Research Article

Fractional Minkowski-Type Integral Inequalities via the Unified Generalized Fractional Integral Operator

Tingmei Gao,1 Ghulam Farid,2 Ayyaz Ahmad,2 Waewta Luangboon,3 and Kamsing Nonlaopon3

1School of Mathematical and Computer Science, Shaanxi University of Technology, Hanzhong 723000, China
2Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan
3Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

Correspondence should be addressed to Kamsing Nonlaopon; nkamsi@kku.ac.th

Received 22 June 2021; Revised 12 August 2021; Accepted 18 January 2022; Published 27 February 2022

1. Introduction

Integral operators are useful in the study of differential equations and in the formation of real-world problems in integral equations. They also behave like integral transformations in particular cases. In the past few decades, fractional integral operators have been defined extensively (see [1–4]). Recently, in [5] a unified integral operator is studied which has interesting consequences in the theory of fractional integral operators.

This paper is aimed at presenting a unified integral operator in the more generalized form via the unified Mittag-Leffler function introduced in [6]. The boundedness of the newly defined integral operator is studied. Taking the power function $\xi^\beta; \beta > 1$, a unified generalized extended fractional integral operator is deduced and analyzed to construct Minkowski-type integral inequalities. This is the extension of our previous work on Minkowski-type integral inequalities [7]. The connection of the results of this paper is established with many published results of references [7–9].

We begin by reviewing several key Minkowski-type inequalities as well as some definitions that will be useful in our subsequent work.

The well-known Minkowski inequality is given as follows:

Theorem 1. Let $\phi, \psi \in L^m_{m}[u, v]$. Then for $m \geq 1$, we have

$$
\left(\int_u^v (\phi(\xi) + \psi(\xi))^m d\xi \right)^{1/m} \leq \left(\int_u^v \phi^m(\xi) d\xi \right)^{1/m} + \left(\int_u^v \psi^m(\xi) d\xi \right)^{1/m}.
$$

(1)

Some more Minkowski-type inequalities are stated in the next results.

Theorem 2. ([10]). Let $\phi, \psi \in L^m_{m}[u, v]$. Also $\phi, \psi \in \mathbb{R}^+$ such that $0 < k_1 \leq (\phi(\xi))/(|\psi(\xi)|) \leq k_2 \forall \xi \in [u, v]$. Then for $m \geq 1$, the following inequality holds true

$$
\left(\int_u^v \phi^m(\xi) d\xi \right)^{1/m} + \left(\int_u^v \psi^m(\xi) d\xi \right)^{1/m} \leq \left(1 + \frac{k_2 - k_1}{k_1} \right) \left(\int_u^v (\phi(\xi) + \psi(\xi))^m d\xi \right)^{1/m}.
$$

(2)

Theorem 3. ([11]). Under the assumptions of Theorem 2, we
have the following inequality:
\[
\left(\int_u^v \phi^m(\xi) \, d\xi \right)^{2m} + \left(\int_u^v \psi^m(\xi) \, d\xi \right)^{2m} \geq \frac{(2 + (k_2 - 1)(k_2 + 1))}{k_2^2} \left(\int_u^v \phi^m(\xi) \, d\xi \right)^{2m} \left(\int_u^v \psi^m(\xi) \, d\xi \right)^{2m} .
\]
(3)

Theorem 4. ([9]) Let \(\omega \in \mathbb{R} \), \(\alpha, \beta, \gamma > 0 \), \(\theta > \lambda > 0 \) with \(s \geq 0 \), \(r > 0 \) and \(0 < k \leq r + \alpha \). Let \(m \geq 1 \) and \(\phi, \psi \in L_m[u, v] \) be positive functions satisfying
\[
0 < k_1 \leq \frac{\phi(\xi)}{\psi(\xi)} \leq k_2, \xi \in [u, v].
\]
(4)

Then the following inequality holds:
\[
\left[(\epsilon \phi^m(\xi) ; s) \right]^{1/m} + \left[(\epsilon \psi^m(\xi) ; s) \right]^{1/m} \leq \left(1 + \frac{k_2 - k_1}{k_1 + 1} \right) \left[(\epsilon(\phi + \psi)^m(\xi) ; s) \right]^{1/m},
\]
(5)

Theorem 5. ([9]) Let \(m, n > 1 \) such that \(1/m + 1/n = 1 \). Then under the assumptions of Theorem 4, we have
\[
\left[(\epsilon \phi^m(\xi) ; s) \right]^{1/m} \left[(\epsilon \psi^m(\xi) ; s) \right]^{1/m} \leq \left(\frac{k_2}{k_1} \right) \left[(\epsilon \phi^{1/m} \psi^{1/n}(\xi) ; s) \right].
\]
(6)

A special function known as the Mittag-Leffler function was introduced by a Swedish mathematician Gosta Mittag-Leffler [12] by the following series:
\[
E_\alpha(t) = \sum_{l=0}^{\infty} \frac{t^l}{\Gamma(\alpha l + 1)},
\]
(7)

where \(t, \alpha \in \mathbb{C} \) and \(\Re(\alpha) > 0 \).

This function is a direct extension of the exponential function that can be used to construct solutions of fractional differential equations. Due to its wide range of applications, this function has received considerable attention in recent decades. Many researchers provided its numerous generalized forms due to its intriguing results. We refer the readers to [2, 4, 13–16] for the study of generalized versions of the Mittag-Leffler function. In [17], Bhatnagar et al. introduced the generalization of Mittag-Leffler function in the form of generalized Q function as follows:

Definition 6. The generalized Q function denoted by \(Q_{\alpha, \beta, \gamma, \delta, \mu}(\xi) \) is defined by the following series:
\[
Q_{\alpha, \beta, \gamma, \delta, \mu}(\xi ; s) = \sum_{l=0}^{\infty} \Pi_{l=1}^{n} B(b_l, l(\lambda))_\mu \Gamma(\alpha l + \beta),
\]
(8)

where \(a = (a_1, a_2, \cdots, a_n), b = (b_1, b_2, \cdots, b_n), \alpha, \beta, \gamma, \delta, \mu, \nu, \lambda, \rho, \theta, a_1, b_1 \in \mathbb{C}, k \in (0, 1) \cup \mathbb{N} \) and \(\min \{ \Re(\alpha), \Re(\beta), \Re(\gamma), \Re(\theta), \Re(\lambda), \Re(\delta), \Re(\mu) \} > 0 \).

