Gender Interaction in Association of Perceived Social Support and Health-Related Quality of Life among Iranian Older People: A cross-Sectional Survey

Maryam Tajvar1*, Astrid Fletcher 2, Emily Grundy3, Badrye Karami1, Fatemeh Mohabbati4

1 Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
2 Faculty of Epidemiology & Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
3 Department of Social Policy, London School of Economics and Political Science, London, United Kingdom.
4 School of Public Health, Zabol University of Medical Sciences, Zabol, Iran.

* Corresponding author: Dr. Maryam Tajvar- Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. Tel: +98 (0) 21429330, Email: mtajvar@tums.ac.ir.
Gender Interaction in Association of Perceived Social Support and Health-Related Quality of Life among Iranian Older People: A cross-Sectional Survey

Abstract

Objective: The purpose of this study was to examine the relationship between perceived social support and dimensions of HRQoL and to examine possible gender interaction in the mentioned associations.

Method: A community-based cross-sectional study conducted among 644 participants over the age of 60 years old in Tehran. The data were collected through face-to-face interviews conducted in their own homes, by using a structured multi-sectional questionnaire. The version 1 of the SF-12 scale was used to measure the HRQoL, consisting of two summary measures; PCS and MCS. The Persian version of the Social Provisions Scale (SPS) was used to measure perceived social support. Four multilevel mixed-effects logistic regression models in STATA were used to examine the associations.

Results: Older people with poor SPS score were 1.8 times more likely to be in the worst quartile of the MCS distribution (p=0.02), and twice as likely to be in the worst quartile of the PCS distribution (p=0.01). We found a strong evidence (p=0.02) to support the hypothesis of gender interaction in the association between economic status and PCS, and a borderline evidence (p=0.05) for gender interaction in the association between physical activity and PCS.

Conclusions: Social support could be regarded as one of the main social determinants affecting HRQoL among elderly people. Men with poor economic status and poor physical activity, compared to women, are more likely to suffer from poor quality of life, thus men should be prioritized in intervention of financial support and life styles.

Keyword: Perceived Social Support, Health-Related Quality of Life, older people, Gender Interaction
Introduction

Population ageing in the world is unprecedented: by 2050, the number of people of 60+ years old in the world will exceed the number of young people under 15 years for the first time in history (1, 2). Iran has experienced one of the fastest fertility transitions in the world (3), So that, by 2030, the elderly population of Iran will increase from 5.6% to 17.5% (4) and life expectancy at birth increase to 78.2 years (5). Population ageing is usually associated with increased disability and disease in society (6). Thus, provision of health care would be one of the most important issue in future of Iran and that would be essential to pay attention to this age group, while improving their quality of life (QOL).

The QOL is an increasingly popular concept in the field of nursing and medicine (7). Based on Joyce’s definition "Quality of life is how good or bad you feel your life to be" (8). This means that QOL is a subjective perception that represents different things to different people (9). Health-related quality of life (HRQOL), on the other hand, is “how well a person functions in their life and his or her perceived wellbeing in physical, mental, and social domains of health” (10). HRQOL is considered as one of the important indicators of the outcome of treatment and care interventions in the elderly (11). Based on the earlier studies (12, 13), HRQoL in different populations are associated with various factors including age, gender, level of education, economic status, outdoor leisure activity, physical activity, social support (14), type and duration of residence (15), comorbidities (16), and being afflicted by chronic diseases (17). Among these factors, “social support” (SS) is an important predictor of HRQoL that studies have greatly multiplied in last years (14, 18). The SS is an exchange of sources between at least two persons which is recognized by the provider or the recipient to be intended to improve the well-being of the recipient (19). “Perceived social support’ (PSS) is defined as one’s overall impressions on whether social network
is supportive enough or not” (20). The SS, might be even more essential in old age, due to functional limitations, loss of sources of income, and loss of spouse and confidants (21). There is evidence that, lack of which are associated with higher mortality, chronic diseases, cognition, depressive symptoms, and well-being (22). This reliance sensation among elderly may help them with strengthening their coping abilities to overcome the stressors of life.

Multiple studies conducted to examine factors affecting SS and HRQoL among older adults in other countries (23, 24) and there is little such evidence on the older people of Iran (25). It is likely that differences in culture, societal conditions and settings make it difficult to generalize study findings from Western countries to other countries and populations. In addition, none of the previous studies have examined the strength of relationships among PSS and HRQoL in older population, controlling for the effects of potential individual-level and community-level covariates, extracted from literature, in separate analysis. The purpose of this study, thus, was to examine the relationship between PSS and HRQoL, with the hypothesis of lower levels of PSS are associated with poorer HRQoL among Iranian older adults. Additionally, interaction of gender and some other factors in the analysis of associations between PSS and HRQoL were examined. Finally, associations between community-level socio-economic status (SES) with HRQoL were checked. The results of the present study can be used in planning to improve the physical and mental health status, quality and living standards of the elderly and improve their social conditions.

