Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions

A. Adare,14 S. Afanasiev,34 C. Aidala,15,44,49,50 N.N. Ajitanand,70 Y. Akiba,64,65 R. Akimoto,13 H. Al-Bataineh,58 J. Alexander,70 M. Alfred,27 A. Al-Jamel,58 H. Al-Taani,58 A. Angerami,15 K. Aoki,17,40,64 N. Apadula,32,71 L. Aphecetche,72 Y. Aramaki,13,64 R. Armandariz,58 S.H. Arzon,8 J. Asai,64,65 H. Asano,40,64 E.C. Aschenauer,8 E.T. Atomssa,41,71 R. Averbeck,71 T.C. Awes,60 B. Azmoun,8 V. Babintsev,28 A. Bagoly,19 M. Bai,7 G. Baksay,22 L. Baksy,22 A. Baldisseri,17 B. Bannier,71 K.N. Barish,9 P.D. Barnes,44 B. Bassalleck,57 A.T. Basye,1 S. Bathe,6,9,65 S. Batouli,15,60 V. Baublis,63 F. Bauer,9 C. Baumann,51 S. Baumgart,64 A. Bazilevsky,8,32 R. Belmont,14,77 R. Bennett,71 A. Berdnikov,67 Y. Berdnikov,67 J.H. Blom,81 A.A. Bickler,14 M.T. Bjornard,15 D.S. Blau,39,56 M. Boer,44 J.G. Boissevain,44 J.S. Bok,57,81 H. Borel,17 K. Boos,65,71 M.L. Brooks,44 D.S. Brown,58 J. Bryllwajg,6,9 D. Bucher,51 H. Buesching,8 V. Bumazhnov,28 G. Bunce,8,65 J.M. Burward-Hoy,44 S. Butsyk,44,57,71 C.M. Camacho,44 S. Campbell,15,71 V. Canoan Roman,71 A. Carigni,52 P. Castera,71 J.-S. Chai,36,73 B.S. Chang,81 W.C. Chang,2 J.-L. Charvet,17 C.-H. Chen,65,71 S. Chernichenko,28 C.Y. Chi,15 J. Chiba,37 M. Chiu,18,15,29 J.-I. Choi,29,81 J.B. Choi,11,15 S. Choi,69 R.K. Choudhury,5 P. Christiansen,46 T. Chjuo,76,77 P. Chung,70 A. Chury,28 O. Chvala,9 V. Cianciolo,60 Z. Ciccolini,71,79 C.R. Cleven,24 Y. Cobigo,17 B.A. Cole,15 M.P. Cometa,61 Z. Conesa del Valle,41 M. Connors,24,65,71 P. Constantin,32,44 M. Csanad,19 T. Csorgo,26,80 T. Dahms,71 S. Dairaku,40,64 I. Danchev,77 T.W. Daney,59 K. Das,23 A. Datta,49 M.S. Daugherity,1 G. David,8,71 M.K. Dayananda,24 M.B. Deaton,1 K. Dehmelt,22,71 H. Delgrandorge,72 A. Denisenov,28 D. d’Enterria,15,41 A. Deshpande,65,71 E.J. Desmond,8 K.V. Dharmawardane,58 O. Dietzsch,58,72 L. Dion,32,97 A. Dion,32,71 J.H. Do,81 M. Donadelli,58 L. D’Orazio,48 J.L. Drachenberg,1 O. Drapier,41 A. Dreis,71 K.A. Drees,7 A.K. Dubey,79 J.M. Durham,44,71 A. Durum,28 D. Dutta,5 V. Dezhzhodzhaev,9,74 S. Edwards,73 Y.V. Efremenko,60 J. Egeden,71 F. Ellinghaus,14 W.S. Emam,9 T. Engelhorn,15 A. Enokizono,26,43,60,64,66 H. Enyo,64,65 B. Espagnon,61 S. Esumi,76 K.O. Eyser,8,9 B. Fadem,52 W. Fan,71 N. Fege,71 D.E. Fields,75,65 M. Finger,10,34 M. Finger, Jr.,10,34 F. Fleuret,41 S.L. Fokin,29 B. Forestier,45 Z. Fraenkel,79 J.E. Frantz,15,59,71 A. Franz,8 A.D. Frawley,23 K. Fujiwara,64 Y. Fukao,64,65 S.-Y. Fung,9 T. Fusayasu,54 S. Gadrat,45 K. Gainey,1 C. Gal,71 P. Gallus,16 P. Garg,4,71 A. Garishvili,74 I. Garishvili,43,74 F. Gaisser,72 H. Ge,71 M. Germain,72 A. Glenn,14,43,74 H. Gong,71 X. Gong,70 M. Gonin,41 J. Gosset,17 Y. Goto,64,65 R. Granier de Cassagnac,41 N. Grau,3,15,32 S.V. Greene,77 G. Grim,44 M. Grosse Perdekamp,29,65 T. Gunji,13 L. Guo,44 H.