Results of studies of wheat bread for lead content using the additive method

A B Abuova¹, M B Rebezov²,³,⁴, L G Mukhamedyarova⁵, S S Shakirova⁵, A K Khaimuldinova⁶ and F R Yermakhanova⁶

¹Zhangir khan West Kazakhstan agrarian - Technical university, 51 Zhangir khan St., Uralsk, 090000, Republic of Kazakhstan
²V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow, 109316, Russian Federation
³Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow, 119991, Russian Federation
⁴K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation
⁵South-Ural State Agrarian University, 13 Gagarin st., Troitsk, Chelyabinsk region, 454700, Russian Federation
⁶Shakarim State University of Semey, 20a Glinka St., Semey, 071400, Republic of Kazakhstan

E-mail: tschepelevnikolai@yandex.ru

Abstract. The relevance of the problem under consideration is due to the need for hardware to cover a wide range in the determination of heavy metals in food. One of the primary and important tasks remains to ensure control of the quantitative content of lead, the introduction and application of fast and reliable methods of their research. The analysis of the data obtained shows that all the results on the study of wheat bread for the content of lead, obtained by stripping voltammetry and atomic absorption spectrometry for the assessment of precision and operational control of the error using the method of additions are satisfactory. The obtained monitoring results indicate that in the range of less than 0.01 mg of lead per 1 kg of wheat bread prevail (75.6%) over other ranges. The least registered sample results are (2.2%) with the range of data: 0.1-1.0 mg/kg.

1. Introduction

In the foreign and domestic literature, the issue of the effect of nutrition on human health has been widely studied [1-4], information on contaminants, their types and effects on the body as a whole, routes of intake of toxicants and preventive measures to reduce the level of food contamination with toxic substances is presented in detail, as well as technological methods for reducing the residual amounts of contaminants in food products [5-9]. Ensuring testing of food products and food raw materials at the highest level of compliance with modern international quality standards is a component that determines the competitiveness of testing laboratory centers [10-16]. The development of effective algorithms for optimizing the laboratory equipment base, as well as the search for a solution that will allow laboratories to provide reliable test results at minimal cost as soon as possible, is an important and urgent task [17-
The primary and important task remains to ensure the control of the quantitative content of toxic elements, the introduction and application of fast and reliable methods of their analysis [19-23]. Implementation of quality management systems is of great importance [24, 25]. This paper considers such a toxic element as lead, which is mandatory for control in food products, in accordance with the requirements of the Technical Regulations of the Customs Union 021/2011 (hereinafter referred to as TR CU 021) "On food safety" (figure 1). 

![Figure 1. Permissible levels of lead in flour, cereals and bakery products according to the requirements of technical regulations, mg/kg, not more.](image)

Lead belongs to the highest hazard group toxicants.

**2. Material and methods**

The development and approbation in the laboratory of modified test methods of the conformity confirmation method is an important and urgent task. The urgency of the problem under consideration is due to the expansion of supplies of products from other countries with a very diverse range of approved drugs. It seems important to ensure the necessary control of contaminants in food, to use sufficiently fast and reliable methods for their analysis. Conducting comparative tests with these methods in order to ensure the control of lead in food products, analyzing the accuracy, precision, repeatability of the results obtained makes it possible to judge the effectiveness of the application of these methods, and also allows a comparative analysis of the results obtained. An analysis was carried out in order to optimize the methods used and to develop the most economical and efficient option for optimizing the equipment used in the laboratory while maintaining the metrological characteristics of the accuracy of the results obtained.

The methodological basis is the standards for research methods, test methods, operating manuals and instructions for the use of equipment.

The object of research is samples of wheat bread.

Equipment for research of lead content in food raw materials and food products is shown in figure 2.
Analytical lines of elements for atomic absorption spectrometry are shown in table 1.

**Table 1.** Analytical lines of elements for atomic absorption spectrometry (determination of lead).

| Analytical line wavelengths, nm | Relative ratio weakening of sensitivity |
|--------------------------------|----------------------------------------|
| 217.0                          | 1.0                                    |
| 283.30                         | 2.0                                    |
| 261.41                         | 36                                     |
| 202.20                         | 50                                     |
| 205.32                         | 340                                    |

Table 2 shows the distinctive features of voltammetric methods of analysis using the analyzer "TA-4".

**Table 2.** Range of determined lead content on the analyzer "TA-4".

| Determined content range, mg/kg | Indicator electrode                              |
|--------------------------------|--------------------------------------------------|
| from 0.01 to 6.0 inclusive      | Mercury film on a silver backing                 |
| from 0.01 to 6.0 inclusive      | Silver modified                                  |
| from 0.005 to 5.0 inclusive     | Gold-carbon                                      |

During the research, the standard deviation of the intralaboratory repeatability $S_r$ and intermediate precision $S_R$ of atomic absorption analysis and stripping voltammetry were assessed.

