GLOBAL WELL-POSEDNESS FOR THE k-DISPERSION
GENERALIZED BENJAMIN-ONO EQUATION

LUIZ G. FARAH, FELIPE LINARES, AND ADEMIR PASTOR

Abstract. We consider the k-dispersion generalized Benjamin-Ono equation in the supercritical case. We establish sharp conditions on the data to show global well-posedness in the energy space for this family of nonlinear dispersive equations. We also prove similar results for the generalized Benjamin-Ono equation.

1. Introduction

In this paper we continue the study on sharp conditions to obtain global solutions for supercritical nonlinear dispersive models. With this aim we consider the initial value problem (IVP) for the k-dispersion generalized Benjamin-Ono (DGBO) equation

$$\begin{cases}
\partial_t u - D^\beta \partial_x u + \partial_x (u^{k+1}) = 0, & x \in \mathbb{R}, \ t > 0, \ 1 \leq \beta < 2, \ k \in \mathbb{Z}^+,
\end{cases}$$

where D^β denotes the homogeneous derivative of order $\beta \in \mathbb{R}$,

$$D^\beta f = c_\beta (|\xi|^\beta \hat{f})^\vee = (H \partial_x)^\beta f,$$

and H denotes the Hilbert transform,

$$Hf(x) = \langle -i \text{sgn}(\xi) \hat{f}(\xi) \rangle^\vee (x).$$

These equations arise as mathematical models for the unidirectional propagation of weakly nonlinear dispersive long waves. Notice that when $\beta = 2$ and $k = 1$ the equation in (1.1) is the well known Korteweg-de Vries (KdV) equation and when $\beta = 1$ and $k = 1$ it is the Benjamin-Ono (BO) equation. (See [26], [3] and [34] for their derivation and [23], [5], [17] for the sharpest local and global well-posedness results).

We shall mention that recently several developments regarding the local well-posedness has been obtained for both BO and DGO equations. One of the interesting features of the IVP associated to these families of equations is the obstruction to its solvability by iteration methods. Indeed, Molinet, Saut and Tzvetkov in [33] proved that the contraction mapping principle cannot be applied to solve these equations in the standard Sobolev spaces. For more details concerning well-posedness we refer to [22], [6], [32], [14], [13], [15], [8], [9], [31] for the GDBO equation and [11], [14], [10], [18], [17], [19], [25], [29], [35], [36], [37] for the BO equation.

Regarding local well-posedness for the IVP (1.1), $k \geq 2$, in [22] Kenig, Ponce and Vega showed that the IVP (1.1) is locally well-posed in $H^s(\mathbb{R})$, for $s \geq (9 - 3\beta)/4$ and globally well-posed in $H^{\beta/2}(\mathbb{R})$ for $\beta \geq 9/5$.

\textbf{Date:} 23/10/2012.
\textbf{2010 Mathematics Subject Classification.} Primary 35Q53 ; Secondary 35B40, 35B60.
\textbf{Key words and phrases.} Local and global well-posedness.
Recently, Kenig, Martel and Robiano [20] considered the family of dispersion generalized Benjamin-Ono equations,
\[
\partial_t u - D^\beta \partial_x u + |u|^{2\beta} \partial_x u = 0,
\]
which are critical with respect to both the L^2 norm and the global existence of solutions. Observe that these equations are the interpolated ones between the modified BO equation ($\beta = 1$) and the critical KdV equation $\beta = 2$. In [20] it was proved among other results, the local well-posedness in the energy space $H^{3/2}(\mathbb{R})$ for $\beta \in (1, 2)$. They also studied the blow-up problem in the same vein as in [27] and [28]. In particular they established the finite time blow-up of solutions with negative energy in the energy space when β is close to 2.

Here, we are interested in global well-posedness for the DGBO equation in the supercritical case, that is, $k > 2\beta$. Important relations in this study are the conserved quantities satisfied by real solutions of the IVP (1.1)
\[
M(u(t)) = \int_\mathbb{R} u^2(x, t) \, dx \quad (1.3)
\]
and
\[
E(u(t)) = \frac{1}{2} \int_\mathbb{R} |D^{3/2}u(x, t)|^2 \, dx - \frac{1}{k+2} \int_\mathbb{R} u^{k+2}(x, t) \, dx. \quad (1.4)
\]
These quantities allow us to establish an a priori estimate in the energy space $H^{3/2}(\mathbb{R})$.

