Monitoring the stability of the results of studies of chilled river fish for cadmium content using the method of additions

E I Cherkasova¹, M B Rebezov²,³,⁴, M A Shariati⁴, M M Kharybina⁴ and Z V Muradova⁴

¹Russian Timiryazev State Agrarian University, 49 Timiryazevskaya st., Moscow, 127550, Russian Federation
²V M Gorbakov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow, 109316, Russian Federation
³Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow, 119991, Russian Federation
⁴K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation

E-mail: cherkasova65@mail.ru

Abstract. The results obtained indicate that in the range of less than 0.01 mg of cadmium per 1 kg of river fish prevails (43.3%) over other ranges. The least registered sample results (4.3%) with the range of obtained data - 0.1-1.0 mg/kg. The relevance of the problem under consideration is due to the need to encompass a broad spectrum in the determination of cadmium in river fish in hardware. The primary and important task remains to ensure control of the quantitative content of cadmium, the introduction and application of fast and reliable methods of their research. The analysis of the data obtained shows that all the results on the study of chilled river fish for the content of cadmium, obtained by the methods of stripping voltammetry and atomic absorption spectrometry, to assess the precision and operational control of the error using the method of additions are satisfactory. The implementation of the methods of stripping voltammetry and atomic absorption spectrometry achieves the best precision of research results in the testing laboratory, both under repeatability conditions and under conditions of intermediate precision.

1. Introduction
In the scientific literature, enough attention is paid to the study of the effect of nutrition on human health, information on contaminants, their types and effects on the body as a whole, routes of intake of toxicants and preventive measures to reduce the level of food contamination with toxic substances, as well as technological methods of reducing residues are presented in detail. contaminants in food products [1-6]. The processes of updating the laboratory base in modern conditions of development of scientific and technological progress are objectively necessary [7-14]. Testing laboratories monitoring food safety indicators are equipped with equipment for photometric, atomic absorption, chromatographic analysis. The development of effective algorithms for optimizing the laboratory base of equipment, as well as the search for a solution that will allow laboratories to provide reliable test results at minimal cost in the shortest possible time, is an important and urgent task [15-19]. The relevance of the problem under
consideration is due to the need for hardware to cover a wide range in the determination of toxic elements. The primary and important task remains to ensure the control of the quantitative content of toxic elements, the introduction and application of fast and reliable methods of their analysis [20-25]. Implementation of quality management systems is of great importance [26-27].

This paper considers such a toxic element as cadmium, which is mandatory for control in food, in accordance with the requirements of the Technical Regulations of the Customs Union 021/2011 (TR CU 021) “On food safety” (figure 1).

Cadmium is classified as a toxicant of the highest hazard group; it is a highly toxic cumulative poison with a broad spectrum of action (figure 2).
2. Material and methods
The development and approbation in the laboratory of modified test methods of the conformity confirmation method is an important and urgent task.

Conducting comparative tests with these methods in order to ensure control of cadmium in food products, analyzing the accuracy, precision, repeatability of the results obtained allows us to judge the effectiveness of these methods, and also allows for a comparative analysis of the results. An analysis was carried out in order to optimize the methods used and to develop the most economical and effective option for optimizing the equipment used in the testing laboratory while maintaining the metrological characteristics of the accuracy of the results obtained.

The methodological basis is the standards for research methods, test methods, operating manuals and instructions for the use of equipment.

The methodological basis is the standards for research methods, test methods, operating manuals and instructions for the use of the specified equipment.

Quality control of the analysis results during the implementation of the technique in the laboratory provides for the control of the stability of the analysis results.

The object of research is samples of chilled river fish.

Equipment for research of cadmium content in food raw materials and food products is shown in figure 3.

![Equipment for research](image)

Figure 3. Research instrument base.

During the research, the standard deviation (RMS) of the intralaboratory repeatability of S_r and the intermediate precision S_R of atomic absorption analysis and stripping voltammetry were estimated.

For research purposes, we used standard samples of the composition of a solution of cadmium ions (1.0 mg/cm3). The main document of the research procedure is the test facility quality manual.

The control by the method of additions during the implementation of various methods in this work was carried out according to the approved research scheme.

During the operational control of the analysis procedure using the control procedure to control the error using the method of additions, the control means were working samples of a stable composition and the same samples with a known addition of cadmium.

Under the conditions of in-laboratory precision, samples were analyzed with and without added cadmium.

