A Comprehensive Review on Function of miR-15b-5p in Malignant and Non-Malignant Disorders

Soudeh Ghafouri-Fard¹, Tayyebeh Khoshbakht², Bashdar Mahmud Hussen³,4, Hazha Hadayat Jamal⁵, Mohammad Taheri⁶,7* and Mohammadreza Hajiesmaeili⁸,9*

¹ Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ² Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ³ Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq, ⁴ Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq, ⁵ Department of Biology, College of Education, Salahaddin University, Erbil, Iraq, ⁶ Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ⁷ Institute of Human Genetics, Jena University Hospital, Jena, Germany, ⁸ Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ⁹ Critical Care Fellowship, Department of Anesthesiology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

miR-15b-5p is encoded by MIR15B gene. This gene is located on cytogenetic band 3q25.33. This miRNA participates in the pathogenesis of several cancers as well as non-malignant conditions, such as abdominal aortic aneurysm, Alzheimer’s and Parkinson’s diseases, cerebral ischemia reperfusion injury, coronary artery disease, dexamethasone induced steatosis, diabetic complications and doxorubicin-induced cardiotoxicity. In malignant conditions, both oncogenic and tumor suppressor impacts have been described for miR-15b-5p. Dysregulation of miR-15b-5p in clinical samples has been associated with poor outcome in different kinds of cancers. In this review, we discuss the role of miR-15b-5p in malignant and non-malignant conditions.

Keywords: miR-15b-5p, cancer, biomarker, expression, malignance

INTRODUCTION

microRNAs (miRNAs) are a category of non-coding RNA with sizes about 20-24 nucleotide which participate in post-transcriptional control of gene expression (1). This effect is exerted through modulation of stability and translation of mRNAs. The primary transcripts produced by RNA polymerase II have 5’-cap and 3’-polyadenylated tail. Then, Drosha ribonuclease III enzyme cleaves this transcript to make the stem-loop precursor miRNA with an estimated size of 70 nucleotides (2). Finally, this transcript is processed by the Dicer ribonuclease to make the mature miRNA which can be combined into the RNA-induced silencing complex. Through incorporation into this complex, miRNAs can recognize their target transcript in a base pairing-dependent process resulting in suppression of translation or destabilization of transcript (3).

MIR15B gene is located on cytogenetic band 3q25.33 and encodes hsa-mir-15b. This miRNA participates in the pathogenesis of several cancers as well as non-malignant conditions, including cardiovascular disorders, neuropsychiatric diseases and metabolic conditions. This miRNA has been reported to exert oncogenic or tumor suppressor effects in different malignancies. We have searched the literature and discussed the role of miR-15b-5p in malignant and non-malignant conditions.
MIR-15B-5P IN CANCERS

Cell Line Studies

In bladder cancer cell lines, the long non-coding RNA (lncRNA) MAGI2-AS3 acts as a molecular sponge for miR-15b-5p. In fact, MAGI2-AS3 exerts its tumor suppressor role in bladder cancer through decreasing level of this miRNA. Meanwhile, miR-15b-5p has been found to target the tumor suppressor gene CCDC19. Taken together, MAGI2-AS3/miR-15b-5p/CCDC19 axis has been revealed to regulate progression of bladder cancer (4).

An *in vitro* experiment in breast cancer cells has shown that miR-15b-5p silencing could restrain cell proliferation and invasiveness and induce apoptosis, while its up-regulation has exerted the opposite impacts. Notably, heparanase-2 (HPSE2) has been acknowledged as the target of miR-15b-5p in breast cancer cells, through which this miRNA applies its effect (5).

In cervical cancer cells, level of the tumor suppressor lncRNA FENDRR has been shown to be decreased. This lncRNA has binding sites for miR-15a-5p and miR-15b-5p, two miRNAs that can down-regulate expression of Tubulin alpha1A (TUBA1A). Taken together, FENDRR/miR-15a/b-5p/TUBA1A molecular route has been proved to regulate progression of cervical cancer (6).

Expression of miR-15b-5p has been reported to be surged in colon cancer cells. Treatment of HT-29 cells with a PNA against miR-15b-5p has been shown to reduce cell proliferation and activate the pro-apoptotic pathway (7). Another research in colon cancer cells has displayed that SIRT1 suppresses metastatic ability of cells through decreasing expression of miR-15b-5p. In fact, SIRT1 disrupts the regulatory effect of AP-1 on activation of expression of miR-15b-5p *via* deacetylating this activation factor. miR-15b-5p can target the transcript of a central enzyme in the fatty acid oxidation, namely acyl-CoA oxidase 1 (ACOX1). Taken together, SIRT1/miR-15b-5p/ACOX1 axis has been identified as a functional route in regulation of metastatic ability of colorectal cancer cells (8).

Figure 1 displays the oncogenic role of miR-15b-5p in bladder, breast, cervical, colorectal, liver, oral, ovarian, prostate and gastric cancers.

In contrast to the previously mentioned experiment in colorectal cancer cells (7), Zhao et al. have shown that miR-15b-5p has a tumor suppressor impact in this cancer. Notably, miR-15b-5p can enhance 5-fluorouracil (5-FU)-induced apoptosis in these cells and reversed the resistance of colorectal cancer cells to this therapeutic agent. Mechanistically, miR-15b-5p exerts this impact through modulating activity of the NF-κB signaling *via* decreasing NF-κB1 and IKK-α levels. miR-15b-5p has been found to target the anti-apoptosis transcript XIAP (9).

