BOUND OF AUTOMORPHISMS OF PROJECTIVE VARIETIES OF GENERAL TYPE

Hajime TSUJI

April, 2000

Abstract

We prove that there exists a positive integer C_n depending only on n such that for every smooth projective n-fold of general type X defined over \mathbb{C}, the automorphism group $\text{Aut}(X)$ of X satisfies

$$\#\text{Aut}(X) \leq C_n \cdot \mu(X, K_X),$$

where $\mu(X, K_X)$ is the volume of X with respect to K_X. MSC14E05,32J25.

1 Introduction

The automorphism group of a projective variety of general type is known to be finite. For every curve C of genus $g \geq 2$, we have the estimate:

$$\#\text{Aut}(C) \leq 84(g - 1)$$

by well known Hurwitz’s theorem.

In the case of surfaces, G. Xiao proved that for every smooth minimal surface of general type

$$\#\text{Aut}(S) \leq 1764 \cdot K_S^2$$

holds \[17\]. The main purpose of this article is to prove the following theorem.
Theorem 1.1 There exists a positive number C_n which depends only on n such that for every smooth projective n-fold X of general type defined over complex numbers, the automorphism group $\text{Aut}(X)$ of X satisfies the estimate:

$$\sharp \text{Aut}(X) \leq C_n \cdot \mu(X, K_X),$$

where $\mu(X, K_X)$ is the volume of X with respect to K_X (cf. Definition 2.3).

The method of the proof of Theorem 1.1 is a combination of the ideas in \cite{17, 18} and \cite{15}. Let X be a projective n-fold of general type and let G denote the automorphism group of X. Since G acts on the canonical ring $R(X, K_X)$ of X, by \cite{14} we may assume that X is a canonical model, i.e. X has only canonical singularity and K_X is ample (our proofs of Theorem 1.1 and Theorem 1.2 below depend on the finite generation of canonical rings of varieties of general type in \cite{14} which has not yet published. For the safe side, one may restrict oneself to the case of $\dim X \leq 3$ (cf. \cite{8})) The quotient X/G is a projective variety. Let $K_{X/G, orb}$ be the orbifold canonical divisor of X/G. Then we see that

$$| G | = \frac{K^n_X}{K^n_{X/G, orb}}$$

holds, where $| G |$ denotes the order of G. Since $\mu(X, K_X) = K^n_X$ holds in this case, we see that Theorem 1.1 follows from the following theorem.

Theorem 1.2 Let X, G be as above. There exists a positive constant c_n depending only on n such that

$$K^n_{X/G, orb} \geq c_n$$

holds.

It is easy to see c_1 can be taken to be $1/42$. This leads to Hurwicz’s theorem. G. Xiao proved that c_2 can be taken as $1/1764$ (\cite{17, 18}).

The key ingredient of the proof of Theorem 1.2 is the subadjunction formula in \cite{6} which relates the canonical divisor of the minimal center of log-canonical singularities and the canonical divisor of the ambient space. Using this we see that X/G with $\mu(X/G, K_{X/G, orb}) = K^n_{X/G, orb} \leq 1$ is birationally bounded by the inductive procedure in \cite{13}. Then Theorem 1.1 and Theorem 1.2 follows from a Diophantine consideration.

Theorem 1.1 and Theorem 1.2 are not effective in the sense that there exist no explicit estimates of C_n and c_n.

2

2 Preliminaries

2.1 Orbifold canonical divisors

Let X be a projective variety of general type with only canonical singularities. Let G denote the automorphism group of X. It is well known that G is a finite group. The quotient X/G is a projective variety. Let \tilde{X} be the equivalent resolution of X with respect to G such that \tilde{X}/G is also smooth. We may take \tilde{X} such that the ramification divisor R of

$$\tilde{\pi} : \tilde{X} \longrightarrow \tilde{X}/G$$

and the branch locus $B = (\tilde{\pi}_*(R))_{\text{red}}$ is a divisor with normal crossings. Let $B = \sum_i B_i$ be the irreducible decomposition of B. Then there exists a set of positive integers m_i such that

$$K_{\tilde{X}} = \tilde{\pi}^*(K_{\tilde{X}/G} + \sum_i \frac{m_i - 1}{m_i} B_i)$$

Let

$$\varpi : \tilde{X}/G \longrightarrow X/G$$

be the natural morphism. We set

$$K_{X/G,\text{orb}} := \varpi_*(K_{\tilde{X}/G} + \sum_i \frac{m_i - 1}{m_i} B_i)$$

and call it the orbifold canonical divisor of X/G. Let

$$\pi : X \longrightarrow X/G$$

be the natural morphism. Then

$$K_X = \pi^*K_{X/G,\text{orb}}$$

holds. The orbifold canonical ring is defined by

$$R(X/G, K_{X/G,\text{orb}}) := R(X, K_X)^G.$$

And the linear system $| mK_{X/G,\text{orb}} |$ is given by

$$| mK_{X/G,\text{orb}} | = | mK_X |^G.$$

Hence we have that

$$R(X/G, K_{X/G,\text{orb}}) = \oplus_{m \geq 0} \Gamma(X/G, \mathcal{O}_{X/G}([mK_{X/G,\text{orb}}]))$$

holds.
2.2 Multiplier ideal sheaves

In this section, we shall review the basic definitions and properties of multiplier ideal sheaves.

Definition 2.1 Let L be a line bundle on a complex manifold M. A singular hermitian metric h is given by

$$h = e^{-\varphi} \cdot h_0,$$

where h_0 is a C^∞-hermitian metric on L and $\varphi \in L^1_{\text{loc}}(M)$ is an arbitrary function on M.

The curvature current Θ_h of the singular hermitian line bundle (L, h) is defined by

$$\Theta_h := \Theta_{h_0} + \sqrt{-1} \partial \bar{\partial} \varphi,$$

where $\partial \bar{\partial}$ is taken in the sense of a current. The L^2-sheaf $\mathcal{L}^2(L, h)$ of the singular hermitian line bundle (L, h) is defined by

$$\mathcal{L}^2(L, h) := \{ \sigma \in \Gamma(U, \mathcal{O}_M(L)) \mid h(\sigma, \sigma) \in L^1_{\text{loc}}(U) \},$$

where U runs opens subsets of M. In this case there exists an ideal sheaf $\mathcal{I}(h)$ such that

$$\mathcal{L}^2(L, h) = \mathcal{O}_M(L) \otimes \mathcal{I}(h)$$

holds. We call $\mathcal{I}(h)$ the multiplier ideal sheaf of (L, h). If we write h as

$$h = e^{-\varphi} \cdot h_0,$$

where h_0 is a C^∞ hermitian metric on L and $\varphi \in L^1_{\text{loc}}(M)$ is the weight function, we see that

$$\mathcal{I}(h) = \mathcal{L}^2(\mathcal{O}_M, e^{-\varphi})$$

holds. We have the following vanishing theorem.

