Cs-131 as an experimental tool for the investigation and quantification of the radiotoxicity of intracellular Auger decays in vitro

Pil M. Fredericia, Mattia Siragusa, Ulli Köster, Gregory Severin, Torsten Groesser, and Mikael Jensen

The Hevesy Laboratory, DTU-Nutech, Roskilde, Denmark; Department of Chemistry, Institut Laue-Langevin, Grenoble, France

ABSTRACT
Purpose: In this work, we set out to provide an experimental setup, using Cs-131, with associated dosimetry for studying relative biological effectiveness (RBE) of Auger emitters.

Material and methods: Cs-131 decays by 100% electron capture producing K- (9%) and L- (80%) Auger electrons with mean energies of 26 keV and 3.5 keV, respectively, plus ≈ 9.4 very low energy electrons (<0.5 keV) per decay. Cs-131 accumulates in the cells through the Na⁺/K⁺-ATPase. By this uptake mechanism and the alkali chemistry of Cs⁺, we argue for its intracellular homogeneous distribution. Cs-131 was added to the cell culture medium of HeLa and V79 Cells. The bio-kinetics of Cs-131 (uptake, release, intracellular distribution) was examined by measuring its intracellular activity concentration over time. Taking advantage of the 100% confluent cellular monolayer, we developed a new and robust dosimetry that is entrusted to a quantity called S₀-value.

Results: The S₀-values evaluated in the cell nucleus are almost independent of the nuclear size and geometry. We obtained dose-rate controlled RBE-values for intracellular Cs-131 decay. Using the γH2AX assay, the RBE was 1 for HeLa cells. Using the clonogenic cell survival, it was 3.9 for HeLa cells and 3.2 for V79 cells.

Conclusion: This experimental setup and dosimetry provides reliable RBE-values for Auger emitters in various cell lines.

Introduction
The radiotoxic effects of Auger electrons have been investigated since the late 1960s-early 70s when the first cell studies with I-125 were performed (Feinendegen et al. 1971; Hofer and Hughes 1971). The increased radiotoxicity of Auger-electron emitters is a result of the simultaneous emission of several low-energy electrons during a single decay. Because of the low energy and the related short contorted path, these electrons deposit their energy within nm to μm range from the decay site of the radionuclide. This results in a high local energy deposition density, comparable to that produced by high LET radiation. If the decay happens in close proximity to the DNA, severe DNA damage is induced (Kassis and Adelstein 2005). Consequently, Auger-electron emitting radionuclides have the potential to damage single targeted cells while sparing the neighboring ones. This has led to the idea of using Auger-electron emitting radionuclides in targeted radionuclide therapy against cancer (Kassis 2004).

Great progress has been made in recent years in delivering Auger emitters specifically to the cell nucleus, utilizing receptor-mediated uptake and nuclear localization signal (Costantini et al. 2007; Leyton et al. 2011; Hoang et al. 2012). Nuclear localization is believed to be a requirement for successful Auger radionuclide therapy and the delivery and radiotoxicity of I-125, In-111 and Tc-99m have been studied intensely (Kassis 2003). Unfortunately, these radionuclides are, due to their chemistry, all prone to a complicated intracellular fate. Chemical modifications and de-labelling of the ligand and/or incorporation of the radionuclide into metabolites can result in a complex intracellular distribution. Consequently, the already complex absorbed dose calculations becomes even more problematic and subject to high uncertainties. Without a correct calculation of the absorbed dose at the cellular level, the radiotoxicity of Auger emitters cannot be properly quantified. In light of this, we here propose the use of a ‘new’ radionuclide, Cs-131, for in vitro experiments investigating the radiotoxicity of Auger emitters. Even though Cs-131 is not suitable for systemic radionuclide therapy in clinical or preclinical settings (because of its alkali chemistry), it has several characteristics that makes it a highly suitable ‘model’ isotope for in vitro studies of Auger-electron radiobiology.

CONTACT Pil M. Fredericia, pilf@dtu.dk, The Hevesy Laboratory, Center for Nuclear Technologies, Technical University of Denmark, Building 202, Frederiksborgvej 399, Roskilde, 4000, Denmark

Copyright © 2020 The Author(s). Published with license by Taylor & Francis Group, LLC. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Cs-131 is a ‘pure’ Auger-electron emitter, in the sense that it does not emit any significant β-radiation or conversion electrons. It has a half-life of 9.689 days and decays by electron capture (100%). In that process, an Auger K-electron with a mean energy of 26 keV (9%) and/or an Auger L-electron with a mean energy of 3.5 keV (80%) are emitted (NuDat2.72.7 2004). In the subsequent cascade, Auger-electrons of higher shells can also be emitted together with several Coster-Kronig and super Coster-Kronig electrons (often referred to as Auger-electrons). Overall an average of 10 electrons is released per decay, with an average energy of 0.6 keV per electron. Cs-131 decays to stable Xe-131 avoiding the complexity of further decay chain activity (NuDat2.72.7 2004).

As shown in this article, Cs-131 can readily be formed from reactor-produced Ba-131, using a simple ‘solution generator’ principle. This allows repeated biological experiments using the same irradiated batch of barium. Importantly, its alkali chemistry and the similarity to potassium in biological settings makes Cs-131 unlikely to be incorporated into biological molecules (Ussing 1959; Whittam and Ager 1964; Williams 1970; Davis et al. 1988; Avery 1995). Therefore, it should remain as a fully dissociated Cs⁺ ion inside the cell.

In this article, we demonstrate the use of Cs-131 for in vitro radiobiology research. We investigate its bio-kinetics and based on the obtained results and on its known alkali chemistry, argue for a homogeneous intracellular distribution. In order to obtain robust absorbed dose calculations for Cs-131 in realistic cellular geometries, we define the so-called Sₐ-values (where C means ‘concentration dependent’). With respect to cellular S-values, Sₐ-values are defined to be much less sensitive to variations in cellular dimensions. Therefore, they are less affected by the great biological variability of cellular and nuclear shapes and sizes.

We have demonstrated a new the experimental setup to obtain dose-rate controlled relative biological effectiveness (RBE)-values for intracellular Cs-131 decays in HeLa and V79 cells using γH2AX assay and clonogenic cell survival.

Material and methods

Production of Cs-131

Ba-131 (11.5 days half-life) was produced by high flux neutron bombardment at the ILL reactor (Institute Laue-Langevin, Grenoble, France) during 6–10 days at thermal neutron fluxes (1.1–1.3)×10¹⁵ cm⁻² s⁻¹ of either natural barium (25 mg carbonate, i.e. 17.4 mg barium) or 49% enriched Ba-130 (0.15 mg as nitrate). The irradiated targets were dissolved in hydrochloric acid, neutralized and re-precipitated with ammonium carbonate. The supernatant was spiked with sodium hydroxide, then dried and fired, leaving Cs-131 with ammonium carbonate. The supernatant was spiked solved in hydrochloric acid, neutralized and re-precipitated with sodium hydroxide, then dried and fired, leaving Cs-131 with NaCl carrier. The re-precipitated target with sodium hydroxide, then dried and fired, leaving Cs-131 with NaCl carrier. The re-precipitated target with sodium hydroxide, then dried and fired, leaving Cs-131 with NaCl carrier. The re-precipitated target with sodium hydroxide, then dried and fired, leaving Cs-131 with NaCl carrier. The re-precipitated target with sodium hydroxide, then dried and fired, leaving Cs-131 with NaCl carrier. The re-precipitated target with sodium hydroxide, then dried and fired, leaving Cs-131 with NaCl carrier.

