Growth and Mortality of *Sillago sihama* (Forsskål) from Karachi Coast, Pakistan

Abdul Baset¹,²*, Qun Liu², Baochao Liao², Abdul Waris³, Han Yanan², Zhang Qingqing² and Imtiaz Ahmad⁴

¹Department of Zoology, Bacha Khan University Charsadda, Pakistan.
²College of Fisheries, Ocean University of China, Qingdao 266003, China.
³Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
⁴Department of Botany, Bacha Khan University Charsadda, Pakistan.

Authors’ contributions

This work was carried out in collaboration among all authors. Author QL designed and correspond the study. Author AB performed the statistical analysis. Author BL wrote the protocol. Authors AB and HY wrote the first draft of the manuscript. Authors AW and IA managed the analyses of the study. Author ZQ managed the literature searches. All authors read and approved the final manuscript.

ABSTRACT

Length frequency data of silver sillago, *Sillago sihama* (Forsskål) were collected and measured from the fisherman catches using beach seines and handlines, at random, during 2012 from the Karachi coast of Pakistan. In this study, 1846 fish individuals (male and female combined) were collected ranging from 10 to 24 cm with dominant individuals ranged 12 to 16 cm (total length). Weight ranging was measured from 9 to 110 g. The above length-frequency data were analysed for the estimation of growth and mortality parameters. The power coefficient b of length-weight, the relationship was estimated at 2.9177. The estimated von Bertalanffy growth, function parameters of 25.20 cm (L∞) and 1.00 year⁻¹ (K) were calculated by ELEFAN method equipped on FiSAT computer package. With length-converted catch curve analysis, the total mortality rate (Z) and its 95% confidence interval were 2.42 (2.174-2.669) year⁻¹. The natural mortality rate (M) was 1.84 year⁻¹ calculated with Pauly’s equation (the annual average seawater temperature was 27°C).

*Corresponding author: Email: qunliu@ouc.edu.cn;
Therefore, the fishing mortality rate was $Z-M=\frac{0.578}{\text{year}^{-1}}$. The exploitation ratio (E) estimated as $F/Z=0.239$ which is less than biological reference point (0.5), therefore it indicates that the stock of *S. sihama* was exploited at managed.

Keywords: Pakistan; *Sillago sihama*; growth; mortality; FISAT.

1. **INTRODUCTION**

The fisheries sector is not only providing the cheap animal protein but also playing a significant role in the national economy, human development and welfare, such as in terms of providing employment, production and trade. Employment in the fisheries sector has grown more rapidly, especially in Asia, where over 85% of the world’s fisherfolk live [1]. The fishing industry of Pakistan has importance in the foreign exchange earnings and employment. The Pakistani coastal belt is about 1,120 km long from the southeast Indian border to the northwest Iranian border (Fig. 1) and an EEZ (exclusive economic zone) is 2,40,000 km2 with an additional continental shelf area of about 50,270 km2. There were about 250 commercially important demersal fishes, 50 small pelagic, 15 medium-sized pelagic and 20 large pelagic fish species from Pakistani water [2,3].

Family *Sillaginidae* is small to moderate-sized fishes and primarily inhabit inshore waters with the sandy substrate or estuarine areas of rivers [4]. Geographically the family is widely distributed throughout the Indian and Pacific Ocean [5]. Family *Sillaginidae* currently comprises in 34 species [6] in three genera [7,8,9] and three subgenera [10] of the genus *Sillago* [11,12].

Sillago sihama (Forskkål), locally known as Bhambor in Sindh province, is a coastal species, commonly along beaches, sandy substrates, mangroves; also in creeks and estuaries, in the depth ranging from 0 to 60 m, the maximum length is 30 cm while commonly 15 cm [13,14]. It feeds on copepods, polychaetes, Decapods, larvaceans and other small fishes [15].

Sillago sihama is a commercially important fish [16,17]. Some studies have been done from Indian waters such as on age and growth [18,19] on food and feeding on biochemical composition and caloric content [20] on eggs and early larvae [21] on maturation and spawning [22] on the reproductive biology. From the waters of Thailand work was done on feeding habits on reproductive biology [23]. Work is done at the length-weight relationship from Turkey [24]. From South Africa work done on the diet of juvenile and length-weight relationship [25]. Study on the effect of water temperature and photoperiod on the spawning cycle from Tokyo, Japan and on Isolation and characterization of microsatellite DNA loci from China. Work on morphological variation from Indonesia [26].

