Learning Invariant Representations From EEG via Adversarial Inference

OZAN ÖZDENİZÇİ¹, (Student Member, IEEE), YE WANG², (Senior Member, IEEE), TOSHIKI KOIKE-AKINO², (Senior Member, IEEE), AND DENIZ ERDOĞMUŞ², (Senior Member, IEEE)

¹Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
²Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139, USA

Corresponding author: Ozan Özdenizci (oozdenizci@ece.neu.edu)

The work of Ozan Özdenizci and Deniz Erdoğan was supported in part by the NSF under Grant IIS-1149570, Grant CNS-1544895, and Grant IIS-1715858, in part by the Department of Health and Human Services (DHHS) under Grant 90RES017-02-01, and in part by the NIH under Grant R01DC009834.

ABSTRACT

Discovering and exploiting shared, invariant neural activity in electroencephalogram (EEG) based classification tasks is of significant interest for generalizability of decoding models across subjects or EEG recording sessions. While deep neural networks are recently emerging as generic EEG feature extractors, this transfer learning aspect usually relies on the prior assumption that deep networks naturally behave as subject- (or session-) invariant EEG feature extractors. We propose a further step towards invariance of EEG deep learning frameworks in a systemic way during model training. We introduce an adversarial inference approach to learn representations that are invariant to inter-subject variabilities within a discriminative setting. We perform experimental studies using a publicly available motor imagery EEG dataset, and state-of-the-art convolutional neural network based EEG decoding models within the proposed adversarial learning framework. We present our results in cross-subject model transfer scenarios, demonstrate neurophysiological interpretations of the learned networks, and discuss potential insights offered by adversarial inference to the growing field of deep learning for EEG.

INDEX TERMS

Adversarial learning, brain-computer interface, deep neural networks, electroencephalogram, invariant representation, motor imagery.

I. INTRODUCTION

Rapid progress of deep learning in computer vision with the emergence of large image data sets and computational resources over the last decade motivated a variety of studies exploring deep neural networks in decoding information from electroencephalographic (EEG) data [1], [2]. This interest was particularly focused on EEG-based brain-computer interface (BCI) technology which is primarily motivated by an aim to provide a neural control channel for individuals with severe neuromuscular disorders [3], [4]. Developing BCI systems mainly rely on robust decoding of user (subject) intentions from EEG, under the prior belief that EEG encodes the information on such intent. To that end, convolutional neural network (CNN) based feature extractors became powerful generic EEG signal processing tools, alleviating the need for manual feature extraction [2], [5].

One of the main challenges in EEG classification is coping with the change in data distributions across different subjects or recording sessions, well known as the problem of transfer learning [5]–[7]. Particularly in cross-subject transfer, the aim is to discover and exploit shared, invariant neural structures across subjects towards the primary goal of eliminating or reducing system calibration times for people with neuromuscular disabilities. Conventional machine learning approaches in addressing cross-subject invariance mostly focus on regularizing classifiers [8] or feature extractors [9], [10] using other subjects’ data, as well as learning population level common spatial bases dictionaries [11], [12]. Such methods are shown to yield promising results when learned representations are regularized not to overfit to the subject pool. However from a deep feature learning standpoint, current approaches rely on the hypothesis that the deep, capable network architectures will internally learn robust representations (features) during training, that are generalizable across subjects and/or sessions [13]–[16].
(cf. Section II-A for a detailed look). Nevertheless this assumption can be naturally constrained given that most neuroimaging datasets are of smaller scale than those of images or videos, which further restrains the progress of deep learning in cognitive neuroscience.

In light of recent work on invariant representation learning with neural networks [17], [18], we present in this paper an adversarial inference approach to learn nuisance-invariant representations from EEG. Particularly, we aim to learn representations that are invariant to cross-subject variabilities within a discriminative neural network setting. We recently explored a similar idea in EEG-based biometric identification systems for inter-recording invariance with promising results [19]. Here, we hypothesize that an adversarial regularization towards learning subject-invariant representations can shed light on current EEG deep learning studies to develop EEG decoding models that systematically consider the generalizability problem. We propose our adversarial training approach independent of the EEG deep learning architecture. In experimental evaluations, using a publicly available EEG dataset, we demonstrate the impact of adversarial discriminative training on three state-of-the-art neural network architectures for EEG decoding (i.e., EEGNet [15], DeepConvNet and ShallowConvNet [14]). We further employ the layer-wise relevance propagation method [20] for the trained neural networks to investigate the neurophysiological signatures that subject-invariant models exploit. We compare our results with regards to the non-adversarially trained counterpart of each architecture, and finally discuss the benefits offered by adversarial inference to the field of deep learning for EEG.

Contributions of this paper are three-fold: (1) an adversarial inference approach to learn invariant representations for deep learning based EEG decoding models is presented, (2) implementation and evaluations of this approach for subject-invariant discriminative EEG feature learning are performed in cross-subjects model transfer scenarios, and (3) visual demonstrations of the neurophysiological interpretability of invariant representation learning models are revealed.

II. RELATED WORK
A. DEEP LEARNING IN EEG

Over the last two decades, deep neural networks have been widely explored as generic feature extractors for EEG, particularly in the context of developing brain interfaces [2]. A significant collection of work uses convolutional architectures that are capable of exploiting temporal, spectral and spatial structures from input raw EEG. Applications of such models were thoroughly studied for decoding motor imagery [14], [21], [22], visually evoked potentials (VEP), which was first demonstrated with P300 detection on two users’ data [23], steady-state visually evoked potentials [24], as well as for rhythm perception from EEG during auditory stimuli [25]. In other respects, EEG is translated into different network input forms, such as topographical images [26], combinations of different spectral EEG components [16], topology-preserving multi-spectral images (i.e., EEG movies) within recurrent-CNNs [13], or frequency domain representations [27], [28]. Nevertheless, a large portion of existing works were either limited by not being generalizable to different EEG decoding problems, or being offline studies lacking demonstrations of cross-subjects generalization [5].

