Polycyclic aromatic hydrocarbon exposure and pediatric asthma in children: a case–control study

Nasser M Al-Daghri1, Majed S Alokail1, Sherif H Abd-Alrahman1,2, Hosam M Draz1,3, Sobhy M Yakout1 and Mario Clerici4

Abstract

Background: Bronchial asthma is one of the most prevalent diseases in Arab children. Environmental pollution has been suggested to be considered causative of asthma, nasal symptoms and bronchitis in both children and adult. The objectives of this study were to evaluate the association between serum polycyclic aromatic hydrocarbons (PAHs) levels, asthma and allergic outcomes among Saudi children aged up to 15 yrs. We hypothesized that increased serum PAHs are associated with allergy, asthma, or respiratory symptoms.

Methods: A total of 195 Saudi children (98 asthma pediatric patients and 97 healthy controls) were randomly selected from the Riyadh Cohort Study for inclusion. The diagnosis of Asthma was based on established pediatric diagnosis and medications taken.

Results: Asthma related markers showed highly significant differences between children with and without asthma. Thus IgE, resistin and IL-4 were significantly increased (p < 0.004, 0.001 and 0.003, respectively) in children with asthma compared with non-asthma control subjects. GMCSF, IFN-γ, IL-5, IL-8 and IL-10, on the other hand, were significantly decreased in children with asthma (p < 0.003, 0.03, 0.001, 0.004 and 0.03, respectively). Strong associations between serum PAHs levels and biomarkers of childhood asthma were detected in Arabic children. Data confirmed the role of naphthalene, 4H-cyclobenta[def]phenanthrene, 1,2-benzanthracene, chrysene and benzo(e) acephenanthrylene in childhood asthma; levels of these PAHs were correlated with asthma related biomarkers including IgE, resistin, GMCSF and IFN-γ as well as IL-4, IL-5, IL-8 and IL-10 cytokines.

Conclusions: This data highlight the pivotal role of specific PAHs in childhood asthma.

Keywords: PAHs, Environmental pollution, Childhood asthma, Biomarkers
particles, trace metals, volatile organic compounds, nitrogen dioxide, particulate matter, and PAHs in the development of respiratory symptoms, asthma or the onset of allergies. Studies have shown that exposure to PAHs be associated with adverse respiratory health outcomes. Previous data reported that exposure to PAHs such as benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, chrysene and dibenz[a,h]anthracene are associated with increased cough and wheeze at age 12 months, and breathing problems as well as development of asthma [24,25]. Notably, PAHs exposure was suggested to favor proallergic immunoglobulin IgE responses. Recently, the U.S. National Health and Nutrition Examination Survey (NHANES) (1999–2000, 2001–02) provided comprehensive descriptions of reference ranges for a larger panel of PAHs metabolites collected from a population of children and adults without suspected occupational exposures [20,22]. Higher levels were detected among children, suggesting that they may be at greater risk for adverse health effects. The objectives of this study were to evaluate the association between serum PAHs level with asthma among Saudi children up to 8 yrs. Our starting hypothesis being that increased serum PAHs are associated with allergy, asthma, or respiratory symptoms.

Methods

Study subjects
A total of 195 Saudis children aged 15 years old and below (98 asthma pediatric patients and 97 healthy controls) were randomly selected from the Riyadh Cohort Study for inclusion. The parent or guardian of each child was asked to answer a questionnaire consisting of demographic information which included dietary questions, area of residence (near the factory, high-traffic area, etc.), presence of a smoker at home and other pertinent questions related to asthma. Asthma was based on established pediatric diagnosis and medications taken. Since most of the subjects were asymptomatic during the course of the study, parents were asked if the child had history of wheezing upon exhalation, frequent episodes of chest tightness and hyper-expansion of thorax with use of accessory muscles. Ethical approval was granted by the Ethics Committee of the College of Science Research Center, King Saud University, Riyadh, KSA.

