A novel tool for detecting Li diffusion in solids containing magnetic ions; $\mu^+\text{SR}$ study on Li_xCoO_2

Jun Sugiyama1, Kazuhiko Mukai1, Yutaka Ikedo2, Hiroshi Nozaki1, Martin Månsson3, and Isao Watanabe4

1 Toyota Central Research & Development Laboratories Inc., Nagakute, Aichi 480-1192, Japan
2 Muon Science Laboratory, KEK, Tsukuba, Ibaraki 305-0801, Japan
3 LNS, ETH Zürich and Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
4 Muon Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

E-mail: e0589@mosk.tytlabs.co.jp

Abstract. The diffusion coefficient of Li^+ ions (D_{Li}) in the battery material Li_xCoO_2 has been investigated by means of muon-spin relaxation ($\mu^+\text{SR}$), because D_{Li} for positive electrode materials has not been determined correctly so far. Based on performing the experiments in zero-field and weak longitudinal-fields at temperatures up to 400 K, we determined the fluctuation rate (ν) of the fields on the muons due to their interaction with the nuclear moments. Combined with susceptibility data and electrostatic potential calculations, clear Li^+ ion diffusion was detected above ~ 150 K. The D_{Li} estimated from ν was in very good agreement with predictions from first-principles calculations, and we present the $\mu^+\text{SR}$ technique as a novel and optimal probe to detect D_{Li} of unique usefulness for materials containing magnetic ions.

1. Introduction

In spite of a long research history on lithium insertion materials for Li-ion batteries [1, 2], e.g., LiCoO_2, LiNiO_2, and LiMn_2O_4, one of their most important intrinsic physical properties, the Li^+ ions diffusion coefficient (D_{Li}), has not yet been determined with any reliability. Although Li NMR is a powerful technique to measure D_{Li} for non-magnetic materials, it is particularly difficult to evaluate D_{Li} for materials containing magnetic ions, because the magnetic ions induce additional pathways for the spin-lattice relaxation rate ($1/T_1$), resulting in huge $1/T_1$ compared with that expected for only the diffusive motion of Li ions.

Such difficulty was clearly evident in the $1/T_1(T)$ curve for LiCoO_2 and LiNiO_2 [3, 4], and, for that reason, D_{Li} was instead estimated from the Li-NMR line width [5]. However, since the line width, i.e., the spin-spin relaxation rate ($1/T_2$) is also affected by the magnetic ions, the D_{Li} obtained by Li-NMR for LiCoO_2 ($= 1 \times 10^{-14} \text{ cm}^2\text{s}^{-1}$ at 400 K) is approximately four orders of magnitude smaller than predicted by first-principles calculations [6]. Since lithium insertion materials always include transition metal ions, in order to maintain charge neutrality during the extraction and/or insertion of Li^+ ions, it is consequently very difficult to determine D_{Li} for these compounds unambiguously by Li-NMR.

On the other hand, the chemical diffusion coefficient ($D_{\text{Li}}^{\text{chem}}$), which is measured under a potential gradient, has also been determined by electrochemical measurements. Note that the relationship between D_{Li} and $D_{\text{Li}}^{\text{chem}}$ is given by $D_{\text{Li}}^{\text{chem}} = \Theta D_{\text{Li}}$, where Θ is a thermodynamic factor. The magnitude of $D_{\text{Li}}^{\text{chem}}$ is, however, known to be very sensitive to the measurement
system, e.g., the electrolyte as well as the compositions of the positive and negative electrodes.

As a result, the reported D_{chem}^L for Li$_x$CoO$_2$ ranges from 4×10^{-8} to 10^{-10} cm2s$^{-1}$ for powder samples [7–11] and from 2.5×10^{-11} to 2×10^{-13} cm2s$^{-1}$ for thin films [12–15] at ambient T. In order to profoundly understand the physics behind the operation principle of battery materials, it is imperative to have a reliable probe to measure D_{chem}^L for all the components of the battery as a function of both Li content as well as T. This is at present a key issue for further development of Li-ion batteries, and in particular for future fabrication of solid-state batteries.