Theorem 2.1 (Nadel’s vanishing theorem [9, p.561]) Let (L, h) be a singular hermitian line bundle on a compact Kähler manifold M and let ω be a Kähler form on M. Suppose that Θ_h is strictly positive, i.e., there exists a positive constant ε such that

$$\Theta_h \geq \varepsilon \omega$$

holds. Then $\mathcal{I}(h)$ is a coherent sheaf of \mathcal{O}_M-ideal and for every $q \geq 1$

$$H^q(M, \mathcal{O}_M(K_M + L) \otimes \mathcal{I}(h)) = 0$$

holds.
2.3 Analytic Zariski decomposition

To study a big line bundle we introduce the notion of analytic Zariski decompositions. By using analytic Zariski decompositions, we can handle big line bundles like a nef and big line bundles.

Definition 2.2 Let M be a compact complex manifold and let L be a line bundle on M. A singular hermitian metric h on L is said to be an analytic Zariski decomposition, if the followings hold.

1. Θ_h is a closed positive current,
2. for every $m \geq 0$, the natural inclusion

 $$H^0(M, \mathcal{O}_M(mL) \otimes \mathcal{I}(h^m)) \rightarrow H^0(M, \mathcal{O}_M(mL))$$

 is isomorphism.

Remark 2.1 If an AZD exists on a line bundle L on a smooth projective variety M, L is pseudoeffective by the condition 1 above.

Theorem 2.2 ([11, 12]) Let L be a big line bundle on a smooth projective variety M. Then L has an AZD.

2.4 Volume of projective varieties

To measure the positivity of big line bundles on a projective variety we shall introduce a volume of a projective variety with respect to a line bundle.

Definition 2.3 Let L be a line bundle on a compact complex manifold M of dimension n. We define the L-volume of M by

$$\mu(M, L) := n! \cdot \limsup_{m \to \infty} m^{-n} \dim H^0(M, \mathcal{O}_M(mL)).$$

Definition 2.4 ([14]) Let L be a big line bundle on a smooth projective variety X. Let Y be a subvariety of X of dimension r. We define the volume $\mu(Y, L)$ of Y with respect to L by

$$\mu(Y, L) := r! \cdot \limsup_{m \to \infty} m^{-r} \dim H^0(Y, \mathcal{O}_Y(mL) \otimes \mathcal{I}(h^m)/\text{tor}),$$

where h is an AZD of L and tor denotes the torsion part of the sheaf $\mathcal{O}_Y(mL) \otimes \mathcal{I}(h^m)$. This definition can be easily generalized to the case that L is a \mathbb{Q}-line bundle.
3 Stratification of varieties by multiplier ideal sheaves

Let X be a smooth projective n-fold of general type. Then the canonical ring $R(X, K_X)$ is finitely generated by $[12]$. Let X_{can} be the canonical model of X. $K_{X_{can}}$ is an ample \mathbb{Q}-Cartier divisor on X_{can}. We assume that the natural rational map

$$\varphi : X \dasharrow X_{can}$$

is a morphism. Let h_{can} be a C^∞-hermitian metric on $K_{X_{can}}$ induced from the Fubini-Study metric on the hyperplane bundle of a projective space by a projective embedding of X_{can} associated with $| rK_{X_{can}} |$ where r is a sufficiently large positive integer such that $rK_{X_{can}}$ is Cartier. Then h_{can} has strictly positive curvature on X_{can}. h_{can} induces a singular hermitian metric h on K_X in a natural manner. By the definition, h is an AZD of K_X. To prove Theorem 1.1, we may replace X by any birational model of X, we may assume that there exists an effective \mathbb{Q}-divisor N such that $I(h^m) = \mathcal{O}_X([-mN])$ holds for every $m \geq 0$. In particular we may and do assume that $I(h^m)$ is locally free for every $m \geq 0$. Let us denote $\mu(X/G, K_{X/G, orb})$ by μ_0. We set

$$X^\circ = \{ x \in X \mid \varphi \text{ is a local isomorphism around } x \}.$$

Let G be the group of the birational automorphism of X. To prove Theorem 1.1, we may assume that G acts X regularly and X/G is also smooth. Let

$$\pi : X \longrightarrow X/G$$

be the natural morphism. We set

$$(X/G)^\circ = \pi(X^\circ).$$

Lemma 3.1 Let x, y be distinct points on $(X/G)^\circ$. We set

$$\mathcal{M}_{x,y} = \mathcal{M}_x \otimes \mathcal{M}_y$$

Let ε be a sufficiently small positive number. Then

$$H^0(X/G, \mathcal{O}_{X/G}(mK_{X/G, orb}) \otimes \mathcal{M}_{x,y}^{[\sqrt[\frac{1}{m}] (1-\varepsilon) \frac{m}{m^2}]}) \neq 0$$

for every sufficiently large m, where $\mathcal{M}_x, \mathcal{M}_y$ denote the maximal ideal sheaf of the points x, y respectively.
Proof of Lemma 3.1. Let us consider the exact sequence:

\[0 \to H^0(X/G, \mathcal{O}_{X/G}(mK_{X/G,orb}) \otimes \mathcal{M}_{x,y}^{\left[\frac{\psi_{m_0}(1-\varepsilon)}{\sqrt{2}} \right]}) \to H^0(X/G, \mathcal{O}_{X/G}(mK_{X/G,orb})) \to H^0(X/G, \mathcal{O}_{X/G}(mK_{X/G,orb})/\mathcal{M}_{x,y}^{\left[\frac{\psi_{m_0}(1-\varepsilon)}{\sqrt{2}} \right]}). \]

Since \(n! \limsup_{m \to \infty} m^{-n} \dim H^0(X/G, \mathcal{O}_{X/G}(mK_{X/G,orb})/\mathcal{M}_{x,y}^{\left[\frac{\psi_{m_0}(1-\varepsilon)}{\sqrt{2}} \right]}) = \mu_0(1-\varepsilon)^n < \mu_0 \)
hold, we see that Lemma 3.1 holds. Q.E.D.

