Evaluation of Health-Related Quality of Life of Covid-19 Patients: A Hospital-Based Study in South Central Ethiopia

Abdene Kaso
DU: Dilla University, School of Public Health

Gebi Agero
Arsi University College of Health Sciences, Department of Public Health

Zewdu Hurisa
Arsi University College of Health Sciences, Department of Internal Medicine

Taha Kaso
Arsi University College of Health Sciences, Department of Surgery

Helen Ali Ewune
Dilla University College of Health Sciences, Department of Public Health

Alemayehu Hailu (✉ alemayehu.hailu@uib.no)
University of Bergen https://orcid.org/0000-0003-4872-8036

Keywords: quality of life, HRQOL, Covid-19, Arsi Zone

DOI: https://doi.org/10.21203/rs.3.rs-743918/v1

License: ☺ ☀ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Covid-19 causes a wide range of symptoms in patients, ranging from mild manifestations to severe disease and death. This study assessed the health-related quality of life (HRQOL) and associated factors of Covid-19 patients using primary data from confirmed cases in South Central Ethiopia.

Methods: We employed a facility-based, cross-sectional study design and conducted the study at the Bokoji Hospital Covid-19 treatment centre. A structured questionnaire and the EQ-5D-3L scale were used to collect the data for analysis. The HRQOL results measured by the EQ-5D-3L tool were converted to a health state utility (HSU) using the Zimbabwe tariff. The average health utility index and HSU–visual analogue scale across diverse sociodemographic and clinical characteristics were compared using the Mann-Whitney U test or Kruskal-Wallis test. We employed a multiple linear regression to examine the associations of predictor variables with HSU values simultaneously. The data were analysed using STATA version 15.

Results: The overall mean HSU score from the EQ-5D was 0.688 (SD: 0.285), and the median was 0.787 (IQR: 0.596, 0.833). The mean HSU from the visual analogue scale score was 0.69 (SD: 0.129), with a median of 0.70 (IQR: 0.60, 0.80). Those who received dexamethasone and intranasal oxygen supplement, those with comorbidity, those older than 55 years and those with a hospital stay of more than 15 days had significantly lower HSU scores than their counterparts (p<.001).

Conclusion: Covid-19 substantially impaired the HRQOL of patients in Ethiopia, especially among elderly patients and those with comorbidity. Therefore, clinical follow-up and psychological treatment should be encouraged for these groups. Moreover, the health utility values from this study can be used to evaluate quality adjusted life years for future cost-effectiveness analyses of prevention and treatment interventions against Covid-19.

Introduction

Coronavirus disease 2019 (Covid-19) is an infectious disease first discovered in China's Wuhan Province in December 2019. According to the World Health Organization (WHO) (April 20, 2021), more than 140 million cases and over 3 million deaths have been globally attributed to Covid-19 [1]. In Ethiopia, the first cases of Covid-19 were reported on March 13, 2020. An Ethiopian Ministry of Health report states that more than 240,000 cases and 3,370 deaths have been reported [1]. The pandemic is causing a broad range of health, social and economic crises at a macro and micro level [2].

Covid-19's wide spectrum of symptoms ranges from mild manifestations to severe disease and death, and some people may have the disease without developing symptoms. The most common symptoms are upper respiratory tract conditions (sore throat, cold symptoms, mild cough), muscle pain and generally feeling unwell. Stomach pains and diarrhoea may occur in some cases, and the loss of the senses of taste and smell is also reported. Some patients may develop pneumonia with severe breathing difficulties, cough and fever and may need to be admitted to intensive care treatment units. Examination of the lungs usually finds changes consistent with viral pneumonia. Death is common among older people, particularly among the elderly with underlying diseases, but death can also occur among people without known risk factors [3, 4].

Health-related quality of life (HRQOL), an essential health care indicator for any disease type [5], measures patients’ overall wellbeing in physical, mental and emotional aspects at a specific time. It can be used in evaluating the severity of a disease, treatment outcomes, patient satisfaction with care, quality of services, overall patient wellbeing and the cost-utility of interventions targeting the disease [5–8]. As Covid-19 is a new disease, however, little is known about its impact on HRQOL. In Italy, a retrospective analysis of HRQOL using SF-36 and involving 673 cases one month after discharge from San Salvatore Hospital in Pesaro found that Covid-19 caused a substantial reduction in patients' physical and mental health conditions. That study indicates that physical and emotional roles, vitality and social functioning were highly affected dimensions [9]. A retrospective study in China indicates that Covid-19 has a substantial impact on the physical and psychological dimensions of HRQOL [10]. Another multicentre follow-up study from China indicates that Covid-19 has a substantial effect on HRQOL, with some impacts persisting more than three months after discharge [11].

