Effect of topography and weather on call to automatic electrical defibrillator attach time by drone for out-of-hospital cardiac arrest: a virtual flight simulation study

Dong Sun Choi
Seoul National University Hospital Biomedical Research Institute Laboratory of Emergency Medical Services, Seoul National University Hospital

Ki Jeong Hong
emkjhong@gmail.com
Seoul National University Hospital
https://orcid.org/0000-0003-3334-817X

Sang Do Shin
Seoul National University Hospital Department of Emergency Medicine, Seoul National University Hospital Biomedical Research Institute Laboratory of Emergency Medical Services

Chang-Gun Lee
Seoul National University College of Engineering, Seoul National University

Tae Han Kim
Seoul National University Seoul Metropolitan Government Boramae Medical Center Department of Emergency Medicine, Seoul National University Hospital Biomedical Research Institute Laboratory of Emergency Medical Services

Youngeun Cho
Seoul National University College of Engineering, Seoul National University

Kyoung Jun Song
Seoul National University Seoul Metropolitan Government Boramae Medical Center Department of Emergency Medicine, Seoul National University Hospital Biomedical Research Institute Laboratory of Emergency Medical Services

Young Sun Ro
Seoul National University Hospital Department of Emergency Medicine, Seoul National University Hospital Biomedical Research Institute Laboratory of Emergency Medical Services

Jeong Ho Park
Seoul National University Hospital Department of Emergency Medicine, Seoul National University Hospital Biomedical Research Institute Laboratory of Emergency Medical Services

Original research

Keywords: Out of hospital cardiac arrest, unmanned aerial vehicle, drone, automatic electrical defibrillator
Abstract

Background Delivery of automatic electrical defibrillator (AED) by unmanned aerial vehicle like drones was suggested to improve early defibrillation for out-of-hospital cardiac arrest. We developed a drone-AED flight virtual simulator using 3-dimensional topographic and meteorological information. The goal of this study is to assess the effect of topography and weather on call to AED attach time in drone-AED program.

Methods We included patients from 2013 to 2016 in Seoul, South Korea, registered in the Korean out-of-hospital cardiac arrest registry. We developed a drone-AED flight simulation using topographic information of Seoul for Euclidean flight pathway and topographic flight pathway including vertical flight to overcome high-rise structures. We used 4 drone flight scenarios according to weather conditions or visibility: flight and control advanced drone, flight advanced drone, control advanced drone and basic drone. Primary outcome was emergency medical service call to AED attach time. Secondary outcome was success rate of call to AED attachment within 5 or 10 minutes, and pre-arrival rate of drone-AED before AED delivery by ground ambulance.

Results 16,596 patients were included. Median flight time of drone-AED was 2.6 and 1.0 minute for topographic flight simulation and Euclidean pathway. Call to AED attach time in topographic pathway was 7.0 minutes in flight and control advanced drone and 8.0 minutes in basic drone. The time in Euclidean pathway was 6.5 minutes in flight and control advanced drone and 7.0 minutes in basic drone. Pre-arrival rate of drone-AED in Euclidean pathway was 38.0% and 16.3% for flight and control advanced drone and basic drone. whereas, pre-arrival rate in the topographic pathway was 27.0% and 11.7%, respectively.

Conclusions Drone-AED took longer call to AED attach time in basic drone than flight and control advanced drone. Pre-arrival rate of flight and control advanced drone was decreased in topographic flight pathway compared to Euclidean pathway. Trial registration This study used cases retrospectively registered in the Korean out-of-hospital cardiac arrest registry.

Background

Out-of-hospital cardiac arrest (OHCA) is one of the leading causes of death worldwide. (1–3) Early defibrillation is one of the important links to improve the survival rate of OHCA patients. (4–7) Public access defibrillation (PAD) programs have been implemented to reduce time between cardiac arrest to the first defibrillation. (4, 8, 9) However, incidence of OHCA located nearby PAD is limited. Moreover, it is difficult for the bystander to find the nearest PAD and apply it to the victims rapidly.

