New Sasaki–Einstein 5-manifolds

Dasol Jeong1,2 | In-Kyun Kim3 | Jihun Park1,2 | Joonyeong Won4

1Department of Mathematics, POSTECH, Nam-gu, Pohang, Gyeongbuk, South Korea
2Center for Geometry and Physics, Institute for Basic Science, Nam-gu, Pohang, Gyeongbuk, South Korea
3Department of Mathematics, Yonsei University, Seodaemun-gu, Seoul, South Korea
4Department of Mathematics, Ewha Womans University, Seodaemun-gu, Seoul, South Korea

Correspondence
Joonyeong Won, Department of Mathematics, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, South Korea.
Email: leonwon@kias.re.kr

Funding information
Institute for Basic Science, Grant/Award Number: IBS-R003-D1; NRF, Grant/Award Numbers: NRF-2020R1A2C4002510, NRF-2020R1A2C1A01008018

Abstract
By estimating the δ-invariants of certain log del Pezzo surfaces, we prove that closed simply connected 5-manifolds $2(S^2 \times S^3) \# nM_2$ allow Sasaki-Einstein structures, where M_2 is the closed simply connected 5-manifold with $H_2(M_2, \mathbb{Z}) = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, and nM_2 is the n-fold connected sum of M_2, and $2(S^2 \times S^3)$ is the twofold connected sum of $S^2 \times S^3$.

MSC 2020
53C25, 32Q20, 14J45 (primary)

1 | INTRODUCTION

A Riemannian manifold (M, g) is called Sasakian if the cone metric $r^2 g + dr^2$ defines a Kähler metric on $M \times \mathbb{R}^+$. If the metric g satisfies the Einstein condition, that is, $\text{Ric}_g = \lambda g$ for some constant λ, then the metric g is called Einstein. A significant number of closed simply connected Sasaki–Einstein manifolds, in particular 5-manifolds, have been discovered based on the method that was introduced by Kobayashi \cite{21} and developed by Boyer, Galicki, and Kollár \cite{8, 9, 23}. The upshot of their method is briefly presented in \cite{24} as follows. A quasi-regular Sasakian structure on a manifold L can be written as the unit circle subbundle of a holomorphic Seifert \mathbb{C}^*-bundle over a complex algebraic orbifold (S, Δ), where $\Delta = \sum (1 - \frac{1}{m_i})D_i$, functions of m_i are positive...
integers, and functions of D_i are distinct irreducible divisors. A simply connected Sasakian manifold L is Einstein if and only if $-(K_S + \Delta)$ is ample, the first Chern class of $c_1(L/S)$ is a rational multiple of $-(K_S + \Delta)$, and there is an orbifold Kähler–Einstein metric on the orbifold (S, Δ).

Links of quasi-homogeneous hypersurface singularities are Seifert circle bundles over the corresponding projective hypersurfaces in weighted projective spaces. For a brief explanation, we consider a quasi-smooth hypersurface X defined by a quasi-homogeneous polynomial $F(z_0, z_1, \ldots, z_n)$ in variables z_0, \ldots, z_n with weights $w(z_i) = a_i$ in a weighted projective space $\mathbb{P}(a_0, a_1, \ldots, a_n)$. Denote by $\deg_w(F)$ the degree of $F(z_0, z_1, \ldots, z_n)$ with respect to the weights $w(z_i) = a_i$. The equation $F(z_0, z_1, \ldots, z_n) = 0$ also defines a hypersurface \tilde{X} in \mathbb{C}^{n+1} that is smooth outside the origin. The link of X is a smooth compact manifold of real dimension $2n - 1$ defined by the intersection

$$L_X = S^{2n+1} \cap \tilde{X},$$

where S^{2n+1} is the unit sphere centered at the origin in \mathbb{C}^{n+1}. Note that it is simply connected if $n \geq 3$ [29, Theorem 5.2].

Suppose that $m := \gcd(a_1, \ldots, a_n) > 1$ and $\gcd(a_0, a_1, \ldots, a_{i-1}, \hat{a}_i, a_{i+1}, \ldots, a_n) = 1$ for each $i = 1, \ldots, n$. Set $b_0 = a_0$ and $b_i = \frac{a_i}{m}$ for $i = 1, \ldots, n$. Then, the weighted projective space $\mathbb{P}(a_0, a_1, \ldots, a_n)$ is not well formed, while the weighted projective space $\mathbb{P}(b_0, b_1, \ldots, b_n)$ is well formed (see [19, Definition 5.1]). There is a quasi-homogeneous polynomial $G(x_0, \ldots, x_n)$ in variables x_0, \ldots, x_n with weights $w(x_i) = b_i$ such that $F(z_0, z_1, \ldots, z_n) = G(z_0^m, z_1, \ldots, z_n)$. The equation $G(x_0, \ldots, x_n) = 0$ defines a quasi-smooth hypersurface Y in $\mathbb{P}(b_0, b_1, \ldots, b_n)$. We suppose that $\deg_w(F) - \sum a_i < 0$ and Y is well formed in $\mathbb{P}(b_0, b_1, \ldots, b_n)$ (see [19, Definition 6.9]). Denote by D the divisor on Y cut by $x_0 = 0$. We may consider the log pair $(Y, \frac{m-1}{m}D)$ as a Fano orbifold. The method by Kobayashi has evolved into the following assertion through the works of Boyer, Galicki, and Kollár.

Theorem 1.1 [8, Theorem 2.1; 21, Theorem 5]. If $(Y, \frac{m-1}{m}D)$ allows an orbifold Kähler–Einstein metric, then there is a Sasaki–Einstein metric on the link L_X of X.

Closed simply connected 5-manifolds are completely classified by Barden and Smale [3], [32]. In particular, Smale has classified all the closed simply connected spin 5-manifolds [32], which are called Smale 5-manifolds. For a positive integer m, up to diffeomorphisms, there is a unique closed simply connected spin 5-manifold M_m with $H_2(M_m, \mathbb{Z}) = \mathbb{Z}/m\mathbb{Z} \oplus \mathbb{Z}/m\mathbb{Z}$. Furthermore, a closed simply connected spin 5-manifold M is of the form

$$M = kM_\infty \# M_{m_1} \# \ldots \# M_{m_r},$$

where kM_∞ is the k-fold connected sum of $S^2 \times S^3$ for a non-negative integer k and m_i is a positive integer greater than 1 with m_i dividing m_{i+1}.

Many efforts have been made to classify all the closed simply connected Sasaki–Einstein 5-manifolds. To be precise, for each Smale 5-manifold (every Sasaki–Einstein manifolds are spin), we want to determine whether it has a quasi-regular Sasaki–Einstein structure or not. Such efforts and their results are summarized in [20]. Toward complete classification, three conjectures were proposed in [20]. One of them is as follows.

Conjecture 1.2. For each integer $k \leq 8$ and $n \geq 2$, the Smale 5-manifold $kM_\infty \# nM_2$ admits a Sasaki–Einstein metric.
The conjecture has been verified for $k = 0, 1$ so far [23], [31]. Also, $2M_\infty \# nM_2$ is proven to allow a Sasakian metric of positive Ricci curvature [10, Theorem B]. In this article, we prove the conjecture for $k = 2$.

Main Theorem. For every positive integer n, the Smale manifold $2M_\infty \# nM_2$ allows a Sasakian–Einstein metric.

Proof. Due to Theorem 1.1, it is enough to show that there are Kähler–Einstein del Pezzo orbifold surfaces whose links are $2M_\infty \# nM_2$. Such del Pezzo orbifold surfaces are provided by Theorem 4.1 in Section 4. □

2 KÄHLER–EINSTEIN METRIC AND K-STABILITY

The theory on Kähler–Einstein metrics and K-stability of Fano varieties and the theory on valuative criterions for K-stability have developed dramatically for the last ten years.

In 2016 Fujita and Odaka introduced a new invariant of a Fano variety, so-called δ-invariant, which has evolved into a criterion for K-stability through the work of Blum and Jonsson. The δ-invariant measures how singular the average divisors of sections that form bases for plurianticanonical linear systems are, using their log canonical thresholds.

