Foreground and Background Lexicons and Word Sense Disambiguation for Information Extraction

Adam Kilgarriff∗
Information Technology Research Institute
University of Brighton
Brighton BN2 4GJ
email: Adam.Kilgarriff@itri.bton.ac.uk

1 Introduction

In recent years, lexicon acquisition from machine-readable dictionaries and corpora has been a dynamic field of research. However it has not always been evident how lexical information so acquired can be used, or how it relates to more structured meaning representations. In this paper I look at this issue in relation to one particular NLP task, Information Extraction (hereafter IE), and one subtask for which both lexical and general knowledge are required, Word Sense Disambiguation (WSD).

The argument is as follows. For an IE task, the output formalism, that is, the database fields or templates which the system is to fill, specifies the object-types and relations that the system is to find out about; the ‘ontology’. An IE task operates in a specific domain. The task requires the key terms of that domain, the ‘foreground lexicon’, to be tightly bound to the ontology. This is a task that calls for human input. For all other vocabulary, the ‘background lexicon’, a far shallower semantics will be sufficient. This shallow semantics can be obtained automatically from sources such as machine-readable dictionaries and domain corpora.

The foreground and background lexicons are suited to different kinds of WSD strategies. For the background lexicon, statistical methods for coarse-grained disambiguation are appropriate. For the foreground lexicon, WSD will occur as a by-product of finding a coherent semantic interpretation of an input sentence, in which all arguments are of the appropriate type. Once the foreground/background distinction is developed, there is a good match between what is possible, given the state of the art in WSD and acceptable levels of human input, and what is required, for high-quality IE.

The two-tier approach has been adopted by a number of IE systems. The POETIC (Evans et al., 1996) and Sussex MUC-5 (Gaizauskas, Cahill, and Evans, 1994) systems used a hand-crafted foreground lexicon and the Alvey Tools lexicon (Carroll and Grover, 1989) as a background lexicon for syntactic...
information. (Cahill, 1994) discusses the relation between the respective roles of the two lexicons. The Sheffield MUC-6 system (Gaizauskas et al., 1996) used the Brill tagger as its background lexicon for syntactic information. The need for an IE system to have, on the one hand, well-articulated meaning representations for key terms, and on the other, some information about all or nearly all words, makes it very likely that two-tier strategies will be adopted even where they are not explicitly defended.

Some terminology: I shall use ‘lexicographer’ to refer to the people who provide information about words, or about how words and classes of words relate to the categories in an ontology. At times it might seem that ‘knowledge engineer’ or similar is a better description, but there is no clear point at which lexicography turns into knowledge engineering, so I shall use the one term throughout. Likewise, my ‘foreground lexicons’ might equate to Gaizauskas and Wilks’s ‘concepticons’1 or even knowledge representation schemes, but I shall keep to ‘lexicons’. Small capitals are used to refer to semantic classes.2

2 Characteristics of IE

For NLP tasks such as Machine Translation, Information Retrieval3 and grammar checking, both input and output are defined in terms of linguistic objects, so world knowledge is in a sense optional: it is merely a means to an end. If statistical methods are a better means to the end, so much the better; general knowledge can be dispensed with. Thus world knowledge may be useful for a task such as prepositional phrase attachment or anaphor resolution, but if statistical methods perform better, then world knowledge can be dispensed with.

The situation in relation to IE (and also for many language generation applications) is different. Non-linguistic objects, in the form of templates and database fields, are part of the task definition. If lexical information is not tied to those objects, the task cannot be accomplished at all. A central problem for most knowledge-engineering projects designed to support NLP is the lack of criteria regarding what knowledge is relevant (see (Bateman, 1991) for discussion). For IE, the question arises only to a limited degree. The templates and database fields define what objects and relations are relevant.