Recent examples of CNNs in EEG decoding introduce non-task-specific architectures for discriminative feature extraction; specifically DeepConvNet, ShallowConvNet [14], and EEGNet [15]. Further progress on assessing neurophysiological features extracted within the deep learning black-boxes made these tools more interpretable [14], [29], [30]. Yet, most studies rely on the intuition that the deeper and more capable the architecture, learned features would be less sensitive to variations across a large dataset and potentially be transferable across-subjects [13], [16]. With a similar aim in [31], transfer capability of a convolutional autoencoder was assessed by training with cross-subject validation sets, which tends to introduce a model selection bias at early validation stopping and makes the learned models inapplicable for plug-in model transfer. Also recently, across-subjects transfer capabilities of motor imagery [21], as well as VEP [32] decoding CNN models were demonstrated only by fine-tuning global parameters to reduce calibration times. Notably in [16], leave-one-out cross-subject generalizability of the proposed architecture was demonstrated successfully, however relying on the deep capability of the network with no explicit approach towards imposing subject-invariance within the model. In [33] joint adversarial training methods were used to transfer knowledge from large, annotated image databases to learn generalizable EEG feature extractors, while restricting the EEG input representations to match with image dataset CNN architectures. Recently, an end-to-end CNN for cross-subject EEG decoding using a deep domain adaptation approach was presented [34], while assuming availability of target domain data during model training which makes it hardly applicable to real-time brain interface control problems. In this respect, we highlight that existing EEG deep learning methods do not explicitly ensure inferring subject-invariant representations during discriminative model training, which is left to be explored.

B. ADVERSARIAL REPRESENTATION LEARNING

Adversarial representation learning can be viewed as simultaneously learning to predict a dependent variable from a representation, while exploiting an adaptive dependence measure between these two to also learn the representation itself such that this dependence is minimized. The history of adversarial learning methods in data science goes back as far as Schmidhuber’s principle of predictability minimization introduced for unsupervised learning of distributed non-redundant representational units from data [35]. The principle suggests learning an adaptive predictor of each unit that uses the remaining units, while each individual unit trying to minimize its predictability. This eventually enables learning statistically
independent representational units, which still combine to become descriptive. More recently with generative adversarial networks (GAN), a generative model can be learned to synthesize realistic data samples from random noise, while an adversarial classifier has the antagonistic objective of identifying real and generated data samples [36].

Progressive work of our interest focuses on using adversarial training for the latent space, instead of the output space as in GANs, particularly to learn invariant latent representations by disentangling specific attributes (e.g., nuisance variables) from the representation. A significant amount of work tackles this problem from a generative perspective, where variational autoencoders (VAEs) are censored by constraining the encoded latent space to be invariant to specific attributes either with an invariance-enforcing kernel-based penalty term [37], or with adversarial training objectives that exploits a simultaneously learned attribute classifier loss [38]. Similar approaches to invariant representation learning are also proposed with discriminative perspectives tailored to specific prediction tasks, such as learning attribute-invariant fair clusters [39], or jointly training a classifier with an adversarially censored VAE to learn fair classifiers [40].

Considering fully-discriminative approaches that do not require learning a generative decoder counterpart, adversarial discriminative representation learning can be observed as a domain adaptation problem when the nuisance variable is binary. Assuming that the two domains (source and target) are the nuisance variables, domain-invariant predictive representations can be adversarially learned to minimize a measure of domain discrepancy. Most of the existing approaches to this problem in image processing assume target data to be available at training time [41]–[43], which makes them inapplicable to the problem of transferring EEG representations across subjects. From another perspective, recent work studies this as an adversarial training game that aims to maximize task-specific prediction certainty from learned representations, while minimizing the certainty of inferring the nuisance variables causing such domain shift from these representations [17], or classifier outputs [18]. Importantly, these advancements in deep, invariant, and discriminative feature learning were not particularly explored for EEG.

It is important to note that in this work we are only focusing on partially supervised cases where nuisance variables that represent variability across data are specified, while at the other extreme are fully unsupervised methods where deep networks are trained to disentangle factors of variation in data without explicitly specifying the source of variability.

III. METHODS

A. NOTATION AND PROBLEM DESCRIPTION

Let \((X_1, y_1, s_1)\)\(_{i=1}^n\) denote the data set consisting of \(n\) observations coming from a data generation process with \(X \sim p(X | y, s)\), \(y \sim p(y)\), and \(s \sim p(s)\), where \(X_i \in \mathbb{R}^{C \times T}\) is the raw EEG data at trial \(i\) recorded from \(C\) channels for \(T\) discretized time samples, \(y_i \in \{0, 1, \ldots, L - 1\}\) is the corresponding condition (i.e., class) label, and \(s_i \in \{1, 2, \ldots, S\}\) denotes the subject identification (ID) number for the person that the trial EEG data is collected from across \(S\) subjects that our data set is constituted with. Note that for our problem of interest, the underlying but reasonable assumption here is \(s\) and \(y\) being marginally independent.

Given training data, the aim is to learn a discriminative EEG decoder model that predicts \(y\) from observations \(X\). For such a model to be generalizable across subjects, ideally the predictions should be invariant to \(s\), which will be unknown at test time. We regard \(s\) as some nuisance parameter that is involved in the EEG data generation process, and aim to learn a parametric model which can be generalized across subjects and learns features (representations) that are invariant to \(s\). A similar methodology was recently utilized in our previous work for session-to-session feature invariance [19].

