On fractional quantum Hall solitons and Chern–Simons quiver gauge theories

Adil Belhaj
Centre of Physics and Mathematics, CPM-CNESTEN, Rabat, Morocco
and
Groupement National de Physique des Hautes Energies, Rabat, Morocco
E-mail: belhaj@unizar.es

Received 18 November 2011, in final form 27 February 2012
Published 12 April 2012
Online at stacks.iop.org/CQG/29/095013

Abstract
We investigate a class of hierarchical multiple layers of fractional quantum Hall soliton (FQHS) systems from Chern–Simons quivers embedded in M-theory on the cotangent on a two-dimensional complex toric variety V_2, which is dual to type IIA superstring on a three-dimensional complex manifold $\mathbb{CP}^1 \times V_2$ fibered over a real line \mathbb{R}. Based on M-theory/type IIA duality, FQHS systems can be derived from wrapped D4-branes on 2-cycles in $\mathbb{CP}^1 \times V_2$ type IIA geometry. In this realization, the magnetic source can be identified with gauge fields obtained from the decomposition of the R–R 3-form on a generic combination of 2-cycles. Using type IIA D-brane flux data, we compute the filling factors for models relying on \mathbb{CP}^2 and the zeroth Hirzebruch surface.

PACS numbers: 11.25., ± w, 73.43.−f

1. Introduction

Three-dimensional quantum Hall systems (QHS) of condensed matter physics can be modeled using D-branes of type II superstrings [1–3]. The first ten-dimensional superstring picture of quantum Hall effect (QHE) in $(1+2)$ dimensions has been given in terms of a stack of K D6-branes, a spherical D2-brane as well as dissolved D0-branes in D2 and a stack of N F-strings stretching between D2 and D6-branes [1]. The F-strings ending on the D2-brane have an interpretation in terms of the fractional quantum Hall particles and they are charged under the U(1) world-volume gauge field associated with the D0-branes. These solitonic objects behave as magnetic flux quanta dissolved in the D2-brane world-volume on which the QHS reside. This string picture of QHE in $(1+2)$ dimensions has been extended to the compactification of type IIA superstring theory on the K3 surface with singularities classified by Dynkin diagrams [4–6].
Alternatively, some efforts have been devoted to study fractional quantum Hall solitons (FQHS) in connections with (2+1)-dimensional Chern–Simons (CS) theory constructed by Aharony, Bergman, Jafferis and Maldacena. Recall that, ABJM theory is a three-dimensional $N = 6$ CS quiver with $U(N)_k \times U(N)_{-k}$ gauge symmetry proposed to be dual to M-theory propagating on $\text{AdS}_4 \times S^7/Z_k$, with an appropriate amount of fluxes, or type IIA superstring on $\text{AdS}_4 \times \text{CP}^3$. For large k and N with $k \geq N$ in the weakly interacting regime [7]. In the decoupling limit, the corresponding three-dimensional conformal field theory (CFT) is obtained from the physics of the multiple M2-branes placed at the orbifold space C^4/Z_k. It has been shown that QHE can be realized on the world-volume action of the M5-brane filling AdS_3 inside AdS_4[8]. The model has been derived from $d = 3$ flavored ABJM theory with the CS levels $(1, -1)$. FQHE systems can also be embedded in ABJM theory by adding fractional type IIA D-branes [9].

Recently, a possible extension of FQHS in ABJM theory has been given using type IIA dual geometry considered as the blown up of CP^3 by 4-cycles which are isomorphic to CP^2. Based on D6-branes wrapped 4-cycles and interacting with the R–R gauge fields in ABJM-like geometry, hierarchical multiple layers of FQHS systems have been given in [10].

