Research Article

Ethnobotanical Research at the Kutukú Scientific Station,
Morona-Santiago, Ecuador

Jose Luis Ballesteros,1,2 Francesco Bracco,3 Marco Cerna,1 Paola Vita Finzi,2 and Giovanni Vidari2

1Department of Life Sciences, Universidad Politécnica Salesiana, Av. Isabel La Católica 23-52, Quito, Ecuador
2Department of Organic Chemistry, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy
3Department of Territorial Ecology and Environment, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy

Correspondence should be addressed to Jose Luis Ballesteros; jballesterosl@ups.edu.ec

Received 7 June 2016; Accepted 21 November 2016

Academic Editor: Ronald L. Klein

Copyright © 2016 Jose Luis Ballesteros et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This work features the results of an ethnobotanical study on the uses of medicinal plants by the inhabitants of the region near to the Kutukú Scientific Station of Universidad Politécnica Salesiana, located in the Morona-Santiago province, southeast of Ecuador. In the surroundings of the station, one ethnic group, the Shuar, has been identified. The survey hereafter reports a total of 131 plant species, with 73 different therapeutic uses.

1. Introduction

Plants have played a fundamental role for the development of Andean cultures ever since man first arrived to that region approximately 10000 years ago [1]. Through history, man has utilized vegetable resources as a source of nutrition, medicines, fuel, and building materials and they even occupied an important place within their belief system and rites [2].

According to the World Health Organization [3, 4] about 80% of the world population uses natural remedies and traditional medicine. Such medicine comes from forest resources that provide a series of benefits to the local, regional, and national populations and include raw materials, patrimony protection, and scenic beauty [5]. Nowadays, Ecuador, located on the equator line, is considered as one of the countries with the greatest biodiversity in the world [6]. In Ecuador, there exist many areas of biological interest that for their unique features currently provide diverse uses for the benefit of the population [7]. These uses of natural resources are the fruits of the accumulation of the ancestral knowledge that the local population has kept until now [8]. This traditional knowledge has been orally transmitted from one generation to the next, but over the last decades, the crisis of the rural world threatens this rich patrimony, which may be lost, together with many interesting aspects concerning the traditional exploitation of natural resources [9].

In Ecuador, many ethnobotanical studies have been made: that is, Villacrés [10] studied the bioactivity of plants of the Amazon jungle from the province of Napo; Cerón and Montalvo [11] published a book on the ethnobotanical aspects of the “Huaorani” people in a specific zone in the northeast of Ecuador; the cultural practices of Quechua society in Napo were analyzed in a book by Iglesias [12]; Tene et al. [13] performed an ethnobotanical study on medicinal plants used in Loja and Zamora Chinchipe. A few studies have also been made concerning the traditional use of plants in the Saraguro community of south Ecuador [14–16].

In this work we analyzed the ethnobotanical patrimony of Kutukú Scientific Station, located on the Kutukú mountain range in the Morona-Santiago province, Ecuador. By doing that, we intended to safeguard the popular knowledge concerning plants and to produce a database of plant uses and advantages. This data could be used by the citizens themselves and could be the base for future actions in programs of scientific investigations, environmental education, social
Table 1: Communities close to the area of the Kutukú Scientific Station and its buffering zone.

Canton	Parrish	Community
Morona	Sevilla	Sevilla Don Bosco
		San Luis Inimiks
		Santa Ana
		San Miguel
		Guadalupe
		Angel Rouby
		Ankuash

awareness, and natural resources exploitation, as well as the start point of touristic attraction based on the sustainable development of the territory.

2. Methodology

The research herein was performed between August and December of 2013, within the area of the Kutukú Biological Station belonging to Universidad Politécnica Salesiana del Ecuador (2°18'39.1"S, 78°06'11.6"W) with 800–1200 m a.s.l. The territory of the station covers 250 hectares and is located within the Kutukú-Shaimi Protected Forest (BPKS) in the center of Ecuador's eastern region, east of the city of Macas, in the parish of Sevilla Don Bosco, province of Morona-Santiago (Figure 1).

Within the area of the scientific station, big forest extensions of the evergreen humid type, really difficult to access, still persist in the low montane, montane, and high montane belts [17]. The month average temperature ranges between 16 and 27°C, and the total annual precipitation is 3021 mm approximately [18]. Close to the territory of the scientific station, where this study was carried out, about 7 indigenous communities can be found; all of these belong to the ethnic group “Shuar” (Table 1).

For this investigation, a qualitative ethnobotanical method was carried out [20] in which mostly adult persons have been contacted, who live within the area under study and know the use of medicinal plants. One hundred and sixty inhabitants of the seven communities were interviewed. All respondents were farmers or elderly belonging to the “Shuar” ethnicity or their descendants.

The collected data were processed and the results are expressed in a list of medicinal plants, with scientific names, families, collection point, used parts, form of preparation, traditional uses, and distribution (Table 2). The plant samples were processed and identified at the Ecuadorian National Herbarium (QCNE). They were deposited with their respective code at the Herbarium of the Universidad Politécnica Salesiana in the city of Quito, Ecuador. The botanic nomenclature was registered according to the Catalog of Vascular Plants of Ecuador [6]. A contact was established with the Shuar community through their authorized representatives, with the possibility of performing more precise studies in the future for the recovery, protection, and sustainable use of their traditional knowledge.

3. Result and Discussion

The ethnobotanical study performed in this work gave us a real panorama about the natural remedies used by the inhabitants in the territory of the Kutukú Scientific Station of the Morona canton of the province of Morona-Santiago, south of Ecuador. This research was realized with “Shuar” community, which is very different from the “Achuar” community cited in the article by Giovanni [21], even the geographical location and the altitude are different.

