Association analysis identifies ZNF750 regulatory variants in psoriasis

Ramon Y Birnbaum1,2,3†, Genki Hayashi4†, Idan Cohen3, Annie Poon2,5, Haoyan Chen4, Ernest T Lam2,5, Pui-Yan Kwok2,5, Ohad S Birk3 and Wilson Liao4*

Abstract

Background: Mutations in the ZNF750 promoter and coding regions have been previously associated with Mendelian forms of psoriasis and psoriasiform dermatitis. ZNF750 encodes a putative zinc finger transcription factor that is highly expressed in keratinocytes and represents a candidate psoriasis gene.

Methods: We examined whether ZNF750 variants were associated with psoriasis in a large case-control population. We sequenced the promoter and exon regions of ZNF750 in 716 Caucasian psoriasis cases and 397 Caucasian controls.

Results: We identified a total of 47 variants, including 38 rare variants of which 35 were novel. Association testing identified two ZNF750 haplotypes associated with psoriasis (p < 0.05). We also identified an excess of rare promoter and 5’ untranslated region (UTR) variants in psoriasis cases compared to controls (p = 0.041), whereas there was no significant difference in the number of rare coding and rare 3’ UTR variants. Using a promoter functional assay in stimulated human primary keratinocytes, we showed that four ZNF750 promoter and 5’ UTR variants displayed a 35-55% reduction of ZNF750 promoter activity, consistent with the promoter activity reduction seen in a Mendelian psoriasis family with a ZNF750 promoter variant. However, the rare promoter and 5’ UTR variants identified in this study did not strictly segregate with the psoriasis phenotype within families.

Conclusions: Two haplotypes of ZNF750 and rare 5’ regulatory variants of ZNF750 were found to be associated with psoriasis. These rare 5’ regulatory variants, though not causal, might serve as a genetic modifier of psoriasis.

Background

Psoriasis is a chronic, inflammatory disorder of the skin affecting 2-4% of the Caucasian population [1]. Clinically, psoriasis is characterized by red, scaly plaques typically favoring the elbows, knees, scalp, umbilicus, and gluteal cleft and may be associated with nail dystrophy and arthritis. Histologically, psoriasis is marked by epidermal hyperplasia, dilated vasculature in the dermal papillae, and the presence of T cell infiltrates. Genome-wide association studies and other genetic investigations of psoriasis have identified at least 18 common variants affecting psoriasis susceptibility [2-9]. However, in aggregate, these common variants only explain a fraction of the heritability in psoriasis [10]. Therefore, the missing heritability in psoriasis might be explained by other types of variants not captured by the previous genetic studies, such as rare variants with a low minor allele frequency in the general population.

One candidate susceptibility gene for psoriasis is ZNF750, a gene located at chromosome 17q25 within the PSORS2 locus. ZNF750 has previously been reported to be associated with autosomal dominant forms of psoriasis or psoriasiform dermatitis in two separate, multigenerational families. The first family was a five-generation Jewish Israeli family of Moroccan descent in which affected members displayed clinical features of both psoriasis and seborrheic dermatitis [11]. The causative mutation was identified as a ZNF750 frameshift mutation at residue 19 of this 723-residue protein, resulting in a 44-residue truncated protein which abrogated the zinc finger binding domain. The second family was a five-generation Chinese family with psoriasis [12]. Gene mapping and functional studies identified the
most likely causal mutation as a c.-625A>C promoter variant in ZNF750 that resulted in 42% reduction in promoter activity.

Since Mendelian-pattern psoriasis in these two large families is associated with ZNF750, we sought to examine whether variants in ZNF750 might influence the development of psoriasis in a larger population. In this study, we investigated whether variants within the ZNF750 promoter, 5’ UTR, coding regions, and 3’ UTR were associated with psoriasis in a Caucasian population.

Methods

Patients

DNA samples from 716 unrelated Caucasian psoriasis cases, 397 Caucasian healthy adult controls, and 20 additional family members were collected from the University of California, San Francisco and Washington University, St. Louis. Cases were recruited from outpatient dermatology clinics and the diagnosis of psoriasis was confirmed by a board-certified dermatologist. Healthy controls, recruited from the local community, reported no history of autoimmune disease or cancer according to a written screening questionnaire. All subjects gave written informed consent for study participation in accordance with the institutional review board at their respective institutions.

Sequencing

Each DNA sample was sequenced over 6 amplicons to cover the promoter and 3 exons of ZNF750. PCR was performed using the following primer pairs, sequences listed 5’ to 3’: amplicon 1 (531 bp, forward AATACTG TGCCTCCCAGGTTAT, reverse GTACTTACAGA GTGTTGGCGTGTG); amplicon 2 (710 bp, forward TGT CCTGACCAAAGCTGCAC, reverse CGACTTGAAC AAATGCAGAA); amplicon 3 (698 bp, forward GGCAT CCTGACACCAAGACTGC, reverse CGACTGGAAC GGTGGGCAGTG); amplicon 4 (755 bp, forward CAGGCCA CACCCTGCAAGAG, reverse GGTTTAACCTTGA AGAAATGCAGAA); amplicon 5 (673 bp, forward CCCTCAAC GAGTCTGCATTTT, reverse TGGCTGCCAGGTTTA GACTCG); amplicon 6 (783 bp, forward TGGCTGCCAGGTTTA TCTCT); amplicon 5 (673 bp, forward CCCTCAAC GAGTCTGCATTTT, reverse TGGCTGCCAGGTTTA GACTCG); amplicon 6 (783 bp, forward TGGCTGCCAGGTTTA TCTCT); amplicon 6 (783 bp, forward TGGCTGCCAGGTTTA TCTCT). 10,000 permutations were performed to determine significance for each group tested.

