Hibernation slows epigenetic ageing in yellow-bellied marmots

Gabriela M. Pinho, Julien G. A. Martin, Colin Farrell, Amin Haghani, Joseph A. Zoller, Joshua Zhang, Sagi Snir, Matteo Pellegrini, Robert K. Wayne, Daniel T. Blumstein and Steve Horvath

Species that hibernate generally live longer than would be expected based solely on their body size. Hibernation is characterized by long periods of metabolic suppression (torpor) interspersed by short periods of increased metabolism (arousal). The torpor–arousal cycles occur multiple times during hibernation, and it has been suggested that processes controlling the transition between torpor and arousal states cause ageing suppression. Metabolic rate is also a known correlate of longevity; we thus proposed the ‘hibernation–ageing hypothesis’ whereby ageing is suspended during hibernation. We tested this hypothesis in a well-studied population of yellow-bellied marmots (Marmota flaviventer), which spend 7–8 months per year hibernating. We used two approaches to estimate epigenetic age: the epigenetic clock and the epigenetic pacemaker. Variation in epigenetic age of 149 samples collected throughout the life of 73 females was modelled using generalized additive mixed models (GAMM), where season (cyclic cubic spline) and chronological age (cubic spline) were fixed effects. As expected, the GAMM using epigenetic ages calculated from the epigenetic pacemaker was better able to detect nonlinear patterns in epigenetic ageing over time. We observed a logarithmic curve of epigenetic age with time, where the epigenetic age increased at a higher rate until females reached sexual maturity (two years old). With respect to circannual patterns, the epigenetic age increased during the active season and essentially stalled during the hibernation period. Taken together, our results are consistent with the hibernation–ageing hypothesis and may explain the enhanced longevity in hibernators.

Ageing is a poorly understood natural phenomenon, characterized by an age-progressive decline in intrinsic physiological function. The high variation in disease and functional impairment risk among same-age individuals shows that biological age is uncoupled from chronological age. Some individuals age faster than others, and little is known about the causes of this inter-individual variance in biological ageing rates. To this end, researchers have been attempting to develop biomarkers of ageing. Age estimators based on DNA methylation, also known as epigenetic clocks (ECs), are arguably the most accurate molecular function. The high variation in disease and functional impairment risk among same-age individuals shows that biological age is uncoupled from chronological age. Some individuals age faster than others, and little is known about the causes of this inter-individual variance in biological ageing rates. To this end, researchers have been attempting to develop biomarkers of ageing. Age estimators based on DNA methylation, also known as epigenetic clocks (ECs), are arguably the most accurate molecular function.
average energy saving of 83.3% when compared with the energetic expenditure of a euthermic adult\(^{\text{a)}}\).

Results

We estimated epigenetic age from 149 blood samples collected throughout the life of 73 females using two approaches: the epigenetic clock (EC) and the epigenetic pacemaker (EPM). The epigenetic ageing models developed with the EC and the EPM approaches were both highly accurate (Fig. 1), showing high correlations between epigenetic and chronological age (Pearson correlation coefficient \(r = 0.98\) and 0.92, respectively). The EC model had a median absolute error of 0.381 years and a median relative absolute error of 0.899 years, while the EPM model had a median absolute error of 0.084 years and a median relative absolute error of 0.145 years.

Because the effects of season on epigenetic ageing may be non-linear and potentially cyclical, we used generalized additive mixed models (GAMMs) to test the hibernation–ageing hypothesis. The GAMM that best explained epigenetic ageing calculated from both EPM and EC (Akaike information criterion (\(\Delta AIC\)) > 2) had the fixed effects of chronological age (cubic spline function) and day of year (cyclic cubic spline function), and random effect of individual identity. Day of year ranged from 1 to 365, with 1 representing 1 May and 365 representing 30 April. Details of the model selection results can be found in Supplementary Table 4. For the EC epigenetic age, this model explained 96.5\% of the variation (adjusted \(R^2\)) and had a residual variance of 0.362. The random effect of individual identity had no intercept variance. The age spline was significant (effective degrees of freedom (e.d.f.) = 3.19, \(F = 1.278, P < 0.0001\)) and the cyclic spline for day of year was not significant (\(P = 1\)). Details of this model are described in Supplementary Table 5.

The GAMM fitted to the EPM epigenetic state data explained 95.5\% of the variation and had a residual variance of 0.294. Both smooth terms significantly influenced marmot epigenetic state (\(P < 0.005\); Table 1). The effects of chronological age and day of year result in a particular pattern of epigenetic state change (Fig. 2a), where epigenetic state changes more rapidly during the marmots’ active season. The partial effect of day of year on epigenetic state shows an increase in epigenetic state during the active season and suggests a reversal of such changes during hibernation (Fig. 2b). Moreover, the rate of epigenetic state increase is the highest in the mid-point of the active season. The partial effect of chronological age shows that the epigenetic state increases at a higher rate until females reach two years old, followed by a deceleration as individuals become older (Fig. 2c).

To complement these results, we subsampled our data to the 11 individuals trapped in consecutive years, with a minimum of 2 samples in one year and 1 sample in the other year. From this subset, we estimated the rate of EPM epigenetic ageing per individual during the active and hibernation seasons. The measures of epigenetic ageing per day during the active season were significantly higher than during hibernation (Fig. 3, \(\chi^2 = 5.132, \text{degrees of freedom (d.f.)} = 1, P = 0.024\)). We observed similar trends for the average change in methylation levels across all 31,388 CpG sites from the mammalian array, suggesting that seasons affect methylation levels at the epigenome level and may not be restricted to age-related sites (Supplementary Information). In this regard, hibernation may influence not only epigenetic ageing but also other biological processes.

Simulations

We performed two simulation approaches to estimate the type-1 error and the power to detect a hibernation–ageing effect in our GAMMs given the limitations of our sample collection. Specifically, samples could only be collected during the active season, instead of throughout the year. Our earliest sample was collected on 27 April and the latest on 20 August. From the 1,000 GAMMs fitted to data simulated with a seasonal effect, 75.9\% found a significant effect of seasons, indicating high power to detect a seasonal effect given the simulated parameters and our data structure. From the 1,000 GAMMs fitted to data simulated with no seasonal effect, 6.2\% had a significant season effect, indicating a slightly higher type-1 error than expected (5\%). Based on this result from the simulations with no seasonal effect, we calculated a new critical value for the probability that respects the 5\% type-1 error rate by estimating the 0.05 quantile of the \(P\)-value distribution from a null model. The 0.05 quantile was 0.0399, which...
can be taken as the critical value with which to estimate the significance of a seasonal effect. In our second approach, we simulated 1,000 datasets with permuted (randomly assigned) days of the year and observed a significant seasonal effect for 6.7% of the GAMMs. The adjusted \(P \)-value threshold based on this result was 0.0416. The \(P \) value for seasonal effects on the marmot data is 0.002 (Table 1) and therefore is considered significant. From both approaches, we concluded that our results were neither driven by our sampling nor by statistical artefact.

