Generalized uncertainty principle, extra dimensions and holography

Fabio Scardigli1,3 and Roberto Casadio2

1 Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
2 Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna, via Irnerio 46, 40126 Bologna, Italy

E-mail: fabio@itp.unibe.ch and casadio@bo.infn.it

Received 12 March 2003
Published 20 August 2003
Online at stacks.iop.org/CQG/20/3915

Abstract
We consider uncertainty principles which take into account the role of gravity and the possible existence of extra spatial dimensions. Explicit expressions for such generalized uncertainty principles in $4+n$ dimensions are given and their holographic properties investigated. In particular, we show that the predicted number of degrees of freedom enclosed in a given spatial volume matches the holographic counting only for one of the available generalizations and without extra dimensions.

PACS number: 04.60.−m

1. Introduction

During the last few years, considerable efforts have been devoted to clarifying the role played by the existence of extra spatial dimensions in the theory of gravity [1, 2]. One of the most interesting predictions drawn from the theory is that there should be measurable deviations from the $1/r^2$ law of Newtonian gravity at short (and perhaps also at large) distances. Such new laws of gravity would imply modifications of those generalized uncertainty principles (GUPs) designed to account for gravitational effects in the measurement of positions and energies [4].

On the other hand, the holographic principle is claimed to apply to all gravitational systems. The existence of GUPs satisfying the holography in four dimensions (one of the main examples is due to Ng and van Dam [3]) led us to explore the holographic properties of the GUPs extended to the brane-world scenarios. The results, at least for the examples we considered, are quite surprising. The expected holographic scaling indeed seems to hold only in four dimensions, and only for Ng and van Dam’s GUP. When extra spatial dimensions are admitted, the holography is destroyed. This fact allows two different interpretations: either the
holographic principle is not universal and does not apply when extra dimensions are present; or, in contrast, we take seriously the holographic claim in any number of dimensions, and our results are therefore evidence against the existence of extra dimensions.

In section 2 we analyse GUPs obtained by linearly combining quantum mechanical expressions with general relativistic bounds [5]. In section 3 we repeat the same analysis for the type of GUPs discussed in [3] and in section 4 we comment on our results. The four-dimensional Newton constant is denoted by G_N throughout the paper.

2. Linear GUPs from micro-black holes

In this section we derive GUPs via a micro-black hole gedanken experiment, following closely the content of [5] which we then generalize to spacetimes with extra dimensions.

2.1. GUP in four dimensions

When we measure a position with precision of order Δx, we expect quantum fluctuations of the metric field around the measured position with energy amplitude

$$\Delta E \sim \frac{\hbar c}{2 \Delta x}. \quad (2.1)$$

The Schwarzschild radius associated with the energy ΔE,

$$R_S = \frac{2 G_N \Delta E}{c^4}, \quad (2.2)$$

falls well inside the interval Δx for practical cases. However, if we wanted to improve the precision indefinitely, the fluctuation ΔE would increase and the corresponding R_S would become larger and larger, until it reaches the same size as Δx. As is well known, the critical length is the Planck length,

$$\Delta x = R_S \Rightarrow \Delta x = \left(\frac{G_N \hbar}{c^3} \right)^{1/2} \equiv \ell_p, \quad (2.3)$$

and the associated energy is the Planck energy

$$\epsilon_p \equiv \frac{\hbar c}{2 \ell_p} = \frac{1}{2} \left(\frac{\hbar c^{5/2}}{G_N} \right)^{1/2}. \quad (2.4)$$

If we tried to further decrease Δx, we should concentrate in that region an energy greater than the Planck energy, and this would further enlarge the Schwarzschild radius R_S, hiding more and more details of the region beyond the event horizon of the micro-hole. The situation can be summarized by the inequalities

$$\Delta x \gtrsim \begin{cases} \frac{\hbar c}{2 \epsilon_p} & \text{for } \Delta E < \epsilon_p \\ \frac{2 G_N \Delta E}{c^4} & \text{for } \Delta E > \epsilon_p \end{cases} \quad (2.5)$$

which, if combined linearly, yield

$$\Delta x \gtrsim \frac{\hbar c}{2 \Delta E} + \frac{2 G_N \Delta E}{c^4}. \quad (2.6)$$

This is a generalization of the uncertainty principle to cases in which gravity is important, i.e. to energies of the order of ϵ_p. We note that the minimum value of Δx is reached for $(\Delta E)_{\text{min}} = \epsilon_p$ and is given by $(\Delta x)_{\text{min}} = 2 \ell_p$.
2.2. GUP with n extra dimensions

We shall now generalize the procedure outlined in the previous subsection to a spacetime with $4+n$ dimensions, where n is the number of spacelike extra dimensions. The first problem we should address is how to relate the gravitational constant G_N in four dimensions to that in $4+n$, henceforth denoted by $G_{(4+n)}$.