To overcome the limitation of current PAD installation strategy, delivery of automatic electrical defibrillator (AED) to the OHCA scene by unmanned aerial vehicle (UAV) such as drone has been suggested. The delivery of AED using drones was proposed to improve AED application rate and reduce defibrillation time. (12–15) However, previous studies on UAV delivering AED(UAV-AED) program showed several limitations on its implementation to real clinical practice. First, control of UAV flight to the scene could be limited by weather conditions like rain, snow, wind speed and temperature. Poor visibility during flight due to
nighttime or short sight distance by fog could also affect flight permission of UAV. The UAV could not safely and rapidly deliver AED in extreme weather conditions or with poor visibility. Second, topographic conditions could also increase the UAV flight time to the scene and weaken the benefit of UAV-AED program. Previous simulation studies reported the effect of UAV-AED program based on the flight route of UAV by the Euclidean distance from drone installation site to the location of OHCA victims. (12–15) However, to fly across the high-rise buildings in real life, vertical movement should be added to horizontal movement regarding Euclidean distance.

In this study, we developed a virtual UAV-AED flight simulation using topographic information such as natural terrain and buildings in Seoul, South Korea. We also added the meteorological information into the simulation scenario to permit flight of UAV-AED into the scene safely in metropolitan city. The goal of this study is to assess the effect of topography and weather on call to AED attach time by UAV-AED program for OHCA. The hypothesis of this study is that adding topographic and weather conditions on the UAV-AED simulation program would increase call to AED attach time, unlike prior studies which did not consider these conditions.

Methods

Study design

This study is a retrospective observation study using a computerized virtual simulator. We included all OHCA cases registered in Korea OHCA Registry (KOHCAR) from 2013 to 2016, transported by emergency medical services(EMS) across South Korea. The Korea Disease Control and Prevention Agency (KDCA) approved use of all data, and the study was approved by the Institutional Review Board of the study site.

Data source

The KOHCAR is a nationwide database including all cardiac arrest patients transported by EMS ambulances operated by fire departments across South Korea since 2006. This database registers prehospital information written by emergency medical technicians of National Fire Agency. Trained medical record reviewers of KCDC visited the hospitals, in which the OHCA patients were transported by National Fire Agency. They collected in-hospital information and outcome of OHCA victims. Then, prehospital and in-hospital data of each case was merged using the Utstein guidelines. (16, 17)

To develop a UAV-AED flight simulation, we initially extracted data on topography and altitude of Seoul city from Google maps. We constructed a geographic information database including height of buildings by combining the data about altitudes of each terrain with the altitude of all facilities supported by Ministry of Government Administration and Home Affairs. We also added meteorological information including wind speed, precipitation, snowfall, temperature, visibility and weather phenomenon, which were hourly recorded on Korea Meteorological Administration database. These data were added for scenario models of limited UAV-AED flight due to extreme weather condition.

Study setting
Seoul has a population of 9.7 million and covers a total surface area of 605.2 km². Seoul is a metropolitan city with many high-rise buildings and mountains. The EMS system of Seoul is a two-tiered public service model with service level of EMT-intermediate. Seoul is divided into 25 districts. Each district has 3 to 8 fire stations with ambulance vehicles and there are 116 fire stations in total. Each ambulance vehicle is usually staffed with 3 EMTs. One dispatch center covers all EMS calls across Seoul. The PAD installation is mandatory on public health offices, ambulances, airport, train, and apartments with more than 500 households. Approximately 8,000 AEDs are installed in Seoul.

Study population

All OHCA cases in Seoul from January 1, 2013 to December 31, 2016 with age of ≥ 9 years at cardiac arrest recognition time were eligible for this study. Patients with OHCA occurrence in the ambulance during EMS transport was excluded. Moreover, we excluded pediatric OHCA cases aged under 8 years. This is because pediatric cases aged under 8 were recommended for dose attenuator usage to optimize defibrillation energy. Cases with missing AED attach time or cardiac arrest recognition time were also excluded.