Let X be a projective \mathbb{Q}-factorial normal variety and Ω be a \mathbb{Q}-divisor on X such that the log pair (X, Ω) has at worst Kawamata log terminal singularities. We suppose that (X, Ω) is a log \mathbb{Q}-Fano variety, that is, the divisor $-(K_X + \Omega)$ is ample.

Definition 2.1. Let m be a positive integer such that $|-m(K_X + \Omega)|$ is non-empty. Set $\ell_m = h^0(X, \mathcal{O}_X(-m(K_X + \Omega)))$. For a section s in $H^0(X, \mathcal{O}_X(-m(K_X + \Omega)))$, we denote the effective divisor of the section s by $D(s)$. If ℓ_m sections s_1, \ldots, s_{ℓ_m} form a basis of the space $H^0(X, \mathcal{O}_X(-m(K_X + \Omega)))$, then the anticanonical \mathbb{Q}-divisor

$$D := \frac{1}{\ell_m} \sum_{i=1}^{\ell_m} \frac{1}{m} D(s_i)$$

is said to be of m-basis type. We set

$$\delta_m(X, \Omega) = \sup \left\{ \lambda \in \mathbb{Q} \mid \text{the log pair } (X, \Omega + \lambda D) \text{ is log canonical for every effective } \mathbb{Q}\text{-divisor } D \text{ of } m\text{-basis type} \right\}.$$

The δ-invariant of (X, Ω) is defined by the number

$$\delta(X, \Omega) = \limsup_m \delta_m(X, \Omega).$$

To study the δ-invariant from local viewpoints, we set

$$\delta_{Z,m}(X, \Omega) = \sup \left\{ \lambda \in \mathbb{Q} \mid \text{the log pair } (X, \Omega + \lambda D) \text{ is log canonical along } Z \text{ for every effective } \mathbb{Q}\text{-divisor } D \text{ of } m\text{-basis type} \right\}.$$
for a closed subvariety Z of X. The local δ-invariant of (X, Ω) along Z is defined by the number

$$\delta_Z(X, \Omega) = \limsup_m \delta_{Z,m}(X, \Omega).$$

Using the δ-invariant, Blum–Jonsson ([7]) and Fujita–Odaka ([18]) set up a criterion for K-(semi)stability in an algebro-geometric way. Due to the result [28, Theorem 1.5], the criterion reads as follows.

Theorem 2.2. A log \mathbb{Q}-Fano variety (X, Ω) is K-stable (respectively, K-semistable) if and only if $\delta(X, \Omega) > 1$ (respectively, ≥ 1).

The bridge between K-polystability and existence of Kähler–Einstein metrics has been completely established for log Fano pairs [4, 5, 13–16, 26–28, 33, 34].

Theorem 2.3. A Fano orbifold (X, Ω) is K-polystable if and only if it allows an orbifold Kähler–Einstein metric.

Since K-stability implies K-polystability by definition, a K-stable Fano orbifold admits an orbifold Kähler-Einstein metric.

3 TOOLS FOR δ-INARIANT

Let S be a surface with at most cyclic quotient singularities and D an effective \mathbb{Q}-divisor on the surface S. Also let p be a point of S.

Lemma 3.1. Suppose that p is a smooth point of S. If the log pair (S, D) is not log canonical at p, then $\text{mult}_p(D) > 1$.

Proof. See [25, Proposition 9.5.13], for instance. \(\square\)

Let C be an integral curve on S that passes through the point p. Suppose that C is not contained in the support of the divisor D. If p is a smooth point of the surface S and the log pair (S, D) is not log canonical at p, then it follows from Lemma 3.1 that $D \cdot C > 1$.

Lemma 3.2. Suppose that p is a cyclic quotient singularity of type $\frac{1}{n}(a, b)$, where a and b are coprime positive integers that are also coprime to n. If the log pair (S, D) is not log canonical at p and C is not contained in the support of the divisor D, then

$$D \cdot C > \frac{1}{n}.$$

Proof. This follows from [22, Proposition 3.16], Lemma 3.1, and [11, Lemma 2.2]. \(\square\)

In general, the curve C may be contained in the support of the divisor D. In this case, we write

$$D = rC + \Omega,$$
where \(r \) is a positive rational number and \(\Omega \) is an effective \(\mathbb{Q} \)-divisor on \(S \) whose support does not contain the curve \(C \). We suppose that \((S, C)\) is purely log terminal around \(p \).

Lemma 3.3. Suppose that \(r \leq 1 \) and the log pair \((S, D)\) is not log canonical at \(p \).

1. If \(p \) is a smooth point, then
 \[C \cdot \Omega \geq (C \cdot \Omega)_p > 1, \]
 where \((C \cdot \Omega)_p\) is the local intersection number of \(C \) and \(\Omega \) at \(p \).

2. If \(p \) is a cyclic quotient singularity of type \(\frac{1}{n}(a, b) \), then
 \[C \cdot \Omega > \frac{1}{n}. \]

Proof. See [11, Lemma 2.5]. \(\square\)

We now let \((S, \Omega)\) be a log del Pezzo surface that admits only Kawamata log terminal singularities. It follows from [6, Corollary 1.3.2] that a log del Pezzo surface is a Mori dream space. Let \(C \) be a prime divisor over \(S \) and let \(\pi : \tilde{S} \to S \) be a birational morphism such that \(C \) is a divisor on \(\tilde{S} \).

We first set
\[
S_{S, \Omega}(C) = \frac{1}{(-(K_S + \Omega))^2} \int_0^\infty \text{vol} (\pi^*(-(K_S + \Omega)) - tC) dt.
\] (3.4)

Taken the definition of the basis-type divisors in Definition 2.1 into consideration, it is natural to expect that a divisor of \(m \)-basis type cannot carry a prime divisor with big multiplicity for a sufficiently large \(m \). Indeed, the following bound is originally given in [18, Lemma 2.2].

Lemma 3.5. For a given real number \(\epsilon > 0 \), there is an integer \(\mu \) such that whenever \(m > \mu \), we have
\[
\text{ord}_C(\pi^*(D)) \leq S_{S, \Omega}(C) + \epsilon
\]
for every ample \(\mathbb{Q} \)-divisor \(D \) of \(m \)-basis type with respect to \((S, \Omega)\).

Proof. See [12, Theorem 2.9]. \(\square\)

The following describe how to estimate \(\delta(S, \Omega) \) from local viewpoints, which are developed in [1] and simplified in [2] and [17].

Suppose that \((S, \Omega + C)\) is purely log terminal. Let \(\tau \) be the supremum of the positive real numbers \(t \) such that \(-(K_S + \Omega) - tC\) is big. For a real number \(u \in (0, \tau) \), we write the Zariski decomposition of \(-(K_S + \Omega) - uC\) as
\[
-(K_S + \Omega) - uC \equiv P(u) + N(u),
\]
where \(P(u) \) and \(N(u) \) are the positive and the negative parts, respectively. Let \(p \) be a point on \(C \). Define

\[
h(u) = (P(u) \cdot C) \cdot \text{ord}_p \left(N(u) \big|_C \right) + \int_0^\infty \text{vol} \left(P(u) \big|_C - vp \right) dv, \tag{3.6}
\]

and then put

\[
S(W^C_{\star, \star}; p) = \frac{2}{(-(K_S + \Omega))^2} \int_0^\tau h(u) du. \tag{3.7}
\]

Recall that we have the following adjunction formula:

\[
(K_S + \Omega + C) \big|_C = K_C + \Delta,
\]

where \(\Delta \) is the different for \(K_S + \Omega + C \). Then, the log discrepancy of the log pair \((C, \Delta)\) along the divisor \(p \) is

\[
A_{C, \Delta}(p) = 1 - \text{ord}_p(\Delta).
\]

If \(p \) is a quotient singular point of type \(\frac{1}{n}(a, b) \), then

\[
A_{C, \Delta}(p) = \frac{1}{n} - (\Omega \cdot C)_p. \tag{3.8}
\]

