Physical and chemical researches of nickel-cobalt concentrates made from wastes of heat-resistant nickel alloys

Kilibayeva S. K., Agapova L. Ya., Kvyatkovskaya M. N., Amanzholova L. U., Kushch Y. P.

Satbayev University, Institute of Metallurgy and Ore Beneficiation, Almaty, Kazakhstan

Received: 12 June 2019 / Peer reviewed: 1 July 2019 / Accepted: 19 July 2019

Abstract. The wastes of rhenium-containing heat-resistant nickel alloys (HRNA) contain 50-75% of Ni, 3-15% of Co. While electrochemical processing of the wastes of the HRNA up to 80-90% of Re, Ni and Co passes into the solutions, and a small part of them remains in the anode slurry. The remaining part of the metals from the slurry is chemically dissolved into the solution. After electrochemical treatment of wastes and chemical dissolution of slurry the solutions are combined and Re is extracted from them. The Ni – Co concentrate was precipitated (until a pH of 8–9 was established, at a temperature of 40 °C, by intensive stirring for 1 h) from the raffinate (g/dm³: 14.26 Ni; 2.48 Co) after the extraction of Re by NaOH (500 g/dm³) solution. Physical and chemical studies of the concentrate using X-ray fluorescent, X-ray phase, thermogravimetric and X-ray methods showed that it contains the following phases, wt. %: 62.6 Na₂SO₄; 37.4 Ni₂(OH)₂ • 2H₂O and Co (OH)₂. Washing the concentrate from sodium by water at L:S = 10:1 ratio allowed reducing its mass (~ 2.4 times), reducing the content of sodium, increasing the content of Ni (from 15.68 to 37.55 %) and Co (from 1.89 to 4.48%). When the concentrate is annealed in the temperature range of 300-400 °C, the processes of dehydration of the hydroxides of Ni and Co and their transition to the oxide forms occur. The resulting concentrate can be sent for further processing in order to extract non-ferrous metals from it or used to produce some ferroalloys.

Key words: wastes of HRNA, raffinate, Ni-Co concentrate, precipitation, washing, annealing.

Introduction

Nowadays, the general metal production faces an obstacle in the efficient and integrated use of secondary raw materials that is becoming increasingly important both world wide and in the Republic of Kazakhstan.

Heat-resistant alloys have been widely used as a special type of structural materials in recent years, connected with the development of various
areas of technology. Heat-resistant nickel-based alloys are of particular importance, which include rare and trace elements: rhenium, tungsten, molybdenum, tantalum, niobium, hafnium. Such alloys are widely used in the aerospace industry, nuclear and thermal power, mechanical engineering and petrochemistry [1].

Now the world has accumulated a large amount of the wastes of heat-resistant nickel alloys (HRNA) in the form of scrap parts, with expired service life. The high cost of heat-resistant nickel alloys containing expensive metals (rhenium, tantalum, cobalt, etc.), required to solve the problem of efficient and complex processing of these materials.

Current technologies for the processing of wastes of HRNA can be divided into 4 groups:
- direct pyrometallurgical wastes processing [2];
- oxidative-thermal technologies [3, 4];
- hydrochemical technologies [5, 6];
- electrochemical technologies [7, 8].

Electrochemical methods are often suggested to use for the lump scraps based on the anodic dissolution of the material under the direct or alternating currents transfering either rhenium or a nickel alloy base into solution with the rhenium concentration in the anode slurry [9-10].

Analysing scientific, technical and patent literature has resulted in the present increasing interest of researches in the field of integrated processing of HRNA wastes due to the growing amount of such wastes, which is a valuable secondary raw material.

HRNA generally contain from 50 to 75 wt. % of nickel, from 3 to 15 wt. % of metals such as cobalt, chromium and, aluminum if required, as well as from 1 to 10 wt. % of one or several elements of tantalum, niobium, tungsten, molybdenum, rhenium, platinum, and hafnium series [11].

Therefore, it is also of interest to extract other valuable non-ferrous and rare metals in terms of integrated processing of HRNA wastes along with the expensive rhenium. This is especially true of the metals are quite large contained in the alloy. Here such metals are nickel and cobalt. An integrated processing of HRNA will allow to obtain compounds of these valuable non-ferrous metals. Due to the nature of the HRNA, which determines their resistance to the effects of various kinds, the extraction of valuable metals from the wastes of these alloys presents considerable difficulties.

