Nomenclature for the KIR of non-human species

James Robinson1,2 • Lisbeth A. Guethlein 3 • Giuseppe Maccari1,4 • Jeroen Blokhuis5,6 • Benjamin N. Bimber7 • Natasja G. de Groot8 • Nicholas D. Sanderson4,8 • Laurent Abi-Rached9 • Lutz Walter10 • Ronald E. Bontrop5 • John A. Hammond4 • Steven G. E. Marsh1,2 • Peter Parham3

Received: 18 May 2018 / Accepted: 18 May 2018 / Published online: 4 June 2018 © The Author(s) 2018

Abstract
The increasing number of Killer Immunoglobulin-like Receptor (KIR) sequences available for non-human primate species and cattle has prompted development of a centralized database, guidelines for a standardized nomenclature, and minimum requirements for database submission. The guidelines and nomenclature are based on those used for human KIR and incorporate modifications made for inclusion of non-human species in the companion IPD-NHKIR database. Included in this first release are the rhesus macaque (Macaca mulatta), chimpanzee (Pan troglodytes), orangutan (Pongo abelii and Pongo pygmaeus), and cattle (Bos taurus).

Keywords KIR • Nomenclature • Variant • Allele • Gene • Database • Sequence

Introduction
The KIR locus has been studied in a number of non-human species primates and is characterized by high levels of allelic polymorphism, haplotypic polymorphism in the number of genes, and extensive duplication and recombination (Hammond et al. 2016; Parham 2004). These factors have made it difficult to assign orthologues and have led to a number of different nomenclature systems being used to name genes and alleles. This report describes a common framework and guidelines for KIR nomenclature in non-human species. These have been developed by taking advantage of lessons learned in the development of a nomenclature system for the human KIR (Marsh et al. 2003).

General naming guidelines
To provide consistency with the IPD-MHC Database (Maccari et al. 2017), the non-human KIR nomenclature adopts the same four-character prefix used for species designation in the naming of MHC alleles (de Groot et al. 2012; Ellis et al. 2006; Klein et al. 1990). Also, genes and alleles will be named based on the conventions that have been adopted for the human KIR system (Marsh et al. 2003) that are based on the structures of the molecules they encode. The first digit following the KIR acronym corresponds to the number of Ig-like domains in the polypeptide and the “D” denotes “Domain.” The D is followed by either an “L” indicating a “Long” cytoplasmic tail, an “S” indicating a “Short” cytoplasmic tail or a “P” for pseudogenes. In addition, the inclusion of a “W” indicates “Workshop” following the “L,” “S,” or “P” to indicate any sequence that by phylogenetic analysis is sufficiently divergent to be considered a “new” gene, but lack either genomic sequencing or family studies to demonstrate
that it does define a new gene and not a divergent lineage a
known gene. Tables 1, 2, and 3 list the current gene designations
and their previous names. Symbols for genes are itali-
cized (e.g., *Mamu-KIR3DL01*), whereas symbols for proteins
are not italicized (e.g., *Mamu-KIR3DL01*). Alleles follow the
same conventions as gene names.

Reflecting species-specific differences, there have been
further additions/modifications to the general nomenclature
for rhesus macaque and cattle. As with the human KIR no-
mencature, alleles in each series have been named in order of
their deposition into a generalist sequence databank, GenBank/EMBL-ENA/DDBJ (Benson et al. 2017; Chojnacki et al. 2017; Mashima et al. 2017). Where the
identity is known of the animal providing the sequenced
DNA, that information is included in the database, as well as
information regarding the origin of the animal. Tables 4, 5, 6,
and 7 provide a complete list of genes and alleles currently in
the nomenclature, as well as the original name(s), accession
number, and reference to the original report of the sequence.

Each KIR allele name includes a unique number corre-
sponding to up to three sets of digits separated by colons.
All alleles are given a three-digit name, which corresponds
to the first set of digits; longer names are assigned only
when necessary.
The digits placed before the first colon describe the alleles
that differ at non-synonymous substitutions (also called coding

Species	KIR gene designation(s)	Previous KIR gene designation(s)
Rhesus macaque (Mamu)	**Mamu-KIR1D** 2DL501NK, 2DL503NK, KIR2DL4, KIR2DL4.1, MmKIR2DL4 2DL426NK, 3DL34, KIR3DL1, KIR3DL1-like_1, KIR3DL1, KIR3DL1-like1, KIR3DL12, KIR3DL13, KIR3DL14, KIR3DL15, KIR3DL19, KIR3DL1_2 variant_2, KIR3DL2, KIR3DL2-old, KIR3DL3, KIR3DL4, KIR3DL5	KIR3D-like_3, KIR3D2, KIR3DL21, KIR3DL21-like1
	Mamu-KIR2DL04 2DL501NK, 2DL503NK, KIR2DL4, KIR2DL4.1, MmKIR2DL4 2DL426NK, 3DL34, KIR3DL1, KIR3DL1-like_1, KIR3DL1, KIR3DL1-like1, KIR3DL12, KIR3DL13, KIR3DL14, KIR3DL15, KIR3DL19, KIR3DL1_2 variant_2, KIR3DL2, KIR3DL2-old, KIR3DL3, KIR3DL4, KIR3DL5	KIR3D11
	Mamu-KIR3DL01 2DL501NK, 2DL503NK, KIR2DL4, KIR2DL4.1, MmKIR2DL4 2DL426NK, 3DL34, KIR3DL1, KIR3DL1-like_1, KIR3DL1, KIR3DL1-like1, KIR3DL12, KIR3DL13, KIR3DL14, KIR3DL15, KIR3DL19, KIR3DL1_2 variant_2, KIR3DL2, KIR3DL2-old, KIR3DL3, KIR3DL4, KIR3DL5	KIR3D11
	Mamu-KIR3DL02 2DL501NK, 2DL503NK, KIR2DL4, KIR2DL4.1, MmKIR2DL4 2DL426NK, 3DL34, KIR3DL1, KIR3DL1-like_1, KIR3DL1, KIR3DL1-like1, KIR3DL12, KIR3DL13, KIR3DL14, KIR3DL15, KIR3DL19, KIR3DL1_2 variant_2, KIR3DL2, KIR3DL2-old, KIR3DL3, KIR3DL4, KIR3DL5	KIR3D11
	Mamu-KIR3DL03 2DL501NK, 2DL503NK, KIR2DL4, KIR2DL4.1, MmKIR2DL4 2DL426NK, 3DL34, KIR3DL1, KIR3DL1-like_1, KIR3DL1, KIR3DL1-like1, KIR3DL12, KIR3DL13, KIR3DL14, KIR3DL15, KIR3DL19, KIR3DL1_2 variant_2, KIR3DL2, KIR3DL2-old, KIR3DL3, KIR3DL4, KIR3DL5	KIR3D11
	Mamu-KIR3DL04 2DL501NK, 2DL503NK, KIR2DL4, KIR2DL4.1, MmKIR2DL4 2DL426NK, 3DL34, KIR3DL1, KIR3DL1-like_1, KIR3DL1, KIR3DL1-like1, KIR3DL12, KIR3DL13, KIR3DL14, KIR3DL15, KIR3DL19, KIR3DL1_2 variant_2, KIR3DL2, KIR3DL2-old, KIR3DL3, KIR3DL4, KIR3DL5	KIR3D11
	Mamu-KIR3DL05 2DL501NK, 2DL503NK, KIR2DL4, KIR2DL4.1, MmKIR2DL4 2DL426NK, 3DL34, KIR3DL1, KIR3DL1-like_1, KIR3DL1, KIR3DL1-like1, KIR3DL12, KIR3DL13, KIR3DL14, KIR3DL15, KIR3DL19, KIR3DL1_2 variant_2, KIR3DL2, KIR3DL2-old, KIR3DL3, KIR3DL4, KIR3DL5	KIR3D11
	Mamu-KIR3DL06 2DL501NK, 2DL503NK, KIR2DL4, KIR2DL4.1, MmKIR2DL4 2DL426NK, 3DL34, KIR3DL1, KIR3DL1-like_1, KIR3DL1, KIR3DL1-like1, KIR3DL12, KIR3DL13, KIR3DL14, KIR3DL15, KIR3DL19, KIR3DL1_2 variant_2, KIR3DL2, KIR3DL2-old, KIR3DL3, KIR3DL4, KIR3DL5	KIR3D11
	Mamu-KIR3DL07 2DL501NK, 2DL503NK, KIR2DL4, KIR2DL4.1, MmKIR2DL4 2DL426NK, 3DL34, KIR3DL1, KIR3DL1-like_1, KIR3DL1, KIR3DL1-like1, KIR3DL12, KIR3DL13, KIR3DL14, KIR3DL15, KIR3DL19, KIR3DL1_2 variant_2, KIR3DL2, KIR3DL2-old, KIR3DL3, KIR3DL4, KIR3DL5	KIR3D11
	Mamu-KIR3DL08 2DL501NK, 2DL503NK, KIR2DL4, KIR2DL4.1, MmKIR2DL4 2DL426NK, 3DL34, KIR3DL1, KIR3DL1-like_1, KIR3DL1, KIR3DL1-like1, KIR3DL12, KIR3DL13, KIR3DL14, KIR3DL15, KIR3DL19, KIR3DL1_2 variant_2, KIR3DL2, KIR3DL2-old, KIR3DL3, KIR3DL4, KIR3DL5	KIR3D11
	Mamu-KIR3DL09 2DL501NK, 2DL503NK, KIR2DL4, KIR2DL4.1, MmKIR2DL4 2DL426NK, 3DL34, KIR3DL1, KIR3DL1-like_1, KIR3DL1, KIR3DL1-like1, KIR3DL12, KIR3DL13, KIR3DL14, KIR3DL15, KIR3DL19, KIR3DL1_2 variant_2, KIR3DL2, KIR3DL2-old, KIR3DL3, KIR3DL4, KIR3DL5	KIR3D11
substitutions). Alleles that differ only by synonymous nucleotide substitutions (also called silent or non-coding substitutions) but are within the coding sequence are distinguished by their third sets of digits.

