Proterozoic Alkaline rocks and Carbonatites of Peninsular India: A review

1Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
2CSIR-National Geophysical Research Institute, Hyderabad 500007, Telangana, India
*Corresponding author, E-mail address: dpaul@iitk.ac.in (D. Paul), Tel: +91-512-259-6169, Fax: +91-512-259-6469

(Received : 6/08/2019; Revised accepted : 14/10/2019)

https://doi.org/10.18814/epiiugs/2020/020015

The alkaline rocks and carbonatites (ARCs) of the Great Indian Proterozoic belt bear the testimony of tectonic processes operating in the Proterozoic during the continental assembly and breakup of both Columbia and Rodinia. We present a comprehensive review, mainly focused on the petrology, geochemistry, and geochronology of 38 ARCs of Peninsular India, which are mostly concentrated within the Eastern Ghats Mobile Belt and Southern Granulite Terrain. Available geochronologic data reveals three distinct alkaline magmatic phases (2533–2340 Ma, 1510–1242 Ma, 833–572 Ma) and two metamorphic events (950–930 Ma and 570–485 Ma) that correlate with the Grenvillian and Pan-African orogeny events. Whereas clinopyroxene, amphibole, titanite and apatite fractionation seems to have affected the nephelinite, nepheline syenite and syenite, carbonatite is affected by fractionation of calcite, dolomite, ankerite, pyroxene, apatite, magnetite, mica, and pyrochlore. Trace elements and Sr-Nd-Pb-C-O isotopic compositions of these ARCs strongly suggest a subcontinental lithospheric mantle source, that is enriched either by distribution of subducted crustal material or by metasomatism of mantle-derived fluids, for the generation of ARCs. Despite some isotopic variability that can result from crustal contamination, a trend showing enrichment in \(^{87} \text{Sr} /^{86} \text{Sr} (0.702 \text{ to } 0.708)\) and depletion in \(\epsilon_{\text{Nd}(t)} (~-1.3 \text{ to } -14.1)\) over a 2 Gyr duration indicates temporal changes in the lithospheric/asthenospheric source of ARCs, due to periodic enrichment of the source by mantle-derived fluids. ARC generation starts in an intracontinental rift setting (beginning of Wilson cycle). These early-formed ARCs are carried into 100 km depths during continental collision (termination stage of Wilson cycle) and undergo extensive melting because of renewed rifting along suture zones to form new generation of ARCs.

Introduction

Alkaline igneous rocks, defined in terms of their total alkali (Na,O + K,O) and Si,O compositions, include a wide range of rocks that contain modal/normative alkali-rich minerals such as nepheline, leucite, and sodic pyroxenes and amphiboles (Sørensen, 1974; Streckeisen, 1980; Le Bas et al., 1986). Although, carbonatites do not contain alkali-rich phases such as nepheline, these silica deficient (mostly Si,O<10%) rocks are also generally considered with alkaline rocks by virtue of their close association in the field, and normally referred to as alkaline rocks and carbonatites or ARCs (Woolley, 2001; Burke et al., 2003). However, some carbonatite occurrences show no association with the alkaline rocks, e.g., Newania complex in India (Ray et al., 2013). Note that the carbonatite is volumetrically insignificant to the associated alkaline rocks (Ashwal et al., 2016). The ARCs have been reported from three dominant tectonic settings: continental rifts, stable intraplate setting, and collisional or suture zones in subduction settings (Woolley, 2001; Burke et al., 2003, 2008; Leelanandam et al., 2006; Vijaya Kumar et al., 2007; Upadhyay, 2008; Woolley and Kjarsgaard, 2008; Ashwal et al., 2016; Ackerman et al., 2017; Ranjan et al., 2018). In general, majority of the alkaline rocks occur in or near the continental rifts and ocean islands. The combined volume of ARCs globally constitutes < 1% of all igneous rocks (e.g., subalkaline rocks such as tholeiitic basalt, dacite, andesite, and rhyolite etc.) identified so far, formed throughout the geological history (Sørensen, 1974), and yet have generated research interest because of their tremendous economic (high concentrations of large ion lithophile elements or LILE, REE, Nb, P, Ta, Cu, and U etc.) potential (Woolley, 2001). However, Proterozoic era has witnessed significant amounts of alkaline magmatism (Burke et al., 2003, 2008; Ashwal et al., 2016); for example, alkaline rocks found in the Superior Province, Canada (Sutcliffe et al., 1990), Yilgarn Craton, Australia (Smithies and Champion, 1999), Karelia, Russia and Finland (Heilimo et al., 2017), and the Archean/Proterozoic Cratons in the Peninsular India (Leelanandam et al., 2006). Of particular interest are deformed alkaline rocks and carbonatites (DARCs) that characteristically occur in intracontinental rift settings in Africa, concentrated along inferred
Proterozoic suture zones (Burke et al., 2003; Ashwal et al., 2016). DARCs account for only < 10% of total ARCs. Although the chemistry of DARCs is identical to that of the ARCs, they differ in terms of structural characteristics in that DARCs show prominent gneissic structure (Burke and Khan, 2006). Using geochronological data, Burke et al. (2003) argued that the DARCs represent two well-defined parts of the Wilson cycle: opening (alkaline rock formation during rifting) and closing of oceans (deformation of early-formed ARCs during continent-continent and arc-continental collisions). This hypothesis of Proterozoic DARCs, representing the imprints of the Wilson cycle, found support from later work (e.g., Burke et al., 2008; Burke and Khan, 2006; Vijaya Kumar et al., 2007; Upadhyay, 2008; Ashwal et al., 2016; Ranjan et al., 2018). Burke et al. (2003) also suggested that the subducted DARCs residing in the mantle lithosphere (depth of ~100 km), after collisional events, become potential source of the younger ARCs in the area. This provided a plausible explanation (cf. Bailey, 1977) for the reoccurrence of alkaline magmatism in the same locality over a span of hundreds of millions of years.

Several Proterozoic (deformed) ARCs (n = 47) are unevenly distributed within the 4000 km long, S-shaped, Great Indian Proterozoic Fold Belt in the Peninsular India (Leelanandam et al., 2006). Most of the alkaline rock outcrops occur along the contact between the Archean cratons, Eastern Ghats Mobile Belt (EGMB) and the Southern Granulite Terrain (SGT), and mark the approximate locations of intra-continental rifts that were sutured later during continental collision. These collisional zone suture forms represent the location of opening of an ocean around 2000 Ma, followed by several Proterozoic continental and arc-system collisions during 2000 Ma to 550 Ma (Leelanandam et al., 2006; Upadhyay, 2008 and references therein). The south-eastern margin of India has faced several collisional (with East Antarctica) and breakup events during supercontinent assembly in Proterozoic (Simmat and Raith, 2008; Upadhyay, 2008 and references therein). Alkaline rocks were emplaced during continental rifting and ocean opening, and experienced several imprints of tectono-metamorphic events caused by the collisions developed by Grenvillian (1400–1000 Ma) and Pan-African (600–500 Ma) orogeny (Upadhyay, 2008).

Although the geographical occurrences of Indian Proterozoic ARCs and a link with rifted continental margins and younger suture zones have been established by several workers, the petrogenesis of these ARCs and their precursor magmas from putative sources (whether deep mantle or continental lithospheric mantle) have not been clearly established, mostly due to lack of robust age constraints and geochemical data. As a result, a number of possibilities have been suggested for the origin of parental ARC magma, similar to that proposed for elsewhere. These include partial melting of metasomatized and enriched lithospheric mantle (Fitzon and Upton, 1987), melting of asthenospheric mantle (Menzies, 1987), and partial melts from lower crustal source contaminated with upper crustal material (Smithies and Champion, 1999) etc. Geochemical data, in conjunction with field relations and petrography, available for a number of Proterozoic alkaline exposures in India provide an opportunity to evaluate the geodynamic evolution of these ARCs in the context of plate tectonics during Proterozoic (Leelanandam et al., 2006; Upadhyay, 2008 and references therein). Leelanandam et al. (2006) have presented a comprehensive study of the Proterozoic alkaline rocks (mainly occurrences of nepheline syenite and carbonatite) of India, primarily focused on the geological distribution of these rocks and tectonic evolution related to continental rifting and mountain building processes in the Proterozoic. The present study primarily aims to collate and evaluate geochronological and geochemical information to draw inferences on the origin of Indian Proterozoic ARCs. Unless otherwise stated, discussion on ARCs also include the DARCs. Here, we have compiled geochemical data for mainly nepheline syenite, syenite, nepheline, and carbonatite along with other rock types such as monzonite, alkali pyroxenite, and alkali granite etc. This study excludes lamprophyre, lamproite, and kimberlite, the ultramafic alkaline rocks, which are addressed by others in this issue. The purpose of this work is to (i) review the existing literature and highlight the present state of knowledge on Proterozoic ARCs in India, (ii) compile available geochemical data (major oxides, trace elements abundances, Sr-Nd-Pb-O-C isotope compositions) and analyse the geochemical signatures in these ARCs, and (iii) identify the plausible sources of these ARCs and propose a likely petrogenetic model.

Occurrences, geological settings, and field aspects of Proterozoic (deformed) ARCs in India

Occurrences of (deformed) ARCs of Proterozoic age in India are well known for the last three decades (Santosh et al., 1989; Natarajan et al., 1994; Kumar et al., 1998; Upadhyay et al., 2006a, b; Upadhyay, 2008; Mukhopadhyay et al., 2011a; Renjith et al., 2014; Chakrabarty et al., 2016; Hippe et al., 2016; Ackerman et al., 2017; Das et al., 2018; Ranjan et al., 2018). Approximately 47 alkaline rock complexes of Proterozoic age occur within the Great Indian Proterozoic Fold Belt that follows the strike of highly deformed Proterozoic granulites and gneisses (Leelanandam, 1989; Mazumder et al., 2000; Leelanandam et al., 2006). Out of these, 47 alkaline rock complexes of Proterozoic age occur within the Great Indian Proterozoic Fold Belt that follows the strike of highly deformed Proterozoic granulites and gneisses (Leelanandam, 1989; Mazumder et al., 2000; Leelanandam et al., 2006). In this paper, we have focused on 38 (deformed) ARC exposures for which geochemical and geochronological data are available in the literature (Fig. 1, Table 1). Several other ARCs, for example Ariyalur in Tamil Nadu, Kankarakhol in Odisha, and Kunduluru in Andhra Pradesh (Leelanandam et al., 2006) have been excluded due to inadequate geological, geochemical, and geochronological information on these complexes.

In general, Proterozoic ARCs occur as rounded intrusions, whereas DARCs occur as concordant lenses within gneisses and granulites (Burke and Khan, 2006). Alkaline complexes of West Bengal, Odisha, and Andhra Pradesh are mainly exposed at the contact of EGMB (3900–2500 Ma, see Table 1 of Dasgupta et al., 2013) with several Archean cratons such as the Singhbhum Craton (~3550 Ma; Goswami et al., 1995) and the Bastar Craton (3560 Ma; Ghosh, 2004). Alkaline complexes in Tamil Nadu and Kerala are concentrated within the NE-SW trending major faults in the Southern Granulite Terrain (SGT; Table 1). However, Kishangarh and Newania complexes are exposed in the Aravalli Craton (3000–700 Ma, Choudhary et al., 1984), which comprise nepheline gneiss and carbonatite, respectively (Niyogi, 1966; Crawford, 1970; Viladkar and Wimmenauer, 1986). The Newania carbonatite complex, 5 km long and 0.5 km wide, is associated with the NE-SW trending Aravalli Rift (Viladkar and Wimmenauer, 1986). This carbonatite, a rare variety in India, are not
associated with any alkaline silicate host rocks. Carbonatite occurs as oblong shaped intrusive body and comprise predominantly magnesian rauhaugite (dolomitic carbonatite), ankeritic carbonatite, and minor calciocarbonatite as dykelets within dolomite and ankeritic carbonatite (Viladkar and Wimmenauer, 1986). The Purulia complex contains multiple isolated exposures of alkaline bodies in form of sigmoidal outcrops and dykes (Mitchell and Chakrabarty, 2012; Basu and Bhattacharyya, 2014), which are exposed in the Santuri-Kankarkiari area (Das et al., 2018), Sushina Hill (Chakrabarty et al., 2016), and Beldih (Chakrabarty and Sen, 2010). Beside these three exposures, alkaline rock complexes of Proterozoic eon are mainly concentrated in the EGMB and SGT (Fig. 1). In case of carbonatite complexes, total ten exposures of Proterozoic age have been recognized in India (Fig 1): Kambamettu or Kambam (2470 Ma; Renjith et al., 2016b), Hogenakal (2400 Ma; Kumar et al., 1998), Newania (1473 Ma; Ray et al., 2013), Purulia (>1300 Ma; Chakrabarty, 2009), Sevattur (801 Ma; Schleicher et al., 1997), Jokipatti and Samalpatti (770 Ma and 700 Ma; Moralev et al., 1975), Elagiri (757 Ma; Mukhopadhyay et al., 2011b), Pakkanadu-Mulakkadu (750 Ma; Möller et al., 2001), and Munnar (740 Ma; Odom, 1982). The Newania and Purulia carbonatite complexes are located in Rajasthan and West Bengal, respectively, whereas the rest of the complexes are located in Tamil Nadu (see Table 1 for details).

Alkaline rock complexes of EGMB

The EGMB is a northeast trending ~1000 km long discontinuous array of different lithotectonic units, subdivided into four major zones, namely the khondalite zone (KZ), migmatite zone (MZ), western charnockite zone (WCZ), and the transition zone (TZ) (Ramakrishnan et al., 1998). Proterozoic DARCs, mostly occurring in the EGMB in Andhra Pradesh and Odisha, are thought to be first emplaced in an intra-continental rift setting within a few tens of kilometres of a single suture zone (Leelanandam et al., 2006). Leelanandam (1990) observed that almost all DARC occurrences of EGMB lie close to the Fermor’s line (Fermor, 1936), which bounded the charnockite occurrences with a causal connection of regional tectonics. These complexes are located at the contact between the EGMB and the Archean cratons, which is referred as the terrane-boundary shear zone or crustal suture indicating collision between eastern India and east Antarctica (Mezger and Cosca, 1999; Bhadra et al., 2004; Leelanandam et al., 2006; Vijaya Kumar et al., 2007; Upadhyay, 2008; Ranjan et al., 2018). Generally, alkaline rocks along the EGMB are emplaced in a variety of host rocks, e.g., mica schist, calc-silicate, metabasite, quartzite, amphibolite, biotite gneiss, migmatite, phyllite, granite gneiss, and khondalites (Table 1).

