Stability Testing of Olmesartan and Cilnidipine in Bulk and Formulations by RP-HPLC

Mohan Rahul S*, Gore Shubham, Kotame Radhika, Tagad Rupesh
Shri Sai College of Pharmacy, Khandala

ABSTRACT
The stability of drug product or a drug substance is a critical parameter which may affect purity, potency and safety. The stability indicating method is that employed for the analysis of stability samples in pharmaceutical industry. Forced degradation studies show the chemical behavior of the molecule which in turn helps in the development of formulation and package. Forced degradation is a degradation of new drug substance and drug product at conditions more severe than accelerated condition. Thus, this review discuss the current trends in performance of stability indicating method to force degradation by providing strategy for conducting studies on degradation mechanism Stability testing by reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been performed of cilnidipine and olmesartan. All the drugs were separated. The retention time of cilnidipine and olmesartan was founded respectively. Ranges of 50 - 300μg/ml for cilnidipine and 25 – 150 μg/ml for Olmesartan.

Keyword: Olmesartan, Cilnidipine, RP-HPLC.

*Corresponding Author Email: mohanrahul8090@gmail.com
Received 04 November 2019, Accepted 16 November 2019

Please cite this article as: Mohan RS et al., Stability Testing of Olmesartan and Cilnidipine in Bulk and Formulations by RP-HPLC. American Journal of PharmTech Research 2019.
INTRODUCTION

Cilnidipine serve as a calcium channel blocker which lower the blood pressure in patients its IUPAC name is 1,4-dihydro-2,6-dimethyl-4-(3-nitro phenyl)-3,5-pyridine carboxylic acid 2-methoxyethyl(2E)-3-phenyl-propenyl. Olmesartan medoxomil is an angiotensin-II antagonist which is used to treat high blood pressure and it’s IUPAC name is 2,3-Dihydroxy-2-butenyl4(1-hydroxy-1-methylethyl)-2-propyl-1-[p-(o-1H-tetrazol-5phenyl) benzyl] imidazole carboxylate. According to literature survey it is reviled that UV and HPLC method for stability study of Cilnidipine and stability study of Olmesartan medoxomil are reported alone. The report state that the HPLC method for cilnidipine and Olmesartan is combination with other drugs so as per our knowledge and literature review there is no stability indicating RP-HPLC assay method for Olmesartan and cilnidipine is combine dosage form is reported the validated stability indicating RP-HPLC method for combination of cilnidipine and Olmesartan medoxomil was main aim of these work. Chemicals structures of CIL and OLM are shown in Figure 1 and Figure 2, respectively.

![Figure 1: Molecular structure of Olmesartan](image1)

![Figure 2: Molecular structure of Cilnidipine.](image2)
MATERIALS AND METHOD

Materials

Reagents and chemicals:
Analytically pure samples of Olmesartan and Cilnidipine were procured from RAP Lab. The marketed combined pharmaceutical dosage form of Olmesartan (10 mg) and Cilnidipine (20mg) i.e. CILNY O (INTAS) was purchased from local market. Distilled water, acetonitrile, phosphate buffer, methanol, potassium di-hydrogen phosphate buffer, ortho-phosphoric acid from Qualigens.

Instrument:
HPLC instrument used was of WATERS HPLC 2965 SYSTEM with auto injector and PDA detector. Software used is Empower 2. UV-VIS spectrophotometer PG Instruments T60 with special bandwidth of 2mm and 10mm and matched quartz was be used for measuring absorbance for Olmesartan and cilnidipine solutions.

Methods:

Preparation of buffer (0.1% OPA):
1ml of ortho phosphoric acid was diluted to 1000ml with water

Preparation of mobile phase:
The mobile phase was prepared by mixing of buffer and acetonitrile (42:58v/v) and the Ph adjusted to 4.8 by using ortho-phosphoric acid. The mobile phase was sonicated for 15min and then it was filtered through 0.45μ Whatman filter paper.

