Heart rate variability and occupational stress—systematic review

Susanna JÄRVELIN-PASANEN1*, Sanna SINIKALLIO2 and Mika P. TARVAINEN3, 4

1Institution of Public Health and Clinical Nutrition, Ergonomics, Faculty of Health Sciences, School of Medicine, University of Eastern Finland, Finland
2Philosophical Faculty, School of Educational Sciences and Psychology, University of Eastern Finland, Finland
3Department of Applied Physics, Faculty of Science and Forestry, University of Eastern Finland, Finland
4Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Finland

Abstract: The aim of this systematic review was to explore studies regarding association between occupational stress and heart rate variability (HRV) during work. We searched PubMed, Web of Science, Scopus, Cinahl and PsycINFO for peer-reviewed articles published in English between January 2005 and September 2017. A total of 10 articles met the inclusion criteria. The included articles were analyzed in terms of study design, study population, assessment of occupational stress and HRV, and the study limitations. Among the studies there were cross-sectional (n=9) studies and one longitudinal study design. Sample size varied from 19 to 653 participants and both females and males were included. The most common assessment methods of occupational stress were the Job Content Questionnaire (JCQ) and the Effort-Reward Imbalance (ERI) questionnaire. HRV was assessed using 24 h or longer Holter ECG or HR monitoring and analyzed mostly using standard time-domain and frequency-domain parameters. The main finding was that heightened occupational stress was found associated with lowered HRV, specifically with reduced parasympathetic activation. Reduced parasympathetic activation was seen as decreases in RMSSD and HF power, and an increase in LF/HF ratio. The assessment and analysis methods of occupational stress and HRV were diverse.

Key words: Occupational health, Occupational stress, Heart rate variability, Autonomic nervous system, Work

Introduction

Long-term stress has become one of the most prevalent health risks in the contemporary society1). After Hans Selye’s2) pioneering definition of stress as “the non-specific response of the body to any demand for change” various definitions have emerged. Generally, stress implies a harmful long-term imbalance between the individual’s resources and the environmental demands3). Consequently, occupational or work-related stress can be defined as a pattern of reactions that occurs when workers are presented with work demands that are not matched to their knowledge, skills or abilities, and which challenge their ability to cope3).

There is plethora of occupational stress models and theories. Among the two most widely used occupational stress theories are Siegrist’s Effort-Reward Imbalance (ERI)4) and Karasek’s High Demand-Low Control Theory5). The ERI model states that work-related stress depends upon a reciprocal relationship between efforts and...
In addition, there are many individual factors affecting occupational health studies are summarized in Table 1. The analysis methods of HRV can be divided into time-domain, frequency-domain and nonlinear methods. The used search terms and search strategy were designed for available literature from the January 2005 to September 2017. The used search terms were “stress”, “strain”, “work”, “job”, “occupational”, “mental work load”, “heart rate variability”, “heart rate variation”, “heart rate”, “heart beat variability”, “heart beat variation” and “RR variation”. In addition, PubMed, the used MeSH search terms were “Stress”, “Physiological”, “Work”, “Workload” and “Heart Rate”.

Physiological indicators of occupational stress would be useful in occupational health services with respect to early prevention of detrimental long-term stress effects. The information obtained by HRV may help in planning strategies for health assessment and promotion at work. Many of the studies on HRV have been conducted in laboratory conditions with healthy subjects. However, less is known about the association between occupational stress and HRV measured in real working life settings. Therefore, the aim of this systematic review was to examine previous studies regarding the association between occupational stress and HRV during work, in real life setting.

Methods

PubMed, Web of Science, Scopus, Cinahl and PsycINFO databases were searched for available literature from the January 2005 to September 2017. The used search terms were “stress”, “strain”, “work”, “job”, “occupational”, “mental work load”, “heart rate variability”, “heart rate variation”, “heart rate”, “heart beat variability”, “heart beat variation” and “RR variation”. In addition, in PubMed, the used MeSH search terms were “Stress”, “Physiological”, “Work”, “Workload” and “Heart Rate”. The used search terms and search strategy were designed with an information specialist from the Library of the University of Eastern Finland.

The search process and its results in different phases are depicted as a flow chart (Fig. 1).

