Abstract

Background: Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible.

Results: Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT®, the ImMunoGeneTics information system®. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells.

Conclusion: This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

Background

The T cell receptor (TR) is a complex of trans-membrane dimeric proteins that mediate the antigen-dependent activation of T cells [1]. TR recognize self-MHC molecules presenting ‘foreign-looking’ protein fragments on the surface of infected, cancerous or ‘non-self’ cells. Most of circulating T cells express TR comprising of alpha and beta chains, while a minimal portion express the gamma and delta dimers [2]. Each chain consists in its extracellular region of a variable (V) and a constant (C) domain. Like immunoglobulin (IG), TR are encoded by several genes that undergo somatic recombination during T cell development [3]. According to the sequences deposited in IMGT®, the ImMunoGeneTics information system®, http://imgt.cines.fr [4-6], the human TRA locus has 47 TRAV, 50 TRAJ and 1 TRAC genes, whereas the TRB locus has 54 TRBV, 2 TRBD, 14 TRBJ and 2 TRBC genes; the TRD locus has 3 TRDV, 3 TRDD, 4 TRDJ and 1 TRDC genes, whereas the TRG locus has 9 TRGV, 5 TRGJ and 2 TRGC genes.

The hypervariable regions, known as complementarity determining regions (CDR), define antigen-binding specificities the CDR1 and CDR2 being encoded by the V genes whereas the CDR3 result from V-(D)-J recombina-
tions. The combinatorial rearrangement of the V, (D) and J genes and the mechanisms of trimming and N addition accounts for the huge diversity of naïve TR and T cell repertoires.

Defining the TR gene usage in antigen-activated T cells is crucial for shaping the immune response in several physiological and pathological conditions such as inflammation and infectious diseases. Furthermore, the cloning of antigen-specific TR is emerging as a powerful strategy for immune-based therapies in autoimmunity, cancer and vaccination [7,8]. However, cloning and expression of specific TR is still a difficult task. TR has an intrinsic low affinity for its antigen and, as membrane-bound protein, is poorly stable when expressed as recombinant soluble protein. Working on the variable portion of few well defined TR, several authors have reported methods to overcome these problems [9]. Soluble and stable TR have been expressed as single-chains [10], or fused to a coiled coil heterodimerization motif [11] or introducing non native disulphide bond [12]. The affinity of specific TR molecules to their antigens has been improved to picomolar levels either by phage [13] or Yeast [14] display methods.

Different methods have been proposed to investigate TR repertoire including length analysis of TR complementarity-determining region 3 (CDR3), flow cytometry, and immuno-histochemistry [15].

The availability of the IMGT/GENE-DB database [5] comprising all germline genes has fuelled the development of several PCR-based methods for cloning TR repertoires. However, the cloning and analysis of TR is rendered difficult by the diversity of the 5′ V gene sequences and by the repertoire complexity. Several authors have reported sets of primers that allow PCR-mediated amplification of V regions [16-19]. However, these primers have been designed to amplify subsets of TR genes or have been used in the analysis of clonal T cell populations [20].

Here we report a novel set of primers predicted to amplify nearly 100% of all functional TR V genes. We show that these primers can amplify transcribed TR V genes from as little as 1000 peripheral blood T cells, allowing a reliable and efficient method to clone TR repertoires.

Results

Data analysis and primers design

The creation of large diverse libraries representing the specificities of TR repertoires relies on primers which are able to amplify all sequences coding for functional variable regions. With this aim, we developed a strategy to design a new set of primers that greatly reduces the number of reactions needed to amplify all functional V sequences.

Germline V, D and J gene sequences encoding TRA, TRB, TRD and TRG chains [5,6], were retrieved from the IMGT® information system http://imgt.cines.fr. Two algorithms, "TCRAlignment" and "TCROligo" (see M&M), have been developed to analyze 47 TRAV, 54 TRBV, 9 TRGV, 3 TRDV, 50 TRAJ, 14 TRBJ, 5 TRGJ and 4 TRDJ genes. In the first step sequences belonging to each data set were grouped into "families" by the TCRAlignment algorithm. The algorithm performs an alignment limited to the first 23 bases of FR1 at the 5′ end of each V region sequence (starting at base number 1) or in the last 23 bases, at the 3′ end in the case of J genes and group them on the basis of similarities. Sequences are grouped if they share less than two mismatches within the 3′ 16 bases. This criteria is applied to either 23, 22, 21, 20 or 19 bases long sequences. In the second step the TCROligo algorithm uses these sequence families to design unique or degenerated primers (see M&M) for both the V or J region. With these tools we generated a novel set of primers (Table 1 and 2) that makes theoretically feasible the amplification and cloning of the entire TR repertoire. The variable regions of all functional TRA and TRB chains can be in silico amplified by 25 and 17 reactions, respectively, while 4 primer pairs are needed to amplify the 9 TRGV genes (Table 1). We also obtained a reduced set of primers for the poor similar J genes (Table 2), being 39 primer pairs sufficient to amplify 50 TRAJ genes and 9 primer pairs for 14 TRBJ genes.

