Antioxidant, antifungal, and aphicidal activity of the triterpenoids spinasterol and 22,23-dihydrospinasterol from leaves of *Citrullus colocynthis* L.

Maqsood Ahmed¹⁄², Allah Rakha Sajid³, Ansar Javeed⁴, Muhammad Aslam³, Taswar Ahsan⁵, Dilbar Hussain⁶, Abdul Mateen⁷, Xiuwei Li¹, Peiwen Qin¹ & Mingshan Ji¹

Terpenoids from natural plant sources are valuable for their diverse biological activities that have important roles in the medical and agrochemical industries. In this study, we assessed the antioxidant, antifungal, and aphicidal activities of a mixture of spinasterol and 22,23-dihydrospinasterol from the leaves of *Citrullus colocynthis*. We used 1,1-diphenyl-2-picrylhydrazyl (DPPH) to assess antioxidant activity, and we measured antifungal activity using mycelium growth inhibition assays with three pathogenic fungi, *Magnaporthe grisea*, *Rhizoctonia solani*, and *Phytophthora infestans*. Aphicidal activity against adults of *Myzus persicae* was determined using in vitro and in vivo assays. Spinasterol and 22,23-dihydrospinasterol exhibited moderate antioxidant activity, even at lower concentrations: 19.98% at 0.78 µg mL⁻¹, 31.52% at 3.0 µg mL⁻¹, 36.61% at 12.5 µg mL⁻¹, and 49.76% at 50 µg mL⁻¹. Spinasterol and 22,23-dihydrospinasterol showed reasonable levels of fungicidal activity toward *R. solani* and *M. grisea*, with EC₅₀ values of 129.5 and 206.1 µg mL⁻¹, respectively. The positive controls boscalid and carbendazim were highly effective against all fungi except boscalid for *M. grisea* (EC₅₀ = 868 µg mL⁻²) and carbendazim for *P. infestans* (EC₅₀ = 8721 µg mL⁻²). Significant insecticidal activity was observed in both residual and greenhouse assays, with LC₅₀ values of 42.46, 54.86, and 180.9 µg mL⁻¹ and 32.71, 42.46, and 173.8 µg mL⁻¹ at 72, 48, and 24 h, respectively. The antioxidant activity of spinasterol and 22,23-dihydrospinasterol was strongly positively correlated with their antifungal and insecticidal activity. Spinasterol and 22,23-dihydrospinasterol therefore show good antioxidant and aphicidal activity with moderate fungicidal activity, making them suitable candidates for an alternative to synthetic agents.

Abbreviations

DPPH 1,1-Diphenyl-2-picrylhydrazyl
EC₅₀ Half maximal effective concentration
LC₅₀ Lethal concentration
ABTS 2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid
TEV Tobacco etch virus

¹College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, People’s Republic of China. ²Department of Agriculture (Plant Protection) Pest Warning & Quality Control of Pesticides, Gujrat 50700, Pakistan. ³Department of Agriculture (Plant Protection) Pest Warning and Quality Control of Pesticides, Lahore 54800, Pakistan. ⁴School of Life Sciences, Henan University, Jinming Campus, Kaifeng, Henan, China. ⁵Department of Resources and Environmental Microbiology, College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, People’s Republic of China. ⁶Entomological Research Institute, Ayub Agriculture Research, AARI, Faisalabad 38070, Pakistan. ⁷College of Plant Protection, China Agricultural University, Beijing 100193, China. *email: xiuwei001@syau.edu.cn
Oxidative stress plays a double role in infections; the pathologies that arise during such infections can be attributed to oxidative trauma and the creation of reactive species, often with lethal consequences. Microbial resistance to conventional antibiotics poses a significant threat to the treatment of infectious diseases. However, phytochemicals exhibit latent biological activity towards both resistant and sensitive pathogens. Phytochemicals are a valuable source of bioactive compounds with antimicrobial activities. Among these phytochemicals, phenolics are diverse secondary metabolites such as tannins, flavonoids, and lignin that exhibit antioxidant properties and are abundant in plant tissues. Likewise, reactive oxygen species (ROS) are produced as typical products in plant cellular breakdown. Naturally occurring compounds play a vital role against microbial resistance in the management of infectious diseases. Medicinal plants are prized sources of phytochemical compounds with biological activities and are used in the pharmacological and agrochemical industries. Synthetic chemicals are easily available and widely used as antioxidant, antimicrobial, antifungal, and pesticidal compounds, but their intensive, continuous use has caused the development of pest resistance and also has harmful effects on human and environmental health.

Citrullus colocynthis from the order Cucurbitales and the family Cucurbitaceae is an important plant for both medicinal and pesticidal purposes. _C. colocynthis_ appears to exhibit anti-carcinogenic, antibacterial, antifungal, antidiabetic, and antioxidant properties and also shows insecticidal potential against various harmful insects. Several biologically active compounds have been described from _C. colocynthis_; these include cucurbitacin E, I, J, K, and L, cucurbitacin glycosides such as cucurbitacin glucoside I and L, flavonoids, and flavone glycosides. The insecticidal activity of _C. colocynthis_ against numerous insect pests has also been evaluated. In a recent study, the biologically active compounds spinasterol and 22,23-dihydrospinasterol were characterized from _C. colocynthis_ leaves and evaluated against adult-stage _Brevicoryne brassicae_ (Hemiptera: Aphididae), showing significant insecticidal properties. Pronounced antioxidant activities were also reported from extracts of _C. colocynthis_ leaves and roots.