Recently, in [7], we introduced the fractional integral operator associated with generalized Q function as follows:
\[
Q_{\alpha, \beta, \gamma, \delta, \mu, \nu}^{\pm, \lambda, \theta, l}(\xi : a, b) = \int_u^v (\xi - t)^{\lambda - 1} L_{\alpha, \beta, \gamma, \delta, \mu, \nu}(\omega(\xi - t)^{\lambda}; a, b) f(t) \, dt,
\]
(9)

\[
Q_{\alpha, \beta, \gamma, \delta, \mu, \nu}^{\pm, \lambda, \theta, l}(\xi : a, b) = \int_u^v (t - \xi)^{\lambda - 1} L_{\alpha, \beta, \gamma, \delta, \mu, \nu}(\omega(t - \xi)^{\lambda}; a, b) f(t) \, dt.
\]
(10)

Andrić et al. in [2] introduced an extended and generalized Mittag-Leffler function along with the corresponding fractional integral operator as follows:

Definition 7. The extended and generalized Mittag-Leffler function \(E_{\alpha, \beta, \gamma, \delta, \mu}(t ; s) \) is defined by the following series:
\[
E_{\alpha, \beta, \gamma, \delta, \mu}(t ; s) = \sum_{l=0}^{\infty} \frac{B(\lambda + lk, \theta - \lambda)}{\Gamma(\lambda + lk)} \Gamma(\lambda + lk),
\]
(11)

where \(t, \alpha, \beta, \gamma, \delta, \mu \in \mathbb{C}, \Re(\alpha), \Re(\beta), \Re(\gamma), \Re(\delta), \Re(\mu), \Re(\lambda) > 0, \Re(\theta) > \Re(\lambda) \) with \(s \geq 0, \alpha, \beta, \gamma, \delta, \mu \in \mathbb{C} \), and \((\theta)_{lk} = (\Gamma(\theta + lk))/\Gamma(\theta) \).

Definition 8. Let \(f \in L_1[u, v] \). Then for \(\xi \in [u, v] \), the fractional integral operator corresponding to (11) is defined by the following integrals:
\[
E_{\alpha, \beta, \gamma, \delta, \mu}(\xi ; s) = \int_u^\xi (\xi - t)^{\lambda - 1} E_{\alpha, \beta, \gamma, \delta, \mu}(\omega(\xi - t)^{\lambda}; a, b) f(t) \, dt,
\]
(12)

In [5], Farid defined the unified integral operator based on the extended and generalized Mittag-Leffler function (11) as follows:

Definition 9. Let \(\omega, \beta, \gamma, \lambda, \theta \in \mathbb{C}, \Re(\beta), \Re(\gamma) > 0, \Re(\theta) > \Re(\lambda) > 0 \) with \(s \geq 0, \alpha, \beta, \gamma > 0 \) and \(0 < k \leq r + \alpha \). Let \(\phi \in L_1[u, v], \alpha, \beta, \gamma, \delta, \mu, \nu, \lambda, \rho, \theta, a_1, b_1 \in \mathbb{C}, k \in (0, 1) \cup \mathbb{N} \) and \(\min \{ \Re(\alpha), \Re(\beta), \Re(\gamma), \Re(\theta), \Re(\lambda), \Re(\delta), \Re(\mu) \} > 0 \).

In [6], we have presented a further generalized unified Mittag-Leffler function and the associated fractional integral operator as follows:
Definition 10. For \(\mathbf{a} = (a_1, a_2, \ldots, a_n), \mathbf{b} = (b_1, b_2, \ldots, b_n), \mathbf{c} = (c_1, c_2, \ldots, c_n), \) where \(a_i, b_i, c_i \in \mathbb{C}; i = 1, \ldots, n \) such that \(\Re(a_i), \Re(b_i), \Re(c_i) > 0 \). Also let \(\beta, \gamma, \delta, \mu, \nu, \lambda, \rho, \theta \in \mathbb{C}, \) min \(\{ \Re(\beta), \Re(\gamma), \Re(\mu), \Re(\lambda), \Re(\theta) \} > 0 \) and \(k \in (0, 1) \cup \mathbb{N} \) with \(s \geq 0 \). Let \(k + \Re(\rho) < \Re(\delta + \nu + \alpha) \) with \(\Im(\rho) \) = \(\Im(\delta + \nu + \alpha) \), then the unified Mittag-Leffler function is defined as follows

\[
M_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}(t; \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) = \sum_{l=0}^{\infty} \prod_{i=1}^{n} \Gamma_{\alpha_i}(b_i, a_i, \lambda_i + \theta_i) \frac{t^l}{l!}.
\]

(14)

Definition 11. Let \(\phi \in L_1[\mu, \nu] \). Then for \(\xi \in [\mu, \nu] \), the fractional integral operators corresponding to (14) are defined by

\[
\begin{align*}
\mu\nu_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}^{\lambda\gamma\delta\mu\nu, \xi}(t; \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) &= \int_{\mu}^{\nu} \phi(s) (s - \xi)^{\rho - 1} M_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}(t; \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \, ds \\
\tau\nu_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}^{\lambda\gamma\delta\mu\nu, \xi}(t; \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) &= \int_{\mu}^{\nu} \phi(s) (s - \xi)^{\rho - 1} M_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}(t; \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \, ds.
\end{align*}
\]

(15)

(16)

Fractional integral operators are used to extend different types of integral inequalities such as Opial-type inequalities [2, 18–22], Hadamard- and Fejér-Hadamard-type inequalities [23–32], Polyá–Szegő, Chebyshev-, and Grüss-type inequalities [33–36] (see references therein), and Minkowski-type fractional inequalities [7–9]. In this paper we study Minkowski-type fractional inequalities via the unified Mittag-Leffler function.

In Section 2, we give the definition of further generalized integral operator containing the unified Mittag-Leffler function. The boundedness of this integral operator is proved under the conditions stated in the definition. In Section 3, by applying a particular fractional integral operator for the power function, Minkowski-type fractional integral inequalities are established. In Section 4, reverse Minkowski-type fractional integral inequalities are presented. The connection of these inequalities with previous work is stated in the form of remarks and corollaries.

2. Generalized Version of a Unified Integral Operator

In this section, we introduce a generalized version of a unified integral operator containing a unified Mittag-Leffler function in its kernel and also discuss its boundedness.

Definition 12. Let \(\mathbf{a} = (a_1, a_2, \ldots, a_n), \mathbf{b} = (b_1, b_2, \ldots, b_n), \mathbf{c} = (c_1, c_2, \ldots, c_n), \) where \(a_i, b_i, c_i \in \mathbb{C}; i = 1, \ldots, n \) such that \(\Re(a_i), \Re(b_i), \Re(c_i) > 0 \). Also let \(\lambda, \mu, \nu, \theta, t \in \mathbb{C}, \) min \(\{ \Re(\beta), \Re(\gamma), \Re(\mu), \Re(\lambda), \Re(\theta) \} > 0 \) and \(k \in (0, 1) \cup \mathbb{N} \). Let \(k + \rho < \delta + \nu + \alpha \) with \(s \geq 0 \). Then \(\xi \in (\mu, \nu] \) is a differentiable and strictly increasing function. Also let \(\zeta(\xi) \) be an increasing function on \([\mu, \nu] \) for \(\xi \in [\mu, \nu] \). Then the unified integral operator in its generalized form is defined by the following integral:

\[
\left(\begin{array}{c}
\left(\xi ; s \right) \\
\end{array} \right) = \int_{\mu}^{\nu} (s - \xi)^{\rho - 1} M_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}(t; \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \, ds
\]

(17)

On a particular case, by taking \(\zeta(\xi) = \xi^{\delta} \), replacing \(\mathbb{C} \) by \(R \), the above operator takes the following form:

\[
\left(\begin{array}{c}
\left(\xi ; s \right) \\
\end{array} \right) = \int_{\mu}^{\nu} (s - \xi)^{\rho - 1} M_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}(t; \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \, ds
\]

(18)

where \(\omega, \mathbf{a} = (a_1, a_2, \ldots, a_n), \mathbf{b} = (b_1, b_2, \ldots, b_n), \mathbf{c} = (c_1, c_2, \ldots, c_n), \) and \(\mathbf{d} \in \mathbb{R} ; i = 1, \ldots, n \) such that \(a_i, b_i, c_i > 0 \). Also \(\alpha, \gamma, \delta, \mu, \nu, \lambda, \rho, \theta > 0 \) and \(k \in (0, 1) \cup \mathbb{N} \) with \(k + \rho < \delta + \nu + \alpha \) and \(s \geq 0 \).