B. ADVERSARIAL DISCRIMINATIVE MODEL TRAINING

Given the training data set, we train a deterministic encoder network with parameters \(\theta_e\) to learn representations \(h = f(X; \theta_e)\). Specifications of the encoder network are further discussed in Section IV-B. Obtained representations are used as input separately to both a classifier with parameters \(\theta_c\) to estimate \(y\), as well as an adversary network with parameters \(\theta_a\), which aims to recover the nuisance variable \(s\). Respectively, the classifier and adversary networks are modeling the likelihoods \(q_{\theta_e}(y|h)\) and \(q_{\theta_a}(s|h)\). In order to filter factors of variation caused by \(s\) within \(h\), we propose an adversarial game. The adversary is trained to predict \(s\) by maximizing the likelihood \(q_{\theta_a}(s|h)\), while at the same time, the encoder is trying to conceal information regarding \(s\) that is embedded in \(h\) by minimizing that likelihood, as well as retaining sufficient discriminative information for the classifier to estimate \(y\) by maximizing \(q_{\theta_e}(y|h)\). Overall, we train these networks simultaneously towards the objective:

\[
\hat{\theta}_e, \hat{\theta}_c, \hat{\theta}_a = \arg \min_{\theta_e, \theta_c, \theta_a} \mathcal{L}(\theta_e, \theta_c, \theta_a),
\]

where the loss function is denoted by:

\[
\mathcal{L} = \mathbb{E}_{hq}[- \log q_{\theta_e}(y|h)] + \lambda \mathbb{E}_{hq}s[\log q_{\theta_a}(s|h)],
\]

with \(\theta_e\) represented through \(h = f(X; \theta_e)\), and a higher adversarial regularization weight \(\lambda > 0\) enforcing stronger invariance trading-off with discriminative performance. The optimization algorithm uses stochastic gradient descent (or ascent) alternately for the adversary and the encoder-classifier networks to optimize Eq. (1) (see Algorithm 1). This approach is motivated by the work on adversarially learned invariant representations in discriminative model training [17], [18]. Accordingly, the theoretical foundations on the convergence of such an adversarial game was previously studied in various settings [17], [18], [43]. Note that in Algorithm 1, setting \(\lambda = 0\) would indicate training a regular CNN, whereas \(\lambda < 0\) would correspond to forcing the encoder to exploit subject-variant task-discriminative features, which is not expected to be favorable for transfer learning. An overview of the network is illustrated in Figure 1.
We perform experiments on a publicly available EEG dataset for motor imagery decoding [44]. Particularly, motor imagery based BCI systems rely on detection of evident contralateral desynchronization of oscillatory EEG rhythms over sensorimotor areas following imagination of a movement [4].

A. DATASET DESCRIPTION

The original dataset [44] consisted of single-session data from 52 healthy subjects, however we discarded 4 subjects’ data due to irregular timestamp alignments and unequal number of trials per class. This resulted in a set of 48 subjects’ EEG data for our empirical assessments. During the experiments, subjects were sitting in front of a computer screen and were instructed to perform cue-based tasks while 64-channel EEG [45] were recorded at a sampling rate of 512 Hz. These tasks included movement imagination of the left or right hand during three second trials, for 100 trials per hand in randomized order. This resulted in a total of 200 trials per subject, with an associated binary class label (0 for left, 1 for right hand). The original dataset also included other preliminary cue-based recordings as well, which were however not part of our experimental analyses. Further specifications of the dataset can be accessed from [44].

B. NEURAL NETWORK ARCHITECTURE

Beyond design specifications of the network architecture, naturally, any discriminative representation learning network can be adversarially trained with a same approach. We demonstrate our empirical results using three state-of-the-art CNN models proposed for EEG decoding, namely the EEGNet [15], DeepConvNet and ShallowConvNet [14] architectures. Within the convolutional layers, temporal, spatial, and spatio-temporal convolutions for aggregation of neural features in h are performed. Subsequently, all three architectures have a final dense linear classification layer which we separated from the preceding encoder layers, as the classifier block. This resulted in the complete convolutional architectures except the final dense layer constructing the encoder, whereas the final dense layer constructing the classifier network. Further specifications on how the encoder architectures were implemented can be accessed in Appendix. Parameter choices were based on the original descriptions in the manuscripts, as well as their provided software implementations online [14], [15].

Regarding the classifier and adversary blocks, we simply used the linear classification approach of the networks we inherited. The classifier utilizes h as an input to a fully-connected layer with L softmax units for task discrimination. Similarly for the adversary, h is used as input to a fully-connected layer with S softmax units for subject ID discrimination, to obtain normalized log-probabilities that will be used to calculate the cross-entropy losses in Eq. (2).

C. MODEL TRAINING AND EVALUATION

All raw EEG data was initially resampled to 128 Hz. This was performed both to save computational time, as well as to construct a common network input basis for all three architectures [14], [15]. As the EEG pre-processing steps, we common average referenced each subject’s EEG data, and...
bandpass filtered the signals between 4 and 40 Hz with a causal third order Butterworth filter. We epoched each trial in the [0.5-2.5] seconds of post-cue time interval. No offline channel selection or artifact correction was performed. This resulted in EEG trials with dimensions of 64-channels by 256 time samples as inputs to the networks.