This, of course, depends on the model of spacetime with extra dimensions we consider. Models that appeared in the literature in recent years belong mostly to two scenarios:

- the Arkani-Hamed–Dimopoulos–Dvali (ADD) model [1], where the extra dimensions are compact and of size L;
- the Randall–Sundrum (RS) model [2], where the extra dimensions have an infinite extension but are warped by a non-vanishing cosmological constant.

A feature shared by (the original formulations of) both scenarios is that only gravity propagates along the n extra dimensions, while standard model fields are confined to a four-dimensional sub-manifold usually referred to as the brane world.

In the ADD case, the link between G_N and $G_{(4+n)}$ can be fixed by comparing the gravitational action in four dimensions with that in $4+n$ dimensions. The spacetime topology in such models is $M = M^4 \otimes \mathbb{R}^n$, where M^4 is the usual four-dimensional spacetime and \mathbb{R}^n represents the extra dimensions of finite size L. The spacetime brane has no tension and therefore the action $S_{(4+n)}$ can be written as

$$ S_{(4+n)} = \frac{c^4}{16\pi G_{(4+n)}} \int_{M^4 \otimes \mathbb{R}^n} d^{4+n}x \sqrt{-g} R \sim \frac{c^4}{16\pi G_{(4+n)}} \int_{M^4} d^4x \sqrt{-\tilde{g}} L^n \tilde{R}, \quad (2.7) $$

where \tilde{R}, \tilde{g} are the projections on M^4 of R and g. Here L^n is the ‘volume’ of the extra dimensions and we omitted unimportant numerical factors. On comparing the above expression with the purely four-dimensional action

$$ S_{(4)} = \frac{c^4}{16\pi G_N} \int_{M^4} d^4x \sqrt{-\tilde{g}} \tilde{R}, \quad (2.8) $$

we obtain

$$ G_{(4+n)} \sim G_N L^n. \quad (2.9) $$

The RS models are more complicated. It can be shown [2] that for $n = 1$ extra dimension, we have $G_{(4+n)} = \sigma^{-1} G_N$, where σ is the brane tension with dimensions of length^{-1} in suitable units. The gravitational force between two pointlike masses m and M on the brane is now given by

$$ F = G_N \frac{mM}{r^2} \left(1 + \frac{e^{-\sigma r}}{\sigma r^2}\right), \quad (2.10) $$

where the correction to Newton law comes from summing over the extra dimensional graviton modes in the graviton propagator [2]. However, since equation (2.10) is obtained by perturbative calculations, not immediately applicable to a non-perturbative structure such as a black hole, we shall consider only the ADD scenario in this paper. To be more precise, from table-top tests of the gravitational force, one finds that $n \geq 2$ in ADD [1, 6]. On the other hand, black holes with mass $M \ll \sigma^{-1}$ are likely to behave as pure five-dimensional in RS [7]; therefore, our results for $n = 1$ should apply to such a case.

In order to proceed as in the previous section, we now need a formula for the Schwarzschild radius in $4+n$ dimensions. This can be obtained, heuristically, from the gravitational force law in $4+n$ dimensions [8] as determined by Gauss theorem,

$$ F = G_{(4+n)} \frac{mM}{r^{2+n}}. \quad (2.11) $$
Therefore, the total energy of a particle of mass m in the gravitational field of the source M is given by

$$E_{\text{tot}} = \frac{1}{2} m v^2 - G\frac{mM}{r^{1+n}},$$

and the escape velocity is

$$v_f^2 = 2G\frac{M}{r^{1+n}}.$$

Requiring $v_f = c$, we obtain for the Schwarzschild radius

$$R_{(4+n)} = \left(\frac{2G(4+n)M}{c^2}\right)^{\frac{1}{2+n}}.$$

We shall show in the following section that exact calculations based on the higher dimensional Schwarzschild solution [13] just modify this result by numerical factors.

In the following, we shall just consider micro-black holes with $R_{(4+n)} \ll L$, so as to avoid complications that are expected when the Schwarzschild radius approaches the compactification length [9]. Moreover, the opposite case ($R_{(4+n)} \gg L$) would imply the complete non-observability of extra dimensions, hidden beyond the event horizon.

The radius $R_{(4+n)}$ is related to $R_{(4)} \equiv R_S$ as given in equation (2.2) according to

$$R_{(4+n)} = \left(\frac{2G(4+n)M}{c^2}\right)^{\frac{1}{2+n}} = R_S^{\frac{1}{2+n}} L^{\frac{1}{2+n}},$$

and, from $R_{(4+n)} \ll L$, we can infer the following inequalities:

$$R_{(4+n)} \ll L \Rightarrow R_{(4+n)}^{\frac{1}{2+n}} \ll L^{\frac{1}{2+n}} \Rightarrow R_S^{\frac{1}{2+n}} R_{(4+n)}^{\frac{1}{2+n}} \ll L \Rightarrow R_S \ll R_{(4+n)}.$$

Therefore,

$$R_S \ll R_{(4+n)} \ll L$$

and the Schwarzschild radius of a black hole in a spacetime with extra dimensions is greater than that in four dimensions [8, 9].

