Prevalence and Incidence of Dry Eye Disease in Asia: A Systematic Review and Meta-Analysis

Youran Cai Jintao Wei Jiaxin Zhou Wenjin Zou
Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Keywords
Dry eye disease · Prevalence · Incidence · Meta-analysis · Asia

Abstract
Background: Dry eye disease (DED) is the most common ocular surface disease, which severely affects the quality of life. An overall estimate of the prevalence, incidence, and risk factors of DED in Asia would help in planning and implementing appropriate public health strategies. Objectives: The present study aimed to study the epidemiology of DED in Asia. Methods: A comprehensive and systematic search was performed using several databases, including PubMed, Cochrane Library, and Web of Science, in January 2021. A random-effects meta-analysis was performed on logit-transformed prevalence and incidence rates to calculate pooled prevalence and incidence estimates. Meta-regression and subgroup analyses were performed to explain the heterogeneity. Results: Among the 6,742 articles identified, 23 were included in the analysis, with a total sample size of 1,488,935 subjects. Twenty studies reported the prevalence of DED in Asia, two studies reported the incidence, and one study reported both prevalence and incidence. The estimated pooled prevalence of DED in any population in Asia was 20.1% (95% confidence interval [Ozdemir et al., Acta Ophthalmol. 2019;97(1):e91–6]: 13.9–28.3%), and the incidence 16.7% (95% CI: 0–34.9%). The prevalence rate of DED in males and females was 16.4% (95% CI: 10.0–25.8%) and 21.7% (95% CI: 14.7–30.8%; p < 0.001), respectively. In general, the prevalence increased with age. The risk factors considered for specific populations were not significant, and the prevalence in the general population, excluding the populations considered at risk, was similar at 20.9% (95% CI: 12.8–32.1%). Conclusions: DED is common in Asian populations and causes a significant disease burden. Its prevalence is higher in females than that in males, and it tends to increase in severity with age. Further research on additional risk factors is needed to adequately explain the epidemiology of DED in Asia. © 2022 The Author(s). Published by S. Karger AG, Basel

Background

Dry eye disease (DED) is the most common ocular surface disease – it is multifactorial and characterized by an unstable tear film, which leads to a variety of symptoms and visual impairment, including ocular surface damage. Millions of people worldwide are affected by DED [1].
Moreover, patients with DED have reduced quality of life pertaining to vision-related tasks and decreased ability to perform work on video terminals, with consequent limitations on the living environment. Additionally, the disease burden of DED has socio-economic repercussions [2].

DED is recognized as a growing public health issue, with an estimated prevalence rate of 5–50% among people over 50 years old [3]. The incidence of DED has also increased in recent years [4]. The epidemiology of DED has been investigated in several regions. The prevalence may differ depending on ethnicity, living environment, lifestyle habits, and the use of different diagnostic criteria. Therefore, it is challenging to compare different studies directly. Asia comprises of more than half of the world’s population, and several studies suggest that the prevalence of DED in this continent is probably higher than in other areas [5–9].

Several epidemiological studies on DED have been conducted in Asian populations in recent years. However, most of these studies included only a limited sample in single countries. Furthermore, there is a lack of information on the total prevalence of DED in Asia. An overall estimate of the prevalence and incidence of DED in Asian populations would help plan and implement appropriate public health strategies. This systematic review and meta-analysis aimed to estimate the prevalence and incidence of DED in Asia.

Materials and Methods

Protocol and Objective

Our protocol was registered in PROSPERO on CRD42021241529 with the PRISMA online statement (online suppl Table 1; see www.karger.com/doi/10.1159/000525696 for all online suppl. material) [10].

Search Methods

Two authors (Y.C. and J.W.) independently searched for articles between December 2020 and January 2021, using the following keywords: “dry eye,” “keratitis sicca,” “prevalence,” “incidence,” “epidemiology,” and “morbidity.” The following databases were used: PubMed, Cochrane Library, Web of Science, Google Scholar, and Embase (January 1990 to December 2020). The language of the studies was restricted to English. Unpublished materials or data from “gray” articles were not searched.

Inclusion and Exclusion Criteria

We reviewed all studies involving DED in the Asian populations. Specifically, the search strategy was to include a sample of an Asian population with a minimum of 30 individuals. The types of studies included cross-sectional, cohort, and case-control studies and randomized controlled trials. All the studies were conducted in Asia and reported the overall prevalence and/or incidence of DED directly or indirectly. Articles that only considered symptoms, signs, or self-reported history to diagnose DED were excluded. Studies of patients using contact lenses or who developed DED after refractive surgery procedures were also excluded. In case of longitudinal studies, we considered the baseline findings. In addition, when different articles described the same type of research, the study with the largest population was selected. When there was a disagreement regarding the inclusion of articles, consensus was reached by discussing with the senior author (W.Z.).

