Adsorption to soils and biochemical characterization of purified phytases
Maria Marta Caffaro 1,2; Karina Beatriz Balestrasse 1,3; Gerardo Rubio 1,2

1 INBA, CONICET UBA, Buenos Aires, C1417DSE, Argentina
2 Soil Fertility and Fertilizers, School of Agriculture University of Buenos Aires, Buenos Aires, C1417DSE, Argentina
3 Biochemistry, School of Agriculture University of Buenos Aires, Buenos Aires, C1417DSE, Argentina

Correspondence to: Gerardo Rubio (rubio@agro.uba.ar)

Abstract. Four purified phytases isolated from Aspergillus niger and Escherichia coli were characterized biochemically and in terms of their adsorption to soils belonging to the Mollisol order. Three different organic P substrates were used to measure enzyme activity in a wide range of pH (2.3 to 9) and temperatures (-10º to 70ºC): p-nitrophenylphosphate (pNP), glyceraldehyde-3-phosphate (G3Phosphate) and phytic acid. Phytases from A. niger showed a higher capacity to release P (13% on average) than phytases from E. coli. All phytases were active throughout the pH and temperature ranges for optimum crop production. The amount of P that A. niger phytases release at pH that is commonly found in agricultural soils (5.5-7) is as follows: pNP > phytic acid > G3Phosphate, whereas in E. coli phytases the order was pNP / phytic acid > G3Phosphate. The proportion of phytases found in the solid phase of the soil 60 minutes after addition was lower than that found in the liquid phase (23-34% vs. 66-77%). Obtained results are 20 promising in terms of the use of phytases as a complement to P fertilization in agricultural settings and encourages further studies under field conditions.

1 Introduction

Phosphorus (P) is the second nutrient that limits agricultural crop productivity worldwide. Most strategies for enhancing P nutrition of agricultural crops aim to maintain soils at the convenient P critical level so that yields are not constrained by this nutrient and environmental pollution risks are avoided or minimized (Simpson et al. 2011). The most widely used practice to overcome soil P deficiencies is the application of inorganic P fertilizers produced from phosphate rock (PR). However, world PR reserves that can economically be extracted are estimated to be depleted in the next 50-100 years (Cordell et al., 2009). Several strategies have been suggested to increase P utilization efficiency and reduce PR-derived fertilizers consumption (Fernandez and Rubio, 2015). Richardson et al. (2011) summarizes these strategies in three groups: i) root-foraging strategies that reduce the critical P requirements for plant growth; ii) P-mining strategies that enhance the P availability from sparingly-available sources in soil, and iii) physiological strategies that lead to higher yields per unit of P uptake.

Soil P is comprised of inorganic and organic forms. Phosphates present in the soil solution are the main source of P for higher plants. Due to the strong interaction with the soil matrix, concentration of phosphates in the soil solution is very low (<10μM) (Dalal, 1977). In general, soil organic P content varies in a wide range (between 30-70% of total soil P; Cabello et al., 2016). The predominant soil organic P fractions are usually phytates (Harvey et al., 2009; Steffens et al., 2010), followed by nucleic acids, phospholipids and sugar-phosphates (Tiessen, 2008). Phytates and other organic P forms cannot be directly utilized by plants and need to be mineralized before being ready for plant uptake. The discovery of phytate-degrading compounds changed the conventional perception that phytate was a recalcitrant molecule in the environment (Harvey et al., 2009).

Phytases are enzymes released by bacteria, fungi, plants and animals (Jorquera et al., 2008) and are able to catalyze the release of P from phytates. Although phytases are distributed throughout the soils, the higher concentrations are found in the rhizosphere (Li et al., 2008). The high capacity of A. niger and E. coli to secrete phytases has promoted their use as a source of these enzymes in commercial production by the industry (Misset, 2003). A. niger phytases are mainly extrinsic (Azeem et al., 2015), and are classified as 3-phytases, because they primarily dephosphorylate the phosphate group.
located at 3-position. *E. coli* phytases are mainly membrane-associated proteins and were classified as 6-phytase (Azeem et al., 2015). The classification as 3- or 6-phytases is related to which phosphate group is attacked first and would be determined by conformational differences in the β-domain of each phytase (Konietzny and Greiner, 2002).

Besides being a key fraction of soil organic P, phytates are present in other nature components. For example, 60-90% of P in cereal and oil grains is present under phytic acid forms (63% in soybean, 77% in wheat, 83% in maize; Lott et al., 2000). One of the most common uses of these grains is for livestock feed (Misset, 2003). However, the microbial population of the digestive tract of monogastric animals (e.g. poultry) is unable to utilize phytate as a P source. The benefit of adding phytases to poultry diet to enhance phytic acid P utilization was demonstrated some time ago and nowadays is a widespread practice in poultry nutrition management (El-Sherbiny et al., 2010). It was demonstrated that using phytases from different microorganisms (i.e. *Aspergillus* spp. and *Escherichia coli*) for this practice may also entail environmental benefits by reducing the P content of poultry manure.