Liquid scintillation counting

Cs-131 activity was measured by liquid scintillation counting (LSC) using the Hidex 300SL (Hidex, Turku, Finland). Samples (of maximum 1 ml volume) were added to oximate glass vials (PerkinElmer, Skovlunde, Denmark) containing 10 ml ultima gold scintillation fluid (PerkinElmer) and shaken thoroughly to ensure a proper mixing. Samples were counted using channel 218–480 covering approximate 7–60 keV, (K-Auger branch and possible K-X-ray interactions in the scintillation cocktail). The spectrometer was operated in the triple-double coincidence mode to minimize background and lower any quenching effects. The background was measured using a blank. To convert CPS to Bq a standard sample of Cs-131 was measured on a germanium X-ray detector (GMX 35195, Ortec, US). This was efficiency calibrated against a calibrated and traceable Am-241 source (40.7 kBq at the time of the efficiency calibration; AEA Technology QSA GmbH, Braunschweig, Germany) using the 26.3 keV and 59.5 keV X-rays from Am-241 and the 29.5 keV and 29.8 keV X-rays from Cs-131.

Cell culture

HeLa cells (human cervical cancer cell line, ECACC 93020103) were obtained from ECACC, Salisbury, UK through Sigma-Aldrich (St Louis, MO). V79 cells (Chinese hamster lung fibroblasts) were a generous gift from Dr. Priscilla K. Cooper (LBNL, Berkeley, CA, USA). Both cell lines were cultivated in DMEM medium (Sigma-Aldrich, Brøndby, Denmark) supplemented with 10% FBS (Sigma-Aldrich), 4 mM l-glutamine (Sigma-Aldrich) and 1% (v/v) antibiotic/antimycotic solution (working concentration: 100 U/ml penicillin, 0.1 mg/ml streptomycin, 0.25 μg/ml amphotericin B; Sigma-Aldrich) in a humidified atmosphere containing 5% CO₂ at 37°C (ESCO Cell Culture CO2 incubator, Holm & Halby, Brøndby, Denmark).

Cellular kinetics of Cs-131

For all experiments, Cs-131 was added to the cell culture in the form of CsCl (dissolved) and mixed with growth medium (DMEM, 10% FBS, 4 mM l-glutamine and 1% antibiotic, antimycotic). Cs-131 activity was measured by LSC and the data decay corrected to the beginning of measurement. The number of cells and their size/volume was measured using the Sceptor 2.0 Cell Counter from Millipore (Merck Millipore Darmstadt, Germany), unless otherwise stated.

Uptake of Cs-131 by the cells

HeLa and V79 cells were seeded in 48-well plates (Sarstedt, Nümbrecht, Germany) and grown overnight. The cells were washed with PBS (Sigma-Aldrich) and incubated with Cs-
131 at activity concentrations of 20 kBq/ml to 17 MBq/ml, for up to 8 h (in one case 24 h) at 37°C, 5% CO₂. After incubation, the cells were washed with PBS and trypsinized, using 0.1% trypsin (Gibco/ThermoFisher, Waltham, MA, USA) added 0.5 mM EDTA (Sigma-Aldrich) in PBS, for 3–5 min at 37°C, 5% CO₂. The cells were re-suspended in growth medium and the number of cells, their sizes and the Cs-131 activity measured for each sample. A control for the washing efficiency was made in which Cs-131 was added and immediately removed from the cells. The Cs-131 activity in this control was subtracted from the other samples. Dividing the Cs-131 activity by the total cellular volume (number of cells multiplied by the average cell volume) gave the cellular activity concentration for each sample. The absolute Cs-131 uptake varied from experiment to experiment. Therefore, for each experiment, the activity concentration was normalized to its value at 380 min for HeLa cells and 480 min for V79 cells. These time points were chosen by convenience, as they were available for most data sets.

Release of Cs-131 from the cells
HeLa and V79 cells grown in 48-well plates were incubated with Cs-131 (~20 kBq/ml) for 13–16 h, at 37°C, 5% CO₂, to allow cells to accumulate Cs-131. Thereafter, the cells were washed and incubated with fresh growth medium, not containing any Cs-131 for up to 10 h. Cells were washed with PBS, trypsinized (0.1% trypsin/0.5 mM EDTA in PBS for 3–5 min, at 37°C, 5% CO₂) and resuspended in growth medium. The number of cells, their size and the Cs-131 activity in each sample were measured. Data were normalized to the cellular activity concentration measured when Cs-131 was removed from the cells.

Inhibition of cellular Cs-131 uptake
HeLa and V79 cells grown in 48-well plates were washed with PBS and incubated for 5–6 h in Cs-131 containing medium (~20 kBq/ml) with added ouabain octahydrate (Sigma Aldrich; HeLa: 0 nM 10 nM, 50 nM, 0.1 μM, 0.5 μM, 1 μM, 5 μM; V79: 0 μM, 10 μM, 50 μM, 0.1 mM, 0.5 mM, 1 mM). The cells were washed in PBS, trypsinized (0.1% trypsin containing 0.5 mM EDTA in PBS at 37°C, 5% CO₂ for 3–5 min) and resuspended in growth medium. The number of cells, their size and the Cs-131 activity in each sample were measured.

Dosimetry

Cell culture geometry
The height of the cellular monolayer (CM), the nuclear shape and the size of HeLa and V79 cells were determined using confocal microscopy. Cells were seeded on high precision cover glasses with a thickness of 0.17 ± 0.01 mm and grown to full confluence overnight at 5% CO₂ and 37°C. The plasma membrane was stained with 5 μg/ml Germ Agglutinin (WGA) Oregon Green® 488, (Thermo Fisher scientific), in growth medium for 10-20 min at 5% CO₂ and 37°C. The nuclei were stained with 20 μg/ml Hoechst 33342 (Sigma-Aldrich) in growth medium for 10–20 min at 5% CO₂ and 37°C. Cells were washed in Hank’s Balanced Salt Solution (HBSS; Thermo Fisher Scientific). The staining and imaging were performed on living cells submerged in HBSS. The microscope used was a Laser Scanning Microscope (LSM 780) from Carl Zeiss provided and operated by the Core Facility for Integrated Microscopy, at the University of Copenhagen, Denmark. Seventy-one pictures of the HeLa cell culture were taken, with a spacing of 0.37 μm, covering an axial length of 26.08 μm. Fifty-nine pictures with a spacing of 0.37 μm, covering an axial length of 21.6 μm were taken of the V79 cell culture. The height of the cell layer and the sizes and shapes of the nuclei were determined afterwards using the Zeiss ZEN-lite software package (version 2.3, Carl Zeiss, Germany) operating directly on the Z-stack images. The top and bottom positions of the cell layer were evident by a sudden drop in the fluorescent intensity and the appearance of plasma membrane in the form of green spots ‘overlying’ the nuclei. The height was taken as the distance between these two positions given by the inbuilt scale in the ZEN software. The shape of the nucleus was assumed an ellipsoid. The maximum lengths of the axes in the horizontal plane were measured for each nucleus using the ZEN software. The length of the vertical axis was defined by the ‘distance’ between the top and bottom position at which the nuclei appeared and disappeared from the images. Of a total of 30 HeLa nuclei and 58 V79 nuclei fully visible in the images, the geometry of 29 HeLa nuclei and 50 V79 nuclei were determined.