Methods

Study design and data collection

A community-based cross-sectional study conducted among 644 participants over the age of 60 years old as a representative sample of older adults in Tehran. The study population selected using
a multistage stratified cluster sampling method in order to ensure representation of people from neighborhoods of different SES. Three municipal districts of Tehran chose from areas with different SES for the first stage of the sampling. At the second stage, from each district, one neighborhood was selected, randomly. Probability proportionate to size allocation method was used for selecting people within study cluster randomly. By using a structured multi-sectional questionnaire, the data were collected through face-to-face interviews conducted in their own homes. The response rate was 76%. There was not any systematic differences between characteristics of non-respondents include age and gender compared with respondents. The ethical committee of the London School of Hygiene and Tropical Medicine (LSHTM) and the ethical committee of the Tehran University of Medical Sciences (TUMS) approved this study as meeting the ethical standards of human subject research.

Measurement of study variables

In this study, HRQoL is the outcome variable and the SPS is the main independent variable. A long list of covariates were also measured and their effect on the associations between the main independent and dependent variables were controlled. To achieve the objectives of this research, the structured multi-sectional questionnaire was used. It consists of three main parts: 1) individual-level socio-demographic characteristics of participants (age, gender, number of children, marital status, economic status, employment, education ...), in addition to functional health status of participants (measured using the Nagi score) and community-level SES, 2 & 3) questionnaires to measuring the HRQoL and PSS.

To measure the HRQoL, we used the version 1 of the 12-item Short Form Health Survey (SF-12), as a shorter alternative to the SF-36. The SF-12 is a self-reported multipurpose short form survey (10). Cross-cultural validation studies have shown substantial correlations between the summary
measures of the SF-36 and the SF-12 Health Survey. The result of SF-12 is reported by two summary measures: the physical component score (PCS) and the mental component score (MCS). A global score is derived from the sum of these two components, estimating an individual’s perception of global HRQoL. Montazeri et al (26) adopted this scale for Iranian cultural characteristic. The validity and reliability of the SF-12 version1 was checked and suggested that the SF-12 version1 is a reliable and valid measure of the HRQoL in Iranian population. This questionnaire assesses four of the health concepts (physical functioning, role physical, role emotional and mental health) using two items for each, whereas the remaining four concepts (bodily pain, general health, vitality and social functioning) are represented by a single item. All 12 items are used to calculate the PCS-12 and the MCS-12 (27).

To select a suitable instrument for measuring PSS, a variety of available scales was reviewed (28-30) and finally, the Persian version of the Social Provisions Scale (SPS) originally developed by a research group at University of California at Los Angeles (UCLA) (31) based on the Weiss’s (1974) model of social provision, was selected. PSS consist of six dimensions: 1) Provision for attachment, provided most often by marriage or other cross-sex relationships; 2) Social integration, provided by a network of friends and colleagues who offer companionship and opportunity to share interests and values; 3) Opportunity for nurturing behavior, provided most often to children which develops a sense of being needed; 4) Reassurance of worth; 5) Guidance, provided most often by supportive friends and relatives; 6) Reliable alliance, provided most often by kin relationships. This scale has psychometric properties, contains simply worded questions and is relatively brief (31). Also it has been recommended as a suitable scale for older people (30). This scale has been translated to Persian by Zaki (32) in Iran as a reliable and valid instrument. Based on this study, SPS has highly significant validity and reliability and is suitable for Iranian culture, although this
scale was not validated in older people in Iran. The SPS consisted of 24 items with a four-point Likert scale, ranging from "strongly disagree" to "strongly agree". Each item is placed in one of six dimensions as listed above. A total score for each dimension is computed, as the mean of the scores of the items falls in the range 4-16. Overall, the scores of the SPS ranged from 24-96, with higher scores indicating a higher degree of perception of Social Support.

Statistical analysis

After collecting the data, the information from the 644 completed questionnaires entered into STATA for analyses. Analyses started with descriptive statistics to summarize the data. For continuous variables with normal distribution, mean and standard deviation, or where relevant median and inter quartile range were used for presentation of the data. Categorical variables were presented using numbers and percentages of groups. The results of the univariate analysis are presented in descriptive tables. After preliminary exploratory analysis, multivariable logistic regression was used to analyze associations between indicators of the HRQoL and PSS. The data collected were clustered and had a hierarchical structure. Individuals in the study were nested within households within neighborhoods within districts of Tehran. Thus, multilevel models instead of simple models were selected. As the outcome measure was binary, multilevel mixed-effects logistic regression model using ‘xtmelogit’ command in STATA was used.

In order to test the hypothesis of this research, the mixed-effect model was arrived at through a number of modeling stages. In all models, only questionnaires with complete data on all variables were included. In the first model, the association of the PSS (main independent variable) and other covariates with the HRQoL (dependent variable) were initially assessed one by one in a mixed-effect model adjusted for age and gender. The selection of covariates were based on the conceptual approach informed by theoretical considerations and results of the literature review. Then
correlation among independent variables were checked using a correlation matrix and one of the
highly correlated variables in any pair was dropped from further multivariable analyses. In the
second model, other covariates were added to the first model to check how the association between
main independent and dependent variables changes in the presence of other covariates. The third
model was the same as Model 2 but with an additional section to check the possible gender
interaction. In addition, in the final model, community-level data were added to a model with the
main exposure, age and gender and then to the model of stage 2 in order to explore how
associations between independent and dependent variables vary according to community-level
characteristics.

