Quantum Linear Gravity in de Sitter Universe
II: On Bunch-Davies vacuum state

M.V. Takook1,2 and S. Rouhani2,†

1Department of Physics, Razi University, Kermanshah, Iran
2Department of Physics, Science and Research branch, Islamic Azad University, Tehran, Iran

(Dated: February 18, 2015)

In de Sitter ambient space formalism, the linear gravity can be written in terms of a minimally coupled scalar field and a polarization tensor. In this formalism, the minimally coupled massless scalar field can be quantized on Bunch-Davies vacuum state, that preserves the de Sitter invariant, the analyticity and removes the infrared divergence. The de Sitter quantum linear gravity is then constructed on Bunch-Davies vacuum state, which is also covariant, analytic and free of any infrared divergence. We conclude that the unique Bunch-Davies vacuum states can be used for construction of quantum field theory in de Sitter universe.

\textit{Proposed PACS numbers:} 04.62.+v, 03.70+k, 11.10.Cd, 98.80.H

\section{I. INTRODUCTION}

One of the problems of quantum field theory in de Sitter space-time is absence of a unique vacuum state for all massless and massive quantum fields. The linear gravity1 and the minimally coupled massless scalar fields2 are constructed upon Gupta-Bleuler vacuum state, which successfully removes the infrared divergence and preserve de Sitter invariant. For other quantum fields, however, the Bunch-Davies vacuum appropriately presents a unique vacuum state for construction of the quantum field theory.

The ambient space formalism ($x \cdot x = \eta_{\alpha\beta} x^\alpha x^\beta = -H^{-2}$, $\alpha, \beta = 0, 1, 2, 3, 4$) allows us to construct a linear gravity utilizing a polarization tensor and a minimally coupled massless scalar field $\phi_m(x)$1:

$$K_{\alpha\beta}(x) = D_{\alpha\beta}(x, \partial, Z_1, Z_2)\phi_m(x),$$

where Z_1 and Z_2 are two constant 5-vectors. They can be fixed in the null curvature limit. These vectors could determine the polarization states. Usual quantization of ϕ_m, however, not only breaks the dS symmetry, its results in appearance of infrared divergence\textsuperscript{2,†}. Krein space quantization together with the application of Gupta-Bleuler vacuum state removes these anomalies for scalar field ϕ_m. Appearance of negative norm states2 and the non-analyticity of the two-point function, are the negative side effects of the above method. It should be noted that in Krein space quantization for scalar field, intrinsic coordinate system was used. Thus a dichotomy vividly manifest itself in this approach to linear gravity: polarization tensor $D_{\alpha\beta}$ is presented in ambient space formalism but the scalar field ϕ_m is reformulated in the intrinsic coordinate system1.

†Electronic address: shrouhani@yahoo.com

1Electronic address: takook@razi.ac.ir
The ambient space formalism permits us to write the scalar field \(\phi_m \) in terms of the massless conformally coupled scalar field \(\phi_c \) by using the following identity [5]:

\[
\phi_m(x) = \left[Z_3 \cdot \partial^\top + 2Z_3 \cdot x \right] \phi_c(x),
\]

where \(Z_3^5 \) is a constant five-vector and \(\partial_3^\top = \theta_{\alpha\beta}\partial^\beta = \partial_\alpha + H^2x_\alpha x \cdot \partial \). \(\theta_{\alpha\beta} = \eta_{\alpha\beta} + H^2x_\alpha x_\beta \) is the transverse projector. The quantum field operator \(\phi_c \) is constructed on the Bunch-Davies vacuum state in the ambient space formalism [3, 7]. Then the scalar field \(\phi_m \) and linear gravity \(K_{\alpha\beta} \) can be constructed on Bunch-Davies vacuum state. The following qualities show the advantage of the present method over the previous ones: (1) Only one formalism, namely ambient space formalism, is used for the quantization of the various spin fields. (2) A unique vacuum state, i.e. Bunch-Davies vacuum is utilized for quantum fields theory. (3) The infrared divergence is non-existence in the quantization of the scalar field \(\phi_m \) and linear quantum gravity \(K_{\alpha\beta} \). (4) The two-point functions are all analytic.

In the next section the quantization of scalar field \(\phi_c \) in ambient space formalism is recalled. The scalar field \(\phi_m \) and gravitational field \(K_{\alpha\beta} \) are then constructed upon the scalar field \(\phi_c \). Finally, the conclusions and an outlook for further investigation have been presented.