Variables

We used the Utstein variables from KOHCAR database such as gender, age, witnessed status, location of event (private vs public vs unknown), bystander CPR, initial electrocardiogram (ECG) rhythm, and EMS defibrillation. We collected the EMS time profiles including EMS call time, EMS arrival at the scene time, EMS departure from the scene time, EMS hospital arrival time, call to cardiac arrest recognition time and call to AED attach time.

The address recorded on KOHCAR was used as the place of cardiac arrest. Geo-coding for the place of cardiac arrest was performed using Google Maps APIs (Google, California, United States). Regarding the weather-related variables, we collected hourly wind speed, precipitation, snowfall, temperature, visibility and weather phenomenon. Daytime and nighttime of OHCA occurrence was divided by 6AM and 6PM.

Development of UAV-AED flight simulation

UAV-AED station allocation

All of 116 fire stations in Seoul were used as the candidates for UAV-AED installation. Among the 116 stations, the optimal location for each number of stations increased by 5 (i.e. 5, 10, 15, etc.) was selected for simulation from 5 to 116 stations. A multicriteria evaluation was conducted for selecting optimal combinations of possible UAV-AED installed stations to reduce call to AED attach time. We generated an OHCA occurrence layer by heat-map analysis of the OHCA occurrence location from 2013 to 2016 in Seoul (Appendix. 1). The EMS call to scene arrival time was analyzed by inverse distance weight interpolation to obtain EMS-response time layer. (Appendix. 2) The OHCA risk map was calculated by adding 1:1 weighting of OHCA occurrence layer and EMS call to scene arrival time layer. GIS analysis was performed using qGIS 3.4. The OHCA risk map was constructed with a lattice with a resolution of 50 m x 50 m. For
optimal number of UAV-AED stations, the estimated coverage of each UAV-AED station was obtained by allocating a 3km circle for each station. The optimal location for each number of stations, increased by 5, was selected according to the location with maximum score of OHCA risk map, which was calculated using the genetic algorithm. (24) (Appendix. 3)

UAV-AED flight simulation

UAV-AED flight simulation consists of environment information of Seoul and drone flight operation. Environmental information of Seoul was constructed by combining topographic information of natural terrain and facility information including location and height of high-rise buildings. (25) The UAV-AED topographic flight pathway was defined by 3 components. The first component was for the UAV-AED to take off vertically from the UAV-AED allocated station above the maximal altitude of natural terrain or high-rise buildings between UAV-AED station and OHCA site (Fig. 1). The second was horizontal flight to the OHCA site according to Euclidean distance. The final component was vertical landing of UAV-AED to the OHCA site. The entire flight pathway including take-off, horizontal flight and landing from UAV-AED station to OHCA site was divided by 3-dimensional virtual blocks of 10 m × 10 m × 10 m. The flight time of UAV-AED was defined as the sum of time required for passing all blocks in the flight pathway. (Fig 1.) The flight time was computed by simulating the passage time of each block by HackflightSim. (26) The flight performance of UAV used for simulation was carried out based on performance of a Huesin Blueye 1k model (Huins Inc., Gyunggi-do, South Korea) weighting 1.2 kg and moving up to 50 km/h. (27) The UAV flight simulation tests were performed using the dynamic simulator of drone transfer simulator on the reference webpage. (28)

UAV-AED simulation scenarios according to topographic and weather conditions

Based on meteorological information of Seoul during study period, we simulated 4 scenarios according to flight performance of the UAV regarding weather and visibility. The first scenario was basic UAV model. In this model, flight of UAV-AED was restricted if EMS call for OHCA occurred during extreme weather conditions, which were defined as strong winds of 10km/h or higher, rain, snow, and temperature below 0°C. Also, if the call was made during nighttime or if the sight distance was less than 1km, flight of UAV in the basic model was not permitted. The second model, control advanced UAV could fly regardless of time or limited visibility during flight. However, it was prohibited for use during extreme weather conditions. The third model, flight advanced UAV could fly in extreme weather conditions, but it could not fly in situations of poor visibility. Lastly, the flight and control advanced UAV model could fly whenever during the study period regardless of weather conditions or poor visibility. We simulated these 4 types of UAV model scenarios for 2 different flight pathways. The first flight pathway is the direct flight route through Euclidean distance from UAV-AED station to OHCA site. The second topographic flight pathway was generated by UAV-AED flight simulation developed in this study using topographic information.

