Distance makes a difference in crystalline photoluminescence

Zibao Gan1,2, Yungui Liu3, Lin Wang4,5, Shuqing Jiang1, Nan Xia1,2, Zhipeng Yan4, Xiang Wu3, Junran Zhang6,7, Wanmiao Gu1,2, Lizhong He1,2, Jingwu Dong1,2, Xuedan Ma8, Jaeyong Kim9, Zhongyan Wu4, Yixuan Xu6,7, Yanchun Li6 & Zhikun Wu1,2

Crystallization-induced photoluminescence weakening was recently revealed in ultrasmall metal nanoparticles. However, the fundamentals of the phenomenon are not understood yet. By obtaining conformational isomer crystals of gold nanoclusters, we investigate crystallization-induced photoluminescence weakening and reveal that the shortening of interparticle distance decreases photoluminescence, which is further supported by high-pressure photoluminescence experiments. To interpret this, we propose a distance-dependent non-radiative transfer model of excitation electrons and support it with additional theoretical and experimental results. This model can also explain both aggregation-induced quenching and aggregation-induced emission phenomena. This work improves our understanding of aggregated-state photoluminescence, contributes to the concept of conformational isomerism in nanoclusters, and demonstrates the utility of high pressure studies in nanochemistry.
Photoluminescence (PL) is a very intriguing phenomenon, and it has gained extensive attention for many years\(^1\)-\(^3\). However, the understanding of aggregated state PL mechanism is far from completeness. Two well-known phenomena, aggregation-caused quenching (ACQ)\(^5\)-\(^8\) and aggregation-induced emission (AIE)\(^6\)-\(^10\), were observed in solid materials. Comparable to the crystallization-induced quenching\(^2\) or concentration quenching of conventional luminogens\(^1\)\(^1\)-\(^1\)\(^5\), \(^1\)\(^6\)-\(^1\)\(^7\), a crystallization-induced PL weakening (CIPW) phenomenon (that is, the crystalline PL is less extensive than the amorphous PL) was recently observed in metal nanoclusters (NCs)\(^1\)\(^8\),\(^1\)\(^9\). To understand the fundamentals, investigating the conformational isomer crystal PL might be helpful since this kind of investigation can provide some insight into the structure-PL correlation. However, unfortunately, conformational isomer crystals for such an investigation are not accessible to us. Conformational isomerism is not trivial, and it is known that the conformation change in biological macromolecules can result in dramatic function differences (e.g., toxic vs. nontoxic)\(^2\)\(^0\). For inorganic (or inorganic-organic hybrid) nanoparticles (NPs), the concept of conformational isomerism has not been introduced until now, although it was indicated by some experimental or theoretical results\(^2\)^\(^1\),\(^2\)^\(^2\). The primary challenge for conformational isomerism research in inorganic (or inorganic-organic hybrid) NPs lies in the precise determination of NPs’ conformations, especially for relatively large NPs. Recent progress in ultrasmall noble metal NPs (often called NCs) has opened up exciting opportunities for isomerism research at the nanoscale since their noble metal NPs (often called NCs) has opened up exciting opportunities for isomerism research at the nanoscale since their high quality were found and a few rectangular crystals emerged (Supplementary Fig. 1a) when the ratio of acetonitrile to benzene was increased to 2/1 (V/V). With the ratio further increased (4/1, V/V), a large number of rectangular crystals with high quality were yielded (Supplementary Fig. 1b). Thus, the type, content and even quality of the crystals are closely related to the acetonitrile content in the mixture solvent. One possible explanation is that the Au-philic, polar CH\(_3\)CN promotes and influences the self-assembly of Au\(_{60}\)S\(_7\) clusters in the crystals. High content of CH\(_3\)CN facilitates the forming of relatively high polar rectangular crystals, while low content of CH\(_3\)CN benefits the yielding of relatively low polar needle-like crystals.

The molecular compositions of the two types of crystals were characterized by electrospray ionization mass spectrometry (ESI-MS). No signal was observed in either positive or negative mode without the addition of cesium acetate (CsOAc), indicating their charge neutrality. To impart charges, CsOAc was added to their solution to form positively charged [cluster\(\pm\)xCs\(\pm\)]\(^x\) additives in the electrospray process. As shown in Supplementary Fig. 3, two intense peaks at mass/charge ratios (m/z) 8387.03 and 5635.57 were observed in the ESI-MS of the rectangular and needle-like crystals, respectively, which can be readily assigned to \([\text{Au}_{60}\text{S}(\text{SCH}_2\text{Ph})_{36}\text{Cs}_2]\)^\(^+\) (calculated: 8387.68, deviation: 0.65) and \([\text{Au}_{60}\text{S}(\text{SCH}_2\text{Ph})_{36}\text{Cs}_3]\)^\(^+\) (calculated: 5636.09, deviation: 0.52), respectively. Thus, the NCs in the rectangular and needle-like crystals should have the same composition, \([\text{Au}_{60}\text{S}(\text{SCH}_2\text{Ph})_{36}]_{36}\), which was further verified by the following single-crystal X-ray crystallography (SCX) analysis.