II. MASSLESS CONFORMALLY COUPLED SCALAR FIELD

The massless conformally coupled scalar field satisfies the following field equation [7, 8]:

\[
\left(Q_0^{(1)} - 2 \right) \phi_c(x) = 0,
\]

where \(Q_0^{(1)} = -H^{-2}\partial^\top \cdot \partial^\top \) is the Casimir operator of the de Sitter group. For simplicity from now on we take \(H = 1 \) unless circumstances necessitates otherwise. In ambient space formalism the two solutions of the above field equation can be written in terms of the dS plane waves \((x \cdot \xi)^{-1} \) and \((x \cdot \xi)^{-2} \), where \(\xi^\alpha \) lies in the positive cone \(C^+ = \{ \xi^\alpha \in \mathbb{R}^5 | \xi \cdot \xi = 0, \xi^0 > 0 \} \) [4, 7]. These solutions can not be well defined globally in de Sitter space-time. In order to obtain well defined solutions we must define them in the complex dS space-time. The complex dS space-time is defined by [4, 7]:

\[
M_H^{(c)} = \left\{ z = x + iy \in \mathbb{C}^5; \; \eta_{\alpha\beta}z^\alpha z^\beta = (z^0)^2 - \bar{z} \cdot z - (z^4)^2 = -H^{-2} \right\} = \left\{ (x, y) \in \mathbb{R}^5 \times \mathbb{R}^5; \; x^2 - y^2 = -H^{-2}, \; x \cdot y = 0 \right\}.
\]

(II.1)

Then the field operator can be well defined in the complex dS space-time by the analytic complex de Sitter plane waves [3]:

\[
\phi_c(z) = \sqrt{\alpha_0} \int_{S^3} d\mu(\xi) \left\{ a(\bar{\xi})(z \cdot \xi)^{-2} + a^\dagger(\xi)(z \cdot \xi)^{-1} \right\},
\]

(II.2)

where \(\xi^\alpha = (1, \bar{\xi}, \xi^4) \), \(\bar{\xi}^\alpha = (1, -\bar{\xi}, \xi^4) \) and the vacuum state is defined as [3]:

\[
a(\xi)|\Omega > = 0, \quad a^\dagger(\xi)|\Omega > = |\xi >, \quad < \xi|\xi >= \delta_{S^3}(\xi - \xi'), \quad \int_{S^3} d\mu(\xi)\delta_{S^3}(\xi - \xi') = 1.
\]

The notations are defined explicitly in [5]. The vacuum state \(|\Omega > \) in this case is exactly equivalent to the Bunch-Davies vacuum state [4, 7].
The analytic two-point function in terms of complex dS plane waves is \[6, 7\]:

\[W_c(z, z') = \langle \Omega|\phi(z)\phi(z')|\Omega \rangle = c_0 \int_{S^3} d\mu(\xi)(z \cdot \xi)^{-2}(z' \cdot \xi)^{-1}, \tag{II.3} \]

and \(c_0\) is obtain by using the local Hadamard condition. One can easily calculate \(\text{II.3}\) in terms of the generalized Legendre function \([7]\):

\[W_c(z, z') = \frac{-iH^2}{24\pi^2}P_{-1}(H^2z \cdot z') = \frac{H^2}{8\pi^2} \frac{-1}{1 - Z(z, z')} = \frac{H^2}{4\pi^2}(z - z')^{-2}, \tag{II.4} \]

where \(Z(z, z') = -H^2z \cdot z'\). The Wightman two-point function \(W_c(x, x')\) is the boundary value (in the sense of its interpretation as a distribution function, according to the theorem A.2 in \([7]\)) of the function \(W_c(z, z')\) which is analytic in the “tuboid” \(T_{12}\) of \(M_H^{(c)} \times M_H^{(c)}\) \([7]\). The tuboid above \(M_H^{(c)} \times M_H^{(c)}\) is defined by

\[T_{12} = \{(z, z') : z \in T^+, z' \in T^-\}, \tag{II.5} \]

where \(T^\pm\) are called forward and backward tubes of the complex dS space \(X_H^{(c)}\)

\[T^\pm = T^\pm \cap M_H^{(c)}. \tag{II.6} \]

\(T^\pm = \mathbb{R}^5 + iV^\pm\) is the forward and backward tubes in \(\mathbb{C}^5\). The domain \(V^\pm\) stem from the causal structure on \(M_H:\)

\[V^\pm = \left\{ x \in \mathbb{R}^5; \ x^0 \gtrless \sqrt{\parallel \vec{x} \parallel^2 + (x^4)^2} \right\}. \tag{II.7} \]