Theorem 3.9. The local \(\delta \)-invariant of \((S, \Omega)\) at the point \(p \) satisfies the inequality

\[
\delta_p(S, \Omega) \geq \min \left\{ \frac{1}{S_{S, \Omega}(C)}, \frac{A_{C, \Delta}(p)}{S(W^C_{\star, \star}; p)} \right\}.
\]

Proof. This immediately follows from [17, Theorem 4.8 (2) and Corollary 4.9] because the point \(p \) is the only prime divisor over the curve \(C \) with the center at \(p \) in [17, Definition 3.11]. \(\square \)

4 SASAKI–EINSTEIN 5-MANIFOLDS \(2M_\infty \# nM_2\)

For each integer \(n \geq 2 \), let \(\hat{S}_n \) be a quasi-smooth hypersurface of degree \(4(2n + 1) \) in \(\mathbb{P}(2, 4n, 4n + 1) \). This hypersurface appears in [10] to give a Sasakian metric of positive Ricci curvature to \(2M_\infty \# nM_2 \). By using appropriate coordinate changes, we may assume that the surface is defined by

\[
w^2x + yz(x - y^n) + zx\hat{A}_{4n+2}(x, y) + x\hat{A}_{8n+2}(x, y) = 0,
\]

where \(x, y, z, w \) are quasi-homogeneous coordinates with \(\text{wt}(x) = 2, \text{wt}(y) = 4, \text{wt}(z) = 4n, \text{wt}(w) = 4n + 1 \), and \(\hat{A}_{4n+2}(x, y), \hat{A}_{8n+2}(x, y) \) are quasi-homogeneous polynomials of degrees \(4n + 2 \) and \(8n + 2 \), respectively, in \(x, y \).
We use the same notation x, y, z, w for homogeneous coordinates of the weighted projective space $\mathbb{P}(1, 2, 2n, 4n + 1)$ with $wt(x) = 1$, $wt(y) = 2$, $wt(z) = 2n$, and $wt(w) = 4n + 1$. Let S_n be the quasi-smooth hypersurface of degree $2(2n + 1)$ in $\mathbb{P}(1, 2, 2n, 4n + 1)$ defined by

$$wx + yz(z - y^n) + xA_{2n+1}(x, y) + xA_{4n+1}(x, y) = 0,$$

where $A_{2n+1}(x, y)$ and $A_{4n+1}(x, y)$ are the quasi-homogeneous polynomials of degrees $2n + 1$ and $4n + 1$ defined by $\hat{A}_{4n+2}(x, y)$ and $\hat{A}_{8n+2}(x, y)$, respectively, with weights $wt(x) = 1$ and $wt(y) = 2$. We denote by W the irreducible divisor on S_n cut by $w = 0$. As an orbifold, S_n can be regarded as the log del Pezzo surface $(S_n, \frac{1}{2}W)$.

We consider the link of S_n. It follows from [30, Corollary] that the link of S_n has the second Betti number 2. The curve W is isomorphic to a smooth curve of degree $2n + 1$ in $\mathbb{P}(1, 1, n)$, and hence, its genus is n. It then follows from [23, Theorem 5.7] that the torsion part of the second homology group of the link is $(\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z})^{\otimes n}$. Consequently, the link of S_n is diffeomorphic to $2M_\infty \# nM_2$ by [32, Theorem].

Therefore, Theorem 1.1 implies that the following statement guarantees existence of a Sasaki–Einstein metric on $2M_\infty \# nM_2$. In other words, Main Theorem immediately follows from the theorem below.

Theorem 4.1. For $n \geq 2$, $(S_n, \frac{1}{2}W)$ allows an orbifold Kähler–Einstein metric.

We remark here that $2M_\infty \# M_2$, $2M_\infty \# 3M_2$, and $2M_\infty \# 4M_2$ are already shown to admit Sasaki–Einstein metrics [10, Theorem A; 20, Corollaries 2.5 and 2.7].

5 PROOF OF THEOREM 4.1

Due to Theorems 2.2 and 2.3, in order to prove Theorem 4.1, it is enough to show that

$$\delta \left(S_n, \frac{1}{2}W \right) > 1.$$

In this section, we achieve this inequality by verifying

$$\delta_p \left(S_n, \frac{1}{2}W \right) \geq \frac{20n + 5}{20n + 4}$$

for each point p in S_n.

Since the hypersurface S_n is quasi-smooth, it has only singularities inherited from the singularities of the ambient space $\mathbb{P}(1, 2, 2n, 4n + 1)$. The surface passes through exactly four distinct singular points $O_w = [0 : 0 : 0 : 1]$, $O_z = [0 : 0 : 1 : 0]$, $O_0 = [0 : 1 : 0 : 0]$, $O_1 = [0 : 1 : 1 : 0]$ of $\mathbb{P}(1, 2, 2n, 4n + 1)$. The point $O_w = [0 : 0 : 0 : 1]$, where $\mathbb{P}(1, 2, 2n, 4n + 1)$ has a quotient singularity of type $\frac{1}{4n+1}(1, 2n)$, yields a cyclic quotient singularity of type $\frac{1}{4n+1}(1, n)$ on S_n. Similarly, the surface S_n also gains cyclic quotient singular points at $O_z = [0 : 0 : 1 : 0]$, $O_0 = [0 : 1 : 0 : 0]$, and $O_1 = [0 : 1 : 1 : 0]$ of types $\frac{1}{2n}(1, 1), \frac{1}{2}(1, 1),$ and $\frac{1}{2}(1, 1)$, respectively.

Denote by C_x the divisor on S_n cut by $x = 0$. The divisor C_x consists of three components. To be precise,

$$C_x = L_{xy} + R_0 + R_1,$$
where L_{xy} is defined by $x = y = 0$, R_0 by $x = z = 0$, and R_1 by $x = z - y^n = 0$. Each pair of these three curves meet only at O_w.

Their intersection numbers on S_n are as follows:

\[
L^2_{xy} = -\frac{4n - 1}{2n(4n + 1)}, \quad R_0^2 = R_1^2 = -\frac{2n + 1}{2(4n + 1)},
\]

\[
L_{xy} \cdot R_0 = L_{xy} \cdot R_1 = \frac{1}{4n + 1}, \quad R_0 \cdot R_1 = \frac{n}{4n + 1}.
\] (5.1)

The divisor $-(K_{S_n} + \frac{1}{2} W)$ is equivalent to $\frac{3}{2} C_x$ and its self-intersection number is

\[
\left(K_{S_n} + \frac{1}{2} W \right)^2 = \frac{9(2n + 1)}{8n(4n + 1)}.
\]

We also obtain

\[
-(K_{S_n} + \frac{1}{2} W) \cdot L_{xy} = \frac{3}{2}(L_{xy} + R_0 + R_1) \cdot L_{xy} = \frac{3}{4(4n + 1)},
\]

\[
-(K_{S_n} + \frac{1}{2} W) \cdot R_i = \frac{3}{2}(L_{xy} + R_0 + R_1) \cdot R_i = \frac{3}{4(4n + 1)},
\]

where $i = 1, 2$, from (5.1).