Formalism of S_C-values: $S_C(N—CM)$
The S_C-values was developed for a 100% confluent CM in which the cell nuclei are dispersed (Figure 1). However, they can also be used for an 80% confluent monolayer (as exemplified in the γH2AX experiment), with only small changes in the dosimetry (described later). Cs-131 is equally dispersed throughout the cell (cytoplasm and nucleus) and thereby in the whole cell layer, given a geometry of a vertical cylinder, whose radius is much greater than its height. The assumption of the homogeneous distribution of Cs-131, will be elaborated on in the discussion section. The cell layer had a height of 10 μm for HeLa and 7.5 μm for V79 cells. The horizontal dimension of the cell layer can be considered as infinite: with 1 cm it was much longer than 21 μm, the longest-range electrons emitted by Cs-131 (Table 1). In our calculations, the CM is the radioactive source compartment,
while the cell nucleus (N) takes the role of target region. Such combination is symbolized as $S_c(N\rightarrow CM)$. The unit of the S_c-value is $1\text{ Gy}/(\text{Bq s})$.

A detailed spectrum of the electron energies for Cs-131 decay (Table 1) was provided by Boon Lee, and calculated as previously described in (Lee et al. 2016). Cole's empiric range parameterization in matter with 1 g/cm3 density (Cole 1969) was used to estimate the range. Monoenergetic electron emission dose kernels for a point source were calculated using the same method applied by MIRD for cellular S-values, i.e. by using Cole's empiric stopping power formula (Cole 1969; Goddu et al. 1997). Electrons with energies below 1 keV, were assumed to deposit all their energy at the cell layer itself. The part of the dose kernels extending in the vertical dimensions, was considered as lost of the cell layer. To get that, the composite dose kernel was convoluted with a activity concentration of 1 Bq/pl, giving each voxel in the logical matrix and the dose matrix were then multiplied. The S_c-value is then calculated by dividing the sum of the elements of the resulting matrix, by the number of elements contained in the logical matrix.

The absorbed dose to the nucleus in the clonogenic cell survival assay depends on both the uptake and release kinetics of Cs-131, while the absorbed dose to the nucleus in the γH2AX assay only depends on the uptake kinetics. The intracellular activity concentration was measured at the time point where the cells were removed from the Cs-131 containing medium and either processed for the γH2AX assay or seeded for the clonogenic cell survival assay. The Cs-131 activity concentration values, $A(t)$ were fitted to the formula:

$$A(t) = A_0 \cdot (1 - e^{-tk_a})$$

using the least square method. A_0 is the cellular activity concentration at equilibrium. The accumulation constant (k_a) was determined by the kinetic studies. k_a is not to be confused with the classical influx rate constant, as k_a depends on both the uptake and release of Cs-131 from the cell. The cumulated cellular Cs-131 activity to any time point is calculated as follow:

$$A^* = \int_0^t A_0 \cdot (1 - e^{-tk_a}) dt$$

for cells in γH2AX assay.

$$A^*(t) = \int_0^t A_0 (1 - e^{-tk_a}) dt + \int_{t_c}^{t_{440}} A_0' \cdot e^{-t'k_{out}} dt'$$

With $t' = t - t_c$ for cells in clonogenic cell survival where A_0' is the cellular activity concentration when the Cs-131 containing medium is removed from the cells at time t_c. k_{out} is the rate constant for Cs-131 release from the cells. The absorbed dose for the

Branch	Energy (keV)	Range (µm)	Average LET (keV/µm)	Yield (%)	Energy/decay (keV/Bq s)
Auger_KXY	33.0	21	0.29		
Auger_KLX	28.7	14	1.8	9.0	2.3
Auger_KLL	24.4	13	6.0		
'Long' range (>10 µm)	26.0	14	1.8	9.0	2.3
Auger_LXY	4.72	0.76	1.3		
Auger_LMX	4.00	0.58	18		
Auger_LMM	3.29	0.42	61		

Medium range (0.1–1 µm)

Branch	Energy (keV)	Range (µm)	Average LET (keV/µm)	Yield (%)	Energy/decay (keV/Bq s)
Auger_MXY	0.484	0.025	168		
CK_LXX	0.315	0.015	14		
Short range (10–100 nm)	0.33	0.02	21	262	0.9
CK_MMX	0.104	0.004	0.68		
CK_NXX	0.0489	0.002	76		
Auger_NXY	0.027	0.001	509		
SCK_NNN	0.012	0.001	94		
Very short range (<10 nm)	0.037	0.002	22	680	0.3
All	0.612	1018	6.2		

CK: Coster-Kronig; SCK: Super Coster-Kronig.
clonogenic assay were calculated for 24 h (1440 min). This
was seen as a reasonable time span considering the cell cycle
time of HeLa and V79 cells and the small amount of Cs-131
left in the cells after 24 h. The absorbed dose to the nucleus
is the cumulated activity, $A^*\cdot S_C$, times the S_C-value

\[
\text{Absorbed dose} = A^* \cdot S_C (N \leftarrow \text{CM}) \tag{4}
\]

The S_C-values used in the absorbed dose calculations
were $8.45 \times 10^{-4} \text{ Gy/(Bq s)/pl}$ for HeLa and $8.06 \times 10^{-4} \text{ Gy/}
(Bq s)/pl$ for V79. The S_C-value used in the absorbed dose
calculation for the 80% confluent HeLa cell layer was
$7.9 \times 10^{-3} \text{ Gy/(Bq s)/pl}$.

Irradiations

HeLa and V79 cells were seeded in 48-well plates (Sarstedt,
Nümbrecht, Germany) and grown overnight to reach 100%
confluence (cells used in ‘H2AX assay were only 80–100%
confluent). After exposure, cellular viability, cell number and
sizes were obtained using the Count and Viability Kit for
the Muse cell analyzer (Merck Millipore, MA, USA), according
to the manufacturer’s protocol and the Scepter 2.0 from
Millipore.

Internal radiation exposure with Cs-131

Cells were incubated in 200 µl growth medium containing
Cs-131 at activity concentrations of $\sim 15 \text{ MBq/ml (HeLa)}$ or
$\sim 7.5 \text{ MBq/ml (V79)}$ for 420 min or 480 min. After incubation,
the cells were washed with PBS, trypsinized (0.1% trypsin/0.5 mM
EDTA in PBS for 3–5 min, at 37°C, 5% CO₂)
and resuspended in growth medium. The number of cells,
their size and the Cs-131 activity were measured. In addi-
tion, cell number and viability were obtained using the
Count and Viability Kit and the Muse cell analyzer (Merck
Millipore, MA, USA), according to the manufacturer’s
protocol.