Next we will describe our main results concerning the case $\beta \in [1, 2)$. First, we recall that in [7] the authors studied the IVP associated with the L^2-supercritical generalized KdV equation ($\beta = 2$ in equation (1.1)). Under sharp conditions satisfied by the initial data they established global well-posedness in the energy space $H^1(\mathbb{R})$. This result is the first step in view to the more general theory studied by Kenig and Merle [21] and by Holmer and Roudenko [16]. Our study below is based on these works.

One of the main tools needed for this analysis is having the best constant for the Gagliardo-Nirenberg inequality
\[
\|f\|^{k+2}_{L^{k+2}} \leq K_{opt}^{k+2} \|D^{3/2}f\|_{L^2}^{k/\beta} \|f\|^{(2+k)(\beta-1)}/\beta}_{L^2},
\]
where the constant K_{opt} depends on Q the unique positive, even, decreasing (for $x > 0$) solution of the equation
\[
D^\beta Q + Q - Q^{k+1} = 0. \quad (1.5)
\]
The sharp constant was obtained in [1]. In [39] the existence of the ground state Q was showed. The uniqueness of Q which is also key in our arguments was recently established by Frank and Lenzmann in [12].

Our main result reads as follows.

Theorem 1.1. Let $\beta \in [1, 2)$ and $u_0 \in H^{3/2}(\mathbb{R})$. Assume $k > 2\beta$ and let $s_k = 1/2 - \beta/k$. Suppose that
\[
E(u_0)^{s_k} M(u_0)^{3/2 - s_k} < E(Q)^{s_k} M(Q)^{3/2 - s_k}, \quad E(u_0) \geq 0. \quad (1.6)
\]
If
\[
\|D^{3/2}u_0\|_{L^2}^{s_k} \|u_0\|_{L^2}^{3/2 - s_k} < \|D^{3/2}Q\|_{L^2}^{s_k} \|Q\|_{L^2}^{3/2 - s_k}, \quad (1.7)
\]
then for any t as long as the solution exists,

$$
\|D^{\beta/2}u(t)\|_{L_2^2}^2 \|u_0\|_{L_2^{\beta/2-s_k}}^2 = \|D^{\beta/2}u(t)\|_{L_2^2}^2 \|u(t)\|_{L_2^{\beta/2-s_k}}^2 < \|D^{1/2}Q\|_{L_2^2}^2 Q_{L_2^2}^{\beta/2-s_k},
$$

(1.8)

where Q is the unique positive, even, decreasing (for $x > 0$) solution of (1.5).

Corollary 1.2. Let $\beta \in (1,2)$. Under the hypotheses of Theorem 1.1 the local solutions given in Theorem 2.3 below can be extended to any interval of time $[0,T]$.

Next we specialize ourselves in the case $\beta = 1$, thus the equation in (1.1) becomes the generalized BO equation for $k \geq 2$ and the energy space is $H^{1/2}(\mathbb{R})$. A scaling argument suggests that the best local well-posedness for the IVP below should be attained for $s > s_k = 1/2 - 1/k$. We review the state of the art concerning this IVP. In the case $k = 2$, Kenig and Takaoka 24 established local well-posedness for data in $H^{1/2}(\mathbb{R})$ and, using the conserved quantities, global well-posedness in $H^s(\mathbb{R})$, $s \geq 1/2$. For $k = 3$ and $k \geq 4$, local-wellposedness was obtained by Vento in 38 in $H^s(\mathbb{R})$, $s > 1/3$ and $s \geq s_k$, respectively. We shall observe that in these results the existence time depends on the initial data itself and not only on its norm, that is, $T = T(u_0)$. Therefore, we cannot use the conserved quantities to extend the local solutions to global ones by means of a priori estimates. However, if $k \geq 5$, the local theory was proved in $H^s(\mathbb{R})$, $s \geq 1/2$ with $T = T(\|u_0\|_s) > 0$ in 31. Using these local solutions we can extend them globally as stated in the next result.