3. Results and discussion
Atomic absorption spectrometry is widely used in the determination of heavy metals (toxic elements) in various branches of science and industry.
Voltammetric analyzers, as a rule, have their own electrodes, software and methodological support. The voltammetric analyzer can have one electrochemical cell or several. Examples of voltammetric analyzers: with one electrochemical cell - "ABS-1.1", "IVA-5", "Ecotest-VA", "AVA 3", "AKV-07MK", "Pan-arsenic", "PU-1"; with three electrochemical cells - "TA-4", "TA-07" and others.

Maximum levels of cadmium in accordance with the national standard of the People’s Republic of China (PRC) GB 2762-2012 meet the requirements of the Codex Alimentarius standards, unless there is no Codex standard. The maximum levels of cadmium in accordance with the requirements of TR CU 021 comply with, and for some types of products are more stringent, the requirements of the Codex Alimentarius standards, except in cases where there is no Codex standard. In comparison with the maximum permissible concentration (MPC) of cadmium in food products regulated by the requirements of TR CU 021, the maximum levels of cadmium in accordance with the national standard of the PRC GB 2762-2012 meet or below the requirements of TR CU 021, i.e. MPCs for cadmium for some types of products were stricter in TR CU 021.

It should be noted changes in the national standard of the PRC GB 2762-2012 in the direction of expanding the range of product groups for which standard cadmium indicators have been established, compared to GB 2762-2005. In the national standard GB 2762-2005, only maximum levels of cadmium were presented for the following types of products: cereals (rice, soybeans, peanuts, flour, corn, millet, sorghum); potatoes; animal meat; liver and kidneys of animals; fruit; stem vegetables (other than celery); leafy vegetables; celery; edible mushrooms; other vegetables; fish; fresh egg.

3.1. Intermediate precision control
Under conditions of repeatability and intermediate precision, five average measurement results were obtained for a chilled river fish sample.

The acceptability of the determination results was assessed in accordance with GOST R ISO 5725-6 "Accuracy (correctness and precision) of methods and measurement results". The range between the maximum and minimum values of all five analysis results \(X_{\text{max}} - X_{\text{min}}\) was compared with the absolute value of the critical range for five analysis results \(CR_{0.95}(5)\).

The critical range factor \(f(n)\) for the five results is 3.9.

The analyzer is controlled by pressing the control buttons displayed on the display of the test equipment.

The permissible discrepancy between two parallel results obtained in the same laboratory in one series of measurements (convergence r) depends on the mass fraction of cadmium in chilled river fish and, at a confidence level of \(P = 0.95\), does not exceed the established values of regulatory documents.

The analyzer is controlled by the software of the testing process at all stages of measurements. The widespread use of computer software significantly expands the capabilities of the devices, allows more reliable isolation of the analytical signal, reduce the measurement error to 2-5%, automate statistical processing and calculation of analysis results: for the Kvant-2AT spectrometer, when determining cadmium = 46.8%. For the analyzer "TA-4" in the determination of cadmium = 50.7%. The analysis of the obtained research results, presented in table 1, found that the condition \(X_{\text{max}} - X_{\text{min}}\) \(\leq\) \(CR_{0.95}(5)\) is satisfied for all measurement results.

Table 1. Results of studies of chilled river fish for cadmium content (standardized level of permissible concentration 0.2 mg/kg).

№	TA-4	Kvant-2AT	TA-4	Kvant-2AT	TA-4	Kvant-2AT
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
1	0.044	0.046	0.094	0.089	0.097	0.096
2	0.042	0.051	0.086	0.094	0.093	0.088
3	0.045	0.048	0.083	0.096	0.091	0.092
4	0.058	0.047	0.089	0.095	0.088	0.097
5	0.054	0.051	0.095	0.087	0.094	0.095
\(X_{\text{avg}}\)	0.0486	0.0486	0.0894	0.0922	0.0926	0.0936
Assessment of the precision of research results \((X_{\text{max}}-X_{\text{min}}) \leq CR_{0.05}(5)\)

\[
0.016<0.025 \quad 0.005<0.023 \quad 0.012<0.045 \quad 0.009<0.043 \quad 0.009<0.047 \quad 0.009<0.044
\]

\(C-a\) - is the concentration of the certified mixture of the element, from which the additive is made to the analyzed sample

3.2. *Monitoring the stability of analysis results using the addition method*

Operational control of the analysis procedure was carried out by the performer by comparing the result of a separate control procedure \(K_k\) with the calculated control standard \(K\) (figure 4).

