POTENTIAL OF HERBAL MEDICINE IN ASIA FOR ORAL CANDIDIASIS THERAPY: A SYSTEMATIC REVIEW

ANI MEGAWATI1*, INDAH SUASANI WAHYUNI2

1Oral Medicine Specialist Program, Faculty of Dentistry, Universitas Padjadjaran, Jl. Sekeloa Selatan no 1, Bandung, West Java, Indonesia 40132, 2Department of Oral Medicine, Faculty of Dentistry, Universitas Padjadjaran, Jl. Sekeloa Selatan no 1, Bandung, West Java, Indonesia 40132

Email: ani19001@mail.unpad.ac.id

Received: 08 Aug 2021, Revised and Accepted: 15 Oct 2021

ABSTRACT

The objective of this review was to provide antifungal recommendations for Oral Candidiasis (OC) derived from herbal medicine based on the research results of the last 5 y. This systematic review was conducted according to Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines using the PubMed and Science Direct databases with studies published between 2016 and 2021. The review was conducted on 13 studies, in vitro and clinical trial. A total of 41 species of plants have studied its antifungal effects on \textit{Candida albicans}. The Minimum Inhibitory Concentration (MIC) and Minimum Fungidal Concentration (MFC) varied in the range of 0.098 µl/ml to 125 µl/ml for different types of plants and \textit{Candida} samples, while the mean inhibition zone (ZOI) was 11 mm. The most recommended herbal medicine for the development of antifungal drugs for oral candidiasis therapy were \textit{Nigella sativa}, \textit{Lawsonia inermis}, and \textit{Zingiber officinale}.

Keywords: Herbal medicine, Antifungal, Oral candidiasis, \textit{Candida albicans}

© 2021 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/)

DOI: https://dx.doi.org/10.22159/ijap.2021.v13s4.43794 Journal homepage: https://innovareacademics.in/journals/index.php/ijap

INTRODUCTION

Oral candidiasis (OC) commonly referred to as “thrush” includes infections of the tongue and other oral mucosal sites and is characterized by fungal overgrowth that invades the superficial tissues. \textit{C. albicans} is the main causative agent of OC, accounting for up to 95% of cases. The tongue dorsum is the initiation point of infection for the majority of the clinical forms of OC. Predisposing factors for candidiasis are the use of broad-spectrum antibiotics, immunosuppressive agents, installation of medical devices and Nasogastic tube (NGT), as well as decreased immunity related to human immunodeficiency virus (HV) infection [1].

The pharmacological treatment of candidiasis can be distinguished between topical or systemic antifungal [2]. Antifungal agents comprise three main classes: polyenes, azoles, and echinocandins [1]. More than 200 polyene antifungals have been discovered, some of which are most commonly used in antifungal therapy, such as amphotericin B, sytox, and natamycin. Polyenes were the first broad-spectrum antifungal drugs on the market and still used to treat a variety of fungal infections after 70 y [3]. The side effects of polyene antifungals are high toxicity, including fever, nausea and vomiting, nephotoxicity, liver toxicity, and interactions with co-administered drugs. Another crucial problem is the increasing drug resistance that invalidates the clinical treatments [4].

Some of the side effects of existing antifungal agents and the need for cost-effective treatments to manage oral candidiasis have prompted the search for new alternatives in this field. Natural agents have emerged as sources of bioactive molecules with potential therapeutic applications in the medical and dental fields in recent years. Among them, plant extracts are considered a group of natural compounds that are highly desirable in the prevention and treatment of oral candidiasis [5]. Many studies have shown that plant extracts such as \textit{Coriandrum sativum} [5], \textit{Hypericum hircinum} [4], \textit{Chrysobalanus icaco} [6], \textit{Ononis spinosa} [7], \textit{Ricinus communis} [8], and \textit{Gymnema sylvestre} [9] have the potential as antifungal and inhibit the growth of \textit{Candida albicans}. Medicinal plant extracts and selected active fractions have been investigated and have low cytotoxicity in human cells [5].

The large number of plant species that tested for antifungal activity in previous studies make it difficult to obtain an overview of the subject and their interpretation. In this context, the authors aimed to perform a systematic review of the literature on in vitro studies and clinical trials of medicinal plants that have anti-\textit{Candida} potential, based on the research conducted in the last 5 y. Clinically, this systematic review aims to provide antifungal recommendations for OC derived from herbal medicine.