In contrast to NMR, the effect of localized moments in a paramagnetic (PM) state on the μ^+SR signal is very limited at high T, because the PM fluctuation is usually too fast to be visible by μ^+SR. Furthermore, although μ^+SR is very sensitive to the local magnetic environment, whether it is due to electronic or nuclear spins, an electronic contribution is, in principle, distinguishable from a nuclear contribution by weak longitudinal field measurements. In addition, since the μ^+SR timescale is different from the NMR’s one, μ^+SR is expected to provide unique information on nuclear magnetic fields. Indeed, μ^+SR studies of Li$_x$CoO$_2$ at low T indicate that μ^+s feel a nuclear magnetic field caused by Li and 59Co even at 1.8 K [16, 17]. This offers a possibility to determine D_{Li} of Li$_x$CoO$_2$ by μ^+SR, if μ^+s locate in the vicinity of the O$^{2-}$ ion and make a stable $\mu^+-\text{O}^{2-}$ bond in the Li$_x$CoO$_2$ lattice. Here, we report our initial work on Li$_x$CoO$_2$ ($x=0.73$ and 0.53) to estimate their D_{Li} and establish μ^+SR as a novel tool to probe Li-ion diffusion.

2. Experimental

A powder sample of LiCoO$_2$ was prepared at Osaka City University by a solid-state reaction technique using reagent grade LiOH•H$_2$O and CoCO$_3$ powders as starting materials. A mixture of the two powders was heated at 900°C for 12 h in air. Powder X-ray diffraction (XRD) analysis showed that the LiCoO$_2$ sample was single phase with a rhombohedral system of space group $R3m$ ($a_{\text{H}} = 0.2814$ nm and $c_{\text{H}} = 1.4049$ nm in hexagonal setting, see Fig 1). The Li-deficient samples were prepared by an electrochemical reaction using Li/LiPF$_6$-ethylene carbonate-diethyl carbonate/LiCoO$_2$ cells. The LiCoO$_2$ powder was pressed into a disc with 15 mm diameter and 0.4 mm thickness, and the disc was then used as a positive electrode. The Li$_2$CoO$_2$ disc was removed from the cell in a glove-box and packed into a sealed powder cell just before the μ^+SR measurement. In order to assess possible changes in the Li-deficient samples during the μ^+SR measurement, each sample was afterwards returned to the original cell to check their voltage.
Figure 2. ZF- and two LF-\(\mu^+\)-SR spectra for Li\(_{0.73}\)CoO\(_2\) measured at (a) 100 K, (b) 160 K, (c) 200 K, and (d) 225 K. The magnitude of LF was 5 and 10 Oe. Solid lines represent the fit result using Eq. (1).

(vs. a Li electrode). No significant change in the voltage was observed before and after the measurements. Their structures were subsequently confirmed by powder XRD, and, finally, their compositions were checked by an inductively coupled plasma atomic emission spectral analysis. The above procedure is essentially the same as that of our previous \(\mu^+\)-SR work on Li\(_x\)CoO\(_2\) [17] and Li\(_x\)NiO\(_2\) [18].

The \(\mu^+\)SR spectra were measured at the surface muon beam line of the RIKEN-RAL Muon Facility at ISIS (U.K.) using a liquid-He flow-type cryostat in the \(T\) range between 10 and 400 K. The experimental techniques were described elsewhere [19]. \(\chi\) was measured using a SQUID magnetometer (MPMS, Quantum Design) in the \(T\) range between 5 and 200 K under a magnetic field of \(H = 100\) Oe.

3. Results and Discussion

Figure 2 shows the zero field (ZF-) and longitudinal field (LF-) \(\mu^+\)-SR spectrum for the Li\(_{0.73}\)CoO\(_2\) sample obtained at 100, 160, 200, and 225 K. At 100 K, the ZF-spectrum exhibits a typical Kubo-Toyabe (KT) behavior with a minimum at \(t\sim 6\) \(\mu\)s, meaning that the implanted muons see the internal magnetic field (\(H_{\text{int}}\)) due to the nuclear magnetic moments of \(^7\text{Li}, ^6\text{Li}\) and \(^{59}\text{Co}\). The applied LF clearly reduces the relaxation rate, i.e., the time slope, by decoupling \(H_{\text{int}}\). Although the ZF-spectrum still shows KT behavior at 200 and 225 K, the relaxation rate is smaller than at 100 K.

