Rapid detection of sedel and 302C>T (rs200157007) responsible for nonsecretor phenotype by real-time PCR-based methods

Mikiko Soejima
Kurume University School of Medicine

Yoshiro Koda (ykoda@med.kurume-u.ac.jp)
Kurume University School of Medicine

Research Article

Keywords: FUT2, sedel, rs200157007, nonsecretor allele, South Asia

DOI: https://doi.org/10.21203/rs.3.rs-396764/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

The sedel allele is one of the nonsecretor alleles (se) of FUT2 generated by an Alu-mediated recombination event and was first found in an Indian Bombay phenotype. Like sedel, se302 having a missense single nucleotide polymorphism (SNP), 302C > T, is characteristic of South Asians with a frequency of 10–30%. We developed a real-time PCR melting curve analysis for detection of sedel using a 127-bp amplicon encompassing the breakpoint junction. In addition, by performing duplex PCR by amplifying a 65-bp amplicon of the FUT2 coding region at the same time, we could determine the zygosity of sedel in a single tube. We also developed an Eprobe-mediated PCR assay (Eprobe-PCR) for detection of 302C > T of FUT2. These methods were validated by analyzing 58 Tamils and 54 Sinhalese in Sri Lanka. Both the duplex PCR melting curve analysis for determination of sedel zygosity and the Eprobe-PCR assay for detection of 302C > T exactly determined three genotypes. In addition, the results of the present methods were in complete agreement with those obtained by previously established methods. The two present methods were reliable and seem to be advantageous for large-scale association studies of FUT2 polymorphisms in South Asian populations.

Introduction

In humans, expression of the H antigen, a precursor of A and B antigens of the ABO blood group, is regulated by two α(1,2)fucosyltransferases. One is the H enzyme encoded by FUT1, which regulates expression of the H antigen, and thereafter ABO antigens, on the cell surface of erythrocytes and endothelial cells. The other is the Se enzyme, encoded by FUT2, which regulates expression of the H antigen on mucosal surfaces and in body fluids1,2. Deficiency of the H enzyme (Bombay and para-Bombay phenotypes) is very rare, whereas deficiency of the Se enzyme (nonsecretor) is common1. Functional alleles of FUT1 (H) and FUT2 (Se) are dominant over nonfunctional alleles of FUT1 (h) and FUT2 (se). FUT1 and FUT2 locate on chromosome 19q3.3 beside a pseudogene (SEC1) having high sequence similarity particularly to FUT23.

Several single nucleotide polymorphisms (SNPs) of se alleles are distributed in a population-specific manner4–6. The 428G > A nonsense SNP (rs601338, W143X) constituting se428 is common in Europeans, Africans, and West Asians with a frequency about 50% and in South Asians with a frequency of 10–30%. On the other hand, the 385A > T missense SNP (rs1047781, I129F) constituting a weak secretor allele (Sew) is common in East and Southeast Asians with a frequency about 50%. In addition, the 302C > T missense SNP (rs200157007, I101P) constituting se302 was first identified in a Thai population with a low frequency and was demonstrated to be exclusively encountered in South Asians with a frequency of 10–30%5,7.

Five se alleles that resulted from copy number variations (CNVs) have also been identified. Four of them (sedel, sedel2, sedel3, sedel4) were complete deletions of the coding region, whereas one (sefus) was generated by a homologous recombination between SEC1 and FUT28. Among them, the sedel allele was
first identified in subjects of the Indian Bombay phenotype, and, like the \(se^{302} \) allele, is known to be characteristic to South Asians with a frequency of 10–30%\(^{10,11} \). This allele was generated by a homologous recombination between two Alu elements that are 10-kb away from each other (Fig. 1A). Alu elements are the most abundant repetitive elements, composing ~10% of the human genome. In order to detect \(se^{del} \), we first designed a conventional PCR method to amplify a relatively long fragment (1.8-kb) and then developed a triplex hydrolysis probe (TaqMan) PCR assay to detect CNVs of \(FUT2^{12,13} \). However, \(se^{del}, se^{del2}, se^{del3}, \) and \(se^{del4} \) cannot be discriminated by the triplex TaqMan PCR assay.

