Horsemint as a potential raw material for the food industry: survey on the chemistry of a less studied mint species

Katalin Patonay · Éva Németh-Zámboriné

Abstract Horsemint (Mentha longifolia L), is wild-growing species, widespread in Eurasia and Africa. The review focuses on its potential utilization as a preservative and flavoring in the food industry based on the polyphenolic and terpenoid composition. Several phenolic antioxidants were detected in horsemint, among which rosmarinic acid may have a key role. Nineteen other acids, and fifty-five flavonoids (six which are de novo) were also identified. The antiradical efficacy in horsemint extract has not yet been adequately justified. Similarly, systematic screening of the flavonoid composition of the species is lacking. Horsemint essential oils possess an outstandingly wide variability in composition which may serve as basis of special flavoring or antimicrobial agents. The efficacy of horsemint volatiles have been demonstrated against more than twenty microbes. As current literature of horsemint lacks comparable results, the present review provides the broadest and therefore, a critical overview, on its most important secondary compounds and the factors influencing their accumulation.

Keywords Mentha longifolia · Polyphenols · Antioxidants · Volatiles · Antimicrobial · Food

Abbreviations
AAPH 2,2'-Azobis(2-amidinopropane) dihydrochloride
AO Antioxidant
DCM Dichloromethane
dp Dry plant material
DPPH 2,2'-Diphenyl pycrylhydrazyl
EC50 Effective concentration-50
EO Essential oil
FRAP Ferrous reducing activity
IC% Inhibitory concentration in percentage
MIC Minimal inhibitory concentration
RA Rosmarinic acid
TAC Total antioxidant capacity
TF Total flavonoid content
THD Total hydroxycinnamic acid content

Introduction

Mentha longifolia L, horsemint, wild or biblical mint is a perennial herb belonging to the Mentha genus in the Nepetoideae subfamily of Lamiaceae. According
to the monography of the genus (Tucker and Naczi 2007), its natural distribution area is the largest among wild-growing Mentha species, covering temperate and mediterranean regions of Eurasia and Africa. (Tucker and Naczi 2007; Sevindik et al. 2017; Sevindik 2018).

This may be evaluated as a sign of adaptivity. The large number of taxa included by the species indicates its genetic diversity. The monography lists 22 subspecies of Mentha longifolia described from different regions of the world (Table 1).

In Turkey, Iraq, Iran, Pakistan and Arabic countries, leaves or flowering shoots are used as a spice, i.e. for dairy specialties (Tunc¸turk et al. 2011; Mahmoudi et al. 2012; Ehsani and Mahmoudi 2012), as leafy vegetables, herbal tea and an ethnomedicinal remedy (Ghoulami et al. 2001; Başer et al. 2012; Iqbal et al. 2013; Mikaili et al. 2013; Murad et al. 2016; Sevindik et al. 2017). A recent review of Farzaei et al. (2017) provides ethnopharmacological data in the aforementioned regions, with a wide variety of traditional indications. Beside collection, Mentha longifolia is reported to be cultivated in Tunisia (Hajlaoui et al. 2009) and its intraspecific taxon Mentha schimperi var. schimperi syn. ssp. schimperi in Sudan (Younis and Beshir 2011).

In Europe, Mentha longifolia is far less known and used, contrary to its abundance in wet meadows, forests and ruderal areas. A couple of works have however, been published on analyzing constituents and/or preparations of Mentha longifolia due to potential industry-related uses (Dudai et al. 2006; Güllüce et al. 2007; Krzyzanowska et al. 2011; Bertoli et al. 2011; Orhan et al. 2012). Beside them, some works are also available on Mentha longifolia as a medicinal plant, primarily of antiinflammatory and chemoprotective effects (Mimica-Dukić et al. 1996, 1999; Shen et al. 2011; Baris et al. 2011; Vladimir-Knežević et al. 2014). Nevertheless, Mentha longifolia is less studied as other Mentha species, partially concerning its non-volatile constituents. Until now it has not been used either industrially or pharmaceutically on a large-scale. However, it seems to be a cheap and prosperous

Subspecies	Country or region
ssp. calliantha	Southwestern Iran, Eastern Anatolia
ssp. capensis	Cape Colony, Zimbabwe, Lesotho, Namibia
ssp. caucasica	Caucasus
ssp. cyprica	Cyprus, mountainous regions
ssp. diabolina	Eastern Europe; Asia
ssp. dumortieri	Belgium
ssp. erminea	Crete, Southern and Eastern Greece, Turkey
ssp. grisella	Asia Minor, and Greece, Macedonia, Romania, Hungary.
ssp. hymalaiensis	Himalaya. Afghanistan
ssp. lavandulaceae	Spain
ssp. longifolia	Whole Europe
ssp. minutiflora	Hungary, Macedonia and Crete
ssp. modesta	Asia Minor, Iran, Tibet
ssp. mollis	Romania, Former Yugoslavia
ssp. noeana	Southeastern Anatolia, Western Iran, Iraq.
ssp. pellita	Syria and Ethiopia
ssp. polyadenica	South Africa; Lesotho
ssp. royleana	Siberia, Asia Minor, Iran, Afghanistan, Tibet
ssp. schimperi	Ethiopia, Yemen, Sinai peninsula
ssp. syriaca	Syria and Ethiopia
ssp. typiooides	Aegean region, Northern Iran, Northern Iraq, Egypt, Lebanon and Israel
ssp. wissii	South Africa, Namibia
additive in numerous products. A promising application may be the usage of *M. longifolia* polyphenols in the food industry as antioxidants (AOs) to increase shelf life. This potential use may be considered with regard to the high demand of plant-originated antioxidants (AOs) and in parallel, health concerns due to some synthetic phenolic AOs (Shahidi and Ambigaipalan 2015). Another alternative may be utilization of the volatiles of selected *M. longifolia* chemotypes against foodborne microbes, or as flavoring agents. In the present review, these two potential ways of utilization of this adaptive species, having a large tolerance for various habitats, in different preparations are in focus. Therefore, a detailed survey was carried out on the respective secondary compounds and a thorough evaluation is presented.

Materials and search strategy

Beside the comprehensive review *Labiatae* flavonoids and their bioactivity (Ulubelen et al. 2005) as a starting point, studies on *M. longifolia* and related species evaluated here were primarily obtained from electronic databases, namely SpringerLink, ScienceDirect, Journal of Agricultural and Food Chemistry, JEOR, Wiley Online Library, Taylor and Francis and MDPI. PubMed, Google Scholar and ResearchGate were used to search reliable but less known sources like the study of Jahan et al. (2001) on a novel flavone detected from ML. To check the background of journals providing some of the latter, Scimago was used. References in available publications were also screened in further sources like dissertations or less cited articles. One example was the study on phenolics of *M. x piperita* (Guédon and Pasquier 1994) referring to the earliest available work on *M. longifolia* flavonoids (Bourwieg and Pohl 1973) as a nowadays less known source to exploit. Further references considered to be necessary (e.g. studies dealing with structure—AO activity relationships of flavonoids), were searched also at the above mentioned databases. In the present review the cited data on concentrations of phenolics in *M. longifolia* will be given both in the original measuring units as they were published and also, in the majority of cases, in mg/kg dry plant material (mg/kg dp) for the sake of better comparability.

Cinnamic acid derivatives in ML

Rosmarinic acid

Rosmarinic acid or ‘Labiatae tannin’ (further: RA) is the caffeoyl ester of caffeic acid and 3',4'-dihydroxyphenyllactic acid. Accumulation of RA is characteristic in the *Nepetoideae* subfamily of the *Lamiaceae* family. Petersen and Simmonds (2003) summarize RA as adstringent, AO, antiviral, antimutagen and anti-inflammatory agent. Investigations on *M. longifolia* phenolics have predominantly been focusing on RA as a potent AO (Dudai et al. 2006; Fialová et al. 2008; Krzyzanowska et al. 2011; Patonay et al. 2017) antiinflammatory (Shen et al. 2011) and anti-cholinesterase (Vladimir-Knežević et al. 2014) molecule. The available quantitative data dealing with RA content of *M. longifolia* is summarized in Table 2. However, as large differences are observable in the investigated drug types and plant developmental stages (if defined), comparison of data can not be totally adequate. The most thorough publication on RA and caffeic acid content of *M. longifolia* is the work of Dudai et al. (2006) being the only one analyzing large sample numbers of *M. longifolia* for any phenolics. Results represent the highest RA content available in the literature of *M. longifolia*, covering 20–80 mg/g dp. (20,000–80,000 mg/kg dp). On the other hand, a recent work (Park et al. 2019) gives unconventionally low RA concentration (18.68 μg/g dp. viz. 18.68 mg/kg dp) from a single *M. longifolia* sample of undefined phenophase. In general, there is a relatively large variability in RA concentrations of *M. longifolia* mentioned by different authors, and they seem to be determined not only genetically but might be the result of differences in the plant developmental stage, harvest time (Fialova et al. 2008), cultivation technics, drug types (Krzyzanowska et al. 2011), extraction methods or other factors (Table 2).

