Abstract
We review the state of the art of clustering financial time series and the study of their correlations alongside other interaction networks. The aim of the review is to gather in one place the relevant material from different fields, e.g. machine learning, econophysics, statistical physics, econometrics, behavioral finance. We hope it will help researchers to use more effectively this alternative modeling of the financial time series. Decision makers may also be able to leverage its insights. Finally, we also hope that this review will form the basis of an open toolbox to study correlations, hierarchies, networks and clustering in financial markets.

Keywords: Financial time series, Cluster analysis, Correlation analysis, Complex networks, Econophysics, Alternative data

Disclaimer: Views and opinions expressed are those of the authors and do not necessarily represent official positions of their respective companies.

1. Introduction
Since the seminal paper of Mantegna in 1999 (cf. Appendix A.1 for work published way before Mantegna’s 1999 paper), many works have followed, and in many directions (e.g. statistical methodology, fundamental understanding of markets, risk, portfolio optimization, trading strategies, alphas), over the last two decades. We felt the need to track the developments and organize them in this present review. Feedback, additions and suggestions are welcomed.

2. The standard and widely adopted methodology
The methodology which is widely adopted in the literature stems from Mantegna’s seminal paper 11 (cited more than 1550 times as of 2019) and chapter 13 of the book 2 (cited more than 4400 times as of 2019) published in 1999. We describe it below:

- Let \(N \) be the number of assets.
- Let \(P_i(t) \) be the price at time \(t \) of asset \(i, 1 \leq i \leq N \).
- Let \(r_i(t) \) be the log-return at time \(t \) of asset \(i \):
 \[
 r_i(t) = \log P_i(t) - \log P_i(t - 1).
 \]

Email address: gautier.marti@polytechnique.edu (Gautier Marti)
For each pair i, j of assets, compute their correlation:

$$\rho_{ij} = \frac{\langle r_i r_j \rangle - \langle r_i \rangle \langle r_j \rangle}{\sqrt{\langle r_i^2 \rangle - \langle r_i \rangle^2} \langle r_j^2 \rangle - \langle r_j \rangle^2}}.$$

- Convert the correlation coefficients ρ_{ij} into distances:

$$d_{ij} = \sqrt{2(1 - \rho_{ij})}.$$

- From all the distances d_{ij}, compute a minimum spanning tree (MST) using, for example, Algorithm 1:

Algorithm 1 Kruskal’s algorithm

1: **procedure** BuildMST($\{d_{ij}\}_{1 \leq i,j \leq N}$)
2: ▷ Start with a fully disconnected graph $G = (V, E)$
3: $E \leftarrow \emptyset$
4: $V \leftarrow \{i\}_{1 \leq i \leq N}$
5: ▷ Try to add edges by increasing distances
6: for $(i, j) \in V^2$ ordered by increasing d_{ij} do
7: ▷ Verify that i and j are not already connected by a path
8: if not connected(i, j) then
9: ▷ Add the edge (i, j) to connect i and j
10: $E \leftarrow E \cup \{(i, j)\}$
11: ▷ G is the resulting MST
12: **return** $G = (V, E)$

Several other algorithms are available to build the MST [3].

The methodology described above builds a tree, i.e. a connected graph with $N - 1$ edges and no loop. This tree is unique as soon as all distances d_{ij} are different. The resulting MST also provides a unique indexed hierarchy [2] which corresponds to the one given by the dendrogram obtained using the Single Linkage Clustering Algorithm.

3. Methodological concerns and extensions

3.1. Concerns about the standard methodology

We list below the concerns that have been raised about the standard methodology during the last 20 years:

- The clusters obtained from the MST (or equivalently, the Single Linkage Clustering Algorithm (SLCA)) are known to be **unstable** (small perturbations of the input data may cause big differences in the resulting clusters) [4].
- The clustering instability may be partly due to the algorithm (MST/Single Linkage are known for the **chaining phenomenon** [5]).
- The clustering instability may be partly due to the correlation coefficient (**Pearson linear correlation**) defining the distance which is known for being **brittle to outliers**, and, more generally, not well suited to distributions other than the Gaussian ones [6].
- **Theoretical results** providing the statistical reliability of hierarchical trees and correlation-based networks are still **not available** [7].
- One might expect that the higher the correlation associated to a link in a correlation-based network is, the higher the **reliability** of this link is. In [8], authors show that this is **not always observed empirically**.
Changes affecting specific links (and clusters) during prominent crises are of difficult interpretation due to the high level of statistical uncertainty associated with the correlation estimation \[9\].

The standard method is somewhat arbitrary: A change in the method (e.g. using a different clustering algorithm or a different correlation coefficient) may yield a huge change in the clustering results \[10, 4\]. As a consequence, it implies huge variability in portfolio formation and perceived risk \[10\].

Notice that Benjamin F. King in his 1966 paper \[11\] (the first paper, to the best of our knowledge, about clustering stocks based on their historical returns; apparently unknown to Mantegna and his colleagues who reinvented a similar method) adds a final footnote which serves both as an advice and a warning for future work and applications:

One final comment on the method of analysis: this study has employed techniques that rely on finite variances and stationary processes when there is considerable doubt about the existence of these conditions. It is believed that a convincing argument has been made for acceptance of the hypothesis that a small number of factors, market and industry, are sufficient to explain the essential comovement of a large group of stock prices; it is possible, however, that more satisfactory results could be obtained by methods that are distribution free. Here we are thinking of a factor-analytic analogue to median regression and non-parametric analysis of variance, where the measure of distance is something other than expected squared deviation. In future research we would probably seriously consider investing some time in the exploration of distribution free methods.

It is only but recently that researchers have started to focus on these shortcomings as we will observe through the research contributions detailed in the next section.

3.2. Contributions for improving the methodology

To alleviate some of the shortcomings mentioned in the previous section, researchers have mainly proposed alternative algorithms and enhanced distances. Some refinements of the methodology as a whole, alongside efforts to tackle the concerns about statistical soundness, have been proposed.

3.2.1. On algorithms

Several alternative algorithms have been proposed to replace the minimum spanning tree and its corresponding clusters:

- **Average Linkage Minimum Spanning Tree (ALMST)** \[8\]: Authors introduce a spanning tree associated to the Average Linkage Clustering Algorithm (ALCA); It is designed to remedy the unwanted chaining phenomenon of MST/SLCA.
- **Planar Maximally Filtered Graph (PMFG)** \[12, 13\] which strictly contains the Minimum Spanning Tree (MST) but encodes a larger amount of information in its internal structure.
- **Directed Bubble Hierarchal Tree (DBHT)** \[14, 15\] which is designed to extract, without parameters, the deterministic clusters from the PMFG.
- **Triangulated Maximally Filtered Graph (TMFG)** \[16\]: Authors introduce another filtered graph more suitable for big datasets.
- Clustering using **Potts super-paramagnetic transitions** \[17\]: When anti-correlations occur, the model creates repulsion between the stocks which modify their clustering structure.
- Clustering using **maximum likelihood** \[18, 19\]: Authors define the likelihood of a clustering based on a simple 1-factor model, then devise parameter-free methods to find a clustering with high likelihood.
- Clustering using **Random Matrix Theory (RMT)** \[20\]: Eigenvalues help to determine the number of clusters, and eigenvectors their composition.
- **\[21\]** proposes network-based community detection methods whose null hypothesis is consistent with RMT results on cross-correlation matrices for financial time series data, unlike existing community detection algorithms.
- Clustering using the **p-median problem** \[22\]: With this construction, every cluster is a star, i.e. a tree with one central node.
3.2.2. On distances
At the heart of clustering algorithms is the fundamental notion of distance that can be defined upon a proper representation of data. It is thus an obvious direction to explore. We list below what has been proposed in the literature so far:

- Distances that try to quantify how one financial instrument provides information about another instrument:
 - Distance using Granger causality 23.
 - Distance using partial correlation 24.
 - Study of asynchronous, lead-lag relationships by using mutual information instead of Pearson’s correlation coefficient $^{25, 26}$.
 - The correlation matrix is normalized using the affinity transformation: the correlation between each pair of stocks is normalized according to the correlations of each of the two stocks with all other stocks 27.
- Distances that aim at including non-linear relationships in the analysis:
 - Distances using mutual information, mutual information rate, and other information-theoretic distances $^{28, 29, 30, 31, 32}$.
 - The Brownian distance 33.
 - Copula-based $^{34, 35, 36}$ and tail dependence 37 distances.
- Distances that aim at taking into account multivariate dependence:
 - Each stock is represented by a bivariate time series: its returns and traded volumes 38; a distance is then applied to an ad hoc transform of the two time series into a symbolic sequence.
 - Each stock is represented by a multivariate time series, for example the daily (high, low, open, close) 39; Authors use the Escoufier’s RV coefficient (a multivariate extension of the Pearson’s correlation coefficient).
- A distance taking into account both the correlation between returns and their distributions 6.
- Unlike recent studies which claim that the existence of nonlinear dependence between stock returns have effects on network characteristics, 40 documents that “most of the apparent nonlinearity is due to univariate non-Gaussianity. Further, strong non-stationarity in a few specific stocks may play a role. In particular, the sharp decrease of some stocks during the global financial crisis in 2008” gives rise to apparent negative tail dependence among stocks. When constructing unweighted stock networks, they suggest to use linear correlation “on marginally normalized data”, that is Spearman’s rank correlation. In fact, this is similar to the idea of splitting apart the dependence information from the distribution one as in 6, where Spearman’s rank correlation stems from using a Euclidean distance between the uniform margins of the underlying bivariate copula. Following previous studies, and unlike in 6, the distribution information is discarded when constructing the network.

3.2.3. On other methodological aspects
Besides research contributions on algorithms and distances, other methodological aspects have been pushed further.

- Reliability and statistical uncertainty of the methods:
 - A bootstrap approach is used to estimate the statistical reliability of both hierarchical trees $^{11, 12}$ and correlation-based networks $^{15, 33}$.
 - Consistency proof of clustering algorithms for recovering clusters defined by nested block correlation matrices; Study of empirical convergence rates 12.
 - Kullback-Leibler divergence is used to estimate the amount of filtered information between the sample correlation matrix and the filtered one 44.

– Cophenetic correlation is used between the original correlation distances and the hierarchical cluster representation [45].

– Several measures between successive (in time) clusters, dendrograms, networks are used to estimate stability of the methods, e.g. cophenetic correlation between dendrograms in [46], adjusted Rand index (ARI) between clusters in [4], mutual information (MI) of link co-occurrence between networks in [9].

– In [47], authors claim that clustering still cannot compete with “fundamental” industry classifications in terms of performance due to inherent out-of-sample instabilities, and thus propose to improve such given “fundamental” industry classification via further clustering large sub-industries at the most granular level.