5’ Rapid Amplification of cDNA Ends (5’ RACE)

SMART RACE cDNA amplification kit (BD Biosciences; Franklin Lakes, NJ USA) was used to perform 5’-RACE of ZNF750 gene. RACE-ready cDNA was synthesized according to the manufacturer’s instructions. RACE PCR was performed with gene-specific primers that were used for RT-PCR of ZNF750 (Exon 2, GGACTC- GATCCTGCTCTGA). RACE products were excised from the agarose gel, purified, and cloned into pGEM-T easy vector (Promega Corp; Madison, WI USA). Cloned inserts were sequenced with the T7 and SP6 primers and the DNA sequences obtained were compared to published sequences.

Sequencing was performed in one direction except for amplicon 6 in which the presence of multiple indels required the use of bidirectional sequencing, using the internal reverse primer AGGCCCTTGTAGTTTTG TGTGTT and internal forward primer TGGTTGTAA ACACCTGAATGA. All rare promoter and 5’ UTR variants were sequenced a second time in the forward and reverse directions to confirm their accuracy.

Statistical Methods

Sequencing traces were analyzed with Sequencher (Gene Codes; Ann Arbor, MI USA). Hardy-Weinberg equilibrium p-values were calculated in Haploview to assess sequencing quality and a p-value of 0.05 was used as the significance threshold for exclusion. Individual polymorphisms were tested for association with psoriasis using Fisher’s exact test implemented in PLINK. Haploview was used to identify haplotypes using the confidence intervals method and to calculate haploype associations using a chi-square test. Haploview was also used to perform empirical p-value estimation, using 100,000 permuted experiments. False discovery rate (FDR) q-values were calculated in R. A weighted sum statistic was used to test functionally similar groups of rare variants for association with psoriasis. This approach of combining multiple independent signals has been shown to be significantly more powerful than variant-by-variant or other approaches for the analysis of rare variants [13]. 10,000 permutations were performed to determine significance for each group tested.

Excess dye terminator removal was performed with genCLEAN (Genetix; New Milton, Hampshire, United Kingdom) plates following manufacturer’s instructions before sequencing on an ABI 3730xL DNA Analyzer. Sequencing was performed in one direction except for amplicon 6 in which the presence of multiple indels required the use of bidirectional sequencing, using the internal reverse primer AGGCCCTTGTAGTTTTG TGTGTT and internal forward primer TGGTTGTAAACACCTGAATGA. All rare promoter and 5’ UTR variants were sequenced a second time in the forward and reverse directions to confirm their accuracy.

Reporter Constructs for ZNF750 Promoter Assay

The ZNF750 reference sequence was taken from National Center for Biotechnology Information, with accession number NM_024702. Five candidate mutations in the promoter and 5’ UTR region of ZNF750
were analyzed for changes in luciferase reporter activity. Four novel variants were identified in patients diagnosed with psoriasis and one mutation, c.-625A>C was identified by Yang et al [12]. An 849 bp insert containing the promoter and 5′ UTR (exon 1 portion) of \textit{ZNF750} was amplified from human genomic DNA using the primers 5′-GGCTAGCCAGCAAGCAGTTTTGGT-3′ (\textit{NheI}) and 5′-CACAAGCTTGGATGTGGCCGGTCTTGGT-3′ (\textit{HindIII}), and cloned into pGL3 Basic vector (Promega) using \textit{NheI} and \textit{HindIII} restriction enzymes. QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies) was used to create the 5 variations of interest individually. All vectors were sequenced to verify the location of the variation.

Transfection and Luciferase Assay

Primary keratinocytes were provided by Dr. Dennis Oh and Dr. Susana Ortiz-Urda (University of California San Francisco, San Francisco, CA). The cells were grown in 500 ml Medium 154CF and Human Keratinocyte Growth Supplement (Invitrogen; Carlsbad, CA USA), and 35 μM of CaCl2. A total of 10^5 cells were seeded in each well of a 6-well plate and were transfected after 24 hours with 500 ng of each reporter construct along with 10 ng of pRL-TK vector (Promega) containing the Renilla luciferase gene as an indicator for normalization of transfection efficiency. Transfections were performed using Lipofectamine™ LTX with PLUS™ Reagent (Invitrogen), according to the manufacturer’s instructions. After 24 hours, the cells were stimulated with 250 ng phorbol-12-myristate-13-acetate (PMA) for the PMA positive set of experiments. Cells were incubated for an additional 24 hours and then analyzed for luciferase activity with the Dual-Luciferase® Reporter Assay System (Promega) and Synergy 2 (BioTek; Winooski, VT USA). Firefly luminescence was normalized to Renilla luminescence and reported as relative luciferase units compared to wild-type sequence. All experiments were performed independently three times using primary keratinocytes from a single donor.