Since measurements can be performed only on the brane, with the uncertainty Δx in position we can still associate an energy given by equation (2.1). The corresponding Schwarzschild radius is now given by equation (2.14) with $M = \Delta E/c^2$ and the critical length such that $\Delta x = R_{(4+n)}$ is the Planck length in $4 + n$ dimensions,

$$\Delta x = \left(\frac{G(4+n)\hbar}{c^3}\right)^{\frac{1}{2+n}} = \left(\frac{G_N\hbar}{c^3} L^n\right)^{\frac{1}{2+n}} = (\ell_p^2 L^n)^{\frac{1}{2+n}} \equiv \ell_{(4+n)}.$$

The energy associated with $\ell_{(4+n)}$ is analogous to the Planck energy in $4 + n$ dimensions,

$$\epsilon_{(4+n)} = \frac{1}{2} \left(\frac{\hbar c^5 \hbar^4 \epsilon_p^n}{G_N L^n}\right)^{\frac{1}{2+n}} = \frac{1}{2} \left[4\ell_p^2 \left(\frac{\hbar c}{L}\right)^n\right]^{\frac{1}{2+n}},$$

where ϵ_p is the Planck energy in four dimensions given in equation (2.4).

It is reasonable to assume that $\ell_p \ll L$, otherwise the extra dimensions would not have a classical spacetime structure. We then have

$$\ell_p \ll L \Rightarrow \ell_p^n \ll L^n \Rightarrow \ell_{(4+n)}^{2+n} \ll \ell_p^2 L^n = \ell_{(4+n)}^{2+n} \Rightarrow \ell_p \ll \ell_{(4+n)}.$$

Therefore, $R_S \ll R_{(4+n)} \ll L$ and the Schwarzschild radius of a black hole in a spacetime with extra dimensions is greater than that in four dimensions [8, 9].

Since measurements can be performed only on the brane, with the uncertainty Δx in position we can still associate an energy given by equation (2.1). The corresponding Schwarzschild radius is now given by equation (2.14) with $M = \Delta E/c^2$ and the critical length such that $\Delta x = R_{(4+n)}$ is the Planck length in $4 + n$ dimensions,

$$\Delta x = \left(\frac{G(4+n)\hbar}{c^3}\right)^{\frac{1}{2+n}} = \left(\frac{G_N\hbar}{c^3} L^n\right)^{\frac{1}{2+n}} = (\ell_p^2 L^n)^{\frac{1}{2+n}} \equiv \ell_{(4+n)}.$$

The energy associated with $\ell_{(4+n)}$ is analogous to the Planck energy in $4 + n$ dimensions,

$$\epsilon_{(4+n)} = \frac{1}{2} \left(\frac{\hbar c^5 \hbar^4 \epsilon_p^n}{G_N L^n}\right)^{\frac{1}{2+n}} = \frac{1}{2} \left[4\ell_p^2 \left(\frac{\hbar c}{L}\right)^n\right]^{\frac{1}{2+n}},$$

where ϵ_p is the Planck energy in four dimensions given in equation (2.4).

It is reasonable to assume that $\ell_p \ll L$, otherwise the extra dimensions would not have a classical spacetime structure. We then have

$$\ell_p \ll L \Rightarrow \ell_p^n \ll L^n \Rightarrow \ell_{(4+n)}^{2+n} \ll \ell_p^2 L^n = \ell_{(4+n)}^{2+n} \Rightarrow \ell_p \ll \ell_{(4+n)}.$$
Further, we can also prove that
\[\ell_p \ll L \Rightarrow \ell_p^2 \ll L^2 \Rightarrow \ell_{(4+n)}^2 L^n \ll L^{2n} \Rightarrow \ell_{(4+n)} \ll L. \quad (2.22) \]
Summarizing, from \(\ell_p \ll L \) we obtain
\[\ell_p \ll \ell_{(4+n)} \ll L, \quad (2.23) \]
and correspondingly
\[\frac{\hbar c}{2L} \ll \epsilon_{(4+n)} \ll \epsilon_p, \quad (2.24) \]
so that the Planck energy threshold, where quantum gravity phenomena become important, is lowered by the existence of extra dimensions [1]. Finally, we can check the inequalities among \(\ell_p, R_S, R_{(4+n)}, \) and \(\ell_{(4+n)} \). We can easily prove that
\[\ell_{(4+n)} < R_S \quad (2.25) \]
since
\[\ell_{(4+n)} < R_S \Leftrightarrow \left(\frac{\ell_p^2}{\ell_p^2} \right)^{-\frac{n}{2}} (R_S L^n)^{\frac{1}{n}} \Leftrightarrow \ell_p^{n+2} \ell_p^2 < R_S^{n+2} L^n, \quad (2.26) \]
and the last inequality holds by virtue of \(\ell_p < R_S \) and \(\ell_p < L \). We are therefore left with two possible chains of inequalities,
\[\ell_p < R_S < \ell_{(4+n)} < R_{(4+n)} < L, \quad (2.27) \]
\[\ell_p < \ell_{(4+n)} < R_S < R_{(4+n)} < L, \quad (2.28) \]
and, in general, it is not possible to tell whether \(R_S < \ell_{(4+n)} \) or \(R_S > \ell_{(4+n)} \).

