Characterization of *Codonopsis pilosula* subsp. *tangshen* plastome and comparative analysis of *Codonopsis* species

Jingwen Yue, **Yang Ni**, **Mei Jiang**, **Haimei Chen**, **Pinghua Chen**, **Chang Liu**

1 Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center of Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P. R. China, 2 Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China

☯ These authors contributed equally to this work.

* phcemail@126.com (PHC); cliu6688@yahoo.com (CL)

Abstract

Codonopsis pilosula subsp. *tangshen* is one of the most important medicinal herbs used in traditional Chinese medicine. Correct identification of materials from *C. pilosula* subsp. *tangshen* is critical to ensure the efficacy and safety of the associated medicines. Traditional DNA molecular markers could distinguish *Codonopsis* species well, so we need to develop super or specific molecular markers. In this study, we reported the plastome of *Codonopsis pilosula* subsp. *tangshen* (Oliv.) D.Y. Hong conducted phylogenomic and comparative analyses in the *Codonopsis* genus for the first time. The entire length of the *Codonopsis pilosula* subsp. *tangshen* plastome was 170,672 bp. There were 108 genes in the plastome, including 76 protein-coding genes, 28 transfer RNA (tRNA), and four ribosomal RNA (rRNA) genes. Comparative analysis indicated that *Codonopsis pilosula* subsp. *tangshen* had an unusual large inversion in the large single-copy (LSC) region compared with the other three *Codonopsis* species. And there were two dispersed repeat sequences at both ends of the inverted regions, which might mediate the generation of this inversion. We found five hyper-variable regions among the four *Codonopsis* species. PCR amplification and Sanger sequencing experiments demonstrated that two hypervariable regions could distinguish three medicinal *Codonopsis* species. Results obtained from this study will support taxonomic classification, discrimination, and molecular evolutionary studies of *Codonopsis* species.

1. Introduction

The Campanulaceae family contains 50 genera and approximately 1046 species, mainly found in the north and south temperate regions [1]. *Codonopsis* is a genus of perennial herbs in the family Campanulaceae. It includes 42 species primarily distributed in East, Central, and South Asia. Among them, 40 are found in China [2].
Several *Codonopsis* species had been used as traditional Chinese medicines for one thousand years. Among them, the *Codonopsis pilosula subsp. tangshen* is one of the most used [3]. For example, Chuan Dan-Shen was the dried root of *C. pilosula subsp. tangshen* is produced in the Sichuan province of China. It has been regularly used to strengthen the spleen and tonify the lung, regulate blood sugar, lower blood pressure, strengthen the body’s immune system, and so on [4, 5]. Because of its high medicinal value and low price, Chuan Dan-Shen is sometimes used as a substitute for ginseng [6]. In addition, *C. pilosula subsp. tangshen* were used as food materials in southern China and Southeast Asia, such as tea, wine, soup, plaster, porridge, etc. [5].

Another species, *C. lanceolata* was used as a traditional medicinal plant and vegetable [7].

Previous research has reported that *C. lanceolata* has immune-modulatory, antimicrobial, antioxidant, and anti-inflammatory effects [8–10]. A third species, *C. tsinlingensis* has been used to lower blood pressure and treat poor appetite for a long time [2]. Materials from these species might be substituted for each other in traditional medicines, leading to potential problems in their efficacy and safety. As a result, understanding their phylogenetic relationship and developing molecular markers for these four species is urgently needed.

The application of DNA molecular markers in studying the genetic variation in *Codonopsis* has been reported [11] and showed that *Codonopsis* species were difficult to classify and discriminate using conventional markers. Previous studies have used nuclear internal transcribed spacer (nrITS) [12], microsatellite polymorphic loci [13], simple sequence repeats (SSRs) [14], inter simple sequence repeats (ISSR), random amplified polymorphic DNA (RAPD) [15], amplified fragment length polymorphism (AFLP), sequencing-based markers (SNP) to discriminate *Codonopsis* species. In particular, Hwang et al. used the genetic information from the plastomes of *Codonopsis lanceolata* and *Platyodon grandiflorus* for molecular marker development. Three chloroplast DNA (cp-DNA) based markers were developed from ndhF and rpoA genes using the linearity test of the Quantitative Real-time PCR (qRT-PCR) assay. And these three cp-DNA markers helped distinguish specific plant species between *C. lanceolata*, *P. grandiflorus*, and *Panax ginseng* in commercial mixed-flour products [16]. These studies suggest that the *Codonopsis* genus has a rich and complex species composition, highly similar morphological characteristics, dynamic evolutionary history, and extensive rearrangements of the plastomes during diversification. Therefore, high-resolution or specific molecular markers are needed to distinguish *Codonopsis* species [17–19].

Recent studies have compared the universal, super and specific DNA barcodes [20, 21]. The universal DNA barcodes include three chloroplast regions (*matK, psbA-trnH*, and *rbcl*) and one nuclear region (ITS) [22, 23]. However, universal DNA barcodes do not work in the case of extremely closely related species or only slightly diverged “species” from a recent radiation event [24]. The super barcode includes a complete genome or parts of a genome containing enough information to discriminate between the species of interest [25]. The phylogenetic tree constructed based on complete plastomes has a higher supporting rate and discrimination power [26]. The specific barcode often uses hypervariable regions of the genome. One or a combination of several hypervariable regions can distinguish these more related species. However, super DNA barcodes are generally not recommended if commonly used universal or specific DNA barcodes can be accurately identified. It is a useful complement to current molecular identification [25]. Because a very large proportion of the plastome does not contribute much to species discrimination, the most variable regions could substitute the whole genome [20].

Among the 42 *Codonopsis* species, the complete plastomes of only three species have been published, including *Codonopsis lanceolata* (MH018574.1) [27] and *Codonopsis minima* (NC_036311.1) [28], and *Codonopsis tsinlingensis* (MN122102.1) [29]. In the current study, we
sequenced the complete plastomes of *Codonopsis pilosula* subsp. *tangshen*, to identify super or specific barcode for the discrimination of closely related medicinal *Codonopsis* species. We characterized the genomic features. Then we compared the plastomes from the four *Codonopsis* species. Lastly, we developed and validated a set of molecular markers to distinguish the four species. The results obtained from this study laid a solid foundation for future taxonomic classification and marker development studies for *Codonopsis* species. In the following text, *Codonopsis pilosula* subsp. *tangshen* and “tangshen” are interchangeable for the sake of easy reading.

