Pragmatic selection of larval mosquito diets for insectary rearing of *Anopheles gambiae* and *Aedes aegypti*

Short title: Larval mosquito diets for *An. gambiae* and *Ae. aegypti*

Mark Q. Benedict¹ *, Catherine M. Hunt¹, Michael G. Vella², Kasandra M. Gonzalez², Ellen M. Dotson¹, C. Matilda Collins³

¹ Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, Georgia, United States of America

² Frontier Scientific Services, Newark, Delaware, United States of America

³ Centre for Environmental Policy, Imperial College London, United Kingdom

* Corresponding author

Email: mbenedict@cdc.gov
Abstract

Larval mosquitoes are aquatic omnivorous scavengers which scrape food from submerged surfaces and collect suspended food particles with their mouth brushes. The composition of diets that have been used in insectaries varies widely though necessarily provides sufficient nutrition to allow colonies to be maintained. Issues such as cost, availability and experience influence which diet is selected. One component of larval diets, essential fatty acids, appears to be necessary for normal flight though deficiencies may not be evident in laboratory cages and are likely more important when mosquitoes are reared for release into the field in e.g. mark-release-recapture and genetic control activities.

In this study, four diets were compared for rearing Anopheles gambiae and Aedes aegypti, all of which provide these essential fatty acids. Two diets were custom formulations specifically designed for mosquitoes (Damiens) and two were commercially available fish foods: Doctors Foster and Smith Koi Staple Diet and TetraMin Plus Flakes. Development rate, survival, dry weight and adult longevity of mosquitoes reared with these four diets were measured. The method of presentation of one diet, Koi pellets, was additionally fed in two forms, pellets or a slurry, to determine any effect of food presentation on survival and development rate.

While various criteria might be selected to choose ‘the best’ food, the readily-available Koi pellets resulted in development rates and adult longevity equal to the other diets, high survival to the adult stage and, additionally, this is available at low cost.
Introduction

Larval mosquitoes are omnivorous opportunistic aquatic feeders which collect and swallow small particles, can chew larger particles and can scrape food off of submerged surfaces [1]. Laboratory culture of mosquitoes seldom attempts to replicate natural diets but usually consists of a readily available material that experience has proven to allow consistent rearing. These generally fall into two classes: simple mixtures of ingredients such as yeast and liver powder that are formulated by the users or commercial formulations of complex composition including foods such as fish-food flakes [2] or pellets [3], hog supplement [4], cereals and less commonly, maize pollen and algae [5]. Many unusual ingredients such as guinea pig feces and hay infusion are cited by Gerberg [6]. The diversity of ‘successful’ larval foods demonstrates that for many purposes, there are numerous choices.

Commercially manufactured diets provide the advantages that the researcher does not need to formulate the diet, can rely on the quality control measures employed by the manufacturer and often, ready availability. Some disadvantages of complex commercial foods are that the researcher has no control over the specific components of the diet which may change without notice and that obtaining the same diet locally in different countries may be difficult.

Considerations for choosing a food are simple: It must promote the routine rearing of good quality mosquitoes (however that is defined), be readily available, consistent in quality and preferably inexpensive. A less apparent and seldom considered advantage is to choose a diet that numerous laboratories can use to give some assurance of comparable results. If flight testing, mating assays or release activities will be performed, it is necessary to provide essential fatty acids [7].

This study determined, among four candidate larval diets for two frequently-reared disease vector mosquitoes, *Anopheles gambiae* Giles (Diptera: Culicidae) and *Aedes aegypti* Linnaeus
(Diptera: Culicidae), which diet and feeding level resulted in the optimal performance for several important life history traits such immature growth rate, survival, size and adult longevity. One of these diets, TetraMin flakes, is widely used for both Anopheles and Aedes spp. We make a recommendation for selection among these diets which also considers cost and availability.

