Predictive Coding, Multisensory Integration, and Attentional Control: A Multicomponent Framework for Lucid Dreaming

Péter Simor 1,2, Tamás Bogdány 1,3, Philippe Peigneux 2

1 Institute of Psychology, ELTE, Eötvös Loránd University, Budapest, Hungary.
2 UR2NF, Neuropsychology and Functional Neuroimaging Research Unit, Université Libre de Bruxelles (ULB), Brussels, Belgium
3 Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary

SUPPLEMENTARY INFORMATION

Table S1. Wake-like activity during sleep in different sleep disorders. Sleep disorders and pathological sleep conditions associated with wake-like cortical activity patterns during sleep. Wake-like activity during sleep appears to be a common denominator behind a wide variety of sleep disorders. The above table shows illustrative examples (for more extensive and complete reviews, especially for insomnia and NREM parasomnias, see (1–4)).

Pathological sleep condition	Publications	Distinguishing EEG activity	Sleep stage featuring wake-like activity	Specific brain regions exhibiting wake-like activity
Sleep walking and sleep terrors	(5)	locally reduced (1-4 Hz) low frequency activity	SWS, REM, WAKE	cingulate, motor and sensorimotor cortices
	(6)	increased (24-30 Hz) beta power	SWS	cingulate cortex (pregenual and ventral anterior cingulate area)
Confusional arousals and sleep terrors	(7)	sustained local arousal (~ 25 Hz), beta activity during SWS sleep while low frequency activity in frontal associative cortices	SWS	motor, cingulate, insular, amygdalar, and temporopolar cortices
	(8)	lower delta and increased beta power resembling wakefulness		ventromedial thalamus
Sleep paralysis	(10)	increased alpha activity during REM sleep (peak frequency of alpha activity overlapping with the alpha peak of wakefulness)	REM	Unknown
	(11)	increased alpha and reduced delta power		
Insomnia (12) reduced spectral slope indicating NREM Unknown reduced low and increased high frequency activity

(13) concomitant increase in sigma and beta power, indicating simultaneous activation of sleep-protective and arousing mechanisms, respectively

NREM

(14) arousals and sleep fragmentation REM during REM sleep

Nocturnal disorder (15, 15, 16) Increased arousals and high frequency (beta and gamma) activity NREM Unknown

(17) Increased high-alpha power REM

SWS – Slow Wave Sleep, REM – Rapid Eye Movement Sleep, NREM – Non-Rapid Eye Movement sleep

Table S2. Further areas for lucid dream research: key assumptions and research agenda

Assumption	Observations and/or supportive evidence	Research agenda
The processing of bodily signals (interoceptive processing) is enhanced in LD	Frequent otolithic experiences such as flying, floating, out of body experiences	Further studies on the individual differences in LD frequency in relation to individual differences in interoceptive processing
	Increased vestibular sensitivity in frequent lucid dreamers	To study interoceptive processing (e.g., heartbeat evoked potentials) in lucid versus non-lucid dreams
	Meditation increases awareness of bodily signals and is linked to the frequency of LD	To investigate if interoceptive stimulation (e.g., vestibular stimulation) may elicit LD
LD is characterized by increased precision weighting at lower levels of the processing stream	Lucid dreamers are able to detect and respond to inputs coming from the sensory periphery	To investigate the role of attentional control (e.g., shifting between exteroceptive versus interoceptive focus) in relation to LD frequency
	Lucid dreamers are able to perform intentional eye movements (motor commands)	To study cortical responses to sensory (e.g., acoustic) stimuli during lucid versus non-lucid dreaming
Fluctuations in sleep-and arousal regulation modulate the processing of sensory afferents facilitating sensitivity to prediction	Several LD induction techniques facilitate sleep state-changes and sleep fragmentation	Data driven EEG analyses of lucid versus non-lucid dream experiences
Future directions

