Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

Xian Pan¹, Shinji Yamazaki²*, Sibylle Neuhoff¹, Mian Zhang¹ and Venkatesh Pilla Reddy³

¹Certara UK Limited, Simcyp Division, Sheffield, UK
²Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, San Diego, California, USA
³Modelling and Simulation, Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK

*Current Affiliation: Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, San Diego, California, USA

Supplemental Supporting Information

(A) Mathematical approach to model a P-gp inhibitory effect

(B) Mathematical steps to account for P-gp induction effect in the PBPK model

Table S1 - Input parameters of PBPK model for each drug

Table S2 - Summary of clinical DDI studies with rifampicin

Table S3 - Base model of the prototypical compound file

Table S4 - Dose normalised AUC of talinolol, bosutinib, quinidine, and verapamil

Figure S1 – Simulated and observed plasma concentration-time profiles of each drug at clinically relevant dose.

Figure S2 – Predicted and observed AUC and Cmax of each drug at clinically relevant dose.

Figure S3 – Simulated gut luminal concentrations for each intestinal segment of each drug

Figure S4 – Simulated free enterocyte concentrations for each intestinal segment of each drug

Figure S5 – Simulated absorption rate and efflux rate for each intestinal segment of each drug

Figure S6 – Simulated efflux clearance for each intestinal segment of each drug

Figure S7 – Simulated and observed plasma concentration-time profiles of bosutinib with and without co-administration of rifampicin.
A. **Mathematical approach to model competitive inhibition of P-gp:**

The overall inhibitory effect can be modelled using the same approach reported for metabolic interactions

\[
\text{CL}_{\text{int,T-inh}} = \frac{J_{\text{max}}}{K_m \left[1 + \sum_j \frac{(I_{u_j})}{K_{u_{inh}}}
ight] + C_{t1}}
\]

- \(\text{CL}_{\text{int,T-inh}}\) is the transporter-mediated intrinsic clearance in the presence of an inhibitor,
- the “inh” suffix refers to the inhibited value,
- \(I_{u_j}\) is the unbound concentration of \(j^{th}\) inhibitor at the binding site of a transporter
- \(K_{u_{inh}}\) is the unbound concentration of \(j^{th}\) inhibitor that supports half maximal inhibition (corrected for nonspecific binding).

In the case of multiple inhibitors, it is assumed that all inhibitors are acting via the same mechanism (or the overall effect is similar) on a transporter. (Rostami-Hodjegan A, Tucker GT. 2004. ‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug-drug interactions. Drug Discov Today Technol 1(4):441–448.)

Time-dependent inhibition (TDI) of metabolism was considered for verapamil. (Rowland Yeo K, Jamei M, Yang J, Tucker GT, Rostami-Hodjegan A. 2010. Physiologically based mechanistic modelling to predict complex drug-drug interactions involving simultaneous competitive and time-dependent enzyme inhibition by parent compound and its metabolite in both liver and gut—The effect of diltiazem on the time-course of exposure to triazolam. Eur J Pharm Sci 39(5):298–309.)
B. Mathematical steps to account for P-gp induction effect in the PBPK model

Three mathematical steps are followed when scaling the intestinal P-gp via a relative scaling approach:

Step 1: The in vitro apparent active permeability in a gut segment (i) is determined for each involved transporter (n) (\(P_{\text{app,trans,n,i}}\)). The REF algorithm first requires that the *in vitro* transporter based active Papp is calculated, in this case we give the example of an apical efflux (P-gp) transporter. We correct for surface area (so it is a Papp that’s calculated) and we have added the \(f_{\text{inc}}\) term (unbound fraction the *in vitro* incubation) to allow the incubation binding to be accounted for.

- \(J_{\text{max}}\) is the maximum rate of transport mediated efflux (pmol/min) from an *in vitro* cell model,
- the \(K_m\) is the Michaelis constant (\(\mu\)M),
- A is the insert growth area (cm\(^2\)) of the Transwell in which the cells were grown,
- \(f_{\text{gut}}\) is the unbound fraction of drug in the enterocyte,
- the \(C_{\text{ent,i}}\) is the total concentration of drug in the enterocyte of a given intestinal segment,
- REF is the relative expression factor (or could be a relative activity factor, as decided by the user).

Step 2: We then transfer the log \(P_{\text{app,trans,n}}\) into a regression equation to allow the \(P_{\text{efr}}\) to calculated for the active transporter where A is the slope and B the intercept so this is an empirical approach (Yang et al., 2007, Current Drug Metabolism 2007 Oct;8(7):676-84 https://pubmed.ncbi.nlm.nih.gov/17979655/).

Step 3: In the third step the *in vivo* segmental scale up occurs, using the segment surface area (S.A.\(i\)) of each individual. The permeability surface area product is the clearance, which is corrected for the relative segmental abundances for the transporter.

The relative abundance of a given transporter (n) in a given gut segment (i) is calculated thereby also with relevance to the phenotype (Jejunum I) assigned to that individual for a given transporter.
Mathematically, the REF (according to the equation discussed in Step 1) was in our simulations multiplied by the fold induction and two simulations were run: (A) substrate without inducer/inhibitor and (B) substrate with inducer/inhibitor and an altered REF for the substrate.

