Determination of Silicon Accumulation in Non-Bt Cotton (Gossypium hirsutum) Plants and Its Impact on Fecundity and Biology of Whitefly (Bemisia tabaci) under Controlled Conditions

Asim Abbasi 1,2,3,* , Muhammad Sufyan 3 , Hafiza Javaria Ashraf 4 , Qamar uz Zaman 5 , Inzamam Ul Haq 6 , Zahoor Ahmad 7 , Ramish Saleem 8 , Mohammad Rameez Hashmi 8 , Mariusz Jaremko 9 , Nader R. Abdelsalam 10 and Rehab Y. Ghareeb 11

Abstract: Considering the resistance development-potential of whitefly (Bemisia tabaci) against control tactics with limited action mechanisms, the present study investigated the accumulation of two different silicon (Si) sources (SiO₂ and K₂SiO₃) in cotton plants. The tested dose rates (0, 200, and 400 mg/L) of both Si sources were applied directly to the soil or through foliar application on cotton leaves. Moreover, a laboratory bioassay was also conducted to evaluate the performance of applied Si sources against the oviposition preference and biology of B. tabaci. A significantly higher Si accumulation, reduction in oviposition preference, and prolonged developmental period of all nymphs and total life cycle of B. tabaci was observed in the case of foliar-applied silicon. Similarly, among Si sources, a significant decline in the number of oviposited eggs and delay in the developmental period of B. tabaci was observed in the case of SiO₂ followed by K₂SiO₃. Moreover, cotton plants subjected to SiO₂ treatments possessed higher Si contents in their leaves than K₂SiO₃ treated plants. The results further revealed that both Si sources showed promising results at their higher concentrations regarding the tested parameters of Si accumulation, fecundity, and developmental period of B. tabaci. Our results strongly suggest that among emerging pest control strategies in cotton plants lies the use of foliar application of Si, which can also be incorporated in different integrated pest management programs due to its safety for humans and beneficial insect fauna.

Keywords: Bemisia tabaci; developmental duration; silicon accumulation; oviposition preference

1. Introduction

Plants attacked by insect herbivores have the potential to reconfigure their metabolism [1,2] by entailing certain induced defense responses such as the reallocation of primary metabolites [3–5] as well as the production of secondary metabolic compounds [6,7].
In addition, to directly affect the attacking herbivores, these defense responses also determine the later fate of the plants in subsequent colonization by additional herbivores or by avoiding further pest invasion. These plant responses induce certain changes in the nutritional quality and defense chemistry of the host plant as a resource and also regulate the production of certain volatile compounds that foraging herbivores perceive to locate its potential hosts [8–11]. In most cases, these metabolic changes increase plant resistance to insect feeding and discourage successive pest attacks [6,9,12]. However, in some cases, prior feeding diminishes plant resistance or encourages subsequent herbivory [13] as some insects, including whiteflies [14], utilize damage-associated cues for aggregative feeding [10,15,16].

The whitefly *Bemisia tabaci* (Gennadius; Homoptera: Aleyrodidae) is a notorious cosmopolitan pest of several economically important field and greenhouse crops and has become a major threat to global food security [17,18]. It directly causes severe damage to the crops by sucking cell fluid, inducing various physiological disorders, and indirectly by vectoring more than 200 viruses, including the notorious cotton leaf curl virus [19–21]. Whiteflies feed cryptically in large aggregations from the underside of the leaves and overcome plant defense responses [16,22]. Aggregative feeding behavior may lead to nutrient competition resulting in the operation of more severe plant responses [23], including initiation of the jasmonic acid pathway, which regulates the production of a wide array of plant defensive metabolites [24,25]. However, whiteflies appear to have evolved strategies to overcome these ecological backlashes [23] and developed a strong tendency to aggregate on plant leaves in field conditions [15].

Studies show that silicon (Si) has the potential to reinforce resistance mechanisms in plants against insect herbivores with diverse feeding habits belonging to the order Homoptera [26,27], Lepidoptera [28–30], Diptera [31], Hemiptera [32,33], Coleoptera, and Thysanoptera [34] without inflicting any detrimental effects on the fitness of natural enemies [35]. Silicon also has the potential to impede the insects’ ability to suppress the defense responses of plants allowing a fully operational defense response to be instigated upon the perception of an abiotic threat [36,37]. Moreover, the potential of a particular plant species to uptake and translocate Si within its tissues varies considerably among crop species and even between varieties of the same crop species. Therefore, exogenous applications of plant-available Si sources at regular intervals are recommended to protect plants against herbivorous feeding [38–40].

Silicon abundance on Earth’s crust is second to oxygen, with concentrations fluctuating from 0.1–0.6 mM (milli molar). However, it is taken up by plants as H_4SiO_4 (silicic acid), the lone bioavailable silicon form present in soil solution [41]. Our knowledge regarding the positive impacts of augmenting plants with soluble Si forms has evolved substantially, principally in plant resistance to insect herbivory [42]. Yet, studies regarding optimal Si application methods according to the absorption and translocation potential of the cotton plants is still missing in literature. Therefore, the present experiments aimed to investigate the effect of different Si application methods on its accumulation in cotton leaves, a preferred feeding site of *B. tabaci*, and its impact on the oviposition preference and biology of *B. tabaci*.

2. Materials and Methods

2.1. Experimental Site

The study was conducted in a laboratory based at the School of Plant Sciences, the University of Arizona, Tucson, AZ, USA, under controlled environmental conditions.

2.2. Plant Material

Three seeds of a putative local non-Bt cotton landrace (*Gossypium hirsutum* L. cv Deltapine 5415) were grown in 15 cm diameter pots containing sterilized potting soil medium (peat moss: 3.8 cu. ft., vermiculite: 4 cu. ft., perlite: 28 gallons, and mortar sand: 21 gallons). The pots were arranged in a plant growth chamber maintained at $25 \pm 2 ^\circ C$, $298 K$.

The whitefly *Bemisia tabaci* (Gennadius; Homoptera: Aleyrodidae) is a notorious cosmopolitan pest of several economically important field and greenhouse crops and has become a major threat to global food security [17,18]. It directly causes severe damage to the crops by sucking cell fluid, inducing various physiological disorders, and indirectly by vectoring more than 200 viruses, including the notorious cotton leaf curl virus [19–21]. Whiteflies feed cryptically in large aggregations from the underside of the leaves and overcome plant defense responses [16,22]. Aggregative feeding behavior may lead to nutrient competition resulting in the operation of more severe plant responses [23], including initiation of the jasmonic acid pathway, which regulates the production of a wide array of plant defensive metabolites [24,25]. However, whiteflies appear to have evolved strategies to overcome these ecological backlashes [23] and developed a strong tendency to aggregate on plant leaves in field conditions [15].

Studies show that silicon (Si) has the potential to reinforce resistance mechanisms in plants against insect herbivores with diverse feeding habits belonging to the order Homoptera [26,27], Lepidoptera [28–30], Diptera [31], Hemiptera [32,33], Coleoptera, and Thysanoptera [34] without inflicting any detrimental effects on the fitness of natural enemies [35]. Silicon also has the potential to impede the insects’ ability to suppress the defense responses of plants allowing a fully operational defense response to be instigated upon the perception of an abiotic threat [36,37]. Moreover, the potential of a particular plant species to uptake and translocate Si within its tissues varies considerably among crop species and even between varieties of the same crop species. Therefore, exogenous applications of plant-available Si sources at regular intervals are recommended to protect plants against herbivorous feeding [38–40].

Silicon abundance on Earth’s crust is second to oxygen, with concentrations fluctuating from 0.1–0.6 mM (milli molar). However, it is taken up by plants as H_4SiO_4 (silicic acid), the lone bioavailable silicon form present in soil solution [41]. Our knowledge regarding the positive impacts of augmenting plants with soluble Si forms has evolved substantially, principally in plant resistance to insect herbivory [42]. Yet, studies regarding optimal Si application methods according to the absorption and translocation potential of the cotton plants is still missing in literature. Therefore, the present experiments aimed to investigate the effect of different Si application methods on its accumulation in cotton leaves, a preferred feeding site of *B. tabaci*, and its impact on the oviposition preference and biology of *B. tabaci*.
70 ± 5% RH, and a 12:12 L:D period. The growing plants were given proper fertilization in the form of N:P:K 20:20:20. Six days after sowing, plants were thinned out by pulling all weak seedlings leaving one vigorously growing intact plant.