Other phenolic acids, esters and phenylpropanoid volatiles

Beside RA, further phenolics have been detected in *M. longifolia* samples. Table 3 summarizes their concentrations. Nepetoidin A and B are reported to be present in *M. longifolia* (Grayer et al. 2003) as a chemotaxonomical marker of *Nepetoideae* plants. Salvianolic
acid L and dedihydro-salvianolic acid was detected by Krzyzanowska and co-workers (2011). It may be important to note that m/z data and UV maxima (283.3, 344.4 nm) of dedihydro-salvianolic acid were provided in this study, but molecular structure of a compound with this name was found neither in PubChem, PhenolExplorer, Human Metabolome Database or NIST Webbook, nor in literature. Hexacosyl ferulate and bis-2-ethylhexil-benzene 1,2-dicarboxylate were reported from Mentha longifolia L ssp. noéâna sampled in Turkey (Ertas¸ et al. 2015). This is the first report of them from M. longifolia, thus, based on this single reference it is impossible to evaluate the frequency and level of their concentration in horsemint. In general, data of minor phenolic acids in this species outline a rather wide variability, but unfortunately there is hardly any data about the influencing factors of the accumulation of them until now.

Table 2 Rosmarinic acid content obtained from different Mentha longifolia samples

References	Quantitative data	Plant part investigated	Phenophase	
	Concentration measured	Concentration in mg/kg dp.		
Dudai et al. (2006)	20–80 mg/g dp	20,000–80,000	Leaves and stem	Not defined
Fialová et al. (2008)	1.19 m/m % in dp	11,900	Not defined	Not defined
Fialová et al. (2008)	0.88 m/m % in dp	8800	Not defined	Not defined
Krzyzanowska et al. (2011)	1.933 mg/g dp	1933	Not defined	Not defined
Krzyzanowska et al. (2011)	4.445 mg/g dp	4455	Not defined (in vitro plant)	Not defined
Krzyzanowska et al. (2011)	12.765 mg/g dp	12,765	Cell suspension	(-)
Krzyzanowska et al. (2011)	21.576 mg/g dp	21,576	Callus culture	(-)
Tahira et al. (2011)	61.47 mg/100 g	614.7	Leaves	Spring vegetative
Shen et al. (2011)	6.99 mg/g dp	6990	Aerial p. without flowers	Flowering
Shekarchi et al. (2012)	26.6 mg/g dp	26,600	Aerial parts	Flowering
Vladimir-Knežević et al. (2014)	22.33 mg/g extract	1639	Aerial parts	Flowering
Elansary and Mahmoud (2015)	40.91 mg/g extract	NA^a	Leaves	Not defined
Bahadori et al. (2018)	2225–6260 µg/g	NA^a	Leaves, flowers, juvenile stems	Flowering
Patonay et al. (2017)	6418–11,366 mg/kg	6418–11,366^b	Leaves, stem, inflorescence	Flowering
Park et al. (2019)	18.68 µg/g dp	18.68	Leaves and stem	Not defined

^aConcentration given in extracts without providing yields, thus in mg/kg dp is not possible to calculate
^bConcentration depending on the extraction solvent
^cHarvested in July
^dHarvested in September
^eHarvested in June

Flavonoids in horsemint

Table 4 summarizes structural information of flavonoids reported in Mentha longifolia.

Flavanones

Flavanones (‘citrus flavonoids’) are usually a dominant or a major flavonoid subclass in mints, together with flavones (Pereira and Cardoso 2013). Regarding M. longifolia, data about them is sporadic and a majority of the references report only the presence of these compounds (eriocitrin, hesperidin and narirutin) without quantitative data. The spectrum of flavanones include relatively widespread compounds (Table 4), but a special flavanone, 4′-methoxy-naringenin-7-O-fucopyranosil-1 → 6-glucoside or longitin, reported
Subclass	Name	References	Quantitative data	Plant part investigated	Plant phenophase
Cinnamic acid derivative	*trans*-Cinnamic acid	Park et al. (2019)	Concentration measured 6.5 ug/g dp	Leaves and stem	Not defined
	trans-Cinnamic acid	Bahadori et al. (2018)	Concentration, mg/kg dp. 6.5	Flowers, leaves, juvenile stems	Flowering
	para-Coumaric acid (bound)	Dudai et al. (2006)	Concentration measured ca. 25–250 mg/g dp	Leaves and stem	Not defined
	para-Coumaric acid	Bahadori et al. (2018)	Concentration, mg/kg dp. 5–15	Flowers, leaves, juvenile stems	Flowering
	para-Coumaric acid	Park et al. (2019)	Concentration measured 6.15 ug/g dp	Leaves and stem	Not defined
	ortho-Coumaric acid	Bahadori et al. (2018)	Concentration, mg/kg dp. 134–328	Flowers, leaves, juvenile stems	Flowering
	Caffeic acid (free)	Dudai et al. (2006)	Concentration measured ca. 10–24	Leaves and stem	Not defined
	Caffeic acid (bound)	Dudai et al. (2006)	Concentration measured ca. 6–16	Leaves and stem	Not defined
	Caffeic acid	Tahira et al. (2011)	Concentration measured 314.8 mg/100 g dp	Leaves	Spring vegetative
	Caffeic acid	Benedec et al. (2013)	Concentration measured < 0.2 mg/dp	Aerial parts	Flowering
	Caffeic acid	Vladimír-Knězević (2014)	Concentration measured 1.18 mg/g dry extract	Aerial parts	Flowering
	Caffeic acid	Patonay et al. (2017)	Concentration measured 0–273.3	Leaves, stem, inflorescence	Flowering
	Caffeic acid	Bahadori et al. (2018)	Concentration measured 86–119	Flowers, leaves, juvenile stems	Flowering
	Caffeic acid	Park et al. (2019)	Concentration measured 58.50	Leaves and stem	Not defined
	Ferulic acid	Tahira et al. (2011)	Concentration measured 0.94 mg/100 g dp	Leaves	Spring vegetative
	Ferulic acid	Benedec et al. (2013)	Concentration measured < 0.2 mg/dp	Aerial parts	Flowering
	Ferulic acid	Patonay et al. (2017)	Concentration measured 0–30.59	Leaves, stem, inflorescence	Flowering
	Ferulic acid	Park et al. (2019)	Concentration measured 38.70	Leaves and stem	Not defined
	Hexacosyl ferulate	Ertas et al. (2015)	Concentration measured 6 mg/1350 g dp	Aerial parts	Not defined
	Sinapic acid	Bahadori et al. (2018)	Concentration measured 4604–7132	Flowers, leaves, juvenile stems	Flowering
	Caftaric acid	Benedec et al. (2013)	Concentration measured < 0.2 mg/100 g dp	Aerial parts	Flowering
	Chlorogenic acid	Benedec et al. (2013)	Concentration measured < 0.2 mg/100 g dp	Aerial parts	Flowering
Table 3 continued

Subclass	Name	References	Quantitative data	Plant part investigated	Plant phenophase
			Concentration measured	Concentration, mg/kg dp.	
Chlorogenic acid	Vladimír-Knezević et al. (2014)	1.50 mg/g dry extract	110.1	Aerial parts	Flowering
Chlorogenic acid	Bahadori et al. 2018	27–64 ug/g extract \(^b\)	NA\(^a\)	Flowers, leaves, juvenile stems	Flowering
Chlorogenic acid	Park et al. (2019)	170.90 ug/g	170.9	Leaves and stem	Not defined\(^c\)
Salvianolic acid L	Krzyzanowska et al. (2011)	0.285 mg/g dp	285.0	Not defined	Not defined
Dedihydro-salvianolic acid	Krzyzanowska et al. (2011)	0.084 mg/g dp	84.0	Not defined	Not defined
Nepetoidin A	Gray et al. (2003)	Quantity not given	NA	Leaves	Flowering
Nepetoidin B	Gray et al. (2003)	Quantity not given	NA	Leaves	Flowering
Benzoic acid derivative/other	Vanillic acid	0–62.17 mg/ kg dp	ND-62.17\(^b\)	Leaves, stem, inflorescence	Flowering
	Gallic acid	0–2583 mg/ kg dp	ND-2583	Leaves, stem, inflorescence	Flowering
	Bahadori et al. 2018	2–72 ug/g extract \(^c\)	NA\(^a\)	Flowers, leaves, juvenile stems	Flowering
	Patonay et al. 2017	0–56.75 mg/ kg dp	ND-56.75	Leaves, stem, inflorescence	Flowering
	Bahadori et al. 2018	9–33 ug/g extract \(^c\)	NA\(^a\)	Flowers, leaves, juvenile stems	Flowering
	Patonay et al. 2017	0–56.75 mg/ kg dp	ND-56.75	Leaves, stem, inflorescence	Flowering
	Bahadori et al. 2018	6–7 ug/g dry extract \(^b\)	NA\(^a\)	Flowers, leaves, juvenile stems	Flowering
	Ertas et al. (2015)	4 mg/1350 g dp	2.9	Aerial parts	Not defined
	0.6 w/w % of EO		0.3	Aerial parts	Not defined
	Vanillin	6–31 ug/g dry extract \(^b\)	NA\(^a\)	Flowers, leaves, juvenile stems	Flowering
	Tahira et al. (2011)	16.79 mg/ 100 g dp	168	Leaves	Spring vegetative

\(^a\) Concentration given without extraction yields, thus in mg/kg dp is not possible to calculate