Data Extraction and Quality Assessment

After screening the titles and abstracts, the full text of each selected article was obtained and reviewed. Two authors (Y.C. and J.W.) independently extracted the data for the following variables: first author, publication year, diagnostic criteria, country, region, sample size, study setting, patient age, examination year, and sex ratio. If the two authors disagreed on the results, consensus was achieved by discussing with the senior author (W.Z.). The corresponding authors of the included articles were contacted if any essential data were unavailable. The origin was classified as hospital-based, school-based, or community-based. Studies using specific diagnostic criteria for both symptoms and signs were included. These criteria were divided into four types based on the corresponding sources of classification: Asian regions, including the Asian Dry Eye Society (ADES) [11], the Chinese Society [12], the Japanese Society [13], and the Tear Film and Ocular Surface Society (TFOS) Dry Eye Workshop (DEWS) [14]. The geographic region and the income level of the study populations were obtained from World Population Prospects 2019 (https://population.un.org/wpp/).

Since we included several types of studies in our analysis, different quality assessments were conducted accordingly. The Newcastle-Ottawa Scale (NOS) of the bias assessment tool was used to evaluate the methodological quality of case-control and cohort studies. The maximum NOS score is 11; <3 indicates low quality, 4–7 indicates medium quality, and 8–11 indicates high quality [15]. The Agency for Healthcare Research and Quality (AHRQ) scale was used to assess the methodological quality of cross-sectional studies. The maximum score of the scale is 9, with <5 indicating low quality [16]. All low-quality studies were excluded.

Statistical Analysis

We performed a meta-analysis and meta-regression analysis for the prevalence of DED. All analyses were performed using R-4.1.3 software (R Core Team, Vienna, Austria; available at https://www.R-project.org/). Pooled prevalence, incidence, and 95% confidence intervals (CIs) were analyzed to estimate the prevalence and incidence of DED in Asia. The heterogeneity between studies was tested using Cochran’s Q statistic (Q-test) and the I² index. The classification of heterogeneity was based on the I² statistic: <25% indicated a low level; 25–50%, a moderate level; and >50%, a high level of heterogeneity [17]. The quantitative estimates for prevalence and incidence from each study were pooled separately using a random-effects logit-transformed statistical model. We also performed a subgroup analysis based on the following categories: age, sex, study setting, diagnostic criteria, region, sample size, income, and population. Meta-regression was performed to search for the source of heterogeneity by year of publication, year of examination, study setting, income, sex ratio, sample size,
diagnostic criteria, and population. A “leave-one-out” sensitivity analysis was also performed to evaluate the results. Begg’s test and Egger’s test were used to estimate the publication bias of the included studies. All analyses were considered statistically significant with a p value <0.05.

Results

Search Results

The initial search identified 6,742 articles (Fig. 1). All studies that were not published in English were excluded. After eliminating duplicates, the titles and abstracts were screened for potential eligibility. All articles with a non-Asian population or the reported studies conducted outside of Asia were excluded, which resulted in 806 eligible studies. These articles were screened based on the inclusion and exclusion criteria, and subsequently, 124 eligible studies remained. Three articles using the same sample were excluded, and 23 articles were finally included in the review. Among these, the prevalence of DED in the Asian population was reported in 21 studies. Three studies reported the incidences considering periods ranging from 3 months to 8 years [18–20]. One study reported both the prevalence and incidence of DED in Asian populations [18]. The main characteristics of these 23 studies are listed in Table 1.

Quality of Articles

The quality assessment of 19 cross-sectional studies was analyzed using the AHRQ criteria. Two case-control studies [38, 40] and three cohort studies [19, 20, 39] were assessed using the NOS criteria (Table 1). All the studies had a quality score of at least 6, and the majority were of medium quality.

Diagnostic Criteria for DED

We considered the main DED diagnostic criteria that are used in Asian regions, including criteria from the Asian Dry Eye Society [11], the Chinese DED Society [12], and the Japanese DED Society [13]. In addition, the
Table 1. General characteristics of the studies included