Crystal structures with double isomerism. The \([\text{Au}_{60}\text{S}(\text{SCH}_2\text{Ph})_{36}]_{36}\) (\([\text{Au}_{60}\text{S}]_{36}\), short) NCs in the rectangular crystal crystallized in a P12/2 space group, while the \([\text{Au}_{60}\text{S}(\text{SCH}_2\text{Ph})_{36}]_{36}\) (\([\text{Au}_{60}\text{S}]_{36}\), short) NCs in the needle-like crystal crystallized in a C2/c space group. Both types of crystals have two pairs of chiral \([\text{Au}_{60}\text{S}(\text{SCH}_2\text{Ph})_{36}]_{36}\) NCs in the unit cell, as shown in Supplementary Fig. 4. The anatomy of structures demonstrates that both \([\text{Au}_{60}\text{S}]_{36}\) and \([\text{Au}_{60}\text{S}]_{50}\) are composed of an Au\(_{14}\) kernel protected by a pair of Au\(_{60}\text{S}(\text{SCH}_2\text{Ph})_{36}\) \(\times\) staples (Fig. 1). The Au\(_{14}\) kernel can be viewed as two bi-tetrahedral Au\(_{8}\) units with an fcc-based antiprismonic shape sharing two gold atoms (Fig. 1a, e), and the Au\(_{60}\text{S}(\text{SCH}_2\text{Ph})_{18}\) staple can convert to the other one by rotating 180° along the C\(_5\) symmetry axis (Fig. 1b, c, f, g). Therefore, \([\text{Au}_{60}\text{S}]_{36}\) and \([\text{Au}_{60}\text{S}]_{50}\) NCs have no obvious differences in the framework structure, which is also supported by their negligible bond length and angle differences in the shells of \([\text{Au}_{60}\text{S}]_{36}\) and \([\text{Au}_{60}\text{S}]_{50}\) NCs (e.g., average Au-S bond: 2.306 vs. 2.310 Å; average S-Au-S bond angle: 172.8° vs. 172.6°, respectively). To clarify this, a pair of enantiomers are extracted from the \([\text{Au}_{60}\text{S}]_{36}\) (Fig. 2a, b) and \([\text{Au}_{60}\text{S}]_{50}\) (Fig. 2c, d) crystals. As shown in Fig. 2a, c, b, d, although there are no detectable differences in their framework structures, the assembly patterns of phenylmethanethiolate on the NC surfaces are obviously different. In other words, the surface ligands on the two NCs have different conformations. Therefore, \([\text{Au}_{60}\text{S}]_{36}\) and \([\text{Au}_{60}\text{S}]_{50}\) NCs are conformational isomers (conformer). As mentioned above, \([\text{Au}_{60}\text{S}]_{36}\) and \([\text{Au}_{60}\text{S}]_{50}\) NCs are racemic mixtures, and the chirality...
interactions since the distance between the C-H and the closest benzene ring ranges from 2.58 to 2.98 Å (averaged: 2.78 ± 0.20 Å) in Au60S8$_{18}$, and from 2.61 to 2.85 Å (averaged: 2.73 ± 0.12 Å) in Au60S8$_{r}$. Moreover, the so-called C–H···π interactions in Au60S8$_{18}$ are randomly distributed, which is obviously different from those in Au60S8$_{r}$ with approximate plane symmetrical structures of the phenylmethanethiolate assembly (see Fig. 3g, h).