In order to estimate the KT parameters precisely, the ZF- and two LF-spectra were fitted simultaneously by a combination of a dynamic Gaussian KT function \(G^{\text{DGKT}}(\Delta, \nu, t, H_{\text{LF}})\) and an offset background (BG) signal from the fraction of muons stopped mainly in the sample
Figure 3. For Li$_{0.73}$CoO$_2$ and Li$_{0.53}$CoO$_2$ respectively, we show T dependences of (a),(b) field distribution width (Δ), (c),(d) field fluctuation rate (ν), (e),(f) susceptibility (χ), and (g),(h) the log(ν)-vs.-1/T curve. Δ and ν were obtained by fitting both ZF- and LF-spectra using Eq. (1). χ was measured in both field cooling (FC) and zero field cooling (ZFC) mode with $H=100$ Oe. In (e),(f), the χ data [17] measured in FC mode with $H = 10$ kOe for Li$_{0.75}$CoO$_2$ and Li$_{0.52}$CoO$_2$ were also plotted for comparison. The straight lines in (g) and (h) show the activated diffusive behaviour discussed in the text.

$$A_0 P_{LF}(t) = A_{KT} G^{DGK_T}(\Delta, \nu, t, H_{LF}) + A_{BG}$$

where A_0 is the initial ($t = 0$) asymmetry, A_{KT} and A_{BG} are the asymmetries associated with the two signals. Δ is the static width of the local field distribution at the disordered sites, and ν is the field fluctuation rate. When $\nu = 0$ and $H_{LF} = 0$, $G^{DGK_T}(t, \Delta, \nu, H_{LF})$ is the static Gaussian KT function $G^{KT}_{zz}(t, \Delta)$ in ZF. At first, we fitted all the ZF-spectra using common A_{KT} and A_{BG} in Eq. (1). The “global fit” provided that $A_{KT} = 0.164056 \pm 0.000011$ (0.16889 ± 0.00018)
Figure 4. The variation of electrostatic potential (ϕ_E) along the a-axis at $b = b_m$ and $c = 0$ (on the Li plane) and $b = 0$ and $c = 0.022$ (1 Å away from the O$^{2-}$ ions) in the hexagonal lattice of Li$_x$CoO$_2$ with $x = 0$, 0.25, 0.5, 0.75, and 1 (from top to bottom). Here, b_m denotes the b, at which electrostatic potential exhibits a minimum. The right panels show the corresponding distribution of ϕ_E in the Li plane. Arrows on the b-axis in the right panels represents b_m.

and $A_{BG} = 0.06350 \pm 0.00002$ (0.0692 ± 0.0002) for Li$_{0.73}$CoO$_2$ (Li$_{0.53}$CoO$_2$). Then, using the obtained A_{KT} and A_{BG}, one ZF- and two LF-spectra were global-fitted using common Δ and ν at each T.

Figure 3 shows the T dependencies of both Δ and ν for the two samples together with χ measured in a 100 Oe magnetic field. For Li$_{0.73}$CoO$_2$, Δ is almost constant for $5 \leq T \leq 250$ K,
indicating that the μ^+ are most probably stable in the crystal lattice until ~ 300 K. Δ then rapidly decreases, but levels off again for $T \geq 325$ K. The $\nu(T)$ curve is almost T-independent up to 150 K, starts to increase at ~ 150 K, and exhibits a maximum at 275 K. Above 275 K, ν decreases to 0.7×10^6 s$^{-1}$ at ~ 325 K, and finally becomes almost T-independent above 350 K. The increase in ν between 150 and 275 K is well explained by a thermal activation process [Figs. 3(g) and 3(h)], which signals the onset of diffusive motion of either Li$^+$ or μ^+ above 150 K. The clear decrease in Δ at ~ 300 K also suggests an additional diffusion of Li$^+$ or μ^+.