One hundred thirty-one different plants have been identified, which many medicinal properties have been attributed to; their uses and forms of therapeutic usage also have been recorded. From the total number of plants, 107 are native, 9 are grown traditionally, 9 are endemic, and 6 are cultivated [6].
Number	Scientific name	Common name*	Family	Herbarium voucher	Therapeutic applications and other uses	Used parts	Preparation	Administration	Distribution
1	*Acmella ciliata* (Kunth) Cass.	Botoncillo	Asteraceae	HUPS-as-001	Diarrhea, dysentery, toothache, cold, “mal aire,” forage	Leaves, flowers	Aqueous infusion of crushed leaves	Drink, chew	Native
2	*Aphanes ulei* (Dammer) Burret	Chontilla	Areceae	HUPS-ae-001	Alimentary, nutritious	Leaves, plant steam	Oil extraction, parched, obtaining flour	Ingestion	Native
3	*Anthodiscus peruanus* Baill.	Chontaquiro	Caryocaraceae	HUPS-co-001	Alimentary, nutritious	Fruit, flowers	Direct use	Ingestion	Native
4	*Anthurium giganteum* Engl.	Anturio	Araceae	HUPS-ar-001	Alimentary, nutritious, ornamental	Fruit	Direct use	Ingestion	Native
5	*Anthurium mindense* Sodiro	Jergón quiro	Araceae	HUPS-ar-002	Muscle ache, poison for hunting	Plant root	Obtaining fibers + water	Topical application, applied on hunting arrows	Native
6	*Aparisthmium cordatum* (A. Juss.) Baill.	Aguacatillo	Euphorbiaceae	HUPS-eu-001	Dermatitis, spots on the cornea, eye irritation	Leaves	Trituration	Topical application	Native
7	*Blakea rosea* (Ruiz & Pav.)	Tuno blanco	Melastomataceae	HUPS-me-001	Citrate	Leaves	Trituration	Topical application	Native
8	*Borojoa claviflora* (K. Schum.) Cuatrec.	Borojo	Rubiaceae	HUPS-ru-001	Respiratory diseases, psychomotor development, blood circulation, stimulating, helping digestion	Leaves	Syrup medicine	Drink	Native
9	*Burmeistera glabrata* (Kunth) Benth. & Hook. F. ex B.D. Jacks	Campana	Campanulaceae	HUPS-ca-001	Joint pain	Leaves, flowers	Decoction	Drink	Native
10	*Burmeistera refracta* E. Wimm.	Campana	Campanulaceae	HUPS-ca-002	Alimentary, nutritious	Whole plant	Direct use	Ingestion	Endemic
Number	Scientific name	Common name	Family	Herbarium voucher	Therapeutic applications and other uses	Used parts	Preparation	Administration	Distribution **
--------	--	-------------	----------------	-------------------	--	------------	-------------------	----------------	-----------------------
11	*Byrsonima arthropoda* A. Juss.	Guayabillo	Malpighiaceae	HUPS-ma-001	Alimentary, headache	Bark	Decoction	Drink	Native
12	*Calathe a hagbergii* H. Kenn.	Bijao	Marantaceae	HUPS-mr-001	Food stimulating	Plant root	Obtaining flour	Ingestion	Endemic
13	*Calate a libbyana* H. Kenn.	Platanillo	Marantaceae	HUPS-mr-002	Cold healing	Leaves	Parched + water	Ingestion	Endemic
14	*Capparis detonsa* Triana & Planch	Sacha bola	Capparaceae	HUPS-cp-001	Gonorrhea	Bark	Decoction	Drink	Native
15	*Casaria decandra* Jacq.	Burro cáá	Salicaceae	HUPS-sa-001	Leprosy, alimentary	Leaves	Jelly aqueous infusion	Drink	Central and South America, Brazil, Peru, Bolivia, Ecuador
16	*Ceiba samauna* (Marth.) K. Schum.	Saumauna	Malvaceae	HUPS-ml-001	Thermal insulation	Seed	Obtaining fibers	Direct application	Native
17	*Chamaedorea pauciflora* Mart.	Palmiche	Arecaceae	HUPS-ae-002	Deodorant, construction, dye, alimentary	Flowers, leaves, fruit	Trituration, maceration, direct use	Topical application, ingestion	Native
18	*Chlorospatha longipoda* (K. Krause) Madison	Tutunendo	Araceae	HUPS-ar-003	Hepatitis, fiber, malaria, back pain	Bark, root plant, plant stem	Cataplasm, aqueous infusion	Topical application, ingestion	Native
19	*Chrysoblamys membranacea* Planch. & Triana	Cascarillon	Clusiaceae	HUPS-cl-001	Alimentary, nutritious	Fruit	Direct use	Ingestion	Native
20	*Chrysophyllum argenteum* Jacq.	Yaso	Sapotaceae	HUPS-sp-001	Diarrhea, throat problems, reduction of corns, emetic, anthelmintic	Bark, fruit, sap	Aqueous infusion, direct use	Topical application, ingestion	Native
21	*Chrysophyllum argenteum* subsp. ferrugineum (Raúz & Pav) T. D. Penn.	Caimito	Sapotaceae	HUPS-sp-002	Alimentary, cosmetic, moisturizing, antitique, psoriasis, bronzer	Leaves, plant stem	Oil extraction	Topical application, ingestion	Native
22	*Citharexylumpoeppigii* Walp.	Nacedero	Verbenaceae	HUPS-ve-001	Repellent, digestive problems, headache, menstrual pain	Flower, plant root	Aqueous infusion	Drink	Native
Number	Scientific name	Common name*	Family	Herbarium voucher	Therapeutic applications and other uses	Used parts	Preparation	Administration	Distribution
--------	----------------------------------	--------------	-----------------------	-------------------	--	-----------------------------	-------------------------------	--------------------------	---------------
23	*Citronella incarnum* (J.E. Macbr.) R.A. Howard	Citronela	Cardiopteridaceae	HUPS-cr-001	Antispasmodic, carminative, febrifuge, antidepressant, antiseptic, astringent, sedative, Aphrodisiac, antifebrile, anemia, scabies, Cold remedy, antirheumatic, antiseptic, preventing intestinal diseases, Ant tetanic, bone fractures, hemostatic, strengthening the immune system, Hypoglycemic, laxative, antirust, preventing respiratory diseases	Leaves, plant stem, seeds	Plaster, aqueous infusion	Topical application, drink	Native
24	*Clidemia sprucei* Gleason	Mullaca	Melastomataceae	HUPS-me-002		Leaves	Aqueous infusion, direct use	Topical application, drink	Native
25	*Clusia hammeliana* Pipoly	Chugulito	Clusiaceae	HUPS-cl-002	Cold remedy, antirheumatic, antiseptic, preventing intestinal diseases	Leaves	Aqueous infusion	Topical application, drink	Native
26	*Clusia pallida* Engl.	Mata Palo	Clusiaceae	HUPS-cl-003		Leaves	Decocction	Drink	Native
27	*Clusia trodiformis* Vesque	Renaquillo	Clusiaceae	HUPS-cl-004		Leaves	Aqueous infusion	Drink, inhalation	Native
28	*Coccoloba densifrons* Mart. ex Meisn.	Serra	Polygonaceae	HUPS-po-001	Gastric function, stimulating, astringent, hemorrhoids, leukorrhea, metritis, Carminative, hallucinogen, deodorant, Healing, ulcers, vaginal infections, rheumatism, anti-inflammatory, antibacterial	Bark, leaves, plant stem	Decocction	Topical application, drink	Native
29	*Compsoneura capitellata* (A. DC.) Warb	Guangare	Myristicaceae	HUPS-my-001		Bark	Aqueous infusion	Drink, inhalation	Native
30	*Croton lechleri* Müll. Arg.	Sangre de Drago	Euphorbiaceae	HUPS-eu-002		Bark, latex, plant stem	Sap extraction, aqueous infusion, direct use	Topical application, drink	Native
