Abstract: *Colletotrichum* is regarded as one of the 10 most important genera of plant pathogens in the world. It causes diseases in a wide range of economically important plants, including peaches. China is the largest producer of peaches in the world but little is known about the *Colletotrichum* spp. affecting the crop. In 2017 and 2018, a total of 286 *Colletotrichum* isolates were isolated from symptomatic fruit and leaves in 11 peach production provinces of China. Based on multilocus phylogenetic analyses (ITS, ACT, CAL, CHS-1, GAPDH, TUB2, and HIS3) and morphological characterization, the isolates were identified to be *C. nymphaeae*, *C. fioriniae*, and *C. godetiae* of the *C. acutatum* species complex, *C. fructicola* and *C. siamense* of the *C. gloeosporioides* species complex, and one newly identified species, *C. folicola* sp. nov. This study is the first report of *C. karsti* and *C. godetiae* in peaches, and the first report of *C. nymphaeae*, *C. fioriniae*, *C. fructicola*, and *C. siamense* in peaches in China. *C. nymphaeae* is the most prevalent species of *Colletotrichum* in peaches in China, which may be the result of fungicide selection. Pathogenicity tests revealed that all species found in this study were pathogenic on both the leaves and fruit of peaches, except for *C. folicola*, which only infected the leaves. The present study substantially improves our understanding of the causal agents of anthracnose on peaches in China.

Keywords: *Colletotrichum*; peach anthracnose; multilocus phylogeny; pathogenicity; taxonomy

1. Introduction

The peach (*Prunus persica* (L.) Batsch) originated in China [1] and has been grown in many temperate climates around the world. Published: 18 March 2022

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
mummies and affected twigs, and form conidia in early spring [5]. In addition to asexual reproduction, they may also produce ascospores in perithecia, which were observed on apples in dead wood and on pears in leaves [6–8].

Figure 1. Symptoms of peach anthracnose on fruit and leaves. (a–f) Various symptoms on fruit of *Prunus persica* (a–c,f) and *P. persica* var. *nucipersica* (d,e): (a,c–e) lesions on fruitlets and (b,f) lesions on mature peach fruit; (g,h) anthracnose symptoms on leaves; (i) mumified young fruit; (j) infected twig.
In the past, the taxonomy of the genus *Colletotrichum* mainly relied on host range and morphological characteristics [9]. However, these characteristics are not suitable for species-level identification since they are dependent on environmental conditions, many *Colletotrichum* species are polyphagous, and multiple species can infect the same host plant [10–13]. Molecular identification based on multilocus phylogenetic analyses or specific gene sequencing has been used for the classification and description of species concepts [3]. To date, 15 *Colletotrichum* species complexes and 22 individual species have been identified [14–16].

The causal agents of peach anthracnose were first reported as *Colletotrichum acutatum* and *Colletotrichum gloeosporioides* [17–20]. However, the use of molecular tools for the classification of anthracnose pathogens revealed that peach anthracnose in the USA was mostly caused by *Colletotrichum nymphaeae* and *Colletotrichum fioriniae* of the *C. acutatum* species complex [21], and *Colletotrichum siamense* and *Colletotrichum fructicola* of the *C. gloeosporioides* species complex [22]. *C. nymphaeae* was also reported in Brazil on peaches [23], and *C. fioriniae*, *C. fructicola*, and *C. siamense* were identified in South Korea on peaches [24]. Peach infections by *Colletotrichum truncatum* and *Colletotrichum acutatum* are rare [25,26].

The objective of this study was to systematically identify *Colletotrichum* spp. associated with peach fruit and leaf anthracnose in China using morphological characterization and multilocus phylogenetic analyses.

2. Materials and Methods
2.1. Isolation of *Colletotrichum* spp. from Peach Samples

During 2017 and 2018, the fruit and leaves of peaches with anthracnose symptoms were collected from 14 commercial peach orchards and two nurseries (Wuhan, Hubei and Fuzhou, Fujian) in 11 provinces of China, which were dry-farmed and sprayed with fungicides for anthracnose control. Conidia on diseased tissues were dipped in a cotton swab and spread on a potato dextrose agar (PDA, 20% potato infusion, 2% glucose, and 1.5% agar, and distilled water) medium and picked up with a glass needle under a professional single spore separation microscope (Wuhan Heipu Science and Technology Ltd., Wuhan, China). If no conidia were present, leaf and fruit pieces (5 × 5 mm) at the intersection of healthy and diseased tissues were surface sterilized with a sodium hypochlorite solution (1%) for 30 s and washed three times in sterilized water, followed by 75% ethanol for 30 s, then washed three times in sterilized water again. After the tissue pieces were dried, they were placed on PDA and incubated at 25 °C with a 12 h/12 h fluorescent light/dark cycle for about seven days to produce spores. Cultures were transferred to 15% diluted oatmeal agar (0.9% oatmeal, 1.5% agar, and distilled water) plates if there was no sporulation on PDA [27]. The ex-type living culture of novel species in this study was deposited in the China Center for Type Culture Collection (CCTCC), Wuhan, China.

2.2. Morphological Characterization

Mycelial plugs (5 mm) were transferred from the edge of actively growing cultures to fresh PDA plates and incubated at 25 °C in the dark. Colony diameters were measured after three days to calculate the mycelial growth rates (mm/d). The shape and color of colonies were investigated on the sixth day. Sexual morphs of some species were produced after four weeks. The characteristics of conidiomata were observed using fluorescence stereo microscope (Leica M205 FA, Leica Microsystems Ltd., Wetzlar, Germany). Moreover, the shape and color of conidia, conidiophores, appressoria, ascomata, asci, ascospores, and setae were recorded using a light microscope (Nikon Eclipse E400, Nikon Instruments Inc., San Francisco, CA, USA), and the length and width of 30 randomly selected conidia and 30 appressoria were measured for each representative isolate. Appressoria were induced by dropping 50 µL conidial suspension (10^5 conidia/mL) on a microscope slide, which was placed inside a plate containing moistened filter papers with distilled water, and incubated at 25 °C in the dark for 24 to 48 h [28].
2.3. DNA Extraction, PCR Amplification, and Sequencing

From the 286 obtained isolates, 51 were selected for further multilocus phylogenetic analyses. They represented each geographical population, colony type, conidia morphology, and host tissue.

Fungal DNA was extracted as described previously [29]. The 5.8S nuclear ribosomal gene with the two flanking internal transcribed spacers (ITS), partial sequences of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH), chitin synthase 1 gene (CHS-1), actin gene (ACT), beta-tubulin gene (TUB2), histone3 gene (HIS3), and calmodulin gene (CAL) were amplified and sequenced using the primer pairs described in Table S1.

The PCR conditions were 4 min at 95 °C, followed by 35 cycles of 95 °C for 30 s, annealing for 30 s at different temperatures for different genes/loci (Table S1), and 72 °C for 45 s, with a final extension at 72 °C for 7 min. DNA sequencing was performed at Tianyi Huiyuan Biotechnology Co., Ltd. (Wuhan, China) with an ABI 3730XL sequencer from Thermo Fisher Scientific (China) Co., Ltd. (Shanghai, China). The consensus sequences were assembled from forward and reverse sequences with MEGA v. 7.0 [30]. All sequences of 51 representative Colletotrichum isolates in this study were submitted to GenBank and the accession numbers are listed in Table S2.

2.4. Phylogenetic Analyses

Isolates were divided into four groups based on multilocus phylogenetic analyses, and type isolates of each species were selected and included in the analyses (Table 1). Multilocus phylogenetic analyses with concatenated ITS, GAPDH, CHS-1, HIS3, ACT, and TUB2 sequences were conducted for the C. acutatum species complex [31]; ACT, CAL, CHS-1, GAPDH, ITS, and TUB2 sequences were concatenated for the analysis of the C. gloeosporioides species complex [32]; the combined ITS, GAPDH, CHS-1, HIS3, ACT, TUB2, and CAL sequences were used to analyze the C. boninense species complex [33]; and the ITS, GAPDH, CHS-1, ACT, and TUB2 sequences were applied for remaining species [34]. Multiple sequences were aligned and combined using MAFFT v.7 [35] and MEGA v.7.0 [30].

Bayesian inference (BI) was used to construct phylogenetic trees in MrBayes v.3.2.2 [36]. Best-fit models of nucleotide substitution were selected using MrModeltest v.2.3 [37] based on the corrected Akaike information criterion (AIC) (Tables 2–5). BI analyses were launched with two MCMC chains that were run for 1×10^6 generations (C. acutatum species complex and C. boninense species complex) [31,33], and trees sampled every 100 generations; or run 1×10^7 generations (C. gloeosporioides species complex, and remaining species) [8,34], and trees sampled every 1000 generations. The calculation of BI analyses was stopped when the average standard deviation of split frequencies fell below 0.01. On this basis, the first 25% of generations were discarded as burn-in. Maximum parsimony (MP) analyses were implemented by using Phylogenetic Analysis Using Parsimony (PAUP*) v.4.0b10 [38]. Goodness of fit values including tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for the bootstrap analyses (Tables 2–5). Phylogenetic trees were generated using the heuristic search option with Tree Bisection Reconnection (TBR) branch swapping and 1000 random sequence additions, with all characters equally weighted and alignment gaps treated as missing data. Maximum likelihood (ML) analyses were carried out by using the CIPRES Science Gateway v.3.3 (www.phylo.org, accessed on 29 December 2021), while RAxML-HPC BlackBox was selected with default parameters. Phylogenetic trees were visualized in FigTree v.1.4.2 [39]. TreeBASE was used to store the concatenated multilocus alignments (submission number: 29227).
Table 1. Strains used for the phylogenetic analysis of *Colletotrichum* spp. and other species with details about host, location, and GenBank accession numbers.