There is no processing of such secondary raw materials in Kazakhstan. However, a well-known company for the rhenium and its compounds production from sulfur wash-acid of the copper production of RSE Zhezkazganredmet is currently seeking additional raw material sources of rhenium. In this regard, the company has shown interest in wastes of rhenium-containing HRNA.

The Institute of Metallurgy and Ore Beneficiation JSC of the Republic of Kazakhstan has developed a method for the electrochemical processing of large-volume of rhenium-containing HRNA wastes in the sulfuric acid solutions [12-16]. At this, up to 80-90% of rhenium, nickel and cobalt go into solutions, and a small part of them remain in the anode slurry. To extract the remaining rhenium, nickel and cobalt in the slurry, the anode slurry is sent for chemical dissolution [15]. The resulting solutions after electrochemical processing of wastes and chemical dissolution of anodic slurry are combined and the rhenium is extracted from them [12-13, 16]. Nickel and cobalt remain almost completely in the raffinate sulphate solution after extraction of rhenium, their content may be depending on the composition of the raw material and the conditions of its processing, on average, g / dm³: 16,85-25,74 Ni; 2.48-3.74 Co.

A wide range of methods of nickel and cobalt deposition from the solutions into a common nickel-cobalt concentrate, for example, sulfides [17-18], but most often they are precipitated from acidic solutions by alkali [12, 16].

This paper presents the results of physical and chemical studies of nickel-cobalt concentrates obtained from the products of electrochemical break-down of HRNA wastes.

Testing

From the sulphate raffinates are left after extraction of rhenium and containing significant amounts of nickel and cobalt, these metals were precipitated into a concentrate using alkali.

The deposition processes were carried out in a thermostated cell (Figure 1) with stirring using a mechanical stirrer using an adjustable speed.

![Figure 1 - Laboratory setup for Ni-Co concentrate deposition](image-url)
The chemical and phase composition of raffinates and processing products (filtrate, service water, Ni-Co concentrate before and after washing) was determined using X-ray fluorescence (spectrometer with wave dispersion Axios PANalytica), X-ray phase diffractometer (D8 Advance diffractometer (BRUKER), radiation Cu Kα); chemical (atomic emission spectroscopy Optima 2000 DV, USA, Perkin Elmer), infrared spectroscopic (FTIR spectrometer Thermo Nicolet Avatar 370 FTIR Spectrometer), thermal (STA 449) and chemical (atomic emission spectroscope Advance diffractometer (D8 ray) methods of analysis. The ultimate composition of the produced concentrate without washing was determined by X-ray fluorescence analysis, wt. %: Ni - 14.786; Co — 1.844; O - 43.912; Na — 21.917; Al = 0.936; Si - 0.075; S - 12.350; Ti = 0.055; Cr - 1.688; Fe - 0.339; As — 0.014; Mo - 0.096; Re - 0.031; Pb - 0.007.

According to the x-ray phase analysis of a dry concentrate without washing, the following phases are in it: a base - 62.6 wt.% of Na2SO4; 37.4 wt.% of Ni2(NO3)2(OH)2:2H2O and <2.5 wt. % of Co(OH)2.

The X-ray analysis has shown the following in the Ni-Co concentrate: Thenardite Na2SO4 - 1131, 638, 617 cm⁻¹ [20, 22-25]. The group [SO4] 2— -1131, 996, 977, 638, 617 cm⁻¹ [19–21]. The group [NO3] K· 1384, 1040, 833 cm⁻¹ [19, 21]. The band at 996 cm⁻¹ can be attributed to the ν1 (A1) fluctuation of iron, cobalt, and nickel sulfates [20, 23]. ALUMINITE Al2(SO4)3(OH)2·7H2O O - 977 cm⁻¹ [22] may be present. The band at a 406 cm⁻¹ wave number corresponds to the stretching fluctuations of Co-O, Ni-O [24]. CoO is probably present - 406 cm⁻¹ [20, 24]. The spectrum recorded absorption bands of ν (OH) - 3442 cm⁻¹ valence and deformation δOH-1635 cm⁻¹ oscillations of water molecules [20]. The infrared spectrum of Ni-Co concentrate is in Figure 2.

The filtrate (solution after Ni-Co concentrate precipitating) is a volume of 680 ml. The filtrate is colorless, bright. According to the chemical analysis, the filtrate contains, g / dm³ Ni - 0.460; Co - 0.100; Re - 0.078; Mo — 0.005; W — 0.0001; Al - N/A; Cr - N/A.

Chemical analysis of the filtrates showed that the metals present in the raffinate, when alkali added are almost completely precipitate.