In addition to the unique allele number, optional suffixes can be added to an allele name to indicate the expression status of the gene and/or its encoded protein. Alleles known not to be expressed—so called “Null” alleles—have been given the suffix “N.” Alleles that have been shown to be alternatively expressed may have the suffix “L,” “S,” “C,” “A,” or “Q.”

The suffix “L” is used to indicate an allele that has been shown to have “Low” cell surface expression when compared to normal levels. The “S” suffix is used to denote an allele specifying a protein which is expressed as a soluble, “Secreted” molecule and is not present on the cell surface. The “C” suffix is assigned to alleles producing proteins that are present in the “Cytoplasm” and not on the cell surface. An “A” suffix indicates an “Aberrant” expression, where there is doubt as to whether a protein is actually expressed. A “Q” suffix is used when the expression of an allele is “Questionable,” given that the mutation seen in the allele has been shown to affect normal expression levels in other alleles and other KIR genes.

As of May 2018, no alleles have been named with the “C,” “A,” “Q,” or “S” suffixes.

A schematic representation of the syntax for the non-human KIR allele designation is shown in Fig. 1.

Species-specific guidelines

Naming rhesus macaque KIR genes

The *Mamu-KIR* sequences fall into a number of distinct lineages based on phylogenetic analysis. Most sequences correspond to lineage II KIR and are further divided into those encoding KIR that have long cytoplasmic tails or short cytoplasmic tails. The genes have been numbered sequentially and where possible the gene name has the same the same number as the first reported allele for that gene. For example, the *Mamu-KIR3DL1* gene (Hershberger et al. 2001) was renamed *Mamu-KIR3DL01*001.

The nomenclature uses a two-digit numbering of individual genes for the macaque sequences as seen with the naming of *Mamu-KIR3DL01*001. This renaming aims to avoid confusion with previous sequence names. Subsequent analysis has shown that some of the proposed sequences of different genes are actually allelic variants of the same gene. Rather than skipping numbers to avoid confusion, it was thought better to introduce the two-digit numbering system.

Recombinant alleles are named according to the locus, which provide the majority of the sequence. For example,
Table 4 Allele designations and their previous names

