Maximum size intersecting families of bounded minimum positive co-degree

József Balogh* Nathan Lemons† Cory Palmer‡

May 12, 2020

Abstract

Let H be an r-uniform hypergraph. The minimum positive co-degree of H, denoted $\delta_{r-1}^+(H)$, is the minimum k such that if S is an $(r-1)$-set contained in a hyperedge of H, then S is contained in at least k distinct hyperedges of H. We determine the maximum possible size of an intersecting r-uniform n-vertex hypergraph with minimum positive co-degree $\delta_{r-1}^+(H) \geq k$ and characterize the unique hypergraph attaining this maximum, for n sufficiently large. Our proof is based on the delta-system method.

1 Introduction

A hypergraph \mathcal{H} is intersecting if for every pair of hyperedges $h, h' \in E(\mathcal{H})$ we have $h \cap h' \neq \emptyset$. The celebrated theorem of Erdős, Ko and Rado [3] gives that for $n \geq 2r$, the maximum size of an intersecting r-uniform n-vertex hypergraph is $\binom{n-1}{r-1}$. The Erdős-Ko-Rado theorem is a cornerstone of extremal combinatorics and has many proofs, extensions and generalizations. See the excellent survey of Frankl and Tokushige [10] for a history of extremal problems for intersecting hypergraphs.

The degree of a set of vertices S in a hypergraph \mathcal{H} is the number of hyperedges containing S, i.e., $|\{h \in E(\mathcal{H}) \mid S \subseteq h\}|$. Denote by $\delta_S(\mathcal{H})$ the minimum degree of an s-element subset of the vertices of \mathcal{H}. In this way, $\delta_1(\mathcal{H})$ is the standard minimum degree of a vertex in \mathcal{H}.

Huang and Zhao [14] considered a minimum degree version of the Erdős-Ko-Rado theorem. In particular, they proved that for $n \geq 2r + 1$, if \mathcal{H} is an intersecting r-uniform n-vertex hypergraph, then \mathcal{H} has minimum degree $\delta_1(\mathcal{H}) \leq \binom{n-2}{r-2}$. The Huang-Zhao proof uses the linear algebra method and later a combinatorial proof was given by Frankl and Tokushige [9] for $n \geq 3k$. Kupavskii [16] gave an extension of this result and showed that
for \(t < r \) and \(n \geq 2k + 2t/(1 - t/k) \), an intersecting \(r \)-uniform \(n \)-vertex hypergraph \(\mathcal{H} \) satisfies \(\delta_{t}(\mathcal{H}) \leq \binom{n-t-1}{r-1} \).

In the more general hypergraph setting, Mubayi and Zhao \[17\] introduced the notion of co-degree Turán numbers, i.e., the maximum possible value of \(\delta_{r-1}(\mathcal{H}) \) among all \(r \)-uniform \(n \)-vertex hypergraphs \(\mathcal{H} \) not containing a specified subhypergraph \(\mathcal{F} \). In their paper they give several results that show that the co-degree extremal problem behaves differently from the classical Turán problem.

Motivated by these degree versions of Erdős-Ko-Rado and co-degree Turán numbers we propose the following hypergraph degree condition.

Definition 1. Let \(\mathcal{H} \) be an \(r \)-uniform hypergraph. The minimum positive co-degree of \(\mathcal{H} \), denoted \(\delta^{+}_{r-1}(\mathcal{H}) \), is the minimum \(k \) such that if \(S \) is an \((r-1)\)-set contained in a hyperedge of \(\mathcal{H} \), then \(S \) is contained in at least \(k \) distinct hyperedges of \(\mathcal{H} \).

As an example, let us examine hypergraphs that contain no \(F_5 = \{abc, abd, cde\} \) to compare the co-degree and positive co-degree settings. Frankl and Füredi \[8\] (see \[15\] for a strengthening) showed that the complete balanced tripartite 3-uniform hypergraph has the maximum number of hyperedges among all 3-uniform \(n \)-vertex \(F_5 \)-free hypergraphs, for \(n \) sufficiently large. This construction has minimum co-degree 0 and it is easy to see that minimum co-degree at least 2 guarantees the existence of an \(F_5 \). On the other hand, the balanced tripartite hypergraph has minimum positive co-degree \(n/3 \) and it can be shown that minimum positive co-degree greater than \(n/3 \) implies the existence of a \(F_5 \).

Note that in problems where we can suppose that our graph does not contain isolated vertices, the positive co-degree in a graph is equal to the minimum degree of a vertex. This suggests positive co-degree as a reasonable notion of “minimum degree” in a hypergraph.

In this paper we are interested in determining the maximum size of an intersecting \(r \)-uniform \(n \)-vertex hypergraph with positive co-degree at least \(k \). The condition \(k \geq 1 \) is always satisfied, so in this case the maximum is \(\binom{n-1}{r-1} \) as given by the Erdős-Ko-Rado theorem. An easy argument shows that in an intersecting hypergraph, the uniformity is always at least the minimum positive co-degree, i.e., \(r \geq k \); see Proposition \[4\].

We will prove that the maximum-size intersecting hypergraph with minimum positive co-degree \(k \) and \(n \) sufficiently large is the following hypergraph.

Definition 2. Fix integers \(r \geq k \) and a set \(X \) of \(2k-1 \) vertices. The \(r \)-uniform hypergraph consisting of all hyperedges containing at least \(k \) vertices of \(X \) is a \(k \)-kernel system.