Anthropometrics
Anthropometry included height (rounded off to the nearest 0.5 cm) and weight (rounded off to the nearest 0.1 kg), which were measured using an appropriate international standard scale (Digital Person Scale; ADAM Equipment, Milford, CT, USA), as well as waist and hip circumference in centimeters, which were measured using a standard tape measure; and body mass index (BMI) was calculated as kg/m². The Holtain Khan abdominal caliper by Holtain Ltd (Crymych, UK) was used to measure sagittal abdominal diameter (SAD).

Biochemical parameters
Fasting blood was collected by an assigned physician at their respective primary healthcare centers. Blood was drawn, centrifuged and processed on the same day. Both whole blood and serum were placed in plain polystyrene tubes. Serum was delivered to Biomarker Research Program (BRP) for storage at −20°C. Fasting serum glucose levels, and complete lipid profile (triglycerides, total cholesterol, high density lipoprotein [HDL]-cholesterol) were determined using a biochemical analyzer (Konelab, Espoo, Finland). Low density lipoprotein (LDL)-cholesterol was calculated using Friedman formula. This biochemical analyzer was calibrated routinely prior to the analysis of all serum samples using quality control samples provided by the manufacturer (Thermo-Fisher Scientific, Espoo, Finland). LINCOplex, human multiplex immunoassay kit based on Luminex 100 system platform (Luminex Corporation, Austin, TX, USA) was used for determination of three different panels by simultaneous detection of a great variety of cytokines, interleukins and immunoglobulins. The standard protocol for the process was followed. The concentrations of analyte in each sample were calculated with a five parameter model using Luminex IS software ver. 2.3.

PAH analysis
A stock solution of 12 PAHs mixed standard solutions was prepared by dissolving 1 mg from each PAH in 100 ml acetonitrile. The series of PAHs mix standard (0.0, 0.5, 2.5, 5, 10, 50 and 100 ng ml⁻¹) were prepared in acetonitrile for linearity. Calibration curves were generated by plotting peak area versus concentration. Each subject's sample was analyzed for a suite of 12 PAHs as previously described [23]. Analytical determination was conducted by using liquid-liquid extraction followed by high performance liquid chromatography with fluorescence detector (HPLC-FLD). Standard calibration curve was presented excellent linearity, with good separation and repeatability. The limit of detection (LOD) was defined as the higher value of either the method blank LOD (three times standard deviation of method blank after subtracting the average blank), or the instrument LOD (signal >3 times the signal to noise ratio). The limit of quantification (LOQ) (signal >10 times the signal to noise ratio). The limits of detection were ranged from 1.2 to 4.0 ng ml⁻¹ (0.001 ppm). The lowest possible standard on the calibration curve was accepted as the LOQ. The calibration curve and recovery validation study were all repeated three times (n = 3). Recovery and precision were estimated by using spiked blank matrix, samples were analysed in duplicate at five levels...
spread equally over the analytical range. The recoveries were calculated from the analytical signal as the ratio between found and expected expressed in %. The rate of recovery for all 12 PAHs were ranged from 86 to 106%.

Statistical analysis
Data represented by mean ± standard deviation. Skewed data was either log or square root transformed. Non Gaussian variables were represented by median and inter quartile ranges. Two samples independent T test was performed to compare control and asthma. Mann Whitney U test was performed to compare control and asthmatic, wherever variables don’t follow Gaussian distribution. P values <0.05 were considered statistically significant. Pearson’s correlation test was performed to examine various correlations. Analyses were performed with the SPSS-PC software, version 16.0 (SPSS Inc, Chicago, IL).

Results

Subjects characteristics
The epidemiological characterization of the 195 Saudis children included in the study (98 asthma pediatric patients and 97 non-asthma control subjects) is provided in Table 1. All children were comparable regards to BMI, waist, SAD, total cholesterol, glucose, triglycerides and LDL-cholesterol.