In vitro experiments in neuroblastoma cells have shown that up-regulation of miR-15a-5p, miR-15b-5p or miR-16-5p can reduce expression of MYCN transcript and N-Myc protein. On the other hand, suppression of these miRNAs could lead to enhancement of MYCN transcripts and N-Myc protein level, along with increasing half-life of its mRNA. The interaction between these miRNAs and MYCN mRNA has been proved through conducting immunoprecipitation and luciferase reporter assays. Notably, up-regulation of these miRNAs has diminished proliferation, migration, and invasiveness of neuroblastoma cells (17). *Figure 2* shows tumor suppressor
Tumors	Interactions	Cell line	Function	Reference
Bladder cancer	MAG22-AS3 and CCDC19	EJ, T24 and RT4, SV-HUC-1	↑↑ MAG22-AS3 (which sponges mir-15b-5p): ↓ proliferation, ↓ migration and ↓ invasion	(4)
Breast cancer	HPSE2	MDA-MB-231, MCF-7, 293T	Δ mir-15b-5p: ↓ proliferation, ↓ colony formation, ↓ migration and ↓ invasion, ↑ apoptosis	(5)
Cervical cancer	FENDRR, TUBA1A	HeLa, SiHa, CaSki, C33A, Ect1-E6E7	↑↑ FENDRR (which sponges mir-15b-5p): ↓ proliferation, ↓ migration and ↓ invasion, and ↓ cell viability, and ↑ apoptosis	(6)
Colorectal cancer	NF-κB1 and IκK-α	NCM460, SW620, HCT116, DLD1, SW116	↑↑ NF-κB1 and IκK-α: ↓ proliferation, ↓ migration, ↓ invasion, and ↓ cell viability, and ↑ apoptosis	(7)
Cervical cancer	FENDRR, TUBA1A	HeLa, SiHa, CaSki, C33A, Ect1-E6E7	↑↑ FENDRR (which sponges mir-15b-5p): ↓ proliferation, ↓ migration and ↓ invasion, and ↓ cell viability, and ↑ apoptosis	(6)
Gastric cancer	PAQR3	AGS, BGC-823, SGC-7901, MGC-803	↑↑ PAQR3: ↓ proliferation and ↓ invasion	(8)
Glioblastoma multiforme	U251		Combo-therapy using PNA-a15b and SFN via interfering with mir-15b-5p could be used as a treatment for Glioblastoma multiforme to stimulate apoptosis.	(9)
Hepatocellular carcinoma	OIP5, AKT/tORC1 and β-catenin signaling pathways	HepG2, Hep3B, SK-HEP-1, Chang liver and THLE2, Huh7	Δ OIP5 [a target of mir-15b-5p]: ↓ migration, ↓ invasion and ↓ EMT process via mTORC1 and GSK-3β/β-catenin signaling	(10)
Laryngeal cancer	TXNIP	HEP-2	↑↑ TXNIP: ↓ proliferation and ↓ invasion	(11)
Liver cancer	Axin2	HepG2 and Huh7, Hep3B and HCC-M3	↑↑ Axin2: ↓ proliferation and ↓ invasion	(12)
Neuroblastoma	MYCN	SK-N-BE (2), NB-19, SH-EP Tet21N, CHLA-136	↑↑ MYCN: ↓ proliferation, ↓ migration, and ↓ invasion of NB cells	(13)
Non-small cell lung cancer	SNHG16, PRPS1		↑↑ SNHG16: ↓ proliferation, ↓ migration, and ↓ invasion of NB cells	(14)
Oral squamous cell carcinoma	PTPN4, STAT3 pathway	SCC-4, UM-1, CAL-27, OSC-4	↑↑ PTPN4, STAT3 pathway: ↓ proliferation, ↓ migration, and ↓ invasion and ↓ apoptosis	(15)
Oral tongue squamous cell carcinoma	TRIM14	SCC25	↑↑ TRIM14: ↓ proliferation and ↓ invasion	(16)
Osteosarcoma	PDK4	hFOB1,19, MNNG-HOS, Saos-2, MGC83, U-2OS	↑↑ PDK4: ↓ proliferation and the Warburg effect by suppressing PDK4 expression	(17)
Ovarian cancer	TRPM2-AS and PPM1D	OS cells	Δ TRPM2-AS (which sponges mir-15b-5p): ↓ viability, ↓ proliferation, ↓ migration and ↓ apoptosis	(18)
Prostate cancer	RECK	A2780, OVCA429, IOSE80	↑↑ RECK: ↓ proliferation and ↓ colony formation, ↓ apoptosis	(19)
Thyroid carcinoma	G3D2, MMP2 and MMP9	FTC133, SW1736, K1, Nthy-ori3-1	↑↑ G3D2, MMP2 and MMP9: ↓ proliferation and ↓ invasion	(20)

↑ Up-regulation; ↓ Down-regulation.
role of miR-15b-5p in thyroid cancer, hepatocellular carcinoma, neuroblastoma, osteosarcoma and prostate cancer.

Animal Studies
Lovat et al. have produced miR-15b/16-2 knockout mice for the purpose of identification of the role of this cluster. This intervention has led to development of B-cell lymphomas by age 15–18 month possibly through modulation of expression of Cyclins D2 and D1, and IGF1R. These genes participate in the regulation of proliferation and antiapoptotic pathways. Taken together, this cluster has been shown to have a tumor suppressor role in mice models of B-cell lymphoma (28).

In xenograft models of bladder cancer, up-regulation of MAGI2-AS3 has reduced tumor volume possibly through decreasing expression of miR-15b-5p (4). Up-regulation of FENDRR, another miR-15b-5p-sponging lncRNA has exerted similar effects in xenograft models of cervical cancer (6). In colorectal cancer cells, a single study has shown that over-expression of miR-15b-5p improves sensitivity of cells to 5-FU (9). On the other hand, another study has indicated that SIRT1 decreases metastasis through suppression of miR-15b-5p transcription (8). Moreover, miR-15b-5p has been demonstrated to decrease expression of PD-L1, suppress tumorigenic potential of colorectal cancer cells and increase anti-PD-1 sensitivity in colitis-associated cancer and APCmin/+ models of colorectal cancer (10).

In an animal model of osteosarcoma, over-expression of miR-15b-5p has been associated with reduced cell proliferation (22).

Human Studies
Expression assays in clinical samples obtained from patients with bladder cancer, breast cancer, gastric cancer, oral squamous cell carcinoma and prostate cancer have shown up-regulation of miR-15b-5p. On the other hand, this miRNA has been found to be down-regulated in head and neck cancer squamous cell carcinomas, neublastoma and thyroid cancer samples. Different studies in colorectal cancer and hepatocellular carcinoma sample have shown contradictory expression patterns (Table 3). Moreover, dysregulation of expression of miR-15b-5p has been associated with poor clinical outcome in bladder cancer, breast cancer, head and neck/oral squamous cell carcinoma, hepatocellular carcinoma and neuroblastoma.

ROLE OF MIR-15B-5P IN NON-MALIGNANT CONDITIONS

Cell Line Studies
In vitro experiments in vascular smooth muscle cells (VSMCs) have shown that up-regulation of miR-15b-5p suppresses cell proliferation and induces apoptosis, while its knock down leads to opposite results. These effects are possibly mediated through suppression of ACSS2. Transfection of these cells with miR-15b-5p...
TABLE 2 | Summary of animal studies on the role of miR-15b-5p in cancers (Δ, knock-down or deletion).