Gene	Allele designation	Previous designations	Accession number	Reference
Mamu-KIR1D	Mamu-KIR1D*001	KIR1D	AF334634	(Hershberger et al. 2001)
Mamu-KIR1D	Mamu-KIR1D*002	KIR1D,Mamu-KIR1D*00202-JHB-HA	AU728181, GU112257, GU112266, GU112232	(Sambrook et al. 2005)
Mast2DL04	Mast2DL04*001:01	KIR2DL4, KIR2DL4.1, MmKIR2DL4*0010101-JHB	EU702886, AF361088, AF334644, FJ824091, GU112331, GU112318, GU112263, GU112303, GU112287	(Blokhuis et al. 2009a; Blokhuis et al. 2009b; Blokhuis et al. 2010; Grendell et al. 2001; Hershberger et al. 2001)
Mast2DL04	Mast2DL04*001:02	2DL501NK	GU299490	(Colantoni et al. 2011)
Mast2DL04	Mast2DL04*002	MmKIR2DL4*0020101-JHB	FJ824092, GU112279	(Blokhuis et al. 2009b; Blokhuis et al. 2010)
Mast2DL04	Mast2DL04*003	KIR2DL4, MmKIR2DL4*0040101-JHB	AYS05486, FJ824093, GU112322, GU112284	(Andersen et al. 2004; Blokhuis et al. 2009b; Blokhuis et al. 2010)
Mast2DL04	Mast2DL04*004	KIR2DL4	AY728182	(Sambrook et al. 2005)
Mast2DL04	Mast2DL04*005	MmKIR2DL4*0050101-JHB	FJ824094	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*006:01	MmKIR2DL4*0060101-JHB	FJ824095	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*006:02	2DL503NK	GU014298	(Colantoni et al. 2011)
Mast2DL04	Mast2DL04*007	MmKIR2DL4*0070101-JHB	FJ824096	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*008:01	MmKIR2DL4*0080101-JHB	FJ824097	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*008:02	MmKIR2DL4*0080201-JHB	FJ824098, GU112326	(Blokhuis et al. 2009b; Blokhuis et al. 2010)
Mast2DL04	Mast2DL04*010	MmKIR2DL4*0100101-JHB	FJ824100	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*011	MmKIR2DL4*0110101-JHB	FJ824101	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*012	MmKIR2DL4*0120101-JHB	FJ824102	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*013	MmKIR2DL4*0130101-JHB	FJ824103	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*014:01	MmKIR2DL4*0140101-JHB	FJ824104, GU112316	(Blokhuis et al. 2009b; Blokhuis et al. 2010)
Mast2DL04	Mast2DL04*014:02	MmKIR2DL4*0140201-JHB	FJ824105	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*015:01	MmKIR2DL4*0150101-JHB	FJ824106, GU112313	(Blokhuis et al. 2009b; Blokhuis et al. 2010)
Mast2DL04	Mast2DL04*015:02	MmKIR2DL4*0150201-JHB	FJ824107, GU112280	(Blokhuis et al. 2009b; Blokhuis et al. 2010)
Mast2DL04	Mast2DL04*016	MmKIR2DL4*0160101-JHB	FJ824108	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*017	MmKIR2DL4*0170101-JHB	FJ824109	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*018	MmKIR2DL4*0180101-JHB	FJ824110	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*019	MmKIR2DL4*0190101-JHB	FJ824111	(Blokhuis et al. 2009b)
Mast2DL04	Mast2DL04*020	MmKIR2DL4*0200101-JHB	FJ824112, GU112274	(Blokhuis et al. 2009b; Blokhuis et al. 2010)
Mast3DL01	Mast3DL01*001	KIR3DL1, 3DL3	AF334616, GU299488	(Colantoni et al. 2011; Hershberger et al. 2001)
Mast3DL01	Mast3DL01*002	KIR3DL2-old, 2DL426NK	AF334617, GU299488	(Hershberger et al. 2001); (Colantoni et al. 2011)
Mast3DL01	Mast3DL01*003	KIR3DL3	AF361083, GU112305	(Blokhuis et al. 2010; Grendell et al. 2001)
Mast3DL01	Mast3DL01*004	KIR3DL4	AF334619	(Hershberger et al. 2001)
Mast3DL01	Mast3DL01*005	KIR3DL5	AF334620	(Hershberger et al. 2001)
Mast3DL01	Mast3DL01*006	KIR3DL12	AF361082	(Grendell et al. 2001)
Mast3DL01	Mast3DL01*007N	KIR3DL13	AF408151	(Grendell et al. 2001)
Mast3DL01	Mast3DL01*008N	KIR3DL14	AF408152	(Grendell et al. 2001)
Mast3DL01	Mast3DL01*009N	KIR3DL15	AF408153	(Grendell et al. 2001)
Mast3DL01	Mast3DL01*010	KIR3DL19	AF408150	(Grendell et al. 2001)
Gene	Allele designation	Previous designations	Accession number	Reference
---------------	-------------------------------------	--	-----------------------------------	---
Mamu-KIR3DL01	Mamu-KIR3DL01*011	KIR3DL1*variant_2	AY728187	(Sambrook et al. 2005)
Mamu-KIR3DL01	Mamu-KIR3DL01*012	KIR3DL1*002-BNB, KIR3DL-like_1	EU419033, AY505476, GU112286	(Andersen et al. 2004; Blokhuis et al. 2010; Moreland et al. 2011)
Mamu-KIR3DL01	Mamu-KIR3DL01*013	KIR3DL1*003-BNB	EU419034	(Moreland et al. 2011)
Mamu-KIR3DL01	Mamu-KIR3DL01*014	KIR3DL1*005-BNB	EU419035	(Moreland et al. 2011)
Mamu-KIR3DL01	Mamu-KIR3DL01*015	KIR3DL1*006-BNB	EU419036	(Moreland et al. 2011)
Mamu-KIR3DL01	Mamu-KIR3DL01*016	KIR3DL1*007-BNB	EU419037, GU112258	(Blokhuis et al. 2010; Moreland et al. 2011)
Mamu-KIR3DL01	Mamu-KIR3DL01*017	KIR3DL12*001-BNB	EU419044	(Moreland et al. 2011)
Mamu-KIR3DL01	Mamu-KIR3DL01*018	KIR3DL2*001-BNB	EU419046	(Moreland et al. 2011)
Mamu-KIR3DL01	Mamu-KIR3DL01*019:01	KIR3DL1*001-BNB	EU419032, GU112300	(Blokhuis et al. 2010; Moreland et al. 2011)
Mamu-KIR3DL01	Mamu-KIR3DL01*019:02	None	GU112283	(Blokhuis et al. 2010)
Mamu-KIR3DL01	Mamu-KIR3DL01*020	KIR3DL1-like1	EU688987	(Moreland et al. 2011)
Mamu-KIR3DL01	Mamu-KIR3DL01*021	KIR3DL	FJ562108	(Bostik et al. 2009)
Mamu-KIR3DL01	Mamu-KIR3DL01*022	None	GU112267	(Blokhuis et al. 2010)
Mamu-KIR3DL01	Mamu-KIR3DL01*023	None	GU112292	(Blokhuis et al. 2010)
Mamu-KIR3DL01	Mamu-KIR3DL01*024	None	GU112321	(Blokhuis et al. 2010)
