The unquenched quark model

E. Santopinto†

Dipartimento di Fisica and INFN, Università di Genova, via Dodecaneso 32, I-16146 Genova, Italy

R. Bijker, H. García-Tecocatzi

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70-543, 04510 México DF, México

J. Ferretti

Dipartimento di Fisica and INFN, Università di Roma “Sapienza”, Piazzale A. Moro 5, I-00185 Roma, Italy

In this contribution, we briefly analyze the formalism of the unquenched quark model (UQM) and its application to the calculation of hadron spectra with self-energy corrections, due to the coupling to the meson-meson continuum. In the UQM, the effects of \(qq \) sea pairs are introduced explicitly into the quark model through a QCD-inspired \(^3P_0 \) pair-creation mechanism. The UQM formalism can be extended to include also the effects of hybrid mesons, i.e. hybrid loops. The main applications to spectroscopy and decays are analyzed.

I. INTRODUCTION

The quark model can reproduce the behavior of observables such as the spectrum and the magnetic moments, but it neglects pair-creation (or continuum-coupling) effects. Above threshold, this coupling leads to strong de-}

baryon meson loop effects on the spectrum of nonstrange baryons. Eichten et al. explored the influence of the open-charm channels on the charmonium properties, using the Cornell coupled-channel model [11] to assess departures from the single-channel potential-model expectations. The flavor asymmetry of the proton was studied in the framework of the unquenched quark model (UQM) [3, 12–16], in which the effects of the quark-antiquark pairs were introduced into the constituent quark model (CQM) in a systematic way and the wave functions were given explicitly. The approach is a generalization of the unitarized quark model [1, 2, 3].

In this contribution, we discuss some of the latest applications of the UQM to the study of meson observables.

II. UQM

A. Formalism

In the unquenched quark model for baryons [3, 12] and mesons [13–16], the hadron wave function is made up of a zeroth order \(qq \) \((\bar{q}q)\) configuration plus a sum over the possible higher Fock components, due to the creation of \(^3P_0 \) \(qq \) pairs. Thus, we have

\[
|\psi_A\rangle = N \left[|A\rangle + \sum_{BC\ell J} \int d\vec{K} k^2 dk \langle BC\ell J; \vec{K} k | T^\dagger | A\rangle \right] \tag{1}
\]

where \(T^\dagger \) stands for the \(^3P_0 \) quark-antiquark pair-creation operator [13–16], \(A \) is the baryon/meson, \(B \) and \(C \) represent the intermediate state hadrons, \(E_a \), \(E_b \) and \(E_c \) are the corresponding energies, \(k \) and \(\ell \) the relative radial momentum and orbital angular momentum between \(B \) and \(C \) and \(\vec{J} = \vec{J}_b + \vec{J}_c + \ell \) is the total angular momentum. It is worthwhile noting that in Refs. [13–15], the constant pair-creation strength in the operator [11] was
substituted with an effective one, to suppress unphysical heavy quark pair-creation.

In the UQM [9, 12-16], the matrix elements of an observable \hat{O} can be calculated as

$$O = \langle \psi_A | \hat{O} | \psi_A \rangle ,$$ \hspace{1cm} (2)

where $|\psi_A\rangle$ is the state of Eq. [11]. The result will receive a contribution from the valence part and one from the continuum component, which is absent in naive QM calculations.

The introduction of continuum effects in the QM can thus be essential to study observables that only depend on qq sea pairs, like the strangeness content of the nucleon electromagnetic form factors [8, 9]. In other cases, continuum effects can provide important corrections to baryon/meson observables, like the self-energy corrections to meson electromagnetic form factors [8, 9].

In other cases, continuum effects can provide important corrections to baryon/meson observables, like the self-energy corrections to meson masses [13-16] or the importance of the orbital angular momentum in the spin of the proton [12].

