Can we decide whether QCD is confining or not at high temperature?

L. Ya. Glozman

Institute of Physics, University of Graz, A–8010 Graz, Austria

Received: date / Revised version: date

Abstract At high temperature measurements of the Polyakov loop suggest a deconfinement transition to the (strongly interacting) quark-gluon plasma. At the same time at the infinitely large temperature the four-dimensional QCD is reduced to the three-dimensional QCD that is confining. The Polyakov loop and related Z_3 symmetry are strict order parameters only for infinitely heavy quarks. In such a situation the $SU(2)_{CS}$ and $SU(4)$ symmetries of confinement in the light quark sector could be helpful to distinguish between the confining and deconfining phase in a regime where $SU(2)_L \times SU(2)_R$ and $U(1)_A$ symmetries are manifest. In order to reveal a presence or absence of these symmetries one needs to measure and compare correlation functions related by these symmetry transformations.

PACS. 1 1.10.Wx,12.38.Aw,12.38.Gc,11.30.Rd

1 Introduction

In spite of big efforts, both experimental and theoretical, to reveal properties of QCD at high temperature, the issue about microscopical structure of the matter is still open. Experimentally a transition to the (strongly interacting) “quark-gluon plasma” is assumed, given observation of some specific properties of the matter at high temperature in heavy ion collisions. What is reliably established on the lattice - is a crossover to the chirally symmetric regime. It has recently been demonstrated by the JLQCD collaboration that at $T > T_c$ not only $SU(2)_L \times SU(2)_R$ but also a $U(1)_A$ symmetry is restored [1].

Situation with confinement is by far not clear, however. On the one hand, lattice simulations of the Polyakov loop [2] suggest a transition to the deconfinement regime approximately at the same temperatures like chiral restoration, see for a review Ref. [3]. On the other hand, the Polyakov loop and related Z_3 symmetry can be considered as order parameters for confinement only for infinitely heavy quarks. At the same time it is known that at the infinitely high temperature QCD becomes effectively a three-dimensional theory which is known to be confining [4].

In this short note we suggest that $SU(2)_{CS}$ and $SU(4)$ symmetries of confinement in the light quark sector [5] could serve as a confinement-deconfinement order parameter in a regime where chiral $SU(2)_L \times SU(2)_R$ and $U(1)_A$ symmetries are manifest. Then, through a study of the correlation functions that are connected by the $SU(2)_{CS}$ and $SU(4)$ transformations and not linked by the $SU(2)_L \times SU(2)_R$ and $U(1)_A$ symmetries one could judge about existence or nonexistence of the $SU(2)_{CS}$ and $SU(4)$ symmetries at high temperature.

2 $SU(2)_{CS}$ and $SU(4)$ symmetries of confinement

Consider the QCD Hamiltonian in Coulomb gauge [10]:

$$H_{QCD} = H_E + H_B + \int d^3x \bar{\psi}(x)[-i\alpha \cdot \nabla + \beta m]\psi(x) + H_T + H_C, \quad (1)$$

where the transverse (magnetic) and Coulombic interactions are:

$$H_T = -g \int d^3x \bar{\psi}(x) \alpha \cdot t^a A^a(x) \psi(x), \quad (2)$$

$$H_C = \frac{g^2}{2} \int d^3x d^3y J^{-1} \rho^a(x) F^{ab}(x,y) J \rho^b(y), \quad (3)$$

with J being Faddeev-Popov determinant, $\rho^a(x)$ is a color-charge density and $F^{ab}(x,y)$ is a confining Coulombic kernel.
The fermionic and transverse parts of the Hamiltonian have the SU(2)\(_L\times\)SU(2)\(_R\) and U(1)\(_A\) symmetries. A symmetry of the confining Coulombic part is higher, however. It is not only invariant under the SU(2)\(_L\times\)SU(2)\(_R\) and U(1)\(_A\) transformations, like the fermionic and magnetic parts, but is also a singlet with respect to SU(2)\(_{CS}\) chiral spin rotations as well as SU(4) transformations [11].

