Everything you wanted to know about Data Analysis and Fitting
but were afraid to ask

Peter Young
(Dated: May 3, 2014)

These notes discuss, in a style intended for physicists, how to average data and fit it to
some functional form. I try to make clear what is being calculated, what assumptions are
being made, and to give a derivation of results rather than just quote them. The aim is
put a lot useful pedagogical material together in a convenient place. This manuscript is a
substantial enlargement of lecture notes I prepared for the Bad Honnef School on “Efficient
Algorithms in Computational Physics”, September 10–14, 2012.

Contents

I. Introduction 2

II. Averages and error bars 3
 A. Basic Analysis 3
 B. Advanced Analysis 10
 1. Traditional method 11
 2. Jackknife 13
 3. Bootstrap 15
 4. Jackknife or Bootstrap? 18

III. Fitting data to a model 19
 A. Fitting to a straight line 21
 B. Fitting to a polynomial 22
 C. Error Bars 23
 D. Fitting to a non-linear model 28
 E. Confidence limits 29
 F. Confidence limits by resampling the data 33
 G. A tale of two probabilities. When can one rule out a fit? 34

A. Central Limit Theorem 36
I. INTRODUCTION

These notes describe how to average and fit numerical data that you have obtained, presumably by some simulation.

Typically you will generate a set of values $x_i, y_i, \cdots, i = 1, \cdots N$, where N is the number of measurements. The first thing you will want to do is to estimate various average values, and determine error bars on those estimates. As we shall see, this is straightforward if one wants to compute a single average, e.g. $\langle x \rangle$, but not quite so easy for more complicated averages such
as fluctuations in a quantity, $\langle x^2 \rangle - \langle x \rangle^2$, or combinations of measured values such as $\langle y \rangle / \langle x \rangle^2$. Averaging of data will be discussed in Sec. II.

Having obtained several good data points with error bars, you might want to fit this data to some model. Techniques for fitting data will be described in the second part of these notes in Sec. III.

I find that the books on these topics usually fall into one of two camps. At one extreme, the books for physicists don’t discuss all that is needed and rarely prove the results that they quote. At the other extreme, the books for mathematicians presumably prove everything but are written in a style of lemmas, proofs, ε’s and δ’s, and unfamiliar notation, which is intimidating to physicists. One exception, which finds a good middle ground, is Numerical Recipes [1] and the discussion of fitting given here is certainly influenced by Chap. 15 of that book. In these notes I aim to be fairly complete and also to derive the results I use, while the style is that of a physicist writing for physicists. I also include scripts in python, perl, and gnuplot to perform certain tasks in data analysis and fitting. For these reasons, these notes are perhaps rather lengthy. Nonetheless, I hope, that they will provide a useful reference.

II. AVERAGES AND ERROR BARS

A. Basic Analysis

A reference for the material in this subsection is the book by Taylor [2].

Suppose we have a set of data from a simulation, x_i, ($i = 1, \cdots, N$), which we shall refer to as a sample of data. This data will have some random noise so the x_i are not all equal. Rather they are governed by a distribution $P(x)$, which we don’t know.

The distribution is normalized,

$$\int_{-\infty}^{\infty} P(x) \, dx = 1,$$

and is usefully characterized by its moments, where the n-th moment is defined by

$$\langle x^n \rangle = \int_{-\infty}^{\infty} x^n \, P(x) \, dx.$$

We will denote the average over the exact distribution by angular brackets. Of particular interest are the first and second moments from which one forms the mean μ and variance σ^2, by

$$\mu \equiv \langle x \rangle$$

$$\sigma^2 \equiv \langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2.$$
The term “standard deviation” is used for σ, the square root of the variance.

In this section we will estimate the mean $\langle x \rangle$, and the uncertainty in our estimate, from the N data points x_i. The determination of more complicated averages and resulting error bars will be discussed in Sec. II B.

In order to obtain error bars we need to assume that the data are uncorrelated with each other. This is a crucial assumption, without which it is very difficult to proceed. However, it is not always clear if the data points are truly independent of each other; some correlations may be present but not immediately obvious. Here, we take the usual approach of assuming that even if there are some correlations, they are sufficiently weak so as not to significantly perturb the results of the analysis. In Monte Carlo simulations, measurements which differ by a sufficiently large number of Monte Carlo sweeps will be uncorrelated. More precisely the difference in sweep numbers should be greater than a “relaxation time”. This is exploited in the “binning” method in which the data used in the analysis is not the individual measurements, but rather an average over measurements during a range of Monte Carlo sweeps, called a “bin”. If the bin size is greater than the relaxation time, results from adjacent bins will be (almost) uncorrelated. A pedagogical treatment of binning has been given by Ambegaokar and Troyer [3]. Alternatively, one can do independent Monte Carlo runs, reequilibrating each time, and use, as individual data in the analysis, the average from each run.

The information from the data is usefully encoded in two parameters, the sample mean \overline{x} and the sample standard deviation s which are defined by

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i , \quad (4a)$$

$$s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2 . \quad (4b)$$

In statistics, notation is often confusing but crucial to understand. Here, an average indicated by an over-bar, $\overline{...}$, is an average over the sample of N data points. This is to be distinguished from an exact average over the distribution $\langle ... \rangle$, as in Eqs. (3a) and (3b). The latter is, however, just a theoretical construct since we don’t know the distribution $P(x)$, only the set of N data points x_i.

1 The factor of $N - 1$ rather than N in the expression for the sample variance in Eq. (4b) needs some comment. Firstly, the final answer for the error bar on the mean, Eq. (16) below, will be independent of how the intermediate quantity s^2 is defined. Secondly, the N terms in Eq. (4b) are not all independent since \overline{x}, which depends on all the x_i, is subtracted. Rather, as will be discussed more in the section on fitting, Sec. III, there are really only $N - 1$ independent variables (called the “number of degrees of freedom” in the fitting context) and so dividing by $N - 1$ rather than N has a rational basis. However, this is not essential and some authors divide by N in their definition of the sample variance.
which have been sampled from it.

Next we derive two simple results which will be useful later:

1. The mean of the sum of \(N \) independent variables \textit{with the same distribution} is \(N \) times the mean of a single variable, and

2. The variance of the sum of \(N \) independent variables \textit{with the same distribution} is \(N \) times the variance of a single variable.

The result for the mean is obvious since, defining \(X = \sum_{i=1}^{N} x_i \),

\[
\mu_X \equiv \langle X \rangle = \sum_{i=1}^{N} \langle x_i \rangle = N \langle x_i \rangle = N \mu. \tag{5}
\]

The result for the standard deviation needs a little more work:

\[
\sigma_X^2 \equiv \langle X^2 \rangle - \langle X \rangle^2 \tag{6a}
\]

\[
= \sum_{i,j=1}^{N} (\langle x_ix_j \rangle - \langle x_i \rangle \langle x_j \rangle) \tag{6b}
\]

\[
= \sum_{i=1}^{N} (\langle x_i^2 \rangle - \langle x_i \rangle^2) \tag{6c}
\]

\[
= N \left(\langle x^2 \rangle - \langle x \rangle^2 \right) \tag{6d}
\]

\[
= N\sigma^2. \tag{6e}
\]

To get from Eq. (6b) to Eq. (6c) we note that, for \(i \neq j \), \(\langle x_ix_j \rangle = \langle x_i \rangle \langle x_j \rangle \) since \(x_i \) and \(x_j \) are assumed to be statistically independent. (This is where the statistical independence of the data is needed.)

If the means and standard deviations are not all the same, then the above results generalize to

\[
\mu_X = \sum_{i=1}^{N} \mu_i, \tag{7a}
\]

\[
\sigma_X^2 = \sum_{i=1}^{N} \sigma_i^2. \tag{7b}
\]

Now we describe an important thought experiment. Let’s \textit{suppose} that we could repeat the set of \(N \) measurements \textit{very many} many times, each time obtaining a value of the sample average \(\bar{x} \). From these results we could construct a distribution, \(\hat{P}(\bar{x}) \), for the sample average as shown in Fig. 1.
FIG. 1: The distribution of results for the sample mean \bar{x} obtained by repeating the measurements of the N data points x_i many times. The average of this distribution is μ, the exact average value of x. The mean, \bar{x}, obtained from one sample of data typically differs from μ by an amount of order σ_x, the standard deviation of the distribution $\tilde{P}(x)$.

If we do enough repetitions we are effectively averaging over the exact distribution. Hence the average of the sample mean, \bar{x}, over very many repetitions of the data, is given by

$$\langle \bar{x} \rangle = \frac{1}{N} \sum_{i=1}^{N} \langle x_i \rangle = \langle x \rangle \equiv \mu,$$

i.e. it is the exact average over the distribution of x, as one would intuitively expect, see Fig. 1. Eq. (8) also follows from Eq. (5) by noting that $\bar{x} = X/N$.

In fact, though, we have only the one set of data, so we can not determine μ exactly. However, Eq. (8) shows that

$$\text{the best estimate of } \mu \text{ is } \bar{x},$$

i.e. the sample mean, since averaging the sample mean over many repetitions of the N data points gives the true mean of the distribution, μ. An estimate like this, which gives the exact result if averaged over many repetitions of the experiment, is said to be unbiased.

We would also like an estimate of the uncertainty, or “error bar”, in our estimate of \bar{x} for the exact average μ. We take $\sigma_{\bar{x}}$, the standard deviation in \bar{x} (obtained if one did many repetitions of
the N measurements), to be the uncertainty, or error bar, in \bar{x}. The reason is that σ_x is the width of the distribution $\tilde{P}(x)$, shown in Fig. 1, so a single estimate \bar{x} typically differs from the exact result μ by an amount of this order. The variance σ_x^2 is given by

$$\sigma_x^2 \equiv \langle x^2 \rangle - \langle x \rangle^2 = \frac{\sigma^2}{N},$$

(10)

which follows from Eq. (6e) with $\bar{x} = X/N$.

The problem with Eq. (10) is that we don’t know σ^2 since it is a function of the exact distribution $P(x)$. We do, however, know the sample variance s^2, see Eq. (4b), and the average of this over many repetitions of the N data points, is equal to σ^2 since

$$\langle s^2 \rangle = \frac{1}{N-1} \sum_{i=1}^{N} \langle x_i^2 \rangle - \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=1}^{N} \langle x_i x_j \rangle$$

(11a)

$$= \frac{N}{N-1} \langle x^2 \rangle - \frac{1}{N(N-1)} [N(N-1)\langle x \rangle^2 + N\langle x^2 \rangle]$$

(11b)

$$= [\langle x^2 \rangle - \langle x \rangle^2]$$

(11c)

$$= \sigma^2.$$

(11d)

To get from Eq. (11a) to Eq. (11b), we have separated the terms with $i = j$ in the last term of Eq. (11a) from those with $i \neq j$, and used the fact that each of the x_i is chosen from the same distribution and is statistically independent of the others. It follows from Eq. (11d) that

the best estimate of σ^2 is s^2,

(12)

since averaging s^2 over many repetitions of N data points gives σ^2. The estimate for σ^2 in Eq. (12) is therefore unbiased. Note that the expression for s^2 in Eq. (4a) is a sum of positive terms, so it is “self-averaging”, which means that the deviation of the result for one sample of N data points from the average over many data sets (σ^2 in this case) tends to zero for $N \to \infty$.

Combining Eqs. (10) and (12) gives

the best estimate of σ_x^2 is $\frac{s^2}{N}$,

(13)

since this estimate is also unbiased. We have now obtained, using only information from the data, that the mean is given by

$$\mu = \bar{x} \pm \sigma_x,$$

(14)

where

$$\sigma_x = \frac{s}{\sqrt{N}}.$$

(15)
which we can write explicitly in terms of the data points as

$$\sigma_\overline{x} = \left[\frac{1}{N(N-1)} \sum_{i=1}^{N} (x_i - \overline{x})^2 \right]^{1/2}.$$ \hspace{1cm} (16)

Remember that \overline{x} and s are the mean and standard deviation of the (one set) of data that is available to us, see Eqs. (4a) and (4b).

As an example, suppose $N = 5$ and the data points are

$$x_i = 10, 11, 12, 13, 14,$$

(not very random looking data it must be admitted!). Then, from Eq. (4a) we have $\overline{x} = 12$, and from Eq. (4b)

$$s^2 = \frac{1}{4} \left[(-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 \right] = \frac{5}{2}.$$ \hspace{1cm} (18)

Hence, from Eq. (15),

$$\sigma_\overline{x} = \frac{1}{\sqrt{5}} \sqrt{\frac{5}{2}} = \frac{1}{\sqrt{2}}.$$ \hspace{1cm} (19)

so

$$\mu = \overline{x} \pm \sigma_\overline{x} = 12 \pm \frac{1}{\sqrt{2}}.$$ \hspace{1cm} (20)

How does the error bar decrease with the number of statistically independent data points N? Equation (11d) shows that s^2 does not vary systematically with N, and so from Eq. (15) we see that

the error bar in the mean goes down like $1/\sqrt{N}$.

Hence, to reduce the error bar by a factor of 10 one needs 100 times as much data. This is discouraging, but is a fact of life when dealing with random noise.

For Eq. (15) to be really useful we need to know the probability that the true answer μ lies more than $\sigma_\overline{x}$ away from our estimate \overline{x}. Fortunately, for large N, the central limit theorem, derived in Appendix A, tells us (for distributions where the first two moments are finite) that the distribution of \overline{x} is a Gaussian. For this distribution we know that the probability of finding a result more than one standard deviation away from the mean is 32%, more than two standard deviations is 4.5% and more than three standard deviations is 0.3%. Hence we expect that most of the time \overline{x} will be within $\sigma_\overline{x}$ of the correct result μ, and only occasionally will be more than two times $\sigma_\overline{x}$ from
it. Even if N is not very large, so there are some deviations from the Gaussian form, the above numbers are often a reasonable guide.

However, as emphasized in appendix A, distributions which occur in nature typically have much more weight in the tails than a Gaussian. As a result, the weight in the tails of the distribution of the sum can also be much larger than for a Gaussian even for quite large values of N, see Fig. 6. It follows that the probability of an “outlier” can be much higher than that predicted for a Gaussian distribution, as anyone who has invested in the stock market knows well!

We conclude this subsection by discussing the situation when there are several random variables, x, y, z, \cdots, for which we generate a sample of data: (x_i, y_i, z_i, \cdots) with $i = 1, 2, \cdots, N$. We indicate the means and standard deviations of the different variables by suffixes, i.e.

$$\mu_x \equiv \langle x \rangle$$

$$\sigma_x^2 \equiv \langle x^2 \rangle - \langle x \rangle^2,$$ \hspace{1cm} (21a)

for averages over the exact distribution, and

$$s_x^2 \equiv \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2.$$ \hspace{1cm} (22)

for the sample variance. The main new feature is the appearance of cross-correlations between different variables. One defines the “covariance” of x and y by

$$\text{Cov}(x, y) \equiv \langle xy \rangle - \langle x \rangle \langle y \rangle = \langle (x - \langle x \rangle)(y - \langle y \rangle) \rangle,$$ \hspace{1cm} (23)

It is convenient to have a more compact notation for the covariance, analogous to that in Eq. (21b) for the variance. I use the notation σ_{xy}^2 for the covariance of x and y, i.e.

$$\sigma_{xy}^2 \equiv \langle (x - \langle x \rangle)(y - \langle y \rangle) \rangle,$$ \hspace{1cm} (24)

This notation is not ideal since there is no guarantee that the covariance σ_{xy}^2 is positive.\(^2\) The standard notation is to write the covariance of x and y as σ_{xy} (no square), but I find this even more confusing.

