Characterization of Microsatellite Markers in the African Tropical Tree Species *Guibourtia ehie* (Fabaceae, Detarioideae)

Author(s): Félicien Tosso, Jean-Louis Doucet, Jérémie Migliore, Kasso Daïnou, Esra Kaymak, Franck S. Monthe Kameni, and Olivier J. Hardy

Source: Applications in Plant Sciences, 5(7)
Published By: Botanical Society of America

https://doi.org/10.3732/apps.1700023
URL: http://www.bioone.org/doi/full/10.3732/apps.1700023
CHARACTERIZATION OF MICROSATELITE MARKERS IN THE AFRICAN TROPICAL TREE SPECIES *Guibourtia ehie* (Fabaceae, Detarioideae)\(^1\)

Félicien Tosso\(^2,3,7\), **Jean-Louis Doucet**\(^2\), **Jérémy Migliore**\(^3\), **Kasso Dainou**\(^2,4,5,6\), **Esra Kaymak**\(^3\), **Franck S. Monthe Kameni**\(^3\), and **Olivier J. Hardy**\(^3\)

\(^2\)Central African Forests, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium; \(^3\)Evolutionary Biology and Ecology Unit, CP 160/12, Faculté des Sciences, Université Libre de Bruxelles, Av. F. D. Roosevelt 50, B-1050 Brussels, Belgium; \(^4\)Nature+ asbl, Rue Provinciale 62, 1301 Wavre, Belgium; \(^5\)Management of Forest Resources, BIOSE Department, Gembloux Agro-Bio Tech, Université de Liège, B-5030 Gembloux, Belgium; and \(^6\)Université d’Agriculture de Kérou, BP 43 Kérou, Benin

Premise of the study: Microsatellite primers (simple sequence repeats [SSRs]) were developed in *Guibourtia ehie* (Fabaceae, Detarioideae) to study population genetic structure and the history of African vegetation.

Methods and Results: We isolated 18 polymorphic SSRs from a nonenriched genomic library. This set of primer pairs was tested on four populations, and the results showed two to 16 alleles per locus with mean observed and expected heterozygosities of 0.27 ± 0.05 and 0.57 ± 0.05, respectively. Cross-amplification tests in 13 congeneric species were successful for the four taxa belonging to the subgenus *Gorskia.*

Conclusions: This set of microsatellite markers will be useful to investigate the phylogeography and population genetics of *G. ehie,* a key representative of African semideciduous moist forests.

Key words: Fabaceae; *Guibourtia ehie*; microsatellites; next-generation sequencing.

Guibourtia ehie (A. Chev.) J. Léonard (Fabaceae, Detarioideae) is a timber species found in evergreen and semideciduous moist forests from Liberia to Gabon (Tosso et al., 2015). It is distributed on both sides of the Dahomey Gap, a portion of forest–savanna mosaic separating the Upper and Lower Guinean rainforest blocks (Salzmann and Hoelzmann, 2005). *Guibourtia ehie* is an insect-pollinated and wind-dispersed species (Tosso et al., 2015) exhibiting an abundant natural regeneration around the mother plant (Lemmens et al., 2008). Known as ovengkol in Gabon and amazakoué in Ivory Coast, it produces wood of high economic value. The major threat to this species (registered as vulnerable on the IUCN Red List) is logging, which causes local population declines (Hawthorne, 1995). *Guibourtia ehie* is therefore a good candidate to assess the impact of logging on gene flow (pollen and seed dispersal) and to study spatial genetic diversity issues before considering conservation plans. In addition, the wide spatial distribution of this species will likely be useful to better understand the history of African vegetation and the role of the Dahomey Gap in relation to successive past environmental changes. Because only a few of the microsatellites (simple sequence repeats [SSRs]) previously developed for *G. tessmannii* (Harms) J. Léonard (a central African species) cross-amplified in *G. ehie* (Tosso et al., 2016), we developed here a new set of polymorphic SSRs.