31	*Croton rimbachii* Croizat	Algodoncillo	Euphorbiaceae	HUPS-eu-003		Leaves	Trituration	Topical application	Endemic
Number	Scientific name	Common name*	Family	Herbarium voucher	Therapeutic applications and other uses	Used parts	Preparation	Administration	Distribution**
--------	-----------------	--------------	--------	------------------	--	------------	-------------	---------------	----------------
32	*Cyclanthus bipartitus* Poit.	Papango	Cyclanthaceae	HUPS-cy-001	Snake bites, alimentary, "mal aire"	Fruit, plant root	Decoction, parched, direct use	Topical application, ingestion	Native
33	*Dacryodes peruviana* (Loes.) H.J. Lam	Copal	Burseraceae	HUPS-bu-001	Female reproductive system disorders, jaundice, spleen diseases, liver problems	Fruit, plant stem	Aqueous infusion	Topical application, drink	Native
34	*Desmodium poepigianum* (Schindl.) J.F. Macbr.	Pega pega	Fabaceae	HUPS-fa-001	Healing	Leaves	Aqueous infusion	Topical application	Ecuador, Panama, Peru
35	*Drymonia warszewiciana* Hanst.	Desbarantadora	Gesneriaceae	HUPS-ge-001	Skin diseases	Leaves	Cataplasm	Topical application	Native
36	*Equisetum giganteum* L.	Caballo chupa	Equisetaceae	HUPS-eq-001	Inflammation reduction of liver and kidneys	Leaves	Aqueous infusion	Drink	Native
37	*Eryngium foetidum* L.	Culantillo	Apioaceae	HUPS-ap-001	Abortive, slimming, aphrodisiac, diabetes, cholesterol lowering	Leaves, plant stem	Direct use	Ingestion	Native
38	*Erythrina amazonica* Krukoff	Chiri shetuc	Fabaceae	HUPS-fa-002	Calming the nervous system, oral inflammation reducer, antitussive	Leaves	Aqueous infusion	Drink	Native
39	*Erythroxylum fimbriatum* Peyr.	Kuka	Erythroxylaceae	HUPS-ey-001	Stimulant, altitude problems, local anesthetic, "mal aire"	Leaves	Direct use	Ingestion	Native
40	*Faramea ampla* C.M. Taylor	Jazmin	Rubiaceae	HUPS-ru-002	Gout preventer, vasodilator	Leaves	Direct use	Ingestion	Colombia and Ecuador
Number	Scientific name	Common name*	Family	Herbarium voucher	Therapeutic applications and other uses	Used parts	Preparation	Administration	Distribution
--------	---	--------------	--------------	-------------------	---	------------	-------------	----------------	--------------
41	*Faramea exemplaris* Standl.	Jazmin	Rubiaceae	HUPS-ru-003	Antitumor	Leaves	Cataplasm	Topical application	Native
42	*Ficus tonduzii* Standl.	Higuerón	Moraceae	HUPS-mc-001	Laxative, anthelmintic, diuretic, febrifuge, antifungal	Bark, fruit	Decoction, syrup medicine	Topical application, drink	Native
43	*Geonoma chochocola* Wess. Boer	Calzón panga	Areceae	HUPS-ae-003	Measles	Leaves, plant stem	Cataplasm	Topical application	Cultivated
44	*Geonoma interrupta* (Ruiz & Pav.) Mart.	Rabihorcano	Areceae	HUPS-ae-004	Antiviral, alimentary, nutritional	Leaves	Maceration	Drink	Native
45	*Geonoma stricta* (Poit.) Kunth	Calzón panga	Areceae	HUPS-ae-005	Spots on the skin	Seeds	Cataplasm	Topical application	Native
46	*Graffenrieda cucullata* (Triana) L.O. Williams	Huito	Melastomataceae	HUPS-me-003	Urinary track and kidney infections, Worming, applied against acne, dander and insect bites	Leaves	Aqueous infusion	Drink	Native
47	*Guarea kunthiana* A. Juss.	Pliche	Meliaceae	HUPS-mi-001	Diarrheas, wounds, sores, worming	Bark, leaves	Decoction	Topical application, drink	Native
48	*Gurania eriantha* (Poepp. & Endl.) Cogn.	Zapallito	Cucurbitaceae	HUPS-cu-001	Flavoring, stimulant	Fruit	Direct use	Topical application, ingestion	Native
49	*Hedyosmum goudotianum* Solms	Granizo	Chloranthaceae	HUPS-ch-001	Flavoring, stimulant	Leaves	Aqueous infusion of crushed leaves	Topical application, drink	Native
50	*Heisteria acuminata*	Tinchi	Olaceae	HUPS-ol-001	Alimentary, nutrition, flu	Fruit	Direct use	Ingestion	Native
51	*Heisteria acuminata* subsp. intermedia P. Jorg.	Yutubanco	Olaceae	HUPS-ol-002	Alimentary, astringent, nutritional	Fruit	Direct use	Ingestion	Native
52	*Heliconia schumanniana* Loes.	Situlli	Heliconiaceae	HUPS-he-001	Anti-inflammatory, astringent, hernia	Flowers	Aqueous infusion	Drink	Native
Number	Scientific name	Common name*	Family	Herbarium voucher	Therapeutic applications and other uses	Used parts	Preparation	Administration	Distribution**
--------	----------------------------------	--------------	----------------	------------------	---	-----------------------------	----------------------	----------------	-----------------
53	Hieronyma duquei Cuatrec.	Urucurana	Phyllanthaceae	HUPS-ph-001	Aphrodisiac, intestinal parasites	Whole plant	Aqueous infusion	Drink	Native
54	Hippotis alliflora H. Karst.	Sol caspi	Rubiaceae	HUPS-ru-004	Antidiabetic	Leaves	Aqueous infusion	Drink	Native Bolivia, Ecuador, Brazil, Peru, French Guyana
55	Huberodendron swietenioides (Gleason) Ducke	Carrá	Malvaceae	HUPS-ml-002	Relaxing	Whole plant	Direct use	Inhalation	Native Bolivia, Ecuador, Brazil, Peru, French Guyana
56	Hyospathe macrorhachis Burret	Tenent	Arecaceae	HUPS-ae-006	Tooth decay, flu	Leaves, whole plant, seeds	Oilextraction, maceration, direct use	Drink, ingestion	Native
57	Ilex guayusa Loes.	Guayusa	Aquifoliaceae	HUPS-aq-001	Alimentary, antirust, stimulant, fight against stress, gastritis, infertility	Leaves	Aqueous infusion, direct use	Drink, ingestion	Native
58	Jacaranda copa (Aubl.) D. Don	Gualandano	Bignoniaceae	HUPS-bi-001	Dental abscesses, bronchitis, itch, scabies, syphilis	Whole plant	Cataplasm, aqueous infusion	Topical application, drink	Native
59	Juanulloa ochmacea Cuatrec.	Dedo de oro	Solanaceae	HUPS-so-001	Syphilis, malaria, snake bites	Leaves	Decoction	Drink	Native
60	Kotchubaea semisericea Ducke	Huitillo	Rubiaceae	HUPS-ru-005	Blood clotting, cancer treatment (female genital tract, bronchopulmonary and gastric)	Leaves	Aqueous infusion	Drink	Brazil, Ecuador, French Guyana, Peru, Surinam
61	Lacmellea floribunda (Poepp.) Benth.	Chicle caspi	Apocynaceae	HUPS-aq-001	Treatment of the vascular brain disorders, hypotensive, heart problems	Leaves	Aqueous infusion	Drink	Brazil, Ecuador, French Guyana, Peru, Surinam
62	Lonchoarpus versus (J.F. Macbr.) M. Sousa ex D.A Neill, Klig. & G.P. Lewis	Chaperno	Fabaceae	HUPS-fa-003	Lowering bad cholesterol	Leaves	Aqueous infusion	Drink	Native
63	Malvea speciosa Mull. Arg.	Chamizo	Euphorbiaceae	HUPS-eu-004	Diarrhea, liver inflammations, improving digestion.	Leaves	Aqueous infusion	Drink	Native
64	Machaerium kieffflantium (DC.) Benth.	Uña de gavilán	Fabaceae	HUPS-fa-004	Anticancerous	Leaves	Aqueous infusion	Drink	Native