Mamu-KIR3DL01	Mamu-KIR3DL01*025	None	GU112324	(Blokhuis et al. 2010)
Mamu-KIR3DL01	Mamu-KIR3DL01*026	KIR3DL. allele 2	FJ562109	(Bostik et al. 2009)
Mamu-KIR3DL01	Mamu-KIR3DL01*027	KIR3DL. allele 3	FJ562110	(Bostik et al. 2009)
Mamu-KIR3DL02	Mamu-KIR3DL02*001	KIR3DL2	AY728188	(Sambrook et al. 2005)
Mamu-KIR3DL02	Mamu-KIR3DL02*002	KIR3DL-like_3	AY505478	(Andersen et al. 2004)
Mamu-KIR3DL02	Mamu-KIR3DL02*003	KIR3DL21*001-BNB	EU419050	(Moreland et al. 2011)
Mamu-KIR3DL02	Mamu-KIR3DL02*004:01	KIR3DL21*003-BNB	EU419052	(Moreland et al. 2011)
Mamu-KIR3DL02	Mamu-KIR3DL02*004:02	KIR3DL21*005-BNB	EU419053	(Moreland et al. 2011)
Mamu-KIR3DL02	Mamu-KIR3DL02*005	KIR3DL21*006-BNB	EU419054	(Moreland et al. 2011)
Mamu-KIR3DL02	Mamu-KIR3DL02*006	KIR3DL21-like1	EU688989	(Moreland et al. 2011)
Mamu-KIR3DL02	Mamu-KIR3DL02*007	None	GU112277	(Blokhuis et al. 2010)
Mamu-KIR3DL02	Mamu-KIR3DL02*008	None	GU112281	(Blokhuis et al. 2010)
Mamu-KIR3DL02	Mamu-KIR3DL03*001	KIR3DL21*002-BNB	EU419051	(Moreland et al. 2011)
Mamu-KIR3DL02	Mamu-KIR3DL03*002	KIR3DL21*007-BNB	EU419055	(Moreland et al. 2011)
Mamu-KIR3DL02	Mamu-KIR3DL03*003	KIR3DL-like1-BNB	EU419031	(Moreland et al. 2011)
Mamu-KIR3DL02	Mamu-KIR3DL03*004	KIR3DL4	FN424253	(Kruse et al. 2010)
Mamu-KIR3DL02	Mamu-KIR3DL03*005	KIR3DL-5	FN424256	(Kruse et al. 2010)
Mamu-KIR3DL04	Mamu-KIR3DL04*001:01	KIR3DL11*002-BNB	EU419040	(Moreland et al. 2011)
Mamu-KIR3DL04	Mamu-KIR3DL04*001:02	None	GU112311	(Blokhuis et al. 2010)
Mamu-KIR3DL04	Mamu-KIR3DL04*001:03	None	GU112319	(Blokhuis et al. 2010)
Mamu-KIR3DL04	Mamu-KIR3DL04*002	KIR3DL11*003-BNB	EU419042	(Moreland et al. 2011)
Mamu-KIR3DL05	Mamu-KIR3DL05*001	KIR3DL16*001-BNB	EU419045	(Moreland et al. 2011)
Mamu-KIR3DL05	Mamu-KIR3DL05*002	KIR3DL7*004-BNB	EU419061	(Moreland et al. 2011)
Mamu-KIR3DL05	Mamu-KIR3DL05*003	KIR3DL7*005-BNB	EU419062	(Moreland et al. 2011)
Mamu-KIR3DL05	Mamu-KIR3DL05*004	KIR3DL7*009-BNB	EU419066	(Moreland et al. 2011)
Mamu-KIR3DL05	Mamu-KIR3DL05*005	KIR3DL7*013-BNB	EU419069	(Moreland et al. 2011)
Mamu-KIR3DL05	Mamu-KIR3DL05*006:01	KIR3DL7-like2	EU688991	(Moreland et al. 2011)
Mamu-KIR3DL05	Mamu-KIR3DL05*006:02	None	GU112293	(Blokhuis et al. 2010)
Mamu-KIR3DL05	Mamu-KIR3DL05*007	KIR3DL-3	FN424252	(Kruse et al. 2010)
Mamu-KIR3DL05	Mamu-KIR3DL05*008	3DL7b-3DL40	GU112291, GU014295	(Blokhuis et al. 2010)
				(Colantonio et al. 2011)
Gene	Allele designation	Previous designations	Accession number	Reference
--------------	--------------------	-----------------------	------------------	--
Mamu-KIR3DL05	Mamu-KIR3DL05*009	None	GU112310	(Blokhuis et al. 2010)
Mamu-KIR3DL05	Mamu-KIR3DL05*010	KIR3DL allele 13	FJ562120	(Bostik et al. 2009)
Mamu-KIR3DL05	Mamu-KIR3DL05*011	KIR3DL allele 14	FJ562121	(Bostik et al. 2009)
Mamu-KIR3DL06	Mamu-KIR3DL06*001	KIR3DL6	AF334621	(Hershberger et al. 2001)
Mamu-KIR3DL06	Mamu-KIR3DL06*002	KIR3DL6*001-BNB	EU419056	(Moreland et al. 2011)
Mamu-KIR3DL07	Mamu-KIR3DL07*001	KIR3DL7	AF334622	(Hershberger et al. 2001)
Mamu-KIR3DL07	Mamu-KIR3DL07*002	KIR3DL18	AF361086	(Grendell et al. 2001)
Mamu-KIR3DL07	Mamu-KIR3DL07*003	KIR3DL7*001-BNB	EU419057	(Moreland et al. 2011)
Mamu-KIR3DL07	Mamu-KIR3DL07*004	KIR3DL7*003-BNB	EU419060	(Moreland et al. 2011)
Mamu-KIR3DL07	Mamu-KIR3DL07*005	KIR3DL7*006-BNB	EU419063	(Moreland et al. 2011)
Mamu-KIR3DL07	Mamu-KIR3DL07*006	KIR3DL7*007-BNB	EU419064	(Moreland et al. 2011)
Mamu-KIR3DL07	Mamu-KIR3DL07*007	KIR3DL7*008-BNB	EU419065	(Moreland et al. 2011)
Mamu-KIR3DL07	Mamu-KIR3DL07*008	KIR3DL7*012-BNB	EU419068	(Moreland et al. 2011)
Mamu-KIR3DL07	Mamu-KIR3DL07*009:01	KIR3DL7-like1, 2DL420	EU688990, GU299489	(Colantonio et al. 2011; Moreland et al. 2011)
Mamu-KIR3DL07	Mamu-KIR3DL07*009:02	None	GU112282	(Blokhuis et al. 2010)
Mamu-KIR3DL07	Mamu-KIR3DL07*010	KIR3DL7-like3	EU688992	(Moreland et al. 2011)
Mamu-KIR3DL07	Mamu-KIR3DL07*011	KIR3DL allele 10	FJ562117	(Bostik et al. 2009)
Mamu-KIR3DL07	Mamu-KIR3DL07*012	KIR3DL allele 11	FJ562118	(Bostik et al. 2009)
Mamu-KIR3DL08	Mamu-KIR3DL08*001:01	KIR3DL8	AY728189	(Sambrook et al. 2005)
Mamu-KIR3DL08	Mamu-KIR3DL08*001:02	KIR3DL8*002-BNB	EU419071	(Moreland et al. 2011)
Mamu-KIR3DL08	Mamu-KIR3DL08*002	KIR3DL17	AF361084, GU112306	(Blokhuis et al. 2010; Grendell et al. 2001)
Mamu-KIR3DL08	Mamu-KIR3DL08*003	KIR3DL17	AF361085	(Grendell et al. 2001)
Mamu-KIR3DL08	Mamu-KIR3DL08*004	KIR3DL-like_2	AY505477	(Andersen et al. 2004)
Mamu-KIR3DL08	Mamu-KIR3DL08*005	KIRDL8	AY728189	(Sambrook et al. 2005)
Mamu-KIR3DL08	Mamu-KIR3DL08*006	KIR3DL8*001-BNB	EU419070	(Moreland et al. 2011)
Mamu-KIR3DL08	Mamu-KIR3DL08*007	None	GU112268	(Blokhuis et al. 2010)
Mamu-KIR3DL08	Mamu-KIR3DL08*008	None	GU112285	(Blokhuis et al. 2010)
Mamu-KIR3DL08	Mamu-KIR3DL08*009	None	GU112290	(Blokhuis et al. 2010)
Mamu-KIR3DL08	Mamu-KIR3DL08*010	None	GU112330	(Blokhuis et al. 2010)
Mamu-KIR3DL08	Mamu-KIR3DL08*011	KIR3DL allele 8	FJ562115	(Bostik et al. 2009)
Mamu-KIR3DL10	Mamu-KIR3DL10*001	KIR3DL10	AY728183	(Sambrook et al. 2005)