An HRQOL study using EQ-5D on a multi-ethnic Asian population in Singapore among Covid-19 and cardiovascular comorbid patients indicates that the mental health dimension of patient wellbeing was the most affected area [12]. An HRQOL study from Iran using the EQ-5D reports a significantly low HRQOL score among Covid-19 patients (0.6125) and indicates that socioeconomic factors (i.e., gender, age, educational status, employment status) and comorbidity status (i.e., having diabetes or cardiovascular disease) were significant predictors of HRQOL score [13].
Covid-19’s impact on HRQOL varies from country to country due to socioeconomic factors, the treatment modalities offered (and their outcomes) and variations in the disease’s severity and epidemiology [6]. However, although local evidence of the impact of Covid-19 on HRQOL is essential to inform national and regional Covid-19 treatment protocol designs, the disease’s impact on HRQOL in the Ethiopian or African context was unknown. Therefore, this study assessed the impact of Covid-19 and associated factors on HRQOL using primary data from confirmed cases in a Covid-19 treatment centre in South Central Ethiopia.

Methods

Study design and population

This study employed a facility-based, cross-sectional study design. We conducted this study in the Arsi Zone at the Bokoji Hospital Covid-19 treatment centre, one of the largest Covid-19 treatment centres in South Central Ethiopia, which provides services for people from 28 districts and two town administrations. All 398 Covid-19 patients discharged from the treatment centre from July 1, 2020 through March 20, 2021 were included. All the Covid-19 patients referred to other hospitals or deceased were excluded from the analysis.

Data collection and tools

To measure the HRQOL of Covid-19 patients, we employed the visual analogue scale (VAS) alongside the EQ-5D-3L questionnaire, which is the most common instrument for assessing HRQOL. The EQ-5D-3L includes five dimensions (mobility, self-care, usual activities, pain/discomfort, anxiety/depression), each with three levels to define possible health states (no problems, some problems, inability to/extreme problems). The VAS is a vertical graduated line (0–100) that indicates the overall health status of the respondent, 0 being the worst imaginable health state and 100 being the best imaginable. Four nurses collected the data after a two-day training on data collection procedures and the tools. Data collection was conducted using a face-to-face interview. Additionally, information on sociodemographic and clinical characteristics was extracted from patients’ medical records. The first author (AK) supervised the data collection.

Data analysis

The primary variable of interest in this study was the HRQOL of Covid-19 patients. The HRQOL results measured by the EQ-5D-3L tool were converted to a health state utility (HSU) using the Zimbabwe tariff value set, while the VAS scores were taken directly as another HSU (HSU-VAS) [14]. Both the HUI from the EQ-5D-3L and the overall HSU-VAS from the VAS score were analysed as a continuous variables. We used frequencies and percentages to summarise the sociodemographic and clinical characteristics of the participants and summarised the HUIs by median with interquartile range (IQR) and mean with a standard deviation (SD). We compared the average HUI and HSU-VAS across various groups of sociodemographic and clinical characteristics using the Mann-Whitney U test or the Kruskal-Wallis test. To assess the associations of predictor variables with HSU simultaneously, we employed a multiple linear regression. We calculated coefficient (β) and 95% confidence intervals (CIs). A P-value of less than 0.05 was considered statistically significant. We used Microsoft Excel 2010 for data entry and STATA version 15 for data analysis.

Ethical approval

This study was approved by the Ethical Review Board of Arsi University College of Health Sciences. Informed consent was obtained from all the participants. We used the STROBE cross-sectional checklist when writing our report [15].

