Clinico-pathological prognosticators in oral squamous cell carcinoma: An update

Barnali Majumdar1, Shankargouda Patil2, Sachin C Sarode3, Gargi S Sarode3 and Roopa S Rao4

Abstract
Despite diagnostic and therapeutic advancements, mortality and morbidity rates in the patients diagnosed with oral cancer remain static. Hence, an understanding of the factors that predict the progression of oral cancer appears to be useful in deciding on the most appropriate therapy, thereby improving survival. To do so in practice, a critical knowledge of prognostic markers that have high sensitivity is essential. Though recent research has introduced newer molecular markers, challenging the conventional prognostic assessment methods their universal application is yet to be determined. In practice, clinical and histopathological parameters are widely used for the selection of treatment strategies and for the determination of prognosis in oral cancer patients. A literature search yielded a multitude of parameters to be involved in the determination of prognosis of a patient. Based on published evidence, factors of significance were pTNM, tumour volume, depth of invasion, surgical margin status, tumour budding, vascular and perineural invasion, medullary bone invasion, extracapsular spread and the presence of distant metastasis.

Keywords
Oral cancer, oral squamous cell carcinoma, prognosis, TNM, tumour markers

Introduction
Diverse malignant tumours of various cellular lineages originate in the oral cavity. Among these, squamous cell carcinoma (SCC) constitutes a significant proportion, comprising 95% of head and neck cancers. Oral squamous cell carcinoma (OSCC) has a striking global incidence and equally formidable mortality rates.1 The worldwide mortality caused by cancer of the oral cavity and lip was estimated to be 128,000.2 Despite enormous advancements in the field of diagnostics and therapeutics, the overall survival rate in most countries ranges between 45% and 50% and has not shown a significant improvement during the past few decades.3 At present, the clinical and histopathological parameters are mostly employed for the planning of treatment strategies as well as determining the prognosis of oral cancer patients. The present narrative review aims to present the role of clinico-pathological parameters and their influence on the prognosis and survival rates of OSCC.

Method: A web-based search was performed via PubMed database, with keywords: oral cancer, OSCC, prognosis, survival, clinico-pathological, histopathology and molecular markers. Original research (2014–2017, studies involving 3–5 years overall, disease-specific, disease-free survival, disease

1 Department of Oral Pathology and Microbiology, Bhojia Dental College and Hospital, Baddi, Himachal Pradesh, India
2 Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
3 Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Pune, Maharashtra, India
4 Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India

Corresponding author:
Shankargouda Patil, Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia.
Email: sbpatil1612@gmail.com
progression and recurrence rates) and review articles published in English language were included for the appraisal of various prognosticators in OSCC. Based on the literature search, an overview of various prognostic factors was structured, as depicted in Figure 1.

Clinical factors

Anatomic location

The anatomic sites within the oral cavity exhibit variations in histology, vascular supply and lymphatic network. In addition to these factors, accessibility to visual examination of the site may further influence the early diagnosis of OSCC. The importance of the primary site of tumour and its role in survival has been emphasized in the literature. Various published studies have demonstrated the significance of anatomic location in the survival of OSCC, as depicted in Table 1. Cases which occurred on the buccal mucosa tend to be well differentiated, whereas cancers of palate, tongue and floor of the mouth are poorly differentiated. In a case study (2311 patients, below 45 years of age) by Santos et al., an association between the primary location of tumour and advanced clinical stage showed that increased cases of advanced stages were found in the intraoral sites as compared to the lips.

TNM staging

Published studies have demonstrated a decisive role of TNM staging in the prognostic outcome of oral cancer cases (Table 2). Kreppel et al., in 392 oral cancer patients, showed that pTNM had a higher prognostic superiority than cTNM. Other studies have also revealed a significant influence of TNM staging on prognosis and long-term survival. A new staging system was proposed by Lee et al., which has shown better disease-free survival discrimination and ability to identify high-risk group patients with OSCC. The authors estimated the hazard ratios with 95% confidence intervals (CIs) for a range of selected prognostic variables. Those with statistical significance at $p < 0.10$ were further subjected to a multivariate proportional hazards regression model. Following which, an integer scoring system was developed. Individual scores were assigned which included perineural invasion, 1 point; lymph node ratio (LNR), 1 point; advanced pT (T3 + T4), 1 point; and advanced pN (N2), 3 points. The total scores were stratified for the new staging category, which were as follows: stage I, score of 0; stage II, score of 1; stage III, score of 2 or 3; and stage IV, score of 4–6. When compared with the American Joint Committee on Cancer (AJCC) staging system, the new staging categories showed a better discriminatory ability for a 5-year disease-specific survival.
Histopathological factors

Histopathological differentiation

Histopathological differentiation of the tumour does have an influence on prognosis. Severe grade (Figure 2) often indicates a poorer prognosis. Kolokythas et al. showed that the grade of differentiation as well as degree of keratin expression in SCC of the tongue to be significantly associated with poor outcomes, that is, cases with grade 3 and 2 differentiation demonstrated acceleration in disease progression compared to those with grade 1 by a factor of 6.9 and 11.0, respectively, and cases with a keratin score of 3 (least) and 2 (intermediate) demonstrated acceleration in disease progression by a factor of 2.2 and 6.4 compared to those with a keratin score of 1 (most).

Histopathological grading systems

Different grading systems for OSCC vary in their prognostic significance. Broder’s was the first grading system proposed for the prognosis of OSCC. However, a lack of correlation between Broder’s grades and prognosis has been observed. The main reason cited being, malignant squamous cells usually exhibit a heterogeneous population with differences in the degree of differentiation. Furthermore, tumour–host relationship is not considered in Broder’s grading and lastly, it is not a quantitative method (lacks a scoring system). Bryné’s grading system was found to have a prognostic significance in a recent study by Dissanayake. Calone et al. and Strieder et al. compared the prognostic significance of various grading systems and showed that the Almangush et al. grading system to be a simple and an effective tool for the prognostic evaluation of SCC. In a further study involving SCC of the lower lip, the Brandwein-Gensler risk model was found to be a superior grading system.