We evaluated adversarial and non-adversarial (regular CNN) training of each encoder network in simulated online decoding studies (i.e., in cross-subjects decoding scenarios with direct transfer of learned models to novel subjects without subject-specific calibration or fine-tuning). We generate the transfer set in 6 folds (i.e., 8 of the 48 subjects were held out in turns), yielding cross-subject predictions for each subject with models that are learned from a separate group of 40 subjects. This 6-fold process was also repeated 10 times by randomly changing the 8-subject transfer set and the remaining 40-subject group folds. In total, this resulted in 10 transfer learning prediction accuracies for every subject in the dataset, with models that are learned from a different (but intersecting) group of 40 subjects. During model learning from the 40 subjects, we generate a training set and a validation set by randomly assigning 20% of the trials (i.e., 40 out of 200) from each of the 40 subjects for the validation set, and the remaining 80% of the trials for the training set. This resulted in 6400 model training set trials, and 1600 trials for the validation sets that are used by the neural network models to monitor losses of the classifier and/or adversary.

D. IMPLEMENTATION
We implemented all models in Tensorflow [46] using the Keras API [47]. Networks were trained with 40 training trials per batch for at most 500 epochs with early stopping based on the classifier loss on the validation set. Specifically, if the validation loss for class prediction did not improve (i.e., reach a new lowest value) for 10 epochs, training was stopped and the model which resulted in the lowest validation loss was saved. Parameter updates were performed once per batch with Adam [48]. For the models described in Section IV-B, and the training approach with the classifier output \(L = 2 \) and adversary output \(S = 40 \) (see Section IV-C), the number of parameters to be learned during training for EEGNet are: 1,872 for encoder, 258 for classifier, 5,160 for adversary, for DeepConvNet are: 172,150 for encoder, 4,802 for classifier, 96,040 for adversary, and for ShallowConvNet are: 103,040 for encoder, 2,402 for classifier, 48,040 for adversary. Our implementations are available at: https://github.com/ozdenizci/AdversarialEEGDecoding.

E. INTERPRETATION OF LEARNED NETWORKS
To explore the neurophysiological signatures that the networks exploit, we employ layer-wise relevance propagation (LRP) [20] as a feature interpretation method which was recently shown as a powerful approach to study interpretability of EEG deep learning models [29]. Specifically, LRP decomposes the network output score into relevances of each unit of the network input (i.e., pixels of the EEG data matrix \(\mathbf{X} \)), according to its contribution to the classification decision. These relevance scores for each pixel of \(\mathbf{X} \) are then visualized as what we denote as a feature relevance map.

Let \(R_i^{(l)} \) denote the relevance of neuron \(i \) in layer \(l \). To investigate classification decisions, firstly, the neuron with the highest score at the network output layer prior to softmax activation is assigned a relevance value that is equal to its score, while all the other output layer neurons are assigned a relevance value of zero. Subsequently, layer by layer, relevances of each neuron at an upper layer \(l + 1 \) are redistributed to the neurons at the adjacent lower layer \(l \) through a backward pass until the input layer \(l = 1 \) is reached, according to the following rule:

\[
R_i^{(l)} = \frac{z_{ji}}{\sum_j z_{ji} R_j^{(l+1)}},
\]

where \(z_{ji} \) is the weighted activation of a neuron \(i \) at layer \(l \) onto neuron \(j \) at layer \(l + 1 \) during the forward pass after training. In our implementations, we utilize a slight variant of the LRP framework called \(\delta \)-LRP from the original work [20], which only differs with an additional term in the denominator to preserve numerical stability.

To investigate the feature relevances for classifier decisions of cross-subjects transferred models, the backward pass was initiated from the classifier output neuron with the highest score out of the \(L \) neurons, prior to softmax activation. Similarly, to demonstrate how the networks can exploit user-specific EEG patterns into the highest score out of the \(S \) output neurons of the adversary for user identification, we also generated feature relevance maps for the adversary decisions on the validation set after completion of model training.

V. RESULTS
A. CHOOSING THE ADVERSARIAL REGULARIZATION WEIGHT PARAMETER
An intuitive way to choose the adversarial regularization weight \(\lambda \) is by cross-validation (parameter sweep). We train models with various choices of \(\lambda > 0 \), and favor decreases in adversary accuracy with increasing \(\lambda \), while maintaining a similar classifier accuracy on the validation sets with respect to not using an adversary (\(\lambda = 0 \)). Figure 2 demonstrates these changes by varying \(\lambda \) for each architecture. In this context, we define the adversary accuracy as the percentage of correctly predicted trials in subject identification by the adversary network (i.e., it is favored if this value is small), whereas the classifier accuracy is defined as the percentage of correctly predicted trials in class label discrimination by the classifier network (i.e., it is favored if this value is high).

For the non-adversarial models (\(\lambda = 0 \)) we trained the adversary network alongside the encoder-classifier with no adversarial loss feedback, and assessed the amount of subject-discriminative information (i.e., leakage) in the encoded representations. We observe that regular CNNs can indeed learn features that exploit subject-specific information, leading to a 48.5% average adversary accuracy to
discriminate 40 subjects with EEGNet, 31.4% with DeepConvNet and 62.6% with ShallowConvNet. Increasing λ censors the encoder as expected and suppresses adversary accuracies. However a very strong λ can force the encoder to lose task-discriminative information, leading to decreasing classifier accuracies on the within-subject validation sets as observed in Figure 2. Hence we determine an operating λ range where the classifier does not start to perform very poorly (i.e., similar performance as $\lambda = 0$) and adversary accuracy is low. Specifically, we proceed by choosing $\lambda = 0.03$ for EEGNet, and $\lambda = 0.05$ for DeepConvNet as well as ShallowConvNet, which are indicated with bold legend texts in Figure 2.