External radiation exposure with γ-rays

The reference exposures were performed using a Cs-137
γ-ray source (5 TBq at time of irradiation, from Canberra
Nucomat Universal Calibrator System, Canberra, Australia).
Cells were exposed in 200 µl growth medium in a small CO₂
incubator (compact Midi-40, VWR). The dose rate was con-
trolled by varying the distance to the source, in order to
match the dose rate profile of the internal Cs-131 exposures.
Dose rates between 22 and 490 mGy/h could be achieved
this way. After 360 or 480 min of exposure, cells were
washed with PBS and trypsinized (0.1% trypsin/0.5 mM
EDTA in PBS for 3–5 min, at 37°C, 5% CO₂). Cells for clo-
nonogenic cell survival were seeded in appropriate numbers in
T-25 flasks (VWR, Søborg, Denmark) and further exposed
to γ-rays for a total of 24 h exposure.

Assays to measure radiotoxicity

γH2AX

The γH2AX assay was performed on HeLa cells using the
‘Muse’, a small table top flow cytometer (Merck Millipore,
Billerica, MA) and the H2A.X Activation Dual Detection Kit
(Merck Millipore, Billerica, MA, USA). The cells were
treated according to the protocol provided by the manufac-
turer with minor modifications. Approximately 100,000 cells
were transferred to Eppendorf tubes and spun down at 300 g
for 5 min. The supernatant was discarded, and the pellet was
re-suspended in 100 µl assay buffer. The cells were centri-
fuged again for 5 min at 300 g, before being re-suspended in
a mixture of 100 µl assay buffer and 100 µl fixation buffer.
Fixation was performed on ice for 5 min, whereafter the cells
were spun down (300 g, 5 min), and the fixation buffer
removed. Cells were re-suspended in 200 µl assay buffer and
stored at 4°C for 1–3 days to allow pooling of all samples,
(cells exposed to Cs-131 or the reference radiation), before
performing the immunostaining and analysis. The cells were
spun down (at 300 g, 5 min) and the supernatant removed.
They were re-suspended in 200 µl ice cold permeabilization
buffer and incubated on ice for 5 min. Thereafter the cells
were centrifuged (300 g, 5 min), before the permeabilization
buffer was removed and the cells re-suspended in 90 µl assay
buffer. 25 µl (50 µl in total) of each of the two antibodies,
directed against the non-phosphorylated histone H2AX
(anti-Histone H2A.X-PECy5 conjugated antibody) and the
phosphorylated serine-139 H2AX (anti-phospho-Histone
H2A.X (Ser139)-Alexa Fluor®555) were added to the cells.
To the negative control, only the anti-Histone H2A.X-
PECy5 conjugated antibody was added. The cells were incu-
bated in the dark for 30 min at room temperature. 100 µl of
assay buffer was added to the cells, before they were centri-
fuged (300 g, 5 min) and the supernatant removed. The cells
were washed one more time in 200 µl assay buffer, before
being re-suspended in a suitable amount (100–200 µl) of
assay buffer and analyzed on the Muse cell analyzer from
Merck Millipore (Merck Millipore, Billerica, MA, USA). One
thousand cells were analyzed in each sample. The assay was
always done ‘in pair’, so cells exposed to Cs-131 and cells
exposed to γ-rays, were stained and analyzed together.
Based on the relative fluorescent intensity of the two antibodies,
the cells were divided into three categories; activated
(γH2AX positive), inactivated (γH2AX negative) and non-
expression (H2AX negative). The thresholds were set manu-
ellely for each ‘experimental pair’, so the amount of inacti-
vated cells were similar in the two controls. The γH2AX
responses were evaluated as the increase in activated cells
over control levels.

Clonogenic cell survival

Appropriate numbers of viable cells were seeded in T25
flasks and incubated at 37°C, 5% CO₂ for 7–9 days (V79) or
14 days (HeLa) to allow for colony formation. The cells were
washed with PBS before fixation and staining using 0.25%
or 0.5% (w/v) Crystal Violet in methanol (Sigma Aldrich)
for at least 30 min. The cells were washed in tap water and

\[
\text{Clonogenic cell survival} = \frac{\text{Number of colonies}}{\text{Number of seeded cells}} \times 100
\]
dried, before scoring. Cells that had formed colonies, consisting of at least 50 cells, were defined as survivors (Puck and Marcus 1956).

Results

Production of Cs-131

Using natural barium as target in the form of (25 mg carbonate, i.e. 17.4 mg barium) and 10 days for transport/decay before first Cs-131 extraction, 80 MBq Cs-131 was obtained. However, with an enriched Ba-130 target of 0.15 mg nitrate, 500 MBq Cs-131 was obtained from the first extraction. Cs-131 harvesting has been repeated up to four times on each neutron activated sample. No difference was seen in the purity or the cellular uptake profile whether the Cs-131 came from enriched or natural barium targets. In principle, the specific activity should approach carrier free conditions in both methods.

Cellular kinetics of Cs-131

Uptake of Cs-131 by the cells

The cells took up and accumulated Cs-131 when added to the growth medium. The intracellular concentration of Cs-131 increased until it reached equilibrium (Figure 2).

The cellular activity concentration of Cs-131 were 30 and 70 times higher in HeLa and V79 cells respectively, compared to the Cs-131 activity concentration in the medium. The absolute Cs-131 uptake varied from experiment to experiment, depending on several parameters e.g. the initial Cs-131 activity concentration in the medium. The cellular activity concentrations (at different time points) were therefore normalized to the activity concentration at 380 min (for HeLa cells) and 480 min (for V79 cells). These two time points were chosen to include as many data sets as possible but had otherwise no effect on the obtained results. To find the rate at which Cs-131 accumulated in the cells (k_a), the data were fitted to the function:

$$A(t) = A_0 \cdot (1 - e^{-t \cdot k_a})$$

using MATLAB Curve Fitting Toolbox (version 3.5.7, The Mathworks, Inc., Natick, MA, USA). The obtained values for A_0 and k_a are presented in Table 2.

Release of Cs-131 from the cells

The release of Cs-131 from HeLa and V79 cells is presented in Figure 3. Data were normalized to the cellular activity concentration measured when Cs-131 was removed from the cells and fitted using MATLAB (Curve Fitting Toolbox) to the function:

$$A(t) = A_0 \cdot e^{-t \cdot k_{out}}$$

$A(t)$, being the fraction of Cs-131 left in the cells at time (t) and A_0, the Cs-131 activity concentration in the cells at time point zero. The obtained values for A_0 and k_{out} are presented in Table 2.

Inhibition of cellular Cs-131 uptake

The cellular distribution of Cs-131 is important for the dosimetric calculations. To ensure that Cs-131 was taken up by the cells as ions, and not externally bound to the plasma membrane, we investigated whether the Cs-131 uptake could be inhibited. By blocking the Na$^+$/K$^+$-ATPase using ouabain we could inhibit the Cs-131 uptake by 88% in HeLa cell and 72% in V79 cells. The data were fitted to the sigmoid function

![Figure 2. Cellular uptake of Cs-131. Normalized intracellular Cs-131 activity concentration over time in HeLa (o) and V79 (+) cells. Data show the normalized intracellular activity concentration of Cs-131 at time t, relative to the intracellular activity concentration at time point 380 min (HeLa, A380) or time point 480 min (V79, A480). The data were obtained by seven (V79) and eight (HeLa) independent experiments.](image-url)
function:

\[f(x) = \text{Bottom} + \left(\frac{\text{Top} - \text{Bottom}}{1 + 10^{k_x \cdot \text{Log}(IC50)}} \right) \]

(7)

using in GraphPad prism 7.03 and are presented in Figure 4. The results confirm that Cs-131 is transported into the cells as ions and accumulated intracellularly.