Outcome
Primary outcome was call to AED attach time. Call to AED attach time profiles by current EMS practice was measured by time profiles in the KOHCAR database; and time profiles by UAV-AED was measured by profiles derived from UAV-AED simulation. Secondary outcome was success rate of call to AED attach within 5 minutes or 10 minutes, and pre-arrival rate of UAV-AED before current EMS based AED delivery.

Statistical analysis

The paired Wilcoxon rank sum test was used to compare the call to AED attach time between current practice and UAV-AED program. Call to AED attach success rate within 5 or 10 minutes before and after UAV-AED program implementation was compared using McNemar test. Call to AED attach time was compared according to the 4 drone flight simulation scenarios in both Euclidean distance pathway and topographic simulation pathway using the paired Wilcoxon rank-sum test. We used SAS 9.4.(NC, USA) for statistical analysis.

Results

Total of 18,856 OHCA cases were registered in KOHCAR database during the study period. Among them, 194 patients with age of < 8 years, 1,152 patients with OHCA occurrence during ambulance transport, 579 patients missing AED attach time record, and 335 patients missing OHCA recognition time record were excluded.

3,754 OHCA cases (22.6%) occurred in public space and 7,133 cases were witnessed arrest (43.0%). AED attachment by bystander occurred in 526 patients (3.2%) and 112 patients (0.7%) received defibrillation. Initial shockable rhythm at EMS scene arrival was observed in 2,488 cases (15.0%) and defibrillation by EMS provider was done in 3,535 cases (21.3%). The median EMS response time was 6.0 minutes (IQR 4.0–7.0). Median call to AED attach time by EMS was 8.0 minutes (IQR 6.0–11.0).

The weather and visibility related factors during study period are described in Table 2. Total of 6,749(40.7%) OHCA cases occurred at night and 1,780(10.7%) cases had sight distance of less than 1 km. The number of OHCA calls during extreme weather conditions was 2,658 (16.0%) cases at temperature of < 0°C, 1,585 (9.6%) during rain, 884 (5.3%) during snow, 84 (0.5%) during lightning, and 1 case during wind speed higher than 10m/s.
Table 1
Demographic characteristics and weather related factors of study population

Characteristics	N	%
Number	16,596	
Age, median (IQR)	69.4	(54.3–79.5)
Gender		
Male	10,569	63.7
Female	6,027	36.3
Place		
Public place	3,754	22.6
Private place	12,608	76.0
Unknown	234	1.4
Witnessed arrest	7,133	43.0
Bystander AED apply	526	3.2
Bystander Defibrillation	112	0.7
EMS initial rhythm		
Shockable	2,488	15.0
Non-shockable	13,974	84.2
Unknown	134	0.8
EMS defibrillation	3,535	21.3
Call to arrest recognition (min), median (IQR)	2.4	(1.6–3.4)
Call to EMS departure time (min), median (IQR)	1	(0–1)
EMS response time (min), median (IQR)	6	(4–7)
Scene arrival to AED attach time (min), median (IQR)	2	(1–4)
Call to AED attach time (min), median (IQR)	8	(6–11)
Visibility related environmental factors		
Night time	6,749	40.7
Sight distance < 1km	1,780	10.7
Extreme weather conditions		

Abbreviations: IQR, interquartile; EMS, Emergency medical service;
Characteristics	N	%
Temperature < 0°C	2,658	16.0
Rain	1,585	9.6
Snow	884	5.3
Lightening	84	0.5
Wind speed > 10m/s	1	0.0

Abbreviations: IQR, interquartile; EMS, Emergency medical service;
Table 2
Comparison of AED delivery related outcomes between current EMS situation and UAV-AED program based on UAV-AED topographic flight simulation.

