FIREWACH: high-throughput functional detection of transcriptional regulatory modules in mammalian cells

Matthew Murtha1, Zeynep Tokcaer-Keskin1, Zuojian Tang2, Francesco Strino3, Xi Chen4, Yatong Wang1, Xiangmei Xi1, Claudio Basilico1, Stuart Brown2, Richard Bonneau4,5, Yuval Kluger3 & Lisa Dailey1

Promoters and enhancers establish precise gene transcription patterns. The development of functional approaches for their identification in mammalian cells has been complicated by the size of these genomes. Here we report a high-throughput functional assay for directly identifying active promoter and enhancer elements called FIREWACH (Functional Identification of Regulatory Elements Within Accessible Chromatin), which we used to simultaneously assess over 80,000 DNA fragments derived from nucleosome-free regions within the chromatin of embryonic stem cells (ESCs) and identify 6,364 active regulatory elements. Many of these represent newly discovered ESC-specific enhancers, showing enriched binding-site motifs for ESC-specific transcription factors including SOX2, POU5F1 (OCT4) and KLF4. The application of FIREWACH to additional cultured cell types will facilitate functional annotation of the genome and expand our view of transcriptional network dynamics.

Embryonic development relies on the establishment of precise temporally and spatially regulated gene expression patterns. A fundamental determinant of this is the interaction of transcription factors (TFs) with their DNA-binding sites within cis-regulatory modules (CRMs) of promoters and enhancers, leading to the activation or repression of the associated gene. Understanding these regulatory mechanisms requires the global identification of differentially active CRMs within mammalian genomes.

Traditional approaches for identifying active CRMs rely on functional assays of individually transfected reporter plasmids harboring putative regulatory regions for a gene of interest1, but these assays are not scalable for global identification of CRMs. Functional approaches for CRM discovery have largely been supplanted by surrogate genome-wide assays mapping protein-DNA interactions for, among others, specific TFs or histone modifications associated with active promoters and enhancers2. These studies have provided an expanded view of chromatin landscapes as well as insights into the relationship between gene expression and the dynamics of chromatin modification and remodeling. However, the genomic loci defined by these marks typically span several kilobases and are generally too broad to define the specific DNA sequences mediating promoter or enhancer function, and putative CRMs require further functional validation.

Recently, several groups have developed massively parallel reporter assays (MPRAs) that permit the simultaneous analysis of hundreds of thousands of reporter plasmids and, thereby, functional assessment of transcriptional-activation properties of large numbers of genomic regions3–6. However, MPRAs have primarily been used as a way to dissect the functional components of previously identified transcriptional regulatory DNA elements rather than as a tool for the discovery of CRMs in mammalian cells. Even with these advances, the enormous size and complexity of mammalian genomes, and the concomitant number of required reporter plasmids, remain among the primary challenges to using functional approaches for the de novo discovery of CRMs.

We previously showed that the efficiency of identifying biologically relevant transcriptional regulatory elements can be dramatically increased by focusing the functional analysis on DNA isolated from nucleosome-free regions (NFRs)7,8, i.e., genomic regions in which nucleosomes are relatively depleted and/or highly destabilized9. Notably, NFRs are where active regulatory elements reside and represent only 2% of chromatin. Thus, focusing a functional analysis on NFR-derived DNA reduces the search space to the most relevant portion of the genome and eliminates the need for a priori selection based on criteria such as phylogenetic sequence conservation or chromatin marks.

We developed a high-throughput functional assay for the identification of active CRMs, FIREWACH, and have applied the assay to murine ESCs. We report the identification of more than 6,000 previously unknown transcriptional regulatory modules for both promoters and enhancers, and provide evidence that genomic loci detected by FIREWACH correspond to elements that regulate endogenous gene expression in ESCs. Accordingly, analysis of ESC-specific enhancers discovered using FIREWACH can identify enriched binding-site motifs for key ESC transcription factors.
Further demonstrating the utility of FIREWACH to identify essential components of transcriptional networks.

RESULTS
Lentiviral reporter library preparation with ESC NFR DNAs
We have previously shown that incubating permeabilized nuclei with restriction enzymes results in the selective digestion and release of DNA from NFRs and the diffusion of these molecules out of the nucleus into the surrounding buffer. The resulting DNA population is enriched for regulatory regions in the virtual absence of background DNA, making it feasible to use reporter-based functional assays to interrogate the DNA population for elements capable of activating transcription (Fig. 1).

We used murine ESCs, as they have been the subject of a multitude of genome-wide chromatin immunoprecipitation (ChIP) and DNase studies, and, accordingly, these annotated chromatin features provide a valuable platform for the evaluation of putative CRMs identified using FIREWACH. ESC nuclei were exposed to either HaeIII or RsaI restriction enzymes, and the two separate NFR DNA populations were isolated. The HaeIII- or RsaI-generated NFR DNAs were amplified using ligation-mediated PCR and an oligonucleotide primer complementary flanking adaptor DNA (Supplementary Table 1), and inserted within the lentiviral (LV) reporter plasmid FpG5 to create two distinct NFR-GFP-LV libraries. FpG5 is a derivative of the self-inactivating FUW lentivirus and contains a cloning site for insertion of the NFR DNAs immediately upstream of the self-inactivating FUW lentivirus and a hygromycin-resistance gene for selection of stably transduced cells (Fig. 1). A positive-control construct, FGF4enhLV, was created by insertion of Fgf4 enhancer DNA sequences, which are specifically active in ESCs upstream of the minimal promoter within FpG5. Illumina sequencing revealed a total of 84,240 elements in the two NFR DNA libraries that were found to be, on average, 154 bp in length and to align with unique positions in the mouse reference genome (Supplementary Table 2). These loci strongly correlated with annotated DNase I–accessible loci in ESCs (area under the curve of the receiver operating characteristic (AUROC) = 0.86; Fig. 2a and Supplementary Fig. 1) and comprised approximately 4% of the total DNA within accessible chromatin of ESCs (Supplementary Note). In contrast, random DNA fragments with a similar size distribution generated by in silico digestion of the mouse genome showed only weak correspondence with DNase I–accessible regions, as expected (AUROC = 0.52; Fig. 2a and Supplementary Fig. 1). Together these results confirm that DNAs within the NFR-GFP-LV libraries derive from accessible chromatin regions in ESCs.

Separate analysis of the HaeIII and RsaI NFR DNAs showed that both NFR populations showed comparable alignment with DNase I–accessible sites but that the genomic regions targeted by each enzyme were largely distinct and nonoverlapping (Fig. 2b). Indeed, HaeIII was more likely than RsaI to target promoter-proximal regions (i.e., near a transcription start site, or TSS) (Fig. 2c), likely owing to differences in recognition sequence GC content.

