NILPOTENT TOEPLITZ OPERATORS ON REINHARDT DOMAINS
MEHMET ÇELİK AND YUNUS E. ZEYTUNCU

ABSTRACT. We construct explicit examples of non-trivial nilpotent Toeplitz operators on Bergman
spaces of certain Reinhardt domains in \mathbb{C}^2.

1. INTRODUCTION

1.1. Set-up and Result. Let Ω be a domain in \mathbb{C}^n and $A^2(\Omega)$ denote the Bergman space of Ω.
The Bergman projection operator, B_Ω, is the orthogonal projection from $L^2(\Omega)$ onto $A^2(\Omega)$.
It is an integral operator with the kernel called the Bergman kernel, denoted by $B_\Omega(z,w)$.

If $\{e_n(z)\}_{n=0}^\infty$ is an orthonormal basis for $A^2(\Omega)$ then the Bergman kernel can be represented as
$B_\Omega(z,w) = \sum_{n=0}^\infty e_n(z)e_n^*(w)$. See [Kra01] for general theory of Bergman spaces.

For a function u on Ω, the Toeplitz operator $T_u : A^2(\Omega) \to A^2(\Omega)$ with the symbol u is defined
by $T_u(f) = B_\Omega(uf)$.

In this note, we are interested in the zero product problem. For two symbols u_1 and u_2, if the
product $T_{u_1}T_{u_2}$ is identically zero on $A^2(\Omega)$ then can we claim T_{u_1} or T_{u_2} is identically zero? This
is a non-trivial problem and the answer is not even known when Ω is the unit disc.

Here, we indicate the problem has a different flavor in higher dimensions. In particular, we
present a family of Reinhardt domains in \mathbb{C}^2 on which not only zero products of non-trivial
Bergman space Toeplitz operators exist but we can find nilpotent Toeplitz operators.

Theorem 1. There exists Reinhardt domains in \mathbb{C}^2 on whose Bergman spaces there are nilpotent Toeplitz
operators.

Remark 1. It becomes clear in the proof that the operators in Theorem 1 are also of infinite rank.

1.2. History: The zero product problem on the Hardy space is initiated in [BH64]. It is com-
pletely solved in [AV09] where authors established that the product of non-zero Toeplitz opera-
tors is never zero. For the intermediate results, before the complete solution, see [Guo96, Gu00]
and the references in [AV09].

In [AÇ01a], it is shown that for the Toeplitz operators on the Bergman space $A^2(D)$ of the unit
disc D, the analogue of the Brown-Halmos theorem holds under some additional hypothesis
that u and v are bounded and harmonic. Later, the same result is proven for radial symbols in
[AÇ01b]. The problem on D, without extra assumptions on the symbols, remains open.

The higher dimensional cases are studied in [CK06, CLNZ07, CKL07] where the results on the
unit disc are extended to the ball or to the polydisk. In these papers, neither non-trivial zero
products nor nilpotent Toeplitz operators are observed.
In [BL11], the problem is considered on the Segal-Bargmann space (the space of square integrable entire functions on \mathbb{C}^n with a Gaussian decay weight) and an example of a non-trivial zero product of three Toeplitz operators is constructed. However, no nilpotent Toeplitz operator is observed.

2. Proof of the Theorem

Inspired by the construction in [Wie84], we define the following family of domains Ω_m in \mathbb{C}^2.

\[
X = \left\{ (z_1, z_2) \in \mathbb{C}^2 : |z_1| > e, \ |z_2| < \frac{1}{|z_1| \log |z_1|} \right\}
\]

\[
Y_m = \left\{ (z_1, z_2) \in \mathbb{C}^2 : |z_2| > 2, \ \left| |z_1| - \frac{1}{|z_2|} \right| < \frac{1}{|z_2|^m} \right\}
\]

\[
Z = \left\{ (z_1, z_2) \in \mathbb{C}^2 : |z_1| \leq e, \ |z_2| \leq 2 \right\}
\]

and put

\[
\Omega_m = X \cup Y_m \cup Z, \quad m = 1, 2, \ldots
\]

Each Ω_m is an unbounded Reinhardt domain with finite volume, see Figure 1.