Results

Men and women comprised exactly the same number in this study (322 men and 322 women).
Descriptive profile of the study participants for sociodemographic variables are available from our
previous paper published from the same data (14). Sample characteristics were similar to census
data for a similar age group for the city of Tehran.

Table 1 shows the descriptive information on the HRQoL. After scoring of the SF-12, the mean
(SD) of the PCS and the MCS were calculated at 43 (29) and 53 (22) respectively indicating
considerably better mental health than physical health among participants. The HRQoL of men
was better than that of women in both components; the PCS (mean 52 vs. 34) and the MCS (mean
59 vs. 47). As Table 1 shows, women were twice more likely to be in the worst quartile of both
the PCS and the MCS. Age was also associated with HRQoL; being older was more likely to be
in the worst quartile of the HRQoL, especially in the PCS scores.
Table 1- Distribution of participants in the worst and other quartiles of the PCS and MCS (SF-12), by gender and age group

N (%) *	PCS		MCS	
	Worst quartile	Rest quartiles	Worst quartile	Rest quartiles
Gender				
Men (n=322)	53(17.1)	256(82.8)	56(17.5)	263(82.5)
Women(n=322)	104(32.9)	212(67.1)	111(35.1)	205(64.9)
Age groups				
60-69(n=329)	48(15.0)	272(85.0)	64(19.6)	263(80.4)
70-79(n=244)	71(30.2)	164(69.8)	80(33.6)	158(66.4)
80+ (n=71)	38(55.9)	30(44.1)	23(33.8)	45(66.2)

* The sum of numbers in some rows is less than total people in that row because of item non-response.

The mean (SD) score for the PSS of the participants as measured by the SPS was also calculated at 71.8 (9.7) (men 72.5, women 71.2) with a range of 24–96. A higher proportion of women than men (58% versus 42%) had scores in the worst quartile of the SPS. The highest score for both men and women was in the dimension of ‘attachment’ and the lowest score was in the dimension of ‘social integration’.

Table 2- Mean and SD of scores of the SPS and its dimensions to measure PSS of participants, by gender

Mean (SD)	Total SPS (Score range 24-96)	Reliable alliance	Attachment	Guidance	Opportunity for nurturance	Social Integration	Reassurance of worth
Men	72.5(9.0)	12.4(2.1)	12.9(1.9)	11.8(2.0)	12.5(2.3)	11.0(1.9)	11.6(1.7)
Women	71.2(10.3)	12.6(2.5)	12.8(2.4)	11.2(2.6)	11.7(2.6)	10.7(2.3)	11.7(1.8)
Total	71.8 (9.7)	12.5(2.3)	12.8(2.2)	11.5(2.4)	12.1(2.4)	10.9(2.1)	11.7(1.8)

The results of the association between SPS and two subscales of HRQoL (measured by SF-12) including the MCS and the PCS, which cannot be combined, are shown in two separate Tables as 3 and 4. In this analysis, the SPS scores was dichotomized into the lowest score quartile (27%)
versus the rest, as it was interested to check whether low SPS scores were associated with poorer HRQoL.

The analysis of association between SPS and MCS (Table 3) in the first model showed that those in the worst quartile of SPS were 2.7 times more likely to be in the worst quartile of the MCS (p<0.001). Age, gender, economic status perceived, social participation, physical activity, disability and Nagi score showed also significant associations with the MCS. After dropping the highly correlated covariates and those not showing significant contribution based on the results of Model 1 and LR tests, Model 2 was run with the refined variables. In this model, although the OR of SPS in association with MCS was nearly halved compared to the earlier model, the association was still significant (p=0.02). Age lost its association with MCS (p=0.40) and gender’s association was highly attenuated in this model but remained significant (p=0.01). Social participation and Nagi score were two other factors that remained significant in this model. In particular, Nagi score showed the most important contribution in association with MCS, suggesting that being socially active was a protective factor (OR= 0.29, p=0.005) but having poor physical health was a risk factor for MCS (OR=3.7, p<0.001). In gender-specific analysis, the factor with the greatest difference between men and women was the Nagi score, which was most significantly associated with men’s MCS than women. Thus, we formally tested for the interaction of gender in the association between Nagi and MCS in Model 3. There was no significant interaction between gender and Nagi score however (p=0.30). Association of other variables in Model 3 were almost the same as for Model 2. In the final model, the association between SPS and MCS was slightly stronger than the two previous models but the p-value was the same as before (OR=1.84, p=0.02). In this model, being female had a slightly smaller association with MCS (OR=1.82, p=0.02). Poor Nagi score and higher social participation had the same effects as before. As with the previous
models, the association between SPS and other aspects of health in this objective showed no significant association between SES of neighborhood and MCS.