The characteristic of a standard sample of the composition of a solution of lead ions is shown in figure 3.

**Figure 3.** Characterization of a standard sample of the composition of a solution of lead ions.

The main document of the research procedure is the test facility quality manual.
The control by the method of additions during the implementation of various methods in this work was carried out according to the approved research scheme.

During the operational control of the analysis procedure using the control procedure to control the error using the additive method, the control means were working samples of a stable composition and the same samples with a known lead addition.

Under the conditions of in-laboratory precision, samples were analyzed with and without added lead.

The purpose of the study is the development and testing in the laboratory of modified test methods of the conformity confirmation methodology. To achieve the goal, the following tasks were set:

- implement a program of comparative tests, which allows to evaluate and compare the accuracy of the results obtained with the existing laboratory equipment;
- evaluate the accuracy of the test results.

The initial and, for most analytical schemes, the inevitable stage of sample preparation for the determination of components remains long, multi-operational, makes a significant contribution to the overall analysis error and prevents the implementation of the capabilities of instrumental methods.

3. Results and discussion

Atomic absorption spectrometry is widely used in the determination of heavy metals (toxic elements) in various branches of science and industry. The most common classification of xenobiotics is the following, representing the greatest danger in terms of prevalence and toxicity:

1) metabolites of microorganisms (aflatoxins, patulin, staphilococcal toxins, botulinum toxin, mycotoxins);
2) toxic elements (lead, cadmium, arsenic, mercury, copper, zinc, tin, iron);
3) substances used in animal husbandry (amino acids, minerals, enzymes, antibiotics (chloramphenicol), tranquilizers, antibacterial substances, antioxidants, flavors, dyes, hormones and hormone-like compounds);
4) pesticides (HCCH, DDT, organomercury compounds and hexochlorobenzene; herbicides used to control weeds, zoocides to control rodents, insecticides to control harmful insects);
5) nitrates, nitrites, nitrosamines;
6) dioxins and dioxin-like compounds (polychlorinated dibenzodioxins (more than 75 isolated), a group of polychlorinated dibenzoazurans (more than 135 isolated) and polychlorinated biphenyls (more than 80 PCBs isolated));
7) polycyclic aromatic hydrocarbons;
8) radionuclides (strontium-90, rubidium-87, cesium-137, etc.);
9) food additives (sweeteners, flavorings, colors, antioxidants, stabilizers, etc.).

Figure 4. Advantages of stripping voltammetry.

In the conditions of market relations at any enterprise, including testing laboratories, the relevance of quality management is determined by its focus on ensuring such a level of quality of services that can
fully satisfy all consumer needs. The high quality of the services provided is the most significant component that determines the competitiveness of test centers.

The advantages of the voltammetric test method are shown in figure 4. The advantages of atomic absorption spectrometry are shown in figure 5.

3.1. Control of intermediate precision

Under the conditions of repeatability and intermediate precision, five average measurement results were obtained for a wheat bread sample.

The critical range factor \( f(n) \) for the five results is 3.9. The repeatability standard deviation \( S_r \) is presented in table 3.

For the Kvant-2AT spectrometer:

\[
(CR_{0.95}(5), \%) = f(5) \times S_r (Pb) = 3.9 \times 18 = 70.2 \%
\]

For the analyzer "TA-4":

\[
(CR_{0.95}(5), \%) = f(5) \times S_r (Pb) = 3.9 \times 13 = 50.7 \%
\]

Table 3. Results of studies of wheat bread for lead content (standardized level of permissible concentration 0.5 mg/kg).

| №  | TA-4 | Kvant-2AT | TA-4 | Kvant-2AT | TA-4 | Kvant-2AT |
|----|------|-----------|------|-----------|------|-----------|
|    | C_D = 0.03 | sample preparation stage | C_D = 0.03 | measurement stage |
| 1  | 0.011 | 0.011 | 0.037 | 0.036 | 0.036 | 0.041 |
| 2  | 0.0094 | 0.013 | 0.033 | 0.041 | 0.037 | 0.044 |
| 3  | 0.0101 | 0.015 | 0.037 | 0.034 | 0.041 | 0.038 |
| 4  | 0.0113 | 0.0095 | 0.036 | 0.035 | 0.032 | 0.037 |
| 5  | 0.0107 | 0.01 | 0.039 | 0.037 | 0.038 | 0.031 |
|    | X_{avr} | 0.0105 | 0.0117 | 0.0364 | 0.0366 | 0.0368 | 0.0382 |

Assessing the precision of results \((X_{max}-X_{min}) \leq CR_{0.95}(5)\)

\[
0.002<0.005 \quad 0.006<0.008 \quad 0.006<0.018 \quad 0.007<0.026 \quad 0.009<0.019 \quad 0.013<0.027
\]

The results of operational control of the research procedure using the control procedure for controlling the error using the addition method are presented in table 4.