All NLP tasks are easier if only one type of text, or the language of only one domain, is addressed, but for some tasks, including MT, IR and grammar checking, it is theoretically feasible to produce domain-independent systems.4 (There is of course commercial pressure in this direction: a general-purpose system has a far, far larger market.) For IE, a completely general-purpose system is not a coherent concept (unless various AI-complete problems are

1See their contribution to the SCIE Summer School, “Concepticons vs. lexicons”.
2The Information Retrieval task is to return those texts, in a database of texts, which are the most relevant to a user’s query. In contrast, IE extracts facts from texts.
3Practical MT systems use multiple, domain-specific lexicons, so if, for example, a legal text is being translated, only legal and general-language lexicons will be accessible: in this way, the system benefits, to some extent, from the advantages of doing domain-specific NLP.
solved and a completely general-purpose knowledge representation scheme is available) since the database fields or templates are domain-specific.

So: because of the way in which an IE task is defined, firstly, an IE lexicon must include mappings to non-linguistic objects, and, secondly, for a new domain, some lexicography will always be required.

3 Foreground lexicons

While researchers in NLU have made great progress in extracting lexical information automatically from machine-readable versions of dictionaries (eg, (Wilks, Slator, and Guthrie, 1996; Richardson, 1997)) and from text corpora (see Section 4), these methods do not provide the depth of knowledge about the key terms for a domain which is required for IE.

An example: one strand of the recent MUC-6 competition concerned ‘succession events’, so the information to be extracted related to individuals getting promoted, demoted, hired and fired. A salient term is, thus, verbal sack. Its meaning, in the context of MUC-6, is that the individual to whom it applies (eg., who occupies the direct object slot, or the subject if the verb is passive) no longer has the role he or she previously had in the organisation which either occupies the subject slot of the active form, or whose agent occupies that slot, or that is otherwise salient in the context, and for whom the individual previously worked; and that the event was instigated by the organisation rather than the individual. Automatic dictionary-based techniques might, if they are well done, allow us to follow a hypernym chain from sack (verbal sense 2) to dismiss (sense 2) to remove (sense 3) so supplying the fact that these three verb senses have the same semantics in this domain. However the step from “same semantics” to what that semantics is, is a large one. For the MUC-6 task, the semantics must specify which templates a SACK/DISMISS/REMOVE event relates to, which slots on the template each of the verbs’ complements correspond to, the changes from the ‘before’ to the ‘after’ state that the event implies, and the fact that the employer instigated the change. This is well beyond the potential of the kind of ‘shallow semantics’ which form a reasonable objective for machine-readable dictionaries or corpus-based lexical acquisition.

The consequence is that, for the foreseeable future, any IE project will need to do a significant amount of lexicography. The meanings of the key terms in the domain, or “foreground lexicon” will need to be written in a formalism which supports the reasoning the system will need to perform and is geared to the output specifications of the IE system.

In sum, the foreground lexicon for a domain will contain:

- the key predicates for the domain;
- how they and their arguments relate to the IE system’s output formalism;
- the sets of lexical items which realise the predicate; and,

4MUC: Message Understanding Conference.
5Sense numbering from (LDOCE, 1987).
• how their complements relate to the predicate’s arguments.

3.1 WSD and the Foreground Lexicon

The relation to word sense disambiguation has two aspects. First, there will probably only be one sense of *sack*, *dismiss* or *remove* in the foreground lexicon. Given a domain-specific corpus, for many words, most or all uses of the word will be in its foreground sense. So many words which are ambiguous in general language are not ambiguous within the domain. This will only be true to a moderate degree in the MUC-6 corpus, where the input text is taken from the Wall Street Journal so is not highly domain specific. It applies to a greater extent to domains such as Remote Sensing (Basili, Della Rocca, and Pazienza, 1997) or traffic information reports (Evans et al., 1996).

Secondly, the first argument of *sack/dismiss/remove* must be an employer, and the second, an individual. These are hard constraints, not statistical ones, as if they are violated the database entry or template will be garbage. They will have been added to the predicate’s representation by the lexicographer. They will provide critical clues for disambiguation. If the subject of *sack, dismiss* or *remove* is correctly identified as an employer (or agent of an employer), and its direct object, as an individual, then just one of the three verbal senses of *sack*, one of the five for *dismiss*, and three of the five for *remove* remain possible (and the two non-foreground senses for *remove* which are still possible are superordinates for the foreground sense, with the same general meaning but not applied specifically to employment). Therefore, if we encounter *dismiss*, and succeed in identifying an EMPLOYER subject (implicit or explicit) and an INDIVIDUAL object, we may conclude that we have the foreground sense of *dismiss*. Identifying the subject and object and their categories is a task that must be performed in any case, in order to ascertain how the verb’s complements relate to the database or template fields, so disambiguation has occurred without any specific effort, as a by-product of arriving at a coherent semantic representation for the sentence.