Age-related CpGs. In the epigenome-wide association studies (EWAS) of chronological age, the methylation level of 6,364 CpGs was significantly \((P < 10^{-5})\) associated with chronological age (Supplementary Table 6). In the generalized additive models (GAMs) per site (Supplementary Table 7), the age effect (cubic smooth spline) was significant in 6,303 sites, which largely overlapped with EWAS of age (Fig. 4d). Significance thresholds were set to \(1 \times 10^{-3}\) due to a compromise between the Bonferroni correction and the Benjamini–Hochberg false-detection rate (FDR). The Bonferroni threshold from our data was \(1.6 \times 10^{-6}\) and selected 5,317 sites from the GAM (age effect) and 5,440 from the EWAS. The Benjamini–Hochberg FDR is a less conservative FDR correction and selected 14,117 sites from the GAM (age effect) and 13,575 from the EWAS. The threshold used is strict particularly because methylation levels are highly correlated among CpGs, and thus the analyses per site are not independent. Haghani et al.\(^{52}\) identified 55 co-methylation modules in the mammalian array, which would lead to a threshold of \(P < 0.001\) with a Bonferroni correction.

From the 5,841 sites that overlapped between the EWAS and the age effect (GAMs), 66% (3,827 sites) had e.d.f. values larger than 2 for the age effect in the GAMs. The e.d.f. measures the complexity of the curve, and these results suggest that many CpG sites have a nonlinear relationship with chronological age (examples in Extended Data Fig. 1). Top age-related CpGs in both EWAS and GAMs were located on \(NR2F1\) and \(EVX2\) downstream regions (Fig. 4a,b).

The promoters of \(EN1\) and \(HOXD10\) were also hypermethylated with age. Age-related sites uniquely identified by GAMs were proximal to \(FAM172A\) intron (hypermethylated), and hypomethylated in both the \(CSNK1D\) 3′ untranslated region and \(HNRNPC\) intron.

The significant CpGs were located in both genic and intergenic regions relative to transcriptional start sites (Extended Data Fig. 2). Compared with the background, we observed a higher proportion located at promoter regions, where most CpGs were hypermethylated with age (Extended Data Fig. 2). From the 3,914 CpGs used in the enrichment analysis, 396 were located in promoter regions and 87% of those were hypermethylated with age. DNA methylation (DNAm) ageing in marmots was proximal to polycomb repressor complex targets \((PRC2, EED)\) with \(H3K27ME3\) marks (Extended Data Fig. 3), which is a consistent observed pattern in all mammals\(^{53}\). The enriched pathways were largely associated with development, cell differentiation and homeostasis. CpG-site annotations and detailed enrichment results are available in the supplementary material (Supplementary Tables 8–10).

Season-related CpGs. The seasonal effect in the GAMs per site, measured with a cyclic cubic spline function of day of the year, was significantly associated with methylation in 47 CpG sites proximal to 37 genes. Most of the season-related CpGs were also associated with age (Fig. 4d). Some of the most significant CpGs for both season and age effects in the GAMs are proximal to \(FILIP1\) exon, \(ARRHGEF12\) intron, \(ZNF521\) intron, \(JARID2\) exon and \(AHDC1\) intron (Fig. 4c). The most significant CpGs for the season effect alone are proximal to \(AHDC1\) intron, \(MAZ\) exon, \(CTNNA1\) exon, \(AUTS2\) intron and \(EFNA5\) exon (Fig. 4c). The \(AHDC1\) intron seems to be an interesting region for further exploration because it is proximal to sites solely affected by season, sites only related with age and those influenced by both. Mutations in \(AHDC1\) are implicated in obstructive sleep apnoea\(^{39}\), so this gene may play a role in sleep processes and potentially hibernation. Since the seasonal effect size is smaller and more nonlinear than the age effect (Fig. 2),
marmots reached two years old, their age of sexual maturity 57,58. We investigate how ageing is affected by active-hibernation cycles. Using blood samples from known-age, free-living animals, we aligned mammalian array probes to yellow-bellied marmot genome assembly. For some of the most significant CpGs, the symbols of proximal genes are provided. The direction of associations with chronological age is highlighted for the significant sites, with orange for hypermethylated and blue for hypomethylated sites; the red dashed lines represent the significance threshold ($P < 10^{-5}$). Note that the season effect is cyclical, and we show the direction of association with chronological age for the active season. Our power to identify significant ($P < 10^{-5}$) CpG sites between EWAS and the GAMs is limited by our sample size and no biological function was considered significant.

Discussion

Acquiring chronological-age data from wildlife is a daunting task, but age data have fundamental applications to behavioural ecology, evolutionary biology and animal conservation 7,55. Epigenetic ageing models promise to inform age estimates and facilitate ageing research in wild and non-model organisms 14,18,55. We present new epigenetic ageing models for marmots, an excellent animal model to study hibernation. We applied a validated platform for measuring methylation levels (mammalian methylation array 56) to a unique collection of tissues—blood samples from known-age, free-living animals—to investigate how ageing is affected by active-hibernation cycles.

The EPM results showed a rapid change in epigenetic age until marmots reached two years old, their age of sexual maturity 57,58. After reaching adulthood, change in epigenetic age was more linear and slower, which is similar to the pattern observed in humans older than 20 years 56. The pattern observed in marmot epigenetic ageing is consistent with the notion that methylation remodelling is associated with key physiological milestones 55. A logarithmic relationship between methylation change rate and chronological age may be a shared trait in mammals, and such a relationship has been described for multiple human tissues 59,61, which allows for a nonlinear relationship of methylation levels with chronological age. Since ageing rate is not constant throughout an individual’s lifespan 62,63, the EPM is possibly more influenced by factors associated with biological ageing 61.

With regard to active and hibernation seasons, the EC model was unable to capture seasonal effects because it uses a penalized regression to relate the dependent variable (chronological age) to cytosines. The EPM is better equipped to detect nonlinear and potentially cyclic patterns because it estimates the epigenetic state by minimizing the error between estimated and measured methylation levels 62,63, which allows for a nonlinear relationship of methylation levels with chronological age. Since ageing rate is not constant throughout an individual’s lifespan 62,63, the EPM is possibly more influenced by factors associated with biological ageing 61.

