Data in Brief

Genome wide transcription profiling of the effects of overexpression of Spc1 and its kinase dead mutant in Schizosaccharomyces pombe

Madhurima Paul, Sanchari Sanyal, Geetanjali Sundaram *

Department of Biochemistry and Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, 35, Ballygunje Circular Road, Kolkata, 700019, WB, India

A R T I C L E I N F O

Article history:
Received 6 October 2015
Accepted 13 October 2015
Available online 23 October 2015

Keywords:
Spc1
S. pombe
Spc1K49R
Microarray

A B S T R A C T

The Mitogen Activated Protein Kinase Spc1 (p38 homolog) is a major player in stress responses of the unicellular fission yeast Schizosaccharomyces pombe. This pathway is therefore also known as the SAPK or Stress Activated Protein Kinase pathway. Spc1 is a known activator of transcription factors that control gene expression in response to extracellular stimuli and is also known to interact with the translation machinery [1–8]. Spc1 has also been implicated in cell cycle regulation and meiosis in S. pombe [1,2,9,10]. Given its documented role in modulating gene expression, we performed a microarray based identification of genes whose expression in unper- turbated cells (absence of stress stimuli) is dependent on Spc1. For this we overexpressed Spc1 in S. pombe. Additionally we also overexpressed Spc1K49R (a kinase dead mutant of Spc1) to understand the contribution of Spc1’s kinase activity towards the observed gene expression changes. The microarray data are available at NCBI’s Gene Expression Omnibus (GEO) Series (accession number GSE73618). Here we report the annotation of the genes whose expression get altered by Spc1/Spc1K49R overexpression and also provide details related to sample processing and statistical analysis of our microarray data.

© 2015 Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2. Experimental design, materials and methods

2.1. Experimental design

We overexpressed Spc1/Spc1K49R in S. pombe cells, and then looked at the changes in the transcriptional profile of the cells. Earlier reports on identification of Spc1 dependent gene expression do exist [11]. However in those screens transcriptional changes were identified after deleting Spc1. Spc1 is known to have contrasting effects on cellular physiology (especially cell division) in a dose dependent manner. We argued that deletion and overexpression of Spc1 may therefore represent two extremes of such dose dependent effects and therefore overexpression may identify newer targets of Spc1. We also overexpressed Spc1K49R to check whether these transcriptional changes were entirely dependent on the kinase activity or not.

2.2. Strains, media and growth conditions

S. pombe strain used in this study was a wild type strain GSY001 (h-leu1-32 ura4-D18, a gift from Paul Russell). Cells were grown as described by S. Moreno et al. [12]. All cells were grown at 30 °C in Edinburgh’s Minimal Medium (EMM)-Leucine.

1. Direct link to deposited data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73618.

* Corresponding author.
E-mail address: geetanjali.sundaram@gmail.com (G. Sundaram).

http://dx.doi.org/10.1016/j.gdata.2015.10.007
2213-5960/© 2015 Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Table 1
Summary of differential gene expression analysis.

Groups compared	Total no. of differentially expressed genes (up/down)	No. of upregulated genes	No. of downregulated genes
Spc1-OP/control	42	20	22
Spc1K49R-OP/control	132	68	64
Spc1-OP/Spc1K49R-OP	60	36	24

2.3. S. pombe transformations

One milliliter of an overnight S. pombe culture in YES was harvested and then resuspended in 0.5 ml PEGLET (10 mM Tris [pH 8], 1 mM EDTA, 0.1 M lithium acetate, 40% polyethylene glycol [PEG]). Five microliters of denatured salmon sperm DNA (10 mg/ml) was added to it. One microgram of the purified plasmid DNA was then added to this mixture and allowed to stand overnight at room temperature, after which the cells were resuspended in 150 μl YES and spread onto appropriate selection plates.

2.4. Overexpression of Spc1/Spc1K49R

Wild type S. pombe cells were transformed separately with the plasmids pGS017 (empty vector pREP41; control) or pGS023 (pREP41 + Spc1; for Spc1 overexpression) or pGS041 (pREP41 + Spc1K49R; for Spc1K49R overexpression). pGS023 (or pGS041) contain the full length Spc1 gene (or the Spc1K49R mutant) cloned downstream of the nmt1 promoter which is fully repressed in the presence of Thiamine. Single colonies were inoculated in liquid media and grown to saturation in EMM-Leucine + 2.4 μM Thiamine. The cells were then harvested, washed to remove Thiamine and resuspended in fresh EMM-Leucine media and incubated with shaking at 30 °C for 24 h to allow derepression of the nmt1 promoter and consequent overexpression of Spc1/Spc1K49R.