RT-PCR

To check whether the primers designed in silico were suitable to clone TR specificities, we performed RT-PCR with all the Forward primers for TRAV, TRBV, TRDV and TRGV. Each TR V primer was paired with an unique primer annealing to the 5′ end of the TR C genes (Table 3). RT-PCR reactions were carried out on total RNA from peripheral blood T lymphocytes. For each reaction cDNA corresponding to approximately 1000 cells was used. As shown in figure 1 all the reactions of the TRAVFor primers produced PCR fragments of the expected size, the only exception being the TRAV7for and the TRAV18for primers. A specific TRAV7for amplification could be obtained after a second round of amplification of the first reaction. The TRAV18for primer gave a band with a lower size than expected. The TRBVfor amplifications were all positive with the expected size the only exception being the TRBV30for that could be seen after reamplification of the first reaction. Finally we got amplifications for four TRDV and TRGV for primer pairs.

To confirm the specificity of the amplification products, each PCR fragment for TRVAfor and TRBVfor amplifications was purified, blunt-cloned and independently used to transform E. coli cells. Several random clones from each transformation were sequenced and the results are summarized in Table 4. The TR database analysis of the
Table 1: TR V Region Forward primers

OLIGO NAME	OLIGO SEQUENCE	TRA V GENES OPTIMALLY RECOGNIZED
TRAV1for	GGA CAA ARC MTG GAS CAG CC	V1-1, V1-2
TRAV2for	AAG GAC CAA GTG TTT CAG CC	V2
TRAV3for	GCT CAG TCA GTG RCY CAG CC	V3, V8-3
TRAV4for	GAT GCT AAG ACC ACM CAG CC	V4, V26-1, V26-2
TRAV5for	AGA AAA SAW STG GAG CAG AGT C	V5, V10, V22, V34, V41
TRAV6for	AGC CAA AAG ATA GAA CAG AA	V6
TRAV7for	GAA AAC CAG TGT GAG CAC AG	V7
TRAV8for	GCC CAG TCK GTG ASC CAG CW	V8-1, V8-2, V8-4, V8-6, V8-7
TRAV9for	GGA AAT TCA GTG RYC CAG AY	V9-1, V9-2
TRAV12for	CAG AAG GAG GTG GAG CAG RAT YC	V12-1, V12-2, V12-3
TRAV13for	GGA GAG ART GTG GRG CWG CA	V13-1, V13-2
TRAV14for	GCC CAG AAG RTW ACT CAA RC	V14/DV4, V19
TRAV16for	GCC CAG ASA GTS ACT CAG YC	V16, V38-1, V38-2/DV8
TRAV17for	AGT CAA CAG GGA GAG GA	V17
TRAV18for	GGA GAC TCG GTT ACC CAG AC	V18
TRAV20for	AAA CAG GAG GTG AGC AKT CC	V20, V21
TRAV23for	GCC CAA CAG AAG GAG AAA AG	V23/DV6
TRAV24for	GAG CAG AAM GTG GAA CAG AR	V24, V39
TRAV25for	GGA CAA CAG GTA ATG CAA AT	V25
TRAV27for	ACC CAG CTG CTG GAG CAG AG	V27
TRAV29for	AGT CAA CAG AAG AAT GAT GA	V29/DV5
TRAV30for	CAA CAA CCA GTG AGT ACCT CAG	V30
TRAV35for	GGT CAA CAG AAG GTT ACT CAG TC	V35
TRAV36for	GAA GAC AGG GTA CAA AG	V36/DV7
TRAV40for	AGC AAT TCA GTC AAG CAG AC	V40