Species	Culture a	Host	Location	GenBank Accession Number					
C. acerbum	CBS 128530 *	*Malus domestica*	New Zealand	JQ948459 JQ948790 JQ949120 JQ949780 JQ949450 JQ950110 -					
C. acutatum	CBS 112996 *	*Carica papaya*	Australia	JQ005776 JQ048677 JQ005797 JQ005839 JQ005818 JQ005860 -					
C. aenigma	ICMP 18608 *	*Persea americana*	Israel	JX010244 JX010044 JX009774 JX009443 - JX010389 JX009683					
C. aescynomenes	ICMP 17673 *	*Aescynomone virginica*	USA	JX010176 JX009930 JX009799 JX009483 - JX010392 JX009721					
C. agaves	CBS 118190	*Agnave striate*	Mexico	DQ286221 - - - - - -					
C. alatae	ICMP 17919 *	*Dioscorea alata*	India	JX010190 JX009990 JX009837 JX009471 - JX010383 JX009738					
C. aliatum	ICMP 12071 *	*Malus domestica*	New Zealand	JX010251 JX010028 JX009882 JX009572 - JX010411 JX009654					
C. annellatum	CBS 129826 *	*Hevea brasiliensis*	Colombia	JQ005222 JQ005309 JQ005396 JQ005570 JQ005483 JQ005656 JQ005743					
C. aotearoa	ICMP 18537	*Coprosma sp.*	New Zealand	JX010205 JX010005 JX009853 JX009564 - JX010420 JX009611					
C. arecicola	CGMCC 3.19667*	*Areca catechu*	China	MK914635 MK935455 MK935541 MK935374 - MK935498 -					
C. artocarpica	MFLJCC 18-1167	*Artocarpus heterophyllus*	Thailand	MN145999 MN435568 MN435569 MN435570 - MN435567 -					
C. arxii	CBS 132511	*Paphepiedus sp.*	Germany	KF687716 KF687843 KF687800 KF687802 - KF687881 -					
C. asiaticum	ICMP 18580	*Coffee arabica*	Thailand	FJ972612 JX010053 JX009867 JX009584 - JX010406 FJ97506					
C. australis	CBS 116478 *	*Trachycarpus fortunei*	South Africa	JQ48455 JQ948786 JQ49116 JQ49977 JQ49144 JQ950106 -					
C. bambusicola	CFCC 54250 *	*Phyllostachys edulis*	China	MT199632 MT192848 MT192871 MT188638 - MT192817 -					
C. becqueri	CBS 128527 *	*Brachyglossis repanda*	New Zealand	JX005171 JQ005258 JQ005345 JQ005519 JQ005432 JQ005605 JQ005692					
C. boninense	CBS 123755	*Crinum asiaticum*	Japan	JQ005153 JQ005240 JQ005327 JQ005501 JQ005414 JQ005588 JQ005674					
C. brasiliense	CBS 128501 *	*Passiflora edulis*	Brazil	JQ005235 JQ005322 JQ005409 JQ005583 JQ005496 JQ005669 JQ005756					
C. brassicicola	CBS 101059 *	*Brassica olerace var.*	New Zealand	JQ005172 JQ005259 JQ005346 JQ005520 JQ005433 JQ005606 JQ005693					
C. brisbanense	CBS 292.67 *	*Capsicum annuum*	Australia	JQ498291 JQ498621 JQ498952 JQ49612 JQ499282 JQ49942 -					
C. cairnsense	CBS 140847 *	*Capsicum annuum*	Australia	KU923672 KU923704 KU923710 KU923722 KU923688 -					
C. camelliae-japonica	CGMCC 3.18118	*Camellia japonica*	Japan	KX853165 KX893584 - KX893576 - KX893580 -					
Species	Culture a	Host	Location	GenBank Accession Number					
------------------------	-----------	------------------------	-----------	----------------------------					
			ITS	GAPDH	CHS-1	ACT	HIS3	TUB2	CAL
C. chlorophyti	IMI 103806 *	Chlorophyllum sp.	India	GU227894 GU228286 GU228384 GU227992	-	GU228188	-		
C. chrysanthemi	IMI 364540	Chrysanthemum coronarium	China	JQ948273 JQ948603 JQ948934 JQ949594	JQ949264	JQ949924	-		
C. ciggaro	ICMP 18539 *	Olea europaea	Australia	JX010230 JX009966 JX009800 JX009523	JX010434	JX009635	-		
	CBS 237.49 *	Hypericum perforatum	Germany	JX010238 JX010042 JX009840 JX009450	JX010432	JX009636	-		
C. citricola	CBS 134228 *	Citrus unshiu	China	KC293576 KC293736 -	KC293616	-	KC293656 KC293696		
C. citrus-medicae	HGUP 1554 *, GUCC 1554	Citrus medica	China	MN959910 MT006331 MT006328 MT006326 MT006335	-	-			
	GUCC 1555	Citrus medica	China	MN959911 MT006332 MT006329 MT006326 MT006335	-	-			
	GUCC 1556	Citrus medica	China	MN959912 MT006333 MT006330 MT006327 MT006336	-	-			
C. clademia	ICMP 18658 *	Clidemia hirta	USA	JX010265 JX009989 JX009877 JX009537	JX010438	JX009645	-		
C. colombiense	CBS 129818 *	Passiflora edulis	Colombia	JQ005174 JQ005261 JQ005348 JQ005522 JQ005435 JQ005648 JQ005695	JQ005608 JQ005695				
C. constrictum	CBS 128504 *	Citrus limon	New Zealand	JQ005238 JQ005325 JQ005412 JQ005586 JQ005658	JQ005672	JQ005759	-		
C. cordylinicola	ICMP 18579 *	Cordyline fruticosa	Thailand	JX010226 JX009975 JX009864 HM470235	-	JX010440 HM470238			
C. curcumae	IMI 288937 *	Curcuma longa	India	GU227893 GU228285 GU228383 GU227991	GU228187	-			
C. cuscutae	IMI 304802 *	Cuscuta sp.	Dominica	JQ948195 JQ948525 JQ948856 JQ949516 JQ949846	-				
C. cymbidicola	IMI 347923 *	Cymbidium sp.	Australia	JQ005166 JQ005253 JQ005340 JQ005514 JQ005427 JQ005600 JQ005677 JQ005757					
C. dacyrcarpi	CBS 130241	Dacrycarpus dacrydii	New Zealand	JQ005236 JQ005323 JQ005410 JQ005584 JQ005497 JQ005670 JQ005757					
C. dracaeophilum	CBS 118199	Dracaena sp.	China	JX519222 JX546707 JX519230 JX519238	-	JX519247	-		
C. criobotryae	BCRC	Eriobotrya japonica	China	MF772487 MF795423 MN191653 MN191668 MN191668	MF795428	-			
C. ephorbiae	CBS 134725 *	Euphorbia sp.	South Africa	KF777146 KF777131 KF777128 KF777125	-	KF777247	-		
C. floriniae	CBS 128517 *	Fornia externa	USA	JQ498292 JQ498622 JQ498953 JQ498613 JQ499283 JQ499943					
	IMI 324296	Malus pumila	USA	JQ498301 JQ498631 JQ498962 JQ498622 JQ499292 JQ499952	-				
	CBS 126526	Prunus sp.	Netherlands	JQ498232 JQ498653 JQ498954 JQ499644 JQ499314 JQ499974	-				
	CBS 124958	Pyrus sp.	USA	JQ498306 JQ498636 JQ498967 JQ498627 JQ499297 JQ499957	-				
	CBS 119292	Vaccinium sp.	New Zealand	JQ498313 JQ498643 JQ498974 JQ499634 JQ499304 JQ499964	-				
Table 1. Cont.

Species	Culture a	Host	Location	GenBank Accession Number						
				ITS	GAPDH	CHS-1	ACT	HIS3	TUB2	CAL
ICKb31	Prunus persica	South Korea	LC516639	LC516653	LC516660	-	-	-	LC516646	-
ICKb36	Prunus persica	South Korea	LC516640	LC516654	LC516661	-	-	-	LC516647	-
ICKb47	Prunus persica	South Korea	LC516641	LC516655	LC516662	-	-	-	LC516648	-
C.2.4.2	Prunus persica	USA	KX006691	KX006694	-	-	-	-	KX066888	-
CaEY12_1	Prunus persica	USA	KX006693	KX006696	-	-	-	-	KX066909	-
C. fructicola										
ICMP 18581 *	Coffea arabica	Thailand	JX010165	JX010033	JX009866	FJ907426	-	JX010405	-	
ICMP 18613 *	Limonium sinuatum	Israel	JX010167	JX009998	JX009722	JX009491	-	JX010388	JX09675	
ICMP 18581 *	Coffea arabica	Thailand	JX010165	JX010033	JX009866	FJ907426	-	JX010405	FJ917508	
ICMP 18727	Fragaria × ananassa	USA	JX010179	JX010035	JX009812	JX009565	-	JX010394	JX09682	
CBS 125397 *	Tetrathyris panamensis	Panama	JX010132	JX010032	JX009745	JX009581	-	JX010409	JX09674	
CBS 238.49 *	Ficus edulis	Germany	JX010181	JX009923	JX009839	JX009495	-	JX010400	JX09671	
ICKb18	Prunus persica	South Korea	LC516635	LC516649	LC516656	-	-	-	LC516642	LC516663
ICKb132	Prunus persica	South Korea	LC516636	LC516650	LC516657	-	-	-	LC516643	LC516664
RR12-3	Prunus persica	USA	-	-	-	-	-	-	KM245092	KJ769239
SE12-1	Prunus persica	USA	-	KJ769247	-	-	-	-	KJ769237	KJ769237
C. fusiforme										
MFLUCC 12-0437 *		Thailand	KT290266	KT290255	KT290253	KT290251	-	KT290256	-	
C. gigasporum	CBS 133266 *	Centella asiatica	Madagascar	KF687715	KF687822	KF687761	-	-	KF68766	-
C. gloeosporioides	CBS 112999 *	Citrus sinensis	Italy	JQ005152	JQ005239	JQ005326	JQ005500	JQ005413	JQ005587	-
ICMP 17821 *	Citrus sinensis	Italy	JX010152	JX010056	JX009818	JX009531	-	JX010445	JX09731	
CBS 796.72	Aeschynomene virginica	USA	JQ948407	JQ948738	JQ949068	JQ949728	-	JQ950058	-	
CBS 133.44 *	Clarkia hybrid	Denmark	JQ948402	JQ948733	JQ949063	JQ949723	JQ949393	-	JQ950053	-
IMI 351248	Camptothecus sp.	UK	JQ948433	JQ948764	JQ949094	JQ949754	JQ94924	-	JQ950084	-
C. guangxiense	CFCC 54251 *	Phyllostachys edulis	China	MT199633	MT192834	MT192861	MT188628	-	MT192805	-
C. hippocastri	Dipsacus vitatum	China	JQ005231	JQ005318	JQ005405	JQ005579	JQ005492	JQ005665	JQ005752	
C. horii	ICMP 10492 *	Diospyros kaki	Japan	GQ329690	GQ329681	JX009752	JX009438	-	JX010450	JX09604
C. indonesiense	CBS 127551 *	Eucalyptus sp.	Indonesia	JQ948228	JQ948618	JQ948949	JQ949609	JQ949279	JQ949939	-
C. javanense	CBS 144963 *	Capsicum annuum	Indonesia	MH846576	MH846572	MH846573	MH846575	-	MH846574	-
Table 1. Cont.

