Molecular Interaction Studies of H-Bonded Complexes of Benzamide in 1,4-Dioxan with Alcohols From Acoustic and Thermodynamic Parameters

1AN. Kannappan, 2R. Kesavasamy and 3V. Ponnuswamy

1Department of Physics, Annamalai University, Annamalainagar-608002, Tamilnadu, India
2Department of Physics, Sri Ramakrishna Engineering College, Coimbatore-641022, TamilNadu, India
3Department of Physics, Sri Ramakrishna Mission Vidhyalaya College of Arts and Science, Coimbatore-641020, Tamil Nadu, India

Abstract: The ultrasonic velocity, density and viscosity measurements were carried out for the mixtures of benzamide with Propan-2-ol, butan-1-ol, 1-pentanol and n-hexanal in 1,4-dioxan at 303, 308 and 313K. The derived acoustic and thermodynamic parameters namely adiabatic compressibility, free length, free volume, internal pressure, viscous relaxation time and Gibbs free energy were evaluated with a view to investigate the nature of molecular interaction. The obtained results support the occurrence of complex formation through intermolecular hydrogen bonding in these ternary liquid mixtures.

Key words: Gibbs free energy, internal pressure, ultrasonic velocity, viscous relaxation time

INTRODUCTION

In recent years, many attempts have been made to study the nature of intermolecular interaction in liquid mixtures namely dipole-dipole, polar-polar, polar-non polar and H-bonding. Several researches have studied the complexes of alcohols with ketones, amides, esters, nitriles and amines using ultrasonic velocity measurements. The investigation regarding the molecular association in organic ternary mixtures having alcohol as one of the components is of particular interest, since alcohols are highly polar and self-associated through hydrogen bonding in pure state. Amides can be regarded as the templates for protein backbones. Understanding the mutual interaction of amides with hydroxyl groups is important in relation to the conformational stability of proteins. Benzamide is the simplest aromatic carboxylic amide used in the synthesis of various organic compounds and 1,4-dioxan is a heterocyclic organic compound used as an aprotic solvent. Sankar et al. have studied H-bonded complexes of benzamide and nicotinamide with alcohols. In this work we have undertaken the investigation of complex formation involving benzamide-alcohol in non-polar solvent.

MATERIALS AND METHODS

The samples of 1,4-dioxan (BDH), Benzamide (NICE) were used without purification. Propan-2-ol, butan-1-ol, 1-pentanol and n-hexanol used were of analar grade. The mixtures of benzamide with propan-2-ol, butan-1-ol, 1-pentanol and n-hexanal in 1,4-dioxan of different concentration were prepared by molality and converted into mole fraction. In all the mixtures the mole fraction of second component, benzamide was kept fixed while the remaining two (X1, X3) were varied so as to have the mixtures of different composition. The ultrasonic velocity was measured by a single crystal interferometer with a high degree of accuracy operating at a frequency of 3MHz (model F-05, with digital micrometer) at 303, 308 and 313K. The viscosity was measured by Ostwald viscometer. An electronically digital operated constant temperature water bath is used to circulate water through the double walled measuring cell made up of steel containing the experimental solution at the desired temperature. Densities of the mixtures have been found by relative measurement method.

Theory and calculation: Intermolecular free length (L_f), is calculated using the standard expression:

\[L_f = \frac{1}{\sqrt{\mu}} \]

where \(\mu \) is the reduced mass of the interacting molecules.
where, K is a temperature dependent constant known as Jacobson constant and β is the adiabatic compressibility that can be calculated from the speed of sound (U) and the density of the medium (ρ) using the equation as:

$$\beta = \left(\frac{u^2 \rho}{\eta}\right)^{-1}$$ \hfill (2)

Suryanarayana obtained a relation for free volume in terms of ultrasonic velocity and the viscosity (η) of liquid as:

$$V_f = \left(\frac{M_{eff} U}{k \eta}\right)^{1/2}$$ \hfill (3)

On the basis of statistical thermodynamics Suryanarayana derived an expression for the determination of internal pressure π_i by the use of free volume as:

$$\pi_i = b R T \frac{K \eta}{U} \left(\frac{\rho}{M_{eff}}\right)^{7/6}$$ \hfill (4)

where, b stands for cubic packing which is assumed to be 2 for liquids and K is a dimensionless constant independent of temperature and nature of liquids and its value is 4.281×10^9. T is the absolute temperature and M_{eff} is the effective molecular weight.

