ACTIVATION OF RESOLUTION PATHWAYS
TO PREVENT AND FIGHT CHRONIC INFLAMMATION:
« LESSONS FROM ASTHMA AND INFLAMMATORY BOWEL DISEASE »

Cindy Barnig¹, Tjitske Bezema², Philip C. Calder³, Anne Charloux¹, Nelly Frossard⁴, Johan Garssen⁵a, Oliver Haworth⁶, Ksenia Dilevskaya⁷, Francesca Levi-Schaffer⁸, Evelyne Lonsdorfer¹, Marca Wauben⁹, Aletta D. Kraneveld⁷b, Anje A. te Velde¹⁰

¹ Department of Chest Disease, Strasbourg University Hospital, 1, place de l’Hôpital, 67091 Strasbourg, France and University of Strasbourg, Strasbourg, France
² Immunowell Foundation, Utrecht, the Netherlands.
³ Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK and National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom.
⁴ UMR 7200 CNRS / Université de Strasbourg, Laboratoire d’Innovation Thérapeutique and LabEx MEDALIS, Faculté de Pharmacie, Strasbourg, France
⁵ Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands; Immunology Platform,
⁶ Nutricia Research, Utrecht, the Netherlands.
⁷ Biochemical Pharmacology, William Harvey Research Institute, Bart's School of Medicine and Queen Mary University of London EC1 M 6BQ, United Kingdom.
⁸ Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands;
⁹ Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
¹⁰ Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
¹¹ Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
¹² Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam, the Netherlands.
Abstract
Formerly considered as a passive process, the resolution of acute inflammation is now recognized as an active host response, with a cascade of coordinated cellular and molecular events, that promotes termination of the inflammatory response and initiates tissue repair and healing. In a state of immune fitness, the resolution of inflammation is contained in time and space enabling the restoration of tissue homeostasis.
There is increasing evidence that poor and/or inappropriate resolution of inflammation participates in the pathogenesis of chronic inflammatory diseases, extending in time the actions of pro-inflammatory mechanisms, and responsible in the long run for excessive tissue damage and pathology.
In this review, we will focus on how resolution can be the target for therapy in ‘Th1/Th17 cell-driven’ immune diseases and ‘Th2 cell-driven’ immune diseases, with inflammatory bowel diseases and asthma, as relevant examples.
We describe the main cells and mediators stimulating the resolution of inflammation and discuss how pharmacological and dietary interventions but also life style factors, physical and psychological conditions, might influence the resolution phase.
A better understanding of the impact of endogenous and exogenous factors on the resolution of inflammation might open a whole area in the development of personalized therapies in non-resolving chronic inflammatory diseases.

Keywords: resolution, inflammation, immune fitness, eicosanoids, asthma, chronic inflammatory bowel disease
1. Introduction

Inflammation is part of the normal response of the host to invasion by harmful microorganisms or to tissue injury (Nathan and Ding, 2010). The acute inflammatory response is initiated within minutes of recognition of a danger signal, and begins with an onset phase coordinated by several families of chemokines, cytokines, eicosanoids, proteases, vasoactive amines, neuropeptides and neurotransmitters, and other pro-inflammatory mediators produced by resident immune and structural cells in the injured/infected tissue, which is followed by a rapid influx of granulocytes from blood to the tissue inflammatory site (Larsen and Henson, 1983). Self-amplifying networks of pro-inflammatory pathways perpetuate leukocyte recruitment and activation.

In a state of immune fitness, the inflammatory response is contained in time and space, and is programmed to resolve, i.e. return from the infected or injured state to a “healthy” state corresponding to that of pre-inflamed tissue. Formerly considered as a passive process, the natural resolution of acute inflammation is now known as an active host response, with highly coordinated cellular and molecular events with release of anti-inflammatory cytokines, loss of receptors for pro-inflammatory signals, and production of a wide range of pro-resolving mediators including recently uncovered specialized pro-resolving lipid mediators (SPMs) that enable restoration of tissue homeostasis (Serhan, 2017b). A failure in pro-resolving pathways may extend in time the actions of pro-inflammatory mechanisms resulting in prolonged or chronic inflammation with recurrent exacerbations, responsible in the long run for excessive tissue damage and pathology (Figure 1).

Poor and/or inappropriate resolution of inflammation has indeed emerged as a critical process in the pathogenesis of numerous chronic inflammatory and auto-immune diseases including inflammatory bowel diseases (IBD) (such as Crohn’s disease and ulcerative colitis) (Ungaro et al., 2017). Persistent airway inflammation in chronic lung diseases, such as asthma, may also be due to defects in pro-resolving molecular pathways (Levy et al., 2005) (Barnig et al., 2018).

The possibility to promote resolution of the inflammatory response as a therapeutic approach has only become apparent in the 21st century (Gilroy et al., 2004; Bosma-den Boer et al., 2012). Better understanding the resolution phase of the inflammatory response and how this process might be influenced by environmental factors might open a whole area of new, affordable and personalized therapeutic options in chronic inflammatory diseases. This article will first review the main cellular and molecular mechanisms involved in the resolution of
inflammation. Finally, we will discuss a series of interventions that can potentially promote resolution with a focus on ‘Th1/Th17 cell-driven’ and ‘Th2 cell-driven’ immune diseases, with inflammatory bowel diseases and asthma, as relevant examples.

2. The main determinants of the resolution phase

Overall there are two distinct phases in an inflammatory reaction: the initiation of inflammation and the resolution phase (Figure 1). A post-resolution phase of inflammation, that links innate and adaptive immune systems has also been described (Newson et al., 2014) (Newson et al., 2017). For effective resolution of inflamed tissues to occur and to restore tissue homeostasis, specific cellular mechanisms that are under the control of pro-resolving mediators are enlisted to promote termination of the inflammatory response and initiate tissue repair and healing (Figure 2). Better understanding of how the environment can impact on the resolution of inflammation will lead to an improved understanding of why the chronic inflammatory diseases persist.

a) Cells involved in the resolution of inflammation

- **Macrophages**

One of the key events in determining the initiation of the resolution phase is the recruitment of non-phlogistic monocytes and their differentiation into macrophages at sites of inflammation. Indeed, central to the successful resolution of inflammation, is the process of local leukocyte clearance by apoptosis and subsequent phagocytosis of the apoptotic cells by surrounding monocyte-derived phagocytes (Figure 2). Engulfment of apoptotic cells signals to the phagocytosing macrophages that the inflammatory response is ending, and alters macrophage mediator production from a predominantly pro-inflammatory (M1) to an anti-inflammatory and pro-resolving phenotype (M2), that further enhances phagocytosis of apoptotic cells and promotes the return to tissue homeostasis (Dalli and Serhan, 2017) (Wynn et al., 2013). This shifting balance between pro-inflammatory M1 and wound-healing M2 macrophages over time is essential for proper resolution of inflammation (Smith et al., 2017).

- **Regulatory T cells**

Regulatory T (Treg) cells can also play roles in the resolution process, by promoting repair and regeneration of various organ systems and may link innate and adaptive immune systems (for a recent review see (Li et al., 2018)). Treg cells, like T helper (Th) cells, derive from the
progenitor CD4+ naive T cell. The population of Treg cells consists of thymus-derived Treg cells called natural Treg (nTregs) cells, and Treg cells induced in the periphery or induced Treg (iTregs) cells. Treg cells suppress the activation and function of inflammatory leukocytes, specifically macrophages, through the production of anti-inflammatory cytokines (IL-10 and TGF-β) and by scavenging IL-2 (high expression of IL-2R CD25), signaling of surface molecules, cytolysis, and metabolic control (van Herk and Te Velde, 2016) (Lu et al., 2017).

Treg cells are important players for maintaining homeostatic balance in the intestine (reviewed in (Bollrath and Powrie, 2013)). Acute Treg cell deficiency results in an exacerbated inflammatory immune response toward commensal intestinal bacteria leading to a chronic inflammatory state as found in IBD (Schiering et al., 2014).

Similarly, in mouse models of allergic asthma, resolution of allergic airway inflammation was dependent on CD4+CD25+Foxp3+ expressing Treg cells (Leech et al., 2007). Accumulation of Treg cells in local draining lymph nodes of the lung correlated with spontaneous resolution of chronic asthma in another murine model (Carson et al., 2008). Moreover, in the lung, Treg cells have also been described to directly stimulate lung tissue repair, as a consequence of the production of amphiregulin, an autocrine growth factor (Arpaia et al., 2015).

- **Innate lymphoid cells**

Innate lymphoid cells (ILCs) are a large family of cells with various immunological functions (Mjosberg and Spits, 2016). They can be classified into different subgroups based on their cytokine production and their expression of key transcription factors, similar to T cell subsets. In various mouse models of asthma and inflammatory bowel diseases, studies suggest a role for ILCs in the induction of inflammation (for recent reviews see (Ebbo et al., 2017) (Geremia and Arancibia-Carcamo, 2017)). Recent evidence suggests a more complex role for these cells, with dual roles in the induction of inflammatory diseases but also the control of chronic inflammation. Type 2 ILC (ILC2) cells demonstrate a flexibility and plasticity dependent on the local microenvironment and can potentially act both as effectors and suppressors (reviewed in (Ealey et al., 2017) and (Wallrapp et al., 2018)). ILC2 cells, by producing IL-5 and IL-13, promote the development of type 2 allergic inflammation, independent of Th2 cells (Newson et al., 2014; Cosmi et al., 2017). In contrast, the production of IL-9 by ILC2s was recently reported to mediate resolution of inflammation in a model of chronic arthritis, another chronic non-resolving disease (Rauber et al., 2017). Also, a potential role for ILC2
has been suggested in tissue repair after acute lung injury in a mouse model of H1N1 influenza virus infection through the production of amphiregulin (Monticelli et al., 2011).

The same holds true for type 3 ILC (ILC3) cells, the most abundant ILC subtype in the human intestine at steady state (Forkel and Mjosberg, 2016). ILC3 cells are the main contributors to intestinal IL-22 production, which is a tightly regulated mediator for immune homeostasis in the intestinal tract (Rankin et al., 2016).

NK cells are also members of the ILC family with potential roles of SPM-induced resolution of eosinophilic inflammation in Th2 asthma (Haworth et al., 2011) (Barnig et al., 2013).

- **Myeloid-Derived Suppressor Cells**

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells, consisting of myeloid progenitor cells, and immature macrophages, granulocytes and dendritic cells. These cells are not present in the normal healthy steady state, and appear in pathological situations related to chronic inflammatory situations and stress. Their main function is the suppression of T cell function (Gabrilovich and Nagaraj, 2009) (Ray et al., 2013) (Ben-Meir et al., 2018).

Recently, a recommendation was published to classify these cells into two different subsets based on their phenotype and function (Bronte et al., 2016). Polymorphonuclear (PMN) and mononuclear (M) MDSCs share several partly overlapping immunosuppressive mechanisms, where inhibition of anti-CD3/CD28-induced T-cell proliferation and IFN-γ production are the general functional tests used for their identification. In general, MDSCs use several mechanisms to carry out their immunosuppressive function. As biomarkers, the expression of various transcription factors and apoptotic regulators (pSTAT3, cEBP/b, S100A8/9) and immune-regulatory genes and molecules (ARG1, NOS2, NOX2 and PNT) are associated with MDSCs and/or PMN-MDSC and M-MDSC subsets (Bronte et al., 2016; Rodriguez et al., 2017). These molecules have immunosuppressive effects and negatively regulate T cells by impairing IL-2R signaling pathways, trigger apoptosis (Rodriguez and Ochoa, 2008; Arocena et al., 2014), and induce Treg cell expansion and IL-10 and TGF-β production (Li et al., 2009; Poe et al., 2013). Moreover, MDSCs have a relevant role in resolution of inflammation by efferocytosis of apoptotic neutrophils (Ray et al., 2013), a process supported in part by IL-10 (Poe et al., 2013).

b) Mediators participating in the resolution of inflammation
During the inflammatory response, diverse mediators are synthesized in a strict temporal and spatial manner to act on specific receptor targets and to actively prevent the overshooting of acute inflammatory mechanisms, and ultimately restore tissue homeostasis. Functionally, these anti-inflammatory and pro-resolving mediators counter-regulate key events of inflammation. Different from solely anti-inflammatory actions, pro-resolving mediators actions typically target specific pro-resolution mechanisms: limitation and/or cessation of neutrophil recruitment; promotion of nonphlogistic monocyte recruitment; induction of neutrophil apoptosis and their subsequent efferocytosis by macrophages, enhancement of efferocytosis, reprogramming of macrophages from classically activated to alternatively activated cells; return of non-apoptotic cells to the blood or egress via the lymphatic vasculature; stimulation of tissue repair and cellular repopulation of the tissue, leading to ‘adapted homeostasis’ (recently reviewed in (Sugimoto et al., 2019)).

Pro-resolving mediators are diverse in nature, and include SPMs (lipoxins, resolvins, protectins and maresins), proteins and peptides (annexin A1 (AnxA1), galectins, adrenocorticotropic hormone (ACTH) and IL-10), gaseous mediators including hydrogen sulphide (H₂S) and carbon monoxide (CO), nucleotides (e.g. adenosine), as well as neuromodulators released under the control of the vagus nerve such as acetylcholine and neuropeptides released from non-adrenergic non-cholinergic neurons (Serhan, 2017a). As diverse as their nature is their origin, where mediators of resolution can be produced locally, acting in paracrine and autocrine manners, or produced at distant sites, followed by their systemic release and extravasation to sites of inflammation (Sugimoto et al., 2019). Below the main pro-resolving mediators will be described.

- **Specialized pro-resolving lipid mediators (SPMs)**

Recently, a new array of lipid molecules that function in the resolution of inflammation were elucidated and collectively named SPMs (Serhan et al., 2008; Serhan, 2017b) (Chiurchiu et al., 2018). These mediators, such as lipoxins (Lx), resolvins (Rv), protectins (PD), and maresins (Mar), are produced during the inflammatory response and derive from polyunsaturated fatty acids (PUFAs). Whereas Lx derive from the omega-6 PUFA arachidonic acid, the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) give rise to Rv, PD and Mar (Figure 3). More recently SPMs produced from both the omega-6 and omega-3 docosapentaenoic acids have been described (Weylandt, 2016). The SPMs are produced via biosynthetic circuits engaged during cell–cell interactions including different innate immune cells, for example macrophages or neutrophils, and structural cells at
sites of inflammation. SPMs can also been produced through interactions of platelets with leukocytes (Rossaint et al., 2018).

These bioactive lipids display potencies in the nanomolar range, and signal through cognate G-protein coupled receptors (GPR) such as the N-formyl peptide receptor 2 (ALX/FPR2), GPR32 and GPR18 with many cell type-specific actions (Chiang and Serhan, 2017) (Perretti et al., 2002) (Figure 4).

LXA₄ binds to the ALX/FPR2. This receptor displays diverse ligand affinities that extend beyond interactions with LXA₄. Indeed, ALX/FPR2 can interact with over 30 ligands with various affinities, and has been identified as the first receptor to engage both bioactive lipids and peptides/proteins, including annexin A1 (Perretti et al., 2002). ALX/FPR2 is widely expressed on human leukocytes, including neutrophils, eosinophils, monocyte-macrophages, T cells, NK cells and ILC2 cells, as well as on tissue resident cells, such as airway epithelial cells and fibroblasts (Barnig et al., 2013) (Bonnans et al., 2006) (Chiang et al., 2006). Its expression is up-regulated by local inflammatory-mediators such as IL-13 and IFN-γ (Bonnans et al., 2006) (Levy et al., 2002).

