Tools for Supporting the MCH Workforce in Addressing Complex Challenges: A Scoping Review of System Dynamics Modeling in Maternal and Child Health

Isabella Guynn1,2, Jessica Simon3, Seri Anderson1,4, Stacey L. Klaman5, Amy Mullenix6, Dorothy Cilenti6, Kristen Hassmiller Lich2

Accepted: 6 January 2022 / Published online: 21 February 2022 © The Author(s) 2022

Abstract

Objectives System Dynamics (SD) is a promising decision support modeling approach for growing shared understanding of complex maternal and child health (MCH) trends. We sought to inventory published applications of SD to MCH topics and introduce the MCH workforce to these approaches through examples to support further iteration and use.

Methods We conducted a systematic search (1958–2018) for applications of SD to MCH topics and characterized identified articles, following PRISMA guidelines. Pairs of experts abstracted information on SD approach and MCH relevance.

Results We identified 101 articles describing applications of SD to MCH topics. Approach: 27 articles present qualitative diagrams, 10 introduce concept models that begin to quantify dynamics, and 67 present more fully tested/analyzed models.

Purpose: The most common purposes described were to increase understanding (n = 55) and support strategic planning (n = 26). While the majority of studies (n = 53) did not involve stakeholders, 40 included what we considered to be a high level of stakeholder engagement – a strength of SD for MCH.

Topics: The two Healthy People 2020 topics addressed most frequently were early and middle childhood (n = 30) and access to health services (n = 26). The most commonly addressed SDG goals were “End disease epidemics” (n = 26) and “End preventable deaths” (n = 26).

Conclusions for Practice While several excellent examples of the application of SD in MCH were found, SD is still underutilized in MCH. Because SD is particularly well-suited to studying and addressing complex challenges with stakeholders, its expanded use by the MCH workforce could inform an understanding of contemporary MCH challenges.

Keywords System dynamics · Causal loop · Scoping review · Simulation · Strategic planning

* Kristen Hassmiller Lich
klich@unc.edu

1 Department of Maternal and Child Health, National MCH Workforce Development Center, University of North Carolina at Chapel Hill, 412 Rosenau Hall, Chapel Hill, NC 27599, USA
2 Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 1105E McGavaran-Greenberg Hall, Chapel Hill, NC 27599, USA
3 Health Systems Transformation, Association of Maternal and Child Health Programs, 1825 K Street NW, Suite 250, Washington D.C 20006, USA
4 Present Address: RTI Health Solutions, Research Triangle Park, NC 27709-2194, USA
5 Family Health Centers of San Diego, 823 Gateway Center Way, San Diego, CA 92102, USA
6 Department of Maternal and Child Health, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 402A Rosenau Hall, Chapel Hill, NC 27599, USA
Significance

What is already known on this subject? The MCH workforce faces challenges that are dynamic and complex. Existing workforce approaches commonly take narrow perspectives rather than acknowledging broad dynamics of larger systems.

What this study adds? This is the first known attempt to identify all published research using SD to study MCH topics. The MCH workforce will be able to use this scoping review to (a) learn about the value of SD approaches for their work, (b) identify examples of strong SD approaches in MCH, and (c) consider potential applications of SD approaches in their own practice or research.

Objectives

Maternal and child health (MCH) is a far-ranging field encompassing issues of preterm birth, childhood obesity, sexually transmitted infections, and maternal mortality, among others. A common thread across MCH issues is the fact that they are both “complex and dynamic”, meaning they are caused by a system of interconnected factors (e.g., crossing socio-ecological levels) that continue to change over time (Kroelinger et al., 2014; Meadows & Wright, 2008). The contemporary MCH workforce faces tremendous challenges in responding to such persistent issues, particularly around making best use of limited resources and addressing issues of equity (Fanta, Ladzekpo et al. 2021; Mehta et al., 2021). This complexity requires MCH to work across system boundaries (e.g. organizational, disciplinary, geographic, life-course). Existing MCH strategies and approaches may be enhanced if the workforce embraced a systems perspective and integrated systems thinking tools into current practice (Kroelinger et al., 2014).

System Dynamics (SD) offers a set of tools and approaches for understanding behaviors of dynamic systems surrounding complex problems (Forrester 1961–1969, Meadows, 1999; Sterman, 2000, 2006; Homer & Hirsch, 2006; Meadows & Wright, 2008). SD acknowledges that problematic events or trends are produced because of the underlying system (Fig. 1); effectively addressing the problematic outcome requires an understanding of the system’s structure and the “mental models” of stakeholders keeping the problematic system in place (Maani & Cavana, 2007). Whereas many typical problem-solving approaches assume a consistent, linear relationship between variables, SD tools capture more realistic non-linearities caused by

Fig. 1 The Iceberg Model to System Thinking. The Iceberg Model is a common framework used to guide system thinking (Maani & Cavana, 2007). The top level (“Event”) represents the visible part of a problem, whereas the lower levels (“Pattern/Trend”, “Structure”, and “Mental Model”) consider more deeply elements of the system that produce the problem and leverage points for change.
endogeneity (feedback) in causal relationships as systems respond to changes over time and delays in information and production (Haraldsson, 2004; Sterman, 1989). SD requires a more holistic understanding of key determinants of change over time, which aligns with the demands of the MCH environment.

SD offers qualitative (e.g., causal loop diagrams) and quantitative (e.g., simulation models) tools. The application of SD tools can be organized into three approaches: qualitative diagrams, concept models, and tested/analyzed models; these approaches can be used independently or together as part of an iterative process, with qualitative diagrams being the starting point and tested/analyzed models being the end deliverable (Fig. 2). Qualitative diagrams are developed, often with stakeholders, to better understand complex, problematic trends that need to change. They facilitate conversations among diverse stakeholders by providing a tangible language for understanding structures and mental models surrounding persistent challenges. Concept models build upon qualitative diagrams by introducing preliminary (often hypothetical) numbers as model parameters and inputs. The model is then used to test hypotheses and explore impact of system feedback on outcomes of interest. The final iteration of SD approaches is tested/analyzed models. Model parameters are calibrated, often using historical data, until users feel confident in the model’s validity; from there, future trends and evidence can be generated using simulation modeling to test hypotheses, inform decision-making, and holistically study complex challenges.

SD is well-suited for practical application by the MCH workforce due to the feasibility of stakeholder engagement in the modeling process (Cilenti 2019). SD approaches encourage ‘group model building’, in which diverse stakeholders come together to create a shared map of the system that maintains a persistent problem (Vennix, 1996, 1999). SD tools and approaches facilitate productive dialogues across diverse stakeholders about causes of persistent MCH issues and possible system responses to different courses of action (i.e. practice/policy changes). For more information on SD, see Sterman (2000).

In the midst of widespread health systems transformation and movement toward equity-focused approaches in public health, MCH professionals have been embracing leadership roles in cross-sector collaborations. The time is ripe for SD to become more common in MCH practice and research as a way for the workforce to fully understand the systems in which they operate, predict unintended consequences of program and policy choices, and lead – informed by tools that enhance understanding of complexity as the field moves toward centering equity practice (Kroelinger et al., 2014). As such, this manuscript presents a scoping review of existing SD literature with application to MCH (Munn, 2018). We organize our findings into three domains: (1) SD approaches applied to MCH research, (2) purposes for which SD was used by MCH practitioners, and (3) MCH topics studied using SD.

Methods

We attempted to identify all existing published research that used SD tools to study MCH topics between January 1958 and July 2018. Publications that met inclusion criteria were identified over four steps in the scoping review. These steps, discussed in detail in Online Appendix 1, were as follows: Step 1 used three different search strategies in the Web of Science Core Citation Indexes (WOS) and PubMed to identify research using SD between January 1958 and July 2018. Works that did not have a health sciences or health services focus were conservatively filtered out based on title-screen in Step 2. In Step 3, pairs of authors reviewed titles and abstracts (if available) of all works meeting our SD and health criteria to identify those that demonstrated an application of SD methods. Finally, in Step 4, pairs of authors reviewed abstracts and full texts to identify works that were relevant to MCH and thus eligible to be included in this review. This review builds on a previously completed systematic search for SD applications in health. Step 1 through Step 3 reflect efforts accomplished as steps in this earlier search and Step 4 reflects efforts specific to this scoping review; two members of the research team (KHL and IG) were among those who participated in the previous search process.

Information from the SD tools and approaches abstraction was double coded by a team of four authors who are experts in SD (KHL, IG, JS, SA). Information abstracted included: SD approach, model purpose, and level of stakeholder engagement. Three authors (DC, AM, SK) specializing in MCH practice, and collectively bring over 80 years of experience, conducted the MCH content abstraction. Information abstracted included: MCH-relevant Healthy People 2020 objectives addressed, MCH-relevant UN Sustainable Development Goals (SDGs) addressed, domestic- or global-focus, and utility for MCH research/policy/practice. All abstracted information was double coded and any discrepancies were resolved with the full abstraction team.

The abstracted information was chosen to be both practically useful to readers interested in seeking out works applying SD to MCH topics, and to gauge the extent to which SD/MCH researchers are studying high-priority MCH research topics. Definitions for SD approach, model purpose, level of stakeholder engagement, and utility for MCH research/policy/practice are provided in Table 1 footnotes. The authors chose the Healthy People 2020 topics to reflect current priority topics in US-domestic MCH research. The UN SDGs were chosen to reflect current international priority topics.
A Six-Question Framework for Evaluation Health Policy

1. What is the important (perhaps troubling) trend related to health in Georgia? What is the shape of this trend over the past several years?
2. Who are the stakeholders concerned with the trend?
3. Why this trend (what is the cause, who is responsible)?
4. Where is there leverage (some policy) to address the underlying cause of the trend?
5. How will it work? How will it play out over time? How might unintended consequences occur? How might the policy positively or negatively impact:
   a) Health status?
   b) State health spending?
   c) Health care system?
   d) Health equity?
6. When would the policy create an impact on health status? When would you see an improvement in some other indicators (i.e., spending services)?
and feedback loops, stocks, abstract review (Fig. 3). Additionally, 41 articles were excluded for MCH irrelevance based on title and abstract review (Fig. 3). Of the 101 included works, by far the most common SD approach described was tested/analyzed models (n = 67). One example was in Hosseinichimeh et al., (2018), where the authors built, tested, and analyzed a SD model (Fig. 2e) to holistically study the complex relationships among stressors, rumination, and depression. Longitudinal, primary data collected from middle-school students was used in an input data to simulate evidence on impact of prior stressors on current levels of depression for an adolescent population (Fig. 2f). This SD approach allowed researchers to better understand feedback created between stressors, rumination and depression, including average time adolescents tend to ruminate after activated by a stressor and corresponding levels of depression associated with lengths of rumination. Findings indicate opportunities to improve clinical interventions targeting pediatric depression. As a second example, in Frerichs et al. (2013), the researchers compared 15 different combinations of interventions to prevent and treat childhood obesity and 6 variations on adult-to-child impact factor ratios for these interventions to identify those with the highest levels of impact over a 10-year time horizon. This paper provides a compelling example of the power of a rigorously tested model to deliver insights useful for MCH decision makers.

Of the 101 included works, 27 developed qualitative diagrams. For example, in Munar, et al. (2015) a causal loop diagram (Fig. 2a) and a stock and flow diagram (Fig. 2b) were used to facilitate conversations among stakeholders participating in the Salud Mesoamerica 2015 initiative in Honduras regarding the impact of limited staff and clinic capacity on the number of children vaccinated. Authors note that qualitative SD diagrams provide “tangible” tools that help diverse stakeholders with diverse perspectives articulate complex problems; using such diagrams to guide difficult conversations shifts the focus “from whether one person is right and the other is wrong, to a discussion about whether or not the diagram is correct, captures the relevant relationships, resolves a conflict, and so on” (Munar, et al., 2015).

Other topics explored using qualitative diagrams included pediatric asthma management (Gillen et al., 2014), care transitions for children with disabilities (Hamdani et al., 2011), child care (Maital & Bornstein, 2003), neonatal mortality (Rwashana, Nakubulwa et al. 2014), homeless youth policies (Staller, 2004), cross-disciplinary collaboration (Munar et al., 2015; Pieters et al., 2011), and a new implementation evaluation method for programs with complex networks of structures and stakeholders (Fredericks et al., 2008).

