Anomalous Single Production of the Fourth Generation Neutrino at Future ep Colliders

A. K. Çiftçi*

Physics Department, Faculty of Sciences,
Ankara University, 06100 Tandogan, Ankara, Turkey

R. Çiftçi†

Dept. of Eng. of Physics, Faculty of Eng.,
Ankara University, 06100 Tandogan, Ankara, Turkey

S. Sultansoy‡

Physics Section, Faculty of Sciences and Arts,
TOBB University of Economics and Technology, Ankara, Turkey§

(Dated: February 2, 2008)

Abstract

Possible single productions of the fourth standard model generation neutrino via anomalous interactions at the future ep colliders are studied. Signatures of such anomalous processes and backgrounds are discussed in detail. Discovery limits for neutrino mass and achievable values of anomalous coupling strength are determined.

PACS numbers: 12.60.-i, 14.60.-z, 14.80.-j.

Keywords: Anomalous interactions; colliders; fourth generation neutrino.

*Electronic address: ciftci@science.ankara.edu.tr
†Electronic address: rena.ciftci@gmail.com
‡Electronic address: ssultansoy@etu.edu.tr
§Also at Institute of Physics, Academy of Sciences, H. Cavid Avenue 33, Baku, Azerbaijan
I. INTRODUCTION

It is known that the Standard Model (SM) does not predict number of fundamental fermion generations. This number is restricted from below with LEP I data on invisible decays of Z boson as \(n_g \geq 3 \) [1]. On the other hand, \(n_g < 9 \) from asymptotic freedom of QCD. According to recent precision electroweak data, existence of three or four SM generations is at the same status [2-4].

The flavor democracy is a natural hypothesis in the framework of SM as well as a number of models dealing with new physics (see review [5] and references therein). Concerning Standard Model, flavor democracy predicts the existence of a heavy fourth SM generation [6-8]. The Dirac masses of the new fermions are predicted to be almost degenerate and lie between 300 and 700 GeV, whereas, the masses of known fermions belonging to lighter three generations appear due to small deviations of the democracy [9-11]. The quark masses and CKM matrix are given in [9, 10]. Ref. [11] gives both masses and CKM matrix (MNS matrix for leptons) for both quarks and leptons.

Obviously, TeV energy colliders are needed for discovery of the fourth SM generation fermions. The fourth generation quarks will be produced in pairs copiously at the Large Hadron Collider (LHC) [12, 13]. Recently, this process is proposed as the best scenario (after Higgs) for discovery at the LHC [14-16]. Linear lepton colliders are the best place for pair production of the fourth generation charged lepton and neutrino [11, 17, 18]. However, discovery limits for pair production at lepton colliders are \(2m < \sqrt{s} \). For example, International Linear Collider (ILC) with 500 GeV center of mass energy will cover \(m < 250 \) GeV. The discovery capacity of lepton collider could be enlarged if the anomalous interactions of the fourth generation fermions with the first three ones exist. Such anomalous interactions seems to be quite natural due to large masses of the fourth generation fermions (see argumentation for anomalous interaction for t quark presented in ref. [19]). These anomalous interactions could provide also single production of the fourth generation fermions at future lepton-hadron colliders (see review [20] and references therein). Depending on the center of mass energy lepton-hadron colliders are named QCD Explorer with \(\sqrt{s} = 1.4 \) TeV and Energy Frontier ep collider with \(\sqrt{s} = 3.74 \) TeV [20-27].

Recently, anomalous production of the fourth generation charged lepton and neutrino at future ep colliders is considered in [28] and [29], respectively. Unfortunately results of the
TABLE I: Branching ratios and total decay widths for m_{ν_4} (GeV).

m_{ν_4} (GeV)	$W e^{-}(\mu^{-},\tau^{-})$	$Z \nu_e(\nu_\mu,\nu_\tau)$	Γ_{Tot} (GeV)
100	29	4	0.0026
150	22	11	0.039
200	21	12	0.126
300	20	13	0.508
700	20	13	7.160

latter one are erroneous due to the wrong Lagrangian for $\nu_4 e W$ interactions. Therefore, anomalous production of the fourth generation neutrino at future ep colliders should be reconsidered. This is the aim of this study.

