REVIEW

LEAFY COTYLEDONs: old genes with new roles beyond seed development [version 1; peer review: 2 approved]

De Niu, Yuehui He

National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, China

Abstract

Seed development is a complex process and consists of two phases: embryo morphogenesis and seed maturation. LEAFY COTYLEDON (LEC) transcription factors, first discovered in *Arabidopsis thaliana* several decades ago, are master regulators of seed development. Here, we first summarize molecular genetic mechanisms underlying the control of embryogenesis and seed maturation by LECs and then provide a brief review of recent findings in the role of LECs in embryonic resetting of the parental ‘memory of winter cold’ in Arabidopsis. In addition, we discuss various chromatin-based mechanisms underlying developmental silencing of *LEC* genes throughout the post-embryonic development to terminate the embryonic developmental program.

Keywords

Seed development, LEC1, LEC2, FUS3, pioneer transcription factor, embryonic reprogramming, vernalization, FLC

Open Peer Review

Reviewer Status

Invited Reviewers

1

2

version 1

published

27 Dec 2019

F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1 Loïc Lepiniec, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Paris, France

2 Miriam Calonje Macaya, Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-University of Seville), Seville, Spain

Any comments on the article can be found at the end of the article.
Introduction

Plant seeds are composed mainly of three distinct compartments: embryo, endosperm, and seed coat. Seed development is a complex and critical stage in the life cycle of higher plants. This development process is classified generally into two different phases: a morphogenesis phase, which is initiated after fertilization and consists of cell division and differentiation, apical–basal plant axis establishment, and organogenesis, and a maturation phase, which includes organ expansion, storage macromolecule accumulation, and acquisition of desiccation tolerance. Each stage of seed development is regulated by a number of transcription factors (TFs), among which are LEAFY COTYLEDON (LEC)1, LEC2, and FUSCA3 (FUS3). These three genes, first identified in Arabidopsis, are master transcriptional regulators in seed development. Loss-of-function mutations in LEC1, LEC2, or FUS3 lead to a partial loss of embryo identity and give rise to a homeotic ‘leafy cotyledon’ phenotype: embryos with cotyledons characteristic of leaf traits (for example, trichome development and anthocyanin accumulation). When ectopically expressed during vegetative phases, these genes can induce somatic embryogenesis. Hence, these genes constitute the group of LEC genes and appear to be evolutionarily conserved across angiosperms to control seed development from embryogenesis through seed maturation.

Old story: LEC genes are master regulators of seed development

LEC1 encodes a subunit of a trimeric nuclear factor Y (NF-Y) TF and its expression is *de novo* activated shortly after fertilization. Both LEC2 and FUS3 encode plant-specific B3-domain TFs and their expression in early embryos is *de novo* activated within 2 and 3 days after fertilization (DAFs), respectively. LEC1 partly promotes the expression of both LEC2 and FUS3. These three master TFs regulate thousands of genes from early through late stages during seed development in Arabidopsis and function in partial redundancy as well as synergistically to control seed development. The LEC1-bearing heterotrimeric NF-Y, through a DNA-binding subunit (NF-YA), binds the CCAAT motif of the target gene to regulate their expression. Various genetic and molecular analyses reveal that LEC1 is a central regulator of seed development and controls embryonic morphogenesis such as to maintain suspensor identity and specifying cotyledon identity and seed maturation, including biosynthesis of storage macromolecules, acquiring desiccation tolerance, and seed dormancy. Recent studies show that LEC1 sequentially regulates distinct sets of genes involved in seed development from early through late stages by coordinating with distinctive TFs and hormones at different stages. In early embryogenesis, LEC1 directly regulates the expression of the HD-ZIP III TFs PHAVOLUTA and PHABULOSA (functioning as apical fate master regulators), and the basic leucine zipper (bZIP) TF SCARECROW that controls root architecture, to promote the establishment of the apical–basal plant axis in embryogenesis. In addition, upon a high level of GA accumulation and consequent degradation of the DELLA protein (a LEC1 partner), LEC1 is released to activate the expression of the auxin-biosynthesis genes, including *YUC4* and *YUC10*, leading to auxin accumulation to facilitate embryo morphogenesis. In the embryo/seed maturation phase, for instance, LEC1 activates the expression of CRUCIFERIN (encoding a seed storage protein) and FATTY ACID DESATURASE3, leading to the accumulation of seed storage macromolecules.