![Figure 1. Representation of Ω_m in absolute space $\{(r_1, r_2) \in \mathbb{R}^2 \mid r_1 \geq 0 \text{ and } r_2 \geq 0\}$, under the map $\tau : (z_1, z_2) \rightarrow (|z_1|, |z_2|)$.](image)

Lemma 1. For a multi-index $\alpha = (\alpha_1, \alpha_2)$, the monomial z^α is in $A^2(\Omega_m)$ if and only if $\alpha_2 \geq \alpha_1 > \alpha_2 - \frac{m-1}{2}$.
Proof. We start with the calculation on the domain X.

$$
\int_{X} |z^\alpha|^2 \, dV(z) = \int_{|z_2| > 2} |z_1|^{2\alpha_1} \int_{|z_1| < \frac{1}{|z_1| \log |z_1|}} |z_2|^{2\alpha_2} \, dA(z_2) \, dA(z_1)
$$

$$
= 4\pi^2 \int_0^\infty \int_0^\infty r_2^{2\alpha_2+1} \, dr_2 \, dr_1 = \frac{4\pi^2}{2\alpha_2+2} e \int_0^\infty \frac{r_1^{2\alpha_1+1}}{r_2^{2\alpha_2+2} (\log (r_1))^{2\alpha_2+2}} \, dr_1.
$$

We note that for $k > 0$, the improper integral $\int_0^\infty \frac{1}{x^m (\log x)^k} \, dx$ converges if and only if $m \geq 1$. Therefore, the last integral above (where $k = 2\alpha_2 + 2 > 0$ and $m = 2(\alpha_2 - \alpha_1) + 1$) is finite if and only if $(\alpha_2 - \alpha_1) \geq 0$. In other words

$$
(1)\quad z^\alpha \in A^2(X) \iff \alpha_2 \geq \alpha_1.
$$

We continue with the calculation on the domain Y_m.

$$
\int_{Y_m} |z^\alpha|^2 \, dV(z) = \int_{|z_2| > 2} |z_2|^{2\alpha_2} \int_{\frac{1}{|z_2|} < |z_1| < \frac{1}{|z_2|} + \frac{1}{|z_2|^m}} |z_1|^{2\alpha_1} \, dA(z_2) \, dA(z_1)
$$

$$
= 4\pi^2 \int_0^\infty \int_0^\frac{1}{r_2} r_1^{2\alpha_1+1} \, dr_1 \, dr_2
$$

$$
= \frac{4\pi^2}{2\alpha_1 + 2} \int_0^\infty \frac{r_1^{2\alpha_1+1}}{r_2^{2\alpha_2+2}} \left[\left(\frac{1}{r_2} - \frac{1}{r_2^m} \right)^{2\alpha_2+2} - \left(\frac{1}{r_2} + \frac{1}{r_2^m} \right)^{2\alpha_2+2} \right] \, dr_2.
$$

Since $r_2 > 2$, after using the binomial expansion in the brackets we consider the term $1/r_2$ with the smallest degree as the dominant, which is $1/r_2^{2\alpha_1+1+m}$. The last integral can be estimated by

$$
\int_{Y_m} |z^\alpha|^2 \, dV(z) \approx \int_0^\infty \frac{1}{r_2^{2\alpha_1+1+m}} \, dr_2.
$$

The integral on the right is finite if and only if $\alpha_1 > \alpha_2 + \frac{1-m}{2}$. In other words

$$
(2)\quad z^\alpha \in A^2(Y_m) \iff \alpha_1 > \alpha_2 + \frac{1-m}{2}.
$$

The lemma follows from (1) and (2).

Next, we set $m \geq 6$, $\phi = z_1/\bar{z}_1$ and consider T_ϕ on $A^2(\Omega_m)$.

Proposition 1. The following properties hold.

(i) T_ϕ is not a zero operator.

(ii) T_ϕ does not have finite rank.

(iii) T_ϕ is a bounded operator.

(iv) T_ϕ is a nilpotent operator of degree $\lfloor \frac{m}{4} \rfloor$, the largest integer less than or equal to $\frac{m}{4}$.
Remark 2. Once we prove Proposition 1, we immediately obtain Theorem 1. However, it will be clear in the proof that the domain and the operator we present aren’t unique but part of a family of domains and operators. We leave exploration of more examples to the reader.

Before we start proving Proposition 1, we define the following lattice for \(m \geq 6 \).

\[
R_m = \left\{ (\alpha_1, \alpha_2) \in \mathbb{N}^2 \mid \alpha_2 \geq \alpha_1 > \frac{m-1}{2} \right\}
\]

\[
= \left\{ (\alpha_1, \alpha_2) \in \mathbb{N}^2 \mid \alpha_1 + \frac{m-1}{2} > \alpha_2 \geq \alpha_1 \right\}.
\]

Remark 3. Shifting \(\alpha_1 \) to the right by a number \(s \) greater than or equal to \(\frac{m-1}{2} \) is enough to put the resulting index \((\alpha_1 + s, \alpha_2)\) out of \(R_m \). That is, if \((\alpha_1, \alpha_2) \in R_m \) then for \(s \geq \frac{m-1}{2} \) we get \((\alpha_1 + s, \alpha_2) \not\in R_m \).