The irreducible curves L_{xy}, R_0, R_1 belong to the boundary of the pseudoeffective cone of S_n since they are of negative self-intersection. For $t > \frac{3}{2}$, the divisor

\[
\frac{3}{2} C_x - tL_{xy} = \left(\frac{3}{2} - t \right)L_{xy} + \frac{3}{2} R_0 + \frac{3}{2} R_1
\]

is not pseudoeffective. Set

\[
P_L(t) := \begin{cases}
\frac{3}{2} C_x - tL_{xy} & \text{for } 0 \leq t \leq \frac{3}{4}, \\
\frac{3}{2} C_x - tL_{xy} - \frac{4t - 3}{2}(R_0 + R_1) & \text{for } \frac{3}{4} \leq t \leq \frac{3}{2},
\end{cases}
\]

\[
N_L(t) := \begin{cases}
0 & \text{for } 0 \leq t \leq \frac{3}{4}, \\
\frac{4t - 3}{2}(R_0 + R_1) & \text{for } \frac{3}{4} \leq t \leq \frac{3}{2}.
\end{cases}
\] (5.2)
For each \(i = 0, 1 \),
\[
\left(\frac{3}{2} C_x - tL_{xy} \right) \cdot R_i = \frac{3 - 4t}{4(4n + 1)}.
\]

This implies that the divisor \(P_L(t) \) is nef for \(0 \leq t \leq \frac{3}{4} \). Furthermore, for \(\frac{3}{4} \leq t \leq \frac{3}{2} \), \(P_L(t) \) is a nef divisor with \(P_L(t) \cdot R_0 = P_L(t) \cdot R_1 = 0 \) and \(N_L(t) \) is negative definite. Consequently, the Zariski decomposition of \(\frac{3}{2} C_x - tL_{xy} \) is given by
\[
\frac{3}{2} C_x - tL_{xy} \equiv P_L(t) + N_L(t)
\]
for \(0 \leq t \leq \frac{3}{2} \). We then see that the volume of \(\frac{3}{2} C_x - tL_{xy} \) is
\[
\text{vol} \left(\frac{3}{2} C_x - tL_{xy} \right) = \begin{cases}
- \frac{4(4n - 1)t^2 + 12t - 9(2n + 1)}{8n(4n + 1)} & \text{for } 0 \leq t \leq \frac{3}{4}, \\
\frac{(3 - 2t)^2}{8n} & \text{for } \frac{3}{4} \leq t \leq \frac{3}{2}, \\
0 & \text{for } t \geq \frac{3}{2},
\end{cases}
\]
and the function in (3.4) is given by
\[
S_{S_n, \frac{1}{2}W}(L_{xy}) = \frac{3n + 1}{2(2n + 1)}.
\]

Moreover, note that
\[
\text{ord}_p \left(N_L(t) \big|_{L_{xy}} \right) = 0,
\]
for \(p \in L_{xy} \setminus \{O_w\} \). Then, the function in (3.6) is given by
\[
h_{p,L}(t) = \int_0^\infty \text{vol} \left(P_L(t) \big|_{L_{xy}} - vp \right) dv
= \frac{1}{2} \left(P_L(t) \cdot L_{xy} \right)^2
= \begin{cases}
\frac{1}{32n^2(4n + 1)^2} (2(4n - 1)t + 3)^2 & \text{for } 0 \leq t \leq \frac{3}{4}, \\
\frac{1}{32n^2} (-2t + 3)^2 & \text{for } \frac{3}{4} \leq t \leq \frac{3}{2},
\end{cases}
\]
and the value in (3.7) for $p \in L_{xy} \setminus \{O_w\}$ is given by

$$S(W^c_*; p) = \frac{16n(4n+1)}{9(2n+1)} \int_0^{\frac{3}{2}} h_{p,t}(t) dt$$

$$= \frac{4n + 1}{18n(2n+1)} \left\{ \int_0^{\frac{3}{2}} \frac{1}{(4n+1)^2} (2(4n-1)t + 3)^2 dt + \int_{\frac{3}{2}}^3 (3 - 2t)^2 dt \right\}$$

$$= \frac{4n^2 + 3n + 1}{4n(2n+1)(4n+1)}.$$

(5.5)

We now use indices i, j such that $\{i, j\} = \{0, 1\}$. For $t > \frac{3}{2}$, the divisor

$$\frac{3}{2} C_x - t R_i = \frac{3}{2} L_{xy} + \left(\frac{3}{2} - t \right) R_i + \frac{3}{2} R_j$$

is not pseudoeffective. Put

$$P_{R_i}(t) := \begin{cases} \frac{3}{2} C_x - t R_i & \text{for } 0 \leq t \leq \frac{3}{4n}, \\ \frac{3}{2} C_x - t R_i - \frac{4nt - 3}{2(2n-1)} (L_{xy} + R_j) & \text{for } \frac{3}{4n} \leq t \leq \frac{3}{2}, \end{cases}$$

(5.6)

$$N_{R_i}(t) := \begin{cases} 0 & \text{for } 0 \leq t \leq \frac{3}{4n}, \\ \frac{4nt - 3}{2(2n-1)} (L_{xy} + R_j) & \text{for } \frac{3}{4n} \leq t \leq \frac{3}{2}. \end{cases}$$

We have

$$\left(\frac{3}{2} C_x - t R_i \right) \cdot L_{xy} = \frac{3 - 4nt}{4n(4n+1)}, \quad \left(\frac{3}{2} C_x - t R_i \right) \cdot R_j = \frac{3 - 4nt}{4(4n+1)},$$

and hence we see that $P_{R_i}(t)$ is nef for $0 \leq t \leq \frac{3}{4n}$. The divisor $P_{R_i}(t)$ is a nef divisor with $P_{R_i}(t) \cdot L_{xy} = P_{R_i}(t) \cdot R_j = 0$ and $N_{R_i}(t)$ is negative definite for $\frac{3}{4n} \leq t \leq \frac{3}{2}$. Therefore, the Zariski decomposition of $\frac{3}{2} C_x - t R_i$ is given by (5.6).

Consequently, the volume is given by

\[
\text{vol} \left(\frac{3}{2} C_x - t R_i \right) = \begin{cases} \frac{-4n(2n+1)t^2 + 12nt - 9(2n+1)}{8n(4n+1)} & \text{for } 0 \leq t \leq \frac{3}{4n}, \\ \frac{(3 - 2t)^2}{8(2n-1)} & \text{for } \frac{3}{4n} \leq t \leq \frac{3}{2}, \\ 0 & \text{for } t \geq \frac{3}{2}, \end{cases}
\]

(5.7)

and the function in (3.4) is given by

$$S_{S_{\frac{1}{2}} W}(R_i) = \frac{4n^2 + 3n + 1}{4n(2n+1)}.$$

(5.8)
For a point $p \in R_i \setminus \{O_w\}$, note that

$$\text{ord}_p \left(N_{R_i}(t) |_{R_i} \right) = 0$$

on $0 \leq t \leq \frac{3}{2}$. Thus, for $p \in R_i \setminus \{O_w\}$ the function in (3.6) is given by

$$h_{p,R_i}(t) = \int_0^\infty \text{vol} \left(P_{R_i}(t) |_{R_i} - v p \right) dv$$

$$= \frac{1}{2} (P_{R_i}(t) \cdot R_i)^2$$

$$= \begin{cases} \frac{1}{2(4n+1)^2} \left(\left(\frac{1}{2} + n \right) t + \frac{3}{4} \right)^2 & \text{for } 0 \leq t \leq \frac{3}{4n} \\ \frac{1}{32(2n-1)^2} (-2t + 3)^2 & \text{for } \frac{3}{4n} \leq t \leq \frac{3}{2} \end{cases},$$

and the value in (3.7) is given by

$$S(W_{R_i}^{R_i}; p) = \frac{16(4n+1)}{9(2n+1)} \int_0^{\frac{3}{4}} h_{p,R_i}(t) dt$$

$$= \frac{16n(4n+1)}{9(2n+1)} \left\{ \int_0^{\frac{3}{4n}} \frac{1}{(2(4n+1))^2} \left(\left(\frac{1}{2} + n \right) t + \frac{3}{4} \right)^2 dt \\ + \int_{\frac{3}{4n}}^{\frac{3}{2}} \frac{1}{32(2n-1)^2} (-2t + 3)^2 dt \right\}$$

$$= \frac{8n^2 + 7n + 1}{8n(2n+1)(4n+1)}.$$

Let C_γ be the curve on S_n cut by $y = \gamma x^2$ for a constant γ. It consists of two irreducible curves. One is L_{xy} and the other is the curve R defined by

$$y - \gamma x^2 = w + \gamma x z (z - \gamma^n x^{2n}) + z A_{2n+1}(x, \gamma x^2) + A_{4n+1}(x, \gamma x^2) = 0.$$

Their intersection numbers are as follows:

$$R^2 = \frac{1}{2n}, \quad L_{xy} \cdot R = \frac{1}{2n}.$$

From these intersection numbers we obtain

$$-\left(K_{S_n} + \frac{1}{2} W \right) \cdot R = \frac{3}{4} C_\gamma \cdot R = \frac{3}{4} (L_{xy} + R) \cdot R = \frac{3}{4n}.$$

Also we see that W and R meets at O_z with local intersection number $\frac{1}{2n}$ and

$$W \cdot R = 2 + \frac{1}{2n}.$$
Besides the singular point O_2, the curve R meets W either transversally at two distinct smooth points or tangentially at a single smooth point with local intersection number 2.