2. Materials and methods

2.1 Plant material, DNA extraction, and sequencing

To obtain the complete plastome, we collected the fresh leaves of a young tangshen plant from the Huazhong Medicinal Botanical Garden (109° 76’ E, 30° 18’ N), Enshi, Hubei, China. To validate molecular markers of *Codonopsis* species, we collected fresh leaves of tangshen, *C. lanceolata*, and *C. tsinlingensis* from the Huazhong Medicinal Botanical Garden, Qichun Country, and the Qinling mountain, respectively. The detailed sample information used for sequencing and molecular marker validation is in the S1 Table in S1 File. All samples were collected with permission from the authorities.

Then we extracted the genomic DNA with the plant genomic DNA kit (Tiangen Biotech, China). The purity of total DNA was assessed by 1.0% agarose gel electrophoresis. And the concentrations were measured using a Nanodrop Spectrophotometer 2000 (Thermo Fisher Scientific Inc., Waltham, MA, USA). We used the library preparation kit (New England BioLabs, America) to construct the DNA library with 1ug DNA. For paired-end library construction, the total DNA was sheared into fragments at approximately 500 bp long. Finally, we sequenced the genomic DNA with a Hiseq 2500 platform (Illumina, San Diego, CA). The remaining sample and DNA were stored in the Institute of Medicinal Plant Development (IMPLAD, accession number: Implad201808044).

2.2 Genome assembly and annotation

After obtaining the raw data, we removed the low-quality sequences using Trimmomatic software [30] to get clean data. These low-quality sequences meet the following conditions: (1) having the adaptor sequences; (2) the sequences with more than 50% bases having quality values of Q < 19; and (3) with more than 5% bases being ”N.” With the development of next-generation sequencing technologies, generating organelle genome assemblies from whole-genome sequencing (WGS) data would be the most accurate and labor-saving method. The plastome of tangshen was de novo assembled using NOVOplasty (v4.0) [31] with the parameter "-t 15, -R 30". We validated the correctness of the assembly by mapping all raw reads to the assembly using BWA [32] with the default settings. The annotation of the plastome was conducted initially using the CPGAVAS2 [33] webserver. The annotation problems were edited by Apollo [34] manually. Then we updated the annotation results by using the "UpdateAnno" module in CPGAVAS2. The cis-splicing and trans-splicing genes of the tangshen plastome were created using CPGview-RSG (http://www.herbalgenomics.org/cpgview). The content of GC was calculated using Editseq from the DNASTAR Lasergene package (v9) [35]. Finally, we submitted the genome sequence and annotations to GenBank and obtained the accession number MW415426.

2.3 Repeat and IR regions boundary analysis

Microsatellites are repeating DNA sequences consisting of 1–6 nucleotides (tandem arrays). It is commonly found in the genomes of all prokaryotes and eukaryotes and is called motifs [36].
The microsatellite sequence was analyzed using MISA software [37]. The search parameters were "1–10 2–6 3–5 4–5 5–6–5". The numbers before and after the "." represent the unit size and minimal numbers of repeats, respectively. Then, we analyzed the tandem repeats with Tandem Repeats Finder (TRF) software [38] with the size of the repeat unit \(\geq 7 \). The parameters were "7 7 80 10 50 500 -f -d -m". 2,7,7 means weights for the match, mismatch, and indels, respectively; 80 and 10 mean detection parameters, matching probability \(P_m = 80 \) and indel probability \(P_i = 10; 50 \) means minimum alignment score; 500 represents maximum period size. Last, the dispersed repeats were analyzed using VMATCH software [39]. The search parameters for dispersed repeats were "-f -p -h 3 -l 30". The short explanation: -f: compute maximal forward repeats; -p compute maximal palindromes; -h search for repeats up to the given Hamming distance; -l: specify that repeats must have the given length.

Then we used the online tool IRSCOPE (https://irscope.shinyapps.io/irapp/) to compare the genes on the boundaries of the junction sites of the four plastomes from Codonopsis and four plastomes from closely related species. IRSCOPE is a generic local genomic visualizer tool designed to reflect the scaled genetic structure of plastome sequences over their respective four regions [40]. The size variation of angiosperm plastomes is primarily due to the expansion and contraction of the IR and SSC boundary regions. This analysis provides insight into the evolutionary differences among species in the *Codonopsis* genus.

2.4 Phylogenetic analysis of *Codonopsis* genus

The whole plastome sequences of 18 species from the *Campanulaceae* family were used for phylogenetic analysis, including *Adenophora divaricata* (NC_036221.1) [41], *Adenophora stricta* (NC_036223.1) [41], *Adenophora triphylla* (NC_040857.1) [42], *Campanula punctata* (NC_033337.1) [43], *Campanula takesimana* (KP006497.1) [44], *Campanula zangezura* (NC_057269.1) [45], *Codonopsis lanceolata* (MH018574.1) [27], *Codonopsis minima* (NC_036311.1) [28], *Codonopsis tsinlingensis* (NC_056284.1) [29], *Cyphia angustiloba* (NC_036086.1) [19], *Cyphia banksiana* (NC_036087.1) [19], *Cyphia belfastica* (NC_036088.1) [19], *Leptocodon hirsutus* (NC_049093.1) [46], * Lobelia chinensis* (NC_035370.1) [47], * Lobelia erinus* (NC_036098.1) [19], * Lobelia galpinii* (NC_036071.1) [19], *Carpodetus serratus* (NC_036084.1) [19]. *Carpodetus serratus* was selected as the outgroup. Firstly, we extracted the common genes’ protein-coding sequence (CDS) by phyloSuit [48]. Then the CDS of a total of 68 common genes (*atpA*, *atpB*, *atpE*, *atpH*, *atpL*, *ccsA*, *cemA*, *matK*, *ndhA*, *ndhC*, *ndhD*, *ndhE*, *ndhF*, *ndhG*, *ndhH*, *ndhJ*, *petA*, *petB*, *petD*, *petG*, *petL*, *petN*, *psaB*, *psaC*, *psaI*, *psaJ*, *psbA*, *psbB*, *psbC*, *psbD*, *psbE*, *psbH*, *psbI*, *psbJ*, *psbK*, *psbL*, *psbM*, *psbN*, *psbT*, *psbZ*, *rbcL*, *rpl2*, *rpl14*, *rpl16*, *rpl20*, *rpl33*, *rpl36*, *rpoA*, *rpoB*, *rpoC1*, *rpoC2*, *rps2*, *rps3*, *rps4*, *rps7*, *rps8*, *rps11*, *rps12*, *rps14*, *rps15*, *rps16*, *rps18*, *rps19*, *ycf1*, *ycf2*) were aligned with MAFFT software [49]. We used two methods to construct the phylogenetic tree: the Maximum-likelihood method and the Bayesian Inference method. The Maximum-likelihood tree was built using IQ-TREE [50] and visualized using iTOL (https://itol.embl.de/) [51]. The bootstrap analysis was performed with 1000 replicates using UBBBoot [50]. According to the scores of BIC (Bayesian Information Criterion), the best model was TVM+F+R3 for phylogenetic analysis. Bayesian inferences (BI) analysis was performed using MrBayes (v3.2.7) [52], and the best model was chosen using jModelTest (v2.1.0) [53]. The Bayesian inferences (BI) tree was visualized using iTOL.