• Preprocessing of the time series:
 – Subtract the market mode before performing a cluster or network analysis on the returns [48],
 – Encode both rank statistics and a distribution histogram of the returns into a representative vector [6],
 – Fit an ARMA(p,q)-FIEGARCH(1,d,1)-cDCC process (econometric preprocessing) to obtain dynamic correlations instead of the common approach of rolling window Pearson correlations [49],
 – Use a clustering of successive correlation matrices to infer a market state [45].

• Use of other types of networks: threshold networks [50], influence networks [51], partial-correlation networks [24, 52], Granger causality networks [23, 53], cointegration-based networks [54], bipartite networks [55], etc.

• Understanding of the drivers of synchronous correlations using the properties of the collective stock dynamics at shorter time scales [56] by using directed networks of lagged correlations [56, 57].

4. Dynamics of correlations, hierarchies, networks and clustering

Many of the empirical studies are based on the whole period available from the data. Some researchers have started to investigate the dynamics of the empirical correlations, and also the hierarchies, networks and clusters extracted from them (cf. [58] as one of the earliest work). This dynamic setting which has the potential to track changes of the market structure is more interesting for practitioners (e.g. risk managers, traders, regulatory agencies). This research is still in its infancy and we think its results are still hardly exploitable in practice. For instance, an interesting but difficult question is the following: Are changes in the correlation structure due to statistical noise and data artifacts or do they provide a real signal?

No predominant methodology has emerged for now but the naive one which consists in:

• Computing Pearson correlations on a rolling window of arbitrary length,

• then independently computing a network or a clustering based on the rolling empirical correlation matrix.

Some promising avenue of research may be the use of temporal networks and temporal centrality measures [59].

Besides the shortcomings of Pearson correlation detailed above, this approach is brittle due to its strong dependence a priori on:

• the sampling frequency (e.g., intraday, daily, weekly),

 – Concerning the sampling frequency, authors in [60] notice that at intraday frequency level some time is needed before the cluster organization emerges completely. According to the paper, “the changes observed in the structure of the MST and of the hierarchical tree suggest that the intrasector correlation decreases faster than intersector correlation between pairs of stocks” when sampling frequency increases. In [48, 4], authors observe that the clusters obtained using daily
returns are similar to the ones obtained with weekly timescales, and even to some extent to the ones using monthly returns. Most of the empirical studies focus on daily returns and only a few explore intraday data: [60, 61, 18, 62, 63, 65]. Working with higher frequencies (e.g. at the transaction or quote level) brings further difficulties such as coping with asynchronous data and the Epps effect [64].

• the length \(T \) of the rolling window,
 - What is the right length for the rolling window? No clear-cut answer has yet been proposed and, in most studies, its length is set somewhat arbitrarily. In [58], authors posit that “the choice of window width is a trade-off between too noisy and too smoothed data for small and large window widths, respectively” and that they “have explored a large scale of different values for both parameters, and the given values were found optimal”. What are the proper criteria for setting the window length? The choice can be driven by the goal (e.g. time investment horizon), by regulatory rules (e.g. computing Value-at-Risk using 1-year historical data), by the stability of clusters [4], by a statistical convergence rate [42], by economic regimes or by a trade-off of the preceding criteria.

• the number \(N \) of assets studied.
 - The number of considered assets has also a significant impact on the results: the ratio \(T/N \) drives the precision of correlation estimation and ultimately the clustering [65, 42, 66, 67].

This dependence makes it difficult to fully understand and analyze results. Once these ‘parameters’, i.e. the sampling frequency, \(T \), and \(N \), are chosen, one can study

• the dynamics of correlations:
 - In [27], authors are using a sliding window of \(T = 22 \) days to measure and monitor the eigenvalue entropy of the stock correlation matrices (estimated using daily returns, for \(N = 25 \) (Tel-Aviv stock market), and \(N = 455 \) (from S&P500)). They also propose a 3D visualization to monitor the configuration of stocks using a 3D PCA.
 - [68] notices three regime shifts during the period 1989-2011 by monitoring eigenvalues and eigenvectors of the empirical correlation matrices (estimated using quarterly recorded prices from the US housing market; \(T = 60, N = 51 \), the number of US states).

• the dynamics of the MST and other hierarchical trees:
 Using summary statistics:
 - The MST which evolves over time is monitored using summary statistics (also called topological features) [69] such as the normalized tree length [58], the mean occupation layer [58], the tree half-life [58], a survival ratio of the edges [70, 61, 49], node degree, strength [49], eigenvector, betweenness [71], closeness centrality [49], the agglomerative coefficient [72].
 - Using these statistics, [58] notices that:
 * the MST strongly shrinks during a stock market crisis,
 * the optimal Markowitz portfolio lies practically at all times on the outskirts of the tree,
 * the normalized tree length and the investment diversification potential are very strongly correlated.
 - And [49] notices that in the Asia-Pacific stock market:
 * the DST (dynamic alternative of the MST, built from dynamic correlations) shrinks over time,
 * Hong Kong is found to be the key financial market,
 * the DST has a significantly increased stability in the last few years,
 * the removal of the key player has two effects: there is no clear key market any longer and the stability of the DST significantly decreases.
In [73], authors observe that for the Japanese and Korean stock markets, there is a decrease of grouping by industry categories.

Using distances or similarity measures between successive dendrograms:

- Cophenetic correlation coefficient. In [72], authors propose a cophenetic analysis of public debt dendrograms in the European Union (\(N = 29\) countries) computed using Pearson correlation of quarterly debt-to-GDP ratios between 2000 Q1 and 2014 Q1 (\(T = 57\)) with a sliding window of size \(w = 15\).

• the dynamics of clusters:
 - The paper [22] finds that the cluster structures are more stable during crises (using the \(p\)-median problem, an alternative clustering methodology).
 - Authors in [61] notice that there is an “ecology of clusters”: They “can survive for finite periods of time during which time they may evolve in some identifiable way before eventually dissipating or dying”.
 - In [45], the authors track the merging, splitting, birth, death, contraction, and growth of the clusters in time.

5. Clusters, hierarchies, and networks based on alternative data

In this review, we cited a number of publications computing and studying clusters, hierarchies and networks based on time series of returns and their correlations, i.e. readily available and cheap data. Another avenue of research consists of using alternative data to estimate lead-lag or contemporaneous relations between companies.

5.1. Based on textual data

• In [74], authors suggest that media network based investors’ attention is a powerful predictor of market premium: In brief, the more frequent the stocks are co-mentioned by media news, the more non-shareholders attention is triggered, and the higher probability of overvaluation for connected stocks. They create an attention index, by aggregating across all the stocks in the market on monthly basis, and find that their index can forecast the market premium with a significantly negative coefficient, a 5.97% and a 5.80% monthly in-sample and out-of-sample \(R^2\) respectively. In addition, they show that the findings hold when controlling for alternative attention proxies, news-based predictors, fundamental information predictors and other standard factors. Their indicator consistently provides negative return forecasts for both time-series and cross-sectional portfolios. As a final test, they also provide evidence that their indicator captures investor attention by sorting cross-sectional portfolios on news co-occurrence frequencies and by checking the performance of average correlation of Google search and Bloomberg search frequencies.

• Authors in [75] propose to derive a company risk indicator from news-sentiment networks. For their research, they gathered from Seeking Alpha a set of articles, which contain a body of text and the author’s self-reported sentiment regarding the targeted entities in the articles. The sentiment in the articles, can be seen as a reflection of the author’s future expectations. They build co-occurrence networks from the parsed news articles on a quarterly basis, starting from Q1 2011 until the end of Q2 2016. These co-occurrences can cover partnerships, joint ventures, competitors, and suppliers, but can also cover other type of relationships, such as for example an author listing his or her opinion on current best stock picks or current worst stock picks. They show that the highest quarterly risk value outputted by their risk model is correlated to a higher chance of stock price decline up to 70 days after a quarterly risk measurement.

• Authors of [76,77] suggest to study the co-occurrence network of European banks mentioned in financial discussions to better understand systemic risk in the financial system. Unlike conventional approaches that estimate interdependence based either on non-publicly disclosed information (such as interbank...
asset and liability exposures) or publicly available co-movements in market data which only measure their dependence indirectly (co-movements may be driven by other factors) and may not be forward-looking (co-movements are estimated on past market data), their text-to-network process can be applied to publicly available data (such as discussions in financial forums) which may be forward-looking. However, authors document some of their methodology limits: “the loose definition of co-mention context, as an entire post, lessens reliability of relations extracted, while yielding more relations. Provided enough source data, the context could be narrowed down, to increase the likelihood that a relation pair is actually meaningfully related.” They find that centrality in the network can be explained by a set of standard variables including size (measures of total assets and total deposits).

- In [78], authors aim at predicting the probability that an edge is inserted or removed in the (correlation-based) financial network estimated on past returns. To do so, they use both the past past structure of this financial network and also a social network estimated from the correlations of Twitter sentiment time series provided by PsychSignal.com on the same set of stocks. They find that considering both networks considerably improves the predictability of future financial networks over a naive benchmark of persistent structure. They also find that the so-called social networks are harder to predict and much less persistent than the financial ones.

In the next three subsections, we list a couple of papers exploring interactions of different kinds: supply chain, payments, business partnerships, financial contracts, and mutual ownership.

5.2. Based on supply chain data

- In [79], authors explore “the interactions from the perspective of an economy-wide supply-chain network, and propose a list of network centrality measures to capture the relative importance of each company within this network.” Using FactSet Supply Chain Relationships database, the author estimates dynamic supplier networks and compute centrality measures for each company. From there, the author constructs a supplier central portfolio of stocks based on the top ten companies with the highest centrality in the network. The author finds that the stock performance of supplier central portfolios tends to predict the movements of the overall stock market.

- In [80], authors study the network structure implied by firms’ cash flows on the cross-section of expected returns. They find that firms which are more central have lower P/D ratios and higher expected returns.

5.3. Based on transaction data

- In [81], authors study a large proprietary dataset which consists of a network built from transactional data of the payment platform of a major European bank. These transactions link around 2.4 million Italian firms whose credit risk rating is known for a large fraction of them. Authors find that this network, like many financial networks, is sparse but made of a single component, scale free and verifies the small world property. The main contribution of the authors is to document significant correlations between local topological properties of a node (firm) and its risk. They also employ machine learning techniques to build classifiers for predicting the risk rating using as inputs network properties (e.g. degree, community) alone, i.e. no balance sheet information or any other features. Their classification method outperforms significantly its benchmark, i.e. random assignments. Another contribution is to show the existence of an homophily of risk, i.e. the tendency of firms with similar risk profile to be statistically more connected among themselves through payments. Risk is therefore not spread uniformly on the network, but rather concentrated in specific areas. This implies that an idiosyncratic shock on a single firm can propagate more or less quickly depending on the local network structure and the community the node belongs to.
5.4. Based on key people

- In [82], authors build a co-occurrence network of people mentioned in 21,578 Reuters news articles mostly focused on economics published in 1987. People are represented as vertices and two persons are connected if they co-occur in the same article. They observed that this network has small-world features with power-law degree distribution. The network is disconnected and the component size distribution has power-law characteristics. They compare the importance of these people back in 1987 in the news co-occurrence network to the importance they have as of 2007 proxied by their Wikipedia article. They find medium level Spearman’s rank correlations between these two measures.