2.5. Sample preparation and hybridization

The quality of RNA isolated was analyzed in an Agilent 2011 Bioanalyzer with an RNA LabChip kit according to the manufacturer’s protocol. The array used in this microarray was Affymetrix GeneChip Yeast Genome 2.0 (Affymetrix, Santa Clara, CA). The array format was 100 midi. This array contained probes for both S. pombe and Saccharomyces cerevisiae. For each sample total RNA was isolated and then used for first strand cDNA synthesis which was followed by a second strand cDNA synthesis. This was done according to the protocol in Affymetrix GeneChip 3′ IVT Express Manual (Affymetrix 2008). Biotin labeling was performed for 16 h at 40 °C. The fragmented and biotin labeled cDNA was hybridized to the arrays. The hybridization was done for 16 h at 10 rpm at 65 °C. The hybridized arrays were scanned using Affymetrix Scanner G 300 7G.

2.6. Microarray data analysis

2.6.1. Normalization and quality control

After scanning of slides, raw data sets were extracted from scanned CEL files and analyzed using GeneSpring GX12.6 software. Raw data was processed using RMA (Robust Multi-array Average) normalization algorithm that consists of three steps: a background adjustment, quantile normalization and finally summarization. Genes of low intensity information content in each data set were filtered by excluding probes corresponding to intensities less than the 10.0 percentile in the raw data. Quality control of the data was done by Principal component analysis method.

2.6.2. Differential gene expression analysis

Statistical analysis was performed for the identification of differentially expressed genes. The moderated t-test method was applied for assessing the statistically significant differentially expressed genes between the control sample (not overexpressing Atf1) and the sample in which Atf1 was overexpressed. The p-value cut-off 0.05 was considered statistically significant.

3. Results and discussion

Differential gene expression was observed for genes corresponding to 3445 probes. This data was further refined by setting a ±1.5 fold change cut-off for differential gene expression. Only 42 genes were found to exhibit differential expression after Spc1 overexpression, while 132 genes were found to be differentially expressed after Soc1K49R overexpression (see Table 1). The Yeast Genome 2.0 Array contains probes for both S. pombe as well as S. cerevisiae.

Table 2
List of genes differentially expressed after Spc1 overexpression (compared with empty vector controls).

Gene symbol	Representative public ID	Description	Nature of differential expression
sty1	SPAC24811.06c.S1	MAP kinase Sty1	Up
mam3	SPAP1E10.02c.S1	Cell agglutination protein Mam3	Up
urg2	SPAC1002.17c.S1	Uracil phosphoribosyltransferase (predicted)	Down
urg1	SPAC1002.19c.S1	GTP cyclohydrolase II (predicted)	Down
SPAC1039.08	SPAC1039.18c.S1	Serine acetyltransferase (predicted)	Down
SPAC13C7.12c	SPAC13C7.12c.S1	Choline kinase (predicted)	Down
meu1/mceu2	SPAC1556.06b.S1	Sequence orphan//sequence orphan (predicted to be involved in meiosis)	Down
SPAC19A8.14	SPAC19A8.14.S1	Aminoacyl-tRNA hydrolase (predicted)	Down
hem14	SPAC15F5.07c.S1	Protoporphyrinogen oxidase (predicted)	Down
SPAC1F8.08	SPAC1F8.08.S1	Sequence orphan (predicted membrane protein)	Down
SPAC750.08c	SPAC212.09c.S1	NAD-dependent malic enzyme	Down
SPAC27D0.09c	SPAC27D0.09c.S1	But2 family protein	Down
erv1	SPAC3G6.08.S1	Sulphydryl oxidase (predicted)	Down
mug124	SPBC19C2.06c.S1	Sequence orphan (predicted to be involved in meiosis)	Down
rec8	SPBC29A10.14c.S1	Meiotic cohesin complex subunit Rec8	Down
mug20	SPBC368.06c.S1	Sequence orphan (predicted to be involved in meiosis)	Down
car1	SPBP269.02c.S1	Arginase Car1	Down
SPBP887.05c	SPBP887.05c.S1	Carbonic anhydrase (predicted)	Down
SPCC162.01c	SPCC162.01c.S1	U4/U6 > US tri-snRNA complex subunit (predicted)	Down
aph1	SPCC4G2.02c.S1	BscA (5′-nucleosidyl)-tetrabiphosphatase	Down
SPCC576.01c	SPCC576.01c.S1	Sulfate dioxygenase (predicted)	Down
meu15	SPCCP72.03c.S1	Sequence orphan (predicted to be involved in meiosis)	Down
Given the high degree of homology of the genome sequence of both these organisms, positive hybridization results were obviously observed for probes designed against *S. cerevisiae* genes also. Tables 2, 3 and 4 list the differentially expressed genes. For better clarity, only the *S. pombe* specific matches are included in these tables.