Extended constructions can be characterized by a vector q_i and a real, symmetric and invertible symmetric matrix K_{ij}. These parameters classify various fractional quantum Hall (FQH) states. The choice of K_{ij} plays an important role in the embedding of CS in type II superstrings and M-theory compactified on deformed singular Calabi–Yau manifolds. In particular, the matrix K_{ij} can be identified with the intersection numbers of compact cycles in the internal space. These numbers are, up to some details, the opposite of the Cartan matrices of Lie algebras. This link may lead to a nice correspondence between FQHS models and 2-cycles involved in the deformation of toric singularities. More specifically, to each simple 2-cycle, we associate a FQHS model.

In this work, we discuss such CS realizations of QHS in (1+2) dimensions from M-theory on a real eight-dimensional manifold. The manifold is realized explicitly as the cotangent bundle over a two-dimensional complex toric variety V^2. Up to some details, the obtained models can be compared to Gaiotto–Witten theory describing $N = 4$ CS superconformal theories. This connection can be obtained by imposing constraints on the possible values on CS levels satisfying the fundamental identity [11].

Since q_i and K_{ij} are connected via the filling factor, the embedding of CS in the string theory gives a toric geometric calculation for the filling factor. More precisely, starting from given two toric varieties describing QHS and using CS gauge modeling in the manner of Susskind, we determine the filling factors. In particular, based on M-theory/type IIA duality, we give first CS-type theories describing three-dimensional FQHS systems using D4-branes wrapping 2-cycles and interacting with the R–R gauge fields living on $\text{CP}^4 \times V^2$ type IIA dual geometry. This class of QHS can be considered as a possible extension of the works discussing the QHE in ABJM and its generalization [8–10]. This allows a geometric interpretation of filling factors in terms of the intersections between 2-cycles in $H^2(V^2, \mathbb{Z})$. The matrix K_{ij} can be identified with the intersection matrix for curves embedded in $\text{CP}^4 \times V^2$. Then, we present explicit examples in order to illustrate the general idea. In particular, we discuss the case of CP^2 and the Hirzebruch surfaces.

The organization of this work is as follows. In the following section, we study FQHS systems in ABJM-like theory using D6-branes wrapping 4-cycles in CP^3. In section 3, we derive a class of FQHS in (1+2) dimensions using M-theory/type IIA duality. In particular, we discuss FQHS model based on CP^2, and then we extend the analysis to the Hirzebruch surfaces in section 4. The last section is devoted to our conclusion.
2. QHS in ABJM theory

We start this section by recalling that the quantum Hall states are characterized by the filling factor ν describing the ratio between the electronic density and the flux density. When ν is a fractional value, it is called fractional quantum Hall effect (FQHE) for interacting electron systems. The first proposed series of the fractional quantum states was given by Laughlin and they are characterized by the filling factor

$$\nu = \frac{1}{k},$$

where k is an even integer for a boson electron and an odd integer for a fermionic electron [12]. At low energy, this model can be described by a three-dimensional U(1) CS theory coupled to an external electromagnetic field \tilde{A} with the following effective action:

$$S_{CS} = -\frac{k}{4\pi} \int_{\mathbb{R}^{1,2}} A \wedge dA + \int_{\mathbb{R}^{1,2}} \frac{q}{2\pi} \tilde{A} \wedge dA,$$ \hspace{1cm} (2.1)

where A is the dynamical gauge field, \tilde{A} is an external electromagnetic field and q is the charge of the electron [13, 14]. Extended models are characterized by a vector q_i and a real, symmetric and invertible symmetric matrix K_{ij}. These parameters play an important role in quiver construction of FQHE embedded in type II superstrings [4, 6] and M-theory compactified on eight-dimensional manifolds [5]. Following the Susskind approach for Abelian field theory, these models can be described by the following action:

$$S \sim \frac{1}{4\pi} \int_{\mathbb{R}^{1,2}} K_{ij} A^i \wedge dA^j + 2 \int_{\mathbb{R}^{1,2}} q_i \tilde{A} \wedge dA^i.$$ \hspace{1cm} (2.2)

The external gauge field \tilde{A} couples now to each current $\star dA^i$ with charge strengths eq_i. The K_{ij} matrix and the q_i charge vector in this effective field action suggest some physical concepts.

