The role of radiotherapy in the treatment of oral cavity cancer

Joaquín J. Cabrera-Rodríguez

Department of Radiation Oncology, University Hospital Infanta Cristina, 06080 Badajoz, Spain.

Correspondence Author: Dr. Joaquín J. Cabrera-Rodríguez, Department of Radiation Oncology, University Hospital Infanta Cristina, Avenida de Elvas s/n, 06080 Badajoz, Spain. E-mail: joaquinjosecabrera@gmail.com

ABSTRACT

Radiotherapy plays a critical role in the treatment of oral cavity squamous cell carcinoma as monotherapy in early stage cancer or combined with surgery and/or chemotherapy in advances ones. Recent developments in the imaging of cancer and radiation technology have allowed developing more precise delivery of treatment with recent data demonstrating improvement in survival and lessening of adverse toxics effects of radiation. This review will focus in the recent advances and current state-of-the-art in radiation oncology both external beam radiotherapy and brachytherapy. As complexity of cancer treatments increases a close coordination between head-neck surgeons and radiation oncologist is needed due to a significant proportion of patients will be treated with combined modality therapy.

Key words: Radiotherapy; intensity modulated radiation therapy; high dose rate; low dose rate; head neck cancer; brachytherapy

INTRODUCTION

Although surgery is the recommended treatment for oral cavity squamos cell carcinoma (OCCSCC),[1] radiotherapy (RT) plays a capital role in the treatment of OCCSCC, either exclusively or as adjuvant after surgery.

RT may be administered using two techniques, which, in turn, are likely to be combined together in the specific case of OCCSCC: external beam radiotherapy (EBRT) and brachytherapy (BT). Usually patients with early stage disease are treated exclusively radical radiotherapy; however, patients with unresectable or advanced disease will receive radiotherapy plus chemotherapy or targeted therapy with monoclonal antibodies against epidermal growth factor receptor (EGFR) in order to enhance the cytotoxic effect of radiation.

The present manuscript is a revision of most important manuscripts concerning a large and extended bibliography has been performed in order to elucidate the current role of RT in the treatment of patients with squamous cell carcinoma of the oral cavity.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: service@oaepublish.com

How to cite this article: Cabrera-Rodriguez JJ. The role of radiotherapy in the treatment of oral cavity cancer. Plast Aesthet Res 2016;3:158-66.

Received: 29-03-2016; Accepted: 10-05-2016
RADIOTHERAPY TECHNIQUES
OVERVIEW

Currently standard EBRT is based on the assessment of target volumes to irradiate and organs at risk to protect in 3D-computed tomography (CT) simulation plus multimodal images (e.g. positron emission tomography-CT, magnetic resonance imaging).\[2-6\] Delivery of treatment should be based on intensity modulated radiation therapy (IMRT) which involves the use of multiple computer-aided beams of inhomogeneous radiation, allow dose shaping the spatial shape of treatment volume, improving the coverage of target area and the protection of healthy tissue [Figure 1]. When using IMRT different treatment volumes (e.g. macroscopic tumor vs. elective nodal levels) receive a different dosage during the same fraction, without increasing the number of RT sessions, so the intensity of treatment is adjusted to each volume of interest by dose gradients.\[8\] IMRT compared with traditional 2D-EBRT has been shown to improve toxicity\[9\] and survival\[10\] in patients with head neck cancer.

Traditionally BT implant has been performed with low dose rate (LDR) by inserting iridium needles (192Ir) mainly; this technique has been gradually displaced by the so-called high dose rate (HDR) BT [Figure 2] due to its advantages of radiation protection of medical personnel, better dose distribution and shorter duration of treatment.\[11\] However, the accelerated treatment and high dose per fraction used in HDR could lead to a decrease in the therapeutic ratio because of the risk of complications in extreme cases.\[12\] Liu et al.\[13\] conducted a meta-analysis to compare HDR BT vs. LDR BT in the treatment of OCSCC. No statistically significant difference was found in the odds ratio (OR) between the group of patients treated with LDR or HDR in terms of local recurrence OR = 1.12, mortality OR = 1.01, and complications grade 3-4 OR = 0.86.

The equivalent fractionation and total dosing between LDR and HDR is unknown. Neither the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO)\[11\] nor the American Brachytherapy Society\[14\] came to publish a consensus, although they recommended not to exceed a dose 6 Gy per fraction. In the comparative meta-analysis of Liu et al.,\[13\] the mean dose administered was 66.17 Gy in LDR group and 50.75 Gy in the HDR. Radiobiological studies suggest that the optimal dose for exclusive HDR is about 50 Gy\[15,16\] consistent with data from Liu et al.\[13\] GEC-ESTRO has published recommendations\[17\] for the calculation of equivalent doses between different protocols and BT techniques.

The main indication for combining EBRT and BT is the need to irradiate the cervical lymph node chains when the risk of involvement is significant due to the primary site,\[18\] tumor thickness greater than 4 mm\[19\] and stage cT2-T3.

Stages I-II

In treating early OCSCC the best results were obtained when BT is part of the treatment, either exclusively or as tumor overdose after EBRT.\[11\] Evidence supporting this practice is based entirely on retrospective series. Even with the advent of IMRT, BT administration is advantageous in terms of shaping and

Figure 1: Postoperative intensity modulated radiation therapy plan for an oral tongue squamous cell carcinoma pT2 pN1 M0. High dose encompass risk volumes (blue: ipsilateral nodal bed; purple: tumor bed) while sparing healthy organ: parotids glands (orange) spinal cord (green) mandible and larynx (Courtesy of Dr. Enrique Miragall from Fundación ERESA)

Figure 2: High dose rate brachytherapy for oral tongue carcinoma. (A) showing external outward apperance of percutnaeous catheters for afterloading technique; (B) digital radiographic reconstruction of the implant for planning purposes; (C) computed tomography axial view showing high isodoses lines covering tumor bed but sparing contralateral tongue, mandible and lips (Courtesy of Dr. José Luis Guinot from Instituto Valenciano de Oncologia)
uniformity of dose[20] and tumor control.[21] Table 1 summarizes the results of selected series of OCSCC patients treated with radical BT with or without EBRT.[12,22-47] In the case of floor of mouth stage cT1 local control is 93-95% and 72-88% for stage cT2. Local control in cancer of mobile tongue is achieved in 79-97% for stage I and 65-95% for stage II.