Tumors	Animals	Results	Reference
Bladder cancer	4-week-old female BALB/c nude mice	↑↑ MAI92-AS3: ↑ tumor volume and ↓ tumor weight	(4)
Breast cancer	5-week-old female BALB/c nude mice	Δ miR-15b-5p: ↓ tumorigenic ability	(5)
Cervical cancer	6-week-old male BALB/c nude mice	↑↑ FENDRR (which sponges mir-15b-5p): ↓ tumor volume and ↓ tumor weight	(6)
Colorectal cancer	Four-week-old female athymic nude mice	↑↑ miR-15b-5p: ↓ sensitivity of colon cancer cells to 5-FU and ↓ apoptosis via the NF-κB pathway	(9)
	4-6 weeks old BALB/c nude mice	↑↑ SIRT1: ↓ metastasis by suppressing mir-15b-5p transcription via AP-1	(8)
Hepatocellular carcinoma	Four-week-old female BALB/c nude mice	Δ miR-15b-5p: ↑ tumorigenesis and ↓ PD-L1 levels	(10)
Neuroblastoma	Six-week-old NOD mice	↑↑ miR-15b-5p: ↓ tumor size and ↓ tumor weight	(17)
Non-small cell lung cancer	Balb/c nude mice	Δ CERS6-AS1 (which sponges miR-15b-5p): ↓ tumor growth	(11)
Oral squamous cell carcinoma	5-week-old female specific-pathogen-free mice	Δ OIP5 (a target of mir-15b-5p): ↓ tumor growth and ↓ metastasis	(12)
Osteosarcoma	5-week-old male BALB/c nude mice	↑↑ miR-15b-5p: ↓ tumor growth, ↓ tumor volume and ↓ tumor weight	(15)
Prostate cancer	PC3 xenograft tumor model	↓↓ miR-15b-5p: ↓ proliferation	(22)
		Δ miR-15b-5p: ↓ tumor volume and ↓ tumor weight	(25)

↑ Up-regulation; ↓ Down-regulation.

miR-15b-5p has also been shown to mediate the anti-amyloid effect of curcumin in an in vitro model of Alzheimer’s disease through influencing expression of the amyloid precursor protein (36). Moreover, the antiangiogenic effect of isopimpinellin has been attributed to its impact on induction of miR-15b-5p expression and subsequent down-regulation of angiogenic stimulators (37).

In addition, miR-15b-5p has been shown to mediate the effects of LINCO00473 in cerebral I/R injury. Experiments in a cellular model of cerebral I/R injury has shown down-regulation of LINCO00473 in these cells. Up-regulation of this lncRNA has reversed the effects of oxygen glucose deprivation/reperfusion on cell viability and apoptosis as well as ROS levels. Mechanistically, LINCO00473 acts as a molecular sponge for miR-15b-5p and miR-15a-5p and regulates expression of SRPK1 (38). Table 4 shows summary of cell line studies on the role of miR-15b-5p in non-malignant conditions.

Animal Studies
Animal studies have highlighted the role of miR-15b-5p in different cellular processes and disorders such as angiogenesis, coronary artery disease, diabetic nephropathy, diabetic retinopathy, myocardial I/R injury, necroptosis and inflammation, Parkinson’s disease and trachea inflammatory injury (Table 5). For instance, overexpression of miR-15b-5p has considerably suppressed arteriogenesis and angiogenesis in animal models through targeting AKT3. Remarkably, siRNA-mediated silencing of AKT3 has inhibited arteriogenesis and the rescue of blood perfusion following femoral ligation in animals (42). Another animal study has shown that silencing of the miR-15b-5p-sponging lncRNA MALAT1 decreases atherosclerotic process (43). miR-15b-5p has also been shown to affect diabetic nephropathy and retinopathy in animals. Assessment of transcriptome of high glucose-exposed mouse mesangial cells has shown the effect of miR-15b-5p and its downstream target BCL-2 in regulation of high glucose-induced apoptosis. Besides, db/db mice has been shown to have higher levels of urinary miR-15b-5p (47).

Human Studies
Different experiments in human samples obtained from patients with acute mountain sickness, asthma-COPD overlap, coronary artery disease, diabetic foot ulcers, diabetic nephropathy, late pulmonary complications, obstructive sleep apnea and Parkinson’s disease have shown dysregulation of miR-15b-5p levels (Table 6).

This miRNA might participate in the pathoetiology of acute mountain sickness. Levels of miR-15b-5p in the saliva have been found to be higher in individuals being resistant to this condition compared to susceptible ones. Combination of levels of miR-134-3p and miR-15b-5p could discriminate between these two groups. Thus, salivary levels of miR-134-3p and miR-15b-5p have been suggested as non-invasive markers for prediction of acute mountain sickness prior to exposure to high altitude (71).

Although in vitro studies indicated possible role of miR-15b-5p in the pathogenesis of Alzheimer’s disease (36), serum levels of miR-15b-5p were not significantly different between patients with Alzheimer’s disease and healthy subjects (72).