Knowledge of different population parameters like the asymptotic length (L_∞) and growth coefficient (K), mortalities (natural and fishing) rate and exploitation level (E) are essential for planning and management of marine resources. Lack of knowledge of population structure and proper evaluation of the exploitation of marine resource emphasized the importance of a detailed study to facilitate better management of the resource. There are many

![Fig. 1. Map shows major landing sites along the Pakistan coast](image-url)
tools for assessing the exploitation level and status of the stock. Of these, FiSAT (FAO-ICLARM Stock Assessment Tools) has been commonly used for estimating population parameters of fishes [27] because primarily it requires only length-frequency data. ELEFAN is a non-parametric method widely used in fish length-frequency analysis, which is an ad hoc and does not depend on estimating the parameters of cohort distributions directly. So it makes only weak assumptions about the distribution of sizes within the cohorts. The modal lengths of each cohort are fixed to lie upon a curve described by growth models such as von Bertalanffy growth model, thus it makes a strong assumption about growth [28]. These tools are especially appreciated for Pakistani marine resources and estimate parameters such as length-weight relationship, growth, mortality rate, biological reference points, growth performance index and virtual population analysis. There are abundant studies focused on length-based stock assessment [29].

S. sihama is in large numbers from creeks. The fishery mainly takes place from June to July. The catches reported range from 201 t (1999) to 413 (2009) with an average of 367. Some studies done from Pakistan are such as on maximum sustainable yield on observations on sex ratios and fecundity on food and feeding habits on morphometric studies from the Baluchistan coast of Pakistan [30]. But there was no work on growth and mortality rate, so in this study, the length-frequency data were collected during 2012 from Pakistan and analysed for growth and mortality rate of *S. sihama* which can be helpful for fishery management in Pakistan.

2. MATERIALS AND METHODS

2.1 Sample Collection

A total of 1846 fish samples of *S. sihama* were collected and measured from the fishermen catches using beach seines and handlines, at random, during 2012 from the Karachi coast of Pakistan. The total length (TL) of each fish was taken to the nearest 1.0 cm using the measuring board. The weight (W) of each fish was weighted to the nearest 1.0 g. The samples were male and female combined.

2.2 Analysis of Data

The length-frequency data of *S. sihama* during 2015 were analyzed using FiSAT-II. In this study, the following core population parameters such as length-weight relationship (LWR) mortality rate, growth, growth performance index, virtual population analysis (VPA) and biological reference point.

2.3 Length-weight relationship

The weight (W, g) relationship to the length (L, cm-TL) of *S. sihama* was established by using a power equation [31] \(W = aL^b \), where the weight of fish was represented by W in grams (g), constant condition factor was represented by intercept (a), L was indicted by the total length in (cm) and allometric growth parameter was represented by exponent or slope (b).

2.4 Growth Parameters

The parameters of growth for *S. sihama* was calculated by using von Bertalanffy growth function the von Bertalanffy equation for growth in length according to [32] is: \(L_t = L_\infty (1- \exp (-K (t- t_0))) \), where \(L_t \) was the length at the predicted time \(t \), \(L_\infty \) was the asymptotic length, \(K \) was the growth coefficient and \(t_0 \) was the hypothetical age or time where length was equal to zero. Additional estimated value of \(t_0 \) was obtained by the empirical equation by Pauly as: \(\log_{10} (t_0) = -0.3922 - 0.275 \log_{10} L_\infty - 1.038 \log_{10} K \).

2.5 Mortality Rate

The estimation of instantaneous total mortality (Z) for *S. sihama* during 2012, the length converted catch curve method by Pauly was used. Additional parameters of M and F (natural mortality and fishing mortality) were also calculated. The regression formula for Z is \(\text{Ln (N)} = \text{Ln (N)}_0 - \text{Ct} \), where \(N_0 \) is the population size at age 0, \(C \) is average mortality rate, \(t \) is age or time where length was equal to zero.