-A. Gustafsson,46 T. Hachiya,26,55,64,65 A. Hadji Henni,72 C. Haegemann,57 J.S. Haggerty,8 M.N. Hagijwara,1 K.I. Hahn,21 H. Hamagaki,13 J. Hamblen,74 R. Han,62 J. Hanks,15,71 H. Harada,26 E.P. Hartouni,43 K. Harton,26 M. Harvey,8 S. Hasegawa,33 T.O.S. Haseler,24 K. Hashimoto,64,66 E. Hashim,44 K. Hasuko,64 R. Hayano,13 X. He,24 M. Heffner,43 T.K. Hemmick,73 H. Hester,9 J.M. Heuser,64 H. Hiejiuna,29 J.C. Hill,32 K. Hill,14 R. Hobbs,14 A. Hodges,24 M. Hohlmann,22 R.S. Hollis,9 M. Holmes,77 W. Holzmann,15,70 K. Homma,26 B. Hong,38 T. Horaguchi,13,26,64,75,76 Y. Hori,13 D. Hornback,74 N. Hotvedt,32 J. Huang,8,74 M.G. Hur,36 T. Ichihara,45 R. Ichimuya,64 H. Iinuma,37,40,64 Y. Ikeda,64 K. Imai,33,40,64 J. Inurek,18 M. Inaba,76 Y. Inoue,64,66 A. Iordanova,9 D. Isenhower,1 L. Isenhower,1 M. Ishihara,46 T. Itoke,13,64 M. Issah,70 A. Isupov,34 D. Ivanishchik,63 Y. Iwamura,26 B.V. Jacak,71 M. Javani,24 Z. Ji,71 J. Jia,8,15,70 X. Jiang,44 J.J. Jin,15 O. Jinnouchi,65 B.M. Johnson,82 T. Jones,1 K.S. Joo,53 D. Jouan,61 D.S. Jumper,1,29 F. Kajihara,13,64 S. Kametani,13,78 N. Kamiyama,64,65,75 J. Kamin,71 M. Kaneta,65 S. Kaneti,71 B.H. Kang,25 J.H. Kang,81 J.S. Kang,25 H. Kanou,64,75 J. Kapustinsky,44 K. Karatsu,40,64 M. Kasai,66 T. Kawagishi,76 D. Kawali,49,65 M. Kawashima,64,66 A.V. Kazantzsev,39 S. Kelly,14 T. Kempel,32 V. Khachatryan,71 A. Khanzadeev,63 K.M. Kijima,26 J. Kikkuki,78 A. Kim,21 B.I. Kim,38 C. Kim,38 D.H. Kim,53 D.J. Kim,81 E. Kim,69 E.-J. Kim,11 H.J. Kim,81 K.-B. Kim,11 M. Kim,69 S.H. Kim,81 Y.-J. Kim,29 Y.K. Kim,25 Y.-S. Kim,36 D. Kincais,19 E. Kinney,14 K. Kiriluk,14 Á. Kiss,19 E. Kistenev,8 A. Kiyomiya,64 J. Klatsky,23 J. Klay,43 C. Klein-Boeising,51 D. Kleinjan,9 P. Kline,71 L. Kochenda,63 V. Kochetkov,28 Y. Komatsu,13,37 B. Komkov,63 M. Konno,76 J. Koster,29 D. Kotchetkov,95 D. Kotov,63 A. Kozlov,79 A. Král,16 A. Kravitz,15 F. Krizek,35 P.J. Kron,8 J. Kubart,10,31 G.J. Kunde,44 B. Kurgys,19 N. Kurihara,13 K. Kuriya,64,66 M. Kurosa,64,65 M.J. Kweon,38 Y. Kwon,74,81 G.S. Kyle,58 R. Lacey,70 Y.S. Lai,15 J.G. Lajoie,32 D. Layton,29 A. Lebedev,32 Y. Le Borne,61 S. Leckey,71 B. Lee,25 D.M. Lee,44 J. Lee,21,73 K.B. Lee,38 K.S. Lee,38 M.K. Lee,81 S.H. Lee,32 J.R. Lee,11 T. Lee,69 M.J. Leitch,44 M.A.L. Leite,68 M. Leitgab,29 B. Lenzi,68 Y.H. Leung,71 B. Lewis,71 N.A. Lewis,50
The PHENIX collaboration presents first measurements of low-momentum (0.4 < p_T < 3 GeV/c) direct-photon yields from Au+Au collisions at √s_NN=39 and 62.4 GeV. For both beam energies the direct-photon yields are substantially enhanced with respect to expectations from prompt processes, similar to the yields observed in Au+Au collisions at √s_NN=200. Analyzing the photon yield as a function of the experimental observable dN_ch/dη reveals that the low-momentum (>1 GeV/c) direct-photon yield dN_γ/dη is a smooth function of dN_channels/dη and can be well described as proportional to (dN_channels/dη)^α with α≈1.25. This scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and the Large Hadron Collider, for centrality selected samples, as well as for different, √s colliding systems. At a given beam energy the scaling also holds for high p_T (> 5 GeV/c) but when results from different collision energies are compared, an additional √s_NN-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.