After initiation of the resolution of inflammation, repolarization by resolvin E1 (RvE1) induces a M2 wound healing-type macrophage (Herova et al., 2015.). In addition, different Rv and Mar interact with ERV1/ChemR23, GPR32 and GPR18 on macrophages to enhance their efferocytosis, phagocytosis and IL-10 transcription (Schwab et al., 2007; Ohira et al., 2010; Chiang et al., 2012; Serhan et al., 2012; Dalli et al., 2013; Chiang et al., 2015; Herova et al., 2015; Winkler et al., 2016). Other more recently described targets of these mediators are Treg cells and type 2 ILCs (Krishnamoorthy et al., 2015) (Barnig et al., 2013). SPMs can prevent naïve CD4⁺ T cell differentiation into Th1 and Th17 cells and enhance the generation of Treg cells (Chiurchiu et al., 2016).

Evidence for the functional importance of these lipid mediators in the resolution of inflammation comes from mouse models of diverse inflammatory disorders where SPMs are able to control inflammation, limit tissue damage, shorten resolution intervals, and promote wound healing (for a recent reviews see (Basil and Levy, 2016) (Lu et al., 2017)) (Barnig et al. PT 2018).

More specifically in experimental allergic asthma, treatment with SPMs decreases key features of asthma pathobiology, including airway hyperresponsiveness, mucus metaplasia and Th2 cell bronchial inflammation (Levy et al., 2002; Haworth et al., 2008) (Karra et al., 2015).
A protective role for these bioactive lipid mediators has also been reported in experimental colitis (Arita et al., 2005) (Gobbetti et al., 2017). Indeed, systemic treatment of mice with PD1 or RvD5 protected against colitis and intestinal ischemia/reperfusion-induced inflammation (Gobbetti et al., 2017).

- **Annexin A1**

An important mediator of the resolution of inflammation is the glucocorticoid-regulated protein annexin (Anx) A1, also known as lipocortin-1. AnxA1 is highly abundant in myeloid-derived cells such as neutrophils and macrophages, and exerts profound effects on several phases of the resolution of inflammation (Perretti and D'Acquisto, 2009). AnxA1 signals through the FPR2, which also binds the SPMs LxA₄ and RvD1 (Perretti et al., 2002). Studies in mice indicate that this protein has important modulatory functions in neutrophil trafficking by reducing neutrophil infiltration and activating neutrophil apoptosis. AnxA1 also promotes monocyte recruitment, clearance of apoptotic neutrophils by macrophages and can switch macrophages towards a pro-resolving M2 phenotype (Perretti and D'Acquisto, 2009). Studies have demonstrated that mast cell-derived AnxA1 is important for the cromones-induced inhibition of allergic mast cell degranulation (Lu et al., 2017). In addition, AnxA1 like other ALX receptor ligands measured to define a biochemical endotype was correlated with lung function (FEV1 % predicted) in severe asthma (Riecklefs et al., 2017). In IBD, reduced expression of AnxA1 is reported in PBMCs from patients with Crohn’s Disease (Sena et al., 2013). Moreover AnxA1 is suggested as a potential biomarker of therapeutic efficacy of anti-TNF-α treatment in Crohn’s Disease (de Paula-Silva et al., 2016).

- **IL-10**

IL-10 is a cytokine important in controlling excessive inflammation. It mediates its major functions through inhibition of cytokine production and down-regulating antigen presentation by macrophages, monocytes, and dendritic cells (DCs) and thereby inhibiting adaptive immune cells such as Th2 and Tregs (de Waal Malefyt et al., 1991) (Ogawa et al., 2008) (Saraiva and O'Garra, 2010). IL-10 deficiency in mice can lead to the development of spontaneous inflammatory bowel disease (Kuhn et al., 1993) and defects in IL-10 signaling result in severe intestinal inflammation (Glocker et al., 2009). IL-10 also regulates effector responses associated with the established allergic and asthmatic disease, including through inhibition of pro-inflammatory cytokine production by Th2 cells, as well as down-regulation of mast cell and eosinophil function (Woodfolk, 2006). IL-10 can also inhibit eosinophilia, by
suppression of IL-5 and GM-CSF and by direct effects on eosinophil apoptosis \{Pretolani, 1997 #1607\} \{Grutz, 2005 #1622\}.

- **Galectins**

Galectins are β-galactoside-binding lectins produced by, and acting upon, cells of both the innate and adaptive immune systems, modulating multiple processes within the host. Some members of this family of lectins are proposed to play pro-resolving functions, namely Galectin (Gal)-1 and 9. Gal-1 is found in resolving exudates in a murine model of peritonitis induced by zymosan (Chiang et al., 2008), where it stops recruitment of neutrophils and lymphocytes (Cooper et al., 2008; Norling et al., 2008). DCs that are differentiated in a Gal-1 rich environment show enhanced regulatory function, reducing the progression of inflammation in a mouse model of multiple sclerosis by promotion of IL-10-mediated T-cell tolerance (Ilarregui et al., 2009). Gal-1 also induces the conversion of macrophages into a pro-resolving M2 phenotype (Rostoker et al., 2013). Gal-3 enhances efferocytosis of apoptotic granulocytes by monocyte-derived macrophages (MDMs) (Erriah et al., 2019). Gal-9 promotes apoptosis of extravasated immune cells including neutrophils and Th1 cells, and is protective in different experimental animal models of chronic autoimmune diseases (Zhu et al., 2005; Seki et al., 2007; Arikawa et al., 2009). Intestinal epithelial cell-derived Gal-9 is involved in the resolution of allergic responses through the induction of tolerogenic DCs and associated Treg-cell response (de Kivit et al., 2013; de Kivit et al., 2017b). In addition, some of these galectins can block IgE binding on mast cells and as such inhibit allergic inflammation (de Kivit et al., 2012; Nakakita et al., 2016). Finally, Gal-1 and Gal-9 promote the generation of Treg cells (Garin et al., 2007; Wu et al., 2014) and induce the production of IL-10 by peripheral blood mononuclear cells from healthy donors (Sanchez-Cuellar et al., 2012).

- **ACTH and melanocortins**

Melanocortins, including adrenocorticotropic hormone (ACTH) and the α, β and γ-melanocyte-stimulating hormone (MSH) are derived from a larger precursor molecule known as the pro-opiomelanocortin (POMC) protein. They exert their numerous biological effects by activating 7 transmembrane G-protein coupled receptors (GPCR) (Getting, 2006). ACTH does not only induce cortisol production, as previously assumed, but also exerts anti-inflammatory actions by targeting melanocortin receptors present on immune cells (Montero-Melendez, 2015). The protective actions of melanocortins include inhibition of leukocyte transmigration and reduction of pro-inflammatory cytokine production (Getting et al., 1999).
Melanocortins also promote clearance of apoptotic cells (Montero-Melendez et al., 2011) and cutaneous wound healing (Muffley et al., 2011). In a murine asthma model, α-MSH was able to diminish allergic airway inflammation (Raap et al., 2003). There is also evidence that α-MSH has potent anti-inflammatory activity in experimentally induced colitis (Maaser et al., 2006; Kannengiesser et al., 2008).

- **Gaseous mediators**

Carbon monoxide (CO) and hydrogen sulfide (H₂S) are the best characterized gaseous substances that, in addition to their important roles in physiological and pathophysiological processes, have confirmed pro-resolving actions during inflammatory processes (reviewed in (Wallace et al., 2015)). H₂S promotes neutrophil apoptosis and stimulates macrophage phagocytosis (Dufton et al., 2012) (Mariggio et al., 1998). Administration of inhibitors of H₂S synthesis in models of colitis result in an increase in severity of disease (Wallace et al., 2009). CO can inhibit leukocyte migration and reduce pro-inflammatory cytokine production (Urquhart et al., 2007). Like H₂S, CO has been shown to exert potent protective effects in the gastrointestinal tract (Chiang et al., 2013). CO has shown therapeutic potential in animal models of acute lung injury (Ryter and Choi, 2011).

- **Adenosine**

Adenosine, is a purine nucleoside generated by the dephosphorylation of adenine nucleotides. In addition to being a potent endogenous physiologic and pharmacologic regulator of many functions, adenosine has pro-resolving mechanisms including inhibition of neutrophil and T cell functions, efferocytosis and macrophage reprogramming (reviewed in (Hasko and Cronstein, 2013)). The role of adenosine in the resolution of inflammation of chronic asthma and inflammatory bowel diseases is not elucidated.

- **Neuropeptides and neurotransmitters**

It is important to consider that not only immunological mediators, but also factors produced by the nervous system, like neuropeptides and neurotransmitters, contribute to the resolution of inflammation. During an inflammatory response several anti-inflammatory neuropeptides with an immunomodulatory role are produced. One example is vasoactive intestinal peptide (VIP) displaying anti-inflammatory functions in various models of chronic inflammatory disease. VIP impairs the development and infiltration of self-reactive Th1 cells into target organs, as well as the release of inflammatory cytokines and chemokines and the subsequent recruitment and activation of macrophages and neutrophils (Gonzalez-Rey et al., 2007).
addition, VIP stimulates the production of IL-10 and IL-1RA, both important mediators of resolution, and induces the generation of tolerogenic DCs regulating the Th/Treg cells balance (Ganea et al., 2015) (Jimeno et al., 2014) (Jimeno et al., 2012) (Gonzalez-Rey, 2010; Souza-Moreira et al., 2011). Very recently, VIP was shown to modulate the differentiation of human macrophages towards the M2 phenotype, which is important in the resolution of inflammation (Carrion et al., 2016).

Another example is the vagal regulation of immune responses, specifically controlling resolution and the production of SPMs (Mirakaj et al., 2014). Disruption of the vagal system delays the resolution of the inflammatory response upon bacterial peritoneal infections via reduced numbers of group 3 ILCs (Dalli et al., 2017). In macrophages, the nicotine acetylcholine receptor, α7nAChR, mediates anti-inflammatory actions and contributes to the regulation of phagocytosis. Especially M2-type macrophages express this receptor that has a protective and pro-survival role (Lee and Vazquez, 2013) and M2-type macrophages are important producers of protectin conjugates in tissue regeneration (PCTR)1 during resolution (Ramon et al., 2016).

c) Other mediators participating to the resolution of inflammation

 - Anti-inflammatory cytokines

TGF-β is a potent inhibitor of classical pro-inflammatory macrophage activation (Tsunawaki et al., 1988). TGF-β is also a mediator in critical processes in wound healing, stimulating angiogenesis, fibroblast proliferation, collagen synthesis and deposition and remodeling of extracellular matrix (Sporn et al., 1986) (Duvernelle et al., 2003). Additionally, TGF-β regulates immune responses through the development and differentiation of Th17 cells and FoxP3+ Treg cells (Bettelli et al., 2006; Li et al., 2006). TGF-β inhibits the differentiation of T helper subsets as it inhibits the expression of Tbet and GATA3, thereby blocking the differentiation of Th1 and Th2 cells respectively (McGeachy et al., 2007; Xiao et al., 2008).

IL-22 primarily targets non-hematopoietic cells and plays a role in host defense at barrier surfaces where it promotes tissue regeneration (Dudakov et al., 2015). IL-22 is produced by Th17 and Th22 cells, ILCs and NKT cells (Parks et al., 2015). It has different roles in the gastrointestinal tract including tissue regeneration, maintenance of the intestinal barrier and intestinal defense against pathogens (Aujla et al., 2008; Zheng et al., 2008; De Luca et al., 2010; Parks et al., 2015). IL-22 levels are enhanced in the lungs of patients with asthma (Hirose et al., 2017). However, in inducible lung-specific IL-22 transgenic mice, a significant
decrease in allergic airway hyperresponsiveness and allergic inflammation occurred indicating an immune modulating effect of IL-22 (Fang et al., 2014).

IL-1RA (receptor antagonist) is a natural inhibitor of the pro-inflammatory cytokine IL-1 as it functions as an IL-1 receptor competitor (Dayer, 2002). It is produced by CD163+ wound healing M2 macrophages (Alvarado-Vazquez et al., 2017). In IBD, polymorphism in the IL-1RA gene have been demonstrated and an imbalance of IL-1 and IL1RA has been suggested to induce mucosal inflammation associated with IBD (Tountas et al., 1999) (Lopez-Hernandez et al., 2015).

More recently, IL-4 has been reported to induce macrophage proliferation and activation with reduced pulmonary injury after infection with a lung-migrating helminth (Minutti et al., 2017).

- **MicroRNAs**

MicroRNAs (MiRs) are small non-coding RNA molecules that can bind to complementary sequences of mRNA molecules thereby regulating/inhibiting post-translational gene expression. MiRs are contributors to the resolution of inflammation by targeting pro-inflammatory genes (Fredman et al., 2012). MiRs 21, 146b, 208a, and 219 are increased during the resolution phase of acute resolving peritonitis in mice (Recchiuti et al., 2011) and RvD1 can regulate expression of these proresolving MiRs (Krishnamoorthy et al., 2012). MiR-146b down-regulates NF-κB signaling (Taganov et al., 2006), and MiR-219 targets 5-lipoxygenase, with a decreased formation of leukotrienes (Leech et al., 2007). These results indicate that MiRs actively contribute to resolution of inflammation.

- **Extracellular vesicles**

The paracrine manner of the cellular communication in resolution may be achieved not only by secretion of immune mediators but also through extracellular vesicles. Extracellular vesicles are small membrane vesicles (exosomes, microvesicles and apoptotic bodies) secreted by all cell types including immune cells in a controlled manner. Extracellular vesicles have recently been reported both as immune activators and immune suppressors as they contain for example MHC class I and II and T cell co-stimulatory molecules (Fatima and Nawaz, 2017b) (Fatima and Nawaz, 2017a). However, the most described function of extracellular vesicles is triggering of the immune system, and very recently involvement of extracellular vesicles in inflammation resolution, tissue repair and regeneration was reported (Silva et al., 2017) (Taverna et al., 2017).
3) Impaired resolution of chronic inflammation in the intestine and the lung

The pathways involved in the initiation of IBD or asthma differ from each other with respect to cytokine involvement and composition of the resident tissue. IBD is associated with a Th1/Th17 T cell-mediated response induced by interleukin-12 (IL-12) and IL-23, with concomitant increased production of IL-2, IL-17, IL-18, and IFN-γ (Te Velde, 2017) (Kempski et al., 2017), whereas asthma and allergic diseases are associated with a typical T helper type 2 (Th2)-mediated response characterized by the production of interleukin-4 (IL-4), IL-5 and IL-13 (Galli et al., 2008). Therefore, specific tissue resolution processes exist, guided by the local microenvironment that are impaired in disease (reviewed recently in (Schett and Neurath, 2018)). There is increasing evidence that poor and/or inappropriate resolution of inflammation participates in the pathogenesis of IBD or asthma, being responsible in the long run for excessive tissue damage and pathology. In this chapter, we give some insights into resolution deficiencies in IBD and chronic asthma (for a recent and full review see (Rogler, 2017) and (Barnig et al., 2018)).

a) Inflammatory bowel diseases

IBD afflicts around 0.5% of the population in westernized countries (Kaplan and Ng, 2017). It is a chronic relapsing disease that includes Crohn’s disease, a chronic trans-mural inflammatory disease of the gastrointestinal tract, mainly affecting the ileum and colon, characterized by leukocyte infiltration, granuloma, scarring, and fistulae and ulcerative colitis, a more superficial neutrophilic inflammatory lesion of the colon that progresses proximally. The inflammation partially, but never completely, resolves leading to tissue remodeling and disruption of the normal epithelial architecture that fails to fully regenerate, resulting in persistent increased epithelial permeability and inflammation.

