Dynamic Buffer Capacities in Redox Systems

Anna Maria Michałowska-Kaczmarczyk1, Aneta Spórna-Kucab2 and Tadeusz Michałowski2*

1 Department of Oncology, The University Hospital in Cracow, Cracow, Poland
2 Department of Analytical Chemistry, Technical University of Cracow, Cracow, Poland

Corresponding author:
Tadeusz Michałowski
michalot@o2.pl

Department of Analytical Chemistry, Technical University of Cracow, 24, 31-155 Cracow, Poland.
Tel: +48 12 628 20 00

Citation: Michałowska-Kaczmarczyk AM, Spórna-Kucab A, Michałowski T (2017) Dynamic Buffer Capacities in Redox Systems. Biochem Mol Biol J. Vol.3 No. 3:11

Received: September 21, 2017; Accepted: October 04, 2017; Published: October 07, 2017

Abstract
The buffer capacity concept is extended on dynamic redox systems, realized according to titrimetric mode, where changes in pH are accompanied by changes in potential E values; it is the basic novelty of this paper. Two examples of monotonic course of the related curves of potential E vs. and pH vs. Φ relationships were considered. The systems were modeled according to GATES/GEB principles.

Keywords: Thermodynamics of electrolytic redox systems; Buffer capacity; GATES/GEB.

Introduction

The buffer capacity concept is usually referred to as a measure of resistance of a solution (D) on pH change, affected by an acid or base, added as a titrant T, i.e., according to titrimetric mode; in this case, D is termed as titrand.

The titration is a dynamic procedure, where V mL of titrant T, containing a reagent B (C mol/L), is added into V0 mL of titrand D, containing a substance A (C0 mol/L). The advance of a titration B(C,V) ⇒ A(C0,V0), denoted for brevity as B ⇒ A is characterized by the fraction titrated [1-4]

\[\Phi = \frac{C \cdot V}{C_0 \cdot V_0} \]

That introduces a kind of normalization (independence on V0 value) for titration curves, expressed by pH=pH(Φ), and E=E(Φ) for potential E [V] expressed in SHE scale. The redox systems with one, two or more electron-active elements are modeled according to principles of Generalized Approach to Electrolytic Systems with Generalized Electron Balance involved (GATES/GEB), described in details in [5-16], and in references to other authors’ papers cited therein.

According to earlier conviction expressed by Gran [17], all titration curves: pH=pH(Φ) and E=E(Φ) for potential E [V] expressed in SHE scale. The redox systems with one, two or more electron-active elements are modeled according to principles of Generalized Approach to Electrolytic Systems with Generalized Electron Balance involved (GATES/GEB), described in details in [5-16], and in references to other authors’ papers cited therein.

Examples of Titration Curves pH=pH(Φ) and E=E(Φ) in redox systems

In this paper, we refer to the disproportionating systems: (S1) NaOH ⇒ HIO and (S2) HCl ⇒ NaIO, characterized by monotonic changes of pH and E values during the related titrations (i.e., the case 1o). In both instances, the values: V0=100, C0=0.01, and C=0.1 were assumed. The set of equilibrium data [18-20] applied in calculations, presented in Table 1, is completed by the solubility of solid iodine, I2(s), in water, equal 1.33∙10-3 mol/L. The related algorithms, prepared in MATLAB for S1 (NaOH ⇒ HIO) S2 (HCl ⇒ NaIO) system according to the GATES/GEB principles, are presented in Appendices 1 and 2.

The titration curves: pH=pH(Φ) and E=E(Φ) presented in Figures 1 and 2 are the basis to formulation of dynamic buffer capacities in the systems S1 and S2.

Dynamic acid-base buffer capacities \(B_V \) and \(B_V' \)

Dynamic buffer capacity was referred previously only to acid-
This article is available in: http://biochem-molbio.imedpub.com/archive.php

Table 1 Physicochemical data related to the systems S1 and S2.

