Effect of Malnutrition on K⁺ Current in T Lymphocytes

Rafael Godínez Fernández,* Joaquín Azpiroz Leehan, Reyna Fierro Pastrana, and Rocío Ortíz Muñiz

Departamento Ingeniería Eléctrica, Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana,
Unidad Iztapalapa, México, D.F. México

Received 3 September 2004/Returned for modification 6 December 2004/Accepted 23 March 2005

Severe malnutrition in children is frequently associated with infectious diseases. Animal models have been useful for studying the effects of malnutrition. One of the immunosuppressive mechanisms of malnutrition is inhibition of the activation of T lymphocytes. The voltage-dependent K(V) potassium channels are vital for the activation of T lymphocytes. The blockade of K(V) channels inhibits the activation of T lymphocytes. Malnutrition could affect the suitable synthesis of K(V) channels in T lymphocytes, producing changes in the magnitude and/or dependency of the voltage of the K⁺ current. We reported a significant decrease in the K⁺ current and activation to a 20 mV more positive membrane potential in T lymphocytes of rats with severe malnutrition. These results indicate that the diminution in the K⁺ conductance by alteration of K(V) channels in severe malnutrition is one of the mechanisms that inhibit the activation of T lymphocytes.

Human T lymphocytes contain a diversity of ionic channels such as K⁺ (1, 10, 12, 14), Na⁺ (8), Ca²⁺ (5, 12, 14) and Cl⁻ channels (15). In recent years, K⁺ and Ca²⁺ channels have been widely studied due to the vital functions that they carry out in the activation of T lymphocytes. Briefly, T lymphocytes express several populations of K⁺ channels such as voltage-gated [K(V)] and calcium-activated [K(Ca)] potassium channels. Two types of K(V) channels exist, KV₁₁,₃ (type n) and charybotoxin resistant (31). These two are mainly responsible for maintaining the membrane potential in resting human T lymphocytes (31).

Elevation of intracellular free Ca²⁺ is one of the key triggering signals for T-cell activation by antigens (12, 14). Following the engagement of the T-lymphocyte receptor, Ca²⁺ release from intracellular stores occurs and a signal from depleted stores subsequently activates a transmembrane Ca²⁺ conductance (ICRAC current) via a Ca²⁺ release-activated Ca²⁺ channel (12, 32). K⁺ channels have the ability to modulate the rate of Ca²⁺ entry through Ca²⁺ release-activated Ca²⁺ channel channels by hyperpolarization of the membrane (5, 12, 14).

In other species, mainly in rodents, experiments have demonstrated that K(V) channels are present, i.e., n, n', and l (13, 14). Type n' and l channels differ from type n by their slow inactivation and absence of cumulative inactivation. In addition, a K(Ca) channel has been reported (16). The ionic channels in rodent T lymphocytes participate in the activation process in a similar way to the one observed in human T lymphocytes (11, 13, 14).

When the hyperpolarization is avoided by the blocking of the K⁺ channels with some drug, the maintained increase of Ca²⁺ is interrupted and the activation of T lymphocytes is inhibited. This decrease in K⁺ conductance affects human T lymphocytes and rodent T lymphocytes similarly (6, 12, 14, 24, 25).

Malnutrition is the most common cause of immunodeficiency worldwide (19). Epidemiological observations have confirmed that infection and malnutrition aggravate each other (4, 27). Epidemiological studies have documented the adverse effect of protein-energy malnutrition on morbidity and mortality. It is now recognized that nutritional deficiency is commonly associated with impaired immune responses (3, 4, 19). Malnutrition has been classified as mild, moderate or severe, according to the degree of weight or height deficit, or altered weight/height ratio (21). Children are the most affected group, and its effects can be particularly devastating in the first few years of life (21).

In young children with protein-caloric malnutrition, that is, both marasmus and kwashiorkor, alterations in a number of immune responses have been documented. These alterations include cell-mediated immunity depression, reduced number of circulating T lymphocytes, particularly CD4⁺ helper T cells and CD3⁺ CD25⁺ T cells, decreased lymphocyte stimulation response to mitogens, altered production of cytokines, lower secretory immunoglobulin A (IgA) antibody response on mucosal surfaces, decreased antibody affinity, phagocyte dysfunction, etc. (3, 19). Experimental animal models mainly using rats and mice have been widely used to study the effects of malnutrition. In animal models of nutritional deficiency produced before gestation, during gestation, and during the lactation period, the adverse effects on immune responses have been analyzed (2, 28).