According to both analyses that used EPM-estimated epigenetic age, biological ageing slows during hibernation. Specifically, the clear delay in epigenetic state changes during hibernation supports our hibernation–ageing hypothesis. Interestingly, this hypothesis does not seem to hold for individuals before sexual maturity. Even though we observed a non-significant interaction between chronological age and day of year, our model predictions indicated a weaker deceleration in ageing during hibernation for individuals in their first and second years of life (Fig. 2a). Compared with adults, young marmots may enter hibernation weeks later 64–66, spend less time torpid during hibernation and have higher daily mass loss in deep torpor 65. Indeed, thermoregulatory support from adults increases overwinter survival of young alpine marmots 67–69. Thus, a weaker effect of slowed ageing during hibernation in younger animals may be explained by their later hibernation start date in addition to an overall higher metabolic rate during hibernation.
The seasonal trends observed in marmot ageing probably occur in other species because molecular and physiological changes during hibernation are similar among mammals40,41,47,70. Some indications that hibernation slows ageing exist: Turkish hamsters (Mesocricetus brandti) that spent more time hibernating lived longer1; black bears with shorter hibernation length had higher telomere attrition2 and Djungarian hamsters (Phodopus sungorus) frequently using daily torpor had longer relative telomere length (RTL)49. RTL was shorter expressed between active and hyperphagia phases in the subcutaneous adipose tissue of grizzly bears98 and is close to season-related variation in other species96 and seasonally expressed in human peripheral blood mononuclear cells97. The expression of these genes varies seasonally, implying an evolutionary conservation in the biological processes underpinning ageing. This inference has been further reinforced by a recent study developing ECs capable of accurately predicting chronological age in distantly related species and, in theory, in any tissue sample and are developed from CpG sites located in conserved genomic regions across mammals56. Some of the physiological stresses experienced by individuals during hibernation are similar to those observed with ageing, and therefore the molecular and physiological responses required for an individual to successfully hibernate may prevent ageing40,46. Additionally, hibernation combines conditions known to promote longevity40,46,49, such as food deprivation (calorie restriction40,41,47), low body temperature40,41,47 and reduced metabolic rates46,49. Conceivably, these factors may also be associated with the slower marmot ageing observed in the beginning and end of their active season (Fig. 2b). Marmots in early spring and late fall have limited calorie intake46,49, reduced overall activity40,46 and lower metabolic rate46,49 than during summer. This variation in epigenetic ageing rate within the active season may occur in other mammals. For instance, free-living arctic ground squirrels begin dropping body temperature 45 days before hibernation40,49, 13-lined ground squirrels drop food consumption by 55% before hibernation1 and some species exhibit short and shallow torpor bouts before and after hibernation40,49.

DNAm ageing in marmots was related to genes involved in several developmental and differentiation processes, as has been seen in other mammals40,41,47,70,100. This common enrichment across mammals implies an evolutionary conservation in the biological processes underpinning ageing. This inference has been further reinforced by a recent study developing ECs capable of accurately predicting chronological age in distantly related species and, in theory, in any mammalian species100. These ‘universal clocks’ for eutherians can be used in any tissue sample and are developed from CpG sites located in conserved genomic regions across mammals36.

Seasonally dynamic methylation levels were identified in 47 CpG sites. Although few CpGs were identified in our analysis per site, the effect of season was detected by the EPM algorithm, which represents methylation changes in all sites correlated (absolute r > 0.7) with chronological age40,41. Thus, seasonality probably influences many more CpGs in common with ageing than we were able to detect. Nevertheless, many of the top season-related sites were proximal to genes with circannual patterns in other species. For instance, AUTS2 is differentially expressed across seasons and within hibernation in brown adipose tissue of 13-lined ground squirrels40 and its proximal CpGs are differentially methylated in blood and liver throughout the reproductive season of great tits40. JARID2 is differentially expressed within hibernation in the cerebral cortex of 13-lined ground squirrels40 and seasonally expressed in human peripheral blood mononuclear cells100. RUFY3 is differentially expressed between active and hyperphagia phases in the subcutaneous adipose tissue of grizzly bears40 and is close to season-related CpGs in great tits40. Methylation levels of sites close to FILIP1, AHD1, ARHGEF12, ZNF521, CTNNA1 and AUTS2 vary seasonally in great tits40. ARHGEF12 is also upregulated in songbirds exhibiting migratory behaviour100. The expression of these genes may thus be of some importance to species with seasonal behaviour, including in hibernating and non-hibernating species.

In sum, we observed a substantial deceleration in epigenetic ageing during hibernation. While hibernation may increase longevity by protecting individuals from predators and diseases40,46, we suggest that the biological processes involved in hibernation are important contributors to the long lifespan seen in most hibernators. A mechanistic understanding of the anti-ageing properties of hibernation will be further advanced by the exploration of the intra- and inter-specific variation in torpor use (for example, length and frequency of torpor–arousal cycles100–104) and the many survival strategies associated with metabolic rate depression (for example, anoxia and freeze tolerance105–108). Since metabolic depression is reached through similar molecular and biochemical patterns across the animal kingdom106, ageing may be moulded by these life history traits by similar evolutionary pathways. Longevity is a key component of individual fitness, therefore improved understanding of the pathways linking hibernation and ageing has multiple potential applications, including for species unable to enter torpor. In addition to the potential biomedical36,46 and space exploration108 implications, studying torpor in multiple species can provide new insights into the mechanisms of ageing and the reasons for variation in biological ageing rates among individuals and species.

Methods

All samples were collected as part of a long-term study of a free-living population of yellow-bellied marmots in the Gunnison National Forest, Colorado (USA), where marmots were captured and blood samples collected biweekly during their active season (May to August13). Data and samples were collected under the University of California, Los Angeles (UCLA) Institutional Animal Care and Use protocol (2001-191-01, renewed annually) and with permission from Colorado Parks and Wildlife (TR917, renewed annually). Individuals were monitored throughout their lives, and chronological age was calculated based on the date at which juveniles first emerged from their natal burrows. We only used female samples because precise age for most adult males is unavailable since males are typically immigrants born elsewhere105,106. We selected 160 blood samples from 78 females with varying ages.