Figure 2 | NFR-derived DNAs correspond to accessible chromatin regions located throughout the genome. (a) Carpet plots depicting the correspondence of in silico–generated genomic DNA fragments (n = 61,844) or input-library NFR DNAs (n = 84,240) with DNase I hypersensitive sites (HSs) in ESC chromatin. The DNAs in each data set were ranked according to the expression of their associated gene(s) in ESCs (color bars indicate expression level). The presence of a DNase I HS (black) was assessed for a region corresponding to the genomic interval ±1 kb of the center (green vertical lines) of the DNA fragments within input-library NFR– or in silico–generated random DNA fragments. (b) Venn diagram examining the relatedness of genomic regions present in the HaeIII- and RsaI-generated NFR DNA libraries. The total number of elements in each library is indicated at the top of each circle. (c) Genomic distribution of HaeIII- or RsaI-generated input-library NFR DNA populations relative to annotated TSSs (black arrows).
Figure 3 | NFR-GFP-LVs detect active CRMs. (a) Relative GFP expression profiles for FpG5-transduced ESCs (black line) and input-library NFR-GFP-LV-transduced ESCs before (blue line) or after FACS purification (yellow shading). The gate for GFP expression is set as depicted (M1). (b) Percentage GFP+ cells, determined using quantitative flow cytometry, for ESCs transduced with each of the indicated NFR-GFP-LV libraries. BioRep1 and BioRep2 are biological replicate samples resulting from two independent transductions for each of the NFR-GFP-LV libraries (Supplementary Fig. 2). Integrated LV copy number represents the average number of transgenes per cell for each GFP+ transduced cell population; n = 2 (Supplementary Note). (c) Luciferase reporter plasmids harboring random genomic DNAs or DNAs recovered from the input-library NFR-GFP-LV plasmids or FACS-sorted GFP+ cells were transfected into ESCs and assayed for luciferase activity. Each plasmid was tested in duplicate in independent experiments. Data points show the mean; P values were calculated using the unpaired t-test (Supplementary Fig. 6).

Thus, the combined use of two enzymes with distinct recognition sequences increases genomic coverage and better captures the diversity of regulatory elements within ESC chromatin.

Functional detection of transcriptional regulatory modules

The lentiviral reporter system permits the individual activity of thousands of cloned NFR DNAs to be assessed en masse following a single transduction. ESCs were transduced with the FpG5 or Fgf4enhLV control lentiviruses, or each NFR-GFP-LV library using a multiplicity of infection (MOI) previously determined to maximize the number of transduced cells while favoring single-copy integration events per cell. This consideration is critical for interrogating the activity of individual NFR DNAs, as the presence of multiple reporter constructs per cell would increase the false positive rate (FPR). The number of ESCs transduced was at least tenfold the estimated complexity of the libraries to increase the likelihood that all NFR-GFP-LVs would be represented in the transduced cell population. Although FpG5-transduced cells did not show detectable GFP expression even after hygromycin selection, GFP+ cells were easily detected for Fgf4enhLV and HaeIII and RsaI NFR library-transduced cells following hygromycin selection (Fig. 3a,b and Supplementary Fig. 2). We carried out independent transductions to create two biological replicate (BioRep) samples for each NFR-GFP-LV library. Quantitative flow cytometry analysis showed that 4.9% and 4.5% of cells within Rsa1_BioReps 1 and 2, respectively, and 9.5% and 11% of HaeIII_BioReps 1 and 2, respectively, showed activated GFP expression (Fig. 3b and Supplementary Fig. 2).

GFP+ cells were isolated using FACS to a purity of >90% (Fig. 3a). To ascertain that GFP+ cells harbored LV transgenes with cloned NFR DNAs capable of activating transcription, we prepared genomic DNA from the GFP+ transduced cells and used it as a template to recover the NFR DNAs from integrated LV using PCR. The rescued DNAs were recloned into the FpG5 LV reporter to create secondary NFR-GFP-LV libraries. Of the cells transduced with the secondary libraries, 63% displayed activated GFP expression following transduction of ESCs and selection in hygromycin, demonstrating a dramatic enrichment for transcriptionally active elements compared to the primary NFR-GFP-LV libraries (Supplementary Fig. 3).

As a further test, NFR DNAs recovered from GFP+ cells transduced by the primary NFR-GFP-LV libraries were shuttled into a luciferase reporter plasmid and individually assessed for their ability to activate luciferase expression in transfected ESCs. Of these recovered NFR DNAs, 78% (42/54) activated luciferase expression more than twofold above the basal level (Fig. 3c and Supplementary Figs. 4 and 5). In contrast, only 19.5% (8/41) of similarly tested DNAs recovered from the input-library NFR DNAs, and 3% (1/30) of random genomic DNA fragments activated luciferase expression (Fig. 3c and Supplementary Figs. 4 and 5). In addition to having a greater percentage of active CRMs, the FIREWACH elements (transgenic NFR-derived DNAs recovered from GFP+ cells) demonstrated a wide range of activities from 2- to >100-fold induction and a tenfold greater median luciferase activity than input-library NFR DNAs (Supplementary Fig. 4 and Supplementary Table 3).

Using a luciferase assay, we observed that 78% of 53 individual FIREWACH elements tested activated transcription at least twofold. Thus, we estimated the FPR of FIREWACH to be 0.22 (Supplementary Fig. 5). We also noted that 26% of positive-control, Fgf4enhLV-transduced cells did not show activated GFP expression, a result suggesting that some FIREWACH lentiviral vectors, which are expected to integrate randomly throughout the host-cell genome, will integrate within a context that dampens expression from the transgene (Supplementary Fig. 2). Therefore, the 0.26 false negative rate (FNR) observed for Fgf4enhLV-transduced cells provides an estimate for the overall FNR of FIREWACH. Notably, as none of 20 elements recovered from GFP− cells tested positive in luciferase assays, the ‘true negative’ rate is very high (Supplementary Figs. 5 and 6). Factors affecting the FPR/FNR ratio are presented in Supplementary Figure 7.

