The supplementary Figure S1 represents a new model of the mammalian circadian clock. This model allows to investigate the coupling of the cell cycle to the circadian clock via the additional elements MYC, WEE1, INK4a and ARF. The circadian cell cycle regulation model (CCRM) is based on the published core-clock model (CCM) [1] from which 20 equations, 20 variables and 71 parameters were adapted. For the CCM, we used existent values for degradation rates, transcription rates etc. that were either retrieved from the literature or estimated based on known phases and amplitudes using LTI (linear-time-invariant) systems theory. First, we created a linear ODE version of both feedback loops in the network and applied LTI to the linearised system allowing for a partial determination of the parameters by an analytical calculation of amplitudes and phases as functions of the parameters. Each feedback loop was then closed, re-establishing the feedback. The parameters were optimised in order to achieve the optimal amplitude and phase-relations as retrieved from the literature. In a subsequent step, values for the corresponding parameters of the nonlinear system were determined using a Taylor expansion.

In the model, different members of one gene family are represented by a single composite variable: Per (Per1,2,3), Cry (Cry1,2), Ror (Rora,β,γ), Rev-Erb (Rev-Erba,β) and Bmal (Bmal1,2). The mRNA and the cytoplasmic/nuclear protein abundances are distinguished for each gene entity and the nuclear shuttling and accumulation were modelled using nuclear import and export rates. Despite the merging of clock elements that belong to the same gene family, their peak phases of expression are within the observed experimental intervals considered for the construction of the mathematical model. This allows for the appropriate assembly of phase differences between the different gene families and as such, for the generation of the necessary delays, needed for the production of a circadian output in gene and protein expression.

The new model adds 26 new ODEs and adjusts 2 ODEs for Bmal and Per from the CCM (Table 3). The number of variables is increased to 46 (Table 1) and the number of parameters to 170
The missing parameters for the new variables were estimated based on the average values of the previous parameters. We further based our calculations on key biological assumptions relevant for the mammalian circadian oscillator, such as a period of about 23.65 hours and measured phase/amplitude relations between the components of the model, for the wild type scenario.

The model comprises two major compartments, the nucleus (grey) and the cytoplasm (Figure S1). There are 20 species included, represented by genes (highlighted in blue boxes), their corresponding cytoplasmic proteins (highlighted in yellow boxes) and cytoplasmic protein complexes (indexed “C”) and nuclear proteins and nuclear protein complexes (indexed “N”). The transcriptional activation and phosphorylation/dephosphorylation processes are represented by green lines, transcriptional repressions are represented by red lines. Translation and nuclear importation/exportation processes are represented by black lines while complex formation/dissociation processes are indicated by brown lines. Time units are given in hours and concentration units are given as arbitrary units (a.u.).

In the following section, the model design is explained in detail.
A new circadian model including the cell cycle check point elements Wee1, Myc, Ink4a/Arf

The CLOCK/BMAL complex regulates the expression of several cell cycle checkpoint genes, such as Wee1 and Myc by directly binding to the E-box cis-elements in their promoter region [2, 3]. The binding of CLOCK/BMAL activates the transcription of Wee1 while it represses Myc transcription. Following the design principle of the previously published core-clock model [1], the PER/CRY\textsubscript{pool} (which includes all possible PER/CRY heterodimers) has an inhibitory effect on the CLOCK/BMAL-mediated transcriptional regulation of target genes (Figure 1).

Figure 1: Wee1 and Myc are regulated by the CLOCK/BMAL heterodimer complex. The transcription of Wee1 and Myc is activated and inhibited by the CLOCK/BMAL complex, respectively. These regulations are indirectly repressed by PER/CRY heterodimers. Green arrows represent transcriptional activation; red lines represent transcriptional repression processes; translation and nuclear import processes are represented by black arrows.

The PER proteins, together with the nuclear protein NONO, have been found to activate the transcription of Ink4a by binding to its promoter in a circadian manner [4]. As the PER/CRY\textsubscript{pool} is positively correlated with PER, the activator of Ink4a, this series of interactions can be modelled as a positive correlation between the PER/CRY\textsubscript{pool} and Ink4a transcription without losing essential dynamic features of the system. The INK4a protein, which is known as a potent inhibitor of D-type cyclin-dependent kinases, competes for binding to CDK4/6 with CycD and
inhibits the subsequent phosphorylation of RB1 (*Figure 2A*) [5]. In this model, we use CDK to represent all CDKs inhibited by INK4a, namely CDK4 and CDK6.

It has been shown that the expression of ARF, another protein encoded by the CDKN2A locus, can be activated by MYC (*Figure 2B*) [6]. Even though it is not clear if this activation is achieved through a direct binding to the promoter of the *Arf* gene, it is common to model the interaction using Hill-type kinetics [7]. Accumulated ARF stabilizes p53 by binding to MDM2, an E3 ubiquitin ligase targeting p53 in the nucleus (*Figure 2B*) [8].

![Figure 2](image1.png)

Figure 2: Schematic representation of *Ink4a* and *Arf* reactions considered in the model. Green arrows represent transcriptional activation; brown arrows represent complex formation/dissociation processes; translation and nuclear import processes are represented by black arrows.

The INK4a/RB/E2F pathway and its regulation of Bmal

In order to interpret the circadian phenotype of INK4a/ARF-knockout MEFs, it is necessary to extend the model with a feedback from INK4a and ARF to the core circadian clock. For this, we used the INK4a-CDK/CycD-Rb-E2F pathway (*Figure 3*). The transcription factor MYC directly induces the synthesis of *Cdk4* [9]. CDK4 and another cyclin D-dependent kinase, CDK6, form an active complex with CycD and play an important role in the phosphorylation of RB1, the key regulator of the E2F family of transcription factors. Once RB1 is phosphorylated, active
E2F will be released from the RB1/E2F complex [10-12]. MotifMap, a database of candidate regulatory motif sites in humans, reports that several E2F activators such as E2F1, E2F2, and E2F3a can potentially bind to the promoter of Bmal1 to activate its transcription [13]. On the other hand, the formation of the CDKs/CycD complex is inhibited by INK4a, which has a negative effect on RB1 phosphorylation and reinforces the inhibition of E2F [5]. MYC also promotes the transcription of the three E2Fs [14, 15]. In this model, we used E2F to represent the three activators belonging to E2F family, i.e. E2F1, E2F2, and E2F3a. The heterodimer MYC:MAX has also been reported to bind to E-boxes and thereby to influence the circadian clock either by inducing REV-ERBα to dampen the expression and oscillation of BMAL1 [16] or by direct repression of BMAL1 and CLOCK via MIZ1 [17]. Moreover, MYC has been reported to repress Per1 transcriptional activation by CLOCK/BMAL1 via competitive targeting of E-box sequences of the Per1 promoter [18]. In the model, this connection is included implicitly via the Bmal inhibition rate.