No.	Reaction	Equilibrium equation	Equilibrium data
1	I₂ + 2e⁻ = 2I⁻ (for dissolved I₂)	[I⁻]² = K_{sw} [I] [e⁻]²	\(E_{\text{em}} = 0.621 \text{ V} \)
2	I⁻ + 2e⁻ = 3I⁻	[I⁻]² = K_{sw} [I] [e⁻]²	\(E_{\text{em}} = 0.545 \text{ V} \)
3	IO⁻ + H₂O + 2e⁻ = I⁻ + 2OH⁻	[IO⁻] [OH⁻] = K_{sw} [I] [e⁻]²	\(E_{\text{em}} = 0.49 \text{ V} \)
4	IO⁻ + 6H⁺ + 6e⁻ = I⁻ + 3H₂O	[I⁻] = K_{sw} [IO⁻] [H⁺]² [e⁻]⁶	\(E_{\text{em}} = 1.08 \text{ V} \)
5	H₂IO₄⁻ + 7H⁺ + 8e⁻ = I⁻ + 6H₂O	[I⁻] = K_{sw} [H₂IO₄⁻] [H⁺]⁷ [e⁻]⁸	\(E_{\text{em}} = 1.24 \text{ V} \)
6	HJ₀₂⁻ + 3H₂O + 8e⁻ = I⁻ + 9OH⁻	[I⁻] = K_{sw} [HJ₀₂⁻] [e⁻]⁹	\(E_{\text{em}} = 0.37 \text{ V} \)
7	HI₀ = H⁺ + IO⁻	[H⁺] [IO⁻] = K_{sw} [HI₀]	\(pK_{sw} = 10.6 \)
8	HIO = H⁺ + IO⁻	[H⁺] [IO⁻] = K_{sw} [HIO]	\(pK_{sw} = 0.79 \)
9	HJ₀₂⁻ = H⁺ + HJ₀₂⁻²	[H⁺] [HJ₀₂⁻] = K_{sw} [HJ₀₂⁻]²	\(pK_{sw} = 3.3 \)
10	Cl⁻ + 2e⁻ = 2Cl⁻	[Cl⁻]² = K_{sw} [Cl⁻] [e⁻]²	\(E_{\text{em}} = 1.359 \text{ V} \)
11	ClO⁻ + H₂O + 2e⁻ = Cl⁻ + 2OH⁻	[ClO⁻] [OH⁻] = K_{sw} [Cl⁻] [e⁻]²	\(E_{\text{em}} = 0.88 \text{ V} \)
12	ClO⁻ + 2H⁺ + 4e⁻ = Cl⁻ + 4OH⁻	[ClO⁻] [OH⁻] = K_{sw} [Cl⁻] [e⁻]⁴	\(E_{\text{em}} = 0.77 \text{ V} \)
13	HClO + H⁺ + CIO⁻	[H⁺][CIO⁻] = K_{sw} [HClO]	\(pK_{sw} = 7.3 \)
14	HClO₂ + 3H⁺ + 4e⁻ = Cl⁻ + 2H₂O	[Cl⁻] = K_{sw} [HClO₂][H⁺]³ [e⁻]⁴	\(E_{\text{em}} = 1.56 \text{ V} \)
15	ClO₂⁻ + 4H⁺ + 5e⁻ = Cl⁻ + 4H₂O	[ClO₂⁻] = K_{sw} [Cl⁻] [H⁺]⁴ [e⁻]⁶	\(E_{\text{em}} = 1.50 \text{ V} \)
16	ClO⁻ + 6H⁺ + 6e⁻ = Cl⁻ + 3H₂O	[Cl⁻] = K_{sw} [ClO⁻] [H⁺]⁵ [e⁻]⁶	\(E_{\text{em}} = 1.45 \text{ V} \)
17	ClO⁻ + 8H⁺ + 8e⁻ = Cl⁻ + 4H₂O	[Cl⁻] = K_{sw} [ClO⁻] [H⁺]⁶ [e⁻]⁸	\(E_{\text{em}} = 1.38 \text{ V} \)
18	2ICl + 2e⁻ = I⁻ + 2Cl⁻	[I⁻][Cl⁻] = K_{sw} [ICl] [e⁻]²	\(E_{\text{em}} = 1.105 \text{ V} \)
19	ICl = I⁻ + Cl⁻	[I⁻][Cl⁻] = K_{sw} [ICl]	\(\log K = 0.2 \)
20	IC₅ = Cl⁻ + Cl⁻	[IC₅][Cl⁻] = K_{sw} [IC₅]	\(\log K = 2.2 \)
21	H₂O + H⁺ + OH⁻	[H⁺][OH⁻] = K_{sw}	\(pK_{sw} = 14.0 \)

