Changes in chemical components with NIR spectroscopy and durability of samama wood treated with boron, methyl methacrylate and heat treatment

T D Cahyono¹, W Darmawan², H Yanti³ and A H Iswanto⁴*

¹Faculty of Agriculture, University of Darussalam Ambon, Ambon, Indonesia.
²Faculty of Forestry, Tanjungpura University, Pontianak, Indonesia.
³Bogor Agricultural University, Bogor, Jawa Barat, Indonesia.
⁴Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia.

E-mail: *apri@usu.ac.id

Abstract. Wood quality modifications have the potential to degrade the wood's chemical components, especially those using heat treatment. In fact, wood quality improvement should be identical with the durability improvement and the other specific purposes, such as fixation improvement of preservative materials. This research was aimed to examine changes in chemical components and durability of Samama wood gradually impregnated with boron, methyl methacrylate (MMA) and heat treatment (HT). Each of borax and boric acid was impregnated in pressure tank, continued with MMA impregnation. A 5-atm pressure is applied for 4 hours to both borax and MMA impregnations. The next stage is HT at 90°C and 180°C. The analysis on chemical components was conducted using NIR Spectroscopy and the durability was tested using drywood termites. The results showed that there were changes in lignin, cellulose and hemicellulose components of the wood, as indicated with clear differences in spectra between impregnated and non-impregnated woods. The most significant difference was found on wood impregnated with borax, MMA and HT at 180 °C. This tested sample evidently had the best durability among the tested samples.

1. Introduction

Strengthening mechanism of boron bond with wood has been presented by previous researches. This strengthening may be classified into three parts. First part is chemicals addition. Addition of polyflavanoid tannins evidently improves boron resistance to leaching up to threefold [1]. Boron residue inside the wood after leaching increases in line with enhancement of the quaternary ammonium compounds concentration [2]. A synthesis of vinyl ester of 4-carboxyphenylboronic acid and its test as reactive reagent which is able to maintain boron fixation permanently have been conducted [3]. Second step is bulking agent addition in order to keep boron inside the wood [4, 5]. Third step is finishing quality modification [6]. In addition, the other mechanisms include the application of oil heat treatment [7-9], vapour boron treatment [10] and heat treatment [11, 12].

Heat treatment changes wood colour darker, improves wood’s mechanical properties and dimension stability. If boron fixation phases start with monomer impregnation, heat treatment also helps polymerization process [13]. Heat treatment changes wood’s chemical components, including
cellulose, hemicellulose and lignin [14]. No substantial change occurs to lignin, but hemicellulose is degraded and cellulose’s crystallinity index increases [15]. These changes to chemical components are expected to contribute to boron leaching inhibition.

The stronger the boron’s bond in wood, the better its resistance to wood destroying agent. Boron effectively serves to be insecticide and fungicide, so that although it is a long used preservative, but it is still relevant to analyse the issue of improvement of its bond quality in wood, moreover, for woods of fast growing species[16-18]. Second, three-phase modification to improve boron fixation inside wood, which is impregnation, addition of bulking agent as well as heat treatment is infrequently used. Therefore, this research aims at examining the change in wood’s chemical components using NIR and resistance of modified Samama wood to drywood termites.

2. Materials and methods

2.1. Materials

The samama wood was chosen from a tree which is free from defect and has straight and cylindrical trunk. The plant was 9 years old, originated from community forest in Bogor, West Java, Indonesia. After cutting down the plant, the wood was brought to the laboratory in the form of fresh log to be dried with kiln drying until moisture content of 10-12%. The samples were taken at 8 cm from the pith in size of 0.5 cm x 1.5 cm x 1.5 cm (length, width and thickness) for NIR test and 5 cm x 2.5 cm x 2.5 cm for drywood termites test.

2.2. Methods

2.2.1. Material preparation. Boron impregnation was conducted in three phases. First, each of boron solutions in the form of Borax (Sodium tetraboratedecahydrate) and Boric Acid (Trihydrooxidoboron) were impregnated into wood using pressure tube with a concentration of 5% and at 5 atm for 4 hours. The second phase was impregnation with methyl methacrylate (MMA) using catalyst Mepoxi M (Methyl Ethyl Ketone Peroxide) with a ratio of 10:1 (v/v). The pressure used was equal to that in the first phase. The third phase was heat treatment process at 90 °C and 180 °C, each for 4 hours.