Spinasterol and 22,23-dihydrospinasterol are triterpenoids that are produced by a number of plants. Phytochemical analysis of _Bryony callus_ Ratell leaves revealed that they contain β-sitosterol, triterpenes, spinasterol, 22,23-dihydrospinasterol, glycosides, and phenolics. An extract from _B. callus_ was effective for the control of _Aedes aegypti_ larvae, and larval mortality may have been attributed to the presence of phenolics, spinasterol, and 22,23-dihydrospinasterol. Larvicidal activity has also been reported for extracts from _Heliotropium indicum_ and _Melothria maderaspatana_. An extract from the leaves of _Mukia maderaspatana_ showed potential antioxidant properties because of the presence of spinasterol, 22,23-dihydrospinasterol, flavonoids, and phenolics. It scavenged 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and DPPH radical molecules, which also possess reducing power. A pharmacological study of _Bougainvillea spectabilis_ stems reported that they contain caffeic acid, spinasterol, and 22,23-dihydrospinasterol and have been used in herbal medicines against cancer and hepatitis. The leaves of _Vitex negundo_ L., which contain salicylic acid and 22,23-dihydro-α-spinasterol-β-d-glucoside, repelled and were toxic to different strains of _Tribolium castaneum_.

Two cucurbitane-type triterpenoid saponins were identified from a solvent extract of _C. colocynthis_ fruit, which were not assessed for antioxidant, antifungal, or insecticidal activities. Similarly, a mixture of spinasterol and 22,23-dihydrospinasterol was isolated and characterized from roots of _Bermeuxia thibetica_ (Lamiaceae), but it was not evaluated as an antimicrobial or insecticidal agent. However, some biological activities of a triterpenoid spinasterol, 22,23-dihydrospinasterol, from _Melothria maderaspatana_ (Cucurbitales: Cucurbitaceae) have been described.

Green peach aphid (_Myzus persicae_) is a small green aphid that is the most significant pest of peach trees. It can harm more than 400 species of plants by feeding on plant sap; it causes decreased growth and shrinking of leaves that can lead to plant death. It is a vector of tobacco etch virus (TEV), cucumber mosaic virus (CMV), and potato virus Y (PVY), and it can also transmit various destructive viruses in other plants. Different synthetic pesticides are used to control this pest, including abamectin, cypermethrin, methylamine, and methylyamine, which are the first agents for aphid control. However, continuous use of Imidacloprid or other pesticides may harm more than 400 species of plants by feeding on plant sap; it causes decreased growth and shrinking of leaves. Pronounced antioxidant activities were also reported from extracts of _C. colocynthis_ leaves and roots.

Results

Antioxidant activity. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) is a stable free radical molecule in the form of a dark crystalline powder that is commonly used in laboratory research for antioxidant assays. It dissolves readily in acetonitrile and is recognized by its light absorption at 517 nm. It has violet color in solution and...
becomes colorless or pale yellow when neutralized by the scavenging activity of antioxidant molecules, causing a reduction in absorbance. Percent DPPH inhibition data were collected with various concentrations of a spinasterol and 22,23-dihydrospinasterol mixture and are shown in Table 1. The highest percent DPPH inhibition (49.46%) was obtained with a concentration of 50 µg mL⁻¹ of the spinasterol and 22,23-dihydrospinasterol mixture, followed by 36.61%, 31.52%, and 19.98% inhibition with concentrations of 12.5, 3.0, and 0.78 µg mL⁻¹, respectively.

Table 1. Antioxidant activity of a mixture of spinasterol and 22,23-dihydrospinasterol. Values are means of five replicates ± standard error. Different letters indicate significantly different values at the P=0.05 level (Duncan’s multiple range test, DMRT).

Concentration (µg mL⁻¹)	DPPH inhibition (%)
0.78	19.98 ± 1.66ᵃ
3	31.52 ± 0.94ᵇ
12.5	36.61 ± 0.79ᵇ
50	49.76 ± 0.12ᵈ

Statistics
- S.S: 2270.36
- M.S: 756.79
- D.F: 3
- F: 11,140.69
- P: 0.000

Antifungal activity. Table 2 presents data on the fungicidal activity of spinasterol and 22,23-dihydrospinasterol against *Magnaporthe grisea*, *Rhizoctonia solani*, and *Phytophthora infestans*. *EC₅₀* half maximal effective concentration.