Figure 1 (A) \(\text{pH} = \text{pH}(\Phi) \) and (B) \(\Phi = \Phi(\text{pH}) \) relationships plotted for the system NaOH \(\Rightarrow \) HIO.

Base equilibria in non-redox systems [3,21-23]. However, the dynamic \(\beta_j \) and windowed \(\beta_j \) buffer capacities can be also related to acid-base equilibria in redox systems. The \(\beta_j \) is formulated as follows [3,21).

\[
\beta_j = \frac{\text{dc}}{\text{dpH}} \quad \text{(2)}
\]

where

\[
c = \frac{CV}{V_0 - V} \quad \text{(3)}
\]

It is the current concentration of B in D+T mixture, at any point of the titration. In the simplest case, D is a solution of one substance \(A \) (C₀ mol/L), and then Equation 3 can be rewritten as follows

\[
c = \Phi - \frac{C_0}{C + \Phi \cdot C_0} \quad \text{(4)}
\]
where Φ is the fraction titrated (Equation 1). Then we get

$$\beta = \frac{dc}{d\Phi} \left| \frac{C}{C+\Phi} - \frac{C}{C} \right|$$

where

$$\eta = \frac{dpH}{d\Phi}$$

is the sharpness index on the titration curve. For comparative purposes, the absolute values, $|\beta|$ and $|\eta|$, for β (Equations 1 and 5) and η (Equation 6) are considered. At $C_0/C << 1$ and small Φ value, from Equation 3 we get $a_\Phi = \hat{O}$.

The β value is the point–assessment and then cannot be used in the case of finite pH–changes (ΔpH) corresponding to an addition of a finite volume of titrant (β is a non–linear function of pH). For this purpose, the 'windowed' buffer capacity, β_v, defined by the formula [3,21].

$$\beta_v = \frac{\Delta c}{\Delta pH}$$

has been suggested. From extension in Taylor series we have

$$\frac{\Delta c}{\Delta pH} = \beta_v + \frac{\Delta^2 c}{\Delta pH^2} \Delta pH + \frac{\Delta^3 c}{\Delta pH^3} (\Delta pH)^3 + \ldots + \beta_v + \sum_{k=1}^{\infty} \left(\frac{\Delta^k c}{\Delta pH^k} \right)_{\mu}$$

where

$$\left(\frac{d^k c}{d\Phi^k} \right)_{\mu} = \left(\frac{d^{k-1} \beta_v}{d\Phi^{k-1}} \right)_{\mu}$$

From Equations 7 and 9 we see that βV is the first approxima-
tion of BV. One should take here into account that finite changes (ΔpH) in pH, e.g. $\Delta pH=1$, are involved with addition of a finite volume of a reagent endowed with acid–base properties, here: base NaOH, of a finite concentration, C.

Dynamic redox buffer capacities β_v^E and β_v^E

In similar manner, one can formulate dynamic buffer capacities B_v^E and B_v^E, involved with infinitesimal and finite changes of potential E values:

$$\beta_v^E = \frac{dc}{dE}$$

$$\beta_v^E = \frac{dc}{dE}$$

Where c is defined by Equation 2, and then we have

$$\frac{\Delta c}{\Delta E} = \beta_v + \sum_{k=1}^{\infty} \left(\frac{d^k \beta_v}{dE^k} \right)_{\mu}$$