The total annual mortality (Z) can also be estimated by the Beverton and Holt’s method (Beverton and Holt, 1956).

\[
Z = K \frac{L_t - \bar{L}'}{L'_L - \bar{L}'}
\]

where \(\bar{L}'_L \) is the mean length of fish of length \(L' \) and larger where \(L' \) is a length such that all fish of that length and larger are fully selected by the fishery. The equation by Pauly was used for natural mortality (M) from \(\log_{10} M = 0.0066 - 0.279 \log_{10} L_\infty + 0.654 \log_{10} K + 0.4634 \log_{10} T \). Where \(T = 27^\circ \text{C} \) was average annual sea surface temperature of Pakistani waters. The \(F \) (Fishing mortality) was estimated by using the relationship of subtracting \(F = Z - M \).
The exploitation ratio (E) was obtained by the relationship of Gulland [33]:

\[E = \frac{F}{Z} = \frac{F}{F+M}. \]

2.6 Biological Reference Points

According to Gulland, the optimal fishing mortality rate \(F_{opt} = M \) was determined as the limit biological reference points for *S. sihama* during 2012 from the Karachi coast of Pakistan.

2.7 Beverton-Holt Y/R Analysis

\[Y/R = FW_e^{e^{-M(t-t_0)}} \sum_{n=0}^{\infty} Q_n e^{-nK(t-t_0)} (1-e^{-(F+M+K)(t-t_0)}), \]

The model used by [34] incorporated into the FAO FISAT-II program with the formula relative yield per recruitment (\(Y/R \)) values as a function of exploitation ratio (\(E \)) of *S. sihama* during 2012 from the Karachi coast Pakistan were estimated. Where \(Yw/R \) was yield per recruit, \(tc \) was the average age of the first capture, \(t_c \) was the age of recruitment, \(t_f \) was the asymptotical ages, was the constant and equal to 1, -3.3 and -1 when \(n \) was 0, 1, 2 and 3 correspondingly, \(e \) was the base of natural logarithms [35].

2.8 Growth Performance Index

The estimated growth parameters values of \(L_\infty \) (asymptotic length) and \(K \) (growth constant) *S. sihama* in 2012 were used to compute the growth performance index (Phi prime \(\Phi' \)). Following equations by [36] \(\Phi' = \log_{10} K + 2 \log_{10} L_\infty \) and \(\Phi = \log_{10} K + 2/3 \log_{10} W_\infty \) were used.

3. RESULTS

3.1 Length-Weight Relationship

A total of 1846 individuals during 2012 of *S. sihama* were examined in this study. The shortest length was 10 cm and the longest was 24 cm and the dominant individuals are ranged 12 to 16 cm total length (TL). Weights were measured from 9 to 110 g. The LWR of male and female combined was: \(W = 0.0107 \times L^{2.9177} \) \((R^2 = 0.96) \) (Figs 2 & 3).

3.1.2 Mortality

Applying VBGF growth parameters (\(L_\infty, K \)) and using the (LCCA) length converted catch curve analysis, \(Z = 2.42 \) (2.174-2.669) years\(^{-1} \) (Fig. 5). While using Pauly’s (1980) equation \(M \) was calculated 1.84 year\(^{-1} \) (with \(L_\infty = 25.20, K = 0.440 \) year\(^{-1} \) and average annual sea surface temperature 27°C). The fishing mortality was calculated as \(F = Z-M = 0.578 \) year\(^{-1} \). While \(E = F/Z = 0.239 \) year\(^{-1} \).

Fig. 2. Length frequency distribution of *S. sihama* from Karachi coast of Pakistan
Fig. 3. Length-weight relationship of both sexes combined of *S. sihama* length and weight ranging from 10 to 24 cm (TL), 9 to 110 g respectively

\[y = 0.0107x^{2.9177} \]
\[R^2 = 0.9684 \]
Both sexes combined

Fig. 4. Length-frequency distribution data and the growth curves estimated using ELEFAN for *S. sihama* in Karachi coast of Pakistan in 2012

Fig. 5. A length-converted catch curve for *S. sihama* in Karachi in 2012 for the pooled data for one year (\(L_\infty = 25.20 \) cm and \(k=1.00 \) year\(^{-1} \))
Fig. 6. Yield per recruit contour map of *S. sihama* from Pakistani waters during 2012

Because $\mu = 17.614$ and $L^* = 15$, the total annual mortality estimated by the Beverton and Holt's method is: $Z = 2.90$ per year.

3.1.3 Biological reference points

The Gulland criterion of biological reference points (BRPs) was estimated at the optimum fishing mortality rate of 1.84 year$^{-1}$ for both years. The yield-per-recruit analysis (Fig. 6) indicated that when $t_c = 1$ and $F_{max} = 1$. Currently, the age at first capture is about 1 year and $F_{current} = 0.57$ years$^{-1}$. It is recommended that the present condition of *S. sihama* fishery in Pakistan is safe.