Mamu-KIR3DL10	Mamu-KIR3DL10*002:01	KIR3DL9, KIR3DL allele 5	AF334624, GU112259, FJ562112	(Hershberger et al. 2001; Blokhuis et al. 2010; Bostik et al. 2009)
Mamu-KIR3DL10	Mamu-KIR3DL10*002:02	3DL3NK	GU299486	(Colantonio et al. 2011)
Mamu-KIR3DL10	Mamu-KIR3DL10*003	KIR3DL10*001-BNB	EU419038	(Moreland et al. 2011)
Mamu-KIR3DL10	Mamu-KIR3DL10*004	KIR3DL10*002-BNB	EU419039	(Moreland et al. 2011)
Mamu-KIR3DL10	Mamu-KIR3DL10*005:01	3DL10-2DL501	GU014294	(Colantonio et al. 2011)
Mamu-KIR3DL10	Mamu-KIR3DL10*005:02	None	GU112295	(Blokhuis et al. 2010)
Mamu-KIR3DL10	Mamu-KIR3DL10*006	KIR3DL allele 6	FJ562113	(Bostik et al. 2009)
Mamu-KIR3DL11	Mamu-KIR3DL11*001	KIR3DL11	AF334626, GU112271	(Blokhuis et al. 2010; Hershberger et al. 2001)
Mamu-KIR3DL11	Mamu-KIR3DL11*002	KIR3DL-1	FN424250	(Krus et al. 2010)
Mamu-KIR3DL11	Mamu-KIR3DL11*003	KIR3DL-6	FN424259	(Krus et al. 2010)
Mamu-KIR3DL11	Mamu-KIR3DL11*004	KIR3DL-7	FN424261	(Krus et al. 2010)
Mamu-KIR3DL11	Mamu-KIR3DL11*005	None	GU112276	(Blokhuis et al. 2010)
Mamu-KIR3DL11	Mamu-KIR3DL11*006	None	GU112296	(Blokhuis et al. 2010)
Mamu-KIR3DL11	Mamu-KIR3DL11*007	KIR3DL allele 9	FJ562116	(Bostik et al. 2009)
Gene	Allele designation	Previous designations	Accession number	Reference
---------------	--------------------	-----------------------------	------------------------	--
Mamu-KIR3DL20	Mamu-KIR3DL20*001	KIR3DL20*001-BNB	EU419047	(Moreland et al. 2011)
Mamu-KIR3DL20	Mamu-KIR3DL20*002	KIR3DL20		(Blokhuys et al. 2010; Sambrook et al. 2005)
Mamu-KIR3DL20	Mamu-KIR3DL20*003	KIR3DL20_variant_2		(Sambrook et al. 2005)
Mamu-KIR3DL20	Mamu-KIR3DL20*004	KIR3DL20*003-BNB	EU419048	(Moreland et al. 2011)
Mamu-KIR3DL20	Mamu-KIR3DL20*005	None	EU419049	(Moreland et al. 2011)
Mamu-KIR3DL20	Mamu-KIR3DL20*006	None	GU112255	(Blokhuys et al. 2010)
Mamu-KIR3DL20	Mamu-KIR3DL20*007	None	GU112256	(Blokhuys et al. 2010)
Mamu-KIR3DL20	Mamu-KIR3DL20*008	None	GU112264	(Blokhuys et al. 2010)
Mamu-KIR3DL20	Mamu-KIR3DL20*009	None	GU112270	(Blokhuys et al. 2010)
Mamu-KIR3DL20	Mamu-KIR3DL20*010	None	GU112275	(Blokhuys et al. 2010)
Mamu-KIR3DL20	Mamu-KIR3DL20*011	None	GU112289	(Blokhuys et al. 2010)
Mamu-KIR3DL20	Mamu-KIR3DL20*012	None	GU112299	(Blokhuys et al. 2010)
Mamu-KIR3DL20	Mamu-KIR3DL20*013	None	GU112304, GU112317	(Blokhuys et al. 2010)
Mamu-KIR3DL20	Mamu-KIR3DL20*014	None	GU112308	(Blokhuys et al. 2010)
Mamu-KIR3DL20	Mamu-KIR3DL20*015	None	GU134802	(Blokhuys et al. 2010)
Mamu-KIR3DS01	Mamu-KIR3DS01*001:01	KIR3DH5	AF361087	(Grendell et al. 2001)
Mamu-KIR3DS01	Mamu-KIR3DS01*001:02	None	GU112307	(Blokhuys et al. 2010)
Mamu-KIR3DS01	Mamu-KIR3DS01*002	KIR3DH1		(Sambrook et al. 2005)
Mamu-KIR3DS01	Mamu-KIR3DS01*003	KIR3DH7	GU564161	(Chaichompo et al. 2010)
Mamu-KIR3DS02	Mamu-KIR3DS02*001	KIR3DH2	AF334649	(Hersberger et al. 2001)
Mamu-KIR3DS02	Mamu-KIR3DS02*002	KIR3DH-like_5	AY505483	(Andersen et al. 2004)
Mamu-KIR3DS02	Mamu-KIR3DS02*003	KIR3DH-like_6	AY505484	(Andersen et al. 2004)
Mamu-KIR3DS02	Mamu-KIR3DS02*004:01	KIR3DH2*001-BNB, KIR3DH14	EU419026, EU702460	(Blokhuys et al. 2009a; Moreland et al. 2011)
Mamu-KIR3DS02	Mamu-KIR3DS02*004:02	KIR3DH13, 3DH42	EU702459, GU014296	(Blokhuys et al. 2009a)
Mamu-KIR3DS02	Mamu-KIR3DS02*004:03	KIR3DH12	EU702458	(Blokhuys et al. 2009a)
Mamu-KIR3DS02	Mamu-KIR3DS02*005	KIR3DH2*002-BNB	EU419027	(Moreland et al. 2011)
Mamu-KIR3DS02	Mamu-KIR3DS02*006	KIR3DH16	EU702462	(Blokhuys et al. 2009a)
Mamu-KIR3DS02	Mamu-KIR3DS02*007	KIR3DH15	EU702461	(Blokhuys et al. 2009a)
Mamu-KIR3DS02	Mamu-KIR3DS02*008	KIR3DH10	EU702456, GU112278	(Blokhuys et al. 2009a; Blokhuis et al. 2010)
Mamu-KIR3DS02	Mamu-KIR3DS02*009	None	GU112261, GU112315	(Blokhuys et al. 2010)
Mamu-KIR3DS02	Mamu-KIR3DS02*010	None	GU112297	(Blokhuys et al. 2010)
Mamu-KIR3DS02	Mamu-KIR3DS02*011	None	GU112323	(Blokhuys et al. 2010)
Mamu-KIR3DS02	Mamu-KIR3DS02*012	3DH2*NEW1	JN613291	(Hellmann et al. 2011)
Mamu-KIR3DS02	Mamu-KIR3DS02*013	3DH2*NEW1	JN613299	(Hellmann et al. 2011)
Mamu-KIR3DS03	Mamu-KIR3DS03*001:01	KIR3DH3	AF334650, GU112312	(Hersberger et al. 2001)
Mamu-KIR3DS03	Mamu-KIR3DS03*001:02	None	GU112294	(Blokhuys et al. 2010)
Mamu-KIR3DS03	Mamu-KIR3DS03*002	KIR3DH9	EU702455, GU112269	(Blokhuys et al. 2009a; Blokhuis et al. 2010)
Mamu-KIR3DS03	Mamu-KIR3DS03*003	KIR3DH8	EU702454	(Blokhuys et al. 2009a)
Mamu-KIR3DS04	Mamu-KIR3DS04*001	KIR3DH4	AY505483	(Hersberger et al. 2001)
Mamu-KIR3DS04	Mamu-KIR3DS04*002	KIR3DH4*001-BNB	EU419028	(Moreland et al. 2011)
Mamu-KIR3DS04	Mamu-KIR3DS04*003	KIR3DH4*002-BNB, KIR3DH4	EU419029, JN613296	(Hellmann et al. 2011; Moreland et al. 2011)
Mamu-KIR3DS04	Mamu-KIR3DS04*004	KIR3DH6	EU702452	(Blokhuys et al. 2009a)
Mamu-KIR3DS04	Mamu-KIR3DS04*005	KIR3DH4	JN613300	(Hellmann et al. 2011)
the sequence originally named *Mamu-KIR3DL5* (Hershberger et al. 2001) is a recombinant of *Mamu-KIR3DL01* and *Mamu-KIR3DL07*. As such, it has been renamed as an allele of *Mamu-KIR3DL01, Mamu-KIR3DL01* *005*. This principal has also been applied to recombinant alleles in other species.

