Supporting Lemmas for RISE-based Control Methods

Rushikesh Kamalapurkar, Joel A. Rosenfeld, Justin Klotz, Ryan J. Downey, and Warren E. Dixon

Abstract

A class of continuous controllers termed Robust Integral of the Signum of the Error (RISE) have been published over the last decade as a means to yield asymptotic convergence of the tracking error for classes of nonlinear systems that are subject to exogenous disturbances and/or modeling uncertainties. The development of this class of controllers relies on a property related to the integral of the signum of an error signal. A proof for this property is not available in previous literature. The stability of some RISE controllers is analyzed using differential inclusions. Such results rely on the hypothesis that a set of points is Lebesgue negligible. This paper states and proves two lemmas related to the properties.

I. INTRODUCTION

A class of continuous controllers termed Robust Integral of the Signum of the Error (RISE) have been published over the last decade as a means to yield asymptotic convergence of the tracking error for classes of nonlinear systems that are subject to exogenous disturbances and/or modeling uncertainties. RISE-based controllers all exploit a property that is instrumental for yielding an asymptotic result in the presence of disturbances. Specifically, all RISE controllers exploit the fact that the integral

\[
\int_0^x f'(y) \text{sgn}(f(y)) \, dy \approx |f(x)| - |f(0)|
\]

as a means to prove the candidate Lyapunov function is positive definite (cf. [1]–[14] and the references therein). However, no accessible proof of this fact is available. Lemmas 1 in this paper provides a proof for the property.

Motivated by robustness to measurement noise, the analysis of recent RISE-based control designs is performed using non-smooth analysis techniques (cf. [14]–[16]). To facilitate Lyapunov-based stability analysis, a majority of RISE controllers use the Mean Value Theorem to compute a proof for the property. Lemmas 2–4 in this paper provide proofs that validate the fact and further generalizations. Throughout the paper, the notation \(A^c\) is used to denote the complement of the set \(A\).

To facilitate Lyapunov-based stability analysis, a majority of RISE controllers use the Mean Value Theorem to compute a strictly increasing function that bounds the unknown functions in the system dynamics. Lemma 5 in this paper provides a constructive proof of existence of a strictly increasing bound.

II. MAIN RESULTS

Lemma 1. Let \(f : \mathbb{R}_+ \to \mathbb{R}\) be locally absolutely continuous. Then, \(\int_0^x f'(y) \text{sgn}(f(y)) \, dy = |f(x)| - |f(0)|\).

Proof: Using the fundamental theorem of calculus, local absolute continuity of \(f\) implies that \(f'\) exists almost everywhere and that \(f'\) is locally integrable. Since \(\text{sgn}(f)\) is bounded, \(f'\text{sgn}(f)\) is locally integrable. Thus, for each \(x\), \(\int_0^x f'(y) \text{sgn}(f(y)) \, dy < \infty\). Since \(f\) is continuous, \(f^{-1}(\{0\})\) is closed which means that \(f \neq 0\) only on an open subset \(O \subset [0, x]\). The open subset \(O\) can be written as an at-most countable union of mutually disjoint intervals. On some of these intervals \(\text{sgn}(f) = 1\) and on the rest, \(\text{sgn}(f) = -1\). Define a sequence of functions \((g_n)_{n=1}^\infty : \mathbb{R}_+ \to \mathbb{R}\) as

\[
g_n(y) \triangleq \begin{cases}
\sum_{j=1}^n I_j(y) - \sum_{k=1}^n I_k(y) & \text{if } y \in O, \\
0 & \text{otherwise},
\end{cases}
\]

where \(I_j = (a_j, b_j)\) and \(I_k = (c_k, d_k)\) are the (disjoint) intervals where \(\text{sgn}(f) = +1\) or \(-1\), respectively, arranged such that \(a_j > b_{j-1}\) for all \(j > 1\) and \(c_k > d_{k-1}\) for all \(k > 1\), and \(1\) denotes the indicator function defined as \(1_I(x) \triangleq \begin{cases}
1, & \text{if } x \in I \\
0, & \text{otherwise}.
\end{cases}\)