Now, let us come back to the GUP. The argument follows precisely as in four dimensions and one therefore obtains the following inequalities:
\[\Delta x \gtrsim \begin{cases} \frac{\hbar c}{n(n-1)}(\frac{\Delta E}{c^2})^{\frac{1}{n}} & \text{for} \quad \Delta E < \epsilon_{(4+n)} \\ \frac{\hbar c}{2\Delta E} \left(\frac{2G_{(4+n)} \Delta E}{c^4} \right)^{\frac{1}{n}} & \text{for} \quad \Delta E > \epsilon_{(4+n)} \end{cases}. \quad (2.29) \]
Combining linearly the previous inequalities, we obtain
\[\Delta x \gtrsim \frac{\hbar c}{2\Delta E} + \left(\frac{2G_{(4+n)} \Delta E}{c^4} \right)^{\frac{1}{n}}, \quad (2.30) \]
which is a straightforward generalization of equation (2.6) to the case with \(n \) extra dimensions. The minimum value for \(\Delta x \) is now reached when \((\Delta E)_{\text{min}} = (1 + n)^{\frac{1}{n}} \epsilon_p \) and we then have
\[(\Delta x)_{\text{min}} = \left[(1 + n)^{-\frac{1}{n}} + (1 + n)^{\frac{1}{n}} \right] \ell_{(4+n)}. \quad (2.31) \]

2.3. Holographic properties

In this subsection, we investigate the holographic properties of the GUPs which we have proposed thus far. We shall estimate the number of degrees of freedom \(n(V) \) contained in a spatial volume (cube or ‘hypercube’) of size \(l \). The holographic principle claims that \(n(V) \) scales as the area of the (hyper)surface enclosing the given volume, that is \((l/\ell_p)^{2n} \) in 4 + \(n \) dimensions.
For the GUPs considered in the previous subsections, we find:

(a) For the four-dimensional GUP in equation (2.6), this scaling does not occur. In fact,
\((\Delta x)_{\text{min}} \sim \ell_p \) and a cube of side \(l \) contains a number of degrees of freedom equal to
\[
 n(V) \sim \left(\frac{l}{\ell_p} \right)^3.
\]

(b) For the GUP in \(4 + n \) dimensions of equation (2.30), the minimum value for \(\Delta x \) is given in equation (2.31) and, apart from numerical factors, we see that the holographic scaling again does not hold,
\[
 n(V) \sim \left(\frac{l}{(\Delta x)_{\text{min}}} \right)^{3+n} \sim \left(\frac{l}{\ell(\Delta x_{\text{min}})} \right)^{3+n}.
\]

We then conclude that GUPs obtained by linearly combining the quantum mechanical expression with gravitational bounds do not imply the holographic counting of degrees of freedom.

3. Ng and van Dam GUPs

An interesting GUP that satisfies the holographic principle in four dimensions has been proposed by Ng and van Dam in various papers [3]. They start from the Wigner inequalities about distance measurements with clocks and light signals.

3.1. GUP in four dimensions

Suppose we wish to measure a distance \(l \). Our measuring device is composed of a clock, a photon detector and a photon gun. A mirror is put at the distance \(l \) we want to measure, and \(m \) is the mass of the system ‘clock + photon detector + photon gun’. We call the whole system the ‘detector’ and let \(a \) be its size. Obviously, we suppose
\[
a > r_g \equiv \frac{2Gm}{c^2} = R_S(m),
\]
which means that we are not using a black hole as a clock. Let \(\Delta x_1 \) be the uncertainty in the position of the detector. Then the uncertainty in the detector velocity is
\[
\Delta v = \frac{\hbar}{2m \Delta x_1}.
\]

After a time \(T = 2l/c \), elapsed during the light trip detector–mirror–detector, the uncertainty in the detector position (i.e. the uncertainty in the actual length of the segment \(l \)) becomes
\[
\Delta x_{\text{tot}} = \Delta x_1 + T \Delta v = \Delta x_1 + \frac{\hbar T}{2m \Delta x_1}.
\]

