Application of the PLP-01M microwave laboratory system using control samples to assess the accuracy of the results of studies of cadmium content

N N Maksimiuk¹, M B Rebezov²,³, L N Tretyak⁴, A A Varivoda⁵, S I Artyukhova⁶,⁷ and T T Tolstoguzova⁷

¹Yaroslav-the-Wise Novgorod State University, 41 B.St.-Petersburgskaya Str., Veliky Novgorod, 173003, Russian Federation
²V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow, 109316, Russian Federation
³Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow, 119991, Russian Federation
⁴Orenburg State University, 13 pr. Pobedy, Orenburg, 460018, Russian Federation
⁵Kuban State Agrarian University, Kalinina St., 13, Krasnodar, 350044, Russian Federation
⁶Siberian Cossack Institute of technology and management (branch) Moscow state University of technologies and management named after K. G. Razumovsky (the First Cossack University), Kuibyshev str., 79A, Omsk, 644001, Russian Federation
⁷Omsk state technical University, prospect Mira, 11, Omsk, 644050, Russian Federation

E-mail: nmm93@yandex.ru

Abstract: This paper considers and analyzes the results of examining samples for cadmium content by determining them on a Kvant-2AT atomic absorption spectrometer, taking into account the use of the PLP-01M microwave laboratory system and during sample preparation in accordance with GOST 26929 "Raw materials and food products. Sample preparation. Mineralization to determine the content of toxic elements". The PLP-01M microwave laboratory system uses a fundamentally new method of sample preparation. The decomposition was carried out in a closed system - sealed fluoroplastic vessels under the influence of high temperature, pressure and microwave field. The microwave field in the working chamber of the furnace was created by a special generator-magnetron. Based on the results of the assessment of the operational control of the measurement procedure using samples for cadmium control during the implementation of the PLP-01M microwave laboratory system in the laboratory, the analysis procedure was recognized as satisfactory.

1. Introduction

Research on the influence of heavy metals in ecosystems and technological methods for reducing the residual amounts of contaminants in products is one of the topical issues [1-8].

Ensuring product testing for the content of xenobiotics requires constant improvement [9-18].
One of the important tasks of testing centers is to ensure the reliability of tests at minimal cost [19-23]. The relevance of the problem under consideration is confirmed by numerous studies of scientists from different countries [24-29].

The PLP-01M microwave laboratory system uses a fundamentally new method of sample preparation. The decomposition was carried out in a closed system - sealed fluoroplastic vessels under the influence of high temperature, pressure and microwave field. The microwave field in the working chamber of the furnace was created by a special generator-magnetron.

Advantages of microwave decomposition of samples using PLP-01M over classical methods of sample preparation:

- an increase in the rate of acid decomposition of inorganic and organic samples by 10-100 times;
- obtaining a sample of improved quality;
- reproducibility of the research process;
- reduction of consumption of acids used for sample decomposition;
- realization of the ability to retain volatile components in the sample due to the use of closed vessels;
- automation of the sample decomposition process thanks to a microprocessor control unit.

2. Material and methods

This paper considers and analyzes the results of examining samples for cadmium content by determining them on a Kvant-2AT atomic absorption spectrometer, taking into account the use of the PLP-01M microwave laboratory system and during sample preparation in accordance with GOST 26929 "Raw materials and food products. Sample preparation. Mineralization to determine the content of toxic elements."

Mineralization of the sample by microwave decomposition using the PLP-01M microwave laboratory system was carried out according to the general scheme in accordance with the instructions for the microwave laboratory oven from the Ural-Hephaestus TP.

Acid mineralization using the PLP-01M microwave laboratory system was carried out according to the following scheme:

- a sample weighing 2g (0.5-2g, depending on the type of sample) was placed in a sealed fluoroplastic vessel;
- the addition of 8 cm³ of concentrated nitric acid was carried out, followed by sealing the vessel;
- in parallel, mineralization of the reagents added to the sample was carried out to control their purity (control solution);
- a carousel with fluoroplastic vessels was placed in a PLP-01M microwave laboratory system, the sample was decomposed in accordance with the program from the Ural-Gefes TP for this product group;
- upon completion of decomposition, the vessels are cooled and opened in accordance with the instructions of the microwave laboratory oven from the Ural-Hephaestus TP.