\(^b\) Concentration depending on the extraction solvent

\(^c\) Harvested in June
Subclass	Substitution pattern	Name(s)	Ref (*)
Flavanones		Naringenin	18
	H OH H OH	Naringenin-7-O-rutinoside, narirutin	18
	H OH H O-rut	4'-methoxy-naringenin-7-O-fucopyranosil-1 → 6-glucoside, longitin	6
	H OH H O-fuc-glu	Eriodyctiol	20
	H OH H OH	Eriodyctiol-7-O-rutinoside, eriocitrin	1;18
	H OH? H OH?	Eriodyctiol-7-O-glucoside-rhamnoside	7
	H OH H O-rut	Hesperetin-7-O-rutinoside, hesperidin	1;5
Flavones	H OH H OH	5,7,4′-trihydroxy-flavone, apigenin	10;15;16;18;20
	H OH H O-glu	Apigenin-7-O-glucoside, cosmosiin, apigetrin	11
	H OH H O-glc	Apigenin-7-O-glucuronide	1;11
	H OH H O-rut	Apigenin-7-O-rutinoside, isorhoifolin	11
	H OH H OH	Apigenin-4′-O-glucoside	14
	H O-glu H OH	Apigenin-5-O-glucoside	14
	H OH C-glu OH	Apigenin-6,8-C-diglucoside, vicenin-2	8
	H OH H OH	4′-methoxyapigenin-7-O-rutinoside, acacetin-7-O-rutinoside	1
	H O-glu H OMe	7′-methoxyapigenin-5-O-glucoside, genkwanin-5-O-glucoside	14
	H O-6′-mal-glu OMe	Genkwanin-5-O-[6′-O-malonyl]-glucoside	14
	H OH H OMe	Genkwanin-4′-O-glucoside, fegopolin	14
	H OH H OH	5,7,3′,4′-tetrahydroxy-flavone, luteolin, luteolol	5; 15; 16;18;20
	H OH H O-glu	Luteolin-7-O-glucoside, cynaroside	1;5;12;16;10
	H OH H O-glc	Luteolin-7-O-glucuronide	1;12
	H OH H O-rut	Luteolin-7-O-rutinoside, lonicerin, veronicastroside	1;12
	H OH H O-neothes	Luteolin-7-O-neohesperoside	8
Table 4 continued

Subclass	Substitution pattern	Name(s)	Ref (*)
	C3 C5 C6 C7 C8 C2' C3' C4' C5'		
H	OH H O-neohes H H H H O-soph H	Luteolin-7-O-neohesperoside-4'-O-sophoroside	4
H	O-glu H OH H H OH OH OH H	Luteolin-5-O-glucoside, galuteolin	14
H	OH? H OH? H H OH? OH? OH? H	Luteolin-glucuronide, an other isomer	7
H	OH? H OH? H H OH? OH? OH? H	Luteolin-glucuronide, an other isomer	7
H	OH? H OH? H H OH? OH? OH? H	Methylated luteolin-glucuronide	7
H	OH? H OH? H H OH? OH? OH? H	Luteolin-diglucuronide	7
H	OH H O-rut H H H OMe H	Diosmetin-7-O-rutinoside, diosmin	1
H	OH H OH H H H OH H OH H	5,7,8,4'-tetrahydroxy-flavone, 8-OH-luteolin, Hypolaetin	8
H	OH C-glu OH C-glu H H H OH H	Hypolaetin-6,8-C-diglucoside, lucenin-1	8
H	OH H OH H H H OMe H	Hypolaetin-4'-methyl ether	4
H	OH H OH H H H O-glu OH O-rha	Tricetin-3'-O-glucoside-5'-O-rhamnoside	3
H	OH H OH H H H O-rha-rha OH OH	Tricetin-3'-O-dirhamnoside	3
H	OH H OMe H H H O-glu OH O-rha	7-methoxy-tricetin-3'-O-glucoside-5'-O-rhamnoside	3
H	OH OH OMe OMe OMe H OMe OH H	5,6, 4'-tri hydroxy-7,8,3'-trimethoxy-flavone, thymonin	5
H	OH OMe OMe OMe OH H OMe OH H	5,8, 4'- trihydroxy-6,7,3'-trimethoxy-flavone	4
H	OH OH OMe OMe OMe H OMe OMe OMe H	5,6,-dihydroxy-7,8,3'4'-tetramethoxy-flavone, pebrellin	2;5
H	OH H OMe OMe OMe OMe OMe H H H	5-hydroxy-7,8,2',3'-tetramethoxy-flavone	4
H	OH OMe OH H OMe OMe OMe OH H	5,7,4'- trihydroxy-6,2',3'-trimethoxy-flavone	5
H	OH OMe OMe OMe H H OMe OMe OMe H	5-hydroxy-6,7,3',4'-tetramethoxy-flavone, belamcanidine	17
H	OH OH OMe OMe H H OMe H H H	5,6,4'- tri hydroxy-7,3'-dimethoxy-flavone	8
Flavonols	OH OH H OH H H H OH H	Kaempferol	19;21
	O-glu OH H OH H H H OH H	Kaempferol-3-O-glucoside, astragalin	10;14
from a Pakistani sample may be mentioned as a novelty (Ali et al. 2002).

Flavones

Table 5 shows the available quantitative data of flavones in *M. longifolia*. This flavonoid subclass shows a very wide variability in ML samples. Among them, there are some compounds which have not been known before and detected especially in ML for the first time. A novel aglycone with unconventional substitution pattern, 5,7,4\(^\prime\)-trihydroxy-6,2\(^\prime\),3\(^\prime\)-trimethoxy-flavone, was detected by Ghoulami et al. (2001) from Morocco. Besides, a low concentration of another new aglycone, 5,8,4\(^\prime\)-trihydroxy-6,7,3\(^\prime\)-trimethoxy-flavone was found by Jahan et al. (2001), from Pakistan. Exploration of three previously unknown tricetin derivatives in a *M. longifolia* sample from Saudi Arabia is reported by Sharaf et al. (1999). According to the authors, it is the first report on flavones bearing trisubstituted B ring in the whole *Lamiaceae* family. However, the occurrence of the mentioned special flavones in horsemint seems to be supported only by the cited single reference.

Table 4 continued

Subclass	Substitution pattern	Name(s)	Ref (*)
	C3 C5 C6 C7 C8 C9 C10 C11		
O-soph	OH H OH H H H OH H	Kaempferol-3-O-sophoroside, sophoravonoside	14
O-rha	OH H OH H H H OH H	Kaempferol-3-O-rhamnoside, afzelin	14
OH	OH H O-rha H H H OH H	Kaempferol-7-O-rhamnoside	14
O-6\(^\prime\)-mal-glu	OH H O-rha H H H OH H	Kaempferol-3-O-[6\(^\prime\)-O-malonyl]-glucoside-7-O-rhamnoside	14
OH	OH H OH H H OH H OH H	Quercetin	16;19;21
O-glu	OH H OH H OH OH H	Quercetin-3-O-glucoside, isoquercitrin	10;15
O-rut	OH H OH H H OH OH H	Quercetin-3-O-rutinoside, rutin	15;18;19;20;21
O-glu	OH H O-glu H H OH OH H	Quercetin-3,7-O-diglucoside	10;15
OH	OH H OH H O-rha H OH OMe OH	4\(^\prime\)-methoxymyricetin-3-O-rhamnoside	4

fuc: Fucose, *glu:* Glucose, *glc:* Glucuronic acid, *neohes:* Neohesperidose, *rut:* Rutinose, *rha:* Rhamnose, *soph:* Sophorose, *mal:* Malonyl, *OMe:* Methoxyl."?

*For the sake of transparency, References in this table are numbered: (1) Bourwieg and Pohl (1973); (2) Tomás-Barberán et al. (1988); (3) Sharaf et al. (1999); (4) Jahan et al. (2001), (5) Ghoulami et al. (2001); (6) Ali et al. (2002); (7) Krzyzanowska et al. (2011); (8) Ulubelen et al. (2005); (9) Fialová et al. (2008); (10) Akroum et al. (2009); (11) Baris et al. (2011); (12) Orhan et al. (2012); (13) Pereira and Cardoso (2013); (14) Stanislavžič et al. (2012); (15) Benedek et al. (2013); (16) Elansary and Mahmoud (2015); (17) Ertas et al. (2015); (18) Hawryl et al. (2016); (19) Patonay et al. (2017); (20) Bahadori et al. (2018) (21) Park et al. (2019) Among flavone glycosides, cynaroside has been detected repeatedly, (Table 4) although its concentration is low (or not provided) (Table 5). In some cases, the sites of the glycosidic bonds are not designated, thus the exact glycoside molecule remains questionable, e.g. luteolin-glucorhamnoside and luteolin-glucuronides in study of Krzyzanowska et al. (2011). It can be established, that the sporadic data about flavone-7-O-glycosides as summarized in Tables 4 and 5 do not seem to represent strong support for the universal and frequent accumulation of them in horsemint, although these ingredients have been frequently described in other mint species (Guédon and Pasquier 1994; Areias et al. 2001; Damien-Dorman et al. 2003a, b; Koşar et al. 2004).

