Concentrations and Radiation Hazard Indices of Naturally Radioactive Materials for Flour Samples in Baghdad Markets

Ban Sabah Hameed ¹ Farah Faris Kaddoori ² Wijdan Thamer Fzaa ²

¹Department of Physics, College of Science for Women, University of Baghdad, Baghdad, Iraq.
²Al-Nahrain Nonrenewable Energy Research Center

Corresponding author: banalqazaz@yahoo.com, farahfaris84@gmail.com*, wijdanthamer974@gmail.com
ORCID ID: https://orcid.org/0000-0002-4220-1543, https://orcid.org/0000-0002-2103-8177, https://orcid.org/0000-0001-9667-4285

Received 5/1/2020, Accepted 22/6/2020, Published Online First 21/2/2021, Published 1/9/2021

Abstract:
In the present work, Uranium (238U), Thorium (232Th) and Potassium (40K) specific activity concentration in (Bq/kg) was measured in five different types for wheat flours that are available in the Iraqi markets. The gamma spectrometry method with an NaI (Tl) detector has been used for radiometric measurements. Calculations of radium equivalent activity, annual effective dose equivalent, external hazard index (H(e)), internal hazard index (H(i)), representing gamma index and gamma dose rate in all flour samples were 17.98132 Bq/kg, 0.0100334, 0.04502, 0.06872, 0.125883 and 8.181244 respectively. It is found that the average of specific activity concentration of wheat flour samples for 238U, 232Th and 40K are 7.4564 Bq / kg, 6.27962 Bq / kg and 20.0658 Bq / kg respectively. This study proves that the natural radioactivity and radiation hazard indices were lower than the safe.

Key words: Environmental, Pollution, Radioactivity, Wheat flour.

Introduction:
Because of geographical and geological conditions, the natural radionuclide concentrations in environmental samples can be significantly various. Natural radioactivity can be classified into two types, cosmogenic and primordial, named naturally occurring radioactive materials, commonly mentioned as (NORM). Some instances of natural radioisotopes are potassium isotopes (40K, uranium (238U and glycolysis chain), and thorium (232Th and glycolysis series). These radionuclides are generally available in air, soil, and water in diverse magnitudes, in addition to their long-lasting period (for about 1010 years) (1-3). In order to provide enough food to the increasing populations, several states have utilized phosphate fertilizers; these activities have triggered a substantial alteration in potassium in the soil, which makes significant changes to these agricultural activities. By means of the soil and phosphate utilizers, natural radioactive elements transfer through the food chain to humans. In order to avoid consumer vulnerability to radiation, it was substantial to measure the radioactivity of some food samples in order to identify the anticipated radiation doses. As well-known, potassium is deemed to be one of the bulk substantial fundamental elements admitted into the cellular tissues, so 40K is one of the bulk substantial physical radionuclides (4). About 87% of the radiation dose sucks by humanity is from natural radiation according to UNSCEAR 2000 (5). Wheat flour is considered as one of the substantial foods in Iraqis daily lives. It is appropriate to compose a national baseline of radioactivity exposure from various type wheat flour samples available in Iraq markets. Wheat flour is produced from grinding wheat used for human consumption. Wheat flour has been a fundamental staple to human presence across the centuries and is currently the more broadly expendable staple food. Additionally, several studies have been performed worldwide to inquire the natural radionuclides in food consumer in various areas of the world (6-9). By spectroscopic analysis, the concentration of natural radionuclides (40K, 232Th, 226Ra) is computed in diverse foods for human depreciation in the Abyan Delta in Yemen and it was found that the modified concentrations of radionuclides of 226Ra, 232Th, and 40K in the selected specimens were 1.11 ± 0.08 , 1.00 ± 0.05 and 108.86 ± 3.49 , respectively. It was
remarked that the modified concentration of 40K activity in foods was substantially of a superior activity to the modified concentrations of 226Ra and 232Th in all the samples (10-12).