Materials and Methods

Diet preparation

Four diets were prepared for comparisons; two of these were custom formulations of a diet specifically designed for mosquitoes [8]. This diet consists of a 2:2:1 ratio (by weight) of bovine liver powder, tuna meal and Vanderzant vitamin mix. One formulation was prepared at CDC in Atlanta, GA using ‘Now’ brand liver powder (Bloomingdale, IL USA), tuna meal (AA Baits, Rock Ferry, Birkenhead, UK) and Vanderzant vitamin mix (Bio-Serv, Flemington, NJ, USA). Large particles were removed from the tuna meal and liver powder using a (600 μ) standard sieve. Clumps of vitamin mix were broken up manually but no further sieving was done because the mix is soluble and the particle size allowed even mixing.

The other formulation of the Damien diet was prepared by Frontier Scientific Services (Newark, DE USA) using defatted, desiccated liver powder (product no. 1320; Frontier Scientific Services), Vanderzant vitamin mix (product no. F8045, Frontier Scientific Services) and the same lot of tuna meal as was used at CDC. In order to ensure particle size was small enough for consumption by developing larvae, a milling and screening procedure was employed. A significant source of oversized particulates was the tuna meal. Most large particles were identified as scale and bone remnants from the manufacturers processing of the meal. The tuna meal was processed in a top-feeding hammer mill (The Fitzpatrick Co., Toronto, Canada) with a 60-80 (177 μ) mesh particle excluding screen. To ensure particles were milled to specification
without complete exclusion of meal components, the material was passed through the hammer-
mill twice. The milled tuna meal was then mixed with the remaining ingredients in a bench-top
‘Kitchen Aid’ bread mixer for 20 minutes. After mixing was complete, the final diet was hand
sifted through a 60 mesh (177μ) screen to eliminate any remaining oversized particulates.

The other two diets were commercially available fish foods: Doctors Foster and Smith Koi
Staple Diet (Rhinelander, WI USA) and TetraMin Plus Flakes (Tetra GmbH, Melle, Germany).
For fair comparison, both fish foods were ground to a similar size to the custom diets. Koi pellets
were ground in a Miracle Model MR-300 Electric Grain and Flour Mill (Danbury, CT USA)
followed by sieving in a 600 μ standard sieve and saving the particles that passed. The
TetraMin was ground in a Black and Decker ‘SmartGrind’ coffee grinder (Beachwood, OH USA)
after which it easily passed through a 600 μ sieve. These diet types will be identified as CDC,
Frontier, Koi, and TetraMin respectively.

The ground diets were mixed at 0.4, 0.8, 1.6 and 3.2 % w/v in type II water and stored in ca. 13
ml aliquots and frozen at -20°C where they remained until being thawed in warm water
immediately before feedings. When 4 ml of the slurry was fed, these concentrations result in
feeding rates (levels) of 8, 16, 32 and 64 mg diet / dish / day. Hereafter we will usually refer to
the levels simply as e.g. 32 mg.

Mosquitoes

Anopheles gambiae mosquitoes were the ‘G3’ strain (MRA-112) obtained from the Malaria
Research and Reference Resource Center (MR4, BEI Resources, Manassas VA USA). Aedes
aegypti were the ‘New Orleans’ strain (NR-49160), also obtained from the MR4 and were in the
F16-F18 generations during experiments. A standard rearing water was made of 0.3 g of pond
salts (API, McLean, VA USA) per liter of type II purified water. Anopheles gambiae eggs were
collected, held overnight on damp filter paper and placed in trays on the day of hatching. *Aedes aegypti* eggs were hatched by placing egg papers in water under vacuum for 30 min. Hatching embryos of both species were placed in 500 ml of water containing 5 intact Koi pellets for one day before counting 80 larvae into 150 ml polystyrene Petri dishes (Item no. Z717231, Sigma-Aldrich, St. Louis, MO USA).

Trial design

An orthogonal design was used; three dishes (replicates) for each of the four diets at all four levels were established for both species. For these mosquitoes, it is not possible to determine sex at the first larval instar and it was assumed that random aliquots would deliver a representative sex ratio. Before counting larvae into Petri dishes, the empty dishes were weighed to a tenth of a gram on a triple-beam balance (700/800 Series, Ohaus, Parsippany, NJ USA) and labeled with their weight. On the day after hatching, 80 larvae were counted into the dishes and rearing water was added until the net weight was 96 g. Then 4 ml of food was added for an approximate total volume of 100 ml. The concentrations were selected to bracket a range shown to allow maximal survival and development rate with *Anopheles arabiensis* [9]. Additional diet was added on alternate days, prior to which the dishes were weighed and water was removed (ca. 2-3 ml), to return the net weight to 96 g before 4 ml of diet slurry was added to maintain an approximate total volume of 100 ml. Mosquitoes were reared in an environmental room set at 27°C and 70% relative humidity with a 12:12 light:dark cycle and 30 minutes of dawn and dusk.