By analogy to Eq. (24) I write the sample covariance of x and y as

$$s_{xy}^2 \equiv \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y}).$$ \hspace{1cm} (25)

\(^2\) One should therefore think of σ_{xy}^2 as a single quantity, rather than the square of something, just as χ^2, discussed extensively in the section on fitting below, is never regarded as the square of an object called χ. Admittedly, though, χ^2 can not be negative.
B. Advanced Analysis

In Sec. II A we learned how to estimate a simple average, such as $\mu_x \equiv \langle x \rangle$, plus the error bar in that quantity, from a set of data x_i. Trivially this method also applies to a linear combination of different averages, μ_x, μ_y, \cdots etc. However, we often need more complicated, non-linear functions of averages. One example is the fluctuations in a quantity, i.e. $\langle x^2 \rangle - \langle x \rangle^2$. Another example is a dimensionless combination of moments, which gives information about the shape of a distribution independent of its overall scale. Such quantities are very popular in finite-size scaling (FSS) analyses since the FSS form is simpler than for quantities with dimension. An popular example, first proposed by Binder, is $\langle x^4 \rangle / \langle x^2 \rangle^2$, which is known as the “kurtosis” (frequently a factor of 3 is subtracted to make it zero for a Gaussian).

Hence, in this section we consider how to determine non-linear functions of averages of one or more variables, $f(\mu_y, \mu_z, \cdots)$, where

$$\mu_y \equiv \langle y \rangle,$$

(26)

etc. For example, the two quantities mentioned in the previous paragraph correspond to

$$f(\mu_y, \mu_z) = \mu_y - \mu_z^2,$$

(27)

with $y = x^2$ and $z = x$ and

$$f(\mu_y, \mu_z) = \frac{\mu_y}{\mu_z^2},$$

(28)

with $y = x^4$ and $z = x^2$.

The natural estimate of $f(\mu_y, \mu_z)$ from the sample data is clearly $f(\bar{y}, \bar{z})$. However, it will take some more thought to estimate the error bar in this quantity. The traditional way of doing this is called “error propagation”, described in Sec. II B1 below and Ch. 3 of Ref. [2]. However, it is now more common to use either “jackknife” or “bootstrap” procedures, described in Secs. II B2 and II B3. At the price of some additional computation, which is no difficulty when done on a modern computer (though it would have been tedious in the old days when statistics calculations were done by hand), these methods automate the calculation of the error bar.

In addition, the estimate of $f(\mu_y, \mu_z)$ turns out to have some bias if f is a non-linear function. Usually this is small effect because it is order $1/N$, see for example Eq. (34) below, whereas the statistical error is of order $1/\sqrt{N}$. Since N is usually large, the bias is generally much less than the statistical error and so can generally be neglected. In any case, the jackknife and bootstrap
methods also enable one to eliminate the leading ($\sim 1/N$) contribution to the bias in an automatic fashion.

1. Traditional method

First we will discuss the traditional method, known as error propagation [2], to compute the error bar and bias. We expand $f(\mu_y, \mu_z)$ up to second order in the deviations:

$$f(\mu_y, \mu_z) = f(\mu_y, \mu_z) + (\partial_{\mu_y} f) \delta_{\mu_y} + (\partial_{\mu_z} f) \delta_{\mu_z} + \frac{1}{2} (\partial_{\mu_y}^2 f) \delta_{\mu_y}^2 + (\partial_{\mu_y} \partial_{\mu_z} f) \delta_{\mu_y} \delta_{\mu_z} + \frac{1}{2} (\partial_{\mu_z}^2 f) \delta_{\mu_z}^2 + \cdots,$$

(29)

where

$$\delta_{\mu_y} = \mu_y - \mu_y,$$

(30)

etc.

The terms of first order in the δ’s in Eq. (29) give the leading contribution to the error, but would average to zero if the procedure were to be repeated many times. However, the terms of second order do not average to zero and so give the leading contribution to the bias. We now estimate that bias.

Averaging Eq. (29) over many repetitions, and noting that

$$\langle \delta_{\mu_y}^2 \rangle = \langle \delta_{\mu_z}^2 \rangle = \sigma_{\mu_y}^2,$$

$$\langle \delta_{\mu_y} \delta_{\mu_z} \rangle = \langle \mu_{\mu_y} \mu_{\mu_z} \rangle,$$

(31)

we get

$$\langle f(\mu_y, \mu_z) \rangle - f(\mu_y, \mu_z) = \frac{1}{2} (\partial_{\mu_y}^2 f) \sigma_{\mu_y}^2 + \frac{1}{2} (\partial_{\mu_z}^2 f) \sigma_{\mu_z}^2 + \frac{1}{2} (\partial_{\mu_y} \partial_{\mu_z} f) \sigma_{\mu_y} \sigma_{\mu_z} + \cdots.$$

(32)

As shown in Eq. (13) $\sigma_{\mu_y}^2$ is N^{-1} times the average sample variance $\langle s_{\mu_y}^2 \rangle$. Furthermore, as noted below Eq. (12), $s_{\mu_y}^2$ is self averaging, which means that the difference between the value of $s_{\mu_y}^2$ from one data set and the average over all data sets, $\sigma_{\mu_y}^2$, tends to zero for $N \to \infty$. Hence we can replace $\sigma_{\mu_y}^2$ by $N^{-1} s_{\mu_y}^2$, and similarly replace $\sigma_{\mu_z}^2$ by $N^{-1} s_{\mu_z}^2$. In the same way, we can replace $\sigma_{\mu_y} \sigma_{\mu_z}$ by $N^{-1} s_{\mu_y \mu_z}$, the sample covariance of y and z, defined in Eq. (25). Hence, from Eq. (32), we have

$$f(\mu_y, \mu_z) = \langle f(\mu_y, \mu_z) \rangle - \frac{1}{N} \left[\frac{1}{2} (\partial_{\mu_y}^2 f) s_{\mu_y}^2 + (\partial_{\mu_y} \partial_{\mu_z} f) s_{\mu_y \mu_z}^2 + \frac{1}{2} (\partial_{\mu_z}^2 f) s_{\mu_z}^2 \right] + \cdots.$$

(33)

The leading contribution to the bias is the $1/N$ term. It follows from Eq. (33) that if one wants to eliminate the leading contribution to the bias one should

$$\text{estimate } f(\mu_y, \mu_z) \text{ from } f(\mu_y, \mu_z) - \frac{1}{N} \left[\frac{1}{2} (\partial_{\mu_y}^2 f) s_{\mu_y}^2 + (\partial_{\mu_y} \partial_{\mu_z} f) s_{\mu_y \mu_z}^2 + \frac{1}{2} (\partial_{\mu_z}^2 f) s_{\mu_z}^2 \right].$$

(34)
As claimed earlier, the bias correction is of order $1/N$. Note that it vanishes if f is a linear function, as shown in Sec. II A. The generalization to functions of more than two averages, $f(\mu_y, \mu_z, \mu_w, \cdots)$, is obvious.

Next we discuss the leading error in using $f(\bar{y}, \bar{z})$ as an estimate for $f(\mu_y, \mu_z)$. This comes from the terms linear in the δ’s in Eq. (29). Just including these terms we have

$$
\langle f(\bar{y}, \bar{z}) \rangle = f(\mu_y, \mu_z),
$$

(35a)

$$
\langle f^2(\bar{y}, \bar{z}) \rangle = f^2(\mu_y, \mu_z) + (\partial_{\mu_y} f)^2 \langle \delta^2_y \rangle + 2(\partial_{\mu_y} f)(\partial_{\mu_z} f) \langle \delta_y \delta_z \rangle + (\partial_{\mu_z} f)^2 \langle \delta^2_z \rangle.
$$

(35b)

Hence

$$
\sigma_f^2 \equiv \langle f^2(\bar{y}, \bar{z}) \rangle - \langle f(\bar{y}, \bar{z}) \rangle^2
= (\partial_{\mu_y} f)^2 \langle \delta^2_y \rangle + 2(\partial_{\mu_y} f)(\partial_{\mu_z} f) \langle \delta_y \delta_z \rangle + (\partial_{\mu_z} f)^2 \langle \delta^2_z \rangle.
$$

(36)

As above, we use s^2_{yy}/N as an estimate of $\langle \delta^2_y \rangle$ and similarly for the other terms. Hence

the best estimate of σ_f^2 is

$$
\frac{1}{N} (\partial_{\mu_y} f)^2 s^2_y + 2(\partial_{\mu_y} f)(\partial_{\mu_z} f) s^2_{yz} + (\partial_{\mu_z} f)^2 s^2_z.
$$

(37)

This estimate is unbiased to leading order in N. Note that we need to keep track not only of fluctuations in y and z, characterized by their variances s^2_y and s^2_z, but also cross correlations between y and z, characterized by their covariance s^2_{yz}.

Hence, still to leading order in N, we get

$$
f(\mu_y, \mu_z) = f(\bar{y}, \bar{z}) \pm \sigma_f,
$$

(38)

where we estimate the error bar σ_f from Eq. (37) which shows that it is of order $1/\sqrt{N}$. The generalization to functions of more than two averages is obvious.

Note that in the simple case studied in Sec. II A where $f(\mu_x)$ is a linear function, $f = \mu_x$, Eq. (33) tells us that there is no bias, which is correct, and Eq. (37) gives an expression for the error bar which agrees with Eq. (15).

In Eqs. (34) and (37) we need to keep track how errors in the individual quantities like \bar{y} propagate to the estimate of the function f. This requires inputting by hand the various partial derivatives into the analysis program, and keeping track of all the variances and covariances. In the next two sections we see how resampling the data automatically takes account of error propagation without needing to input the partial derivatives and keep track of variances and covariances. There are two resampling approaches, called jackknife and bootstrap, and each provide a fully automatic method of determining error bars and bias.
2. Jackknife

We define the i-th jackknife estimate, $y_i^J (i = 1, 2, \cdots, N)$ to be the average over all data in the sample except the point i, i.e.

$$y_i^J = \frac{1}{N-1} \sum_{j \neq i} y_j.$$

(39)

We also define corresponding jackknife estimates of the function f (again for concreteness we will assume that f is a function of just 2 averages but the generalization will be obvious):

$$f_i^J \equiv f(y_i^J, z_i^J).$$

(40)

In other words, we use the jackknife values, y_i^J, z_i^J, rather than the sample means, \bar{y}, \bar{z}, as the arguments of f. For example a jackknife estimate of the Binder ratio $\langle x^4 \rangle / \langle x^2 \rangle^2$ is

$$f_i^J = \frac{(N-1)^{-1} \sum_{j \neq i} x_j^4}{(N-1)^{-1} \sum_{j \neq i} x_j^2}.$$

(41)

The overall jackknife estimate of $f(\mu_y, \mu_z)$ is then the average over the N jackknife estimates f_i^J:

$$\overline{f^J} \equiv \frac{1}{N} \sum_{i=1}^{N} f_i^J.$$

(42)

It is straightforward to show that if f is a linear function of μ_y and μ_z then $\overline{f^J} = f(\bar{y}, \bar{z})$, i.e. the jackknife and standard averages are identical. However, when f is not a linear function, so there is bias, there is a difference, and we will now show the resampling carried out in the jackknife method can be used to determine bias and error bars in an automated way.

We proceed as for the derivation of Eq. (33), which we now write as

$$f(\mu_y, \mu_z) = \langle f(\bar{y}, \bar{z}) \rangle - A \frac{1}{N} - B \frac{1}{N^2} + \cdots ,$$

(43)

where A is the term in rectangular brackets in Eq. (33), and we have added the next order correction. The jackknife data sets have $N - 1$ points with the same distribution as the N points in the actual distribution, and so the bias in the jackknife average will be of the same form, with the same values of A and B, but with N replaced by $N - 1$, i.e.

$$f(\mu_y, \mu_z) = \overline{f^J} - A \frac{1}{N - 1} - B \frac{1}{(N - 1)^2} \cdots .$$

(44)

We can therefore eliminate the leading contribution to the bias by forming an appropriate linear combination of $f(\bar{y}, \bar{z})$ and $\overline{f^J}$, namely

$$f(\mu_y, \mu_z) = N \langle f(\bar{y}, \bar{z}) \rangle - (N - 1)\langle f^J \rangle + O \left(\frac{1}{N^2} \right).$$

(45)
It follows that, to eliminate the leading bias without computing partial derivatives, one should estimate \(f(\mu_y, \mu_z) \) from \(Nf(\overline{y}, \overline{z}) - (N - 1)f^J \).

The bias is then of order \(1/N^2 \). However, as mentioned earlier, bias is usually not a big problem because, even without eliminating the leading contribution, the bias is of order \(1/N \) whereas the statistical error is of order \(1/\sqrt{N} \) which is much bigger if \(N \) is large. In most cases, therefore, \(N \) is sufficiently large that one can use either the usual average \(f(\overline{y}, \overline{z}) \), or the jackknife average \(f^J \) in Eq. (42), to estimate \(f(\mu_y, \mu_z) \), since the difference between them will be much smaller than the statistical error. In other words, elimination of the leading bias using Eq. (46) is usually not necessary.

Next we show that the jackknife method gives error bars, which agree with Eq. (37) but without the need to explicitly keep track of the partial derivatives and the variances and covariances.

We define the variance of the jackknife averages by

\[
 s^2_{f^J} \equiv (f^J)^2 - \left(\overline{f^J} \right)^2 \, ,
\]

where

\[
(\overline{f^J})^2 = \frac{1}{N} \sum_{i=1}^{N} (f^J_i)^2 \, . \quad (48)
\]

Using Eqs. (40) and (42), we expand \(\overline{f^J} \) away from the exact result \(f(\mu_y, \mu_z) \). Just including the leading contribution gives

\[
 \overline{f^J} - f(\mu_y, \mu_z) = \frac{1}{N} \sum_{i=1}^{N} \left[(\partial_{\mu_y} f) (y_i' - \mu_y) + (\partial_{\mu_z} f) (z_i' - \mu_z) \right]
\]

\[
 = \frac{1}{N(N - 1)} \sum_{i=1}^{N} \left[(\partial_{\mu_y} f) \left\{ N(\overline{y} - \mu_y) - (y_i - \mu_y) \right\} + (\partial_{\mu_z} f) \left\{ N(\overline{z} - \mu_z) - (z_i - \mu_z) \right\} \right]
\]

\[
 = (\partial_{\mu_y} f) (\overline{y} - \mu_y) + (\partial_{\mu_z} f) (\overline{z} - \mu_z) \, . \quad (49)
\]

Similarly we find

\[
 (\overline{f^J})^2 = \frac{1}{N} \sum_{i=1}^{N} \left[f(\mu_y, \mu_z) + (\partial_{\mu_y} f) (y_i' - \mu_y) + (\partial_{\mu_z} f) (z_i' - \mu_z) \right]^2
\]

\[
 = f^2(\mu_y, \mu_z) + 2f(\mu_y, \mu_z) \left[(\partial_{\mu_y} f) (\overline{y} - \mu_y) + (\partial_{\mu_z} f) (\overline{z} - \mu_z) \right]
\]

\[
 + (\partial_{\mu_y} f)^2 \left[(\overline{y} - \mu_y)^2 + \frac{s^2_y}{N(N - 1)} \right] + (\partial_{\mu_z} f)^2 \left[(\overline{z} - \mu_z)^2 + \frac{s^2_z}{N(N - 1)} \right]
\]

\[
 + 2(\partial_{\mu_y} f)(\partial_{\mu_z} f) \left\{ (\overline{y} - \mu_y)(\overline{z} - \mu_z) + \frac{s^2_yz}{N(N - 1)} \right\} \, . \quad (50)
\]
Hence, from Eqs. (47) and (49), the variance in the jackknife estimates is given by

\[s_{fJ}^2 = \frac{1}{N(N-1)} \left[(\partial_{\mu_y} f)^2 s_y^2 + (\partial_{\mu_z} f)^2 s_z^2 + 2(\partial_{\mu_y} f)(\partial_{\mu_z} f)s_{yz}^2 \right], \] (51)

which is just \(1/(N-1) \) times \(\sigma_f^2 \), the estimate of the square of the error bar in \(f(\overline{y},\overline{z}) \) given in Eq. (37). Hence

the jackknife estimate for \(\sigma_f \) is \(\sqrt{N-1} \ s_{fJ} \). (52)

Note that this is directly obtained from the jackknife estimates without having to put in the partial derivatives by hand. Note too that the \(\sqrt{N-1} \) factor is in the numerator whereas the factor of \(\sqrt{N} \) in Eq. (15) is in the denominator. Intuitively the reason for this difference is that the jackknife estimates are very close since they would all be equal except that each one omits just one data point.

