Optimized sensing in complex scattering environments by wavefront shaping

Dorian Bouchet, Rémi Carminati, and Allard P. Mosk

1 Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, the Netherlands
2 Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France

We propose a new approach to improve the precision of optical measurements in complex scattering environments. The method is based on the minimization of the Cramér-Rao bound using the external degrees of freedom provided by wavefront shaping. As a model system, we study the localization of a subwavelength scatterer embedded in a strongly scattering medium. For a weakly scattering target, the localization precision improves with the local density of states at the target position. For a strongly scattering target, the localization precision depends on the dressed polarizability that includes the back action of the environment. This numerical study provides new insights for the control of the information content of scattered light by wavefront shaping, with broad potential applications in sensing, imaging, and nanoscale engineering.

Performing precise measurements in complex environments using wave scattering is a widespread problem in many fields, including material and life sciences. For instance, in nanofabrication, it is essential to control the manufacturing of nanostructured sample and notably to localize defects in micro-electro-mechanical systems (MEMS) [1], nanoscale transistors [2] or photonic crystals [3]. In life sciences, studying the inner structure of the cell implies the localization of nanoparticles or fluorophores in scattering environments, for instance in particle tracking experiments [4]. Multiple scattering of acoustic waves or microwaves also complicates indoor localization of emitting or scattering devices [5, 6]. Yet, for many applications, characterizing complex scattering materials by solving the inverse problem is still possible thanks to the large amount of prior information available to the observer through design considerations [7, 8]. For this class of problems, defining and maximizing the information content of the data on a specific scattering object is a critical step in order to reach the best possible precision for imaging and metrology applications.

Information theory provides a definition of the precision in the estimation of a parameter (for example the position of a target) through the Cramér-Rao inequality [9]. This inequality sets a lower bound to the variance of the estimated value of the parameter, known as the Cramér-Rao lower bound (CRLB). This bound depends on different features of the physical model, including the statistics of the measurement noise, the intrinsic properties of the scattering medium as well as the illumination/detection scheme. This theoretical limit has found useful applications in the design of optical imaging setups, for instance in the context of dynamic single-molecule measurements [10], diffuse optical imaging [11] or lifetime measurements [12, 13]. The CRLB has also been proposed to define the resolution of an imaging system [14, 15]. Furthermore, the concept is widely used to assess the localization precision in super-resolution imaging techniques based on single-molecule detection [16–18]. Recently, the idea arose that the localization precision of single molecules could be improved by spatially modulating either the incident or the emitted field to minimize the CRLB [19, 20]. In parallel, advanced wavefront protocols were developed to control wave propagation in strongly scattering media [21], notably enabling the focusing of light waves inside materials [22–27]. It is plausible that the localization precision for a hidden target can be improved by focusing light upon it, however this situation has not been rigorously analyzed so far.

In this Letter, we introduce an approach to identify wavefronts that are optimally shaped for the estimation of any parameter characterizing a complex scattering material. As a model system, we numerically study the fundamental limit in the localization precision for a subwavelength scattering target enclosed in a strongly scattering medium. We first identify wavefronts that are optimally shaped to localize the target based on far-field intensity measurements. We find out that the local environment of the target strongly influences the resulting localization precision. For a weakly scattering target (i.e., recurrent scattering between the target and the environment can be neglected), the key parameter driving the localization precision is the local density of states (LDOS), which is a fundamental quantity affecting many aspects of light-matter interaction such as spontaneous emission and thermal emission [28, 29]. For a strongly scattering target, the localization precision depends on the dressed polarizability of the scatterer, which describes the back action of the environment beyond the weak-coupling regime [30]. These results offer new insights to improve the performances of imaging and metrology techniques using wavefront shaping.