The infrared spectrum of the filtrate recorded absorption bands of valence ν(OH) - 3422 cm⁻¹, deformation δOH-1648 cm⁻¹, and librational ν l H2O - 678 cm⁻¹ vibrations of molecular water [19]. The group [SO4]2Kis 1108, 624 cm⁻¹ [19, 21]. The group [NO3] K is 1397, 1376 cm⁻¹ [19, 21]. In the filtrate, the content of nitrate ion is lower than in the initial solution (raffinate). At the maximum of the absorption band characterizing the vibration of νs(F2) sulfate ion at a wavenumber of 1108 cm⁻¹, the optical density was 0.515. At the maximum of the absorption band characterizing the vibration of νs(F2) sulfate ion, at a wavenumber of 629 cm⁻¹, the optical density was 0.479. At the maximum of the absorption band, which characterizes the vibration of ν1 (A1) sulfate ion, at a wavenumber of 974 cm⁻¹, the optical density was 0.023.

When comparing the spectra of solutions - of the initial raffinate with the filtrate (Figure 3), a
decrease in the intensity of the νOH band in the filtrate is observed after deposition (2) compared with the initial raffinate (1), which indicates a decrease in the salt content in the filtrate.

The study of obtained Ni-Co concentrates without washing using thermogravimetry. Thermogravimetric analysis allows establishing the presence of chemical interaction of substances or phasing transformations by the accompanying thermal effects. The application of the method is based on the tendency of solid materials to chemical and physical transformations, accompanied by thermal effects. All processes occurring during the formation are recorded with a thermogravitogram (Figure 4).

Intense endothermic effects on the DTA Ni-Co concentrate curve are manifested with maximum development at 179.7 °C, 281.2 °C, 366.6 °C. They are developed against the background of weight reduction. The additional endothermic effects can be noted on the dDTA curve, with extremes at, °C: 125.2, 144.4, 155.8, 340.8.

Figure 2 Infrared spectrum of Ni-Co concentrate without washing

Figure 3 Comparison of the infrared spectra of the filtrate with the raffinate

Wave number, cm$^{-1}$
There are also exothermic effects with peaks at 237 °C, 295.2 °C, 399.5 °C. In this sample, a high content of sodium, therefore, apparently, the effect of polymorphic transformation of sodium sulfate (281.2 °C) is well manifested even in the DTA curve. Also in this sample, elemental sulfur (125.2 °C), ReO$_4$ (144.4 °C), ReO$_3$ impurity (155.8 °C) is present. At 366.6 °C, nickel hydroxide is dehydrated and nickel oxide is formed. This effect can also be a manifestation of the de-concentration of co-oxyoids. Effects with extremes at 179.7 °C (DTA) and 399.5 °C (dDTA) can be associated with the manifestation of chromium hydroxide.

The lows at the DTG curve in the temperature range 300–400 °C reflect the dehydration of Fe, Al, Ni, Cr, Co hydroxides. The presence of amorphous and fine hydroxides is also not excluded. Their dehydration probably reflects a stretched low at 162.2 °C on the DTG curve, and the products crystallization reflects exothermic effects with peaks at 237 °C, 295.2 °C, 399.5 °C.

The total weight loss was 12.37%.

Based on the results, it should be concluded that Ni-Co concentrate is necessary to wash with water from sodium, after precipitating it from the raffinate with a NaOH solution.

Washing of Ni-Co concentrate out of sodium.

We washed the Ni-Co concentrate with distilled water at room temperature 25-27 °C, ratio L:S = 10:1. The concentrate was wet, weight - 100 g. The moisture content of the concentrate is 76.35%. Dry concentrate weight is 23.65 g.

The concentrate was pre-dispersed in the water (50 ml), then the pulp was moved to a filter and washed with water to pH7 (by test paper). The results of testing of the Ni-Co concentrate washing process are in Table 1.

The chemical composition of the rinse after washing of the Ni-Co concentrate is, g/dm³: Ni - 0.00025; Co - 0.00005; Re 0.0059; Mo - 0.00032; W = 0.00023; Al = 0.00022; Cr - 0.00003. The influence of the washing process on the content of elements in the dry concentrates is provided in Table 2.