The ARC complexes in Odisha, Telangana, and Andhra Pradesh are distributed in form of plutons, lenticular/elliptical bodies, dykes, veins, and lenses (Table 1). The Chhatabar-Lodhajhari-Baradangua, Rairakhol, and Kamakhyanagar alkaline exposures in Odisha are present along the Mahanadi Graben in the form of narrow elongated
Sl. No.	Complex (location)	Province	Areal extent	Rock types	Host rock	Emplacement age	Metamorphic age	References
1	Kishangarh, Rajasthan	Aravalli system	very small	Nepheline syenite, Banded Gneissic	1490±150 Ma	1. Niyogi (1966); Crawford (1970)		
2	Newania, Rajasthan	Aravalli system	pluton and Rauhaugite (Dolomitic granite)	Untail granite gneiss 959±24 Ma	904±2 Ma	1. Deans and Powell (1968); Crawford (1970); Viladkar and Wimmenauer (1986); Schleicher et al. (1997); Ray et al. (2013)		
3	Purulia, West Bengal	Chotanagpur	Nepheline syenite	Mica schist, calc-silicate, amphibolite	>1370 Ma (Pb-Pb isochron age for nepheline syenite 1360 to 960 Ma)	1. Chakrabarty (2009); 2. Chakrabarty and Sen (2010); 3. Mitchell and Chakrabarty (2012); 4. Basu and Bhattacharyya et al. (2016); 5. Das et al. (2018)		
4	Chhatabar-Lodhajhari, Odisha	EGMB	Nepheline syenite, Quartzites and mica gneiss	Quartzites and mica gneiss	1322±8 Ma	1. Sheikh et al. (2017)		
5	Rairakhol, Odisha	Rengali Province	Nepheline syenite	Metapelite	938.8±3.1 Ma	1. Bhattacharya and Basei (2010); 2. Ranjan et al. (2018)		
6	Khariar, Odisha	EGMB	Nepheline syenite, Garnet-sillimanite	anorthosite	1480±17 Ma	1. Aftalion et al. (2000); 2. Leelanandam et al. (2006); 3. Upadhyay et al. (2006); 4. Biswal et al. (2007); 5. Ranjan et al. (2018)		
7	Koraput, Odisha	EGMB	Nepheline syenite	Granite gneiss	917 Ma (U-Pb); 1471±4 Ma (K-Ar); 494±8 Ma	1. Sarkar et al. (1989); 2. Nanda et al. (2008); 3. Upadhyay (2008); 4. Ranjan et al. (2018)		
8	Koraput, Odisha	Jeypore Province	Nepheline syenite	Garnet-sillimanite-bearing metapelitic gneiss	917 Ma (U-Pb); 1471±4 Ma (K-Ar); 494±8 Ma	1. Sarkar et al. (1989); 2. Nanda et al. (2008); 3. Upadhyay (2008); 4. Ranjan et al. (2018)		
Sl. No.	Complex (location)	Province	Areal extent/Occurrences	Rock types	Host rock	Emplacement age	Metamorphic age	References
--------	--------------------	----------	--------------------------	------------	-----------	----------------	----------------	------------
9.	Kunavaram, Andhra Pradesh (Presently in Telangana)	Jeypore Province, EGMB (2)	NE-SW trending elongate body (2)	Amphibole-bearing nepheline syenite (3), syenite and nepheline monzonite (1,2,3)	Amphibolite-quartzite-garnetiferous felspar gneiss in the west and granite in the east (2)	1384±63 Ma (207Pb/206Pb, 2); 1265±58 Ma (Rb-Sr, 1); 1372±8 Ma (U-Pb, 3)	~611 Ma (207Pb/206Pb, 2), and 484±2.3 to 500±0.6 Ma (Rb-Sr, 2); 942±17 Ma, 801±18 Ma, 566±12 Ma (U-Pb, 3); metamorphosed to amphibolite facies (2)	1. Clark and Subbarao (1971); 2. Upadhyay and Raith (2006b); 3. Ranjan et al. (2018)
10.	Vikurthi, Andhra Pradesh	Eastern margin of the Cuddapah Basin (2); Prakasam Province (1)	extended over 4 km² (2)	Quartz syenite, fine grained quartz syenite (2)	Archean granite (2)	1098±113 Ma (1); 942±17 Ma, 566±12 Ma (U-Pb, 3);	1. Vijaya Kumar et al. (2007) and references therein; 2. Sridhar et al. (2018)	
11.	Kotappakonda, Andhra Pradesh	Eastern margin of the Cuddapah Basin (2) Prakasam Province (1)	Nepheline syenite and quartz syenite (2)	Archean granite and Eastern Ghats charnockites (2)	1270±27 Ma (1)	1. Vijaya Kumar et al. (2007) and references therein; 2. Sridhar et al. (2018)		
12.	Jojuru, Andhra Pradesh	Craton–EGMB contact (1)	intrusion (1)	Quartz-bearing monzosyenite (1)	Quartzo-felspathic gneisses (1,2)	1263±23 Ma (U-Th-Pb, 1); 1352±6 Ma (U-Pb, 2);	930±24 Ma and 569±35 Ma (U-Pb, 2); metamorphosed to amphibolite facies (1)	1. Upadhyay and Raith (2006a); 2. Ranjan et al. (2018)
13.	Elchuru, Andhra Pradesh	Craton–EGMB contact (4) Prakasam Province (3)	extended over 16 km² (2) and occurs as lenses, veins and dykes (2,4)	Nepheline syenite, iolite, malignite, shonkinite, melanocratic nepheline diorite (2), mica lamprophyre, quartz syenite (4)	Granite gneiss and amphibolite (2)	1321±17 Ma (U-Th-Pb, 2); 1242±33 Ma (Rb-Sr, 1)	513±3, 523±2, 557±2 Ma (Rb-Sr, 2); Metamorphosed to amphibolite facies (2)	1. Subba Rao et al. (1989); 2. Upadhyay et al. (2006b); 3. Vijaya Kumar et al. (2007); 4. Sridhar et al. (2018)
14.	Settupalle, Andhra Pradesh	Craton–EGMB contact (2) Prakasam Province (1)	extended over 40 km² (2)	Quartz syenite, hornblende syenite, ferrosyenite and minor nepheline syenite (2)	Archean granite gneiss, gabbro, amphibolite (2)	1369±28 Ma (1)	1. Vijaya Kumar et al. (2007) and references therein; 2. Sridhar et al. (2018)	
15.	Purimetla, Andhra Pradesh	Eastern margin of the Cuddapah Basin (2) Prakasam Province (1)	extended over 7 km² (2)	Shonkinite, malignite, nepheline syenite, hornblende syenite, quartz syenite (2)	Archean gneiss, gabbro, amphibolite (2)	1352±2 Ma (U-Pb, 1); 1356±6 Ma (2);	1. Vijaya Kumar et al., (2007) and references therein	1. Vijaya Kumar et al., (2007) and references therein; 2. Sridhar et al. (2018)
16.	Errakonda, Andhra Pradesh	Prakasam igneous Province (2)	Ferrosyenite, ferromonzo syenite and ferrodiorite (1)	Granulite and amphibolite (1)	1352±2 Ma (U-Pb, 1); 1356±6 Ma (2);	1. Vijaya Kumar et al., (2007) and references therein	1. Vijaya Kumar et al., (2007) and references therein; 2. Sridhar et al. (2018)	
17.	Chanduluru, Andhra Pradesh	Eastern margin of the Cuddapah Basin (2) Prakasam Province (1)	Melasyenite, hornblende syenite, biotite-quartz syenite, syenite (2)	Granite, gabbro, quartzite, biotite or phyllite (2)	1352±2 Ma (U-Pb, 1); 1356±6 Ma (2);	1. Vijaya Kumar et al., (2007) and references therein	1. Vijaya Kumar et al., (2007) and references therein; 2. Sridhar et al. (2018)	
18.	Podili, Andhra Pradesh	Nellore schist belt in the Eastern Dharwar Craton (2) Prakasam Province (1)	elliptical body and dyke 12 km² (2,3)	Hornblende syenite, nepheline normative micro syenite, alkali granite (2,3)	Granite, gabbro, chlorite schist, agglomerate tuffs and intercalated quartzite (2,3)	1. Vijaya Kumar et al., (2007); 2. Sai (2017); 3. Sridhar et al. (2018)		
Sl. No.	Complex (location)	Province	Areal extent/ Rock types	Host rock	Emplacement age	Metamorphic age	References	
--------	--------------------	----------	--------------------------	-----------	----------------	----------------	------------	
19.	Uppalapadu, Eastern margin of the Cuddapah Basin (3) Prakasam igneous Province (2)	Andhra Pradesh	extended over 30 km² (1,2)	Nepheline syenite, hornblende syenite, quartz syenite, ferrosyenite (1,3)	Granulite and amphibolite (1), Granite gneiss, gabbro, amphibolite, biotite schist (3), hornblende syenite (1)	1356±7 Ma (Pb-Pb, 1); 1351±2 Ma (2);	1. Kumar et al. (2007); 2. Vijaya Kumar et al. (2007) and references therein; 3. Sridhar et al. (2018)	
20.	Racherla, Andhra Pradesh	Cuddapah Basin (1)	mound shaped body spread over 300 m and a height of 20–25 m, and extends in east–west direction (1)	Alkali syenite (1)	Cumbum phyllites (1)	1326±73 Ma (Sm-Nd, 1)	1. Rao et al. (2012)	
21.	Dancherla Eastern Dharwar alkaline complex, Andhra Pradesh	Eastern Dharwar Craton (EDC) (1)	Multiple isolated exposures of alkaline bodies over 14 km² (1)	Syenite (1)	Archaean gneiss and granulite (1)	2211±110 Ma (Rb-Sr, 1)	1. Suresh et al. (2010)	
22.	Pulikonda alkaline complex, Andhra Pradesh	Eastern Dharwar Craton (EDC) (1)	Linear wedge shaped over 18 km² (1)	Syenite, alkali granite, albite and pegmatite (1)	Archaean gneiss and granulite (1)	1500±100 Ma (Rb-Sr, 1)	1. Suresh et al. (2010)	
23.	Elagiri (or Yelagiri), Tamil Nadu	SGT (1,2)	Elliptical massive body elongated in NE-SW direction with an areal extent of 240 km² (1,3)	Syenite, monzonite, pyroxenite, gabbro-norite, dunite, lamprophyre, carbonatite (1,2,3)	Granite gneisses, amphibolites and pyroxene granulites (2)	757±32 Ma (Rb-Sr, 1)	1. Miyazaki et al. (2000); 2. Mukhopadhyay et al. (2011b); 3. Renjith et al. (2014);	
24.	Sevattur (or Koratti), Tamil Nadu	Southern Peninsular gneiss, Salem block, SGT (2,4,5)	Arcuate outcrops extended over 60 km² (4,8), Crescent shaped intrusive body, 3 km long and ~200 m wide carbonatite body (2,5)	Carbonatite, pyroxenite, aplite, pegmatite and syenite (2,5,6,8,9)	Granite gneisses (4,9)	720±30 Ma (K-Ar, 1); 770±18 Ma (Rb-Sr, 3); 767±8 (Rb-Sr, 6); 756±11 Ma (Rb-Sr, 8); 771±18 Ma, 773±18 Ma (Rb-Sr, 3); 801±11 Ma (Pb-Pb, 7)	1. Deans and Powell (1968); 2. Udas and Krishnamurthy (1970); 3. Kumar and Gopalan (1991); 4. Reucat et al. (1993); 5. Viladkar and Subramanian (1995); 6. Kumar et al. (1998); 7. Schleicher et al. (1997) 8. Miyazaki et al. (2000); 9. Ackerman et al. (2017)	
25.	Sundamalai, Tamil Nadu	Salem block, SGT(1)	3.2 km² small hilly outcrop (1)	Syenite (1)	Epidote–hornblende gneiss (1)	832±3.2 Ma (U-Pb, 1)	1. Renjith et al. (2016a)	
26.	Samalpatti (includes Pallasulakkarai, Onnakarai, and Garigapalli), Tamil Nadu	Salem block, SGT (2,7)	lenses and dykes elongated bodies over >125 km² (2,3,4,5), Dykes, veins, lenses (6)	Syenite, carbonatite, pyroxenite, alkali gabbro and serpentinized dunite (2,3,4)	Hornblende–epidote gneiss (5,7)	700±30 Ma (K-Ar, 1); 770 Ma (4)	1. Morakov et al. (1975); 2. Subramanian et al. (1978); 3. Viladkar and Subramanian (1995); 4. Srivastava (1998); 5. Schleicher et al. (1998); 6. Pandit et al. (2002); 7. Ackerman et al. (2017)	
Sl. No.	Complex (location)	Province	Areal extent/ Occurrences	Rock types	Host rock	Emplacement age	Metamorphic age	References
--------	-------------------------	-------------------	---	-----------------------------------	-----------------------------------	-----------------------	-----------------------	--
27	Pikkili Hills, Salem block, SGT (1)	Tamil Nadu	ljoelites, nepheline syenite and syenite (1)		Granite gneisses (1)	2340±130 Ma	36 Ma (Rb-Sr, 1)	1. Kumar et al. (1998)
28	Jokipatti, Salem block, SGT (2)	Tamil Nadu	extending about 16 km² calciocarbonatite, Benstonite carbonatite, Syenite (1,3,4)		Granite gneisses (1)	700±30 Ma (K-Ar, 2)	770 Ma	1. Udas and Krishnamurthy (1970); 2. Moralev et al. (1975); 3. Sukheswala and Viladkar (1978); 4. Vladykin et al. (2008)
29	Hogenakal, Mobile Belt	Tamil Nadu	syenite, pyroxenite, calcicarbonatite, silicocarbonatite dunite (1,2,3)		Charmokite gneiss (1,2,4)	1984±78 Ma, 1994±76 Ma (Rb-Sr, 1); 2436±154 Ma, 2404±36 Ma, 2411±82 Ma (Sm-Nd, 2)		1. Natarajan et al. (1994); 2. Kumar et al. (1998); 3. Schleicher et al. (1998); 4. Pandit et al. (2002)
30	Pakkanadu-Mulakkadu, Madurai block, SGT (2)	Tamil Nadu	Lenses, dykes, fracture fills and diatreme (3,5)	Calciocarbonatite, pyroxenite and syenite (3,5)	Charmockite gneiss (3,5)	771±2 Ma (K-Ar, 1)	570±2 Ma, 759±3 Ma (monazite date, 4,5)	1. Moralev et al. (1975); 2. Ravindran (1986); 3. Schleicher et al. (1998); 4. Möller et al. (2001); 5. Pandit et al. (2002)
31	Sivamalai, Madurai block, SGT (1)	Tamil Nadu	Lenses, dykes, fracture fills and diatreme (3,5)	Calciocarbonatite, pyroxenite and syenite (3,5)	Charmockite gneiss (3,5)	771±2 Ma (K-Ar, 1)	570±2 Ma, 579±3 Ma (monazite date, 4,5)	1. Rao et al. (1994); 2. Upadhay et al. (2006);
32	Korangani, Madurai block, SGT (1)	Tamil Nadu	Lenses, dykes, fracture fills and diatreme (3,5)	Calciocarbonatite, pyroxenite and syenite (3,5)	Charmockite gneiss (3,5)	771±2 Ma (K-Ar, 1)	570±2 Ma, 579±3 Ma (monazite date, 4,5)	1. Renjith et al. (2016b)
33	Kambamettu (or Kambam), Madurai block, SGT (2)	Tamil Nadu	Lenses, dykes, fracture fills and diatreme (3,5)	Calciocarbonatite, pyroxenite and syenite (3,5)	Charmockite gneiss (3,5)	771±2 Ma (K-Ar, 1)	570±2 Ma, 579±3 Ma (monazite date, 4,5)	1. Leelanandam et al. (2006); 2. Renjith et al. (2016b)
34	Maruthunkota, Madurai block, SGT (1)	Tamil Nadu	Lenses, dykes, fracture fills and diatreme (3,5)	Calciocarbonatite, pyroxenite and syenite (3,5)	Charmockite gneiss (3,5)	771±2 Ma (K-Ar, 1)	570±2 Ma, 579±3 Ma (monazite date, 4,5)	1. Sreejith and Kumar (2009)
35	Puttetti, Trivandrum block, SGT (2)	Tamil Nadu	Lenses, dykes, fracture fills and diatreme (3,5)	Calciocarbonatite, pyroxenite and syenite (3,5)	Charmockite gneiss (3,5)	771±2 Ma (K-Ar, 1)	570±2 Ma, 579±3 Ma (monazite date, 4,5)	1. Kovach et al. (1998); 2. Rajesh (2003); 3. Miyazaki and Santosh (2005)
36	Munnar, Kerala	Anamalai-Palni-Cardamom massif, SGT (2,3)	Lenses, dykes, fracture fills and diatreme (3,5)	Calciocarbonatite, pyroxenite and syenite (3,5)	Charmockite gneiss (3,5)	771±2 Ma (K-Ar, 1)	570±2 Ma, 579±3 Ma (monazite date, 4,5)	1. Odom (1982); 2. Nair et al. (1984); 3. Carlos et al. (2008)
37	Peralimala, Kerala	Cardamom massif, SGT (1)	Lenses, dykes, fracture fills and diatreme (3,5)	Calciocarbonatite, pyroxenite and syenite (3,5)	Charmockite gneiss (3,5)	771±2 Ma (K-Ar, 1)	570±2 Ma, 579±3 Ma (monazite date, 4,5)	1. Santosh et al. (2014)
38	Angadimogar, Kerala	SGT (1)	Lenses, dykes, fracture fills and diatreme (3,5)	Calciocarbonatite, pyroxenite and syenite (3,5)	Charmockite gneiss (3,5)	771±2 Ma (K-Ar, 1)	570±2 Ma, 579±3 Ma (monazite date, 4,5)	1. Santosh et al. (2014)
Alkaline rock complexes of SGT