[Table 3, here]

Analysis for association between SPS and PCS are shown in Table 4. In Model 1, those in the worst quartile of SPS were 2.5 times more likely to be in the worst quartile of PCS ($p=0.002$). Age, gender, economic status perceived, social participation, and physical activity also showed significant associations with PCS, similar to factors associated with MCS as explained previously.

In Model 2, when other covariates were included, the OR of being in the worst quartile of the SPS in association with the worst quartile of the PCS was decreased to 2 fold, but still significant ($p=0.01$). In this model, of other covariates, age, gender and physical activity were also factors showing significant associations with PCS. As shown in Model 3 and Model 4 of Table 4, there was strong evidence ($p=0.02$) to support the hypothesis of gender interaction in the association between economic status and PCS, and borderline evidence ($p=0.05$) for the hypothesis that gender modified the association between physical activity and PCS. These analyses showed that the men who rarely took part in physical activity had a much greater chance of reporting worst PCS compared to women with the same level of physical activity (OR 5.3 vs. 1.8). Additionally, having a better economic status was found to be important for men’s PCS, while women with poor or non-poor economic status reported similar PCS scores (OR 0.3 vs. 1.0). In the last model, when the effect of SES of neighbourhood was included, there was even stronger evidence compared to interaction models to support the significant association between SPS and PCS (OR=2.09, $p=0.01$).

The association of other factors in Model 5 with PCS was similar to before, but individual SES (economic status) here showed more association with PCS with borderline evidence (OR=0.6, $p=0.06$), while neighbourhood SES had no significant effect. The analysis showed that a high
quality relationship with family members are associated with PSS of older people. Moreover, PSS showed significant associations with HRQoL.

Discussion

In this study, we examined the influence of PSS on HRQoL (using the SF-12) among older people. Our results showed that those in the worst quartile of the SPS score, versus other quartiles, were 1.8 times more likely to be in the worst quartile of the MCS distribution (p=0.02), and twice as likely to be in the worst quartile of the PCS distribution (p=0.01) (Tables 3 and 4). These findings corroborated other studies conducted in Iran indicating a positive association between PSS and HRQoL (33), and emotional SS and HRQoL (34). Also the findings of our study are consistent with prior cross-sectional research on the association of PSS and HRQoL among Turkish (35, 36) and Israeli adults and older people (37). In the study of Filazoglu and Griva (35) PSS showed the strongest association with MCS and the second strongest association with the PCS among all other variables in regression models. The results of a longitudinal study in Israel (38) found SS as to have a stable, significant contribution to the QoL of participants in all three-time points of this study.

Few studies have considered the mechanisms whereby PSS may act positively to improve HRQoL. It is suggested that PSS may help people with strengthening their coping abilities to overcome the stressors of life or may have direct effect on their HRQoL through biological, psychological or behavioural pathways. Regarding people with different illnesses, Filazoglu and Griva (2008) (35) discussed that SS can directly influence their adjustment process and HRQoL in two ways: (i) tangible or instrumental SS which may aid patients in the process of physical recovery or in dealing
with the physical challenges of illness and associated treatments hence allowing them to maintain a reasonable level of physical HRQoL (PCS); (ii) emotional support which can provide reassurance in the process of dealing the emotional disorder of illness diagnosis and treatment and by making patients feel loved and valued in these times of hardship hence minimising emotional distress and impairments in mental HRQoL (MCS). According to some studies (36, 39), low levels of SS tend to be associated with poorer physical and mental aspects of HRQoL of chronically ill diabetic patients, while higher levels of SS contribute to better adjustment, a sense of purpose, less uncertainty and better compliance and control of these patients.

Further, the analysis in this study showed that the strength of the relationship between SPS and MCS decreased considerably in the presence of poor physical functioning status (Table 3), as poor physical functioning showed the strongest association with poor MCS even after controlling for many other factors in the model (OR=3.87, p<0.001). Given the reported inverse relationship between functional health and QoL (40) it is not surprising that the SS was less influential on HRQoL when physical functioning is poor. This finding lends support to the importance of managing and improving functional health of older people, as any SS interventions to improve HRQoL of older people would not be effective enough while these people are suffering from poor functioning. However, based on the findings (Table 3) PSS considerably decreased the strength of negative effects of poor functional status on HRQoL (MSC). This finding may lend some support to the stress-buffering model of SS as it enables older people to cope better with their poor physical situation, although it was not strong enough to eliminate most negative effects of poor physical health.

In addition, in this study, we found a significant interaction of gender in the association between physical activity and the PCS; men with the lowest level of physical activity versus those with
regular physical activity were more likely than women in the same situation to be in the worst quartile of the PCS score. This is consistent with the findings of Asfar (41) in Syria indicating that low physical activity is important for men’s health only. This finding may reflect the fact that in conservative societies, physical activity is more feasible for men than women, particularly in old age, where certain recreational activities may not be an option for many women. Additionally, in this study we observed that gender can also modify the association between economic status and PCS (p=0.02), so that for men but not women, having a better economic status was associated with a lower risk of being in the worst quartile of PCS. One possible explanation for this finding might be that women’s economic well-being depends more on family or spouse (such as what husband and others give them) than individual economic position. Another possibility is that the male breadwinner role means that men feel inadequate in some way if their economic status is poor and this affects their health. It is also possible that men with better economic status compared to poorer men had better access to health services or better life style. This is anyway a very complicated subject associating with many other factors.