2.3. Insect Material

Adult whiteflies were collected stock-culture nurtured on cotton plants (Deltapine 5415) in an insect-proof mesh cage (60 × 60 × 60 cm) in an otherwise insect-free room maintained at 25 ± 2 °C, 70 ± 5% RH, and 12:12 L:D period. The stock-culture was formerly recognized as B. tabaci biotype B by Dr. Judith K. Brown, University of Arizona, Tucson, AZ, USA. As plants became fully developed, new plants were periodically rotated into the cages, and old plants were removed after adult B. tabaci had moved over to fresh plant material.

2.4. Silicon Application

The cotton plants were treated with two extremely fine powder (particle size 0.5–10 µm) forms of water-soluble silicon, i.e., silicon dioxide (SiO₂) (Sigma-Aldrich, St. Louis, MO, USA) and potassium silicate (K₂SiO₃) (Sigma-Aldrich, St. Louis, MO, USA). Both Si sources were applied with two different application methods (foliar and drenching). However, the SiO₂ solution was heated to 80 °C to achieve better solubility. Two different concentrations (200 and 400 mg/L) of silicon compounds were used for each application method; untreated controls did not receive any silicon treatment. Foliar silicon applications were applied using a 1-liter spray bottle by covering the base of the plants with paper towels to avoid soil treatment. However, silicon drenching treatments were applied directly to the potting soil medium near the base of the plants. Each silicon treatment was applied twice during the study course. Twelve days after seedling emergence, cotton plants were subjected to the first silicon applications; the follow-up treatments were applied after seven days.

2.5. Drying and Grinding of Plant Samples

Seven days after the second silicon applications, the leaves of all treated and untreated cotton plants were harvested, washed thoroughly with 0.2% detergent solution, rinsed twice with deionized water to remove potential contaminants, and dried on paper towels [43,44]. The leaves of cotton plants were then placed in paper bags and dried in a convection oven (65 °C; 48 h). The dried samples were ground in a Udy cyclone mill. The samples were then passed through a 20-mesh screen and later placed in snap-cap vials for re-drying (65 °C; 48 h). The dried samples were later stored in a desiccator until further use.

2.6. Sample Preparation (Tissue Oxidation Method)

Dry ground cotton plant samples (100 mg) were added to 50-mL polypropylene (PP) trace-metal free centrifuge tubes after the tubes had been thoroughly washed with 0.1 M (NaOH), rinsed twice with double distilled water and dried on paper towels. Five drops of octyl alcohol was added to each sample tube to reduce foaming. A 30% H₂O₂ solution (2 mL) was then added to the tubes in such a way that the walls of tubes were washed free of the sample. The hydrogen peroxide was added in small increments allowing time between additions for the reaction to proceed. If foaming became vigorous, a further one to two droplets of octyl alcohol were added to break the surface tension. The sample tubes were then tightly capped and arranged in a convection oven (95 °C; 30 min). After 30 min, the hot sample tubes were removed from the convection oven and later had 50% NaOH (4 mL) added. The gently vortexed and tightly capped tubes were again returned to the convection oven (95 °C; 4 h). After 4 h, the digested cotton sample tubes were carefully removed from the oven. To expedite the formation of monosilicic acid, 5 mM of NH₄F (1 mL) was later added to each sample tube. The digested cotton leaf samples were then transferred to a 50-mL Nalgene volumetric flask. The final volume of digested cotton samples was achieved by dilution with distilled water [45].
2.7. ICP-MS Analysis

The silicon content in cotton plant samples was determined using ICP-MS as shown in equation (i). For this, 1 mL of diluted plant sample digest was transferred to PP tubes (13 mm × 100 mm). The sample digests were further diluted with 6 mL of distilled water to ensure that the digestion matrix did not cause any damage to the torch nozzle of the ICP instrument. Samples were analyzed for total Si using the Agilent 7700x ICP-MS (Santa Clara, CA, USA).

Tissue silicon concentration was calculated using following equation:

\[
\text{Si}_{\text{dry tissue}} (\text{g kg}^{-1}) = \frac{(R_{\text{Sam}} - R_{\text{Bal}}) \times D \times V_t}{V_a \times \frac{1}{S_{wt}} \times \left(\frac{10^6 \mu g g^{-1}}{10^6 \text{mg kg}^{-1}}\right)}
\]

where the ICP reading of the sample and reagent blank are represented by \(R_{\text{Sam}}\) and \(R_{\text{Bal}}\), respectively (\(\mu g \text{ Si mL}^{-1}\)). \(D\) represents the final volume of sample in tubes submitted for analysis, final volume of the digest and volume of the digest used for ICP analysis is represented by \(V_t\) and \(V_a\), respectively, and the oven-dry equivalent weight of the sample digested (mg) is represented by \(S_{wt}\).

2.8. Free Choice Test for Oviposition Preference and Biology of B. tabaci

The oviposition preference and biology of B. tabaci was assessed seven days after the second Si application. The potted non-Bt cotton plants subjected to different Si treatments and the control group were randomly arranged inside insect-proof mesh cages. An aspirator was used to collect adult whiteflies in pairs (20/plant) from stock-culture. The collected whiteflies were released inside cages with free access to all Si treated and non-treated cotton plants. Whiteflies were allowed to feed and oviposit on cotton plants for seven consecutive days. After seven days, adult whiteflies were carefully removed from the caged cotton plants using an aspirator and plants were transferred to new insect free mesh cages. All the eggs deposited on the abaxial side of the third fully-matured apical plant leaf was counted using a microscope. For determining developmental duration of all immature stages and total cycle of B. tabaci, ten eggs were marked from each selected plant leaf [46,47]. The developmental period of each nymphal instar and total cycle of B. tabaci was carefully examined under a microscope.

The experimental trials involving three different factors, i.e., Si application methods (M), Si sources (S), and Si concentrations (C) were laid out in a completely randomized design (CRD). The whole experiment was repeated thrice with three non-Bt cotton plants subjected to a single treatment, serving as a replication.

2.9. Statistical Analysis

The collected data regarding silicon accumulation in cotton plants, oviposition preference, developmental period of B. tabaci nymphs, and its total cycle were analyzed using two-way analysis of variance (ANOVA). The statistically different experimental treatments were separated from each other using least significant difference (LSD) test at \(p \leq 0.05\) [48,49]. All statistical analyses of the current experimental trials were carried out using the Statistics 8.1 software (Analytical Software, Tallahassee, FL, USA).

3. Results

3.1. Silicon Accumulation

Silicon (Si) accumulation in non-Bt cotton plants significantly varied (\(p \leq 0.001\)) among Si application methods (M), Si sources (S), and Si concentrations (C) (Table 1). A significantly higher Si contents was detected in leaves of those non-Bt cotton plants which were subjected to foliar applied Si (632.22 µg/g). However, the Si content in the case of Si drench was considerably lower (494.33 µg/g) as compared to foliar application. Similarly, silicon accumulation in cotton plants treated with SiO₂ (634.94 µg/g) was significantly higher than those treated with K₂SiO₃ (491.61 µg/g). Furthermore, the Si content in leaves of those
cotton plants which were exposed to a higher Si concentration (400 mg/L) (977.50 µg/g) was significantly higher as compared to its lower doses (200 mg/L) (585.92 µg/g) and untreated control (126.42 µg/g) (Table 1).

Table 1. Impact of Si application methods, sources, and concentrations on silicon accumulation (µg g⁻¹) in non-Bt cotton plants grown under controlled conditions.

Factors	Silicon Accumulation (µg g⁻¹) (Mean ± SE)
Si Application Methods (M)	
Foliar	632.22 ± 3.39 a
Drenching	494.33 ± 3.21 b
Si Sources (S)	
SiO₂	634.94 ± 3.36 a
K₂SiO₃	491.61 ± 3.17 b
Si Concentrations (C)	
0 mg/L	126.42 ± 1.89 c
200 mg/L	585.92 ± 3.28 b
400 mg/L	977.50 ± 4.14 a
Least significant difference (M)	7.08
Least significant difference (S)	8.23
Least significant difference (C)	8.67
Least significant difference (M × S)	10.01
Least significant difference (M × C)	12.26
Least significant difference (S × C)	13.06
Least significant difference (M × S × C)	17.34
F-value (M)	1615.19 **
F-value (S)	1745.25 **
F-value (C)	20,554.60 **
F-value (M × S)	34.74 **
F-value (M × C)	515.14 **
F-value (S × C)	485.21 **
F-value (M × S × C)	330.41 **

Treatment means within a single column having different lower-case letters are significantly different at p ≤ 0.05; ** represents significance level at p ≤ 0.01 (LSD test).