![Figure 4. Operational control of the analysis procedure.](image)

In accordance with the methods of analysis, the results of control measurements of the concentration of cadmium in the averaged working sample of river fish were obtained – \(X_{(n)}\) and in the averaged working sample with a known addition of cadmium – \(X_{(n)+a}\).

The results of the operational control of the analysis procedure using the control procedure to control the error using the addition method are presented in table 2.

Table 2. The results of the operational control of the analysis procedure using the method of additions (examination of samples for the content of cadmium).

№	sample preparation	stage addition	measurements					
	TA-4	Kvant-2AT	TA-4	Kvant-2AT				
	Kk	K	Kk	K				
1	-0.0092	0.01111	-0.0066	0.01051	-0.006	0.01142	-0.005	0.010631
2	-0.007	0.00747	-0.007	0.00715	0.0046	0.008676	0.0036	0.008162
3	-0.002	0.00203	-0.0017	0.00187	-0.00118	0.00211	-0.00082	0.001951
4	-0.0082	0.00878	-0.0062	0.00837	-0.007	0.008904	-0.0036	0.008615

Analyzing the obtained research results presented in table 2, we came to the conclusion that the condition \(|K_k| \leq K\) is satisfied, the analysis procedure is recognized as satisfactory.

In order to control the stability of the analysis results obtained by different methods, operational control of the error was carried out using the method of additions. The results of the operational control
of the test procedure for chilled river fish using the control procedure to control the error using the addition method are presented in table 3.

Table 3. Research results of chilled river fish for cadmium content.

Kvant-2AT	TA-4	Kvant-2AT	TA-4	Kvant-2AT	TA-4	
X(5)avr	0.0486	0.0486	0.0922	0.0894	0.0936	0.0926
Xavr	0.0486	0.0908	0.0931			

Assessment of the precision of research results

0 % < 17 %	1.5 % < 17 %	0.54 % < 17 %
K	Kk	K
0.01470674	-0.0078	0.01499711

The research results (table 3) are considered satisfactory.

3.3. Research results monitoring

We monitored the results of studies on the content of cadmium in river fish from January 2019 to October 2020. We assessed the distribution of research results depending on the concentration of cadmium in river fish (figure 5).

Figure 5. Distribution of test results depending on the concentration (mg / kg) of cadmium in river fish samples, %.

The obtained results indicate that in the range of less than 0.01 mg of cadmium per 1 kg of river fish prevail (43.3%) over other ranges. The least registered sample results (4.3%) with the range of obtained data - 0.1-1.0 mg/kg.
4. Conclusion
The analysis of the obtained data results shows that all the results on the study of the cadmium content in the chilled river fish by assessing the precision and operational control of the error using the method of additions are satisfactory.

The implementation of the methods of stripping voltammetry and atomic absorption spectrometry achieves the best precision of the results of studies of cadmium in the testing laboratory, both under conditions of intermediate precision and under conditions of repeatability.

Acknowledgements
The authors would like to express special gratitude to the engineer A M Chuprakova who carried out multi-stage tests of the designated products for compliance with the requirements of regulatory documents.

References
[1] Macleod C and Coughanowr C 2019 Heavy metal pollution in the derwent estuary: history, science and management Regional Studies in Marine Science 32 100866
[2] Ali MM et al. 2019 Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuliriver, Bangladesh. Human and Ecological Risk Assessment An Int.J. 1-17
[3] Kaushik A, Kansal A, Santosh M, Kumari S and Kaushik C P 2009 Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments Journal of Hazardous Materials 164(1) 265-70
[4] Mansour S A 2014 Monitoring and health risk assessment of heavy metal contamination in food Practical Food Safety: Contemporary Issues and Future Directions 235-55
[5] Mourya A, Mazumdar B and Sinha S K 2019 Determination and quantification of the heavy metal ion by electrochemical method Journal of Environmental Chemical Engineering 7(6) 103459
[6] Ivanova-Petropulos V et al. 2015 Determination of Pb and Cd in Macedonian wines by electrother-mal atomic absorption spectrometry (ETAAS) Food Analytical Methods 8(8) 1947-52
[7] Kataoka Y et al. 2015 Development of ICP-OES, ICP-MS and GF-AAS methods for simultaneous quantification of lead, total arsenic and cadmium in soft drinks Food Hygiene and Safety Science 56(3) 88-95
[8] Katsnelson B et al. 2014 Some considerations concerning the theory of combined toxicity: a case study of subchronic experimental intoxication with cadmium and lead Food and Chemical Toxicology 64 144-56
[9] Kim B-M et al. 2013 Influence of squid liver powder on accumulation of cadmium in serum, kidney and liver of mice Preventive Nutrition and Food Science 18(1) 1-10
[10] Ma W, Zhao B and Ma J 2019 Comparison of heavy metal accumulation ability in rainwater by 10 sponge city plant species Environmental Science and Pollution Research 26(26) 26733-47
[11] Alaqouri H A A et al. 2020 The possibility of using scots pine needles as biomonitor in determination of heavy metal accumulation Environmental Science and Pollution Research 26(3) 1-22
[12] Šrut M, Menke S, Sommer S and Höckner M 2019 Earthworms and cadmium – heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotoxicology and Environmental Safety 171 843-53
[13] Rahimi G, Kolahchi Z and Bayat S 2019 Heavy metals' bio-accumulation and transfer in lemon balm (melissa officinalis l.) irrigated with industrial wastewater International Journal of Environment and Waste Management 23(3) 238-56
[14] Singh B R et al. 2011 Safety of food crops on land contaminated with trace elements J. Sci. Food Agric. 91(8) 1349-66
[15] Sizentsov A N, Kvan O V, Sizentsov Y A, Bibartseva E V and Osipova E A 2019 Comparative analysis of heavy metal sorption characteristics on laboratory animal models Research Journal of Pharmaceutical, Biological and Chemical Sciences 10(1) 1313-6