The viscous relaxation time was obtained using the relation:

$$\tau = \frac{4}{3} \beta \eta$$ \hfill (5)

Gibbs free energy is calculated from the relation:

$$\Delta G = K T \ln\left(\frac{K T \eta}{h}\right)$$ \hfill (6)

where, τ is the viscous relaxation time, K the Boltzman constant, T, the absolute temperature and h is the Planck’s constant.

RESULTS AND DISCUSSION

The values of density, viscosity and ultrasonic velocity of H-bonded complexes of benzamide with, propan-2-ol, butan-1-ol, 1-pentanol and n-hexanol in 1,4-dioxan of various mole fraction at 303, 308 and 313K are presented in Table 1. The acoustical parameter such as adiabatic compressibility, free length, free volume, internal pressure, Gibbs free energy and viscous relaxation time are presented in Table 2 and 3.

Table 1: Values of density (ρ), viscosity (η) and ultrasonic velocity (U) at 303,308 and 313K of benzamide with formal concentration of different alcohols

Mole fraction	Density (ρ)/Kgm$^{-3}$	Viscosity η($x10^{-3}$Nsm$^{-2}$)	Velocity (U/ms$^{-1}$)								
X_1	X_3	303K	308K	313K							
1,4-dioxan+benzamide+propan-2-ol	0.9190	0.0000	1037.7	1035.3	1030.9	1.4748	1.3436	1.2355	1361.4	1344.3	1324.9
1,4-dioxan+benzamide+butan-1-ol	0.9190	0.0000	1031.6	1030.9	1025.6	1.4013	1.3099	1.2239	1356.7	1339.9	1317.7
1,4-dioxan+benzamide+1-pentanol	0.9190	0.0000	1017.6	1015.1	1011.5	1.3396	1.2399	1.1609	1347.4	1331.7	1310.1
1,4-dioxan+benzamide+n-hexanol	0.9190	0.0000	1013.2	1012.4	1007.2	1.3247	1.2137	1.1118	1339.0	1325.7	1303.3

Table 2: Values of adiabatic compressibility (β), viscous relaxation time (τ) and Gibbs free energy (ΔG) at 303,308 and 313K of benzamide with formal concentration of different alcohols

Mole fraction	Adiabatic compressibility (β)	Viscous relaxation time (τ)	Gibbs free energy (ΔG)								
X_1	X_3	303K	308K	313K	303K	308K	313K	303K	308K	313K	
1,4-dioxan+benzamide+propan-2-ol	0.9190	0.0000	1037.7	1035.3	1030.9	1.4748	1.3436	1.2355	1361.4	1344.3	1324.9
1,4-dioxan+benzamide+butan-1-ol	0.9190	0.0000	1031.6	1030.9	1025.6	1.4013	1.3099	1.2239	1356.7	1339.9	1317.7
1,4-dioxan+benzamide+1-pentanol	0.9190	0.0000	1017.6	1015.1	1011.5	1.3396	1.2399	1.1609	1347.4	1331.7	1310.1
1,4-dioxan+benzamide+n-hexanol	0.9190	0.0000	1013.2	1012.4	1007.2	1.3247	1.2137	1.1118	1339.0	1325.7	1303.3
From the Table 1, it is found that the ultrasonic velocity, density and viscosity decreases with increase in mole fraction of alcohol for all the four systems. The variation of ultrasonic velocity in solution depends upon the increase or decrease of intermolecular free length after mixing the components, based on a model for sound propagation proposed by Eyring and Kincaud[12]. The decrease in velocity is perhaps due to structural changes occurring in the mixtures resulting in weakening of intermolecular forces[13]. Further the sound speed decreases with increase in temperature at any concentration as rise in temperature leads to less disordered structure and more spacing between the molecules. The decrease in density and viscosity with temperature indicates that decrease in intermolecular forces due to increase in thermal energy of the system, which causes increase in volume expansion and hence increase in free path length.