Compound name	Conc. µg mL⁻¹	Inhibition ratio (%)	EC₅₀ᵃ
Spinasterol and 22,23-dihydrospinasterol			
0.78	0.373	0.336	206.09
3.12	0.373	0.336	206.09
12.5	0.373	0.336	206.09
50	0.373	0.336	206.09
Boscalid			
0.78	0.373	0.336	206.09
3.12	0.373	0.336	206.09
12.5	0.373	0.336	206.09
50	0.373	0.336	206.09
Carbendazim			868.02
0.78	0.373	0.336	206.09
3.12	0.373	0.336	206.09
12.5	0.373	0.336	206.09
50	0.373	0.336	206.09

Insecticidal activity. The data presented in Table 3 show the aphicidal activity of spinasterol and 22,23-dihydrospinasterol against the green peach aphid, *M. persicae*. In a residual assay in which adult aphids fed on individual, treated cabbage leaves in petri dishes, the highest mortality was observed after 72 h of exposure, with an LC₅₀ of 42.46 µg mL⁻¹, followed by 54.86 µg mL⁻¹ at 48 h and 180.9 µg mL⁻¹ at 24 h. Likewise, the highest mortality in a greenhouse assay was also recorded after 72 h, with an LC₅₀ of 32.71 µg mL⁻¹, followed by 42.46 µg mL⁻¹ at 48 h and 173.8 µg mL⁻¹ at 24 h. Mortality was therefore higher in the greenhouse than in the residual assay. The results presented in Table 4 show that after a prolonged exposure period of 72 h at a 50 µg mL⁻¹ concentration, 63.3% mortality was observed in the greenhouse and 56.7% mortality in the residual assay. Higher mortality in the greenhouse than in the residual assay was also observed at 48 h (56.7% vs. 50%)

Table 2. Antifungal activity of spinasterol and 22,23-dihydrospinasterol against *Magnaporthe grisea*, *Rhizoctonia solani*, and *Phytophthora infestans*. *EC₅₀* half maximal effective concentration.
and at 24 h (30% vs. 26.7%) at the 50 \(\mu \text{g mL}^{-1} \) concentration. Imidacloprid was used as the positive control at a rate of 0.0025 \(\text{mL mL}^{-1} \) water. It produced the highest rates of mortality after 72 h of exposure: 98.33% in the greenhouse assay and 96.67% in the residual assay. Likewise, Imidacloprid also produced significant mortality after 48 h of exposure: 91.67% in the greenhouse assay and 88.33% in the residual assay.

Correlation of antioxidant activity with antifungal and insecticidal activities. Pearson's correlation coefficients regarding the antioxidant activity of spinasterol and 22,23-dihydrospinasterol showed positive relationships at concentrations of 3.12 \(\mu \text{g mL}^{-1} \) and 0.78 \(\mu \text{g mL}^{-1} \), which indicated that an increase in concentration of spinasterol and 22,23-dihydrospinasterol resulted in an increase in other values and showed significant \((P < 0.05)\) results with antioxidant activities. Moreover, the antifungal activity towards *M. grisea* (B), *R. solani* (C), and *Phytophthora* (D), the insecticidal activity in the residual assay (E), and the insecticidal activity in the greenhouse assay (F) showed strong positive, significant \((P < 0.01)\) relationships, as presented in Table 5.

Discussion

Medicinal plants are highly prized by humans for their wide variety of biologically active compounds that are used in the pharmaceutical and agricultural industries. These products show substantial potential as natural antioxidants and are also commonly used against various insects\(^{25,26}\).

Citrullus colocynthis is a valuable source of antioxidant potential; for example, a butanol extract from *C. colocynthis* fruit showed an IC\(_{50}\) value of 6 \(\mu \text{g mL}^{-1} \), and an aqueous extract of fruit had an IC\(_{50}\) value of 241.25 \(\mu \text{g mL}^{-1} \). Antioxidant properties of *C. colocynthis* leaf and root extracts have also been documented: 45.9%, 39.81%, and 36.65% DPPH inhibition from hexane, aqueous and ethanol leaf extracts, respectively, and 29.12%, 35.51%, and 33.83% inhibition from root extracts\(^{24}\). The results of Benariba et al.\(^{27}\) are also consistent with our findings; they reported inhibition of DPPH radicals by seed extracts of *C. colocynthis* with IC\(_{50}\) values of 500, 580, and 350 \(\mu \text{g mL}^{-1} \) for aqueous, hydro-methanolic, and ethyl acetate extracts, respectively. Analysis of *C. colocynthis* extracts has revealed the presence of various biochemical compounds, including tannins, terpenoids, flavonoids, and coumarins, that may be responsible for the pronounced antioxidant effects and other biological activities of this plant\(^{28}\). Initial phytochemical screening of *C. colocynthis* revealed the presence of numerous

Bioassay	Time (h)	LC\(_{50}\) (\(\mu \text{g mL}^{-1} \))	95% F.L.	Slope ± SE	\(\chi^2 \)	
		Lower	Upper			
Greenhouse	24	173.8	59.77	6796	1.01 ± 0.31	1.04
	48	42.46	25.11	107.2	1.38 ± 0.29	1.99
	72	32.71	19.40	73.57	1.47 ± 0.38	2.18
Residual	24	180.9	65.58	9889	1.17 ± 0.38	0.56
	48	54.86	31.38	166.2	1.42 ± 0.32	1.28
	72	42.46	25.11	107.1	1.38 ± 0.29	1.99

Table 3. Probit analysis of spinasterol and 22,23-dihydrospinasterol against *Myzus persicae*. F.L. Fiducial limits, \(\chi^2 \) chi-squared, LC\(_{50}\) lethal concentration.