We consider a model system composed of two-dimensional scatterers arranged in a slab geometry, as represented in Fig. 1. One scatterer, located in the center of the system, is chosen as the target to be localized. The other scatterers, with random positions, define a complex scattering medium. This model of a scattering medium has been used for the description of basic problems in mesoscopic physics [31, 32], up to the regime of Anderson

*d.f.bouchet@uu.nl
localization [33, 34]. It is similar to that used in Ref. [35] to study the inverse reconstruction of the position of fluorophores. In order to constrain the problem, we assume that only the position \(\mathbf{r}_0 = (x_0, z_0) \) of the target is unknown, the goal being to estimate the two coordinates using coherent illumination at a wavelength \(\lambda = 2\pi/k \), where \(k \) is the wavenumber in vacuum. We further assume that the incident field is either a plane wave or a sum of plane waves with equal amplitude and different incidence angles, as generated in practice by a phase-only spatial light modulator (SLM). The response of the sub-wavelength scatterers is described by an electric polarizability \(\alpha \) and a scattering cross-section \(\sigma_s = k^3|\alpha|^2/4 \). We denote the polarizability of the target by \(\alpha_0 \), and take its scattering cross-section to be \(\lambda/1000 \), ensuring that this scatterer is weakly coupled to its environment. We take the polarizability of the other scatterers at resonance \((\alpha = 4i/k^2) \), which is not an essential feature of the model but allows to maximize their scattering cross-sections, and therefore to minimize the number of scatterers needed to reach the multiple-scattering regime. In order to compute the scattered field, we use the coupled dipole method (see Supplementary Section I). This method is an exact formulation of the scattering problem in the limit of scatterers much smaller than the wavelength [36]. Finally, we suppose that the light is collected by an ideal imaging system of unitary magnification, so that the average (or expected) pixel intensity as measured by a camera located in the image plane can be calculated by applying a low-pass filter to the field evaluated at \(z = L_z \).

Any measurement process is intrinsically probabilistic due to noise fluctuations that limit the precision on the determination of the position of the target in otherwise perfect conditions. Thus, the measured data must be described by a random variable \(X \). The joint probability density function \(p(X; \theta) \) of the data set, parametrized by the set of unknown parameters \(\theta \) to be estimated, is used to define the Fisher information matrix [9]

\[
[F(\theta)]_{jk} = \left\langle \left[\frac{\partial \ln p(X; \theta)}{\partial \theta_j} \right] \left[\frac{\partial \ln p(X; \theta)}{\partial \theta_k} \right] \right\rangle .
\]

Here \(\langle \ldots \rangle \) denotes the average over noise fluctuations.

While any noise statistics can be included in the formalism, we assume here that values measured on different pixels of the camera are statistically independent and follow a Poisson distribution, which corresponds to an experiment limited only by photon noise. The information matrix is then expressed by

\[
[F(\theta)]_{jk} = \sum_{i=1}^{N} \frac{1}{I_i} \left(\frac{\partial I_i}{\partial \theta_j} \right) \left(\frac{\partial I_i}{\partial \theta_k} \right), \tag{2}
\]

where \(N \) is the total number of pixels and \(I_i \) is the average value of the intensity measured by the \(i \)-th pixel. From Eq. (2), we can compute the CRLB, which bounds the error in the determination of the parameter \(\theta_j \), by

\[
C_j = \left[F^{-1}(\theta) \right]_{jj} . \tag{3}
\]

While there exists no general methodology to build an efficient estimation algorithm that reaches the CRLB, maximum likelihood estimation is the most popular approach to obtain practical estimators that are asymptotically efficient [9]. Moreover, it is possible to obtain an explicit expression of such estimator, in the limit of small parameter variations and for a large number of detected photons (see Supplementary Section II).