Results

A total of 398 confirmed Covid-19 cases were included in the study. The average length of hospital stay was 14.3 days. The majority of the Covid-19 cases were male (60%), older than 55 years (28.9%) and residents of urban areas (61%). Regarding general health status on admission, 32.7% were severely ill, 20% had a moderate symptom, 23.4% had mild symptoms and 23.9% were asymptomatic. Forty-five percent of the cases had some comorbidity, with diabetes mellitus’ (17.1%), hypertension (10.3%) and asthma (8.3%) being the top three comorbidities. Regarding the antibiotic treatment regimen, 37.2% were treated with azithromycin, while 32.9% received a combination of azithromycin and ceftriaxone. In addition, about one-third (29.1%) were treated with dexamethasone. Furthermore, nearly two-thirds (59.3%) received intranasal oxygen supplementation (Table 1).
The overall mean HSU of the EQ-5D index score was 0.688 (SD: 0.285), with a median of 0.787 (IQR: 0.596, 0.833) (Table 2). The overall mean HSU of the VAS score was 0.690 (SD: 0.129), with a median of 0.700 (IQR: 0.600, 0.800) (Table 3). There was significant variation in the mean HSU score across age groups (p < .001). The mean EQ-5D index score among those older than 55 years was 0.567, while it was 0.783 among those younger than 25 years. In general, the mean EQ-5D index scores were significantly lower for respondents with comorbidity (0.574) than for those without comorbidity (0.777) (p < .001) (Table 3). The EQ-5D index score was significantly lower among those with hypertension, chronic cardiac diseases, chronic pulmonary disease, asthma, chronic kidney disease and diabetes mellitus than among those who did not have those comorbidities. Those who received dexamethasone and supplemental intranasal oxygen had significantly lower EQ-5D index scores than those who did not receive them (p < .001), but there was no difference in the EQ-5D index score across gender and place of residence (urban vs. rural). The HSUs from the EQ-5D-3L results were consistent with the VAS results.

The multiple linear regression analysis results are presented in Table 4. The patient’s age, having asthma as comorbidity, and general health status during admission were significantly associated with low HSU values. On the other hand, those who were treated with dexamethasone had significantly higher HSU values (P-value < 0.05) (Table 4).

Discussion

Covid-19 has caused significant psychological and physiological stress to patients and their families worldwide. This study examined the HRQOL of Covid-19 patients using the EQ-5D-3L and VAS tools. The mean EQ-5D index score among Covid-19 patients on discharge was 0.688 (median = 0.787), and the overall mean VAS score was 0.690 (median = 0.700). The utility values from the EQ-5D were consistent with the results of the VAS in our study (Table 2 and Table 3). In general, these findings are in line with those of a study in Iran that reports an EQ-5D index score of 0.612 [13] and of a Belgian study with an EQ-5D index score of 0.620 [16], but our findings are substantially lower than those of studies from Norway (EQ-5D index score: 0.820) [17], China (EQ-5D index score: 0.949) and Hong Kong (EQ-5D index score: 0.897) [18, 19].

The variation in age distribution may be a driver of variation in HRQOL across countries, and the population in our study was relatively younger (mean age = 40) than in other places. Age was also a significant predictor of health utility status for Covid-19 patients in our study (Table 4). Older people had a significantly lower HRQOL than younger people, a finding in line with those of studies in Saudi Arabia and Argentina [20, 21]. This variation may be due to increased mental stress, comorbidity and debilitation in the physical condition of older people [22]. Variations in the HRQOL evaluation method employed (i.e., health utility tariff, tools, scale, study participant sampling) may also, to some extent, contribute to the discrepancy. The studies in Italy and China employed the SF-36 instrument, and those in Iran, Argentina, Belgium and Norway employed the EQ-5D-5L instrument, while the Saudi Arabian study, by contrast, employed the WHO’s 12-item Quality of Life instrument.

According to our study, comorbidity, especially asthma (Table 4), is a significant predictor of low health utility scores (Table 2). The mean EQ-5D index scores were significantly lower for respondents with comorbidity (0.574) than for those without it (0.777) (p < .001). In general, comorbidities (such as hypertension, chronic cardiac diseases, chronic pulmonary disease, asthma, chronic kidney disease and diabetes mellitus) were significant predictors of low EQ-5D scores. Studies from Vietnam [23], Saudi Arabia [20] and China [18] reveal that individuals with chronic diseases have a lower HRQOL than those without comorbid disease, perhaps because those with comorbidities develop anxiety or depression in response to misinformation disseminated about the impact of the virus in these communities [20, 24].

We found that Covid-19 patients who received dexamethasone and intranasal oxygen supplementation had lower EQ-5D index scores than those who did not receive them (p < .001), perhaps because those who needed those treatments had a severe form of the illness. Furthermore, those with a length of stay (LOS) of more than 15 days in hospital had lower EQ-5D index scores than their counterparts. Studies from China and Argentina also revealed that increased LOS is associated with poor HRQOL [10, 21, 25]. This poor HRQOL might be due to confinement to one place, increasing anxiety and reducing the HRQOL in general.