For more details, see \([7]\). The boundary value is defined for \(z = x + iy \in T^-\) and \(z' = x' + iy' \in T^+\) by

\[Z(z, z') = Z(x, x') - i\tau \epsilon(x^0, x'^0), \]

where \(y = (-\tau, 0, 0, 0, 0) \in V^-\), \(y' = (\tau, 0, 0, 0, 0) \in V^+\) and \(\tau \to 0\). Then, one obtains \([7, 9]\):

\[W_c(x, x') = \frac{-H^2}{8\pi^2} \lim_{\tau \to 0} \frac{1}{1 - Z(x, x') + i\tau \epsilon(x^0, x'^0)} \]

\[= \frac{-H^2}{8\pi^2} \left[P \frac{1}{1 - Z(x, x')} - i\pi \epsilon(x^0, x'^0)\delta(1 - Z(x, x')) \right], \tag{II.8} \]

where the symbol \(P\) is the principal part. \(Z(x, x')\) is the geodesic distance between two points \(x\) and \(x'\) on the dS hyperboloid:

\[Z(x, x') = -H^2x \cdot x' = 1 + \frac{H^2}{2}(x - x')^2, \]

and

\[\epsilon(x^0 - x'^0) = \begin{cases} 1 & x^0 > x'^0 \\ 0 & x^0 = x'^0 \\ -1 & x^0 < x'^0 \end{cases}. \tag{II.9} \]
III. MASSLESS MINIMALLY COUPLED SCALAR FIELD

The massless minimally coupled scalar field equation is:

\[Q_0^{(1)} \phi_m(x) = 0. \]

This field equation is invariant under the transformation

\[\phi'_m(x) = \phi_m(x) + \text{const}. \]

The solutions of the field equation in terms of de Sitter plane waves are \((x \cdot \xi)^{-3}\) and \((x \cdot \xi)^0\). The constant solution \(((x \cdot \xi)^0 = \text{constant})\), poses the zero mode problem [2, 4]. With just one solution \(((x \cdot \xi)^{-3})\), it is not possible to establish a proper covariant quantum field operator on the Hilbert space constructed on an unitary irreducible representation of the dS group [2–4]. Nevertheless, one can associate a massless minimally coupled scalar field with an indecomposable representation of the dS group [2]. We represent the field operator as follows. Using the followings identities

\[Q_0^{(1)} \partial_{\alpha}^{\top} \phi(x) - \partial_{\alpha}^{\top} Q_0^{(1)} \phi(x) = 2 \partial_{\alpha}^{\top} \phi(x) + 2x_{\alpha} Q_0^{(1)} \phi(x), \]
\[Q_0^{(1)} x_{\alpha} \phi(x) - x_{\alpha} Q_0^{(1)} \phi(x) = -2 \partial_{\alpha}^{\top} \phi(x) - 4x_{\alpha} \phi(x), \]

with \(\phi\) as an arbitrary scalar field, one can prove the existence of a magic relation between the minimally coupled and the conformally coupled scalar fields in the dS ambient space formalism [3]

\[\phi_m(x) = \left[Z \cdot \partial^{\top} + 2Z \cdot x \right] \phi_c(x). \tag{III.10} \]

\(Z^\alpha\) is a constant five-vector, that fixes the indecomposable representation of the dS group. The quantum field operator is defined by:

\[U(g) \Phi_m(z, Z) U(g)^{-1} = \Phi_m(\Lambda z, \Lambda Z), \]

where \(U(g)\) is an indecomposable representation of the dS group. Such indecomposable representation can be constructed as the product of two representations of the dS group: (1) the scalar complementary series representation related to the conformally coupled scalar field [2], and (2) a five-dimensional trivial representation with respect to \(Z^{(l)}_\alpha\) [10]. For a thorough investigation regarding the five existing polarization states \(l = 0, 1, 2, 3, 4\), the reader may refer to [10]. This subject will not be pursued here since the quantum field operator can be constructed from the conformally coupled scalar field and the identity (III.10).