Along with the lineage II KIR genes, rhesus macaques have KIR genes for lineage I, III, and V KIR. The lineage I KIR gene in rhesus macaques is orthologous to other primate lineage I KIR, referred to as 2DL4 and has been named *Mamu-KIR2DL04*. A single lineage III KIR is also present on some *Mamu-KIR* haplotypes and in all cases appears to be expressed as a one Ig domain KIR. It has been named *Mamu-KIR1D*. Finally, there is a lineage V KIR gene that is expressed as either a two Ig or three Ig domain KIR. The published genomic sequence shows the gene to contain three Ig domain encoding exons; however, due to splicing

Table 4 (continued)

Gene	Allele designation	Previous designations	Accession number	Reference
Mamu-KIR3DS04	Mamu-KIR3DS04*006	KIR3DH-1	GU564157	(Chaichompoo et al. 2010)
Mamu-KIR3DS05	Mamu-KIR3DS05*001	KIR3DH1*001-BNB	EU419024, EU419025, EU702468, AY505487, GU112262	(Moreland et al. 2011)
Mamu-KIR3DS05	Mamu-KIR3DS05*002:01	KIR3DH1*002-BN, KIR3DM1, KIR_Partial_Sequence_1	EU419025, EU702468, AY505487, GU112262	(Andersen et al. 2004; Blokhuis et al. 2009a; Blokhuis et al. 2010; Moreland et al. 2011)
Mamu-KIR3DS06	Mamu-KIR3DS06*002:02	KIR3DM6	EU702473	(Blokhuis et al. 2009a)
Mamu-KIR3DS06	Mamu-KIR3DS06*003	KIR3DM-1	FN424260	(Kruse et al. 2010)
Mamu-KIR3DS06	Mamu-KIR3DS06*001	KIR3DH-like_7	AY505485	(Andersen et al. 2004)
Mamu-KIR3DS06	Mamu-KIR3DS06*002:02	KIR3DH-like8	EU688985	(Moreland et al. 2011)
Mamu-KIR3DS06	Mamu-KIR3DS06*003	None	GU112298	(Blokhuis et al. 2010)
Mamu-KIR3DS06	Mamu-KIR3DS06*004	KIR3DH18	EU702464	(Blokhuis et al. 2009a)
Mamu-KIR3DS06	Mamu-KIR3DS06*005	None	GU112260	(Blokhuis et al. 2010)
Mamu-KIR3DS06	Mamu-KIR3DS06*006	None	GU112314	(Blokhuis et al. 2010)
Mamu-KIR3DSW07	Mamu-KIR3DSW07*001	KIR3DH7	EU702453, GU112272	(Blokhuis et al. 2009a; Blokhuis et al. 2010)
Mamu-KIR3DSW07	Mamu-KIR3DSW07*002	KIR3DH5	FN424258	(Kruse et al. 2010)
Mamu-KIR3DSW08	Mamu-KIR3DSW08*001	KIR3DH-like_1	AY505479	(Andersen et al. 2004)
Mamu-KIR3DSW08	Mamu-KIR3DSW08*002	KIR3DH-like_2	AY505480	(Andersen et al. 2004)
Mamu-KIR3DSW08	Mamu-KIR3DSW08*003	KIR3DH-like_3	AY505481	(Andersen et al. 2004)
Mamu-KIR3DSW08	Mamu-KIR3DSW08*004	KIR3DH-like_4	AY505482	(Andersen et al. 2004)
Mamu-KIR3DSW08	Mamu-KIR3DSW08*005	KIR3DH12	EU702467	(Blokhuis et al. 2009a)
Mamu-KIR3DSW08	Mamu-KIR3DSW08*006	KIR3DH2	FN424254	(Kruse et al. 2010)
Mamu-KIR3DSW08	Mamu-KIR3DSW08*007	KIR3DH3	FN424255	(Kruse et al. 2010)
Mamu-KIR3DSW08	Mamu-KIR3DSW08*008	None	GU112325	(Blokhuis et al. 2010)
Mamu-KIR3DSW08	Mamu-KIR3DSW08*009	None	GU112328	(Blokhuis et al. 2010)
Mamu-KIR3DSW08	Mamu-KIR3DSW08*010	KIR3DSW08	JN613297	(Hellmann et al. 2011)
Mamu-KIR3DSW08	Mamu-KIR3DSW08*011	KIR3DH4	GU564158	(Chaichompoo et al. 2010)
Mamu-KIR3DSW08	Mamu-KIR3DSW08*012	KIR3DH5	GU564159	(Chaichompoo et al. 2010)
Mamu-KIR3DSW09	Mamu-KIR3DSW09*001	KIR3DH5*001-BNB	EU419030	(Moreland et al. 2011)
Mamu-KIR3DSW09	Mamu-KIR3DSW09*002	KIR3DH5-like1	EU688986	(Moreland et al. 2011)
Mamu-KIR3DSW09	Mamu-KIR3DSW09*003	None	GU112301	(Blokhuis et al. 2010)
Mamu-KIR3DSW09	Mamu-KIR3DSW09*004	KIR3DH20	EU702466, GU112273	(Blokhuis et al. 2009a), (Blokhuis et al. 2010)
Mamu-KIR3DSW09	Mamu-KIR3DSW09*005	mmKIR3DH-1	FN424249	(Krete et al. 2010)
Mamu-KIR3DSW09	Mamu-KIR3DSW09*006	KIR3DH-8	GU564162	(Chaichompoo et al. 2010)
Mamu-KIR3DLX1	Mamu-KIR3DLX1*001	KIR3DL0	DQ157756	(Sambrook et al. 2006)
out of exon 4, also two Ig domain KIR variants are expressed. The majority of the rhesus macaque gene sequence appears orthologous to hominoid KIR3DL3 sequences, the exception being exon 3 [encoding the D0 domain] which appears more like the hominoid KIR2DL5 sequences. This sequence relationship coupled with the presence of splice variants that lacked exon 4 led to the naming of some of these sequences as Mamu-KIR2DL5. The presence of the intact gene as evidenced by the published genomic sequence, as well as the existence of full-length [three Ig domain containing] sequences has led us to propose naming this gene as Mamu-KIR3DL20. This distinguishes this gene from the remaining Mamu-KIR3DL as well as retaining the name of one of the first mRNA sequences that