BETA	TRBV GENES OPTIMALLY RECOGNIZED	
TRBV2for	GAT GCT GAA GTC RCM CAG ACT CC	V2, V16, V23-1
TRBV3for	GAT GCW GMT GTT WCC CAG AC	V3-1, V24-1
TRBV4for	GAC ACT GRA GTY ACS CAG ACA CC	V4-1, V4-2, V4-3, V12-5
TRBV5for	GAG GCT GGA GTC ACH CAA AS	V5-1, V5-3, V9, V5-4, V5-5, V5-6, V5-7, V5-8
TRBV6for	GAG CCT GWG TGY ASY CAG AC	V6-1, V6-2, V6-3, V6-5, V6-6, V6-7, V6-8, V6-9, V17
TRBV7for	GGT CAA CAG GGA GTY KCC CAG W	V7-1, V7-2, V7-3, V11-2, V7-4, V7-6, V7-7, V7-8, V7-9
TRBV10for	GAT GCT GRR ATC ACC CAG R	V6-4, V10-1, V10-2, V10-3
TRBV11for	GAA GCT GAA GTC GTT GCG CAG TC	V11-1
TRBV13for	GAT GCT GGA GTY ATC CAG TC	V13, V12-3, V12-4
TRBV14for	GAA GCT GGA GTC RYT CAG T	V11-3, V14
TRBV15for	GAT GCC ATG GTG ATC CAG AA	V15
TRBV16for	AAT GCC GCC GTC GTG ATG CAG AA	V18
TRBV19for	GAT GCT GGA ATC ACT CAG TC	V19
TRBV20for	AGT GCT GTG CTC ATC CAG MA	V20-1, V29-1
TRBV25for	GAA GTG GAC ATC TAC CAG AC	V25-1
TRBV27for	GAT GCT AAA GTR ACC CAG ARC YC	V27, V28
TRBV30for	ACA CTC CAG GCA CAG AGA TA	V30

GAMMA	TRGV GENES OPTIMALLY RECOGNIZED	
TRGV1for	TCT TCC AAC TTG GAA GGG RG	V1, V2, V3, V4, V5, V8
TRGV9for	GCA GGT CAC CTA GAG CAA CC	V9
TRGV10for	TTA CCA AAA GTG GAG CAG TT	V10
TRGV11for	CTG GGG CAG TGG GAG CAA CC	V11

DELTA	TRDV GENES OPTIMALLY RECOGNIZED	
TRDV1for	GCC CAG AAG GTT ACT CAA GC	V1
TRDV2for	GCC ATT GAG TGG GTG CCT GA	V2
TRDV3for	TGT GAC AAA GTA ACC CAG AG	V3

List of optimal primer sequence as designed with the TCRAlignment and TCROligo algorithms for the TRAV, TRBV, TRGV and TRDV genes.
sequenced clones show that non-degenerate primers matching unambiguously to single TR genes selectively amplify their specific single gene targets. This specific amplification could be achieved even for very rare genes. For example the TRBV18for or TRBV11for primers selectively amplify the TRBV18 and TRBV11-1 genes that are found in 0.5% or 0.8% of circulating T cells [21], respectively.

Furthermore when analyzing clones deriving from degenerate primers, matching to a subset of TR clonotypes, we show that although sequencing a relative low number of clones, a high percentage of all possible genes were present. For example among 5 members present in the respective groups the TRAV5for or TRAV8for primers amplify 3 genes, as well the TRBV4for or TRBV5for primers amplify 3 out of 4 and 5 out of 8 genes present in the group, respectively. Interestingly, some genes amplified by degenerate primers are more frequent than other group members. This finding is likely due to the relative abundance of these transcripts within the analysed repertoires and not to amplification biases since there is no obvious relationship between primer and gene sequences.

Finally it is worth noting that some degenerate primers are also able to amplify genes that have not been computationally scored as targets (Table 1). In the case of the TRBV2for the amplified genes present only 3 to 5 base differences with the primers but were excluded in the first step of “families” generation for the presence of mismatches in the first 16 bases. The same is true for the TRBV6for primer that amplify TRBV2 gene that present only 2 nucleotides different form the primer, with one in the first 16. Although this might limit the usefulness of the primer set described for clonotypic analyses this ability increases considerably the chances to clone most TR transcripts, if not all, and turns out very useful for the creation of libraries representative of TR repertoires.

V region Restriction enzymes analysis

The primer sets presented in this work consent the cloning of virtually the entire repertoire of TR molecules in library vectors. In the view of the creation of large TR libraries we have also analysed the frequency of restriction enzymes cutting in the database of the downloaded TR V, J and D genes. We selected 27 restriction enzymes usually used for molecular cloning and the corresponding recognition sites were used to compute a restriction map for each of our data set by employing a simple PERL program. The output is shown in Table 5 and evidences the presence of 7 enzymes (Ascl, BssHII, Nhel, NotI, SfiI, Sacl, SalI) not cutting in any of the regions considered. These restriction enzymes could therefore be used for individual T cell or library cloning in order to avoid the loss of specific TC genes during the cloning process. Restriction sites would be added directly to the oligonucleotides based on a strategy previously described for both antibody and TC V region cloning and expression [7,22,23] that involves cloning of the engineered genes (antibody or TC V) after a leader sequence, for both bacterial (eg peIL, OmpA, phoaA) or eukaryotic (Ileader) soluble expression.