Definition 13. By setting \(a_i = l, s = 0 \) and \(\rho > 0 \) in (18), we will get the following integral operator:

\[
\left(\begin{array}{c}
\left(\xi ; s \right) \\
\end{array} \right) = \int_{\mu}^{\nu} (s - \xi)^{\rho - 1} M_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}(t; \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \, ds
\]

(19)

Remark 14.

(i) By considering \(n = 1, b_1 = \lambda + lk, a_1 = \theta - \lambda, c_1 = \lambda, \rho = v = 0, \delta > 0 \) in (17), the unified integral operator given in (13) is deduced

(ii) By considering the function \(g \) to be an identity function in (19), the fractional integral operator given in (9) is deduced

(iii) By considering \(n = 1, b_1 = \lambda + lk, a_1 = \theta - \lambda, c_1 = \lambda, \rho = v = 0, \delta > 0 \) in (18), the generalized fractional integral operator ([8], Definition 1.4) is deduced

(iv) By considering \(s = 0 = \omega \) in (18), then the left-sided Riemann-Liouville fractional integral operator of a function \(\phi \) with respect to another function \(g \) of order \(\beta \) given in [1, 3] is deduced

(v) By considering \(g \) to be an identity function, (18) is deduced to (15)

(vi) By considering \(g \) as identity function and setting \(n = 1, b_1 = \lambda + lk, a_1 = \theta - \lambda, c_1 = \lambda, \rho = v = 0, \delta > 0 \), in (18), the generalized fractional integral operator (21) is deduced

For simplicity, we will use the following notations throughout this paper:

\[
M_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}^{\lambda\gamma\delta\mu\nu} = \mathbf{M}, \quad gM_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}^{\lambda\gamma\delta\mu\nu} = \mathbf{Q}
\]

\[
\mu\nu_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}^{\lambda\gamma\delta\mu\nu, \xi} = \mathbf{Q}_{\xi}, \quad g\nu_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}^{\lambda\gamma\delta\mu\nu, \xi} = \mathbf{Q}_{\xi}, \quad g\mu\nu_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}^{\lambda\gamma\delta\mu\nu, \xi} = \mathbf{Q}_{\xi}, \quad g\tau\nu_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}}^{\lambda\gamma\delta\mu\nu, \xi} = \mathbf{Q}_{\xi}.
\]
Next, we discuss the boundedness of the newly defined generalized form of unified fractional integral operator.

Theorem 15. Let \(\omega \in \mathbb{R}, a = (a_1, a_2, \ldots, a_n), b = (b_1, b_2, \ldots, b_n), \xi = (c_1, c_2, \ldots, c_p), a_i, b_i, c_i \in \mathbb{R}; i = 1, \ldots, n \) such that \(a_i, b_i, c_i > 0 \). Also \(a, b, y, \delta, \mu, \nu, \lambda, \rho, \theta \in \mathbb{R}, k \in (0, 1) \cup \mathbb{N} \) and \(m = \text{power integrable and positive functions on } [u, v] \) such that the ratio \(\phi(\xi)/\psi(\xi) \) is bounded above by \(\zeta_1 \) and bounded below by \(\zeta_2 \). Let \(m > 1 \) such that \(1/m + 1/n = 1; \) then

\[
[(\Omega\phi(\xi); s)]^{1/n}[(\Omega\psi(\xi); s)]^{1/n} \leq \left(\Omega_{\zeta_1}^{-1/2} \phi^{1/m} \psi^{1/n} \right)(\xi; s)^{1/m}. \tag{26}
\]

Proof. According to the statement of the theorem, we have

\[
0 < \zeta_1(t) \leq \frac{\phi(t)}{\psi(t)} \leq \zeta_2(t), t \in [u, v]. \tag{27}
\]

By considering the lower bound, the above inequality produces

\[
\frac{1}{\zeta_1^{1/2}} \phi^{1/m}(t) \psi^{1/n}(t). \tag{28}
\]

By multiplying both sides of the above inequality with \((g(\xi) - g(t))^{\beta - 1} M(\omega(g(\xi) - g(t))^\alpha; s) g(t) \) and integrating over \([u, \xi]\), we get

\[
[(\Omega\psi(\xi); s)]^{1/n} \leq \left(\Omega_{\zeta_1}^{-1/2} \phi^{1/m} \psi^{1/n} \right)(\xi; s)^{1/m}. \tag{29}
\]

Also, by considering the upper bound of inequality (27), the following inequality holds:

\[
\phi(t) \leq \zeta_2^{1/2} \psi^{1/m}(t) \psi^{1/n}(t). \tag{30}
\]

Multiplying both sides of the above inequality with \((g(\xi) - g(t))^{\beta - 1} M(\omega(g(\xi) - g(t))^\alpha; s) g(t) \) and integrating over \([u, \xi]\), we get the following inequality:

\[
[(\Omega\phi(\xi); s)]^{1/m} \leq \left(\Omega_{\zeta_1}^{-1/2} \phi^{1/m} \psi^{1/n} \right)(\xi; s)^{1/m}. \tag{31}
\]

The product of (29) and (31) results in inequality (26).

\[\square \]

Corollary 17. Under the assumptions of Theorem 16 along with the condition that \(\zeta_1(\xi) = k_1 \) and \(\zeta_2(\xi) = k_2 \) with \(0 < k_1 < 0 \nabla \in [u, v] \), (26) takes the following form:

\[
[(\Omega\phi(\xi); s)]^{1/m}[(\Omega\psi(\xi); s)]^{1/n} \leq \left(\frac{k_2}{k_1} \right)^{1/m} \left(\Omega\phi^{1/m} \psi^{1/n} \right)(\xi; s). \tag{32}
\]

Corollary 18. Under the assumptions of above theorem and substituting \(a_i = 1, s = 0 \) and \(\rho > 0 \) in (26), we get the following

3. Unified Versions of Minkowski-Type Fractional Integral Inequalities

In this section, we give proof of unified versions of generalized Minkowski-type integral inequalities.
inequality:

\[
\left[\left(\alpha \Omega \phi \right) (\xi) \right]^{1/n} \left[\left(\alpha \Omega \psi \right) (\xi) \right]^{1/n} \leq \left[\left(\Omega \kappa_2 \phi^{1/n} \psi^{1/n} \right) (\xi) \right]^{1/n} \left[\left(\Omega \kappa_1 \phi^{1/n} \psi^{1/n} \right) (\xi) \right]^{1/n}.
\]

(33)

Remark 19.