Table 5 Allele designations and their previous names
Gene
--
Patr-KIR2DL4
Patr-KIR2DL4
Patr-KIR2DL4
Patr-KIR2DL5
Patr-KIR2DL5
Patr-KIR2DL5
Patr-KIR2DL5
Patr-KIR2DL5
Patr-KIR2DL6
Patr-KIR2DL6
Patr-KIR2DL6
Patr-KIR2DL7
Patr-KIR2DL8
Patr-KIR2DL8
Patr-KIR2DL8
Patr-KIR2DL9
Patr-KIR2DL9
Patr-KIR2DS4
Patr-KIR2DS4
Patr-KIR3DL1
Patr-KIR3DL1
Patr-KIR3DL1
Patr-KIR3DL1
Patr-KIR3DL1
Patr-KIR3DL1
Patr-KIR3DL3
Patr-KIR3DL3
Patr-KIR3DL3
Patr-KIR3DL3
Patr-KIR3DL4
Patr-KIR3DL4
Patr-KIR3DL4
Patr-KIR3DL5
Patr-KIR3DL5
Patr-KIR3DL5
Patr-KIR3DS2
Patr-KIR3DS2
Patr-KIR3DS6
variants, now known to occupy this position, were named Patr.

These analyses have defined 13 different KIR genes. In addition, the analysis of chimpanzee KIR haplotypes, the framework gene at the telomeric end is a lineage II KIR gene. Formerly, two variants, now known to occupy this position, were named Pr-KIR3DL1/2 and Pr-KIR3DL3. The name Pr-KIR3DL1/2 was given to reflect its close relationship to both human KIR3DL1 and KIR3DL2. Although segregation analysis showed that Pr-KIR3DL3 and KIR3DL1/2 were never present on the same haplotype, Pr-KIR3DL3 was given a different name because it has a distinctive sequence. We are renaming the Pr-KIRDL1/2 and Pr-KIR3DL3 as allelic variants of Patr-KIR3DL1, the new name for the framework gene at the telomeric end of the chimpanzee KIR locus. This will allow the Patr-KIR3DL3 name to be given to the gene previously known as Patr-KIRC1, and which is orthologous to human KIR3DL3, the framework gene at the centromeric end of the KIR locus. See Table 2 for further details. A full list of Patr-KIR sequences is described in Table 4.

The identification of sequences in other Macaque species will follow the same rules, and use the species prefix (Mama-KIR), and that genes would be named to match the closest rhesus gene.

Naming chimpanzee KIR genes

Three studies (Abi-Rached et al. 2010; Khakoo et al. 2000; Sambrook et al. 2005) have described complete sequences of three chimpanzee haplotypes. In addition, the analysis of chimpanzee KIR genotypes has inferred the organization of genes infers the existence of another 17 chimpanzee KIR haplotypes. These analyses have defined 13 different Patr-KIR genes.

In all chimpanzee KIR haplotypes, the framework gene at the telomeric end is a lineage II KIR gene. Formerly, two variants, now known to occupy this position, were named Pr-KIR3DL1/2 and Pr-KIR3DL3. The name Pr-KIR3DL1/2 was given to reflect its close relationship to both human KIR3DL1 and KIR3DL2. Although segregation analysis showed that Pt-KIR3DL3 and KIR3DL1/2 were never present on the same haplotype, Pt-KIR3DL3 was given a different name because it has a distinctive sequence. We are renaming the Pr-KIRDL1/2 and Pr-KIR3DL3 as allelic variants of Patr-KIR3DL1, the new name for the framework gene at the telomeric end of the chimpanzee KIR locus. This will allow the Patr-KIR3DL3 name to be given to the gene previously known as Patr-KIRC1, and which is orthologous to human KIR3DL3, the framework gene at the centromeric end of the KIR locus. See Table 2 for further details. A full list of Patr-KIR sequences is described in Table 4.

Naming orangutan KIR genes

In the initial description of orangutan KIR cDNA (Guethlein et al. 2002), the sequences were given letter designations because their relationships, either alleles or genes, were uncertain. Subsequent studies (Guethlein et al. 2007a; Guethlein et al. 2017; Locke et al. 2011; Mager et al. 2001) have provided complete sequences of three orangutan KIR haplotypes, as well as genotyping data that has allowed the structures of two additional KIR haplotypes to be inferred. These genomic...
The orangutan (Pongo pygmaeus) is now divided into two series corresponding to the two species of orangutan: Popy for P. pygmaeus and Poab for P. abelii, depending on species of origin. Some KIR alleles are present in both orangutan species. These alleles shared have been given a different name in each species (Guethlein et al. 2017; Guethlein et al. 2015), see Table 3: for further details. A full list of *Popy-KIR* and *Poab-KIR* sequences is given in Table 6.

Naming cattle KIR genes

Assembly of the first cattle *KIR* haplotype allowed previously known cDNA sequences to be assigned to particular genes and allelic relationships to be defined (Dobromylskyj and Ellis 2007; Guethlein et al. 2007a; Hammond et al. 2016; Mager et al. 2001; Sanderson et al. 2014). This presents the opportunity to adopt an accurate and logical nomenclature system. Cattle *KIR* cDNA sequences were previously named using the established convention of Ig domain number and tail length. However, these alleles were annotated prior to the discovery of a second deeply divergent *KIR* lineage, the *KIR3D* lineage (Guethlein et al. 2007a). The majority of the expanded cattle *KIR* belong to this second lineage. In developing a nomenclature system for the cattle *KIR*, we have incorporate their lineage ancestry within the name. Cattle *KIR* have been prefixed with a four-letter species designation “Bota” (*Bos taurus*) in line with non-human primates. Where possible previously named *Bota-KIR* has retained the same name with only the addition of an “X” after the domain number if from the *KIR3DX* lineage. There are three exceptions; *Bota-KIR3DL1P* and *Bota-KIR3DL3*, which are allelic,
and Bota-KIR3DL2. These previously described cDNA sequences are all members of the KIR3DX lineage. Based on their position in the cattle haplotype and their relationships to other genes, Bota-KIR3DL1P was renamed Bota-KIR3DXL6*001N, Bota-KIR3DL3 was renamed Bota-KIR3DXL6*002, and Bota-KIR3DL2 was renamed Bota-KIR3DXL4. We have identified 16 cattle KIR genes. The proposed nomenclature for cattle KIR is given in Table 7.

Future guidelines

The sequences described in this report will be included in the Immuno Polymorphism Database (IPD) (Robinson et al. 2013). They will be maintained as a component of the IPD and be accessible at https://www.ebi.ac.uk/ipd/nhkir/. New sequences for any of the above species can be submitted using the current submission tool. As with the other databases, there are requirements that should be met before formal names can be given and the submitted KIR are included in the database. First, submission of full-length sequences is encouraged and for some species like rhesus macaque is already mandatory. Second, novel sequences must be confirmed, either through their replication in multiple individuals or at a minimum by coming from multiple independent PCR/cloning experiments. Full guidelines for submission of non-human KIR sequences to IPD can be found at https://www.ebi.ac.uk/ipd/nhkir/submission/help.