Table 1 Washing of nickel-cobalt concentrate with water

Test No	L:S	Service water	Concentrate after washing	Filtration time, min	Drying concentrates, hour			
		pH	Volume, ml	Wet weight, g	Humidity, %	Dry weight, g		
19	10:1	7	975	52.52	81.17	9.89	49	5

Figure 4 Thermogravitogram of Ni-Co concentrate without washing

![Thermogravitogram of Ni-Co concentrate without washing](image-url)
As provided by Table 1 and 2 the mass of Ni-Co concentrates decreases (~ 2.4 times), the sodium content in the concentrate decreases, the content of nickel and cobalt increases after washing. According to X-ray phase analysis (Figure 5), the dry Ni-Co concentrate have the following phases after washing: 33 wt. % Na₂SO₄; the rest is Ni₂(NO₃)₄(OH)₂·2H₂O; Ni(OH)₂ and Co(OH)₂; NiSO₄·H₂O; NiSO₄·6H₂O; CoSO₄·3H₂O.

A decrease in the intensity of the Thenardite Na₂SO₄ – 1129, 638, 617 cm⁻¹ band is observed in the spectra from 4 to 0.85 when comparing the IR spectra of Ni-Co concentrates without washing and after washing with water, which also indicates a decrease in the Na₂SO₄ content in the washed concentrate.

The thermogravitogram of a Ni-Co concentrate after washing with water is provided in Figure 6. The DTA curve demonstrates intense endothermic effects with maximum development at 194 °C and the exothermic effect with a peak at 415.2 °C can be interpreted as a chromium hydroxide occurrence. The exothermic effect reflects the conversion of Cr³⁺ into Cr⁴⁺ with the formation of the α-phase of a variable composition. Since the sample under study may have hydroxides of iron, aluminum, cobalt, so this peak may be an occurrence of the solid solutions formation of spinels.

A number of least values are emphasized on the DTG curve, in the temperature range 300-400 °C, which reflect the hydroxides dehydration Cr, Fe, Al, Ni, Co. In addition, amorphous or finely dispersed Fe, Al, Co. hydroxides may be present in the sample.

As well known the cobalt hydroxides include unstable blue and stable pink hydroxide Co(OH)₂, CoOOH oxyhydroxide, hydrated oxides [26]. Blue hydroxide is finely dispersed, it begins to lose water already at 170°C. Pink is resistant to 300°C.

Dehydration of the aged rhombohedral CoOOH is at ~ 335 °C. That is to say the effect with an extreme value at 381.8 °C may also be an occurrence of CoOOH dehydration. The stretched least value at 192.5 °C on the DTG curve may be an occurrence of the dehydration of amorphous, finely dispersed phases, and the exothermic effects with peaks at 244.5 °C, 303.5 °C, 415.2 °C on the dDTA curve reflecting the crystallization of dehydration products.

The total weight loss was 14.96%. The higher mass loss compared to the concentrate without washing (12.3%) is probably due to a higher nickel content in the form of hydroxide.

To confirm the presence of sodium sulfate, the sample weighing 0.314 g was heated to ~ 860 °C. The endothermic effect with an extreme value at 824.2 °C, which reflects the melting of sodium sulfate was better manifested on this DTA curve.

Element	Content, wt. % before washing	after washing	Element	Content, wt. % before washing	after washing
Ni	15.68	37.55	Hf	0.05	0.13
Co	1.89	4.48	Si	0.31	0.21
Cr	1.77	4.24	S	11.77	3.65
Al	0.88	2.41	O	43.89	43.33
Mo	0.10	0.22	Na	23.19	2.11
Re	0.04	-	Fe	0.33	0.87
W	0.02	0.02	Ti	0.08	0.52

Note - the dry weight of the concentrate without washing - 23.65 g, after washing - 9.89 g.
Thermogravimetric analysis of the concentrates, both without rinsing and after rinsing with water, resulted in that in the temperature range of 300-400 °C occur dehydration of nickel, cobalt, chromium, aluminum, iron hydroxides and their transition into oxide forms.

Annealing of nickel-cobalt concentrates obtained out of the products after the electrochemical break down of the HRNA wastes at a temperature of up to 400 °C will allow to transfer all non-ferrous metal hydroxides to oxides, to reduce the mass of concentrates by 15-20%. Annealed nickel-cobalt concentrates can be used in the smelting of some ferroalloys.