Corollary 1.3. Assume $k \geq 5$ and the hypotheses of Theorem 1.1 for $\beta = 1$. Then the local $H^{1/2}$-solution of the generalized Benjamin-Ono (gBO) equation

$$
\begin{align*}
\left\{ \begin{array}{l}
\partial_t u - H^2 u + \partial_x (u^{k+1}) = 0, \\
u(x,0) = u_0(x),
\end{array} \right. \quad x \in \mathbb{R}, \quad t > 0,
\end{align*}
$$

(1.9)

can be extended to any interval of time $[0,T]$.

Remark 1.4. We observe that in the cases $k = 3,4$ it is an open problem to establish a local theory in the energy space with time $T = T(\|u_0\|_{1/2})$. With this result available Theorem 1.1 will imply in the existence of global solutions with the sharp conditions on the data.

The paper is organized as follows: In Section 2 the local theory for the IVP (1.1), $\beta \in (1,2)$ and $k > 2\beta$ will be established. Then, in Section 3, the proof of Theorem 1.1 will be given.

2. Local well-posedness in the energy space

Here we consider the Cauchy problem associated with the supercritical dispersion generalized Benjamin-Ono (DGBO) equation

$$
\begin{align*}
\left\{ \begin{array}{l}
\partial_t u - D^\beta \partial_x u + \partial_x (u^{k+1}) = 0, \\
u(x,0) = u_0(x),
\end{array} \right. \quad x \in \mathbb{R}, \quad t > 0,
\end{align*}
$$

(2.10)

where u is a real-valued function, $1 < \beta < 2$ and $k > 2\beta$ is an integer number.

First, consider the linear IVP

$$
\begin{align*}
\left\{ \begin{array}{l}
\partial_t u - D^\beta \partial_x u = 0, \\
u(x,0) = u_0(x),
\end{array} \right. \quad x \in \mathbb{R}, \quad t \in \mathbb{R},
\end{align*}
$$

(2.11)
The solution of (2.11) is given by the unitary group \(\{U_\beta(t)\}_{t=-\infty}^{\infty} \) such that
\[
 u(t) = U_\beta(t)u_0(x) = \int_{\mathbb{R}} e^{i(t|x|^2+\xi x)}\hat{u}_0(\xi)d\xi.
\] (2.12)

We start by recalling the following estimates proved in [20].

Lemma 2.1. Assume \(1 < \beta < 2 \). For \(0 < T < 1 \), there exists a constant \(C > 0 \) such that

(i) For all \(u_0 \in L^2 \),
\[
 ||U_\beta(t)u_0||_{L^\infty_TL_x^2} \leq C||u_0||_{L^2}.
\]

(ii) There exists \(\gamma > 0 \) such that for all \(u_0 \in H^{\beta/2} \),
\[
 ||\partial_x U_\beta(t)u_0||_{L^\infty_TL_x^2} \leq CT^\gamma||u_0||_{H^{\beta/2}}.
\]

(iii) For all \(u_0 \in H^s \), where \(s > \frac{3}{4} - \frac{\beta}{2} \),
\[
 ||U_\beta(t)u_0||_{L^{2+}_{2}L^\infty_T} \leq C||u_0||_{H^{s}}.
\]

(iv) For all \(g \in L^1_TL^2_x \),
\[
 ||D^{\beta/2}\int_0^t U_\beta(t-t')g(\cdot,t')dt'||_{L^\infty_TL^2_x} \leq C||g||_{L^1_TL^2_x}.
\]

(v) For \(0 \leq t < \beta \), there exists \(\gamma > 0 \) such that
\[
 ||D^s\int_0^t U_\beta(t-t')g(\cdot,t')dt'||_{L^\infty_TL^2_x} \leq CT^\gamma||g||_{L^s_L^2}.
\]

(vi) There exists \(\gamma > 0 \) such that
\[
 ||\int_0^t U_\beta(t-t')g(\cdot,t')dt'||_{L^\infty_TL^2_x} \leq CT^\gamma||g||_{L^1_TL^2_x}.
\]

Proof. See Lemma 1 in [20].