An Eprobe-mediated PCR method (Eprobe-PCR) was recently developed for detection of SNPs. Eprobe is a hybridization-dependent fluorescence probe based on the quenching of two dye moieties in the condition of a single-stranded oligonucleotide and can be applied to sequential quantitative PCR, followed by melting curve analysis in a single reaction tube with a real-time PCR instrument\(^{14} \).

The aim of present study was to develop and evaluate high-throughput methods for detection of \(FUT2 \) polymorphisms applicable to South Asians. For this purpose, we developed a duplex real-time PCR melting curve analysis for detection of \(se^{del} \) using a short (127-bp) amplicon together with the \(FUT2 \) coding region using a 65-bp amplicon to determine \(se^{del} \) zygosity in a single tube. We also developed an Eprobe-PCR method for detection of 302C > T of \(FUT2 \) using a 195-bp amplicon.

Results

PCR amplification of \(se^{del} \)

First we amplified a PCR product using a set of primers encompassing a 127-bp region of an \(se^{del} \) breakpoint (sedel-F and sedel-R) on a real-time PCR platform (Fig. 1A, B). Specific amplification of the deletion breakpoint of \(se^{del} \) was confirmed by an amplification signal only from individuals having \(se^{del} \) and direct DNA sequencing of the PCR products of four selected subjects (data not shown).

Duplex real-time PCR method for detection of \(se^{del} \)

We then designed a duplex real-time PCR to determine the zygosity of \(se^{del} \) in a single tube. In addition to primers for the 127-bp \(se^{del} \)-specific amplicon, we added primers for detection of \(FUT2 \) that lacked the \(se^{del} \) allele in a single tube. We performed this on three selected individuals with genotypes of the wild type (+/ +), heterozygote of \(se^{del} \) (+/-), and homozygote of \(se^{del} \) (-/-). Since these primers amplified a 65-bp region of the coding region of \(FUT2 \) (751–815 bp), the melting curve analysis of the duplex real-time PCR clearly distinguished the three genotypes from each other (data not shown). The melting temperature (Tm) value of the 127-bp amplicon of \(se^{del} \) was around 85°C, while that of 65-bp \(FUT2 \) coding region was around 81°C. We then applied this method to analyze 58 Tamil and 54 Sinhalese samples and clearly discriminated three genotypes (Fig. 2). However, the results of \(se^{del} \) zygosity of the present method were different from those of the previous conventional PCR assay for one Tamil and two Sinhalese\(^{11} \). We
reanalyzed these three individuals by conventional PCR. Although we had judged these three individuals to be the +/+ genotype by conventional PCR previously, reanalysis suggested that three individuals were the +/- genotype. Thus the results of se_{del} zygosity determined by the present method were completely identical to those by the conventional PCR genotyping method, and the numbers of +/+, +/-, and -/- genotypes were 28, 27, and 3 for Tamils and 38, 16, and 0 for Sinhalese. The repeatability was confirmed by two independent assays.

Genotyping of 302C>T of FUT2 using Eprobe-PCR

Next, we performed melting curve genotyping using a 195-bp amplicon and a 25-bp Eprobe (see Fig. 1B). To amplify $FUT2$ specifically, we selected a reverse primer with a seven-base difference from $SEC1$ (which is identical to the reverse primer of an unlabeled probe based on high-resolution melt (HRM) analysis for detection of 385A>T of $FUT2$). Using this method, we clearly distinguished C/C (Tm: around 72°C), C/T (Tm: around 63°C and 72°C), and T/T (Tm: around 63°C) genotypes from each other (data not shown). We then applied it to 58 Tamils and 54 Sinhalese whose 302C>T genotypes had been determined previously. As shown in Fig. 3, the three genotypes of 302C>T of $FUT2$ could be separated clearly, the results were fully in agreement with previous genotyping results, and the numbers of C/C, C/T, and T/T were 43 (including 19 individuals with C/- genotype), 7, and 6 (all 6 individuals were T/- genotype) in Tamils and 28 (including 13 individuals with C/- genotype), 19, and 7 (including 3 individuals with T/- genotype) in Sinhalese. The repeatability was confirmed by two independent assays. In addition, we did not obtain any amplification signal in real-time PCR of three Tamils with the -/- genotype. The results suggested the specific amplification of $FUT2$ but not $SEC1$.