On the first phase of the selection, the authors (S J-P, SS, MT) scanned first all the resulting titles and then the abstracts to exclude articles that were clearly out of scope. Duplicate articles were then removed. On the second phase, based on the full text reading, the articles focusing on occupational stress among working age population (19–64 yr) and HRV measured beat-to-beat during work were included. In addition, the selected studies had to be written in English, had to be peer reviewed and published during 2005–2017. Articles using laboratory settings and focusing on post-traumatic conditions, heat exposure, over trained athletes, or patient populations (e.g., cardiovascular diseases, depression or stroke patients) were excluded. The authors independently assessed the titles, the abstracts and full texts, any
disagreements were discussed and resolved by consensus.

Among the resulting articles (n=21)24–44), ten studies focused on occupational stress and HRV25–30, 34, 37, 40, 43) five studies focused on occupational stress and changes in shift schedule33, 35, 36, 39, 42), five studies examined the association of HRV and working hours/changes in shift schedule24, 31, 32, 38, 44), and one study investigated the effect of physical work environment on occupational stress measured by HRV41). In nine studies only subjective assessment of stress response was used31–33, 37–41, 43). However, for further analysis only those studies that included theory-based assessments of occupational stress were selected24–30, 34–36, 42, 44) . In addition, in Aasa et al.24) and Wong et al.44) theory-based assessment of occupational stress was used (in Aasa et al. the demand-control-support questionnaire5, 45) and the Stress-Energy Questionnaire (SEQ)46) .
in Wong et al. the Sources of Occupational Stress Survey (SOSS)^{47}, but the association between HRV and stress was not tested. Thus, these were excluded from the final analyses. Consequently, the final set of articles (n=10) was then evaluated using the following criteria: Study design (cross-sectional, longitudinal); Study population (sample size, gender, occupation); Assessment of occupational stress; Assessment of HRV; Limitations of the studies.

Results

A total of 10 articles^{25–30, 34–36, 42} met the inclusion criteria. A summary of the selected studies (study design, study population and assessment of occupational stress) is presented in Table 2.

Study designs

Nine studies were cross-sectional (i.e., study with measurements during single point in time)^{26–30, 34–36, 42} and only one was carried out with longitudinal study design with a one year follow-up^{25}.

Study populations

The sample size varied between 19^{42} and 653^{26} participants. The mean of the sample size was 179 (median 73 participants). Six studies examined both females and males and four only males^{26–28, 34}.

The mean age of the study population was reported in seven studies^{25, 26, 29, 34–36, 42}. Mean age ranged from 29 yr^{34} to 47 yr^{26} (mean age was 41, based on the information from those seven studies).

In two studies the subjects were nurses or other hospital workers^{25, 42} and in one study physicians^{30}. Other examined occupational groups were factory workers^{26}, media workers^{35}, workers in consumer goods production^{34}, workers in airplane manufacturing^{36}, white-collar workers^{29} and “employed”^{27, 28}.

Assessment of occupational stress

The most commonly used assessment methods of occupational stress were the Job Content Questionnaire (JCQ)^{5, 48} and the Effort-Reward Imbalance (ERI) questionnaire^{49}. The JCQ was used in four studies^{27, 28, 30, 34}, ERI was used in two studies^{29, 42} and both JCQ and ERI in two studies^{25, 36}. In addition, the Job Stress Questionnaire (JSQ)^{50, 51} and the Occupational Stress Questionnaire (OSQ)^{52, 53} were used in single studies^{26, 35}.

Assessment of HRV

Measurements and HRV analysis parameters used in the studies are summarized in Table 3. HRV was recorded using a Holter electrocardiogram (ECG) device in seven studies^{25–28, 30, 35, 36}. The recording length in these studies varied from one to two full days (24–48 h). Sampling rate of the ECG was reported in two studies: 200 Hz in Hernández-Gaytan et al.^{30} and 400 Hz in Loerbroks et al^{36}. In the rest of the studies this information was not reported. HRV was recorded using a 36-h HR monitoring periods (including both work and leisure or sleep time) in one study^{42}. Shorter HR monitoring periods (2–12 h) during work were utilized in one study^{29}. In addition, one study assessed HRV only from short (5–10 min) resting periods^{34}. Polar HR monitors were used in 2 out of 3 studies utilizing HR monitoring.

HRV was characterized using 1–6 different HRV parameters, that can be divided into time-domain, frequency-domain and nonlinear parameters as described in Table 1. One or more time-domain parameters were used in eight studies and frequency-domain parameters in seven studies. In five studies, both time and frequency-domain HRV parameters were used. Only one study used nonlinear HRV parameters^{42}. The most commonly used time-domain HRV parameters were RMSSD (used in five studies), SDNN (five studies), and mean RR or HR (three studies). The most commonly used frequency-domain parameters were HF power in absolute or normalized units (six studies), LF power in absolute or normalized units (four studies) and LF/HF ratio (five studies). Regarding nonlinear parameters, SampEn was used in Usitalo et al^{42}.