To the best of our knowledge, this study represents the first comprehensive analysis of the HRQOL of Covid-19 patients in the Ethiopian setting. We conducted the study in a setting that accommodated patients from 28 districts so that the results can be generalised to similar settings. However, our study has some limitations. First, because the study collected HRQOL data based on patient preferences, the patients may have underestimated or overestimated their status during the interview. In addition, this study used the Zimbabwe tariff due to the lack of an Ethiopian tariff, and this limitation could impact the estimation of the real Ethiopian HRQOL against the
disease, as there are many differences between the two countries. Moreover, due to the study's cross-sectional design, we could not compare the HRQOL of patients before the Covid-19 infection.

Conclusion

In conclusion, Covid-19 disease substantially impaired the HRQOL of patients in Ethiopia. Elderly patients and Covid-19 patients with comorbidity had notably poor HRQOLs. Therefore, close clinical follow-up and psychological treatment should be encouraged for these groups. Moreover, the health utility values from this study can be used to evaluate quality adjusted life years for future cost-effectiveness analyses of prevention and treatment interventions against Covid-19.

Abbreviations

EQ-5D-3L: Euro Qal–5 Dimension–3 Level; HRQOL: health-related quality of life; HIV: human immune virus; HUI: health utility index; HSU: health state utility; LOS: length of stay; ICU: intensive care unit; SD: standard deviation; SF-36: standard format–36; VAS: visual analogue scale; WHO: World Health Organization

Declarations

Ethics approval and consent to participate

Ethical clearance was obtained from the Arsi University College of Health Sciences Research Ethics Review Board, and written permission was obtained from the Covid-19 treatment centre administration before data collection was started.

Consent for publication

Not applicable

Availability of data and material

The data sets used or analysed in this study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable

Authors’ contributions

AK, GA, TK, ZH, AH and HA designed and worked on the study protocols. GA, TK, ZH and AK prepared a data collection tool and trained the data collectors. AK supervised the data collection process. AK, GA and HA entered data into SPSS. AK, GA and AH analysed the data, interpreted the results and wrote the manuscript's draft and final version. All the authors read and approved the final manuscript.

Acknowledgements

We wish to express our deepest gratitude to the Bokoji Hospital administration and staff, particularly for their data collection input. Our appreciation also goes to Mr Mengesha Moges for his sincere support during the data collection.

References

1. WHO Coronavirus (COVID-19) Dashboard [https://covid19.who.int/]. Accessed on [07.22.2021]
2. Josephson A, Kilic T, Michler JD: Socioeconomic impacts of COVID-19 in low-income countries. Nat Hum Behav 2021, 5:557-565.
3. Madahar P, Wunsch H, Jha P, Slutsky AS, Brodie D: Trends in COVID-19-related in-hospital mortality: lessons learned from nationwide samples. Lancet Respir Med 2021, 9:322-324.
4. Brehm TT, van der Meirsch M, Hennigs A, Roedl K, Jarczak D, Wichmann D, Frings D, Niehaus A, Oqueka T, Fiedler W, et al: Comparison of clinical characteristics and disease outcome of COVID-19 and seasonal influenza. Sci Rep 2021, 11:5803.

5. Karimi M, Brazier J: Health, Health-Related Quality of Life, and Quality of Life: What is the Difference? Pharmacoeconomics 2016, 34:645-649.

6. Aaronson N, Alonso J, Burnam A, Lohr KN, Patrick DL, Perrin E, Stein RE: Assessing health status and quality-of-life instruments: attributes and review criteria. Qual Life Res 2002, 11:193-205.

7. Kularatna S, Whitly JA, Johnson NW, Scuffham PA: Health state valuation in low- and middle-income countries: a systematic review of the literature. Value Health 2013, 16:1091-1099.

8. Brazier J, Ratcliffe J, Saloman J, Tsuchiya A: Measuring and valuing health benefits for economic evaluation. OXFORD university press; 2017.

9. Temperoni C, Grieco S, Pasquini Z, Canovari B, Polenta A, Gnudi U, Montalti R, Barchiesi F: Clinical characteristics, management and health related quality of life in young to middle age adults with COVID-19. BMC Infect Dis 2021, 21:134.

10. Chen KY, Li T, Gong FH, Zhang JS, Li XK: Predictors of Health-Related Quality of Life and Influencing Factors for COVID-19 Patients, a Follow-Up at One Month. Front Psychiatry 2020, 11:668.