All the possible interactions occurring between M × S × C had a significant effect (p ≤ 0.001) on Si accumulation in non-Bt cotton plants (Table 1). The interactive effect of M × S × C revealed that the foliar treatments of 400 mg/L of SiO₂ and K₂SiO₃ significantly differed (p ≤ 0.05) from their corresponding drenching treatments regarding silicon accumulation in non-Bt cotton plants (Figure 1). Maximum silicon accumulation (1235.00 µg/g) in cotton plants was recorded at the highest concentration (400 mg/L) of foliar-applied SiO₂ followed by K₂SiO₃ applied with the same application method and dose rate (987.30 µg/g) (Figure 1).
in non-Bt cotton plants (Figure 1). Maximum silicon accumulation (1235.00 µg/g) in cotton plants was recorded at the highest concentration (400 mg/L) of foliar-applied SiO$_2$, followed by K$_2$SiO$_3$ applied with the same application method and dose rate (987.30 µg/g) (Figure 1).

Figure 1. Influence of M × S × C on Si accumulation (µg g$^{-1}$) in non-Bt cotton plants grown under controlled conditions. Bars having different lower-case letters are significantly different at p \leq 0.05. (LSD test). Standard error (SE) values are represented by vertical bars. M: Si application method, S: Si sources, and C: Si concentrations.

3.2. Oviposition Preference of B. tabaci

The oviposition preference of B. tabaci feeding on non-Bt cotton plants grown under controlled conditions was significantly influenced by M ($p = 0.01$), S ($p \leq 0.001$), and C ($p \leq 0.001$) (Table 2). In the case of Si application methods, foliar treatments (87.01 eggs) performed significantly better as compared to drenching treatments (95.25 eggs). Similarly, the oviposition preference of B. tabaci on non-Bt cotton plants treated with SiO$_2$ (86.70 eggs) was significantly lower as compared to K$_2$SiO$_3$-treated cotton plants (95.57 eggs). Moreover, a quantitative decline in the number of oviposited eggs was more pronounced on those cotton plants which were treated with the highest concentration (400 mg/L) (59.87 eggs) of silicon sources as compared to the lower dose rate (200 mg/L) (93.61 eggs) and untreated controls (119.83 eggs) (Table 2).

The results further revealed that the oviposition preference of B. tabaci was significantly ($p = 0.03$) influenced by the interaction of M × C (Table 2). The number of B. tabaci eggs significantly decreased when the highest concentration of Si (400 mg/L) was applied through foliar (51.11 eggs) compared to drenching (68.83 eggs) application methods (Figure 2).
Figure 2. Influence of $M \times C$ on oviposition preference of $B. tabaci$ feeding on non-Bt cotton plants grown under controlled conditions. Bars having different lower-case letters are significantly different at $p \leq 0.05$. (LSD test). Standard error (SE) values are represented by vertical bars. M: Si application methods and C: Si concentrations.

Table 2. Impact of Si application methods, sources, and concentrations on oviposition preference of $B. tabaci$ feeding on non-Bt cotton plants grown under controlled conditions.

Factors	Number of Oviposited Eggs (Mean ± SE)
Si Application Methods (M)	
Foliar	87.01 ± 2.56 b
Drenching	95.25 ± 3.01 a
Si Sources (S)	
SiO$_2$	86.70 ± 2.68 b
K$_2$SiO$_3$	95.57 ± 2.89 a
Si Concentrations (C)	
0 mg/L	119.83 ± 3.26 a
200 mg/L	93.61 ± 2.76 b
400 mg/L	59.97 ± 2.12 c
Least significant difference (M)	6.27
Least significant difference (S)	7.13
Least significant difference (C)	7.68
Least significant difference ($M \times S$)	8.87
Least significant difference ($M \times C$)	10.86
Least significant difference ($S \times C$)	11.27
Least significant difference ($M \times S \times C$)	15.36
F-value (M)	7.35 **
F-value (S)	8.52 **
F-value (C)	129.92 **
F-value ($M \times S$)	1.11 NS
F-value ($M \times C$)	4.01 *
F-value ($S \times C$)	2.70 NS
F-value ($M \times S \times C$)	0.11 NS

Treatment means within a single column having different lower-case letters are significantly different at $p \leq 0.05$; ** represents significance level at $p \leq 0.01$; * represents significance level at $p \leq 0.05$; and NS represents non-significance level (LSD test).
3.3. Developmental Period of B. tabaci

The developmental period of all nymphs and total cycle of B. tabaci feeding on non-Bt cotton plants grown under controlled conditions was significantly influenced by M (p ≤ 0.001), S (p ≤ 0.001), and C (p ≤ 0.001) (Table 3). An extended developmental period of all nymphs and total cycle of B. tabaci was observed on those cotton plant which were treated with foliar Si applications (12.9 days) as compared to its drenching treatments (11.8 days). The results further revealed that application of SiO$_2$ also caused a significant increase in the developmental period of all nymphs and total cycle of B. tabaci (12.8 days) as compared to its K$_2$SiO$_3$ treatment (11.9 days). Similarly, higher silicon concentration (400 mg/L) also delayed the developmental period of all nymphs and total cycle of B. tabaci (15.3 days) as compared to its lower concentration (200 mg/L) (11.6 days) and untreated control (10.2 days) (Table 3).

Table 3. Impact of Si application methods, sources, and concentrations on developmental period (days) of nymphs and total life cycle of B. tabaci feeding on non-Bt cotton plants grown under controlled conditions.

Si Application Methods (M)	Developmental Period (Days) (Mean ± SE)	1st Instar	2nd Instar	3rd Instar	4th Instar	Pupae	1st Instar–Adult Emergence
Foliar	2.52 ± 0.04 a	2.55 ± 0.05 a	2.71 ± 0.04 a	2.54 ± 0.07 a	2.58 ± 0.05 a	12.9 ± 0.20 a	
Drenching	2.29 ± 0.03 b	2.31 ± 0.03 b	2.45 ± 0.03 b	2.36 ± 0.05 b	2.42 ± 0.04 b	11.8 ± 0.18 b	
Si Sources (S)	SiO$_2$	2.48 ± 0.03 a	2.51 ± 0.05 a	2.69 ± 0.04 a	2.55 ± 0.06 a	2.57 ± 0.04 a	12.8 ± 0.19 a
	K$_2$SiO$_3$	2.33 ± 0.02 b	2.35 ± 0.04 b	2.47 ± 0.03 b	2.35 ± 0.05 b	2.44 ± 0.05 b	11.9 ± 0.17 b

Si Concentrations (C)	1st Instar	2nd Instar	3rd Instar	4th Instar	Pupae	1st Instar–Adult Emergence
0 mg/L	1.97 ± 0.02 c	1.96 ± 0.03 c	2.11 ± 0.02 c	2.02 ± 0.05 c	2.14 ± 0.04 c	10.2 ± 0.12 c
200 mg/L	2.28 ± 0.06 b	2.30 ± 0.05 b	2.41 ± 0.06 b	2.29 ± 0.07 b	2.32 ± 0.04 b	11.6 ± 0.16 b
400 mg/L	2.97 ± 0.05 a	3.03 ± 0.07 a	3.21 ± 0.04 a	3.04 ± 0.10 a	3.05 ± 0.06 a	15.3 ± 0.25 a

Treatment means within a single column having different lower-case letters are significantly different at p ≤ 0.05; ** represents significance level at p ≤ 0.01; * represents significance level at p ≤ 0.05; and NS represents non-significance level (LSD test).

Furthermore, the interactive effect of M × S × C on the developmental period of B. tabaci feeding on non-Bt cotton plants revealed that, in the case of 1st nymphal instar, all the possible interactions occurring showed a non-significant effect (p > 0.05), except for Si source × Si concentration (S × C) (p = 0.03) (Table 3). The developmental period of 1st nymphal instar of B. tabaci was significantly longer on plants treated with either lower (200 mg/L: 2.39 days) and higher (400 mg/L: 3.11 days) concentrations of SiO$_2$ as
compared to corresponding concentrations of K\textsubscript{2}SiO\textsubscript{3} (200 mg/L: 2.17 days) and (400 mg/L: 2.84 days) (Figure 3).