Discussion

The availability of databases comprising gene sequences encoding all IG or TR genes (IMGT/GENE-DB)[5] has allowed the PCR-mediated cloning of antibody repertoires or subsets of TR and has shed light over the immune response in human and mouse.

Furthermore, the engineering of synthetic antibodies has become an important methodology for the generation of reagent, diagnostic and therapeutic molecules. Obviously, the availability of databases listing all TR genes has been seen by researchers as an opportunity to do on TR what has been done with immunoglobulins. However, the cloning of TR repertoires has been hampered by a considerable higher diversity of 5’ TR V genes. Several primer sets have been reported so far, but these have allowed the amplification and cloning of a restricted group of TR genes, mostly belonging to the alpha and beta chains, or have been used for the analysis of clonal T cell populations [16-19].

Here, we report a new set of primers that allow the theoretical amplification and cloning of all TR V genes. The primers were computationally designed on sequence data available at the IMGT® information system, and comprising genes for all functionally synthesized TR chains. The criteria we adopted for algorithm design were such to provide the least number of primers required to amplify all catalogued genes. We obtained a number of primers considerably lower than those reported by other authors [17,19,20]. For instance, the number of primers required to amplify all V regions of TRA and TRB chains is 25 and 17, respectively, instead of 45 and 43 for each of the two amplification rounds reported by Boulter and colleagues [20].

Using two representative sets of primers matching either to single or to a subset of TR genes, we show that they can efficiently amplify target genes in one RT-PCR step, and from as little as 1000 T cells without the need of further amplifications. Among all random sequenced clones, we did not find no-TR gene sequences, a finding that confirms the selectivity of our primers. In agreement with data demonstrating the biased composition of TRA and TRB repertoires [15], we found that degenerated primers amplify with higher frequency some members of target group.
Table 2: TR J gene reverse primers

OLIGO NAME	OLIGO SEQUENCE	J GENES OPTIMALLY RECOGNIZED
ALPHA		
TRAJ6rev	CCG ATG AAC AAT AAG GCT GGT TC	J6
TRAJ9rev	GAG TTC CAC TTT TAG CTG AG	J10
TRAJ12rev	TGG AGA GAC TAG AAG CAT AG	J11
TRAJ13rev	TGG ACT GAC CAG MAG TCK GG	J12, J8
TRAJ15rev	TGG GAT GAC TTG GAT CTT TG	J13
TRAJ16rev	GGA ACT CAC TGA TAG GTG GG	J15
TRAJ17rev	AAG ATC CAC CCT TAA CAT GG	J16
TRAJ20rev	TGG TTT AAC TAG CAC CCT GG	J17
TRAJ21rev	TGG TTT TAC ATT GAG TTT GG	J20
TRAJ22rev	AAG CCA RAC AGT CAA YTG WGT	J22, J18
TRAJ23rev	GGG TTT CAC AGT TAA CTC CG	J23
TRAJ25rev	TGG TAT GAC CAC MAC YTG GKT	J25, J7
TRAJ26rev	GGG CAC CAC GGA CAA TCT GG	J26
TRAJ27rev	TGG CTT CAC AGT GAG CCT GAG	J27
TRAJ29rev	TGC TTT MAC ARA WAG TCT TGT	J29, J9
TRAJ30rev	GGG GAG AAT ATG AAG TCG TG	J30
TRAJ31rev	GGG CTC CAC CAC CAG CTG AG	J31
TRAJ32rev	TGG CTG GAC AGC AAC CAG AG	J32
TRAJ33rev	TGG CCT TAT AAT TAG CCT GG	J33
TRAJ34rev	TGG AAA GAC TTG TAA TCT GG	J34
TRAJ37rev	TGG TTT TAC TGT TAA AGT TG	J37
TRAJ38rev	CGG ATT TAC TGC CAG CCT TG	J38
TRAJ40rev	TGG TAA AAC CTT CAG CCT GG	J40
TRAJ41rev	GGG TGT GAC CAA CAC AGG	J41
TRAJ42rev	TGG TAT GAC MGA GAG TTT RGT SC	J42, J28
TRAJ44rev	TGG TTG CAC YTG RAG TCT TGT CC	J44, J5
TRAJ45rev	GGG CTG GAT GAT TAG ATG AG	J45
TRAJ46rev	GGG CCT AAC TGC TAA ACAG AG	J46
TRAJ47rev	GGA CTT GAC TCT CAG AAT GG	J47
TRAJ48rev	TGG CCG GAT GST GAG TCT KGT YC	J48, J3
TRAJ49rev	GGG AAT AAY GGT GAG TCT YGT TC	J48, J36
TRAJ50rev	GGG TTT CCT RAA YAA MCT TGT	J49, J39
TRAJ52rev	TGG ATG GAC AGT CAA GAT GG	J52
TRAJ53rev	TGG ATT CAC GGT TAA GAG AG	J53
TRAJ54rev	TGG GTG TAY AGY CAG CTT GGT YC	J54, J4
TRAJ56rev	TGG TCT AAC AC TCA GAG TTA	J56
TRAJ57rev	TGG TTT TAC TGT CAG TTT GG	J57, J43
BETA		
TRBJ1rev	TGT GAC YGT GAG YCT GGT GC	J1-1, J2-7
TRBJ2rev	TGT CAC RGT KAR CCT GGT CC	J1-2, J1-6
TRBJ3rev	TAC AAG AGT GAG CCA ACT CC	J1-3
TRBJ4rev	CAG CAC WGA GAG CYG GGT GC	J1-4, J2-4
TRBJ5rev	TAG GAT GGA GAG TCG AGT CC	J1-5
TRBJ2.1rev	TAG CAC TGT SAG CCG KGT SCC TG	J2-1, J2-3
TRBJ2.2rev	CAG AAC CAG GAG TCC TCC GC	J2-2, J2-8
TRBJ2.4rev	CAC TAC GAT CAG CTT RYGT GC	J2-2, J2-6
TRBJ2.5rev	GAG CAC CAG GAG CCG GCT GCC TG	J2-5
GAMMA		
TRGP1rev	AGG CGA AGT TAC TAT GAG CY	JP1, JP2
TRGPrev	TGT AAT GAT AAG CTT TGT TC	JP
TRGj1rev	TGT GAC AAC MAG TGT TGT TC	J1, J2
DELTA		
TRDJ1rev	TGG TTC CAC GAT GAG TTG TC	J1
TRDJ2rev	TGG TTC CAC AGT CAC AGG GG	J2
TRDj3rev	GGG TTC CAC GAG GAG TTT GA	J3
TRDj4rev	TGG TTC TAC CCT CAC ATA GG	J4

