Impact of Partial Replacement of Cement by Coconut Shell Ash and Coarse Aggregate by Coconut Shell on Mechanical Properties of Concrete

P Vasanthi1, S Senthil Selvan2, P Murthi3, I Rajasri Reddy5 and K Poongodi4

1 Department of Civil Engineering, Adhi College of Engineering, Chennai, India
2 Department of Civil Engineering, SRM Institute of Science & Technology, Chennai, India
3 Centre for Construction Methods and Materials, S R University, Warangal, India
4 Department of Civil Engineering, S R Engineering College, Warangal, India
5 Sumathi Reddy Institute of Technology for Women, Warangal, India.

E-mail: p.murthi@sru.edu.in

Abstract. India is the third largest coconut cultivating country in the world. South India states are the predominant coconut cultivating area in India. Coconut shell (CS) and coconut shell ash (CSA) are unavoidable by-products from agricultural industry. As a part of solid waste management, the investigation was carried out to evaluate the effect of replacing cement by CSA and coarse aggregate by CS. The replacement level was considered as 5%, 10%, 15%, 20%, 25% and 30% in both cement and coarse aggregate by CSA and CS respectively. Normal strength concrete was considered in this investigation. The density and mechanical properties of concrete such as 28 days cured compressive strength and flexural strength were determined. Using 3D graphical analysis, the optimum replacement of cement and coarse aggregate was predicated in this investigation.

1. Introduction
Concrete is an inevitable man-made material in the world. The fast growth of construction industry demanded accumulative quantity of concrete worldwide. The Indian cement production statistics was clearly mentioned that India’s production capacity is the second largest in the world [1]. The present scenario of Indian construction industry demanded a huge quantity of cement and concrete for sustainable growth. The cement production is one of the highest energy consumed industry and emitted an equal quantity of CO₂ in to the atmosphere. In order to avoid such drawback, the supplementary cementitious materials are utilized and alternate aggregate are identified and being utilized in concrete. The resent research finding suggested that the rich silica minerals obtained from the agricultural waste are an alternate to the industrial by-products such as fly-ash, Ground granulated blast furnace slag, Metakaolin etc., [2, 3, 4]. Utsev and Taku (2012) investigated CSA as partial replacement mineral admixture in concrete and found that 10% replacement of cement was possible without affecting the strength properties [5]. Joshua et al., (2018) were concluded that CSA as potential mineral admixture for developing durable concrete [6]. On the other hand, the research finding were demonstrated that the coarse aggregate can be
replaced by the CS and able to develop lightweight concrete [7]. The strength and durable properties of coconut shell coarse aggregate (CSCA) added concrete were comparable with the conventional lightweight concrete [8, 9, 10]. In this background, this investigation was intended to utilize both CSA and CSCA by replacing cement and coarse aggregate respectively. The density and mechanical properties of the proposed concrete were determine to evaluate the suitability and determined the optimum replacement level of cement and coarse aggregate without compromising the performance of the concrete.

2. Experimental Investigation
2.1 Materials used
2.1.1 Cement and Aggregates
The market available Portland Pozzolana Cement (PPC) was utilized throughout the investigation. The specific gravity of cement was 3.14. Local river sand belongs to grading zone II with fineness modulus of 2.67 was utilized as fine aggregate. 20 mm size granite stones was selected as coarse aggregate and the specific gravity was determined as 2.75. The fineness modulus of coarse aggregate was found as 7.57. The performance of cement and aggregates utilized inthis investigation were found suitable as per the respective codes [11, 12].

2.1.2 Coconut shell coarse aggregate (CSCA)
Sundried crushed coconut shell passing through the 12.5 mm sieve was carefully selected as coarse aggregate. The moisture content and water absorption of CSCA were calculated as 4.28% and 26.78% respectively. The thickness of coconut shell was measured and found in the range of 2 mm to 8 mm. The specific gravity and fineness modulus were found as 1.89 and 7.35. The sample of CSCA used in this investigation is shown in Figure 1.