Then the AUC and \(C_{\text{max}} \) ratios were calculated by comparing the interaction profiles from simulation B with the baseline profiles of the substrate alone of simulation A.
Table S1. Input parameters of PBPK model

Parameter	Value	Method/Reference
Abemaciclib		
Adopted from Posada et al (2020) (1) and refined to include advanced dissolution, absorption and metabolism (ADAM) model and intestinal P-gp efflux transport (2).		
Absorption Model	ADAM Model	
fu_gut	1	Assumed
Peff,man (10^-4 cm/s)	2.46	Predicted
Permeability Assay	Physiochemical	
PSA (Å²)	71.4	(1)
HBD	1	(1)
Formulation	Immediate Release - Diffusion Layer Model with solubility-pH profile	(3)
Transporter (gut)	ABCB1 (P-gp/MDR1)	
Jmax (pmol/min/cm²)	20	Optimised to recover the clinically reported T_max (4)
Km,u (µM)	0.57	Assuming the same as in vitro IC50 value against P-gp (4)
RAF/REF	1	

| **Acalabrutinib** | | |
| Adopted from Zhou et al (2019) (5) and refined to include ADAM absorption model and intestinal P-gp efflux transport. |
Absorption Model	ADAM	
fu_gut	0.026	(5)
Peff,man (10^-4 cm/s)	7.72	Predicted
Permeability Method	Mechanistic Model	
P_trans,0 (10^-6 cm/s)	640.7	Predicted based on LogP
Formulation | Immediate Release - Diffusion Layer Model
---|---
Intrinsic solubility (mg/mL) | 0.12 | Optimised
Transporter (gut) | ABCB1 (P-gp/MDR1)
CL\text{int,T} (\mu L/min) | 27.3 | Estimated by SIVA (three-compartment model) using experimental data in Caco-2 cells (in house data)
RAF/REF | 1

Bosutinib | Adopted from Yamazaki et al (2018) (6) and refined for P-gp efflux kinetic parameters.

Parameter	Value	Method/Reference
Transporter (gut)	ABCB1 (P-gp/MDR1)	
J\text{max} (pmol/min/cm}\text{2}	67.4	Estimated by SIVA (three-compartment model) using experimental data in Caco-2 cells (in house data)
K\text{m,u} (\mu M)	0.58	
RAF/REF	1	

Crizotinib | Simcyp library compound with refined P-gp efflux kinetic parameters

Parameter	Value	Method/Reference
Molecular weight (g/mol)	450.34	(7)
log P	4.28	(7)
Compound type	Diprotic Base	(7)
pKa	9.4, 5.6	(7)
B/P	1.1	(7)
fu	0.093	(7)
Main plasma binding protein	Human serum albumin	(7)
Absorption	ADAM	
fu\text{gut}	0.093	Assumed the same as fu
P\text{eff,man} (10-4 cm/s)	0.578	Predicted
Permeability Assay	Physiochemical	
PSA (Å²)	78	**ACD/Percepta14.0.0 (Build 2254), accessed on 2019/06/20**
HBD	3	
Formulation	Immediate Release – Diffusion Layer Model	
Intrinsic solubility (mg/mL)	0.00047	Predicted by Simcyp based on MW, LogP and melting point of 245.07 °C (EPI Suite)
Transporter (gut)	ABCB1 (P-gp/MDR1)	
K_{m,u} (μM)	3.8	Estimated by SIVA (three-compartment model) using experimental data in Caco-2 cells (in-house data)
J_{max} (pmol/min/cm²)	165.4	
RAF/REF	1	
Distribution Model	Full PBPK Model	
V_{SS} (L/kg)	22.26	Predicted - Method 2
Kp scalar	3.4	Optimised to recover the clinically reported volume of distribution (8)
Enzyme	CYP3A4	
K_{m,u} (μM)	3.65	1/2 of IC_{50} value obtained from in vitro crizotinib inhibition study on testosterone activity (7)
V_{max} (pmol/min/pmol of isoform)	4.6	70% of total CL_{int} back-calculated from in vivo systemic clearance (8) was assigned to CYP3A4 in order to recover the clinically reported interaction between crizotinib and ketoconazole (7). V_{max} of CYP3A4 was calculated by CL_{int, CYP3A4} multiplying K_{m, CYP3A4}.
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

Parameter	Value	Method/Reference
CL\textsubscript{int} (HLM) (μL/min/mg protein)	68.36	30% of the total CL\textsubscript{int} retrograde from systemic clearance (8)
CL\textsubscript{R} (L/h)	2.51	(7)
Interaction		
Enzyme	CYP3A4	
Ki (μM)	3.88	(7)
K\textsubscript{app} (μM)	1.25	(9, 10)
k\textsubscript{inact} (1/h)	1.11	(9, 10)
Ind\textsubscript{max}	20.5	(7)
IndC\textsubscript{50} (μM)	1.45	(7)
Naldemedine	Adopted from NDA review (11) and refined	

Parameter	Value	Method/Reference
Absorption Model	ADAM Model	
fu\textsubscript{gut}	0.063	Assumed the same as fu
P\textsubscript{eff,man} (10-4 cm/s)	3.16	Predicted
Permeability Method	Mechanistic Model	
P\textsubscript{trans,0} (10-6 cm/s)	512.9	Predicted based on LogP
Formulation	Solution	
Transporter (gut)	ABCB1 (P-gp/MDR1)	Estimated by SIVA (three-compartment model) using experimental data in Caco-2 cells (11)
CL\textsubscript{int,T} (μL/min)	12	
RAF/REF	1	
Distribution Model	Full PBPK Model	
V\textsubscript{ss} (L/kg)	0.74	Predicted - Method 2
Kp scalar	0.5	Optimised to recover the clinically reported V\textsubscript{ss} (11)
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

Enzyme	CYP3A4	Pathway	Pathway 1	Optimised to recover PK profile following single oral dose (12) as in vitro obtained CYP3A4 kinetics under-predicted the elimination
CL\text{int} (μL/min/pmol)	0.15			Optimised to recover benzamidine amount reported in mass balance study (13)
Gut Lumen metabolism (μl/h/g of total luminal content)	150			
CL\text{R} (L/h)	1.6			(12)
Permeability limited liver model				
CL\text{PD} (μL/min/million hepatocytes)	1.1			
Transporter (liver)	ABCB1 (P-gp/MDR1)			
CL\text{int,T} (μL/min/million hepatocytes)	12			Assumption P-gp in 1 million hepatocytes has the same P-gp activity as the P-gp available in 1 cm² of Caco-2 cells in the Transwell system
RAF/REF	0.75			Scaled based on P-gp expression level differences in gut and liver

Olaparib
Adopted from Pilla Reddy et al (2019) (14) and refined to include intestinal P-gp efflux transport.