Stages III-IV

Usually the treatment of advanced cancer of OCSCC has been included in the group of “advanced head and neck cancer” (AHNC) because of this the indications, techniques and results from clinical trials are fully applicable.

Radiotherapy alone

Modification of EBRT fractionation allows to intensify radiation dose by means of two way: (a) increase in the total dose with hyperfractionation; and (b) shorten the duration of using accelerated fractionation radiotherapy.

Two meta-analyses of randomized trials[48,49] comparing conventional fractionation EBRT (CF-EBRT) against modified fractionation EBRT (MF-EBRT) were published. Bourhis et al.[48] analyzes all clinical trials for all locations of the head and neck except for oral cavity and oropharynx cancer only. Bourhis et al.[48] found a statistically significant benefit in terms of overall survival (OS) HR = 0.92 in favor of MF-EBRT as well as an improvement in locoregional control (LRC) HR = 0.92. Hyperfractionated EBRT was also significantly better in terms of OS than accelerated EBRT, with an absolute benefit of 8% at 5 years.

Table 1: Radical brachytherapy for oral cavity squamos cell carcinoma only, not including other head and neck sites

Studies	No. of patients	Site	Technique	Radiotherapy schedule	5-year local control (%)	5-year survival (%)
Lau et al.[12] 1996	27	Tongue	HDR	BT only, 45.5 Gy @6.5 Gy	92	NS
Leung et al.[21] 2002	19	Tongue	HDR	BT only, 45-63 Gy (median 55 Gy, ten frations)	94.7 (4-year)	NS
Martínez-Monge et al.[23] 2009	8	Oral cavity	HDR	EBRT 45 + BT 16 Gy @4 Gy	86 (7-year)	52.3 (7-year)
Guinot et al.[24] 2010	33	Tongue	HDR	EBRT 55 + BT 18 Gy @3 Gy	79	74
Inoue et al.[25] 2001	25	Tongue	HDR	BT only 44 Gy @4 Gy	87	84
Yamazaki et al.[26] 2003	58	Tongue	HDR	BT only 60 Gy @6 Gy	84	80
Yamazaki et al.[27] 2007	80	Tongue	HDR	EBRT 37 Gy + BT 36-60 Gy	85	74
Kakimoto et al.[28] 2011	14	Tongue (T3)	HDR	EBRT 30 Gy + 60 Gy	71 (2-year)	62
Akiyama et al.[29] 2012	17	Tongue	HDR	BT only 54 Gy @6 Gy	88	88
Donath et al.[30] 1995	13	Oral cavity	HDR	BT only 45-50 Gy @4.5-5 Gy	92	NS
Inoue et al.[31] 1998	16	Floor or Mouth	HDR	LDR [32]Au	EBRT 30-40 Gy + BT 36-48 Gy @6 Gy	94
Matsumoto et al.[32] 2013	67	Tongue	HDR	EBRT 20 Gy + BT 50 Gy	94	88.7
Khallil et al.[33] 2011	125	Tongue	HDR	EBRT 35 Gy + BT 60 Gy	90.5	71.5
Vedasoundaram et al.[34] 2014	33	Buccal mucosa	HDR	EBRT 38.5 Gy @3.5 Gy	92.3	NS
Lee et al.[35] 2014	16	Oral cavity	HDR	EBRT 50 Gy + BT 50 Gy @5 Gy	84 (3-year)	70
Tuček et al.[36] 2014	20	Tongue	HDR	BT only 54 Gy @3 Gy	85	75
Oota et al.[37] 2006	433	Tongue	LDR	BT only 70 Gy	85.6	NS
Perrot et al.[38] 1996	552	Tongue	LDR	EBRT 35 Gy + BT 60 Gy	90.5	71.5
Lefebvre et al.[39] 1994	429	OC	LDR	BT only 66 Gy	90	NS
Mazeron et al.[40] 1991	279	Tongue & FOM	LDR	BT only 60-70 Gy	87-93	NS
Mariglia et al.[41] 2002	160	FOM	LDR	BT only 67-70 Gy	88-93	76
Deamaley et al.[42] 1991	149	Tongue & FOM	LDR	BT only 60 Gy	87-93	76
Fujita et al.[43] 1999	207	Tongue	LDR	EBRT 30 Gy + BT 50-60 Gy	82.2	NS
Bachaud et al.[44] 1994	94	Tongue & FOM	LDR	EBRT 48 Gy + BT 26 Gy	61	NS
Ihara et al.[45] 2005	117	Tongue	LDR	EBRT 30 Gy + BT 65 Gy	59.2	54

[@]: dose per fraction when HDR is used. LDR: low dose rate; HDR: high dose rate; EBRT: external beam radiotherapy; BT: brachytherapy; OC: oral cavity; FOM: floor of mouth; NS: no shown.
Glenny et al. reported that MF-EBRT reduces overall mortality, HR = 0.86, and increased LRC HR = 0.79. Trials included as "purely hyperfractionated" also showed a significant gain in OS compared with the accelerated fractionation HR = 0.78.

Radiotherapy and chemotherapy combination

Pignon et al. performed a meta-analysis on benefit of chemotherapy (CMT) added to EBRT in head and neck cancer (MACH-NC). Overall improvement in OS was demonstrated when chemotherapy is added to radiation. Maximum benefit was found when CMT is administered concurrently with EBRT: 5-year OS 8% improvement. The benefit of CRT is applicable to all locations of the head and neck.

Two randomized trials have investigated whether the addition of chemotherapy to MF-EBRT is superior to CRT (CF-EBRT) or MF-EBRT alone.