The chiral spin SU(2)\(_{CS}\) transformations are defined as rotations of the fundamental vectors

\[U = (u_L, u_R)^T \quad D = (d_L, d_R)^T \]

in an imaginary chiral spin space:

\[U \rightarrow U' = e^{i\frac{\Sigma}{2}} U, \quad D \rightarrow D' = e^{i\frac{\Sigma}{2}} D, \]

where \(\Sigma \) are 4 × 4 matrices

\[\Sigma = \{ \gamma^0, i\gamma^5\gamma^0, -\gamma^5 \} \],

that satisfy the SU(2) algebra:

\[[\Sigma^i, \Sigma^j] = 2i\epsilon^{ijk} \Sigma^k. \]

Upon rotations in the chiral spin space the left- and right-handed components of the quark fields get mixed.

A group that contains at the same time SU(2)\(_L\) × SU(2)\(_R\) and SU(2)\(_{CS}\) ⊃ U(1)\(_A\) is SU(4) with the fundamental vector

\[\Psi = (u_L, u_R, d_L, d_R)^T \]

and a set of generators

\[\{(\tau^a \otimes \mathbb{1}_D), (\mathbb{1}_F \otimes \Sigma^i), (\tau^a \otimes \Sigma^i)\}. \]

3 What symmetries can we expect at high temperatures?

In the plasma (deconfining) regime one expects a priori that the system has the SU(2)\(_L\) × SU(2)\(_R\) (or SU(2) \times SU(2) \times U(1)\(_A\)) symmetries of the QCD Lagrangian. One views the deconfined plasma as a system of quarks and gluons that freely propagate through the matter. What is generic for plasma is a Debye screening of the electric gluons that freely propagate through the matter. What we would imply absence of SU(2)\(_{CS}\) and SU(4) symmetries. At the same time, their inequility would imply absence of SU(2)\(_{CS}\) and SU(4) symmetries.

In the baryon sector convenient operators could e.g. be

\[O_{N \pm} = \epsilon^{abc}_5 u^a u^b u^c [u^T C\gamma_5 d^c] \]

and

\[O_{N \pm} = i\epsilon^{abc}_5 u^a u^b u^c [u^T C\gamma_5\gamma_0 d^c], \]

that belong to distinct representations of SU(2)\(_L\)×SU(2)\(_R\) and U(1)\(_A\) groups and at the same time are members of the same irreducible representations of SU(2)\(_{CS}\) and of SU(4).

Partial support from the Austrian Science Fund (FWF) through grant P26627-N27 is acknowledged.

References

1. A. Tomiya, G. Cossu, H. Fukaya, S. Hashimoto and J. Noaki, PoS LATTICE 2014, 211 (2015) [arXiv:1412.7306 [hep-lat]].
2. A. M. Polyakov, Phys. Lett. B 59 82 (1975).
3. K. Kanaya, PoS LATTICE 2010, 012 (2010) [arXiv:1012.4247 [hep-lat]].
4. T. Appelquist and R. D. Pisarski, Phys. Rev. D 23 2305 (1981).
5. L. Y. Glozman, Eur. Phys. J. A 51, 27 (2015).
6. M. Denissenya, L. Y. Glozman and C. B. Lang, Phys. Rev. D 89, 077502 (2014).
7. M. Denissenya, L. Y. Glozman and C. B. Lang, Phys. Rev. D 91, 034505 (2015).
8. M. Denissenya, L. Y. Glozman and M. Pak, Phys. Rev. D 91, 114512 (2015).
9. M. Denissenya, L. Y. Glozman and M. Pak, arXiv:1508.01413 [hep-lat].
10. N. H. Christ and T. D. Lee, Phys. Rev. D 22, 939 (1980).
11. L. Y. Glozman and M. Pak, Phys. Rev. D 92, 016001 (2015).