(i) By setting \(n = 1 \), \(b_1 = \lambda + \delta k \), \(a_1 = \theta - \lambda \), \(c_1 = \lambda \), \(\rho = \nu = 0 \), and \(\delta > 0 \) in (32), the inequality given in [8], Theorem 5, is deduced.

(ii) By setting \(g \), the identity function in (32) the inequality [7], Theorem 4, is deduced.

\[
\left[\left(1 \phi \right) (\xi; s) \right]^{1/n} \left[\left(1 \psi \right) (\xi; s) \right]^{1/n} \leq \left(\frac{k_2}{k_1} \right) \left[\left(1 \phi^{1/n} \psi^{1/n} \right) (\xi; s) \right]
\]

(34)

(iii) Under the assumptions of the Corollary 21 along with the condition that \(\zeta_1(\xi) = k_1 \) and \(\zeta_2(\xi) = k_2 \) with \(0 < k_1 < k_2 \) \(\forall \xi \in [u, v] \) and setting the function \(g \) to be an identity function, the inequality given in [7], Corollary 1, is deduced.

(iv) By setting \(n = 1 \), \(b_1 = \lambda + \delta k \), \(a_1 = \theta - \lambda \), \(c_1 = \lambda \), \(\rho = \nu = 0 \), and \(\delta > 0 \) in (34), the Minkowski-type inequality (6) is deduced.

In the proof of our next result, we will use Young’s inequality for \(x, y \geq 0 \) with \(m, n \geq 1 \) satisfying \(m^{-1} + n^{-1} = 1 \):

\[
xy \leq m^{-1} x^m + n^{-1} y^n.
\]

(35)

Also, the following inequality will be required:

\[
(x + y)^m \leq 2^{m-1}(x^m + y^m); x, y \geq 0 \text{ and } m > 1.
\]

(36)

Theorem 20. Under the assumptions of Theorem 16 the following inequality holds:

\[
(\Omega(\phi \psi))(\xi; s) \leq m^{-1} 2^{m-1} \left(\Omega \left(\frac{\zeta_2}{\zeta_2 + 1} \right)^m \left(\phi + \psi \right)^m \right)(\xi; s) + n^{-1} 2^{n-1} \left(\Omega \left(\frac{1}{\zeta_1 + 1} \right)^n \left(\phi \psi \right)^n \right)(\xi; s).
\]

(37)

Proof. Taking the left side of inequality (27), we obtain the following form:

\[
\psi^m(t) \leq (\zeta_1 + 1)^{-m}(\phi(t) + \psi(t))^m.
\]

(38)

Multiplying both sides of inequality by \((g(\xi) - g(t))^{n-1} M(\omega(\xi) - g(t))\psi^m \) and integrating over \([u, \xi] \), the above inequality gives

\[
n^{-1}(\Omega \psi^n)(\xi; s) \leq n^{-1}(\Omega(\zeta_1 + 1)^{-n}(\phi \psi)^n)(\xi; s).
\]

(39)

Also, by considering right side of inequality (27), we have the following inequality:

\[
\phi^m(t) \leq \left(\frac{\zeta_2}{\zeta_2 + 1} \right)^m (\psi(t) + \phi(t))^m.
\]

(40)

Multiplying both sides of the above inequality by \((g(\xi) - g(t))^{n-1} M(\omega(\xi) - g(t))\psi^m \) and integrating over \([u, \xi] \), the resulting inequality by \(m^{-1} \), we get

\[
m^{-1}(\Omega \psi^n)(\xi; s) \leq m^{-1}(\Omega \psi^n)(\xi; s) + n^{-1}(\Omega \psi^n)(\xi; s).
\]

(41)

By Young’s inequality, we have

\[
\phi(t) \psi(t) \leq m^{-1} \phi^m(t) + n^{-1} \psi^n(t).
\]

(42)

Multiplying both sides of the above inequality by \((g(\xi) - g(t))^{n-1} M(\omega(\xi) - g(t))\psi^m \) and integrating over \([u, \xi] \), the above inequality takes the form

\[
(\Omega(\phi \psi))(\xi; s) \leq m^{-1}(\Omega \psi^n)(\xi; s) + n^{-1}(\Omega \phi^n)(\xi; s).
\]

(43)

Applying (43) to the sum of (39) and (41), we get the following inequality:

\[
(\Omega(\phi \psi))(\xi; s) \leq m^{-1}(\Omega \left(\frac{\zeta_2}{\zeta_2 + 1} \right)^m (\phi + \psi)^m)(\xi; s) + n^{-1}(\Omega \left(\frac{1}{\zeta_1 + 1} \right)^n (\phi \psi)^n)(\xi; s).
\]

(44)

Inequality (37) follows by using (36) in (44).

\[\square\]

Corollary 21. Under the assumptions of Theorem 20 together with the condition that \(\zeta_1(\xi) = k_1 \) and \(\zeta_2(\xi) = k_2 \) with \(0 < k_1 < k_2 \) \(\forall \xi \in [u, v] \), (37) becomes

\[
(\Omega(\phi \psi))(\xi; s) \leq m^{-1} 2^{m-1} \left(\frac{k_2}{k_2 + 1} \right)^m (\Omega \phi^n + \psi^n)(\xi; s) + n^{-1} 2^{n-1} \left(\frac{1}{k_1 + 1} \right)^n (\Omega \phi^n + \psi^n)(\xi; s).
\]

(45)

Corollary 22. Under the assumptions of the above theorem and setting \(a_1 = 1, s = 0 \) and \(p > 0 \) in (37), the following
inequality holds true:

\[
(\mathbf{q} \Omega(\xi))(\xi) \leq m^{-1} 2^{m-1} \left(\mathbf{q} \Omega \left(\frac{\zeta_2}{\zeta_2 + 1} \right)^m (\phi^m + \psi^m) \right)(\xi)
+ n^{-1} 2^{n-1} \left(\mathbf{q} \Omega \left(\frac{1}{\zeta_2 + 1} \right)^n (\phi^n + \psi^n) \right)(\xi).
\]

(46)

Remark 23.

(i) By setting \(n = 1, b_1 = \lambda + lk, a_1 = \theta - \lambda, c_1 = \lambda, \rho = \nu = 0, \) and \(\delta > 0 \) in (45), the inequality given in [8], Theorem 6, is deduced.