5.5. Based on investors

- Traders and investors are socially connected and have access to comparable sources of information. [83] investigates social connections and information linkages, and demonstrates how they can predict patterns of trade correlation: trades generated by “neighbor” traders are positively correlated and trades generated by “distant” traders are negatively correlated.

- Using a dataset of all trades on the Istanbul Stock Exchange in 2005, [84] identifies traders with similar trading behavior as linked in an empirical investor network. They find that central investors earn higher returns and trade earlier than peripheral investors with respect to information events (e.g. earnings), consistent with the view that information diffusion among the investor population influences trading behavior and returns.

6. Financial applications

Though many of the academic studies focus on the MST or the clusters per se, some papers try to extend their use beyond the filtering of empirical correlation matrices. It has been proposed to leverage them for making financial policies, optimizing portfolios, computing alternative Value-at-Risk measures, residualizing expected returns, grouping and selecting quantitative trading alphas, etc.

6.1. Portfolio Design

- [58] finds that the Markowitz portfolio layer in the MST is higher than the mean layer at all times.
- As the stocks of the minimum risk portfolio are found on the outskirts of the tree [58], authors expect larger trees to have greater diversification potential.
- In [85, 58], authors compare the Markowitz portfolios from the filtered empirical correlation matrices using the clustering approach, the RMT approach and the shrinkage approach.
- [86, 46] propose to invest in different part of the MST depending on the estimated market conditions.
- Authors show that there is no inner-mathematical relationship between the minimum variance portfolio from Markowitz theory and the portfolios designed from the minimum spanning tree [89]. Empirical evidence of such relations found by previous studies is essentially a stylized fact of financial returns correlations and time series, not a general property of correlation matrices.
- It appears that a large number of stocks are unnecessary for building an index of market change [11].
- The paper [90] describes methods for index tracking and enhanced index tracking based on clusters of financial time series.
- [37] introduces a procedure to design portfolios which are diversified in their tail behavior by selecting only a single asset in each cluster.
- [91] investigates several network and hierarchy based active portfolio optimizations, and find their out-of-sample performance competitive with respect to conventional ones.
- [92] presents the performance of seven portfolios created using clustering analysis techniques to sort out assets into categories and then applying classical optimization inside every cluster to select best assets inside each asset category.
- [93, 94, 95, 96] leverage hierarchical clustering to build diversified portfolios that outperform out-of-sample by refining the risk parity and the equal risk contribution methods to take into account the hierarchical correlations of assets.
6.2. Trading Strategies

- In [45], they suggest that tracking the merging, splitting, birth, and death of the clusters in time could be the basis for pairs-like reversal trading strategies but with pairs corresponding to clusters.
- One can build a simple mean-reversion statistical arbitrage strategy whereby one assumes that stocks in a given industry move together, cross-sectionally demean stock returns within said industry, shorts stocks with positive residual returns and goes long stocks with negative residual returns [47].
- Earnings per share forecasts prepared on the basis of statistically grouped data (clusters) outperform forecasts made on data grouped on traditional industrial criteria as well as forecasts prepared by mechanical extrapolation techniques [97].
- [98] suggests that one may design a new set of Ricci network curvature based-strategies in statistical arbitrage (e.g., for mean-reverting portfolios).
- [99] finds the existence of significant relations between past changes in the market correlation structure and future changes in the market volatility.
- In [47], authors suggest the use of clustering to build statistical classification of quantitative trading alphas for which there is no analog of “fundamental” industry classifications such as the GICS, BICS, ICB, NAICS, SIC, etc.
- [100, 101] describe a behavioral bias: investors overly rely on the standard industry classifications (e.g., SIC, NAICS). Corporate managers can exploit this behavioral bias to steer their company towards a more favorable industry and therefore benefit from a lower cost of capital. The article [100] does not discuss this behavioral bias from the investor point of view, but it can pay to have a different (statistical) view of the standard industry classification to avoid such opportunistic window dressing. In [101], authors claim that long-short strategies exploiting mispricing due to the industry categorization bias generate statistically significant and economically sizable risk-adjusted excess returns.
- In [102], authors show that considering alternative industry classifications (for example, text-based ones) can enhance the returns of well-known quantitative strategies such as the industry momentum one which is driven, according to the paper, by inattention to less visible horizon peers.
- The same authors find in [103] that their text-based classification of peers significantly outperform traditional industry peers in explaining firm valuations and peer comovement in the stock market: Firms with peers whose products more closely match theirs have higher stock-market comovement; Firms that have more unique products relative to their peers have higher stock market valuations.
- In [79], the author investigates the supply chain network using several centrality measures. He finds that “the stock performance of supplier central portfolios tends to predict the movements of the overall stock market.” More generally, the author suggests that “shocks to the supply chain can generate ripple effects, which can show up potentially as lead-lag predictive relations in security returns, earning surprises, default probabilities, and/or distinctive term structure patterns in realized and option implied volatilities and credit default swaps.”
- Authors of [104] suggest using hierarchical clustering to estimate two parameters required by their “False Strategy” theorem, namely the number K of effectively independent tests, and the variance of the Sharpe ratios across the K effectively independent tests. This number K corresponds to the number of clusters of strategies found considering a distance based on the correlation of their returns. Using these estimates, they can conclude how likely a strategy is spurious.
- In [105], authors monitor the correlation network statistics of the constituents of a stock index, and find that an abrupt change in the network is predictive of significant falls in the price of this index. [106, 107] aim at predicting such abrupt network changes.

6.3. Risk Management

How much money a given portfolio can lose? in normal market conditions? in stressed market conditions? in the presence of systemic risk?

To answer these questions, the use of clusters and networks can help. As presented previously, the clustering hierarchy can be used to filter a correlation [56, 107] or a tail dependence [37] matrix, which helps to measure the risk in normal and stressed market conditions respectively. The systemic risk as defined
by the Bank for International Settlements is the risk that a failure of a participant to meet its contractual obligations may in turn cause other participants to default, with the chain reaction leading to broader financial difficulties. Networks seem thus a particularly relevant tool to study this kind of risk.

- **Study of systemic risk:**

 - In [108], authors assert that the diminution of regulation has removed barriers between sectors and regions allowing bank to diversify their risk, but it also increased the economic risk through increased interdependencies.

 - The paper [109] is focused on energy derivative markets, and their market integration which can be seen as a necessary condition for the propagation of price shocks. The MST is used to “identify the most probable and the shortest path for the transmission of price shocks”.

 - Authors in [110, 111] identify the set of indices possessing influence over the Asian region, namely the Hong Kong, Singapore and South Korea ones. Authors claim that the findings of their study can be utilized in effective systemic risk management and for the selection of an optimally-diversified portfolio, resilient to system-level shocks.

 - Authors in [112] focus on the US housing market. According to the paper, “dramatic increases in the systemic risk are usually accompanied by regime shifts, which provide a means of early detection of housing bubbles.” They find a sharp increase in housing market correlations over the past decade, indicating that systemic market risk has also greatly increased; They observe that prices diffuse in complex ways that do not require geographical clusters unlike worldwide stock markets which exhibit clear geographical clustering [9].

 - The paper [33] is focused on the shipping market. Authors explore the connections between the shipping market and the financial market: The shipping market can provide efficient warning before market downturn. Alike many economic systems which have been exhibiting an increase in the correlation between different market sectors, a factor that exacerbates the level of systemic risk, the three major world shipping markets, (i) the new ship market, (ii) the second-hand ship market, and (iii) the freight market, have experienced such an increase. Authors show it using the MST, Granger causality analysis, and Brownian distance on the prices of the real shipping market, and the stock prices of publicly-listed shipping companies.

 - [23] investigates the monthly returns of hedge funds, banks, broker/dealers, and insurance companies. They find that all four sectors have become highly interrelated over the past decade, likely increasing the level of systemic risk.

 - [98] shows that Ricci curvature may serve as an indicator of fragility in the context of financial networks.

 - [45] detects distinct correlation regimes between 1998 and 2013. These correlation regimes have been significantly different since the financial crisis of 2008 than they had been previously. Cluster tracking shows that asset classes are now less separated. Correlation networks help the authors to identify “risk-on” and “risk-off” assets.

 - In [112], authors study the clusters’ composition evolution, and their persistence. They observe that the clustering structure is quite stable in the early 2000s becoming gradually less persistent before the unfolding of the 2007-2008 crisis. The correlation structure eventually recovers persistence in the aftermath of the crisis, settling up a new phase which is distinct from the pre-crisis structure one, where the market structure is less related to industrial sector activity.

 - [113] finds that financial institutions which have, in the correlation networks, greater node strength, larger node betweenness centrality, larger node closeness centrality and larger node clustering coefficient tend to be associated with larger systemic risk contributions.

 - [114, 115] discuss the detection of early-warning signals of the 2008 crisis via the analysis of the properties of interbank networks.
In [116], authors highlight that the underlying financial network required to study systemic risk is only partially observable in general. They propose a method to reconstruct such a network, i.e. to build a set of (directed and weighted) dependencies among the constituents of a complex system.

- Risk management methods:
 - In [117], authors design clusters that tend to be comonotonic in their extreme low values: To avoid contagion in the portfolio during risky scenarios, an investor should diversify over these clusters.
 - As far as diversification is concerned, portfolio managers should probably focus on the most stable parts of the graph [109].
 - In [118], authors postulate the existence of a hierarchical structure of risks which can be deemed responsible for both stock multivariate dependency structure and univariate multifractal behaviour, and then propose a model that reproduces the empirical observations (entanglement of univariate multi-scaling and multivariate cross-correlation properties of financial time series). The interplay between multi-scaling and average cross-correlation is confirmed in [119].
 - Industries (e.g. clusters as statistical industry classification) can be used as risk factors in multifactor risk models [47].
 - Clusters (statistical industry classification) can be an alternative to sometimes unavailable “fundamental” industry classifications (e.g. in emerging or small markets) [47].
 - In [120], authors apply the TMFG for building sparse forecasting models and for financial applications such as stress-testing and risk allocation.
 - [81] predicts credit risk based on local properties of the network of payments between firms.

We found that the risk literature using correlation networks and clusters consists essentially in descriptive studies. For now, there are only too few propositions in the academic literature to build effective network-based or cluster-based risk systems.

6.4. Financial Policy Making

Clusters and networks can help designing financial policies. Several papers propose to leverage them to detect risky market environments, develop indicators that can predict forthcoming crisis or economic recovery [62], improve economic nowcasting [121], or find key markets and assets that drive a whole region, and on which stimulus can be applied effectively.

