The Complexity of Sparse Tensor PCA

Davin Choo ¹ Tommaso D’Orsi ²

¹National University of Singapore

²ETH Zürich
Motivating example

Figure: $x = \left[\frac{1}{\sqrt{5}}, -\frac{1}{\sqrt{5}}, 0, \ldots, 0, -\frac{1}{\sqrt{5}}, 0, \ldots, 0, -\frac{1}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}}, 0, \ldots, 0 \right]^{\top}$.

Supp(x) = \{1, 2, 9, 14, 16\}. Noise $W \in \mathbb{R}^{20 \times 20}$ has i.i.d. $N(0, 1)$ entries.
Motivating example

\[Y = W + \lambda xx^T \]

\[Y = W + 16xx^T \]

\[Y = W + 32xx^T \]

Figure: Observation \(Y = W + \lambda xx^T \) under different signal strengths \(\lambda \in \{1, 16, 32\} \). Colours are rescaled to emphasize relative values.
Sparse tensor PCA model (Simplified)

Observe: Tensor $Y = W + \lambda x^\otimes p$, for $p \geq 2$
- W is order p tensor with i.i.d. $N(0,1)$ entries
- Signal x is flat, k-sparse, unit length

Approximate recovery: Find \hat{x} such that $|\langle x, \hat{x} \rangle| \gg 1 - o(1)$
Observe: Tensor $Y = W + \lambda x \otimes^p$, for $p \geq 2$

- W is order p tensor with i.i.d. $N(0, 1)$ entries
- Signal x is flat, k-sparse, unit length

Approximate recovery: Find \hat{x} such that $|\langle x, \hat{x} \rangle| \gg 1 - o(1)$

Extensions (briefly discussed later)

- Approximately flat signals
- Multiple spikes
- General tensor spikes

Remark: See paper for references (no citations for cleaner slides)
Sparse (Wigner) PCA: $p = 2, \ k \leq n$

- Observe tensor $Y = W + \lambda xx^\top \in \mathbb{R}^{n \times n}$
- x is k-sparse ($|\text{supp}(x)| = k$) and unit length ($\|x\|_2 = 1$)
Sparse (Wigner) PCA: $p = 2, k \leq n$

- Observe tensor $\mathbf{Y} = \mathbf{W} + \lambda \mathbf{x} \mathbf{x}^\top \in \mathbb{R}^{n \times n}$
- \mathbf{x} is k-sparse ($|\text{supp}(\mathbf{x})| = k$) and unit length ($\|\mathbf{x}\|_2 = 1$)
Sparse (Wigner) PCA: $p = 2, k \leq n$

- Observe tensor $\mathbf{Y} = \mathbf{W} + \lambda \mathbf{x} \mathbf{x}^T \in \mathbb{R}^{n \times n}$
- \mathbf{x} is k-sparse ($|\text{supp}(\mathbf{x})| = k$) and unit length ($\|\mathbf{x}\|_2 = 1$)
Sparse (Wigner) PCA: \(p = 2, \ k \leq n \)

- Observe tensor \(Y = W + \lambda xx^\top \in \mathbb{R}^{n \times n} \)
- \(x \) is \(k \)-sparse (\(|\text{supp}(x)| = k \)) and unit length (\(\|x\|_2 = 1 \))
Sparse (Wigner) PCA: \(p = 2, \ k \leq n \)

- Observe tensor \(Y = W + \lambda xx^T \in \mathbb{R}^{n \times n} \)
- \(x \) is \(k \)-sparse (\(|\text{supp}(x)| = k \)) and unit length (\(\|x\|_2 = 1 \))

- \(\sqrt{k \log \frac{n}{k}} \quad k \sqrt{\log \frac{n}{k^2}} \quad k \sqrt{\log n} \quad \sqrt{n} \)

- Efficient algorithms when \(\sqrt{k} \ll \lambda \ll \min\{k, \sqrt{n}\} \)?
Sparse (Wigner) PCA: $p = 2, \ k \leq n$

- Observe tensor $\mathbf{Y} = \mathbf{W} + \lambda \mathbf{x} \mathbf{x}^\top \in \mathbb{R}^{n \times n}$
- \mathbf{x} is k-sparse ($|\text{supp}(\mathbf{x})| = k$) and unit length ($\|\mathbf{x}\|_2 = 1$)

Efficient algorithms when $\sqrt{k} \ll \lambda \ll \min\{k, \sqrt{n}\}$?