Species	Culture a	Host	Location	GenBank Accession Number							
			ITS	GAPDH	CHS-1	ACT	HIS3	TUB2	CAL		
C. jishouense	GZU_HJ2_G2	*Nothapodytes pittosporoides*	China	MH482931	MH681657	-	MH708134	-	MH727472	-	
C. johnstonii	CBS 128532	*Solanum lycopersicum*	New Zealand	JQ948444	JQ948775	JQ949105	JQ949765	JQ949435	JQ950095	-	
C. kahawae	IMI 319418*	*Coffee arabica*	Kenya	JX010231	JX010012	JX009813	JX009452	-	JX010444	-	
C. karsti	CBS 128524	*Citrus lanatus*	New Zealand	JQ005195	JQ005282	JQ005369	JQ005543	JQ005456	JQ005456	JQ005629	JQ005716
C. kahawae	CBS 129824	*Musa AAA*	Colombia	JQ005215	JQ005302	JQ005389	JQ005563	JQ005476	JQ005449	JQ005649	JQ005736
C. kahawae	CBS 128552	*Synsepalum dulcificum*	Taiwan	JQ005188	JQ005275	JQ005362	JQ005536	JQ005449	JQ005622	JQ005709	
C. johnstonii	CBS 128532	*Hevea brasiliensis*	India	JQ948289	JQ948619	JQ948950	JQ949610	JQ949280	JQ949940	-	
C. ledebouriae	CBS 141284*	*Ledebouria floridunda*	South Africa	KX228254	-	-	-	-	-	-	
C. liasoningense	CGMCC 3.17616*	*Capsicum sp.*	China	KP890104	KP890135	KP890127	KP890097	-	KP890111	-	
C. limetickola	CBS 114.14*	*Citrus aurantifolia*	USA	JQ948193	JQ948523	JQ948854	JQ949514	JQ949184	JQ949844	-	
C. lindeimuthianum	CBS 144.31*	*Phaeolus vulgaris*	Germany	JQ005779	JX546712	JQ005800	JQ005842	-	JQ005863	-	
C. magnisporum	CBS 398.84*	unknown	unknown	KF687718	KF687842	KF687782	KF687803	-	KF687882	-	
C. magnus	CBS 519.97*	*Citrus lanatus*	USA	MG600769	MG600829	MG600875	MG600973	-	MG601036	-	
C. makassarensis	CBS 143664*	*Capsicum annuum*	Indonesia	MH728812	MH728820	MH780580	MH781480	-	MH846563	-	
C. musae	CBS 116870*	*Musa sp.*	USA	JX010146	JX010050	JX009896	JX009433	-	HQ396280	JX009742	
C. neosansevieriae	CBS 139918*	*Sansevieria trifasciata*	South Africa	KR476747	KR476791	-	KR476790	-	KR476797	-	
C. novae-zelandiae	CBS 128505*	*Capsicum annuum*	New Zealand	JQ005228	JQ005315	JQ005402	JQ005576	JQ005489	JQ005662	JQ005749	
C. nupharicola	ICMP 18187*	*Nuphar lutea subsp.polysepala*	USA	JX010187	JX009972	JX009835	JX009437	-	JX010398	JX009663	
C. nympheae	CBS 515.78*	*Nymphaea alba*	Netherlands	JQ948197	JQ948527	JQ948858	JQ949518	JQ949188	JQ949848	-	
C. nympheae	CBS 130.80	*Anemone sp.*	Italy	JQ948226	JQ948356	JQ948887	JQ949547	JQ949217	JQ949877	-	
C. nympheae	IMI 360386	*Pelargonium graveolens*	India	JQ948206	JQ948536	JQ948867	JQ949271	JQ949197	JQ949837	-	
C. nympheae	CBS 125973	*Fragaria × ananassa*	UK	JQ948232	JQ948562	JQ948893	JQ949553	JQ949223	JQ949883	-	
PrpCnSC13-01	Prunus persica	USA	KX066092	KX066095	-	-	-	KX066089	-		
PrpCnSC13-02	Prunus persica	Brazil	MK761066	MK770424	MK770421	-	-	MK770427	-		
PrpCnSC13-02	Prunus persica	Brazil	MK765508	MK770425	MK770422	-	-	MK770428	-		
Species	Culture	Host	Location	GenBank Accession Number							
---------	---------	------	----------	-------------------------							
				ITS	GAPDH	CHS-1	ACT	HIS3	TUB2	CAL	
C. oncidii	CBS 129828	Oncidium sp.	Germany	JQ005169	JQ005256	JQ005343	JQ005517	JQ005430	JQ005603	JQ005690	
C. orbiculare	CBS 570.97	Cucumis sativus	Europe	KF178466	KF178490	KF178515	KF178563	-	KF178587	-	
C. orchidearum	CBS 135131	Dendrobium nobile	Netherlands	MG600738	MG600800	MG600855	MG600944	-	MG601005	-	
C. orchidophilum	CBS 632.80	Dendrobium sp.	USA	JQ948151	JQ948481	JQ948812	JQ949472	JQ949142	JQ949802	-	
C. parsonsiæ	CBS 128525	Parsonsiæ capsularis	New Zealand	JQ005233	JQ005320	JQ005407	JQ005581	JQ005494	JQ005667	JQ005754	
C. paxtonii	IMI 165753	Musa sp.	Saint Lucia	JQ948285	JQ948615	JQ948946	JQ949606	JQ949276	JQ949936	-	
C. petchii	CBS 378.94	Dracaena marginata	Italy	JQ005223	JQ005310	JQ005397	JQ005581	JQ005494	JQ005667	JQ005744	
C. phormii	CBS 118194	Phormium sp.	Germany	JQ948446	JQ948777	JQ949107	JQ949767	JQ949437	JQ950097	-	
C. phyllanthi	CBS 175.67	Phyllanthus acidus	India	JQ005221	JQ005308	JQ005395	JQ005569	JQ005482	JQ005655	JQ005742	
C. piperis	IMI 57197	Piper nigrum	Malaysia	MG600760	MG600820	MG600867	MG600964	-	MG601027	-	
C. pseudomajus	CBS 571.88	Camellia sinensis	China	KF687722	KF687826	KF687799	KF687801	-	KF687883	-	
C. psidii	CBS 145.29	Psidium sp.	Italy	JX010219	JX009967	JX009901	JX009515	-	JX010443	JX009743	
C. pyricola	CBS 128531	Pyrus communis	New Zealand	JQ948445	JQ948776	JQ949106	JQ949766	JQ949436	JQ950096	-	
C. pyrifoliale	CGMCC 3.18902	Pyrus pyrifolia	China	MG748078	MG747996	MG747914	MG747768	-	MG748158	-	
C. queenslandicum	ICMP 1778	Carica papaya	Australia	JX010276	JX009934	JX009899	JX009447	-	JX010414	JX096911	
C. radicans	CBS 529.93	unknown	Costa Rica	KF687719	KF687825	KF687762	KF687875	-	KF687869	-	
C. salicis	CBS 607.94	Salix sp.	Netherlands	JQ948460	JQ948791	JQ949121	JQ949781	JQ949451	JQ950111	-	
C. salsoleae	ICMP 19051	Salsola tragus	Hungary	JX010242	JX009916	JX009863	JX009562	-	JX010403	JX096966	
C. sansevieriae	MAFF 239721	Sansevieria trifasciata	Japan	AB212991	-	-	-	-	-	-	
C. scovillei	CBS 126529	Capsicum sp.	Indonesia	JQ948267	JQ948597	JQ948928	JQ949588	JQ949258	JQ949918	-	
C. siamense	ICMP 18578	Coffea arabica	Thailand	JX010171	JX009924	JX009865	FJ907423	-	JX010404	FJ917505	
C. siamense (syn. C. hymenocallisidis)	CBS 125378	*	China	JX010278	JX010019	GQ856730	GQ856775	-	JX010410	JX097079	
C. siamense (syn. C. jasmini-sambac)	CBS 130420	*	Vietnam	HM131511	HM131497	JX009895	HM131507	-	JX010415	JX097131	
ICKb21	Prunus persica	South Korea	LC516637	LC516651	LC516658	-	-	LC516644	LC516665		
ICKb23	Prunus persica	South Korea	LC516638	LC516652	LC516659	-	-	LC516645	LC516666		
OD12-1	Prunus persica	USA	-	KJ769240	-	-	-	KM245089	KJ769234		
Table 1. Cont.

Species	Culture a	Host	Location	GenBank Accession Number
EY12-1	Prunus persica	USA	-	KJ769246 -
C. simondsii	CBS 122122 *	Carica papaya	Australia	JQ948276 JQ948606 JQ948937 JQ949597 JQ949267 JQ949927 -
C. sloanei	IMI 364297 *	Theobroma cacao	Malaysia	JQ948287 JQ948617 JQ948948 JQ949608 JQ949278 JQ949938 -
C. sojae	ATCC 62257 *	Glycine max	USA	MG600749 MG600810 MG600860 MG600954 - MG601016 -
C. sydowi	CBS 135819	Sambucus sp.	China	KY263783 KY263785 KY263787 KY263791 - KY263793 -
C. tainanense	CBS 143666 *	Capsicum annuum	Taiwan	MH728818 MH728823 MH805845 MH781475 - MH846558 -
C. theobromicola	CBS 124945 *	Theobroma cacao	Panama	JX010294 JX010006 JX009869 JX09444 JX010447 JX009591
C. ti	ICMP 4832 *	Cordyline sp.	New Zealand	JX010269 JX009952 JX009898 JX009520 - JX010442 JX09649
C. tongrenense	GZU_TRJ1-37	Notaphytopites pittosporoides	China	MH482933 MH705332 - MH717074 - MH729805 -
C. torulosum	CBS 128544 *	Solanum melongena	New Zealand	JQ005164 JQ005251 JQ005338 JQ005512 JQ005425 JQ005598 JQ005685
C. trichellum	CBS 217.64 *	Hedera helix	UK	GU227812 GU228204 GU228302 GU227910 - GU228106 -
C. tropicale	CBS 124949 *	Theobroma cacao	Panama	JX010264 JX010007 JX009870 JX009489 JX100407 JX09719
C. truncatum	CBS 151.35 *	Phaseolus lunatus	USA	GU227862 GU228254 GU228352 GU227960 - GU228156 -
C. vietnamense	CBS 125478 *	Coffea sp.	Vietnam	KF687721 KF687832 KF687769 KF687792 - KF687877 -
C. walleri	CBS 125472 *	Coffea sp.	Vietnam	JQ948275 JQ948605 JQ948936 JQ949596 JQ949266 JQ949926 -
C. wanningense	CGMCC 3.18936 *	Hevea brasiliensis	China	MG830462 MG830318 MG830302 MG830270 - MG830286 -
C. waxiens	CGMCC 3.17894 *	Camellia sinensis	China	KU251591 KU252045 KU251939 KU251672 - KU251833 -
C. xanthorrhoeae	ICMP 17903 *	Xanthorrhoea preissii	Australia	JX010261 JX009927 JX009823 JX009478 - JX010448 JX09653
C. yunnanense	CBS 132135 *	Buxus sp.	China	JX056804 JX546706 JX519231 JX519239 - JX519248 -
Monilochaetes infuscans	CBS 869.96 *	Ipomoea batatas	South Africa	JQ005780 JX546612 JQ005801 JQ005843 - JQ005864 -

a CBS: Culture collection of the Centraalbureau voor Schimmelcultures; ICMP: International Collection of Microorganisms from Plants, Auckland, New Zealand; CGMCC: China General Microbiological Culture Collection; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; IMI: Culture collection of CABI Europe UK Centre, Egham, UK; BCRC: Bioresource Collection and Research Center, Hsinchu, Taiwan; MFLU: Herbarium of Mae Fah Luang University, Chiang Rai, Thailand; MAFF: MAFF Genebank Project, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Japan; ATCC: American Type Culture Collection. * = Ex-holotype or ex-epitype cultures.
Table 2. Comparison of alignment properties in parsimony analyses of gene/locus and nucleotide substitution models used in phylogenetic analyses of C. acutatum species complex.

Gene/Locus	ITS	GAPDH	CHS-1	HIS3	ACT	TUB2	Combined
No. of taxa	72	72	68	60	63	72	72
Aligned length (with gaps)	546	265	282	387	248	492	2240
Invariable characters	501	152	244	289	170	374	1750
Uninformative variable characters	26	56	13	32	30	60	217
Phylogenetically informative characters	19	57	25	66	48	58	273
Tree length (TL)	59	176	64	190	117	165	872
Consistency index (CI)	0.85	0.80	0.73	0.66	0.75	0.79	0.71
Retention index (RI)	0.97	0.95	0.94	0.93	0.94	0.94	0.93
Rescaled consistency index (RC)	0.82	0.76	0.69	0.61	0.71	0.75	0.65
Homoplasy index (HI)	0.15	0.20	0.27	0.34	0.25	0.21	0.30
Nucleotide substitution model	HKY + I	HKY + G	K80 + I	GTR + I + G	GTR + G	GTR + G	GTR + I + G

Table 3. Comparison of alignment properties in parsimony analyses of gene/locus and nucleotide substitution models used in phylogenetic analyses of C. gloeosporioides species complex.