The SGT of India is divided into six major crustal blocks: Coorg, Nilgiri, Madras, Madurai, Trivandrum, and Nagarcoil (Naqvi and Rogers, 1987; Collins et al., 2014). The region between south of the Archean Dharwar Craton (or below the ‘Fermor line’) and the north of the E-W trending and >100 km wide Palghat–Cauvery shear zone (PCSZ), is termed as the Salem Block (comprises Coorg, Nilgiri, and Madras Blocks) and the Northern Granulite Terrain (Collins et al., 2014). The Salem Block is dominated by Archaean/Paleoproterozoic orthogneisses, metasedimentary rocks, and pyroxene-bearing granite (charnockites), granite gneisses, migmatites, and alkaline complexes (Collins et al., 2014 and references therein). The northern part of the Madurai Block is separated into Neoarchean and Paleoproterozoic Units by a curvilinear-shaped Karur-Kambam-Painavu-Trichur shear zone (KKPT; ~570–560 Ma; Ghosh et al., 2009). Most of the Neo/proterozoic ARCs (Sevattur, Jokipatti, Samalpatti, Sundamalai, Elagiri, Pikkili, Peralmalai, and Angadimogar complexes) intrude the orthogneisses, metasedimentary rocks, and pyroxene-bearing granite depending on geochemical similarity within similar rock types (see Table 2), which is discussed in detail in Section 4.2. Syenite group of rocks include monzosyenite, monzonite, and quartz monzonite besides syenite, whereas nephelinite group of rocks include ijolite, kalsilitic ijolite, malignite, and quartz meladiorite, which have intruded into charnockite, gneiss, and granulite (Schleicher et al., 1998). Carbonatites of the Jokipatti complex, occurs as small lenses that extend up to 300 m in length and 100 m in width, and have intruded the host syenite (Sukheswala and Viladkar, 1978). The Hogenakal carbonatite complex occurs as discontinuous veins and lenses within two subparallel NNE trending pyroxenite dykes that intrude the gneissic charnockites (Natarajan et al., 1994; Pandit et al., 2002). Munnar carbonatite occurs as small lenses and patches intruded into the Precambrian gneisses (Nair et al., 1984). Alkali granite and syenite are associated rocks of Munnar carbonatite.

Although diverse rock types are present in Proterozoic alkaline exposures, for simplification, we have divided these rocks into six categories namely nepheline syenite, syenite, nephelinite, mafic rock, high silica rock, and carbonatite depending on geochemical similarity within similar rock types (see Table 2), which is discussed in detail in Section 4.2. Syenite group of rocks include monzosyenite, monzonite, and quartz monzonite besides syenite, whereas nephelinite group of rocks include ijolite, kalsiliticijolite, K-feldspar sonkinite, malignite, nepheline meladiorite, and nepheline monzonite (Table 2). Mafic and high silica rocks mainly constitute pyroxenite and alkali granite, respectively. Similar to that observed in the alkaline complexes from Africa (Burke et al., 2003; Ashwal et al., 2016), nepheline syenite and syenite constitute the most abundant alkaline rocks of the Proterozoic Indian alkaline complexes (Leeanandam et al., 2006; Upadhyay, 2008).

Chronological status of Proterozoic alkaline and carbonatite magmatism

Emplacement ages of Proterozoic ARCs

A detailed analysis of available geochronological data reveals three distinct episodes of alkaline magmatism in India during Proterozoic (Table 1 and 3; Fig. 2). The first phase of Proterozoic alkaline magmatism (2533–2340 Ma) was marked by the emplacement of shoshonitic syenite and pyroxenite at 2533 Ma in the Korangani complex, and quartz-monzonite, pyroxenite, and carbonatite at 2470–2498 Ma in the Kambamettu complex of Tamil Nadu (Renjith et al., 2016b). This was followed by eruption of carbonatite magma at

March 2020
Episodes Vol. 43, no. 1

~2400–2440 Ma in Hogenakal and syenitic magma at ~2340-2380 Ma forming the Pikkili Hills in Tamil Nadu (Kumar et al., 1998). The combined whole rock Rb-Sr and Sm-Nd ages of Hogenakal and Pikkili Hills provide precise isochron ages of 2401±25 and 2415±10 Ma (Kumar et al., 1998). However, Natarajan et al. (1994) reported a whole rock Rb-Sr isochron age of 1984±78 Ma for the Hogenakal carbonatite complex. Another two alkaline complexes, Pulikonda and Dancherla in Andhra Pradesh give whole rock Rb-Sr ages of 1500 ±100 Ma and 2211±110 Ma, respectively (Fig. 2; Table 1; Suresh et al., 2010). Suresh et al. (2010) argued that these ages are likely younger (resetting age) than the actual emplacement ages as the Rb-Sr system is prone to resetting.

The second phase of alkaline magmatism occurred around 1510–1242 Ma in the Mesoproterozoic (Fig. 2), and is mainly concentrated in Andhra Pradesh, Telangana, Odisha, and West Bengal at the contact of the Singhbhum and Bastar Cratons with the EGMB (Upadhyay, 2008). The second phase can be correlated with the major Mesoproterozoic rifting during 1500–1350 Ma (Upadhyay, 2008; Vijaya Kumar et al., 2011; Dasgupta et al., 2017). Alkaline and carbonatite magmatism around this time also occurred forming the Newania and Kishangarh complexes in Rajasthan (Table 2). The Kishangarh complex, Rajasthan (1490±150 Ma, Crawford, 1970), Newania complex, Rajasthan (1473±63 Ma, Ray et al., 2013) and Khariar Province, Odisha (1480±17 Ma, Upadhyay et al. 2006a; 1500±3 Ma, Aftalion et al., 2000) mark the beginning of alkaline magmatism in the second phase, whereas the Elchuru complex in Andhra Pradesh marks the terminus at 1242±33 Ma (Subba Rao et al., 1989; Table 1). The oldest Mesoproterozoic emplacement of alkaline magmatism may have started in Purulia at 1510 Ma (Mitchell and Chakrabarty, 2012). The youngest alkaline magmatism of the second phase may be extended to 1098±113 Ma, which is the age of Vikurthi alkaline complex, Andhra Pradesh (Vijaya Kumar et al., 2007 and references therein). However, detailed geochronological information is not available for Purulia and Vikurthi alkaline complexes (see Table 1), and therefore new geochronological data are required. Upadhyay et al. (2006a, b), Upadhyay and Raith (2006a, b), and Vijaya Kumar et al. (2007) reported a much narrower range of emplacement ages (U-Pb dating of zircons:1480–1262 Ma) for the Kharari, Kunavaram, Elchuru, Jojuru, and Uppalapadu alkaline complexes. Few alkaline complexes such as Elchuru and Kunavaram within the EGMB display wider duration of emplacement ages. The U–Pb zircon dates, compared to the Rb-Sr isochron dates, provides a tighter constraint on the emplacement ages of the ARC complexes.

The third phase of alkaline magmatism occurred around 833 to 572 Ma (Fig. 2). This phase started with the formation of Sundamalai...
The rocks formed during the third phase of alkaline magmatism have not experienced high-grade metamorphism or strong deformation (Table 1). Evidence of a thermal event in the area around 900 Ma from phlogopite separate from ankeritic carbonatite vein and interpreted a thermal event in the area around 900 Ma. The episodes of alkaline magmatism and later metamorphic events have direct implication on the geodynamic evolution of the Indian subcontinent.

Results

Petrography and mineral chemistry

Nepheline syenite and syenite are the dominant rock types found in the Indian Proterozoic ARCs complexes. A summary of petrography including crystallinity, texture, and mineralogy are presented in Table 4. Here, we discuss the petrography of major rock types such as the nepheline syenite, syenite, carbonatite, and the associated mafic and ultramafic rocks (e.g., granodiorite gneiss) show prominent gneissic structures. The nepheline syenite contains albitic plagioclase (Vijaya 2017; Burke et al., 2003).

Table 3. Classification of Proterozoic alkaline complexes of India based on their emplacement ages.

Sl.No.	Proterozoic periods	Proterozoic alkaline complexes
1	Neoproterozoic (833–572 Ma)	Tamil Nadu: Elagiri, Sevattur, Sundamalai, Sivamalai, Puttetti, Kerala: Angadimogar, Munnar, Peralimala, Odisha: Raikh, Koraput
2	Mesoproterozoic (1510–1242Ma)	Rajasthan: Newania and Kishangarh, West Bengal: Purulia, Odisha: Chhatbar-Lodhajhari-Baradangua, Raikh, Kamakhyanagar, Khatari, Koraput Andhra Pradesh: Kunavaram, Vikurthi, Kotappakonda, Joju, Elchuru, Purimetla, Errakonda, Uppalapadu, Racherla
3	Paleoproterozoic (2533–2340 Ma)	Tamil Nadu: Pikkili, Hogenakal, Korangani, Kambamettu Andhra Pradesh: Dancherla, Pulikonda (?)

(1991) obtained whole rock carbonatite and pyroxenite Rb-Sr ages of 771±18 Ma and 773±18 Ma, respectively. Schleicher et al. (1997) reported an emplacement age of 801±11 Ma using 206Pb/238U vs. 207Pb/206Pb (whole rock) isochron method on ankeritic carbonatite. The rocks formed during the third phase of alkaline magmatism have not experienced high grade metamorphism or strong deformation (Table 1). Evidence of Pan-African metamorphic overprint at 478±29 Ma has been observed in Sivamalai rocks (Upadhyay et al., 2006c).

Evidence of multiple emplacement ages or Episodic activity of alkaline magmatism

Available U-Pb detrital zircon ages for few alkaline complexes and carbonatite, reported by others, indicate different emplacement ages, e.g., ~860–920 Ma vs. 1387±34 Ma for Koraput, 938.8±3.1 Ma vs. 1732±5 Ma for Raikh, 513±18 Ma vs. 1470–1500 Ma for Khariar, 608±6 Ma vs. 2498±16 Ma for Kambamettu, and 959–970 Ma vs. 1473–1551 Ma for Newania carbonatite (Fig. 2, Table 1). Interestingly, younger emplacement ages of Koraput, Newania, and Raikh overlap with the metamorphic event of 950–930 Ma, whereas younger emplacement age of Khariar overlaps with another distinct metamorphic event at 570–485 Ma (Fig. 2). Biswal et al. (2007) argued that primary magmatism occurred in Khariar at 513±18 Ma, represented by the U-Pb zircon age of nepheline syenite, in contrast to the older age (~1500–1470 Ma) of this complex proposed by others (Aftalion et al., 2000; Upadhyay et al., 2006a; Ranjan et al., 2018). Ranjan et al. (2018) argued that majority of the U-Pb analyses were performed on recrystallized/partially reset metamorphic domains or on mixed igneous and metamorphic domain of zircons, resulting in relatively younger age. It is possible that both magmatic ages represent true emplacement ages of alkaline magmatism that occurred in two stages. Older emplacement age may indicate alkaline magmatism during the initial stage of continental rifting around 1500–1350 Ma (Vijaya Kumar and Leelananandam, 2008; Upadhay, 2008). Later during amalgamation and metamorphism around 850–500 Ma, the second stage of alkaline magmatism occurred when early-formed alkaline rocks acted as potential sources of the younger ARCs; this agrees with the model proposed by others to explain the recurrence of alkaline magmatism in a locality (Bailey, 1977; Burke et al., 2003).

Geochronological signatures of metamorphic imprints

EGMB has experienced several metamorphic events that are correlative with the adjacent blocks of the India and East Antarctica (Dasgupta et al., 2017). Alkaline rocks of second phase magmatism show a prominent metamorphic imprint, which is evident in Fig. 2. Majority of these rocks have experienced amphibolite to granulite facies metamorphism (Upadhyay et al., 2006a; Ranjan et al., 2018), which has resulted in a much younger age. The Kamakhyanagar (930±9 Ma), Koraput (947±10 Ma), Raikh (953±16 Ma), and Kunavaram (942±17 Ma) show a common metamorphic age around 950–930 Ma (Table 1). Another distinct metamorphic imprint, during 570–485 Ma, is reported from Khariar (~485–565 Ma), Jojuru (569±35 Ma), Elchuru (513±33 to 557±2), and Kunavaram (484.0±2.3 to 500.9±0.6 Ma, 566±12 Ma) alkaline complexes. Evidence of a metamorphic episode close to 950–930 Ma has also been reported from the Newania carbonatite complex. In addition, Ray et al. (2013) obtained 40Ar/39Ar age of 913±19 Ma from phlogopite separate from ankeritic carbonatite vein and interpreted a thermal event in the area around 900 Ma. The episodes of alkaline magmatism and later metamorphic events have direct implication on the geodynamic evolution of the Indian subcontinent.

March 2020
Kumar et al., 2007). Pyroxene compositions of nepheline syenite are mostly reported from Purulia (Chakrabarty et al., 2016; Das et al., 2018). Basu and Bhattacharya (2014) noted an alkali trend (Na₂O: 10.97–12.96 wt%) in aegirine augite to aegirine along with sympathetic variation with associated amphibole of alkaline rocks, which suggests that these minerals evolve from a sodic-calcic to sodic melt during magma differentiation under a changing oxidation environment. Nepheline syenite of Sushina Hill shows two generations of pyroxenes: early-formed pyroxenes (crystallized at ~700°C) have a diopsidic core surrounded by aegirine-rich rim, whereas late-formed pyroxenes (formed at ~400°C) are mainly aegirine-jadeitic in composition, product of late-stage deuteric event (Chakrabarty et al., 2016). Interestingly, Sushina Hill complex contains a primary eudialyte (Na-Ca-Fe silicate and rich in Zr; Chakrabarty et al., 2016), which indicates that this is the only agpaitic nepheline syenite (i.e., peralkaline alkali feldspar nepheline syenite) of India that may have evolved from extensive fractionation of parental mafic magma under low oxygen fugacity (Mitchell and Chakrabarty, 2012). Chakrabarty et al. (2018) reported the lone occurrence of transitional agpaitic rocks in India, from the Sushina Hill. Pyroxene from Elchuru falls in between diopside–hedenbergite–aegirine augite solid solution (Upadhyay et al., 2006b).