Au60S8$_{18}$ and Au60S8$_{r}$ also have different interparticle interactions and crystallographic arrangements. As shown in Fig. 4, the central NC (highlighted by a white circle in Fig. 4a) in the Au60S8$_{18}$ crystal has eight near neighbors, two of which have the same chirality as the central one (Fig. 4b), while the left six have the enantiomorphous chirality. In the Au60S8$_{r}$ crystal, the central NC (highlighted by a white circle in Fig. 4d) has ten close neighbors, four of which have the same chirality as the central one (Fig. 4e), while the left six have the opposite chirality. The stable and tight assembly among the NCs should be related to the reported symmetry-matching of the contacting ligands. Careful inspection also reveals that the phenylmethanethiolates resemble the tooth of a gear, by which the neighboring NCs firmly interlock in both Au60S8$_{18}$ and Au60S8$_{r}$ crystals (Fig. 4c, f). However, the interparticle C–H···π and π···π interactions were detected in Au60S8$_{18}$ and Au60S8$_{r}$ crystals, respectively (see Supplementary Fig. 4), which might result in different crystallographic arrangements, although they adopt similar stacking sequences of “ABCD” in the crystals (Fig. 4g, h). In Au60S8$_{r}$, the stacking layers with the same chiralities are continuously arranged along the [001] direction (i.e., NCs in the “A” stacking layer have the same chirality with NCs in the “B” layer but are different from NCs in the “C” and “D” layers); however, in Au60S8$_{18}$, the stacking layers with different chiralities are alternately arranged along the [001] direction (i.e., NCs in the “A” and “C” stacking layers have the same chirality but are different from NCs in the “B” and “D” layers). The abovementioned analyses unambiguously demonstrate that Au60S8$_{18}$ and Au60S8$_{r}$ are conformational isomers. It is worth noting that the concept of conformational isomerism has not been previously introduced in the field of nanochemistry to the best of our knowledge. Interestingly, the two conformational isomers can be converted to each other by controlling the crystallization solvent. Specifically, when Au60S8$_{18}$ was dissolved and fostered in the mixture of 3 ml of benzene and 6 ml of acetonitrile, after one month, needle-like crystals were obtained (Supplementary Fig. 8), which were identified to be Au60S8$_{r}$ by UV/vis/NIR, PL and PTLC (Supplementary Figs. 9–11). However, when Au60S8$_{r}$ was dissolved and fostered in the system of 3 ml of
benzene and 12 mL of acetonitrile, one month later, rectangular crystals were observed (Supplementary Fig. 12). The rectangular crystals were verified to be Au_{60}S_{8} by multiple characterizations, as shown in Supplementary Figs. 13–15. Thus, the conversion between the two conformational isomers again demonstrates the importance of acetonitrile in crystallizing the Au_{60}S_{8} NCs: high-content of acetonitrile is helpful to the growth of relatively high polar Au_{60}S_{8} crystals, while low content of CH_{3}CN is beneficial to the forming of low polar Au_{60}S_{8} crystals.

Crystal photoluminescence and mechanism investigation. Obtaining metal NC conformational isomer crystals provides an excellent opportunity for investigating crystallization-induced PL in depth. The PL intensity of Au_{60}S_{8r} increases by ~60% with the maximum emission wavelength blueshifted by ~7 nm compared with that of Au_{60}S_{8n} under similar conditions (Supplementary Fig. 16). The investigation on their absolute PL quantum yield (QY) also demonstrated that the Au_{60}S_{8r} crystals (QY: 9.0%) is higher than that of Au_{60}S_{8n} crystals (QY: 5.6%). Despite of different emission in crystals, they have the same emission in solution (see Supplementary Fig. 17), indicating that the conformational isomerism does not influence the solution emission herein. Although the more compact crystallographic packing can restrict the interparticle and intraparticle motion, it also leads to stronger interaction of NCs, which might weaken the emission, and it is a dominant factor in determining the PL for some extreme cases. A simple and intuitive method to compare the

Fig. 3 The assembly of phenylmethanethiolates on Au_{60}S_{8r} and Au_{60}S_{8n} surfaces. (a) Highlight of the distribution of phenylmethanethiolates on both sides of Au_{60}S_{8r}, (b) highlight of the distribution of phenylmethanethiolates in the middle section of Au_{60}S_{8r}, (c) illustration of the surface assembly of phenylmethanethiolates in another view for Au_{60}S_{8r}, (d) highlight of the distribution of phenylmethanethiolates on both sides of Au_{60}S_{8n}, (e) highlight of the distribution of phenylmethanethiolates in the middle section of Au_{60}S_{8n}, (f) illustration of the surface patterns of phenylmethanethiolates in another view for Au_{60}S_{8n}, (g) illustration of the intraparticle C–H–π interactions on the surface of Au_{60}S_{8r}, and (h) illustration of the intraparticle C–H–π interactions on the surface of Au_{60}S_{8n} (for clarity, sulfur atoms are shown in purple and yellow and hydrogen atoms are omitted in c and f).
interaction of NCs is the comparison of interparticle distance. A shorter interparticle distance means a stronger interaction42,43. For example, the average interparticle distance (2.20 nm) of Au\textsubscript{60}S\textsubscript{8} (\textit{n}) is shorter than that of Au\textsubscript{60}S\textsubscript{8} (2.34 nm, herein the interparticle distance was defined as the distance between two particle metal cores, see Supplementary Fig. 18), indicating a stronger interparticle interaction of Au\textsubscript{60}S\textsubscript{8} \textit{n} compared with that of Au\textsubscript{60}S\textsubscript{8} \textit{r}. As far as we know, there is no experimental work concerning the structure and property tuning of metal NCs by way of high pressure, however, previous theoretical work44 has indicated that strain could affect the electronic band structure (band gap) of a ligand-protected gold cluster lattice, which provides a reference for this work. Herein to further verify our conclusion, high pressure was applied to the crystal samples (Supplementary Fig. 19) to reduce the interparticle distance and observe the resulting PL intensity change. Note that, the emission is excitation wavelength-dependent as shown in Fig. 5 and Supplementary Fig. 20. For comparison, the 532 nm wavelength was adopted throughout this manuscript. Indeed, it is demonstrated that, upon the compression, the emissions of both Au\textsubscript{60}S\textsubscript{8} \textit{r} and Au\textsubscript{60}S\textsubscript{8} \textit{n} obviously decrease, as shown in Fig. 5a, c. Of note, the maximum emission wavelength redshifts with the pressure increase, which also indicates that the interaction between the NCs was strengthened with the interparticle distance shortened. Up to ~9.0 GPa, the emission peaks almost disappear. Interestingly, the vanished emission can somehow restore upon

