CASE REPORT

Surgical Treatment of Andersson Lesion of the Lumbar Spine with Minimal Invasion: A Case Report

Hong Zhou, MD, Xuefeng Li, PhD, Yijie Liu, MD, Heng Wang, MD, Weimin Jiang, PhD

Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China

Background: Andersson lesion (AL) refers to a destructive vertebral or disco-vertebral lesion of the spine in patients with ankylosing spondylitis (AS). Against the backdrop that the best surgical option for AL remains controversial, this work serves as the first case report of oblique lateral interbody fusion (OLIF) combined with posterior pedicle screw fixation to treat AL of the lumbar spine under minimal invasion.

Case presentation: In this case report, the patient involved was a female aged 37 diagnosed with AL (L3-L4). OLIF combined with pedicle screw fixation was carried out to achieve stabilization of the lumbar spine. It turned out that the patient experienced significant pain relief in her excellent post-operative recovery, with her post-surgical radiographs indicating good stability and bony fusion. The patient now remains disease-free with no low back pain or neurological deficit at the two-year follow-up.

Conclusion: OLIF combined with pedicle screw fixation thus has proven to be an ideal therapeutic option for treating AL of the lumbar spine.

Key words: Andersson lesion; Ankylosing spondylitis; Case report; Minimal invasion; Oblique lateral interbody fusion

Introduction

Andersson lesion (AL) refers to a destructive vertebral or disco-vertebral lesion of the spine in patients diagnosed with ankylosing spondylitis (AS). A wide variety of surgical treatments for AL have been proposed, including posterior fusion, anterior fusion, combined anterior, and posterior procedures. Anterior fusion has less surgical trauma but the fixation reliability might be insufficient. Posterior fusion can generate reliable fixation but might lead to major surgical trauma. Combined anterior and posterior fusion has reliable fixation but the overall operating time and the intraoperative blood loss increases, with higher probability for surgical complications. Debates over the best surgical option in patients with AL persist.

In this case report, the case analysis of a 37-year-old female patient with AL of the lumbar spine (L3-L4) treated by oblique lateral interbody fusion (OLIF) combined with pedicle screw fixation is presented, in conformity with CARE guidelines (provided as the supplementary file). To the best of our knowledge, no past relevant studies have been reported yet.

Case Report

The patient was a female aged 37 who presented with 17 years of back pain, who suffered from severe pain, and whose severity got aggravated by activity 1 year prior to being admitted to our hospital. Her medical records included no history of trauma but a 17-year history of AS, during which sulfasalazine and thalidomide were taken on a regular basis. Physical examination of the patient displayed conspicuous tenderness and percussion pain in her low back area. The preoperative visual analog scale (VAS) and Japanese Orthopaedic Association Scores (JOA) were 7 and 13, respectively.

Address for correspondence Heng Wang, MD, Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China. Email: wangheng899@126.com Weimin Jiang, MD, PhD, Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China. Email: weiminjiangspine@163.com

Received 2 February 2022; accepted 3 July 2022

Orthopaedic Surgery 2022;14:3129-3133 • DOI: 10.1111/os.13426

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
No sensory disturbance or motor weakness was identified in the lower extremities.

Test results of sedimentation rate, blood routine examination, C-reactive protein, procalcitonin, and electrolyte values of the patient were within the normal ranges, while the patient’s alkaline phosphate levels were higher than the normal range (108.9 U/L). Plain radiographs of the lumbar spine revealed a destructive lesion at the L3–L4 level presented with the erosion of the endplate as well as the abnormal radiodensity of the nearby vertebral body though without severe destruction. (Figure 1A,B). With reference to the CT sagittal reconstruction image, three-column fractures with irregular discovertebral osteolysis surrounded by reactive sclerosis were detected at the L3–L4 level (Figure 1C). The lesion demonstrated low signal intensity on T1-weighted images, high intensity on T2-weighted images and especially high intensity on short tau inversion recovery (STIR) sequences (Figure 1D) through MRI images.

To provide sufficient stability and enhance bony fusion with minimal invasion, OLIF combined with posterior pedicle screw implantation through the Wiltse paraspinal approach was performed (Figure 2).