Tumour volume

Tumour volume can be assessed by imaging scans or by macroscopically measuring the surgical specimen. Tumour volume significantly predicted the disease-free and overall survival of patients with already advanced (T4a) OSCC. A study by Mücke et al., including 437 OSCC patients, showed similar results, that is, tumour volume was significantly associated with the overall survival of the patients.

| Table 1. Overall 5-year survival rates based on the location of OSCC. 9–19 |
|-------------------------------|-------------------|-----------------|
| Location | Authors | Sample size | Overall 5-year survival rate |
| Lip | Han et al. | 15,832 | 69.9% |
| | Cabello et al. | 74 | 73% |
| | Ozturk et al. | 101 | 82.1% |
| | Schüller et al. | 105 (lower lip OSCC) | 61.2% |
| Buccal mucosa | Iqbal et al. | 63 | 30% |
| Tongue and floor of the mouth | Kelner et al. | 222 | 70–77%* |
| | Lopez-Cedrún and de Llano | 64 (advanced cases) | 34.4% |
| Floor of the mouth | Alvarez et al. | 63 | 63.1% |
| Gingiva | Niu et al. | 207 | 71.8% |
| Mandibular | Yang et al. | 31 | 49.2% |
| Maxillary | Givi et al. | 199 | 86% (with elective lymph node dissection); 62% (without elective lymph node dissection) |
| Hard palate | Yang et al. | 31 | 66.3% |

OSCC: oral squamous cell carcinoma.

*70% without elective neck dissection, 77% with neck dissection.

| Table 2. Five-year survival rates of OSCC patients based on TNM staging. 22–24 |
|-------------------------------|-----|-----|-----|-----|-----|
| Author, year | Sample size | 5-year survival rate |
| | | I | II | III | IV |
| Yamamoto et al., 2013 | 360 | 96.2% | 87.3% | 86.5% | 72.7% |
| Lo et al., 2003 | 378 | 75% | 65.6% | 49% | 30% |
| Soo et al., 1988 | 347 | 77% | 70% | 42% | 24% |

OSCC: oral squamous cell carcinoma.
Tumour thickness

Tumour thickness measured in pathology specimens (Figure 3) has been used as a prognostic factor. A tumour thickness of <8 mm and >8 mm was proven to be a better predictor of lymph node metastasis, including the cases of occult metastasis in SCC of the tongue. Likewise, tumour thickness of >7 mm was found to be predictive of lymph node metastasis and a thickness of >10 mm showed poorer disease-free survival in the cases of early SCC of the tongue. The tumour margin to tumour thickness ratio was found to be an independent predictor of local recurrence and disease-specific death. The correlation between tumour thickness at two different mucosal sites (tongue and floor of the mouth) and their propensity for nodal metastasis showed that the critical tumour thickness value (which represents the thickness at which the probability of nodal metastases exceeds 20%) for SCC involving the floor of the mouth was 1–2 mm, whereas for SCC of the tongue was approximately 4 mm.

Depth of invasion

Depth of invasion (DOI) is measured from the basement membrane of the closest adjacent normal mucosa to the deepest point of tumour invasion. The correct method of measuring DOI and tumour thickness is depicted in Figure 3. Kuan et al. showed that DOI significantly influenced the decision for neck dissection in the cases of SCC of the tongue. DOI is one of the parameters of the Almangush et al. grading system, that is, tumour budding – DOI (BD grading system), which has been found to be a good prognosticator of the survival of OSCC patients. DOI is now incorporated into the American Joint Committee on Cancer (eighth edition) Cancer Staging Manual.

Surgical margins

The UK Royal College of Pathologists classifies the surgical margin as clear (when the distance of 5 mm or more is evident from the invasive tumour cells), close (1–5 mm) and positive or involved (<1 mm). Buchakjian et al. reported that the surgical margins yielded significant prognostic data for the recurrence and survival of OSCC patients. Likewise, a study by Ettl et al. showed that R0-resected head and neck carcinomas, with definite close margins, were associated with aggressive tumour features as well as adverse disease-specific survival. Further, the prognostic impact of an intraoperative frozen section analysis was questionable and of limited accuracy. OSCC cases with free margins of ≤4 mm were related to an increased risk of local recurrence, while cases with free margins of ≥5 mm were not related to a significant risk of local recurrence. According to El-Fol et al., a significant discrepancy was observed between intraoperative and histopathological margin assessment due to tissue shrinkage, and in addition such discrepancies were associated with the anatomic location of the tumour. For example, the buccal mucosa presented with a statistically significant mean discrepancy of 47.6% between the in situ and the histopathological margins of all close and positive margins. In a study, comprising 20,602 patients with early oral cancer (stage I/II), it was observed that the margin status could serve as a useful quality measure for early oral cancer. Similarly, other studies have also demonstrated the prognostic significance of inadequate surgical margins in OSCC.

Tumour invasion

Invasive front. The invasive front is of great importance, as the tumour cells at the invading end are relatively more proliferative, as compared to the superficial part. As a consequence, when using Bryne’s method of malignancy grading, it is
implemented at the invasive front of the tumour. The correlation between survival and invasive front revealed that a higher invasive front grading (tumour islands with >15 and <15 tumour cells) was associated with overall poor survival.56 As noted in the above study, the invasive front was evaluated in resected/excised specimens, whereas often for initial diagnosis and prognosis determination, incisional biopsy specimens are submitted to a pathologist. Dhanda et al. conducted a study to determine the prognostic utility of biopsy specimens in OSCC. The biopsy depth was significantly under-represented than the actual tumour depth; hence, the evaluation of important histopathological prognosticators such as pattern of invasion and so on was limited in biopsy specimens.57

Tumour budding. This represents a specific pattern of aggressive growth of carcinomas at the invasive front, comprising single or small clusters (<5 cells) of tumour cells (Figure 4).58 This feature is observed to be significantly associated with the overall survival of the OSCC patients and is proposed to be an independent prognostic indicator.59,60 Tumour budding is found to be a good predictor of clinically node-negative OSCC cases, further adding its utility as an important histopathological parameter.61 Angadi et al. reported high-intensity tumour budding to be a strong independent prognostic factor for the prediction of lymph node metastasis.62 The prognostic efficacy of tumour budding in early-stage tongue SCC has also been observed.63,46

Perineural and vascular invasion. Vascular invasion is characterized by the presence of neoplastic cells within the lumen or in the wall of lymphatics and blood vessels (Figure 5), while perineural invasion (Figure 6) denotes a tropism of neoplastic cells for nerve bundles. Various studies have suggested that both perineural and vascular invasion are the known predictors of poor outcome in OSCC patients.64,65 In a study (571 OSCC patients), it was observed that relative to vascular invasion, lymphatic invasion was significantly associated with poorer overall survival, disease-specific survival and disease-free survival. However, lymphatic invasion was not found to be an independent prognostic factor.66

Sarcolemmal spread. Similar to vascular and perineural invasion, the neoplastic cells might spread along the sarcolemmal sheaths of muscle fibres (Figure 7). The involvement of the muscle tissue by the tumour cells is usually observed at late stages of cancer, probably due to their deeper location.67 However, the literature search did not reveal any research papers related to the prognostic significance of sarcolemmal spread in OSCC cases.