(ii) By setting \(g \) the identity function, (45) is deduced to the following inequality given in [7]:

\[
(\mathbf{I}(\xi))(\xi ; s) \leq m^{-1} 2^{m-1} \left(\frac{k_2}{k_2 + 1} \right)^m \left(\mathbf{I}(\phi^m + \psi^m) \right)(\xi ; s)
+ n^{-1} 2^{n-1} \left(\frac{1}{k_2 + 1} \right)^n \left(\mathbf{I}(\phi^n + \psi^n) \right)(\xi ; s).
\]

(47)

(iii) Under the assumptions of Corollary 25 along with the condition that \(\zeta_1(\xi) = k_1 \) and \(\zeta_2(\xi) = k_2 \) with \(0 < k_1 < k_2 \forall \xi \in [u, v] \) and setting the function \(g \) the identity function, the inequality given in [7], Corollary 2, is deduced.

(iv) By setting \(n = 1, b_1 = \lambda + lk, a_1 = \theta - \lambda, c_1 = \lambda, \rho = \nu = 0, \) and \(\delta > 0 \) in (45), the Minkowski-type inequality given in [9], Theorem 3.2, is deduced.

Theorem 24. Suppose the assumptions of Theorem 16 hold; then for \(m \geq 1 \), the following inequalities hold:

\[
\left(\mathbf{\Omega} \left(\frac{1}{\zeta_2} \right) \right)(\xi ; s) \leq \left(\mathbf{\Omega} \left(\frac{1}{\zeta_1 + 1} \right) \right)(\phi^m + \psi^m)(\xi ; s)
\leq \left(\mathbf{\Omega} \left(\frac{1}{\zeta_2} \right) \right)(\xi ; s).
\]

(48)

Proof. Considering right side of inequality (27), we get the following inequalities:

\[
\phi(t) + \psi(t) \leq (\zeta_2(t) + 1)\psi(t),
\]

(49)

\[
\zeta_1^{-1}(t)(\zeta_2(t) + 1)\phi(t) \leq \phi(t) + \psi(t).
\]

(50)

Also, from the left side of inequality (27), we have the following inequalities:

\[
\phi(t) + \psi(t) \geq (\zeta_1(t) + 1)\psi(t),
\]

(51)

\[
\zeta_1^{-1}(t)(\zeta_1(t) + 1)\phi(t) \geq \phi(t) + \psi(t).
\]

(52)

Combining the inequalities (49) and (51), the following inequality holds

\[
(\zeta_1(t) + 1)\psi(t) \leq \phi(t) + \psi(t) \leq (\zeta_2(t) + 1)\psi(t).
\]

(53)

By the combining the inequalities (50) and (52), we get

\[
\zeta_2^{-1}(t)(\zeta_2(t) + 1)\phi(t) \leq \phi(t) + \psi(t) \leq \zeta_1^{-1}(t)(\zeta_1(t) + 1)\phi(t).
\]

(54)

The product of the above two inequalities yields

\[
\zeta_2^{-1}(t)(\phi(t)\psi(t)) \leq \left(\frac{1}{(\zeta_1(t) + 1)(\zeta_2(t) + 1)} \right) (\phi(t) + \psi(t))^2
\]

\[
\leq \zeta_1^{-1}(t)(\phi(t)\psi(t)).
\]

(55)

Now, multiplying \((g(\xi) - g(t))^m \mathbf{M}(\omega(g(\xi) - g(t))^m ; s)g'(t) \) with the above inequality and integrating over \([u, \xi]\), we get the required inequality (48).

Corollary 25. Under the assumptions of Theorem 24 and taking \(\zeta_1(\xi) = k_1 \) and \(\zeta_2(\xi) = k_2 \) with \(0 < k_1 < k_2 \forall \xi \in [u, v] \), (48) takes the following form:

\[
\frac{1}{k_2} \left(\mathbf{\Omega} \left(\frac{1}{\zeta_2} \right) \right)(\xi ; s) \leq \frac{1}{(k_1 + 1)(k_2 + 1)} \left(\mathbf{\Omega}(\phi^m + \psi^m) \right)(\xi ; s)
\leq \frac{1}{k_2} \left(\mathbf{\Omega}(\phi)(\xi) \right).
\]

(56)

Corollary 26. Under the assumptions of the above theorem and considering \(a_i = 1, s = 0 \) and \(\rho > 0 \) in (48), the following inequality holds:

\[
\left(\mathbf{\Omega} \left(\frac{1}{\zeta_2} \right) \right)(\xi) \leq \left(\mathbf{\Omega} \left(\frac{1}{\zeta_1 + 1} \right) \right)(\phi^m + \psi^m)(\xi)
\]

\[
\leq \left(\mathbf{\Omega} \left(\frac{1}{\zeta_2} \right) \right)(\xi).
\]

(57)

Remark 27.

(i) By setting \(n = 1, b_1 = \lambda + lk, a_1 = \theta - \lambda, c_1 = \lambda, \rho = \nu = 0, \) and \(\delta > 0 \) in (56), the inequality given in [8], Theorem 16 is deduced.

(ii) By setting \(g \) the identity function, (56) gives the following inequality [7]:
Theorem 28. Let the assumptions of Theorem 16 hold true. Also, let ϕ, ψ, ξ, η, f be m-power integrable and positive functions on $[u, v]$ such that $0 < f(t) < \xi_1(t)$, $\xi_1(t) < \phi(t)/\psi(t) \leq \xi_2(t)$ for all $t \in [u, v]$; then the following inequalities hold for $m \geq 1$:

\[
\frac{1}{k_2} (I(\phi \psi))(\xi; s) \leq \frac{1}{(k_1 + 1)(k_2 + 1)} (I(\phi + \psi)^2)(\xi; s) \leq \frac{1}{k_1} (I(\phi \psi))(\xi; s) \tag{58}
\]

(iii) Under the assumptions of Corollary 29 along with the condition that $\xi_1(\xi) = k_1$ and $\xi_2(\xi) = k_2$ with $0 \leq k_1 < k_2 \forall \xi \in [u, v]$ and setting the function g to be the identity function, the inequality given in [7], Corollary 3, is deduced.

(iv) By setting $n = 1$, $b_1 = \lambda + \ldots + k_1 = \theta - \lambda$, $c_1 = \lambda$, $\rho = \nu = 0$, and $\delta > 0$ in (58), the Minkowski-type inequality given in [9], Theorem 3.3, is deduced.

Theorem 28. Let the assumptions of Theorem 16 hold true. Also, let ϕ, ψ, ξ, η, f be m-power integrable and positive functions on $[u, v]$ such that $0 < f(t) < \xi_1(t)$, $\xi_1(t) < \phi(t)/\psi(t) \leq \xi_2(t)$ for all $t \in [u, v]$; then the following inequalities hold for $m \geq 1$:

\[
\frac{1}{k_2} (I(\phi \psi))(\xi; s) \leq \frac{1}{(k_1 + 1)(k_2 + 1)} (I(\phi + \psi)^2)(\xi; s) \leq \frac{1}{k_1} (I(\phi \psi))(\xi; s) \tag{58}
\]

Theorem 28. Let the assumptions of Theorem 16 hold true. Also, let ϕ, ψ, ξ, η, f be m-power integrable and positive functions on $[u, v]$ such that $0 < f(t) < \xi_1(t)$, $\xi_1(t) < \phi(t)/\psi(t) \leq \xi_2(t)$ for all $t \in [u, v]$; then the following inequalities hold for $m \geq 1$:

\[
\frac{1}{k_2} (I(\phi \psi))(\xi; s) \leq \frac{1}{(k_1 + 1)(k_2 + 1)} (I(\phi + \psi)^2)(\xi; s) \leq \frac{1}{k_1} (I(\phi \psi))(\xi; s) \tag{58}
\]

Taking the power m, after multiplying by $(g(\xi) - g(t))^{m-1} M(\omega(g(\xi) - g(t))^{m} ; \xi) g'(t)$ throughout the above inequality and integrating over $[u, \eta]$, one can get the following inequality:

\[
\frac{\xi_2(t)(\phi(t) - f(t)\psi(t))}{\xi_2(t) - f(t)} \leq \phi(t) \leq \frac{\xi_1(t)(\phi(t) - f(t)\psi(t))}{\xi_1(t) - f(t)} \tag{65}
\]

Remark 31.