11. Gu Q, Zhen Q, Wang W, Fan S, Wu Q, Zhang C, Li B, Liu G, Yu Y, Li Y, et al: Health-related quality of life of COVID-19 patients after discharge: A multicenter follow-up study. J Clin Nurs 2021, 30:1742-1750.

12. Gustavo O. Silva, Aluisio Andrade-Lima, Antônio Henrique Germano-Soares, Dalton de Lima-Junior, Sergio L. C. Rodrigues, Raphael M. Ritti-Dias, Farah BQ: Factors Associated with Quality of Life in Patients with Systemic Arterial Hypertension. International Journal of Cardiovascular Sciences 2020, 33:133-142.

13. Arab-Zozani M, Hashemi F, Safari H, Yousefi M, Ameri H: Health-Related Quality of Life and its Associated Factors in COVID-19 Patients. Osong Public Health Res Perspect 2020, 11:296-302.

14. Jelsma J, Hansen K, De Weerdt W, De Cock P, K: How do Zimbabweans value health states? Popul Health Metrics 2003, 1:11.

15. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

16. Meys R, Delbressine JM, Goertz YMJ, Vaes AW, Machado FVC, Van Herck M, Burtin C, Posthuma R, Spaetgens B, Franssen FME, et al: Generic and Respiratory-Specific Quality of Life in Non-Hospitalized Patients with COVID-19. J Clin Med 2020, 9.

17. Garratt AM, Ghanima W, Einvik G, Stavem K: Quality of life after COVID-19 without hospitalisation: Good overall, but reduced in some dimensions. Journal of Infection 2021, 82:227-230.

18. Ping WW, Zheng JZ, Niu XH, Guo CZ, Zhang JF, Yang H, Shi Y: Evaluation of health-related quality of life using EQ-5D in China during the COVID-19 pandemic. Plos One 2020, 15.

19. Eliza Lai-Yi Wong, Kai-Fai Ho ID, Samuel Yeung-Shan Wong, Annie Wai-Ling Cheung, Peter Sen-Yung Yau, Dong Dong, Yeoh E-K: Views on Workplace Policies and its Impact on Health-Related Quality of Life During Coronavirus Disease (COVID-19) Pandemic: Cross-Sectional Survey of Employees. International Journal of Health Policy and Management 2020, 11.

20. Algahtani FD, Hassan SUN, Alsaif B, Zrieq R: Assessment of the Quality of Life during COVID-19 Pandemic: A Cross-Sectional Survey from the Kingdom of Saudi Arabia. International Journal of Environmental Research and Public Health 2021, 18.

21. Busico M, Intile D, Sivori M, Irastorza N, Alvarez AL, Quintana J, Vazquez L, Plotnikov G, Villarejo F, Desmery P: Risk factors for worsened quality of life in patients on mechanical ventilation. A prospective multicenter study. Medicina Intensiva 2016, 40:422-430.

22. R. Asadollahi, M. Saghafinia, N. Nafissi, A. Montazeri, M. Asadollahi, Khatami M: Anxiety, depression and health-related quality of life in those injured by landmines, Ilam, Islamic Republic of Iran. EMHJ 2010, 16.

23. Nguyen HC, Nguyen MH, Do BN, Tran CQ, Nguyen TTP, Pham KM, Pham LV, Tran KV, Duong TT, Tran TV, et al: People with Suspected COVID-19 Symptoms Were More Likely Depressed and Had Lower Health-Related Quality of Life: The Potential Benefit of Health Literacy. Journal of Clinical Medicine 2020, 9.

24. Francesco Greco, Vincenzo M. Altieri, Francesco Esperto, Vincenzo Mirone, Scarpa RM: Impact of COVID-19 Pandemic on Health-Related Quality of Life in Uro-oncologic Patients: What Should We Wait For. Clinical Genitourinary Cancer 2020.