Discussion

Recent studies suggested that $FUT2$ polymorphism (secretor status) is associated with susceptibility to various infectious diseases, such as norovirus, rotavirus, COVID-19, and several clinical conditions such as Crohn's disease and low plasma vitamin B$_{12}$ levels. Large scale replication studies of various populations or independent samples are important for confirmation of these associations. Therefore, accurate and high-throughput genotyping should to be performed. However, common nonsecretor alleles are not shared by different continental populations.

For this purpose, we recently developed several HRM-based real-time PCR methods for detection of se_{6us}, se_{428}, and se_{385} alleles. Predominant se alleles in several South Asian populations are se_{428}, se_{302}, and se_{del}. In addition to these three se alleles, se_{385} has relatively high frequency in Bangladeshi. Therefore, we should genotype se_{428}, se_{302}, and se_{del} in many South Asians, whereas se_{428}, se_{385}, se_{302}, and se_{del} should be genotyped in Bangladeshi for association studies of $FUT2$.

Even when we do not consider the deletion allele (se^{del}), the estimation of secretor status is not affected. For example, the $Se/-$ genotype is judged as Se/Se and the $se/-$ genotype as se/se. However, we need to be alert for se^{del} when targeting a population with high frequency of it. In this study, we did not detect any real-time PCR amplification signal of 302C > T in three Tamils with the $/-$ genotype (Fig. 3A). The results persuaded us to screen for se^{del} in South Asians; otherwise, we could not know whether the reason for the lack of an amplification signal of $FUT2$ was actually an absence of $FUT2$ or another problem, such as degradation of genomic DNA. In addition, it is likely that we overestimated homozygotes. In fact, without considering the results of se^{del} screening, we misjudged the 302C/- genotype of 19 Tamils and 13 Sinhalese as C/C and 302T/- genotype of 6 Tamils and 3 Sinhalese as T/T by the Eprobe-PCR assay.

Unfortunately, we overlooked three individuals with the +/- genotype by previous conventional PCR for detection of an 1.8-kb amplicon because of the relatively large size of the PCR product and by simplex PCR without an amplification control11. On the other hand, the present duplex real-time PCR melting curve analysis included an amplification control (65-bp $FUT2$ coding sequence) that also allowed determination of se^{del} zygosity in a single tube. Therefore, the present duplex real-time PCR assay for detection of se^{del} is more reliable and faster than previous conventional PCR methods.

We previously developed a triplex TaqMan PCR assay to detect CNVs of $FUT2^{13}$. The advantage of this method is not only detection of known CNVs but the potential to detect novel CNVs. However, it depends largely on both the quality and quantity of DNA to work well and carries a cost in terms of three probes. On the other hand, the real-time PCR melting curve analysis we present here is dedicated to detection of the se^{del} and unable to detect other CNVs. The present assay is cost-effective, easy to use, straightforward, and not very dependent on both quality and quantity of DNA.

