Prediction of Phase Transition in CaSiO$_3$ Perovskite and Implications for Lower Mantle Structure

Lars Stixrude1, Ronald E. Cohen2, Rici Yu3 and Henry Krakauer3

1Dept. of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta GA 30332-0340
2Geophysical Laboratory and Center for High Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Rd., N. W., Washington, DC 20015-1305
3Dept. of Physics, College of William and Mary, Williamsburg, VA 23187-8795

ABSTRACT

First principles linear response calculations are used to investigate the lattice dynamics of what is thought to be the third most abundant phase in the lower mantle, CaSiO$_3$ perovskite. The commonly assumed cubic structure ($Pm3m$) is found to be dynamically unstable at all pressures, exhibiting unstable modes along the Brillouin zone edge from the M-point to the R-point. Based on these results, we predict that the ground state structure of CaSiO$_3$ perovskite is a distorted phase with lower than cubic symmetry. We predict that a phase transition occurs in CaSiO$_3$ perovskite within the earth’s lower mantle from the low temperature distorted phase to the cubic phase at high temperature. The predicted phase transition provides a possible explanation of some of the seismological observations of reflective features within the lower mantle.
INTRODUCTION

CaSiO$_3$ perovskite is thought to comprise between 6 and 12 weight % of the lower half of the earth’s transition zone and lower mantle (depths between 500 and 2900 km) (Irifune 1994; O’Neill and Jeanloz 1990; Ita and Stixrude 1992). Its structure throughout this regime is generally assumed to be cubic because x-ray diffraction studies have found no detectable deviation from $Pm3m$ symmetry (Liu and Ringwood 1975; Mao et al. 1989; Wang et al. 1996). Theoretical studies based on ionic models (Wolf and Jeanloz 1985; Hemley et al. 1987; Wolf and Bukowinski 1992), periodic Hartree-Fock (Sherman 1993), and pseudopotential calculations (Wentzcovitch et al. 1995) have supported this picture.

Here, we go beyond previous studies by investigating from first principles the full phonon spectrum of cubic CaSiO$_3$ perovskite from low pressures to those typical of the lower mantle. The calculations are based on the Linearized Augmented Plane Wave (LAPW) method, widely accepted as among the most accurate methods for solving the band structure/total energy problem. We find that the cubic phase is dynamically unstable at all pressures and that the ground state structure must possess lower than cubic symmetry.

These results are important for our understanding of the physics and chemistry of this mantle phase - its phase stability, elasticity, and its ability to incorporate other cations such as Mg, Fe, and Al, for example, will be affected by its symmetry. Moreover, the existence of a low symmetry ground state raises the possibility of a temperature induced phase transition in this mineral within the earth. Phase transitions in lower mantle constituents have important implications for our understanding of recent seismological observations of reflective features within the lower mantle (Revenaugh and Jordan 1991; Kawakatsu and Niu 1994; LeStunff et al. 1995) near 700, 900, and 1200 km depth. These observations indicate the presence of previously unpredicted phase transitions or sharply bounded compositional heterogeneities, challenging our traditional view of this region as being compositionally and mineralogically homogeneous.
COMPUTATIONS

The LAPW linear response calculations determine the self-consistent first order response of the electronic charge density to generalized perturbations (Yu and Krakauer 1994). The calculations are based on density functional theory; the only essential approximation is to the exchange-correlation potential. We use the well studied local density approximation (LDA), which has been applied successfully in studies of silicates, including Mg-perovskite (Stixrude and Cohen 1993). We compute the linear response to shifts in nuclear positions and imposed external fields, which yield the elements of the dynamical matrix, the dielectric constant (ϵ) and the Born effective charges (Z^*), from which the phonon frequencies are determined (Yu and Krakauer 1995; Lee and Gonze 1994). The perturbations need not be commensurate with the unit cell, so that points in the Brillouin zone away from the zone center are readily investigated. We calculate the dynamical matrix of the cubic $Pm3m$ phase of CaSiO$_3$ perovskite at four points in the Brillouin zone (Γ, X, M, R). Computational variables (k-point mesh: 4x4x4 for computations of the dynamical matrix elements, 8x8x8 for ϵ and Z^*; number of basis functions per atom \approx 150) were chosen such that phonon frequencies are converged to better than one wavenumber. The full phonon dispersion curve is determined using an interpolation scheme that separates short-range forces from long-range, Coulombic interactions (Yu and Krakauer 1994; Gonze et al. 1994).

