Comparison of Brachial Artery Flow-mediated Dilation in Youth with Type 1 and Type 2 Diabetes Mellitus

（若年者の１型糖尿病と２型糖尿病における血管内皮機能の比較およびその背景因子の検討）

Koji Ohsugi

大杉 康司

Pediatrics

Yokohama City University Medical Center

（Doctoral Supervisor: Shumpei Yokota, Professor）

（指導教員：横田俊平 教授）
Comparison of Brachial Artery Flow-mediated Dilation in Youth with Type 1 and Type 2 Diabetes Mellitus

（若年者の1型糖尿病と2型糖尿病における血管内皮機能の比較およびその背景因子の検討）

【背景・目的】
糖尿病の合併症は網膜症、腎症、神経障害、大血管障害が予後に影響を与える重要な因子である。脳梗塞や冠動脈疾患に代表される大血管障害は動脈硬化に起因する疾患で、糖尿病に高血圧や高脂血症を合併している場合にはさらにリスクが増す。冠動脈の狭窄の頻度は1型糖尿病、2型糖尿病ともに同年代の対象に比べ高頻度である。1型糖尿病における心血管疾患の有病率は一般非糖尿病患者に比べ10倍高いとされている。（日本小児内分泌学会, 2009）

動脈硬化における非侵襲的測定法に関しては様々な方法があるが、その指標の一つとして血流依存性血管拡張反応（Flow-mediated dilation, 以下 FMD）の有用性が報告されている（Celermajer et al., 1992）。FMDは血管内皮機能を評価する検査で、動脈硬化性疾患の早期診断の手段の一つであり、駆血前後の血管拡張径の増加率を%FMDで表すが、%FMDの低下は心血管疾患を含む大血管合併症の予測因子として注目されている（Yeboah et al., 2009; Jarvisalo et al., 2004）。1型糖尿病、2型糖尿病それぞれにおいて成人での報告同様（Verma and Anderson, 2002）、小児においても%FMDが低下し、血管内皮機能障害から動脈硬化の初期変化を起こすことが報告されている（Jin et al., 2008; Naylor et al., 2011; McGill et al., 2002）。日本人の20歳以下の%FMDのmean±SDは女性：12.3±11.7、男性：11.2±3.6であり、性差は見られなかった。20歳以下の男女合わせた%FMDのmean±SDは11.7±3.7であった。以上より20歳未満では%FMD：8以下(-1SD)を軽度低下とし、6以下(-1.5SD)を有意な低下とすることが提案されている（高谷ら, 2011）。

成人領域では2型糖尿病は、1型糖尿病と比較して、より多くの大血管合併症の危険因子を有している。一方で、糖尿病という疾患自体が大血管合併症の主要な危険因子であり、小児期発症の1型糖尿病では心血管合併症が早期に起こることが報告されている。小児期発症1型糖尿病と比較して、小児期発症2型糖尿病では細小血管合併症に関する限りその長期予後は不良であることは以前より指摘されてきたが（Yokoyama et al., 2011）。
1997）、大血管合併症に関する検討ではまだ小児領域ではまだ十分に行われていない。
当科における以前の検討において、小児期発症の1型糖尿病、2型糖尿病の両患者群で、2型糖尿病が大血管合併症に関しても1型糖尿病より危険性が高いのかどうかをplasminogen activator inhibitor-1 (PAI-1)とアディポネクチンをそれぞれ動脈硬化病変の促進と抑制のマーカーとして比較することにより検討を行った。また、対象の一部の症例において頸部超音波診断装置を用いた部位内膜中膜肥厚の計測を行い、実際の動脈硬化性変化についても検討を行った。結論として、小児期発症の症例においても2型糖尿病は1型糖尿病に比較して大血管合併症がより早期に出現、進展する可能性が示唆されている（Shiga and Kikuchi, 2010）。
そこで今回、我々は1型・2型糖尿病の各々でFMDを測定し両群間の差異を比較検討した。
さらに動脈硬化進展に重要な脂質代謝、炎症性バイオマーカーをこれらの患者群で測定し比較検討した。