where

$$\frac{d^k c}{dE^k} = \left(\frac{d^{k-1} \beta_v}{dE^{k-1}} \right)_{\mu}$$

Graphical presentation of dynamic buffer capacities in redox systems

Referring to dynamic redox systems represented by titration curves presented in Figures 1 and 2, we plot the relationships: β_v vs. Φ, β_v vs. pH, β_v vs. E, and β_v^E vs. Φ, β_v^E vs. pH, β_v^E vs. E for the systems: (S1) NaOH \Rightarrow HIO; (S2) HCl \Rightarrow NaIO. The relations: (A) β_v vs. Φ, (B) β_v vs. pH, (C) β_v vs. E and (D) β_v^E vs. Φ, (E) β_v^E vs. pH, (F) β_v^E vs. E are plotted in Figures 3 and 4.
Figure 3 The relations: (A) β_v vs. Φ, (B) β_v vs. pH, (C) β_v vs. E and (D) β_v^c vs. Φ, (E) β_v^c vs. pH, (F) β_v^c vs. E for (S1) NaOH \Rightarrow HIO.

Figure 4 The relations: (A) β_v vs. Φ, (B) β_v vs. pH, (C) β_v vs. E and (D) β_v^c vs. Φ, (E) β_v^c vs. pH, (F) β_v^c vs. E for (S2) HCl \Rightarrow NaIO.
Discussion

Disproportionation of the solutes considered (HIO or NaIO) in D occurs directly after introducing them into pure water. The disproportionation is intensified, by greater pH changes, after addition of the respective titrants: NaOH (in S1) or HCl (in S2), and the monotonic changes of \(E=E(\Phi) \) and \(\text{pH}=\text{pH}(\Phi) \) occur in all instances.

All attainable equilibrium data related to these systems are included in the algorithms implemented in the MATLAB computer program (see Appendices 1 and 2). In all instances, the system of equations was composed of: generalized electron balance (GEB), charge balance (ChB) and concentration balances for particular elements ≠ H, O.

In the system S1, the precipitate of solid iodine, \(I_2(s) \), is formed, see Figure 5. In the (relatively simple) redox system S2, we have all four basic kinds of reactions; except redox and acid-base reactions, the solid iodine \((I_2(s)) \) is precipitated and soluble complexes: \(I_2Cl^{-1}, ICl \) and \(ICl_2^{-1} \) are formed, see Figure 6A. Note that \(I_2(s) + I^- = I_3^{-1} \) is also the complexation reaction.

In the system S2, all oxidized forms of \(Cl^- \) were involved, i.e. the oxidation of \(Cl^- \) ions was thus pre-assumed. This way, full “democracy” was assumed, with no simplifications [18-20]. However, from the calculations we see that HCl acts primarily as a disproportionating, and not as reducing agent. The oxidation of \(Cl^- \) occurred here only in an insignificant degree (Figure 6B); the main product of the oxidation was \(Cl_2 \), whose concentration was on the level ca. \(10^{-16}-10^{-17} \text{ mol/L} \).

Conclusion

The redox buffer capacity concepts: \(\hat{A}_V \) and \(\hat{E}_V \) can be principally related to monotonic functions. This concept looks awkwardly for non-monotonic functions \(\text{pH}=\text{pH}(\Phi) \) and/or \(E=E(\Phi) \) specified above \((2^{\circ}-4^{\circ}) \) and exemplified in Figures 7-9 presented in Appendix 3. For comparison, in isohydric (acid-base) systems, the buffer capacity strives for infinity. In particular, it occurs in the titration HB (C,V) ⇒ HL (C₀,V₀), where HB is a strong monoprotic acid HB and HL is a weak monoprotic acid characterized by the dissociation constant \(K_1=[H^+][L^{-1}]/[HL] \); at \(4K_1/C^<<1 \), the isohydric condition is expressed here by the Michałowski formula \(C_0 = C + C^1 \cdot 0^{-1} \) [24-26].

