Rare Cases of Multidrug-resistant Tuberculous Spondylitis in Saiful Anwar General Hospital: A Case Series

Syaifullah Asmiragani*, Tjuk Risantoso, Andhika Yudistira, Ery Satriawan, Albert Lesmana, Alva Pribadi, Lasa Dhakka Siahaan

Department of Orthopaedic and Traumatology, Faculty of Medicine, Universitas Brawijaya, RSUD Dr. Saiful Anwar, Malang, Indonesia

Abstract

BACKGROUND: Ten percent of all tuberculosis patients may develop skeletal involvement, and the spine is the most common anatomical location. Tuberculous spondylitis is further complicated by the fast-acid bacilli resistance to the usual chemotherapy regimen (multidrug-resistant/MDR) and its complications. In this case series, we would like to present three MDR tuberculous spondylitis cases effectively treated with tailored chemotherapy regimens and surgical interventions.

CASE REPORT: A series of three patients with MDR tuberculous spondylitis is presented. All three patients presented with back pain, lump, and weakness of both lower extremities. These cases were resolved with a combination of surgical intervention and tailored chemotherapy regiment after MDR resistant detected. Two cases were resolved completely, and only one patient had residual paresthesia on his legs.

CONCLUSION: A combination of MDR antituberculous chemotherapy and surgical intervention leads to an excellent outcome, in which the patient can perform regular daily tasks without pain, even in complicated MDR tuberculous spondylitis cases.

Introduction

Approximately 10% of all tuberculosis patients develop skeletal tuberculosis, and half of those cases affect the spine [1]. From all tuberculous spondylitis cases, an estimated 30% had antituberculous drug resistance, and 1/3 of them had multidrug-resistant (MDR) [2], [3]. The alarming increase of MDR tuberculosis further complicates the management of spinal tuberculosis [4]. This resistance is primarily mediated by genetic mutation induced by suboptimal therapy regimens and the patients’ poor adherence [5]. The previous study concludes that Rifampicin and Isoniazid resistance is the most common and usually found simultaneously [6].

A retrospective study showed that the prevalence of MDR tuberculosis in a single tertiary hospital was about 10% [7]. However, the exact prevalence of both skeletal tuberculosis and tuberculous spondylitis in Indonesia is unknown. In our hospital, we observed 14 cases of tuberculous spondylitis in the first half of 2020.

At present, there is no study evaluating the present condition of MDR tuberculous spondylitis in Indonesia. Thus, we would like to highlight three MDR tuberculous spondylitis cases in our hospital, which were successfully managed by a combination of chemotherapy and surgical intervention.

Case Report

Case 1

A 50-year-old woman came with low back pain, muscle sores, and fatigue after walking for 5 years. She did not have any relatives that had tuberculosis disease. After a year, she felt pain and weakness on both lower extremities. The patient was previously diagnosed with low back pain due to muscle spasms and osteoporosis. She underwent physiotherapy for a month, but there was no improvement. A few months later, she realized a large paravertebral abscess, and surgical debridement and abscess evacuation were done. Because the patient’s condition persisted after 4 months, she came to our orthopedic clinic. We found large abscesses affecting thoracic XII to
lumbar IV with straight lumbar curvature and slight levoscoliosis deformity apexed at lumbar III secondary to pathological fracture due to infection from X-ray and MRI findings (Figure 1). We diagnosed this case with multi-level thoracolumbar vertebra osteomyelitis and performed redebridement and abscess evacuation. The histopathology examination and culture depicted tuberculosis infection. We started category of one antituberculous chemotherapy and fixed the vertebra with Thoracic Lumbar Sacral Orthoses. Unfortunately, the pain persisted, both legs’ weakness progressed, and abscess reappeared 4 months later. The patient received redebridement, decompression posterior stabilization but refused the instrumentation. GenXpert MTB/RIF examination was positive, and we started antituberculous chemotherapy for the next 2 years, the regimen is shown in Table 1. On follow-up, the patient can perform daily tasks without any problem and pain.