Parameter	Value	Method/Reference
Transporter (gut)	ABCB1 (P-gp/MDR1)	
\(J_{\text{max}}\) (pmol/min/cm²)	241	Estimated by SIVA (three-compartment model) using experimental data in Caco-2 cells (in house data).
\(K_{\text{m,u}}\) (μM)	28.8	
RAF/REF	1	
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

Quinidine

Parameter	Value	Method/Reference
Absorption Model	ADAM Model	
f_{ugut}	1	Assumed
$P_{eff,man}$ (10^{-4}cm/s)	3.47	Predicted
Passive Permeability Assay	Caco-2	Apical pH to Basolateral pH (7.4:7.4)
Passive Permeability (10^{-6}cm/s)	112	(16)
Reference Compounds	Atenolol, Propranolol, Metoprolol	(16)
Transporter (gut)	ABCB1 (P-gp/MDR1)	
J_{max} (pmol/min/cm2)	11.3	Estimated by SIVA (three-compartment model) using experimental data in Caco-2 cells (17).
$K_{m,u}$ (μM)	0.278	
RAF/REF	1	

Rifampicin (default model)

Parameter	Value	Method/Reference
Interaction		
Enzyme	CYP1A2	Optimised to recover clinically reported interaction with theophylline (19)
Ind_{max}	2.7	
IndC_{50} (μM)	0.1	(20)
Enzyme	CYP2B6	
Ind_{max}	5.04	In house data and (21)
IndC_{50} (μM)	0.07	In house data
Enzyme	CYP2C8	
K_{i} (μM)	24.5	(22)
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling:
Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

Enzyme	Ind\textsubscript{max}	IndC\textsubscript{50} (µM)	Description
CYP2C9	6	0.3	Derived from the in vitro induction data in mRNA expression level using human hepatocytes (20).
CYP2C19	5.5	0.45	Optimised to recover clinically reported interaction with tolbutamide (23)
UGT1A1	3.16	0.39	(24)

Enzyme	Ind\textsubscript{max}	IndC\textsubscript{50} (µM)	Description
Verapamil	Simcyp library compound		

Parameter	**Value**	**Method/Reference**
Molecular weight (g/mol)	454.6	Pubchem
log P	4.46	(26-29)
Compound type	Monoprotic Base	
pKa	8.78	(30-32)
B/P	0.709	(33, 34)
fu	0.09	Meta-analysis (35-42)
Main plasma binding protein	Human serum albumin	(43)
Absorption Model	ADAM Model	
fu\textsubscript{gut}	1	Assumed
P\textsubscript{eff,man} (10⁻⁴ cm/s)	6.08	Predicted
Passive Permeability Assay	Caco-2	Apical pH to Basolateral pH (7.4:7.4)
Passive Permeability (10⁻⁶ cm/s)	149.6	(44)
Reference Compound	Propranolol	(45)
Transporter (gut)	ABCB1 (P-gp/MDR1)	
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

Pathway	RMTEE	V_{max} (pmol/min/pmol isoform)	Km (μM)	Enzyme	Pathway	V_{max} (pmol/min/pmol isoform)	Km (μM)	Enzyme	Pathway
Norverapamil	CYP2C8	221.2	140.5	CYP3A4	Norverapamil	154.3	122	CYP3A5	Norverapamil
Norverapamil	CYP3A4	159.3	87.5	CYP2C8	D-617	218.9	156	CYP3A4	D-617
Norverapamil	D-617	218.9	156	CYP3A4	D-617	218.9	156	CYP3A4	D-617

Table Notes:
- **J_{max} (pmol/min/cm²):** 2.814
- **K_{m,u} (μM):** 0.734
- **RAF/REF:** 0.608
- **Transporter (gut):** ABCC2 (MRP2)
- **CL_{int,T} (μL/min):** 18
- **RAF/REF:** 0.608

A retrograde approach was used to calculate CL_{int} for CYP3A4/5 and CYP2C8 using in vivo CL_{iv} from meta-analysis (41, 42, 48, 49), then converted to V_{max} using reported Km (50).

Km and J_{max} was estimated by SIVA (three-compartment model) using experimental data (46).

Calculated based on the relative expression of P-gp (46, 47).

Fitted to single oral dose PK profile (43).

Predicted - Method 2.

Distribution Model: Full PBPK Model

V_{SS} (L/kg): 5.37
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

Parameter	Value	Method/Reference
V_{max} (pmol/min/pmol isoform)	174	
K_m (μM)	99.5	
Enzyme	CYP3A5	
Pathway	D-617	
V_{max} (pmol/min/pmol isoform)	117.7	
K_m (μM)	73	
V_{max} (pmol/min/pmol isoform)	174	
K_m (μM)	99.5	
CL$_{\text{int}}$ (HLM) (μL/min/mg protein)	79.57	(51)
CL$_R$ (L/h)	2.52	(52, 53)

Interaction

Enzyme	CYP3A4	
K_{app} (μM)	2.21	(54)
k_{inact} (1/h)	2	(54)
Enzyme	CYP3A5	
K_{app} (μM)	3.99	Estimated by extrapolating the CYP3A4 MBI parameters based on the correlation between CYP3A4 and CYP3A5 metabolic activities (55-57)
k_{inact} (1/h)	1.84	

Transporter (gut)

| Transporter (gut) | ABCB1 (P-gp/MDR1) | |
| Ki (μM) | 0.16 | (58, 59) |

Transporter (liver)

| Transporter (liver) | ABCB1 (P-gp/MDR1) | |
| Ki (μM) | 0.16 | Assumed the same as in gut |

Norverapamil

Parameter	Value	Method/Reference
Molecular weight (g/mol)	440.6	Pubchem
log P	4.66	Predicted (ChemAxon)
Compound type	Monoprotic Base	
pKa	10.29	ChemAxon
B/P	0.675	(33)
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