Then, \(g_n \to \text{sgn}(f)\) point-wise on \([0, x]\) as \(n \to \infty\). Since \(f'\) is locally integrable and \([0, x]\) is compact, \(f'\) is integrable, and hence, essentially bounded on \([0, x]\). Thus, \(f'g_n \to f'\text{sgn}(f)\) point-wise a.e. on \([0, x]\). Let \(M = \text{ess sup}_{y \in [0, x]} f'(y)\). Then,
Furthermore, since $f(y) \leq M$ for almost all $y \in [0, x]$, and hence, by the Dominated convergence theorem [18],

$$
\int_0^x f'(y) \text{sgn} (f(y)) \, dy = \lim_{n \to \infty} \int_0^x f'(y) g_n(y) \, dy = \lim_{n \to \infty} \int_0^x f'(y) \left(\sum_{j=1}^n 1_{I_j}(y) - \sum_{k=1}^n 1_{I_k}(y) \right) \, dy
$$

$$
= \lim_{n \to \infty} \int_0^x \left(\sum_{j=1}^n f'(y) 1_{I_j}(y) - \sum_{k=1}^n f'(y) 1_{I_k}(y) \right) \, dy = \lim_{n \to \infty} \left(\sum_{j=1}^n \int_0^x f'(y) 1_{I_j}(y) \, dy - \sum_{k=1}^n \int_0^x f'(y) 1_{I_k}(y) \, dy \right).
$$

Using the fundamental theorem of calculus, local absolute continuity of f implies that \(\int_0^x f'(y) 1_{I_j}(y) \, dy = f(b_j) - f(a_j) \) and \(\int_0^x f'(y) 1_{I_k}(y) \, dy = f(d_k) - f(c_k) \). Thus

$$
\int_0^x f'(y) \text{sgn} (f(y)) \, dy = \lim_{n \to \infty} \left(\sum_{j=1}^n (f(b_j) - f(a_j)) - \sum_{k=1}^n (f(d_k) - f(c_k)) \right).
$$

Since $f = 0$ outside the open intervals I_j and I_k, we get $f(b_j) = f(d_k) = 0$ and $f(a_j) = f(b_j) = f(c_k) = f(d_k) = 0$ for all $2 \leq j, k < \infty$. Furthermore,

$$
\lim_{j \to \infty} f(a_j) = \lim_{k \to \infty} f(c_k) = 0, \quad (1)
$$

and

$$
\int_0^x f'(y) \text{sgn} (f(y)) \, dy = \lim_{j \to \infty} (f(b_j) - f(a_j)) - \lim_{k \to \infty} (f(d_k) - f(c_k)) - (f(a_1) - f(c_1)). \quad (2)
$$

To evaluate T_2, consider the following cases:

Case 1: $f(0) = 0$. In this case, since $f = 0$ outside the open intervals I_j and I_k, we get $f(a_1) = f(c_1) = 0$.

Case 2: $f(0) > 0$. In this case, $a_1 = 0$, and hence, $f(a_1) = f(0)$. Since $f = 0$ outside the open intervals I_k, $f(c_1) = 0$. Thus, $f(0) > 0 \implies (f(a_1) - f(c_1)) = f(0)$.

Case 3: $f(0) < 0$. In this case, $c_1 = 0$, and hence, $f(c_1) = f(0)$. Since $f = 0$ outside the open intervals I_j, $f(a_1) = 0$. Thus, $f(0) < 0 \implies (f(a_1) - f(c_1)) = -f(0)$.

Thus,

$$
(f(a_1) - f(c_1)) = |f(0)|. \quad (3)
$$

To evaluate T_1, consider the following cases:

Case 1: $f(x) = 0$. In this case, since $f = 0$ outside the open intervals I_j and I_k, we get $\lim_{j \to \infty} f(b_j) = \lim_{k \to \infty} f(d_k) = 0$, which from 1 implies $T_1 = 0$.