Because a 164-bp sequence surrounding 302C > T is completely identical to that of $SEC1$ and this sequence contains another high frequency SNP (about 50% in global populations), 357C > T (rs281377, synonymous SNP), it was difficult to select appropriate primers for short amplicon HRM to detect 302C > T of $FUT2$. For this reason, in this study, we employed Eprobe-PCR instead of HRM analysis for detection of 302C > T of $FUT2$. Compared with HRM analysis using a short amplicon, Eprobe-PCR needs a labeled probe, and is therefore more expensive. However, the HRM method is based on detection of subtle differences of the melting curve and melting temperature of PCR amplicons, whereas the Eprobe-PCR method is based on detection of relatively large differences of the melting curve and melting temperature of a short probe sequence. Therefore, a probe-based melting curve analysis seems to be one of the most specific and sensitive methods to detect SNPs24. In fact, the Tm values of the wild-type (around 72°C) and that of the mutant (around 63°C) were quite different (around 9°C). This significant difference made a clear distinction of the three genotypes of C/C, C/T, and T/T possible. Thus we believe that the present Eprobe-PCR for detection 302C > T of $FUT2$ is quite useful and reliable.

In conclusion, the present two protocols seem to be a reliable and high throughput method for detection of se^{del} and se^{302} in South Asian subjects.
Materials And Methods

Statements and DNA samples

All methods were carried out in accordance with relevant guidelines and regulations. DNA samples from 58 Tamil and 54 Sinhalese in Sri Lanka whose FUT2 genotypes had been already determined were used\(^{11}\). The oral informed consent was obtained and the DNA samples were taken from participants in 2002. The statement for oral informed consent approved by ethical committee of Kurume University in 2002. However, present study protocol was approved by the ethical committee of Kurume University School of Medicine in 2017 using existing and already anonymized DNA samples (Bioethics approval No. 342).

Duplex real-time PCR melting curve analysis for detection of se\(^{del}\)

Since both the 5' and 3' deletion breakpoints of se\(^{del}\) are located within Alu-repetitive elements\(^{12}\), the primers were carefully designed to amplify only a recombination allele (se\(^{del}\)) but not other Alu-elements using Primer 3 (https://bioinfo.ut.ee/primer3-0.4.0/) and a BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Fig. 1B). For amplification of the 127-bp amplicon of se\(^{del}\) encompassing a homologous sequence of 25 bp at each breakpoint, we selected a sedel-F primer (5'-TCTCAGTAAGATAGACCAGGTGG-3', 35–11 bp upstream from the 5' end of the 25-bp homologous sequence) and a sedel-R primer (5'-GACAGAGTTTACCAGTCAGC-3', 46–67 bp downstream from the 3' end of the 25-bp homologous sequence) from several candidates. For duplex PCR to determine the zygosity of se\(^{del}\), we added primers which were recently designed for HRM analysis (FUT2-778-F: 5'-TTTGCTGGCGATGGCATT-3' and FUT2-778-R: 5'-TGGTTACACTGTGTGAGTAGCAA-3') to detect 778C > del (P260Lfs*16, rs1799761) as FUT2-specific primers\(^{21}\). These primers amplified the 751–815 bp coding region of FUT2 which lacked the se\(^{del}\) allele (Fig. 1A). The primers were synthesized by Eurofins Genomics (Tokyo, Japan). The 10 µl PCR reaction contained 1–10 ng genomic DNA, 5 µL of LightCycler 480 HRM Master mix (Roche Diagnostics, Mannheim, Germany), 2.5 mM MgCl\(_2\), 125 nM of sedel-F and sedel-R primers, and 187.5 nM of FUT2-778-F and FUT2-778-R primers. Touchdown PCR was performed on a LightCycler 480 instrument II (Roche Diagnostics). The thermal profile was as follows: one cycle at 95°C for 10 min, denaturation at 95°C for 10 sec, annealing at 64°C for 20 sec with touchdown every 0.5°C, and extension at 72°C for 20 sec for 12 cycles, and then 95°C for 10 sec, 58°C for 20 sec, and 72°C for 20 sec for 33 cycles. The fluorescence data for monitoring real-time PCR amplification were collected at the end of the annealing step of each cycle using a filter (465 nm–510 nm). The products were heated to 95°C for 1 min, rapidly cooled to 40°C for 1 min, and then the fluorescence data for melting curve analysis were collected over the range from 75 to 90°C, increasing at 0.02°C/sec with 25 acquisitions/sec. The melting curve genotypes were automatically clustered into separate groups by LightCycler 480 Gene Scanning Software (Roche Diagnostics).

