Responses of Growth, Oxidative Injury and Chloroplast Ultrastructure in Leaves of *Lolium perenne* and *Festuca arundinacea* to Elevated O$_3$ Concentrations

Sheng Xu 1,2, Yan Li 2,3, Bo Li 1, Xingyuan He 1,2,3,*, Wei Chen 1,2,3 and Kun Yan 4,*

1 CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; shengxu703@126.com (S.X.); ly_qianer@163.com (L.Y.); chenwei@iae.ac.cn (W.C.)

2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; ly_qianer@163.com

3 Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, China

4 School of Agriculture, Ludong University, Yantai 264025, China

* Correspondence: hexy1962@126.com (X.H.); yankunacademic@163.com (K.Y.)

Abstract: The effects of increasing atmospheric ozone (O$_3$) concentrations on cool-season plant species have been well studied, but little is known about the physiological responses of cool-season turfgrass species such as *Lolium perenne* and *Festuca arundinacea* exposed to short-term acute pollution with elevated O$_3$ concentrations (80 ppb and 160 ppb, 9 h $^{-1}$) for 14 days, which are widely planted in urban areas of Northern China. The current study aimed to investigate and compare O$_3$ sensitivity and differential changes in growth, oxidative injury, antioxidative enzyme activities, and chloroplast ultrastructure between the two turf-type plant species. The results showed that O$_3$ decreased significantly biomass regardless of plant species. Under 160 ppb O$_3$, total biomass of *L. perenne* and *F. arundinacea* significantly decreased by 55.3% and 47.8% ($p < 0.05$), respectively. No significant changes were found in visible injury and photosynthetic pigment contents. The two grass species exposed to 80 ppb O$_3$ except for 160 ppb O$_3$. However, both 80 ppb and 160 ppb O$_3$ exposure induced heavily oxidative stress by high accumulation of malondialdehyde and reactive oxygen species in leaves and damage in chloroplast ultrastructure regardless of plant species. Elevated O$_3$ concentration (80 ppb) increased significantly the activities of superoxide dismutase, catalase and peroxidase by 77.8%, 1.14-fold and 34.3% in *L. perenne* leaves, and 19.2%, 78.4% and 1.72-fold in *F. arundinacea* leaves, respectively. These results showed that *F. arundinacea* showed higher O$_3$ tolerance than *L. perenne*. The damage extent by elevated O$_3$ concentrations could be underestimated only by evaluating foliar injury or chlorophyll content without considering the internal physiological changes, especially in chloroplast ultrastructure and ROS accumulation.

Keywords: oxidative stress; ozone exposure; reactive oxygen species; chloroplast; antioxidative enzymes; urban plants

1. Introduction

The concentration of global atmospheric ozone (O$_3$) is increasing by 1–2% per year from 10 ppb in the 1900s to the current level of 40 ppb [1]. Furthermore, the atmospheric O$_3$ concentration is predicted to reach 70 ppb by the year 2050, while the regional spikes as high as 200 ppb have become rather frequent, especially in summer [2]. The ground-level O$_3$ concentrations have significantly increased in recent decades in many regions including Shenyang city of Northeast China in this study [3–5]. Acute exposure of elevated O$_3$ concentration within a short time period often occurred during the growing season of plants in many cities of China [5–7].

As one of the most toxic air pollutants, elevated O$_3$ concentrations could exert serious consequences on plant growth, physiological metabolisms and morphological characteristics [8–12]. The adverse effects of elevated O$_3$ concentrations on plants including herb...
species have been well known [13,14]. Elevated O$_3$ concentration led to leaf injury, decreased photosynthetic rate, and inhibited growth and accelerated senescence of many plant species [15–18]. In particular, O$_3$ entered the plants through stomata and it was degraded into reactive oxygen species (ROS) [19]. Excess ROS could make plant metabolic disorder by causing irreversible damage to physiological processes and cell structure such as chloroplast ultrastructure [20]. Elevated O$_3$ concentrations (more than 80 ppb) could cause acute damage on plants and chronic injuries [21]. However, the responses of plants to O$_3$ are species specific [22]. Some plant species adapted well to O$_3$ environments [23], but some were more sensitive and could be used as bio-indicators for O$_3$ pollution [24]. Actually, plants including herb species have developed antioxidative systems to protect plant cells by regulating the production rate or content of intra-cellular ROS such as hydrogen peroxide (H$_2$O$_2$) and superoxide anion (O$_2$·$^-$). Changes in the activities of defense enzymes in leaves such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) could play an important role in preventing and alleviating the adverse impacts of elevated O$_3$ by scavenging ROS in many plants [9,14,17,20].

Perennial ryegrass (*Lolium perenne* cv. Lark) and tall fescue (*Festuca arundinacea* cv. Pixie) used in this study are two improved turf-type species in cool-season plants, and applied widely in the cities of temperate or cool climate areas for many years in China [25]. As cool-season plant species, both of them were more vulnerable to high temperature or heat stress, especially in summer in urban areas or many cities of China, and perennial ryegrass was more sensitive to high temperature than tall fescue [26]. In addition, the two grass species have excellent characteristics such as easy to establish, improved drought and low temperature adaptation and less-cost maintenance in establishing turf or lawn compared to common cultivars [25], but they may also be easy to suffer the adverse impact or stress from air pollution such as elevated O$_3$ concentrations occurred often in dry summer. Many physiological changes could be involved in O$_3$ stress for cool-season herb species [13,14,24,27]. However, little is known about how elevated O$_3$ concentrations impact the changes of ROS and chlorophyll ultrastructure of cool-season turfgrass species. In general, *L. perenne* is more sensitive to abiotic stresses than *F. arundinacea* [13,25,26]. Therefore, we here hypothesized that *L. perenne* could be more sensitive to O$_3$ than *F. arundinacea* based on the comparison of the physiological changes between them. The main purposes of this study were to (1) compare and evaluate the differences and extents of oxidative injury and the antioxidant protection suffering from O$_3$ stress; (2) to determine whether and to what extent chloroplasts in leaves of the two cool-season grass species would be affected by the short-term acute fumigation of elevated O$_3$ concentrations, which occurs frequently in summer under natural condition in the urban area.