Corollary 2.2. Assume \(1 < \beta < 2 \), \(k > 2\beta \) and let \(1/2+ \) denotes any number bigger than \(1/2 \). The following statements hold.

(i) For all \(u_0 \in H^{1/2+} \),
\[
 ||U_\beta(t)u_0||_{L^k_\infty L^\infty_T} \leq C||u_0||_{H^{1/2+}}.
\]

(ii) For all \(g \in L^1_TL^2_x \) such that \(\partial_x g \in L^2_TL^2_x \),
\[
 ||\int_0^t U_\beta(t-t')\partial_x g(\cdot,t')dt'||_{L^{1/2}_{L^\infty_T}L^{k}_{\infty}} \leq C||\partial_x g||_{L^1_TL^2_x}.
\]

Proof. From Lemma 2.1 (iii), we have
\[
 ||U_\beta(t)u_0||_{L^{2+}_{2}L^\infty_T} \leq C||u_0||_{H^{1/2+}}.
\] (2.13)

Also, from Sobolev’s embedding,
\[
 ||U_\beta(t)u_0||_{L^{\infty}_{\infty}L^{2+}_T} \leq C||u_0||_{H^{1/2+}}.
\] (2.14)

Hence, (i) follows just interpolating (2.13) and (2.14).

The proof of (ii) follows exactly as in [20] Lemma 1-(xi)]. Indeed, let \(P_n \) be the projection on frequencies \(\simeq 2^n \) and define
\[
 T_n g(\cdot,t) = \int_0^t U_\beta(t-t')P_n \partial_x g(\cdot,t')dt',
\]
Choose a number $1/2^+<1/2^+<\beta/2$. Then, by (i), localization in frequencies, and Lemma 2.1-(iv), we deduce
$$
\|\tilde{T}_n g\|_{L^1_t L^\infty_x} = \|U_{\beta}(t) \int_0^T U_{\beta}(-t')P_n \partial_x g(t', t')dt'\|_{L^1_t L^\infty_x}
\leq C2^{n((1/2^+)-\beta/2)}\|D^{\beta/2}\int_0^T U_{\beta}(-t')P_n \partial_x g(t', t')dt'\|_{L^2_t}
\leq C2^{n((1/2^+)-\beta/2)}\|\partial_x g\|_{L^1_t L^\infty_x}.
$$
The conclusion then follows from the Christ and Kiselev lemma (see [30, Lemma 3]), as in [20].

Now we are able to prove the following well-posedness result.

Theorem 2.3. Let $1<\beta<2$ and $k>2\beta$. For any $u_0 \in H^{\beta/2}(\mathbb{R})$, there exist $T=T(\|u_0\|_{H^{\beta/2}})>0$ and a unique solution of the IVP (2.10), defined in the interval $[0, T]$, such that
$$
u \in C([0, T]; H^{\beta/2}(\mathbb{R})),
$$
(2.15)
and
$$
\|\partial_x u\|_{L^\infty_t L^2_x} < \infty,
$$
(2.16)
and
$$
\|u\|_{L^1_t L^\infty_x} < \infty.
$$
(2.17)
Moreover, for any $T' \in (0, T)$ there exists a neighborhood U of u_0 in $H^{\beta/2}(\mathbb{R})$ such that the map $\tilde{u}_0 \mapsto \tilde{u}(t)$ from U into the class defined by (2.15)–(2.17) is continuous.

Proof. As usual, we consider the integral operator
$$
\Psi(u)(t) = \Psi_{u_0}(u)(t) := U_{\beta}(t)u_0 - \int_0^t U_{\beta}(t-t')\partial_x (u^{k+1})(t')dt',
$$
(2.18)
and define the metric spaces
$$
\mathcal{Y}_T = \{u \in C([0, T]; H^{\beta/2}(\mathbb{R})); \|u\| < \infty \}
$$
and
$$
\mathcal{Y}_T^a = \{u \in \mathcal{Y}_T; \|u\| \leq a \},
$$
with
$$
\|u\| := \|u\|_{L^\infty_t H^{\beta/2}} + \|u\|_{L^1_t L^\infty_x} + T^{-\gamma}\|u_x\|_{L^1_t L^2_x}
$$
where $\gamma > 0$ is an arbitrarily small number and $a, T > 0$ will be chosen later. We assume $T \leq 1$.

