Magic squares and the symmetric group

Ofir Gorodetsky

Abstract

Diaconis and Gamburd computed moments of secular coefficients in the CUE ensemble. We use the characteristic map to give a new combinatorial proof of their result. We also extend their computation to moments of traces of symmetric powers, where the same result holds but in a wider range.

1 Introduction

Consider the complex unitary group $U(N)$ endowed with the probability Haar measure. The nth secular coefficient of $U \in U(N)$ is defined through the expansion

$$\det(zI + U) = \sum_{n=0}^{N} z^{N-n} \text{Sc}_n(U).$$

If $A = (a_{i,j})$ is an $m \times n$ matrix with non-negative integer entries, Diaconis and Gamburd [DG06] define the row-sum vector $\text{row}(A) \in \mathbb{Z}^m$ and column-sum vector $\text{col}(A) \in \mathbb{Z}^n$ by

$$\text{row}(A)_i = \sum_{j=1}^{n} a_{i,j}, \quad \text{col}(A)_j = \sum_{i=1}^{m} a_{i,j}.$$

Given two partitions $\mu = (\mu_1, \ldots, \mu_m)$ and $\tilde{\mu} = (\tilde{\mu}_1, \ldots, \tilde{\mu}_n)$ they denote by $N_{\mu, \tilde{\mu}}$ the number of non-negative integer matrices A with $\text{row}(A) = \mu$ and $\text{col}(A) = \tilde{\mu}$. Given sequences (a_1, \ldots, a_ℓ) and (b_1, \ldots, b_ℓ) of non-negative integers, they proved the following equality [DG06, Thm. 2]:

$$\int_{U(N)} \prod_{j=1}^{\ell} \text{Sc}_{a_j}(U)^{a_j} \text{Sc}_{b_j}(U)^{b_j} \, dU = N_{\mu, \tilde{\mu}}$$

(1.1)

as long as $\sum_{j=1}^{\ell} j a_j, \sum_{j=1}^{\ell} j b_j \leq N$. Here μ and $\tilde{\mu}$ are the partitions with a_j and b_j parts of size j, respectively.

Identity (1.1) answered a question raised in [HKS+96, SHW98], where the first two moments were computed. The results in [DG06] inspired the study of pseudomoments of the Riemann zeta function [CG06] and were used in [KRRGR18] to study the variance of divisor functions in short intervals. Recently, Najnudel, Paquette and Simm studied the distribution of Sc_n with n growing with N [NPS20].

We give a new combinatorial proof of (1.1), which makes use of the characteristic map. This is in the spirit of Bump’s derivation [Bum04, Prop. 40.4] of the Diaconis-Shahshahani moment computation [DS94].

In §5 we show that a result similar to (1.1) holds for traces of symmetric powers in place of secular coefficients, with substantially relaxed conditions: $\min\{\sum a_j, \sum b_j\} \leq N$. These traces are also the complete homogeneous symmetric polynomials h_n evaluated on the eigenvalues of the matrix.

2 The symmetric group

For a permutation π we say that S is an invariant set for π if $\pi(S) = S$. Equivalently, S is a union of cycles of π. Given a partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell) \vdash n$, we define the following function on the symmetric group S_n acting on $[n] := \{1, 2, \ldots, n\}$:

$$d_\lambda(\pi) = \#\{(A_1, \ldots, A_\ell) : \cup A_i = [n], \text{ each } A_i \text{ is an invariant set with } |A_i| = \lambda_i\},$$
where \(\cup \) means disjoint union. We use the letter \(d \) here as short for divisor, as these functions are analogous to divisor functions over the integers. Given \(\mu, \tilde{\mu} \vdash n \), let us define

\[
N_{\mu, \tilde{\mu}}(n) := \frac{1}{|S_n|} \sum_{\pi \in S_n} d_\pi(\mu) d_{\tilde{\mu}}(\pi).
\]