Method

This systematic review was carried out in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines [10]. The themes in this study were arranged according to Population, Intervention, Comparison, and Outcome (PIOC) [11] with the following details: Population is an articles discussing \textit{Candida albicans} or Oral Candidiasis; Intervention are medicinal plants or herbs; a Comparison is a control group, and Outcomes is the Minimum Inhibition Concentration (MIC) or Minimum Fungidal Concentration (MFC) or Zone of Inhibition (ZOI) of \textit{Candida albicans} for in vitro studies or observation on lesion healing for clinical trial studies.

Articles search was conducted using the PubMed (Medline) and ScienceDirect databases, carried out between March to May 2021. The database filters used were: publications in the last 5 y (2016-2021) and articles in English. The articles type used were in vivo, in vitro, and clinical trials design studies, but the literature review or systematic review article was not used. The keywords used in the Medline via PubMed database was: ("candida"[All Fields] OR "candida albicans"[MeSH Terms] OR candida albicans [Text Word] AND "antifungal agents"[All Fields] OR "antifungal agents"[MeSH Terms] OR antifungal[Text Word] AND herbal[All Fields]), and keywords used in the Science Direct database was: ("oral candidiasis" AND ("herbal medicine" OR "plant medicine"). Another inclusion criteria was medicinal plants in Asia which were adapted from the purpose of this systematic review.

Articles were initially screened based on the title and abstract according to the scope. A manual hand-searching of the reference lists of relevant studies was also performed. The quality of the research methodology of the selected articles was assessed for risk of bias using "Risk of Bias Assessment of Non-randomized Studies (RoBANS)" tools [12]. RoBANS was chosen because it is most suitable for assessing the quality of non-randomized studies and observational studies. Furthermore, all articles that are judged to be of good quality are reviewed with thematic analysis, which is grouped by theme according to the purpose of writing. In terms of
RESULTS
Fig. 1 shows a complete process flowchart of article identification, screening, and eligibility assessment according to the inclusion criteria that have been determined. A total of 568 articles were obtained from the database Medline via PubMed and 412 articles from the database Science Direct. A total of 555 articles from Medline via PubMed and 410 articles from ScienceDirect were excluded because they did not meet the inclusion criteria using the filters in the database system. One of the 13 articles is known to be a duplication so that it is removed and remains 12 articles. Then we obtained another 1 article with manual hand searching, so the total articles that will be reviewed qualitatively are 13 articles.

Assessment of the risk of bias for selected articles was performed using RoBANS. There are 6 assessment points as shown in table 1. The risk of bias assessment shows that all of these articles have a low risk of bias or have a high quality, so they can be reviewed systematically.

S. No.	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Total point	Risk of bias	Quality
1	Sajjadi et al, 2016 [13]	1	1	1	1	1	1	6	Low	High Quality
2	Hovijitra et al, 2016 [14]	1	1	1	1	1	1	6	Low	High Quality
3	Aghazadeh et al, 2016 [15]	1	1	1	1	1	1	6	Low	High Quality
4	Sharma, Hunny et al, 2016 [16]	1	1	1	1	1	1	6	Low	High Quality
5	Soliman et al, 2017 [17]	1	1	1	1	1	1	6	Low	High Quality
6	Al-Thobity et al, 2017 [18]	1	1	1	1	1	1	6	Low	High Quality
7	Naeini et al, 2017 [19]	1	1	1	1	1	1	6	Low	High Quality
8	Bhat et al, 2018 [20]	1	1	1	1	1	1	6	Low	High Quality
9	Samadi et al, 2019 [21]	1	1	1	1	1	1	6	Low	High Quality
10	Nosratzehi et al, 2019 [22]	1	1	1	1	1	1	6	Low	High Quality
11	Ariamanesh et al, 2019 [23]	1	1	1	1	1	1	6	Low	High Quality
12	Zainal et al, 2020 [24]	1	1	1	1	1	1	6	Low	High Quality
13	Ghorbani et al, 2018 [25]	1	1	1	1	1	1	6	Low	High Quality
Domain assessment (%)	100	100	100	87.5	100	100				

Selected articles were published from 2016-2021. From a total of 13 articles, 12 articles are in vitro studies and 1 article is a clinical trial study. The number of plants studied was 41 species from all studies. A resume from a systematic review of articles on the potential of medicinal plants as an anti-fungal for the development of oral candidiasis therapy, as listed in table 2.
Table 2: The potential of medicinal plants as anti-fungal for the development of oral candidiasis therapy