Association between PAH and asthma markers
Not surprisingly, asthma related biochemical markers showed highly significant differences between children with asthma and non-asthma control subjects. Thus, compared to non-asthma control subjects significant increase in level of IgE (123.1 ± 5.0 vs. 61.1 ± 4.3, p = 0.004), resistin (24.5 ± 1.6 vs. 17.3 ± 1.3, p = 0.001) and IL-4 (18.5 ± 3.6 vs. 9.2 ± 1.4, p = 0.003) and IL-8 (6.3 ± 1.2 vs. 12.4 ± 1.8, p = 0.004) and IL-10 (9.2 ± 1.4 vs. 12.1 ± 1.7, p = 0.03) pg ml⁻¹. While there was significant decrease in levels of GMCSF (1.0 ± 0.11 vs. 1.9 ± 0.1, p = 0.003), IFN-γ (1.6 ± 0.63 vs. 2.4 ± 0.74, p = 0.03), IL-5 (0.52 ± 0.17 vs. 0.92 ± 0.2, p = 0.001), IL-8 (6.3 ± 1.2 vs. 12.4 ± 1.8, p = 0.004) and IL-10 (9.2 ± 1.4 vs. 12.1 ± 1.7, p = 0.03) pg ml⁻¹.

Quantification of PAHs showed the presence of significant difference between children with asthma and non-asthma control subjects in levels of naphthalene (26.2 ± 2.5 vs. 10.7 ± 2.7, p = 0.006), 4H-cyclobenta[def]phenanthrene (4.8 ± 0.93 vs. 2.1 ± 0.80, p = 0.02) ng ml⁻¹. In contrast with these results, no differences were detected between the two groups in the levels of anthracene, phenanthrene, fluoranthene and benzo(a)pyrene.

Table 1 Characterization of asthmatic children compared to non-asthma control subjects

Parameters	Control	Asthma	P value
Age (years)	13.5 ± 4.2	13.7 ± 2.9	0.81
BMI (kg/m²)	21.1 ± 5.5	21.3 ± 6.6	0.81
Waist circumference (cm)	66.6 ± 15.1	70.7 ± 17.1	0.09
Hip circumference (cm)	82.1 ± 20.7	83.8 ± 19.9	0.54
SAD (cm)	17.0 ± 7.5	17.7 ± 19.6	0.53
Cholesterol (mmol/l)	4.3 ± 0.88	4.1 ± 0.72	0.07
Glucose (mmol/l)	5.3 ± 1.7	5.3 ± 1.7	0.90
HDL-Cholesterol (mmol/l)	1.04 ± 0.34	0.90 ± 0.31	0.008
Triglycerides (mmol/l)	1.1 ± 0.60	1.03 ± 0.41	0.59
LDL-Cholesterol (mmol/l)	2.8 ± 0.80	2.7 ± 0.67	0.21
IgE (pg/ml)	61.1 ± 4.3	123.1 ± 50	0.004
Resistin (pg/ml)	17.3 ± 1.3	24.5 ± 1.6	<0.001
GMCSF (pg/ml)	1.9 ± 0.10	1.0 ± 0.11	0.003
INF-gamma (pg/ml)	2.4 ± 0.74	1.6 ± 0.63	0.03
IL4 (pg/ml)	9.2 ± 1.4	18.5 ± 3.6	0.03
IL5 (pg/ml)	0.92 ± 0.20	0.52 ± 0.17	<0.001
IL8 (pg/ml)	12.4 ± 1.8	6.3 ± 1.2	0.004
IL10 (pg/ml)	12.1 ± 1.7	9.2 ± 1.4	0.03
Naphthalene (ng/ml)	10.7 ± 2.7	26.2 ± 2.5	<0.001
Anthracene (ng/ml)	239.5 ± 22.6	260.1 ± 52.3	0.79
Fluorene (ng/ml)	2.5 ± 0.75	3.6 ± 0.90	0.04
Phenanthrene (ng/ml)	9.3 ± 1.7	11.5 ± 1.9	0.13
4H-cyclobenta[def]phenanthrene (ng/ml)	6.2 ± 1.1	20.3 ± 2.1	<0.001
Pyrene (ng/ml)	0.67 ± 0.34	1.1 ± 0.50	0.04
Fluoranthene (ng/ml)	26.9 ± 3.2	31.8 ± 3.4	0.60
1,2-benzanthracene (ng/ml)	0.37 ± 0.24	0.73 ± 0.36	0.01
Chrysene (ng/ml)	0.87 ± 0.19	1.8 ± 0.13	0.001
Benzo(a)pyrene (ng/ml)	1.6 ± 0.17	2.6 ± 0.20	0.32
Benzo[a]pyrene (ng/ml)	1.7 ± 0.23	7.0 ± 0.90	0.006
Benzo[al]pyrene (ng/ml)	2.1 ± 0.80	4.8 ± 0.93	0.02

