Normal automorphisms of the metabelian product of free abelian Lie algebras

Nazar Şahin Öğüşlü

Communicated by Communicated person

Abstract. Let M be the metabelian product of free abelian Lie algebras of finite rank. In this study we prove that every normal automorphism of M is an IA-automorphism and acts identically on M'.

1. Introduction

Let L be a Lie algebra over a field K. An automorphism φ of L is called a normal automorphism if $\varphi(I) = I$ for every ideal I of L. The set of normal automorphisms of L is a normal subgroup of the automorphism group of L.

Automorphisms and more particularly normal automorphisms have a very important place in groups and Lie algebras. Let G be a soluble product of class $n \geq 2$ of nontrivial free abelian groups. In [5] it is shown that the subgroup of all normal automorphisms of G coincides with the subgroup of all inner automorphisms. In [4] Romankov showed that if S is a free non-abelian soluble group, then the subgroup of normal automorphisms of S is the subgroup of inner automorphisms of S. In [1] it is studied normal automorphisms of a free metabelian nilpotent group. Let $L_{m,c}$ be the free m-generated metabelian nilpotent of class c Lie algebra over a field of characteristic zero. In [2] it is shown that the group of normal automorphisms of $L_{m,c}$ is contained by the group of IA-automorphisms of $L_{m,c}$ for $m \geq 3$, $c \geq 2$.

2010 Mathematics Subject Classification: 17B01, 17B40.

Key words and phrases: Free abelian Lie algebras, metabelian product, automorphisms.
For an arbitrary variety of Lie algebras, the metabelian product of Lie algebras F_i, $i = 1, ..., m$ is defined as
\[
\left(\prod^* F_i \right) / \left(D \cap F'' \right),
\]
where $F = \prod^* F_i$ is the free product of the Lie algebras F_i and D is the cartesian subalgebra of $\prod^* F_i$. If the algebras F_i are non-trivial free abelian Lie algebras then the metabelian product of them is isomorphic to F/F'', where $F'' = [F', F']$ and $F' = [F, F]$ is the derived subalgebra.

Let M be the metabelian product of free abelian Lie algebras of finite rank. In this study it is shown that every normal automorphism of M is an IA-automorphism and acts identically on M'. In proving this result we inspired by the result of Timoshenko in the case of groups [5].

Let L be a Lie algebra and B any subset of L. We show that by $\langle B \rangle$ the ideal of L generated by the set B.

2. Normal Automorphisms of Metabelian Product

Let A_i, $i = 1, ..., m$, be free abelian Lie algebras of finite rank and $F = \prod^* A_i$ is the free product of the abelian Lie algebras A_i, $i = 1, ..., m$. If M is the metabelian product of the algebras A_i, M is isomorphic to F/F''.

Definition 1. Let L be a Lie algebra. An automorphism φ of L is called a normal automorphism if $\varphi(I) = I$ for every ideal I of L.

Theorem 1. Let A_i, $i = 1, ..., m$, be free abelian Lie algebras of finite rank and let M be their metabelian product. If φ is a normal automorphism of M then φ is an IA-automorphism.

Proof. Let φ be a normal automorphism of M. The algebra M can be considered as $M = F/F''$. Let denote by $\hat{v} = v + F''$, where $v \in F$. Then by [3] there exist $u_i \in F'$, $1 \leq i \leq m$, such that

\[
\varphi(\hat{a}_i) = \alpha a_i + \hat{u}_i,
\]

where $a_i \in A_i$. Consider the ideal $\langle \hat{a}_1 \rangle$ of M. Since φ is normal we have $\varphi(\hat{a}_1) \in \langle \hat{a}_1 \rangle$ and so $\hat{u}_1 \in \langle \hat{a}_1 \rangle$ and similarly, for the ideal $\langle [a_2, a_3] \rangle$ of M we have $\varphi([a_2, a_3]) \in \langle [a_2, a_3] \rangle$. Then for an element \hat{y} of $\langle [a_2, a_3] \rangle$ we have

\[
\varphi([a_2, a_3]) = \alpha^2[a_2, a_3] + \hat{y}.
\]
Now consider the ideal \(\langle a_1 + [a_2, a_3] \rangle \) of \(M \). Since \(\varphi \) is normal we have \(\varphi \left(a_1 + [a_2, a_3] \right) \in \langle a_1 + [a_2, a_3] \rangle \) and for an element \(\hat{z} \) of \(\langle a_1 + [a_2, a_3] \rangle \)

\[
\varphi \left(a_1 + [a_2, a_3] \right) = c \left(a_1 + [a_2, a_3] \right) + \hat{z}
\]

where \(c \in K \). From the last equality we have

\[
(\alpha - c) \hat{a}_1 + (\alpha^2 - c) [a_2, a_3] = \hat{0}.
\]

Then we get \(c = \alpha \) and \(c = \alpha^2 \), that is, \(\alpha^2 = \alpha \). Hence \(\alpha = 1 \) and \(\varphi \) is an IA-automorphism.

Theorem 2. Every normal automorphism of \(M \) acts identically on \(M' \).