RESULTS

We find that the Born effective charges in CaSiO$_3$ perovskite differ significantly from formal ionic charges; by as much as 1e (Fig. 1). Compression causes Z^* of Si and Ca to deviate farther from their formal ionic values, and Z^* of O to approach -2. The dielectric constant, $\epsilon = 3.8$ at zero pressure, lies between the known values for CaO (Lide and Frederikse 1994) and SiO$_2$ stishovite (Stishov and Popova 1961) and varies slowly with pressure (Fig. 1). LO-TO splitting of zone-center vibrational frequencies is on the order of
50-200 wavenumbers (Fig. 2). All zone-center modes are found to be dynamically stable. An examination of the eigenvectors shows that the highest frequency modes involve stretching of the octahedral Si-O bond. The change in frequency of these modes with compression is greatest because the length of the Si-O bond shrinks in direct proportion to compression in the cubic structure.

The full phonon dispersion curves reveal dynamical instabilities in the cubic structure along the zone boundaries (Fig. 2). Instabilities occur at the M- and R-points and along the zone edges from M to R. The corresponding imaginary frequencies grow in magnitude upon compression. An examination of the eigenvectors associated with these unstable modes shows that they consist of coupled rotations of the SiO$_6$ octahedra. The unstable modes at the M-point (M_2) and R-point (R_{25}) are associated, respectively, with in-phase and out-of-phase rotations of the octahedra about [100]. Instabilities along M-R were previously found in ionic model calculations, but only at pressures (P) above 80 GPa (Hemley et al. 1987; Wolf and Bukowinski 1992). Here we find that the instabilities are more profound and that they persist even in the expanded lattice (P=-8 GPa). Unstable modes of the same type have also been found in theoretical investigations of cubic MgSiO$_3$ perovskite which account for the observed orthorhombic ($Pbnm$) symmetry of this material (Wolf and Jeanloz 1985; Hemley et al. 1987; Wolf and Bukowinski 1992).

Our results indicate that the cubic $Pm\bar{3}m$ structure of CaSiO$_3$ perovskite is dynamically unstable and that the ground state of this material must possess lower symmetry. However, the ground state is not of direct relevance to the lower mantle where temperatures exceed 2000 K. Even if the cubic phase is dynamically unstable, it may be thermodynamically stable at high temperature because of its greater entropy (e.g. Salje 1990).

The temperature at which the low temperature distorted phase transforms to the high temperature cubic phase depends not only on the unstable mode frequencies, but also on the energetics of finite displacements along the unstable mode eigenvectors. Using LAPW total energy calculations, we find the total energy as a function of displacement along the
most unstable mode eigenvector \((R_{25})\) and the associated minimum energy displacement [frozen phonon approach; Cohen 1992]. The symmetry of the structure associated with this finite displacement is tetragonal \(I4/mcm\), with 10 atoms in the unit cell. The results at mid-mantle pressures \((P=80\) GPa\) show that the minimum energy displacement corresponds to an octahedral rotation angle of 7 degrees and is 360 K per octahedron lower in energy than the cubic phase (Fig. 3). The relatively small minimum energy octahedral rotation angle may explain why previous x-ray diffraction experiments have failed to detect deviations from cubic symmetry. Assuming that the octahedral rotations are rigid (O’Keefe et al. 1979), the corresponding \(c/a\) ratio of the distorted phase differs by only 0.7 \% from the cubic structure - below the detection limit of previous non-hydrostatic (Mao et al. 1989) and quasi-hydrostatic (Wang et al. 1996) experiments (H. K. Mao, personal communication).