Mineralization of samples based on an inorganic matrix was carried out in one stage (OC analysis). During the mineralization of samples with an organic matrix, the process was carried out with a gradual increase in pressure (maximum working pressure 1300 kPa) and the second stage of mineralization. For this, 2 cm³ of hydrogen peroxide was added to the cooled sample, the vessel was hermetically sealed and placed in a PLP-01M microwave laboratory system, and re-mineralization was carried out in accordance with the program from the Ural-Hephaestus TP.

The resulting solution was filtered through a paper filter, transferred quantitatively into a 25 cm³ volumetric flask, the volume was brought to the mark with a background solution of nitric acid, and thoroughly mixed.
3. Results and discussion

In order to cover the entire range of results obtained during research and thereby simulate the obtaining of values of various concentrations in the analysis of working samples of food products, intervals were identified and control samples (OKp/OKCd) with a certified value of the determined toxic element - cadmium - were selected for these intervals (table 1).

intervals, mg/dm³	OKCd, mg/dm³
0.001–0.005	0.0035
0.005–0.010	0.0075
0.01–0.05	0.03

Table 1. Intervals and control samples.

For research purposes, we used standard samples of the composition of a solution of cadmium ions, shown in figure 1.

![Characteristics of a standard sample composition of the solution of cadmium ions.](image)

Independent measurement results were obtained by the same method on identical test objects, in the same laboratory, by one operator, using the same equipment - an atomic absorption spectrometer "Kvant-2AT", within a short period of time, i.e. the repeatability conditions were met.

In order to check the reproducibility of the results, the studies were carried out by different operators using the same equipment on different days, i.e. the conditions of intermediate (intralaboratory) precision were met.

The accumulation and processing of data was carried out within three days. In one day, sample preparation and analysis of two parallels were carried out, the arithmetic mean for each parallel was calculated and the average research result for the day was found.

All the obtained values were entered in tables 2-4 in the corresponding columns.

COKCd=0.0035 mg/dm³	X₁	X₂	Xₐr	Xₐ/day
	PLP-01M			
I day	0.003116	0.003305	0.003067	0.003303
	0.003018	0.003112	0.003095	0.003095
II day	0.003321	0.003274	0.003309	0.003106
	0.003296	0.003254	0.003264	0.003264
III day	0.003115	0.003081	0.003146	0.003146
	0.003177	0.003007	0.003044	0.003044
Accepted result	0.003115	0.003081	0.003146	0.003146

Table 2. Results of studies of the control sample of cadmium concentration of 0.0035 mg/dm³.
A sample of control of cadmium concentration of 0.0035 mg/dm³, analyzed taking into account the use of the PLP-01M microwave laboratory system, is defined as 0.00315 mg/dm³, in the case of sample preparation in accordance with GOST 26929 - 0.00299 mg/dm³.

Table 3. Research results of the control sample of cadmium concentration 0.0075 mg/dm³.

COCA=0.0035 mg/dm³	X₁	X₂	Xₐr	Xₐr/day
PLP-01M				
I day	0.007412	0.007424	0.0074	0.00739
II day	0.007382	0.007394	0.00738	0.007401
III day	0.007229	0.007246	0.007246	0.007265
Accepted result				0.007352
GOST 26929				
I day	0.006681	0.006953	0.006817	0.006924
II day	0.007121	0.007101	0.007111	0.00696
III day	0.007104	0.007001	0.007053	0.007025
Accepted result				0.00697

A sample of control of cadmium concentration of 0.03 mg/dm³, analyzed taking into account the use of the PLP-01M microwave laboratory system, was determined as 0.0285 mg/dm³, in the case of sample preparation in accordance with GOST 26929 - 0.0268 mg/dm³.

Table 4. Research results of the control sample of cadmium concentration of 0.03 mg/dm³.