B. CROSS-SUBJECT DECODING MODEL TRANSFER

We investigate cross-subjects generalization of adversarially learned invariant representations ($\lambda > 0$), in comparison to non-adversarial CNN classifiers ($\lambda = 0$). Comparisons between the performances of adversarial versus non-adversarial learning methods were evaluated by repeated-measures Analysis of Variance (ANOVA) statistical tests for each architecture. We model the classification accuracies as the dependent variables obtained from the same subject group, and the training approach (i.e., adversarial or non-adversarial) as the categorical independent variable. We use a repeated-measures test design since we make 10 different cross-subject model based predictions for each subject, hence accommodate for within-subject performance variabilities with the same method by considering the repetitions.

Figure 3 presents the differences in accuracies obtained with adversarial versus non-adversarial methods per subject, averaged across repetitions. In some cases, adversarial training yields more than 4% increases in cross-subject model transfer accuracies (e.g., 14% with one subject for DeepConvNet), indicating potential benefits of invariant representations for some subjects. Repeated-measures ANOVA tests indicated a significant performance increase with adversarial training for DeepConvNet ($p = 0.003$) and ShallowConvNet ($p = 0.02$), rejecting the null hypothesis that average accuracies across repetitions and subjects are equal. However we did not observe significant differences across the population for EEGNet ($p = 0.59$). We consider this to be potentially due to EEGNet being a more optimized architecture than DeepConvNet or ShallowConvNet in terms of the number of parameters to be learned and manipulated. Most importantly, generalization performances do not degrade significantly by adversarial regularization of deep EEG feature extractors.

C. SINGLE-TRIAL FEATURE INTERPRETATIONS

Figure 4 illustrates feature relevance maps for classifier decisions in three arbitrary single-trial cases, when learned models are transferred for cross-subject prediction. For all relevance maps, green color indicates a zero relevance score whereas an intensity of red indicates a positive, and an intensity of blue indicates a negative score. To exemplify from Figure 4(a) for a trial of subject 8 where $y_{true} = 1$ (right hand), the regular EEGNet architecture performs a wrong prediction of $\widehat{y} = 0$ with a confidence of $p_0 = 0.53$. However,
FIGURE 4. Feature relevance map illustrations of non-adversarial versus adversarial models for class prediction in cross-subject model transfer scenarios. Different encoder architectures are demonstrated in (a), (b) or (c) during three arbitrary trials from different subjects. Specifications of the subject ID, trial number, and the true class label of the trials are provided in the subcaptions. Image matrices demonstrate the relevance maps for each EEG channel and time sample. Top image matrices relate to the non-adversarial models ($\lambda = 0$), whereas the below image matrices relate to their adversarially trained counterparts. Black dotted vertical lines on these image matrices indicate arbitrary time points for when the associated relevance scalp maps are also demonstrated where indicated with an arrow. Scalp maps above the top image matrix, and under the below image matrix depict the time-averaged trial relevance maps. Predicted class labels in each case are indicated with y being equal to 0 (class left) or 1 (class right), together with the confidence of predictions (i.e., probability value of p_0 for left or p_1 for right).

The adversarially regularized EEGNet ($\lambda = 0.03$) performs a correct prediction of $y = 1$ with probability $p_1 = 0.61$, through the demonstrated feature relevance maps. An artifact-free classification of motor imagery is ideally expected to be performed via EEG evidences from motor cortical regions (i.e., electrodes C3, C4). However the regular EEGNet is entangling classifier predictions with class-irrelevant EEG artifacts from occipital electrodes (i.e., Iz) as observed with strong relevance scores on the time-averaged relevance topography. In this example, the adversarially learned model was able to censor this information from decision making as observed with the EEGNet ($\lambda = 0.03$) time-averaged relevance topography. Same differences can be also tracked at different time-points of the raw feature relevance maps as shown in Figure 4(a). Particular training set subjects who demonstrate artifactual activities across trials can influence deep learned models for decision making in this manner. This example illustrates how adversarial regularization can overcome these cases to perform robust decisions. Similar behaviors with adversarial regularization are further presented in Figure 4(b) for DeepConvNet, and in Figure 4(c) for ShallowConvNet, where eye blinks and jaw/muscle movement related artifacts (e.g., electrodes F7, AF8) are influencing incorrect decisions by regular CNNs.

Table 1 illustrates feature relevance scalp maps for cross-subject classifier decisions, averaged across time for each trial and across correctly predicted trials per class. For each architecture, a different subject’s average relevance scalp maps for left and right class predictions are presented. For example, in the non-adversarial ShallowConvNet class left topography for subject 13, artifactual occipital patterns are observed. These were discarded in the adversarial counterpart below, leading to an ideal correct decision making with the invariant model. Similar behaviors are shown for class left in EEGNet (for subject 4), as well as in DeepConvNet (for subject 3) with jaw/muscle movement related artifacts that were unattended by adversarial training. Note that in the DeepConvNet example, relevance scores over the motor cortical areas are also strengthened with the adversarial models.
TABLE 1. Average feature relevance scalp map illustrations for cross-subject model transfer. Topographies are obtained by first averaging raw relevance maps across time for each trial, and then averaging across correctly predicted trials per class. Each architecture is demonstrated with a different subject. Non-adversarial models indicate $\lambda = 0$. Adversarially trained models utilize their optimal λ choices (i.e., EEGNet $\lambda = 0.03$, DeepConvNet $\lambda = 0.05$, ShallowConvNet $\lambda = 0.05$).