2. Results

2.1. Visible Injury, Pigment Contents and Chloroplast Ultrastructure

No visible foliar injury was observed in leaves of *L. perenne* and *F. arundinacea* exposed to AA and 80 ppb O$_3$ concentration (Figure 1). Ozone-induced visible foliar injury was observed on the two plant species exposed to 160 ppb O$_3$ concentration (Figure 1). Foliar injury symptoms on the leaves of the two grass species were similar and characterized as the diffuse chlorotic stripes and brown necrosis appeared first in leaf tip.

To evaluate the chlorosis degree and compare the changes in the contents of photosynthetic pigments including chlorophyll (Chl) and carotenoids (Car) in leaves of *L. perenne* and *F. arundinacea* were shown in Figure 2. In contrast, Chl a content decreased by elevated O$_3$ (160 ppb) in *L. perenne* leaves by about 29.1% as compared to ambient air (AA), and in *F. arundinacea* leaves by 16.5% ($p < 0.05$). No significant effect between different treatments on Chl b was found in *F. arundinacea* leaves. Chlorophyll a + b content showed significant decrease under elevated O$_3$ concentration (160 ppb), particularly for *L. perenne* leaves (by 23.5%, $p < 0.05$). Chl a + b and Car contents had not significant change in plant leaves exposed to 80 ppb O$_3$ regardless of grass species, but decreased significantly under elevated
O$_3$ (160 ppb, $p < 0.05$). GLM analysis showed that no significant interactive effect of O$_3$ and species was found on Chl a + b ($p = 0.074$, Table 1) and Car contents ($p = 0.875$, Table 1).

To identify morphological changes in photosynthetic organelles in leaves of L. perenne and F. arundinacea, the chloroplast ultrastructure was examined. As shown in Figure 3, the chloroplasts of the two plant species under ambient air exhibited an elliptical shape, with a typical lamellar grana structure consisting of thylakoid and several large starch grains and few osmiophilic granules, especially for F. arundinacea (Figure 3A,D). By contrast, the chloroplasts in leaves exposed to elevated O$_3$ concentrations were abnormal and swollen in appearance (Figure 3B,F), with lots of osmiophilic granules and a serious separation of chloroplast from cell wall (Figure 3B,C,E,F). In 160-ppb O$_3$ exposed leaves, chloroplasts
were partly damaged with an irregular and slack grana thylakoid and completely separated from cell wall, and mitochondria was degraded with a part disappear of inner wrinkle, especially for *L. perenne* (Figure 3C).

Table 1. ANOVA results (*p* values) for main effects and interactions of species and *O*₃ on physiological parameters in *Lolium perenne* and *Festuca arundinacea*.

	Species	*O*₃	Species × *O*₃
Shoot biomass	0.003	<0.001	0.240
Root biomass	0.077	0.001	0.742
Total biomass	0.010	<0.001	0.418
MDA	0.052	<0.001	0.430
*O*₂⁻	<0.001	<0.001	<0.001
H₂O₂	<0.001	<0.001	0.145
SOD	<0.001	<0.001	0.004
CAT	0.006	<0.001	0.004
POD	<0.001	<0.001	<0.001
APX	0.081	<0.001	0.473
Chl a	0.033	<0.001	0.016
Chl b	0.810	0.058	0.256
Chl a + b	0.270	0.001	0.074
Car	0.002	<0.001	0.875

MDA—Malondialdehyde, *O*₂⁻—Superoxide anion radical, H₂O₂—hydrogen peroxide, SOD—superoxide dismutase, CAT—catalase, POD—peroxidase, APX—ascorbate peroxidase, Chl—chlorophyll, Car—carotenoids. Significant effects (*p* < 0.05) are marked in bold.

![Figure 3. Transmission electron microscope (TEM) observation on the changes in ultrastructure of *Lolium perenne* and *Festuca arundinacea* leaves under elevated *O*₃ concentrations for two weeks. (A–C) Details of TEM micrographs of cross sections of *L. perenne* leaves. (D–F) Details of TEM micrographs of cross sections of *F. arundinacea* leaves. (A,D) Chloroplasts under ambient air (AA) exhibited an elliptical shape and a typical regular lamellar grana structure consisting of thylakoid and several starch grains. (B,E) Chloroplasts under 80 ppb *O*₃ exhibited a rounded and abnormal shape and a typical irregular lamellar grana structure consisting of thylakoid and numerous osmiophilic granules. (C,F) Chloroplasts under 160 ppb *O*₃ showed a serious deformation in shape and were partly damaged with an irregular and slack grana thylakoid and completely separated from cell wall.](image-url)
2.2. Oxidative Injury