Dosimetry

Cell culture geometry

The height of the CMs and the sizes of the nuclei were determined by confocal microscopy. A cross section of the 100% confluent CM can be seen in Figure 5. As is evident from the illustration, neighboring cells are so close to each other that their plasma membranes (green) are touching, leaving no space between them. A high cell density is central for the geometry assumed in the S\(C \)-value calculations and its verification is important for correct absorbed dose calculations. The average heights of the confluent cell layers were determined to be 10 \(\mu \)m for the HeLa cell culture and 7.5 \(\mu \)m for the V79 cell culture, with an estimated uncertainty of \(\pm 1-2 \mu \)m due the variations in cellular height (as evident from Figure 5) and to limitations of the confocal microscopy technique. The cell cultures used for the clonogenic assay had this level, 100%, of confluence, while the cell cultures used for the \(\gamma \text{H2AX} \) assay were 80% confluent.

Vertical dose distribution

When the cell culture is 100% confluent and Cs-131 is equally distributed throughout the whole cell (cytoplasm and nucleus), the dose distribution in the cell layer in the horizontal plane is constant (except for small edge effects near the wall of the cell culture well). The dose distribution on the vertical axis varies as shown in Figure 6. The dose distribution in the middle of the cell layer will approach the constant infinite volume approximation, corresponding to a S\(C \)-value of 9.94 Gy/(Bq s)/pl. The height of the cell layer was difficult to determine precisely. Therefore the effect on the dose distribution due to changes in this height was examined. The axial dose distribution for CMs with heights of 6 \(\mu \)m, 7.5 \(\mu \)m, 10 \(\mu \)m and 12 \(\mu \)m, either including or ignoring the dose contribution from the medium, are shown in Figure 6. Due to the high accumulation of Cs-131 in the cells, the dose contribution from Cs-131 present in the medium is small and can safely be ignored.
S₃C-values

S₃C-values (N—CM) for 29 (HeLa) and 50 (V79) nuclei, whose volume was estimated based on the images obtained by confocal microscopy, were calculated (Figure 7). In general, the nuclei displayed an ellipsoid shape rotated at different angles in respect to the horizontal plane. The volume of the cell nuclei ranged from 0.1 to 1.6 pl with a mean of 0.84 ± 0.30 pl (s.d.) for HeLa cells and from 0.1 to 1.4 pl with a mean of 0.53 ± 0.24 pl (s.d.) for V79 cells.

The non-constant axial dose distribution (Figure 6) will result in variation of the S₃C-values for nuclei of different volumes and rotations. These variations are however small as the axial dose distribution is relatively ‘flat’. The variation between the S₃C-values of the different nuclei is below 1% for HeLa cells and below 7.5% for V79 cells, even though the volumes of the nuclei differ by a factor of 10. As shown in Figure 7, the S₃C-values are almost independent of the nuclear volume.

The cell layer height was estimated to be 10 ± 2 μm and 7.5 ± 2 μm respectively for the HeLa and V79 cell cultures. To investigate the influence of the uncertainty of the height of the cell layer, S₃C-values for the HeLa and V79 nuclei were calculated using a height of 12 μm, 10 μm, 7.5 μm and 6 μm. On average the S₃C-values decreased by 8% for HeLa nuclei when the height of the cell layer was changed from 12 μm to 7.5 μm and by 10% for V79 nuclei when the height was changed from 10 μm to 6 μm (data not shown).

Radiotoxicity of Cs-131

To demonstrate the usefulness of the ‘new’ radionuclide Cs-131, the experimental setup and the S₃C-values, we investigated the radiotoxicity of intracellular Cs-131 decays using γH2AX and the clonogenic cell survival.

γH2AX assay

HeLa cells were exposed either to intracellular Cs-131 decays or to external γ-rays (reference radiation). To avoid a dose rate effect, the dose rate profile for the two exposures were matched, as described in the methods section. The γH2AX response increased with the absorbed dose, reaching a 3.5 fold increase (compared to control levels) after receiving ~5-6 Gy over 8 h of exposure. The γH2AX response was similar for the two exposures and no difference in the radiotoxicity was observed (Figure 8).

Clonogenic cell survival

Cells were exposed to either intracellular Cs-131 or to γ-rays (reference radiation) at similar dose rates. The HeLa cells were allowed to form colonies for 14 days before scoring. The V79 cells exposed to intracellular Cs-131 were incubated for 7 days, while the V79 cells exposed to the reference radiation were incubated 1–2 days longer (8–9 days). This extended amount of time for colony formation after γ-ray exposure cells can cause an overestimation of the RBE value for the V79 cells (Figure 9).

The HeLa cells were only exposed over a small range of absorbed doses. It was therefore not possible to see the presence of a potential shoulder on the survival curves. The data were therefore fitted to the linear model \(y = e^{-ax} \). This was also the case for the V79 cells exposed to reference radiation. However, the data points for the Cs-131 exposed V79 cells show a clear linear survival curve. The exact shape of survival curves depends on several experimental parameters and comparison with earlier published results are therefore difficult. However, considering the lower dose rate used in this study the observed radiation sensitivity of the V79 cells to γ-rays is comparable to what we found in earlier experiments published in (Siragusa et al. 2017).
Both the survival curves for the Cs-131 exposed cells and the γ-ray exposed cells were described by the linear model and the RBE is simply the ratio of the slopes of the two curves. An RBE value of 3.9 was found for intracellular Cs-131 decays in HeLa cells and a RBE of 3.2 was found for V79 cells.

Discussion
In this study, we examined the potential of a ‘new’ radioisotope, Cs-131, for investigating the radiotoxicity of Auger-electrons emitters in vitro. We studied the bio-kinetics of Cs-131 in HeLa and V79 cells. Based on the results, we developed and demonstrated an experimental setup as well as a new type of cellular S-values: the Sc-values. By combining these tools, the dosimetry becomes both remarkably simple and robust. We demonstrated the usefulness of this setup for investigating the RBE for intracellular Cs-131 Auger decays.

First, we have confirmed that Cs-131 can be made readily available without use of expensive enriched isotopes. The repeated generator-like precipitate extraction lends itself well to campaigns of radiation biology experiments. The required radiochemistry procedures and tools are simple and should...
be almost universally available. We found a first-principles way to calculate relevant S_C-values for realistic cell geometries in culture, taking advantage of the homogeneous distribution of the isotope in the cell. The simple cellular kinetic of Cs-131 and the robust dosimetry made this setup useful in studying and quantifying the Auger effect in vitro without the dosimetric uncertainties that come with more complicated Auger experiments setups.

Figure 6. Axial dose distributions for cellular monolayers of different heights. The axial dose distribution for cellular monolayers of different heights (6 µm, 7.5 µm, 10 µm and 12 µm) either ignoring or including the dose contribution from the medium is shown. A cellular accumulation factor of 30 for Cs-131 was used in the calculations. The 'bottom' of the cell layers is located at 0 µm, while the estimated top of the cell layer (used in S_C-value calculations) for HeLa and V79 cells is located at 10 µm and 7.5 µm, respectively. The maximum point dose for each of the cell layer heights were 8.80×10^{-4}, 8.51×10^{-4}, 8.12×10^{-4} and 7.82×10^{-4} Gy/(Bq s)/pl, respectively.