Results

Identification of ZNF750 Variants in Cases and Controls

To determine whether \textit{ZNF750} is associated with psoriasis, we sequenced \textit{ZNF750} in 716 Caucasian psoriasis cases and 397 Caucasian controls. We sequenced the \textit{ZNF750} promoter region (defined as 400 bp upstream of the transcription start site), 5′ UTR, coding regions which include exons 2 and 3, and 3′ UTR. In total, we identified 9 common variants (minor allele frequency (MAF) \(\geq 2\%\)) in the controls, Table 1 and 38 rare variants (MAF < 2%, Table 2). One polymorphism, a novel 8 bp deletion at position 78381172 (hg18) in the 3′ UTR, was out of Hardy-Weinberg equilibrium and was not included. All identified polymorphisms were successfully genotyped in greater than 94% of samples and the mean genotyping rate per variant was 97.3%. Nearly all variants were single nucleotide variants (SNVs) with the exception of two single base deletions, one located in the 3′ UTR (rs71918228) and the other in the 3′ downstream region (rs35156590). All of the identified common variants were present in dbSNP Build 133 whereas 35 of 38 (92%) of the rare variants were novel.

Association Testing of Identified Variants

To analyze the significance of the identified \textit{ZNF750} variations/mutations in psoriasis patients, we first tested each variant alone using a Fisher’s exact test. For the common variants (Table 1), only rs35156590 in the immediate 3′ downstream region showed a significant association with psoriasis (\(p = 0.028\), OR 0.81 [95% CI 0.68-0.98]). However, adjustment for multiple hypothesis testing using empirical permutation testing of this SNP yielded \(p = 0.17\). When tested individually, none of the rare variants (Table 2) achieved a significance association with psoriasis (all \(p > 0.05\)).

Table 1 Common variants identified in ZNF750

Name	Position	Property (PolyPhen2 impact)	Alleles	F_case	F_control	Fisher P
rs3744165	78383731	Exon 2, 5′ UTR	C/A	0.171	0.161	0.0541
rs12450046	78383677	Exon 2, 5′ UTR	C/T	0.186	0.172	0.0478
rs8074277	78382917	Exon 2, M235V (benign)	A/G	0.189	0.18	0.0640
rs35653278	78382757	Exon 2, P288L (probably)	C/T	0.092	0.09	0.937
rs34189891	78382558	Exon 2, T354T	C/T	0.021	0.021	1.000
rs12994879	78381781	Exon 3, P566P	T/C	0.393	0.42	0.233
rs12938126	78381754	Exon 3, A575A	A/G	0.392	0.42	0.232
rs71918228	7838176-79	Exon 3, 3′ UTR	CAAA/-	0.465	0.478	0.586
rs35156590	78380584	3′ Downstream	-/T	0.369	0.418	0.028

Common variants are defined as those with minor allele frequency (MAF) \(\geq 2\%\) in controls. Position is on Chr17 (hg18). UTR, untranslated region. PolyPhen2 impact given as benign, possibly damaging, or probably damaging. Alleles are given as major/minor on the (-) strand. F_case, MAF in cases; F_control, MAF in controls.
Next, we evaluated whether common variant haplotypes of ZNF750 were associated with psoriasis. Two 8-marker haplotypes were significantly associated with psoriasis (Table 3), the risk haplotype CCACCCTG(-) (frequency = 0.019, p = 0.0011, OR 3.70 [1.45-9.46]) which includes the risk allele of rs35156590, and the protective haplotype CCACCCGGT (frequency = 0.374, p = 0.0106, 0.79 [0.66-0.94]) which contains the non-risk allele of rs35156590. Both of these haplotypes remained significant after correction for multiple comparisons using empirical permutation testing (p = 0.0024 and p = 0.0311, respectively) as well as by