Finally, we found 10 examples of concept models. One exemplary instance is a teaching model created for working with policymakers from the state of Georgia on childhood obesity. (Minyard et al., 2014) Georgia policymakers chose the topic of the model, directed the project, and were led...
| Citation | Title | SD Approach | Model Purpose | Level of Stakeholder Engagement | CDC Healthy People 2020 Goals | UN Sustainable Development Goals (SDGs) | Domestic or Global Focus? | Utility for MCH Policy/Practice? |
|----------|-------|-------------|----------------|--------------------------------|-------------------------------|-----------------------------|--------------------------|---------------------------|
| (Abidin, Mamat et al., 2014) | Combating obesity through healthy eating behavior: a call for system dynamics optimization | Tested/ Analyzed Model | Informing policy | None | Adolescent health, early and middle childhood, nutrition and weight status | Strengthen prevention and treatment of substance abuse (3.5) | Global | High |
| (Ahmad, 2005a, 2005b) | The cost-effectiveness of raising the legal smoking age in California | Tested/ Analyzed Model | Informing policy | None | Adolescent health, health related quality of life and wellbeing, tobacco use, substance abuse | Strengthen prevention and treatment of substance abuse (3.5) | Domestic | High |
| (Ahmad, 2005a, 2005b) | Closing the youth access gap: The projected health benefits and cost savings of a national policy to raise the legal smoking age to 21 in the United States | Tested/ Analyzed Model | Informing policy | None | Adolescent health, health related quality of life and wellbeing, tobacco use, substance abuse | Strengthen prevention and treatment of substance abuse (3.5) | Domestic | High |
| (Ahmad & Billimek, 2007) | Limiting youth access to tobacco: Comparing the long-term health impacts of increasing cigarette excise taxes and raising the legal smoking age to 21 in the United States | Tested/ Analyzed Model | Informing policy | None | Adolescent health, health related quality of life and wellbeing, tobacco use, substance abuse | Strengthen prevention and treatment of substance abuse (3.5) | Domestic | High |
| (Anderson & Anderson, 1998) | HIV screening and treatment of pregnant women and their newborns: A simulation-based analysis | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | None | HIV, sexually transmitted diseases, maternal, infant, and child health | End preventable deaths (3.2), End disease epidemics (3.3) | Domestic | Medium |
| (Barber & Lopez-Valcarcel, 2010) | Forecasting the need for medical specialists in Spain: Application of a system dynamics model | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | High | Access to health services | | Global | Low |
| (Batchelder et al., 2015) | A social ecological model of syndemic risk affecting women with and at-risk for HIV in impoverished urban communities | Tested/ Analyzed Model | Increase understanding | High | HIV, injury and violence prevention, Mental and mental disorders, sexually transmitted diseases, social determinants of health | End disease epidemics (3.3) | Domestic | Low |
| (Batchelder & Lounsbury, 2016) | Simulating syndemic risk: Using system dynamics modeling to understand psycho-social challenges facing women living with and at-risk for HIV | Tested/ Analyzed Model | Increase understanding | High | HIV, injury and violence prevention, Mental and mental disorders, sexually transmitted diseases, social determinants of health | End preventable deaths (3.2), End disease epidemics (3.3), Strengthen prevention and treatment of substance abuse (3.5), Eliminate violence against women (5.2), Eliminate harmful practices against women (5.3) | Domestic | High |
| (BeLue et al., 2012) | Systems thinking tools as applied to community-based participatory research: A case study | Diagram | Increase understanding | High | Adolescent health, social determinants of health | | Domestic | Medium |
| (Bernard et al., 1977) | Experimental: A simulation of the distribution of services to mentally deficient children | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | High | Access to health services, early and middle childhood, Mental and mental disorders | | Global | Low |
| Citation                     | Title                                                                 | SD Approach     | Model Purpose                          | Level of Stakeholder Engagement | CDC Healthy People 2020 Goals                                                                 | UN Sustainable Development Goals (SDGs) | Domestic or Global Focus? | Utility for MCH Policy/ Practice? |
|------------------------------|----------------------------------------------------------------------|-----------------|----------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|--------------------------|
| (Brennan et al., 2015)       | Systems thinking in 49 communities related to healthy eating, active living, and childhood obesity | Diagram         | Increase understanding                 | High                           | Early and middle childhood, educational and community-based programs, health related quality and wellbeing, maternal, infant, and child health, nutrition and weight status, physical activity, social determinants of health |                                         | Domestic                 | High                     |
| (Bridgewater et al., 2011)   | A community-based systems learning approach to understanding youth violence in Boston | Tested/ Analyzed Model | Increase understanding                 | High                           | Adolescent health, injury and violence prevention, social determinants of health               | End abuse, exploitation, trafficking and all forms of violence against and torture of children (16.2) | Domestic                 | High                     |
| (Carrete et al., 2017)       | A sociocultural view toward an understanding of how to prevent overweight in children | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | High                           | Early and middle childhood, educational and community-based programs, nutrition and weight status, physical activity, social determinants of health | End preventable deaths (3.2)            | Global                   | High                     |
| (Crettenden, McCarty et al. 2014) | How evidence-based workforce planning in Australia is informing policy development in the retention and distribution of the health workforce | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | Low                            | Access to health services, Public Health Infrastructure                                      | Access to sexual reproductive healthcare (5.7) | Global                   | Low                      |
| (Davison, Vanderwater et al. 2012) | A control-theory reward-based approach to behavior modification in the presence of social-norm pressure and conformity pressure | Tested/ Analyzed Model | Increase understanding                 | None                           | Early and middle childhood, physical activity                                                |                                         | Global                   | Low                      |
| (De Silva, 2017)             | How many Medical specialists do Ministry of Health Sri Lanka need by 2025: Use of system dynamics modelling for policy decisions | Tested/ Analyzed Model | Prediction                             | None                           | Access to health services, global health, Public Health infrastructure                        |                                         | Global                   | Low                      |
| (Demir et al., 2014)         | Modelling length of stay and patient flows: Methodological case studies from the UK neonatal care services | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | Low                            | Access to health services, maternal, infant, and child health, Public Health Infrastructure      |                                         | Global                   | High                     |
| (Diaz et al., 2012)          | A system dynamics model for simulating ambulatory health care demands | Tested/ Analyzed Model | Prediction                             | None                           | Access to health services                                                                     |                                         | Domestic                 | Medium                   |
| Citation                          | Title                                                                 | SD Approach          | Model Purpose                                      | Level of Stakeholder Engagement | CDC Healthy People 2020 Goals                                      | UN Sustainable Development Goals (SDGs)                                | Domestic or Global Focus? | Utility for MCH Policy/ Practice? |
|----------------------------------|-----------------------------------------------------------------------|----------------------|----------------------------------------------------|---------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------|---------------------------------|
| (Edelstein et al., 2015)         | Reducing early childhood caries in a Medicaid population: A systems model analysis | Tested/ Analyzed Model | Strategic planning (compare one plan to another)   | None                            | Access to health services, early and middle childhood, educational and community-based programs, maternal, infant, and child health, oral health | End disease epidemics (3.3), Access to sexual/ reproductive healthcare (3.7) | Domestic                   | High                            |
| (Evenden et al., 2006)           | Improving the cost-effectiveness of Chlamydia screening with targeted screening strategies | Tested/ Analyzed Model | Strategic planning (compare one plan to another)   | None                            | Access to health services, sexually transmitted diseases       | End disease epidemics (3.3), Access to sexual/ reproductive healthcare (3.7) | Global                    | High                            |
| (Fallah-Fini et al., 2014)       | Modeling US adult obesity trends: A system dynamics model for estimating energy imbalance gap | Tested/ Analyzed Model | Increase understanding                           | None                            | Nutrition and weight status                                    | End disease epidemics (3.3), Access to sexual/ reproductive healthcare (3.7) | Domestic                   | High                            |
| (Finegood et al., 2010)          | Implications of the Fore-sight obesity system map for solutions to childhood obesity | Diagram              | Increase understanding                           | None                            | Maternal, infant, and child health, nutrition and weight status | End disease epidemics (3.3), Access to sexual/ reproductive healthcare (3.7) | Global                    | Medium                          |
| (Fredericks et al., 2008)        | Using system dynamics as an evaluation tool—Experience from a demonstration program | Diagram              | Increase understanding                           | High                            | Disability and health, educational and community-based programs | End disease epidemics (3.3), Access to sexual/ reproductive healthcare (3.7) | Domestic                   | Low                             |
| (Freerichs et al., 2013)         | Modeling social transmission dynamics of unhealthy behaviors for evaluating prevention and treatment interventions on childhood obesity | Tested/ Analyzed Model | Strategic planning (compare one plan to another)   | None                            | Nutrition and weight status                                    | End disease epidemics (3.3), Access to sexual/ reproductive healthcare (3.7) | Domestic                   | High                            |
| (Freerichs et al., 2015)         | Influence of school architecture and design on healthy eating: A review of the evidence | Diagram              | Increase understanding                           | None                            | Early and middle childhood, maternal, infant, and child health, nutrition and weight status, social determinants of health | End preventable deaths (3.2) | Both                        | High                            |
| (Freerichs, Lich, et al., 2018; Frerichs, Young, et al., 2018) | Development of a Systems Science Curriculum to Engage Rural African American Teens in Understanding and Addressing Childhood Obesity Prevention | Diagram              | Increase understanding                           | High                            | Adolescent health, nutrition and weight status, social determinants of health, physical activity | End preventable deaths (3.2) | Domestic                   | High                            |
| (Freerichs, Lich, et al., 2018; Frerichs, Young, et al., 2018) | Mind maps and network analysis to evaluate conceptualization of complex issues: A case example evaluating systems science workshops for childhood obesity prevention | Concept model, untested | Increase understanding                           | High                            | Adolescent health, nutrition and weight status, social determinants of health, physical activity | End preventable deaths (3.2) | Domestic                   | Low                             |
| Citation                                      | Title                                                                 | SD Approach  | Model Purpose | Level of Stakeholder Engagement | CDC Healthy People 2020 Goals | UN Sustainable Development Goals (SDGs) | Domestic or Global Focus? | Utility for MCH Policy/Practice? |
|----------------------------------------------|-----------------------------------------------------------------------|--------------|---------------|---------------------------------|-------------------------------|----------------------------------------|--------------------------|---------------------------|
| (Ghaffarzadegan et al., 2013)                | Practice variation, bias, and experiential learning in Cesarean delivery: A data-based system dynamics approach | Tested/ Analyzed Model | Increase understanding | None                            | Maternal, infant, and child health |                                        | Domestic                  | Low                       |
| (Gillen et al., 2014)                        | Social ecology of asthma: Engaging stakeholders in integrating health behavior theories and practice-based evidence through systems mapping | Diagram      | Increase understanding | High                            | Early and middle childhood, health communication and health information technology, respiratory diseases |                                        | Domestic                  | High                      |
| (Goncalves & Kamdem, 2016)                  | Reaching an AIDS-Free Generation in Cote d'Ivoire, Data Driven Policy Design for HIV/AIDS Response Programs: Evidence-Based Policy Design for HIV/AIDS Response Programs in Cote d'Ivoire | Tested/ Analyzed Model | Informing policy | None                            | Global health, HIV immunization and infectious disease, sexually transmitted diseases, maternal, infant, and child health | End preventable deaths (3.2), End disease epidemics (3.3), Access to sexual/reproductive healthcare (3.7) | Global                    | Low                       |
| (Grove, 2015)                                | Aiming for utility in systems-based evaluation: A research-based framework for practitioners | Concept model, untested | Increase understanding | High                            | Access to health services, global health, sexually transmitted diseases |                                        | Global                    | Low                       |
| (Hamdani et al., 2011)                      | Systems thinking perspectives applied to healthcare transition for youth with disabilities: A paradigm shift for practice, policy and research | Diagram      | Increase understanding | None                            | Access to health services, adolescent health, Disability and health |                                        | Both                      | Medium                    |
| (Lich et al., 2017)                          | Extending systems thinking in planning and evaluation using group concept mapping and system dynamics to tackle complex problems | Concept model, untested | Increase understanding | High                            | Adolescent health, mental health and mental disorders, disability and health, health related quality of life and wellbeing |                                        | Domestic                  | High                      |
| (Heidenberger & Flessa, 1993)               | A system dynamics model for AIDS policy support in Tanzania | Tested/ Analyzed Model | Increase understanding | Low                             | HIV, sexually transmitted diseases |                                        | Global                    | Medium                    |
| (Hernandez et al., 2016)                    | Enhancing Antenatal Clinics Decision-Making Through the Modelling and Simulation of Patients Flow by Using a System Dynamics Approach: A Case for a British Northwest Hospital | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | Low                             | Access to health services, global health | Reduce maternal mortality (3.1), Access to sexual/ reproductive healthcare (3.7) | Global                    | Low                       |
| (Hirsch et al., 2012)                       | A Simulation model for designing effective interventions in early childhood centers | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | Low                             | Early and middle childhood, educational and community-based programs, oral health |                                        | Domestic                  | High                      |
| Citation | Title | SD Approach | Model Purpose | Level of Stakeholder Engagement | CDC Healthy People 2020 Goals | UN Sustainable Development Goals (SDGs) | Domestic or Global Focus? | Utility for MCH Policy/ Practice? |
|----------|-------|-------------|---------------|-------------------------------|-------------------------------|----------------------------------------|---------------------------|----------------------------------|
| (Hoehner et al., 2015) | Behavior-over-time graphs: Assessing perceived trends in healthy eating and active living environments and behaviors across 49 communities | Diagram | Increase understanding | High | Early and middle childhood, educational and community-based programs, health related quality of life and well-being, maternal, infant, and child health, nutrition and weight status, physical activity, social determinants of health | Domestic | High |
| (Holder & Blose, 1987) | Reduction of community alcohol problems: Computer simulation experiments in 3 countries | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | None | Substance abuse | Strengthen prevention and treatment of substance abuse (3.5) | Domestic | Medium |
| (Hontelez et al., 2016) | Changing HIV treatment eligibility under health system constraints in sub-Saharan Africa: investment needs, population health gains, and cost-effectiveness | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | None | Access to health services, global health, HIV, sexually transmitted diseases, immunization and infections disease | End preventable deaths (3.2), End disease epidemics (3.3), Access to sexual/ reproductive healthcare (3.7) | Global | Low |
| (Hosseinichimeh et al., 2018) | Modeling and estimating the feedback mechanisms among depression, rumination, and stressors in adolescents | Tested/ Analyzed Model | Increase understanding | High | Adolescent health, mental and mental disorders | Domestic | High |
| (Hovmand & Ford, 2009) | Sequence and timing of three community interventions to domestic violence | Tested/ Analyzed Model | Increase understanding | High | Injury and violence prevention | Eliminate violence against women (5.2) | Domestic | High |
| (Hovmand et al., 2009) | Victims arrested for domestic violence: Unintended consequences of arrest policies | Tested/ Analyzed Model | Increase understanding | High | Injury and violence prevention | Eliminate violence against women (5.2) | Domestic | High |
| (Huang et al., 2013) | Epidemiology of Kawasaki disease: Prevalence from national database and future trends projection by system dynamics modeling | Tested/ Analyzed Model | Prediction | None | Maternal, infant, and child health | Both | Low |
| (Ishikawa, Ohba et al., 2013) | Forecasting the absolute and relative shortage of physicians in Japan using a system dynamics model approach | Tested/ Analyzed Model | Prediction | None | Access to health services | Access to sexual/ reproductive healthcare (3.7) | Global | Low |
| (Jalali et al., 2017) | Dynamics of Implementation and Maintenance of Organizational Health Interventions | Diagram | Increase understanding | High | Early and middle childhood, nutrition and weight status, physical activity, educational and community-based programs | Domestic | High |
| Citation | Title | SD Approach | Model Purpose | Level of Stakeholder Engagement | CDC Healthy People 2020 Goals | UN Sustainable Development Goals (SDGs) | Domestic or Global Focus? | Utility for MCH Policy/ Practice? |
|----------|-------|-------------|---------------|--------------------------------|-----------------------------|----------------------------------------|-----------------------------|------------------------------|
| (Keane et al., 2015) | Healthy Kids, Healthy Cuba: Findings From a group model building process in the rural Southwest | Diagram | Increase understanding | High | Early and middle childhood, educational and community-based programs, health related quality of life and well-being, maternal, infant, and child health, nutrition and weight status, physical activity, social determinants of health | | Domestic | High |
| (Kok et al., 2015) | Optimizing an HIV testing program using a system dynamics model of the continuum of care | Tested/Analyzed Model | Strategic planning (compare one plan to another) | High | Access to health services, global health, HIV, lesbian, gay, bisexual, and transgender health, Public Health Infrastructure, sexually transmitted diseases | End disease epidemics (3.3) | Global | High |
| (Kommer, 2002) | A waiting list model for residential care for the mentally disabled in The Netherlands | Tested/Analyzed Model | Informing policy | High | Mental and mental disorders | | Global | Low |
| (Kumar & Kumar, 2014) | Modelling rural healthcare supply chain in India using system dynamics | Concept model, untested | Increase understanding | Low | Access to health services, maternal, infant, and child health, Public Health Infrastructure | End preventable deaths (3.2) | Global | Low |
| (Lan, Chen et al. 2014) | An Investigation of Factors Affecting Elementary School Students’ BMI Values Based on the System Dynamics Modeling | Tested/Analyzed Model | Increase understanding | None | Early and middle childhood, nutrition and weight status | | Global | Medium |
| (Lee et al., 2016) | A system dynamics modeling approach to studying the increasing prevalence of people with intellectual developmental disorders in New South Wales | Tested/Analyzed Model | Prediction | None | Disability and health, global health, mental and mental disorders, early and middle childhood | | Global | Low |
| (Liu et al., 2016) | Systems simulation model for assessing the sustainability and synergistic impacts of sugar-sweetened beverages tax and revenue recycling on childhood obesity prevention | Tested/Analyzed Model | Informing policy | None | Early and middle childhood, nutrition and weight status, physical activity, social determinants of health, adolescent health | | Domestic | High |
| (Lounsbury et al., 2015) | Simulating patterns of patient engagement, treatment adherence, and viral suppression: A system dynamics approach to evaluating HIV care management | Tested/Analyzed Model | Increase understanding | None | HIV, sexually transmitted diseases | End disease epidemics (3.3) | Domestic | High |
| Citation            | Title                                                                 | SD Approach                     | Model Purpose                           | Level of Stakeholder Engagement | CDC Healthy People 2020 Goals                                                                 | UN Sustainable Development Goals (SDGs) | Domestic or Global Focus? | Utility for MCH Policy/ Practice? |
|---------------------|-----------------------------------------------------------------------|----------------------------------|-----------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|------------------------------|
| (Lyon et al., 2016) | Modeling the impact of school-based universal depression screening on additional service capacity needs: A system dynamics approach | Concept model, untested          | Strategic planning (compare one plan to another) | None                            | Access to health services, adolescent health, educational and community-based programs, Mental and mental disorders | Domestic                            | High                       |                              |
| (Maital & Bornstein, 2003) | The ecology of collaborative child rearing: A systems approach to child care on the kibbutz | Diagram                          | Increase understanding                  | None                            | Early and middle childhood                                                                                   | Global                                | Low                        |                              |
| (Martin et al., 2015a, 2015b, 2015c) | Modelling the declining positivity rates for Human Immunodeficiency Virus testing in New York state | Tested/ Analyzed Model           | Increase understanding                  | None                            | HIV, sexually transmitted diseases                                                                        | End disease epidemics (3.3)            | Domestic            | High                       |
| (Martin et al., 2015a, 2015b, 2015c) | Policy modeling to support administrative decision making on the New York state HIV testing law | Tested/ Analyzed Model           | Informing policy                        | Low                             | HIV, sexually transmitted diseases                                                                        | End disease epidemics (3.3)            | Domestic            | Low                        |
| (Martin et al., 2015a, 2015b, 2015c) | Mandating the offer of HIV testing in New York: Simulating the epidemic impact and resource needs | Concept model, untested          | Informing policy                        | High                            | HIV, sexually transmitted diseases                                                                        | End disease epidemics (3.3)            | Domestic            | Low                        |
| (McGlashan et al., 2016) | Quantifying a Systems Map: Network Analysis of a Childhood Obesity Causal Loop Diagram | Diagram                          | Increase understanding                  | High                            | Early and middle childhood, global health, nutrition and weight status, physical activity, social determinants of health | Global                                | Low                        |                              |
| (McKibben et al., 2016) | Projecting the urology workforce over the next 20 years | Concept model, untested          | Prediction                              | None                            | Access to health services, family planning                                                               | Access to sexual/ reproductive healthcare (3.7) | Domestic            | Low                        |
| (Meisel et al., 2018) | Towards a novel model for studying the nutritional stage dynamics of the Colombian population by age and socioeconomic status | Tested/ Analyzed Model           | Prediction                              | None                            | Adolescent health, early and middle childhood, global health, nutrition and weight status, physical activity | End preventable deaths (3.2)         | Global                                | Low                        |
| (Minyard et al., 2014) | Using systems thinking in state health policymaking: an educational initiative | Concept model, untested          | Increase understanding                  | High                            | Health communication and health information technology, nutrition and weight status                       | Domestic                            | High                       |                              |
| (Moreland, 2015) | Improving park space access for the Healthy Kids, Healthy Communities Partnership in Denver, Colorado | Diagram                          | Increase understanding                  | High                            | Early and middle childhood, nutrition and weight status, physical activity, social determinants of health | Domestic                            | High                       |                              |
| (Moxnes & Jensen, 2009) | Drunker than intended: Misperceptions and information treatments | Tested/ Analyzed Model           | Increase understanding                  | None                            | Adolescent health, substance abuse                                                                       | Strengthen prevention and treatment of substance abuse (3.5) | Global                                | Medium                    |
### Table 1 (continued)