In severe malnutrition, protein synthesis is affected as much in quality as in quantity. Since ionic channels are proteins encrusted in cellular membrane (7), it is possible that one of the factors that complicate infectious illnesses in malnourished patients is inadequate synthesis of K⁺ channels in T lymphocytes. If this were the case, a decrease in the magnitude of the K⁺ current or an alteration in its dependence on the voltage would affect the activation of T lymphocytes.

In this work we studied K⁺ channels in rat peripheral T
lymphocytes with moderate and severe malnutrition induced during lactation. We found that the magnitude of the K⁺ current is smaller and it activates to a 20 mV more positive membrane potential in rats with severe malnutrition. These alterations are not observed in rats with moderate malnutrition.

MATERIALS AND METHODS

Animals. Wistar rats from the closed colony bred at the Universidad Autónoma Metropolitana-Iztapalapa were used. Rats were kept under 12-hour light/12-hour dark cycle at 22 to 25°C and 45% relative humidity. Females who had two previous litters were bred in acrylic boxes with Betachips bedding (Northeastern Products, Warrensburg, NY). The nursing mothers were fed a balanced diet for rodents (Purina Mills International, Richmond, VA) and filtered water ad libitum.

Experimental malnutrition and treatment regimen. The experiments were performed according to the guidelines for the use of experimental animals of the Autonomous Metropolitan University of Iztapalapa, which are in accordance with those approved by the National Institutes of Health (Bethesda, MD). One-day-old Wistar rats from different litters were randomly assigned to two groups. In the well-nourished group, nursing mothers were each given six to eight pups. In the malnourished group, each nursing mother fed 16 to 17 pups. In the latter group, malnutrition was produced in the nursing pups due to food competition (21). Nursing mothers cannot adequately feed 16 to 17 pups even if milk production is adequate, resulting in lower weight gains in the malnourished group (21).

Rats were weighed throughout the nursing period (1 to 24 days of age). The degree of malnutrition that was induced in the malnourished group was of two types, animals with severe malnutrition (weight deficit greater than 40% of that of well-nourished controls) and animals with moderate malnutrition (weight deficit between 25 and 40% of that of well-nourished controls). Most of the rats (more than 80%) presented severe malnutrition.

Two groups of rats were studied. Group I was well nourished (control group). This group consisted of rats with normal weights for age and without infectious diseases. Their ages ranged from 16 to 24 days. Group II was malnourished. This group included rats with moderate malnutrition (weight deficit >25% and <40% according to age), and rats with severe malnutrition (weight deficit >40% according to age), both without infectious diseases. Their ages ranged from 16 to 24 days.

Peripheral T lymphocytes were obtained for rats with severe malnutrition, moderate malnutrition, and well nourished (control). An animal was used for each day of experimental work.

Cell separation. Approximately 1 to 2 ml of blood was collected from each animal by cardiopuncture with a syringe containing heparin (25 U/ml of blood). Later they were sacrificed. The separation of T lymphocytes was made in three stages. Initially, the mononuclear cells were separated by density gradient centrifugation with the use of NycoPrep 1.077 A (Axis-Shield, Norway). In the second stage, the monocytes were separated by adhesion (31). Mononuclear cells were deposited in petri dishes (Nunclon, Denmark) in normal Ringer (see

RESULTS

Initially the outward current on T lymphocytes from control rats was obtained. T lymphocytes were polarized to a holding potential of −80 mV. Lengthy depolarizing pulses were applied to evoke the K⁺ current of the steady state. Two second pulses were applied in 20-mV increases. Figure 1a shows typical whole-cell patch-clamp outward currents on resting peripheral T cells. As the depolarization increases, so does the outward current. The activation of the outward current follows a slow temporary course and does not present inactivation.

In order to verify that outward current was due to K⁺, the K⁺ of the pipette solution was replaced by Cs⁺. In Fig. 1b it is observed that when a protocol of pulses equal to the one described in Fig. 1a is applied the outward current is negligible. These results indicate that the outward current was composed fundamentally of K⁺ (7).

In order to observe the effect of the severe malnutrition on the K⁺ current, peripheral T lymphocytes of rats with severe malnutrition were used. Under these conditions, using the same protocol of pulses indicated in Fig. 1, K⁺-evoked currents were similar to the ones observed in T lymphocytes of control rats. However, the magnitude of the outward current was smaller, as is shown in Fig. 2a. In other T lymphocytes a greater effect of the severe malnutrition was observed; they did not present K⁺ current as can be seen in Fig. 2b. The absence of K⁺ current is similar to the results obtained when K⁺ was replaced by Cs⁺ (Fig. 1b) in the control experiments; in its place, a negative inward current is observed.

