Characterization and Enumeration of Toroidal $K_{3,3}$-Subdivision-Free Graphs

Andrei Gagarin, Gilbert Labelle and Pierre Leroux

Laboratoire de Combinatoire et d’Informatique Mathématique (LaCIM),
Université du Québec à Montréal, Montréal, Québec, CANADA, H3C 3P8

e-mail: gagarin@math.uqam.ca, labelle.gilbert@uqam.ca and leroux.pierre@uqam.ca

February 1, 2008

Abstract

We describe the structure of 2-connected non-planar toroidal graphs with no $K_{3,3}$-subdivisions, using an appropriate substitution of planar networks into the edges of certain graphs called toroidal cores. The structural result is based on a refinement of the algorithmic results for graphs containing a fixed K_5-subdivision in [A. Gagarin and W. Kocay, “Embedding graphs containing K_5-subdivisions”, Ars Combin. 64 (2002), 33-49]. It allows to recognize these graphs in linear-time and makes possible to enumerate labelled 2-connected toroidal graphs containing no $K_{3,3}$-subdivisions and having minimum vertex degree two or three by using an approach similar to [A. Gagarin, G. Labelle, and P. Leroux, "Counting labelled projective-planar graphs without a $K_{3,3}$-subdivision", submitted, arXiv:math.CO/0406140, (2004)].

1 Introduction

We use basic graph-theoretic terminology from Bondy and Murty [5] and Diestel [6], and deal with undirected simple graphs. Graph embeddings on a surface are important in VLSI design and in statistical mechanics. We are interested in non-planar graphs that can be embedded on the torus or on the projective plane. By Kuratowski’s theorem [13], a graph G is non-planar if and only if it contains a subdivision of K_5 or $K_{3,3}$ (see Figure 1). In this paper we characterize (and enumerate) the 2-connected toroidal graphs with no $K_{3,3}$-subdivisions, following an analogous work for projective-planar graphs [9]. The next step in this research would be to characterize toroidal and projective-planar graphs containing a $K_{3,3}$-subdivision (with or without a K_5-subdivision).
We assume that G is a 2-connected non-planar graph. A graph containing no $K_{3,3}$-subdivisions will be called $K_{3,3}$-subdivision-free. A general recursive decomposition of non-planar $K_{3,3}$-subdivision-free graphs is described in [16] and [12]. A local decomposition of non-planar graphs containing a K_5-subdivision of a special type is described in [7] and [8] (some $K_{3,3}$-subdivisions are allowed), that is used later in [8] to detect a projective-planar or toroidal graph. The results of [8] provide a toroidality criterion for graphs containing a given K_5-subdivision and avoiding certain $K_{3,3}$-subdivisions by examining the embeddings of K_5 on the torus. The torus is an orientable surface of genus one which can be represented as a rectangle with two pairs of opposite sides identified. The graph K_5 has six different embeddings on the torus shown in Figure 2. Notice that the hatched region of each of the embeddings E_1 and E_2 forms a single face F.

In [9] we prove the uniqueness of the decomposition of [8] for 2-connected non-planar projective-planar graphs with no $K_{3,3}$-subdivisions that gives a characterization of these graphs. In the present paper we state and prove an analogous structure theorem for the class \mathcal{T} of 2-connected non-planar toroidal graphs with no $K_{3,3}$-subdivisions, involving certain “circular crowns” of $K_5\setminus e$ networks and substitution of strongly planar networks for edges. The structure theorem provides a practical algorithm to recognize the toroidal graphs with no $K_{3,3}$-subdivisions in linear-time. Here we use the structure theorem to
enumerate the labelled graphs in T by using the counting techniques of [9] and [17] and improve known bounds for their number of edges. Finally, we enumerate the labelled graphs in T having no vertex of degree two. Tables can be found at the end of the paper.

2 The structure theorem

A network is a connected graph N with two distinguished vertices a and b, such that the graph $N \cup ab$ is 2-connected. The vertices a and b are called the poles of N. The vertices of a network that are not poles are called internal. A network N is strongly planar if the graph $N \cup ab$ is planar. We denote by N_P the class of strongly planar networks.

The substitution of a network N for an edge $e = uv$ is done in the following way: choose an arbitrary orientation, say $\vec{e} = \vec{uv}$ of the edge, identify the pole a of N with the vertex u and b with v, and disregard the orientation of e and the poles a and b. Note that both orientations of e should be considered. It is assumed that the underlying set of N is disjoint from $\{u, v\}$. The set of one or two resulting graphs is denoted by $e \uparrow N$.

More generally, given a graph G_0 with k edges, $E = \{e_1, e_2, \ldots, e_k\}$, and a sequence (N_1, N_2, \ldots, N_k) of disjoint networks, we define the composition $G_0 \uparrow (N_1, N_2, \ldots, N_k)$ as the set of graphs that can be obtained by substituting the network N_j for the edge e_j of G_0, $j = 1, 2, \ldots, k$. The graph G_0 is called the core, and the N_i’s are called the components of the resulting graphs. For a class of graphs G and a class of networks N, we denote by $G \uparrow N$ the class of graphs obtained as compositions $G_0 \uparrow (N_1, N_2, \ldots, N_k)$ with $G_0 \in G$ and $N_i \in N$, $i = 1, 2, \ldots, k$. We say that the composition $G \uparrow N$ is canonical if for any graph $G \in G \uparrow N$, there is a unique core $G_0 \in G$ and unique (up to orientation) components $N_1, N_2, \ldots, N_k \in N$ that yield G.

