A quantitative obstruction to collapsing surfaces

https://doi.org/10.1515/math-2019-0103
Received May 20, 2019; accepted September 23, 2019

Abstract: We provide a quantitative obstruction to collapsing surfaces of genus at least 2 under a lower curvature bound and an upper diameter bound.

Keywords: curvature, diameter, volume, filling radius, systole, Gromov-Hausdorff distance

1 Introduction

S. Alesker posed the following question at MathOverflow [1]. Let (M_i) be a sequence of 2-dimensional orientable closed surfaces of genus $g \geq 2$ endowed with smooth Riemannian metrics of Gaussian curvature at least -1 and diameter at most D. By the Gromov compactness theorem, one can choose a subsequence converging in the Gromov-Hausdorff (GH) sense to a compact Alexandrov space with curvature at least -1 and Hausdorff dimension 0, 1, or 2. Let us assume that the limit space has dimension 1. Then it is either a circle or a segment. Can these possibilities (circle and segment) be obtained in the limit M of (M_i)? We show that these possibilities cannot occur, and quantify this statement by providing an explicit lower bound for the filling radius of M. For related results see [2].

2 Impossibility of collapse

We prove the impossibility of collapse in dimension 2, in the following sense.

Theorem 2.1. The distance between a strongly isometric map from a closed orientable surface M of genus $g \geq 2$ of Gaussian curvature $K \geq -1$ and diameter at most D to a metric space Z, and a map from M to a graph in Z, is at least $\frac{\pi(g-1)}{3 \sin D}$.

Thus we obtain a quantitative lower bound rather than merely the nonexistence of Shioya-Yamaguchi-type collapse to spaces of positive codimension (see [3, 4]).

Corollary 2.2. Let $D > 0$. GH limits of metrics on a closed orientable surface of genus $g \geq 2$ with Gaussian curvature at least -1 and diameter at most D are necessarily 2-dimensional.

Recall that the systole of a Riemannian manifold M is the least length of a noncontractible loop of M. For an overview of systolic geometry see [5].
The filling radius \(\text{FillRad} M \) of a closed \(n \)-dimensional manifold \(M \) is defined as the infimum of all \(c > 0 \) such that the inclusion of \(M \) in its \(c \)-neighborhood in any strongly isometric embedding of \(M \) in a Banach space sends the fundamental homology class \([M]\) of \(M \) to the zero class, by means of the induced homomorphism on \(H_n(M) \). Here the embedding can be taken to be into the space of bounded functions on \(M \) which sends a point \(p \in M \) to the distance function from \(p \). This embedding is strongly isometric (ambient distance restricted to \(M \) coincides with intrinsic distance on \(M \)) if the function space is equipped with the sup-norm.

Lemma 2.3 (Gromov’s lemma). The systole of an aspherical manifold \(M \) is at most six times the filling radius of \(M \).

Proof. Consider a strongly isometric embedding of the surface \(M \) into a Banach space \(B \). The space \(B \) can be assumed finite-dimensional if the metric condition is relaxed to a requirement of being bilipschitz with to a bilipschitz factor arbitrarily close to 1; see [6]. Suppose \(M \) is “filled” (in the homological sense) by a chain \(C \) (in the sense that \(M \) is the boundary of \(C \)). Then the induced homomorphism \(H_n(M) \to H_n(C) \) sends \([M]\) to the zero class. Consider a triangulation of \(C \) into infinitesimal simplices (here the term “infinitesimal” is used informally in its meaning “sufficiently small” though this could be rendered rigorous as in [7]).

We argue by contradiction. Let \(R > 0 \) be strictly smaller than a sixth of the systole. Suppose the chain \(C \) is contained in an open \(K \)-neighborhood of \(M \) in \(B \). We will retract \(C \) back to \(M \), while fixing the subset \(M \subseteq C \), contradicting the fact that the nonvanishing fundamental class \([M]\) is sent to a zero class in \(C \).