In IBD multiple factors are identified that contribute to disease pathogenesis with a focus on host susceptibility genetic factors in combination with a qualitatively and quantitatively abnormal gut microbiota and an excessive immune response (de Souza and Fiocchi, 2016) (Fuss et al., 1996; Sakuraba et al., 2009) (Fujino et al., 2003; Zenewicz et al., 2009). The pro-inflammatory response is extensively studied, and the suppression of this phase is the main therapeutic strategy in Crohn’s disease, and is still the central research focus, whereas much less is known about the resolution phase. Standard Crohn’s disease therapy involves corticosteroids and immunosuppressants like azathioprine but these therapies are palliative and do not alter the natural history of IBD (Neurath, 2017). In the last 20 years biological
therapies (antibodies directed against cytokines, like anti-TNFα antibodies) have changed the treatment of more severe IBD. However, only ~50% of Crohn’s Disease patients achieve clinical remission with the anti-TNFα Humira® or Remicade®. Indeed, the treatment results in a waning of the responsiveness to anti-TNF-α with time and only a minority of patients achieve mucosal healing (Biancheri et al., 2013; Neurath, 2017). Alternative therapies such as blocking the migration of effector T cells into the inflamed gut by targeting the α4β7 integrin, and recently also the blockade of IL-23 are showing additional success (Lobaton et al., 2014; Feagan et al., 2017) although they are effective only in a minority of patients. These treatments specifically blocking pro-inflammatory mediators cause immuno-suppression, and thereby induce an increased risk of infection. This exemplifies why new approaches and new therapies are needed to tackle the problems of chronic intestinal inflammation. Therefore, a better understanding of IBD pathophysiology is needed with a focus on the disturbed resolution of inflammation. In the line of this, the results of a recent meta-analysis focusing on mucosal healing in IBD as reported from endoscopic studies show that both partial, and full mucosal healing - thus a proper resolution of inflammation - predict favorable clinical outcome (Cholapranee et al., 2017).

There is more and more evidence that persistent inflammation in IBD can occur as a result of inadequate engagement of a series of pro-resolving pathways and many studies have shown that pro-resolving mediators are able to prevent experimental colitis in different murine models (reviewed recently in (Rogler, 2017) and (Das, 2016)).

MaR1 improves established chronic colitis induced by multiple dextran sulphate sodium (DSS) administrations (Marcon et al., 2013). Systemic treatment of mice with PD1 or RvD5 protects against colitis and intestinal ischemia/reperfusion-induced inflammation (Gobbetti et al., 2017). Other studies report protective roles for SPMs in experimental colitis (summarized in (Schwanke et al., 2016)). Indications that SPM biosynthesis might be dysregulated in patients with IBD come from a study in which RvD5 and PD1 were upregulated in human IBD colon biopsies (Gobbetti et al., 2017). Interestingly, mucosal expression of LXA4 is elevated exclusively in biopsies from individuals in remission from ulcerative colitis (Vong et al., 2012). Evidence, whether a defect in SPM signaling exists in IBD remains to be explored.

AnxA1 stimulates intestinal mucosal wound repair in a murine model of colitis (Leoni et al., 2013) and AnxA1-containing exosomes and microparticles have been shown to accelerate the process of mucosal healing in vivo DSS models of colitis (Leoni et al., 2015). In humans, AnxA1 is released by inflamed colonic biopsies from patients having ulcerative colitis (UC)
and depends on the severity of inflammation (Vergnolle et al., 2004) (Vong et al., 2012). In Crohn’s disease, AnxA1 biosynthesis is dysregulated and higher levels correlate with successful intervention with biologicals against TNF-α (Sena et al., 2013). In another study in Crohn’s Disease, AnxA1 is involved in intestinal homeostasis after anti-TNF-α treatment and suggested as a potential biomarker of therapeutic efficacy of anti-TNF-α treatment (de Paula-Silva et al., 2016).

The production of IL-10 by Tregs is of particular interest in IBD. IL-10 deficiency in mice can lead to the development of spontaneous inflammatory bowel disease (Kuhn et al., 1993) and IL-10 receptor mutations found in patients result in an early-onset enterocolitis (Glocker et al., 2009) (Glocker et al., 2009)(Glocker et al., 2009)(Glocker et al., 2009)(Shah et al., 2012). Furthermore, a IBD-like colitis can occur in response to recent immune checkpoint inhibitor treatments used in antitumor therapy aiming at blocking Treg cells (Pernot et al., 2016). Tregs accumulate and IL-10 is upregulated in the gut during active IBD (Holmen et al., 2006; Barnig and Levy) (Maul et al., 2005) (Autschbach et al., 1998; Melgar et al., 2003) but a clear demonstration that this pro-resolving mechanism operates in the gut mucosa in IBD is still missing.

Several authors report conflicting data whether or not it might be possible to use Galectin family member levels as markers for disease activity (Cibor et al., 2019) (Papa Gobbi et al., 2016) (Frol'ova et al., 2009) (Puthenedam et al., 2011) (Muller et al., 2006).

There is also evidence that α-MSH has potent anti-inflammatory activity in experimentally induced colitis (Maaser et al., 2006; Kannengiesser et al., 2008). Oral delivery via Bifidobacterium expressing α-melanocyte-stimulating hormone can prevent colitis in an experimental murine model (Wei et al., 2016).

H2S is able to improve the colonic barrier integrity in a murine model of experimental colitis (Zhao et al., 2016). Administration of inhibitors of H2S synthesis in models of colitis result in an increase in severity of disease (Wallace et al., 2009). In patients with active ulcerative colitis, alterations in the expression of genes involved in the purine metabolic pathway have been demonstrated (Crittenden et al., 2018). Like H2S, CO has been shown to exert potent protective effects in the gastro-intestinal tract (Chiang et al., 2013).

Several gastro-intestinal neuroendocrine peptides and amines with pro-resolving properties, as members of the chromogranin/secretogranin family, VIP, somatostatin, and ghrelin are affected in experimental colitis and changes of these mediators occur during active IBD in
patients (recently reviewed in (El-Salhy et al., 2017)). The exact role of neuroendocrine peptides/amines with pro-resolving properties in IBD has to be further elucidated.

b) Asthma and allergic diseases

In the industrialized world, millions of individuals suffer from inappropriate activation and dysregulation of Th2 cell immune responses responsible for allergic asthma and rhinitis, food allergies and atopic dermatitis (also known as eczema), being part of a process called the atopic march. These disorders are increasingly prevalent and are a major public health problem (Pawankar, 2014). Th2 cell mediated immune responses are characterized by the release of type 2 signature cytokines (i.e. IL-4; IL-5, IL-9 and IL-13) from cells of both the innate and adaptive immune systems (Galli et al., 2008; Aron and Akbari, 2017).

Current therapeutic strategies for chronic Th2 immune disorders are mainly anti-inflammatory, and aim at controlling symptoms. In chronic persistent asthma, inhaled corticosteroids are the main anti-inflammatory treatment effective in most patients, causing relatively minor adverse effects (Busse et al., 2008). A subset of asthma patients (~10%) experience persistent symptoms and/or frequent exacerbations despite high doses of inhaled corticosteroids and are often treated with prolonged systemic corticotherapy having many potential side-effects (Chung et al., 2014). Monoclonal antibodies targeting inflammatory pathways that activate immune responses leading to airway inflammation have been developed to help broaden the current arsenal of asthma treatment options (Katial et al., 2017.). The first anti-body based biological therapy approved for treatment of asthma was omalizumab, targeting IgE, a component of the allergic cascade (Gomez, 2019). More recently, monoclonal antibodies have been approved, targeting IL-5 or its receptor (mepolizumab, reslizumab, benralizumab), a key cytokine promoting eosinophil inflammation (Bagnasco et al., 2017). Other monoclonal antibodies targeting a wide variety of intermediaries in the pro-inflammatory cascade are currently being tested for their effectiveness in the treatment of asthma (Katial et al., 2017.). These biological therapies can reduce exacerbations and have glucocorticoid-sparing effects, but the clinical responses to these antibody-therapies are variable, with at least 30 percent of severe asthmatic patients being non-responders (Svenningsen and Nair, 2017).

These therapeutic strategies can be combined with allergen-specific immunotherapies in chronic allergic diseases that are able to improve symptoms but they do not cure allergic disorders (Dhami et al., 2017; Nurmatov et al., 2017).
As for IBD, there is increasing evidence that chronic and uncontrolled inflammation in Th2 immune disorders, might result not just from an excessive uncontrolled pro-inflammatory response but also from uncontrolled and insufficient engagement of pro-resolving pathways and thus impaired resolution of exacerbations (Levy et al., 2005; Vachier et al., 2005; Barnig et al., 2013).

First, pro-resolving mediators have proved efficient at improving disease and inflammatory outcomes in a variety of asthma models. Treatment with SPMs decreases key features of asthma pathobiology, including airway hyperresponsiveness, mucus metaplasia and Th2 cell bronchial inflammation (Levy et al., 2002; Haworth et al., 2008) (Karra et al., 2015) (Rogerio et al., 2012). AnxA1 deficient mice exhibit spontaneous airway hyperresponsiveness and exacerbated allergen responses (Ng et al., 2011) and AnxA1 mimetics inhibit eosinophil recruitment (Wang et al., 2011). Ablation of IL-10 signaling in Th2 cells leads to exacerbated pulmonary inflammation (Coomes et al., 2017). In murine models, IL10 knock out mice develop enhanced allergic airway responses (Wilson et al., 2007) (Grunig et al., 1997) (Tournoy, 2000 #1421. IL-10 also inhibits pro-inflammatory cytokine production by Th2 cells and down-regulates mast cell and eosinophil function (Woodfolk, 2006). Administration of recombinant Gal-9 or α-MSH diminish allergic airway inflammation {Katoh, 2013 #1453} (Raap et al., 2003). Low H2S production in ovalbumin sensitized and challenged mice results in aggravated AHR and increased airway inflammation (Zhang et al., 2013). In a rat model of asthma, exogenous administration of H2S reduces airway inflammation and airway remodeling (Chen et al., 2009). VIP can inhibit eosinophil migration (Wu et al., 2011) and airway remodeling in asthmatic mice (Wang et al., 2018). Intestinal epithelial cell-derived Gal-9 is involved in the resolution of allergic responses through the induction of tolerogenic DCs and associated Treg cell response (de Kivit et al., 2013; de Kivit et al., 2017b). In addition, some of these galectins can block IgE binding on mast cells and as such, inhibit allergic inflammation (de Kivit et al., 2012; Nakakita et al., 2016). The role of adenosine in the resolution of inflammation of chronic asthma is not yet elucidated.

Based on the evidence for the functional importance of pro-resolving mediators in allergic asthma mouse models, defects in the production or the activity of pro-resolving mediators might therefore participate in the chronicity and severity of human asthma. Several studies in distinct populations have reported that SPMs are underproduced in more severe asthma together with a defect in the expression of their related receptors (for a recent review see (Barnig et al., 2018)). Annexin A1 (AnxA1) levels are also decreased in patients with asthma
(Smith et al., 1990), and in wheezy infants (Eke Gungor et al., 2014). Moreover, plasma and bronchoalveolar AnxA1 levels are correlated with lung function (FEV1 %) (Lee et al., 2018) (Ricklefs et al., 2017). Compared with nonasthmatics, asthmatic individuals have reduced levels of IL-10 in bronchoalveolar lavage fluid (Borish et al., 1996) and a decreased secretion of IL-10 from alveolar macrophages (John et al., 1998).

Furthermore, polymorphisms in the IL10 gene resulting in low IL-10 production have been associated with severe asthma (Lim et al., 1998). T cells from allergic asthmatic patients are partially resistant to IL-10 mediated suppression {Liang, 2010 #1396}. In humans, galectin-3 production has been reported to be lower in asthma, particularly in neutrophilic asthma (Gao et al., 2015)(Erriah et al., 2019). Macrophages from sputum samples of asthma patients express reduced levels of Gal-1 and Gal-9 (Sanchez-Cuellar et al., 2012). Several human studies have shown a decrease in serum or exhaled-breath H2S levels in both adult and infants (Zhang et al., 2014) (Tian et al., 2012) (Suzuki et al., 2018). Moreover, lower H2S levels are correlated with abnormal pulmonary lung function tests and severity of asthma (Zhang et al., 2014) (Tian et al., 2012). There is relatively limited information available regarding the role of neuropeptides in the resolution of inflammation in asthma but Tomaki et al. found that SubP levels in sputum correlate with airway obstruction in asthma (Tomaki et al., 1995).
4. How to improve resolution in chronic inflammatory diseases

Targeting the inflammation phase has been the main focus in medical research for the past decades, resulting in treatment options for immune-mediated diseases that dampen inflammation and display immunosuppressive actions (see Figure 1). This comes with a burden for the body, since anti-inflammatory immune suppressive therapies, for example corticosteroids or anti-TNF inhibitors, may have increased risks of infection. In addition, the development of expensive targeted anti-inflammatory biologicals creates an economic burden on society.

Immune responses are very complex and only recently the first initiative to define the naturally occurring variation and the boundaries of a healthy immune response to complex stimuli was published (Duffy et al., 2014). Interestingly, there is considerable variation in the ability of tissue inflammation to resolve within a healthy population (Morris et al., 2010).

Different endogenous factors such as age, genetics, sex, ethnicity, might influence the nature and extent of the acute inflammatory response including the resolution process (Patin et al., 2018). Studies have highlighted how epigenetic reprogramming can lead to chronic inflammation and impede resolution resulting in inflammatory diseases (Schaible et al., 2011) (Zeybel et al., 2012). Gut microflora plays a critical role in the stimulation and maturation of a balanced immune system (Jarchum and Pamer, 2011). There is also evidence that life style factors, physical and psychological conditions can impact on the magnitude of the inflammatory response (Te Velde et al., 2016).

Understanding the mechanism required for adequate resolution of inflammation may support the development of new resolution-based strategies able to direct the inflammatory processes in a controlled way. Different approaches can be considered (Figure 5).

a) Pharmacological interventions

Many current therapeutic approaches to manage chronic inflammation aim at repressing overactive pro-inflammatory responses by reducing pro-inflammatory mediator activity (i.e. corticosteroids or biologics). In addition to their potent anti-inflammatory properties, steroids can display several pro-resolving properties (Liu et al., 1999) (Perretti and D'Acquisto, 2009) (Gilroy et al., 2004; Hashimoto et al., 2007), however, this comes with many potential side-effects, such as osteoporosis, diabetes, systemic hypertension and impaired immune function.
Several synthetic pharmaceutical analogues with pro-resolving properties have been proven to be active in animal models (reviewed in (Corminboeuf and Leroy, 2015) and (Perretti et al., 2015)). Towards this end, stable synthetic mimetics to endogenous SPMs are under development, and in matching studies, these mimetics display similar biological actions to the parent mediators in animal models of diverse inflammatory disorders with an advantage of resisting local inactivation (including mimetics encapsulated in vesicles) (Serhan and Petasis, 2011) (Serhan et al., 2011) (Sun et al., 2007) (Kasuga et al., 2008) (Van Dyke et al., 2015). Several of these mimetics are in pre-clinical development programs for different chronic inflammatory conditions (for reviews see (Serhan et al., 2015; Serhan, 2017b)). In a double-blind placebo-controlled clinical trial, a topical 15-R/S-methyl-LXA4 preparation was tested for the treatment of infantile atopic eczema (Wu et al., 2013). In this study, the efficacy of the lipoxin mimetic was at least equivalent to gold standard topical steroid therapy for the reduction of eczema severity by quantitative and qualitative measures.

b) Dietary interventions

- Omega-3 PUFAs

The main bioactive omega–3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are poorly synthesized in humans. They are components of seafood, especially oily fish, of fish oil, liver oil, krill oil and algal oil supplements, and of a small number of highly concentrated pseudo-pharmaceutical products.