Author (reference)	Prevalence or incidence, %	Origin of data	Study design	Country	Income level	Diagnostic criteria	Sample size	Age, mean or range	Year of examining	Quality scores
Li et al. 2021 [21]	41.4	Hospital	Cross-section	China	Upper-middle	Chinese Society	1,849	18–45	2015–2016	7
Tandon et al. 2020 [22]	26.2	Community	Cross-section	India	Lower-middle	TFOS DEWS	5,403	4,332	9,735	7
Ma et al. 2018 [23]	20.0	Hospital	Cross-section	China	Upper-middle	ADES	34	46	80	6
Hua et al. 2014 [24]	46.5	Community	Cross-section	China	Upper-middle	Chinese Society	1,336	926	2,262	7
Wen et al. 2012 [25]	60.0	Hospital	Cross-section	China	Upper-middle	Chinese Society	286	186	472	2009–2010
Wang et al. 2019 [26]	29.0	Hospital	Cross-section	China	Upper-middle	Chinese Society	21	17	38	2018
Arita et al. 2019 [27]	33.4	Community	Cross-section	Japan	High	ADES	223	133	356	55.5±22.4
Li et al. 2018 [28]	10.0	School	Cross-section	China	Upper-middle	ADES	504	397	901	2016
Tandon et al. 2020 [29]	64.0	Community	Cross-section	Palestine	Lower-middle	TFOS DEWS	405	364	769	2010–2016
Zou et al. 2018 [30]	17.5	Community	Cross-section	China	Upper-middle	Japanese Society	853	507	1,360	2016
Li et al. 2017 [31]	8.0	Hospital	Cross-section	China	Upper-middle	Japanese Society	3,565	3,092	6,657	2010
Noor et al. 2020 [32]	22.4	Hospital	Cross-section	Indonesia	Upper-middle	ADES	33	16	49	2017
Gong et al. 2017 [33]	27.8	Community	Cross-section	China	Upper-middle	Chinese Society	714	301	1,015	2013
Hashemi et al. 2014 [34]	8.7	Community	Cross-section	Iran	Upper-middle	TFOS DEWS	595	413	1,008	2009
Kawashima et al. 2015 [35]	3.8	Community	Cross-section	Japan	High	Japan Society	38	331	369	2015
Moon et al. 2016 [36]	6.6	School	Cross-section	Korea	High	TFOS DEWS	430	486	916	2015
Uchino et al. 2013 [37]	11.6	Community	Cross-section	Japan	High	Japanese Society	187	374	561	2012
Yusufo et al. 2018 [38]	13.3	Hospital	Cross-section	China	Upper-middle	TFOS DEWS	31	29	60	2014–2015
Shimazaki et al. 2020 [39]	55.7	Hospital	Cross-section	Japan	High	ADES	606	384	990	2019
Yan et al. 2020 [40]	12.5	Hospital	Cohort	China	Upper-middle	TFOS DEWS	120	0	120	2018–2019
Donthineni et al. 2019 [41]	14.6	Hospital	Cohort	India	Lower-middle	TFOS DEWS	694,987	763,843	1,458,830	2010–2018
Huang et al. 2020 [42]	33.7	Community	Cohort	China	Upper-middle	ADES	263	197	460	2016–2018
Wang et al. 2019 [43]	24.4	Hospital	Case-control	China	Upper-middle	TFOS DEWS	76	2	78	2017–2018

N/A, not available; ADES, Asian Dry Eye Society; TFOS DEWS, Ocular Surface Society Dry Eye Workshop.
International Dry Eye Association diagnostic standard was used as the reference [14]. The studies that diagnosed DED using symptoms as well as signs were included. The symptoms were classified into two types: symptom scales and questionnaires. Among the 23 studies, symptom scales were used in 10 studies, the ocular surface disease index (OSDI) in nine studies [22, 23, 26, 29, 32, 34, 36, 39, 40], and the remaining study was performed using the dry eye questionnaire-5 (DEQ-5) [18].

Prevalence of DED

Among the 23 studies included in this study, 21 reported a prevalence of DED in the Asian population ranging from 3.8 to 64.0%. These studies were conducted in seven countries, with China consisting of the majority of the patients. The remaining studies were from Japan, Korea, India, Indonesia, Palestine, and Iran. Twenty studies in total were from East Asia. All the studies were conducted between 2007 and 2019.

Table 2. Subgroup analysis of the prevalence of DED in Asia

Variable	Studies, n	N	Prevalence, % (95% CI)	I², %
Age				
<20	4	2,211	11.9 (4.4–19.4)	81.4
20–29	3	8,021	7.5 (6.1–8.9)	52.9
30–39	3	8,021	7.7 (0.3–17.8)	0
40–49	5	11,468	11.5 (7.1–18.0)	96.2
50–59	6	18,205	13.3 (6.6–25.7)	97.3
60–69	4	11,179	22.6 (11.4–40.8)	98.1
≥70	4	16,828	28.9 (6.8–51.1)	99.5
Sex				
Female	16	24,328	21.7 (14.7–30.8)	98.6
Male	15	24,208	16.4 (10.0–25.8)	98.6
Study setting				
Hospital	10	10,393	22.0 (13.4–34.0)	99.5
Community	9	17,435	22.1 (12.2–36.7)	99.3
School	2	1,817	8.1 (6.1–10.9)	85.7
Diagnostic criteria				
TFO DEWS	7	12,686	18.4 (9.5–32.7)	99.2
Asian criteria	5	15,013	25.9 (14.3–42.3)	98.9
Chinese criteria	5	5,636	31.4 (16.7–51.1)	99.4
Japanese criteria	4	8,947	9.2 (5.4–15.4)	97.7
Region				
East Asia	17	18,084	18.8 (12.5–27.3)	99.4
China	12	14,892	20.9 (13.5–30.9)	99.5
Japan	4	2,276	19.4 (6.2–46.7)	99.2
Korea	1	916	6.6 (5.1–8.4)	N/A
South Asia	2	10,743	15.7 (6.9–31.6)	99.2
India	1	9,735	26.2 (25.3–27.1)	N/A
Iran	1	1,008	8.7 (7.1–10.6)	N/A
Sample size				
<500	9	1,622	20.9 (12.2–33.3)	96.9
500–1,000	5	4,137	22.9 (8.3–49.1)	99.6
>1,000	7	23,886	17.7 (10.5–28.2)	99.7
Income				
High	5	3,192	15.8 (5.8–36.6)	99.3
Middle	16	26,453	21.7 (14.9–30.5)	99.4
Population				
General	14	26,687	20.9 (12.8–32.1)	99.3
Diabetes	3	1,478	22.3 (8.8–46.2)	99.9
VDT user	2	930	14.1 (4.8–35.0)	99.2
Lupus erythematosus	1	78	12.5 (7.7–19.7)	N/A
Mental illness	1	472	29.0 (16.8–45.2)	N/A