If *dismiss* does not have an EMPLOYER subject and an INDIVIDUAL object, we shall not have disambiguated it between the four non-foreground senses, but then there is no need to do so since, whichever of those four senses applies, the verb will not lead to information going into the templates or database.

If *dismiss* had another sense that had implications for the IE task, then it would have another foreground sense. Then three cases are possible. In the first, the two foreground senses are the same concept in this domain, so we have a simple many-to-one mapping between the dictionary senses and the

6This is closely related to the “One sense per discourse” observation, presented and quantified in (Gale, Church and Yarowsky, 1993).

7Also, statistical WSD methods will be hard to apply, firstly because these word senses are structured entities, secondly, there will be no training data and probably insufficient data for unsupervised methods, and thirdly, characterisations of each sense will not be available in a form which is easily integrated into the algorithms.

8The three verbs are all frequently used in their relevant sense in the (usually agent-less) passive. In that case, there will be fewer selection restrictions to constrain the meaning, but on the other hand the simple fact of passive use will implicate the foreground sense.
domain-specific senses, and the dictionary’s sense distinction is ignored. In the second, the two senses relate to distinct concepts and have distinct selection restrictions. Once the semantic classes of the complements are identified, the word is disambiguated, again with no explicit disambiguation effort. The third is the difficult case, where the two senses relate to distinct concepts but share the same selection restrictions. I doubt whether this will occur often. Where it does, it will have been the lexicographer’s task to provide sufficient information in the concept definitions to permit disambiguation. Since it will not occur very often, it will not be an onerous task for the human to provide this information, given clever tools (see Section 6).

Foreground lexicon disambiguation is semantically driven: the system will know enough about the meanings of the words and phrases for the word sense to be resolved by identifying the only sense with a semantic fit. This seems akin to how people disambiguate – not as a distinct process but as a by-product of identifying an interpretation of the word that fits the context (Nunberg, 1978).

4 Don’t be scared of lexicography

Over the last ten years, there have been many researcher-years spent on making information in machine-readable dictionaries available for NLP use. The preamble to such work has generally included words to the effect that “the lexicon is huge, so if we are able to re-use existing resources, e.g. dictionaries, we shall be making a great saving of effort”. There are several limitations to this argument.³

- The person-years required to make a medium-sized dictionary, while substantial, are not necessarily forbidding. It is likely that more person-years have been spent extracting information from [LDOCE, 1978] than were spent in writing it. Machine translation laboratories frequently write dictionaries, and the COMLEX and WORDNET projects have both done so. Much smaller domain-specific lexicons are not necessarily huge undertakings.

- A purpose-built dictionary will contain the information that is needed. Existing resources are unlikely to. Simple items such as word class are often available for all words, but little else is. Filling in gaps is likely to be labour-intensive.

- All dictionaries contain errors. In a computational lexicography project, resources can be devoted to ensuring accuracy where it matters.

There will not be a huge number of concepts in the lexicon for a particular domain, so, at, say, an average of half an hour per word for 500 key words, where a lexicon is being built from scratch, the process may involve two or three person-months.

³See also [Ide and Veronis, 1993].
A careful approach to lexicon design which exploits generalisations has the potential to greatly speed up the lexicography. As pointed out above, the foreground senses of *sack*, *dismiss* and *remove* all map to the same concept, though not in identical ways. (Someone who is sacked does not, thereafter, work for the same employer. This does not follow for someone who is removed from a given post.) A formalism is required in which all the information common to the three verbs can be stated at a general node for the predicate, and inherited. Then, only the non-default facts about each word need be stated by the lexicographer \cite{Cahill and Evans, 1990} and the overhead associated with adding further words to the lexicon, where those words behave similarly to those already encoded, is minimal.