25. Qi ML, Li P, Moyle W, Weeks B, Jones C: Physical Activity, Health-Related Quality of Life, and Stress among the Chinese Adult Population during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health 2020, 17.
Tables
| Demographic and clinical characteristics | Frequency (%) |
|---|---------------|
| Sex | |
| Female | 159 (40.0) |
| Male | 239 (60.0) |
| Age (mean ± SD = 40.0 ± 20.7) | |
| 0–24 years | 98 (24.6) |
| 25–34 | 89 (22.3) |
| 35–44 | 50 (12.6) |
| 45–54 | 46 (11.6) |
| 55 years and above | 115 (28.9) |
| Residence | |
| Rural | 156 (39.0) |
| Urban | 242 (61.0) |
| Health status on admission | |
| Asymptomatic | 95 (23.9) |
| Mild | 93 (23.4) |
| Moderate | 80 (20.0) |
| Severe | 130 (32.7) |
| Comorbidity | |
| Yes | 179 (45.0) |
| No | 219 (55.0) |
| Type of comorbidity | |
| Diabetes mellitus | 68 (17.1) |
| Hypertension | 41 (10.3) |
| Asthma | 33 (8.3) |
| Chronic pulmonary disease | 30 (7.5) |
| Chronic cardiac diseases | 23 (5.8) |
| Malignancy | 11 (2.8) |
| Chronic kidney disease | 7 (1.8) |
| HIV/AIDS | 6 (1.5) |
| Types of antibiotic administered | |
| Azithromycin only | 148 (37.2) |
| Azithromycin + ceftriaxone | 131 (32.9) |
| Azithromycin + vancomycin + ceftazidime | 50 (12.6) |
| Azithromycin + ceftriaxone + metronidazole | 30 (7.5) |
| Azithromycin + ceftriaxone + vancomycin | 24 (6.0) |
| Demographic and clinical characteristics | Frequency (%) |
|---|---------------|
| Azithromycin + ceftriaxone + amoxicillin | 13 (3.3) |
| Azithromycin + ceftriaxone + ceftazidime | 2 (0.5) |

Dexamethasone used

	Frequency (%)
Yes	116 (29.1)
No	282 (70.9)

Intranasal oxygen used

	Frequency (%)
Yes	162 (59.3)
No	236 (40.7)

Length of hospital stay (mean ± SD = 14.3 ± 4.8)

	Frequency (%)					
1–7 days	12 (3.0)					
8–14 days	248 (61.8)					
15–21 days	113 (28.4)					
22–28 days	13 (3.3)					
More than 28 days	14 (5.5)					
Variable	Median	IQR (P25, P75)	Mean	SD	SE	P-value
---------------------	--------	----------------	-------	-------	-------	---------
Health utility value (EQ-5D-3L)						
Sex						
Female	0.787	0.596	0.833	0.684	0.024	0.818
Male	0.787	0.596	0.854	0.689	0.017	
Age						
0–24	0.787	0.596	1.000	0.783	0.020	< 0.001
25–34	0.787	0.596	1.000	0.778	0.022	
35–44	0.787	0.596	0.787	0.649	0.046	
45–54	0.691	0.596	0.854	0.653	0.046	
55+	0.596	0.596	0.787	0.567	0.029	
Residence						
Rural	0.787	0.596	0.854	0.692	0.022	0.967
Urban	0.787	0.596	0.833	0.685	0.018	
Comorbidity						
No	0.787	0.596	1.000	0.777	0.017	< 0.001
Yes	0.596	0.596	0.787	0.574	0.021	
Hypertension						
No	0.787	0.596	0.854	0.699	0.015	0.001
Yes	0.596	0.596	0.787	0.580	0.042	
Chronic cardiac diseases						
No	0.787	0.596	0.854	0.697	0.014	0.004
Yes	0.596	0.596	0.787	0.518	0.067	
Chronic pulmonary disease						
No	0.787	0.596	0.854	0.703	0.014	< 0.001
Yes	0.596	0.596	0.596	0.499	0.057	
Asthma						
No	0.787	0.596	0.854	0.706	0.014	< 0.001
Yes	0.596	0.469	0.596	0.487	0.057	
Chronic kidney disease						
No	0.787	0.596	0.854	0.690	0.014	0.029
Yes	0.596	0.361	0.596	0.535	0.070	