EPA and DHA have long been known to have beneficial health effects including anti-inflammatory, anti-thrombotic, and immuno-regulatory properties (Calder, 2015) (Calder, 2017; 2018). These n–3 LCPUFAs are substrates for biosynthesis of potent SPMs such as resolvins, protectins and maresins (Figure 3). DHA is concentrated in neural tissues including brain and retina and in sperm; EPA and DHA are found in membranes of all other cells and tissues and in human milk (Bazan et al., 2009; Calder, 2013; Crawford et al., 2013). Increased dietary intake of EPA and DHA results in their enrichment in blood and in many cells and tissues. Omega-3 PUFAs can exert significant effects on the intestinal environment and modulate the gut microbiota composition (Costantini et al., 2017).

The airway mucosa is also enriched with DHA in healthy individuals (Freedman et al., 2004). Interestingly, airway mucosal levels of n–3 PUFAs are lower in patients with asthma than in
people without asthma (Freedman et al., 2004). Population surveys report that diets rich in n-3 fatty acids are associated with lower asthma prevalence (Schwartz and Weiss, 1994).

It is noteworthy that SPMs are present at significant levels in placenta and human milk (Weiss et al., 2013) (Arnardottir et al., 2016) (Keelan et al., 2015), which suggests an important role for SPMs in health maintenance during a particularly vulnerable period of infant development. In a recent randomized placebo-controlled study from a Danish birth cohort, supplementation with a high dose of n-3-LCPUFAs (a dose corresponding to a 10-20-times increase of the normal intake) during the third trimester of pregnancy was associated with a significantly lower risk of asthma symptoms and fewer respiratory infections in children at 3 years (Bisgaard et al., 2016). This effect was most prominent among children of women who had low pre-intervention EPA and DHA blood levels (Ramaswami et al., 2016).

Recent human studies have shown that increased intake of EPA and DHA results in higher concentrations of selected SPMs in the bloodstream (Mas et al., 2012) (Mas et al., 2016) (Polus et al., 2016). High doses of n-3 PUFAs reduce pain and other symptoms in patients with rheumatoid arthritis (Abdulrazaq et al., 2017) (Senftleber et al., 2017). Many of the mechanisms of action of EPA and DHA suggest that they reduce the pro-inflammatory response (Calder, 2015) (Calder, 2017). However, the discovery of SPMs derived from EPA and DHA and the potency of those SPMs in animal models (see earlier) hints that their main action might be promotion of resolution.

Pre- and probiotics

The prebiotic galacto- and fructo-oligosaccharides, so-called non-digestible oligosaccharides, in combination with probiotic bacteria induced the resolution-inducing lectin galectin 9 in mouse models for food allergy and in infants suffering from cow’s milk allergy (de Kivit et al., 2012). In vitro studies showed that the epithelial release of gal 9 by this specific combination of pre- and probiotic induces tolerogenic DCs that in turn upregulated Treg cells (de Kivit et al., 2012) (de Kivit et al., 2017a). In addition, the combination of *Bifidobacterium longum* with inulin-oligofructose resulted in resolution of inflammation in patients suffering from active colitis (Furrie et al., 2005; Vieira et al., 2016). Several preclinical studies have demonstrated that treatment with specific bacterial strains induces an IL-10 response associated with a faster resolution of inflammation in allergy and Crohn’s Disease models (Shi et al., 2015; Takeshita et al., 2016; Satish Kumar et al., 2017). Overall, there are some indications that dietary intervention with pre- and probiotics promotes the induction of
resolution of inflammation. However, the exact mechanisms of resolution induced by pre- and probiotics remains to be examined.

c) Exercise/physical activity

Exercise enhances functional capacity, through increased aerobic capacity and muscle strength, improves quality of life and has the potential to protect from cardiovascular disease, type 2 diabetes mellitus, and certain types of cancer (reviewed in (Petersen and Pedersen, 2005)). The potential mechanisms underlying exercise-mediated protection towards these disorders, include changes in body composition, neuro-hormonal status, as well as effects on resolution pathways.

Indeed, acute increases in intramuscular IL-6 following exercise promote resolution processes by increasing the synthesis of anti-inflammatory cytokines such as IL-1RA and IL-10, and inhibit pro-inflammatory cytokines such as TNF-α (Peake et al., 2015). Exercise also modulates the production of the PUFA derived SPMs described earlier. Indeed, maximal physical exertion was found to result in a rapid post-exercise increase in the urinary excretion of arachidonic acid (AA) derived lipoxin A₄ (LXA₄) in healthy subjects (Gangemi et al., 2003). Similarly, EPA derived resolvin E1 (RvE1) transiently increases early in human serum following exercise and DHA derived resolvin D1 (RvD1) and protectins increased later during recovery (Markworth et al., 2013).

Interestingly, levels of LXA₄ are found to increase immediately after exercise in exhaled air condensate of asthmatic children with exercise induced bronchoconstriction (EIB) (Tahan et al., 2016). The authors hypothesized that airway LXA₄ increases to compensate bronchoconstriction and to suppress acute inflammation, and that spontaneous bronchodilation after EIB may be due to LXA₄. In murine studies in relation to asthma, physical exercise reduced asthma associated bronchial inflammation (IL-4, IL-5 expression and eosinophil infiltrate) which was associated with an increase of IL-10 (de Araujo et al., 2016) (Olivo et al., 2012). Exercise in animal models of colitis also reduced levels of TNF-α, and decreased markers of oxidative stress and histological damage to the colon in parallel to increased levels of the resolution-promoting and anti-inflammatory cytokine IL-10 (Shephard, 2016).

d) Stress management

Emotional, cognitive and psychosocial factors are now widely recognized as significant determinants of health outcomes including impacts on the immune system (Cacioppo and
In this sense, a broad variety of mind-body therapies that are able to decrease stress, including meditation-based stress reduction programs (MBSR) and yoga have been increasingly proposed over the past years, as substantial adjuncts to conventional medical treatment in chronic inflammatory diseases and cancer patients (Cacioppo and Cacioppo, 2014). Convergent evidence suggests that these mind-body therapies may have effects on immune functions including effects on the hypothalamic-pituitary-adrenocortical (HPA) axis function (Branstrom et al., 2013) and on NK cell functions and IL-10 levels within patients suffering from chronic inflammatory disorders (Witek-Janusek et al., 2008; Kenne Sarenmalm et al., 2017; Sanada et al., 2017). More precise impacts of the mental state on resolution parameters remain to be examined.
5) Conclusion

There are a number of immune-mediated chronic diseases that might, at least in part, be controlled or prevented in an immune fit person, including inflammatory bowel diseases (IBD), allergy and asthma developed in this review, as well as rheumatoid arthritis, chronic obstructive pulmonary disease (COPD), Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, diabetes or myalgic encephalomyelitis. The focus of research on resolution of the immune response as a possible therapeutic approach has only been apparent in the 21st century and there is now increasing evidence that poor and/or inappropriate resolution of inflammation participates in the pathogenesis of IBD or asthma, being responsible in the long run for excessive tissue damage and pathology. This might now open a whole area in the development of personalized therapeutic options for chronic immune diseases driven in part by maladaptive, non-resolving inflammation.

Moreover, since there is a strong link between a compromised immune system and the brain, individuals can experience a reduced quality of life and lack of wellbeing (Huber et al., 2011; de Haan et al., 2017). Many chronic inflammatory diseases are associated with depression, anxiety, and reduced cognitive function (Miller and Raison, 2016) and it is becoming apparent that many brain diseases (psychiatric and neurological) are associated with activation of the immune system (Gibney and Drexhage, 2013; de Haan et al., 2017). Therefore, deviant immune fitness because of overreaction and poor or defective resolution of the immune system has an enormous impact and is a central issue in these chronic immune diseases.
Figure 1. Dynamics of the inflammatory response in chronic inflammation. The acute inflammatory response is a highly coordinated sequence of events characterized by an onset phase coordinated by several families of chemokines, cytokines and pro-inflammatory mediators that is followed in health by an active resolution phase brought about by the engagement of specific cellular mechanisms under the control of several pro-resolving mediators to promote resolution of the tissue inflammation as well as healing and repair. A failure in pro-resolving pathways can extend in time the actions of pro-inflammatory mechanisms resulting in prolonged or chronic inflammation with recurrent exacerbations.

Figure 2. Key cellular actors of resolution. For effective resolution of inflamed tissues to occur and to restore tissue homeostasis, specific cellular mechanisms that are under the control of pro-resolving mediators are enlisted. They promote termination of the inflammatory response and initiate tissue repair and healing. Pro-inflammatory mediators: red circles, pro-resolving mediators: blue circles. Abbreviations: Anx, annexin; DCs, Dendritic cells; Eos, eosinophils; Gal, Galectin; IBD, inflammatory bowel disease; IL, interleukin; ILC2, Type 2 innate lymphoid cells; ILC3, Type 3 innate lymphoid cells; MDSCs, Myeloid-derived suppressor cells; MiRs, MicroRNAs; NK, Natural killer; PMN, polymorphonuclear cells; TGF-beta, Transforming growth factor beta; Th1, Type 1 T helper cells; Th2, Type 2 T helper cells; Treg, regulatory T cells; SPMs, specialized pro-resolution lipid mediators; VIP, vasoactive intestinal peptide.

Figure 3. Overview of the pathways for synthesis of resolvins from omega-3 polyunsaturated fatty acids, DHA and EPA. Abbreviations: DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid, MaR, maresin; PD, protectin; Rv, resolvin.

Figure 4. Specialized pro-resolving lipid mediators signal through G-protein coupled receptors on a variety of cell involved (deranged) immune response leading to cell specific responses. Abbreviations: Akt, protein kinase B; ALX/FPR2, N-formyl peptide receptor 2 – LXA4 receptor; AnxA1, annexin A1; BLT1, leukotriene B4 receptor 1; CD, cluster domain; CMKLR1, chemokine like receptor 1 or Chemerin Receptor 23; DVR1, RvD1 receptor or G protein coupled receptor (GRP)32; DVR2, RvD2 receptor or GRP18; ERK, extracellular signal regulated kinases; IL, interleukin; INFγ, interferon γ; Mcl-1, anti-apoptotic protein in mast cells; miR, microRNA; mTOR, mammalian target of rapamycin; NK cell, natural killer cell; NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells; P, phosphorylated; PDK1, phosphoinositide-dependent protein kinase 1; PI3K, phosphatidylinositol 3-kinase; PMN, polymorphonuclear cells; Rv, resolvin; LX, lipoxin; S6K, ribosomal protein S6 kinase;
Th17 cell: Thelper 17 lymphocyte; Treg cell: regulatory T lymphocyte; TNFα, tumor necrosis factor α; Traf6: TNF receptor associated factor 6.

Figure 5. New resolution-based strategies able to direct the inflammatory processes in a controlled way.
Acknowledgements
F.L.S received funding from Aimwell Charitable Trust (UK), Israel Science Foundation 472/15, Rosetrees Trust (UK) and Emalie Gutterman Memorial Endowed Fund for COPD related research (USA) and is affiliated with the Adolph and Klara Brettler Center at the Hebrew University.
References

Abdulrazaq, M., Innes, J.K., and Calder, P.C. (2017). Effect of omega-3 polyunsaturated fatty acids on arthritic pain: A systematic review. *Nutrition* 39-40, 57-66. doi: 10.1016/j.nut.2016.12.003.

Alvarado-Vazquez, P.A., Bernal, L., Paige, C.A., Grosick, R.L., Moracho Villriales, C., Ferreira, D.W., et al. (2017). Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions. *Immunobiology* 222(8-9), 900-912. doi: 10.1016/j.imbio.2017.05.011.

Arikawa, T., Watanabe, K., Seki, M., Matsukawa, A., Oomizu, S., Sakata, K.M., et al. (2009). Galectin-9 ameliorates immune complex-induced arthritis by regulating Fc gamma R expression on macrophages. *Clin Immunol* 133(3), 382-392. doi: 10.1016/j.clim.2009.09.004.

Arita, M., Yoshida, M., Hong, S., Tjonahen, E., Glickman, J.N., Petasis, N.A., et al. (2005). Resolvins E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. *Proc Natl Acad Sci U S A* 102(21), 7671-7676. doi: 10.1073/pnas.0409271102.

Arnardottir, H., Orr, S.K., Dalli, J., and Serhan, C.N. (2016). Human milk proresolving mediators stimulate resolution of acute inflammation. *Mucosal Immunol* 9(3), 757-766. doi: 10.1038/mi.2015.99.

Arocena, A.R., Onofrio, L.I., Pellegrini, A.V., Carrera Silva, A.E., Paroli, A., Cano, R.C., et al. (2014). Myeloid-derived suppressor cells are key players in the resolution of inflammation during a model of acute infection. *Eur J Immunol* 44(1), 184-194. doi: 10.1002/eji.201343606.

Arón, J.L., and Akbari, O. (2017). Regulatory T cells and type 2 innate lymphoid cell-dependent asthma. *Allergy* 72(8), 1148-1155. doi: 10.1111/all.13139.

Arpaia, N., Green, J.A., Molotedo, B., Arvey, A., Hemmers, S., Yuan, S., et al. (2015). A Distinct Function of Regulatory T Cells in Tissue Protection. *Cell* 162(5), 1078-1089. doi: 10.1016/j.cell.2015.08.021.

Aujla, S.J., Chan, Y.R., Zheng, M., Fei, M., Askew, D.J., Pociask, D.A., et al. (2008). IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. *Nat Med* 14(3), 275-281. doi: 10.1038/nm1710.

Autschbach, F., Braunstein, J., Helmke, B., Zuna, I., Schurmann, G., Niemir, Z.I., et al. (1998). In situ expression of interleukin-10 in noninflamed human gut and in inflammatory bowel disease. *Am J Pathol* 153(1), 121-130. doi: 10.1016/S0002-9440(10)65552-6.

Bagnasco, D., Ferrando, M., Varricchi, G., Puggioni, F., Passalacqua, G., and Canonica, G.W. (2017). Anti-Interleukin 5 (IL-5) and IL-5Ra Biological Drugs: Efficacy, Safety, and Future Perspectives in Severe Eosinophilic Asthma. *Front Med (Lausanne)* 4, 135. doi: 10.3389/fmed.2017.00135.

Barnig, C., Cernadas, M., Dutile, S., Liu, X., Perrella, M.A., Kazani, S., et al. (2013). Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. *Sci Transl Med* 5(174), 174ra126. doi: 10.1126/scitranslmed.3004812.

Barnig, C., Frossard, N., and Levy, B.D. (2018). Towards targeting resolution pathways of airway inflammation in asthma. *Pharmacol Ther*. doi: 10.1016/j.pharmthera.2018.01.004.

Barnig, C., and Levy, B.D. (2015). Innate immunity is a key factor for the resolution of inflammation in asthma. *Eur Respir Rev* 24(135), 141-153. doi: 10.1183/09059180.00012514.

Basil, M.C., and Levy, B.D. (2016). Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. *Nat Rev Immunol* 16(1), 51-67. doi: 10.1038/nri.2015.4.

Bazan, H.A., Lu, Y., Thoppil, D., Fitzgerald, T.N., Hong, S., and Dardik, A. (2009). Diminished omega-3 fatty acids are associated with carotid plaques from neurologically symptomatic patients: Implications for carotid interventions. *Vascul Pharmacol* 51(5-6), 331-336. doi: 10.1016/j.vph.2009.08.003.

Ben-Meir, K., Twaik, N., and Baniyash, M. (2018). Plasticity and biological diversity of myeloid derived suppressor cells. *Curr Opin Immunol* 51, 154-161. doi: 10.1016/j.coi.2018.03.015.

Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., et al. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T
cells. *Nature* 441(7090), 235-238. doi: 10.1038/nature04753.
Biancheri, P., Powell, N., Monteleone, G., Lord, G., and MacDonald, T.T. (2013). The challenges of stratifying patients for trials in inflammatory bowel disease. *Trends Immunol* 34(11), 564-571. doi: 10.1016/j.it.2013.08.002.
Bisgaard, H., Stokholm, J., Chawes, B.L., Vissing, N.H., Bjarnadottir, E., Schoos, A.M., et al. (2016). Fish Oil-Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring. *N Engl J Med* 375(26), 2530-2539. doi: 10.1056/NEJMoa1503734.
Bollrath, J., and Powrie, F.M. (2013). Controlling the frontier: regulatory T-cells and intestinal homeostasis. *Semin Immunol* 25(5), 352-357. doi: 10.1016/j.smim.2013.09.002.
Bonnans, C., Fukunaga, K., Levy, M.A., and Levy, B.D. (2006). Lipoxin A(4) regulates bronchial epithelial cell responses to acid injury. *Am J Pathol* 168(4), 1064-1072. doi: 10.2353/ajpath.2006.051056.
Borish, L., Aarons, A., Rumblyt, J., Cvietusa, P., Negri, J., and Wenzel, S. (1996). Interleukin-10 regulation in normal subjects and patients with asthma. *J Allergy Clin Immunol* 97(6), 1288-1296.
Bosma-den Boer, M.M., van Wetten, M.L., and Pruimboom, L. (2012). Chronic inflammatory diseases are stimulated by current lifestyle: how diet, stress levels and medication prevent our body from recovering. *Nutr Metab (Lond)* 9(1), 32. doi: 10.1186/1743-7075-9-32.
Branstrom, R., Kvillmo, P., and Akerstedt, T. (2013). Effects of mindfulness training on levels of cortisol in cancer patients. *Psychosomatics* 54(2), 158-164. doi: 10.1016/j.psym.2012.04.007.
Bronte, V., Brandau, S., Chen, S.H., Colombo, M.P., Frey, A.B., Greten, T.F., et al. (2016). Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. *Nat Commun* 7, 12150. doi: 10.1038/ncomms12150.
Busse, W.W., Pedersen, S., Pauwels, R.A., Tan, W.C., Chen, Y.Z., Lamm, C.J., et al. (2008). The Inhaled Steroid Treatment As Regular Therapy in Early Asthma (START) study 5-year follow-up: effectiveness of early intervention with budesonide in mild persistent asthma. *J Allergy Clin Immunol* 121(5), 1160-1174. doi: 10.1016/j.jaci.2008.02.029.
Cacioppo, J.T., and Cacioppo, S. (2014). Social Relationships and Health: The Toxic Effects of Perceived Social Isolation. *Soc Personal Psychol Compass* 8(2), 58-72. doi: 10.1111/spc3.12087.
Calder, P.C. (2013). n-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. *Proc Nutr Soc* 72(3), 326-336. doi: 10.1017/S0029665113001031.
Calder, P.C. (2015). Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. *Biochim Biophys Acta* 1851(4), 469-484. doi: 10.1016/j.balip.2014.08.010.
Calder, P.C. (2017). Omega-3 fatty acids and inflammatory processes: from molecules to man. *Biochem Soc Trans* 45(5), 1105-1115. doi: 10.1042/BST20160474.
Calder, P.C. (2018). Very long-chain n-3 fatty acids and human health: fact, fiction and the future. *Proc Nutr Soc* 77(1), 52-72. doi: 10.1017/S0029665117003950.
Carrion, M., Perez-Garcia, S., Martinez, C., Juarranz, Y., Estrada-Capetillo, L., Puig-Kroger, A., et al. (2016). VIP impairs acquisition of the macrophage proinflammatory polarization profile. *J Leukoc Biol* 100(6), 1385-1393. doi: 10.1189/jlb.3A0116-032RR.
Carson, W.F.t., Guernsey, L.A., Singh, A., Vella, A.T., Schramm, C.M., and Thrall, R.S. (2008). Accumulation of regulatory T cells in local draining lymph nodes of the lung correlates with spontaneous resolution of chronic asthma in a murine model. *Int Arch Allergy Immunol* 145(3), 231-243. doi: 10.1159/000109292.
Chen, Y.H., Wu, R., Geng, B., Qi, Y.F., Wang, P.P., Yao, W.Z., et al. (2009). Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. *Cytokine* 45(2), 117-123. doi: 10.1016/j.cyto.2008.11.009.
Chiang, N., Dalli, J., Colas, R.A., and Serhan, C.N. (2015). Identification of resolvin D2 receptor mediating resolution of infections and organ protection. *J Exp Med* 212(8), 1203-1217. doi: 10.1084/jem.20150225.
Chiang, N., Fredman, G., Backhed, F., Oh, S.F., Vickery, T., Schmidt, B.A., et al. (2012). Infection regulates pro-resolving mediators that lower antibiotic requirements. *Nature* 484(7395), 524-528. doi: 10.1038/nature11042.

Chiang, N., Schwab, J.M., Fredman, G., Kasuga, K., Gelman, S., and Serhan, C.N. (2008). Anesthetics impact the resolution of inflammation. *PLoS One* 3(4), e1879. doi: 10.1371/journal.pone.0001879.

Chiang, N., and Serhan, C.N. (2017). Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. *Mol Aspects Med.* doi: 10.1016/j.mam.2017.03.005.

Chiang, N., Serhan, C.N., Dahlen, S.E., Drazen, J.M., Hay, D.W., Rovati, G.E., et al. (2006). The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. *Pharmacol Rev* 58(3), 463-487. doi: 10.1124/pr.58.3.4.

Chiang, N., Shinohara, M., Dalli, J., Mirakaj, V., Kibi, M., Choi, A.M., et al. (2013). Inhaled carbon monoxide accelerates resolution of inflammation via unique proresolving mediator-heme oxygenase-1 circuits. *J Immunol* 190(12), 6378-6388. doi: 10.4049/jimmunol.1202969.

Chiurchiu, V., Leuti, A., Dalli, J., Jacobsson, A., Battistini, L., Maccarrone, M., et al. (2016). Proresolving lipid mediators resolvin D1, resolvin D2, and maeserin 1 are critical in modulating T cell responses. *Sci Transl Med* 8(353), 353ra111. doi: 10.1126/scitranslmed.aaf7483.

Chiurchiu, V., Leuti, A., and Maccarrone, M. (2018). Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. *Front Immunol* 9, 38. doi: 10.3389/fimmu.2018.00038.

Cholapranee, A., Hazlewood, G.S., Kaplan, G.G., Peyrin-Biroulet, L., and Ananthakrishnan, A.N. (2017). Systematic review with meta-analysis: comparative efficacy of biologics for induction and maintenance of mucosal healing in Crohn’s disease and ulcerative colitis controlled trials. *Aliment Pharmacol Ther* 45(10), 1291-1302. doi: 10.1111/apt.14030.

Chung, K.F., Wenzel, S.E., Brozek, J.L., Bush, A., Castro, M., Sterk, P.J., et al. (2014). International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. *Eur Respir J* 43(2), 343-373. doi: 10.1183/09031936.00202013.

Cibor, D., Szczeklik, K., Brzozowski, B., Mach, T., and Owczarek, D. (2019). Serum galectin 3, galectin 9 and galectin 3-binding proteins in patients with active and inactive inflammatory bowel disease. *J Physiol Pharmacol* 70(1). doi: 10.26402/jpp.2019.1.06.

Coomes, S.M., Kannan, Y., Pelly, V.S., Entwistle, L.J., Guidi, R., Perez-Lloret, J., et al. (2017). CD4(+) Th2 cells are directly regulated by IL-10 during allergic airway inflammation. *Mucosal Immunol* 10(1), 150-161. doi: 10.1038/mi.2016.47.

Cooper, D., Norling, L.V., and Perretti, M. (2008). Novel insights into the inhibitory effects of Galectin-1 on neutrophil recruitment under flow. *J Leukoc Biol* 83(6), 1459-1466. doi: 10.1189/jlb.1207831.

Corminboeuf, O., and Leroy, X. (2015). FPR2/ALXR agonists and the resolution of inflammation. *J Med Chem* 58(2), 537-559. doi: 10.1021/jm501051x.

Cosmi, L., Liotta, F., Maggi, L., and Annunziato, F. (2017). Role of Type 2 Innate Lymphoid Cells in Allergic Diseases. *Curr Allergy Asthma Rep* 17(10), 66. doi: 10.1007/s11882-017-0735-9.

Costantini, L., Molinari, R., Farinon, B., and Merendino, N. (2017). Impact of Omega-3 Fatty Acids on the Gut Microbiota. *Int J Mol Sci* 18(12). doi: 10.3390/ijms18122645.

Crawford, M.A., Wang, Y., Forsyth, S., and Brenna, J.T. (2013). New European Food Safety Authority recommendation for infant formulae contradicts the physiology of human milk and infant development. *Nutr Health* 22(2), 81-87. doi: 10.1177/0260106015573784.

Crittenden, S., Cheyne, A., Adams, A., Forster, T., Robb, C.T., Felton, J., et al. (2018). Purine metabolism controls innate lymphoid cell function and protects against intestinal injury. *ImmunoL Cell Biol* 96(10), 1049-1059. doi: 10.1111/imcb.12167.

Dalli, J., Colas, R.A., Arnardottir, H., and Serhan, C.N. (2017). Vagal Regulation of Group 3 Innate Lymphoid Cells and the Immunoresolvent PCTR1 Controls Infection Resolution. *Immunity* 46(1), 92-105. doi: 10.1016/j.immuni.2016.12.009.

Dalli, J., and Serhan, C.N. (2017). Pro-Resolving Mediators in Regulating and Conferring Macrophage
Dufton, N., Natividad, J., Verdu, E.F., and Wallace, J.L. (2012). Hydrogen sulfide and resolution of...

Das, U.N. (2016). Inflammatory bowel disease as a disorder of an imbalance between pro- and anti-inflammatory molecules and deficiency of resolution bioactive lipids. *Lipids Health Dis* 15, 11. doi: 10.1186/s12944-015-0165-4.

Dayer, J.M. (2002). Evidence for the biological modulation of IL-1 activity: the role of IL-1Ra. *Clin Exp Rheumatol* 20(5 Suppl 27), S14-20.

Dalli, J., Winkler, J.W., Colas, R.A., Arnardottir, H., Cheng, C.Y., Chiang, N., et al. (2013). Resolvin D3 and aspirin-triggered resolvin D3 are potent immunoresolvents. *Chem Biol* 20(2), 188-201. doi: 10.1016/j.chembiol.2012.11.010.

Duffy, D., Rouilly, V., Libri, V., Hasan, M., Beitz, B., David, M., et al. (2014). Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli. *Immunity* 40(3), 436-450. doi: 10.1016/j.immuni.2014.03.002.

Dudakov, J.A., Hanash, A.M., and van den Brink, M.R. (2015). Interleukin-22: immunobiology and pathology. *Annu Rev Immunol* 33, 747-785. doi: 10.1146/annurev-immunol-032414-112123.

Duffy, D., Rouilly, V., Libri, V., Hasan, M., Beitz, B., David, M., et al. (2014). Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli. *Immunity* 40(3), 436-450. doi: 10.1016/j.immuni.2014.03.002.

Dufton, N., Natividad, J., Verdu, E.F., and Wallace, J.L. (2012). Hydrogen sulfide and resolution of...
acute inflammation: A comparative study utilizing a novel fluorescent probe. Sci Rep 2, 499. doi: 10.1038/srep00499.

Duvernelle, C., Freund, V., and Frossard, N. (2003). Transforming growth factor-beta and its role in asthma. Pulm Pharmacol Ther 16(4), 181-196. doi: 10.1016/S1094-5539(03)00051-8.

Ealey, K.N., Moro, K., and Koyasu, S. (2017). Are ILC2s Jekyll and Hyde in airway inflammation? Immunol Rev 278(1), 207-218. doi: 10.1111/imr.12547.

Ebbo, M., Crinier, A., Vely, F., and Vivier, E. (2017). Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol 17(11), 665-678. doi: 10.1038/nri.2017.86.

Eke Gungor, H., Tahan, F., Gokahmetoglu, S., and Saraymen, B. (2014). Decreased levels of lipoxin A4 and annexin A1 in wheezy infants. Int Arch Allergy Immunol 163(3), 193-197. doi: 10.1159/000358490.

El-Salhy, M., Solomon, T., Hausken, T., Gilja, O.H., and Hatlebakk, J.G. (2017). Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease. World J Gastroenterol 23(28), 5068-5085. doi: 10.3748/wjg.v23.i28.5068.

Erriah, M., Pabreja, K., Fricker, M., Baines, K.J., Donnelly, L.E., Bylund, J., et al. (2019). Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir Res 20(1), 1. doi: 10.1186/s12931-018-0967-9.

Fang, P., Zhou, L., Zhou, Y., Kolls, J.K., Zheng, T., and Zhu, Z. (2014). Immune modulatory effects of IL-22 on allergen-induced pulmonary inflammation. PLoS One 9(9), e107454. doi: 10.1371/journal.pone.0107454.

Fatima, F., and Nawaz, M. (2017a). Nexus between extracellular vesicles, immunomodulation and tissue remodeling: for good or for bad? Ann Transl Med 5(6), 139. doi: 10.21037/atm.2017.03.71.

Fatima, F., and Nawaz, M. (2017b). Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies. Noncoding RNA 3(1). doi: 10.3390/ncrna3010010.

Feagan, B.G., Sandborn, W.J., D’Haens, G., Panes, J., Kaser, A., Ferrante, M., et al. (2017). Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn’s disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet 389(10080), 1699-1709. doi: 10.1016/S0140-6736(17)30570-6.

Forkel, M., and Mjosberg, J. (2016). Dysregulation of Group 3 Innate Lymphoid Cells in the Pathogenesis of Inflammatory Bowel Disease. Curr Allergy Asthma Rep 16(10), 73. doi: 10.1007/s11882-016-0652-3.

Fredman, G., Li, Y., Dalli, J., Chiang, N., and Serhan, C.N. (2012). Self-limited versus delayed resolution of acute inflammation: temporal regulation of pro-resolving mediators and microRNA. Sci Rep 2, 639. doi: 10.1038/srep00639.

Freedman, S.D., Blanco, P.G., Zaman, M.M., Shea, J.C., Ollero, M., Hopper, I.K., et al. (2004). Association of cystic fibrosis with abnormalities in fatty acid metabolism. N Engl J Med 350(6), 560-569. doi: 10.1056/NEJMoa021218.

Frol’ova, L., Smetana, K., Jr., Borovska, D., Kitanovicova, A., Klimesova, K., Janatkova, I., et al. (2009). Detection of galectin-3 in patients with inflammatory bowel diseases: new serum marker of active forms of IBD? Inflamm Res 58(8), 503-512. doi: 10.1007/s00011-009-0016-8.

Fujino, S., Andoh, A., Bamba, S., Ogawa, A., Hata, K., Araki, Y., et al. (2003). Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52(1), 65-70.

Furrie, E., Macfarlane, S., Kennedy, A., Cummings, J.H., Walsh, S.V., O’Neil D., A., et al. (2005). Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54(2), 242-249. doi: 10.1136/gut.2004.044834.

Fuss, I.J., Neurath, M., Boirivant, M., Klein, J.S., de la Motte, C., Strong, S.A., et al. (1996). Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 157(3), 1261-1270.
Gabrilovich, D.I., and Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. *Nat Rev Immunol* 9(3), 162-174. doi: 10.1038/nri2506.

Galli, S.J., Tsai, M., and Piliponsky, A.M. (2008). The development of allergic inflammation. *Nature* 454(7203), 445-454. doi: 10.1038/nature07204.