Following the Wen–Zee model [14], K_{ij} and q_i are interpreted as order parameters and they classify the various QHS states. Integrating over all Abelian gauge fields A^i, one obtains the formulae for the filling factor of the system

$$\nu = q_i K_{ij}^{-1} q_j.$$ \hspace{1cm} (2.3)

In what follows, we see that such CS quivers describing FQHS can be embedded either in ABJM theory with $U(N)_k \times U(N)_{-k}$ gauge symmetry or more generally in toric CS quiver gauge theories. For simplicity, we first consider the case of the $U(1)_k$ CS gauge theory in ABJM theory. Indeed, this model can be obtained from a D6-brane wrapping a 4-cycle class $[C_4]$ in $H^4(\mathbb{C}P^3, \mathbb{Z})$ which is one dimensional. On the gauge theory side of ABJM, the gauge symmetry $U(N)_k \times U(N)_{-k}$ becomes $U(N + M)_k \times U(N)_{-k}$. To derive the first part of the action (2.1), we take just the $U(1)_k$ Abelian part of $U(M)_k$ and assume that the remaining gauge factors are spectators. Indeed, on the D6-brane one can write down the following SWZ action:

$$S_{SWZ} \sim T_6 \int_{\mathbb{R}^{1,8}} F \wedge F \wedge A^{RR}_5,$$ \hspace{1cm} (2.4)

where T_6 is the D6-brane tension and where the gauge field A^{RR}_5 is the R–R 3-form coupled to the D2-brane of type IIA superstring. Integrating by parts and integrating the result over the 4-cycle C_4, one obtains

$$-\frac{k}{4\pi} \int_{\mathbb{R}^{1,2}} A \wedge F,$$ \hspace{1cm} (2.5)

where $k = \frac{1}{2\pi} \int_{C_4} (dA^{RR}_5)$ is produced now by k D4-flux. To couple the system to an external gauge field, we need to turn on the RR 5-form A^{RR}_5 which is coupled to the D4-brane. Decomposing this gauge field as follows

$$A^{RR}_5 \rightarrow \tilde{A} \wedge \omega$$ \hspace{1cm} (2.6)
where ω is a harmonic 4-form dual to the 4-cycle C_4, the WZ action $\int_{\mathbb{R}^1,2} A^R \wedge F$ on a D6-brane gives the second term of the action (2.1), namely,

$$q \int_{\mathbb{R}^1,2} \tilde{A} \wedge F,$$

(2.7)

where $q = \int_{C_4} w$ and \tilde{A} is an U(1) gauge field which serves as the external gauge field that couples to the gauge fields living on the D6-brane world-volume. The above effective action on the D6-brane world-volume reproduces the following filling factor:

$$\nu = \frac{q}{2k}.$$

(2.8)

From this equation, it follows that the filling factor depends on the D4-branes and the harmonic 4-forms defined on \mathbb{CP}^3. It turns out that known values could be obtained by taking particular choices of such parameters. Moreover, these FQHS in AdS4/CFT3 have been extended to models based on IIA dual geometry realized as the blown up of \mathbb{CP}^3 by 4-cycles which are isomorphic to \mathbb{CP}^2. In particular, we proposed a stringy hierarchical description of multi-layer systems in terms of wrapped D6-branes on the blown up 4-cycles [10].

In what follows, we investigate the FQHS system embedded in CS quiver gauge theories arising from M-theory on the cotangent bundle on a two-dimensional complex toric variety V^2. More precisely, we discuss the case of two-dimensional complex projective space and the zero Hirzebruch surface.