COCA=0.0035 mg/dm³	X₁	X₂	Xₐr	Xₐr/day
PLP-01M				
I day	0.02864	0.02911	0.028875	0.029435
II day	0.02776	0.02754	0.02765	0.027695
III day	0.02786	0.02793	0.027895	0.028458
Accepted result				0.028529
GOST 26929				
I day	0.02652	0.02647	0.02684	0.026394
II day	0.02743	0.02711	0.02727	0.027138
III day	0.02706	0.02695	0.027005	0.026745
Accepted result				0.026759
systematically significant error into the analysis results). The error of the certified CC value does not exceed one third of the error characteristics of the analysis results.

Under the conditions of repeatability and intra-laboratory precision, the results of the CC analysis were obtained.

The results of the operational control of the analysis procedure using the control procedure to control the error using the addition method are summarized in Table 5.

Table 5. Evaluation of the results of operational control of the measurement procedure using samples for control of cadmium during the implementation of the PLP-01M microwave laboratory system in the laboratory.

The entered value Cd, mg/dm³	Test result, mg/dm³	Control measurement result, Xav, mg/dm³	The result of the control procedure, Xav, mg/dm³	Control standard, Ka	Evaluation of the acceptability of results,	Kav, mg/dm³	< Kav
0.0035	0.0030628	0.00328628	0.003095	0.00314801	0.00035199	< 0.00097	satisfactorily
0.0035	0.0028985	0.00299925	0.0030735	0.00299042	-0.00050958	< 0.00097	satisfactorily
0.0075	0.00739	0.00740075	0.0072648	0.00735183	-0.00014817	< 0.002079	satisfactorily
0.0075	0.0069243	0.00695975	0.007025	0.00696967	-0.00053033	< 0.002079	satisfactorily
0.03	0.029435	0.027695	0.0284575	0.02852917	-0.00147083	< 0.008316	satisfactorily
0.03	0.0265943	0.0271375	0.026745	0.02675892	-0.00324108	< 0.008316	satisfactorily

4. Conclusion

Based on the results of the assessment of the operational control of the measurement procedure using samples to control the tests for the content of cadmium during the implementation of the PLP-01M microwave laboratory system in the laboratory, the analysis procedure was recognized as satisfactory.

Acknowledgements

The authors would like to express special gratitude to the engineer A M Chuprakova who carried out multi-stage tests of the designated products for compliance with the requirements of regulatory documents.

References

[1] Macleod C and Coughanowr C 2019 Heavy metal pollution in the derwent estuary: history, science and management Regional Studies in Marine Science 32 100866
[2] Larsen E H et al. 2005 Determination of inorganic arsenic in white fish using microwave-assisted alkaline alcoholic sample dissolution and HPLC-ICP-MS Anal. and Bioanal. Chem 381(2) 339-46
[3] Ali MM et al. 2019 Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli river, Bangladesh. Human and Ecological Risk Assessment An Int.J. 1-17
[4] Kaushik A, Kansal A, Santosh M, Kumari S and Kaushik C P 2009 Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments Journal of Hazardous Materials 164(1) 265-70
[5] Cherfi A, Abdoun S and Gaci O 2014 Food survey: levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria Food and Chemical Toxicology 70 48-53

[6] Mansour S A 2014 Monitoring and health risk assessment of heavy metal contamination in food Practical Food Safety: Contemporary Issues and Future Directions 235-55

[7] Mourya A, Mazumdar B and Sinha S K 2019 Determination and quantification of the heavy metal ion by electrochemical method Journal of Environmental Chemical Engineering 7(6) 103459

[8] Ivanova-Petrooulos V et al. 2015 Determination of Pb and Cd in Macedonian wines by electrother-m-al atomic absorption spectrometry (ETAAS) Food Analytical Methods 8(8) 1947-52

[9] Kataoka Y et al. 2015 Development of ICP-OES, ICP-MS and GF-AAS methods for simultaneous quantification of lead, total arsenic and cadmium in soft drinks Food Hygiene and Safety Science 56(3) 88-95

[10] Lu H, Lu X, Ma L, Cui Y, Wang J and Zhao M 2004 Microwave cleavage for the determination of lead in milk powder by atomic fluorescence spectrometry and mass spectrometry with induction plasma Journal of Chinese Mass Spectrometry Society 25 9-10

[11] Li N et al. 2009 Determination of arsenic in foods by flow injection on-line sorption pre-concentration with hydride generation atomic fluorescence spectrometry Food Additives and Contaminants 26(6) 839-46