Figure 7. S_C-values for HeLa and V79 nuclei. The S_C-values ($S_C(N−CM)$) for the HeLa nuclei (o) ranged from 8.44×10^{-4} Gy/(Bq s)/pl to 8.46×10^{-4} Gy/(Bq s)/pl. The S_C-values for the V79 nuclei (+) ranged from 7.56×10^{-4} Gy/(Bq s)/pl to 8.11×10^{-4} Gy/(Bq s)/pl. Differences in the S_C-values for nuclei of similar volumes are due to differences in the lengths of their individual axes and to different orientations of the nuclei. Cellular monolayers with a height of 10 µm (HeLa) and 7.5 µm (V79), ignoring the dose contribution from the medium, were used in the calculations.

Cellular kinetics of Cs-131

Cs-131 was taken up by cells in a predictable manner when it was added to the medium. The cellular uptake and release of Cs-131 followed a first order kinetics, in which the Cs-131 uptake and release depends linearly on the initial Cs-131 concentration. Although the exact mechanism of the cellular uptake for Cs-131 is not of prime importance for the use as a cellular level radiobiology tool, we have tried to
support the basic assumption of cesium being pumped across the cell membrane by Na\(^+\)/K\(^+\)-ATPase as earlier proposed (Whittam and Ager 1964; Davis et al. 1988). Ouabain is a well-known inhibitor of this pump. We were able to partly block the Cs-131 uptake when ouabain was added to the Cs-131 containing medium in a concentration of 10\(^{-6}\) M (HeLa) or 10\(^{-3}\) M (V79), resulting in a threefold (V79) to eightfold (HeLa) lower cesium uptake. Increasing the ouabain concentration above 10\(^{-6}\) M did not have any further reducing effect on the cesium uptake in HeLa cells. Due to the vital importance of the Na\(^+\)/K\(^+\)-ATPase and the cellular toxicity of ouabain (Suhail 2010), a complete blocking of this pump is not feasible, and we did not attempt to block the uptake any further. It is likely that the ‘remaining’ Cs-131 is still transported by this pump or other potassium channels present in the mammalian plasma membrane (Aabert et al. 2002). It is also possible that Cs\(^+\) ions are able to penetrate the plasma membrane without transport through any channels (Shirai et al. 2013). Importantly, the uptake of Cs-131 by the Na\(^+\)/K\(^+\)-ATPase confirms that Cs-131 is transported into the cells in its ionic form. As Cs\(^+\) ions, due to their chemistry, do not bind to cellular constituents, they must remain as ions. This is of significance for the argumentation of the homogeneous intracellular distribution of Cs-131. Aqueous water-filled channels (part of the nuclear pore complex), located in the nuclear envelope, allow small metabolites, proteins and ions to diffuse freely in both directions between the cytoplasm and the nucleus (Knockenhauer and Schwartz 2016). With an effective diameter in the order of nanometers (Samudram et al. 2016) these pores easily allow (even hydrated) Cs\(^+\) to move freely between the two compartments, resulting in a homogeneous distribution of Cs-131 activity throughout the cell. An identical distribution of cesium and potassium has been experimentally confirmed by synchrotron-radiation induced X-ray fluorescence (SR-XRF) of plant cells (Ortega 2005; Isaure et al. 2006). A homogeneous distribution of potassium, after proper normalization for mass density variations, has also
been confirmed for numerous mammalian cells. Thus it has been demonstrated that potassium is indeed equidistributed in fibroblasts, (Zierold et al. 1984), human ovarian cancer (IGROV-1; Devès and Ortega 2002) and yeast (Ortega et al. 2004), pheochromocytoma (PC12; Kosior et al. 2012), and human phagocytic cells (Gramaccioni et al. 2018). Together these studies support the assumption of a homogeneous intracellular distribution of Cs-131. We note that a study in amphibian oocytes found a significant enhancement of K+ concentration in the cells’ nuclei (Dick 1978). However, these huge cells have hundred times larger linear dimensions and about one million times larger volumes than the mammalian cells studied in the present work and the K+ concentration gradient observed by (Dick 1978) seems not representative for our work. It is noteworthy that the techniques of SR-XRF, or electron- or proton-microprobe induced X-ray emission respectively, usually require fixation of the cells prior to the measurement. Dedicated comparisons found that chemical fixation methods and air-drying of the cells may modify the content of mobile elements such as alkali ions, while this issue does not occur with cryo-fixation (Perrin et al. 2015; Jin et al. 2017). A novel method using genetically encoded fluorescent probes even enables potassium imaging in life cells and one group reported a significant K+ concentration enhancement in the nucleus of HeLa cells (Bischof et al. 2017), while another group using slightly different fluorescent probes did not highlight such a variation (Shen et al. 2019). Future studies of the intracellular distribution of alkali ions and in particular of cesium would be beneficial to corroborate our basic assumption of their homogeneous intracellular distribution or, respectively, provide reproducible distribution data to adapt the dosimetry calculations accordingly.

Dosimetry

The geometry used to calculate the S_C-values was a 100% confluent CM (except for the \(\gamma\)H2AX assay where it was 80%). As Cs-131 was homogeneously distributed throughout the cells, the activity concentration in the whole cell culture is the same. The dose distribution in the cell culture must therefore depend only on the height of the cell layer. However, as seen in Figure 6, changes in this height only had a small effect on the dose distribution. Similarly, the S_C-values for HeLa and V79 nuclei are remarkably ‘stable’ within a range of biological and experimental variations in nuclei sizes and shapes (Figure 7). This stability exists even when the uncertainty of the cell layer height is considered. The stability in S_C-values is due to the geometry of the cell layer used, and to the unit of the S_C-values, being expressed as Gy/(Bq s)/pl. By expressing the S_C-values as Gy/(Bq s)/pl, (instead of Gy/(Bq s) as known from the MIRD cellular S-values), the total number of decays in the cells is normalized to their volumes. The normalized cumulative activity is then used in the absorbed dose calculations. In an infinite activity pool, the S_C-values would be totally independent of the size of the nuclei and have a value of 9.94×10^{-4} Gy/(Bq s)/pl (for all nuclei).

Experimental setup

With the robust S_C-values and the simple and known uptake and release kinetics of Cs-131, it is easy to plan and obtain the desired absorbed doses and dose rates for an experiment. From direct cell measurements, we have found the activity per cell sample (as function of time), the total number of cells and the cell volume (as a statistical distribution). With this, supplemented with our knowledge of the kinetics, the activity per cell volume and, the cumulated activity at any time in the experiment can be calculated. An achieved cumulated activity of 8.000 Bq s, corresponding to an absorbed dose of 6 Gy could be reached within 8 h.