Clearly a \(k \)-kernel system is intersecting. Observe that the number of hyperedges in an \(r \)-uniform \(n \)-vertex \(k \)-kernel system \(\mathcal{H} \) is

\[
|E(\mathcal{H})| = \sum_{i=k}^{\max(r,2k-1)} \binom{2k-1}{i} \binom{n-2k+1}{r-i} \geq \binom{2k-1}{k} \binom{n-2k+1}{r-k} = \Omega(n^{r-k}).
\]

Note that a 1-kernel system is the hypergraph consisting of all hyperedges containing a fixed vertex \(x \), i.e., the maximal hypergraph in the Erdős-Ko-Rado theorem. Interestingly, \(k \)-kernel systems appear as solutions to maximum degree versions of the Erdős-Ko-Rado theorem. Let us give two examples. First, as a special case of a more general theorem of Frankl \[7\] implies that if \(\mathcal{H} \) is a maximum-size intersecting \(r \)-uniform \(n \)-vertex hypergraph with maximum degree at most \(2\binom{n-3}{r-2} + \binom{n-3}{r-3} \), then \(\mathcal{H} \) is a 2-kernel system, provided \(n \)
is large enough. Second, Erdős, Rothschild and Szemerédi (see [2]) posed the following question: determine the maximum size of an intersecting \(r \)-uniform \(n \)-vertex hypergraph \(H \) such that each vertex contained in at most \(c|E(H)| \) hyperedges for \(r \geq 3 \) and \(0 < c < 1 \). They proved when \(c = 2/3 \) (and \(n \) large), that a 2-kernel system is the unique hypergraph attaining this maximum. Frankl [5] showed that for \(2/3 \leq c < 1 \) and \(n \) large enough, \(H \) has no more hyperedges than a 2-kernel system. For \(3/5 < c < 2/3 \) and \(n \) large enough, Füredi [5] showed that the 3-kernel system is one of six non-isomorphic hypergraphs attaining this maximum. In the case when \(1/2 < c \leq 3/5 \) and \(n \) large enough, Frankl [5] showed that \(H \) has no more hyperedges than a 3-kernel system, although the unique hypergraph attaining this maximum is not isomorphic to a 3-kernel system.

The main result of this paper is as follows:

Theorem 3. Let \(H \) be an intersecting \(r \)-uniform \(n \)-vertex hypergraph with minimum positive co-degree \(\delta^+_{r-1}(H) \geq k \) where \(1 \leq k \leq r \). If \(H \) has the maximum number of hyperedges, then for \(n \) large enough \(H \) is a \(k \)-kernel system.

Theorem [3] holds when \(n \) is at least \(\Omega(r^k) \). In Section [5] we give two results that suggest that Theorem [3] holds for \(n \) at least \(\Omega(r^{k+1}) \).

As an open question, it would be interesting to determine the range of \(n \) as a function of \(r \) and \(k \) where our results hold. Also, we only considered the positive co-degree of \((r-1) \)-sets. Similarly, we can define \(\delta^+_k(H) \) to be the minimum \(k \) such that if \(S \) is an \(s \)-set contained in a hyperedge of \(H \), then \(S \) is contained in at least \(k \) distinct hyperedges. There may be interesting questions to be answered under this more general condition.

2 Proof of Theorem 3

First, let us observe that the uniformity of an intersecting hypergraph is always at least the minimum positive co-degree.

Proposition 4. If \(H \) is an intersecting \(r \)-uniform \(n \)-vertex hypergraph with minimum positive co-degree \(\delta^+_{r-1}(H) \geq k \), then \(r \geq k \).

Proof. Assume, for the sake of a contradiction, that \(k > r \). Let \(h = \{x_1, x_2, \ldots, x_r\} \) be a hyperedge of \(H \). The \((r-1)\)-set \(h \setminus x_1 \) has co-degree at least \(k \), so there is a vertex \(y_1 \notin h \) such that \(h \setminus x_1 \cup \{y_1\} \) is a hyperedge of \(H \). Similarly, the \((r-1)\)-set \(h \setminus \{x_1, x_2\} \cup \{y_1\} \) has co-degree at least \(k \), so there is a vertex \(y_2 \notin h \) such that \(h \setminus \{x_1, x_2\} \cup \{y_1, y_2\} \) is a hyperedge of \(H \). As long as \(k > r \) we can repeat this process to obtain a hyperedge \(h \setminus \{x_1, \ldots, x_r\} \cup \{y_1, \ldots, y_r\} = \{y_1, \ldots, y_r\} \) that is in \(H \). Now as \(H \) and \(\{y_1, \ldots, y_r\} \) are disjoint we have a contradiction. \(\square \)

An \(r \)-uniform hypergraph \(S \) is a **sunflower** if every pairwise intersection of the hyperedges is the same set \(Y \) called the core of the sunflower. We call the sets \(h \setminus Y \) for \(h \in E(S) \) the petals of the sunflower \(S \). Note that the petals are pairwise disjoint. For a sunflower \(S \) let \(c(S) \) denote the size of the core of \(S \).

Lemma 5 (Sunflower Lemma, Erdős and Rado [4]). **Fix positive integers** \(r \geq 3 \) and \(C \). If \(G \) is an \(r \)-uniform hypergraph with

\[|E(G)| \geq r!(C-1)^r, \]

3
then \(\mathcal{G} \) contains a sunflower with \(C \) petals.