The French Group of Radiation Oncology of Head and Neck Cancer (GORTEC) randomized patients into three arms: accelerated EBRT alone, CF-EBRT plus CMT or accelerated EBRT plus CMT. No statistically significant difference was found between the treatment groups at 3-year OS: 32.2% vs. 37.6% vs. 34.1%, nor distant metastasis (DM). However, both locoregional failure (LCF) (49.9% vs. 41.7% vs. 45.4%) and progression-free survival (PFS) (32.2% vs. 37.6% vs. 34.1%) were significantly lower in the accelerated EBRT arm. Mucosal acute toxicity and the need for feeding tube were significantly higher in patients treated with MF-EBRT.

In the second study by the Radiation Therapy Oncology Group (RTOG) patients were randomized to MF-EBRT alone or FM-EBRT plus CMT. No statistically significant difference was found in 8-year OS (48% in both arms) LRF (37% vs. 39%) PFS (42% vs. 41%) or DM (15% vs. 13 %) No statistically significant differences in toxicity were found.

RPA class	Definition	VUMC series	VUMC series
Class I (intermediate risk)	Free margins without ECE	LRC 5-year	OS 5-year
Class II (high risk)	T1, T2, T4 tumors with close or positive surgical margins; One lymph node metastasis with ECE	78%	50%
Class III (very high risk)	T3 tumors with close or positive surgical margins; Multiple lymph node metastases with extranodal spread; N3 neck	58%	37%

RPA: recursive partitioning analysis; LRC: locoregional control; OS: overall survival; ECE: extracapsular extension

Table 2: Risk groups definition according multivariate analysis (recursive partitioning analysis) by Langendijk

RPA class	Definition	VUMC series	VUMC series
Class I (intermediate risk)	Free margins without ECE	LRC 5-year	OS 5-year
Class II (high risk)	T1, T2, T4 tumors with close or positive surgical margins; One lymph node metastasis with ECE	78%	50%
Class III (very high risk)	T3 tumors with close or positive surgical margins; Multiple lymph node metastases with extranodal spread; N3 neck	58%	37%

RPA: recursive partitioning analysis; LRC: locoregional control; OS: overall survival; ECE: extracapsular extension

Table 3: Adjuvant brachytherapy for oral cavity squamous cell carcinoma

Studies	No. of patients	Site	Technique	RT schedule	5-year local control (%)	5-year-overall survival (%)
Goineau et al. 2015	112	Tongue	LDR	EBRT: 60-66 Gy + BT 50-55 Gy	76	56
Petera et al. 2015	30	Tongue	FOM	HDR	85.4 (3-year)	73 (3-year)
Lapeyre et al. 2004	82	Tongue	LDR	EBRT: 48 Gy + BT 24 Gy	81	80
Pernot et al. 1995	97	Tongue	LDR	NS	84	79
Fietkau et al. 1991	50	Tongue	LDR	EBRT: 55 Gy + BT 24.5 Gy	94 (crude)	84 (crude)

Table 4: Postoperative intensity modulated radiation therapy for oral cancer

Studies	No. of patients	Site	RT schedule	Loco-regional control	Overall survival
Chan et al. 2013	180	Oral	66 Gy IMRT with SIB	83 (2-year)	65 (2-year)
Hoffman et al. 2015	18	Oral cavity	64.13 Gy IMRT sequential boosting	78 (5-year)	77 (5-year)
Sher et al. 2011	30	Oral	60 Gy IMRT SIB	91 (2-year)	85 (2-year)
Gomez et al. 2011	35	Oral	IMRT volumetric	77 (3-year)	74 (3-year)
Studer et al. 2015	75	Oral	70 Gy IMRT SIB	88.9 (2-year)	80.5 (2-year)
Collan et al. 2010	40	Oral	58 Gy IMRT sequential boosting	87.3 (5-year)	75 (6-year)
Geretschläger et al. 2012	53	Oral	66 Gy IMRT sequential boosting	79 (3-year)	73 (3-year)
Yao et al. 2007	55 (5 p definitive RT)	Oral	66 Gy IMRT SIB	82 (3-year)	82 (3-year)
Daly et al. 2011	37 (7 definitive RT)	Oral	66 Gy IMRT SIB	53 (3-year)	60 (3-year)

Most patients receive chemoradiation. Only include studies about oral cancer or mixed head and neck tumors reporting oral cancer results separately. RT: radiotherapy; IMRT: intensity modulated radiation therapy; SIB: simultaneous integrated boost

Glenny et al. reported that MF-EBRT, reduces overall mortality, HR = 0.86, and increased LRC HR = 0.79. Trials included as "purely hyperfractionated" also showed a significant gain in OS compared with the accelerated fractionation HR = 0.78.
either. In conclusion, no advantage in combining MF-EBRT and CMT have been proved so far.

Target therapy

EGFR over expression leads to decreased survival and increased risk of local and regional recurrence in head and neck cancer.\[54\] The inhibition of EGFR by monoclonal antibodies (cetuximab) associated with EBRT in patients with non-operated AHNC showed an increase 5-year OS (46\% vs. 36\%) and LRC (47\% vs. 34\%) compared with EBRT alone.\[53\] Notably in this trial did not include patients with OCSCC therefore clinical benefit in this group of patients is presently unknown.

Nowadays, the standard of treatment for non-operable AHNC, including OCSCC, is EBRT plus CMT despite the fact that its benefit in OS and LRC probability equals of the hyperfractionated-EBRT. The reasons that have led to this situation are basically two: (1) logistics, due to the consumption of resources and the drawbacks associated with treating patients twice a day, for 7-8 weeks; and (2) the development of high conformation techniques as IMRT, which allow to exploit the different sensitivity to radiation of the tumor and healthy tissues using a single fraction per day with a shorter overall time of treatment, usually 5-6 weeks.