Case 2
A 36-year-old male patient complained of low back pain for the previous 6 months. He was on category two antituberculous drug medications for 4 months to treat his MDR pulmonary tuberculosis. The low back pain worsened, and then the patient noticed a lump on his back and weakness on both lower extremities. Radiograph examination revealed large abscess formation, kyphotic deformity at lumbar II–III, and severe destruction of lumbar III vertebral body (Figure 2). We performed surgical debridement and posterior stabilization using pedicle screws and rods from lumbar I–V. The positive results of histopathology, culture, and GenXpert MTB/RIF examination confirmed the spread of MDR tuberculosis to the spine. Antituberculous chemotherapy was started for the next 2 years; the regimen is shown in Table 1. The patient showed good outcomes and can perform daily tasks but with mild paraesthesia on his legs.

Discussion
A retrospective cohort in South Africa reveals skeletal involvement in about 1–3% of tuberculosis cases. Most of them involve the spine, and only 4% had MDR tuberculosis [8]. In our hospital for the past 5 years, we observed three MDR tuberculous spondylitis cases, with the most common clinical findings were low back pain, lower extremity weakness, deformity, and lump. Rajasekaran et al. concur that back pain is the most

Table 1: Summary of the cases

Case	Chief complaint	History of TB treatment	Xpert MTB/Rif	Spumut	MRI lumbosacral	Surgery	Pus culture	TB treatment regimen	Adverse affect	Ancillary tests
Case 1	Back pain radiates down to both legs	OAT category I: 4 months, drop out	MTB detected medium RR Detected	Normal	(4 months)	Transpedicular Debridement	No growth of germ colonies (aerobes)	8 Cm - Ltx-Cs-Eto-Z/21 Ltx-Cs-Eto-Z (20 months)	Nausea, vomiting, hyperuricemia, increased creatinine serum, and mild right ear conduction hearing loss	
Case 2	Back pain is accompanied by cramps and tingling sensation	MTB detected very low RR Detected	MTB detected very low RR Detected	(20 months)	(8 Cm - Ltx-Cs-Eto-Z/21 Ltx-Cs-Eto-Z (20 months)	Decompression laminectomy stabilization and instrumented posterolateral fusion	No growth of germ colonies (aerobes)	8 Cm - Ltx-Cs-Eto-Z/E/12 Ltx-Cs-Eto-Z-E (21 months)	Hypokalemia, tinnitus	
Case 3	Back pain is accompanied by tingling sensations and a lump on the back	2 months, drop out	MTB detected very low RR Detected	Normal	(8 Cm - Ltx-Cs-Eto-Z/21 Ltx-Cs-Eto-Z (20 months)	(Lumbar TB advanced lesion)	Negative Coagulase Staphylococcus	8 Km - Cfz-Cs-Lfx-E/12 Cfz-Cs-Lfx-E (20 months)	Drug induced liver injury, tentamnet suicide, and sleep disorder	

Z: Pyrazinamide; E: Ethambutol; Km: Kanamycin; Lfx: Lefofloxacin; Eto: Ethionamide; Cfz: Clofazimine; Cs: Cycloserine; Cm: Capreomycin.
common symptom caused by inflammation and rarely radicular [9]. Classic symptoms such as chronic cough, night sweats, and weight loss are present in only one patient.

Figure 2: Kyphosis deformity due to destruction of lumbar III; (a) T2-weighted sagittal plane showed lytic lesion of lumbar III vertebral body and destruction of lumbar III–IV with paravertebral abscess formation

Tuberculous spondylitis often involves thoracic vertebra followed by lumbar vertebra. The incidence is decreasing along with the distance from the thoracic vertebra [10]. In all our cases, tuberculous spondylitis affects the lumbar vertebrae, and two of them have thoracal involvement. We believe that MDR tuberculosis bacilli are causing more severe vertebra’s involvement than the non-MDR bacilli. Rathod et al. report a case of MDR tuberculous spondylitis involving the lumbosacral junction [11]. Therefore, further studies are needed to confirm which anatomical predilection would be affected by MDR tuberculosis bacilli.