Spread to bone. According to the eighth edition AJCC Cancer Staging of lips and oral cavity, a tumour is to be categorized as T4 when it invades through the cortical bone and not merely
causes superficial erosion alone of bone/tooth socket by the gingival primary. This invasion is not specified as cortical or medullary. However, histopathological studies on its prognostic significance in OSCC have a grouped pattern of bone invasion into cortical/medullary or erosive/infiltrative patterns. A systematic review by Li et al. showed that mandibular medullary invasion could be an independent prognostic factor rather than merely mandibular cortical invasion in OSCC patients. A study of 96 OSCC cases (tumour ≤ 4 cm) by Fives et al. showed medullary bone invasion in mandible as a poor prognostic indicator regardless of the size of the primary tumour. Kuk et al. concluded that bone invasion, in small-sized tumours (T1 <2 cm and T2 ≥2 cm to ≤4 cm), is not an independent prognostic factor. However, tumours presented with both buccal and lingual bone invasion had a significantly worse prognosis. Okura et al. reviewed 345 patients with mandibular gingival OSCC and determined that mandibular canal invasion was an independent predictor of decreased survival rate, whereas medullary bone invasion was an insignificant prognostic indicator with respect to the survival of patients. However, medullary bone invasion was significantly associated with distant metastasis. In a study by Namin et al., the efficacy of bone marrow margin cytological preparations in OSCC cases and its role in the detection of occult invasion and prognosis was assessed. The difference in the prognosis of positive as well as negative bone marrow margins was insignificant.

Sialadenotrophism. This refers to the dysplastic changes along the lumen of the salivary gland ducts (Figure 8). A literature search revealed a study by Mohan et al., wherein changes in minor salivary glands were evaluated in 250 OSCC cases. The alterations observed in excretory ducts included simple hyperplasia (eight cases), squamous metaplasia (six cases), mucous metaplasia (one case), oncocytic metaplasia (one case), moderate dysplasia (five cases), severe dysplasia (five cases), severe dysplasia (one case) and malignant cell infiltration into the duct (seven cases). Within the gland, similar ductal changes were noted, which included ductal proliferation, ductal metaplasia, dysplastic changes and infiltration by malignant squamous cells. Presently, the prognostic role of these findings in OSCC is uncertain. Nevertheless, the glands that have undergone dysplastic changes/malignant cell infiltration should be excised, as there have been reports of recurrence of OSCC due to inadequate removal of such salivary gland tissues.

Cancer-associated inflammation
Cancer-associated inflammation (Figure 9) is known to play an important part in the progression of many neoplasms. In addition, current evidence suggests that the various components of
the inflammatory response might also be noteworthy prognostic indicators. It is observed that SCC cases with a high number of tumour-infiltrating lymphocytes have a better prognosis and might serve as an independent predictor of recurrence. An elevated neutrophil to lymphocyte ratio statistically correlated with an advanced stage of OSCC and poor response to chemoradiotherapy. Kindt et al. demonstrated that a high number of Langerhans cells in both intratumoural and stromal compartments of head and neck squamous cell carcinoma (HNSCC) cases are associated with longer recurrence-free survival. Other studies have revealed that B regulatory cells in tongue SCC; micro-localization of CD68+ tumour–associated macrophages in tumour stroma; systemic inflammation scores including the modified Glasgow Prognostic Score in patients undergoing potentially curative resection for OSCC; expression of Fas ligand in tumour lymphoid cells; tumour-infiltrating neutrophils; expression of HIF-1α in tumour and peri-tumoural inflammatory cells; tumour-infiltrating lymphocytes and T regulatory cells; CD8+/CD4+ cell ratio; may predict clinical outcome and survival of the patients. On the contrary to the above observations, a study by Affonso et al. showed that peri-tumoural inflammation has no prognostic implications in OSCC.

Tumour-associated tissue eosinophilia. Tumour-associated tissue eosinophilia (TATE; Figure 10) count is proposed as a prognosticator and has been correlated with nodal metastasis in OSCC cases. TATE count has also been correlated with tumour differentiation and found to be lower in poorly differentiated SCC. In addition, TATE count was found to be significantly higher at the invasive front than at other parts of the tumour stroma. In a study, TATE count was correlated with pattern of invasion. The findings revealed a progressive decrease in TATE count with an increase in the grading of the pattern of invasion, suggesting its possible protective role in tumour cell cytotoxicity and progression.

Cellular cannibalism

Several authors have emphasized that the number of cannibalistic cells (Figures 11 and 12) can be correlated with the aggressive and metastatic behaviour in systemic malignancies. Towers and Melamed have stated that an increased number of cannibalism may be useful in the grading of breast carcinoma. OSCC consists of a diverse cell population with probable differences in invasiveness and metastasis behaviour.
Hence, clinical behaviour depends on whether a tumour consists of highly aggressive cells or not. In our previously reported studies, the differences in the mean cannibalistic cells for well versus moderately, moderately versus poorly and well versus poorly differentiated OSCC were statistically significant. It is concluded that poorer the differentiation in cancer cells, more is the cannibalistic activity. The poorly differentiated OSCC is more aggressive with high proliferative rate. We speculated that nutritional supply to tumour cells is not in pace with the high proliferation–related tumour load. This may lead to an increase in the nutritional demand in tumour mass, which could probably initiate cannibalism in tumour cells. Cellular cannibalism in OSCC has also shown good correlation with TNM stages and lymph node metastasis, making it an ideal histopathological prognosticator. However, some earlier authors did not report statistically significant correlation of cell cannibalism with the histopathological grades.95,96

Metastasis

Lymph node metastasis. It is one of the most consistent prognosticators of the head and neck carcinoma. The outcome of nodal involvement and the level of distribution on the survival of OSCC patients (8281) revealed that the 5-year, disease-specific survival was 42.0% for patients with only level I, II or III involvement, whereas for level IV group, it was 30.6% and for level V group it was 26.4%. The results of level IV and V were statistically significant and indicated worse prognosis.97 Similar findings have been demonstrated by several others.98-101 In another interesting study, the impact of the involvement of facial lymph node on survival was assessed. Of 641 OSCC patients, 103 presented with metastasis to facial lymph nodes and were strongly associated with poor disease control and lower survival rates.102 Studies have also shown that the number, size as well as occult node metastasis have a significant impact on the survival rates.103-105

