Data Article

A dataset of the Plio-Pleistocene at IODP Site U1489: Benthic foraminifera stable carbon and oxygen isotopes, coarse fraction, and selected benthic foraminifera abundances

Haowen Dang*, Nana Peng, Zimin Jian

State Key Laboratory of Marine Geology, Tongji University, Shanghai, China

Article Info

Article history:
Received 18 November 2019
Received in revised form 29 November 2019
Accepted 11 December 2019
Available online 18 December 2019

Keywords:
Western equatorial Pacific
Deep water circulation
Pliocene
Pleistocene
IODP Expedition 363

Abstract

Site U1489 was drilled during the International Ocean Discovery Program (IODP) Expedition 363 and is located on the western slope of the southern Eauripik Rise (2.12°N, 141.03°E, 3421 m water depth). We collected 183 samples from the upper ~84 m of Site U1489 with an average sampling interval of ~50 cm, and performed the analyses of sediment washing and sieving, benthic foraminifera stable carbon and oxygen isotopes, and the relative abundance of selected benthic foraminifera. The data of these analyses are discussed in “Possible linkage between the long-eccentricity marine carbon cycle and the deep-Pacific circulation: Western equatorial Pacific benthic foraminifera evidences of the last 4Ma” [1], which provide a series of Plio-Pleistocene records of the western equatorial Pacific serving for regional and global comparisons of changes in the deep Pacific water mass properties and circulation.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

*Corresponding author.
E-mail address: hwdang@tongji.edu.cn (H. Dang).

DOI of original article: https://doi.org/10.1016/j.marmicro.2019.101797.

https://doi.org/10.1016/j.dib.2019.105020

2352-3409/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data description

The dataset contains two datasheets, one named “benthic isotopes” and the other “benthic species”. The first one contains the data on stable carbon and oxygen isotopic compositions of the benthic foraminifera. The second demonstrates the data on sediment weight, coarse fraction and the counts of the selected benthic foraminifera species/genus. More detailed information are given below.

Specifications Table
Subject
Specific subject area
Type of data
How data were acquired
Data format
Parameters for data collection
Description of data collection
Data source location
Data accessibility
Related research article
Value of the Data

1. Data description

The dataset contains two datasheets, one named “benthic isotopes” and the other “benthic species”. The first one contains the data on stable carbon and oxygen isotopic compositions of the benthic foraminifera. The second demonstrates the data on sediment weight, coarse fraction and the counts of the selected benthic foraminifera species/genus. More detailed information are given below.

Datasheet 1. Benthic isotopes:

- **Column A-E**: basic information about the sample, including: Expedition (A), Site (B), Hole (C), Core (D), and Section (E).
- **Column F–I**: information about the sample depth, column F and G give the sample depth range in the Section, and column H and I give the sample depth at Site U1489 in the depth scale of CSF (H) and CCSF (I).
- **Column J–AM**: the data on δ13C, δ18O and size for selected benthic foraminifera species. In the columns of "size (mm) & note", the numbers denote the size of the measured specimens (unit: millimetre), and the note gives additional information: “frag.” means some fragmental specimens were included, “C.m + C.r” means a combination of C. mundulus and C. robertsonianus, “C.1 + C.r” means a combination of C. lobatulus and C. robertsonianus.
Datasheet 2. Benthic species:
Column A-E: basic information about the sample, including: Expedition (A), Site (B), Hole (C), Core (D), and Section (E).
Column F–I: information about the sample depth, column F and G give the sample depth range in the Section, and column H and I give the sample depth at Site U1489 in the depth scale of CSF (H) and CCSF (I).
Column J–L: data on dry bulk weight, dry coarse fraction weight (particles larger than 0.063 mm) and the coarse fraction (%), units for the weights are in gram.
Column M–Q: data on the counts of the selected benthic foraminifera species/genus, *F. favus*, *C. wuellerstorfi*, *C. mundulus*, *Cibicidoides* and *Uvigerina*.

2. Experimental design, materials, and methods

2.1. Experimental design

We selected benthic foraminifera taxa of different geochemical characteristics and environmental preference to investigate paleoceanographic changes including *Cibicidoides*, *Uvigerina* and *Favocassidulina favus*. *Cibicidoides* and *Uvigerina* are widely used in paleoceanographic reconstructions particularly for the stable oxygen and carbon isotopes, and they have major differences in oxygen tolerance range and depth preference in sediment [2–4]. *Favocassidulina favus* is selected as it characterizes the southern-sourced deep Pacific waters over the Ontong-Java Plateau and in the South China Sea [5–7], and the past variations in its relative abundance were emblematic of changes in the contribution of Circumpolar Deep Waters [7–10].

2.2. Materials

The upper ~84 m sediment succession from four holes drilled on Site U1489 by the IODP Expedition 363 [11] was sampled every ~50 cm for foraminifera sieving and washing. The samples, which are 2-cm-thick half-round, are taken from the working half of the IODP cores. The sediment cores are reposited in the IODP Gulf Coast Repository, Texas A&M University, College Station, USA. The acquired foraminifera samples and remnant sediment samples of this work are stocked at State Key Laboratory of Marine Geology, Tongji University, Shanghai, China.