Sanger sequencing of PCR products of se\(^{del}\)
PCR amplification was performed using sedel-F and sedel-R primers and LightCycler 480 HRM Master mix as describe above. Direct sequencing of the PCR amplicons of se^{del} was performed using each PCR primer as a sequence primer.

Eprobe-PCR for detection of 302C>T of FUT2

Nucleotide positions of the SEC1 and FUT2 genes are numbered as described previously. For PCR amplification surrounding 302C>T, Primer3 (https://bioinfo.ut.ee/primer3-0.4.0/) was also used to design primers for specific amplification of FUT2. In addition, Edesign software ver.2.00 (http://www.dnaform.com/edesign2/) provided by K.K. DNAFORM (Yokohama, Japan) was used to design an Eprobe for detection of 302C>T of FUT2. For Eprobe-PCR, we used a FUT2-302-F primer (5'-CCCTGGCCAAGATGAACGG-3', 218–236 bp of FUT2 and identical with the corresponding SEC1 sequence, Fig. 1C underlined) a FUT2-302-R primer (5'-CGGTGAAGCGGACGTACT-3', 395–412 bp of FUT2, a 7-base difference from SEC1, Fig. 1C underlined) and Eprobe (5'-TCTTCAGAAUCACCTGCGGCT-3'-AmC3; U indicates the position of the modified T by thiazole orange, 284–308 bp of FUT2). The Eprobe was blocked on the 3’ end (3’-amino-modifier C3) to prevent extension during PCR. The primers were synthesized by Eurofins Genomics, and the Eprobe was synthesized by K.K. DNAFORM. We performed real-time PCR and melting curve analysis using a LightCycler 480 Instrument II. Asymmetric PCR amplification was performed in 10 µL reaction mixture including 1–10 ng of genomic DNA, 5 µL of E-Taq 2×PCR Mix (K.K. DNAFORM), 50 nM of FUT2-302-F primer, 250 nM of FUT2-302-R primer, and 250 nM of the Eprobe. The thermal profile was as follows: one cycle at 95°C for 30 sec, followed by 50 cycles with denaturation at 95°C for 15 s, annealing at 58°C for 30 s, and extension at 72°C for 15 sec. The fluorescence data for monitoring real-time PCR amplification were collected the end of the annealing step of each cycle using a filter (533 nm–580 nm). The products were heated to 95°C for 1 min, rapidly cooled to 45°C for 1 min, and fluorescence data for melting curve analysis were collected over the range from 50 to 80°C. The melting curve genotypes were automatically clustered into separate groups by LightCycler 480 Gene Scanning Software (Roche Diagnostics).

Declarations

Competing interests

The authors declare no conflict of interest.

Author contributions

M.S. performed experiments and contributed to the data analysis and drafting of the manuscript. Y.K. planned the experiment, contributed to the data analysis and interpretation, and drafted the paper.

Acknowledgements

We thank Ms. Katherine Ono for the English editing of this manuscript.
References

1. Daniels, G. in *Human blood groups* (ed Geoff Daniels) Ch. 2, 11-95 (Wiley-Blackwell, 2013).

2. Clausen, H. & Hakomori, S. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. *Vox Sang* **56**, 1-20, doi:10.1111/j.1423-0410.1989.tb03040.x (1989).

3. Rouquier, S. *et al.* Molecular cloning of a human genomic region containing the H blood group alpha(1,2)fucosyltransferase gene and two H locus-related DNA restriction fragments. Isolation of a candidate for the human Secretor blood group locus. *J Biol Chem* **270**, 4632-4639 (1995).

4. Soejima, M. & Koda, Y. Survey and characterization of nonfunctional alleles of FUT2 in a database. *Sci Rep* **11**, 3186, doi:10.1038/s41598-021-82895-w (2021).