The main weakness of this study is that it was cross-sectional and the temporal relationships between social support and health cannot be ascertained and reverse association cannot be excluded. For example, people with poor MCS and PCS may underestimate their SS resources. The temporality of this association could not be determined in this research and longitudinal studies are required. Another limitation was that this study was underpowered to examine interaction effects. Future research should employ larger samples to allow for analysis of gender interaction and the role of different sources of support in health and QoL of men and women. Additionally, the results of the study are only generalizable to community- living older people but not to older people living in institutions, those hospitalized at the time of the survey or those living
in other parts of Iran. Future studies should try to include these groups for whom associations may
differ and have a wider geographical scope. Importantly, further research is needed to elucidate
the possible pathways and mechanisms whereby PSS influences the mental and physical
components of HRQoL of older people in Iran.

List of Abbreviations

Abbreviation	Description
HRQOL	health-related quality of life
QOL	quality of life
SS	social support
PSS	perceived social support
MCS	Mental Component Score
PCS	Physical Component Score
SPS	Social Provisions Scale
SF-12	12-item Short Form
SES	Socio-Economic Status
TUMS	Tehran University of Medical sciences
LSHTM	the London School of Hygiene and Tropical Medicine
Declarations

Acknowledgements

We thank Tehran University of Medical Sciences for its partial fund for this research. Also thanks to the participants of this study.

Authors' contributions

MT designed the study, gathered data, carried out the statistical analysis and drafted the manuscript under supervision of EG and AF. EG and AF also contributed to interpretation of data significantly. BK and FM helped in literature review and using them in writing up the manuscript. They both also helped in data collection and data entry process. All authors read and approved the final manuscript.

Funding

The Tehran University of Medical Sciences (TUMS) [grant number 8904-27-02-88] supported this study.

Availability of data and materials

Please contact Dr. Maryam Tajvar (mtajvar@tums.ac.ir) for any data request.

Ethics approval and consent to participate

The ethical committee of the LSHTM as well as the ethical committee of the TUMS approved the research included in this thesis. An identification letter and card for all the people involved in the fieldwork was obtained from TUMS before starting the study. The purpose of the interview described for participants. Fieldworkers gave assurances to participants that the data collected would be treated as confidential and only used in an anonymous format for research purposes.
Participants’ freedom to discontinue participation whenever they wished was stated in the information sheets. The consent forms had to be signed or fingerprinted before interviews. Anonymity and confidentiality of all participants interviewed was ensured through numeric coding during all stages of the research. Questionnaires contained no identification of participants.

Competing interests

The authors reported no potential conflict of interest.
References:

1. He W, Goodkind D, Kowal PR. An aging world: 2015. 2016.
2. Nations U. World Population Ageing 1950-2050, World Assembly on Ageing. 2002.
3. (SCI) SCoI. website, Available at: http://amar.sci.org.ir/index_e.aspx.
4. Nabavi SH AF, Hejazi A, Rabbani E, Rashedi V. [Relationship between social support and mental health in older adults (Persian)]. Medical Journal of Mashhad University of Medical Sciences. 2014;57(7):841-6.
5. Nations U. World population prospects 2017. United Nations New York; 2017.
6. Nabavi SH AF, Hejazi A, Rabbani E, Rashedi V. [Relationship between social support and mental health in older adults (Persian)]. Medical Journal of Mashhad University of Medical Sciences. 2014;57(7):841-6.
7. Moons P BW, De Geest S. Critique on the conceptualisation of quality of life: a review and evaluation of different conceptual approaches. Int J Nurs Stud. 2006;43(7):891–901 1.
8. Bradley C TC, Gorton T, Symonds E, Martin A, Plowright R. The development of an individualized questionnaire measure of perceived impact of diabetes on quality of life: the ADDQoL. Qual Life Res 1999, 8(1-2):79-91.
9. Schipper H. Definitions and conceptual issues. Quality of life assessment in clinical trials.
10. Ware JE SC. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical care. 1992;30:473-83.
11. Yashin AI, Arbeev KG, Kulminski A, Akushevich I, Akushevich L, Ukrainseva SV. Health decline, aging and mortality: how are they related? Biogerontology. 2007;8(3):291-302.
12. Hodek JM RA, Greiner W. Relationship Between Health-Related Quality of Life and Multimorbidity. Gesundheitswesen 72: 455–465. 2010.
13. Tajvar M, Yaseri M, Mahmoudi R, Karami B. Active Aging Index and Its Individual Determinants in Tehran, Iran. Journal of School of Public Health and Institute of Public Health Research. 2020;18(2):139-58.
14. Tajvar M, Grundy E, Fletcher A. Social support and mental health status of older people: a population-based study in Iran-Tehran. Aging & mental health. 2018;22.
15. Hedayati HR HN, Mostafavi L, et al. Quality of life among nursing home residents compared with the elderly at home. Shiraz E-Med J. 2014;15:e22718.
16. Mazzella F, Cacciatore, F., Galizia, G., Della-Morte, D., Rossetti, M., Abbruzese, R., et al. Social support and long-term mortality in the elderly: Role of comorbidity. Archives of Gerontology and Geriatrics, 51, 323–328. 2010.
17. Zamanzadeh V. H, Ashvandi Kh., Lak S. Association between quality of life and social support of haemodialysis patients. Medical Journal of Tabriz University of Medical Sciences, 29(1): 49-54, (in Persian). 2007.
18. Jalali-Farahani SA, P. Karim, M. Vahedi-Notash,G. Amirshekari,G.Azizi, F. Perceived social support and health-related quality of life (HRQoL) in Tehranian adults:Tehran lipid and glucose study. Health and Quality of Life Outcomes (2018) 16:90 https://doi.org/10.1186/s12955-018-0914-y. 2018.
19. Shumaker SA, & Brownell, A. Toward a theory of social support: Closing conceptual gaps. Journal of Social Issues, 40(4), 11–36. 1984.
20. O S. Yaüam stresine karûÕ koruyucu olarak sosyal destekler, Edebiyat Fakûltesi YayônlarÕ, Seminer Psikoloji (Özel sayû), 805-811. 1988.
21. Nemeroff R, Midlarsky, E., Meyer, J., & Source, F. Relationships among social support, received control, and psychological distress in late life. International Journal of Aging & Human Development. 2010;71(1),69–82.
22. Angner E GJ, Purvis K, et al. Daily functioning, health status, and happiness in older adults. J Happiness Stud. 2013;14:1563–74.