We can minimize \(\Delta x_{\text{tot}} \) by suitably choosing \(\Delta x_1 \),
\[
\frac{\partial \Delta x_{\text{tot}}}{\partial \Delta x_1} = 0 \quad \Rightarrow \quad (\Delta x_1)_{\text{min}} = \left(\frac{\hbar T}{2m} \right)^{1/2}.
\]

Hence
\[
(\Delta x_{\text{tot}})_{\text{min}} = (\Delta x_1)_{\text{min}} + \frac{\hbar T}{2m(\Delta x_1)_{\text{min}}} = 2 \left(\frac{\hbar T}{2m} \right)^{1/2}.
\]
Since $T = 2l/c$, we have

$$\langle \Delta x_{\text{tot}} \rangle_{\text{min}} = 2 \left(\frac{\hbar l}{mc} \right)^{1/2} \equiv \delta l_{\text{QM}}. \quad (3.6)$$

This is a purely quantum mechanical result obtained, for the first time, by Wigner in 1958 [10]. From equation (3.6), it seems that we can reduce the error $\langle \Delta x_{\text{tot}} \rangle_{\text{min}}$ as much as we want by choosing m very large, since $\langle \Delta x_{\text{tot}} \rangle_{\text{min}} \to 0$ for $m \to \infty$. But, obviously, here gravity enters the game.

A first remark is that the length l must be greater than the Schwarzschild radius of the detector with mass m,

$$l > r_g \Rightarrow \frac{1}{m} > \frac{2G_N}{lc^2} \Rightarrow \langle \Delta x_{\text{tot}} \rangle_{\text{min}}^2 \gtrsim 8f_p^2. \quad (3.7)$$

The second consideration (due to Amelino-Camelia [11]) is that the measuring device must not be a black hole,

$$a > r_g \Rightarrow \langle \Delta x_{\text{tot}} \rangle_{\text{min}}^2 \gtrsim 8f_p^2 \frac{l}{a}. \quad (3.8)$$

The typical scenario is $\ell_p \ll a \leq l$. Also in the ideal case, when $a \sim \ell_p$, we have

$$\langle \Delta x_{\text{tot}} \rangle_{\text{min}} \gtrsim 2\sqrt{2f_p \ell_p}. \quad (3.9)$$

Ng and van Dam have also considered a further source of error, a purely gravitational error, besides the purely quantum mechanical one already addressed. Suppose the clock has spherical symmetry, with $a > r_g$. Then the error due to curvature can be computed from the Schwarzschild metric surrounding the clock. The optical path from $r_0 > r_g$ to a generic point $r > r_0$ is given by (see, for example, [12])

$$c\Delta t = \int_{r_0}^{r} \frac{d\rho}{1 - \frac{r_g}{r}} = (r - r_0) + r_g \log \frac{r - r_g}{r_0 - r_g}, \quad (3.10)$$

and differs from the ‘true’ (spatial) length $(r - r_0)$. If we put $a = r_0$, $l = r$, the gravitational error on the measure of $(l - a)$ is thus

$$\delta l_C = r_g \log \frac{l - r_g}{a - r_g} \sim r_g \log \frac{l}{a}. \quad (3.11)$$

where the last estimate holds for $l > a \gg r_g$.

If we measure a distance $l \geq 2a$, then the error due to curvature is

$$\delta l_C \geq r_g \log 2 \approx \frac{G_N m}{c^2}. \quad (3.12)$$

Thus, according to Ng and van Dam, the total error is

$$\delta l_{\text{tot}} = \delta l_{\text{QM}} + \delta l_C = 2 \left(\frac{\hbar l}{mc} \right)^{1/2} + \frac{G_N m}{c^2}. \quad (3.13)$$

This error can be minimized again by choosing a suitable value for the mass of the clock,

$$\frac{\partial l_{\text{tot}}(m)}{\partial m} = 0 \Rightarrow m_{\text{min}} = c \left(\frac{\hbar l}{G_N} \right)^{1/2} \quad (3.14)$$

and we then have

$$\langle \delta l_{\text{tot}} \rangle_{\text{min}} = 2 \left(\frac{\hbar G_N l}{c^3} \right)^{1/3} + \frac{\hbar G_N l}{c^3} \left(\frac{l^2}{\ell_p^4} \right)^{1/3} \approx 3 \left(\frac{l^2}{\ell_p^4} \right)^{1/3}. \quad (3.15)$$

The global uncertainty in l contains, therefore, a term proportional to $l^{1/3}$.

3.2. GUP with n extra dimensions

Ng and van Dam’s derivation can be generalized to the case with \(n \) extra dimensions. The Wigner relation (3.6) for the quantum mechanical error is not modified by the presence of extra dimensions and we just need to estimate the error \(\delta l_c \) due to curvature.