METHODS AND RESULTS

Development of microsatellites—To identify and characterize SSRs, total genomic DNA was extracted (from *G. ehie* dry leaf, voucher FT0272; Appendix 1) following the cetyltrimethylammonium bromide (CTAB) protocol described in Fu et al. (2005). We used the Illumina MiSeq platform (GIGA platform, Liège, Belgium; Illumina, San Diego, California, USA) to construct a nonenriched genomic DNA library following Mariaec et al. (2014), generating 255,460 paired-end reads 145 ± 3 bp long, which were pair-assembled with PANDAseq (Masella et al., 2012). The software QDD with the default settings (Miglécz et al., 2014) was used to identify 3597 microsatellite loci following the three classical steps: (i) SSR detection, (ii) elimination of similar sequences, and (iii) primer design. Among the 3597 loci, we selected a subset of 64 loci according to the following criteria: (i) having at least eight di- or trinucleotide repeats, (ii) having primers located at least 20 bp from the SSR motif, and (iii) characterized by PCR products 130–300 bp long. To have a good distribution of loci sizes and to facilitate multiplexing in the next steps, we then selected 48 loci for amplification tests. Each locus was labeled with the fluorochromes FAM, NED, VIC, or PET by adding one of four possible linkers (Q1–Q4; Micheneau et al., 2011) to the 5′ end of the forward primer (Table 1).

1 Manuscript received 18 March 2017; revision accepted 4 May 2017.

This work received financial and technical support from the Fonds pour la Formation à la Recherche dans l’Industrie et l’Agriculture (FRIA), the Fonds pour la Promotion de la Recherche dans l’Industrie et l’Agriculture (FFEM; DynAfFor project), CEB Precious Woods, Wijma Cameroun S.A., the Fonds Français pour l’Environnement Mondial (F.R.S.-FNRS, grant T.0163.13), Belgian Science Policy (AFRIFORD project), Fonds Français pour l’Environnement Mondial (FFEM, DynAfFor project), CEB Precious Woods, Wijma Cameroun S.A., and Centre national de la recherche scientifique et technique (CENAREST). The authors acknowledge Bérengère Doucet and Toussaint Abessolo for their assistance.

\(^2\)Author for correspondence: dnftosso@ulg.ac.be

doi:10.3732/apps.1700023

Applications in Plant Sciences 2017 5(7): 1700023; http://www.bioone.org/loi/apps © 2017 Tosso et al. Published by the Botanical Society of America. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-BY-NC-SA 4.0), which permits unrestricted noncommercial use and redistribution provided that the original author and source are credited and the new work is distributed under the same license as the original.
Microsatellite screening—Amplification tests of 48 primer pairs were performed using two individuals of *G. ehie* (FT0288 and FT0478; Appendix 1) in 15-μL PCR reactions with the following conditions: 1.5 μL of buffer (10×), 0.6 μL of MgCl₂ (25 mM), 0.45 μL of dNTPs (10 mM each), 0.5 μL of each primer (0.2 μM), 0.08 μL of Top Taq DNA Polymerase (5 U/μL), 1.5 μL of Coral Load, 1 μL of template DNA (of ca. 10–50 ng/μL), and 9.27 μL of water. PCR conditions were: 5-min initial de- naturation at 94 °C (10 min); 30 cycles of 94 °C for 45 s, and 72 °C for 60 s; and a final extension at 72 °C (10 min). Amplification products stained with 9 μL of Hi-Di Formamide (Life Technologies, Carlsbad, California, USA), and 0.3 μL of Map Marker 500 labeled with DY-632 (Eurogentec, Seraing, Belgium). We selected 19 primer pairs exhibiting clear chromatograms with no ambiguity in allele size determination. Eighteen primer pairs were polymorphic, and one locus (GuiE-ssr04) was monomorphic.

Data analysis—INEST 1.0 (Chybicki and Burczyk, 2009) was used to calculate the following indices on each of the four populations: number of alleles per locus, observed and expected heterozygosities, and inbreeding coefficient. We also tested deviation from Hardy–Weinberg equilibrium for each locus with an ABI3730 sequencer (Applied Biosystems, Lennox, The Netherlands) at the Department of Evolutionary Biology and Ecology, Université Libre de Bruxelles (Brussels, Belgium) using 1.1 μL of each PCR product, 12 μL of Hi-Di Formamide (Life Technologies, Carlsbad, California, USA), and 0.3 μL of Map Marker 500 labeled with DY-632 (Eurogentec, Seraing, Belgium). We selected 19 primer pairs exhibiting clear chromatograms with no ambiguity in allele size determination. Eighteen primer pairs were polymorphic, and one locus (GuiE-ssr04) was monomorphic.

Table 1. Characteristics of 19 nuclear microsatellite markers developed for *Guibourtia ehie*.