SD = standard deviation; IQR = interquartile range; SE = standard error of the mean;
P-values are from the Mann-Whitney U test or Kruskal-Wallis test; * indicates significance at the 95% confidence level, and ** indicates significance at the 99% confidence level.
Health utility value (EQ-5D-3L)	No	0.787	0.596	1.000	0.711	0.281	0.015	< 0.001
	Yes	0.596	0.596	0.787	0.575	0.280	0.033	
Malignancy	No	0.787	0.596	0.854	0.687	0.288	0.014	0.859
	Yes	0.787	0.596	0.833	0.708	0.147	0.044	
HIV/AIDS	No	0.787	0.596	0.843	0.688	0.285	0.014	0.354
	Yes	0.692	0.596	0.787	0.607	0.270	0.110	
Dexamethasone used	No	0.787	0.596	1.000	0.735	0.280	0.016	< 0.001
	Yes	0.596	0.596	0.787	0.571	0.262	0.024	
Intranasal oxygen used	No	0.787	0.787	1.000	0.816	0.180	0.011	< 0.001
	Yes	0.596	0.596	0.596	0.500	0.305	0.024	
Length of hospital stay	1–7 days	0.691	0.596	0.866	0.718	0.227	0.065	0.002
	8–14 days	0.787	0.596	1.000	0.719	0.283	0.018	
	15–21 days	0.596	0.596	0.787	0.622	0.297	0.027	
	22–28 days	0.596	0.596	0.787	0.715	0.197	0.054	
	More than 28 days	0.596	0.469	0.787	0.604	0.241	0.064	
	Overall	0.787	0.596	0.833	0.688	0.285	0.014	

SD = standard deviation; IQR = interquartile range; SE = standard error of the mean;
P-values are from the Mann-Whitney U test or Kruskal-Wallis test; * indicates significance at the 95% confidence level, and ** indicates significance at the 99% confidence level.
Table 3
Comparison of the HSU values of the VAS across the demographic and clinical characteristics of Covid-19 patients admitted to a treatment centre in the Arsi Zone, 2020–2021.

Variable	Health utility value (VAS)	Median	IQR (P25, P75)	Mean	SD	SE	P-value	
Sex								
Female		0.700	0.600	0.800	0.689	0.134	0.011	0.961
Male		0.700	0.600	0.800	0.692	0.127	0.008	
Age								
0–24		0.725	0.610	0.860	0.732	0.126	0.013	< 0.001
25–34		0.750	0.650	0.840	0.734	0.121	0.013	
35–44		0.700	0.580	0.780	0.686	0.126	0.018	
45–54		0.680	0.600	0.780	0.678	0.123	0.018	
55+		0.620	0.560	0.710	0.629	0.118	0.011	
Residence								
Rural		0.700	0.600	0.810	0.695	0.132	0.010	0.927
Urban		0.700	0.600	0.790	0.688	0.128	0.008	
Comorbidity								
No		0.750	0.640	0.850	0.738	0.129	0.008	< 0.001
Yes		0.620	0.570	0.710	0.632	0.103	0.007	
Hypertension								
No		0.700	0.600	0.800	0.697	0.131	0.007	0.002
Yes		0.610	0.580	0.700	0.634	0.096	0.015	
Chronic cardiac diseases								
No		0.700	0.600	0.800	0.695	0.129	0.006	0.005
Yes		0.630	0.570	0.700	0.613	0.102	0.021	
Chronic pulmonary disease								
No		0.700	0.600	0.800	0.697	0.130	0.007	< 0.001
Yes		0.605	0.570	0.660	0.606	0.081	0.015	
Asthma								
No		0.700	0.600	0.800	0.699	0.129	0.006	< 0.001
Yes		0.590	0.560	0.640	0.601	0.096	0.017	

SD = standard deviation; IQR = interquartile range; SE = standard error of the mean;
P-values are from the Mann-Whitney U test or Kruskal-Wallis test; * indicates significance at the 95% confidence level, and ** indicates significance at the 99% confidence level.
Health utility value (VAS)							
Chronic kidney disease							
No	0.700	0.600	0.800	0.692	0.129	0.006	0.081
Yes	0.630	0.550	0.660	0.607	0.094	0.035	
Diabetes mellitus							
No	0.705	0.600	0.820	0.705	0.129	0.007	< 0.001
Yes	0.700	0.570	0.700	0.622	0.109	0.013	
Malignancy							
No	0.700	0.600	0.800	0.691	0.130	0.006	0.782
Yes	0.710	0.600	0.780	0.675	0.117	0.035	
HIV/AIDS							
No	0.700	0.600	0.800	0.691	0.129	0.006	0.531
Yes	0.665	0.590	0.750	0.653	0.112	0.046	
Dexamethasone used							
No	0.730	0.610	0.848	0.718	0.131	0.007	< 0.001
Yes	0.600	0.570	0.700	0.625	0.097	0.009	
Intranasal oxygen used							
No	0.750	0.695	0.850	0.749	0.116	0.007	< 0.001
Yes	0.600	0.560	0.660	0.604	0.096	0.007	
Length of hospital stay							
1–7 days	0.690	0.610	0.820	0.703	0.133	0.038	0.004
8–14 days	0.720	0.600	0.820	0.709	0.229	0.008	
15–21 days	0.640	0.590	0.730	0.657	0.122	0.011	
22–28 days	0.640	0.600	0.750	0.687	0.127	0.035	
More than 28 days	0.615	0.530	0.730	0.629	0.131	0.034	
Overall	0.700	0.600	0.800	0.690	0.129	0.006	