Non-Adversarial	Adversarial				
EEGNet (for subject 4)	**DeepConvNet (for subject 3)**	**ShallowConvNet (for subject 13)**			
Left	Right	Left	Right	Left	Right
![EEGNet scalp map](image1)	![DeepConvNet scalp map](image2)	![ShallowConvNet scalp map](image3)			
![EEGNet scalp map](image4)	![DeepConvNet scalp map](image5)	![ShallowConvNet scalp map](image6)			
![EEGNet scalp map](image7)	![DeepConvNet scalp map](image8)	![ShallowConvNet scalp map](image9)			
![EEGNet scalp map](image10)	![DeepConvNet scalp map](image11)	![ShallowConvNet scalp map](image12)			
![EEGNet scalp map](image13)	![DeepConvNet scalp map](image14)	![ShallowConvNet scalp map](image15)			
![EEGNet scalp map](image16)	![DeepConvNet scalp map](image17)	![ShallowConvNet scalp map](image18)			

FIGURE 5. Feature relevance map illustrations of non-adversarial versus adversarial models for user identification (i.e., adversary decisions) on samples from the validation sets, after model training. Different encoder architectures are demonstrated in (a), (b) or (c) during three arbitrary validation set trials from different subjects. Specifications of the true subject label (s_{true}) and true class label (y_{true}) of the trials are provided in the subcaptions. Image matrices demonstrate the relevance maps for each EEG channel and time sample. Top image matrices relate to the non-adversarial models, whereas the below image matrices relate to their adversarially trained counterparts. Scalp maps above the top image matrix, and under the below image matrix on the left sides depict the time-averaged trial relevance maps for the adversary. The scalp maps on the right sides inside the dashed boxes indicate the time-averaged relevance scalp maps for the classifier decision of the same trial. Predicted labels in each case are indicated with $s \in \{1, 2, \ldots, 40\}$ or $y \in \{0, 1\}$, together with the confidence of predictions (i.e., probability value of p_s or p_y for classifier predictions, and $p_\hat{s}$ for adversary predictions).

Taking a step back from cross-subject model transfer learning, Figure 5 illustrates feature relevance maps for adversary decisions in three arbitrary validation set trials after completion of model trainings. To exemplify from Figure 5(b) for a trial of subject 6 where $y_{\text{true}} = 1$ (right hand imagery), the regular DeepConvNet architecture is able to discriminate the subject for this trial ($\hat{s} = 6$) with a very high confidence across 40 subjects ($\hat{p}_6 = 0.88$), mainly relying on the eye
blink patterns of this subject as observed by the time-averaged relevance scalp map. A further look into relevance scalp maps for the classifier decisions (illustrated in the dashed boxes alongside) also reveals an incorrect prediction of the class label as $\hat{y} = 0$ even though the model weakly exploits motor cortical patterns. Nevertheless, the adversarial counterpart successfully misclassifies the subject of the trial ($\hat{y} = 34$) with a close to chance level probability ($\hat{p}_{34} = 0.11$). As the encoder was trained to censor user-specific information, the adversary decision relies on any arbitrary EEG pattern (e.g., motor cortical rhythms in this case) rather than the eye blink artifacts. Accordingly, classifier prediction is also successfully performed with high confidence for the same validation set trial ($p_{1} = 0.78$). In Figure 5(a) and (c), similar behaviors are presented when the adversarial models perform fooled, incorrect subject classifications with arbitrary EEG patterns and low confidences, whereas the regular CNNs were successfully learning user-discriminative EEG patterns that are encoded in the deep learned representations. These illustrations further demonstrate how classifier predictions were corrected with the invariant models.

VI. DISCUSSION

In this work we propose a step towards invariance of deep EEG feature extractors in a systemic way using adversarial training methods within a discriminative framework. To the contrary of the widely relied on assumption that deep EEG neural network architectures internally generalize across-subjects, we argue that an adversarial regularization approach towards learning subject-invariant representations is likely to extend EEG deep learning approaches. Empirical results show that explicitly learning invariant EEG representations from a particular subject group can indeed be useful to generalize predictive models to novel subjects. Neurophysiological interpretations of the exploited EEG patterns further demonstrate the usefulness of our approach in cases where artifactual training data can affect model performances.

As one concerning observation, cross-subject decoding accuracies did not consistently show very high increases with all networks. We highlight this to be affected by various factors such as the network architecture, as well as the size and recording quality of the dataset to be used for training the model. As demonstrated, potentially due to being a more optimized architecture in terms of the number of parameters to be learned and manipulated, EEGNet did not significantly benefit in transfer accuracies. However the performances did not degrade by adversarial regularization, further showing benefits when deeper architectures were considered. Hence we argue that our approach provides a robust basis on invariant feature learning, and can particularly thrive when little or artifactual training data is under consideration. More importantly, feature relevance interpretations consistently demonstrated significant advantages in certain single-trial cases, which strongly supports our hypothesis on the need to systematically impose invariance constraints during conventional EEG deep learning model training.

One other limitation of our approach is related to the selection of the model learning subject group, which can lead to variations in accuracies for cross-subject model transfer. Although adversarial learning addresses potential founders regarding subject-specific variations with respect to the rest of the model learning subject group, variability in transfer accuracies may still be caused due to a specific set of model learning subjects yielding good or bad discriminative performance for the decoding problem. Hence, one important aspect that still remains to be addressed is active selection of subjects from a pool with better discriminative task performance for transferable model learning. On another note, even though we make online decoding evaluations, our current approach requires temporal segmenting (e.g., trials), which does not extend to asynchronous EEG decoding yet.

Many research studies have investigated calibration-less EEG classification models to develop simple BCI systems for communication [49]–[52]. At one end of calibration-free EEG classification, without considering an attempt for invariant representation learning, there exists several work on on-the-fly calibration of adaptive BCI classifiers [53]. Most common approaches include adjusting classifier parameters throughout BCI system use [54], [55], where models are initialized either by pre-trained classifiers on a subject pool [50], or simply initialized randomly [51], [52]. In terms of initial- izing such classifier models, our approach has the capability of constructing a subject-invariant baseline as well. To further extend this idea, besides a discriminative approach, ongoing work explores EEG data augmentation using GANs [56]–[61]. Such data augmentation would provide significant insights for model training with subject-invariant augmented EEG data, which is basically a generative approach to our problem of interest. Recently, we approached this invariant generative model aspect in our preliminary work for transfer learning [62], which is further currently being explored in an invariant EEG data augmentation context.