AED delivery related outcomes	Current EMS situation	UAV-AED program according to UAV simulation scenarios								
	N	%	N	%	N	%	N	%	N	%
Total	16596		7,489	45.1	4,340	26.2	5,481	33.0	3,3199	19.3
Number of UAV-AED dispatched	7,489	45.1	4,340	26.2	5,481	33.0	3,3199	19.3		
Flight and control advanced UAV	2.6		2.6		2.6		2.6		2.6	
Flight advanced UAV	2.1–3.2		2.1–3.2		2.1–3.2		2.1–3.2		2.1–3.2	
Control advanced UAV	8.0	6.0–11.0	7.0	5.0–10.0	7.6	5.7–10.0	7.0	5.3–10.0	8.0	6.0–10.0
Basic UAV										
Success rate of call to AED attach within 5min	3,402	20.5	4,183	25.2	3,859	23.3	3,974	23.9	3,741	22.5
Success rate of call to AED attach within 10 min	12,401	74.7	13,149	79.2	12,838	77.4	12,984	78.2	12,742	76.8
Pre-arrival rate of UAV-AED before current EMS based AED delivery	4,477	27.0	2,590	15.6	3,320	20.0	1,940	11.7		

Abbreviations: UAV-AED, Unmanned aerial vehicle delivering automatic electrical defibrillator; IQR, interquartile; a, Paired Wilcoxon rank-sum test was significant (p < 0.05) compared to Current EMS situation group. b, McNemar test was significant (p < 0.05) compared to Current EMS situation group.
Call to AED attach time according to flight simulation scenario and number of UAV-AED stations in the UAV-AED topographic flight simulation are shown in Fig. 2. Call to AED attach time did not decrease in basic UAV model despite all 116 drone stations were available. Flight advanced model reduced call to AED attach time after operating more than 70 drone stations. Control advanced UAV decreased call to attach time from 45 stations. Call to attach time decreased in flight and control advanced UAV model with operation of 30 stations. Median flight time of UAV-AED in the topographic flight simulation was 2.6 minutes (Table 2.). Median call to attach time was 7.0 minutes in flight and control advanced UAV and control advanced UAV models. Flight advanced UAV showed 7.6 minutes of call to AED attach time, whereas basic UAV showed 8.0 minutes. Success rate of call to AED attach time within 5 minutes was 25.0%, 23.9%, 23.3% and 22.5% in each UAV model, respectively. Pre-arrival rate of UAV-AED before current EMS based AED delivery was 27.0% in flight and control advanced UAV model and 11.7% in basic UAV model.

In Euclidean flight pathway, all UAV models showed reduced call to attach time compared to current EMS call to AED attach time. Moreover, decrease of call to AED attach time was observed even with lower number of operating drone stations in Euclidean pathway compared to topographic flight simulation (Fig. 3.). Median flight time of UAV-AED in Euclidean flight pathway was 1.0 minute (Table 3.). The median call to attach time was 6.5 minutes in flight and control advanced UAV and 7.0 minutes in the other 3 UAV models. Success rate of call to AED attach time within 5 minutes was 34.8%, 31.3%, 28.8%, 26.7% in each UAV model. Pre-arrival rate of UAV-AED before current EMS based AED delivery was 38.0% in flight and control advanced UAV model and 16.3% in basic UAV model.
Table 3
Comparison of AED delivery related outcomes between current EMS situation and UAV-AED program based on Euclidean distance flight simulation.