Syenite is composed of K-feldspar (up to 85%), quartz (up to 15%), plagioclase (up to 60%), clinopyroxene, biotite, and amphibole (Table 4). Syenite often shows hypidiomorphic texture with grain size varying from fine to medium to coarse (Rajesh, 2003). Sometimes pegmatic texture is also visible (Upadhyay et al., 2006c; Vijaya Kumar et al., 2007). K-feldspar is generally coarse grained and shows mesoperthitic texture (Santosh et al., 2014). Pyroxene of syenite is mostly aegirine augite to aegirine (Basu and Bhattacharya, 2014; Chakrabarty et al., 2016). Orthopyroxene is present in quartz monzonyssites and separated from feldspar by coronal garnet (Upadhyay and Raith, 2006a). Nepheline/ijolite rocks contain nepheline, feldspar, clinopyroxene, amphibole, and display medium to porphyritic, hypidiomorphic and sieved texture (Table 4). High silica rock or alkali granite is porphyritic in nature and contains K-feldspar (75–85%), plagioclase (5–10%), and clinopyroxene (5–10%). Mafic rocks also exhibit variation in petrographic assemblages (Table 4). Alkali pyroxenite comprises mostly clinopyroxene (85%) with minor biotite, olivine, and amphibole, whereas gabbro consists of plagioclase, clinopyroxene, and hornblendle with accessory minerals like orthopyroxene, alkali feldspar, and opaque oxides.

Carbonatite contains mainly igneous carbonate minerals (> 50 modal %) such as calcite, dolomite, and ankerite etc. (Streckeisen, 1980; Woolley and Kempe, 1989). Along with dominant calcio-carbonatite (with > 90% calcite) rocks, dolomitic carbonatite (or rauhaugite) and ferrocarbonatite are also reported from Proterozoic carbonatite complexes. Minor amount of accessory minerals such as apatite, pyrochlore, magnetite, barite, and pyroxene are also present in this carbonatite. Ferrocarbonatite mainly contains ankerite along with accessory phases of barite, apatite, and rare earth element (REE)-bearing minerals, such as bastnaesite, baddeleyite, and britholite etc. Carbonatite is mainly medium to coarse grained characterized with xenomorphic, inequigranular/equigranular textures. Albite and oligoclase of Pakkanadu complex contain abundant sphene and allanite, which is uncommon in other carbonatite complexes (Ravindran, 1986).

Silicocarbonatite is reported only from the Samalpatti (n = 5; Viladkar and Subramanian, 1995; Kumar et al., 1998) and Hogenakal (n =1; Natarajan et al., 1994) carbonatite complexes of Proterozoic age. Silicocarbonatite from Samalpatti contains 5–20% silicate minerals such as pyroxene, phlogopite, amphibole, K-feldspar, and albite (Viladkar and Subramanian, 1995). Viladkar and Subramanian (1995) provided textural evidence of a globule of silicate minerals surrounded by calcite matrix arguing in favour of liquid immiscibility. The Jokipatti complex is the only carbonatite complex in India that contains benstonite [Ba₅Ca₃Mg₄(CO₃)₁₀]₁₁ carbonatite, which also occurs in Murrun Massif carbonatite complex in Siberia (Vladykin et al., 2008). The ARCs formed during the second phase of alkaline magmatism (Fig. 2), having experienced amphibolite to granulite facies of metamorphism, contains higher proportion of biotite and amphibole. In places, biotite and amphibole replaces clinopyroxene, and at other places biotite and amphibole breaks down to form garnet and clinopyroxene during metamorphic event (Upadhyay et al., 2006a).

Geochemistry

The geochemical data (major oxides, trace elements, and radiogenic Sr–Nd–Pb isotope and stable C and O isotope compositions) of Proterozoic ARCs of India, compiled in this study, are discussed in detail below. All data were grouped into six major rock groups (see Table 2) namely nepheline syenite, syenite, nepheline, mafic rock, high silica rock, and carbonatite.

Major oxides compositions of Proterozoic ARCs and associated rocks

As mentioned earlier, rocks of Proterozoic ARCs are grouped into six categories (Table 2) basically on their major oxides compositions presented in Figs. 3–5. The total alkali versus silica (TAS diagram; Cox et al., 1979) diagram confirms that majority of alkaline rocks are nepheline syenite, syenite, and nepheline (Fig. 3a). However, a part of mafic and high silica rock is subalkaline. Ternary CaO–MgO–FeO+Fe₂O₃+MnO diagram (Woolley and Kempe, 1989) shows that calcio-carbonatite and dolomitic carbonatite constitute the major rock types in Proterozoic carbonatite complexes (Fig. 3b, n = 149). The SiO₂ content of alkaline and associated rocks varies from 40 to 74 wt%; carbonatites have very low silica content in the range 0.01–27 wt%. Few pyroxenites of Hogenakal carbonatite complex contain low silica (SiO₂: 22–26 wt%) and are rare in Indian Proterozoic ARCs (Natarajan et al., 1994). A negative correlation is observed between TiO₂, Al₂O₃, FeO, and CaO versus silica content mostly for the syenite, nepheline syenite and high silica rock (Fig. 4). However, a weak correlation is observed for mafic and nepheline rocks. Nepheline syenites have a narrow range of SiO₂ content between 50 to 60 wt%, but other major oxides such as TiO₂, Fe₂O₃, Na₂O, and K₂O show notable variations, whereas Al₂O₃ (15–27 wt%), MgO (0.01–1.79 wt%) and P₂O₅ (0.01–0.42 wt%) contents vary comparatively less (Fig. 4). Nepheline typically contains less silica (SiO₂: 40–50 wt%) compared to nepheline syenite and syenite. Although no trend is present in nepheline, overall major oxides concentrations are comparable with syenite and nepheline syenite except for MgO, CaO and P₂O₅, which are higher in nepheline. Mafic rock contains higher amount of MgO (up to 22.6 wt% in olivine clinopyroxene; Vijaya Kumar et al., 2007), CaO (up to 38 wt% in carbonate-mica pyroxenite; Natarajan et al., 1994), and low Na₂O, K₂O and P₂O₅ compared to other rock categories (Fig. 4). High silica
Complex location	Crystallinity	Texture	Mineralogy	References
Newania,	Dolomite and	Cumulate	Dolomitic	1. Viladkar and Winnemauer (1986); 2. Schleicher et al. (1997); 3. Ray et al. (2013)
Rajasthan	Ankerite	texture	carbonatite: dolomite or ankerite, siderite, and accessory magnesite and calcite, apatite (1,2,3); Ankerite carbonatite: dolomite or ankerite (1,2,3); accessory minerals: apatite, magnetite, phlogopite, magnesio-arvedsonite, and zircon, pyrochlore, columbite, amphibole, pyroxene, monazite (1,2,3)	
Purulia,	Carbonatite:	Carbonate	Nepheline	1. Chakrabarty and Sen, (2010); 2. Mitchell and Chakrabarty (2012); 3. Basuand Bhattacharyya (2014); 4. Chakrabarty et al. (2016); 5. Das et al. (2018)
West Bengal	medium-	mosaic	syenite: potassium feldspar, albite (30-45%), aegirine, nepheline (20-30%), clinopyroxene; syenite: K-feldspar (50-60%), quartz (<5%), albite; carbonatite: calcite (~ 90%), apatite; alkali pyroxenite: clinopyroxene (85%), calcite, biotite, apatite, amphibole (1,2,3,4,5)	
Chhatabar-	dolomite	texture	nepheline	1. Sheikh et al. (2017)
Lodhajhari-	and Ankerite	and flow	syenite: microcline, nepheline, sodic plagioclase (1)	
Baradangui, Odisha	coarse-grained	bands (3)		
Rairakhol, Odisha	Fine grained	to pegmatitic (2)	Nepheline syenite: Calcic amphibole and pyroxene, phlogopite rich biotite, alkali feldspar, nepheline and plagioclase (1,2)	1. Bhattacharya and Basi (2010); 2. Ranjan et al. (2018)
Kamakhya-	Fine grained	to pegmatitic (1)	Nepheline syenite: Alkali feldspar, plagioclase, nepheline, biotite, amphibole (1)	1. Ranjan et al. (2018)
Khariar, Odisha	Coarse grained (2)		Nepheline syenite: nepheline, clinopyroxene, feldspar, amphibole, biotite; syenite: perthitic microcline, nepheline; ijolite: nepheline, feldspar, clinopyroxene, amphibole (1,2)	1. Leelanandam et al. (2006); 2. Upadhyay et al. (2006a)
Koraput, Odisha	Coarse grained (2)	Equigranular (1)	Nepheline syenite and syenite: K-feldspar, plagioclase, biotite, hornblende, ilmenite and garnet (1)	1. Nanda et al. (2008); 2. Hippe et al. (2016)
Kunavaram,	Fine grained	to coarse-grained (2)	Nepheline syenite: alkali feldspar (microcline), nepheline, plagioclase, calcite; Syenite: perthitic alkali feldspar, amphibole and/or biotite; Nepheline monzonite: plagioclase, biotite with minor alkali feldspar, calcite and zircon (1)	1. Upadhyay and Raith, (2006b)
Andhra Pradesh	Equigranular-	Hypidiomorphic (2)	Syenite: perthitic microcline, pyroxene, hornblende, biotite, quartz, plagioclase (1,2)	1. Sridhar et al. (2018); 2. Madhavan, et al. (1995)
Vikurthi,	Coarse to medium grained (2)		Quartz-bearing monzosyenite: plagioclase and alkali feldspar, clinopyroxene, orthopyroxene, ilmenite, garnet, biotite, quartz (1)	1. Upadhyay and Raith(2006)
Andhra Pradesh	Hypidiomorphic	(2)		1. Sridhar et al. (2018); 2. Madhavan et al. (1995)
Kotappakonda,	Coarse to medium grained (2)			1. Sridhar et al. (2018); 2. Madhavan et al. (1995)
Andhra Pradesh				
Jojuru,	Medium to coarse grained (2)			1. Sridhar et al. (2018); 2. Ratnakar and Leelanandam (1989)
Andhra Pradesh	Hypidiomorphic	and sieve-like intergrowth (2)	Ijolite: nepheline, clinopyroxene and amphibole; Shonkinite: megacrysts of clinopyroxene; Nepheline diorite: clinopyroxene, plagioclase and biotite. Nepheline syenite: alkali feldspar, nepheline, biotite, clinopyroxene and amphibole (1,2)	1. Sridhar et al. (2018); 2. Upadhyay et al. (2006b)
Elchuru,	Medium grained	to porphyritic (2)	Syenite: microcline perthite, microcline, plagioclase, quartz, amphibole, biotite (1,2)	1. Sridhar et al. (2018); 2. Madhavan, et al. (1995)
Andhra Pradesh	Hypidiomorphic	texture (1)	Ferrosyenite: megacrysts of amphibole, alkali feldspar (1)	1. Kumar et al. (2007)
Settupalle,	Medium to coarse grained (2)			1. Sridhar et al. (2018); 2. Leelanandam (1989)
Andhra Pradesh				
Purimetta,	Coarse grained (1,2)		Shonkinite: Orthoclase perthite, amphibole, quartz, plagioclase, biotite (1, 2)	1. Sridhar et al. (2018); 2. Ratnakar and Leelanandam (1986)
Andhra Pradesh				
Errakonda,	Medium-grained (1)		Ferrosyenite: megacrysts of amphibole, alkali feldspar (1)	1. Sridhar et al. (2018); 2. Sharma and Ratnakar (2000)
Andhra Pradesh				
Chanduluru,	Fine to coarse grained (2)		Syenite: perthitic orthoclase, amphibole, quartz, plagioclase, biotite, hornblende, K-feldspar perthite (2)	1. Sridhar et al. (2018); 2. Saud and Ratnakar (2000)
Andhra Pradesh				
Podili,	Coarse-grained (2)		Syenite: K-feldspar, hornblende, biotite, plagioclase (1,2)	1. Sridhar et al. (2018); 2. Sai (2017)
Complex location	Crystallinity	Texture	Mineralogy	References
--	-----------------------------------	-------------------------------	---	---
Uppalapadu, Andhra Pradesh	Medium to Coarse	Equigranular hypidiomorphic and pegmatitic texture (2)	Nepheline syenite: nepheline, K-feldspar perthite, quartz, amphibole, biotite, plagioclase (1,2)	1. Sridhar et al. (2018); 2. Kumar et al. (2007)
Racherla, Andhra Pradesh	Coarse to medium	Equigranular and hypidiomorphic textures (1)	Alkali syenite: orthoclase–perthite and riebeckite, apatite, biotite, Fe-Ti oxides (1)	1. Rao et al. (2012)
Duncherla, alkaline complex, Andhra Pradesh	All type of grain size distribution: coarse to fine grained, porphyritic and pegmatoidal varieties (1)	Porphyritic texture (1)	Syenite: Aegirine, microcline perthite, orthoclase and plagioclase (1)	1. Suresh et al. (2010)
Pulikonda, alkaline complex, Andhra Pradesh	Medium to fine	Syenite: Aegirine/aegirine-augite, microcline perthite, plagioclase feldspar and hornblende	Syenite: Aegirine/aegirine-augite, microcline perthite, plagioclase feldspar and hornblende (1)	1. Suresh et al. (2010)
Elagiri, Tamil Nadu	Syenite: phanerocrystalline, pegmatoidal, medium grained; Gabbro: coarse grained, phenerocrystalline (1)	Syenite: hypidiomorphic texture (2);	Nepheline syenite: pyroxene, amphibole, alkali-feldspar; syenite: albite (3–31%), amphibole (3–11%), potassium feldspar (62–68%), nepheline, biotite (0.5–7%); Gabbro: plagioclase, clinopyroxene and hornblende with accessory minerals like orthopyroxene, alkali feldspar, opaque oxides (1,2)	1. Mukhopadhyay et al. (2011a); 2. Renjith et al. (2014)
Sevattur, Tamil Nadu	Syenite: medium to coarse grained (2)	Syenite: hypidiomorphic texture (2);	Carbonatite: sovite and beforsite, with apatite, magnetite, and iron rich phlogopite as accessory minerals; Pyroxenite: clinopyroxene, with minor amounts (about 5%) of biotite, olivine; Syenite: K-feldspar (microcline or perthite), sodic plagioclase, clinopyroxene and occasional hornblende (1,2,3,4)	1. Kumar and Gopalan (1991); 2. Miyazaki et al. (2000); 3. Kumar et al. (1998); 4. Ackerman et al. (2017)
Sundamalai, Tamil Nadu	Medium to coarse	Hypidiomorphic in equigranular texture (1)	Syenite: plagioclase (20–60%), amphibole (10–25%), K-feldspar (5–20%), and quartz (5–10%) (1)	1. Renjith et al. (2016a)
Samalpatti, Tamil Nadu	Gabbro: coarse grained (2)	Phaneritic texture (2)	Carbonatite: calcite, minor dolomite; pyroxenite: pyroxene, biotite, apatite and Fe–Ti oxides; gabbro: K-feldspar, pyroxene, biotite, Fe–Ti oxides, plagioclase and apatite; monzonite: plagioclase, K-feldspar (1,2)	1. Moralev et al. (1975); 2. Ackerman et al. (2017)
Jokipatti, Tamil Nadu	Medium to coarse	Carbonatite: Calcite, dolomite, ankerite, mica, monazite, riebeckite, ilmenite, benstonite, bastnaesite, pyrochlore, thorite, aegirine barite (1)	Carbonatite: Calcite, dolomite, ankerite, mica, monazite, riebeckite, ilmenite, benstonite, bastnaesite, pyrochlore, thorite, aegirine barite (1)	1. Schleicher et al. (1998)
Hogenakal, Tamil Nadu	Carbonatite: medium to coarse grained; Syenite: medium to coarse grained (1); pyroxenite: medium to coarse grained (2)	Carbonatite: xenomorphic, inequigranular or equigranular; seriate and porphyritic textures also occur (1); pyroxenite: equigranular (2)	Carbonatite: calcite (50-70%),apatite, minor phlogopite and pyroxene; Pyroxenite: salite (90%), phlogopite (5%),apatite, calcite, hornblende; Syenite: orthoclase (95%), pyroxene, apatite, calcite, sphene, plagioclase, magnetite (1).	1. Natarajan et al. (1994); 2. Kumar et al. (1998)
Pakkanadu, Tamil Nadu	Fine to coarse grained sovite (2)	Granular texture with well-developed rhombic cleavages (2)	Carbonatite: Calcite, magnetite, ankerite, apatite, sphene and monazite, biotite, plagioclase, allanite (1,2)	1. Schleicher et al. (1998); 2. Pandit et al. (2002)
Sivamalai, Tamil Nadu	Coarse-grained pegmatitic to fine-grained (1)	Granoblastic texture (1)	Nepheline syenite: perthitic alkali feldspar and nepheline with minor plagioclase, opaques, amphibole, clinopyroxene and biotite (1)	1. Upadhyay et al. (2006c)
Korangani, Tamil Nadu	Medium to coarse	Cumulate texture (1)	Syenite: Quartz, orthoclase, calcite and perthite (1)	1. Renjith et al. (2016b)
Kambammettur, Tamil Nadu	Carbonatite: fine to coarse grained, pegmatoidal	Syenite: allotriomorphic texture (1)	Carbonatite: calcite, dolomite, magnetite, apatite olivine, clinopyroxene, plagioclase, strontianite and barite, monazite, rarely zircon; Syenite: K-feldspar,	1. Renjith et al. (2016b)
Table 4. Contd....