The oxidative injury induced by elevated O$_3$ concentrations was shown in Figure 4. Compared with the plants under AA, the O$_3$-exposed leaves of both L. perenne and F. arundinacea show higher MDA content, O$_2$·$^-$ production rate and H$_2$O$_2$ content (Figure 3, $p < 0.05$). Elevated O$_3$ concentration (80 ppb) increased significantly MDA content, O$_2$·$^-$ production rate and H$_2$O$_2$ content by 33.5%, 29.3% and 33.5% in L. perenne leaves ($p < 0.05$), and 48.1%, 25.1% and 14.6% in F. arundinacea leaves ($p < 0.05$), respectively. MDA content, O$_2$·$^-$ production rate and H$_2$O$_2$ content significantly increased by 91.4%, 36.8% and 68.2% in leaves of F. arundinacea exposed to 160 ppb O$_3$ concentration ($p < 0.05$, Figure 4). The increasing of O$_2$·$^-$ production rate in L. perenne leaves (68.9%) showed higher level than in F. arundinacea leaves (36.8%). GLM analysis showed a significant interactive effect of O$_3$ and species on H$_2$O$_2$ content ($p < 0.01$), except for MDA content ($p = 0.430$, Table 1) and O$_2$·$^-$ production rate ($p = 0.145$, Table 1).

![Figure 4. Effects of elevated O$_3$ concentrations on malondialdehyde (MDA) content, superoxide anion radical (O$_2$·$^-$) production rate and hydrogen peroxide (H$_2$O$_2$) content in leaves of Lolium perenne and Festuca arundinacea. Each value represents the average (\pmSE) of 3 replicates. Different lowercase letters within a row indicate significant differences among the different factors ($p < 0.05$).]
2.3. Changes in Antioxidative Enzyme Activities

Elevated O₃ significantly increased the activities of SOD, CAT and POD, regardless of plant species (Figure 5). For *L. perenne*, SOD, CAT and POD activities increased by 77.8% and 1.14-fold, 34.3% and 91.7%, and 1.25-fold and 2.40 fold under 80 ppb and 160 ppb O₃ concentrations (*p* < 0.05, respectively). In *F. arundinacea* leaves, SOD, CAT and POD activities increased by 19.2% and 47.1%, 78.4% and 1.73-fold, and 1.72-fold and 3.82 fold under 80 ppb and 160 ppb O₃ concentrations (*p* < 0.05), respectively. For the two grass species, APX activity increased first under 80 ppb O₃ and decreased under 160 ppb O₃ (Figure 5). Increase of APX activity in leaves of *L. perenne* (by 68.7%) under 80 ppb O₃ showed higher level than that under 160 ppb O₃ (24.5%). Regardless of grass species, GLM analysis showed a significant interactive effect of O₃ and species on antioxidative enzyme activities (*p* < 0.01, Table 1), except for APX activity (*p* = 0.473, Table 1).

![Figure 5](image_url)

Figure 5. Effects of elevated O₃ concentrations on the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) in leaves of *Lolium perenne* and *Festuca arundinacea*. Each value represents the average (±SE) of 3 replicates. Different lowercase letters within a row indicate significant differences among the different factors (*p* < 0.05).

2.4. Growth Response

Elevated O₃ concentrations can decrease growth in many plant species. Growth parameters of *L. perenne* and *F. arundinacea* were shown in Figure 6. In this study, elevated O₃ concentration induced a significant reduction of growth in the two turfgrass species, especially in biomass. With increasing of O₃ concentrations, aboveground biomass, root biomass and total biomass of the two grass species showed a trend of decreasing, respectively. Compared with AA, total biomass significantly decreased by 33.7% and 55.3% in *L. perenne* (*p* < 0.05), 42.9% and 47.8% in *F. arundinacea* (*p* < 0.05) exposed to 80 ppb and 160 ppb O₃, respectively. No significant difference in total biomass was found between the two elevated O₃ concentrations for each species, particularly in *F. arundinacea* (*p* = 0.597). No difference in R/S ratio was observed among the different factors (Figure 6). No significant interactive effect was found between O₃ and species in all growth parameters (Table 1).
3.1. Visible Injury and Growth Characteristics

Generally, elevated O$_3$ concentrations could induce typical visible injury and the occurrence and visible extent of the symptoms correlated positively with the concentration and duration of O$_3$ exposure [31]. Foliar visible injury may have started to develop after experiencing a different-time O$_3$ exposure for different plants, even though negative effects may have started to develop on a microscopic level earlier [32]. In this study, elevated O$_3$ (160 ppb for two weeks) induced serious visible injury in L. perenne and F. arundinacea leaves, in agreement with our previous studies in leaves of Trifolium repens exposed to 80 ppb O$_3$ for 5 days [33] and Poa pratensis (120 ppb O$_3$ for 7 days) [34]. In addition, similar foliar O$_3$ injuries were observed on crops such as Medicago truncatula exposed to 70 ppb O$_3$ for 6 days [8], winter wheat to 120 ppb O$_3$ for two months [10], rice cultivars 120 ppb O$_3$ for one day [35]. However, we found that no foliar visible injury symptom was observed in plants exposed to 80 ppb O$_3$. It might imply that plants probably maintained higher...
ability of self-repair or detoxification under the chronic fumigation by lower O₃ level than that under the acute fumigation by elevated O₃ concentration (160 ppb), which resulting into irreversible injury due to serious damage in ability of self-repair or detoxification. In other words, it could be only a matter of time before occurrence of foliar injury symptom in plants exposed to 80 ppb O₃ in this study.