Extensive use of phytases in livestock and aquaculture production contrasts with the practically null use in agriculture. There are very few reports in which phytases were studied to enhance soil P availability (e.g. Findenegg and Nelemans, 1993; Liu et al., 2018). Adding phytases to poor P soils increased biomass accumulation of maize by around 32% (Fidenegg and Nelemans, 1993). Undoubtedly, phytase research appears to be a promising path to increase soil P use efficiency (Menezes-Blackburn et al., 2016; Liu et al., 2018). Some reports indicate that the adsorption of phytases to the soil matrix may reduce their affinity for substrates containing P (George et al., 2005; Yang and Chen, 2017). When pH increases, clay charge changes, decreasing the phytase affinity (Ruyter-Hooley et al., 2015).

In this work we evaluated the performance of four commercially available phytases, two extracted from *Aspergillus niger* and two from *Escherichia coli* as candidates to be used as a biological fertilizer to release inorganic P from organic P sources. Our working hypotheses were: i) phytases have the ability to release P from different organic P sources, with preference for phytic acid; ii) the retention of phytases in the soil solid phase is associated to the soil clay content; iii) the two evaluated phytases differ in the pH and temperature levels to reach their optimum activity.

2 Materials and methods

2.1 Enzyme preparation

Two phytases isolated from *A. niger* and two from *E. coli* were used in our experiments. In the first case, here named *A. niger* 1 and 2, phytases came from two different batches of the fungus which are commercially sold under the name “Habio phytases” by Sichuan Habio Bioengineering Co.Ltd (Sichuan, China). In the *E.coli* group, the first selected enzyme (here called *E. coli* 1) is sold under the name “TS Smizyme phytase”, by Quintia EDF (Buenos Aires Argentina), and the second (here called *E. coli* 2) is sold under the name “Ronozyme”, by DSM Nutritional Products Argentina S.A.”. These enzymes are in powder format at a concentration of 5000 U g⁻¹ and was provided free of charge by the companies that produce or import them. Two hundred mg of each phytase were suspended in a solution composed by 20 ml of 360 mM CaCl₂, 1 mM buffer pH 5.5 sodium acetate, and 100 mg g⁻¹ Tween 20. The solution was mixed 30 min at 4 °C and subsequently centrifuged at 6900 g for 30 min at the same temperature. Final concentration of enzymes in the solution was 10 mg enzyme ml⁻¹.

2.2 Phytase adsorption on soils

Soil samples (0-20 cm) were taken from seven representative soils of the Pampean Region, the most productive area of Argentina (Table 1). All soils belong to the Mollisol order (Rubio et al. 2019). One gram of each soil and 20 ml of phytase
solution (17.6 nKat g⁻¹ of soil, specific activity 8.3 nKat mg⁻¹ protein) was placed in 50 ml screw-capped polyethylene tubes at room temperature (22 °C). After shaking the tubes on a flat bed shaker (75 oscillations min⁻¹) sub-samples of soil slurry (500 µl) were taken for phytase activity measurements at 5, 10, 15, 30 and 60 min. To obtain a representative sample of the suspension, aliquots of soil slurry were taken using a pipette tip after vigorously mixing the soil suspension. An aliquot (150 µl) of the soil slurry was used to measure the enzyme activity (here called soil suspension). The remainder portion of the sample was centrifuged at 15,000 g for 5 min and the supernatant was taken for measuring the phytase activity (called soil solution).

Phytase activities in aliquots of soil solutions and suspensions were measured at a 1:1 sample to buffer ratio. Assays were performed against phytic acid substrate for 60 min at 37°C at a final concentration of 2 mM and buffered to pH 5.5 with 15 mM MES (George et al., 2005). Reactions were stopped with an equal volume of 10% trichloroacetic acid (TCA; 300 µl in soil slurry experiments and 700 µl in soil solution experiments). Samples were centrifuged at 3800g for 5 min prior to determination of P concentration in the supernatant using Murphy-Rilley method (Murphy and Riley, 1962). Phytase activity retained in the solid phase was determined by calculating the difference between the phytase activity of the soil suspension and activity of the soil solution. To determine which soil characteristics (Table 1) affected phytase distribution between soil solid and liquid phases, a linear regression and correlation analysis between y_max (maximum distribution of the enzyme in the soil solid phase) and k (rate at which distribution peaks) with soil characteristics were performed.

2.3 Biochemical characterization, pH and temperature optimum levels

Biochemical characterization of the phytases included: total protein (Lowry et al., 1951), enzymatic activity as a function of pH and temperature, kinetic parameters V_max and K_m and adsorption to seven selected soils. Phytase activity was measured with 3 substrates containing 10 mM P: 2 mM phytic acid, 10 mM p-nitrophenyl-phosphate and 10 mM glyceraldehyde-3-phosphate. In this experiment incubation temperature was 25 °C according to Hayes et al. (1999).