In this main experiment, in which all diets and levels were tested, pupae were counted and collected daily, their sex determined and the pupae were then placed in individual plastic tubes for eclosion. Tubes were checked for adults daily with up to five randomly selected adults from each day of eclosion and sex being killed for dry weight measurements. Immature stage trials
were generally terminated when there were no more larvae present except as noted for the 8 mg diet level with *An. gambiae* where observations of larval duration were terminated based on a pragmatic decision on days 12 and 14 (Table 1).

Anopheles gambiae and *Ae. aegypti* differ in many characteristics including body size and rearing tractability. Because of this, the two species have been analyzed separately. There are also known differences in outcomes by sex within species and, where appropriate, parameter estimates for each sex are calculated independently. Statistical analyses were performed using R version 3.5.1 “Feather Spray” [10]

Inter-trial comparison of water temperature

Due to logistical limitations, it was not possible to perform all experiments concurrently. As a result, five sequential trials in the same chambers contributed to the experiment overall. The critical variable of water temperature was measured in three arbitrary dishes every two or three days in the morning using a Sper Scientific Model 800005 thermocouple thermometer (Scottsdale, AZ USA) equipped with a K type probe and overall means were compared using Analysis of Variance.

Sex ratio

The sex of pupae arising from each treatment combination was observed and the ratio estimated. Chi-square tests were used to determine whether the male:female ratio varied with treatment or species.

Survival to eclosion

To determine the effect of the different diets and levels fed on the number of adults that eclosed, Poisson-family generalized linear models (GLMs) using the diet level, diet type and their
interaction were fit to the data. Model simplification by deletion tests used F-tests to estimate influential effects as appropriate to the over-dispersion of these count data.

Proportion of pupae eclosing

The data that were analyzed resulted from the counts of the number of pupae that formed and eclosion data. A weighted response variable that bound the number of pupae eclosing and the number of pupae that did not was created. Binomial-family GLMs using the dose, food type (both categorical, four levels) and their interactions were fit to these data. Model simplification by deletion used F-tests to estimate important effects as appropriate to the over-dispersion evident in the weighted proportion data.

Larva developmental rate

The number of days taken to complete larval development to pupation was analyzed to determine effects on development rates. As the number of days to eclosion was an integer value, chi-squared tests were used to estimate the influence on this time of interactions between diet type and the amount of food provided as well as these as single effects. The relative contribution of each factor is then reflected in the test statistic values.

Adult longevity estimation

The 32 mg diet level was chosen for assessing the influence of diet type on adult longevity based on observed rapid development rate and high survival across all diet types reported in the Results section. Pupae arising from these dishes were placed in aluminum-frame cages [11] which were covered with one or two layers (in the case of *Ae. aegypti*) of gauze and provided sugar water (10% w/v food grade sucrose, 0.1% w/v methylparaben in type II water) which was changed weekly. There were three cages for each diet, each associated with a different larval
replicate dish. All longevity measures were made concurrently. Mortality was usually checked
daily, though occasionally it was not observed on Saturdays. Kaplan-Meier objects were created
as response variables for the survival analyses and a Cox proportional hazards model was used
to identify effects of diet type on survival for each species and sex.

Measures of dry weight

Dry weight of adults was determined for all diet types and levels. After eclosion, adults were
transferred to glass scintillation vials, killed by freezing at -20°C and dried in a drying oven at
60°C overnight after which they were removed and the caps sealed until weighing. For each
diet/level combination, up to five individuals of each sex from each day of eclosion were
weighed using a Sartorius SuperMicro S4 balance (Bohemia, NY USA) when that number was
available. Weights are reported in micrograms.

The dry weight of mosquitos was a continuous response variable. As previously, diet type, level
and mosquito sex were all considered as categorical factors. All main effects and interactions
were tested by deletion from the maximal model. Effects that were either non-significant or
accounted for less than 1% of the variation in the data were excluded.