The $\chi(T)$ curve exhibits a small anomaly around 150 K with a thermal hysteresis of ~ 10 K, while there is no indication of any magnetic anomalies in the T range between 200 and 300 K [Figs. 3(e) and 3(f)]. This suggests that the change in the μ^+SR parameters around 150 K is caused by an intrinsic change in Li$_x$CoO$_2$, but the change around 300 K is visible only by μ^+SR. The increase in ν above 150 K is, thus, most unlikely due to μ^+ diffusion but it is rather due to Li$^+$ diffusion, i.e., either a freezing of the Li$^+$ motion or an order-disorder transition of the Li$^+$ ions occurs below around 150 K. This is also supported by a recent 7Li-NMR experiment [20], in which the NMR line width $-\nu_{SR}$ curve for Li$_{0.6}$CoO$_2$ exhibits a step-like decrease with T around 150 K by motional narrowing due to Li$^+$ diffusion. Since such diffusion naturally increases a local structural symmetry, it is reasonable that Δ slightly decreases with T around 150 K. On the other hand, both Li$^+$ and μ^+ are inferred to be diffusing above 300 K, resulting in the large decrease in Δ caused by motional narrowing. Actually, because $\Delta \leq 0.1\nu$ above 300 K, Eq. (1) is roughly equivalent to an exponential relaxation function $[\exp(-\lambda t)]$, and it is difficult to estimate Δ and ν precisely at high T.

The result for Li$_{0.53}$CoO$_2$ sample is very similar to that of Li$_{0.73}$CoO$_2$, although $\Delta_{T=0}(\text{Li}_{0.53}\text{CoO}_2) < \Delta_{T=0}(\text{Li}_{0.73}\text{CoO}_2)$ due to the decrease in the number density of Li$^+$ ions, as reported previously [16, 17]. Also, the magnitude of ν of Li$_{0.53}$CoO$_2$ is smaller than ν of Li$_{0.73}$CoO$_2$ in the whole T range measured, but the $\nu(T)$ curve for both samples show a clear increase with T above 150 K and a maximum around 300 K.

In order to predict the muon site(s) and to confirm the reliability of the above assumption that Li$^+$ ions diffuse above 150 K whereas μ^+ diffuse only above 300 K, we performed electrostatic potential (ϕ_E) calculations for the Li$_x$CoO$_2$ lattice using a point-charge model and the program DipElec [21]. As seen in Fig. 4, the site in the vicinity of the O$^{2-}$ ions is more stable for μ^+ than the site in the Li plane for the whole x range between 1 and 0. This means that μ^+‘s are bound to the O$^{2-}$ ions so as to make a stable μ^+-O$^{2-}$ bond in Li$_x$CoO$_2$. This is a common situation in oxides, as for example in the case for the high-T_c cuprates [22] and other cobalt oxide compounds [23, 24]. Since μ^+‘s are assigned as an ideal point charge, such μ^+-O$^{2-}$ bond should be purely ionic. In fact, dipole field calculations for the site in the vicinity of the O$^{2-}$ ions provide that $\Delta_{\text{calc}} = 0.43 \times 10^6$ s$^{-1}$ $(0.35 \times 10^6$ s$^{-1}$) for Li$_x$CoO$_2$ with $x = 3/4$ (1/2). Furthermore, Δ_{calc} is found to be comparable to Δ measured at low T in the whole x range for Li$_x$CoO$_2$ [17], if we consider the reduction of Δ by the electric field gradient effect on the nuclear moments with $I \geq 1$ [25, 26]. This suggests that the point-charge model is acceptable for determining the muon site(s) in Li$_x$CoO$_2$. As a result, it is clarified that, as T increases from 5 K, the Li$^+$ ions start to diffuse above 150 K (= T^d_{Li}) and then the μ^+ diffuse above 300 K (= T^d_{μ}), in spite of the mass difference between μ^+ and Li$^+$ ($m_{\mu^+}/m_{\text{Li}^+} \sim 63$) because the muons form a hydrogen-like bond with oxygen.