For a multi-index \(\gamma = (\gamma_1, \ldots, \gamma_n) \in \mathbb{N}^n \), we set \(c_\gamma^2 = \int_\Omega |z^\gamma|^2 \, dV(z) \). Then, on a radially symmetric domain \(\Omega \) that contains the origin, the set \((z_\gamma^2)_{\gamma \in \mathbb{N}^n} \) gives a complete orthonormal basis for \(A^2(\Omega) \). Each \(f \in A^2(\Omega) \) can be written in the form

\[
f(z) = \sum_{\gamma} f_\gamma z_\gamma^2 \]

where the sum converges in \(A^2(\Omega) \), but also uniformly on compact subset of \(\Omega \). For the coefficients \(f_\gamma \), we have \(f_\gamma = \left\langle f(z), \frac{z_\gamma^2}{c_\gamma} \right\rangle_\Omega \).

Proof of Proposition 1. Consider \(T_\phi \) on \(A^2(\Omega_m) \) for \(m \geq 6 \). \(\Omega_m \) is a radially symmetric domain and the monomials with exponents that reside in \(R_m \) form a complete system for \(A^2(\Omega_m) \). By using the orthogonality of monomials we get

\[
T_\phi(z^\alpha) = B_{\Omega_m} \left(z_1^1 : z^n \right) = \sum_{\gamma \in R_m} \left\langle \frac{z_1^1 z_\gamma^2}{c_\gamma^2}, \frac{z_\gamma^2}{c_\gamma^2} \right\rangle \frac{z_\gamma^2}{c_\gamma^2}
\]

\[
\quad = \frac{c_{(\alpha_1+1, \alpha_2)}}{c_{(\alpha_1+2, \alpha_2)}} z_1^{\alpha_1+2} z_2^{\alpha_2} \in A^2(\Omega_m) \text{ and } T_\phi \text{ is a non-zero operator.}
\]

For \(m \geq 6 \) and \(k \in \mathbb{N} \), \(z_1^{k+2} z_2^{k+2} \in A^2(\Omega_m) \) and

\[
T_\phi \left(z_1^{k+2} z_2^{k+2} \right) = \frac{c_{(k+1, k+2)}}{c_{(k+2, k+2)}} z_1^{k+2} z_2^{k+2} \in A^2(\Omega_m).
\]

Hence, the range of the operator \(T_\phi \) contains all the monomials of the form \(z_1^{k+2} z_2^{k+2} \) and so the range of \(T_\phi \) is infinite dimensional.

If \(g(z_1, z_2) \in A^2(\Omega_m) \) then its series expansion will be

\[
g(z_1, z_2) = \sum_{\alpha_1=0}^{\infty} \sum_{\alpha_2=\alpha_1}^{\infty} g_{\alpha_1 \alpha_2} z_1^{\alpha_2} z_2^{\alpha_1} = \sum_{\alpha_1=0}^{\infty} \sum_{\alpha_2=\alpha_1}^{\infty} \left\langle g(z), \frac{z_1^{\alpha_2} z_2^{\alpha_1}}{c_{(\alpha_1, \alpha_2)}} \right\rangle \frac{z_1^{\alpha_2} z_2^{\alpha_1}}{c_{(\alpha_1, \alpha_2)}}.
\]
where
\[r = \begin{cases} \frac{m}{2}, & \text{if } m \text{ is even} \\ \frac{m-1}{2}, & \text{if } m \text{ is odd} \end{cases} \]