To evaluate the performance of the enzymes along a pH range (2.3-9.0), 200 µl of each enzyme solution was diluted with 400 µl of 50 mM glycine-HCl buffer (pH 2.3-4.4), 50 mM Na-acetate (pH 3.6-5.8), 50mM MES-KOH (pH 5.2-7.3) and 50 mM Tris-HCl (pH 6.1-9.0), as a reaction buffer. To evaluate the performance of the enzymes along a temperature range (-10-70°C), 200 µl of each enzyme solution was diluted with 400 µl MES (pH 5.5) buffer. For both pH and temperature studies, incubation time was 1 h and the reaction was terminated by the addition with 600 µl of 10% TCA. In the temperature studies, the buffer containing the substrates is heated until the desired temperature is reached. At this point the enzyme is added and the incubation time starts Measurements were performed in triplicate. The activities were tested against three blanks: (i) reaction buffer without enzyme or substrate; (ii) reaction buffer with enzyme without substrate; and (iii) reaction buffer without enzyme with substrate. When the substrates were phytic acid and glyceraldehyde-3-phosphate, phytase activity was measured by the Murphy-Riley method (Murphy and Riley, 1962). For the pNP substrate, the enzymatic activity was measured at 412 nm which is the absorbance value of p-nitrophenol (Hayes et al., 1999). The concentration of 3 substrates was determined as the concentration of the whole sample minus the concentration of the reaction blank.

To estimate V_max and K_m, 200 mg of each phytase were suspended for 1h in solutions containing 0, 6.25, 12.5, 25, 50, 100 mM of P using the three substrates mentioned in the previous section (phytic acid, glyceraldehyde-3-phosphate and p-nitrophenyl phosphate). The reaction was stopped by the addition of 10% TCA. The kinetic parameters were determined by the graphical method of Lineweaver-Burk.
In order to find the pH and temperature value at which phytases show the maximum activity, different peak functions were adjusted with 2D Table Curve demo version. Experimental data of enzyme activity at different pH or temperatures were expressed as percentage of P released from each substrate and fitted to Lorentzian peak model for each treatment calculated following Eq. (1):

\[
\% \text{ P released} = \frac{a}{1 + \left(\frac{x - b}{c}\right)^2}, \tag{1}
\]

Where \(a\) is the maximum percentage of P released; \(b\) is the pH value where the enzyme has maximum activity (a P release peak); \(c\) estimates the standard deviation of the distribution and \(x\) is the pH value. Parameters of each Lorentzian distribution for each enzyme and substrate were compared using F tests (Mead et al., 1993). In those cases where non-significant differences between enzymes (analyzed by F tests, analyzed by Statistix 9, student version) were found, a unified curve was fitted. The parameters and the obtained functions were compared by t-tests. Results obtained from the experiments of phytase distribution between soil solid and liquid phases were expressed as enzyme activity per soil gram (nkat g soil\(^{-1}\)). Exponential decay equations for enzyme distribution in liquid phase were fitted according to the Eq. (2):

\[
y = (y_0 - b) \cdot b e^{-kx}, \tag{2}
\]

where \(y_0\) is the minimum enzyme activity in soil liquid phase, \(k\) is the relative exchange rate between the liquid phase and the solid phase and \(x\) is the time considered.

Exponential increase equations for enzyme distribution in the solid phase were fitted according to the Eq. (3):

\[
y = y_{max} \cdot (1 - e^{-kx}), \tag{3}
\]

where \(y_{max}\) is the maximum enzymatic activity in the solid phase of the soil, \(k\) is the relative exchange rate between the liquid phase and the solid phase and \(x\) is the reaction time. All functions where fitted by Table Curve 2D software.

In those cases where significant differences between enzymes (analyzed by F tests) were not found, a unique curve was fitted. To determine the soil property effect on enzyme adsorption, the distribution of the enzymes between the solid and liquid soil phases were adjusted with linear functions between the enzyme activity and each analyzed soil property (Table 1).

3 Results

3.1 Phytase adsorption to soils

Figure 1 shows the distribution of phytases between liquid and solid phases in seven Mollisols of the Pampean Region which main soil properties are shown in Table 1. \textit{A. niger} 1 phytase showed the lowest adsorption to the solid phase: around 19%, of the original substrate P content (Fig. 1e). This value remained stable after 30 minutes of incubation. In contrast, \textit{A. niger} 2 phytase showed the greatest adsorption to the solid phase (40%, at 10 min Fig. 1f). \textit{E. coli} 1 phytase (Fig. 1g) presented 39% of adsorption to the solid phase after 60 minutes of incubation whereas \textit{E. coli} 2 presented a 37%
adsorption to the soil solid phase at 5 minutes (Fig. 1h). In this case, the early maximum fixation prevented the fitting of a consistent function.

To determine which soil characteristics (Table 1) affected phytase distribution between soil solid and liquid phases, a linear regression and correlation analysis between the parameters of Eq (3) y_{max} (maximum distribution of the enzyme in the soil solid phase) and k (rate at which distribution peaks) with soil characteristics were performed. We observed no linear relationship between the parameter k and the analyzed soil characteristics for any of the four enzymes. In the case of y_{max}, we observed no linear relationship between soil characteristics for A. niger. Regarding E. coli, we found a significant correlation between the calcium content and y_{max} for E. coli 1.

3.2 Biochemical characterization

Protein analysis indicated that A. niger 1, A. niger 2, E. coli 1 and E. coli 2 phytases had 4.2, 5.4, 8.2 and 2, 13.01 µg enzyme per mg of product, respectively. All four enzymes were effective at releasing inorganic P from the three offered organic P sources. The four phytases released P from phytic acid in the whole range of pH following functions from which optimum and suboptimal pH values could be identified. In both pH and temperature experiments, no significant differences were observed in P released between A. niger 1 and 2, thus data from both were pooled for performing the analyses.