(i) By setting $n = 1$, $b_1 = \lambda + \ldots + k_1 = \theta - \lambda$, $c_1 = \lambda$, $\rho = \nu = 0$, and $\delta > 0$ in (67), the inequality given in [8], Theorem 8, is deduced.

(ii) By setting g the identity function, (67) is deduced to the following inequality [7]:

\[
\frac{\xi_2(t)(\phi(t) - f(t)\psi(t))}{\xi_2(t) - f(t)} \leq \phi(t) \leq \frac{\xi_1(t)(\phi(t) - f(t)\psi(t))}{\xi_1(t) - f(t)} \tag{65}
\]

Corollary 29. Under the assumptions of Theorem 28 along with the condition that $f(\xi) = m$, $\xi_1(\xi) = k_1$ and $\xi_2(\xi) = k_2$ with $0 < k_1 < k_2 \forall \xi \in [u, v]$ in (59), the following inequality holds:

\[
\frac{k_2 + 1}{k_2 - m} \left[(\Omega(\phi - m\psi))(\xi; s) \right]^{1/m} \leq \left[(\Omega(\phi))(\xi; s) \right]^{1/m} \tag{66}
\]

The sum of (63) and (66) produces the required inequality (59).

Corollary 30. Under the assumptions of the above theorem with the condition that $a_i = 1$, $s \leq 0$ and $\rho > 0$ in (59), the following inequality holds:

\[
\frac{k_2 + 1}{k_2 - m} \left[(\Omega(\phi - m\psi))(\xi; s) \right]^{1/m} \leq \left[(\Omega(\phi))(\xi; s) \right]^{1/m} \tag{66}
\]

\[
\frac{\xi_2(t)(\phi(t) - f(t)\psi(t))}{\xi_2(t) - f(t)} \leq \phi(t) \leq \frac{\xi_1(t)(\phi(t) - f(t)\psi(t))}{\xi_1(t) - f(t)} \tag{65}
\]
Proof. Theorem 32. (2), (3), and (5).

Minkowski-type inequalities that are the generalizations of

In this section, we state and prove some reverse versions of

following inequality:

(iii) Under the assumptions of Corollary 33 along with

Multiplying both sides of the above inequality by

(iv) By setting

Corollary 34. Under the assumptions of the above theorem

and taking

with

over

we can get

Adding (72) and (74), inequality (70) can be obtained.

Corollary 33. Under the assumptions of Theorem 32 along with

Minkowski-type inequality

in (77), Minkowski-type inequality (75) takes the following form:

Corollary 34. Under the assumptions of the above theorem and taking

the following inequality is obtained:

Remark 35.

(i) By setting

(ii) Taking

Minkowski-type inequality that are the generalizations of

(iii) Under the assumptions of Corollary 37 along with

Minkowski-type inequality (75) is deduced

(iv) By setting

Minkowski-type inequality given [9], Theorem 3.4, is deduced

\[
\frac{k_1 + 1}{k_1 - m} [\Omega \phi^m(\xi; s)]^{1/m} \leq [\Omega \phi^m(\xi; s)]^{1/m} + [\Omega \psi^m(\xi; s)]^{1/m} \leq \frac{k_1 + 1}{k_1 - m} [\Omega \phi^m(\xi; s)]^{1/m}
\]

(69)

4. Reverse Minkowski-Type Fractional Integral Inequalities

In this section, we state and prove some reverse versions of

\[
\frac{k_2 + 1}{k_2 - m} [\Omega \phi^m(\xi; s)]^{1/m} \leq [\Omega \phi^m(\xi; s)]^{1/m} + [\Omega \psi^m(\xi; s)]^{1/m} \leq \frac{k_2 + 1}{k_2 - m} [\Omega \phi^m(\xi; s)]^{1/m}
\]

(70)

\[
\left(1 + \frac{k_2 - k_1}{(k_1 + 1)(k_2 + 1)} \right) [\Omega \phi^m(\xi; s)]^{1/m} \leq [\Omega \phi^m(\xi; s)]^{1/m} + [\Omega \psi^m(\xi; s)]^{1/m} \leq \frac{k_2 + 1}{k_2 - m} [\Omega \phi^m(\xi; s)]^{1/m}
\]

(71)

[\Omega \phi^m(\xi; s)]^{1/m} + [\Omega \psi^m(\xi; s)]^{1/m} \leq \left[\left(\frac{\xi_2}{1 + \xi_2(t)} \right)^m (\phi + \psi)^m \right]^{1/m} + \left[\left(\frac{1}{1 + \xi_1(t)} \right)^m (\phi + \psi)^m \right]^{1/m}

(72)

[\Omega \phi^m(\xi; s)]^{1/m} \leq \left[\left(\frac{\xi_2}{1 + \xi_2(t)} \right)^m (\phi + \psi)^m \right]^{1/m} + \left[\left(\frac{1}{1 + \xi_1(t)} \right)^m (\phi + \psi)^m \right]^{1/m}

(73)

\[
\left[\Omega \phi^m(\xi; s) \right]^{1/m} \leq \left[\left(\frac{\xi_2}{1 + \xi_2(t)} \right)^m (\phi + \psi)^m \right]^{1/m} + \left[\left(\frac{1}{1 + \xi_1(t)} \right)^m (\phi + \psi)^m \right]^{1/m}
\]

\[
\left[\Omega \phi^m(\xi; s) \right]^{1/m} \leq \left[\left(\frac{\xi_2}{1 + \xi_2(t)} \right)^m (\phi + \psi)^m \right]^{1/m} + \left[\left(\frac{1}{1 + \xi_1(t)} \right)^m (\phi + \psi)^m \right]^{1/m}
\]

\[
\left[\Omega \phi^m(\xi; s) \right]^{1/m} \leq \left[\left(\frac{\xi_2}{1 + \xi_2(t)} \right)^m (\phi + \psi)^m \right]^{1/m} + \left[\left(\frac{1}{1 + \xi_1(t)} \right)^m (\phi + \psi)^m \right]^{1/m}
\]

