Composition of Switching Lattices and Autosymmetric Boolean Function Synthesis

Marie Skłodowska-Curie grant agreement No 691178
(European Union’s Horizon 2020 research and innovation programme)

Anna Bernasconi1, Valentina Ciriani2, Luca Frontini2, Gabriella Trucco2

1Dipartimento di Informatica, Università di Pisa, Italy, anna.bernasconi@unipi.it

2Dipartimento di Informatica, Università degli Studi di Milano, Italy,
\{valentina.ciriani, luca.frontini, gabriella.trucco\}@unimi.it

NANOxCOMP
Introduction

CMOS technology

- Transistor size have been shrunk for decades
- The trend reached a critical point

The Moore's Law era is coming to end

New emerging technologies

- Biotechnologies, molecular-scale self-assembled systems
- Graphene structures
- Switching lattices arrays

These technologies are in an early state

A novel synthesis approach is necessary, focused on the properties of the devices

Synthesis efficiency can be the main factor for a technology choice

We focus our work on Synthesis for Switching Lattices
Switching Lattices
Nanowires are one of the most promising technologies

- Nanowire circuits can be made with **self-assembled structures**
- pn-junctions are built crossing n-type and p-type nanowires
- **Low** V_{in} voltage makes p-nanowires conductive and n-nanowires resistive
- **High** V_{in} voltage makes n-nanowires conductive and p-nanowires resistive
The Switching Lattices

Switching Lattices are **two-dimensional** array of **four-terminal** switches

- When switches are **ON** all terminals are connected, when **OFF** all terminals are disconnected
- Each switch is controlled by a boolean literal, 1 or 0
- The boolean function f is the SOP of the literals along each path from **top** to **bottom**
- $f = x_1x_2x_3 + x_1x_2x_5x_6 + x_4x_5x_2x_3 + x_4x_5x_6$
From Crossbars to Lattices

For an easier representation the **crossbars** are converted to **lattices**:

- A ‘checkerboard’ notation is used
- Darker and white sites represent **ON** and **OFF**
- a), b): the 4-terminal switching network and the lattice describing
 \(f = \overline{x_1} \overline{x_2} x_3 + x_1 x_2 + x_2 x_3 \)
- c), d): the lattice evaluated on inputs (1,1,0) and (0,0,1)
The synthesis methods

Altun-Riedel, 2012

- Synthesizes f and f^D from top to bottom and left to right
- It produces lattices with size growing linearly with the SOP
- Time complexity is polynomial in the number of products

\[
f = \overline{x}_8 \overline{x}_7 \overline{x}_6 x_3 \overline{x}_2 x_1 + \overline{x}_8 \overline{x}_7 x_5 x_3 \overline{x}_2 x_1 + x_4 x_3 \overline{x}_2 x_1
\]

Gange-Søndergaard-Stuckey, 2014

- f is synthesized from top to bottom
- The synthesis problem is formulated as a satisfiability problem, then the problem is solved with a SAT solver
- The synthesis method searches for better implementations starting from an upper bound size
- The synthesis loses the possibility to generate both f and f^D
To optimize lattice synthesis there are different approaches, but common goals:

- Produce optimal-size lattices
- Reduce synthesis time
- Create efficient methods for sub-optimal lattice synthesis

Use of sub-optimal lattices when optimal synthesis requires too much computing time or memory
The logic synthesis of 4-terminal switches can be very computational intensive.

Boolean function **decomposition techniques**
- **decompose** a function according to a given decomposition scheme
- implement the **decomposed blocks** into a single or multiple lattices
- decomposed functions have **less variables** and/or a **smaller on-set**
- the implementation may be **smaller** and the synthesis **less computational intensive**

We use a preprocessing technique that exploits the properties of the **Autosymmetric** boolean functions.
Autosymmetric functions
Consider a Boolean function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \): the function \(f \) is **closed under** a vector \(\alpha \in \{0, 1\}^n \), if for each vector \(w \in \{0, 1\}^n \), \(w \oplus \alpha \in f \) if and only if \(w \in f \).

The set \(L_f = \{ \beta : f \text{ is closed under } \beta \} \) is a **vector subspace** of \((\{0, 1\}^n, \oplus) \). The set \(L_f \) is called the **vector space** of \(f \).

Definition: A completely specified Boolean function \(f \) is **\(k \)-autosymmetric** if its vector space \(L_f \) has dimension \(k \).

Definition: Let \(V \) be a vector subspace of \((\{0, 1\}^n, \oplus) \). The set \(A = \alpha \oplus V \), \(\alpha \in \{0, 1\}^n \), is an **affine space** over \(V \) with translation point \(\alpha \).