Lymph node ratio. LNR has been used as a prognostic factor in various carcinomas and is defined as the ratio of the number of tumour-positive lymph nodes to the total number of lymph nodes removed.106 A study revealed that cases with >0.092 LNR had an overall survival rate of 24.2%, whereas cases with <0.092 LNR revealed an overall survival rate of 45.8%.107 However, a previous study proposed the LNR value to be in the range of 0.05–0.07, dividing the patients above this range as high-risk and below as low-risk group.108 LNR stratification value for high-risk patients has been suggested to be higher than 6%. It was found to be a good prognostic tool in patients with pN0–pN2b lymph node status.109 In another study, patients with LNR value <0.1 had better 3-year overall survival and local failure–free survival, which was also found to be an independent prognostic factor for overall survival.106 Contrary to the above studies, de Ridder et al. suggested that the number of tumour-positive lymph nodes appears to be a more dependable parameter than LNR, provided a minimum number of lymph nodes were examined.110

Extracapsular spread. The presence and extent of extracapsular spread (ECS) is considered to be important in prognosis determination (Figure 13). Previously, most of the studies reported ECS as present or absent as there was no clear macroscopic or histologic criteria. It was Lewis Jr et al. who attempted to provide a prognostically significant grading system for ECS.111
However, the results of a meta-analysis by Mermod et al. revealed that ECS has a negative impact on locoregional recurrence as well as distant metastasis in HNSCC patients.112 The prognostic cut-off value of ECS has been suggested to be 1.7 mm, and the disease-specific survival was significantly lower for patients with more than 1.7 mm involvement beyond the capsule.113 Patients with macroscopic tumour invasion had a higher recurrence rate (69.8\%) with a 3-year disease-specific survival of 49.0\% and a relatively poorer prognosis.114 ECS has recently been introduced to pTNM staging in the American Joint Committee on Cancer (eighth edition) Cancer Staging Manual.

Distant metastasis. Although the incidence of distant metastasis has decreased with the advent of advanced and combined therapies, it is considered as an important parameter for prognosis in the patients. A clinico-pathological study by Takahashi et al., comprising 502 OSCC cases, revealed 54 cases were positive for distant metastasis. The survival period of the patients ranged from 1 to 21 months with a median of 3 months, after confirmation of metastasis. In addition, locoregional recurrence was also noted in 29 of 54 cases.115 In another study, the overall survival rates were found to be 72.0\% (95\% CI, 53.4–89.6) at the end of 1 year and 40.8\% (95\% CI, 20.6–61.0) after 2 years of development of distant metastasis in the cases of oropharyngeal SCC.116

Molecular markers

A number of markers have demonstrated their prognostic utility in OSCC; however, due to lack of proper trials and validations, the practical application of these markers is debatable. A working classification along with some of the markers with prognostic significance is listed in Table 3.117–123

No.	Category	Examples
1.	Cell proliferation markers/regulators	Ki-67, PCNA, EGFR, MYC
2.	Proto-oncogenes and oncogenes	Rb, cyclin D1
3.	Tumour suppressor genes	p53, p16, p19, p21, p27, PTEN, RB1
4.	Apoptotic markers	Bcl-2, survivin, FAS
5.	Angiogenesis markers	VEGF, placental growth factor, angiopoietin-like 3
6.	Cell adhesion/motility markers	E-cadherins/\(β\)-catenins; MMP-11, 13, 1, 2; cathepsin B; Twist1/ZEB2; CD44; S100A4; VCAN
7.	Cell surface markers/transmembrane proteins	Cyfra 21-1; syndecan-1; CRP protein; squamous cell carcinoma antigen; MUC1; MUC4; claudin-1, 7; connexins
8.	Genetic instability markers	Epigenetic markers (DNA hypermethylation)
9.	Enzyme markers	Aldehyde dehydrogenase, carbonic anhydrase XII
10.	Miscellaneous markers	Hypoxia-inducible factor-I
		Heat shock proteins (HSP-GRP78)
		Autophagy markers (microtubule-associated protein light chain 3)
		Inflammatory markers (CD163; IL-4, 6, 37; COX-2)
		Podoplanin
		Myofibroblast
		Glucose transporter 1 (GLUT1)
		Stem cell markers (CD44, CD147)
		HPV-16

PCNA: Proliferating cell nuclear antigen; EGFR: Epithelial growth factor receptor; PTEN: Phosphatase and tensin homolog; RBI: Retinoblastoma-1; VEGF: Vascular endothelial growth factor; VCAN: Versican.

Conclusion

The current research and published data suggest that pTNM, tumour volume, DOI, surgical margin status, tumour budding, vascular and perineural invasion, medullary bone invasion, lymph node and distant metastasis to be the consistent, easy-to-assess and reliable core prognosticators in OSCC. The other parameters such as histopathological grading systems and LNR are lacking in their prognostic efficacy due to dearth of universal evaluation criteria. Hence, as evidenced in this review, a
multitude of parameters are involved in the determination of prognosis of a patient, based on which apt management should be planned to reduce the patient morbidity and mortality rates. To conclude, it is of paramount importance to include the aforementioned prognosticators in histopathological reports for the prediction of clinical outcome and archiving of valued data for future analysis.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