Unlikely due to Sum-of-Squares (SoS) lower bound
Tensor PCA: $p \geq 2$, $k = n$

- Observe $Y = W + \lambda x^{\otimes p} \in \mathbb{R}^{n \otimes p}$
- Signal x is unit length ($\|x\|_2 = 1$)
- Remark: Computing $\max_{\|x\|=1} \langle Y, x^{\otimes p} \rangle$ is NP-hard for $p \geq 3$
Tensor PCA: $p \geq 2$, $k = n$

- Observe $Y = W + \lambda x^\otimes p \in \mathbb{R}^{n \times p}$
- Signal x is unit length ($\|x\|_2 = 1$)
- Remark: Computing $\max_{\|x\|=1} \langle Y, x^\otimes p \rangle$ is NP-hard for $p \geq 3$
Tensor PCA: \(p \geq 2, \ k = n \)

- Observe \(Y = W + \lambda x \otimes^p \in \mathbb{R}^{n \otimes^p} \)
- Signal \(x \) is unit length (\(\| x \|_2 = 1 \))
- Remark: Computing \(\max_{\| x \| = 1} \langle Y, x \otimes^p \rangle \) is NP-hard for \(p \geq 3 \)
Tensor PCA: $p \geq 2, \ k = n$

- Observe $Y = W + \lambda x^{\otimes p} \in \mathbb{R}^{n \otimes p}$
- Signal x is unit length ($\|x\|_2 = 1$)
- Remark: Computing $\max_{\|x\|=1} \langle Y, x^{\otimes p} \rangle$ is NP-hard for $p \geq 3$

- Efficient algorithms when $\sqrt{n} \ll \lambda \ll n^{p/4}$?
Tensor PCA: $p \geq 2$, $k = n$

- Observe $Y = W + \lambda x \otimes p \in \mathbb{R}^{n \times p}$
- Signal x is unit length ($\|x\|_2 = 1$)
- Remark: Computing $\max_{\|x\|=1} \langle Y, x \otimes p \rangle$ is NP-hard for $p \geq 3$

Information-theoretically impossible

Exhaustive search works

SoS algorithm

Tensor unfolding

Efficient algorithms when $\sqrt{n} \ll \lambda \ll n^{p/4}$?

Unlikely due to Sum-of-Squares (SoS) lower bound
Setup

Sparse tensor PCA (single spike)

Observe tensor \(Y = W + \lambda x \otimes p \)

- \(W \) is order \(p \) tensor with i.i.d. \(N(0, 1) \) entries
- Signal \(x \) is flat, \(k \)-sparse, unit length

Goal: Find \(\hat{x} \) such that \(|\langle x, \hat{x} \rangle| \gg 1 - o(1) \)
Sparse tensor PCA (single spike)

Observe tensor $Y = W + \lambda x \otimes p$

- W is order p tensor with i.i.d. $N(0, 1)$ entries
- Signal x is flat, k-sparse, unit length

Goal: Find \hat{x} such that $|\langle x, \hat{x} \rangle| \gg 1 - o(1)$

Simplifying assumptions

- We will ignore some technical preprocessing steps
- We will briefly discuss how we handle some extensions at the end such as the case where there are multiple planted signals
A parametric recovery algorithm

Observe tensor \(Y = W + \lambda x \otimes^p \); \(x \) is \(k \)-sparse, flat and unit length

Recovery algorithm

Let \(1 \leq t \leq k \) be a computational parameter. Suppose

\[
\lambda \gtrsim \sqrt{t \left(\frac{k}{t} \right)^p \log n}.
\]

Then, there exists an algorithm that runs in \(O(pn^{p+t}) \) time and, with probability 0.99, outputs the support of \(x \).
A parametric recovery algorithm

Observe tensor $Y = W + \lambda x \otimes^p$; x is k-sparse, flat and unit length

Recovery algorithm
Let $1 \leq t \leq k$ be a computational parameter. Suppose

$$\lambda \gtrsim \sqrt{t \left(\frac{k}{t} \right)^p \log n}.$$

Then, there exists an algorithm that runs in $O(pn^{p+t})$ time and, with probability 0.99, outputs the support of x.

Extreme values of t

- $t = 1 \Rightarrow$ Polynomial running time, $\lambda \gtrsim \sqrt{k^p \log n}$
- $t = k \Rightarrow$ Exponential running time, $\lambda \gtrsim \sqrt{k \log n}$
A parametric recovery algorithm

Observe tensor $Y = W + \lambda x \otimes^p$; x is k-sparse, flat and unit length

Recovery algorithm

Let $1 \leq t \leq k$ be a computational parameter. Suppose

$$\lambda \gtrsim \sqrt{t \left(\frac{k}{t} \right)^p \log n}.$$

Then, there exists an algorithm that runs in $O(pn^{p+t})$ time and, with probability 0.99, outputs the support of x.