Complex location	Crystallinity	Texture	Mineralogy	References
Munnar, Tamil Nadu	Syenite: coarse-grained; Carbonatite: coarse grained (1)	Carbonatite: Interlocking texture and polysynthetic twinning (1)	Syenite: K-feldspar, augite, aegirine augite, plagioclase, alkali amphibole, biotite, aegirine, apatite, magnetite, dolomite, calcite, titanite, zircon, rarely phlogopite, biotite and minor albite (1)	1. Nair et al. (1984)
Marunthurkota, Tamil Nadu	Medium to coarse-grained	Hypidiomorphic texture (1)	Syenite: K-feldspar (70–85%), quartz (5–15%), plagioclase, augite and hornblende (1)	1. Sreejith and Kumar(2009)
Puttetti, Tamil Nadu	Syenite and pyroxenite: Phaneritic	Phaneritic texture (1)	Syenite: feldspar and pyroxene with minor amphibole and biotite; Pyroxenite: hedenbergite or augite, perthitic K-feldspar, amphibole, phlogopite, and biotite (1)	1. Rajesh (2003)
Peralimala, Kerala	Coarse grained (1)		Alkali granite: K-feldspar (75–85%), plagioclase, (5–10%), and clinopyroxene (5–10%) (1)	1. Santosh et al. (2014)
Angadimogar, Kerala	Medium to coarse-grained (1)		Syenite: K-feldspar (30–40%), plagioclase (25–35%), calcic amphibole (ferrodenite) (10–15%), quartz (5–10%), and biotite (5–10%) (1)	1. Santosh et al. (2014)

Figure 3. Chemical classification of Proterozoic ARCs. (a) Total Alkali Silica (TAS; Cox et al., 1979) diagram for plutonic igneous rocks show different alkaline rock types along with associated mafic and high silica rocks. Nephelinite is volcanic equivalent of ijolite. (b) Ternary CaO–MgO–FeO+Fe2O3+MnO diagram (Woolley and Kempe, 1989) for Proterozoic Indian carbonatites.

These results show that crystal fraction has played an important role in the formation of Proterozoic alkaline rocks.

Bulk major oxides composition of Proterozoic carbonatite namely calciocarbonatite (n = 98), dolomitic carbonatite (n = 32), ferrocarbonatite (n = 19), silicocarbonatite (n = 30), and benstonite carbonatite (n = 4), compiled in study from various sources (Phadke and Jhingran, 1968; Subramanian et al., 1978; Sukheswala and Viladkar, 1978; Nair et al., 1984; Viladkar and Wimmenauer, 1986; Natarajan et al., 1994; Viladkar and Subramanian, 1995; Kumar et al., 1998; Pandit et al., 1998, 2002; Schleicher et al., 1998; Viladkar, 1998) reveals that these rocks, mostly alkali granite, follows similar major oxides trend observed in syenite (Fig. 4). In general, a negative correlation of CaO, Fe₂O₃, and MgO with increasing SiO₂ suggests fractionation of mafic minerals such as clinopyroxene and amphibole. Negative correlation of TiO₂ with SiO₂ along with positive correlation between TiO₂ and Fe₂O₃ (not shown) suggest titanite fractionation. Moreover, a positive correlation between P₂O₅ and CaO (not shown) reveals apatite fractionation to have played a role in magma evolution. No correlation of Na₂O, K₂O, and Al₂O₃ with increasing SiO₂ content indicates negligible plagioclase, orthoclase feldspar, and biotite fractionation. These results show that crystal fraction has played an important role in the formation of Proterozoic alkaline rocks.
Figure 4. Major oxide compositions (wt%) of Proterozoic alkaline (nepheline syenite, syenite, nephelinite) and associated mafic and high silica rocks compiled in this study.

Figure 5. Major oxide compositions (wt%) of Proterozoic carbonatites of India. Data are shown for calcicarbonate (n = 98), dolomite carbonate (n = 32), ferrocarbonate (n = 19), silicocarbonate (n = 30) and benstonite (n = 4, Ba₆Ca₆Mg(CO₃)₁₃).
and show a range of REE patterns with a distinct negative Eu anomaly in few samples (Fig. 7b). The REE patterns of high silica rock (La/Sm$_{N}$ = 2.3–9; average 6.3; n = 11) as well as the mafic rock (La/Sm$_{N}$ = 0.9–8.6; average 2.6; n = 46) exhibit both negative and positive Eu anomalies, indicating the role of plagioclase fractionation or presence of plagioclase in the source (Fig. 7d and e). Mafic rocks mostly show flat REE patterns (La/Sm$_{N}$ = 2.6; Fig. 7e) with few showing slightly steeper patterns (with LREE enrichment) as observed in the nepheline. Compared with the REE patterns of Proterozoic alkaline rocks, Proterozoic carbonatite shows much steeper patterns (Fig. 7f, n = 122), and high degree of LRE/HREE fractionation (La/Sm$_{N}$ = 0.8–23.5; average 4.9; n = 98). These are characterized with an average (La/Lu)$_{N}$ ratio of 139 (n = 93), indicating derivation from low degree partial melting. The (La/Lu)$_{N}$ ratio in nepheline syenite (38; n = 32), nepheline (31; n = 7), syenite (34; n = 111), high silica rock (22; n = 11), and mafic rock (19; n = 45) indicate comparatively higher degree of melting than the carbonatite. Note that the South Indian carbonatites (Sevattur, Samalpatti, Pakkanadu, Hogenakal, and Jokipatti complexes; n = 96) show a wide range of REE abundances compared to the Newania carbonatite (n = 21) and Purulia carbonatite (n = 5) (Fig. 7f).

Radiogenic Sr-Nd-Pb isotope compositions

The variability in the 87Sr/86Sr and $\varepsilon_{Nd(0)}$ isotopic compositions (i stands for initial isotopic ratios) of Proterozoic ARCs are presented in Fig. 8, which also shows the average compositions of various mantle sources such as the depleted MORB mantle (DMM), HIMU (high μ, $\mu = ^{238}U/^{204}Pb$), EMI (enriched mantle I), and EMII (enriched mantle II) (Zindler and Hart, 1986). The average composition of possible assimilants that can contaminate the mantle-derived primary magma, such as the basement granite (Upadhyay et al., 2006a), fennitized country rock (Upadhyay et al., 2006b), regional granite (Ackerman et al., 2017), upper continental crust (UCC; Millot et al., 2004), and lower continental crust (LCC; Rudnick and Goldstein, 1990) are also plotted in Fig. 8a. Two main clusters are observed for the alkaline rocks in the 87Sr/86Sr and $\varepsilon_{Nd(0)}$ space. The first cluster dominantly contains samples of nepheline syenite and nepheline that lie close to the bulk silicate earth (BSE), and also display slight enrichment (low Sm/Nd) as indicated by the negative $\varepsilon_{Nd(0)}$ values of -4.6. The second cluster mostly comprises the syenite samples having high 87Sr/86Sr (0.7025–0.7059, excluding three higher values going up to 0.7734 given by Vijaya Kumar et al., 2007) and low $\varepsilon_{Nd(0)}$ (-1.3 to -14.1; mostly around -10), indicating a distinctly enriched source or possible contamination of primary magma with crustal basement rocks (Fig. 8a). Some of the mafic and all high silica rocks show large isotopic variability indicating significant contamination of the parental magmas. Most of the syenites plot close to the basement granite, indicating possible crustal assimilation of parental syenitic magma. The Sr-Nd isotopic variability in the nepheline syenite and nepheline can be explained by mixing of HIMU and EMI-derived melts that were later contaminated by basement granite or regional granitic end-members.

Only few 87Sr/86Sr and $\varepsilon_{Nd(0)}$ isotope compositions of Proterozoic carbonatite of India have been reported in the literature (Natarajan et al., 1994; Kumar et al., 1998; Schleicher et al., 1998; Veena et al., 1998; Miyazaki et al., 2000; Srivastava et al., 2005; Srivastava and Sinha, 2007; Ackerman et al., 2017). The initial 87Sr/86Sr and $\varepsilon_{Nd(0)}$ isotope compositions of carbonatite were calculated using their
corresponding emplacement ages and the reported present-day parent/daughter ratios. The Sevattur, Samalpatti, Jokipatti, and Pakkanadu carbonatite complexes of Tamil Nadu exhibit a wider variation in ε_{Nd} (-4.3 to -10.3) for a restricted range of $^{87}\text{Sr}/^{86}\text{Sr}$ ratios (0.7045–0.7054) and mostly plot near the EMI component. The Samalpatti carbonatite has the highest $^{87}\text{Sr}/^{86}\text{Sr}$ and lowest ε_{Nd}, whereas the Hogenakal carbonatite has the lowest $^{87}\text{Sr}/^{86}\text{Sr}$ and the highest ε_{Nd} (Fig. 8b). Note that the Newania and Hogenakal carbonatite plot in the depleted quadrant and show similar ε_{Nd} and $^{87}\text{Sr}/^{86}\text{Sr}$ values as those of nepheline syenite and nephelinite (Fig. 8a). Interestingly, the $^{87}\text{Sr}/^{86}\text{Sr}$ and ε_{Nd} values of Tamil Nadu carbonatite overlap with those of syenite (see Fig. 8a). The Sr-Nd isotopic compositions of Indian Proterozoic carbonatite ($^{87}\text{Sr}/^{86}\text{Sr}$: 0.7050–0.7054; ε_{Nd}: -4.3 to -10.3, excluding Newania and

Figure 6. Primitive mantle (Sun and McDonough, 1989) normalized trace elements compositions of (a) nepheline syenite ($n = 45$), (b) syenite ($n = 146$), (c) nephelinite ($n = 9$), (d) high silica rocks such as alkali feldspar granite, alkali granite, granodiorite, and melatonalite ($n = 19$), (e) mafic rock ($n = 62$), and (f) carbonatite ($n = 166$) of Indian Proterozoic alkaline complexes; the global average compositions of calcio-carbonatite (dashed red line) and ferro-carbonatite (dotted purple line) are adopted from Woolley and Kempe (1989).
Figure 7. (a-e) Chondrite (Sun and McDonough, 1989) normalized REE patterns of Proterozoic alkaline and associated mafic and high silica rocks. (f) Chondrite normalized REE patterns of Indian Proterozoic carbonatite complexes. The field for South Indian carbonatite complexes includes Sevattur, Samalpati, Pakkanadu, Hogenakal, Jokipatti and Kambamettu carbonatite complexes of Tamil Nadu.

Hogenakal) are also significantly distinct than that of the Indian Phanerozoic carbonatite such as the Barmer, Amba Dongar, and Sung Valley carbonatite complexes (87Sr/86Sr$_{i}$; 0.7042–0.7076; ε_{Nd}; +3.1 to -4.9; Chandra et al., 2019).

Considerable variability in the Pb isotopic composition of alkaline rocks is observed: 206Pb/204Pb varies from 15.8 to 20.1, 207Pb/204Pb from 15.2 to 15.7, and 208Pb/204Pb from 35.8 to 45.4. In the 206Pb/204Pb vs. 207Pb/204Pb (Fig. 9a) and 208Pb/204Pb (Fig. 9b) space, a linear
Figure 8. (a) The $^{87}\text{Sr}/^{86}\text{Sr}$ versus $\varepsilon_{\text{Nd(i)}}$ isotopic compositions of Proterozoic alkaline (nepheline syenite, $n = 30$; syenite, $n = 28$; nephelinite, $n = 6$), associated mafic ($n = 13$), and high silica rock ($n = 4$); subscript i represents initial isotope ratios calculated after correcting for radiogenic growth, considering the age of complexes. Only those data are considered for which both the isotope ratios were measured on the same sample. See Section 4.2.3 for details on various mantle and crustal source compositions. (b) The $^{87}\text{Sr}/^{86}\text{Sr}$ versus $\varepsilon_{\text{Nd(i)}}$ in Indian Proterozoic carbonatite complexes ($n = 59$). The East African carbonatite line (EACL) line represents a reference line for younger East African carbonatites, which are thought to have originated by the mixing between HIMU and EMI end-members (Bell and Tilton, 2002).

Figure 9. The Pb isotope ratios of (a and b) Proterozoic alkaline (nepheline syenite, $n = 16$; syenite, $n = 2$; nephelinite, $n = 2$) and associated mafic ($n = 4$) and high silica rock ($n = 1$) from India; and (c and d) for Proterozoic carbonatites ($n = 31$ excluding Newania) from India. Inset shows composition of Newania carbonatites ($n = 15$) that contain unusually high Pb isotope ratios. LCC granulite is from Dickin (1981). Data source for mantle end-members, UCC and LCC are same as in Fig. 8.
correlation is observed for the alkaline rocks. Pb isotopic composition of alkaline rocks overlap with that of the associated mafic rock. Pb isotopic variability in the Indian Proterozoic carbonatite is shown in Fig. 9c and 9d. Note the unusually large variation in the Newania carbonatite (206Pb/204Pb: 60–1157; 207Pb/204Pb: 22–126; 208Pb/204Pb: 36–325). All Proterozoic carbonatite complexes show a restricted range of 208Pb/204Pb for a large variation in 206Pb/204Pb (Fig. 9d).