- Authors of [108] claim that “separation prevents failure propagation and connections increase risks of global crises” whereas the prevailing view in favor of deregulation is that banks, by investing in diverse sectors, would have greater stability. To support their argument, using financial networks, they study the aftermath of the Glass-Steagall Act (1933) repeal by Clinton administration in 1999. They find that erosion of the Glass–Steagall Act, and cross sector investments eliminated “firewalls” that could have prevented the housing sector decline from triggering a wider financial and economic crisis:

 Our analysis implies that the investment across economic sectors itself creates increased cross-linking of otherwise much more weakly coupled parts of the economy, causing dependencies that increase, rather than decrease, risk.

- According to [23], bank and insurance capital requirements and risk management practices based on VaR, which are intended to ensure the soundness of individual financial institutions, may amplify aggregate fluctuations if they are widely adopted:
For example, if the riskiness of assets held by one bank increases due to heightened market volatility, to meet its VaR requirements the bank will have to sell some of these risky assets. This liquidation may restore the bank’s financial soundness, but if all banks engage in such liquidations at the same time, a devastating positive feedback loop may be generated unintentionally. These endogenous feedback effects can have significant implications for the returns of financial institutions, including autocorrelation, increased correlation, changes in volatility, Granger causality, and, ultimately, increased systemic risk, as our empirical results seem to imply.

- In [109], authors find that the move towards integration started some time ago and there is probably no way to stop or refrain it. However, regulation authorities may act in order to prevent prices shocks from occurring, especially in places where their impact may be important.

7. **Practical Fruits of Clusters, Networks, and Hierarchies**

7.1. **Stylized facts**

Stylized facts can be described as follows [123]:

A set of [statistical] properties, common across many instruments, markets and time periods, [which] has been observed by independent studies.

From the papers we reviewed, we can list the following stylized facts:

- Elements belonging to some economic sectors are strongly connected within themselves, whereas others are much less connected.
- The Energy and Financial sectors are examples of strong connections whereas elements belonging to the Conglomerates, Consumer cyclical, Transportation, and Capital Goods sectors are weakly connected.
- General Electric is at the center of US stocks networks (for several centrality criteria) [1] [60] [58] [38].
- The Energy, Technology, and Basic Materials sectors are sectors of elements significantly connected among them but weakly interacting with stocks belonging to different economic sectors.
- The Financial sector is strongly connected within, but also to others.
- The assets of the classic Markowitz portfolio are always located on the outer leaves of the tree [58] [55] [88].
- The maximum eigenvalue of the correlation matrix, which carries most of the correlations, is very large during market crashes [124] (increased value of the mean correlation).
- The MST shrinks during market crashes [58] and contains a low number of clusters [72].
- The MST provides a taxonomy which is well compatible with the sector classification provided by an outside institution [2] [58].
- Scale free (i.e. the degree of vertices is power law distributed $f(n) \sim n^{-\alpha}$) structure of the MST [125] [126] [58] [127], but the scaling exponent depends on market period and window width [70].
- The MST obtained with the one-factor model is very different from the one obtained using real data [127]. This invalidates the Capital Asset Pricing Model which is based on the one-factor model $r_i(t) = \alpha_i + \beta_i r_M(t) + \epsilon_i(t)$.
- Stocks compose a hierarchical system progressively structuring as the sampling time horizon increases [128] [48].
- The correlation among market indices presents both a fast and a slow dynamics. The slow dynamics is a gradual growth associated with the development and consolidation of globalization. The fast dynamics is associated with events that originate in a specific part of the world and rapidly (in less than 3 months) affect the global system [9] [68].

1 reference to the book *Practical Fruits of Econophysics* [122]
• Removing the dynamics of the center of mass decreases the level of correlations, but also makes the cluster structure more evident [48].
• Scale invariance of correlation structure (by subtraction of the market mode) might have important implications for risk management, because it suggests that correlations on short time scales might be used as a proxy for correlations on longer time-horizons [48].
• The MST is star-like in low-volatility segments, and chain-like in high-volatility segments [62].
• Volatility shocks always start at the fringe and propagate inwards [62].
• The “post-subprime” regime correlation matrix shows markedly higher absolute correlations than the others [45].
• In [45], authors find far less asset class separation in the post-subprime period.
• One can distinguish three types of topological configurations for the companies: (i) important nodes, (ii) links and (iii) dangling ends [125].
• A node keeps the majority of its neighbours. The non-randomness of the stock market topology is thus a robust property [125].
• The largest eigenvector of the correlation matrix is strongly non-Gaussian, tending to uniform - suggesting that all companies participate. Authors find indeed that all components participate approximately equally to the largest eigenvector. This implies that every company is connected with every other company. In the stock market problem, this eigenvector conveys the fact that the whole market “moves” together and indicates the presence of correlations that pervade the entire system [20].
• The measure of the average length of shortest path in the PMFG shows a small world effect present in the networks at any time horizon [128].
• Among the 100 largest market capitalization stocks in the NYSE, the auto and lagged intraday correlations play a much more prominent role in 2011-2013 than in 2001-2003 [56].
• Authors in [56] find striking periodicities in the validated lagged correlations, characterized by surges in network connectivity at the end of the trading day.
• At short time scales, measured synchronous correlations among stock returns tend to be lower in magnitude [64], but lagged correlations among assets may become non-negligible [129, 57].
• Banks may be of more concern than hedge funds from the perspective of connectedness [23].
• A lack of distinct sector identity in emerging markets [130, 131]; Few largest eigenvalues deviate from the bulk of the spectrum predicted by RMT (far fewer than for the NYSE) [130, 132].
• Emergence of an internal structure comprising multiple groups of strongly coupled components is a signature of market development [130].

7.2. Moot points and controversies

Though most of the conclusions of empirical studies do agree, we find some claims that seem to be contradictory:

• [133] finds that eccentricity-based risk budgeting portfolios have improved return to risk ratios, hence better invest in centrality (of the minimum spanning tree). On the contrary, [58, 85, 88] conclude that it is better to invest in the peripheries (of the minimum spanning tree).
• Volatility shocks always start at the fringe and propagate inwards [62], but in [134], authors assert that the credit crisis spreads among affected stocks from more centralized to more outer ones, as spread the news about the extent of damage to the global economy.
• One might expect that the higher the correlation associated to a link in a correlation-based network is, the higher the reliability of the link is. The paper [8] shows that it is not always observed empirically. However, the Cramér–Rao lower bound (CRLB) for correlation [135] points out that the higher the correlation, the easier its estimation, i.e. less statistical uncertainty for high correlations.
• For filtering the correlation matrix, SLCA is more stable than ALCA according to [7], but ALCA is more stable and appropriate than SLCA according to [86, 45].
• During a crisis period, is there an increase or decrease of clusters stability? Most papers find a decrease (e.g. [119, 117]), but at least one [22] (using an alternative clustering methodology, the p-median problem) advocates for an increase.
Acknowledgments

Many thanks to the researchers which have contributed to improve this review (in chronological order): David Matesanz, Tiziana Di Matteo, Diego Garlaschelli, Damiano Brigo, Fabrizio Lillo, Quang Nguyen.
Appendix A. The Ecosystem of Correlations, Networks, and Hierarchies in Econophysics

Appendix A.1. A brief history

In 1966, Benjamin F. King asserts in [11] that “a desired result is the separation of the large set of individual series into a smaller set of clusters of security price changes that tend to move as homogeneous groups”. For him,

the most dramatic indication of industry comovement to be found, however, is provided by the following “quick and dirty” method of factor analysis. We shall refer to this technique as “cluster analysis” […]. One begins by transforming the residual covariance matrix, \(G_1 \), to a residual correlation matrix by pre- and post-multiplying by the square root of the inverse of the diagonal. Then this matrix is searched for the highest positive pairwise correlation coefficient. When the highest correlation is found, the two variables are added together to form a new, combined variable, reducing the total number of variables from 63 to 62. Next, the correlation matrix is recomputed in order to include the correlation between the combined variable and the remaining variables. (The correlations involving the individual variables that merged are blanked out; in sum, the order of the residual correlation matrix is reduced by one.) Then, moving on to Pass 2, the search for the maximum pairwise correlation is repeated, followed by all of the necessary combining and modification of the correlation matrix that has just been described. At each pass after the second it is possible for either single variable to join another variable, a single variable to join a group of other variables, or else, two groups to merge in order to form a larger group. One can see that at the end of 62 passes, all of the variables will have joined to form one group, unless the routine stops because of exhaustion of positive correlation coefficients.

Through this verbose description, one can recognize the description of the Single Linkage clustering algorithm put forward by Sneath in *The Application of Computers to Taxonomy*, 1957. However, it seems that the author was not aware of this technique as the following footnote from his paper suggests:

After hearing a presentation at the 1964 meeting of the Econometric Society by Walter Fisher, I believe that the computational procedure described in this section is very similar to, if not the same as, Fisher’s procedure for aggregating multivariate observations. A more detailed comparison awaits the publication of Fisher’s most recent work. It is interesting also to consider this technique as an example of “hierarchical grouping to optimize an objective function” (Ward).

Benjamin F. King ends his paper with a final footnote that acts both as a warning and some suggestions for future research:

One final comment on the method of analysis: this study has employed techniques that rely on finite variances and stationary processes when there is considerable doubt about the existence of these conditions. It is believed that a convincing argument has been made for acceptance of the hypothesis that a small number of factors, market and industry, are sufficient to explain the essential comovement of a large group of stock prices; it is possible, however, that more satisfactory results could be obtained by methods that are distribution free. Here we are thinking of a factor-analytic analogue to median regression and non-parametric analysis of variance, where the measure of distance is something other than expected squared deviation. In future research we would probably seriously consider investing some time in the exploration of distribution free methods.

Though this paper has received more than 1100 citations (as of 2019) essentially from journals of finance, accounting and business, it seems that it has not received much follow-up in the following years. A noticeable exception is the paper [46] which investigates the dendrogram and its temporal stability between weekly stock market index rates of return for the world’s 12 major international equity markets between 1963 and 1972. In [97], authors present an alternative methodology using clustering: Unlike many other ones that are based on the correlations between the log-returns of stock prices, their clustering is used to group firms based
on a set of variables which are deemed relevant for the problem under study. In their case, they want to forecast earnings. To do so, they propose to use measures of the type and size of sources of funds, measures of uses of funds, measures of profitability, measures of historical growth rates, and measures of liquidity.

Very few other papers have been published until the ‘seminal’ work of Mantegna in 1999. This work has determined the standard methodology followed by many studies in the following two decades.

Appendix A.2. Journals of interest

Articles are most often published in Physics journals; Some others in Finance and Economics journals. Most of the literature is available on arXiv https://arxiv.org/. Considering the bibliography in this review, the journals displayed in Figure A.1 amount to more than 200 articles (about 2/3 of the bibliography), and *Physica A: Statistical Mechanics and its Applications* alone amounts to nearly 1/3 out of the whole bibliography. The remaining 1/3 of the publications are scattered in disparate journals and venues: machine learning [41], pattern recognition [31] and data mining [3], statistics [136], systems and computations journals [137], business journals [11], economics and finance [139], computational finance [140], cognitive and socio-economic studies [141], natural and social sciences journals [143], planning and development policies [144].