Apart from the CCAAT motif, recent genome-wide analyses of LEC1 occupancy reveal that other *cis*-regulatory elements are enriched in LEC1 target genes in seed development, including Ry (CATGCA), Abre ([C/G/T]ACGTG/T(A/C)] and G-box (CACGTG). This indicates that LEC1 may partner with other DNA-binding proteins to regulate seed gene expression. It has recently been shown that LEC1 can interact with LEC2 to form a ternary complex that regulates seed gene expression, in addition, LEC2 and FUS3 can form a heterodimer. The DNA-binding B3 domains in both LEC2 and FUS3 recognize the Ry motif or its variants; hence, it is not surprising that the Ry motif or variants are enriched in LEC1-binding sites. Consistent with similar seed phenotypes in *lec1*, *lec2*, and *fus3*, these three genes regulate common sets of genes that are involved in embryogenesis or seed maturation or both. Nevertheless, these three genes each have distinct targets in seed development. Thus, these genes have partially overlapping as well as synergistic functions in the control of seed development.

New function: LEC genes reset the parental ‘memory of winter cold’ in early embryogenesis

Many over-wintering plants in temperate climates acquire competence to flower in spring after experiencing winter cold (prolonged cold exposure) through a process known as vernalization. The vernalization pathways shut down the expression of a potent floral repressor and this vernalization-mediated repression or ‘vernalized state’ is maintained in cell divisions during subsequent growth and development when the temperature rises in spring, namely epigenetic ‘memory of winter cold’, enabling plants to flower in spring. However, the ‘memory of winter cold’ must be reset/erased in the next generation to ensure that each generation or growth cycle experiences winter cold prior to flowering and thus flowers at a right season to maximize reproductive success. In crucifers such as *Arabidopsis thaliana*, the vernalization pathway represses the expression of the potent floral repressor *FLOWERING LOCUS C* (*FLC*) to enable spring flowering. Recent studies reveal that shortly after fertilization *LEC1* functions as a pioneer TF to initiate *FLC* resetting/re-activation and that *LEC2* and *FUS3* subsequently function together with *LEC1* to fully re-activate *FLC* expression in early embryogenesis. Hence, these three LEC genes act to reset the parental ‘memory of winter cold’ during early embryogenesis in Arabidopsis.
active chromatin modifiers such as the histone 3 lysine 4 (H3K4) methyltransferase complex COMPASS-like and the histone 3 lysine 36 (H3K36) methyltransferase EARLY FLOWERING IN SHORT DAYS (EFS, also called as SDG8) and histone acetyltransferases. This leads to the establishment of an active chromatin environment with multiple active chromatin marks, including H3K4me3, H3K36me3, and histone acetylation, resulting in a high level of FLC expression. When the temperature drops in winter, two homologous B3-bearing proteins VP1/ABI3-LIKE 1 (VAL1) and VAL2 are specifically enriched at a 47-base pair cis-regulatory element encompassing two canonical RY motifs (known as ‘cold memory element’ or CME), located near the 5’ end of the first intron of FLC, to mediate FLC silencing by vernalization. VAL proteins further recruit Polycomb group (PcG) proteins such as Polycomb repressive complex 2 (PRC2, an H3K27 methyltransferase complex) that deposits the repressive histone mark H3K27 trimethylation (H3K27me3), leading to a silenced chromatin state at FLC and consequent FLC silencing by vernalization. After return to warmth, the silenced FLC chromatin is stably maintained or ‘memorized’ through cell divisions during subsequent growth and development through DNA replication-coupled H3K27 trimethylation by PRC2.

The epigenetic ‘memory of winter cold’ is reset in the next generation. A recent study has revealed that a LEC1-bearing NF-Y (LEC1 NF-Y) pioneer TF initiates FLC re-activation/resetting shortly after fertilization. Loss of LEC1 function disables FLC resetting in early embryogenesis and thus FLC remained silenced in the next generation in the absence of winter cold exposure. LEC1 NF-Y binds to CCAAT motifs located in a distal FLC 5’ promoter region, enabling the CME to be accessible to LEC2 and FUS3. The B3 domains of LEC2, FUS3, VAL1, and VAL2 bind to CME in an identical manner. In early embryogenesis, LEC2 and FUS3 are progressively enriched at the CME region, whereas the levels of VAL proteins at CME are progressively reduced, resulting in a disruption of PcG-mediated silencing at FLC inherited from the vernalized parents. On the other hand, LEC2 and FUS3 further recruit FR1 in complex with active chromatin modifiers to establish an active FLC chromatin state, resulting in embryonic FLC re-activation/resetting. The active embryonic FLC chromatin state can be transmitted to young seedlings upon seed germination and a high-level expression of FLC prevents precocious flowering prior to winter cold exposure.