\textbf{Fig. 4} The interparticle self-assembly and crystallographic arrangement of Au\textsubscript{60}S\textsubscript{8} \textit{r} and Au\textsubscript{60}S\textsubscript{8} \textit{n}. (\textit{a, b}) Coordination environment of Au\textsubscript{60}S\textsubscript{8} \textit{r} in the crystal: front view (\textit{a}) and side view (\textit{b}); (\textit{c}) the symmetry-matching of the contacting ligands in the Au\textsubscript{60}S\textsubscript{8} \textit{r} crystal; (\textit{d, e}) coordination environment of Au\textsubscript{60}S\textsubscript{8} \textit{n} in the crystal: front view (\textit{d}) and side view (\textit{e}); (\textit{f}) the symmetry-matching of the contacting ligands in the Au\textsubscript{60}S\textsubscript{8} \textit{n} crystal; (\textit{g, h}) the crystallographic arrangement of Au\textsubscript{60}S\textsubscript{8} \textit{r} (\textit{g}) and Au\textsubscript{60}S\textsubscript{8} \textit{n} (\textit{h}) in the unit cells (note: hydrogen atoms are omitted in \textit{a-f}, to facilitate the observation of crystallographic arrangement, the NCs are replaced by their chiral kernels in \textit{g, h}).
the decompression (Fig. 5b, d and Supplementary Fig. 16), which indicates that the structures of the clusters are not essentially altered. The in situ crystal structure measurement confirms this. The pressure dependent XRD evolution of Au$_{60}$S$_{8n}$ crystal with every peak assigned was illustrated in Supplementary Fig. 21. The peak position "redshifts" upon compression correspond to the pressure-induced decrease of lattice constants and indicate the decrease of interparticle distance45, which was verified by the fact that the peak positions were restored under decompression, see Supplementary Fig. 21. The pressure dependences of the maximum intensity, the integrated intensity and the full width at half maximum (FWHM) are shown in Supplementary Fig. 22. The correlation between the pressure and the maximum PL intensity in a quantitative way was given in Fig. 5e, f, which demonstrate that the maximum PL intensity well conforms to the negative exponential function of the pressure during the investigated pressure range not only for the compression process but also for the decompression process. Note that, the emission can not recover at all after a higher pressure up to ~29.4 GPa was exerted (Supplementary Fig. 23), indicating that the crystal structure of the NCs essentially changes under such high pressure$^{46–48}$. As a comparison, the PL spectra of both amorphous Au$_{60}$S$_{8n}$ and Au$_{60}$S$_{8n}$ are shown in Supplementary Fig. 24, which reveal the similar pressure-dependent trends as those of crystal samples. These facts unambiguously demonstrated that the crystalline PL depends on the interparticle distance. A question naturally arising...
Au_{24} are 14.97 Å (interparticle and intraparticle non-radiative transfer of excited electrons; pressure; radiative transfers of excited electrons (Fig. 6a) accelerate of NCs. As a result, the interparticle and intraparticle non-
NCs can occur, which causes the decrease of HOMO-LUMO gap should increase, and even overlapping of the electron clouds of decrease of interparticle distances, the interparticle interaction pressure also restricts the motion of the NCs. However, with the increase of pressures, see Fig.6d-i, which might correspond to the fact that the inter-particle interaction contributes an additional lifetime and the lifetimes decrease with the decrease of energy gap originating from the increase of pressure, since it is known that the shorter lifetime correlates the narrower energy gap.