In addition, the tumor suppressor protein p53 inhibits the phosphorylation of RB1 via the p21/p27-CDK/CycE-RB1 pathway. Both p21 and p27 are inhibitors of the cyclin E-dependent kinase CDK2, which regulates RB1 phosphorylation and E2F activity synergistically with CDK4/CycD and CDK6/CycD, thus influencing Bmal transcription [19, 20]. The transcription of p21 is induced by p53 [21]. To reduce the complexity, the effect of the p53- p21/p27-CDK/CycE arm was modelled as a negative correlation between p53 and the enzymatic activity of CDK/CycE (Figure 3).
Figure 3: Schematic representation of the INK4a/RB/E2F pathway and its effect on Bmal transcription. Green arrows represent transcriptional activation and phosphorylation/dephosphorylation processes; red lines represent transcriptional repression processes; brown arrows represent complex formation/dissociation processes; translation and nuclear import processes are represented by black arrows.

The ARF/MDM2/p53 pathway and its regulation of Per

The ARF/MDM2/p53/Per pathway is a feedback from ARF to the core circadian clock (Figure 4). The expression of ARF can be activated by MYC [6]. Accumulated ARF associates with MDM2 and leads to rapid degradation of MDM2, thereby inhibiting the MDM2-mediated degradation of p53 and promoting p53 stabilisation and accumulation [22]. Recent data showed that there is a p53 response element located in the promoter region of the Per2 gene which overlaps with E-box cis-elements crucial for CLOCK/BMAL-mediated Per2 transcription [23]. The binding of p53 strongly represses the transcription of Per2 by competing with CLOCK/BMAL for binding to the Per2 promoter [23], as a result p53 and Per2 are out-of-phase (Figure 5).
Figure 4: Schematic representation of the ARF/MDM2/p53 pathway and its effect on CLOCK/BMAL-mediated transcription of Per. Green arrows represent transcriptional activation; red lines represent transcriptional repression processes; brown arrows represent complex formation/dissociation processes; translation and nuclear import processes are represented by black arrows.

Figure 5: Simulated expression of Per and p53. Per and p53 show out-of-phase oscillations. The amplitude of p53 is much lower than that of Per.
Additional model analysis

To further explore the effect of RAS on the circadian clock in silico, we compared the Bmal phenotypes and the corresponding changes in period length after the perturbation by different levels of RAS overexpression represented by the parameter $k_{tt}<1$ (Figure 6). When measuring the period for the first six peaks (five periods) after introducing the perturbation of RAS (represented by $k_{tt}<1$), the same trend could be observed as for measuring the first three periods (Figure 7). Furthermore, we simulated the Bmal phenotype of the Ink4a/Arf−/− system following an inhibition of RAS (represented by $k_{tt}=1.2$) which resulted in a longer period (Figure 8) as was also observed in our experimental data (Figure S1C,E).

We additionally investigated the importance of the INK4a/RB1/E2F1 pathway (module 1) and the ARF/MDM2/p53 pathway (module 2) in reproducing the effect of RAS overexpression on the Bmal period by either uncoupling them from the core-clock system or by setting their expression to their constitutive average value (Figure 9).

In the model, we measured the period in the transient region of the simulations. This is in agreement with our RT-qPCR data in IMR-90 cells on day 5 and 11 after overexpression of RAS. The data show that despite the assumed stability of retrovirus-mediated Hras overexpression, the expression level of Hras display some biological noise: it first strongly increases (day 5) and then decreases again (Figure 10).
Figure 6: *In silico Bmal* phenotypes after perturbation by different levels of RAS. The period was measured for a transient region, defined as the mean of the time between the first four peaks (three periods) after introducing the perturbation of RAS (represented by $ktt<1$) for (A) the Ink4a/Arf$^{+/+}$ system and (B) the Ink4a$^{-/-}$ system. When measuring the first five periods instead, we still see the same tendency of period changes in dependency of ktt for (C) the Ink4a/Arf$^{+/+}$ system and (D) the Ink4a$^{-/-}$ system.
Figure 7: The model qualitatively reproduces experimental period changes upon RAS overexpression. *In silico* expression data show that upon simulation of RAS overexpression, the Ink4a/Arf^{+/+} system acquires a longer and Ink4a/Arf^{-/-} system a shorter period compared to the corresponding simulated wild type system. The period was measured for a transient region, defined as the mean of the time between the first six peaks (five periods) after introducing the perturbation of RAS (represented by ktt<1).

Figure 8: The model predicts an increase in period length upon RAS inhibition. *In silico* expression data show that upon simulation of RAS inhibition (-RAS), the Ink4a/Arf^{-/-} system acquires a longer period compared to the corresponding system with WT RAS (ktt=1). The period was measured for a transient region, defined as the mean of the time between the first four peaks (three periods) after introducing the perturbation of RAS (overexpression represented by ktt<1 and inhibition represented by ktt>1).
Figure 9: Modular analysis of Bmal expression level after perturbation by different levels of RAS.

The importance of the INK4a/RB1/E2F1 pathway (module 1) and the ARF/MDM2/p53 pathway (module 2) in influencing the circadian period is analysed by simulating different scenarios in silico. The simulated Bmal expression profiles show phase-shifted oscillations that cause differing effects following the perturbation by RAS (represented by $k_{tt}<1$). A) Module 1 is decoupled from the core-clock or B) the oscillatory expression of its connective component E2F$_N$ is clamped to its constitutive average value. C) Module 2 is decoupled from the core-clock or D) the oscillatory expression of its connective component p53$_N$ is clamped to its constitutive average value.
Figure 10: Time-dependent change of gene levels after Hras overexpression in IMR-90 cells. RT-qPCR data show that while Bmal1 and Ink4/Arf are upregulated after retrovirus-mediated Hras overexpression in IMR-90 cells, their expression levels change over the course of the next 11 days, as does the expression of Hras itself. Numerical values are provided in S1 Data.
Table 1: List of variables. *- Phosphorylated proteins, "c"- indexed - cytoplasmic proteins, "N"- indexed - nuclear proteins.