Stable C and O isotope data

The stable oxygen (δ18O_PDB) and carbon (δ13C_SMO) isotope compositions of Proterozoic carbonatites of India (Sarkar and Bhattacharya, 1992; Natarajan et al., 1994; Kumar et al., 1998; Schleicher et al., 1998; Viladkar, 1998; Pandit et al., 1998 and 2002; Miyazaki et al., 2000; Pandit and Golani, 2001; Ray et al., 2013), are represented in Fig. 10. Majority of the dolomitic carbonatite from Newania and calcicarbonatite from Hogenakal and Sevattur plot within the compositional field of the mantle-derived primary carbonatite (Taylor et al., 1967), out of which few lie within the compositional field of mantle (Deines, 1989). Although, two ferrocarbonatite from Sevattur (Schleicher et al., 1998) and Pakkanadu (Pandit et al., 1998) also plot within the primary carbonatite field, the rest have higher δ18O (+8.6 to +34.3‰) and δ13C (−4.85 to +0.08‰) values than the primary carbonatite. Few dolomitic carbonatite shows very high δ18O (+24 to +33.1‰) and δ13C (−3.6 to +0.6‰). Silicocarbonatites (δ18O: +10.1 to +26.9‰; δ13C: −4 to +2.3‰) are compositionally distinct than the other carbonatites.

Discussion

Parental magmas of Proterozoic ARCs and their source(s)

Based on the available information on geochemical data, i.e., major oxides, trace elements, and radiogenic Sr–Nd–Pb and stable C and O isotope compositions of Proterozoic ARCs, we attempt to characterize the source(s) of different Proterozoic ARCs in India. In the MgO vs. CaO/Al2O3 plot (Fig. 11a), a large scatter is observed, albeit a weak positive correlation, which indicates the role of fractional crystallization in the compositional evolution of Proterozoic alkaline and associated rocks. The La vs. La/Sm plot (Fig. 11b) shows weak positive correlations for most of the rock types, except for the mafic rock, indicating a role of partial melting in the compositional evolution of magma. The effect of fractional crystallization (e.g., spinel, plagioclase, clinopyroxene and amphibole) is more prominent in mafic rock as well as in nepheline and syenite that display a constant La/Sm ratio with increasing La content. Despite large variability, somewhat comparable primitive-mantle normalized trace element patterns (Fig. 6) of alkaline rocks suggest its origin by similar petrogenetic processes.
However, stable C and O isotope compositions are sensitive to alteration and therefore can be used to understand mantle-lithosphere interaction, effect of secondary processes, low temperature alteration, and crustal assimilation. Most of the Newania and Hogenakal carbonatite complexes of Paleoproterozoic age retain the primary δ18O and δ13C compositions, but Neoproterozoic carbonatite complexes show higher δ18O and δ13C values (Fig. 10). Similar variation is observed for the Phanerozoic carbonatite complexes of India such as Amba Dongar, Barmer, and Sung Valley. In general, Phanerozoic carbonatite complexes have higher δ18O and δ13C compared to the Proterozoic carbonatite (Ray and Ramesh, 2006). Rayleigh fractionation which is considered as the major fractionating process may not produce δ18O values much greater than +17‰ (Deines, 1989). Sedimentary components can produce higher δ18O values from +20‰ to more than +30‰. It is not clear at this stage if the younger carbonatite is more susceptible to crustal assimilation and/or low temperature alteration.

To explain the origin of alkaline rocks from various Proterozoic ARCs, earlier workers have invoked different parent magmas that were subsequently modified by crystal fractionation and crustal contamination. Based on enriched LILE, HFSE, and the LREE concentrations as well as Sr–Nd–Pb compositions, Upadhyay et al. (2006a, b) and Upadhyay and Raith (2006a, b) concluded that the sources of parental magmas of the alkaline rocks of Khariar, Elchuru, Jojuru, and the Kunavaram complexes must be enriched and located in the subcontinental lithospheric mantle (SCLM). According to these authors, partial melting of a metasomatized spinel lherzolite mantle generated a basanitic primary magma, which experienced fractionation of clinopyroxene and Ti-rich amphibole and formed the parental alkaline magma that intruded these complexes. Previous geochemical studies, using Sr–Nd–Pb isotopic composition and U–Pb and Lu–Hf in zircons retrieved from ARCs from SGT, have argued for an enriched SCLM source for the generation of these alkali magmas (Kumar et al., 1998; Schleicher et al., 1998, Miyazaki et al., 2003; Vijaya Kumar et al., 2007; Santosh et al., 2014; Renjith et al., 2016b; Sridhar et al., 2018).

Petrographic as well as geochemical (including isotopic composition) signatures in Proterozoic carbonatite have been used to argue for sources located both in the SCLM and in the deep mantle. For example, Natarajan et al. (1994) suggested the generation of Hogenakal carbonatite and pyroxenite from a SCLM source depleted in incompatible elements prior to 2400Ma. But, Kumar et al. (1998) suggested derivation of Hogenakal and Sevattur carbonatite from an enriched source within the SCLM. Later, Pandit et al. (2002) argued for a depleted mantle source for Hogenakal and an EMI source for other carbonatite complexes (younger than 770 Ma) from Tamil Nadu. Based on stable δ13C and δ18O isotope composition of carbonatite that fall within the compositional field of primary mantle (Fig. 10), Schleicher et al. (1998) suggested a primary mantle origin for the Tamil Nadu carbonatite, and argued that Pb isotope compositions require mixing of depleted mantle and enriched mantle end-member sources. Based on Sr–Nd isotopic data, trace element modelling, high Mg2+(Mg#Fe3+) and low REE (and high Sr concentration), and mantle like Nb/Ta ratios in Newania carbonatite, Ray et al. (2013) proposed the existence of a primary magnesiocarbonatite melt derived from a metasomatized lithospheric mantle, i.e., low-degree partial melting (~0.1%) of a magnesite and phlogopite-garnet bearing peridotite source. It can be concluded that the alkaline as well as the carbonatite from Proterozoic alkaline complexes are likely to have originated from a metasomatized SCLM source, which is generally incompatible elements enriched.

Temporal evolution of the source of ARCs

As mentioned earlier, the 87Sr/86Sr, εNd(i) and Pb isotopic compositions of most of alkaline rocks and carbonatites are similar to each other (Figs. 8 and 9). For example, the 87Sr/86Sr, and εNd(i) isotopic composition of syenite and carbonatite overlap with each other (Fig. 8). Nepheline syenite also shows similar 87Sr/86Sr and εNd(i) as Newania carbonatite. Some observations can be seen in the Pb–Pb array (Fig. 9). Variability in Sr, Nd, and Pb isotope ratios of these ARCs can arise due to variable amount of crustal assimilation with the parental magma. Interestingly, Figure 12 reveals temporal variations of 87Sr/86Sr and εNd(i) in the Proterozoic ARCs. The gradual enrichment in 87Sr/86Sr and depletion in εNd(i) isotope ratios with time is clearly observed in Indian Proterozoic alkaline and carbonatite complexes (Fig. 12). In general, the isotopic composition of source of ARCs, even assuming some crustal contamination of parental magma, has changed with time during the Proterozoic, shifting systematically towards more enriched signatures, i.e., an increase in 87Sr/86Sr (0.702 to 0.708) and decrease in εNd(i) (–1.3 to –14.1) over a 2 Gyr duration. Such a general progression can be observed even for individual rock types, for example note the progressive change in the isotopic composition of syenite of different ages. Same can also be observed as one progresses from Hogenakal (higher εNd(i)) to Newania (intermediate εNd(i)) to other Tamil Nadu carbonatite having the lowest εNd(i) (Fig. 12c and d). These lines of evidence strongly suggest that the source of these ARCs, presumably the Indian SCLM, has become more enriched with younger age. The exact mechanism for such an enrichment cannot be ascertained at this point, but we believe that metasomatism by mantle-derived fluids likely have caused source enrichment.

Carbonatite and their link to Large Igneous Provinces (LIPs)

Carbonatite of Proterozoic to Recent age are mostly located in stable intraplate settings near rift or shear zones. Irrespective of emplacement ages of Indian carbonatite complexes that vary from Proterozoic to Cretaceous, carbonatites are spatially and temporally associated with a wide variety of alkaline, mafic, and ultramafic silicate rocks, as observed elsewhere (see Table 1; Woolley and Kjarsgaard, 2008). To explain the association of carbonatite and alkaline rocks, three major hypotheses on the generation of carbonatite have been proposed: (1) Fractional crystallization (Lee and Wyllie, 1994), (2) liquid immiscibility of carbonated alkaline silicate magmas (Brooker and Kjarsgaard, 2011), and (3) partial melting of carbonated mantle peridotite (Wallace and Green, 1988) or carbonated eclogite (Nelson et al., 1988). Although, several studies argue for a mantle origin of the carbonatite, the exact nature and composition of the mantle source are still debated (Ernst and Buchan, 2004; Bell and Simonetti, 2010; Ernst and Bell, 2010). In addition, the existence and nature of primitive/parental carbonatite melt within the mantle is still debated (Bell and Simonetti, 2010, Chandra et al., 2018), as well as the composition of such melt which can be dolomitic carbonatite, calcite carbonatite, calcite-dolomite, or magnesite carbonatite in nature (Ishikii et al., 2004).

Occurrence of several carbonatite complexes and associated...
Figure 12. Temporal variations in $^{87}\text{Sr}/^{86}\text{Sr}$ and $\varepsilon_{\text{Nd}(t)}$ of Indian Proterozoic (a and b) alkaline and associated mafic and high silica rocks, and (c and d) carbonatites. Arrow indicates a general trend toward more enriched signatures with younger age.

Silicate rocks globally within LIPs, has encouraged others to propose a genetic linkage between these rocks and mantle-plume originated LIPs (Ernst and Buchanan, 2004; Ernst and Bell, 2010; Wu et al., 2011; Ciborowski et al., 2017). Ernst and Bell (2010) have documented Proterozoic and Phanerozoic carbonatite occurrences worldwide, which are located within 1000 km radius of nearby LIPs. A few Proterozoic carbonatite complexes have been associated with the mantle-plume generated LIPs; emplacement age of carbonatite is similar to the age of the LIP. These include Phalaborwa and Shield carbonatite complexes of the 2055 Ma old Bushveld LIP in South Africa (Wu et al., 2011); several carbonatite bodies associated with the Central Iapetus Magmatic Province in St-Honore of eastern Laurentia (642 Ma); Alnö (Sweden, 589 Ma) and Fen (Norway, 583 Ma) carbonatite (Ernst and Buchanan, 2004); and carbonatite of Circum-Superior LIP (~1880 Ma; Ciborowski et al., 2017). Furthermore, studies have proposed that some Proterozoic carbonatite complexes originated from mantle plumes, but no LIP occurs in the area, for example the 730–670 Ma old carbonatite of the Yenisei Ridge, Central Siberia (Vrublevskii et al., 2011).

In the Indian context, no Proterozoic carbonatite complex has been linked to mantle-plume originated LIP, although several studies have established a link between the Phanerozoic Indian carbonatites, such as Amba Dongar, Barmer, Mundwara, Sung Valley, Swangkre, Samchampi, and Jarsa carbonatite complexes, with Deccan-Reunion and Kerguelen mantle plumes (e.g., Basu et al., 1993; Sen et al., 2009; Veena et al., 1998; Ray et al., 2000; Heaman et al., 2002; Srivastava and Sinha, 2007; Chandra et al., 2018, 2019). The origin of Phanerozoic carbonatite and alkaline complexes, particularly Amba Dongar, Barmer, Mundwara, Phenai Mata, and Bhuj that occur along the Narmada-Son lineament has been linked to the mantle plume activity 68–65 Ma ago that formed the Deccan flood basalts (Basu et al., 1993; Sen et al., 2009), strengthening the argument that ARC magmatism is related to mantle plume activity.

Geodynamic setting for the origin of ARCs

Several petrogenetic and evolutionary models for the generation of Proterozoic ARC complexes have been proposed based on the inferences from field evidences, structural and textural signatures, petrography and mineral chemistry, geochemistry, and geochronology of alkaline rocks (e.g., Aftalion et al., 2000; Burke et al., 2003; Burke and Khan, 2006; Upadhyay et al., 2006a, b; Upadhyay and Raith, 2006a, b; Vijaya Kumar et al., 2007, 2011; Upadhyay, 2008; Dasgupta et al., 2013, 2017). These studies generally agree that deformation of already formed ARCs during continental and arc-continental collisions gave rise to DARCs, and represent two parts of the Wilson cycle signifying opening and closing of an ocean (Burke et al., 2003; Burke and Khan, 2006; Leelanandam et al. 2006; Upadhyay et al., 2006a, b).
The Wilson cycle begins with the development of rifts in continental extensional regimes and emplacement of parental alkaline magmas. New ocean basins are created with continual extension of rift basins and formation of alkaline bodies. The already formed alkaline complexes are preserved on the drifted continental margins. In the second phase of the Wilson cycle, that is the closing of the ocean, the pre-existing ARCs are deformed and metamorphosed (develop a gneissic fabric) during continent-continent or arc-continent collision and form DARCs. The locus of these well-preserved DARCs marks the suture zone. Some of these DARCs, during subduction, reach a depth of 100 km and remain preserved within the SCLM, whilst few also remain preserved within the crust (Burke et al., 2003; Burke and Khan, 2006). After hundreds of millions of years of non-magmatic activity, the DARCs preserved in SCLM serve as the source for a new ARC in the area, as plate dynamics renews rifting along the suture zone. This is an extension of the idea proposed by Bailey (1977) to explain repetitive magmatic activities observed in the ARC complexes of the same locality over hundreds of million years.

Later, Burke and Khan (2006) proposed two models for the origin of ARCs: (1) the plume model, and (2) the DARC model. In the plume model, they argued that ARC magmas are sourced from mantle plumes, which they define to be as any source located within the convecting mantle (and hence not a part of SCLM) carrying distinct chemical signatures than the ambient mantle. In the DARC model, new generation of ARCs are formed from partial melting of DARCs that were stored in the lithospheric mantle during a past subduction event; this is similar to that proposed by Burke et al. (2003). However, these models are silent about the exact mechanism (and source) of formation of first-generation ARC that subsequently form DARC. Further, given the similarity in the chemical composition of DARCs and younger ARCs of a region, extensive melting of DARCs that is melting of entire source would be required to generate the new ARCs.