B. $c\bar{c}$ and $b\bar{b}$ spectra with self-energy corrections in the UQM

In Refs. [13-16], the method was used by some of us to compute the $c\bar{c}$ and $b\bar{b}$ spectra with self-energy corrections, due to continuum coupling effects. In the UQM, the physical mass of a meson,

$$M_a = E_a + \Sigma(E_a) ,$$ \hspace{1cm} (3)

is given by the sum of two terms: a bare energy, E_a, calculated within a potential model [18], and a self energy correction,

$$\Sigma(E_a) = \sum_{BCIJ} \int_0^\infty k^2 dk \frac{|M_{A\rightarrow BC}(k)|^2}{E_a - E_b - E_c} ,$$ \hspace{1cm} (4)

computed within the UQM formalism.

Our results for the self energies of charmonia [14, 16] and bottomonia [13-16] show that the pair-creation effects on the spectrum of heavy mesons are quite small. Specifically for charmonium and bottomonium states, they are of the order of $2 - 6\%$ and 1%, respectively. The relative mass shifts, i.e. the difference between the self energies of two meson states, are in the order of a few tens of MeV. However, as QM’s can predict the meson masses with relatively high precision in the heavy quark sector, even these corrections can become significant. These results are particularly interesting in the case of states close to an open-flavor decay threshold, like the $X(3872)$ and $\chi_b(3P)$ mesons. For example, in our picture the $X(3872)$ can be interpreted as a $c\bar{c}$ core [the $\chi_{c1}(2P_1)$], plus higher Fock components due to the coupling to the meson-meson continuum. In Ref. [16], we showed that the probability to find the $X(3872)$ in its core or continuum components is approximately 45% and 55%, respectively.

Acknowledgments

This work is supported in part by PAPIIT-DGAPA, Mexico (grant IN107314).

[1] E. van Beveren, C. Dullemond and G. Rupp, Phys. Rev. D 21, 772 (1980) [Erratum-ibid. D 22, 787 (1980)].

[2] E. van Beveren, T. A. Rijken, K. Metzger, C. Dullemond, G. Rupp and J. E. Ribeiro, Z. Phys. C 30, 615 (1986).

[3] S. Ono and N. A. Törnqvist, Z. Phys. C 23, 59 (1984); K. Heikkila, S. Ono and N. A. Törnqvist, Phys. Rev. D 29, 110 (1984) [Erratum-ibid. 29, 2136 (1984)]; S. Ono, A. I. Sanda and N. A. Törnqvist, Phys. Rev. D 34, 186 (1986).

[4] N. A. Törnqvist and P. Zenczykowski, Phys. Rev. D 29, 2139 (1984); Z. Phys. C 30, 83 (1986); P. Zenczykowski, Annals Phys. 169, 453 (1986).

[5] N. A. Törnqvist, Z. Phys. C 68, 647 (1995).

[6] M. Boglione and M. R. Pennington, Phys. Rev. D 65, 114010 (2002).

[7] P. Geiger and N. Isgur, Phys. Rev. D 41, 1595 (1990).

[8] P. Geiger and N. Isgur, Phys. Rev. D 55, 299 (1997).

[9] R. Bijker, J. Ferretti and E. Santopinto, Phys. Rev. C 85, 035204 (2012).

[10] S. Capstick and D. Morel, nucl-th/0204014.

[11] E. Eichten, K. Gottfried, T. Kinoshita, J. B. Kogut, K. D. Lane and T. -M. Yan, Phys. Rev. Lett. 34, 369 (1975); E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T. -M. Yan, Phys. Rev. D 17, 3090 (1978); 21, 203 (1980).

[12] E. Santopinto and R. Bijker, Few Body Syst. 44, 95 (2008); R. Bijker and E. Santopinto, Phys. Rev. C 80, 065210 (2009).

[13] J. Ferretti, G. Galatà, E. Santopinto and A. Vassallo, Phys. Rev. C 86, 015204 (2012).

[14] J. Ferretti, G. Galatà and E. Santopinto, Phys. Rev. C 88, 015207 (2013).

[15] J. Ferretti and E. Santopinto, Phys. Rev. D 90, 094022 (2014).

[16] J. Ferretti, G. Galatà and E. Santopinto, Phys. Rev. D 90, 054010 (2014).

[17] Y. S. Kalashnikova, Phys. Rev. D 72, 034010 (2005).

[18] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).