The aim of the current work is measuring natural radioactivity concentrations for flour samples; Besler, Zer, Paten, Flour provided by government and barley in the local markets of Baghdad city in 2019, three samples of each type for flour were taken. Also, it calculated radium equivalent activities, annual effective dose equivalent, external and internal menace indices, representing extent index, and the gamma dose rate using a gamma spectrometry, NaI (TI) detector. Then, it estimated the radioactivity and its effect on human health. This study is necessary in the standpoint radiation protection and discusses natural radioactive elements in food coverage by the humans.

Material and Methods:

Specific activity concentration

The specific activity concentration is the relationship between the mass of the material and its radiation efficiency in Bq/Kg, which is the number of anomalies that occur per second in radionuclide, it is given by Eq. 1(13, 14):

$$S.A = A / M$$

Terms A is the activity which is identified directly from the screen of the system in Bq, M is the mass of sample in Kg.

Samples like Besler, Zer, Paten, Flour are provided by government and barley in the local markets of Baghdad city in 2019. Gamma spectroscopy with Sodium iodide (NaI (TI)) (3” X 3”) detector was adjusted for a period of 3600 seconds, and completely insulated by lead shield (13) used to determine NORM concentrations, in flour powdered samples. The weight of each samples are is Kg. Because the NaI (TI) detector is characterized by poor efficiency in energy resolution, radio nuclides daughter was selected to determine radioactivity concentration for two series of 238U and 232Th where nuclide 226Ra was chosen to indicate the radioactivity for a series of 238U, which have been determined through radioactive isotope 214Pb (352keV). Moreover, a series of 232Th through a radioactive isotope 212Pb (239keV) was determined. As regards 40K (1460.8 keV), it can be detected directly by the detector (4, 13, 14).

Radium Equivalent Activity (Ra$_{eq}$)

Radium equivalent activity Ra$_{eq}$ which is the equivalent concentration value of the radium element is used to study the risk concentration caused by 226Ra, 232Th and 40K (Bq/Kg). In addition, the radiation hazards associated with them were taken into account and can be calculated from the following relationship as show in Eq.2 (15).

$$Ra_{eq} = C_{(Ra)} + 1.43 C_{(Th)} + 0.077 C_{(K)}$$

Where $C_{(Ra)}$, $C_{(Th)}$ and $C_{(K)}$ represented radioactivity concentration in (Bq/Kg) for 238U, 232Th and 40K, respectively.

Annual Effective Dose Equivalent (AEDE)

Dose equivalent receipt by the external member was computed from the absorbed dose rate through implementing the dose conversion of 0.7 (Sv/Gy) and the internal and external occupancy factor will be 0.2(5/24) and 0.8(19/24), respectively (13, 15). AEDE is determining by the Eqs.3 and 4.

(AEDE) (external)

$$mSv/y = \text{Absorbed dose (nGy/h) x 8760 (h/y)} \times 0.7 (Sv/Gy) \times 0.2 \times 10^{-6}$$ 3

(AEDE) (internal)

$$mSv/y = \text{Absorbed dose (nGy/h) x 8760 (h/y)} \times 0.7 (Sv/Gy) \times 0.8 \times 10^{-6}$$ 4

External Hazard Index (H$_{ex}$)

This hazard can be quantified by the external hazard index (H$_{ex}$) (13, 15, 16). which is determined by Eq. 5:

$$H_{ex} = \frac{C_{Ra}}{370} + \frac{C_{Th}}{259} + \frac{C_{K}}{4810}$$ 5

The value of this index should be lower than one unit for the radiation hazard to be minimal. H$_{ex}$ equals to unity that is symmetrical for the high limit of Ra$_{eq}$, Eq.370 (Bq/Kg) (13).

Internal Hazard Index (H$_{in}$)

This hazard can be quantified by the internal hazard index (H$_{in}$) (13, 15, 16). This is given by Eq. 6:

$$H_{in} = \frac{C_{(Ra)}}{185} + \frac{C_{(Th)}}{259} + \frac{C_{(K)}}{4810}$$ 6

The value of this index should be lower than one unit for the radiation hazard to be minimal.