Proposition 2.1. Suppose \(\mu, \tilde{\mu} \vdash n \). We have

\[
N_{\mu, \tilde{\mu}}(n) = N_{\mu, \tilde{\mu}}.
\]

Proof. By definition, given a partition \(\lambda = (\lambda_1, \ldots, \lambda_\ell) \vdash n \) we may express \(d_\lambda(\pi) \) as a sum over ordered set partitions:

\[
d_\lambda(\pi) = \sum_{(A_1, \ldots, A_\ell) : \cup A_i = [n]} \alpha_{A_1, \ldots, A_\ell}(\pi)
\]

where \(\alpha_{A_1, \ldots, A_\ell} \) is the indicator function of permutations \(\pi \in S_n \) with \(\pi(A_i) = A_i \) for all \(i \). Applying (2.1) with \(\lambda = \mu \) and multiplying by \(d_\mu(\pi) \) with \(\lambda = \tilde{\mu} \) we obtain

\[
d_\mu(\pi) d_{\tilde{\mu}}(\pi) = \sum_{(A_1, \ldots, A_\ell) : \cup A_i = [n]} \sum_{B_1, \ldots, B_\ell} \alpha_{A_1, \ldots, A_\ell}(\pi) \alpha_{B_1, \ldots, B_\ell}(\pi)
\]

where \(\ell(\lambda) \) is the number of parts in a partition. Averaging this over \(S_n \) and interchanging the order of summation, we find

\[
N_{\mu, \tilde{\mu}}(n) = \frac{1}{n!} \sum_{(A_1, \ldots, A_\ell) : \cup A_i = [n]} \sum_{B_1, \ldots, B_\ell} \sum_{\pi \in S_n} \alpha_{A_1, \ldots, A_\ell}(\pi) \alpha_{B_1, \ldots, B_\ell}(\pi).
\]

The inner sum in the right-hand side of (2.2) counts permutations \(\pi \in S_n \) for which \(A_i \) are invariant sets, as well as the \(B_j \). In particular \(\pi(A_i \cap B_j) \leq A_i, B_j \), forcing \(\pi(A_i \cap B_j) = A_i \cap B_j \). Conversely, given a permutation such that \(\pi(A_i \cap B_j) = A_i \cap B_j \) for all \(i, j \), it necessarily satisfies \(\pi(A_i) = A_i \) and \(\pi(B_j) = B_j \) for all \(i, j \). Thus, the inner sum counts \(\pi \) with \(\pi(A_i \cap B_j) = A_i \cap B_j \). The sets \(\{ A_i \cap B_j \}_{i,j} \) are disjoint and their union is \([n]\), and so such \(\pi \)s are determined uniquely by their restrictions to \(A_i, B_j \), which may be arbitrary, proving that the inner sum is \(\prod_{i,j=1}^n |A_i \cap B_j|! \). Hence,

\[
N_{\mu, \tilde{\mu}}(n) = \frac{1}{n!} \sum_{(A_1, \ldots, A_\ell) : \cup A_i = [n]} \sum_{B_1, \ldots, B_\ell} \prod_{i,j} |A_i \cap B_j|!.
\]

Observe that the \(n \times m \) matrix \(C = (|A_i \cap B_j|) \) has row \(C = \mu \) and col \(C = \tilde{\mu} \). Hence

\[
N_{\mu, \tilde{\mu}}(n) = \frac{1}{n!} \prod_{C=(c_{i,j})} \text{a matrix counted by } N_{\mu, \tilde{\mu}} \prod_{i,j} c_{i,j}! \cdot \# \{ [n] = \cup_{i,j} \cup C_{i,j}, |C_{i,j}| = c_{i,j} \}.
\]