Conc. (\(\mu \text{g mL}^{-1} \))	Mean mortality (%)	Conc. (\(\mu \text{g mL}^{-1} \))	Mean mortality (%)	Conc. (\(\mu \text{g mL}^{-1} \))	Mean mortality (%)	
	24 h	48 h	72 h	24 h	48 h	72 h
	Residual	Greenhouse	Residual	Greenhouse	Residual	Greenhouse
0.78	0.00 ± 0.00\(^a\)	0.00 ± 0.00\(^a\)	0.08 ± 0.00\(^a\)	0.00 ± 0.00\(^a\)	0.00 ± 0.00\(^a\)	0.00 ± 0.00\(^a\)
3.12	3.33 ± 5.77\(^b\)	6.67 ± 5.77\(^b\)	6.67 ± 5.77\(^b\)	10.0 ± 10.0\(^b\)	10.0 ± 10.0\(^b\)	13.3 ± 5.77\(^b\)
12.5	6.67 ± 5.77\(^b\)	10.0 ± 0.00\(^b\)	20.0 ± 17.3\(^b\)	16.7 ± 5.77\(^b\)	16.7 ± 5.77\(^b\)	23.3 ± 5.77\(^b\)
50	26.7 ± 5.77\(^b\)	30.0 ± 10.0\(^b\)	50.0 ± 10.0\(^b\)	56.7 ± 5.77\(^b\)	56.7 ± 5.77\(^b\)	63.3 ± 5.77\(^b\)
CK	0.00 ± 0.00\(^d\)	0.00 ± 0.00\(^d\)	0.00 ± 0.00\(^d\)	0.00 ± 0.00\(^d\)	3.33 ± 5.77\(^d\)	3.33 ± 5.77\(^d\)
+ control	81.67 ± 1.29\(^a\)	86.66 ± 1.29\(^a\)	88.33 ± 1.29\(^a\)	91.67 ± 2.58\(^a\)	96.67 ± 2.58\(^a\)	98.33 ± 3.87\(^a\)

Table 4. Insecticidal activity of spinasterol and 22,23-dihydrospinasterol against *Myzus persicae*. Data are presented as mean ± standard deviation, and different letters indicate statistically significant differences at \(P < 0.05 \) (DMRT). S.S. sum of squares, df degrees of freedom, M.S. mean square, \(F \) \(F \)-test statistic, CK check. ***\(P < 0.001 \).
flavonoids and phenols and showed significant antioxidant activity: 88.8% from fruit extract with potential free radical scavenging consequences at a concentration of 2500 µg mL⁻¹⁴. Phenolic and flavonoid contents were quantified in solvent extracts of *C. colocynthis* roots, leaves, and fruits to compare their antioxidant activities. The total phenolic and flavonoid contents in leaf extracts were 3.07–18.6 mg g⁻¹ and 0.51–13.9 mg g⁻¹ of dry sample, respectively, followed by root and fruit extracts. Leaf ethanol extracts showed the highest antioxidant activity and DPPH radical scavenging activity compared with root and fruit extracts²⁹.

Chawech et al.³⁰ reported the antibacterial activity of the isolated compounds cucurbaticin E and glucocucurbaticin E from *C. colocynthis* against *Bacillus cereus* and *Enterococcus faecalis*. The minimum inhibitory concentrations (MIC) were 0.625 and 1.25 mg mL⁻¹, respectively. Moreover, all *C. colocynthis* extracts showed antibacterial activity against *Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis*, and *Staphylococcus aureus*, as well as antifungal activity against four *Candida* species, *Candida krusei, Candida glabrata, Candida parapsilosis*, and *Candida albicans*³¹.

Table 5. Correlation of the antioxidant activity of spinasterol and 22,23-dihydrospinasterol versus antifungal and insecticidal activities. A, antioxidant activity. B, antifungal activity against *M. grisea*. C, antifungal activity against *R. solani*. D, antifungal activity against *Phytophthora*. E, insecticidal activity in residual assay; F, insecticidal activity in greenhouse assay. *P < 0.05, **P < 0.01, significant Pearson’s correlation coefficients.

Concentration (µg mL⁻¹)	0.78	3.12	12.5	50	
(A)	0.78	1			
	3.12	0.84	1		
	12.5	−0.48	−0.87	1	
	50	−0.86	−1.00*	0.86	1
(B)	0.78	1			
	3.12	0.97**	1		
	12.5	0.94**	0.99**	1	
	50	0.95**	0.99**	0.99**	1
(C)	0.78	1			
	3.12	0.99**	1		
	12.5	0.98**	0.99**	1	
	50	0.95**	0.96**	0.98**	1
(D)	0.78	1			
	3.12	0.71**	1		
	12.5	0.75**	0.99**	1	
	50	0.73**	0.97**	0.99**	1
(E)	0.78	1			
	3.12	0.69**	1		
	12.5	0.58*	0.92**	1	
	50	0.54*	0.93**	0.95**	1
(F)	0.78	1			
	3.12	0.63*	1		
	12.5	0.60*	0.82**	1	
	50	0.70**	0.73**	0.92**	1