Extreme values of t

- $t = 1 \Rightarrow$ Polynomial running time, $\lambda \gtrsim \sqrt{k^p \log n}$
- $t = k \Rightarrow$ Exponential running time, $\lambda \gtrsim \sqrt{k \log n}$

Remark: To obtain \hat{x}, run an existing tensor PCA algorithm on the smaller subtensor defined by the support of x.
Limited brute force

- Define $U_t = \left\{ u \in \left\{ -\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}} \right\} : |\text{supp}(u)| = t \right\}$
Limited brute force

- Define \(U_t = \left\{ u \in \left\{ -\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}} \right\} : |\text{supp}(u)| = t \right\} \)
- For any \(u \in U_t \),
 - Since \(Y = W + \lambda x^\otimes p \), \(\langle Y, u^\otimes p \rangle = \langle W, u^\otimes p \rangle + \lambda \langle u, x \rangle^p \)
Limited brute force

- Define $U_t = \left\{ u \in \left\{-\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}} \right\} : |\text{supp}(u)| = t \right\}$
- For any $u \in U_t$,
 - Since $Y = W + \lambda x \otimes^p$, $\langle Y, u \otimes^p \rangle = \langle W, u \otimes^p \rangle + \lambda \langle u, x \rangle^p$
 - Since W is Gaussian tensor, $|\langle W, u \otimes^p \rangle| \leq O(\sqrt{t \log n})$
Limited brute force

- Define \(U_t = \{ u \in \{-\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}}\} : |\text{supp}(u)| = t \} \)
- For any \(u \in U_t \),
 - Since \(Y = W + \lambda x \otimes^p \), \(\langle Y, u \otimes^p \rangle = \langle W, u \otimes^p \rangle + \lambda \langle u, x \rangle^p \)
 - Since \(W \) is Gaussian tensor, \(|\langle W, u \otimes^p \rangle| \leq O(\sqrt{t \log n}) \)
 - If \(|\text{supp}(u) \cap \text{supp}(x)| = t \), then
 \[
 \langle Y, u \otimes^p \rangle \geq \lambda \cdot \left(\frac{t}{k}\right)^{\frac{p}{2}} - O(\sqrt{t \log n})
 \]
Limited brute force

- Define $U_t = \left\{ u \in \left\{ -\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}} \right\} : |\text{supp}(u)| = t \right\}$

- For any $u \in U_t$,
 - Since $Y = W + \lambda x \otimes p$, $\langle Y, u \otimes p \rangle = \langle W, u \otimes p \rangle + \lambda \langle u, x \rangle^p$
 - Since W is Gaussian tensor, $|\langle W, u \otimes p \rangle| \leq O(\sqrt{t \log n})$
 - If $|\text{supp}(u) \cap \text{supp}(x)| = t$, then
 \[
 \langle Y, u \otimes p \rangle \geq \lambda \cdot \left(\frac{t}{k} \right)^{\frac{p}{2}} - O(\sqrt{t \log n})
 \]
 - If $|\text{supp}(u) \cap \text{supp}(x)| < (1 - \epsilon) \cdot t$, then
 \[
 \langle Y, u \otimes p \rangle \leq \lambda \cdot (1 - \epsilon)^p \cdot \left(\frac{t}{k} \right)^{\frac{p}{2}} + O(\sqrt{t \log n})
 \]
Limited brute force

- Define $U_t = \left\{ u \in \left\{-\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}}\right\} : |\text{supp}(u)| = t \right\}$

- For any $u \in U_t$,
 - Since $Y = W + \lambda x \otimes^p$, $\langle Y, u \otimes^p \rangle = \langle W, u \otimes^p \rangle + \lambda \langle u, x \rangle^p$
 - Since W is Gaussian tensor, $|\langle W, u \otimes^p \rangle| \leq O(\sqrt{t \log n})$
 - If $|\text{supp}(u) \cap \text{supp}(x)| = t$, then
 $$\langle Y, u \otimes^p \rangle \geq \lambda \cdot \left(\frac{t}{k} \right)^{\frac{p}{2}} - O(\sqrt{t \log n})$$
 - If $|\text{supp}(u) \cap \text{supp}(x)| < (1 - \epsilon) \cdot t$, then
 $$\langle Y, u \otimes^p \rangle \leq \lambda \cdot (1 - \epsilon)^p \cdot \left(\frac{t}{k} \right)^{\frac{p}{2}} + O(\sqrt{t \log n})$$