【方法】
2011年1月から12月までの1年間に当科外来を受診した12歳から20歳までの合併症のない1型糖尿病患者24名（男性11名、女性13名）、2型糖尿病患者27名（男性15名、女性12名）、計51名を対象とした。対象者は全例で思春期発来を認めた。また受診時の患者背景（年齢、罹病期間、Body Mass Index (BMI)、収縮期血圧、拡張期血圧）、血液学的検査（HbA1c、血清総コレステロール、中性脂肪、LDLコレステロール、HDLコレステロール、高感度C-reactive protein (CRP)、総アディポネクチン、高分子アディポネクチン）について各群間で比較検討した。
FMDの測定は超音波診断装置のリニアプローブを用い計測を行った。仰臥位にて5分間以上の安静後肘動脈に平行にプローブをあて拡張末期血管径を測定し、その後、前腕部に血圧計のカフを巻き200mmHgの圧力で5分間駆血し、駆血解除60秒後に同部の肘動脈の拡張末期血管径を測定した。この駆血前の血管径の変化率を%FMDとした（Urbina et al., 2009）。以上の検査は全て同一の計測者（医師）が測定した。

【結果】
両群間において年齢に有意差は認めなかった。また2型糖尿病群では1型糖尿病群と比較して罹病期間が有意に短かった（1型糖尿病：5.8±2.7年、2型糖尿病：3.6±2.7年、p<0.05）。また2型糖尿病群ではBMI、収縮期血圧、拡張期血圧が有意に高かった。血液学的検査値に関しては2型糖尿病群で高感度CRP、中性脂肪が有意に高値を示す一方、総アディポネクチン、高分子アディポネクチン、HDLコレステロールは有意に低値だった。HbA1cは両群間で有意差を認めなかった。
%FMDは1型糖尿病群と比較し2型糖尿病群では有意に低下していた（1型糖尿病群：10.5±5.1、2型糖尿病：7.9±4.0、P<0.05）が、男女別の検討では有意差は認められなかった（図1）。
全体において単回帰分析では、%FMDと肥満度、BMI、収縮期血圧、HDL・コレステロ
ール、総アディポネクチン、高分子アディポネクチンで有意な相関が得られた。これらの有意な因子で重回帰分析を施行したところ、%FMD は収縮期血圧と有意に相関した。各群での検討においては、1型糖尿病群では%FMD は収縮期血圧、HDL-コレステロールとで有意な相関を示した。2型糖尿病群では肥満度、BMI、収縮期血圧 HDL-コレステロール、総アディポネクチン、高分子アディポネクチンとで有意な相関が得られた。これらの有意な因子で重回帰分析を施行したところ、%FMD はいずれの因子とも有意な相関は得られなかった。いずれの群でも%FMD と HbA1c とは相関が得られなかった。

図1 1型糖尿病と2型糖尿病の%FMD （A 全症例、B 男児、C 女児）

【考察】
1型糖尿病、2型糖尿病でみられる血管合併症は、大血管障害と細小血管障害がある。これらの血管合併症は血管内皮機能障害を介して耐糖能異常の早期段階から発症にかかわっている(Xu and Zou, 2009)。動脈硬化における非侵襲的測定法に関しては様々な方法があるが、その指標の一つとして血流依存性血管拡張反応（FMD）の有用性が報告されている(Celermajer et al., 1992)。FMD は血管内皮機能を評価する検査で、動脈硬化性疾患の早期診断の手段の1つである。また、%FMD は長期にわたる心血管イベントの独立した予測因子ともいわれている(Gokce et al., 2003)。肥満小児と年齢をマッチさせた正常対照小児に超音波検査による中膜複合体肥厚と FMD を施行したところ、FMD のみ有意差がみられたとの報告があり、小児肥満などに伴う早期動脈硬化の評価を目的とする場合には、IMT より FMD の方がより適切な指標と考えられている(Xu and Zou, 2009)。1型糖尿病、2型糖尿病いずれにおいても成人のまならず(Verma and Anderson,
小児でもFMDが低下し、血管内皮機能障害を認め、動脈硬化的初期変化を起こすことが報告されているためFMDの測定は有用であると考えられる（Jin et al., 2008; Naylor et al., 2011; McGill et al., 2002）。