Lucid dreaming across the lifespan: Developmental aspects

The multicomponent framework of lucid dreaming may accommodate the somewhat surprising observations of increased lucid dream frequency in children (18) and its reduction in older age groups (19). Whereas the prefrontal and frontoparietal networks (still immature in young children) may be involved in lucid dreaming, our model suggests that increased sensitivity to bottom-up signals may also facilitate lucidity. Young children are more capable to automatically extract low-level, raw probabilities (i.e., statistical rules) of the environment (and hence to detect violations of such probabilities) indicating dominantly bottom-up, model-free processing of sensory experiences compared to older individuals (20, 21). On the other hand, cognitively controlled, model-based learning is gradually taking place after around 12 years of age (22). Interestingly, this shift in learning strategies corresponds to the gradual drop of lucid dream experiences from puberty to young adulthood (18). Susceptibility to low-level bottom-up inputs producing prediction error signals may play a major role in triggering lucid dream experiences in young children. Moreover, young children spend considerable time in REM sleep, and are prone to state dissociations, and parasomnias. Due to higher arousal thresholds young children are protected from abrupt awakenings (1), reducing the chance that active inference during dreaming will be associated with arousals and awakenings. In contrast, older individuals spend less time in REM sleep, and due to reduced sleep regulation are more susceptible to arousals (23, 24) and sleep fragmentation limiting the possibility to reach lucidity during sleep. Taken together, the probabilistic, model-free learning period of young children may provide a reflexive attitude towards their (true) mental state (of dreaming), where higher arousal threshold can stabilize the (lucid) dream experience. Coming to adulthood, the development of prefrontal and frontoparietal regions can provide top-down attentional control to stabilize the lucid dream state, but reducing its occurrence beforehand: In
adulthood, prediction errors may be often explained away by schemes acquired during model-based learning, and rarely have the chance to (truly) update the state of consciousness itself (from wakefulness, to dreaming). Pre-lucid dreams can provide examples for stereotypical actions and state interpretations (e.g., "I recognized that I am dreaming, so I went to tell it to others" or "I understood that I can fly because my body died and now, I live as a spirit"). However, it should be pointed out that studies on dreaming in young children are scarce and to some extent questionable on methodological grounds (25). In addition, the assessment of lucid dream frequency in different age groups is only based on retrospective self-reports that are prone to memory biases. Therefore, future studies applying prospective data collection procedures or signal-verified lucid dream assessments are warranted to systematically investigate the frequency and nature of lucid dream experiences in children.

Lucid dreaming and psychopathology: relevance for psychosis

Several authors argued that reduced executive and self-reflective functions (related to hypofrontality) in dreaming resemble psychosis (26–28); they suggested that lucid dreaming is the opposite of psychosis: a state of increased self-reflection and insight due to increased frontal activity (28, 29). Nevertheless, these assumptions are challenged by empirical data indicating weak but consistent associations between lucid dream frequency and proneness to psychosis (30, 31), and similar rates of lucid dream frequency in psychotic patients compared to non-psychotic controls (32). In the context of the present multicomponent framework, we may speculate that impaired sensory gating in psychotic states (33, 34) facilitates the processing of bottom-up sensory afferents during sleep. Accordingly, signs of reduced sensory gating in psychotic conditions were evidenced not only in wakefulness but also during sleep (35, 36). Moreover, whereas non-psychotic individuals can easily monitor and automatically distinguish internally generated experiences (e.g., imagination during mind wandering) from veridical perception, psychosis-prone individuals often have difficulties in discriminating externally and internally generated mental representations. The frequent experience of intrusive, vivid, perceptual experiences of ambiguous origin, and the effort to discriminate hallucinations from veridical perception may “train” psychosis-prone individuals to question the sources of dreaming. (For a detailed description of the utility of the PC framework in psychosis see 115, 116).
References

1. A. Castelnovo, R. Lopez, P. Proserpio, L. Nobili, Y. Dauvilliers, NREM sleep parasomnias as disorders of sleep-state dissociation. *Nature Reviews Neurology* **14**, 470–481 (2018).

2. T. Nielsen, M. Carr, “Nightmares and nightmare function” in *Principles and Practice of Sleep Medicine*, (Elsevier, 2017), pp. 546–554.

3. D. Riemann, *et al.*, The hyperarousal model of insomnia: a review of the concept and its evidence. *Sleep medicine reviews* **14**, 19–31 (2010).

4. W. Zhao, *et al.*, EEG spectral analysis in insomnia disorder: A systematic review and meta-analysis. *Sleep Med Rev* **59**, 101457 (2021).

5. A. Castelnovo, *et al.*, Scalp and source power topography in sleepwalking and sleep terrors: a high-density EEG study. *Sleep* **39**, 1815–1825 (2016).

6. P. Januszko, *et al.*, Sleepwalking episodes are preceded by arousal-related activation in the cingulate motor area: EEG current density imaging. *Clinical Neurophysiology* **127**, 530–536 (2016).

7. M. Terzaghi, *et al.*, Dissociated local arousal states underlying essential clinical features of non-rapid eye movement arousal parasomnia: an intracerebral stereo-electroencephalographic study. *Journal of sleep research* **21**, 502–506 (2012).

8. M. Terzaghi, *et al.*, Evidence of dissociated arousal states during NREM parasomnia from an intracerebral neurophysiological study. *Sleep* **32**, 409–412 (2009).

9. S. Sarasso, *et al.*, Fluid boundaries between wake and sleep: experimental evidence from Stereo-EEG recordings. *Arch Ital Biol* **152**, 169–177 (2014).

10. M. Terzaghi, P. L. Ratti, F. Manni, R. Manni, Sleep paralysis in narcolepsy: more than just a motor dissociative phenomenon? *Neurological Sciences* **33**, 169–172 (2012).

11. G. Mainieri, *et al.*, Are sleep paralysis and false awakenings different from REM sleep and from lucid REM sleep? A spectral EEG analysis. *Journal of Clinical Sleep Medicine* (2021) https://doi.org/10.5664/jcsm.9056 (December 17, 2021).

12. T. Andrillon, *et al.*, Revisiting the value of polysomnographic data in insomnia: more than meets the eye. *Sleep medicine* **66**, 184–200 (2020).