First we estimate the $H^{\beta/2}$-norm of $\Psi(u)$. Let $u \in Y_T$. By using Lemma 2.1 (i) and (vi), and then Hölder’s inequality, we have

$$
\|\Psi(u)(t)\|_{L^p_T L^2_x} \leq \|U_\beta(t)u_0\|_{L^p_T L^2_x} + \| \int_0^t U_\beta(t-t')\partial_x(u^{k+1})(t')dt'\|_{L^p_T L^2_x}
$$

$$
\leq C\|u_0\|_{L^p_x} + C\|u^{k+1}\|_{L^2_t L^2_x},
$$

(2.19)

Also, using Lemma 2.1 (i) and (iv), and Hölder’s inequality, we get

$$
\|\partial_x \Psi(u)(t)\|_{L^p_T L^2_x} \leq \|\partial_x U_\beta(t)u_0\|_{L^p_T L^2_x} + \|\partial_x \int_0^t U_\beta(t-t')\partial_x(u^{k+1})(t')dt'\|_{L^p_T L^2_x}
$$

$$
\leq C\|u_0\|_{H^{\beta/2}} + C\|u^{k+1}\|_{L^2_t L^2_x},
$$

(2.20)

Now, in view of Lemma 2.1 (ii) and (v) (with $s=1$),

$$
\|\partial_x \Psi(u)(t)\|_{L^p_T L^2_x} \leq \|\partial_x U_\beta(t)u_0\|_{L^p_T L^2_x} + \|\partial_x \int_0^t U_\beta(t-t')\partial_x(u^{k+1})(t')dt'\|_{L^p_T L^2_x}
$$

$$
\leq C\|u_0\|_{H^{\beta/2}} + C\|u^{k+1}\|_{L^2_t L^2_x},
$$

(2.21)

Finally, taking a number $1/2+ < \beta/2$, an application of Corollary 2.2 yields

$$
\|\Psi(u)(t)\|_{L^p_t L^p_x} \leq \|U_\beta(t)u_0\|_{L^p_t L^p_x} + \| \int_0^t U_\beta(t-t')\partial_x(u^{k+1})(t')dt'\|_{L^p_t L^p_x}
$$

$$
\leq C\|u_0\|_{H^{\beta/2}} + C\|u^{k+1}\|_{L^2_t L^2_x},
$$

(2.22)

Choose $a = 6C\|u_0\|_{H^{\beta/2}}$, and $T > 0$ such that

$$
C a^{k+1} \leq \frac{1}{6}.
$$

Then, we see that $\Psi : Y_T^a \rightarrow Y_T^a$ is well defined. Moreover, similar arguments show that Ψ is a contraction. The rest of the proof uses standard arguments, thus, we omit the details.

\[\square \]

3. Global well-posedness in the energy space

Let us start by recalling the following sharp Gagliardo-Nirenberg type inequality.

Theorem 3.1. Let $k > 0$ and $1 < \beta < 2$, then the Gagliardo-Nirenberg inequality

$$
\|f\|_{L^{k+2}_x} \leq K_{\text{opt}} k^{k+2} \|D^{\beta/2} f\|_{L^2_x} \|f\|_{L^2_x}^{(2+(k+2)(\beta-1))\beta},
$$

(3.23)

holds, and the sharp constant $K_{\text{opt}} > 0$ is

$$
K_{\text{opt}} = \frac{(k+2)^{\beta/2}}{2+(k+2)(\beta-1)} \left[\frac{2+(k+2)(\beta-1)}{k} \right]^{1/\beta} \frac{1}{\|Q\|_{L^2_x}^{k/2}},
$$

(3.24)
where \(Q \) is the unique non-negative, radially-symmetric, decreasing solution of the equation
\[
D^\beta Q + Q - Q^{k+1} = 0. \tag{3.25}
\]