In [9] we prove the uniqueness of the representation $K_5 \uparrow N_P$ for $K_{3,3}$-subdivision-free projective-planar graphs. This gives an example of a canonical composition.

Theorem 1 ([8, 9]) A 2-connected non-planar graph G without a $K_{3,3}$-subdivision is projective-planar if and only if $G \in K_5 \uparrow N_P$. Moreover, the composition $K_5 \uparrow N_P$ is canonical.

Definition 1 Given two K_5-graphs, the graph obtained by identifying an edge of one of the K_5’s with an edge of the other is called an M-graph (see Figure 3a)), and, when the edge of identification is deleted, an M^*-graph (see Figure 3b)).

Definition 2 A network obtained from K_5 by removing the edge ab between two poles is called a $K_5 \backslash e$-network. A circular crown is a graph obtained from a cycle C_i, $i \geq 3$, by substituting $K_5 \backslash e$-networks for some edges of C_i in such a way that no pair of unsubstituted edges of C_i are adjacent (see Figure 4).

Definition 3 A toroidal core is a graph H which is isomorphic to either K_5, an M-graph, an M^*-graph, or a circular crown. We denote by T_C the class of toroidal cores.
The main result of this paper is the following structure theorem. The proof is given in Section 4.

Theorem 2 A 2-connected non-planar $K_{3,3}$-subdivision-free graph G is toroidal if and only if $G \in T_C \uparrow N_P$. Moreover, the composition $T = T_C \uparrow N_P$ is canonical.

This theorem is used in Section 5 for the enumeration of labelled graphs in T. In the future we hope to use Theorem 2 to enumerate unlabelled graphs in T as well.

3 Related known results

This section gives an overview of the structural results for toroidal graphs described in [8]. Following Diestel [6], a K_5-subdivision is denoted by TK_5. The vertices of degree 4 in TK_5 are the *corners* and the vertices of degree 2 are the *inner vertices* of TK_5. For a pair of corners a and b, the path P_{ab} between a and b with all other vertices inner vertices is called a *side* of the K_5-subdivision.

Let G be a non-planar graph containing a fixed K_5-subdivision TK_5. A path p in G with one endpoint an inner vertex of TK_5, the other endpoint on a different side of TK_5, and all other vertices and edges in $G \backslash TK_5$, is called a *short cut* of the K_5-subdivision. A vertex $u \in G \backslash TK_5$ is called a 3-corner vertex with respect to TK_5 if $G \backslash TK_5$ contains internally disjoint paths connecting u with at least three corners of the K_5-subdivision.

Proposition 1 ([1, 7, 8]) Let G be a non-planar graph with a K_5-subdivision TK_5 for which there is either a short cut or a 3-corner vertex. Then G contains a $K_{3,3}$-subdivision.
Proposition 2 ([7, 8]) Let G be a 2-connected graph with a TK_5 having no short cut or 3-corner vertex. Let K denote the set of corners of TK_5. Then any connected component C of $G \setminus K$ contains inner vertices of at most one side of TK_5 and C is connected in G to exactly two corners of TK_5.

Given a graph G satisfying the hypothesis of Proposition 2, a side component of TK_5 is defined as the subgraph of G induced by a pair of corners a and b in K and the connected components of $G \setminus K$ which are connected to both a and b in G. Notice that side components of G can contain $K_{3,3}$-subdivisions.

Corollary 1 ([7, 8]) For a 2-connected graph G with a TK_5 having no short cut or 3-corner vertex, two side components of TK_5 in G have at most one vertex in common. The common vertex is the corner of intersection of two corresponding sides of TK_5.

Thus we see that a graph G satisfying the hypothesis of Proposition 2 can be decomposed into side components corresponding to the sides of TK_5. Each side component S contains exactly two corners a and b corresponding to a side of TK_5. If the edge ab between the corners is not in S, we can add it to S to obtain $S \cup ab$. Otherwise $S \cup ab = S$. We call $S \cup ab$ an augmented side component of TK_5. Side components of a subdivision of an M-graph are defined by analogy with the side components of a K_5-subdivision by considering pairs of adjacent vertices of the M-graph.

A planar side component S of TK_5 in G with two corners a and b is called cylindrical if the edge $ab \notin S$ and the augmented side component $S \cup ab$ is non-planar. Notice that a planar side component $S = S \setminus ab$ is embeddable in a cylindrical section of the torus. A cylindrical section is provided by the face F of the embeddings E_1 and E_2 of K_5 on the torus shown in Figure 2. Toroidal graphs described in [8] can contain $K_{3,3}$-subdivisions because of a cylindrical side component S. An example of an embedding of the cylindrical side component $S = K_{3,3} \setminus e$ of a TK_5 on the torus is shown in Figure 6 where the graph G of Figure 5 is embedded by completing the embedding E_1 of K_5 shown in Figure 2.

![Figure 5: A toroidal graph G containing subdivisions of $K_{3,3}$ and of K_5.](image)

If a graph G has no $K_{3,3}$-subdivisions, then Proposition 2 can be applied, in virtue of Proposition 1. In this case, a result of [8] can be summarized as follows.

Proposition 3 ([8]) A 2-connected non-planar $K_{3,3}$-subdivision-free graph G containing a K_5-subdivision TK_5 is toroidal if and only if:
(i) all the augmented side components of TK_5 in G are planar graphs, or
(ii) nine augmented side components of TK_5 in G are planar, and the remaining side
component S is cylindrical, or
(iii) G contains a subdivision TM of an M-graph, and all the augmented side compo-
nents of TM in G are planar.