Since L_{xy} is of negative self-intersection, $\frac{3}{4}C_γ - tR$ is not pseudoeffective for $t > \frac{3}{4}$. Put

$$P_R(t) := \begin{cases}
\frac{3}{4}C_γ - tR & \text{for } 0 \leq t \leq \frac{3}{2(4n + 1)}, \\
\frac{3}{4}C_γ - tR - \frac{2(4n + 1)t - 3}{2(4n - 1)}L_{xy} & \text{for } \frac{3}{2(4n + 1)} \leq t \leq \frac{3}{4},
\end{cases}$$

(5.10)

and

$$N_R(t) := \begin{cases}
0 & \text{for } 0 \leq t \leq \frac{3}{2(4n + 1)}, \\
\frac{2(4n + 1)t - 3}{2(4n - 1)}L_{xy} & \text{for } \frac{3}{2(4n + 1)} \leq t \leq \frac{3}{4},
\end{cases}$$

Then, we have

$$P_R(t) \cdot L_{xy} = \begin{cases}
\frac{1}{2n} \left(\frac{3}{2(4n + 1)} - t \right) & \text{for } 0 \leq t \leq \frac{3}{2(4n + 1)}, \\
0 & \text{for } \frac{3}{2(4n + 1)} \leq t \leq \frac{3}{4},
\end{cases}$$

and hence we see that $P_R(t)$ is nef for $0 \leq t \leq \frac{3}{4}$. Consequently, the Zariski decomposition of $\frac{3}{4}C_γ - tR$ is given by (5.10) for $0 \leq t \leq \frac{3}{4}$. Thus, the volume is given by

$$\text{vol} \left(\frac{3}{2}C_γ - tR \right) = \begin{cases}
\frac{4(4n + 1)t^2 - 12(4n + 1)t + 9(2n + 1)}{8n(4n + 1)} & \text{for } 0 \leq t \leq \frac{3}{2(4n + 1)}, \\
\frac{(3 - 4t)^2}{4(4n - 1)} & \text{for } \frac{3}{2(4n + 1)} \leq t \leq \frac{3}{4}, \\
0 & \text{for } t \geq \frac{3}{4},
\end{cases}$$

(5.11)

and the value in (3.4) is given by

$$S_{S_n, \frac{1}{2}W}(R) = \frac{4n^2 + 3n + 1}{2(2n + 1)(4n + 1)}.$$

(5.12)

We now consider an effective \mathbb{Q}-divisor D numerically equivalent to $-(K_{S_n} + \frac{1}{2}W)$. We may write

$$D = aW + bL_{xy} + b_0R_0 + b_1R_1 + \Delta,$$

(5.13)

where a, b, b_i are non-negative rational numbers and Δ is an effective \mathbb{Q}-divisor whose support contains none of the curves W, L_{xy}, R_0, R_1. Also we may write

$$D = aW + bL_{xy} + cR + \Omega,$$

(5.14)

where Ω is an effective \mathbb{Q}-divisor whose support contains none of W, L_{xy}, and R.

Lemma 5.15. For a sufficiently large integer m, suppose that D is of m-basis type with respect to the log del Pezzo surface $(S_n, \frac{1}{2}W)$. Then

$$a < \frac{1}{8n}; \quad b < \frac{3n + 2}{2(2n + 1)}; \quad b_0, b_1 < \frac{8n^2 + 6n + 3}{8n(2n + 1)}; \quad c < \frac{3}{10}.$$

Proof. The first inequality immediately follows from

$$\frac{1}{D^2} \int_0^\infty \text{vol}(D - tW)dt = \int_0^{\frac{3}{2(4n+1)}} \left(1 - \frac{2(4n+1)}{3}t\right)^2 dt = \frac{1}{2(4n+1)} < \frac{1}{8n}$$

via Lemma 3.5.

Also, it follows from (5.4), (5.8), (5.12), and Lemma 3.5 that

$$b \leq S_{S_n, \frac{1}{2}W}(L_{xy}) + \varepsilon = \frac{3n + 1}{2(2n + 1)} + \varepsilon < \frac{3n + 2}{2(2n + 1)},$$

$$b_i \leq S_{S_n, \frac{1}{2}W}(R_i) + \varepsilon = \frac{4n^2 + 3n + 1}{4n(2n + 1)} + \varepsilon < \frac{8n^2 + 6n + 3}{8n(2n + 1)},$$

$$c \leq S_{S_n, \frac{1}{2}W}(R) + \varepsilon = \frac{4n^2 + 3n + 1}{2(2n + 1)(4n + 1)} + \varepsilon < \frac{3}{10},$$

where ε is a sufficiently small positive rational number. \hfill \Box

From now on, we put $\lambda = \frac{20n+5}{20n+4}$.

Theorem 5.16. For a smooth point p,

$$\delta_p(S_n, \frac{1}{2}W) \geq \lambda.$$

Proof. With a sufficiently large positive integer m, let D be a Q-divisor of m-basis type with respect to the log del Pezzo surface $(S_n, \frac{1}{2}W)$. It is enough to show that the log pair

$$(S_n, \frac{1}{2}W + \lambda D)$$

is log canonical on the smooth locus of S_n.

Suppose that the log pair is not log canonical at a smooth point p.

We write the divisor D as in (5.13), that is,

$$D = aW + bL_{xy} + b_0R_0 + b_1R_1 + \Delta,$$

where a, b, and b_i are non-negative rational numbers and Δ is an effective Q-divisor whose support contains none of the curves W, L_{xy}, R_0, R_1. Lemma 5.15 shows that

$$b < \frac{4}{5}; \quad b_0, b_1 < \frac{3}{5}.$$

Suppose that the point p lies on L_{xy}. Since $\lambda b \leq 1$ and $p \notin W \cup R_0 \cup R_1$, the log pair

$$(S_n, L_{xy} + \lambda \Delta)$$
is not log canonical at p. We then obtain a contradiction from Lemma 3.3 and the inequality

$$\Delta \cdot L_{xy} = (D - aW - bL_{xy} - b_0R_0 - b_1R_1) \cdot L_{xy} \leq (D - bL_{xy}) \cdot L_{xy} = \frac{3 + 2b(4n - 1)}{4n(4n + 1)} < \frac{1}{\lambda}.$$

We now suppose that the point p lies on R_i. Since $\lambda b_i \leq 1$ and $p \not\in L_{xy} \cup W \cup R_j$, where $i \neq j$, the log pair

$$(S_n, R_i + \lambda \Delta)$$

is not log canonical at p. This also yields an absurd inequality

$$\Delta \cdot R_i = (D - aW - bL_{xy} - b_0R_0 - b_1R_1) \cdot R_i \leq (D \cdot R_i - R_i^2) = \frac{4n + 5}{4(4n + 1)} < \frac{1}{\lambda}.$$

Therefore, the point p must be located outside the curves C_x.

Let C be a curve in the pencil $|\mathcal{O}_{S_n}(2)|$ that passes through the point p. Since the curve C is cut by $y = \gamma x^2$ for some constant γ, it consists of two irreducible curves L_{xy} and R. As in (5.14), we now may write

$$D = aW + bL_{xy} + cR + \Omega,$$

where Ω is an effective \mathbb{Q}-divisor whose support contains none of W, L_{xy}, R. Lemmas 5.15 implies that

$$a < \frac{1}{8n}; \quad b < \frac{4}{5}; \quad c < \frac{3}{10}.$$

The log pair

$$(S_n, \left(\frac{1}{2} + \lambda a\right)W + \lambda bL_{xy} + \lambda cR + \lambda \Omega)$$

is not log canonical at p.