5. Koda, Y. *et al.* Contrasting patterns of polymorphisms at the ABO-secretor gene (FUT2) and plasma alpha(1,3)fucosyltransferase gene (FUT6) in human populations. *Genetics* **158**, 747-756 (2001).

6. Ferrer-Admetlla, A. *et al.* A natural history of FUT2 polymorphism in humans. *Mol Biol Evol* **26**, 1993-2003, doi:10.1093/molbev/msp108 (2009).

7. Chang, J. G. *et al.* Molecular analysis of secretor type alpha(1,2)-fucosyltransferase gene mutations in the Chinese and Thai populations. *Transfusion* **39**, 1013-1017, doi:10.1046/j.1537-2995.1999.39091013.x (1999).

8. Soejima, M. & Koda, Y. Genetic variation of FUT2 in a Peruvian population: identification of a novel LTR-mediated deletion and characterization of 4 nonsynonymous single-nucleotide polymorphisms. *Transfusion* **59**, 2415-2421, doi:10.1111/trf.15298 (2019).

9. Fernandez-Mateos, P. *et al.* Point mutations and deletion responsible for the Bombay H null and the Reunion H weak blood groups. *Vox Sang* **75**, 37-46 (1998).

10. Pang, H. *et al.* Two distinct Alu-mediated deletions of the human ABO-secretor (FUT2) locus in Samoan and Bangladeshi populations. *Hum Mutat* **16**, 274, doi:10.1002/1098-1004(200009)16:3<274::AID-HUMU20>3.0.CO;2-I (2000).

11. Soejima, M. & Koda, Y. Denaturing high-performance liquid chromatography-based genotyping and genetic variation of FUT2 in Sri Lanka. *Transfusion* **45**, 1934-1939, doi:10.1111/j.1537-2995.2005.00651.x (2005).

12. Koda, Y., Soejima, M., Johnson, P. H., Smart, E. & Kimura, H. An Alu-mediated large deletion of the FUT2 gene in individuals with the ABO-Bombay phenotype. *Hum Genet* **106**, 80-85 (2000).
Soejima, M. & Koda, Y. TaqMan-based real-time polymerase chain reaction for detection of FUT2 copy number variations: identification of novel Alu-mediated deletion. *Transfusion* **51**, 762-769, doi:10.1111/j.1537-2995.2010.02895.x (2011).

Hanami, T. *et al.* Eprobe mediated real-time PCR monitoring and melting curve analysis. *PLoS One* **8**, e70942, doi:10.1371/journal.pone.0070942 (2013).

Soejima, M. & Koda, Y. Detection of the weak-secretor rs1047781 (385A>T) single nucleotide polymorphism using an unlabeled probe high-resolution-melting-based method. *Electrophoresis* (in press).

Loureiro Tonini, M. A. *et al.* FUT2, Secretor Status and FUT3 Polymorphisms of Children with Acute Diarrhea Infected with Rotavirus and Norovirus in Brazil. *Viruses* **12**, doi:10.3390/v12101084 (2020).

Valenti, L. *et al.* Association of ABO blood group and secretor phenotype with severe COVID-19. *Transfusion* **60**, 3067-3070, doi:10.1111/trf.16130 (2020).

McGovern, D. P. *et al.* Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. *Hum Mol Genet* **19**, 3468-3476, doi:10.1093/hmg/ddq248 (2010).

Hazra, A. *et al.* Common variants of FUT2 are associated with plasma vitamin B12 levels. *Nat Genet* **40**, 1160-1162, doi:10.1038/ng.210 (2008).

Soejima, M. & Koda, Y. High-resolution melting analysis for detection of fusion allele of FUT2. *Electrophoresis* **42**, 315-318, doi:10.1002/elps.202000241 (2021).

Soejima, M. & Koda, Y. Estimation of secretor status of ABO antigens by high-resolution melting analysis of rs601338 (428G > A). *Clin Chim Acta* **517**, 86-91, doi:10.1016/j.cca.2021.02.019 (2021).