Flavonols

Although the previous reviews (Pereira and Cardoso 2013; Mikaili et al. 2013; Farzaei et al. 2017) do not deal with this subclass in detail when discussing the flavonoids of *M. longifolia*, the available literature shows that flavonols may frequently be present in this species. Quercetin and kaempferol together with their
Table 5 Available quantitative data of flavones in *Mentha longifolia* L samples

Name	References	Quantitative data	Plant part investigated	Phenophase
5,7,4′-trihydroxy-flavone, apigenin	Elansary and Mahmoud (2015)	3.86 mg/g dry extract	Leaves	Not defined
5,7,4′-trihydroxy-flavone, apigenin	Patonay et al. (2017)	19.7–144.2 mg/kg dp	Leaves, stem, inflorescence	Flowering
5,7,4′-trihydroxy-flavone, apigenin	Bahadori et al. (2018)	94–124 ug/g dry extractc	Flowers, leaves, juvenile stems	Flowering
Apigenin-7-O-glucoside, cosmosin, apigetrin	Baris et al. (2011)	3.6 mg isolated from 1 kg sample	Leaves, stem	Flowering
Apigenin-7-O-glucuronide	Baris et al. (2011)	5.2 mg isolated from 1 kg sample	Leaves, stem	Flowering
Apigenin-7-O-rutinoside, isorhoifolin	Baris et al. (2011)	6.3 mg isolated from 1 kg sample	Leaves, stem	Flowering
Apigenin-4′-O-glucoside	Stanislavljević et al. (2012)	0.81 mg/g extract	Above-ground parts	Flowering
Apigenin-5-O-glucoside	Stanislavljević et al. (2012)	7.53 mg/g extract	Above-ground parts	Flowering
5,7,3′,4′-tetrahydroxy-flavone, luteolin	Benedec et al. (2013)	1.764 mg/g dp	Aerial parts	Flowering
5,7,3′,4′-tetrahydroxy-flavone, luteolin	Elansary and Mahmoud (2015)	3.21 mg/g dry extract	Leaves	Not defined
5,7,3′,4′-tetrahydroxy-flavone, luteolin	Bahadori et al. (2018)	84–162 ug/g dry extractc	Flowers, leaves, juvenile stems	Flowering
Luteolin-7-O-glucoside, cynaroside	Elansary and Mahmoud (2015)	3.91 mg/g dry extract	Leaves	Not defined
Luteolin-7-O-glucoside, cynaroside	Orhan et al. (2012)	7.0 mg isolated from 1 kg sample	Leaves, stem, inflorescence	Flowering
Luteolin-7-O-glucuronide	Orhan et al. (2012)	4.0 mg isolated from 1 kg sample	Leaves, stem, inflorescence	Flowering
Luteolin-7-O-rutinoside, lonicerin, veronicastroside	Orhan et al. (2012)	18.3 mg isolated from 1 kg sample	Leaves, stem, inflorescence	Flowering
Luteolin-5-O-glucoside, galuteolin	Stanislavljević et al. (2012)	1.69 mg/g extract.d	Above-ground parts	Flowering
Luteolin-glucuronide	Krzyzanowska et al. (2011)	2.237 mg/g dp	Not defined (field plant)	Not defined
Luteolin-glucuronide	Krzyzanowska et al. (2011)	0.007 mg/g dp	Not defined (in vitro plant)	Not defined
Luteolin-glucuronide	Krzyzanowska et al. (2011)	traces mg/g dp	Cell suspension	(–)
Luteolin-glucuronide, an other isomer	Krzyzanowska et al. (2011)	0.285 mg/g dp	Not defined (field plant)	Not defined
Luteolin-glucuronide, an other isomer	Krzyzanowska et al. (2011)	0.005 mg/g dp	Not defined (in vitro plant)	Not defined
Luteolin-glucuronide, an other isomer	Krzyzanowska et al. (2011)	0.074 mg/g dp	Callus culture	(–)
Luteolin-glucoside-rhamnoside	Krzyzanowska et al. (2011)	3.576 mg/g dp	Not defined (field plant)	Not defined
Name	References	Quantitative data	Plant part investigated	Phenophase
------------------------------	-------------------------------------	-------------------	-------------------------	------------
		Concentration measured	Concentration (mg/kg dp)	
Luteolin-glucoside-rhamnoside	Krzyzanowska et al. (2011)	1.134 mg/g dp	1134	Not defined (in vitro plant)
		0.018 mg/g dp	13.0	Cell suspension (–)
		0.013 mg/g dp	18.0	Callus culture (–)
Methylated luteolin glucuronide	Krzyzanowska et al. (2011)	0.007 mg/g dp	7.0	Not defined (field plant)
		0.013 mg/g dp	13.0	Not defined (in vitro plant)
Luteolin-diglucuronide	Krzyzanowska et al. (2011)	1.432 mg/g dp	1432	Not defined
Tricetin-3'-O-glucoside-5' -O-	Sharaf et al. (1999)	28 mg isolated from	140	Aerial parts
rhamnoside		200 g dp		Not defined
Tricetin-3'-O-di-rhamnoside	Sharaf et al. (1999)	31 mg isolated from	155	Aerial parts
		200 g dp		Not defined
7-methoxy-tricetin-3'-O-	Sharaf et al. (1999)	21 mg isolated from	105	Aerial parts
glucoside-5'-O-rhamnoside		200 g dp		Not defined
Genkwanin-5-O-glucoside	Stanislavljević et al. (2012)	0.56 mg/g extract	64.9	Above-ground parts
		0.52-0.57 mg/g	58.8–60.3	Flowering
Genkwanin-5-O-[6'-O-	Stanislavljević et al. (2012)	1.96 mg/g extract	183.	Above-ground parts
malonyl]-glucoside		0.56 mg/g extract	183.	Flowering
Genkwanin-4'-O-glucoside,	Stanislavljević et al. (2012)	0.52-0.57 mg/g	58.8–60.3	Flowering
fegopolin		extractd		
5,6,-dihydroxy-7,8,3'4'-	Ghoualami et al. (2001)	0.015 w/w % dp	150	Aerial parts
tetrametoxi-flavone, pebrellin				End of vegetative cycle
5,7,4'-trihydroxy-6,2',3'-	Ghoualami et al. (2001)	0.010 w/w % dp	100	Aerial parts
trimetoxi-flavone				End of vegetative cycle
5-hydroxy-6,7,3',4'-	Ertas et al. (2015)	5 mg isolated from	3.7	Not defined
tetrametoxi-flavone, belamcanidine		1350 g dp		Not defined
5-hydroxy-7,8,2',3'-	Jahan et al. (2001)	25 mg isolated from	1.25 × 10^-3	Not defined
tetramethoxy-flavone		20 kg dp		Not definedd
Hypolaetin-4' methyl ether	Jahan et al. (2001)	30 mg isolated from	1.5 × 10^-3	Not defined
		20 kg dp		Not definedd
5,8,4'-trihydroxy-6,7,3'	Jahan et al. (2001)	45 mg from 20 kg	2.25 × 10^-3	Not defined
trimethoxy-flavone		dp		Not definedd

*aConcentration given in mg/g extracts without providing yields, thus in mg/kg dp. is not possible to calculate

bConcentrations depending on the extraction solvent
cConcentrations depending on drying method
dHarvested in March
glycosides are most often reported from *M. longifolia* (Table 4.). The concentration ranges are variable, like in the case of rutin: 0.822 mg/100 g dp (Benedec et al. 2013) or 11.66 mg/100 g dp (Park et al. 2019). Flavonol-rich samples were reported from Serbia (Stanislavljević et al. 2012), Hungary (Patonay et al. 2017) and Korea (Park et al. 2019). Interestingly, Stanislavljević et al. (2012) reported astragalin to be the dominant flavonol constituent of a *M. longifolia* charge (61.36 mg/g extract calculated with yield: 7118 mg/kg dp).

It seems, that the actual amount of flavonoid compounds in the drug may be influenced by drying method (Stanislavljević et al. 2012) or other postharvest treatments like heating the fresh plant material (Stocker and Pohl 1976). These questions may need a further study.

Antiradical and antimicrobial properties of phenolics occurring in horsemint

Rosmarinic acid plays an important role in the antioxidant properties of *M. longifolia* extracts. Dudai and co-workers established a tight correlation ($R^2 = 0.38$) between rosmarinic acid content and results of DPPH assay. However, Fialová and co-workers (2008) suggest, that other constituent(s) than this may play a role in the radical scavenging activity of *M. longifolia* as the maxima of THD, TF and antiradical activity do not coincide with the maxima of RA content. Interestingly, the concentration of caffeic acid does not seem to correlate with results of DPPH assay ($R^2 = 0.0119$) contrary to its known AO efficiency (Košar et al. 2004; Csepregi et al. 2016). Grayer et al. (2003) observed nepetoidin B to be a stronger AO than gallic acid in DPPH assay.