The points of \(f \) can be partitioned into \(\ell = |f|/2^k \) disjoint sets, where \(|f| \) denotes the number of points of \(f \); all these sets are affine spaces over \(L_f \).

\[
f = \bigcup_{i=1}^{\ell} (w^i \oplus L_f)
\]
Autosymmetric functions can be reduced to “equivalent, but smaller” functions if f is k-autosymmetric,

- f_k is a function over $n - k$ variables, $y_1, y_2, \ldots, y_{n-k}$, such that
 \[f(x_1, \ldots, x_n) = f_k(y_1, \ldots, y_{n-k}) \]
- y_i is an EXOR combination of a subset of x_i's.
- These combinations are $\text{EXOR}(X_i)$, where $X_i \subseteq X$
- $y_i = \text{EXOR}(X_i)$, $i = 1, \ldots, n - k$, are called reduction equations
- f_k is called a restriction of f

f_k is “equivalent” to, but smaller than f, and has $|f|/2^k$ points only.
Example of autosymmetric function decomposition

- \(f = \{0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1011, 1101, 1110\} \)
- Vector space \(L_f = \{0000, 0011, 0101, 0110\} \)
- Canonical variables \(x_2 \) and \(x_3 \) (independent variables on \(L_f \)).

- We can build \(f_2 \) by taking \(f_{x_2=0, x_3=0} = \{00, 01, 10\} \): \(f_2(y_1, y_2) = \overline{y_1 y_2} \).
- The homogeneous system whose solutions are \(\{0000, 0011, 0101, 0110\} \) is:

\[
\begin{align*}
 x_1 & = 0 \\
 x_2 \oplus x_3 \oplus x_4 & = 0
\end{align*}
\]

Autosymmetric boolean functions have already **studied and algebraically characterized**

The space \(L_f \), the function \(f_k \) and the reduction equation can be **calculated in a polynomial time**
Example of autosymmetric function decomposition

- $f = \{0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1011, 1101, 1110\}$
- Vector space $L_f = \{0000, 0011, 0101, 0110\}$
- Canonical variables x_2 and x_3 (independent variables on L_f).

Thus the reduction equations are given by

\[
\begin{align*}
y_1 &= x_1 \\
y_2 &= x_2 \oplus x_3 \oplus x_4.
\end{align*}
\]

f can be represented as:

\[
f(x_1, x_2, x_3, x_4) = f_2(y_1, y_2) = \overline{y_1y_2} = \overline{x_1(x_2 \oplus x_3 \oplus x_4)}.
\]
Lattice implementation of autosymmetric functions

\[y_1 = \text{EXOR} (X_1) \]

\[y_i = \text{EXOR} (X_i) \]

\[y_j = x_t \]

(a) (b)
Disjunction and conjunction of lattices

$f + g$
- separate the paths from top to bottom for f and g
- add a column of 0s
- add padding rows of 1s if lattices have different number of rows

$f \cdot g$
- any top-bottom path of f is joined to any top-bottom path of g
- add a row of 1s
- add padding columns of 0s if lattices have different number of columns
Lattices of EXOR functions

EXOR factors lattices are simple to synthesize

- the dimension of a two-variables EXOR lattice is 2×2
- the dimension of a three-variables EXOR lattice is 4×3
Autosymmetric function: example

- \(f(x_1, x_2, x_3, x_4) = x_1 \oplus x_2 \oplus x_3 \oplus x_4. \)
- decomposing: \(f = g(y_1, y_2) = y_1 \oplus y_2, \) where \(y_1 = x_1 \oplus x_2 \) and \(y_2 = x_3 \oplus x_4 \)
- Multi-lattice: the sum of the areas of the lattices is smaller than the area of the optimum single-lattice

	\(x_1 \)	0	\(x_1 \)
\(x_2 \)	\(x_2 \)	0	\(x_2 \)
\(\bar{x}_1 \)	\(\bar{x}_2 \)	0	\(\bar{x}_2 \)
1	1	0	1
\(x_3 \)	\(x_3 \)	0	\(x_3 \)
\(x_4 \)	\(x_4 \)	0	\(x_4 \)

\(x_1 \) \(x_2 \) \(y_1 \) \(y_2 \)
Experiments

- Benchmarks are taken from LGSynth93
- Each benchmark output is considered as a separate boolean function
- A total of 607 functions including 53 autosymmetric functions
- We use a collection of Python scripts and a SAT solver to perform the Gange-Søndergaard-Stuckey synthesis

- The algorithm has been implemented in C
- The experiments have been run on a machine with 16 CPU @2.5 GHz, running Centos 6.6
Auto-symmetric functions decomposition results

F-Name	Altun-Riedel	Gange-Søndergaard-Stuckey		
	standard	Decomposed	standard	Decomposed
	Row×Col	Row×Col + XOR area	Row×Col	Row×Col + XOR area
add6(0)	2×2	1×1 + 4	2×2	1×1 + 4
add6(1)	6×6	3×3 + 4	5×3	3×3 + 4
dekoder(0)	4×2	3×1 + 4	4×2	3×1 + 4
dekoder(1)	3×2	2×1 + 4	3×2	2×1 + 4
rd53(1)	10×10	6×5 + 16	–	4×3 + 16
sqn(0)	17×16	7×7 + 8	–	3×5 + 8

– : Gange-Søndergaard-Stuckey synthesis does not finish in 10min
Conclusions

- **Smaller lattices**: at least 53% of area reduction in 48% of functions.
- **Affordable computing time**, in some cases is possible to find a solution in less time than the optimum one.
- Some decomposed functions has **smaller total area** w.r.t. the lattice size in optimum case.
- Increase the number of lattices and the final lattice has more complex signal routing.
Thank you!