Measurements of direct photons provide information about the strongly coupled quark-gluon plasma (QGP) produced in heavy ion collisions and its “fireball” evolution to hadron resonance matter. Due to their long mean free path photons do not interact with the matter and thus their spectra provide information about all stages of the collision integrated over space and time [1][3]. In particular low p_T photons in the momentum range up to a few GeV/c are expected to carry information about the hot and dense fireball.

In experiments direct photons are detected simultaneously with a much larger number of photons from hadron decays, mostly from π^0 and η mesons. The main challenge is to subtract these decay contributions from the measurement to obtain the photons directly emitted from the collision. In addition to photons from the hot fireball, direct photons include those emitted from initial hard scattering processes, such as quark-gluon Compton scattering among the incoming partons [4]. Disentangling this prompt component from the photons emitted from the fireball is an additional challenge.

First evidence for direct photon emission from heavy ion collisions came from WA98 [4][9], with conclusive results only for p_T > 1.5 GeV/c. PHENIX established that a large number of low p_T direct photons are radiated from the fireball created in Au+Au collisions at √s_NN = 200 GeV [2] and that their yield increases with a power of N_{part} while the inverse slopes of the spectra are independent of the centrality of the collisions [5]. Simultaneously, low p_T direct photon emission exhibits a significant azimuthal anisotropy with respect to the reaction plane [9][10].

ALICE has published similar observations of low p_T direct photons from Pb+Pb collisions at √s_NN = 2760 GeV. STAR also reported a measurement of the direct photon yields in Au+Au at √s_NN = 200 GeV [13], the published yields are significantly lower compared to PHENIX results. The origin of the discrepancy remains unresolved [14].

A large body of theoretical work on low p_T direct photon emission in A+A collisions exists in the literature. Many model calculations are qualitatively consistent with the data, but a quantitative description remains difficult, primarily due to the simultaneous observation of large yields and large azimuthal anisotropies [13][35].

To provide further insights, PHENIX is investigating the system size dependence of direct photon emission from heavy ion collisions by varying beam energy, centrality, and collision species. In this publication we present low-p_T direct photon data from Au+Au collisions at √s_NN = 39 GeV and 62.4 GeV taken with the PHENIX experiment in 2010. We compare the centrality selected spectra and integrated yields from Au+Au to those from p+p collisions at √s_NN = 200 GeV [7][8], Cu+Cu collisions at √s_NN = 200 GeV [39], and Pb+Pb collisions at √s_NN = 2760 GeV [11]. This study covers a factor of 70 in √s_NN and nearly two orders of magnitude in system size.

The 39 and 62.4 GeV direct photon spectra are obtained from two data samples of minimum-bias (MB) Au+Au collisions that have a total of 7.79×10^7 and 2.12×10^8 events, respectively. The MB trigger and cen-
tality selection is derived from data taken with the PHENIX beam-beam counters [10]. The data analysis uses the same techniques developed for the analysis of the $\sqrt{s_{NN}} = 200$ GeV Au+Au data [8], which were taken in the same year under nearly identical conditions. Here we give a brief overview of the setup and data analysis, and refer to our previous publication for more details [5].

Photons are reconstructed through their conversion to e^+e^- pairs in the detector material, specifically the read-out boards of the hadron blind detector (HBD) [11] that are located at a radius of 60 cm from the beam axes. The trajectories and momenta of the e^+ and e^- are determined by the central arm tracking detectors [42]. Each of the two central arms covers 90° in azimuth and a rapidity range of $|y| < 0.35$. A transverse momentum cut, $p_T > 200$ MeV/c, is applied to each trajectory. To identify trajectories as e^+ or e^- candidates, we require a minimum of three associated signals in the ring-imaging Čerenkov detector [43] and that the energy measured in the electromagnetic calorimeter (EMCal) [44] matches the measured momentum ($E/p > 0.5$).

All e^+ and e^- reconstructed in the same arm are matched to pairs. In the 2010 setup there is no tracking near the collision point, so the origin of an individual track is unknown. Thus, for each e^+e^- pair the mass is calculated twice: first assuming the pair originated at the event vertex (m_{vtx}), then assuming the e^+e^- is a conversion pair from the HBD readout boards (m_{HBD}). In the latter case, m_{HBD} will be consistent with zero, within a mass resolution of a few MeV/c², while m_{vtx} will be about 12 MeV/c². With a cut on both masses a sample of photon conversion is selected with a purity of about 99%. The combinatorial background is negligible, because the conversion material, in radiation length $X/X_0\approx3\%$, is about 10 times thicker than materials closer to the vertex; and it is at a relatively large distance from the event vertex. The 1% contamination is mostly from π^0 Dalitz decays, $\pi^0 \rightarrow \gamma e^+e^-$, and from conversions in front of the HBD readout boards.