Case 2: $f(x) > 0$. In this case, $\lim_{j \to \infty} b_j = x$, which from continuity of f implies that $\lim_{j \to \infty} f(b_j) = f(x)$. Furthermore, since $f = 0$ outside the open intervals I_k, we get $\lim_{k \to \infty} f(d_k) = 0$. Thus, $T_1 = f(x)$.

Case 3: $f(x) < 0$. In this case, $\lim_{k \to \infty} d_k = x$, which from continuity of f implies that $\lim_{k \to \infty} f(d_k) = f(x)$. Furthermore, since $f = 0$ outside the open intervals I_j, we get $\lim_{j \to \infty} f(b_j) = 0$. Thus, $T_1 = -f(x)$.

Thus,

$$
\left| \lim_{j \to \infty} (f(b_j) - f(a_j)) - \lim_{k \to \infty} (f(d_k) - f(c_k)) \right| = |f(x)|. \quad (4)
$$

From 2, 3 and 4 the required result is follows.

Lemma 2. Let $f : [0, \infty) \to \mathbb{R}$ be a continuously differentiable function. Then,

$$
\mu \left\{ x \mid f(x) = 0 \wedge f'(x) \neq 0 \right\} = 0,
$$

where μ denotes the Lebesgue measure on $[0, \infty)$.

Proof: Let $A \triangleq \{ x \mid f(x) = 0 \wedge f'(x) \neq 0 \} \subseteq [0, \infty)$. Note that $A = \left\{ f^{-1} (\{0\}) \right\} \cap \left\{ f^{-1} (\{0\}) \right\}^c$, and hence, A is measurable. The first step is to prove that all the points in the set A are isolated. That is,

$$
(\forall a \in A) \left(\exists \epsilon > 0 \mid ((a - \epsilon, a + \epsilon) \cap A) \setminus \{a\} = \emptyset \right). \quad (6)
$$

The negation of (6) is

$$
(\exists a \in A) \mid (\forall \epsilon > 0) \left(((a - \epsilon, a + \epsilon) \cap A) \setminus \{a\} \neq \emptyset \right). \quad (7)
$$
For the sake of contradiction, assume that (3) is true. Thus, there exists a \(b \in ((a - \epsilon, a + \epsilon) \cap A) \setminus \{a\} \). Without loss of generality, let \(b > a \) and \(f'(a) > 0 \). As \(f \) is differentiable and \(f(a) = f(b) = 0 \), by the Mean Value Theorem, \(\exists c \in (a, b) \) such that

\[
f'(c) = 0.
\]

(8)

By continuity of \(f' \) at \(a \),

\[(\forall \epsilon_a > 0) \ (\exists \delta_a > 0) \ | x - a | \ | f'(a) - \epsilon_a < f'(x) < f'(a) + \epsilon_a \].

In particular, pick \(\epsilon_a = f'(a) \). Then,

\[(\exists \delta_a > 0) \ (\forall x \in [0, \infty)) \ | x - a | < \delta_a \implies f'(x) > 0 \].

(9)

Now, pick \(\epsilon = \delta_a \) in (7). Thus, \(b \in ((a - \delta_a, a + \delta_a) \cap A) \setminus \{a\} \). Since \(|b - a| < \delta_a \), and \(c \in (a, b) \), it can be concluded that \(|c - a| < \delta_a \). Thus, from (9), \(f'(c) > 0 \), which contradicts (3). Thus, all the points in the set \(A \) are isolated, and hence, \(A \) is a discrete set. Using the fact that any discrete subset of \(\mathbb{R} \) is countable, (3) follows.

The following two lemmas generalize the above result.

Lemma 3. Let \(f : \mathbb{R} \to \mathbb{R} \) be an everywhere differentiable function. The set \(E = \{ a \in \mathbb{R} : f(a) = 0 \text{ and } f'(a) \neq 0 \} \) is countable.