Findings

The studies have shown that nickel and cobalt can be isolated from the waste of rhenium-containing heat-resistant nickel alloys in the form of a concentrate. Start with, the large pieces of waste alloys anode dissolved in sulfuric acid solutions to obtain a rhenium-containing solution and anode slurry. Rhenium, nickel and cobalt are extracted into a solution out of the anodic slurries by chemical dissolution. Solutions from the anodic break down of the wastes and chemical dissolution of the slurries are combined and sent for the extraction of rhenium from them. After extraction of rhenium from the raffinate, nickel and cobalt are precipitated.
with a solution of NaOH (500 g / dm³) until the pH value is 8–9 at a temperature of 40 °C, with intensive stirring of the pulp for 1 h. Physical and chemical studies of the obtained concentrate showed that it contains the following phases, wt. %: 62.6 Na₂SO₄; 37.4 Ni₂(NO₃)₂(OH)₂·2H₂O и Co(OH)₂.

Washing the resulting concentrate from sodium with water is proposed at a L:S ratio = 10:1. After the Ni-Co concentrate washing, it mass decreases (~ 2.4 times), the sodium content in the concentrate decreases (~ 2.4 times), and cobalt (from 1.89 to 4.48 wt.%). During the annealing of the concentrate in the temperature range of 300-400 °C, the processes of dehydration of nickel and cobalt hydroxides and their transition into oxide forms occur. In this case, the weight of the concentrate is reduced by 15-20%. The resulting concentrate can be sent for further processing in order to extract non-ferrous metals from it. Also, nickel-cobalt concentrate can be used to produce some ferroalloys.

Acknowledgment

The work was financially supported by the Committee of Education and Science of the Ministry of Education and Science of the Republic of Kazakhstan. The Project of Financing Program No. BR05236406.

Cite this article as: Kilibayeva S. K., Agapova L.Ya., Kvyatkovskaya M. N., Amanzholova L. U., Kushch Y. P. Physical and chemical researches of nickel-cobalt concentrates made from wastes of heat-resistant nickel alloys // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’ya (Complex Use of Mineral Resources). – 2019. – №3 (310). – Page: 16-26. https://doi.org/10.31643/2019/6445.24
методами показали, что в нем содержатся следующие фазы, масс. %: 62,6 Na₂SO₄; 37,4 Ni₃(NO₃)₂(OH)₂·2H₂O и Co(OH)₂. Промывка концентрата от натрия водой при Ж:Т = 10:1 позволила уменьшить его массу (~ в 2,4 раза), снизить содержание натрия, повысить содержание Ni (от 15,68 до 37,55 %) и Co (от 1,89 до 4,48 %). При отжиге концентрата в интервале температур 300 – 400 °C происходит процесс дегидратации гидроксидов Ni и Co и перехода их в оксидные формы. Полученный концентрат может быть направлен на дальнейшую переработку с целью извлечения из него цветных металлов или использован для получения некоторых ферросплавов.

Ключевые слова: отходы ЖНС, рафинат, Ni-Co концентрат, осаждение, промывка, отжиг

REFERENCES

1] Оспенникова О.Г. Стратегия разви́тия жа́ропрочных сплавов и ста́лей спетса́льного назначе́ния. Вы́сшие школы́. 1982, стр. 19-35. (В РУСС.).

2] 2302473 RU. Способ переработки отходов жаропрочных сплавов (The method of processing waste heat resistant alloys). / Ранич Н.С., Пичушкин О.А., Золотилин В.А., Инешин Г.М. Опубликовано: 10.07.2007, 19. (В РУСС.). — Электронная версия на сайте: http://bd.patent.ru/2302473

3] Истрахкина М.В., Передере́евая За.А., Фомин С.С. Перспективные технологии извлечения и рационализации никеля из шлакотходов жаропрочных сплавов (Promising technologies for the extraction of nickel from waste nickel alloys). М.: ТСИНАО, 2001. 111-111. (В РУСС.).

4] 2061079 RU. Способ извлечения оксидов никеля из отходов (The method of extraction of nickel oxide from waste). / Гель Р.П., Дроботенко Г.А., Колосов В.Н., Некзоров Н.Е. Опубликовано: 27.05.1996 (В РУСС.). — Электронная версия на сайте: http://www.freepatent.ru/patents/2061079

5] Касиков А.Г., Петрова А.М., Багрова Е.Г. Извлечения и рационализации никеля из шлакотходов жаропрочных сплавов с применением жидкостной экстракции. (Extraction of nickel from shlfotothod superalloys using liquid extraction). Тзветная металлургия= Non-ferrous metallurgy. 2009, 1, 15-19 (В РУСС.).

6] 2437836 RU. Способ извлечения и очистки оксидов из расторов от переработки жаропрочных сплавов (The method of extraction and purification of rhenium from solutions from the processing of superalloys). / Шипачев В.А. Опубликовано: 27.12.2011. 36.