Actually, we found that elevated O₃ concentrations (both 80 and 160 ppb) induced a significant reduction of growth with poor biomass regardless of plant species at the end of this experiment. The current study showed that the percentage of decrease in biomass at the end of this experiment was larger in *L. perenne* than in *F. arundinacea* exposed to 160 ppb O₃, implying that the latter probably was more tolerant than the former. Similar studies found that elevated O₃ concentrations decreased growth and inhibited biomass accumulation in herb species such as clovers [36,37], crops [6,11,38] and trees [3,12,39,40]. R/S ratio is usually used for assessing plant health, and its variation is a common stress response driven by different plant strategies for coping with environmental stress [41]. In this study, we found that R/S ratio was not significantly affected by elevated O₃ concentrations, in accordance with some results in poplar [42,43] and spring wheat [44], but in disagreement with many studies with a reduction of R/S ratio in trees [32,45,46] and herb species [47]. It was well known elevated O₃ concentration led to lower roots allocation relative to shoots and, thus, reduced R/S ratios. However, observed responses in R/S ratio are highly variable, which is associated with variations in experiments such as plant species or cultivars, growth and development stages, nutrient condition in soil and duration and level of gas fumigation [48].

3.2. Pigment Content and Chloroplast Ultrastructure Changes

Chlorophyll (Chl) is the most important pigment in plants and is usually embedded in the thylakoid membranes of chloroplasts [49,50]. Elevated O₃ concentrations usually induced the reduction of photosynthetic pigments including Chl in plants. We found that 160 ppb O₃ concentration in this experiment decreased total Chl and Car contents, in agreement with the result that elevated O₃ concentration decreased total Chl and Car contents in maize leaves [51] and tree leaves [20]. However, no significant effect of 80 ppb O₃ was found on the contents of pigment contents, as confirmed by no significant foliar injury symptom in appearance from the two plant species in this study. Similar results were found that chlorophyll content did not significantly vary among species or varieties under O₃ exposure [52]. Actually, the effect of O₃ on photosynthetic pigment contents depended on the time and dose of O₃ exposure [53,54], as well plant development stage such as a study shown that elevated O₃ did not affect chlorophyll content in young fully expanded leaves of *Betula pendula* saplings, but it reduced chlorophyll content in aging leaves [55].

It is well known that chloroplast is center of photosynthetic response and Chl synthesis. Under elevated O₃ concentration, plant chloroplast structure could experience evident changes in micro-morphological characteristics, which might obviously impair their functionality and affect nutrient translocation [56]. In this study, we found that chloroplasts in O₃-exposed leaves in the two plant species were abnormal and swollen in shape, and had many osmiophilic granules, indicating that an increase in osmiophilic granules could originate from the lipid-soluble degradation products from the thylakoid membranes under O₃ stress [57]. In addition, chloroplasts showed greater damage and much accumulation of granules in *L. perenne* than in *F. arundinacea* exposed to the same O₃ concentration, suggesting that the former could be more sensitive to O₃ than the latter. Similar findings were observed that elevated O₃ concentration strongly affected chloroplasts of urban tree species and induced a part or total deformation or disaggregation [20].

3.3. Oxidative Injury and Antioxidative Metabolism

As a strong oxidant, elevated O₃ can cause membrane lipid peroxidation and induce oxidative injury of tissue cells in plants [58]. As the product of membrane lipid peroxidation, MDA content can increase in plants resulting from oxidative stress by elevated O₃.
concentrations [3,59]. In this study, we observed that elevated O₃ concentrations significantly increased MDA level, suggesting the occurrences of membrane lipid peroxidation and oxidative stress after O₃ exposure. This was in agreement with our previous study that elevated O₃ concentrations significantly increased MDA content in herb species such as *T. repens*, *P. pratensis* and *F. arundinacea* [34], tree species such as *Quercus mongolica* and *Populus alba* and *Pinus tabulaeformis* [3,9,39]. Besides, exposure to elevated O₃ concentrations often increased ROS production [60]. The two turfgrass species in the present study showed an increase in production rate of O₂⁻ and H₂O₂ content under elevated O₃ concentrations. This indicated that the plants under elevated O₃ exposure could enhance the risk of oxidative stress. Similar results were found that elevated O₃ concentrations significantly increased H₂O₂ levels in leaves of Italian ryegrass (*L. multiflorum*) [14] and *Ginkgo bioloba* [61]. By contrast, H₂O₂ content in some plants decreased, which may be related to the increasing of scavenging ROS ability by high antioxidative level under O₃ stress [10,12,54].

As we well known, antioxidant enzymes under O₃ stress play an important role in preventing oxidative stress by scavenging ROS. A positive relationship has been found between antioxidant capacity in plants and tolerance to O₃ [62]. In other word, the change of antioxidative enzyme activities and the extent of change determined the status of O₃ stress and tolerance shown by species or varieties. In this study, we found that elevated O₃ concentrations increased the activities of all the tested enzymes, in agreement with the findings in *T. repens* and *P. pratensis* [34] and peach tree cultivars [7], but in disagreement with the results found in *P. halepensis* [63], *Catalpa ovata* [64] and winter wheat [10] that elevated O₃ decreased SOD and POD activities. Actually, the activities of some enzymes of most of plants showed the trend of increase first and then decrease with increasing of O₃ exposure dose and duration [10,11,54], just like the change in APX activity from 80 ppb to 160 ppb O₃ in this study. In the current study, SOD, CAT and POD activities showed higher level in leaves of *F. arundinacea* than *L. perenne* exposed to 160 ppb O₃, indicating that the former could be more tolerant to O₃ stress than the latter. For these enzyme activities, there was a significant interaction of O₃ × species, indicating that different O₃ effects between species. These different findings showed that species specific differences in antioxidative enzyme activities might reflect different physiological adjustment capacities in response to O₃ stress [3]. However, the increases in the activities of antioxidative enzymes regardless of plant species in this study were not able to counteract membrane lipid peroxidation, cellular ultrastructural deterioration and damage, suggesting that the possible contribution of these physiological responses was insufficient to scavenge ROS and offset the oxidative stress induced by elevated O₃ concentration in plants even though no visible injury was observed. Therefore, the damage extent by elevated O₃ concentration might be underestimated only by evaluating foliar injury or chlorophyll content without considering the internal physiological changes further.