![Influence of S × C on developmental period of 1st instar of B. tabaci feeding on non-Bt cotton plants grown under controlled conditions. Bars having different lower-case letters are significantly different at p ≤ 0.05. (LSD test). Standard error (SE) values are represented by vertical bars. S: Si sources and C: Si concentrations.](image)

Figure 3. Influence of S × C on developmental period of 1st instar of B. tabaci feeding on non-Bt cotton plants grown under controlled conditions. Bars having different lower-case letters are significantly different at p ≤ 0.05. (LSD test). Standard error (SE) values are represented by vertical bars. S: Si sources and C: Si concentrations.

Similarly, the interactions between M × C (2nd: p = 0.02; 3rd: p = 0.03) and S × C (2nd: p = 0.03; 3rd: p = 0.04) also had a significant effect on the developmental period of 2nd and 3rd nymphal instars of B. tabaci feeding on non-Bt cotton plants (Table 3). A significantly prolonged developmental period of 2nd and 3rd nymphal instar of B. tabaci was observed on those cotton plants which were subjected to foliar treatments of higher Si concentration (400 mg/L) (2nd instar: 3.21 days; 3rd instar: 3.45 days) as compared to drenching applications of the same concentration (400 mg/L) (2nd instar: 2.86; 3rd instar: 2.98 days) (Figures 4 and 5). The results further revealed that higher (400 mg/L) and lower (200 mg/L) concentrations of SiO\textsubscript{2} (2nd instar: 3.14 and 2.44 days; 3rd instar: 3.35 and 2.57 days) significantly differed from its respective K\textsubscript{2}SiO\textsubscript{3} treatments (2nd instar: 2.92 and 2.15 days; 3rd instar: 3.08 and 2.27 days) regarding the developmental period of 2nd and 3rd nymphal instar of B. tabaci (Figures 6 and 7).

Furthermore, all the possible interactions occurring between M × S × C showed a non-significant effect (p > 0.05) on the developmental period of 4th nymphal instar of B. tabaci (Table 3). However, in the case of pupal instar, only M × C showed a significant effect (p ≤ 0.001) (Table 3). A significantly longer developmental period of pupae was observed in the case of foliar application (3.27 days) of the highest Si concentration (400 mg/L) as compared to its respective drenching application (2.83 days) (Figure 8).

The results further showed that all the possible interactions occurring between M × S × C showed a non-significant effect (p > 0.05) on the developmental period of total cycle of B. tabaci feeding on non-Bt cotton plants except for M × C (p ≤ 0.001) and S × C (p = 0.04) which showed a significant effect (Table 3). The developmental period of total cycle of B. tabaci significantly differed on plants treated with foliar application (400 mg/L: 16.36 days; 200 mg/L: 12.02 days) of higher and lower Si concentrations (400 and 200 mg/L) as compared to its respective drenching treatments (400 mg/L: 14.28 days; 200 mg/L: 11.21 days) (Figure 9). Similarly, the higher and lower concentrations of SiO\textsubscript{2} (400 mg/L:
15.92 days; 200 mg/L: 12.25 days) significantly differed from its respective K\textsubscript{2}SiO\textsubscript{3} treatments (400 mg/L: 14.74 days; 200 mg/L: 10.98 days) regarding the developmental period of total cycle of B. tabaci (Figure 10).

![Figure 4](image-url)
Figure 4. Influence of M × C on developmental period of 2nd instar of B. tabaci feeding on non-Bt cotton plants grown under controlled conditions. Bars having different lower-case letters are significantly different at \(p \leq 0.05 \). (LSD test). Standard error (SE) values are represented by vertical bars. M: Si application methods and C: Si concentrations.

![Figure 5](image-url)
Figure 5. Influence of M × C on developmental period of 3rd instar of B. tabaci feeding on non-Bt cotton plants grown under controlled conditions. Bars having different lower-case letters are significantly different at \(p \leq 0.05 \). (LSD test). Standard error (SE) values are represented by vertical bars. M: Si application methods and C: Si concentrations.
Figure 6. Influence of S × C on developmental period of 2nd instar of *B. tabaci* feeding on non-Bt cotton plants grown under controlled conditions. Bars having different lower-case letters are significantly different at $p \leq 0.05$. (LSD test). Standard error (SE) values are represented by vertical bars. S: Si sources and C: Si concentrations.

Figure 7. Influence of S × C on developmental period of 3rd instar of *B. tabaci* feeding on non-Bt cotton plants grown under controlled conditions. Bars having different lower-case letters are significantly different at $p \leq 0.05$. (LSD test). Standard error (SE) values are represented by vertical bars. S: Si sources and C: Si concentrations.
Furthermore, all the possible interactions occurring between M × S × C showed a non-significant effect (p > 0.05) on the developmental period of 4th nymphal instar of B. tabaci (Table 3). However, in the case of pupal instar, only M × C showed a significant effect (p ≤ 0.001) (Table 3). A significantly longer developmental period of pupae was observed in the case of foliar application (3.27 days) of the highest Si concentration (400 mg/L) as compared to its respective drenching application (2.83 days) (Figure 8).

Figure 8. Influence of M × C on developmental period of pupal instar of B. tabaci feeding on non-Bt cotton plants grown under controlled conditions. Bars having different lower-case letters are significantly different at p ≤ 0.05. (LSD test). Standard error (SE) values are represented by vertical bars. M: Si application methods and C: Si concentrations.

The results further showed that all the possible interactions occurring between M × S × C showed a non-significant effect (p > 0.05) on the developmental period of total cycle of B. tabaci except for M × C (p ≤ 0.001) and S × C (p = 0.04) which showed a significant effect (Table 3). The developmental period of total cycle of B. tabaci significantly differed on plants treated with foliar application (400 mg/L: 16.38 days; 200 mg/L: 12.02 days) of higher and lower Si concentrations (400 and 200 mg/L) as compared to its respective drenching treatments (400 mg/L: 14.28 days; 200 mg/L: 11.21 days) (Figure 9). Similarly, the higher and lower concentrations of SiO$_2$ (400 mg/L: 15.92 days; 200 mg/L: 12.25 days) significantly differed from its respective K$_2$SiO$_3$ treatments (400 mg/L: 14.74 days; 200 mg/L: 10.98 days) regarding the developmental period of total cycle of B. tabaci (Figure 10).

Figure 9. Influence of M × C on developmental period of total cycle of B. tabaci feeding on non-Bt cotton plants grown under controlled conditions. Bars having different lower-case letters are significantly different at p ≤ 0.05. (LSD test). Standard error (SE) values are represented by vertical bars. M: Si application methods and C: Si concentrations.
Figure 9. Influence of M × C on developmental period of total cycle of B. tabaci feeding on non-Bt cotton plants grown under controlled conditions. Bars having different lower-case letters are significantly different at $p \leq 0.05$. (LSD test). Standard error (SE) values are represented by vertical bars. M: Si application methods and C: Si concentrations.

Figure 10. Influence of S × C on developmental period of total cycle of B. tabaci feeding on non-Bt cotton plants grown under controlled conditions. Bars having different lower-case letters are significantly different at $p \leq 0.05$. (LSD test). Standard error (SE) values are represented by vertical bars. S: Si sources and C: Si concentrations.

4. Discussion

Crop plants exercise specific defense responses to protect themselves from herbivorous attack [50]. However, whiteflies have evolved strategies to suppress plant defense responses by developing a strong tendency to aggregate on crop plants [14,23]. Silicon has the potential to disengage midgut epithelial cells of their target pests from its basement membrane, thus adversely affecting their efficiency of food digestion and insecticide detoxification [51,52]. Moreover, Si also rehabilitates suppressed plant defenses by reinforcing direct and indirect actions against insect herbivores [53,54]; hence can be successfully incorporated in different integrated pest management programs (IPM).