The formula for the buffer capacity, suggested by Bard et al. [27] after Levie [28], is not correct. Moreover, it involves formal potential value, perceived as a kind of conditional equilibrium constant idea, put in (apparent) analogy with the simplest static acid-base buffer capacity, see criticizing remarks in the study by Michałowska-Kaczmarczyk et al. [29]; it is not adaptable for real redox systems.
Buffered solutions are commonly applied in different procedures involved with classical (titrimetric, gravimetric) and instrumental analyses [30-33]. There are in close relevance to isohydric solutions [24-26] and pH-static titration [4,34], and titration in binary-solvent systems [12,35]. Buffering property is usually referred to an action of an external agent (mainly: strong acid, HB, or strong base, MOH) inducing pH change, ΔpH, of the solution. Redox buffer capacity is also involved with the problem of interfacing in CE-MS analysis, and bubbles formation in reaction 2

$$\text{H}_2\text{O} = \text{O}_2^{2-} + 4\text{H}^+ + 4e^-$$

at the outlet electrode in CE [36-39].

In the paper, a nice proposal of "slyke", as the name for (acid-base, pH) buffer capacity unit, has been raised [40].

References

1. Michałowski T (2010) The generalized approach to electrolytic systems: I. physicochemical and analytical implications. Crit Rev Anal Chem 40: 2-16.
2. Michałowski T, Pietrzyk A, Ponikvar-Svet M, Rymanowski M (2010) The generalized approach to electrolytic systems: II. The generalized equivalent mass (GEM) concept. Crit Rev Anal Chem 40: 17-29.
3. Asuero AG, Michałowski T (2011) Comprehensive formulation of titration curves referred to complex acid-base systems and its analytical implications. Crit Rev Anal Chem 41: 51-187.
4. Michałowski TT, Asuero AG, Ponikvar-Svet M, Toporek M, Pietrzyk A, et al. (2012) Principles of computer programming applied to simulated pH-static titration of cyanide according to a modified Liebig-Denigés method. J Solution Chem 41: 1224-1239.
5. Michałowska-Kaczmarczyk AM, Asuero AG, Toporek M, Michałowski T (2015) “Why not stoichiometry” versus “Stoichiometry-why not?” Part II. GATES in context with redox systems. Crit Rev Anal Chem 45: 240-268.
6. Michałowska-Kaczmarczyk AM, Michałowski T, Toporek M, Asuero AG (2015) “Why not stoichiometry” versus “Stoichiometry-why not?” Part III, Extension of GATES/GB on Complex Dynamic Redox Systems. Crit Rev Anal Chem 45: 348-366.
7. Michałowski T, Toporek M, Michałowska-Kaczmarczyk AM, Asuero AG (2013) New trends in studies on electrolytic redox systems. Electrochimica Acta 109: 519-531.
8. Michałowski T, Michałowska-Kaczmarczyk AM, Toporek M (2013) Formulation of general criterion distinguishing between non-redox and redox systems. Electrochimica Acta 112: 199-211.
9. Michałowska-Kaczmarczyk AM, Toporek M, Michałowski T (2015) Speciation diagrams in dynamic iodide+dichromate system. Electrochimica Acta 155: 217-227.
10. Toporek M, Michałowska-Kaczmarczyk AM, Michałowski T (2015) Symproportionation versus disproportionation in bromine redox systems. Electrochimica Acta 171: 176-187.
11. http://www.intechopen.com/books/show/title/applications-of-matlab-in-science-and-engineering.
12. http://www.sciencedirect.com/science/book/9781895198645.
13. https://cdn.intechopen.com/pdfs-wm/55440.pdf.
14. https://cdn.intechopen.com/pdfs-wm/55881.pdf.
15. https://cdn.intechopen.com/pdfs-wm/55742.pdf.
16. https://cdn.intechopen.com/pdfs-wm/55440.pdf.
17. Gran G (1988) Equivalence volumes in potentiometric titrations. Analytica Chimica Acta 206: 111-123.
18. Meija J, Michałowska-Kaczmarczyk AM, Michałowski T (2017) Redox titration challenge. Anal Bioanal Chem 409: 11-13.
19. Michałowski T, Michałowska-Kaczmarczyk AM, Meija J (2017) Solution of redox titration challenge. Anal Bioanal Chem 409: 4113-4115.
20. Toporek M, Michałowska-Kaczmarczyk AM, Michałowski T (2014) Disproportionation reactions of HIO and NaIO in static and dynamic systems. Am J Anal Chem 5: 1046-1056.
21. Michałowska-Kaczmarczyk AM, Michałowski T (2015) Dynamic buffer capacity in acid-base systems. J Solution Chem 44: 1256-1266.
22. Michałowska-Kaczmarczyk AM, Michałowski T, Asuero AG (2015) Formulation of dynamic buffer capacity for phytic acid. Am J Chem Appl 2: 5-9.
23. Michałowski T, Asuero AG (2012) New approaches in modelling the carbonate alkalinity and total alkalinity. Crit Rev Anal Chem 42: 220-244.
24. Michałowski T, Pilarski B, Asuero AG, Dobkowska A (2010) A new sensitive method of dissociation constants determination based on the isohydric solutions principle. Talanta 82: 1965-1973.
25. Michałowski T, Pilarski B, Asuero AG, Dobkowska A, Wybraniec S (2011) Determination of dissociation parameters of weak acids in different media according to the isohydric method. Talanta 86: 447-451.
26. Michałowski T, Asuero AG (2012) Formulation of the system of isohydric solutions. J Anal Sci 2: 1-4.
27. Bard AJ, Inzelt G, Scholz F (2012) Electrochemical dictionary, (2nd edn), Springer-Verlag Berlin Heidelberg, Germany. pp. 87.
28. Levie R (1999) Redox buffer strength. J Chem Edu 76: 574-577.
29. Michałowska-Kaczmarczyk AM, Asuero AG, Michałowski T (2015) “Why not stoichiometry” versus “Stoichiometry-why not?” Part I. General context. Crit Rev Anal Chem 45: 166-188.
30. Michałowski T, Baterowicz A, Madej A, Kochana J (2001) An extended Gran method and its applicability for simultaneous determination of Fe(II) and Fe(III). Analytica Chimica Acta 442: 287-293.
31. Michałowski T, Toporek M, Rymanowski M (2005), Overview on the Gran and other linearization methods applied in titrimetric analyses. Talanta 65: 1241-1253.
32. Michałowski T, Kupiec K, Rymanowski M (2008) Numerical analysis of the Gran methods. A comparative study. Analytica Chimica Acta 606: 172-183.
33 Ponikvar M, Michałowski T, Kupiec K, Wybraniec S, Rymanowski M (2008) Experimental verification of the modified Gran methods applicable to redox systems. Analytica Chimica Acta 628: 181-189.