To examine the role of PAHs in asthma, we analysed the association between PAHs and markers of asthma (Table 2). Our results clearly showed strong correlation between serum PAHs levels and asthma related biomarkers in Arab children. Thus, serum naphthalene was positively associated with IgE (r = 0.18, p = 0.03), IL-4 (r = 0.54, p = 0.001) and resistin (r = 0.19, p = 0.02) and negatively associated with IL-5 (r = -0.18, p = 0.03). 4H-cyclobenta[def]phenanthrene was positively associated with IgE (r = 0.18, p = 0.03), IL-4 (r = 0.54, p = 0.001) and negatively associated with IL-10 (r = -0.23, p = 0.02). 1,2-benzanthracene was positively associated with IgE (r = 0.27, p = 0.006), resistin (r = 0.34, p = 0.001) and negatively associated with IL-10 (r = -0.21, p = 0.03). Benzo
Mechanisms underlying the differences in PAHs levels may be multifactorial. These may be impacted by dietary preferences or lifestyle behaviors not measured in this study which might explain such changes. Additionally, genetic factors may impact on the metabolism of these compounds. Some of these possibilities have also been suggested by the NHANES report [20].

The present study showed positive associations between IgE and PAHs (naphthalene, 4H-cyclobenta[def] phenanthrene, 1,2-benzanthracene). The associations between PAHs levels and IgE levels reported in other studies indeed suggest that exposure to traffic-related air pollution results in an up-regulation of allergic immune responses [29-31]. In vitro studies have demonstrated that PAH-enhance IgE production via their effects on tensile B cells [32]. Exposure to pyrene has been associated with up-regulation of the IL-4 promoter [33]. In addition, different PAHs pyrene, benzo(a)-pyrene, anthracene, phenanthrene and fluoranthe has been shown to induce IgE production, T helper 2 cytokine productions in both rodent and studies highlighting the cellular impact of PAHs [34-36].

Conclusion

Our results show that serum PAHs level is correlated with multiple asthma related biomarkers in children. Results herein also support the importance of Naphthalene, 4H-cyclobenta[def]phenanthrene, 1,2-benzanthracene, Chry-
sene and Benzo(e)acephenanthrylene in childhood asthma and clearly indicate that the plasma concentration of these compounds correlate with asthma related biomarkers including IgE, resistin, GMCSF, IFN-γ, IL-4, IL-5, IL-8 and IL-10.

Abbreviations

PAHs: Polycyclic aromatic hydrocarbons; BMI: Body mass index; LDL: Low density lipoprotein; HDL: High density lipoprotein; SAD: Sagittal abdominal diameter.
Competing interests
The authors declared no competing interest with respect to the authorship and/or publication of this article.

Authors’ contributions
NMAD, MSA and SHAA designed and initiated the current study. NMAD, SHAA and MC were responsible for collecting the samples and the interview data. SHAA and HMD coordinated the current study. SHAA was responsible for the PAHs analysis using HPLC-FLD. HMD and SMY were responsible for the biochemical analyses. SHAA and HMD were responsible for writing the draft version of manuscript. NMAD, MSA, SMY and MC were responsible for reviewing the draft version of manuscript. All authors commented on and approved the final manuscript.

Acknowledgements
The authors gratefully acknowledge the National Plan for Sciences and Technology (NPST) for the financial support (09-EN6662-02). The authors thank Benjamin Vinodson for the statistical analysis of data.

Author details
1. Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia. 2. Pesticides Residues and Environmental Pollution Dept, Central Agricultural Pesticide Laboratory, Agricultural Research Centre, Giza 12618, Egypt. 3. Biochemistry Department, National Research Centre, Dokki, Cairo 12311, Egypt. 4. Department of Biomedical Sciences and Technology, Milano University Medical School, Segrate-Milan0 20090, Italy and Fondaztobe Don C Gnocchi, Milan, Italy.