Standard preparation:
(100μg/ml cilnidipine & 200μg/ml Olmesartan) accurately weighed and transferred 1 0mg & 20mg of cilnidipine and Olmesartan working standards into a 10ml clean dry volumetric flask, add 7ml of diluent, sonicated for 30 minutes and make up to the final volume with diluents. From the above stock solution, 1 ml was pipetted out in to a10ml volumetric flask and then make up to the final volume with diluent.

Sample Preparation Method

Oxidation:
Pipette out 1 ml of stock solution of cilnidipine and Olmesartan into volumetric flask and 1 mlof 20% hydrogen peroxide (H2O2) was added. Then, the solutions were kept for 30 min at 60c. For HPLC study, the resultant solution was diluted to obtain 100μ g/ml & 200μ g/ml solution and 10μl were injected into the system and the chromatograms were recorded to assess the stability of sample.

www.ajptr.com
Acid Degradation studies:
Pipette 1 ml of stock solution of cilnidipine and Olmesartan into volumetric flask and 1 ml of 2N Hydrochloric acid was added. Then, the solutions kept for 30 mins at 60ºC. The resultant solution was diluted to obtain 100μ g/ml & 200μ g/ml solution and 10 μ l solutions were injected into the system and the chromatograms were recorded to assess the stability of sample.

Alkali degradation studies:
Pipette 1 ml of stock solution of cilnidipine and Olmesartan into volumetric flask and 1 ml of 2N sodium hydroxide was added and refluxed for 30 mins at 60ºC. The resultant solution was diluted to obtain 100μ g/ml & 200μ g/ml solution and 10 μ l were injected into the system and the chromatograms were recorded to assess the stability of sample. Dry heat degradation study The standard drug solution was placed in oven at 105°C for 6 h to study dry heat degradation. For HPLC study, the resultant solution was diluted to 100μ g/ml & 200μ g/ml solution and 10μl were injected into the system and the chromatograms were recorded to assess the stability of the sample.

Photo stability Studies:
The photochemical stability of the drug was also studied by exposing the 300g/ml & 10μ g/ml & 25μg/ml solution to UV light by keeping the beaker in UV chamber for 7 days or 200 Watt hours/m2 in photo stability chamber. For HPLC study, the resultant solution was diluted to obtain 100μ g/ml & 200μ g/ml solutions and 10 μ l were injected into the system and the chromatograms were recorded to assess the stability of sample.

Neutral degradation studies:
Stress testing under neutral conditions was studied by refluxing the drug in water for 6 hr. temperature of 60ºc. For HPLC study, the resultant solution was diluted to 100μg/ml & 200μg/ml solution and 10μl were injected into the system and the chromatograms were recorded to assess the stability of the sample.

Assay:
Standard preparations are made from the API and sample preparations are from formulation. Both sample and standards are injected six homogeneous samples. Drug in the formulation was estimated by taking the standard as the reference. The average % assay was calculated and found to be 100.14% and 100.01% for Olmesartan and cilnidipine respectively.
RESULTS AND DISCUSSION

Optimized Method:

Drugs were eluted with good retention time, resolution, all the system suitable parameters like plate count and tailing factor were within the limits.

Property	Olmesartan	Cilnidipine
Retention time (Rt)	2.317± 0.3 min	3.763±0.3min
Theoretical plates (N)	7548 ± 163.48	7382± 163.48
Tailing factor (T)	1.18 ±0.117	1.13± 0.117

Table.1. Assay of tablet

Dosage form	Active ingredients	Labeled amount (mg/tab)	Mean%±SD	Assay	% RSD
CILNY O	Cilnidipine	10 mg	10.014 ±0.36	100.14	0.36
TAB	Olmesartan	20 mg	20.002 ±0.60	100.01	0.60
Figure 4-Acid degradation chromatogram