The CRLB can be evaluated in our model system by computing the average value of the intensity reaching the camera pixels using the coupled dipole method, and by evaluating the derivatives in Eq. (2) using a finite difference scheme. As only the coordinates of the target need to be estimated, we define \(C = (C_x, C_z) \) where \(C_x \) and \(C_z \) are the CRLB on each coordinate. For the calculations, we choose \(\lambda = 633 \text{ nm} \) and an average incident intensity \(I_0 = 10^4 \text{ photons per } \mu\text{m} \). One can then easily deduce the CRLB for other values of \(\lambda \) and \(I_0 \) by noting that the CRLB scales with \(\lambda \) and with \(I_0^{-1/2} \). In order to study the influence of multiple scattering on the precision in the estimation of the target position, we generate different random configurations of the disordered medium that we illuminate with a plane wave at normal incidence, and we study the statistical distribution of the Cramér-Rao bound, with the statistics now performed with respect to disorder. Changing the density of scatterers \(\rho_s \) allows us to modify the independent scattering (or Boltzmann) mean free path \(\ell = (\rho_s \sigma_s)^{-1} \) [37]. In Fig. 2 we show the first two moments of the CRLB distribution as a function of \(k\ell \). In the single-scattering regime \((\ell \gtrsim L_z) \), the average CRLB depends on the coordinate to be estimated \((x_0 \text{ or } z_0) \), as expected for one isolated scatterer. In contrast, for \(\ell < L_z \), the average CRLB is the same for both coordinates due to multiple scattering that restores isotropy. In this regime, the probability distribution of the CRLB follows a log-normal distribution (see Supplementary Section III), whose moments strongly depend on the scattering mean free path. We also observe that the average CRLB shows a minimum in this regime, demonstrating that on average multiple scattering improves the localization precision. Finally, when the localization length
becomes on the order of the size of the medium, the CRLB strongly increases due to the onset of Anderson localization which suppresses light transmission \[38\] (we use \(\zeta = \ell \exp(\pi k\ell/2)\) as a rough approximation of the localization length \[39\]). The CRLB provides a figure of merit that can be optimized using the external degrees of freedom provided by wavefront shaping. In order to test the optimization of information in the presence of multiple scattering, we generate 1000 configurations of the medium in the diffusive regime \((k\ell = 9.7, \text{ optical thickness } L_z/\ell = 6.5)\), assumed to be illuminated using a phase-only SLM composed of \(N_e = 64\) elements. We then minimize the CRLB using a global optimization algorithm based on simulated annealing \[40\]. The optimized field distribution weakly depends on the initial guess fed to the optimization algorithm (see Supplementary Section IV), which suggests that the obtained solutions are close to the global optimum. We show in Fig. 3 (a) and (b) the intensity around the target for a scattering medium illuminated by incident fields independently optimized for the determination of \(x_0\) and \(z_0\), respectively. The incident wavefront associated with the highest information content depends on the coordinate to be estimated, with the appearance of intensity hot spots in the vicinity of the target. We interpret the formation of these hot spots as a trade-off between maximization of the intensity and of the field gradient at the target position. Comparing the intensity \(I\) at the target position when optimizing the CRLB to the intensity \(I_{\text{max}}\) obtained after a direct optimization of the intensity on the target, we observe that the intensity ratio \(I/I_{\text{max}}\) varies from zero to one [Fig. 3 (c)]. This confirms that determining the most informative wavefront cannot be reduced to a simple optimization of the intensity at the position of the targeted scatterer. Introducing a single CRLB associated with the estimation of both coordinates \(C_{xz} = \|C\|_2^2\), we observe that optimizing the CRLB is still different from optimizing the intensity at the target position, even though the distribution becomes more skewed towards unity.

\[
d = \alpha_0 \epsilon_0 E_{\text{exc}}(r_0) + \alpha_0 k^2 S(r_0, r_0) d, \tag{4}
\]

where \(S = G - G_0\) is the difference between the Green function in the presence of the medium and the free-space Green function, and \(E_{\text{exc}}(r_0)\) is the excitation field at the target position, generated by scattering of the incident field by the other scatterers. From Eq. (4), we can define a dressed polarizability \(\tilde{\alpha} = \alpha_0 [1 - \alpha_0 k^2 S(r_0, r_0)]^{-1}\) such that

\[
d = \tilde{\alpha} \epsilon_0 E_{\text{exc}}(r_0). \tag{5}
\]