Further analysis of the cylindrical side component S of Proposition 3(ii) will provide
a proof of Theorem 2. Notice that graphs with 6 or more vertices satisfying Propositon
3 are not 3-connected. Therefore a 3-connected non-planar graph different from K_5 must
contain a $K_{3,3}$-subdivision (see also [1]).

4 Proof of the structure theorem

A side component S having two corners a and b can be considered as a network. We use
the notation $\text{Int}(S)$ to denote the interior of S, that is the subgraph $\text{Int}(S) = S \setminus (\{a\} \cup \{b\})$
obtained by removing the two vertices a and b. A network S is called cylindrical if $ab \notin S$,
S is a planar graph, but $S \cup ab$ is non-planar. Recall that a network S is called strongly
planar if $S \cup ab$ is planar.

A block is a maximal 2-connected subgraph of a graph. A description of the block-
cutvertex tree decomposition of a connected graph can be found in [6]. We consider blocks
G_i having two distinguished vertices a_i and b_i. The distinguished vertices are called poles
of the block.

Proposition 4 Let G be a 2-connected non-planar toroidal $K_{3,3}$-subdivision-free graph
satisfying Proposition 3(ii) with the cylindrical side component S having corners a and b.
Then the block-cutvertex decomposition of S forms a path of blocks $S_1, S_2, \ldots, S_k, k \geq 1$, as in Figure 7, and at least one of the blocks $S_1, S_2, \ldots, S_k, k \geq 1$, is a cylindrical network.
Moreover, every block $S_i, i = 1, 2, \ldots, k$, of S is either a strongly planar network, or a
cylindrical network of the form $K_5 \setminus e \uparrow (N_1, N_2, \ldots, N_9)$, where $e = a_ib_i$ and the N_j's are
strongly planar networks.

Proof. Since G is 2-connected, each cut-vertex of S belongs to exactly two blocks and
lies on the corresponding side P_{ab} of TK_5. Therefore the blocks of S form a path as in
Figure 7.
Therefore, \(S \) and \(N \) implies that at least one of the blocks \(S_i \), \(i = 1, 2, \ldots, k \), remains planar when the edge \(a_ib_i \) is added to \(S_i \). Then, clearly, \(S \cup ab \) remains planar as well. Hence the fact that \(S \) is cylindrical implies that at least one of the blocks \(S_i \), \(i = 1, 2, \ldots, k \), is itself a cylindrical network.

Suppose a block \(S_m \), \(1 \leq m \leq k \), of \(S \) is cylindrical. Then, by Kuratowski’s theorem, \(S_m \cup a_ib_m \) contains a \(K_5 \)-subdivision \(T K'_5 \). Clearly, \(a_ib_m \in T K'_5 \), \(T K'_5 \) has no short-cut or 3-corner vertex in \(G \) and \(a_m \) and \(b_m \) are two corners of the \(T K'_5 \). The edge \(a_m b_m \) of \(T K'_5 \) can be replaced by a path \(P_{a_m b_m} \) in \(G \setminus \text{Int}(S_m) \) and we can decompose \(G \) into the side components of \(T K'_5 \).

Since \(G \) is toroidal and the side component \(G \setminus \text{Int}(S_m) \) of \(T K'_5 \) is cylindrical, all the other side components of \(T K'_5 \) in \(G \) must be strongly planar networks by Proposition 3(ii). Therefore \(S_m \) is a cylindrical network of the form \(K_5 \setminus e \cup (N_1, N_2, \ldots, N_9) \), with \(e = a_m b_m \) and \(N_j \in \mathcal{N}_P \), \(j = 1, 2, \ldots, 9 \).

Now we are ready to prove the structure Theorem 2 using Propositions 3 and 4.

Proof of Theorem 2. (Sufficiency) Suppose \(G \) is a graph in \(\mathcal{T}_C \uparrow \mathcal{N}_P \), i.e. \(G = H \uparrow (N_1, N_2, \ldots, N_k) \), where \(H \) is a toroidal core having \(k \) edges and \(N_i \)’s, \(i = 1, 2, \ldots, k \), are strongly planar networks. If \(H = K_5 \) or \(H = M \), then \(G \) can be decomposed into the side components of \(T K_5 \) or \(T M \) respectively and the augmented side components are planar graphs. Therefore, by Proposition 3(i) or 3(iii) respectively, \(G \) is toroidal \(K_{3,3} \)-subdivision-free.

If \(H = M^* \) or \(H \) is a circular crown, then we can choose a \(K_5 \setminus e \)-network \(N \) in \(H \) and find a path \(P_{ab} \) connecting \(a \) and \(b \) in the complementary part \(H \setminus \text{Int}(N) \). This determines a subdivision \(T K_5 \) in \(G \) such that nine augmented side components of \(T K_5 \) in \(G \) are planar, and the remaining side component \(S \) defined by the corners \(a \) and \(b \) of \(T K_5 \) is cylindrical. Therefore, by Proposition 3(ii), \(G \) is toroidal \(K_{3,3} \)-subdivision-free.

(Necessity and Uniqueness) Let \(G \) be a 2-connected non-planar \(K_{3,3} \)-subdivision-free toroidal graph \(G \). By Kuratowski’s theorem, \(G \) contains a \(K_5 \)-subdivision \(T K_5 \). Let us prove that \(G \in \mathcal{T}_C \uparrow \mathcal{N}_P \) by using Propositions 3 and 4. The fact that the composition \(H \uparrow \mathcal{N}_P \), \(H \in \mathcal{T}_C \), of \(G \) is canonical will follow from the uniqueness of the sets of corner vertices in Proposition 3.