Proof. The sharpness of the constant in (3.24) was proved in [1, Theorem 2.1]. The uniqueness of the non-negative, radially-symmetric, decreasing (for \(x > 0 \)) solution of (3.25) was recently proved in [12] for the case \(\beta \in (1, 2) \). For \(\beta = 1 \) it was proved by Amick and Toland [2]. \(\square \)

Let us establish some useful identities involving the ground state \(Q \). First, by multiplying (3.25) by \(Q \), integrating over \(\mathbb{R} \), we obtain
\[
\int_{\mathbb{R}} Q^{k+2} \, dx = \|Q\|_{L^2}^2 + \|D^{\beta/2}Q\|_{L^2}^2. \tag{3.26}
\]

Second, by multiplying (3.25) by \(x \partial_x Q \), integrating, and applying integration by parts, we obtain
\[
\frac{2}{k + 2} \int_{\mathbb{R}} Q^{k+2} \, dx = \|Q\|_{L^2}^2 - (\beta - 1)\|D^{\beta/2}Q\|_{L^2}^2, \tag{3.27}
\]
where we have used the identity
\[
\int_{\mathbb{R}} x \partial_x Q(D^\beta Q) \, dx = \frac{\beta - 1}{2} \int_{\mathbb{R}} |D^{\beta/2}Q|^2 \, dx.
\]
Combining (3.26) with (3.27), we conclude that
\[
\frac{k}{2 + (k + 2)(\beta - 1)}\|Q\|_{L^2}^2 = \|D^{\beta/2}Q\|_{L^2}^2, \tag{3.28}
\]
and
\[
\frac{2 + (k + 2)(\beta - 1)}{k + 2} \int_{\mathbb{R}} Q^{k+2} \, dx = \beta\|Q\|_{L^2}^2. \tag{3.29}
\]

With these tools in hand, we are able to prove the following a priori estimate.

Proof of Theorem 1.1. We write the \(H^{\beta/2} \)-norm of \(u(t) \) using the quantities \(M(u(t)) \) and \(E(u(t)) \) and then use the sharp Gagliardo-Nirenberg inequality (3.23) to get
\[
\|D^{\beta/2}u(t)\|_{L^2}^2 = 2E(u_0) + \frac{2}{k + 2} \int_{\mathbb{R}} u^{k+2}(t) \, dx
\]

\[
\leq 2E(u_0) + \frac{2}{k + 2} K_{\text{opt}}^{k+2} \|u_0\|_{L^2}^{(2+(k+2)(\beta-1))/\beta} \|D^{\beta/2}u(t)\|_{L^2}^{k/\beta}. \tag{3.30}
\]

Let \(X(t) = \|D^{\beta/2}u(t)\|_{L^2}^2, \quad A = 2E(u_0), \) and
\[
B = \frac{2}{k + 2} K_{\text{opt}}^{k+2} \|u_0\|_{L^2}^{(2+(k+2)(\beta-1))/\beta}.
\]

Therefore, we can write (3.30) as
\[
X(t) - BX(t)^{k/2\beta} \leq A, \text{ for } t \in (0, T). \tag{3.31}
\]

Now let \(f(x) = x - Bx^{k/2\beta} \), for \(x \geq 0 \). The function \(f \) has a local maximum at
\[
x_0 = \left(\frac{2\beta}{kB}\right)^{2\beta/(k-2\beta)} \] with maximum value \(f(x_0) = \frac{k - 2\beta}{k \left(\frac{2\beta}{kB}\right)^{2\beta/(k-2\beta)}} \). If we require that
\[
2E(u_0) < f(x_0) \quad \text{and} \quad X(0) < x_0, \tag{3.32}
\]
the continuity of \(X(t) \) implies that \(X(t) < x_0 \) for any \(t \) as long as the solution exists.
Using (3.28) and (3.29), we immediately deduce that
\[E(Q) = \frac{k - 2\beta}{2(k + 2)(\beta - 1)} \|Q\|_{L^2}^2. \]
(3.33)