Let us take a sufficiently large positive integer \(m_0 \) and let \(\sigma \) be a general (nonzero) element of \(H^0(X/G, \mathcal{O}_{X/G}(m_0K_{X/G,orb}) \otimes \mathcal{M}_{x,y}^{\left[\frac{\psi_{m_0}(1-\varepsilon)}{\sqrt{2}} \right]}) \). We define a singular hermitian metric \(h_0 \) on \(K_{X/G,orb} \) by

\[h_0(\tau, \tau) := \frac{|\tau|^2}{|\sigma|^{2/m_0}}. \]

Then \(\Theta_{h_0} = \frac{2\pi}{m_0}(\sigma) \) holds, where \((\sigma) \) denotes the closed positive current defined by the divisor \((\sigma) \). Hence \(\Theta_{h_0} \) is a closed positive current. Let \(\alpha \) be a positive number and let \(\mathcal{I}(\alpha) \) denote the multiplier ideal sheaf of \(h_0^\alpha \), i.e.,

\[\mathcal{I}(\alpha) = \mathcal{L}^2(\mathcal{O}_{X/G}, (\frac{h_0}{h_{X/G}})^\alpha), \]

where \(h_{X/G} \) is an arbitrary \(C^\infty \)-hermitian metric on \(K_{X/G,orb} \). Let us define a positive number \(\alpha_0(= \alpha_0(x, y)) \) by

\[\alpha_0 := \inf\{ \alpha > 0 \mid (\mathcal{O}_{X/G}/\mathcal{I}(\alpha))_x \neq 0 \text{ and } (\mathcal{O}_{X/G}/\mathcal{I}(\alpha))_y \neq 0 \}. \]

Since \((\sum_{i=1}^n |z_i|^2)^{-n} \) is not locally integrable around \(O \in \mathbb{C}^n \), by the construction of \(h_0 \), we see that

\[\alpha_0 \leq \frac{n \sqrt{2}}{\sqrt{\mu_0(1-\varepsilon)}} \]

holds. Then one of the following two cases occurs.
Case 1.1: For every small positive number δ, $\mathcal{O}_{X/G}/\mathcal{I}(\alpha_0 - \delta)$ has 0-stalk at both x and y.

Case 1.2: For every small positive number δ, $\mathcal{O}_{X/G}/\mathcal{I}(\alpha_0 - \delta)$ has nonzero-stalk at one of x or y say y.

First we consider Case 1.1. Let δ be a sufficiently small positive number and let V_1 be the germ of subscheme at x defined by the ideal sheaf $\mathcal{I}(\alpha_0 + \delta)$. By the coherence of $\mathcal{I}(\alpha)(\alpha > 0)$, we see that if we take δ sufficiently small, then V_1 is independent of δ. It is also easy to verify that V_1 is reduced if we take δ sufficiently small. In fact if we take a log resolution of $(X/G, \sigma)$, V_1 is the image of the divisor with discrepancy -1 (for example cf. [4, p.207]). Let $(X/G)_1$ be a subvariety of X/G which defines a branch of V_1 at x. We consider the following two cases.

Case 2.1: $(X/G)_1$ passes through both x and y,

Case 2.2: Otherwise

For the first we consider Case 2.1. Suppose that $(X/G)_1$ is not isolated at x. Let n_1 denote the dimension of $(X/G)_1$. Let us define the volume μ_1 of $(X/G)_1$ with respect to $K_{X/G,\text{orb}}$ by

$$\mu_1 := \mu((X/G)_1, K_{X/G,\text{orb}}).$$

Since $x \in X/G^o$, we see that $\mu_1 > 0$ holds.

Lemma 3.2 Let ε be a sufficiently small positive number and let x_1, x_2 be distinct regular points on $(X/G)_1 \cap X/G^o$. Then for a sufficiently large $m > 1$ divisible by $|G|$, $H^0((X/G)_1, \mathcal{O}_{(X/G)_1}(mK_{X/G,\text{orb}}) \otimes \mathcal{I}(h^m) \otimes \mathcal{M}_{x_1,x_2}[^{n_1\mu_1/(1-\varepsilon)\cdot m}]) \neq 0$

holds.

The proof of Lemma 3.2 is identical as that of Lemma 3.1, since

$$\mathcal{I}(h^m)_{x_i} = \mathcal{O}_{X/G,x_i}(i = 1, 2)$$

hold for every m.

8
By Kodaira’s lemma there is an effective \mathbb{Q}-divisor E such that $K_{X/G,\text{orb}} - E$ is ample. Let ℓ be a sufficiently large positive integer such that

$$L := \ell(K_{X/G,\text{orb}} - E)$$

is a line bundle and satisfies the property in Lemma 3.3.

Lemma 3.3 If we take ℓ sufficiently large, then

$$\phi_m : H^0(X/G, \mathcal{O}_{X/G}(mK_{X/G,\text{orb}} + L) \otimes \mathcal{I}(h^m)) \to H^0((X/G)_1, \mathcal{O}_{(X/G)_1}(mK_{X/G,\text{orb}} + L) \otimes \mathcal{I}(h^m))$$

is surjective for every $m \geq 0$ divisible by $|G|$.

Proof. Let us take a locally free resolution of the ideal sheaf $\mathcal{I}_{(X/G)_1}$ of $(X/G)_1$:

$$0 \leftarrow \mathcal{I}_{(X/G)_1} \leftarrow \mathcal{E}_1 \leftarrow \mathcal{E}_2 \leftarrow \cdots \leftarrow \mathcal{E}_k \leftarrow 0.$$

Then by the trivial extension of the case of vector bundles, if r is sufficiently large, we see that

$$H^q(X/G, \mathcal{O}_{X/G}(mK_{X/G,\text{orb}} + L) \otimes \mathcal{I}(h^m) \otimes \mathcal{E}_j) = 0$$

holds for every $m \geq 1$, $q \geq 1$ and $1 \leq j \leq k$. In fact if we take ℓ sufficiently large, we see that for every j, $\mathcal{O}_{X/G}(L - K_{X/G}) \otimes \mathcal{E}_j$ admits a C^∞-hermitian metric g_j such that

$$\Theta_{g_j} \geq \text{Id}_{\mathcal{E}_j} \otimes \omega$$

holds, where ω is a Kähler form on X/G. By [2, Theorem 4.1.2 and Lemma 4.2.2] we have the desired vanishing.

Hence

$$H^1(X/G, \mathcal{O}_{X/G}(mK_{X/G,\text{orb}} + L) \otimes \mathcal{I}(h^m) \otimes \mathcal{I}_{(X/G)_1}) = 0$$

holds. This completes the proof of Lemma 3.3. Q.E.D.

Let τ be a general section in $H^0(X/G, \mathcal{O}_{X/G}(L))$.