Representative Gamma Index (I$_{γr}$)

The representative gamma index is given by Eq.7 (17):

$$I_{γr} = \frac{C_{(Ra)}}{150} + \frac{C_{(Th)}}{100} + \frac{C_{(K)}}{1500}$$ 7

Value of I$_{γr}$ ≤ 1 complies to an annual effective dose, of lower than or equal to 1.0 (mSv), while the I$_{γr}$ ≤ 0.5 complies to annual effective dose lower or equal to 0.3 (mSv) (17, 5)
Gamma Dose Rate
The gamma dose rate in the external air at 1.0 m above the ground level can be calculated using Eq. 8 (17).

\[D(nGy/h) = 0.462C_{(Ra)} + 0.621C_{(Th)} + 0.0417C_{(K)} \]

Results and Discussion:

\(^{238}U, ^{232}Th, \) and \(^{40}K \) are naturally occurring elements. Their nuclei of radioactive elements are unstable, meaning they are transformed into other elements, typically by emitting particles. Uranium decays mainly by alpha-particle emission to become nonradioactive lead and it has very long half-lives. In the case of \(^{40}K \), it undergoes beta decay to stable species \((^{40}Ca) \) and for \(^{232}Th \) they undergo alpha-decay to stable species \((^{228}Ra) \) (13). The specific activity concentration due to \(^{238}U, ^{232}Th, \) and \(^{40}K \) in various types of wheat flour samples has been measured as shown in Table 1 and Fig.1. The specific activity concentration of \(^{40}K \) was found in the range of 22.587 Bq/Kg in barley flour to the 16.468 Bq/Kg in flour provided by government with an average value 20.0658 Bq/Kg , \(^{232}Th \) from 9.769 Bq/Kg in barley flour to 4.3101 Bq/Kg in zer flour with an average 6.2796 Bq/Kg and \(^{238}U \) from 9.329 Bq/Kg in flour provided by government to 6.109 Bq/Kg in zer flour. The results obtained shows that, the concentration of specific activity for \(^{238}U, ^{232}Th, \) and \(^{40}K \) in all samples for flour was lower than the recommended limit of UNSCEAR 2000 which is 30, 45 and 420 Bq/kg\(^{-1} \), respectively (5). The value of radium equivalent activities, annual effective dose equivalent, external and internal menace indices, representing extent index, and the gamma dose rate for all flour samples are listed in Table 2. The maximum value of radium equivalent activities, annual effective dose equivalent, external and internal menace indexes representing level index, and the gamma dose rate was found in barley flour sample and the minimum value of these indexes was found in zer flour sample. The results was lower than the recommended limit of UNSCEAR 2013 (18) which is 0.17 mSv y\(^{-1} \) for \(^{40}K \) and 0.12 mSv y\(^{-1} \) for Uranium and Thorium. High intake of \(^{232}Th, ^{238}U, ^{40}K \) and their decay products may lead to harmful effects in human beings. An exposure of about 0.1 mg.Kg\(^{-1} \) form body weight of soluble natural Uranium, Thorium and Potassium results in transient chemical damage to the kidneys (19). All the results obtained from this study are in agreement with the previous studies (4, 20).

Samples name	Samples number	The specific activity concentration (Bq/Kg)
Barley flour	5	9.769, 8.321, 22.587
Flour provide by government	4	6.732, 9.329, 16.468
Paten flour	3	5.791, 7.214, 22.486
Zer flour	2	4.3101, 6.109, 20.302
Besler flour	1	4.796, 6.309, 18.486
Average		6.27962, 7.4564, 20.0658

Table 1. The specific activity concentration for \(^{232}Th, ^{238}U, \) and \(^{40}K \) isotopes in all samples.

![Figure 1. Specific Activity concentration for \(^{238}U, ^{232}Th \) and \(^{40}K \) in (Bq/Kg)](image)

Table 2. Hazard indices in all samples are studies.