HRV was analyzed using altogether seven different freely or commercially available analysis programs. The single studies used Kubios HRV software^{29}, Century 2000 ECG software^{35}, Firstbeat PRO software^{42}, Holter Plus III software^{40}, Marquette 12Sl ECG analysis program^{28}, MemCalc/BP Analyzer software^{34} and Syne Tec software^{26}. In one study, HRV analysis was performed using in-house algorithms^{27}. In two studies^{25, 36} the used HRV analysis programs were not reported.

Five studies explicitly reported of using the recommendations of Task Force in their measurements and analyses^{25, 28, 30, 36, 42}. In three studies^{26, 27, 29}, Task Force recommendations were referenced in text, but they did not explicitly state if these recommendations were followed or not. Moreover, the Task Force recommendations were not mentioned in two studies^{34, 35}. The respiratory rate was taken into account in one study^{34} as recommended by the Task Force. In addition, the effect of breathing patterns on
HRV was recognized in two studies \cite{26, 42}, but it was not measured or controlled.

Associations between occupational stress and HRV

A summary of the changes in HRV parameters with respect to occupational stress is presented in Table 4. The most commonly used measure of stress, the JCQ, was used in six studies \cite{25, 27, 28, 30, 34, 36}. In five studies \cite{25–28, 30}, occupational stress was associated with reduced HRV. More specifically, in Clays \textit{et al.}\cite{26} and Collins \textit{et al.}\cite{27}, stress was associated with reduced parasympathetic activation (i.e. decreased HF power), whereas in Collins
Table 3. Descriptions of measurements of HRV and outcomes

Study, yr (origin)	Measurement of HRV and analysed samples	Comparisons made	Results	Mean RR Mean HR	SDNN SDANN SDNN_index	RMSSD pNN50	LF (ms\(^2\)) HF (ms\(^2\)) LF/HF	LF/HF	Test used (adjustments made)			
Bocchi et al. 2015 (Italy)	2 × 24 h Holter ECG: 1) working day 2) resting day Entire 24 h recording analysed	JCQ: a) prolonged high strain (progressive change from a to c) b) recent high strain c) stable low strain	a vs. b vs. c	HR n.s. HR n.s.	SDNN\(^{1}\) SDNN_index\(^{1}\) pNN50	RMSSD n.s. - - -	- - -	SampleEn	ANCOVA (age and smoking status)			
Clays et al. 2011 (Belgium)	24 h Holter ECG (working day), entire 24 h recording analysed	JSQ: a) Total JSQ score b) Work stressor index	High vs. low JSQ score (a) High vs. low stressor score (b)	HR\(\uparrow\) HR\(\uparrow\)	SDNN n.s. pNN50 n.s.	LF n.s. LF n.s. HF n.s.	LF/HF\(\uparrow\) LF/HF\(\uparrow\)	Pearson correlation				
Collins et al. 2005 (USA)	2 × 24 h Holter ECG (workday + rest day), analysed in 5-min epochs	JCQ: a) High strain b) High strain – work c) Low control d) High demands	Effects of a–d	SDNN\(^{2}\) SDNN_index\(^{2}\)	RMSSD n.s.	- - -	- - -	- LF/HF\(\uparrow\)	Repeated measures mixed model (age and education)			
Collins and Karasek 2010 (USA)	2 × 24 h Holter ECG (workday + rest day), analysed in 5-min epochs	JCQ: a) Exhausted b) High strain c) Low strain	b vs. c and a vs. c	- - - -	- - -	HF variance\(\downarrow\)	-	Repeated measures ANOVA (age)				
Garza et al. 2015 (Netherland)	2 h HR monitoring (Polar) during work, analysed in 5-min epochs	ERI: a) High ERI b) Over-commitment	Effects of a & b	SDNN\(^{3}\) RMSSD\(^{3}\)	-	HF\(\downarrow\)	LF/HF\(\uparrow\) LF/HF\(\uparrow\)	Repeated measures mixed model (age, gender, exercise and job title)				
Hernandez-Gaytan et al. 2013 (Mexico)	24 h Holter ECG (24 h workshift), entire 24 h recording analysed	JCQ: a) High strain b) Active c) Passive d) Low strain	a, b and c vs. d Effect of low job decision latitude (low control)	-	SDNN n.s.	LF\(\downarrow\) LF\(\downarrow\) LF/HF\(\downarrow\)	LF/HF\(\downarrow\)	Linear mixed model (gender, age and BMI)				
Study, yr (origin)	Measurement of HRV and analysed samples	Comparisons made	Results	Mean RR Mean HR	SDNN SDANN SDNN\textsubscript{index}	RMSSD pNN50	LF (ms2)	HF (ms2)	LF/HF	LF (%)	HF (%)	Test used (adjustments made)
-------------------	--	------------------	---------	----------------	-----------------	------------	----------------	----------------	-------	--------	--------	-----------------------------
Lee et al. 2010 (South Korea)	3 × 5-min resting HR measurements (LRR-03, GMS Co.) after different shifts (morning, afternoon, night)	JCQ: a) High strain b) Active c) Passive d) Low strain	a vs. c (within shortest seniority workers)	-	-	-	LF↑	HF n.s.	LF/HF n.s.	ANOVA with Duncan’s post hoc test (duration of employment and age)		
Lindholm et al. 2009 (Finland)	24 h Holter ECG (workday and following leisure time/night), analysed in 1h epochs	OSQ for demand-control balance: a) Job control b) Job demand	Low/intermediate vs. high control High vs. intermediate/low demand	-	-	RMSSD↓	-	-	-	Repeated measures ANOVA		
Loerbroks et al. 2010 (Germany)	24 h Holter ECG (workday and following leisure time/night), analysed at work, leisure and sleep periods for age groups 1) 17–34 yr 2) 35–44 yr 3) 45–54 yr 4) 55–65 yr	a) Job strain index from JCQ b) Effort-reward imbalance ratio (ERI)	High vs. low strain (a) High vs. low ERI (b)	-	-	RMSSD n.s.	RMSSD21 (during work and leisure time)	-	-	-	Regression analysis (gender, activity, smoking, alcohol)	
Uusitalo et al. 2011 (Finland)	2 × 36 h HR monitoring (Polar) (night before, workday and following leisure time/night) for two workdays during same working period, analysed as averages over 1) daytime, 2) work time, and 3) night time	ERI: Effort at work	High vs. low effort RR n.s.	SDNN1, 2	RMSSD1, 2	LF1, 2	HF n.s.	SampEn n.s.	Spearmann correlation			