Let m_1 be a sufficiently large positive integer divisible by $|G|$ and let σ'_1 be a general element of

$$H^0((X/G)_1, \mathcal{O}_{(X/G)_1}(m_1K_{X/G,\text{orb}}) \otimes \mathcal{I}(h^{m_1}) \otimes \mathcal{M}_{x_1, x_2}^{\left\lceil \frac{n_1 m_1 (1 - \varepsilon) m_1}{n_2} \right\rceil}),$$

9
where \(x_1, x_2 \in (X/G)_1 \) are distinct nonsingular points on \((X/G)_1\).

By Lemma 3.2, we may assume that \(\sigma'_1 \) is nonzero. Then by Lemma 3.3 we see that
\[
\sigma'_1 \otimes \tau \in H^0((X/G)_1, \mathcal{O}_{(X/G)_1}(m_1 K_{X/G,orb} + L) \otimes \mathcal{I}(h^{m_1}) \otimes M_{x_1, x_2}^{[\frac{n_1 \mu_1 (1 - \varepsilon \sqrt{2})}{\sqrt{2} \sqrt{2}}]})
\]
extends to a section
\[
\sigma_1 \in H^0(X/G, \mathcal{O}_{X/G}(m + \ell) K_{X/G,orb} \otimes \mathcal{I}(h^{m+\ell}))
\]
We may assume that there exists a neighbourhood \(U_{x,y} \) of \(\{x, y\} \) such that the divisor \((\sigma_1)\) is smooth on \(U_{x,y} - (X/G)_1 \) by Bertini’s theorem, if we take \(\ell \) sufficiently large, since by Theorem 2.1,
\[
H^0(X/G, \mathcal{O}_{X/G}(m K_{X/G,orb} + L) \otimes \mathcal{I}(h^m)) \to H^0(X/G, \mathcal{O}_{X/G}(m K_{X/G,orb} + L) \otimes \mathcal{I}(h^m))/\mathcal{O}_{X/G}(- (X/G)_1) \cdot \mathcal{M}_y)
\]
is surjective for every \(y \in X/G \) and \(m \geq 0 \) divisible by \(|G| \), where \(\mathcal{O}_{X/G}(- (X/G)_1) \) is the ideal sheaf of \((X/G)_1\). We define a singular hermitian metric \(h_1 \) on \(K_{X/G,orb} \) by
\[
h_1 = \frac{1}{|\sigma_1|^{\frac{1}{m_1 + \ell}}}.
\]
Let \(\varepsilon_0 \) be a sufficiently small positive number and let \(\mathcal{I}_1(\alpha) \) be the multiplier ideal sheaf of \(h_0^{\alpha_0 - \varepsilon_0} \cdot h_1^{\alpha} \), i.e.,
\[
\mathcal{I}_1(\alpha) = \mathcal{L}^2(\mathcal{O}_{X/G}, h_0^{\alpha_0 - \varepsilon_0} h_1^{\alpha} / h_1^{\alpha_0 + \varepsilon_0}).
\]
Suppose that \(x, y \) are nonsingular points on \((X/G)_1\). Then we set \(x_1 = x, x_2 = y \) and define \(\alpha_1 := \alpha_1(x, y) > 0 \) by
\[
\alpha_1 := \inf \{ \alpha \mid (\mathcal{O}_{X/G}/\mathcal{I}_1(\alpha))_x \neq 0 \text{ and } (\mathcal{O}_{X/G}/\mathcal{I}_1(\alpha))_y \neq 0 \}.
\]
By Lemma 3.3 we may assume that we have taken \(m_1 \) so that
\[
\frac{\ell}{m_1} \leq \varepsilon_0 \frac{n \sqrt{\mu_1}}{n_1 \sqrt{2}}
\]
holds.

Lemma 3.4
\[
\alpha_1 \leq n_1 \frac{n_1 \sqrt{2}}{\sqrt{\mu_1}} + O(\varepsilon_0)
\]
holds.
To prove Lemma 3.4, we need the following elementary lemma.

Lemma 3.5 ([14], p.12, Lemma 6]) Let a, b be positive numbers. Then

$$
\int_0^1 \frac{r_2^{2n_1-1}}{(r_1^2 + r_2^{2a})^b} dr_2 = r_1^{-2a} \int_0^1 \frac{r_3^{2n_1-1}}{(1 + r_3^{2a})^b} dr_3
$$

holds, where

$$
r_3 = r_2 / r_1^{1/a}.
$$

Proof of Lemma 3.3. Let (z_1, \ldots, z_n) be a local coordinate on a neighbourhood U of x in X/G such that

$$
U \cap (X/G)_1 = \{ q \in U \mid z_{n_1+1}(q) = \cdots = z_n(q) = 0 \}.
$$

We set $r_1 = (\sum_{i=n_1+1}^{n_1} |z_i|^2)^{1/2}$ and $r_2 = (\sum_{i=1}^{n_1} |z_i|^2)^{1/2}$. Then there exists a positive constant C such that

$$
\| \sigma_1 \|^2 \leq C(r_1^2 + r_2^{2\left[n\sqrt{m(1-\varepsilon)} \cdot \frac{n_1}{\sqrt{2}}\right]})
$$

holds on a neighbourhood of x, where $\| \|$ denotes the norm with respect to $h_{X/G}^{m_1+\ell}$. We note that there exists a positive integer M such that

$$
\| \sigma \|^2 = O(r_1^{-M})
$$

holds on a neighbourhood of the generic point of $U \cap (X/G)_1$, where $\| \|$ denotes the norm with respect to $h_{X/G}^{m_0}$. Then by Lemma 3.5, we have the inequality

$$
\alpha_1 \leq (m_1 + \ell) \cdot \frac{n_1}{m_1} \cdot \frac{n\sqrt{2}}{n\sqrt{\mu_1}} + O(\varepsilon_0)
$$

holds. By using the fact that

$$
\frac{\ell}{m_1} \leq \varepsilon_0 \cdot \frac{n\sqrt{\mu_1}}{n_1 \sqrt{2}}
$$

we obtain that

$$
\alpha_1 \leq \frac{n_1}{n\sqrt{\mu_1}} \cdot \frac{n\sqrt{2}}{n_1} + O(\varepsilon_0)
$$

holds. Q.E.D.

If x or y is a singular point on $(X/G)_1$, we need the following lemma.
Lemma 3.6 Let φ be a plurisubharmonic function on $\Delta^n \times \Delta$. Let $\varphi_t(t \in \Delta)$ be the restriction of φ on $\Delta^n \times \{t\}$. Assume that $e^{-\varphi_t}$ does not belong to $L^1_{\text{loc}}(\Delta^n, O)$ for every $t \in \Delta^*$.

Then $e^{-\varphi_0}$ is not locally integrable at $O \in \Delta^n$.