As KIR sequence data from other species reaches the level of the species included in this report, those species can be included in the database. The inclusion of a species will be at the discretion of the Nomenclature Committee and IPD and will be based on the number of sequences available as well as evidence of identified genes and haplotype structure.

Funding

JAH and NDS were supported by the United Kingdom Biotechnology and Biological Sciences Research Council (BBSRC) through projects BBS/E/I/100001410 and BBS/E/I/100001710.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abi-Rached L, Moesta AK, Rajalingam R, Guethlein LA, Parham P (2010) Human-specific evolution and adaptation led to major qualitative differences in the variable receptors of human and chimpanzee natural killer cells. PLoS Genet 6:e1001192

Andersen H, Rossio JL, Coalter V, Poore B, Martin MP, Carrington M, Lifson JD (2004) Characterization of rhesus macaque natural killer activity against a rhesus-derived target cell line at the single-cell level. Cell Immunol 231:85–95

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2017) GenBank. Nucleic Acids Res 45: D37–D42

Blokhuis JH, Doxiadis GG, Bontrop RE (2009a) A splice site mutation converts an inhibitory killer cell Ig-like receptor into an activating one. Mol Immunol 46:640–648

Blokhuis JH, van der Wiel MK, Doxiadis GG, Bontrop RE (2009b) Evidence for balancing selection acting on KIR2DL4 genotypes in rhesus macaques of Indian origin. Immunogenetics 61:503–512

Blokhuis JH, van der Wiel MK, Doxiadis GG, Bontrop RE (2010) The mosaic of KIR haplotypes in rhesus macaques. Immunogenetics 62: 295–306

Bostik P, Kobkitjaroen J, Tang W, Villinger F, Pereira LE, Little DM, Stephenson ST, Bouzyk M, Ansari AA (2009) Decreased NK cell frequency and function is associated with increased risk of KIR3DL allele polymorphism in simian immunodeficiency virus-infected rhesus macaques with high viral loads. J Immunol 182:3638–3649

Chaichompoo P, Bostik P, Stephenson S, Udompunturuk S, Kobkitjaroen J, Pattanapanyasat K, Ansari AA (2010) Multiple KIR gene polymorphisms are associated with plasma viral loads in SIV-infected rhesus macaques. Cell Immunol 263:176–187

Chojnacki S, Cowley A, Lee J, Foix A, Lopez R (2017) Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res 45:W550–W553

Colantonio AD, Bimber BN, Neidermyer WJ Jr, Reeves RK, Alter G, Altfeld M, Johnson RP, Carrington M, O’Connor DH, Evans DT (2011) KIR polymorphisms modulate peptide-dependent binding to an MHC class I ligand with a Bw6 motif. PLoS Pathog 7:e1001316

de Groot NG, Otting N, Robinson J, Blanche A, Lafont BA, Marsh SGE, O’Connor DH, Shinya T, Walter L, Watkins DL, Bontrop RE (2012) Nomenclature report on the major histocompatibility complex genes and alleles of great ape, old and new world monkey species. Immunogenetics 64:615–631

Dobromysloykij M, Ellis S (2007) Complexity in cattle KIR genes: transcription and genome analysis. Immunogenetics 59:463–472

Ellis SA, Bontrop RE, Antczak DF, Ballingall K, Davies CJ, Kaufman J, Kennedy LJ, Robinson J, Smith DM, Stear MJ, Stet RJ, Waller MJ, Walter L, Marsh SGE, Committee II-VCMN (2006) ISAG/UISC-
VIC comparative MHC nomenclature committee report, 2005. Immunogenetics 57:953–958

Grendell RL, Hughes AL, Golos TG (2001) Cloning of rhesus monkey killer-cell Ig-like receptors (KIRs) from early pregnancy decidua. Tissue Antigens 58:329–334

Guethlein LA, Abi-Rached L, Hammond JA, Parham P (2007a) The expanded cattle KIR genes are orthologous to the conserved single-copy KIR3Dx1 gene of primates. Immunogenetics 59:517–522

Guethlein LA, Flodin LR, Adams EJ, Parham P (2002) NK cell receptors of the orangutan (Pongo pygmaeus): a pivotal species for tracking the coevolution of killer cell Ig-like receptors with MHC-C. J Immunol 169:220–229

Guethlein LA, Norman PJ, Heijmans CM, de Groot NG, Hilton HG, Bazardezh F, Abi-Rached L, Bontrop RE, Parham P (2017) Two orangutan species have evolved different KIR alleles and haplotypes. J Immunol 198:3157–3169

Guethlein LA, Norman PJ, Hilton HG, Parham P (2015) Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev 267:259–282

Guethlein LA, Older Aguilar AM, Abi-Rached L, Parham P (2007b) Evolution of killer cell Ig-like receptor (KIR) genes: definition of an orangutan KIR haplotype reveals expansion of lineage III KIR associated with the emergence of MHC-C. J Immunol 179:491–504

Hammond JA, Carrington M, Khakoo SI, Rajalingam R, Shum BP, Weidenbach K, Flodin LR, Muir DG, Kruse PH, Rosner C, Walter L (2010) Characterization of rhesus macaque MHC genes in baboons. Curr Biol 20:626–630

Marsh SGE, Parham P, Dupont B, Geraghty D, Trowsdale J, Middleton D, Vilches C, Carrington M, Witt C, Guethlein L, Shilling H, Garcia C, Hsu K, Wain H (2003) Killer-cell immunoglobulin-like receptor (KIR) nomenclature report, 2002. Tissue Antigens 62:79–86

Manger DL, McQueen KL, Gee V, Freeman JD (2001) Evolution of natural killer cell receptors: coexpression of functional Ly49 and KIR genes in baboons. Curr Biol 11:626–630

Moreland AJ, Guethlein LA, Reyes RK, Broman KW, Johnson RP, Parham P, O'Connor DH, Bimber BN (2011) Characterization of killer immunoglobulin-like receptor genetics and comprehensive genotyping by pyrosequencing in rhesus macaques. BMC Genomics 12:295

Parham P (2004) Killer cell immunoglobulin-like receptor diversity: balancing signals in the natural killer cell response. Immunol Lett 92:11–13

Robinson J, Halliwell JA, McWilliam H, Lopez R, Marsh SGE (2013) IPD—The Immuno polymorphism database. Nucleic Acids Res 41: D234–D240

Sanderson ND, Norman PJ, Guethlein LA, Ellis SA, Williams C, Breed M, Short SD, Magee DA, Bazardezh F, Warraby J, Watson M, Bradley DG, MacHugh DE, Parham P, Hammond JA (2014) Definition of the cattle killer cell Ig-like receptor gene family: comparison with aurochs and human counterparts. J Immunol 193:6016–6030

Storset AK, Slettedal IO, Williams JL, Law A, Dissen E (2003) Natural killer cell receptors in cattle: a bovine killer cell immunoglobulin-like receptor multigene family contains members with divergent signaling motifs. Eur J Immunol 33:980–990

Zimin AV, Delcher AL, Florea L, Kelley DR, Sjatz MC, Puiu D, Hanrahan F, Perteau G, Van Tassell CP, Sonstegard TS, Marcails G, Roberts M, Subramanian P, Yorke JA, Salzberg SL (2009) A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol 10:R42