The influence of pellet vs. slurry

One food type, the Koi pellets, was used to estimate any influence of the form of presentation
and thus whether it is necessary to grind the food. Koi pellets were weighed on the SuperMicro
balance and the average weight and standard deviation of pellets calculated; 52.0 mg (n=14,
StDev 8.65). Two pellets (equivalent to 52 mg/dish/day) were fed on alternate days in parallel
with the day the 32 mg slurry was given. Larval survival (the number of larvae reaching
pupation) and larval duration (the number of days to pupation) were used as the measures for
this comparison. Pupae were collected daily in the morning and their sex determined. All dishes were new and there were three tests of each food form for both *Ae. aegypti* and *An. gambiae*.

Results

Inter-trial comparability of water temperature

The temperature was consistent among all trials of *Ae. aegypti* (*F*=1.03, d.f.= 2,72 p=0.36). The average water temperature was 26.9°C (n=75, StDev 0.45). The average temperature of all *An. gambiae* trials was 27.0°C (n=45, StDev 0.33) but there was a slight, but significant, variation in temperature between the trials (*F*=7.51, d.f.=1.43, p<0.01); a trial during which Koi and TetraMin were being tested was on average 0.25 +/- 0.1 °C lower than one in which CDC and Frontier were being tested. This effect is, however, largely driven by a single day, day 7, in the CDC-Frontier trial which was warmer than other days (*t*=2.49, d.f.=14, p<0.05).

Sex ratio

The proportion of *Ae. aegypti* pupae was observed to be consistently male-biased (0.59 (95%CI: 0.57-0.60) relative to an assumption of equal proportions of males and females. In contrast, the overall ratio of male pupae in *An. gambiae* (0.47, 95%CI: 0.43-0.51) did not vary from equal proportions of either sex.

Survival from hatch to eclosion

In the *An. gambiae* 8 mg experiments, pupa formation was so prolonged and low that many larvae and pupae were discarded on day 12 or 14 of larval development, so interpretation of the results should take this into account (Table 1). Discarded pupae were not included in the analysis of likelihood to eclose.
Table 1: The number of *An. gambiae* immatures discarded at the end of the trial at the lowest diet level, 8mg.

Diet type	Dish	Day	Discarded
CDC	A	14	47
	B		28
	C		48
Frontier	A	14	13
	B		7
	C		10
Koi	A	12	51
	B		52
	C		47
TetraMin	A	12	63
	B		66
	C		57

The responses of *Ae. aegypti* and *An. gambiae* to different diets and levels shared similarities in pattern but had marked differences in absolute level (Fig 1). *Aedes aegypti* eclosion varied less as a function of diet type and level and achieved higher numbers than did *An. gambiae* (for model null deviance see Table 2). There was an interaction between diet type and level on the number of *Ae. aegypti* males and females; this was largely driven by the two commercial foods, Koi and TetraMin, having higher numbers at the lowest diet level than did the CDC or Frontier diets.

Fig 1. The number of *Ae. aegypti* and *An. gambiae* female and male adults observed by diet type and level. The dashed horizontal line indicates the expected number of females and males assuming a 1:1 sex ratio and full survival. Error bars are the 95% CI of the mean. Darkening shades of color represent the increasing diet levels of 8, 16, 32 and 64 mg.
Table 2. Statistical summary of the influences on the number of male and female adults formed with the proportion of the deviance explained (in parentheses) given as an indicator of effect size (significant effects indicated in bold).

	Ae. aegypti	An. gambiae		
	Males	Females	Males	Females
Model null deviance (47 d.f.)				
Diet:Level	F=5.11, d.f. = 9.32, p<0.001 (0.43)	F=12.53, d.f. = 9.32, p<0.001 (0.55)	F=2.30, d.f. = 9.32, p=0.04 (0.10)	F=2.82, d.f. = 9.32, p=0.015 (0.10)
Diet	F=0.18, d.f. = 3.41, p=0.91 (0.015)	F=0.92, d.f. = 3.41, p=0.44 (0.04)	F=2.67, d.f. = 3.41, p=0.06 (0.05)	F=1.06, d.f. = 3.41, p=0.38 (0.02)
Level	F=5.69, d.f. = 3.44, p=0.002 (0.26)	F=5.15, d.f. = 3.44, p=0.004 (0.28)	F=28.70, d.f. = 3.44, p<0.001 (0.64)	F=42.92, d.f. = 3.44, p<0.001 (0.70)