List of optimal primer sequence as designed with the TCRAlignment and TCROligo algorithms for the TRAJ, TRBJ, TRDJ and TRGj genes.
Conclusion

Our purpose was to create a primer set able to optimally amplify all TR V genes, and we feel that we have done this. This set will allow the profiling of TR repertoire as well as the creation of libraries such as those based on single chain formats (scTR). Furthermore, the use of this set will facilitate the cloning of antigen-specific TR, a prerequisite for the development of immune-based therapies in autoimmunity, cancer and vaccination.

Methods

Sequences encoding TR V regions

Sequences corresponding to the functional V and J genes for TR alpha, beta, gamma and delta chains [4] were downloaded from IMGT® http://imgt.cines.fr. 47 TRAV, 54 TRBV, 9 TRGV, 3 TRDV, 50 TRAJ, 14 TRBJ, 5 TRGJ and 4 TRDJ genes sequences were retrieved to constitute our working data set.

Primers Design

We designed two algorithms: "TCRAlignment", which clusters either V or J sequences on the basis of DNA similarities; "TCROligo", which defines the primer set for each cluster. The parameters considered to design the algorithms were the following:

- the Forward (For) primer must anneal at the 5’ end of TR V genes starting at the first base.
- the Reverse (Rev) primer must anneal at the 3’-end of TR J gene ending at the last base.
- primer length must range 19 to 23 nucleotides;
- AT content in the range of 35–65%;
- all scored primers must perfectly anneal to the last 3’-end 16 bp;

Table 3: TR C genes reverse primers

OLIGO NAME	OLIGO SEQUENCE	C GENE RECOGNIZED
TRACrev	TCTCAGCTGGTACACGGCAG	TRAC
TRBrev	AGATCTCTCTGCTTGATGGCTC	TRBC2
TRGCrev	GAAGGGAAGAAAAATAGGGGC	TRGC2
TRDrev	GGATGGTTTGGTATGAGGCTG	TRDC

List of reverse primer sequence for TR constant regions
- degenerate nucleotides are introduced at no more than three positions so that the total number of different variants is less than eight, and only if it helps for full homology at the 3'-end 16 bp.