Let \(f(r, C) \) denote the minimum integer such that an \(r \)-uniform hypergraph with \(f(r, C) \) hyperedges contains a sunflower with \(C \) petals. The determination of \(f(r, C) \) is a well-known open problem in combinatorics. A recent breakthrough in [1] gave a bound on \(f(r, C) \) of about \((\log r)^{r^{1+o(1)}} \).

In general we cannot force a sunflower to have a core of a specified size unless we increase the number of hyperedges in the host hypergraph.

Lemma 6. Fix integers \(r \geq 3 \) and \(C \geq 1 \) and let \(n \) be large enough. If \(\mathcal{G} \) is an \(r \)-uniform \(n \)-vertex hypergraph with

\[
|E(\mathcal{G})| \geq 2^{r^{r-k}} \binom{n-k-1}{r-k-1} f(r, Cr^{r-k}),
\]

then \(\mathcal{G} \) contains a sunflower with \(C \) petals and core of size at most \(k \).

Observe that Lemma 6 is sharp in the order of magnitude of \(n \). Indeed, the \(r \)-uniform \(n \)-vertex hypergraph consisting of all hyperedges containing a fixed set \(Y \) of \(k+1 \) vertices contains \(\binom{n-k-1}{r-k-1} \) hyperedges, but no sunflower with a core of size at most \(k \) as any two hyperedges intersect in at least \(k+1 \) vertices.

Proof. For the sake of a contradiction, suppose that \(\mathcal{G} \) contains no sunflower with \(C \) petals and core of size at most \(k \).

Iteratively remove from \(\mathcal{G} \) a sunflower \(\mathcal{S} \) with exactly \(Cr^{c(S)-k} \) petals such that at each step we choose a sunflower with minimum available core size \(c(S) \). Let \(p \) be the number of steps in this sunflower removal procedure. Note that \(p \) grows with \(n \) as at each step we remove at most \(Cr^{r-k} \) hyperedges from \(\mathcal{G} \) and we only need constant number of hyperedges to guarantee the existence of a sunflower with \(Cr^{c(S)-k} \) petals. In particular, we have

\[
p \geq \frac{|E(\mathcal{G})| - f(r, Cr^{r-k})}{Cr^{r-k}} \geq \frac{|E(\mathcal{G})|}{2Cr^{r-k}}
\]

for \(n \) large enough.

The core of each removed sunflower is of size at least \(k+1 \) and at most \(r-1 \). Therefore, there is some integer \(s \) such that there are at least \(p/r \) cores of size \(s \) among the removed sunflowers. Some of these cores may be identical. Let us compute the maximum multiplicity of a core \(Y \). There are at most \(\binom{n-|Y|}{r-|Y|} \) hyperedges containing \(Y \) and each removed sunflower with core \(Y \) has exactly \(Cr^{|Y|-k} \) hyperedges. Therefore, the maximum multiplicity of a core \(Y \) is at most

\[
\frac{1}{Cr^{|Y|-k}} \binom{n-|Y|}{r-|Y|} \leq \frac{1}{Cr} \binom{n-k-1}{r-k-1}
\]

for \(n \) large enough. Therefore, there is a collection of at least

\[
(p/r) \cdot Cr \binom{n-k-1}{r-k-1}^{-1} \geq C \cdot \frac{|E(\mathcal{G})|}{2Cr^{r-k}} \binom{n-k-1}{r-k-1}^{-1} \geq f(r, Cr^{r-k})
\]

distinct cores of size \(s \). Let \(Y_1, Y_2, \ldots, Y_q \) be these cores and let \(\mathcal{S}_i \) be the sunflower with core \(Y_i \) for \(i = 1, 2, \ldots, q \). Note that each of these sunflowers has exactly \(Cr^s^{-k} \) petals.
Let \(t \) be the first step in the sunflower removal procedure in which a sunflower with core of size \(s \) is chosen to be removed. This implies that all later cores are of size at least \(s \). Now we will show that there is a sunflower \(B \) with core of size less than \(s \) and \(C^{r-\ell(B)-k} \) petals among the hyperedges in the sunflowers \(S_1, S_2, \ldots, S_q \). Before removing the sunflower in step \(t \), all hyperedges of the sunflowers \(S_1, S_2, \ldots, S_q \) are still in \(H \). Therefore, the sunflower \(B \) with core of size less than \(s \) could be chosen in step \(t \), this will contradict the choice of \(t \).

We may think of the \(s \)-sets \(Y_1, \ldots, Y_q \) as an \(s \)-uniform hypergraph on the vertex set of \(H \). As \(q \geq f(r, C^{r-k}) \geq f(s, C^{s-k}) \geq f(s, C^{s-r}) \), the \(s \)-sets \(Y_1, \ldots, Y_q \) contain an \(s \)-uniform sunflower \(A \) with \(C^{s-k} \) petals and core \(Y^* \) of size less than \(s \). By relabelling, we may suppose that \(Y_i \) is a member of \(A \) for \(i = 1, 2, \ldots, q \). Note that the petals \(Y_i \setminus Y^* \) of \(A \) are pairwise disjoint by definition. The sunflower \(A \) is not in the hypergraph \(H \) as it is \(s \)-uniform. However, each hyperedge of \(A \) is the core of some sunflower \(S_i \) in \(H \). Therefore, we will use the members of \(A \) to identify an \(r \)-uniform sunflower \(B \) with core \(Y^* \) in \(H \). The main idea will be carefully choose a petal from each sunflower \(S_i \) whose core is a member of \(A \). To this end, define \(B \) as follows:

First pick any hyperedge of \(S_1 \); denote it by \(h_1 \). Now suppose we have chosen \(\ell \) hyperedges \(h_1, h_2, \ldots, h_\ell \) that form a sunflower with core \(Y^* \). The union of these hyperedges contains \(\ell(r - |Y^*|) \) vertices outside of \(Y^* \). Therefore, as long as

\[
C^{s-k} \geq \ell(r - |Y^*|),
\]

(1)

there is a petal \(Y_i \setminus Y^* \) of \(A \) that is disjoint from each of the hyperedges \(h_1, h_2, \ldots, h_\ell \). The corresponding sunflower \(S_i \) with core \(Y_i \) has

\[
C^{s-k} > \ell(r - |Y^*|)
\]

petals by (1). Therefore, there is a petal \(P \) of \(S_i \) that is also disjoint from the hyperedges in \(h_1, h_2, \ldots, h_\ell \). Let \(h_{\ell+1} \) be the hyperedge \(P \cup Y_i \). Now we have a sunflower with \(\ell + 1 \) petals and core \(Y^* \). We may repeat this procedure as long as \(\ell \) satisfies (1), i.e., until \(\ell = C^{s-k-1} \). This implies that the number of petals in sunflower \(B \) is at least

\[
C^{s-k-1}.
\]

As \(B \) has core \(Y^* \) of size \(c(B) < s \) we have a contradiction to the choice of sunflower in step \(t \). \(\square \)

We can also give an upper-bound on the size of a core of a sunflower in an intersecting hypergraph.

Lemma 7. If \(S \) is a sunflower with at least \(r + 1 \) petals in an intersecting \(r \)-uniform hypergraph \(\mathcal{G} \) with \(\delta^{+}_{r+1}(\mathcal{G}) \geq k \), then the core \(Y \) of \(S \) satisfies \(|Y| \geq k \).

Proof. For the sake of contradiction, assume that the core \(Y \) of \(S \) is small, i.e., \(|Y| < k \). Observe that \(Y \) is a transversal of \(\mathcal{G} \), i.e., every hyperedge of \(\mathcal{G} \) intersects \(Y \). Indeed, as the petals of the sunflower \(S \) are pairwise vertex-disjoint, each hyperedge of \(\mathcal{G} \) must intersect the core \(Y \) in order to intersect each of the at least \(r + 1 \) hyperedges associated with the petals of the sunflower.

5
Now let Y' be a minimum transversal in G. Thus $|Y'| \leq |Y| < k$ and the minimality of Y' guarantees the existence of a hyperedge h that intersects Y' in exactly one element. The $(r - 1)$-set $h \setminus Y'$ is contained in at most $k - 1$ hyperedges of G; one for each element of Y'. This contradicts the positive co-degree condition on G. □

Proof of Theorem 3 We have observed that a k-kernel system has minimum positive co-degree at least k. Therefore, we may assume that

$$|E(h)| \geq \binom{2k - 1}{k} \binom{n - 2k + 1}{r - k} = \Omega(n^{r-k}).$$

Therefore, for n large enough, Lemmas 6 and 7 guarantees the existence of a sunflower S with $C = (r + 1) \cdot r^{k-1}$ petals and core of size k. Denote the core of S by $Y = \{y_1, y_2, \ldots, y_k\}$.

Claim 8. There is a set of vertices $Z = \{z_1, z_2, \ldots, z_{k-1}\}$ such that $Z \cap Y = \emptyset$ and $Z \cup \{y_k\}$ is the core of a sunflower with $r + 1$ petals.

Proof. We will prove the following stronger claim: For $0 \leq i \leq k - 1$, there is a set of vertices $Z_i = \{z_1, z_2, \ldots, z_i\}$ such that $Y \cap Z_i = \emptyset$ and $Z_i \cup \{y_k, y_{k-1}, \ldots, y_{i+1}\}$ is the core of a sunflower S_i with $(r + 1) \cdot r^{k-1-i}$ petals. The claim follows from the case $i = k - 1$.

We proceed by induction on i. The base case $i = 0$ is immediate as $Z_0 = \emptyset$ and $S_0 = S$ is a sunflower with core $Z_0 \cup \{y_k, y_{k-1}, \ldots, y_1\} = Y$ with $(r + 1) \cdot r^{k-1}$ petals.

Now suppose $i > 0$ and the statement holds for $i - 1$. Let S_{i-1} be a sunflower given by the inductive hypothesis.

For each petal P in S_{i-1} consider the $(r - 1)$-set $P \cup Z_{i-1} \cup \{y_k, \ldots, y_i\} \setminus y_i$. By the positive co-degree condition on H, the set $P \cup Z_{i-1} \cup \{y_k, \ldots, y_i\} \setminus y_i$ is contained in k hyperedges of H. Therefore, as $i \leq k - 1$, there is a vertex $x(P)$ such that $x(P) \not\in \{y_1, y_2, \ldots, y_i\}$ and $\{x(P)\} \cup P \cup Z_{i-1} \cup \{y_k, \ldots, y_i\} \setminus y_i$ is a hyperedge of H.