| Citation                          | Title                                                                 | SD Approach       | Model Purpose          | Level of Stakeholder Engagement | CDC Healthy People 2020 Goals                                                                 | UN Sustainable Development Goals (SDGs) | Domestic or Global Focus? | Utility for MCH Policy/Practice? |
|----------------------------------|-----------------------------------------------------------------------|-------------------|------------------------|---------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|-----------------------------|
| (Munar et al., 2015)             | Scaling-up impact in perinatology through systems science: Bridging the collaboration and translational divides in cross-disciplinary research and public policy | Diagram           | Increase understanding | High                            | Access to health services, global health, maternal, infant, and child health                    | Reduce maternal mortality (3.1), End preventable deaths (3.2) | Global                   | High                        |
| (Nadkarni et al., 2018)          | Modeling patient access to therapeutic oxytocin in Zanzibar, Tanzania | Tested/ Analyzed Model | Prediction             | None                            | Access to health services, global health, maternal, infant, and child health, Public Health infrastructure | Reduce maternal mortality (3.1), End preventable deaths (3.2), Access to sexual/reproductive healthcare (3.7) | Global                   | Low                         |
| (Nelson et al., 2015)            | Using group model building to understand factors That influence childhood obesity in an urban environment | Diagram           | Increase understanding | High                            | Educational and community-based programs, nutrition and weight status, physical activity, social determinants of health |                                        | Domestic                  | High                        |
| (Osgood, Dyck, et al., 2011; Osgood, Mahamoud, et al., 2011) | The Inter- and Intragenerational Impact of Gestational Diabetes on the Epidemic of Type 2 Diabetes | Tested/ Analyzed Model | Increase understanding | None                            | Diabetes, maternal, infant, and child health                                                   |                                        | Global                   | Medium                      |
| (Osgood, Dyck, et al., 2011; Osgood, Mahamoud, et al., 2011) | Estimating the relative impact of early-life infection exposure on later-life tuberculosis outcomes in a Canadian sample | Tested/ Analyzed Model | Increase understanding | None                            | Immunization and infectious disease, respiratory diseases, social determinants of health        | End disease epidemics (3.3)                        | Global                   | Medium                      |
| (Owen et al., 2018)              | Understanding a successful obesity prevention initiative in children under 5 from a systems perspective | Diagram           | Increase understanding | High                            | Early and middle childhood, nutrition and weight status, physical activity                      | End preventable deaths (3.2)                        | Global                   | Low                         |
| (Ozawa et al., 2016)             | Exploring pathways for building trust in vaccination and strengthening health system resilience | Diagram           | Increase understanding | None                            | Public Health infrastructure, immunization and infectious disease, maternal, infant, and child health, health communication and health information technology | End preventable deaths (3.2), End disease epidemics (3.3) | Global                   | High                        |
| (Page et al., 2017)              | A decision-support tool to inform Australian strategies for preventing suicide and suicidal behaviour | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | None                            | Health related quality of life, mental and mental disorders, injury and violence                | End preventable deaths (3.2)                        | Global                   | Low                         |
| Patil MK, Janahanlal PS (Patil & Janahanlal, 1978) | A system dynamics feedback control model study of population of "India 2001" and policies for stabilizing growth | Tested/ Analyzed Model | Informing policy       | None                            | Family planning, global health                                                                  |                                        | Global                   | Low                         |
| Citation | Title | SD Approach | Model Purpose | Level of Stakeholder Engagement | CDC Healthy People 2020 Goals | UN Sustainable Development Goals (SDGs) | Domestic or Global Focus? | Utility for MCH Policy/Practice? |
|----------|-------|-------------|---------------|---------------------------------|----------------------------|-------------------------------------|--------------------------|-------------------------------|
| Patrick H, Hennessy E, McSpadden K, Oh A. (Patrick et al., 2013) | Parenting styles and practices in children's obesogenic behaviors: Scientific gaps and future research directions | Diagram | Increase understanding | None | Early and middle childhood, nutrition and weight status | End disease epidemics (3.3) | Domestic | Low |
| Pedamallu CS, Ozdamar L, Kroop E, Weber G W (Pedamallu et al., 2012) | A system dynamics model for intentional transmission of HIV/AIDS using cross impact analysis | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | None | HIV, sexually transmitted diseases | End disease epidemics (3.3) | Both | High |
| Pieters A, A, Akkermans H, Franz A. (Pieters et al., 2011) | E pluribus unum: Using group model building with many interdependent organizations to create integrated health care networks | Diagram | Strategic planning (compare one plan to another) | High | Access to health services, maternal, infant, and child health | Reduce maternal mortality (3.1), Access to sexual/ reproductive healthcare (3.7) | Global | Low |
| Pieters, A.; van Oorschot, K. E.; Akkermans, H. A.; Brailsford, S. C. (Pieters, van Oorschot et al. 2018) | Improving inter-organizational care-care designs: specialization versus integration | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | High | Access to health services, maternal, infant, and child health, Public Health infrastructure | Reduce maternal mortality (3.1), Access to sexual/ reproductive healthcare (3.7) | Global | High |
| Powell, K. E.; Kibbe, D. L.; Ferencik, R.; Soderquist, C.; Phillips, M. A.; Vull, E. A.; Minyard, K. J. (Powell et al., 2017) | Systems Thinking and Simulation Modeling to Inform Childhood Obesity Policy and Practice | Concept model, untested | Informing policy | High | Adolescent health, early and middle childhood, educational and community-based programs, nutrition and weight status, physical activity | End disease epidemics (3.3) | Domestic | High |
| Rainer MS (Rasner, 2002) | Resource allocation for HIV/AIDS control programs: a model-based policy analysis | Tested/ Analyzed Model | Increase understanding | None | HIV, sexually transmitted diseases | End disease epidemics (3.3) | Global | Low |
| Rosas, S. R (Rosas, 2017) | Systems thinking and complexity: considerations for health promoting schools | Concept model, untested | Increase understanding | None | Adolescent health, early and middle childhood, educational and community-based programs, social determinants of health, nutrition and weight status, physical activity, health related quality of life and wellbeing | End preventable deaths (3.2) | Domestic | Low |
| (Rwashana, Nakabulwawa et al. 2014) | Advancing the application of systems thinking in health: understanding the dynamics of neonatal mortality in Uganda | Diagram | Increase understanding | High | Maternal, infant, and child health | End preventable deaths (3.2) | Global | High |
| (Rwashana et al., 2009) | System dynamics approach to immunization health-care issues in developing countries: a case study of Uganda | Diagram | Increase understanding | High | Early and middle childhood, immunization and infections disease | End preventable deaths (3.2), End disease epidemics (3.3) | Global | High |
| (Sabounchi et al., 2014) | A novel system dynamics model of female obesity and fertility | Tested/ Analyzed Model | Increase understanding | None | Maternal, infant, and child health, nutrition and weight status | None | Domestic | High |
| Citation                        | Title                                                                 | SD Approach | Model Purpose                        | Level of Stakeholder Engagement | CDC Healthy People 2020 Goals                                                                 | UN Sustainable Development Goals (SDGs)                                                                 | Domestic or Global Focus? | Utility for MCH Policy/Practice? |
|--------------------------------|-----------------------------------------------------------------------|-------------|--------------------------------------|--------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|
| (Schrottner, Konig et al., 2009) | A population prospect for future health care models based on a system dynamics model | Tested/ Analyzed Model | Increase understanding                | None                            | Early and middle childhood, global health, immunization and infectious disease, maternal, infant, and child health | End preventable deaths (3.2), End disease epidemics (3.3)                                      | Global                   | Low                              |
| (Schuh et al., 2017)           | Examining the structure and behavior of Afghanistan’s routine childhood immunization system using system dynamics modeling | Tested/ Analyzed Model | Increase understanding                | None                            | None                                                                                   | Early and middle childhood, global health, maternal, infant, and child health Access to health services, Public Health infrastructure | Domestic                   | Low                              |
| (Semwanga et al., 2016)        | Applying a system dynamics modelling approach to explore policy options for improving neonatal health in Uganda | Tested/Analyzed Model | Strategic planning (compare one plan to another) | High                             | Access to health services, educational and community-based programs, global health, maternal, infant, and child health | Reduce maternal mortality (3.1), End preventable deaths (3.2), Access to sexual/reproductive healthcare (3.7) | Global                   | High                             |
| (Shariatpanahi et al., 2017)   | Assessing the effectiveness of disease awareness programs: Evidence from Google Trends data for the world awareness dates | Tested/ Analyzed Model | Increase understanding                | None                            | Educational and community-based programs, global health                                 | End preventable deaths (3.2)                                                                                   | Both                     | Low                              |
| (Sheldrick et al., 2016)       | A system dynamics model of clinical decision thresholds for the detection of developmental-behavioral disorders | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | None                            | Early and middle childhood, disability and health, hearing and other sensory or communication disorders, mental and mental disorders | Educational and community-based programs, global health                                                                 | Domestic                   | Low                              |
| (Siegel et al., 2011)          | Real-time tool to display the predicted disease course and treatment response for children with Crohn's disease | Tested/ Analyzed Model | Increase understanding                | None                            | Early and middle childhood, health communication and health information technology     | Early and middle childhood, global health, immunization and infectious disease, maternal, infant, and child health | Domestic                   | Low                              |
| (Soler et al., 2016)           | Community-Based Interventions to Decrease Obesity and Tobacco Exposure and Reduce Health Care Costs: Outcome Estimates From Communities Putting Prevention to Work for 2010-2020 | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | None                            | None                                                                                   | None                                                                               | Domestic                   | Low                              |
| (Staller, 2004)                | Runaway youth system dynamics: A theoretical framework for analyzing runaway and homeless youth policy | Diagram     | Increase understanding                | None                            | Adolescent health, social determinants of health                                           | End preventable deaths (3.2)                                                                                   | Domestic                   | Low                              |
| (Tebbens & Thompson, 2018)     | Using integrated modeling to support the global eradication of vaccine-preventable diseases | Tested/ Analyzed Model | Increase understanding                | None                            | Global health, immunization and infectious disease, maternal, infant, and child health, early and middle childhood | End preventable deaths (3.2), End disease epidemics (3.3)                                      | Global                   | Low                              |
| Citation | Title                                                                 | SD Approach         | Model Purpose                                      | Level of Stakeholder Engagement | CDC Healthy People 2020 Goals | UN Sustainable Development Goals (SDGs) | Domestic or Global Focus? | Utility for MCH Policy/Practice? |
|----------|-----------------------------------------------------------------------|---------------------|----------------------------------------------------|---------------------------------|------------------------------|--------------------------------------|--------------------------|------------------------------|
| (Tengs et al., 2003) | The cost-effectiveness of intensive national school-based anti-tobacco education: Results from the Tobacco Policy Model | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | None                            | Adolescent health, health related quality of life and wellbeing, substance abuse, tobacco use | Strengthen prevention and treatment of substance abuse (3.5) | Domestic | Medium |
| (Thomas & Reilly, 2015) | Group model building: A framework for organizing healthy community program and policy initiatives in Columbia, Missouri | Diagram | Increase understanding | High                            | Early and middle childhood, health communication and health information technology, nutrition and weight status, physical activity, social determinants of health |                             | Domestic | High |
| (Townshend & Turner, 2000) | Analysing the effectiveness of Chlamydia screening | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | Low                             | Maternal, infant, and child health, sexually transmitted diseases | End disease epidemics (3.3), Access to sexual/reproductive healthcare (3.7) | Global | Medium |
| (Viana et al., 2014) | Combining discrete-event simulation and system dynamics in a healthcare setting: A composite model for Chlamydia infection | Tested/ Analyzed Model | Strategic planning (compare one plan to another) | High                            | Access to health services, sexually transmitted diseases | End disease epidemics (3.3), Access to sexual/reproductive healthcare (3.7) | Global | Medium |
| (Weeks et al., 2013) | Multilevel dynamic systems affecting introduction of HIV/STI prevention innovations among Chinese women in sex work establishments | Diagram | Increase understanding | High                            | Educational and community-based programs, HIV, sexually transmitted diseases | End disease epidemics (3.3), Access to sexual reproductive health and rights (5.6) | Global | High |
| (Weeks et al., 2017) | Using Participatory System Dynamics Modeling to Examine the Local HIV Test and Treatment Care Continuum in Order to Reduce Community Viral Load | Diagram | Increase understanding | High                            | Immunization and infectious disease, HIV, sexually transmitted diseases | End preventable deaths (3.2), End disease epidemics (3.3) | Domestic | Low |
| (Wu et al., 2013) | Theoretical system dynamics modeling for Taiwan pediatric workforce in an era of national health insurance and low birth rates | Tested/ Analyzed Model | Prediction | None                            | Access to health services, adolescent health, early and middle childhood, maternal, infant, and child health, Public Health Infrastructure | End preventable deaths (3.2) | Global | Low |
| (Yourkavitch et al., 2018) | Interactions among poverty, gender, and health systems affect women's participation in services to prevent HIV transmission from mother to child: A causal loop analysis | Diagram | Increase understanding | High                            | Social determinants of health, health related quality of life and wellbeing, maternal, infant, and child health, sexually transmitted diseases, HIV, immunization and infectious diseases, educational and community-based programs | End preventable deaths (3.2), End disease epidemics (3.3), Access to sexual/reproductive healthcare (3.7) | Global | Low |
1 3