Variable [a.u.]	Name	Note
x1	CLOCK/BMAL	CCM
x2	PER*_N/CRY_N	CCM
x3	PER_N/CRY_N	CCM
PC	PER/CRY_{pool}	CCM
x5	REV-ERBN_N	CCM
x6	ROR_N	CCM
x7	BMAL_N	CCM
x8	ARF_N	CCRM
x9	MDM2_N	CCRM
x10	p53_N	CCRM
x11	p53/MDM2_N	CCRM
x12	ARF/MDM2_N	CCRM
x13	INK4a_N	CCRM
x14	CDK/CycD_N	CCRM
x15	CDK/CycD/INK4a_N	CCRM
x16	E2F_N	CCRM
x17	RB_N	CCRM
x18	RB-E2F_N	CCRM
x19	RB*_N	CCRM
x20	MYC_N	CCRM
y1	Per	CCM
y2	Cry	CCM
y3	Rev-Erb	CCM
y4	Ror	CCM
Variable [a.u.]	Name	Note
-----------------	---------------	--------
y5	Bmal	CCM
y6	Ink4a	CCRM
y7	Arf	CCRM
y8	Myc	CCRM
y9	Wee1	CCRM
y10	Mdm2	CCRM
y11	CDK/CycD	CCRM
y12	E2f	CCRM
z1	CRY\(_c\)	CCM
z2	PER\(_c\)	CCM
z3	PER\(*\)\(_c\)	CCM
z4	PER\(*\)\(_c\)/CRY\(_c\)	CCM
z5	PER\(_c\)/CRY\(_c\)	CCM
z6	REV-ERB\(_c\)	CCM
z7	ROR\(_c\)	CCM
z8	BMAL\(_c\)	CCM
z9	ARF\(_c\)	CCRM
z10	MDM2\(_c\)	CCRM
z11	INK4a\(_c\)	CCRM
z12	CDK/CycD\(_c\)	CCRM
z13	E2F\(_c\)	CCRM
z14	MYC\(_c\)	CCRM
Table 2: List of parameters. aAverage value of all parameters in the same category used in [1]. bThe hill coefficients of new components was pre-set to 1 at this stage. cParameters which were fine-tuned to maintain the oscillations of the system and to fit experimental observations.

Parameters	Name	Value	Reference
dx1	CLOCK/BMAL	0.08	[1]
dx2	PER* _N/CRY _N	0.06	[1]
dx3	PER _N/CRY _N	0.09	[1]
dx5	REV-ERB _N	0.17	[1]
dx6	ROR _N	0.12	[1]
dx7	BMAL _N	0.15	[1]
dx8	ARF _N	0.11	[24]
dx9	MDM2 _N	0.46	[22]
dx10	p53 _N	0.231	[22]
dx11	p53/MDM2 _N	2.07	[25]
dx12	ARF/MDM2 _N	1.39	[22]
dx13	INK4a _N	0.11	[26]
dx14	CDK/CycD _N	1.5	[27, 28]
dx16	E2F _N	0.35	[29]
dx17	RB _N	0.069	[30]
dx18	RB-E2F _N	0.03	[31, 32]
dx19	RB* _N	0.069	[32, 33]
dx20	MYC _N	1.39	[34, 35]
dy1	Per	0.3	[36]
dy2	Cry	0.2	[1]
dy3	Rev-Erb	2	[1]
dy4	Ror	0.2	[1]
dy5	Bmal	1.6	[1]
dy6	Ink4a	0.86a	
dy7	Arf	0.69	
dy8	Myc	0.86 a	
dy9	Wee1	0.86 a	
dy10	Mdm2	0.36	[37]
dy11	CDK/CycD	0.86 a	
dy12	E2f	0.25	

Degradation rates for cytoplasmic proteins [hour⁻¹]

dz1	CRYc	0.23	[1]
dz2	PERc	0.25	[1]
dz3	PER* c	0.6	[1]
dz4	PER*/CRYc	0.2	[1]
dz5	PERc/CRYc	0.2	[1]
dz6	REV-ERBc	0.31	[1]
dz7	RORc	0.3	[1]
dz8	BMALc	0.73	[1]
dz9	ARFc	0.3525 a	
dz10	MDM2c	0.3525 a	
dz11	INK4ac	0.3525 a	
dz12	CDK/CycDc	0.7	
dz13	E2Fc	0.7	
dz14	MYCc	0.7	[14]

Reaction rates for complex formation/dissociation

| kfx1 | CLOCK/BMAL-complex formation | 2.3 | [1] |
Parameter	Description	Rate Constant
kdx1	CLOCK/BMAL-complex dissociation	0.01 [1]
kfz4	PER*/CRY$_C$-complex formation	1 [1]
kdz4	PER$_C$/CRY$_C$-complex dissociation	1 [1]
kfz5	PER$_C$/CRY$_C$-complex formation	1 [1]
kdz5	PER$_C$/CRY$_C$-complex dissociation	1 [1]
kfx11	P53/MDM2$_N$-complex formation	3.96
kdx11	P53/MDM2$_N$-complex dissociation	0.0396
kfx12	ARF/MDM2$_N$-complex formation	8
kdx12	ARF/MDM2$_N$-complex dissociation	0.0396
kfx15	INK4a/CDK/CYCD$_N$-complex formation	8
kfx18	RB/E2F-complex formation	18

Phosphorylation/dephosphorylation reaction rates [hour$^{-1}$]

Parameter	Description	Rate Constant
kphz2	PER$_C$ phosphorylation rate	2 [1]
kdphz3	PER$_C^*$ dephosphorylation rate	0.05 [1]
kphx17	RB phosphorylation rate	18 [32]
kdphx19	RB$_C^*$ dephosphorylation rate	3.6 [32]
Kph	activation constant for RB phosphorylation by CDK/CycD	0.92 [38]
Kdph	activation constant for RB$_C^*$ dephosphorylation	0.01 [39]
Kbp	inhibition constant for RB phosphorylation by p53	0.2 c

Transcription rates [a.u. hour$^{-1}$]

Parameter	Description	Rate
V$_{1\max}$	Per	1 [1]
V$_{2\max}$	Cry	2.92 [1]
V$_{3\max}$	Rev-Erb	1.9 [1]
V$_{4\max}$	Ror	10.9 [1]
V$_{5\max}$	Bmal	1 [1]
V$_{6\max}$	Ink4a	3.544 a
\(V_{\text{max}} \)	Protein	Value
-----------------	--------------	--------
\(V_{7\text{max}} \)	Arf	3.544^a
\(V_{8\text{max}} \)	Myc	3.544^a
\(V_{9\text{max}} \)	Wee1	3.544^a
\(V_{10\text{max}} \)	Mdm2	5.4
\(V_{11\text{max}} \)	Cdk/CycD	3.544^a
\(V_{12\text{max}} \)	E2f	3.544^a