CI, confidence interval; N/A, not available; VDT, computer and visual-display terminals.
Fig. 2. Forest plot of the prevalence of DED in Asia. CI, confidence interval.

Fig. 3. Forest plot of the prevalence of DED in different income levels. CI, confidence interval.
In any Asian population, we estimated that 20.1% of the individuals suffer from DED (95% CI: 13.9–28.3%; Fig. 2). Two studies were conducted only in children aged 6–15 years [26, 36], while two others included only older subjects (≥50 years) [32, 38]. The prevalence of DED generally increased with age (Table 2). The highest reported prevalence was 28.9% (95% CI: 6.8–51.1%) in persons ≥70 years of age [22, 23, 31], and the lowest was 7.5% (95% CI: 6.1–8.9%) in young adults (20–29 years) [27, 31, 34]. In high-income countries [18, 27, 35–37], the prevalence was 15.8% (95% CI: 5.8–36.6%), similar to that in upper-middle-income countries (19.1%, 95% CI: 13.1–27.0%; Fig. 3). In East Asia, the prevalence was 18.8% (95% CI: 12.5–27.3%), whereas in South Asia 15.7% (95% CI: 6.9–31.6%). We observed a significantly lower reported prevalence in school-based populations (8.1%). In contrast, the prevalence in hospital-based individuals (22.0%) was similar to the community-based individuals (22.1%) (Fig. 4). With regards to studies in specific populations, 3 considered diabetic patients [23, 26, 30], and two focused on computer and visual-display terminal (VDT) users [35, 37]. The pooled estimate from 14 studies performed in the general population was 20.9% (95% CI: 12.8–32.1%), which was similar to that in the whole population.

The meta-regression model quantified the impact of age, sex ratio, time range, income, and diagnostic criteria on the prevalence reported. The results showed that the sex ratio and diagnostic criteria were statistically significant determinants of prevalence (p < 0.05), whereas age, time range, and income were not significantly associated.

The proportion of studies wherein the number of females was predominant was 31.7%, while males formed the majority in 10.3% of the studies.

Diagnostic criteria can be divided into four categories, based on different sources of classification. The prevalence of DED based on diagnostic criteria from the TFOS DEWS was 18.4% (95% CI: 9.5–32.7%) [21–23, 25, 27–30], while that in studies using the ADES criteria was 25.9% (95% CI: 14.3–42.3%) [18, 24, 32, 36]. The estimate prevalence in studies using criteria from China [26, 37–40] and Japan [31, 33–35] were 31.4% (95% CI: 16.7–51.1%) and 9.2% (95% CI: 5.4–15.4%), respectively.
A sensitivity analysis was also conducted in these studies (Fig. 5). We observed that none of the studies would have influenced the heterogeneity of the results.

Incidence of DED

Among the 23 studies, three studies examined 1,460,280 subjects in total and reported an incidence of DED ranging from 1.46% to 33.7% [18–20]. The studies were conducted for a duration between 4 months and 8 years in China, Japan, and India. The largest population was from an Indian study conducted on 1,458,830 participants [19]. The pooled estimate for the incidence of DED was 16.7% ($I^2 = 99.4\%, 95\%\ CI: 0–34.9\%$; Fig. 6). One study from China reported an incidence estimate of 33.7% in diabetic individuals [20], which was significantly higher than that in the other two studies on the general population [18, 19].

Publication Bias

The funnel plot, Egger’s test, and Begg’s test were performed to analyze the publication bias. Although the asymmetrical shape of the funnel plot suggested a potential publication bias (Fig. 7), the Begg’s test ($p = 0.507$) and Egger’s test ($p = 0.522$) showed no bias. Based on these results, we found no significant evidence of publication bias on the prevalence of DED in Asia. The effect of publication bias on the incidence of DED was not analyzed since the number of studies was small.