2.5 Comparative analysis of *Codonopsis* plastome structure

We created Dot plots of the plastome sequences of tangshen and *Arabidopsis thaliana* (NC_000932.1) [54], *C. lanceolata* (MH018574.1) [27], *C. minima* (NC_036311.1) [28] and C.
tsinlingensis (NC_056284.1) [29], respectively, to identify possible structure variation using the Gepard software [55]. The Mauve [56] software was used to align the sequences to identify intermolecular recombination events of the *Codonopsis* genus, and *C. lanceolata* was selected as the reference. The default values were used for all the parameters. To reveal genomic variations, we aligned the four *Codonopsis* plastomes using the mVISTA program with ShuffleLAGAN mode [57]. Initially, we did this analysis directly with the plastomes we assembled and the other three *Codonopsis* species. We found an inversion in the large single-copy (LSC) region from the Mauve results, so we inverted this region of the tangshen plastome and used it as the reference for further analysis.

Through analyzing the Dotplot and Mauve results, we found two repeat sequences at both ends of the inversion. We first extracted the sequences, including the inversion and its flanking repeat sequences, using extractseq [58]. Then we obtained the reverse complemented sequence of one repeat sequence using revseq [58]. Finally, we aligned these two sequences using MAFFT [49]. GeneDoc [59] was used to visualize the results. To determine whether the repeat sequences are also present in the plastomes of the other three *Codonopsis* species, we used Gepard to get the approximate location of the repeat sequence and then determine its exact locations by BLASTn [60]. Then we extracted the sequences enclosed in these repeat sequences using extractseq [58] and aligned them with MAFFT.

2.6 Hypervariable region analysis

To identify the hypervariable regions among the four *Codonopsis* species, we firstly reversed the inversion region in the tangshen plastome. We wrote a custom script to extract the intergenic spacer regions (IGS) from the GenBank files of the four plastomes. We manually removed those IGS loaded across the boundary and in the inverted region and extracted the IGS sequences using extractseq. Then we aligned the extracted sequences using clustalw2 [61] with options "-type = DNA -gapopen = 10 -gapext = 2". Finally, we calculated the genetic distance of the intergenic regions using the K2p evolution model implemented in the distmat program from the EMBOSS package [58] with the parameters "-nucmethod 2". The threshold value for mapping is 5. It means to visualize the top five results in Fig 7. These five hypervariable regions can be used as molecular markers to distinguish the four *Codonopsis* species.

2.7 Identification and validation of molecular markers for species discrimination

C. minima is a species endemic to Korea [28], and we have not been able to find its cultivation in China. As a result, we could only collect samples from the other three *Codonopsis* species for molecular marker validation. We designed the primers for the five hypervariable regions using the Primer3 program (http://bioinfo.ut.ee/primer3-0.4.0/). The sequences used to design primers are shown in the S11 and S12 Figs in S1 File. PCR amplifications were performed in a final volume of 50 μL with 25 μL 2 Taq PCR Master Mix, 1 μM of each primer, 1 μL template DNA, and 22 μL ddH2O. All amplifications were carried out in a Pro-Flex PCR system (Applied Biosystems, Waltham, MA, USA) under the following conditions: denaturation at 94˚C for 2 min, followed by 35 cycles of 94˚C for 30 s, at specific annealing temperature (Tm) for 30 s, 72˚C for 60 s and 72˚C for 2 min as the final extension. PCR amplicons were visualized on 1.2% agarose gels and then subjected to Sanger sequencing on an ABI 3730XL instrument (Applied Biosystems, USA) using the same primers used for PCR amplification.
3. Results

3.1 General features of the plastome

The tangshen plastome was a circular sequence, showing a typical quadripartite structure. It was 170,672 bp long in length and consisted of an 86,108 bp large single-copy (LSC) region, a 7,654 bp small single-copy (SSC) region, and a pair of 38,455 bp long identical inverted repeats (IRs) (Fig 1). There are 108 genes in the tangshen plastome, including 76 protein-coding genes, 28 tRNA genes, and four rRNA genes (Table 1). Among these genes, there are 14 genes (trnK-UUU, trnL-CAA, trnV-UAG, atpF, petB, petD, rpl2, ycf2, rpl16, rps19, ndhB, trnL-GAU, trnA-UGC, ndhA) containing one intron, three genes (ycf3, clpP, ycf1) containing two introns (S2 Table in S1 File). There are ten cis-splicing genes (trnK-UUU, ycf3, rpoC1, atpF, trnL-CAA, petD, rpl16, rpl2, trnE-UUC, trnE-UUC) in the tangshen plastome (S1 File), including six protein-coding genes and three tRNA genes. Except that the ycf3 gene has two introns and three exons, other genes have one intron and two exons. Two trnE-UUC genes are cis-spliced. Only the rps12 gene is trans-spliced. There are two copies of the rps12 gene. Each copy has three exons (S2 Fig in S1 File).