(74)
Theorem 36. Under the assumptions of Theorem 16, for \(m \geq 1 \), we have

\[
[(\Omega \phi^m)(\xi; s)]^{2m} + [(\Omega \psi^m)(\xi; s)]^{2m} \\
\geq [\left(\frac{1 + \xi_2}{\xi_2} \right) \phi^m(\xi; s)]^{1/m} \cdot [\left(\Omega (1 + \xi_2)^m \psi^m(\xi; s) \right)]^{1/m} \\
- 2((\Omega \phi^m)(\xi; s)]^{1/m}[(\Omega \psi^m)(\xi; s)]^{1/m}.
\]

(78)

Proof. Inequalities (71) and (73) from the previous theorem can be arranged in the following forms:

\[
(1 + \xi(t))^m \psi^m(t) \leq (\phi(t) + \psi(t))^m, \\
\left(1 + \frac{\xi_2(t)}{\xi_2(t)}\right)^m \phi^m(t) \leq (\psi(t) + \phi(t))^m.
\]

(79)

By multiplying \((g(\xi) - g(t))^\delta \cdot M(\omega(g(\xi) - g(t))^\alpha s)^\beta(t) \) and integrating over \([u, v]\) and taking the power \(1/m \) of the resulting inequalities, the above inequalities further take the following forms:

\[
\left[(\Omega (1 + \xi_2)^m \psi^m(\xi; s) \right]^{1/m} \leq [(\Omega (\phi + \psi)^m)(\xi; s)]^{1/m}, \quad (80)
\]

\[
\left(\frac{1 + \xi_2}{\xi_2} \right)^m \psi^m(\xi; s) \right]^{1/m} \leq [(\Omega (\psi + \phi)^m)(\xi; s)]^{1/m}.
\]

(81)

By multiplying (80) and (81), we get the following inequality:

\[
\left[(\Omega (1 + \xi_1)^m \psi^m)(\xi; s) \right]^{1/m} \left[\left(\frac{1 + \xi_2}{\xi_2} \right)^m \phi^m(\xi; s) \right]^{1/m} \right]^{1/m} \leq \left[(\Omega (\psi + \phi)^m)(\xi; s)]^{1/m} \right]^2.
\]

(82)

Applying Minkowski’s inequality on the term within the square brackets at the right side of the above inequality and then using \((a + b)^2 = a^2 + 2ab + b^2\), the above inequality gives the required inequality (78).

Corollary 37. Under the assumptions of Theorem 36 along with the condition that \(\xi_1(\xi) = k_1 \) and \(\xi_2(\xi) = k_2 \) with \(0 < k_i < k_2 \forall i \in [u, v] \), (78) takes the following form:

\[
[(\Omega \phi^m)(\xi; s)]^{2m} + [(\Omega \psi^m)(\xi; s)]^{2m} \\
\geq \left(\frac{2 + (k_i - 1)(k_i + 1)}{k_2} \right) [(\Omega \phi^m)(\xi; s)]^{1/m}[(\Omega \psi^m)(\xi; s)]^{1/m}.
\]

(83)

Corollary 38. Under the assumptions of above theorem together with the condition \(a_i = l, s = 0, \) and \(\rho > 0 \), (78) results in the following inequality:

\[
[(\Omega \phi^m)(\xi)]^{2m} + [(\Omega \psi^m)(\xi)]^{2m} \\
\geq \left(\frac{2 + (k_i - 1)(k_i + 1)}{k_2} \right) [(\Omega (1 + \xi_2)^m \phi^m)(\xi)]^{1/m}[(\Omega (1 + \xi_2)^m \psi^m)(\xi)]^{1/m}.
\]

(84)

Remark 39.

(i) By setting \(n = 1, b_1 = \lambda + ik, a_1 = \theta, c_1 = \lambda, \rho = \nu = 0, \) and \(\delta > 0 \) in (78), the inequality given in [8], Theorem 4, is deduced

(ii) By setting \(g \) the identity function in (83), the following inequality is deduced [7]:

\[
[(\Omega \phi^m)(\xi; s)]^{2m} + [(\Omega \psi^m)(\xi; s)]^{2m} \\
\geq \left(\frac{2 + (k_i - 1)(k_i + 1)}{k_2} \right) [(\Omega \phi^m)(\xi; s)]^{1/m}[(\Omega \psi^m)(\xi; s)]^{1/m}.
\]

(85)

(iii) Under the assumptions of Corollary 13 along with the condition that \(\xi_1(\xi) = k_1 \) and \(\xi_2(\xi) = k_2 \) with \(0 < k_i < k_2 \forall i \in [u, v] \) and setting \(g \) the identity function, the inequality given in [7], Corollary 6, is deduced

(iv) By setting \(n = 1, b_1 = \lambda + ik, a_1 = \theta, c_1 = \lambda, \rho = \nu = 0, \) and \(\delta > 0 \) in (85), the Minkowski-type inequality given in [9], Theorem 2.2, is deduced

Remark 40. All results of this paper hold for the right-sided integral operator:

\[
\left(\frac{d^m g(x)}{dt^m} \right)(\xi; s) = \int_{t_0}^t (g(t) - g(\xi))^{\beta} M(u^m(g(t) - g(\xi))^\alpha s)^\gamma(t) \phi(t) dt.
\]

(86)

5. Conclusion

A generalized integral operator with the help of a unified Mittag-Leffler function is defined, and its boundedness is proved. By giving specific values to parameters and considering suitable functions involved in the kernel of this operator, various kinds of well-known integral and fractional integral operators can be reproduced. For a fractional integral operator, we have constructed several Minkowski- and reverse Minkowski-type inequalities. The particular cases of the results of this paper are connected with many already published results.
Data Availability