Now suppose there are distinct vertices $x_1, x_2, \ldots, x_{r+1}$ among the vertices in $\{x(P) \mid P$ is a petal in $S\}$. Let $P_1, P_2, \ldots, P_{r+1}$ be the petals corresponding to these vertices, i.e., $\{x_j\} \cup P_j \cup Z_{i-1} \cup \{y_k, \ldots, y_i\} \setminus y_i \in E(H)$ for $j = 1, 2, \ldots, r+1$. Then $Z_{i-1} \cup \{y_k, \ldots, y_i\} \setminus y_i$ is the core of size $k - 1$ of a sunflower with petals $P_j \cup \{x_j\}$ for $j = 1, 2, \ldots, r + 1$ in H. This contradicts Lemma 7. Therefore, there are at most r distinct vertices among the vertices in $\{x(P) \mid P$ is a petal in $S\}$. This implies that there is a vertex x that is the vertex $x(P)$ for at least $\frac{1}{r}|E(S_{i-1})| \geq (r + 1) \cdot r^{k-2-(i-1)}$ petals P in S_{i-1}. Put $z_i = x$ and $Z_i = \{z_1, z_2, \ldots, z_i\}$ and let S_i be the sunflower consisting of $(r + 1) \cdot r^{k-1-i}$ hyperedges of S_{i-1} containing $x = z_i$. Observe that $Z_i \cup \{y_k, \ldots, y_{i+1}\}$ is the core of sunflower S_i with $(r + 1) \cdot r^{k-1-i}$ petals. □

Let S_Z be a sunflower with $r + 1$ petals and core $Z \cup \{y_k\}$ given by Claim 8. There are at most $r(r + 1)$ vertices in S_Z, so we may choose $r + 1$ petals of S that are each vertex-disjoint from the vertices of S_Z. Call the resulting sunflower S_Y. Note that S_Y has $r + 1$ petals and core Y.

Claim 9. For every petal P in S_Z and every $y \in Y$ we have that $P \cup Z \cup \{y\}$ is a hyperedge in H.

\[\text{This argument will appear again in the proof of Lemma 14.}\]
implies that each hyperedge containing \(Q \) for each petal \(k \) condition guarantees it is contained in \(Y \) intersect the \(k \) hyperedges of \(S_Y \). As \(S_Y \) has more than \(r \) petals, each of the \(k \) hyperedges containing \(P \) must contain a distinct vertex of \(Y \).

We now continue with a technical claim that will imply the theorem.

Claim 10. For every \(k \)-set \(T \subset Y \cup Z \) we have:

1. \(Q \cup T \in E(\mathcal{H}) \) for every petal \(Q \) of \(S_Y \),
2. \(((Y \cup Z) \setminus T) \cup \{s\} \cup P \in E(\mathcal{H}) \) for every \(s \in T \) and petal \(P \) of \(S_Z \).

Proof. We proceed by induction on \(t = |T \cap Z| \). Note that \(t \leq k - 1 \). When \(t = 0 \) we have that \(T = Y \), then (1) is immediate as \(Q \cup Y \in E(S_Y) \subset \mathcal{H} \) and (2) follows from Claim [9].

So let \(t > 0 \) and suppose the statement of the claim holds for smaller values. As \(t > 0 \), there exists a \(z \in Z \cap T \) and a \(y \in Y \setminus T \). Fix an arbitrary petal \(Q \) of \(S_Y \). Put \(T' = \{y\} \cup T \setminus z \) and note that \(|T' \cap Z| = t - 1 \). Therefore, by the inductive hypothesis we have \(Q \cup T' \in E(\mathcal{H}) \) and \(((Y \cup Z) \setminus T') \cup \{s\} \cup P \in E(\mathcal{H}) \) for every \(s \in T' \) and petal \(P \) of \(S_Z \).

By the positive co-degree condition, the \((r - 1) \)-set \(Q \cup T' \setminus y \) is contained in \(k \) hyperedges. Moreover, \(Q \cup T' \setminus y \) disjoint from the \(k \) hyperedges \(((Y \cup Z) \setminus T') \cup \{y\} \cup P \) for each petal \(P \) of \(S_Z \). Thus, each of the \(k \) hyperedges containing \(Q \cup T' \setminus y \) must intersect the \(k \) hyperedges \(((Y \cup Z) \setminus T') \cup \{y\} \cup P \) for each petal \(P \) of \(S_Z \). As \(S_Z \) has \(r + 1 \) petals, this implies that each hyperedge containing \(Q \cup T' \setminus y \) intersects the \((r + 1) \)-set \(((Y \cup Z) \setminus T) \cup \{y\} \). In particular, \((Q \cup T' \setminus y) \cup \{s\} = Q \cup T \) is a hyperedge of \(\mathcal{H} \). This proves (1).

In order to prove (2) let us fix an arbitrary petal \(P \) of \(S_Z \). By (1), the \((r - 1) \)-set \(((Y \cup Z) \setminus T) \cup P \) is contained in a hyperedge of \(\mathcal{H} \) and therefore the positive co-degree condition guarantees it is contained in \(k \) hyperedges. In order for these hyperedges to intersect the \(r + 1 \) hyperedges \(Q \cup T \) for each petal \(Q \) of \(S_Y \) we have that each set of the form \(((Y \cup Z) \setminus T) \cup \{s\} \cup P \) for \(s \in T \) must be a hyperedge of \(\mathcal{H} \).