It is found that from the Table 2, the adiabatic compressibility and free length increase with increasing concentration of alcohol in all the systems. The adiabatic compressibility shows an inverse behavior as compared to ultrasonic velocity. This indicates that there is a significant interaction between solute and solvent molecules. It can be taken as an indication for the formation of complexes. The addition of interacting molecules break up the molecular clustering of the other, releasing several dipoles for interaction, which suggest that hydrogen bonded association, breaks up progressively. In view of greater force of interaction between solute and solvent forming hydrogen Bonding, there will be a increase in free length in the mixture[14].The increase in free length after mixing results in a decrease in ultrasonic velocity .This also in accordance with the expected increase in compressibility following a decrease in ultrasonic velocity showing thereby weakening intermolecular interactions. Similar results were also reported in some liquids mixtures[14].

A close look at the values of free volume reveals that presence of solute -solvent interaction. The value of internal pressure decreases with increasing mole fraction as shown in Table 3. Alcohol is a polar, having profuse hydrogen bonding and hence the structural property like water may be there. Because of hydrogen bonding, the molecules must be arranged such that the void spaces may be available due to which the solute is more compressible[15]. On the other hand 1,4 -dioxan is

Table 2: Values of Adiabatic compressibility (β), Free length (L_f) and Free volume (V_f) at 303K, 3078K and 313K of benzamide with formal concentration of different alcohols

Mole fraction	Adiabatic compressibility (β) ($\times 10^{-9}$ m2 N$^{-1}$)	Free length L_f ($\times 10^{-10}$ m)	Free volume V_f ($\times 10^{-7}$ m3 Mol$^{-1}$)
	X_1 X_3 303K 308K 313K	X_1 X_3 303K 308K 313K	X_1 X_3 303K 308K 313K
1,4-dioxan+benzamide+propan-2-ol	0.9190 0.0000 5.1993 5.3451 5.5257	0.4550 0.4650 0.4772	0.8661 0.9773 1.0845
1,4-dioxan+benzamide+butan-1-ol	0.9027 0.0178 5.1993 5.3451 5.5257	0.4550 0.4650 0.4772	0.8661 0.9773 1.0845
1,4-dioxan+benzamide+1-pentanol	0.8869 0.0350 5.3429 5.4684 5.6881	0.4622 0.4711 0.4842	0.9215 1.0073 1.1044
1,4-dioxan+benzamide+n-hexanol	0.8716 0.0516 5.3919 5.5359 5.7348	0.4660 0.4752 0.4883	0.9314 1.0244 1.1114
1,4-dioxan+benzamide+1-pentanol	0.9190 0.0000 5.1993 5.3451 5.5257	0.4550 0.4650 0.4772	0.8661 0.9773 1.0845
1,4-dioxan+benzamide+butan-1-ol	0.9027 0.0178 5.1993 5.3451 5.5257	0.4550 0.4650 0.4772	0.8661 0.9773 1.0845
1,4-dioxan+benzamide+1-pentanol	0.8869 0.0350 5.3429 5.4684 5.6881	0.4622 0.4711 0.4842	0.9215 1.0073 1.1044
1,4-dioxan+benzamide+n-hexanol	0.8716 0.0516 5.3919 5.5359 5.7348	0.4660 0.4752 0.4883	0.9314 1.0244 1.1114
1,4-dioxan+benzamide+1-pentanol	0.9190 0.0000 5.1993 5.3451 5.5257	0.4550 0.4650 0.4772	0.8661 0.9773 1.0845
1,4-dioxan+benzamide+butan-1-ol	0.9027 0.0178 5.1993 5.3451 5.5257	0.4550 0.4650 0.4772	0.8661 0.9773 1.0845
1,4-dioxan+benzamide+1-pentanol	0.8869 0.0350 5.3429 5.4684 5.6881	0.4622 0.4711 0.4842	0.9215 1.0073 1.1044
1,4-dioxan+benzamide+n-hexanol	0.8716 0.0516 5.3919 5.5359 5.7348	0.4660 0.4752 0.4883	0.9314 1.0244 1.1114
1,4-dioxan+benzamide+1-pentanol	0.9190 0.0000 5.1993 5.3451 5.5257	0.4550 0.4650 0.4772	0.8661 0.9773 1.0845
1,4-dioxan+benzamide+butan-1-ol	0.9027 0.0178 5.1993 5.3451 5.5257	0.4550 0.4650 0.4772	0.8661 0.9773 1.0845
1,4-dioxan+benzamide+1-pentanol	0.8869 0.0350 5.3429 5.4684 5.6881	0.4622 0.4711 0.4842	0.9215 1.0073 1.1044
Table 3: Values of internal pressure (π), viscous relaxation time (τ) and Gibbs free energy (ΔG) at 303, 308 and 313K of Benzamide with formal concentration of different alcohols