The inner expression in the right-hand side is the number of ordered set partitions of \([n]\) into subsets \(C_{i,j} \) of size \(c_{i,j} \) (these sets correspond to \(A_i \cap B_j \) and one reconstructs \(A_i \) by \(A_i = \cup j C_{i,j} \) and similarly \(B_j = \cup i C_{i,j} \)). This is just the multinomial

\[
\left(c_{i,j} : 1 \leq i \leq \ell(\mu), 1 \leq j \leq \ell(\tilde{\mu}) \right) = \frac{n!}{\prod \{ c_{i,j} ! \}},
\]

so that (2.2) simplifies to

\[
N_{\mu, \tilde{\mu}}(n) = \sum_{X \text{ a matrix counted by } N_{\mu, \tilde{\mu}}} 1 = N_{\mu, \tilde{\mu}}
\]

as claimed. \(\square \)
3 The characteristic map

Endow S_n with the uniform probability measure. The characteristic (or Frobenius) map $\text{Ch}^{(N)}$ is a linear map from class functions on S_n to class functions on $U(N)$, with the property that if $n \leq N$ it is an isometry with respect to the L_2-norm, see [Bum04 Thm. 40.1]. It may be given by

$$\text{Ch}^{(N)}(f) = \frac{1}{n!} \sum_{\pi \in S_n} f(\pi)p_{\lambda(\pi)},$$

see [Bum04 Thm. 39.1]. Here $\lambda(\pi)$ is the partition associated with π, and p_{λ} is the power sum symmetric polynomial associated with λ, evaluated at the eigenvalues of $U \in U(N)$.

Lemma 3.1. Suppose $\lambda \vdash n$. We have

$$\text{Ch}^{(N)}(\text{sgn} \cdot d_{\lambda}) = e_{\lambda},$$

where sgn is the sign representation and e_{λ} is the elementary symmetric polynomial associated with the partition λ.

Proof. Given $\pi \in S_n$, we set $p_{\pi} = p_{\lambda(\pi)}$ for convenience. We then have, by plugging (2.1) in the definition of $\text{Ch}^{(N)}(\text{sgn} \cdot d_{\lambda})$ and interchanging order of summation,

$$\text{Ch}^{(N)}(\text{sgn} \cdot d_{\lambda}) = \frac{1}{n!} \sum_{(A_1, \ldots, A_{\ell(\lambda)}) \subseteq [n]} \sum_{\pi \in S_n} \text{sgn}(\pi)p_{\pi}.$$

We claim that the inner sum is e_{λ}. Indeed, since π is determined by the restrictions $\pi|_{A_i}$, and since $p_{\lambda} = \prod_i p_{\lambda_i}$, we have

$$\sum_{\pi \in S_n} \text{sgn}(\pi)p_{\pi} = \prod_{i=1}^{\ell(\lambda)} \left(\sum_{\pi \in S_{A_i}} \text{sgn}(\pi)p_{\pi_i} \right) = \prod_{i=1}^{\ell(\lambda)} \lambda_i!e_{\lambda_i},$$

where the last equality follows from the Newton-Girard identity $\sum_{\pi \in S_n} \text{sgn}(\pi)p_{\pi}/m! = e_m$. To finish, note that the number of ordered set partitions of $[n]$ into $\ell(\lambda)$ sets of sizes λ_i is exactly the binomial coefficient $\binom{n}{\lambda_1, \ldots, \lambda_{\ell(\lambda)}}$. \qed

4 Conclusion of proof

Here we establish (1.1). Let (a_1, \ldots, a_{ℓ}) and (b_1, \ldots, b_{ℓ}) be sequences of non-negative integers with $\sum_{j=1}^{\ell} ja_j$, $\sum_{j=1}^{\ell} jb_j \leq N$. Let μ and $\tilde{\mu}$ be the partitions with a_j and b_j parts of size j, respectively.