3.2.1 Effect of pH on enzyme activity

All four enzymes were effective in releasing P from phytic acid throughout the entire pH range analyzed. When phytic acid was evaluated as a P source, the peak activity of A. niger phytases 1 and 2 (Fig. 2a) was observed at pH 5.9, with a release of 37% of the original P contained in the substrate. In E. coli 1 and E. coli 2 phytases (Fig. 2b and c), the peak activity was observed at pH 5.5 and 4.7, with 30% and 24% release of the initial P, respectively. The maximum value of released P differed between sources (coefficient a of Table 2), while the optimum pH for enzyme activity only differed between A. niger 1 + 2 and E. coli 2 (coefficient b of Table 2).

pH 7.8 was detrimental for release of Pi from pNP by A. niger, probably because the hydrolysis of the substrate. The peak activity of phytases was verified (>50% P release) at pH 6.2 (>50% P release) (Fig. 2g), while the maximum release of P was 37% at pH 5.8 for E. coli 1 enzyme (Fig. 2h) and 24% at pH 5.9 for E. coli 2 (Fig. 2i). The comparison of the functions for the four enzymes revealed that they only differed in a coefficient (Table 2), which represents the maximum P release.

For G3Phosphate as substrate, P release sharply decreased at pH values higher than 6 in A. niger and E. coli 1 enzymes, and at pH values higher than 8 in E. coli 2. A. niger, E. coli 1 and E. coli 2 enzymes showed a peak of activity at pH 3.9, 4 and 6, with a P release of 42 % (Fig. 2d), 37% (Fig. 2e) and 24% (Fig 2f) respectively. No statistical differences were observed on fitted coefficients between A. niger 1 + 2 and E. coli 1 functions, but these coefficients differed with the ones found for E. coli 2, revealing the particular shape of the function (Fig. 2i) for this enzyme (coefficients a, b and c, Table 2).

3.2.2 Effect of temperature on enzyme activity

The four enzymes remained active and could release P from the offered substrates throughout the whole temperature range (Fig. 3). When the substrate was phytic acid, both species of A. niger (1 + 2) and E. coli (1 and 2) showed the same behavior and consequently their functions were unified, A. niger showed maximum activity at 24 °C (Fig. 3a), releasing 33% of the original P contained in the tested substrate. In E. coli enzymes (Fig. 3b), the peak was detected at 29 °C, with
a 25% P release. The three coefficients of the function fitted for each pair of enzymes showed significant differences (Table 3), which reflects that A. niger had maximum release of P, but at a lower temperature than in E. coli.

When the substrate was pNP, the two A. niger enzymes showed the peak activity at 29 °C, releasing 17% of the substrate P (Fig. 3f). E. coli 1 phytase (Fig. 3g) released 22% of P at 29 °C and E. coli 2 (Fig. 3h) also had the peak activity at 29 °C but lower P release: 13%. When comparing the coefficients of the fitted curves, they only differed in a coefficient (Table 3), representing the maximum P released.

When G3Phosphate was the substrate, the two A. niger enzymes had a similar behavior (Fig. 3c) with a peak activity at 24 °C and a 10% release of the P contained in the substrate. In contrast, E. coli 1 enzyme released 7% of the substrate P at 30 °C (Fig. 3d) and E. coli 2 (Fig. 3e) showed maximum activity at 20 °C, releasing 13% of the original P. No difference between adjusted coefficients of A. niger 1 + 2 and E. coli 2 coefficients (coefficients a, b and c in Table 3).

3.3 Kinetic parameters

The response of the four enzymes to increasing concentrations of phytic acid is shown in Fig. 4 a-d. A. niger 2, E. coli 1 and 2 did not differ in the V_{max} value (0.7 nkat mg$^{-1}$), while A. niger 1 showed a slightly lower value (0.6 nkat mg$^{-1}$). K_m values of the four enzymes covered a narrow range (48mM to 59 mM). A. niger 1 had the highest affinity (48.2mM) followed by E. coli 1 (50.4mM), E. coli 2 (54.3mM) and A. niger 2 (59.2mM).

Phytase activity of the purified enzymes in response to increasing concentrations of pNP showed a very narrow range of V_{max} values (0.2 to 0.4 nkat mg$^{-1}$) (Fig. 4 e-h). E. coli 2 had the lowest V_{max} and the highest substrate affinity (0.2 nkat mg$^{-1}$ and 22.8 mM), E. coli 1 (0.2 nkat mg$^{-1}$ and 25.8 mM), then by A. niger 1 (0.4 nkat mg$^{-1}$ and 51.7 mM) and finally A. niger 2 (0.4 nkat mg$^{-1}$ and 66.7 mM).

When the substrate was G3Phosphate (Fig. 4 i-l), a wide range of V_{max} (4.2-60.7 nkat mg$^{-1}$) was observed for the four enzymes. A. niger 1 showed the lowest value (4.2 nkat mg$^{-1}$), followed by A. niger 2 (12.1 nkat mg$^{-1}$), E. coli 2 (14.3 nkat mg$^{-1}$) and E. coli 1 (60.7 nkat mg$^{-1}$). K_m values of the enzymes also had a wide range (2.4 mM to 34.1 mM). A. niger 1 showed the highest affinity for this substrate (2.5 mM) followed by E. coli 2 (4.6 mM), A. niger 2 (5.2 mM) and E. coli 1 (34.1 mM).