Appendix A.3. Community detection of the authors

In Figure A.2, we display the co-author network built from the bibliographic record. The size of the nodes corresponds to the number of co-authors (degree in this graph). Mantegna has 26 co-authors, followed by Stanley with 25 co-authors. The size of the edges corresponds to the number of co-authored papers between two given authors. Notice the strong co-authorship triangle between Mantegna, Tumminello, Lillo: (Mantegna, Tumminello, 16), (Mantegna, Lillo, 16) and (Lillo, Tumminello, 9); And also (Aste, Di Matteo, 18). Then, we apply the minimum spanning tree methodology to this network. Since there are several connected components, it yields a minimum spanning forest of the authors. The resulting network is displayed in Figure A.3.

Appendix A.4. Asset classes

Assets considered in the empirical studies come from different regions and markets, often from the publication authors’ own geographical area. For example, Asian and Chinese researchers focus on Chinese stocks [145], [3], [146], [147], [148], [54], [149], [150], [51], [151]. Besides the Chinese markets, some other Asian markets are investigated: Japan [73], [152], [153], Korea [154], [155], [156], [63], [157], [158], Vietnam [131], [132], India [130], [159],
Malaysia [160, 161], Indonesia [162]. And also emerging markets such as Brazil [163, 164, 165, 166, 167, 168], Turkey [169, 170, 171], Poland [172, 173]. Yet, many studies focus on S&P500 (even from non-US authors) which can be considered as the reference dataset. Some European researchers have investigated particular European markets [174, 175, 176, 177, 178, 179, 180, 181], but many others simply use the S&P500 to illustrate their methodological concerns and developments. A study on all the European stocks, for example, is tricky because of the problem of correlation spillover due to the different closing hours and closing days of the different European market places [182]. It may be an explanation why these papers focus on a regional market at a time: UK companies [183, 26], Italian companies [176, 184, 185], German companies [186, 180, 187].

Several classes of assets have been investigated through the clustering and network methodology: market indices (especially stocks) [46, 188, 189, 9, 183, 190, 182], equities [191], currencies [61, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211], commodities [212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 165, 179], funds and ETFs [228, 23, 229, 230], credit default swaps [231, 6, 4, 232, 233].
References

[1] R. N. Mantegna, Hierarchical structure in financial markets, The European Physical Journal B Condensed Matter and Complex Systems 11 (1999) 193–197.

[2] R. N. Mantegna, H. E. Stanley, Introduction to econophysics: correlations and complexity in finance, Cambridge university press, 1999.

[3] F. Huang, P. Gao, Y. Wang, Comparison of Prim and Kruskal on Shanghai and Shenzhen 300 Index hierarchical structure tree, in: Web Information Systems and Mining, 2009. WISM 2009. International Conference on, IEEE, pp. 237–241.

[4] G. Marti, P. Very, P. Donnat, F. Nielsen, A proposal of a methodological framework with experimental guidelines to investigate clustering stability on financial time series, in: 14th IEEE International Conference on Machine Learning and Applications, ICMLA 2015, Miami, FL, USA, December 9-11, 2015, pp. 32–37.

[5] G. Carlsson, F. MÄŠmol, Characterization, stability and convergence of hierarchical clustering methods, Journal of machine learning research 11 (2010) 1425–1470.

[6] P. Donnat, G. Marti, P. Very, Toward a generic representation of random variables for machine learning, Pattern Recognition Letters 70 (2016) 24–31.

[7] M. Tumminello, F. Lillo, R. N. Mantegna, Correlation, hierarchies, and networks in financial markets, Journal of Economic Behavior & Organization 75 (2010) 40–58.

[8] M. Tumminello, C. Cordonello, F. Lillo, S. Micciche, R. N. Mantegna, Spanning trees and bootstrap reliability estimation in correlation-based networks, International Journal of Bifurcation and Chaos 17 (2007) 2319–2328.

[9] D.-M. Song, M. Tumminello, W.-X. Zhou, R. N. Mantegna, Evolution of worldwide stock markets, correlation structure, and correlation-based graphs, Physical Review E 84 (2011) 026108.

[10] V. Lemieux, P. S. Rahmat, R. Walker, B. Wong, M. Flood, Clustering techniques and their effect on portfolio formation and risk analysis, in: Proceedings of the International Workshop on Data Science for Macro-Modeling, ACM, pp. 1–6.

[11] B. F. King, Market and industry factors in stock price behavior, The Journal of Business 39 (1966) 139–190.

[12] T. Aste, T. Di Matteo, S. Hyde, Network filtering for big data: triangulated maximally filtered graph, Journal of Complex Networks 5 (2016) 218–246.

[13] G. Marti, P. Very, P. Donnat, F. Nielsen, A proposal of a methodological framework with experimental guidelines to investigate clustering stability on financial time series, in: Web Information Systems and Mining, 2009. WISM 2009. International Conference on, IEEE, pp. 237–241.

[14] E. Baitinger, J. Papenbrock, Interconnectedness risk and active portfolio management: The information-theoretic perspective (2017).

[15] M. Billio, M. Getmansky, A. W. Lo, L. Pelizzon, Econometric measures of connectedness and systemic risk in the finance and insurance sectors, Journal of Financial Economics 104 (2012) 535–559.

[16] W.-M. Song, T. Di Matteo, T. Aste, Hierarchical information clustering by means of topologically embedded graphs, PLoS One 7 (2012) e31929.

[17] M. Tumminello, T. Aste, T. Di Matteo, R. N. Mantegna, A tool for filtering information in complex systems, Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 10421–10426.

[18] L. Giada, M. Marsili, Data clustering and noise undressing of correlation matrices, Physical Review E 63 (2001) 2135–2146.

[19] L. Giada, M. Marsili, Algorithms of maximum likelihood data clustering with applications, Physical Review E 84 (2011) 026108.

[20] V. Plerou, P. Gopikrishnan, B. Rosenow, L. N. Amaral, H. E. Stanley, A random matrix theory approach to financial cross-correlations, Physica A: Statistical Mechanics and its Applications 287 (2000) 412–419.

[21] L. Giada, M. Marsili, Community detection for correlation matrices, Phys. Rev. X 5 (2015) 021006.

[22] A. Kocheturov, M. Battey, P. M. Pardalos, Dynamics of cluster structures in a financial market network, Physica A: Statistical Mechanics and its Applications 413 (2014) 523–533.

[23] M. Billio, M. Getmansky, A. W. Lo, L. Pelizzon, Econometric measures of connectedness and systemic risk in the finance and insurance sectors, Journal of Financial Economics 104 (2012) 535–559.

[24] D. Y. Kenett, M. Tumminello, A. Madi, G. Gur-Gershgor, R. N. Mantegna, E. Ben-Jacob, Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market, PLoS one 5 (2010) e15032.

[25] P. Fiedor, Information-theoretic approach to lead-lag effect on financial markets, The European Physical Journal B 87 (2014) 1–9.

[26] T. Aste, T. Di Matteo, S. Hyde, Complex networks on hyperbolic surfaces, Physica A: Statistical Mechanics and its Applications 346 (2005) 20–26.

[27] M. Tumminello, T. Aste, T. Di Matteo, R. N. Mantegna, A tool for filtering information in complex systems, Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 10421–10426.

[28] L. Giada, M. Marsili, Data clustering and noise undressing of correlation matrices, Physical Review E 63 (2001) 2135–2146.

[29] L. Giada, M. Marsili, Algorithms of maximum likelihood data clustering with applications, Physical Review E 84 (2011) 026108.

[30] V. Plerou, P. Gopikrishnan, B. Rosenow, L. N. Amaral, H. E. Stanley, A random matrix theory approach to financial cross-correlations, Physica A: Statistical Mechanics and its Applications 287 (2000) 412–419.

[31] L. Giada, M. Marsili, Community detection for correlation matrices, Phys. Rev. X 5 (2015) 021006.

[32] A. Kocheturov, M. Battey, P. M. Pardalos, Dynamics of cluster structures in a financial market network, Physica A: Statistical Mechanics and its Applications 413 (2014) 523–533.

[33] M. Billio, M. Getmansky, A. W. Lo, L. Pelizzon, Econometric measures of connectedness and systemic risk in the finance and insurance sectors, Journal of Financial Economics 104 (2012) 535–559.

[34] D. Y. Kenett, M. Tumminello, A. Madi, G. Gur-Gershgor, R. N. Mantegna, E. Ben-Jacob, Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market, PLoS one 5 (2010) e15032.
[35] F. Durante, R. Pappada, Cluster analysis of time series via kendall distribution, in: Strengthening Link Between Data Analysis and Soft Computing, Springer, 2015, pp. 209–216.

[36] E. C. Breuchmann, et al., Hierarchical Kendall copulas and the modeling of systemic and operational risk, Ph.D. thesis, Universitätsbibliothek der TU München, 2013.

[37] F. Durante, E. Foscolo, R. Pappada, H. Wang, A portfolio diversification strategy via tail dependence measures (2015).

[38] J. G. Bida, W. A. Rizzo, Multidimensional minimal spanning tree: The dow jones case, Physica A: Statistical Mechanics and its Applications 387 (2008) 5205–5210.

[39] G. Lee, M. A. Djanbaru, Multidimensional stock network analysis: An Encouver's RV coefficient approach, in: AIP Conference Proceedings, volume 1, pp. 555–555.

[40] D. Hartman, J. Hlinka, Nonlinearity in stock networks, arXiv preprint arXiv:1804.10264 (2018).

[41] M. Tumminello, F. Lillo, R. N. Mantegna, Hierarchically nested factor model from multivariate data, EPL (Europhysics Letters) 78 (2007) 30006.

[42] G. Marti, S. Andler, F. Nielsen, P. Donnat, Clustering financial time series: How long is enough?, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pp. 2583–2589.

[43] F. Muscio, T. Macr, S. Micciche, R. N. Mantegna, Bootstrap validation of links of a minimum spanning tree, arXiv preprint arXiv:1802.03395 (2018).

[44] M. Tumminello, F. Lillo, R. N. Mantegna, Kullback-leibler distance as a measure of the information filtered from multivariate data, Physical Review E 76 (2007) 031123.

[45] J. Papenbrock, P. Schwendner, Handling risk-on/risk-off dynamics with correlation regimes and correlation networks, Financial Markets and Portfolio Management 29 (2015) 125–147.

[46] D. B. Panton, V. L. Sezeg, O. M. Joy, Comovement of international equity markets: a taxonomic approach, Journal of Financial and Quantitative Analysis 11 (1976) 415–432.

[47] Z. Kakushadse, W. Yu, Statistical industry classification (2016).

[48] C. Bourges, M. Marsili, S. Miccich, Emergence of time-horizon invariant correlation structure in financial returns by subtraction of the market mode, Physical Review E 76 (2007) 026104.

[49] A. Seno, B. M. Tabak, Dynamic spanning trees in stock market networks: The case of Asia-Pacific, Physica A: Statistical Mechanics and its Applications 414 (2014) 387–402.