miR-15b-5p has been among miRNA having lower expression in asthma-COPD overlap patients. This miRNA can distinguish between asthma-COPD overlap patients and individuals with either asthma or COPD. In fact, miR-15b-5p has been shown to be superior to other miRNAs in separation of patients with asthma-COPD overlap from similar conditions (73).
Tumors	Specimens	Expression (Tumor vs. Normal)	Kaplan-Meier analysis (as a result of dysregulation in mir-15b-5p)	Multivariate/Univariate Cox regression	Clinicopathologic characteristics	Method by which RNA was detected	Reference
Bladder cancer	10 patients with and without BC included 3 healthy persons and 7 patients with other urologic diseases TCGA database 58 pairs of tumor tissues and ANCTs	upregulated	–	–	–	ExiLENT SYBR® Green master mix (29)	
Breast cancer	6 pairs of tumor tissues and ANCTs TCGA databases	upregulated	Poorer OS	–	–	PrimeScript RT-PCR kit (4)	
Cervical cancer	53 pairs of tumor tissues and ANCTs	Downregulation of FENDRR (which sponges mir-15b-5p)	–	–	–	SYBR Green kit (6)	
Colorectal cancer	23 pairs of tumor tissues and ANCTs TCGA database	downregulated	–	–	–	TransStart SYBR Green supermix (9)	
Colorectal cancer	94 tumor tissues	downregulation in SIRT1 which suppresses mir-15b-5p transcription via AP-1	–	–	–	– (8)	
	110 pairs of tumor tissues and ANCTs TCGA database: MSS CRC samples GEPIA database	upregulation of CERS6-AS1 (which sponges mir-15b-5p)	–	–	–	– (11)	
Gastric cancer	40 pairs of tumor tissues and ANCTs 100 patients and 100 healthy controls	upregulated	–	–	degree of tumor invasion and lymph node metastasis and distant metastasis	PrimeScript™ RT reagent kit (12)	
Head and neck cancer squamous cell carcinomas	43 HNSCC patient in explorative phase 51 HNSCC patient in validation phase	downregulated	Shorter locoregional RFS miR-15b-5p was found to be an independent predictive factor of LRC in HNSCC patients.	–	–	TaqMan stem-loop (30)	
Hepatocellular carcinoma	TCGA and GEO databases 991 HCC and 456 adjacent non-HCC tissue samples GEO database (GSE36411: 42 pairs of tumor tissues and ANCTs) 46 pairs of tumor tissues and ANCTs Phase I: 6 pairs of tumor tissues and ANCTs (from 6 HCC patients) Phase II: 10 patients Phase III: 37 HCC patients, 29 cirrhosis patients, and 31 healthy controls 28 pairs of tumor tissues and ANCTs	upregulated	–	–	–	– (31)	
	GEO database (GSE76903: 20 pairs of tumor tissues and ANCTs)	Upregulation of OIP5 (a target of miR-15b-5p)	–	–	–	– (12)	
	46 pairs of tumor tissues and ANCTs	downregulated	–	–	–	SYBR Green (14)	
	Phase I: 6 pairs of tumor tissues and ANCTs (from 6 HCC patients) Phase II: 10 patients Phase III: 37 HCC patients, 29 cirrhosis patients, and 31 healthy controls 28 pairs of tumor tissues and ANCTs	Overexpression in tumor tissues and preoperative plasmas, and downregulation in postoperative plasma	–	–	–	All-in-One™ miRNA qRT-PCR Detection Kit (32)	
	28 pairs of tumor tissues and ANCTs	upregulated	–	–	–	SYBR Premix Ex Taq II on an FTC-3000TM System (15)	
	GSE27462 (5 pairs of tumor tissues and ANCTs)		–	–	–	– (33)	

(Continued)
Tumors	Specimens	Expression (Tumor vs. Normal)	Kaplan-Meier analysis (as a result of dysregulation in mir-15b-5p)	Multivariate/Univariate cox regression	Clinicopathologic characteristics	Method by which RNA was detected	Reference
Liver cancer	69 pairs of tumor tissues and ANCTs	upregulated	Poorer OS	TNM stage and tumor capsular infiltration		SYBR Premix Ex Taq	(14)
Neuroblastoma	Two cohort: 88 NB patients and 105 NB patients	downregulated	Poorer OS			SYBR green mix (Bio-Rad) for mRNA expression or TaqMan Universal Fast PCR master mix	(17)
	46 neuroblastoma samples and 28 normal tissues	downregulated	_	_		_	(18)
Non-small cell lung cancer	37 pairs of tumor tissues and ANCTs	downregulated	_	_		_	(19)
Oral squamous cell carcinoma	TCGA database	upregulated	Poorer OS	tumor stage, TNM stage, and tumor metastasis	SYBR Premix Ex Taq II	(20)	
Ovarian cancer	TCGA and genotype-tissue expression (GTEx) databases	downregulation in TTN-AS1	_	_		_	(24)
Prostate cancer	TCGA database: 495 patients and 52 pairs of tumor tissues and ANCTs	upregulated	_	_		_	(25)
Squamous cell carcinoma	10 patients and 30 healthy controls	downregulated	_	_		_	(34)
Thyroid carcinoma	Cancer Genome Atlas project database: 509 patients and 58 healthy controls	downregulated	Poorer OS	_		_	(27)
TABLE 4 | Summary of cell line studies on the role of miR-15b-5p in non-malignant conditions (Δ, knock-down or deletion; DOX, doxorubicin; HG, High glucose; SHF, secondary hair follicle; ER, endoplasmic reticulum; EVs, extracellular vesicles).