Fig. 6 Illustration of the distance-dependent excitation electron transfer, and pressure-dependent HOMO-LUMO and PL decay profiles. (a) The interparticle and intraparticle non-radiative transfer of excited electrons; (b, c) the HOMO-LUMO distributions and gaps when the interparticle distances of Au_{24} are 14.97 Å and 7.97 Å (c), respectively; the PL decay curves of Au_{60}S_{8} (d, f, h) and Au_{60}S_{89} (e, g, i) under different pressures: (d, e) atmospheric pressure; (f, g) 0.2 GPa; (h, i) 1.8 GPa. Note: 14.97 Å corresponds to the distance of two neighboring Au_{24} NCs in crystal.

is why the radiative decay was inhibited when the interparticle distance was reduced. The non-radiative decay by intraparticle and interparticle motion can be excluded since, in our case, more compactly arranged Au_{60}S_{89} with shorter interparticle distances should have less intraparticle and interparticle motion compared with the less compactly arranged Au_{60}S_{8}, and the increase in pressure also restricts the motion of the NCs. However, with the decrease of interparticle distances, the interparticle interaction should increase, and even overlapping of the electron clouds of NCs can occur, which causes the decrease of HOMO-LUMO gap of NCs. As a result, the interparticle and intraparticle non-radiative transfers of excited electrons (Fig. 6a) accelerate. The theoretical calculations provide strong support for this, see Fig. 6b, c and Supplementary Tables 1, 2. Note that, to save the computation cost, only two simplified Au_{24} were employed as the model. Experimental results also indicate the pressure-dependent PL of Au_{24}, see Supplementary Fig. 25. The non-radiative excitation electron transfer can effectively deactivate the radiation energy and thus weaken the emission. This hypothesis can explain CIPW and can also interpret the well-known ACQ and AIE phenomena. When planar luminophores stack together by π···π interactions, the short inter-luminophore distance enhances the non-radiative excitation electron transfer and thus leads to the quenching of PL. In the AIE case, the twisted structure (or steric hindrance) prevents the approach of luminophores, thus inhibiting the non-radiative excitation electron transfer between the neighboring luminophores. In addition, the aggregation of molecules also restricts the interparticle and intramolecular motion. Consequently, the radiative decay content increases and results in extensive PL. Note that, in this hypothesis long inter-particles (luminophores) distance can NOT result in effective non-radiative excitation electron transfer between the neighboring particles (luminophores), and this transfer accelerates with the decrease of inter-particles (luminophores) distance in some range. The PL lifetime measurements provide another support for the hypothesis: under atmospheric pressure, there is only one lifetime for both conformers (874.77 ns vs. 472.25 ns, Au_{60}S_{89} vs. Au_{60}S_{8}). Upon compression, the single lifetime turns to two ones for both cases, and the lifetimes shorten with the increases of pressures, see Fig. 6d-i, which might correspond to the fact that the inter-particle interaction contributes an additional lifetime and the lifetimes decrease with the decrease of energy gap originating from the increase of pressure, since it is known that the shorter lifetime correlates the narrower energy gap.
Methods of metal NCs). The high-pressure physics and chemistry of metal NCs in the future (for extrimers/exci-plexes16,57,58, trapping sites for excitation energy59, the inductive resonance energy transfer15, the polarization effect of adjacent molecules59, and some other reasons11,62). In most of the above mentioned cases, the PL quenching relates to the overlap of intermolecular planum structure. However, in our case, there are no such overlaps, and the intraparticle contribution for PL weakening was also considered.

Discussion

In summary, we synthesized a NC by single sulfur doping of Au60S7(NCS)36 and characterized the as-obtained Au60S8(NCS)36 by ESI-MS and SCXC. Interestingly, we isolated two types of crystals (rectangular vs. needle-like), which have different NC conformations and arrangements, as determined by SCXC. The isolation of conformational isomers from a product mixture has not been previously reported. In addition, we introduce the concept of conformational isomerism into the field of nanochemistry. Furthermore, we revealed that the two conformational isomers can be converted to each other by regulating the crystallization solvent. Obtaining conformational isomers provides an excellent opportunity for investigating crystalline PL in depth. Indeed, the PL comparison between the two isomers indicates that the shortening of the interparticle distance weakens the emission of the NCs, which was further supported by the fact that the maximum PL intensity conformed to the negative exponential function of the pressure during the investigated pressure range. On the basis of these facts, we proposed an excitation electron transfer model to interpret crystallization-induced PL weakening, which was further supported by theoretical calculations and lifetime measurements. The hypothesis can explain both ACQ and AIE phenomena, too. Another point of this work is that high pressure is shown to be a powerful tool in the NC field, which may trigger more studies on the high-pressure physics and chemistry of metal NCs in the future (for example, exploiting high pressure for structure and property tuning of metal NCs).

Methods

Synthesis of Au60S7 NCs. Typically, 10 mg of Au60S7 NCs was dissolved in 0.5 ml of HSCl2Ph. The reaction proceeded overnight with stirring at 100 °C, and then it was terminated by the addition of methanol. The crude product was thoroughly washed with methanol four times and then subjected to subsequent separation and purification by PTLC. Note that, Au60S7 NCs were prepared according to our previous report11.