The current study revealed that silicon accumulation was more pronounced in those plants which were subjected to foliar application of SiO$_2$ (1253 µg/g) and K$_2$SiO$_3$ (987.30 µg/g) as compared to their drenching applications (SiO$_2$: 889.00 µg/g; K$_2$SiO$_3$: 798.70 µg/g). Despite its high richness in the Earth’s crust (0.1–0.6 mM) [41], the tetravalent metalloid Si is not freely reachable to plants and is locked-up in soil in the form of recalcitrant silicate minerals [55,56]. For such immobilized nutrients, foliar treatments are more effective and economical as compared to drenching treatments [29,57]. The significance of foliar application is also evident from the fact that, at initial growth stages, plant roots are not fully established to absorb mineral nutrients from the soil [58]. The transportation of such mineral nutrients from application site to the whole plant body is crucial during ontogenesis of a plant. If the applied mineral nutrient cannot translocate from treated tissues to emerging ones, spray application needs to be periodically repeated when a new flush of leaves appears on plants [59]. Silicon can translocate within the plant body through transpiration current, forming silica bodies called phytoliths [60]. However, once deposited, it becomes immovable and cannot be transported to the newly emerged leaves; hence, a continuous supply of silicon is recommended in cotton plants, keeping in mind the indeterminate growth habit of the cotton plant [38,39].

Similar findings were reported by [61], where foliar treatments of K$_2$SiO$_3$ (300 mg L$^{-1}$) significantly improved the Si contents of pepper leaves (up to 2-fold) as compared to its
respective drenching treatment. However, Si applied directly to the soil was not able to translocate the same Si content in pepper leaves as found in the roots [61]. The current study further showed that Si concentration in cotton leaves was significantly improved in those cotton plants which were exposed to higher Si concentration (400 mg/L, 977.50 µg/g) as compared to its lower dose rate (200 mg/L, 585.92 µg/g). These results are also in line with the outcomes of [62], who reported that poinsettia plants treated with a lower Si concentration (50 mg/L) accumulated less silicon content in their upper portion (<850 mg/kg) as compared to that from higher silicon treatments (100, 400, and 800 mg/L, >1100 mg/kg). Similarly, [63] demonstrated that K$_2$SiO$_2$ treatment (2 mM) significantly increased the silicon content of $Zinnia$ $elegans$ plants (12.4 g/kg) as compared to untreated controls (2.2 g/kg). The concentration of plant-assimilated silicon varies from 0.1 to 10%, depending upon crop species and absorption mechanisms [64]. Silicon absorption and translocation within plant tissues from roots to the upper plant parts is primarily regulated by numerous transporter genes (LSi1, LSi2, and LSi6) [65]. These transporter genes have already been identified in different higher plants [66,67] such as maize, pumpkin, wheat, barley, and rice [68–71]. The absence of such transporter genes in cotton plants might be the prime reason for low Si transportation from roots to upper plant tissues; further advocating the importance of Si foliar applications for controlling populations of different sap-sucking insects on cotton.

A noteworthy reduction in oviposition and increase in the developmental period of total cycle of $B.~tabaci$ was detected on those cotton plants which were treated with a higher Si concentration (400 mg/L: 59.97 eggs and 15.3 days) and foliar application method (87.01 eggs and 12.9 days) as compared to its respective lower concentration (200 mg/L: 93.61 eggs and 11.6 days) and application method (soil-applied: 95.25 eggs and 11.8 days), respectively. Similarly, a decline in oviposition and an increase in the developmental duration of whitefly was more pronounced on plants treated with SiO$_2$ (86.70 eggs and 12.8 days) than with K$_2$SiO$_3$ (95.57 eggs and 11.9 days). The current decline in the number of oviposited eggs and increase in developmental duration of total cycle of $B.~tabaci$ indicate that future pest population progeny generation and associated yield losses during a single crop season can be avoided to a great extent with Si applications [26].

The applied silicon accumulated in different aboveground plant tissues, primarily the cell wall epidermal, as hydrated silica (SiO$_2$.nH$_2$O) and was ultimately converted into solid-phase phytoliths [72]. These were subsequently reprocessed in the soil with the decay of the plant and again became available for new growing plants in subsequent seasons [73]. The absorbed Si makes the leaf surface harder and abrasive; consequently, wearing herbivore mandibles which reduces their food intake and biotic potential [74–77] by altering the digestibility and palatability of food material [76,78,79]. Silicon also induced certain biochemical changes in plants which initiated the production of different compounds involved in plant defenses such as momilactones, phenolics, and phytoalexins [80,81], resulting in disruption of herbivore feeding and development, making them prone to natural predation for a longer timeframe [82–84]. Moreover, production of different herbivore-induced plant volatiles is also triggered by Si application which influences the population of natural predators or parasitoids, and regulates the pest population in field conditions [34].

The current findings are in agreement with the outcomes of [32], who reported that foliar application of Si significantly deter the ovipositional preference (223.1 eggs) and increased the developmental duration (24.8 days) of $B.~tabaci$ on cucumber plants as compared to its respective drenching applications (317.2 eggs and 24.3 days). Similarly, wheat plants subjected to sodium silicate treatments exhibited a relatively lower nymphal population (6.5) of $Schizaphis$ $graminum$ than untreated controls (13.1). However, adults that emerged from Si-treated plots produced 80% less offspring than those from control plants [85]. Moreover, a significant decline in the mean aphid population due to silicon applications has been reported in a score of important case studies [86–90]. Furthermore, [28] also highlighted the direct relation of Si application with a prolonged developmental duration of $C.~suppressalis$ in rice crops. Similarly, [91] also reported that foliar Si treatments (71.2%)
significantly reduced the viability of whitefly eggs on chrysanthemum plants as compared to its drenching applications (91.6%). The results regarding ovipositional preference are also in agreement with the findings of [63], who reported that K$_2$SiO$_2$ application (29.3 eggs) significantly reduced the oviposition of green peach aphid on zinnia crops as compared to untreated crops (38.0 eggs). Furthermore, ovipositional preference, nymphal survivability, and population growth rate of rice plant hoppers was also affected as a result of silicon application [27,92,93]. Moreover, whitefly preference to deposit eggs on the most suitable host plant also validates the current reduction in the oviposition on silico-treated cotton plants [94].

Apart from eradicating pests, Si also triggers plant defense responses against diseases [95] and improves plant growth, yield, and architecture through enhancing photosynthesis [96–99], provides mechanical strength against heavy rain, wind, and lodging [100,101], diminishes salt and mineral toxicity [102–105], helps the plant to cope with water scarcity [106,107], and enhances fertilizer-use efficiency [108].

5. Conclusions

The presented research confirms the beneficial role of silicon applied directly to the soil or through cotton leaves against *B. tabaci*. The effect of silicon through foliar application provided more promising results against the target pest as compared to soil-applied silicon. However, plant responses to foliar silicon fertilization rely on various factors such as source, concentration, solubility, pH, and deliquescence point. Therefore, the potential of new readily-soluble Si sources along with their optimal doses and application times to enhance its absorption in different plant species needs to be further investigated, both in semi-natural and field conditions.

Author Contributions: Conceptualization, A.A. and M.S.; methodology, A.A., I.U.H. and H.J.A.; software, A.A.; validation, A.A., N.R.A., R.Y.G. and Q.u.Z.; formal analysis, A.A., I.U.H. and M.R.H.; investigation, Q.u.Z.; resources, A.A.; writing—original draft preparation, A.A.; writing—review and editing, A.A., Z.A. and R.S.; visualization, Z.A., Q.u.Z., M.R.H. and M.J.; supervision, A.A.; project administration, A.A.; funding acquisition, A.A. All authors have read and agreed to the published version of the manuscript.

Funding: The corresponding author acknowledges financial support provided by Higher Education Commission (HEC) of Pakistan under International Research Support Initiative Program (34th meeting awardees).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data sheets are available and can be requested from the main author upon suitable request.