Gene/Locus	ACT	CAL	CHS-1	GAPDH	ITS	TUB2	Combined
No. of taxa	54	58	58	62	58	58	61
Aligned length (with gaps)	314	744	300	307	614	735	3034
Invariable characters	232	520	239	154	555	489	2209
Uninformative variable characters	54	139	22	77	36	156	484
Phylogenetically informative characters	28	85	39	76	23	90	341
Tree length (TL)	115	324	102	264	78	349	1303
Consistency index (CI)	0.84	0.83	0.69	0.75	0.81	0.83	0.76
Retention index (RI)	0.85	0.92	0.84	0.84	0.87	0.87	0.84
Rescaled consistency index (RC)	0.71	0.76	0.58	0.63	0.70	0.72	0.63
Homoplasy index (HI)	0.17	0.17	0.31	0.25	0.19	0.17	0.24
Nucleotide substitution model	HKY + G	GTR + G	K80 + G	HKY + I	SYM + I + G	HKY + I	GTR + I + G

New species and their most closely related neighbors were analyzed using the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) model by performing a pairwise homoplasy index (PHI) test [40]. The PHI test was carried out on SplitsTree v.4.14.6 [41,42] using concatenated sequences (ITS, GAPDH, CHS-1, ACT, and HIS3). The result of pairwise homoplasy index below a 0.05 threshold (Φw < 0.05) indicated the presence of significant recombination in the dataset. The relationship between closely related species was visualized by constructing a splits graph. In addition, the results of relationships between closely related species were visualized by constructing EqualAngle splits graphs, using both LogDet character transformation and split decomposition distances options.
Table 4. Comparison of alignment properties in parsimony analyses of gene/locus and nucleotide substitution models used in phylogenetic analyses of C. boninense species complex.

Gene/Locus	ITS	GAPDH	CHS-1	HIS3	ACT	TUB2	CAL	Combined
No. of taxa	25	25	23	23	25	25	24	25
Aligned length (with gaps)	553	286	393	276	302	502	249	2763
Invariable characters	489	120	224	295	174	348	259	1932
Phylogenetically informative characters	40	82	25	28	53	75	103	408
Tree length (TL)	24	84	31	70	49	79	87	423
Consistency index (CI)	0.86	0.80	0.76	0.66	0.82	0.75	0.80	0.76
Retention index (RI)	0.88	0.79	0.79	0.79	0.83	0.75	0.85	0.79
Rescaled consistency index (RC)	0.75	0.64	0.60	0.52	0.68	0.56	0.70	0.60
Homoplasy index (HI)	0.14	0.20	0.24	0.34	0.18	0.25	0.18	0.24
Nucleotide substitution model	SYM + I + G	HKY + I	K80 + G	GTR + I + G	GTR + G	HKY + I	HKY + G	GTR + I + G

Table 5. Comparison of alignment properties in parsimony analyses of gene/locus and nucleotide substitution models used in phylogenetic analyses of C. folicola and other taxa.

Gene/Locus	ITS	GAPDH	CHS-1	ACT	TUB2	combined
No. of taxa	50	47	44	47	44	50
Aligned length (with gaps)	571	321	265	279	529	1981
Invariable characters	367	63	163	102	223	934
Phylogenetically informative characters	53	21	20	39	50	183
Tree length (TL)	151	257	82	138	256	864
Consistency index (CI)	630	1312	389	671	1300	4405
Retention index (RI)	0.51	0.44	0.41	0.48	0.44	0.44
Rescaled consistency index (RC)	0.76	0.68	0.66	0.71	0.67	0.68
Homoplasy index (HI)	0.39	0.30	0.27	0.34	0.30	0.30
Nucleotide substitution model	GTR + I + G	HKY + I + G	GTR + I + G	HKY + I + G	HKY + I + G	GTR + I + G

2.5. Pathogenicity Test

Two to five isolates of each Colletotrichum sp. were used in pathogenicity tests on detached fruit and leaves. The experimental varieties for fruit and leaf inoculations were “Xiaohong” and “Xiahui No. 5”, respectively. Commercially mature fruit (still firm but with no green background color) and asymptomatic, fully developed leaves with short twigs (1–2 cm) were washed with soap and water, and surface sterilized in 1% sodium hypochlorite for 2 min and 30 s, respectively, then rinsed with sterile water and air-dried on sterile paper. Fruit was stabbed with sterilized toothpicks to produce wounds of about 5 mm deep, while leaves were punctured with sterile, medical needles. For inoculation, a 10-µL droplet of conidia suspension (1.0–2.0 × 10^5 conidia/mL) was dropped on each
wounded site, and control fruit or leaves received sterile water without conidia. Each fruit and leaf had two inoculation sites. Three fruits and three leaves were used for each isolate. Inoculated fruit and leaves were placed in a plastic tray onto 30 mm diameter plastic rings for stability. The bottom of the tray (65 cm × 40 cm × 15 cm, 24 peaches or leaves per tray) contained wet paper towels and the top was sealed with plastic film to maintain humidity. Peaches and leaves were incubated at 25 °C for six days. Pathogenicity was evaluated by the infection rates and lesion diameters. The infection rates were calculated by the formula (\(\%\)) = (infected inoculation sites/all inoculation sites) × 100%. The lesion size was determined as the mean of two perpendicular diameters. The experiment was performed twice.

The fungus was re-isolated from the resulting lesions and identified as described above, thus fulfilling Koch’s postulates.

3. Results

From 2017 to 2018, a total of 286 *Colletotrichum* isolates were obtained from 11 provinces in China (Table 6; Figure 2a); 33 isolates were from leaves and 253 isolates were from fruit (Table 6). Although we tried to collect samples in Gansu and Shanxi provinces in northern China, no symptomatic leaves or fruit were found. *C. nymphaeae* was the most widespread and most prevalent species (Figure 2b,c), with presence in Hubei, Guizhou, Guangxi, Fujian, and Sichuan provinces. *C. fioriniae* was found in three centrally located provinces (Zhejiang, Guizhou, and Jiangxi). *C. siamense* was only found in the northernmost orchards of the collection area in Shandong and Hebei provinces, while *C. fructicola* was only found in the southernmost provinces of the collection area of Guangdong and Guizhou provinces. *C. folicola*, *C. godetiae*, and *C. karsti* were only found in Yunnan province in the westernmost border of the collection area (Table 6; Figure 2a).

Table 6. A list of all *Colletotrichum* isolates collected from peaches in China based on preliminary identification.

Species	Location	Host	Number of Isolates	Date	Daily Mean Temperature (°C)
C. fioriniae	Lishui, Zhejiang	Juicy peach, Yanhong, fruit	17	14 September 2017	29
	Tongren, Guizhou	Juicy peach, fruit	14	8 August 2018	29
	Jian, Jiangxi	Yellow peach, fruit	6	21 August 2018	31
C. folicola	Honghe, Yunnan	Winter peach, Hongxue, leaf	2	17 August 2017	26
C. fructicola	Heyuan, Guangdong	Juicy peach, fruit	19	28 June 2017	29
	Shaoguan, Guangdong	Juicy peach, Yingzui, fruit	10	3 August 2018	30
	Tongren, Guizhou	Juicy peach, fruit	10	8 August 2018	29
C. godetiae	Honghe, Yunnan	Winter peach, Hongxue, leaf	15	17 August 2017	26
C. karsti	Honghe, Yunnan	Winter peach, Hongxue, leaf	3	17 August 2017	26
C. nymphaeae	Yichang, Hubei	Yellow peach, NJC83, fruit	11	30 April 2017	19
	Jingmen, Hubei	Yellow peach, NJC83, fruit	14	25 April 2017	18
	Jingmen, Hubei	Juicy peach, Chunmi, fruit	11	25 April 2017	18
	Wuhan, Hubei	Juicy peach, Zaoxianhong, fruit	17	18 April 2017	20
	Wuhan, Hubei	Flat peach, Zaoyoupan, fruit	12	18 April 2017	20
Table 6. Cont.

Species	Location	Host	Number of Isolates	Date	Daily Mean Temperature (°C)
Wuhan, Hubei	Juicy peach, leaf	9	14 June 2017	25	
Xiaogan, Hubei	Juicy peach, Chunmei, fruit	4	10 May 2017	20	
Qingzhen, Guizhou	Juicy peach, Yingqing, fruit	8	21 August 2017	24	
Tongren, Guizhou	Juicy peach, fruit	2	08 August 2018	29	
Guilin, Guangxi	Juicy peach, Chunmi, fruit	38	18 May 2018	25	
Guilin, Guangxi	Juicy peach, Chunmi, leaf	4	18 May 2018	25	
Fuzhou, Fujian	Yellow peach, huangjinmi, fruit	12	27 July 2018	31	
Chengdu, Sichuan	Zhongtaojinmi, fruit	7	28 June 2018	26	
C. siamense	Qingdao, Shandong	Juicy peach, Yangjiaomi, fruit	27	22 August 2017	27
Shijiazhuang, Hebei	Juicy peach, Dajibao, fruit	14	3 August 2018	30	
Total				286	

The average of the daily mean temperatures on the sampling day and the previous six days.

Figure 2. Prevalence of *Colletotrichum* spp. associated with peaches in China. (a) Map of the distribution of *Colletotrichum* spp. on peaches in China. Each color represents one *Colletotrichum* species, and the size of the circle indicates the number of isolates collected from that location. (b) Overall isolation rate (%) of *Colletotrichum* species; (c) number of sampling locations for each *Colletotrichum* species.
3.1. Phylogenetic Analyses

Phylogenetic trees were constructed based on the concatenated gene/locus sequences. MP and ML trees are not shown because the topologies were similar to the displayed BI tree (Figures 3–6). The number of taxa, aligned length (with gaps), invariable characters, uninformative variable characters, and phylogenetically informative characters of each gene/locus and combined sequences are listed in Tables 2–5.

For the *C. acutatum* species complex, in the multilocus sequence analyses (gene/locus boundaries in the alignment: ITS: 1–546, *GAPDH*: 551–815, *CHS-1*: 820–1101, *HIS3*: 1106–1492, *ACT*: 1497–1744, *TUB2*: 1749–2240) of 27 isolates from peaches in this study, 44 reference strains of *C. acutatum* species complex and one *Colletotrichum* species (*C. orchidophilum* strains CBS 632.80) as the outgroup, 2240 characters including the alignment gaps were processed. For the Bayesian analysis, a HKY + I model was selected for ITS, a HKY + G model for *GAPDH*, a K80 + I model for *CHS-1*, a GTR + I + G model for *HIS3*, and a GTR + G model for *ACT* and *TUB2*, and all were incorporated in the analysis (Table 2). As the phylogenetic tree shows in Figure 3, the 27 isolates of the *C. acutatum* species complex were clustered in three groups: 11 with *C. nymphaeae*, eight with *C. fioriniae*, and eight with *C. godetiae*. Although in the same general cluster, *C. nymphaeae* from China were genetically distinct from *C. nymphaeae* isolates from the USA and Brazil.

