Supplementary Materials for

Vaccine-mediated protection against *Campylobacter*-associated enteric disease

Benjamin K. Quintel, Kamm Prongay, Anne D. Lewis, Hans-Peter Raué, Sara Hendrickson, Nicholas S. Rhoades, Ilhem Messaoudi, Lina Gao, Mark K. Slifka*, Ian J. Amanna*

*Corresponding author. Email: iamanna@najittech.com (I.J.A.); slifkam@ohsu.edu (M.K.S.)

Published 24 June 2020, *Sci. Adv.* 6, eaba4511 (2020)
DOI: 10.1126/sciadv.aba4511

This PDF file includes:

- Figs. S1 and S2
- Tables S1 and S2
Supplementary Materials

Overview:
In these studies, NHP were vaccinated against *Campylobacter* and monitored for *C. coli* - and *C. jejuni*-associated diarrhea. Diarrheal disease among rhesus macaque breeding colonies is well-documented and *Campylobacter*-associated diarrheal disease is associated with moderate to severe colitis similar to human disease (Fig. S1). Phylogenetic analysis, based on whole genome sequencing (WGS), was performed using a sampling of banked *Campylobacter* isolates that had been collected over a four-year period encompassing the vaccination study. Samples were tested from both asymptomatic carriers, as well as RM experiencing *C. coli*-associated diarrhea, to assess the diversity of strains found within the study population. Results included 15 *C. coli* isolates as well as the original *C. coli* vaccine strain, NTICC13 (Fig. S2). While serotype information cannot be directly inferred, the phylogenetic tree suggests multiple distinct strains of *Campylobacter* circulating among both asymptomatic and hospitalized animals. In spite of this degree of *Campylobacter* diversity, a single strain of the H₂O₂-CampyC prototype *C. coli* vaccine was able to achieve significant protective efficacy. For both vaccine cohorts, demographic comparisons were performed between vaccinated animals and contemporary, shelter-housed control animals, with no significant differences observed (Table S1). Comparative studies with full-length flagellin genes demonstrated high protein sequence identity among primary isolates, as well as a *C. coli* reference sequence (Table S2). This suggests that in contrast to the variable LOS or CPS structures found among circulating *Campylobacter* strains, it is plausible that vaccine-mediated immune responses to flagellin and/or other highly conserved bacterial surface proteins may contribute to the vaccine efficacy observed in this model.
Fig. S1. Microscopic appearance of the intestinal tract of 9-month old infant rhesus macaques with and without chronic diarrheal disease. Top images are ileum (a), cecum (b) and ascending colon (c, d) from an animal with no history of diarrhea. Bottom images are ileum (e), cecum (f) and ascending colon (g, h) from an animal with multiple episodes of diarrhea, multiple fecal cultures positive for *Campylobacter coli* and linear growth stunting. The ileum is essentially the same between the normal (a) and diarrheic (e) monkeys. In contrast, the large intestine (f, g) of the diarrheic monkey exhibits marked mucosal hyperplasia, decreased numbers of goblet cells, and diffuse infiltration of inflammatory cells (neutrophils, lymphocytes, and plasma cells) in the lamina propria compared to the non-diarrheic monkey (b, c). At higher magnification, the superficial colonic mucosa of the normal monkey (d) is lined by uniform tall columnar enterocytes colonized by a single population of commensal bacteria. The superficial colonic mucosa of the diarrheic monkey (h) is lined by short, irregular enterocytes frequently disrupted by inflammatory cells (lymphocytes and neutrophils). Hematoxylin and eosin stain, scale bar 50 microns.
Fig. S2. Phylogenetic analysis of C. coli isolates demonstrates sequence diversity within the vaccine target population. Whole genome sequencing was performed with isolated C. coli cultures taken from asymptomatic carriers, as well as RM experiencing diarrheal disease. A phylogenetic tree was constructed based on a core genome alignment, using FastTree maximum likelihood via PATRICs’ Phylogenetic Tree Building service (www.patricbrc.org). The tree scale is based on likelihood distance. For each isolate, the animal identification number, health status and date of isolate collection are shown. For comparison, published C. jejuni (GenBank: CP005388.1) and C. coli (GenBank: CP017025.1) reference sequences were included in the analysis. The original isolate for the C. coli vaccine strain (animal ID 13-22) and the final vaccine stock were also tested, demonstrating high sequence identity despite multiple rounds of sub-passage between the samples. Genome sequence accession numbers are provided in the Data and Materials Availability section.
Table S1. Demographics of study animals

	2015 Cohort	2016 Cohort	P value³	2015 Cohort	2016 Cohort	P Value³
	H₂O₂-Campy_c Vaccinated¹	H₂O₂-Campy_c Controls²	P value³	H₂O₂-Campy_j Vaccinated¹	H₂O₂-Campy_j Controls²	P Value³
No. Animals Monitored per Group³	60	1645	-----	67	1538	-----
Average Population Size per Housing Unit (range)⁴	30 (27-33)	36 (11-57)	0.50	34 (26-41)	43 (23-72)	0.74
Female % (no.)	73% (44)	61% (645)	0.06	58% (39)	62% (946)	0.61
Infant & Juvenile, <4 yr % (no.)	70% (42)	72% (1178)	0.77	61% (41)	71% (1090)	0.10
Adult, ≥4 yr % (no.)	30% (18)	28% (467)	0.77	39% (26)	29% (448)	0.10

¹Although two shelters were processed for vaccination in each vaccine cohort, these shelters included a number of non-vaccinated animals that were either temporarily unavailable at the time of vaccination or infants born after the vaccination period. These animals were included as part of the unvaccinated control animals for each cohort.