II. ANOMALOUS INTERACTIONS OF THE FOURTH SM GENERATION NEUTRINO

The charged current Lagrangian for SM and the anomalous interactions of the fourth generation neutrino can be rewritten from [30, 31] with minor modifications as:

$$L_{cc} = \left(\frac{g_W}{\sqrt{2}}\right) t_i \left[|V_{\nu_4 l_i}| \gamma_\mu + \frac{i}{2A} \kappa_{W l_i}^{\nu_4} \sigma_{\mu\nu} q^\nu \right] P_L \nu_4 W^\mu + h.c., \quad (i = 1, 2, 3)$$

The main error of corresponding Lagrangian in [29] is absence of the MNS matrix element $|V_{\nu_4 l_i}|$. Furthermore, the neutral current Lagrangian for the anomalous interactions of the fourth generation neutrino is

$$L_{nc} = \left(\frac{g_Z}{2}\right) t_i \frac{i}{2A} \kappa_{Z l_i}^{\nu_4} \sigma_{\mu\nu} q^\nu P_L \nu_4 Z^\mu + h.c., \quad (i = 1, 2, 3)$$

In Eq’s (1) and (2), $\kappa_{W l_i}^{\nu_4}$ and $\kappa_{Z l_i}^{\nu_4}$ are the anomalous couplings for the charged and neutral currents with a W boson and a Z boson, respectively (in numerical calculations, we suppose $\kappa_{W l_i}^{\nu_4} = \kappa_{Z l_i}^{\nu_4} = \kappa$). Λ is the cutoff scale for the new physics and P_L is the left handed projection operator; g_W and g_2 are the electroweak coupling constants. In the above equations $\sigma_{\mu\nu} = i(\gamma_\mu \gamma_\nu - \gamma_\nu \gamma_\mu)/2$.

Obviously new interactions will lead to additional decay channels of the fourth family neutrino in addition to enhancement of some SM decay channels. In order to compute
FIG. 1: (a) The total decay width Γ in GeV of the fourth family neutrino and (b) the branching ratios (%) depending on the mass of the fourth generation neutrino.

decay widths, we have implemented the new interaction vertices into the CompHEP [32]. Results of the calculations for different decay channels of ν_4 assuming $(\kappa/\Lambda) = 1 \text{ TeV}^{-1}$ are given in Table I. Experimental upper limit for $|V_{\nu_4 l_i}|$ is 0.02 [4]. Therefore, while calculating values in Table I, we have used $|V_{\nu_4 l_i}| = 0.02$. The total decay width Γ of the fourth generation neutrino and the relative branching ratios are plotted in Fig. 1. More realistic values for MNS matrix elements can be taken from ref. [17], namely: $V_{\nu_4 \tau} = 2.34 \times 10^{-5}$, $V_{\nu_4 \mu} = 6.81 \times 10^{-4}$, $V_{\nu_4 e} = 4.64 \times 10^{-4}$. Consequently, we have used these values at rest of our calculations (note that the values in Table I as well as Figure 1 practically do not change).
m_{ν_4} (GeV)	N_S	$L_{int} = 1$ fb$^{-1}$	$L_{int} = 10$ fb$^{-1}$
200	201	2010	
300	148	1480	
400	106	1060	
500	74	740	
600	47	470	
700	27	270	
800	14	140	
900	6	60	
1000	2	22	

FIG. 2: The total production cross-section of the process $ep \rightarrow \nu_4 X$ as a function of m_{ν_4} with the center of mass energy $\sqrt{s} = 1.4$ TeV.

III. ANOMALOUS SINGLE PRODUCTION OF THE FOURTH SM GENERATION NEUTRINO AT ep COLLIDERS

Single anomalous production of the fourth SM generation neutrino is considered at ep colliders with $\sqrt{s} = 1.4$ TeV (QCD Explorer) and $\sqrt{s} = 3.74$ TeV (Energy Frontier). The
TABLE III: Event numbers of $ep \rightarrow \nu_4 X \rightarrow \mu W X$ for $\sqrt{s} = 3.74$ TeV, $(\kappa/\Lambda) = 1$ TeV$^{-1}$

m_{ν_4} (GeV)	N_S	$L_{\text{int}} = 100\text{pb}^{-1}$	$L_{\text{int}} = 1\text{fb}^{-1}$
200	74.3	743	
300	60.3	603	
400	50.4	504	
500	42.7	427	
600	36.4	364	
700	30.7	307	
800	25.9	259	
900	21.4	214	
1000	20.1	201	
1200	13.8	138	
1400	8.8	88	
1600	5.3	53	
1800	2.9	29	
2000	1.5	15	
2200	0.7	7	
2400	0.3	3	
2600	0.1	1	

calculated cross-sections for ν_4 are given for QCD Explorer and Energy Frontier ep collider in Fig. 2 and Fig. 3, respectively. We consider $ep \rightarrow \nu_4 X \rightarrow \mu W X$ and $ep \rightarrow \nu_4 X \rightarrow e W X$ processes as signatures of anomalous interactions of the fourth generation neutrino. In order to extract the fourth generation neutrino signal and to suppress the background, we impose cuts on the eW invariant mass. Following [29], cuts of $|m_{eW} - m_{\nu_4}| < 25$ GeV for the mass range $m_{\nu_4} = 100 - 1000$ GeV and $|m_{eW} - m_{\nu_4}| < 50$ GeV for the mass range of $1 - 2.6$ TeV together with $p_T^{q,l} > 10$ GeV are applied. In numerical calculations CTEQ6L parton distribution functions are used [33]. The first process can be detected easily at ep colliders due to no background. Number of events for this process at $\sqrt{s} = 1.4$ TeV and $\sqrt{s} = 3.74$ TeV.
FIG. 3: The total production cross-section of the process $ep \rightarrow \nu_4 X$ as a function of m_{ν_4} with the center of mass energy $\sqrt{s} = 3.74$ TeV.