AED delivery related outcomes	Current EMS situation	UAV-AED program according to UAV simulation scenarios										
		Flight and control advanced UAV	Flight advanced UAV	Control advanced UAV	Basic UAV							
	N	%	N	%	N	%	N	%	N	%		
Total	16,596		7,489	45.1	4,340	26.2	5,481	33.0	3,199	19.3		
Number of UAV-AED dispatched			1.0	0.7–1.3	1.0	0.7–1.3	1.0	0.7–1.3	1.0	0.7–1.3		
UAV-AED flight time (min), median (IQR)			8.0	6.0–11.0	6.5^a	4.4–9.3	7.0^a	5.0–10.0	7.0^a	5.0–10.0		
Call to AED attach time at the scene (min), median (IQR)			3,402	20.5	5,773^b	34.8	4,786^b	28.8	5,171^b	31.2	4,439^b	26.7
Success rate of call to AED attach within 5 min			12,401	74.7	13,346^b	80.4	12,959^b	78.1	13,132^b	79.1	12,830^b	77.3
Success rate of call to AED attach within 10 min			6,304	38.0	3,631	21.9	4,631	27.9	2,697	16.3		

Abbreviations: UAV-AED, Unmanned aerial vehicle delivering automatic electrical defibrillator; IQR, interquartile;^a, Paired Wilcoxon rank-sum test was significant (p < 0.05) compared to Current EMS situation group. ;^b, McNemar test was significant (p < 0.05) compared to Current EMS situation group.
Discussion

In this study, we assessed the effects of topography and weather-related factors on flight performance of UAV regarding call to AED attach time by UAV-AED delivery program for OHCA cases in metropolitan city with high-rise buildings and mountains. This study added 3-dimensional topographic information and meteorological information of Seoul into the computerized virtual flight simulator. We analyzed the simulated results using the nationwide database of OHCA by merging prehospital and in-hospital clinical information across South Korea.

The median flight time was 1.0 minutes by Euclidean pathway flight simulation method used in previous studies. However, the median flight time increased to 2.6 minutes in the topographic pathway flight simulation. Longer flight distance was required to overcome flight barriers like mountains or high-rise buildings regarding Euclidean distance. Median call to attach time was 7.0 minutes in basic UAV model in Euclidean pathway. In topographic pathway, call to attach time was 8 minutes in basic UAV. Success rate of call to AED attach time within 5 minutes of flight and control advanced UAV was 34.8% in Euclidean pathway and 25.0% in topographic pathway. Therefore, gain in reduction of AED delivery time of UAV-AED program could be weakened in real-life environments with high-rise buildings, extreme weathers and poor visibility in metropolitan cities like Seoul.

The effect of UAV-AED program on reducing call to AED attach time in this study was lower than the results of previous studies (12–15). First, operation of UAV was limited by environment with poor visibility during flight. In situations of poor visibility, current UAV operated by remote control could not guarantee safe delivery of AED to the scene without collision with housing buildings or laypersons. Second, flight performance of current UAV was restricted under extreme weather conditions like raining or high wind speed. Third, traffic environment and EMS resources of metropolitan city showed shorter delivery time of AED to the scene by ambulance vehicle compared to rural areas. In Seoul, median call to AED attach time of current EMS was 8 minutes in this study.

UAV-AED was also advantageous in UAV-AED arrival time before current EMS based AED delivery in this study. However, optimized UAV-AED installation in each community was required to maximize the benefit of UAV-AED. Floating commercial drones with limited flight operation at night or in bad weather did not reduce call to AED attach time despite all EMS stations in Seoul were used for UAV-AED installation. Drones with augmented visibility or flight performance could overcome this restriction. Flight of UAV in metropolitan city by remote control was another limitation when finding the best route in metropolitan city with high-rise buildings. Designation of the flight pathway for UAV-AED based on 3-dimensional topographic information should be preceded for effective implementation of the UAV-AED program in metropolitan city.