Postoperative radiation therapy

Adjuvant EBRT

The value of postoperative radiotherapy (PORT) for AHNC, was established by Fletcher and Evers\[56\] and Marcus et al.\[57\] in 1970’s. The evidence that proves the usefulness of PORT has been based on retrospective studies of large groups of patients. Due to the inherent bias in such kind of studies the survival benefit of PORT is not fully confirmed, although there are no doubts about the gain in LRC.

Lundahl et al.\[58\] performed a retrospective, matched-pair analysis to compare surgery alone vs. surgery plus PORT. They found significant improvement in LRC and OS in the PORT group.

Lavaf et al.\[59\] and Kao et al.\[60\] analyzed patients with AHNC stage III-IV treated with surgery alone or surgery plus PORT from Surveillance Epidemiology End Results (SEER) data base. In multivariate analysis the survival benefit of PORT vs. surgery alone at 5-year was significant in both non-locally advanced tumors with lymph node metastasis (51.6\% vs. 40.6\%) as in the case of locally advanced tumors with lymph node metastasis (35.3 \% vs. 25.2\%). Overall PORT significantly improved OS by 11\% and cancer-specific survival by 8.6\%. They showed a greater reduction in the risk of death in stage N2b-N3 compared to N1-N2a (HR = 0.62, 0.78 and 0.82 respectively). The magnitude of the reduction was larger for tumors of the oropharynx, hypopharynx and larynx compared to oral cavity (HR = 0.72, 0.66 and 0.62 respectively). Patients with lymph node metastasis and any tumor sites, all benefited from the administration of PORT although the gain is greater in high-risk disease.

Whereas PORT is not routinely indicated in patients with HNSCC stage pT1-2 pN1\[61\] because there is not definitive data supporting that approach. Moergel et al.\[62\] published a meta-analysis of studies in order to elucidate the role of PORT in patients pN1 with oral cavity and oropharynx primaries. Any firm conclusions could be drawn due to the heterogeneity of the studies, although it was evident more mortality (not significant) in the group treated with PORT (44\% vs. 34\%). Shrime\[63\] analyzed the benefit of PORT in patients with OCSCC pT1-2 pN1. PORT improved OS at 5 years [41.4% vs. 54.2\%(P < 0.001)] of note PORT improved OS in T2 tongue and floor of mouth subgroup [52.3\% vs. 37.9\% (P = 0.002) and 39.9\% vs. 17.7\%(P = 0.003), respectively] but not significantly in T1 subgroup.

The hypothesis that early nodal metastases may express a more aggressive biology supports adjuvant therapy in stage III.\[64\]

Risk factors for locoregional recurrence

Extracapsular extension (ECE) in cervical lymph node metastases and the involvement of surgical resection margins (ISRM) are the most important prognostic factors for risk of LRC and death.

RTOG\[65\] stratified patients treated with PORT into 3 risk groups according to the presence of ECE, 2 or more lymph nodes with metastasis or ISRM. Group I were those with no more than 2 nodes affected without ECE; group II included patients with more than 2 positive lymph nodes or ECE, negative margins; group III comprised patients with ISRM. Significant difference was found in the rate of loco-regional recurrence at 5 years between groups I, II and III of 17\%, 27\% and 67\% respectively and median OS at 5.6 years, 2 years and 1.5 years, respectively.

Langendijk et al.\[66\] conducted a multivariate analysis to define different prognostic groups based on pathologic features a series of 801 patients with AHNC treated with PORT. The final model identified 6 prognostic factors and grouped the patients into 3 risk groups [Table 2]. This model was validated by the Dutch Head and Neck Oncology Cooperative Group (DHNOCG) in a multicenter study.\[67\]

Nowadays, there is consensus\[68\] to identify patients at high risk of recurrence after surgery who benefit from PORT: (1) major criteria: ECC or ISRM; and (2) minor criteria: inadequate surgical margins (< 5 mm), ≥ 2 lymph nodes metastases (N2b-N3), stage pT3-T4 even with negative margins, in primary oral cavity, metastases in levels IV and V, presence of PNI or LVI.

Perineural infiltration

One of most controversial point is the value of PORT when there is PNI but the absence of other factors associated with risk of recurrence. Neither in the analysis of Jonkman et al.\[66\] or its further validation,\[69\] PNI was found to be an independent prognostic factor. Bur et al.\[68\] after a systematic review on the potential benefit of PORT in patients with PNI concluded that there is insufficient evidence to recommend PORT routinely in these cases. The author suggests that in case of infiltration of cranial nerves or multiple PNI, PORT might be justified. PNI is associated with increased risk of nodal recurrence, therefore it is recommended to treat the neck in this scenario.

Time factor in PORT

Evidence exists suggesting that the risk of LRC is higher in patients with AHNC when receiving PORT more than 6 weeks.
after surgery, OR: 2.89. Further work confirmed elevated RR 1.28 on LRC and decrease in OS (RR: 1.16) per month of delay. The waiting list to start radiotherapy has negative effect on the prognosis according to a Dutch national study.

The accelerated repopulation during radiotherapy is a cause of treatment failure, that can be increased by the undue prolongation of radiation therapy. Gonzalez Ferreira et al. found an loss in LRC of 1-1.2% per extra-day or 12-14% per extra-week. Prolongation of radiotherapy negatively interferes LRC and OS even in case of CRT.

Finally, the overall treatment time (OTT) from the day of surgery to the end of PORT showed prognostic significance for the LRC and OS in a randomized trial when the entire duration of treatment was greater than 13 weeks. No other randomized studies have been published that would confirm this finding, a retrospective series found no prognostic association in the OTT with LRC neither OS.

Intensification of adjuvant treatment

The value of dose escalation with PORT as a function of risk of recurrence has been explored in 2 prospective randomized trials. Peters and Withers showed the benefit of a dose of 63 Gy in 1.8 Gy fractions in patients with ECE, positive or inadequate surgical margins. Ang et al. published the results of a multicenter trial that randomized 151 patients with high-risk criteria (ECE and 2 or more additional criteria) between accelerated concomitant boost radiotherapy 63 Gy in 5 weeks or the same dose in conventional fractionation in 7 weeks. The accelerated treatment showed significantly improvement in LRC and OS when the interval between surgery and the start of PORT was not stretched or if the duration of the whole treatment (surgery plus PORT) no exceeded 13 weeks. Role of accelerated PORT is not firmly established, a confirmatory phase III Dutch trial (POPART CKTO 2003-11) is currently in recruitment period.