3.1.4 Growth performance index

Using VBGF growth parameters (L_∞, K) the growth performance index (ϕ') for *S. sihama* was estimated 2.803 based on length-frequency data during 2012 from the Karachi coast of Pakistan.

4. DISCUSSION

4.1 Length-Weight Relationship

The length-weight relationship is considered to be a useful measurement which makes easy for the estimations of metamorphosis, gonad maturity and rate of feeding of fish which is deliberated as a significant parameter in fishery biology and fish stock assessment [37]. In the present study, the value of slope “b” of *S. sihama* was estimated 2.9177 ($R^2 = 0.96$) from the Karachi coast of Pakistan in 2012, which indicates the negative allometric growth. Because, when the b value is lower than 3 it determines the negative allometric growth, greater than 3 is positive allometric and when equal to 3 is isometric growth. The estimated value of slope b was compared with the results obtained from the other areas of the world of the same species (Table 1), the b values were 3.08 and 3.04 from Pulicat Lake and Goa of Indian waters respectively, which were greater than the present study. 2.88 was from India [38] and 2.73 from Northern Persian Gulf were closer to the present study. 3.355 and 3.064 [39] from E Mediterranean coast and NE Mediterranean Sea respectively from Turkey, 3.13 from New Caledonia [40] and 3.029 from South African waters which were greater from the present study. The differences among the slope values may be because of the changes in regions, seasonal fluctuations, environmental parameters and physical conditions of the fish at the time of sample collection, sex gonad development and nutritive conditions, sample size, different observed length ranges during the study etc. [41].

4.2 Growth

VBGF parameters, i.e. asymptotic length L_∞, growth rate K and the hypothetical age t_0 were estimated from the length-frequency data from *S. sihama* from the Karachi coast of Pakistan and were compared with the results in previous studies from the different areas (Table 2).

In this study, the ELEFAN method in the FISATII computer software package was used to estimate the VBGF parameters (L_∞ and K). L_∞ was 25.20 cm and K was 1.00. The asymptotic length L_∞ and growth rate K was estimated at 406.82 mm and 0.2226 Pulicat lake [42], 519 mm and 0.2179 from Kawar waters 388 mm and 0.1526 from Goa, 510 mm and 0.1577 from Indian waters where the L_∞ very high from the present study while K was lower than the present study [43] .281 mm and 0.75 from Indian waters [44] and 260.89 mm and 0.6614 from Minnan-
Taiwan fishing ground were closer to the present study. 188.6 mm and 0.51 from Beibu Gulf were lower than the present study. Because FISHBASE (accessed on 26 May 2016) reported the maximum length of 30 cm, we would like to suggest that the very high L\(_\infty\) of about 50 cm and very low K of about 0.2 in [45] resulted from a non-representative data, i.e. their data maybe only for the young fish and missed old fish [44].

The \(t_0 = 0.2745\) from Pulicat lake [46] and \(t_0 = 0.08909\) from Kawar of Indian waters show positive \(t_0\) values. \(t_0 = -1.09\) and \(t_0 = -1.60\) from Goa from Indian waters were lower than the present study [47]. \(t_0 = -0.32\) from the Beibu Gulf and \(t_0 = -0.6158\) from Minnan-Taiwan fishing ground were closer to our present study (\(t_0 = -0.166\)). The differences between those values in Table 2. Maybe because of their different sampling strategies, data sets, estimation methods, life patterns and ecological characteristics [48].

4.3 Mortality

The present study used length-converted catch curve analysis for estimation of the mortality rate of S. sihama using input values of the VBGF growth parameter given above from the Karachi coast of Pakistan and which were compared with earlier studies from the same species but different countries of the world (Table 3).

