Improving the treatment of patients with advanced metastatic cancer is a daily challenge in clinical practice. The “renaissance” of immuno-oncology is mainly due to the success of the immune check-points inhibitors in prolonging the survival of metastatic cancer patients in different tumor types [1]. Very interestingly, some long lasting responses or even remissions have been reported [2].

Consequently, cancer immunotherapy became in the last decade, one of the major breakthrough in cancer treatment. Although active in monotherapy, anti-CTLA4 and anti-PD-1 monoclonal antibodies are not able to overcome every aspect of tumor immunosuppressive mechanisms. Several ongoing clinical trials attest that their combination may improve their clinical efficacy. Nevertheless, their associated autoimmune toxicities constitute a main reason of treatment discontinuation or abandon (NCT02477826, NCT03001882, NCT02982954 and NCT02231749) [3].

Thus, one of the main current challenge is how to improve cancer immunotherapy efficiency, without increasing autoimmune toxicities. An appropriate strategy may reside in a combinatorial approach able to overcome the numerous immunosuppressive networks of the tumor microenvironment (TME) [4] resulting in an “abscopal effect”, a rare phenomenon first described in patients treated with radiotherapy, characterized by regression of tumor outside the radiation field [5].

The reproduction of such systemic reaction requires at least two major steps, as described in our published model [6]. First, inducing apoptosis of tumor cells and second, reprogramming the TME into a TH1 polarized response through an IL-12 induced immune response, through an IL-12 induced interferon gamma (IFNγ) secretion from TH1 cells [8,9]. Consequently, immunosuppressive cytokines produced by TH2 pre-existing cells are reduced and cross presentation of dendritic cells (DCs) is enhanced by the up-regulation of interferon gamma (IFNγ) secretion from TH1 cells. This process also decreases the prevalence of immunosuppressive actors like myeloid-derived suppressor cells (MDSCs) and MDSCs, Myeloid-derived suppressor cells; NK cells, Natural killer cells; PAPs, Proapoptotic peptides; PD1, Programmed cell death protein 1; Tregs, Regulatory T cells; TH1, Type I T helper; TH2, Type II T helper; TILs, Tumor-infiltrating lymphocytes; TME, Tumor microenvironment.

Address all correspondence to: Michel Obeid, Centre hospitalier universitaire vaudois (CHUV), Centre d’immunothérapie et de la vaccinologie, Rue du Bugnon 17, 1011, Lausanne, Switzerland. Email: michel.obeid@chuv.ch

*Conflict of interest. The authors declare no conflict of interest.

Received 3 October 2017; Revised 16 November 2017; Accepted 20 November 2017

© 2018 The Authors. Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1476-5586

https://doi.org/10.1016/j.neo.2017.11.009
Figure 1. The intratumor co-administration of IL-12 and proapoptotic peptides (PAPs) generates abscopal effect that reduces massively the contralateral tumor volume (A) and extends the lifespan (B) of BALB/c mice bearing CT26 colon cancer cells. Untreated CT26 tumors (seeded with 3×10^5 cells) were established in 6-wk.-old female BALB/c mice, as described previously [6,9]. The different treatments were initiated when tumor reach a volume ~ 0.3 cm3. Only tumor on one side was co-injected with mouse recombinant IL-12 (R&D systems) (delivered at 10 μg/day for a period of 7 days) in the presence or absence of 300 μg (30 μl final) of PAPs (PTD/KLAK) [6] for a period of 7 days only. After that, the contralateral tumor (non-treated side) volume were evaluated twice weekly using a caliper. (A), contralateral tumors (non-treated side) in mice treated concomitantly with IL-12 and PAPs were significantly smaller (Student's t-test; $P < .001$) than untreated tumors (treated with PBS, control) or those treated with either IL-12 or PAPs alone. (B), mice treated concomitantly with IL-12 and PAPs survived longer than the untreated mice (control) or those treated with IL-12 or PAPs alone, as shown by a Kaplan-Meier survival plot (n = 14 animals/group; $P < .05$, log-rank test). All animals were bred and maintained according the guidelines of both the Federation of European Laboratory Animal Science Associations (Tamworth, U.K.) and the Animal Experimental Ethics Committee (Paris, France). Animals were used at between 6 and 20 wk. of age. Animals bearing tumors in excess of 20–25% of the body mass were killed.

