p}{C} + C_\varepsilon^{(N-p)/(p-1)} & \text{if } N > p^2 \\ S - \frac{\lambda \varepsilon^p}{C} |\log \varepsilon| + C_\varepsilon^p & \text{if } N = p^2, \end{cases}
\]
8
so

$$\max_{x \in S_N^\perp} \Phi(\varphi(x)) < \frac{2}{N} S^{N/p}$$

if ε is sufficiently small. Since φ is odd on S^{N-1}, it can now be extended to an odd continuous map $\tilde{\varphi} : S^N \to M$ satisfying

$$\max_{u \in \tilde{\varphi}(S^N)} \Phi(u) < \frac{2}{N} S^{N/p}. $$

Then

$$\gamma(\tilde{\varphi}(S^N)) \geq \gamma(S^N) = N + 1$$

and the assertion follows. □

The next lemma is due to Devillanova and Solimini \[8\] when $p = 2$.

Lemma 2.7. If $c_k = c_{k+1}$ for some $k \in \{1, \ldots, N - 1\}$, then Φ has infinitely many critical points at the level c_k or $c_k - \frac{1}{N} S^{N/p}$.

Proof. Suppose Φ has only finitely many critical points v_1, \ldots, v_m at the levels c_k and $c_k - \frac{1}{N} S^{N/p}$, and let $\{w_1, \ldots, w_n\}$ be a basis for their span. We have

$$v_i = \sum_{j=1}^{n} a_{ij} w_j, \quad i = 1, \ldots, m$$

for some $a_{ij} \in \mathbb{R}$. Take $(b_1, \ldots, b_n) \in \mathbb{R}^n$ such that

$$\sum_{j=1}^{n} a_{ij} b_j \neq 0, \quad i = 1, \ldots, m,$$

and let l be a bounded linear functional on $D^{1,p}(\mathbb{R}^N)$ such that $l(w_j) = b_j, j = 1, \ldots, n$. Then

$$l(v_i) = \sum_{j=1}^{n} a_{ij} l(w_j) = \sum_{j=1}^{n} a_{ij} b_j \neq 0, \quad i = 1, \ldots, m. \quad (2.10)$$

Now take a sequence $(A_j) \subset A_{k+1}$ such that $\max \Phi(A_j) \to c_{k+1}$, and let

$$\tilde{A}_j = \{ u \in A_j : l(u) = 0 \}.$$
By the monotonicity of the genus,

\[k + 2 \leq \gamma(A_j) \leq \gamma(\tilde{A}_j) + \gamma(A_j \setminus \tilde{A}_j), \]

and \(\gamma(A_j \setminus \tilde{A}_j) \leq 1 \) since \(l|_{A_j \setminus \tilde{A}_j} \) is an odd continuous mapping into \(\mathbb{R} \setminus \{0\} \), so \(\gamma(\tilde{A}_j) \geq k + 1 \) and hence \(\tilde{A}_j \in \mathcal{A}_k \). Then

\[c_k \leq \max_{u \in \tilde{A}_j} \Phi(u) \leq \max_{u \in A_j} \Phi(u) \to c_{k+1} = c_k, \]

so \(\max \Phi(\tilde{A}_j) \to c_k \). By Ghoussoub [9, Theorem 1], then \(\Phi|_{\mathcal{M}} \) has a \((PS)_{c_k}\) sequence \((u_j)\) such that

\[\text{dist} (u_j, \tilde{A}_j) \to 0. \quad (2.11) \]

Since \(\frac{1}{N} S^{N/p} < c_k < \frac{2}{N} S^{N/p} \) by Lemmas 2.3 and 2.6, then a renamed subsequence converges weakly to some \(v_i \) by Lemma 2.2. Then (2.11) implies that \(l(u_j) \to 0 \) and hence \(l(v_i) = 0 \), contradicting (2.10).