Suppose that $p \not\in W$. Since $\lambda c \leq 1$, the log pair

$$(S_n, R + \lambda \Omega)$$

is not log canonical at p either. Lemma 3.3 then implies an absurd inequality

$$\frac{1}{\lambda} < \Omega \cdot R = (D - aW - bL_{xy} - cR) \cdot R \leq D \cdot R = \frac{3}{4n}.$$

This means that the point p must belong to W. Then the log pair

$$(S_n, \left(\frac{1}{2} + \lambda a\right)W + R + \lambda \Omega)$$

is not log canonical at p.

The curve R meets W at p either transversally or tangentially. When they meet at p tangentially, their local intersection number at p is 2.
We first consider the case when the curve R meets W at p transversally. In this case, we can easily obtain a contradiction,

$$1 < \left(\left(\frac{1}{2} + \lambda a \right) W + \lambda \Omega \right) \cdot R$$

$$\leq \left(\frac{1}{2} + \lambda a \right) + \lambda \Omega \cdot R$$

$$= \left(\frac{1}{2} + \lambda a \right) + \lambda(D - aW - bL_{xy} - cR) \cdot R$$

$$\leq \frac{1}{2} + \lambda D \cdot R = \frac{1}{2} + \lambda \frac{3}{4n} < 1$$

from Lemma 3.3. Therefore, the curve R meets W at p with local intersection number 2. Note that

$$\operatorname{mult}_p(\Omega) \leq \Omega \cdot R \leq \frac{3}{4n}.$$

Let $\phi : \tilde{S}_n \to S_n$ be the blowup at p and E be its exceptional curve. Then

$$\phi^* \left(K_{\tilde{S}_n} + \left(\frac{1}{2} + \lambda a \right) W + \lambda bL_{xy} + \lambda cR + \lambda \Omega \right)$$

$$= K_{\tilde{S}_n} + \left(\frac{1}{2} + \lambda a \right) \tilde{W} + \lambda b\tilde{L}_{xy} + \lambda c\tilde{R} + \lambda \tilde{\Omega} + dE,$$

where \tilde{W}, \tilde{L}_{xy}, \tilde{R}, and $\tilde{\Omega}$ are the proper transforms of W, L_{xy}, R, and Ω, respectively. Here $d = \lambda(a + c) + \lambda \operatorname{mult}_p(\Omega) - \frac{1}{2}$. Since $d \leq 1$ and $\lambda \operatorname{mult}_p(\Omega) \leq 1$, the log pair

$$\left(\tilde{S}_n, \left(\frac{1}{2} + \lambda a \right) \tilde{W} + \lambda b\tilde{L}_{xy} + \lambda c\tilde{R} + \lambda \tilde{\Omega} + dE \right)$$

is not log canonical at the point q where E, \tilde{R}, and \tilde{W} meet. Let $\psi : \tilde{S}_n \to \tilde{S}_n$ be the blowup at the point q and let F be the exceptional curve of ψ. Denote the proper transforms of \tilde{W}, \tilde{L}_{xy}, \tilde{R}, $\tilde{\Omega}$, and E by \tilde{W}, \tilde{L}_{xy}, \tilde{R}, $\tilde{\Omega}$, and \tilde{E}, respectively. Then

$$\psi^* \left(K_{\tilde{S}_n} + \left(\frac{1}{2} + \lambda a \right) \tilde{W} + \lambda b\tilde{L}_{xy} + \lambda c\tilde{R} + \lambda \tilde{\Omega} + dE \right)$$

$$= K_{\tilde{S}_n} + \left(\frac{1}{2} + \lambda a \right) \tilde{W} + \lambda b\tilde{L}_{xy} + \lambda c\tilde{R} + \lambda \tilde{\Omega} + d\tilde{E} + eF,$$

where $e = \lambda(a + c) + d + \lambda \operatorname{mult}_q(\tilde{\Omega}) - \frac{1}{2}$.

Since

$$e = 2\lambda(a + c) + \lambda \left(\operatorname{mult}_p(\Omega) + \operatorname{mult}_q(\tilde{\Omega}) \right) - 1 \leq 2\lambda(a + c + \operatorname{mult}_p(\Omega)) - 1 \leq 1,$$

the log pair

$$\left(\tilde{S}_n, \left(\frac{1}{2} + \lambda a \right) \tilde{W} + \lambda b\tilde{L}_{xy} + \lambda c\tilde{R} + \lambda \tilde{\Omega} + d\tilde{E} + F \right)$$
is not log canonical at a point on F. Note that the curves W, R, and E meet F transversally at distinct points. However, the inequalities

$$\lambda \Omega \cdot F = \lambda \text{mult}_q(\Omega) \leq \lambda \text{mult}_p(\Omega) \leq \frac{3\lambda}{4n} < 1,$$

$$\left(\frac{1}{2} + \lambda a\right) + \lambda \Omega \cdot F \leq \left(\frac{1}{2} + \lambda a\right) + \frac{3\lambda}{4n} < 1,$$

$$\lambda c + \lambda \Omega \cdot F \leq \lambda c + \frac{3\lambda}{4n} < 1,$$

$$d + \lambda \Omega \cdot F = \lambda (a + c) + 2\lambda \text{mult}_p(\Omega) - \frac{1}{2} < 1$$

imply that the log pair above is log canonical along the curve F by Lemma 3.3. This is a contradiction. Consequently, the log pair $(S_n, \frac{1}{2}W + \lambda D)$ must be log canonical in the smooth locus of S_n.

Remark 5.17. Another way to verify Theorem 5.16 is to apply a general version of Theorem 3.9 as in the proof of Theorem 5.18 below. We, however, use a direct method that is a bit simpler and demonstrate an instructive and basic approach to estimations of δ-invariants.

Theorem 5.18. For singular points $p = O_2$, O_0, and O_1,

$$\delta_p\left(S_n, \frac{1}{2}W\right) \geq \lambda.$$

Proof. For the singularity O_2, we obtain the log discrepancy

$$A_{L_{xy}L}(O_2) = 1 - \text{ord}_{O_2}(\Delta_L) = \frac{1}{4n}$$

from the adjunction formula

$$\left(K_{S_n} + \frac{1}{2}W + L_{xy}\right)_{L_{xy}} = K_{L_{xy}} + \Delta_L.$$

Then, (5.4), (5.5), and Theorem 3.9 imply that

$$\delta_{O_2}\left(S_n, \frac{1}{2}W\right) \geq \min \left\{ \frac{2(2n+1)}{3n+1}, \frac{(2n+1)(4n+1)}{4n^2+3n+1} \right\} > \lambda.$$

Similarly, for the singularity O_1, we obtain the log discrepancies

$$A_{R_i\Lambda_i}(O_1) = 1 - \text{ord}_{O_1}(\Lambda_i) = \frac{1}{4}$$

from the adjunction formula

$$\left(K_{S_n} + \frac{1}{2}W + R_i\right)_{R_i} = K_{R_i} + \Lambda_i.$$
Theorem 3.9 with (5.8) and (5.9) then yields
\[\delta_{O_i} \left(S_n, \frac{1}{2} W \right) \geq \min \left\{ \frac{4n(2n+1)}{4n^2 + 3n + 1}, \frac{2n(2n+1)(4n+1)}{8n^2 + 7n + 1} \right\} > \lambda. \]

Theorem 5.19. For the singular point \(O_w \),
\[\delta_{O_w} \left(S_n, \frac{1}{2} W \right) \geq \lambda. \]

Proof. Let \(D \) be a \(\mathbb{Q} \)-divisor of \(m \)-basis type with respect to the log del Pezzo surface \((S_n, \frac{1}{2} W) \) for a sufficiently large positive integer \(m \). It is enough to show that the log pair
\[\left(S_n, \frac{1}{2} W + \lambda D \right) \]
is log canonical at \(O_w \). Since the point \(O_w \) is away from the curve \(W \), we will prove that \((S_n, \lambda D) \) is log canonical at \(O_w \).