FIREWACH identifies active endogenous CRMs within ESCs

FIREWACH elements from each population of GFP+ cells were recovered and amplified using PCR, sequenced and aligned to the mouse genome, resulting in the identification of 6,364 putative transcriptional regulatory modules (Supplementary Table 4). We observed a good correlation between technical replicates (on average Pearson r = 0.95; Supplementary Fig. 8), which indicate the efficiency with which elements can be recovered and sequenced from the genomic DNA of sorted cells. Biological replicates showed lower correlation (Pearson r = 0.61, Supplementary Fig. 8), likely owing to incomplete transduction of library constructs and PCR bias (Supplementary Note and Supplementary Fig. 8). Examination of the overall genomic distribution of these elements showed that FIREWACH elements were more likely to localize within 5 kb of a
Figure 4 | FIREWACH elements are associated with expressed genes and correlate with chromatin marks of active promoters and enhancers. (a) Distribution of NFR-derived DNAs with respect to annotated TSSs. These data sets each represent the combined populations of HaeIII and Rsal DNAs for input-library (left) and FIREWACH elements (right). (b) Expression status of genes associated with the promoter-proximal DNAs in each data set. Median values of the distribution are denoted by a red line; whiskers show tails of the distribution; and outliers are marked by red crosses. P values were determined by the nonparametric Kruskal-Wallis test. (c) Carpet plots assessing genomic loci corresponding to promoter-proximal FIREWACH elements (top) or distal FIREWACH elements (bottom) for the presence of histone modifications H3K4me4, H3K27ac, H3K27me3 or cohesin complex protein Nipbl. Each row corresponds to the distribution; and outliers are marked by red crosses. P values were determined by the nonparametric Kruskal-Wallis test. Overall, genomic loci corresponding to both input-library NFR DNAs and FIREWACH elements were more enriched for chromatin features associated with active transcription than were random genomic DNAs (Supplementary Fig. 9). Loci corresponding to proximal FIREWACH elements were enriched for marks typically associated with active promoter regions, including trimethylation of histone 3 lysine 4 (H3K4me3), H3K27ac, H3K9ac and cohesion protein Nipbl, and they showed a paucity of H3K27me3-modified nucleosomes, which are generally associated with repressed or poised promoters (Fig. 4c). Similar analysis of genomic loci corresponding to distal FIREWACH elements revealed a general enrichment of H3K4me1 but not H3K4me3, which is consistent with the possibility that they correspond to enhancers (Fig. 4c). Notably, distal FIREWACH loci were also found to be enriched for H3K27ac-modified histones and the cohesion factor Nipbl but not H3K27me3-modified nucleosomes, suggesting that these putative enhancers are active in ESCs (Fig. 4c).

Distal FIREWACH elements can act as ESC-specific enhancers

Comparison of distal FIREWACH elements with enhancers that have been previously characterized or predicted in ESCs showed that 75 distal FIREWACH elements overlap with ‘super enhancers’, a class of regulatory regions recently described in ESCs23; 573 overlap with ‘regular enhancers’; 399 overlap with computationally predicted enhancers24, and 14 overlap with in vivo–validated enhancers from the VISTA database25. Although these previously predicted enhancers range in size from 1 to 30 kb, FIREWACH elements are typically an order of magnitude shorter, with an average length of approximately 150 bp. A comparison of genomic regions identified using FIREWACH and some of these alternative approaches is shown for the Sgk1 locus (Fig. 5a).
Dissecting the functional relevance of regulatory regions in the mammalian genome

Notably, as depicted in this example, many of the FIREWACH-predicted enhancers precisely overlap binding regions for the core ESC factors POU5F1, SOX2 and NANOG (Fig. 5a).

Enhancers are defined by their ability to activate transcription independently of their location, distance or orientation with respect to gene promoters. To test whether distal FIREWACH elements can function as enhancers, we inserted 20 of these DNAs 2 kb downstream of the TK promoter within the pGL3-luciferase reporter plasmid and individually transfected the plasmids into ESCs or mouse 3T3 fibroblasts. We found that 90% (18/20) activated transcription more than twofold in ESCs, in contrast to a control promoter-proximal FIREWACH element that did not (Fig. 5b). Notably, only 25% (5/20) of these elements were also able to activate luciferase expression in transfected murine 3T3 fibroblasts (Fig. 5b), suggesting that distal FIREWACH elements identify active, ESC-specific enhancers.

Distal FIREWACH elements harbor binding sites for key TFs

To determine whether the short, distal FIREWACH elements could be used for the identification of ESC-associated TF-binding motifs, we used the AME module in the MEME suite and analyzed a database of 651 known murine TF-binding motifs for those that are overrepresented among the 3,789 distal FIREWACH elements, using random genomic mouse DNA as a background or compared with distal input-library NFR DNAs. These analyses returned motifs corresponding to SOX2, KLF4 and POU5F1 among those most highly enriched, as well as other ESC-associated TFs (Fig. 5c, Supplementary Fig. 8 and Supplementary Table 7). These observations provide a proof of principle for FIREWACH as a tool to predict key transcription factors regulating gene expression in cell types with less well-characterized transcriptional networks.

DISCUSSION

FIREWACH limits the analyses to the 2% of accessible cellular chromatin that are most relevant for endogenous transcriptional regulation, thereby dramatically reducing the search space for CRMs.

Alternate approaches for limiting search space have restricted the functional analysis to individually cloned noncoding genomic regions showing a high degree of DNA sequence conservation. This approach has permitted the functional identification of 1,126 enhancers active at murine embryonic day 11 (E11) and 81 new CRMs in developing sea-urchin embryos. More recently, high-throughput functional approaches self-transcribing active regulatory region sequencing (STARR-seq) and enhancer-FACS-seq (eFS) have been developed for the identification of enhancers in *Drosophila*. In STARR-seq, sheared DNA fragments are inserted within a noncoding portion of the reporter plasmid transcription unit, and enhancer activity is detected in transfected cells by the ability to self-transcribe, permitting identification of 5,499 elements. eFS instead is a highly parallel functional screen for identifying developmentally relevant, mesodermal-specific enhancers within developing *Drosophila* embryos.

Although both STARR-seq and eFS are elegant systems for CRM discovery in *Drosophila*, their successful application to the analysis of large mammalian genomes is uncertain. The human genome is roughly 23 times larger than that of *D. melanogaster*, suggesting that initial STARR-seq libraries would require over 200 million unique plasmids, and a preliminary study using
STARR-seq analysis of human DNAs identified only six enhancers from a plasmid library consisting of 1.3-million unique genomic regions derived from 1 Mb of human DNA. In addition, the relevance of STARR-seq–identified enhancers to endogenous gene expression is less clear, as many correspond to closed chromatin regions. eFS focuses on potentially relevant portions of the genome, but an eFS-like approach using transgenic mouse embryos for screening genomic segments would be prohibitively expensive for most researchers.

Although the performance of FIREWACH is generally robust, there are some limitations. FIREWACH does not provide a quantitative measure of CRM ‘strength’, primarily owing to the context-dependent effects of integration site noted above. In addition, issues of nonlinear amplification and PCR bias make the uniform recovery of these elements challenging. These considerates, as well as incomplete transduction, likely underlie the lower correlations noted between biological replicates (Supplementary Fig. 8). Future development of FIREWACH will be aimed at improving these features, perhaps by adopting strategies such as those employed by MPRA3–6, reporter assays that have been used to study position effects or DNA sequence variants of several synthetic or previously identified mammalian or yeast transcriptional regulatory elements but have not yet been applied as tools for the discovery of new elements. Although a prohibitively large number of plasmid constructs would be required for analyzing sonicated or enzymatically digested mammalian genomic DNA, combining MPRA with the focused analysis of NFRs could result in a powerful adaptation of both approaches for CRM identification.