FIG. 4: Achievable values of anomalous coupling strength as a function of the fourth generation neutrino mass for $ep \rightarrow \nu_4 X \rightarrow \mu W X$ process.

TeV are presented in Table II and III, respectively. The computed signal and background cross-sections for the second process are given in Tables IV and V for $\sqrt{s} = 1.4$ TeV and $\sqrt{s} = 3.74$ TeV options, respectively. In the last two columns of these tables we present statistical significance (SS) values of the signal (evaluated from $SS = (\sigma_S/\sqrt{\sigma_B})\sqrt{L_{int}}$, where L_{int} is the integrated luminosity of the collider).
TABLE IV: The cross section of signal and background of $ep \rightarrow \nu_4 X \rightarrow eW X$ for $\sqrt{s} = 1.4$ TeV, $(\kappa/\Lambda) = 1$ TeV$^{-1}$

m_{ν_4} (GeV)	σ_S (pb)	σ_B (pb)	$L_{int} = 1$ fb$^{-1}$	$L_{int} = 10$ fb$^{-1}$
200	0.201	0.560	8.49	26.86
300	0.148	0.293	8.64	27.34
400	0.106	0.172	8.08	25.56
500	0.074	0.086	7.98	25.23
600	0.047	0.049	6.71	21.23
700	0.027	0.025	5.40	17.07
800	0.014	0.012	4.04	12.78
900	0.006	0.005	2.64	8.34
1000	0.002	0.004	1.10	3.48

FIG. 5: Achievable values of anomalous coupling strength as a function of the fourth generation neutrino mass for $ep \rightarrow \nu_4 X \rightarrow eW X$ process.

Since the process $ep \rightarrow \nu_4 X \rightarrow \mu W X$ has no SM background one can use 10 events as a discovery limit. As seen from Table II, QCD Explorer will reach $m_{\nu_4} = 850$ GeV (1100 GeV) with integrated luminosity of 1 fb$^{-1}$ (10 fb$^{-1}$) for $(\kappa/\Lambda) = 1$ TeV$^{-1}$. Corresponding limit for Energy Frontier is 1300 GeV (2100 GeV) with $L_{int} = 100$ pb$^{-1}$ (1 fb$^{-1}$). Achievable
TABLE V: The cross section of signal and background of $ep \rightarrow \nu_4 X \rightarrow eW X$ for $\sqrt{s} = 3.74$ TeV, $(\kappa/\Lambda) = 1$ TeV$^{-1}$

m_{ν_4} (GeV)	σ_S (pb)	σ_B (pb)	SS	$L_{\text{int}} = 100$ pb$^{-1}$	$L_{\text{int}} = 1$ fb$^{-1}$
200	0.743	1.605	5.86	18.54	
300	0.603	0.954	6.17	19.52	
400	0.504	0.560	6.73	21.30	
500	0.427	0.380	6.93	21.90	
600	0.364	0.280	6.88	21.75	
700	0.307	0.209	6.71	21.23	
800	0.259	0.157	6.53	20.67	
900	0.214	0.125	6.05	19.14	
1000	0.201	0.188	4.63	14.66	
1200	0.138	0.116	4.05	12.81	
1400	0.088	0.075	3.21	10.16	
1600	0.053	0.044	2.52	8.00	
1800	0.029	0.026	1.80	5.69	
2000	0.015	0.014	1.27	4.01	
2200	0.007	0.008	0.80	2.47	
2400	0.003	0.004	0.50	1.50	
2600	0.001	0.002	0.20	0.71	

values of anomalous coupling strength as a function of the fourth generation neutrino mass for process under consideration are shown in Fig. 4 for different ep collider options. One can see that values as low as 0.077 TeV$^{-1}$ are reachable for (κ/Λ).