Discussion

This systematic review and meta-analysis was conducted to estimate the prevalence and incidence of DED in Asia. To the best of our knowledge, our study is the first to determine an overall DED epidemiology estimate in this continent. Asia is the most overpopulated region in the world and comprises more than half of the world’s total population. Our findings are of significant value for epidemiology and clinical research on DED in Asia and worldwide.

Several previous systematic reviews have reported estimates of DED globally and in Asian regions [3, 37, 41, 42]. The DEWS committee reported that in Southeast Asia, the prevalence ranged from 20.0 to 52.4% [3], which was consistent with our results (22.5%) for the same region, and was within the range above. The Women’s Health Study Questionnaire study reported that the prevalence was 21.6% in Asian women [3], which was also similar to our estimates in the female population. In Asia,
systematic reviews of DED prevalence have been conducted in China. In Chinese individuals aged between 5 and 89 years, the prevalence of DED based on symptoms and signs was estimated as 13.55% [43]. Our study showed a prevalence of 20.9% in China, which was higher than previous results. The reasons for this difference may vary. Among the studies included in our analysis, 14 studies were published after 2016, while the previous reviews were conducted on studies published mostly between 2010 and 2016 [43]. We considered several diagnostic criteria for studies based on the Chinese population. Previous systematic reviews reported only the prevalence and not the incidence of DED in this population. Our study separated the two different concepts, avoiding the possibility of prevalence underestimation.

Previous studies showed that the prevalence of DED in Asian populations is higher than that for other ethnicities [3, 5]. The recent prevalence reported in America was 6.8% in 75,000 adults [44]. The 2016 estimate of prevalence from a Canadian study was 22.0%, which was based on the diagnostic criteria of a DEQ-5 score >6/22 [45]. Several studies in other regions currently used only symptoms to diagnose DED [9, 46, 47], which was in contrast to our inclusion criteria. Therefore, those studies may have overestimated the results; nonetheless, the prevalence of DED in Asia in our study was significantly higher than that reported in the other regions. Contrasting the reported prevalence of DED diagnosed using both symptoms and clinical signs in a meta-analysis in Africa was 50.8%, which was higher than our estimate [48].

Furthermore, several ocular surface diseases may present with symptoms, including DED; thus, its prevalence might be overestimated due to the lack of specificity in diagnosing this disease based on symptoms alone. We included studies with different diagnostic criteria, including both symptoms and signs. This review is the first to divide the studies into several categories, based on different dry eye diagnostic criteria. As there is no standard for diagnosis, the prevalence that was estimated using the criteria of the China Dry Eye Society was higher than that estimated using other criteria. However, the prevalence was significantly lower using the diagnostic criteria from the Japan Dry Eye Society. The studies using diagnostic criteria from the TFOS DEWS showed a 18.4% prevalence (95% CI: 9.5–32.7%), and the estimate with ADES criteria was 25.9% (95% CI: 14.3–42.3%). Comparing the criteria between TFOS DEWS and ADES, the most relevant difference was their standard for breakup time. The ADES diagnostic criteria define the breakup time threshold as ≤5 s, whereas TFO DEWS considers it ≤10 s. According to the Japanese criteria, DED diagnosis requires...
the presence of symptoms and two signs, including abnormal tear film and positive ocular surface staining, while other criteria require only symptoms and at least one sign. This difference might have contributed to the low prevalence estimation in using the Japanese criteria. Therefore, it is difficult to compare DED estimates directly from different studies, owing to the varying diagnostic standards. Hence, our analysis allowed for more accurate comparisons.

DED is a multifactorial disease, and our study also confirmed this characteristic. Female sex and older age, as suggested by previous research, were significant risk factors for DED. Our results confirmed that the prevalence of DED increased with age, while the school-based studies reported a lower estimate than that in the other groups [28, 36]. However, this feature was not significant in populations under 20 years of age. Nonetheless, compared to previous studies on the prevalence of DED, these data strengthened the clinical impression of an expanding younger population of patients with this disease. In addition, four studies included in our study reported the prevalence in subjects under 20 years of age [26–28, 36]. The total population size in this age-group was 1,024, which significantly lower than that of other groups. Although the studies were conducted in three countries, they were published more than 6 years earlier. This may lead to an inevitable unequal distribution of age.