Table 3

List of genes differentially expressed after Spc1K49R overexpression (compared with empty vector controls).

Gene symbol	Representative public ID	Description	Nature of differential expression
mam2	SPAC1H11.04.S1	Pheromone p-factor receptor	Up
pfs2	SPAC12G12.14c.S1	WD repeat protein Pfs2	Up
dad3	SPAC14C4.16.S1	DASH complex subunit Dad3	Up
SPC17G6.05c	SPAC17G6.05c.S1	Vacular protein-sorting protein	Up
rgs1	SPAC22F3.12c.S1	Regulator of G-protein signaling Rgs1	Up
mre2	SPAC27D7.03c.S1	RNA-binding protein involved in meiosis Mre2	Up
spk1	SPAC13G5.09c.S1	MAP kinase Spk1	Up
SPAC683.02c	SPAC683.02c.S1	zf-CCHC type zinc finger protein	Up
SPC750.07c	SPAC750.07c.S1	GPI-anchored protein (predicted)	Up
dak2	SPAC977.16c.S1	Dihydroxyacetone kinase Dak2	Up
mam3	SPAP11E10.02c.S1	Cell agglutination protein Mam3	Up
mfn1	SPAPB8E8.05.S1	M-factor precursor Mfn1	Up
git11	SPBC215.04.S1	Heterotrimeric G-protein gamma subunit Git11	Up
cnc1	SPBC21D10.07c.S1	Mitochondrial inner protein involved in cytochrome oxidase biogenesis Cnc1 (predicted)	Up
mhx2	SPBC317.01.S1	MADS-box transcription factor Mhx2	Up
SPBC2H8.05	SPBC2H8.05.S1	Conserved fungal protein (predicted nuclear localization)	Up
SPBC85S.08	SPBC85S.08.S1	Sequence orphan (predicted nuclear localization)	Up
mfn3	SPBP4664.03.S1	M-factor precursor Mfn3	Up
SPCC569.02c	SPCC569.02c.S1	Hypothetical protein	Up
for3	SPCC89S.05.S1	Formin For3	Up
SPCE11.10	SPCE11.10.S1	Ankyrin repeat-containing protein	Up
SPAC11D3.09	SPAC11D3.09.S1	Agmatinase (predicted)	Down
SPAC11D3.10	SPAC11D3.10.S1	Hypothetical protein (predicted to have pyridoxal phosphate binding activity)	Down
gsk3	SPAC1687.15.S1	Serine/threonine protein kinase Gsk3	Down
SPC17F8.08	SPAC17F8.08.S1	Sequence orphan (predicted membrane protein)	Down
SPC750.08c	SPAC212.09c.S1	NAD-dependent malic enzyme	Down
mug62	SPAC22F3.04.S1	AMP binding enzyme (predicted)	Down
sap49	SPAC31G5.01.S1	RNA-binding protein Sap49	Down
SPC343.13	SPAC343.13.S1	Mitochondrial glutamyl-tRNA amidotransferase beta subunit (predicted)	Down
SPAC689.02c	SPAC689.02c.S1	Nitric oxide dioxygenase (predicted)	Down
arg7	SPBC173.14.S1	Argininosuccinate lyase	Down
SPBC237.10c	SPBC237.10c.S1	NADH-dependent flavin oxidoreductase (predicted)	Down

Table 4

List of genes differentially expressed after Spc1 overexpression (compared with Spc1K49R overexpression).