Proof: If \(E \) is empty, then it is countable. Now suppose that \(E \) is nonempty. We will show that \(E \) is composed of only isolated points. Let \(a \in E \), and consider the first order Taylor expansion of \(f \):

\[f(x) = f(a) + f'(a)(x - a) + \epsilon(x) \]

First note that:

\[
\frac{\epsilon(x)}{x - a} = \frac{f(x) - f(a) - f'(a)(x - a)}{x - a} = \frac{f(x) - f(a)}{x - a} - f'(a) \to 0
\]

as \(x \to a \).

Now pick a \(\delta > 0 \) such that \(|\epsilon(x)/(x - a)| < |f'(a)| \) for \(x \in (a - \delta, a + \delta) \). For this neighborhood we have (with \(x \neq a \)):

\[|f(x)| = \left| f'(a)(x - a) + \frac{\epsilon(x)}{x - a} \right| \geq |x - a| \left| f'(a) \right| - |\epsilon(x)/x - a| > 0 \]

Therefore we have \(f(x) \neq 0 \) in the neighborhood \((a - \delta, a + \delta) \) unless \(x = a \). Hence each point in \(E \) is isolated, and therefore \(E \) is countable. By the proof of this theorem we can also weaken the everywhere differentiability and find that the set:

\[E = \{ a \in \mathbb{R} : f \text{ is differentiable at } a, f(a) = 0, f'(a) \neq 0 \} \]

is countable.

Lemma 4. Let \(f : \mathbb{R} \to \mathbb{R} \) be a function. Consider the set

\[E = \left\{ a \in \mathbb{R} : \liminf_{x \to a} \frac{f(x) - f(a)}{x - a} > 0 \text{ or } \limsup_{x \to a} \frac{f(x) - f(a)}{x - a} < 0, f(a) = 0 \right\}.
\]

This set is countable.

Proof: Suppose that \(E \) has some accumulation point \(a \in \mathbb{R} \). This means there is a sequence of points \(\{a_n\} \subset E \) such that \(\lim a_n = a \). Without loss of generality we may assume that

\[
\liminf_{n \to a} \frac{f(x) - f(a)}{x - a} > 0.
\]

This means for any sequence \(x_n \to a \) for which the sequence \(\frac{f(x_n) - f(a)}{x_n - a} \) converges, the limit of that convergent sequence is greater than zero.

However, since \(f(a_n) = 0 \) and \(f(a) = 0 \) we have

\[
\frac{f(a_n) - f(a)}{a_n - a} = 0
\]

for all \(n \). A contradiction. Thus every point is isolated and \(E \) is countable.