Table 4. Study of samples for lead content.

| №  | additive at the stage of sample preparation | additive at measurement stage |
|----|-------------------------------------------|-------------------------------|
| TA-4 | Kvant-2AT | TA-4 | Kvant-2AT |
| K_1  | K_2   | K_3   | K_4   | K_5   | K_6   | K_7   | K_8   |
| 1  | -0.0092 | 0.02045 | -0.011 | 0.02896 | -0.0012 | 0.021246 | -0.0018 | 0.030215 |
| 2  | -0.0041 | 0.00414 | -0.0051 | 0.00581 | -0.0037 | 0.004179 | -0.0035 | 0.006041 |
| 3  | -0.0068 | 0.00697 | -0.0072 | 0.010134 | -0.0036 | 0.007272 | -0.005 | 0.01042 |
| 4  | -0.062  | 0.06371 | -0.092 | 0.09543 | 0.002 | 0.069944 | -0.048 | 0.10116 |
Analyzing the obtained results, we state that the condition $(X_{\max} - X_{\min}) \leq CR0.95$ (5) is satisfied for the measurement results.

3.2. Evaluation of the precision of laboratory test results obtained from the implementation of different research methods

The results of operational control of the laboratory test procedure using the control procedure to control the error using the addition method are presented in table 5.

Table 5. Bread research results (permissible level 0.15 mg/kg).

|                  | TA-4 | Kvant-2AT | TA-4 | Kvant-2AT | TA-4 | Kvant-2AT |
|------------------|------|-----------|------|-----------|------|-----------|
| $X_{\max}^{(5)}$ | 0.0105 | 0.0117    | 0.0364 | 0.0366    | 0.0368 | 0.0382    |
| $X_{\min}^{(5)}$| 0.111 | 0.0365    | 0.0375 |           |       |           |

Evaluation of the precision of results obtained by different methods

|                  | TA-4 | Kvant-2AT | TA-4 | Kvant-2AT | TA-4 | Kvant-2AT |
|------------------|------|-----------|------|-----------|------|-----------|
| 5.4 % < 17 %     | $K_\sigma$ | $K$     | $K_\sigma$ | $K$     |       |           |
|                  | -0.0046 | 0.00544789 | -0.0036 | 0.00558467 |       |           |

The analysis of the presented results in table 5 shows that all the results of studies of bread samples for lead content are satisfactory (according to the assessment of precision and operational control of the error using the method of additions).

3.3. Research results monitoring

We monitored the results of research on the content of lead in bread from January 2019 to October 2020. We assessed the distribution of research results depending on the concentration of lead in bread (figure 6).

![Figure 6. Distribution of test results depending on the concentration (mg/kg) of lead in wheat bread samples, %.]
The obtained monitoring results indicate that in the range of less than 0.01 mg of lead per 1 kg of wheat bread prevail (75.6%) over other ranges. The least registered sample results (2.2%) with the range of obtained data: 0.1-1.0 mg/kg.

4. Conclusion
The analysis of the data obtained shows that all the results on the study of the content of lead in bread by assessing the precision and operational control of the error using the method of additions are satisfactory.

The implementation of the methods of stripping voltammetry and atomic absorption spectrometry achieves the best precision in the results of lead studies in the testing laboratory, both under conditions of intermediate precision and under repeatability conditions.

Wheat bread should be monitored for lead on an ongoing basis.

Acknowledgements
The authors would like to express special gratitude to the engineer A M Chuprakova who carried out multi-stage tests of the designated products for compliance with the requirements of regulatory documents.