Finally, we estimate D_{Li} using the obtained fluctuation rate ν as directly measuring the jump rate. Figure 5(a) shows the possible jump paths for the Li ions. That is, the direct jump to the nearest (vacant) Li site (path No. 1) and the jump to the interstitial site in the center of the oxygen tetrahedron (path No. 2). Assuming that ν corresponds to the jump rate of the Li ions
Figure 5. (a) Possible jump paths for Li ions. Broken arrows represent the direct jump to nearest (vacant) Li site (path No. 1), whereas solid arrows the jump to an interstitial site in the center of the oxygen tetrahedron (path No. 2). (b) The relationship between D_{Li} and x in Li$_x$CoO$_2$ as extracted from our $\mu^+\text{SR}$ experiment (open circles). Solid and dashed lines represent the predictions by first-principles calculations [6] at $T = 300$ and 400 K, respectively, when the effective vibration frequency is a typical value (10^{13} s$^{-1}$). Sharp minima in the predicted curve (at $x = 1/3$ and $1/2$) are caused by Li-ordering. The 7Li-NMR result [5, 20] for $T = 400$ K is also plotted (solid dot) for comparison.

between the neighboring sites, D_{Li} is given by [27]:

$$D_{\text{Li}} = \sum_{i=1}^{n} \frac{1}{N_i} Z_{v,i} s_i^2 \nu_i$$

(2)

where N_i is the number of Li sites in the i-th path, $Z_{v,i}$ is the vacancy fraction, and s_i is the jump distance. Here, we naturally restrict the path to lie in the c-plane, i.e., along the 2D channel, because it is most unlikely that the Li ions jump across the CoO$_2$ plane to an adjacent Li plane. Therefore, $N_1 = 6$, $N_2 = 3$, s_1 is equivalent to the a-axis length, $s_2 = a/\sqrt{3}$, $Z_{v,1} = 0.27$ for Li$_{0.73}$CoO$_2$ (0.47 for Li$_{0.53}$CoO$_2$), and $Z_{v,2} = 1$. As a result, we obtain $D_{\text{Li}} = (7\pm 2) \times 10^{-10}$ cm2/s $[(2.5 \pm 0.8) \times 10^{-10}$ cm2/s] for Li$_{0.73}$CoO$_2$ [Li$_{0.53}$CoO$_2$] at 300 K. Here, $\nu (300$ K) for Li$_{0.73}$CoO$_2$ was estimated from the extrapolation of the linear relationship between log[\nu] and T^{-1} [see Fig. 3(g)]. The estimated D_{Li} is found to be very consistent with the prediction by first-principle calculations [6], as seen in Fig. 5(b). Note that the jump paths used in Eq. (2) are the same to those for the first-principle calculations. This means that there is no ambiguous factor for estimating D_{Li} by $\mu^+\text{SR}$. Since $\mu^+\text{SR}$ detects ν ranging from $\sim 0.01\Delta$ to $\sim 10\Delta$, it is applicable for materials with $D_{\text{Li}} = 10^{-12} - 10^{-9}$ cm2/s, when $N = 10$, $Z_v = 1$, $s = 1$ nm, and $\Delta = 0.1 \times 10^6$ s$^{-1}$.

In conclusion, we have been able to determine the Li diffusion coefficient, \(D_{Li} \), of \(Li_xCoO_2 \) from the fluctuation rate of the field experienced by the muons in interaction with the nuclear moments of the diffusing ions. The value was found to be in good agreement with theoretical predictions. Consequently, we would like to suggest \(\mu^+SR \) as a novel probe to investigate Li diffusion, especially for materials containing transition metal ions.

4. Acknowledgments

This work was performed at the RIKEN-RAL Muon Facility at ISIS, and we thank the staff for help with the \(\mu^+SR \) experiments. We appreciate T. Ohzuku and K. Ariyoshi for sample preparation and K. Yoshimura for discussion. JS and YI are supported by the KEK-MSL Inter-University Program for Overseas Muon Facilities. This work is also supported by Grant-in-Aid for Scientific Research (B), 19340107, MEXT, Japan. The image involving crystal structure was made with VESTA.