Figure 3. A Bayesian inference phylogenetic tree of 71 isolates in the *C. acutatum* species complex. *C. orchidophilum* (CBS 632.80) was used as the outgroup. The tree was built using combined sequences of the ITS, *GAPDH*, *CHS-1*, *HIS3*, *ACT*, and *TUB2*. BI posterior probability values (BI ≥ 0.70), MP bootstrap support values (MP ≥ 50%), and RAxML bootstrap support values (ML ≥ 50%) were shown at the nodes (BI/MP/ML). Tree length = 827, CI = 0.71, RI = 0.93, RC = 0.65, HI = 0.30. Ex-type isolates are in bold. Circles indicate isolates from fruits, and triangles indicate isolates from leaves.
Ex-type isolates are in bold. Circles indicate isolates from fruits, and triangles indicate isolates from leaves.

For the *C. gloeosporioides* species complex, DNA sequences of six genes/loci were obtained from 19 isolates from peaches in this study, with 42 reference isolates from the *C. gloeosporioides* species complex and the outgroup *C. boninense* CBS 123755. The gene/locus boundaries of the aligned 3034 characters (with gaps) were: ACT: 1–314, CAL: 319–1062, CHS-1: 1067–1366, GAPDH: 1371–1677, ITS: 1682–2295, TUB2: 2300–3034. For the Bayesian analysis, a HKY + G model was selected for ACT, a GTR + G model for CAL, a K80 + G model for CHS-1, a HKY + I model for GAPDH and TUB2, and a SYM + I + G model for ITS, and they were all incorporated in the analysis (Table 3). In the phylogenetic tree of the *C. gloeosporioides* species complex, 10 isolates clustered with *C. fructicola* and nine isolates clustered with *C. siamense* (Figure 4). They clustered together with isolates from South Korea and the USA.

Figure 4. A Bayesian inference phylogenetic tree of 61 isolates in the *C. gloeosporioides* species complex. *C. boninense* (CBS 123755) was used as the outgroup. The tree was built using combined sequences of the ACT, CAL, CHS-1, GAPDH, ITS, and TUB2. BI posterior probability values (BI ≥ 0.70), MP bootstrap support values (MP ≥ 50%), and RAxML bootstrap support values (ML ≥ 50%) were shown at the nodes (BI/MP/ML). Tree length = 1303, CI = 0.76, RI = 0.84, RC = 0.63, HI = 0.24. Ex-type strains are in bold. Circles indicate isolates from fruits, and triangles indicate isolates from leaves.
Figure 5. A Bayesian inference phylogenetic tree of 24 isolates in the *C. boninense* species complex. *C. gloeosporioides* (CBS 112999) was used as the outgroup. The tree was built using combined sequences of the ITS, GAPDH, *CHS*-1, *HIS3*, *ACT*, *TUB2* and *CAL*. BI posterior probability values (BI ≥ 0.70), MP bootstrap support values (MP ≥ 50%), and RAxML bootstrap support values (ML ≥ 50%) were shown at the nodes (BI/MP/ML). Tree length = 1404, CI = 0.76, RI = 0.79, RC = 0.60, HI = 0.24. Ex-type strains are in bold. Circles indicate isolates from fruits, and triangles indicate isolates from leaves.

For the *C. acutatum* species complex, in the multilocus sequence analyses (gene/locus boundaries in the alignment: ITS: 1–546, GAPDH: 551–815, *CHS*-1: 820–1101, *HIS3*: 1106–1492, *ACT*: 1497–1744, *TUB2*: 1749–2240) of 27 isolates from peaches in this study, 44 reference strains of *C. acutatum* species complex and one *Colletotrichum* species (*C. orchidophilum* strains CBS 632.80) as the outgroup, 2240 characters including the alignment gaps were processed. For the Bayesian analysis, a HKY + I model was selected for ITS, a HKY + G model for GAPDH, a K80 + I model for *CHS*-1, a GTR + I + G model for *HIS3*, and a GTR + G model for *ACT* and *TUB2*, and all were incorporated in the analysis (Table 2). As the phylogenetic tree shows in Figure 3, the 27 isolates of the *C. acutatum* species complex were clustered in three groups: 11 with *C. nymphaeae*, eight with *C. fioriniae*, and eight with *C. godetiae*. Although in the same general cluster, *C. nymphaeae* from China were genetically distinct from *C. nymphaeae* isolates from the USA and Brazil.
For the *C. gloeosporioides* species complex, DNA sequences of six genes/loci were obtained from 19 isolates from peaches in this study, with 42 reference isolates from the *C. gloeosporioides* species complex and the outgroup *C. boninense* CBS 123755. The gene/locus boundaries of the aligned 3034 characters (with gaps) were: *ACT* : 1–314, *CAL* : 319–1062, *CHS-1* : 1067–1366, *GAPDH* : 1371–1677, *ITS* : 1682–2295, *TUB2* : 2300–3034. For the Bayesian analysis, a HKY + G model was selected for *ACT*, a GTR + G model for *CAL*, a K80 + G model for *CHS-1*, a HKY + I model for *GAPDH* and *TUB2*, and a SYM + I + G model for *ITS*, and they were all incorporated in the analysis (Table 3). In the phylogenetic tree of the *C. gloeosporioides* species complex, 10 isolates clustered with...
C. fructicola and nine isolates clustered with C. siamense (Figure 4). They clustered together with isolates from South Korea and the USA.

Regarding the C. boninense species complex, in the multilocus analyses (gene/locus boundaries of ITS: 1–553, GAPDH: 558–843, CHS-1: 848–1127, HIS3: 1132–1524, ACT: 1529–1804, TUB2: 1809–2310, CAL: 2315–2763) of three isolates from peaches in this study, from 21 reference isolates of C. boninense species complex and one outgroup strain C. gloeosporioides CBS 112999, 2763 characters including the alignment gaps were processed. For the Bayesian analysis, a SYM + I + G model was selected for ITS, HKY + I for GAPDH and TUB2, K80 + G for CHS-1, GTR + I + G for HIS3, GTR + G for ACT, and HKY + G for CAL, and they were all incorporated in the analysis (Table 4). In Figure 5, three Chinese isolates clustered with C. karstii in the C. boninense species complex.

For the remaining phylogenetic analyses, the alignment of combined DNA sequences was obtained from 50 taxa, including two isolates from peaches in this study, 47 reference isolates of Colletotrichum species, and one outgroup strain Monilochaetes infuscans CBS 869.96. The gene/locus boundaries of the aligned 1981 characters (with gaps) were: ITS: 1–571, GAPDH: 576–896, CHS-1: 901–1165, ACT: 1170–1448, TUB2: 1453–1981. For the Bayesian analysis, a GTR + I + G model was selected for ITS and CHS-1, and HKY + I + G for GAPDH, ACT, and TUB2, and they were incorporated in the analysis (Table 5). In the phylogenetic tree, two isolates (YNHH2-2 and YNHH10-1 (CCTCC M 2020345)) clustered distantly from all known Colletotrichum species and are described herein as a new species, C. folicola (Figure 6). The PHI test result (Φw = 1) of C. folicola and its related species C. citrus-medicae ruled out the possibility of gene recombination interfering with the species delimitation (Figure 7). This is further evidence that C. folicola is a new species.

3.2. Taxonomy

Colletotrichum nymphaeae H.A. van der Aa, Netherlands Journal of Plant Pathology. 84: 110. (1978) (Figure 8).

Figure 7. PHI test of C. folicola and phylogenetically related species using both LogDet transformation and splits decomposition. PHI test value (Φw) < 0.05 indicate significant recombination within the datasets.

3.2. Taxonomy

Colletotrichum nymphaeae H.A. van der Aa, Netherlands Journal of Plant Pathology. 84: 110. (1978) (Figure 8).
Figure 7. PHI test of C. folicola and phylogenetically related species using both LogDet transformation and splits decomposition. PHI test value (Φ_w) < 0.05 indicate significant recombination within the datasets.

3.2. Taxonomy

Colletotrichum nymphaeae H.A. van der Aa, Netherlands Journal of Plant Pathology. 84: 110. (1978) (Figure 8).

Description and illustration—Damm et al. [31].

Materials examined: China, Hubei province, Yichang city, on fruit of P. persica cv. NJC83, April 2017, Q. Tan, living culture HBYC1; Sichuan province, Chengdu city, on fruit of P. persica cv. Zhongtaojinmi, June 2018, Q. Tan, living culture SCCD 1; Fujian province, Fuzhou city, on fruit of P. persica cv. Huangjinmi, July 2018, Q. Tan, living culture FJFZ 1; Guangxi province, Guilin city, on leaves of P. persica cv. Chunmei, May 2018, Q. Tan, living culture GXGL 13-1; Guizhou province, Tongren city, on fruit of P. persica, June 2018, Q. Tan living culture GZTR 8-1; Hubei province, Jingmen city, on fruit of P. persica cv. NJC83, April 2018, Q. Tan, living culture HBJM 1-1; Hubei province, Wuhan city, on fruit of P. persica var. nucipersica cv. Zhongtaojinmi, April 2017, Q. Tan, living culture HBWH 2-1; ibid, on leaves of P. persica, June 2017, L.F. Yin, living culture HBWH 3-2; Hubei province, Xiaogan city, on fruit of P. persica cv. Chunmei, May 2017, Q. Tan, living culture HBXG 1.

Notes: Colletotrichum nymphaeae was first described on leaves of Nymphaea alba in Kortenhoef by Van der Aa [43]. C. nymphaeae is well separated from other species with TUB2, but all other genes have very high intraspecific variability [31]. Consistently, C. nymphaeae isolates collected in this study are different from ex-type strain CBS 515.78 in ITS (2 bp), GAPDH (1 bp), CHS-1 (3 bp), ACT (1 bp), HIS3 (3 bp), but with 100% identity in TUB2.

Colletotrichum fioriniae (Marcelino and Gouli) R.G. Shivas and Y.P. Tan, Fungal Diversity 39: 117. (2009) (Figure 9).
was also recovered from fruits of *C. godetiae* (*P. persica* (six-day-old PDA culture; (2018, Q. Tan, living culture GXGL 13-1; Guizhou province, Tongren city, on fruit of *P. persica*; (2018, Q. Tan, living culture FJFZ 1; Guangxi province, Guilin city, on leaves of *P. persica*), late JXJA 6; (2018, Q. Tan, living culture HBXG 1, HBWH 3-2; Hubei province, Xiaogan city, on fruit of *P. persica*), June 2018, Q. Tan living culture GZTR 7-1. Scale bars: (c) = 200 μm; (d–f) = 20 μm.

Figure 9. Biological characteristics of *Colletotrichum fioriniae*. (a,b) Front and back view of six-day-old PDA culture; (c) conidiomata; (d) conidia; (e) appressoria; (f) conidiophores ((a–e) isolate JXJA 6; (f) isolate JXJA 1). Scale bars: (c) = 200 μm; (d–f) = 20 μm.

Description and illustration—Damm et al. [31].

Materials examined: China, Jiangxi province, Jian city, on fruit of *P. persica*, August 2018, Q. Tan, living cultures JXJA 1, JXJA 6; Zhejiang province, Lishui city, on fruit of *P. persica*, September 2017, Q. Tan, living cultures ZJLS 1, ZJLS 11-1; Guizhou province, Tongren city, on fruit of *P. persica*, August 2018, Q. Tan, living culture GZTR 7-1.