Disease type	Interactions	Cell line	Function	Reference
Abdominal aortic aneurysm	ACSS2 and PTGS2	Human aortic VSMCs (T/G HA-VSMC cell line)	↑↑ miR-15b-5p: ↑ proliferation and ↓ apoptosis of aortic VSMCs via targeting the ACSS2/PTGS2 axis	(35)
Alzheimer’s disease	amyloid precursor protein and amyloid-β	Human umbilical Vein Endothelial Cell (HUVEC)	Curcumin treatment: ↑ mir-15b-5p and ↓ amyloid precursor protein and ↓ amyloid-β	(36)
Angiogenesis	...	Human umbilical Vein Endothelial Cell (HUVEC)	Isoprinpatrin: ↓ proliferation, ↓ invasion, ↓ migration, and tube formation via increasing mir-15b-5p levels and decreasing angiogenic stimulators	(37)
Asthma	YAP1	ASM cells	↑↑ miR-15b-5p: ↑ proliferation, migration, inflammation response, and ECM deposition of TNF-α-induced ASM cells	(39)
Atherosclerosis	circCHFR and GADD45G	HUVECs	Uregulation of miR-15b-5p was found to reduce apoptosis, proinflammatory cytokine secretion, and improved cell survival via targeting GADD45G.	(40)
Cerebral I/R injury	LINCO0473, SRPK1	Neuro-2a (N2a) cells	↑↑ miR-15b-5p: ↑ cell viability, ↓ apoptosis and ↓ ROS level induced by OGD/R	(38)
Clopidogrel-induced liver injury	AKT3	Human umbilical vein endothelial cells (HUVECs)	↑↑ miR-15b-5p: ↑ migration and ↓ proliferation of endothelial cells	(42)
Coronary artery disease	MALAT1 and MAPK1, mTOR signaling pathway	HEK 293T cells	Δ MALAT1 (which sponges mir-15b-5p): ↑ cell viability, ↓ autophagy and ↓ development of CAD	(43)
Diabetic foot ulcers	ENST00000608794, PDK4	dexamethasone treated HepG2 cell lines	Δ ENST00000608794 (which sponges mir-15b-5p): ↓ dexamethasone induced steatosis	(44)
Diabetic foot ulcers	IKBKB and WEE1	human keratinocytes	↑↑ miR-15b-5p: ↓ dexamethasone induced steatosis	(45)
Diabetic nephropathy	JNK and Akt/mTOR pathway	HK-2 and HK-5 cells	High glucose treatment: ↑ expression of mir-15b-5p in HK-2 cells	(46)
Diabetic nephropathy	BCL-2	Mouse MCs (CRL1927) and human embryonic kidney (HEK) 293 cells	High glucose treatment: ↑↑ mir-15b-5p expression in mouse MCs, so ↑ mouse MC apoptosis by targeting BCL-2	(47)
Diabetic retinopathy	CDKN2B-AS1 and WNT2B	HMCs	Δ miR-15b-5p: ↑ viability, ↑ cell cycle progression, ↑ ECM accumulation, ↑ inflammatory response	(48)
Diabetic retinopathy	circ_001209, COL12A1	human retinal vascular endothelial cells (HRVECs)	↑↑ miR-15b-5p: ↑ viability, ↑ cell cycle progression, ↑ ECM accumulation, ↑ inflammatory response	(49)
Diabetic retinopathy	circ_001209, COL12A1	human retinal vascular endothelial cells (HRVECs)	↑↑ miR-15b-5p: ↑ viability, ↑ cell cycle progression, ↑ ECM accumulation, ↑ inflammatory response	(50)
Diabetic retinopathy	TNFα, SOCS3 and IGFBP-3 I	Human REC	↑↑ miR-15b-5p: ↓ invasion, ↓ migration and ↓ tubular formation induced by HG	(51)
DOX-induced cardiotoxicity	Bmpr1a	H9c2 cardiomyocytes	High glucose induced apoptosis, ↑ oxidative stress and ↑ mitochondria damage	(52)
DOX-induced cardiotoxicity	Rab1A	HT22 cells	Steviane exposure: ↓ cell viability, and apoptosis and ↑ ER stress via increasing mir-15b-5p levels, thus inhibiting Rab1A	(53)
Endoplasmic reticulum stress mediated neurons apoptosis	HCAR, VEGF and MMP13	BMSCs	HCAR sponges mir-15b-5p to regulate VEGF and MMP13, so induces endochondral bone repair in hypotrophic chondrocyte.	(54)
Fracture	Seman3A	mouse podocytes	↑↑ miR-15b-5p: ↓ apoptosis, ↓ oxidative stress, and ↓ inflammatory response	(55)
High glucose-induced podocyte injury	IncRNA-599547, Wnt110b	dermal papilla cells (DPCs) of passage 3 of cashmere goat SHF	InCNA-599547 (which sponges mir-15b-5p) showed strongly high levels in dermal papilla of cashmere goat SHF. High levels of ↑↑ IncRNA-599547 (which sponges mir-15b-5p) was found to protect cardiomyocytes against ischemia-related apoptotic death.	(56)
Myocardial infarction	circ-Ttc3, Arf2	human retinal vascular endothelial cells (HRVECs)	↑↑ miR-15b-5p: ↑ viability, ↑ cell cycle progression, ↑ ECM accumulation, ↑ inflammatory response	(57)

(Continued)
TABLE 4 | Continued

Disease type	Interactions	Cell line	Function	Reference
Necroptosis and inflammation	TGFβR3, TGF-β pathway	HD11 and DT40	H2S exposure; † oxidative stress and activates the TGF-β pathway by regulating miR-15b-5p/TGFβR3 axis miR-15b-5p is upregulated in H2S-induced necroptosis and inflammation.	(58)
Obstructive sleep apnea	PTGS1-NF-κB-Sp1 signaling	human THP-1, HUVEC, and SH-SYSY cell lines	Δ miR-15b-5p: † IHR-induced oxidative stress and † MACA hyperactivity via targeting PTGS1-NF-κB-Sp1 signaling in OSA patients	(59)
Osteoarthritis	LINC00662, GPR120	rat chondrocytes	LINC00662 is downregulated in osteoarthritis, so mir-15b-5p is upregulated and GPR120 is suppressed, thus inflammatory responses and apoptosis are induced.	(60)
Parkinson’s disease	LINC00943 and RAB3IP SNHG1 and GSK3β Akt3	SK-N-SH cells	Δ LINC00943 (which sponges mir-15b-5p): † MPP+-caused decrease of cell viability so reduced MPP+-induced neuronal damage †† SNHG1 (which sponges mir-15b-5p): † MPP+ -induced cellular toxicity, † cell viability via mir-15b-5p/GSK3β axis	(61)
Severe acute respiratory syndrome	SNHG1, SIAH1 viral RdRp	SH-SYSY	†† mir-15b-5p: † α-synuclein aggregation and † apoptosis via targeting SIAH1 † mir-15b-5p: † viral infection and † proliferation by targeting the RNA template component of SARS-CoV-2 RdRp	(62)
Arthritis	IncrRS1 and IRS1	DF-1 cells	LncIRS1 (which sponges mir-15b-5p) was found to regulate myoblast proliferation and differentiation in vitro via increasing IRS1.	(63)
Tendon injury	circRNA-Ep400, FGF-1/2 7/9	293 T cells, fibroblasts and tenocytes	†† M2 macrophage-derived circRNA-Ep400 (which sponges mir-15b-5p): † fibrosis, † proliferation, and † migration	(64)

† Up-regulation; † Down-regulation.

TABLE 5 | Summary of studies on the role of mir-15b-5p in non-malignant conditions (Δ, knock-down or deletion; MDA, malondialdehyde; ECs, endothelial cells; ACR, Albumin-to-Creatinine Ratio; H2S, Hydrogen sulfide).