As Table 4 shows, a significant proportion of the flavonoids detected in ML are the 7-O-glycosides. Although they are frequent in antioxidant-rich species of plant families e.g. *Lamiaceae*, *Apiaceae*, *Asteraceae*, their AO properties are less known in comparison with 3-O-glycosides (Csepregi et al. 2016). Therefore, the antiradical abilities of 7-O-glycosides may principally be outlined using studies of structure–activity relationship. Bors and co-workers (1990) studied the kinetics of various flavonoids against OH, N$_3$ and tert-butoxyl radicals demonstrating that the key of the AO activity of flavonoids towards radicals is the ability to form a longlife secondary aroxyl radical which could take part in recombinations. In this consideration, authors outlined the necessary structural traits providing better delocalization of the unpaired electron and in consequence, stability of aroxyl radicals. These are the followings (1) free ortho-dihydroxy group at B ring (catechol moiety) (2) the free --OH group at C3 (3) double bond at C2-C3 and carbonyl on C4, because of conjugation (4) additionally, presence of free –OH groups at C5 and C7. Later, studies ranking flavonoids on TEAC (Rice-Evans et al. 1996; Csepregi et al. 2016) and DPPH assays (Burda and Ołeszek 2001; Csepregi et al. 2016) modified this idea. Catechol moiety was repeatedly observed to play a key role in AO properties, followed by free C3–OH. The latter was recently observed to be tightly and significantly correlated with activity in TEAC and FRAP assays but loosely coupled to the activity in DPPH and Folin-Ciocalteu’s assay (Csepregi et al. 2016). The C2–C3–C4 system was reinforced to function only in combination with free catechol moiety and/or C3–OH (Wen et al. 2014; Csepregi et al. 2016). Based on these considerations, some flavonoid-7-O-glycosides detected in ML may deserve attention. Thus, luteolin-7-O-glycosides may be predicted as active against some radicals as rutin as they have catechol moiety and C2-C3-C4 conjugation but free C3–OH is absent. A ranking of flavonoids by activity against DPPH (Burda and Oleszek 2001) supports this idea. Here, rutin showed 90.9 IC% and cynaroside 87.6 IC%. Luteolin itself was also observed to show antiradical activity stronger than of BHT on DPPH assay but weaker efficacy on ORAC (Wen et al. 2014), suggesting that the lack of C3–OH might decrease this kind of AO activity. On the other hand, eriodictiol and 7-O-glycosides may be considered as stronger anti-radical agents than other flavanones of ML because only they have a free catechol group. Damien-Dorman and co-workers (2003a, b) declared, that mints richest in eriocitrin and rich in RA showed the highest activity against DPPH and OH. Their further study (Košar et al. 2004) demonstrated a high correlation between DPPH antiradical activity of *Mentha* extracts and concentration of caffeic acid, rosmarinic acid, lonicerin, eriocitrin and an undefined luteolin-7-O-glycoside. Antiradical activity of luteolin-5-O-glycosides like galuteolin may be supposed to be similar to 7-O-analuges because of the presence of free catechol.
moiety and C2–C3–C4 conjugation. Naringenin and apigenin derivatives however, as it may be expected based on their structure, did not show this response. It must be emphasized, that synergistic effects between some flavonoids and/or flavonoids and caffeic acid derivatives may occur, depending on the ratio of concentration and their redox potential and the presence of catechol moiety in the case of flavonoids (Freeman et al. 2010; Reber et al. 2011; Ołszowy-Tomczyk 2020). A very recent long-needed review of Olszowy-Tomczyk (2020) called attention to the mutual effects of plant phenolics in binary mixtures. The detailed data collected by the author shows that there are some cases when synergistic or additive effects were reported between polyphenols e.g. between rosmarinic acid and quercetin in the case of AAPH induced oxidation; between chlorogenic acid and hesperidin, also between p-coumaric acid and quercetin in ORAC assay. On the other side, no antagonistic effect was reported to rosmarinic acid and flavonoids except an observation on FRAP assay of rutin and rosmarinic acid (Hajimehdipoor et al. 2014). Although an extract is much more complex than a binary mixture, synergistic or antagonistic effects may be considered when the background of antioxidant properties of a ML extract is studied.

Beside the plant material itself, studies rarely focused on other factors which might influence the AO properties of ML extracts. Fialová and co-workers (2008) proved that ML show higher AO activity, THD and TF in July than in September (DPPH EC$_{50}$ in July 24.60 µg/mL, in September 45.20 µg/mL). Further studies are needed in this respect.

Focusing on the food preservative utilisation of _M. longifolia_, beyond the AO activity of phenolic compounds, the activity against bacteria or fungi causing food spoilage and/or foodborne diseases may be taken into account. Akroum and co-workers (2009) established that isouercitrin in _M. longifolia_ showed the strongest growth inhibitory effect against _B. cereus_, _B. subtilis_, _S. aureus_, _E. coli_ and _P. aeruginosa_ (MIC = 0.03–0.09 µg/mL). Synergism among these molecules was observed. Other polyphenols of ML may also be potential antimicrobial agents, as documented in in vitro studies in the case of other species, like apigenin (Basile et al. 1999; Metsäümäen and Sirén 2019), luteolin (Wen et al. 2014) and nepetoidins (Grayer et al. 2003).

The volatile composition of horsemint

Essential oil (EO) content of horsemint and classification of its constituents

According to recent data, volatile components accumulate in _M. longifolia_ in a range of 0.5–1% dry weight (Hajlaoui et al. 2009; Sharopov et al. 2012; Iqbal et al. 2013; Llorens-Molina et al. 2015; Kapp 2015). However, earlier studies report significantly higher EO contents, up to 1.6–2.8% from Eastern Crete (Karousou et al. 1998) and 3.8% from Sinai (Fleisher and Fleisher 1991). This wide interval of EO contents may be in part coupled to sampling methods and the varying phenological phase or organic composition of the plants (EO yield of the plant is recently observed by Llorens-Molina et al. (2020) to reach its maximum in advanced flowering stage). Anyhow, the different experimental conditions make a proper evaluation difficult. Illustrating this, the analysed sample types include flowering shoots (Karousou et al. 1998), shoots at the end of flowering, or seed ripening stage (Baser et al. 1999) or even leaves separated from the stems (Orav et al. 2013).

Volatiles of ML show extraordinary wide variability, involving multiple metabolic pathways. Based on works of Başer and co-authors (1999; 2012), volatile terpenes of _M. longifolia_ could be perspicuously grouped by structure (Figs. 1, 2). These groups and their important representants are presented below.

Open-chain monoterpenes

Linalool (Mimica-Dukic and Bozin 2008) and linalyl acetate may be present in concentrations above 10% of ML EO (Al-Okbi et al. 2015), although they do not appear in all _M. longifolia_ samples. Thus, they may not be considered as universal constitutent of the species. Myrcene was also reported in concentration around 10% in samples from Lithuania (Venskutonis 1996).

Limonene and its 2-oxo derivatives

Carvone, dihydrocarvone, _cis_- and _trans_-carvyl acetate, _cis_- and _trans_-dihydrocarveol frequently appear in EOs of _M. longifolia_ (Başer et al. 1999; Sharopov et al. 2012; Mimica-Dukic and Bozin 2008). 55–66% carvone was present in the EO of the samples from Crete (Karousou et al. 1998) while 50–65% carvone
was reported from Iran, former Yugoslavia, France, Estonia and Tajikistan (Sharopov et al. 2012; Kapp 2015).

Limonene 3-oxo derivatives

Piperitone, the two piperitone oxide isomers, piperitenone and piperitenone epoxide are typical in the EO (Başer et al. 1999; Aksit et al. 2013). Pulegone appears frequently, too. This volatile, a major component also of the pennyroyal (M. pulegium), bears an unpleasant aroma and is considered to be toxic. Target human organs are suggested to be the liver and kidney which may be damaged via reactive metabolites in the case of long-term consumption (EPA/HMPC/138386/2005 Rev 1) (European Medicines Agency, Committee on Herbal Medicinal Products (HMPC) 2016). The EU directive EC1334/2008 (EEC 2008) declares that pulegone and menthofurane are limited to max. 20 mg/kg in general foodstuff, 200 mg/kg in mint/
Fig. 2 a Limonene-3-oxo-derivatives b miscellaneous cyclic monoterpenes, c sesquiterpenes detected in *M. longifolia* EOs
peppermint flavoured confectionery, and 100 mg/kg in chewing gums. Proportion of pulegone in a ML EO varies between 20 and 85% (Fleisher and Fleisher 1991; Baser et al. 1999; Ghoulami et al. 2001; Gülüce et al. 2007; Sharopov et al. 2012; Kapp 2015). Further representatives of limonene 3-oxo derivatives in M. longifolia are menthone, isomenthone, menthofurane (Mimica-Dukic and Bozin 2008; Kapp 2015) and an accession rich in menthol is also reported (Llorens-Molina et al. 2017). Besides, Ali and co-workers (2002) report from the Pakistani sample mentioned above, a novel chlorinated limonene-3-oxo ketone. It is 1-hydroxy-2-chloromenthone or longifone.

Other cyclic monoterpenes

This group includes terpinen-4-ol, α-terpineol, α-terpinylacetate, eucalyptol, borneol, trans-sabinene hydrate, thymol etc., which were detected as major ingredients of ML EO in just a few cases. Alpha-terpinyl acetate as a main compound in an EO was described independently from Northern Turkey (Baser et al. 1999), Jiloca basin in Spain (Llorens-Molina et al. 2015), and (Kapp 2015). In the Turkish sample the terpinyl ester was present in 42% of the EO, and in the Estonian oil in 48%. The samples from Spain (18 individuals) showed somewhat lower proportion (39%) of the ester. From Serbia, a unique EO composition was described with presence of thymol (13%) together with its precursors γ-terpinene (5%) and p-cymene (14%) accompanied by eucalyptol (7%), however without the typical limonene-derived ketones (Mimica-Dukić et al. 1993).