4. Materials and Methods

4.1. Study Site

This study was conducted in the Shenyang Arboretum (41°46′ N, 123°26′ E) of the Chinese Academy of Science (CAS) and closely located to a densely populated commercial center in Shenyang city of Northeast China, Liaoning Province. The arboretum with a mean elevation of 41 m and an area of 5 ha was founded in 1955, mainly planted with native tree species [65]. The study area belongs to warm temperate-zone semi-humid continental monsoon climate with an annual average temperature of 7.4 °C [66].

4.2. Experimental Design

This study was carried out in nine OTCs designed according to the design of [67] with three treatments: ambient air (AA, control, 40 ppb O₃), two elevated O₃ concentrations (80 ppb and 160 ppb O₃). OTCs, 4 m in diameter and 3 m in height, were distributed randomly without mutual shading. Ozone was generated from O₃ generator (Xinhang-2010, Shenyang, China) and then added to the OTCs. The generated O₃ was directly
dispensed to the open top chamber through a PVC pipe. The actual O₃ concentrations in the chambers were monitored in real time and controlled for the targeted levels (80 ppb and 160 ppb) using an automated time-sharing system connected to an ozone analyzer (S-905, Auckland, New Zealand) and all data were stored using a data logger (CR800, Logan, UT, USA). More detailed information can be found in our previous experiments by [3,66].

4.3. Plant Materials and Treatments

Two cool-season turfgrass species used in the experiment was perennial ryegrass (L. perenne cv. Lark) and tall fescue (F. arundinacea cv. Pixie), obtained for seeds from a northern company of China (Beijing Green Jinghua Ecological Landscape Co., Ltd., Beijing, China). The seeds were sown on 12 August 2015 into the plastic pots (20 cm in diameter, 15 cm in depth, 0.5 g per pot) filled with mixed loam and sand (3/1, v/v) and cultured in the greenhouse for 30 days, and then all the pots were divided into three groups to move into the OTCs with the treatment of AA and 80 ppb and 160 ppb O₃, respectively. The plants were fumigated with elevated O₃ concentrations for 9 h daily in the daytime (8:00–17:00). During the treatments, the positions of the pots in OTCs were randomly exchanged daily in order to minimize positional effects. The pots were often watered with enough tap water in order to keep them close to field capacity. After two weeks of gas fumigation, the older leaves were sampled for related physiological measurements and transmission electron microscopy analysis.

4.4. Measurements of Growth and Photosynthetic Pigment Contents

For growth, the different tissues (leaves, stems and roots) were separated and oven-dried to a constant dry weight at 60 °C to obtain dry biomass each part. Root/shoot (R/S) ratio was calculated by total dry root biomass per pot divided by total dry above-ground biomass per pot. Chlorophyll in leaves was extracted with 95% ethanol (v/v) in the dark for 72 h at 4 °C [20] and quantified spectrophotometrically (UV-1800, Shimadzu, Japan). Chlorophyll a (Chla) and b (Chlb) contents were measured and determined at wavelength of 649 and 665 nm. Carotenoids (Car) were measured at 470, 649 and 665 nm according to the modified methods of [68].

4.5. Evaluation of Oxidative Injury

Malondialdehyde (MDA) content was measured according to the method of [69]. The absorbance of thiobarbituric acid reactive substances in the reactive mixture was measured at 532 and 600 nm. The non-specific absorbance at 600 nm was subtracted from the absorbance at 532 nm. MDA content was calculated by an extinction coefficient of 155 (mM)⁻¹ cm⁻¹.

Superoxide anion radical (O₂⁻) production rate was determined according to [70] with a slight modification. Samples of frozen leaves (0.2 g) were ground with liquid nitrogen and homogenized in 2 mL ice-cold 100 mM phosphate buffer (pH 7.8). The homogenates were centrifuged at 12,000 × g for 30 min at 4 °C, and the supernatants were used for the analysis of O₂⁻ production rate. The supernatant was added to 10 mM hydroxylamine hydrochloride at 25 °C for 1 h, 17 mM p-aminophenic acid and 7 mM α-naphthylamine were added, and measured the absorbance at 530 nm after 20 min.

H₂O₂ content was measured as described by [71]. Leaf samples (0.2 g) were ground and centrifuged at 12,000 × g for 20 min at 4 °C. The reaction solution was used to measure the H₂O₂ content at 415 nm by using UV-1800 spectrophotometer (Shimadzu, Kyoto, Japan).

4.6. Determination of Antioxidant Enzyme Activities

Leaf samples (0.2 g) were powdered with liquid nitrogen and ground with 5 mL 0.05 M phosphate buffer (pH = 7.8). The mixture was centrifuged at 12,000 × g at 4 °C for 15 min, and the supernatant was used to analyze the activities of SOD, CAT, POD and APX. SOD activity was measured as described by [72]. The reaction system included 0.05 M phosphate buffer, 130 mM methionine, 630 μM NBT, enzyme extract and 13μM riboflavin. SOD
activity was measured at 560 nm. One unit of SOD was defined as the amount of enzyme added by 50% inhibition of NBT reduction. CAT activity was measured as described by [73]. POD activity was measured as described by [74] with some modifications. APX activity was measured according to the method reported by [75].