This inheritance-based, hierarchical approach to the lexicon is also of benefit from a multilingual perspective. Where lexical items of various languages relate to the output formalism in the same way, they can be attached to the same nodes in the hierarchy \cite{Cahill and Gazdar, 1995, Nirenburg et al., 1996, Heid and Krüger, 1996}.

5 Background Lexicons

But what of the 50,000 words which might occur in the domain corpus and are not in the foreground lexicon? Syntactic information about them is required so that sentences containing them can be parsed. Semantic information is required for various purposes:

- general parsing problems such as prepositional phrase attachment and disambiguation of co-ordinated constructions;
- anaphor resolution;
- identification of which database fields or template slots the referent of a word might occupy – for example, identifying that *school* is an ORGANISATION so a noun phrase with *school* as its head is a potential filler for the EMPLOYER database field or template slot;
- for selection restrictions on the foreground lexicon concepts, so that in, eg. “the school dismissed …”, the identification of *school* as ORGANISATION indicates the foreground sense of *dismiss*;
- disambiguation of the background concept word.

Note that, for all these cases, the semantic information that is required is essentially coarse-grained classification. We need to know that *school* is (in one of its senses) ORGANISATION, nothing more.

There are, at least for English, numerous general-language resources which can supply some or all of the information we need for most words. WordNet \cite{Miller, 1990} provides broad word-class information and a taxonomy of semantic classes for English, and all being well, the EuroWordNet, German WordNet and International WordNet projects will soon extend this to numerous other languages. Various machine-readable versions of monolingual and
bilingual dictionaries are more or less readily available for NLP research and development (e.g. from Longman, Collins, Oxford University Press, Larousse, Bibliograf etc.), and provide (more or less explicitly and comprehensively) morphological, syntactic, collocational and semantic category information. Basic syntactic and morphological information for English, Dutch and German is available on the CELEX CD-ROM. Sophisticated subcategorisation information for English verbs is available in the Alvey lexicon (Carroll and Grover, 1989), COMLEX-Syntax or XTAG.

Moreover there now exist numerous techniques for acquiring this sort of information from corpora, using statistical methods, with minimal or no lexicons required as input. The Xerox part-of-speech tagger (Cutting et al., 1992) is one of several language-independent taggers whose output can be used for developing part-of-speech lexicons from scratch. (Church and Hanks, 1989; Hindle, 1990; Brown et al., 1992; Grefenstette, 1994; McMahon and Smith, 1996) present various methods, all largely or entirely language-independent, for developing semantic classifications.

There are also hybrid techniques which use corpora to improve, extend or ‘tune’ the information in lexical resources. (Briscoe and Carroll, 1997) is one of a number of pieces of work presenting techniques for the automatic extraction of subcategorisation frames for verbs, given a lexicon with some syntactic information (and a parser) as input. (See also, eg (Hindle and Rooth, 1991; Brent, 1993; Resnik, 1993), and various papers in (Boguraev and Pustejovsky, 1993).)

In an IE context, ‘tuning’ the resource, that is, adapting it, usually by fully automatic methods, to the language of a given corpus, is particularly salient. An example of such work is (Basili, Della Rocca, and Pazienza, 1997) who take the WordNet hierarchy; reduce it to a far simpler, 25-way (for nouns) or 15-way (for verbs) classification scheme; disambiguate all words which remain ambiguous in this simplified scheme, using the domain corpus and a Bayesian classification algorithm developed by (Yarowsky, 1992); and are then able to return a ‘tuned’ version of (very coarse-grained) WordNet, in which senses not occurring in the domain corpus have been ejected, and for where the remaining senses are associated with domain-specific information which can be used for disambiguation.

This has been a brief and partial survey of a very active field. It serves to demonstrate that there is a large number of resources (at least for English) and corpus-based algorithms (some language- and lexicon-independent, others less so) for providing the semantic and syntactic information required for the background lexicon. The match between what the techniques can provide, and what is required for the background lexicon, is good. For the background lexicon, shallow semantics of the kind which can be automatically extracted from lexical and corpus resources is sufficient.