Plant extracts and essential oils contain secondary metabolites, including toxic phenolic, steroid, and terpenoid compounds that are stored in plant cells and show bio-pesticidal properties against pathogens and insect pests. Moreover, these compounds are easily biodegradable, reducing their ability to cause severe damage to humans and the environment³²–³⁴. Review of the literature shows several examples of plant products used for plant protection against a broad spectrum of pathogenic fungi. For instance, thymol and carvacrol have antifungal activity against *Botrytis cinerea* and *Fusarium* spp., and results indicate that these compounds could be employed independently as fungicidal agents against various phytopathogenic fungi³⁵. The α-cadinol and t-muurolol compounds isolated from *Calocedrus macrolepis* exhibit significant fungicidal activity against *Fusarium oxysporum* and *R. solani*³⁶. Methanol extract from the rhizome of *Acorus gramineus* contains numerous chemical compounds, such as caryophyllene, a-asarone, methyl isoeugenol, and isoasarone safrole, that show antifungal activity. In particular, asaronaldehyde (2,4,5-trimethoxybenzaldehyde) enabled complete control of *Phytophthora infestans* in potatoes and tomatoes and 75% control of *R. solani*³⁷. Our findings on the antifungal
activity of triterpenoids (spinasterol and 22,23-dihydrospinasterol) are consistent with those of Quiroga et al.38, who showed that lactones, sesquiterpenes, and triterpenes from \textit{Schinus molle} fruits and leaves had antifungal potential against \textit{Alternaria alternata}, \textit{Penicillium cyclopium}, \textit{Aspergillus niger}, \textit{Aspergillus flavus}, \textit{Microsporum griseum}, and \textit{Penicillium italicum}. Similarly, the flavonoid \textit{4‘-methoxy-5,7-di-hydroxyflavone 6-C-glucoside} isolated from the stems and leaves of \textit{Aguilegia vulgaris} showed antifungal activity against the mold \textit{A. niger}99. The antimycoxigenic and antifungal activity of alcohol and distilled water extracts of \textit{C. coloynthis} were evaluated against \textit{A. flavus} and \textit{Aspergillus ochraceus}, and they showed excellent antifungal activity against \textit{A. ochraceus} with good antiocoxytogenic activity in liquid medium, consistent with findings about the antifungal activity of the triterpenoids spinasterol and 22,23-dihydrospinasterol100.

Activities of camphor, pulegone, and verbene isolated from \textit{Myristica fragrans} were assessed against the German cockroach \textit{Blatella germanica}, and these compounds showed \textit{LC}_{50} values of 0.07 mg cm-1, 0.06 mg cm-1, and 0.07 mg cm-1, respectively41. Similarly, other compounds such as carvendol, eugenol, \textit{p}-cymene, isoeugenol, and thymol displayed anti-adulticidal potential against \textit{B. germanica} at a rate of 1 mg adult-1142. Likewise, spinasterol and 22,23-dihydrospinasterol exhibited medicinal and cytotoxic properties; these compounds were characterized in \textit{Bougainvillea spectabilis} and exhibited marked inhibition of the enzyme xanthine oxidase, with an \textit{IC}_{50} value of 39.21 \mu M106. Our results on the toxicity of spinasterol and 22,23-dihydrospinasterol showed that they exhibited insecticidal activity and caused significant mortality of \textit{M. persicae}. Similar outcomes were described by Torkey et al.43, who reported that 2-O-\textit{β}-d-glucopyranosyl cucurbitacin E isolated from \textit{C. coloynthis} showed toxicity against \textit{Aphis craccivora}, causing substantial mortality with an \textit{LC}_{50} of 11,003 ppm. Moreover, 9-oxo-10,11-dehydrogeraphorone isolated from \textit{Eupatorium adenophorum} caused 73.33% mortality of \textit{Pseudoregma bambucicola} at 2 mg mL-1 with a 6-h exposure. Moreover, 100% control of this pest was recorded at a similar concentration after one month of exposure in a field experiment44.

Contact toxicity of the new botanical insecticide Dayabaon (5I, 10%) was evaluated for different life stages of \textit{M. persicae}. Its estimated \textit{LC}_{50} values for first, second, third, and fourth instar nymphs and adults were 3254, 3387, 4194, 3839, and 3508 ppm, respectively, and it did not leave residues45. \textit{Solanum incanum} fruit sap extract at different concentrations showed some level of insecticidal and deterrent activity against green peach aphid46. The insecticidal and deterrent activity of \textit{Solanum incanum} may be attributed to the presence of saponins, which alter feeding behavior and molting, causing death at different developmental stages31-33.

The efficacy of \textit{Xanthium strumarium}, \textit{Tanacetum parthenium}, and \textit{Hypericum calycinum} extracts towards \textit{M. persicae} was assessed; they produced nymphal mortality of 89%, 88%, and 57%, respectively, and adult mortality of 12%, 82%, and 88% at the same concentration47. Similarly48, the leaf extracts of several plants were evaluated against \textit{M. persicae}, and \textit{Ricinus communis} extract was most toxic to \textit{M. persicae} (553 ppm), followed by extracts of \textit{Robinia pseudoacacia} (1150 ppm for a 24-h exposure) and \textit{Lantana camara} (6660 ppm). Another study49 reported that essential oil from \textit{F. vulgaris} caused significant mortality; this mortality was attributed to major compounds such as trans-anethole (67.9%) and fenchone (25.5%), with \textit{LC}_{50} = 0.6 2.4 mL L-1 and \textit{LC}_{90} = 2.4 mL L-1, and the oil was safe for non-target organisms. These results are consistent with our results on mortality of \textit{M. persicae} following application of spinasterol and 22,23-dihydrospinasterol.