Disease Type	Animal models	Results	Reference
Angiogenesis	zebrafish embryos	Isopimpinellin: † intersegmental vessels	(37)
Coronary artery disease	8-10-week-old male C57BL/6 mice	miR-15b-5p expression was decreased, because of a reduced expression in EC layer of collaterals and miR-15b-5p was mainly derived from ECs.	(42)
Coronary atherosclerotic heart disease	Six-week old male ApoE−/− mice	Δ MALAT1 (which sponges mir-15b-5p): † atherosclerosis	(43)
Diabetic nephropathy	5 db/m mice and 5 db/db mice	Higher urine miR-15b-5p levels were found in db/db mice. Urinary EV miR-15b-5p levels were positively associated with urinary ACR. With increased levels of circ_001209 (which sponges miR-15b-5p) retinal thickness was thinner in diabetic rats, and apoptosis was enhanced.	(44)
Diabetic retinopathy	80 Sprague–Dawley male rats	Δ mir-15b-5p: † arthritism, infract extent and apoptosis, † MDA content in the myocardial tissue by increasing levels of KCNJ2 (a target of mir-15b-5p) H2S exposure: † necroptosis and inflammation	(45)
Myocardial ischemia	6-8-week-old male C57/B6 mice	H2S exposure: † necroptosis and inflammation	(46)
Myocardial ischemia	40 one-day-old Ross 308 male broilers	mir-15b-5p: † MAPK-induced apoptosis by regulating Akt3 LncIRS1 (which sponges mir-15b-5p) was found to regulate muscle mass and muscle fibre cross-sectional area.	(47)
Parkinson’s disease	five-week-old male C57BL/6 mice	Δ mir-15b-5p: † MPTP-induced apoptosis by regulating Akt3 LncIRS1 (which sponges mir-15b-5p) was found to regulate muscle mass and muscle fibre cross-sectional area.	(48)
Skeletal muscle atrophy	1-day-old chicks	H2S exposure: † mir-15b-5p miR-15b-5p reduced ATF2 levels to mediate METs release, which induces trachea inflammatory damage	(49)
Trachea inflammatory injury	Eighty one-day-old Ross 308 broilers divided into two groups (control group and H2S group)		(50)

† Up-regulation; † Down-regulation.
TABLE 6 | Summary of human studies on the role of miR-15b-5p in non-malignant conditions (CAD, coronary atherosclerotic heart disease; CCC, coronary collateral circulation; ACR, albumin-to-creatine ratio; eGFR, Estimated Glomerular Filtration Rate; AMS, Acute mountain sickness; COPD, chronic obstructive pulmonary disease; ACO, asthma-COPD overlap; DN, diabetic nephropathy; OSA, obstructive sleep apnea; CPAP, continuous positive airway pressure; DFU, Diabetic foot ulcers; FS, foot skin).

Disease type	Numbers of clinical samples	Expression (Tumor vs. Normal)	Clinicopathologic characteristics of patients	Method by which RNA was detected	Reference
Acute mountain sickness	124 healthy men (75 AMS+ group and 49 AMS– group)	upregulated in AMS- group	_	iQ™5 Real-Time PCR Detection System	(71)
Alzheimer’s disease	50 AD patients and 50 healthy controls	no significant differences	_	_	(72)
Asthma-COPD overlap	Cohort 1: 6 patients with ACO and 6 patients with asthma; Cohort 2: 30 patients with asthma, 30 patients with COPD, or 30 patients with ACO	downregulated in ACO patients	_	miScript SYBR Green PCR Ki	(73)
Atherosclerosis	30 patients with atherosclerosis and 30 healthy controls	downregulated	_	SYBR Green PCR kit	(40)
Coronary artery disease	5 patients with poor CCC and 5 patients with good CCC; 20 patients with poor CCC and 18 patients with good CCC and 18 healthy controls	upregulated in patients with poor CCC	mR-15b-5p was associated with insufficient coronary collateral artery function.	SYBR Premix Ex Taq qRT-PCR assays	(42)
Coronary atherosclerotic heart disease	GEO database (GSE18608): 10 CAD patients and 4 healthy controls	downregulated	_	SYBR green	(43)
Diabetic foot ulcers	12 DFU and 12 FS specimens; 6 DFU and 6 FS specimens (GEO database GSE80178)	upregulated in DFU	_	PerfeCTa® SYBR® Green SuperMix	(45)
Diabetic nephropathy	85 type 2 diabetic patients and 39 healthy controls	upregulated	Urinary EV miR-15b-5p levels were found to be positively associated with urinary ACR, negatively associated with eGFR, and correlated with rapid decline in kidney function in humans.	_	(47)
Late pulmonary complications	34 DN patients and 34 healthy controls; 20 Sulfur mustard-exposed individuals and 20 healthy controls	downregulated	_	SYBR Green	(48)
Obstructive sleep apnea	Discovery cohort: 16 OSA Patients and 8 healthy controls; Validation cohort: 20 Primary Snoring, 45 Treatment-Naïve OSA Patients, and 13 OSA Patients on CPAP	downregulated in OSA patients	mR-15b-5p was negatively associated with an apnea hypopnea index	NGS (Illumina MiSeq platform) and SYBR Green PCR kit	(59)
Parkinson’s disease	10 patients and 5 healthy controls	upregulated	_	ABI PRISM® 7500 Sequence Detection System	(63)
In some conditions, dysregulation of this miRNA has been associated with clinicopathological parameters. For instance, in patients with coronary artery disease, dysregulation of miR-15b-5p has been associated with insufficient coronary collateral artery function (42). Moreover, in diabetic nephropathy, Urinary exosomal levels of miR-15b-5p have been positively associated with urinary albumin-to-creatinine ratio, negatively associated with eGFR, and correlated with speedy failure in kidney function (47).

DISCUSSION

miR-15b-5p is an example of miRNAs with dual roles in the carcinogenesis. While it is a putative oncogenic miRNA in bladder cancer, cancer, gastric cancer, oral squamous cell carcinoma and prostate cancer, it has been found to be down-regulated in head and neck cancer squamous cell carcinomas, neublastoma and thyroid cancer samples as compared with corresponding non-cancerous samples (75). Moreover, in colorectal cancer and hepatocellular carcinoma, different studies have reported contradictory results.