The length of the protein-coding sequence (CDS) in the tangshen plastome is 89,442 bp, representing 52.41% of the entire length. In contrast, the size of rRNA is 9,063 bp, and tRNA is 2,769 bp, representing 5.31% and 1.62% of the total length of the tangshen plastome sequence, respectively. The GC content analysis showed that the overall GC content is 38.15%, whereas GC contents for the CDS, rRNA, and tRNA genes are 38.40%, 54.76%, and 52.87%, respectively. The GC content analysis showed that the overall GC content is 38.15%, whereas GC contents for the CDS, rRNA, and tRNA genes are 38.40%, 54.76%, and 52.87%, respectively. Moreover, a total of 50,591 codons were identified in the tangshen plastome. In total, 64 codons encode 20 amino acids and three termination codons. Among these codons, 3,205 codons encode leucine, and 656 codes encode cysteine, representing the most and least abundant coded amino acids in the plastome (S3 Table in S1 File).

The IRs are the most conserved regions of the plastome, and their boundary often undergoes contraction and expansion. As shown in Fig 2, the length of LSC, SSC, and IRs differ among the four Codonopsis plastomes. The sizes of IRs in the Codonopsis plastomes range from 37,875 to 38,455 bp. There are eleven genes (rpl22, rps19, rpl2, ndhG, ndhF, psaC, ndhE, ndhG, rpl2, trnH, psbA) at the four junctions: JLB (LSC/IRb), JSB (IRb/SSC), JSA (SSC/IRA) and JLA (IRA/LSC). The JLB junction of the four Codonopsis plastomes was located between the genes rps19 and rpl2. However, the gene rps19 in C. tsinlingensis was further away from the JLB junction compared with those of the other three Codonopsis species.

The ndhE was found in both JSA and JSB junctions. In both C. lanceolata and C. minima, 156 bp of the ndhE gene locates in the SSC, and 147 bp locates in the IRa. In both tangshen and C. tsinlingensis, 145 bp of ndhE genes were located in the SSC, and 158 bp of the genes were located in the IRa. The JLA junctions were located to the right of the rpl2 and the left of the trnH in the four Codonopsis plastomes. The trnH in C. tsinlingensis is further away from the junction.

3.2 Repeat analysis

We analyzed three kinds of repeat sequences (microsatellite repeats, tandem repeats, and dispersed repeats) in the tangshen plastome. We identified 30 microsatellite repeats (S4 Table in S1 File), including 19 mononucleotides (A/T), eight dinucleotides (AT/AT), and three trinucleotide repeats (2 AGG/CCT, and 1 AAG/CTT). Among them, 14 microsatellite repeats in the protein-coding regions (rpoC1, rpoC2, ccmA, clpP, ycf1, ndhA). There are 40 tandem repeats in the plastome plastome (S5 Table in S1 File), meeting the two conditions that the length of the repeat unit is more than 30 bp and the similarity among the repeat unit sequences is more than 90%. The
lengths of repeat units range from 30 bp to 315 bp. For the dispersed repeats, 49 were identified, containing 27 palindromic repeats and 22 direct repeats (S6 Table in S1 File). The longest and shortest dispersed repeat units are 540 bp and 148 bp, respectively.

3.3 Phylogenetic analysis

To construct the phylogenetic tree, we selected 19 plastome sequences from the genera of Adenophora, Campanula, Codonopsis, Leptocodon, and Platycodon, Cyphia, Lobelia, and Carpodetus (Fig 3). The Carpodetus serratus was selected as the outgroup taxa. The phylogenetic trees were constructed using the maximum likelihood (ML) method and Bayesian Inference (BI) method. The results of both methods had the same topological structure. The 15 species were divided into two main clades. In particular, the Cyphia and Lobelia species formed one clade, and the other 12 species formed another clade. Then Adenophora and Campanula species formed a clade, four
Interestingly, the plastome of *Codonopsis tsinlingensis* was compared with those of *Codonopsis*, *Platycodon*, and *Leptocodon* species. The Dotplot results showed a high degree of collinearity between the *Codonopsis* and *A. thaliana* plastomes (S3–S7 Figs in S1 File). Mauve alignment of plastomes indicated that the plastome of *Codonopsis* species has an unusual large inversion in the LSC region than the other three *Codonopsis* plastomes (Fig 4). Then we compared the genes in the inversion region of the four *Codonopsis* species. We found the genes from *atpH* to *rps2* are inverted in the plastome of *Codonopsis*. The exact positions of this inversion are from 37,849 to 75,896.

Compared with the dispersed repeats shown in S7 Table in S1 File, we found one pair of dispersed repeat sequences flanking the inversion with a length of 164 bp. The alignment of these two repeat sequences is shown in Fig 5A. These two repeat sequences are reverse complementary, forming a palindromic repeat. The repeat unit on the 5’ end is from 37,685 to 37,848.

3.4 Structure variation of tangshen plastome

The tangshen plastome was compared with those of *A. thaliana*, *C. lanceolata*, *C. minima*, and *C. tsinlingensis* for structural variations. The Dotplot results showed a high degree of collinearity between the *Codonopsis* and *A. thaliana* plastomes (S3–S7 Figs in S1 File). Mauve alignment of plastomes indicated that the plastome plastome has an unusually large inversion in the LSC region than the other three *Codonopsis* plastomes (Fig 4). Then we compared the plastome of the inversion region of the four *Codonopsis* species. We found the genes from *atpH* to *rps2* are inverted in the plastome plastome. The exact positions of this inversion are from 37,849 to 75,896.

Compared with the dispersed repeats shown in S7 Table in S1 File, we found one pair of dispersed repeat sequences flanking the inversion with a length of 164 bp. The alignment of these two repeat sequences is shown in Fig 5A. These two repeat sequences are reverse complementary, forming a palindromic repeat. The repeat unit on the 5’ end is from 37,685 to 37,848.
And the repeat unit on the 3' end is from 75,897 to 76,060. We further checked whether this repeat sequence was also present in the other three *Codonopsis* species. We found this repeat sequence also exists in the *C. lanceolata* plastome, but the length of 132 bp is shorter (Fig 5B). We did not find any repeat sequences in the plastomes of *C. minima* and *C. tsinlingensis* at similar positions. The repeat sequence in the tangshen plastome is likely to be involved in the genesis of the large inversion. However, the repeat sequence did not generate any inversion in the *C. lanceolata* plastome.