Table 4: TR V primers validation

OLIGO NAME	TRAV GENES OPTIMALLY RECOGNIZED	others found	N	
Experimentally found	Experimentally Not found			
TRAV1 for	V1-2	V1-1	-	2
TRAV2 for	V2	-	-	5
TRAV3 for	-	V3, V8-3	-	-
TRAV4 for	V26-1	V4, V26-2	-	2
TRAV5 for	V10, V34, V41	V5, V22	-	12
TRAV6 for	V6	-	-	3
TRAV7 for	V7	-	-	2
TRAV8 for	V8-1, V8-4, V8-6	V8-2, V8-7	-	13
TRAV9 for	V9-1	V9-2	-	2
TRAV12 for	V12-1	V12-2, V12-3	-	2
TRAV13 for	V13-1, V13-2	-	-	2
TRAV14 for	V19	V14/DV4	TRDV1	4
TRAV16 for	V16	V38-1, V38-2/DV8	TRB1-3	3
TRAV17 for	V17	-	-	3
TRAV18 for	V18	-	-	1
TRAV20 for	V20, V21	-	-	5
TRAV23 for	V23/DV6	-	-	5
TRAV24 for	V24	V39	V6	1
TRAV25 for	V25	-	-	2
TRAV27 for	V27	-	-	1
TRAV29 for	V29/DV5	-	18-1	2
TRAV30 for	V30	-	-	1
TRAV35 for	V35	-	-	1
TRAV36 for	V36/DV7	-	-	1
TRAV40 for	V40	-	-	1

| TRBV GENES OPTIMALLY RECOGNIZED | others found | N |
Experimentally found	Experimentally Not found			
TRBV2 for	V2, V23-1	V16	V6-5, V7-6, V12-5, V24-1	10
TRBV3 for	V3-1, V24-1	-	-	2
TRBV4 for	V4-1, V4-3, V12-5	V4-2	-	4
TRBV5 for	V5-1, V5-4, V5-5, V5-6, V5-7	V5-3, V9, V5-8	-	7
TRBV6 for	V6-1, V6-2, V6-5	V6-3, V6-6, V6-7, V6-8, V6-9, V17	V2	5
TRBV7 for	V7-1, V7-2, V7-3, V7-4	V7-6, V7-7, V7-8, V7-9, V11-2	-	7
TRBV10 for	V6-4	V10-1, V10-2, V10-3	-	1
TRBV11 for	V11-1	-	-	4
TRBV13 for	V12-3	V13, V12-4	-	7
TRBV14 for	V14	V11-3	V11-2	3
TRBV15 for	V15	-	-	2
TRBV18 for	V18	-	-	5
TRBV19 for	V19	-	-	2
TRBV20 for	V29-1	V20-1	-	3
TRBV25 for	V25-1	-	-	1
TRBV27 for	V28	V27	-	5
TRBV30 for	V30	-	-	1

Primer specificity validation by DNA sequencing. PCR products (see Fig. 1) were cloned in pTZ57R/T vector and up to thirteen clones randomly selected and sequenced. N = number of sequenced clones.

The TCRAlignment algorithm stores the first 23 nucleotides of each data set sequence in a N × M matrix, where N is the number of considered sequences and M is equal to 23 (maximum primer length), and generates an alignment by comparing the first reference sequence to the oth-
ers. Then, the algorithm scores the alignment for sequences that differ from the first one at 1 or 2 nucleotides in the 3' end 16 bases and clusters them in a family. This criteria guarantees full homology in the 3' end region.

In order to group the large amount of similar sequences, the algorithm changes the M value by considering the four possible primer lengths (23, 22, 21, 20, 19). After counting for each length the number of homologies in the last 16 positions of each aligned sequence, the algorithm chooses, according to the previous criteria, the M value for which the number of clustered sequences is the greatest. The alignment of selected sequences is saved and the entire procedure is repeated for the remaining sequences.

For each TCRAlignment family, the TCROligo algorithm designs a primer complementary to all sequences grouped in the family. Each alignment is saved in a N × M matrix, and the algorithm designs a primer by considering each position of the alignment, that is each column of the matrix, and by filling the corresponding position of the primer as follows: for each of the first M-16 positions, where M can assume the four possible primer lengths values, the algorithm puts the nucleotide that appears most frequently in the considered column while in the last 16 positions it inserts, where necessary, degenerate nucleotides.

Once the primer was designed, TCROligo algorithm computes its AT content and if it is not comprised between 35% and 65% the first M-16 bases of the primer are changed.

By applying this procedure to all the alignments found with the previous program we find the primers for all the functional TR V and J genes.

Common reverse primers were designed in the first exon for all the constant region and are reported in table 3.