Locus	Primer sequences (5′–3′)	Fluorescent label	Repeat motif	Allele size range (bp)	GenBank accession no.
Multiplex 1					
GuiE-ssr39	F: CACTGCTTAGAGCGATGCTTGGTGTTAAAGTTGTTGGTTG	Q3-VIC	(AT)₄⁺	132–156	KY929303
GuiE-ssr34	R: ATTAGTTCTATGCTTATCTTCAA	Q2-NED	(AT)₁₀	152–180	KY929300
GuiE-ssr18	R: GAGGTCAAAGCAGGGAACAA	Q2-NED	(AG)₁₄	180–190	KY929294
GuiE-ssr05	F: GTGAAAAAGACTGATGTTGCG	Q1-6-FAM	(TC)₆	262–264	KY929289
GuiE-ssr33	R: CCAAGGCTCCATGCAATGCA	Q1-6-FAM	(AG)₁₁	142–153	KY929299
Multiplex 2					
GuiE-ssr36	F: TTAGGGATGACCAAGCATCAAAAGACCCCTCCCGAATCT	Q2-NED	(CT)₁₃	147–163	KY929301
GuiE-ssr03	R: TCAAGTACGATCTAAAGAACCTTT	Q4-PET	(TG)₃	219–283	KY929287
GuiE-ssr02	R: GCCAATGTAGTAGACTATGCAG	Q3-VIC	(ATT)₁₀	262–294	KY929286
GuiE-ssr06	R: CAGCTCTTAGAGGATGCTCCTAAGAAGCTAACC	Q3-VIC	(TA)₁₄	232–294	KY929290
GuiE-ssr31	F: GTGAAAAACAGGAGCCAGTATTAAACCTAAGCACAATC	Q1-6-FAM	(AG)₁₁	143–153	KY929298
Multiplex 3					
GuiE-ssr01	F: TTAGAAACAGGAGCCAGTATGAGTAGCAAAACCGGTA	Q1-6-FAM	(AG)₁₁	308–316	KY929285
GuiE-ssr04′	R: TGCCTAAATGCAGGTTGGAGTTTCAATC	Q4-PET	(CT)₈	267	KY929288
GuiE-ssr15	R: TCAAGTACGATCTAAAGAACCTTT	Q3-VIC	(TA)₁₀	200–230	KY929293
GuiE-ssr21	F: TCGAAACAGGAGCCAGTATGAGTAGCAAAACCGGTA	Q1-6-FAM	(TC)₁₂	141–189	KY929295
GuiE-ssr38	R: CCAAGGCTCCATGCAATGCA	Q2-NED	(AG)₁₀	143–152	KY929302
Multiplex 4					
GuiE-ssr30	F: CACTGCTTAGAGCGATGCTTGGTGTTAAAGTTGTTGGTTG	Q4-PET	(TA)₁₀	222–260	KY929291
GuiE-ssr11	R: GAGGTCAAAGCAGGGAACAA	Q3-VIC	(AT)₁₀	205–245	KY929292
GuiE-ssr28	R: CCAAGGCTCCATGCAATGCA	Q4-PET	(TA)₁₀	159–167	KY929296
GuiE-ssr30	F: TTAGGGATGACCAAGCATCAAAAGACCCCTCCCGAATCT	Q2-NED	(AG)₁₁	145–157	KY929297

* Optimal annealing temperature was 57°C and 53°C, respectively, for PCR cycles 1 and 2.

* The linkers (Q1, Q2, Q3, Q4) attached to the forward primers are underlined in the forward primer sequences.

* Monomorphic locus.
The mean number of alleles per locus among the four populations was seven (range 1–11). The observed heterozygosity (mean ± SE) was 0.28 ± 0.10 (range 0–0.85), 0.18 ± 0.17 (range 0–0.48), 0.19 ± 0.09 (range 0–0.67), and 0.22 ± 0.07 (range 0–0.65) for the Ghana, Ivory Coast, Cameroon, and Liberia populations, respectively. The expected heterozygosity was 0.41 ± 0.11 (range 0–0.92), 0.59 ± 0.07 (range 0–0.88), 0.46 ± 0.10 (range 0–0.88), and 0.48 ± 0.08 (range 0–0.84) for the Ghana, Ivory Coast, Cameroon, and Liberia populations, respectively. Significant deviation from Hardy–Weinberg equilibrium was observed for 13 loci at least in one population, in part due to the presence of null alleles (Table 2). All these SSR sequences have been deposited in GenBank (Table 1).

Cross-amplification in other Guibourtia species—We tested the 19 loci on 13 congeneric species using the PCR conditions described above. Three to eight of the 19 loci successfully amplified in four species from subgenus Gorskaia J. Léonard (to which G. ehie belongs), whereas two to six amplified for subgenus Pseudopomatia J. Léonard and two to three amplified for subgenus Guibourtia (Table 3). The locus GuiE-ssr15 amplified in all species. The limited transferability of G. ehie SSRs, which was also observed for G. tessmannii SSRs (Tosso et al., 2016), indicates a rather deep molecular divergence among Guibourtia species.