The direct photon content in the photon sample is determined by the ratio R_{γ}, which is the ratio of all emitted photons (γ^{incl}) to those from hadron decays (γ^{hadron}). The ratio R_{γ} is determined from a double ratio:

$$R_{\gamma} = \frac{\gamma^{\text{incl}}}{\gamma^{\text{hadron}}} = \frac{\langle \varepsilon_{\gamma}f \rangle \left(N^{\text{incl}}_{\gamma}/N^{\gamma,\text{tag}}_{\gamma} \right)_{\text{Data}}}{\left(\gamma^{\text{hadron}}/\gamma^{\pi^0} \right)_{\text{Sim}}}.$$

(1)

All quantities in this double ratio are functions of the conversion photon $p_T^{\gamma\pi^0}$. The measured quantities are the number of detected conversion photons N^{incl}_{γ} and the subset of those that are tagged as π^0 decay photon $N^{\gamma,\text{tag}}_{\gamma}$. The tagged photons $N^{\gamma,\text{tag}}_{\gamma}$ are determined statistically in bins of the $p_T^{\gamma\pi^0}$. Each conversion photon is paired with all showers with $E > 400$ MeV measured in the EMCal of the same arm. The invariant $e^+e^-\gamma$ mass is calculated and the counts above the combinatorial background in the π^0 mass peak give $N^{\gamma,\text{tag}}_{\gamma}$. To convert the ratio $N^{\text{incl}}_{\gamma}/N^{\gamma,\text{tag}}_{\gamma}$ to $\gamma^{\text{incl}}/\gamma^{\pi^0}$ only $N^{\gamma,\text{tag}}_{\gamma}$ needs to be corrected for the momentum averaged conditional acceptance-efficiency $(\varepsilon_{\gamma}f)$ that the second decay photon can be reconstructed in the EMCal. All other corrections to the numerator and denominator cancel [8]. Because rather loose cuts are applied to the EMCal showers, $(\varepsilon_{\gamma}f)$ is mostly determined by the π^0 decay kinematics, the detector geometry, and the energy cut. Thus, $(\varepsilon_{\gamma}f)$ can be calculated to a few percent accuracy using a Monte-Carlo simulation of π^0 decays. Photons from pions are determined from the measured π^0 spectra [45] and two body decay kinematics. The spectrum of decay photons (γ^{hadron}) is derived from γ^{π^0} and the η/π^0 ratio [46], which is independent of collision system and energy, with additional contribution from heavier mesons of about 4%.

Once R_{γ} is established, the direct photon spectrum can be calculated as:

$$\gamma_{\text{direct}} = (R_{\gamma} - 1) \frac{\gamma^{\text{hadron}}}{\gamma^{\text{hadron}}}.$$

(2)

The uncertainty on γ^{hadron}, approximately 10% [8], cancels in R_{γ} (with that of γ^{π^0} in Eq. [1]) but has to be applied to γ_{direct}. The systematic uncertainties on the 39 and 62.4 GeV data are similar in magnitude to those for 200 GeV presented in [8]. For integrated yield we treat every systematic uncertainty as p_T-correlated in the interest of consistency throughout the different data sets.

Figure 1 shows the invariant yield of direct photons normalized to $(dN_{\text{ch}}/d\eta)^{1.25}$, this normalization is discussed below. Panel (a) shows Au+Au MB data at $\sqrt{s_{NN}} = 62.4$ and 39 GeV, panel (b) gives Au+Au data in three centrality classes at 200 GeV, and panel (c) compares data from different beam energies and systems. Below 3 GeV/c the 62.4 and 39 GeV data show substantial direct photon yields, which are comparable in magnitude and spectral shape, albeit within large uncertainties. For 62.4 GeV we can also extract a direct photon signal for 0%–20% and 20%–40% centrality selection and find that the direct photon yield increases with centrality. All observations are similar to those already published for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV [8].

To compare data from different beam energies, collisions species, and collision centralities we use the measured charged particle multiplicity $dN_{\text{ch}}/d\eta$ as measure of the system size at hadronization. For a fixed beam energy $dN_{\text{ch}}/d\eta$ is roughly proportional to N_{part}. However, unlike N_{part}, $dN_{\text{ch}}/d\eta$ does not saturate but increases monotonically with beam energy for collisions of the same nuclei at the same impact parameter.