3. FQHS and Chern–Simons quivers

Many models have been given to extend ABJM theory. They are conjectured to be gauge field duals of AdS4 background in type IIA superstring and M-theory compactifications on eight-dimensional manifolds. In particular, these kinds of CS quiver theories can be obtained in terms of M2-branes placed at hyper toric singularities of eight-dimensional manifolds. Recall that the simple model is described by Abelian gauge factors $U(1)^{k_1} \times U(1)^{k_2} \times \cdots \times U(1)^{k_n}$, where k_i denote the CS levels for each Abelian factor $U(1)$. Geometrically, these models can be encoded in a quiver formed by n nodes where each factor $U(1)$ is associated with a node while the matter is represented by the link between nodes [15, 16]. For these models, it has been shown that CS levels k_i are subject to

$$\sum_i k_i = 0.$$

(3.1)

For the product of non-Abelian gauge group, the CS levels k_i and the set of the ranks of the gauge groups N_i are constrained by

$$\sum_i k_i N_i = 0.$$

(3.2)

The CS quivers we consider here are obtained from M-theory on the cotangent bundle over a two-dimensional toric variety V^2. This internal space is built in terms of a bi-dimensional $U(1)^r$ sigma model with eight supercharges ($N = 4$) and $r + 2$ hypermultiplets. It has been considered to be the solution of the following D-flatness condition

$$\sum_{i=1}^{r+2} Q_i^a [\phi^a_i \phi_{i\beta} + \phi^\beta_i \phi_{i\alpha}] = \xi_a \sigma^a_\beta,$$

(3.3)

where Q_i^a is a matrix charge specified later on, ϕ^α_i ($\alpha = 1, 2$) denote the component field doublets of each hypermultiplets ($i = 1, \ldots, r + 2$). ξ_a are the Fayet–Iliopoulos (FI) 3-vector
couplings rotated by the SU(2) symmetry, and \(\sigma_\mu^a \) are the traceless 2 \times 2 Pauli matrices. The explicit solution depends on the values of the FI couplings. For a particular region in the moduli space where \(\xi^1_a = \xi^2_a = 0 \) and \(\xi^3_a > 0 \), (3.3) describes the cotangent bundle over a complex two-dimensional toric variety \(V^2 \) defined by
\[
\sum_{i=1}^{2+r} Q^i_a |\phi_i|^2 = \xi^3_a, \quad a = 1, \ldots, r.
\]
(3.4)
Using M-theory/type IIA duality, it follows that M-theory compactified on such geometries is dual to type IIA superstring on three-dimensional complex manifolds \(X_3 \) fibered over a real line \(R \) with D6-branes. In fact, one can show that \(X_3 \) can be described as a \(\mathbb{CP}^1 \) fibration over the base \(V^2 \). Instead of being general, let us consider first a toy model where \(V^2 = \mathbb{CP}^2 \) and \(\sigma \sim WZ \) 1.