We are not considering now micro-black holes created by the fluctuations \(\Delta E \) in energy, as in the previous section. Instead, we have to deal with (more or less) macroscopic clocks and distances and this implies that we have to distinguish four different cases:

1. \(0 < L < r_g < a < l \);
2. \(0 < r_{(4+n)} < L < a < l \);
3. \(0 < r_{(4+n)} < a < L < l \);
4. \(0 < r_{(4+n)} < a < l < L \);

where \(r_{(4+n)} = R_{(4+n)}(m) \), and \(r_g = r_{(4)} \) as before. The curvature error will be calculated (as in the previous subsection) by computing the optical path from \(a \equiv r_0 \) to \(l \equiv r \). Of course, we will use a metric which depends on the relative size of \(L \) with respect to \(a \) and \(l \), that is the usual four-dimensional Schwarzschild metric in the region \(r > L \), and the \(4 + n \)-dimensional Schwarzschild solution in the region \(r < L \) (where the extra dimensions play an actual role).

In cases 1 and 2, the optical path from \(a \) to \(l \) can be computed using just the four-dimensional Schwarzschild solution and the result is given by equation (3.15) in the previous subsection.

In cases 3 and 4, we instead have to use the Schwarzschild solution in \(4 + n \) dimensions [13],

\[
\begin{align*}
\text{d}s^2 &= - \left(1 - \frac{C}{r^{n+1}} \right) c^2 \text{d}t^2 + \left(1 - \frac{C}{r^{n+1}} \right)^{-1} \text{d}r^2 + r^2 \text{d}\Omega_{n+2}^2, \\
\quad \text{and } A_{n+2} &= \frac{2 \pi \frac{n+1}{2}}{\Gamma \left(\frac{n+3}{2} \right)}, \quad \text{(3.18)}
\end{align*}
\]

Besides, we note that, for \(n = 0 \),

\[
C = \frac{2 G N m}{c^2} = r_g, \quad \text{(3.19)}
\]

that is, \(C \) coincides in four dimensions with the Schwarzschild radius of the detector. The Schwarzschild horizon is located where \((1 - C/r^{n+1}) = 0 \), that is at \(r = C^{1/(n+1)} \equiv r_{(4+n)} \), or

\[
r_{(4+n)} = \left[\frac{16 \pi G_{(4+n)} m}{(n + 2) A_{n+2} c^2} \right]^{\frac{1}{n+1}}, \quad \text{(3.20)}
\]

in qualitative agreement with the expression obtained in subsection 2.2.

In case 3, we obtain the optical path from \(a \) to \(l \) by adding the optical path from \(a \) to \(L \) and that from \(L \) to \(l \). We have to use the solution in \(4 + n \) dimensions for the first part, and the four-dimensional solution for the second part of the path,

\[
c \Delta t = \int_a^L \left(1 + \frac{C}{r^{n+1} - C} \right) \text{d}r + \int_L^l \left(1 + \frac{r_g}{r - r_g} \right) \text{d}r \\
= (L - a) + (l - L) + C \int_a^L \frac{\text{d}r}{r^{n+1} - C} + r_g \int_L^l \frac{\text{d}r}{r - r_g}. \quad \text{(3.21)}
\]
We have shown before that from \(r_{\gamma(4+n)} < L \) (that holds in cases 3 and 4), we can infer
\[
\frac{c}{L} \ll \frac{1}{\sqrt{n}} \left(1 - \frac{1}{L^n} \right) + \frac{1}{L^{n+1}} \left(\frac{L}{c} \right).
\]
(3.22)

Now, suppose \(a_{n+1} \gg C = r_{\gamma(4+n)} \), that is \(a \gg r_{\gamma(4+n)} \), so that we are not making measurements inside a black hole. Then \(r_{\gamma} \ll a < L < l \) and
\[
c \Delta t \simeq (l - a) + C \int_a^L \frac{dr}{r_{\gamma}} \int_a^l \frac{dr}{r} = (l - a) + C \left(\frac{1}{a^n} - \frac{1}{L^n} \right) + r_{\gamma} \log \frac{l}{L} = (l - a) + 1 \left(\frac{1}{a^n} - \frac{1}{L^n} \right) + 16 \pi \frac{G_{(4+n)}}{(n+2)A_{n+2}c^2} + \frac{2G_{N}c^2 \log \frac{l}{L}}{m}.
\]
(3.23)

The error caused by the curvature (when \(a < L < l \)) is therefore linear in \(m \),
\[
\delta l_{C} = \left[\frac{1}{n} \left(\frac{1}{a^n} - \frac{1}{L^n} \right) + \frac{16 \pi G_{(4+n)}}{(n+2)A_{n+2}c^2} + \frac{2G_{N}c^2 \log \frac{l}{L}}{m} \right] m = Km.
\]
(3.24)