Direct photon production at high p_T results from hard scattering, which at a fixed $\sqrt{s_{NN}}$ scales with the number of binary collisions N_{coll}. We find that N_{coll} exhibits a remarkably simple relation with the $dN_{\text{ch}}/d\eta$ that takes
Au+Au, \(s = 62.4 \text{ GeV}, 0-86\% \)

\(\sqrt{s_{NN}} = 200 \text{ GeV} \):

Pb+Pb, \(s = 200 \text{ GeV}, 0-20\% \)

\(\sqrt{s}_{NN} = 2760 \text{ GeV} \):

\(\sqrt{s}_{NN} = 200 \text{ GeV} \)

Panels show pQCD calculations for the corresponding \(\sqrt{s}_{NN} \) [52]. The exponent \(\alpha \) is an empirical fit to the data [52, 53]. PHENIX data are taken from [51] and ALICE data at \(\sqrt{s_{NN}} = 2760 \text{ GeV} \) are from [54]. The exponent \(\alpha \) is determined through a simultaneous fit to all data shown in Fig. 2 and found to be \(\alpha = 1.25 \pm 0.02 \). The specific yield SY increases logarithmically with \(\sqrt{s_{NN}} \) as \(SY(\sqrt{s_{NN}}) = (0.976 \pm 0.054) \log(\sqrt{s_{NN}}) - (1.827 \pm 0.253) \).

Figure 1 depicts the direct photon yield for different beam energies and centralities normalized by \((dN_{ch}/d\eta)^{1.25} \). In panel (b) three different centrality selections of Au+Au collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \) are shown together with data from p+p at the same beam energy. The normalized spectra from Au+Au are very similar for all three centrality selections. Above 3–4 GeV/c the normalized yield is the same as for p+p collisions and can be reproduced by perturbative quantum chromodynamics (pQCD) calculations with a renormalization and factorization scale of \(\mu = 0.5p_T \) [50, 53]. Here the pQCD calculation was normalized to the experimental \(dN_{ch}/d\eta \) for \(\sqrt{s} = 200 \text{ GeV} \) from [54]. Also shown on (b) is an empirical fit to the p+p data [53] of the form \(a(1 + p^2_T/b)^\alpha \).

Below 2–3 GeV/c the normalized yield in Au+Au collisions is significantly enhanced compared to that in p+p collisions, but follows the same scaling behavior with \((dN_{ch}/d\eta)^{1.25} \) independent of centrality.

Panels (a) and (c) of Fig. 1 show that for \(p_T \) below 2–3 GeV/c the same scaling with \((dN_{ch}/d\eta)^{1.25} \) occurs for different \(\sqrt{s_{NN}} \) and collisions systems. Below 2 GeV/c the spectra have very similar shape. We note that the apparent difference of the inverse slopes reported by PHENIX [8] and ALICE [11] is largely due to the different fit ranges used [56].

At higher \(p_T \) the expected difference with \(\sqrt{s_{NN}} \) is observed. Like for \(\sqrt{s_{NN}} = 200 \text{ GeV} \), at high \(p_T \) the 2760 GeV data are well reproduced by the pQCD calculation, though only above 5–6 GeV/c rather than 3–4 GeV/c. Note that the extrapolated pQCD calculations for p+p at different \(\sqrt{s} \) seem to converge to the same normalized yield at low \(p_T \), but at a tenth of the A+A yield.

We quantify direct photon emission by integrating the invariant yield above \(p_T = 1.0 \text{ GeV/c} \) and \(p_T = 5.0 \text{ GeV/c} \). The integrals with the lower threshold will be dominated by excess low \(p_T \) photons unique to A+A collisions, while the integrals with the higher threshold are more sensitive to photons from initial hard scattering processes. The re-
sults are shown in Figs. 3 and 4 as a function of $dN_{ch}/d\eta$.

For A+A collisions the integrated yields for the 1.0 GeV/c threshold, shown in Fig. 3, scale as $(7.140 \pm 0.265) \times 10^{-4} \times (dN_{ch}/d\eta)^{1.250}$. We find the same scaling if α is not constrained: $(8.300 \pm 1.680) \times 10^{-4} \times (dN_{ch}/d\eta)^{1.225 \pm 0.034}$. The A+A points are compared to the integrated yield for $\sqrt{s} = 200$ GeV $p+p$ obtained from the fit to the data, which is scaled with N_{coll} to the corresponding $dN_{ch}/d\eta$ for each $\sqrt{s}_{NN} = 200$ GeV A+A point. The width of the band is given by the combined uncertainties on the fit function and N_{coll}. It is parallel to the A+A trend but lower by about an order of magnitude. Also shown are the scaled integrated yields from pQCD calculations for $\sqrt{s} = 62.4$, 200, and 2760 GeV, consistent with the band independent of beam energy.