[50] J.-P. Onnela, K. Kaski, J. Kertesz, Clustering and information in correlation based financial networks, The European Physical Journal B-Condensed Matter and Complex Systems 38 (2004) 353–362.

[51] Y.-C. Gao, Y. Zeng, S.-M. Cai, Influence network in the Chinese stock market, Journal of Statistical Mechanics: Theory and Experiment 2015 (2015) P03017.

[52] D. Y. Kenett, T. Preis, G. Gur-Gershon, R. Ben-Jacob, Dependency network and node influence: application to the study of financial markets, International Journal of Bifurcation and Chaos 22 (2012) 1250181.

[53] T. Vroost, S. Lyceca, E. Baumohl, Grazer causality stock market networks: Temporal proximity and preferential attachment, Physica A: Statistical Mechanics and its Applications 427 (2015) 262–276.

[54] C. Tu, Cointegration-based financial networks study in chinese stock market, Physica A: Statistical Mechanics and its Applications 402 (2014) 245–254.

[55] M. Tumminello, S. Micciché, F. Lillo, J. Piilo, R. N. Mantegna, Statistically validated networks in bipartite complex systems, PloS one 6 (2011) e17994.

[56] C. Curme, M. Tumminello, R. N. Mantegna, H. E. Stanley, D. Y. Kenett, How lead-lag correlations affect the intraday pattern of collective stock dynamics, Office of Financial Research Working Paper (2015).

[57] C. Curme, M. Tumminello, R. N. Mantegna, H. E. Stanley, D. Y. Kenett, Emergence of statistically validated financial intraday lead-lag relationships, Quantitative Finance 15 (2015) 1375–1386.

[58] J.-P. Onnela, A. Chakrabarti, K. Kaski, J. Kertesz, A. Kanto, Dynamics of market correlations: Taxonomy and portfolio analysis, Physical Review E 68 (2003) 056110.

[59] L. Zhao, G.-J. Wang, M. Wang, W. Bao, W. Li, H. E. Stanley, Stock market as temporal network, arXiv preprint arXiv:1712.04863 (2017).

[60] G. Bonanno, F. Lillo, et al., High-frequency cross-correlation in a set of stocks, Quantitative Finance 1 (2001) 96–104.

[61] N. L. Johnson, M. McDonald, O. Salesman, W. Williams, S. Howison, What drives the FX tree? understanding currency dominance, dependence, and dynamics (keynote address), in: SPIR Third International Symposium on Fluctuations and Noise, International Society for Optics and Photonics, pp. 86–99.

[62] Y. Zhang, G. H. T. Lee, J. C. Wong, J. L. Kok, M. Pruzy, S. A. Cheong, Will the us economy recover in 2010? a minimal spanning tree study, Physica A: Statistical Mechanics and its Applications 390 (2011) 2050–2050.

[63] J. Lee, J. Yeon, W. Chang, Intraday volatility and network topological properties in the Korean stock market, Physica A: Statistical mechanics and its Applications 391 (2012) 1354–1366.

[64] T. W. Epps, Comovements in stock prices in the very short run, Journal of the American Statistical Association 74 (1979) 291–298.

[65] P. Borysov, J. Hannig, J. Marron, Asymptotics of hierarchical clustering for growing dimension, Journal of Multivariate Analysis 124 (2014) 465–479.

[66] J. Bun, R. Allez, J.-P. Bouchaud, M. Potters, Rotational invariant estimator for general noisy matrices, IEEE Transactions on Information Theory 62 (2016) 7475–7490.

[67] J. Bun, J.-P. Bouchaud, M. Potters, Cleaning large correlation matrices: tools from random matrix theory, Physics Reports 666 (2017) 1–109.

[68] H. Meng, W.-J. Xie, Z.-Q. Jiang, B. Podobnik, W.-X. Zhou, H. E. Stanley, Systemic risk and spatiotemporal dynamics of the US housing market, Scientific Reports 4 (2014) 3655.

22
[69] J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, Dynamic asset trees and black monday, Physica A: Statistical Mechanics and its Applications 324 (2003) 247–252.

[70] J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, Dynamic asset trees and portfolio analysis, The European Physical Journal B-Condensed Matter and Complex Systems 30 (2002) 285–288.

[71] Y. Tang, J. J. Xiong, Z.-Y. Jia, Y.-C. Zhang, Complexities in financial network topological dynamics: Modeling of emerging and developed stock markets, Complexity 2018 (2018).

[72] D. Matsasanz, G. J. Ortega, Sovereign public debt crisis in europe: a network analysis, Physica A: Statistical Mechanics and its Applications 436 (2015) 756–766.

[73] W.-S. Jiang, Q. Xiong, F. Wang, T. Kanojo, H.-T. Moon, H. E. Stanley, Group dynamics of the Japanese market, Physica A: Statistical Mechanics and its Applications 387 (2008) 537–542.

[74] L. Guo, L. Peng, Y. Tao, J. Tu, Media network based investors’ attention: A powerful predictor of market premium (2018).

[75] T. Forss, P. Sarlin, News-sentiment networks as a risk indicator, arXiv preprint arXiv:1706.05812 (2017).

[76] S. Rönnqvist, P. Sarlin, From text to bank interrelation maps, in: Computational Intelligence for Financial Engineering & Economics (CIFEr), 2014 IEEE Conference on, IEEE, pp. 48–54.

[77] S. Rönnqvist, P. Sarlin, Bank networks from text: interrelations, centrality and determinants, Quantitative Finance 15 (2015) 1619–1635.

[78] T. T. Souza, T. Aste, Predicting future stock market structure by combining social and financial network information, arXiv preprint arXiv:1812.01103 (2018).

[79] L. Wu, Centrality of the supply chain network (2015).

[80] A. Buraschi, P. Porchia, Dynamic networkes and asset pricing, in: AFA 2013 San Diego Meetings Paper.

[81] E. Letizia, F. Lillo, Corporate payments networks and credit risk rating (2018).

[82] A. Özgür, B. Cetin, H. Bingol, Co-occurrence network of reuters news, International Journal of Modern Physics C 19 (2008) 689–702.

[83] P. Colla, A. Mele, Information linkages and correlated trading, The Review of Financial Studies 23 (2009) 293–246.

[84] H. N. Osozoyev, J. Walden, M. D. Yavuz, R. Bildik, Investor networks in the stock market, The Review of Financial Studies 27 (2013) 1323–1366.

[85] F. Pozzi, T. Di Matteo, T. Aste, Spread of risk across financial markets: better to invest in the peripheries, Scientific reports 3 (2013).

[86] V. Tola, F. Lillo, M. Gallegati, R. N. Mantegna, Cluster analysis for portfolio optimization, Journal of Economic Dynamics and Control 32 (2008) 235–258.

[87] F. Ren, Y.-N. Lu, S.-P. Li, X.-F. Jiang, L.-X. Zhong, T. Qiu, Dynamic portfolio strategy using clustering approach, arXiv preprint arXiv:1608.03058 (2018).

[88] G. Peralta, A. Zareei, A network approach to portfolio selection, Journal of Empirical Finance (2016).

[89] A. Hüttner, J.-F. Mai, S. Mineo, Portfolio selection based on graphs: Does it align with markowitz-optimal portfolios?, Dependence Modeling (2018).

[90] C. Dose, S. Cincotti, Clustering of financial time series with application to index and enhanced index tracking portfolio, Physica A: Statistical Mechanics and its Applications 355 (2005) 145–151.

[91] E. Baitinger, J. Papenbrock, Interconnectedness risk and active portfolio management (2016).

[92] D. León, A. Aragón, J. Sandoval, G. Hernández, A. Arévalo, J. Niño, Clustering algorithms for risk-adjusted portfolio construction, Procedia Computer Science 108 (2017) 1334–1343.

[93] T. Raffinot, Hierarchical clustering based asset allocation (2016).

[94] T. Raffinot, The hierarchical equal risk contribution portfolio, Available at SSRN 3237548 (2018).

[95] M. Lopez de Prado, Building diversified portfolios that outperform out-of-sample (2016).

[96] M. L. de Prado, Advances in financial machine learning, John Wiley & Sons, 2018.

[97] E. J. Elton, M. J. Gruber, Improved forecasting through the design of homogeneous groups, The Journal of Business 44 (1971) 432–450.

[98] R. Sandhu, T. Georgiou, A. Tannenbaum, Market fragility, systemic risk, and Ricci curvature, arXiv preprint arXiv:1505.05182 (2015).

[99] N. Muinemi, T. Aste, T. Di Matteo, Interplay between past market correlation structure changes and future volatility outbursts, Scientific reports 6 (2016).

[100] H. Chen, L. Cohen, D. Lou, Industry window dressing, The Review of Financial Studies 29 (2016) 3354–3393.

[101] M. Lopez de Prado, M. J. Lewis, Detection of false investment strategies using unsupervised learning methods (2018).

[102] A. Cordoba, C. Castillejo, J. J. García-Machado, A. M. Lara, Anticipating abrupt changes in complex networks: Significant falls in the price of a stock index, in: Nonlinear Systems, Vol. 1, Springer, 2018, pp. 317–338.

[103] A. Spelta, Financial market predictability with tensor decomposition and links forecast, Applied network science 2 (2017) 7.

[104] M. Tumminello, R. Mantegna, F. Lillo, Shrinkage and spectral filtering of correlation matrices: A comparison via the Kullback-Leibler distance, Acta Physica Polonica. Series B 39 (2008) 4079–4088.
[144] J. G. Brida, S. London, L. Punzo, W. A. Risse, An alternative view of the convergence issue of growth empirics, Growth and change 42 (2011) 320–350.
[145] R. Zhuang, B. Hu, Z. Ye, Minimal spanning tree for Shanghai-Shenzhen 300 stock index, in: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).
[146] W.-Q. Huang, X.-T. Zhuang, S. Yao, A network analysis of the chinese stock market, Physica A: Statistical Mechanics and its Applications 388 (2009) 2956–2964.
[147] J. Zhang, Y. Chen, D. Zhai, Network analysis of shanghai sector in chinese stock market based on partial correlation, in: Information Management and Engineering (ICIME), 2010 The 2nd IEEE International Conference on, IEEE, pp. 321–324.
[148] C. Yang, Y. Shen, B. Xia, Evolution of Shanghai stock market based on maximal spanning trees, Modern Physics Letters B 27 (2013) 1350022.
[149] R. Yang, X. Li, T. Zhang, Analysis of linkage effects among industry sectors in China's stock market before and after the financial crisis, Physica A: Statistical Mechanics and its Applications 411 (2014) 12–20.
[150] B. K. Teh, Y. W. Goo, T. W. Lian, W. G. Ong, W. T. Chou, M. Dadomandan, S. A. Cheong, The chinese correction of february 2007: How financial hierarchies change in a market crash, Physica A: Statistical Mechanics and its Applications 424 (2015) 225–241.
[151] H. Qiao, Y. Xia, Y. Li, Can network linkage effects determine return? evidence from Chinese stock market, PloS one 11 (2016) e0156784.
[152] G. De Maio, Y. Fujisawa, M. Gallegati, B. Greenwald, J. E. Stiglitz, An analysis of the Japanese credit network, Evolutionary and Institutional Economics Review 7 (2011) 209–232.
[153] S. A. Cheong, R. P. Fornia, G. H. T. Lee, J. L. Kok, W. S. Yim, D. Y. Xu, Y. Zhang, et al., The Japanese economy in crisis: A time series segmentation study, Economic: The Open-Access, Open-Assessment E-Journal 6 (2012) 1–81.
[154] W.-S. Jung, O. Kwon, J.-S. Yang, H.-T. Moon, Effects of globalization in the Korean financial market, Journal of the Korean Physical Society 48 (2006) S135–S138.
[155] C. Eom, G. Oh, S. Kim, Topological properties of a minimal spanning tree in the Korean and the American stock markets, Journal of Korean Physical Society 51 (2007) 1432.
[156] C. Eom, O. Kwon, W.-S. Jung, S. Kim, The effect of a market factor on information flow between stocks using the minimal spanning tree, Physica A: Statistical Mechanics and its Applications 389 (2010) 1643–1652.
[157] Y.-J. Lee, G. Woo, Analysis of the stock market network for portfolio recommendation, The Journal of the Korea Contents Association 13 (2013) 48–58.
[158] A. Nobl, S. E. Maeng, G. G. Ha, J. W. Lee, Structural changes in the minimal spanning tree and the hierarchical network in the Korean stock market around the global financial crisis, Journal of the Korean Physical Society 66 (2015) 1153–1159.
[159] S. Sinha, R. K. Pan, Uncovering the internal structure of the Indian financial market: large cross-correlation behavior in the NSI, in: Econophysics of Markets and Business Networks, Springer, 2007, pp. 3–19.
[160] S. Sharif, M. A. Djuhari, A proposed centrality measure: The case of stocks traded at Bursa Malaysia, Modern Applied Science 6 (2012) 62.
[161] G. S. Lee, M. A. Djuhari, Stock networks analysis in Kuala Lumpur Stock Exchange, Malaysian Journal of Fundamental and Applied Sciences 8 (2014).
[162] G. S. Lee, M. A. Djuhari, Network topology of Indonesian stock market, in: Cloud Computing and Social Networking (ICCCSN), 2012 International Conference on, IEEE, pp. 1–4.
[163] D. O. Cajueiro, B. M. Tabak, The role of banks in the Brazilian interbank market: Does bank type matter?, Physica A: Statistical Mechanics and its Applications 387 (2008) 6825–6836.
[164] B. M. Tabak, D. O. Cajueiro, T. R. Serra, Topological properties of bank networks: the case of Brazil, International Journal of Modern Physics C 20 (2009) 1121–1143.
[165] B. M. Tabak, T. R. Serra, D. O. Cajueiro, The expectation hypothesis of interest rates and network theory: The case of Brazil, Physica A: Statistical Mechanics and its Applications 388 (2009) 1137–1149.
[166] B. M. Tabak, A. V. D. Luduvice, D. O. Cajueiro, Modeling default probabilities: The case of Brazil, Journal of International Financial Markets, Institutions and Money 21 (2011) 513–534.
[167] L. Sandoval, A map of the Brazilian stock market, Advances in Complex Systems 15 (2012) 1250042.
[168] S. P. Leahy, S. Levy Carciante, H. E. Stanley, D. Y. Kenett, Structure and dynamics of the Brazilian stock market: A correlation analysis, Available at SSRN 2484648 (2014).
[169] E. Kantar, B. Deviren, M. Keokin, Investigation of major international and Turkish companies via hierarchical methods and bootstrap approach, The European Physical Journal B 84 (2011) 339–350.
[170] E. Kantar, B. Deviren, M. Keokin, Hierarchical structure of Turkey's foreign trade, Physica A: Statistical Mechanics and its Applications 390 (2011) 3454–3476.
[171] E. Kantar, M. Keokin, B. Deviren, Analysis of the effects of the global financial crisis on the Turkish economy, using hierarchical methods, Physica A: Statistical Mechanics and its Applications 391 (2012) 2342–2352.
[172] M. Gałązka, Characteristics of the Polish stock market correlations, International review of financial analysis 20 (2011) 1–5.
[173] A. Sienkiewicz, T. Gubiec, R. Kutner, Z. Struzik, Sector identification in a set of stock return time series traded at the London stock exchange, Acta Physica Polonica A 123 (2013) 615–620.
[174] C. Coronzello, M. Tuminello, F. Lilio, S. Micciche, R. Mantegna, Sector identification in a set of stock return time series traded at the London stock exchange, Acta Physica Polonica. Series B 35 (2005) 2653–2679.
[175] R. Coulol, S. Hutaler, P. Repetowicz, P. Richmond, Sector analysis for a FTSE portfolio of stocks, Physica A: Statistical Mechanics and its Applications 373 (2007) 615–626.
[176] J. G. Brida, W. A. Risse, Dynamics and structure of the main Italian companies, International Journal of Modern Physics C 18 (2007) 1783–1793.
[177] A. Garas, P. Argyrakis, Correlation study of the Athens stock exchange, Physica A: Statistical Mechanics and its Applications 380 (2007) 399–410.
[178] C. G. Gilmore, B. M. Lucey, M. Boccia, An ever-closer union? Examining the evolution of linkages of European equity markets via minimum spanning trees, Physica A: Statistical Mechanics and its Applications 387 (2008) 6319–6329.

[179] J. Dias, Sovereign debt crisis in the European Union: A minimum spanning tree approach, Physica A: Statistical Mechanics and its Applications 391 (2012) 2046–2055.

[180] M. Wilinski, A. Sienkiewicz, T. Gubiec, R. Kutnar, Z. Struzik, Structural and topological phase transitions on the German stock exchange, Physica A: Statistical Mechanics and its Applications 392 (2013) 5963–5973.

[181] J. G. Brida, D. Matesanz, M. N. Seijas, Network analysis of returns and volume trading in stock markets: The Euro Stoxx case, Physica A: Statistical Mechanics and its Applications 444 (2016) 751–764.

[182] L. Sandorovai, To lag or not to lag? how to compare indices of stock markets that operate on different times, Physica A: Statistical Mechanics and its Applications 403 (2014) 227–243.

[183] T. Ulusoy, M. Keskin, A. Shirvani, B. Deviren, R. Kantar, C. C. Dönmez, Complexity of major UK companies between 2006 and 2010: Hierarchical structure method approach, Physica A: Statistical Mechanics and its Applications 391 (2012) 5121–5131.

[184] J. G. Brida, W. A. Rizeo, et al., Dynamic and structure of the Italian stock market based on returns and volume trading, Economia Bulletin 29 (2009) 2420–2426.

[185] G. De Masi, M. Gallegati, Bank-firms topology in Italy, Empirical Economics 43 (2012) 851–866.

[186] J. G. Brida, W. A. Rizeo, Hierarchical structure of the German stock market, Expert Systems with Applications 37 (2010) 3846–3852.

[187] J. Birch, A. A. Pantelous, K. Soramäki, Analysis of correlation based networks representing DAX 30 stock price returns, Computational Economics 47 (2016) 501–525.

[188] C. Eom, C. Ok, S. Kim, Statistical investigation of connected structures of stock networks in a financial time series, Journal of Korean Physical Society 53 (2008) 3837.

[189] Y. Shapira, D. Y. Kenett, E. Ben-Jacob, The index cohesive effect on stock market correlations, The European Physical Journal B 72 (2009) 657–669.

[190] S. Kumar, N. Dee, Correlation analysis and random walk of global financial indices, Physical Review E 86 (2012) 026101.

[191] G. Leibon, S. Paule, D. Rockmore, R. Savell, Topological structures in the equities market network, Proceedings of the National Academy of Sciences 105 (2008) 20589–20594.

[192] M. McDonald, O. Suleman, S. Williams, S. Howison, N. F. Johnson, Detecting a currency's dominance or dependence using foreign exchange network trees, Physical Review E 72 (2005) 046106.

[193] H. Sittangkiri, Y. Surya, Tree of several asian currencies (2005).

[194] T. Mizuno, H. Takayasu, M. Takayasu, Correlation networks among currencies, Physica A: Statistical Mechanics and its Applications 364 (2006) 336–342.

[195] G. J. Ortega, D. Mateusza, Cross-country hierarchical structure and currency crises, International Journal of Modern Physics C 17 (2006) 333–341.

[196] A. Górski, J. Kwapiń, P. Osięcimka, S. Drożdż, Minimal spanning tree graphs and power like scaling in forex networks, Acta Physica Polonica A 114 (2008) 531–538.

[197] A. Górski, S. Drożdż, J. Kwapiń, Scale free effects in world currency exchange network, The European Physical Journal B 66 (2008) 91–96.

[198] M. McDonald, O. Suleman, S. Williams, S. Howison, N. F. Johnson, Impact of unexpected events, shocking news, and rumors on foreign exchange market dynamics, Physical Review E 77 (2008) 046110.

[199] J. G. Brida, W. A. Rizeo, D. Matesanz Gómez, Dynamical hierarchical tree in currency markets, Expert Systems with Applications 36 (2009) 7721–7728.

[200] J. G. Brida, D. M. Gómez, W. A. Rizeo, Symbolic hierarchical analysis in currency markets: An application to contagion in currency crises, Expert Systems with applications 36 (2009) 7721–7728.

[201] J. Kwapiń, S. Gworek, S. Drożdż, A. Górski, Analysis of a network structure of the foreign currency exchange market, Journal of Economic Interaction and Coordination 4 (2009) 55–72.

[202] J. Kwapiń, S. Gworek, S. Drożdż, Structure and evolution of the foreign exchange networks, Acta Physica Polonica B 40 (2009).

[203] S. Gworek, J. Kwapiń, S. Drożdż, Sign and amplitude representation of the forex networks, Acta Physica Polonica A 117 (2010) 681–687.

[204] X. Feng, X. Wang, Evolutionary topology of a currency network in Asia, International Journal of Modern Physics C 21 (2010) 471–480.

[205] M. Keskin, B. Deviren, Y. Korakciplan, Topology of the correlation networks among major currencies using hierarchical structure methods, Physica A: Statistical Mechanics and its Applications 390 (2011) 719–730.

[206] W. Jing, J. Lee, W. Chang, Currency crises and the evolution of foreign exchange market: Evidence from minimum spanning tree, Physica A: Statistical Mechanics and its Applications 390 (2011) 707–718.

[207] J.-J. Wang, C. Xie, F. Han, B. Sun, Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree, Physica A: Statistical Mechanics and its Applications 391 (2012) 4136–4146.

[208] S. Sharif, N. S. Yusoff, M. A. Djauhari, Network topology of foreign exchange rate, Modern Applied Science 6 (2012) 35.

[209] G.-J. Wang, C. Xie, Y.-J. Chen, S. Chen, Statistical properties of the foreign exchange network at different time scales: evidence from detrended cross-correlation coefficient and minimum spanning tree, Entropy 15 (2013) 1643–1662.

[210] G. Rélovčíký, D. Horváth, V. Gažda, M. Siničákova, Minimum spanning tree application in the currency market, Biatiec 21 (2013) 21–23.

[211] H. Qiao, Y. Li, Y. Xia, Analysis of linkage effects among currency networks using RESER data, Discrete Dynamics in Nature and Society 2015 (2015).

[212] P. Sierczka, J. A. Holyst, Correlations in commodity markets, Physica A: Statistical Mechanics and its Applications 388 (2009) 1621–1630.

[213] M. Barigozzi, G. Fagiolo, D. Garlaschelli, Multinetwork of international trade: A commodity-specific analysis, Physical Review E 81 (2010) 046104.

26
[250] J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, A. Kanto, Asset trees and asset graphs in financial markets, Physica Scripta 2003 (2003) 48.

[251] G. Bonanno, F. Lilio, R. N. Mantegna, Levels of complexity in financial markets, Physica A: Statistical Mechanics and its Applications 299 (2001) 16–27.

[252] M. J. Naylor, L. C. Rose, B. J. Moyle, Topology of foreign exchange markets using hierarchical structure methods, Physica A: Statistical Mechanics and its Applications 382 (2007) 199–208.

[253] K. T. Chi, J. Liu, F. C. Lau, A network perspective of the stock market, Journal of Empirical Finance 17 (2010) 659–667.

[254] R. Coolsaet, C. G. Gilmore, B. Lucey, P. Richmond, S. Hutzel, The evolution of interdependence in world equity markets—evidence from minimum spanning trees, Physica A: Statistical Mechanics and its Applications 376 (2007) 455–466.

[255] J. D. Noh, Model for correlations in stock markets, Physical Review E 61 (2000) 5981.

[256] W.-S. Jung, S. Chae, J.-S. Yang, H.-T. Moon, Characteristics of the korean stock market correlations, Physica A: Statistical Mechanics and its Applications 361 (2006) 263–271.

[257] D. Materazzi, G. Innocenti, Topological identification in networks of dynamical systems, IEEE Transactions on Automatic Control 55 (2010) 1869–1871.

[258] M. Ervijgi, R. Ervijgi, Network structure of cross-correlations among the world market indices, Physica A: Statistical Mechanics and its Applications 388 (2009) 3551–3562.

[259] T. Aste, W. Shaw, T. Di Matteo, Correlation structure and dynamics in volatile markets, New Journal of Physics 12 (2010) 085009.

[260] C. Eom, G. Oh, W.-S. Jung, H. Jeong, S. Kim, Topological properties of stock networks based on minimal spanning tree and random matrix theory in financial time series, Physica A: Statistical Mechanics and its Applications 388 (2009) 905–906.

[261] A. Garas, P. Argyrakis, S. Havlin, The structural role of weak and strong links in a financial market network, The European Physical Journal B 63 (2008) 265–271.

[262] N. Basalto, R. Bellotti, F. De Carlo, P. Facchi, S. Paczuski, Clustering stock market companies via chaotic map synchronization, Physica A: Statistical Mechanics and its Applications 345 (2005) 196–206.

[263] P. Li, B.-H. Wang, Extracting hidden fluctuation patterns of hang seng stock index from network topologies, Physica A: Statistical Mechanics and its Applications 378 (2007) 519–526.

[264] A. Namaki, A. Shirazi, R. Rasi, G. Jafari, Network analysis of a financial market based on genuine correlation and threshold method, Physica A: Statistical Mechanics and its Applications 390 (2011) 3835–3841.

[265] W.-J. Ma, C.-K. Hu, R. E. Amitrak, Stochastic dynamical model for stock-correlation, Physical Review E 70 (2004) 026101.

[266] G. Caldarelli, S. Battiston, D. Garlaschelli, M. Catanzaro, Emergence of complexity in financial networks, in: Complex Networks, Springer, 2004, pp. 399–423.

[267] S. M. Focardi, F. J. Fabozzi 3, A methodology for index tracking based on time-series clustering, Quantitative Finance 4 (2004) 417–425.

[268] T. Qin, B. Zheng, G. Chen, Financial networks with static and dynamic thresholds, New Journal of Physics 12 (2010) 043057.

[269] T. K. D. Peron, L. da Fontoura Costa, F. A. Rodrigues, The structure and resilience of financial market networks, Chaos: An Interdisciplinary Journal of Nonlinear Science 22 (2012) 013117.

[270] T. Di Matteo, F. Pozzi, T. Aste, The use of dynamical networks to detect the hierarchical organization of financial market sectors, The European Physical Journal B 73 (2010) 3–11.

[271] C. Eom, G. Oh, S. Kim, Deterministic factors of stock networks based on cross-correlation in financial market, Physica A: Statistical Mechanics and its Applications 383 (2007) 139–146.

[272] T. Heimo, J. M. Kumpula, K. Kaski, J. Saramäki, Detecting modules in dense weighted networks with the Potts method, Journal of Statistical Mechanics: Theory and Experiment 2008 (2008) P08007.

[273] R. V. Mendee, T. Araújo, F. Louçã, Reconstructing an economic space from a market metric, Physica A: Statistical Mechanics and its Applications 323 (2003) 635–650.

[274] Z.-Q. Jiang, W.-X. Zhou, Complex stock trading network among investors, Physica A: Statistical Mechanics and its Applications 389 (2010) 4929–4941.

[275] D. J. Fena, M. A. Porter, P. J. Mucha, M. McDonald, S. Williams, N. F. Johnson, N. S. Jones, Dynamical clustering of exchange rates, Quantitative Finance 12 (2012) 1493–1520.

[276] T. Heimo, J. Saramäki, J.-P. Onnela, K. Kaski, Spectral and network methods in the analysis of correlation matrices of stock returns, Physica A: Statistical Mechanics and its Applications 383 (2007) 147–151.

[277] E. Pastaleo, M. Tumminello, F. Lilio, R. N. Mantegna, When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators, Quantitative Finance 11 (????) 1067–1080.

[278] R. C. Brechmann, Hierarchical Kendall copulae: Properties and inference, Canadian Journal of Statistics 42 (2014) 78–108.

[279] N. Basalto, R. Bellotti, F. De Carlo, P. Facchi, E. Pastaleo, S. Paczuski, Hausdorff clustering of financial time series, Physica A: Statistical Mechanics and its Applications 379 (2007) 635–644.

[280] J. G. Brida, W. A. Risso, Dynamics and structure of the 30 largest North American companies, Computational Economics 35 (2010) 85–99.

[281] D. Y. Kenett, M. Raddant, L. Zatlavi, T. Lux, E. Ben-Jacob, Correlations and dependencies in the global financial village, in: International Journal of Modern Physics: Conference Series, volume 16, World Scientific, pp. 13–28.

[282] T. D. Peron, F. A. Rodrigues, Collective behavior in financial markets, EPL (Europhysics Letters) 96 (2011) 48004.

[283] D. Materazzi, G. Innocenti, Unveiling the connectivity structure of financial networks via high-frequency analysis, Physica A: Statistical Mechanics and its Applications 388 (2009) 3866–3878.

[284] C. Hawkesby, I. W. Marsh, I. Stevens, Comovements in the equity prices of large complex financial institutions, Journal of Financial Stability 2 (2007) 391–411.
[391] T. You, P. Fiedor, A. Holda, Network analysis of the Shanghai stock exchange based on partial mutual information, Journal of Risk and Financial Management 8 (2015) 266–284.

[392] N. Musmeci, V. Nicosia, T. Aste, T. Di Matteo, V. Latora, The multiplex dependency structure of financial markets, arXiv preprint arXiv:1606.04872 (2016).

[393] B. K. Teh, S. A. Cheong, Cluster fusion-fission dynamics in the Singapore stock exchange, The European Physical Journal B 88 (2015) 1–14.

[394] H. Lohre, J. Paponbrock, M. Poonia, The use of correlation networks in parametric portfolio policies, Available at SSRN 2505732 (2014).

[395] G. Marti, P. Donnat, F. Nielsen, P. Very, HCMap: An interactive visualization tool to compare partition-based flat clustering extracted from pairs of dendrograms, arXiv preprint arXiv:1507.08137 (2015).

[396] G. Marti, F. Nielsen, P. Donnat, S. Andler, On clustering financial time series: a need for distances between dependent random variables, arXiv preprint arXiv:1603.07822 (2016).

[397] G. Marti, F. Nielsen, P. Very, P. Donnat, Clustering random walk time series, in: International Conference on Networked Geometric Science of Information, Springer, pp. 675–684.

[398] G. Marti, F. Nielsen, P. Very, P. Donnat, Comment partitionner automatiquement des marches aléatoires ? Avec application à la finance quantitative, arXiv preprint arXiv:1506.09163 (2015).

[399] P. Coletti, Comparing minimum spanning trees of the Italian stock market using returns and volumes, Physica A: Statistical Mechanics and its Applications 463 (2016) 246–261.

[400] H. C. J. Zhan, W. Rea, A. Rea, An application of correlation clustering to portfolio diversification, arXiv preprint arXiv:1511.07945 (2015).

[401] A. Buda, Life time of correlation between stocks prices on established and emerging markets, arXiv preprint arXiv:1105.6272 (2011).

[402] L.-L. Su, X.-F. Jiang, S.-P. Li, L.-X. Zhong, F. Ren, Dynamic structure of stock communities: A comparative study between stock returns and turnover rates, arXiv preprint arXiv:1608.03053 (2016).

[403] K. Khashanah, R. Yang, Evolutionary systemic risk: Fisher information flow metric in financial network dynamics, Physica A: Statistical Mechanics and its Applications 445 (2016) 318–327.

[404] L. S. Junior, Dynamics in two networks based on stocks of the US stock market, arXiv preprint arXiv:1408.1728 (2014).

[405] N. Basalto, F. De Carlo, Clustering financial time series, in: Practical Fruits of Econophysics, Springer, 2006, pp. 252–256.

[406] M. Marsili, et al., Dissecting financial markets: sectors and states, Quantitative Finance 2 (2002) 297–302.

[407] D. M. Ripley, Systematic elements in the linkage of national stock market indices, The Review of Economics and Statistics (1973) 356–361.

[408] B. Tóth, J. Kertész, Increasing market efficiency: Evolution of cross-correlations of stock returns, Physica A: Statistical Mechanics and its Applications 360 (2006) 505–515.

[409] A. Nobi, J. W. Lee, Systemic risk and hierarchical transitions of financial networks, Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (2017) 063107.

[410] C.-X. Nie, Dynamics of cluster structure in financial correlation matrix, Chaos, Solitons & Fractals (2017).

[411] T. Isogai, Dynamic correlation network analysis of financial asset returns with network clustering, Applied Network Science 2 (2017) 8.