We recall that the curvature error in four dimensions does not include the size of the clock. In contrast, this error in \(4 + n \) dimensions depends explicitly on the size \(a \) of the clock and on the size \(L \) of the extra dimensions. Hence the total error is given by
\[
\delta l_{\text{tot}} = \delta l_{\text{QM}} + \delta l_{C} = 2 \left(\frac{\hbar}{mc} \right)^{1/2} + Km = Jm^{-1/2} + Km,
\]
(3.25)

where \(J = 2(\hbar/c)^{1/2} \) and \(K \) was defined before. This error can be minimized with respect to \(m \),
\[
\frac{\partial \delta l_{\text{tot}}}{\partial m} = 0 \Rightarrow m_{\text{min}} = \left(\frac{J}{2K} \right)^{3/2}.
\]
(3.26)

Finally,
\[
(\delta l_{\text{tot}})_{\text{min}} = (2^{1/3} + 2^{-2/3})KJ^{2/3} = 2(2^{1/3} + 2^{-2/3}) \left[\frac{1}{n} \left(\frac{1}{a^n} - \frac{1}{L^n} \right) + \frac{8 \pi G_{N}L^n}{(n+2)A_{n+2}c^2} + \frac{2G_{N}c^2 \log \frac{l}{L}}{m} \right]^{1/3},
\]
(3.27)

where we used the definitions of \(J \) and \(K \).

In case 4, the optical path from \(a \) to \(l \) can be obtained by using simply the Schwarzschild solution in \(4 + n \) dimensions. We get
\[
c \Delta t = \int_a^l \left(1 + \frac{C}{r_{\gamma} - C} \right) dr = (l - a) + C \int_a^l \frac{dr}{r_{\gamma} + l}.
\]
(3.28)

Suppose now, as before, that \(a_{n+1} \gg C = r_{\gamma(4+n)} \), that is \(a \gg r_{\gamma(4+n)} \) (i.e. our clock is not a black hole). We then have
\[
c \Delta t \simeq (l - a) + C \int_a^l \frac{dr}{r_{\gamma} + l} = (l - a) + C \left(\frac{1}{a^n} - \frac{1}{L^n} \right).
\]
(3.29)

If the distance we are measuring is, at least, of the size of the clock \((l \geq 2a) \), we can write
\[
c \Delta t \gg (l - a) + C \left(\frac{2^n - 1}{2^n a^n} \right).
\]
(3.30)

The error caused by the curvature is therefore (when \(a < l < L \))
\[
\delta l_{C} = C \left(\frac{2^n - 1}{2^n a^n} \right).
\]
(3.31)
Here we again note that the curvature error in $4 + n$ dimensions explicitly includes the size of the clock. The global error can be computed as before

$$\delta l_{\text{tot}} = \delta l_{\text{QM}} + \delta l_{\text{C}} = 2 \left(\frac{\hbar l}{m c} \right)^{1/2} + \frac{C}{n} \left(\frac{2^n - 1}{2^n a^n} \right),$$

(3.32)

where C is linear in m. δl_{tot} can be minimized with respect to m in perfect analogy with the previous calculation. The result is

$$\left(\delta l_{\text{tot}} \right)_{\text{min}} = \left(2^{1/3} + 2^{-2/3} \right) \left(\frac{2^n - 1}{2^n n} \frac{64 \pi}{(n + 2) A_{n+2}} \right)^{1/3} \left(\frac{\rho_{n+2} l}{a^n} \right)^{1/3}.$$

(3.33)

We note that the expression (3.27) coincides in the limit $L \to a$ with equation (3.15) (taking $l \geq 2a$), while, in the limit $L \to l$, we recover from equation (3.27) the expression (3.33) (of course, supposing also that $l \geq 2a$).

3.3. Holographic properties

We finally examine the holographic properties of equation (3.33) for the GUP of Ng and van Dam type in $4 + n$ dimensions. We just consider the expression in equation (3.33) because it also represents the limit of equation (3.27) for $L \to l$ and $l \geq 2a$. Moreover, for $n = 0$, equation (3.33) yields the four-dimensional error given in equation (3.15).

Since we are just interested in the dependence of $n(V)$ on l and the basic constants, we can write

$$\left(\delta l_{\text{tot}} \right)_{\text{min}} \sim \left(\frac{\rho_{n+2} l}{a^n} \right)^{1/3}.$$

(3.34)

We then have that the number of degrees of freedom in the volume of size l is

$$n(V) = \left(\frac{l}{\left(\delta l_{\text{tot}} \right)_{\text{min}}} \right)^{3+n} = \left(\frac{l^2 a^n}{\rho_{n+2} l^{n}} \right)^{1+\frac{n}{3}},$$

(3.35)

and the holographic counting holds in four dimensions ($n = 0$) but is lost when $n > 0$. Even if we take the ideal case $a \sim \rho_{(4+n)}$, we get

$$n(V) = \left(\frac{l}{\rho_{(4+n)}} \right)^{2(1+\frac{n}{3})},$$

(3.36)

and the holographic principle does not hold for $n > 0$.