Samples	Ra\(_{eq}\) (Bq/kg)	D(nGy/h)	H\(_{ex}\)	H\(_{in}\)	L\(_{(yr)}\)	AEDE external	AEDE internal
Besler flour	14.5907	6.66394	0.03941	0.05646	0.102344	0.008172	0.032691
Zer flour	13.8357	6.34552	0.03737	0.05388	0.097362	0.007782	0.031129
Paten flour	17.22655	7.86674	0.04653	0.06602	0.120994	0.009647	0.038591
Flour provide by government	20.2238	9.17728	0.05462	0.07984	0.140492	0.011255	0.04502
Barley flour	24.02987	10.85272	0.06490	0.08739	0.168221	0.013309	0.053239
Average	17.98132	8.181244	0.04857	0.06872	0.125883	0.0100334	0.040134
Fig. 2 shows the average value of Ra\textsubscript{eq} of gamma dose rate for all samples were determined using Eq.2. The maximum value of gamma dose rate was 24.02987 Bq/Kg in barley flour and the minimum value of radium equivalent activities was 17.98132 Bq/Kg in zer flour sample.

The average values of the (AEDE), calculated using Eqs.3,4 in units of mSv/y. by using 0.8 for the outdoor occupy factor, which implies 20% of time is spent outdoors, while for the indoor occupy factor 0.2 is used, which is suggested by UNSCEAR 2013 respectively (18). The average value of the AEDE reason to wilderness gamma radiation internal and external received for flour models was 0.04013 and 0.01003 (mSv/y). The maximum value for AEDE internal was 0.05324 (mSv/y) in barley flour samples and for AEDE external was 0.01331(mSv/y) in barley flour samples. The minimum value for AEDE internal was 0.03113 (mSv/y) in the zer flour samples and for AEDE external was 0.00778 (mSv/y) in the zer flour samples, as shows in Figs. 3 and 4.

Figures 5and 6 shows the average value of the H\textsubscript{ex} and H\textsubscript{in}, which is 0.04857 and 0.0687 respectively. By using Eqs. 5, 6 the maximum value of H\textsubscript{ex} was 0.0649 in barley samples and the minimum value was 0.03737 in zer samples. And the maximum value of H\textsubscript{in} was 0.08739 in barley samples and the minimum value was 0.05388 in zer samples. The all result values for H\textsubscript{ex} and H\textsubscript{in} have the regular extent and it’s under unity.

The average value of the represented extent index I\textgamma for all samples was 0.12588 specifies by using eq. 7 whereas the maximum value was 0.1682 in barley samples, and the minimum value was 0.09736 in zer samples. Fig.7 describes the
represented extent indexes, $I_{\gamma r}$ and the dose rate in nGy/h.

![Graph](image)

Figure 7. The level index $I_{\gamma r}$ indexes for flour samples.

Fig. 8 shows the average value of the gamma dose rate (D) for all samples existed to be 8.18124(nGy/h) that was calculate used eq.8. The maximum value was 10.85272(nGy/h) for barley flour and the minimum value was 6.34552(nGy/h) for zer flour.

![Graph](image)

Figure 8. The gamma dose rate indices for flour samples.

Figur 9 represents an experimental relationship between the radium equivalent activity and the internal hazard index, where it was observed that the H_{in} increased directly with the Ra_{eq}.

![Graph](image)

Figure 9. The relationship between Ra_{eq} and H_{in}.

Conclusions:

As commented on before, 87% of the radiation dose is due to natural radiation sources. Essential shareholders existed by the present work are 238U and 232Th, that have activities in the same order as in the literature for 226Ra and nearly twice as high for 232Th. The world average values of 238U, 232Th and 40K concentrations indicated for natural background areas are 30, 45 and 420 Bq.Kg$^{-1}$, respectively. The result values found are lower than the average values. Due to increasing employment of phosphate fertilizers in agriculture, potassium substance in soils can be changed and conveyed via food chain to man. As the metabolic balance maintains the 40K body level irrespective of intake quantities, since the metabolic balance sustain the 40K body level regardless of intake quantities, so the quantity of 40K, which is 1.17.10$^{-4}$ of the natural plethora, will be also approximately constant. The annual 40K equivalent dose in tissues of the body is 165 μSv.y$^{-1}$ for adults and the total 40K effective dose from inhalation and ingestion is 170 μSv(5). Because of this, there is no trouble in swallowing cereal flour providing the activities levels existed in the present work.