Lemma 3.6 is an immediate consequence of [10]. Using Lemma 3.6 and Lemma 3.5, we see that Lemma 3.4 holds by letting $x_1 \to x$ and $x_2 \to y$.

For the next we consider Case 1.2 and Case 2.2. We note that in Case 2.2 by modifying σ a little bit, if necessary we may assume that $(\mathcal{O}_{X/G}/\mathcal{I}(\alpha_0 - \varepsilon))_y \neq 0$ and $(\mathcal{O}_{X/G}/\mathcal{I}(\alpha_0 - \varepsilon'))_x = 0$ hold for a sufficiently small positive number ε'. For example it is sufficient to replace σ by the following σ' constructed below.

Let X/G'_1 be a subvariety which defines a branch of

$$\text{Spec}(\mathcal{O}_{X/G}/\mathcal{I}(\alpha + \delta))$$

at y. By the assumption (changing $(X/G)_1$, if necessary) we may assume that $(X/G)_1'$ does not contain x. Let m' be a sufficiently large positive integer divisible by $| G |$ such that m'/m_0 is sufficiently small (we can take m_0 arbitrary large).

Let τ_y be a general element of

$$H^0(X/G, \mathcal{O}_{X/G}(m'K_{X/G,\text{orb}}) \otimes \mathcal{I}_{(X/G)_1'})$$

where $\mathcal{I}_{(X/G)_1'}$ is the ideal sheaf of $(X/G)_1'$. If we take m' sufficiently large, τ_y is not identically zero. We set

$$\sigma' = \sigma \cdot \tau_y.$$

Then we see that the new singular hermitian metric h'_0 defined by σ' satisfies the desired property.

In these cases, instead of Lemma 3.2, we use the following simpler lemma.

Lemma 3.7 Let ε be a sufficiently small positive number and let x_1 be a smooth point on $(X/G)_1$. Then for a sufficiently large $m > 1$ divisible by $| G |$,

$$H^0((X/G)_1, \mathcal{O}_{(X/G)_1}(mK_{X/G,\text{orb}}) \otimes \mathcal{I}(h^m) \otimes \mathcal{M}_{x_1}^{[n\sqrt{m(1-\varepsilon)m}])} \neq 0$$

holds.
Then taking a general σ'_1 in

$$H^0((X/G)_1, \mathcal{O}_{(X/G)_1}(m_1K_{X/G, orb}) \otimes \mathcal{I}(h^{m_1}) \otimes \mathcal{M}^{[n_1/(1-\varepsilon)n_1]}_{x_1}),$$

for a sufficiently large m_1. As in Case 1.1 and Case 2.1 we obtain a proper subvariety $(X/G)_2$ in $(X/G)_1$ also in this case.

Inductively for distinct points $x, y \in X/G^o$, we construct a strictly decreasing sequence of subvarieties

$$X/G = (X/G)_0(x, y) \supset (X/G)_1(x, y) \supset \cdots$$

$$\supset (X/G)_r(x, y) \supset (X/G)_{r+1}(x, y) = \{x\} \text{ or } \{x, y\},$$

where R_y (or R_x) is a subvariety such that x does not belong to R_y and y belongs to R_x, and invariants:

$$\alpha_0(x, y), \alpha_1(x, y), \ldots, \alpha_r(x, y),$$

$$\mu_0, \mu_1(x, y), \ldots, \mu_r(x, y)$$

and

$$n > n_1 > \cdots > n_r.$$

By Nadel’s vanishing theorem (Theorem 2.1) we have the following lemma.

Lemma 3.8 Let x, y be two distinct points on X/G^o. Then for every $m \geq \lceil \sum_{i=0}^r \alpha_i(x, y) \rceil + 1$, $\Phi_{|mK_{X/G, orb}|}$ separates x and y.

Proof. For simplicity let us denote $\alpha_i(x, y)$ by α_i. Let us define the singular hermitian metric $h_{x,y}$ of the \mathbb{Q}-line bundle $(m - 1)K_{X/G, orb}$ defined by

$$h_{x,y} = \left(\prod_{i=0}^{r-1} h_{i}^{\alpha_i - \varepsilon_i} \right) \cdot h_{r}^{\alpha_r + \varepsilon_r} h^{(m - 1)\left(\sum_{i=0}^{r-1}(\alpha_i - \varepsilon_i) - (\alpha_r + \varepsilon_r) - \delta_L\right)} \cdot h_{L}^{\delta_L},$$

where h_{L} is a C^∞-hermitian metric on L with strictly positive curvature and δ_L be a sufficiently small positive number. Then we see that $\mathcal{I}(h_{x,y})$ defines a subscheme of X/G with isolated support around x or y by the definition of the invariants $\{\alpha_i\}$’s. By the construction the curvature current $\Theta_{h_{x,y}}$ is strictly positive on X/G. Then by Nadel’s vanishing theorem (Theorem 2.1) we see that

$$H^1(X/G, \mathcal{O}_{X/G}(K_{X/G} + [(m - 1)K_{X/G, orb}]) \otimes \mathcal{I}(h_{x,y})) = 0.$$

Hence

$$H^0(X/G, \mathcal{O}_{X/G}(K_{X/G} + (m - 1)[K_{X/G, orb}])$$

13
separates x and y. We note that
\[H^0(X/G, \mathcal{O}_{X/G}(K_{X/G} + (m - 1)[K_{X/G,orb}])) \]
is a subspace of
\[H^0(X, \mathcal{O}_X(mK_X))^G \]
by the definition of $K_{X/G,orb}$. This implies that $\Phi_{[mK_{X/G,orb}]}$ separates x and y. Q.E.D.

We note that for a fixed x, $\sum_{i=0}^r \alpha_i(x, y)$ depends on y. We set
\[\alpha(x) = \sup_{y \in U_0} \sum_{i=0}^r \alpha_i \]
and let
\[
X/G = (X/G)_0 \supset (X/G)_1 \supset (X/G)_2 \supset \cdots \\
(X/G)_r \supset (X/G)_{r+1} = \{x\} \text{ or } \{x, y\}
\]
be the stratification which attains $\alpha(x)$. In this case we call it the maximal stratification at x. We see that there exists a nonempty open subset U in countable Zariski topology of X/G such that on U the function $\alpha(x)$ is constant and there exists an irreducible family of stratification which attains $\alpha(x)$ for every $x \in U$.

In fact this can be verified as follows. We note that the cardinality of
\[
\{(X/G)_i(x, y) \mid x, y \in X/G, x \neq y (i = 0, 1, \ldots)\}
\]
is uncontably many, while the cardinality of the irreducible components of Hilbert scheme of X/G is countably many. We see that for fixed i and very general x, $\{(X/G)_i(x, y)\}$ should form a family on X/G. Similarly we see that for very general x, we may assume that the maximal stratification $\{(X/G)_i(x)\}$ forms a family. This implies the existence of U.