It turns out that this model could be related to ABJM theory by adding D6-branes wrapping 4-cycles of the blown up \(\mathbb{CP}^1 \) by \(\mathbb{CP}^2 \) at singular toric points. In this way of thinking and solving the constraints (3.2), the gauge symmetry \(U(N)_{k} \times U(N)_{-4} \) of ABJM theory can change into \(U(N)_{k} \times U(N)_{k} \times U(N)_{-2k} \). The IIA/M-theory duality predicts that this gauge theory should be dual to type IIA superstring on AdS4 \(\times \mathbb{CP}^4 \times \mathbb{CP}^2 \). Roughly speaking, the CS gauge theory describing the FQHS model can be obtained from D4-branes moving on \(\mathbb{CP}^4 \times \mathbb{CP}^2 \). In type IIA geometry, D4-branes can wrap \(\mathbb{CP}^4 \) and a particular complex curve class \([C] \) in \(H^2(\mathbb{CP}^2, \mathbb{Z}) \). On the gauge theory side, the gauge symmetry becomes \(U(N+M)_{k} \times U(N)_{k} \times U(N+M')_{-2k} \). The constraint (3.2) requires that
\[
M = 2N, \quad M' = N.
\]
(3.6)
As before, the CS quiver theory describing our FQHS system will be in the \(U(2N)_{k} \times U(N)_{-2k} \) part of \(U(3M)_{k} \times U(N)_{k} \times U(2N)_{-2k} \). Extracting an \(U(2) \times U(1) \), we can obtain the FQH field theory from D4-branes wrapping individually \(\mathbb{CP}^4 \) and \(C \). To see that let us consider first the case of the Abelian part \(U(1) \) corresponding to \(C \). Indeed, on the five-dimensional world-volume of each D4-brane we have \(U(1) \) gauge symmetry. The corresponding effective action can take the following form:
\[
S_{D4} \sim T_3 \int_{\mathbb{R}^{1,2} \times C} d^3 \sigma e^{-\theta} \sqrt{-\det(G + 2\pi F)} + T_3 \int_{\mathbb{R}^{1,2} \times C} F \wedge F \wedge A_{1}^{RR},
\]
(3.7)
where \(T_3 \) is the brane tension and where the gauge field \(A_{1}^{RR} \) is the R–R 1-form coupled to the D0-brane of type IIA superstring. Ignoring the first term and integrating by part, the WZ action on the D4-brane world-volume becomes
\[
\int_{\mathbb{R}^{1,2} \times C} F \wedge F \wedge A_{1}^{RR} = - \int_{\mathbb{R}^{1,2} \times C} A \wedge F \wedge (dA_{1}^{RR}).
\]
(3.8)
Then, we obtain the well-known CS term
\[
S_{WZ} \sim \int_{\mathbb{R}^{1,2}} A \wedge F.
\]
(3.9)
The presence of the R–R gauge field sourced by the anti-D6-flux leads to \(-2k = \frac{1}{2\pi} \int_C (dA_{1}^{RR}) \). To couple the system to an external gauge field, one needs an extra D4-brane wrapping the cycle \(C \) in the presence of the RR 3-form \(A_3^{RR} \) which is sourced by a D2-brane dual to a D4-brane. After the compactification, this gauge field decomposes into
\[
A_3^{RR} \rightarrow A \wedge \omega,
\]
(3.10)
where ω is a harmonic 2-form on C. In this way, the WZ action $\int A^\text{RR}_3 \wedge F$ on a D4-brane wrapping C gives
\begin{equation}
q \int_{\mathbb{R}^1 \times \mathbb{R}^4} \tilde{A} \wedge F, \tag{3.11}
\end{equation}
where \tilde{A} is the U(1) gauge field which can be obtained from the dimensional reduction of the RR 3-form A^RR_3. This U(1) gauge field can be interpreted as a magnetic external gauge field that couples to our QHS. We can follow the same steps to construct a non-Abelian effective CS gauge theory with U(2) gauge fields. Roughly speaking, thanks to $v = v_1(U(2)) + v_2(U(1))$, and putting the charge like $q_i = (1, 1, 1)$, the corresponding filling factor reads as
\begin{equation}
v = \frac{2}{k} - \frac{1}{2k} = \frac{3}{2k}. \tag{3.12}
\end{equation}

4. FQHS in CS quivers on Hirzebruch surfaces

Let us extend the result obtained in previous sections to quivers with more than three nodes. There are various ways of doing that. One possibility can be realized by replacing two-dimensional projective spaces either by the Hirzebruch surfaces or the del Pezzo surfaces. The corresponding CS quivers involve more than three U(N) gauge symmetry factors. The general study is beyond the scope of this work, though we will consider an explicit example corresponding to the zeroth Hirzebruch surfaces F_0. Other examples may be dealt with in a similar manner. We will briefly comment on various simple extension in the conclusion.