For the p_T threshold of 5 GeV/c the integrated yields from Au+Au and $p+p$ at 200 GeV follow the same $(dN_{ch}/d\eta)^{1.250}$ trend, and are described by the pQCD calculation. The 2760 GeV data are also consistent with $(dN_{ch}/d\eta)^{1.250}$ but show a significantly higher yield than at 200 GeV data at the same $dN_{ch}/d\eta$. The N_{coll} scaled pQCD calculation is about 30% below the data, which may not be significant considering the 25% systematic uncertainty on the calculation.

While the functional form $A(dN_{ch}/d\eta)^{\alpha}$ describes the integrated direct photon yields well, it is not unique. For instance the data can be equally well fitted by $A(dN_{ch}/d\eta) + B(dN_{ch}/d\eta)^{4/3}$ [57]. For the data in Fig. 3 this fit results in parameters $A = (8.68 \pm 3.06) \cdot 10^{-4}$ and $B = (3.09 \pm 0.45) \cdot 10^{-4}$. The important point is that A+A data from different centralities and a wide range of collision energies can be empirically described in terms of $dN_{ch}/d\eta$ with just two parameters, suggesting some fundamental commonality in the underlying physics.

There are two main conclusions from the analyses pre-
sented in this paper. (i) At a given beam energy the direct photon yield scales with $dN_{ch}/dy^{1.25}$ or N_{coll} for all observed p_T. There seems to be no qualitative change in the photon sources and/or their relative contributions for different collision centrality or system size. (ii) From $\sqrt{s_{NN}} = 39$ to 2760 GeV the same scaling is observed for $p_T < 2$ GeV/c. This suggests that the main sources contributing to this p_T range are very similar also across beam energies.

If thermal radiation is the source of low p_T direct photons, the similarity at the same dN_{ch}/dy across beam energies and centralities for $p_T \lesssim 2$ GeV/c, suggests that the bulk of the matter that emits the radiation is similar in terms of temperature and space time evolution. This would be natural, if most of the photons are emitted near the transition from QGP to hadrons.

While at high p_T the scaled yields in $p+p$ and $A+A$ are identical, at low p_T they differ by a factor of 10. This implies that there must be a transition from the small $p+p$ yield to the enhanced $A+A$-like low p_T yields in the dN_{ch}/dy range of ≈ 2 to 20, which will be accessible with the data taken by PHENIX with small systems $p+Au$, $d+Au$, and 3He$+Au$.

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People’s Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), J. Bolyai Research Scholarship, EÖFP, the New National Excellence Program (ÚNKP), NKFIH, and OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research Program through NRF of the Ministry of Education (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, the US-Hungarian Fulbright Foundation, and the US-Israel Binational Science Foundation.

* Deceased
PHENIX Spokesperson: akiba@rcf.rhic.bnl.gov

[1] P. Stankus, “Direct photon production in relativistic heavy-ion collisions,” Ann. Rev. Nucl. Part. Sci. 55, 517 (2005).

[2] G. David, R. Rapp, and Z. Xu, “Electromagnetic Probes at RHIC-II,” Phys. Rept. 462, 176 (2008).

[3] O. Linnyk, E. L. Bratkovskaya, and W. Cassing, “Effective QCD and transport description of dilepton and photon production in heavy-ion collisions and elementary processes,” Prog. Part. Nucl. Phys. 87, 50 (2016).

[4] H. Fritzsch and P. Minkowski, “Measuring QCD Compton Effects,” Phys. Lett. B 69, 316 (1977).

[5] M. M. Aggarwal et al. (WA98 Collaboration), “Interferometry of direct photons in central Pb-208+Pb-208 collisions at 158-A-GeV,” Phys. Rev. Lett. 93, 022301 (2004).

[6] M. M. Aggarwal et al. (WA98 Collaboration), “Observation of direct photons in central 158-A-GeV Pb-208 + Pb-208 collisions,” Phys. Rev. Lett. 85, 3595 (2000).

[7] A. Adare et al. (PHENIX Collaboration), “Enhanced production of direct photons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and implications for the initial temperature,” Phys. Rev. Lett. 104, 132301 (2010).

[8] A. Adare et al. (PHENIX Collaboration), “Centrality dependence of low-momentum direct-photon production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV,” Phys. Rev. C 91, 064904 (2015).

[9] A. Adare et al. (PHENIX Collaboration), “Observation of direct-photon collective flow in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions,” Phys. Rev. Lett. 109, 122302 (2012).

[10] A. Adare et al. (PHENIX Collaboration), “Azimuthally anisotropic emission of low-momentum direct photons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV,” Phys. Rev. C 94, 064901 (2016).

[11] J. Adam et al. (ALICE Collaboration), “Direct photon production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2760$ GeV,” Phys. Lett. B 754, 235 (2016).