34 Michałowski T, Toporek M, Rymanowski M (2007) pH-static titration: A quasistatic approach. J Chem Educ 84: 142-150.

35 Pilarski B, Dobkowska A, Foks H, Michałowski T (2010) Modelling of acid-base equilibria in binary-solvent systems: A comparative study. Talanta 80: 1073-1080.

36 Smith AD, Moini M (2001) Control of electrochemical reactions at the capillary electrophoresis outlet/electrospray emitter electrode under CE/ESI-MS through the application of redox buffers. Anal Chem 73: 240-246

37 Moini, M, Cao P, Bard AJ (1999) Hydroquinone as a buffer additive for suppression of bubbles formed by electrochemical oxidation of the CE buffer at the outlet electrode in capillary electrophoresis/electrospray ionization-mass spectrometry. Anal Chem 71: 1658-1661.

38 Berkel V, Kertesz V (2001), Redox buffering in an electrospray ion source using a copper capillary emitter. J Mass Spectrom 36: 1125-1132.

39 Shintani H, Polensky J (1997) Handbook of capillary electrophoresis applications, Blackie Academic and Professional, London, UK.

40 Baicu SC, Taylor MJ (2002) Acid-base buffering in organ preservation solutions as a function of temperature: New parameters for comparing buffer capacity and efficiency. Cryobiol 45: 33-48.