1. Omar EA. The outline of prognosis and new advances in diagnosis of oral squamous cell carcinoma (OSCC): review of the literature. *J Oral Oncol* 2013; 123: 13.
2. Jemal A, Bray F, Center MM, et al. Global cancer statistics. *CA Cancer J Clin* 2011; 61(2): 69–90.
3. Massano J, Regateiro FS, Janário G, et al. Oral squamous cell carcinoma: review of prognostic and predictive factors. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 2006; 102(1): 518–76.
4. Vallecillo Capilla M, Romero Olid MN, Olmedo Gaya MV, et al. Factors related to survival from oral cancer in an Andalusian population sample (Spain). *Med Oral Patol Oral Cir Bucal* 2007; 12(7): 518–523.
5. Lukbe J, Dyalram D, Perera EH, et al. A retrospective analysis of squamous carcinoma of the buccal mucosa: an aggressive subset within the oral cavity. *J Oral Maxillofac Surg* 2013; 71(6): 1126–131.
6. Bachar G, Goldstein DP, Barker E, et al. Squamous cell carcinoma of the buccal mucosa: outcomes of treatment in the modern era. *Laryngoscope* 2012; 122(7): 1552–1557.
7. Eskander A, Givi B, Gullane PJ, et al. Outcome predictors in squamous cell carcinoma of the maxillary alveolus and hard palate. *Laryngoscope* 2013; 123(10): 2453–2458.
8. Binahmed A, Nason RW, Abdoh AA, et al. Population-based study of treatment outcomes in squamous cell carcinoma of the retromolar trigone. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 2007; 104(5): 662–665.
9. Han AF, Kuan EC, Mallen-St Clair J, et al. Epidemiology of squamous cell carcinoma of the lip in the United States: a population-based cohort analysis. *JAMA Otolaryngol Head Neck Surg* 2016; 142(12): 1216–1223.
10. Cabello BT, Sazo BN, Salgado FA, et al. Squamous cell carcinoma of the lip survival rate. *Rev Med Chile* 2015; 143(7): 847.
11. Ozturk K, Gode S, Erdogan U, et al. Squamous cell carcinoma of the lip: survival analysis with long-term follow-up. *Eur Arch Otorhinolaryngol* 2015; 272(11): 3545–3550.
12. Schuller M, Goum M, Müller S, et al. Long-term outcome and subjective quality of life after surgical treatment of lower lip cancer. *Clin Oral Investig* 2015; 19(5): 1093–1099.
13. Iqbal H, Jamshed A, Bhatti AB, et al. Five-year follow-up of concomitant accelerated hypofractionated radiation in advanced squamous cell carcinoma of the buccal mucosa: a retrospective cohort study. *BioMed Res Int* 2015; 2015: 8.
14. Kelner N, Vartanian JG, Pinto CA, et al. Does elective neck dissection in T1/T2 carcinoma of the oral tongue and floor of the mouth influence recurrence and survival rates? *Br J Oral Maxillofac Surg* 2014; 52(7): 590–597.
15. López-Cedrún JL and de Llano JA. A 22 years survival and prognostic factors analysis in a homogeneous series of 64 patients with advanced cancer of the tongue and the floor of the mouth. *J Craniomaxillofac Surg* 2015 Apr 30; 43(3):376–381.
16. Alvarez J, Bidaguren A, McGurk M, et al. Sentinel node biopsy in relation to survival in floor of the mouth carcinoma. *Int J Oral Maxillofac Surg* 2014; 43(3): 269–273.
17. Niu LX, Feng ZE, Wang DC, et al. Prognostic factors in mandibular gingival squamous cell carcinoma: a 10-year retrospective study. *Int J Oral Maxillofac Surg* 2017; 46(2): 137–143.
18. Yang X, Song X, Chu W, et al. Clinopathological characteristics and outcome predictors in squamous cell carcinoma of the maxillary gingiva and hard palate. *Int J Oral Maxillofac Surg* 2015; 73(7): 1429–1436.
19. Givi B, Eskander A, Awad MI, et al. Impact of elective neck dissection on the outcome of oral squamous cell carcinomas arising in the maxillary alveolus and hard palate. *Head Neck* 2016 Apr; 38(Suppl 1): E1688–E1694.
20. Rai HC and Ahmed J. Clinopathological correlation study of oral squamous cell carcinoma in a local Indian population. *Asian Pac J Cancer Prev* 2016; 17: 1251–1254.
21. Hellen-Bandeira-de-Pontes Santos T, dos Santos KG, Paz AR, et al. Clinical findings and risk factors to oral squamous cell carcinoma in young patients: a 12-year retrospective analysis. *Med Oral Patol Oral Cir Bucal* 2016; 21(2): e151.
22. Yamamoto N, Sato K, Yamauchi T, et al. A 5-year activity report from the Oral Cancer Center, Tokyo Dental College. *Bull Tokyo Dent Coll* 2013; 54(4): 265–273.
23. Lo WL, Kao SY, Chi LY, et al. Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival. *J Oral Maxillofac Surg* 2003; 61: 751–758.
24. Soo KC, Spiro RH, King W, et al. Squamous carcinoma of the gums. *Am J Surg* 1988; 156: 281–285.
25. Scuibba JJ. Oral cancer. The importance of early diagnosis and treatment. *Am J Clin Dermatol* 2001; 2(4): 239–251.
26. Kryppel M, Nazarli P, Grandoch A, et al. Clinical and histopathological staging in oral squamous cell carcinoma — comparison of the prognostic significance. *Oral Oncol* 2016; 60: 68–73.
27. Loeffelbein D, Ritschi LM, Gull FD, et al. Influence of possible predictor variables on the outcome of primary oral squamous cell carcinoma: a retrospective study of 392 consecutive cases at a single centre. *Int J Oral Maxillofac Surg* 2017; 46(4): 413–421.
28. Dantas TS, de Barros Silva PG, Sousa EF, et al. Influence of educational level, stage, and histological type on survival of oral cancer in a Brazilian population: a retrospective study of 10 years observation. *Medicine* 2016; 95(3): e2314.
29. Lee CC, Huang CY, Lin YS, et al. Prognostic performance of a new staging category to improve discrimination of disease-specific survival in nonmetastatic oral cancer. *JAMA Otolaryngol Head Neck Surg* 2017; 143(4): 395–402.

30. Warnakulasuriya S. Prognostic and predictive markers for oral squamous cell carcinoma: the importance of clinical, pathological and molecular markers. *Saud Med Sci* 2014; 2(1): 12.

31. Kolokythas A, Park S, Schlieve T, et al. Squamous cell carcinoma of the oral tongue: histopathological parameters associated with outcome. *Int J Oral Maxillof Surg* 2015; 44(9): 1069–1074.

32. Akhter M, Hossain S, Rahman QB, et al. A study on histological grading of oral squamous cell carcinoma and its co-relationship with regional metastasis. *J Oral Maxillofac Pathol JOMPFP* 2011; 15(2): 168.

33. Bhargava A, Saigal S and Chalishazar M. Histopathological grading systems in oral squamous cell carcinoma: a review. *J Int Oral Health* 2010; 2(4): 1–0.

34. Disanayake U. Malignancy grading of invasive fronts of oral squamous cell carcinomas: correlation with overall survival. *Trans Res Oral Oncol* 2017; 2: 1–8.

35. Sawazaki-Calone I, Rangel AL, Bueno AG, et al. The prognostic value of histopathological grading systems in oral squamous cell carcinomas. *Oral Dis* 2015; 21(6): 755–761.

36. Strieder L, Coutinho-Camillo CM, Costa V, et al. Comparative analysis of three histologic grading methods for squamous cell carcinoma of the lip. *Oral Dis* 2017; 23(1): 120–125.

37. Santos HD, do Ó Silva AL, Cavalcante LD, et al. Histopathological grading systems and their relationship with clinical parameters in lower lip squamous cell carcinoma. *Int J Oral Maxillof Surg* 2014; 43(5): 539–545.

38. Lin CS, Santos O, Bandiera A, et al. Tumor volume as an independent predictive factor of worse survival in patients with oral cavity squamous cell carcinoma. *Head Neck* 2017; 39(5): 960–964.

39. Mücke T, Mitchell DA, Ritschl LM, et al. Influence of tumor volume on survival in patients with oral squamous cell carcinoma. *J Cancer Res Clin Oncol* 2015; 141(6): 1007–1011.