If \(N \) is very large, roundoff errors could become significant from having to subtract large, almost equal, numbers to get the error bar from the jackknife method. It is then advisable to group the \(N \) data points into \(N_{\text{group}} \) groups (or “bins”) of data and take, as individual data points in the jackknife analysis, the average of the data in each group. The above results clearly go through with \(N \) replaced by \(N_{\text{group}} \).

To summarize this subsection, to estimate \(f(\mu_y, \mu_z) \) one can use either \(f(\overline{y}, \overline{z}) \) or the jackknife average \(\overline{f}^J \) in Eq. (42). The error bar in this estimate, \(\sigma_f \), is related to the standard deviation in the jackknife estimates \(s_{fJ} \) by Eq. (52).

3. Bootstrap

The bootstrap, like the jackknife, is a resampling of the \(N \) data points. Whereas jackknife considers \(N \) new data sets, each of containing all the original data points minus one, bootstrap uses \(N_{\text{boot}} \) data sets each containing \(N \) points obtained by random (Monte Carlo) sampling of the original set of \(N \) points. During the Monte Carlo sampling, the probability that a data point is picked is \(1/N \) irrespective of whether it has been picked before. (In the statistics literature this is called picking from a set “with replacement”.) Hence a given data point \(x_i \) will, on average, appear once in each Monte Carlo-generated data set, but may appear not at all, or twice, and so on. The probability that \(x_i \) appears \(n_i \) times is close to a Poisson distribution with mean unity. However, it is not exactly Poissonian because of the constraint in Eq. (53) below. It turns out that we shall need to include the deviation from the Poisson distribution even for large \(N \). We shall use the term “bootstrap” to denote the Monte Carlo-generated data sets.
More precisely, let us suppose that the number of times \(x_i \) appears in a bootstrap data set is \(n_i \). Since each bootstrap dataset contains exactly \(N \) data points, we have the constraint

\[
\sum_{i=1}^{N} n_i = N.
\]

(53)

Consider one of the \(N \) variables \(x_i \). Each time we generate an element in a bootstrap dataset the probability that it is \(x_i \) is \(1/N \), which we will denote by \(p \). From standard probability theory, the probability that \(x_i \) occurs \(n_i \) times is given by a binomial distribution

\[
P(n_i) = \frac{N!}{n_i!(N-n_i)!} p^{n_i} (1 - p)^{N-n_i}.
\]

(54)

The mean and standard deviation of a binomial distribution are given by

\[
[n_i]_{MC} = Np = 1,
\]

(55)

\[
[n_i^2]_{MC} - [n_i]_{MC}^2 = Np(1-p) = 1 - \frac{1}{N},
\]

(56)

where \([\ldots]_{MC}\) denotes an exact average over bootstrap samples (for a fixed original data set \(x_i \)).

For \(N \to \infty \), the binomial distribution goes over to a Poisson distribution, for which the factor of \(1/N \) in Eq. (56) does not appear. We assume that \(N_{\text{boot}} \) is sufficiently large that the bootstrap average we carry out reproduces this result with sufficient accuracy. Later, we will discuss what values for \(N_{\text{boot}} \) are sufficient in practice. Because of the constraint in Eq. (53), \(n_i \) and \(n_j \) (with \(i \neq j \)) are not independent and we find, by squaring Eq. (53) and using Eqs. (55) and (56), that

\[
[n_i n_j]_{MC} - [n_i]_{MC}[n_j]_{MC} = -\frac{1}{N} \quad (i \neq j).
\]

(57)

First of all we just consider the simple average \(\mu_x \equiv \langle x \rangle \), for which, of course, the standard methods in Sec. II A suffice, so bootstrap is not necessary. However, this will show how to get averages and error bars in a simple case, which we will then generalize to non-linear functions of averages.

We denote the average of \(x \) for a given bootstrap data set by \(x^B_\alpha \), where \(\alpha \) runs from 1 to \(N_{\text{boot}} \), i.e.

\[
x^B_\alpha = \frac{1}{N} \sum_{i=1}^{N} n_{i,\alpha} x_i.
\]

(58)

We then compute the bootstrap average of the mean of \(x \) and the bootstrap variance in the mean, by averaging over all the bootstrap data sets. We assume that \(N_{\text{boot}} \) is large enough for the
bootstrap average to be exact, so we can use Eqs. (56) and (57). The result is
\[\bar{x}_B \equiv \frac{1}{N_{\text{boot}}} \sum_{\alpha=1}^{N_{\text{boot}}} x^B_\alpha = \frac{1}{N} \sum_{i=1}^{N} [x^\text{MC}]_i x_i = \frac{1}{N} \sum_{i=1}^{N} x_i = \bar{x} \] (59)
\[s^2_{x_B} \equiv (\bar{x}_B)^2 - \left(\frac{\bar{x}_B}{N_{\text{boot}}} \right)^2 = \frac{1}{N^2} \left(1 - \frac{1}{N} \right) \sum_i x_i^2 - \frac{1}{N^3} \sum_{i \neq j} x_i x_j , \] (60)

where
\[\left(\frac{\bar{x}_B}{N_{\text{boot}}} \right)^2 \equiv \frac{1}{N_{\text{boot}}} \sum_{\alpha=1}^{N_{\text{boot}}} \left[(x^B_\alpha)^2 \right]_{\text{MC}} . \] (61)

We now average Eqs. (59) and (60) over many repetitions of the original data set \(x_i \). Averaging Eq. (59) gives
\[\langle \bar{x}_B \rangle = \langle \bar{x} \rangle = \langle x \rangle \equiv \mu_x . \] (62)
This shows that the bootstrap average \(\bar{x}_B \) is an unbiased estimate of the exact average \(\mu_x \). Averaging Eq. (60) gives
\[\langle s^2_{x_B} \rangle = N - 1 \frac{1}{N^2} \sigma^2 = N - 1 \frac{1}{N} \sigma^2_x , \] (63)
where we used Eq. (10) to get the last expression. Since \(\sigma_x \) is the uncertainty in the sample mean, we see that

```
the bootstrap estimate of \( \sigma_x \) is \( \sqrt{\frac{N}{N-1}} s_{x_B} \).
```

Remember that \(s_{x_B} \) is the standard deviation of the bootstrap data sets. Usually \(N \) is sufficiently large that the square root in Eq. (64) can be replaced by unity.

As for the jackknife, these results can be generalized to finding the error bar in some possibly non-linear function, \(f(\mu_y, \mu_z) \), rather than for \(\mu_x \). One computes the bootstrap estimates for \(f(\mu_y, \mu_z) \), which are
\[f^B_\alpha = f(y^B_\alpha, z^B_\alpha) . \] (65)
In other words, we use the bootstrap values, \(y^B_\alpha, z^B_\alpha \), rather than the sample means, \(\bar{y}, \bar{z} \), as the arguments of \(f \). The final bootstrap estimate for \(f(\mu_y, \mu_z) \) is the average of these, \(i.e. \)
\[\overline{f_B} = \frac{1}{N_{\text{boot}}} \sum_{\alpha=1}^{N_{\text{boot}}} f^B_\alpha . \] (66)
Following the same methods in the jackknife section, one obtains the error bar, σ_f, in $f(\mu_y, \mu_z)$. The result is

\[
\text{the bootstrap estimate for } \sigma_f \text{ is } \sqrt{\frac{N}{N-1}} s_{fB},
\]

(67)

where

\[
s_{fB}^2 = \overline{B(f_B)^2} - \left(\overline{f_B} \right)^2,
\]

(68)

is the variance of the bootstrap estimates. Here

\[
\overline{B(f_B)^2} = \frac{1}{N_{\text{boot}}} \sum_{\alpha=1}^{N_{\text{boot}}} (f_B^\alpha)^2.
\]

(69)

Usually N is large enough that the factor of $\sqrt{N/(N-1)}$ is Eq. (67) can be replaced by unity. Equation (67) corresponds to the result Eq. (64) which we derived for the special case of $f = \mu_x$.

Again, following the same path as in the jackknife section, it is straightforward to show that the bias of the estimates in Eqs. (66) and (67) is of order $1/N$ and so vanishes for $N \to \infty$. However, if N is not too large it may be useful to eliminate the leading contribution to the bias in the mean, as we did for jackknife in Eq. (46). The result is that one should

\[
\text{estimate } f(\mu_y, \mu_z) \text{ from } 2f(\overline{y}, \overline{z}) - f^B.
\]

(70)

The bias in Eq. (70) is of order $1/N^2$, whereas $f(\overline{y}, \overline{z})$ and f^B each have a bias of order $1/N$. However, it is not normally necessary to eliminate the bias since, if N is large, the bias is much smaller than the statistical error.

I have not systematically studied the values of N_{boot} that are needed in practice to get accurate estimates for the error. It seems that N_{boot} in the range 100 to 500 is typically chosen, and this seems to be adequate irrespective of how large N is.

To summarize this subsection, to estimate $f(\mu_y, \mu_z)$ one can either use $f(\overline{y}, \overline{z})$, or the bootstrap average in Eq. (66), and the error bar in this estimate, σ_f, is related to the standard deviation in the bootstrap estimates by Eq. (67).

4. Jackknife or Bootstrap?

The jackknife approach involves less calculation than bootstrap, and is fine for estimating combinations of moments of the measured quantities. Furthermore, identical results are obtained each time jackknife is run on the same set of data, which is not the case for bootstrap. However, the
range of the jackknife estimates is very much smaller, by a factor of \sqrt{N} for large N, than the scatter of averages which would be obtained from individual data sets, see Eq. (52). By contrast, for bootstrap, σ_{f_B}, which measures the deviation of the bootstrap estimates f^B_α from the result for the single actual data set $f(y, z)$, is equal to σ_f, the deviation of the average of a single data set from the exact result $f(\mu_y, \mu_z)$ (if we replace the factor of $N/(N-1)$ by unity, see Eq. (67)). This is the main strength of the bootstrap approach; it samples the full range of the distribution of the sample distribution. Hence, if you want to generate data which covers the full range then should use bootstrap. This is useful in fitting, see for example, Sec. III F. However, if you just want to generate error bars on combinations of moments quickly and easily, then use jackknife.

III. FITTING DATA TO A MODEL

A good reference for the material in this section is Chapter 15 of Numerical Recipes [1].

Frequently we are given a set of data points $(x_i, y_i), i = 1, 2, \ldots, N$, with corresponding error bars, σ_i, through which we would like to fit to a smooth function $f(x)$. The function could be straight line (the simplest case), a higher order polynomial, or a more complicated function. The fitting function will depend on M “fitting parameters”, a_α and we would like the “best” fit obtained by adjusting these parameters. We emphasize that a fitting procedure should not only

1. give the values of the fit parameters, but also
2. provide error estimates on those parameters, and
3. provide a measure of how good the fit is.

If the result of part 3 is that the fit is very poor, the results of parts 1 and 2 are probably meaningless.

The definition of “best” is not unique. However, the most useful choice, and the one nearly always taken, is “least squares”. For this case, one minimizes the weighted sum of the squares of the difference between the observed y-value, y_i, and the fitting function evaluated at x_i. The weight of each point depends on its error bar, since the fit should be more tightly bound to points with smaller error bars than to those with large error bars. The quantity to be minimized, called
\(\chi^2 \) ("chi-squared"),\(^3\) is defined by
\[
\chi^2 = \sum_{i=1}^{N} \left(\frac{y_i - f(x_i)}{\sigma_i} \right)^2.
\] (71)

A big advantage of least squares over other definitions of "best" fit is that for a linear model (see below) the equations which determine the fit parameters are themselves linear.

Often we assume that the distribution of the errors is Gaussian, since, according to the central limit theorem discussed in Appendix A, the sum of \(N \) independent random variables has a Gaussian distribution (under fairly general conditions) if \(N \) is large. However, distributions which occur in nature usually have more weight in the "tails" than a Gaussian, and as a result, even for moderately large values of \(N \), the probability of an "outlier" might be much bigger than expected from a Gaussian, see Fig. 6.

If the errors are distributed with a Gaussian distribution, and if \(f(x) \) has the exact values of the fit parameters, then \(\chi^2 \) in Eq. (71) is a sum of squares of \(N \) random variables with a Gaussian distribution with mean zero and standard deviation unity. However, when we have minimized the value of \(\chi^2 \) with respect to the \(M \) fitting parameters \(a_\alpha \) the terms are not all independent. It turns out, see Appendix B, that, at least for a linear model (which we define below), the distribution of \(\chi^2 \) at the minimum is that of the sum of the squares of \(N - M \) (not \(N \)) Gaussian random variables with zero mean and standard deviation unity\(^4\). We call \(N - M \) the "number of degrees of freedom" (\(N_{\text{DOF}} \)). The \(\chi^2 \) distribution is discussed in Appendix C. The formula for it is Eq. (C6).

The simplest problems are where the fitting function is a linear function of the parameters. We shall call this a linear model. Examples are a straight line (\(M = 2 \)),
\[
y = a_0 + a_1 x,
\] (72)
and an \((M-1)\)-th order polynomial,
\[
y = a_0 + a_1 x + a_2 x^2 + \cdots + a_{M-1} x^{M-1} = \sum_{\alpha=0}^{M-1} a_\alpha x^\alpha,
\] (73)
where the parameters to be adjusted are the \(a_\alpha \). (Note that we are not stating here that \(y \) has to be a linear function of \(x \), only of the fit parameters \(a_\alpha \).)

An example where the fitting function depends non-linearly on the parameters is
\[
y = a_0 x^{a_1} + a_2.
\] (74)

\(^3\) \(\chi^2 \) should be thought of as a single variable rather than the square of something called \(\chi \). This notation is standard.

\(^4\) Although this result is only valid if the fitting model is linear in the parameters, it is usually taken to be a reasonable approximation for non-linear models as well.
Linear models are fairly simple because, as we shall see below, the parameters are determined by linear equations, which, in general, have a unique solution that can be found by straightforward methods. However, for fitting functions which are non-linear functions of the parameters, the resulting equations are non-linear which may have many solutions or none at all, and so are much less straightforward to solve. We shall discuss fitting to both linear and non-linear models in these notes.

Sometimes a non-linear model can be transformed into a linear model by a change of variables. For example, if we want to fit to

\[y = a_0 x^{a_1}, \] (75)

which has a non-linear dependence on \(a_1 \), taking logs gives

\[\ln y = \ln a_0 + a_1 \ln x, \] (76)

which is a linear function of the parameters \(a_0' = \ln a_0 \) and \(a_1 \). Fitting a straight line to a log-log plot is a very common procedure in science and engineering. However, it should be noted that transforming the data does not exactly take Gaussian errors into Gaussian errors, though the difference will be small if the errors are “sufficiently small”. For the above log transformation this means \(\sigma_i/y_i \ll 1 \), i.e. the relative error is much less than unity.