23. Gallardo-Peralta LP. The relationship between religiosity/spirituality, social support, and quality of life among elderly Chilean people. International Social Work. 2017;60(6):1498-511.

24. Wedgeworth M, LaRocca MA, Chaplin WF, Scogin F. The role of interpersonal sensitivity, social support, and quality of life in rural older adults. Geriatric Nursing. 2017;38(1):22-6.

25. Ashoori J. Investigation the role of social capital, social support and psychological hardiness in predicting quality of life of elderly women. Journal of Geriatric Nursing. 2016;2(4):70-81.

26. Montazeri A, Vahdaninia M, Mousavi J, Omidvari S. The Iranian version of 12-item Short Form Health Survey (SF-12): factor structure, internal consistency and construct validity. BMC Public Health, 9:341. 2009.

27. Ware JE KM, Keller SD. How to score the SF-12 physical and mental health summary scales. 2nd edition. Boston, MA: The Health Institute; 1995.

28. Kosheshi M. Social support networks, living arrangements and health of elderly in Tehran. Unpublished PhD thesis Tehran University. 2007.

29. Norbeck JS, Lindsey, A.M., Carrieri, V.L. The development of an instrument to measure social support. Nursing Research, 30: 264-269. 1981.

30. Zimet GD, Dahlem, N.W., Zimet, S.G. & Farley, G.K. The Multidimensional Scale of Perceived Social Support. Journal of Personality Assessment, 52:30-41. 1988.

31. Russell DWC, C. E. The provisions of social relationships and adaptation to stress. Advances in Personal Relationships, 1: 37-67. 1987.

32. A ZM. Reliability and Validity of the Social Provision Scale (SPS) in the Students of Isfahan University. Iranian journal of Psychiatry and Clinical Psychology,14(4):439-446. 2009.

33. Jalali-Farahani S, Amiri P, Karimi M, Vahedi-Notash G, Amirshekari G, Azizi F. Perceived social support and health-related quality of life (HRQoL) in Tehranian adults: Tehran lipid and glucose study. Health and quality of life outcomes. 2018;16(1):90.

34. Mousavi Sardashti M KH, Ansari E, Hosseinpour K. Study of the Relationship of Emotional Support and Quality of Life of the Elderly in Shahr-e-Kord. J Health System Research. 2014;10(1):58-66 (Persian).

35. Filazoglu GaKG. Coping and social support and health related quality of life in women with breast cancer in Turkey. Psychology Health & Medicine, 13(5): 559-73. 2008.

36. Göz F. KS, Goz M., Ekiz S., Cetin I Effects of the diabetic patients’ perceived social support on their quality-of-life. Journal of Clinical Nursing, 16 (7): 1353-1360. 2007.

37. Schwartz CaRF. Contribution of demographic, medical, and social support variables in predicting the mental health dimension of quality of life among people with multiple sclerosis. Health & Social Work, 30(3): 203-212. 2005.

38. Nir Z, Greenberger C, Bachner YG. Profile, burden, and quality of life of Israeli stroke survivor caregivers: a longitudinal study. Journal of Neuroscience Nursing. 2009;41(2):92-105.