Acknowledgments: The corresponding author thanks Judith K Brown, School of Plant Sciences, University of Arizona, (USA) for accepting him in her Lab under International Research Support Initiative Program (IRSIP) lead Higher Education Commission (HEC) of Pakistan. The author also Mary Kay Amistadi (Lab Manager), Department of Soil, Water & Environmental Science, University of Arizona (USA) for her kind and scholastic guidance during sample preparation for ICP-MS analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schwachtje, J.; Baldwin, I.T. Why does herbivore attack reconfigure primary metabolism? *Plant Physiol.* 2008, 146, 845–851. [CrossRef] [PubMed]
2. Walling, L.L. The myriad plant responses to herbivores. *J. Plant Growth Regul.* 2000, 19, 195–216. [CrossRef] [PubMed]
3. Babst, B.A.; Ferrieri, R.A.; Gray, D.W.; Lerdau, M.; Schlyer, D.J.; Schueller, M.; Thorpe, M.R.; Orians, C.M. Jasmonic acid induces rapid changes in carbon transport and partitioning in *Populus*. *New Phytol.* 2005, 167, 63–72. [CrossRef] [PubMed]
4. Orians, C.M.; Thorn, A.; Gómez, S. Herbivore-induced resource sequestration in plants: Why bother? *Oecologia* 2011, 167, 1–9. [CrossRef] [PubMed]
5. Al-Nemi, R.; Makki, A.A.; Sawalha, K.; Hajjar, D.; Jaremko, M. Untargeted Metabolomic Profiling and Antioxidant Capacities of Different Solvent Crude Extracts of *Ephedra foeminea*. *Metabolites* **2022**, *12*, 451. [CrossRef] [PubMed]

6. Glauser, G.; Marti, G.; Villard, N.; Doyen, G.A.; Wolfender, J.L.; Turlings, T.C.; Erb, M. Induction and detoxification of maize 1,4-benzoazin-3-ones by insect herbivores. *Plant J.* **2011**, *68*, 901–911. [CrossRef]

7. Howe, G.A.; Jander, G. Plant immunity to insect herbivores. *Annu. Rev. Plant Biol.* **2008**, *59*, 41–66. [CrossRef]

8. De Moraes, C.M.; Mescher, M.C.; Tumlinson, J.H. Caterpillar-induced nocturnal plant volatiles repel conspecific females. *Nature* **2001**, *410*, 577–580. [CrossRef]

9. Kessler, A.; Baldwin, T.I. Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobacco *Nicotiana attenuata*. *Plant J.* **2004**, *38*, 639–649. [CrossRef]

10. Robert, C.A.; Erb, M.; Hibbard, B.E.; Wade French, B.; Zwahlen, C.; Turlings, T.C. A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density-dependent manner. *Funct. Ecol.* **2012**, *26*, 1429–1440. [CrossRef]

11. Tooker, J.F.; Rohr, J.R.; Abrahamson, W.G.; De Moraes, C.M. Gall insects can avoid and alter indirect plant defenses. *New Phytol.* **2008**, *178*, 657–671. [CrossRef] [PubMed]

12. Erb, M.; Flors, V.; Karlen, D.; De Lange, E.; Planchamp, C.; D’Alessandro, M.; Turlings, T.C.; Ton, J. Signal signature of aboveground-induced resistance upon belowground herbivory in maize. *Plant J.* **2009**, *59*, 292–302. [CrossRef] [PubMed]

13. Sarmento, R.A.; Lemos, F.; Bleecker, P.M.; Schuurink, R.C.; Pallini, A.; Oliveira, M.G.A.; Lima, E.R.; Kant, M.; Sabelis, M.W.; Janssen, A. A herbivore that manipulates plant defence. *Ecol. Lett.* **2011**, *14*, 229–236. [CrossRef] [PubMed]

14. Su, Q.; Chen, G.; Mescher, M.C.; Peng, Z.; Xie, W.; Wang, S.; Wu, Q.; Liu, J.; Li, C.; Wang, W. Whiffly aggregation on tomato is mediated by feeding-induced changes in plant metabolites that influence the behaviour and performance of conspecifics. *Funct. Ecol.* **2018**, *32*, 1180–1193. [CrossRef]

15. Su, Q.; Oliver, K.M.; Xie, W.; Wu, Q.; Wang, S.; Zhang, Y. The whitefly-associated facultative symbiont *Hamiltonella defensa* suppresses induced plant defense and plant resistance to tomato. *Funct. Ecol.* **2015**, *29*, 1007–1018. [CrossRef]

16. Zarate, S.I.; Kempema, L.A.; Walling, L.L. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. *Plant Physiol.* **2007**, *143*, 866–875. [CrossRef]

17. Hogenhout, S.A.; Ammar, E.-D.; Whitfield, A.E.; Redinbaugh, M.G. Insect vector interactions with persistently transmitted viruses. *Annu. Rev. Phytopathol.* **2008**, *46*, 327–359. [CrossRef]

18. Tay, W.; Ellékis, S.; Polaszek, A.; Court, L.; Evans, G.; Gordon, K.; De Barro, P. Novel molecular approach to define pest species status and tritrophic interactions from historical *Bemisia* specimens. *Sci. Rep.* **2017**, *7*, 429. [CrossRef]

19. Jones, D.R. Plant viruses transmitted by whiteflies. *Eur. J. Plant Pathol.* **2003**, *109*, 195–219. [CrossRef]

20. Nawaz-ul-Rehman, M.S.; Fauquet, C.M. Evolution of geminiviruses and their satellites. *FEBS Lett.* **2009**, *583*, 1825–1832. [CrossRef]

21. Pan, H.; Chu, D.; Yan, W.; Su, Q.; Liu, B.; Wang, S.; Wu, Q.; Xie, W.; Jiao, X.; Li, R. Rapid spread of tomato yellow leaf curl virus in China is aided differentially by two invasive whiteflies. *PLoS ONE* **2012**, *7*, e34817. [CrossRef] [PubMed]

22. Walling, L.L. Avoiding effective defenses: Strategies employed by phloem-feeding insects. *Plant Physiol.* **2008**, *146*, 859–866. [CrossRef] [PubMed]

23. Zhou, S.; Lou, Y.-R.; Tzin, V.; Jander, G. Alteration of plant primary metabolism in response to insect herbivory. *Plant Physiol.* **2015**, *169*, 1488–1498. [CrossRef] [PubMed]

24. Dicke, M.; Baldwin, I.T. The evolutionary context for herbivore-induced plant volatiles: Beyond the ‘cry for help’. *Trends Plant Sci.* **2010**, *15*, 167–175. [CrossRef]

25. Mithöfer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. *Annu. Rev. Microbiol.* **2012**, *66*, 431–450. [CrossRef]

26. Abbasi, A.; Sufyan, M.; Arif, M.J.; Sahi, S.T. Effect of silicon on oviposition preference and biology of *Bemisia tabaci* (Gennadius)(Hemiptera: Aleyrodidae) feeding on *Gossypium hirsutum* (Linnaeus). *Int. J. Pest Manag.* **2022**, *68*, 637–649. [CrossRef]

27. He, W.; Yang, M.; Li, Z.; Qiu, J.; Liu, F.; Qu, X.; Qiu, Y.; Li, R. High levels of silicon provided as a nutrient in hydroponic culture enhances rice plant resistance to brown planthopper. *Crop Prot.* **2015**, *67*, 20–25. [CrossRef]

28. Hou, M.; Han, Y. Silicon-mediated rice plant resistance to the Asiatic rice borer (*Lepidoptera: Crambidae*): Effects of silicon amendment and rice varietal resistance. *J. Econ. Entomol.* **2010**, *103*, 1412–1419. [CrossRef]

29. Haq, I.U.; Khurshid, A.; Inayat, R.; Kezin, Z.; Changzhong, L.; Ali, S.; Zuan, A.T.K.; Al-Hashimi, A.; Abbasi, A.M. Silicon-based induced resistance in maize against fall armyworm [*Spodoptera frugiperda* (Lepidoptera: Noctuidae)]. *PLoS ONE* **2011**, *16*, e0259749. [CrossRef]

30. Haq, I.U.; Zhang, K.; Ali, S.; Majid, M.; Ashraf, H.J.; Khurshid, A.; Inayat, R.; Li, C.; Gou, Y.; Al-Ghamdi, A.A. Effectiveness of silicon on immature stages of the fall armyworm [*Spodoptera frugiperda* (JE Smith)]. *J. King Saud. Univ. Sci.* **2022**, *34*, 102152. [CrossRef]

31. Parrella, M.P.; Costamagna, T.P.; Kaspi, R. The addition of potassium silicate to the fertilizer mix to suppress *Liriomyza* leafminers attacking chrysanthemums. In Proceedings of the VIII International Symposium on Protected Cultivation in Mild Winter Climates: Advances in Soil and Soilless Cultivation, Agadir, Morocco, 19 February 2006; pp. 365–370.