Below, we discuss a petrogenetic model for the origin of Indian Proterozoic ARCs and DARCs, which is mainly based upon earlier ideas proposed for emplacement of ARCs in EGMB and SGT. The model is schematically shown in Fig. 13 and generally agrees with the model of Burke et al. (2003). The proposed model shows three stages of development. In first stage, an intracontinental rift system develops in the southern part of India prior to the collision between Indian and East Antarctic Blocks (Fig. 13a). As a result of rifting and lithosphere thinning, asthenospheric upwelling takes place, which initiates decompressional melting to generate alkaline (nephelinite, phonolite, melilitolite, carbonatite) magmas in the initial phase of intraplate rift setting. We hypothesize that patches of (carbonated) EM-I type material, representing ancient recycled crust, is distributed in the SCLM, imparting an enriched signature to this SCLM source. It is also possible that mantle-derived fluids metasomatizes part of the SCLM, thus imparting distinctly enriched signature. We propose three possibilities for the formation of different rock type of Proterozoic complexes: (A) extremely low-degree partial melts are derived from the upwelling asthenospheric mantle (which may contain EM-I type material) and emplaced directly to the surface along the fault planes of a shear zone, similar to the mantle plume model of Burke and Khan (2006); (B) primary melt derived from SCLM source is differentiated in a crustal magma chamber and form compositionally different ARC magmas, for example, parental melilitite magma can

![Figure 13](image-url)

Figure 13. A plausible petrogenetic model proposed for the origin of Proterozoic ARCs shows three major stages for the generation of Proterozoic ARCs. (a) In Stage-I, a rift develops in the Indian block causes asthenospheric upwelling resulting in decompressional melting to generate alkaline magmas in intraplate rift setting. Melts can be generated by melting of asthenospheric material, or EM-I component representing the ancient recycled crust distributed within the SCLM; see Section 5.4 for details. (b) Stage-II, collision between Indian and East Antarctic blocks forms shear zones. In this stage, early formed ARCs get deformed to form DARCs along the shear zone; few of these DARCs reach up to a depth of ~ 100 km. (c) Stage-III, the area again undergoes renewed intraplate rifting (and crustal thinning) due to asthenosphere upwelling leading to extensive melting of early-formed DARCs that form of a new generation of ARCs.
generate nephelinite–phonolite–trachyte parental magmas with increasing fractionation; (C) asthenosphere-derived primary melt metasomatizes the EM-I bearing SCLM, and melting of this metasomatized SCLM forms carbonatite and alkaline magmas; these possibilities are shown in Fig. 13a. Furthermore, various possible petrogenetic pathways for the generation of carbonatite magmas are schematically shown in Fig. 14. Despite disagreement on the exact nature of the mantle source, it was commonly argued that Proterozoic ARCs originated from a metasomatized SCLM. Low-degree melting of metasomatized SCLM source can generate carbonated silicate melts, which after liquid immiscibility at crustal depths, form the carbonatite and associated alkaline rocks from the same complex argue in favour of a common source and that liquid immiscibility does not change the initial isotopic composition. It is unlikely that sources of alkaline and associated carbonatite rocks are different and yet chemically (isotopic composition) similar. In the second stage, shear zones are formed during collision of Indian and East Antarctic blocks (Fig. 13b). The early formed ARCs get deformed to form DARCs along the shear zones. Few of the DARCs can be subducted to about 100 km depth and become part of the SCLM. In third stage (Fig. 13c), the region again undergoes renewed faulting and rifting (and crustal thinning) due to asthenosphere upwelling under an extensional tectonics regime. This would result in extensive melting of the existing DARCs to generate renewed alkaline magmatic activity that formed the Neoproterozoic ARC complexes.

Summary and Concluding remarks

Alkaline magmatism during the Proterozoic era formed several alkaline rocks (nephelinite, nepheline syenite, syenite) and associated carbonatite complexes, collectively termed as ARCs. These ARCs are mainly concentrated in the Singhbhum Craton, EGMB, Bastar Craton, and SGT along the eastern part of India. Here, we have reviewed the petrology, geochronology, and geochemistry (major oxides, trace elements, and Sr-Nd-Pb-C-O isotopic composition) of 38 Proterozoic ARC complexes with an aim to address petrogenesis of these rocks. Geochronological data indicates three prominent phases of alkaline magmatism at 2533–2340 Ma, 1510–1242 Ma, and 833–572 Ma as well as two prominent metamorphic imprints around 950–930 Ma and 570–485 Ma. About 300 Myr long second phase of alkaline magmatism is associated with the Mesoproterozoic rifting (1500–1350 Ma). The first metamorphic event coincides with the Grenvillian Orogeny (~900–1000 Ma), whereas second events with the Pan-African orogeny (~500 Ma). Interestingly, two sets of emplacement ages for alkaline rocks for the Koraput (~860–920 Ma vs. 1387±34 Ma), Rairakhhol (938.8±3.1 Ma vs. 1372±5 Ma) and Khariar (513±18 Ma vs. 1470–1500 Ma) suggest recurrence of alkaline magmatism (?), which can be explained by melting of early-formed ARCs to form the later ARCs.

Nepheline syenite and syenite show distinct depletion of P, Zr and Ti, and enrichment of K. Carbonatite shows prominent negative K, Zr, Hf and Ti anomalies. Chondrite-normalized REE patterns of nepheline syenite, syenite, and nepheline are similar and show Eu anomaly, indicating the role of plagioclase in the source because plagioclase fractionation has been minor. Carbonatite is enriched in REEs about 10–100 times than the alkaline rocks. Similar Sr-Nd-Pb isotope compositions of alkaline rocks and carbonatite suggest a common mantle source for the generation of these rocks. Temporal variations in the isotopic compositions of ARCs show an enrichment in 87Sr/86Sr (0.702 to 0.708) and depletion in εNd(i) (-1.3 to -14.1) over a 2 Gyr duration, which suggest a systematic geochemical evolution of the source of these ARCS, generally becoming more enriched with younger age. We believe that a metasomatized and enriched SCLM source is the most likely source for the generation of these Proterozoic rocks, which impart a signature dominated by the higher abundance of incompatible elements, e.g., Ba, Sr, Nb, P and REEs, in both the alkaline rocks and carbonatite. The model proposed by Burke et al. (2003), suggesting the role of Wilson cycle in the origin of ARCs in intracontinental rift settings, seems to be a plausible model. Continental rifting associated with the rise in underlying asthenospheric material (as well as the SCLM) generate alkaline magmas by decompressional melting. These magmas can directly erupt to the surface or undergo differentiation during storage in a crustal magma chamber and subsequently erupt to produce compositionally diverse range of alkaline rocks.

Acknowledgements

We thank Prof. S. Sensarma and Dr. Fareeduddin for an invitation to submit this work. We are grateful to Aniket Chakrabarty, an anonymous reviewer, and the editor for a detailed review and insightful comments that improved clarity of this work. JC thanks the Director,
CSIR-NGRI for permission to publish this work (Ref. No. NGRI/Lib/2019/Pub-87). MH acknowledges CSIR, MHRD, Govt. of India for JRF/SRF fellowship.

References

Ackerman, L., Magna, T., Rapprich, V., Upadhyay, D., Krátký, O., Čejková, B., Erban, V., Kochergina, Y.V. and Hrstka, T., 2017. Contrasting petrogenesis of spatially related carbonatites from Samalpatti and Sevattur, Tamil Nadu, India. Lithos, 284, pp.257-275.

Aftalion, M., Bowes, D.R., Dash, B. and Falllick, A.E., 2000. Late Pan-African thermal history in the Eastern Ghats terrane, India, from U-Pb and K-Ar isotopic study of the Mid-Proterozoic Kharai alkali syenite, Orissa. Geological Survey of India, (57), pp.26-32.

Ashwal, L.D., Patzelt, M., Schmitz, M.D. and Burke, K., 2016. Isotopic evidence for a lithospheric origin of alkaline rocks and carbonatites: an example from southern Africa. Canadian Journal of Earth Sciences, 53(11), pp.1216-1226.

Bailey, D.K., 1977. Lithosphere control of continental rift magmatism. Journal of the Geological Society, 133(1), pp.103-106.

Basu, S.K. and Bhattacharyya, T., 2014. Petrography and Mineral chemistry of Alkaline-Carbonate complex in Singhbhum Crustal Province, Purulia Region, Eastern India. Journal of the Geological Society of India, 83(1), pp.54-70.

Basu, A.K., Renne, P.R., Dasgupta, D.K., Teichmann, F. and Poreda, R.J., 1993. Early and late alkali igneous pulses and a high-He plume origin for the Deccan flood basalts. Science, 261(5123), pp.902-906.

Bell, K. and Tilton, GR., 2002. Probing the mantle: the story from carbonatites. Eos, Transactions American Geophysical Union, 83(25), pp.273-277.

Bell, K. and Simonetti, A., 2010. Source of parental melts to carbonatites–critical isotopic constraints. Mineralogy and Petrology, 98(1-4), pp.77-89.

Bhadra, S., Gupta, S. and Banerjee, M., 2004. Structural evolution across the Eastern Ghats Mobile Belt – Bastar craton boundary, India: hot over cold thrusting in an ancient collision zone. Journal of Structural Geology 26(2), pp.233–245.

Bhattacharya, S. and Basei, M., 2010. Contrasting magmatic signatures in the Raikahol and Korapur alkaline complexes, Eastern Ghats belt, India. Journal of Earth System Science, 119(2), pp.175-181.

Biswal, T.K., De Waeele, B. and Ahuja, H., 2007. Timing and dynamics of the juxtaposition of the Eastern Ghats Mobile Belt against the Bhandara Craton, India: A structural and zircon U-Pb SHRIMP study of the fold thrust belt and associated nepheline syenite plutons. Tectonics, 26(4), TC4006.

Brooker, R.A. and Kjargaard, B.A., 2011. Silicate-Carbonate Liquid Immiscibility and Phase Relations in the System SiO2-Na2O-Al2O3-CaO-CO2 at 0.1-2.5 GPa with Applications to Carbonatite Genesis. Journal of Petrology, 52, pp.1281-1305.

Burke, K. and Khan, S., 2006. Geoinformatic approach to global nepheline syenite and carbonatite distribution: testing a Wilson cycle model. Geosphere, 2(1), pp.53-60.

Burke, K., Ashwal, L.D. and Webb, S.J., 2003. New way to map old sutures using deformed alkaline rocks and carbonatites. Geology, 31(5), pp.391-394.

Burke, K., Khan, S.D. and Mart, R.W., 2008. Grenville Province and Monteregian carbonatite and nepheline syenite distribution related to rifting, collision, and plume passage. Geology, 36(12), pp.983-986.

Catlos, E.J., Dubey, C.S. and Sivasubramanian, P., 2008. Monazite ages from carbonatites and high-grade assemblages along the Kambam fault (southern granulite terrane, South India). American Mineralogist, 93(8-9), pp.1230–1244.

Chakrabarty, A. 2009. Petrogenesis of carbonate and associated alkaline rocks, Purulia, W.B., India. Ph.D.Thesis, Department of Earth Sciences, Indian Institute of Technology Roorkee

Chakrabarty, A. and Sen, A.K., 2010. Enigmatic association of the carbonate and alkali-pyroxenite along the Northern Shear Zone, Purulia, West Bengal: A saga of primary magmatic carbonate. Journal of the Geological Society of India, 76(4), pp.403-413.

Chakrabarty, A., Mitchell, R.H., Ren, M., Saha, P.K., Pal, S., Pruseth, K.L. and Sen, A.K. 2016. Magmatic, hydrothermal and subsolidus evolution of the agpatic nepheline syenites of the Sushina Hill Complex, India: implications for the metamorphism of peralkaline syenites. Mineralogical Magazine, 80(7), pp.1161-1193.

Chakrabarty, A., Mitchell, R.H., Ren, M., Pal, S., and Sen, A.K., 2018. Nb–Zr–REE re-mobilization and implications for transitional agpatic rock formation: insights from the Sushina Hill Complex, India. Journal of Petrology, 59(10), pp.1899-1938.

Chalapathi Rao, N.V., Wu, F.Y. and Srinivas, M., 2012. Mesoproterozoic emplacement and enriched mantle derivation of the Racherla alkali syenite, Palaeo-Mesoproterozoic Cuddapah Basin, southern India: insights from in situ Sr–Nd isotopic analysis on apatite. Geological Society, London, Special Publications, 365(1), pp.185-195.

Chandra, J., Paul, D., Viladkar, S.G. and Sensarma, S., 2018. Origin of the Amba Dongar carbonatite complex, India and its possible linkage with the Deccan Large Igneous Province. Geological Society, London, Special Publications, 463(1), pp.137-169.

Chandra, J., Paul, D., Stracke, A., Chabaux, F. and Granet, M., 2019. The origin of carbonatites from Amba Dongar within the Deccan Large Igneous Province. Journal of Petrology, 60(6), pp.1119–1134.

Choudhary, A.K., Gopalan, K. and Sastry, C.A., 1984. Present status of the geochronology of the Precambrian rocks of Rajasthan. Tectonophysics, 105(1-4), pp.131-140.

Ciborowski, T.J.R., Minifie, M.J., Kerr, A.C., Ernst, R.E., Baragar, B. and Millar, I.L., 2017. A mantle plume origin for the Palaeoproterozoic Circum-Superior large Igneous Province. Precambrian Research, 294, pp.189-213.

Clark, G.S. and Subbarao, K.V., 1971. Rb–Sr isotopic age of the Kunavaram Series—a group of alkaline rocks from India. Canadian Journal of Earth Sciences, 8(12), pp.1597-1602.

Collins, A.S., Clark, C., and Plavsa, D., 2014. Peninsula India in Gondwana: the tectono-thermal evolution of the southern granulite terrane and its Gondwanan counterparts. Gondwana Research, 25, pp.190–203.

Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979. The Interpretation of Igneous Rocks. London University, London, 450 p.

Crawford, A.R., 1970. The Precambrian geochronology of Rajasthan and Bundelkhand, northern India. Canadian Journal of Earth Sciences, 7(1), pp.91-110.

Das, S., Sanayal, S., Karmakar, S., Sengupta, S. and Sengupta, P., 2018. Do the deformed alkaline rocks always serve as a marker of continental suture zone? A case study from parts of the Chotanagpur Granite Gneissic complex, India. Journal of Geodynamics, 129, pp.39-79.

Dasgupta, S., Bose, S. and Das, K., 2013. Tectonic evolution of the Eastern Ghats belt, India. Precambrian Research, 227, pp.247-258.