Clearly, the sets of graphs corresponding to the cases (i), (ii) and (iii) of Proposition 3 are mutually disjoint. Suppose \(G \) contains a subdivision \(T K_5 \) or \(T M \) and all the augmented side components of \(T K_5 \) or \(T M \), respectively, in \(G \) are planar graphs as in Proposition 3(i, iii). Then \(G = K_5 \uparrow (N_1, N_2, \ldots, N_{19}) \) or \(G = M \uparrow (N_1, N_2, \ldots, N_{19}) \), respectively, \(K_5, M \in \mathcal{T}_C \) and all the \(N_j \)’s are in \(\mathcal{N}_P \). The uniqueness of the decomposition

![Figure 7: Block-cutvertex decomposition for the cylindrical side component S.](image)
in cases (i) and (iii) of Proposition 3 can be proved by analogy with Theorem 3 in [1]; the set of corners of the K_5-subdivision in Proposition 3(i) and the set of corners of the M-graph subdivision in Proposition 3(iii) are uniquely defined. This covers toroidal cores K_5 and the M-graph.

Suppose S is the unique cylindrical side component of TK_5 in G as in Proposition 3(ii). Notice that $G \setminus \text{Int}(S)$ itself is a cylindrical network of the form $K_5 \setminus e \uparrow \{N_1, N_2, \ldots, N_9\}$, where $e = ab$ and $N_j \in N_P$, $j = 1, 2, \ldots, 9$. By Proposition 4, the block-cutvertex decomposition of S forms a path of blocks $S_1, S_2, \ldots, S_k, k \geq 1$, as in Figure 7, and at least one of the blocks $S_1, S_2, \ldots, S_k, k \geq 1$, is a cylindrical network. In this path we can regroup maximal series of consecutive strongly planar networks into single strongly planar networks so that at most one strongly planar network N' is separating two cylindrical networks in the resulting path, and the poles of the strongly planar network N' are uniquely defined by maximality. By Proposition 4, the cylindrical networks in the path are of the form $K_5 \setminus e \uparrow \{N_1, N_2, \ldots, N_9\}$, where $N_j \in N_P$, $j = 1, 2, \ldots, 9$, and the corners a' and $b' = a'b$, are uniquely defined with respect to the corresponding K_5-subdivision TK_5' in G. Therefore the unique set of corners completely defines a toroidal core M^* or a circular crown H having k edges and the set of corresponding strongly planar networks N_1, N_2, \ldots, N_k, such that $G = M^* \uparrow \{N_1, N_2, \ldots, N_9\}$ or $G = H \uparrow \{N_1, N_2, \ldots, N_k\}$, respectively.

Theorems 1 and 2 imply that a projective-planar graph with no $K_{3,3}$-subdivisions is toroidal. However an arbitrary projective-planar graph can be non-toroidal. The characterizations of Theorems 1 and 2 can be used to detect projective-planar or toroidal graphs with no $K_{3,3}$-subdivisions in linear time. The implementation of this algorithm can be derived from [8] by using a breadth-first or depth-first search technique for the decomposition and by doing a linear-time planarity testing. The linear-time complexity follows from the linear-time complexity of the decomposition and from the fact that each vertex of the initial graph can appear in at most 7 different components.

A corollary to Euler’s formula for the plane says that a planar graph with $n \geq 3$ vertices can have at most $3n - 6$ edges (see, for example, [5] and [6]). Let us state this for 2-connected planar graphs with n vertices and m edges as follows:

$$m \leq \begin{cases} 3n - 5 & \text{if } n = 2 \\ 3n - 6 & \text{if } n \geq 3 \end{cases}.$$

(1)

In fact, $m = 3n - 5 = 1$ if $n = 2$. The generalized Euler formula (see, for example, [15]) implies that a toroidal graph G with n vertices can have up to $3n$ edges. An arbitrary graph G without a $K_{3,3}$-subdivision is known to have at most $3n - 5$ edges (see [11]). The following proposition shows that toroidal graphs with no $K_{3,3}$-subdivisions satisfy a stronger relation, which is analogous to planar graphs.

Proposition 5 The number m of edges of a non-planar $K_{3,3}$-subdivision-free toroidal n-vertex graph G satisfies $m \leq 3n - 5$ if $n = 5$ or 8, and

$$m \leq 3n - 6, \text{ if } n \geq 6 \text{ and } n \neq 8.$$

(2)
Proof. Clearly, toroidal graphs satisfying Theorem 2 also satisfy Proposition 3. By Proposition 3(i, ii), each side component S_i of TK_5 in G, $i = 1, 2, \ldots, 10$, satisfies the condition (11) with $n = n_i$, the number of vertices, and $m = m_i$, the number of edges of S_i, $i = 1, 2, \ldots, 10$. Since each corner of TK_5 is in precisely 4 side components, we have $\sum_{i=1}^{10} n_i = n + 15$ and we obtain, by summing these 10 inequalities,

$$m = \sum_{i=1}^{10} m_i \leq \begin{cases} 3 \sum_{i=1}^{10} n_i - 50 = 3(n + 15) - 50 = 3n - 5 & \text{if } n = 5 \\ 3 \sum_{i=1}^{10} n_i - 51 = 3(n + 15) - 51 = 3n - 6 & \text{if } n \geq 6 \end{cases},$$

since $n = 5$ iff $n_i = 2$, $i = 1, 2, \ldots, 10$, and $n \geq 6$ if and only if at least one $n_j \geq 3$, $j = 1, 2, \ldots, 10$.