A. Fitting to a straight line

To see how least squares fitting works, consider the simplest case of a straight line fit, Eq. (72), for which we have to minimize

\[\chi^2(a_0, a_1) = \sum_{i=1}^{N} \left(\frac{y_i - a_0 - a_1 x_i}{\sigma_i} \right)^2, \] (77)

with respect to \(a_0 \) and \(a_1 \). Differentiating \(\chi^2 \) with respect to these parameters and setting the results to zero gives

\[a_0 \sum_{i=1}^{N} \frac{1}{\sigma_i^2} + a_1 \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} = \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2}, \] (78a)

\[a_0 \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} + a_1 \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} = \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2}. \] (78b)

We write this as

\[U_{00} a_0 + U_{01} a_1 = v_0, \] (79a)

\[U_{10} a_0 + U_{11} a_1 = v_1, \] (79b)
where

\[U_{\alpha\beta} = \sum_{i=1}^{N} \frac{x_i^{\alpha+\beta}}{\sigma_i^2}, \quad \text{and} \]

\[v_{\alpha} = \sum_{i=1}^{N} \frac{y_i x_i^{\alpha}}{\sigma_i^2}. \]

The matrix notation, while an overkill here, will be convenient later when we do a general polynomial fit. Note that \(U_{10} = U_{01} \). (More generally, later on, \(U \) will be a symmetric matrix). Equations (79) are two linear equations in two unknowns. These can be solved by eliminating one variable, which immediately gives an equation for the second one. The solution can also be determined from

\[a_{\alpha} = \sum_{\beta=0}^{M-1} (U^{-1})_{\alpha\beta} v_{\beta}, \]

(82)

(where we have temporarily generalized to a polynomial of order \(M - 1 \)). For the straight-line fit, the inverse of the \(2 \times 2 \) matrix \(U \) is given, according to standard rules, by

\[U^{-1} = \frac{1}{\Delta} \begin{pmatrix} U_{11} & -U_{01} \\ -U_{01} & U_{00} \end{pmatrix}, \]

(83)

where

\[\Delta = U_{00} U_{11} - U_{01}^2, \]

(84)

and we have noted that \(U \) is symmetric so \(U_{01} = U_{10} \). The solution for \(a_0 \) and \(a_1 \) is therefore given by

\[a_0 = \frac{U_{11} v_0 - U_{01} v_1}{\Delta}, \]

(85a)

\[a_1 = \frac{-U_{01} v_0 + U_{00} v_1}{\Delta}. \]

(85b)

We see that it is straightforward to determine the slope, \(a_1 \), and the intercept, \(a_0 \), of the fit from Eqs. (80), (81), (84) and (85) using the \(N \) data points \((x_i, y_i)\), and their error bars \(\sigma_i \).

B. Fitting to a polynomial

Frequently we need to fit to a higher order polynomial than a straight line, in which case we minimize

\[\chi^2(a_0, a_1, \cdots, a_{M-1}) = \sum_{i=1}^{N} \left(\frac{y_i - \sum_{\alpha=0}^{M-1} a_{\alpha} x_i^{\alpha}}{\sigma_i} \right)^2 \]

(86)
with respect to the M parameters a_α. Setting to zero the derivatives of χ^2 with respect to the a_α gives

$$
\sum_{\beta=0}^{M-1} U_{\alpha\beta} a_\beta = v_\alpha,
$$

(87)

where $U_{\alpha\beta}$ and v_α have been defined in Eqs. (80) and (81). Eq. (87) represents M linear equations, one for each value of α. Their solution is again given by Eq. (82), i.e. it is expressed in terms of the inverse matrix U^{-1}.

C. Error Bars

In addition to the best fit values of the parameters we also need to determine the error bars in those values. Interestingly, this information is also contained in the matrix U^{-1}.

First of all, we explain the significance of error bars in fit parameters. We assume that the data is described by a model with a particular set of parameters \vec{a}^{true} which, unfortunately, we don’t know. If we were, somehow, to have many real data sets each one would give a different set of fit parameters $\vec{a}^{(i)}$, $i = 0, 1, 2, \ldots$, because of noise in the data, clustered about the true set \vec{a}^{true}. Projecting on to a single fit parameter, a_1 say, there will be a distribution of values $P(a_1)$ centered on a_1^{true} with standard deviation σ_1, see the top part of Fig. 2. Typically the value of a_1 obtained from our one actual data set, $a_1^{(0)}$, will lie within about σ_1 of a_1. Hence we define the error bar to be σ_1.

Unfortunately, we can’t determine the error bar this way because we have only one actual data set, which we denote here by $y_i^{(0)}$ to distinguish it from other data sets that we will introduce. Our actual data set gives one set of fit parameters, which we call $\vec{a}^{(0)}$. Suppose, however, we were to generate many simulated data sets from one which is available to us, by generating random values (possibly with a Gaussian distribution though this won’t be necessary yet) centered at the y_i with standard deviation σ_i. Fitting each simulated dataset would give different values for \vec{a}, clustered now about $\vec{a}^{(0)}$, see the bottom part of Fig. (2). We now come to an important, but rarely discussed, point:

For a linear model the standard deviation of the fit parameters of these simulated data sets about $\vec{a}^{(0)}$, is equal to the standard deviation of the fit parameters of real data
FIG. 2: The top figure shows the distribution of one of the fit parameters a_1 if one could obtain many real data sets. The distribution has standard deviation σ_1 about the true value a_1^{true} and is Gaussian if the noise on the data is Gaussian. In fact, however, we have only one actual data set which has fit parameter $a_1^{(0)}$, and this typically lies within about σ_1 of a_1^{true}. Hence we define the error bar on the estimate of a_1^{true} to be σ_1. However, we cannot calculate σ_1 directly from the distribution of $a_1^{(0)}$ because we have only one value, $a_1^{(0)}$. However, we can generate many simulated data sets from the one actual set and hence we can estimate the standard deviation, σ_1^S, of the distribution of the resulting fit parameter a_1^S, which is shown in the lower figure. This distribution is centered about the value from the actual data, $a_1^{(0)}$, and has standard deviation, σ_1^S. The important point is that if one assumes a linear model then one can show that $\sigma_1^S = \sigma_1$, see text. Even if the model is non linear, one usually assumes that the difference in the standard deviations is sufficiently small that one can still equate the true error bar with the standard deviation from the simulated data sets. We emphasize that the error bar quoted by fitting programs is actually σ_1^S, and this is assumed to equal σ_1. Furthermore, as shown in Appendices E and F, if the noise on the data is Gaussian (and the model is linear) both the distributions in this figure are also Gaussian.

sets \vec{a} about \vec{a}^{true}. The latter is what we really want to know (since it is our estimate of the error bar on \vec{a}^{true}) but can’t determine directly. See Fig. 2 for an illustration.

This result is also applicable to a non-linear model if it can be represented by an effective linear model for the needed range of parameters about the minimum of χ^2.

Furthermore, we show in Appendices E and F that if the noise on the data is Gaussian (and the model is linear), the two distributions in Fig. (2) are also both Gaussian.

We shall now prove this result. As stated above, to derive the error bars in the fit parameters we take simulated values of the data points, y_i^S, which vary by some amount δy_i^S about $y_i^{(0)}$, i.e.
\[\delta y_i^S = y_i^S - y_i^{(0)}, \] with a standard deviation given by the error bar \(\sigma_i \). The fit parameters of this simulated data set, \(\vec{a}^S \), then deviate from \(\vec{a}^{(0)} \) by an amount \(\delta \vec{a}^S \) where

\[\delta a_{\alpha}^S = \sum_{i=1}^{N} \frac{\partial a_{\alpha}}{\partial y_i} \delta y_i^S. \] (88)

Averaging over fluctuations in the \(y_i^S \) we get the variance of \(a_{\alpha}^S \) to be

\[(\sigma_{\alpha}^S)^2 \equiv \left< (\delta a_{\alpha}^S)^2 \right> = \sum_{i=1}^{N} \sigma_i^2 \left(\frac{\partial a_{\alpha}}{\partial y_i} \right)^2, \] (89)

since \(\left< (\delta y_i^S)^2 \right> = \sigma_i^2 \), and the data points \(y_i \) are statistically independent. Writing Eq. (82) explicitly in terms of the data values,

\[a_{\alpha} = \sum_{\beta} (U^{-1})_{\alpha \beta} \sum_{i=1}^{N} \frac{y_i x_i^\beta}{\sigma_i^2}, \] (90)

and noting that \(U \) is independent of the \(y_i \), we get

\[\frac{\partial a_{\alpha}}{\partial y_i} = \sum_{\beta} (U^{-1})_{\alpha \beta} \frac{x_i^\beta}{\sigma_i^2}. \] (91)

Substituting into Eq. (89) gives

\[(\sigma_{\alpha}^S)^2 = \sum_{\beta, \gamma} (U^{-1})_{\alpha \beta} (U^{-1})_{\alpha \gamma} \left[\sum_{i=1}^{N} \frac{x_i^{\beta+\gamma}}{\sigma_i^2} \right]. \] (92)

The term in rectangular brackets is just \(U_{\beta \gamma} \), and since \(U \) is given by Eq. (80) and is symmetric, the last equation reduces to

\[(\sigma_{\alpha}^S)^2 = (U^{-1})_{\alpha \alpha}. \] (93)

Recall that \(\sigma_{\alpha}^S \) is the standard deviation of the fitted parameter values about the \(\vec{a}^{(0)} \) when constructing simulated data sets from the one set of data that is available to us.

However, the error bar is defined to be the standard deviation the fitted parameter values would have relative to \(a_{\alpha}^{\text{true}} \) if we could average over many actual data sets. To determine this quantity we simply repeat the above calculation with \(\delta y_i = y_i - y_i^{\text{true}} \) in which \(y_i \) is the value of the \(i \)-th data point in one of the actual data sets. Since \(U \) is a constant (for a linear model) equations (88) to (93) go through unchanged simply omitting the superscript \(S \)'s. The (unknown) values of \(y_i^{\text{true}} \) never enter. In other words

\[\sigma_{\alpha}^2 = (U^{-1})_{\alpha \alpha}. \] (94)
FIG. 3: An example of a straight-line fit to a set of data with error bars.

which shows that $\sigma^s_\alpha = \sigma_s$ for a linear model. However, this equality does not hold precisely for fitting to a non-linear model. We have therefore showed that the diagonal elements of the covariance matrix U^{-1} give the square of the errors bar in the fit parameters.

In addition to error bars, we also need a parameter to describe the quality of the fit. A useful quantity is the probability that, given the fit, the data could have occurred with a χ^2 greater than or equal to the value found. This is generally denoted by Q and is given by Eq. (C9) assuming the data have Gaussian noise. Note that the effects of non-Gaussian statistics is to increase the probability of outliers, so fits with a fairly small value of Q, say around 0.01, may be considered acceptable. However, fits with a very small value of Q should not be trusted and the values of the fit parameters are probably meaningless in these cases.

For the case of a straight line fit, the inverse of U is given explicitly in Eq. (83). Using this information, and the values of (x_i, y_i, σ_i) for the data in Fig. 3, the fit parameters (assuming a
straight line fit) are

\[a_0 = 0.84 \pm 0.32, \quad (95) \]

\[a_1 = 2.05 \pm 0.11, \quad (96) \]

in which the error bars on the fit parameters on \(a_0 \) and \(a_1 \), which are denoted by \(\sigma_0 \) and \(\sigma_1 \), are determined from Eq. (94). The data was generated by starting with \(y = 1 + 2x \) and then adding some noise with zero mean. Hence the fit should be consistent with \(y = 1+2x \) within the error bars, and it is. The value of \(\chi^2 \) is 7.44 so \(\chi^2/N_{\text{DOF}} = 7.44/9 = 0.866 \) and the quality of fit parameter, given by Eq. (C9), is \(Q = 0.592 \) which is good.

We call \(U^{-1} \) the “covariance matrix”. Its off-diagonal elements are also useful since they contain information about correlations between the fitted parameters. More precisely, one can show, following the lines of the above derivation of \(\sigma^2_\alpha \), that the correlation of fit parameters \(\alpha \) and \(\beta \), known mathematically as their “covariance”, is given by the appropriate off-diagonal element of the covariance matrix,

\[\text{Cov}(\alpha, \beta) \equiv \langle \delta a_\alpha \delta a_\beta \rangle = (U^{-1})_{\alpha\beta}. \quad (97) \]

The correlation coefficient, \(r_{\alpha\beta} \), which is a dimensionless measure of the correlation between \(\delta a_\alpha \) and \(\delta a_\beta \) lying between \(-1 \) and 1, is given by

\[r_{\alpha\beta} = \frac{\text{Cov}(\alpha, \beta)}{\sigma_\alpha \sigma_\beta}. \quad (98) \]

A good fitting program should output the correlation coefficients as well as the fit parameters, their error bars, the value of \(\chi^2/N_{\text{DOF}} \), and the goodness of fit parameter \(Q \).

So far we have considered a polynomial fit, which is a particular case of a linear model. If we fit to a general linear model, writing

\[f(x) = \sum_{\alpha=1}^{M} a_\alpha X_\alpha(x), \quad (99) \]

where \(X_1(x), X_2(x), \ldots, X_M(x) \) a fixed functions of \(x \) called basis functions, the matrix \(U \) is given by

\[U_{\alpha\beta} = \sum_{i=1}^{N} \frac{X_\alpha(x_i) X_\beta(x_i)}{\sigma_i^2}. \quad (100) \]

Similarly, the quantities \(v_\alpha \) in Eq. (81) become

\[v_\alpha = \sum_{i=1}^{N} \frac{y_i X_\alpha(x_i)}{\sigma_i^2}, \quad (101) \]
and, as before, the best fit parameters are given by the solution of the M linear equations

$$\sum_{\beta=1}^{M} U_{\alpha\beta} a_{\beta} = v_{\alpha},$$ \hspace{1cm} (102)

for $\alpha = 1, 2, \ldots, M$.

For a linear model, χ^2 is a quadratic function of the fit parameters and so the elements of the “curvature matrix”\(^5\), $(1/2) \partial^2 \chi^2 / \partial a_{\alpha} \partial a_{\beta}$ are constants, independent of the values of the fit parameters. In fact, we see from Eqs. (71), (99) and (100) that

$$\frac{1}{2} \frac{\partial^2 \chi^2}{\partial a_{\alpha} \partial a_{\beta}} = U_{\alpha\beta},$$ \hspace{1cm} (103)

so the curvature matrix is equal to U, given by Eq. (100) (Eq. (80) for a polynomial fit). Note that for a linear model the curvature matrix U is a constant, independent of the fit parameters and data values. However, U is not constant for a non-linear model.

* D. Fitting to a non-linear model

As for linear models, one minimizes χ^2 in Eq. (71). The difference is that the resulting equations are non-linear so there might be many solutions or non at all. Techniques for solving the coupled non-linear equations invariably require specifying an initial value for the variables a_{α}. The most common method for fitting to non-linear models is the Levenberg-Marquardt (LM) method, see e.g. Numerical Recipes [1]. Implementing the Numerical Recipes code for LM is a little complicated because it requires the user to provide a routine for the derivatives of χ^2 with respect to the fit parameters as well as for χ^2 itself, and to check for convergence. Alternatively, one can use the fitting routines in the scipy package of python or use gnuplot. But see the comments in Appendix D about getting the error bars in the parameters correct, which apply when fitting to linear as well as non-linear models. Gnuplot and scipy scripts for fitting to a non-linear model are given in Appendix G.

One difference from fitting to a linear model is that the curvature matrix, defined by the LHS of Eq. (103), is not constant but is a function of the fit parameters. Hence it is no longer true that the standard deviations of the two distributions in Fig. 2 are equal. However, it still generally assumed that the difference is small enough to be unimportant and hence that the covariance matrix, which is now defined to be the inverse of the curvature matrix at the minimum of χ^2, still

\footnote{It is conventional to include the factor of 1/2.}
gives information about error bars on the fit parameters. This is discussed more in the next two subsections, in which we point out, however, that a more detailed analysis is needed if the model is non-linear and the spread of fitted parameters is sufficiently large that it cannot be represented by an effective linear model, i.e. χ^2 is not well fitted by a parabola over the needed range of parameter values.

As a reminder:

- The curvature matrix is defined in general by the LHS of Eq. (103), which, for a linear model, is equivalent to Eq. (100) (Eq. (80) for a polynomial fit.)