A meta-analysis on the benefit of postoperative CRT confirmed the reduction in RR of LRC (RR = 0.59) and death (RR = 0.80) and improvement in median survival (from 22-32 months to 40-72 months). The authors state that the patients included in those trials were under 70 years and with good performance status, so the impact of the CRT in patients aged 70 or older with associated co-morbidities is unknown. A pooled analysis of 2 phase III trials from RTOG and the European Organization for Research and Treatment of Cancer (EORTC) on the role of the postoperative CRT in adjuvant treatment of the SCCHN, confirmed that patients with ECE or ISMR were those who most benefit obtained with the administration of PORT chemoradiation in terms of risk reduction in LRC (48%) in time to progression (23%) and mortality (30%). Other pathological features commonly used to define patients at risk of relapse) were not so decisive influencing LRC, OS, neither benefit of PORT-EBRT in terms of risk reduction in LRC (48%) in time to progression (23%) and mortality (30%). Other pathological features commonly used to define patients at risk of relapse) were not so decisive influencing LRC, OS, neither benefit of PORT-EBRT in terms of risk reduction in LRC (48%) in time to progression (23%) and mortality (30%).

Adjuvant brachytherapy

In the specific case of OCSCC, PORT can be performed in fully or partly by BT reaching an equivalent dose of 60-66 Gy (LDR or HDR) on the tumor bed when surgical margins are infiltrated (stages pT1-T3) EBRT is administered alone when cervical nodes are at risk or primary surgical bed is not amenable for BT. Adjuvant BT results are summarized in [Table 3].

Adjuvant brachytherapy

In the specific case of OCSCC, PORT can be performed in fully or partly by BT reaching an equivalent dose of 60-66 Gy (LDR or HDR) on the tumor bed when surgical margins are infiltrated (stages pT1-T3) EBRT is administered alone when cervical nodes are at risk or primary surgical bed is not amenable for BT. Adjuvant BT results are summarized in [Table 3].

Acknowledgments

The photographs illustrating in this article was kindly provided by Dr. Enrique Miragall from Fundación ERESA [Figure 1] and Dr. José Luis Guinot from Instituto Valenciano de Oncología [Figure 2].

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. National Comprehensive Cancer Network. Fort Washington PA. c2015. NCCN Practice Guidelines in Oncology: Head and Neck Cancers, version 1, 2015 [updated 2015 Dec 05; cited 2016 Feb 22] Available from http://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf.

2. Unger K, Riaz N, Chen A, Lee NY. Oral Cavity Cancer. In: Lee NY, Liade JL, editors. Target Volume Delineation and Field Setup. A Practical Guide for Conformal and Intensity-Modulated Radiation Therapy. Berlin-Heidelberg: Springer-Verlag; 2013. P.35-44.

3. Grégoire V, Ang K, Budach W, Grau C, Hamoir M, Langendijk JA, Lee A, Le QT, Maingon P, Nusteling C, O’Sullivan B, Porceddu SV, Lengele B. Delineation of the neck node levels for head and neck tumors: a 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother Oncol 2014;110:172-81.

4. Liu SH, Chao KS, Lei YS, Lee JC, Liu CJ, Huang YC, Chang YF, Chen HW, Tsai JT, Chen YJ. Guideline and preliminary clinical practice results for...
dose specification and target delineation for postoperative radiotherapy for oral cavity cancer. Head Neck 2015;37:933-9.

5. Leclerc M, Larregu E, Lacommer T, Daiane JF, Kramar A, Grégoire V. Primary tumor delineation based on (18)F-FDG PET for locally advanced head and neck cancer treated by chemo-radiotherapy. Radiother Oncol 2015;116:87-93.

6. Brouwer CL, Steenbakkers RJ, Borghuis B, Judach W, Grau C, Grégoire V, van Herk M, Lee A, Maingon P, Nutting C, O’Sullivan B, Pereludo SV, Rosenthal DI, Sijtsema NM, Langendijk JA. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC/CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother Oncol 2015;117:83-90.

7. Chao KSC, Mohan R, Marinetti TD, Dong L. Intensity-Modulated Radiation Therapy Treatment Techniques and Clinical Applications. In: Herlinger EC, Wazer DE, Perez CA, Brady LW, editors. Perez and Brady’s Principles and Practice of Radiation Oncology. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2013. p. 221-45.

8. Orlandi E, Palazzi M, Pignoli E, Fallai C, Giosa A, Olmi P. Radio biological basis and clinical results of the simultaneous integrated boost (SIB) intensity modulated radiotherapy (IMRT) for head and neck cancer: a review. Crit Rev Oncol Hematol 2010;73:11-25.

9. Marta GN, Silva V. de Andrade Carvalho H, de Arruda FF, Hanna SA, Gadia R, da Silva JL, Correa SF, Vita Abreu CE, Riera R. Intensity-modulated radiation therapy for head and neck cancer: systematic review and meta-analysis. Radiother Oncol 2014;110:9-15.

10. Beadle BM, Lipof EL, Buchholz TA, Ang KK, Garden AS, Guadagnolo BA. Improved survival using intensity-modulated radiation therapy in head and neck cancers: a SEER-Medicare analysis. Cancer 2014;120:702-10.

11. Mazeron JJ, Ardiet JM, Haie-Meder C, Kovacs G, Levendag P, Peffert D, Polo A, Roviresa A, Sondov R. GEC-ESTRO recommendations for brachytherapy for head and neck squamous cell carcinomas. Radiother Oncol 2009;91:150-6.

12. Lai HY, Hay JH, Flores AD, Threlfall WJ. Seven fractions of twice daily high dose-rate brachytherapy for node-negative carcinoma of the mobile tongue results in loss of therapeutic ratio. Radiother Oncol 1996;39:15-8.