Parameter	Value	Source
fu	0.083	(33, 37)
Main plasma binding protein	Human serum albumin	Assumed the same as parent
fu\text{gut}	1	Assumed
Distribution Model	Minimal PBPK Model	
V_{SS} (L/kg)	4.166812	Predicted - Method 1
Q (L/h)	18	Optimised to recover the observed PK profile following single oral dose
V_{SAC} (L/kg)	2	(43)
Enzyme Pathway	CYP2C8	A retrograde approach was used to calculate CL_{int} for CYP3A4/5 and CYP2C8, then converted to V_{max} using reported K_{m} (50)
V_{max} (pmol/min/pmol isoform)	38.5	
K_{m} (μM)	68	
Enzyme Pathway	CYP3A4	
V_{max} (pmol/min/pmol isoform)	46	
K_{m} (μM)	90	
Enzyme Pathway	CYP3A5	
V_{max} (pmol/min/pmol isoform)	18.8	
K_{m} (μM)	19.5	
Enzyme Pathway	CYP2C8	
V_{max} (pmol/min/pmol isoform)	113.2	
K_{m} (μM)	59	
CL_{R} (L/h)	1.91	(51, 53)
Interaction Enzyme	CYP3A4	
K_{app}(μM)	10.3	(60)
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A Dual Substrates

k_{inact} (1/h)	18	(60)
Enzyme	CYP3A5	
K_{app} (μM)	4.53	(60)
k_{inact} (1/h)	4.2	(60)
Transporter (gut)	ABCB1 (P-gp/MDR1)	

Ki (μM): 0.04

Scaled based on the reported difference of IC50 between verapamil and norverapamil (61) and the Ki input value in the verapamil model

Transporter (liver)	ABCB1 (P-gp/MDR1)
Ki (μM)	0.04

Assumed the same as in gut

The PBPK models of dabigatran etexilate, dabigatran, and talinolol were adopted from Yamazaki et al. (2019) (15). The PBPK model of digoxin and naloxegol were adopted from Neuhoff et al. (2016) (62) and Zhou et al. (2016) (63), respectively.

Abbreviations:

LogP: Log of the octanol:water partition coefficient;

$f_{u,p}$: fraction unbound in plasma;

B:P: blood-to-plasma partition ratio;

ADAM: Advanced Dissolution, Absorption and Metabolism

$f_{u,gut}$: unbound fraction in enterocyte;

$P_{\text{eff,man}}$: effective permeability in human jejunum;

PSA: polar surface area;

HBD: hydrogen bound donor;

$K_{m,u}$: Michaelis-Menten constant accounting for the binding in vitro system;

J_{max}: in vitro maximum rate of transporter-mediated efflux or uptake correcting for the insert growth area of the Transwell;

$\text{CL}_{\text{int,T}}$: in vitro intestinal transporter-mediated intrinsic clearance;

RAF/REF: relative activity or expression factor;

V_{sac}: volume of the single-adjusting compartment;

Q: flow rate in single-adjusting compartment;
Kp scalar: scalar applied to all predicted tissue to plasma partition coefficients;

V_{max}: maximum rate of metabolite formation;

CL_{int}: \textit{in vitro} intrinsic clearance;

HLM: human liver microsomes;

CL_R: renal clearance;

K_i: competitive inhibition constant;

K_{app}: concentration of mechanism-based inhibitor associated with half maximal inactivation rate;

k_{inact}: inactivation rate of the enzyme;

Ind$_{\text{max}}$: maximal fold induction over vehicle;

IndC$_{50}$: concentration that supports half maximal induction
REFERENCES FOR TABLE S1

(1) Posada, M.M., Morse, B.L., Turner, P.K., Kulanthaivel, P., Hall, S.D. & Dickinson, G.L. Predicting Clinical Effects of CYP3A4 Modulators on Abemaciclib and Active Metabolites Exposure Using Physiologically Based Pharmacokinetic Modeling. *J Clin Pharmacol*, (2020).

(2) Jamei, M. *et al.* Population-based mechanistic prediction of oral drug absorption. *AAPS J* **11**, 225-37 (2009).

(3) Treluyer, J.M., Gueret, G., Cheron, G., Sonnier, M. & Cresteil, T. Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. *Pharmacogenetics* **7**, 441-52 (1997).

(4) Center for Drug Evaluation and Research, Food and Drug Administration. NDA-208716 (Abemaciclib, VERZENIO®) Multi-Discipline Review/Summary, Clinical, Non-Clinical. <www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208716Orig1s000Multidisciplin eR.pdf> (2017).

(5) Zhou, D. *et al.* Evaluation of the Drug-Drug Interaction Potential of Acalabrutinib and Its Active Metabolite, ACP-5862, Using a Physiologically-Based Pharmacokinetic Modeling Approach. *CPT Pharmacometrics Syst Pharmacol* **8**, 489-99 (2019).

(6) Yamazaki, S., Loi, C.M., Kimoto, E., Costales, C. & Varma, M.V. Application of Physiologically Based Pharmacokinetic Modeling in Understanding Bosutinib Drug-Drug Interactions: Importance of Intestinal P-Glycoprotein. *Drug Metab Dispos* **46**, 1200-11 (2018).

(7) Center for Drug Evaluation and Research, Food and Drug Administration. NDA-202570 (Crizotinib, XALKORI®) Clinical Pharmacology and Biopharmaceutics Review. <www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202570Orig1s000ClinPharmR.pdf> (2011).

(8) Xu, H. *et al.* Evaluation of crizotinib absolute bioavailability, the bioequivalence of three oral formulations, and the effect of food on crizotinib pharmacokinetics in healthy subjects. *The Journal of Clinical Pharmacology* **55**, 104-13 (2015).

(9) Mao, J., Johnson, T.R., Shen, Z. & Yamazaki, S. Prediction of Crizotinib-Midazolam Interaction Using the Simcyp Population-Based Simulator: Comparison of CYP3A Time-Dependent Inhibition between Human Liver Microsomes versus Hepatocytes. *Drug Metabolism and Disposition* **41**, 343-52 (2013).

(10) Mao, J., Tay, S., Khojasteh, C.S., Chen, Y., Hop, C.E.C.A. & Kenny, J.R. Evaluation of Time Dependent Inhibition Assays for Marketed Oncology Drugs: Comparison of Human Hepatocytes and Liver Microsomes in the Presence and Absence of Human Plasma. *Pharmaceutical Research* **33**, 1204-19 (2016).