4.7. Transmission Electron Microscopy Analysis

To observe the ultrastructure of chloroplasts, the healthy tissues of fresh leaves were cut from the middle part of the leaf to ensure uniformity of sample material. Small pieces (1 mm2) of leaves were taken for electron microscope analysis. Fragments of leaves were fixed in 3% glutaraldehyde in 0.2 M sodium phosphate buffer (pH 7.0) for 30 min at 4 °C. The more detailed process was described according to [76].

4.8. Statistical Analysis

One-way analysis of variance (ANOVA) was used to detect significant differences of each parameter between AA and elevated O$_3$ concentration. The significant differences among the different factors including grass species and O$_3$ concentrations were analyzed by the least significance differences (LSD) at 95% confidence level by using SPSS statistical software (PASW 18.0, Chicago, IL, USA). Differences among the different factors were considered significant at $p < 0.05$. The main effects and interactions of species and O$_3$ on physiological parameters were evaluated by general linear model (GLM).

5. Conclusions

In the present study, growth, foliar visible and oxidative stress injuries, antioxidative enzyme activities and chloroplast ultrastructure of two common cool-season turfgrass species were investigated and analysed under the different elevated O$_3$ concentrations. No visible foliar injury was observed in leaves of L. perenne and F. arundinacea exposed to 80 ppb O$_3$, except for 160 ppb O$_3$ resulting into the similar injury symptoms characterized as the diffuse chlorotic stripes and brown necrosis appeared in leaves. Regardless of grass species, photosynthetic pigment contents in leaves had not significant change under 80 ppb O$_3$, but decreased significantly under 160 ppb O$_3$. Chloroplasts in O$_3$-exposed leaves were abnormal and swollen in appearance with lots of osmiophilic granules regardless of plant species. In 160-ppb O$_3$ exposed leaves, chloroplasts were partly damaged with an irregular and slack grana thylakoid, especially for L. perenne. MDA content, O$_2^-$ production rate and H$_2$O$_2$ content in leaves showed higher values under elevated O$_3$ concentrations than those under ambient air, indicating that oxidative stress occurred under elevated O$_3$ exposure. However, O$_3$ fumigation increased significantly antioxidative enzyme activities in leaves of the two turfgrass species, and the increased enzyme activities in F. arundinacea leaves showed higher level than those in L. perenne leaves, suggesting that the former showed higher O$_3$ stress adaptation than the latter. In addition, elevated O$_3$ induced a significant reduction in root and total biomass of the two turfgrass species. Based on comparative and comprehensive responses of the physiological characteristics of the two cool-season plant species, we found that F. arundinacea could be more tolerant to O$_3$ than L. perenne. What’s more, the damage extent of elevated O$_3$ concentration to the two grass species might be underestimated only by evaluating the changes in foliar injury or chlorophyll content regardless of the internal physiological metabolisms including chloroplast ultrastructure change and ROS accumulation of plants, particularly for the young seedlings under the short-term acute exposure of O$_3$. Future studies should be required to examine the physiochemical changes by the long-term study under the duration of acute O$_3$ stress, especially at the different stages of growth and development of cool-season plant species.

Author Contributions: X.H. and K.Y. conceived and designed the experiments. S.X. performed the experiments and wrote the main manuscript text. Y.L., B.L. and W.C. helped interpret the data. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by the National Natural Science Founding of China (32130068, 32071597, 41675153, 31870458, 31270518, 31170873, 31670412, and 90411019).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: We greatly appreciate Dali Tao for critical review of the manuscript, and Yijiang Wang and Donglan Xiong, Qin Ping, Yi Zhao and Wei Fu for their help in this study.

Conflicts of Interest: The authors declare no competing financial and interests.