Developmental silencing of LEC genes throughout post-embryonic development

LEC genes are specifically or primarily expressed in seed development and silenced throughout post-embryonic development under normal growth conditions. This terminates the embryonic developmental program. Following seed germination, plants enter vegetative growth and development. Furthermore, the silencing of LECs at seedling stages enables VAL1 and VAL2 to bind to CME at the FLC locus to mediate FLC silencing again by vernalization when winter cold comes, ensuring that each generation acquires competence to flower after experiencing winter.

LEC genes are silenced by chromatin-mediated mechanisms through repressive chromatin modifications throughout post-embryonic development. Following seed germination, histone deacetylases such as HDA6 and HDA19 are enriched at the LEC loci for histone deacetylation. In addition, Polycomb repressive complex 1 (PRC1), containing an E3 ubiquitin ligase AtBMI1A/AtBMI1B, is enriched at LEC loci to mediate histone H2A monoubiquitination (H2Aub), and after H2Aub marking, an H3K27 methyltransferase complex, PRC2, is recruited to deposit the repressive H3K27me3 for transcriptional repression at the LEC loci. In addition to the H2Aub marking, cis-regulatory DNA elements, Polycomb responsive elements (PREs), are required for PRC2 recruitment to both LEC2 and FUS3 chromatin; moreover, H3K27 trimethylation at LECs requires ATP-dependent nucleosome remodeling by PICKLE. The H3K27me3 mark at the LEC loci is read by LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) and two Bromo adjacent homology (BAH) domain-bearing proteins known as EARLY BOLTING IN SHORT DAYS (EBS) and SHORT LIFE (SHL). These readers further associate with the plant-specific EMBRYONIC FLOWER 1 (EMF1) that mediates chromatin compaction for transcriptional repression. In short, PRC1-mediated H2A monoubiquitination initiates the repression of LECs, followed by H3K27me3 deposition by PRC2 to establish stable silencing of LECs. This results in the switch from embryonic to post-germinative growth and development and thus termination of the embryonic developmental program.

Perspectives

LEC1, LEC2, and FUS3 play essential roles to regulate seed development from early through late stages. Although there is considerable understanding of the regulatory network of LECs, important questions remain to be answered. For example, how LECs and other transcriptional regulators function together to sequentially regulate various aspects of seed development at different stages. How is the expression of each LEC gene de novo activated in early embryogenesis? Within hours after fertilization, the expression of LEC1, functioning as a pioneer TF, is activated, but the underlying molecular and chromatin mechanisms are essentially unknown.

Plants are sessile and must endure diverse environmental challenges (for example, winter cold) by reprogramming transcriptional circuitry typically through chromatin modifications. At certain loci, some environment-induced chromatin marks are heritable through cell divisions after relief from environmental inputs. In addition to resetting/erasing of the winter cold–induced H3K27me3 at FLC, do LEC genes function to erase H3K27me3 at other loci and/or other chromatin marks in the Arabidopsis genome in early embryogenesis? Seeds are essential resources of nutrients for humans and animals. Addressing these and related questions will advance the molecular,
genetic, and epigenetic understanding of seed development, providing effective strategies for genetic manipulation of seed development toward high yield and better nutrients.

Abbreviations

CME, cold memory element; FLC, FLOWERING LOCUS C; FRI, FRIGIDA; FUS3, FUSCA3; H2Aub, histone H2A monoubiquitination; H3K27me3, histone 3 lysine-27 trimethylation; LEC1, LEAFY COTYLEDON1; LEC2, LEAFY COTYLEDON 2; LEC, LEAFY COTYLEDON; NF-Y, nuclear factor Y; PcG, Polycomb group; PRC1, Polycomb repressive complex 1; PRC2, Polycomb repressive complex 2; TF, transcription factor; VAL1, VIVIPAROUS/ABI3-LIKE 1; VAL2, VIVIPAROUS/ABI3-LIKE 2

References

1. Lo L, Pelletier JM, Harada JJ: Central role of the LEAFY COTYLEDON1 transcription factor in seed development. J Integr Plant Biol. 2019; 61(5): 564–80. PubMed Abstract | Publisher Full Text | F1000 Recommendation

2. Lepiniec L, Devic M, Roscoe TJ, et al.: Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. Plant Reprod. 2016; 31(3): 291–307. PubMed Abstract | Publisher Full Text | F1000 Recommendation

3. Meinke DW, Franzmann LH, Nickle TC, et al.: Leafy Cotyledon Mutants of Arabidopsis. Plant Cell. 1994; 6(8): 1049–1064. PubMed Abstract | Publisher Full Text | Free Full Text