Table 2 Rare variants identified in ZNF750

Name	Position	Property (PolyPhen2 impact)	Alleles	F_case	F_control	Fisher P
Novel_1	78391506	Promoter	G/T	0 of 1312	1 of 745	0.365
Novel_2	78391367	Promoter	G/A	1 of 1309	0 of 746	1.000
Novel_3	78391170	Exon 1, 5' UTR	G/A	1 of 1309	0 of 746	1.000
Novel_4	78391142	Exon 1, 5' UTR	C/T	4 of 1306	0 of 746	0.303
Novel_5	78391141	Exon 1, 5' UTR	G/A	1 of 1311	0 of 746	1.000
Novel_6	78383664	Exon 2, 5' UTR	G/C	1 of 1349	0 of 746	1.000
Novel_7	78383655	Exon 2, 5' UTR	A/G	1 of 1349	0 of 746	1.000
Novel_8	78383651	Exon 2, 5' UTR	G/A	1 of 1349	0 of 746	1.000
Novel_9	78383521	Exon 2, T33T	T/C	1 of 1349	0 of 746	1.000
Novel_10	78383438	Exon 2, R61Q (possibly)	G/A	2 of 1348	1 of 745	1.000
Novel_11	78383402	Exon 2, P73L (probably)	C/T	0 of 1350	1 of 745	0.357
Novel_12	78383393	Exon 2, T76I (benign)	C/T	0 of 1350	1 of 745	0.357
Novel_13	78383325	Exon 2, D99N (probably)	G/A	1 of 1349	1 of 745	1.000
Novel_14	78383272	Exon 2, E116E	G/A	1 of 1349	0 of 746	1.000
Novel_15	78383216	Exon 2, A135E (benign)	C/A	0 of 1350	1 of 745	0.357
Novel_16	78383106	Exon 2, A142T (possibly)	G/A	1 of 1349	0 of 746	1.000
Novel_17	78382899	Exon 2, E241Q (probably)	G/C	1 of 1357	0 of 752	1.000
Novel_18	78382882	Exon 2, F246F	T/C	0 of 1358	1 of 751	0.356
rs35283702	78382791	Exon 2, G277R (probably)	G/A	15 of 1343	7 of 745	0.825
Novel_19	78382759	Exon 2, H287Q (possibly)	C/G	1 of 1357	0 of 752	1.000
Novel_20	78382489	Exon 2, F377L (benign)	C/G	0 of 1374	1 of 763	0.359
rs34687659	78382445	Exon 2, Q392R (possibly)	A/G	0 of 1374	1 of 763	0.359
Novel_21	78382401	Exon 2, A407T (probably)	G/A	1 of 1373	0 of 764	1.000
Novel_22	78382375	Exon 2, P415P	G/A	2 of 1372	2 of 762	0.622
Novel_23	78382326	Exon 2, D432H (possibly)	G/C	2 of 1372	0 of 764	0.540
Novel_24	78382188	Exon 2, V478I (benign)	G/A	0 of 1374	1 of 763	0.359
Novel_25	78382160	Intron 2	C/A	1 of 1373	0 of 764	1.000
Novel_26	78382155	Intron 2	A/C	1 of 1373	0 of 764	1.000
Novel_27	78382047	Intron 2, 5 bp from exon 3	T/C	1 of 1373	0 of 764	1.000
rs35792712	78382015	Exon 3, P488P	T/G	0 of 1374	1 of 763	0.359
Novel_28	78381714	Exon 3, G589R (benign)	G/C	1 of 1365	0 of 766	1.000
Novel_29	78381508	Exon 3, A657A	G/A	1 of 1365	0 of 766	1.000
Novel_30	78381034	Exon 3, 3' UTR	G/A	1 of 1357	0 of 756	1.000
Novel_31	78380851	Exon 3, 3' UTR	A/G	1 of 1356	2 of 752	0.290
Novel_32	78380743	Exon 3, 3' UTR	A/G	2 of 1364	0 of 754	0.541
Novel_33	78380697	Exon 3, 3' UTR	T/G	1 of 1365	0 of 754	1.000
Novel_34	78380590	3' Downstream	T/C	2 of 1318	1 of 751	1.000
Novel_35	78380548	3' Downstream	G/A	17 of 1305	9 of 743	1.000

Rare variants are defined as those with minor allele frequency (MAF) < 2% in controls. SNPs Novel_1 through Novel_8 are additionally named by the nucleotide position relative to the translation start site with respect to the cDNA reference. Position is on Chr17 (hg18). UTR, untranslated region. PolyPhen2 impact given as benign, possibly damaging, or probably damaging. Alleles are given as major/minor on the (-) strand. F_case, MAF in cases; F_control, MAF in controls.
calculation of the false discovery rate (q = 0.0077 and q = 0.037, respectively).

Due to the well-recognized difficulty in assessing the significance of rare variants on a variant-by-variant basis due to power limitations [14], we utilized a weighted sum statistic [13] to evaluate functional groups of rare variants for psoriasis association. We tested the following rare variant groups: 5’ regulatory variants (promoter and 5’ UTR), all coding variants, non-synonymous variants, predicted deleterious non-synonymous variants, 3’ UTR variants, and all rare variants. We found that only the 5’ regulatory variants trended towards a significant association with psoriasis (10 variants in cases, 1 variant in controls, unadjusted p = 0.041, Bonferroni threshold p = 0.008, Table 4). The putative association of the rare 5’ regulatory variants with psoriasis was not secondary to their occurrence on a risk haplotype background. Of the 10 patients with rare 5’ regulatory variants, only 1 patient was heterozygous for the risk haplotype CCACCCG(-), while 7 patients were actually heterozygous for the protective haplotype CCACCCGT.

Alternative splicing of ZNF750 mRNA

In order to characterize the ZNF750 promoter and transcripts, the size of ZNF750 mRNA was verified using two methods: reverse transcriptase PCR (RT-PCR) and 5’ Rapid Amplification of cDNA Ends (5’ RACE). Using RT-PCR, the predicted cDNA segments were amplified from mRNA of normal individual skin biopsies. Comparison of the cDNA sequences to NCBI and UCSC databases indicated that there are no alternative splicing variants. 5’ Rapid Amplification of cDNA Ends performed for ZNF750 in primary keratinocytes produced four 5’ RACE PCR products that were cloned and sequenced (data not shown). Alignments of the sequences of the 5’ RACE PCR products with human genomic DNA and known mRNA sequences indicated that only two of the four products were specific to ZNF750. The short product represents the mRNA isoform A as in Refseq gi13375990; NM_024702.1. The long product, previously demonstrated in cDNA from tongue tumor tissue [GenBank:DA436414][15] represents the mRNA isoform B and includes an additional 500 bp of sequence upstream to exon 1 of mRNA isoform A (Figure 1). The expression levels of the 5’-RACE isoforms were studied by RT-PCR with forward primers specific to isoform A and isoform B, respectively, and a reverse primer specific to exon 2. RT-PCR analyses of several cell lines (including primary keratinocytes) showed that the most abundant variant of ZNF750 transcript corresponds to isoform A. Analysis of all 3 reading frames indicated that isoform A and B encode an identical protein: the addition of 500 bp upstream in isoform B compared to isoform A does not result in a different protein. Further investigation of the protein size using Western Blot demonstrated that ZNF750 codes for a single protein of 100 KDa (data not shown). Our data indicate that mRNA isoform A of ZNF750 is the predominant form of ZNF750 expressed.