Notes: *Colletotrichum acutatum* var. *fioriniae* was first isolated from *Fiorinia externa* [44] and host plants of the scale insect as an endophyte [45] in New York, USA. In 2009, Shivas and Tan identified it from *Acacia acuminate*, *Persea americana*, and *Mangifera indica* in Australia as a separate species and named it *Colletotrichum fioriniae* [46]. *C. fioriniae* was mainly isolated from wide host plants and fruits in the temperate zones [3,31]. In this study, the *C. fioriniae* isolates clustered in two subclades, which is consistent with the results of Damm’s study [31].

Colletotrichum godetiae P. Neergaard, *Friesia* 4: 72. (1950) (Figure 10).

Description and illustration—Damm et al. [31].

Materials examined: China, Yunnan Province, Honghe City, on leaves of *P. persica* cv. Hongxue, August 2017, Q. Tan, living cultures YNHH 1-1, YNHH 4-1, YNHH 6-1, YNHH 8-2 and YNHH 9-1.

Notes: *Colletotrichum godetiae* was first reported on the seeds of *Godetia hybrid* in Denmark by Neergaard in 1943 [47], and given detailed identification seven years later [48]. *C. godetiae* was also recovered from fruits of *Fragaria × ananassa*, *Prunus cerasus*, *Solanum betaceum*, *Citrus aurantium*, and *Olea europea* [49]; leaves of *Laurus nobilis* and *Mahonia aquifolium*; twigs of *Ugni molinae*; and canes of *Rubus idaeus* [31]. In this study, the isolates were obtained from peach leaves and could infect both the peach fruit and leaf.
in Australia as a separate species and named it *Colletotrichum fioriniae* [46]. *C. fioriniae* was mainly isolated from wide host plants and fruits in the temperate zones [3,31]. In this study, the *C. fioriniae* isolates clustered in two subclades, which is consistent with the results of Damm’s study [31].

Colletotrichum godetiae P. Neergaard, Friesia 4: 72. (1950) (Figure 10).

Description and illustration—Damm et al. [31].

Figure 10. Biological characteristics of *Colletotrichum godetiae*. (a,b) Front and back view of six-day-old PDA culture; (c) conidiomata; (d) conidia; (e–h) appressoria; (i) conidiophores ((a–f,i) isolate YNHH 1-1, (g,h) YNHH 9-1). Scale bars: (c) = 200 µm; (d–i) = 20 µm.

Colletotrichum fructicola H. Prihastuti et al., *Fungal Diversity* 39: 96. (2009) (Figure 11).

Description and illustration—Prihastuti et al. [50].

Materials examined: China, Guangdong province, Heyuan city, on fruit of *P. persica*, June 2017, Q. Tan, living culture GDHY 10-1; Guangdong province, Shaoguan city, on fruit of *P. persica* cv. Yingzuitao, August 2018, Q. Tan, living cultures GDSG 1-1, GDSG 5-1; Guizhou province, Tongren city, on fruit of *P. persica*, August 2018, Q. Tan, living culture GZTR 10-1.
honia aquifolium; twigs of Ugni molinae; and canes of Rubus idaeus [31]. In this study, the isolates were obtained from peach leaves and could infect both the peach fruit and leaf. Colletotrichum fructicola H. Prihastuti et al., Fungal Diversity 39: 96. (2009) (Figure 11).

Description and illustration—Prihastuti et al. [50].

Figure 11. Biological characteristics of Colletotrichum fructicola. (a,b) Front and back view of six-day-old PDA culture; (c) conidiomata; (d) conidia; (e) appressoria; (f) conidiophores; (g) ascomata; (h,i) asci; (j) ascospores ((a–e) isolate GDHY 10-1; (f–j) isolate GDSG 1-1). Scale bars: (c) = 200 µm; (d–j) = 20 µm.

Notes: Colletotrichum fructicola was first described from the berries of Coffea arabica in Chiang Mai Province, Thailand [50]. Subsequently, C. fructicola was reported on a wide range of hosts including Malus domestica, Fragaria × ananassa, Limonium sinuatum, Pyrus pyrifolia, Dioscorea alata, Theobroma cacao Vaccinium spp., Vitis vinifera, and Prunus persica [3,51]. In this study, the conidia and ascospores of C. fructicola isolates (9.3–18.9 × 3.4–8.2 µm, mean ± SD = 14.3 ± 1.7 × 5.6 ± 0.5 µm; 12.6–22.0 × 3.1–7.6 µm, mean ± SD = 17.3 ± 0.5 × 5.0 ± 0.5 µm) (Table S3) were larger than that of ex-type (MFLU 090228, ICMP 185819: 9.7–14 × 3–4.3 µm, mean ± SD = 11.53 ± 1.03 × 3.55 ± 0.32 µm; 9–14 × 3–4 µm, mean ± SD = 11.91 ± 1.38 × 3.32 ± 0.35 µm).
Colletotrichum siamense H. Prihastuti et al., *Fungal Diversity* 39: 98. (2009) (Figure 12).

Figure 12. Biological characteristics of *Colletotrichum siamense*. (a,b) Front and back view of six-day-old PDA culture; (c) conidiomata; (d) conidia; (e) appressoria; (f) conidiophores ((a–e) isolate SDQD10-1; (f) isolate HBSJZ 1-1). Scale bars: (c) = 200 μm; (d–f) = 20 μm.

Description and illustration—Prihastuti et al. [50].

Materials examined: China, Shandong province, Qingdao city, on fruit of *P. persica* cv. Yangjiaomi, August 2017, Q. Tan, living cultures SDQD 1-1, SDQD 10-1; Hebei province, Shijiazhuang city, on fruit of *P. persica* cv. Dajiubao, August 2018, Q. Tan, living cultures HBSJZ 1-1, HBSJZ 3-1.

Notes: *Colletotrichum siamense* was first identified on the berries of *Coffea arabica* in Chiang Mai Province, Thailand [50] and reported to have a wide range of hosts across several tropical, subtropical, and temperate regions, including *Persea americana* and *Carica papaya* in South Africa; *Fragaria × ananassa*, *Vitis vinifera*, and *Malus domestica* in the USA; *Hymenocallis americana* and *Pyrus pyrifolia* in China; etc. [3,8,51]. In this study, we collected *C. siamense* isolates from the temperate zone in China; the conidia (13.2–18.3 × 4.6–6.3 μm, mean ± SD = 15.3 ± 0.4 × 5.4 ± 0.3 μm) (Table S3) were larger than those of the ex-holotype (MFLU 090228, ICMP 185819: 7–18.3 × 3–4.3 μm, mean ± SD = 10.18 ± 1.74 × 3.46 ± 0.36 μm).

Colletotrichum karsti Y.L. Yang et al., *Cryptogamie Mycologie*. 32: 241. (2011) (Figure 13).

Description and illustration—Yang et al. [52].

Materials examined: China, Yunnan province, Honghe city, on leaves of *P. persica* cv. Hongxue, August 2017, Q. Tan, living cultures YNHH 3-1, YNHH 3-2, and YNHH 5-2.

Notes: *Colletotrichum karsti* was first described from *Vanda* sp. (*Orchidaceae*) as a pathogen on diseased leaf and endophyte of roots in Guizhou province, China [52]. *C. karsti* is the most common and geographically diverse species in the *C. boninense* species complex, and occurs on wild hosts including *Vitis vinifera*, *Capsicum* spp., *Lycopersicon esculentum*, *Coffea* sp., *Citrus* spp., *Musa banksia*, *Passiflora edulis*, *Solanum betaceum*, *Zamia obliqua*, *P. persica* cv. Dajiubao, August 2018, Q. Tan, living cultures HBSJZ 1-1, HBSJZ 3-1.
In this study, the conidia of *C. karsti* isolates (10.6–14.9 × 5.8–7.4 μm, mean ± SD = 12.9 ± 0.3 × 6.7 ± 0.2 μm) (Table S3) were smaller than those of the ex-holotype (CGMCC3.14194: 12–19.5 × 5–7.5 μm, mean ± SD = 15.4 ± 1.3 × 6.5 ± 0.5 μm).

Colletotrichum folicola Q. Tan and C.X. Luo, sp. nov. (Figure 14).

Figure 13. Biological characteristics of *Colletotrichum karsti*. (a,b) Front and back view of six-day-old PDA culture; (c) conidiomata; (d) conidia; (e) appressoria; (f) conidiophores; (g) ascomata; (h,i) asci; (j) ascospores ((a–j) isolate YNHH 3-1). Scale bars: (c) = 200 μm; (d–j) = 20 μm.

Colletotrichum folicola Q. Tan and C.X. Luo, sp. nov. (Figure 14).
Type: China, Yunnan Province, Honghe City, on leaves of *Prunus persica* cv. Hongxue, August 2017, Q. Tan. Holotype YNHH 10-1, Ex-type culture CCTCC M 2020345.

Sexual morphs were not observed. Asexual morphs developed on PDA. Vegetative hyphae were hyaline, smooth-walled, septate, and branched. Chlamydospores were not observed. Conidiomata acervular, conidiophores, and setae formed on hyphae or brown to black stromata. Conidiomata color ranged from yellow to grayish-yellow to light brown. Setae were medium brown to dark brown, smooth-walled, 2–6 septa, 50–140 μm long, base cylindrical, 2.5–4.5 μm in diameter at the widest part, with tip acute. Conidiophores were

MycoBank Number: MB843363.

Etymology: Referring to the host organ from which the fungus was collected.

Type: China, Yunnan Province, Honghe City, on leaves of *Prunus persica* cv. Hongxue, August 2017, Q. Tan. Holotype YNHH 10-1, Ex-type culture CCTCC M 2020345.

Sexual morphs were not observed. Asexual morphs developed on PDA. Vegetative hyphae were hyaline, smooth-walled, septate, and branched. Chlamydospores were not observed. Conidiomata acervular, conidiophores, and setae formed on hyphae or brown to black stromata. Conidiomata color ranged from yellow to grayish-yellow to light brown. Setae were medium brown to dark brown, smooth-walled, 2–6 septa, 50–140 μm long, base cylindrical, 2.5–4.5 μm in diameter at the widest part, with tip acute. Conidiophores were

Figure 14. Biological characteristics of *Colletotrichum folicola*. (a,b) Front and back view of six-day-old PDA culture; (c,d) conidiomata; (e) setae; (f) conidia; (g) appressoria; (h) conidiophores ((a–h) isolate YNHH 10-1). Scale bars: (c,d) = 200 μm; (e–g) = 20 μm; (h,i) = 10 μm.
hyaline to pale brown, smooth-walled, septate, and up to 55 µm long. Conidiogenous cells were hyaline, cylindrical, 12.3–14.5 × 4.4–6.3 µm, with an opening of 1.8–2.5 µm. Conidia were straight, hyaline, aseptate, cylindrical, and had a round end, 12.3–15.4 × 5.6–7.8 µm, mean ± SD = 13.6 ± 0.1 × 6.5 ± 0.3 µm, L/W ratio = 2.1. Appressoria were single, dark brown, elliptical to clavate, 5.6–13.7 × 4.0–8.2 µm, mean ± SD = 8.4 ± 0.5 × 5.9 ± 0.1 µm, L/W ratio = 1.4.