32. Correa, R.S.; Moraes, J.C.; Auda, A.M.; Carvalho, G.A. Silicon and acibenzolar-S-methyl as resistance inducers in cucumber, against the whitefly *Bemisia tabaci* (Gennadius)(Hemiptera: Aleyrodidae) biotype B. *Neotrop. Entomol.* **2005**, *34*, 429–433. [CrossRef]
33. Dias, P.; Sampaio, M.; Rodrigues, M.; Körndörfer, A.; Oliveira, R.; Ferreira, S.; Körndörfer, G. Induction of resistance by silicon in wheat plants to alate and apterous morphs of Sitobion avenae (Hemiptera: Aphididae). *Environ. Entomol.* 2014, 43, 949–956. [CrossRef] [PubMed]

34. Reynolds, O.L.; Padula, M.P.; Zeng, R.; Gurr, G.M. Silicon: Potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. *Front. Plant Sci.* 2016, 7, 744. [CrossRef]

35. Moraes, J.C.; Ferreira, R.S.; Costa, R.R. Indutor de resistência a mosca-branca Bemisia tabaci biotipo B (Genn., 1889)(Hemiptera: Aleyrodidae) em soja. *Cienc. Agrotecnol.* 2009, 33, 1260–1264. [CrossRef]

36. Hoganhout, S.A.; Bos, J.I. Effector proteins that modulate plant–insect interactions. *Curr. Opin. Plant Biol.* 2011, 14, 422–428. [CrossRef]

37. Vivancos, J.; Labbé, C.; Menzies, J.G.; Bélanger, R.R. Silicon-mediated resistance of *A. rabidopsis* against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. *Mol. Plant Pathol.* 2015, 16, 572–582. [CrossRef]

38. Raven, J.A. The transport and function of silicon in plants. *Biol. Rev.* 1983, 58, 179–207. [CrossRef]

39. Yoshida, S.; Ohtushi, Y.; Kitagishi, K. Chemical forms, mobility and deposition of silicon in rice plant. *Soil Sci. Plant Nutr.* 1962, 8, 15–21. [CrossRef]

40. Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. *Biomed. Pharmacother.* 2021, 140, 111596. [CrossRef]

41. Gunter, F.; Keller, C.; Meunier, J.-D. Benefits of plant silicon for crops: A review. *Agron. Sustain. Dev.* 2012, 32, 201–213. [CrossRef]

42. Debora, D.; Rodrigues, F.A.; Datnoff, L.E. Silicon’s role in abiotic and biotic plant stresses. *Annu. Rev. Phytopathol.* 2017, 55, 85–107. [CrossRef] [PubMed]

43. Stein, W.J.P.A. The errors involved in the sampling of citrus and pineapple plants for leaf analysis purposes. In *Plant Analysis Fertilizer Programs;* American Institute of Biological Science: Washington, DC, USA, 1961; pp. 409–430.

44. Wallace, A.; Kinnear, J.; Cha, J.; Romney, E. Effect of washing procedures on mineral analyses and their cluster analyses for orange leaves. *J. Plant Nutr.* 1980, 2, 1–9. [CrossRef]

45. Kraska, J.E.; Breitenbeck, G.A. Simple, robust method for quantifying silicon in plant tissue. *Commun. Soil Sci. Plant Anal.* 2010, 41, 2075–2085. [CrossRef]

46. Ferreira, R.; Moraes, J. Silicon influence on resistance induction against *Bemisia tabaci* biotype B (Genn.) (Hemiptera: Aleyrodidae) and on vegetative development in two soybean cultivars. *Neotrop. Entomol.* 2011, 40, 495–500. [CrossRef]

47. Valle, G.E.; Lourenço, A.L. Resistência de genotipos de soja a *Bemisia tabaci* (Genn.) biotipo B (Hemiptera: Aleyrodidae). *Neotrop. Entomol.* 2002, 31, 285–295. [CrossRef]

48. Gomez, K.A.; Gomez, A.A. *Statistical Procedures for Agricultural Research;* John Wiley & Sons: Hoboken, NJ, USA, 1984.

49. Kuehl, R.O. *Designs of Experiments: Statistical Principles of Research Design and Analysis;* Duxbury Press: Pacific Grove, CA, USA, 2000.

50. Peterson, J.A.; Ode, P.J.; Oliveira-Hofman, C.; Harwood, J. Integration of plant defense traits with biological control of arthropod pests: Challenges and opportunities. *Front. Plant Sci.* 2016, 7, 1794. [CrossRef]

51. Dos Santos, M.; Junqueira, M.R.; de Sá, V.M.; Zanuncio, J.; Serrão, J. Effect of silicon on the morphology of the midgut and mandible of tomato leafminer *Tuta absoluta* (Lepidoptera: Gelechiidae) larvae. *Invertebr. Surviv. J.* 2015, 12, 158–165.

52. Smagge, G.; Tirry, L. Insect midgut as a site for insecticide detoxification and resistance. In *Biochemical Sites of Insecticide Action and Resistance;* Springer: Berlin/Heidelberg, Germany, 2001; pp. 293–321.

53. Alhosari, F.; Greger, M. Silicon and mechanisms of plant resistance to insect pests. *Plants* 2018, 7, 33. [CrossRef]

54. Wang, M.; Gao, L.; Dong, S.; Sun, Y.; Shen, Q.; Guo, S. Role of silicon on plant–pathogen interactions. *Front. Plant Sci.* 2017, 8, 701. [CrossRef]

55. Hattori, T.; Inanaga, S.; Araki, H.; An, P.; Morita, S.; Luxová, M.; Lux, A. Application of silicon enhanced drought tolerance in *Sorghum bicolor*. *Physiol. Plant.* 2005, 123, 459–466. [CrossRef]

56. Struyf, E.; Smis, A.; Van Damme, S.; Govers, J.; Van Wesemael, B.; Conley, D.J.; Batelaan, O.; Frot, E.; Clymans, W. Historical land use change has lowered terrestrial silica mobilization. *Nat. Commun.* 2010, 1, 129. [CrossRef] [PubMed]

57. Wang, S.; Fang, W.; Gao, S. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. *Environ. Sci. Pollut. Res.* 2015, 22, 2837–2845. [CrossRef] [PubMed]

58. Fageria, N.; Filho, M.B.; Moreira, A.; Guimarães, C. Foliar fertilization of crop plants. *J. Plant Nutr.* 2007, 30, 1385–1396. [CrossRef]

59. Papadakis, I.E.; Sotiropoulos, T.E.; Therios, I.N. Mobility of iron and manganese within two citrus genotypes after foliar applications of iron sulfate and manganese sulfate. *J. Plant Nutr.* 2007, 30, 1385–1396. [CrossRef]

60. Epstein, E.; Bloom, A.; Sinauer Associates. *Mineral Nutrition of Plants: Principles Perspective,* 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2005; p. 172.

61. Dogramaci, M.; Arthurs, S.P.; Chen, J.; Osborne, L. Silicon applications have minimal effects on *Scirtothrips dorsalis* (Thysanoptera: Thripidae) populations on pepper pepper, *Capsicum annuum L.* *Fla. Entomol.* 2013, 96, 48–54. [CrossRef]

62. Hogendorp, B.K.; Cloyd, R.A.; Xu, C.; Sniade, J.M. Effect of silicon-based fertilizer applications on nymphal development and adult emergence of the greenhouse whitefly (Hemiptera: Aleyrodidae) feeding on poinsettia. *J. Environm. Sci.* 2010, 45, 150–169. [CrossRef]

63. Ranger, C.M.; Singh, A.P.; Frantz, J.M.; Cañas, L.; Locke, J.C.; Reding, M.E.; Vorsa, N. Influence of silicon on resistance of *Zinnia elegans* to *Myzus persicae* (Hemiptera: Aphididae). *Environ. Entomol.* 2009, 38, 129–136. [CrossRef]