Under Laryngeal mask airway general anesthesia, the patient was first placed in the lateral decubitus for the implementation of the oblique lateral approach. Then, after discectomy, the sclerotic area was abraded by curettes for bony fusion. A polyetheretherketone cage filled with allograft bone and recombinant human bone morphogenetic protein (BMP-2) got inserted into the L3–4 intervertebral space. Next, the patient was changed to a prone position, followed by pedicle screw fixation performed at L3–4 under O-arm navigation via the Wiltse paraspinal approach11,12. The operation lasted 5 h and 50 min, with a blood loss of 100 ml.
In this report, the pathological examination of the resections of the operative specimen has revealed that no inflammatory infiltrate is identified in calcified and degenerative intervertebral disc and fibrous tissues (Figure 2A), resembling the non-inflammatory type of AL as reported by Dihlmann.13

The patient recovered well after the operation and was thus encouraged to mobilize using a waist brace for 1 day after the operation. Upon 1 month after surgery, the VAS score of the patient decreased to 2 and the JOA score increased to 16. Postoperative radiographs of the lumbar spine taken at the 1- and 4-month (Figure 2B,C) follow-ups showed good implant position and no fixation failure. CT images of the lumbar spine taken at the 6-month follow-up displayed fine bony fusion without endplate collapse (Figure 2D). At the 2-year follow-up, the patient reported significant pain relief and returned to her daily routine, with the VAS score being reduced to 1 and the JOA score increased to 17. CT images of the lumbar spine taken at the 2-year follow-up also showed good bony fusion without endplate collapse (Figure 3).

Discussion

First proposed by Andersson14 in 1937, AL is a destructive vertebral or discovertebral lesion that occurs as a late sequela in AS.15 The prevalence of the lesion ranges from 1% to 28% in AS patients.1,16,17 Various possibilities etiology of AL have been described. Traumatic or inflammatory causes are the most common hypothesis.1,16,18,19 The common clinical symptoms in AL cases include mechanical pain, deformity, and occasionally neurological deficit.1,19

![Fig. 2](image-url) (A) Pathological examination of the operative specimen. Postoperative plain radiographs of the lumbar spine were taken at the 1-month follow-up (B) and 4-month (C) follow-up, respectively. (D-E) CT images of lumbar spine were taken at the 6-month follow-up.
instrumentation and fusion have deemed the principle of management in symptomatic AL in response to the failure of conservative treatment.\(^1\)\(^,\)\(^15\)

A large number of surgical techniques have been reported, such as instrumented and non-instrumented stabilization by anterior, posterior, or combined methods.\(^1\)\(^,\)\(^2\)\(^,\)\(^18\) However, the above-mentioned techniques all lead to major surgical trauma (Table 1). This case involved three columns of the spine at L3–L4.

According to the categorization by Cawley \(\text{et al.}\)\(^24\), type E is the most severe type with instability. To restore spinal stability and reduce the surgical invasion, OLIF combined with pedicle screw fixation was selected. In OLIF procedures, only a small incision is needed for access to the lumbar spine (L2–5) between the anterior vessels and psoas muscles without damaging the vessels and nerves.\(^25\) OLIF also enables the clearance of disc and insertion of a big cage, provides a large bony fusion area, and maintains the posterior column structure intact for the meantime. Extensive detachment of muscle from the spinal processes always incurs major bleeding because of the inflammation nature of AS.

Patients who have AL and also suffer from AS have limited feasibility of assessing stability by lumbar motion. Bony fusion and clinical symptoms (such as VAS and JOA score) could help evaluate lumbar stability, and this method is widely used in assessing lumbar stability in patients with AS.\(^26\)\(^,\)\(^27\) In this study, the patient reported significant pain relief and returned to her daily routine. At the 2-year follow-up, the VAS score was reduced to 1 and the JOA score increased to 17, respectively, from 7 and 13 before surgery. And postoperative plain radiographs and CT images showed good bony fusion without endplate collapse. These results indicate the patient recovered some lumbar stability.

Therefore, in this case, pedicle screw fixation was performed via the Wiltse paraspinal approach.\(^11\) Meanwhile, O-arm navigation was also used, as it’s difficult to identify pedicle screw insertion point in AS patients. The minimal surgical invasion resulted in good postoperative recovery and considerable pain relief in the patient.