4 Discussion

The prospects of using phytases as biofertilizers were evaluated in experiments performed under controlled conditions. Phytases are polar molecules with negative charge that can be retained by the soil matrix, affecting their capacity to mineralize organic sources of soil P (George et al., 2005; Yang and Chen, 2017). For example, George et al., (2005) observed a strong adsorption of A. niger phytases to the soil solid phase (57-86%), especially on clayey or acid soils with high P adsorption capacity. As an approximation to the use of phytases as a complement for plant P nutrition, we evaluated the distribution of phytases in the solid phase of seven agricultural soils Mollisols differing in texture and P adsorption capacity (Table 1). After 60 min of incubation, the proportion of phytases found in the solid phase was lower than in the liquid phase (23-34% vs. 66-77%, Fig. 1). Our results contrast with those reported by Yang and Chen (2017), who observed that soils showed a great variation in their capacity to retain phytases to the soil solid phase of the soil (19-40% observed in our work vs 17-93% in Yang and Chen (2017) work) and that sandy soils had the lowest phytase fixation.

These differences may be due that our soils used in this work did not have had a narrower width range of texture. The benefits of having a low adsorption to the soil matrix for phytases as potential biofertilizers are not as straightforward. There is a tradeoff between phytase retention to the soil matrix adsorption and phytase activity, whose outcome would
determine the real contribution of the enzyme to soil P availability. A low retention of phytases implies more enzyme in
the soil solution and eventually a faster release of soil organic P. On the other side, phytases in soil solution could be
more easily denatured by soil microorganisms (Yang and Chen, 2017), whereas retained phytases would be released
gradually, providing additional available P at later stages (Mezei et al., 2017).

The four enzymes were effective to release P from phytic acid throughout the analysed pH range. A. niger optimum
activity was observed at pH 5.9, value slightly higher than those reported by earlier reports (5-5.5) (Konietzny and
Greiner, 2002; Menezes-Blackburn et al., 2015; Sariyska et al., 2005). In E. coli, optimum pH was observed between
4.7 and 5.5, in agreement with values reported earlier (4.5-5) (Konietzny and Greiner, 2002; Menezes-Blackburn et al.,
2015). We did not find previous reports determining the optimum pH for enzyme activity with pNP and G3Phosphate as
organic P sources.

Several methodologies have been used to evaluate phytase activity along a temperature range. In some cases, only
optimum temperatures were reported (Azeem et al., 2014), whereas other authors reported the release of inorganic P as
relative maximum values (Hayes et al., 1999). In our experiments, we found an optimum range phytase activity ranging
between 10ºC and 40ºC for phytic acid, releasing in one hour up to 30% of the P contained in the substrate. These
data agree with Hayes et al. (1999), who found maximum activities in the 0/40ºC range, although other authors (Azeem
et al., 2014; Sariyska et al., 2005) found maximum activities between 55ºC and 65ºC. When the substrate was pNP, the
four enzymes showed a somewhat equivalent range of optimum temperatures than those found for phytic acid. However,
the proportion of P released from pNP was almost half that observed from phytic acid, and never exceeded 20% (Fig. 3).
The optimal enzyme temperature range for G3Phosphate was difficult to determine due to the scarce proportion of P
released (5%). The fitted functions did not show a clear peak such as the ones observed for the other organic P sources
(Fig. 3).

Enzyme kinetic analysis indicated that the affinity (Km) for phytic acid of A. niger enzyme showed a range of 48-59 mM
(Figs. 4a and 4b) values lower than those found by Konietzny and Greiner, (2002) and Menezes-Blackburn et al., (2015).
In E. coli, the range of Km for phytic acid obtained in our experiments was 50-54 mM (Fig. 4), which indicates a lower
affinity compared to the 130-630 µM range reported by Konietzny and Greiner (2002). For pNP as substrate, Soni et al.
(2016) reported a Km range of A. niger phytases of 1 to 4 mM, values much lower than those found in our experiments
(52-67 mM, Fig. 4). We did not find reports in the literature where the kinetic parameters of phytases were evaluated
using G3Phosphate as substrate. We observed that A. niger 1 and E. coli 2 phytases have the highest affinity for
G3Phosphate (2-4.7 mM, Fig 4).

The observed differences between values Km for phytic acid in our experiments compared with literature could be related
to methodological differences, since there is no common protocol for evaluating purified phytases, for example the buffer
and temperature conditions. For example, some inhibitory effects of Ca²⁺ buffer concentration on the enzyme activity can
affect the kinetic parameters evaluation (Vohra and Satyanarayana, 2003; Nannipieri et al., 2012). However, despite the
relatively low enzyme affinity for phytic acid, the proportion of P released at optimum conditions was high (24% to 41%
in one hour of incubation, Fig. 2a).