Genome coverage by FIREWACH is not comprehensive, nor is it intended to be. Rather than aspiring to the low-resolution prediction of all potentially active genomic regions or TF-binding sites, FIREWACH identifies functionally validated active modules at high resolution. Most importantly, the short DNAs generated by FIREWACH permit the identification of enriched DNA sequence motifs and relevant TFs in the selected DNAs. It is noteworthy that motifs for the insulator-binding protein CTCF32 were among those found to be enriched for elements in the input-library NFR DNA (Supplementary Fig. 10 and Supplementary Table 7), suggesting that additional types of regulatory elements within accessible chromatin regions are likely to be present in our NFR DNA libraries. These elements, which would include insulators, repressive elements or matrix attachment regions, could be functionally identified using alternate vectors and screening strategies.

The more general application of FIREWACH to a wider range of cell types or classes of regulatory elements will permit functional annotation of the genome, and inform the interpretation of histone modifications and other chromatin marks. Tracking changes to CRM function during the differentiation of ESCs will enable the identification of stage-specific elements and their cognate transcription factors, expanding our understanding of transcriptional network dynamics in development.

METHODS
Methods and any associated references are available in the online version of the paper.

Accession codes. NCBI Gene Expression Omnibus: sequencing data files have been deposited under accession number GSE54863.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS
We thank A. Heguy, E. Mazzoni, M. Stadtfeld, D. Smith and U. Basu-Roy for their critical reading of this manuscript. We also thank A. Mansukhani and members of the Skok laboratory for helpful discussions, and the Genome Technology Center and Flow Cytometry and Cell Sorting Center at New York University Langone Medical Center for technical assistance. This work was supported by an Empire State Stem Cell Board grant through the New York State Department of Health (NYSTEM Contract #C024322) to L.D. and a postdoctoral fellowship from US National Institutes of Health NCI institutional training grant 1T32CA160002 awarded to M.M.

AUTHOR CONTRIBUTIONS
L.D. conceived of and designed the study; Y.W. constructed the NFR-GFP-LV reporter libraries and viral stocks; M.M. developed the FIREWACH technology and generated all cell lines, FACS sorting and PCR rescue and analysis of FIREWACH elements; Z.T. performed all processing and genomic alignment of Illumina data; S.B. generated the in silico DNA data sets; Z.T.-K. and X.X. performed luciferase assays; C.B. contributed to critical discussions; X.C., F.S., Y.K. and R.B. provided bioinformatic support and analyses; and M.M. and L.D. wrote the manuscript with additional contributions from X.C. and R.B.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Landolin, J.M. et al. Sequence features that drive human promoter function and tissue specificity. Genome Res. 20, 890–898 (2010).
2. Hardison, R.C. & Taylor, J. Genomic approaches towards finding cis-regulatory modules in animals. Nat. Rev. Genet. 13, 469–483 (2012).
3. Patwardhan, R.P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012).
4. Meilnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).
5. Akhtar, W. et al. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell 154, 914–927 (2013).
6. Mogno, I., Kwasnieski, J.C. & Cohen, B.A. Massively parallel synthetic promoter assays reveal the in vivo effects of binding site variants. Genome Res. 23, 1908–1915 (2013).
7. Yaragatti, M., Basilico, C. & Dailey, L. Identification of active transcriptional regulatory modules by the functional assay of DNA from nucleosome-free regions. Genome Res. 18, 930–938 (2008).
8. Murtha, M., Wang, Y., Basilico, C. & Dailey, L. Isolation and analysis of DNA derived from nucleosome-free regions. Methods Mol. Biol. 977, 35–51 (2013).
9. Cockerill, P.N. Structure and function of active chromatin and DNase I hypersensitive sites. FEBS J. 278, 2182–2210 (2011).
10. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).
11. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).
12. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).
13. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).
14. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germine transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).
15. Yuan, H., Corbi, N., Basilico, C. & Dailey, L. Developmental-specific activity of the FGFR3 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 9, 2635–2645 (1995).
16. McLean, C.Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
17. Voigt, P., Tee, W.-W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013).
18. Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. *Cell* **149**, 590–604 (2012).

19. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. *Nature* **470**, 279–283 (2011).

20. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. *Nature* **457**, 854–858 (2009).

21. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. *Nat. Biotechnol.* **28**, 817–825 (2010).

22. Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. *Nat. Genet.* **39**, 311–318 (2007).

23. Whyte, W.A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. *Cell* **153**, 307–319 (2013).

24. Chen, C.-Y., Morris, Q. & Mitchell, J.A. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features. *BMC Genomics* **13**, 152 (2012).

25. Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L.A. VISTA Enhancer Browser—a database of tissue-specific human enhancers. *Nucleic Acids Res.* **35**, D88–D92 (2007).

26. Bailey, T.L. et al. MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res.* **37**, W202–W208 (2009).

27. Visel, A., Rubin, E.M. & Pennacchio, L.A. Genomic views of distant-acting enhancers. *Nature* **461**, 199–205 (2009).

28. Pennacchio, L.A. et al. In vivo enhancer analysis of human conserved non-coding sequences. *Nature* **444**, 499–502 (2006).

29. Nam, J., Dong, P., Tarpine, R., Istrail, S. & Davidson, E.H. Functional cis-regulatory genomics for systems biology. *Proc. Natl. Acad. Sci. USA* **107**, 3930–3935 (2010).

30. Arnold, C.D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. *Science* **339**, 1074–1077 (2013).

31. Gisselbrecht, S.S. et al. Highly parallel assays of tissue-specific enhancers in whole *Drosophila* embryos. *Nat. Methods* **10**, 774–780 (2013).

32. Herold, M., Bartkuhn, M. & Renkawitz, R. CTCF: insights into insulator function during development. *Development* **139**, 1045–1057 (2012).
ONLINE METHODS

Cell culture. E14 ESCs were obtained from ATCC (ES-E14TG2a, CRL-1821) and were maintained in 2i/LIF with the inhibitors CHIR99021 (3 μM), and PD0325901 (1 μM) (Axon Medchem BV) and 100 U/ml LIF in N2B27 or in standard ESC medium (DMEM supplemented with 15% FCS (Stem Cell Technologies, “ES cult”), 0.1 mM non-essential amino acids, 0.1 mM β-mercaptoethanol, 1× GlutaMAX (Invitrogen), and 1,000 U/ml LIF on plates coated with 0.2% gelatin. NIH3T3 cells were maintained in DMEM (Invitrogen), 10% bovine calf serum and penicillin/streptomycin.