References
[1] Kulushtayeva B, Rebezov M, Igenbayev A, Kichko Yu, Burakovskaya N, Kulakov V and Khayrullin M 2019 Gluten-free diet: positive and negative effect on human health Indian Journal of Public Health Research & Development 10(7) 906-9
[2] Rebezov M, Naumova N, Lukin A, Alkhamova G and Khayrullin M 2011 Food behavior of consumers (for example, Chelyabinsk) Voprosy Pitanii 80(6) 23-6
[3] Kassymov S, Amirzhan T, Moldabayeva Zh, Rebezov M, Sharova T, Nikolaeva N, Gribkova V, Gaidarenko L and Karapetyan I 2020 Nutritional and biological value of bakery products with the addition of vegetable powders and milk whey International Journal of Psychosocial Rehabilitation 24(7) 3985-9 DOI: 10.37200/IJPR/V24I7/PR270394
[4] Kulushtayeva B, Okuskhanova E, Rebezov M, Burakovskaya N, Kenijz N, Fedoseeva N, Artemeva I, Saranova O and Pershina O 2020 Bread with sesame seeds for gerodietetic nutrition International Journal of Psychosocial Rehabilitation 24(7) 1661-5 DOI: 10.37200/IJPR/V24I7/PR270149
[5] Macleod C and Coughanowr C 2019 Heavy metal pollution in the derwent estuary: history, science and management Regional Studies in Marine Science 32 100866
[6] Ali MM et al. 2019 Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuliriver, Bangladesh. Human and Ecological Risk Assessment An Int.J. 1-17
[7] Cherfi A, Abdoun S and Gaci O 2014 Food survey: levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria Food and Chemical Toxicology 70 48-53
[8] Mansour S A 2014 Monitoring and health risk assessment of heavy metal contamination in food Practical Food Safety: Contemporary Issues and Future Directions 235-55
[9] Mourya A, Mazumdar B and Sinha S K 2019 Determination and quantification of the heavy metal ion by electrochemical method Journal of Environmental Chemical Engineering 7(6) 103459
[10] Ivanova-Petropulos V et al. 2015 Determination of Pb and Cd in Macedonian wines by electrother-mal atomic absorption spectrometry (ETAAS) Food Analytical Methods 8(8) 1947-52
[11] Lu H, Lu X, Ma L, Cui Y, Wang J and Zhao M 2004 Microwave cleavage for the determination of lead in milk powder by atomic fluorescence spectrometry and mass spectrometry with induction plasmas Journal of Chinese Mass Spectrometry Society 25 9-10
[12] Ma W, Zhao B and Ma J 2019 Comparison of heavy metal accumulation ability in rainwater by 10 sponge city plant species Environmental Science and Pollution Research 26(26) 26733-47
[13] Alaqouri H A A et al. 2020 The possibility of using scots pine needles as biomonitor in determination of heavy metal accumulation Environmental Science and Pollution Research 26(26) 238-56
[14] Rahimi G, Kolahchi Z and Bayat S 2019 Heavy metals' bio-accumulation and transfer in lemon balm (melissa officinalis L.) irrigated with industrial wastewater International Journal of Environment and Waste Management 23(3) 238-56
[15] Singh B R et al. 2011 Safety of food crops on land contaminated with trace elements J. Sci. Food Agric. 91(8) 1349-66
[16] Sizentsov A N, Kvan O V, Sizentsov Y A, Bibartseva E V and Osipova E A 2020 Comparative analysis of heavy metal sorption characteristics on laboratory animal models Research Journal of Pharmaceutical, Biological and Chemical Sciences 10(1) 133-135
[17] Barsova N, Yakimenko O, Tolpeshta I and Motuzova G 2019 Current state and dynamics of heavy metal soil pollution in Russian Federation Environmental Pollution 249 200-7
[18] Kuramshina N, Rebezov M, Kuramshin E, Krasnogorskaya N, Tretyak L, Somova Yu, Dolmatova I, Zaitseva T, Grigoryeva I and Bakirova L 2018 Heavy Metals Contamination of Soil in Urban Areas of Southern Ural Region of Russia International Journal of Engineering and Technology (UAE) 7(4.42) 14-8 DOI: 10.14419/ijet.v7i4.42.25536
[19] Zykova I, Maksimuk N, Rebezov M, Kuznetsova E, Derkho M, Sereda T, Kazhibayevev G, Somova Yu and Zaitseva T 2019 Interaction between heavy metals and microorganisms during wastewater treatment by activated sludge Journal of Engineering and Applied Sciences 14(11) 2139-45
[20] Assenova B, Okuskhanova E, Rebezov M, Korzhikenova N, Yessimbekov Zh and Dragoev S 2016 Trace and toxic elements in meat of maral (red deer) grazing in Kazakhstan Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(1) 1425-33
[21] Yang ZY 2005 To study the activity of palladium used as modifier under microwave decomposition and atomic absorption spectrometry with graphite furnace for the determination of trace elements in food products Chinese Journal of Spectroscopy Laboratory 22(3) 607-17
[22] Rebezov M et al. 2020 Improvement of Laboratory Services When using Sample Preparation in Microwave System International Journal of Current Research and Review 12(16) 29-33 doi:10.31782/IJCCR.2020.12167
[23] Rebezov M, Belokamenskaya A, Zinina O, Naumova N, Maksimyuk N, Soloveva A and Solntseva A 2012 Quality control of food research for lead content Izvestiya vuzov prikladnaya khimiya i biotekhnologiya 1 157 WOS:0004427437100030
[24] Maksimuk N N, Rebezov M B and Guber N B 2018 Experience in auditing in the food safety management system Economics of Agriculture of Russia doi:10.32651/2070-0288-2018-9-15-21
[25] Akhmetova S, Suleimenova M and Rebezov M 2019 Mechanism of an improvement of business processes management system for food production: case of meat products enterprise Entrepreneurship and sustainability issues 7(2) 1015-35 Doi 10.9770/jesi.2019.7.2(16)