RT-PCR

Peripheral-blood monocites cells (PBMC) were isolated from healthy donors by density gradient centrifugation (Ficoll-Paque PLUS, GE Healthcare, Milan, Italy). Total

Table 5: Restriction enzymes cutting frequency

Restriction enzyme name	Sequence cleaved	TRAV (47)	TRBV (54)	TRDV (3)	TRGV (9)	TRAJ (50)	TRBJ (14)	TRDJ (4)	TRGJ (5)	TRBD (2)	TRDD (3)	TOTAL (191)
ApaLI	GTCGAC	1	2	0	0	0	0	0	0	0	0	3
AciI	GCCGCAGG	0	0	0	0	0	0	0	0	0	0	0
BamHI	GATCC	7	7	0	0	0	0	0	0	14		
BglII	AGATCT	2	4	0	0	0	0	0	0	0	0	6
BssHII	GCAGCC	0	0	0	0	0	0	0	0	0	0	0
BstEII	GGTCACC	6	6	0	0	0	0	0	0	0	0	16
Clal	ATCGAT	0	11	0	0	0	0	0	0	0	0	11
Eagl	GCACGGG	0	3	0	0	0	0	0	0	0	0	3
EcoRI	GATTC	3	0	0	0	0	0	0	0	0	0	7
EcoRV	GATATC	1	3	0	0	0	0	0	0	0	0	5
HaeIII	(AG)GCAC(CT)	4	3	0	0	1	2	0	0	0	0	10
HindIII	AAGCTT	3	4	0	0	2	1	0	0	0	0	11
KpnII	GGTCACC	7	26	1	7	0	0	0	0	0	0	41
Ncol	CCGAGG	3	4	0	0	0	0	0	0	0	0	7
Ndel	CATATG	6	5	0	0	1	0	0	0	0	0	12
NheI	GTACTG	0	0	0	0	0	0	0	0	0	0	0
NotI	GCACGGG	0	0	0	0	0	0	0	0	0	0	0
PspI	CTGAG	1	1	0	0	0	0	0	0	0	0	2
PvuII	CGATCC	0	0	0	0	0	0	0	0	0	0	2
SacI	GACTGC	4	9	0	0	0	0	0	0	0	0	13
SacII	CCAGGG	0	0	0	0	0	0	0	0	0	0	0
SalI	GTCGAG	0	0	0	0	0	0	0	0	0	0	0
Smal	CCCAGG	3	2	0	0	0	0	0	0	0	0	5
Sphel	ACTAGT	1	0	0	0	0	0	0	0	0	0	1
Sphi	GCATGC	1	0	0	0	0	0	0	0	0	0	1
Sfi	GCAGCCGG	0	0	0	0	0	0	0	0	0	0	0
Sfi	GGCAGGGG	0	0	0	0	0	0	0	0	0	0	0
Sfi	GGCAGGGG	0	0	0	0	0	0	0	0	0	0	0
Xbal	TCTAGA	2	5	0	0	0	0	0	0	0	0	7
Xhol	CTCGAG	0	1	0	0	0	0	0	0	0	0	1

Frequency of restriction enzymes cutting sites in human germline TR V, D and J genes. In bold the enzyme not cutting in any of the sequence analyzed.
RNA was extracted from 1 × 10^6 cells using the E.Z.N.A. Total RNA Kit I (Omega Bio-Tek Inc.). 600 ng of RNA was reverse transcribed in a 40 μl reaction volume using the Transcriptor High Fidelity cDNA Synthesis Kit (Roche GmbH, Mannheim, Germany) and used as template for PCR (0.5–1 μl of cDNA for each reaction in 25 μl reaction volume). Common reverse primers were designed in the constant region of the alpha, beta, gamma and delta chains, and were located in the exon 1 of the respective gene. Primers were designed in order to add a BssHII restriction site on the forward and a NheI site on the reverse primer, for further cloning purposes. Amplifications conditions were 30 s at 94°C, 30 s at 52°C, and 30 s at 72°C for 35 cycles. Primers used in this study are listed in Table 1 (Biomers GmbH, Ulm, Germany). PCR products were gel-purified with the NucleoSpin Extract II kit (Macherey-Nagel GmbH, Duren, Germany) and blunt-cloned in the pTZ57R/T vector with the InsTAclone PCR cloning Kit (Fermentas Inc, Vilnius, Lithuania). Ligation were used to transform E. coli DH5α cells and plated on LB/Amp/IPTG/X-gal plates for blue-white screening. For each TR group, up to 13 random clones were sequenced using a standard M13(-20) primer (5’-GTAAAACGACGGCCAGTG-3’).

Authors’ contributions
DS, CS, ID conceived, designed, and coordinated the original project and provided scientific and administrative support. DC performed molecular biology procedures (PCR and cloning). IB wrote the software program and performed sequence alignments. DS and CS wrote and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was supported with grants from Compagnia San Paolo (Turin) and Ricerca Sanitaria Applicata-CIPE Project to C.S. and from European Union (MERG-CT-2005-031150) and NIH RFA-DK-06-002 to D.S.