Activation/inhibition rates

\(k_t \)	Functionality	Value
\(k_1 \)	Per activation rate	3
\(k_i \)	Per inhibition rate	0.9
\(k_t_2 \)	Cry activation rate	2.4
\(k_i_2 \)	Cry inhibition rate (by PER/CRY\text{pool})	0.7
\(k_i_{21} \)	Cry inhibition rate (by REV-ERB\text{N})	5.2
\(k_t_3 \)	Rev-Erb activation rate	2.07
\(k_i_3 \)	Rev-Erb inhibition rate	3.3
\(k_t_4 \)	Ror activation rate	0.9
\(k_i_4 \)	Ror inhibition rate	0.4
\(k_t_5 \)	Bmal activation rate	8.35
\(k_i_5 \)	Bmal inhibition rate	1.94
\(k_i_{i1} \)	Per inhibition rate 2 (by p53)	2.488^a
\(k_t_{5_e} \)	Bmal activation rate (by E2F)	5^c
\(k_t_6 \)	Ink4a activation rate	3.344^a
\(k_t_7 \)	Arf activation rate	3.344^a
\(k_i_8 \)	Myc inhibition rate 1	2.488^a
\(k_i_{i8} \)	Myc inhibition rate 2 (PC to CB)	2.488^a
\(k_t_9 \)	Wee1 activation rate	3.344^a
\(k_i_9 \)	Wee1 inhibition rate	2.488^a
Supporting Information S1 Text – Model description, design and analysis

kt_{10}	Mdm2 activation rate	1.85	[40]
kt_{11}	Cdk activation rate	0.15	^c
kt_{12}	E2f activation rate	3.344	^a

| Transcription fold activation (dimensionless) |
|---|---|---|---|
| a | Per | 12 | [1] |
| d | Cry | 12 | [1] |
| g | Rev-Erb | 5 | [1] |
| h | Ror | 5 | [1] |
| i | Bmal | 12 | [1] |
| a_{-1} | Bmal (by E2F) | 3 | ^c |
| o | Ink4a | 9.2 | ^a |
| l | Arf | 9.2 | ^a |
| l_{1} | Wee1 | 9.2 | ^a |
| r_{1} | Mdm2 | 11 | [40] |
| r_{2} | Cdk4 | 9.2 | ^a |
| r_{3} | E2f | 9.2 | ^a |

| Production rates [hour$^{-1}$] |
|---|---|---|---|
| kp_{1} | PER$_c$ | 0.4 | [1] |
| kp_{2} | CRY$_c$ | 0.26 | [1] |
| kp_{3} | REV-ERB$_c$ | 0.37 | [1] |
| kp_{4} | ROR$_c$ | 0.76 | [1] |
| kp_{5} | BMAL$_c$ | 1.21 | [1] |
| kp_{6} | INK4a$_c$ | 0.6 | ^a |
| kp_{7} | ARF$_c$ | 0.6 | ^a |
| kp_{8} | MYC$_c$ | 0.6 | ^a |
| kp_{10} | MDM2$_c$ | 0.6 | ^a |
kp11
CDK_c 0.6^a

kp12
E2F_c 0.4

Import/Export rates [hour⁻¹]

kiz4	PER*/CRY_c	0.2	[1]
kiz5	PER/CRY_c	0.1	[1]
kiz6	REV-ERB_c	0.5	[1]
kiz7	ROR_c	0.1	[1]
kiz8	BMAL_c	0.1	[1]
kex2	PER*/CRY_N	0.02	[1]
kex3	PER/CRY_N	0.02	[1]
kiz10	MDM2_c	0.2^a	
kiz11	INK4a_c	0.2^a	
kiz9	ARF_c	0.2^a	
kiz12	CDK_c	0.2^a	
kiz13	E2F_c	0.2^a	
kiz14	MYC_c	0.2^a	

Hill coefficients of transcription (dimensionless)

b	Per activation	5	[1]
c	Per inhibition	7	[1]
e	Cry activation	6	[1]
f	Cry inhibition	4	[1]
f1	Cry inhibition	1	[1]
v	Rev-Erb activation	6	[1]
w	Rev-Erb inhibition	2	[1]
p	Ror activation	6	[1]
q	Ror inhibition	3	[1]
\(n \)	Bmal activation	2	[1]
\(m \)	Bmal inhibition	5	[1]
\(r \)	Ink4a activation	1 \(^b \)	
\(s \)	Arf activation	1 \(^b \)	
\(h4 \)	Myc inhibition 1	1 \(^b \)	
\(h5 \)	Myc inhibition 2	1 \(^b \)	
\(h6 \)	Wee1 activation	1 \(^b \)	
\(h7 \)	Wee1 inhibition	1 \(^b \)	
\(h1 \)	Mdm2 activation	1.8	[41]
\(h8 \)	Per inhibition (by p53)	1 \(^b \)	
\(a_2 \)	Bmal (by E2F)	1 \(^b \)	
\(h2 \)	Cdk activation	1 \(^b \)	
\(h3 \)	E2F activation	1 \(^b \)	

Exogenous RNA [a.u.]

\(y1_0 \)	Per	0	[1]
\(y2_0 \)	Cry	0	[1]
\(y3_0 \)	Rev-Erb	0	[1]
\(y4_0 \)	Ror	0	[1]
\(y5_0 \)	Bmal	0	[1]
Ink4a0	Ink4a	0 \(^a \)	
Mdm0	Mdm2	0 \(^a \)	
Arf0	Arf	0 \(^a \)	
CDK0	Cdk	0 \(^a \)	
Myc0	Myc	0 \(^a \)	
E2F0	E2f	0 \(^a \)	
source_p53	p53	4.5 c
source_RB	RB	1 c

Nuclear protein [a.u.]

Weight factors [a.u.]
a2
PER*/CRY_{N}
1 c
a3
PER/CRY_{N}
1 c
Table 3: Equations of the circadian cell cycle model.