5 Conclusions

Obtained results partially support our first hypothesis since the selected phytases showed a great ability to release P from
different organic P sources, but A. niger 1, 2 and E. coli 1 release more P from pNP than phytic acid while E coli 2 has
no preference for any particular substrate. In contrast, our results did not support the second proposed hypothesis, since
the retention of phytases by the soil solid phase did not have a clear association with the analysed soil properties. In this
regard, it must be taken into account that the seven selected soils belonged to the Mollisol order. After being added to the soil, tested phytases showed an adsorption to soil solid phase ranging from 20 to 40%. Those phytases that remain in the solution could release Pi from the organic P of the soil, whereas phytases that remain adsorbed to the soil solid phase could be released later. Regarding our third hypothesis, although the evaluated phytases exhibited some differences in their pH and temperature levels to reach their optimum activity, all studied phytases remained active at the optimum soil pH range of the most productive agricultural soils (5-7). In the same line, optimal temperatures for phytase activity were also within the temperature range more suitable for most agricultural crops (20-30ºC). Our results suggest that purified phytases may constitute a feasible tool to be used as a complement to P fertilization. In such sense, further experiments should be performed to evaluate the enzyme performance under field conditions to evaluate the ability of phytases to release from organic soil P sources, their interaction with soil microorganisms and to test if crops can capitalize the eventual provision of inorganic P released.

Author contributions

M. M. Caffaro, K. Balestrasse and G. Rubio designed the experiments and the method of data analysis. M. M. Caffaro performed the experiments and analyzed the data with G. Rubio. Finally, M. M. Caffaro prepared the manuscript with the contribution of all co-authors.

Conflicts of interest

Authors declare no conflict of interest regarding this research.

Acknowledgments

Financial support was provided by CONICET, University of Buenos Aires and ANPCyT.
References

Azeem, M., Riaz, A., Chaudhary, A.N., Hayatm, R., Hussain, Q., Tahir, M.I., Imran, M.: Microbial phytase activity and their role in organic P mineralization, Archives of Agronomy and Soil Science, 61, 751-766, 2015.

Cabello, M.J., Gutierrez Boem, F.H., Quintero, C.E., Rubio, G.: Soil characteristics involved in phosphorus sorption in Mollisols, Soil Sci. Soc. Am. J., 80, 585-1590, 2016.

Cordell, D., Drangert, J.O., White, S.: The story of phosphorus: Global food security and food for thought, Global Environ. Change, 2, 292-305, 2009.

Dalal, R.C.: Soil organic phosphorus, Adv. Agron., 29, 83–113, 1977.

El-Sherbiny, A.E., Hassan, H.M.A., Abd-Elsamee, M.O., Samy, A., Mohamed, M.A.: Performance, bone parameters and phosphorus excretion of broilers fed low phosphorus diets supplemented with phytase from 23 to 40 days of age. International Journal of Poultry Science, 9, 97-777, 2010.

Fernandez, M.C., Rubio, G.: Root morphological traits related to phosphorus-uptake efficiency of soybean, sunflower, and maize, J. Plant Nutr. Soil Sci., 178, 807-815, 2015.

Findeneg, G., Nelemans, J.: The effect of phytase on the availability of P from myo-inositol hexaphosphate (phytate) for maize roots, Plant Soil, 154, 189-196, 1993.

George, T.S., Richardson, A.E., Simpson, R.J.: Behaviour of plant-derived extracellular phytase upon addition to soil, Soil Biol. Biochem., 37, 977-988, 2005.

Harvey, P.R., Warren, R.A., Wakelin, S.: Potential to improve root access to phosphorus: the role of non-symbiotic microbial inoculants in the rhizosphere, Crop Pasture Sci., 60, 144-151, 2009.

Hayes, J.E., Richardson, A.E., Simpson, R.J.: Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings, Funct. Plant Biol., 26, 801-809, 1999.

Jorquera, M., Martinez, O., Maruyama, F., Marschner, P., Mora, M.L.: Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ., 23, 182-191, 2008.

Konietzny, U., Greiner, R.: Molecular and catalytic properties of phytate-degrading enzymes (phytases), Int. J. Food Sci. Tech., 37, 791-812, 2002.

Li, Y.F., Luo, A.C., Wei, X.H., Yao, X.G.: Changes in Phosphorus Fractions, pH, and Phosphatase Activity in Rhizosphere of Two Rice Genotypes, Pedosphere, 18, 785-794, 2008.

Liu, L. Li, A., Chen, J., Su, Y., Li, Y., Ma, S.: Isolation of a Phytase-Producing Bacterial Strain from Agricultural Soil and its Characterization and Application as an Effective Eco-Friendly Phosphate Solubilizing Bioinoculant. Communications in Soil Science and Plant Analysis, 49, 984-994, 2018.

Lott, J., Ockenden, I., Raboy, V., Batten, G.: Phytic acid and phosphorus in crop seeds and fruits: A global estimate, Seed Sci. Res., 10, 11-33, 2000.

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265–275, 1951.

Mead, R., Curnow, R.N., Hasted, A.M.: Statistical Methods in Agriculture and Experimental Biology, second ed. Chapman & Hall, London, 1993.

Menezes-Blackburn, D., Gabler, S., Greiner, R.: Performance of Seven Commercial Phytases in an in Vitro Simulation of Poultry Digestive Tract, J. Agr. Food Chem., 63, 6142-6149, 2015.

Menezes-Blackburn, D., Inostroza, N.G., Gianfreda, L., Greiner, R., Mora, M.L., Jorquera, M.A.: Phytase-producing Bacillus sp. inoculation increases phosphorus availability in cattle manure, Journal of Soil Science and Plant Nutrition, 16, 200-210, 2016.
Mezeli, M.M., Menezes-Blackburn, D., George, T.S., Giles, C.D., Neilson, R., Haygarth, P.M.: Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil, Geoderma, 305, 346-353, 2017.