Conclusion

This report presents a case of AL involving L3–L4, in which the patient underwent a successful treatment by OLIF combined with pedicle screw fixation in a minimally invasive manner. As a result, this study suggests that OLIF with pedicle screw fixation may be a promising new

Fig. 3 Postoperative CT images of lumbar spine were taken at the 2-year follow-up

Surgical methods	Treatment effect and the problems faced	Study
Anterior fusion	Has less surgical trauma, but the fixation reliability might insufficient	Wang \(\text{et al.}\)\(^6\)
Posterior fusion	Has reliable fixation, might lead to major surgical trauma	Shaik \(\text{et al.}\)\(^7\) and Ling \(\text{et al.}\)\(^8\)
Combined anterior and posterior fusion	Has reliable fixation but the overall operating time and the intra-operative blood loss increases, with higher probability for surgical complications	Rajoli \(\text{et al.}\)\(^9\)
PSO	Kyphotic deformity could benefit from a posterior wedge osteotomy, might lead to major surgical trauma	Liang \(\text{et al.}\)\(^20\), Zhang \(\text{et al.}\)\(^21\) and Wei \(\text{et al.}\)\(^22\)
Combined PSO and anterior fusion	Could decrease stress on the internal fixation, kyphotic deformity could benefit, might lead to major surgical trauma	Qian \(\text{et al.}\)\(^23\)

Table 1 Surgical methods and treatment effects of AL patients with AS

Abbreviations: AL, Andersson lesion; AS, ankylosing spondylitis; PSO, pedicle subtraction osteotomy.
option for patients diagnosed with AL in the lumbar spine.

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author Contributions

Hong Zhou: data curation; writing—original draft preparation; software. Xuefeng Li: visualization; investigation; validation. Yijie Liu: methodology, visualization. Heng Wang: writing—reviewing and editing; supervision. Weimin Jiang: conceptualization; methodology; software.

Conflict of Interest

The authors declare that there is no conflict of interest.

