A subset of gastric cancers with EGFR amplification and overexpression respond to cetuximab therapy

Lianhai Zhang1*, Jie Yang3*, Jie Cai3, Xiaoming Song3, Jianyun Deng3, Xuesong Huang3, Dawei Chen3, Mengmeng Yang3, Jean-Pierre Wery3, Shuangxi Li1, Aiwen Wu1, Ziyu Li2, Yiqiang Liu2, Yiyou Chen3, Qixiang Li3,4 & Jiafu Ji1

1Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Surgery, 2Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China, 3Crown Bioscience Inc. (Beijing), Light Muller Building, ChangPing Sector of ZhongguanChun Science Park, No. 21 Huo Ju St., ChangPing District, Beijing, China, 4State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.

A preclinical trial identified 4 of 20 (20%) gastric cancer (GC) patient-derived xenografts responded to cetuximab. Genome-wide profiling and additional investigations revealed that high EGFR mRNA expression and immunohistochemistry score (3+) are associated with tumor growth inhibition. Furthermore, EGFR amplification were observed in 2/4 (50%) responders with average copy number 5.8 and 15 respectively. Our data suggest that a GC subtype with EGFR amplification and overexpression benefit from cetuximab treatment.

Gastric cancer (GC) is one of the leading causes of cancer mortality worldwide. The treatment outcome is poor for majority of GC patients1. Modest efficacy and considerable toxicities associated with chemotherapy have prompted the pursuit of novel therapy targeting genetic and molecular alterations that drive gastric carcinogenesis. Trastuzumab is the only approved target agent for a subgroup of GC patients with HER2 overexpression at present, which represent about 20% of all the patients2, based on the results of phase III ToGA trial3. There is an urgent need for more effective target agents for treating this disease.

Cetuximab is a recombinant human/mouse chimeric monoclonal antibody against EGFR. Cetuximab was approved for treating EGFR-expressing metastatic CRC (mCRC) without activating KRAS mutation, and squamous cell carcinoma of the head and neck (SCCHN)4, but yet for GC. Several phase II trials have evaluated cetuximab as a first-line treatment in combination with various chemotherapy regimens5–8, demonstrating response in a subset of GC patients with overall response rate (ORR) of 40–60%. However, a randomized phase III trial, EXPAND (Erbitux in Combination With Xeloda and Cisplatin in Advanced Esophago-gastric Cancer, NCT00678535) did not significantly increase progression-free survival (PFS) in patients with advanced GC9. Unlike HER2 in GC, the predictive value of increased EGFR copy number for tumor response and skin rash are controversial6,8. At present, there is no established biomarker to predict response to cetuximab.

There has been an increase in using experimental models to predict clinical activity of agents and discover predictive biomarkers. Patient-derived tumor xenografts (PDXs), also called as “avatar mice” or “xenopatients”, mirror patients’ histopathological and genetic profiles10–13. Large collection of them reflects diversity of tumors in patient populations. We have established a large collection of cancer PDXs by transplanting surgically removed tumor tissues from patients into immunocompromised BALB/c nude mice via subcutaneous inoculation, including many gastric cancer PDXs (GC-PDXs), to assess drug activities15.

This study investigated the activity of cetuximab in 20 GC-PDX models. After therapeutic responders and non-responders were identified, following discovery of predictive biomarkers including genomic and gene expression analysis, sequence of key oncogenes was carried out. And the expressions of candidate biomarkers were validated by quantitative PCR, immunohistochemistry, and fluorescence in-situ hybridization (FISH).

Results

A subset of GC xenografts responded to cetuximab. We established GC-PDX models by transplanting surgically removed tumor tissues from GC patients into immunocompromised Balb/c nude mice via subcutaneous
The tumor response to cetuximab is quantified by N/AC and summarized in Table 1. The tested GC-PDXes fall into two distinct categories according to the drug activities: 4 of 20 (20%) responded with nearly complete response ($N/AC < 0$) to cetuximab treatment; 16 of 20 (80%) did not, with partial or complete resistance ($\Delta A/\Delta C > 30$). The representative tumor response curves are shown in the left column of Figure 1B. GA0152 and GA0075 are examples of cetuximab sensitive models, while GA0119 and GA0139 are resistant models. Our data clearly suggest that a subset of GC tumors can potentially benefit from cetuximab treatment.