Using this setup, clonogenic cell survival curves and \(\gamma\)H2AX dose effect curves were produced for V79 and HeLa cells. Dose-rate controlled RBE values were calculated for intracellular Cs-131 exposure. The maximum concentration of cesium used was 35 nM (4.6 ng Cs gram of solution), which is less than the typical cesium levels in human tissue (Williams and Leggett 1987) and a cytotoxic effect of cesium can therefore be ruled out. No increase in effectiveness of Cs-131 compared to external \(\gamma\)-rays was observed in HeLa cells for the phosphorylation of histone H2AX (RBE = 1). Nevertheless, from the clonogenic cell survival data, RBE values of 3.2 and 3.9 were found for intracellular Cs-131 decays in V79 and Hela cells, respectively. These RBE results should be seen as preliminary and prove that the experimental setup can be used to study radiation induced biological effects. We have to interpret them with the caveat that the \(\gamma\)-ray exposed V79 cells had 1 or 2 days more time to form colonies than the Cs-131 treated cells and therefore an over-estimation of the RBE value cannot be ruled out. The lower RBE value obtained by \(\gamma\)H2AX compared to clonogenic cells survival, can be a result of the relatively low expression of H2AX histones (2% of the total H2A histones) in HeLa cells (Bonner et al. 2008). Or it can simply be a result inherent in different methods applied. Indeed, RBE values for high LET radiation, obtained by detection of DNA dsb are often lower than RBE values obtained by other methods (Prise et al. 1998). This has also been observed for Auger emitters (Kriehuber et al. 2004).

The activity concentration of Cs-131 in the cells and so the absorbed dose and dose rate depends only on the activity concentration of Cs-131 in the medium and so the desired absorbed doses and dose rates can be obtained by adjusting the Cs-131 activity added to the medium. This points to a future extension of this method for the measurement of DNA damage from semi-chronic exposure to low levels of intracellular Auger emitters especially relevant in radiation protection. The easily controllable dose rate allow for an experimental setup in which the dose rate can be matched to other (externally) available sources. This is of great advantage for experiments in which the quantitative effect of Auger-electron emitters is compared to other types of radiation for example when investigating RBE-values as it is done here. Further, the method can be used with many different exposure modifications to study the effect of hypoxia, scavengers, dose-rate, drugs, cell types and so forth.
As evident by the different k_a and k_{out} for HeLa and V79 cells, the kinetic time constants differ between the two cell types and so these constants will have to be determined individually as shown. However, the Na$^+$/K$^+$-ATPase, by which Cs-131 is transported, is present in the plasma membrane of all mammalian cells (Suhail 2010), and so the experimental setup can easily be used for other mammalian cell lines than HeLa and V79 cells. The transport of K$^+$ across the cell membrane or cell wall is vital for an organism’s ability to maintain its membrane potential (Suhail 2010), and Cs-131 can be expected to be transported into other cell types or organisms, by a variety of K$^+$ transporters. These cells/organisms include non-mammalian cells (Latorre and Miller 1983), bacteria (Zhang et al. 2014), algae (Avery et al. 1991, 1993) and fungi (Avery 1995).

The $S_{C^{-}}$-values presented here with the same beneficial features, can also be calculated for other radionuclides than Cs-131 and the experimental setup can be modified to include these. The main requirement is the homogeneous inter- and intra-cellular distribution of the radionuclide. The dose contribution from the medium depends on the accumulation factor and the electron energies. However, as long as the activity concentration in the cells is at least the same as in the medium, it will in general either be neglectable or contribute to the ‘stabilisation’ of the $S_{C^{-}}$-values.

Conclusion

In this study, we investigate the bio-kinetics of Cs-131 uptake by a cell culture model and use it to investigate the radiotoxicity of Auger emitters. To the best of our present knowledge, cesium is quite evenly distributed throughout the cell. It thus constitutes a ‘dumb’ Auger-therapy agent but is excellently suited for studies of the biological response. The robust dosimetry circumvents the high uncertainty in the absorbed dose calculations, related to biological variations in cell and nuclei sizes and shapes, which might mask the ‘real’ biological response to Auger electrons. Our method is relatively simple to establish and lends itself to many different exposure modifications (dose-rate, oxygen level, scavengers, cell types) and possibly also other radionuclides. We therefore believe it will be an important new tool for the necessary investigation of the underlying mechanism behind the biological effect of Auger-electron emitters.

Acknowledgements

The authors thank Boon Quan Lee from Department of Nuclear Physics at Australian National University, Canberra, for theoretical calculation of the Cs-131 Auger-electron energies and yields. The authors acknowledge the Core Facility for Integrated Microscopy (CFIM), Department of Biomedical Science, University of Copenhagen for help with confocal microscopy of the cell cultures.

Disclosure statement

The authors report no conflicts of interest.

Notes on contributors

Pil M. Fredericia is a postdoctoral researcher at the Technical University of Denmark (DTU). She is investigating the biological response of low-energy electrons with a special focus on relative biological effectiveness (RBE) of Auger-electron emitters.

Mattia Siragusa is a postdoctoral researcher at the Technical University of Denmark (DTU). He is involved in cellular dosimetry calculations for low-energy electrons and in the development of computer-vision-based automated cell colony counters.

Gregory Severin is a nuclear physicist and radiochemist with special focus on isotope production and radionuclide purification. Of particular interest are the use of rare earth radiometals for diagnostics and therapeutics use in invasive diseases.

Ulli Koster is an experimental physicist at the Institut Laue-Langevin, Grenoble. He works in experimental nuclear physics and production of non-conventional medical isotopes.

Torsten Groesser is a researcher at the Technical University of Denmark (DTU). He is a biophysicist with experience in performing ionizing radiation experiments using low- and high-LET radiation including radioisotopes to study in-vitro radiation responses.

Mikael Jensen is a professor in applied nuclear physics at the Technical University of Denmark (DTU). He is an experimental nuclear physicist, with special focus on medical isotope production and radiochemistry.

ORCID

Pil M. Fredericia http://orcid.org/0000-0002-2824-0626

Mattia Siragusa http://orcid.org/0000-0002-4028-1404

Gregory Severin http://orcid.org/0000-0003-1189-7311

Torsten Groesser http://orcid.org/0000-0003-3143-1906

Mikael Jensen http://orcid.org/0000-0002-9109-2187

References

Aabert B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular biology of the cell. 4th ed. New York: Garland Science.

Avery S, Codd G, Gadd G. 1993. Transport kinetics, cation inhibition and intracellular location of accumulated caesium in the green microalga Chlorella salina. J Gen Microbiol. 139:827–834.

Avery SV, Codd GA, Gadd GM. 1991. Caesium accumulation and interactions with other monovalent cations in the cyanobacterium Synechocystis PCC 6803. J Gen Microbiol. 137:405–413.

Avery SV. 1995. Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity. J Ind Microbiol. 14:76–84.

Bischof H, Rebberg M, Stryeck S, Artinger K, Eroglu E, Waldeck-Weiermair M, Gottschalk B, Rost R, Deak AT, Niedrist T, et al. 2017. Novel genetically encoded fluorescent probes enable real-Time detection of potassium in vitro and in vivo. Nat Commun. 8:11.

Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y. 2008. GammaH2AX and cancer. Nat Rev Cancer. 8:957–967.

Cole A. 1969. Absorption of 20-eV to 50,000-eV electron beams in air and plastic. Radiat Res. 38:37–33.