References
1. Ehrich EW, Devaux B, Rock EP, Jorgensen JL, Davis MM, Chien YH: T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen. J Exp Med 1993, 178:713-22.
2. Eain S, Shigematsu M, Naga S, Eklund A, Wiggell H, Grunewald J: Different percentages of peripheral blood gamma delta + T cells in healthy individuals from different areas of the world. Scand J Immunol 1996, 43:593-6.
3. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P: A direct estimate of the human alphabeta T cell receptor diversity. Science 1999, 286:958-61.
4. Giudicelli V, Duroux P, Ginestoux C, Folch G, Jabado-Michaloud J, Chaude D, Lefranc MP: IMGT/LIGM-DB, the IMGT comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res 2006, 34:D781.
5. Giudicelli V, Chaude D, Lefranc MP: IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res 2005;D256-61.
6. Lefranc MP, Lefranc GM: The T cell receptor FactsBook. London, UK: Academic Press; 2001.
7. Richman SA, Kranz DM: Display, engineering, and applications of antigen-specific T cell receptors. Biopolym Eng 2007, 24:361-73.
8. Molloy PE, Sowel AK, Jakobsen BK: Soluble T cell receptors: novel immunothesapeutic agents. Curr Opin Pharmacol 2005, 5:438-43.
9. Maynard J, Adams EJ, Krogsgaard M, Petersson K, Liu CW, Garcia KC: High-level bacterial secretion of single-chain alpha beta T cell receptors. J Immunol Methods 2005, 306:51-67.
10. Schodin BA, Schuette CJ, Kranz DM: Binding properties and solubility of single-chain T cell receptors expressed in E. coli. Mol Immunol 1996, 33:819-29.
11. Willcox BE, Gao GF, Wyer JR, O’Callaghan CA, Boulter JM, Jones EY, Merwe PA van der, Bell JJ, Jakobsen BK: Production of soluble alphabeta T-cell receptor heterodimers suitable for biophysical analysis of ligand binding. Protein Sci 1999, 8:2418-23.
12. Boulter JM, Glick M, Todorov PT, Baston E, Sami M, Rizkallah P, Jakobsen BK: Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng 2003, 16:707-11.
13. van, Moysey R, Molloy PE, Vuidepot AL, Mahon T, Baston E, Dunn S, Liddy N, Jacob J, Jakobsen BK, Boulter JM: Directed evolution of human T cell receptors with picomolar affinities by phage display. Nat Biotechnol 2005, 23:349-54.
14. Chlewicki LK, Holter PD, Monti BC, Clutter MR, Kranz DM: High-affinity, peptide-specific T cell receptors can be generated by mutations in CDR1, CDR2 or CDR3. J Mol Biol 2005, 346:223-39.
15. England P, Wahlstrom J, Fathi M, Rasmussen E, Grunewald J, Tornling G, Lundberg IE: Restricted T cell receptor BV gene usage in the lungs and muscles of patients with idiopathic inflammatory myopathies. Arthritis Rheum 2007, 56:372-83.
16. Hodges E, Krishna MT, Pickard C, Smith JL: Diagnostic role of tests for T cell receptor (TCR) genes. J Clin Pathol 2003, 56:1-11.
17. Genevee C, Dui A, Nierat J, Caignard A, Dietrich PY, Ferradini L, Romant-Roman S, Triebel F, Hercend T: An experimentally validated panel of subfamily-specific oligonucleotide primers (V alpha 1-w29/V beta 1-w24) for the study of human T cell receptor variable V gene segment usage by polymerase chain reaction. Eur J Immunol 1992, 22:126-9.
18. Fernandes S, Chavan S, Chitnis V, Kohn N, Pahwa S: Simplified fluorescent multiplex PCR method for evaluation of the T-cell receptor V beta chain repertoire. Clin Diagn Lab Immunol 2005, 12:477-83.
19. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith JM, Morgan GJ, Kneba M, Macintyre EA: Design and standardization of TCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003, 17:2257-317.
20. Moysey R, Vuidepot AL, Boulter JM: Amplification and one-step expression cloning of human T cell receptor genes. Anal Biochem 2004, 326:284-9.
21. Beemd R van den, Boor PP, van Lochem EG, Hop WC, Langerak AW, Wolvers-Tettero IL, Hooskaas H, van Dongen JJ: Flow cytometric analysis of the Vbeta repertoire in healthy controls. Cytometry 2000, 40:336-45.
22. Sblattero D, Bradbury A: Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol 2000, 18:75-80.