Preparation of NFR DNAs. A detailed protocol for the method of extracting DNA from the NFRs of formaldehyde-cross-linked permeabilized cell nuclei has been reported. Briefly, cultures of E14 ESCs were plated in the absence of feeder cells on eight 15-cm gelatinized tissue culture plates, and grown to 70–80% confluency, (approximately 8 × 10^7 cells). The cells were cross-linked using 1% formaldehyde in DMEM for 10 min at room temperature (RT), quenched using 0.125 M glycine at RT for 10 min, washed with cold PBS, and collected using 2 ml/plate of PBS into 15-ml conical polyethylene tubes on ice with cell scraper. The cells were pelleted by centrifugation and stored at −80°C. Nuclei were permeabilized by resuspension in lysis buffer and incubation for 10 min on ice with occasional mixing. The suspension was then treated with ten strokes with a Dounce homogenizer (B pestle) and centrifuged at 2,000 r.p.m. (Sorvall H1000b rotor; 800g) at 4°C for 10 min. The cells were resuspended in 6.4 ml Buffer 2, incubated for 10 min at room temperature on a platform rocker, and the nuclei were pelleted by centrifugation for 10 min at 2,000 r.p.m. (4°C).

Pellets of permeabilized nuclei prepared from ~4 × 10^7 cells were resuspended in 2.6 ml of NEB2 (New England BioLabs), and distributed as five 500-μl aliquots in Eppendorf tubes on ice. One-hundred units of HaeIII or RsaI restriction enzyme (New England BioLabs) were each added to the NFR DNA samples, two tubes for each enzyme. All samples were incubated at 30°C for 1 h with gentle mixing every 15 min. The reaction was stopped with 20 mM EDTA and the samples centrifuged. The supernatants were transferred to new Eppendorf tubes and re-centrifuged at maximal speed for 20 s. NFR DNAs in the supernatants were either subjected directly to cross-link reversal or treated to two rounds of phenol-chloroform extraction before cross-link reversal.

Construction of lentiviral reporter plasmid FpG5 and positive-control plasmid Fgf4Enh-LV. The DNA plasmid for generation of the self-inactivating lentivirus FUW was obtained from Addgene (Addgene #14882)14. Coding sequences of the hygromycin-resistance gene were generated using PCR amplification of plasmid pCEP4 using primers PR12 and PR13 (Supplementary Table 1). The amplification product, containing BglII sites at each end, was inserted at the unique BamHI site immediately downstream of ubiquitin promoter DNA sequences within FUW, creating a hybrid BamHI/BglII site that is resistant to digestion by either enzyme. The resulting construct was named FUWH. A DNA cassette containing the Fgf4 minimal promoter upstream of GFP coding sequences and transcription stop/poly(A) signals was PCR amplified using primers PR10 and PR11 (Supplementary Table 1) with the -64GFP plasmid DNA as template7. In parallel, a cassette containing DNA sequences of the Fgf4 enhancer, Fgf4 minimal promoter, and GFP coding sequences and transcription stop/poly(A) signals was PCR amplified using oligonucleotide primer sequences PR14 and PR11 (Supplementary Table 1) with enhGFP plasmid DNA as template7. Owing to the design of the primer sequences, these amplification products contain a PacI recognition site at both the 5′ and 3′ ends. Thus the promoter-GFP and enhancer-promoter-GFP cassettes were each cloned, in both orientations, into the single PacI site upstream of the ubiquitin promoter within FUWH. Assessment of GFP expression following the transduction of these lentiviruses into F9 cells indicated that plasmids containing the collinear orientation of the GFP and hygromycin units resulted in somewhat better GFP expression (data not shown). FpG5 has BamHI site proximal to the promoter that accepts BglII digested NFR/adaptor DNA oligos. All lentiviral construct are depicted in the Supplementary Note.

Preparation of NFR DNAs for cloning into LV reporter plasmids. The protocol for the preparation of the double-stranded adaptor DNAs and their ligation to NFR DNAs is detailed elsewhere. Briefly, HaeIII NFR DNAs and RsaI NFR DNAs were each subjected to blunt-end ligation to distinct adaptor DNAs that, after ligation, permit the restoration of the HaeIII or RsaI sites, respectively, at the NFR/adaptor junction (Supplementary Table 1). The HaeIII and RsaI adaptors were generated by annealing equimolar amounts of the respective “Linker A” and “Linker B” oligos (Supplementary Table 1). The adaptor sequence contains a BglII site that used for cloning. Annealed linkers were ligated to NFR DNAs overnight at 16°C using a reaction of 30 μl NFR-DNA supernatant, 10 μl 5× ligation buffer (Invitrogen), 6.7 μl of 15 μM annealed linker, 2.3 μl H2O and 1 μl (5 units) T4 DNA ligase (Invitrogen).

After ligation, the DNAs were purified using the QiagenMini-Elute PCR cleanup kit and eluted in 30 μl H2O. 25 μl of the eluted DNA were assembled in a 50 μl reaction for PCR amplification using the appropriate “AMP” oligonucleotide primer (Supplementary Table 1) and the following PCR conditions: 55°C for 2 min to melt the shorter “Linker B” oligo away from the NFR/adaptor and then 72°C for 5 min, 95°C for 1 min, followed by 15 cycles of 95°C for 1 min, 60°C for 1 min, and a final extension at 72°C for 5 min. The amplified DNAs were purified using the Qiagen PCR cleanup kit and eluted in 50 μl H2O.

Cloning, bacterial transformation and isolation of input-library NFR DNA LV plasmids. Purified PCR-amplified NFR DNAs were digested with BglII restriction enzyme digestion overnight and purified using a Qiagen PCR cleanup column using 50 μl water for elution. The DNA concentration of the samples was determined using NanoDrop. Multiple ligation reactions were assembled containing 200 ng BamHI-digested and phosphatase-treated FpG5 LV vector plus 40 ng of BglII-cut, LMPCR-amplified NFR DNAs in a 20 μl total ligation reaction using 5 U T4 DNA ligase (Invitrogen or Roche). Ligation was performed overnight at 16°C.

Commercially available electrocompetent Stbl4 bacteria were used for high-efficiency transformation using electroporation according to the parameters suggested by the manufacturer (Invitrogen). After purification of the ligation reactions through QiagenMini-Elute columns and elution in 20 μl of water, 1–2 μl...
of each reaction were used for the electroporation of 20 µl Stbl4. We added 700–900 SOC broth was added to the electroporated cells and, after 1 h recovery, the sample was divided in three and spread over three 15-cm agar plates containing 50 µg/ml ampicillin. This procedure generally yielded several thousand colonies per electroporated sample.