- For $v_* = \arg\max_{u \in U_t} \langle Y, u \otimes^p \rangle$,
 $$|\text{supp}(v_*) \cap \text{supp}(x)| \geq (1 - \epsilon) \cdot t$$
Limited brute force

- Define $U_t = \left\{ u \in \left\{ -\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}} \right\} : |\text{supp}(u)| = t \right\}$

- For $v_* = \arg\max_{u \in U_t} \langle Y, u^p \rangle$,
 $$|\text{supp}(v_*) \cap \text{supp}(x)| \geq (1 - \epsilon) \cdot t$$
Limited brute force

- Define $U_t = \left\{ u \in \left\{-\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}}\right\} : |\text{supp}(u)| = t \right\}$
- For $v_* = \arg\max_{u \in U_t} \langle Y, u^\otimes p \rangle$,
 $$|\text{supp}(v_*) \cap \text{supp}(x)| \geq (1 - \epsilon) \cdot t$$
- Define $\alpha \in \mathbb{R}^n$ with entries $\alpha_\ell := \langle Y, v_*^{p-1} \otimes e_\ell \rangle$, $\forall \ell \in [n]$
Limited brute force

- Define $U_t = \left\{ u \in \{-\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}}\} : |\text{supp}(u)| = t \right\}$
- For $v_* = \arg\max_{u \in U_t} \langle Y, u^\otimes p \rangle$,
 $$|\text{supp}(v_*) \cap \text{supp}(x)| \geq (1 - \epsilon) \cdot t$$
- Define $\alpha \in \mathbb{R}^n$ with entries $\alpha_\ell := \langle Y, v_*^{\otimes p-1} \otimes e_\ell \rangle$, $\forall \ell \in [n]$
- For all $\ell \in \text{supp}(x)$,
 $$\alpha_\ell = \lambda \cdot x_\ell \cdot \langle x, v_* \rangle^{p-1} + \langle W, v_*^{\otimes p-1} \otimes e_\ell \rangle \gtrsim \sqrt{\log n}$$
Limited brute force

- Define $U_t = \left\{ u \in \left\{ -\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}} \right\} : |\text{supp}(u)| = t \right\}$
- For $v_* = \arg\max_{u \in U_t} \langle Y, u \otimes^p \rangle$,
 $$|\text{supp}(v_*) \cap \text{supp}(x)| \geq (1 - \epsilon) \cdot t$$
- Define $\alpha \in \mathbb{R}^n$ with entries $\alpha_\ell := \langle Y, v_* \otimes^{p-1} \otimes e_\ell \rangle$, $\forall \ell \in [n]$
- For all $\ell \in \text{supp}(x)$,
 $$\alpha_\ell = \lambda \cdot x_\ell \cdot \langle x, v_* \rangle^{p-1} + \langle W, v_* \otimes^{p-1} \otimes e_\ell \rangle \gtrsim \sqrt{\log n}$$
- For all $\ell \notin \text{supp}(x)$ (i.e. $x_\ell = 0$),
 $$\alpha_\ell = \langle W, v_* \otimes^{p-1} \otimes e_\ell \rangle \lesssim \sqrt{\log n}$$
Limited brute force

- Define $U_t = \left\{ u \in \left\{-\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}}\right\} : |\text{supp}(u)| = t \right\}$
- For $v_* = \arg\max_{u \in U_t} \langle Y, u^\otimes p \rangle$,
 $|\text{supp}(v_*) \cap \text{supp}(x)| \geq (1 - \epsilon) \cdot t$
- Define $\alpha \in \mathbb{R}^n$ with entries $\alpha_\ell := \langle Y, v_*^{\otimes p-1} \otimes e_\ell \rangle$, $\forall \ell \in [n]$
- For all $\ell \in \text{supp}(x)$,
 $\alpha_\ell = \lambda \cdot x_\ell \cdot \langle x, v_* \rangle^{p-1} + \langle W, v_*^{\otimes p-1} \otimes e_\ell \rangle \gtrsim \sqrt{\log n}$
- For all $\ell \not\in \text{supp}(x)$ (i.e. $x_\ell = 0$),
 $\alpha_\ell = \langle W, v_*^{\otimes p-1} \otimes e_\ell \rangle \lesssim \sqrt{\log n}$
- Using v_*, the vector α acts as indicator of the support of x
Limited brute force