Our results also showed that the antioxidant activity of spinasterol and 22,23-dihydrospinasterol was signifi-
cantly correlated with antifungal and insecticidal activity. Although multiple studies have investigated the antioxidant, antimicrobial, antifungal, and insecticidal activities of plant extracts, essential oils, and isolated compounds, such activities have not previously been evaluated for spinasterol and 22,23-dihydrospinasterol. Thus, this research represents the first investigation of their antioxidant and antifungal properties and extends previous findings on their aphicidal activity against adult \textit{M. persicae}.

Materials and methods

Collection of materials. Leaf samples of \textit{C. coloynthis} (Cucurbitales: Cucurbitaceae), also known locally as \textit{tumba}, were collected from a desert area of Punjab Province, Pakistan (29° 59′ 34″ N, 73° 15′ 13″ E) during 2019. The collected plant samples were identified as (Coloynthis) \textit{C. coloynthis} by Dr. Dilbar Hussain Entomologist and Hafiz Naveed Ramzan Agronomist at the Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan. However, a voucher specimen of this material was not deposited because of the lack of an available herbarium. As this plant grows widely in vast, uncultivated desert regions and is partially used on a commercial basis, no permissions or licenses were required for sample collection.

Pure colonies of three pathogenic fungi, rice blast (\textit{M. grisea}), sheath blight (\textit{R. solani}), and \textit{Phytophthora} (\textit{P. infestans}), were obtained from Department of Pesticides Science, College of Plant Protection, Shenyang Agricultural University, Shenyang, China. The green peach aphids were collected from peach plants and were sustained on cabbage plants grown in a greenhouse at 20 ± 5°C and 45 ± 5% relative humidity (RH) with a 16 h light/8 h dark photoperiod.

Extraction, purification, and identification of biochemical compounds. Extraction, separation, purification, and identification of the purified compounds were performed by solvent/cold extraction, various chromatographic techniques, mass spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy (\textit{H}-NMR and \textit{13C}-NMR), respectively, as previously documented by the author44 and are detailed in Supplementary File S1.

Determination of radical scavenging activity using DPPH. We assessed the antioxidant activity of spinasterol and 22,23-dihydrospinasterol at various concentrations (0.78, 3.00, 12.5, and 50 µg mL-1) in Tween 20 (1% solution in distilled water) using the stable free radical molecule 1,1-diphenyl-2-picrylhydrazyl (DPPH) (\textit{C}_{12}H_{16}N_{2}O_{5}), a dark-colored crystalline powder. In brief, 0.25 mL samples of various concentrations of the
pH of 7.8, 3.0, 12.5, and 50 mg mL−1. The prepared PDA was transferred into 90-mm petri dishes (15 mL per dish). The purified compound was dissolved in acetone and then mixed with PDA to obtain various concentrations of PDA. The commercial synthetic fungicides boscalid and carbendazim were used as positive controls. A blank solution was prepared by diluting the acetone to a concentration of 0.0025 mL mL−1 of water, and control (CK) plants were sprayed with a 1% Tween 20 solution. Treated plants, positive controls, and CKs were placed in a greenhouse for 72 h. Mortality data for the in vitro and in vivo experiments were collected after 24, 48, and 72 h of exposure by examining the aphids using a stereomicroscope. Individual aphids were considered to be dead if they made no response to needle stimulation.

Correlation of antioxidant activity with antifungal and insecticidal activity. The correlations between antioxidant activity of spinasterol and 22,23-dihydrospinasterol and antifungal activity (rice blast, sheath blight, and Phytophthora) and insecticidal activity were calculated using IBM-SPSS statistics version 25.0 and assessed at the P<0.05 significance level.

Statistical analysis. Data were analyzed by analysis of variance (ANOVA), and differences among treatments were assessed using Duncan's multiple range test (DMRT) at the P=0.05 level using IBM-SPSS statistics version 25.0. Probability analysis was performed for the calculation of LC50 values using the EPA Probit analysis program version 1.5. Inhibition ratio and EC50 values were obtained using Log-Probit analysis.

Statement of compliance. For experimental research, plants leaves were collected from wild habitat following institutional, national, and international guidelines and legislation. As the plant Citrullus colocynthis is wildly grown on vast uncultivated desert area and partially used on commercial basis so, no permissions or licenses was required for the collection of samples.

Conclusions Spinasterol and 22,23-dihydrospinasterol from C. colocynthis leaves showed moderate antioxidant activity, significant aphicidal activity against M. persicae in residual and greenhouse assays, and moderate antifungal activity against M. grisea and R. solani. Insect mortality was higher in the greenhouse assay than in the residual assay. The antioxidant activity of spinasterol and 22,23-dihydrospinasterol was strongly positively correlated with antifungal and insecticidal activity. Based on these findings, spinasterol and 22,23-dihydrospinasterol could be used for antioxidant, antifungal, and insecticidal purposes as an alternative to synthetic chemical agents. However, more research is needed on the isolation and characterization of other bioactive compounds and their evaluation as antioxidant, antifungal, and insecticidal agents.