Costantini DL, Chan C, Cai Z, Vallis KA, Reilly RM. 2007. 111In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J Nucl Med. 48:1357–1368.

Davis D, Murphy E, London R. 1988. Uptake of cesium ions by human erythrocytes and perfused rat heart: a cesium-133 NMR study. J Ind Microbiol. 14:76–84.

Deves G, Ortega R. 2002. Subcellular mass determination by 4He$^+$ energy-loss micro-spectrometry. Anal Bioanal Chem. 374:390–394.
Dick DA. 1978. The distribution of sodium, potassium and chloride in the nucleus and cytoplasm ofBufo bufo oocytes measured by electron microprobe analysis. J Physiol (Lond). 284:37–53.

Feinendegen L, Ertl H, Bond V. 1971. Biological toxicity associated with the Auger effect. In: Biophysical aspects of radiation quality. Vienna (Austria): IAEA; p. 1689–1699.

Goddu SM, Howel RW, Bouchet LG, Bloch WE, Rao D. 1997. MIRD cellular S values. Reston (VA): Society of Nuclear Medicine.

Gramaccioni C, Yang Y, Procopio A, Pancreanu A, Bohic S, Malucelli E, Iotti S, Farruggia G, Bukrevva I, Notargiacomo A, et al. 2018. Nanoscale quantification of intracellular element concentration by X-ray fluorescence microscopy combined with X-ray phase contrast nanotomography. Appl Phys Lett. 112:053701.

Hoang B, Reilly RM, Allen C. 2012. Block copolymer micelles target Auger electron radiotherapy to the nucleus of HER2-positive breast cancer cells. Biomacromolecules. 13:455–465.

Hofer K, Hughes W. 1971. Radiotoxicity of intracellular tritium, 125Iodine and 131Iodine. Radiat Res. 47:94–109.

Isaure MP, Fraysse A, Devès G, Le Lay P, Fayard B, Susini J, Bourguignon J, Ortega R. 2006. Micro-chemical imaging of cesium distribution in Arabidopsis thaliana plant and its interaction with potassium and essential trace elements. Biochimie. 88:1583–1590.

Jin Q, Paunesku T, Lai B, Gleber SC, Chen S, Finney L, Vine D, Vogt S, Woloschak G, Jacobsen C. 2017. Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based x-ray fluorescence microscopy. J Microsc. 265:81–93.

Kassis A. 2004. The amazing world of Auger electrons. Int J Radiat Biol. 80:789–803.

Kassis AI, Adelstein SJ. 2005. Radiobiologic principles in radionuclide therapy. J Nucl Med. 46:45–125.

Kassis AI. 2003. Cancer therapy with Auger electrons: are we almost there? J Nucl Med. 44:1247–1481.

Knochenuer KE, Schwartz TU. 2016. The nuclear pore complex as a flexible and dynamic gate. Cell. 164:1162–1171.

Kosior E, Bohic S, Suhonen H, Ortega R, Devès G, Carmona A, Marchi F, Guillet JF, Cloetens P. 2012. Combined use of hard X-ray phase contrast imaging and X-ray fluorescence microscopy for subcellular metal quantification. J Struct Biol. 177:239–247.

Kriehuber R, Riedling M, Simkö M, Weiss DG. 2004. Cytotoxicity, genotoxicity and intracellular distribution of the Auger electron emitter 65Zn in two human cell lines, Radiat Environ Biophys. 43:15–22.

Latorre R, Miller C. 1983. Conduction and selectivity in potassium channels. J Membr Biol. 71:11–30.

Lee BQ, Nikjoo H, Ekman J, Jönsson P, Stuchbery AE, Kibédi T. 2016. A stochastic cascade model for Auger-electron emitting radionuclides. Int J Radiat Biol. 92:1–13.

Leyton JV, Hu M, Gao C, Turner P, Dick JE, Minden M, Reilly RM. 2011. Auger electron radioimmunotherapeutic agent specific for the CD123+/CD131+ phenotype of the leukemia stem cell population. J Nucl Med. 52:1465–1473.

NuDat2.7. 2004. Release 2.7, National Nuclear Data Center (NNDC). New York: Brookhaven National Laboratory. [accessed 2019 March]. http://www.nndc.bnl.gov/nudat2/chartNuc.jsp

Ortega R, Bohic S, Tuouleou R, Somogyi A, Devès G. 2004. Microchemical element imaging of yeast and human cells using synchrotron X-ray microprobe with Kirkpatrick-Baez optics. Anal Chem. 76:309–314.

Ortega R. 2005. Chemical elements distribution in cells. Nucl Instrum Meth Phys Res B 231:218–223.

Perrin L, Carmona A, Roudeau S, Ortega R. 2015. Evaluation of sample preparation methods for single cell quantitative elemental imaging using proton or synchrotron radiation focused beams. J Anal at Spectrom. 30:2525–2532.

Prise KM, Ahnströrm G, Belli M, Carlsson J, Frankenberg D, Kiefer J, Löbrich M, Michael BD, Nygren J, Simone G, et al. 1998. A review of DSB induction data for varying quality radiations. Int J Radiat Biol. 74:173–184.

Puck TT, Marcus PL. 1956. Action of X-rays on mammalian cells. J Exp Med. 103:653–666.

Samudram A, Mangalassery BM, Kovshik M, Patincharath N, Varier GK. 2016. Passive permeability and effective pore size of HeLa cell nuclear membranes. Cell Biol Int. 40:991–998.

Shen Y, Wu SY, Rancic V, Aggarwal A, Qian Y, Miyashita SI, Ballanyi K, Campbell RE, Dong M. 2019. Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration. Commun Biol. 2:18.

Shirai O, Ohnuki T, Kitazumi Y, Kano K. 2013. Transport of cesium ion across a bilayer lipid membrane and its facilitation in the presence of iodide ion. Electroanalysis. 25:1823–1826.

Siragusa M, Baoioco G, Frederica PM, Friedland W, Groesser T, Ottolenghi A, Jensen M. 2017. The COOLER Code: a novel analytical approach to calculate subcellular energy deposition by internal electron emitters. Radiat Res. 188:204–220.

Suhail M. 2010. Na, K-ATPase: ubiquitous multifunctional transmembrane protein and its relevance to various pathophysiological conditions. J Clin Med Res. 2:17–30.

Tsuchiya M, Ochiya M, Tsuchiya K. 2003. Characterization of cesium, magnesium, and calcium. Q Rev Chem Soc. 24:361–365.

Ussing H. 1959. The alkali metal ions in isolated systems and tissues. In: Eichler O, Farah A, editors. Handbuch der experimentellen pharmakologie (Ergänzungswerk). 13th ed. Berlin: Springer; p. 1–29.

Whittam R, Ager M. 1964. Vectorial aspects of adenosine-triphosphatase activity in erythrocyte membranes. Biochem J. 93:337–348.

Williams LR, Leggett RW. 1987. The distribution of intracellular alkaline metals in reference Man. Phys Med Biol. 32:173–190.

Williams R. 1970. Tilden Lecture. The biochemistry of sodium, potassium, magnesium, and calcium. Q Rev Chem Soc. 24:331–365.

Zierold K, Schafer D, Pietruschka F. 1984. The element distribution in the nucleus and cytoplasm ofBufo bufo. J Physiol (Lond). 284:607–615.