Table 1 (continued)

| CDC Healthy People 2020 Advisory Committee | UN Sustainable Development Goals (SDGs) | Domestic or Global Focus? | Utility for MCH Policy/Practice? |
|-------------------------------------------|----------------------------------------|--------------------------|---------------------------------|
| **Global**                                | Global                                  | Low                      |                                 |
| **Domestic**                              | Domestic                                | High                     |                                 |

We posited 4 purposes for which SD tools and approaches are utilized: increasing understanding, strategic planning, informing policy, or predicting (Table 2).

The most common model purpose we identified was increasing understanding (~ 55% of results). One example, by Moxnes and Jensen (2009), describes the creation of a tested/analyzed model that simulates the user’s blood alcohol concentration (BAC). This model was used by high school students to explore a number of scenarios where teens exceed their intended BAC: drinking with a full stomach, and drinking to attain a particular level of BAC. When compared to students who received written educational materials, students who used the simulation to experiment with different drinking behaviors were better able to learn lessons that might help them avoid future binge drinking. This and another study (Siegel et al. 2011) show a promising use of SD models in helping individuals increase their understanding in order to modify risky behaviors after experimentation in a “learning lab” environment. Another example is Osgood, Dyck, et al. (2011), Osgood, Mahamoud, et al. (2011), which studied the impact of gestational diabetes on future risk of developing type-2 diabetes for women and their children. Using data from Saskatchewan, they used a tested/analyzed model to trace the population’s progress through different disease states. The second example is more typical of SD models that attempt to increase scientific understanding.

The second most common model purpose identified was strategic planning, which involves comparing effectiveness among interventions or policies to inform decision-making (~ 25% of results). Hirsch et al. (2012) used this type of model to compare the costs and effectiveness of six different types of interventions addressing early childhood caries (tooth decay) singly and in combination. The authors used a tested/analyzed model with a ten-year time horizon, and used national and state data from the Colorado Child Health Survey, the National Health and Nutrition Examination Survey and the Medical Expenditures Panel Survey to make these results Colorado specific.
The third most common model purpose identified was informing policy (~11% of results). An example of this type of work is found in Ahmad’s articles (2005 & 2007) on tobacco policies (see Table 1), one of which compared the effects of a United States legal smoking age of 21 versus 18 (Ahmad, 2005a, 2005b). Using a tested/analyzed model with a 50-year time horizon, the author examines three different scenarios for how smoking behaviors (and subsequent health and cost outcomes) might be affected. The input values for the model came from national surveys and the literature, and were tested in a sensitivity analysis.