For each vertex of the triangulation of \(C \), we choose a nearest point of \(M \). To extend the retraction to the 1-skeleton of \(C \), we map each edge (of a triangle of the triangulation) to a minimizing path joining the images of the two vertices in \(M \). The length of such a minimizing path is less than \(2R \) (plus the infinitesimal side length of the triangle) by the triangle inequality. Hence the boundary of each 2-cell of the triangulation is sent to a loop of length at most \(6R \) (plus an infinitesimal). Since this length is less than the systole of \(M \), the map can now be extended to the 2-skeleton of \(C \).

To extend the map to the 3-skeleton, note that the universal cover of \(M \) is contractible and hence \(\pi_2(M) = 0 \), and similarly for the higher homotopy groups. Therefore the skeletal retraction extends to all of \(C \) inductively. The contradiction completes the proof of the lemma.

Proof of Theorem 2.1. We exploit Gromov’s notion of the filling radius of a manifold [8]. The argument relies only on basic Jacobi field estimates and basic homotopy theory. We seek a suitable lower bound so as to rule out positive-codimension collapse. Choose a noncontractible closed geodesic \(\gamma \subseteq M \) of length equal to the systole \(\text{sys}(M) \). Consider the normal exponential map along \(\gamma \). Using the lower curvature bound, we obtain an upper bound on the total area of \(M \) as \(2 \text{sys}(M) \sinh(D) \), where \(D \) is the diameter. The bound follows by applying Rauch bounds on Jacobi fields (this is an ingredient in the proof of Toponogov’s theorem); see e.g., Cheeger-Ebin [9, Theorem 5.8, pp. 97–98]. The bound results from comparison with the area of a hyperbolic collar of width \(D \) around a closed geodesic of the same length as \(\gamma \). Therefore, the systole is bounded below as follows:

\[
\text{sys}(M) \geq \frac{\text{area}(M)}{2 \sinh D}. \tag{2.1}
\]

Meanwhile the area is bounded below by the Gauss-Bonnet theorem:

\[
\text{area}(M) \geq \int_M K = 2\pi(2g - 2),
\]

where \(g \) is the genus. Furthermore the filling radius of \(M \) is bounded below by a sixth of the systole by Gromov’s Lemma 2.3. Therefore the bound (2.1) implies

\[
\text{FillRad}(M) \geq \frac{1}{6} \text{sys}(M) \geq \frac{\text{area}(M)}{12 \sinh D} \geq \frac{\pi(g - 1)}{3 \sinh D}. \tag{2.2}
\]

The theorem now follows from the fact the distance between a strongly isometric map from \(M \) to a metric space \(Z \) and a map from \(M \) to a graph in \(Z \) is bounded below by the filling radius; see e.g., [8, p. 127, Example].

This
proves that aspherical surfaces of curvature bounded below by -1 with diameter bounded above by D cannot collapse, so that a GH limit is necessarily 2-dimensional as follows.

To prove Corollary 2.2, note that if a metric on M is sufficiently close to a finite graph Γ in the sense of the GH distance, then the construction of the proof of Lemma 2.3 produces a map from M to Γ which is close to the embedding of M in Z, contradicting the lower bound (2.2).

References

[1] Alesker S., MathOverflow question, 2016, https://mathoverflow.net/q/236001.
[2] Sabourau S., Small volume of balls, large volume entropy and the Margulis constant, Math. Ann., 2017, 369(3-4), 1557–1571.
[3] Yamaguchi T., Collapsing and pinching under a lower curvature bound, Ann. of Math. (2), 1991, 133(2), 317–357.
[4] Shioya T., Yamaguchi T., Collapsing three-manifolds under a lower curvature bound, J. Differential Geom., 2000, 56(1), 1–66.
[5] Katz M., Systolic geometry and topology, Mathematical Surveys and Monographs, 137, Amer. Math. Soc., Providence, RI, 2007.
[6] Katz K., Katz M., Bi-Lipschitz approximation by finite-dimensional imbeddings, Geom. Dedicata, 2011, 150, 131–136.
[7] Nowik T., Katz M., Differential geometry via infinitesimal displacements, J. Log. Anal., 2015, 7(5), 1–44.
[8] Gromov M., Filling Riemannian manifolds, J. Differential Geom., 1983, 18(1), 1–147.
[9] Cheeger J., Ebin D., Comparison theorems in Riemannian geometry, Revised reprint of the 1975 original, AMS Chelsea Publishing, Providence, RI, 2008.