Proof. The algebra \(M \) can be considered as \(M = F/F'' \). Let denote by \(\hat{v} = v + F'' \), where \(v \in F \). Let \(\varphi \) be a normal automorphism of \(M \). By theorem 1 we have that \(\varphi \) is an IA-automorphism. Then there is an element \(\hat{v} \) of \(M' \) such that

\[
\varphi \left([a_1, a_2] \right) = [a_1, a_2] + \hat{v},
\]

where \(a_1 \in A_1, a_2 \in A_2 \). Let \(H \) be the ideal of \(M' \) generated by the element \([a_1, a_2]\). It is clear that

\[
H = \left\{ c[a_1, a_2] : c \in K \right\}.
\]

Now suppose that \(\hat{v} \neq \hat{0} \). Consider the homomorphism \(\theta : M' \rightarrow M'/H \) which is defined \(\theta (\hat{u}) = \varphi (\hat{u}) + H \) for every element \(\hat{u} \in M' \). Since \(\varphi \) is a normal automorphism of \(M \) it is clear that \(\theta \) is an epimorphism. Let \(\hat{u} \in Ker\theta \). Consider the ideal \(\langle \hat{u} \rangle \) of \(M \). Since \(\varphi \) is normal we have \(\varphi (\hat{u}) \in \langle \hat{u} \rangle \). Then we have \(\varphi (\hat{u}) = \beta \hat{u} + \hat{w} \), where \(\hat{w} \in \langle \hat{u} \rangle \), \(\beta \in K \). Since \(\hat{u} \in Ker\theta \), we have \(\varphi (\hat{u}) \in H \), that is,

\[
\beta \hat{u} + \hat{w} \in \left\{ c[a_1, a_2] : c \in K \right\}.
\]

Thus we have \(\hat{u} = d[a_1, a_2] \), where \(d \in K \). Then we get

\[
\varphi (\hat{u}) = d[a_1, a_2] + d\hat{v} \in H.
\]

If \(\hat{v} \neq \hat{0} \) we get \(d = 0 \) and \(\hat{u} = \hat{0} \). Hence we obtain that \(\theta \) is an isomorphism. Since \(\varphi (M') = M' \) and \(\hat{v} \in M' \) there exist an element \(\hat{g} \) of \(M' \) such that \(\varphi (\hat{g}) = \hat{v} \). By the definition of \(\theta \) we have

\[
\theta (\hat{g}) = \hat{v} + H.
\]
We also have that
\[\theta \left(\widehat{[a_1, a_2]} \right) = \widehat{v} \mathbf{H}. \]

Since \(\theta \) is an isomorphism we get
\[\widehat{g} = \widehat{[a_1, a_2]}. \]

Thus we have
\[\varphi \left(\widehat{[a_1, a_2]} \right) = \varphi \left(\widehat{g} \right) = \widehat{v} \]
and
\[[a_1, a_2] + \widehat{v} = \widehat{v}. \]

We obtain that \(\widehat{[a_1, a_2]} = 0 \). This is a contradiction. Thus we get \(\widehat{v} = 0 \)
and
\[\varphi \left(\widehat{[a_1, a_2]} \right) = \widehat{[a_1, a_2]} \]

Similarly, we obtain that
\[\varphi \left(\widehat{[a_i, a_j]} \right) = \widehat{[a_i, a_j]}, \]
where \(a_i \in A_i, a_j \in A_j, 1 \leq i < j \leq m \). Let \(\widehat{u} \in M' \). Then \(\widehat{u} \) is a linear combinations of some elements of \(M \) of the form
\[\ldots \widehat{[a_{j_1}, a_{j_2}, a_{j_3}, \ldots, a_{j_n}]}, \]
where \(a_{j_1}, a_{j_2}, \ldots, a_{j_n} \in \bigcup_{i=1}^{m} A_i, n \geq 2 \). we know that
\[\varphi \left(\widehat{[a_{j_1}, a_{j_2}]} \right) = \widehat{[a_{j_1}, a_{j_2}]} \]

Since \(\varphi \) is an IA-automorphism there exist some elements \(u_{j_1}, \ldots, u_{j_n} \in F' \)
such that
\[\varphi \left(\widehat{a_{j_k}} \right) = \widehat{a_{j_k}} + \widehat{u_{j_k}}, \ k \geq 3. \]

Then
\[\varphi \left(\ldots \widehat{[a_{j_1}, a_{j_2}, a_{j_3}, \ldots, a_{j_n}]} \right) = \ldots \left[\varphi \left(\widehat{[a_{j_1}, a_{j_2}]} \right), \varphi \left(\widehat{a_{j_3}} \right), \ldots, \varphi \left(\widehat{a_{j_n}} \right) \right] \\
= \ldots \left[\widehat{[a_{j_1}, a_{j_2}, a_{j_3} + \widehat{u_{j_3}}], \ldots, a_{j_n} + \widehat{u_{j_n}}} \right] \\
= \ldots \left[\widehat{[a_{j_1}, a_{j_2}, a_{j_3}, \ldots, a_{j_n}]} \right]. \]

Hence we get \(\varphi \left(\widehat{u} \right) = \widehat{u} \) for all \(\widehat{u} \in M' \). Therefore \(\varphi \) acts identically on \(M' \). \(\square \)
References

[1] G. Endimioni, Normal automorphisms of a free metabelian nilpotent group, Glasgow Math. J., 52 (2010), 169-177.

[2] Ş. Fındık, Normal and normally outer automorphisms of free metabelian nilpotent Lie algebras, Serdica Math. J., 36 (2010), 171–210.

[3] N. Ş. Öğüşlü, IA-automorphisms of a solvable product of abelian Lie algebras, Int. J. of Sci. and Research Pub., 8 (2018), no.4, 84-85.

[4] V. A. Romankov, Normal automorphisms of discrete groups, Siberian Math. J., 24 (1983), no.4, 604-614.

[5] E. I. Timoshenko, Normal automorphisms of a soluble product of abelian groups, Siberian Math. J., 56 (2015), no.1, 191-198.

Contact Information

N. Ş. Öğüşlü
Department of Mathematics, Çukurova University, Adana, Turkey
E-Mail: noguslu@cu.edu.tr
URL: