Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

Tsuyuka Sugiiishi¹, Hideki Amii*¹, Kohsuke Aikawa² and Koichi Mikami*²

Review

Address:
¹Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
and ²Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

Email:
Hideki Amii - amii@gunma-u.ac.jp; Koichi Mikami* - mikami.k.ab@m.titech.ac.jp

* Corresponding author

Keywords:
β-carbon elimination; carbon–carbon bond cleavage; decarboxylation; tetrahedral intermediate; trifluoroacetate; fluoror; trifluoromethylation

Abstract

This short review highlights the copper-mediated fluoroalkylation using perfluoroalkylated carboxylic acid derivatives. Carbon–carbon bond cleavage of perfluoroalkylated carboxylic acid derivatives takes place in fluoroalkylation reactions at high temperature (150–200 °C) or under basic conditions to generate fluoroalkyl anion sources for the formation of fluoroalkylcopper species. The fluoroalkylation reactions, which proceed through decarboxylation or tetrahedral intermediates, are useful protocols for the synthesis of fluoroalkylated aromatics.

Introduction

Organofluorine compounds attract attention because of their applicability in various fields, such as medicine, agrochemical and material science. It has been widely reported that nearly 15% of pharmaceuticals and 20% of agrochemicals on the market contain fluorine atoms, including several of the top drugs. Of particular interest are compounds containing the structural motif of a (trifluoromethyl)aryl group (Ar–CF₃) [1-7]. The characteristic size, strong electron-withdrawing ability, and the high lipophilicity of the trifluoromethyl group are key properties of biologically active CF₃-containing molecules [8]. Perfluoroalkylcopper compounds (CₙF₂ₙ₋₁Cu), which are soft and relatively stable perfluoroalkyl organometallic reagents (CₙF₂ₙ₋₁M) with high reactivity, act as prominent cross-coupling participants in aromatic perfluoroalkylation reactions [9-32]. In order to prepare CₙF₂ₙ₋₁Cu species, several representative protocols have been reported. Among these protocols, each method has individual merit. Particularly, Ruppert–Prakash reagents (CₙF₂ₙ₋₁SiR₃) have been used as the source of perfluoroalkyl
anions ($C_nF_{2n+1}^-$) for the generation of $C_nF_{2n+1}Cu$. However, perfluoroalkylsilane sources are costly for large-scale operation. On the other hand, economical and useful perfluoroalkylated carboxylic acid derivatives, such as perfluoroalkylated carboxylates ($C_nF_{2n+1}CO_2Na$ or $C_nF_{2n+1}CO_2K$), halodifluoroacetates (XCF_2CO_2R), perfluoroalkyl carboxylates ($C_nF_{2n+1}CO_2R$), perfluoroalkyl ketones ($C_nF_{2n+1}COR$), and hemiaminals derived from fluoral ($CF_3C(OSiMe_3)NR_2$), can generate $C_nF_{2n+1}Cu$ via carbon–carbon bond cleavage. Herein we focus on Cu-mediated perfluoroalkylation reactions through which carbon dioxide, the esters, or the N-formylamines are eliminated from the perfluoroalkyl reagents.

Review

Decarboxylation of perfluoroalkylacetates

Trifluoroacetate salts are one of the most readily available trifluoromethylating agents compared to ozone-depleting CF_3Br, and expensive CF_3I. Sodium trifluoroacetate (CF_3CO_2Na) is a stable compound at room temperature. Under heating conditions (150–200 °C), CF_3CO_2Na plays the role of the CF_3^- source and $[CF_3Cu]$ species with Cul are generated in situ. In the presence of Cul, CF_3CO_2Na undergoes trifluoromethylation with aryl halides via decarboxylation [33,34] (Scheme 1).

A pentafluoroethyl group (C_2F_5) was fixed at the arene with sodium pentafluoropropionate [35] (Scheme 2). The reaction mechanism is similar to that of the trifluoromethylation using CF_3CO_2Na [33,34]. Upon heating, the mixture of CF_3CO_2Na and Cul in NMP, 3-chloroiodobenzene underwent cross-coupling to provide the pentafluoroethylated compound in 80% yield. The pentafluoroethylated aromatic product was applied to the synthesis of 2,2-difluorostyrenes through Mg(0)-promoted defluorinative silylation followed by fluorine-ion-catalyzed 1,2-desilylative defluorination.