Genomic DNA was extracted with Qiagen DNeasy blood and tissue kit and quantified with Qubit. DNAm profiling was performed with the custom Illumina chip HorvathMammalMethylChip40 (ref. 40). This array, referred to as a mammalian methylation array, profiles 36,000 CpG sites in conserved genomic regions across mammals. From all probes, 31,388 mapped uniquely to CpG sites (and their respective flanking regions) in the yellow-bellied marmot assembly (GenBank accession accession: GCA_000367605.2). We used the SeAsMe normalization method to estimate methylation levels (β values) for each CpG site40.

We used two different unsupervised hierarchical clustering procedures to identify technical outliers. The first clustering procedure was based on imputed single nucleotide polymorphisms (SNPs). Toward this end, we used MethyToSNP v.0.99.0 (ref. 40) to identify CpG sites that corresponded to SNPs. The SNP data were used for unsupervised hierarchical clustering based on Euclidean distances. Branch lengths of the clusters were plotted to identify samples. This allowed us to identify a small plate map error probably caused by human pipetting error. To err on the side of caution, we removed putative plate map errors from the dataset. Second, we carried out average linkage hierarchical clustering based on the inter-array correlation to identify technical outliers due to an insufficient amount of DNA. The DNAm profiling from 149 samples passed quality control. These samples were collected from 73 females (1 to 8 samples per individual) with ages varying from 0.01 to 12.04 years.

Two model approaches were used to study epigenetic ageing in marmots: the epigenetic clock40 and the epigenetic pacemaker40,102. Both models are described below.

Epigenetic clock. Under the EC, a linear correlation with age is determined by attempting to fit a single coefficient to each CpG site. We fitted a generalized linear model with elastic-net penalization109 to the chronological-age and β-value datasets using the glmnet v.4.0-2 package in R40. x was set to 0.5, which assigns ridge and lasso penalties with the same weight. The elastic-net penalization limits the impact of collinearity and shrinks irrelevant coefficients to zero. This method estimates coefficients that minimize the mean squared error between chronological and predicted ages and performs an automatic selection of CpG sites for age prediction. We applied a 10-fold cross validation to select the model with lowest error based on the training set. Predicted ages were scored for samples not included in the training set of the model. In this respect, the predicted age was estimated for groups of ~14 samples, resulting in 11 EC models using a total of 360 sites (Supplementary Table 1). We also report the coefficient per site, intercept and J (the regularization
Epigenetic pacemaker. While ECoGs are used to estimate the age of a sample based on weighted sums of methylation values, the EPM models the dynamics of methylation across the genome. To accomplish this, it models each individual CpG site as a linear function of an underlying epigenetic state of an individual. This epigenetic state changes with time in a nonlinear fashion and can therefore be used to identify periods with variable rates of methylation changes throughout lifespan. The EPM assumes that the relative increase/decrease in rate of methylation levels among sites remains constant, but the absolute rates can be modified when rates at all sites change in synchrony\(^{9,10}\). The optimum values of methylation change rate and initial methylation level per site, as well as the epigenetic state per sample, are calculated through iterations implemented in a fast conditional expectation maximization algorithm\(^{11}\) to minimize the residual sum of squares between known and estimated methylation levels (\(\hat{y}\) values). Thus, the epigenetic state is an estimate of age that, given the methylation rates and initial methylation levels for each site, minimizes the differences between known and estimated methylation levels in a specific sample for all sites included in the model. We selected sites to use in the EPM \(v.0.0.3\) based on the absolute Pearson correlation coefficients \(r\) between chronological age and methylation levels per site\(^{9,10}\). All sites with absolute \(r\) > 0.7 were included, which resulted in 309 sites. A 10-fold cross validation was used to estimate epigenetic states. We report the rate and intercept values per site from the EPM using all data as the training set (Supplementary Table 3).

Hibernation–ageing hypothesis. We performed model selection based on the Akaike information criterion (AIC) for GAMMs fitted to the EPM- or the fitted rates on the estimated epigenetic-age datasets. For each epigenetic-age dataset, eight GAMMs with different fixed effects were compared: (1) chronological age and day of year; (2) the interaction between chronological age and day of year; (3) cubic spline function for chronological age and day of year; (4) chronological age and a cubic spline function for day of year; (5) chronological age and a cyclic cubic spline function for day of year; (6) cubic spline function for chronological age and a cubic spline function for day of year; (7) cyclic spline function for chronological age and a cyclic cubic spline function for day of year and (8) the interaction (using tensor product interaction) between a cubic spline function for chronological age and a cyclic cubic spline function for day of year. Individual identity was added as a random effect in all models. Day of year ranged from 1 to 365, with 1 representing 1 May and 365 representing 30 April.

We used two simulation approaches to estimate the type-1 error and the power to detect a hibernation–ageing effect given the limitations of our sample collection. Specifically, blood samples could only be collected during the active season, instead of throughout the year. Our earliest sample was collected on 27 April and the latest on 20 August. In our first approach, we simulated two traits (Extended Data Fig. 4): (1) a trait that increases linearly with age independently of the season and (2) a trait that increases during the summer but not during the winter. The daily rate of increase for the first trait was set at 0.004, to simulate data with a similar range to the observed EPM data. For the second trait, the rate of increase was set to 0 during winter, from 1 September to 17 April, days 139–352 using 1 May as a reference. The simulation assumed that the active season was 150 days long starting on 18 April (day 353) and finishing on 15 September (day 183). The rate of increase during the active season was set as 0.0164 (0.004/365 x 150) so that the annual rate of increase was similar between the two simulated traits. Our simulation was parametrized using among-individual and residual variance from the EPM. We performed these simulations using field data (day of sample collection, age in days, birth date and number of samples) and estimated the significance of the seasonal effect with the GAMM that best explained the marmot data (model selection described above). We repeated this procedure 1,000 times for both traits. The proportion of simulations on trait 1 (no seasonal effect) that were significant indicated our type-1 error. The proportion of simulations on trait 2 (seasonal effect) that were significant was an indication of the power to detect this effect. In the second approach, we simulated 1,000 datasets where day of year was randomly shuffled. The type-1 error was estimated as the proportion of simulations with significant seasonal effects in the GAMMs.