4. Le BH, Cheng C, Bui AQ, et al.: Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci U S A. 2001; 98(20): 11806–11. PubMed Abstract | Publisher Full Text | Free Full Text

5. Stone SL, Kwong LW, Yee KM, et al.: LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci U S A. 2011; 108(3): 803–7. PubMed Abstract | Publisher Full Text | Free Full Text

6. Luerflein H, Krik V, Herrmann P, et al.: FUSCA3 encodes a protein with a conserved VP1AB1-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J. 1998; 15(6): 755–64. PubMed Abstract | Publisher Full Text

7. Pelletier JM, Kwong NW, Park S, et al.: LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Natl Acad Sci U S A. 2017; 114(32): E6710–E6719. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

8. Wang F, Perry SE: Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiol. 2013; 161(3): 1251–64. PubMed Abstract | Publisher Full Text | Free Full Text

9. Braybrook SA, Stone SL, Park S, et al.: Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci U S A. 2006; 103(9): 3468–73. PubMed Abstract | Publisher Full Text | Free Full Text

10. Smith ZR, Long JA: Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors. Nature. 2010; 464(7287): 423–6. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

11. Di Laurenzio L, Wysocka-Diller J, Malamy JE, et al.: The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell. 1996; 86(3): 423–30. PubMed Abstract | Publisher Full Text

12. Hu Y, Zhou L, Huang M, et al.: Gibberellins play an essential role in late embryogenesis of Arabidopsis. Nat Plants. 2018; 4(5): 289–98. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

13. Yamamoto A, Kagaya Y, Toyoshima R, et al.: Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors. Plant J. 2009; 58(5): 843–56. PubMed Abstract | Publisher Full Text

14. Moros A, Kelly AA, van Erp H, et al.: bZIP67 regulates the omega-3 fatty acid content of Arabidopsis seed oil by activating fatty acid desaturases3. Plant Cell. 2013; 25(8): 3104–16. PubMed Abstract | Publisher Full Text | Free Full Text

15. Junker A, Mönke G, Rutten T, et al.: Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana. Plant J. 2012; 71(3): 427–42. PubMed Abstract | Publisher Full Text

16. Baud S, Kelemen Z, Thèvenin J, et al.: Deciphering the Molecular Mechanisms Underpinning the Transcriptional Control of Gene Expression by Master Transcriptional Regulators in Arabidopsis Seed. Plant Physiol. 2016; 171(2): 1099–112. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

17. Boulard C, Thèvenin J, Tranquet O, et al.: LEC1 (NF-YB) directly interacts with LEC2 to control gene expression in seed. Biochim Biophys Acta Gene Regul Mech. 2018; 1861(5): 443–50. PubMed Abstract | Publisher Full Text

18. Tang LP, Zhou C, Wang SS, et al.: FUSCA3 interacting with LEAFY COTYLEDON2 controls lateral root formation through regulating YUTC4A gene expression in Arabidopsis thaliana. New Phytol. 2017; 213(4): 1740–54. PubMed Abstract | Publisher Full Text | F1000 Recommendation

19. Tao Z, Hu H, Luo X, et al.: Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis. Nat Plants. 2019; 5(4): 424–33. PubMed Abstract | Publisher Full Text

20. Ju X, Chong K: Remembering winter through vernalisation. Nat Plants. 2018; 4(12): 997–1009. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

21. Bouché F, Woods DP, Amasino RM: Winter Memory throughout the Plant Kingdom: Different Paths to Flowering. Plant Physiol. 2017; 173(1): 27–35. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

22. Andrés F, Coupland G: The genetic basis of flowering responses to seasonal cues. Nat Rev Genet. 2012; 13(9): 627–39. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

23. He Y, Li Z: Epigenetic Environmental Memories in Plants: Establishment, Maintenance, and Reprogramming. Trends Genet. 2018; 34(11): 856–66. PubMed Abstract | Publisher Full Text

24. Tao Z, Shen L, Gu X, et al.: Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature. 2017; 551(7678): 124–8. PubMed Abstract | Publisher Full Text

25. Michaels SD, Amasino RM: Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell. 2001; 13(4): 935–41. PubMed Abstract | Publisher Full Text | Free Full Text

26. Sheldon CC, Burn JE, Perez PP, et al.: The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell. 1999; 11(3): 445–58. PubMed Abstract | Publisher Full Text | Free Full Text

27. Choi K, Kim J, Hwang HJ, et al.: The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell. 2012: 23(1): 289–303. PubMed Abstract | Publisher Full Text

28. Ko JH, Mitina I, Tamada Y, et al.: Growth habit determination by the balance of histone methylation activities in Arabidopsis. EMBO J. 2010; 29(18): 3208–15. PubMed Abstract | Publisher Full Text | Free Full Text