↑, ↓ indicate increase or decrease (statistical significant at \(p<0.05 \)), n.s. indicates no change (\(p \geq 0.05 \)). − indicates data is not provided. For example, if in comparison a vs. b parameter X↑, it means that X was higher in situation a compared to situation b. Superscripts refer to specific measurement groups or analysis samples (numerical superscripts) and to specific occupational stress comparison (alphabet superscripts).
HEART RATE VARIABILITY AND OCCUPATIONAL STRESS

Table 4. Summary of main results of the studies regarding associations between occupational stress and HRV

Authors	Main results
Borchini et al. 2015 (Italy)	Occupational stress lowered time-domain HRV parameters
Clays et al. 2011 (Belgium)	Occupational stress was associated with reduced parasympathetic activation
Collins et al. 2005 (USA)	Occupational stress/job strain was associated with reduced parasympathetic activation
Collins and Karasek 2010 (USA)	Occupational stress/job strain was associated with reduced cardiac vagal variance
Garza et al. 2015 (Netherland)	Occupational stress was associated with lowered HRV, mainly caused by reduced parasympathetic activation
Hernández-Gaytan et al. 2013 (Mexico)	Job strain and low job control were associated with lowered LF power of HRV
Lee et al. 2010 (South Korea)	Occupational stress was associated with higher LF power in the group of workers with short duration of employment
Lindholm et al. 2009 (Finland)	Low job control was associated with reduced parasympathetic activation
Loerbroks et al. 2010 (Germany)	Occupational stress was associated with reduced parasympathetic activation among 35–44-yr-old workers
Uusitalo et al. 2011 (Finland)	Occupational stress was associated with reduced parasympathetic activation

and Karasek, association with reduced cardiac vagal variance was found. Borchini et al. found association between occupational stress and time-domain HRV parameter SDNN during working day. In Hernández-Gaytan et al., occupational stress was associated with lowered LF power (as well as lowered LF/HF ratio), whereas interestingly, Lee et al. found the opposite (i.e. LF power was increased in relation to occupational stress in the group of workers with short duration of employment).