Table 1. Comparison of value b of S. sihama with previous studies from different areas of the world to present study from Karachi coast, Pakistan during 2012

Location	Slope “b”	Sources
India	2.88	Radhakrishnan [49]
Pulicat lake, India	3.08	Krishnamurthy and Kaliyamurthy [50]
New Caledonia	3.13	Letourneur et al. [51]
South African waters	3.02	Harrison [52]
E Mediterranean coast, Turkey	3.35	Taskavak and Bilecenoglu [53]
NE Mediterranean Sea, Turkey	3.06	Erguden et al. [54]
Goa, India	3.04	Shamsan and Ansari [55]
Northern Persian Gulf	2.73	Daliri et al., [56]
Karachi coast, Pakistan	2.92	Present study

Table 2. Comparison of growth parameters of S. sihama from the present study with those from another part of the world

Location	\(L_\infty\) (mm)	K	\(t_0\)	\(\phi\)	Sources
India	281	0.75	-	2.77	Banerji and Krishnan [57]
Pulicat lake, India	406.82	0.22	-0.27	-	Krishnamurthy and Kaliyamurthy [50]
India	510	0.15	-1.09	-	Gowda [58]
Kawar waters, India	519	0.21	-0.08	-	Reddy and Neelakantan [45]
Minnan-Taiwan fishing ground	260.89	0.66	-0.61	2.65	CAO et al. [59]
Beibu Gulf	188.6	0.51	-0.32	2.25	Liu et al. [60]
Goa, India	388	0.15	-1.6	-	Shamsan and Ansari [55]
Karachi coast, Pakistan	252	0.44	-0.16	2.8	Present study

\(L_\infty = \) asymptotic length (mm-TL); \(K = \) growth rate year\(^{-1}\); \(\phi = \) growth performance index; \(t_0 = \) hypothetical age at which length of the fish is equal to zero

Table 3. Mortality rates of S. sihama from Karachi coast of Pakistan were compared with the other studies from different areas

Area	Z	M	F	E	Sources
Minnan-Taiwan fishing ground	2.77	1.3	1.47	0.5	CAO et al. [59]
Beibu Gulf	2.58	1.21	1.36	0.5	Liu et al. [60]
Karachi coast, Pakistan	2.42	1.84	0.57	0.2	Present study

\(Z = \) total mortality, \(M = \) natural mortality, \(F = \) fishing mortality, \(E = \) exploitation ratio
The mortality values in this study (total mortality Z, natural mortality M and fishing mortality F) were 2.42, 1.841 and 0.5787 years$^{-1}$ respectively and the exploitation ratio E was 0.239. The Z was 2.7728, M was 1.3004 and F was 1.4724 while the exploitation ratio was 0.531 from Minnan-Taiwan fishing ground. The values of Z, M and F were 2.58, 1.217 and 1.36 respectively, and E was 0.527 from the Beibu Gulf [61]. In the earlier studies, the values of total mortality in fishing mortality and exploitation ratio were higher than the present study and the values of natural mortality were lower than our study. The different values from different areas of the world were because of unfavourable environmental conditions or commercial demand, which increased fishing efforts in that region. There are many causes for the mortality rates, such as fishing, pollution, diseases, predation and old age in the fish community [62]. Predation is a big cause of natural mortality for $S. \text{sihama}$. However, in the present study, the fishing mortality (0.5787) is lower than natural mortality (1.841) which indicate that the stock of $S. \text{sihama}$ is in managing the condition in Pakistan.

The total annual mortality estimated by the Beverton and Holt’s method is: $Z = 2.90$ per year, which is similar to the results of catch curve analysis. Because the length converted catch curve analysis is more commonly used, we chose $Z = 2.42$ as our final result.

4.4 Growth Performance Index

The growth performance index (q^1) is usually estimated from the VBGF parameters (a, (asymptotic length) and K (growth rate). If the value is higher it indicates faster and larger growth of the fish [63]. In this study, the growth performance index is 2.803. It was 2.772 from Indian water and 2.653 from Minnan-Taiwan fishing ground which were closer to the present study. It was 2.259 from the Beibu Gulf [64] which is lower, but closer to the present study values. Ecological and environmental changes may cause differences among the values of the growth performance index [65].

5. CONCLUSION

In the present study of mortality and growth parameters of $Sillago \text{sihama}$ from the Karachi coast of Pakistan has indicated that the fishery is in a safe condition because the current exploitation ratio (0.239) of this species is lower than the biological reference point (0.5). The growth rate and the growth performance index of this species were found to be good in Karachi coast, Pakistan.