The norm of \(g(z_1, z_2) \) is given by
\[\|g\|_{A^2(\Omega_m)}^2 = \sum_{\alpha_1=0}^{\infty} \sum_{\alpha_2=\alpha_1}^{\infty} |\mathcal{g}_{\alpha_1\alpha_2}|^2 \]

and the norm of \(T_\phi(g) \) is
\[\|T_\phi(g)\|_{A^2(\Omega_m)}^2 = \left| \sum_{\alpha_1=0}^{\infty} \sum_{\alpha_2=\alpha_1}^{\infty} \left\langle \frac{z_1}{z_1} \cdot g(z), \frac{z_2^\alpha}{c_\alpha} \right\rangle \right|^2 \]
\[= \sum_{\alpha_1=0}^{\infty} \sum_{\alpha_2=\alpha_1}^{\infty} \left| \left\langle \frac{z_1}{z_1} \cdot g(z), \frac{z_2^\alpha}{c_\alpha} \right\rangle \right|^2 \]
\[= \sum_{\alpha_1=2}^{\infty} \sum_{\alpha_2=\alpha_1}^{\infty} \left| \left\langle \frac{z_1}{z_1} \cdot g(1-2,a_2) \frac{z_2^{a_1-2}}{c_\alpha} \cdot \frac{z_2^\alpha}{c_\alpha} \right\rangle \right|^2 \]
\[= \sum_{\alpha_1=2}^{\infty} \sum_{\alpha_2=\alpha_1}^{\infty} \left| g(1-2,a_2) \frac{c_{(a_1-1,a_2)}}{c_\alpha} \right|^2 \]
\[= \sum_{\alpha_1=0}^{\infty} \sum_{\alpha_2=\alpha_1}^{\infty} \left| \tilde{g}_{\alpha_1\alpha_2} \right|^2, \]

where
\[\tilde{g}_{\alpha_1\alpha_2} = \begin{cases} 0, & \text{if } \alpha_1 = \alpha_2 \text{ or } \alpha_1 = \alpha_2 + 1 \\ \frac{c_{(\alpha_1+1,a_2)}}{c_{(\alpha_1+2,a_2)}} g_{\alpha_1\alpha_2}, & \text{otherwise} \end{cases} \]

The ratio \(\frac{c_{(\alpha_1+1,a_2)}}{c_{(\alpha_1+2,a_2)}} \) is uniformly bounded by a constant. Indeed, each integral on \(X \) and \(Y_m \) has a uniform bound from above (say \(C_X \) and \(C_{Y_m} \)) because of the conditions (1) and (2). Furthermore, we compute the integrals on the polydisc \(Z \) explicitly and estimate as follows
\[\frac{c_{(\alpha_1+1,a_2)}}{c_{(\alpha_1+2,a_2)}} \leq \frac{C_X + C_{Y_m} + \pi^{2a_1+4} \cdot \pi^{2a_2+2} \cdot \pi^{2a_2+2} \cdot \pi^{2a_2+2} \cdot \pi^{2a_2+2}}{\pi^{2a_1+4} \cdot \pi^{2a_2+2} \cdot \pi^{2a_2+2} \cdot \pi^{2a_2+2} \cdot \pi^{2a_2+2}} \leq \frac{C_X + C_{Y_m}}{\pi^2} + e^2 = C. \]

This estimate implies
\[\left| \tilde{g}_{\alpha_1\alpha_2} \right|^2 \leq C \cdot |g_{\alpha_1\alpha_2}|^2, \quad \text{for all } (\alpha_1, \alpha_2) \in R_m. \]

Thus, from (4), (5), and (7) it follows that
\[\|T_\phi(g)\|_{A^2(\Omega_m)}^2 \leq C \cdot \|g\|_{A^2(\Omega_m)}^2. \]
Finally, we calculate the powers of T_ϕ.

(8) \[T_\phi^2(z^\alpha) = T_\phi \cdot T_\phi(z^\alpha) = T_\phi \left(\frac{c_{(a_1+1,a_2)}^2}{c_{(a_1+2,a_2)}^2} z_{a_1+2,a_2} \right) \]

As for the third power,

(9) \[T_\phi^3(z^\alpha) = \frac{c_{(a_1+1,a_2)}^2}{c_{(a_1+2,a_2)}^2} \cdot \frac{c_{(a_1+3,a_2)}^2}{c_{(a_1+4,a_2)}^2} \cdot \frac{c_{(a_1+5,a_2)}^2}{c_{(a_1+6,a_2)}^2} z_{a_1+6,a_2}. \]

Continuing in that fashion, the kth power of the operator is

(10) \[T_\phi^k(z^\alpha) = \frac{c_{(a_1+1,a_2)}^2}{c_{(a_1+2,a_2)}^2} \cdot \frac{c_{(a_1+3,a_2)}^2}{c_{(a_1+4,a_2)}^2} \cdots \frac{c_{(a_1+2k-1,a_2)}^2}{c_{(a_1+2k,a_2)}^2} z_{a_1+2k,a_2}. \]

In (10), if $2k \leq r$ then there exists $(a_1,a_2) \in R_m$ such that $(a_1+2k,a_2) \in R_m$, see the discussion in Remark 3, so $z_{a_1+2k,a_2} \in A^2(\Omega_m)$ and $T_\phi^k \not\equiv 0$ on $A^2(\Omega_m)$.