References

1. Fang D, Leong JC, Ho EK, Chan FL, Chow SP. Spinal pseudarthrosis in ankylosing spondylitis. Clinico-pathological correlation and the results of anterior spinal fusion. J Bone Joint Surg Br. 1988;70:443–7.
2. Shih TT, Chen PQ, Li YW, Hsu CY. Spinal fractures and pseudarthrosis complicating ankylosing spondylitis: MRI manifestation and clinical significance. J Comput Assist Tomogr. 2001;25:164–70.
3. Wang HF, Bi C, Chen ZQ. Research progress on Andersson lesion in ankylosing spondylitis. Zhonghua Wai Ke Za Zhi. 2017;55:798–800.
4. Qiao M, Qian BP, Qiu Y, Zhao SZ, Huang JC, Wang B. The contribution of pre-existing spinal pseudarthrosis to the surgical correction for thoracolumbar kyphosis secondary to ankylosing spondylitis. J Clin Neurosci. 2020;82:219–24.
5. Wu M, Yan F, Peng A, Lei J. Effects of Andersson lesion treatment in ankylosing spondylitis: a medical record review study focused on medium- to long-term outcomes. Int J Rheum Dis. 2020;23:753–62.
6. Wang G, Sun J, Jiang Z, Cui X. The surgical treatment of Andersson lesions associated with ankylosing spondylitis. Orthopedics. 2011;34:e302–6.
7. Shaik I, Bhojraj SY, Prasad G, Nagpal PB, Patel PM, Kashikar AD, et al. Management of Andersson Lesion in ankylosing spondylitis using the posterior-only approach: a case series of 18 patients. Asian Spine J. 2018;12:1017–24.
8. Ling T, Zhou B, Zhu C, Yang X, Song Y, Qiang Z, et al. One-stage posterior grade 4 osteotomy and bone graft fusion at pseudarthrosis for the treatment of kyphotic deformity with Andersson lesions in ankylosing spondylitis. Cine Neuroradiosurg. 2017;159:19–24.
9. Rajoji SR, Kannu RM, Ayer SN, Shetty AP, Rajasekaran S. Circumferential fusion through all-posterior approach in Andersson lesion. Asian Spine J. 2017;11:444–53.
10. Gagnier JJ, Kienle G, Altman DG, Moher D, Sox H, Riley D, et al. The CARE guidelines: consensus-based clinical case reporting guideline development. Headache. 2013;53:1541–7.
11. Guiray A, Sicoli A, Masanés NG, Clancio AM, Gagliardi M, Falavigna A. How to perform the Wiltse posterolateral approach: technical note. Surg Neuroi Int. 2018;9:38.
12. Lu Y, Miao Y, Zhu T, Wu Q, Shen X, Lu D, et al. Comparison of the Wiltse approach and percutaneous pedicle screw fixation under 0-arm navigation for the treatment of thoracolumbar fractures. Orthop Surg. 2021;13:1618–27.
13. Dihlmann W, Dilling G. Discovebral destructive lesions (so-called Andersson lesions) associated with ankylosing spondylitis. Skelet Radiol. 1978;3:10–6.
14. Andersson O. Röntgenbilden vid spondylarthritis ankylopoetica. Nord Med Tidskr. 1937;14:2000–2.
15. Dave BR, Ram H, Krishnan A, Andersson lesion: are we misdiagnosing it? A retrospective study of clinico-radiological features and outcome of short segment fixation. Eur Spine J. 2011;20:1503–9.
16. Chan FL, Ho EKW, Fang D, Hsu LCS, Leong JCY, Ngan H. Spinal Pseudarthrosis in ankylosing spondylitis. Acta Radiol. 1987;28:383–8.
17. Kabasakal Y, Garrett SL, Calin A. The epidemiology of spondylodiscitis in ankylosing spondylitis—a controlled study. Br J Rheumatol. 1996;35:680–3.
18. Bron JL, de Vries MK, Sniders MN, van der Horst-Bruinsma IE, van Royen BJ. Discovertebral (Andersson) lesions of the spine in ankylosing spondylitis revisited. Clin Rheumatol. 2009;28:883–92.
19. Chang KW, Tu MY, Huang HH, Chen HC, Chen YY, Lin CC. Posterior correction and fixation without anterior fusion for pseudarthrosis with kyphotic deformity in ankylosing spondylitis. Spine (Phila Pa 1976). 2006;31(13):E408–13.
20. Liang Y, Tang X, Zhao Y, Wang Z. Posterior wedge osteotomy and debridement for Andersson lesion with severe kyphosis in ankylosing spondylitis. J Orthop Surg Res. 2017;12:54.
21. Zhang X, Wang Y, Wu B, Hu W, Zhang Z, Wang Y. Treatment of Andersson lesion-complicating ankylosing spondylitis via transpedicular subtraction and disc resection osteotomy, a retrospective study. Eur Spine J. 2016;25:2587–95.
22. Wei HY, Dong C-K, Zhu Y-T, Zhou J, Yi P, Yang F, et al. A modified posterior wedge osteotomy with interbody fusion for the treatment of thoracolumbar kyphosis with Andersson lesions in ankylosing spondylitis: a 5-year follow-up study. Chin Med J. 2020;133:165–73.
23. Qian B, Qiu Y, Wang B, Sun X, Zhu ZZ, Jiang J, et al. Pedicle subtraction osteotomy through pseudarthrosis to correct thoracolumbar kyphotic deformity in advanced ankylosing spondylitis. Eur Spine J. 2012;21:711–8.
24. Cawley M, Chalmers TM, Kelgren JH, Ball J. Destructive lesions of vertebral bodies in ankylosing spondylitis. Ann Rheum Dis. 1972;31:345–58.
25. Silvestre C, Mac-Thiong J-M, Hilmi R, Roussouly P. Complications and morbidities of mini-open anterior retroperitoneal lumbar Interbody fusion: oblique lumbar Interbody fusion in 179 patients. Asian Spine J. 2012;6:89–97.
26. Kulkarni AG, Agarwal VK, Nandish Kumar K, Avinash K, Ankit P. Is long-segment fixation a rule in fractures associated with ankylosing spondylitis? Int J Spine Surg. 2019;13:215–20.
27. Sa V, Pa A. The unstable spine: a surgeon’s perspective. Semin Ultrasound CT. 2018;39(6):618–29. https://doi.org/10.1053/j.suit.2018.10.001