(11) Center for Drug Evaluation and Research, Food and Drug Administration. NDA-208854 (Naldemedine, SYMPROIC®) Clinical Pharmacology and Biopharmaceutics Review. <www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208854Orig1s000ClinP harmR.pdf> (2016).

(12) Fukumura, K., Yokota, T., Baba, Y. & Arjona Ferreira, J.C. Phase 1, Randomized, Double-Blind, Placebo-Controlled Studies on the Safety, Tolerability, and Pharmacokinetics of Naldemedine in Healthy Volunteers. *Clin Pharmacol Drug Dev* **7**, 474-83 (2018).

(13) Ohnishi, S., Fukumura, K., Kubota, R. & Wajima, T. Absorption, distribution, metabolism, and excretion of radiolabeled naldemedine in healthy subjects. *Xenobiotica* **49**, 1044-53 (2019).
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

(14) Pilla Reddy, V., Bui, K., Scarfe, G., Zhou, D. & Learoyd, M. Physiologically Based Pharmacokinetic Modeling for Olaparib Dosing Recommendations: Bridging Formulations, Drug Interactions, and Patient Populations. *Clin Pharmaco Ther* **105**, 229-41 (2019).

(15) Yamazaki, S., Costales, C., Lazzaro, S., Eatamadpour, S., Kimoto, E. & Varma, M.V. Physiologically-Based Pharmacokinetic Modeling Approach to Predict Rifampin-Mediated Intestinal P-Glycoprotein Induction. *CPT Pharmacometrics Syst Pharmacol* **8**, 634-42 (2019).

(16) von Richter, O., Glavinas, H., Krajcsi, P., Liewher, S., Sievert, B. & Zech, K. A novel screening strategy to identify ABCB1 substrates and inhibitors. *Naunyn Schmiedebergs Arch Pharmacol* **379**, 11-26 (2009).

(17) Neuhoff, S., Ungell, A.L., Zamora, I. & Artursson, P. pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug-drug interactions. *Pharm Res* **20**, 1141-8 (2003).

(18) Almond, L.M. et al. Prediction of Drug-Drug Interactions Arising from CYP3A induction Using a Physiologically Based Dynamic Model. *Drug Metab Dispos* **44**, 821-32 (2016).

(19) Gillum, J.G., Sesler, J.M., Bruzzese, V.L., Israel, D.S. & Polk, R.E. Induction of theophylline clearance by rifampin and rifabutin in healthy male volunteers. *Antimicrob Agents Chemother* **40**, 1866-9 (1996).

(20) Dixit, V., Hariparsad, N., Li, F., Desai, P., Thummel, K.E. & Unadkat, J.D. Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes; implications for predicting clinical drug interactions. *Drug Metab Dispos* **35**, 1853-9 (2007).

(21) Kajosaari, L.I., Laitila, J., Neuvonen, P.J. & Backman, J.T. Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. *Basic Clin Pharmacol Toxicol* **97**, 249-56 (2005).

(22) Smith, C.M., Faucette, S.R., Wang, H. & LeCluyse, E.L. Modulation of UDP-glucuronosyltransferase 1A1 in primary human hepatocytes by prototypical inducers. *J Biochem Mol Toxicol* **19**, 96-108 (2005).

(23) Box, K.J. & Comer, J.E. Using measured pKa, LogP and solubility to investigate supersaturation and predict BCS class. *Curr Drug Metab* **9**, 869-78 (2008).

(24) Ruell, J.A., Tsinman, K.L. & Avdeef, A. PAMPA--a drug absorption in vitro model. 5. Unstirred water layer in iso-pH mapping assays and pKa(flux)--optimized design (pOD-PAMPA). *Eur J Pharm Sci* **20**, 393-402 (2003).

(25) Sangster, J. LOGKOW Databank. Sangster Res Lab. . (2013).

(26) Hansch, C., Leo, A. & Hoekman, D. Exploring QSAR: Hydrophobic, Electronic, and Steric Constants. (1995).

(27) Avdeef, A. Absorption and Drug Development: Solubility, Permeability, and Charge State, Second Edition. (2012).
SUPPLEMENTARY MATERIALS

Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

(31) Hasegawa, J., Fujita, T., Hayashi, Y., Iwamoto, K. & Watanabe, J. pKa determination of verapamil by liquid-liquid partition. *J Pharm Sci* 73, 442-5 (1984).

(32) Sangster, J. LOGKOW Databank. Sangster Res Lab., Montreal Quebec, Canada. (1994).

(33) Robinson, M.A. & Mehvar, R. Enantioselective distribution of verapamil and norverapamil into human and rat erythrocytes: the role of plasma protein binding. *Biopharm Drug Dispos* 17, 577-87 (1996).

(34) Obach, R.S. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: An examination of in vitro half-life approach and nonspecific binding to microsomes. *Drug Metab Dispos* 27, 1350-9 (1999).

(35) Keefe, D.L., Yee, Y.G. & Kates, R.E. Verapamil protein binding in patients and in normal subjects. *Clin Pharmacol Ther* 29, 21-6 (1981).

(36) Giacomini, K.M., Massoud, N., Wong, F.M. & Giacomini, J.C. Decreased binding of verapamil to plasma proteins in patients with liver disease. *J Cardiovasc Pharmacol* 6, 924-8 (1984).

(37) Yong, C.L., Kunka, R.L. & Bates, T.R. Factors affecting the plasma protein binding of verapamil and norverapamil in man. *Res Commun Chem Pathol Pharmacol* 30, 329-39 (1980).

(38) Eichelbaum, M., Mikus, G. & Vogelgesang, B. Pharmacokinetics of (+), (-) and (+/-)-verapamil after intravenous administration. *Br J Clin Pharmacol* 17, 453-8 (1984).

(39) Johnson, J.A. & Akers, W.S. Influence of metabolites on protein binding of verapamil enantiomers. *Br J Clin Pharmacol* 39, 536-8 (1995).

(40) Rodin, S.M., Johnson, B.F., Wilson, J., Ritchie, P. & Johnson, J. Comparative effects of verapamil and isradipine on steady-state digoxin kinetics. *Clin Pharmacol Ther* 43, 668-72 (1988).