Similarly, by Proposition 3(iii), each side component S_i of TM in G, $i = 1, 2, \ldots, 19$, satisfies the condition (11) with $n = n_i$, the number of vertices, and $m = m_i$, the number of edges of S_i, $i = 1, 2, \ldots, 19$. Since 2 vertices of TM are in precisely 7 side components, 6 vertices of TM are in precisely 4 side components, and all the other vertices of G are in a unique side component, we have $\sum_{i=1}^{19} n_i = n + 30$ and we obtain, by summing these 19 inequalities,

$$m = \sum_{i=1}^{19} m_i \leq \begin{cases} 3 \sum_{i=1}^{19} n_i - 95 = 3(n + 30) - 95 = 3n - 5 & \text{if } n = 8 \\ 3 \sum_{i=1}^{19} n_i - 96 = 3(n + 30) - 96 = 3n - 6 & \text{if } n \geq 9 \end{cases},$$

since $n = 8$ iff $n_i = 2$, $i = 1, 2, \ldots, 19$, and $n \geq 9$ if and only if at least one $n_j \geq 3$, $j = 1, 2, \ldots, 19$.

An analogous result for the projective-planar graphs can be found in [9]. Also note that Corollary 8.3.5 of [6] implies that graphs with no K_5-minors can have at most $3n - 6$ edges.

5 Counting labelled $K_{3,3}$-subdivision-free toroidal graphs

Now let us consider the question of the labelled enumeration of toroidal graphs with no $K_{3,3}$-subdivisions according to the numbers of vertices and edges. First, we review some basic notions and terminology of labelled enumeration together with the counting methods and technique used in [17, 9]. The reader should have some familiarity with exponential generating functions and their operations (addition, multiplication and composition). For example, see [2, 11, 14, or 18].

By a labelled graph, we mean a simple graph $G = (V, E)$ where the set of vertices $V = V(G)$ is itself the set of labels and the labelling function is the identity function. V is called the underlying set of G. An edge e of G then consists of an unordered pair $e = uv$ of elements of V and $E = E(G)$ denotes the set of edges of G. If W is another
set and $\sigma : V \rightarrow W$ is a bijection, then any graph $G = (V, E)$ on V, can be transformed into a graph $G' = \sigma(G) = (W, \sigma(E))$, where $\sigma(E) = \{\sigma(e) = \sigma(u)\sigma(v) | e \in E\}$. We say that G' is obtained from G by vertex relabelling and that σ is a graph isomorphism $G \cong G'$. An unlabelled graph is then seen as an isomorphism class γ of labelled graphs. We write $\gamma = \gamma(G)$ if γ is the isomorphism class of G. By the number of ways to label an unlabelled graph $\gamma(G)$, where $G = (V, E)$, we mean the number of distinct graphs G' on the underlying set V which are isomorphic to G. Recall that this number is given by $n!/|\text{Aut}(G)|$, where $n = |V|$ and $\text{Aut}(G)$ denotes the automorphism group of G.

A species of graphs is a class of labelled graphs which is closed under vertex relabellings. Thus any class \mathcal{G} of unlabelled graphs gives rise to a species, also denoted by \mathcal{G}, by taking the set union of the isomorphism classes in \mathcal{G}. For any species \mathcal{G} of graphs, we introduce its (exponential) generating function $\mathcal{G}(x, y)$ as the formal power series

$$\mathcal{G}(x, y) = \sum_{n \geq 0} g_n(y) \frac{x^n}{n!}, \quad \text{with} \quad g_n(y) = \sum_{m \geq 0} g_{n,m} y^m,$$

where $g_{n,m}$ is the number of graphs in \mathcal{G} with m edges over a given set of vertices V_n of size n. Here y is a formal variable which acts as an edge counter. For example, for the species $\mathcal{G} = K = \{K_n\}_{n \geq 0}$ of complete graphs, we have

$$K(x, y) = \sum_{n \geq 0} y^{(n)} x^n / n!,$$

while for the species $\mathcal{G} = \mathcal{G}_a$ of all simple graphs, we have $\mathcal{G}_a(x, y) = K(x, 1 + y)$.

A species of graphs is molecular if it contains only one isomorphism class. For a molecular species $\gamma = \gamma(G)$, where G has n vertices and m edges, we have $\gamma(x, y) = \frac{y^m n!}{|\text{Aut}(G)|} \frac{x^n}{n!} = y^m x^n / |\text{Aut}(G)|$. For example,

$$K_5(x, y) = \frac{x^5 y^{10}}{5!}.$$

Also, for the graphs M and M^* described in Section 2, we have

$$M(x, y) = 280 \frac{x^8 y^{19}}{8!}, \quad M^*(x, y) = 280 \frac{x^8 y^{18}}{8!},$$

since $|\text{Aut}(M)| = |\text{Aut}(M^*)| = 144$.

For the enumeration of networks, we consider that the poles a and b are not labelled, or, in other words, that only the internal vertices form the underlying set. Hence the generating function of a class (or species) \mathcal{N} of networks is defined by

$$\mathcal{N}(x, y) = \sum_{n \geq 0} \nu_n(y) \frac{x^n}{n!}, \quad \text{with} \quad \nu_n(y) = \sum_{m \geq 0} \nu_{n,m} y^m,$$

where $\nu_{n,m}$ is the number of networks in \mathcal{N} with m edges and a given set of internal vertices V_n of size n. For example, we have

$$(K_5 \setminus e)(x, y) = \frac{x^3 y^{9}}{3!},$$
A species \mathcal{N} of networks is called symmetric if for any \mathcal{N}-network N (i.e. N in \mathcal{N}), the opposite network $\tau \cdot N$, obtained by interchanging the poles a and b, is also in \mathcal{N}. Examples of symmetric species of networks are the classes \mathcal{N}_P, of strongly planar networks, and \mathcal{R}, of series-parallel networks (see [17, 9]).