References
1. Van Dingenen, R.; Dentener, F.J.; Raes, F.; Krol, M.; Emberson, L.; Cofala, J. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos. Environ. 2009, 43, 604–618. [CrossRef]
2. Ainsworth, E.A.; Yendrek, C.R.; Sitch, S.; Collins, W.J.; Emberson, L.D. The effects of tropospheric ozone on net primary productivity and implications of climate change. Annu. Rev. Plant Biol. 2012, 63, 697–661. [CrossRef] [PubMed]
3. Xu, S.; He, X.; Chen, W.; Huang, Y.; Zhao, Y.; Li, B. Differential sensitivity of four urban tree species to elevated O₃. Urban For. Urban Gree. 2015, 14, 1166–1173. [CrossRef]
4. Liu, N.; Lin, W.; Ma, J.; Xu, W.; Xu, X. Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China. J. Environ. Sci. 2019, 77, 291–302. [CrossRef] [PubMed]
5. Qiao, X.; Wang, P.; Zhang, J.; Zhang, H.; Tang, Y.; Hu, J.; Ying, Q. Spatial-temporal variations and source contributions to forest ozone exposure in China. Sci. Total Environ. 2019, 674, 189–199. [CrossRef] [PubMed]
6. Feng, Z.; Hu, E.; Wang, X.; Jiang, L.; Liu, X. Ground-level O₃ pollution and its impacts on food crops in China: A Review. Environ. Pollut. 2015, 199, 42–48. [CrossRef]
7. Dai, L.; Li, P.; Shang, B.; Liu, S.; Yang, A.; Wang, Y.; Feng, Z. Differential responses of peach (Prunus persica) seedlings to elevated ozone are related with leaf mass per area, antioxidant enzymes activity rather than stomatal conductance. Environ. Pollut. 2017, 227, 380–388. [CrossRef]
8. Iyer, N.J.; Tang, Y.; Mahalingam, R. Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. Plant Cell Environ. 2013, 36, 706–720. [CrossRef]
9. Xu, S.; He, X.; Chen, W.; Su, D.; Huang, Y. Elevated CO₂ ameliorated the adverse effect of elevated O₃ in previous-year and current-year needles of Pinus tabulaeformis in urban area. Bull. Environ. Contam. Toxicol. 2014, 92, 733–737. [CrossRef]
10. Liu, X.; Sui, L.; Huang, Y.; Geng, C.; Yin, B. Physiological and visible injury responses in different growth stages of winter wheat to ozone stress and the protection of spermidine. Atmos. Pollut. Res. 2015, 6, 596–604. [CrossRef]
11. Han, Y.J.; Gharibeshghi, A.; Mewis, I.; Förster, N.; Beck, W.; Ulrichs, C. Plant responses to ozone: Effects of different ozone exposure durations on plant growth and biochemical quality of Brassica campestris L. ssp. Chinensis. Sci. Hortic. 2020, 262, 108921. [CrossRef]
12. Shang, B.; Feng, Z.; Gao, F.; Calatayud, V. The ozone sensitivity of five poplar clones is not related to stomatal conductance, constitutive antioxidant levels and morphology of leaves. Sci. Total Environ. 2020, 699, 134402. [CrossRef] [PubMed]
13. Hayes, F.; Mills, G.; Ashmore, M. Effects of ozone on inter-and intra-species competition and photosynthesis in mesocosms of Lolium perenne and Trifolium repens. Environ. Pollut. 2009, 157, 208–214. [CrossRef] [PubMed]
14. Pasqualetti, C.B.; Sandrin, C.Z.; Pedroso, A.N.V.; Domingos, M.; Figueiredo-Ribeiro, R.C.L. Fructans, ascorbate peroxidase, and hydrogen peroxide in ryegrass exposed to ozone under contrasting meteorological conditions. Environ. Sci. Pollut. Res. 2015, 22, 4771–4779. [CrossRef] [PubMed]
15. Calatayud, V.; Cervero, J.; Calvo, E.; Garcia-Breijo, F.-J.; Reig-Armíñana, J.; Sanz, M.J. Responses of evergreen and deciduous Quercus species to enhanced ozone levels. Environ. Pollut. 2011, 159, 55–63. [CrossRef]
16. Fares, S.; Vargas, R.; Detto, M.; Goldstein, A.H.; Karlik, J.; Paolletti, E.; Vitale, M. Tropospheric ozone reduces carbon assimilation in trees: Estimates from analysis of continuous flux measurements. Glob. Chang. Biol. 2013, 19, 2427–2443. [CrossRef]
17. Kitao, M.; Yasuda, Y.; Kominami, Y.; Yamanoi, K.; Komatsu, M.; Miyama, T.; Mizoguchi, Y.; Kitaoka, S.; Yazaki, K.; Tobita, H.; et al. Increased phytotoxic O₃ dose accelerates autumn senescence in an O₃-sensitive beech forest even under the present-level O₃. Sci. Rep. 2016, 6, 1–9. [CrossRef]
18. De Marco, A.; Vitale, M.; Popa, I.; Anav, A.; Badea, O.; Silaghi, D.; Leca, S.; Screpanti, A.; Paolletti, E. Ozone exposure affects tree defoliation in a continental climate. Sci. Total Environ. 2017, 596–597, 396–404. [CrossRef]
19. Kangasjarvi, J.; Jaspers, P.; Kollist, H. Signalling and cell death in ozone exposed plants. Plant Cell Environ. 2005, 28, 1021–1036. [CrossRef]
20. Gao, F.; Catalayud, V.; Garcia-Breijo, F.; Reig-Armíñana, J.; Feng, Z. Effects of elevated ozone on physiological, anatomical and ultrastructural characteristics of four common urban tree species in China. Ecol. Indic. 2016, 67, 367–379. [CrossRef]
21. Krupa, S.; McGrath, M.T.; Andersen, C.P.; Booker, F.L.; Burkey, K.O.; Chappelka, A.H.; Chevone, B.I.; Pell, E.J.; Zilinskas, B.A. Ambient ozone and plant health. Plant Dis. 2001, 85, 4–12. [CrossRef]
49. Eckhardt, U.; Grimm, B.; Hörttner, S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol. Biol. 2004, 56, 1–14. [CrossRef]

50. Kobayashi; K.; Fujii; S.; Sasaki; D.; Baba; S.; Ohta; H.; Masuda; T.; Wada, H. Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis. Front. Plant Sci. 2014, 5, 272. [CrossRef]

51. Leitao, L.; Moret, J.J.; Biolley, J.P. Changes in PEP carboxylase, rubisco and rubisco activase mRNA levels from maize (Zea mays) exposed to a chronic ozone stress. Biol. Res. 2007, 40, 137–153. [CrossRef] [PubMed]

52. Calatayud, A.; Barreno, E. Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiol. Biochem. 2004, 42, 549–555. [CrossRef] [PubMed]