229 The An. gambiae pattern was the same for both males and females and there was a slight interaction between diet type and the food level (this explained ca. 10% of the deviance in the data for each sex) largely driven by the very low numbers forming from TetraMin at both the lowest and highest dose. It must, however, be remembered that individuals were discarded earlier in the experiment due to slow development at the lowest diet level for the TetraMin diet (Table 1). The magnitude of the effect of diet level was much greater for An. gambiae than for Ae. aegypti and, overall, few An. gambiae eclosed at both the lowest and highest diet level.
Proportion of pupae eclosing

We anticipated that the likelihood of pupae that had formed then successfully eclosing might be affected by the food type or level. For both sexes of *Ae. aegypti* there was an interaction between diet type and level on the number of pupae eclosing to adults (Table 3); this was largely driven by poor eclosion at low levels of the Frontier diet (Fig 2). In all other cases, if the larvae reached the pupa stage, they were highly likely to become an adult.

Fig 2. Eclosion of pupae that formed by diet type and level. Error bars represent the 95% CI. Darkening shades of color represent the increasing diet levels of 8, 16, 32 and 64 mg.

Table 3. Model summary statistics estimating the influence of diet type and level on the number of male and female pupae eclosing to adults with the effect size (proportion of the deviance explained) indicated in parentheses (significant effects in bold).

	Ae. aegypti		**An. gambiae**	
	Males	Females	Males	Females
Model null deviance	165.10	155.63	207.64	96.12
Diet:Level	F=3.33, d.f.=9,32, p = 0.006 (0.35)	F=3.19, d.f.=9,32, p=0.007 (0.33)	F=1.76, d.f.=8,25, p=0.14 (0.14)	F=1.15, d.f.=8,26, p=0.37 (0.14)
Diet	F=1.14, d.f.=3,41, p=0.35 (0.07)	F=1.43, d.f.=3,41, p=0.25 (0.08)	F=4.31, d.f.=3,33, p=0.011 (0.16)	F=4.53, d.f.=3,34, p=0.009 (0.19)
For *An. gambiae*, the pattern was similar for both sexes. Pupae that resulted from feeding on the Koi diet were most likely to eclose regardless of diet level (Fig 2), though generally the eclosion rate was highest at the intermediate diet levels than it was at either the highest or lowest levels (Table 3).

The magnitude of the treatment effects was much greater for *An. gambiae* than for *Ae. aegypti* (Table 3) with, overall, the *An. gambiae* being more sensitive to the type and level of the diet provided (Fig 2). The response of *Ae. aegypti* was more nuanced with only the interaction between diet and level being significant.

Immature development

For both species and sexes the pattern is similar. The time taken to complete the larval stage is an interaction of both the food type and the level (p<0.05 in all cases; Table 4, Fig 3). The effect of diet level is consistently much greater than variation observed among diet types.

Fig 3. Day of eclosion. The panels are, left to right, *Ae. aegypti* females, males, *An. gambiae* females, males. The dark line indicates the median day of eclosion for each condition. The boxes contain the two central quartiles and the whiskers contain the outer quartiles unless outliers are present. These are indicated by points. Darker shades of color indicate increasing diet levels, 8, 16, 32 and 64 mg; CDC, green; Frontier, blue, Koi, brown and TetraMin, red.

Table 4. Development Rate Statistics
Anopheles gambiae is the more sensitive species to diet level, but the estimates of time taken were based on many fewer measures than were possible for Ae. aegypti because of the low number of pupae at low and high doses. No estimates of larval duration were possible for An. gambiae in four of the combinations as none developed successfully. Generally, development times for An. gambiae were more consistent with Frontier, though there were few developing at low and high doses.