Misset, O.: Phytase, Food Sci. Technol., 122, 687–706, 2003.

Mullaney, E.J., Ullah, A.H.J.: Phytases: Attributes, Catalytic Mechanisms and Applications, In: Turner BL, Richardson AE, Mullaney EJ (eds). Inositol Phosphates: Linking Agriculture and the Environment, CAB International, Oxfordshire, Oxford UK pp. 97-110, 2007.

Murphy, J., Riley, J.P.: A modified single solution method for the determination of phosphate in natural waters, Analytica Chimica Acta, 27, 31-36, 1962.

Nannipieri, P., Giannoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Fornasier, F., Moscatelli, M.C., Marinari, S.: Soil enzymology: classical and molecular approaches, Biol. Fertil. Soils, 48, 743-762, 2012.

Richardson, A.E., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, F.A., Smith, S.E., Harvey, P.R., Ryan, M.H., Veneklaas, E.J., Lambers, H.: Plant and microbial strategies to improve the phosphorus efficiency of agriculture, Plant Soil, 349, 121-156, 2011.

Rubio, G., Pereyra, F.X., Taboada, M.A.: Soils of the Pampean Region, In: Rubio G, Lavado RS, Pereyra (eds) The Soils of Argentina. World Soils Book Series. Springer Int. Publ. pp. 81-100, 2019.

Ruyter-Hooley, M., Larsson, A.C., Johnson, B.B., Antzutkin, O.N., Angove, M.J.: Surface complexation modeling of inositol hexaphosphate sorption onto gibbsite, Journal of Colloid and Interface Science, 440, 282–291, 2015.

Sariyska, M., Gargova, S., Koleva, L., Angelov, A.: Aspergillus niger phytase: Purification and characterization, Biotechnol Biotec. Eq., 19, 98-105, 2005.

Simpson, R.J., Oberson, A., Culvenor, R.A., Ryan, M.H., Veneklaas, E.J., Lambers, H., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, F.A.: Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems, Plant and Soil, 349, 89-120, 2011.

Steffens, D., Leppin, T., Luschin-Ebengreuth, N., Min Yang, Z., Schubert, S.: Organic soil phosphorus considerably contributes to plant nutrition but is neglected by routine soil-testing methods, J. Plant Nutr. Soil Sci., 173, 765–771, 2010.

Tiessen, H.: Phosphorus in the global environment. In: White PJ, Hammond JP (eds). The Ecophysiology of Plant-Phosphorus Interactions, Springer Science + Business Media B.V. Berlín, Alemania pp. 1–8, 2008.

Vohra, A., Satyanarayana, T.: Phytases: Microbial sources, production, purification, and potential biotechnological applications, Crit. Rev. Biotechnol., 23, 29-60, 2003.

Yang, X.Z., Chen, L.J.: Distribution of exogenous phytase activity in soil solid–liquid phases and their effect on soil organic P hydrolysis, J. Plant Nutr. Soil Sci., 180, 39–48, 2017.
Tables

Table 1. Characteristics of seven representative soils of the Argentina’s Pampa Region used for testing phytases adsorption. Samples were taken at 0-20 cm, air dried and sieved at 1 mm prior to the analysis.

Soil	Alberti	Adelia María	Lincoln	Oliveros	San Antonio de Areco	Balcarce	Balcarce
Soil type	Typic Argiudoll	Entic Haplustoll	Typical Argiudoll				
pH	5.9	6.3	6.0	5.7	6.1	6.5	5.9
Ca$^{2+}$ cmol$_c$	3.6	3.0	3.0	2.5	9.1	6.5	5.2
Ca$^{2+}$ + Mg$^{2+}$ kg$^{-1}$	4.5	4.0	4.0	3.2	6.1	7.1	5.6
C$_T$ g kg$^{-1}$	26.0	11.5	14.2	14.0	20.2	38.6	36.9
Clay %	16.3	16.7	8.8	28.8	30.0	27.6	36.4
Sand %	44.0	51.3	68.0	8.3	19.4	34.6	23.8
Silt %	39.8	32.0	23.3	63.0	50.6	36.5	48.6
P$_{Bray 1}$ mg kg$^{-1}$	14.9	16.2	3.4	14.9	3.4	24.6	35.6
P$_{Mehlich 3}$ mg kg$^{-1}$	20.3	19.3	12.9	20.8	6.9	36.1	48.6
P$_T$ mg kg$^{-1}$	351	308	284	290	228	441	453
P$_O$ mg kg$^{-1}$	208	148	150	181	163	339	325
P$_I$ mg kg$^{-1}$	142	159	134	109	64	102	129
Al$^{3+}$ mmol$_c$	1.0	0.7	0.5	0.7	0.8	1.3	1.8
Fe$^{3+}$ kg$^{-1}$	1.3	1.1	1.3	1.1	1.4	1.9	2.3
Clay$_{BET}$ m2 g$^{-1}$	12.6	9.8	3.5	13.7	31.4	20.5	32.5
Table 2. Coefficients of the adjusted Lorentzian-peak functions for phytase activity (see graphs in Fig. 2) at different pH levels with phytic acid, pNP and G3Phosphate as substrates. The equations were adjusted from the observed results of the release of P from each substrate used. Four purified phytases (two isolated from \textit{A. niger} and two from \textit{E. coli}) were evaluated. In those cases where significant differences between enzymes (analyzed by F tests) were not found, a unique curve were fitted. Different letters correspond to significant differences between treatments (P <0.05, LSD procedure) Coefficient \(a\) is the maximum percentage of P released; \(b\) is the pH value where the enzyme has maximum activity (a P release peak); \(c\) estimates the standard deviation of the distribution and \(x\) is the pH value.