All data required for this research is included within this paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, *Theory and applications of fractional differential equations*, vol. 204, Elsevier, Amsterdam, Netherlands, 2006.
[2] M. Andrić, G. Farid, and I. Pečarić, ”A further extension of Mittag-Leffler function,” *Fractional Calculus and Applied Analysis*, vol. 21, no. 5, pp. 1377–1395, 2018.
[3] S. G. Samko, A. A. Kilbas, and O. I. Marichev, *Fractional integrals and derivatives: theory and applications*, Gordon and Breach, 1993.
[4] T. O. Salim and A. W. Faraj,” A generalization of Mittag-Leffler function and integral operator associated with fractional calculus,” *Journal of Fractional Calculus and Applications*, vol. 3, no. 5, pp. 1–13, 2012.
[5] G. Farid,” A unified integral operator and further its consequences,” *Open Journal of Mathematical Analysis*, vol. 4, no. 1, pp. 1–7, 2020.
[6] Y. Zhang, G. Farid, Z. Salleh, and A. Ahmad,” On a unified Mittag-Leffler function and associated fractional integral operator,” *Mathematical Problems in Engineering*, vol. 2021, Article ID 6043769, 9 pages, 2021.
[7] S.-S. Zho, G. Farid, and A. Ahmad,” Fractional versions of Minkowski-type fractional integral inequalities via unified Mittag-Leffler function,” *Advances in Continuous and Discrete Models*, vol. 2022, no. 1, pp. 1–10, 2022.
[8] M. Andric, G. Farid, J. Pecaric, and M. U. Siddique,” Further generalizations of Minkowski-type inequalities with extended Mittag-Leffler function,” *Mathematicik Bilten*, vol. 44, no. (LXX) 2, pp. 107–117, 2020.
[9] M. Andric, G. Farid, J. Pecaric, and M. U. Siddique,” Generalized Minkowski-type fractional inequalities involving extended Mittag-Leffler function,” *The Journal of the Indian Mathematical Society*, vol. 87, no. 3–4, pp. 137–147, 2020.
[10] L. Bougoffa,” On Minkowski and Hardy integral inequalities,” *Journal of Inequalities in Pure and Applied Mathematics*, vol. 7, no. 2, p. 60, 2006.
[11] E. Set, M. Özdemir, and S. S. Dragomir,” On the Hermite-Hadamard inequality and other integral inequalities involving two functions,” *Journal of Inequalities and Applications*, vol. 2010, no. 1, Article ID 148102, 9 pages, 2010.
[12] G. M. Mittag-Leffler,” Sur la Nouvelle Fonction $E\alpha(x)$,” *C. R. Acad. Sci. Paris*, vol. 137, no. 2, pp. 554–558, 1903.
[13] A. H. Ansari, X. Liu, and V. N. Mishra,” On Mittag-Leffler function and beyond,” *Nonlinear Science Letters A*, vol. 8, no. 2, pp. 187–199, 2017.
[14] A. K. Shukla and J. C. Prajapati,” On a generalization of Mittag-Leffler function and its properties,” *Journal of Mathematical Analysis and Applications*, vol. 336, no. 2, pp. 797–811, 2007.
[15] G. Rahman, D. Baleanu, M. A. Qurashi, S. D. Purohit, S. Mubeen, and M. Arshad,” The extended Mittag-Leffler function via fractional calculus,” *Journal of Nonlinear Sciences and Applications*, vol. 10, no. 8, pp. 4244–4253, 2017.
[16] T. R. Prabhakar,” A singular integral equation with a generalized Mittag-Leffler function in the kernel,” *Yokohama Mathematical Journal*, vol. 19, pp. 7–15, 1971.
[17] D. Bhattacharjya, and M. Pandey,” A study of some integral transforms on Q function,” *South East Asian Journal of Mathematics and Mathematical Sciences*, vol. 16, no. 1, pp. 99–110, 2020.
[18] A. U. Rehman, G. Farid, and Y. Mehboob,” Mean value theorems associated to the differences of Opial-type and their fractional versions,” *Fractional Differential Calculus*, vol. 10, no. 2, pp. 224–231, 2012.
[19] G. Farid, A. U. Rehman, S. Ullah, A. Nosheen, M. Waseem, and Y. Mehboob,” Opial-type inequalities for convex functions and associated results in fractional calculus,” *Advances in Difference Equations*, vol. 2019, Article ID 152, 2019.
[20] M. Andric, J. Pecaric, and I. Peric,” A multiple Opial type inequality for the Riemann-Liouville fractional derivatives,” *Journal of Mathematical Inequalities*, vol. 7, no. 1, pp. 139–150, 2013.
[21] M. Andric, J. Pecaric, and I. Peric,” Composition identities for the Caputo fractional derivatives and applications to Opial-type inequalities,” *Mathematical Inequalities & Applications*, vol. 16, no. 3, pp. 657–670, 2013.
[22] Z. Tomovski, J. Pecaric, and G. Farid,” Weighted Opial inequalities for fractional differential and integral operators involving generalized Mittag-Leffler function,” *European Journal of Pure and Applied Mathematics*, vol. 10, no. 3, pp. 419–439, 2017.
[23] B. Ahmed, A. Alsaedi, M. Kirane, and B. T. Torebek,” Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal, and Pachpatte type inequalities for convex functions via new fractional integrals,” *Journal of Computational and Applied Mathematics*, vol. 353, pp. 120–129, 2019.
[24] E. Set and B. Celic,” Hermite-Hadamard-Fejer type inequalities for quasi-geometrically convex functions via fractional integrals,” *Journal of Mathematics*, vol. 2016, Article ID 6523041, 7 pages, 2016.
[25] G. Farid, V. N. Mishra, and S. Mehmoood,” Hadamard and Fejer-Hadamard type inequalities for convex and relative convex functions via an extended generalized Mittag-Leffler function,” *International Journal of Analysis and Applications*, vol. 17, no. 5, pp. 892–903, 2019.
[26] G. Farid, A. U. Rehman, and Q. U. Ain,” k-fractional integral inequalities of Hadamard type for $(h−m)$-convex functions,” *Computational Methods for Differential Equations*, vol. 2020, no. 1, pp. 119–140, 2020.
[27] L. N. Mishra, Q. U. Ain, G. Farid, and A. U. Rehman,” k -fractional integral inequalities for $(h−m)$-convex functions via Caputo k -fractional derivatives,” *The Korean Journal of Mathematics*, vol. 27, no. 2, pp. 357–374, 2019.
[28] M. Z. Sarikaya, E. Set, H. Yıldız, and N. Başak,” Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities,” *Mathematical and Computer Modelling*, vol. 57, no. 9–10, pp. 2403–2407, 2013.
[29] M. Z. Sarıkaya and H. Yıldırım,” On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals,” *Miskolc Mathematical Notes*, vol. 17, no. 2, pp. 1049–1059, 2017.
[30] S. Mehmoood and G. Farid,” Fractional integrals inequalities for exponentially m-convex functions,” *Open Journal of Mathematical Sciences*, vol. 4, no. 1, pp. 78–85, 2020.
[31] W. Sudsutad, S. K. Ntouyas, and J. Tariboon, “Fractional integral inequalities via Hadamards fractional integral,” Abstract and Applied Analysis, vol. 2014, Article ID 563096, 11 pages, 2014.

[32] S. I. Butt, M. Nadeem, and G. Farid, “On Caputo fractional derivatives via exponential s-convex functions,” Turkish Journal of Science, vol. 5, no. 2, pp. 140–146, 2020.

[33] G. Farid, A. U. Rehman, V. N. Mishra, and S. Mehmood, “Fractional integral inequalities of Grüss type via generalized Mittag-Leffler function,” International Journal of Analysis and Applications, vol. 17, no. 4, pp. 548–558, 2019.

[34] M. Andri, G. Farid, and S. Mehmood, “Pólya-Szegő and Chebyshev types inequalities via an extended generalized Mittag-Leffler function,” Mathematical Inequalities & Applications, vol. 22, no. 4, pp. 1365–1377, 2019.

[35] A. O. Akdemir, S. I. Butt, M. Nadeem, and M. A. Ragusa, “New general variants of Chebyshev type inequalities via generalized fractional integral operators,” Mathematics, vol. 9, no. 2, p. 122, 2021.

[36] S. K. Ntouyas, P. Agarwal, and J. Tariboon, “On Pólya-Szegő and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators,” Journal of Mathematical Inequalities, vol. 10, no. 2, pp. 491–504, 2016.