[12] Katsnelson B et al. 2014 Some considerations concerning the theory of combined toxicity: a case study of subchronic experimental intoxication with cadmium and lead Food and Chemical Toxicology 64 144-56

[13] Kim B-M et al. 2013 Influence of squid liver powder on accumulation of cadmium in serum, kidney and liver of mice Preventive Nutrition and Food Science 18(1) 1-10

[14] Ma W, Zhao B and Ma J 2019 Comparison of heavy metal accumulation ability in rainwater by 10 sponge city plant species Environmental Science and Pollution Research 26(26) 26733-47

[15] Alaqouri H A A et al. 2020 The possibility of using scots pine needles as biomonitor in determination of heavy metal accumulation Environmental Science and Pollution Research 27(12) 2701-2707

[16] Šrut M, Menke S, Sommer S and Höckner M 2019 Earthworms and cadmium – heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotoxicology and Environmental Safety 171 843-53

[17] Rahimi G, Kolahchi Z and Bayat S 2019 Heavy metals' bio-accumulation and transfer in lemon balm (melissa officinalis l.) irrigated with industrial wastewater International Journal of Environment and Waste Management 23(3) 238-56

[18] Singh B R et al. 2011 Safety of food crops on land contaminated with trace elements J. Sci. Food Agric. 91(8) 1349-66

[19] Sizentsov A N, Kvan O V, Sizentsov Y A, Bibartseva E V and Osipova E A 2019 Comparative analysis of heavy metal sorption characteristics on laboratory animal models Research Journal of Pharmaceutical, Biological and Chemical Sciences 10(1) 1313-6

[20] Tumanyan A F, Tusaint F, Shcherbakova N A, Seliverstova A P and Tyutyuma N V 2019 Heavy metal contents in soils and vegetables of Southern Russia Chemistry and Technology of Fuels and Oils 54(6) 766-70

[21] Barsova N, Yakimenko O, Tolpeshta I and Motuzova G 2019 Current state and dynamics of heavy metal soil pollution in Russian Federation Environmental Pollution 249 200-7

[22] Kuramshina N, Rebezov M, Kuramshin E, Tretyak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okuskhanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia International Journal of Pharmaceutical Research 11(1) 1301-5 DOI: 10.21668/health.risk/2019.2.04.eng

[23] Kuramshina N, Rebezov M, Kuramshin E, Krasnogorskaya N, Tretyak L, Somova Yu,
Dolmatova I, Zaitseva T, Grigoryeva I and Bakirova L 2018 Heavy Metals Contamination of Soil in Urban Areas of Southern Ural Region of Russia International Journal of Engineering and Technology (UAE) **7(4.42)** 14-8 DOI: 10.14419/ijet.v7i4.42.25536

[24] Zykova I, Maksimuk N, Rebezov M, Kuznetsova E, Derkho M, Sereda T, Kazhibayeva G, Somova Yu and Zaitseva T 2019 Interaction between heavy metals and microorganisms during wastewater treatment by activated sludge Journal of Engineering and Applied Sciences **14(11)** 2139-45

[25] Assenova B, Okuskhanova E, Rebezov M, Korzhikenova N, Yessimbekov Zh and Dragoev S 2016 Trace and toxic elements in meat of maral (red deer) grazing in Kazakhstan Research Journal of Pharmaceutical, Biological and Chemical Sciences **7(1)** 1425-33

[26] Barbosa JTP, Korn MGA, Santos CMM, Flores EMM, Peralva VN, Korn M and Nóbrega JA. 2015 Microwave-assisted diluted acid digestion for trace element analysis of edible soybean products. Food Chemistry **175** 212-7

[27] Yang ZY 2005 To study the activity of palladium used as modifier under microwave decomposition and atomic absorption spectrometry with graphite furnace for the determination of trace elements in food products Chinese Journal of Spectroscopy Laboratory **22(3)** 607-17

[28] Rebezov M et al. 2020 Improvement of Laboratory Services When using Sample Preparation in Microwave System International Journal of Current Research and Review **12(16)** 29-33 doi:10.31782/IJCRR.2020.12167