Authors' declaration:

- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are mine ours. Besides, the Figures and images, which are not mine ours, have been given the permission for re-publication attached with the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee in University of Baghdad.

References:

1. Khalid HM, Soaad AE, Zina JR. Natural Radioactivity of Soil Samples from the Abu SakhirNajaf (Iraq) by Using Gamma Spectroscopy. ETJ. 2016; 41-48.
2. Rejah B. Specific Activities of Natural Radionuclides and Annual Effective Dose Due to the Intake of Some Types of Children Powdered Milk Available in Baghdad Markets Baghdad. Baghdad Sci. J. 2017; 14 (3).
3. Aswood M, Salih A, Al Musawi M. Long-lived gamma-ray measurement in soil samples collected from city central of Al-Diwaniyah, J Phys Conf Ser. 2019; 1234(1).
4. Scheibel V, Appoloni C, Schechter H. Natural radioactivity traces in South-Brazilian cereal flours by gamma-ray spectrometry. J Radioanal Nucl Chem. 2006; 270(1):163–165.
5. UNSCEAR United Nations Scientific Committee on the effect of Atomic Radiation. Sources, Effect, and Risks of Ionizing Radiation” Report to the general Assembly with Scientific Annexes, Vol 1, United Nations, New York; 2000.
الخلاصة:

 trabalho current , we measured the activity of uranium , thorium and potassium in wheat flour samples of Iraq. The results show that the activity of uranium is less than the allowed limits. The activity of thorium and potassium is within the allowed limits.

الكلمات المفتاحية: تلخيص، نشاط الإشعاع، طحين، بيض

1. جبير ن، أكوسانيا أ. محتوى النواكشود في منتجات الأغذية من المصادر المحلية والمحتوى. J Radiat Prot. 2008; 28:405-413.
2. أبوبن ZQ، علياسين AM، جلاراه KM، أبوبن AM. قياس مستوى الطاقة الطبيعية والمحتوى الثوري في البهاسل من الأرز. J Food Compost Anal. 2009; 22: 250-253.
3. غالية H، ماهر H، عمرا. قياس مستوى الأشعة الطبيعية في بعض أنواع الأطعمة ومنتجات الألبان. J Radiat Res Appl Sci. 2019; 12(1): 226-233.
4. رجاح A. أنشطة النشاط والنوعية السنوية الفعالة للتركيز في مياه الشرب في بعض مناطق بغداد. Arab J Sci Eng. 2018; 43 (7): 3831-3835.
5. موراد A، ماهدي R، رجاح A. تركيزات ومؤشرات الخطر الإشعاعي للمواد المشعة طبيعيا لعينات الدقيق في أسواق بغداد.
6. كابمان M، تشاندراسيلان A، تشاندرامohan N، هاركير신ان N، راونسكلانر R. قياس الأنشطة الطبيعية ومخاطر الإشعاع في منتجات الألبان من النواكشود. J Radiat Nucl App. 2018; 3(3): 171-182.
7. ماثيمان H. مؤشرات الخطر الإشعاعي لنوع من المواد المعدنية. J Environ Radioact. 2007; 2 (3): 122-130.
8. UNSCEAR United Nations Scientific Committee on the effect of Atomic Radiation. Source , Effect, and Risks of Ionizing Radiation Report to the general Assembly with Scientific Annexes, United Nations ,New York ; Vol 1, 2013,1(A).
9. UNSCEAR United Nations Scientific Committee on the effect of Atomic Radiation. Source , Effect, and Risks of Ionizing Radiation Report to the general Assembly with Scientific Annexes, United Nations;2017.
10. أبوجاسيسم A، غاليزالي H، كاديم S. 238U، 232Th and 40K in wheat flour samples of Iraqi markets. Ukr. Food J. 2014; 3(3).