Ganea, D., Hooper, K.M., and Kong, W. (2015). The neuropeptide vasoactive intestinal peptide: direct effects on immune cells and involvement in inflammatory and autoimmune diseases. *Acta Physiol (Oxf)* 213(2), 442-452. doi: 10.1111/apha.12427.

Gangemi, S., Luciotti, G., D’Urbano, E., Mallamae, A., Santoro, D., Bellinghieri, G., et al. (2003). Anti-inflammatory deficiencies in neutrophilic asthma: reduced galectin-3 and IL-1RA/IL-1beta. *Respir Res* 16, 5. doi: 10.1186/s12931-014-0163-5.

Garin, M.I., Chu, C.C., Golshayan, D., Cernuda-Morollon, E., Wait, R., and Lechler, R.I. (2007). Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. *Blood* 109(5), 2058-2065. doi: 10.1182/blood-2006-04-016451.

Geremia, A., and Arancibia-Carcamo, C.V. (2017). Innate Lymphoid Cells in Intestinal Inflammation. *Front Immunol* 8, 1296. doi: 10.3389/fimmu.2017.01296.

Getting, S.J. (2006). Targeting melanocortin receptors as potential novel therapeutics. *Pharmacol Ther* 111(1), 1-15. doi: 10.1016/j.pharmthera.2005.06.022.

Getting, S.J., Gibbs, L., Clark, A.J., Flower, R.J., and Perretti, M. (1999). POMC gene-derived peptides activate melanocortin type 3 receptor on murine macrophages, suppress cytokine release, and inhibit neutrophil migration in acute experimental inflammation. *J Immunol* 162(12), 7446-7453.

Gibney, S.M., and Drexhage, H.A. (2013). Evidence for a dysregulated immune system in the etiology of psychiatric disorders. *J Neuroimmun Pharmacol* 8(4), 900-920. doi: 10.1007/s11481-013-9462-8.

Gilroy, D.W., Lawrence, T., Perretti, M., and Rossi, A.G. (2004). Inflammatory resolution: new opportunities for drug discovery. *Nat Rev Drug Discov* 3(5), 401-416. doi: 10.1038/nrd1383.

Glocker, E.O., Kotlarz, D., Boztug, K., Gertz, E.M., Schaffer, A.A., Noyan, F., et al. (2009). Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. *N Engl J Med* 361(21), 2033-2045. doi: 10.1056/NEJMoa0907206.

Gobbetti, T., Dalli, J., Colas, R.A., Federici Canova, D., Aursnes, M., Bonnet, D., et al. (2017). Protectin D1n-3 DPA and resolvin D5n-3 DPA are effectors of intestinal protection. *Proc Natl Acad Sci USA* 114(15), 3963-3968. doi: 10.1073/pnas.1617290114.

Gomez, G. (2019). Current Strategies to Inhibit High Affinity FcεRI-Mediated Signaling for the Treatment of Allergic Disease. *Front Immunol* 10, 175. doi: 10.3389/fimmu.2019.00175.

Gonzalez-Rey, E. (2010). Keeping the balance between immune tolerance and pathogen immunity with endogenous neuropeptides. *Neuroimmunomodulation* 17(3), 161-164. doi: 10.1159/000258713.

Gonzalez-Rey, E., Anderson, P., and Delgado, M. (2007). Emerging roles of vasoactive intestinal peptide: a new approach for autoimmune therapy. *Ann Rheum Dis* 66 Suppl 3, iii70-76. doi: 10.1136/ard.2007.078519.

Grunig, G., Corry, D.B., Leach, M.W., Seymour, B.W., Kurup, V.P., and Rennick, D.M. (1997). Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. *J Exp Med* 185(6), 1089-1099. doi: 10.1084/jem.185.6.1089.

Hashimoto, A., Murakami, Y., Kitasato, H., Hayashi, I., and Endo, H. (2007). Glucocorticoids co-interact with lipoxin A4 via lipoxin A4 receptor (ALX) up-regulation. *Biomed Pharmacother* 61(1), 81-85. doi: 10.1016/j.biopha.2006.06.023.

Hasko, G., and Cronstein, B. (2013). Regulation of inflammation by adenosine. *Front Immunol* 4, 85. doi: 10.3389/fimmu.2013.00085.
Haworth, O., Cernadas, M., and Levy, B.D. (2011). NK cells are effectors for resolvin E1 in the timely resolution of allergic airway inflammation. J Immunol 186(11), 6129-6135. doi: 10.4049/jimmunol.1004007.

Haworth, O., Cernadas, M., Yang, R., Serhan, C.N., and Levy, B.D. (2008). Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat Immunol 9(8), 873-879. doi: 10.1038/ni.1627.

Herova, M., Schmid, M., Gemperle, C., and Hersberger, M. (2015). ChemR23, the receptor for chemerin and resolvin E1, is expressed and functional on M1 but not on M2 macrophages. J Immunol 194(5), 2330-2337. doi: 10.4049/jimmunol.1402166.

Holmen, N., Lundgren, A., Lundin, S., Bergin, A.M., Rudin, A., Sjovall, H., et al. (2006). Functional CD4+CD25high regulatory T cells are enriched in the colonic mucosa of patients with active ulcerative colitis and increase with disease activity. Inflamm Bowel Dis 12(6), 447-456. doi: 10.1097/00058523-200606000-00003.

Huber, M., Knottnerus, J.A., Green, L., van der Horst, H., Jadad, A.R., Kromhout, D., et al. (2011). How should we define health? BMJ 343, d4163. doi: 10.1136/bmj.d4163.

Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M.A., Salatino, M., Vermeulen, M.E., et al. (2009). Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10(9), 981-991. doi: 10.1038/ni.1772.

Jarchum, I., and Pamer, E.G. (2011). Regulation of innate and adaptive immunity by the commensal microbiota. Curr Opin Microbiol 23(3), 353-360. doi: 10.1016/j.micmicro.2011.03.001.

Jimeno, R., Leceta, J., Martinez, C., Gutierrez-Canas, I., Carrion, M., Perez-Garcia, S., et al. (2014). Vasoactive intestinal peptide maintains the nonpathogenic profile of human th17-polarized cells. J Mol Neurosci 54(3), 512-525. doi: 10.1007/s12031-014-0318-3.

Kannengiesser, K., Maaser, C., Heidemann, J., Luegering, A., Ross, M., Brzoska, T., et al. (2008). Melanocortin-derived tripeptide KPV has anti-inflammatory potential in murine models of inflammatory bowel disease. Inflamm Bowel Dis 14(3), 324-331. doi: 10.1002/ibd.20334.

Kaplan, G.G., and Ng, S.C. (2017). Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology 152(2), 313-321.e312. doi: 10.1053/j.gastro.2016.10.020.

Kasuga, K., Yang, R., Porter, T.F., Agrawal, N., Petasis, N.A., Irimia, D., et al. (2008). Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution. J Immunol 181(12), 8677-8687.

Katial, R.K., Bensch, G.W., Busse, W.W., Chipps, B.E., Denson, J.L., Gerber, A.N., et al. (2017). Changing Paradigms in the Treatment of Severe Asthma: The Role of Biologic Therapies. J Allergy Clin Immunol Pract 5(2S), S1-S14. doi: 10.1016/j.jaip.2016.11.029.

Keelan, J.A., Mas, E., D’Vaz, N., Dunstan, J.A., Li, S., Barden, A.E., et al. (2015). Effects of maternal n-3 fatty acid supplementation on placental cytokines, pro-resolving lipid mediators and their precursors. Reproduction 149(2), 171-178. doi: 10.1530/REP-14-0549.

Kemp, S., Leclerc, F., and Huber, S. (2017). TH17 Cell and Epithelial Cell Crosstalk
during Inflammatory Bowel Disease and Carcinogenesis. Front Immunol 8, 1373. doi: 10.3389/fimmu.2017.01373.

Kenne Sarenmalm, E., Martensson, L.B., Andersson, B.A., Karlsson, P., and Bergh, I. (2017). Mindfulness and its efficacy for psychological and biological responses in women with breast cancer. Cancer Med 6(5), 1108-1122. doi: 10.1002/cam4.1052.

Krishnamoorthy, N., Burkett, P.R., Dalli, J., Abdulnour, R.E., Colas, R., Ramon, S., et al. (2015). Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J Immunol 194(3), 863-867. doi: 10.4049/jimmunol.1402534.

Krishnamoorthy, S., Recchiuti, A., Chiang, N., Fredman, G., and Serhan, C.N. (2012). Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. Am J Pathol 180(5), 2018-2027. doi: 10.1016/j.ajpath.2012.01.028.

Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K., and Muller, W. (1993). Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2), 263-274.

Larsen, G.L., and Henson, P.M. (1983). Mediators of inflammation. Annu Rev Immunol 1, 335-359. doi: 10.1146/annurev.im.01.400183.002003.

Lee, R.H., and Vazquez, G. (2013). Evidence for a prosurvival role of alpha-7 nicotinic acetylcholine receptor in alternatively (M2)-activated macrophages. Physiol Rep 1(7), e00189. doi: 10.1002/phy2.189.

Lee, S.H., Lee, P.H., Kim, B.G., Seo, H.J., Baek, A.R., Park, J.S., et al. (2018). Annexin A1 in plasma from patients with bronchial asthma: its association with lung function. BMC Pulm Med 18(1), 1. doi: 10.1186/s12890-017-0557-5.

Leech, M.D., Benson, R.A., De Vries, A., Fitch, P.M., and Howie, S.E. (2007). Resolution of Der p1-induced allergic airway inflammation is dependent on CD4+CD25+Foxp3+ regulatory cells. J Immunol 179(10), 7050-7058.

Leoni, G., Alam, A., Neumann, P.A., Lambeth, J.D., Cheng, G., McCoy, J., et al. (2013). Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 123(1), 443-454. doi: 10.1172/JCI65831.

Leoni, G., Neumann, P.A., Kamaly, N., Quiros, M., Nishio, H., Jones, H.R., et al. (2015). Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J Clin Invest 125(3), 1215-1227. doi: 10.1172/JCI76693.

Levy, B.D., Bonnans, C., Silverman, E.S., Palmer, L.J., Marigowda, G., Israel, E., et al. (2005). Diminished lipoxin biosynthesis in severe asthma. Am J Respir Crit Care Med 172(7), 824-830. doi: 10.1164/rccm.200410-1413OC.

Levy, B.D., De Sanctis, G.T., Devchand, P.R., Kim, E., Ackerman, K., Schmidt, B.A., et al. (2002). Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A4(4). Nat Med 8(9), 1018-1023. doi: 10.1038/nm748.

Li, H., Han, Y., Guo, Q., Zhang, M., and Cao, X. (2009). Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182(1), 240-249.

Li, J., Tan, J., Martino, M.M., and Lui, K.O. (2018). Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration. Front Immunol 9, 585. doi: 10.3389/fimmu.2018.00585.

Li, M.O., Wan, Y.Y., Sanjabi, S., Robertson, A.K., and Flavell, R.A. (2006). Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24, 99-146. doi: 10.1146/annurev.immunol.24.021605.090737.

Lim, S., Crawley, E., Woo, P., and Barnes, P.J. (1998). Haplotype associated with low interleukin-10 production in patients with severe asthma. Lancet 352(9122), 113. doi: 10.1016/S0140-6736(98)85018-6.

Liu, Y., Cousin, J.M., Hughes, J., Van Damme, J., Seckl, J.R., Haslett, C., et al. (1999). Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J Immunol 162(6), 3639-3646.

Lobaton, T., Vermeire, S., Van Assche, G., and Rutgeerts, P. (2014). Review article: anti-adhesion therapies for inflammatory bowel disease. Aliment Pharmacol Ther 39(6), 579-594. doi:
Lopez-Hernandez, R., Valdes, M., Campillo, J.A., Martinez-Garcia, P., Salama, H., Bolarin, C.M., et al. (2015). Pro- and anti-inflammatory cytokine gene single-nucleotide polymorphisms in inflammatory bowel disease. Int J Immunogenet 42(1), 38-45. doi: 10.1111/iji.12160.

Lu, L., Barbi, J., and Pan, F. (2017). The regulation of immune tolerance by FOXP3. Nat Rev Immunol 17(11), 703-717. doi: 10.1038/nri.2017.75.

Maaser, C., Kannengiesser, K., Specht, C., Lugera, A., Brzoska, T., Lugert, T.A., et al. (2006). Crucial role of the melanocortin receptor MC1R in experimental colitis. Gut 55(10), 1415-1422. doi: 10.1136/gut.2005.083634.

Marcon, R., Berto, A.F., Dutra, R.C., Bicca, M.A., Leite, D.F., and Calixto, J.B. (2013). Maresin 1, a proresolving lipid mediator derived from omega-3 polyunsaturated fatty acids, exerts protective actions in murine models of colitis. J Immunol 191(8), 4288-4298. doi: 10.4049/jimmunol.1202743.

Mariggio, M.A., Minunno, V., Riccardi, S., Santacroce, R., De Rinaldis, P., and Fumarulo, R. (1998). Sulfide enhancement of PMN apoptosis. Immunopharmacol Immunotoxicol 20(3), 399-408. doi: 10.3109/08923979809034822.

Markworth, J.F., Vella, L., Lingard, B.S., Tull, D.L., Rupasinghe, T.W., Sinclair, A.J., et al. (2013). Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. Am J Physiol Regul Integr Comp Physiol 305(11), R1281-1296. doi: 10.1152/ajpregu.00128.2013.

Mas, E., Barden, A., Burke, V., Beilin, L.J., Watts, G.F., Huang, R.C., et al. (2016). A randomized controlled trial of the effects of n-3 fatty acids on resolvins in chronic kidney disease. Clin Nutr 35(2), 331-336. doi: 10.1016/j.clnu.2015.04.004.

Mas, E., Croft, K.D., Zahra, P., Barden, A., and Mori, T.A. (2012). Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin Chem 58(10), 1476-1484. doi: 10.1373/clinchem.2012.190199.

Maul, J., Loddenkemper, C., Mundt, P., Berg, E., Giese, T., Stallmach, A., et al. (2005). Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology 128(7), 1868-1878.

McGeachy, M.J., Bak-Jensen, K.S., Chen, Y., Tato, C.M., Blumenschein, W., McClanahan, T., et al. (2007). TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat Immunol 8(12), 1390-1397. doi: 10.1038/ni1539.

Melgar, S., Yeung, M.M., Bas, A., Forsberg, G., Suhr, O., Oberg, A., et al. (2003). Over-expression of interleukin 10 in mucosal T cells of patients with active ulcerative colitis. Clin Exp Immunol 134(1), 127-137. doi: 10.1046/j.1365-2249.2003.02268.x.

Miller, A.H., and Raison, C.L. (2016). The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16(1), 22-34. doi: 10.1038/nri.2015.5.

Minutti, C.M., Jackson-Jones, L.H., Garcia-Fojeda, B., Knipper, J.A., Sutherland, T.E., Logan, N., et al. (2017). Local amplifiers of IL-4Ralpha-mediated macrophage activation promote repair in lung and liver. Science 356(6342), 1076-1080. doi: 10.1126/science.aaj2067.

Mirakaj, V., Dalli, J., Granja, T., Rosenberger, P., and Serhan, C.N. (2014). Vagus nerve controls resolution and pro-resolving mediators of inflammation. J Exp Med 211(6), 1037-1048. doi: 10.1084/jem.20132103.

Mjosberg, J., and Spits, H. (2016). Human innate lymphoid cells. J Allergy Clin Immunol 138(5), 1265-1276. doi: 10.1016/j.jaci.2016.09.009.