5.1 WSD in the Background Lexicon

For fine-grained automatic WSD, with grain-size as at the WordNet synset or LDOCE sense level, anything over 50% success is judged very good, and indeed the level of agreement between two teams of human taggers was just 57% (Ng, 1997).
and Lee, 1996). If IE depends on current dictionary- or corpus-based technology for fine-grained WSD, the outlook is bleak.

So it is fortunate that the semantic information required for the background lexicon is just coarse-grained classification, so only coarse-grained WSD is required. We need to determine whether bank refers to an organisation or not, but we are not concerned with the distinction between the building that houses that organisation, and the organisation itself. Here, the position is far rosier. Several authors report over 90% success. Those results mostly used general corpora, so the prospects for domain-specific corpora are probably better. Basili’s (op. cit.) approach to tuning provides a disambiguation algorithm in its own right, or could be combined with insights from Yarowsky, 1995.

In contrast to foreground disambiguation, background disambiguation will be surface- rather than semantics-driven, and will bear very little relation to how people disambiguate.

6 Tools
The trade between lexicography and NLP flows both ways. Lexicons are crucial resources for NLP, and NLP can provide tools for facilitating and improving the standard of lexicography.

Since the advent of computers in lexicography, lexicographers have been able to base their lexical entries on corpus evidence as never before. The two essential tools for a lexicographer are an editor, for writing the entry in, and a concordancer, which gives rapid access to all instances of a search word or pattern in a corpus. There are many threads to current NLP research which could improve the lexicographic tools. A parsed corpus and associated search software would allow the lexicographer to search on grammatical structures. Semantic tagging allows him or her to use semantic features in a search pattern. Mikheev and Finch, 1997 presents a toolkit which identifies those lexical, syntactic and semantic patterns which are particularly common for the target word. Yarowsky, 1995’s WSD algorithm is well suited to lexicographic practice, since, given a small amount of evidence about the syntactic and collocational patterns that indicate a particular sense for a word, it will learn further disambiguating patterns. Schulze and Christ, 1994 and Day et al., 1997 both provide computational environments for a lexicographer to mark up corpus instances of a word with their characteristics (which could be word-sense). Other techniques from NLP which have potential for forming part of an advanced lexicographer’s workbench include a number of the semantic classification algorithms, and hybrid ‘lexicon-improvement’ approaches described in Section 5 above.

A good prototype for such an advanced workstation is described in Atkins, 1993. Our current work includes the integration of these techniques into a still more advanced workstation.

10 Here, good database technology is required since speed is critical, the corpus will often contain several hundred million words, and a full range of regular expressions over words, fields associated with words (eg. part of speech) and sequences of words and fields, is required.
As the tools for the task improve, so the manual building of the foreground lexicon becomes a less forbidding prospect.

7 Conclusion and open questions

In this paper I have argued that the lexicon for an IE system should be viewed as having two parts: a foreground lexicon, containing the key terms for the domain, which makes the links between the words in the text and the database fields or templates to be filled, and the background lexicon, containing all other vocabulary. The foreground lexicon will be built anew, with substantial lexicographer input, for each new application, whereas general-purposes lexical resources, preferably tuned to the domain corpus and potentially augmented by a range of automatic lexicon-improvement algorithms, will provide all the information required for background lexicon entries. Project managers need not be frightened by the prospect of doing lexicography for each new application: the number of key terms for which lexical entries need to be written will be quite limited, and there are various tools to facilitate the process.

Word sense disambiguation will take quite different forms in relation to the two parts. For words in the background lexicons, coarse-grained disambiguation is sufficient, and various statistical and preference-based algorithms can be used. For the foreground lexicon, explicit disambiguation will rarely be an issue, as a coherent semantic interpretation will usually only be possible with one or zero foreground senses.

Open questions include: how large need the foreground lexicon be? How sharp is the distinction, and are there intermediate cases, of word senses for which some of the information and processing is foreground, some background? The discussion above suggests that background WSD would take place first, as that would furnish the information for foreground interpretation-building and disambiguation, but is that correct, or how might interleaving of the processes work? All these questions feature as part of our programme of IE system-building.