However, in (10), if $2k > r$ then for all $(a_1,a_2) \in R_m$ we have $(a_1+2k,a_2) \not\in R_m$ by Remark 3, so we see that $z_{a_1+2k,a_2} \not\in A^2(\Omega_m)$ and $T_\phi^k \equiv 0$ on $A^2(\Omega_m)$. That is, T_ϕ is a nilpotent operator of degree k on $A^2(\Omega_m)$.

We illustrate the main arguments of the proof in the following example.

Example 1. Set $m = 9$, then the monomial $z_{a_1}^{a_1} z_{a_2}^{a_2}$ is in $A^2(\Omega_9)$ if and only if $a_1 + 4 > a_2 \geq a_1$. The exponents of the monomial in $A^2(\Omega_9)$ are marked on the lattice below in Figure 2.

![Figure 2](image-url)
It can be noted that T_ϕ acts like a shift on the lattice, it takes $(\alpha_1, \alpha_2 + 2)$ to $(\alpha_1 + 2, \alpha_2 + 2)$. Thus, if T_ϕ is applied on any monomial two times then the exponent of the monomial runs out of the lattice R_9. That is, if $z_1^{\alpha_1}z_2^{\alpha_2} \in A^2(\Omega_9)$ then $T_\phi \cdot T_\phi(z_1^{\alpha_1}z_2^{\alpha_2}) = c_2^{\alpha_1 + 1, \alpha_2} \cdot c_2^{\alpha_1 + 3, \alpha_2} z_1^{\alpha_1 + 4}z_2^2 \not\in A^2(\Omega_9)$ and so $T_\phi^2 \equiv 0$ on $A^2(\Omega_9)$.

3. ACKNOWLEDGMENT

We thank the referees for constructive comments on Proposition 1 and also for the useful editorial remarks on the exposition of the article.

REFERENCES

[AČ01a] Patrick Ahern and Željko Čučković, Products of Toeplitz operators on the Bergman space, Illinois J. Math. 45 (2001), no. 1, 113–121.

[AČ01b] , A theorem of Brown-Halmos type for Bergman space Toeplitz operators, J. Funct. Anal. 187 (2001), no. 1, 200–210.

[AV09] Alexandru Aleman and Dragan Vukotić, Zero products of Toeplitz operators, Duke Math. J. 148 (2009), no. 3, 373–403.

[BH64] Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89–102.

[BL11] Wolfram Bauer and Trieu Le, Algebraic properties and the finite rank problem for Toeplitz operators on the Segal-Bargmann space, J. Funct. Anal. 261 (2011), no. 9, 2617–2640.

[CK06] Boo Rim Choe and Hyungwoon Koo, Zero products of Toeplitz operators with harmonic symbols, J. Funct. Anal. 233 (2006), no. 2, 307–334.

[CKL07] Boo Rim Choe, Hyungwoon Koo, and Young Joo Lee, Zero products of Toeplitz operators with n-harmonic symbols, Integral Equations Operator Theory 57 (2007), no. 1, 43–66.

[CLNZ07] Boo Rim Choe, Young Joo Lee, Kyesook Nam, and Dechao Zheng, Products of Bergman space Toeplitz operators on the polydisk, Math. Ann. 337 (2007), no. 2, 295–316.

[Guo96] Kun Yu Guo, A problem on products of Toeplitz operators, Proc. Amer. Math. Soc. 124 (1996), no. 3, 869–871.

[Kra01] Steven G. Krantz, Function theory of several complex variables, AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1992 edition.

[Wie84] Jan J. O. O. Wiegerinck, Domains with finite-dimensional Bergman space, Math. Z. 187 (1984), no. 4, 559–562.

(Mehmet Çelik) UNIVERSITY OF NORTH TEXAS AT DALLAS, DEPARTMENT OF MATHEMATICS AND INFORMATION SCIENCES, 7400 UNIVERSITY HILLS BLVD., DALLAS, TX 75241
E-mail address: mehmet.celik@untdallas.edu

(Yunus E. Zeytuncu) UNIVERSITY OF MICHIGAN - DEARBORN, DEPARTMENT OF MATHEMATICS AND STATISTICS, DEARBORN, MI 48128
E-mail address: zeytuncu@umich.edu