The final modeling purpose is predicting, where the researcher uses past system behavior to project future system behavior. Nine works (~9%) created a model for this purpose. These were used to predict ambulatory health care demand (Diaz et al., 2012), the US urology workforce (McKibben et al., 2016), the prevalence of people with intellectual developmental disorders (Lee et al., 2016), the prevalence of Kawasaki disease (Huang et al., 2013), the Taiwanese pediatric workforce (Wu et al., 2013), the shortage of physicians in Japan (Ishikawa et al. 2013), medical specialists needed in Sri Lanka (De Silva, 2017), nutrition status of the Colombian population (Meisel et al., 2018), and the supply of therapeutic oxytocin in Tanzania (Nadkarni et al., 2018).

**MCH Topics**

The content abstraction identified a broad range of Healthy People 2020 objectives studied (Table 3). While the topics studied in the 101 works varied, the two Healthy People 2020 objectives addressed most frequently were early and middle childhood, addressed by ~30% of the studies, and access to health services, addressed by ~26% (Table 3); the topic of early and middle childhood seeks to improve the healthy development, health, safety, and well-being of adolescents and young adults, and the topic of access to health services seeks to improve access to comprehensive, quality health care services. An example of studying the topic of early and middle childhood was found in Liu et al. (2016),
where a tested/analyzed model compared three possible interventions to implement a tax on sugar-sweetened beverage to understand the impact on children’s weight over time. Of the works identified focusing on early and middle childhood, obesity and nutrition was most studied. Other examples of early and middle childhood literature included studies on developmental disorders (Bernard et al., 1977; Lee et al., 2016; Sheldrick et al., 2016) and immunization (Rwashana et al., 2009; Schuh et al., 2017). Of those works addressing access to health services literature, several specifically spoke to workforce needs (Barber & Lopez-Valcarcel, 2014, Sabounchi et al., 2014, Batchelder et al., 2015, Brennan et al., 2015, Frerichs et al., 2015, Grove, 2015, Hoehner et al., 2015, Keane et al., 2015, Lounsbury et al., 2015, Martin et al., 2015a, 2015b, 2015c, Moreland, 2015, Munar et al., 2015, Nelson et al., 2015, Thomas & Reily, 2015, Batchelder & Lounsbury, 2016, McGlashan et al., 2016, Ozawa et al., 2016, Jalali et al., 2017, Lich et al., 2017, Rosas, 2017, Schuh et al., 2017, Shariatpanahi et al., 2017, Weeks et al., 2017, Frerichs, Lich, et al., 2018; Frerichs, Young, et al., 2018, Frerichs, Lich, et al., 2018; Frerichs, Young, et al., 2018, Hosseiniichimiei et al., 2018, Owen et al., 2018, Tebbens & Thompson, 2018, Yourkavitch et al., 2018).

We found that fewer works focused on the UN’s SDGs (Table 4). This seems unusual, given that we found 49 of the works focused on global problems and 5 focused on both global and domestic issues. The preponderance of works that did study a SDG focused on the goal to ‘end disease epidemics’ and/or ‘end preventable deaths’. The disease epidemics most commonly addressed were related to STIs.

### Table 2 Purpose of the system dynamics models

| Model purpose | # of Articles | Article Citations |
|---------------|---------------|-------------------|
| Increasing understanding | 55 | (Heidenberger & Flessa, 1993, Rauner, 2002, Maital & Bornstein, 2003, Staller, 2004, Fredericks et al., 2008, Hovmand & Ford, 2009, Hovmand et al., 2009, Moynes & Jensen, 2009, Rwashana et al., 2009, Schrottner, Konig et al. 2009, Finegood et al., 2010, Bridgewater et al., 2011, Hamdani et al., 2011, Osgood, Dyck, et al., 2011; Osgood, Mahamoud, et al., 2011, Osgood, Dyck, et al., 2011; Osgood, Mahamoud, et al., 2011, Siegel et al. 2011, BeLue et al., 2012, Davison, Vandervater et al. 2012, Ghaffarzadegan et al., 2013, Patrick et al., 2013, Weeks et al., 2013, Fallah-Fini et al., 2014, Gillen et al., 2014, Kumar & Kumar, 2014, Lan, Chen et al. 2014, Minyard et al., 2014, Rwashana, Nakubulwa et al. 2014, Sabounchi et al., 2014, Batchelder et al., 2015, Brennan et al., 2015, Frerichs et al., 2015, Grove, 2015, Hoehner et al., 2015, Keane et al., 2015, Lounsbury et al., 2015, Martin et al., 2015a, 2015b, 2015c, Moreland, 2015, Munar et al., 2015, Nelson et al., 2015, Thomas & Reily, 2015, Batchelder & Lounsbury, 2016, McGlashan et al., 2016, Ozawa et al., 2016, Jalali et al., 2017, Lich et al., 2017, Rosas, 2017, Schuh et al., 2017, Shariatpanahi et al., 2017, Weeks et al., 2017, Frerichs, Lich, et al., 2018; Frerichs, Young, et al., 2018, Frerichs, Lich, et al., 2018; Frerichs, Young, et al., 2018, Hosseiniichimiei et al., 2018, Owen et al., 2018, Tebbens & Thompson, 2018, Yourkavitch et al., 2018) |
| Strategic Planning | 26 | (Bernard et al., 1977, Holder & Blose, 1987, Anderson & Anderson, 1998, Townshend & Turner, 2000, Tengs et al., 2001, Evenden et al., 2006, Barber & Lopez-Valcarcel, 2010, Pieters et al., 2011, Hirsch et al., 2012, Pedamallu et al., 2012, Frerichs et al., 2013, Crettenden, McCarty et al. 2014, Demir et al., 2014, Viana et al., 2014, Edelstein et al., 2015, Kok et al., 2015, Hernandez et al., 2016, Honteze et al., 2016, Lyon et al., 2016, Semwanga et al., 2016, Sheldrick et al., 2016, Soler et al., 2016, Carrete et al., 2017, Page et al., 2017, Pieters, van Oorschot et al. 2018, Zou et al., 2018) |
| Informing policy | 11 | (Patil & Janahanlal, 1978, Kommer, 2002, Ahmad, 2005a, 2005b, Ahmad, 2005a, 2005b, Ahmad & Billimek, 2007, Abidin, Mamat et al. 2014, Martin et al., 2015a, 2015b, 2015c, Martin et al., 2015a, 2015b, 2015c, Goncalves & Kamdem, 2016, Liu et al., 2016, Powell et al., 2017) |
| Predicting | 9 | (Diaz et al., 2012, Huang et al., 2013, Ishikawa, Ohba et al. 2013, Wu et al., 2013, Lee et al., 2016, McKibben et al., 2016, De Silva, 2017, Meisel et al., 2018, Nadkarni et al., 2018) |

where a tested/analyzed model compared three possible interventions to implement a tax on sugar-sweetened beverage to understand the impact on children’s weight over time. Of the works identified focusing on early and middle childhood, obesity and nutrition was most studied. Other examples of early and middle childhood literature included studies on developmental disorders (Bernard et al., 1977; Lee et al., 2016; Sheldrick et al., 2016) and immunization (Rwashana et al., 2009; Schuh et al., 2017). Of those works addressing access to health services literature, several specifically spoke to workforce needs (Barber & Lopez-Valcarcel, 2010, Ishikawa et al., 2013, Wu et al., 2013, Crettenden, McCarty et al., 2014, McKibben et al., 2016, De Silva, 2017) and STI-related services (Evenden et al., 2006; Honteze et al., 2016; Kok et al., 2015; Viana et al., 2014; Zou et al., 2018).
Table 3 Healthy people 2020 goals

| Healthy people 2020 goal                  | # of Articles | Article citations                                                                 |
|-------------------------------------------|---------------|-----------------------------------------------------------------------------------|
| Access to Health Services                 | 26            | (Bernard et al., 1977, Evenden et al., 2006, Barber & Lopez-Valcarcel, 2010, Hamdani et al., 2011, Pieters et al., 2011, Diaz et al., 2012, Ishikawa, Ohba et al. 2013, Wu et al., 2013, Crettenden, McCarty et al. 2014, Demir et al., 2014, Kumar & Kumar, 2014, Viana et al., 2014, Edelstein et al., 2015, Grove, 2015, Kok et al., 2015, Munar et al., 2015, Hernandez et al., 2016, Hontelez et al., 2016, Lyon et al., 2016, McBibben et al., 2016, Semwanga et al., 2016, De Silva, 2017, Schuh et al., 2017, Nadkarni et al., 2018, Pieters, van Oorschot et al. 2018, Zou et al., 2018) |
| Adolescent Health                         | 20            | (Tengs et al., 2001, Staller, 2004, Ahmad, 2005a, 2005b, Ahmad, 2005a, 2005b, Ahmad & Billimek, 2007, Moxnes & Jensen, 2009, Bridgewater et al., 2011, Hamdani et al., 2011, Belue et al., 2012, Wu et al., 2013, Abidin, Mamat et al. 2014, Liu et al., 2016, Lyon et al., 2016, Lich et al., 2017, Powell et al., 2017, Rosas, 2017, Frerichs, Lich, et al., 2018; Frerichs, Young, et al., 2018, Frerichs, Lich, et al., 2018; Frerichs, Young, et al., 2018, Hosseinichimeh et al., 2018, Meisel et al., 2018) |
| Cancer                                    | 0             | None                                                                              |
| Diabetes                                  | 1             | (Osgood, Dyck, et al., 2011; Osgood, Mahamoud, et al., 2011)                       |
| Disability and Health                     | 5             | (Fredericks et al., 2008; Hamdani et al., 2011; Lee et al., 2016; Lich et al., 2017; Sheldrick et al., 2016) |
| Early and Middle Childhood                | 30            | (Bernard et al., 1977, Maital & Bornstein, 2003, Rwashana et al., 2009, Siegel et al., 2011, Davison, Vanderwater et al. 2012, Hirsch et al., 2012, Patrick et al., 2013, Wu et al., 2013, Abidin, Mamat et al. 2014, Gillen et al., 2014, Lan, Chen et al. 2014, Brennan et al., 2015, Edelstein et al., 2015, Frerichs et al., 2015, Hoehner et al., 2015, Keane et al., 2015, Moreland, 2015, Thomas & Reilly, 2015, Lee et al., 2016, Liu et al., 2016, McGlashan et al., 2016, Sheldrick et al., 2016, Carrete et al., 2017, Jalali et al., 2017, Powell et al., 2017, Rosas, 2017, Schuh et al., 2017, Meisel et al., 2018, Owen et al., 2018, Tebbens & Thompson, 2018) |
| Educational and Community-Based Programs   | 17            | (Brennan et al., 2015; Carrete et al., 2017; Edelstein et al., 2015; Fredericks et al., 2008; Hirsch et al., 2012; Hoehner et al., 2015; Jalali et al., 2017; Keane et al., 2015; Lyon et al., 2016; Nelson et al., 2015; Powell et al., 2017; Rosas, 2017; Semwanga et al., 2016; Shariatpanahi et al., 2017; Soler et al., 2016; Weeks et al., 2013; Yourkavitch et al., 2018) |
| Environmental Health                      | 0             | None                                                                              |
| Family Planning                           | 2             | (McKibben et al., 2016; Patil & Janahanlal, 1978)                                 |
| Genomics                                  | 0             | None                                                                              |
| Global Health                             | 19            | (Carrete et al., 2017; De Silva, 2017; Goncalves & Kamdem, 2016; Grove, 2015; Hernandez et al., 2016; Hontelez et al., 2016; Kok et al., 2015; Lee et al., 2016; McGlashan et al., 2016; Meisel et al., 2018; Munar et al., 2015; Nadkarni et al., 2018; Owen et al., 2018; Patil & Janahanlal, 1978; Schuh et al., 2017; Semwanga et al., 2016; Shariatpanahi et al., 2017; Tebbens & Thompson, 2018; Zou et al., 2018) |
| Health Communication and Health Information Technology | 5             | (Gillen et al., 2014; Minyard et al., 2014; Ozawa et al., 2016; Siegel et al., 2011; Thomas & Reilly, 2015) |
| Health Related Quality of Life and Wellbeing | 12            | (Ahmad & Billimek, 2007; Ahmad, 2005a, 2005b; Ahmad, 2005a, 2005b; Batchelder & Lounsbury, 2016; Brennan et al., 2015; Hoehner et al., 2015; Keane et al., 2015; Lich et al., 2017; Page et al., 2017; Rosas, 2017; Tengs et al., 2001; Yourkavitch et al., 2018) |
| Hearing and Other Sensory or Communication Disorders | 1             | (Sheldrick et al., 2016)                                                          |
| Heart Disease and Stroke                  | 1             | (Tebbens & Thompson, 2018)                                                        |
### Table 3 (continued)