Lemma 5. Let \(D \subseteq \mathbb{R}^n \) be an open and connected set containing the origin. Let \(B_r \subset D \) denote the closed ball of radius \(r > 0 \) centered at the origin and let \(f : D \to \mathbb{R}^m = [f_1, f_2, \cdots, f_m]^T \) be a differentiable function such that \(\|x\| < \infty \implies \|f(x)\|, \|\nabla f_i(x)\| < \infty \) for all \(x \in D \). Then there exists a strictly increasing function \(\rho : [0, \infty) \to [0, \infty) \) such that \(\|f(x) - f(x_d)\| \leq \rho(\|x - x_d\|) \|x - x_d\| \) for all \(x \in D \) and \(x_d \in B_r \).
Proof: Using the Mean Value Theorem, \(\forall i = 1, \cdots, m\), and for all \(x, x_d \in D\) there exist \(0 < c_i < 1\) such that
\[
f_i (x) - f_i (x_d) = \nabla f_i |_{c_i x + (1 - c_i) x_d} \cdot (x - x_d).
\]
Using the Cauchy-Schwarz inequality,
\[
\| f(x) - f (x_d) \| = \sqrt{\sum_{i=1}^{m} \left| f_i (x) - f_i (x_d) \right|^2} \\
= \sqrt{\sum_{i=1}^{m} \left(\nabla f_i |_{c_i x + (1 - c_i) x_d} \cdot (x - x_d) \right)} \\
\leq \sqrt{\sum_{i=1}^{m} \| \nabla f_i |_{c_i (x - x_d) + x_d} \|^2} \| (x - x_d) \| \\
\leq \sqrt{\sum_{i=1}^{m} \max_i \| \nabla f_i |_{c_i (x - x_d) + x_d} \|^2} \| (x - x_d) \|.
\]
where the function \(G_1 : \mathbb{R}^n \times D \to [0, \infty)\) is defined as
\[
G_1 (x - x_d, x_d) \triangleq \sqrt{\max_{(\sigma, \omega) \in B_{xy}} \| \nabla f_i |_{c_i (x - x_d) + x_d} \|^2} \\
\text{such that } G_2 (\|x - x_d\|, \|x_d\|) \geq G_1 (x - x_d, x_d) \text{ for all } (x, x_d) \in D \times B_r. \text{ Thus,}
\]
\[
\| f(x) - f (x_d) \| \leq G_2 (\|x - x_d\|, \|x_d\|) \| (x - x_d) \|. \tag{10}
\]
To obtain a strictly increasing function, define a set \(B_{xy} \subseteq \mathbb{R} \times \mathbb{R}\) as
\[
B_{xy} \triangleq \{ (\sigma, \omega) \in \mathbb{R} \times \mathbb{R} \mid 0 < \sigma \leq \|x - x_d\|, 0 < \omega \leq \|x_d\| \}
\]
Since \(G_2 (\|x - x_d\|, \|x_d\|)\) is also bounded for all bounded \((x, x_d)\), we can define a non-decreasing function \(G_3 : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}\) as
\[
G_3 (\|x\|, \|x_d\|) = \sup_{(\sigma, \omega) \in B_{xy}} G_2 (\sigma, \omega)
\]
such that \(G_3 (\|x - x_d\|, \|x_d\|) \geq G_2 (\|x - x_d\|, \|x_d\|)\) for all \((x, x_d) \in D \times D\). Furthermore, since \(\|x_d\| \leq r\) for all \(x_d \in B_r\),
\[
G_3 (\|x - x_d\|, r) \geq G_2 (\|x - x_d\|, \|x_d\|) \tag{11}
\]
for all \(x \in D, x_d \in B_r\). Let \(\rho : [0, \infty) \to [0, \infty)\) be defined as
\[
\rho (\|x - x_d\|) \triangleq G_3 (\|x - x_d\|, r) + \|x - x_d\|. \text{ Then, } \rho \text{ is}
\]
strictly increasing, and using (10) and (11),
\[
\| f(x) - f (x_d) \| \leq \rho (\|x - x_d\|) \| x - x_d \|,
\]
for all \(x \in D\) and \(x_d \in B_r\).

\section*{Acknowledgments}
The authors thank Dr. Michael Jury, Dr. Marcio de Queiroz and Dr. Xiaoyu Cai for their valuable inputs.