40. Mücke T, Kanatas A, Ritschl LM, et al. Tumor thickness and risk of lymph node metastasis in patients with squamous cell carcinoma of the tongue. *Oral Oncol* 2016; 53: 80–84.

41. de Matos LL, Manfro G, dos Santos RV, et al. Tumor thickness as a predictive factor of lymph node metastasis and disease recurrence in T1N0 and T2N0 squamous cell carcinoma of the oral tongue. *Oral Surg Oral Med Oral Pathol Oral Radiol* 2014; 118(2): 209–217.

42. Heiduschka G, Virk SA, Palme CE, et al. Margin to tumor thickness ratio – a predictor of local recurrence and survival in oral squamous cell carcinoma. *Oral Oncol* 2016; 55: 49–54.

43. Balasubramanian D, Ebrahimi A, Gupta R, et al. Tumour thickness as a predictor of nodal metastases in oral cancer: comparison between tongue and floor of mouth subsites. *Oral Oncol* 2014; 50(12): 1165–1168.

44. Lydiatt WM, Patel SG, O’Sullivan B, et al. Head and neck cancers—major changes in the American Joint Committee on cancer eighth edition cancer staging manual. *CA A Cancer J Clin* 2017; 67(2): 122–137.

45. Kuan EC, Clair JM, Badran KW, et al. How does depth of invasion influence the decision to do a neck dissection in clinically N0 oral cavity cancer? *Laryngoscope* 2016; 126(3): 547–548.

46. Almunagsh A, Bello IO, Kesi–Sæntti H, et al. Depth of invasion, tumor budding, and worst pattern of invasion: prognostic indicators in early-stage oral tongue cancer. *Head Neck* 2014; 36(6): 811–818.

47. Almunagsh A, Bello IO, Coletta RD, et al. For early-stage oral tongue cancer, depth of invasion and worst pattern of invasion are the strongest pathological predictors for locoregional recurrence and mortality. *Virchows Arch* 2015; 467(1): 39–46.

48. Sarode G, Sarode SC, Shelke P, et al. Histopathological assessment of surgical margins of oral carcinomas and related shrinkage of tumour. *Transl Res Oral Oncol* 2017; 2: 1–5.

49. Buchakjian MR, Tasche KK, Robinson RA, et al. Association of main specimen and tumor bed margin status with local recurrence and survival in oral cancer surgery. *JAMA Otolaryngol Head Neck Surg* 2016; 142(12): 1191–1198.

50. Ett T, El-Gindi A, Hautmann M, et al. Positive frozen section margins predict local recurrence in R0-resected squamous cell carcinoma of the head and neck. *Oral Oncol* 2016; 55: 17–23.

51. Yamada S, Kurita H, Shimane T, et al. Estimation of the width of free margin with a significant impact on local recurrence in surgical resection of oral squamous cell carcinoma. *Int J Oral Maxillof Surg* 2016; 45(2): 147–152.

52. El-Fol HA, Noman SA, Beheiri MG, et al. Significance of post-resection tissue shrinkage on surgical margins of oral squamous cell carcinoma. *J Cranio Maxillof Surg* 2015; 43(4): 475–482.

53. Luryi AL, Chen MM, Mehra S, et al. Positive surgical margins in early stage oral cavity cancer: an analysis of 20,602 cases. *Otolaryngol Head Neck Surg* 2014; 151(6): 984–990.

54. Wedemeyer I, Kreppel M, Scheer M, et al. Histopathological assessment of tumour regression, nodal stage and status of resection margins determines prognosis in patients with oral squamous cell carcinoma treated with neoadjuvant radiotherapy. *Oral Dis* 2014; 20(3): e81–e89.

55. Lawaetz M and Homoe P. Risk factors for and consequences of inadequate surgical margins in oral squamous cell carcinoma. *Oral Surg Oral Med Oral Pathol Oral Radiol* 2014; 118(6): 642–646.

56. Sandu K, Nisa L, Monnier P, et al. Clinicobiological progression and prognosis of oral squamous cell carcinoma in relation to the tumor invasive front: impact on prognosis. *Acta Otolaryngol* 2014; 134(4): 416–424.

57. Dhand J, Uppal N, Chowlia H, et al. Features and prognostic utility of biopsy in oral squamous cell carcinoma. *Head Neck* 2016 Apr; 38: E1857–E1862.

58. Almunagsh A, Salo T, Hagström J, et al. Tumour budding in head and neck squamous cell carcinoma – a systematic review. *Histopathology* 2014; 65(5): 587–594.
59. Boxberg M, Jesinghaus M, Dorfner C, et al. Tumour budding activity and cell nest size determine patient outcome in oral squamous cell carcinoma: proposal for an adjusted grading system. Histopathology 2017; 70(7): 1125–1137.

60. Pedersen NJ, Jensen DH, Lelkaitis G, et al. Construction of a pathological risk model of occult lymph node metastases for prognostication by semi-automated image analysis of tumor budding in early-stage oral squamous cell carcinoma. Oncotarget 2017; 8(11): 18227.

61. Seki M, Sano T, Yokoo S, et al. Tumour budding evaluated in biopsy specimens is a useful predictor of prognosis in patients with cN0 early stage oral squamous cell carcinoma. Histopathology 2017; 70(6): 869–879.

62. Angadi PV, Patil PV, Hallikeri K, et al. Tumor budding is an independent prognostic factor for prediction of lymph node metastasis in oral squamous cell carcinoma. Int J Surg Pathol 2015; 23(2): 102–110.

63. Xie N, Wang C, Liu X, et al. Tumor budding correlates with occult cervical lymph node metastasis and poor prognosis in clinical early-stage tongue squamous cell carcinoma. J Oral Pathol Med 2015; 44(4): 266–272.

64. Jardim JF, Francisco AL, Gondak R, et al. Prognostic impact of perineural invasion and lymphovascular invasion in advanced stage oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2015 Jan 31; 44(1): 23–28.

65. Matsushita Y, Yanamoto S, Takahashi H, et al. A clinicopathological study of perineural invasion and vascular invasion in oral tongue squamous cell carcinoma. Int J Oral Maxillofac Surg 2015; 44(5): 543–548.

66. Adel M, Kao HK, Hsu CL, et al. Evaluation of lymphatic and vascular invasion in relation to clinicopathological factors and treatment outcome in oral cavity squamous cell carcinoma. Medicine 2015; 94(3): e1510.

67. Woolgar JA and Triantafyllou A. Pitfalls and procedures in the histopathological diagnosis of oral and oropharyngeal squamous cell carcinoma and a review of the role of pathology in prognosis. Oral Oncol 2009; 45(4): 361–385.