No	Author	Country	Plant Species	Part	Active compound	Sample/Control	Outcome	Conclusion
1	Sajjadi et al, 2016 [13]	Iran	Cyclamen cernum	tuber	Saponin, Triterpenoid	Sample: C. albicans ATCC 10231 Control (+): Ketoconazole	MIC: 15 μg/ml ZOI: ()	Cyclamen cernum tuber extract is rich in titerpenoid saponins and has anti-Candida effect (in vitro study)
2	Hovijitra et al, 2016 [14]	Thailand	Cinnamomum zeylanicum	bark	Phenolic	Sample: C. albicans ATCC 10231 Control (+): Clotrimazole	0.098 μg/ml 13±4.63 mm 0.391 μg/ml 11±1.47 mm	Cinnamom essential oil (Cinnamomum zeylanicum) and basil leaf herbal oil (Ocimum basilicum) can be the most effective anti-Candida Candida options based on the comparison of MFC and ZOI (in vitro study)
3	Aghazad et al, 2016 [15]	Iran	Citrus aurantiifolia	peel	Not mentioned	Sample: C. albicans ATCC 10231 Control (+): Ketoconazole	1.563 μg/ml 7±1.47 mm	Zingiber officinale extract has potential as an anti-Candida (in vitro study)
4	Sharma et al, 2016 [16]	India	Glycyrrhiza glabra	leaves	Not mentioned	Sample: C. albicans ATCC 66027 Control (+): Clotrimazole, fluconazole	0.625 μg/ml 19.8±0.8 mm 3 mm	G. glabra extract was the most effective as an anti-Candida with the largest inhibition zone (in vitro study)
5	Soliman et al, 2017 [17]	United Arab Emirates	Mentha spicata	leaves	Not mentioned	Sample: C. albicans SC 5314 Control (+): Ketoconazole	10±1.3 μg/ml 15±0.5 mm 11±1 mm	L. inermis and P. oleracea extracts had the most effective anti-Candida activity based on the comparison of MIC and ZOI (in vitro study)
6	Al-Thobity et al, 2017 [18]	Saudi Arabia	Nigella sativa	seeds	Monoterpenoid	Sample: C. albicans ATCC 10231 Control (+): Concentration 0%	50±0.4 μg/ml 9±0.1 mm	The use of thymoquinone isolate in Nigella sativa was effective in preventing the adhesion of C. albicans (in vitro study)
7	Naeni et al, 2017 [19]	Iran	Nigella sativa	seeds	Phenolic	Sample: C. albicans from oral mucosa Control: -	8 mm	N. sativa and F. vulgare extracts are good anti-Candida agents (in vitro studies)
8	Bhat et al, 2018	India	Ocimum vulgare	leaves	Phenolic	Sample: C. albicans from oral mucosa	30±3 mm	O. vulgare extract has anti-Candida activity
DISCUSSION

Based on this review from 13 articles, 41 types of plants were known to be tested for anti-Candida activity, namely: *Cyclamen coum* [13], *Cinnamomum zealanicum* [14], *Ocimum basilicum* [14], *Foeniculum vulgare* [19], *Citrus limon* [14], *Citrus aurantifolia* [14], *Citrus hystrix* [14], *Citrus sinensis* [14], *Alpinia galanga* [14], *Allium sativum* [15, 21], *Curcuma longa* [21], *Cocos nucifera* [17], *Camellia sinensis* [17, 21], *Zingiber officinalis* [17, 21], *Portulaca oleracea* [17], *Salvadora persica* [17], *Ziziphus spina-Christi* [21], *Asphodelus tenuifolius* [17], *Nigella sativa* [18, 19, 23], *Camellia sinensis* [19, 25], *Origanum vulgare* [20], *Withania somnifera* [21], *Cymbopogon citrates* [21], *Tamarindus indica* [21], *Limonia acidissima* [21], *Psidium guajana* [21], *Annona reticulata* [21], *Swertia chirata* [21], *Euphorbia hirta* [21], *Pogostemon parviflorus* [21], *Adenocalyamma alliacum* [21], *Camellia sinensis* [21], *Echinophora platyloba* [21], and *Cuminum cyminum* [21]. There are several plants that after being tested did not have anti-Candida activity, including *Alpinia galanga* [14], *Allium sativum* [15, 24], *Cocos nucifera* [14], *Mentha piperita* [14], *Avicennia marina* [17], *Fagonia indica* [17], and *Ziziphus spina-Christi* [17].