The mean of the magnitudes of the K⁺ currents for each membrane potential was obtained and a comparative analysis between groups was made. In Fig. 3a, a significant diminution in the magnitude of the K⁺ current in T lymphocytes of rats with severe malnutrition with respect to control rats as well as a greater dispersion in the data is evident.

In order to observe the effect of severe malnutrition on the dependency of the voltage of the activation of the K⁺ current, the current-voltage relation was obtained. The K⁺ currents were normalized with respect to the maximum current, which was obtained with a +60-mV membrane potential pulse.
results are shown in Fig. 3b. In T lymphocytes of control rats, the K⁺ current activated at about −60 mV of membrane potential. However, in T lymphocytes of rats with severe malnutrition the K⁺ current activated at about −40 mV of membrane potential, displacing the current-voltage relation 20 mV toward the right, as can be observed in Fig. 3b.

The effect of severe malnutrition on the K⁺ current could be a specific effect or simply a manifestation of malnutrition without regard to type (classification). To discard this possibility, the effect of moderate malnutrition on K⁺ current in T lymphocytes was observed. Unlike the current observed in T lymphocytes of animals with severe malnutrition, the K⁺ current does not seem to be affected in T lymphocytes of rats with moderate malnutrition. In Fig. 4a, the means of the K⁺ current of the control group and the group with moderate malnutrition are compared. Significant differences are not observed. Also, T lymphocytes always presented a K⁺ current, contrary to the K⁺ current absence observed in some T lymphocytes of animals with severe malnutrition.

Moreover, it is observed that the dependence of the voltage of the activation of the K⁺ current is not affected either, as is shown in Fig. 4b. The current-voltage curves of the K⁺ current in T lymphocytes of the control group and those of the group with moderate malnutrition are similar.

DISCUSSION

Malnutrition was produced in nursing pups by food competition, using a model previously developed in the laboratory (21). The degree of malnutrition that was obtained was moderate to severe. The analysis of the K⁺ currents in peripheral T lymphocytes was made the same day as their purification, to
avoid using enriched culture medium that could affect T lymphocytes of rats with malnutrition (4, 20). Previous studies have shown different responses in peripheral T cells when nonautologous plasma is used (4, 20). Therefore, autologous plasma was used in the incubation stage for monocyte elimination.

In contrast to the K^+ current in human peripheral T lymphocytes, which activate quickly (1), in rat T lymphocytes the activation of the K^+ current presents a slower temporary course. Therefore, voltage-clamp pulses of 2,000 ms are applied for obtaining the K^+ current in the steady state. The outward current is fundamentally of K^+. In Fig. 1b, the K^+ current was normalized with respect to the maximal current (I_m/I_{max}) that was obtained with a +60-mV membrane potential pulse. The asterisks (*) and **) indicate P values of <0.005 and <0.001, respectively.

![Graph](image1)

FIG. 3. Mean of the magnitudes of the potassium currents for each membrane potential in T lymphocytes of animals with severe malnutrition. In panel a, K^+ current for different membrane potentials, the bars on the left (C) were obtained from T lymphocytes of the control group ($n = 12$), and those on the right (SM) correspond to T lymphocytes of rats with severe malnutrition ($n = 9$). In panel b, the K^+ current was normalized with respect to the maximal current (I_m/I_{max}) that was obtained with a +60-mV membrane potential pulse. The asterisks (*) and **) indicate P values of <0.005 and <0.001, respectively.

![Graph](image2)

FIG. 4. Absence of effect of moderate malnutrition on potassium current in T lymphocytes. (a) The bars indicate the average K^+ current that was obtained from different membrane potentials; significant differences were not observed between the control group (C) and that with moderate malnutrition (MM) ($n = 7$) ($P > 0.05$). In panel b, the current-voltage relationship of the K^+ current of T lymphocytes from the control group and rats with moderate malnutrition is similar; the K^+ currents were normalized as was described for Fig. 3b.
tive inactivation during repetitive depolarizations and low sensitivity to external tetraethylammonium.

The mean magnitude of the K^+ current in T lymphocytes of rats with severe malnutrition is smaller to the one observed in T lymphocytes of the control group. This is a significant difference for different membrane potentials. It tends to diminish in very positive membrane potentials. On the other hand, the largest standard deviation observed in the mean K^+ current from T lymphocytes of rats with severe malnutrition is due to the variable decrease in the magnitude of the K^+ current. Some T lymphocytes only presented a decrease in the magnitude of the K^+ current, while other T lymphocytes did not exhibit K^+ current.