These results constrain the parameters of a simple model which we use to estimate the transition temperature from the distorted \(I4/mcm\) structure to the cubic \(Pm3m\) structure. The model (Bruce 1980) consists of on-site terms which correspond to finite displacements along the unstable zone-boundary mode eigenvectors, and inter-site couplings

\[
U = \sum_i V(Q_i) + \frac{J}{2} \sum_{i,j} (Q_j + Q_i)^2 \tag{1}
\]

where \(U\) is the energy contained in octahedral rotations, \(Q\) is the normal coordinate of the octahedral rotation, and \(V(Q)\) is the on-site term given by our total energy results (Fig. 3). The form of the nearest-neighbor inter-site coupling term is determined by the requirement that it vanish for a pure \(R_{25}\) mode distortion of the crystal, in which neighboring octahedra rotate in opposite directions. The intersite coupling parameter, \(J\), is most simply given by the curvature along \(\Gamma-R\) of the unstable mode eigenenergy evaluated at the \(R\)-point (Fig. 2). The relative magnitudes of the on-site and inter-site coupling terms are such that the phase transition is expected to occur in the displacive limit. In this case, if we ignore coupling between the unstable mode eigenvector and other modes, the transition temperature is given by
\[T_c = \frac{4}{3q(3) k_B} \approx 2200 \text{ } K \] (2)

where \(k_B \) is the Boltzmann constant, and \(q(3) = 0.5054 \). The estimated transition temperature is similar to estimates of temperatures in the lower mantle at similar pressures: \(P=80 \text{ GPa} \) corresponds to a depth of 1850 km and a temperature of approximately 2500-3000 K.

DISCUSSION

Our estimate of \(T_c \) may be uncertain by several hundred K and is likely to be a lower bound since we have ignored coupling between unstable mode eigenvectors - this may lower the total energy of the distorted phase further relative to the cubic phase. Nevertheless, the fact that our estimated \(T_c \) is comparable to lower mantle temperatures indicates that a phase transition in CaSiO\(_3\) perovskite is likely to occur in the lower mantle.

The predicted phase transition in CaSiO\(_3\) perovskite is expected to be associated with an elastic anomaly which may be the cause of at least a subset of the reflective features near 700, 900, and 1200 km depth in the lower mantle (Revenaugh and Jordan 1991; Kawakatsu and Niu 1994; LeStunff 1995). Other phase transitions have been discussed as possibly occurring in the earth’s lower mantle. A phase transition in the lower mantle’s most abundant constituent, MgSiO\(_3\) perovskite, has been suggested (Meade et al. 1995), but theoretical computations show such a transition unlikely for reasonable geotherms (Stixrude and Cohen 1993; Warren and Ackland 1996). Recent results show that SiO\(_2\) undergoes a phase transition from the stishovite to the CaCl\(_2\) structure at lower mantle pressures (Cohen 1992; Kingma et al. 1995). Our results on CaSiO\(_3\) perovskite indicate the presence of yet another phase transition within the lower mantle, the first high pressure phase transition predicted with the linear response method.
ACKNOWLEDGMENTS

We thank H.K. Mao and R.J. Hemley for helpful discussions. This work was supported by NSF under grants EAR-9305060 (LPS), EAR-9304624 (REC), EAR-9418934 (REC) and DMR-9404954 (HK). Calculations were performed on the Cray C90 at the Pittsburgh Supercomputer Center and the Cray J90 at the Geophysical Laboratory.
REFERENCES CITED

Boyer, L.L., and Hardy, J.R. (1981) Theoretical study of the structural phase transition in RbCaF₃. Physical Review B, 24, 2577-2591.

Bruce, A.D. (1980) Structural Phase transitions. II. Static critical behaviour. Advances in Physics, 29, 111-217.

Cohen, R.E. (1992) First-principles predictions of elasticity and phase transitions in high pressure SiO₂ and geophysical implications. In Y. Syono and M. H. Manghnani, Eds., High Pressure Research: Applications to Earth and Planetary Sciences, p. 425-432. American Geophysical Union, Washington, DC and Terra Scientific, Tokyo.

Cowley, R.A. (1964) Lattice dynamics and phase transitions of strontium titanate. Physical Review, 134, A981-A997.