Therefore, a simple calculation shows that conditions (3.32) are exactly the inequalities (1.6) and (1.7). Indeed,
\[2E(u_0) < f(x_0) \iff 2E(u_0) < \frac{k - 2\beta}{k} \left(\frac{2\beta}{kB} \right)^{2\beta/(k - 2\beta)} \|Q\|_{L^2}^{2\beta/(k - 2\beta)} \]

Using the explicit form of \(K_{\text{opt}}^{k+2} \) in (3.24), we have
\[\left(\frac{2\beta}{kB} \right)^{2\beta/(k - 2\beta)} = \frac{k}{2 + (k + 2)(\beta - 1)} \|u_0\|_{L^2}^{2(2 + (k + 2)(\beta - 1))/(k - 2\beta)}. \]

Thus,
\[2E(u_0) < f(x_0) \iff E(u_0)\|u_0\|_{L^2}^{2(2 + (k + 2)(\beta - 1))/(k - 2\beta)} < \frac{(k - 2\beta)}{2(2 + (k + 2)(\beta - 1))} \|Q\|_{L^2}^{2(2 + (k + 2)(\beta - 1))/(k - 2\beta)} \]
\[\iff E(u_0)\|u_0\|_{L^2}^{2(2 + (k + 2)(\beta - 1))/(k - 2\beta)} < E(Q)\|Q\|_{L^2}^{2(2 + (k + 2)(\beta - 1))/(k - 2\beta)} \]
\[\iff E(u_0)^{s_k} M(u_0)^{\beta/2 - s_k} < E(Q)^{s_k} M(Q)^{\beta/2 - s_k}. \]

One see that the second inequality in (3.32) is equivalent to (1.7) in a similar way. Moreover the inequality \(X(t) < x_0 \) reduces to (1.8). The proof of Theorem 1.1 is thus completed. \(\square \)

Acknowledgments

L.G.F. was partially supported by CNPq and FAPEMIG/Brazil. F. L. was partially supported by CNPq and FAPERJ/Brazil. A. P. was partially supported by CNPq/Brazil.

References

[1] J. Angulo, J. L. Bona, F. Linares, and M. Scialom, Scaling, stability and singularities for nonlinear, dispersive wave equations: the critical case, Nonlinearity 15 (2002), 759–786.
[2] C. J. Amick and J. F. Toland, Uniqueness of Benjamin’s solitary-wave solution of the Benjamin-Ono equation, IMA J. Appl. Math. 46 (1991), 21–28.
[3] T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29 (1967), 559–592.
[4] N. Burq and F. Planchon, On the well-posedness of the Benjamin-Ono equation, Math. Ann. 340 (2008), 497–542.
[5] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Sharp global well-posedness for KdV and modified KdV on R and T, J. Amer. Math. Soc. 16, (2003), 705–749.
[6] J. Colliander, C. E. Kenig and G. Staffilani, Local well-posedness for dispersion generalized Benjamin-Ono equations, Diff. and Int. Eqs 16 (2002), 1441–1471.
[7] L.G. Farah, F. Linares and A. Pastor, The supercritical generalized KdV equation: Global well-posedness in the energy space and below, Mathematical Research Letters 18 (2011), 357–377.
[8] G. Fonseca, F. Linares, and G. Ponce, The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire.

[9] G. Fonseca, F. Linares, and G. Ponce, The well-posedness results for the dispersion generalized Benjamin-Ono equation via the contraction principle, preprint.

[10] G. Fonseca, F. Linares, and G. Ponce, The I.V.P for the Benjamin-Ono equation in weighted Sobolev spaces II, J. Funct. Anal. 262 (2012), 2031–2049.

[11] G. Fonseca and G. Ponce, The I.V.P for the Benjamin-Ono equation in weighted Sobolev spaces II, J. Funct. Anal. 260 (2011), 436–459.

[12] R. L. Frank and E. Lenzmann, Uniqueness and nondegeneracy of ground states for \((-\Delta)^s Q + Q - Q^{a+1} = 0\) in \(\mathbb{R}\), to appear in Acta Math.