Longevity of adults from 32 mg diet level larvae

The cage from which the individual mosquitoes came was included in each model to account for any cage-effects; in no case were these identified to account for significant variation in the data (p>0.05 in all cases). Overall, the median adult lifespan of Aedes aegypti males and females was similar (Table 5). For females, there was no identifiable variation in longevity as a function
of diet type ($\chi^2=4.45$, d.f.=3, p=0.22). There was variation in male longevity but CDC and Koi led to longer-lived males ($\chi^2=12.20$, d.f.=3, p=0.007).

Table 5. Adult Longevity

Ae. aegypti

Diet	Females	Males		
	n	Median (95% CI)	n	Median (95% CI)
CDC	55	51 (46-67)	80	59 (56-67)
Frontier	52	49 (35-67)	90	54 (51-61)
Koi	58	57 (53-63)	82	60 (57-63)
TetraMin	69	50 (31-68)	80	49 (44-53)

An. gambiae

Diet	Females	Males		
	n	Median (95% CI)	n	Median (95% CI)
CDC	47	37 (25-39)	55	21 (14-26)
Frontier	57	32 (29-37)	62	29 (27-32)
Koi	53	37 (37-37)	48	20 (15-30)
TetraMin	66	30 (26-37)	56	24 (18-29)

Anopheles gambiae females lived consistently longer than males (Table 5). For females, diet type affected longevity with CDC and Koi leading to longer life ($\chi^2=9.87$, d.f.=3, p=0.02). There was greater variation in male longevity but no diet-related variation was identified ($\chi^2=5.80$, d.f.=3, p=0.12).
Dry weight

Aedes aegypti dry weight

A total of 787 Ae. aegypti females and 880 males were weighed. Aedes aegypti males weigh less than females (p<0.001) – slightly more than half as much at any specific diet level. Across all diets, the ratio of male to female weight varied only slightly ranging from 0.56-0.58:1. Males were less responsive to increasing food quantity than females (Table 6, Fig 4). Though there was a small effect of diet type, the greatest effect for both sexes was that of diet level, which accounted for almost 50 times the variation than that found between diet brands.

Fig 4. Adult dry weights. (a) Aedes aegypti females and (b) males. Darker shades of color indicate increasing diet levels of 8, 16, 32 and 64 mg. Error bars are 95% confidence intervals of the mean.

	F	d.f.	p	R²
Full model	86.87	69,1597	<0.001	0.79
Sex:Diet:Level	0.52	0.00		
Sex:Diet	0.14	0.00		
Level:Diet	0.12	0.00		
Minimal adequate model	88.88	10,1656	<0.001	0.78
Sex:Level (interaction)	75.94	3,1656	<0.001	0.02
Diet (factor)	21.96	3,1656	<0.001	0.01
Anopheles gambiae dry weight

A total of 208 An. gambiae females and 189 males were weighed. Anopheles gambiae males are lighter than females (p<0.001), but there was no difference in the way that they respond to the feeding regimes (all interaction terms >0.05). Feeding level had the strongest effect on adult weight, though food type was slightly influential; the mosquitoes responded differently to food level as a function of diet. The highest level of Frontier led to smaller mosquitoes, which was not the case for other diets. TetraMin gave low survival at highest and lowest doses and evaluations of adult mass were not possible there (Table 7, Fig 5).

Fig 5. Anopheles gambiae dry weights. (a) Anopheles gambiae females and (b) males. Darker shades of color indicate increasing diet levels of 8, 16, 32 and 64 mg. Error bars are 95% confidence intervals of the mean.

Table 7. Anopheles gambiae weight statistics with significant effects shown in bold font.

	F	d.f.	p	R²
Full model	11.03	54,731	<0.001	0.45
Sex:Diet:Level	0.91	0.00		
Sex:Diet	0.41	0.00		
Food presentation: the influence of pellet vs. slurry on larval survival and development rate

The form in which Koi diet was fed had no effect on the number of pupae that formed in either species (Table 8).

Table 8. Survival and development with significant effects shown in bold font.