13. Liu Z, Huang S, Zhang D. High dose rate versus low dose rate brachytherapy for oral cancer—a meta-analysis of clinical trials. Plast Reconstr Surg 2013;131:84523.

14. Nag S, Cano ER, Damnes DJ, Pustawala AA, Vikram B. American Brachytherapy Society. The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2001;50:1190-8.

15. Petera J, Matula P, Paliska P, Sirak P, Macowing Z, Kasova L, Fratala T, Hodek M, Vosmik M. High dose rate versus low dose rate brachytherapy in the treatment of tongue carcinoma - a biologically study. Neoplasma 2009;56:163-8.

16. Yamazaki H, Inoue T, Yoshida K, Yoshio Y, Furukawa S, Sakimoto N, Shimizuizumi K, Inoue T. Brachytherapy for early oral cancer: low dose rate to high dose rate. J Radiat Res 2003;44:37-40.

17. Van Limbergen E, Joiner M, Van der Kogel A, Dor 1‘W. Radiobiology of LDR, HDR, PDR and VLRD Brachytherapy. In: Van Limbergen E, Potter R, Hoskin P, Bultas D, The GEC-ESTRO Handbook of Brachytherapy, 2nd ed (ebook version 1 12/1 1/2015). Available from: http://www.estro.org/search?what=Brachytherapy&ts=radiotherapy&dr=hdr&alloptions=on.

18. Grégoire V, Coche V, Cornard G, Hamoir M, Reychler H. Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience. Radiother Oncol 2000;56:133-50.

19. Huang SH, Hwang D, Lockwood G, Goldstein DP, O’Sullivan B. Predictive value of tumor thickness for cervical lymph node involvement in squamous cell carcinoma of the oral cavity: A meta-analysis of reported studies. Cancer 2009;15:1489-97.

20. Sresty NV, Ramanjappa T, Shiyamurthy K, Nagaraj S, Cano ER, Demanes DJ, Puthawala AA, Vikram B; American Brachytherapy Society. The potential uses of high-dose-rate brachytherapy in patients with head and neck cancer. Eur Arch Otorhinolaryngol 1995;252:321-4.

21. Inoue T, Inoue T, Yamazaki H, Koizumi M, Kagawa K, Yoshio Y, Shiomi H, Imai A, Shimizuizumi K, Tanaka E, Nose T, Teshima T, Furukawa S, Fuchihata H. High dose rate versus LDR interstitial radiotherapy for carcinoma of the floor of mouth. Int J Radiat Oncol Biol Phys 1998;41:53-8.

22. Donath D, Warg T, Shenuoda G, MacDonald B, Tabah R. The potential uses of high-dose-rate brachytherapy in patients with head and neck cancer. Eur Arch Otorhinolaryngol 1995;252:321-4.

23. Pernot M, Hoffstetter S, Peiffert D, Allet P, Lapeyre M, Marchal C, Luporsi E. Brachytherapy for tongue cancer in the very elderly is an alternative to external beam radiation. Br J Radiol 2011;84:747-9.

24. Vedasundaram P, Prassana AK, Ks R, Selvarajgan G, Sinnamthy M, Ramapandian S, Kandasamy S. Role of high dose rate interstitial brachytherapy in early and locally advanced squamous cell carcinoma of the buccal mucosa. Springerplus 2014;3:590.

25. Lee SU, Cho KH, Moon SH, Choi SW, Park JY, Yun T, Lee SH, Lim YK, Jeong CY. Clinical outcome of high-dose-rate interstitial brachytherapy in patients with oral cavity cancer. Radiat Oncol 2014;9:32:338-46.

26. Tucke L, Petera J, Sirak I, Vošmik M, Doleželová H, Brošková S, Hodek M, Kašová L, Palupka P. Hyperfractionated high-dose rate interstitial brachytherapy in the treatment of oral tongue cancer. Rep Pract Oncol Radiother 2011;6:24:2:7.

27. Pernot M, Hoffstetter S, Peiffert D, Allet P, Lapeyre M, Marchal C, Luporsi E, Bey P, Nancy VL. Role of interstitial brachytherapy in oral and oropharyngeal carcinoma: evaluation of a series of 1344 patients treated at the time of initial presentation. Otolaryngol Head Neck Surg 1996;115:5:19-26.

28. Lefebvre JL, Coche-Debechant B, Buisset E, Mirabel X, Van JT, Prevost B. Management of early oral cancer. Experience of Centre Oscar Lambret. Eur J Cancer 2004;40:308:216-20.

29. Mazeron JJ, Simon JM, Le Péchoux C, Crook JM, Grimald L, Piedbois P, Le Bourgeois JP. Interstitial dose rate effect on local control and complications in definitive irradiation of T1-2N0M0 oral squamous cell carcinomas of mobile tongue and floor of mouth with interstitial iridium-192. Radiother Oncol 1999;51:39-47.
experience 1970-1986. *Radiother Oncol* 1991;21:183-92.

46. Fujita M, Hirokawa Y, Kashiwada K, Akagi Y, Kashimoto K, Kiri K, Matsuura K, Ito K. Interstitial brachytherapy for stage I and II squamous cell carcinoma of the oral tongue: factors influencing local control and soft tissue complications. *Int J Radiat Oncol Biol Phys* 1994;44:767-75.

47. Iharra N, Shibuya H, Yoshimura R, Oota S, Miura M, Watanabe H. Interstitial brachytherapy and neck dissection for Stage III squamous cell carcinoma of the mobile tongue. *Acta Oncol* 2005;44:709-16.

48. Bourhis J, Overgaard J, Audry H, Ang KK, Saunders M, Bernier J, Horiot J-C, Le Maître A, Pajak TF, Poulsen PG, O’Sullivan B, Dobrowsky W, Hlinský A, Składkowski K, Hay JH, Pinto LH, Falla C, Fu K, Kuk S, Sylvester R, Pignon J-P. Meta-Analysis of Radiotherapy in Carcinomas of Head and neck (MARCH) collaborative group. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. *Lancet* 2006;368:843-54.