In Indonesia, all rifampicin-resistant cases are treated with: Kanamycin, levofloxacin, ethambutol, cycloserine, pyrazinamide, and isoniazid. The alternative therapy regimens are levofloxacin, ethoxusicimide, cycloserine, pyrazinamide, ethambutol, and isoniazid. This therapy is given for 20–26 months; however, this duration can be shortened to 9–11 months [12]. There is still a debate regarding the therapy’s effective duration, but the WHO and most experts agree that the effective duration ranges from 9 to 12 months [13]. On the contrary, Kizilbash and Seaworth recommend chemotherapy duration for 18–24 months [14].

Kizilbash and Seaworth state that surgical therapy should be conducted for those with neurologic deficits, intractable pain, considerable kyphotic deformity, spinal instability, and chemotherapy failure [14]. As our patients have neurologic deficits, we performed debridement and posterior instrumentation to prevent further complications. This management in parallel with Li et al. study, which mentions similar surgical approaches. Li et al. treated the patient with a combination of individualized chemotherapy and surgery that showed satisfactory results similar to the outcomes of our patients [2].

Tuli et al. propose the clinical criteria to suspect drug resistance of tuberculous spondylitis. The patients who have taken antituberculous medication for more than 5 months can be suspected as drug-resistant tuberculous spondylitis if they are present with one of the following criteria: Poor clinical and radiological response, fresh lesion osteoarticular tuberculosis, deterioration of spinal deformity, discharging sinus, or wound dehiscence of the previously operated scar [15]. These criteria for suspicion of MDR tuberculosis spondylitis are seen in our patients. The first and second patients have poor clinical outcomes even after antituberculosis medication for several months. Wound dehiscence and presentation of pus from the surgical wound are observed in the third patient. Multiple surgeries are conducted in two patients, and all of the patients are given second-line antituberculous medication for more than 1 year. In Indonesia, the diagnosis of MDR tuberculosis spondylitis cases is usually late. This is because the time and type of examination required for this diagnosis is quite long so that patient adherence to treatment is poor.

There is not another case series discussing MDR tuberculosis spondylitis in Indonesia. For the past 5 years, we found three cases of MDR tuberculosis
spondylitis in our hospital. Therefore, future retrospective or prospective studies should be done to better depict this disease entity’s condition in Indonesia.

Conclusion

A combination of MDR antituberculous chemotherapy and surgical intervention (debridement, decompression, and stabilization) leads to an excellent outcome, in which the patient can perform regular daily tasks without pain, even in complicated MDR tuberculous spondylitis cases.

Ethical Approval

This study has been reviewed by the authors’ Institutional Review Board and all the patients had given written consent.

Author Contribution

- Study Design: Syaifullah Asmiragani, Tjuk Risantoso, Andhika Yudistira, Ery Satriawan, Albert Lesmana, Alva Pribadi, Lasa Dhakka Siahaan.
- Data Collection: Syaifullah Asmiragani, Ery Satriawan, Albert Lesmana.
- Statistical Analysis: None.
- Data Interpretation: Syaifullah Asmiragani, Ery Satriawan, Albert Lesmana.
- Manuscript Preparation: Syaifullah Asmiragani, Tjuk Risantoso, Andhika Yudistira, Ery Satriawan, Albert Lesmana, Alva Pribadi, Lasa Dhakka Siahaan.
- Literature Search: Syaifullah Asmiragani, Ery Satriawan, Albert Lesmana, Alva Pribadi, Lasa Dhakka Siahaan.
- Funds Collection: this research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