And we may also assume that the corresponding invariants $\{\alpha_0, \ldots, \alpha_r\}$, $\{\mu_0, \ldots, \mu_r\}$, $\{n = n_0 \ldots, n_r\}$ are constant on U. Hereafter we denote these invariants again by the same notations for simplicity. The proof of the following lemma is parallel to that of Lemma 3.4.

Lemma 3.9

\[\alpha_i \leq \frac{n_i \sqrt{2}}{\sqrt[4]{\mu_i}} + O(\varepsilon_{i-1}) \]

hold for $1 \leq i \leq r$.

14
Proposition 3.1 For every
\[m > \left\lceil \sum_{i=0}^{r} \alpha_i \right\rceil + 1 \]
\[| [mK_{X/G,orb}] | \] gives a birational rational map from \(X/G \) into a projective space.

Lemma 3.10 If \(\Phi_m |_{(X/G)_i} \) is birational rational map onto its image, then
\[\text{deg} \Phi_m((X/G)_i) \leq m^{n_i} \mu_i \]
holds.

Proof. Let \(p : X/G \to X/G \) be the resolution of the base locus of \(| mK_{X/G,orb} | \) and let
\[p^* | [mK_{X/G,orb}] | = | P_m | + F_m \]
be the decomposition into the free part \(| P_m | \) and the fixed component \(F_m \). Let \(p_i : X/G_i \to (X/G)_i \) be the resolution of the base locus of \(\Phi_{|mK_{X/G,orb}|} |_{(X/G)_i} \) obtained by the restriction of \(p \) on \(p^{-1}((X/G)_i) \). Let
\[p_i^*(| mK_{X/G,orb} |_{(X/G)_i}) = | P_{m,i} | + F_{m,i} \]
be the decomposition into the free part \(| P_{m,i} | \) and the fixed part \(F_{m,i} \). We have
\[\text{deg} \Phi_{|mK_{X/G,orb}|}((X/G)_i) = P_{m,i}^{n_i} \]
holds. Then by the ring structure of \(R(X/G, K_{X/G,orb}) \), we have that there exists a natural injection
\[H^0(X/G, \mathcal{O}_{X/G}(\nu P_m)) \to H^0(X/G, \mathcal{O}_{X/G}([m\nu K_{X/G,orb}] \otimes \mathcal{I}(h^{\nu})) \]
for every \(\nu \geq 1 \). Hence there exists a natural morphism
\[H^0((X/G)_i, \mathcal{O}_{(X/G)_i}(\nu P_{m,i})) \to H^0((X/G)_i, \mathcal{O}_{(X/G)_i}([m\nu K_{X/G,orb}] \otimes \mathcal{I}(h^{\nu})) \]
for every \(\nu \geq 1 \). This morphism is clearly injective. This implies that
\[\mu_i \geq m^{-n_i} \mu((X/G)_i, P_{m,i}) \]
holds. Since $P_{m,i}$ is nef and big on $(X/G)_i$, we see that

$$\mu((X/G)_i, P_{m,i}) = P_{m,i}^{n_i}$$

holds. Hence

$$\mu_i \geq m^{-n_i} P_{m,i}^{n_i}$$

holds. This implies that

$$\deg \Phi_{|mK_{X/G, orb}|((X/G)_i)} \leq \mu_i m^{n_i}$$

holds. Q.E.D.

4 Proof of Theorem 1.1

To prove Theorem 1.1 we use the following subadjunction formula.

Theorem 4.1 ([4]) Let X/G be a normal projective variety. Let D^o and D be effective \mathbb{Q}-divisor on X such that $D^o < D$, (X, D^o) is logterminal and (X, D) is logcanonical. Let W be a minimal center of logcanonical singularities for (X, D). Let H be an ample Cartier divisor on X and ϵ a positive rational number. Then there exists an effective \mathbb{Q}-divisor D_W on D such that

$$(K_X + D + \epsilon H) |_{W} \sim_{\mathbb{Q}} K_W + D_W$$

and (W, D_W) is logterminal. In particular W has only rational singularities.

Let us start the proof of Theorem 1.1. We prove Theorem 1.1 by induction on $n = \dim X$. Suppose that Theorem 1.1 holds for varieties of general type of dimension $< n$. Then there exists a positive constant $C(m)(m < n)$ depending only on m such that for every smooth projective variety Y of general type of dimension m

$$\mu(Y, K_Y)/\sharp \text{Aut}(Y) \geq C(m)$$

holds. Let X be a smooth projective variety of general type as in Section 3. We use the same notations as in Section 3. Let x, y be distinct points on $(X/G)^o$ and let

$$X/G = (X/G)_0 \supset (X/G)_1 \supset \cdots (X/G)_r \supset (X/G)_{r+1} = \{x\} \text{or} \{x, y\}$$

be the stratification constructed as in Section 3 and let

$$\mu_0, \ldots, \mu_r$$
be the invariants as in Section 3. Let
\[X = X_0 \supset X_1 \supset \cdots \supset X_r \supset X_{r+1} \]
be the corresponding stratification of \(X \). If we take \(x, y \) general, \(X_i (0 \leq i \leq r) \) are projective varieties of general type. Let
\[X_{can} := \text{Proj} \ R(X, K_X) \]
be the canonical model of \(X \).

We have the corresponding stratification
\[X_{can} = X_{0,can} \supset X_{1,can} \supset \cdots \supset X_{r,can} \supset X_{r+1,can} \]
on \(X_{can} \) (here we note that \(X_{i,can} \) does not denote the canonical model of \(X_i \) for \(i \geq 1 \)).