Lemma 1 (T. Walsh [17, 9]) Let \mathcal{G} be a species of graphs and \mathcal{N} be a symmetric species of networks such that the composition $\mathcal{G} \uparrow \mathcal{N}$ is canonical. Then the following generating function identity holds:

$$ (\mathcal{G} \uparrow \mathcal{N})(x, y) = \mathcal{G}(x, \mathcal{N}(x, y)). \quad (9) $$

By Theorem 2 and Lemma 1, we have the following proposition.

Proposition 6 The generating function $\mathcal{T}(x, y)$ of labelled non-planar $K_{3,3}$-subdivision-free toroidal graphs is given by

$$ \mathcal{T}(x, y) = (\mathcal{T}_C \uparrow \mathcal{N}_P)(x, y) = \mathcal{T}_C(x, \mathcal{N}_P(x, y)), \quad (10) $$

where \mathcal{T}_C denotes the class of toroidal cores (see Definition 3).

Let P denote the species of 2-connected planar graphs. Then the generating function of \mathcal{N}_P, the associated class of strongly planar networks, is given by

$$ \mathcal{N}_P(x, y) = (1 + y) \frac{2}{x^2 \partial y} P(x, y) - 1 \quad (11) $$

(see [17, 9]). Methods for computing the generating function $P(x, y)$ of labelled 2-connected planar graphs are described in [3] and [4]. Formula (11) can then be used to compute $\mathcal{N}_P(x, y)$. Therefore there remains only to compute the generating function $\mathcal{T}_C(x, y)$ for toroidal cores. Recall that $\mathcal{T}_C = K_5 + M + M^* + CC$, where CC denotes the class of circular crowns. Circular crowns can be enumerated as follows using matching polynomials.

Proposition 7 The mixed generating series $CC(x, y)$ of circular crowns is given by

$$ CC(x, y) = \frac{-12 x^4 y^9 + 12 x^5 y^{10} + x^5 y^{18} + 72 \ln(1 - \frac{x^4 y^9}{6} - \frac{x^5 y^{10}}{6})}{144}. \quad (12) $$

Proof. Recall that a matching μ of a finite graph G is a set of disjoint edges of G. We define the matching polynomial of G as

$$ M_G(y) = \sum_{\mu \in \mathcal{M}(G)} y^{\vert \mu \vert}, \quad (13) $$

where $\mathcal{M}(G)$ denotes the set of matchings of G. In particular, the matching polynomials $U_n(y)$ and $T_n(y)$ for paths and cycles of size n are well known (see [10]). They are closely related to the Chebyshev polynomials. To be precise, let P_n denote the path graph (V, E)
with \(V = [n] = \{1, 2, \ldots, n\} \) and \(E = \{\{i, i+1\} \mid i = 1, 2, \ldots, n-1\} \) and \(C_n \) denote the cycle graph with \(V = [n] \) and \(E = \{\{i, i+1(\text{mod} \ n)\} \mid i = 1, 2, \ldots, n\} \). Then we have

\[
U_n(y) = \sum_{\mu \in \mathcal{M}(P_n)} y^{\vert \mu \vert}, \quad T_n(y) = \sum_{\mu \in \mathcal{M}(C_n)} y^{\vert \mu \vert}. \tag{14}
\]

The dichotomy caused by the membership of the edge \(\{n - 1, n\} \) in the matchings of the path \(P_n \) leads to the recurrence relation

\[
U_n(y) = yU_{n-2}(y) + U_{n-1}(y), \tag{15}
\]

for \(n \geq 2 \), with \(U_0(y) = U_1(y) = 1 \). It follows that the ordinary generating function of the matching polynomials \(U_n(y) \) is rational. In fact, it is easily seen that

\[
\sum_{n \geq 0} U_n(y)x^n = \frac{1}{1 - x - yx^2}. \tag{16}
\]

Now, the dichotomy caused by the membership of the edge \(\{1, n\} \) in the matchings of the cycle \(C_n \) leads to the relation

\[
T_n(y) = yU_{n-2}(y) + U_{n}(y), \tag{17}
\]

for \(n \geq 3 \). It is then a simple matter, using (16) and (17) to compute their ordinary generating function, denoted by \(G(x, y) \). We find

\[
G(x, y) = \sum_{n \geq 3} T_n(y)x^n = \frac{x^3(1 + 3y + yx + 2y^2x)}{1 - x - yx^2}. \tag{18}
\]

In fact, we also need to consider the **homogeneous matchings polynomials**

\[
T_n(y, z) = z^nT_n\left(\frac{y}{z}\right) = \sum_{\mu \in \mathcal{M}(C_n)} y^{\vert \mu \vert}z^{n-\vert \mu \vert}, \tag{19}
\]

where the variable \(z \) marks the edges which are not selected in the matchings, whose generating function \(G(x, y, z) = \sum_{n \geq 3} T_n(y, z)x^n \) is given by

\[
G(x, y, z) = G(xz, \frac{y}{z}) = \frac{x^3z^2(z + 3y + xyz + 2xy^2)}{1 - xz - x^2yz}. \tag{20}
\]