Buchwald et al. demonstrated aromatic trifluoromethylation using potassium trifluoroacetate (CF_3CO_2K), Cul and pyridine under flow conditions. Increasing the reaction temperature from 160 °C to 200 °C accelerated the decarboxylation of CF_3CO_2K [36] (Scheme 3). The trifluoromethylation using a microreactor resulted in a good yield within a short reaction time by virtue of the thermal stability of CF_3Cu and control of mixing. Taking advantage of the flow microreactor, a new protocol for scalable aromatic trifluoromethylation was developed.

From a mechanistic aspect, Vicic and co-workers explored the direct generation of CF_3Cu from CF_3CO_2Cu. The use of (N-heterocyclic carbene)copper-trifluoroacetates prepared from trifluoroacetic acid (TFA) was investigated in the decarboxylative trifluoromethylation of aryl halides [37] (Scheme 4). Not only iodobenzene but also 4-bromotoluene was trifluoromethylated by the $[(NHC)Cu(TFA)]$ complex.

The perfluoroalkylation reactions mentioned above require a stoichiometric amount of copper reagent, whereas it was found that the addition of silver salts is effective for the copper-mediated trifluoromethylation of aryl iodides [38] (Scheme 5). The amount of copper used in the reaction was reduced to 30 or 40 mol % by adding a small amount of Ag_2O. As a related decarboxylative transformation, silver-mediated aromatic tri-
flouromethylation was recently developed. Zhang et al. reported
the direct aryl C–H trifluoromethylation in which TFA works as
a trifluoromethylation reagent [39] (Scheme 6). In this reaction,
TFA releases a CF₃ radical via decarboxylation, which reacts
with the arenes to yield trifluoromethyl-substituted products.
This report suggests that TFA can act as a trifluoromethyl
source in the reaction with inactivated aromatic compounds,
while the control of regioselectivity is difficult.

Trifluoromethylation with difluorocarbene and fluoride ions

The reaction system with ClCF₂CO₂Me/KF/Cul also generates
CF₃Cu in situ [40,41] (Scheme 7). The demethylation of
ClCF₂CO₂Me proceeds by iodide, followed by decarboxylation
of the resulting chlorodifluoroacetate to provide difluorocar-
bene (:CF₂), trapped by fluoride to give the CF₃⁻ species. This
reacts with Cul leading to CF₃Cu.

The method described above for the trifluoromethylation of aryl
iodides with ClCF₂CO₂Me and fluoride can be utilized for
clinical studies. Herein, we introduce one example of decar-
boxylative [¹⁸F] trifluoromethylation for positron emission
tomography (PET) studies. A synthetic methodology for
[¹⁸F]labelled-CF₃ arenes is desired for the application of PET
imaging. The reason is that the [¹⁸F] isotope has a longer half-
life (110 min) than [¹⁵N] (10 min) or [¹⁵O] (2 min); however, the
incorporation of [¹⁸F] must be rapid and the use of the products
containing [¹⁸F] must be immediate. Many of the reported
strategies have a limited scope of starting materials or require
expensive reagents and a multistep synthesis. The [¹⁸F]tri-
fluoromethylation performed with commercially available
reagents by using [¹⁸F]fluoride demands no complex such as
Scheme 6: C–H trifluoromethylation of arenes using trifluoroacetic acid.

Scheme 7: CF₃Cu generated from chlorofluoroacetate and CuI.

[^18]FCF₂Cu, and thus the method should contribute to efficient PET imaging [42] (Scheme 8).

Synthesis of perfluoroalkylcopper from perfluoroalkyl ketones or esters

Langlois et al. reported that trifluoromethylation with methyl trifluoroacetate was successfully carried out in DMF or sulfolane at 180 °C [43] (Scheme 9). Methyl trifluoroacetate, which is more readily available than methyl chlorodifluoroacetate, acts as a trifluoromethylating agent. In this synthesis, the methyl trifluoroacetate/CsF/CuI system would form the tetrahedral intermediates to generate CF₃Cu species in situ. Mikami and co-workers accomplished the synthesis of CF₃Cu at room temperature with perfluoroalkyl ketone derivatives and appropriate nucleophiles. It is indicated that the CF₃Cu reagent is directly formed from tetrahedral intermediate A [44] (Scheme 10). The CF₃Cu reagent was applied to aromatic trifluoromethylation with aryl iodides, which have electron-withdrawing or electron-donating functional groups, in good to high yields (Scheme 11).