Recall from the literature that F_0 is a two-dimensional toric surface defined by a trivial fibration of \mathbb{CP}^1 over \mathbb{CP}^1. In $N = 2$ sigma model language, F_0 is realized as the target space $U(1) \times U(1)$ gauge theory with four chiral fields with charges $(1, 1, 0, 0)$ and $(0, 0, 1, 1)$. As proposed in [16], the corresponding CS quiver is given by $U(N) \times U(N) \times U(N) \times U(N)$ where the CS levels are $(k, -k, k, -k)$. This model corresponds to a circular quiver with four nodes. The FQHS system we are interested in appears as a CS quiver model obtained from gauge theories living on the world-volume of the wrapped D4-branes on 2-cycles in type IIA geometry which is given by the trivial fibration of \mathbb{CP}^1 over F_0. Indeed, there are three complex curves on which the D4-branes can be wrapped. D4-branes can wrap \mathbb{CP}^1 and two complex curves class $[C_i]$ in $H^2(F_0, \mathbb{Z})$. In this realization of FQHS, the fractional D4-branes will give three gauge factors. Indeed, consider three stacks (M_1, M_2, M_3) of D4-branes. On the IIA gauge theory side, the gauge symmetry becomes $U(N + M_1)_{k} \times U(N - M_2)_{-k} \times U(N + M_3)_{k}$. A particular solution of (3.2) requires that
\begin{equation}
M_1 = N, \quad M_1 = 2N, \quad M_3 = N. \tag{4.1}
\end{equation}
Our CS quiver theory describing FQHS systems will be in the $U(N)_{k} \times U(2N)_{-k} \times U(N)_{k}$ part. As before, thanks to $v = v_1(U(1) \times U(1)) + v_2(U(2))$, we can find the the filling factor of the model. Indeed, consider first the bi-layer system corresponding to $U(1) \times U(1)$ quiver gauge theory. The corresponding matrix K_i takes the form
\begin{equation}
K_{ij}(U(1) \times U(1)) = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix},
\end{equation}
where the integer k can be interpreted geometrically in terms of the self-intersection of complex curves with genus $g > 0$. From type IIA string point of view, this model can be obtained from two D4-branes wrapping two identical complex curves. Evaluating (2.3) for the charges $q_i = (q_1, q_2)$ yields
\begin{equation}
v_1 = \frac{q_1^2 + q_2^2}{k}. \tag{4.2}
\end{equation}
This is a general expression depending on the vector charge. Particular choice of the D-brane
flux and the charge vector may recover some observed values of the filling factor. Adding now
the non-Abelian contributions, the total filling factor can be written as
\[\nu = \frac{q_1^2 + q_2^2 - 2q_3^2}{k}. \] (4.3)

It is worth noting that the vanishing filling factor behavior has to do with the condition
\[q_1^2 + q_2^2 = 2q_3^2. \] This can be fixed by the flux on the world-volume D6-branes. The Hall
conductivity is quantized in terms of the CS level being identified with the D6-flux and the
charges given in terms of the integral of harmonic 2-forms over dual 2-cycles embedded in
type IIA geometry.

5. Conclusion

In this paper, we have studied a class of FQHS in toric CS quivers from M-theory on the
cotangent bundle over a two-dimensional toric variety \(V^2 \). The dual type IIA geometries
are realized as \(\text{AdS}_4 \times \mathbb{C}P^1 \times \mathbb{C}P^2 \). Using M-theory/type IIA duality, we have presented
hierarchical stringy descriptions using quiver gauge models living on stacks of D4-branes
wrapping 2-cycles in \(\mathbb{C}P^1 \times \mathbb{C}P^2 \) and interacting with R–R gauge fields. In particular, we
have given two simple examples of FQHS systems. The first model is based on the CS
quiver relying on \(\mathbb{C}P^1 \times \mathbb{C}P^2 \), while the second one is associated with quiver gauge theory
describing a system based on D4-branes which wrap 2-cycles inside \(\mathbb{C}P^1 \times F_0 \). This analysis
can be adapted to other multilayered systems by considering more general two-dimensional
toric manifolds. The manifolds are given by \(\mathbb{C}^{r+2}/\mathbb{C}^r \), where the \(\mathbb{C}^r \) actions are given by
\[z_i \rightarrow \lambda^a z_i, \quad i = 1, \ldots, r+2; \quad a = 1, \ldots, r. \] Clearly, type IIA geometry will have \(h^{1,1} = r+1 \).
The right interpretation of this is that we have \((r+1)\) 2-cycles associated with wrapped D4-
branes. The corresponding FQHS model involves \(r+1 \) gauge factors. In connection with
that, it would therefore be of interest to consider such systems using tools developed in toric
geometry [17, 18]. It is natural to consider del Pezzo surfaces. Other possibilities for \(V^2 \) are
local ALE spaces with ADE singularities.