Acknowledgements

The paper benefited from discussions with Roger Evans, Lynne Cahill and Robert Gaizauskas.

References

[Atkins1993] Atkins, Sue. 1993. Tools for computer-aided lexicography: the Hector project. In Papers in Computational Lexicography: COMPLEX ’93, Budapest.

[Basili, Della Rocca, and Pazienza1997] Basili, Roberto, Michelangelo Della Rocca, and Maria Teresa Pazienza. 1997. Towards a bootstrapping framework for corpus semantic tagging. In Proc.
ACL SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What and How?, pages 66–73, Washington DC, April. ACL.

[Bateman1991] Bateman, John A. 1991. The theoretical status of ontologies in natural language processing. In Proc. Workshop on Text Representation and Domain Modelling – Ideas from Linguistics and AI, Technical University, Berlin, October. cmp-lg/9704010.

[Boguraev and Pustejovsky1993] Boguraev, Branimir and James Pustejovsky, editors. 1993. Acquisition of Lexical Knowledge From Text: Workshop Proceedings, Ohio. ACL Special Interest Group on the Lexicon.

[Brent1993] Brent, Michael R. 1993. From grammar to lexicon: unsupervised learning of lexical syntax. Computational Linguistics, 19(2):243–262.

[Briscoe and Carroll1997] Briscoe, Ted and John Carroll. 1997. Automatic extraction of subcategorization from corpora. In Proc. Fifth Conference on Applied Natural Language Processing, pages 356–363, Washington DC, April.

[Brown et al.1992] Brown, Peter, Vincent J. Della Pietra, Peter DeSouza, Jennifer c. Lai, and Robert L. Mercer. 1992. Class-based n-gram models of natural language. Computational Linguistics, 18(4):467–479.

[Cahill1994] Cahill, Lynne J. 1994. The use of “back-up” dictionaries in domain-specific nlu tasks. Presentation at The Future of the Dictionary Workshop, Uriage-les-Bains, France, October.

[Cahill and Evans1990] Cahill, Lynne J. and Roger Evans. 1990. An application of DATR: The tic lexicon. In Proc. ECAI-90, pages 120–125.

[Cahill and Gazdar1995] Cahill, Lynne J. and Gerald Gazdar. 1995. Multilingual lexicons for related languages. In Proceedings, 2nd Language Engineering Convention, pages 169–176, London, October.

[Carroll and Grover1989] Carroll, John and Claire Grover. 1989. The derivation of a large computational lexicon for english from LDOCE. In Branimir K. Boguraev and Edward J. Briscoe, editors, Computational Lexicography for Natural Language Processing. Longman, Harlow.

[Church and Hanks1989] Church, Kenneth and Patrick Hanks. 1989. Word association norms, mutual information and lexicography. In ACL Proceedings, 27th Annual Meeting, pages 76–83, Vancouver.

[Cutting et al.1992] Cutting, Doug, J Kupiec, J Pederson, and P Sibun. 1992. A practical part-of-speech tagger. In Proc. Third Conf. on Applied Natural Language Processing, pages 133–140, Trento, Italy. Association of Computational Linguistics.
[Day et al.1997] Day, David, John Aberdeen, Lynette Hirschman, Robyn Kozierok, Patricia Robinson, and Marc Vilain. 1997. Mixed initiative development of language processing systems. In Proc. Fifth Conference on Applied Natural Language Processing, pages 348–355, Washington DC, April. ACL.

[Evans et al.1996] Evans, R., R. Gaizauskas, L.J. Cahill, J. Walker, J. Richardson, and A Dixon. 1996. Poetic: A system for gathering and disseminating traffic information. Natural language Engineering, 1(4):1–25.

[Gaizauskas, Cahill, and Evans1994] Gaizauskas, Robert, Lynne J. Cahill, and Roger Evans. 1994. Sussex University: description of the Sussex system used for MUC-5. In Proc. Fifth Message Understanding Conference (MUC-5), pages 321–335, San Francisco. Morgan Kaufmann.

[Gaizauskas et al.1996] Gaizauskas, Robert, Kevin Humphreys, Takahiro Wakao, Hamish Cunningham, and Yorick Wilks. 1996. LaSIE – Description of the Sheffield system used for MUC-6. In Proc. Sixth Message Understanding Conference (MUC-5), San Francisco. Morgan Kaufmann.