We are now ready to complete the proof of Theorem [8]. Suppose that there is a hyperedge \(h \in E(\mathcal{H}) \) such that \(|h \cap (Y \cup Z)| \leq k - 1 \). Then there exists a \(k \)-set \(T \subset Y \cup Z \) such that \(T \) is disjoint from \(h \). Moreover, there is a petal \(Q \) in \(S_Y \) that is disjoint from \(h \). By Claim [10] we have that \(T \cup Q \in E(\mathcal{H}) \) which is disjoint from \(h \in E(\mathcal{H}) \). This violates the intersecting property of \(\mathcal{H} \), a contradiction.

Therefore, every hyperedge \(h \in E(\mathcal{H}) \) intersects \(Y \cup Z \) in at least \(k \) vertices. This implies that \(\mathcal{H} \) is a subhypergraph of a \(k \)-kernel system, i.e., as \(\mathcal{H} \) is edge-maximal it is exactly a \(k \)-kernel system.

Remark. Observe that the proof of Theorem [8] gives a stability result. In particular, if \(\mathcal{H} \) has enough edges to apply Lemma [6] then we have that \(\mathcal{H} \) is a subhypergraph of a \(k \)-kernel system.
3 Improved thresholds on n

We now show that in the case $k \leq 3$, Theorem 3 holds for n only about r^{k+1}. In Theorem 3 we need n to be about r^k. Recall that two hypergraphs A and B are cross-intersecting if for every pair of hyperedges $A \in E(H)$ and $B \in E(H)$ we have $A \cap B \neq \emptyset$. Also, a transversal for a hypergraph H is a set of vertices T such that $X \cap h \neq \emptyset$ for every hyperedge $h \in E(H)$. The transversal number $\tau(H)$ is the minimum t such that there is a transversal T of H of size t.

We begin with a result due to Frankl [6] (see also [11]) on the size of an intersecting hypergraph with given minimum transversal size.

Lemma 11 (Frankl, [6]). Let H be an intersecting r-uniform n-vertex hypergraph with minimal transversal size $\tau(H) \geq t$, then

$$|E(H)| \leq (r^{t-1} + o(1)) \left(\frac{n-t}{r-t} \right).$$

Proposition 12. Let H be an intersecting r-uniform n-vertex hypergraph with minimum positive co-degree $\delta^+_{r-1}(H) \geq 2$. If H has the maximum number of hyperedges, then for n large enough H is a 3-kernel system.

Proof. We distinguish three cases based on the minimum transversal size $\tau(H)$ of H.

Case 1: $\tau(H) = 1$.

Then there is a vertex x in each hyperedge of H. Fix a hyperedge $h \in E(H)$ and observe that the $(r-1)$-set $h \setminus x$ is contained in exactly one hyperedge which violates the positive co-degree condition.

Case 2: $\tau(H) \geq 3$.

Then Lemma 11 gives

$$|E(H)| \leq (r^2 + o(1)) \left(\frac{n-3}{r-3} \right),$$

which for $n = \Omega(r^3)$ is smaller than $3\left(\frac{n-3}{r-2} \right)$, a contradiction.

Case 3: $\tau(H) = 2$.

Let $\{x, y\}$ be a minimum transversal of H. Consider the $(r-1)$-uniform hypergraphs $H_x = \{h \setminus x \mid h \in E(H)\}$ and $h \cap \{x, y\} = \{x\}$ and $H_y = \{h \setminus y \mid h \in E(H)\}$ and $h \cap \{x, y\} = \{y\}$. First observe that this pair of hypergraphs is cross-intersecting as H is intersecting. Now observe that any hyperedge $h \in E(H_x)$ is a set of size $r-1$ that is contained in a hyperedge of H. Thus, h has co-degree at least 2 and, therefore must be a member of H_y. This implies that H_x and H_y are identical. Therefore H_x is intersecting.

A simple calculation shows that if H_x is not a maximal star, then H has too few hyperedges. Thus, every hyperedge of H_x contains a fixed vertex z. Therefore, every hyperedge of H contains at least two of $\{x, y, z\}$, i.e., maximality implies that H is a 3-kernel system.

We now turn to the case when $k = 3$. Here we are not able to show uniqueness of the extremal construction. However, we do give a matching upper-bound that holds for a larger range of values on n than in Theorem 3. We will need two lemmas. The first is due to Frankl [7].
Lemma 13 (Frankl, [7]). Let A and B be cross-intersecting hypergraphs on vertex set $[N]$ such that A is a-uniform and B is $(a + 1)$-uniform and intersecting. If $N > 2a + 1$, then

$$|A| + |B| \leq \binom{N}{a}.$$

Part of our next lemma was proved in Lemma 7. We include a full argument here to keep this section is self-contained.

Lemma 14. Let H be an intersecting r-uniform n-vertex hypergraph with minimum positive co-degree $\delta^+_{r-1}(H) \geq k$. If H is edge-maximal and n is large enough, then H has minimal transversal size $\tau(H) = k$.

Proof. First suppose that $\tau(H) < k$. Let X be a minimal transversal for H and consider a hyperedge h that intersects X in exactly one element. Such a hyperedge exists as otherwise X is not minimal. The $(r-1)$-set $h \setminus X$ is contained in at most $k-1$ hyperedges of H; one for each element of X. This contradicts the co-degree condition on H.