Dasgupta, S., Bose, S., Bhowmik, S.K. and Sengupta, P., 2017. The Eastern Ghats Belt, India, in the context of supercontinent assembly. Geological Society, London, Special Publications,
Granulite Terrane, India. Journal of Asian Earth Sciences, 42(6), pp.1256-1270.
Nair, N.G.K., Santosh, M. and Thampi, P.K., 1984. Alkali granite-syenite-carbonatite association in Munnar Kerala, India; implications for rifting, alkaline magmatism and liquid immiscibility. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 93(2), p.149.
Nanda, J., Gupta, S. and Dobmeier, C.J., 2008. Metamorphism of the Koraput Alkaline Complex, Eastern Ghats Province, India—evidence for reworking of a granulite terrane. Precambrian Research, 165(3-4), pp.153-168.
Naqvi, S.M. and Rogers, J.J.W., 1987. Precambrian geology of India. Oxford University Press.
Natarajan, M., Rao, B.B., Parthasarathy, R., Kumar, A. and Gopalan, K., 1994. 2.0 Ga old pyroxenite-carbonatite complex of Hogenakal, Tamil Nadu, South India. Precambrian Research, 65(1-4), pp.167-181.
Nelson, D.R., Chivas, A.R., Chappell, B.W. and McCulloch, M.T., 1988. Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52(1), pp.1-17.
Niyogi, D., 1966. Petrology of the alkaline rocks of Kishangarh, Rajasthan, India. Geological Society of America Bulletin, 77(1), pp.65-82.
Odom, A.L., 1982. Isotope age determinations of rock and mineral samples from Kerala, India. Final Report United Nations Case, (81-10084), p.10.
Pandit, M.K. and Golani, P.R., 2001. Reappraisal of the petrologic status of Newania ‘carbonatite’ of Rajasthan, western India. Journal of Asian Earth Sciences, 19(3), pp.305-310.
Pandit, M.K., Sial, A.N., Sukumaran, G.B., Pimentel, M.M., Ramasamy, A.K. and Ferreia, V.P., 2002. Depleted and enriched mantle sources for Paleo-and Neoproterozoic carbonatites of southern India: Sr, Nd, C–O isotopic and geochemical constraints. Chemical geology, 189(1-2), pp.69-89.
Pandit, M.K., Sial, A.N., Sukumaran, G.B., Ramanathan, S. and Ferreia, V. P., 1998. Carbon and oxygen isotopic variation in Tamil Nadu carbonatites, South India. Current science, 74(7), pp.620-624.
Peucat, J.J., Mahabaleswar, B. and Jayananda, M., 1993. Age of younger tonalitic magmatism and granulitic metamorphism in the South Indian transition zone (Krishnagiri area); comparison with older Peninsular gneisses from the Gour–Hassan area. Journal of Metamorphic Geology, 11(6), pp.879-888.
Phadke, A.V. and Jhingan, A.G., 1968. On the carbonatite at Newania, Udapiur district, Rajasthan. Geological Society of India, 9(2), pp.165-170.
RadhaKrishna, B. P. and S. M. Naqvi., 1986. Precambrian Continental Crust of India and Its Evolution. The Journal of Geology. 94(2), pp.145–166.
Rajesh, H.M., 2003. Outcrop-scale silicate liquid immiscibility from an alkali syenite (A-type granitoid)-pyroxenite association near Puttetti, Trivandrum Block, South India. Contributions to Mineralogy and Petrology, 145(5), pp.612-627.
Ramakrishnan, M., Nanda, J.K. and Augustine, P.F., 1998. Geological evolution of the Proterozoic Eastern Ghats mobile belt. Geological Survey of India, Special Publication, 44, pp.1-21.
Ranjan, S., Upadhyay, D., Abhinay, K., Pruseth, K.L. and Nanda, J.K., 2018. Zircon geochronology of deformed alkalic rocks along the Eastern Ghats Belt margin: India–Antarctica connection and the Enderby continent. Precambrian Research, 310, pp.407-424.
Ratnakar, J. and Leelanandam, C., 1986. A petrochemical study of the purimella alkaline pluton, prakasam district, Andhra Pradesh, India. Neues Jahrbuch für Mineralogie - Abhandlungen, 156(1), pp.99-119.
Ravindran, K.R., 1986. Studies on Carbonatite rocks of Pakkanadu Salem district Tamil Nadu.
Ray, J.S. and Ramesh, R., 2006. Stable carbon and oxygen isotopic compositions of Indian carbonatites. International Geology Review, 48(1), pp.17-45.
Ray, J.S., Ramesh, R., Pande, K., Trivedi, J.R., Shukla, P.N. and Patel, P.P., 2000. Isotope and rare earth element chemistry of carbonatite–alkaline complexes of Deccan volcanic province: implications to magmatic and alteration processes. Journal of Asian Earth Sciences, 18(2), pp.177-194.
Ray, J.S., Pande, K., Bhutani, R., Shukla, A.D., Rai, V.K., Kumar, A., Awasthi, N., Smitha, R.S. and Panda, D.K., 2013. Age and geochemistry of the Newania dolomite carbonatites, India: implications for the source of primary carbonate magma. Contributions to Mineralogy and Petrology, 166(6), pp.1613-1632.
Renjith, M.L., Charan, S.N., Subbarao, D.V., Babu, E.V.S.S.K. and Rajashekhara, V.B., 2014. Grain to outcrop-scale frozen moments of dynamic magma mixing in the syenite magma chamber, Yelagiri Alkaline Complex, South India. Geoscience Frontiers, 5(6), pp.801-820.
Renjith, M.L., Santosh, M., Li, T., Satyanarayanan, M., Korakoppa, M.M., Tsnogae, T., Rao, D.S., Krishna, A.K. and Charan, S.N., 2016a. Zircon U–Pb age, Lu–Hf isotope, mineral chemistry and geochemistry of Sundamalai peralkaline pluton from the Salem Block, southern India: Implications for Cryogenian adakite-like magmatism in an aborted-riift. Journal of Asian Earth Sciences, 115, pp.321-344.
Renjith, M.L., Santosh, M., Satyanarayanan, M., Rao, D.S. and Tang, L., 2016b. Multiple rifting and alkaline magmatism in southern India during Paleoproterozoic and Neoproterozoic. Tectonophysics, 680, pp.233-253.
Rudnick, R.L. and Goldstein, S.L., 1990. The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb. Earth and Planetary Science Letters, 98(2), pp.192-207.
Sai, V.S., 2017. Hornblende bearing quartz syenite from the Proterozoic Podili alkali granite pluton, Eastern Dharwar Craton, India. Editorial Advisory Board (2016-2017), 71(4), pp.563-574.
Santosh, M., Iyer, S.S., Vasconcellos, M.B.A. and Enzweiler, J., 1989. Late Precambrian alkaline plutons in southwest India: geochronologic and rare-earth element constraints on Pan-African magmatism. Lithos, 24(1), pp.65-79.
Santosh, M., Yang, Q.Y., Mohan, M.R., Tsnogae, T., Shaji, E. and Satyanarayanan, M., 2014. Cryogenian alkaline magmatism in the Southern Granulite Terrane, India: Petrology, geochemistry, zircon U–Pb ages and Lu–Hf isotopes. Lithos, 208, pp.430-445.
Sarkar, A., Paul, D.K., Bishui, P.K., Gupta, S.N. and Nanda, J.K., 1989. Late Proterozoic alkali magmaism in the Eastern Ghats Belt: Rb-Sr isotopic study on the Koraput complex, Orissa. Indian Minerals, 43(3-4), pp.265-272.
Sarkar, A. and Bhattacharya, S.K., 1992. Carbonatites from Rajasthan indicate mantle carbon-and oxygen-isotope composition. Current Science, pp.368-370.
Schleicher, H., Todt, W., Viladkar, S.G. and Schmidt, F., 1997. Pb/Pb age determinations on the Newania and Sevattur carbonatites of India: evidence for multi-stage histories. Chemical Geology, 140(3-4), pp.261-273.
Schleicher, H., Kramm, U., Pernicka, E., Schildwoski, M., Schmidt, F., Subramanian, V., Todt, W. and Viladkar, S.G., 1998. Enriched subcontinental upper mantle beneath southern India: evidence from Pb, Nd, Sr, and C–O isotopic studies on Tamil Nadu carbonatites. Journal of Petrology, 39(10), pp.1765-1785.
Sen, G., Bizimis, M., Das, R., Paul, D.K., Ray, A. and Biswas, S., 2009. Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth and Planetary Science Letters, 277(1-2), pp.101-111.

Sharma, V.N. and Ratnakar, J., 2000. Petrology of the gabbro-diorite-syenite-granite complex of Chanduluru, Prakasam alkaline province, Andhra Pradesh, India. Journal of the Geological Society of India, 55(5), pp.553-572.

Sheikh, J.M., Champati, A.K., Patel, S.C., Prabhakar, N. and Gerdes, A. 2017. Structure, petrology and U-Pb zircon age of Mesoproterozoic nepheline syenites from the Rengali Province, eastern India: Implications for their petrogenesis and geodynamic evolution. In EGU General Assembly Conference Abstracts, 19, p.17065.

Simmat, R. and Raith, M.M., 2008. U–Th–Pb monazite geochronometry of the Eastern Ghats Belt, India: timing and spatial disposition of poly-metamorphism. Precambrian Research, 162(1-2), pp.16-39.

Smithies, R.H. and Champion, D.C., 1999. Late Archaean felsic alkaline igneous rocks in the Eastern Goldfields, Yilgarn Craton, Western Australia: a result of lower crustal delamination?. Journal of the Geological Society, 156(3), pp.561-576.

Sørensen, H., 1974. Alkali syenites, feldspathoidal syenites and related lavas. The alkaline rocks, pp.22-52.

Subramanian, V., Viladkar, S.G. and Upendran, R., 1978. Carbonatites of India. In Proceedings 1st International Symposium on Carbonatites, Brazil (pp. 277-293).

Subrahmanyan, V., Viladkar, S.G. and Upendran, R., 1978. Carbonatite complex of Samalpatti, district Dharmapuri, Tamil Nadu. Journal of the Geological Society of India, 55(5), pp.553-572.

Sukheswala, R.N. and Viladkar, S.G., 1978. Carbonatites of India. In Proceedings 1st International Symposium on Carbonatites, Brazil (pp. 277-293).

Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), pp.313-345.

Suresh, G., Ananthanarayana, R., Hanumanthu, R.C., Ghosh, S., Kumar, A.A. and Reddy, K.V.S., 2010. Geology of Pulikonda and Dancerla Alkaline Complexes, Andhra Pradesh. Journal of the Geological Society of India, 75(4), pp.576-595.

Taylor H. P., Frechen J. and Degens E.T., 1967 Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alnö district, Sweden. Geochimica et Cosmochimica Acta. 31(3) pp.407-430.

Upadhyay, D., 2008. Alkaline magmatism along the southeastern margin of the Indian shield: implications for regional geodynamics and constraints on craton–Eastern Ghats Belt suturing. Precambrian Research, 162(1-2), pp.59-69.

Upadhyay, D. and Raith, M.M., 2006a. Intrusion age, geochemistry and metamorphic conditions of a quartz-monzosyenite intrusion at the craton–Eastern Ghats Belt contact near Jojuru, India. Gondwana Research, 10(3-4), pp.267-276.

Upadhyay, D. and Raith, M.M., 2006b. Petrogenesis of the Kunavaram alkaline complex and the tectonothermal evolution of the neighboring Eastern Ghats Belt granulites, SE India. Precambrian Research, 150(1-2), pp.73-94.

Upadhyay, D., Raith, M.M., Mezger, K., Bhattacharya, A. and Kinny, P.D., 2006a. Mesoproterozoic rifting and Pan-African continental collision in SE India: evidence from the Khairi alkaline complex. Contributions to Mineralogy and Petrology, 151(4), pp.434-456.

Upadhyay, D., Raith, M.M., Mezger, K. and Hammerschmidt, K., 2006b. Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam alkaline province, SE India. Lithos, 89(3-4), pp.447-477.

Upadhyay, D., Jahn-Awe, S., Pin, C., Paquette, J.L. and Braun, I., 2006c. Episodic alkaline magmatism at Sivamalai, southern India. Gondwana Research, 10(1-2), pp.156-166.

Vijaya Kumar, K., Carol D.F., Frost B.R. and Kevin R.C., 2007. The Chimakurti, Errakonda, and Uppalapadu Plutons, Eastern Ghats Belt, India: An Unusual Association of Tholeiitic and Alkaline Magmatism. Lithos 97(1) pp.30–57.

Vijaya Kumar, K. and Leelanandam, C., 2008. Evolution of the Eastern Ghats Belt, India: A plate tectonic perspective: Journal of the Geological Society of India. 72(6), pp.720–749.

Vijaya Kumar, K., Leelanandam, C. and Ernst, W.G., 2011. Formation and fragmentation of the Palaeoeroproterozoic supercontinent Columbia: evidence from the Eastern Ghats Granulite Belt, southeast India. International Geology Review, 53(11-12), pp.1297-1311.

Viladkar, S.G. and Winnenauer, W., 1986. Mineralogy and geochemistry of the Newania carbonatite-fenite complex, Rajasthan, India. Neues Jahrbuch für Mineralogie - Abhandlungen, 156, pp.1-21.

Viladkar, S.G. and Subramanian, V., 1995. Mineralogy and geochemistry of the carbonatites of the Sevattur and Samalpatti
complexes, Tamil-Nadu. Journal of the Geological Society of India, 45(5), pp.505-517.

Viladkar, S.G., 1998. Carbonatite occurrences in Rajasthan, India. Petrology, 6(3), pp.272-283.

Vladykin, N.V., Viladkar, S.G., Miyazaki, T. and Mohan, V.R., 2008. Geochemistry of benstonite and associated carbonatites of Sevattur, Jogipatti and Samalpatti, Tamil Nadu, south India and Murun massif, Siberia. Journal of the Geological Society of India, 72(3), pp.312-324.

Vrublevskii, V.V., Reverdatto, V.V., Izokh, A.E., Gertner, I.F., Yudin, D.S. and Tishin, P.A., 2011, April. Neoproterozoic carbonatite magmatism of the Yenisei Ridge, Central Siberia: 40Ar/39Ar geochronology of the Petchenga rock complex. In Doklady Earth Sciences,437, p.443. SP MAIK Nauka/Interperiodica.

Wallace, M.E. and Green, D.H., 1988. An experimental determination of primary carbonatite magma composition. Nature, 335(6188), p.343.

Woolley, A.R., Kempe, D.R.C., 1989. Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Bell, K. (ed.) Carbonatites: Genesis and Evolution. Unwin Hyman, London. pp.1–14.

Woolley, A.R., 2001. Alkaline rocks and carbonatites of the world. Part 3: Africa. Geological Society. Natural History Museum, London.

Woolley, A.R., Kjarsgaard, B.A., 2008. Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: Evidence from a global database. The Canadian Mineralogist. 46(4), pp.741–752.

Wu, F.Y., Yang, Y.H., Li, Q.L., Mitchell, R.H., Dawson, J.B., Brandl, G. and Yuhara, M., 2011. In situ determination of U–Pb ages and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite Complex, South Africa. Lithos, 127(1-2), pp.309-322.

Zindler, A. and Hart, S., 1986. Chemical geodynamics. Annual review of earth and planetary sciences, 14(1), pp.493-571.

Dr. Debajyoti Paul is a Professor at the Department of Earth Sciences, Indian Institute of Technology Kanpur. His main research interest is to understand the evolution of the crust–mantle system by studying the geochemical signatures preserved in the mantle-derived rocks. Currently, he and his Ph.D. students are working to understand the geochemical evolution of the Indian subcontinent. He has published around 60 papers and articles in peer-reviewed journals.

Mahesh Halder is a Senior Research Fellow (SRF) and a Ph.D. student in the Department of Earth Sciences, IIT Kanpur, India. He was awarded a JRF/SRF fellowship by the Council of Scientific & Industrial Research (CSIR), MHRD, Govt. of India. His areas of interests are petrology and geochemistry of igneous rocks with special emphasis on the crust–mantle interaction and origin of Large Igneous Provinces.

Abbreviations used in the manuscript

Abbreviation	Description
ARCs	Alkaline rocks and carbonatites
DARCs	Deformed alkaline rocks and carbonatites
EGMB	Eastern Ghats Mobile Belt
SGT	Southern Granulite Terrain
KZ	Khondalite zone
MZ	Migmatic zone
WCR	Western charnockite zone
TZ	Transition zone
EGP	Eastern Ghats Province
EDC	Eastern Dharwar Craton
PCSZ	Palghat–Cauvery shear zone
KGPT	Karur–Kambam–Painavu–Trichur shear zone
TAS	Total alkali versus silica
REE	Rare earth elements
LREE	Light rare earth elements
DMM	Depleted MORB mantle
HIMU	high μ, μ = 238U/204Pb
EMI	Enriched mantle I
EMII	Enriched mantle II
UCC	Upper continental crust
LCC	Lower continental crust
BSE	Bulk silicate Earth
LILE	Large ion lithophile elements
HFSE	High field strength elements
SCLM	Subcontinental lithospheric mantle
LIPs	Large Igneous Provinces

Jyoti Chandra, Ph.D., is a Research Associate-I at the National Geophysical Research Institute, India. She received Ph.D. from the Department of Earth Sciences, Indian Institute of Technology Kanpur with funding from CSIR-JRF and GATE fellowships. Her main research focuses on the geochemical and isotopic (Sr-Nd-Pb-C-O) studies of carbonatites and associated silicate rocks and basalt to understand their origin. She has published two papers in international journals.