Parker, E. P. K. *et al.* FUT2 Secretor Status Is Not Associated With Oral Poliovirus Vaccine Immunogenicity in South Indian Infants. *J Infect Dis* **219**, 578-581, doi:10.1093/infdis/jiy553 (2019).

Mottram, L., Wiklund, G., Larson, G., Qadri, F. & Svennerholm, A. M. FUT2 non-secretor status is associated with altered susceptibility to symptomatic enterotoxigenic Escherichia coli infection in Bangladeshis. *Sci Rep* **7**, 10649, doi:10.1038/s41598-017-10854-5 (2017).

Erali, M., Voelkerding, K. V. & Wittwer, C. T. High resolution melting applications for clinical laboratory medicine. *Exp Mol Pathol* **85**, 50-58, doi:10.1016/j.yexmp.2008.03.012 (2008).

Untergasser, A. *et al.* Primer3–new capabilities and interfaces. *Nucleic Acids Res* **40**, e115, doi:10.1093/nar/gks596 (2012).

Kelly, R. J., Rouquier, S., Giorgi, D., Lennon, G. G. & Lowe, J. B. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity
for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. *J Biol Chem* 270, 4640-4649 (1995).

Figures

(A) Relative positions of the deleted regions of sedel. Two exons are indicated by white boxes, and the protein coding region is indicated by a black box. Positions of PCR primers for duplex real-time PCR are shown by black arrows. (B) Alignment of DNA sequences of amplified regions of 127-bp encompassing the sedel breakpoint. DNA sequences of the 5' breakpoint (5' sequence), 3' breakpoint (3' sequence), and junction region (Junction) within Alu elements are indicated. Gray boxes indicate 25-bp homologous sequence breakpoints at the 5' and 3' ends of the deletion. Primer sequences are underlined. An asterisk shows an identical nucleotide among the three sequences. (C) Alignment of DNA sequences of FUT2 (FUT2-C: allele of C, FUT2-T: allele of T at 302C>T (rs200157007)), and corresponding regions of SEC1 are indicated. The Eprobe sequence is boxed. Primer sequences are underlined. An asterisk shows an identical nucleotide among three sequences.

Figure 1

(A) Relative positions of the deleted regions of sedel. Two exons are indicated by white boxes, and the protein coding region is indicated by a black box. Positions of PCR primers for duplex real-time PCR are shown by black arrows. (B) Alignment of DNA sequences of amplified regions of 127-bp encompassing the sedel breakpoint. DNA sequences of the 5' breakpoint (5' sequence), 3' breakpoint (3' sequence), and junction region (Junction) within Alu elements are indicated. Gray boxes indicate 25-bp homologous sequence breakpoints at the 5' and 3' ends of the deletion. Primer sequences are underlined. An asterisk shows an identical nucleotide among the three sequences. (C) Alignment of DNA sequences of FUT2 (FUT2-C: allele of C, FUT2-T: allele of T at 302C>T (rs200157007)), and corresponding regions of SEC1 are indicated. The Eprobe sequence is boxed. Primer sequences are underlined. An asterisk shows an identical nucleotide among three sequences.
Figure 2

Melting peak profiles of duplex PCR for detection of sedel zygosity. Melting peak profiles obtained for 58 randomly selected Tamils (A) and 54 randomly selected Sinhalese (B). The individuals with genotypes of +/+ (wild type, blue), +/- (heterozygote of sedel, red), and -/- (homozygote of sedel, green) were completely separated by melt curve genotyping.
Figure 3

Melting peak profiles of Eprobe-PCR for detection of 302C>T of FUT2. Melting peak profiles obtained for 58 Tamils (A) and 54 Sinhalese (B). The individuals with genotypes of C/C (blue), C/T (red), and T/T (green) at rs200157007 were completely separated by melt curve genotyping. In addition, no amplification signal (and therefore no melting peak) was obtained in three Tamils who were homozygous for sedel (light blue).