29. Li Z, Jiang D, He Y: FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA stability in Arabidopsis. Nat. Plants. 2018; 4(10): 836–46. PubMed Abstract | Publisher Full Text | Free Full Text

30. Quesia J, Song J, Geraldo N, et al.: Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing of FLC during vernalization. Science. 2016; 353(6298): 485–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation

31. Yuan W, Luo X, Li Z, et al.: A cis cold memory element and a trans epigeome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nat Genet. 2016; 48(12): 1527–34. PubMed Abstract | Publisher Full Text | F1000 Recommendation

32. Jiang D, Berger F: DNA replication-coupled histone modification maintains...
Polyc bomb gene silencing in plants. Science. 2017; 357(6356): 1146–9.
Published Abstract | Publisher Full Text | F1000 Recommendation
33. Yang H, Berry S, Olsson TSG, et al.: Distinct phases of Polyc bomb silencing to hold epigenetic memory of cold in Arabidopsis. Science. 2017; 357(6356): 1142–5.
Published Abstract | Publisher Full Text
34. Zhou Y, Tan B, Luo M, et al.: HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings. Plant Cell. 2013; 25(1): 134–48.
Published Abstract | Publisher Full Text | Free Full Text
35. Chhun T, Chong SY, Park BS, et al.: HS2 Repressor Recruits MED13 and HD6 to Down-Regulate Seed Maturation Gene Expression Directly During Arabidopsis Early Seedling Growth. Plant Cell Physiol. 2016; 57(8): 1689–706.
Published Abstract | Publisher Full Text
36. Yang C, Bratzel F, Hohmann N, et al.: VAL- and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis. Curr Biol. 2013; 23(14): 1324–9.
Published Abstract | Publisher Full Text | F1000 Recommendation
37. Wang H, Liu C, Cheng J, et al.: Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-regulatory Elements. PLoS Genet. 2016; 12(1): e1005771.
Published Abstract | Publisher Full Text | F1000 Recommendation
38. Molitor AM, Bu Z, Yu Y, et al.: Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3Kme3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet. 2014; 10(1): e1004091.
Published Abstract | Publisher Full Text | Free Full Text
39. Bratzel F, López-Torrejón G, Koch M, et al.: Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitilation. Curr Biol. 2010; 20(20): 1853–9.
Published Abstract | Publisher Full Text | F1000 Recommendation
40. Merini W, Romero-Campero FJ, Gomez-Zambrano A, et al.: The Arabidopsis Polycomb Repressive Complex 1 (PRC1) Components AtBMI1A, B, and C Impact Gene Networks throughout All Stages of Plant Development. Plant Physiol. 2017; 173(1): 627–41.
PUBLished Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
41. Berger N, Dubreux B, Roudier F, et al.: Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27. Plant Cell. 2011; 23(11): 4065–78.
PUBLished Abstract | Publisher Full Text | Free Full Text
42. Xiao J, Jin R, Yu X, et al.: Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nat Genet. 2017; 49(10): 1546–52.
PUBLished Abstract | Publisher Full Text | F1000 Recommendation
43. Roscoe TJ, Vaissayre V, Paszkiewicz G, et al.: Regulation of FUSCA3 Expression During Seed Development in Arabidopsis. Plant Cell Physiol. 2019; 60(5): 476–87.
PUBLished Abstract | Publisher Full Text
44. Zhang H, Bishop B, Ringenberg W, et al.: The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27. Plant Physiol. 2012; 159(1): 418–32.
PUBLished Abstract | Publisher Full Text | Free Full Text
45. Li Z, Fu X, Wang Y, et al.: Polycomb-mediated gene silencing by the BAH-EMF1 complex in plants. Nat Genet. 2018; 50(9): 1254–61.
PUBLished Abstract | Publisher Full Text | F1000 Recommendation
46. Wang Y, Gu X, Yuan W, et al.: Photoperiodic control of the floral transition through a distinct polycomb repressive complex. Dev Cell. 2014; 28(6): 727–36.
PUBLished Abstract | Publisher Full Text
47. Calonje M, Sanchez R, Chen L, et al.: EMROYNIC FLOWER1 participates in polycomb group-mediated AG gene silencing in Arabidopsis. Plant Cell. 2008; 20(2): 277–91.
PUBLished Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Editorial Note on the Review Process
F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. Miriam Calonje Macaya
 Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-University of Seville), Seville, Spain
 Competing Interests: No competing interests were disclosed.

2. Loïc Lepiniec
 Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Paris, France
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com