Now suppose that $\tau(H) > k$. Lemma 11 gives $|E(H)| = (r^k + o(1))(n^{r-k-1})$. On the other hand, our construction has at least $\binom{2k-1}{k} \binom{n-2k+1}{r-k}$ hyperedges. Therefore, for $n = \Omega(r^{k+1})$ we have a contradiction, thus, $\tau(H) = k$.

Finally, we need a technical definition to construct auxillary hypergraphs from H.

Definition 15. Let H be an r-uniform hypergraph and let T be a fixed set of vertices in H. For a subset $S \subset T$ define

$$H^T_S = \{ h - S \mid h \in E(H) \text{ and } h \cap T = S \},$$

i.e., H_S is the $(r-|S|)$-uniform hypergraph constructed by removing S from each hyperedge of H that intersects T in exactly S.

For ease of notation we will often denote H^T_S by $H^T_{x_1x_2 \ldots x_s}$ when $S = \{x_1, x_2, \ldots, x_s\}$.

Theorem 16. Let H be an intersecting r-uniform n-vertex hypergraph with minimum positive co-degree $\delta^+_{r-1}(H) \geq 3$. If H has the maximum number of hyperedges, then for n large enough,

$$|E(H)| = 10 \binom{n-5}{r-3} + 5 \binom{n-5}{r-4} + \binom{n-5}{r-5}.$$

Note that Theorem 16 holds with a smaller threshold on n than in Theorem 3 when $k = 3$, but we do not prove uniqueness of the extremal construction.

Proof. By Lemma 14 we may assume the minimum transversal size of H is $\tau(H) = 3$. Let $X = \{x, y, z\}$ be a minimum transversal of H.

Consider the three $(r-1)$-uniform hypergraphs H^X_x, H^X_y and H^X_z. First observe that any pair of these hypergraphs is cross-intersecting as H is intersecting. Now observe that any hyperedge $h \in H^X_x$ is a set of size $r - 1$ that is contained in a hyperedge of H. Therefore, h has co-degree at least 3. This implies that h is also a member of H^X_y and H^X_z. Thus, all three hypergraphs H^X_x, H^X_y, H^X_z are identical. Moreover, this implies that H^X is intersecting.

Recall that the shadow of an r-uniform hypergraph G is the collection of all $(r-1)$-sets contained in a hyperedge of G. We denote the shadow of G by $\Delta(G)$.

9
Claim 17. For each hyperedge $h \in \mathcal{H}^X_{xy}$ there is some hyperedge $g \in \mathcal{H}^X_x$ that contains h. Thus,
\[|E(\mathcal{H}^X_{xy})| \leq |\Delta(\mathcal{H}^X_x)|. \]

Proof. Let h be an arbitrary hyperedge of \mathcal{H}^X_{xy}. Consider the $(r - 1)$-set $A = h \cup \{y\}$. The set A has co-degree at least 3, so it is contained in three hyperedges of \mathcal{H}; one such edge is $A \cup \{z\}$, another could be $A \cup \{x\}$, so there exists at least one hyperedge of the form $A \cup \{w\}$ where $w \not\in \{x, y, z\}$. However, $A \cap \{x, y, z\} = \{y\}$, so $(A \cup \{w\}) \setminus y \in E(\mathcal{H}^X_y) = E(\mathcal{H}^X_x)$. \hfill \square

We distinguish three cases based on $\tau(\mathcal{H}_x^X)$.

Case 1: $\tau(\mathcal{H}_x^X) = 1$.

Let u be a minimal transversal of \mathcal{H}_x^X. Every hyperedge of $\mathcal{H}_x^X, \mathcal{H}_y^X, \mathcal{H}_z^X$ contains u, therefore, every hyperedge of \mathcal{H} contains at least two vertices from $\{x, y, z, u\}$. Put $T = X \cup \{u\} = \{x, y, z, u\}$.

Claim 18. All six hypergraphs \mathcal{H}_{ij}^T for $i, j \in T = \{x, y, z, u\}$ are identical.

Proof. It is enough to show that $\mathcal{H}_{xy}^T \subseteq \mathcal{H}_{xz}^T$ as the choice of the three vertices x, y, z from T is arbitrary. Let $h \in E(\mathcal{H}_{xy}^T)$ and consider the $(r - 1)$-set $A = h \cup \{x\}$. By the co-degree condition on \mathcal{H} we have that A is contained in at least three hyperedges. Each of these hyperedges includes at least two vertices from $\{x, y, z, u\}$, so A is in $A \cup \{y\}, A \cup \{z\}$ and $A \cup \{u\}$. Therefore, $h \in E(\mathcal{H}_{xz}^T)$.

Now as \mathcal{H}_{xy}^T and \mathcal{H}_{zu}^T are cross-intersecting we have that \mathcal{H}_{xy}^T is intersecting. Thus,
\[|E(\mathcal{H})| \leq 6 \binom{n - 5}{r - 3} + 4 \binom{n - 4}{r - 3} + \binom{n - 4}{r - 4}. \]

Applying Pascal's identity gives
\[|E(\mathcal{H})| \leq 10 \binom{n - 5}{r - 3} + 5 \binom{n - 5}{r - 4} + \binom{n - 5}{r - 5}. \]

Case 2: $\tau(\mathcal{H}_x^X) = 2$.