Candida albicans were used in the *in vitro* studies using ATCC 10231 in 5 studies, whilst ATCC 66027, SC 5314, and ATCC 14053 each in 1 study. ATCC and SC cell cultures are easy to control as desired by environmental physicochemistry and inexpensive [26]. In addition, there are 4 *in vitro* studies using cell cultures taken from the oral mucosa and removable dentures of patients with oral candidiasis. This clinical trial study was followed by 22 patients with a diagnosis of denture stomatitis and 11 patients given conventional therapy as positive controls.

Table 1

No	Author	Country	Plant Species	Part	Active compound	Sample/control	Outcome MIC/MFC	ZOI	Conclusion
9	Samadi et al., 2019	India	*Lawsonia inermis*	leaves	Not mentioned	C. albicans from oral mucosa	MIC: 5 mg/ml	17±0.22	against clinical isolates from oral Candida (*in vitro* study)
			Withania somnifera	leaves	Not mentioned	Control (+):	16±0.16	The herbal extracts of *Lawsonia inermis*, *Withania somnifera*, *Cymbopogon citrates* and *Zingiber officinale* gave the best inhibitory effect and had the potential to control the growth of *Candida albicans* with an inhibition zone above 12 mm and statistical analysis p<0.05 (*in vitro* study)	
			Zingiber officinale	leaves	Not mentioned	Clotrimazole, Fluconazole	mm	13±0.12	
			Curcuma longa	leaves	Not mentioned		mm	15±0.06	
10	Nosratzadeh et al., 2019	Iran	*Curcuma longa*	rhizome	Not mentioned	C. albicans from oral mucosa	MIC: 20 mg/ml	14±0.23	High concentration of *N. sativa* extract has anti-Candida effect (*in vitro study*)
11	Ariamanesh et al., 2019	Iran	*Nigella sativa*	seeds	Monoterpenoid	Control (+):	24±0.15	Allium sativum extract has anti-Candida effect (*in vitro study*)	
12	Zainal et al., 2020	Malaysia	*Allium sativum*	clove	Organosulfur	Control (+):	15±0.06	Allium sativum extract has anti-Candida effect (*in vitro study*)	
13	Ghorbani et al., 2018	Iran	*Camellia sinensis*	leaves	Monoterpenoid	Study Control:	mm	20±0.20	Mouthwash from green tea leaves extract (*Camellia sinensis*) exhibits anti-Candida activity comparable to nystatin (*clinical trial*)

No	Author	Country	Plant Species	Part	Active compound	Sample/control	Outcome MIC/MFC	ZOI	Conclusion	
20						denture	MFC: 0.097%		against clinical isolates from oral *Candida* (*in vitro study*)	
21						Control (+):	Nystatin			
22						Sample:	C. albicans from oral mucosa	mm	11±0.21	
23						Control (+):	Clotrimazole, Fluconazole	mm	10±0.36	
24						Sample:	C. albicans from oral mucosa	mm	10±0.17	
25						Control (+):	Clotrimazole, Fluconazole	mm	08±0.17	

References

[1] Fagonia indica [16]
[2] Curcuma longa, Citrus sinensis [14]
[3] Cinnamomum zealanicum [14]
[4] Zingiber officinale [17]
[5] Withania somnifera [21], Cymbopogon citrates [21], Tamarindus indica [21], Limonia acidissima [21], Psidium guajana [21], Annona reticulata [21], Swertia chirata [21], Euphorbia hirta [21], Pogostemon parviflorus [21], Adenocalyamma alliacum [21], Camellia sinensis [21], Echinophora platyloba [21], and Cuminum cyminum [21].
In the *in vitro* test, the negative control comparators were ethanol and 0% concentration of plant extracts. All reviewed studies used established antifungal drugs as positive controls, such as ketoconazole, itraconazole, and fluconazole. Parameters from the *in vitro* studies were evaluated by determining at the Minimum Inhibitory Concentration (MIC) or Minimum Fungicidal Concentration (MFC), and/or Zone of Inhibition (ZOI). The culture media used in the *in vitro* studies were Sabouraud Dextrose Agar (SDA).