Single crystal growth. Single crystals of the purified NCs were grown by vapor diffusion of acetonitrile into a benzene solution for one month. Typically, ~3 mg of the purified NCs were dissolved in 3 ml of benzene. Then, the NC solution was placed in a 20 ml bottle containing 12 ml of acetonitrile. After one month, the rectangular and needle-like crystals were obtained by vapor diffusion of acetonitrile into the benzene solution. Moreover, by adjusting the amount of acetonitrile and benzene solution, the amount of the rectangular and needle-like crystals can be tuned.

Theoretical calculation. The quantum chemical computations were carried out by the Gaussian 16 program (Revision B01)23. The theoretical method is the functional B97X-D, including the empirical dispersion46. The turbomolecular series Dr2-SVP basis set was used for the H, S, and Au atoms. Specially, for the heavy metal Au atom, the effective core potential (ECP) included in the Dr2-SVP basis set was used to reduce the computational cost65. For the Au24(SCH2Ph)20 (Au60S7) NCs, we use the crystal structure from the experiment, and replace the CH2Ph group by the hydrogen atom for simplifying the computation. After the replacing, all hydrogen atoms have been optimized with the Au60S8 core fixed. Note that, Au60S7 NCs were prepared according to our previous report46.

Characterization. The single crystal diffraction data of Au60S7 and Au60S8 were recorded on a Bruker AXEPRODUO X-ray Diffractometer (Bruker, Germany).

ESI-MS was conducted on a Waters Q-TOP mass spectrometer equipped with a Z-spray source, and the source temperature was kept at 70 °C. To prepare the samples for ESI-MS analysis, Au60S7, or Au60S8 was dissolved in toloune (~0.5 mg/ml) and then diluted (1/1, V/V) with an ethanol solution containing 0.5 mM CaOAc. The sample was directly infused into the chamber at 5 μl/min. The spray voltage was 2.20 kV, and the cone voltage is kept at 60 V. The solution PL spectra of Au60S7 and Au60S8 were recorded on a Fluorolog-3-21 (Horiba Jobin Yvon) with a xenon lamp as the excitation source and the excitation wavelength was kept at 514 nm (OD514 ~ 0.1) with a slit of 10 nm. The diamond anvil cell was prepared by preindenting the stainless steel gasket to a thickness of ~100 μm from 250 μm through which an ~200 μm diameter hole was drilled and served as the sample chamber. The Au60S7 and Au60S8 were loaded with two ruby chips to calibrate the pressure by laser-excited ruby fluorescence during the in situ experiments. 4/1 (V/V) of methanol and ethanol was used as the transmitting pressure medium. The in situ high pressure PL spectra of Au60S7, Au60S8, and Au60(SCH2Ph)20 were recorded on a laser confocal scanning Raman/luminescence microscope (Horiba Jobin Yvon) with a laser (532/633 nm) power of 0.01 mW. The spectrum was averaged by recording at three different positions under the same pressure. The absolute PL quantum yields of Au60S7 and Au60S8 crystals were conducted by UV/vis/NIR absolute PL quantum yield spectrometer (C13534, Quantaurus-QY Plus, HAMA-MATSU). High-pressure XRD experiments with a wavelength of 0.6199 Å and a focused beam size of about 4 × 7 μm2 were performed at beamline 15U1, Shanghai Synchrotron Radiation Facility (SSRF), China. The PL lifetime of Au60S7 and Au60S8 at atmospheric and high pressure were recorded by an Edinburgh FLS980 lifetime and steady state spectrometer using a 470 nm pulse laser. The PTLC plates were eluted with dichloromethane/petroleum ether mixture (1/1, V/V) at room temperature under air atmosphere.

Data availability

The X-ray crystallographic coordinates for structures reported in this study (see Supplementary Table 3, 4) have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2026360 for Au60S7 and CCDC 2026358 for Au60S8. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Other data are also available from the authors on reasonable request.

Received: 9 September 2019; Accepted: 1 October 2020;
Published online: 04 November 2020