References

[1] Mizushima K, Jones P C, Wiseman P J and Goodenough J B 1980 Mater. Res. Bull. 15 783
[2] Ohzuku T and Brodd R 2007 J. Power Sources 174 449
[3] Tomeno I and Oguchi M 1998 J. Phys. Soc. Jpn 67 318
[4] Nakamura K, Yamamoto M, Okamura K, Michihiro Y, Nakabayashi I and Kanashiro T 1999 Solid State Ionics 121 301
[5] Nakamura K, Ohno H, Okamura K, Michihiro Y, Nakabayashi I and Kanashiro T 2000 Solid State Ionics 135 143
[6] der Ven A V and Ceder G 2000 Electrochem. Solid-State Lett. 3 301
[7] Mizushima K, Jones P C, Wiseman P J and Goodenough J B 1981 Solid State Ionics 3-4 171
[8] Yao C Y, Kao T H, Cheng C H, Chen J M and Hung W M 1995 J. Power Sources 54 491
[9] Pyun S I and Choi Y M 1997 J. Power Sources 68 524
[10] Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M and Uchida I 2001 J. Electrochem. Soc 148 A422
[11] Dokko K, Nakata N and Kanamura K 2009 J. Power Source 189 783
[12] Striebel K A, Deng C Z, Wen S J and Cairns E J 1996 J. Electrochem. Soc 143 1821
[13] Rho Y H and Kanamura K 2004 J. Electrochem. Soc 151 A1406
[14] Xia H, Lu L, Meng Y S and Ceder G 2007 J. Electrochem. Soc 154 A337
[15] Tang S, Lai M and Lu L 2008 J. Alloys Compounds 449 300
[16] Sugiyama J, Nozaki H, Brewer J H, Ansaido E J, Morris G D and Delmas C 2005 Phys. Rev. B 72 144424
[17] Mukai K, Ikedo Y, Nozaki H, Sugiyama J, Nishiyama K, Andreica D, Amato A, Russo P L, Ansaido E J, Brewer J H, Chow K H, Ariyoshi K and Ohzuku T 2007 Phys. Rev. Lett. 99 087601
[18] Sugiyama J, Mukai K, Ikedo Y, Russo P L, Nozaki H, Andreica D, Amato A, Ariyoshi K and Ohzuku T 2008 Phys. Rev. B 78 144412
[19] Kalvius G M, Noakes D R and Hartmann O 2001 Handbook on the Physics and Chemistry of Rare Earths vol 32 (Amsterdam: Elsevier Science) pp 55–451
[20] Nakamura K, Ohno H, Okamura K, Michihiro Y, Moriga T, Nakabayashi I and Kanashiro T 2006 Solid State Ionics 177 821
[21] Kojima K M, Yamanohde J, Eisaki H, Uchida S, Fudamoto Y, Gatl J M, Larkin M I, Savici A, Uemura Y J, Kyriakou P P, Rovers M T and Luke G M 2004 Phys. Rev. B 70 094402
[22] Adams T R, Lichti R L and Gibson T L 1994 Hyperfine Interact. 86 561
[23] Sugiyama J, Nozaki H, Ikedo Y, Mukai K, Andreica D, Amato A, Brewer J H, Ansaido E J, Morris G D, Takami T and Ikuta H 2006 Phys. Rev. Lett. 96 197206
[24] Sugiyama J, Nozaki H, Ikedo Y, Russo P L, Mukai K, Andreica D, Amato A, Takami T and Ikuta H 2008 Phys. Rev. B 77 092409
[25] Hayano R S, Uemura Y J, Imazato J, Nishida N, Yamazaki T and Kubo R 1979 Phys. Rev. B 20 850
[26] Kaiser C T, Verhoeven V W J, Gubbens P C M, Mulder F M, de Scheppe I, Yaouanc A, de Réotier P D, Cottrell S P, Kelder E M and Schoonman J 2000 Phys. Rev. B 62 R9236
[27] Borg R J and Dienes G J 1988 An Introduction to Solid State Diffusion (San Diego: Academic Press) p 000