Mole fraction	Internal pressure π ($\times 10^{-6}$ Nm$^{-2}$)	Viscous relaxation time τ ($\times 10^{-12}$ sec)	Gibbs free energy ΔG ($\times 10^{-20}$ KJmol$^{-1}$)								
X1	X2	X3 303K	X3 308K	X3 313K	X3 303K	X3 308K	X3 313K	X3 303K	X3 308K	X3 313K	
1,4-dioxan+benzamide+propan-2-ol	0.9190	0.0000	577.8	563.3	551.4	1.0224	0.9575	0.9103	0.7796	0.7716	0.7692
	0.9027	0.0178	564.5	557.6	548.1	0.9869	0.9434	0.9059	0.7648	0.7652	0.7671
	0.8869	0.0350	566.3	557.9	547.5	0.9856	0.9446	0.9041	0.7643	0.7656	0.7663
	0.8716	0.0516	566.9	555.0	547.9	0.9821	0.9355	0.9029	0.7628	0.7617	0.7657
	0.8550	0.0687	563.3	557.4	546.7	0.9794	0.9229	0.8954	0.7595	0.7550	0.7621
1,4-dioxan+benzamide+butan-1-ol	0.9190	0.0000	577.8	563.3	551.4	1.0224	0.9575	0.9103	0.7796	0.7716	0.7692
	0.9025	0.0178	564.2	557.8	550.5	0.9842	0.9447	0.9161	0.7636	0.7655	0.7662
	0.8869	0.0349	557.2	549.2	539.0	0.9840	0.9439	0.9040	0.7636	0.7655	0.7662
	0.8704	0.0529	537.2	549.2	545.0	0.9737	0.9355	0.8928	0.7592	0.7658	0.7662
	0.8567	0.0678	537.7	548.1	540.3	0.9772	0.9284	0.8938	0.7607	0.7659	0.7660
	0.8423	0.0835	551.9	542.9	531.6	0.9762	0.9117	0.8699	0.7603	0.7507	0.7496
1,4-dioxan+benzamide+1-pentanol	0.9190	0.0000	577.8	563.3	551.4	1.0224	0.9575	0.9103	0.7796	0.7716	0.7692
	0.9026	0.0178	564.2	557.8	550.5	0.9842	0.9447	0.9161	0.7636	0.7655	0.7662
	0.8867	0.0349	557.2	549.2	539.0	0.9840	0.9439	0.9040	0.7636	0.7655	0.7662
	0.8704	0.0529	537.2	549.2	545.0	0.9737	0.9355	0.8928	0.7592	0.7658	0.7662
	0.8567	0.0678	537.7	548.1	540.3	0.9772	0.9284	0.8938	0.7607	0.7659	0.7660
	0.8425	0.0833	551.9	542.9	531.6	0.9762	0.9117	0.8699	0.7603	0.7507	0.7496
1,4-dioxan+benzamide+n-hexanol	0.9190	0.0000	577.8	563.3	551.4	1.0224	0.9575	0.9103	0.7796	0.7716	0.7692
	0.9027	0.0179	563.9	556.8	548.5	1.0030	0.9436	0.9104	0.7716	0.7653	0.7692
	0.8867	0.0350	565.9	553.9	543.2	0.9994	0.9480	0.9058	0.7716	0.7653	0.7692
	0.8716	0.0516	562.1	549.3	540.1	1.0012	0.9449	0.9036	0.7716	0.7653	0.7692
	0.8568	0.0678	553.1	545.7	535.4	0.9968	0.9408	0.8966	0.7716	0.7653	0.7692
	0.8425	0.0833	552.9	544.0	531.1	0.9895	0.9426	0.8926	0.7695	0.7649	0.7607