For a weakly scattering target, back action from the medium is negligible and we can write \(\tilde{\alpha} \approx \alpha_0\). Thus, in this regime, the CRLB is expected to depend mainly on the intensity of the excitation field at the target position.
and calculate the LDOS $\rho(r_0) = 2k/(\pi c) \text{Im} [G(r_0, r_0)]$ at the target position. Introducing the free-space LDOS ρ_0, the normalized LDOS at the target position is then expressed by $\rho(r_0)/\rho_0 = 1 + 4 \text{Im} [S(r_0, r_0)]$. The normalized LDOS can be calculated numerically with the coupled dipole method, using a dipole source located at r_0. As an example, we show in Fig. 4 (a) and (b) two maps of the LDOS around the target respectively associated with a high CRLB (optimized bound of $C_{zz} = 15$ nm) and a low CRLB (optimized bound of $C_{zz} = 6$ nm). We clearly observe a negative correlation between the LDOS at the target position and the CRLB, as confirmed by calculating ρ/ρ_0 and C_{zz} for 1000 configurations [Fig. 4 (c)]. This negative correlation demonstrates that the localization precision of a weak scatterer improves with the LDOS at its position. The correlation is stronger in the optimized case, with a logarithmic correlation coefficient of -0.69 as compared to a coefficient of -0.46 for the non-optimized case. Indeed, in the optimized case, the dispersion of C_{zz} is mostly due to the intrinsic electromagnetic eigenmodes of the system, while the random excitation of these modes also contributes to the dispersion of C_{zz} for the non-optimized case. Fitting a power law to numerical observations shows that the CRLB scales with $\rho^{-1/2}$, as expected from the linear relation between $|E_{exc}(r_0)|^2$ and ρ (see Supplementary Section V).

For a strongly scattering target that recurrently scatters the field, the interaction between the target and its environment has to be treated beyond the weak-coupling approximation. To investigate this regime, we set the polarizability of the target on resonance ($\alpha_0 = 4i/k^2$). The induced dipole depends on the dressed polarizability $\tilde{\alpha}$, which now exhibits a pole for $\alpha_0 k^2 S(r_0, r_0) = 1$. As a result, we can expect the intensity scattered by the target to scale with $|\tilde{\alpha}|^2$ and the CRLB to scale with $|\tilde{\alpha}|^{-1}$. This is confirmed by calculating $|\tilde{\alpha}/\alpha_0|^2$ and C_{zz} for 1000 configurations, as shown in Fig. 5. Indeed, we observe that the numerical results can roughly be modeled with a power law of exponent $-1/2$. As in the case of a weakly scattering target, we also observe that the correlation is stronger in the optimized case, with a logarithmic correlation coefficient of -0.77 as compared to a coefficient of -0.51 for the non-optimized case.

In summary, we have introduced a rigorous framework to improve the precision of optical measurements in strongly scattering environments using wavefront shaping. Using information theory and the concept of CRLB, we have determined the conditions under which the localization of a dipole scatterer can be optimized, using the degrees of freedom offered by wavefront shaping. We have demonstrated that optimizing the CRLB for the determination of the target coordinates is not equivalent to focusing on the target. Yet, on average, the CRLB is lower for higher intensities at the dipole position. For a weakly scattering target, we have shown that the lower bound on the localization precision depends on the LDOS at the target position. In contrast, the localization precision is driven by the dressed polarizability when recurrent scattering is significant. The general approach, based on the minimization of the CRLB, can be easily adapted to any method based on electromagnetic simulation, and therefore could have important applications in computational imaging. First, it allows one to optimize the inci-

FIG. 4: Map of the LDOS for configurations with (a) a high CRLB (optimized bound of $C_{zz} = 15$ nm) and (b) a low CRLB (optimized bound of $C_{zz} = 6$ nm). (c) Left: CRLB as a function of the normalized LDOS. The black line is a fit to the optimized data by a power law with an exponent of $-1/2$ (a linear regression gives an exponent of -0.46). Right: observed distribution of the CRLB. Log-normal distributions (solid lines) are fitted to numerical observations (data points).