Montes-Melendez, T. (2015). ACTH: The forgotten therapy. Semin Immunol 27(3), 216-226. doi: 10.1016/j.smim.2015.02.003.

Montes-Melendez, T., Patel, H.B., Seed, M., Nielsen, S., Jonassen, T.E., and Perretti, M. (2011). The melanocortin agonist AP214 exerts anti-inflammatory and proresolving properties. Am J Pathol 179(1), 259-269. doi: 10.1016/j.ajpath.2011.03.042.

Monticelli, L.A., Sonnenberg, G.F., Abt, M.C., Alenghat, T., Ziegler, C.G., Doering, T.A., et al. (2011). 10.1111/apt.12639.
Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. *Nat Immunol* 12(11), 1045-1054. doi: 10.1031/ni.2131.

Morris, T., Stables, M., Colville-Nash, P., Newson, J., Bellingan, G., de Souza, P.M., et al. (2010). Dichotomy in duration and severity of acute inflammatory responses in humans arising from differentially expressed proresolving pathways. *Proc Natl Acad Sci U S A* 107(19), 8842-8847. doi: 10.1073/pnas.1000373107.

Muffley, L.A., Zhu, K.Q., Engrav, L.H., Gibran, N.S., and Hocking, A.M. (2011). Spatial and temporal localization of the melanocortin 1 receptor and its ligand alpha-melanocyte-stimulating hormone during cutaneous wound repair. *J Histochem Cytochem* 59(3), 278-288. doi: 10.1369/0022155410379799.

Muller, S., Schaffer, T., Flogerzi, B., Fleetwood, A., Weimann, R., Schoepfer, A.M., et al. (2006). Galectin-3 modulates T cell activity and is reduced in the inflamed intestinal epithelium in IBD. *Inflamm Bowel Dis* 12(7), 588-597. doi: 10.1097/01.MIB.0000225341.37226.7c.

Nakakita, S., Itoh, A., Nakakita, Y., Nonaka, Y., Ogawa, T., Nakamura, T., et al. (2016). Cooperative Interactions of Oligosaccharide and Peptide Moieties of a Glycopeptide Derived from IgE with Galectin-9. *J Biol Chem* 291(2), 968-979. doi: 10.1074/jbc.M115.694448.

Nathan, C., and Ding, A. (2010). Nonresolving inflammation. *Cell* 140(6), 871-882. doi: 10.1016/j.cell.2010.02.029.

Neurath, M.F. (2017). Current and emerging therapeutic targets for IBD. *Nat Rev Gastroenterol Hepatol* 14(5), 269-278. doi: 10.1038/nrgastro.2016.208.

Newson, J., Motwani, M.P., Kendall, A.C., Nicolau, A., Muccioli, G.G., Alhouayek, M., et al. (2017). Inflammatory Resolution Triggers a Prolonged Phase of Immune Suppression through COX-1/mPGES-1-Derived Prostaglandin E2. *Cell Rep* 20(13), 3162-3175. doi: 10.1016/j.celrep.2017.08.098.

Nurmatov, U., Dhami, S., Arasi, S., Pajno, G.B., Fernandez-Rivas, M., Muraro, A., et al. (2017). Allergen immunotherapy for IgE-mediated food allergy: a systematic review and meta-analysis. *Allergy* 72(8), 1133-1147. doi: 10.1111/all.13124.

Ogawa, Y., Duru, E.A., and Ameredes, B.T. (2008). Role of IL-10 in the resolution of airway inflammation. *Curr Mol Med* 8(5), 437-445.

Ohira, T., Arita, M., Omori, K., Recchiuti, A., Van Dyke, T.E., and Serhan, C.N. (2010). Resolvin E1 receptor activation signals phosphorylation and phagocytosis. *J Biol Chem* 285(5), 3451-3461. doi: 10.1074/jbc.M109.044131.

Olivo, C.R., Vieira, R.P., Arantes-Costa, F.M., Perini, A., Martins, M.A., and Carvalho, C.R. (2012). Effects of aerobic exercise on chronic allergic airway inflammation and remodeling in guinea pigs. *Respir Physiol Neurobiol* 182(2-3), 81-87. doi: 10.1016/j.resp.2012.05.004.

Papa Gobbi, R., De Francesco, N., Bondar, C., Muglia, C., Chirdo, F., Rumbo, M., et al. (2016). A galectin-specific signature in the gut delineates Crohn’s disease and ulcerative colitis from other human inflammatory intestinal disorders. *Biofactors* 42(1), 93-105. doi: 10.1002/biof.1252.

Parks, O.B., Pociask, D.A., Hodzic, Z., Kolls, J.K., and Good, M. (2015). Interleukin-22 Signaling in the Regulation of Intestinal Health and Disease. *Front Cell Dev Biol* 3, 85. doi: 10.3389/fcell.2015.00085.
Patin, E., Hasan, M., Bergstedt, J., Rouilly, V., Libri, V., Urrutia, A., et al. (2018). Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. *Nat Immunol* 19(3), 302-314. doi: 10.1038/s41590-018-0049-7.

Pawankar, R. (2014). Allergic diseases and asthma: a global public health concern and a call to action. *World Allergy Organ J* 7(1), 12. doi: 10.1186/1939-4551-7-12.

Peake, J.M., Della Gatta, P., Suzuki, K., and Nieman, D.C. (2015). Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. *Exerc Immunol Rev* 21, 8-25.

Pernot, S., Ramtohul, T., and Taieb, J. (2016). Checkpoint inhibitors and gastrointestinal immune-related adverse events. *Curr Opin Oncol* 28(4), 264-268. doi: 10.1097/COC.0000000000000292.

Perretti, M., Chiang, N., La, M., Fierro, I.M., Marullo, S., Getting, S.J., et al. (2002). Endogenous lipid-and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. *Nat Med* 8(11), 1296-1302. doi: 10.1038/nm786.

Perretti, M., and D’Acquisto, F. (2009). Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. *Nat Rev Immunol* 9(1), 62-70. doi: 10.1038/nri2470.

Perretti, M., Leroy, X., Bland, E.J., and Montero-Melendez, T. (2015). Resolution Pharmacology: Opportunities for Therapeutic Innovation in Inflammation. *Trends Pharmacol Sci* 36(11), 737-755. doi: 10.1016/j.tips.2015.07.007.

Petersen, A.M., and Pedersen, B.K. (2005). The anti-inflammatory effect of exercise. *J Appl Physiol (1985)* 98(4), 1154-1162. doi: 10.1152/japplphysiol.00164.2004.

Poe, S.L., Arora, M., Oriss, T.B., Yarlagadda, M., Isse, K., Khare, A., et al. (2013). STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia. *Mucosal Immunol* 6(1), 189-199. doi: 10.1038/mi.2012.62.

Polus, A., Zapala, B., Razny, U., Gielicz, A., Kiec, A., Malczewska-Malec, M., et al. (2016). Omega-3 fatty acid supplementation influences the whole blood transcriptome in women with obesity, associated with pro-resolving lipid mediator production. *Biochim Biophys Acta* 1861(11), 1746-1755. doi: 10.1016/j.bbalip.2016.08.005.

Puthenedam, M., Wu, F., Shetye, A., Michaels, A., Rhee, K.J., and Kwon, J.H. (2011). Matrilysin-1 (MMP7) cleaves galectin-3 and inhibits wound healing in intestinal epithelial cells. *Inflamm Bowel Dis* 17(1), 260-267. doi: 10.1002/ibd.21443.

Raap, U., Brzoska, T., Sohl, S., Path, G., Emmel, J., Herz, U., et al. (2003). Alpha-melanocyte-stimulating hormone inhibits allergic airway inflammation. *J Immunol* 171(1), 353-359.

Ramaswami, R., Serhan, C.N., Levy, B.D., and Makrides, M. (2016). Fish Oil Supplementation in Pregnancy. *N Engl J Med* 375(26), 2599-2601. doi: 10.1056/NEJMclde1614333.

Ramon, S., Dalli, J., Sanger, J.M., Winkler, J.W., Aursnes, M., Tungen, J.E., et al. (2016). The Protectin PCTR1 Is Produced by Human M2 Macrophages and Enhances Resolution of Infectious Inflammation. *Am J Pathol* 186(4), 962-973. doi: 10.1016/j.ajpath.2015.12.012.

Rankin, L.C., Girard-Madoux, M.J., Seillet, C., Mielke, L.A., Kerdiles, Y., Fenis, A., et al. (2016). Complementarity and redundancy of IL-22-producing innate lymphoid cells. *Nat Immunol* 17(2), 179-186. doi: 10.1038/ni.3332.

Rauber, S., Luber, M., Weber, S., Maul, L., Soare, A., Wohlfahrt, T., et al. (2017). Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. *Nat Med* 23(8), 938-944. doi: 10.1038/nm.4373.

Ray, A., Chakraborty, K., and Ray, P. (2013). Immunosuppressive MDSCs induced by TLR signaling during infection and role in resolution of inflammation. *Front Cell Infect Microbiol* 3, 52. doi: 10.3389/fcimb.2013.00052.

Recchiuti, A., Krishnamoorthy, S., Fredman, G., Chiang, N., and Serhan, C.N. (2011). MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. *FASEB J* 25(2), 544-560. doi: 10.1096/fj.10-169599.

Ricklefs, I., Barkas, I., Duvall, M.G., Cernadas, M., Grossman, N.L., Israel, E., et al. (2017). ALX receptor
ligands define a biochemical endotype for severe asthma. *JCI Insight* 2(14). doi: 10.1172/jci.insight.93534.

Rodriguez, P.C., and Ochoa, A.C. (2008). Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. *Immunol Rev* 222, 180-191. doi: 10.1111/j.1600-065X.2008.00608.x.

Rodriguez, P.C., Ochoa, A.C., and Al-Khami, A.A. (2017). Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity. *Front Immunol* 8, 93. doi: 10.3389/fimmu.2017.00093.

Rogerio, A.P., Haworth, O., Croze, R., Oh, S.F., Uddin, M., Carlo, T., et al. (2012). Resolvin D1 and aspirin-triggered resolvin D1 promote resolution of allergic airways responses. *J Immunol* 189(4), 1983-1991. doi: 10.4049/jimmunol.1101665.

Rogler, G. (2017). Resolution of inflammation in inflammatory bowel disease. *Lancet Gastroenterol Hepatol* 2(7), 521-530. doi: 10.1016/S2468-1253(17)30031-6.

Rossaint, J., Marggraf, A., and Zarbock, A. (2018). Role of Platelets in Leukocyte Recruitment and Resolution of Inflammation. *Front Immunol* 9, 2712. doi: 10.3389/fimmu.2018.02712.

Rostoker, R., Yaseen, H., Schif-Zuck, S., Lichtenstein, R.G., Rabinovich, G.A., and Ariel, A. (2013). Galectin-1 induces 12/15-lipoxygenase expression in murine macrophages and favors their conversion toward a pro-resolving phenotype. *Prostaglandins Other Lipid Mediat* 107, 85-94. doi: 10.1016/j.prostaglandins.2013.08.001.

Ryter, S.W., and Choi, A.M. (2011). Gaseous therapeutics in acute lung injury. *Compr Physiol* 1(1), 105-121. doi: 10.1002/cphy.c090003.

Sakuraba, A., Sato, T., Kamada, N., Kitazume, M., Sugita, A., and Hibi, T. (2009). Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn’s disease. *Gastroenterology* 137(5), 1736-1745. doi: 10.1053/j.gastro.2009.07.049.

Sanada, K., Alda Diez, M., Salas Valero, M., Perez-Yus, M.C., Demarzo, M.M., Montero-Marin, J., et al. (2017). Effects of mindfulness-based interventions on biomarkers in healthy and cancer populations: a systematic review. *BMC Complement Altern Med* 17(1), 125. doi: 10.1186/s12906-017-1638-y.

Sanchez-Cuellar, S., de la Fuente, H., Cruz-Adalia, A., Lamana, A., Cibrian, D., Giron, R.M., et al. (2012). Reduced expression of galectin-1 and galectin-9 by leucocytes in asthma patients. *Clin Exp Immunol* 170(3), 365-374. doi: 10.1111/j.1365-2249.2012.04665.x.

Saraiva, M., and O’Garra, A. (2010). The regulation of IL-10 production by immune cells. *Nat Rev Immunol* 10(3), 170-181. doi: 10.1038/nri2711.

Satish Kumar, C.S., Kondal Reddy, K., Boobalan, G., Gopala Reddy, A., Sudha Rani Chowdhary, C.H., Vinoth, A., et al. (2017). Immunomodulatory effects of Bifidobacterium bifidum 231 on trinitrobenzenesulfonic acid-induced ulcerative colitis in rats. *Res Vet Sci* 110, 40-46. doi: 10.1016/j.rvsc.2016.10.010.

Schaible, T.D., Harris, R.A., Dowd, S.E., Smith, C.W., and Kellermayer, R. (2011). Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. *Hum Mol Genet* 20(9), 1687-1696. doi: 10.1093/hmg/ddr044.

Schett, G., and Neurath, M.F. (2018). Resolution of chronic inflammatory disease: universal and tissue-specific concepts. *Nat Commun* 9(1), 3261. doi: 10.1038/s41467-018-05800-6.

Schiering, C., Krausgruber, T., Chomka, A., Frohlich, A., Adelmann, K., Wohlfert, E.A., et al. (2014). The alarmin IL-33 promotes regulatory T-cell function in the intestine. *Nature* 513(7519), 564-568. doi: 10.1038/nature13577.

Schwab, J.M., Chiang, N., Arita, M., and Serhan, C.N. (2007). Resolvin E1 and protectin D1 activate inflammation-resolution programmes. *Nature* 447(7146), 869-874. doi: 10.1038/nature05877.

Schwanke, R.C., Marcon, R., Bento, A.F., and Calixto, J.B. (2016). EPA- and DHA-derived resolvins’ actions in inflammatory bowel disease. *Eur J Pharmacol* 785, 156-164. doi: 10.1016/j.ejphar.2015.08.050.

Schwartz, J., and Weiss, S.T. (1994). The relationship of dietary fish intake to level of pulmonary

40
function in the first National Health and Nutrition Survey (NHANES I). *Eur Respir J* 7(10), 1821-1824.

Seki, M., Sakata, K.M., Oomizu, S., Arikawa, T., Sakata, A., Ueno, M., et al. (2007). Beneficial effect of galectin 9 on rheumatoid arthritis by induction of apoptosis of synovial fibroblasts. *Arthritis Rheum* 56(12), 3968-3976. doi: 10.1002/art.23076.

Sena, A., Grishina, I., Thai, A., Goulart, L., Macal, M., Fenton, A., et al. (2013). Dysregulation of anti-inflammatory annexin A1 expression in progressive Crohn's Disease. *PLoS One* 8(10), e76969. doi: 10.1371/journal.pone.0076969.

Senftleber, N.K., Nielsen, S.M., Andersen, J.R., Bliddal, H., Tarp, S., Lauritzen, L., et al. (2017). Marine Oil Supplements for Arthritis Pain: A Systematic Review and Meta-Analysis of Randomized Trials. *Nutrients* 9(1). doi: 10.3390/nu9010042.

Serhan, C.N. (2011a). Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. *Mol Aspects Med*. doi: 10.1016/j.mam.2017.03.001.

Serhan, C.N. (2011b). Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. *FASEB J* 31(4), 1273-1288. doi: 10.1096/fj.201601222R.

Serhan, C.N., Chiang, N., and Dalli, J. (2015). The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution. *Semin Immunol* 27(3), 200-215. doi: 10.1016/j.smim.2015.03.004.

Serhan, C.N., Chiang, N., and Van Dyke, T.E. (2008). Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. *Nat Rev Immunol* 8(5), 349-361. doi: 10.1038/nri2294.