We manually inverted the inversion to compare the sequences and used the inverted tangshen plastome as the reference. (Fig 6). The IRs of the four plastomes showed relatively lower sequence similarity than the LSC and SSC regions. Among the four different functional regions: exon, intron, gene, and conserved non-coding sequences (CNS), the CNS regions showed the highest variations. The exon regions of the four plastomes generally exhibited relatively higher conservation than the CNS and intron regions. Still, the two copies of the *ycf1* gene showed a higher degree of variations among the four plastomes. In the IRs regions, the *rrn23* gene with two copies exhibited the highest similarity among the four plastomes. Overall, the tangshen sequences exhibited relatively higher levels of sequence divergence among the *Codonopsis* species.

3.5 Analysis of hypervariable regions

Five hypervariable regions having the highest variations were shown in Fig 7. The five regions: *rpl36-rps8*, *rpl14-rpl16*, *trnL-UAG-ccsA*, *rps16-trnT-UGU*, and *clpP-rpoA* had the K2p values 29.74, 13.75, 8.83, 5.87, and 5.49, respectively. And these five hypervariable regions can be used as the potential molecular markers to distinguish these four *Codonopsis* species.
3.6 Development of molecular markers from the plastomes

To discriminate the available three *Codonopsis* species, we named the DNA marker from the five hypervariable regions *rpl*36-*rps*8, *rpl*14-*rpl*16, *trn*L-*UAG*-ccsA, *rps*16-*trn*T-*UGU*, and...
The PCR primers used to amplify these five markers are shown in the S7 Table in S1 File. The Com2 and Com5 failed for PCR amplification. The Com3 sequences amplified from the three species had only one SNP and could not distinguish the three species. The three markers will not be discussed any further.

The product sizes of PCR amplification of Com1, Com3, and Com4 markers from the three Codonopsis species were similar to expected (S8 Fig in S1 File). The DNA fragments were extracted from each band and then subjected to Sanger sequencing. The sequencing results for the PCR products of Com1 and Com4 were identical to the expected sequences (S9 and S10 Figs in S1 File). The marker Com1, derived from the rpl36-rps8 region, has seven specific SNP loci. The first SNP loci shown in red squares can be used to differentiate two of the three Codonopsis species, except C. lanceolata. The second SNP loci, which are shown in red squares, can be used to differentiate tangshen and C. tsinlingensis (Fig 8A, S9 Fig in S1 File). The marker Com4 is derived from the rps16-trnT-UGU IGS region. It has five SNP loci and two Indel loci. Combined with the SNP and Indel loci shown in red squares can be used to distinguish the three Codonopsis species (Fig 8B, S10 Fig in S1 File). We also have tested the new primers on all four available
Codonopsis plastomes obtained from NCBI and this study. These markers can discriminate all four species based on the SNP and Indel loci from Com1 and Com4 (S11 and S12 Figs in S1 File).

4. Discussion

In this study, we first reported the complete plastome of *Codonopsis pilosula* subsp. *tangshen* and then made a systematic comparative analysis of the *Codonopsis* plastomes. Notably, we have (1) sequenced and assembled the tangshen plastome; (2) compared the four *Codonopsis* plastomes and found an unusually large inversion having two repeat sequences at both ends of the inversion in the tangshen plastome; (3) identified the top five hypervariable regions for the development of potential molecular markers and validated two of them successfully; (4) carried out the phylogenetic analysis of *Codonopsis* and its relative genus.
The *Codonopsis pilosula* subsp. *tangshen* plastome and comparative analysis of *Codonopsis* species
Accurate identification of herbal medicines helps ensure the safe and effective use of herbal medicines. DNA-based markers are suitable for the discrimination of different medicinal plants [62]. Three kinds of DNA barcode markers are of importance: conventional, super, and specific markers. The conventional markers are universal and are applied to all medicinal plants, including ITS2, psbA-trnH, rbcL, and matK. This group of markers can be used as the first line of tools to discriminate samples.

The success of species discrimination of these universal markers is mostly for distantly related species. It generally lacks the discrimination powers for closely related species. In these

![Image]

Fig 7. The hypervariable regions between the Codonopsis genus. The horizontal direction represents the intergenic spacer regions that are highly variable among the four Codonopsis species. The vertical direction is the arbitrary K2P distance of these regions. The square in the middle of each line represents the main distance of each intergenic spacer region.

https://doi.org/10.1371/journal.pone.0271813.g007

Accurate identification of herbal medicines helps ensure the safe and effective use of herbal medicines. DNA-based markers are suitable for the discrimination of different medicinal plants [62]. Three kinds of DNA barcode markers are of importance: conventional, super, and specific markers. The conventional markers are universal and are applied to all medicinal plants, including ITS2, psbA-trnH, rbcL, and matK. This group of markers can be used as the first line of tools to discriminate samples.

The success of species discrimination of these universal markers is mostly for distantly related species. It generally lacks the discrimination powers for closely related species. In these

![Image]

Fig 8. The alignment of the sequencing chromatogram of the PCR products was amplified using the primers of Com1 and Com4. The ID of each sequence is shown on the left side of each panel. The composition of the ID in turn includes the abbreviation of the species name, plant individual id, and primer name. The figure of alignment represents the individuals 1–5 of three species. The sequencing chromatogram of the PCR products amplified takes individual 1 of three species as an example. The red squares represent the SNP and Indel regions, which can distinguish the three species. The nucleotides identical across all plastomes are shaded in black, whereas those conserved in 60% of the sequences are shaded in gray. lan: Codonopsis lanceolata; tan: Codonopsis pilosula subsp. tangshen; tsi: Codonopsis tsinlingensis. Arabic numerals represent the individual 1.

https://doi.org/10.1371/journal.pone.0271813.g008
cases, universal markers with higher-resolution or taxon-specific markers are needed. The complete plastomes have been acclaimed as a super barcode to distinguish related species, especially for taxonomically difficult taxa [26]. The super barcodes demonstrated high discriminative power and sufficient reliability in the previous study.

However, its use may be limited due to the insufficient amount of available DNA to assemble the complete genome, expensive sequencing costs to generate enough raw data to assemble the complete genome, and the complexity of data analysis. Therefore, searching for specific barcodes from hypervariable regions is important as a trade-off between universal and super DNA barcodes [21].