Gene symbol	Representative public ID	Description	Nature of differential expression
cut2	SPCC84.02.S1	Cu metalloregulatory transcription factor Cut2	Up
spo6	SPBC1778.04.S1	Spo4-Spo6 kinase complex regulatory subunit Spo6	Up
SPC757.02c	SPBC757.02c.S1	Hypothetical protein	Up
SPBBP2B2.08	SPBBP2B2.08.S1	Hypothetical protein	Up
SPAC13G6.13	SPAC13G6.13.S1	Sequence orphan	Up
SPBC800.11	SPBC800.11.S1	Inosine–uridine preferring nucleoside hydrolase (predicted)	Up
mug131	SPBC1861.06c.S1	Hypothetical protein (predicted to be involved in meiosis)	Up
klp8	SPAC144.14.S1	Kinesin-like protein Klp8	Up
SPAC3H1.02c	SPAC3H1.02c.S1	Metallopeptidase	Up
nme1/1///nme2	SPAC1356.06.S1	Sequence orphan///sequence orphan (predicted to be involved in meiosis)	Down
urg2	SPAC1002.17c.S1	Uracil phosphoribosyltransferase (predicted)	Down
SPAC14C4.01c	SPAC14C4.01c.S1	DUF1770 family protein	Down
SPBC25H2.10c	SPBC25H2.10c.S1	fRNA acyltransferase (predicted)	Down
car1	SPBC26F9.02c.S1	Arginase Car1	Down
sro1	SPBC1347.11.S1	Stress Responsive Orphan 1	Down
SPBC365.04c	SPBC365.04c.S1	RNA-binding protein, involved in ribosome biogenesis (predicted)	Down
SPBC1604.09c	SPBC1604.09c.S1	Exoribonuclease Rex4 (predicted)	Down
nif1	SPBC2367.04c.S1	SEL1 repeat protein Nif1	Down
SPBC21C3.07c	SPBC21C3.07c.S1	Actin binding methyltransferase (predicted)	Down
mfn1	SPAPB8E8.05.S1	M-factor precursor Mfn1	Down
aph1	SPCC43.02.S1	Bis(5'-nucleosidyl)-tetraphosphatase	Down
matmi_1//matmi_2	SPCC1711.01c.S1	Mating-type m-specific polypeptide mi 1//mating-type M-specific polypeptide Mi 2	Down
skp1	SPBC49.05.S1	SCF ubiquitin ligase complex subunit Skp1	Down
SPCC16G3.20c	SPCC16G3.20c.S1	Sequence orphan (predicted to be involved in double-strand break repair)	Down
rev7	SPBC12D12.08.S1	DNA polymerase zeta Rev7 (predicted)	Down
SPBC3A2.01c	SPBC3A2.01c.S1	Nucleic cap-binding complex small subunit	Down
SPCC1450.07c	SPCC1450.07c.S1	o-Amino acid oxidase (predicted)	Down

Acknowledgments

This work was funded by the Council of Industrial and Scientific Research, Government of India [Ref: 37(1525)/12/EMR-II] dated 02/04/2012. M.P. and S.S. received fellowship from the UGC-RFSMS program.
Dept of Biochemistry, University of Calcutta. We thank DSA, University Grants Commission India, the DST FIST program, CAS program, DBT-IPLS program, Department of Biochemistry, University of Calcutta, and the Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, for infrastructural support. We thank Paul Russell (Scripps Research Institute) for generous gifts of strains. The authors declare that there are no conflicts of interest.

References

[1] K. Shiozaki, M. Shiozaki, P. Russell. Mcs4 mitotic catastrophe suppressor regulates the fission yeast cell cycle through the Wik1–Wis1–Spc1 kinase cascade. Mol. Biol. Cell 8 (1998) 409–419.

[2] K. Shiozaki, P. Russell. Cell-cycle control linked to the extracellular environment by MAP kinase pathway in fission yeast. Nature 378 (1995) 739–743.

[3] K. Shiozaki, P. Russell. Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev. 10 (1996) 2276–2288.

[4] A.M. Day, E.A. Veal. Hydrogen peroxide-sensitive cysteines in the Sty1 MAPK regulate the transcriptional response to oxidative stress. J. Biol. Chem. 285 (10) (2010) 7505–7516.

[5] K. Shiozaki, M. Shiozaki, P. Russell. Heat stress activates fission yeast Spc1/Sty1 MAPK by a MEKK-independent mechanism. Mol. Biol. Cell 9 (6) (1998) 1339–1349.

[6] G. Degols, K. Shiozaki, P. Russell. Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe. Mol. Cell. Biol. 16 (1996) 2870–2877.

[7] G. Degols, P. Russell. Discrete roles of the Spc1 kinase and the Atf1 transcription factor in the UV response of Schizosaccharomyces pombe. Mol. Cell. Biol. 17 (1997) 3356–3363.

[8] L. Guo, M. Ghassemian, E.A. Komives, P. Russell. Cadmium-induced proteome remodeling regulated by Spc1/Sty1 and Zip1 in fission yeast. Toxicol. Sci. 129 (1) (2012) 200–212.

[9] J.B. Millar, V. Buck, M.G. Wilkinson, Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev. 9 (1995) 2117–2130.

[10] N. Kawakita, Y. Nakajo, T. Nakamura, M. Yanagida. Fission yeast MAP kinase is required for the increased securin-separate interaction that rescues separate mutants under stresses. Cell Cycle 5 (2006) 1831–1839.

[11] D. Chen, W.M. Toone, J. Mata, R. Lyne, G. Burns, K. Kivinen, ... J. Bahler. Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell 14 (1) (2003) 214–229. http://dx.doi.org/10.1091/mbc.E02-08-0499.

[12] S. Moreno, A. Klar, P. Nurse. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194 (1991) 795–823.