糖尿病における高血糖による血管内皮機能障害の機序として最終糖化産物（AGE）の増加、機能性内皮一酸化窒素合成酵素（eNOS）の減少、組織中活性酸素の増加、炎症、脂質シグナルの亢進、ポリオール経路の活性化、エピジェネティクスなど複数の機序が明らかになってきている（Jin et al., 2008; Naylor et al., 2011; McGill et al., 2002）。

血管内皮機能障害は、高血糖以外に肥満、脂質異常症、運動不足、喫煙、加齢、閉経などの因子によっても生じる。肥満においては、内臓脂肪の蓄積から脂肪細胞の機能異常がおこり、アディポネクチン血症をはじめとしたアディポサイトカインの異常が生じる。それに伴い、血圧異常や代謝異常をきたすとともに動脈硬化を起こし、心血管障害や脳血管障害などの大血管障害に至ることが明らかとなっている（Van et al., 2006）。血圧・血糖・脂質代謝・アディポネクチンの異常は互いに関連するが、なかでも低アディポネクチン血症が独立して動脈硬化発症のリスクとなる（Kumada et al., 2003; Shimabukuro et al., 2003）。

今回の検討では計測時の血糖コントロールの状況は両群間で同様であり、また2型糖尿病群の方が罹病期間が有意に短いにもかかわらず、FMDが有意に低下していた。そのため血管内皮障害の進行は2型糖尿病でより生じやすいと考えられる。2型糖尿病ではBMIが有意に高値で過体重および肥満を伴う症例が多かった。またアディポネクチンが有意に低下していたことから内臓脂肪の蓄積が推定された。さらに血圧が有意に高値で、HDLコレステロールの有意な低値が認められた。

以上から今回の検討で2型糖尿病でFMDが有意に低下していたのは、高血糖以外の因子も大きく、特に肥満による内臓脂肪の蓄積が関係していると考えられた。2型糖尿病に関連した肥満はインスリン抵抗性のみならず、高血圧や脂質代謝異常、アディポネクチンの減少、慢性炎症を引き起こす。これらのが動脈硬化の進展に寄与し、血管障害に至る（Van et al., 2006; Nagaretani et al., 2003; Soinio et al., 2006; Schulze et al., 2004）。また、1型糖尿病群、2型糖尿病群両者において収縮期血圧がFMDと有意に相関を示していた。糖尿病における大血管障害には血圧が大きく関連していることはよく知られているが、この結果から高血圧が直接血管を障害している可能性もある。

日本人成人においては2型糖尿病の発症にインスリン抵抗性よりもインスリン分泌不全の方がより大きく関わってくるとされている。しかしながら小児の糖尿病においては肥満に伴うインスリン抵抗性がその病態の主要因とされている。2型糖尿病総体、多因子が複雑に関与する疾患でありその病態は一様なものではない。基本的には健全対照群との比較が必要なところであるが、通常は小児科外来診療において、年齢をマッチさせた健常対照者を得ることが困難であったため、従来より小児期に認められ、その疾患自体も心血管合併症の危険因子である1型糖尿病を対照群として、1型、2型糖尿病
で比較を行った。また、今回の検討では、症例数が少なかったため、男女や肥満度別に検討した際には％FMDにおける有意差が出なかったが、今後さらに症例を増やした検討や正常対照群との比較が必要であると考える。

強調すべきことは、若年者においても、1型糖尿病に比べて、2型糖尿病では血管内皮障害の程度が強く大血管合併症に対するリスクが高いことが推測される。2型糖尿病は肥満や過体重に伴い、内臓脂肪の蓄積からインスリン抵抗性やアディポネクチンの産生低下、全身の慢性炎症が生じることや、高血圧や脂質代謝異常などから血管障害が引き起こされるためと考えられる。特に若年者は平均余命も長いため、2型糖尿病において大血管合併症なく健康に生活するためには生活習慣の改善はもちろん、降圧薬や高脂血症に対する薬剤の併用など早期から更なる治療の強化が必要である。
Celermajer DS, Sorensen KE, Gooch VM et al. (1992), Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet, 340, 1111-1115

Gokce N, Keaney JF Jr, Hunter LM et al. (2003), Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol, 41, 1769-75.

Järvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A et al. (2004), Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation, 109(14), 1750-5.

Jin SM, Noh CI, Yang SW et al. (2002), Endothelial dysfunction and microvascular complications in type 1 diabetes mellitus. J Korean Med Sci. 23(1), 77-82.

Kumada M, Kihara S, Sumitsuji S et al. (2003), Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol. 23(1), 85-9.

McGill HC Jr, McMahan CA, Herderick EE et al. (2002), Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 105(23), 2712-8.

Nagaretani H, Kishida K, Nishizawa H et al. (2003), Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 107(5), 671-4.

Naylor LH, Green DJ, Jones TW et al. (2011), Endothelial function and carotid intima-media thickness in adolescents with type 2 diabetes mellitus. J Pediatr. 159(6), 971-4.

Schulze MB, Rimm EB, Shai I, Rifai N, Hu FB. (2004), Relationship between adiponectin and glycemic control, blood lipids, and inflammatory markers in men with type 2 diabetes. Diabetes Care. 27(7), 1680-7.

Shiga K, Kikuchi N. (2010), Children with Type 2 Diabetes Mellitus have More Risks for Macrovascular Complications. Pediatrics International, 52, No.2
Shimabukuro M, Higa N, Asahi T et al. (2003), Hypoadiponectinemia is closely linked to endothelial dysfunction in man. J Clin Endocrinol Metab. 88(7), 3236-40.

Soinio M, Marniemi J, Laakso M, Lehto S, Rönnemaa T. (2006), High-sensitivity C-reactive protein and coronary heart disease mortality in patients with type 2 diabetes: a 7-year follow-up study. Diabetes Care. 29(2), 329-33.

高谷竜三、片山博視、森保彦ら(2011). 小児期の血流依存性拡張反応に関する測定方法の標準化と基準値の検討. 肥満研究, 17

Urbina EM, Williams RV, Alpert BS et al. (2009), Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension. 54(5), 919-50.

Van Gaal LF, Mertens IL, De Block CE. (2006), Mechanisms linking obesity with cardiovascular disease. Nature. 444(7121), 875-80.

Verma S, Anderson TJ. (2002), Fundamentals of endothelial function for the clinical cardiologist. Circulation. 105(5), 546-9.

Xu J, Zou MH. (2009), Molecular insights and therapeutic targets for diabetic endothelial dysfunction. Circulation. 120(13), 1266-86.

Yeboah J, Folsom AR, Burke GL et al. (2009), Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation, 120(6), 502-9

Yokoyama H, Okudaira M, Otani T, et al. (1997), Existence of Early-Onset NIDDM Japanese Demonstrating Severe Diabetic Complications. Diabetes Care, 20, 844-847
論文目録

Ⅰ 主論文
Comparison of Brachial Artery Flow-mediated Dilation in Youth with Type 1 and Type 2 Diabetes Mellitus
Koji Ohsugi: Journal of Diabetes Investigation (in press)

Ⅲ 参考論文

1 臍炎を契機に川崎病様症状を呈した好酸球性蜂窩織炎の 1 例
大杉 康司, 森 雅亮, 大山 宜孝, 小川 真喜子, 塩島 裕樹, 森尾 郁子, 海老名 奏子, 藤塚 麻子, 原田 知典, 武下 草生子, 菊池 信行, 横田 紘平
日本小児科学会雑誌 115巻 12号 Page1908-1913(2011.12)

2 バルボ B19 の重複感染を伴ったツツガムシ病の 1 例
宮川 恵子, 大杉 康司, 栗山 千津子, 菅原 慎一, 菊池 明夫, 太田 昌宏
日本内科学会雑誌 95巻 12号 Page2544-2546(2006.12)