2.1.3 Coconut shell ash (CSA)
The sundried coconut shell broken pieces were allowed to burnt in the open air (uncontrolled combustion) for three hours and continue with calcination process by placing it in a muffle furnace at a temperature of 800°C for 6 hours to remove the carbonaceous material until a white substance, which had shown the formation of coconut shell ash and due to the calcination process is transform the crystalline form of ash in to amorphous form. The specific surface area of CSA was found as 325 m²/kg which is comparable with other agro based cementitious materials like Sugar cane bagasse ash and rice husk ash [1,3,13]. The specific gravity and bulk density of CSA were determined as 1.78 and 800 kg/m³ respectively. The chemical compositions of CSA is mentioned in Table 1. As per ASTM C618, When SiO₂ + Al₂O₃ + Fe₂O₃ of a mineral admixture is more than 70%, it was considered as a suitable mineral admixture for concrete. The chemical oxide composition combination of CSA used in this investigation (SiO₂ + Al₂O₃ + Fe₂O₃) was found as 72.34% and found suitable as cementitious material [14]. The CSA used in this investigation is shown in Figure 2.

Oxide composition (%)	SiO₂	Al₂O₃	Fe₂O₃	CaO	MgO	SiO₂ + Al₂O₃ + Fe₂O₃ + LOI
Cement	23.42	4.87	3.78	63.16	1.85	32.07
CSA	38.54	19.03	14.77	5.03	1.34	72.34
Utsev&Taku (2012) [5]	37.97	24.12	15.48	4.98	1.89	77.57
Joshua et al., (2018) [6]	66.32	8.79	5.35	6.25	0.87	80.64

Table 1. Chemical composition of cement and CSA
2.2 Mix proportioning
The normal strength (M20 grade) was considered and the mix proportion of the concrete was determined in accordance with the IS: 10262-1982 [15]. The replacement level was considered as 5%, 10%, 15%, 20%, 25% and 30% in both cement and coarse aggregate by CSA and CS respectively. The final mix proportion of the concrete after three trials was arrived and shown in Table 2.

Mix ID	Cement (kg/m³)	CSA (kg/m³)	Sand (kg/m³)	CA (kg/m³)	CSCA (kg/m³)	w/c ratio	Water (kg/m³)	Density (kg/m³)
CC	350	-	600	1200	-	0.5	175	2420
C1A1	332.5	17.5	600	1140	60	0.5	175	2395
C1A2	332.5	17.5	600	1080	120	0.5	175	2375
C1A3	332.5	17.5	600	1020	180	0.5	175	2360
C1A4	332.5	17.5	600	960	240	0.5	175	2335
C1A5	332.5	17.5	600	900	300	0.5	175	2310
C1A6	332.5	17.5	600	840	360	0.5	175	2295
C2A1	315	35	600	1140	60	0.5	175	2410
C2A2	315	35	600	1080	120	0.5	175	2380
C2A3	315	35	600	1020	180	0.5	175	2335
C2A4	315	35	600	960	240	0.5	175	2300
C2A5	315	35	600	900	300	0.5	175	2280
C2A6	315	35	600	840	360	0.5	175	2260
C3A1	297.5	52.5	600	1140	60	0.5	175	2370
C3A2	297.5	52.5	600	1080	120	0.5	175	2350
C3A3	297.5	52.5	600	1020	180	0.5	175	2305
C3A4	297.5	52.5	600	960	240	0.5	175	2265
C3A5	297.5	52.5	600	900	300	0.5	175	2240
C3A6	297.5	52.5	600	840	360	0.5	175	2220
C4A1	280	70	600	1140	60	0.5	175	2345
C4A2	280	70	600	1080	120	0.5	175	2300
C4A3	280	70	600	1020	180	0.5	175	2275
2.3 Testing methods
The density of the hardened concrete was determined using buoyancy method as per the Archimedes principle [16]. The compressive strength of concrete was carried out using cube of 150 mm size and the flexural strength of concrete was conducted using 100 mm x 100 mm x 500 mm size prism specimen. Both the tests were conducted after the curing period of 28 days in accordance with IS 516-1999 [17].

3. Results and discussion
3.1 Density
The density of hardened concrete specimens of all mixes are summarized in Table1. The density of the control concrete was calculated as 2420 kg/m³. Generally, the density of the concrete is depends up on the specific gravity of coarse aggregate and hence the substitution of CSCA in concrete reduces the density of concrete considerably. The concrete specimens of the replacement level of 30% in CA and cement had shown lowest density varied from 2310 to 2100 kg/m³.