It is important to highlight that rather than proposing a new, alternative deep learning architecture for EEG feature extraction, we present a framework that can naturally be used to regularize any existing discriminative architecture to learn nuisance-invariant representations. Generally, regularization of neural networks is performed with dropout layers during model training [63]. In the context of this paper, we also exploit our knowledge on the source of intended invariance by adversarial censoring, and empirically demonstrate its benefits in learning invariant EEG representations. Since we were not interested in comparison of different deep learning models, or comparison of deep learning methods with respect to conventional EEG feature extraction protocols (e.g., common spatial patterns [64], [65]), we restricted our analyses to the comparison of adversarially trained versus regularly trained CNNs, importantly with neurophysiological interpretations of these models. In the light of the presented empirical results, we believe our approach would provide a more robust feature-invariance basis for existing deep learning models that are proposed for EEG-based decoding tasks.
TABLE 2. EEGNet feature encoder implementation.

Layer	Filters x (Kernel Size)	Output Dim.	Options	Number of Parameters
Input EEG	(1, 64, 256)			
Conv2D	8 x (1, 32)	(8, 64, 256)	no bias, padding = same	256
BatchNorm		(8, 64, 256)		16
Depthwise Conv2D	2 x (64, 1)	(16, 1, 256)	no bias, max norm = 1	1024
BatchNorm + ELU		(16, 1, 256)		32
Mean Pooling	(1, 4)	(16, 1, 64)		
Dropout		(16, 1, 64)	p = 0.25	
Separable Conv2D	16 x (1, 16)	(16, 1, 64)	no bias, padding = same	512
BatchNorm + ELU		(16, 1, 64)		32
Mean Pooling	(1, 8)	(16, 1, 8)		
Dropout		(16, 1, 8)	p = 0.25	
Features (h)		(1, 128)	flatten	

TABLE 3. DeepConvNet feature encoder implementation.

Layer	Filters x (Kernel Size)	Output Dim.	Options	Number of Parameters
Input EEG	(1, 64, 256)			
Conv2D	25 x (1, 5)	(25, 64, 252)	no bias	150
Conv2D	25 x (64, 1)	(25, 1, 252)		40,000
BatchNorm + ELU		(25, 1, 252)	epsilon = 10^-5, momentum = 0.1	50
Max Pooling	(1, 2)	(25, 1, 126)	strides = (1, 2)	
Dropout		(25, 1, 126)	p = 0.5	
Conv2D	50 x (1, 5)	(50, 1, 122)	no bias	6,250
BatchNorm + ELU		(50, 1, 122)	epsilon = 10^-5, momentum = 0.1	100
Max Pooling	(1, 2)	(50, 1, 61)	strides = (1, 2)	
Dropout		(50, 1, 61)	p = 0.5	
Conv2D	100 x (1, 5)	(100, 1, 57)	no bias	25,000
BatchNorm + ELU		(100, 1, 57)	epsilon = 10^-5, momentum = 0.1	200
Max Pooling	(1, 2)	(100, 1, 28)	strides = (1, 2)	
Dropout		(100, 1, 28)	p = 0.5	
Conv2D	200 x (1, 5)	(200, 1, 24)	no bias	100,000
BatchNorm + ELU		(200, 1, 24)	epsilon = 10^-5, momentum = 0.1	400
Max Pooling	(1, 2)	(200, 1, 12)	strides = (1, 2)	
Dropout		(200, 1, 12)	p = 0.5	
Features (h)		(1, 2400)	flatten	

TABLE 4. ShallowConvNet feature encoder implementation.

Layer	Filters x (Kernel Size)	Output Dim.	Options	Number of Parameters
Input EEG	(1, 64, 256)			
Conv2D	40 x (1, 13)	(40, 64, 244)	no bias	560
Conv2D	40 x (64, 1)	(40, 1, 244)		102,400
BatchNorm		(40, 1, 244)	epsilon = 10^-5, momentum = 0.1	80
Square: f(x) = x^2		(40, 1, 244)		
Mean Pooling	(1, 35)	(40, 1, 30)	strides = (1, 7)	
Log: f(x) = log(x)		(40, 1, 30)		
Dropout		(40, 1, 30)	p = 0.5	
Features (h)		(1, 1200)	flatten	

APPENDIX
ENCODER ARCHITECTURES

Tables 2, 3 and 4 demonstrate the parameter specifications of the EEGNet [15], DeepConvNet and ShallowConvNet [14] architectures based on the original descriptions in the manuscripts, as well as their provided software implementations online. Encoder network inputs were defined as 64 channel EEG recordings with a sampling rate of 128 Hz for two seconds (i.e., 256 time samples). Only for the DeepConvNet and ShallowConvNet architectures, since the original parameter choices were developed for input EEG signals with a sampling rate of 250 Hz, all temporal convolution and pooling kernel sizes were taken as the half of the values used in [14], in consistency with the re-implementations by [15].
[49] H. Cecotti, “A self-paced and calibration-less SSVEP-based brain-computer interface speller,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18, no. 2, pp. 127–133, Apr. 2010.

[50] S. Lu, C. Guan, and H. Zhang, “Unsupervised brain computer interface based on intersubject information and online adaptation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 17, no. 2, pp. 135–145, Apr. 2009.

[51] M. Spüler, W. Rosenstiel, and M. Bogdan, “Online adaptation of a c-VEP brain-computer-interface (BCI) based on error-related potentials and unsupervised learning,” PLoS ONE, vol. 7, no. 12, Dec. 2012, Art. no. e51077.