Sesquiterpenes

The majority of sesquiterpenes has been detected in EOs of horsemint as minor component except β-caryophyllene, caryophyllene oxide and germacrene D which are regularly demonstrated as major ingredients (Mimica-Dukić et al. 1993; Başer et al. 1999; Sharopov et al. 2012; Iqbal et al. 2013; Llorens-Molina et al. 2015; Kapp 2015). Their proportions in the EO make up 2-10%, however, in a Turkish sample of M. longifolia L ssp. typhoides var. typhoides 29% caryophyllene oxide and 12% β-caryophyllene were determined (Başer et al. 1999). Besides, a major unknown was also detected by Başer and co-workers (2012) in samples from Marmara region (Turkey).

This compound, probably a sesquiterpene is characterized by a GC retention index RI = 2209. It was present in the EO of a single M. longifolia L ssp. longifolia oil (35% of EO) and in six M. longifolia L ssp. typhoides var. typhoides oils (between 6-35%).

Chemotypes of horsemint: open questions

Based on the mentioned varying main compounds of the EO, references declare the presence of different chemotypes. According to Mimica-Dukic and Bozin (2008) the wide diversity of EOs of wild-growing mints is observable in contrary to the relative stability of the composition of cultivated spices. Others authors conclude that EO composition of ML is highly variable even among the wild growing mints (Németh-Zámboriné 2015a) In spite of this, according to our knowledge, no summarizing survey or review of this partial area of the phytochemistry of M. longifolia has been published until now. Here, three larger typologies are considered. Başer and his group (1999) provided EO compositions and typology of Turkish (Aegean region) samples of two ML taxa. From M. longifolia ssp. longifolia (18 samples) five chemotypes were determined: 1) rich in piperitone oxides (2) linalool-rich or linalool-eucalyptol type (3) type based on carvone or carvone and β-caryophyllene (4) type rich in isomenthone (5) other compositions: one α-terpinyl acetate based sample and another rich in terpinen-4-ol and trans-sabinene hydrate. M. longifolia ssp. typhoides var. typhoides (19 samples) have been classified into six chemotypes (1) rich in piperitone oxides (2) linalool-rich (3) carvone-rich (4) rich in trans-sabinene hydrate (5) type based on menthone or menthone/ trans-piperiton-oxide (6) EOs based on trans-piperitone oxide/β-caryophyllene or trans-piperitone oxide/β-caryophyllene oxide. Another typology is provided by Mimica-Dukic and Bozin (2008) who distinguish nine chemotypes (signed as types I to IX) of the genus based on surveying both cultivated and wild-growing mint species. M. longifolia s.l. is present in five of these chemotypes: II, rich in linalool and/or linalyl acetate; III, based on carvone or dihydrocarvone; IV, dominated by piperitone or piperitenone; V, piperitone oxides or pipertitenone epoxide; IX, menthone, isomenthone or menthol (isomers) as main constituents. In this classification, the chemotype V group contains only M. longifolia and no other Mentha taxa were

© Springer
placed here. Interestingly, no thymol—para-cymene chemotype of *M. longifolia* is mentioned, although it was reported by the same authors earlier (Mimica-Dukić et al. 1993). Finally, Sharopov and co-authors (2012) list fourteen chemotypes of *M. longifolia* as the most important ones. This classification is supported by experimental data of *M. longifolia* samples collected from at least one, but usually 3-8 habitats. The mentioned chemotypes, marked by their key component are as follows: piperitenone epoxide; piperitone oxides; piperitone; isopiperitenone; piperitenone; carvone; trans-dihidrocarvone; pulegone; menthone; isomenthone; menthofurane; menthol; eucalyptol; borneol. Authors note that both EO composition and morphological traits of *M. longifolia* are highly diverse without mentioning any correlation between chemical and morphological traits.

Comparing the above mentioned three typology, carvone, piperitone, piperitone with its oxides can be established as the basis and the most widespread monoterpenes of ML chemotypes. Other studies mentioning different chemotypes of this species are scarce but recent works report new chemotypes too. A menthofurane rich accession of *M. longifolia* L ssp. *polyadena* from South-Africa is described by Viljoen et al. (2006). Three novel types in Teruel region, Spain have been explored via careful sampling of chemotaxonomically heterogeneous populations. These were a cis-sabinene hydrate/terpinen-4-ol, a α-terpinyl acetate/carvyl acetate (Llorens-Molina et al. 2015) and an α-terpineol acetate/8-acetoxy carvotanacetone type (Llorens-Molina et al. 2020) respectively.

Antimicrobial properties of horsemint volatiles

Beside flavour and aroma, the EO might contribute to the preservation of food products. The most comprehensive study (Güllüce et al. 2007) on *M. longifolia* EO rich in limonene-3-oxo compounds provide the antimicrobial activity against 15 species of molds and 14 strains of bacteria, and also against *C. albicans*. This data is highly valuable because most of the studies work with a far lower number of microorganisms and/or do not provide strain numbers. The tested EO contained cis-piperitone oxide (18.4%), pulegone (15.5%), piperitenone oxide (14.7%), menthone (7.9%), isomenthone (6.6%), trans-piperitone oxide (4.1%) and in lower (1-5%) proportions limonene-2-oxo volatiles, accompanied by 6.6% thymol. MIC of this EO was lower or equal with the values of control antibiotics against the majority of the tested bacteria (except *Streptococcus*, *Pseudomonas*, *Enterobacter* and *Brucella* spp). Good anticandidic activity and efficacy against *Fusarium* spp. was also observed. Based on this finding, authors propose utilization of *M. longifolia* essential oil as a preservative.

Other constituents of the ML oils, like limonene and its 2-oxo derivatives were also demonstrated to show moderate antibacterial activity on a wide range of pathogens, including foodborne ones (e.g. *E. coli*, *P. aeruginosa*, *Enterobacter* sp.- strain numbers not provided), (Oumzil et al. 2002). The study of Aggarwal et al. (2002) demonstrated the activity of S(-)-carvone, being present frequently in *M. longifolia*, was as effective against *K. pneumoniae* and *Candida*. The antimicrobial activity of limonene-3-oxo-ketones and their epoxides, together with the mint oils characterized by them are rather frequently studied in some cases due to their potential preservative properties. Studies on pulegone, piperitenone, piperitone and epoxides isolated from *Mentha* (Oumzil et al. 2002) or *Satureja* species (Tolossa et al. 2007) show that pulegone possesses strong antimicrobial activity. However, as the use of pulegone is limited, its direct utilisation in the food industry does not have much potential. The EO of the thymol-paracymene chemotype from Serbia (Mimica-Dukić et al. 1993) was observed to show considerable activity against *B. subtilis*, *S. aureus*, *C. albicans* and *A. niger*. A review of the antimicrobial activity of EO is given by Mikaili et al. (2013), with data on decreasing antibiotic resistance of food-borne bacteria together with remarkable effects against moulds, pathogen fungi and protozoas. Ehsani, Mahmoudi and co-workers (2012) demonstrated the preservative effects of *M. longifolia* EO (with main components pulegone, eucalyptol, menthofurane and isopulegone) in Iranian white-brined cow cheese. The combination of 150 ppm EO and a probiotic bacterium (*L. casei*) showed a significantly better preservative effect against the dairy-borne pathogens *L. monocytogenes* and *S. aureus*, than any of the treatment alone. According to authors, the limiting factor of the EO concentration in the cheese may be its influence to organoleptic properties. In our opinion, the high proportion of pulegone isomers and menthofurane in the EO might also be dangerous.
Concluding remarks

Among the phenolic compounds of *M. longifolia*, the AO value of rosmaricin has been declared frequently. Nevertheless, a part of the available data brings up the question if it is really the only or maybe the most important constituent of strong antiradical properties of the ML extracts. It was demonstrated, that the plant contains a couple of caffetannins and 55 various flavonoids, primarily flavanones. Considering the relations of structure and antiradical activity, three groups of flavonoids may deserve attention, i) luteolin-7-O-glycosides like lonicerin and cynaroside, ii) eriodyiocytol derivatives (eriocitrin) and iii) derivatives of quercetin, among which rutin is as frequently reported from *M. longifolia* samples as cynaroside. Rutin content was found to be in significant correlation with the FRAP activity of *M. longifolia* (Patonay et al. 2017). Park et al. (2019) also observed strong antioxidant activity to their rutin-dominated *M. longifolia* sample. Further studies are suggested to determine if higher concentrations of quercetin derivatives are really universal characteristics to this species as it was described in some references above.

Unfortunately, well-established conclusions on the available literature data are facing difficulties arising primarily because of methodological problems. Analysis, partially on nonvolatile compounds, are often made on a single batch of questionable representativeness of *M. longifolia*. Bulk samples are unable to represent the real chemical variability of any population and repetability of the results is also hardly possible. Comparison of published results is aggravated through the missing definition of plant part and phenophase at collection, too. Thus, in lack of representativeness and detailed description of sampling methods, separate references are unable to confirm either the universal appearance of any components or the background of the detected differences. It may be proposed to screen flavonoids of *M. longifolia* on a wider range of samples instead of single charges. It seems to be necessary to detect also both the biotic and environmental factors which might influence accumulation of these compounds.