(41) Rutledge, D.R., Pieper, J.A. & Mirvis, D.M. Effects of chronic phenobarbital on verapamil disposition in humans. *J Pharmacol Exp Ther* 246, 7-13 (1988).

(42) Schomerus, M., Spiegelhalder, B., Stieren, B. & Eichelbaum, M. Physiological disposition of verapamil in man. *Cardiovasc Res* 10, 605-12 (1976).

(43) Mattila, J., Mantyla, R., Taskinen, J. & Mannisto, P. Pharmacokinetics of sustained-release verapamil after a single administration and at steady state. *Eur J Drug Metab Pharmacokinet* 10, 133-8 (1985).

(44) Tannergren, C. Intestinal permeability and presystemic extraction of fexofenadine and R/S-verapamil. *Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy Faculty of Pharmacy, Uppsala University*, p38 (2004).

(45) Neuhoff, S. Refined in vitro models for prediction of intestinal drug transport. *Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy Faculty of Pharmacy, Uppsala University*, (2005).

(46) Shirasaka, Y., Sakane, T. & Yamashita, S. Effect of P-glycoprotein expression levels on the concentration-dependent permeability of drugs to the cell membrane. *J Pharm Sci* 97, 553-65 (2008).

(47) Troutman, M.D. & Thakker, D.R. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. *Pharm Res* 20, 1210-24 (2003).

(48) Dilger, K., Eckhardt, K., Hofmann, U., Kucher, K., Mikus, G. & Eichelbaum, M. Chronopharmacology of intravenous and oral modified release verapamil. *Br J Clin Pharmacol* 47, 413-9 (1999).
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

(49) McAllister, R.G., Jr. & Kirsten, E.B. The pharmacology of verapamil. IV. Kinetic and dynamic effects after single intravenous and oral doses. *Clin Pharmacol Ther* 31, 418-26 (1982).

(50) Tracy, T.S., Korzekwa, K.R., Gonzalez, F.J. & Wainer, I.W. Cytochrome P450 isoforms involved in metabolism of the enantiomers of verapamil and norverapamil. *Br J Clin Pharmacol* 47, 545-52 (1999).

(51) Kroemer, H.K., Echizen, H., Heidemann, H. & Eichelbaum, M. Predictability of the in vivo metabolism of verapamil from in vitro data: contribution of individual metabolic pathways and stereoselective aspects. *J Pharmacol Exp Ther* 260, 1052-7 (1992).

(52) Koike, Y., Shimamura, K., Shudo, I. & Saito, H. Pharmacokinetics of verapamil in man. *Res Commun Chem Pathol Pharmacol* 24, 37-47 (1979).

(53) Mikus, G., Eichelbaum, M., Fischer, C., Gummalka, S., Klotz, U. & Kroemer, H.K. Interaction of verapamil and cimetidine: stereochemical aspects of drug metabolism, drug disposition and drug action. *J Pharmacol Exp Ther* 253, 1042-8 (1990).

(54) Rowland Yeo, K., Walsky, R.L., Jamei, M., Rostami-Hodjegan, A. & Tucker, G.T. Prediction of time-dependent CYP3A4 drug-drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover. *Eur J Pharm Sci* 43, 160-73 (2011).

(55) Ma, B., Prueksaritanont, T. & Lin, J.H. Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. *Drug Metab Dispos* 28, 125-30 (2000).

(56) Obach, R.S., Walsky, R.L. & Venkatakrishnan, K. Mechanism-based inactivation of human cytochrome p450 enzymes and the prediction of drug-drug interactions. *Drug Metab Dispos* 35, 246-55 (2007).

(57) Wang, Y.H., Jones, D.R. & Hall, S.D. Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites. *Drug Metab Dispos* 32, 259-66 (2004).

(58) Bentz, J. *et al.* Variability in P-glycoprotein inhibitory potency (IC(50)) using various in vitro experimental systems: implications for universal digoxin drug-drug interaction risk assessment decision criteria. *Drug Metab Dispos* 41, 1347-66 (2013).

(59) Kishimoto, W., Ishiguro, N., Ludwig-Schwellinger, E., Ebner, T., Maeda, K. & Sugiyama, Y. Usefulness of A Model-Based Approach for Estimating In Vitro P-Glycoprotein Inhibition Potency in a Transcellular Transport Assay. *J Pharm Sci* 105, 891-6 (2016).

(60) Wang, Y.H., Jones, D.R. & Hall, S.D. Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil. *Drug Metab Dispos* 33, 664-71 (2005).

(61) Pauli-Magnus, C. *et al.* Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. *J Pharmacol Exp Ther* 293, 376-82 (2000).

(62) Neuhoff, S., Yeo, K.R., Barter, Z., Jamei, M., Turner, D.B. & Rostami-Hodjegan, A. Application of permeability-limited physiologically-based pharmacokinetic models: part I-digoxin pharmacokinetics incorporating P-glycoprotein-mediated efflux. *J Pharm Sci* 102, 3145-60 (2013).

(63) Zhou, D., Bui, K., Sostek, M. & Al-Huniti, N. Simulation and Prediction of the Drug-Drug Interaction Potential of Naloxegol by Physiologically Based Pharmacokinetic Modeling. *CPT Pharmacometrics Syst Pharmacol* 5, 250-7 (2016).
Table S2. Summary of clinical DDI studies with rifampicin

Victim	Victim drug dose regimen	Rifampicin dose regimen	Reference
Abemaciclib	200 mg oral single dose on day 5	600 mg oral QD for 14 days	(1)
Acalabrutinib	100 mg oral single dose on day 9	600 mg oral QD for 9 days	(2)
Bosutinib	500 mg oral single dose on day 7	600 mg oral QD for 10 days	(3)
Crizotinib	250 mg oral single dose on day 9	600 mg oral QD for 14 days	(4)
Naldemedine	0.2 mg oral single dose on day 15	600 mg oral QD for 17 days	(5)
Naloxegol	25 mg oral single dose on day 10	600 mg oral QD for 10 days	(6)
Olaparib	300 mg oral single dose given 216 hours after initial rifampicin dose	600 mg oral QD for 13 days	(7)
Quinidine	6 mg/kg (quinidine sulfate) oral single dose on day 8	500 mg oral QD for 7 days	(8)
Verapamil	120 mg oral single dose on day 16	600 mg oral QD for 15 days	(9)
Digoxin	1 mg single oral dose on day 11	600 mg oral QD for 16 days	(10)
Dabigatran	150 mg single oral dose on day 8	600 mg oral QD for 7 days	(11)
Etexilate			
Talinolol	100 mg oral QD from day 2 to day 7 at 7AM	600 mg oral QD from day 1 to day 9 at 6PM	(12)
REFERENCES FOR TABLE S2

(1) Center for Drug Evaluation and Research, Food and Drug Administration. NDA-208716 (Abemaciclib, VERZENIO®) Multi-Discipline Review/Summary, Clinical, Non-Clinical. <www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208716Orig1s000Multidisciplin eR.pdf> (2017).

(2) Zhou, D. et al. Evaluation of the Drug-Drug Interaction Potential of Acalabrutinib and Its Active Metabolite, ACP-5862, Using a Physiologically-Based Pharmacokinetic Modeling Approach. CPT Pharmacometrics Syst Pharmacol 8, 489-99 (2019).

(3) Yamazaki, S., Loi, C.M., Kimoto, E., Costales, C. & Varma, M.V. Application of Physiologically Based Pharmacokinetic Modeling in Understanding Bosutinib Drug-Drug Interactions: Importance of Intestinal P-Glycoprotein. Drug Metab Dispos 46, 1200-11 (2018).

(4) Center for Drug Evaluation and Research, Food and Drug Administration. NDA-202570 (Crizotinib, XALKORI®) Clinical Pharmacology and Biopharmaceutics Review. <www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202570Orig1s000ClinPharmR.p df> (2011).

(5) Center for Drug Evaluation and Research, Food and Drug Administration. NDA-208854 (Naldemedine, SYMPROIC®) Clinical Pharmacology and Biopharmaceutics Review. 2011. (2016).

(6) Zhou, D., Bui, K., Sostek, M. & Al-Huniti, N. Simulation and Prediction of the Drug-Drug Interaction Potential of Naloxegol by Physiologically Based Pharmacokinetic Modeling. CPT Pharmacometrics Syst Pharmacol 5, 250-7 (2016).

(7) Pilla Reddy, V., Bui, K., Scarfe, G., Zhou, D. & Learoyd, M. Physiologically Based Pharmacokinetic Modeling for Olaparib Dosing Recommendations: Bridging Formulations, Drug Interactions, and Patient Populations. Clin Pharmacol Ther 105, 229-41 (2019).

(8) Twum-Barima, Y. & Carruthers, S.G. Quinidine-rifampin interaction. N Engl J Med 304, 1466-9 (1981).

(9) Barbarash, R.A., Bauman, J.L., Fischer, J.H., Kondos, G.T. & Batenhorst, R.L. Near-total reduction in verapamil bioavailability by rifampin. Electrocardiographic correlates. Chest 94, 954-9 (1988).

(10) Greiner, B. et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 104, 147-53 (1999).

(11) Hartter, S. et al. Decrease in the oral bioavailability of dabigatran etexilate after co-medication with rifampicin. Br J Clin Pharmacol 74, 490-500 (2012).

(12) Westphal, K. et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther 68, 345-55 (2000).
Table S3. Base model of the prototypical compound file in sensitivity analysis

Parameter	Value
Molecular weight (g/mol)	500
log P	4
Compound type	Diprotic Base
pKa	8, 4
B/P	0.55
fu	0.05
Absorption Model	ADAM Model
fu_{gut}	1
P_{trans,0} (10^{-6} cm/s)	Ranged from 10 to 100000
P_{eff,man} (10^{-4} cm/s)	Predicted by MechPeff model based on P_{trans,0}
Formulation	Solution
Distribution Model	Minimal PBPK
VSS (L/kg)	Predicted by Method 2 (Rodgers and Rowland method)
Enzyme kinetics	
CYP3A4 CL_{int} (μL/min/mg protein)	Equal to 0 for P-gp pure substrate
Additional CL_{int} (HLM) (μL/min/mg protein)	Varied to obtain different E_{H} (0.1, 0.3, 0.7) and fm_{CYP3A4} (0.6 ~ 1)
CL_{R} (L/h)	0
Transporter (gut)	ABCB1 (P-gp/MDR1)
CL_{int,T} (μL/min)	Ranged from 0 to 600
Table S4. Dose normalised AUC of talinolol, bosutinib, quinidine and verapamil

Drug	Dose	AUC/Dose (h*ml⁻¹*1*10⁶)	Observed	Predicted	Predicted/Observed
Talinolol	50 mg	18.8	22.8	1.21	
	100 mg	22.6	23.2	1.03	
	400 mg	27.1	31.7	1.17	
Bosutinib	100 mg	3.23	3.74	1.16	
	500 mg	4.66	4.67	1.00	
Quinidine	1 mg	10.5	17.6	1.68	
	10 mg	14.8	19.6	1.32	
	100 mg	20.8	24.5	1.18	
Verapamil	3 mg	1.65	2.72	1.65	
	16 mg	2.55	3.33	1.31	
	80 mg	3.20	3.94	1.23	

SUPPLEMENTARY MATERIALS
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates
Figure S1. Simulated and observed plasma concentration-time profiles of each drug at clinically relevant dose. Simulated (black lines) and observed (data points) mean plasma concentration-time profile of each drug after a single oral dose. Observed data were extracted from literature: 200 mg Abemaciclib (1), 100 mg Acalabrutinib (2), 500 mg Bosutinib (3), 250 mg Crizotinib (4), 0.2 mg Naldemedine (5), 25 mg Naloxegol (6), 300 mg Olaparib (7), 332 mg Quinidine free base (8), 120 mg Verapamil (9), 1 mg Digoxin (10), Dabigatran (150 mg of Dabigatran Etexilate)(11), 100 mg Talinolol (12). Dashed lines represent the 5th and 95th percentile of the total virtual population.
Supplementary Material

Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

Figure S2. Predicted and observed AUC and C_{max} of each drug at clinically relevant dose. Predicted and observed mean values of AUC and C_{max} of each drug after a single oral dose. The observed data were reported in the literature: 200 mg Abemaciclib (1), 100 mg Acalabrutinib (2), 500 mg Bosutinib (3), 250 mg Crizotinib (4), 0.2 mg Naldemedine (5), 25 mg Naloxegol (6), 300 mg Olaparib (7), 332 mg Quinidine free base (8), 120 mg Verapamil (9), 1 mg Digoxin (10), Dabigatran (150 mg of Dabigatran Etexilate)(11), 100 mg Talinolol (12).
REFERENCES FOR FIGURES S1 and S2

(1) Center for Drug Evaluation and Research, Food and Drug Administration. NDA-208716 (Abemaciclib, VERZENIO®) Multi-Discipline Review/Summary, Clinical, Non-Clinical. <www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208716Orig1s000MultidisciplineR.pdf> (2017).

(2) Zhou, D. et al. Evaluation of the Drug-Drug Interaction Potential of Acalabrutinib and Its Active Metabolite, ACP-5862, Using a Physiologically-Based Pharmacokinetic Modeling Approach. CPT Pharmacometrics Syst Pharmacol 8, 489-99 (2019).

(3) Yamazaki, S., Loi, C.M., Kimoto, E., Costales, C. & Varma, M.V. Application of Physiologically Based Pharmacokinetic Modeling in Understanding Bosutinib Drug-Drug Interactions: Importance of Intestinal P-Glycoprotein. Drug Metab Dispos 46, 1200-11 (2018).

(4) Center for Drug Evaluation and Research, Food and Drug Administration. NDA-202570 (Crizotinib, XALKORI®) Clinical Pharmacology and Biopharmaceutics Review. <www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202570Orig1s000ClinPharmR.pdf> (2011).

(5) Fukumura, K., Yamada, T., Yokota, T. & Kawasaki, A. The Influence of Renal or Hepatic Impairment on the Pharmacokinetics, Safety, and Tolerability of Naldemedine. Clin Pharmacol Drug Dev 9, 162-74 (2020).

(6) Zhou, D., Bui, K., Sostek, M. & Al-Huniti, N. Simulation and Prediction of the Drug-Drug Interaction Potential of Naloxegol by Physiologically Based Pharmacokinetic Modeling. CPT Pharmacometrics Syst Pharmacol 5, 250-7 (2016).

(7) Pilla Reddy, V., Bui, K., Scarfe, G., Zhou, D. & Learoyd, M. Physiologically Based Pharmacokinetic Modeling for Olaparib Dosing Recommendations: Bridging Formulations, Drug Interactions, and Patient Populations. Clin Pharmacol Ther 105, 229-41 (2019).

(8) Edwards, D.J., Lavoie, R., Beckman, H., Blevins, R. & Rubenfire, M. The effect of coadministration of verapamil on the pharmacokinetics and metabolism of quinidine. Clin Pharmacol Ther 41, 68-73 (1987).

(9) Hla, K.K., Henry, J.A. & Latham, A.N. Pharmacokinetics and pharmacodynamics of two formulations of verapamil. Br J Clin Pharmacol 24, 661-4 (1987).

(10) Oosterhuis, B., Jonkman, J.H., Andersson, T., Zuiderwijk, P.B. & Jedema, J.N. Minor effect of multiple dose omeprazole on the pharmacokinetics of digoxin after a single oral dose. Br J Clin Pharmacol 32, 569-72 (1991).

(11) Hartter, S. et al. Decrease in the oral bioavailability of dabigatran etexilate after co-medication with rifampin. Br J Clin Pharmacol 74, 490-500 (2012).

(12) Westphal, K. et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther 68, 345-55 (2000).
Figure S3. Simulated luminal concentration for each intestinal segment of each drug. The profiles were simulated in a population representative (20 years old, male, healthy volunteer) after a single oral dose (shown in Table 1) of each drug.
SUPPLEMENTARY MATERIAL
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

Figure S4. Simulated free enterocyte concentration for each intestinal segment of each drug. The profiles were simulated in a population representative (20 years old, male, healthy volunteer) after a single oral dose (shown in Table 1) of each drug.
SUPPLEMENTARY MATERIALS
Unravelling Pleiotropic Effects of Rifampicin by Utilising Physiologically Based Pharmacokinetic Modelling: Assessing the Induction Magnitude of P-glycoprotein-CYP3A4 Dual Substrates

Figure S5. Simulated absorption rate and efflux rate for each intestinal segment of each drug. The profiles were simulated in a population representative (20 years old, male, healthy volunteer) after a single oral dose (shown in Table 1) of each drug. The solid line represents the absorption rate and the dashed lines represent P-gp-mediated efflux rate.
Figure S6. Simulated efflux clearance for each intestinal segment of each drug. The profiles were simulated in a population representative (20 years old, male, healthy volunteer) after a single oral dose (shown in Table 1) of each drug.
Figure S7. Simulated (lines) and clinically observed (data points) plasma concentration-time profiles of bosutinib with (red) and without (blue) coadministration of rifampicin. A single oral dose of bosutinib was administered to healthy subjects at the dose of 500 mg with and without repeated coadministration of 600 mg rifampicin once daily. Bosutinib plasma concentrations were predicted with a default rifampicin file (CYP3A4 Ind_max = 16, IndC50 = 0.32 μM and fu,gut = 1) (a, b and c) or a modified rifampicin file (CYP3A4 Ind_max = 30.6, IndC50 = 0.32 μM and fu,gut = 0.116) (d, e and f). Rifampicin-mediated intestinal P-gp fold-induction was assumed as 1 (a and d), 3.5 (b and e) or 10 (c and f). The error bars represent the standard deviation of the observed data. The dashed lines represent the predicted 5th and 95th percentiles of the virtual population.