3.2 Compressive strength
The compressive strength variations after the curing period of 28 days with respect to the various dosage levels of CSCA and CSA are shown in Fig.3. The results of compressive strength were obtained an average of three concrete cube specimens. Fig.3 is clearly demonstrated that the gradual improvement in strength up to the replacement level of 15% CSCA due to the enhancement of paste aggregate bond in the transition zone. Further increase the dosage of CSCA level had shown decrease in compressive strength due to increases the contact surface area between aggregate and paste which caused insufficient bond [18]. From Fig.3, it can be observed that optimum replacement of coarse aggregate by CSCA was predicted as 15%. The substitution of CSA were also increased the compressive strength of concrete due to the pozzolanic reaction of CSA and pore confinement of concrete mass [19]. The strength development was observed up to 10% dosage level of CSA. Since the selected cement is fly-ash based PPC, further increase the CSA dosage of cementitious material reduced the cement content in concrete which leads to reduce the primary hydration products. The combined optimum level of CSCA and CSA was predicted from the 3D graph as shown in Fig.3 and found as 15% and 10% respectively.

C4A4	280	70	600	960	240	0.5	175	2240
C4A5	280	70	600	900	300	0.5	175	2210
C4A6	280	70	600	840	360	0.5	175	2190
C5A1	262.5	87.5	600	1140	60	0.5	175	2305
C5A2	262.5	87.5	600	1080	120	0.5	175	2280
C5A3	262.5	87.5	600	1020	180	0.5	175	2235
C5A4	262.5	87.5	600	960	240	0.5	175	2190
C5A5	262.5	87.5	600	900	300	0.5	175	2165
C5A6	262.5	87.5	600	840	360	0.5	175	2150
C6A1	245	105	600	1140	60	0.5	175	2275
C6A2	245	105	600	1080	120	0.5	175	2250
C6A3	245	105	600	1020	180	0.5	175	2210
C6A4	245	105	600	960	240	0.5	175	2180
C6A5	245	105	600	900	300	0.5	175	2150
C6A6	245	105	600	840	360	0.5	175	2100

Where, C = Cement, A = Aggregate, Numerical = replacement level in the order of 5% increasing
3.3 Flexural strength
The flexural strength variations of 28 days cured concrete prism specimens were determined and shown in Fig. 4. The substitution of CSCA and CSA are confirmed to increase the flexural strength up to the replacement level of 12-15% and 10-12% respectively. The flexural strength improvement may be due to the increasing the bond between the paste form and the aggregate portions. However the increasing the surface area of aggregate by adding more CSCA can cause the reduction of bond which leads to reduction of flexural strength of concrete. Similarly the reduction of flexural strength was observed due to the increasing the substitution level of more than 12% due to the presence of more un-hydrated cementitious particle at 28 days curing [20,21]. Considering both compressive strength and flexural strength results obtained from this investigation, the replacement of CA by CSCA has to restrict up to 15% and the cement replacement by CSA has restricted to 10% and considered as optimum replacement. The final combination of the selected grade concrete can be developed in the form of 90% PPC + 10% CSA + 100% Sand + 85% Granite CA + 15% CSCA

4. Conclusion
The following conclusions were obtained from this experimental investigation:

- The density of concrete was decreased due to the substitution of CSCA instead of CA and CSA instead of cement. The density of concrete with optimum replacement level of cement and CA was found a reduction of more than 4% and more than 13% reduction in density was identified at 30% replacement of both cement and CA.
- The compressive strength of concrete was increased up to the replacement level of 15% CA by CSCA and 10% of cement by CSA and further substitution of CSCA and CSA can cause the reduction of compressive strength gradually.
- The flexural strength of concrete was increased similar to the compressive strength of concrete up to 15% of CSCA and 12% CSA and found the flexural strength of the concrete was 11% of the respective compressive strength.
- The final combination of the concrete considered in this investigation can be developed in the form of 90% PPC + 10% CSA + 100% Sand + 85% Granite CA + 15% CSCA
References

[1] Thirumalai Raja K, Murthi P, 2015, Bagasse ash and rice husk ash as cement replacement in self-compacting concrete, Gradjevinar, 67, pp. 23–30

[2] Poongodi K, Murthi P, Awoyera P O and R.Gobinath, 2019, Effect of mineral admixtures on early age properties of high performance concrete, IOP publication, Material Science Engineering Vol.561, doi:10.1088/1757-899X/561/1/012067.