53. Ommen, O.; Donnelly, A.; Vanhoutvin, S.; Van Oijen, M.; Manderscheid, R. Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the 'ESPACE-wheat' project. Eur. J. Agron. 1999, 10, 197–203. [CrossRef]

54. Yan, K.; Chen, W.; He, X.; Zhang, G.; Xu, S.; Wang, L. Responses of photosynthesis, lipid peroxidation and antioxidative system in leaves of Quercus mongolica to elevated O3. Environ. Exp. Bot. 2010, 69, 198–204. [CrossRef]

55. Harmens, H.; Hayes, F.; Sharps, K.; Mills, G.; Calatayud, V. Leaf traits and photosynthetic responses of Betaula pendula saplings to a range of ground-level ozone concentrations at a range of nitrogen loads. J. Plant Physiol. 2017, 211, 42–52. [CrossRef]

56. Calatayud, V.; García-Breijo, F.J.; Cervero, J.; Reig-Armíñana, J.; Sanz, M.J. Physiological, anatomical and biomass partitioning responses to ozone in the Mediterranean endemic plant Lamottia dianae. Ecotoxicol. Environ. Safe 2011, 74, 1131–1138. [CrossRef]

57. Kivimäenpää, M.; Sutinen, S.; Calatayud, V.; Sanz, M.J. Visible and microscopic needle alterations of mature Aleppo Pine (Pinus halepensis) trees growing on an ozone gradient in eastern Spain. Tree Physiol. 2010, 30, 541–554. [CrossRef]

58. Singh, A.A.; Chaurasia, M.; Gupta, V.; Agrawal, M.; Agrawal, S.B. Responses of Quercus mongolica cultivars ‘Buland’ and ‘Prakash’ to an antiozonant ethylene diurea grown under ambient and elevated levels of ozone. Acta Physiol. Plant. 2018, 40, 92. [CrossRef]

59. Podda, A.; Pisuttu, C.; Hoshika, Y.; Pellegrini, E.; Carrari, E.; Lorenzini, G.; Nali, C.; Cotrozzi, L.; Zhang, L.; Baraldi, R.; et al. Can nutrient fertilization mitigate the effects of ozone exposure on an ozone-sensitive poplar clone? Sci. Total Environ. 2019, 657, 340–350. [CrossRef]

60. Rao, M.V.; Davis, K. The physiology of ozone induced cell death. Planta 2001, 213, 682–690. [CrossRef]

61. Lu, T.; He, X.; Chen, W.; Yan, K.; Zhao, T. Effects of elevated O3 and/or elevated CO2 on lipid peroxidation and antioxidative systems in Ginkgo biloba leaves. Bull. Environ. Contam. Toxicol. 2009, 83, 92–96. [CrossRef] [PubMed]

62. Booker, F.; Muntifering, R.; McGrath, M.; Burkey, K.; Decoteau, D.; Fiscus, E.; Manning, W.; Krupa, S.; Chappelka, A.; Grantz, D. The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J. Integr. Plant Biol. 2009, 51, 337–351. [CrossRef]

63. Scala, M.; Federico, R.; Guido, M.C.; Manes, F. Peroxidase activity and polyamine changes in response to ozone and simulated acid rain in Aleppo pine needles. Environ. Exp. Bot. 1995, 35, 417–425. [CrossRef]

64. Xu, S.; He, X.Y.; Du, Z.; Chen, W.; Li, B.; Li, Y.; Li, M.H.; Schaub, M. Tropospheric ozone and cadmium do not have interactive effects on growth, photosynthesis and mineral nutrients of Catalpa ovata seedlings in the urban areas of Northeast China. Sci. Total Environ. 2020, 704, 135307. [CrossRef]

65. Xu, W.; He, X.; Chen, W.; Hu, J.; Wen, H. Responses of Shenyang urban tree phenology to climate warming. Chin. J. Appl. Ecol. 2006, 17, 1777–1781.

66. Xu, S.; Fu, W.; He, X.; Chen, W.; Zhang, W.; Li, B.; Huang, Y. Drought alleviated the negative effects of elevated O3 on Lonicera maackii in urban area. Bull. Environ. Contam. Toxicol. 2017, 99, 648–653. [CrossRef] [PubMed]

67. Heagle, A.S.; Body, D.E.; Heck, W.W. An open top field chamber to assess the impact of air pollution on plants. Environ. Qual. 1973, 2, 365–368. [CrossRef]

68. Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Method Enzym. 1987, 148, 350–382.

69. Dhindsa, R.S.; Plumb-Dhindsa, P.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreases levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [CrossRef]

70. Elstner, E.F.; Heupel, A. Inhibition of nitrite formation from hydroxylammonium chloride: A simple assay for superoxide dismutase. Anal. Biochem. 1976, 70, 616–620. [CrossRef]

71. Mukherjee, S.P.; Choudhuri, M.A. Implication of hydrogen peroxide-ascorbate system on membrane permeability of water stressed Vigna seedlings. New Phytol. 1985, 99, 355–360. [CrossRef]

72. Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol. 1977, 59, 315–318. [CrossRef]

73. Azavedo, R.A.; Alas, R.M.; Smith, R.J.; Lea, P.J. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol. Plant. 1998, 104, 280–292. [CrossRef]

74. Zhou, W.; Leul, M. Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul. 1999, 27, 99–104. [CrossRef]
75. Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. *Plant Cell Physiol.* **1981**, *22*, 867–880.

76. Reinolds, S.S. The use of lead citrate of high pH as an electron-opaque stain in electron microscopy. *J. Cell Biol.* **1963**, *17*, 208–212. [CrossRef] [PubMed]