[Gale, Church and Yarowsky1993] Gale, William A, Kenneth W. Church and David Yarowsky. 1993. A Method for disambiguating word senses in a large corpus. Computers and the Humanities, 26:415–459.

[Grefenstette1994] Grefenstette, Gregory. 1994. Explorations in Automatic thesaurus discovery. Kluwer, Dordrecht.

[Heid and Krüger1996] Heid, Ulrich and Katja Krüger. 1996. A multilingual lexicon based on frame semantics. In Lynne Cahill and Roger Evans, editors, Proc. AISB Workshop on Multilinguality in the Lexicon, pages 1–13, Brighton, England, April.

[Hindle1990] Hindle, Donald. 1990. Noun classification from predicate-argument structures. In ACL Proceedings, 28th Annual Meeting, pages 268–275, Pittsburgh.

[Hindle and Rooth1991] Hindle, Donald and Mats Rooth. 1991. Structural ambiguity and lexical relations. In Proc. 29th ACL.

[Ide and Veronis1993] Ide, Nancy M. and Jean Veronis. 1993. Extracting knowledge bases from machine-readable dictionaries : Have we wasted our time? In KB&KS Workshop, pages 257–266, Tokyo.

[LDOCE1978] LDOCE, 1978. Longman Dictionary of Contemporary English. Edited by Paul Proctor. Harlow.

[LDOCE1987] LDOCE, 1987. Longman Dictionary of Contemporary English, New Edition. Edited by Della Summers. Harlow.

[McMahon and Smith1996] McMahon, John G. and Francis J. Smith. 1996. Improving statistical language model performance with automatically generated word hierarchies. Computational Linguistics, 22(2):217–248.
[Mikheev and Finch1997] Mikheev, Andrei and Steven Finch. 1997. A workbench for finding structure in texts. In Proc. Fifth Conference on Applied Natural Language Processing, pages 372–379, Washington DC, April. ACL.

[Miller1990] Miller, George. 1990. Wordnet: An on-line lexical database. International Journal of Lexicography (special issue), 3(4):235–312.

[Ng and Lee1996] Ng, Hwee Tou and Hian Beng Lee. 1996. Integrating multiple knowledge sources to disambiguate word sense: An exemplar-based approach. In ACL Proceedings, June.

[Nirenburg et al.1996] Nirenburg, Sergei, Stephen Beale, Kavi Mahesh, Boyan Onyshkevych, Victor Raskin, Evelyne Viegas, Yorick Wilks, and Remi Zajac. 1996. Lexicons in the MicroKosmos project. In Lynne Cahill and Roger Evans, editors, Proc. AISB Workshop on Multilinguality in the Lexicon, Brighton, England, April.

[Nunberg1978] Nunberg, Geoffrey. 1978. The Pragmatics of Reference. University of Indiana Linguistics Club, Bloomington, Indiana.

[Resnik1993] Resnik, Philip. 1993. Selection and Information: A Class-Based Approach to Lexical Relationships. Ph.D. thesis, University of Pennsylvania, December.

[Richardson1997] Richardson, Steve. 1997. Microsoft natural language understanding system and grammar checker. In Fifth Conference on Applied NLP: Descriptions of System Demonstrations.

[Schulze and Christ1994] Schulze, Bruno and Oliver Christ, 1994. The IMS Corpus Workbench. Institut für maschinelle Sprachverarbeitung, Universität Stuttgart.

[Wilks, Slator, and Guthrie1996] Wilks, Yorick, Brian M. Slator, and Louise Guthrie. 1996. Electric words: dictionaries, computers and meanings. MIT Press, Cambridge, Mass.

[Yarowsky1992] Yarowsky, David. 1992. Word-sense disambiguation using statistical models of roget’s categories trained on large corpora. In COLING 92, Nantes.

[Yarowsky1995] Yarowsky, David. 1995. Unsupervised word sense disambiguation rivalling supervised methods. In ACL 95, pages 189–196, MIT.