- The covariance matrix is the inverse of the curvature matrix. For a linear model this matrix is constant, independent of the fit parameters or data values. However, for a non-linear model this is no longer true and we are then interested in the covariance matrix at the minimum of χ^2. Its diagonal elements give error bars on the fit parameters according to Eq. (94) (but see the caveat in the previous paragraph for non-linear models) and its off-diagonal elements give correlations between fit parameters according to Eqs. (97) and (98).

E. Confidence limits

In the last two subsections we showed that the diagonal elements of the covariance matrix give an error bar on the fit parameters. In this section we extend the notion of error bar to embrace the concept of a “confidence limit”.

There is a theorem [1] which states that, for a linear model, if we take simulated data sets assuming Gaussian noise in the data about the actual data points, and compute the fit parameters $\vec{a}^{S(i)}, i = 1, 2, \ldots$ for each data set, then the probability distribution of the \vec{a}^{S} is given by the multi-variable Gaussian distribution

$$ P(\vec{a}^{S}) \propto \exp \left(-\frac{1}{2} \sum_{\alpha,\beta} \delta a_{\alpha}^{S} U_{\alpha\beta} \delta a_{\beta}^{S} \right), $$

where $\delta \vec{a}^{S} \equiv \vec{a}^{S(i)} - \vec{a}^{(0)}$ and U, given by Eq. (100), is the curvature matrix which can also be defined in terms of the second derivative of χ^2 according to Eq. (103). A proof of this result is given in Appendix E. It applies for a linear model with Gaussian noise, and also for a non-linear model if the uncertainties in the parameters do not extend outside a region where an effective linear model could be used. (In the latter case one still needs a non-linear routine to find the best parameters).
Note that for a non-linear model, U is not a constant and it is the curvature at the minimum of χ^2 which has to be put into Eq. (104).

From Eq. (103) the change in χ^2 as the parameters are varied away from the minimum is given by

$$\Delta \chi^2 \equiv \chi^2(\vec{a}^S) - \chi^2(\vec{a}^{(0)}) = \sum_{\alpha,\beta} \delta a^S_{\alpha} U_{\alpha\beta} \delta a^S_{\beta},$$

in which the χ^2 are all evaluated from the single (actual) data set $y^{(0)}_i$. Equation (104) can therefore be written as

$$P(\vec{a}^S) \propto \exp \left(-\frac{1}{2} \Delta \chi^2 \right).$$

We remind the reader that in deriving Eq. (106) we have assumed the noise in the data is Gaussian and that either the model is linear or, if non-linear, the uncertainties in the parameters do not extend outside a region where an effective linear model could be used.

Hence the probability of a particular deviation, $\delta \vec{a}^S$, of the fit parameters in a simulated data set away from the parameters in the actual data set, depends on how much this change increases χ^2 (evaluated from the actual data set) away from the minimum. In general a “confidence limit” is the range of fit parameter values such that $\Delta \chi^2$ is less than some specified value. The simplest case, and the only one we discuss here, is the variation of one variable at a time, though multi-variate confidence limits can also be defined, see Numerical Recipes [1].

We therefore consider the change in χ^2 when one variable, a^S_1 say, is held at a specified value, and all the others ($\beta = 2, 3, \cdots, M$) are varied in order to minimize χ^2. Minimizing $\Delta \chi^2$ in Eq. (105) with respect to a^S_{β} gives

$$\sum_{\gamma=1}^{\gamma=M} U_{\beta\gamma} \delta a^S_{\gamma} = 0, \quad (\beta = 2, 3, \cdots, M).$$

(107)

The corresponding sum for $\beta = 1$, namely $\sum_{\gamma=1}^{\gamma=M} U_{1\gamma} \delta a^S_{\gamma}$, is not zero because δa_1 is fixed. It will be some number, c say. Hence we can write

$$\sum_{\gamma=1}^{\gamma=M} U_{\alpha\gamma} \delta a^S_{\gamma} = c_{\alpha}, \quad (\alpha = 1, 2, \cdots, M),$$

(108)

where $c_1 = c$ and $c_{\beta} = 0 (\beta \neq 1)$. The solution is

$$\delta a^S_{\alpha} = \sum_{\beta=1}^{M} (U^{-1})_{\alpha\beta} c_{\beta} = (U^{-1})_{\alpha1} c.$$

(109)
For $\alpha = 1$ this gives

$$c = \delta a_1^S / (U^{-1})_{11}.$$ \hspace{1cm} (110)

Substituting Eq. (109) into Eq. (105), and using Eq. (110) we find that $\Delta \chi^2$ is related to $(\delta a_1^S)^2$ by

$$\Delta \chi^2 = \frac{(\delta a_1^S)^2}{(U^{-1})_{11}}.$$ \hspace{1cm} (111)

(Curiously, the coefficient of $(\delta a_1)^2$ is one over the 11 element of the inverse of U, rather than U_{11} which is how it appears in Eq. (105) in which the $\beta \neq 1$ parameters are free rather than adjusted to minimize χ^2.)

From Eq. (106) we finally get

$$P(a_1^S) \propto \exp \left(-\frac{1}{2} \frac{(\delta a_1^S)^2}{\sigma_1^2} \right),$$ \hspace{1cm} (112)

where

$$\sigma_1^2 = (U^{-1})_{11}.$$ \hspace{1cm} (113)

As shown in Appendices E and F, Eqs. (104), (106) and (112) also apply, under the same conditions (linear model and Gaussian noise on the data) to the probability for $\delta a_1 \equiv a_1^{\text{true}} - a_1^{(0)}$, where we remind the reader that $a_1^{(0)}$ is the fit parameter obtained from the actual data, and a_1^{true} is the exact value. In other words the probability of the true value is given by

$$P(a_1^{\text{true}}) \propto \exp \left(-\frac{1}{2} \Delta \chi^2 \right),$$ \hspace{1cm} (114)

where

$$\Delta \chi^2 \equiv \chi^2(a_1^{\text{true}}) - \chi^2(a_1^{(0)}),$$ \hspace{1cm} (115)

in which we remind the reader that both values of χ^2 are evaluated from the single set of data available to us, $y_i^{(0)}$. Projecting onto a single parameter, as above, gives

$$P(a_1^{\text{true}}) \propto \exp \left(-\frac{1}{2} \frac{(\delta a_1)^2}{\sigma_1^2} \right),$$ \hspace{1cm} (116)

so $\langle (\delta a_1)^2 \rangle = \sigma_1^2 = (U^{-1})_{11}$, in agreement with what we found earlier in Eq. (94). We emphasize that Eqs. (114) and (116) assume Gaussian noise on the data points, and either the model is linear or, if non-linear, that the range of uncertainty in the parameters is small enough that a description in terms of an effective linear model is satisfactory.
FIG. 4: **Left:** The change in χ^2 as a fit parameter a_1 is varied away from the value that minimizes χ^2 for a linear model. The shape is a parabola for which $\Delta \chi^2 = 1$ when $\delta a = \pm \sigma_1$, where σ_1 is the error bar.

Right: The solid curve is a sketch of the change in χ^2 for a non-linear model. The curve is no longer a parabola and is not even symmetric. The dashed curve is a parabola which fits the solid curve at the minimum. The fitting program only has information about the local behavior at the minimum and so gives an error range $\pm \sigma_1$ at which the value of the parabola is 1. However, the parameter a_1 is clearly more tightly constrained on the plus side than on the minus side, and a better way to determine the error range is to look globally and locate the values of δa_1 where $\Delta \chi^2 = 1$. This gives an error bar σ_1^+ on the plus side, and a different error bar, σ_1^-, on the minus side, both of which are different from σ_1.

However we have done more than recover our earlier result, Eq. (94), by more complicated means since we have gained additional information. From the properties of a Gaussian distribution we now know that, from Eq. (116), the probability that a_α lies within one standard deviation σ_α of the value which minimizes χ^2 is 68%, the probability of its being within two standard deviations is 95.5%, and so on. Furthermore, from Eq. (114), we see that

\[
\text{if a single fit parameter is one standard deviation away from its value at the minimum of } \chi^2 \text{ (the other fit parameters being varied to minimize } \chi^2), \text{ then } \Delta \chi^2 = 1.
\]

This last sentence, and the corresponding equations Eqs. (114) and (116), are not valid for a non-linear model if the uncertainties of the parameters extends outside the range where an effective linear model can be used. In this situation, to get confidence limits, one should do a bootstrap resampling of the data, as discussed in the next subsection.
However, if one is not able to resample the data we argue that it is better to take the range where $\Delta \chi^2 \leq 1$ as an error bar for each parameter rather than the error bar determined from the curvature of χ^2 at the minimum, see Fig. 4. The left hand plot is for a linear model, for which the curve of $\Delta \chi^2$ against δa_1 is exactly a parabola, and the right hand plot is a sketch for a non-linear model, for which it is not a parabola though it has a quadratic variation about the minimum shown by the dashed curve. For the linear case, the values of δa_1 where $\Delta \chi^2 = 1$ are the same as the values $\pm \sigma_1$, where σ_1 is the standard error bar obtained from the local curvature in the vicinity of the minimum. However, for the non-linear case, the values of δa_1 where $\Delta \chi^2 = 1$ are different from $\pm \sigma_1$, and indeed the values on the positive and negative sides, σ_1^+ and σ_1^-, are not equal. For the data Fig. 4, it is clear that the value of a_1 is more tightly constrained on the positive side than the negative side, and so it is better to give the error bars as $+\sigma_1^+$ and $-\sigma_1^-$, obtained from the range where $\Delta \chi^2 \leq 1$, rather the symmetric range $\pm \sigma_1$. While it is plausible that the range where $\Delta \chi^2 \leq 1$ is a reasonable estimate of the uncertainty in the fit parameter, one can not assign a precise confidence limit to it. If possible, error bars and a confidence limit should be obtained from an alternative approach, a bootstrap resampling of the data as discussed in the next section.

F. Confidence limits by resampling the data

More work is involved if one wants to get error bars and a confidence interval in the case where the model is non-linear and the range of parameter uncertainty extends outside the region where an effective linear model is adequate. Even for a linear model, we cannot convert $\Delta \chi^2$ into a confidence limit with a specific probability if the noise is non-Gaussian.

Now each data point (x_i, y_i) with its error bar σ_i, comes from averaging over N_i values of “raw data” whose mean is y_i and whose standard deviation gives σ_i according to Eq. (15). If one has access to the raw data, one can obtain error bars and confidence limits as follows.

From Monte Carlo sampling of the raw data, as discussed in Sec. II.B.3, one generates bootstrap data sets in which the data points have values $y_{i,\alpha}^B$, where α runs from 1 to N_{boot}, the number of bootstrap data sets. The distribution of the $y_{i,\alpha}^B$ for a given i has a standard deviation equal to the estimate of standard deviation on the mean of the actual data set, i.e. σ_i, see Eq. (67) (replacing the factor of $\sqrt{N/(N-1)}$ by unity which is valid since N is large in practice). Hence, if we fit each of the N_{boot} bootstrap data sets, the scatter of the fitted parameter values will be a measure of the uncertainty in the values from the single actual dataset. Forming a histogram of the values of a single parameter we can obtain a confidence interval within which 68%, say, of the bootstrap
datasets lie (16% missing on either side) and interpret this range as a 68% confidence limit for the actual parameter value. The justification for this interpretation has been discussed in the statistics literature, see e.g. the references in Ref. [1], but I’m not able to go into the details here. Note that this bootstrap approach could also be applied usefully for a linear model if the noise is not Gaussian.

Unfortunately, use of the bootstrap procedure to get error bars in fits to non-linear models does not yet seem to be a standard procedure in the statistical physics community.

Another possibility for a non-linear model, if one is confident that the noise is close to Gaussian, is to generate simulated data sets, assuming Gaussian noise on the y_i values with standard deviation given by the error bars σ_i. Each simulated dataset is fitted and the distribution of fitted parameters is determined. This corresponds to the analytical approach in Appendix E but without the assumption that the model can be represented by an effective linear one over of the needed parameter range.

G. A tale of two probabilities. When can one rule out a fit?

In this section we assume that the noise on the data is Gaussian. We have, so far, considered two different probabilities. Firstly, as discussed in Appendix C, the value of χ^2 is typically in the range $N_{\text{DOF}} \pm \sqrt{2N_{\text{DOF}}}$. The quality of fit parameter Q is the probability that, given the fit, the data could have this value of χ^2 or greater, and is given mathematically by Eq. (C9). It varies from unity when $\chi^2 \ll N_{\text{DOF}} - \sqrt{2N_{\text{DOF}}}$ to zero when $\chi^2 \gg N_{\text{DOF}} + \sqrt{2N_{\text{DOF}}}$. In other words Q only changes substantially if χ^2 changes by an amount of order $\sqrt{N_{\text{DOF}}}$. We emphasize that Q is the probability of the data given the fit.

Secondly, in the context of error bars and confidence limits, we have discussed, in Eqs. (114) and (116), the probability that a fit parameter, a_1 say, takes a certain value relative to the optimal one. Equation (114) tells us that the relative probability of two fits changes substantially when χ^2 varies by unity. Note that Eqs. (114) and (116) refer to the relative probabilities of two fits, given the data.

At first it seems curious that Q needs a much bigger change in χ^2 to change significantly than does the relative probability of two fits $(\sqrt{N_{\text{DOF}}}$ rather than 1). While there is no mathematical inconsistency, since the two probabilities refer to different situations (one is the probability of the
FIG. 5: **Left:** A straight-line fit to a data set. The value of Q is reasonable. However, one notices that the data is systematically above the fit for small x and for large x while it is below the fit for intermediate x. This is unlikely to happen by random chance. This remark is made more precise in the right figure. **Right:** A parabolic fit to the same data set. The value of Q is larger than for the straight-line fit, but the main result is that the coefficient of the quadratic term is about 5 σ away from zero, showing that the straight-line fit in the left panel is much less likely than the parabolic fit.

Given the fit and the other is the relative probability of two fits given the data), it is useful to understand this difference intuitively.

We take, as an example, a problem where we want to know whether the data can be modeled by a straight line, or whether a quadratic term needs to be included as well. A set of data is shown in Fig. 5.

Looking at the left panel one sees that the data more or less agrees with the straight-line fit ($Q = 0.124$). However, one also sees systematic trends: the data is too high for small x and for high x, and too low for intermediate x. The probability that this trend would occur by chance is very low. Chi-squared just sums up the contributions from each data point and is insensitive to any systematic trend in the deviation of the data from the fit. Hence the value of χ^2, in itself, does not tell us that this data is unlikely to be represented by a straight line. It is only when we add another parameter in the fit which corresponds to those correlations, that we realize the straight-line model is relatively very unlikely. In this case, the extra parameter is the coefficient of x^2, and the resulting parabolic fit is shown in the right figure.

The qualitative comments in the last paragraph are made more precise by the parameters of the fits. The straight-line fit gives $a_0 = 0.59 \pm 0.26$, $a_1 = 2.003 \pm 0.022$ with $\chi^2 = 48.2, Q = 0.124$. The parabolic fit gives $a_0 = 2.04 \pm 0.40, a_1 = 1.588 \pm 0.090, a_2 = 0.0203 \pm 0.00425$ with $\chi^2 = 25.45, Q = 0.924$.