64. Feng, J.; Yamaji, N.; Mitani-Ueno, N. Transport of silicon from roots to panicles in plants. *Proc. Jpn. Acad. Ser. B* 2011, 87, 377–385.
65. Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. *Trends Plant Sci.* 2006, 11, 392–397. [CrossRef]
66. Mitani, N.; Chiba, Y.; Yamaji, N.; Ma, J.F. Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. *Plant Cell* 2009, 21, 2133–2142. [CrossRef]
67. Yamaji, N.; Chiba, Y.; Mitani-Ueno, N.; Feng Ma, J. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. *Plant Physiol.* 2012, 160, 1491–1497. [CrossRef] [PubMed]
68. Chiba, Y.; Mitani, N.; Yamaji, N.; Ma, J.F. HvLsi1 is a silicon influx transporter in barley. *Plant J.* 2009, 57, 810–818. [CrossRef] [PubMed]
69. Mitani, N.; Yamaji, N.; Agó, Y.; Iwasaki, K.; Ma, J.F. Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. *Plant J.* 2011, 66, 231–240. [CrossRef] [PubMed]
70. Montpetit, J.J.; Vivancos, J.; Mitani-Ueno, N.; Yamaji, N.; Rémus-Borel, W.; Belzile, F.; Ma, J.F.; Belanger, R.R. Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. *Plant Mol. Biol.* 2012, 79, 35–46. [CrossRef]
71. Rao, G.B.; Susmitha, P. Silicon uptake, transportation and accumulation in Rice. *Pharmacogn. Phytochem.* 2017, 6, 290–293.
72. Raven, J.A. Cycling silicon: The role of accumulation in plants. *New Phytol.* 2003, 158, 419–421. [CrossRef]
73. Carey, J.C.; Fulweiler, R.W. The terrestrial silica pump. *New Phytol.* 2010, 185, 247–264. [CrossRef]
74. Coskun, D.; Deshmukh, R.; Sonah, N.B.; Ashish, M. Silicon Supplementation Along with Potassium Activate Defense Reaction in Wheat Plants and Reduce the Impact of Pink Stem Borer Incidence. *Silicon* 2022, 1–8. [CrossRef]
75. De Freitas, F.B.; Hackett, R.E.; Phillips, M. Physical defences wear you down: Progressive and irreversible impacts of silica on insect herbivores. *J. Anim. Ecol.* 2009, 78, 281–291. [CrossRef]
76. Jeer, M.; Yele, Y.; Sharma, K.C.; Prakash, N.B.; Ashish, M. Important Flavonoids and Their role in Silicon Metabolism and Plant Defense. *Molecules* 2018, 66, 108–115. [CrossRef] [PubMed]
77. Frew, A.; Powell, J.R.; Johnson, S.N. Aboveground resource allocation in response to root herbivory as affected by the arbuscular mycorrhizal symbiosis. *Plant Soil* 2020, 447, 463–473. [CrossRef]
78. Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Isolation, characterization, anti-MRSA evaluation, and in-silico multi-target anti-microbial validations of actinomycin X2 and actinomycin D produced by novel *Streptomyces smyrnaeus* UKAQ_23. *Sci. Rep.* 2021, 11, 14539. [CrossRef]
79. Rikken, D.G. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: Methyl salicylate and the phthiracetic acid mimic imidacloprid in *Bemisia tabaci* (Hemiptera: Aphididae) in wheat plants. *J. Chem. Ecol.* 2008, 34, 2349–2362. [CrossRef] [PubMed]
80. Ma, J.F.; Yamaji, N.; Chiba, Y.; Mitani-Ueno, N.; Feng Ma, J. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. *Plant Physiol.* 2012, 160, 1491–1497. [CrossRef] [PubMed]
81. Melo, B.A.; Moraes, J.C.; Carvalho, L.M. Resistance induction in chrysanthemum due to silicon application in the management of the whitefly *Bemisia tabaci* Biotype B (Hemiptera: Aleyrodidae). *Rev. Ciênc. Agroambient.* 2015, 13, 108–112.
82. Yang, L.; Han, Y.; Li, P.; Wen, L.; Hou, M. Silicon amendment to rice plants impairs sucking behaviors and population growth in the phloem feeder *Nilaparvata lugens* (Hemiptera: Delphacidae). *Sci. Rep.* 2017, 7, 1101. [CrossRef]
83. Qureshi, K.A.; Bholay, A.D.; Rai, P.K.; Mohammed, H.A.; Khan, R.A.; Azam, F.; Jaremko, M.; Emwas, A.-H.; Stefanowicz, P.; Waliczek, M. Isolation, characterization, anti-MRSA evaluation, and in-silico multi-target anti-microbial validations of actinomycin X2 and actinomycin D produced by novel *Streptomyces smyrnaeus* UKAQ_23. *Sci. Rep.* 2021, 11, 14539. [CrossRef]
94. Villas Bôas, G.L.; França, F.H.; Macedo, N. Potencial biótico da mosca-branca Bemisia argentifolii a diferentes plantas hospedeiras. *Hortic. Bras.* **2002**, *20*, 71–79. [CrossRef]

95. Rodrigues, F.A.; Dallagnol, L.J.; Duarte, H.S.S.; Datnoff, L.E. Silicon control of foliar diseases in monocots and dicots. In *Silicon and Plant Diseases*; Springer: Berlin/Heidelberg, Germany, 2015; pp. 67–108.

96. Crusciol, C.A.C.; De Arruda, D.P.; Fernandes, A.M.; Antonangelo, J.A.; Alleoni, L.R.F.; Nascimento, C.A.C.d.; Rossato, O.B.; McCray, J.M. Methods and extractants to evaluate silicon availability for sugarcane. *Sci. Rep.* **2018**, *8*, 916. [CrossRef]

97. Detmann, K.C.; Araújo, W.L.; Martins, S.C.; Sanglard, L.M.; Reis, J.V.; Detmann, E.; Rodrigues, F.Á.; Nunes-Nesi, A.; Fernie, A.R.; DaMatta, F.M. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. *New Phytol.* **2012**, *196*, 752–762. [CrossRef]

98. Gong, H.; Zhu, X.; Chen, K.; Wang, S.; Zhang, C. Silicon alleviates oxidative damage of wheat plants in pots under drought. *Plant Sci.* **2005**, *169*, 313–321. [CrossRef]

99. Xu, D.; Fang, X.; Zhang, R.; Gao, T.; Bu, H.; Du, G. Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow. *AoB Plants* **2015**, *7*, plv125. [CrossRef] [PubMed]

100. Coskun, D.; Britto, D.T.; Huynh, W.Q.; Kronzucker, H.J. The role of silicon in higher plants under salinity and drought stress. *Front. Plant Sci.* **2016**, *7*, 1072. [CrossRef] [PubMed]

101. Liang, S.; Li, Z.; Li, X.; Xie, H.; Zhu, R.; Lin, J.; Xie, H.; Wu, H. Effects of stem structural characters and silicon content on lodging resistance in rice (*Oryza sativa* L.). *Res. Crop.* **2013**, *14*, 621–636.

102. You-Qiang, F.; Hong, S.; Dao-Ming, W.; Kun-Zheng, C. Silicon-mediated amelioration of Fe$^{2+}$ toxicity in rice (*Oryza sativa* L.) roots. *Pedosphere* **2012**, *22*, 795–802.

103. Li, P.; Song, A.; Li, Z.; Fan, F.; Liang, Y. Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (*Oryza sativa* L.). *Plant Soil* **2012**, *354*, 407–419. [CrossRef]

104. Zeng, F.-R.; Zhao, F.-S.; Qiu, B.-Y.; Ouyang, Y.-N.; Wu, F.-B.; Zhang, G.-P. Alleviation of chromium toxicity by silicon addition in rice plants. *Agric. Sci. China* **2011**, *10*, 1188–1196. [CrossRef]

105. Zhu, Y.; Gong, H. Beneficial effects of silicon on salt and drought tolerance in plants. *Agron. Sustain. Dev.* **2014**, *34*, 455–472. [CrossRef]

106. Khattab, H.; Emam, M.; Emam, M.; Helal, N.; Mohamed, M. Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. *Biol. Plant* **2014**, *58*, 265–273. [CrossRef]

107. Nolla, A.; Faria, R.; Korndorfer, G.; Silva, T. Effect of silicon on drought tolerance of upland rice. *Food Agric. Environ.* **2012**, *10*, 269–272.

108. Neu, S.; Schaller, J.; Dudel, E.G.J.S.R. Silicon availability modifies nutrient use efficiency and content, C: N: P stoichiometry, and productivity of winter wheat (*Triticum aestivum* L.). *Sci. Rep.* **2017**, *7*, 40829. [CrossRef] [PubMed]