7] Палант А.А., Брюкин В.А., Леухчук О.М. Комплексная электролитическая переработка отходов жаропрочных никелевых сплавов. (Complex electrochemical technology for the processing of waste heat-resistant nickel alloys containing rhenium, tungsten, tantalum, niobium and other valuable metals). Metally= Metals. 2014, 1, 25-27 (В РУСС.).

8] Палант А.А., Брюкин В.А., Леухчук О.М. Комплексная электролитическая переработка металллических отходов ренийсодержащего жаропрочного никелевого сплава в сержисилоксах электролитах (Complex electrochemical processing of metal waste from rhenium-containing heat-resistant nickel alloy in sulphate electrolytes). Электролитная металлургия= Electrometallurgy. 2010, 7, 29-33. (В РУСС.).

9] Палант А.А., Брюкин О.М., Брюкин В.А. Комплексная электролитическая технология переработки отходов жаропрочных никелевых сплавов. содерхашчих никели (Comprehensive electrochemical technology for processing waste heat-resistant nickel alloys containing rhenium). Tзветная металлургия=Non-ferrous metallurgy. 2007, 11, 11-12. (В РУСС.).

10] 2401312. Способ электролитического перерыва металллических отходов жаропрочных никелевых сплавов. содерхашчих никели (The method of electrochemical processing of metal waste heat-resistant nickel alloys containing rhenium). / Палант А.А., Брюкин В.А., Леухчук О.М., Палант А.В., Левин О.М. Опубликовано: 10.10.2010. (В РУСС.).

11] 2313589 RU Способ выделения тяжелых металлов из сусперсплавов (The method of extraction of valuable metals from superalloys). / Штоллер В., Олбрих А., Мейзе-Марктешевель Ю., Мати В., Эрб М., Нитфельд Г., Гилле Г. (DE - Germaniya). Опубликовано: 10.08.2004. (В РУСС.).

12] Агацова Л.А., Абисхева З.С., Килябьева С.К., Яккихьяева З.Е. Электролитическая переработка техногенных отходов ренийсодержашчих жаропрочных никелевых сплавов в сержисилоксах расторов (Electrochemical processing of man-made wastes of rhenium-containing heat-resistant nickel alloys in sulfuric acid solutions). Тзветные металл= Non-ferrous metals. 2017, 10, 69-74. (В РУСС.). http://dx.doi.org/10.17580/tsm.2017.10.08

13] Сахарипова А.С., Загородняя А.Н., Абисхева З.С., Садькоанова С.Е. Извлечения рения из амиачных техногенных расторов экстракционной технологии рения (Extraction of rhenium from амиачных техногенных расторов экстракционной технологии рения).
ammonium technogenic solutions of extraction technology of rhenium). Комплексное исполь-зование Минерал’ного сыр’я. 2013. 3, 30 - 38 (in Russ.). http://kims-imio.kz

[14] 33395 РК. Способ электрохимической переработки металлических отходов ренийсодержащих харопроцентных никелевъих сплавов (The method of electrochemical processing of metal waste rhenium-containing high-temperature nickel superalloys). /Agapova L.Ya., Abisheva Z.S., Kenzhaliyev B.K., Kilibayeva S.K., Yakhayeva Zh.E., Altenova A.N. Opubl. 18.01.2019. Промышленная собственность RK №3. 2019 г. (in Russ.).

[15] Kilibayeva S.K., Agapova L.Ya., Kenzhaliyev B.K., Ruzakhunova G.S., Bayduisenova A.E. Переработка шлаков: полухлениковых в прокатываемое неравномерное rashpatovых (Processing of slag obtained in the process of anodic dissolution of waste heat-resistant nickel alloys). Эффективные технологии производства твердых, реальных и бластоходных металлов: маг. межд. науч.-практ. конф. (Effective production technologies of non-ferrous, rare and precious metals: mater. international scientific-practical conf.) Almaty, 2018. 280-285 (in Russ.). https://doi.org/10.31643/2018-7.23

[16] L. Agapova, L. Ya., Kilibayeva S. K., Zagorodnyaya A. N., Sharipova A. S., Kenzhaliyev B. K., Yakhiyayeva Zh. E. Recycling of rhenium, nickel and cobalt from the waste of heat-resistant alloys // XIII International Mineral processing and Recycling Conference. Belgrade, Serbia, 2019. 445-451.