13. K. Spiegelhalder, *et al.*, Increased EEG sigma and beta power during NREM sleep in primary insomnia. *Biol Psychol* **91**, 329–333 (2012).

14. B. Feige, *et al.*, The microstructure of sleep in primary insomnia: An overview and extension. *International Journal of Psychophysiology* **89**, 171–180 (2013).

15. B. Blaskovich, V. Reicher, F. Gombos, V. I. Spoormaker, P. Simor, Hyperarousal captured in increased number of arousal events during pre-REM periods in individuals with frequent nightmares. *J Sleep Res* **29** (2020).

16. L.-P. Marquis, T. Paquette, C. Blanchette-Carrière, G. Dumel, T. Nielsen, REM sleep theta changes in frequent nightmare recallers. *Sleep* **40** (2017).
17. P. Simor, K. Horváth, P. P. Ujma, F. Gombos, R. Bódizs, Fluctuations between sleep and wakefulness: wake-like features indicated by increased EEG alpha power during different sleep stages in nightmare disorder. *Biological psychology* 94, 592–600 (2013).

18. U. Voss, C. Frenzel, J. Koppehele-Gossel, A. Hobson, Lucid dreaming: an age-dependent brain dissociation. *Journal of Sleep Research* 21, 634–642 (2012).

19. M. Schredl, D. Erlacher, Frequency of Lucid Dreaming in a Representative German Sample. *Percept Mot Skills* 112, 104–108 (2011).

20. K. Janacsek, J. Fiser, D. Nemeth, The best time to acquire new skills: age-related differences in implicit sequence learning across the human lifespan. *Developmental Science* 15, 496–505 (2012).

21. A. Açık, A. Sarwary, R. Schultze-Kraft, S. Onat, P. König, Developmental Changes in Natural Viewing Behavior: Bottom-Up and Top-Down Differences between Children, Young Adults and Older Adults. *Frontiers in Psychology* 1 (2010).

22. D. Nemeth, K. Janacsek, J. Fiser, Age-dependent and coordinated shift in performance between implicit and explicit skill learning. *Frontiers in Computational Neuroscience* 7 (2013).

23. C. L. Ehlers, D. J. Kupfer, Effects of age on delta and REM sleep parameters. *Electroencephalography and Clinical Neurophysiology* 72, 118–125 (1989).

24. K. Yaffe, C. M. Falvey, T. Hoang, Connections between sleep and cognition in older adults. *The Lancet Neurology* 13, 1017–1028 (2014).

25. P. Sándor, S. Szakadát, R. Bódizs, Ontogeny of dreaming: a review of empirical studies. *Sleep Medicine Reviews* 18, 435–449 (2014).

26. J. A. Hobson, E. F. Pace-Schott, R. Stickgold, Dreaming and the brain: toward a cognitive neuroscience of conscious states. *Behavioral and brain sciences* 23, 793–842 (2000).

27. F. Waters, *et al.*, What is the link between hallucinations, dreams, and hypnagogic–hypnopompic experiences? *Schizophrenia bulletin* 42, 1098–1109 (2016).

28. S. A. Mota-Rolim, J. F. Araujo, Neurobiology and clinical implications of lucid dreaming. *Medical Hypotheses* 81, 751–756 (2013).

29. M. Dresler, *et al.*, Neural correlates of insight in dreaming and psychosis. *Sleep medicine reviews* 20, 92–99 (2015).

30. N. Soffer-Dudek, G. Shahar, What are sleep-related experiences? Associations with transliminality, psychological distress, and life stress. *Conscious Cogn* 18, 891–904 (2009).

31. E. Koffel, D. Watson, Unusual sleep experiences, dissociation, and schizotypy: Evidence for a common domain. *Clin Psychol Rev* 29, 548–559 (2009).

32. N. B. Mota, A. Resende, S. A. Mota-Rolim, M. Copelli, S. Ribeiro, Psychosis and the Control of Lucid Dreaming. *Frontiers in Psychology* 7 (2016).

33. S. Li, S. Y. Chan, A. Higgins, M.–H. Hall, Sensory gating, neurocognition, social cognition and real-life functioning: a 2-year follow-up of early psychosis. *Psychological Medicine*, 1–13 (2021).
34. I. Morales-Muñoz, *et al.*, Sensory gating deficits in first-episode psychosis: evidence from neurophysiology, psychophysiology, and neuropsychology. *The Journal of nervous and mental disease* **204**, 877–884 (2016).

35. F. Ferrarelli, G. Tononi, The Thalamic Reticular Nucleus and Schizophrenia. *Schizophrenia Bulletin* **37**, 306–315 (2011).

36. M. A. Kisley, *et al.*, Sensory gating impairment associated with schizophrenia persists into REM sleep. *Psychophysiology* **40**, 29–38 (2003).

37. G. Horga, A. Abi-Dargham, An integrative framework for perceptual disturbances in psychosis. *Nat Rev Neurosci* **20**, 763–778 (2019).

38. J. D. Griffin, P. C. Fletcher, Predictive Processing, Source Monitoring, and Psychosis. *Annu Rev Clin Psychol* **13**, 265–289 (2017).