The preparation of the C₂F₅Cu reagent was investigated as well [45]. Pentafluoropropionate was reacted with CuCl salt in the presence of KOr-Bu to afford C₂F₅Cu. A variety of aryl bro-

Scheme 8: [¹⁸F]Trifluoromethylation with difluorocarbenes for PET. aRadiochemical yield determined by HPLC.
mides were reacted with $\text{C}_2\text{F}_5\text{Cu}$ under the optimized conditions, providing pentafluoroethylated aryl products in moderate to high yield (Scheme 12).

The copper-mediated oxidative trifluoromethylation of arylboronic acids are important reactions in organic chemistry because arylboronic acids are widely used. Oxidative, aromatic
perfluoroalkylation reactions with arylboronic acid derivatives have been studied by several groups. Qing et al. and Buchwald et al. used the Ruppert–Prakash reagent (CF$_3$–SiMe$_3$) directly as a CF$_3$ source [46,47]. From CF$_3$–SiMe$_3$, Hartwig et al. developed a new combination of Ir-catalyzed C–H borylation and oxidative cross-coupling using [(phen)CF$_3$Cu] [48]. Grushin et al. utilized fluoroform for the preparation of CF$_3$Cu, which participated in cross-coupling reactions with ArB(OH)$_2$ in air [49]. Starting from CF$_3$CO$_2$Et or C$_2$F$_5$CO$_2$Et, Mikami et al. obtained CF$_3$Cu [44] or C$_2$F$_5$Cu [45]. The substrate scope of trifluoromethylation and pentafluoroethylation suggests that CF$_3$Cu and C$_2$F$_5$Cu reagents are useful C$_n$F$_{2n+1}$ sources for perfluoroalkylation reactions. Furthermore, CF$_3$Cu and C$_2$F$_5$Cu were utilized for oxidative perfluoroalkylation reactions of arylboronic acids [44,45] (Scheme 13).

Copper-catalyzed group transfer from fluoral derivatives

Catalytic systems in organic synthesis are desirable from an environmentally benign point of view. With regard to aromatic trifluoromethylation, the effort is devoted to reduce the copper reagents employed in the reactions. Copper-catalyzed aromatic trifluoromethylation with CF$_3$SiMe$_3$ was developed using phen as a ligand [50]. On the other hand, Billard and Langlois et al. described silylated hemiaminals of fluoral (trifluoroacetaldehyde) that act as a nucleophilic trifluoromethyl source for electrophiles such as aldehydes and ketones [51,52] (Scheme 14). Amii and co-workers reported a copper-catalyzed aromatic trifluoromethylation from silylated hemiaminals of fluoral [53] (Scheme 15). Hemiaminal derivative I is readily prepared from commercially available CF$_3$CH(OH)(OEt), which is a fluor equivalent, and morpholine [52].

The substrate scope of the catalytic trifluoromethylation is shown in Scheme 16. Nitro, cyano, and ester groups in iodoarenes were tolerable under the reaction conditions of copper-catalyzed nucleophilic trifluoromethylation. Electron-rich iodoarenes underwent the nucleophilic trifluoromethylation to afford the corresponding trifluoromethylated benzenes.
Scheme 13: Perfluoroalkylation reactions of arylboronic acids. aIsolated yield. bDMF was used instead of toluene as a solvent. c4 equivalents of \(\text{C}_n\text{F}_{n+1}\text{Cu} \) reagent were used. dPinacolboronate ester (Bpin) was used instead of boronic acid. eYield was determined by \(^{19}\text{F} \) NMR analysis using BTF as an internal standard.

Scheme 14: Trifluoromethylation with silylated hemiaminal of fluoral.
Furthermore, the trifluoromethyl group was introduced into naphthalenes and thiophene with hemiaminal 1.

A catalytic amount of copper was enough to complete the reactions. In the synthesis of trifluoromethylenenes (Ar–CF$_3$), the cross-coupling proceeded via the pathway shown in Scheme 17 [53]. First, the fluoride-ion-induced reaction of hemiaminal 1 with Cul-diamine complex 2 gave copper alkoxide 3. Then the trifluoromethyl group in 3 migrates to generate the trifluoromethylcopper(I) complex 5 with the elimination of N-formylmorpholine (4) [54]. Finally, Ar–CF$_3$ is formed by the coupling of CF$_3$Cu complex 5 with Ar–I, and Cul-diamine complex 2 is regenerated.