[17] Greyver T.N., Kalashnikova M.I., Erteva L.N., Lutova L.S., Vagner L.Ya. Osazhdeniye sulfidov nikelya i kobalta iz sulftamnkh rastvorov serov v prisutstvi voosstanovitelnoy (Deposition of nickel and cobalt sulfides from sulphate solutions with sulfur in the presence of a reducing agent). Тsvetnye metally= Non-ferrous metals. 2010. 9, 21-27. (in Russ.).

[18] 2182187 RU. Способ полухлениковых и кобалтовых (The method of producing nickel and cobalt). / Baskov D.B.; Plekhanov S.V.; Orlov S.L.; Sereda G.A. Opubl. 10.05.2002. (in Russ.).

[19] Nakamoto K. Infrakrasnyye spektry neorganicheskikh i koordinatsionnykh soyedineniy (Infrared spectra of inorganic and coordination compounds). M.: Mir. 2016. 412 с., il. (in Russ.).

[20] Farmer V.C. The Infrared Spectra of minerals. MINERALOGICAL SOCIETY, 41 QUEEN’S GATE. London, 1974. 539 p.

[21] Kazitsyna L.A., Kupletskaya N.B. Primenenie UF, IK- i YaMR- spektroskopii v organscheshku khimii (The use of UV, IR and NMR spectroscopy in organic chemistry.). Moskva. Vysshaya shkola. 1971. 264. (in Russ.).

[22] HR Minerals(600 spectra). Thermo Fisher Scientific Inc. for Nicolet FT-IR. 2008.

[23] HR Aldrich FT-IR Collection Edition II (18454 spectra) Thermo Fisher Scientific Inc. for Nicolet FT-IR. 2008.

[24] Aldrich Organometallic, Inorganic, Boron, Deuterium Compounds (632 spectra). Nicolet Instrument Corp. – 1995

[25] Solntseva L.S., Sidorenko G.A., Solntsev B.P. Primenenie IK-spektroskopii k izucheniyu kharaktera svyazi i koordinatsii kationov po kislorodu i galogenam v mineralakh (Application of IR spectroscopy to the study of the nature of the bond and coordination of cations in oxygen and halogens in minerals). Konstitutsiya i svoystva mineralov= Constitution and properties of minerals. 1972. 6, 30-46. (in Russ.).

[26] Chalyy V.P. Gidrookisi metallov (Metal hydroxides). Kyiev. Naukova dumka. 1972. 154 с. (in Russ.).

ЛИТЕРАТУРА

[1] Оспенникова О.Г. Стратегия развития жаропрочных сплавов и сталей специального назначения, защитных и теплозащитных покрытий. – М.: ВИАМ, 2012. – С. 19-35.

[2] Пат. 2302473 РФ. Способ переработки отходов жаропрочных сплавов / Ранич Н.С., Пичучкин О.А., Золотилин В.А., Ищенко Г.М. Опубл. 10.07.2007. Бюл. №19. – Электронная версия на сайте: http://bd.patent.ru/2302000-2302999/pat/servlet7ec5.html

[3] Истракина М.Б., Передерева З.А., Фомин С.С. Перспективные технологии извлечения рения из отходов никелевых сплавов – М.: ЦИНАО, 2001. – С. 111-119.

[4] Пат. 2061079 РФ. Способ извлечения оксида рения из отходов / Гель Р.П., Дроботенко Г.А., Колосов В.Н., Нехорошев Н.Е. Опубл. 27.05.1996. – Электронная версия на сайте: http://www.freepatent.ru/2061079.

[5] Касиков А.Г., Петрова А.М., Багрова Е.Г. Извлечение рения из шлакоходов жаропрочных сплавов с применением жидкостной экстракции // Цветная металлургия. – 2009. – №1. – С.15-19.

[6] Пат. 2437836 РФ. Способ извлечения и очистки рения из растворов от переработки жаропрочных сплавов / В.А. Шипачев. Опубл. 27.12.2011. Бюл. №36.

[7] Палант А.А, Брюкин В.А., Левин А.М., Левчук О.М. Комплексная электрохимическая
технология переработки отходов жаропрочных никелевых сплавов, содержащих рений, вольфрам, тантал, ниобий и другие ценные металлы // Металлы. –2014. – №1. – С. 25-27.

[8] Палант А.А., Брюквин В.А., Левчук О.М. Комплексная электрохимическая переработка металлических отходов ренийсодержащего жаропрочного никелевого сплава в сернокислых электролитах // Электрометаллурия. – 2010. – №7. – С. 29-33.