About 50% responders display EGFR gene amplification. In order to discover potential predictive markers of cetuximab response, therefore, we performed molecular characterization of these models, including genome-wide copy number variations and transcriptional profiling. First, we interrogated copy number variation of GC-PDXs using Affymetrix genome-wide human SNP6.0 array and PICNIC (Predicting Integral Copy Numbers In Cancer) algorithm. We found that EGFR copy numbers of all four responders are higher than most of those non-responders (Table 1, $P = 0.002$). To further confirm this finding, we assessed EGFR gene copy number by real-time quantitative PCR (q-PCR) and found that all responders have copy number ≥ 4, while only 2 of 16 (12.5%) non-responders have copy number ≤ 4. The difference between these two groups is significant ($P = 0.008$). The highest value, 15 by SNP6 + PICNIC analysis and 104.09 by q-PCR, is from GA0152, which is also the best responder.

To further confirm the EGFR gene amplification, we further performed fluorescence in situ hybridization (FISH), a more accurate assay used to determine HER2 gene amplification for guiding anti-HER2 treatment for advanced GC in the clinical practice. At least 100 non-overlapping interphase nuclei were observed for the number of copies of EGFR. EGFR status was scored as the number of EGFR signals per nucleus. Our result demonstrated EGFR amplification in 2/4 (50%) responders with average copy number 5.8 (GA0075) and 15 (GA0152), respectively (Fig. 1A, Table 1). GA0152 was also with EGFR/CEP7 ratio > 15. Thus, 2/4 (50%) responders could be predicted by EGFR amplification.

All responders display higher EGFR mRNA expression level. On the other hand, transcription profile using Affymetrix HG-U219 GeneChip, revealed that all of the four responders expressed higher levels of EGFR mRNA expression than all 16 non-responders did ($P = 0.003$) (Table 1). EGFR gene expression was further quantified by q-RT-PCR against housekeeping gene GAPDH. Among the samples tested, 4 samples exhibited high EGFR mRNA levels (relative intensity ≥ 0.5, arbitrarily defined) were all responders, in contrast to the remaining models showing medium to low EGFR mRNA levels (relative intensity ≤ 0.1) (Table 1, Fig. 1A). The difference is significant ($P = 0.002$). In particular, the highest value is from GA0152, with 10.5 by GeneChip analysis and 13 by q-RT-PCR, which can be attributed to the EGFR amplification mentioned above.

All responders display higher EGFR immunohistochemistry score. Then we performed EGFR immunohistochemistry (IHC), a clinically practical assay to determine HER2 expression for anti-HER2 treatment for GC. IHC demonstrated positive EGFR immunostaining in 12/20 (60%) models. Among them, 6/12 had staining intensity score of 1+, 3/12 of 2+, and 3/12 of 3+. All responders were found EGFR IHC 3+, while the non-responders displayed lower EGFR IHC score 0–2+ ($P = 0.002$) (Table 1, Fig. 1A). The typical EGFR strong immunostaining (GA0152 and GA0075) is showed in Figure 1B. These results demonstrated that the EGFR high expression (in both mRNA and protein level) is correlated to the response to cetuximab.

Mutation of associated oncogenes is rare. Genetic mutations of some common oncogenes associated with EGFR pathway, e.g. KRAS, BRAF (V600E), c-MET, EGFR, AKT and PI3KC have also been investigated in these models by hot-spot mutation sequencing. Interestingly, few of the tested models, regardless responders or non-responders, showed any aberrations with exception of GA0139 containing G13D KRAS mutation, GA0044 containing 327–329 deletion in PIK3CA, and GA0098 containing G545Y PIK3CA mutation (Table 1). Therefore, the non-response of GC xenografts to cetuximab apparently cannot be simply attributed to these oncogene mutations.

Discussion

Our data point to a positive correlation between cetuximab response in GC and the EGFR high expression at both mRNA and protein level, as well as EGFR gene amplification. This correlation is exemplified by GA0152 that has the highest EGFR mRNA expression, IHC score and gene amplification. The data seem to suggest the higher activity of EGFR via higher expression drives the oncogenic transformation in these tumors, and therefore its inactivation by cetuximab thus inhibits tumor growth. Overexpression of EGFR could be attributed to the gene amplification in two cases, however, the exact mechanism of EGFR high expression in the other two cases has yet to be investigated.

A recent phase II trial, with cetuximab combined therapy for GC (European Clinical Trials Database number 2004-004024-12) showed association between higher EGFR copy number (defined as ≥ 4, 8 of 36 cases, 22.2%; including 1 amplification case ≥ 6 and FISH positive) and better overall survival. Their clinical data seem to be consistent with our data in this mouse clinical trial that all responders display higher EGFR gene copy number ≥ 4 while only two (50%) are FISH positive. Our data also demonstrated the EGFR high expression in both mRNA and protein level is correlated to the response. However, since the mRNA expression of EGFR genes is not routinely assayed in the clinical samples, and IHC can be of controversy due to biological and technical factors, we recommend that the combination of FISH and IHC tests are suitable for predicting cetuximab efficacy as routine clinical practice, similar to the clinical practice of anti-HER2 treatment.