2.2.2. Near Infrared Spectroscopy Measurement. The impregnated samama wood is scanned using spectrum at wavelength 1,000 mm to 2,500 nm. The measurement is performed for 30 seconds with three repetitions. The calibration and validation models of NIR spectroscopy are with multivariate calibration method (PLS) [19-21].

2.2.3. Comply’s durability against drywood termites’ attacks. The standard test used is SNI 01-7207-2006 [22]. A glass tube with height 3 cm and diameter 1.8 cm is placed on the surface of Samama wood where 50 workers termites are put in the glass tube and placed in a dark and clean place, free from any other insects. After 12 weeks, an observation is conducted on any change in the weight of test samples, damage and number of surviving termites.

3. Results and discussion

3.1. Change in chemical components

The spectra of the 36 test samples of Samama wood are presented in Figure 1. The type of absorption presented conforms to the spectroscopic diffusion reflectance characteristics of lignocellulosic materials. The chemical contents are shown from the peak and valley of wave absorption. Absorption will increase when the chemical content gets higher. The number and type of atom bonds as well as particle size of test samples influence absorbance value [23].

Hydrogen atom is the most powerful to absorb NIR wave. The implication is most of NIR spectra are dominated by hydrogen bonds. It seems that the different peak of absorption at wavelength 1910 nm influences the spectra’s profile as the result of water content [24]. The OH group contained in
water is absorbed at wavelength 1,916 to 1,940 nm [25]. Fig. 1 also presents difference in peak of absorption at wavelength 1,664 nm to 1,689 nm. The test sample which shows this symptom is one impregnated with MMA, especially when using HT at 180° C. Lignin chemical component is absorbed at wavelengths 1,170 nm by CH=HC, 1,672 nm and 1,685 nm by CH, and at 2,134 nm by CH and CC. The increased absorption at such wavelengths shows an increase of lignin content.

The difference in peak of absorption by Samama wood impregnated with MMA and HT 180°C also occurs with absorption characterizing polysaccharide. The peak at 2,336 nm is classified in stretching and deformation of C–H of frequency of polysaccharide group [20]. Absorption by cellulose occurs at wavelength 1,428 nm by OH functional group, at wavelength 1,780 nm by CH, 2,080 nm by OH and CH bonds, 2,291 nm by CO and OH, 2,335 nm and 2,361 nm by CH bond. Hemicellulose is at wavelength 1370 nm and 1,724 nm with the existence of CH bond. Meanwhile, extractive substance exists at wavelength 2,220 nm with CH and CO functional groups. The absorption rate of cellulose seems to increase and there is no change to hemicellulose. Extractive content is hardly noticeable since it coincides with lignin at wavelength 1,410nm [25]. In addition, various extractive contents in wood make spectra reading more difficult with highly varied functional groups.

3.2. Resistance of treated Samama wood to drywood termites
Samama wood’s weight loss resulted from drywood termites’ attack decreased after heat treatment. This is consistent with all tested samples (Table 1). In addition, MMA application also effectively holds the attack. The results of analysis of variance shows that the applications of MMA, boron and heat treatment result in reduction of drywood termites’ attack. Further, Duncan’s test shows that treatment with 5% Boron, MMA and HT at 180°C results in the least weight loss.
Untreated Samama wood presents the highest weight loss, but only about 2%. With such an attack level, according to SNI 01-7207-2006, it is classified as resistant. This is confirmed by previous study that drywood termites’ attack level on Samama wood ranges from 2 % to 3 % [26]. On the contrary, the least attack level occurs with Samama wood modified with Borax, MMA and HT of 0.6 ± 0.03 % (Table 2). In comparison with untreated Samama wood, the effectiveness of inhibiting drywood termites’ attack is up to 71%.

Table 1. Mortality and weight loss of Samama wood modified with Boron, MMA and heat treatment

Treatment	Mortality (%)	Weight Loss (%)
Untreated, 90 °C	98±2.31	2.10±0.80
Untreated, 180 °C	96±5.77	1.09±0.21
Untreated, MMA, 90 °C	98±2.31	1.50±0.28
Untreated, MMA, 180 °C	100±0.00	1.01±0.31
5% BA, 90 °C	100±0.00	1.43±0.16
5% BA, 180 °C	100±0.00	1.26±0.17
5% BA, MMA, 90 °C	100±0.00	1.31±0.23
5% BA, MMA, 180 °C	100±0.00	0.92±0.16
5% B, 90 °C	100±0.00	1.73±0.10
5% B, 180 °C	100±0.00	1.50±0.13
5% B, MMA, 90 °C	100±0.00	1.02±0.11
5% B, MMA, 180 °C	100±0.00	0.60±0.03