We evaluated GAMMs by checking convergence, concordance between fixed effects and the autocorrelation of deviance residuals. We also checked model fit by plotting response versus fitted values and visually inspected qq plots and histograms of deviance residuals, plots of deviance residuals with fitted values and plots of deviance residuals with explanatory variables. GAMMs were fitted and checked using the mgcv R package \(v.0.2-6\) (ref. \(^{11}\)). All analysis and figures were developed in R \(v.3.6.3\) (ref. \(^{11}\)) in RStudio v1.2.5333 (ref. \(^{11}\)), python \(v.3.7.4\) (ref. \(^{11}\)), ipyter notebook \(v.6.0.3\) (ref. \(^{11}\)), ggplot2 \(v.3.3.0.9\) (ref. \(^{11}\)) and ggpubr \(v.0.2.5\) (ref. \(^{11}\)).

To complement the results from the GAMMs, we subsampled our data for the individuals with samples collected in consecutive years. We further restricted this subset to the cases when two or more samples per individual were available (i.e., active season intervals) and at least one other sample in the other year (that is, hibernation intervals). To measure the active EPM epigenetic ageing rate, we subtracted the EPM epigenetic age of the earliest sample from the latest sample in the active season, and divided by the number of days in between the sampling dates. To measure hibernation EPM epigenetic ageing rate, we subtracted the EPM epigenetic age of the latest sample before hibernation from the EPM epigenetic age from the first sample collected after hibernation, divided by the number of days between the collection events. The significance of the difference between the epigenetic ageing rate during the active and hibernation seasons was estimated with Kruskal–Wallis rank sum test.

Influence of chronological age and seasons on methylation levels per CpG site. We performed additional analyses to identify which CpG sites were associated with age and seasonality. We fitted a GAM per CpG site with the mgcv R package \(v.1.8\) (ref. \(^{11}\)), where methylation level was the dependent variable. The independent variables were a cubic spline function for chronological age and a cyclic cubic spline function for day of year.

Since EW AS have been more commonly used to identify CpG sites related to chronological age, we performed a linear regression per CpG site with linear hypertest \(v.3.1-3\) (ref. \(^{11}\)). Each model had methylation level as dependent variable and chronological age as independent variable.

CpG-site enrichment analysis. Gene enrichment was performed with the Genomic Regions Enrichment of Annotations Tool \(v.3.0.0\) (GREAT) (ref. \(^{15}\)). GREAT analyses the potential cis-regulatory role of the non-coding regions with CpG sites of interest, and identifies which pathways are over-represented in the data. To control the false discovery rate and extend the analysis, we set a window of 10 bases plus extended association with a maximum window distance between the CpG and the genes of 50 kb. GREAT tests the observed distribution of CpG neighbouring genes against the expected number of sites associated with each pathway due to their representation in the mammalian mammal (background set). Since GREAT requires a high-quality annotation, we used the respective locations of the marmot sites on the human assembly (GRCm37), and therefore only used sites mapped to conserved genes between marmots and humans. The background set included 19,695 sites. Two datasets were analysed: sites associated with chronological age and with day of year. The alignment and annotation methods are described in the mammalian methylation array method paper\(^{56}\).

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

Epigenetic data are deposited in the Gene Expression Omnibus GSE174544 and available at https://doi.org/10.17605/OSF.IO/E4ZV2#.

Code availability

Code is available at https://doi.org/10.17605/OSF.IO/E4ZV2 for.

Received: 14 May 2021; Accepted: 20 January 2022; Published online: 7 March 2022

References

1. Flatt, T. A new definition of aging? *Front. Genet.* 3, 148 (2012).
2. Berdasco, M. & Esteller, M. Hot topics in epigenetic mechanisms of aging: 2011. *Aging Cell* 11, 181–186 (2012).
3. Jylhävä, J., Pedersen, N. L. & Hägg, S. Biological age predictors. *ElBioMedicine* 21, 29–36 (2017).
4. Wagner, K. H., Cameron-Smith, D., Wessner, B. & Franzke, B. Biomarkers of aging: from function to molecular biology. *Nutrients* 8, 338 (2016).
5. Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. *Mol. Cell* 71, 882–893 (2018).
6. Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. *Aging* 7, 1159–1170 (2015).
7. Nussey, D. H., Froy, H., Lemaître, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. *Aging Res. Rev.* 12, 214–225 (2013).
8. Johnson, T. E. Recent results: biomarkers of aging. *Exp. Gerontol.* 41, 1243–1246 (2006).
9. Horvath, S. DNA methylation age of human tissues and cell types. *Genome Biol.* 14, R115 (2013).
10. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. *Mol. Cell* 49, 359–367 (2013).
11. Unnikrishnan, A. et al. The role of DNA methylation in epigenetics of aging. *Pharmacol. Ther.* 195, 172–185 (2019).
12. Bocklandt, S. et al. Epigenetic predictor of age. *PLoS ONE* 6, e14821 (2011).
13. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. *Nutr. Rev.* 71, 371–384 (2013).
14. Polanczyk, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. *Mol. Ecol. Resour.* 14, 976–987 (2014).
15. Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. *Cell Metab.* **25**, 954–960 (2017).

16. Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. *Genome Biol.* **18**, 157 (2017).

17. Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. *Genome Biol.* **18**, 57 (2017).

18. Ito, G., Yoshimura, K. & Momoi, Y. Analysis of DNA methylation of potential age-related methylated sites in canine peripheral blood leukocytes. *J. Vet. Med. Sci.* **79**, 745–750 (2017).

19. Thompson, M. J., von Holdt, B., Horvath, S. & Pellegrini, M. An epigenetic aging clock for dogs and wolves. *Aging 9*, 1055–1068 (2017).

20. Lowe, R. et al. Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. *Genome Biol.* **19**, 22 (2018).

21. Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. *Genome Biol.* **16**, 266 (2015).

22. Zaghooi, S. B. et al. Association of DNA methylation with age, gender, and smoking in an Arab population. *Clin. Epigenetics* **7**, 6 (2015).

23. Gao, X., Zhang, Y., Breitling, L. & Brenner, H. Relationship of tobacco smoking and smoking-related DNA methylation with epigenetic age acceleration. *OncoTARGET 7*, 46878–46889 (2016).

24. Marioni, R. E. et al. The epigenetic clock and telomere length are independently associated with chronological age and mortality. *Int. J. Epidemiol.* **45**, 424–432 (2016).

25. Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. *Genome Biol.* **16**, 25 (2015).

26. Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. *Clin. Epigenetics* **8**, 64 (2016).

27. Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. *Aging 8*, 1844–1859 (2016).

28. Christiansen, L. et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. *Aging Cell* **15**, 149–154 (2016).

29. Horvath, S. & Levine, A. J. HIV-1 infection accelerates age according to the epigenetic clock. *J. Infect. Dis. 212*, 1563–1573 (2015).