2.3. Methods

1. Sediment Treatments. The sediment samples were dried in an oven at 55 °C for over 24 hours, and then weighed for dry bulk weight. The dried samples were sieved and washed in a 63-μm sieve, and the coarser particles (>0.063 mm) were collected and dried in an oven at 55 °C for over 24 hours, and weighted afterwards. The percent ratio between the coarser particle weight and dry bulk weight is used as the proxy of coarse fraction content (CF%).
2. Clean and intact benthic foraminifera shells of selected taxa were picked and counted under a microscope from the >0.150 mm size fraction.
3. About 2–5 specimens of *Cibicidoides* (0.5–0.7 mm size, mainly *C. mundulus*) and *Uvigerina* (0.7–0.9 mm size, mainly *U. peregrina*) were picked for stable carbon and oxygen isotope measurements. The specimens were gently cracked and the fragment materials (about 0.10 mg) were cleaned with deionized water and methanol (>99.7%) in an ultrasonic bath, and then dried at 60 °C. The samples were reacted with H₃PO₄ in a Kiel-IV carbonate device at 70 °C to generate CO₂. The gaseous samples were finally analysed by a Finnigan MAT253 mass spectrometer. The stable isotope analyses were monitored by China national carbonate standard GBW04405 [12], and converted to VPDB standard via NBS19. Long-term replicate runs on GBW04405 show standard deviations of 0.07‰ (1 σ) for δ¹⁸O and 0.05‰ (1σ) for δ¹³C [13].
4. The benthic foraminifera δ18O record is used to establish the age-model of the upper ~84 m sediment successions at Site U1489, with the aid of paleo-magnetism tie-points (shipboard measurements, Ref. 11).

Acknowledgments

This research used samples provided by the International Ocean Discovery Program (IODP). The authors thank all that participated in the IODP Expedition 363 and the Sampling Party for making this work possible. We sincerely thank Dr. Sui Wan and Dr. Xiaolin Ma for their contribution to the design of this work, Xiaoying Jiang for her assistance in the analyses of stable isotopes, and Ce Yang and Na Zhang for their help in sample pre-treatments. This work is funded by the MOST China (2018YFE0202401), the NSF China (41606049, 41630965, 91958208 and 91858106), and the MNR China (GASI-GEOGE-04).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.105020.

References

[1] H. Dang, N. Peng, X. Ma, S. Wan, Z. Jian, Possible linkage between the long-eccentricity marine carbon cycle and the deep-Pacific circulation: western equatorial Pacific benthic foraminifera evidences of the last 4 Ma, Mar. Micropaleontol. (2019), https://doi.org/10.1016/j.marmicro.2019.101797.
[2] B.H. Corliss, Microhabitats of benthic foraminifera within deep-sea sediments, Nature 314 (1985) 435–438.
[3] K. Kaiho, Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean, Geology 22 (1994) 719–722.
[4] A.E. Rathburn, B.H. Corliss, The ecology of living (stained) deep-sea benthic foraminifera from the Sulu Sea, Paleocenography 9 (1) (1994) 87–150.
[5] R. Douglas, F. Woodruff, Deep-sea benthic foraminifera, in: C. Emiliani (Ed.), The Sea, The Oceanic Lithosphere, vol. 7, John Wiley and Sons, New York, 1980, pp. 1233–1328.
[6] S.C. Burke, Recent benthic foraminifera of the Ontong Java Plateau, J. Foraminifer. Res. 11 (1) (1981) 1–19.
[7] Z. Jian, L. Wang, Late Quaternary benthic foraminifera and deep-water paleoceanography in the South China Sea, Mar. Micropaleontol. 32 (1997) 127–154.
[8] Z. Jian, Greatly increased influence of the deep water masses in the western Pacific during the last glacial maximum, Chin. Sci. Bull. 41 (6) (1996) 496–500.
[9] S. Hess, W. Kuhnt, Neogene and Quaternary paleoceanographic changes in the southern South China Sea (Site 1143): the benthic foraminiferal record, Mar. Micropaleontol. 54 (2005) 63–87.
[10] B. Huang, N. Wang, M. Chen, J. Du, Y. Niu, Distribution of benthic foraminiferal Favocassidulina favus in western Pacific during early Quaternary and its implications, Mar. Geol. Quat. Geol. 35 (2) (2015) 111–116 (in Chinese with English abstract).
[11] Y. Rosenthal, A.E. Holbourn, D.K. Kulhanek, the expedition 363 scientists. Site U1489, in: Y. Rosenthal, et al. (Eds.), Proceedings of the International Ocean Discovery Program, vol. 363, 2018, https://doi.org/10.14379/iodp.proc.363.110.2018.
[12] State Bureau of Technical Supervision, Certified Reference Materials Catalog, People’s Republic of China, National Research Center for Certified Reference Materials, Beijing, 1995 (in Chinese).
[13] X. Cheng, B. Huang, Z. Jian, Q. Zhao, J. Tian, J. Li, Foraminiferal isotopic evidence for monsoonal activity in the South China Sea: a present-LGM comparison, Mar. Micropaleontol. 54 (1–2) (2005) 125–139.