Number	Scientific name	Common name*	Family	Herbarium voucher	Therapeutic applications and other uses	Used parts	Preparation	Administration	Distribution**
--------	--	--------------	----------------	------------------	--	------------	-------------	----------------	----------------
65	*Malachra ruderalis* Gürke	Malva	Malvaceae	HUPS-ml-003	Kidney disease	Leaves	Aqueous infusion	Drink	Native
66	*Matisia malacocalyx* (A. Robins & S. Nilsson) W.S. Alverson	Bacao	Malvaceae	HUPS-ml-004	Thermal and acoustic insulation	Seeds	Fiber extraction	Topical application	Native
67	*Mendoncia orbicularis* Turrill	O’me	Acanthaceae	HUPS-ac-001	Eye evil “mal aire”	Whole plant	Parched, direct use	Inhalation	Native
68	*Miconia ombrophila* Wardack	Tuno	Melastomataceae	HUPS-me-004	Snake bites	Leaves	Cataplasm	Topical application	Endemic
69	*Miconia prasina* (Sw.) DC.	Aguanoso	Melastomataceae	HUPS-me-005	Healing, snake bites	Leaves	Cataplasm	Topical application	Native
70	*Miconia punctata* (Destr.) D. Don ex DC.	Huitoto	Melastomataceae	HUPS-me-006	Healing	Leaves, plant stem	Cataplasm	Topical application	Native
71	*Mollinedia latifolia* (Poepp & Endl.) Tul.	Amunamue	Monimiaceae	HUPS-mo-001	Treatment of liver diseases	Leaves	Aqueous infusion	Drink	Native
72	*Mollinedia repanda* Ruiz & Pav.	Amunamue	Monimiaceae	HUPS-mo-002	Healing, rheumatism, dropsy, syphilis, migraine, headache	Leaves	Cataplasm, trituration	Topical application	Native
73	*Monolea primuliflora* Hook. f.	Shankur	Melastomataceae	HUPS-me-007	Antiparasitic, alimentary, stimulant, treatment for conjunctivitis	Rhizome, plant stem, sap	Decoction, direct use	Topical application, ingestion	Native
74	*Myrcia bracteata* (Rich.) DC.	Arrayán	Myrtaceae	HUPS-mt-001	Astringent, diarrhea, dysentery, healing	Flowers, fruit, leaves	Cataplasm, trituration	Topical application	Native
75	*Nectandra acutifolia* (Ruiz & Pav.) Mez	Moena	Lauraceae	HUPS-la-001	astringent, diarrhea, antifebrile	Leaves, plant stem	Oil extraction, aqueous infusion	Drink	Native
76	*Nectandra reticulata* (Ruiz & Pav.) Mez	Jigua	Lauraceae	HUPS-la-002	Moisturizer, skin lighter	Leaves	Trituration + honey bee	Topical application	Native
77	*Nea spruceana* Heimerl	Cuyihue	Nyctaginaceae	HUPS-ny-001	Antihemorrhagic, leucorhea treatment	Leaves	Decoction, aqueous infusion	Drink	Native
Number	Scientific name	Common name	Family	Herbarium voucher	Therapeutic applications and other uses	Used parts	Preparation	Administration	Distribution
--------	---------------------------------------	-------------	---------------	-------------------	--	-----------------	------------------	-------------------	-------------------------------
78	*Neurolaena lobata* (L.) Cass.	Sepi	Asteraceae	HUPS-as-002	Healing, antiacne	Leaves	Cataplasm, triturations	Topical application	Native
79	*Notopleura epiphytica* (K. Krause) C.M. Taylor	Huati	Rubiaceae	HUPS-ru-006	Antidiabetic, antilipid, cholesterol lowering, slimming, hypotensive	Bark, leaves	Decoction	Drink	Bolivia, Colombia, Costa Rica, Ecuador, French Guyana, Nicaragua, Panama, Peru
80	*Ocotea skutchii* C.K. Allen	Laurel	Lauraceae	HUPS-la-003	Intestinal disorders, emollient, blood purifier, dyspepsia Emmenagogue, abortive, diuretic, hypotensive, antiepileptic, wound treatment, purgative, healing of angina, tonsillitis, anti diarrheal, purifying the blood	Fruit, plant stem	Direct use	Ingestion	Native
81	*Oryctanthus alveolatus* (Kunth) Kuijt	Pajarito	Loranthaceae	HUPS-lo-001	Flowers, leaves, whole plant	Decoction, aqueous infusion	Drink	Native	
82	*Ossaea laxivenula* Wurdack	Rifari	Melastomataceae	HUPS-me-008	Healing, snake bite, construction	Leaves, plant stem	Cataplasm	Topical application	Native
83	*Palicourea luteomirae* C.M. Taylor	Café de monte	Rubiaceae	HUPS-ru-007	Antimalarial	Leaves	Direct use	Ingestion	Native
84	*Palicourea subalatoidea* C.M. Taylor	Café de monte	Rubiaceae	HUPS-ru-008	Antimalarial	Leaves	Decoction	Drink	Endemic
85	*Patinoa sphaerocarpa* Cuatrec.	Almirajo	Malvaceae	HUPS-ml-005	Diuretic, tonic cardiac, against warts, cosmetic	Seeds, plant stem	Decoction, parched	Topical application, drink, ingestion	Cultivated
86	*Pavonia castanecololia* A. St.-Hil. & Naudin	Mozote	Malvaceae	HUPS-ml-006	Colic, anti-inflammatory, constipation, refreshing	Whole plant	Aqueous infusion, direct use	Drink, ingestion	Native
Number	Scientific name	Common name	Family	Herbarium voucher	Therapeutic applications and other uses	Used parts	Preparation	Administration	Distribution
--------	----------------	-------------	--------	------------------	--	------------	-------------	----------------	--------------
87	*Peperomia sprucei* (Britton ex Rusby) L.P. Kvist & L.E. Skog	Chirishi	Gesneriaceae	HUPS-ge-002	Relaxing, "malaire"	Whole plant	Parched	Inhalation	Native
88	*Peperomia striata* Ruiz & Pav.	Congonilla	Piperaceae	HUPS-pi-001	Kidney disease, blood circulation	Leaves	Aqueous infusion	Drink	Native
89	*Peperomia tetragonum* Ruiz & Pav.	Congonilla	Piperaceae	HUPS-pi-002	Liver disorders	Leaves	Aqueous infusion	Drink	Native
90	*Philodendron hederaceae* Croat	Itininga	Araceae	HUPS-ar-004	Vaginal bleeding, obstetric pain, rheumatic pain	Leaves	Direct use	Ingestion	Native
91	*Phoradendron crassifolium* (Pohl ex DC.) Eichler	Suelda con suelda	Santalaceae	HUPS-sn-001	Urinary tract infection, flu	Leaves	Decoction, direct use	Topical application, drink	Native
92	*Piper augustum* Rudge	Matico	Piperaceae	HUPS-pi-003	Antidiarrheal, ulcer	Leaves	Aqueous infusion	Drink	Native
93	*Piper imperiale* (Miq.) C. DC.	Cordoncillo	Piperaceae	HUPS-pi-004	Healing	Leaves	Crush + water	Topical application	Native
94	*Piper inmutatum* Trel.	Shilkepoja	Piperaceae	HUPS-pi-005	Vaginal anti-infective, herpes	Leaves	Aqueous infusion	Topical application	Native
95	*Piper macrostrichum* C. DC.	Guaviduca	Piperaceae	HUPS-pi-006	Vaginal antiseptic, herpes	Leaves	Aqueous infusion	Topical application	Native
96	*Piper macropostra* Trel. & Yunck.	Guaviduca	Piperaceae	HUPS-pi-007	Bronchitis, healing	Leaves	Decoction, crush	Topical application, inhalation	Native
97	*Piper mustum* Trel.	Sacha guando	Piperaceae	HUPS-pi-008	Kidney diseases	Leaves	Aqueous infusion	Drink	Native
98	*Piper obtusiflbum* C. DC.	Matico de monte	Piperaceae	HUPS-pi-009	Abortive	Leaves	Aqueous infusion	Drink	Native