In Loerbroks et al., no relation between occupational stress and HRV was found when measured by JCQ, but a reduced parasympathetic activation (i.e. lowered RMSSD) among 35–44-yr-old workers was associated with occupational stress when measured with ERI. In addition, ERI was used in Garza et al. and Uusitalo et al. and occupational stress was found associated with reduced parasympathetic activation (i.e. lowered RMSSD and HF power). Lindholm et al. who measured occupational stress with OSQ, found that low job control was associated with reduced parasympathetic activation (i.e. lowered RMSSD).

A summary of the associations between occupational stress and HRV in all the studies is presented in Table 4.

Limitations of the studies

The most common limitations mentioned in the studies were small sample size and cross-sectional study design. In two studies, generalization of the results was seen limited, because there was an imbalance between men and women in the study group. Further, five studies recognized that they were not able to control potential confounding factors in real-world study settings such as smoking or physical activity.

Discussion

The aim of this systematic review was to examine the literature concerning the association of occupational stress and heart rate variability during work, among working-age population. Ten articles met the inclusion criteria.

The main finding was that heightened occupational stress was found associated with lowered HRV, specifically with reduced parasympathetic activation. Reduced parasympathetic activation was seen as decreases in RMSSD and HF power, and increase in LF/HF ratio. Lowered HRV with respect to occupational stress was observed in 8 studies. In two studies, this association was not detected.

Assessment of occupational stress

Our systematic review showed somewhat diversity in assessing occupational stress in the studies. As summarized by O'Connor & Ferguson, there are different approaches in occupational stress assessment: 1) The stimulus-based approach, i.e. the assessment of job stressors. The basic assumption is that stress from the environment asserts demands on an individual without any mediating psychological processes: the greater the strain, the larger the reaction. The assessment methods using this approach include the ERI and the JCQ, the most commonly used questionnaires in the reviewed studies. 2) The response-based approach, i.e. the assessment of the workers’ strain—psychological or physiological—to job stressors such as work overload, time pressure, excess responsibility, role conflict. This approach mainly considers stress in terms of the general reaction to the stressors. Strictly speaking, the latter approach—although commonly used—is not compatible with the actual definition of occupational
stress (a disproportional relationship between individual’s resources and work demands).

Assessment of HRV

Our systematic review showed the association between HRV and occupational stress. In addition, it showed the diversity of measurement methods of HRV in the studies. Occupational stress was associated with lowered HRV, specifically with reduced parasympathetic activation. The most common HRV parameters reflecting parasympathetic activation were RMSSD and HF power. In addition, LF/HF ratio was frequently used for evaluating sympatho-vagal balance. However, the comparison of HRV findings is challenging, because of high variety of used HRV parameters, measurement devices and methods, as well as diversity of study designs.

The guidelines for measurement, physiological interpretation and clinical use of HRV are given in Task Force2). Ten studies either reported of using these guidelines or at least referenced the guidelines in text, whereas two studies did not mention the guidelines.

In the reviewed studies, a wide range of HRV parameters recommended by the Task Force were used, but number of HRV parameters used in individual studies varied from one single parameter to 6 different parameters. The most commonly used time-domain parameters were mean HR, SDNN and RMSSD; where mean HR is known to reflect physical activity and sympatho-vagal balance, SDNN reflects overall HRV and RMSSD reflects mainly parasympathetic activation of ANS. The most commonly used frequency-domain parameters were LF power, HF power and their ratio (LF/HF). HF power reflects parasympathetic activation trough the physiological influence of respiration, known as respiratory sinus arrhythmia (RSA). LF power reflects both sympathetic and parasympathetic activation, but common understanding is that sympatheticus and baroreceptor activity play big role in the generation of this frequency component. LF/HF ratio is a commonly used index of sympatho-vagal balance.

Nonlinear analysis methods were utilized in only one reviewed study42), where sample entropy was used. Despite almost complete disuse of nonlinear analysis methods among the reviewed studies, the use of these methods is becoming more and more common as they have evidenced to reveal useful additional information about HRV characteristics in different applications and patient groups, see for example55–57).