We now introduce the species \(BC \) of pairs \((c, \mu)\), where \(c \) is a cycle of length \(n \geq 3 \) and \(\mu \) is a matching of \(c \), with weight \(y^{\vert \mu \vert}z^{n-\vert \mu \vert} \). Since there are \(\frac{(n-1)!}{2} \) non-oriented cycles on a set of size \(n \geq 3 \), and all these cycles admit the same homogeneous matching polynomial
\(T_n(y, z) \), the mixed generating function of labelled \(BC \)-structures is

\[
BC(x, y, z) = \sum_{n \geq 3} \frac{(n - 1)!}{2} T_n(y, z) \frac{x^n}{n!} = \frac{1}{2} \sum_{n \geq 3} T_n(y, z) \frac{x^n}{n} = \frac{1}{2} \int_0^x \frac{1}{t} G(t, y, z) \, dt
\]

\[
= -\frac{2xz + 2x^2yz + x^2z^2 + 2\ln(1 - xz - x^2yz)}{4}.
\]

(21)

Notice that in a circular crown, the unsubstituted edges are not adjacent, by definition, and hence form a matching of the underlying cycle, while the substituted edges are replaced by \(K_5 \setminus e \)-networks. We can thus write

\[
CC = BC \uparrow_z (K_5 \setminus e),
\]

(22)

where the notation \(\uparrow_z \) means that only the edges marked by \(z \) are replaced by \(K_5 \setminus e \)-networks. Moreover the decomposition (22) is canonical and we have

\[
CC(x, y) = BC(x, y, (K_5 \setminus e)(x, y)),
\]

(23)

which implies (12) using (8).

A substitution of the generating function \(N_P(x, y) \) of (11) counting the strongly planar networks for the variable \(y \) in (6), (5), and (12) gives the generating function for labelled 2-connected non-planar toroidal graphs with no \(K_{3,3} \)-subdivision, i.e.

\[
T(x, y) = K_5(x, N_P(x, y)) + M(x, N_P(x, y)) + M^*(x, N_P(x, y)) + CC(x, N_P(x, y)).
\]

(24)

Notice that the term \(K_5(x, N_P(x, y)) \) in (24) also enumerates non-planar 2-connected \(K_{3,3} \)-subdivision-free projective-planar graphs and that corresponding tables are given in [9]. Here we present the computational results just for labelled graphs in \(T \) that are not projective-planar. Numerical results are presented in Tables 1 and 2, where

\[
T(x, y) - K_5(x, N_P(x, y)) = \sum_{n \geq 8} \sum_m t_{n,m} x^n y^m / n! \text{ and } t_n = \sum_m t_{n,m} \text{ count labelled non-projective-planar graphs in } T.
\]

The homeomorphically irreducible non-projective-planar graphs in \(T \), i.e. the graphs having no vertex of degree two, can be counted by using several methods described in detail in Section 4 of [9]. We used the approach of Proposition 8 of [9] to obtain the numerical data presented in Tables 3 and 4 for labelled homeomorphically irreducible graphs in \(T \) that are not projective-planar.

References

[1] T. Asano, “An approach to the subgraph homeomorphism problem”, Theoret. Comput. Sci. 38 (1985), 249–267.
[2] F. Bergeron, G. Labelle, and P. Leroux, *Combinatorial Species and Tree-like Structures*, Cambridge Univ. Press, 1998.

[3] E.A. Bender, Zh. Gao, and N.C. Wormald, “The number of labeled 2-connected planar graphs”, Electron. J. Combin. 9 (2002), Research Paper 43, 13 pp. (electronic).

[4] M. Bodirsky, C. Gröpl, and M. Kang, “Generating labeled planar graphs uniformly at random”, *Automata, languages and programming*, Lecture Notes in Comput. Sci., 2719, Springer, Berlin, 2003, 1095–1107.

[5] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, American Elsevier Publishing, New York, 1976.

[6] R. Diestel, *Graph Theory*, 2nd edition, Springer, 2000.

[7] M. Fellows and P. Kaschube, “Searching for $K_{3,3}$ in linear time”, *Linear and Multilinear Algebra*, 29 (1991), 279–290.

[8] A. Gagarin and W. Kocay, “Embedding graphs containing K_5-subdivisions”, *Ars Combin.* 64 (2002), 33–49.

[9] A. Gagarin, G. Labelle, and P. Leroux, "Counting labelled projective-planar graphs without a $K_{3,3}$-subdivision", submitted, arXiv:math.CO/0406140 (2004).

[10] C.D. Godsil, *Algebraic Combinatorics*, Chapman & Hall, New York, 1993.

[11] I.P. Goulden and D.M. Jackson, *Combinatorial Enumeration*, Wiley, New York, 1983.

[12] A.K. Kelmans, “Graph expansion and reduction”, *Algebraic methods in graph theory, Vol. I (Szeged, 1978)*, Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam-New York, 1981, 317–343.

[13] K. Kuratowski, “Sur le problème des courbes gauches en topologie”, *Fund. Math.* 15 (1930), 271–283.

[14] R.P. Stanley, *Enumerative Combinatorics*, Vol. 1, Wadsworth Brooks/Cole, Pacific Grove, CA, 1986. Reprinted in Cambridge Studies in Advanced Mathematics, 49, Cambridge Univ. Press, 1997.

[15] C. Thomassen, “The Jordan-Schönflies theorem and the classification of surfaces”, *Amer. Math. Monthly*, 99 (2002), no. 2, 116–131.

[16] K. Wagner, Über eine Erweiterung eines Satzes von Kuratowski, *Deutsche Math.* 2 (1937), 280–285. [German]

[17] T.R.S. Walsh, "Counting labelled three-connected and homeomorphically irreducible two-connected graphs", *J. Comb. Theory Ser. B*, 32 (1982), 1–11.