On the other hand, motivated by the supersymmetric part of ABJM theory and
supersymmetric QHE, it should be interesting to study such realizations in terms of M-theory
on eight-dimensional spaces. We hope, all these open questions will be addressed in future
works.

Acknowledgments

The author would like to thank his mother for patience. He thanks also his collaborators for
discussions on related topics.

References

[1] Bernevig B A, Brodie J, Susskind L and Toumbas N 2001 How Bob Laughlin tamed the giant graviton from
Taub-NUT space J. High Energy Phys. JHEP02(2001)003 (arXiv:hep-th/0010105)
[2] Fujita M, Li W, Ryu S and Takayanagi T 2009 Fractional quantum Hall effect via holography: Chern–Simons,
edge states, and hierarchy arXiv:0901.0924
[3] Bergman O, Jokela N, Lifschytz G and Lippert M 2010 Quantum Hall effect in a holographic model
arXiv:1003.4965
[4] Belhaj A and Segui A 2010 Engineering of quantum Hall effect from type IIA string theory on the K3 surface
Phys. Lett. B 691 261–267 (arXiv:1002.2067)
[5] Belhaj A, Fahssi N-E, Saidi E H and Segui A 2010 Embedding fractional quantum Hall solitons in M-theory compactifications arXiv:1007.4485
[6] Belhaj A, ElRhalami A, Fahssi N-E, Khan M J I, Saidi E H and Segui A 2010 Brane realizations of quantum Hall solitons and Kac–Moody lie algebras arXiv:1008.0351
[7] Aharony O, Bergman O, Jafferis D L and Maldacena J 2008 $\mathcal{N}=6$ superconformal Chern–Simons-matter theories, M2-branes and their gravity duals J. High Energy Phys. JHEP10(2008)091 (arXiv:0806.1218)
[8] Fujita M 2011 M5-brane defect and QHE in AdS$_4\times N(1,1)/N=3$ SCFT Phys. Rev. D 83 105016 (arXiv:1011.0154)
[9] Hikida Y, Li W and Takayanagi T 2009 ABJM with flavors and FQHE J. High Energy Phys. JHEP07(2009)065 (arXiv:0903.2194)
[10] Belhaj A 2011 On fractional quantum Hall solitons in ABJM-like theory Phys. Lett. B 705 539–42 (arXiv:1107.2295)
[11] Gaiotto D and Witten E 2010 Janus configurations Chern–Simons couplings, and the theta-angle in $N=4$ super Yang–Mills theory J. High Energy Phys. JHEP06(2010)097 (arXiv:0804.2907)
[12] Laughlin R B 1983 Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations Phys. Rev. Lett. 50 1395
[13] Wen X-G 2004 Quantum Field Theory of Many-body Systems (Oxford: Oxford University Press)
[14] Wen X G and Zee A 1992 Classification of Abelian quantum Hall states and matrix formulation of topological fluids Phys. Rev. B 46 2290–2301
[15] Martelli D and Sparks J 2008 Moduli spaces of Chern–Simons quiver gauge theories and AdS$_4$/CFT$_3$ Phys. Rev. D 78 126005 (arXiv:0808.0912)
[16] Belhaj A, Diaz P, Garcia Del Moral M P and Segui A 2011 On Chern–Simons quivers and toric geometry arXiv:1106.5335
[17] Fulton W 1993 Introduction to Toric Varieties (Annals of Mathematical Studies vol 131) (Princeton, NJ: Princeton University Press)
[18] Leung N C, Branes C Vafa and Geometry Toric 1998 Adv. Theor. Math. Phys. 2 91 (arXiv:9711013)