Received: 19 September 2012 Accepted: 11 December 2012 Published: 3 January 2013

References
1. Weiss KB, Shannon JJ, Sadowski LS, Sharp LX, Curtis L, Lyttle CS, Kumar R, Shalowitz MI, Weiselberg L, Caturarone CD, Evans A, Lee R, Jon Miller J, Kimmel L, Gammel L. The burden of asthma in the Chicago community fifteen years after the availability of national asthma guidelines: the design and initial results from the CHIRASH study. Contemp Clin Trials 2009, 30:246–255.
2. Al Fryah AR, Shaokar Z, Gid El Rab MO, Hasnain SM. Increased prevalence of asthma in Saudi Arabia. Allergy Asthma Immunol 2001, 86(3): 292–296.
3. Essam HJ, Nasser AE. Association between b + 252 tumour necrosis factor polymorphism and asthma in western Saudi children. Saudi Journal of Biological Sciences 2011, 18:107–111.
4. Hijazi N, Alkhailth B, Seatran A. Asthma and respiratory symptoms in urban and rural Saudi Arabia. Eur Respir J 1998, 12:41–44.
5. Stewart WF, Ricci JA, Chee E, Morganstein D. Lost productive work time costs from health conditions in the United States: results from the American Productivity Audit. J Occup Environ Med 2003, 45:1234–1246.
6. Shaheen SO, Aaby P, Hall AJ, Barker DJ, Heyes CB, Shiell AW, Goudiaby A. Impact of allergen exposure on children’s asthma and associated costs. Thorax 2002, 57:320–325.
7. Shirakawa T, Enomoto T, Shimagu S, Hepkin JM. The inverse association between tuberculosis responses and atopic disorder. Science 1997, 275:77–79.
8. Shaheen SO. Obesity and asthma: cause for concern? Clin Exp Allergy 1999, 29(3):291–293.
9. Bodner C, Godden D, Seaton A. Family size, childhood infections and atopic diseases. The Aberdeen WHEASE Group. Thorax 1998, 53:28–32.
10. Jarvis D, Chinn S, Lycopszny C, Burley P. The association of family size with atopic and atopic disease. Clin Exp Allergy 1997, 27:240–245.
11. Strachan DP. Hay fever, hygiene, and household size. BMJ 1989, 299(6710):1299–1300.
12. Hodge L, Salone C, Hughes J. Effect of Dietary intake of omega-3 fatty acids and omega-6 fatty acids on severity of asthma in children. Eur Respir J 1997, 10:361–365.
13. Weiland SK, von Mutius E, Heger C, Asher MI, Pekkanen J, Wedren S, Holgate ST, Platts-Mills TA, Postma DS. Atopic disease is associated with a reduced content of omega-3 fatty acids in the diet. J Allergy Clin Immunol 1998, 101:1051–1057.
14. Pearson JP, Zhu Z. Reversing the trend: reducing the prevalence of asthma. J Allergy Clin Immunol 1999, 103:1–10.
15. Sporik R, Holgate ST, Platts-Mills TA, Cogswell JJ. Exposure to house-dust mite allergen (Der p 8) and the development of childhood asthma: a prospective study. N Engl J Med 1990, 323:502–507.
16. Harrison RM, Johnston WR. Deposition fluxes of lead, cadmium, copper and polynuclear aromatic hydrocarbons (PAH) on the verges of a major highway. Sci Total Environ 1985, 46:121–135.
17. Vardoulakis S, Chalabi Z, Fletcher T, Grundy C, Leonardi G. Impact and uncertainty of a traffic management intervention: population exposure to polycyclic aromatic hydrocarbons. Sci Total Environ 2008, 394:244–251.
18. Brandt HC, Watson WP. Monitoring human occupational and environmental exposures to polycyclic aromatic compounds. Ann Occup Hyg 2003, 47:349–378.
19. Vyskocil A, Fiala Z, Chenier W, Krajak L, Ettlerova E, Bukac J, Vluc I, Emminger S. Assessment of multipathway exposure of small children to PAH. Environ Toxicol Pharmacol 2000, 8:111–118.