Then we see that
\[\mu_i = \frac{1}{|G|} \mu(X_i, K_X) = \frac{1}{|G|} (K_{X_{can}})^{n_i} \cdot X_{i,can} \]
holds. Let \(H \) be an ample divisor on \(X \). By the subadjunction formula, we see that for every positive rational number \(\epsilon \)
\[K_{X_{i,can}} < \mathbb{Q} (1 + \sum_{j=0}^{i-1} \alpha_j) K_{X_{can}} + \epsilon H \]
holds, where \(< \mathbb{Q} \) means that the righthandside minus the lefthandside is \(\mathbb{Q} \)-linear equivalent to an effective divisor and \(K_{X_{i,can}} \) denotes the pushforward of the canonical divisor of a nonsingular model of \(K_{X_{i,can}} \). This can be verified as follows. Let
\[\pi : X \longrightarrow X/G \]
be the natural morphism. Let \(D_i \) be the divisor on \(X \) which corresponds to the singular hermitian metric
\[\pi^*(h_0^{\alpha_0-\varepsilon_0} \cdots h_{i-1}^{\alpha_{i-1}-\varepsilon_{i-1}} \cdot h_i^{\alpha_i}). \]
\(D_i \) is a positive linear combinations of \(\{ \pi^*(\sigma_0), \ldots, (\sigma_j) \} \) by the constructions of \(h_0, \ldots, h_i \). Also we may assume that \(D_i \) is a \(\mathbb{Q} \)-divisor by perturbations of \(\varepsilon_0, \ldots, \varepsilon_{i-1} \). \(X_{i,can} \) may not be the minimal center of \((X, D_i) \) and \((X, D_i) \) may not be logcanonical. But if we take a suitable modification
\[\pi_i : Y_i \longrightarrow X_{i,can}, \]
we may assume that there exists an effective \(\mathbb{Q} \)-divisor \(E_i \) such that
1. $\pi_i^* D_i - E_i$ is effective,

2. $(Y_i, \pi_i^* D_i - E_i)$ is logcanonical and the proper transform of $X_{i,\text{can}}$ is the minimal center of $(Y_i, \pi_i^* D_i - E_i)$.

Then by Theorem 4.1, we have that for every positive rational number ϵ

$$K_{X_{i,\text{can}}} < Q (1 + \sum_{j=0}^{i-1} \alpha_j)K_{X_{\text{can}}} + \epsilon H$$

holds. By the inductive assumption this implies that

$$(1 + \sum_{j=0}^{i-1} \alpha_j)^{n_i} \cdot \mu_i \geq C(n_i)$$

holds. Since

$$\alpha_i \leq \frac{\sqrt{2n_i}}{\sqrt{\mu_i}} + O(\varepsilon_{i-1})$$

holds by Lemma 3.9, we see that

$$(*) \quad \frac{1}{\sqrt{\mu_i}} \leq (1 + \sum_{j=0}^{i-1} \frac{\sqrt{2n_j}}{\sqrt{\mu_j}}) \cdot C(n_i)^{-1}$$

holds for every $i \geq 1$. Inductively we see that if $\mu_0 \leq 1$ holds,

$$\frac{1}{\sqrt[\mu_i]} \leq \frac{1}{\sqrt{\mu_0}} C(C(1), \ldots, C(n-1))$$

holds where $C(C(1), \ldots, C(n-1))$ is a positive constant depending only on $C(1), \ldots, C(n-1)$. Hence if $\mu_0 < 1$ holds then we see that

$$\deg \Phi|_{(1+|\sum_{i=0}^{r} \alpha_i|)K_{X/G, orb}}(X) \leq C(C(1), \ldots, C(n-1))^n$$

holds. This implies that X/G is birationally bounded, if

$$\mu_0 = \frac{1}{|G|} \mu(X, K_X) \leq 1$$

holds. We set

$$\alpha := \lceil \sum_{i=0}^{r} \alpha_i + 1 \rceil.$$

Then using Lemma 3.10, we have the following lemma.
Lemma 4.1 If $\mu_0 \leq 1$ holds, then there exists a positive constant $A(n)$ depending only on n such that

$$1 \leq \alpha^n \mu_0 \leq A(n)$$

holds.

Let

$$|\alpha K_X|^G = |P| + F$$

be the decomposition of $|\alpha K_X|^G$ into the movable part $|P|$ and the fixed component F. Taking a suitable successive G-equivariant blowing ups, we may assume that $|P|$ is base point free. And also we may assume that the canonical birational map

$$f : X \longrightarrow X_{can}$$

is a morphism.

Lemma 4.2 There exists a positive constant c_n depending only on n such that

$$f^* K_{X_{can}} \cdot P^{n-1} \geq c_n |G|$$

holds. In particular

$$\alpha^{-1} K_{X_{can}/G, orb}^n \geq c_n$$

holds.

Proof. Let

$$f_G : X/G \longrightarrow X_{can}/G$$

be the natural morphism. Let us write

$$K_{X/G} = f_G^*(K_{X_{can}/G}) + \sum a_i E_i$$

where $\{E_i\}$ are irreducible exceptional divisor of f_G. We set

$$Y := \Phi_{[\alpha K_X]^G}(X).$$

and we set

$$\phi := \Phi_{[P]} : X \longrightarrow Y.$$

Let

$$\phi_G : X/G \longrightarrow Y$$

be the birational morphism induced by ϕ. Then

$$f^* K_{X_{can}} \cdot P^{n-1} = \phi_* f^* K_{X_{can}} \cdot H^{n-1}$$
holds, where H denotes the hyperplane section of Y. Also

$$
\phi_* f^* K_{\text{can}} \cdot H^{n-1} = |G| \cdot (\phi G)_* f_G^* K_{\text{can}/G,\text{orb}} \cdot H^{n-1}
$$

holds. On the other hand

$$(\phi G)_* f_G^* K_{\text{can}/G} \cdot H^{n-1} = (\phi G)_* (K_{X/G} - \sum a_i E_i) \cdot H^{n-1}$$

$$= K_Y \cdot H^{n-1} - \sum a_i (\phi G)_* E_i \cdot H^{n-1}$$

holds, where K_Y denotes the pushforward of the canonical divisor of the normalization of Y to Y. We note that $K_Y \cdot H^{n-1}(= K_{X/G} \cdot P^{n-1})$ is an integer. Since E_i’s appear as fixed components of $|\alpha K_{\text{can}/G,\text{orb}}|$, we see that

$$\sum_i (\phi G)_* E_i \cdot H^{n-1} \leq \alpha n \mu_0 = C(n)$$

hold. Hence $\sum_i (\phi G)_* E_i$ is bounded.

Since $\sum_i (\phi G)_* E_i$ is an exceptional divisor of the birational rational map

$$f_G \circ \phi_G^{-1} : Y \to X_{\text{can}}/G,$$

$\{a_i\}$ is of finitely many possibilities. Hence there exists a positive constant K_n depending only on n such that

$$(\sharp) \quad (\phi G)_* f_G^* (K_{\text{can}/G}) \cdot H^{n-1} \geq -K_n$$

holds. Let $\{D_j\}$ be the irreducible divisors such that

$$K_{\text{can}/G,\text{orb}} = K_{\text{can}/G} + \sum_j \frac{m_j - 1}{m_j} D_j$$

for some positive integers $\{m_j\}$. Then we see that

$$(\flat) \quad (f_G^* K_{\text{can}/G,\text{orb}}) \cdot \phi_G^* H^{n-1} = f_G^* K_{\text{can}/G} \cdot \phi_G^* H^{n-1} + \sum_j \frac{m_j - 1}{m_j} f_G^* D_j \cdot \phi_G^* H^{n-1}$$

$$\leq \alpha^n \mu_0$$

$$\leq A(n)$$

hold. By (\sharp) this implies that $\sum_j (\phi G)_* f_G^* D_j$ is bounded and

$$\# \{j \mid (\phi G)_* f_G^* D_j \neq 0\}$$

is uniformly bounded by a positive integer, say N depending only on n.