FIG. 5: Left: CRLB for a strongly scattering target as a function of the normalized effective scattering strength $|\tilde{\alpha}/\alpha_0|^2$. The black line is a fit to the optimized data by a power law with an exponent of $-1/2$ (a linear regression gives an exponent of -0.36). Right: observed distribution of the CRLB. Log-normal distributions (solid lines) are fitted to numerical observations (data points).
dent field, and/or the scattering material, to improve the estimation precision for a specific set of parameters. Second, it provides a theoretical benchmark that can be used to assess the performance of estimation algorithms, and notably algorithms based on machine learning [41, 42]. Finally, we emphasize that the results are not limited to light waves, and apply to all kinds of waves, for instance to assess and optimize the localization precision of acoustic sources [43] or in microwave scattering experiments [44].

Acknowledgments

The authors thank Sergey Skipetrov and Dries van Oosten for a critical reading of the manuscript, Sanli Faez for helpful discussions and Cees de Kok for IT support. This work was supported by the Netherlands Organization for Scientific Research (Vici 68047618 and Perspective P16-08) and by LABEX WIFI (Laboratory of Excellence ANR-10-LABX-24) within the French Program “Investments for the Future” under reference ANR-10-IDEX-0001-02 PSL*.

[1] W. Osten, Optical Inspection of Microsystems (CRC Press, 2018).
[2] E. Vogel, Nature Nanotechnology 2, 25 (2007).
[3] A. F. Koenderink, A. Lagendijk, and W. L. Vos, Physical Review B 72, 153102 (2005).
[4] P. Zijlstra and M. Orrit, Reports on Progress in Physics 74, 106401 (2011).
[5] G. Deak, K. Curran, and J. Condell, Computer Communications 35, 1939 (2012).
[6] J. Xiao, Z. Zhou, Y. Yi, and L. M. Ni, ACM Comput. Surv. 49, 25:1 (2016).
[7] A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, et al., Nature Materials 11, 455 (2012).
[8] T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Bellebir, and A. Sentenac, Optica 3, 609 (2016).
[9] S. Kay, Fundamentals of Statistical Processing, Volume I: Estimation Theory (Prentice Hall, 1993).
[10] L. P. Watkins and H. Yang, Biophysical Journal 86, 4015 (2004).
[11] M. Boffety, M. Allain, A. Sentenac, M. Massonneau, and R. Carminati, Optics Letters 33, 2290 (2008).
[12] M. Köllner and J. Wolfrum, Chemical Physics Letters 200, 199 (1992).
[13] D. Bouchet, V. Krachmalnicoff, and I. Izeddin, Optics Express 27, 21239 (2019).
[14] S. Ram, E. S. Ward, and R. J. Ober, Proceedings of the National Academy of Sciences 103, 4457 (2006).
[15] A. Sentenac, C.-A. Guérin, P. C. Chaumet, F. Drsek, H. Giovannini, N. Bertaux, and M. Holschneider, Optics Express 15, 1340 (2007).
[16] R. J. Ober, S. Ram, and E. S. Ward, Biophysical Journal 86, 1185 (2004).
[17] K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, Nature Methods 7, 377 (2010).
[18] H. Deschout, F. C. Zanacchi, M. Mlodzianoski, A. Diaspro, J. Bewersdorf, S. T. Hess, and K. Braeckmans, Nature Methods 11, 253 (2014).
[19] Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, Physical Review Letters 113, 133902 (2014).
[20] F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynná, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, Science 355, 606 (2017).
[21] A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nature Photonics 6, 283 (2012).
[22] I. M. Vellekoop, E. G. v. Putten, A. Lagendijk, and A. P. Mosk, Optics Express 16, 67 (2008).
[23] C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, Optics Express 18, 12283 (2010).
[24] Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, and Z. Yaqoob, Physical Review Letters 111, 243901 (2013).
[25] C. Ma, X. Xu, Y. Liu, and L. V. Wang, Nature Photonics 8, 931 (2014).
[26] P. Ambichl, A. Brandstötter, J. Böhm, M. Kühmayer, U. Kuhl, and S. Rotter, Physical Review Letters 119, 033903 (2017).
[27] H. Ruan, T. Haber, Y. Liu, J. Brake, J. Kim, J. M. Berlin, and C. Yang, Optica 4, 1337 (2017).
[28] W. L. Barnes, Journal of Modern Optics 45, 661 (1998).
[29] R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, Surface Science Reports 70, 1 (2015).
[30] D. Bouchet and R. Carminati, JOSA A 36, 186 (2019).
[31] P. de Vries, D. V. van Cooeorden, and A. Lagendijk, Reviews of Modern Physics 70, 447 (1998).
[32] S. Rotter and S. Gigan, Reviews of Modern Physics 89, 015005 (2017).
[33] A. Cazé, R. Pierrat, and R. Carminati, Physical Review Letters 111, 053901 (2013).
[34] S. E. Skipetrov and I. M. Sokolov, Physical Review Letters 112, 023905 (2014).
[35] N. Irishina, M. Moscoso, and R. Carminati, Optics Letters 37, 951 (2012).
[36] M. Lax, Physical Review 85, 621 (1952).
[37] A. Lagendijk and B. A. van Tiggelen, Physics Reports 270, 143 (1996).
[38] D. Vollhardt and P. Wölfle, Physical Review B 22, 4666 (1980).
[39] B. C. Gupta and Z. Ye, Physical Review E 67, 036606 (2003).
[40] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science 220, 671 (1983).
[41] R. Horstmeyer, R. Y. Chen, B. Kappes, and B. Judkewitz, ArXiv:1709.07223 (2017).
[42] G. Barbastathis, A. Ozcan, and G. Situ, Optica 6, 921 (2019).
[43] T. Kundu, Ultrasonics 54, 25 (2014).
[44] P. del Hougne, M. F. Imani, M. Fink, D. R. Smith, and G. Lerosey, Physical Review Letters 121, 063901 (2018).
1. ELECTRODYNAMICS SIMULATIONS BASED ON THE COUPLED DIPOLE METHOD