[12] D. Lohner (ALICE Collaboration), “Measurement of Direct-Photon Elliptic Flow in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2760$ GeV,” Proceedings, Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks 2012): Copamarina, Puerto Rico, October 14-20, 2012. J. Phys. Conf. Ser. 446, 012028 (2013).

[13] L. Adamczyk et al. (STAR Collaboration), “Direct virtual photon production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV,” Phys. Lett. B 770, 451 (2017).

[14] We note that PHENIX has published consistent results from several independent analyses with different methods, using virtual photons [7], which is the method adopted by STAR [13], and using photon conversions in the detector material [8]. A third method using photons measured through their energy deposited in the electromagnetic calorimeter to reconstruct low p_T photons has
not been published [58], but gives consistent results as well.

[15] H. van Hees, C. Gale, and R. Rapp, “Thermal Photons and Collective Flow at the Relativistic Heavy-Ion Collider,” Phys. Rev. C 84, 054906 (2011).

[16] H. van Hees, Min He, and R. Rapp, “Pseudo-critical enhancement of thermal photons in relativistic heavy-ion collisions?” Nucl. Phys. A 933, 256 (2015).

[17] M. Dion, J.-F. Paquet, B. Schenke, Clint Young, S. Jeon, and C. Gale, “Viscous photons in relativistic heavy ion collisions,” Phys. Rev. C 84, 064901 (2011).

[18] C. Shen, U. W. Heinz, J.-F. Paquet, and C. Gale, “Thermal photons as a quark-gluon plasma thermometer re-examined,” Phys. Rev. C 89, 044910 (2014).

[19] C. Shen, J. F. Paquet, G. S. Denicol, S. Jeon, and C. Gale, “Thermal photon radiation in high multiplicity p+Pb collisions at the Large Hadron Collider,” Phys. Rev. Lett. 116, 072301 (2016).

[20] J. F. Paquet, C. Shen, Gabriel S. Denicol, M. Luzum, B. Schenke, S. Jeon, and C. Gale, “Production of photons in relativistic heavy-ion collisions,” Phys. Rev. C 93, 044906 (2016).

[21] E. L. Bratkovskaya, S. M. Kiselev, and G. B. Sharkov, “Direct photon production from hadronic sources in high-energy heavy-ion collisions,” Phys. Rev. C 75, 034905 (2007).

[22] E. L. Bratkovskaya, “Phenomenology of photon and dilepton production in relativistic nuclear collisions,” Proceedings, 24th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2014): Darmstadt, Germany, May 19-24, 2014, Nucl. Phys. A 931, 214 (2014).

[23] O. Linnyk, W. Cassing, and E. L. Bratkovskaya, “Centrality dependence of the direct photon yield and elliptic flow in heavy-ion collisions at $\sqrt{s_{NN}} = 200$ GeV,” Phys. Rev. C 89, 034905 (2014).

[24] M. Chiu, T. K. Hemmick, V. Khachatryan, A. Leonidov, C. Shen, U. W. Heinz, J.-F. Paquet, and C. Gale, “Thermal photons and dileptons in the Glasma,” Nucl. Phys. A 946, 014905 (2014).

[25] S. Jeon, B. Schenke, S. Jeon, and C. Gale, “Thermal photon production in the Glasma and the quark-gluon plasma in heavy-ion collisions,” Nucl. Phys. A 953, 152301 (2012).

[26] S. Turbide, R. Rapp, and C. Gale, “Hadronic production of thermal photons,” Phys. Rev. C 90, 014903 (2014).

[27] K. Dusling and I. Zahed, “Thermal photons from heavy ion collisions: A spectral function approach,” Phys. Rev. C 82, 054909 (2010).

[28] M. Heffernan, P. Hohler, and R. Rapp, “Universal Parametrization of Thermal Photon Rates in Hadronic Matter,” Phys. Rev. C 91, 027902 (2015).

[29] O. Linnyk, V. Konchakovski, T. Steinert, W. Cassing, and E. L. Bratkovskaya, “Hadronic and partonic sources of direct photons in relativistic heavy-ion collisions,” Phys. Rev. C 92, 054914 (2015).

[30] G. Basar, D. E. Kharzeev, and V. Skokov, “Conformal anomaly as a source of soft photons in heavy ion collisions,” Phys. Rev. Lett. 109, 202303 (2012).

[31] G. Basar, D. E. Kharzeev, and E. V. Shuryak, “Magnetosonoluminescence and its signatures in photon and dilepton production in relativistic heavy ion collisions,” Phys. Rev. C 90, 014905 (2014).

[32] B. Muller, Shang-Yu Wu, and Di-Lun Yang, “Elliptic flow from thermal photons with magnetic field in holography,” Phys. Rev. D 89, 025013 (2014).