Our research also confirmed that sex was an influential factor for the prevalence of DED. In Asia, the prevalence was 16.4% (95% CI: 10.0–25.8%) in males and 21.7% (95% CI: 14.7–30.8%) in females and was significantly higher in females ($p < 0.001$). Compared to the general population, we found a higher prevalence in subjects with diabetes, which was consistent with previous studies [5, 49]. In contrast, the estimate for VDT users was lower than previously reported, although the difference was not significant [50]. In addition to the lack of a relevant number of studies and populations, we found that two VDT studies were conducted in Japan and used Japanese diagnostic criteria. Conversely, all studies on diabetic patients were Chinese, and one study was performed on children aged 6–15 years. In addition, a previous global epidemiology study reported that the local socio-economic factors may influence the presence of DED in different areas [3]. However, we found that the prevalence in high-income countries was 15.8% (95% CI: 5.8–36.6%) in Asia, compared to 21.7% (95% CI: 14.9–30.5%; $p > 0.05$) in middle-income countries. The studies on high-income populations were conducted in Japan and Korea. A significant difference in prevalence was found between the regions with varying socio-economic factors. The studies reporting the relationship between DED and social economy were few in number; therefore, it was difficult to examine this possible association. Further research on DED prevalence in specific at-risk populations needs to be conducted, which should consider the effects of different lifestyles and environments.

Despite the strengths mentioned above, this study had several limitations. First, the studies of prevalence we examined were only from seven countries, namely China, Japan, Korea, Iran, Palestine, India, and Indonesia. They were mainly conducted in East Asia and South Asia. Hence, there may be a lack of representation of the whole continent, with no studies from Central or North Asia. We might have overestimated or underestimated the results; however, we had no reference points because there were no previous comparisons between the prevalence of DED in different regions of Asia. The limited research has affected our capacity to conduct a regional analysis. In addition, we found only three studies reporting the incidence. The results from China, India, and Japan may not represent the entire Asian incidence of DED since two of these countries are the most heavily populated nations in Asia. Further studies on DED in different regions are warranted. Second, we only included articles in English, possibly excluding other studies intended for the local populations in their native language. The sample size should also be increased to obtain representative results. Third, heterogeneity was detected in the included studies, and the results should be interpreted with caution.

Conclusion

In conclusion, our systematic review and meta-analysis summarizes the epidemiology of DED in Asia over the last 30 years. DED is common in Asia and poses a serious personal and social burden. Multiple diagnostic criteria have led to different rates of diagnosis in various populations, and DED diagnosis requires standardization. While DED is more common in older adults and females, we must also consider the prevalence of DED in young subjects. With the global aging trend, the prevalence and burden of DED are also likely to increase. More epidemiological studies, especially on the prevalence of DED and high-risk groups, are required to precisely estimate the burden of DED across Asia and globally.
Epidemiology of Dry Eye Disease in Asia

Statement of Ethics
All analyses were based on previously published studies; thus, no ethical approval and patient consent were required.

Conflict of Interest Statement
All the authors declare that they have no conflicts of interest regarding the publication of this article.

Funding Sources
This study was supported by the National Natural Science Foundation of China (81160119) and the Key Research and Development Program in Guangxi (AB20238003).