The physiological influence of respiration on heart beat intervals, i.e. the respiratory sinus arrhythmia forms one of the two main oscillatory components of HRV. In HRV spectrum, RSA is observed as power component in the HF band with center frequency equal to respiratory rate12). The HF band is typically defined as 0.15–0.4 Hz frequency band, which is expected to include normal human breathing rate. However, during exercise the respiratory rate easily exceeds the 0.4 Hz limit reaching even close to 1 Hz (60 breaths per min) in intense exercise. On the other hand, in case of slow breathing the respiratory rate can easily drop below the 0.15 Hz, in which case the RSA component starts to overlap with the LF component. If possible, the HF band should be extended to include the observed respiratory frequency, which is not however trivial in case of slow breathing. Among the reviewed studies, the respiratory rate was taken into account in one study34) as recommended by the Task Force. In addition, the effect of breathing patterns on HRV was recognized in two studies36, 42), but it was not measured or controlled. Overall, respiratory rate influences HRV58) and should (if possible) be taken into account in HRV analysis and when interpreting the results.

In addition, it should be noted that HRV analysis should always be performed on normal-to-normal beat interval data. Ectopic beats or other artefacts such as missed, extra or misaligned beat detections can cause significant alterations into HRV analysis parameters, and thus, any such aberrant beats should be corrected prior to HRV analysis59, 60). In addition, very low frequency changes such as slow increases or decreases in heart rate can have a significant influence on certain HRV measures (for example on SDNN reflecting overall HRV), which can be considered as bias when performing short-term HRV analyses assuming stationarity. In these cases, it may be advisable to remove the trend prior to HRV analysis61).

ECG recording for HRV assessment was carried out in seven of the reviewed studies, whereas HR monitors (mainly Polar) were utilized in rest of the studies. The ECG recording should be preferred over HR monitoring due to two reasons. First, the origin of abnormal beat intervals can be verified from the ECG data and possible ectopic beats or other arrhythmic events can be identified. Secondly, an estimate of respiratory rate can be extracted from the ECG (i.e. ECG derived respiration, EDR)62, 63). Currently several easy-to-use, wearable and relatively inexpensive ECG devices exist on the market, which are designed for long-term recordings. In addition, continuous optical pulse wave measurement devices have become popular, but their accuracy for HRV assessment in long-term recordings is still a challenge.
It is noteworthy, that only one study was performed with a longitudinal study design25). As the key advantage of the longitudinal studies is the ability to show the patterns of a variable over time, this indeed would be a recommended approach in occupational stress-HRV studies to learn about cause-and-effect relationships. In addition, the dispersion of HRV and occupational stress assessment methods makes the comparison of the studies difficult. Instead of a big picture, a fragmented puzzle emerges. Therefore, more unified assessment methods and longitudinal study settings are called for.

Many of the studies on HRV have been performed in laboratory conditions and less in real working life settings. When compared to short-term (laboratory) measurements, long-term (24 h or more) HRV monitoring enables assessment of stress and recovery patterns during normal working and leisure time as well as during sleep. However, HRV measurements obtained in actual working conditions often involve unidentified confounding factors that can never be controlled completely, which need to be taken into account when interpreting the study results. For example, physical activity is known to decrease HRV, and thus, the physical activity of workers should be controlled or measured along with HRV to avoid HRV data misinterpretations. In addition, the effects of the confounding factors would be reduced, for example through using subjective methods such as questionnaires, and with the longitudinal study settings. Despite of the challenges, the information of work load and recovery obtained by HRV would be useful in the early identification and prevention of stress, for example in occupational health care.

Conclusions

This systematic review showed that occupational stress is associated with lowered HRV, specifically with reduced parasympathetic activation. Thus, analysis of HRV can be used as an informative marker for physiological impacts of workplace stressors. In addition, this systematic review showed the diversity of assessing occupational stress or measuring of HRV in the studies. Consequently, the utilization of stress theories/models and valid stress indicators would improve the comparability of results. Further, more unified HRV assessment and analysis methods, as well as longitudinal study settings, are called for.

Acknowledgement

We gratefully acknowledge information specialist Tuu-levi Ovaska from the Library of the University of Eastern Finland for her valuable comments and guidance during literature search.