	Ae. aegypti		An. gambiae						
	Female	Male	Female	Male					
Number of pupae	χ^2	d.f	p	χ^2	d.f	p	χ^2	d.f	p
	1.23	1	0.27	0.05	1	0.82	0.78	1	0.38
Larval duration	**12.68**	1	**<0.001**	2.43	1	0.12	**6.5**	1	**<0.05**

The form in which the Koi diet was provided to larvae had no effect on the development rate of male larvae from hatch to pupation of either species (Table 8). However, the development of
female larvae fed pellets delayed pupation by a day (median values: *Ae. aegypti* 7:6,
An. gambiae 9:8 pellet vs. slurry respectively).

Discussion

In this diet comparison, a range of diets fed at rates ranging from very low to high was
compared. This experimental design was chosen to reduce the likelihood that the variation in
the proportion of any particular component of diet (protein, fat or carbohydrates) might result in
outcomes that do not represent the most favorable levels of diet fed. Because the ratios of
protein, carbohydrates and fats differ among diets, a wide-level design is agnostic regarding
which is most important for the outcomes tested. This approach is in contrast to Linenberg [3] in
which the combined weight of fat and protein – to the exclusion of carbohydrates - was used to
determine the amounts of diet provided to larvae for comparisons.

The reputation of *Ae. aegypti* as a robust and physiologically plastic laboratory model for
laboratory study was borne out by the high eclosion rates at all diet levels compared to
An. gambiae which was very sensitive to level. This trait also makes it a relatively insensitive
choice with which to compare diets.

These results demonstrated that as far as choosing a diet, TetraMin is the least desirable for
An. gambiae because of the sensitivity to diet level that was required for adult production;
neither the highest nor lowest doses resulted in adults within what we considered a practical
time period. Linenberg et al. [3] also observed that two pellet fish foods performed better than
TetraMin flakes though it is not clear whether the specific product was the same as the one we
tested.

We were surprised that two different formulations of the Damiens diet prepared by CDC and
Frontier Scientific Services gave measurably different results. There are two differences which
might have contributed. Frontier used defatted liver powder whereas the CDC source did not specify whether it was defatted or not. Secondly, the Frontier team had access to a hammer mill which permitted the tuna meal to be ground more finely – likely contributing a larger amount of indigestible scale and bone to the final formulation of diet resulting in lower concentrations of other tuna parts. The CDC team discarded the larger particles. These two differences may have resulted in a formulation with substantially different nutritional content on a weight basis.

Of the diets tested, one can make an evaluation of their performance assuming, somewhat subjectively, that maximal survival rates, longevity and size along with short development times are desirable outcomes (Table 9).

Table 9. A semi-subjective assessment of the salient biological outcomes measured as an assessment of laboratory use of the four diets tested (advantageous characteristics are highlighted in green, neutral ones in gray and disadvantageous ones in yellow.)

	Ae. aegypti	An. gambiae	
Survival to eclosion	No effect of diet type	Highest	
Probability of pupae to eclose	No effect of diet type	Highest	
Eclosion sensitivity to diet levels	fewer adults eclosing	Lowest	
	at lowest level	More consistent	Little consistent advantage
--------------------------	-----------------	-----------------	-----------------------------
Development rate	Little difference observed	More consistent	Little consistent advantage
Dry weight	Little difference observed	Little consistent	advantage
Adult longevity	> for males	> for males	> for females
	> for males	> for males	> for females

The deviation from a 1:1 ratio of females and males that we observed in the New Orleans strain of *Ae. aegypti* is common among many strains of *Ae. aegypti* [12]. In contrast, the authors are unaware of any natural strains of *An. gambiae* that demonstrate sex ratio bias although this has been observed among progeny of crosses between different species of the *An. gambiae* complex [13].

One diet, Koi, was tested to determine whether the method of presentation of the same diet had an effect on the development rate and survival to the pupa stage. Of the other diets that could be fed in either a whole or ground form, only TetraMin is originally in a flake form and similar comparisons are possible. Any of the powders or flakes can be fed either as powder sprinkled on the surface, a practice which is consistent with the ‘surface feeding’ behavior of *Anopheles* spp. [1].

The authors are aware that some laboratories provide the diet as intact pellets or flakes rather than as a slurry. The difference between the total weights of food in our analysis confounds our analysis and arguably, if one provided more pellets, the development rates of females would be the same as when fed slurry. But as far as these analyses can be interpreted, one can conclude that for a given amount of food, increasing the availability in a ground form will increase the
development rate. Feeding as a slurry also allows a continuously variable (rather than discrete)
amount of food to be delivered though this advantage requires mixing and pipetting slurry vs.
simply counting pellets.