The straight line fit has a good value of Q but it is not statistically significantly better than the parabolic fit. However, the parabolic fit has a smaller value of χ^2, which indicates that it is a better fit to the data. This is confirmed by the value of Q, which is larger for the parabolic fit than for the straight-line fit. The main result is that the coefficient of the quadratic term is about 5 σ away from zero, showing that the straight-line fit in the left panel is much less likely than the parabolic fit.
whereas the parabolic fit gives \(a_0 = 2.04 \pm 0.40, a_1 = 1.588 \pm 0.090, a_2 = 0.0203 \pm 0.00425 \) with \(\chi^2 = 25.5, Q = 0.924 \). The actual parameters which were used to generate the data are \(a_0 = 2, a_1 = 1.6, a_2 = 0.02, \) and there is Gaussian noise with standard deviation equal to 0.8. Hence the parameters of the quadratic fit are correct, but those of the linear fit are not. Although the quality of fit factor \(Q \) for the straight-line fit is reasonable, the quadratic fit strongly excludes having the fit parameter \(a_2 \) equal to zero, since zero is 4.78 standard deviations away from the best value. As shown in Eq. (A3), the probability of a 4.78-sigma deviation or greater for a Gaussian distribution is \(\text{erfc}(4.78/\sqrt{2}) \approx 1.78 \times 10^{-6} \), which is tiny. Thus a careful analysis correctly concludes that the straight-line fit is unlikely to be correct.

From the figures we see that difference in \(\chi^2 \) between the quadratic fit and the straight-line fit (in which we force \(a_2 = 0 \)) is 22.8, which should equal \((0.0203/0.00425)^2\) according to Eqs. (111) and (94), and indeed it does. This provides a useful check on the parameters computed by the fitting program (gnuplot in this case).

The moral of this tale is that a reasonable value of \(Q \) does not, in itself, ensure that you have the right model. Another model might be more probable. To quote from Ch. 14 of Numerical Recipes [1],

“If a statistic falls in a reasonable part of the distribution, you must not make the mistake of concluding that the (null) hypothesis is “verified” or “proved”. That is the curse of statistics. It can never prove things, only disprove them!”

With this sobering thought I bring these notes to the end (apart from appendices).

Appendix A: Central Limit Theorem

In this appendix we give a proof of the central limit theorem.

We assume a distribution that falls off sufficiently fast at \(\pm \infty \) that the mean and variance are finite. This excludes, for example, the Lorentzian distribution:

\[
P_{\text{Lor}} = \frac{1}{\pi} \frac{1}{1 + x^2}.
\]

(A1)

A common distribution which does have a finite mean and variance is the Gaussian distribution,

\[
P_{\text{Gauss}} = \frac{1}{\sqrt{2\pi} \sigma} \exp \left[-\frac{(x - \mu)^2}{2\sigma^2} \right].
\]

(A2)

6 I find the use of the word “null” in the quote to be confusing. It is, however, common usage in the statistics literature. The brackets round it are mine.
Using standard results for Gaussian integrals you should be able to show that the distribution is normalized and that the mean and standard deviation are \(\mu \) and \(\sigma \) respectively. We note that the probability that that a Gaussian random variable is more than \(c \sigma \), where \(c \) is a constant, away from the mean is given by

\[
P(|x - \mu| > c \sigma) = \frac{2}{\sqrt{2\pi} \sigma} \int_{\mu + c \sigma}^{\infty} \exp \left[-\frac{(x - \mu)^2}{2\sigma^2} \right] \, dx,
\]

\[
= \frac{2}{\sqrt{\pi}} \int_{c/\sqrt{2}}^{\infty} e^{-t^2} \, dt
\]

\[
= \text{erfc}(c/\sqrt{2}), \tag{A3}
\]

where \(\text{erfc} \) is the complementary error function \([1]\).

Consider a distribution, not necessarily Gaussian, with a finite mean and distribution. We pick \(N \) independent and identically distributed random numbers \(x_i \) from such a distribution and form the sum

\[
X = \sum_{i=1}^{N} x_i.
\]

distribution.

The determination of the distribution of \(X \), which we call \(P_N(X) \), uses the Fourier transform of \(P(x) \), called the “characteristic function” in the context of probability theory. This is defined by

\[
Q(k) = \int_{-\infty}^{\infty} P(x) e^{ikx} \, dx.
\]

Expanding out the exponential we can write \(Q(k) \) in terms of the moments of \(P(x) \)

\[
Q(k) = 1 + ik\langle x \rangle + \frac{(ik)^2}{2!} \langle x^2 \rangle + \frac{(ik)^3}{3!} \langle x^3 \rangle + \cdots .
\]

It will be convenient in what follows to write \(Q(k) \) as an exponential, i.e.

\[
Q(k) = \exp \left[\ln \left(1 + ik\langle x \rangle + \frac{(ik)^2}{2!} \langle x^2 \rangle + \frac{(ik)^3}{3!} \langle x^3 \rangle + \cdots \right) \right]
\]

\[
= \exp \left[ik\mu - \frac{k^2\sigma^2}{2!} + c_3(ik)^3 \frac{3}{3!} + c_4(ik)^4 \frac{4}{4!} + \cdots \right], \tag{A4}
\]

where \(c_3 \) involves third and lower moments, \(c_4 \) involves fourth and lower moments, and so on. The \(c_n \) are called cumulant averages.

For the important case of a Gaussian, the Fourier transform is obtained by “completing the square”. The result is that the Fourier transform of a Gaussian is also a Gaussian, namely,

\[
Q_{\text{Gauss}}(k) = \exp \left[ik\mu - \frac{k^2\sigma^2}{2} \right], \tag{A5}
\]
showing that the higher order cumulants, c_3, c_4, etc. in Eq. (A4) all vanish for a Gaussian.

The distribution $P_N(x)$ can be expressed as

$$P_N(x) = \int_{-\infty}^{\infty} P(x_1)dx_1 \int_{-\infty}^{\infty} P(x_2)dx_2 \cdots \int_{-\infty}^{\infty} P(x_N)dx_N \delta(X - \sum_{i=1}^{N} x_i).$$ \hspace{1cm} (A6)

We evaluate this by using the integral representation of the delta function

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk,$$ \hspace{1cm} (A7)

so

$$P_N(X) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \int_{-\infty}^{\infty} P(x_1)dx_1 \int_{-\infty}^{\infty} P(x_2)dx_2 \cdots \int_{-\infty}^{\infty} P(x_N)dx_N \exp[ik(x_1 + x_2 + \cdots x_N - X)]$$ \hspace{1cm} (A8)

$$= \int_{-\infty}^{\infty} \frac{dk}{2\pi} Q(k)^N e^{-ikX},$$ \hspace{1cm} (A9)

showing that the Fourier transform of $P_N(x)$, which we call $Q_N(k)$, is given by

$$Q_N(k) = Q(k)^N.$$ \hspace{1cm} (A10)

Consequently

$$Q_N(k) = \exp \left[i k N \mu - \frac{N k^2 \sigma^2}{2} + \frac{N c_3 (ik)^3}{3!} + \frac{N c_4 (ik)^4}{4!} + \cdots \right].$$ \hspace{1cm} (A11)

Comparing with Eq. (A4) we see that

the mean of the distribution of the sum of N independent and identically distributed random variables (the coefficient of $-ik$ in the exponential) is N times the mean of the distribution of one variable, and the variance of the distribution of the sum (the coefficient of $-k^2/2!$) is N times the variance of the distribution of one variable.

These are general statements applicable for any N and have already been derived in Sec. II A.

However, if N is large we can now go further. The distribution $P_N(X)$ is the inverse transform of $Q_N(k)$, see Eq. (A9), so

$$P_N(X) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp \left[-i k X' - \frac{N k^2 \sigma^2}{2} + \frac{N c_3 (ik)^3}{3!} + \frac{N c_4 (ik)^4}{4!} + \cdots \right] dk,$$ \hspace{1cm} (A12)

where

$$X' = X - N\mu.$$ \hspace{1cm} (A13)
Looking at the $-Nk^2/2$ term in the exponential in Eq. (A12), we see that the integrand is significant for $k < k^*$, where $N\sigma^2(k^*)^2 = 1$, and negligibly small for $k \gg k^*$. However, for $0 < k < k^*$ the higher order terms in Eq. (A12), (i.e. those of order k^3, k^4 etc.) are very small since $N(k^*)^3 \sim N^{-1/2}, N(k^*)^4 \sim N^{-1}$ and so on. Hence the terms of higher order than k^2 in Eq. (A12), do not contribute for large N and so

$$
\lim_{N \to \infty} P_N(X) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp \left[-i kX' - \frac{Nk^2\sigma^2}{2} \right] dk . \tag{A14}
$$

In other words, for large N the distribution is the Fourier transform of a Gaussian, which, as we know, is also a Gaussian. Completing the square in Eq. (A14) gives

$$
\lim_{N \to \infty} P_N(X) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp \left[-\frac{N\sigma^2}{2} \left(k - \frac{iX'}{N\sigma^2} \right)^2 \right] dk \exp \left[-\frac{(X')^2}{2N\sigma^2} \right] = \frac{1}{\sqrt{2\pi N\sigma}} \exp \left[-\frac{(X - N\mu)^2}{2N\sigma^2} \right] , \tag{A15}
$$

where, in the last line, we used Eq. (A13). This is a Gaussian with mean $N\mu$ and variance $N\sigma^2$. Equation (A15) is the **central limit theorem** in statistics. It tells us that,

for $N \to \infty$, the distribution of the sum of N independent and identically distributed random variables is a **Gaussian** whose mean is N times the mean, μ, of the distribution of one variable, and whose variance is N times the variance of the distribution of one variable, σ^2, **independent of the form of the distribution of one variable, $P(x)$**, provided only that μ and σ are finite.

The central limit theorem is of such generality that it is extremely important. It is the reason why the Gaussian distribution has such a preeminent place in the theory of statistics.

Note that if the distribution of the individual x_i is Gaussian, then the distribution of the sum of N variables is **always** Gaussian, even for N small. This follows from Eq. (A10) and the fact that the Fourier transform of a Gaussian is a Gaussian.

In practice, distributions that we meet in nature, have a much broader tail than that of the Gaussian distribution, which falls off very fast at large $|x-\mu|/\sigma$. As a result, even if the distribution of the sum approximates well a Gaussian in the central region for only modest values of N, it might take a much larger value of N to beat down the weight in the tail to the value of the Gaussian. Hence, even for moderate values of N, the probability of a deviation greater than σ can be significantly larger than that of the Gaussian distribution which is 32%. This caution will be important in Sec. III when we discuss the quality of fits.
We will illustrate the slow convergence of the distribution of the sum to a Gaussian in Fig. (6), in which the distribution of the individual variables x_i is

$$P(x) = \frac{3}{2} \frac{1}{(1 + |x|)^4}.$$ \hfill (A16)

This has mean 0 and standard deviation 1, but moments higher than the second do not exist because the integrals diverge. For large N the distribution approaches a Gaussian, as expected, but convergence is very slow in the tails.

Appendix B: The number of degrees of freedom

We assume Gaussian noise on the data and consider first a straight line fit, so we have to determine the values of a_0 and a_1 which minimize Eq. (77). The N terms in Eq. (77) are not
statistically independent at the minimum because the values of a_0 and a_1, given by Eq. (78), depend on the data points (x_i, y_i, σ_i).

Consider the “residuals” defined by

$$\epsilon_i = \frac{y_i - a_0 - a_1 x_i}{\sigma_i}.$$ \hspace{1cm} (B1)

If the model were exact and we use the exact values of the parameters a_0 and a_1 the ϵ_i would be independent and each have a Gaussian distribution with zero mean and standard deviation unity. However, choosing the best-fit values of a_0 and a_1 from the data according to Eq. (78) implies that

$$\sum_{i=1}^{N} \frac{1}{\sigma_i} \epsilon_i = 0, \hspace{1cm} (B2a)$$

$$\sum_{i=1}^{N} \frac{x_i}{\sigma_i} \epsilon_i = 0, \hspace{1cm} (B2b)$$

which are are two linear constraints on the ϵ_i. This means that we only need to specify $N - 2$ of them to know them all. In the N dimensional space of the ϵ_i we have eliminated two directions, so there can be no Gaussian fluctuations along them. However the other $N - 2$ dimensions are unchanged, and will have the same Gaussian fluctuations as before. Thus χ^2 has the distribution of a sum of squares of $N - 2$ Gaussian random variables. We can intuitively understand why there are $N - 2$ degrees of freedom rather than N by considering the case of $N = 2$. The fit goes perfectly through the two points so one has $\chi^2 = 0$ exactly. This implies that there are zero degrees of freedom since, on average, each degree of freedom adds 1 to χ^2.

Clearly this argument can be generalized to any fitting function which depends linearly on M fitting parameters, assuming Gaussian noise on the data. The result is that χ^2 has the distribution of a sum of squares of $N_{DOF} = N - M$ Gaussian random variables, in which the quantity N_{DOF} is called the “number of degrees of freedom”.

Even if the fitting function depends non-linearly on the parameters, this last result is often taken as a reasonable approximation.

Appendix C: The chi-squared distribution and the goodness of fit parameter Q

The χ^2 distribution for m degrees of freedom is the distribution of the sum of m independent random variables with a Gaussian distribution with zero mean and standard deviation unity. To determine this we write the distribution of the m variables x_i as

$$P(x_1, x_2, \cdots, x_m) \, dx_1 \, dx_2 \cdots dx_m = \frac{1}{(2\pi)^{m/2}} e^{-x_1^2/2} e^{-x_2^2/2} \cdots e^{-x_m^2/2} \, dx_1 \, dx_2 \cdots dx_m. \hspace{1cm} (C1)$$
Converting to polar coordinates, and integrating over directions, we find the distribution of the radial variable to be

$$\tilde{P}(r) \, dr = \frac{S_m}{(2\pi)^{m/2}} r^{m-1} e^{-r^2/2} \, dr ,$$ \hspace{1cm} (C2)

where S_m is the surface area of a unit m-dimensional sphere. To determine S_m we integrate Eq. (C2) over r, noting that $\tilde{P}(r)$ is normalized, which gives

$$S_m = \frac{2\pi^{m/2}}{\Gamma(m/2)} ,$$ \hspace{1cm} (C3)

where $\Gamma(x)$ is the Euler gamma function defined by

$$\Gamma(x) = \int_0^{\infty} t^{x-1} e^{-t} \, dt.$$ \hspace{1cm} (C4)

From Eqs. (C2) and (C3) we have

$$\tilde{P}(r) = \frac{1}{2^{m/2-1}\Gamma(m/2)} r^{m-1} e^{-r^2/2} .$$ \hspace{1cm} (C5)

This is the distribution of r but we want the distribution of $\chi^2 \equiv \sum_i x_i^2 = r^2$. To avoid confusion of notation we write X for χ^2, and define the χ^2 distribution for m variables as $P^{(m)}(X)$. We have $P^{(m)}(X) \, dX = \tilde{P}(r) \, dr$ so the χ^2 distribution for m degrees of freedom is

$$P^{(m)}(X) = \frac{dX}{\tilde{P}(r)} = \frac{1}{2^{m/2}\Gamma(m/2)} X^{(m/2)-1} e^{-X/2} \quad (X > 0).$$ \hspace{1cm} (C6)

The χ^2 distribution is zero for $X < 0$. Using Eq. (C4) and the property of the gamma function that $\Gamma(n + 1) = n\Gamma(n)$ one can show that

$$\int_0^{\infty} P^{(m)}(X) \, dX = 1 ,$$ \hspace{1cm} (C7a)

$$\langle X \rangle \equiv \int_0^{\infty} X \, P^{(m)}(X) \, dX = m ,$$ \hspace{1cm} (C7b)

$$\langle X^2 \rangle \equiv \int_0^{\infty} X^2 \, P^{(m)}(X) \, dX = m^2 + 2m , \quad \text{so}$$ \hspace{1cm} (C7c)

$$\langle X^2 \rangle - \langle X \rangle^2 = 2m .$$ \hspace{1cm} (C7d)

From Eqs. (C7b) and (C7d) we see that typically χ^2 lies in the range $m - \sqrt{2m}$ to $m + \sqrt{2m}$. For large m the distribution approaches a Gaussian according to the central limit theory discussed in Appendix A. Typically one focuses on the value of χ^2 per degree freedom since this should be around unity for all m.
FIG. 7: The χ^2 distribution for several values of N_{DOF} the number of degrees of freedom. The mean and standard deviation depend on N_{DOF} in the way specified. The goodness of fit parameter Q, defined in Eq. (C9), depends on the values of N_{DOF} and χ^2, and is the probability that χ^2 could have the specified value or larger by random chance. The area of the shaded region in the figure is the value of Q for $N_{\text{DOF}} = 10, \chi^2 = 15$. Note that the total area under each of the curves is unity because they represent probability distributions.