Culture characteristics: Colonies on PDA attained 16–21 mm diameter in three days at 25 °C and 7–10 mm diameter in three days at 30 °C; greenish-black, white at the margin, and aerial mycelium scarce.

Additional specimens examined: China, Yunnan Province, Honghe City, on leaves of Prunus persica cv. Hongxue, August 2017, Q. Tan, living culture YNHH 2-2.

Notes: Colletotrichum folicola is phylogenetically most closely related to C. citrus-medicae (Figure 6). The PHI test (Φw = 1) revealed no significant recombination between C. folicola and C. citrus-medicae (Figure 7), which was described from diseased leaves of Citrus medica in Kunming, Yunnan Province, China [54]. C. folicola is different from C. citrus-medicae holotype isolate HGUP 1554 in ITS (with 99.04% sequence identity), GAPDH (99.13%), CHS-1 (98.44%), and HIS3 (99.72%). The sequence data of ACT do not separate the two species. In terms of morphology, C. folicola differs from C. citrus-medicae by having setae, smaller conidia (12.3–15.4 × 5.6–7.8 µm vs. 13.5–17 × 5.5–9 µm), longer appressoria (5.6–13.7 × 4.0–8.2 µm vs. 6–9.5 × 5.5–8.5 µm), and colonies that are greenish-black rather than white and pale brownish as in C. citrus-medicae.

3.3. Pathogenicity Tests

Pathogenicity tests were conducted to confirm Koch’s postulates on fruit and leaves for all species identified (Table S4; Figures 15 and 16). Colletotrichum species collected in this study showed high diversity in virulence. C. nymphaeae, C. fioriniae, C. fructicola, and C. siamense, which were already reported to be pathogens of peaches, were pathogenic on both peach leaves and fruit. C. fructicola and C. siamense from the C. gloeosporioides species complex were more virulent compared to species from the C. acutatum species complex. Interestingly, C. folicola and C. karsti showed tissue-specific pathogenicity. Isolates of these two species were all collected from leaves, and mainly infected leaves in the pathogenicity test. C. folicola did not infect peach fruit at all, and the size of lesions on leaves was comparably small (0.20 ± 0.06 cm). C. karsti did infect peach fruit, but the infection rate was only around 20% (7/36 isolates) and the size of lesions was 0.06 ± 0.01 cm. In contrast, the infection rate on leaves was 63.9% (23/36 isolates) and the lesion size was 0.35 ± 0.13 cm. Isolates of C. godetiae collected from peach leaves in Yunnan province were virulent on both leaves and fruit, with the leaf and fruit infection rates and lesion diameters being 88.3% (53/60 isolates) and 0.54 ± 0.05 cm and 90% (54/60 isolates) and 0.50 ± 0.17 cm, respectively (Table S4; Figure 16).
Figure 15. Symptoms of peach fruits and leaves induced by inoculation of spore suspensions of seven *Colletotrichum* spp. after six days at 25 °C. (a) Symptoms resulting from H$_2$O, isolates HBYC 1, JXJA 6, and YNHH 1-1 (left to right). (b) Symptoms resulting from isolates GDHY 10-1, SDQD 10-1, YNHH3-1, and YNHH10-1 (left to right).
4. Discussion

This study is the first large-scale investigation of Colletotrichum species causing anthracnose fruit and leaf diseases in peaches in China. The most common Colletotrichum species were C. nymphaeae and C. fioriniae of the C. acutatum species complex and C. fruticola and C. siamense of the C. gloeosporioides species complex. The same species were also identified in the southeastern USA [17,21,22], where a shift over time appeared to favor C. gloeosporioides species complex in South Carolina. The authors speculated that inherent resistance of C. acutatum to benzimidazole fungicides (MBCs) may have given this species complex a competitive advantage when MBCs were frequently used [22]. As MBCs were replaced by other fungicides (including quinone outside inhibitors and demethylation inhibitors), that competitive advantage may have disappeared and C. gloeosporioides species may have increased in prevalence [22,55]. In support of this hypothesis is previous research showing a higher virulence of C. gloeosporioides on peaches, pears, and apples compared to C. acutatum [8,56,57].

Also, this study and others show that the C. gloeosporioides species complex may be better adapted to the hot South Carolina climate compared to the C. acutatum species complex [3]. MBCs are still popular fungicides in Chinese peach production regions. Therefore, it is possible that the dominance of C. acutatum species complex, specifically C. nymphaeae is, at least in part, a result of fungicide selection.

The high prevalence of C. nymphaeae in Chinese peach orchards is consistent with other local studies reporting the same species affecting a wide variety of other fruit crops in China. For example, C. nymphaeae was reported in Sichuan province on blueberries and loquats [58,59], in Hubei province on strawberries and grapevines [60,61], and in Zhejiang
province on pecans [62]. Internationally, it is one of the most common species affecting pome fruits, stone fruits, and small fruits [23,63,64].

C. godetiae, *C. karsti*, and *C. folicola* were reported on peaches for the first time. The three species were geographically isolated and only present in Yunnan province. Rare occurrences of *Colletotrichum* species have also been formerly observed on peaches, i.e., *C. truncatum* was only found in one of many orchards examined in South Carolina, USA [25]. *C. godetiae* and *C. karsti* are well-known pathogens of fruit crops. *C. godetiae* was reported to cause disease on apples, strawberries, and grapes [65–68], while *C. karsti* was reported to affect apples and blueberries [69,70]. It is, therefore, possible that these pathogens migrated from other hosts into Yunnan province peach orchards. The observed occurrence, however, does point to either a rather rare host transfer event or to environmental conditions that favor these species. Yunnan province is located in southwestern China and peach production is popular in the Yunnan–Guizhou high plateau, a region with low latitude and high altitude [71]. The complicated local topography and diverse climate lead to highly abundant biodiversity [72], which may explain the emergence of the new species *C. folicola*.

As mentioned above, regional differences in *Colletotrichum* species composition in commercial orchards may be influenced by fungicide selection pressure. For example, *C. acutatum* is less sensitive to benomyl, thiophanate-methyl, and other MBC fungicides compared with *C. gloeosporioides* [56,73,74]. Meanwhile, all *C. nymphaeae* strains in this study have been confirmed to be resistant to carbendazim (MBC) [75]. *C. nymphaeae* was reported to be less sensitive to demethylation inhibitor (DMIs) fungicides (flutriafol and fenbuconazole) compared with *C. fioriniae*, *C. fructicola*, and *C. siamense* [21] and *C. gloeosporioides* was reported to be inherently tolerant to fludioxonil [76,77]. Most of the peach farms in China are small and there is vast diversity in the approaches to managing diseases. However, MBC (i.e., carbendazim and thiophanate-methyl) fungicides are commonly used to control peach diseases, followed by DMIs (i.e., difenoconazole). Whether fungicide selection had an impact on the *Colletotrichum* species distribution is unknown, but the high prevalence of *C. acutatum* species complex and their resilience to MBCs (and, in the case of *C. nymphaeae*, to DMIs) would allow for such a hypothesis.

In conclusion, this study provides the morphological, molecular, and pathological characterization of seven *Colletotrichum* spp. occurring on peaches in China. This is of great significance for the prevention and control of anthracnose disease in different areas in China.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jof8030313/s1, Table S1: Primers used in this study, with sequences, annealing temperature, and sources [51,78–85]; Table S2: Isolates of seven *Colletotrichum* species collected from peaches in China, with details about host tissue, location, and GenBank accession number; Table S3: The sizes of conidia, appresoria, ascospores, and mycelial growth rate of the representative isolates of *Colletotrichum* spp. obtained in this study; Table S4: Infection rates of seven *Colletotrichum* spp. inoculated on peach fruit and leaves.

Author Contributions: Conceptualization, Q.T., G.S. and C.-X.L.; methodology, Q.T., C.C., W.-X.Y., L.-F.Y. and C.-X.L.; software, Q.T. and C.C.; validation, Q.T. and C.-X.L.; formal analysis, Q.T. and G.S.; investigation, Q.T., L.-F.Y. and C.-X.L.; data curation, Q.T. and C.-X.L.; writing—original draft preparation, Q.T., G.S. and C.-X.L.; writing—review and editing, G.S., C.C. and C.-X.L.; visualization, Q.T. and C.C.; supervision, W.-X.Y. and C.-X.L.; project administration and funding acquisition, C.-X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the China Agriculture Research System of the Ministry of Finance and the Ministry of Agriculture and Rural Affairs (CARS-30-3-03), and the Fundamental Research Funds for the Central Universities (No. 2662020ZKY018).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
Data Availability Statement: Alignments generated during the current study are available from TreeBASE (http://treebase.org/treebase-web/home.html; study 29227). All sequence data are available in the NCBI GenBank, following the accession numbers in the manuscript.

Acknowledgments: We sincerely thank the reviewers for their contributions during the revision process.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References