\section*{References}
[1] B. Xian, D. M. Dawson, M. S. de Queiroz, and J. Chen, “A continuous asymptotic tracking control strategy for uncertain nonlinear systems,” \textit{IEEE Trans. Autom. Control}, vol. 49, pp. 1206–1211, 2004.
[2] B. Xian, M. S. de Queiroz, D. M. Dawson, and M. McIntyre, “A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems,” \textit{Automatica}, vol. 40, no. 4, pp. 695–700, 2004.
[3] P. M. Patre, W. MacKunis, K. Kaiser, and W. E. Dixon, “Asymptotic tracking for uncertain dynamic systems via a multilayer neural network feedforward and RISE feedback control structure,” \textit{IEEE Trans. Automat. Control}, vol. 53, no. 9, pp. 2180–2185, 2008.
[4] P. M. Patre, W. Mackunis, C. Makkar, and W. E. Dixon, “Asymptotic tracking for systems with structured and unstructured uncertainties,” \textit{IEEE Trans. Control Syst. Technol.}, vol. 16, pp. 373–379, 2008.
[5] P. M. Patre, W. MacKunis, K. Dupree, and W. E. Dixon, \textit{RISE-Based Robust and Adaptive Control of Nonlinear Systems}. Birkhäuser: Boston, 2010.
[6] W. MacKunis, K. Kaiser, Z. D. Wilcox, and W. E. Dixon, “Global adaptive output feedback tracking control of an unmanned aerial vehicle,” \textit{IEEE Trans. Control Syst. Technol.}, vol. 18, no. 6, pp. 1390–1397, 2010.
[7] P. Patre, S. Bhasin, Z. D. Wilcox, and W. E. Dixon, “Composite adaptation for neural network-based controllers,” *IEEE Trans. Automat. Control*, vol. 55, no. 4, pp. 944–950, 2010.

[8] W. MacKunis, P. Patre, M. Kaiser, and W. E. Dixon, “Asymptotic tracking for aircraft via robust and adaptive dynamic inversion methods,” *IEEE Trans. Control Syst. Technol.*, vol. 18, no. 6, pp. 1448–1456, 2010.

[9] P. Patre, W. MacKunis, M. Johnson, and W. E. Dixon, “Composite adaptive control for Euler-Lagrange systems with additive disturbances,” *Automatica*, vol. 46, no. 1, pp. 140–147, 2010.

[10] P. Patre, W. MacKunis, K. Dupree, and W. E. Dixon, “Modular adaptive control of uncertain Euler-Lagrange systems with additive disturbances,” *IEEE Trans. Automat. Control*, vol. 56, no. 1, pp. 155–160, 2011.

[11] S. Bhasin, N. Sharma, P. Patre, and W. E. Dixon, “Asymptotic tracking by a reinforcement learning-based adaptive critic controller,” *J. Control Theory Appl.*, vol. 9, no. 3, pp. 400–409, 2011.

[12] N. Sharma, S. Bhasin, Q. Wang, and W. E. Dixon, “RISE-based adaptive control of a control affine uncertain nonlinear system with unknown state delays,” *IEEE Trans. Automat. Control*, vol. 57, no. 1, pp. 255–259, Jan. 2012.

[13] J. Shin, H. Kim, Y. Kim, and W. E. Dixon, “Autonomous flight of the rotorcraft-based UAV using RISE feedback and NN feedforward terms,” *IEEE Trans. Control Syst. Technol.*, vol. 20, no. 5, pp. 1392–1399, 2012.

[14] S. Bhasin, R. Kamalapurkar, H. T. Dinh, and W. Dixon, “Robust identification-based state derivative estimation for nonlinear systems,” *IEEE Trans. Automat. Control*, vol. 58, no. 1, pp. 187–192, 2013.

[15] N. Fischer, R. Kamalapurkar, N. Sharma, and W. E. Dixon, “Rise-based control of an uncertain nonlinear system with time-varying state delays,” in *Proc. IEEE Conf. Decis. Control*, Maui, HI, Dec. 2012, pp. 3502–3507.

[16] B. Bialy, L. Andrews, J. Curtis, and W. E. Dixon, “Saturated rise tracking control of store-induced limit cycle oscillations,” in *Proc. AIAA Guid., Navig., Control Conf.*, AIAA 2013-4529, August 2013.

[17] N. Fischer, R. Kamalapurkar, and W. E. Dixon, “LaSalle-Yoshizawa corollaries for nonsmooth systems,” *IEEE Trans. Automat. Control*, vol. 58, no. 9, pp. 2333–2338, 2013.

[18] G. B. Folland, *Real analysis: modern techniques and their applications*, 2nd ed., ser. Pure and applied mathematics. Wiley, 1999.