References

1) Mauss D, Li J, Schmidt B, Angerer P, Jaraczok MN (2015) Measuring allostatic load in the workforce: a systematic review. Ind Health 53, 5–20. [Medline] [CrossRef]
2) Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138, 32. [CrossRef]
3) Dewa CS, Lin E, Koehoorn M, Goldner E (2007) Association of chronic work stress, psychiatric disorders, and chronic physical conditions with disability among workers. Psychiatr Serv 58, 652–8. [Medline] [CrossRef]
4) Siegrist J, Peter R (1994) Job stressors and coping characteristics in work-related disease: issues of validity. Work Stress 8, 130–40. [CrossRef]
5) Karasek RA (1979) Job demands, job decision latitude, and mental strain: implications for job redesign. Adm Sci Q 24, 285–308. [CrossRef]
6) Siegrist J (1999) Occupational health and public health in Germany. In: Organizational psychology and healthcare: European contributions Munchen, Le Blanc PM, Peeters MCW, Bussing A, Schaufeli WB, (Eds.), 35–44, Rainer Hampp Verlag, Augsburg.
7) Kivimäki M, Leino-Arjas P, Luukkonen R, Riihimäki H, Vahtera J, Kirjonen J (2002) Work stress and risk of cardiovascular mortality: prospective cohort study of industrial employees. BMJ 325, 857. [Medline] [CrossRef]
8) Hoogendoorn WE, van Poppel MN, Bongers PM, Koes BW, Bouter LM (2000) Systematic review of psychosocial factors at work and private life as risk factors for back pain. Spine 25, 2114–25. [Medline] [CrossRef]
9) Ariëns GA, Bongers PM, Hoogendoorn WE, Houtman IL, van der Wal G, van Mechelen W (2001) High quantitative job demands and low coworker support as risk factors for neck pain: results of a prospective cohort study. Spine 26, 1896–901, discussion 1902–3. [Medline] [CrossRef]
10) Houtman I, Kornitzer M, De Smet P, Koyuncu R, De Backer G, Pelfrene E, Romon M, Boulenguez C, Ferrario M, Origg I, Sans S, Perez I, Wilhelmsen L, Rosengren A, Olofssonsson S, Ostergren P (1999) Job stress, absenteeism and coronary heart disease European cooperative study (the JACE study): design of a multicentre prospective study. Eur J Public Health 9, 52–7. [CrossRef]
11) von Thiele U, Lindfors P, Lundberg U (2006) Self-rated recovery from work stress and allostatic load in women. J Psychosom Res 61, 237–42. [Medline] [CrossRef]
12) Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93, 1043–65. [Medline] [CrossRef]
13) Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS (2006) Heart rate variability: a review. Med...
23) Weippert M, Kumar M, Kreuzfeld S, Arndt D, Rieger A, Achten J, Jeukendrup AE (2003) Heart rate monitoring: Short-term heart rate variability in healthy young adults: the cardiovascular risk in young Finns study. Auton Neurosci 145, 81–8. [Medline] [CrossRef]

20) Snieder H, van Doornen LJP, Boomsma DI, Thayer JF (2005) Reduced vagal cardiac control variance in exhausted and high strain job subjects. Int J Occup Environ Health 11, 76–85. [Medline] [CrossRef]

17) Thayer JF, Åhs F, Fredrikson M, Sollers JJ 3rd, Wager TD (2012) A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 36, 747–56. [Medline] [CrossRef]

15) Koskinen T, Kähönen M, Jula A, Laitinen T, Keltikangas-Järvinen L, Viikari J, Välimäki I, Raitakari OT (2009) Sex differences and heritability of two indices of heart rate dynamics: a twin study. Twin Res Hum Genet 12, 1239–44. [Medline] [CrossRef]

12) Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Dorso M, Cesana G (2015) Prolonged job strain reduces time-domain heart rate variability on both working and resting days among cardiovascular-susceptible nurses. Int J Occup Med Environ Health 28, 42–51. [Medline]
activity and mental stress levels in obstetricians. Eur J Obstet Gynecol Reprod Biol 171, 44–8. [Medline] [CrossRef]

39) Orsila R, Virtanen M, Luukkaala T, Tarvainen M, Karjalainen P, Viik J, Savinainen M, Nygård CH (2008) Perceived mental stress and reactions in heart rate variability—a pilot study among employees of an electronics company. Int J Occup Saf Ergon 14, 275–83. [Medline] [CrossRef]

40) Rieger A, Stoll R, Kreuzfeld S, Behrens K, Weippert M (2014) Heart rate and heart rate variability as indirect markers of surgeons’ intraoperative stress. Int Arch Occup Environ Health 87, 165–74. [Medline] [CrossRef]

41) Thayer JF, Verkuil B, Brosschot JF, Kampschroer K, West A, Sterling C, Christie IC, Abernethy DR, Sollers JJ, Cizza G, Marqués AH, Sternberg EM (2010) Effects of the physical work environment on physiological measures of stress. Eur J Cardiovasc Prev Rehabil 17, 431–9. [Medline] [CrossRef]