If $\sum_{j} ja_j \neq \sum_{j} jb_j$, it is easy to see that both sides of (1.1) vanish. Indeed, for the right-hand side, note that the integrand is an homogeneous polynomial in the eigenvalues of U, whose degree is non-zero, so its integral must vanish by translation-invariance of the Haar measure. On the other hand, if $N_{\mu, \tilde{\mu}}$ is non-zero, we must have that μ and $\tilde{\mu}$ sum to the same number (if $A = (a_{i,j})$ is a matrix counted by N then both μ and $\tilde{\mu}$ sum to $\sum_{i,j} a_{i,j}$).

Now assume $\sum_{j} ja_j = \sum_{j} jb_j = n \leq N$. As $\text{Sc}_j(U)^{\mu}\overline{\text{Sc}_j(U)^{\tilde{\mu}}} = e_{\mu}e_{\tilde{\mu}}$ by definition, the fact that $\text{Ch}^{(N)}$ is an isometry if $n \leq N$ shows, through Lemma 3.1 that the integral in (1.1) is equal to

$$\frac{1}{|S_n|} \sum_{\pi \in S_n} (\text{sgn} \cdot d_{\mu})(\pi)\text{sgn} \cdot d_{\tilde{\mu}}(\pi) = \frac{1}{|S_n|} \sum_{\pi \in S_n} d_{\mu}(\pi)d_{\tilde{\mu}}(\pi) = N_{\mu, \tilde{\mu}}(n),$$

and the proof is concluded by applying Proposition 2.1.
5 Symmetric powers

Let $\text{TrSym}^n(U)$ be the trace of the nth symmetric power of $U \in U(N)$. This is also the nth complete homogeneous symmetric polynomial h_n evaluated on the eigenvalues of U.

Theorem 5.1. Let $\{a_j\}_{j=1}^\ell, \{b_j\}_{j=1}^\ell$ be sequences of non-negative integers. We have

$$\int_{U(N)} \prod_{j=1}^\ell \left(\text{TrSym}^j(U)^{a_j} \text{TrSym}^j(U)^{b_j}\right) dU = N_{\mu,\bar{\mu}}$$

as long as $\min\{\sum_{j=1}^\ell a_j, \sum_{j=1}^\ell b_j\} \leq N$. Here μ and $\bar{\mu}$ are the partitions with a_j and b_j parts of size j, respectively.

We start with the following corollary of Lemma 3.1

Corollary 5.2. Suppose $\lambda \vdash n$. We have $\text{Ch}^n(\lambda) = h_\lambda$.

This follows from Lemma 3.1 through the existence of an involution ι on the space of symmetric polynomials, with the properties $\text{Ch}^n(\text{sgn}: f) = \iota(\text{Ch}^n(f))$ [Bum04, Thm. 39.3] and $\iota(e_\lambda) = h_\lambda$ [Bum04, Thm. 36.3]. Alternatively, one may repeat the proof of Lemma 3.1 with the Newton-Girard identity $\sum_{\pi \in S_n} p_\pi/m! = h_m$.

Next we prove the following well-known identity, often proved as a consequence of the RSK correspondence.

Lemma 5.3. Given $\mu, \bar{\mu} \vdash n$ we have

$$\sum_{\lambda \vdash n} K_{\lambda,\mu} K_{\lambda,\bar{\mu}} = N_{\mu,\bar{\mu}}$$

where $K_{\lambda,\mu}$ are the Kostka numbers.

Proof. We may expand e_λ in the Schur basis, see [Sta99, p. 335]:

$$e_\mu = \sum_{\lambda \vdash n} K_{\lambda',\mu} s_\lambda$$

where λ' is the conjugate of λ. Orthogonality of Schur functions [DG06, Eq. (22)] implies that

$$\int_{U(n)} \prod_{j=1}^\ell \left(\text{Sc}_j(U)^{a_j} \text{Sc}_j(U)^{b_j}\right) dU = \sum_{\lambda \vdash n} K_{\lambda',\mu} K_{\lambda',\bar{\mu}} = \sum_{\lambda \vdash n} K_{\lambda,\mu} K_{\lambda,\bar{\mu}}.$$