References

1. Wang, S. et al. Collective fluorescence enhancement in nanoparticle clusters. Nat. Commun. 2, 364 (2011).
2. Visho, I. I. et al. Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9, 54–58 (2014).
3. Huang, R. W. et al. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster–based metal-organic framework. Nat. Chem. 9, 689–697 (2017).
4. Green, D. C. et al. Controlling the fluorescence and room-temperature phosphorescence behaviour of carbon nanodots with inorganic crystalline nanocomposites. Nat. Commun. 10, 206 (2019).
5. Yu, H. Z., Rao, B., Jiang, W., Yang, S. & Zhu, M. Z. The photoluminescent metal nanoclusters with atomic precision. Coord. Chem. Rev. 378, 595–617 (2019).
6. Luo, J. D. et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilylene. Chem. Commun. 8, 1740–1741 (2001).
7. Chen, G. et al. Conjugation-induced rigidity in twisting molecules: filling the gap between aggregation-caused quenching and aggregation-induced emission. Adv. Mater. 27, 4496–4501 (2015).
8. Mei, J., Leung, N. L. C., Kwok, R. T. K., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).
9. An, B. K., Gierschner, J. & Park, S. Y. π-conjugated cyanothiabenzene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport. Acc. Chem. Res. 45, 544–554 (2012).
10. Ma, X. et al. Luminescent metal nanoclusters with aggregation-induced emission. J. Phys. Chem. Lett. 7, 962–975 (2016).
11. Birks, J. B. Photophysics of Aromatic Molecules (Wile, London, 1970).
12. Destr, S. et al. Synthesis and crystal structure and optical properties of fluoronic-core oligomers. J. Mater. Chem. 12, 924–932 (2002).
13. Mane, S. K. B. et al. A TADF compound with high-contrast mechanoresponsive fluorescence on/off switching for both sequential and combinational logic gates. J. Mater. Chem. C 7, 3522–3528 (2019).
14. Tani, Y., Terasaki, M., Komura, M. & Ogawa, T. Room-temperature phosphorescence-to-phosphorescence mechanochromism of a metal-free organic 1,2-diketone. J. Mater. Chem. C 7, 11926–11931 (2019).

8 NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19377-6 | www.nature.com/naturecommunications
15. Beddard, G. S. & Porter, G. Concentration quenching in chlorophyll. *Nature* 260, 366–367 (1976).

16. Jemecke, S. A. & Oshahen, J. A. Excimers and exciplexes of conjugated polymers. *Science* 265, 765–768 (1994).

17. Green, A. P. & Buckley, A. R. Solid state concentration quenching of organic fluorophores in PMMA. *Phys. Chem. Chem. Phys.* 17, 1435–1440 (2015).

18. Gan, Z. B. et al. The fourth crystallographic closest packing unveiled in the gold nanocluster. *Nat. Commun.* 8, 14739 (2017).

19. Liu, X. et al. A silver nanocluster containing interstitial sulfur and unprecedented chemical bonds. *Angew. Chem. Int. Ed.* 57, 11273–11277 (2018).

20. Richard, J., Prevost, J., Alsaha, J., and Xue, Y. and Z. H. recorded and analyzed the lifetime data. *Sci. Adv.* 9, eaaw638 (2018).

21. Jung, K. M. O. et al. Polymorphism in magic-sized Au14SBR60 clusters. *Nat. Commun.* 7, 11859 (2016).

22. Ouyang, R. H. & Jiang, D. E. Ligand-conformation energy landscape of thiolate-protected gold nanoclusters. *J. Phys. Chem. C.* 119, 21555–21560 (2015).

23. Desiredy, A. et al. Ultrastable silver nanoparticles. *Nature* 501, 399–402 (2013).

24. Dass, A. et al. Au113(SPh–BH4)40 nanoclusters: X-ray crystallography, optical, electrochemical, and theoretical analysis. *J. Am. Chem. Soc.* 137, 4610–4613 (2015).

25. Yang, H. Y. et al. Plasmonic twinned silver nanoparticles with molecular superatom. *Chem. Soc. Rev.* 47, 7280–7290 (2018).

26. Yan, N. et al. Unraveling the long-pursued Au144 structure by x-ray crystallography. *Sci. Adv.* 4, eaat7259 (2018).

27. Liu, J. W. et al. Anisotropic assembly of Ag25 and Ag26 nanoclusters. *J. Am. Chem. Soc.* 140, 1600–1603 (2018).

28. Chakraborti, K. K. et al. [Cu2(S2CNBH4)2(acetylacetonate)]+: a two-electron generation nanocluster. *Angew. Chem. Int. Ed.* 128, 14924–14928 (2016).

29. Takeo, S., Hirai, H., Muramatsu, S. & Tsukuda, T. Hyrid-doped gold superatom (Au[H])n+: synthesis, structure, and transformation. *J. Am. Chem. Soc.* 140, 8380–8383 (2018).

30. Guan, Z. J. et al. Thiacalix[4]arene: new protection for metal nanoclusters. *Sci. Adv.* 2, e1605323 (2016).

31. Yu, Y. et al. Identification of a highly luminescent Au64(S2–S)12 nanocluster. *J. Am. Chem. Soc.* 136, 1246–1249 (2014).

32. Lopez-Acevedo, O., Tsunoyama, H., Tsukuda, T., Hakkinen, H. & Aikens, C. M. Chirality and electronic structure of the thiolate-protected Au130 nanocluster. *J. Am. Chem. Soc.* 132, 8210–8218 (2010).

33. Narouz, M. R. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. *Nat. Chem.* 11, 419–425 (2019).

34. Schaefer, B. et al. Isomerism and structural fluxionality in the Au25 and Au38 nanoclusters. *ACS Nano* 8, 7413–7422 (2014).