Equation	Description
\(\frac{dy_6}{dt} = (1 + \ln \frac{1}{ktt})V_{6\text{max}} \frac{1 + o\left(\frac{PC}{k_{10}}\right)^y}{1 + \left(\frac{PC}{k_{16}}\right)} - d_{y6}y_6 \)	**Ink4a**
\(\frac{dy_7}{dt} = V_{7\text{max}} \frac{1 + l\left(\frac{x_{20}}{k_{7}}\right)^s}{1 + \left(\frac{x_{20}}{k_{17}}\right)^s} - d_{y7}y_7 \)	**Arf**
\(\frac{dy_8}{dt} = V_{8\text{max}} \frac{1}{1 + \left(\frac{k_{10}^{h_5} + PC\kappa^5}{ktt \cdot k_{10}}\right)^{h_4}} - d_{y8}y_8 \)	**Myc**
\(\frac{dy_9}{dt} = (1 + \ln \frac{1}{ktt})V_{9\text{max}} \frac{1 + l\left(\frac{x_1}{ktt \cdot k_{19}}\right)^{h_6}}{1 + \left(\frac{x_1}{ktt \cdot k_{19}}\right)^{h_6}} - d_{y9}y_9 \)	**Wee1**
\(\frac{dy_{10}}{dt} = V_{10\text{max}} \frac{1 + r_1\left(\frac{x_{10}}{k_{110}}\right)^{h_1}}{1 + \left(\frac{x_{10}}{k_{110}}\right)^{h_1}} - d_{y10}y_{10} \)	**Mdm2**
\(\frac{dy_{11}}{dt} = V_{11\text{max}} \frac{1 + r_2\left(\frac{x_{20}}{k_{11}}\right)^{h_2}}{1 + \left(\frac{x_{20}}{k_{11}}\right)^{h_2}} - d_{y11}y_{11} \)	**CDK/CycD**
\(\frac{dy_{12}}{dt} = V_{12\text{max}} \frac{1 + r_3\left(\frac{x_{20}}{k_{12}}\right)^{h_3}}{1 + \left(\frac{x_{20}}{k_{12}}\right)^{h_3}} - d_{y12}y_{12} \)	**E2f**
\(\frac{dz_9}{dt} = k_{p7}(y_7 + y_{70}) - ki_{x9}z_9 - d_{x9}z_9 \)	**ARF_c**
\(\frac{dz_{10}}{dt} = k_{p10}(y_{10} + y_{100}) - ki_{x10}z_{10} - d_{x10}z_{10} \)	**MDM2_c**
\(\frac{dz_{11}}{dt} = k_{p6}(y_6 + y_{60}) - ki_{x11}z_{11} - d_{x11}z_{11} \)	**INK4a_c**
\(\frac{dz_{12}}{dt} = k_{p11}(y_{11} + y_{110}) - ki_{x12}z_{12} - d_{x12}z_{12} \)	**CDK/CycD_c**
\(\frac{dz_{13}}{dt} = k_{p12}(y_{12} + y_{120}) - ki_{x13}z_{13} - d_{x13}z_{13} \)	**E2F_c**
El-Athman et al.

Supporting Information S1 Text – Model description, design and analysis

Equation	Description
\(\frac{dX_c}{dt} = k_{pb}(y8 + y8_d) - k_{i24}x_{14} - d_{x14}x_{14} \)	(13)
\(\frac{dx}{dt} = k_{ix11}^29 + k_{d12}x_{12} - k_{f12}x_{12} - d_{x12}x_{12} \)	(14)
\(\frac{dx_9}{dt} = k_{i10}x_{10} + k_{d11}x_{11} + k_{d12}x_{12} - k_{f11}x_{11}x_{10} - k_{f12}x_{12}x_{12} \)	(15)
\(\frac{dX_{p33}}{dt} = source_{p53} + k_{d11}x_{11} - k_{f11}x_{11}x_{10} - d_{x10}x_{10} \)	(16)
\(\frac{dx_{p33}}{dt} = k_{f11}x_{11}x_{10} - k_{d11}x_{11} - d_{x11}x_{11} \)	(17)
\(\frac{dx_{2}}{dt} = k_{f12}x_{12}x_{9} - k_{d12}x_{12} - d_{x12}x_{12} \)	(18)
\(\frac{dx_{13}}{dt} = k_{i11}x_{11} - k_{f15}x_{13}x_{14} - d_{x13}x_{13} \)	(19)
\(\frac{dx_{14}}{dt} = k_{i12}x_{12} - k_{f15}x_{13}x_{14} - d_{x14}x_{14} \)	(20)
\(\frac{dx_{15}}{dt} = k_{d15}x_{15}x_{14} - d_{x15}x_{15} \)	(21)
\(\frac{dx_{16}}{dt} = k_{i12}x_{13} - k_{ph_{17}}(x_{14} + \frac{K_{hp}}{K_{hp} + x_{10}})x_{18} + K_{hp} - k_{f18}x_{16}x_{17} \)	(22)
\(\frac{dx_{17}}{dt} = source_{rb} + k_{dph_{19}}x_{19} + K_{dp} - k_{ph_{17}} \)	(23)
\(\frac{dx_{18}}{dt} = k_{f18}x_{16}x_{17} - k_{ph_{17}}(x_{14} + \frac{K_{hp}}{K_{hp} + x_{10}})x_{18} + K_{hp} - d_{x18}x_{18} \)	(24)
\(\frac{dx_{19}}{dt} = k_{ph_{17}}x_{14} + \frac{K_{hp}}{K_{hp} + x_{10}}x_{17} + \frac{K_{hp}}{x_{17} + K_{ph}}x_{18} + K_{ph} \)	(25)
\(\frac{dx_{20}}{dt} = k_{i24}x_{14} - d_{x20}x_{20} \)	(26)
\(\frac{dY_{5}}{dt} = V_{5_{max}} \frac{1 + i(x_{6}^{m})_{K_{i5}}}{1 + (x_{5}^{m})_{K_{i5}} + (x_{6}^{m})_{K_{i5}} + (x_{16}^{n_{2}})_{K_{i5,e}} - d_{y_{5}}y_{5} \)	(27)
Per
\[
\frac{dy_1}{dt} = V_{1_{\text{max}}} \frac{1 + a \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^b}{1 + \left(\frac{P_C}{k_{t\tau}} \right)^c + \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^b + \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^b + \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^b + \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^b} - d_{y_1}y_1
\]

CLOCK/BMAL
\[
\frac{dx_1}{dt} = k_{f1}x_7 - k_{d1}x_1 - d_{x1}x_1
\]

Rev-Erb
\[
\frac{dy_3}{dt} = V_{3_{\text{max}}} \frac{1 + b \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^b}{1 + \left(\frac{P_C}{k_{t\tau}} \right)^c + \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^b + \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^b} - d_{y3}y_3
\]

Ror
\[
\frac{dy_4}{dt} = V_{4_{\text{max}}} \frac{1 + c \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^c}{1 + \left(\frac{P_C}{k_{t\tau}} \right)^c + \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^c + \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^c} - d_{y4}y_4
\]

REV-ERBC
\[
\frac{dz_6}{dt} = k_{p3}(y3 + y3_0) - k_{i2}z_6 - d_{z6}z_6
\]