42) Uusitalo A, Mets T, Martinmäki K, Mauno S, Kinnunen U, Rusko H (2011) Heart rate variability related to effort at work. Appl Ergon 42, 830–8. [Medline] [CrossRef]

43) Vahle-Hinz T, Bamberg E, Dettmers J, Friedrich N, Keller M (2014) Effects of work stress on work-related rumination, restful sleep, and nocturnal heart rate variability experienced on workdays and weekends. J Occup Health Psychol 19, 217–30. [Medline] [CrossRef]

44) Wong IS, Ostry AS, Demers PA, Davies HW (2012) Job strain and shift work influences on biomarkers and subclinical heart disease indicators: a pilot study. J Occup Environ Hyg 9, 467–77. [Medline] [CrossRef]

45) Karasek RA, Theorell T (1990) Healthy Work. Stress, productivity and reconstruction of working life. Basic Books, New York.

46) Kjellberg A, Wadman C (2002) Subjektiv stress och dess prövning av stress-energi-modellen. Arbete och hälsa/ Vetenskaplig skriftserie, 37, Arbetslivinstitutet. Stockholm (In Swedish).

47) Beaton RD, Murphy SA (1993) Sources of occupational stress among firefighter/EMTs and firefighter/paramedics and correlations with job-related outcomes. Prehosp Disaster Med 8, 140–50. [Medline] [CrossRef]

48) Karasek R, Brisson C, Kawakami N, Houtman I, Bongers P, Amick B (1998) The Job Content Questionnaire (JCQ): an instrument for internationally comparative assessments of psychosocial job characteristics. J Occup Health Psychol 3, 322–55. [Medline] [CrossRef]

49) Siegrist J (1996) Adverse health effects of high-effort/low-reward conditions. J Occup Health Psychol 1, 27–41. [Medline] [CrossRef]

50) Kittel F, Kornitzer M, Dramaix M (1980) Coronary heart disease and job stress in two cohorts of bank clerks. Psychother Psychosom 34, 110–23. [Medline] [CrossRef]

51) Kittel F, Kornitzer M, De Backer G, Dramaix M, Sobolski J, Degre S, Denolin H (1983) Type A in relation to job-stress, social and bioclinical variables: the Belgian physical fitness study. J Human Stress 9, 37–45. [Medline] [CrossRef]

52) Elo AL, Leppänen A, Lindström K, Ropponen T (1992) Occupational Stress Questionnaire: User’s Instructions, Reviews vol. 19, Finnish Institute of Occupational Health, Helsinki.

53) Elo AL, Leppänen A, Lindström K, Ropponen T (1999) Occupational Stress Questionnaire: User’s Instructions, Reviews vol. 19, Finnish Institute of Occupational Health, Helsinki.

54) O’Connor DB, Ferguson E (2016) Stress and Stressors. In: Assessment in Health Psychology, Benyamini Y, Johnston M, Karademec EC (Eds.), 103–117, Hogrefe Publishing, Göttingen.

55) Huikuri HV, Mäkikallio TH, Peng CK, Goldberger AL, Hintze U, Møller M (2000) Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101, 47–53. [Medline] [CrossRef]

56) Voss A, Schulz S, Schroeder R, Baumert M, Caminal P (2009) Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys Eng Sci 367, 277–96. [Medline] [CrossRef]

57) Cornforth D, Jelinek HF, Tarvainen MA (2015) Comparison of nonlinear measures for the detection of cardiac autonomic neuropathy from heart rate variability. Entropy (Basel) 17, 1425–40. [CrossRef]

58) Weippert M, Behrens K, Rieger A, Kumar M, Behrens M (2015) Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability. Appl Physiol Nutr Metab 40, 762–8. [Medline] [CrossRef]

59) Lippman N, Stein KM, Lerman BB (1994) Comparison of methods for removal of ectopy in measurement of heart rate variability. Am J Physiol 267, H411–8. [Medline] [CrossRef]

60) Peltola MA (2012) Role of editing of R-R intervals in the analysis of heart rate variability. Front Physiol 3, 148. [Medline] [CrossRef]

61) Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2002) An advanced detrending method with application to HRV analysis. IEEE Trans Biomed Eng 49, 172–5. [Medline] [CrossRef]

62) Bailón R, Sörnmo L, Laguna P (2006) A robust method for estimation of a respiratory signal from the surface electrocardiogram. Comput Biol Med 37, 305–14. [Medline] [CrossRef]