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemmas 2.3 and 2.6,

\[\frac{1}{N} S^{N/p} < c_1 \leq \cdots \leq c_N < \frac{2}{N} S^{N/p}, \]

and hence \(c_k \) or \(c_k - \frac{1}{N} S^{N/p} \) is a critical level of \(\Phi \) for \(k = 1, \ldots, N \) by Lemma 2.2. If \(c_k = c_{k+1} \) for some \(k \in \{1, \ldots, N-1\} \), then \(\Phi \) has infinitely many critical points by Lemma 2.7 and we are done, so suppose that this is not the case. Then

\[c_1 - \frac{1}{N} S^{N/p} < \cdots < c_N - \frac{1}{N} S^{N/p} < c_1 < \cdots < c_N \]

and at least \(N \) of these levels are critical for \(\Phi \).

\[\square \]

3 Bounded domains

Consider the problem

\[-\Delta_p u = a(x) |u|^{p-2} u + |u|^{p^*-2} u, \quad u \in W^{1,p}_0(\Omega), \]

(3.1)
where Ω is a smooth bounded domain in \mathbb{R}^N, $1 < p < N$, $a \in L^{N/p}(\Omega)$ satisfies
\begin{equation}
\inf_{u \in W^{1,p}_0(\Omega), |\nabla u|_p = 1} \int_{\Omega} (|\nabla u|^p - a(x)|u|^p) \, dx > 0 \tag{3.2}
\end{equation}
and
\begin{equation}
\operatorname{ess inf}_{x \in B_\delta(x_0)} a(x) > 0 \tag{3.3}
\end{equation}
for some open ball $B_\delta(x_0) \subset \Omega$, and $|\cdot|_q$ denotes the norm in $L^q(\Omega)$.

Theorem 3.1. Assume that $N \geq p^2$, and (3.2) and (3.3) hold. If
\begin{equation}
|a^+|_{N/p} < (1 - 2^{-p/N})^S,
\end{equation}
then problem (3.1) has at least N pairs of nontrivial solutions.

Proof. We argue as in the proof of Theorem 1.1. Lemma 2.2 is now proved using the variant global compactness result in Proposition 3.2 below, which readily follows by arguing as in Mercuri and Willem [11] (see also Mercuri et al. [10, Remark 2.1]). The rest of the proof is unchanged. \hfill \Box

Proposition 3.2. Let $(u_j) \subset W^{1,p}_0(\Omega)$ be a (PS)$_c$ sequence for the functional
\begin{equation}
\Phi(u) = \int_{\Omega} \left[\frac{1}{p} (|\nabla u|^p - a(x)|u|^p) - \frac{1}{p^*} |u|^{p^*} \right] \, dx, \quad u \in W^{1,p}_0(\Omega).
\end{equation}
Then a renamed subsequence converges weakly to a (possibly trivial) solution $v_0 \in W^{1,p}_0(\Omega)$ of problem (3.1), and there exist nontrivial solutions $v_1, \ldots, v_k \in \mathcal{D}^{1,p}(\mathbb{R}^N)$ or (up to a rotation and a translation) $\mathcal{D}^{1,p}_0(\mathbb{R}^N)$, $k \geq 0$, of $-\Delta_p u = |u|^{p^* - 2} u$ and sequences $(y^i_j) \subset \Omega$, $(\lambda^i_j) \subset \mathbb{R}^+$, $i = 1, \ldots, k$ such that $\operatorname{dist}(y^i_j, \partial\Omega)/\lambda^i_j \to \infty$ in the case of \mathbb{R}^N and $\operatorname{dist}(y^i_j, \partial\Omega)/\lambda^i_j$ is bounded in the case of \mathbb{R}^N,
\begin{align*}
&\left\| u_j - v_0 - \sum_{i=1}^k (\lambda^i_j)^{-\frac{(N-p)}{p}} v_i((\cdot - y^i_j)/\lambda^i_j) \right\| \to 0, \\
&\|u_j\|^p \to \sum_{i=0}^k \|v_i\|^p, \\
&\Phi(v_0) + \sum_{i=1}^k \Phi_\infty(v_i) = c,
\end{align*}
where Φ_∞ is defined on $\mathcal{D}^{1,p}(\mathbb{R}^N)$ and $\mathcal{D}^{1,p}_0(\mathbb{R}^N)$ as in the proof of Lemma 2.2.
Finally, to see that Corollary 1.2 in the introduction follows from Theorem 3.1, we note that for all $u \in W^{1,p}_0(\Omega)$ with $|\nabla u|^p = 1$,