²For both the H₂O₂-Campy_c and H₂O₂-Campy_j vaccine cohorts, the remaining unvaccinated shelter-housed animals were surveyed for demographic characteristics on the first day of sheltered housing risk. Unvaccinated controls for the H₂O₂-Campy_j vaccine study excluded H₂O₂-Campy_c vaccinated animals from the prior year.

³P values for average size per housing unit were calculated using an unpaired, two-tailed Student’s t-test. All other P-values were calculated using Fisher’s exact test.

⁴To assess housing size, all shelters were surveyed at the study start date.
Table S2. Flagellin sequence identity comparisons

Flagellin A

Date of Collection	Health Status	Sample ID	NTICC13 Vaccine Strain	C. coli 13-74	C. coli 15-29	C. coli 15-30	C. coli 16-21	C. coli 16-43	C. coli 18-75	C. coli 18-84	C. coli Reference	C. jejuni CG8421
07.25.13	Diarrhea	NTICC13	100%	100%	90.3%	90.3%	92.5%	90.1%	89.8%	92.6%	90.5%	96.0%
07.23.13	Diarrhea	NTICC13	C. coli 13-74	100%	90.3%	90.3%	92.5%	90.1%	89.8%	92.6%	90.5%	96.0%
04.20.15	Carrier	NTICC13	C. coli 15-29	100%	100%	89.4%	99.0%	98.8%	89.6%	99.8%	89.4%	
04.20.15	Carrier	NTICC13	C. coli 15-30	100%	89.4%	99.0%	98.8%	89.6%	99.8%	89.4%	89.4%	
04.22.16	Diarrhea	NTICC13	C. coli 16-21	100%	89.6%	89.1%	91.0%	89.4%	93.7%	89.4%	89.4%	
05.15.16	Diarrhea	NTICC13	C. coli 16-43	100%	98.8%	89.6%	98.8%	89.4%	89.6%	89.4%	89.4%	
04.13.18	Carrier	NTICC13	C. coli 18-75	100%	100%	88.9%	96.0%	89.6%	91.3%	88.9%	88.9%	
04.24.18	Carrier	NTICC13	C. coli 18-84	100%	89.8%	91.3%	89.6%	93.7%	88.9%	88.9%	88.9%	
Reference		NTICC13									100%	100%

Flagellin B

Date of Collection	Health Status	Sample ID	NTICC13 Vaccine Strain	C. coli 13-74	C. coli 15-29	C. coli 15-30	C. coli 16-21	C. coli 16-43	C. coli 18-75	C. coli 18-84	C. coli Reference	C. jejuni CG8421
07.25.13	Diarrhea	NTICC13	100%	100%	89.4%	89.4%	92.7%	89.4%	89.1%	92.9%	89.3%	97.0%
07.23.13	Diarrhea	NTICC13	C. coli 13-74	100%	89.4%	89.4%	92.7%	89.4%	89.1%	92.9%	89.3%	97.0%
04.20.15	Carrier	NTICC13	C. coli 15-29	100%	100%	88.9%	97.6%	98.1%	89.8%	98.6%	88.9%	
04.20.15	Carrier	NTICC13	C. coli 15-30	100%	88.9%	97.6%	98.1%	89.8%	98.6%	88.9%	88.9%	
04.22.16	Diarrhea	NTICC13	C. coli 16-21	100%	89.8%	89.2%	92.2%	89.1%	94.8%	89.1%	94.8%	
05.15.16	Diarrhea	NTICC13	C. coli 16-43	100%	99.5%	89.9%	99.0%	89.3%	89.3%	89.3%	89.3%	
04.13.18	Carrier	NTICC13	C. coli 18-75	100%	90.1%	99.5%	88.9%	89.3%	89.3%	89.3%	89.3%	
04.24.18	Carrier	NTICC13	C. coli 18-84	100%	90.1%	99.5%	88.9%	89.3%	89.3%	89.3%	89.3%	
Reference		NTICC13									100%	100%

1. Amino acid percent identity comparisons were performed for isolates with complete flaA or flaB gene sequences. Genome sequence accession numbers are provided in the Data and Materials Availability section.
2. GenBank: CP017025.1, locus tags CC14983A_0418 (flaA) and CC14983A_0419 (flaB)
3. GenBank: CP005388.1, locus tags CJ8421_06685 (flaA) and CJ8421_06680 (flaB)