Figure 2. The in vivo depletion of CD8$^+$ T cells abolishes the abscopal effect of PAPs and IL-12 in BALB/c mice bearing CT26 colon cancer cells. As described in Figure 1. Mice were depleted or not with H35.17.2 antibody (250 mg; obtained from American Type Culture Collection) respectively, 4 days before co-treatment with IL-12 and PAPs and repeated one time by week during a period of 30 days. After that, tumor volume were evaluated twice weekly using a caliper. The contralateral tumors in the depleted mice were significantly bigger compared to non-depleted mice (Student's t-test; $P < .001$).
A

Immunosuppressive tumor microenvironment

- TH1
- MDSC
- Tumor Cell
- Treg
- NK
- CD8

(+) and (-) indicate interactions.

B

Rebalancing tumor immunogenicity

1. Pro-apoptotic peptides
2. IL-12
3. Apoptotic tumor cells
4. Tumor antigens cross-priming by DC
5. MAC
6. NK

Synergistic association leading to Th1 polarization.
T lymphocytes regulators (Tregs). IL-12 also promotes the proliferation and the cytolytic activity of NK cells and effector CD8+ T-cells. However, without the microenvironment reprogramming conferred by IL-12 co-administration, the apoptotic cell death is not by itself sufficient to allow an effective tumor rejection. Together, all these synergistic modifications on tumor microenvironment elicit a potent antitumor immunity leading to the rejection of distant metastatic tumors (Figure 3B).

As a translational extension from this observation, we postulate that the replacement of locally administered PAPs by an intravenous infusion (as described in [7]) may result in the same abscopal effect. Such scenario will undeniably open the door to the “democratization” of the abscopal effect in the clinical practice, which may bring new hope for cancer patients refractory to immune check-point blockade therapies.

Author Contributions
MO conceived the study, performed the experiments and prepare the manuscript; FM prepared Figure 3; all authors wrote, commented and corrected the manuscript.

Acknowledgements
This work was supported by a grant from INSERM (Institut National de la santé et de la recherche médicale) and faculté de médecine Paris VI. The authors would like to thank Mr. Roger Guindon Montoya for its work on the Figure 3.

Ethics statement. This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the European Union “European directive 86/609/EEC” and the French National Institutes of Health. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Pierre et Marie Curie, Paris, France (Permit Number: A751301).

References
[1] Sharma P and Allison JP (2015). The future of immune checkpoint therapy. Science 348, 56–61.
[2] Jacobsoone-Ulrich A, Jamme P, Alkeraye S, Dawinie V, Faure E, TEMPLIER C, and Morrier I (2016). Ipilimumab in anti-PD1 refractory metastatic melanoma: a report of eight cases. Melanoma Res 26, 153–156.
[3] Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Covey CL, Lao CD, Schadenord D, Dunner R, Smylie M, and Rutkowski P, et al (2015). Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med 373, 23–34.
[4] Bhatia A and Kumar Y (2014). Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol 10, 41–62.
[5] Mole RH (1953). Whole body irradiation: radiobiology or medicine? Br J Radiol 26, 234–241.
[6] Deplanque G, Shabafrouz K, and Obeid M (2017). Can local radiotherapy and IL-12 synergise to overcome the immunosuppressive tumor microenvironment and allow “in situ tumor vaccination”? Cancer Immuno Immunother 66, 833–840.
[7] Obeid M (2009). Anticancer activity of targeted proapoptotic peptides and chemotherapy is highly improved by targeted cell surface calreticulin-inducer peptides. Mol Cancer Ther 8, 2693–2707.
[8] Smyth MJ, Taniguchi M, and Street SE (2000). The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 165, 2665–2670.
[9] Colombo MP, and Trinchieri G (2002). Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13, 155–168.