In summary, our study suggests that a GC subtype with high EGFR mRNA expression and IHC score $3+$ may benefit from cetuximab treatment, and the EGFR gene amplification by FISH can also accurately predict the responders with positive predictive value around 50%. These markers can be helpful for guiding future a potentially successful clinical trial and eventually as a patient stratification guide for clinical treatment.

Methods

Patient tumor samples and engraftment in immunocompromised mice. Freshly and surgically removed tumor tissues were obtained from the patients diagnosed as GC in Peking University Cancer Hospital through approval by the Institutional Review Boards of the hospital and the informed consents from all patients. The engraftment of patient tumor fragments into immunocompromised mice subcutaneously was previously described. Briefly, the tumor fragments were dissected into 3 x 3 x 3 mm3 fragments and inoculated subcutaneously on the flank of mice (BALB/c nude, 6- to 8-weeks old female mice, Beijing HFK Bioscience Co., Beijing, China). The tumor growth was monitored twice weekly using a caliper. The established tumor models, called passage 0 or P0, were serially re-engrafted to maintain tumors in vivo. These subsequent passages were called P1, 2, 3… (<10). When tumors sizes reach 500-700 mm3 (1/2 length x width2), they were harvested for the next round of engraftment for serial passage or conducting studies of pharmacology, histopathology, immunohistochemistry, cellular and molecular analysis. All procedures were under sterile conditions at Crown Bioscience SPF facility and conducted in strict...
Model ID	Non-Responders	Responders	P value (non- vs. responders)														
	GA																
0114	2140	0006	0119	0139	0138	0037	0033	0023	0080	0151	0044	0098	0060	0055	0025		
0113	2140	0006	0119	0139	0138	0037	0033	0023	0080	0151	0044	0098	0060	0055	0025		
0112	2140	0006	0119	0139	0138	0037	0033	0023	0080	0151	0044	0098	0060	0055	0025		
0111	2140	0006	0119	0139	0138	0037	0033	0023	0080	0151	0044	0098	0060	0055	0025		

| ∆T/AC | 1.744 | 1.492 | 1.42 | 0.934 | 0.912 | 0.898 | 0.881 | 0.811 | 0.781 | 0.748 | 0.717 | 0.687 | 0.58 | 0.488 | 0.41 | 0.305 | | |
| | | | | | | | | | | | | | | | | | | -0.071 | -0.078 | -0.098 | -0.121 | 0.002 |

Copy Number	EGFR (SNP6 + PICNIC)	6	NE*	7	5	5	5	5	6	NE	5	5	5	5	NE	7	7	8	15	0.002		
	EGFR (q-PCR)	5.1	3.8	2.1	2.1	4.8	2.7	3.7	3.9	1.9	3.7	1.4	2.1	3.7	3.1	2.9	2.1	5.4	4.3	4.6	1040.9	0.008
	EGFR (FISH)	1.9	2.3	2.0	2.0	3.0	2.6	2.7	2.4	2.1	2.4	2.1	2.4	2.5	2.0	2.0	2.4	2.8	2.3	5.8	>15	0.029
	CEP7 (FISH)	1.9	2.2	2.1	2.0	2.7	2.0	2.3	2.0	2.5	2.1	2.2	2.3	2.1	2.2	2.0	2.3	2.0	2.3	5.2		
Ratio (EGFR/CEP7)	0.96	1.04	0.97	1.03	1.09	1.29	1.16	1.21	0.83	1.16	0.93	1.03	1.2	0.91	1.01	1.05	1.39	1.03	1.12	>15	0.099	

| mRNA | EGFR U219 intensity | 2.9 | NE | 3.3 | 3.6 | 2.9 | 2.3 | 2.5 | 2.4 | 2.5 | 2.8 | 3.6 | 3.1 | 4.3 | 4.2 | 4 | 3.8 | 6.5 | 6.9 | 5.8 | 10.5 | 0.003 |
| EGFR Relative Intensity | 0 | 0.1 | 0.08 | 0.14 | 0 | 0 | 0 | 0.02 | 0.02 | 0.02 | 0.2 | 0.13 | 0.07 | 0.13 | 0.1 | 0.1 | 0.81 | 0.62 | 0.5 | 13 | 0.002 |

| Protein | EGFR IHC Score | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 0 | 3 | 3 | 3 | 3 | 0.002 |