Gonze, X., Charlier, J.-C., Allan, D.C., and Teter, M.P. (1994) Interatomic force constants from first principles - the case of alpha-quartz. Physical Review B, 50, 13035-13038.

Hemley, R.J., Jackson, M.D., and Gordon, R.G. (1987) Theoretical study of the structure, lattice dynamics, and equations of state of perovskite-type MgSiO₃ and CaSiO₃. Physics and Chemistry of Minerals, 14, 2-12.

Irifune, T. (1994) Absence of an aluminous phase in the upper part of the earth’s lower mantle. Nature, 370, 131-133.

Ita, J.J., and Stixrude, L. (1992) Petrology, elasticity, and composition of the mantle transition zone. Journal of Geophysical Research, 97, 6849-6866.

Kawakatsu, H., and Niu, F.L. (1994) Seismic evidence for a 920-km discontinuity in the mantle. Nature, 371, 301-305.

Kingma, K.J., Cohen, R.E., Hemley, R.J., and Mao, H.K. (1995) Transformation of stishovite to a denser phase at lower-mantle pressures. Nature, 374, 243-245.

Lee, C., and Gonze, X. (1994) Lattice dynamics and dielectric properties of SiO₂ stishovite. Physical Review Letters, 72, 1686-1689.
LeStunff, Y., Wicks, C.W., and Romanowicz, B. (1995) P’P’ precursors under Africa - evidence for mid-mantle reflectors. Science, 270, 74-77.

Lide, D.R., and Frederikse, H.P.R. (eds.) (1994) CRC Handbook of Chemistry and Physics, 75e, CRC Press, Boca Raton.

Liu, L.-G., and Ringwood, A.E. (1975) Synthesis of a perovskite-type polymorph of CaSiO$_3$. Earth and Planetary Science Letters, 14, 1079-1082.

Mao, H.K., Chen, L.C., Hemley, R.J., Jephcoat, A.P., Wu, Y. and Bassett, W.A. (1989) Stability and equation of state of CaSiO$_3$ perovskite to 134 GPa. Journal of Geophysical Research, 94, 17889-17894.

Meade, C., Mao, H.K., and Hu, J.Z. (1995) High-temperature phase transition and dissociation of (Mg,Fe)SiO$_3$ perovskite at lower mantle pressures. Science, 268, 1743-1745.

O’Keefe, M., Hyde, B.G., and Bovin, J. (1979) Contribution to the crystal chemistry of orthorhombic perovskite: MgSiO$_3$ and NaMgF$_3$. Physics and Chemistry of Minerals, 4, 299-305.

O’Neill, B., and Jeanloz, R. (1990) Experimental petrology of the lower mantle - a natural peridotite taken to 54 GPa. Geophysical Research Letters, 17, 1477-1480.

Revenaugh, J., and Jordan, T.H. (1991) Mantle layering from SCS reverberations. 2. the transition zone. Journal of Geophysical Research, 96, 19763-19780.

Salje, E.K.H. (1990) Phase transitions in ferroelastic and co-elastic crystals, Cambridge University Press, Cambridge.

Sherman, D.M. (1993) Equation of state, elastic properties, and stability of CaSiO$_3$ perovskite - 1st principles (periodic Hartree-Fock) results. Journal of Geophysical Research, 98, 19795-19805.

Stishov, S.M., and Popova, S.V. (1961) New dense polymorphic modification of silica, Geokhimiya, 10, 837-847.

Stixrude, L., and Cohen, R.E. (1993) Stability of orthorhombic MgSiO$_3$ perovskite in the earth’s lower mantle. Nature, 364, 613-616.

Wang, Y., Weidner, D.J., and Guyot, F. (1996) Thermal equation of state of CaSiO$_3$
perovskite. Journal of Geophysical Research, 101, 661-672.

Warren, M.C., and Ackland, G.J. (1996) Ab initio studies of structural instabilities in magnesium silicate perovskite. Physics and Chemistry of Minerals, 23, 107-118.