Apart from the polarization five-vector \(Z^{(l)}_\alpha\), the quantum field operator in complex de Sitter space-time can be defined properly from the quantum field operator of conformally coupled scalar field:

\[\phi_m(z) = \sqrt{c_0} \int_{S^3} d\mu(\xi) \sum_{l=0}^{4} \left[Z^{(l)} \cdot \partial^\top + 2Z^{(l)} \cdot z \right] \left\{ a(\xi)(z \cdot \xi)^{-2} + a^\dagger(\xi)(z \cdot \xi)^{-1} \right\} \]
\[= \sqrt{c_0} \sum_{l=0}^{4} \int_{S^3} d\mu(\xi) \left\{ a(\xi) \left[-2(Z^{(l)} \cdot \xi^\top)(z \cdot \xi)^{-3} + 2(Z^{(l)} \cdot z)(z \cdot \xi)^{-2} \right] \right\} \]
which results in the following analytic two-point function:

\[\Phi_m (z, Z) = \sum_{l=0}^{\infty} \sum_{l'=0}^{\infty} \left[(Z^{(l)} \cdot \partial \tau + 2Z^{(l)} \cdot z) \right] W_{c} (z, z'). \]

The explicit form of this function depends on the representation \(U(g) \). As a simple case, one can choose \[(l) \]

\[\sum_{l=0}^{\infty} \sum_{l'=0}^{\infty} Z_{\alpha}^{(l)} Z_{\beta}^{(l')} = \delta_{\alpha\beta}, \quad Z^{(l)} \cdot Z^{(l')} = \delta^{l', l}, \]

which results in the following analytic two-point function:

\[W_{m} (z, z') = \left[(1 - Z) \right] W_{c} (z, z'), \]

with \(W_{c} \) being the analytic two-point function of conformally coupled scalar field \((1.4) \). By using the following relations

\[Z = -H^2 z \cdot z', \quad \frac{\partial}{\partial z_{\alpha}} = -H^2 z_{\alpha}' \frac{d}{dZ}, \quad \partial_{\alpha}^{\tau} = (z_{\alpha} Z - z_{\alpha}') \frac{d}{dZ}, \]

\[\partial^{\tau} \cdot \partial^{\tau} = \left(1 - Z^2 \right) \left[\frac{d}{dZ} + Z \frac{d^2}{dZ^2} \right], \quad z' \cdot \partial^{\tau} = \left(1 - Z^2 \right) \frac{d}{dZ}, \]

one can show that this two-point function also satisfies the minimally coupled scalar field equation for the variables \(z \) and \(z' \). In conclusion, the analytic two-point function \((3.13) \) is free of any infrared divergences. The two-point function in the real dS space is the boundary value of the analytic two-point function \(W_{m} (z, z') \) \((3.13) \):

\[\mathcal{W}_{m} (x, x') = \frac{-H^2}{8\pi^2} \left[\partial^{\tau} \cdot \partial^{\tau} + 2x \cdot \partial^{\tau} + 2\partial^{\tau} \cdot x' - 4Z (x, x') \right] \]

\[\times \left[\frac{1}{1 - Z (x, x')} - i\pi \epsilon (x^0 - x'^0) \delta (1 - Z (x, x')) \right]. \]

IV. LINEAR QUANTUM GRAVITY

In the previous paper, we show that the linear gravity in dS ambient space formalism can be written in terms of the massless minimally coupled scalar field \(\phi_{m} \) (for gauge fixing parameter \(c = \frac{2}{3} \) \[1 \])

\[\mathcal{K}_{\alpha\beta} (x) = \mathcal{D}_{\alpha\beta} (x, \partial, Z_1, Z_2) \phi_{m} (x, Z_3), \]

where

\[\mathcal{D} (x, \partial, Z_1, Z_2) = \left(-\frac{2}{3} \theta Z_1 \cdot + S Z_1^\top + \frac{1}{9} D_2 \right) \left[H^2 x Z_1 \cdot Z_1 \cdot \partial^{\tau} + \frac{2}{3} H^2 D_1 Z_1 \cdot \right] \]
\[
(Z_2^\top - \frac{1}{2}D_1 [Z_2 \cdot \partial^\top + 2H^2 x \cdot Z_2]) \].
\]

\text{(IV.2)}

The operator \(D_1 \) is \(D_1 = H^{-2} \partial^\top \) and the operator \(D_2 \) is the generalized gradient
\[
D_2 K = H^{-2} S(\partial - H^2 x)K,
\]
\text{(IV.3)}

where \(S \) is the symmetrizer operator and \(K \) is a vector field. \(Z_1, Z_2 \) and \(Z_3 \) are the constant five-vectors. They determine (or in other words "fix") the specific indecomposable representation of de Sitter group. The tensor field \(K_{\alpha\beta} \) transforms by an indecomposable representation of de Sitter group.