68. Wong RJ, Keel SB, Glynn RJ, et al. Histological pattern of mandibular invasion by oral squamous cell carcinoma. Laryngoscope 2000; 110(1): 65–72.

69. Ebrahimi A, Murali R, Gao K, et al. The prognostic and staging implications of bone invasion in oral squamous cell carcinoma. Cancer 2011; 117(9): 4460–4467.

70. Li C, Lin J, Men Y, et al. Does medullary versus cortical invasion of the mandible affect prognosis in patients with oral squamous cell carcinoma? J Oral Maxillofac Surg 2017; 75(2): 403–415.

71. Fives C, Nae A, Roche P, et al. Impact of mandibular invasion on prognosis in oral squamous cell carcinoma four centimeters or less in size. Laryngoscope 2017; 127(4): 849–854.

72. Kuk SK, Yoon HJ, Hong SD, et al. Staging significance of bone invasion in small-sized (4cm or less) oral squamous cell carcinoma as defined by the American Joint Committee on Cancer. Oral Oncol 2016; 55: 31–36.

73. Okura M, Yanamoto S, Umeda M, et al. Prognostic and staging implications of mandibular canal invasion in lower gingival squamous cell carcinoma. Cancer Med 2016; 5(12): 3378–3385.

74. Namin AW, Bruggers SD, Panuganti BA, et al. Efficacy of bone marrow cytologic evaluations in detecting occult cancellous invasion. Laryngoscope 2015; 125(5): E173–E179.

75. Mohan SP, Chitturi RT, Ragunathan YT, et al. Minor salivary gland changes in oral epithelial dysplasia and oral squamous cell carcinoma – a histopathological study. J Clin Diagnos Res JCDR 2016; 10(7): ZC12.

76. Xu Q, Wang C, Yuan X, et al. Prognostic value of tumor infiltrating lymphocytes for patients with head and neck squamous cell carcinoma. Transl Oncol 2017; 10(1): 10–16.

77. Nakashima H, Matsuoka Y, Yoshida R, et al. Pre-treatment neutrophil to lymphocyte ratio predicts the chemoradiotherapy outcome and survival in patients with oral squamous cell carcinoma: a retrospective study. BMC Cancer 2016; 16(1): 41.

78. Kindt N, Descamps G, Seminerio I, et al. Langerhans cell number is a strong and independent prognostic factor for head and neck squamous cell carcinomas. Oral Oncol 2016; 62: 1–10.

79. Zhou X, Su YX, Lao XM, et al. CD19+IL-10+ regulatory B cells affect survival of tongue squamous cell carcinoma patients and induce resting CD4+ T cells to CD4+Foxp3+ regulatory T cells. Oral Oncol 2016; 53: 27–35.

80. Ni YH, Ding L, Huang XF, et al. Microlocalization of CD68+ tumor-associated macrophages in tumor stroma correlated with poor clinical outcomes in oral squamous cell carcinoma patients. Tumor Biol 2015; 36(7): 5291–5298.

81. Farhan-Alanie OM, McMahon J and McMillan DC. Systemic inflammatory response and survival in patients undergoing curative resection of oral squamous cell carcinoma. Br J Oral Maxillofac Surg 2015; 53(2): 126–131.

82. Peterle GT, Santos M, Mendes SO, et al. FAS ligand expression in inflammatory infiltrate lymphoid cells as a prognostic marker in oral squamous cell carcinoma. Genet Mol Res 2015; 14(3): 11145–11153.

83. Caldeira PC, Sousa A and Aguiar MC. Differential infiltration of neutrophils in T1–T2 versus T3–T4 oral squamous cell carcinomas: a preliminary study. BMC Res Notes 2013; 6: 569.

84. Wolf GT, Chepeha DB, Bellie E, et al. Tumor infiltrating lymphocytes (TIL) and prognosis in oral cavity squamous carcinoma: a preliminary study. Oral Oncol 2015; 51(1): 90–95.

85. Mendes SO, dos Santos M, Peterle GT, et al. HIF-1alpha expression profile in intratumoral and peritumoral inflammatory cells as a prognostic marker for squamous cell carcinoma of the oral cavity. PloS One 2014; 9(1): e84923.

86. Wallis SP, Stafford ND and Greenman J. Clinical relevance of immune parameters in the tumor microenvironment of head and neck cancers. Head Neck 2015; 37(3): 449–459.

87. Lukesova E, Boucek J, Rotnaglova E, et al. High level of Tregs is a positive prognostic marker in patients with HPV-positive oral and oropharyngeal squamous cell carcinomas. BioMed Res Int 2014; 2014: 11.

88. dosantos Pereira J, da Costa Miguel MC, Queiroz LM, et al. Analysis of CD8+ and CD4+ cells in oral squamous cell carcinoma and their association with lymph node metastasis and
histologic grade of malignancy. *Appl Immunohistochem Mol Morphol* 2014; 22(3): 200–205.

89. Affonso VR, Montoro JR, Freitas LC, et al. Peritumoral infiltrate in the prognosis of epidermoid carcinoma of the oral cavity. *Braz J Otorhinolaryngol* 2015; 81(4): 416–421.

90. Oliveira DT, Biasi TP, Faustino SE, et al. Eosinophils may predict occult lymph node metastasis in early oral cancer. *Clin Oral Investig* 2012; 16(6): 1523–1528.

91. Rahrotaban S, Khatibi A and Allami A. Assessment of tissue eosinophilia in head and neck squamous cell carcinoma by Luna staining. *Oral Oncol* 2011; 47(Suppl 1): S131.

92. Tadbir AA, Ashraf MJ and Sardari Y. Prognostic significance of stromal eosinophilic infiltration in oral squamous cell carcinoma. *J Craniofac Surg* 2009; 20(2): 287–289.

93. Majumdar B, Anil S, Sarode SC, et al. Tumor associated tissue eosinophilia as a potential predictor in the invasion patterns of oral squamous cell carcinoma. *J Int Oral Health* 2016; 8(11): 1026.

94. Towers KH and Melamed MR. Absence of prognostic features in the cytology of effusions due to mammary cancer. *Acta Cytol* 1979; 23: 30–35.

95. Sarode SC and Sarode GS. Neutrophil-tumor cell cannibalism in oral squamous cell carcinoma. *J Oral Pathol Med* 2014; 43(6): 454–458.

96. Sarode GS, Sarode SC and Karmarkar S. Complex cannibalism: an unusual finding in oral squamous cell carcinoma. *Oral Oncol* 2012; 48(2): e4–e6.

97. Marchiano E, Patel TD, Eloy JA, et al. Impact of nodal level distribution on survival in oral cavity squamous cell carcinoma: a population-based study. *Otolaryngol Head Neck Surg* 2016; 155(1): 99–105.