1. Zheng, Y.; Crawford, G.W.; Chen, X. Archaeological evidence for peach (Prunus persica) cultivation and domestication in China. *PLoS ONE* **2014**, *9*, e106595. [CrossRef] [PubMed]
2. Food and Agricultural Organization of the United Nations (FAOSTAT) Website. 2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 February 2022).
3. Dowling, M.; Peres, N.; Villani, S.; Schnabel, G. Managing *Colletotrichum* on fruit crops: A "complex" challenge. *Plant Dis.* **2020**, *104*, 2301–2316. [CrossRef] [PubMed]
4. Dowling, M.; Schnabel, G. Understanding plant diseases using art and technology. *Int. J. Fruit Sci.* **2016**, *20*, 959–966. [CrossRef]
5. Stensvand, A.; Borve, J.; Talgo, V. Overwintering diseased plant parts and newly infected flowers and fruit as sources of inoculum for *Colletotrichum acutatum* in sour cherry. *Plant Dis.* **2017**, *101*, 1207–1213. [CrossRef] [PubMed]
6. Sutton, T.B.; Shane, W.W. Epidemiology of the perfect stage of *Gloverella cinigulata* on apples. *Phytopathology* **1983**, *73*, 1179–1183. [CrossRef]
7. De Silva, D.D.; Crous, P.W.; Ades, P.K.; Hyde, K.D.; Taylor, P.W.J. Life styles of *Colletotrichum* species and implications for plant biosecurity. *Fungal Biol. Rev.* **2017**, *31*, 155–168. [CrossRef]
8. Fu, M.; Crous, P.W.; Bai, Q.; Zhang, P.F.; Xiang, J.; Guo, Y.S.; Zhao, F.F.; Yang, M.M.; Hong, N.; Xu, W.X.; et al. *Colletotrichum* species associated with anthracnose of *Pyrus* spp. in China. *Persoonia* **2019**, *42*, 1–35. [CrossRef]
9. Sutton, B.C. The Coelomycetes. *Fungi Imperfecti with Pycnidia, Acervuli and Stromata*; Commonwealth Mycological Institute: Kew, UK, 1980.
10. Cacciola, S.O.; Gilardi, G.;Faedda, R.; Schena, L.; Pane, A.; Garibaldi, A.; Gullino, M.L. Characterization of *Colletotrichum ocimi* population associated with black spot of sweet basil (*Ocimum basilicum*) in Northern Italy. *Plants* **2020**, *9*, 654. [CrossRef]
11. Riolo, M.; Aloi, F.; Pane, A.; Cara, M.; Cacciola, S.O. Twig and shoot dieback of *Citrus*, a new disease caused by *Colletotrichum* species. *Cells* **2021**, *10*, 449. [CrossRef]
12. Cai, L.; Hyde, K.D.; Taylor, P.W.J.; Weir, B.S.; Waller, J.M.; Abang, M.M.; Zhang, J.Z.; Yang, Y.L.; Phoulivong, S.; Liu, Z.Y.; et al. A polyphasic approach for studying *Colletotrichum*. *Fungal Divers* **2009**, *39*, 183–204.
13. Liu, F.; Wang, M.; Damm, U.; Crous, P.W.; Cai, L. Species boundaries in plant pathogenic fungi: A *Colletotrichum* case study. *BMC Evol. Biol.* **2016**, *16*, 14. [CrossRef] [PubMed]
14. Talhinhas, P.; Baroncelli, R. *Colletotrichum* species and complexes: Geographic distribution, host range and conservation status. *Fungal Divers.* **2021**, *110*, 109–198. [CrossRef]
15. Yu, Z.; Jiang, X.; Zheng, H.; Zhang, H.; Qiao, M. Fourteen new species of foliar *Colletotrichum* associated with the invasive plant *Ageratina adenophora* and surrounding crops. *J. Fungi* **2022**, *8*, 185. [CrossRef] [PubMed]
16. Zheng, H.; Yu, Z.; Jiang, X.; Fang, L.; Qiao, M. Endophytic *Colletotrichum* species from aquatic plants in southwest China. *J. Fungi* **2022**, *8*, 87. [CrossRef] [PubMed]
17. Bernstein, B.; Zehb, E.I.; Dean, R.A.; Shabi, E. Characteristics of *Colletotrichum* from peach, apple, pecan, and other hosts. *Plant Dis.* **1995**, *79*, 478–482. [CrossRef]
18. Adaskaveg, J.E.; Hartin, R.J. Characterization of *Colletotrichum acutatum* isolates causing anthracnose of almond and peach in California. *Phytopathology* **1997**, *87*, 979–987. [CrossRef]
19. Schnabel, G.; Chai, W.; Cox, K.D. Identifying and characterizing summer diseases on ‘Babygold’ peach in South Carolina. *Plant Health. Prog.* **2006**, *7*, 30. [CrossRef]
20. Kim, W.G.; Hong, S.K. Occurrence of anthracnose on peach tree caused by *Colletotrichum* species. *Plant Pathol. J.* **2008**, *24*, 80–83. [CrossRef]
21. Chen, S.N.; Luo, C.X.; Hu, M.J.; Schnabel, G. Sensitivity of *Colletotrichum* species, including *C. fioriniae* and *C. nymphaeae*, from peach to demethylating inhibitor fungicides. *Plant Dis.* **2016**, *100*, 2434–2441. [CrossRef]
22. Hu, M.J.; Grabke, A.; Schnabel, G. Investigation of the *Colletotrichum gloeosporioides* species complex causing peach anthracnose in South Carolina. *Plant Dis.* **2015**, *99*, 797–805. [CrossRef]
23. Moreira, R.R.; Silva, G.A.; De Mio, L.L.M. *Colletotrichum acutatum* complex causing anthracnose on peach in Brazil. *Austral. Plant Pathol.* **2020**, *49*, 179–189. [CrossRef]
24. Lee, D.M.; Hassan, O.; Chang, T. Identification, characterization, and pathogenicity of *Colletotrichum* species causing anthracnose of peach in Korea. *Mycobiology* **2020**, *48*, 210–218. [CrossRef]
55. Hu, M.J.; Grabke, A.; Dowling, M.E.; Holstein, H.J.; Schnabel, G. Resistance in *Colletotrichum siamense* from peach and blueberry to thiophanate-methyl and azoxystrobin. *Plant Dis.* 2015, 99, 806–814. [CrossRef]

56. Munir, M.; Amsden, B.; Dixon, E.; Vaillancourt, L.; Gauthier, N.A.W. Characterization of *Colletotrichum* species causing bitter rot of apple in Kentucky orchards. *Plant Dis.* 2016, 100, 2194–2203. [CrossRef]

57. Eaton, M.J.; Edwards, S.; Inocencio, H.A.; Machado, F.J.; Nuckles, E.M.; Farman, M.; Gauthier, N.A.; Vaillancourt, L.J. Diversity and cross-infection potential of *Colletotrichum* causing fruit rots in mixed-fruit orchards in Kentucky. *Plant Dis.* 2021, 105, 1115–1128. [CrossRef] [PubMed]

58. Zhang, Y.B.; Meng, K.; Shu, J.P.; Zhang, W.; Wang, H.J. First report of anthracnose on pecan (*Carya illinoensis*) caused by *Colletotrichum nymphaeae* on loquat fruit in China. *Plant Dis.* 2018, 102, 243. [CrossRef]

59. Liu, X.; Zheng, X.; Khaskheli, M.I.; Sun, X.; Chang, X.; Gong, G. Identification of *Colletotrichum* species associated with blueberry anthracnose in Sichuan, China. *Pathogens* 2020, 9, 718. [CrossRef] [PubMed]

60. Han, Y.C.; Zeng, X.G.; Xiang, F.Y.; Ren, L.; Chen, F.Y.; Gu, Y.C. Distribution and characteristics of *Colletotrichum* species associated with anthracnose of raspberry in Hebei, China. *Plant Dis.* 2016, 100, 996–1006. [CrossRef]

61. Liu, M.; Zhang, W.; Zou, Y.; Liu, Y.; Yan, J.Y.; Li, X.H.; Jayawardena, R.S.; Hyde, K.D. First report of twig anthracnose on grapevine caused by *Colletotrichum nymphaeae* in China. *Plant Dis.* 2016, 100, 2530. [CrossRef]

62. Zhang, Y.B.; Meng, K.; Shu, J.P.; Zhang, W.; Wang, H.J. First report of anthracnose on pecan (*Carya illinoensis*) caused by *Colletotrichum nymphaeae* in China. *Plant Dis.* 2019, 103, 1432–1433. [CrossRef]

63. Braganca, C.A.D.; Damm, U.; Baroncelli, R.; Massola, N.S.; Crous, P.W. Species of the *Colletotrichum acutatum* complex associated with anthracnose diseases of fruit in Brazil. *Fungal Biol.* 2016, 120, 547–561. [CrossRef]

64. Wang, N.Y.; Forcelini, B.B.; Peres, N.A. Anthracnose fruit and root necrosis of strawberry are caused by a dominant species within the *Colletotrichum acutatum* species complex in the United States. *Phytopathology* 2019, 109, 1293–1301. [CrossRef]

65. Baroncelli, R.; Sreenivasaprasad, S.; Thor, M.R.; Sukno, S.A. First report of apple bitter rot caused by *Colletotrichum godetiae* in the United Kingdom. *Plant Dis.* 2014, 98, 1000–1001. [CrossRef]

66. Munda, A. First report of *Colletotrichum fariniae* and *C. godetiae* causing apple bitter rot in Slovenia. *Plant Dis.* 2014, 98, 1282. [CrossRef]

67. Zapparata, A.; Da Lio, D.; Sarrocco, S.; Vannacci, G.; Baroncelli, R. First report of *Colletotrichum godetiae* causing grape (*Vitis vinifera*) berry rot in Italy. *Plant Dis.* 2017, 101, 1051–1052. [CrossRef]

68. Karimi, K.; Arzaniou, M.; Pertot, I. Weeds as potential inoculum reservoir for *Colletotrichum nymphaeae* causing strawberry anthracnose in Iran and rec-PCR fingerprinting as useful marker to differentiate *C. acutatum* complex on strawberry. *Front. Microbiol.* 2019, 10, 13. [CrossRef] [PubMed]

69. Rios, J.A.; Pinho, D.B.; Moreira, W.R.; Pereira, O.L.; Rodrigues, F.A. First report of *Colletotrichum karstii* causing anthracnose on blueberry leaves in Brazil. *Plant Dis.* 2015, 99, 157–158. [CrossRef] [PubMed]

70. Velho, A.C.; Stadnik, M.J.; Wallhead, M. Unraveling *Colletotrichum* species associated with Glomerella leaf spot of apple. *Trop. Plant Pathol.* 2019, 44, 197–204. [CrossRef]

71. Yang, W.; Zhang, X. A discussion on structural adjustment of fruit cultivation in Yunnan. *Southeast China J. Agric. Sci.* 2003, 16, 103–106.

72. Yang, Y.M.; Tian, K.; Hao, J.M.; Pei, S.J.; Yang, Y.X. Biodiversity and biodiversity conservation in Yunnan, China. *Biodivers. Conserv.* 2004, 13, 813–826. [CrossRef]

73. Peres, N.A.R.; Souza, N.L.; Peever, T.L.; Timmer, L.W. Benomyl sensitivity of isolates of *Colletotrichum acutatum* and *C. gloeosporioides* from citrus. *Plant Dis.* 2004, 88, 125–130. [CrossRef]

74. Chung, W.H.; Ishii, H.; Nishimura, K.; Fukaya, M.; Yano, K.; Kajitani, Y. Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. *Plant Dis.* 2006, 90, 506–512. [CrossRef]

75. Usman, H.M.; Tan, Q.; Fan, F.; Karim, M.M.; Yin, W.X.; Zhu, F.X.; Luo, C.X. Sensitivity of *Colletotrichum nymphaeae* to six fungicides and characterization of fludioxonil resistant isolates in China. *Plant Dis.* 2021, 106, 165–173. [CrossRef]

76. Schnabel, G.; Tan, Q.; Schneider, V.; Ishii, H. Inherent tolerance of *Colletotrichum gloeosporioides* to fludioxonil. *Pest. Biochem. Physiol.* 2021, 172, 6. [CrossRef] [PubMed]

77. Usman, H.M.; Tan, Q.; Karim, M.M.; Adnan, M.; Yin, W.X.; Zhu, F.X.; Luo, C.X. Sensitivity of *C. fructicola* and *C. siamense* of peach in China to multiple classes of fungicides and characterization of pyraclostrobin-resistant isolates. *Plant Dis.* 2021, 105, 3459–3465. [CrossRef] [PubMed]

78. Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. *Mol. Ecol.* 1993, 2, 113–118. [CrossRef] [PubMed]

79. White, T.; Bruns, T.; Lee, S.; Taylor, J.; Innis, M.; Gelfand, D.; Sninsky, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In *PCR Protocols: A Guide to Methods and Applications*; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322.

80. Guerber, J.C.; Liu, B.; Correll, J.C.; Johnston, P.R. Characterization of diversity in *Colletotrichum acutatum sensu lato* by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. *Mycolologia* 2003, 95, 872–895. [CrossRef] [PubMed]

81. Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycolologia* 1999, 91, 553–556. [CrossRef]
82. Woudenberg, J.H.C.; Aveskamp, M.M.; de Gruyter, J.; Spiers, A.G.; Crous, P.W. Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 2009, 22, 56–62. [CrossRef]

83. O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997, 7, 103–116. [CrossRef]

84. Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [CrossRef]

85. Crous, P.W.; Groenewald, J.Z.; Risede, J.M.; Simoneau, P.; Hywel-Jones, N.L. Calonectria species and their Cylindrocladium anamorphs: Species with sphaeropedunculate vesicles. Stud. Mycol. 2004, 50, 415–430.