The goodness of fit parameter is the probability that the specified value of χ^2, or greater, could occur by random chance. From Eq. (C6) it is given by

$$Q = \frac{1}{2^{m/2}\Gamma(m/2)} \int_{\chi^2}^{\infty} X^{(m/2)-1} e^{-X/2} dX,$$

which is known as an incomplete gamma function. Code to generate the incomplete gamma function is given in Numerical Recipes [1]. There is also a built-in function to generate the goodness of fit parameter in the scipy package of python and in the graphics program gnuplot, see the scripts in Appendix G.

The χ^2 distribution for several value of $m \equiv N_{\text{DOF}}$ is plotted in Fig. (7). The mean and variance
are given by Eqs. (C7b) and (C7d). For large \(m \), according to the central limit theorem, the \(\chi^2 \) distribution becomes a Gaussian.

Note that \(Q = 1 \) for \(\chi^2 = 0 \) and \(Q \to 0 \) for \(\chi^2 \to \infty \). Remember that \(m \) is the number of degrees of freedom, called \(N_{\text{DOF}} \) elsewhere in these notes, and that \(N_{\text{DOF}} = N - M \), where \(N \) is the number of data points and \(M \) is the number of fit parameters.

Appendix D: Asymptotic standard error and how to get correct error bars from gnuplot

Sometimes one does not have error bars on the data. Nonetheless, one can still use \(\chi^2 \) fitting to get an estimate of those errors (assuming that they are all equal) and thereby also get an error bar on the fit parameters. The latter is called the “asymptotic standard error”. Assuming the same error bar \(\sigma_{\text{ass}} \) for all points, we determine \(\sigma_{\text{ass}} \) from the requirement that \(\chi^2 \) per degree of freedom is precisely one, i.e. its mean value according to Eq. (C7b). This gives

\[
1 = \frac{\chi^2}{N_{\text{DOF}}} = \frac{1}{N_{\text{DOF}}} \sum_{i=1}^{N} \left(\frac{y_i - f(x_i)}{\sigma_{\text{ass}}} \right)^2,
\]

or, equivalently,

\[
\sigma_{\text{ass}}^2 = \frac{1}{N_{\text{DOF}}} \sum_{i=1}^{N} (y_i - f(x_i))^2.
\]

The error bars on the fit parameters are then obtained from Eq. (94), with the elements of \(U \) given by Eq. (80) in which \(\sigma_i \) is replaced by \(\sigma_{\text{ass}} \). Equivalently, one can set the \(\sigma_i \) to unity in determining \(U \) from Eq. (80), and estimate the error on the fit parameters from

\[
\sigma_{\alpha}^2 = (U)^{-1}_{\alpha\alpha} \sigma_{\text{ass}}^2 \quad \text{(asymptotic standard error)}.
\]

A simple example of the use of the asymptotic standard error in a situation where we don’t know the error on the data points, is fitting to a constant, i.e. determining the average of a set of data, which we already discussed in detail in Sec. II. In this case we have

\[
U_{00} = N, \quad v_0 = \sum_{i=1}^{N} y_i,
\]

so the only fit parameter is

\[
a_0 = \frac{v_0}{U_{00}} = \frac{1}{N} \sum_{i=1}^{N} y_i = \bar{y},
\]
which gives, naturally enough, the average of the data point \bar{y}. The number of degrees of freedom is $N - 1$, since there is one fit parameter, so

$$\sigma_{\text{ass}}^2 = \frac{1}{N - 1} \sum_{i=1}^{N} (y_i - \bar{y})^2,$$

(D6)

and hence the square of the error on a_0 is given, from Eq. (D3), by

$$\sigma_{0}^2 = \frac{1}{U_{00}} \sigma_{\text{ass}}^2 = \frac{1}{N(N - 1)} \sum_{i=1}^{N} (y_i - \bar{y})^2,$$

(D7)

which is precisely the expression for the error in the mean of a set of data given in Eq. (16).

I now mention that a popular plotting program, gnuplot, which also does fits but unfortunately presents error bars on the fit parameters incorrectly if there are error bars on the data. Whether or not there are error bars on the points, gnuplot gives the “asymptotic standard error” on the fit parameters. Gnu plot calculates the elements of U correctly from Eq. (80) including the error bars, but then apparently also determines an “assumed error” from an expression like Eq. (D2) but including the error bars, i.e.

$$\sigma_{\text{ass}}^2 = \frac{1}{N_{\text{DOF}}} \sum_{i=1}^{N} \left(\frac{y_i - f(x_i)}{\sigma_i} \right)^2 = \frac{\chi^2}{N_{\text{DOF}}}, \quad \text{(gnuplot)}. \quad \text{D8}$$

Hence gnuplot’s σ_{ass}^2 is just the chi-squared per degree of freedom. The error bar (squared) quoted by gnuplot is $(U)_{aa}^{-1} \sigma_{\text{ass}}^2$, as in Eq. (D3). However, this is wrong since the error bars on the data points have already been included in calculating the elements of U, so the error on the fit parameter α should really be $(U)_{aa}^{-1}$. Hence,

"to get correct error bars on fit parameters from gnuplot when there are error bars on the points, you have to divide gnuplot’s asymptotic standard errors by the square root of the chi-squared per degree of freedom (which gnuplot calls FIT.STDFIT and, fortunately, computes correctly)."

I have checked this statement by comparing with results from Numerical Recipes routines, and also, for straight-line fits, by my own implementation of the formulae. It is curious that I found no hits on this topic when Googling the internet. Can no one else have come across this problem?

Correction of gnuplot error bars is implemented in the gnuplot scripts in Appendix G.

The need to correct gnuplot’s error bars applies to linear as well as non-linear models.

I recently learned that error bars on fit parameters given by the routine curve_fit of python also have to be corrected in the same way. This is shown in two of the python scripts in appendix G. Curiously, a different python fitting routine, leastsq, gives the error bars correctly.
Appendix E: The distribution of fitted parameters determined from simulated datasets

In this section we derive the equation for the distribution of fitted parameters determined from simulated datasets, Eq. (104), assuming an arbitrary linear model, see Eq. (99). Projecting on to a single fitting parameter, as above, this corresponds to the lower figure in Fig. 2.

We have one set of y-values, $y_i^{(0)}$, for which the fit parameters are $\bar{a}^{(0)}$. We then generate an ensemble of simulated data sets, y_i^S, assuming the data has Gaussian noise with standard deviation σ_i centered on the actual data values $y_i^{(0)}$. We ask for the probability that the fit to one of the simulated data sets has parameters \bar{a}^S.

This probability distribution is given by

$$P(\bar{a}^S) = \prod_{i=1}^{N} \left(\frac{1}{\sqrt{2\pi\sigma_i}} \int_{-\infty}^{\infty} dy_i^S \exp \left[\frac{\left(y_i^S - y_i^{(0)} \right)^2}{2\sigma_i^2} \right] \right) \prod_{\alpha=1}^{M} \delta \left(\sum_{\beta} U_{\alpha\beta} a_{\beta}^S - v_{\alpha}^S \right) \det U , \quad (E1)$$

where the factor in curly brackets is (an integral over) the probability distribution of the data points y_i^S, and the delta functions project out those sets of data points which have a particular set of fitted parameters, see Eq. (102). The factor of $\det U$ is a Jacobian to normalize the distribution.

Using the integral representation of the delta function, and writing explicitly the expression for v_{α} from Eq. (101), one has

$$P(\bar{a}^S) = \prod_{i=1}^{N} \left(\frac{1}{\sqrt{2\pi\sigma_i}} \int_{-\infty}^{\infty} dy_i^S \exp \left[\frac{\left(y_i^S - y_i^{(0)} \right)^2}{2\sigma_i^2} \right] \right) \times \prod_{\alpha=1}^{M} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} dk_{\alpha} \exp \left[-ik_{\alpha} \left(\sum_{\beta} U_{\alpha\beta} a_{\beta}^S - \sum_{i=1}^{N} y_i^S \tilde{X}_\alpha(x_i) \right) \right] \right) \det U . \quad (E2)$$

We carry out the y integrals by “completing the square”,

$$P(\bar{a}^S) = \prod_{\alpha=1}^{M} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} dk_{\alpha} \right) \prod_{i=1}^{N} \left(\frac{1}{\sqrt{2\pi\sigma_i}} \int_{-\infty}^{\infty} dy_i^S \exp \left[-\frac{\left(y_i^S - y_i^{(0)} + i\tilde{k} \cdot \tilde{X}(x_i) \right)^2}{2\sigma_i^2} \right] \right) \times \exp \left[-\frac{1}{2\sigma_i^2} \left(\tilde{k} \cdot \tilde{X}(i) \right)^2 + 2i \left(\tilde{k} \cdot \tilde{X}(x_i) \right) y_i^{(0)} \right] \times \exp \left[i \sum_{\alpha,\beta} k_{\alpha} U_{\alpha\beta} a_{\beta}^S \right] \det U . \quad (E3)$$

Doing the y^S-integrals, the factors in curly brackets are equal to unity. Using Eqs. (100) and (101) and the fact that the $U_{\alpha\beta}$ are independent of the y_i^S, we then get

$$P(\bar{a}^S) = \prod_{\alpha=1}^{M} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} dk_{\alpha} \right) \exp \left[-\frac{1}{2} \sum_{\alpha,\beta} k_{\alpha} U_{\alpha\beta} k_{\beta} + i \sum_{\alpha,\beta} k_{\alpha} \delta v_{\alpha}^S \right] \det U , \quad (E4)$$
where
\[\delta v^S_\beta \equiv v^S_\beta - v^{(0)}_\beta, \]
with
\[v^{(0)}_\alpha = \sum_{i=1}^{N} \frac{y^{(0)}_i X_\alpha(x_i)}{\sigma^2_i}. \]

We do the \(k \)-integrals by working in the basis in which \(U \) is diagonal. The result is
\[P(\vec{a}^S) = \frac{(\text{det } U)^{1/2}}{(2\pi)^{M/2}} \exp \left[-\frac{1}{2} \sum_{\alpha,\beta} \delta v^S_\alpha (U^{-1})_{\alpha\beta} \delta v^S_\beta \right]. \]

Using Eq. (102) and the fact that \(U \) is symmetric we get our final result
\[P(\vec{a}^S) = \frac{(\text{det } U)^{1/2}}{(2\pi)^{M/2}} \exp \left[-\frac{1}{2} \sum_{\alpha,\beta} \delta a^S_\alpha U_{\alpha\beta} \delta a^S_\beta \right], \]
which is Eq. (104), including the normalization constant in front of the exponential.

Appendix F: The distribution of fitted parameters from repeated sets of measurements

In this section we derive the equation for the distribution of fitted parameters determined in the hypothetical situation that one has many actual data sets. Projecting on to a single fitted parameter, this corresponds to the upper panel in Fig. 2.

The exact value of the data is \(y^\text{true}_i = \vec{a}^\text{true} \cdot \vec{X}(x_i) \), see Eq. (99), and the distribution of the \(y_i \) in an actual data set, which differs from \(y^\text{true}_i \) because of noise, has a distribution, assumed Gaussian here, centered on \(y^\text{true}_i \) with standard deviation \(\sigma_i \). Fitting each of these real data sets, the probability distribution for the fitted parameters is given by
\[P(\vec{a}) = \prod_{i=1}^{N} \left\{ \frac{1}{\sqrt{2\pi}\sigma_i} \int_{-\infty}^{\infty} dy_i \exp \left[-\frac{(y_i - \vec{a}^\text{true} \cdot \vec{X}(x_i))^2}{2\sigma_i^2} \right] \right\} \prod_{\alpha=1}^{M} \delta \left(\sum_{\beta} U_{\alpha\beta} a_\beta - v_\alpha \right) \text{det } U, \]
see Eq. (E1) for an explanation of the various factors. Proceeding as in Appendix E we have
\[P(\vec{a}) = \prod_{i=1}^{N} \left\{ \frac{1}{\sqrt{2\pi}\sigma_i} \int_{-\infty}^{\infty} dy_i \exp \left[-\frac{(y_i - \vec{a}^\text{true} \cdot \vec{X}(x_i))^2}{2\sigma_i^2} \right] \right\} \times \prod_{\alpha=1}^{M} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} dk_\alpha \exp \left[ik_\alpha \left(\sum_{\beta} U_{\alpha\beta} a_\beta - \sum_{i=1}^{N} \frac{y_i X_\alpha(x_i)}{\sigma^2_i} \right) \right] \right) \text{det } U, \]
and doing the y-integrals by completing the square gives

$$P(\vec{a}) = \prod_{\alpha=1}^{M} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} dk_{\alpha} \right) \times$$

$$\exp \left[-\frac{1}{2\sigma^2} \left((\vec{k} \cdot \vec{X}(i))^2 + 2i (\vec{k} \cdot \vec{X}(x)) \left(a_{true} \cdot \vec{X}(x) \right) \right) \right] \times \exp \left[i \sum_{\alpha,\beta} k_{\alpha} U_{\alpha\beta} a_{\beta} \right] \det U .$$

(F4)

Using Eq. (100) we then get

$$P(\vec{a}) = \prod_{\alpha=1}^{M} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} dk_{\alpha} \right) \exp \left[-\frac{1}{2} \sum_{\alpha,\beta} k_{\alpha} U_{\alpha\beta} k_{\beta} + i \sum_{\alpha,\beta} k_{\alpha} U_{\alpha\beta} \delta a_{\beta} \right] \det U ,$$

(F5)

where

$$\delta a_{\beta} \equiv a_{\beta} - a_{true} \beta ,$$

(F6)

and we used Eq. (100). The k-integrals are done by working in the basis in which U is diagonal. The result is

$$P(\vec{a}) = \left(\frac{\det U}{(2\pi)^{M/2}} \right)^{1/2} \exp \left[-\frac{1}{2} \sum_{\alpha,\beta} \delta a_{\alpha} U_{\alpha\beta} \delta a_{\beta} \right] .$$

(F7)

In other words, the distribution of the fitted parameters obtained from many sets of actual data, about the true value \vec{a}_{true} is a Gaussian. Since we are assuming a linear model, the matrix of coefficients $U_{\alpha\beta}$ is a constant, and so the distribution in Eq. (F8) is the same as in Eq. (E10). Hence

For a linear model with Gaussian noise, the distribution of fitted parameters, obtained from simulated data sets, relative to value from the one actual data set, is the same as the distribution of parameters from many actual data sets relative to the true value, see Fig. 2.

This result is also valid for a non-linear model if the range of parameter values needed is sufficiently small that the model can be represented by an effective one. It is usually assumed to be a reasonable approximation even if this condition is not fulfilled.

Appendix G: Scripts for some data analysis and fitting tasks

In this appendix I give sample scripts using perl, python and gnuplot for some basic data analysis and fitting tasks. I include output from the scripts when acting on certain datasets which are available on the web.
Note “this_file_name” refers to the name of the script being displayed (whatever you choose to call it.)