20
Lemma 4.3 Let N and B are fixed positive integers. Then

$$\left\{-\sum_{j=1}^{N} \frac{b_j}{a_j} \right\} \mid a_j, b_j \text{ are integers such that } b_j \leq B \} - \{0\}$$

is bounded below by a positive constant, where for a rational number c \{c\} denotes the fractional part of c. i.e.

$$\{c\} := c - [c].$$

Proof. Suppose not. Then there exists a sequence of positive integers

$$\{a_{j,k}\}, \{b_{j,k}\} 1 \leq j \leq N, k = 1, 2, \ldots$$

such that

$$b_{j,k} \leq B,$$

$$\left\{-\sum_{j=1}^{N} \frac{b_{j,k}}{a_{j,k}} \right\} \neq 0,$$

$$\lim_{k \to \infty} \frac{b_{j,k}}{a_{j,k}}$$

exists for every j and

$$\lim_{k \to \infty} \left\{-\sum_{j=1}^{N} \frac{b_{j,k}}{a_{j,k}} \right\} = 0$$

hold. We note that if

$$\lim_{k \to \infty} \frac{b_{j,k}}{a_{j,k}} \neq 0$$

then by the boundedness of $b_{j,k}$ the sequence is constant for every sufficiently large k and if

$$\lim_{k \to \infty} \frac{b_{j,k}}{a_{j,k}} = 0$$

then $a_{j,k}$ tends to infinity k goes to infinity. Since

$$\lim_{k \to \infty} \left\{-\sum_{j=1}^{N} \frac{b_{j,k}}{a_{j,k}} \right\} = 0$$

holds, there is no j such that

$$\lim_{k \to \infty} \frac{b_{j,k}}{a_{j,k}} = 0$$
holds. Hence by the above observation we see that for every j the sequence \(\{b_{j,k}/a_{j,k}\}_{k=1}^{\infty} \) is constant for every sufficiently large k and j. This contradicts to the fact that
\[
\{- \sum_{j=1}^{N} \frac{b_{j,k}}{a_{j,k}}\} \neq 0
\]
holds for every k. This completes the proof of Lemma 4.3. Q.E.D.

We note that by \((*)\), the finiteness properties of \(\{a_i\}\) and the boundedness of \(\sum_i(\phi_G)_*E_i\), we see that the rational number \(f_G^*K_{X_{can}/G} \cdot H^{n-1}\) is of finitely many possibilities. By (b), the boundedness of \(\sum_j(\phi_G)_*f_G^*D_j\) and Lemma 4.3, we see that there exists a positive constant c_n depending only on n such that
\[
f^*K_{X_{can}} \cdot P^{n-1} \geq c_n \left| G \right|
\]
holds. Since $R(X_{can}/G, K_{X_{can}/G,orb})$ is a ring,
\[
\alpha^{n-1}K^n_{X_{can}/G,orb} \geq c_n
\]
holds. This completes the proof of Lemma 4.1. Q.E.D.

By Lemma 4.1 and Lemma 4.2 we see that
\[
\alpha \leq \frac{A(n)}{c_n}
\]
holds. By Lemma 4.1, we see that
\[
\mu_0 \geq \frac{1}{\alpha^n}
\]
holds. Hence we have that
\[
\mu_0 \geq \left(\frac{c_n}{A(n)} \right)^n
\]
holds. This completes the proof of Theorem 1.2. Since
\[
\mu_0 = \frac{1}{\left| G \right|} \mu(X, K_X)
\]
holds, we have that
\[
\left| G \right| \leq \left(\frac{A(n)}{c_n} \right)^n \mu(X, K_X)
\]
holds. This completes the proof of Theorem 1.1.
References

[1] U. Anghern-Y.-T. Siu, Effective freeness and point separation for adjoint bundles, Invent. Math. 122 (1995), 291-308.

[2] Mark Andrea A. de Catalado, Singular hermitian metrics on vector bundles, alg-geom math/9708003, to appear in J. fur Reine Angewande Math.

[3] J.P. Demailly, A numerical criterion for very ample line bundles, J. Diff. Geom. 37 (1993), 323-374.

[4] S. Helmke, On Fujita’s conjecture, Duke Math. J. 88(1997), 201-216.

[5] L. Hörmander, An Introduction to Complex Analysis in Several Variables 3-rd ed., North-Holland(1990).

[6] Y. Kawamata, Subadjunction of log canonical divisors II, alg-geom math/9712014, Amer. J. of Math. (1998).

[7] J. Kollár- S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math., Cambridge University Press (1998).

[8] S. Mori, Flip conjecture and the existence of minimal model for 3-folds, J. of A.M.S. 1 (1988), 117-253.

[9] A.M. Nadel, Multiplier ideal sheaves and existence of Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. 132 (1990), 549-596.

[10] T. Ohsawa and K. Takegoshi, L^2-extension of holomorphic functions, Math. Z. 195 (1987), 197-204.

[11] H. Tsuji, Analytic Zariski decomposition, Proc. of Japan Acad. 61(1992), 161-163.

[12] H. Tsuji, Existence and Applications of Analytic Zariski Decompositions, Trends in Math. Analysis and Geometry in Several Complex Variables, (1999) 253-272.

[13] H. Tsuji, On the structure of pluricanonical systems of projective varieties of general type, preprint (1997).

[14] H. Tsuji, Finite generation of canonical rings, math.AG/9908078 (1999).
[15] H. Tsuji, Pluricanonical systems of varieties of general type, math.AG/9909021 (1999).

[16] H. Tsuji, Global generation of adjoint bundles, Nagoya Math. J. 142 (1996), 5-16.

[17] G. Xiao, Bound of automorphisms of surfaces of general type I, Ann. of Math. 139 (1994), 51-77.

[18] G. Xiao, Bound of automorphisms of surfaces of general type II, Jour. Alg. Geom. 4 (1995), 701-793.

Author’s address
Hajime Tsuji
Department of Mathematics
Tokyo Institute of Technology
2-12-1 Ohokayama, Megro 152-8551
Japan
e-mail address: tsuji@math.titech.ac.jp