99	*Piper poporene* Trel. & Yunck.	Matico de monte	Piperaceae	HUPS-pi-010	Abortive	Leaves	Decoction	Drink	Native
100	*Piper umbellatum* L.	Matico	Piperaceae	HUPS-pi-011	Healing, "malaire"	Bark	Trituration, parched	Topical application, inhalation	Native
Number	Scientific name	Common name*	Family	Herbarium voucher	Therapeutic applications and other uses	Used parts	Preparation	Administration	Distribution**
--------	-----------------	--------------	--------	------------------	--	------------	-------------	---------------	---------------
101	*Piptocoma discolor* (Kunth) Pruski	Pigue	Asteraceae	HUPS-as-003	Diarrhea, antispasmodic, snake bites	Leaves, plant stem	Aqueous infusion	Drink	Native
102	Homothrix insignis van der Werff	Comino	Lauraceae	HUPS-la-004	Stomach infection	Whole plant	Aqueous infusion	Drink	Native
103	*Pseudolanthanum sabauriculatum* Mückl.	Flor estrella	Acanthaceae	HUPS-ac-002	Antidepressant	Leaves	Decoction	Drink	Endemic
104	*Pseudolmedia rigida* (Klotzsch & H. Karst.) Cuatrec.	Chimicua	Moraceae	HUPS-mc-002	Back pain relief, hernias	Leaves	Cataplasm	Topical application	Native
105	*Psychotria borucana* (Ant. Melina) C.M. Taylor & W.C. Burger	Flor de labios	Rubiaceae	HUPS-ru-009	Antiviral, irregularities with the menstrual cycle	Leaves	Aqueous infusion	Drink	Native
106	*Psychotria brachiate* Sw.	Chacruna	Rubiaceae	HUPS-ru-010	Gonorrhea, general weakness, convalescence	Leaves	Decoction	Drink	Native
107	*Psychotria costanensis* Steyerm.	Chacruna	Rubiaceae	HUPS-ru-011	Diabetes, treatment against profound wounds	Leaves	Aqueous infusion	Topical application, drink	Cultivated
108	*Psychotria flaviflora* (K. Krause) C.M. Taylor	Chacrona	Rubiaceae	HUPS-ru-012	Hemorrhoids, fistulas	Leaves	Aqueous infusion	Topical application, drink	Native
109	*Psychotria trivalis* Rusby	Flor de labios	Rubiaceae	HUPS-ru-013	Rheumatism, immunodeficiency, HIV	Leaves	Direct use	Ingestion	Cultivated
110	*Psychotria zavodovii* C.M. Taylor	Chacrona	Rubiaceae	HUPS-ru-014	Antimicrobial, ulcers, treatment against tumors	Leaves	Aqueous infusion	Drink	Native
111	Pterozonium brevifrons (A.C. Sm.) Lellinger	Helecho	Pteridaceae	HUPS-pt-001	Respiratory diseases, scalp problems, antitussive, menstrual problems	Leaves	Aqueous infusion, crushed	Topical application, drink, inhalation	Native
112	Reldia minutiflora (L.E. Skog) L.P. Krist & L.E. Skog	Chiri	Gesneriaceae	HUPS-ge-003	“Malaria”	Whole plant	Parched	Inhalation	Native
Number	Scientific name	Common name*	Family	Herbarium voucher	Therapeutic applications and other uses	Used parts	Preparation	Administration	Distribution
--------	---------------------------------	--------------	------------	-------------------	---	------------	-------------------	------------------	---------------------
113	*Rudgea verticillata* (Ruiz & Pav.) Spreng.	Chirishri	Rubiaceae	HUPS-ru-005	“Malaria,” tincture, febrifuge, analgesic, anti-inflammatory, antitussive, hypotensive, “malaria,” flavoring, aphrodisiac	Whole plant	Parched, maceration	Inhalation, dye	Cultivated
114	*Siparuna harlingii* S.S. Renner & Hausner	Picho huayo	Siparunaceae	HUPS-si-001	Leaves	Cataplasm, aqueous infusion	Topical application, drink	Native	
115	*Siparuna lepidota* (Kunth) A. DC.	Limoncillo	Siparunaceae	HUPS-si-002	Ear pain, Antisyphilitic, antirheumatic, digestive, diuretic, anti-febrile	Leaves	Juice	Topical application	Native
116	*Smilax officinalis* Kunth	Uña de gato	Smilacaceae	HUPS-sm-001	Root plant, rhizome, plant stem, Antisyphilitic, antirheumatic, digestive, diuretic	Decoction, direct use	Drink, ingestion	Cultivated	
117	*Solanum acrifolium* Dunal	Cocorillo	Solanaceae	HUPS-so-002	Leaves	Aqueous infusion	Drink	Native	
118	*Solanum altissimum* Benitez	Yoroi	Solanaceae	HUPS-so-003	Root plant, rhizome, plant stem, Antisyphilitic, antirheumatic, urinary tract diseases, bladder and kidney problems, blennorrhagia	Decoction, direct use	Drink, ingestion	Native	
119	*Solanum malletii* S. Knapp	Siucahuito	Solanaceae	HUPS-so-004	Root plant	Decoction	Drink	Native	
120	*Sterculia colombiana* Sprague	Sapotejin	Malvaceae	HUPS-ml-007	Against cough and asthma, bronchodilator	Seeds	Aqueous infusion	Drink, inhalation	Colombia, Ecuador, Panama, Peru
Number	Scientific name	Common name*	Family	Herbarium voucher	Therapeutic applications and other uses	Used parts	Preparation	Administration	Distribution**
--------	--------------------------	--------------	--------------	-------------------	---	------------	----------------------------	----------------	-----------------
121	*Tapirira guianensis* Aubl.	Palo de gusano	Anacardiaceae	HUPS-an-001	Cystitis, vesicant	Fruit	Maceration, syrup medicine	Drink	Native
122	*Thibaudia floribunda* Kunth	Hualcón de árbol	Ericaceae	HUPS-er-001	Alimentary, treatment and prevention of urinary tract infection	Leaves	Aqueous infusion	Drink	Native
123	*Tradescantia zanonia* (L.) Sw.	Calcharón	Commelinaceae	HUPS-cm-001	Treatment for burns, anti-inflammatory	Leaves	Cataplasm, crushed	Topical application	Native
124	*Tremata integerrima* (Beurl.) Standl.	Cunacuma	Cannabaceae	HUPS-cn-001	Astringent, nasal decongestant, leishmaniasis	Whole plant	Aqueous infusion	Drink, inhalation	Belize, Bolivia, Colombia, Costa Rica, Ecuador, Guatemala, Guyana, Honduras, Nicaragua, Panama, Peru, Surinam, Venezuela
125	*Trianaea naeka* S. Knapp	Naeka	Solanaceae	HUPS-so-005	Digestive, diuretic, antifebrile, blood circulation problems, skin problems	Rhizome, plant stem	Decoction	Topical application, drink	Endemic
126	*Triola plumalis* (Wurdack) Wurdack	Cangrejo	Melastomataceae	HUPS-me-009	Female sterility	Leaves	Decoction	Drink	Native
127	*Verbena litoralis* Kunth	Verbenia	Verbenaceae	HUPS-ve-009	Headaches, ulcers, hair loss	Leaves, plant root	Aqueous infusion, crushed	Topical application, drink	Native
128	*Virola panonis* (A. DC.) A.C. Sm.	Caupuri	Myristicaceae	HUPS-my-002	Tooth and kidney pain, analgesic	Sap	Direct use	Drink	Native
129	*Virola sibifera* Aubl.	Chabaniande	Myristicaceae	HUPS-my-003	Carminative, flavoring, hallucinogen, Alimentary, nutritional, fright	Flowers, leaves	Parched	Inhalation	Native
130	*Vriesea zamorenensis* (L.B. Sm.) L.B. Sm.	Plum de indio	Bromeliaceae	HUPS-br-001	Bronchitis, diarrhea, acne	Whole plant	Maceration	Drink, inhalation	Endemic
131	*Witheringia solanacea* L'Hér.	Hoja puñada	Solanaceae	HUPS-so-006	Bronchitis, diarrhea, acne	Leaves	Crushed, juice	Topical application, drink	Native