49. Glenny AM, Furness S, Worthington HV, Conway DJ, Oliver R, Clarkson JE, Macslecty M, Pavitt S, Chan KK, Broeheurts P, CSROC Expert Panel. Interventions for the treatment of oral cavity and oropharyngeal cancer: radiotherapy. *Cochrane Database Syst Rev* 2010;(12):CD006387.

50. Pignon JP, le Maître A, Maillard E, Bourhis J, MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. *Radiation Oncol* 2009;9:2-4.

51. Blanchard P, Babson B, Holostenco V, Bourjerdian A, Baey C, Bourhis J, Pignon JP, MACH-CH Collaborative group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): a comprehensive analysis by tumour site. *Radiother Oncol* 2011;100:33-40.

52. Bourhis J, Sire C, Graff P, Grégoire V, Maiong P, Calais G, Gery B, Martin L, Alfonso M, Desprez P, Pignon T, Bardet E, Rives M, Geoffrós L, Dal- Schweizer N, Sen S, Tuchais C, Dupuis G, Guépin L, Layéf M, Favrel V, Hamoir M, Liard A, Temam S, Pinas A, Tao YG, Blanchard P, Aupérin A. Concomitant chemoradiodislation versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTOC 99-02): an open-label phase 3 randomised trial. *Lancet Oncol* 2012;13:145-53.

53. Nguyen-Tan PF, Zhang Q, Ang KK, Weber RS, Rosenthal DL, Soulieres D, Kim H, Silverman C, Raben D, Galligoy L, Fortin A, Aor G, Everse WH, Chung CH, Jordan RC, Gillison ML, List M, Le QT. Randomized phase III trial to test accelerated versus standard fractionation in combination radiotherapy plus cetuximab for locoregionally advanced head and neck squamous cell carcinomas. *Lancet Oncol* 2015;16:328-39.

54. Ang KK, Troatti A, Brown BW, Gordon AS, Foote RL, Morrison WH, Gea RD, Klotch DW, Goepf H, Peters Lj. Randomized trial addressing factor of survival and time of factors of surgery plus radiotherapy in advanced head- and-neck cancer. *Int J Radiat Oncol Biol Phys* 2015;91:372-8.

55. Langendijk JA, de Jong MA, Leemans CR, de Bree R, Snoeck-Le, Doornaert P, Slotman BJ, van der Waal I, Dormaerst P, Berkel J, Leemans CR. Risk group definition by recursive partitioning analysis of patients with squamous cell head and neck carcinoma treated with surgery and postoperative radiotherapy. *Cancer* 2005;104:1408-17.

56. Van Harten MC, Hoeben F, Kross KW, van Werkhoven ED, van den Brekel MW, van Dijk BA. Determinants of treatment waiting times for head and neck cancer in the Netherlands and their relation to survival. *Lancet Oncol* 2008;9:7-16.

57. Peters Lj, Withers HR. Applying radiobiological principles to combined modality treatment of head and neck cancer - the time factor. *Int J Rad Oncol Biol Phys* 1997;39:831-6.

58. Gonzalez Ferreira JA, Jain Olasolo J, Azinovic I, Jeremic B. Effect of radiotherapy delay in overall treatment time on local control and survival in head and neck cancer: review of the literature. *Rep Pract Oncol Radiother* 2015;20:328-39.

59. Leemans CR, Tiwari T, Nauta JJ, van der Waal L, Snow GB. Regional Lymph node evaluation and its significance in the development of distant metastases in head and neck carcinoma. *Cancer* 1993;71:452-6.

60. Cooper JS, Pajak TF, Fortisare A, Jacobs J, Fu KK, Ang KK, Laramore GE, Al-Sarrar M. Precisely defining high-risk operable head and neck tumors based on RTOG #83-03 and #88-24: Targets for postoperative radiochemotherapy. *Head Neck* 1998;20:588-94.

61. Langendijk JA, Slotman BJ, van der Waal I, Dormaerst P, Berkel J, Leemans CR. Risk group definition by recursive partitioning analysis of patients with squamous cell head and neck carcinoma treated with surgery and postoperative radiotherapy. *Cancer* 2005;104:1408-17.

62. Van Harten MC, Hoeben F, Kross KW, van Werkhoven ED, van den Brekel MW, van Dijk BA. Determinants of treatment waiting times for head and neck cancer in the Netherlands and their relation to survival. *Lancet Oncol* 2008;9:7-16.

63. Peters Lj, Goepf H, Ang KK, Byers RM, Maor MH, Guillamendegui O, Morrison WH, Weber RS, Gordon AS, Frankenthaler RA, Oswald MJ, Brown BW. Evaluation of the dose for postoperative radiotherapy of head and neck cancer: first report of a prospective randomized trial. *Int J Radiat Oncol Biol Phys* 1993;26:3-11.

64. Winquist E, Oliver T, Gilbert R. Postoperative chemoradiotherapy for advanced squamous cell carcinoma of the head and neck: a systematic review with meta-analysis. *Head Neck* 2007;29:38-46.

65. Bernier J, Cooper JS, Pajak TF, van Glabbeke M, Bourhis J, Fortisare A, Oszazin EM, Jacobs JS, Jassem J, Ang KK, Lefebvre JL. Defining risk levels in locally advanced head- and-neck cancers - a comparative analysis of concurrent postoperative radiotherapy plus chemotherapy trials of EORTC (22931) and RTOG (9501). *Head Neck* 2005;27:843-50.

66. Cooper JS, Pajak TF, Fortisare A, Jacobs J, Cameron MD, Samban SM, Kish JA, Kim HE, Cemalak RJ, Rosman M, Machty M, Enslow JF, Chao KS, Schultz CJ, Lee N, Fu KK; Radiation Therapy Oncology Group (9501) InterGroup. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous cell carcinoma of the head and neck. *N Eng J Med* 2004;350:1937-44.