1. Scripts for a jackknife analysis

The script reads in values of \(x\) on successive lines of the input file and computes \(\langle x^4 \rangle / \langle x^2 \rangle^2\), including an error bar computed using the jackknife method.

\[a. \text{ Perl} \]

```perl
#!/usr/bin/perl
#
# Usage: "this_file_name data_file"
# (make the script executable; otherwise you have to preface the command with "perl")
#
$n = 0;
$x2_tot = 0; $x4_tot = 0;
#
# read in the data
#
while(<>) # Note this very convenient perl command which reads each line of
# of each input file in the command line
{
    @line = split;
    $x2[$n] = $line[0]**2;
    $x4[$n] = $x2[$n]**2;
    $x2_tot += $x2[$n];
    $x4_tot += $x4[$n];
    $n++;
}
#
# Do the jackknife estimates
#
for ($i = 0; $i < $n; $i++)
{
    $x2_jack[$i] = ($x2_tot - $x2[$i]) / ($n - 1);
    $x4_jack[$i] = ($x4_tot - $x4[$i]) / ($n - 1);
}

$x2_av = $x2_tot / $n; # Do the overall averages
$x4_av = $x4_tot / $n;
$g_av = $x4_av / $x2_av**2;

$g_jack_av = 0; $g_jack_err = 0; # Do the final jackknife estimate
for ($i = 0; $i < $n; $i++)
{
    $dg = $x4_jack[$i] / $x2_jack[$i]**2;
    $g_jack_av += $dg;
    $g_jack_err++;
}
```

$g_{jack_err} += \$d_{g}^{*2} *$;
}
$g_{jack_av} /= \$n;
$g_{jack_err} /= \$n;
$g_{jack_err} = sqrt((\$n - 1) * abs($g_{jack_err} - $g_{jack_av}^{*2}));

printf " Overall average is %8.4f\n", $g_{av};
printf " Jackknife average is %8.4f +/- %6.4f\n", $g_{jack_av}, $g_{jack_err};

Executing this file on the data in http://physics.ucsc.edu/~peter/bad-honnef/data.HW2 gives

Overall average is 1.8215
Jackknife average is 1.8215 +/- 0.0368

b. Python

Program written by Matt Wittmann
#
Usage: "python this_file_name data_file"
#
import fileinput
from math import *

x2 = []; x2_tot = 0.
x4 = []; x4_tot = 0.
for line in fileinput.input(): # read in each line in each input file.
 # similar to perl's while<>
 line = line.split()
 x2_i = float(line[0])**2
 x4_i = x2_i**2
 x2.append(x2_i) # put x2_i as the i-th element in an array x2
 x4.append(x4_i)
x2_tot += x2_i
 x4_tot += x4_i
n = len(x2) # the number of lines read in

Do the jackknife estimates
#
x2_jack = []
x4_jack = []
for i in xrange(n):
 x2_jack.append((x2_tot - x2[i]) / (n - 1))
x4_jack.append((x4_tot - x4[i]) / (n - 1))

x2_av = x2_tot / n # do the overall averages
x4_av = x4_tot / n
g_av = x4_av / x2_av**2

#
for i in xrange(n): # do the final jackknife averages
 dg = x4_jack[i] / x2_jack[i]**2
 g_jack_av += dg
 g_jack_err += dg**2

g_jack_av /= n

g_jack_err = sqrt((n - 1) * abs(g_jack_err - g_jack_av**2))

print " Overall average is %8.4f" % g_av
print " Jackknife average is %8.4f +/- %6.4f" % (g_jack_av, g_jack_err)

The output is the same as for the perl script.

2. Scripts for a straight-line fit

a. Perl, writing out the formulae by hand

#!/usr/bin/perl
#
Usage: "this_file_name data_file"
(make the script executable; otherwise preface the command with "perl")
#
Does a straight line fit to data in "data_file" each line of which contains
data for one point, x_i, y_i, sigma_i
#
$n = 0;
while(<>) # read in the lines of data
{
 @line = split; # split the line to get x_i, y_i, sigma_i
 $x[$n] = $line[0];
 $y[$n] = $line[1];
 $err[$n] = $line[2];
 $err2 = $err[$n]**2; # compute the necessary sums over the data
 $s += 1 / $err2;
 $sumx += $x[$n] / $err2;
 $sumy += $y[$n] / $err2;
 $sumxx += $x[$n]*$x[$n] / $err2;
 $sumxy += $x[$n]*$y[$n] / $err2;
 $n++;
}

$delta = $s * $sumxx - $sumx * $sumx; # compute the slope and intercept
$c = ($sumy * $sumxx - $sumx * $sumxy) / $delta;
$m = ($s * $sumxy - $sumx * $sumy) / $delta;
$errm = sqrt($s / $delta);
$errc = sqrt($sumxx / $delta);

printf ("slope = %10.4f +/- %7.4f \n", $m, $errm); # print the results
printf ("intercept = %10.4f +/- %7.4f \n\n", $c, $errc);

$NDF = $n - 2; # the no. of degrees of freedom is n - no. of fit params
$chisq = 0; # compute the chi-squared
for ($i = 0; $i < $n; $i++)
{
 $chisq += (($y[$i] - $m*$x[$i] - $c)/$err[$i])**2;
}
$chisq /= $NDF;
printf ("chi squared / NDF = %7.4lf \n", $chisq);

Acting with this script on the data in http://physics.ucsc.edu/~peter/bad-honnef/data.HW3 gives

slope = 5.0022 +/- 0.0024
intercept = 0.9046 +/- 0.2839

chi squared / NDF = 1.0400

b. Python, writing out the formulae by hand

```python
# Program written by Matt Wittmann

# Usage: "python this_file_name data_file"

# Does a straight-line fit to data in "data_file", each line of which contains
# the data for one point, x_i, y_i, sigma_i

import fileinput
from math import *

x = []
y = []
err = []
s = sumx = sumy = sumxx = sumxy = 0.

for line in fileinput.input(): # read in the data, one line at a time
    line = line.split() # split the line
    x_i = float(line[0]); x.append(x_i)
y_i = float(line[1]); y.append(y_i)
err_i = float(line[2]); err.append(err_i)
err2 = err_i**2
s += 1 / err2 # do the necessary sums over data points
sumx += x_i / err2
sumy += y_i / err2
sumxx += x_i*x_i / err2
sumxy += x_i*y_i / err2
```

n = len(x) # n is the number of data points
delta = s * sumxx - sumx * sumx # compute the slope and intercept
c = (sumy * sumxx - sumx * sumxy) / delta
m = (s * sumxy - sumx * sumy) / delta
errm = sqrt(s / delta)
errc = sqrt(sumxx / delta)

print "slope = %10.4f +/- %7.4f " % (m, errm)
print "intercept = %10.4f +/- %7.4f \n" % (c, errc)

NDF = n - 2 # the number of degrees of freedom is n - 2
chisq = 0.

for i in xrange(n): # compute chi-squared
 chisq += ((y[i] - m*x[i] - c)/err[i])**2;

chisq /= NDF
print "chi squared / NDF = %7.4lf " % chisq

The results are identical to those from the perl script.

c. Python, using a built-in routine from scipy

Python program written by Matt Wittmann
#
Usage: "python this_file_name data_file"
#
Does a straight-line fit to data in "data_file", each line of which contains
the data for one point, x_i, y_i, sigma_i.
#
Uses the built-in routine "curve_fit" in the scipy package. Note that this
requires the error bars to be corrected, as with gnuplot
#
from pylab import *
from scipy.optimize import curve_fit

fname = sys.argv[1] if len(sys.argv) > 1 else 'data.txt'
x, y, err = np.loadtxt(fname, unpack=True) # read in the data
n = len(x)

p0 = [5., 0.1] # initial values of parameters
f = lambda x, c, m: c + m*x # define the function to be fitted
note python’s lambda notation
p, covm = curve_fit(f, x, y, p0, err) # do the fit
(c, m) = p
chisq = sum(((f(x, c, m) - y)/err)**2) # compute the chi-squared
chisq /= n - 2 # divide by no.of DOF
errc, errm = sqrt(diag(covm)/chisq) # correct the error bars
The results are identical to those from the above scripts.

d. Gnuplot

Gnuplot script to plot points, do a straight-line fit, and display the
points, fit, fit parameters, error bars, chi-squared per degree of freedom,
and goodness of fit parameter on the plot.
#
Usage: "gnuplot this_file_name"
#
The data is assumed to be a file "data.HW3", each line containing
information for one point (x_i, y_i, sigma_i). The script produces a
postscript file, called here "HW3b.eps".
#
set size 1.0, 0.6
set terminal postscript portrait enhanced font 'Helvetica,16'
set output "HW3b.eps"
set fit errorvariables # needed to be able to print error bars
f(x) = a + b * x # the fitting function
fit f(x) "data.HW3" using 1:2:3 via a, b # do the fit
set xlabel "x"
set ylabel "y"
ndf = FIT_NDF # Number of degrees of freedom
chisq = FIT_STDFIT**2 * ndf # chi-squared
Q = 1 - igamma(0.5 * ndf, 0.5 * chisq) # the quality of fit parameter Q
#
Below note how the error bars are (a) corrected by dividing by
FIT_STDFIT, and (b) are displayed on the plot, in addition to the fit
parameters, neatly formatted using sprintf.
#
set label sprintf("a = %7.4f +/- %7.4f", a, a_err/FIT_STDFIT) at 100, 400
set label sprintf("b = %7.4f +/- %7.4f", b, b_err/FIT_STDFIT) at 100, 330
set label sprintf("{Symbol c}\^2 = %6.2f", chisq) at 100, 270
set label sprintf("{Symbol c}\^2/NDF = %6.4f", FIT_STDFIT**2) at 100, 200
set label sprintf("Q = %9.2e", Q) at 100, 130
plot \\ # Plot the data and fit
"data.HW3" using 1:2:3 every 5 with errorbars notitle pt 6 lc rgb "red" lw 2, \\
f(x) notitle lc rgb "blue" lw 4 lt 1

The plot shows the result of acting with this gnuplot script on the data in
http://physics.ucsc.edu/~peter/bad-honnef/data.HW3. The results agree with those of
the other scripts.
3. Scripts for a fit to a non-linear model

We read in lines of data each of which contains three entries x_i, y_i and σ_i. These are fitted to the form

$$y = T_c + A/x^\omega,$$

(G1)

to determine the best values of T_c, A and ω.

a. Python

Python program written by Matt Wittmann
#
Usage: "python this_file_name data_file"
#
Does a fit to the non-linear model
#
y = Tc + A / x**w
#
to the data in "data_file", each line of which contains the data for one point,
x_i, y_i, sigma_i.
Uses the built-in routine "curve_fit" in the scipy package. Note that this requires the error bars to be corrected, as with gnuplot

from matplotlib import *
from scipy.optimize import curve_fit
from scipy.stats import chi2

fname = sys.argv[1] if len(sys.argv) > 1 else 'data.txt'
x, y, err = np.loadtxt(fname, unpack=True) # read in the data
n = len(x) # the number of data points

p0 = [-0.25, 0.2, 2.8] # initial values of parameters
f = lambda x, Tc, w, A: Tc + A/x**w # define the function to be fitted
p, covm = curve_fit(f, x, y, p0, err) # do the fit
Tc, w, A = p
chisq = sum(((f(x, Tc, w, A) - y)/err)**2) # compute the chi-squared
ndf = n - len(p) # no. of degrees of freedom
Q = 1. - chi2.cdf(chisq, ndf) # compute the quality of fit parameter Q
chisq = chisq / ndf # compute chi-squared per DOF
Tcerr, werr, Aerr = sqrt(diag(covm)/chisq) # correct the error bars

print 'Tc = %10.4f +/- %7.4f' % (Tc, Tcerr)
print 'A = %10.4f +/- %7.4f' % (A, Aerr)
print 'w = %10.4f +/- %7.4f' % (w, werr)
print 'chi squared / NDF = %7.4lf' % chisq
print 'Q = %10.4f' % Q

When applied to the data in http://physics.ucsc.edu/~peter/bad-honnef/data.HW4 the output is

Tc = -0.2570 +/- 1.4775
A = 2.7878 +/- 0.8250
w = 0.2060 +/- 0.3508
chi squared / NDF = 0.2541
Q = 0.9073

b. Gnuplot

Gnuplot script to plot points, do a fit to a non-linear model
#
y = Tc + A / x**w
#
with respect to Tc, A and w, and display the points, fit, fit parameters,
error bars, chi-squared per degree of freedom, and goodness of fit parameter
on the plot.
Here the data is assumed to be a file "data.HW4", each line containing information for one point \((x_i, y_i, \sigma_i)\). The script produces a postscript file, called here "HW4a.eps".

```
set size 1.0, 0.6
set terminal postscript portrait enhanced
set output "HW4a.eps"

set fit errorvariables       # needed to be able to print error bars
f(x) = Tc + A / x**w         # the fitting function
set xlabel "1/x^{\Symbol w}"  
set ylabel "y"
set label "y = T_c + A / x^{\Symbol w}" at 0.1, 0.7
Tc = 0.3                     # need to specify initial values
A = 1
w = 0.2
fit f(x) "data.HW4" using 1:2:3 via Tc, A, w # do the fit
set xrange [0.07:0.38]
g(x) = Tc + A * x
h(x) = 0 + 0 * x
ndf = FIT_NDF # Number of degrees of freedom
chisq = FIT_STDFIT**2 * ndf # chi-squared
Q = 1 - igamma(0.5 * ndf, 0.5 * chisq) # the quality of fit parameter Q

# Below note how the error bars are (a) corrected by dividing by # FIT_STDFIT, and (b) are displayed on the plot, in addition to the fit # parameters, neatly formatted using sprintf.

set label sprintf("T_c = %5.3f +/- %5.3f",Tc, Tc_err/FIT_STDFIT) at 0.25, 0.33
set label sprintf("\Symbol w = %5.3f +/- %5.3f",w, w_err/FIT_STDFIT) at 0.25, 0.27
set label sprintf("A = %5.2f +/- %5.2f",A, A_err/FIT_STDFIT) at 0.25, 0.21
set label sprintf("\Symbol c^2 = %5.2f", chisq) at 0.25, 0.15
set label sprintf("\Symbol c^2/NDF = %5.2f", FIT_STDFIT**2) at 0.25, 0.09
set label sprintf("Q = %5.2f", Q) at 0.25, 0.03

# Plot the data and the fit

plot "data.HW4" using (1/$1**w):2:3 with errorbars notitle lc rgb "red" lw 3 pt 8 ps 1.5, \
g(x) notitle lc rgb "blue" lw 3 lt 2 , \
h(x) notitle lt 3 lw 4
```

The plot shows the result of acting with this gnuplot script on the data at http://physics.ucsc.edu/~peter/bad-honnef/data.HW4 The results agree with those of the python script above.

The quoted error bars in \(T_c\) are clearly ridiculous and arise because the code gives symmetric error bars whereas the variation of \(\chi^2\) about the minimum is very asymmetric, as sketched in the right
FIG. 9: Plot showing the data used and the resulting fit to a non-linear model discussed in Sec. G.3.

panel of Fig. 4. It would be better to get asymmetric error bars for T_c by determining χ^2 as a function of T_c, while optimizing with respect to the other parameters, and then estimating the values of T_c where $\Delta \chi^2 = 1$, see Fig. 4 and the discussion in Sec. III E. The interested student is invited to do this. Even better would be to do the bootstrap analysis discussed in Sec. III F but this requires the raw data, that is to say the N_i y-values for each data point i which, when averaged, give the results for y_i and σ_i used in the fit. Unfortunately the raw data is not available in this case.

Acknowledgments

I’m grateful to Alexander Hartmann for inviting me to give a lecture at the Bad Honnef School on “Efficient Algorithms in Computational Physics” in September 2012, which provided the motivation to write up these notes, and also for a helpful comment on the need to resample the data to get error bars from fits to non-linear models. In addition I would like to thank Matt Wittmann for helpful discussions about fitting and data analysis using python and for permission to include his python codes. I am also grateful to Wittmann and Christoph Norrenbrock for helpful comments...
on an earlier version of the manuscript.

[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes in C, 2nd Ed.* (Cambridge University Press, Cambridge, 1992).

[2] J. R. Taylor, *The Study of Uncertainties in Physical Measurements* (University Science Books, Sausalito, California, 1997).

[3] V. Ambegaokar and M. Troyer, *Estimating errors reliably in Monte Carlo simulations of the Ehrenfest model*, Am. J. Phys. 78, 150 (2009).