SD = standard deviation; IQR = interquartile range; SE = standard error of the mean;
P-values are from the Mann-Whitney U test or Kruskal-Wallis test; * indicates significance at the 95% confidence level, and ** indicates significance at the 99% confidence level.
Table 4
Multiple linear regression analysis for factors associated with HSU values of Covid-19 patients admitted to a treatment centre in the Arsi Zone, 2020–2021.

Variables	Coef.	SE	t	P-value	[95% CI]	Coef.	SE	t	P-value	[95% CI]		
HSU values of the EQ-5D (Adjusted R²: 45%)												
Sex (Ref: Female)	0.024	0.022	1.090	0.276	-0.019	0.068	0.013	0.009	1.420	0.155	-0.005	0.031
Age (in year)	-0.001	0.001	-1.980	0.048	-0.002	0.000	0.000	0.000	-2.180	0.030	-0.001	0.000
Residence (Ref: Rural)	-0.003	0.022	-0.120	0.905	-0.047	0.042	-0.004	0.009	-0.390	0.695	-0.022	0.014
Hypertension (Ref: No)	-0.017	0.037	-0.450	0.652	-0.089	0.056	-0.015	0.015	-0.980	0.326	-0.044	0.015
Chronic cardiac diseases (Ref: No)	-0.032	0.049	-0.660	0.512	-0.129	0.065	-0.018	0.020	-0.900	0.371	-0.058	0.022
Chronic pulmonary disease (Ref: No)	-0.018	0.042	-0.420	0.678	-0.101	0.066	-0.007	0.017	-0.400	0.689	-0.041	0.027
Asthma (Ref: No)	-0.091	0.040	-2.270	0.024	-0.169	-0.012	-0.036	0.016	-2.190	0.029	-0.068	-0.004
Chronic kidney disease (Ref: No)	0.022	0.083	0.270	0.788	-0.140	0.185	-0.003	0.034	-0.080	0.933	-0.069	0.064
Diabetes mellitus (Ref: No)	-0.008	0.031	-0.270	0.791	-0.069	0.053	-0.017	0.013	-1.310	0.192	-0.041	0.008
Malignance (Ref: No)	-0.009	0.066	-0.140	0.887	-0.140	0.121	-0.038	0.027	-1.420	0.158	-0.092	0.015
AIDS HIV (Ref: No)	0.039	0.090	0.440	0.664	-0.137	0.215	0.030	0.037	0.830	0.409	-0.042	0.103
Dexamethasone use (Ref: No)	0.089	0.029	3.110	0.002	0.033	0.145	0.026	0.012	2.240	0.026	0.003	0.049
Internasal oxygen use (Ref: No)	-0.042	0.037	-1.150	0.251	-0.114	0.030	0.012	0.015	0.810	0.421	-0.017	0.042
Health status on admission												
Mild (Ref: No symptom)	-0.093	0.032	-2.930	0.004	-0.156	-0.031	-0.064	0.013	-4.870	0.000	-0.089	-0.038
Moderate (Ref: No symptom)	-0.269	0.037	-7.360	0.000	-0.341	-0.197	-0.171	0.015	-11.450	0.000	-0.200	-0.142
Sever (Ref: No symptom)	-0.445	0.047	-9.520	0.000	-0.537	-0.353	-0.243	0.019	-12.720	0.000	-0.281	-0.206
Length of stay (in days)	-0.001	0.002	-0.300	0.767	-0.005	0.004	-0.001	0.001	-1.180	0.237	-0.003	0.001
_cons	0.955	0.043	22.110	0.000	0.870	1.039	0.847	0.018	47.940	0.000	0.812	0.881

Coef: Coefficient; *CI*: Confidence Interval; *SE*: Standard Error; *Ref*: Reference category.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- completedSTROBEcrosssectionalchecklist.docx