The ligation efficiency for each reaction was determined by transferring cells from 20 colonies into tubes containing PCR reaction components and primers PR2 and PR21 that are complementary to sequences flanking the LV BamHI cloning site. PCR amplification was performed for 25 cycles (95 °C for 30 s, 58 °C for 1 min, 72 °C for 30 s) and run in a 2% agarose gel in TAE buffer. The percentage of constructs containing insert was determined by the presence of a PCR product migrating slower than that amplified from FpG5 template. Generally, 80–90% of the constructs contained an NFR DNA insert.

These steps were repeated until approximately 5 × 10^6 colonies each for the HaeIII and Rsal constructs were obtained. The ampicillin plates were stored at 4 °C until collection. To prepare input-library plasmids, we added 5 ml of cold LB containing 10% glycerol to the plate, and the colonies were collected without further amplification using a cell scraper across the plate surface. All colonies were collected into a single flask, mixed, and then divided into two portions. One tube was stored at −20 °C, and the other half used for preparing input-library plasmids.

To prepare library plasmids from the pooled colonies, we used a Qiagen maxi prep kit following standard protocols for plasmid DNA isolation.

Preparation and titer of lentivirus. Input NFR-GFP lentiviral libraries were prepared using ViraPower (Invitrogen) following the manufacturer’s protocol. Briefly, 5 × 10^6 293FT cells were plated to a poly(l-lysine)-coated 10-cm dish 1 day before transfection in 10% FCS DMEM without antibiotic. On the day of transfection, the medium was replaced with 5 ml of Opti-DMEM/10% FCS without antibiotic. For each input NFR-GFP lentiviral library and control lentivirus construct, DNA-Lipofectamine 2000 complexes were generated as follows. We diluted 9 µg of ViraPower Packaging Mix and 3 µg of lentiviral plasmid into 1.5 ml of Opti-MEM medium without serum. In a separate tube, 36 µl of Lipofectamine 2000 was diluted in 1.5 ml Opti-MEM and allowed to incubate at RT for 5 min. After incubation, diluted DNA and Lipofectamine 2000 solutions were combined with gentle mixing and allowed to incubate at RT for 20 min. The solution was then added dropwise to a single 10-cm dish of near confluent 293FT cells and incubated overnight at 37 °C. The next day, medium was changed to complete ESC medium without LIF. Virus-containing medium was collected at 48 h and 72 h post-transfection and stored at −80 °C.

Prior to freezing, lentiviral titers were determined using p24 Antigen ELISA (ZeptoMetrix). Virus-containing medium was diluted 10^3- and 10^4-fold with DMEM in 450-µl aliquots. We added 50 µl of lysis buffer to each sample. A six-point p24 antigen standard curve was generated by successively diluting 125 pg/ml solution of p24 antigen 1:2 to a final concentration of 7.8 pg/ml. We added 200 µl of standard sample or lentiviral-containing medium to individual wells of the p24 ELISA microplate, covered it with plate sealer, and allowed it to incubate for 2 h at 37 °C. After incubation, the wells were aspirated and washed five times with 300 µl wash buffer. Then 100 µl of HIV-1 p24 detector antibody were added to each and incubated at 37 °C for 1 h. Wells were washed as before, and 100 µl streptavidin-peroxidase working solution was added to each well and incubated for 30 min at 37 °C. Wells were washed, and 100 µl freshly prepared Substrate Working Solution was added to all wells and incubated uncovered at room temperature for 15 min. Then 100 µl of Stop Solution was added, and the optical density, OD, of each well was immediately measured at 450 nm using a Spectromax M5 plate reader. The slope, b, and intercept, m, of the standard curve were determined, and the final concentration of lentiviral particles per sample was inferred with the equation

\[
\text{Titer} = \frac{(\text{OD} - b - \text{blank})}{m} \times 100 \times \text{dilution factor}
\]

Transduction and FACS of ESCs. ESCs were transduced at a MOI of 7 to ensure that the maximum number of cells was transduced while favoring single-copy integration. To increase the likelihood that any given NFR-lentiviral genome would be represented, the number of cells transduced was equivalent to more than ten times each library’s complexity. Thus, 5 × 10^6 E14 ESCs were plated in complete ESC medium plus LIF in feeder-free conditions on a 10-cm gelatin-coated dish 1 day before transduction. The cells were then transduced overnight in 10 ml of complete ESC medium plus 8 µg/ml Polybrene, containing 3.5 × 10^7 virus particles for a MOI of 7. The following day, the medium was replaced with fresh ESC medium plus LIF. Hygromycin selection was initiated 4 days post-transduction in ESC medium/LIF containing 250 µg/ml hygromycin B. Cells were selected for hygromycin B resistance for 5 days, with medium changed daily. At least 56% of the input library NFR-GFP-LV constructs was estimated to have been transduced into the ESCs using these conditions (Supplementary Note). GFP+ cells were selected using FACS on an iCyT Reflection HAPS2 cell sorter. Cells were treated with propidium iodide at 2 µg/ml before sorting to counterselect dead cells. The gate was set relative to the profile of FpG5 transduced cells such that the number GFP+ cells observed was less than 0.5%. Cells transduced by NFR-GFP-LV and expressing GFP at a level higher than this set point were collected using FACS. Collected cells were returned to culture, expanded and subjected to an additional 1 or 2 rounds of FACS to obtain a population of greater than 90% GFP+ cells. A minimum of 10^6 GFP+ cells was collected from each sort so as to maintain complexity of the integrated transgene population. Post-sort FACS analysis was performed with a minimum 10^5 cells per 100 µl sort buffer on a FACSCalibur flow cytometer (BD Biosciences) and analyzed with FlowJo software.

For each NFR-GFP-LV library, that is, HaeIII- and Rsal-derived libraries, two independent transductions were performed to generate two biological replicates for each library. Each replicate was transduced, selected for hygromycin resistance, and sorted independently to generate cell lines (HaeIII_BioRep1, Rsal_BioRep2, etc.) comprised of pools of NFR-GFP-LV transduced cells. Each cell line was cultured and independently assayed for copy number and NFR sequences. Downstream informatics analysis was also largely done on independent lines before pooling end-result NFR sequence information and analysis.