Data availability The data that support the findings of this study are available in the manuscript.

\[
\text{Inhibition(%) = } \frac{A_{\text{blank}} - A_{\text{sample}}}{A_{\text{blank}}} \times 100
\]
References

1. Mvuini, C., Marais, D., Ngadze, E., du Toit, E. S. & Tsindi, A. Effect of moringa extract on the leaf anatomy and yield potential of tomato infected by Alternaria solani. S. Afr. J. Plant Soil 35(3), 389–392. https://doi.org/10.1080/02571862.2018.1446223 (2018).
2. Memon, U., Brohi, A. H., Ahmed, S. W., Azhar, I. & Bano, H. Antibacterial screening of Citrullus colocynthis. Pak. J. Pharm. Sci. 16(1), 1–6 (2003).
3. Dallak, I. In vivo, acute, normo-hypoglycemic, antihyperglycemic, insulinitropic actions of orally administered ethanol extract of Citrullus colocynthis (L.) Schrad Pulp. Am. J. Biochem. Biotechnol. 70(7), 1023–1029. https://doi.org/10.3844/ajbbsp.2009.118.125 (2009).
4. Kumar, S., Kumar, D., Manjusha, S. K., Singh, N. & Vashishtha, B. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. melonanich fruit extract. Acta Pharm. 58(2), 215–220. https://doi.org/10.2478/v10007-008-0008-1 (2008).
5. Dehghani, F., Azizi, M., Panjehshahin, M. R., Talaei-Khozani, T. & Mesbah, F. Toxic effects of hydroalcoholic extract of Citrullus colocynthis on pregnant mice. Iran. J. Vet. Res. 9(1), 42–43 (2008).
6. Chang, W. S., Chang, Y. H., Lu, F. J. & Chiang, H. C. Inhibitory effects of phenolics on xanthine oxidase. N. S. Afr. J. Sci. 85(1), 68–71 (1989).
7. Ahmed, M. Antioxidative constitution of Flavone C-glycosides and cucurbitacin glycosides from Citrullus colocynthis L. with aphidical activity against cabbage aphid Brevicoryne brassicae L. Molecules 25(9), 2184. https://doi.org/10.3390/molecules25092184 (2020).
8. Ahmed, M. Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis L. and Cannabis Sativa L. Appl. Ecol. Environ. Res. 17, 6961–6979 (2019).
9. Ramamurthy, V. & Krishnaveni, S. Larvicidal efficacy of leaf extracts of Heliotropium indicum and Mukia maderaspatana against the dengue fever mosquito Aedes aegypti. J. Entomol. Zool. Stud. 2, 40–45 (2014).
10. Petrus, A. J. A., Bhuvaneshwari, N. & Alain, J. A. L. Antioxidative constitution of Mukia maderaspatana (Linn.) M. Roem. leaves. Indian J. Nat. Prod. Resour. 4(34), 1–12 (2011).
11. Raja, B. & Pugalaeni, K. V. Evaluation of antioxidant activity of Melothria maderaspatana in vitro. Curr. Eur. J. Biol. 5, 224–230 (2010).
12. Chang, W. S., Chang, Y. H., Lu, F. J. & Chiang, H. C. Inhibitory effects of phenolics on xanthine oxidase. Anticancer Res. 14, 501–506 (1994).
13. Ling, T. J. et al. New triterpenoids and other constituents from a special microbial-fermented tea—Fuzhuan brick tea. J. Agric. Food Chem. 58, 4945–4950 (2010).
14. Song, F. et al. Two new cucurbitane-type triterpenoid saponins isolated from ethyl acetate extract of Citrullus colocynthis fruit. J. Asian Nat. Prod. Res. 17, 813–818 (2015).
15. Ding, L., Chen, Y. & Wu, F. Constituents of the root of Berneuxia thibetica Decne. Zhongguo Zhong Yao Za Zhi 16(5), 289–290 (1991).
16. Sinha, B. N., Sasmal, D. & Basu, S. P. Pharmacological studies on Melothria maderaspatana. Fitoterapia 68, 75–78 (1997).
17. Cho, J. R., Hong, K. J., Yoo, J. K., Bang, J. R. & Lee, J. O. Comparative toxicity of selected insecticides to Aphis cirtirula, Myzus malvaccus tus (Homoptera: Aphiidae), and the predator Harmonia axyridis (Coleoptera: Coccinellidae). J. Econ. Entomol. 90, 11–14 (1997).
18. Cui, L. et al. The functional significance of E-F-Farnesene: Does it influence the populations of aphid natural enemies in the fields?. Biol. Control 60, 108–112 (2012).
19. Pavela, R., Zabka, M., Bednar, J., Triska, J. & Vrchotová, N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind. Crops Prod. 83, 275–282 (2016).
20. Ana, C. A. et al. The chemical profile of essential oils obtained from fennel fruits (Foeniculum vulgare Mill.). Farmacia 58, 46–53 (2010).
21. Latreux, F., Depickère, S., Duchon, S. & Chavez, T. Insecticide resistance of Triatoma infestans (Hemiptera, Reduviidae) vector of Chagas disease in Bolivia. Trop. Med. Int. Health. 15, 1037–1048 (2010).
22. Michaelakis, A. et al. Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae). Parasitol. Res. 105, 769–773 (2009).
23. Cheokroun, E. et al. Antioxidant activity and phytochemical screening of two Cucurbitaceae: Citrullus colocynthis fruits and Bryonia dioica roots. Asian Pac. J. Trop. Dis. 5, 632–637 (2015).