In order to observe the effect of the malnutrition on the dependency of the voltage of the opening of the K^+ channels, the K^+ currents of each T lymphocyte were normalized with respect to the maximal K^+ current. This way, the dependency of the voltage of the K^+ current can be observed without the effect of the current’s magnitude. This is indispensable because of the smaller magnitude of the K^+ current in rat T lymphocytes with severe malnutrition. In this case, the K^+ current activated at about -40 mV of membrane potential, with a displacement of 20 mV towards the right of the current-voltage relation with respect to T lymphocytes of the control group. This result is similar to that obtained in T lymphocytes from old men (23).

Different results were obtained in T lymphocytes from rats with moderate malnutrition. The magnitude of the K^+ current with respect to the membrane potential, as well as the current-voltage relation, was not affected. What this indicates is a specific effect of severe malnutrition on the K^+ current.

The $K(Ca)$ and $K(V)$ channels play an important role in the process of activation of T lymphocytes (12, 14). The inhibition of the activation of T lymphocytes can take place by blocking some of these subpopulations of K^+ channels. When $K(V)$ channels are blocked with drugs that diminish K^+ conductance, the activation of T lymphocytes is inhibited (6, 24, 25, 26). In this work, the study of the $K(V)$ channels indicates that T lymphocytes of rats with severe malnutrition present a smaller K^+ conductance to different membrane potentials. This smaller K^+ conductance is due to a diminution in the magnitude of the K^+ current as well as by displacement towards the right of the normalized current-voltage relation. This diminution in K^+ conductance can be critical for a suitable activation of T lymphocytes. The T lymphocytes that presented negligible K^+ currents would be the most affected.

Extrapolating these results to the human case would lead us to conclude that diminution in the K^+ conductance could be one of the factors that contribute to a greater susceptibility to suffer from and to complicate the pathological processes of infections. It would be one of the mechanisms of immunodeficiency observed in children with severe malnutrition (3, 4, 20). On the other hand, the results for the group with moderate malnutrition indicate that K^+ conductance is not affected and would not be a factor that limited the activation of T lymphocytes.

In this first stage, we studied the effect of malnutrition on the K^+ current in rat T lymphocytes. The diseases associated with malnutrition in humans (4, 19) can complicate the study of the effect of severe malnutrition on the K^+ current. However, these results can serve as a reference.

In summary, in animals with severe malnutrition, the magnitude of the K^+ current is smaller or it is absent altogether. The current-voltage relation is displaced toward the right by 20 mV. These alterations are not observed in animals with moderate malnutrition. The decrease in K^+ conductance could be one of the factors that contribute to immunodeficiency in severe malnutrition.

ACKNOWLEDGMENT

This work was supported by the Universidad Autónoma Metropolitana Iztapalapa, México.