Mutation	EGFR	Exon18;19;20;21	WT	NE	WT
	k-RAS	Exon2;3;4	WT	NE	WT
	BRAF	Exon15	WT	NE	WT
	c-MET	Exon14;16;17;18;19;21	WT	NE	WT
	PIK3CA	Exon1;9;20	WT	NE	WT

Mutation	EGFR	Exon18;19;20;21	WT	NE	WT			
	k-RAS	Exon2;3;4	WT	NE	WT	WT	G13D	WT
	BRAF	Exon15	WT	NE	WT			
	c-MET	Exon14;16;17;18;19;21	WT	NE	WT			
	PIK3CA	Exon1;9;20	WT	NE	WT			

These model are sorted by the ratio of ∆T/AC, and the final four are responders. * Del: deletion; NE: not evaluable.
Figure 1 | The response to cetuximab treatment and genetic profile of GC-PDX models. Panel A: The PDX-GC models are sorted by the tumor response to cetuximab (AT/AC). The responders at the right part display higher EGFR mRNA level and IHC staining intensity, and the only two cases (GA0075 and GA0152, CN > 5) of gene amplification. Panel B: The representative images of responders and non-responders. The responders GA0152 and GA0075 display IHC score 3+ and gene amplification (GA0075, CN = 5.8; GA0152, CN > 15), while non-responders GA0119 and GA0139 are with IHC low expression and no gene amplification. Left: Representative tumor growth curves of responders and non-responders. Middle: IHC analysis of tumor models; Right: Dual-color FISH assay in gastric carcinoma. Probe for EGFR locus is labeled in red and CEP7 labeled in green. Blue: Nuclei.
EGFR IHC analysis of GC tumors. Standard immunohistochemistry (IHC) was used to analyze tumor tissues from the PDX xenograft models. Briefly, the tissues were fixed in 10% neutral buffered formalin and embedded in paraffin sagittal histological sections. After deparaffinization and rehydration, 3-µm thick tissue sections were pretreated with 0.1 M sodium citrate, pH 6.0 solution at 95 °C for 30 min, followed by staining with rabbit anti-human EGFR antibody (Cell Signaling, Boston, MA). The samples were incubated with a primary antibody overnight at 4 °C. Positive staining was detected using Detection System HRP Polymer Kit (Lab Vision, Fremont, USA). DAB was used as the chromogen, and nuclei as a blue signal with a DAPI filter. Representative images of samples were captured via a Nikon microscope and Olympus BX51 microscope system with DP71 digital camera (Olympus, Melville, NY).

Gene expression profiling and gene copy number analysis of GC-PDX. Fresh GC-PDX tumor tissues were collected from the tumor-bearing mice, snap-frozen and stored at −80 °C before being used for genetic and genomic analysis. For gene profiling analysis, the total RNA was isolated from the frozen tissues using Trizol (Invitrogen, Carlsbad, CA) per the manufacturer’s instructions, and purified using RNeasy mini columns (Qiagen). RNA quality was assessed on a Bioanalyzer (Agilent). Only RNA samples with high quality (RNA > 8) were used for expression profiling. Freshly isolated DNA was extracted using Affymetrix DNA Tissue and Blood Isolation Kit (Qiagen) following manufacturer’s instructions. DNA processing and chip hybridization were performed following standard Affymetrix protocol (http://media.affymetrix.com/support/downloads/manuals/3_ivt_expres_kit_manual.pdf). Raw CEL data sets of all samples were normalized by RMA algorithm. Probe set intensity was expressed as log(2) transformed values. For CNV assay using modified FOLFOX6 in advanced gastric cancer. Br. J. Cancer 100, 298–304 (2009).

For all of the samples, the relative EGFR gene expression level was determined by quantitative RT-PCR. Extracted mRNA was subjected to amplification using human EGFR specific primers by TaqMan q-PCR. The human GAPDH gene was used as a reference. TaqMan probes and primers for EGFR (assay ID: Hs00999905_m1) were obtained from Applied Biosystems. The raw data generated by the system were processed using the ACT relative quantification. CT = (CT value of target gene) – (CT value of reference gene). ACT values were then converted into intensity value (relative mRNA level = 2−ACT).

Also, EGFR gene copy numbers were determined by quantitative PCR. Briefly, the same genomic DNAs were subjected to amplification with modified FOLFOX6 in advanced gastric cancer. Br. J. Cancer 100, 298–304 (2009).

For all of the samples, the relative EGFR gene expression level was determined by quantitative RT-PCR. Extracted mRNA was subjected to amplification using human EGFR specific primers by TaqMan q-PCR. The human GAPDH gene was used as a reference. TaqMan probes and primers for EGFR (assay ID: Hs00999905_m1) were obtained from Applied Biosystems. The raw data generated by the system were processed using the ACT relative quantification. CT = (CT value of target gene) – (CT value of reference gene). ACT values were then converted into intensity value (relative mRNA level = 2−ACT).