References
1 Ozdemir HB, Kalkanci A, Bilgihan K, Gocun PU, Ogut B, Karakurt F, et al. Comparison of corneal collagen cross-linking (PACK-CXL) and voriconazole treatments in experimental fungal keratitis. Acta Ophthalmol. 2019; 97(1):e91–6.
2 Clayton JA Dry Eye. N Engl J Med. 2018;378(23):2212–23.
3 Stapleton F, Alves M, Bunya VY, Jalbert I, Lebranchu Y, et al. Comparison of dry eye definition and diagnosis: a consensus report by the Asia dry eye society. Ocul Surf. 2017;15(1):65–76.
4 Inomata T, Iwagami M, Nakamura M, Shiang T, Yoshimura Y, Fujimoto K, et al. Characteristics and risk factors associated with diagnosed and undiagnosed symptomatic dry eye using a smartphone application. JAMA Ophthalmol. 2020;138(1):58.
5 Ward MF 2nd, Le P, Donaldson JC, Van Buren E, Lin FC, Lefebvre C, et al. Racial and ethnic differences in the association between diabetes mellitus and dry eye disease. Ophthalmic Epidemiol. 2019;26(3):295–300.
6 Schaumberg DA, Dana R, Buring JE, Sullivan DA. Prevalence of dry eye disease among US men: estimates from the Physicians’ Health Studies. Arch Ophthalmol. 2009;127(6):763.
7 Farrand KF, Fridman M, Stillman IO, Schaumberg DA. Prevalence of diagnosed dry eye disease in the United States among adults aged 18 Years and older. Am J Ophthalmol. 2017;182:90–8.
8 Xu L, Wang XY, Guo Y, You QS, Jonas JB. Prevalence and associations of steep cornea/keratoconus in greater beijing. The beijing eye study. PLoS One. 2012;7(7):e39313.
9 Tan LL, Morgan P, Cai ZZ, Straughan RA. Prevalence of uncorrected refractive error, dry eye symptoms and risk factors for symptomatic dry eye disease in Singapore. Clin Exp Optom. 2015;98(1):45–53.
10 Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Plos Med. 2009;6(7):e1000097.
11 Tsibota K, Yokoi N, Shimazaki J, Watanabe H, Dogru M, Yamada M, et al. New perspectives on dry eye definition and diagnosis: a consensus report by the Asia dry eye society. Ocul Surf. 2017;15(1):65–76.
12 KeratoLOGY Group of Ophthalmology Branch of Chinese Medical Association. Consensus of experts on diagnosis and treatment of neurotrophic keratitis in China (2021). Zhonghua Yan Ke Za Zhi. 2021;57(2):90–4.
13 Ayaki M, Kawashima M, Negishi K, Kishimoto T, Mimura M, Tsibota K. Sleep and mood disorders in women with dry eye disease. Scientific Rep. 2016;6(1):35276.
14 Wolffsohn JS, Arita R, Chalmers R, Djallian A, Dogru M, Dumbleton K, et al. TFOS DEWS II diagnostic methodology report. Ocul Surf. 2017;15(3):539–74.
15 Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.
16 Rostom A, Dubé C, Cranney A, Salojee N, Sy R, Garritty C, et al. Celiac disease. Evid Rep Technol Assess. 2004(104):1–6.
17 Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed). 2003;327(7414):557–60.
18 Shimazaki J, Nomura Y, Numa S, Murase Y, Kakinoki K, Abe F, et al. Prospective multicenter, cross-sectional survey on dry eye disease in Japan. Adv Ther. 2020;37(1):316–28.
19 Donthineni PR, Kammari P, Shanbhag SS, Singh V, Das AV, Basu S. Incidence, demographics, types and risk factors of dry eye disease in Indian: electronic medical records driven big data analytics report I. Ocul Surf. 2019;17(2):250–6.
20 Huang X, Zhang P, Zou X, Xu Y, Zhu J, He J, et al. Two-year incidence and associated factors of dry eye among residents in shanghai communities with type 2 diabetes mellitus. Eye Contact Lens. 2020;46(1):86–93.
21 Li M, Zeng L, Mi S, Li Y, Liu Z, Yu K, et al. A multicenter study of the prevalence of dry eye disease in Chinese refractive surgery candidates. Ophthal Res. 2021;64(2):224–9.
22 Tandon R, Vashist P, Gupta N, Gupta V, Sahay P, Deka D, et al. Association of dry eye disease and sun exposure in geographically diverse adult (≥40 years) populations of India: the SEED (sun exposure, environment and dry eye disease) study: second report of the ICMR-EYE SEE study group. Ocul Surf. 2020;18(4):718–30.
23 Ma A, Mak MSY, Shih KC, Tsui CKY, Cheung RKY, Lee SH, et al. Association of long-term glycaemic control on tear break-up times and dry eye symptoms in Chinese patients with type 2 diabetes. Clin Exp Ophthalmol. 2018;46(6):608–15.
24 Hua R, Yao K, Hu Y, Chen L. Discrepancy between subjectively reported symptoms and objectively measured clinical findings in dry eye: a population based analysis. BMJ Open. 2014;4(8):e005296.
25 Wen W, Wu Y, Chen Y, Gong L, Li M, Chen X, et al. Dry eye disease in patients with depressive and anxiety disorders in Shanghai. Cornea. 2012;31(6):686–92.
26 Wang S, Jia Y, Li T, Wang A, Gao L, Yang C, et al. Dry eye disease is more prevalent in children with diabetes than in those without diabetes. Curr Eye Res. 2019;44(12):1299–305.
27 Arita R, Mizoguchi T, Kawashima M, Fukukawa S, Koh S, Shirakawa R, et al. Meibomian gland dysfunction and dry eye are similar but different based on a population-based study: the hirado-takushima study in Japan. Am J Ophthalmol. 2019;207:410–8.

Author Contributions
Youran Cai and Jiaxin Zhou designed the study; Jintao Wei and Youran Cai searched the articles and extracted data; Youran Cai, Jintao Wei, and Jiaxin Zhou performed the analysis; Wenjin Zou revised the essay. All the authors critically reviewed the manuscript and approved the final version.

Data Availability Statement
All data generated or analyzed during this study and supporting the conclusions of this article are included within the article. Further inquiries can be directed to the corresponding author.

DOI: 10.1159/000525696

Epidemiology of Dry Eye Disease in Asia

Ophthalmic Res 2022;65:647–658

657
28 Li S, He J, Chen Q, Zhu J, Zou H, Xu X. Ocular surface health in Shanghai University students: a cross-sectional study. BMC Ophthalmol. 2018;18(1):245.

29 Shanti Y, Shehada R, Bakkar MM, Qaddumi J. Prevalence and associated risk factors of dry eye disease in 16 northern West bank towns in Palestine: a cross-sectional study. BMC Ophthalmol. 2020;20(1):26.