In this section, we describe the numerical approach used to compute the average value of the intensity in the image plane. The model system is a set of N_s infinite cylinders, confined within an area of transverse dimension $L_z = 10 \lambda$ and with a larger longitudinal dimension ($L_x = 50 \lambda$) in order to minimize finite-size effects. A small exclusion radius is defined around the scatterers to prevent them from overlapping. The system is illuminated by an incident field polarized along the longitudinal axis of the cylinders. The scalar wave equation is then solved using a numerical approach based on the coupled dipole method [1], which is an exact formulation in the dipole method [1], which is an exact formulation in the linear approximation. For 2D systems, the free-space Green function is [2]

$$ G_0(r, r') = \frac{j}{4} H_0^{(1)}(k|r - r'|), \quad (S2) $$

where $H_0^{(1)}$ is the Hankel function of the first kind of order 0. Equation (S1) defines a set of N_s linear equations that are solved using standard computational routines. The field at any position r can then be calculated using

$$ E(r) = E_0(r) + k^2 \sum_{n=0}^{N_s-1} G_0(r, r_n) \alpha_n E(r_n), \quad (S3) $$

Finally, the intensity measured by the camera is calculated by applying a low-pass filter to the field evaluated at $z = L_z$. Low-pass filtering of the field is performed by convolving it with the product of the cardinal sine function and a Blackman window. In this way, we filter the frequencies higher than $K_{max} = k NA$ with a transition bandwidth that we set to be on the order of $K_{max}/10$. The numerical aperture of the detection objective is set to NA = 1 in the simulations. Assuming that the imaging system has a unitary magnification and choosing a small pixel dimension ($\Delta x = \lambda/10$), the average value for the i-th pixel of the camera simply reads $I_i \simeq \Delta x |E_i|^2$ where E_i is the value of the filtered field at the i-th sampling point.