| Healthy people 2020 goal                                    | # of Articles | Article citations                                                                                                                                 |
|-------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| HIV                                                         | 17            | (Anderson & Anderson, 1998; Batchelder & Lounsbury, 2016; Batchelder et al., 2015; Goncalves & Kamdem, 2016; Heidenberger & Flessa, 1993; Hontelez et al., 2016; Kod et al., 2015; Lounsbury et al., 2015; Martin et al., 2015a, 2015b, 2015c; Pedamallu et al., 2012; Rauner, 2002; Weeks et al., 2013, 2017; Yourkavitch et al., 2018; Zou et al., 2018) |
| Immunization and Infectious Disease                        | 9             | (Goncalves & Kamdem, 2016; Hontelez et al., 2016; Osgood, Dyck, et al., 2011; Osgood, Mahamoud, et al., 2011; Ozawa et al., 2016; Rwashana et al., 2009; Schuh et al., 2017; Weeks et al., 2017; Yourkavitch et al., 2018; Zou et al., 2018) |
| Injury and Violence Prevention                             | 6             | (Batchelder & Lounsbury, 2016; Batchelder et al., 2015; Bridgewater et al., 2011; Hoymand & Ford, 2009; Hoymand et al., 2009; Page et al., 2017) |
| LGBT Health                                                | 1             | (Kok et al., 2015)                                                                                                                                 |
| Maternal, Infant, and Child Health                        | 26            | (Anderson & Anderson, 1998, Townshend & Turner, 2000, Finegood et al., 2010, Osgood, Dyck, et al., 2011; Osgood, Mahamoud, et al., 2011, Pieters et al., 2011, Ghaffarzadegan et al., 2013, Huang et al., 2013, Wu et al., 2013, Demir et al., 2014, Kumar & Kumar, 2014, Rwashana, Nakubulwa et al., 2014, Sabounchi et al., 2014, Brennan et al., 2015, Edelstein et al., 2015, Frerichs et al., 2015, Hoehner et al., 2015, Keane et al., 2015, Munar et al., 2015, Goncalves & Kamdem, 2016, Ozawa et al., 2016, Semwanga et al., 2016, Schuh et al., 2017, Nadkarni et al., 2018, Pieters, van Oorschot et al. 2018, Tebbens & Thompson, 2018, Yourkavitch et al., 2018) |
| Mental and Mental Disorders                                | 9             | (Batchelder et al., 2015; Bernard et al., 1977; Hosseinchimeh et al., 2018; Kommer, 2002; Lee et al., 2016; Lich et al., 2017; Lyon et al., 2016; Page et al., 2017; Sheldrick et al., 2016) |
| Nutrition and Weight Status                                | 25            | (Finegood et al., 2010, Frerichs et al., 2013, Patrick et al., 2013, Abidin, Mamat et al. 2014, Fallah-Fini et al., 2014, Lan, Chen et al. 2014, Minyard et al., 2014, Sabounchi et al., 2014, Brennan et al., 2015, Frerichs et al., 2015, Hoehner et al., 2015, Keane et al., 2015, Moreland, 2015, Nelson et al., 2015, Thomas & Reilly, 2015, Liu et al., 2016, Soler et al., 2016, Carrete et al., 2017, Jalali et al., 2017, Powell et al., 2017, Rosas, 2017, Frerichs, Lich, et al., 2018; Frerichs, Young, et al., 2018, Frerichs, Lich, et al., 2018; Frerichs, Young, et al., 2018, Meisel et al., 2018, Owen et al., 2018) |
| Oral Health                                                | 2             | (Edelstein et al., 2015; Hirsch et al., 2012)                                                                                                                                 |
| Physical Activity                                          | 18            | (Davison, Vanderwater et al. 2012; Brennan et al., 2015; Hoehner et al., 2015; Keane et al., 2015; Moreland, 2015; Nelson et al., 2015; Thomas & Reilly, 2015; Liu et al., 2016; McGlashan et al., 2016; Soler et al., 2016; Carrete et al., 2017; Jalali et al., 2017; Powell et al., 2017; Rosas, 2017; Frerichs, Lich, et al., 2018; Frerichs, Young, et al., 2018; Frerichs, Lich, et al., 2018; Frerichs, Young, et al., 2018; Meisel et al., 2018; Owen et al., 2018) |
| Public health infrastructure                               | 10            | (Wu et al., 2013, Crettenden, McCarty et al. 2014, Demir et al., 2014, Kumar & Kumar, 2014, Kok et al., 2015, Ozawa et al., 2016, De Silva, 2017, Schuh et al., 2017, Nadkarni et al., 2018, Pieters, van Oorschot et al. 2018) |
| Respiratory diseases                                       | 2             | (Gillen et al., 2014; Osgood, Dyck, et al., 2011; Osgood, Mahamoud, et al., 2011)                                                                                                                                 |
The majority of works were rated as “high” utility (n = 43) or “low” utility (n = 44) for MCH policy/practice, while 14 were rated as “medium” utility for the field. (Table 1).

### Stakeholder Engagement

In addition to topics, methods and purposes, we also noted patterns in the selected studies regarding stakeholder engagement. While the majority of studies we found (n = 53) did not involve stakeholders in the modeling processes, there were 40 studies which included what we considered to be a high level of stakeholder engagement. A prime example of one of these studies was by Bridgewater et al. (2011), which studied youth violence in Boston and engaged stakeholders throughout the model building and analysis. Qualitative causal loop diagrams developed by the community were used as the basis for a tested/analyzed model with a 12-year time horizon to explore a number of interventions to reduce youth violence.

Finally, we found that the number of SD publications on MCH topics has been increasing rapidly in the past decade (see Fig. 4). These works have been spread across 69 publication sources, with the most common being PLOS ONE (n = 7) and Journal of Public Health Management & Practice (n = 7).

### Conclusions for Practice

The application of SD to MCH topics described here include a broad range of approaches, purposes, topics, and levels of stakeholder engagement. The inventory of articles identified in this review provides guidance and direction to those in the MCH workforce looking to bring systems perspectives to their MCH work; however, many areas and approaches remain unexplored.

Qualitative diagramming studies appear to be underused in MCH/SD research. We see opportunities for future studies to draw on qualitative diagrams to bridge science and practice in support of addressing pressing, persistent MCH problems. Group modeling sessions could be integrated into qualitative studies involving in-depth interviews, focus groups, or ethnographic methods (Bridgewater et al., 2011; Hovmand, 2014). Bridgewater et al. (2011) illustrate how stakeholder-engaged group qualitative diagramming can produce insights about the system on its own. This type of qualitative diagramming can also be a stepping-stone for later modeling work. Weeks et al. (2013) illustrate that ethnographic research on MCH topics could be adapted into qualitative diagrams in order to extend their usefulness as drivers of policy. For MCH researchers wary of the mathematical skills necessary for tested/analyzed models, qualitative diagramming can supply a deeper understanding of complex problems in MCH without the time and skill investment of quantitative modeling.

Another future research direction is simulated life course studies, as typified by Osgood, Dyck, and Grassman’s 2011...
study of the intra- and intergenerational impact of gestational diabetes on risk of type-2 diabetes. By using historical data to calibrate and validate the model, theories about the intergenerational cycle of risk can be tested. While such studies can never replace longitudinal cohort studies for testing life course theories, they may be able to rule out intergenerational effects if models containing them cannot replicate historical data using the range of parameters estimated in previous studies.

STI research appears to be at the forefront of MCH in terms of adopting SD approaches, possibly because of the similarities between stock-and-flow models and more traditional infectious disease compartmental models from epidemiology. Childhood obesity has also been a fruitful area for research crossover between MCH and SD; in this case, researchers may have been more comfortable using SD models because they are more common in the biomedical sciences. Collectively, these two fields of research (STI and childhood obesity) have only contributed thirty-five
publications, which means many questions regarding the health and wellbeing of MCH populations remain unstudied. One opportunity for MCH researchers and practitioners to lead the way is to incorporate a greater variety of social determinants of health in SD models.

Studies comparing interventions and policies were common, likely because the ubiquity of other modeling methods in comparative cost-effectiveness research makes transitioning to SD methods more acceptable. Unfortunately, many of these studies did not meet basic guidelines – as outlined by the International Society for Pharmacoeconomics and Outcomes Research’s Consolidated Health Economic Evaluation Reporting Standards—for economic evaluation and comparative cost-effectiveness research in terms of reporting style or validation/sensitivity analyses (2000; Sculpher et al., 2000; Garrison, 2003; Weinstein et al., 2003; Husereau et al., 2013). Given the workforce’s role to prioritize actions that make best use of limited resources, assessing the business case for competing interventions is a valuable application of SD methods in the MCH field. However, future research should draw on existing standards for cost-effectiveness research in order to clearly report higher-quality results and best support decisions on resource-allocation.

Finally, MCH professionals should take advantage of teaching and collaboration opportunities inherent in model building. Several studies in this review created interactive, non-intimidating dashboards for their models that laypeople could use with relatively little training (Minyard et al., 2014; Moxnes & Jensen, 2009; Rauner, 2002; Siegel et al., 2011). For some of these projects, the goal was to allow policymakers and public health leaders to try out a number of policy scenarios and receive graphical or simplified feedback on how these policy decisions might affect key outcomes of interest: costs over time, people cured or reached, people missed or harmed, and unintended consequences. In other projects, the goal was to help patients learn how to manage their own health. Interactive models are a way for policymakers, public health leaders, and stakeholders to experiment using methods that deliver consequence-free and evidence-based results in minutes.

The papers in this review demonstrate the potential for the MCH workforce to use SD to understand complex problems such as STI control, obesity, oral health, substance use disorders, and workforce planning. However, many of the wicked problems facing MCH populations, including equity practices, remain unstudied using SD. Furthermore, few of the SD applications described here were then translated into significant action to address the problem under study. These tools have untapped potential. In this critical period of health transformation, SD can produce a better understanding of the varied, multilevel forces interacting to produce the complex problems facing MCH professionals and policymakers.

**Supplementary Information** The online version contains supplementary material available at https://doi.org/10.1007/s10995-022-03376-8.

**Acknowledgements** We wish to acknowledge Dr. Laura Sheble for her expertise and invaluable role in the design of the initial search strategy identifying works using SD methods applied to health topics. We also wish to acknowledge the UNC Chapel Hill Health Sciences Library and Librarians for their help conducting the search of the literature.

**Author Contributions** Conceptualization SA, SK, AM, DC, KHL. Data curation IG, JS, SA, SK, AM, DC, KHL. Formal analysis IG, JS, SA, SK, AM, DC, KHL. Writing—original draft IG, JS, SA, KHL. Writing—review and editing IG, JS, SA, SK, AM, DC, KHL.

**Funding** Not applicable.

**Data Availability** All articles included in this review are accessible online, and the search terms used to query these articles can be found in the Appendix.

**Code availability** The search terms used to query these articles can be found in the Appendix.

**Declarations**

**Conflict of interest** The authors declare no conflict of interest.
Ethical Approval This study was determined to be non-human subjects research by the University of North Carolina IRB.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

(2000). Decision analytic modelling in the economic evaluation of health technologies. A consensus statement. Consensus Conference on Guidelines on Economic Modelling in Health Technology Assessment. Pharmacoeconomics 17(5): 443–444

Abdin, N. Z., Mamat, M., Dangerfield, B., Zulkepli, J. H., Baten, M. A., & Wibowo, A. (2014). Combating obesity through healthy eating behavior: a call for system dynamics optimization. PLoS ONE, 9(12), e114135.

Ahmad, S. (2005a). Closing the youth access gap: The projected health benefits and cost savings of a national policy to raise the legal smoking age to 21 in the United States. Health Policy, 75(1), 74–84.

Ahmad, S. (2005b). The cost-effectiveness of raising the legal smoking age in California. Medical Decision Making, 25(3), 330–340.