1. Khanna K, Sabharwal S. Spinal tuberculosis: A comprehensive review for the modern spine surgeon. Spine J. 2019;19(11):1858-70. https://doi.org/10.1016/j.spinee.2019.05.002 PMid:31102727
2. Li L, Zhang Z, Luo F, Xu J, Cheng P, Wu Z, et al. Management of drug-resistant spinal tuberculosis with a combination of surgery and individualised chemotherapy: A retrospective analysis of thirty-five patients. Int Orthop. 2012;36(2):277-83. https://doi.org/10.1007/s00264-011-1398-0 PMid:22065055
3. Viswanathan VK, Subramanian S. Pott Disease (Tuberculous Spondylitis). Treasure Island, FL: Stat Pearl; 2019. p. 1-11.
4. Arockiaraj J, Karthik R, Michael JS, Amritanand R, David KS, Krishnan V, et al. ‘Need of the hour’: Early diagnosis and management of multidrug resistant tuberculosis of the spine: An analysis of 30 patients from a ‘high multidrug resistant tuberculosis burden’ country. Asian Spine J. 2019;13(2):265-71. https://doi.org/10.31616/asj.2018.007 PMid:30669824
5. Zhang Y, Yew W. Mechanisms of drug resistance in Mycobacterium tuberculosis: Update 2015. Int J Tuberc Lung Dis. 2015;19:1276-89. https://doi.org/10.5588/ijtld.15.0389 PMid:26467578
6. Upadhayay M, Patel J, Kundnani V, Ruparel S, Patel A. Drug sensitivity patterns in Xpert-positive spinal tuberculosis: An observational study of 252 patients. Eur Spine J. 2020;29(7):1476-82. https://doi.org/10.1007/s00586-020-06305-x PMid:32055960
7. Soeroto AY, Lestari BW, Santoso P, Chaidir L, Andryoko B, Alisjahbana B, et al. Evaluation of XpertMTB-RIF guided diagnosis and treatment of rifampicin-resistant tuberculosis in Indonesia: A retrospective cohort study. PLoS One. 2019;14(2):e0213017. https://doi.org/10.1371/journal.pone.0213017 PMid:30818352
8. Held MF, Hoppe S, Laubscher M, Mears S, Dix-Peek S, Zar HJ, et al. Epidemiology of musculoskeletal tuberculosis in an area with high disease prevalence. Asian Spine J. 2017;11(3):405-11. https://doi.org/10.1177/1783509917769053 PMid:28670408
9. Rajasekaran S, Soundararajan DC, Shetty AP, Kannam RM. Spinal tuberculosis. Current concepts. Global Spine J. 2018;8(Suppl 4):96S-108S. https://doi.org/10.1177/2192568218769053 PMid:30574444
10. Perno JR, Gordon A, Roach N. In: Solomon TE, editor. Osteomyelitis. Ch. 41. Philadelphia, PA: Mosby; 2011. p. 283-90.
11. Rathod T, Sathe A, Kolur S. Multidrug-resistant tuberculosis of lumbosacral spine producing extensive destruction with lumbosacral kyphosis. BMJ Case Rep. 2020;13(5):e234246. https://doi.org/10.1136/bcr-2020-234246 PMid:32414775
12. Kemenkes RI. Peraturan Menteri Kesehatan Republik Indonesia No. 67. Indonesia: Kemenkes RI; 2016.
13. Pandita A, Madhunpan N, Pandita S, Hurtado RM. Challenges and controversies in the treatment of spinal tuberculosis. J Clin Tuberc Other Mycobact Dis. 2020;19:100151. https://doi.org/10.1016/j.jctube.2020.100151 PMid:32154388
14. Kizilbash QF, Seaworth BJ. Multi-drug resistant tuberculous spondylitis: A review of the literature. Ann Thorac Med. 2016;11(4):233-6. https://doi.org/10.4103/1817-1737.191867 PMid:27803747
15. Tuli SM. Challenge of therapeutically refractory and multidrug resistant tuberculosis in orthopaedic practice. Indian J Orthop. 2002;36(4):211-3.