During optimization of industrial uses, the effective solvent of polyphenols of *M. longifolia* should also be determined. In general, polar extraction results in high AO activity (Mikaili et al. 2013), nonpolar solvents such as hexane or DCM are not effective (Iqbal et al. 2013). A recent study of extractability of *M. longifolia*, performed by our team on 36 samples, proposes to use water–ethanol with a 3:7 mixture which makes it possible to avoid the toxic methanol in food products (Patonay et al. 2019). The utilization of aqueous waste of EO hydrodistillation was also described as a potential useful way to gain polyphenolic antioxidants of *Mentha* spp. (Damien-Dorman et al. 2003a, b; Koşar et al. 2004; Shen et al. 2011).

On preservative efficacy of *M. longifolia* drug or nonvolatile extracts in the food matrix, no published data was found. In case of other mint species, some results are available. The drug of *M. spicata* in a dairy dessert under thermal treatment, inhibited lipid peroxidation (Bandopadhyay et al. 2008) with similar efficacy as tert-butyl-hydroquinone. In a highly different matrix, namely a whole raw fish, a *M. arvensis* ethanolic extract was able to increase shelf life by inhibiting lipid peroxidation and release of biogenic amines (Viji et al. 2015). Although these studies do not determine the constituents in the background of the preservative effect, it could be supposed, that phenolics were effective in inhibiting peroxidation based on their radical scavenging properties detailed above. These results allow us to anticipate that a standardized, deodorized *M. longifolia* extract rich in polyphenols may be a cheap and effective inhibitor of lipid peroxidation and coupled oxidative deteriorations in some sensible types of foodstuff, i.e. in dairy, meat or fish products.

Volatile of *M. longifolia* show an extraordinarily wide variability. Because of the complexity of data and eventual contradictions, it can be established, that the chemotaxonomic investigation on *M. longifolia* needs further thoroughl study. It seems, that the geographical habitat is not closely connected to the abundance of any chemotype and the populations may be heterogenous in contrary to the primarily vegetative propagation behaviour of the plant (Llorens-Molina et al. 2015). To the contrary of some comprehensive studies, a well established definition of *M. longifolia* chemotypes is still lacking as chemical variability may have several backgrounds (Németh-Zámboriné 2015b). A more adequate knowledge on the occurrence and stability of chemotypes and those of the EO composition may encourage the utilization of the desired types, primarily those free of pulegone as being a potentially cheap source of flavorings. The rich spectrum of volatiles also enables the selection of
strains or clones with different aroma characters (e.g. carvone-rich: spearmint like, linalool-rich: reminiscent to lavender, etc.). Beside the phenolics, EO of *M. longifolia* might contribute to the preservation of food products, too. Evaluation and comparison of data dealing with antimicrobial activity of *M. longifolia* volatiles is, however aggravating due to the wide and varying spectrum of the investigated microbiota strains and extraction methods as well as the missing details on the enantiomers of the investigated volatiles (Oumzil et al. 2002). Chemotypes rich in piperitone, piperitenone and correspondent oxides, might have a great value as antimicrobial agents against numerous food-borne pathogens. Usage of pulegone-rich EOs should be avoided because of the toxicity of this component.

Acknowledgements Authors gratefully acknowledge the support of the Grant EFOP-3.6.1-16-2016-00001 ‘Complex improvement of research capacities and services at Eszterhazy Karoly University’ by the European Social Fund, and by the Ministry for Innovation and Technology (Hungary) within the framework of the Higher Education Institutional Excellence Program (NKFIH-1159-6/2019) in the scope of plant breeding and plant protection researches of Szent István University.

Funding Open access funding provided by Eszterhazy Karoly University.

Compliance with ethical standards

Conflict of interest Authors have no conflict of interest or competing interest to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aggarwal KK, Khanuja SPS, Ahmad A, Santha Kumar TR, Gupta Vivek K, Kumar S (2002) Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of *Mentha spicata* and *Anethum sowa*. Flav Fragr J 19:59–63. https://doi.org/10.1002/ffj.1040

Akroum S, Bendjeddou D, Satta D, Lalaoui K (2009) Antibacterial activity and acute toxicity effect of flavonoids extracted from *Mentha longifolia*. Am Eurasian J Sustain Agric 4:93–96

Aksit H, Demirtas I, Telci I, Tarimciar G (2013) Chemical diversity in essential oil composition of *Mentha longifolia* (L.) Hudson subsp. *typhoides* (Briq.) Harley var. *typhoides* from Turkey. J Essent Oil Res 25:430–437. https://doi.org/10.1080/10412905.2013.829005

Ali MS, Saleem M, Ahmad W, Parvez M, Yarudani R (2002) A chlorinated monoterpene ketone, acylated glycosides of beta-sitosterol and a flavonoid glycoside of *Mentha longifolia*. Phytochemistry 59:889–895. https://doi.org/10.1016/S0031-9422(01)00490-3

Al-Okbi YS, Fadel HHM, Mohamed DA (2015) Phytochemical constituents, antioxidant and anticancer activity of *Mentha citrata* and *Mentha longifolia*. Res J Pharm Biolog Sci 6:739–751

Areias FM, Valentao P, Andrade PM, Ferreres F, Seabra RM (2001) Phenolic fingerprint of peppermint leaves. Food Chem 73:307–311. https://doi.org/10.1016/S0308-8146(00)00302-2

Bahadori BM, Zengin G, Bahadori S, Dinparast L (2018) Phenolic composition and functional properties of wild mint (*Mentha longifolia* var. *calliantha* (Stapl) Briq.). Int J Food Prop 21:183–193. https://doi.org/10.1080/10942912.2018.1440238

Bandypadhyay M, Chakraborty R, Raychaudhury U (2008) Antioxidant activity of natural plant sources in dairy dessert (Sandesh) under thermal treatment. LWT-Food Sci Technol 41:816–825. https://doi.org/10.1016/j.lwt.2007.06.001

Baris O, Karaday M, Yannis M, Guvenalp Z, Bal T, Guelluce M (2011) Isolation of 3 flavonoids from *Mentha longifolia* (L.) Hudson subsp. *longifolia* and determination of their genotoxic potentials by using the E. coli WP2 test system. J Food Sci 79:T212–T217. https://doi.org/10.1111/j.1750-3841.2011.02405.x

Başer KHC, Kürkçüoğlu M, Tarimciar G, Kaynak G (1999) Essential oils of *Mentha species* from Northern Turkey. J Essent Oil Res 11:579–588. https://doi.org/10.1080/10412905.1999.9701218

Başer KHC, Kürkçüoğlu M, Demirci B, Özek T, Tarimciar G (2012) Essential oils of *Mentha* species from Marmara region of Turkey. J Essent Oil Res 24:265–272. https://doi.org/10.1080/10412905.2012.676775

Basile A, Giordano S, López-Sáez JA, Cobianchi RC (1999) Antibacterial activity of pure flavonoids isolated from mouses. Phytochemistry 52:1479–1482. https://doi.org/10.1016/S0031-9422(99)00286-1

Benedec D, Vlase L, Oniga I, Mot AC, Silaghi-Dumitrescu R, Hanganu D, Tiperiecu BT, Crisan G (2013) LC-MS analysis and AO activity of phenolic compounds from two indigenous species of *Mentha*. Note I. Farmacia 61:262–267

Bertoli A, Leonardi M, Krzyzanowska J, Oleszek W, Pistelli L (2011) *Mentha longifolia* in vitro cultures as safe source of
flavouring ingredients. Acta Biochim Pol 58:581–587. https://doi.org/10.18388/abp.2011.2228

Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355. https://doi.org/10.1007/0-387-96879-9_8612-1

Bourweg D, Pohl R (1973) The flavonoids of Mentha longifolia. Planta Med 24:304–314. https://doi.org/10.1055/s-0028-1099503

Burdz S, Oleszek W (2001) Antioxidant and antiradical activity of flavonoids. J Agric Food Chem 49:2774–2779. https://doi.org/10.1021/jf0104113m

Csepregi K, Neugart S, Schreiner M, Hideg É (2016) Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules 21:208. https://doi.org/10.3390/molecules21020208

Damien-Dorman HJ, Koşar M, Kahlos K, Holm Y, Hiltunen R (2010) Synergistic and antagonistic interactions of phenolic compounds found in Tunisian folkloric medicine. World J Microbiol Biotechnol 25:2227–2238. https://doi.org/10.1007/s11274-009-0130-3

Dudai N, Segev D, Havkin-Frenkel D, Eshel A (2006) Genetic variation of phenolic compounds content, essential oil composition and antioxidative activity in Israel-grown Mentha longifolia L. Acta Hortic 709:69–78. https://doi.org/10.17660/ActaHortic.2006.709.8

Ehsani A, Mahmoudi R (2012) Effects of Mentha longifolia L. essential oil and Lactobacillus casei on the organoleptic properties and on the growth of Staphylococcus aureus and Listeria monocytogenes during manufacturing, ripening and storage of Iranian white-brined cheese. Int J Dairy Technol 66:70–76. https://doi.org/10.1111/j.1471-0307.2012.00865.x

Elansary HO, Mahmoud EA (2015) Egyptian herbal tea infusions’ antioxidants and their antiproliferative and cytotoxic activities against cancer cells. Nat Prod Res 29:474–479. https://doi.org/10.1080/14786419.2014.951354c