Ahmad, S., & Billimek, J. (2007). Limiting youth access to tobacco: Comparing the long-term health impacts of increasing cigarette excise taxes and raising the legal smoking age to 21 in the United States. Health Policy, 80(3), 378–391.

Anderson, J. G., & Anderson, M. M. (1998). HIV screening and treatment of pregnant women and their newborns: A simulation-based analysis. SIMULATION, 71(4), 276–284.

Barber, P., & Lopez-Valcarcel, B. G. (2010). Forecasting the need for medical specialists in Spain: application of a system dynamics model. Human Resources for Health. https://doi.org/10.1186/1478-4491-8-24

Batchelder, A. W., Gonzalez, J. S., Palma, A., Schoenbaum, E., & Lounsbury, D. W. (2015). A social ecological model of syndemic risk affecting women with and at-risk for HIV in impoverished urban communities. American Journal of Community Psychology, 56(3–4), 229–240.

Batchelder, A. W. and D. W. Lounsbury (2016). Simulating syndemic risk: Using system dynamics modeling to understand psychosocial challenges facing women living with and at-risk for HIV, Taylor and Francis Inc.: 84–106.

BeLue, R., Carmack, C., Myers, K. R., Weinreb-Welch, L., & Lengerich, E. J. (2012). Systems Thinking Tools as Applied to Community-Based participatory research: a case study. Health Education & Behavior, 39(6), 745–751.

Bernard, J. C., Camirand, F., Hosios, A. J., & Rousseau, J. M. (1977). Experi-mental: A simulation of the distribution of services to mentally deficient children. Behavioral Science, 22(5), 356–366.

Brennan, L. K., Saboounchi, N. S., Kenner, A. L., & Hovmand, P. (2015). Systems thinking in 49 communities related to healthy eating, active living, and childhood obesity. Journal of Public Health Management and Practice, 21, S55–S69.

Bridgewater, K., Peterson, S., McDevitt, J., Hemenway, D., Bass, J., Bothwell, P., & Everdell, R. (2011). A community-based systems learning approach to understanding youth violence in Boston. Progress in Community Health Partnerships-Research Education and Action, 5(1), 75–83.

Carreto, L., Arroyo, P., & Villasenor, R. (2017). A socioecological view toward an understanding of how to prevent overweight in children. Journal of Consumer Marketing, 34(2), 156–168.

Cilenit, D., Issel, M., Wells, R., Link, S., & Lich, K. H. (2019). System dynamics approaches and collective action for community health: an integrative review. American Journal of Community Psychology, 63(3–4), 527–545. https://doi.org/10.1002/ajcp.12305

Crettenden, I. F., McCarty, M. V., Fenech, B. J., Heywood, T., Taizt, M. C., & Tudman, S. (2014). How evidence-based workforce planning in Australia is informing policy development in the retention and distribution of the health workforce. Human Resources for Health. https://doi.org/10.1186/1478-4491-12-7

Davison, D. E., R. Vanderwater, K. Zhou and Ieee (2012) A Control-Theory Reward-Based Approach to Behavior Modification in the Presence of Social-Norm Pressure and Conformity Pressure. 2012 American Control Conference. Los Alamitos, Ieee Computer Soc 4046–4052.

De Silva, M. D. K. (2017). How many medical specialists do ministry of health– Sri Lanka need by 2025: Use of system dynamics modelling for policy decisions. Ceylon Medical Journal, 62(3), 141–148.

Demir, E., Lebcir, R., & Adeyemi, S. (2014). Modelling length of stay and patient flows: Methodological case studies from the UK neonatal care services. Journal of the Operational Research Society, 65(4), 532–545.

Diaz, R., Behr, J. G., & Tulpule, M. (2012). A system dynamics model for simulating ambulatory health care demands. Simulation in Healthcare-Journal of the Society for Simulation in Healthcare, 7(4), 243–250.

Edelstein, B. L., Hirsch, G., Frosh, M., & Kumar, J. (2015). Reducing early childhood caries in a medicaid population a systems model analysis. Journal of the American Dental Association, 146(4), 224–232.

Everdenn, D., Harper, P. R., Brailsford, S. C., & Harindra, V. (2006). Improving the cost-effectiveness of Chlamydia screening with targeted screening strategies. Journal of the Operational Research Society, 57(12), 1400–1412.

Fallah-Fini, S., Rahmandad, H., Huang, T. T. K., Bures, R. M., & Glass, T. A. (2014). Modeling US adult obesity trends: a system dynamics model for estimating energy imbalance gap. American Journal of Public Health, 104(7), 1230–1239.

Fanta, M., D. Ladzekpo and N. Unaka (2021) Racism and pediatric health outcomes. Current Problems in Pediatric and Adolescent Health Care 101087.

Fingood, D. T., Merth, T. D. N., & Rutter, H. (2010). Implications of the foresight obesity system map for solutions to childhood obesity. Obesity, 18, S13–S16.

Forrester, J. (1961–1969). Industrial dynamics. Cambridge, MA, MIT Press.

Fredericks, K. A., Deegan, M., & Carman, J. G. (2008). Using system dynamics as an evaluation tool - Experience from a demonstration program. American Journal of Evaluation, 29(3), 251–267.

Ferriuchs, L. M., Araz, O. M., & Huang, T. T. K. (2013). Modeling social transmission dynamics of unhealthy behaviors for evaluating prevention and treatment interventions on childhood obesity. PLoS ONE, 8(12), 14.
Frerichs, L., Brittin, J., Sorensen, D., Trowbridge, M. J., Yanero, A. L., Siahpush, M., Tibbitts, M., & Huang, T. T. K. (2015). Influence of School Architecture and Design on Healthy Eating: A Review of the Evidence. American Journal of Public Health, 105(4), E46–E57.

Frerichs, L., Lich, K. H., Young, T. L., Dave, G., Stith, D., & Corbie-Smith, G. (2018). Development of a systems science curriculum to engage rural African American teens in understanding and addressing childhood obesity prevention. Health Education & Behavior, 45(3), 423–434.

Frerichs, L., Young, T. L., Dave, G., Stith, D., & Corbie-Smith, G., & Lich, K. H. (2018). Mind maps and network analysis to evaluate conceptualization of complex issues: A case example evaluating systems science workshops for childhood obesity prevention. Evaluation and Program Planning, 68, 135–147.

Garrison, L. P. (2003). The ISPOR Good Practice Modeling Principles—a sensible approach: Be transparent, be reasonable. Value Health, 6(1), 6–8.

Gaffarzagadean, N., Epstein, A. J., & Martin, E. G. (2013). Practice variation, bias, and experiential learning in cesarean delivery: a data-based systems dynamics approach. Health Services Research, 48(2), 713–734.

Gillen, E. M., Lich, K. H., Yeatts, K. B., Hernandez, M. L., Smith, T. W., & Lewis, M. A. (2014). Social ecology of asthma: engaging stakeholders in integrating health behavior theories and practice-based evidence through systems mapping. Health Education & Behavior, 41(1), 63–77.

Goncalves, P., & Kamdem, S. T. (2016). Reaching an AIDS-free generation in Cote d’Ivoire, data driven policy design for HIV/AIDS response programs: evidence-based policy design for HIV/AIDS response programs in Cote d’Ivoire. International Journal of System Dynamics Applications, 5(1), 43–62.

Grove, J. T. (2015). Aiming for utility in “systems-based evaluation”: a research-based framework for practitioners. Ids Bulletin-Institute of Development Studies, 46(1), 58–70.

Hamdani, Y., Jetha, A., & Norman, C. (2011). Systems thinking perspectives applied to healthcare transition for youth with disabilities: A paradigm shift for practice, policy and research. Child Care Health and Development, 37(6), 806–814.

Haraldsson, H. V. (2004). Introduction to system thinking and causal loop diagrams. Lund University.

Heidenberger, K., & Flessa, S. (1993). A system dynamics model for aids policy support in Tanzania. European Journal of Operational Research, 70(2), 167–176.

Hernandez, J. E., Adams, T., Ismail, H., Yao, H., Liu, S., Delibasic, B., & Oderanti, F. (2016). Enhancing antenatal clinics decision-making through the modelling and simulation of patients flow by using a system dynamics approach. A Case for a British North-west Hospital. Decision Support Systems Vi - Addressing Sustainability and Societal Challenges, 250, 44–55.

Hirsch, G. B., Edelstein, B. L., Frosh, M., & Anselmo, T. (2012). A simulation model for designing effective interventions in early childhood caries. Preventing Chronic Disease, 9, 9.

Hoehner, C. M., Sabounchi, N. S., Brennan, L. K., Hovmand, P., & Kenmer, A. (2015). Behavior-over-time graphs: assessing perceived trends in healthy eating and active living environments and behaviors across 49 communities. Journal of Public Health Management and Practice, 21, S45–S54.

Holder, H. D., & Blose, J. O. (1987). Reduction of community alcohol-problems - computer-simulation experiments in 3 counties. Journal of Studies on Alcohol, 48(2), 124–135.

Homer, J. B., & Hirsch, G. B. (2006). System dynamics modeling for public health: Background and opportunities. American Journal of Public Health, 96(3), 452–458.

Hontelez, J. A. C., Chang, A. Y., Ogbojuoi, O., de Vlas, S. J., Barnighausen, T., & Atun, R. (2016). Changing HIV treatment eligibility under health system constraints in sub-Saharan Africa: Investment needs, population health gains, and cost-effectiveness. AIDS, 30(15), 2341–2350.

Hosseinichimeh, N., Wittenborn, A. K., Rick, J., Jalali, M. S., & Rahmandad, H. (2018). Modeling and estimating the feedback mechanisms among depression, rumination, and stressors in adolescents. PLOS ONE, 13(9), 18.

Hovmand, P. S. (2014). Community Based System Dynamics New York. Springer.

Hovmand, P. S., & Ford, D. N. (2009). Sequence and timing of three community interventions to domestic violence. American Journal of Community Psychology, 44(3–4), 261–272.

Hovmand, P. S., Ford, D. N., Flom, I., & Kyriakakis, S. (2009). Victims arrested for domestic violence: Unintended consequences of arrest policies. System Dynamics Review, 25(3), 161–181.

Huang, S. K., Lin, M. T., Chen, H. C., Huang, S. C., & Wu, M. H. (2013). Epidemiology of Kawasaki Disease: Prevalence from national database and future trends projection by system dynamics modeling. Journal of Pediatrics, 163(1), 126–U522.

Husereau, D., Drummond, M., Petrou, S., Carswell, C., Moher, D., Greenberg, D., Augustovski, F., Briggs, A. H., Mauskopf, J., & Loder, E. (2013). Consolidated health economic evaluation reporting standards (CHEERS)—explanation and elaboration: A report of the ISPOR Health Economic evaluation publication guidelines good reporting practices task force. Value Health, 16(2), 231–250.

Ishikawa, T., Ohba, H., Yokokura, K., Nakamura, K., & Ogasawara, K. (2013). Forecasting the absolute and relative shortage of physicians in Japan using a system dynamics model approach. Human Resources for Health. https://doi.org/10.1186/1478-4491-11-41

Jalali, M. S., Rahmandad, H., Bullock, S. L., & Ammerman, A. (2017). Dynamics of implementation and maintenance of organizational health interventions. International Journal of Environmental Research and Public Health, 14(8), 24.

Keane, P., Ortega, A., & Linville, J. (2015). Healthy kids, healthy cuba: findings from a group model building process in the rural Southwest. Journal of Public Health Management and Practice, 21, S70–S73.

Kim, D. (1999) Introduction to systems thinking. Pegasus Communications Inc. Available at: https://thesystemthinker.com/introduction-to-systems-thinking/

Kok, S., Rutherford, A. R., Guståfson, R., Barrios, R., Montaner, J. S. G., Varsamé, K., & van der Pauw, H. (2015). Optimizing an HIV testing program using a system dynamics model of the continuum of care. Health Care Management Science, 18(3), 334–362.

Kommer, G. J. (2002). A waiting list model for residential care for the mentally disabled in The Netherlands. Health Care Management Science, 5(4), 255–290.

Kroeling, C. D., Rankin, K. M., Chambers, D. A., Diez Roux, A. V., Hughes, K., & Grigorescu, V. (2014). Using the principles of complex systems thinking and implementation science to enhance maternal and child health program planning and delivery. Maternal and Child Health Journal, 18(7), 1560–1564.