67. Bernier J, Domenge C, Oszazin M, Matuszewska K, Lefebvre JL, Greiner RH, Giralt J, Maiong P, Ranaid Bolla M, Cognetti F, Bourhis J, Kirpatrick A, van Glabbeke M; European Organisation for Research and Treatment of Cancer Trial 22931. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. *N Eng J Med* 2004;350:1945-52.
Hofmann A, Sauer R. Interstitial and percutaneous radiotherapy after 1995;35:186-92. Radiother Oncol and results of postoperative brachytherapy in cancer of the oral cavity. Margins. Dolivet G, Toussaint B, Luporsi E, Peiffert D. Postoperative brachytherapy 2015;14:77-83. rate brachytherapy in early oral cancer with close or positive margins. AS, Campion L, Bardet E. Postoperative interstitial brachytherapy contouring guide for head and neck cancers with perineural invasion. Technical guidelines for head and neck cancer IMRT on behalf of the Italian association of radiation oncology - head and neck working group. Radiat Oncol 2014;4:264. Ko HC, Gupta V, Mourad WF, Hu KS, Harrison LB, Som PM, Bakst RL. A contouring guide for head and neck cancers with perineural invasion. Pract Radiat Oncol 2014;4:e247-58. Goineau A, Piot B, Malard O, Ferron C, Lisbona A, Cassagnau E, Delamazure AS, Campion L, Bardet E. Postoperative interstitial brachytherapy for resectable squamous cell carcinoma of the tongue. Brachytherapy 2015;14:71-6. Petera J, Sirák I, Laco J, Kašová L, Tuček L, Doležalová H. High-dose-rate brachytherapy in early oral cancer with close or positive margins. Brachytherapy 2015;14:77-83. Lapeyre M, Bollet MA, Racadot S, Geoffrois L, Kaminsky MC, Hoffstetter S, Dolivet G, Toussaint B, Luporsi E, Peiffert D. Postoperative brachytherapy alone and combined postoperative radiotherapy and brachytherapy boost for squamous cell carcinoma of the oral cavity, with positive or close margins. Head Neck 2004;26:216-23. Pernot M, Aletti P, Carolus JM, Marquis I, Hoffstetter S, Maaloul F, Peiffert D, Lapeyre M, Luporsi E, Marchal C, Noël A, Bey P. Indications, techniques and results of postoperative brachytherapy in cancer of the oral cavity. Radiother Oncol 1995;35:186-92. Fietkau R, Grabenbauer GG, Iro H, Müller RG, Farmand M, Atendorf Hofmann A, Sauer R. Interstitial and percutaneous radiotherapy after limited surgery in carcinoma of the oral cavity. Strahlenther Onkol 1991;167:391-8. Chan AK, Huang SH, Le LV, Yu E, Dawson LA, Kim JJ, Cho BC, Bayley AJ, Ringash J, Goldstein D, Chan K, Woldron J, O’Sullivan B, Cummings B, Hope AJ. Postoperative intensity-modulated radiotherapy following surgery for oral cavity squamous cell carcinoma: patterns of failure. Oral Oncol 2013;49:255-60. Hofmann M, Saleh-Ebrahimi L, Zwickler F, Haering P, Schwahofner A, Debus J, Huber PE, Roeder F. Long term results of postoperative Intensity- Modulated Radiation Therapy (IMRT) in the treatment of Squamous Cell Carcinoma (SCC) located in the oropharynx or oral cavity. Radiat Oncol 2015;10:251. Sher DJ, Thotakura V, Balboni TA, Norris CM Jr, Haddad RI, Posner MR, Lorch J, Goguen LA, Annino DJ, Tisher RB. Treatment of oral cavity squamous cell carcinoma with adjuvant or definitive intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2011;81:e215-22. Gomez DR, Zhang J, Gomez J, Chan K, Wu AJ, Wolden SL, Pfister DG, Shaha A, Shah JP, Kraus DH, Wong RJ, Lee NY. Intensity-modulated radiotherapy in postoperative treatment of oral cavity cancers. Int J Radiat Oncol Biol Phys 2009;73:1096-103. Chakraborty S, Patil VM, Babu S, Mustath G, Thiagarajan SK. Locoregional recurrences after postoperative volumetric modulated arc radiotherapy (VMAT) in oral cavity cancers in a resource constrained setting: experience and lessons learned. Br J Radiol 2015;88:20140795. Studer G, Brown M, Bredell M, Graetz KW, Huber G, Linsenmeier C, Najafi YN, Rietbergen Q, Rordorf T, Schmidt S, Glanzmann C. Follow up after IMRT in oral cancer surgery: update. Radiat Oncol 2012;7:84. Collan J, Lundberg M, Vaalavirta L, Bäck L, Kajanski M, Mäkitie A, Tenhunen M, Saaristhi K. Patterns of relapse following surgery and postoperative intensity modulated radiotherapy for oral and oropharyngeal cancer. Acta Oncol 2011;50:1119-25. Geretschläger A, Bojaxhiu B, Crowe S, Arnold A, Manner P, Hallermann W, Ebbersold DM, Ghadir P. Outcome and patterns of failure after postoperative intensity-modulated radiotherapy for locally advanced or high-risk oral cavity squamous cell carcinoma. Radiat Oncol 2012;7:175. Yao M, Chang K, Funk GF, Lu H, Tan H, Wacha J, Dornfeld KJ, Buatti JM. The failure patterns of oral cavity squamous cell carcinoma after intensity- modulated radiotherapy—the university of iowa experience. Int J Radiat Oncol Biol Phys 2007;67:1322-41. Daly ME, Le QT, Kozak MM, Maxim PG, Murphy JD, Hsu A, Loo BW Jr, Kaplan MJ, Fischbein NJ, Chang DT. Intensity-modulated radiotherapy for oral cavity squamous cell carcinoma: patterns of failure and predictors of local control. Int J Radiat Oncol Biol Phys 2011;80:1412-22.