Ertas A, Gören AC, Hasimi N, Tolan V, Kolak U (2015) Evaluation of antioxidant, cholisterase inhibitory and antimicrobial properties of Mentha longifolia ssp. noeana and its secondary metabolites. Rec Nat Prod 9:105–115

European Medicines Agency, Committee on Herbal Medicinal Products (HMPC) (2016) Public statement on the use of herbal medicinal products containing pulegone and menthofuran. EPAR/HMPC/138386/2005 Rev 1

Farzaei MH, Bahramsooltani R, Ghabadi A, Najafi F (2017) Pharmacological activity of Mentha longifolia and its phytoconstituents. J Tradit Chin Med (JTCM) 37:710–727. https://doi.org/10.1007/S00254-017-6272-7

Fialová S, Tekel’ová D, Mrliánová M, Grančai D (2008) The determination of phenolic compounds and antioxidant activity of mints and balms cultivated in Slovakia. Acta Fac Pharm Univ Comen LIV:96–102

Fleisher A, Fleisher Z (1991) Aromatic plants of the Holy Land and the Sinai. Part IV: the essential oils from Mentha longifolia growing in Sinai and Israel. J Essent Oil Res 3:57–58. https://doi.org/10.1080/10412905.1991.9697909

Freeman BL, Eggert DL, Parker TL (2010) Synergistic and antagonistic interactions of phenolic compounds found in navel oranges. J Food Sci 75:570–575. https://doi.org/10.1111/j.1750-3841.2010.01717.x

Ghoulami S, Il-Idrissi A, Fkhit-Tetouani S (2001) Phytochemical study of Mentha longifolia of Morocco. Fitoterapia 72:596–598. https://doi.org/10.1016/j.foodchem.2006.10.061

Grayer RJ, Eckert MR, Veitch NC, Kite GC, Marin PD, Kokubun T, Simmonds MSJ, Paton AJ (2003) The chemotaxonomic significance of two bioactive caffeic acid esters, nepetoids A and B, in the Lamiaceae. Phytochemistry 64:519–528. https://doi.org/10.1016/S0031-9422(03)00192-4

Guédon DJ, Pasquier BP (1994) Analysis and distribution of flavonoid glycosides and rosmarinic acid in 40 Mentha x piperita clones. J Agric Food Chem 42:679–684. https://doi.org/10.1021/jf00390a015

Güllüce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen A, Polissiou M, Adiguzel A, Ozkan H (2007) Antimicrobial and antioxidant properties of essential oils and methanol extract from Mentha longifolia ssp. longifolia. Food Chem 103:1449–1456. https://doi.org/10.1016/j.foodchem.2006.10.061

Hajimehdipoor H, Shahrastani R, Shekarchi M (2014) Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res J Pharmacogn 1:35–40

Hajlaoui H, Trabelsi N, Nouri E, Snoussi M, Fallah H, Ksouri R, Bakhrour A (2009) Biological activities of the essential oils and methanol extract of two cultivated mint species (Mentha longifolia and Mentha pulegium) in the Tunisian folkloric medicine. World J Microbiol Biotechnol. 25:2227–2238. https://doi.org/10.1007/s11274-009-0130-3

Hawryl MA, Niemiec M, Słomka K, Waksmundzka-Hajnos M, Szmiczak G (2016) Micro-2D-TLC Separation of Phenolics in Some Species of Mint and Their Fingerprints on Diol Bonded Polar Stationary Phase. Acta Chrom 28:119–127. https://doi.org/10.1556/AChrom.28.2016.1.9

Iqbal T, Hussain AI., Shahid Chatha SA, Hussain Bokhari T (2013) Antioxidant activity and volatile and phenolic profiles of essential oil and different extracts of wild mint (Mentha longifolia) from the Pakistani flora. J Anal Meth Chem 2013, Article ID 536490. https://doi.org/10.1155/2013/536490

Jahan N, Malik A, Muhammad P (2001) New flavonoid from Mentha longifolia. Heterocycles 55:1951–1956. https://doi.org/10.3987/COM-01-9281

Kapp K (2015) Polyphenolic and essential oil composition of Mentha and their antimicrobial effect. Dissertation, University of Helsinki

Karousou R, Lanaras T, Kokkini S (1998) Piperitone oxide-rich essential oils from Mentha longifolia ssp. pulegola and M. villosa-oervata grown wild on the island of Crete (S. Greece). J Essent Oil Res 10:375–379. https://doi.org/10.1080/10412905.1998.9700926

Koşar M, Damien Dorman HJ, Başer KHC, Hiltunen R (2004) Screening of free radical scavenging compounds in water extracts of Mentha species using a postcolumn derivatization method. J Agric Food Chem 52:3004–3010. https://doi.org/10.1021/jf034108k

Krzyzanowska J, Janda B, Pecio L, Stochmal A, Oleszek W (2011) Determination of polyphenols in Mentha longifolia and M. piperita field-grown and in vitro plant samples using UPLC-TQ-MS. J AOAC Int 94:43–50
Sharaf M, El-Ansari M, Saleh NAM (1999) Flavonoid glycosides from Mentha longifolia. Fitoterapia 70:478–483. https://doi.org/10.1016/S0367-326X(99)00062-3

Sharopov FS, Sulaimanova VA, Setzer WN (2012) Essential oil composition of Mentha longifolia from wild populations growing in Tajikistan. J. Med Actve Plants 1:76–84. https://doi.org/10.7275/R5736NTN

Shekarchi M, Hajimehdiipoor H, Saeidnia S, Gohari RA (2012) Comparative study of rosmarinic acid content in some plants of Labiatae family. Phcog Mag 8:37–41. https://doi.org/10.7275/R5736NTN

Shen D, Pan HM, Wu QL, Park CH, Rodolfo Juliani H, Ho CT, Simon JE (2011) A rapid LC/MS/MS method for the analysis of nonvolatile antiinflammatory agents from Mentha spp. J Food Sci 76:C900–C908. https://doi.org/10.1111/j.1750-3841.2011.02281.x

Stanislavljević DM, Stojićević SS, Đorđević SM, Zlatković BP, Veličković DT, Karabegović IT (2012) Antioxidant activity, the content of total phenols and flavonoids in the ethanol extracts of Mentha longifolia L. dried by the use of different techniques. Chem Ind Chem Eng Q 18:411–420. https://doi.org/10.2298/CICEQ110919017S

Stocker M, Pohl R (1976) Postmortale bildung von 5,7-dihydroxychromon-7-rutinosid in Mentha longifolia. Phytochemistry 15:571–572. https://doi.org/10.1016/S0031-9422(00)88984-0

Tahir R, Naeemullah M, Akbar F, Masood MS (2011) Major phenolic acids of local and exotic mint germplasm grown in Islamabad. Pak J Bot 43:151–154

Tolossa K, Asres K, El-Fiky FK, Singab ANB, Bucar F (2007) Composition of the essential oils of Satureja abyssinica ssp. abyssinica and Satureja paradoxa: their antimicrobial and radical scavenging activities. J Essent Oil Res 19:295–300. https://doi.org/10.1080/10412905.2007.9699285

Tomás-Barberan FA, Husain SZ, Gil MI (1988) The distribution of methylated flavonoids in the Lamiaceae. Biochem Syst Ecol 16:43–46. https://doi.org/10.1016/0305-1978(88)90115-9

Tucker AO, Naczi RFC (2007) Mentha: an overview of its classification and relationships. In: Lawrence BM (ed) Mint. The genus Mentha — Medicinal and aromatic plants — Industrial profiles. CRC Press, Boca Raton

Tunçtürk M, Tunçtürk R, Sekeroglu N, Erturk MM, Ozgokce F (2011) Lead concentrations of herbs used in Van Herby cheese. Nat Prod Commun 6:1473–1474

Ulubelen A, Topçu U, Kolak U (2005) Labiatae flavonoids and their bioactivity. Stud Nat Prod Chem 30:233–302. https://doi.org/10.1016/S1572-5995(05)80035-3

Venskonutis PR (1996) A chemotype of Mentha longifolia L. from Lithuania rich in piperitene oxide. J Ess Oil Res 8:91–95. https://doi.org/10.1080/10412905.1996.9700564

Vijg P, Binski PK, Visuvavayagam S, Bindu J, Ravishankar CN, Gopal TK (2015) Efficacy of mint (Mentha arvensis) leaf and citrus (Citrus aurantium) peel extracts as natural preservatives for shelf life extension of chill stored Indian mackerel. J Food Sci Technol. https://doi.org/10.1007/s13197-015-1788-1

Viljoen M, Petkar S, van Vuuren SF, Figueiredo AC, Pedro LG, Barroso JG (2006) The chemo-geographical variation in EO composition and the antimicrobial properties of “Wild Mint”—Mentha longifolia subsp. polyadena. J Essent Oil Res 18:60–65. https://doi.org/10.1080/10412905.2006.12067123

Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza AD, Brantner AH (2014) Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 19:767–782. https://doi.org/10.3390/molecules19010767

Vijg P, Binski PK, Visuvavayagam S, Bindu J, Ravishankar CN, Gopal TK (2015) Efficacy of mint (Mentha arvensis) leaf and citrus (Citrus aurantium) peel extracts as natural preservatives for shelf life extension of chill stored Indian mackerel. J Food Sci Technol. https://doi.org/10.1007/s13197-015-1788-1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.