Kumar, D., & Kumar, D. (2014). Modelling rural healthcare supply chain in India using system dynamics. 12th Global Congress on Manufacturing and Management. M. A. Xavior and P. Yarlagadda. Amsterdam, Elsevier Science Bv., 97, 2204–2212.

Lan, T. S., K. L. Chen, P. C. Chiu, and M. H. Wang (2014). “An Investigation of Factors Affecting Elementary School Students’ BMI Values Based on the System Dynamics Modeling.” Computational and Mathematical Methods in Medicine

Lee, L., Heffernan, M., McDonnell, G., Short, S. D., & Naganathan, V. (2016). A system dynamics modelling approach to studying the increasing prevalence of people with intellectual developmental disorders in New South Wales. Australian Health Review, 40(3), 235–243.
Lich, K. H., Urban, J. B., Frerichs, L., & Dave, G. (2017). Extending systems thinking in planning and evaluation using group concept mapping and system dynamics to tackle complex problems. *Evaluation and Program Planning, 60*, 254–264.

Liu, S. Y., Osgood, N., Gao, Q., Xue, H., & Wang, Y. F. (2016). Systems simulation model for assessing the sustainability and synergistic impacts of sugar-sweetened beverages tax and revenue recycling on childhood obesity prevention. *Journal of the Operational Research Society, 67*(5), 708–721.

Loundsbury, D. W., Schwartz, B., Palma, A., & Blank, A. (2015). Simulating Patterns of Patient Engagement, Treatment Adherence, and Viral Suppression: A System Dynamics Approach to Evaluating HIV Care Management. *Aids Patient Care and Stds, 29*, S55–S56.

Lyon, A. R., Maras, M. A., Pate, C. M., Igusa, T., & Stoop, A. (2016). Modeling the Impact of School-Based Universal Depression Screening on Additional Service Capacity Needs: A System Dynamics Approach. *Administration and Policy in Mental Health and Mental Health Services Research, 43*(2), 168–188.

Maani, K. and R. Cavana (2007). Systems thinking, system dynamics: managing change and complexity. *North Shore, N.Z., Pearson Education New Zealand*

Maital, S. L., & Bornstein, M. H. (2003). The ecology of collaborative child rearing: A systems approach to child care on the kibbutz. *Ethos, 31*(2), 274–306.

Martin, E. G., MacDonald, R. H., Smith, L. C., Gordon, D. E., Lu, T., & O’Connell, D. A. (2015a). Modeling the declining positivity rates for human immunodeficiency virus testing in New York State. *Journal of Public Health Management and Practice, 21*(6), S56–S563.

Martin, E. G., MacDonald, R. H., Smith, L. C., Gordon, D. E., Tesoriero, J. M., Laurer, F. N., Leung, S. Y. J., & O’Connell, D. A. (2015b). Policy modeling to support administrative decision-making on the New York state HIV testing law. *Journal of Policy Analysis and Management, 34*(2), 403–423.

Martin, E. G., MacDonald, R. H., Smith, L. C., Gordon, D. E., Tesoriero, J. M., Laurer, F. N., Leung, S. Y. J., Rowe, K. A., & O’Connell, D. A. (2015c). Mandating the Offer of HIV testing in new york: simulating the epidemic impact and resource needs. *Jahids Journal of Acquired Immune Deficiency Syndromes, 68*, S59–S67.

McGlashan, J., Johnstone, M., Creighton, D., de la Haye, K., & Allen, S. (2016). Quantifying a systems map: network analysis of a childhood obesity causal loop diagram. *PLoS ONE, 11*(10), 14.

McKibben, M. J., Kirby, E. W., Langston, J., Raynor, M. C., Nielsen, M. E., Smith, A. B., Wallen, E. M., Woods, M. E., & Pruthi, R. S. (2016). Projecting the urology workforce over the next 20 years. *Urology, 98*, 21–26.

Meadows, D. H. and D. Wright (2008). Thinking in systems: A primer. chelsea green publishing.

Meadows, D. H. (1999). “Leverage points: Places to intervene in a system.”

Mehta, L. S., Sharma, G., Creanga, A. A., Hameed, A. B., Hollier, L. M., Johnson, J. C., Leffert, L., McCullough, L. D., Mujahid, M. S., & Watson, K. (2021). Call to action: maternal health and saving mothers: a policy statement from the american heart Association. *Circulation, 144*(15), e251–e269.

Meisel, J. D., Sarmiento, O. L., Olaya, C., Lemoine, P. D., Valdivia, J. A., & Zarama, R. (2018). Towards a novel model for studying the nutritional stage dynamics of the colombian population by age and socioeconomic status. *PLoS ONE, 13*(2), 22.

Minyard, K. J., Ferencik, R., Ann Phillips, M., & Soderquist, C. (2014). Duplicate using systems thinking in state health policymaking: An educational initiative. *Health Syst (Basingstoke), 3*(2), 117–123.

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *Annals of Internal Medicine, 151*(4), 264–269.

Moreland, J. W. (2015). Improving park space access for the healthy kids, healthy communities partnership in Denver, Colorado. *Journal of Public Health Management and Practice, 21*, S84–S87.

Moxnes, E., & Jensen, L. (2009). Drunker than intended: Misperceptions and information treatments. *Drug and Alcohol Dependence, 105*(1–2), 63–70.

Munar, W., Hovmand, P. S., Fleming, C., & Darmstadt, G. L. (2015). Scaling-up impact in perinatology through systems science: Bridging the collaboration and translational divides in cross-disciplinary research and public policy. *Seminars in Perinatology, 39*(5), 416–423.

Munn, Z., Peters, M. D. J., Stern, C., Tufanaru, C., McArthur, A., & Aromatiris, E. (2018). Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. *BMJ Medical Research Methodology, 18*, 143. https://doi.org/10.1186/s12874-018-0611-x

Nadkarni, D., Gravely, S., Brova, M., Rashid, S., Yee, R., Guttiere, D., Clifford, K., Desai, D., & Zaman, M. (2018). Modeling patient access to therapeutic oxytocin in Zanzibar, Tanzania. *Bmc Health Services Research, 18*, 10.

Nelson, D. A., Simenz, C. J., O’Connor, S. P., Greer, Y. D., Bachrach, A. L., Shields, T., Fuller, B. A., Horrigan, K., Pritchard, K., Springer, J. B., & Meurer, J. R. (2015). Using group model building to understand factors that influence childhood obesity in an urban environment. *Journal of Public Health Management and Practice, 21*, S74–S78.

Osgood, N. D., Dyck, R. F., & Grassmann, W. K. (2011). The inter- and intra-generational impact of gestational diabetes on the epidemic of type 2 diabetes. *American Journal of Public Health, 101*(1), 173–179.

Osgood, N. D., Mahamoud, A., Lich, K. H., Tian, Y. A., Al-Azem, A., & Hoepnner, V. H. (2011). Estimating the relative impact of early-life infection exposure on later-life tuberculosis outcomes in a canadian sample. *Research in Human Development, 8*(1), 26–47.

Owen, B., Brown, A. D., Kuhlberg, J., Millar, L., Nichols, M., Economos, C., & Allender, S. (2018). Understanding a successful obesity prevention initiative in children under 5 from a systems perspective. *PLoS ONE, 13*(3), 10.

Ozawa, S., Paina, L., & Qi, M. (2016). Exploring pathways for building trust in vaccination and strengthening health system resilience. *Bmc Health Services Research, 16*, 11.

Page, A., Atkinson, J. A., Heffernan, M., McDonnell, G., & Hickie, I. (2017). A decision-support tool to inform Australian strategies for preventing suicide and suicidal behaviour. *Public Health Research & Practice, 27*(2), 7.

Patil, M. K., & Jananahlan, P. S. (1978). A system dynamics feedback control model study of population of “India 2001” and policies for stabilizing growth. *J Sci Ind Res (india), 37*(6), 281–286.

Patrick, H., Hennessy, E., McSpadden, K., & Oh, A. (2013). Parenting styles and practices in children’s obesogenic behaviors: scientific gaps and future research directions. *Childhood Obesity, 9*, S73–S86.

Pedamallu, C. S., Osdamar, L., Kropat, E., & Weber, G. W. (2012). A system dynamics model for intentional transmission of HIV/AIDS using cross impact analysis. *Central European Journal of Operations Research, 20*(2), 319–336.

Pieters, A., Akkermans, H., & Fransx, A. (2011). E Pluribus unum: using group model building with many interdependent organizations to create integrated health care networks. *Organization Development in Healthcare: Conversations on Research and Strategies, 10*, 321–344.

Pieters, A., van Oorschot, K. E., Akkermans, H. A., & Brailsford, S. C. (2018). Improving inter-organizational care-care designs:
Specialization versus integration. Journal of Integrated Care, 26(4), 328–341.

Powell, K. E., Kibbe, D. L., Ferencik, R., Soderquist, C., Phillips, M. A., Vail, E. A., & Minyard, K. J. (2017). Systems thinking and simulation modeling to inform childhood obesity policy and practice. Public Health Reports, 132, 335–38S.

Raufer, M. S. (2002). Resource allocation for HIV/AIDS control programs: A model-based policy analysis. Or Spectrum, 24(1), 99–124.

Rosas, S. R. (2017). Systems thinking and complexity: Considerations for health promoting schools. Health Promotion International, 32(2), 301–311.

Rwashana, A. S., Williams, D. W., & Neema, S. (2009). System dynamics approach to immunization healthcare issues in developing countries: A case study of Uganda. Health Informatics Journal, 15(2), 95–107.

Rwashana, A. S., Nakubulwa, S., Nakakeeto-Kijjambu, M., & Adam, T. (2014). Advancing the application of systems thinking in health: understanding the dynamics of neonatal mortality in Uganda. Health Research Policy and Systems. https://doi.org/10.1186/1478-4505-12-36

Sabournchi, N. S., Hvmand, P. S., Osgood, N. D., Dyck, R. F., & Jungheim, E. S. (2014). A novel system dynamics model of female obesity and fertility. American Journal of Public Health, 104(7), 1240–1246.

Schrotnier, J., E. Konig and N. Leitgeb (2009). “A Population Prospect for Future Health Care Models based on a System Dynamics Model.” 4th European Conference of the International Federation for Medical and Biological Engineering 22(1–3): 1018–1021.

Schuh, H. B., Merritt, M. W., Igusa, T., Lee, B. Y., & Peters, D. H. (2017). Examining the structure and behavior of Afghanistan's routine childhood immunization system using system dynamics modeling. International Journal of Health Governance, 22(3), 212–227.

Sculpher, M., Fenwick, E., & Claxton, K. (2000). Assessing quality in decision analytic cost-effectiveness models: a suggested framework and example of application. Pharmacoeconomics, 17(5), 461–477.

Semwanga, A. R., Nakubulwa, S., & Adam, T. (2016). Applying a system dynamics modelling approach to explore policy options for improving neonatal health in Uganda. Health Research Policy and Systems, 14, 17.

Sharizatpanahi, S. P., Jafari, A., Sadeghipour, M., Azadeh-Fard, N., Majidzadeh-A, K., Farahmand, L., & Ansari, A. M. (2017). Assessing the effectiveness of disease awareness programs: Evidence from Google Trends data for the world awareness dates. Telematics and Informatics, 34(7), 904–913.

Sheldrick, R. C., Breuer, D. J., Hassan, R., Chan, K., Polk, D. E., & Benneyan, J. (2016). A system dynamics model of clinical decision thresholds for the development of developmental-behavioral disorders. Implementation Science, 11, 14.

Siegel, C. A., Siegel, L. S., Hyams, J. S., Kugathasan, S., Markowitz, J., Rosh, J. R., Leleiko, N., Mack, D. R., Crandall, W., Evans, J., Keljo, D. J., Otlew, A. R., Oliva-Hemker, M., Farrior, S., Langton, C. R., Wrobel, I. T., Wahbeh, G., Quiros, J. A., Silber, G., ... Dubinsky, M. C. (2011). Real-time Tool to display the predicted disease course and treatment response for children with Crohn's Disease. Inflammatory Bowel Diseases, 17(1), 30–38.

Soler, R., Orenstein, D., Honeycutt, A., Bradley, C., Trogdon, J., Kent, C. K., Wile, K., Haddix, A., O’Neil, D., & Bunnell, R. (2016). Community-based interventions to decrease obesity and tobacco exposure and reduce health care costs: outcome estimates from communities putting prevention to work for 2010–2020. Preventing Chronic Disease, 13, E47.

Staller, K. M. (2004). Runaway youth system dynamics: A theoretical framework for analyzing runaway and homeless youth policy.