ACKNOWLEDGEMENTS

The first author acknowledges the Chinese Scholarship Council (CSC) for funding his PhD. Degree. This work is supported by the Fundamental Research Funds for the Central Universities (No. 201562030).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. De Young C, editor. Review of the state of world marine capture fisheries management: Indian Ocean. Food & Agriculture Org.; 2006.
2. Bianchi G. Field guide to the commercial marine and brackish-water species of Pakistan; 1985.
3. FAO J. Fishery and aquaculture country profiles. Food and Agriculture Organization of the United Nations. 2009:8.
4. Nadkarni VB. Structure of the kidney of marine fishes in relation to their habitat. Recent advances in zoology in India. Delhi: Zoological Survey of India. 1963;157-70.
5. McKay RJ. FAO species catalogue. v. 14: Sillaginid fishes of the world (Family Sillaginidae). An annotated and illustrated catalogue of the Sillago, Smelt or Indo-Pacific whiting species known to date; 1992.
6. Aydın İ, Akyol O. Occurrence of Nemipterus randalli Russell, 1986 (Nemipteridae) off Izmir Bay, Turkey. Egyptian Journal of Aquatic Research. 2016;18;39:267-74.
7. Kaga T, Imamura H, Nakaya K. A new sand whiting, Sillago (Sillago) caudicula, from Oman, the Indian Ocean (Perciformes: Sillaginidae). Ichthyological Research. 2010;1(4):367-72.
8. Kaga T, Ho HC. Redescription of Sillago (Parasilago) indica McKay, Dutt & Sujatha, 1985 (Perciformes: Sillaginidae), with a reassignment to the subgenus Sillago. Zootaxa. 2012;13(3513):81-7.
9. Xiao JG, Song N, Han ZQ, Gao TX. Description and DNA barcoding of a new Sillago species, Sillago shaoi (Perciformes: Sillaginidae). Zootaxa. 2012;13(3513):81-7.
Sillaginidae), in the Taiwan Strait. Zool Stud. 2016;1:55-1-8.

10. Kaga T, Ho HC. Redescription of Sillago (Parasillago) indica McKay, Dutt & Sujatha, 1985 (Perciformes: Sillaginidae), with a reassignment to the subgenus Sillago. Zootaxa. 2012;13(3513):61-7.

11. Kaga T, Imamura H, Nakaya K. A new sand whiting, Sillago (Sillago) caudicula, from Oman, the Indian Ocean (Perciformes: Sillaginidae). Ichthyo logical Research. 2010;1:57(4):367-72.

12. Gao TX, Ji DP, Xiao YS, Xue TQ, Yanagimoto T, Setoguma T. Description and DNA Barcoding of a New Sillago Species, Sillago sinica (Perciformes: Sillag inidae), from Coastal Waters of China. Zoological Studies. 2011;50(2):254-63.

13. Baset A, Liu Q, Hanif MT, Liao B, Memon AM, Mohsin M. Estimation of maximum sustainable yield using production modeling: A stock appraisal of Indian Oil Sardine (Sardine longiiceps) from Pakistani Waters. Pakistan Journal of Zoology. 2017;49(2):521-8.

14. Memon AM, Liu Q, Memon KH, Baloch WA, Memon A, Baset A. Evaluation of the fishery status for king soldier bream Argyrops spinifer in Pakistan using the software CEDA and ASPIC. Chinese Journal of Oceanology and Limnology. 2015;33(4):966-73.

15. Tongnunui P, Sano M, Kurokura H. Feeding habits of two sillinid fishes, Sillago sihama and S. aeolus, at Sikao Bay, Trang Province, Thailand. La mer. 2005;43:9-17.

16. Mohsin M, Mu Y, Memon AM, Mehak A, Shah SB, Kalhor MT, Baset A. Capture fisheries production and its economic role in Pakistan. Indian Journal of Geo Marine Sciences. 2017;46(06):1110-5.

17. Liao B, Zhang K, Shan X, Chen X, Baset A, Memon KH, Liu Q. Application of Bayesian surplus production model and traditional surplus production model on stock assessment of the southern Atlantic albacore (Thunnus alalunga). Indian Journal of Geo Marine Sciences. 2017;46(05):922-8.

18. Qasim SZ. An appraisal of the studies on maturation and spawning in marine teleosts from the Indian waters. Indian Journal of Fisheries. 1973;20(1):166-81.

19. Jaiswar AK, Chakraborty SK, Swamy RP. Studies on the age, growth and mortality rates of Indian scad Decapterus russelli (Ruppell) from Mumbai waters. Fisheries research. 2001;53(3):303-8.

20. Nayar KN. Studies on the growth of the wedge clam, Donax (Lataona) cuneatus Linnaeus. Indian Journal of Fisheries. 1955;2(2):325-48.