24. Benaribia, N. et al. Phytochemical screening and free radical scavenging activity of Citrullus colocynthis seeds extracts. Asian Pac. J. Trop. Biomed. 3(1), 35–40 (2013).
25. Hussain, A. I. et al. Phenolic profile and antioxidant activity of various extracts from Citrullus colocynthis (L.) from the Pakistani flora. Ind. Crops Prod. 45, 416–422 (2013).
26. Chawech, R. et al. Chemical composition and antibacterial activity of extracts and compounds isolated from Citrullus colocynthis (L.) Schrad. J. Pharmacogn. Phytochem. JPP 4, 197–203 (2015).
27. Marzouk, B. et al. Antibacterial and antifungal activities of several populations of Tunisian Citrullus colocynthis Schrad. immature fruits and seeds, J. Mycol. Med. 20, 179–184 (2010).
28. Daniel, C. K., Lennox, C. L. & Vries, F. A. In-vitro effects of garlic extracts on pathogenic fungi Botrytis cinerea, Penicillium expansum and Neurosphaera Albula. S. Afr. J. Sci. 111(7–8), 1–8 (2015).
29. Martinez, J. A., & Dhanasekaran, D. Natural fungicides obtained from plants. In Fungicides for Plant and Animal Diseases (2012). https://doi.org/10.5772/26336.
30. Sales, M. D. C., Costa, H. B., Fernandes, P. M. B., Ventura, J. A. & Meira, D. D. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pac. J. Trop. Biomed. 6, 26–31 (2016).
31. Daferera, D. J., Zogas, B. N. & Polissiou, M. G. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot. 22, 39–44 (2003).
32. Chang, H. Y. et al. Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioreas. Technol. 99, 6266–6270 (2008).
33. Lee, H. S. Fungicidal property of active component derived from Acrosa gramineus rhizome against phytopathogenic fungi. Bioreas. Technol. 98, 1324–1328 (2007).
38. Quiroga, E. N., Sampietro, A. R. & Vattuone, M. A. Screening antifungal activities of selected medicinal plants. J. Ethnopharmacol. 74, 89–96 (2001).
39. Abad, M. J., Ansusetegui, M. & Bermejo, P. Active antifungal substances from natural sources. ARKIVOC 7, 116–145 (2007).
40. Gacem, M. A. et al. Antimycotoxigenic and antifungal activities of Citrullus colocynthis seeds against Aspergillus flavus and Aspergillus ochraceus contaminating wheat stored. Afr. J. Biotechnol. 12, 6222–6231 (2013).
41. Jung, W. C., Jang, Y. S. U., Hieu, T. T., Lee, C. K. & Ahn, Y. J. Toxicity of Myristica fragrans seed compounds against Blattella germanica (Dictyoptera: Blattellidae). J. Med. Entomol. 44, 524–529 (2007).
42. Yeom, H. J., Kang, J. S., Kim, G. H. & Park, I. K. Insecticidal and acetylcholine esterase inhibition activity of apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica). J. Agric. Food Chem. 60, 7194–7203 (2012).
43. Torkey, H. M., Abou-Yousef, H. M., Azeiz, A. & Farid, H. E. A. Insecticidal effect of Cucurbitacin E Glycoside isolated from Citrullus colocynthis against Aphis craccivora. J. Basic Appl. Sci. 3, 4060–4066 (2009).
44. Nong, X. et al. Acaricidal activity of extract from Eupatorium adenophorum against the Psoroptes cuniculi and Sarcoptes scabiei in vitro. Vet. Parasitol. 157, 345–349 (2012).
45. Rezaei, M. & Moharramipour, M. Efficacy of Dayabon®, a botanical pesticide, on different life stages of Myzus persicae and its biological control agent, Aphidius matricariae. J. Crop Prot. 8, 1–10 (2019).
46. Madanat, H. M., Al Antary, T. M. & Abu Zarqa, M. H. Toxicity of six ethanol plant extracts against the Green Peach Aphid Myzus persicae Sulzer (Homoptera: Aphididae). Fresenius Environ. Bull. 25, 706–718 (2016).
47. Pavela, R. Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ. Sci. Pollut. Res. 25, 10904–10910 (2018).

Acknowledgements
Experimental guidelines and supervision provided by Professor Ji Mingshan is greatly acknowledged.

Author contributions
M.A. conducted the experiment and wrote the manuscript; M.J., X.L., and P.Q. design and conceived the experiment; A.R.S., A.J., M.A., T.A.D.H. and A.M. review and copy edit the experiment.

Funding
This research was funded by National Key Research and Development Plan Program of China (2017YFD0201805) and Natural Science Foundation of Liaoning Province, China 2019-MS-275.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-08999-z.

Correspondence and requests for materials should be addressed to X.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022