Table 3 Haplotype association testing between cases and controls

Haplotype	Hap Freq	F_case	F_control	P Value	Emp P-Val	Odds Ratio [95% CI]
CCACCCGT	0.374	0.354	0.41	0.0106	0.0311	0.79 [0.66-0.94]
CCACCTAC(-)	0.246	0.253	0.234	0.3321	0.9359	-
ACACCTAC(-)	0.137	0.138	0.136	0.9158	1.0000	-
CTGCTC(-)	0.089	0.091	0.085	0.6426	0.9995	-
CTGTCTA(-)	0.089	0.091	0.086	0.7198	0.9997	-
ACACTA(-)	0.02	0.02	0.02	0.9666	1.0000	-
CCACCCCG(-)	0.019	0.026	0.006	0.0011	0.0024	3.70 [1.45-9.46]

The eight marker haplotype, as ordered in the table, consists of: rs3744165, rs12450046, rs8074277, rs35653278, rs34188981, rs12948179, rs12938126, rs35156590. Hap Freq, overall haplotype frequency; F_case, haplotype frequency in cases; F_control, haplotype frequency in controls; Emp P-Val, empiric p-value calculated by permutation testing.

Table 4 Groupwise association testing of ZNF750 functional groups with psoriasis

Rare Variant Group	Total Variants, Cases (n = 716)	Total Variants, Controls (n = 397)	P-value, Weighted Sum Statistic
5’ Regulatory (Promoter + 5’ UTR)	10	1	0.041
All Coding	30	19	0.575
- Non-synonymous	25	15	0.560
- Predicted deleterious	24	11	0.314
3’ UTR	5	2	0.351
All Rare	67	32	0.192
in keratinocytes and that the 5’ region DNA variants identified in this study lie within the promoter region and 5’ UTR of isoform A.

Functional evaluation of ZNF750 5’ Regulatory Variants
To assess whether the ZNF750 5’ regulatory variants affect ZNF750 expression levels, we conducted a promoter function assay in human primary keratinocytes. Seven rare variants in the 5’ regulatory region of ZNF750 were seen in the psoriasis cases and none of these were present in the controls (Table 2). All of these variants were singletons with the exception of c.-233C>T, which was present in 4 unrelated psoriasis cases. None of these were present in individuals of European descent in the 1000 genomes database. We constructed ZNF750 5’ regulatory region fragments with 4 of the variants cloned into individual luciferase reporter assay constructs. The 4 selected variants are located in either the ZNF750 promoter region (c.-458G>A) or ZNF750 untranslated first exon (c.-261G>A, c.-233C>T, c.-232G>A) (Figure 1). Each construct was transfected into human primary keratinocytes which are known to highly express ZNF750 [11]. As an external control, we also tested the activity of the c.-625A>C variant which was shown to reduce promoter activity in the Taiwanese familial psoriasis study [12]. Interestingly, human primary keratinocytes that have been stimulated with phorbol 12-myristate 13-acetate (PMA) have about 10 fold higher ZNF750 promoter activity than unstimulated keratinocytes. Therefore, we tested the effects of the 4 variants on promoter activity after stimulation of human primary keratinocytes with PMA. We found that all 4 of the variants, as well as the external control, showed a significant reduction in promoter activity of 35-55% compared to the wild type promoter (all p < 0.001, Figure 2B).

Clinical Phenotype of Psoriasis Patients with 5’ Regulatory Variants
To assess whether psoriasis patients with 5’ regulatory variants have a similar clinical phenotype, we clinically characterized the psoriasis patients with the ZNF750 5’ variants (Table 5). Of the 7 affected patients with detailed clinical information available, 5 reported involvement of the scalp or inverse skin folds, and a negative history of psoriatic arthritis, similar to the sebo-psoriasis, arthritis-negative phenotype previously described in the Israeli-Moroccan family with ZNF750 mutation [11].

Discussion
To our knowledge, this is the first large resequencing study of the ZNF750 gene in psoriasis. As ZNF750 resides in the PSORS2 region [16-19] and has been previously reported to cause familial psoriasis forms of psoriasis [11,12], we were motivated to evaluate ZNF750 in a large cohort of cases and controls. We sequenced a total of 1,113 individuals (716 Caucasian psoriasis cases and 397 ethnically matched healthy controls) in the
promoter and exonic regions of ZNF750 and identified 47 polymorphisms, of which 35 were novel. According to estimates of Ionita-Laza et al [20], our study captured greater than 99% of the variants with frequency greater than 0.001 in the CEPH population. However, for perspective, we would have needed to sequence 3,521 individuals to capture 100% of the variants with frequency greater than 0.001.