[52] P.-J. Kindermanns, M. Schreuder, B. Schrauwen, K.-R. Müller, and M. Tangermann, “True zero-training brain-computer interfacing—An online study,” PLoS ONE, vol. 9, no. 7, Jul. 2014, Art. no. e102504.

[53] J. R. Millan, “On the need for on-line learning in brain-computer interfaces,” in Proc. IEEE Int. Joint Conf. Neural Netw., vol. 4, Feb. 2004, pp. 2877–2882.

[54] F. Gembler, P. Stawicki, and I. Volosyak, “Autonomous parameter adjustment for SSVEP-based BCIs with a novel BCI wizard,” Frontiers Neurosci., vol. 9, p. 474, Dec. 2015.

[55] X. Song and S.-C. Yoon, “Improving brain–computer interface classification using adaptive common spatial patterns,” Comput. Biol. Med., vol. 61, pp. 150–160, Jun. 2015.

[56] I. A. Corley and Y. Huang, “Deep EEG super-resolution: Upsampling EEG spatial resolution with generative adversarial networks,” in Proc. IEEE EMBS Int. Conf. Biomed. Health Inform. (BHI), Mar. 2018, pp. 100–103.

[57] Y. Luo and B.-L. Lu, “EEG data augmentation for emotion recognition using a conditional Wasserstein GAN,” in Proc. 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2018, pp. 2535–2538.

[58] S. M. Abdelfattah, G. M. Abdelrahman, and M. Wang, “Augmenting the size of EEG datasets using generative adversarial networks,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2018, pp. 1–6.

[59] N. K. N. Aznan, A. Atapour-Abarghouei, S. Bonner, J. D. Connolly, N. Al Moubayed, and T. P. Breckon, “Simulating brain signals: Creating synthetic EEG data via neural-based generative models for improved SSVEP classification,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019, pp. 1–8.

[60] W. Ko, E. Jeon, J. Lee, and H.-I. Suk. “Semi-supervised deep adversarial learning for brain-computer interface,” in Proc. 7th Int. Winter Conf. Brain-Comput. Interface (BCI), Feb. 2019, pp. 1–4.

[61] S. Hwang, K. Hong, G. Son, and H. Byun, “EZSL-GAN: EEG-based zero-shot learning approach using a generative adversarial network,” in Proc. 7th Int. Winter Conf. Brain-Comput. Interface (BCI), 2019, pp. 1–4.

[62] O. Özdenizci, Y. Wang, T. Koike-Akino, and D. Erdogmus, “Transfer learning in brain-computer interfaces with adversarial variational auto-encoders,” in Proc. 9th Int. IEEE/EMBS Conf. Neural Eng. (NER), Mar. 2019, pp. 207–210.

[63] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[64] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter bank common spatial pattern (FB CSP) in brain-computer interface,” in Proc. IEEE Int. Joint Conf. Neural Netw., Jun. 2008, pp. 2390–2397.

[65] B. Blankertz, R. Tomioka, S. Lennm, M. Kawabane, and K.-R. Müller, “Optimizing spatial filters for robust EEG single-trial analysis,” IEEE Signal Process. Mag., vol. 25, no. 1, pp. 41–56, Dec. 2008.

YE WANG (Senior Member, IEEE) received the B.S. degree in electrical and computer engineering from the Worcester Polytechnic Institute, Worcester, MA, USA, in 2005, and the M.S. and Ph.D. degrees in electrical and computer engineering from Boston University, Boston, MA, in 2009 and 2011, respectively. In 2012, he joined Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, where he had also previously completed an internship, in 2010. His broad research interests are information theory, machine learning, signal processing, communications, and data privacy/security.

TOSHIKAI KOIKE-AKINO (Senior Member, IEEE) received the B.S. degree in electrical and electronics engineering and the M.S. and Ph.D. degrees in communications and computer engineering from Kyoto University, Kyoto, Japan, in 2002, 2003, and 2005, respectively. From 2006 to 2010, he was a Postdoctoral Researcher with Harvard University, Cambridge, MA, USA, and joined Mitsubishi Electric Research Laboratories (MERL), Cambridge, in 2010. His research interest includes signal processing for data communications and sensing. He received the YRP Encouragement Award 2005, the 21st TELECOM System Technology Award, the 2008 Ericsson Young Scientist Award, the IEEE GLOBECOM’08 Best Paper Award in Wireless Communications Symposium, the 24th TELECOM System Technology Encouragement Award, and the IEEE GLOBECOM’09 Best Paper Award in Wireless Communications Symposium.

DENIZ ERDOĞMUS (Senior Member, IEEE) received the B.S. degree in electrical engineering and mathematics and the M.S. degree in electrical engineering from Middle East Technical University, Ankara, Turkey, in 1997 and 1999, respectively, and the Ph.D. degree in electrical and computer engineering from the University of Florida, Gainesville, FL, USA, in 2002. He held a postdoctoral position at the University of Florida, until 2004. He was with the computer science and electrical engineering, and the biomedical engineering departments with the Oregon Health and Science University, Portland, OR, USA, until 2008. Since 2008, he has been with the Electrical and Computer Engineering Department, Northeastern University, Boston, MA, USA. His research focuses on statistical signal processing and machine learning with applications to contextual signal/image/data analysis with applications in cyber-human systems, including brain–computer interfaces and technologies that collaboratively improve human performance. He has served as an Associate Editor and a Program Committee Member for a number of journals and conferences in these areas, including the IEEE SIGNAL PROCESSING LETTERS, the IEEE TRANSACTIONS ON SIGNAL PROCESSING, the IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, and the IEEE TRANSACTIONS ON NEURAL NETWORKS.