Several successful examples have been reported to develop taxon-specific markers [63]. In the present study, the universal makers have not been successful in discriminating the medicinal Codonopsis species. As a result, we sequence the plastome sequences and developed taxa-specific makers for the discrimination.

In addition to serving as the source of specific DNA barcodes, the plastomes can also be used to understand the phylogenetic relationship of closely related species. The phylogenetic relationship identified in this study is similar to those described previously. Classifications analyses among Codonopsis were previously reported based on four chloroplast gene regions: rbcL, matK, trnH-psbA, and the nuclear internal transcribed spacer (nrITS) [12].

Another application of the complete plastome is the identification of unusual structures that reflect the evolutionary history of the study subject. This study performed an in-depth comparative analysis of the four Codonopsis plastomes. We found a large inversion in the LSC region in the tangshen plastome. Interestingly, we found a pair of palindromic repeat sequences flanking this inversion. A similar repeat sequence was also present in the plastome of C. lanceolata, but the repeat length was 32 bp shorter. Similar repeat sequences were not found in the other two Codonopsis species’ plastomes at similar locations. And no inversions were found in the other three Codonopsis plastomes.

We proposed two models for the genesis of the inversion in tangshen plastome. The first evolutionary model is that the repeat sequence found in the four Codonopsis plastomes was acquired before the speciation of the Codonopsis genus. During the differentiation of Codonopsis species, repeat sequences were further differentiated. The tangshen repeat sequence remains active, leading to rearrangement. However, the repeat sequences experience partial or complete deletion in the other three Codonopsis species, preventing the formation of the palindromic structure and the generation of the inversion. The second model is that the repeat sequence was acquired after the Codonopsis speciation independently. From a parsimonious point of view, the second model is less likely to be true. Another interesting question is whether or not the inversion occurred a long time ago. With the availability of more plastomes, we can calculate the percentage of plastomes having and not having the inversions, which might help answer this question.

Inversions mediated by palindromic repeat are not rare in the plastome [64]. The Campanulaceae species mainly consist of perennial herbs and have the most plastome structural variants based on previous studies on enzymatic loci, gene localization, and genome sequencing [2–5]. For example, previous studies have found numerous structural changes in the Adenophora and Trachelium species [4, 6]. Therefore, studying the plastome structure is essential to understanding the phylogenetic relationships and evolutionary history among Campanulaceae species [7].

Previous studies have reported that genomic rearrangements occur due to incorrect recombination of repeat sequences and mispairing of sliding strands [65, 66]. So the repeat sequences play a crucial role in plastome rearrangement [67]. For example, the psbA-trnH intergenic region is well known to have a small inversion [68]. This region is frequently used for DNA
barcode analysis to distinguish different species [69]. It is generally thought that the palin-
dromic repeat can form a stem-loop structure. Some exonucleases will cut the single-stranded
DNA. When the DNA repair system is coming to repair the incised single-stranded DNA, it
might connect the wrong DNA strand, forming an inversion (Fig 5A).

One limitation of the current study is the small number of Codonopsis plastomes analyzed.
The plastomes of only four of 42 Codonopsis species have been reported. Consequently, the
results obtained from this study will only apply to the four Codonopsis species. Unfortunately,
we could collect samples from three of the four species. The C. minima was an endemic species
to Korea [28] and could not be found in China. Therefore, the molecular markers validated in
this study might only help discriminate between these three species. More plastomes of Codon-
opsis species are needed in the future to elucidate the taxonomic classification and evolution-
ary history of the Codonopsis species. It should be pointed out that the three species we have
analyzed have medicinal values and are most likely to be used indiscriminately.

5. Conclusions
We sequenced and analyzed the plastome of tangshen. Based on the four Codonopsis plas-
tomes, we identified and validated two molecular markers using PCR amplification and Sanger
sequencing experiments. Comparative analysis showed that the four Codonopsis plastomes
have a lower level of genetic diversity. The tangshen plastome has a unique inversion, likely to
be formed by repeat-mediated rearrangement.

Supporting information
S1 File.
(DOCX)

Acknowledgments
We would like to thank Prof. Zhao Zhang for her help identify the sample.

Author Contributions
Conceptualization: Pinghua Chen, Chang Liu.

Formal analysis: Jingwen Yue.

Methodology: Yang Ni.

Resources: Mei Jiang.

Software: Yang Ni.

Validation: Haimei Chen.

Writing – original draft: Jingwen Yue.

Writing – review & editing: Pinghua Chen, Chang Liu.

References
1. Haberle RC, Dang A, Lee T, Peñaflor C, Cortes-Burns H, Oestreich A, et al. Taxonomic and bioge-
ographic implications of a phylogenetic analysis of the Campanulaceae based on three chloroplast
genes. Taxon. 2009; 58(3):715–34.
2. He JY, Ma N, Zhu S, Komatsu K, Li ZY, Fu WM. The genus Codonopsis (Campanulaceae): a review of
phytochemistry, bioactivity and quality control. Journal of Natural Medicines. 2015; 69(1):1–21. https://
doi.org/10.1007/s11418-014-0861-9 PMID: 25099952
3. Lin L-C, Tsai T-H, Kuo C-L. Chemical constituents comparison of Codonopsis tangshen Codonopsis pilosula var. modesta and Codonopsis pilosula. Natural product research. 2013; 27(19):1812–5. https://doi.org/10.1080/14786419.2013.778849 PMID: 23506253

4. He JY, Zhu S, Komatsu K, Goda Y, Cai S-Q. Genetic polymorphism of medicinally-used Codonopsis species in an internal transcribed spacer sequence of nuclear ribosomal DNA and its application to authenticate Codonopsis Radix. Journal of natural medicines. 2014; 68(1):112–24. https://doi.org/10.1007/s11418-013-0780-1 PMID: 23765107

5. Gao S-M, Liu J-S, Wang M, Cao T-T, Qi Y-D, Zhang B-G, et al. Traditional uses, phytochemistry, pharmacology and toxicology of Codonopsis: A review. Journal of ethnomedicine. 2018; 219:50–70. https://doi.org/10.1016/j.jep.2018.02.039 PMID: 29501674