30. Horvath, S. et al. Accelerated epigenetic aging in Down syndrome. *Aging Cell* **14**, 491–495 (2015).

31. Parrott, B. B. & Bertucci, E. M. Epigenetic aging clocks in ecology and evolution. *Trends Ecol. Evol.* **34**, 767–770 (2019).

32. Wagner, W. Epigenetic aging clocks in mice and men. *Genome Biol.* **18**, 107 (2017).

33. Wang, T. et al. Quantitative translation of dog-to-human aging by conserved remodeling of the DNA methylome. *Cell Sys.* **11**, 176–185 (2020).

34. Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. *Biot. Lett.* **15**, 20180860 (2019).

35. Austad, S. N. Comparative biology of aging. *Clin. Geriatr. Med.* **12**, 335–353 (1996).

36. Wu, C. W. & Storey, K. B. Life in the cold: links between mammalian hibernation and longevity. *Biomed. Concepts* **7**, 41–52 (2016).

37. Torrill, C., Bieber, C. & Ruf, T. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. *Proc. R. Soc. Lond. B* **278**, 3355–3363 (2011).

38. Chen, Y. et al. Mechanisms for increased levels of phosphorylation of elongation factor-2 during hibernation in ground squirrels. *Biochemistry* **49**, 11565–11570 (2020).

39. Knight, J. E. et al. mRNA stability and polysome loss in hibernating Arctic ground squirrels (*Spermophillus parryii*). *Mol. Cell. Biol.* **20**, 6374–6379 (2000).

40. Yan, J., Barnes, B. M., Kohl, F. & Marr, T. G. Modulation of gene expression in hibernating arctic ground squirrels. *Physiol. Genomics* **32**, 170–181 (2008).

41. Van Breukelen, F. & Martin, S. L. Molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? *J. Appl. Physiol.* **92**, 2640–2647 (2002).

42. Morin, F. & Storey, K. B. Evidence for a reduced transcription during hibernation in ground squirrels. *Cryobiology* **53**, 310–318 (2006).

43. van Breukelen, F. & Martin, S. L. reversible depression of transcription during hibernation. *J. Comp. Physiol. B* **172**, 355–361 (2002).

44. Azzu, V. & Valencak, T. G. Energy metabolism and ageing in the mouse: a mini-review. *Gerontology* **63**, 327–336 (2017).

45. Schrack, J. A., Knuth, N. D., Simonsack, E. M. & Ferrucci, L. ‘IDEAL’ aging is associated with lower resting metabolic rate. *Aging 10*, 2800–2815 (2018).

46. van Lieshout, S. H. J. et al. Individual variation in early-life telomere length and survival in a wild mammal. *Mol. Ecol.* **28**, 4152–4165 (2019).

47. Lowe, D., Horvath, S. & Raj, K. Epigenetic clock analyses of cellular senescence and age. *OncoTARGET 7*, 8524–8531 (2016).

48. Kabacik, S., Horvath, S., Cohen, H. & Raj, K. epigenetic aging is distinct from senescence-mediated aging and is not prevented by telomerase repression. *Aging 10*, 2399–2408 (2018).

49. Kurz, G., Cummings, E. & Magalhaes, J. P. Being cool: how body temperature influences ages and longevity. *Biogerontology* **16**, 383–397 (2015).

50. Means, L. W., Higgins, J. L. & Fernandez, T. J. Mid-life onset of dietary restriction extends life and prolongs cognitive functioning. *Physiol. Behav*. **54**, 503–508 (1993).

51. Speakman, J. R. & Mitchell, S. E. Caloric restriction. *Mol. Aspects Med.* **32**, 159–221 (2011).
82. Walford, R. L. & Spindler, S. R. The response to calorie restriction in mammals shows features also common to hibernation: a cross-adaptation hypothesis. J. Gerontol. A 52, B179–B183 (1997).

83. Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006).

84. Conti, B. Considerations on temperature, longevity and aging. Cell. Mol. Life Sci. 65, 1626–1630 (2008).

85. Gribble, K. E., Moran, B. M., Jones, S., Corey, E. L. & Mark Welch, D. B. Congeneric variability in lifespan extension and onset of senescence suggest adaptive regulation of aging in response to low temperature. Exp. Gerontol. 114, 99–106 (2018).

86. Johns, D. W. & Armitage, K. B. Behavioral ecology of alpine yellow-bellied marmots. Behav. Ecol. Sociobiol. 5, 133–157 (1979).

87. Armitage, K. B. Social behaviour of a colony of the yellow-bellied marmot (Marmota flaviventris). Anim. Behav. 10, 319–331 (1962).

88. Armitage, K. B. Vernal behaviour of the yellow-bellied marmot (Marmota flaviventris). Anim. Behav. 13, 59–68 (1965).

89. Armitage, K. B., Melcher, J. C. & Ward, J. M. Oxygen consumption and body temperature in yellow-bellied marmot populations from montane-mesic and lowland-xeric environments. J. Comp. Physiol. B 160, 491–502 (1990).

90. Sheriff, M. J., Williams, C. T., Kenagy, G. J., Buck, C. L. & Barnes, R. M. Thermoregulatory changes anticipate hibernation onset by 45 days: data from free-living arctic ground squirrels. J. Comp. Physiol. B 182, 841–847 (2012).

91. Schwartz, C., Hampton, M. & Andrews, M. T. Hypothalamic gene expression underlying pre-hibernation satiety. Genes Brain Behav. 14, 310–318 (2015).

92. Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).

93. Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340 (2010).

94. Hampton, M., Melvin, R. G. & Andrews, M. T. Transcriptomic analysis of brown adipose tissue across the physiological extremes of hibernation. PLoS ONE 8, e58157 (2013).

95. Lindner, M. et al. Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons. BMC Genomics 22, 36 (2021).

96. Schwartz, C., Hampton, M. & Andrews, M. T. Seasonal and regional differences in gene expression in the brain of a hibernating mammal. PLoS ONE 8, e58427 (2013).

97. Dopico, X. C. et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat. Commun. 6, 7000 (2015).

98. Jansen, H. T. et al. Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Genes Brain Behav. 2, 336 (2019).

99. Viitaniemi, H. M. et al. Seasonal variation in genome-wide DNA methylation patterns and the onset of seasonal timing of reproduction in mammalian hibernation. Genome Biol. Evol. 3, 336 (2011).