\[
y = \frac{a}{1 + \left(\frac{x-b}{c}\right)^2}
\]

Enzyme	Coefficients	\(R^2\)		
	\(a\)	\(b\)	\(c\)	
Substrate: Phytic acid				
\textit{A. niger 1 + A. niger 2}	36.6a	5.9a	2.7a	0.73
\textit{E. coli 1}	30.1b	5.5ab	4.2a	0.55
\textit{E. coli 2}	24.2c	4.7b	3.8a	0.66
Substrate: p-Nitrophenyl phosphate				
\textit{A. niger 1 + A. niger 2}	49.96a	6.2a	1.03a	0.79
\textit{E. coli 1}	36.88b	5.8a	1.96a	0.70
\textit{E. coli 2}	24.16c	6.0a	1.54a	0.77
Substrate: Glyceraldehyde-3-phosphate				
\textit{A. niger 1 + A. niger 2}	44a	3.9b	0.7b	0.94
\textit{E. coli 1}	36.6b	4.1b	0.8b	0.89
\textit{E. coli 2}	24.2c	6.0a	1.5a	0.77
Table 3. Coefficients of the adjusted Lorentizian-peak functions for phytase activity (see graphs in Fig. 2) at different temperature levels with phytic acid, pNP and G3P as substrates. The equations were adjusted from the observed results of the release of P from each substrate used. Four purified phytases (two isolated from *A. niger* and two from *E. coli*) were evaluated. In those cases where significant differences between enzymes (analyzed by F tests) were not found, a unique curve were fitted. Different letters correspond to significant differences between treatments (P <0.05, LSD procedure) Coefficient *a* is the maximum percentage of P released; *b* is the temperature value where the enzyme has maximum activity (a P release peak); *c* estimates the standard deviation of the distribution and *x* is the temperature value.

Enzyme	Coefficients	R²
Substrate: Phytic acid		
A. niger 1 + *A. niger* 2	33.47a, 24a, 13.12b	0.94
E. coli 1 + *E. coli* 2	24.53b, 29a, 21.61a	0.86
Substrate: p-Nitrophenyl phosphate		
A. niger 1 + *A. niger* 2	17.74b, 29a, 20.78a	0.97
E. coli 1	22.18a, 29a, 19.49a	0.96
E. coli 2	13.22c, 29a, 19.5a	0.95
Substrate: Glyceraldehyde-3-phosphate		
A. niger 1 + *A. niger* 2	10.05a, 24b, 42.03b	0.80
E. coli 1	6.62a, 30b, 36.34b	0.84
E. coli 2	12.61b, 20a, 53.4a	0.43
Figures

FIGURE 1. Phytase activity distributed in the liquid and solid phases for the phytase soil adsorption experiment. Four purified phytases (two isolated from *A. niger* and two from *E. coli*) were evaluated. Experiments were performed with the seven soils described in Table 1. For *A. niger* 1; *A. niger* 2 and *E. coli* 1 phytases, a unique curve decay (Eq. 2), and exponential increase (Eq. 3) involving the seven soils was fitted because no significant differences (after F tests) were found between them. For *E. coli* 2, no function could be adjusted because a 37% binding to the soil solid phase was observed at 5 minutes and remained stable throughout the incubation period. Each point represents the average of three observations. Bars represent standard error of the mean.
FIGURE 2. Phytase activity measured at different pH levels with phytic acid, pNP and G3Phosphate as substrates. Four purified phytases (two isolated from *A. niger* and two from *E. coli*) were evaluated. In those cases where significant differences between enzymes (analyzed by F tests) were not found, a unique curve was fitted. Each point represents the average of three observations. Bars represent standard error of the mean. Coefficients of each adjusted model are show in Table 2.
FIGURE 3. Phytase activity measured at different temperature levels with phytic acid, pNP and G3P phosphate as substrates. Four purified phytases (two isolated from *A. niger* and two from *E. coli*) were evaluated. In those cases where significant differences between enzymes (analyzed by F tests) were not found, a unique curve was fitted. Each point represents the average of three observations. Bars represent standard error of the mean. Coefficients of each adjusted model are shown in Table 3.
FIGURE 4. Kinetic parameters for phytic acid, pNP and G3Pphosphate as substrates of purified phytases (two isolated from *A. niger* and two from *E. coli*). The activity was determined at different P concentrations (0 to 100 mM) contained in each substrate. Each point represents the average of three observations. Bars represent standard error of the mean. Data were fitted to a Michaelis-Menten curve and the estimated V_{max} and K_m values obtained by the Lineaweaver-Burk method are shown.