RORc
\[
\frac{dz_7}{dt} = k_{p4}(y4 + y4_0) - k_{i2}z_7 - d_{z7}z_7
\]

REV-ERBN
\[
\frac{dx_5}{dt} = k_{i2}z_6 - d_{z5}x_5
\]

RORn
\[
\frac{dx_6}{dt} = k_{i2}z_7 - d_{z6}x_6
\]

BMALc
\[
\frac{dz_8}{dt} = k_{p5}(y5 + y5_0) - k_{i2}z_8 - d_{z8}z_8
\]

BMALN
\[
\frac{dx_7}{dt} = k_{i2}z_8 + k_{d2}x_1 - k_{f2}x_7 - d_{z7}x_7
\]

Cry
\[
\frac{dy_2}{dt} = V_{2_{\text{max}}} \frac{1 + d \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^e}{1 + \left(\frac{P_C}{k_{t\tau}} \right)^f + \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^e + \left(\frac{x_1}{k_{tt} \cdot k_{t\tau}} \right)^e} - d_{y2}y_2
\]

CRYc
\[
\frac{dz_1}{dt} = k_{p2}(y2 + y2_0) + k_{d2}z_4 + k_{d5}z_5 - k_{f2}z_1z_2 - k_{f2}z_1z_3 - d_{z1}z_1
\]

PERc
\[
\frac{dz_2}{dt} = k_{p1}(y1 + y1_0) + k_{d2}z_5 + k_{p2}z_3 - k_{f2}z_2z_1 - k_{p2}z_2 + d_{z2}z_2
\]

PERc*
\[
\frac{dz_3}{dt} = k_{p2}z_2z_2 + k_{d2}z_4 - k_{p2}z_2z_3 + k_{f2}z_2z_3 - d_{z2}z_3
\]

PER*c/CRYc
\[
\frac{dz_3}{dt} = k_{f2}z_1z_3 + k_{e}z_2z_2 - k_{i2}z_4 + k_{d2}z_4 - d_{z4}z_4
\]

PER/CYc
\[
\frac{dz_5}{dt} = k_{f2}z_1z_2 + k_{e}z_3z_3 - k_{i2}z_5 + k_{d2}z_5 - d_{z5}z_5
\]
Equation	Description
\(\frac{dx_2}{dt} = ki_z x_4 - ke_x x_2 - d x_2 x_2 \)	\(\text{PER}/\text{CRY}_N \)
\(\frac{dx_3}{dt} = ki_z x_5 - ke_x x_3 - d x_3 x_3 \)	\(\text{PER}/\text{CRY}_N \)
\(PC = x_2 + x_3 \)	\(\text{PER}/\text{CRY}_\text{pool} \)

Note: \(k_i_z, k_e_x, d \) are constants.
Table 4: Robustness analysis of the model parameters. The robustness analysis was conducted to investigate how minor changes in the parameter values effect on the overall system. The parameter values were both decreased and increased by 10% and the subsequent variation of the overall system period compared to the wild type period. -10%: 10% decrease in the parameter value; +10%: 10% increase in the parameter value; T_{new}: new value for T after the perturbation; DT%: variation of the new period value to the wild type value. The wild-type period is 23.65 h.

Parameter	-10%	$+10\%$		
	T_{new}	DT%	T_{new}	DT%
$dx1$	23.89	1.019	23.49	-0.693
$dx2$	23.85	0.846	23.52	-0.554
$dx3$	23.7	0.224	23.62	-0.144
$dx5$	24.04	1.653	23.19	-1.953
$dx6$	23.82	0.723	23.49	-0.698
$dx7$	23.66	0.059	23.64	-0.059
$dx8$	23.65	0	23.65	0
$dx9$	23.65	0.004	23.65	-0.004
$dx10$	23.65	0	23.65	0
$dx11$	23.65	0	23.65	0
$dx12$	23.65	0	23.65	0
$dx13$	23.65	-0.008	23.65	0.008
$dx14$	23.65	0	23.65	0
$dx16$	23.67	0.068	23.63	-0.068
$dx17$	23.65	0	23.65	0
$dx18$	23.65	0	23.65	0
$dx19$	23.65	0	23.65	0
$dx20$	23.67	0.072	23.64	-0.063
$dy1$	23.78	0.529	23.62	-0.14
$dy2$	23.66	0.03	23.65	-0.021
$dy3$	23.95	1.277	23.36	-1.209
$dy4$	23.82	0.706	23.49	-0.685
$dy5$	23.94	1.222	23.42	-0.989
$dy6$	23.64	-0.051	23.67	0.08
$dy7$	23.65	-0.004	23.65	0.004
$dy8$	23.67	0.072	23.64	-0.063
$dy9$	23.65	0	23.65	0
$dy10$	23.66	0.021	23.65	-0.021
$dy11$	23.67	0.093	23.64	-0.047
$dy12$	23.67	0.076	23.63	-0.08
Parameter	T_{new}	DT%	T_{new}	DT%
-----------	-----------------	------	-----------------	------
$dz1$	23.66	0.0381	23.64	-0.038
$dz2$	23.65	-0.0085	23.65	0.008
$dz3$	23.67	0.0719	23.64	-0.051
$dz4$	23.68	0.1184	23.63	-0.076
$dz5$	23.65	-0.0085	23.65	0.013
$dz6$	23.82	0.7019	23.48	-0.702
$dz7$	23.75	0.4144	23.55	-0.406
$dz8$	24.04	1.649	23.33	-1.336
$dz9$	23.65	-0.004	23.65	0.004
$dz10$	23.65	0.013	23.65	-0.013
$dz11$	23.64	-0.047	23.66	0.059
$dz12$	23.67	0.076	23.64	-0.047
$dz13$	23.67	0.068	23.63	-0.068
$dz14$	23.66	0.055	23.64	-0.051
$kfx1$	23.77	0.5116	23.55	-0.427
$kdx1$	23.65	0.0085	23.65	-0.008
$kfx4$	23.65	-0.0211	23.66	0.021
$kdz4$	23.66	0.0381	23.64	-0.034
$kfx5$	23.65	0.0169	23.65	-0.017
$kdz5$	23.65	-0.0169	23.65	0.017
$kfx11$	23.65	-0.004	23.65	0
$kdx11$	23.65	0	23.65	0
$kfx12$	23.65	0	23.65	0
$kdx12$	23.65	0	23.65	0
$kfx15$	23.65	0.013	23.65	-0.013
$kfx18$	23.65	0.004	23.65	-0.004
$kphz2$	23.65	0.0042	23.65	-0.004
$kdphz3$	23.65	0	23.65	0
$kphx17$	23.63	-0.068	23.66	0.038
$kdphx19$	23.66	0.03	23.64	-0.042
Kph	23.65	0.017	23.65	-0.017
Kdp	23.65	0	23.65	0
Kbp	23.64	-0.03	23.66	0.021
$V1max$	23.7	0.224	23.6	-0.199
$V2max$	23.67	0.093	23.64	-0.063
$V3max$	23.48	-0.727	23.81	0.672
$V4max$	23.6	-0.199	23.68	0.131
Parameter	-10% T_{new}	DT%	+10% T_{new}	DT%
------------	---------------------	------	---------------------	------
V5max	23.57	-0.342	23.72	0.288
V6max	23.67	0.085	23.64	-0.051
V7max	23.65	0.004	23.65	-0.004
V8max	23.63	-0.068	23.67	0.063
V9max	23.65	0	23.65	0
V10max	23.64	-0.025	23.65	0.017
kt1	23.68	0.118	23.83	0.77
ki1	23.66	0.042	23.69	0.182
kt2	23.6	-0.199	23.69	0.186
ki2	23.77	0.486	23.61	-0.161
ki21	23.67	0.063	23.64	-0.051
kt3	24.01	1.522	23.55	-0.44
ki3	23.64	-0.034	23.66	0.03
kt4	23.64	-0.047	23.67	0.072
ki4	23.47	-0.753	23.69	0.165
kt5	23.68	0.14	23.61	-0.178
ki5	23.81	0.681	23.51	-0.6
kii1	23.65	0.004	23.65	-0.004
kt5_e	23.67	0.076	23.63	-0.072
kt6	23.64	-0.034	23.66	0.042
kt7	23.65	0	23.65	0
ki8	23.65	-0.004	23.65	0.004
kii8	23.65	0.004	23.65	-0.004
kt9	23.65	0	23.65	0
ki9	23.65	0	23.65	0
kt10	23.65	0.017	23.65	-0.017
kt11	23.66	0.03	23.65	-0.021
kt12	23.66	0.042	23.64	-0.038
a	23.67	0.101	23.63	-0.08
d	23.68	0.135	23.63	-0.097
g	23.32	-1.404	23.95	1.285
h	23.61	-0.186	23.68	0.118
i	23.59	-0.245	23.7	0.211
a_1	23.59	-0.266	23.71	0.233
o	23.67	0.076	23.64	-0.055
l	23.65	0	23.65	-0.004
l1	23.65	0	23.65	0
Supporting Information S1 Text – Model description, design and analysis