For the process $ep \rightarrow \nu_4 X \rightarrow eW X$ we require $SS > 5$ as a discovery criterion. It is seen from Tables IV and V, that QCD Explorer will cover masses of the fourth generation neutrino up to 750 GeV (950 GeV) with $L_{\text{int}} = 1$ fb$^{-1}$ (10 fb$^{-1}$), whereas Energy Frontier ep collider will extend the mass region up to $m_{\nu_4} = 950$ GeV (1900 GeV) with $L_{\text{int}} = 100$ pb$^{-1}$ (1 fb$^{-1}$). Figure 5 show that this channel is less promising than above one concerning
achievable values of anomalous coupling strength.

IV. CONCLUSION

Combining results of studies on anomalous single production of the fourth SM generation charged lepton [28] and neutrino (this study) at future ep colliders we conclude that they have promising potential on the subject. For example, if $m_{\nu_4} = m_{l_4} = 500$ GeV and $(\kappa/\Lambda) = 1$ TeV$^{-1}$, the numbers of produced events are 740 for $ep \rightarrow \nu_4 X \rightarrow eW X$ and 1100 for $ep \rightarrow l_4 X \rightarrow eZX$ at $\sqrt{s} = 1.4$ TeV with $L_{\text{int}} = 10$ fb$^{-1}$. Finally, QCD Explorer cover $m_{\nu_4,l_4} < 1$ TeV, whereas Energy Frontier enlarge the region up to 2 TeV.

Acknowledgments

This work is supported by TAEK and DPT with grant number DPT2006K-120470.

[1] W.-M. Yao et al., Journal of Physics G 33, 1 (2006).
[2] H.-J. He, N. Polonsky, S. Su, Phys. Rev. D 64, 053004 (2001).
[3] V. A. Novikov et al., Phys. Lett. B 529, 111 (2002).
[4] G. D. Kribs et al., Phys. Rev. D 76, 075016 (2007).
[5] S. Sultansoy, AIP Conf. Proc. 899, 49 (2007).
[6] H. Fritzsch, Phys. Lett. B 184, 391 (1987).
[7] A. Datta, Pramana 40, L503 (1993).
[8] A. Çelikeli, A. K. Çiftçi, S. Sultansoy, Phys. Lett. B 342, 257 (1995).
[9] A. Datta, S. Raychaudhuri, Phys. Rev. D 49, 4762 (1994).
[10] S. Atag et al., Phys. Rev. D 54, 5745 (1996).
[11] A. K. Çiftçi, R. Çiftçi, S. Sultansoy, Phys. Rev. D 72, 053006 (2005).
[12] ATLAS: Detector and physics performance technical design report. Vol. 2, p. 519 CERN-LHCC-99-15, ATLAS-TDR-15, May 1999.
[13] E. Arık et al., Phys. Rev. D 58, 117701 (1999).
[14] B. Holdom, JHEP 08, 076 (2006).
[15] B. Holdom, JHEP 03, 063 (2007).
[16] B. Holdom, *JHEP* **08**, 069 (2007).

[17] A. K. Çiftçi, R. Çiftçi, S. Sultansoy, *Phys. Rev. D* **65**, 055001 (2002).

[18] R. Çiftçi *et al.*, *Turk. J. Phys.* **27**, 179 (2003).

[19] H. Fritzsch, D. Holtmannspotter, *Phys. Lett. B* **457**, 186 (1999).

[20] S. Sultansoy, *Eur. Phys. J. C* **33** s01, 1064 (2004); Proc. of Particle Accelerator Conference, Knoxville 2005, p. 4329.

[21] D. Schultz, F. Zimmermann, Proc. of European Particle Accelerator Conference, Lucerne 2004, Switzerland, p. 632; CERN-AB-2004-079, CLIC-NOTE-608.

[22] F. Tecker (ed.), CLIC-Note-613.

[23] H. Karadeniz, S. Sultansoy, Proc. of European Particle Accelerator Conference, Edinburgh 2006, p. 673.

[24] F. Zimmermann, UPHUK3, 17-19 September 2007, Bodrum, Turkey; http://homepage.uludag.edu.tr/~uphuk3/presentations.

[25] H. Aksakal *et al.*, *Nucl. Instrum. Meth. A* **576**, 287 (2007).

[26] H. Aksakal *et al.*, Proc. of Particle Accelerator Conference, Knoxville 2005, p. 1207.

[27] S. Sultansoy *et al.*, hep-ex/0106082.

[28] A. K. Çiftçi *et al.*, hep-ph/0612215; will be published at *Mod. Phys. Lett. A*.

[29] A. Senol, A. T. Alan, *Phys. Lett. B* **632**, 357 (2006).

[30] T. G. Rizzo, *Phys. Rev. D* **56**, 3074 (1997).

[31] E. Arik *et al.*, *Phys. Rev. D* **67**, 035002 (2003).

[32] A. Pukhov *et al.*, hep-ph/9908288.

[33] H. L. Lai *et al.*, *Phys. Rev. D* **51**, 4763 (1995).