30 Zou X, Lu L, Xu Y, Zhu J, He J, Zhang B, et al. Prevalence and clinical characteristics of dry eye disease in community-based type 2 diabetic patients: the Beixinjing eye study. BMC Ophthalmol. 2018;18(1):117.

31 Li J, Zheng K, Deng Z, Zheng J, Ma H, Sun L, et al. Prevalence and risk factors of dry eye disease among a hospital-based population in southeast China. Eye Contact Lens. 2015;41(1):44–50.

32 Noor NA, Rahayu T, Gondhowiardjo TD. Prevalence of dry eye and its subtypes in an elderly population with cataracts in Indonesia. Clin Ophthalmol. 2020;14:2143–150.

33 Gong YY, Zhang F, Zhou J, Li J, Zhang GH, Wang JL, et al. Prevalence of dry eye in Uygur and han ethnic groups in western China. Ophthalmic Epidemiol. 2017;24(3):181–7.

34 Hashemi H, Khabazkhoob M, Kheirkhah A, Emamian MH, Mehravaran S, Shariati M, et al. Prevalence of dry eye syndrome in an adult population. Clin Exp Ophthalmol. 2014;42(3):242–8.

35 Kawashima M, Yamatsuji M, Yokoi N, Fukui M, Ichihashi Y, Kato H, et al. Screening of dry eye disease in visual display terminal workers during occupational health examinations: the Moriguchi study. J Occup Health. 2015;57(3):253–8.

36 Moon HJ, Kim KW, Moon NJ. Smartphone use is a risk factor for pediatric dry eye disease according to region and age: a case control study. BMC Ophthalmol. 2016;16(1):188.

37 Uchino M, Yokoi N, Uchino Y, Dogru M, Kawashima M, Komuro A, et al. Prevalence of dry eye disease and its risk factors in visual display terminal users: the osaka study. Am J Ophthalmol. 2013;156(4):759–66.e1.

38 Yusufu M, Liu X, Zheng T, Fan F, Xu J, Luo Y. Hydroxypropyl methylcellulose 2% for dry eye prevention during phacoemulsification in senile and diabetic patients. Int Ophthalmol. 2018;38(3):1261–73.

39 Yan Y, Zhou Y, Zhang S, Cui C, Song X, Zhu X, et al. Impact of full-incision double-eyelid blepharoplasty on tear film dynamics and dry eye symptoms in young asian females. Aesthetic Plast Surg. 2020;44(6):2109–16.

40 Wang A, Gu Z, Liao R, Shuai Z. Dry eye indexes estimated by keratograph 5M of systemic lupus erythematosus patients without secondary sjogren’s syndrome correlate with lupus activity. J Ophthalmol. 2019;2019:1–8.

41 Papas EB. The global prevalence of dry eye disease: a Bayesian view. Ophthalmic Physiol Opt. 2021;41(6):1254–66.

42 Sullivan BD, Crews LA, Messmer EM, Foulks GN, Nichols KK, Baenninger P, et al. Correlations between commonly used objective signs and symptoms for the diagnosis of dry eye disease: clinical implications. Acta Ophthalmol. 2014;92(2):161–6.

43 Song P, Xia W, Wang M, Chang X, Wang J, Jin S, et al. Variations of dry eye disease prevalence by age, sex and geographic characteristics in China: a systematic review and meta-analysis. J Glob Health. 2018;8(2):020503.

44 Farrand KF, Fridman M, Stillman IO, Schumberg DA. Prevalence of diagnosed dry eye disease in the United States among adults aged 18 Years and older. Am J Ophthalmol. 2017;182:90–8.

45 Caffery B, Srinivasan S, Reaume CJ, Fischer A, Cappadocia D, Siffel C. Prevalence of dry eye disease in Ontario, Canada: a population-based survey. Ocul Surf. 2019;17(3):526–31.

46 Baizer S, Jansonius N, Snieder H, Hammond C, Vehof J. The relationship between occupation and dry eye. Ocul Surf. 2019;17(3):484–90.

47 Kobia-Acquah E, Ankamah-Lomotey S, Owusu E, Forofe S, Bannor J, Koomson JA, et al. Prevalence and associated risk factors of symptomatic dry eye in Ghana: a cross-sectional population-based study. Cont Lens Anterior Eye. 2021;44(6):101404.

48 Akowuah PK, Kobia-Acquah E. Prevalence of dry eye disease in Africa: a systematic review and meta-analysis. Optom Vis Sci. 2020;97(12):1089–98.

49 De Freitas GR, Ferraz GAM, Gehlen M, Skare TL. Dry eyes in patients with diabetes mellitus. Prim Care Diabetes. 2021;15(1):184–6.

50 Titijal YS, Falera RC, Kaur M, Sharma V, Sharma N. Prevalence and risk factors of dry eye disease in North India: ocular surface disease index-based cross-sectional hospital study. Indian J Ophthalmol. 2018;66(2):207–11.