Determination of transgene copy number. Average copy number of integrated lentivirus was estimated using an adapted qPCR approach. Briefly, genomic DNA from each transduced cell
line was obtained from 1×10^6 cells with DNeasy (Qiagen). The number of lentiviral vector genomes per cell was determined by quantitative real-time PCR with primers recognizing the GFP transgene, whereas the number of mouse genomes was determined using primers recognizing a unique noncoding region of the genome (Primers "Gen-F" and "Gen-R"). A six-point standard curve from 10^6 to 10^2 copies was generated by serial dilution of a single plasmid cloned to contain both the GFP and genomic DNA target elements. Amplification reactions contained 5 µl SYBR Green MasterMix, 2 µl genomic DNA (gDNA) (100 ng), 2 µl H2O, and 0.5 µl each of 5 µM forward and reverse primer. Reactions consisted of 40 cycles at 95°C (15 s) then 60°C (1 min) on a BioRad thermocycler. Data were plotted against and interpreted in the linear portion of the standard curve where the regression coefficient was greater than 0.98. The average integrated copy number was determined by dividing the calculated number of lentiviral genomes by the total number of mouse genomes present in the DNA sample of each transduced line and measured in triplicates.

Luciferase assays. Reporter constructs. The pGL3 luciferase reporter plasmid was modified to contain the 162-bp minimal Fgf4 promoter (fgfprom-luc). This plasmid has a BglII site upstream of the Fgf4 promoter sequences used for inserting test DNAs. Oligonucleotide primers used to recover input-library NFR DNAs or FIREWACh elements from the lentiviral plasmids and prepare them for InFusion cloning into the fgfprom-luc plasmid were designed as follows: the 5′ portion consisted of 15 bases complementary to the sequence flanking the fgfprom-luc plasmid BglII site, and the 3′ portion contained sequences complementary to sequences flanking the NFR DNA cloning site within the lentiviral plasmid. PCR amplification was performed using either input-library NFR-GFP-LV plasmid DNA or the genomic DNA isolated from FACS-sorted GFP+ cells as template. The amplified fragments were used for In-Fusion (Clontech) directional cloning into the fgfprom-luc plasmid. Primers InFusionPG3R, InFusResFA were used to clone into the proximal BglII site of fgfprom-luc while DisInFusResFA and DisInFusG3R were used at the distal BamHI site of TKluc (Supplementary Table 4). Recombination reactions were assembled according to the manufacturer's protocol.

For generation of luciferase reporter constructs to assay random genomic DNA fragments, 3 µg of purified gDNA were digested with either HaeIII or Rsal, and DNA fragments ranging from 100 to 300 bp were gel purified and cloned into the SmaI site of the fgfprom-luc plasmid.

Transfections and luciferase assays. E14 cells grown ESC medium with 1,000 U/ml LIF were seeded on 0.2% gelatin coated 96-well plates at 5 × 10^4 cells/well. Cells were transfected using 250 ng plasmid DNA and 1.25 µl Lipofectamine 2000 (Invitrogen) and supplemented with OPTIMEM and LIF (1,000 U/ml) for a total volume of 150 µl/well. 4 h after transfection, the medium was changed to complete ESC medium plus 1,000 U/ml LIF. 24 h after transfection, lysates were prepared and luciferase assays were performed as instructed by the manufacturer (Promega). The protein concentration of the lysates was determined (Bio-Rad) and used to normalize the samples. The luciferase activities of all test constructs were calculated relative to the activity displayed by the fgfprom luciferase construct containing only the minimal Fgf4 promoter upstream of the luciferase gene.

PCR rescue of functionally selected NFR DNAs and high-throughput sequencing. NFR DNAs were rescued from either the initial lentiviral plasmid libraries or gDNA of GFP+ selected cells using PCR in a method adapted from bacterial rRNA sequencing34. In this method, Illumina sequencing adaptors are included in the primers, permitting one-step amplification and sequencing library preparation34. Primers (termed FMS-F/R; Supplementary Table 1) were designed such that they contain recognition sequences complimentary to the lentiviral sequence flanking NFR DNA and Illumina adaptor sequence for paired-end sequencing in addition to a 6-bp Index sequence. Six PCR reactions (10 µl Phusion polymerase buffer, 1 µl 10 mM dNTP, 2.5 µl 10 µM forward and reverse primer, 1.5 µl DMSO, 0.5 µl (NEB) 50 ng DNA, 31 µl H2O; 16 cycles with 55°C annealing temperature) per plasmid library were pooled and sequenced to identify input library NFR DNAs.

FIREWACh elements were recovered from the genomic DNA of a least 1×10^6 FACS-sorted GFP+ cells using PCR. In this case, 10 PCR reactions were performed using the same conditions as above, but with 100 ng gDNA and 23 cycles of amplification. The 10 reactions were then pooled.

Each sample was amplified with primers containing the Illumina adaptor sequence with 6-bp index sequencing. This allowed us to pool up to six samples within a single lane on the MiSeq machine. Input-library NFR DNAs were sequenced together using three of the barcodes while FIREWACh elements—that is, NFR-derived DNAs rescued from GFP+ cells—were run with six samples per lane, each sample representing elements rescued from an independent biological replicate (i.e., HaeIII_BioRep1, etc.). Technical replicates consisting of independent PCR-rescued sequencing libraries were sequenced on separate days.

Samples were run on a miSeq sequencer with the miSeq cartridge version 2, as a 2 × 150-bases run, with a 50% PhiX library spiked in to compensate for potential low diversity in the libraries. In order to ensure efficient binding of sequencing primers, we designed and used custom Read 1, Index and Read 2 primers (sequences in Supplementary Table 1) of which 17 µl of custom primers at 100 µM were spiked into the Illumina Read 1, Read 2 and index reads positions in the cartridge.

Genomic alignment. Illumina MiSeq 2 × 151-bp data were preprocessed by demultiplexing and trimming of 7 bp from the 5′ end and 44 bp from the 3′ end, yielding a data set of 2 × 100-bp sequence reads. Paired-end sequences were aligned to the mouse reference genome (mm9) using BWA35 with default settings. Read pairs were filtered from the final data set if either read failed to map to the genome, if both reads did not map in the proper orientation, if the mapping quality score of both reads was less than 25, or if neither read had a unique map location on the genome. Target sites were identified as loci where paired reads both aligned entirely within a 500–bp genomic region.

Each biological replicate sample was independently sequenced three times (i.e., three technical replicates), and all sequencing data for all samples were then merged to create the final list of FIREWACh genomic regions (6,364 elements). The final input-library NFR DNA data set was generated by merging the mapped loci from replicate samples of the individual library NFR DNAs created by each enzyme, as well as with all FIREWACh elements to generate a final list of 84,240 elements.
In silico generation of random genomic DNA fragments. To create a data set of random genomic DNA fragments, we generated a list of genomic loci corresponding to digestion of the murine reference genome (mm9) with HaeIII or Rsal. We used a script to scan chromosome 19 for pairs of each restriction sites as a regular expression separated by a variable region of DNA up to 500 bp in length so that the size distribution of the in silico fragments would be comparable to that of the enzymatically derived NFR libraries. The resulting in silico DNA fragment data set was comparable in number to the input-library NFR DNAs (61,844 random elements versus 84,240 NFR DNAs) and was then reformatted as genomic loci in a BED file. Random distribution of elements was confirmed in subsequent analysis as this list generated cumulative scores expected of a randomly distributed set of loci (for example, in comparison to DNaSe1–HS, the random elements had an AUROC = 0.52, typical of random elements; Supplementary Fig. 1).