*Common names can be found in Spanish, Quechua, Shuar, and Huaorani languages.

**León-Yánez et al. [19].
This long list of plants comprises species yet unknown from a phytochemical point of view, as well as deeply studied ones, for example, *Croton lechleri* Müll. Arg. and *Ilex guayusa* Loes. *Croton lechleri* is used locally as a wound healing aid, as a treatment for ulcers and sometimes for vaginal infections. These usages and other are scientifically validated in literature, especially concerning the treatment of infections and the wound healing aid [22]. According to another author [13], *Croton lechleri* is traditionally used in Ecuador as a diuretic remedy and is also employed to treat dermatologic and hepatic illnesses.

Ilex guayusa is used in case of gastritis, as a stimulant replacing coffee, and to enhance fertility in women. In the Amazon forest of Ecuador and Peru, a traditional guayusa decoction that yields a high content of caffeine is used as a stimulant in the morning [23]. It is also reported [24] that *Ilex guayusa* of Peru has a strong antimicrobial activity.

Verbena litoralis Kunth keeps being very appreciated in local medicine, particularly for the treatment of headaches, ulcers, and alopecia. Data in scientific literature [25] support its activity as an analgesic too.

According to the collected information, the plants utilized for headache treatment are *Virola pavonis* (A. DC.) A. C. Sm., *Siparuna harlingii* S. S. Renner & Hausner, *Byrsonima arthropoda* A. Juss., *Acmella ciliata* (Kunth) Cass., and *Citharexylum poeppigii* Walp.

Virola pavonis is used and very appreciated by the local inhabitants for the treatment of diseases, from inflammation to headache, from hangovers to renal problems. Outside Ecuador, this plant was tested in Brazil for the treatment of leishmaniosis [26], while the antifungal activity of the extracts from the leaves was studied in detail by Zacchino et al. [27]. The leaves of *Siparuna harlingii* S. S. Renner & Hausner are used by the local inhabitants as remedies for headache and cough and as an anti-inflammatory. At other latitudes, different authors described diverse applications of this plant: in Zamora Chinchipe province of Ecuador, the inhabitants employ it against rheumatism [28]; meanwhile in Colombia, it is used to treat illnesses of nervous system and stomach [29].