Table 2. Results of Duncan’s test, treated Samama wood’s weight loss

Type	N	1	2	3	4	5
5% B, MMA, 180 °C	3	0.6019				
5% BA, MMA, 180 °C	3	0.9198	0.9198			
Untreated, MMA, 180 °C	3	1.0076	1.0076	1.0076		
5% B, MMA, 90 °C	3	1.0196	1.0196	1.0196		
Untreated 180 °C	3	1.0898	1.0898	1.0898		
5% BA, 180 °C	3	1.2632	1.2632	1.2632		
5% BA, MMA, 90 °C	3	1.3076	1.3076	1.3076		
5% B, 90 °C	3	1.4297	1.4297	1.4297		
Untreated, MMA, 90 °C	3	1.5008	1.5008			
5% B, 90 °C	3	1.5016		1.7293	1.7293	
Untreated 90 °C	3		1.7293	1.7293		2.1033

Sig.

| | 0.077 | 0.072 | 0.084 | 0.096 | 0.130 |

Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square(Error) = 0.085.

There are different types of attack between destroying organisms. For example, white rot fungi only attack lignin but do not attack cellulose. Brown rot fungi only destroy cellulose but do not attack...
lignin. Differently from the two types of destroying organisms, drywood termites destroy wood components entirely, in which they attack wood surface and slowly attack other parts of wood [27-29]. Therefore, the changes in chemical components presented with NIR analysis are not substantially correlated with drywood termites’ attack level. The direct correlation is that, in case of toxic impregnant, attack will be inhibited and high mortality will be up to 100%.

4. Conclusions
An increase of lignin component was found after Samama wood modification process using Borax, MMA and heat treatment at 180°C. Besides lignin, there were spectra which indicate that cellulose also increased. On the contrary, no change was found in the composition of hemicellulose and extractive substance. Drywood termites’ attack level on Samama wood modified with borax, MMA and heat treatment at 180°C decreased up to 71%.

References
[1] Pizzi A and Baeccker A 1996 A new boron fixation mechanism for environment friendly wood preservatives Holzforschung 50 pp 507-10
[2] Huang Y, Wang W and Cao J 2018 Boron fixation effect of quaternary ammonium compounds (QACs) on sodium fluoroborate (NaBF4)-treated wood Holzforschung 72 pp 711-8
[3] Jebrane M and Heinmaa I 2016 Covalent fixation of boron in wood through transesterification with vinyl ester of carboxyphenylboronic acid Holzforschung 70 pp 577-83
[4] Kartal S, Yoshimura T and Imamura Y 2004 Decay and termite resistance of boron-treated and chemically modified wood by in situ co-polymerization of allyl glycidyl ether (AGE) with methyl methacrylate (MMA) International biodeterioration & biodegradation 53 pp 111-7
[5] Cahyono T D and Darmawan W 2019 Flexural Properties of Samama (Anthocephalus macrophyllus) wood Impregnated by Boron, Methyl Methacrylate, and Heat Treatment
[6] Petric M, Pavlic M and Cadez F 2001 Leaching of the new boron based biocide from coated wood The International Research Group on Wood Preservation, Doc. No. IRG/WP 01-30267
[7] Lyon F, Thevenon M-F, Hwang W-J, Imamura Y, Gril J and Pizzi A 2007 Effect of an oil heat treatment on the leachability and biological resistance of boric acid impregnated wood Annals of forest science 64 pp 673-8
[8] Tomak E D, Viitanen H, Yildiz U C and Hughes M 2011 The combined effects of boron and oil heat treatment on the properties of beech and Scots pine wood. Part 2: Water absorption, compression strength, colour changes, and decay resistance Journal of Materials Science 46 pp 608-15
[9] Tomak E D, Hughes M, Yildiz U C and Viitanen H 2011 The combined effects of boron and oil heat treatment on beech and Scots pine wood properties. Part 1: Boron leaching, thermogravimetric analysis, and chemical composition Journal of Materials Science 46 pp 598-607
[10] Baysal E and Yalinkilic M K 2005 A new boron impregnation technique of wood by vapour boron of boric acid to reduce leaching boron from wood Wood science and technology 39 pp 187-98
[11] Perçin O, Sofuoğlu S D and Uzun O 2015 Effects of boron impregnation and heat treatment on some mechanical properties of oak (Quercus petraea Liebl.) wood BioResources 10 pp 3963-78
[12] Salman S, Pétrissans A, Thévenon M F, Dumarçay S, Perrin D, Pollier B and Gérardin P 2014 Development of new wood treatments combining boron impregnation and thermo modification: effect of additives on boron leachability European Journal of Wood and Wood Products 72 pp 355-65
[13] Yalinkılıc M K, Tsunoda K, Takahashi M, Gezer E D, Dwianto W and Nemoto H 1998 Enhancement of biological and physical properties of wood by boric acid-vinyl monomer combination treatment Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood 52 pp 667-72
[14] Kartal S N, Hwang W-J and Imamura Y 2008 Combined effect of boron compounds and heat treatments on wood properties: Chemical and strength properties of wood Journal of Materials Processing Technology 198 pp 234-40