Limitations

First, this study was a simulation study using a computerized virtual flight simulator. Clinical trial of UAV-AED is required to assess clinical outcome or other operational factors affecting UAV-AED flight. Second,
we used flight scenarios with flight speed of 50km per hour and limited UAV flight operation. Improvement of UAV flight performance may affect the result. Third, there is a limitation of generalizability. The goal of this study was to assess the effect of UAV-AED in metropolitan city like Seoul, South Korea. Difference of surface area, density or height of high-rise buildings, natural terrain and weather can affect the result.

Conclusions

We developed a virtual UAV-AED flight computer simulation using 3-dimensional topographic information and meteorological information. Call to AED attach time in Euclidean pathway was 6.5 minute in flight and control advanced UAV model and 7.0 minutes in basic UAV model. The call to AED attach time in topographic pathway was 7.0 minutes in flight and control advanced UAV model and 8.0 minutes in basic UAV model. Pre-arrival rate of UAV-AED in Euclidean pathway was 38.0% and 16.3% in flight and control advanced UAV model and basic UAV model, respectively; whereas pre-arrival rate in the topographic pathway was 27.0% and 11.7%, respectively.

List Of Abbreviations

Automatic electrical defibrillator (AED)

Electrocardiogram (ECG)

Korea Disease Control and Prevention Agency (KDCA)

Korea out-of-hospital cardiac arrest Registry (KOHCAR)

Out-of-hospital cardiac arrest (OHCA)

Public access defibrillation (PAD)

Unmanned aerial vehicle (UAV)

Unmanned aerial vehicle delivering automatic electrical defibrillator (UAV-AED)

Declarations

Ethics approval and consent to participate

This study was approved by the Institutional Review Board of the study site.

Consent for publication

Not applicable.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

All authors have no competing interests.

Funding

This work was funded by the study institution under interdisciplinary research grant between medical school and engineering school [800-20170168].

Authors' contributions

All authors contributed to this study; Choi DS analyzed the dataset and drafted the manuscript. Shin SD and Lee CG designed the concept of UAV-AED flight simulation. Y Cho and Kim TH developed and derived the profiles from the UAV-AED simulation. Song KJ and Park JH conducted the quality improvement process of the OHCA database. Ro YS conducted statistical consultation. Hong KJ designed the study and is responsible for the study.

Acknowledgements

This study was supported by the Korea Disease Control and Prevention Agency (KDCA) for use of Korea out-of-hospital cardiac arrest Registry (KOHCAR) database.

References

1. Ahn KO, Shin SD, Suh GJ, Cha WC, Song KJ, Kim SJ, et al. Epidemiology and outcomes from non-traumatic out-of-hospital cardiac arrest in Korea: A nationwide observational study. Resuscitation. 2010;81(8):974–81.
2. Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation. 2010;81(11):1479–87.
3. Resuscitation, AHAicwItLCo. Part 4: The automated external defibrillator: Key link in the chain of survival. In: Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care: International consensus on science. Circulation. 2000;102(8).
4. Hara M, Hayashi K, Hikoso S, Sakata Y, Kitamura T. Different impacts of time from collapse to first cardiopulmonary resuscitation on outcomes after witnessed out-of-hospital cardiac arrest in adults. Circulation: Cardiovascular Quality Outcomes. 2015;8(3):277–84.
5. Holmberg M, Holmberg S, Herlitz J. Incidence, duration and survival of ventricular fibrillation in out-of-hospital cardiac arrest patients in Sweden. Resuscitation. 2000;44(1):7–17.
6. Nichol G, Thomas E, Callaway CW, Hedges J, Powell JL, Aufderheide TP, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. Jama. 2008;300(12):1423–31.
7. Investigators TPADT. Public-Access Defibrillation and Survival after Out-of-Hospital Cardiac Arrest. N Engl J Med. 2004;351(7):637–46.

8. Ringh M, Hollenberg J, Palsgaard-Moeller T, Svensson L, Rosenqvist M, Lippert FK, et al. The challenges and possibilities of public access defibrillation. J Intern Med. 2018;283(3):238–56.

9. Boutilier JJ, Brooks SC, Janmohamed A, Byers A, Buick JE, Zhan C, et al. Optimizing a drone network to deliver automated external defibrillators. Circulation. 2017;135(25):2454–65.