2. MINIMUM VARIANCE UNBIASED ESTIMATOR FOR THE LINEAR MODEL

In this section, we show that we can obtain an explicit expression for an unbiased estimator that reaches the CRLB, in the limit of small parameter variations and for a large number of detected photons. Let us assume that the measured data X can be described by a linear model such as

$$ X = I + Jd + w, \quad (S4) $$

where we introduced the intensity vector $I = (I_1(\theta_0), \ldots, I_N(\theta_0))^T$, the displacement vector $d = (\Delta \theta_1, \ldots, \Delta \theta_K)^T$, the noise vector w and the Jacobian matrix J expressed by

$$ J = \begin{pmatrix} \partial I_1/\partial \theta_1 & \partial I_1/\partial \theta_2 & \cdots & \partial I_1/\partial \theta_K \\ \partial I_2/\partial \theta_1 & \partial I_2/\partial \theta_2 & \cdots & \partial I_2/\partial \theta_K \\ \vdots & \vdots & \ddots & \vdots \\ \partial I_N/\partial \theta_1 & \partial I_N/\partial \theta_2 & \cdots & \partial I_N/\partial \theta_K \end{pmatrix}. \quad (S5) $$

We assume that the intensity vector I and the Jacobian matrix J are known. In practice, this can be achieved with a calibration step, which consists of measuring the intensity and its derivative at θ_0. Moreover, we assume that the noise vector w follows a normal distribution $N(0, C)$, where C is the covariance matrix. The normal distribution is indeed a good approximation of the Poisson distribution for a large number of detected photons. Only diagonal terms of the covariance matrix are non-zero, as events detected by different pixels are statistically independent. Thus, the covariance matrix is expressed by

$$ C = \begin{pmatrix} I_1(\theta_0) & 0 & \cdots & 0 \\ 0 & I_2(\theta_0) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & I_N(\theta_0) \end{pmatrix}. \quad (S6) $$

Supplementary information

Dorian Bouchet, Rémi Carminati, and Allard P. Mosk

1 Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, the Netherlands
2 Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
Under these assumptions, the minimum variance unbiased estimator for \(\mathbf{d} \) reaches the Cramér-Rao bound [3], and is given by

\[
\hat{\mathbf{d}} = \left(\mathbf{J}^\top \mathbf{C}^{-1} \mathbf{J} \right)^{-1} \mathbf{J}^\top \mathbf{C}^{-1} (\mathbf{X} - \mathbf{I}) .
\]
(S7)

This can be written in the following form:

\[
\hat{\mathbf{d}} = \mathcal{F}^{-1}(\theta_0) \sum_{i=1}^{N} \nabla_\theta I_i \left[\frac{X_i - I_i(\theta_0)}{I_i(\theta_0)} \right] ,
\]
(S8)

where we introduced the Fisher information matrix \(\mathcal{F}(\theta_0) \) and the differential operator \(\nabla_\theta = (\partial/\partial \theta_1, \ldots, \partial/\partial \theta_K)^\top \). Finally, note that, since only maximum likelihood estimators can be unbiased and efficient, then the estimator expressed by Eq. (S8) is necessarily the maximum likelihood estimator.

3. LOG-NORMAL DISTRIBUTION OF THE CRAMÉR-RAO LOWER BOUND

In this section, we show that the CRLB follows a log-normal distribution in the multiple-scattering regime. Indeed, the probability density function followed by the CRLB is correctly fitted by a log-normal distribution for a wide range of scattering mean free path in the multiple scattering regime (Fig. S1), thereby justifying to calculate the geometric moments of the distributions rather than the arithmetic ones. As mentioned in the manuscript, decreasing \(k\ell \) leads to a broadening of the density function, as well as an increase of the average CRLB.

![PDF](image.png)

FIG. S1: Probability density functions followed by the CRLB on the coordinate \(x_0 \) (data points) and \(z_0 \) (crosses) for different values of the normalized mean free path. Solid lines are log-normal fits to the data.