[13] Z. Guo, Local well-posedness for dispersion generalized Benjamin-Ono equations in Sobolev spaces, J. Differential Equations 252 (2012), 2053–2084.

[14] S. Herr, Well-posedness for equations of Benjamin-Ono type, Illinois J. Math. 51 (2007), 951–976.

[15] S. Herr, A. Ionescu, C. E. Kenig, and H. Koch, A para-differential renormalization technique for nonlinear dispersive equations, Comm. P. D. E. 35 (2010), 1827–1875.

[16] J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Commun. Math. Phys. 282 (2008), 435–467.

[17] A. D. Ionescu and C. E. Kenig, Global well-posedness of the Benjamin-Ono equation on low-regularity spaces, J. Amer. Math. Soc. 20 (2007), 753–798.

[18] R. J. Iorio, On the Cauchy problem for the Benjamin-Ono equation, Comm. P. D. E. 11 (1986), 1031–1081.

[19] C. E. Kenig and K. D. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Letters 10 (2003), 879–895.

[20] C. E. Kenig, Y. Martel, and L. Robbiano, Local well-posedness and blow up in the energy space for a class of \(L^2\) critical dispersion generalized Benjamin-Ono equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), 853–887.

[21] C. E. Kenig and F. Merle, Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case, Invent. Math. 166 (2006), 645–675.

[22] C. E. Kenig, G. Ponce, and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), 323–347.

[23] C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573–603.

[24] C. E. Kenig and H. Takaoka, Global well-posedness of the modified Benjamin-Ono equation with initial data in \(H^{1/2}\), Int. Math. Res. Not. (2006), Art. ID 95702.

[25] H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation on \(H^s(\mathbb{R})\), Int. Math. Res. Not., 26 (2003), 1449–1464.

[26] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 39 (1895), 22–433.

[27] Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the \(L^2\)-critical generalized KdV equation, J. Amer. Math. Soc. 15 (2002), 617–664.

[28] F. Merle, Existence of blow-up solutions in the energy space for the critical generalized Korteweg-de Vries equation, J. Amer. Math. Soc. 14 (2001), 555–578.

[29] L. Molinet and D. Pilod, The Cauchy problem for the Benjamin-Ono equation in \(L^2\) revisited, Analysis and PDE. 5 (2012), 365–395.

[30] L. Molinet and F. Ribaud, Well-posedness results for the generalized Benjamin-Ono equation with small initial data, J. Math. Pures Appl. 83 (2004), 277–311.

[31] L. Molinet and F. Ribaud, Well-posedness results for the Benjamin-Ono equation with arbitrary large initial data, Int. Math. Res. Not. 70 (2004), 3757–3795.
[32] L. Molinet and F. Ribaud, *On global well-posedness for a class of nonlocal dispersive wave equations*, Discrete Contin. Dyn. Syst. 15 (2006), 657–668.

[33] L. Molinet, J.-C. Saut, and N. Tzvetkov, *Ill-posedness issues for the Benjamin-Ono and related equations*, SIAM J. Math. Anal. 33 (2001), 982–988.

[34] H. Ono, *Algebraic solitary waves on stratified fluids*, J. Phy. Soc. Japan 39 (1975), 1082–1091.

[35] G. Ponce, *On the global well-posedness of the Benjamin-Ono equation*, Diff. & Int. Eqs. 4 (1991), 527–542.

[36] J.-C. Saut, *Sur quelques généralisations de l’équations de Korteweg-de Vries*, J. Math. Pures Appl. 58 (1979), 21–61.

[37] T. Tao, *Global well-posedness of the Benjamin-Ono equation on H^1*, Journal Hyp. Diff. Eqs. 1 (2004) 27-49. Int. Math. Res. Not., Art. ID 95702 (2006), 1–44.

[38] S. Vento, *Well-posedness for the generalized Benjamin-Ono equations with arbitrary large initial data in the critical space*, Int. Math. Res. Not. IMRN (2010), 297–319.

[39] M. I. Weinstein, *Solitary waves of nonlinear dispersive evolution equations with critical power nonlinearities*, J. Diff. Eqs 69 (1987), 192–203.