39. Tovbin D, Gidron Y, Jean T, Granovsky R, Schnieder A. Relative importance and interrelations between psychosocial factors and individualized quality of life of hemodialysis patients. Quality of Life Research. 2003;12(6):709-17.

40. Kennedy C. A. K, J.A., Muraco W.A. (1991) The relative strength of health as a predictor of life satisfaction, International Social Science Review, 97-102. The relative strength of health as a predictor of life satisfaction, . International Social Science Review 1991:97-102.

41. Asfar T ea. Self-rated health and its determinants among adults in Syria: a model from the Middle East. BMC Public Health 2007;7(1):177.
Table 3: Mixed-effects logistic regression models for analysing the association of PSS and MSC (worst quartile of the MCS distribution)

Variables	Model 1** (Univariable)	Model 2 (Multivariable Other Individual-level Covariates)	Model 3 (Model 2+ Interaction of Gender)	Model 4 (Model 2+ Community-Level Covariate)				
	OR (95% CI)	P*	OR (95% CI)	P	OR (95% CI)	P	OR (95% CI)	P
Individual-level variables								
Perceived social support (PSS)								
Rest quartiles	Ref.		1.80(1.11-2.93)	**0.02**	1.76(1.09-2.85)	**0.02**	1.84(1.11-3.04)	**0.02**
Worst quartile	2.66(1.57-4.50)	**<0.001**	0.98(0.95-1.02)	0.40	0.98(0.95-1.02)	0.40	0.98(0.95-1.02)	0.39
Age								
Continuous	1.05(1.02-1.09)	**0.002**	1.09(1.05-1.14)	0.02	0.98(0.95-1.02)	0.40	0.98(0.95-1.02)	0.39
Gender								
Man	Ref.							
Woman	3.08(1.85-5.14)	**<0.001**	1.84(1.12-3.03)	**0.01**	-		1.82(1.10-3.01)	**0.02**
Ethnicity								
Fars (main ethnicity)	Ref.							
Non-Fars (minor ethnicities)	1.02(0.68-1.53)	0.93	-		-		-	
Religious beliefs								
Strong	Ref.							
Less strong	1.50(0.74-3.02)	0.26	-		-		-	
Married or not								
No	Ref.							
Yes	0.72(0.4-1.18)	0.19	-		-		-	
Having children								
No	Ref.							
Yes	0.74(0.23-2.34)	0.61	-		-		-	
Family size								
0-10 members	Ref.							
11+ members	0.88(0.49-1.59)	0.68	-		-		-	
Living arrangement								
Living alone/others	Ref.							
Living with child/children only	0.61(0.30-1.24)	-	-		-		-	
Living with spouse only	0.65(0.33-1.26)	0.37	-		-		-	
Living with spouse& child/children	0.56(0.28-1.10)	-	-		-		-	
Quality of relationships with spouse****								
Less than very good	Ref.							
Very good	0.65(0.41-1.04)	0.07	-		-		-	
Quality of relationships with at least 1 family member								
Less than very good	Ref.							
Very good	0.62(0.37-1.05)	0.08	-		-		-	
Education								
Illiterate	Ref.							

OR: odds ratio, **P**: p-value
	1-9 years						
	10 years and more						
Economic status perceived							
Poorer than average	1.00(0.63-1.57)	0.99					
Same or better than average	0.98(0.50-1.95)						
Having medical insurance							
Yes							
No	1.58(0.84-3.00)	0.16					
Participating in social activities							
0-2 activities out of 10 (poor)							
3-10 activities (non poor)							
Smoking							
Regularly/Sometimes							
Never	1.03(0.58-1.81)	0.92					
Physical activity(exercise)							
Regularly/Sometimes							
Never	2.03(1.23-3.34)	0.005					
Disability limiting daily life							
Yes							
No	0.22(0.11-0.45)	<0.001					
Nagi (functional health)							
Rest quartiles							
Worst quartile	5.15(2.47-10.74)	<0.001					
Nagi in men							
Rest quartiles							
Worst quartile							
Nagi in women							
Rest quartiles							
Worst quartile							
Community-level variable							
SES of neighbourhood							
Poor							
Middle	1.17(0.73-1.87)	0.80					
High	1.06(0.61-1.83)						
LR test vs. logistic regression P-value				0.99	0.99	0.96	
Neighbourhood-level ICC							
Household-level ICC							

* P-value of OR reported for each dummy variable compared to the baseline category controlled for other variables. For categorical variables overall P-value was reported using ‘testparm’ in STATA. In all models only people with complete data on all variables were included. **In Model 1, ICC for levels of analysis were not reported as separate univariable models were fitted for each variable and each model had different ICC for each level *** For these variables, analysis excluded those without a spouse/ a child
Table 4: Mixed-effects logistic regression models for analysing the association of PSS and PCS (worst quartile of the PCS distribution)