Suppose that \((S_n, \lambda D) \) is not log canonical at \(O_w \). As (5.13), we write
\[D = b L_{xy} + b_0 R_0 + b_1 R_1 + \Lambda, \]
where \(b \) and \(b_i \) are non-negative rational numbers and \(\Lambda \) is an effective \(\mathbb{Q} \)-divisor whose support contains none of the curves \(L_{xy}, R_0, R_1 \). By Lemma 5.15,
\[b < \frac{3n + 2}{2(2n + 1)}; \quad b_0, b_1 < \frac{8n^2 + 6n + 3}{8n(2n + 1)}. \]

Let \(\phi: \hat{S}_n \to S_n \) be the weighted blowup at \(O_w \) with weights \((1, n) \) and \(F \) be its exceptional curve. Then
\[K_{\hat{S}_n} = \phi^*(K_{S_n}) - \frac{3n}{4n + 1} F. \]
Denote the proper transforms of \(L_{xy}, R_0, R_1 \), and \(\Lambda \) by \(\hat{L}_{xy}, \hat{R}_0, \hat{R}_1 \), and \(\hat{\Lambda} \), respectively.

The exceptional curve \(F \) contains one singular point of \(\hat{S}_n \), where \(F \) and \(\hat{L}_{xy} \) intersect. It is a cyclic quotient singularity of type \(\frac{1}{n}(-1, 1) \).

We have
\[\hat{L}_{xy} = \phi^*(L_{xy}) - \frac{1}{4n + 1} F, \quad \hat{R}_i = \phi^*(R_i) - \frac{n}{4n + 1} F, \quad \hat{\Lambda} = \phi^*(\Lambda) - \frac{\mu}{4n + 1} F, \]
where \(\mu \) is a non-negative rational number, and hence
\[K_{\hat{S}_n} + \lambda (b \hat{L}_{xy} + b_0 \hat{R}_0 + b_1 \hat{R}_1 + \hat{\Lambda}) + \left(\frac{3n}{4n + 1} + \lambda \theta \right) F = \phi^*(K_{S_n} + \lambda D), \]
where
\[\theta = \frac{b + n(b_0 + b_1) + \mu}{4n + 1}. \]
Since \(F^2 = -\frac{4n+1}{n} \), we obtain
\[
\hat{L}_{xy}^2 = -\frac{1}{2n}, \quad \hat{R}_0^2 = \hat{R}_1^2 = -\frac{1}{2}, \quad \hat{L}_{xy} \cdot \hat{R}_0 = \hat{L}_{xy} \cdot \hat{R}_1 = \hat{R}_0 \cdot \hat{R}_1 = 0,
\]
\[
\hat{L}_{xy} \cdot F = \frac{1}{n}, \quad \hat{R}_0 \cdot F = \hat{R}_1 \cdot F = 1.
\]

For the estimation of \(\theta \), we first compute the volume of \(\phi^*(D) - tF \). Since \(\hat{L}_{xy}, \hat{R}_0, \hat{R}_1 \) are of negative self-intersection, and
\[
\phi^*(D) - tF \equiv \phi^* \left(\frac{3}{2} C_x \right) - tF = \frac{3}{2} (\hat{L}_{xy} + \hat{R}_0 + \hat{R}_1) + \left(\frac{3(2n+1)}{2(4n+1)} - t \right) F,
\]
for \(t > \frac{6n+3}{8n+2} \), the divisor \(\phi^*(D) - tF \) is not pseudoeffective. Put
\[
P_F(t) = \begin{cases}
\frac{3}{2} (\hat{L}_{xy} + \hat{R}_0 + \hat{R}_1) + \left(\frac{3(2n+1)}{2(4n+1)} - t \right) F & \text{for} \ 0 \leq t \leq \frac{3}{4(4n+1)} , \\
\left(\frac{3(2n+1)}{2(4n+1)} - t \right) (2\hat{L}_{xy} + 2\hat{R}_0 + 2\hat{R}_1 + F) & \text{for} \ \frac{3}{4(4n+1)} \leq t \leq \frac{3(2n+1)}{2(4n+1)} ,
\end{cases}
\]
\[
N_F(t) = \begin{cases}
0 & \text{for} \ 0 \leq t \leq \frac{3}{4(4n+1)} , \\
\left(2t - \frac{3}{2(4n+1)} \right) (\hat{L}_{xy} + \hat{R}_0 + \hat{R}_1) & \text{for} \ \frac{3}{4(4n+1)} \leq t \leq \frac{3(2n+1)}{2(4n+1)} .
\end{cases}
\]

For \(0 \leq t \leq \frac{3}{4(4n+1)} \),
\[
P_F(t) \cdot \hat{L}_{xy} = \frac{1}{n} \left(\frac{3}{4(4n+1)} - t \right), \quad P_F(t) \cdot \hat{R}_0 = P_F(t) \cdot \hat{R}_1 = \frac{3}{4(4n+1)} - t.
\]

For \(\frac{3}{4(4n+1)} \leq t \leq \frac{3(2n+1)}{2(4n+1)} \),
\[
P_F(t) \cdot \hat{L}_{xy} = P_F(t) \cdot \hat{R}_0 = P_F(t) \cdot \hat{R}_1 = 0.
\]

Therefore, the divisor \(P_F(t) \) is nef. The Zariski decomposition of \(\phi^*(D) - tF \) is given by
\[
P_F(t) + N_F(t).
\]

Thus, the volume is given by
\[
\text{vol}(\phi^*(D) - tF) = \begin{cases}
\frac{9(2n+1)}{8n(4n+1)} - \frac{4n+1}{n} t^2 & \text{for} \ 0 \leq t \leq \frac{3}{4(4n+1)} , \\
\frac{1}{n} \left(\frac{3(2n+1)}{2(4n+1)} - t \right)^2 & \text{for} \ \frac{3}{4(4n+1)} \leq t \leq \frac{3(2n+1)}{2(4n+1)} .
\end{cases}
\]
so the value in (3.4) is given by

$$S_{S, \frac{1}{2}w}(F) = \frac{1}{D^2} \int_0^\infty \text{vol}(\phi^*(D) - tF)dt = \frac{4n + 3}{4(4n + 1)}.$$

Thus, it follows from Lemma 3.5 that for a sufficiently small positive real number ε

$$\frac{b + n(b_0 + b_1) + \mu}{4n + 1} = \theta < \frac{4n + 3}{4(4n + 1)} + \varepsilon. \tag{5.20}$$

It implies that

$$\frac{3n}{4n + 1} + \lambda \theta < 1.$$

Therefore, the log pair

$$(S_n, \lambda bL_{xy} + \lambda b_0R_0 + \lambda b_1R_1 + \lambda \Lambda + F)$$

is not log canonical at some point q on F.

We first suppose that $q \in F \setminus \hat{L}_{xy} \cup \hat{R}_0 \cup \hat{R}_1$. Then the log pair $(\hat{S}, \lambda \Lambda + F)$ is not log canonical at the point q. Lemma 3.3 then implies

$$\frac{1}{\lambda} < \Lambda \cdot F = \frac{\mu}{n}.$$

However, if $b_i \leq b_j$, then the inequality

$$0 \leq \hat{\Lambda} \cdot \hat{R}_i = \frac{3}{4(4n + 1)} - \frac{b}{4n + 1} + \frac{b_j(2n + 1)}{2(4n + 1)} - \frac{b_jn}{4n + 1} - \frac{\mu}{4n + 1}$$

yields the opposite inequality

$$\mu \leq \frac{3}{4} - b - b_jn + \frac{b_j(2n + 1)}{2} \leq \frac{3}{4} + \frac{b_j}{2} \leq \frac{3}{4} + \frac{8n^2 + 6n + 3}{16n(2n + 1)} < \frac{n}{\lambda}.$$

Similarly, if $b_j < b_i$, then the inequality $0 \leq \hat{\Lambda} \cdot \hat{R}_j$ produces a contradiction. Therefore, the point q must be one of the intersection points $F \cap \hat{R}_0, F \cap \hat{R}_1, \text{and } F \cap \hat{L}_{xy}$.