21. Simpfendorfer CA, McAuley RB, Chidlow J, Unsworth P. Validated age and growth of the dusky shark, Carcharhinus obscurus, from Western Australian waters. Marine and Freshwater Research. 2002;53(2):567-73.

22. Liao B, Liu Q, Zhang K, Baset A, Memon AM, Memon KH, Han Y. A continuous time delay-difference type model (CTDDM) applied to stock assessment of the southern Atlantic albacore Thunnus alalunga. Chinese Journal of Oceanology and Limnology. 2016;34(5):977-84.

23. Hirth HF. Some aspects of the nesting behavior and reproductive biology of sea turtles. American Zoologist. 1980;20(3):507-23.

24. Abdurahiman KP, Nayak TH, Zacharia PU, Mohamed KS. Length-weight relationship of commercially important marine fishes and shellfishes of the southern coast of Karnataka, India. NAGA, World Fish Centre Quarterly. 2004;27(1&2):9-14.

25. Adams PB. Life history patterns in marine fishes and their consequences for fisheries management. Fishery Bulletin. 1980;78(1):1-2.

26. Bal DV, Rao KV. Marine fisheries of India. Tata McGraw-Hill; 1990.

27. Biswas SP. Manual of Methods in fish Biology, South Asian Publisheres PVR LTD., India; 1993.

28. Brandt SB, Mason DM, Macneill DB, Coates T, Gannon JE. Predation by alewives on larvae of yellow perch in Lake Ontario. Transactions of the American Fisheries Society. 1987;116(4):641-5.

29. Christensen V, Pauly D. Placing fisheries resources in their ecosystem context. EC Fish. Coop. Bull. 1997;10:9-14.

30. Baset A, Liu Q, Liao B, Waris A, Ahmad I, Yaran H, Qingqing Z. Population Dynamics of Saddle Grunt Fish, Pomadasys maculatus (Bloch, 1793) from Pakistani Waters. Bioprocess Engineering. 2020;4(1):1-8.

31. Froese R. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations.
32. Haddon M. Modeling and quantitative methods in fisheries. Second edition. London: Chapman & Hall/CRC Press. 2011: 449.

33. Karim E, Qun LI, Mahmood MA, Baset A, Hoq ME, Shamsuzzaman MM, Das A. Assessment of some demographic trends of Spadenose shark (Scoliodon laticaudus) of the Bay of Bengal, Bangladesh. Indian Journal of Geo Marine Sciences. 2017; 46(10):1986-95.

34. Beverton RJ. A review of methods for estimating mortality rates in fish populations, with special reference to sources of bias in catch sampling. Rapp Proces-verb Reun Cons Int Explor Mer. 1956;140:67-83.

35. Liao B, Liu Q, Wang X, Baset A, Soomro SH, Memon AM, Memon KH, Kalhoro MA. Application of a continuous time delay-difference model for the population dynamics of winter-spring cohort of neon flying squid (Ommastrephes bartramii, Lesueur 1821) in the North-west Pacific Ocean. Journal of the Marine Biological Association of the United Kingdom. 2016; 96(7):1527-34.

36. Pauly D, Munro JL. Once more on the comparison of growth in fish and invertebrates. Fishbyte. 1984;2(1):1-21.

37. Papaconstantinou C, Kapiris K. Distribution and population structure of the red shrimp (Aristeus antennatus) on an unexploited fishing ground in the Greek Ionian Sea. Aquatic Living Resources. 2001;14(5):303-12.

38. Pitcher TJ. A bumpy old road: Size-based methods in fisheries assessment. Handbook of Fish Biology and Fisheries: Fisheries. 2002;2:189-210.

39. Martin-Smith KM. Length/weight relationships of fishes in a diverse tropical freshwater community, Sabah, Malaysia. Journal of Fish Biology. 1996;49(4):731-4.

40. Sparre P. Introduction to tropical fish stock assessment. Part 1. Manual. FAO Fish. Tech. Paper. 1998;306:1-407.

41. Tongunui P, Sano M, Kurokura H. Feeding habits of two sillaginid fishes, Sillago sihama and S. aeolus, at Sikao Bay, Trang Province, Thailand. La mer. 2005;43:9-17.