98. Xing Y, Zhang J, Lin H, et al. Relationship between level of lymph node metastasis (LNM) and survival in head and neck squamous cell carcinoma (HNSCC). *Cancer* 2016; 122(4): 534–545.

99. Murakami R, Nakayama H, Semba A, et al. Prognostic impact of the level of nodal involvement: retrospective analysis of patients with advanced oral squamous cell carcinoma. *Br J Oral Maxillofac Surg* 2017; 55(1): 50–55.

100. Hasegawa T, Shibuya Y, Takeda D, et al. Prognosis of oral squamous cell carcinoma patients with level IV/V metastasis: an observational study. *J Cranio-Maxillofac Surg* 2017; 45(1): 145–149.

101. Burusapat C, Jarungroongruangchai W and Charoenpitakchai M. Prognostic factors of cervical node status in head and neck squamous cell carcinoma. *World J Surg Oncol* 2015; 13(1): 51.

102. Xie L, Zhou X, Huang W, et al. Facial lymph node involvement as a prognostic factor for patient survival in oral cavity squamous cell carcinoma. *Tumor Biol* 2016; 37(3): 3489–3496.

103. Ebrahimi A, Gil Z, Amit M, et al. The prognosis of N2b and N2c lymph node disease in oral squamous cell carcinoma is determined by the number of metastatic lymph nodes rather than laterality: evidence to support a revision of the American Joint Committee on Cancer staging system. *Cancer* 2014; 120(13): 1968–1974.

104. Jarungroongruangchai W, Charoenpitakchai M, Silpeeyodom T, et al. Size of cervical lymph node and metastasis in squamous cell carcinoma of the oral tongue and floor of mouth. *J Med Assoc Thai* 2014; 97(Suppl 2): S101–S106.

105. Mücke T, Mitchell DA, Wagenpfell S, et al. Incidence and outcome for patients with occult lymph node involvement in T1 and T2 oral squamous cell carcinoma: a prospective study. *BMC Cancer* 2014; 14(1): 346.

106. Chen CC, Lin JC and Chen KW. Lymph node ratio as a prognostic factor in head and neck cancer patients. *Radiat Oncol* 2015; 10(1): 181.

107. Yang S, Wang DC, Wang X, et al. Positive lymph node ratio is an important prognostic factor of oral squamous cell carcinoma. *Chin J Stomatol* 2016; 51(3): 133–136.

108. Küenzel J, Mantsopoulos K, Psychogios G, et al. Lymph node ratio as a valuable additional predictor of outcome in selected patients with oral cavity cancer. *Oral Surg Oral Med Oral Pathol Oral Radiol* 2014; 117(6): 677–684.

109. Reinsch S, Kruse A, Bredell M, et al. Is lymph-node ratio a superior predictor than lymph node status for recurrence-free and overall survival in patients with head and neck squamous cell carcinoma? *Ann Surg Oncol* 2014; 21(6): 1912–1918.

110. de Ridder M, Marres CC, Smeele LE, et al. A critical evaluation of lymph node ratio in head and neck cancer. *Virchows Arch* 2016; 469(6): 635–641.

111. Lewis JS, Carpenter DH, Thorstad WL, et al. Extracapsular extension is a poor predictor of disease recurrence in surgically treated oropharyngeal squamous cell carcinoma. *Mod Pathol* 2011; 24(11): 1413–1420.

112. Mermod M, Tolstonog G, Simon C, et al. Extracapsular spread in head and neck squamous cell carcinoma: a systematic review and meta-analysis. *Oral Oncol* 2016; 62: 60–71.

113. Wreesmann VB, Katabi N, Palmer FL, et al. Influence of extracapsular nodal spread extent on prognosis of oral squamous cell carcinoma. *Head Neck* 2016 Apr; 38(Suppl 1): E1192–E1199.

114. Yamada S, Yanamoto S, Otani S, et al. Evaluation of the level of progression of extracapsular spread for cervical lymph node metastasis in oral squamous cell carcinoma. *Int J Oral Maxillofac Surg* 2016; 45(2): 141–146.

115. Takahashi M, Aoki T, Nakamura N, et al. Clinicopathological analysis of 502 patients with oral squamous cell carcinoma with special interest to distant metastasis. *Tokai J Exp Clin Med* 2014; 39(4): 178–185.

116. McBride SM, Busse PM, Clark JR, et al. Long-term survival after distant metastasis in patients with oropharyngeal cancer. *Oral Oncol* 2014; 50(3): 208–212.

117. Blatt S, Krüger M, Ziebart T, et al. Biomarkers in diagnosis and therapy of oral squamous cell carcinoma: a review of the literature. *J Cranio Maxillofac Surg* 2017; 45: 722–730. DOI: 10.1016/j.jcms.2017.01.033.

118. Mohanta S, Siddappa G, Valiyaveedan SG, et al. Cancer stem cell markers in patterning differentiation and in prognosis of oral squamous cell carcinoma. *Tumor Biol* 2017; 39(6): 1–14.

119. Rivera C, Oliveira AK, Costa RA, et al. Prognostic biomarkers in oral squamous cell carcinoma: a systematic review. *Oral Oncol* 2017; 72: 38–47.

120. Monteiro de Oliveira Novaes JA and William WN Jr. Prognostic factors, predictive markers and cancer biology: the triad for...
successful oral cancer chemoprevention. *Future Oncol* 2016; 12(19): 2379–2386.

121. Santosh AB, Jones T and Harvey J. A review on oral cancer biomarkers: understanding the past and learning from the present. *J Can Res Ther* 2016; 12: 486–492.

122. Juodzbalys G, Kasradze D, Cicciù M, et al. Modern molecular biomarkers of head and neck cancer. Part I. Epigenetic diagnostics and prognostics: systematic review. *Cancer Biomark* 2016; 17(4): 487–502.

123. Sinevici N and O’sullivan J. Oral cancer: deregulated molecular events and their use as biomarkers. *Oral Oncol* 2016; 61: 12–18.

124. Sarode G, Sarode SC, Tupkari J, et al. Is oral squamous cell carcinoma unique in terms of intra- and inter-tumoral heterogeneity? *Transl Res Oral Oncol* 2017; 2: 1–6.

Translational Value

The present review aims to provide the clinicians and pathologists with an updated knowledge on the core prognosticators of oral cancer, as well as a proposal for the pathologists to essentially include them in histopathological reports for the prediction of clinical outcome. When establishing disease staging systems or when drawing guidelines for the treatment of OSCC, due consideration should be given to the factors that influence their prognosis. Inclusion of sensitive prognostic factors in tumour staging will facilitate more accurate treatment decisions in the future.