The linear gravitational field operator in complex de Sitter space-time is defined by:
\[
K_{\alpha\beta}(z) = \sqrt{c_0} \int_{S^3} d\mu(\xi) \sum_{l_i=0}^4 D_{\alpha\beta}(z, \partial, Z_1^{(l_1)}, Z_2^{(l_2)}) [Z_3^{(l_3)} \cdot \partial^\top + 2Z_3^{(l_3)} \cdot z] \]
\[
\times \left\{ a(\xi)(z \cdot \xi)^{-2} + a^\dagger(\xi)(z \cdot \xi)^{-1} \right\}. \]

For simplicity the conditions (III.12) are imposed on the constant five-vectors \(Z_1, Z_2 \) and \(Z_3 \).

Using the conditions (III.12), the bi-tensor two-point function can be written in the following form \((c = \frac{2}{5})\) [1]
\[
W_{\alpha\beta\alpha'\beta'}(x, x') = \Delta_{\alpha\beta\alpha'\beta'}(x, x') W_m(x, x'), \]
\text{(IV.4)}

where \(W_m \) is the two-point function for the massless minimally coupled scalar field (III.14) and

\[
\Delta(x, x') = -\frac{2}{3} S' \theta \theta' \cdot \left(\theta \cdot \theta' - \frac{1}{2} D_1 \left[2H^2 x \cdot \theta' + \theta' \cdot \partial^\top \right] \right)
\]
\[
+ SS' \theta \cdot \theta' \left(\theta \cdot \theta' - \frac{1}{2} D_1 \left[2H^2 x \cdot \theta' + \theta' \cdot \partial^\top \right] \right)
\]
\[
+ \frac{H^2}{9} S' D_2 \left(\frac{2}{3} D_1 \theta' + x \theta' \cdot -H^{-2} \theta' \cdot \partial^\top \right) \left(\theta \cdot \theta' - \frac{1}{2} D_1 \left[2H^2 x \cdot \theta' + \theta' \cdot \partial^\top \right] \right). \]
\text{(IV.5)}

This two-point function, defined completely on de Sitter ambient space formalism, is analytic, de Sitter covariant and free of any infrared divergence. The two-point function is also constructed on Bunch-Davies vacuum state.

V. CONCLUSION AND OUTLOOK

In a series of papers, we constructed the massless and massive fields with spin \(= 0, \frac{1}{2}, 1, \frac{3}{2}, 2 \) in de Sitter ambient space formalism (for review see [5]). It is shown that a unique Bunch-Davies vacuum state does exist for quantum fields in this space, which includes the massless minimally coupled scalar field and the linear quantum gravity. The infrared divergence is non-existent in either quantization of the scalar field \(\phi_m \) or the linear quantum gravity \(K_{\alpha\beta} \). The two-point functions are all analytic in this construction. Since the quantum field theory in our formalism is completely unitary and analytic, a unitary supergravity in de Sitter ambient space formalism seems quite plausible, which will be studied in a forthcoming paper.
Acknowledgements: We are grateful to S. Teymourpoor for her interest in this work.

[1] M.V. Takook, S. Rouhani, *Quantum Linear Gravity in de Sitter Universe I: On Gupta-Bleuler vacuum state*, arXiv:1208.5562v2.

[2] J.P. Gazeau, J. Renaud, M.V. Takook, Class. Quant. Grav. 17, 1415 (2000), *Gupta-Bleuler quantization for minimally coupled scalar field in de Sitter space*, gr-qc/9904023.

[3] B. Allen, Phys. Rev. D 32, 3136 (1985), *Vacuum states in de Sitter space*.

[4] B. Allen, A. Folacci, Phys. Rev. D 35, 3771 (1987), *Massless minimally coupled scalar field in de Sitter space*.

[5] M.V. Takook, *Quantum Field Theory in de Sitter Universe: Ambient Space Formalism*, arXiv:1403.1204v3.

[6] J. Bros, J.P. Gazeau, U. Moschella, Phys. Rev. Lett. 73, 1746 (1994), *Quantum Field Theory in the de Sitter Universe*.

[7] J. Bros, U. Moschella, Rev. Math. Phys. 8, 327 (1996), *Two-point functions and Quantum Field in the de Sitter Universe*, gr-qc/9511019.

[8] M.V. Takook, Thèse de l’université Paris VI, (1997), *Théorie quantique des champs pour des systèmes élémentaires “massifs” et de “masse nulle” sur l’espace-temps de de Sitter*.

[9] N.A. Chernikov, E. A. Tagirov, Ann. Inst. Henri Poincaré IX, 109 (1968), *Quantum theory of scalar field in de Sitter space-time*.

[10] J.P. Gazeau, M. Hans, J. Math. Phys. 29, 2533 (1988), *Integral-spin fields on (3 + 2)− de Sitter space*.