10. Claesson A, Bäckman A, Ringh M, Svensson L, Nordberg P, Djärv T, et al. Time to Delivery of an Automated External Defibrillator Using a Drone for Simulated Out-of-Hospital Cardiac Arrests vs Emergency Medical Services. JAMA. 2017;317(22):2332–4.

11. Claesson A, Fredman D, Svensson L, Ringh M, Hollenberg J, Nordberg P, et al. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scandinavian Journal of Trauma Resuscitation Emergency Medicine. 2016;24(1):124-

12. Pulver A, Wei R, Mann C. Locating AED Enabled Medical Drones to Enhance Cardiac Arrest Response Times. Prehospital Emergency Care. 2016;20(3):378–89.

13. Ahn KO, Do Shin S, Hwang SS, Oh J, Kawachi I, Kim YT, et al. Association between deprivation status at community level and outcomes from out-of-hospital cardiac arrest: a nationwide observational study. Resuscitation. 2011;82(3):270–6.

14. Song KJ, Do Shin S, Park CB, Kim JY, Kim DK, Kim CH, et al. Dispatcher-assisted bystander cardiopulmonary resuscitation in a metropolitan city: A before–after population-based study. Resuscitation. 2014;85(1):34–41.

15. Cho J, You M, Yoon Y. Characterizing the influence of transportation infrastructure on Emergency Medical Services (EMS) in urban area—a case study of Seoul, South Korea. PloS one. 2017;12(8):e0183241-e.

16. Ro YS, Do Shin S, Song KJ, Lee EJ, Kim JY, Ahn KO, et al. A trend in epidemiology and outcomes of out-of-hospital cardiac arrest by urbanization level: a nationwide observational study from 2006 to 2010 in South Korea. Resuscitation. 2013;84(5):547–57.

17. Lee SY, Ro YS, Do Shin S, Song KJ, Hong KJ, Park JH, et al. Recognition of out-of-hospital cardiac arrest during emergency calls and public awareness of cardiopulmonary resuscitation in communities: a multilevel analysis. Resuscitation. 2018;128:106–11.

18. Park YM, Do Shin S, Lee YJ, Song KJ, Ro YS, Ahn KO. Cardiopulmonary resuscitation by trained responders versus lay persons and outcomes of out-of-hospital cardiac arrest: A community observational study. Resuscitation. 2017;118:55–62.

19. De Caen AR, Berg MD, Chameides L, Gooden CK, Hickey RW, Scott HF, et al. Part 12: pediatric advanced life support: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18_suppl_2):526-S42.

20. D PG, G JI MNV, Farhan ABR, Dominique B. B, et al. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest. Circulation. 2015;132(13):1286–300.
21. Huang C-Y, Wen T-H. Optimal installation locations for automated external defibrillators in Taipei 7-Eleven stores: using GIS and a genetic algorithm with a new stirring operator. Computational and mathematical methods in medicine. 2014;2014.

22. QuantizeCity. Available at: https://github.com/wonseokdjango/QuantizeCity on 01/AUG/2020.

23. HackflightSim. Available at: https://github.com/anhtuann/HackflightSim on 01/AUG/2020.

24. Huins Blueye 1k. Available at: http://www.huins.com/ on 01/AUG/2020.

25. Drone simulator. Available at: https://github.com/rubis-lab/DroneTransferSimulator on 01/AUG/2020.

Figures

![Figure 1](image)

Figure 1

The topographic flight pathway used in UAV-AED virtual flight simulation. A: UAV-AED allocated station, B: The site where out of hospital cardiac arrest occurred
Figure 2

Call to AED attach time according to flight simulation scenarios and number of UAV-AED installed stations based on UAV-AED topographic flight pathway.
Figure 3

Call to AED attach time according to flight simulation scenarios and number of UAV-AED installed stations based on Euclidean flight pathway.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementarydataSJTRE210318.docx