[16] Tumanyan A F, Tusaint F, Shcherbakova N A, Seliverstova A P and Tyutyuma N V 2019 Heavy metal contents in soils and vegetables of Southern Russia Chemistry and Technology of Fuels and Oils 54(6) 766-70

[17] Barsova N, Yakimenko O, Tolpeshta I and Motuzova G 2019 Current state and dynamics of heavy metal soil pollution in Russian Federation Environmental Pollution 249 200-7

[18] Kuramshina N, Rebezov M, Kuramshin E, Tretyak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okushkanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia International Journal of Pharmaceutical Research 11(1) 1301-5 DOI: 10.21668/health.risk/2019.2.04.engl

[19] Kuramshina N, Rebezov M, Kuramshin E, Krasnogorskaya N, Tretyak L, Somova Yu, Dolmatova I, Zaitseva T, Grigoryeva I and Bakirova G 2018 Heavy Metals Contamination of Soil in Urban Areas of Southern Ural Region of Russia International Journal of Engineering and Technology (UAE) 7(4.42) 14-8 DOI: 10.14419/ijet.v7i4.25536

[20] Zykova I, Maksimuk N, Rebezov M, Kuznetsova E, Derkho M, Sereda T, Kazhibayeva G, Somova Yu and Zaitseva T 2019 Interaction between heavy metals and microorganisms during wastewater treatment by activated sludge Journal of Engineering and Applied Sciences 14(11) 2139-45

[21] Assenova B, Okushkanova E, Rebezov M, Korzhikenova N, Yessimbekov Zh and Dragoev S 2016 Trace and toxic elements in meat of maral (red deer) grazing in Kazakhstan Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(1) 1425-33

[22] Barbosa JTP, Korn MGA, Santos CMM, Flores EMM, Peralva VN, Korn M and Nóbrega JA. 2015 Microwave-assisted diluted acid digestion for trace element analysis of edible soybean products. Food Chemistry 175 212-7

[23] Yang ZY 2005 To study the activity of palladium used as modifier under microwave decomposition and atomic absorption spectrometry with graphite furnace for the determination of trace elements in food products Chinese Journal of Spectroscopy Laboratory 22(3) 607-17

[24] Rebezov M et al. 2020 Improvement of Laboratory Services When using Sample Preparation in Microwave System International Journal of Current Research and Review 12(16) 29-33 doi:10.31782/IJCRR.2020.12167

[25] Rebezov M, Belokamenskaya A, Zinina O, Naumova N, Maksimyuk N, Soloveva A and Solntseva A 2012 Quality control of food research for lead content Izvestiya vuzov prikladnaya khimiya i bioteknologiya 1 157 WOS:000442743100030

[26] Maksimuk N N, Rebezov M B and Guber N B 2018 Experience in auditing in the food safety management system Economics of Agriculture of Russia doi:10.32651/2070-0288-2018-9-15-21

[27] Akhmetova S, Suleimenova M and Rebezov M 2019 Mechanism of an improvement of business processes management system for food production: case of meat products enterprise Entrepreneurship and sustainability issues 7(2) 1015-35 Doi 10.9770/jesi.2019.7.2(16)