[18] H.S. Wilf, *Generatingfunctionology*, Academic, New York, 1990.
n	m	$t_{n,m}$	n	m	$t_{n,m}$	n	m	$t_{n,m}$
8	18	280	13	23	1838008972800	15	25	5973529161600000
8	19	280	13	24	12383684913600	15	26	60679359861120000
9	19	50400	13	25	36576568828800	15	27	2806191247860000000
9	20	93240	13	26	61986597472800	15	28	785754392485600000
9	21	47880	13	27	66199273620480	15	29	14961423286129200000
10	20	5292000	13	28	46419992138520	15	30	2068477720590481200
10	21	13044400	13	29	22180672954440	15	31	2175937397296462800
10	22	15510600	13	30	7737403073400	15	32	18101289969034272000
10	23	5972400	13	31	2053743892200	15	33	122324124356652400
10	24	239400	13	32	348540192000	15	34	6731543806125138000
11	21	426888000	13	33	27935107200	15	35	293316324401310000
11	22	1700899200	14	24	107217190080000	15	36	962956642177530000
11	23	272404400	14	25	896474952172800	15	37	2226049706380500000
11	24	213684240	14	26	335926561370400	15	38	3218036781960000000
11	25	773295600	14	27	7460402644094400	15	39	2182635655200000000
11	26	94386600	14	28	10948159170748800	16	26	3225705747264000000
11	27	7900200	14	29	11253868616390400	16	27	3914073529252560000
12	22	2945527200	14	30	84676026060225600	16	28	21877196871997440000
12	23	1555424600	14	31	48569516960656000	16	29	75157685291745220000
12	24	34841406000	14	32	22222453326984000	16	30	178928606393580650000
12	25	42429451600	14	33	78518737337040000	16	31	31623679286218835200
12	26	297599563800	14	34	19720831801680000	16	32	4354382548839420648000
12	27	118905448200	14	35	3106454542200000	16	33	4842535206589734384000
12	28	27683548200	14	36	2294786894400000	16	34	4455761048858447480000
12	29	4821201000	14	37	34198556200139638800	16	35	341985562001396388000
12	30	410810000	14	38	2168647220752412400000	16	36	34198556200139638800000
12	31	1110293723767938212500	16	37	444793568384905740000			
12	32	133746538216030470000	16	38	4447935683849057400000			
12	33	28310940294436880000	16	39	3753889677488000000			
12	34	2341717849496000000	16	40	375388967748800000000			

Table 1: The number of labelled non-planar non-projective-planar toroidal 2-connected graphs without a $K_{3,3}$-subdivision (having n vertices and m edges).
n	t_n
8	560
9	191520
10	42058800
11	7864256400
12	1407126890400
13	257752421166240
14	50607986220311520
15	10995419195575214400
16	2692773804667509763200
17	747221542837742897724800
18	233698171655650029030743040
19	8147276505132560093387934080
20	31268587126068905034073041062400

Table 2: The number of labelled non-planar non-projective-planar toroidal 2-connected $K_{3,3}$-subdivision-free graphs (having n vertices).
n	m	$t_{n,m}$						
8	18	230	14	26	605404800	16	29	5811886058000
8	19	230	14	27	2445751065600	16	30	621544891968000
9	19	6040	14	28	3601812854400	16	31	11935943091072000
10	20	2520	14	29	17840270448000	16	32	101350194001056000
10	22	22680	14	30	551333827044000	16	33	49937173276416000
10	23	46620	14	31	108994658572800	16	34	1611221546830896000
10	24	239400	14	32	131794531450000	16	35	3605404135132800000
11	23	10256400	15	28	1961511552000000	16	36	2967845927880834000
11	24	30492000	15	29	5753767219200000	16	37	1095216458946080000
11	25	1079416800	15	30	55718834371200000	16	38	2391904418904000000
11	26	3044487600	15	31	282795025312800000	16	39	1184982400602000000
12	24	1896048000	15	32	8936155496562800000	16	40	5738963267484144000
12	25	70794168000	15	33	389330165396957200000	16	41	11171878415312800000
12	26	30444876000	15	34	188861003030700000000	16	42	234171878419660000000
12	27	50806440000	15	35	766349001080320000000	16	43	573896326748414400000
12	28	208864860000	15	36	304448760000000000000	16	44	111718784153128000000
12	29	1079416800000	15	37	188861003030700000000	16	45	573896326748414400000
12	30	3044487600000	15	38	766349001080320000000	16	46	111718784153128000000
13	25	168648480000	15	39	282795025312800000000	16	47	573896326748414400000
13	26	228756280000	15	40	766349001080320000000	16	48	111718784153128000000
13	27	1266809544000	15	41	282795025312800000000	16	49	573896326748414400000
13	28	3826086294000	15	42	766349001080320000000	16	50	111718784153128000000

Table 3: The number of labelled non-planar non-projective-planar toroidal 2-connected $K_{3,3}$-subdivision-free graphs with no vertex of degree 2 (having n vertices and m edges).
n	t_n
8	560
9	5040
10	957600
11	123354000
12	16842764400
13	2764379217600
14	527554510282800
15	114387072403606000
16	2772856196888788000
17	74180318049678460000
18	2167306256125914230527200
19	685709965521372865035362400
20	233306923207078035272369412000

Table 4: The number of labelled non-planar non-projective-planar toroidal 2-connected $K_{3,3}$-subdivision-free graphs with no vertex of degree 2 (having n vertices).