Variables	Model 1**	Model 2	Model 3	Model 4	Model 5							
	Univariable	Multivariable	Multivariable	Multivariable	Multivariable							
	Each Factor+ Age+ Gender	SPS+ Other Individual-level Covariates	Gender& Physical Activity	Gender& Economic Status	Community-Level Covariate							
	OR (95% CI)	P*	OR (95% CI)	P								
Perceived social support (PSS)												
Rest quartiles	Ref.		Ref.	0.002	2.04(1.18-3.54)	0.01	1.92(1.12-3.27)	0.02	1.99(1.13-3.49)	0.02	2.09(1.19-3.65)	0.01
Worst quartile	2.53(1.38-4.60)	0.002	2.04(1.18-3.54)	0.01	1.92(1.12-3.27)	0.02	1.99(1.13-3.49)	0.02	2.09(1.19-3.65)	0.01		
Age												
Continuous	1.14(1.07-1.21)	<0.001	1.08(1.04-1.13)	<0.001	1.08(1.03-1.12)	<0.001	1.08(1.03-1.13)	<0.001	1.08(1.03-1.13)	<0.001		
Gender												
Man	Ref.		Ref.		-		-		-		-	
Woman	4.33(1.07-9.20)	<0.001	2.36(1.29-4.33)	0.005	-		-		-		2.18(1.20-3.94)	0.01
Ethnicity												
Fars (main ethnicity)	Ref.		-		-		-		-		-	
Non-Fars (minor ethnicities)	1.13(0.66-1.93)	0.64	-		-		-		-		-	
Married or not												
No	Ref.		-		-		-		-		-	
Yes	0.82(0.44-1.53)	0.54	-		-		-		-		-	
Having children												
No	Ref.		-		-		-		-		-	
Yes	0.87(0.19-3.96)	0.86	-		-		-		-		-	
Living arrangement												
Living alone/others	Ref.		-		-		-		-		-	
Living with children only	0.87(0.37-2.06)	-	-		-		-		-		-	
Living with spouse only	0.91(0.40-2.07)	0.84	-		-		-		-		-	
Living with spouse& children	0.70(0.30-1.65)	-	-		-		-		-		-	
Education												
Illiterate	Ref.											
1-9 years	0.74(0.41-1.35)	0.12	1.15(0.67-1.98)	0.56	1.12(0.65-1.90)	0.52	1.11(0.63-1.95)	0.77	1.03(0.58-1.84)	0.21		
10 years and more	0.33(0.11-0.95)	0.12	0.70(0.26-1.85)	0.56	0.65(0.25-1.70)	0.52	0.79(0.29-2.14)	0.77	0.38(0.11-1.26)	0.21		
Economic status perceived												
Poorer than average	Ref.											
Same or better than average	0.44(0.24-0.80)	0.008	0.63(0.37-1.05)	0.08	0.63(0.38-1.05)	0.08	0.59(0.34-1.02)	0.06	0.59(0.34-1.02)	0.06		
Having medical insurance												
Yes	Ref.		-		-		-		-		-	
No	1.14(0.50-2.61)	0.75	-		-		-		-		-	
Participating in social activities												
0-2/10 activities (poor)	Ref.		-		-		-		-		-	
3-10/10 activities (non poor)	0.09(0.02-0.35)	0.001	-		-		-		-		-	

OR: Odds Ratio, CI: Confidence Interval, P: Probability
Smoking

Smoking Category	Ref.	OR (95% CI)	P-value	
Regularly/Sometimes	-	0.93(0.45-1.92)	0.84	-
Never	-	0.84	-	

Physical activity (exercise)

Physical activity Category	Ref.	OR (95% CI)	P-value			
Regularly/Sometimes	-	<0.001	3.18(1.63-6.20)	0.001	3.27(1.62-6.60)	0.001
Never	-	3.09(1.94-8.63)	0.008	-		

Interaction of Physical activity & Gender P

Physical activity in men

Physical activity	Ref.	OR (95% CI)	P-value	
Regularly/Sometimes	-	-	-	
Never	-	5.32(2.14-13.20)	<0.001	-

Physical activity in women

Physical activity	Ref.	OR (95% CI)	P-value	
Regularly/Sometimes	-	1.80(0.82-3.93)	0.14	-
Never	-	1.80(0.82-3.93)	0.14	-

Interaction of Economic status & Gender P

Economic status in men

Economic status	Ref.	OR (95% CI)	P-value	
Poorer than average	-	0.28(0.11-0.71)	0.007	-
Same or better than average	-	-	-	

Economic status in women

Economic status	Ref.	OR (95% CI)	P-value	
Poorer than average	-	1.00(0.53-1.88)	0.99	-
Same or better than average	-	-	-	

Community-level variable

SES of neighbourhood

SES of neighbourhood	Ref.	OR (95% CI)	P-value
Poor	-	0.62	0.69
Middle	0.72(0.39-1.34)	0.54	0.79
High	0.78(0.38-1.58)	0.54	0.62

P-value of OR reported for each dummy variable compared to the baseline category controlled for other variables. For categorical variables, overall P-value was reported using ‘testparm’ in STATA. In all models, only people with complete data on all variables were included.

In Model 1, ICC for levels of analysis were not reported as separate univariable models were fitted for each variable and each model had different ICC for each level.