We conducted an association analysis of our identified variants and found no evidence that individual common polymorphisms (MAF > 2%) were associated with disease. Similarly, imputation of HapMap3/1000 Genomes SNPs using psoriasis GWAS data [7] in the interval 200 kb upstream to 200 kb downstream of ZNF750 did not find any SNPs with association p-values less than 1.0×10^{-3} (data not shown), suggesting that no common ZNF750 SNPs are causal for psoriasis. However, our finding that two ZNF750 haplotypes were significantly associated with psoriasis suggests the possibility that other SNPs on 17q in LD with these haplotypes could possibly be associated with psoriasis. We also detected several rare, non-synonymous, potentially deleterious (PolyPhen2) coding variants in ZNF750 that were only present in cases and not in controls, including A142T, E241Q, H287Q, and A407T (Table 2). However, given that each of these variants was only detected in a single

Figure 2 Luciferase activity of ZNF750 regulatory region in human primary keratinocytes. Bar chart representing luciferase activity of pGL3 constructs containing ZNF750 promoter and 5' UTR variants relative to wild type promoter (WT). Four variants (c.-458G>A, c.-261G>A, c.-233C>T, c.-232G>A) were detected in psoriasis patients in this study, one variant (c.-625A>C) was detected in a psoriasis family in previous study, and a pGL3 basic (empty vector) was used as a negative control. Constructs were co-transfected with Renilla luciferase into primary human keratinocytes and then treated for 24 h with culture medium (A) or culture medium supplemented with 250 ng/ml PMA (B). After 48 h, cells were assayed for luciferase activity. A reduction in luciferase activity is seen for all 4 promoter and 5' UTR variants as well as the c.-625A>C external control. The results represent the means ± SD of three independent experiments. *** p < 0.001 compared to WT by t-test.
case and absent additional functional data, it is difficult determine whether these variants were truly deleterious. Therefore, in order to more rigorously evaluate the possible association of rare variants in ZNF750 with psoriasis, we used the weighted-sum approach of Madsen and Browning [13] to evaluate functional groups of rare variants for disease association. This method has been found to be robust compared to other rare variant analysis approaches such as CAST, CMC, Variable Threshold, and Li-Leal [13,21]. We found that variants in the promoter or 5’ UTR of ZNF750 were enriched in the cases compared to controls (10 variants vs 1 variant, p = 0.041). Interestingly, the 1 variant found in a control but in none of the cases was c.-597C>T, which was previously reported to be present in 1 of 85 sporadic psoriasis patients screened and 0 of 188 normal controls [12]. In the same study, the promoter variant c.-625A>C was linked to a multigenerational Taiwanese psoriasis family and was reported to reduce activity by 42% [12]. We therefore investigated the functional relevance of only 10% [22]. The existence of rare variants that influence psoriasis risk but which have moderate, non-Mendelian effect sizes is certainly possible but difficult to prove. Alternatively, it is possible that there is no true association of 5’ regulatory variants in ZNF750 with psoriasis and that the nominal association observed is the result of type I error. In this case, the functional effects of these variants on ZNF750 promoter activity demonstrated here may not translate into biological relevance for psoriasis. However, of the 7 patients identified in this study with ZNF750 5’ regulatory variants and for whom detailed clinical descriptions were available, 5 reported scalp psoriasis and 3 reported inverse psoriasis (axillae, genitalia, nails), which is reminiscent of the sebo-psoriasis phenotype in the previously reported Morrocan family with a frame shift ZNF750 mutation [11]. Variants in the promoter and 5’ UTR of ZNF750 which decrease ZNF750 expression might therefore be associated with a seborrhoeic form of psoriasis.

ZNF750 encodes a 723 amino acid protein that contains two nuclear localization sites (NLS), and two histidines and two cysteines that might serve as zinc binding domains. ZNF750 is a putative member of the C2H2

Table 5 Clinical characteristics of subjects with rare ZNF750 variants in the 5’ regulatory region

ZNF750 Variant	# Pso Cases	Age: Study Entry (Onset) Gender	PsA	Family History of Psoriasis	Description
c.-458G>A	1	NA	Female Yes Sister	Confirmed psoriasis, no other information available	
c.-261G>A	1	57 (35)	Male No Mother, brother, daughter, niece, nephew	Confirmed psoriasis	
c.-233C>T	4	41 (25)	Female No Mother, sister	Plaque and inverse psoriasis affecting scalp, trunk, extremities, breast folds, axillae, and genitails.	
c.-232G>A	1	43 (30)	Male No Maternal cousin	Moderate plaque and inverse psoriasis affecting scalp, elbows, legs, axillae, genitalia, and nails	
c.-45G>C	1	30 (5)	Female No Father	Moderate guttate (originally plaque) and inverse psoriasis affecting scalp, arms, legs, trunk, axillae, and genitalia	
c.-36A>G	1	40 (25)	Female No Sister	Moderate psoriasis affecting trunk, legs	
c.-32G>A	1	65 (NA)	Male No NA	Confirmed psoriasis	

All psoriasis cases were of Caucasian ethnicity. PsA, psoriatic arthritis diagnosed by rheumatologist. BSA, affected body surface area. NA, information not available.
subclass of zinc finger transcription factors. ZNF750 is highly expressed in keratinocytes, which are the major skin cell type affected both in seborrheic dermatitis and in psoriasis. In addition, human primary keratinocytes that have been differentiated with Ca²⁺ have increased ZNF750 promoter activity at levels similar to PMA stimulated cells (unpublished data), suggesting ZNF750 may serve an important function in keratinocyte differentiation or immune response in the skin. As keratinocytes in psoriasis or seborrheic dermatitis secrete factors that recruit cells of the immune system and help maintain the inflammatory response [23,24], it is possible that an insufficient level of ZNF750 could lead to a downstream effect that fails to repress a stimulated immune response in psoriasis or seborrheic dermatitis.