4. CONVERGENCE OF THE OPTIMIZATION ALGORITHM

In this section, we show that the values of the optimized CRLB weakly depend on the initial guess fed to the optimization algorithm, and that the optimized field distributions are strongly correlated. The algorithm that we implemented is based on simulated annealing, which is an adaptation of the Metropolis–Hastings algorithm for approximating the global optimum of a cost function [4]. The initial guess for the phases of the \(N_e \) elements of the SLM is randomly chosen, and the CRLB is iteratively optimized using approximately \(700 \times N_e \) function evaluations. At the end of each optimization, we systematically perform a final optimization step using a limited-memory BFGS algorithm [5].

In order to test the performance of the algorithm, we use the configuration displayed in the manuscript, in the diffusive regime (\(k\ell = 9.8 \)). We successively minimize \(C_x \) and \(C_z \) using 64 SLM elements, and we repeat this optimization procedure for 100 randomly generated initial guesses of the input phases. We can assess the dispersion of the resulting distributions (Fig. S2, upper panels) using the 1-sigma interval defined as \([\mu_g/\sigma_g ; \mu_g \sigma_g] \) where \(\mu_g \) and \(\sigma_g \) are respectively the geometric mean and standard deviation of the distribution. The 1-sigma intervals are \([5.698 \text{ nm}; 5.646 \text{ nm}] \) for the optimization of \(C_x \) and \([3.646 \text{ nm}; 3.651 \text{ nm}] \) for the optimization of \(C_z \). The dispersion of these distributions is small as compared to the dispersion of the distribution observed when optimizing the CRLB for each coordinate over 1000 different random configurations, with a 1-sigma interval equal to \([3.412 \text{ nm}; 8.425 \text{ nm}] \).

![Correlation](image.png)

FIG. S2: Field correlation coefficient as a function of the optimized value of the CRLB for \(x_0 \) (left panel) and \(z_0 \) (right panel). The histograms show the distribution of the optimal value found by the optimization algorithm for 100 different initial guesses. For clarity, three outliers are not shown in the distribution of \(C_z \). The CRLB for these outliers is 3.678 nm, 3.709 nm and 3.738 nm.

In order to determine to what extent the optical modes that are excited are the same for the different solutions, we take the best solution or each coordinate as a reference and we calculate the amplitude of the correlation coefficient for the optimized fields at \(z = L_z \) (Fig. S2, bottom panels). The fields associated with the lowest CRLB are highly correlated with the reference field, with a correlation coefficient close to unity. Note that the step-like behavior of the correlation coefficient reflects the possibility for the algorithm to get trapped into a few local optima. Nevertheless, we can see that all the solutions are...
strongly correlated with the reference field, with a correlation coefficient of at least 0.96. This indicates that, regardless of the initial guess, the optimization algorithm converges towards similar fields distributions.

5. AVERAGE INTENSITY ENHANCEMENT AT THE TARGET POSITION

When optimizing \(N_e = 64 \) elements, we showed in the manuscript that the CRLB scales with \(\rho^{-1/2} \). This is explained by an enhancement of the excitation intensity \(I_{\text{exc}} = |E_{\text{exc}}(r_0)|^2 \) at the target position for large LDOS. Indeed, we show in Fig. S3 that the average intensity enhancement at the position of the target scales with the LDOS. Thus, for shot-noise limited measurements, the elements of the Fisher information matrix also scale with the LDOS, explaining the \(\rho^{-1/2} \) dependence of the CRLB.

![Figure S3: Enhancement of the excitation intensity at the position of the target as a function of the normalized LDOS for \(k\ell = 9.7 \) when optimizing 64 SLM elements. The black line is a fit to the optimized data by a power law, with an exponent equal to 1.]

\[[1] \text{M. Lax, Physical Review} \text{ 85}, 621 (1952). \]
\[[2] \text{P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I} \text{ (McGraw-Hill Book Company, 1953).} \]
\[[3] \text{S. Kay, Fundamentals of Statistical Processing, Volume I: Estimation Theory} \text{ (Prentice Hall, 1993).} \]
\[[4] \text{S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science} \text{ 220}, 671 (1983). \]
\[[5] \text{R. Byrd, P. Lu, J. Nocedal, and C. Zhu, SIAM Journal on Scientific Computing} \text{ 16}, 1190 (1995). \]