$$
\int_{\Omega} \left(|\nabla u|^p - \lambda |u|^p \right) \, dx \geq 1 - \lambda \left(\int_{\Omega} |u|^{p^*} \, dx \right)^{p/p^*} |\Omega|^{p/N} \geq 1 - \lambda S^{-1} |\Omega|^{p/N} > 2^{-p/N}
$$

by the Hölder inequality, (1.4), and (1.7).

Acknowledgements

The authors have been partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

[1] Claudianor O. Alves. Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian. Nonlinear Anal., 51(7):1187–1206, 2002.

[2] Vieri Benci and Giovanna Cerami. Existence of positive solutions of the equation $-\Delta u + a(x)u = u^{(N+2)/(N-2)}$ in \mathbb{R}^N. J. Funct. Anal., 88(1):90–117, 1990.

[3] Luis A. Caffarelli, Basileis Gidas, and Joel Spruck. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math., 42(3):271–297, 1989.

[4] Daomin Cao, Shuangjie Peng, and Shusen Yan. Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth. J. Funct. Anal., 262(6):2861–2902, 2012.

[5] Mónica Clapp and Tobias Weth. Multiple solutions of nonlinear scalar field equations. Comm. Partial Differential Equations, 29(9-10):1533–1554, 2004.

[6] Lucio Damascelli, Susana Merchán, Luigi Montoro, and Berardino Sciunzi. Radial symmetry and applications for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in \mathbb{R}^N. Adv. Math., 265:313–335, 2014.
[7] Marco Degiovanni and Sergio Lancelotti. Linking solutions for p-Laplace equations with nonlinearity at critical growth. *J. Funct. Anal.*, 256(11):3643–3659, 2009.

[8] Giuseppe Devillanova and Sergio Solimini. A multiplicity result for elliptic equations at critical growth in low dimension. *Commun. Contemp. Math.*, 5(2):171–177, 2003.

[9] Nassif Ghoussoub. Location, multiplicity and Morse indices of min-max critical points. *J. Reine Angew. Math.*, 417:27–76, 1991.

[10] Carlo Mercuri, Berardino Sciunzi, and Marco Squassina. On Coron’s problem for the p-Laplacian. *J. Math. Anal. Appl.*, 421(1):362–369, 2015.

[11] Carlo Mercuri and Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. *Discrete Contin. Dyn. Syst.*, 28(2):469–493, 2010.

[12] Kanishka Perera. A multiplicity result for the scalar field equation. *Adv. Nonlinear Anal.*, 3(suppl. 1):s47–s54, 2014.

[13] Kanishka Perera, Marco Squassina, and Yang Yang. Bifurcation and multiplicity results for critical p-Laplacian problems. *Topol. Methods Nonlinear Anal.*, 47(1):187–194, 2016.

[14] Berardino Sciunzi. Classification of positive $D^{1,p}(\mathbb{R}^n)$-solutions to the critical p-Laplace equation in \mathbb{R}^n. preprint. arXiv:1506.03653 [math.AP].

[15] Giorgio Talenti. Best constant in Sobolev inequality. *Ann. Mat. Pura Appl.*, 110(4):353–372, 1976.

[16] Jérôme Vétois. A priori estimates and application to the symmetry of solutions for critical p-Laplace equations. *J. Differential Equations*, 260(1):149–161, 2016.

[17] Yuanze Wu and Yisheng Huang. Infinitely many sign-changing solutions for p-Laplacian equation involving the critical Sobolev exponent. *Bound. Value Probl.*, pages 2013:149, 10, 2013.