6. Tsai T-H, Lin L-C. Phenolic glycosides and pyrrolidine alkaloids from Codonopsis tangshen. Chemical and Pharmaceutical Bulletin. 2008; 56(11):1546–50. https://doi.org/10.1248/cpb.56.1546 PMID: 18981603

7. Lee K-T, Choi J, Jung W-T, Nam J-H, Jung H-J, Park H-J. Structure of a new echinocystic acid bisdesmoside isolated from Codonopsis lanceolata roots and the cytotoxic activity of prosapogenins. Journal of Agricultural and Food chemistry. 2002; 50(15):4190–3. https://doi.org/10.1021/jf011647l PMID: 12105944

8. Byeon SE, Lee YG, Cho JY. Regulatory effects of Codonopsis lanceolata on gene expression of GM-CSF in macrophage-like cells. Journal of ethnomedicine. 2009; 123(1):185–9. https://doi.org/10.1016/j.jep.2009.02.014 PMID: 19429360

9. Byeon SE, Choi WS, Hong EK, Lee J, Rhee MH, Park H-J, et al. Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses. Archives of Pharmacal Research. 2009; 32(6):813–22. https://doi.org/10.1007/s12272-009-1601-7 PMID: 19557357

10. Xu L-P, Wang H, Yuan Z. Triterpenoid saponins with anti-inflammatory activity from Codonopsis lanceolata. Planta medica. 2008; 74(11):1412–5. https://doi.org/10.1055/s-2008-1081318 PMID: 18666043

11. Yang M, Abdalrahman H, Sonia U, Mohammed A, Vestine U, Wang M, et al. The application of DNA molecular markers in the study of Codonopsis species genetic variation, a review. Cellular and Molecular Biology. 2020; 66(2):23–30. PMID: 32415950

12. Wang DY, Qiang W, Wang YL, Xiang HG, Huang LQ, Jin XH, et al. Evaluation of DNA barcodes in Codonopsis (Campanulaceae) and in some large angiosperm plant genera. Plos One. 2017; 12(2): e0170286. https://doi.org/10.1371/journal.pone.0170286 PMID: 28182623

13. Li Z-H, Wen H-Y, Chen J, Wu G-L, Wang Y-J. Development of 10 polymorphic microsatellite loci primers for Codonopsis pilosula Nannf. (Campanulaceae). Conservation genetics. 2009; 10(3):747–9.

14. Kim S, Jeong JH, Chung H, Kim JH, Gil J, Yoo J, et al. Simple sequence repeat marker development from Codonopsis lanceolata and genetic relation analysis. Journal of Plant Biotechnology. 2016; 43(2):181–8.

15. Guo HB, Lu BR, Wu QH, Chen JK, Zhou TS. Abundant genetic diversity in cultivated Codonopsis pilosula populations revealed by RAPD polymorphisms. Genetic Resources and Crop Evolution. 2007; 54(5):917–24.

16. Hwang S-G, Kim JH, Moon J-C, Kim J-H, Jang CS. Comparative analysis of chloroplast DNA sequences of Codonopsis pilosula and Platycodon grandiflorus and application in development of molecular markers. Applied Biological Chemistry. 2017; 60(1):23–31.

17. Wang Q, MA XT, HONG DY. Phyllogenetic analyses reveal three new genera of the Campanulaceae. Journal of Systematics and Evolution. 2014; 52(5):541–50.

18. Cosner ME, Raubeson LA, Jansen RK. Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC evolutionary biology. 2004; 4(1):1–17. https://doi.org/10.1186/1471-2148-4-27 PMID: 15324459

19. Knox EB. The dynamic history of plastid genomes in the Campanulaceae sensu lato is unique among angiosperms. Proceedings of the National Academy of Sciences. 2014; 111(30):11097–102. https://doi.org/10.1073/pnas.1403363111 PMID: 25024223

20. Zhang W, Sun Y, Liu J, Xu C, Zou X, Chen X, et al. DNA barcoding of Oryza: conventional, specific, and super barcodes. Plant molecular biology. 2021; 105(3):215–28. https://doi.org/10.1007/s11103-020-01054-3 PMID: 32880655

21. Chen Q, Wu X, Zhang D. Comparison of the abilities of universal, super, and specific DNA barcodes to discriminate among the original species of Fritillariae cirsosae bulbus and its adulterants. PLoS One. 2020; 15(2):e0229181. https://doi.org/10.1371/journal.pone.0229181 PMID: 32053689

22. Hollingsworth ML, Andra Clark A, Forrest LL, Richardson J, Pennington RT, Long DG, et al. Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three
23. Yu J, Wu X, Liu C, Newmaster S, Ragupathy S, Kress WJ. Progress in the use of DNA barcodes in the identification and classification of medicinal plants. Ecotaxonomy and Environmental Safety. 2021; 208:111691. https://doi.org/10.1016/j.ecosyst.2020.111691 PMID: 3396023

24. Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PLoS one. 2011; 6(5):e19254. https://doi.org/10.1371/journal.pone.0019254 PMID: 21637336

25. Wu L, Wu M, Cui N, Xiang L, Li Y, Li X, et al. Plant super-barcode: a case study on genome-based identification for closely related species of Fritillaria. Chinese medicine. 2021; 16(1):1–11.

26. Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. Plant DNA barcoding: from gene to genome. Biological Reviews. 2015; 90(1):157–66. https://doi.org/10.1111/brv.12104 PMID: 24666563

27. Lee J, Kim S-Y, Lim J-S, Sook Chun H, Kwon K, Koh Y, et al. The complete chloroplast genome of Codonopsis lanceolata (Campanulaceae). Mitochondrial DNA Part B. 2018; 3(2):1075–6. https://doi.org/10.1080/23802359.2018.1508382 PMID: 33474421

28. Cheon KS, Kim KA, Han JS, Yoo KO. The complete chloroplast genome sequence of Codonopsis minima (Campanulaceae), an endemic to Korea. Conservation Genetics Resources. 2017; 9(4):541–3.

29. Zhou H, She R, Zhao P, Zhang S. The complete chloroplast genome of Codonopsis tsinglingensis (Campanulaceae), an endemic Chinese medicine species in Qinling mountains. Mitochondrial DNA Part B. 2019; 4(2):3498–9. https://doi.org/10.1080/23802359.2019.1675543 PMID: 3366057

30. Bolger AM, Marc L, Bjoern U. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404

31. Nicpol D, Patrick M, Guillaume S. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucl Acids Research. 2017(16):4.

32. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997. 2013.

33. Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic acids research. 2019; 47(W1):W65–W73. https://doi.org/10.1093/nar/gkz345 PMID: 31066451

34. Lewis SE, Searle SMJ, Harris N, Gibson M, Clamp ME. Apollo: a sequence annotation editor. Genome Biol. 3(12), 1–14. Genome biology. 2002;3(12):RESEARCH0082. https://doi.org/10.1186/gb-2002-3-12-research0082 PMID: 12537571

35. Burland TG. DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol. 2000; 132:71–91. https://doi.org/10.1385/1-59259-192-2:71 PMID: 10547832

36. Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, et al. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. American journal of botany. 2012; 99(2):193–208. https://doi.org/10.3732/ajb.1100394 PMID: 22186186

37. Sebastian B, Thomas T, Thomas M, Uwe S, Martin M. MiSA-web: a web server for microsatellite prediction. Bioinformatics. 2017(16):2583. https://doi.org/10.1093/bioinformatics/btx198 PMID: 28398459

38. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research. 1999; 27(2):573. https://doi.org/10.1093/nar/27.2.573 PMID: 9862982

39. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic acids research. 2001; 29(22):4633–42. https://doi.org/10.1093/nar/29.22.4633 PMID: 11713313

40. Amiryousefi A, Hyvönen J, Poczai P. iRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics. 2018; 34(17):3030–1. https://doi.org/10.1093/bioinformatics/bty220 PMID: 29659705

41. Cheon K-S, Kim K-A, Yoo K-O. The complete chloroplast genome sequences of three Adenophora species and comparative analysis with Campanulaceae species (Campanulaceae). Plos one. 2017; 12(8):e0183652. https://doi.org/10.1371/journal.pone.0183652 PMID: 28829825

42. Lee J, Park HR, Kim SY, Lim J, Jhang G, Chun HS, et al. Characterization of complete chloroplast genomes of Adenophora triphylla and Codonopsis lanceolata. Journal of academic conference of Korean breeding Society. 2018; 2018:148–.

43. Yoo K-O, Cheon K-S, Kim K-A. Complete chloroplast genome sequence of Campanula punctata Lam. (Campanulaceae). Mitochondrial DNA Part B. 2016; 1(1):184–5. https://doi.org/10.1080/23802359.2016.1149791 PMID: 33644338

44. Cheon K-S, Kim K-A, Jang S-K, Yoo K-O. Complete chloroplast genome sequence of Campanula take-simana (Campanulaceae), an endemic to Korea. Mitochondrial DNA Part A. 2016; 27(3):2169–71.
45. Kim K-A, Yoo K-O, Cheon K-S. The complete chloroplast genome sequence of Campanula zangezura (Campanulaceae). Mitochondrial DNA Part B. 2020; 5(1):480–1. https://doi.org/10.1080/23802359.2019.1704658 PMID: 3366611

46. Li C-J, Wang R-N, Li D-Z. Comparative analysis of plastid genomes within the Campanulaceae and phylogenetic implications. PloS one. 2020; 15(5):e0233167. https://doi.org/10.1371/journal.pone.0233167 PMID: 3240742

47. Knox EB, Li C. The East Asian origin of the giant lobelias. American Journal of Botany. 2017; 104(6):924–38. https://doi.org/10.3732/ajb.1700025 PMID: 28645921

48. Zhang D, Gao F, Jakovljević I, Zou H, Zhang J, Li WX, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular ecology resources. 2020; 20(1):348–55. https://doi.org/10.1111/1755-0998.13096 PMID: 31599058

49. Katoh K, Kuma KI, Toh H, Miyata T. TMAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research. 2005; 33(2):511–8. https://doi.org/10.1093/nar/gki198 PMID: 15661851

50. Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution. 2015; 32(1):268–74. https://doi.org/10.1093/molbev/msu300 PMID: 25371430

51. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research. 2021; 49(W1): W293–W6. https://doi.org/10.1093/nar/gkab301 PMID: 33885785

52. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology. 2012; 61(3):539–42. https://doi.org/10.1093/sysbio/sys029 PMID: 22357727

53. Darling AE, Mau B, Perna NT. progressivEMauve: multiple genome alignment with gene gain, loss and rearrangement. PloS one. 2010; 5(6):e11147. https://doi.org/10.1371/journal.pone.0011147 PMID: 20593022

54. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: computational tools for comparative genomics. Nucleic acids research. 2004; 32(suppl_2):W273–W9. https://doi.org/10.1093/nar/gkh458 PMID: 15215394

55. Nicholas KB. GeneDoc: analysis and visualization of genetic variation. Embnew news. 1997; 4: 14.

56. Yip PY, Chau CF, Mak CY, Kwan HS. DNA methods for identification of Chinese medicinal materials. Chinese Medicine. 2007; 23(8):1026–8. https://doi.org/10.1038/s41598-020-06083-y PMID: 32127603

57. Timme RE, Kuehl JV, Boore JL, Jansen RK. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. American Journal of Botany. 2007; 94(3). https://doi.org/10.3732/ajb.94.3.302 PMID: 21636403
66. Gao, Yang, YX, YJ, Wang. Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC EVOL BIOL. 2009; 2009,9 AR 130(1):-. https://doi.org/10.1186/1471-2148-9-130 PMID: 19519899

67. Nie X, Lv S, Zhang Y, Du X, Wang L, Biradar SS, et al. Complete Chloroplast Genome Sequence of a Major Invasive Species, Crofton Weed (Ageratina adenophora). Plos One. 2012; 7(5):e36869. https://doi.org/10.1371/journal.pone.0036869 PMID: 22606302

68. Whitlock B, Hale AM, Groff PA. Intraspecific Inversions Pose a Challenge for the trnH-psbA Plant DNA Barcode. Plos One. 2010; 5(7):e11533. https://doi.org/10.1371/journal.pone.0011533 PMID: 20644717

69. Kress WJ, Erickson DL, Shiu SH. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. Plos One. 2007; 2(6):e508. https://doi.org/10.1371/journal.pone.0000508 PMID: 17551588