Parameter	T_{new}	ΔT%	T_{new}	ΔT%
r_1	23.65	-0.013	23.65	0.008
r_2	23.64	-0.047	23.67	0.08
r_3	23.64	-0.055	23.66	0.051
kp_1	23.7	0.224	23.6	-0.199
kp_2	23.67	0.093	23.64	-0.063
kp_3	23.48	-0.727	23.81	0.672
kp_4	23.6	-0.199	23.68	0.131
kp_5	23.57	-0.342	23.72	0.288
kp_6	23.67	0.085	23.64	-0.051
kp_7	23.65	0.004	23.65	-0.004
kp_8	23.63	-0.068	23.67	0.063
kp_{10}	23.64	-0.025	23.65	0.017
kp_{11}	23.64	-0.047	23.67	0.085
kp_{12}	23.63	-0.097	23.67	0.08
kiz_4	23.68	0.11	23.63	-0.106
kiz_5	23.69	0.182	23.61	-0.161
kiz_6	23.78	0.562	23.55	-0.423
kiz_7	23.64	-0.051	23.65	0.008
kiz_8	23.62	-0.144	23.67	0.085
kex_2	23.68	0.14	23.62	-0.127
kex_3	23.65	0.008	23.65	-0.008
kiz_{10}	23.65	-0.017	23.65	0.013
kiz_{11}	23.66	0.059	23.64	-0.042
kiz_9	23.65	0.004	23.65	-0.004
kiz_{12}	23.64	-0.047	23.67	0.068
kiz_{13}	23.63	-0.076	23.67	0.063
kiz_{14}	23.64	-0.051	23.66	0.047
b	23.65	-0.013	23.79	0.575
c	24	1.476	23.47	-0.753
e	23.63	-0.106	23.68	0.114
f	23.65	-0.021	23.67	0.063
f_{1}	23.65	-0.017	23.65	0.013
v	23.41	-1.006	23.83	0.748
w	23.57	-0.33	23.71	0.254
p	23.66	0.03	23.64	-0.025
q	23.74	0.381	23.34	-1.332
n	23.75	0.44	23.56	-0.389
Parameter	T_{\text{new}} -10%	DT\%	T_{\text{new}} +10%	DT\%
----------------	----------------------	------	----------------------	------
m	23.19	-1.928	24.05	1.674
r	23.65	-0.004	23.65	0.017
s	23.65	-0.004	23.65	0.004
h4	23.65	-0.017	23.65	0.017
h5	23.65	-0.008	23.65	0.004
h6	23.65	0	23.65	0
h7	23.65	0	23.65	0
h1	23.66	0.021	23.65	-0.021
h8	23.65	0.008	23.65	-0.008
a_2	23.65	-0.017	23.65	0.017
h2	23.65	-0.017	23.65	0.017
h3	23.67	0.08	23.63	-0.085
source_p53	23.65	0.017	23.65	-0.017
source_Rb	23.65	0.008	23.65	-0.008
Table 5: Effect of gene knock-outs on RNA circadian period – comparison of *in silico* with experimental data. WT, wild type; +, period increase; -, period increase; AR, arrhythmic phenotype; - then AR, decrease in the period followed by arrhythmic phenotype; + then AR, increase in the period followed by arrhythmic phenotype; nd, not defined.