The bark of *Byrsonima arthropoda* in decoction is employed as an analgesic, although the whole plant is used as food for birds and mammals. The Makuna Indians from Praparaná River, a Colombian Amazon ethnic group, uses the ground plant as a wound healing aid [30].

Figure 2: The most frequently used families of plants in the area of Kutukú Scientific Station.

In our study we found that the leaves of *Acmella ciliata* are used as a remedy against diarrhea, headaches, colds, and toothache and for “mal aire.” Only a few papers are available in literature, either ethnopharmacologic or phytochemical, for *Acmella ciliata*. In a study performed in the state of Minaes Gerais in Brazil [31] it is reported that the leaves of this plant are traditionally used to treat hepatic problems.

From the flowers and leaves of *Citharexylum poeppigii* aqueous infusions are prepared, which are used to treat affections of upper respiratory tract such as cough. This infusion is also used for digestive discomfort, headaches, and menstrual cramps. In literature information concerning the ethnobotanical use of this species is lacking; nonetheless, the presence of this plant is confirmed in Ecuador [32] and Venezuela [33].

The plant families mostly used by the inhabitants are Rubiaceae (15), Piperaceae (11), Melastomataceae (9), Malvaceae (7), Arecaceae (7), Solanaceae (6), and Euphorbiaceae (4). Figure 2 shows the plant families reported in this study with a main role in the traditional use.

In the area of Kutukú Scientific Station plants of the Rubiaceae family are used mostly as anticarcinogens (4), for circulatory system problems (4), as a treatment for diabetes (3), and against malaria (2). In literature plants of the Rubiaceae family are reported as being antihepatotoxic [34], as well as having anti-inflammatory and analgesic activities [35].

Piperaceae plants are often used locally against kidney and urinary tract affections (3), as wound healing aids (3), and curiously sometimes as an abortive (2). The use of the plants of this family in infusions of whole plant is frequently reported in the literature, which confirms the usage as wound healing aid [36] and for the treatment of kidney affections [37].

In this study we found that the plants of the Melastomataceae family are used especially as treatment of poisonous snake bites and for wound healing (4). Many plants of this family are used in Mexico for the traditional treatment of gingivitis and oral infections overall [38] and have been tested in Brazil for treating gastrointestinal problems [39].

We confirm the usage of plants of the Malvaceae family as diuretic remedies, as reported, for example, in Alarcón-Alonso et al. [40] for *Hibiscus sabdariffa* L., and also the use of *Patinaea sphaerocarpa* Cuatrec in the same way. The antiviral properties of the plants of the Arecaceae family, reported, for example, in *Cocos nucifera* L. from Brazil [41], are confirmed...
on the base of the species *Geonoma chococola* Wess. Boer and *Geonoma interrupta* (Ruiz & Pav.) Mart found at the Kutukú Scientific Station.

The plants of the Solanaceae family are used generally as a treatment for syphilis (3), rheumatism (2), kidney problems (2), and infections of the urinary tract (2). A study carried out in the Bolivian Chaco pointed out the traditional use of some species of Solanaceae family for the treatment of headaches, fever, acne, and diarrhea [42]; these pharmacological uses can be correlated with our findings. Besides, the Solanaceae family has been broadly studied and its plants are used for their hallucinogenic properties [43].

Plants of the Euphorbiaceae family are used mostly as wound healing aids (2), for intestinal problems (1), for diarrhea (1), and as hepatoprotective agents (1), the latter being confirmed by a study performed in India [44].

Many plants of these families and of the other families reported in this study are used for the treatment of "espanto" or "mal aire," a typical Andean pathology that is poorly defined, in which the psychosomatic problems, originated from phobia factors, produce deep physical and psychological weakness [45]. To talk about etiology of “mal aire” is not just talk about the origin of the disease but rather is to speak of the limits of medicine and get into the field of philosophical approaches; in general the "mal aire" is a state of general decay of the body generated by evil spirits that inhabit the crossing mountains and under large trees, orchards abandoned, ponds, streams, cemeteries, places where they have been burials fact of valuables, and so forth [46].

Overall, 73 different therapeutic uses for the cited plants have been recorded, including their use as wound healing aids (14), for "mal aire" (10), for diarrhea (9), as nourishment (9), for kidney and bladder affections (8), for fever (8), and for rheumatism (7). All of these are indicated in Figure 3.

An aqueous infusion is the most generalized form of administration; decoctions, direct consumption, and topical applications are also common. The leaves (50%) are the plant parts more frequently selected, followed by the stem (12%), fruits (16%), and barks (10%).

4. Conclusions

The use of plants for treating diseases keeps being necessary to indigenous populations in emerging countries which, due to high costs, have a difficult access to western medicines and, therefore, use to rely on their own traditional remedies. On the other hand, the integrated forms of modern and traditional medicines are often practiced by many physicians nowadays. Morona-Santiago, the Ecuadorian province where the Kutukú Scientific Station is located, owns a high plant biodiversity and a rich ethnobotanical tradition based on it. This has given origin to a popular medicine comprising the use of more than 100 local plants, which have been botanically identified. The illnesses cured with the plants are, of course, strictly related with the health situation of local communities. Wound healing aids, renal and stomach infections, headaches, and colds are the most common ailments which natural resources are used for. Nonetheless less frequent diseases, such as cancer, diabetes, and malaria, are also treated with different plant extracts.

On these days, the preservation of traditional knowledge is threatened by a great amount of external factors related to the "modernization" of the region. It is, therefore, urgent to save the cultural patrimony of the indigenous populations, by confirming the therapeutic use of plants with scientific criteria and by encouraging the phytochemical research of the species containing potential active principles of interest.

Within this context, more studies on the use of medicinal plants by the indigenous communities nearby the Kutukú Scientific Station are being carried out by our investigation groups, in which scientists, technicians, and students are involved, assessing the biological activity of the region's most promising plants.

Competing Interests

The authors declare that there is no conflict of interests.

Acknowledgments

This study was carried out with the financial support of Universidad Politécnica Salesiana del Ecuador, through the group of investigation on natural resources, with the cooperation and direction of Università Degli Studi di Pavia in Italy. The authors would like to thank Universidad Politécnica Salesiana, Università Degli Studi di Pavia, Colegio Don Bosco in Sevilla parish, Morona-Santiago province, the National Herbarium of Ecuador (QCNE), the UPS Herbarium, the entire personnel of the Center of Research and Valuation of Biodiversity (CIVABI), and all the communities that gave their share of ancestral knowledge during the making of this project.
References

[1] E. Almeida, *Culturas Prehispánicas del Ecuador*, Viajes Chasquis, Cía. Ltda, Quito, Ecuador, 2000.

[2] R. E. Schultes, “The importance of ethnobotany in environmental conservation,” *Monografías del Jardín Botánico de Córdoba*, vol. 5, pp. 157–164, 1997.