CONCLUSIONS

In this study, we developed 18 polymorphic microsatellite markers in G. ehie. These microsatellite markers will be useful to study intraspecific diversity and gene flow. They are also suitable to study the demographic history of G. ehie and provide insights into the past changes in African moist forest cover.

LITERATURE CITED

Chybicki, J. J., and J. Burczyk. 2009. Simultaneous estimation of null alleles and inbreeding coefficients. Journal of Heredity 100: 106–113.

Fu, X., Y. Huang, S. Deng, R. Zhou, G. Yang, X. Ni, W. Li, and S. Shi. 2005. Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Science 169: 147–154.

Hardy, O. J., and X. Vekemans. 2002. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618–620.

Holleley, C. E., and P. G. Geerts. 2009. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. BioTechniques 46: 511–517.

Lemmens, R. H. M. J., D. Louppe, and A. A. Oteng-Amoako. 2008. Bois d’œuvre, vol. 2. PROTA, Wageningen, The Netherlands.

Litt, S. M., C. A. Reitz, K. L. Pechmann, J. A. Rzedowski, and R. B. Moden. 2011. Development and characterization of microsatellite loci in Periplocas lota (Fabaceae) using a cost-efficient approach. American Journal of Botany 98: e268–e270.

Miegélec, E., N. Pich, A. Gilles, V. Dubut, P. Hingamp, A. Trilles, R. Grenier, and J. F. Martin, 2014. QDD version 3.1: A user-friendly computer program for microsatellite selection and primer design revisited: Experimental validation of variables determining genotyping success rate. Molecular Ecology Resources 14: 1302–1313.

Micheneau, C., G. Dauby, N. Bourland, J.-L. Doucet, and O. J. Hardy. 2011. Development and characterization of microsatellite loci in Pericopsis elata (Fabaceae) using a cost-efficient approach. American Journal of Botany 98: e268–e270.
Table 3. Cross-amplification results of 19 microsatellite markers isolated from *Guibourtia ehie* and tested in 13 congeneric species belonging to three *Guibourtia* subgenera.\(^a\)

Locus	Subgenus Gorskia	Subgenus Pseudocopaiva	Subgenus Guibourtia											
	G. arnoldiana \((N = 3)\)	G. schliebenii \((N = 3)\)	G. conjugata \((N = 1)\)	G. dinklagei \((N = 1)\)	G. tessmannii \((N = 10)\)	G. pellegriniana \((N = 7)\)	G. coleosperma \((N = 6)\)	G. leonensis \((N = 1)\)	G. hymenaefolia \((N = 1)\)	G. carrissomana \((N = 2)\)	G. copallifera \((N = 5)\)	G. demeusei \((N = 6)\)	G. sousae \((N = 1)\)	
Multiplex 1	GuiE-ssr39	122–136	130	154–156	—	130	130–136	—	—	—	118	—	118	132
	GuiE-ssr34	—	—	—	—	—	—	—	—	—	—	—	—	—
	GuiE-ssr18	180	—	196–198	—	—	—	—	—	—	—	—	—	—
	GuiE-ssr05	268–274	—	248–266	—	262–270	—	—	—	—	—	—	—	—
	GuiE-ssr33	—	—	—	—	—	—	—	—	—	—	—	—	—
Multiplex 2	GuiE-ssr36	153–155	136–154	—	—	148–172	154–156	—	—	—	—	144–156	182–206	—
	GuiE-ssr03	—	—	—	—	—	—	—	—	—	—	—	—	—
	GuiE-ssr02	278–280	—	—	—	—	—	—	—	—	—	—	—	—
	GuiE-ssr06	200	—	—	—	—	—	—	—	—	—	—	—	—
	GuiE-ssr31	—	—	—	—	—	—	—	—	—	—	—	—	—
Multiplex 3	GuiE-ssr01	314	—	266–272	—	—	—	—	—	—	—	—	—	—
	GuiE-ssr04	—	—	—	—	—	—	—	—	—	—	—	—	—
	GuiE-ssr15	242	200–266	200	210–224	204	194–206	174–206	204	214	208	160	208–240	206
	GuiE-ssr21	—	146	148	156–168	141–146	141	—	—	144	—	—	—	—
	GuiE-ssr38	—	—	—	—	—	—	—	—	—	—	—	—	—
Multiplex 4	GuiE-ssr08	—	—	—	—	—	—	—	—	—	—	—	—	—
	GuiE-ssr11	—	—	—	—	—	—	—	—	—	—	—	—	—
	GuiE-ssr28	—	—	—	—	—	—	—	—	—	—	—	—	—
	GuiE-ssr30	—	150–160	—	—	—	—	—	—	—	—	—	157	—

Note: — = not applicable; \(N\) = number of individuals sampled.