[9] Палант А.А., Левчук О.М., Брюквин В.А. Комплексная электрохимическая технология переработки отходов жаропрочных никелевых сплавов, содержащих рений // Цветная металлургия. – 2007. – №11. – С. 11-12.

[10] Пат. 2401312 РФ. Способ электрохимической переработки металлических отходов жаропрочных никелевых сплавов, содержащих рений. / Палант А.А., Брюквин В.А., Левчук О.М., Палант А.В., Левин А.М. Опубл. 10.10.2010.

[11] Пат. 2313589 РФ. Способ выделения ценных металлов из суперсплавов / Штольер В., Ольбрих А., Месе-Марктшёфель Ю., Мати В., Ерб М., Нитфельд Г., Гилле Г. (DE - Германия). Опубл. 10.08.2004.

[12] Аганова Л.Я., Абшева З.С., Килибаева С.К., Яхияева Ж.Е. Электрохимическая переработка техногенных отходов ренийсодержащих жаропрочных никелевых сплавов в сернокислых растворах // Цветные металлы. – 2017. – №10. – С. 69-74. http://dx.doi.org/10.17580/ismn.2017.10.08

[13] Шарипова А.С., Загородняя А.Н., Абшева З.С., Садыканова С.Э. Извлечение рения из аммиачных техногенных растворов экстракцией тетраэтилосиликата рения // Комплексное использование минерального сырья. – 2013 – № 3. – С. 30 - 38. http://kims-imio.kz

[14] Пат. 33395 РФ. Способ электрохимической переработки металлических отходов ренийсодержащих жаропрочных никелевых суперсплавов / Аганова Л.Я., Абшева З.С., Кенжалиев Б.К., Килибаева С.К., Яхияева Ж.Е., Алтгнова А.Н. Опубл. 18.01.2019. Бюлл. Промышленная собственность РФ №3, 2019 г.

[15] Килибаева С.К., Аганова Л.Я., Кенжалиев Б.К., Рузахунова Г.С., Байдуиснова А.Е. Переработка шламов, полученных в процессе анодного раствоарения отходов жаропрочных никелевых сплавов // Эффективные технологии производства цветных, редких и благородных металлов: матер. междунар. науч.-практ. конф. – Алматы, 2018. – С. 280-285. https://doi.org/10.31643/2018-7.23

[16] Agapova L.Ya., Kilibayeva S.K., Zagorodnya A.N., Sharipova A.S., Kenzhalievyev B.K., Yakhiyayeva Zh.E. Recycling of rhenium, nickel and cobalt from the waste of heat-resistant alloys // XIII International Mineral processing and Recycling Conference. – Belgrade, Serbia, 2019, – Р. 445-451.

[17] Грейвер Т.Н., Калашникова М.И., Ерцева Л.Н., Левчук А.А., Вагнер Л.Я. Осаждение сульфидов никеля и кобальта из сульфатных растворов серой в присутствии восстановителя // Цветные металлы. – 2010. – №9. – С. 21-27.

[18] Пат. 2182187 РФ. Способ получения никеля и кобальта / Басков Д.Б.; Плеханов С.В.; Орлов С.Л.; Середа Г.А. Опубл. 10.05.2002.

[19] Накамото К. Инфракрасные спектры неорганических и координационных соединений. – М.: Мир, 1966. – 412 с.

[20] Farmer V.C. The Infrared Spectra of minerals // MINERALOGICAL SOCIETY, 41 QUEEN’S GATE. – London, 1974 – 539 р.

[21] Казицына Л.А., Куплетская Н.Б. Применение УФ-, ИК- и ЯМР- спектроскопии в органической химии. – Москва, «Высшая школа», 1971 г., – с. 264.

[22] HR Minerals (600 spectra). Thermo Fisher Scientific Inc. for Nicolet FT-IR. – 2008.

[23] HR Aldrich FT-IR Collection Edition II (18454 spectra) Thermo Fisher Scientific Inc. for Nicolet FT-IR. – 2008.

[24] Aldrich Organometalic, Inorganic, Boron, Deuterium Compounds (632 spectra). Nicolet Instrument Corp. – 1995.

[25] Солнцева Л.С., Сидоренко Г.А., Солнцев Б.П. Применение ИК-спектроскопии к изучению характера связи и координации кationов по кислороду и галогенам в минералах // Конституция и свойства минералов, – 1972. – №6, – С.30-46.

[26] Чальный В.П. Гидроокиси металлов. – Киев «Наукова думка», 1972. – 154 с.