A non-polar having no hydrogen bonding. The reduction in internal pressure may be due to the loosening of cohesive forces leading to breaking the structure of the solute. When the temperature is increased, there is a tendency for the solute molecules to move away from each other, reducing the possibility for the interaction, which may further reduce the cohesive forces and ultimately leads to an increase in the free volume as shown in Table 2.

The viscous relaxation time decreases with increase in mole fraction of alcohol and increase in temperature. The relaxation time that is in the order of 10^{-12} sec is due to the structural relaxation process showing the presence of molecular interaction. Gibbs free energy confirms the same. The reduction of Gibbs free energy in all the systems indicates that the need for smaller time for the cooperative process or the rearrangement of the molecules in the mixtures decreases the energy that leads to dissociation.

CONCLUSION

It is concluded that ultrasonic studies provide a comprehensive investigation of molecular association between benzamide with, propan-2-ol, butan-1-ol, 1-pentanol and n-hexanol in 1,4-dioxan arising from the hydrogen bonding between the solute and solvent molecules and the order of interaction is found to be n-hexanol > 1-pentanol > butan-1-ol > propan-2-ol.

REFERENCES

1. Liakath Ali Khan, F.P., S. Sivagurunathan, Raja Mohamed Kamil and S.C. Mehrotra, 2007. Dielectric studies of methyl methacrylate and butyl methacrylate with primary alcohols using time domain reflectometry. Ind. J. Pure Appl. Phys., 45: 754-758. http://www.niscair.res.in/sciencecommunication/ResearchJournals/rejour/ijpap/ijpap2k7/ijpap-sept07.asp#p754.

2. Vikas Kumar Dakua, Biswajit Sinha and Mahendra Nath Roy, 2007. Thermophysical properties of binary mixtures of N, N-dimethyl formamide with isomeric butanols at 298.15, 308.15 and 318.15 K. J. Ind. Chem. Soc., 84: 37-45. http://cat.inist.fr/?aModele=afficheN&cpsidt=18557453.
3. Rita Mehra and Meenakshi Pancholi, 2007. Study of molecular interactions in binary mixtures of benzene-butanol and toluene-butanol systems from acoustic and thermodynamic parameters. Ind. J. Pure Appl. Phys., 45: 580-590. http://www.niscair.res.in/sciencecommunication/ResearchJournals/rejour/ijpap/ijpap2k7/ijpap_july07.asp.

4. Sivaprasad, V., E. Rajogopal and N. Manohara Moorthy, 2006. Ultrasonic behaviour of ternary mixtures containing water, dimethyl formamide and T butanol at 298.15 K. J. Mol. Liq., 124/1-3: 1-6. Doi: 10.1016/J.Molliq.2004.10.039.

5. Gnaana Kumari, P., G. Chandra Sekhar, K. Rajmohan and M.V.P. Rao, 2006. Ultrasonic velocities and isentropic compressibilities of N-methyl-2-pyrrolidone with ketones and branched alcohols at 303.15 K. Phys. Chem. Liquids, 44: 701-710. DOI: 10.1080/00319100600814556. http://www.informaworld.com/smpp/content~content=a759275508~db=all.

6. Venkadeshu, P., G. Charnasekhar and M.V. Prabhahara Rao, 2006. Ultrasonic studies of N,N-dimethyl formamide+Cyclohexanone+1-alkanols at 303.15 K. Phys. Chem. Liqs., 44: 287-291. DOI: 10.1080/00319100600576718.