Figure 5-Base degradation chromatogram

Figure 6-Oxidative degradation chromatogram
Figure 7- Thermal degradation chromatogram

Figure 8- UV degradation chromatogram

Figure 9- Water degradation chromatogram
Table 2- Degradation Result

Sr. Degradation NOcondition	% Drug degraded	Purity angle	Purity threshold	% Drug degraded	Purity angle	Purity threshold
1 Acid	7.81	0.313	0.411	7.42	0.190	0.406
2 Alkali	6.57	0.413	0.411	6.73	0.311	0.590
3 Oxidation	5.80	3.054	0.304	5.76	0.248	0.428
4 Thermal	4.82	0.494	0.691	4.92	0.282	0.392
5 UV	1.25	0.484	0.597	1.72	0.190	0.402
6 Water	0.85	0.442	0.564	0.84	0.249	0.402

CONCLUSION

In this research, work was accurate and stability indicating RP-HPLC method for resolution of CLN and OLM in the presence of degradation products was developed. Under force degradation study the stability of CLN and OLM using various stress condition were investigated. The stability indicating power of the method of all the degraded products were well determined from the target analytes. For the quality control studies of pharmaceutical dosage form of this combination, the presented information can be used. For routine analysis of CLN and OLM in combine tablet form this method can be used.

ACKNOWLEDGEMENT

This work was carried out at RAP LAB (MS), India. Special thanks to Mr. Rohan Pawar. Also thankful of Mr. Manoj Mahale, Miss.Karad P.B., Gayke Amol Prajyot Yelmame, and Shekhar Kokate for their guidance and encouragement.

REFERENCE

1. I. DSaimalakondaiah. Stability Indicating HPLC Method Development and Validation, International Journal of Pharma Research & Review, Oct 2014;3(10):46-57.
2. Saranjit Singh. Forced degradation studies to assess the stability of drugs and products, Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar 160 062, Punjab, India.
3. Sidhdhapara Mittal. Development and validation of RP-HPLC method for simultaneous estimation of cilnidipine and Olmesartan medoxomil in their combined tablet dosage form IJPBS, volume 4(1), 2014, 157-160.
4. Rashmi D.R. Development and validation of novel analytical methods for the simultaneous estimation of cilnidipine and Olmesartan medoxomil in bulk drug and pharmaceutical formulations, Rajiv Gandhi university of health sciences, Karnataka, bangalore, 2014, 01-09
5. Alagar Raja. A new analytical method development and validation for the Estimation of Olmesartan medoxomil and cilnidipine in its Pharmaceutical dosage form by UPLC as per IC guide lines, Asian journal of research in biological And Pharmaceutical sciences, 2015, 78 – 86.

6. Amit SM inase Development and validation of analytical method for simultaneous estimation of cilnidipine and Olmesartan medoxomil in bulk and tablet dosage form by rp-HPLC, International Journal of Pharmacy and Pharmaceutical Sciences, Vol 6, 2014, 508-511.

7. K.S. Kokilambigai. Analytical methodologies for determination of cilnidipine, International Journal of Pharmacy and Pharmaceutical Sciences, Vol 6, Issue 6, 2014, 36-38.

8. Chimalakonda Kameswara Rao. Development and Validation of Stability Indicating LC Method for Olmesartan Medoxomil, American Journal of Analytical Chemistry, 2012, 153-160.

9. Ganipisetty Lakshmi Ashwini. Stability Indicating RP-HPLC-PDA Method for Simultaneous Estimation of Olmesartan Cilnidipine and Chlorthalidone with Forced Degradation Behavior Study in Bulk and in Its Tablet Dosage Form, 380-392.

10. Manzoor Ahmed. RP-HPLC method development and validation for simultaneous estimation of cilnidipine and Olmesartan medoxomil in combined tablet dosage form, world Journal of pharmacy and pharmaceutical sciences, Oct 2014, Volume 4, 785-795.