\(^a\)Locality and voucher information are available in Appendix 1.
Voucher information for the *Guibourtia* samples used in this study.

Species	Number	Voucher no.	Country	Latitude	Longitude
Guibourtia ehie (A. Chev.)	1	FT0272	Ghana	7.09241	-2.11953
Guibourtia ehie	1	FT0288	Ghana	7.08999	-2.11845
Guibourtia ehie	1	FT0478	Ivory Coast	6.30892	-5.28866
Guibourtia ehie	5	FT0497, FT0491, FT0515, FT0510, FT0521	Ivory Coast	6.21	-3.41
Guibourtia ehie	3	FT0241, FT0261, FT0241	Ghana	7.07	-2.08
Guibourtia ehie	8	OH4661-OH4668	Cameroon	2.31	9.96
Guibourtia ehie	20	FT0029, FT0038, FT0059, FT0078, FT0087, FT0095, FT0102, FT0104, FT0115, FT0125, FT0137, FT0146, FT0158, FT0163, FT0169, FT0180, FT0192, FT0192a, FT0193, FT0197	Cameroon	7.06	-2.08
Guibourtia ehie	23	FT0398-FT0400, FT0336, FT0355, FT0373, FT0382, FT0384, FT0389, FT0411, FT0430, FT0465, FT0489, FT0491, FT0497, FT0497, FT0498, FT0510, FT0515, FT0519, FT0521, FT0858, FT0859	Ivory Coast	6.21	-2.42
Guibourtia ehie	15	FT0398, FT0336, FT0355, FT0373, FT0382, FT0384, FT0389, FT0411, FT0430, FT0465, FT0489, FT0491, FT0497, FT0497, FT0498, FT0510, FT0515, FT0519, FT0521, FT0858, FT0859	Cameroon	2.44	9.92
Guibourtia ehie	20	NB116, NB389, NB391, NB395, NB399, NB401, NB402, NB403, NB405, NB408, NB413, NB414, NB415, NB417, NB418, NB419, NB423, NB424, NB425, NB91	Liberia	7.56	-8.64
Guibourtia arnoldiana (De Wild. & T. Durand) J. Léonard	3	HB00527556	Gabon	-1.3465	9.7232
Guibourtia schliebenii (Harms) J. Léonard	3	B23-HB10151	Mozambique	-11.1529	39.7343
Guibourtia conjugata (Bolle) J. Léonard	1	B33-HB3499528	Mozambique	-23.6548	32.1746
Guibourtia dinklagei (Harms) J. Léonard	1	B21-HB11235	Liberia	6.279	-10.7603
Guibourtia tessmannii (Harms) J. Léonard	10	FT0607–FT0613, FT0635–FT0636	Cameroon	2.2236	10.3793
Guibourtia pellegriniana J. Léonard	7	B11-HB1578	Gabon	1.4286	11.5886
Guibourtia coleosperma (Benth.) J. Léonard	6	FT0021–FT0025, FT0028	Namibia	-17.85	19.67
Guibourtia leonensis J. Léonard	1	B45-HB3015140	Sierra Leone	8.9852	-11.7169
Guibourtia hymenaefolia (Moric.) J. Léonard	1	B44-HB252852	Cuba	22.1315	-80.3382
Guibourtia carrissoma (M. A. Exell) J. Léonard	2	B19-HB10458	Angola	-8.9341	13.1864
Guibourtia copallifera Benn.	5	FT0880–FT0884	Angola	-8.836	13.2593
Guibourtia demeusei (Harms) J. Léonard	6	FT0873–FT0875, OH3245	Burkina-Faso	9.95	4.67
Guibourtia sousae J. Léonard	1	B52-HB892206	Gabon	-2.2487	9.5929

Note: DRC = Democratic Republic of the Congo; N = number of individuals.

Vouchers are deposited at the Herbarium of the Université Libre de Bruxelles, Brussels, Belgium (BRLU), silica gel collection of Dr. Olivier Hardy.

Individual used for genomic library.

Individuals used for amplification tests.

Individuals used for polymorphism tests.

Individuals used for cross-amplification tests.