[3] R. Chaudhury, *Herbal Medicine for Human Health*, World Health Organization, Regional Office for South-East Asia, 1992.

[4] WHO, “Summar 9 WHO guidelines for the assessment of herbal medicines,” *Herbal Grom*, vol. 28, pp. 13–14, 1993.

[5] O. Carrero, *Estudio Etnobotánico en las Reservas Forestales: Estudios Característicos de Planta Medicinal de la Amazonia Norteamericana*, 1997.

[6] P. Jorgensen and S. León-Yáñez, *Catalogue of the Vascular Plants of Ecuador*, Missouri Botanical Garden Press, St. Louis, Mo, USA, 1999.

[7] Ministerio del Ambiente de Ecuador, *Cuarto Informe Nacional para el Convenio sobre la Diversidad Biológica*, Ministerio del Ambiente de Ecuador, Quito, Ecuador, 2010.

[8] P. Naranjo and R. Escaleras, La Medicina Tradicional en el Ecuador, Corporación Editora Nacional, Quito, Ecuador, 1995.

[9] P. Villar, “Panoramica de la etnobotanica en España (Pinieiros y noroeste peninsular),” *Monografías del Jardín Botánico de Córdoba*, vol. 5, pp. 165–177, 1997.

[10] V. Villacrés, *Bioactividad de Plantas Amazónicas*, Abya Yala, Quito, Ecuador, 1995.

[11] C. Cerón and C. Montalvo, *Etnobotánica de los Huaorani de Quechuacito-ono Napo-Ecuador*, Escuela de Biología y Química-Universidad Central del Ecuador, Quito, Ecuador, 1998.

[12] G. Iglesias, Sacha Jambi, *El Uso de las Plantas en la Medicina Tradicional de los Quichuas del Napo*, Abya Yala, Quito, Ecuador, 2002.

[13] V. Tene, O. Malagón, P. V. Finzi, G. Vidari, C. Armijos, and T. Zaragoza, “An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador,” *Journal of Ethnopharmacology*, vol. 113, no. 1, pp. 63–81, 2007.

[14] J. Andrade, C. Armijos, O. Malagón, and H. Lucero, *Plantas Silvestres Empleadas por la etnia Saraguro en la Parroquia San Lucas, Loja-Ecuador*, Ediciones UTPL, Loja, Ecuador, 2009.

[15] F. Armijos, M. Lozano, F. Bracco, G. Vidari, and O. Malagón, *Plantas Sagradas y Psicoactivas Usadas por los Saraguros en la Región sur del Ecuador*, Edilooja, Loja, Ecuador, 2012.

[16] R. W. Bussmann and D. Sharon, “Traditional medicinal plant use in Loja province, Southern Ecuador,” *Journal of Ethnobiology and Ethnomedicine*, vol. 2, article no. 44, 2006.

[17] R. Sierra, Ed., *Propuesta Preliminar de un Sistema de Clasificación de Vegetación para el Ecuador Continental*, Proyecto INEFAN/GEF-BIRF y EcoCiencia, Quito, Ecuador, 1999.

[18] CARE, Ministerio del Ambiente, and Unión Europea y Tinker Foundation, *Plan de Manejo Actualizado y Priorizado del Bosque Protector Kutukú Shaimi*, 2012–2017, CARE, Ministerio del Ambiente, Unión Europea y Tinker Foundation, Macas, Ecuador, 2012.

[19] S. León-Yáñez, R. Valencia, N. Pitman, L. Endara, C. Ulloa, and H. Navarrete, *Libro Rojo de las Plantas Endémicas del Ecuador*, Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito, Ecuador, 2nd edition, 2011.

[20] L. P. Kvist, I. Oré, A. González, and C. Llapapasca, “Estudio de plantas medicinales en la amazonia peruana: una evaluación de ocho métodos etnobotánicos,” *Folia Amazónica*, vol. 12, no. 1-2, pp. 53–75, 2001.
[37] M. Rahmatullah, M. A. Rahman, M. Z. Haque et al., “A survey of medicinal plants used by folk medicinal practitioners of station purbo para village of Jamalpur Sadar Upazila in Jamalpur district, Bangladesh,” *American-Eurasian Journal of Sustainable Agriculture*, vol. 4, no. 2, pp. 122–135, 2010.

[38] M. Leonti, H. Vibrans, O. Sticher, and M. Heinrich, “Ethnopharmacology of the Popoluca, Mexico: an evaluation,” *Journal of Pharmacy and Pharmacology*, vol. 53, no. 12, pp. 1653–1669, 2001.

[39] C. H. Pellizzon, A. L. Rozza, P. C. P. Vasconcelos, M. A. Andreo, and C. A. Hiruma-Lima, “Non-commercial plants of medicinal purposes from the Brazilian biomes for the treatment of gastrointestinal diseases,” in *Drug Plants III*, vol. 29 of *Information: Recent Progress in Medicinal Plants*, pp. 217–236, Studium Press LLC, Delhi, India, 2010.

[40] J. Alarcón-Alonso, A. Zamilpa, F. A. Aguilar, M. Herrera-Ruiz, J. Tortoriello, and E. Jimenez-Ferrer, "Pharmacological characterization of the diuretic effect of *Hibiscus sabdariffa* Linn (Malvaceae) extract," *Journal of Ethnopharmacology*, vol. 139, no. 3, pp. 751–756, 2012.

[41] E. B. C. Lima, C. N. S. Sousa, L. N. Meneses et al., “*Cocos nucifera* (L.) (Arecaceae): a phytochemical and pharmacological review,” *Brazilian Journal of Medical and Biological Research*, vol. 48, no. 11, pp. 953–964, 2015.

[42] G. Bourdy, L. R. Chavez De Michel, and A. Roca-Coulthard, "Pharmacopoeia in a shamanistic society: the Izoeño-Guaraní (Bolivian Chaco)," *Journal of Ethnopharmacology*, vol. 91, no. 2-3, pp. 189–208, 2004.

[43] E. A. Carlini, "Plants and the central nervous system," *Pharmacology, Biochemistry and Behavior*, vol. 75, no. 3, pp. 501–512, 2003.

[44] B. Ahmed, T. Alam, M. Varshney, and S. A. Khan, "Hepatoprotective activity of two plants belonging to the Apiaceae and the Euphorbiaceae family," *Journal of Ethnopharmacology*, vol. 79, no. 3, pp. 313–316, 2002.

[45] V. De Feo, “Ethnomedical field study in northern Peruvian Andes with particular reference to divination practices,” *Journal of Ethnopharmacology*, vol. 85, no. 2-3, pp. 243–256, 2003.

[46] S. Andrade, S. Arguello, P. Cazamajor et al., *Nuevas Investigaciones Antropológicas Ecuatorianas*, Editorial Abya Yala, Quito, Ecuador, 1988.