We first consider the case when q is the intersection point of F and \hat{R}_i. Then the log pair $(\hat{S}, \lambda(\hat{\Lambda} + b_i\hat{R}_i) + F)$ is not log canonical at q. We then have

$$\frac{1}{\lambda} < (\hat{\Lambda} + b_i\hat{R}_i) \cdot F = \frac{\mu}{n} + b_i.$$

From (5.20) we obtain

$$\frac{1}{\lambda} + b_j < \frac{b}{n} + (b_0 + b_1) + \frac{\mu}{n} < \frac{4n + 3}{4n} + \varepsilon.$$

On the other hand, from

$$0 \leq \hat{\Lambda} \cdot \hat{R}_j = \frac{3}{4(4n + 1)} - \frac{b}{4n + 1} + \frac{b_j(2n + 1)}{2(4n + 1)} - \frac{b_jn}{4n + 1} - \frac{\mu}{4n + 1}, \tag{5.21}$$
we obtain
\[
\frac{\mu}{n} + b_i \leq \frac{3}{4n} - \frac{b}{n} + \frac{b_j(2n + 1)}{2n}.
\]

Then
\[
\frac{1}{\lambda} = \frac{20n + 4}{20n + 5} < \frac{\mu}{n} + b_i \leq \frac{3}{4n} + \frac{b_j(2n + 1)}{2n},
\]

and hence
\[
\frac{80n^2 - 44n - 15}{10(2n + 1)(4n + 1)} < b_j.
\]

This yields a contradictory inequality
\[
\frac{1}{\lambda} + b_j > \frac{20n + 4}{20n + 5} + \frac{80n^2 - 44n - 15}{10(2n + 1)(4n + 1)} = \frac{40n - 7}{20n + 10}.
\]

Consequently, \(q \) must be the intersection point of \(F \) and \(\hat{L}_{xy} \), which is a singular point of type \(\frac{1}{n}(-1, 1) \).

Then the log pair \((\hat{S}, \lambda(\hat{L} + b\hat{L}_{xy}) + F)\) is not log canonical at \(q \). We then obtain
\[
\frac{1}{n\lambda} < (\hat{L} + b\hat{L}_{xy}) \cdot F = \frac{\mu}{n} + \frac{b}{n}
\]

from Lemma 3.3. Meanwhile, if \(b_j \leq b_i \), we use (5.21) to obtain
\[
4(b + \mu) - 3 \leq b_0 + b_1.
\]

Together with (5.20) this implies that
\[
\frac{b}{4n + 1} + \frac{n}{4n + 1}(4(b + \mu) - 3) + \frac{\mu}{4n + 1} = (b + \mu) - \frac{3n}{4n + 1} < \frac{4n + 3}{4(4n + 1)} + \epsilon.
\]

Thus
\[
\frac{20n + 4}{20n + 5} = \frac{1}{\lambda} < b + \mu \leq \frac{16n + 3}{16n + 4} + \epsilon.
\]

This is absurd.

Therefore, we may conclude that the log pair \((S_n, \frac{1}{2}W + \lambda D)\) is log canonical at \(O_w \). \(\square\)

Proof of Theorem 4.1. Theorems 5.16, 5.18, and 5.19 immediately imply
\[
\delta(S_n, \frac{1}{2}W) > 1.
\]

Then Theorems 2.2 and 2.3 complete the proof. \(\square\)

Acknowledgements

D. Jeong and J. Park have been supported by IBS-R003-D1, Institute for Basic Science in Korea. I. Kim and J. Won were supported by NRF grant funded by the Korea government(MSIT) (I. Kim: NRF-2020R1A2C4002510, J. Won: NRF-2020R1A2C1A01008018).
REFERENCES

1. H. Abban and Z. Zhuang, K-stability of Fano varieties via admissible flags, Forum Math. Pi 10 (2022), e15.
2. C. Araujo, A.-M. Castravet, I. Cheltsov, K. Fujita, A.-S. Kaloghiros, J. Martinez-Garcia, C. Shramov, H. Süß, and N. Viswanathan, The Calabi problem for Fano threefolds, MPIM Preprint (2021), 2021–31.
3. D. Barden, Simply connected five-manifolds, Ann. Math. (2) 82 (1965), 365–385.
4. R. J. Berman, K-polystability of \mathbb{Q}-Fano varieties admitting Kähler-Einstein metrics, Invent. Math. 203 (2016), no. 3, 973–1025.
5. R. J. Berman, S. Boucksom, and M. Jonsson, A variational approach to the Yau-Tian-Donaldson conjecture, J. Amer. Math. Soc. 34 (2021), no. 3, 605–652.
6. C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.
7. H. Blum and M. Jonsson, Thresholds, valuations, and K-stability, Adv. Math. 365 (2020), 107062, 57.
8. C. P. Boyer and K. Galicki, On Sasakian-Einstein geometry, Internat. J. Math. 11 (2000), no. 7, 873–909.
9. C. P. Boyer, K. Galicki, and J. Kollár, Einstein metrics on spheres, Ann. of Math. (2) 162 (2005), no. 1, 557–580.
10. C. P. Boyer and M. Nakamaye, On Sasaki-Einstein manifolds in dimension five, Geom. Dedicata 144 (2010), 141–156.
11. I. Cheltsov, J. Park, and C. Shramov, Exceptional del Pezzo hypersurfaces, J. Geom. Anal. 20 (2010), no. 4, 787–816.
12. I. Cheltsov, J. Park, and C. Shramov, Delta invariants of singular del Pezzo surfaces, J. Geom. Anal. 31 (2021), no. 3, 2354–2382.
13. X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), no. 1, 183–197.
14. X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π, J. Amer. Math. Soc. 28 (2015), no. 1, 199–234.
15. X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof, J. Amer. Math. Soc. 28 (2015), no. 1, 235–278.
16. T. C. Collins and G. Székelyhidi, Sasaki-Einstein metrics and K-stability, Geom. Topol. 23 (2019), no. 3, 1339–1413.
17. K. Fujita, On K-stability for Fano threefolds of rank 3 and degree 28, arXiv:2107.04820 (2021).
18. K. Fujita and Y. Odaka, On the K-stability of Fano varieties and anticanonical divisors, Tohoku Math. J. (2) 70 (2018), no. 4, 511–521.
19. A. R. Iano-Fletcher, Working with weighted complete intersections, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge University Press, Cambridge, 2000, pp. 101–173.
20. D. Jeong and J. Park, Simply connected Sasaki-Einstein 5-manifolds: old and new, Birational Geometry, Kähler-Einstein Metrics and Degenerations, Springer Proc. Math. Stat., vol. 409, Springer, Cham, 2023, to appear.
21. S. Kobayashi, Topology of positively pinched Kaehler manifolds, Tohoku Math. J. (2) 15 (1963), 121–139.
22. J. Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287.
23. J. Kollár, Einstein metrics on five-dimensional Seifert bundles, J. Geom. Anal. 15 (2005), no. 3, 445–476.
24. J. Kollár, Positive Sasakian structures on 5-manifolds, Riemannian topology and geometric structures on manifolds, Progr. Math., vol. 271, Birkhäuser Boston, Boston, MA, 2009, pp. 93–117.
25. R. Lazarsfeld, Positivity in algebraic geometry. II, Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in
Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer, Berlin, 2004.

26. C. Li, G-uniform stability and Kähler-Einstein metrics on Fano varieties, Invent. Math. 227 (2022), no. 2, 661–744.

27. C. Li, G. Tian, and F. Wang, The uniform version of Yau-Tian-Donaldson conjecture for singular Fano varieties, Peking Math. J. 5 (2022), 383–426.

28. Y. Liu, C. Xu, and Z. Zhuang, Finite generation for valuations computing stability thresholds and applications to K-stability, Ann. of Math. (2) 196 (2022), no. 2, 507–566.

29. J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, vol. 61, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1968.

30. J. Milnor and P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385–393.

31. J. Park and W. Joonyeong, Simply connected Sasaki-Einstein rational homology 5-spheres, Duke Math. J. 170 (2021), no. 6, 1085–1112.

32. S. Smale, On the structure of 5-manifolds, Ann. of Math. (2) 75 (1962), 38–46.

33. G. Tian, K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1085–1156.

34. C. Xu, K-stability of Fano varieties: an algebro-geometric approach, EMS Surv. Math. Sci. 8 (2021), no. 1–2, 265–354.