Serhan, C.N., Dalli, J., Karamnov, S., Choi, A., Park, C.K., Xu, Z.Z., et al. (2012). Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. *FASEB J* 26(4), 1755-1765. doi: 10.1096/fj.11-201442.

Serhan, C.N., Krishnamoorthy, S., Recchiuti, A., and Chiang, N. (2011). Novel anti-inflammatory--pro-resolving mediators and their receptors. *Curr Top Med Chem* 11(6), 629-647.

Serhan, C.N., and Petasis, N.A. (2011). Resolvins and protectins in inflammation resolution. *Chem Rev* 111(10), 5922-5943. doi: 10.1021/cr100396c.

Shah, N., Kammermeier, J., Elawad, M., and Glover, E.O. (2012). Interleukin-10 and interleukin-10 receptor defects in inflammatory bowel disease. *Curr Allergy Asthma Rep* 12(5), 373-379. doi: 10.1007/s11882-012-0286-z.

Shephard, R.J. (2016). The Case for Increased Physical Activity in Chronic Inflammatory Bowel Disease: A Brief Review. *Int J Sports Med* 37(7), 505-515. doi: 10.1055/s-0042-103157.

Shi, Y., Xu, L.Z., Peng, K., Wu, W., Wu, R., Liu, Z.Q., et al. (2015). Specific immunotherapy in combination with Clostridium butyricum inhibits allergic inflammation in the mouse intestine. *Sci Rep* 5, 17651. doi: 10.1038/srep17651.

Silva, A.M., Teixeira, J.H., Almeida, M.I., Goncalves, R.M., Barbosa, M.A., and Santos, S.G. (2017). Extracellular Vesicles: Immunomodulatory messengers in the context of tissue repair/regeneration. *Eur J Pharm Sci* 98, 86-95. doi: 10.1016/j.ejps.2016.09.017.

Smith, S.F., Tetley, T.D., Guz, A., and Flower, R.J. (1990). Detection of lipocortin 1 in human lung lavage fluid: lipocortin degradation as a possible proteolytic mechanism in the control of inflammatory mediators and inflammation. *Environ Health Perspect* 85, 135-144. doi: 10.1289/ehp.85-1568329.

Smith, T.D., Nagalla, R.R., Chen, E.Y., and Liu, W.F. (2017). Harnessing macrophage plasticity for tissue regeneration. *Adv Drug Deliv Rev*. doi: 10.1016/j.addr.2017.04.012.

Souza-Moreira, L., Campos-Salinas, J., Caro, M., and Gonzalez-Rey, E. (2011). Neuropeptides as pleiotropic modulators of the immune response. *Neuroendocrinology* 94(2), 89-100. doi: 10.1159/000328636.

Sporn, M.B., Roberts, A.B., Wakefield, L.M., and Assoian, R.K. (1986). Transforming growth factor-beta: biological function and chemical structure. *Science* 233(4763), 532-534.

Sugimoto, M.A., Vago, J.P., Perretti, M., and Teixeira, M.M. (2019). Mediators of the Resolution of the Inflammatory Response. *Trends Immunol* 40(3), 212-227. doi: 10.1016/j.it.2019.01.007.
Sun, Y.P., Oh, S.F., Uddin, J., Yang, R., Gotlinger, K., Campbell, E., et al. (2007). Resolvin D1 and its aspirin-triggered 17R epimer. Stereochimo netic assignments, anti-inflammatory properties, and enzymatic inactivation. J Biol Chem 282(13), 9323-9334. doi: 10.1074/jbc.M609212200.

Suzuki, Y., Saito, J., Kikuchi, M., Uematsu, M., Fuhuara, A., Sato, S., et al. (2018). Sputum-to-serum hydrogen sulphide ratio as a novel biomarker of predicting future risks of asthma exacerbation. Clin Exp Allergy 48(9), 1155-1163. doi: 10.1111/cea.13173.

Svenningsen, S., and Nair, P. (2017). Asthma Endotypes and an Overview of Targeted Therapy for Asthma. Front Med [Lausanne] 4, 158. doi: 10.3389/fmed.2017.00158.

Taganov, K.D., Boldin, M.P., Chang, K.J., and Baltimore, D. (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103(33), 12481-12486. doi: 10.1073/pnas.0605298103.

Tahan, F., Eke, G.H., Bicici, E., Saraymen, B., and Akar, H.H. (2016). Increased Postexercise Lipoxin A4 Levels in Exhaled Breath Condensate in Asthmatic Children With Exercise-Induced Bronchoconstriction. J Investig Allergol Clin Immunol 26(1), 19-24.

Takeshita, K., Mizuno, S., Mikami, Y., Suzino, T., Saigusa, K., Matsuoka, K., et al. (2016). A Single Species of Clostridium Subcluster XIVA Decreased in Ulcerative Colitis Patients. Inflamm Bowel Dis 22(12), 2802-2810. doi: 10.1097/MIB.0000000000000972.

Taverna, S., Pucci, M., and Alessandro, R. (2017). Extracellular vesicles: small bricks for tissue repair/regeneration. Ann Transl Med 5(4), 83. doi: 10.21037/atm.2017.01.53.

Te Velde, A.A. (2017). The C-Type Lectin Mincle: Clues for a Role in Crohn’s Disease Adjuvant Reaction. Front Immunol 8, 1304. doi: 10.3389/fimmu.2017.01304.

Te Velde, A.A., Bezem, T., van Kampen, A.H., Kranenveld, A.D., t Hart, B.A., van Middendorp, H., et al. (2016). Embracing Complexity beyond Systems Medicine: A New Approach to Chronic Immune Disorders. Front Immunol 7, 587. doi: 10.3389/fimmu.2016.00587.

Tian, M., Wang, Y., Lu, Y.Q., Yan, M., Jiang, Y.H., and Zhao, D.Y. (2012). Correlation between serum H2S and pulmonary function in children with bronchial asthma. Mol Med Rep 6(2), 335-338. doi: 10.3892/mmr.2012.904.

Tomaki, M., Ichinose, M., Miura, M., Hayama, Y., Yamauchi, H., Nakajima, N., et al. (1995). Elevated substance P content in induced sputum from patients with asthma and patients with chronic bronchitis. Am J Respir Crit Care Med 151(3 Pt 1), 613-617. doi: 10.1164/ajrccm.151.3.7533601.

Tountas, N.A., Casini-Raggi, V., Yang, H., Di Giovine, F.S., Vecchi, M., Kam, L., et al. (1999). Functional and ethnic association of allele 2 of the interleukin-1 receptor antagonist gene in ulcerative colitis. Gastroenterology 117(4), 806-813.

Tsunawaki, S., Sporn, M., Ding, A., and Nathan, C. (1988). Deactivation of macrophages by transforming growth factor-beta. Nature 334(6179), 260-262. doi: 10.1038/334260a0.

Ungaro, F., Rubino, F., Danese, S., and D’Alessio, S. (2017). Actors and Factors in the Resolution of Intestinal Inflammation: Lipid Mediators As a New Approach to Therapy in Inflammatory Bowel Diseases. Front Immunol 8, 1331. doi: 10.3389/fimmu.2017.01331.

Urquhart, P., Rosignoli, G., Cooper, D., Motterlini, R., and Perretti, M. (2007). Carbon monoxide-releasing molecules modulate leukocyte-endothelial interactions under flow. J Pharmacol Exp Ther 321(2), 656-662. doi: 10.1124/jpet.106.117218.

Vachier, I., Bonnans, C., Chavis, C., Farce, M., Godard, P., Bousquet, J., et al. (2005). Severe asthma is associated with a loss of LX4, an endogenous anti-inflammatory compound. J Allergy Clin Immunol 115(1), 55-60. doi: 10.1016/j.jaci.2004.09.038.

Van Dyke, T.E., Hasturk, H., Kantarcı, A., Freire, M.O., Nguyen, D., Dalli, J., et al. (2015). Proresolving nanomedicines activate bone regeneration in periodontitis. J Dent Res 94(1), 148-156. doi: 10.1177/0022034514557331.

van Herk, E.H., and Te Velde, A.A. (2016). Treg subsets in inflammatory bowel disease and colorectal carcinoma: Characteristics, role, and therapeutic targets. J Gastroenterol Hepatol 31(8), 1393-1404. doi: 10.1111/jgh.13342.

Vergnolle, N., Pages, P., Guimbaud, R., Chaussade, S., Bueno, L., Escourrou, J., et al. (2004). Annexin 1
is secreted in situ during ulcerative colitis in humans. *Inflamm Bowel Dis* 10(5), 584-592. doi: 10.1097/00054725-200409000-00013.

Vieira, A.T., Rocha, V.M., Tavares, L., Garcia, C.C., Teixeira, M.M., Oliveira, S.C., et al. (2016). Control of Klebsiella pneumoniae pulmonary infection and immunomodulation by oral treatment with the commensal probiotic Bifidobacterium longum 5(1A). *Microbes Infect* 18(3), 180-189. doi: 10.1016/j.micinf.2015.10.008.

Vong, L., Ferraz, J.G., Dufton, N., Panaccione, R., Beck, P.L., Sherman, P.M., et al. (2012). Up-regulation of Annexin-A1 and lipoxin A(4) in individuals with ulcerative colitis may promote mucosal homeostasis. *PloS One* 7(6), e39244. doi: 10.1371/journal.pone.0039244.

Wallace, J.L., Ianaro, A., Flannigan, K.L., and Cirino, G. (2015). Gaseous mediators in resolution of inflammation. *Semin Immunol* 27(3), 227-233. doi: 10.1016/j.smim.2015.05.004.

Wallace, J.L., Vong, L., McKnight, W., Dicay, M., and Martin, G.R. (2009). Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. *Gastroenterology* 137(2), 569-578, 578 e561. doi: 10.1053/j.gastro.2009.04.012.

Wallrapp, A., Riesenfeld, S.J., Burkett, P.R., and Kuchroo, V.K. (2018). Type 2 innate lymphoid cells in the induction and resolution of tissue inflammation. *Immunol Rev* 286(1), 53-73. doi: 10.1111/imr.12702.

Wang, J., Shang, Y.X., Cai, X.X., and Liu, L.Y. (2018). Vasoactive intestinal peptide inhibits airway smooth muscle cell proliferation in a mouse model of asthma via the ERK1/2 signaling pathway. *Exp Cell Res* 364(2), 168-174. doi: 10.1016/j.yexcr.2018.01.042.

Wang, L.M., Li, W.H., Xu, Y.C., Wei, Q., Zhao, H., and Jiang, X.F. (2011). Annexin 1-derived peptide Ac2-26 inhibits eosinophil recruitment in vivo via decreasing prostaglandin D(2). *Int Arch Allergy Immunol* 154(2), 137-148. doi: 10.1159/000320228.

Wei, P., Yang, Y., Ding, Q., Li, X., Sun, H., Liu, Z., et al. (2016). Oral delivery of Bifidobacterium longum expressing alpha-melanocyte-stimulating hormone to combat ulcerative colitis. *J Med Microbiol* 65(2), 160-168. doi: 10.1099/jmm.0.000197.

Weiss, G.A., Troxler, H., Kline, G., Rogler, D., Braegger, C., and Hersberger, M. (2013). High levels of anti-inflammatory and pro-resolving lipid mediators lipoxins and resolvins and declining docosahexaenoic acid levels in human milk during the first month of lactation. *Lipids Health Dis* 12, 89. doi: 10.1186/1476-511X-12-89.

Weylandt, K.H. (2016). Docosapentaenoic acid derived metabolites and mediators - The new world of lipid mediator medicine in a nutshell. *Eur J Pharmacol* 785, 108-115. doi: 10.1016/j.ejphar.2015.11.002.

Wilson, M.S., Elnekave, E., Mentink-Kane, M.M., Hodges, M.G., Pesce, J.T., Ramalingam, T.R., et al. (2007). IL-13Ralpha2 and IL-10 coordinately suppress airway inflammation, airway-hyperreactivity, and fibrosis in mice. *J Clin Invest* 117(10), 2941-2951. doi: 10.1172/JCI31546.

Winkler, J.W., Orr, S.K., Dalli, J., Cheng, C.Y., Sanger, J.M., Chiang, N., et al. (2016). Resolvin D4 stereospecificity and its novel actions in host protection and bacterial clearance. *Sci Rep* 6, 18972. doi: 10.1038/srep18972.

Witek-Janusek, L., Albuquerque, K., Chroniak, K.R., Chroniak, C., Durazo-Arvizu, R., and Mathews, H.L. (2008). Effect of mindfulness based stress reduction on immune function, quality of life and coping in women newly diagnosed with early stage breast cancer. *Brain Behav Immun* 22(6), 969-981. doi: 10.1016/j.bbi.2008.01.012.

Woodfolk, J.A. (2006). Selective roles and dysregulation of interleukin-10 in allergic disease. *Curr Allergy Asthma Rep* 6(1), 40-46.

Wu, C., Thalhamer, T., Franca, R.F., Xiao, S., Wang, C., Hotta, C., et al. (2014). Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. *Immunity* 41(2), 270-282. doi: 10.1016/j.immuni.2014.06.011.

Wu, D., Lee, D., and Sung, Y.K. (2011). Prospect of vasoactive intestinal peptide therapy for COPD/PAH and asthma: a review. *Respir Res* 12, 45. doi: 10.1186/1465-9921-12-45.

Wu, S.H., Chen, X.Q., Liu, B., Wu, H.J., and Dong, L. (2013). Efficacy and safety of 15(R/S)-methyl-lipoxin A(4) in topical treatment of infantile eczema. *Br J Dermatol* 168(1), 172-178. doi:
Wynn, T.A., Chawla, A., and Pollard, J.W. (2013). Macrophage biology in development, homeostasis and disease. *Nature* 496(7446), 445-455. doi: 10.1038/nature12034.

Xiao, S., Jin, H., Korn, T., Liu, S.M., Oukka, M., Lim, B., et al. (2008). Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. *J Immunol* 181(4), 2277-2284.

Zenewicz, L.A., Antov, A., and Flavell, R.A. (2009). CD4 T-cell differentiation and inflammatory bowel disease. *Trends Mol Med* 15(5), 199-207. doi: 10.1016/j.molmed.2009.03.002.

Zeybel, M., Hardy, T., Wong, Y.K., Mathers, J.C., Fox, C.R., Gackowska, A., et al. (2012). Multigenerational epigenetic adaptation of the hepatic wound-healing response. *Nat Med* 18(9), 1369-1377. doi: 10.1038/nm.2893.

Zhang, G., Wang, P., Yang, G., Cao, Q., and Wang, R. (2013). The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma. *Am J Pathol* 182(4), 1188-1195. doi: 10.1016/j.ajpath.2012.12.008.

Zhang, J., Wang, X., Chen, Y., and Yao, W. (2014). Correlation between levels of exhaled hydrogen sulfide and airway inflammatory phenotype in patients with chronic persistent asthma. *Respirology* 19(8), 1165-1169. doi: 10.1111/resp.12372.

Zhao, H., Yan, R., Zhou, X., Ji, F., and Zhang, B. (2016). Hydrogen sulfide improves colonic barrier integrity in DSS-induced inflammation in Caco-2 cells and mice. *Int Immunopharmacol* 39, 121-127. doi: 10.1016/j.intimp.2016.07.020.

Zheng, Y., Valdez, P.A., Danilenko, D.M., Hu, Y., Sa, S.M., Gong, Q., et al. (2008). Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. *Nat Med* 14(3), 282-289. doi: 10.1038/nm1720.

Zhu, C., Anderson, A.C., Schubart, A., Xiong, H., Imitola, J., Khoury, S.J., et al. (2005). The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. *Nat Immunol* 6(12), 1245-1252. doi: 10.1038/ni1271.