Bioinformatic data analysis. To investigate the chromatin status of FIREWAcH elements, we used several publicly available sequence files for ChIP-seq and DNaSe1–HS sequencing experiments. Data were obtained from the NIH’s sequence read archive (SRA) and the UCSC Genome Browser (for full list of data sets used, see Supplementary Table 6). In the case of the H3K4me1/3, H3K27me3/ac, and H3K9ac chromatin marks, reads were remapped using the mm9 genome as reference with Bowtie2 (version 2) with the options “-n 1 -k 1 -m 20 --best --strata -p 8 --chunkmbs 1024.” TopHat (version 2.0.4) and Cufflinks (version 2.0.2) with default parameters were used to obtain fragments per kilobase of transcript per million mapped reads (FPKM) values for all genes from RNA-seq data.

GREAT analysis. BED files of the input-library NFR DNAs or FIREWAcH elements were analyzed using the genomic regions enrichment of annotations tool (GREAT)16 with the following settings: mouse with NCBI build 37; whole-genome background; basal plus extension with proximal 5 kb upstream, 1 kb downstream and plus distal up to 100 kb. Data sets were analyzed using both the “Significance by Both” and “Significance by Region-based Binomial” views.

Comparison with genomic regions of DNaSe1 hypersensitivity in ESCs. The relation between DNaSe1 hypersensitivity and the input-library NFR DNAs was investigated using receiver operating characteristic (ROC) curves. In particular, we verified that open regions (that is, those with high DNaSe1 HS coverage) could predict the location of genomic regions covered by input-library NFR DNA reads. For each data set (all library NFR DNAs, HaeIII NFR DNA library, Rsal NFR DNA library and in silico DNA library), the genome was divided into nonoverlapping bins of 1 kb, and the bin was classified as positive if it contained at least one NFR DNA read or negative if it did not intersect any element. The coverage of DNaSe1 HS hotspots (ES-CJ7 Pk1, UCSC Genome Browser) for each bin was used as a classifier in order to build the ROC curve (DNaSe1 HS coverage was used to predict whether a bin would contain any of the elements). The area under the curve of the receiver operating characteristic (AUCROC) was 0.8637 for the combined (All) input library NFR DNAs, 0.8780 for input Rsal-NFR DNAs, and 0.8539 for input HaeIII DNAs NFR DNAs. The AUCROC for the in silico reads (0.5267) was not significantly different from 0.5, which is the expected value of random reads. The area under the curve was calculated and plotted in graph form as presented in Supplementary Figure 1.

RNA-seq analysis. For each unique read, we considered the expression of the nearest gene. The expression data for ESCs in 2i medium were obtained from Marks et al.18, TopHat (version 2.0.4) and Cufflinks (version 2.0.2) with default parameters were used to obtain FPKM values for all genes. To aid visualization and analysis, we scaled the FPKM values logarithmically as log2(1 + FPKM). The significance between different libraries was assessed using the nonparametric Kruskal-Wallis test37.

Carpet methods. High-density maps of coverage of chromatin marks around FIREWAcH loci were visualized as previously described39. Each horizontal line represents the center of a unique FIREWAcH element. The expression of the nearest gene was color coded from red (expressed) to green (not expressed), and the expression values were used to sort the horizontal values. The ChIP-seq signal in the ±1-kb region around each FIREWAcH locus was determined for H3K4me1 H3K4me3, H3K27me3, H3K27ac, and DNaSe1 HS. The ChIP-seq and DNaSe1 HS signals were normalized by total number of reads. The gene expression data were quantile normalized over all genes. In case of identical, overlapping or nearby FIREWAcH loci (<100 bp), the profile of only one read was used in the high-density map.

Correlation coefficients. The correlation coefficients (r) for technical or biological replicates were calculated by binning the genome into windows of 100 bp and computing the Pearson correlation of the genomic coverage between all pairs of the coverage vectors, which represent our sequencing data sets. The calculation was done using an in-house Java code. Technical replicates consist of independent sequencing library preparations from a common template (for example, GFP+ cells transduced with input HaeIII NFR-GFP LV) and were generated to assess the reproducibility of our sequencing library preparation protocol. All three independent technical replicates of each biological replicate were compared pairwise.

For measuring the correlation between biological replicates, the total reads from all three technical replicates of FIREWAcH elements were combined into a single file. For example, HaeIII_ BioRep1 contains three technical sequencing replicates generated from the recovery of cloned NFR DNAs from the integrated LV vectors within HaeIII_BioRep1-transduced GFP+ ESCs. The HaeIII_BioRep1 sequences were combined with Rsal_BioRep1 sequences into a single file (Rep1). Rep2 was similarly generated from HaeIII_BioRep2 and Rsal_BioRep2. Comparison of Rep1 and Rep2 generated the correlation between biological replicates (0.61).

Motif analysis. Motif enrichment analysis was performed for the distal FIREWAcH elements using the AME module in the MEME suite26 with the following command line options: “--method mhg --scoring totalhits --length-correction.” Random gDNA elements from in silico digestions were used as background model. We also analyzed distal FIREWAcH elements using distal input-library NFR DNAs as background. This allowed us to determine which motifs were enriched above those obtained from open chromatin alone. P values were calculated on the basis of the multihypergeometric distribution and corrected for multiple hypothesis testing. Analysis was performed using a database of known motifs that covers approximately 50% of mouse TFs (Supplementary Fig. 8 and Supplementary Table 7). This curated compendium...
of motifs can be accessed via the Timothy Hughes lab web page (http://cisbp2.ccbr.utoronto.ca/) and is derived from protein-binding microarray data, HT-SELEX and ChIP-seq. Most of the motifs used are also redundantly available in the JASPER and TRANSFAC databases39,40.

33. Charrier, S. et al. Quantification of lentiviral vector copy numbers in individual hematopoietic colony-forming cells shows vector dose-dependent effects on the frequency and level of transduction. Gene Ther. 18, 479–487 (2011).

34. Caporaso, J.G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4516–4522 (2011).

35. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

36. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

37. Kruskal, W.H. & Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).

38. Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012).

39. Mathelier, A. et al. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 42, D142–D147 (2014).

40. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006).