20. Li Z, Sandau CD, Romanoff LC, Caudill SP, Spodn A, Needham LH, Patterson DJ Jr. Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. Environ Res 2008, 107:320–331.
21. Al-Daghri NM. Serum polycyclic aromatic hydrocarbons among children with and without asthma: correlation to environmental and dietary factors. Int J Occup Med Environ Health 2008, 21:1–21.
22. Miller RL, Garfinke R, Horton M, Cammann D, Barr D, Bernet T, Garfinkel R, Tu YH, Diaz D, Dietrich J, Whyatt RM. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multietnic population. Environ Health Perspect 2003, 111:201–205.
23. Granger J, Huang W, Patterson DG Jr, Turner WE, Prikke J, Caudill SP, Wang RF, Needham LH, Sampson EJ. Reference range levels of polycyclic aromatic hydrocarbons in the US population by measurement of urinary monohydroxy metabolites. Environ Res 2006, 100:394–423.
24. Al-Daghri NM. Serum polycyclic aromatic hydrocarbons among children with and without asthma: correlation to environmental and dietary factors. Int J Occup Med Environ Health 2008, 21:1–21.
25. Miller RL, Garfinke R, Horton M, Cammann D, Perera FP, Whyatt RM, Kinney PS. Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort. Chest 2004, 126:1071–1078.
26. Jedrychowski W, Galas A, Pac A, Flak E, Cammann D, Rauh V, Perera F. Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life. Eur J Epidemiol 2005, 20:775–782.
27. Kung JW, Cho SH, Kim H, Lee CH. Correlation of urinary 1-hydroxypropane and 2-naphthol with total suspended particulates in ambient air in municipal middle-school students in Korea. Arch Environ Health 2002, 57:377–382.
28. Yang M, Koga M, Katoh T, Kawamoto T. A study for the proper application of urinary naphthal, new biomarkers for airborne polycyclic aromatic hydrocarbons. Arch Environ Contam Toxicol 1999, 36:99–108.
29. Falco G, Domingo J, Ulibert JM, Teixido A, Casas C, Muller L. Polycyclic aromatic hydrocarbons in foods: human exposure through the diet in Catalonia, Spain. J Food Prot 2003, 66:3235–3233.
30. Morgenstern V, Zutavern A, Cyrys J, Ackermann-Liebrich U, Peruchoz AP, Leuenberger P, Wuthrich B. Exposure to motor vehicle traffic and allergic sensitization. The Swiss Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) Team. Epidemiology 2000, 11:450–456.
31. Takenaka H, Zhang K, Diaz-Sanchez D, Tisen A, Saxen A. Enhanced human IgE production results from exposure to the aromatic hydrocarbons from diesel exhaust: direct effects on B-cell IgE production. J Allergy Clin Immunol 1995, 95:103–111.
32. Bommel H, Li-Weber M, Serfling E, Dusche A. The environmental pollutant pyrene induces the production of IL-4. J Allergy Clin Immunol 2000, 105:796–802.
33. Kanoh T, Suzuki T, Ishimori M, Ikeda S, Ohasawa M, Ohkura H, Tunetohi Y. Adjuvant activities of pyrene, anthracene, fluoranthene and benzo(a)
pyrene in production of anti-IgE antibody to Japanese cedar pollen allergen in mice. *J Clin Lab Immunol* 1996, 48:133–147.

35. Takano H, Yoshikawa T, Ichinose T, Miyabara Y, Imaoka K, Sagai M: Diesel exhaust particles enhance antigen-induced airway inflammation and local cytokine expression in mice. *Am J Respir Crit Care Med* 1997, 156:36–42.

36. Fujimaki H, Shiraishi F, Aoki Y, Saneyoshi K: Modulated cytokine production from cervical lymph node cells treated with B[a]P and PCB. *Chemosphere* 1997, 34:1487–1493.

doi:10.1186/1476-069X-12-1

Cite this article as: Al-Daghri et al.: Polycyclic aromatic hydrocarbon exposure and pediatric asthma in children: a case–control study. *Environmental Health* 2013 12:1.