Gene	Mutation phenotype	Animal model -- mouse	*in silico* data mutants	knock-out
Bmal1	AR [42, 43]	AR	AR	
Bmal2	nd			
Per1	- then AR [42, 43]	+ then AR	AR	
Per2	- then AR [42, 43]			
Per3	- [42, 43]			
Per1+Per3	- then AR [43]			
Per2+Per3	- then AR [43]			
Per1+Per2	AR [43]			
Cry1	- [42, 43]	AR	+	
Cry2	+ [42, 43]			
Cry1+Cry2	AR [43]			
Rev-erbα	- [42, 43]	AR	AR	
Rev-erbβ	nd			
Rora	- [44]	AR	AR	
Rorb	+ [45]			
Rory	nd			
Ink4a	WT	+	+	
Arf	nd	WT	WT	
Myc	nd	-	-	
Mdm2	nd	-	+	
CDK/CycD	nd	WT	WT	
E2f	nd	-	-	
p53	nd	nd	+	
References

1. Relógio, A., et al., Tuning the mammalian circadian clock: robust synergy of two loops. PLoS Comput Biol, 2011. 7(12): p. e1002309.
2. Fu, L., et al., The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell, 2002. 111(1): p. 41-50.
3. Matsuo, T., et al., Control mechanism of the circadian clock for timing of cell division in vivo. Science, 2003. 302(5643): p. 255-9.
4. Kowalska, E., et al., NONO couples the circadian clock to the cell cycle. Proc Natl Acad Sci U S A, 2013. 110(5): p. 1592-9.
5. McConnell, B.B., et al., Induced expression of p16 INK4a inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. Molecular and cellular biology, 1999. 19(3): p. 1981-1989.
6. Zindy, F., et al., Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev, 1998. 12(15): p. 2424-33.
7. Wong, J.V., et al., Viral-mediated noisy gene expression reveals biphasic E2f1 response to MYC. Mol Cell, 2011. 41(3): p. 275-85.
8. Weber, J.D., et al., Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol, 1999. 1(1): p. 20-6.
9. Hermeking, H., et al., Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci U S A, 2000. 97(5): p. 2229-34.
10. Nobori, T., et al., Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature, 1994. 368(6473): p. 753-6.
11. Grandinetti, K.B. and G. David, Sin3B: an essential regulator of chromatin modifications at E2F target promoters during cell cycle withdrawal. Cell Cycle, 2008. 7(11): p. 1550-4.
12. Rayman, J.B., et al., E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev, 2002. 16(8): p. 933-47.
13. Xie, X., P. Rigor, and P. Baldi, MotifMap: a human genome-wide map of candidate regulatory motif sites. Bioinformatics, 2009. 25(2): p. 167-74.
14. Sears, R., et al., Ras enhances Myc protein stability. Mol Cell, 1999. 3(2): p. 169-79.
15. Leone, G., et al., Myc requires distinct E2F activities to induce S phase and apoptosis. Mol Cell, 2001. 8(1): p. 105-13.
16. Altman, B.J., et al., MYC disrupts the circadian clock and metabolism in cancer cells. Cell metabolism, 2015. 22(6): p. 1009-1019.
17. Shostak, A., et al., MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation. Nature communications, 2016. 7.
18. Repouskou, A. and A. Prombona, c-MYC targets the central oscillator gene Per1 and is regulated by the circadian clock at the post-transcriptional level. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2016. 1859(4): p. 541-552.
19. Sherr, C.J. and J.M. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & development, 1999. 13(12): p. 1501-1512.
20. Harbour, J.W. and D.C. Dean, The Rb/E2F pathway: expanding roles and emerging paradigms. Genes & development, 2000. 14(19): p. 2393-2409.
21. Polager, S. and D. Ginsberg, p53 and E2f: partners in life and death. Nature Reviews Cancer, 2009.
22. Zhang, Y., Y. Xiong, and W.G. Yarbrough, ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell, 1998. 92(6): p. 725-34.
23. Miki, T., et al., p53 regulates Period2 expression and the circadian clock. Nature communications, 2013. 4.
24. Kuo, M.L., et al., N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev, 2004. 18(15): p. 1862-74.
25. Finlay, C.A., The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol Cell Biol, 1993. 13(1): p. 301-6.
26. Chen, X., et al., Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol Cell, 2007. 26(6): p. 843-52.
27. Bates, S., et al., Absence of cyclin D/cdk complexes in cells lacking functional retinoblastoma protein. Oncogene, 1994. 9(6): p. 1633-40.
28. Diehl, J.A., F. Zindy, and C.J. Sherr, Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev, 1997. 11(8): p. 957-72.
29. Helin, K., Regulation of cell proliferation by the E2F transcription factors. Curr Opin Genet Dev, 1998. 8(1): p. 28-35.
30. Mihara, K., et al., Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. Science, 1989. 246(4935): p. 1300-3.
31. Buchler, N.E., U. Gerland, and T. Hwa, Nonlinear protein degradation and the function of genetic circuits. Proc Natl Acad Sci U S A, 2005. 102(27): p. 9559-64.
32. Yao, G., et al., A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol, 2008. 10(4): p. 476-82.
33. von Willebrand, M., et al., The tyrphostin AG1024 accelerates the degradation of phosphorylated forms of retinoblastoma protein (pRb) and restores pRb tumor suppressive function in melanoma cells. Cancer Res, 2003. 63(6): p. 1420-9.
34. Ramsay, G., G.I. Evan, and J.M. Bishop, The protein encoded by the human proto-oncogene c-myc. Proc Natl Acad Sci U S A, 1984. 81(24): p. 7742-6.
35. Gregory, M.A. and S.R. Hann, c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol, 2000. 20(7): p. 2423-35.
36. Relogio, A., et al., Tuning the mammalian circadian clock: robust synergy of two loops. PLoS Comput Biol, 2011. 7(12): p. e1002309.
37. Mendrysa, S.M., M.K. McElwee, and M.E. Perry, Characterization of the 5' and 3' untranslated regions in murine mdm2 mRNAs. Gene, 2001. 264(1): p. 139-46.
38. Graffstrom, R.H., W. Pan, and R.H. Hoess, Defining the substrate specificity of cdk4 kinase-cyclin D1 complex. Carcinogenesis, 1999. 20(2): p. 193-8.
39. Kholodenko, B.N., Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol, 2006. 7(3): p. 165-76.
40. Leenders, G.B. and J.A. Tuszynski, Stochastic and Deterministic Models of Cellular p53 Regulation. Front Oncol, 2013. 3: p. 64.
41. Weinberg, R.L., et al., Comparative binding of p53 to its promoter and DNA recognition elements. J Mol Biol, 2005. 348(3): p. 589-96.
42. Lowrey, P.L. and J.S. Takahashi, *Mammalian circadian biology: elucidating genome-wide levels of temporal organization.* Annual review of genomics and human genetics, 2004. **5**: p. 407.

43. Reppert, S.M. and D.R. Weaver, *Coordination of circadian timing in mammals.* Nature, 2002. **418**(6901): p. 935-941.

44. Sato, T.K., et al., *A functional genomics strategy reveals Rora as a component of the mammalian circadian clock.* Neuron, 2004. **43**(4): p. 527-537.

45. André, E., et al., *Disruption of retinoid-related orphan receptor β changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice.* The EMBO Journal, 1998. **17**(14): p. 3867-3877.