[33] A. Ayala, J. D. Castano-Yepes, C. A. Dominguez, L. A. Hernandez, S. Hernandez-Ortiz, and M. E. Tejeda-Yeomans, “Prompt photon yield and elliptic flow from gluon fusion induced by magnetic fields in relativistic heavy-ion collisions,” Phys. Rev. D 96, 014023 (2017) [Erratum: Phys. Rev. D 96, 119901(E) (2017)].

[34] V. V. Goloviznin, A. V. Nikolskii, A. M. Snigirev, and G. M. Zinovjev, “Probing a confinement by direct photons and dileptons,” arXiv:1804.00559.

[35] A. Adare et al. (PHENIX Collaboration), “Low-momentum direct photon measurement in Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV,” Phys. Rev. C 95, 054902 (2017).

[36] M. Allen et al. (PHENIX Collaboration), “PHENIX inner detectors,” Nucl. Instrum. Methods Phys. Res., Sec. A 499, 549 (2003).

[37] W. Anderson et al., “Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment,” Nucl. Instrum. Methods Phys. Res., Sec. A 646, 35 (2011).

[38] K. Adcox et al. (PHENIX Collaboration), “PHENIX central arm tracking detectors,” Nucl. Instrum. Methods Phys. Res., Sec. A 499, 489 (2003).

[39] M. Aizawa et al. (PHENIX Collaboration), “PHENIX central arm particle ID detectors,” Nucl. Instrum. Methods Phys. Res., Sec. A 499, 508 (2003).

[40] L. Aphecetche et al. (PHENIX Collaboration), “PHENIX calorimeter,” Nucl. Instrum. Methods Phys. Res., Sec. A 499, 521 (2003).

[41] A. Adare et al. (PHENIX Collaboration), “Evolution of π^0 suppression in Au+Au collisions from $\sqrt{s_{NN}} = 39$ to 200 GeV,” Phys. Rev. Lett. 109, 152301 (2012).

[42] A. Adare et al. (PHENIX Collaboration), “Neutral pion production with respect to centrality and reaction plane in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV,” Phys. Rev. C 87, 034911 (2013).

[43] A. L. S. Angelis et al. (CERN-Columbia-Oxford-Rockefeller, CCOR Collaboration), “Search for Direct Single Photon Production at Large p_T in Proton Proton Collisions at $\sqrt{s} = 62.4$ GeV,” Phys. Lett. B 94, 106 (1980).

[44] A. L. S. Angelis et al. (CMOR Collaboration), “Direct Photon Production at the CERN ISR,” Nucl. Phys. B 327, 541 (1989).

[45] T. Åkesson at al. (Axial Field Spectrometer Collaboration), “High $p_T\pi^0$ and π^0 Production, Inclusive and With A Recoil Hadronic Jet, in pp Collisions at $\sqrt{s} = 63$ GeV,” Sov. J. Nucl. Phys. 51, 836 (1990), [Yad. Fiz.51,314(1990)].

[46] J. F. Paquet, (2017), private communication, uses nuclear PDF nCTEQ15-np and photon fragmentation func-
tion BFG-II.

[51] A. Adare et al. (PHENIX Collaboration), “Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}} = 7.7$ to 200 GeV,” Phys. Rev. C 93, 024901 (2016).

[52] K. Aamodt et al. (ALICE Collaboration), “Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 2760$ GeV,” Phys. Rev. Lett. 106, 032301 (2011).

[53] P. Aurenche, J. Ph. Guillet, E. Pilon, M. Werlen, and M. Fontannaz, “A New critical study of photon production in hadronic collisions,” Phys. Rev. D 73, 094007 (2006).

[54] C. Patrignani et al. (Particle Data Group Collaboration), “Review of Particle Physics,” Chin. Phys. C 40, 100001 (2016).

[55] The fit function to p+p data originally used in [58] was updated in [59]. The parameters are $a = 6.74 \cdot 10^{-3}$, $b = 2.1$, $c = -3.3$. Systematic uncertainties also include possible shape variations at low p_T.

[56] When fitting the 0%-20% Au+Au data at $\sqrt{s_{NN}} = 200$ GeV over the range 1.0 to 2.0 GeV/c, which overlaps the range 0.9 to 2.1 GeV/c used by ALICE, instead of the original range of 0.6 to 2 GeV/c deployed by PHENIX, we obtain an inverse slope of $279 \pm 32 \pm 10$ MeV/c. This value is consistent with the value $297 \pm 12 \pm 41$ MeV/c published by ALICE for the same centrality class for Pb+Pb at $\sqrt{s_{NN}} = 2760$ GeV.

[57] E. L. Feinberg, “Direct Production of Photons and Dileptons in Thermodynamical Models of Multiple Hadron Production,” Nuovo Cim. A 34, 391 (1976).

[58] H. Gong, “Measurement of Direct Photons in Ultrarelativistic Au+Au Collisions,” (2014), Ph.D. Thesis Stony Brook University.