Nigella sativa is the most tested plant, which is commonly found in South and Southeast Asia. The part of the plant used is the seeds which are commonly called black cumin seeds. The extract has been explored and had antifungal properties. *Thymoquinone* is the main ingredient in *N. sativa*, which is a monoterpeneoid [18, 19, 23]. The mechanism of action of monoterpeneoids on *N. sativa* inhibit calceinulin signal, affect cell surface integrity (cell walls and cell membranes) yeast to hypha transition, biofilm formation, cell cycle arrest in S phase and mitochondrial dysfunction [27].

Other active plant compounds are phenolic compounds contained in *Lawsonia inermis* [17, 21], and *Zingiber officinale* [15, 21]. Phenolic compounds act by damaging cell walls, inhibiting the isocitrate lyase enzyme activity, disrupting plasma membrane dimorphism inhibition, *in vitro* immunoregulatory effect, on monocytes against *C. albicans* and against biofilms [28]. The mechanism of action of these polyphenol compounds and monoterpeneoids is similar to the mechanism of action of Nystatin which has been established in the treatment of Oral candidiasis. Nystatin induces membrane permeability by forming complexes with ergosterol located in fungal membranes, leading to intracellular leakage and cell death [3].

Of all the articles reviewed, there were several plants that were of concern to the author. There were 3 articles that explored the potential of the *Nigella sativa* plant. The *in vitro* study of *Nigella sativa* plants showed that it can prevent the adhesion of *Candida albicans* and have a good antifungal potency [18, 19, 23]. In addition, there are also two studies conducted on *Lawsonia inermis* (henna nail) plant. The inhibition of *L. inermis* against *C. albicans* was very good with ZOI of 15±0.5 mm and 10±0.22 mm [17, 21]. Finally, there were also two articles that discussed the antifungal potential of *Zingiber officinale* (ginger). It also said it has good inhibition and anti-biofilm formation activities against *C. albicans* with the MIC of 0.625 mg/ml and ZOI of 16±0.12 mm [2, 21]. Apart from these three plants, each of the other plants was only carried out once, or did not have good antifungal activity. The secondary metabolites that play a role in the antifungal activity of these plants are monoterpeneoids and/or polyphenolic/phenolic compounds. So that these three plants, *Nigella sativa*, *Lawsonia inermis*, and *Zingiber officinale*, are recommended to be researched by using clinical trial design as an antifungal alternative for oral candidiasis therapy.

CONCLUSION

The most recommended herbal medicine for the development of antifungal drugs for Oral candidiasis therapy were *Nigella sativa*, *Lawsonia inermis*, and *Zingiber officinale*.

AUTHORS CONTRIBUTIONS

All authors have contributed equally.

CONFLICT OF INTERESTS

Declared none.

REFERENCES

1. Vila T, Sultan AS, Montelongo Jauroguc D, Jahe Riz MA. Oral candidiasis: A disease of opportunity. J Fungi (Basel). 2020;6(1):1-28. doi: 10.3390/jof6010015, PMID 31963180.

2. Garcia Cuesta C, Sarrion Perez MG, Bagan JV. Current treatment of Oral candidiasis. Nystatin induce s membrane polyphenol compounds and monoterpenoids is similar to the inhibition, enzyme activity, disrupting plasma membrane dimorphism which is a monoterpenoid [18, 19, 23]

3. Stojkovic D, Dias MI, Drakulic D, Barros L, Stevanovic M, CFR Feirreira ICFR, D Sokovic M. Methanolic extract of the herb *Ononis spinosa* L. is an antifungal agent with no cytotoxicity to primary human cells. Pharmacological. 2020;13(4):1-13. doi: 10.3390/ph13040078.

4. Page MJ, McKenzie IE, Boursout PM, Boutron I, Hoffmann TG, Murov CD. The PRISMA 2018 statement: an updated guideline for reporting systematic reviews. Br Med J. 2021;372. doi: https://doi.org/10.1136/bmj.n71

5. Miller SA, Forrest JL. Enhancing your practice through evidence-based decision making: PICO, learning how to ask good questions. J Evidence-Based Dent Pract. 2001;1(2):136-41.

6. Vediyappan G, Dumontet V, Pelissier F, d’Enfer C. Gymnemic acids inhibit hyphal growth and virulence in *Candida albicans*. Plos One. 2013;8(9):e74189. doi: 10.1371/journal.pone.0074189, PMID 24042021.

7. Vila T, Sultan AS, Iamonico DF, Weil T, Mattivi F. Extracts of oral candidiasis: A literature review. J Clin Exp Dent . 2020;6(1):1-28. doi: 10.3390/jof6010015, PMID 31963180.