35. Tian, S. B. et al. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. *Nat. Commun.* 6, 8687 (2015).

36. Niihori, Y., Matsuzaki, M., Pradeep, T. & Negishi, Y. Separation of precise atom tailoring of a gold nanoparticle. *J. Am. Chem. Soc.* 137, 9851–9855 (2015).

37. AbdulHalim, L. G. et al. Ag29(BDT)12(TPP)4: a tetravalent nanocluster. *J. Am. Chem. Soc.* 137, 11970–11975 (2015).

38. Niihori, Y., Matsuzaki, M., Pradeep, T. & Negishi, Y. Separation of precise atom tailoring of a gold nanoparticle. *J. Am. Chem. Soc.* 137, 11970–11975 (2015).

39. Niihori, Y., Matsuzaki, M., Pradeep, T. & Negishi, Y. Separation of precise atom tailoring of a gold nanoparticle. *J. Am. Chem. Soc.* 137, 11970–11975 (2015).

40. Sun, X. Y. et al. Pressure-induced conformer modiﬁcation of donor-acceptor cocystal. distinct responses to anisotropic grinding and isotropic compression. *Angew. Chem. Int. Ed.* 130, 15896–15900 (2018).

41. A. et al. Nanocube superlattices of cesium lead perovskite nanocrystals. *J. Am. Chem. Soc.* 139, 10087–10094 (2017).

42. Wu, J. X. et al. Reversible piezofluorochromic property and intrinsic structure changes of tetra-(methoxyphenyl)ethylenes under high pressure. *J. Phys. Chem. A* 119, 9218–9224 (2015).

43. Bergantin, S., Moret, M., Buth, G. & Fabbiani, F. P. A. Pressure-induced conformational change of the x-ray crystallography reveals the Au144 nanoparticle. *J. Phys. Chem. C* 118, 13476–13483 (2014).

44. Förster, T. & Kasper, K. Ein konzentrationsumschlag der fluoreszenz. *Z. Physik. Chem.* 1, 275–277 (1954).

45. Leonardt, H. & Weller, A. Elektronenverbräuchreaktionen des angeregten Perylen. *Ber. Bunsenges. Phys. Chem.* 67, 791–795 (1963).

46. Shi, W. I., Barber, J. & Zhao, Y. Role of formation of statistical aggregates in chlorophyll fluorescence concentration quenching. *J. Phys. Chem. B* 113, 3976–3982 (2013).

47. Feng, C. F. et al. Unique piezochromic fluorescence behavior of organic crystal of carbozole-substituted CNDNB. *Chem. Commun.* 52, 3836–3839 (2016).

48. Barzan, M. & Hajiemsaeliabaghi, F. Investigation the concentration effect on the absorption and fluorescence properties of Rhodamine 6G dye. *Optik* 159, 157–161 (2018).

49. Loi, M. A. et al. Pressure-induced quenching of the photoluminescence in sexithiophene single crystals observed by femtosecond spectroscopy. *Synth. Met.* 119, 645–646 (2001).

50. Frisch, M. J. et al. Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT (2016).

51. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. *Phys. Chem. Chem. Phys.* 10, 6615–6620 (2008).

52. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 7, 3297–3305 (2005).

53. Zhi, G. B. et al. Fluorescent gold nanoclusters with interlocked staples and a fully thiolate-bound kernel. *Angew. Chem. Int. Ed.* 55, 11567–11571 (2016).

Acknowledgements
The authors would like to thank National Natural Science Foundation of China (Nos. 21971246, 21771186, 21925303, 21701179, 21829501, 21222201, 21711710, and 21258303), National Science Foundation of Anhui Province (1708085Q36), Key Program of 13th five-year plan, CASIHPS (KP-2017-16), the CASIHPS Director’s Fund (BJPY2019A02), Innovative Program of Development Foundation of HeiF Center for Physical Science and Technology (2017FXG002, 2020HSC-CIP005) and CAS/SAFEA International Partnership Program for Creative Research Teams for financial support. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author contributions
Z.G. conceived and carried out the synthesis with the assistance of W.G. and cultivated the single crystals, performed the UV/vis/NIR, ESI-MS, PL, and absolute QY characterization of Au130 and Au125 with the assistance of J.D., X.N. and L.H. analyzed the crystal structure of Au125 and Au125, V.Y.L., and X.W. recorded and analyzed the PL data. L.W., Z.Y., X.M., and Z.W. recorded and analyzed the lifetime data. S.J., I.Z., Y.X., and Y.L. collected and analyzed the XRD data. Zhi.W. designed the study, supervised the project, and analyzed the data. All authors contributed to the preparation of the manuscript.

Competing interests
The authors declare no competing interests.