Our results demonstrate that although the *An. gambiae* feeding rate in mosquito publications on
is often described as ‘*ad libitum*’, it is almost certain this is not the case. The levels of diet that
result in the largest size cause so much mortality that they would not be used. Expressing it
another way, larvae will continue eating more food at levels that are not consistent with overall
survival of mosquitoes for experiments. In most experiments, the amount of food that is made
available always restricts growth below the maximal size possible under true *ad libitum*
conditions.

We consider all of the diets tested acceptable in our hands. However, the superior performance
and low cost of the Koi food makes it a good choice for most purposes. It can be fed either as a
slurry or pellet and is available in large amounts which can be frozen to stockpile the food for
future use, a practice that would permit only occasional importation.
Acknowledgments

We appreciate the custom Damiens diet formulation that was generously prepared by MV and KG at Frontier Scientific Services and supplied to the CDC with the understanding that the experimental design and diet comparisons would not be influenced by the potential for commercialization. Frontier kindly formulated the diet and provided it without charge for these comparisons.

The following reagents were obtained through the NIH Biodefense and Emerging Infections Research Resources Repository, NIAID, NIH: An. gambiae, strain ‘G3’ (MRA-112) and Ae. aegypti ‘New Orleans’ strain (NR-49160).

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Funded by Target Malaria, a project that receives core funding from the Bill & Melinda Gates Foundation and from the Open Philanthropy Project Fund, an advised fund of Silicon Valley Community Foundation.
References Cited

1. Clements AN. The biology of mosquitoes. Volume 1: development, nutrition and reproduction. CABI; 1992.

2. Carvalho DO, Nimmo D, Naish N, McKemey AR, Gray P, Wilke, ABB, et al. Mass Production of Genetically Modified Aedes aegypti for Field Releases in Brazil. J Visualized Exps. 2013; (), e3579.

3. Linenberg I, Christophides GK, Gendrin M. Larval diet affects mosquito development and permissiveness to Plasmodium infection. Sci Rep. 2016;6(1):38230–10.

4. Dame DA, Haile DG, Lofgren CS, Bailey DL, Munroe WL. Improved rearing techniques for larval Anopheles albimanus: use of dried mosquito eggs and electric heating tapes. Mosquito News. 1978;38(1):68–74.

5. Kivuyo HS, Mbazi PH, Kisika DS, Munga S, Rumisha SF, Urasa FM, et al. Performance of Five Food Regimes on Anopheles gambiae senso stricto Larval Rearing to Adult Emergence in Insectary. PLoS ONE. 2014;9(10):e110671.

6. Gerberg EJ. Manual for mosquito rearing and experimental techniques. Am Mosquito Control Assoc Bull. 1979;5:1–124.

7. R DH, Kleinjan JE, Asman SM. Eicosapentanoic Acid in Mosquito Tissues: Differences Between Wild and Laboratory-Reared Adults. Environ Entomol. 1988;17(2):172–80.

8. Damiens DD, Benedict MQ, Wille M, Gilles JRL. An Inexpensive and Effective Larval Diet for Anopheles arabiensis (Diptera: Culicidae): Eat Like a Horse, a Bird, or a Fish? J Med Entomol. 2012;49(5):1001–11.
9. Gilles JRL, Lees RS, Soliban SM, Benedict MQ. Density-dependent effects in experimental larval populations of *Anopheles arabiensis* (Diptera: Culicidae) can be negative, neutral, or overcompensatory depending on density and diet levels. J Med Entomol. 2011;48(2):296–304.

10. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

11. Savage KE, Lowe RE. A one-piece aluminum cage designed for adult mosquitoes. Mosquito News. 1971;31(1):111–2.

12. Hickey WA, Craig GB. Genetic distortion of sex ratio in a mosquito, *Aedes aegypti*. Genetics. 1966;53(6):1177–96.

13. Davidson G. *Anopheles gambiae*, a complex of species. Bull WHO. 1964;31:625–34.
Figure 1
Figure 2
Figure 4b