100. Johns, D. W. & Armitage, K. B. Behavioral ecology of alpine yellow-bellied marmots. Mol. Ecol. 5680–5691 (2016).

101. Boyer, B. B. & Barnes, B. M. Molecular and metabolic aspects of hibernation. Annu. Rev. Physiol. 76, 20120349 (2013).

102. Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).

103. Klayver, T. et al. in Positioning and Power in Academic Publishing: Players, Agents and Agencies (eds Loizides, F. & Smith, B.) 87–90 (IOS Press, 2016); https://doi.org/10.3233/978-1-61499-649-1-870.

104. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

105. Ross, B. M. et al. Hibernation slows epigenetic ageing in yellow-bellied marmots data sets. OSF https://doi.org/10.17605/OSF.IO/E42ZV (2021).

Acknowledgements

We are grateful for all the marmoteers who diligently collected the data over the years, and for the Blumstein, Horvath and Wayne labs for supportive feedback. Thanks also for the helpful insights from the UCLA Statistical Consulting Group, especially to A. Lin and S. Jalal. This work was supported by the Paul G. Allen Frontiers Group (P.G.A.F.G.). G.M.P. was supported by the Science Without Borders programme of the National Counsel of Technological and Scientific Development of Brazil and the UCLA Canadian Studies Program. The long-term marmot project (P.D.T.B.) is supported by the National Geographic Society, UCLA (Faculty Senate and the Division of Life Sciences), a Rocky Mountain Biological Laboratory research fellowship and by the National Science Foundation (DBI-0754247, DEB-1119660 and DEB-1557130 to D.T.B., as well as DBI-0242560, DEB-0731346 and DEB-1226713 to the Rocky Mountain Biological Laboratory). Except for providing financial support, our funding sources were not involved in any stage of development of this manuscript.

Author contributions

G.M.P., S.H. and D.T.B. conceived the study. G.M.P., J.G.A.M., C.F. and A.H. analysed data. G.M.P., S.H. and D.T.B. wrote the manuscript. J.A.Z., J.Z., S.S., M.P. and K.I.H. planned to license several patents from his employer UC Regents. These patents list S.H. as inventor. The other authors declare no competing interests.

Competing interests

S.H. is a founder of the non-profit Epigenetic Clock Development Foundation, which plans to license several patents from his employer UC Regents. These patents list S.H. as inventor. The other authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41559-022-01679-1. Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41559-022-01679-1.

Correspondence and requests for materials should be addressed to Gabriela M. Pinho, Julien G. A. Martin, Daniel T. Blumstein or Steve Horvath.

Peer review information Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended Data Fig. 1 | Examples of CpG sites where methylation levels are non-linearly related with chronological age. Each plot includes the site identification in the Mammalian array and its location relative to the closest transcriptional start site. The CpG sites coordinates were estimated based on the alignment of Mammalian array probes to yellow-bellied marmot (Marmota flaviventer) genome assembly. Trend lines represent the GAM smooth function. R and p-values are based on the Pearson correlation of the CpGs’ methylation level and age in marmots.
Extended Data Fig. 2 | Location of CpG sites relative to the closest transcriptional start site. The CpG sites coordinates were estimated based on the alignment of Mammalian array probes to yellow-bellied marmot (Marmota flaviventris) genome assembly. A,B) CpGs associated with chronological age. C) CpGs associated with seasons (day of the year). D) Location of the Mammalian array probes mapped to the yellow-bellied marmot genome. The direction of associations with chronological age is highlighted (p < 10^{-5}) with orange for hypermethylated and blue for hypomethylated sites. Note that the season effect is cyclical, and we show the direction of association with chronological age for the active season.
Extended Data Fig. 3 | Enrichment analysis of the top ageing-related CpGs in yellow bellied marmots (Marmota flaviventer). The analysis was done using the Genomic Regions Enrichment of Annotations Tool (GREAT). The gene level enrichment was done using human GRCh37 background. The background probes were limited to 19,695 probes that were mapped to the same gene in the marmot genome. The top 3 enriched datasets from each category (Canonical pathways, gene ontology, mouse phenotype, and upstream regulators) were selected and further filtered for significance at $p < 10^{-3}$. Only terms with more than 5 foreground genes and at least 23 background genes were included.
Extended Data Fig. 4 | Visualization of the simulated patterns of epigenetic ageing. We simulated two traits: a linear trait (first row) that increases linearly with age independently of the season; and a seasonal trait (second row) that increases during the active season but not during the hibernation. For each trait we show the raw simulated data, the prediction from the GAMM fitted to the simulated data, and the predictions of the partial effects of chronological age and season from the model.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

- R_3.6.3: programming language for statistical computing
- R_sesame_1.7.5: normalize Illumina Infinium DNA methylation array data
- MethyToSNP_v.0.99.0: identify CpG sites that corresponded to SNPs
- R_glmnet_v.4.0-2: fit a generalized linear model with elastic-net penalization
- python_v.3.7.4: programming language
- python_EpigeneticPacemaker_0.0.3: fit Epigenetic pacemaker model

Data analysis

- R_3.6.3: programming language for statistical computing
- R_gamm4_v.0.2-6: fit Generalized Additive Mixed Models
- R_MuMIn_v.1.43.17: Model selection
- R_tidyverse_v3.2.1: used in simulations
- R_tidyverse_v.1.3.1: used in simulations
- R_patchwork_v.1.1.1: used in simulations
- R_gridExtra_v3.2.1: used in simulations
- R_ggplot2_v.3.3.0.9: visualization of Epigenetic aging models and the generalized additive mixed model
- R_GenomicRegionsEnrichmentTool_v3.0.0: Gene enrichment

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. Github). See the Nature Research guidelines for submitting code & software for further information.
Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Epigenetic data is deposited in the Gene Expression Omnibus GSE174544 and at http://doi.org/10.17605/OSF.IO/E42ZV
Code and all supplementary files are available at http://doi.org/10.17605/OSF.IO/E42ZV

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description
We tested the hypothesis that aging is suspended during hibernation in a well-studied population of yellow-bellied marmots (Marmota flaviventris), which spend 7-8 months per year hibernating. We used two approaches to estimate epigenetic age: the epigenetic clock and the epigenetic pacemaker. Variation in epigenetic age of 149 samples collected throughout the life of 73 females was modeled using generalized additive mixed models (GAMM), where season (cyclic cubic spline) and chronological age (cubic spline) were fixed effects.

Research sample
All samples were collected as part of a long-term study of a free-living population of yellow-bellied marmots in the Gunnison National Forest, Colorado (USA), where marmots were captured and blood samples collected biweekly during their active season (May to August). Individuals were monitored throughout their lives, and chronological age was calculated based on the date at which juveniles first emerged from their natal burrows. We only used female samples because precise age for most adult males is unavailable since males are typically immigrants born elsewhere.