Also, EGFR gene copy numbers were determined by quantitative PCR. Briefly, the same genomic DNAs were subjected to amplification with modified FOLFOX6 in advanced gastric cancer. Br. J. Cancer 100, 298–304 (2009).

For all of the samples, the relative EGFR gene expression level was determined by quantitative RT-PCR. Extracted mRNA was subjected to amplification using human EGFR specific primers by TaqMan q-PCR. The human GAPDH gene was used as a reference. TaqMan probes and primers for EGFR (assay ID: Hs00999905_m1) were obtained from Applied Biosystems. The raw data generated by the system were processed using the ACT relative quantification. CT = (CT value of target gene) – (CT value of reference gene). ACT values were then converted into intensity value (relative mRNA level = 2−ACT).

Also, EGFR gene copy numbers were determined by quantitative PCR. Briefly, the same genomic DNAs were subjected to amplification with modified FOLFOX6 in advanced gastric cancer. Br. J. Cancer 100, 298–304 (2009).

For all of the samples, the relative EGFR gene expression level was determined by quantitative RT-PCR. Extracted mRNA was subjected to amplification using human EGFR specific primers by TaqMan q-PCR. The human GAPDH gene was used as a reference. TaqMan probes and primers for EGFR (assay ID: Hs00999905_m1) were obtained from Applied Biosystems. The raw data generated by the system were processed using the ACT relative quantification. CT = (CT value of target gene) – (CT value of reference gene). ACT values were then converted into intensity value (relative mRNA level = 2−ACT).

Also, EGFR gene copy numbers were determined by quantitative PCR. Briefly, the same genomic DNAs were subjected to amplification with modified FOLFOX6 in advanced gastric cancer. Br. J. Cancer 100, 298–304 (2009).

For all of the samples, the relative EGFR gene expression level was determined by quantitative RT-PCR. Extracted mRNA was subjected to amplification using human EGFR specific primers by TaqMan q-PCR. The human GAPDH gene was used as a reference. TaqMan probes and primers for EGFR (assay ID: Hs00999905_m1) were obtained from Applied Biosystems. The raw data generated by the system were processed using the ACT relative quantification. CT = (CT value of target gene) – (CT value of reference gene). ACT values were then converted into intensity value (relative mRNA level = 2−ACT).

Also, EGFR gene copy numbers were determined by quantitative PCR. Briefly, the same genomic DNAs were subjected to amplification with modified FOLFOX6 in advanced gastric cancer. Br. J. Cancer 100, 298–304 (2009).
18. De Roock, W., De Vriendt, V., Normanno, N., Ciardiello, F. & Tejpar, S. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 12, 594–603 (2011).
19. Di Nicolantonio, F. et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol. 26, 5705–5712 (2008).
20. Luber, B. et al. Biomarker analysis of cetuximab plus oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric and oesophago-gastric junction cancer: results from a phase II trial of the Arbeitsgemeinschaft Internistische Onkologie (AIO). BMC Cancer 11, 509 (2011).
21. Shia, J. et al. Epidermal growth factor receptor expression and gene amplification in colorectal carcinoma: an immunohistochemical and chromogenic in situ hybridization study. Mod. Pathol. 18, 1350–1356 (2005).

Acknowledgements
This study was partially supported by National Key Technology R&D Program (2011ZX09307-001-05) and Beijing Municipal Science & Technology Commission (Z121100007512010).

Author contributions
Q.L. and J.J. conceived and designed the experiments; L.Z., J.Y., J.C., X.S., J.D., X.H., D.C., M.Y., J.P.W., S.L., A.W., Z.L., Z.L., Y.L. and Y.C. performed the animal model construction and experiments; L.Z. and J.Y. analyzed the data and contributed to writing and editing the manuscript; Q.L. and J.J. supervised the project and wrote the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare competing financial interests: J.Y., J.C., X.S., J.D., X.H., D.C., M.Y., J.P.W., S.L., A.W., Z.L., Z.L., Y.L. and Y.C. are employees of Crown Bioscience, Inc. Y.C. is also a shareholder of Crown Bioscience, Inc.
How to cite this article: Zhang, L. et al. A subset of gastric cancers with EGFR amplification and overexpression respond to cetuximab therapy. Sci. Rep. 3, 2992; DOI:10.1038/srep02992 (2013).

This work is licensed under a Creative Commons Attribution 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0