Conclusion

Fluorine has greatly contributed to the advancement of human life and the global demand for organofluorine compounds will continue to increase. Therefore, the introduction of fluorine-containing functional groups into organic molecules is recognized as a general strategy for the design of drugs and functional materials. In fact, the research activity on selective fluorination and trifluoromethylation has reached a mature state. The progress in fluoroalkylation of organic compounds could be accelerated by the use of fluoroalkylating reagents, which are inexpensive and easy to handle. Perfluoroalkyl carboxylic acid derivatives, such as perfluoroalkyl acetates, trifluoroacetic acid, chlorodifluoroacetates, trifluoromethyl ketones and hemiaminal-
nals of trifluoroacetaldehyde, are attractive perfluoroalkyl anion sources for aromatic perfluoroalkylation reactions. The generation of perfluoroalkylcopper from perfluoroalkyl carboxylic acid derivatives via carbon–carbon bond cleavage demands a high reaction temperature or basic conditions. Nevertheless, the simplicity of the operation and the reliability of higher yields would help the synthesis of fluorinated compounds in various fields.

Acknowledgements
The financial support of the Ministry of Education, Culture, Sports, Science and Technology of Japan and Japan Science and Technology Agency (JST) (ACT-C: Advanced Catalytic Transformation program for Carbon utilization) is acknowledged.

References
1. Hiyama, T.; Kanie, K.; Kusumoto, T.; Morizawa, Y.; Shimizu, M. Organofluorine Compounds: Chemistry and Application; Springer-Verlag: Berlin, 2000. doi:10.1007/978-3-662-04164-2
2. Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Wiley-VCH: Weinheim, Germany, 2004. doi:10.1002/352760393X
3. Chambers, R. D. Fluorine in Organic Chemistry; Blackwell: Oxford, 2004. doi:10.1002/9781444305371
4. Uneyama, K. Organofluorine Chemistry; Blackwell: Oxford, 2006. doi:10.1002/9780470885898
5. Bégué, J.-P.; Bonnet-Delpou, D. Bioorganic and Medicinal Chemistry of Fluorine; John Wiley & Sons, Inc.: Hoboken, NJ, 2008. doi:10.1002/9780470281895
6. Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology; Wiley-Blackwell: Chichester, West Sussex, 2009.
7. Gouverneur, V.; Müller, K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications; World Scientific Publishing Company: London, 2012. doi:10.1142/p746
8. Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochnisky, A. E.; Fuster, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432–2506. doi:10.1021/cr4002879
9. Lundgren, R. J.; Stradiotto, M. Angew. Chem., Int. Ed. 2010, 49, 9322–9324. doi:10.1002/anie.201004051
10. Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470–477. doi:10.1038/nature10108
11. Roy, S.; Gregg, B. T.; Gribble, G. W.; Le, V.-D.; Roy, S. Tetrahedron 2011, 67, 2161–2195. doi:10.1016/j.tet.2011.01.002
12. Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475–4521. doi:10.1021/cr1004293
13. Besset, T.; Schneider, C.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51, 5048–5050. doi:10.1002/anie.201201012
14. Ye, Y.; Sanford, M. Synlett 2012, 23, 2005–2013. doi:10.1055/s-0032-1316988
15. Wu, X.-F.; Neumann, H.; Beller, M. Chem. – Asian J. 2012, 7, 1744–1745. doi:10.1002/asia.201202011
16. Jin, Z.; Hammond, G. B.; Xu, B. Aldrichimica Acta 2012, 45, 67–83.
17. Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950–8958. doi:10.1002/anie.201202624
18. Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815–824. doi:10.6023/cjoc1203021
19. Macé, Y.; Magnier, E. Eur. J. Org. Chem. 2012, 2479–2494. doi:10.1002/ejoc.201101535
20. García-Monforte, M. A.; Martínez-Salvador, S.; Menjón, B. Eur. J. Inorg. Chem. 2012, 4945–4966. doi:10.1002/ejic.201200620
21. Liu, T.; Shen, Q. Eur. J. Org. Chem. 2012, 6679–6687. doi:10.1002/ejoc.201200648