On the other hand, this integral was shown to equal $N_{\mu,\bar{\mu}}$. \hfill \Box

We now prove Theorem 5.1. The case $\sum_{j=1}^\ell j a_j \neq \sum_{j=1}^\ell j b_j$ is treated as in the secular coefficients case. Next, assume that $\sum j a_j = \sum j b_j = n$ and $\min\{\sum_{j=1}^\ell a_j, \sum_{j=1}^\ell b_j\} \leq N$. The multiset of eigenvalues of $\text{TrSym}^j U$ consists of products of j eigenvalues of U, and so the integrand in the left-hand side of (5.1) is $h_\mu h_{\bar{\mu}}$. We may expand h_λ in the Schur basis, see Stanley [Sta99, Cor. 7.12.4]:

$$h_\mu = \sum_{\lambda \vdash n} K_{\lambda,\mu} s_\lambda.$$

Orthogonality of Schur functions implies that the left-hand side of (5.1) is

$$\sum_{\ell(\lambda) \leq N} K_{\lambda,\mu} K_{\lambda,\bar{\mu}}.$$

As $K_{\lambda,\mu} \neq 0$ implies $\ell(\lambda) \leq \ell(\mu)$ [Sta99, Prop. 7.10.5], and $\min\{\ell(\mu), \ell(\mu')\} = \min\{\sum a_j, \sum b_j\} \leq N$ by assumption, this sum is equal to the full sum $\sum_{\lambda \vdash n} K_{\lambda,\mu} K_{\lambda,\bar{\mu}}$, and the proof is concluded by (5.2).

A version of Theorem 5.1 with max in place of min, may also be derived from formulas for averages of ratios of characteristic polynomials [CTZ05, BG06].
6 Acknowledgements

We thank Brian Conrey and Jon Keating for comments on an earlier version of this note and Brad Rodgers for useful suggestions. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 851318).

References

[BG06] Daniel Bump and Alex Gamburd. On the averages of characteristic polynomials from classical groups. Comm. Math. Phys., 265(1):227–274, 2006.

[Bum04] Daniel Bump. Lie groups, volume 225 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2004.

[CFZ05] JB Conrey, DW Farmer, and MR Zirnbauer. Howe pairs, supersymmetry, and ratios of random characteristic polynomials for the unitary groups U(N). arXiv preprint math-ph/0511024, 2005.

[CG06] Brian Conrey and Alex Gamburd. Pseudomoments of the Riemann zeta-function and pseudomagic squares. J. Number Theory, 117(2):263–278, 2006.

[DG06] Persi Diaconis and Alex Gamburd. Random matrices, magic squares and matching polynomials. Electron. J. Combin., 11(2):Research Paper 2, 26, 2004/06.

[DS94] Persi Diaconis and Mehrdad Shahshahani. On the eigenvalues of random matrices. volume 31A, pages 49–62. 1994. Studies in applied probability.

[HKS+96] Fritz Haake, Marek Kuś, Hans-Jürgen Sommers, Henning Schomerus, and Karol Życzkowski. Secular determinants of random unitary matrices. J. Phys. A, 29(13):3641–3658, 1996.

[KRRGR18] J. P. Keating, B. Rodgers, E. Roditty-Gershon, and Z. Rudnick. Sums of divisor functions in $\mathbb{F}_q[t]$ and matrix integrals. Math. Z., 288(1-2):167–198, 2018.

[NPS20] Joseph Najnudel, Elliot Paquette, and Nick Simm. Secular coefficients and the holomorphic multiplicative chaos. arXiv preprint arXiv:2011.01823, 2020.

[SHW98] Hans-Jürgen Sommers, Fritz Haake, and Joachim Weber. Joint densities of secular coefficients for unitary matrices. J. Phys. A, 31(19):4395–4401, 1998.

[Sta99] Richard P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.

Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK

E-mail address: ofir.goro@gmail.com