[15] Pelaez-Samaniego M R, Yadama V, Lowell E and Espinoza-Herrera R 2013 A review of wood thermal pretreatments to improve wood composite properties Wood Science and Technology 47 pp 1285-319

[16] Cahyono T D, Wahyudi I, Priadi T, Febrianto F, Darmawan W, Bahtiar E T, Ohorella S and Novriyanti E 2015 The quality of 8 and 10 years old samama wood (Antocephalus macrophyllus) Journal of the Indian Academy of Wood Science 12 pp 22-8

[17] Cahyono T D, Wahyudi I, Priadi T, Febrianto F, Bahtiar E T and Novriyanti E 2016 Analysis on Wood Quality, Geometry Factor, and Their Effects on Lathe Check of Samama (Antocephalus macrophyllus) Veneer Journal of the Korean Wood Science and Technology 44 pp 828-41

[18] Darmawan W, Nandika D, Rahayu I, Fournier M and Marchal R 2013 Determination of juvenile and mature transition ring for fast growing sengon and jabon wood Journal of the Indian Academy of Wood Science 10 pp 39-47

[19] Karlinasari L, Sabed M, Wistara I N J and Purwanto Y 2014 Near infrared (NIR) spectroscopy for estimating the chemical composition of (Acacia mangium Willd.) wood Journal of the Indian Academy of Wood Science 11 pp 162-7

[20] Li X, Sun C, Zhou B and He Y 2015 Determination of hemicellulose, cellulose and lignin in moso bamboo by near infrared spectroscopy Scientific reports 5 17210

[21] Chen H, Ferrari C, Angiuli M, Yao J, Raspi C and Bramanti E 2010 Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis Carbohydrate polymers 82 pp 772-8

[22] BSN 2006 Standar Nasional Indonesia (SNI) [Indonesian National Standard] 01-7207-2006. Uji ketahanan kayu dan produk kayu terhadap organisme perusak kayu [The durability test of wood and wood products against wood-deterioration organisms] (Badan Standarisasi Nasional [National Standardization Agency of Indonesia]) p 12

[23] Osborne B G, Fearn T, Hindle P H and Osborne B 1993 Practical NIR spectroscopy with applications in food and beverage analysis 2 (Longman Scientific & Technical Harlow)

[24] Louw E D and Theron K I 2010 Robust prediction models for quality parameters in Japanese plums (Prunus salicina L.) using NIR spectroscopy Postharvest Biology and Technology 58 pp 176-84

[25] Workman Jr J and Weyer L 2012 Practical guide and spectral atlas for interpretive near-infrared spectroscopy (CRC press)

[26] Cahyono T D, Ohorella S and Febrianto F 2012 Beberapa Sifat Kimia dan Keawetan Alami Kayu Samama (Antocephalus Macrophyllus) terhadap rayap tanah Ilmu dan Teknologi Kayu Tropis 10 pp 168-78

[27] Cahyono T D, Yanti H, Massijaya M Y, Iswanto A H and Uluputty M R 2019 The durability of OSB composite plywood with avocado, mahogany, and pine wood veneers against drywood and subterranean termites IOP Conference Series: Earth and Environmental Science 260 012067

[28] Himmi S K, Yoshimura T, Yanase Y, Mori T, Torigoe T and Imazu S 2016 Wood anatomical selectivity of drywood termite in the nest-gallery establishment revealed by X-ray tomography Wood science and technology 50 pp 631-43

[29] Kartal S N, Terzi E and Yoshimura T 2019 Performance of fluoride and boron compounds against drywood and subterranean termites and decay and mold fungi Journal of Forestry Research pp 1-10