Conclusions

In summary, we have performed the first re-sequencing study of the candidate psoriasis gene ZNF750 in a large case-control population. Although no individual variants were found to associate with psoriasis, two ZNF750 haplotypes showed a significant association. We also observed a nominal association between rare variants in the 5′ regulatory region of ZNF750 and psoriasis. Collectively, these rare 5′ regulatory variants were seen in 10 of 716 (1.4%) of the psoriasis population surveyed. Functional assays demonstrated that 4 of these variants decreased ZNF750 promoter activity in accordance with previous reports in psoriasis [12] and psoriasiform dermatitis [11]. We found that these variants did not segregate with the psoriasis phenotype within families, suggesting that they are modifier variants rather than causal for psoriasis. Further studies are warranted to determine whether these rare, non-coding variants could play an influencing role in disease expression.

Acknowledgements and Funding

We thank Anne Bowcock for providing psoriasis samples, Olivia Lai for her technical assistance, and Dennis Oh and Susana Ortiz-Urda for providing primary keratinocytes for culture. WL was supported by grants from the Dermatology Foundation and National Institute of Arthritis, Musculoskeletal and Skin Diseases (K08AR057763). IC and OSB were supported in part by a grant from the Israel Science Foundation (ISF). The funding sources had no role in the study design, collection, analysis, and interpretation of data, in the writing of the manuscript, or in the decision to submit the manuscript for publication.

Author details

1. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA. 2. Institute for Human Genetics, University of California, San Francisco, California, USA. 3. The Morris Kahn Laboratory of Human Genetics, NBN, Ben-Curion University, Beer-Sheva, Israel. 4. Department of Dermatology, University of California, San Francisco, California, USA. 5. Cardiovascular Research Institute, University of California, San Francisco, California, USA.

Authors’ contributions

RYB conceived the study, performed and supervised the functional work, and helped write the manuscript. GH performed the luciferase assays and helped write the manuscript. IC performed functional characterization of the promoter region. AP performed the sequencing. HC performed statistical analysis. EL performed statistical analysis. PK provided logistical and financial support. OSB supervised some of the functional work and provided financial support. WL designed the study, contributed cases and controls, supervised the sequencing and 14 analysis, helped write the manuscript, and provided financial support. All authors have read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 8 June 2011 **Accepted:** 20 December 2011

Published: 20 December 2011

References

1. Kurdi SK, Gelfand JM: The prevalence of previously diagnosed and undiagnosed psoriasis in US adults: results from NHANES 2003-2004. *J Am Acad Dermatol* 2009, 60(2):218-224.

2. Capon F, Bijlsma MJ, Wolf N, Quaranta M, Hume M, Allen M, Timms K, Abelevich V, Gutin A, Smith R, Warren RB, Young HS, Worthington J, Burden AD, Griffiths CE, Hayday A, Nestle FO, Reis A, Lanchbury J, Barker JN, Trembath RC. Identification of ZNF313/RNF114 as a novel psoriasis susceptibility gene. *Hum Mol Genet* 2008, 17(13):1938-1945.

3. de Ge R, Rivera-Munoz E, Zeeuwen PL, Robarge J, Liao W, Danhauzen ER, Giardina E, Stuart PE, Nair R, Helms C, Escaramis G, Ballana E, Martin-Esquer A, de Heijer M, Kastemag M, Joosten I, Eichler EE, Laczko C, Pujol RM, Arndt L, Abecasis G, Elder JT, Novelli G, Armour JA, Kwok PY, Bowcock A, Schalkwijk J, Estivill X. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. *Nat Genet* 2009, 41(2):211-215.

4. Ellingham EA, Ellingham DS, Stuart PE, Nair RP, Debrus S, Raeslon J, Belouchi M, Fourrier H, Reinhard C, Ding J, Li Y, Tejasvi T, Gudjonsson J, StoI SW, Voorhees JJ, Lambert S, Weidinger S, Eberlein B, Kunz M, Rahman P, Gladman DD, Gieger C, Wichmann HE, Katsen TH, Mayr G, Albrecht M, Kabelitz D, Mrowietz U, Abecasis GR, Elder JT, Schreiber S, Wechtenhual M, Franke A. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. *Nat Genet* 2010, 42(11):991-995.

5. Hume M, Uebe S, Eksic AR, Bowes J, Giardina E, Korendowycz E, Junebald K, Apel M, McManus R, Ho P, Bruce IN, Ryan AW, Behrens M, Lascorz J, Bohm B, Traupe H, Lohmann J, Gieger C, Wichmann HE, Herold C, Steffen M, Klareskug L, Winkler TF, Fitzgerald O, Aleman GM, McHugh NJ, Novelli G, Burkhardt H, Barton A, Reis A. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis. *Nat Genet* 2010, 42(11):996-999.

6. Liu Y, Helms C, Liao W, Zaba LC, Duan S, Gardner J, Wise C, Miner A, McBain E, Fournier H, Reinhard C, Ding J, Li Y, Tejasvi T, Feng B, Ruther A, Schreiber S, Wechenthal M, Gladman D, Rahman P, Schrodi SJ, Prahalad S, Guthien SL, Fischer J, Liao W, Kwok PY, Menter A, Krueger J, Barton A, Saccone NL, Bowcock AM. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. *Am J Hum Genet* 2009, 85(3):1000-041.

7. Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, Gudjonsson JE, Li Y, Tejasvi T, Feng B, Ruther A, Schreiber S, Wechenthal M, Gladman D, Rahman P, Schrodi SJ, Prahalad S, Guthrie SL, Fischer J, Liao W, Kwok PY, Menter A, Lathrop GM, Wise CA, Begovich AB, Voorhees JJ, Elder JT, Krueger GG, Bowcock AM, Abecasis GR. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. *Nat Genet* 2009, 41(2):199-204.