7. Ravinder Reddy, B. and D. Linga Reddy, 1999. Ultrasonic measurements in ethyl acetate and n-butanol. Ind. J. Pure Appl. Phys., 37: 13-19. http://cat.inist.fr/?aModele=afficheN&cpsidt=10215767.

8. Nikam, P.S., B.S. Jagdale, A.B. Sawant and Mehdi Hasan, 2001. Ultrasonic studies in mixtures of benzonitrile with some alkanols and toluene. Ind. J. Pure Appl. Phys., 39: 433-437. http://serials.cib.unibo.it/cgi-ser/start/it/spogli/df-s.tcl?prog_art=4119011&language=ITALIANO&view=articoli.

9. Arul, G. and palaniappan, 2005. Ultrasonic study of 1-butanol in pyridine with benzene. Ind. J. Pure Appl. Phys., 43: 755-758. http://www.niscair.res.in/sciencecommunication/ResearchJournals/rejour/ijpap/ijpap2k5/ijpap_oct05.asp#p755.

10. Anwar Ali, Anil kumar and Abida, 2004. Ultrasonic and volumetric studies of molecular interaction in acetonitrile +1-alkanols(C_{6},C_{8},C_{10}) binary mixtures at different temperatures. Chin. Chem. Soc., 51: 477-485. http://www.cejps.com.tw/ec/ecjnl/articleView.aspx?atliid=847282&issueid=51548&jnlid=3598.

11. Sankar, U., A. Kingson Solomon Jeeveraj and Thenappan, 2006. Dielectric studies of H-bonded complexes of benzamide and nicotinamide with alcohols. Ind. J. Pure Appl. Phys., 44: 339-344. http://www.niscair.res.in/sciencecommunication/ResearchJournals/rejour/ijpap/ijpap2k6/ijpap_april06.asp#p339.

12. Eyring, H. and J.F. Kincaud, 1938. Free volume and Free angle ratios of molecules in liquids. J. Chem. Phys., 6: 620-629. DOI: 10.1063/1.1750134.

13. Madhu Rastogi, Aashees Awasthi, Manisha Guptha and J.P. Shukla, 2002. Ultrasonic investigations of X-HO bond complexes. Ind. J. Pure Appl. Phys., 40: 256-263. http://www.niscair.res.in/sciencecommunication/ResearchJournals/rejour/ijpap/ijpap2k2.htm#a5a.

14. Arul, G. and Palaniappan, 2001. Molecular interaction studies in the ternary mixtures of cyclohexane +toluene+2-propanol. Ind. J. Pure Appl. Phys., 39: 561-564. http://serials.cib.unibo.it/cgi-ser/start/it/spogli/df-s.tcl?prog_art=4304104&language=ITALIANO&view=articoli.

15. Aswale, S.S., P.B. Raghuwanshi, D.T. Tayade and S.R. Aswale, 2007. Comparative study of intermolecular interactions by acoustic properties of α-bromoacetophenones and coumaran-3-ones in ethanol and dioxane solvents. J. Ind. Chem. Soc., 84: 159-164. http://cat.inist.fr/?aModele=afficheN&cpsidt=18586727.

16. Kannappan, A.N. and R. Palani, 2007. Acoustical behaviour of glycerine, dextrose and sucrose in Na2CO3 and NaHCo3 buffer solution. Ind. J. Pure Appl. Phys., 45: 573-579. http://www.niscair.res.in/ScienceCommunication/ResearchJournals/rejour/ijpap/ijpap2k7/ijpap_july07.asp.

17. Bender, J.M. and R. Pecora, 1986, A dynamic light scattering study of the tertiary butyl alcohol-water systems. J. Phys. Chem., 90: 1700-1706. DOI: 10.1021/j100399a048. http://pubs.acs.org/cgi-bin/abstract.cgi/jpchax/1986/90/i08/f-pdf/f_j100399a048.pdf.