8. Balaji S. Characterization of herbal antifungal agent, Gymnema sylvestre against oral clinical isolates of *Candida albicans*. Pharmacognosy Res. 2017;9(1):96-100. doi: 10.4103/0974-8490.199772, PMID 28250651.

9. Al-Thobity AM, Al-Khalifa KS, Gad MM, Al-Hariri M, Ali AA, Alnassar HJ. Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J Clin Epidemiol. 2013;66(4):408-15. doi: 10.1016/j.jclinep.2012.09.016, PMID 23337711.

10. Soliman SM, Sanør M, El-Keblawy AA, Ibrahim AS. Assessment of herbal drugs for promising anti-candida activity. BMC Complement Altern Med . 2017;17(1):257. doi: 10.1186/s12906-017-1670-x, PMID 28723643.

11. Al-Thobity AM, Al-Khalifa KS, Ali AA, Alnassar HJ. Assessment of herbal drugs for promising anti-candida activity. BMC Complement Alternative Med. 2017;17(1):257. doi: 10.1186/s12906-017-1670-x, PMID 28723643.

12. Soliman SM, Sanør M, El-Keblawy AA, Ibrahim AS. Assessment of herbal drugs for promising anti-candida activity. BMC Complement Altern Med . 2017;17(1):257. doi: 10.1186/s12906-017-1670-x, PMID 28723643.

13. Soliman SM, Semnong MH, El-Keblawy AA, Ibrahim AS, Uppuluri P, Bhat V, Sharma SM, Shetty V, Shastri S, Shroff S, Saha S, Balaji S. Characterization of herbal antifungal agent, *Organum vulgare* against oral Candida spp. Isolated from patients with
candida-associated denture stomatitis: an in vitro study. Contemp Clin Dent. 2018;9(5):11-9. doi: 10.4103/ccd.ccd_537_17.

21. Samadi FM, Suhail S, Sonam M, Sharma N, Singh S, Gupta S, Dobhal A, Pradhan H. Antifungal efficacy of herbs. J Oral Biol Craniofac Res. 2019;9(1):28-32. doi: 10.1016/j.jobcr.2018.06.002, PMID 30197861.

22. Nosratzehi T, Nosratzehi M, Nosratzehi S, Lotfi F. The comparison of the effect of curcumin with nystatin on inhibition level of Candida albicans. J Exp Pharmacol. 2019;11:93-7. doi: 10.2147/JEP.S215843, PMID 31496837.

23. Ariamanesh H, Tamizi N, Yardinezhad A, Salah S, Motamed N, Amanloo S. The effectiveness of Nigella sativa alcoholic extract on the inhibition of Candida albicans colonization and formation of plaque on acrylic denture plates: an in vitro study. J Dent (Shiraz). 2019;20(3):171-7. doi: 10.30476/DENTJODS.2019.44911, PMID 31579691.

24. Zainal M, Mohamad Zain N, Mohd Amin I, Ahmad VN. The antimicrobial and antibiofilm properties of allicin against Candida albicans and staphylococcus aureus- A therapeutic potential for denture stomatitis. Saudi Dent J. 2021;33(2):105-11. doi: 10.1016/j.sdentj.2020.01.008, PMID 33551624.

25. Ghorbani A, Sadrazadeh A, Habibi E, Dadgar K, Akbari J, Moosazadeh M, Hossein B, Ahangarkani F, Vaezi A. Efficacy of Camellia sinensis extract against candida species in patients with denture stomatitis. Curr Med Mycol. 2018;4(3):15-8. doi: 10.18502/cmm.4.3.174, PMID 30619964.

26. Rodriguez Hernandez CO, Castillo FYR, Olvera C, Muro AL. Cell culture: history, development and prospects. Int J Curr Res Acad Rev. 2014;2(12):189-200.

27. Ansari MA, Fatima Z, Hameed S. Anticandidal effect and mechanisms of monoterpenoid, perillyl alcohol against candida albicans. PLOS ONE. 2016;11(9):e0162465. doi: 10.1371/journal.pone.0162465, PMID 27627759.

28. Teodoro GR, Ellepola K, Seneviratne CJ, Koga-Ito CY. Potential use of phenolic acids as anti-candida agents: a review. Front Microbiol. 2015;6(12):1420. doi: 10.3389/fmicb.2015.01420, PMID 26733965.