Sampling strategy
We selected 160 blood samples from 78 females with varying ages. From these, DNA methylation profiling passed quality control for 149 samples from 73 females with ages varying from 0.01 to 12.04 years. We used two simulations approaches to estimate the type 1 error and the power to detect a hibernation-ageing effect given the limitations of our sample collection. Specifically, blood samples could only be collected during the active season, instead of throughout the year. Our earliest sample was collected on 27 April and the latest on 20 August. In our first approach, we simulated two traits (Figure S1): (1) a trait that increases linearly with age independently of the season; and (2) a trait that increases during the summer but not during the winter. The daily rate of increase for the first trait was set at 0.004, to simulate data with a similar range to the observed EPM data. For the second trait, the rate of increase was set to zero during winter (16 Sept to 17 April, days 139-352 using 1 May as reference). The simulation assumed that the active season was 150 days long starting on 18 April (day 353) and finishing on 15 Sept (day 138). The rate of increase during the active season was set as 0.0164 (0.004 / 365 * 150) so that the annual rate of increase was similar between the two simulated traits. Our simulation was parametrized using among-individual and residual variance from the EPM. We performed these simulations using field data (day of sample collection, age in days, birth date, and number of samples), and estimated the significance of the seasonal effect with the GAMM that best explained the marmot data (model selection described above). We repeated this procedure 1,000 times for both traits. The proportion of simulations on trait 1 (no seasonal effect) that were significant indicated our type 1 error. The proportion of simulations on trait 2 (seasonal effect) that were significant was an indication of the power to detect this effect. In the second approach, we simulated 1,000 data sets where day of year was randomly shuffled. The type 1 error was estimated as the proportion of simulations with significant seasonal effects in the GAMMs.

Data collection
Since the data came from a long-term study, many generations of postdoctoral researchers, grad students, research assistants and undergrads have collected samples. Since 2002, Professor Daniel Blumstein has been the leader of the project, and all members of the field team are trained on animal trapping, sample collection and animal observation prior to starting field activities.

Timing and spatial scale
The samples used in this manuscript have been collected from 2004 to 2018. The free living yellow-bellied marmots in the Gunnison National Forest, Colorado (USA), are studied every year from May to August.

Data exclusions
We selected 160 blood samples from 78 females with varying ages. We used two different unsupervised hierarchical clustering procedures to identify technical outliers. The first clustering procedure was based on imputed SNPs. Toward this end, we used MethylToSNP v.0.99.0 to identify CpG sites that corresponded to SNPs. The SNP data was used for unsupervised hierarchical clustering based on Euclidean distances. Branches (clusters) of the cluster tree corresponded to multiple samples from the same animal. This allowed us to identify a small platemap error probably caused by human pipetting error. To err on the side of caution we removed putative platemap errors from the data set. Second, we carried out average linkage hierarchical clustering based on the inter-array correlation to identify technical outliers due to an insufficient amount of DNA. The DNA profiling from 149 samples passed quality control. These samples were collected from 73 females (1 to 8 samples per individual) with ages varying from 0.01 to 12.04 years.
Reproducibility
All the DNA methylation data, detailed sample information, and code have been made available.

Randomization
The order in which blood samples have been extracted for DNA and analyzed with the methylation array have been randomized.

Blinding
DNA extraction and methylation array have been performed by individuals without knowledge about the samples.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions
The study was performed in a highly seasonal environment, where marmots hibernate from 7 to 8 months per year. Individuals reside in either ‘up-valley’ or ‘down-valley’ colonies that differ by an elevational gradient of 165 m.

Location
The wild population of yellow-bellied marmots is located in and around the Rocky Mountain Biological Laboratory (38°57'N, 106°59'W; 2900 m elevation) in Colorado, USA.

Access & import/export
The field site is located in a National Forest, and it is accessible by car, bike or foot. Data and samples were collected under the UCLA Institutional Animal Care and Use protocol (2001-191-01, renewed annually) and with permission from the Colorado Parks and Wildlife (TR917, renewed annually).

Disturbance
We prioritize animal wellbeing by minimizing the time individuals spend within traps, particularly in warm days. In areas close to trails used by park visitors, one member of the team monitors the traps to avoid any interaction between dogs and trapped animals. The traps are removed from animals’ path when they are not being used.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a Involved in the study

☑ Antibodies
☑ Eukaryotic cell lines
☐ Palaeontology and archaeology
☐ Animals and other organisms
☐ Human research participants
☐ Clinical data
☐ Dual use research of concern

Methods

n/a Involved in the study

☐ ChiP-seq
☐ Flow cytometry
☒ MRI-based neuroimaging

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals
The study did not involve laboratory animals.

Wild animals
All samples were collected as part of a long-term study of a free-living population of yellow-bellied marmots (Marmota flaviventra). Trapping sessions occur biweekly from May to August (details in Blumstein et al., 2016). We trapped marmots with Tomahawk live traps (Tomahawk Live Trap Co., Tomahawk, WI) baited with Purina Omolene 100 Horse Feed (Purina Mills, LLC, Gray Summit, MO). All marmots are given two uniquely numbered metal ear tags (Monel self-piercing fish tags #3, National Band and Tag, Newport, KY, United States) for permanent identification and their dorsal pelage is marked with black Nyanzol fur dye to enable identification from afar (Blumstein 2013). We recorded individual sex, time and date of capture, and collected blood samples based on protocol approved by UCLA Institutional Animal Care and Use protocol (2001-191-01, renewed annually) and the Colorado Parks and Wildlife (TR917, renewed annually). Our goal was to minimize animal handling time. All handling was performed at the site of capture and no anesthesia was used, so animals were released shortly after handling.

Weather permitting, we performed daily behavioral observations during times of peak activity (0700-1000, and 1600-1900 h; Armitage, 1962). Observers used binoculars and 15-45x spotting scopes (Blumstein et al., 2009; Yang et al., 2017) to record individual identity and location.

Field-collected samples
We used 149 blood samples from 73 females with ages varying from 0.01 to 12.04 years. Samples were collected at the capture site and animals were released shortly after sample collection.

Ethics oversight
UCLA Institutional Animal Care and Use protocol (2001-191-01, renewed annually) and Colorado Parks and Wildlife (TR917, renewed annually).

Note that full information on the approval of the study protocol must also be provided in the manuscript.