- Define $U_t = \left\{ u \in \left\{ -\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}} \right\} : |\text{supp}(u)| = t \right\}$
- For $v_\ast = \arg\max_{u \in U_t} \langle Y, u \otimes p \rangle$,
 \[|\text{supp}(v_\ast) \cap \text{supp}(x)| \geq (1 - \epsilon) \cdot t \]
- Using v_\ast, the vector α acts as indicator of the support of x

...
Limited brute force

• Define $U_t = \left\{ u \in \left\{-\frac{1}{\sqrt{t}}, 0, \frac{1}{\sqrt{t}}\right\} : |\text{supp}(u)| = t \right\}$

• For $v_\ast = \arg \max_{u \in U_t} \langle Y, u \otimes p \rangle$,

$$|\text{supp}(v_\ast) \cap \text{supp}(x)| \geq (1 - \epsilon) \cdot t$$

• Using v_\ast, the vector α acts as indicator of the support of x

• Relationship with known algorithms
 • When $t = 1$, this recovers the idea of diagonal thresholding (Pick out largest coordinate, one at a time)
 • When $t = k$, this is literally brute force (MLE)
Algorithmic extensions

Multiple spikes

• \(\mathbf{Y} = \mathbf{W} + \sum_{q=1}^{r} \lambda_q \mathbf{x}^{(q)} \otimes \mathbf{p} \)

• Disjoint support assumption: \(\text{supp}(x_i) \cap \text{supp}(x_j) = \emptyset \)
Algorithmic extensions

Multiple spikes

- \(\mathbf{Y} = \mathbf{W} + \sum_{q=1}^{r} \lambda_q \mathbf{x}^{(q)} \otimes \mathbf{p} \)
- Disjoint support assumption: \(\text{supp}(x_i) \cap \text{supp}(x_j) = \emptyset \)

Approximately flat \(k \)-sparse unit length signals

Fix a constant \(A \geq 1 \). For \(k \)-sparse signal \(x \),

\[
\frac{1}{A\sqrt{k}} \leq |x_\ell| \leq \frac{A}{\sqrt{k}} \quad \text{for } \ell \in \text{supp}(x)
\]
Algorithmic extensions

Multiple spikes

- \(\mathbf{Y} = \mathbf{W} + \sum_{q=1}^{r} \lambda_q \mathbf{x}^{\otimes p}_{(q)} \)

- Disjoint support assumption: \(\text{supp}(x_i) \cap \text{supp}(x_j) = \emptyset \)

Approximately flat \(k \)-sparse unit length signals

Fix a constant \(A \geq 1 \). For \(k \)-sparse signal \(x \),

\[
\frac{1}{A\sqrt{k}} \leq |x_\ell| \leq \frac{A}{\sqrt{k}} \quad \text{for} \ \ell \in \text{supp}(x)
\]

General tensor spike

Instead of just \(x^{\otimes p} \), we can allow the tensor signal to be \(x^{(1)} \otimes \ldots \otimes x^{(p)} \) involving \(1 \leq \ell \leq p \) distinct \(k \)-sparse vectors
Lower bound summary

• Given a recovery algorithm, one can distinguish whether $\lambda = 0$
Lower bound summary

- Given a recovery algorithm, one can distinguish whether $\lambda = 0$
- Computational lower bound
 - Premise: Low-deg polynomials capture efficient functions
 - Likelihood ratio test, restricted to low-degree polynomials
 - Special cases of our bounds match known sparse PCA and tensor PCA low-degree bounds
Lower bound summary

- Given a recovery algorithm, one can distinguish whether $\lambda = 0$
- Computational lower bound
 - Premise: Low-deg polynomials capture efficient functions
 - Likelihood ratio test, restricted to low-degree polynomials
 - Special cases of our bounds match known sparse PCA and tensor PCA low-degree bounds
- Information-theoretic lower bound
 - Fano’s inequality on ϵ-packing of flat k-sparse unit vectors U_k
 - Our bound is equivalent (up to constants) with recent works that study phase transition for weak recovery
Key contributions

1. A parametric multi-spike recovery algorithm for sparse tensor PCA that trades off running time with signal strength requirements
 - Given exponential time, our algorithm can recover the signal at the best known information-theoretic threshold
 - If we insist on polynomial time, our algorithm recovers the signal at the best known computational threshold

2. A computational lower bound based on low-degree polynomials and the low-degree likelihood method

3. An information-theoretic lower bound for approximate recovery