Wentzcovitch, R., Ross, N.L., and Price, G.D. (1995) Ab initio study of MgSiO$_3$ and CaSiO$_3$ perovskites at lower-mantle pressures. Physics of the Earth and Planetary Interiors, 90, 101-112.

Wolf, G.H., and Jeanloz, R. (1985) Lattice dynamics and structural distortions of CaSiO$_3$ and MgSiO$_3$ perovskites. Geophysical Research Letters, 12, 413-416.

Wolf, G.H., and Bukowinski, M.S.T. (1992) Theoretical study of the structural properties and equations of state of MgSiO$_3$ and CaSiO$_3$ perovskite: implications for lower mantle composition. In M. H. Manghnani and Y. Syono, Eds., High-Pressure Research in Mineral Physics, p. 313-331. American Geophysical Union, Washington, DC and Terra Scientific, Tokyo).

Yu, R., and Krakauer, H. (1994) Linear-response calculations within the linearized augmented plane-wave method. Physical Review B, 49, 4467-4477.

Yu, R., and Krakauer, H. (1995) First-principles determination of chain-structure instability in KNbO$_3$. Physical Review Letters, 74, 4067-4070.
Fig. 1. Born effective charges (left axis) and dielectric constant (right axis) as a function of compression. Pressures range from -8 GPa (V=310 Bohr3) to 140 GPa (V=220 Bohr3) and were determined by fitting a third order finite strain expression to the LAPW total energy as a function of volume. The two symmetrically distinct elements of the oxygen Born effective charge tensor are shown, Z_{O_1} for motion of O along the Si-O bond, and Z_{O_2} for motion normal to the bond. Dashed lines indicate formal ionic charges.

Fig. 2. Phonon spectrum of the cubic phase at V=310 Bohr3 (P=-8 GPa) (top) compared with that at V=240 Bohr3 (P=80 GPa) (bottom). All zone-center modes (Γ-point) are stable. However, zone-boundary modes at the M- and R-points are unstable, as shown by the existence of imaginary frequencies. The final panel (M-R) shows that the edges of the cubic Brillouin zone are everywhere unstable. The magnitude of the imaginary eigenfrequencies increases with compression. Symmetry designations are those of Cowley (1964) as corrected by Boyer and Hardy (1981). At Γ there are four TO modes ($Γ_5$ and inactive $Γ_25$ symmetries) and three LO modes ($Γ_1$). The volume dependence of the zone center modes is described by $ω = ω_0(V/V_0)^γ$, where the frequencies at $V = 310$ Bohr3 (near zero pressure), $ω_0$, are: 197, 274, 327, 393, 621, 691, 926 cm$^{-1}$; and the respective mode Grüneisen parameters, $γ_ι$, are: 2.5, 1.5, 1.2, 1.2, 0.8, 2.0, 1.2.
Fig. 3. Total energy (per octahedron) of the $I4/mcm$ tetragonal structure as a function of finite displacement along the R_{25} eigenvector at $V=240$ Bohr3 ($P=80$ GPa). The LAPW total energy results (symbols) are fit to a polynomial in the square of the normal coordinate, Q: $V(Q) = AQ^2/2 + BQ^4/4$. The normal coordinate per octahedron, $Q^2 = \frac{1}{2} \sum_{i=1}^{3n} m_i x_i^2$, where the sum is over the cartesian displacements (x_i, in Bohr) of the n atoms in the unit cell, with masses m_i, in amu. This expression, with $A=-2.04$ mRy amu$^{-1}$ Bohr$^{-2}$, and $B=0.456$ mRy amu$^{-1}$ Bohr$^{-4}$ constrains the on-site term in the simple model of the phase transition discussed in the text. The remaining parameter, $J=1.19$ mRy amu$^{-1}$ Bohr$^{-2}$, is determined from the dispersion of the unstable mode eigenvalue (Fig. 2). The unstable mode frequency in the cubic phase ($Q = 0$) calculated from the curvature of the polynomial fit (173i cm$^{-1}$, $i = \sqrt{-1}$) agrees with the linear response result (164i cm$^{-1}$).
Born Effective Charge, Z^*

Volume (bohr3)

Dielectric Constant, ε_{∞}