Let u, v be a minimal transversal of \mathcal{H}_x^X, i.e., every hyperedge of \mathcal{H}_x^X contains at least one of u, v. As $\mathcal{H}_x^X = \mathcal{H}_y^X = \mathcal{H}_z^X$ we have that every hyperedge of \mathcal{H} contains at least two vertices from $T = \{x, y, z, u, v\}$. Note that there is no hyperedge that intersects T in exactly u and v, so \mathcal{H}_{uv}^T is empty. For simplicity, we consider the empty hypergraph as intersecting.

Claim 19. The hypergraph \mathcal{H}_{ij}^T is intersecting for any $i, j \in T$.

Proof. Suppose not. Then there are hyperedges $A, B \in \mathcal{H}_{ij}^T$ such that $A \cap B = \emptyset$. By the co-degree condition, the $(r - 1)$-set $A \cup i$ is contained in at least three hyperedges of \mathcal{H}. Since each hyperedge of \mathcal{H} contains at least two elements from T, there is a hyperedge $A \cup \{i, s\}$ where $s \in T \setminus \{i, j\}$. Similarly, the $(r - 1)$-set $B \cup \{j\}$ is contained in some hyperedge $B \cup \{j, t\}$ where $t \in T \setminus \{s, i, j\}$. However, the hyperedges $A \cup \{i, s\}$ and $B \cup \{j, t\}$ are disjoint which violates the intersecting property of \mathcal{H}.

10
Now any H^T_{ij} and $H^T_{T \setminus \{i,j\}}$ are cross-intersecting and $(r - 2)$ and $(r - 3)$-uniform, respectively. Therefore, by Lemma 13 we have

$$|E(H^T_{ij})| + |E(H^T_{T \setminus \{i,j\}})| \leq \binom{n - 5}{r - 3}.$$

Thus

$$|E(H)| = \sum_{S \subseteq T} |E(H^T_S)| \leq 10 \binom{n - 5}{r - 3} + 5 \binom{n - 5}{r - 4} + \binom{n - 5}{r - 5}.$$

Case 3: $\tau(H^X_{i}) \geq 3$.

Then Lemma 11 gives

$$|E(H^X_{i})| \leq ((r - 1)^2 + o(1)) \left(\binom{n - 1 - 3}{r - 1 - 3} \right) \leq (r^2 + o(1)) \binom{n - 4}{r - 4}.$$

The remaining hyperedges of H are counted by H^X_{xyz} and H^X_{ij} for $i, j \in \{x, y, z\}$. By Claim 17 we have

$$|E(H^X_{xyz})| \leq |\Delta(H^X_{i})| \leq (r - 1) |E(H^X_{x})| \leq (r^3 + o(1)) \binom{n - 4}{r - 4}.$$

Finally, $|E(H^X_{xyz})| \leq \binom{n - 3}{r - 3}$. Thus,

$$|E(H)| \leq \binom{n - 3}{r - 3} + 6(r^3 + r^2 + o(1)) \binom{n - 6}{r - 4}$$

which is smaller than $10 \binom{n - 5}{r - 3}$ for $n = \Omega(r^4)$.

References

[1] R. Alweiss, S. Lovett, K. Wu and J. Zhang. Improved bounds for the sunflower lemma. arXiv:1908.08483

[2] P. Erdős. Problems and results in combinatorial analysis. (Italian summary) Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, pp. 317. Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome, 1976.

[3] P. Erdős, C. Ko and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxf. 2 (1961) 313–320.

[4] P. Erdős and R. Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society 35 (1960) 85–90.

[5] P. Frankl. On intersecting families of finite sets. J. Combinatorial Theory Ser. A 24 (1978) 146–161.

[6] P. Frankl. On intersecting families of finite sets. Bull. Austral. Math. Soc. 21 (1980) 363–372.
[7] P. Frankl. Erdős-Ko-Rado theorem with conditions on the maximal degree. *J. Combin. Theory Ser. A* **46** (1987) 252–263.

[8] P. Frankl, Z. Füredi. A new generalization of the Erdős-Ko-Rado theorem. *Combinatorica* **3** (1983) 341–349.

[9] P. Frankl and N. Tokushige. A note on HuangZhao theorem on intersecting families with large minimum degree. *Discrete Math.* **340** (2017) 1098–1103.

[10] P. Frankl and N. Tokushige. Invitation to intersection problems for finite sets. (English summary) *J. Combin. Theory Ser. A* **144** (2016) 157–211.

[11] P. Frankl, K. Ota, N. Tokushige. Uniform intersecting families with covering number four. *J. Combin. Theory Ser. A* **71** (1995) 127–145.

[12] Z. Füredi. Erdős-Ko-Rado type theorems with upper bounds on the maximum degree. Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), pp. 177207, Colloq. Math. Soc. Jnos Bolyai, 25, North-Holland, Amsterdam-New York, 1981.

[13] Z. Füredi. An intersection problem with 6 extremes. *Acta Math. Hungar.* **42** (1983) 177–187.

[14] H. Huang and Y. Zhao. Degree versions of the ErdősKoRado theorem and Erdős hypergraph matching conjecture. *J. Combin. Theory Ser. A* **150** (2017) 233–247.

[15] P. Keevash and D. Mubayi. Stability theorems for cancellative hypergraphs. *J. Combin. Theory Ser. B* **92** (2004) 163–175.

[16] A. Kupavskii. Degree versions of theorems on intersecting families via stability. *J. Combin. Theory Ser. A* **168** (2019) 272–287.

[17] D. Mubayi and Y. Zhao. Co-degree density of hypergraphs. *J. Combin. Theory Ser. A* **114** (2007) 1118–1132.