8. Strange A, Capon F, Spencer CC, Knight J, Weale ME, Allen MH, Barton A, Band G, Bellenguez C, Bergboer JQ, Blackwell JM, Bramon E, Bumpstead SJ, Casas JP, Cork MJ, Corvin A, Deloukas P, Dittley A, Duncanson A, Edkins S, Estivill X, Fitzgerald O, Freeman C, Giardina E, Gray E, Hofer A, Hume M, Hunt SE, Irvine AD, Jankowiak J, Kirby B, Langford C, Lascorz J, Leman J, Leslie S, Mallbris L, Marks KS, Mathew CG, McLean WH, McManus R, Mousner R, Moutsianas L, Naluai AT, Nestle FO, Onoufriadis A, Palmer CN, Perricone C, Pirinen M, Plomin R, Potter SC, Pujol RM, Rautanen A, Rivera-Munoz E, Ryan AW, Salmo-Horro W, Samuelsson L, Savicier SJ, Schalkwijk J, Smith CH, Stahl M, Su Z, Taa-Ahnini H, Traupe H, Voovanathan AC, Warren RB, Weger W, Wolf K, Wood N, Worthington J, Young HS, Zeeuwen PL, Hayday A, Burden AD, Griffiths CE, Kere J, Reis A, McVean G, Evans DM, Brown MA, Barker JN, Peltonen L, Donnelly P, Trembath RC. A genome-wide association study identifies new psoriasis
susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 2010, 42(11):985-990.
9. Stuart PE, Nair RP, Ellinghaus E, Ding J, Tejasvi T, Gudjonsson JE, Li Y, Weidinger S, Eberlein B, Gieger C, Wichmann HE, Kurz M, Ike R, Krueger GG, Bowcock AM, Mrowietz U, Lim HW, Voorhees JJ, Abecasis GR, Weirichenthal M, Franke A, Rahman P, Gladman DD, Elder JT. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat Genet 2010, 42(11):1000-1004.
10. Chen H, Poon A, Yeung C, Helms C, Pons J, Bowcock AM, Kwok P, Liao W. A genetic risk score combining ten psoriasis risk loci improves disease prediction. PLoS One 2011, 6(4):e19454.
11. Birnbaum RY, Zulunov A, Hallek-Halevy D, Cagnano E, Finer G, Ofrir R, Geiger D, Silberstein E, Feferman Y, Birk OS. Seborrhea-like dermatitis with psoriasisform elements caused by a mutation in ZNF750, encoding a putative C2H2 zinc finger protein. Nat Genet 2006, 38(7):749-751.
12. Yang CF, Hwu WL, Yang LC, Chung WH, Chen YH, Hung CF, Chen HC, Tsai PJ, Fann CS, Liao F, Chen YT. A promoter sequence variant of ZNF750 is linked with familial psoriasis. J Invest Dermatol 2008, 128(7):1662-1668.
13. Madsen BE, Browning SR. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 2009, 5(2):e1000384.
14. Bansal V, Libiger O, Torkamani A, Schork NJ. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 2010, 11(11):773-785.
15. Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsurtani K, Nakamura H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Noyama Y, Totsuka K, Kaneda K, Yokoi T, Kondo H, Waga Kuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S. Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res 2006, 16(1):55-65.
16. Enlund F, Samuelsson L, Enerback C, Inerot A, Wahlstrom J, Yhr M, Torinsson A, Martinsson T, Swanbeck G. Analysis of three suggested psoriasis susceptibility loci in a large Swedish set of families: confirmation of linkage to chromosome 6p (HLA region), and to 17q, but not to 4q. Hum Hered 1999, 49(1):2-8.
17. Nair RP, Henseler T, Jenisch S, Stuart P, Bichakjian CK, Lenk W, Westphal E, Guo SW, Christophers E, Voorhees JJ, Elder JT. Evidence for two psoriasis susceptibility loci (HLA and 17a) and two novel candidate regions (16q and 20p) by genome-wide scan. Hum Mol Genet 1997, 6(8):1349-1356.
18. Tomfohrde J, Silverman A, Barnes R, Fernandez-Vina MA, Young M, Lory D, Morris L, Wuepper KD, Staatz P, Menter A, et al. Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 1994, 264(5162):1141-1145.
19. Zheng J, Jin S, Shi R. Confirmation of PSORS psoriasis susceptibility loci in a Chinese population. Arch Dermatol Res 2003, 295(1):14-18.
20. Ionita-Laza I, Lange CNML. Estimating the number of unseen variants in the human genome. Proc Natl Acad Sci USA 2009, 106(13):5008-5013.
21. Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho-Melander M, Kathiresan S, Purcell SM, Roeder K, Daly MJ. Testing for an unusual distribution of rare variants. PLoS Genet 2011, 7(3):e1001322.
22. Elder JT, Nair RP, Guo SW, Henseler T, Christophers E, Voorhees JJ. The genetics of psoriasis. Arch Dermatol 1994, 130(2):216-224.
23. Albanesi C, De Pira D, Grolioni G. Resident skin cells in psoriasis: a special look at the pathogenetic functions of keratinocytes. Clin Dermatol 2007, 25(6):581-588.
24. Gupta AK, Madzia SE, Batta R. Etiology and management of Seborrhoeic dermatitis. Dermatology 2004, 208(2):69-93.