4. Concluding remarks

In the previous sections, we have shown that the holographic principle seems to be satisfied only by uncertainty relations in the version of Ng and van Dam and for $n = 0$. That is, only in four dimensions are we able to formulate uncertainty principles which predict the same number of degrees of freedom per spatial volume as the holographic counting. This could be evidence for questioning the existence of extra dimensions. Moreover, such an argument based on the holography could also be used to support the compactification of string theory down to four dimensions, given that there seems to be no firm argument which forces the low-energy limit of string theory to be four dimensional (except from the obvious observation of our world). In this respect, we should also say that cases 3 and 4 of subsection 3.2 do not seem to have a
good probability to be realized in nature since, if there are extra spatial dimensions, their size must be shorter than 10^{-11} mm [6]. Therefore, cases 1 and 2 of subsection 3.2 are more likely to survive the test of future experiments.

A number of general remarks are however in order. First of all, we cannot claim that our list of possible GUPs is complete and other relations might be derived in different contexts which accommodate both holography and extra dimensions. Further, one might find it difficult to accept that quantum mechanics and general relativity enter the construction of GUPs on the same footing, since the former is supposed to be a fundamental framework for all theories while the latter can be just regarded as a theory of the gravitational interaction. We might agree with the point of view that GUPs must be considered as ‘effective’ (phenomenological) bounds valid at low energy (below the Planck scale) rather than ‘fundamental’ relations. This would in fact reconcile our result that four dimensions are preferred with the fact that string theory (as a consistent theory of quantum gravity) requires more dimensions through the compactification which must occur at low energy, as we mentioned above. Let us also note that general relativity (contrary to the usual field theories) determines the spacetime including the causality structure, and the latter is an essential ingredient in all actual measurements. It is therefore (at least) equally difficult to conceive uncertainty relations which neglect general relativity at all. This conclusion would become even stronger in the presence of extra dimensions, since the fundamental energy scale of gravity is then lowered [1, 2] (possibly) within the scope of present or near-future experiments [14] and the gravitational radius of matter sources is correspondingly enlarged [8].

A final remark regarding cases with less than four dimensions. Since Einstein gravity does not propagate in such spacetimes and no direct analogue of the Schwarzschild solution exists, one expects a qualitative difference with respect to the cases that we have considered here. For instance, a pointlike source in three dimensions would generate a flat spacetime with a conical singularity and no horizon. Consequently, one does expect that the usual Heisenberg uncertainty relations hold with no corrections for gravity.

References

[1] Arkani-Hamed N, Dimopoulos S and Dvali G 1998 Phys. Lett. B 429 263
Arkani-Hamed N, Dimopoulos S and Dvali G 1999 Phys. Rev. D 59 0806004
Antoniadis I, Arkani-Hamed N, Dimopoulos S and Dvali G 1998 Phys. Lett. B 436 257
[2] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 3370
Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 4690
[3] Ng Y J and van Dam H 1994 Mod. Phys. Lett. A 9 335
Ng Y J and van Dam H 1995 Mod. Phys. Lett. A 10 2801
Ng Y J and van Dam H 2000 Phys. Lett. B 477 429
Ng Y J 2001 Phys. Rev. Lett. 86 2946
[4] Kempf A, Mangano G and Mann R B 1995 Phys. Rev. D 52 1108
[5] Scardigli F 1999 Phys. Lett. B 452 39
[6] Hoyle C D et al 2001 Phys. Rev. Lett. 86 1418
[7] Giddings S B, Katz E and Randall L 2000 J. High Energy Phys. JHEP03(2000)023
Garriga J and Tanaka T 2000 Phys. Rev. Lett. 84 2778
[8] Argyres P C, Dimopoulos S and March-Russell J 1998 Phys. Lett. B 441 96
[9] Casadio R and Harms B 2000 Phys. Lett. B 487 209
Kol B 2002 Preprint hep-th/0206220
Kol B 2002 Preprint hep-ph/0207037
Sorkin E and Piran T 2002 Preprint hep-th/0211210

4 In three dimensions with negative cosmological constant, one also has the BTZ black hole which forms when two pointlike particles collide provided certain initial conditions are satisfied. For a recent review, see [15].
[10] Wigner E P 1957 Rev. Mod. Phys. 29 255
Salecker H and Wigner E P 1958 Phys. Rev. 109 571
[11] Amelino-Camelia G 1994 Mod. Phys. Lett. A 9 3415
[12] Landau L D and Lifshitz E M 1975 The Classical Theory of Fields (Oxford: Pergamon)
[13] Myers R C and Perry M J 1986 Ann. Phys., NY 172 304
[14] Cavaglia M, Das S and Maartens R 2003 Class. Quantum Grav. 20 L205
[15] Birmingham D, Suchs I and Sen S 2001 Int. J. Mod. Phys. D 10 833