This miRNA also participates in the pathogenesis of several non-malignant conditions, such as abdominal aortic aneurysm, Alzheimer’s disease, Parkinson’s disease, cerebral I/R injury, coronary artery disease, dexamethasone induced steatosis, diabetic complications and doxorubicin-induced cardiotoxicity.

miR-15b-5p has been shown to be sponged by several lncRNAs, namely MAGI2-AS3, H19, SNHG1, SNHG16, TTN-AS1, PVT1, FENDRR, SSTR5-AS1, MALAT1, ENST00000608794, CDKN2B-AS1, LINC00473, LINC00662, LINC00943, LncRNA-599547 and CDKN2B-AS1 as well as the circular RNA Circ_001209. Thus, lncRNAs and circRNAs can affect expression of this miRNA. Other possible regulatory mechanisms for modulation of expression levels of miR-15b-5p should be clarified in future studies.

NF-κB, STAT3, AKT/mTORC1, CDC42/PAK1 and β-catenin signaling pathways are signaling pathways that mediate the effects of miR-15b-5p in the carcinogenesis. Notably, this miRNA could regulate response of cancer cells to 5-FU and anti-PD-1 drugs. Thus, therapeutics modalities affecting expression of miR-15b-5p can be considered as possible ways to combat resistance to anti-cancer agents. Evidence from in vitro and in vivo studies indicates that therapeutic intervention with miR-15-5p can be considered as possible ways to combat resistance to anti-cancer agents. Evidence from in vitro and in vivo studies indicates that therapeutic intervention with miR-15-5p can be considered as possible ways to combat resistance to anti-cancer agents. Evidence from in vitro and in vivo studies indicates that therapeutic intervention with miR-15-5p can be considered as possible ways to combat resistance to anti-cancer agents.

While the prognostic impact of dysregulation of miR-15b-5p has been confirmed in different types of cancer, there is no explicit evidence for application of this miRNA as a diagnostic marker in cancers. Since miRNAs dysregulation in the circulation provides a potential way for early non-invasive diagnosis of cancer, future studies should focus on evaluation of expression levels of miR-15b-5p in different biofluids during the course of cancer to provide insights into diagnostic role of this miRNA in cancer.

CONCLUSION

While the prognostic impact of dysregulation of miR-15b-5p has been confirmed in different types of cancer, there is no explicit evidence for application of this miRNA as a diagnostic marker in cancers. Since miRNAs dysregulation in the circulation provides a potential way for early non-invasive diagnosis of cancer, future studies should focus on evaluation of expression levels of miR-15b-5p in different biofluids during the course of cancer to provide insights into diagnostic role of this miRNA in cancer.

AUTHOR CONTRIBUTIONS

SG-F wrote the manuscript and revised it. MT supervised and designed the study. TK, HJ, MH and BH collected the data and designed the figures and tables. All authors read and approved the submitted version.

FUNDING

This study was financially supported by Grant from Medical School of Shahid Beheshti University of Medical Sciences.

REFERENCES

1. Hussen BM, Hidayat HJ, Salih A, Sabir DK, Taheri M, Ghafouri-Fard S. MicroRNA: A Signature for Cancer Progression. Biomed Pharmacother 2021 139:111553. doi: 10.1016/j.biopha.2021.111553

2. Ghafouri-Fard S, Shaterabadi D, Abak A, Shoorei H, Bahroudi Z, Taheri M, et al. An Update on the Role of miR-379 in Human Disorders. Biomed Pharmacother 2021 139:111553. doi: 10.1016/j.biopha.2021.111553

3. Ha M, Kim VN. Regulation of microRNA Biogenesis. Nat Rev Mol Cell Biol (2014) 15(8):509–24. doi: 10.1038/nrm3838

4. Wang F, Zu Y, Zhu S, Yang Y, Huang W, Xie H, et al. Long Noncoding RNA MAGI2-AS3 Regulates CCDC19 Expression by Sponging miR-15b-5p and Suppresses Bladder Cancer Progression. Biochem Biophys Res Commun (2018) 507(1-4):231–5. doi: 10.1016/j.bbrc.2018.11.013
52. Gao ZF, Ji XL, Gu J, Wang XY, Ding L, Zhang H. miRNA-107 Protects Against Inflammation in Broiler Bursa of Fabricius by the miR-15b-5p/GFPBR3 Axis and the Involvement of Oxidative Stress in This Process. J Hazard Mater (2021) 406:126482. doi: 10.1016/j.jhazmat.2020.126482

53. Zhu Y-C, Hsu P-Y, Su M-C, Chen T-W, Hsiao C-C, Chin C-H, et al. MicroRNA Sequencing Analysis in Obstructive Sleep Apnea and Depression: Anti-Oxidant and MAOA-Inhibiting Effects of miR-15b-5p and miR-29b-3p Through Targeting PTGS1-NF-xB-SPI Signaling. Antioxidants (2021) 10(3):11854. doi: 10.3390/antiox10111854

54. Lu M, Zhou E. Long Noncoding RNA LINC00662-miR-15b-5p Mediated GPR120 Disregulation Contributes to Osteoarthritis. Pathol Int (2020) 70(3):155–65. doi: 10.1111/pat.12875

55. Meng C, Gao J, Ma Q, Sun Q, Qiao T. LINC00943 Knockdown Attenuates MMP-2 Induced Neuronal Damage via miR-15b-5p/RAB3IP Axis in SK-N-SH Cells. Neurol Res (2021) 43(3):181–90. doi: 10.1177/01616412203814290

56. Xie N, Qi J, Li S, Deng J, Chen Y, Yan L. Upregulated IncRNA Small Nucleolar RNA Host Gene 1 Promotes 1-Methyl-4-Phenylniridrinon Iron-Induced Cytotoxicity and Reactive Oxygen Species Production Through miR-15b-5p/GSK3β Axis in Human Dopaminergic SH-SYSY Cells. J Cell Biochem (2019) 120(4):5790–801. doi: 10.1002/jcb.27865

57. Zhu J, Xu X, Liang Y, Zou R. Downregulation of microRNA-15b-5p Targeting the Ak3-Mediated GSK-3β/F-Catenin Signaling Pathway Inhibits Cell Apoptosis in Parkinson’s Disease. BioMed Res Int (2021) 2021:8814626. doi: 10.1155/2021/8814626

58. Ramirez HA, Pastar I, Joizic I, Stojaonic O, Stone RC, Ojeh N, et al. Staphylococcus Aureus Triggers Induction of miR-15b-5p to Diminish DNA Repair and Deregulate Inflammatory Response in Diabetic Foot Ulcers. J Invest Dermatol (2018) 138(5):1187–96. doi: 10.1016/j.jid.2017.11.038

59. Shen H, Fang K, Guo H, Wang G. High Glucose-Induced Apoptosis in Human Kidney Cells was Alleviated by miR-15b-5p Mimics. Biol Pharm Bull (2019) 42(5):758–61. doi: 10.1248/bpb.2018140667

60. Tsai Y-C, Kuo M-C, Hung W-W, Wu L-Y, Wu P-H, Chang W-A, et al. High Glucose Induces Mesangial Cell Apoptosis through miR-15b-5p and Promotes Diabetic Nephropathy by Extracellular Vesicle Delivery. Mol Ther (2020) 28(3):963–74. doi: 10.1038/s41397-020-02784x

61. Chang J, Yu Y, Fang Z, He H, Wang D, Teng J, et al. Long non-coding RNA CDKN2B-AS1 Regulates High Glucose-Induced Human Mesangial Cell Injury via Regulating the miR-15b-5p-WNT2B Axis. Diabetol Metab Syndrome (2020) 12(1):11. doi: 10.1186/s13098-020-00618-z

62. Zhao T, Jin Q, Kong L, Zhang D, Teng Y, Lin L, et al. microRNA-15b-5p Shuttled by Mesenchymal Stem Cell-Derived Extracellular Vesicles Protects Podocytes From Diabetic Nephropathy via Downregulation of VEGF/PDK4 Axis. J Bioenerg Biomembr (2021) 54:17–30. doi: 10.1007/s10863-021-09199-y

63. Li B, Zhang G, Wang Z, Yang Y, Wang C, Fang D, et al. C-Myc-Activated USP2-AS1 Suppresses Senescence and Promotes Tumor Progression via Stabilization of EZF1 mRNA. Cell Death Dis (2021) 12(11):1–14. doi: 10.1038/s41419-021-04330-z

64. Ye E-A, Steindle JF. miR-15b/16 Protects Human Primary Retinal Microvascular Endothelial Cells Against Hyperglycemia-Induced Increases in Tumor Necrosis Factor Alpha and Suppressor of Cytokine Signaling 3. J Neuroinflammation (2015) 12(1):1–8. doi: 10.1186/s12974-015-0265-0

65. Gao ZF, JI XL, Gu J, Wang XY, Ding L, Zhang H. microRNA-107 Protects Against Inflammation and Endoplasmic Reticulum Stress of Vascular Endothelial Cells via KRT1-Dependent Notch Signaling Pathway in a Mouse Model of Coronary Atherosclerosis. J Cell Physiol (2019) 234(7):12029–41. doi: 10.1002/jcp.27864

66. Li Y, Xia H, Chen L, Zhang X. Sevoflurane Induces Endoplasmic Reticulum Stress Mediated Apoptosis Inmouse Hippocampal Neuronal HT22 Cells via Modulating miR-15b-5p/Rab11A Signaling Pathway. Int J Clin Exp Pathol (2017) 10(8):8270–80.

67. Bai Y, Gong X, Dong R, Cao Z, Dou C, Liu C, et al. Long non-coding RNA HCAR Promotes Endochondral Bone Repair by Upregulating VEGF and MMP13 in Hypertrophic Chondrocyte Through Sponging miR-15b-5p. Genes Dis (2020). doi: 10.1016/j.gendis.2020.07.013

68. Fu Y, Wang C, Zhang D, Chuxu Z, Zhang Y, Li J, miR-15b-3p Ameliorated High Glucose-Induced Podocyte Injury Through Repressing Apoptosis, Oxidative Stress, and Inflammatory Responses by Targeting Sema3A. J Cell Physiol (2019) 234(11):20869–78. doi: 10.1002/jcp.28691

69. Yin RH, Zhao SJ, Wang ZY, Zhu YB, Yin RL, Bai M, et al. LncRNA-SN99547 Contributes the Inductive Property of Dermal Papilla Cells in Cinnamonate Go through miR-15b-5p/Wnt10b Axis. Anim Biotechnol (2020) 41:1–15. doi: 10.1080/12262058.2019.1680560

70. Cai L, Qi B, Wu X, Peng S, Zhou G, Wei Y, et al. Circular RNA Tc35 Regulates Cardiac Function After Myocardial Infarction by Sponging miR-15b. J Mol Cell Cardiol (2019) 130:10–22. doi: 10.1016/j.yjmcc.2019.03.007

71. Qianru C, Xueyuan H, Bing Z, Qing Z, Kainxin Z, Shu L. Regulation of H2S-Induced Necroptosis and Inflammation in Broiler Bursa of Fabricius by the miR-15b-5p/TFGFR3 Axis and the Involvement of Oxidative Stress in This Process. J Hazard Mater (2021) 406:126482. doi: 10.1016/j.jhazmat.2020.126482

72. Zhu L-P, Zhou J-L, Wang X, Zhang Y, Xu J-P, Pan M, et al. miR-15b-5p Regulates Collateral Artery Formation by Targeting AKT3 (Protein Kinase Associated With Clopidogrel-Induced Hepatotoxicity in HepG2 Cells. Front Pharmacol (2017) 8:906. doi: 10.3389/fphar.2017.00906

73. Liu F, Chen Q, Chen F, Wang J, Gong R, He B. The IncRNA ENST00000608794 Acts as a Competing Endogenous RNA to Regulate PKD4 Expression by Sponging miR-15b-5p in Dexamethasone Induced Steatosis. Biochem Biophys Acta (BBA)-Molecular Cell Biol Lipids (2019) 1864(10):1449–57. doi: 10.1016/j.bbalip.2019.07.003

74. Ramirez HA, Pastar I, Joizic I, Stojaonic O, Stone RC, Ojeh N, et al. Staphylococcus Aureus Triggers Induction of miR-15b-5p to Diminish DNA Repair and Deregulate Inflammatory Response in Diabetic Foot Ulcers. J Invest Dermatol (2018) 138(5):1187–96. doi: 10.1016/j.jid.2017.11.038
75. Taheri M, Noroozi R, Rakhshan A, Ghanbari M, Omrani MD, Ghafouri-Fard S. IL-6 Genomic Variants and Risk of Prostate Cancer. *Urol J* (2019) 16 (5):463–8. doi: 10.22037/uj.v0i5.4543

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Ghafouri-Fard, Khooshbakht, Hussien, Jamal, Taheri and Hajiesmaeili. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.