42. Wootton RJ. Ecology of teleost fishes. Springer Science & Business Media; 2012.

43. Baset A, Liu Q, Hanif MT, Liao B, Memon AM, Mohsin M. Estimation of maximum sustainable yield using production modeling: A stock appraisal of Indian Oil Sardine (Sardinella longiceps) from Pakistani Waters. Pakistan Journal of Zoology. 2017;49(2):521-8.

44. Nadkarni VB. Structure of the kidney of marine fishes in relation to their habitat. Recent advances in zoology in India. Delhi: Zoological Survey of India. 1963:157-70.

45. Reddy CR, Neelakantan B. Age and growth of Indian whiting Sillago sihama (Forskal) from Karwar waters. Mahasagar. 1992;25(1):61-4.

46. Le Cren ED. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). The Journal of Animal Ecology. 1951;1: 201-19.

47. Laevastu T, Favorite F. Fishing and stock fluctuations. Fishing News; 1988.

48. Jayawardane PA, McClusky DS, Tytler P. Estimation of population parameters and stock assessment of Penaeus indicus (H. Milne Edwards) in the western coastal waters of Sri Lanka. Asian Fisheries Science. 2002;15(2):155-66.

49. Radhakrishnan N. A contribution to the biology of Indian Sand Whiting Sillago sihama (Forskal). Indian Journal of Fisheries. 1957;4(2):254-83.

50. Krishnamurthy KN, Kaliamurthy M. Studies on the age and growth of sandwhiting Sillago sihama (Forskal) from Pulicat Lake with observations on its biology and fishery. Indian Journal of Fisheries. 1978;25(1-2):84-97.

51. Letourneur Y. Length-weight relationship of some marine fish species in Reunion Island, Indian Ocean. Naga, The ICLARM Quarterly. 1998;21(4):37-9.

52. Harrison TD. Length-weight relationships of fishes from South African estuaries; 2001.

53. Taskakav E, Bilecenoglu M. Length–weight relationships for 18 Lessepsian (Red Sea) immigrant fish species from the eastern Mediterranean coast of Turkey. Journal of the Marine Biological Association of the United Kingdom. 2001;81(5):895-6.

54. Erguden D, Turan C, Gurlek M. Weight–length relationships for 20 Lessepsian fish species caught by bottom trawl on the coast of Iskenderun Bay (NE Mediterranean Sea, Turkey). Journal of Applied Ichthyology. 2009;25(1):133-5.
55. Shamsan EF, Ansari ZA. Study of age and growth of Indian sand whiting, sillago sihama (Forsskal) from Zuari estuary, Goa.

56. Daliri M. Length-weight and length-length relationships, Relative condition factor and Fulton's condition factor of Five Cyprinid species in Anzali wetland, southwest of the Caspian Sea. Caspian Journal of Environmental Sciences. 2012;10(1):25-31.

57. Banerji SK, Krishnan TS. Acceleration of assessment of fish populations and comparative studies of similar taxonomic groups.

58. Gowda HH, Joseph PS, Mohan Joseph M. Growth, condition and sexuality of the Indian sand whiting, Sillago sihama (Forskal). In The First Indian Fisheries Forum. Proceedings. Asian Fisheries Society. 1988;229-232.

59. Cao JX, Huang Y, Du T. Observation on microstructure of peripheral blood cells in Sillago Sihama Forskål. Journal of Guangdong Ocean University. 2008;6.

60. Liu JD, Zhu LX, Lu HS. Estimation of growth and mortality parameters of the silver sillago (Sillago sihama) in Beibu Gulf. Journal of Zhejiang Ocean University (Natural Science). 2010;1:017.

61. Royce WF. Theory of Fish Population Dynamics as the Biological Background for Rational Exploitation and Management of Fishery Resources. George V. Nikolskii. Translated from the Russian edition (Moscow, 1965) by JES Bradley, R. Jones, Ed. Oliver and Boyd, Edinburgh; 1969.

62. Pitcher TJ. A bumpy old road: size-based methods in fisheries assessment. Handbook of Fish Biology and Fisheries: Fisheries. 2002;3(2):189-210.

63. Nikolsky GV. Theory of the fish population dynamics as the biological background for rational exploitation and management of fisheries resources. Translated by Bradley Oliver and Boyd; 1969.

64. Nikol'skii GV. Theory of fish population dynamics: As the biological background for rational exploitation and management of fishery resources. Oliver & Boyd; 1969.

65. Chambers RC, Trippel EA, editors. Early life history and recruitment in fish populations. Springer Science & Business Media; 2012.

© 2020 Baset et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/55277