REFERENCES

1. Cahanan, M. D., K. G. Chandy, T. E. DeCoursey, and S. Gupta. 1985. A voltage-gated potassium channel in human T lymphocytes. J. Physiol. 358: 197–237.
2. Chandra, R. K. 1975. Antibody formation in first and second generation offspring of nutritionally deprived rats. Science 196:289–290.
3. Chandra, R. K. 1996. Nutrition, immunity and infection: from basic knowledge of dietary intake of immune responses to practical application of ameliorating suffering and improving survival. Proc. Natl. Acad. Sci. USA 93:14304–14307.
4. Dowd, P., J. Kelleher, B. E. Walker, and P. J. Guilhou. 1986. Nutrition and cellular immunity in hospital patients. Br. J. Nutr. 55:515–527.
5. Fomina, A. F., C. M. Fanger, J. A. Kozak, and M. D. Cahanal. 2000. Single-channel properties and regulated expression of Ca$^{2+}$ release-activated Ca$^{2+}$ (CRAC) channels in human T cells. J. Cell Biol. 150:1435–1444.
6. Gloria, K. C., J. T. Blake, A. Talento, et al. 1997. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J. Immunol. 158:5120–5128.
7. Hillie, B. 2001. Ion channels of excitable membranes, 3rd ed. Sinauer Associates Inc., Sunderland, Mass.
8. Lai, Z.-F., C. Yu-Zhen, N. Yasuhiro, and N. Katsushige. 2000. An amiloride-sensitive and voltage-dependent Na$^+$ channel in an HLA-DR-restricted human T cell clone. J. Immunol. 165:583–90.
9. Lee, S. C., and C. Deutsch. 1996. Temperature dependence of K^+ channel properties in human T lymphocytes. Biophys. J. 75:49–62.
10. Lee, S. C., D. I. Levy, and C. Deutsch. 1992. Diverse K^+ channels in primary human T lymphocytes. J. Gen. Physiol. 99:771–793.
11. Lee, S. C., D. E. Sabath, C. Deutsch, and M. R. Prystowsky. 1986. Increased voltage-gated potassium conductance during interleukin 2-stimulated proliferation of a mouse helper T lymphocyte clone. J. Cell Biol. 102:1200–1208.
12. Lewis, R. S. 2001. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19:497–52.
13. Lewis, R. S., and M. D. Cahanal. 1988. Subset-specific expression of potassium channels in developing murine T lymphocytes. Science 239:771–775.
14. Lewis, R. S., and M. D. Cahanal. 1995. Potassium and calcium channels in lymphocytes. Annu. Rev. Immunol. 13:623–653.
15. Lewis, R. S., P. E. Ross, and M. D. Cahalan. 1993. Chloride channels activated by osmotic stress in T lymphocytes. J. Gen. Physiol. 101:801–826.
16. Mahault-Smith, M. P., and E. Schlichter. 1989. Ca$^{2+}$-activated K^+ channels in human B lymphocytes and rat thymocytes. J. Physiol. 415:69–83.
17. Maltsev, V. A. 1992. A negative resistance region underlies the triggering property of membrane potential in human T lymphocytes. Cell. Signal. 4:697–707.
18. Mashhour, A., Z. Ahmed, and M. M. Sayeed. 1999. PGE$_2$-mediated inhibition of T-cell p5β is independent of CAMP. Am. J. Physiol. Cell Physiol. 277:C302–C309.
19. McMurray, D. N., S. A. Loomis, L. J. Casazza, H. Reu, and R. Miranda. 1983. Development of impaired cell-mediated immunity in mild and moderate malnutrition. Am. J. Clin. Nutr. 34:68–77.
20. Moore, D. L., B. Heyworth, and J. Brown. 1977. Effects of autologous plasma on lymphocyte transformation in malaria and acute protein-energy malnutrition. Immunology 37:777–785.
21. Ortiz, R., J. C. Moro, J. P. Obrador, C. González, and M. Betancourt. 1996. Assessment of an experimental method to induce malnutrition by food competition during lactation. Med. Sci. Res. 24:845–846.
22. Chopin, P. A., and L. C. Schlichter. 1992. Modulation of potassium channels in intact human T lymphocytes. J. Physiol. 445:407–430.
23. Panyi, G., G. Berecki, R. Gaspar, I. Seres, T. Fulop, and S. Damjanovich. 1994. Peripheral blood lymphocytes reduced K^+ channel activity in aged humans. Biochim. Biophys. Res. Commun. 199:519–524.
24. Price, M., S. C. Lee, and C. Duetsch. 1989. Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA 86:10171–10175.
25. Rader, R. K., L. E. Kahn, G. D. Anderson, C. L. Martin, K. S. Chinn, and S. A. Gregory. 1996. T-cell activation is regulated by voltage-dependent and calcium-activated potassium channels. J. Immunol. 156:1425–1430.
26. Sands, S. B., and R. S. Lewis. 1989. Charybdotoxin blocks voltage-gated K⁺ channel in human and murine T lymphocytes. J. Gen. Physiol. 93:1061–1074.
27. Schlesinger, L., C. Muñoz, and M. Arevalo. 1994. Depressed immune response in malnourished rats correlates with increased thymic noradrenaline level. Int. J. Neurosci. 77:229–236.
28. Scrimshaw, N. S., and J. P. SanGiovanni. 1997. Synergism of nutrition, infection and immunity: an overview. Am. J. Clin. Nutr. 66(Suppl.):464–477.
29. Sherif, S. F., T. A. Fehniger, L. Ruggeri, A. Velardi, and M. A. Caligiuri. 2002. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 100:1935–1947.
30. Timonen, T., J. R. Ortaldo, and R. B. Herberman. 1981. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J. Exp. Med. 153:569–582.
31. Verheugen, J. A. H., and H. Korn. 1997. A charybdotoxin-insensitive conductance in human T lymphocytes: T-cell membrane potential is set by distinct K⁺ channels. J. Physiol. 503:317–331.
32. Zweifach, A., and R. S. Lewis. 1993. Mitogen-regulated Ca²⁺ current of T lymphocytes is activated by depletion of intracellular Ca²⁺ stores. Proc. Natl. Acad. Sci. USA 90:6295–6299.