[3] Murthi P, Poongodi K, Awoyera P O, Gobinath R and Saravanan R, 2019,Enhancing the strength properties of high-performance concrete using ternary blended cement: OPC, Nanosilica, bagasse ash, Silicon, doi: org/10.1007/s12633-019-00324-0

[4] Kavitha O R, Shyamala G, Iyappan G, Rajesh Kumar K, Influence of fly ash and metakaolin on high performance concrete, International Journal of Scientific and Technology Research, 9 (2), 2020, pp.5582-5586.

[5] Utsev J T, Taku J K, 2012, Coconut Shell Ash as Partial Replacement of ordinary Portland cement in Concrete Production, International Journal of Scientific & technology Research, 1 (8), pp.86-89.

[6] Opeyemi Joshua, Kolapo O. Olusola, Ayobami A. Busari, Ignatius O. Omuh, Ayodeji O. Ogunde, Lekan M. Amusan , Chidiogo J. Ezenduka, Data on the pozzolanic activity in coconut shell ash (CSA) for use in sustainable construction, Data in Brief, 18, pp.1142-1145, doi.org/10.1016/j.dib.2018.03.125

[7] Murthi P, PoongodiK,Gobinath R, Saravanan R, 2020, Evaluation of material performance of coir fibre reinforced quaternary blended concrete, IOP Conf. Series: Materials Science and Engineering 872, doi:10.1088/1757-899X/872/1/012133.

[8] Poongodi K, Murthi P, Awoyera P O, Gobinath R, Olalusi O B, 2020, Durability Properties of Self-compacting concrete made with recycled aggregate for pavement application, Silicon, doi.org/10.1007/s12633-020-00635-7.

[9] Sivaraja M, Poongodi K, 2015, Lightweight self-consolidating concrete after high temperature, Gradjevinar, 67 (4), pp.329-338, doi.org/10.14256/jce.1141.2014.

[10] Gunasekaran K, Kumar P S, Lakshmipathy M , 2011, Mechanical and bond properties of coconut

Fig. 4 Flexural strength variations of concrete after adding of CSCA and CSA
shell concrete, Construction and Building Materials, 25 (1), pp. 92-98.

[11] IS:1489 (P I)-1981, Specification for Portland Pozzolana cement Part I Fly ash based, third revision, Bureau of Indian Standards.

[12] IS: 383-1979, Specification for coarse and fine aggregates from natural sources for concrete (second revision – 1997), Bureau of Indian Standards.

[13] Awoyera PO, Adesina A, Gobinath R, 2019, Role of recycling fine materials as filler for improving performance of concrete - a review. Australian Journal of Civil Engineering, doi.org/10.1080/14488353.2019.1626692

[14] ASTM C618-19, Standard specification for coal fly ash and raw or calcined pozzolan for use in concrete.

[15] IS: 10262-1982, Recommended guidelines for concrete mix design, Bureau of Indian Standards.

[16] Shetty M S, Concrete Technology, 2017, S.Chand and Company, New Delhi.

[17] IS: 516-1959, Methods of test for strength concrete, Bureau of Indian Standards.

[18] Gunasekaran, K., Kumar, P.S.: Lightweight concrete using coconut shell as aggregate, Proceedings of International conference on Advances in Concrete and Construction, ICACC-2008, pp. 450-459.

[19] Sivakrishna A, Adesina A, Awoyera P O, Kumar, K R, 2020, Green concrete: A review of recent developments, Materials Todayproceedings, 27, pp.54-58. doi: 10.1016/j.matpr.2019.08.202

[20] Awoyera P O, Awobayikun O, Gobinath R, Viloria, Ugwu E I, 2020, International Journal of Engineering research in Africa, 48, pp. 78-91 doi:10.4028/www.scientific.net/JERA.48.78.

[21] Murthi P, Poongodi, K, Awoyera P, Gobinath R, Sivaraja M, Thirumalai raja K, Viloria A, 2020, Permeability properties of lightweight self-consolidating concrete made with coconut shell aggregate, Journal of Materials Research and Technology, https://doi.org/10.1016/j.jmrt.2020.01.092.