Acknowledgments

We thank Anaíes Ruesga, Heriberto Verduzco M., Adrian Gutierrez A., Edgar Gómez, Carol Alexis, Jazmín Osorio, and Jansen de Araujo for help with capturing and dissecting bats. We thank Kathryn Holmes and Thomas M. Yuill for critically reviewing this manuscript and advising and facilitating this collaboration.

This study was funded by National Institutes of Health grant no. K08 AI-073525 (S.R.D.), by a fellowship from the Consejo Nacional para Ciencia y Tecnología of the Mexican federal government (S.R.D.), and by a fellowship from the Brazilian government agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior and Conselho Nacional de Desenvolvimento Científico e Tecnológico (L.G.B.G.).

Luiz Gustavo Bentim Gôes,1 Sícilene Gonzalez Ruvalcaba,1 Angélica Almeida Campos, Luzia Helena Queiroz, Cristiano de Carvalho, José Antonio Jerez, Edison Luiz Durigon, Luis Ignacio Iñiguez Dávalos, and Samuel R. Dominguez

Author affiliations: Universidade de São Paulo, São Paulo, Brazil (L.G.B. Gôes, A.A. Campos, J.A. Jerez, E.L. Durigon); Universidad de Guadalajara, Jalisco, Mexico (S.G. Ruvalcaba, L.i. Iñiguez Dávalos); University Estadual Paulista, Araçatuba, Brazil (L.H. Queiroz, C. de Carvalho); and University of Colorado School of Medicine, Aurora, Colorado, USA (S.R. Dominguez)

DOI: http://dx.doi.org/10.3201/eid1910.130525

References

1. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–20. http://dx.doi.org/10.1056/NEJMoa1211721

2. Osborne C, Cryan PM, O’Shea TJ, Oko LM, Ndaluca C, Calisher CH, et al. Alphacoronaviruses in New World bats: prevalence, persistence, phylogeny, and potential for interaction with humans. PLoS ONE. 2011;6:e19156. http://dx.doi.org/10.1371/journal.pone.0019156

3. Dominguez SR, O’Shea TJ, Oko LM, Holmes KV. Detection of group 1 coronaviruses in bats in North America. Emerg Infect Dis. 2007;13:1295–300. http://dx.doi.org/10.3201/eid1309.070491

4. Carrington CV, Foster JE, Zhu HC, Zhang JX, Smith GJ, Thompson N, et al. Detection and phylogenetic analysis of group 1 coronaviruses in South American bats. Emerg Infect Dis. 2008;14:1890–3. http://dx.doi.org/10.3201/eid1412.080642

5. Donaldson EF, Haskew AN, Gates JE, Huynh J, Moore CJ, Frieman MB. Metagenomic analysis of the virome of three North American bat species: viral diversity between different bat species that share a common habitat. J Virol. 2010;84:13004–18. http://dx.doi.org/10.1128/JVI.01255-10

6. Misra V, Dumonceautes T, Dubois J, Willis C, Nadim-Davis S, Severini A, et al. Detection of polyoma and corona viruses in bats of Canada. J Gen Virol. 2009;90:2015–22. http://dx.doi.org/10.1099/vir.0.010694-0

7. Lima FE, Campos FS, Filho H, Batista HB, Junior P, Cibulskis SP, et al. Detection of Alphacoronavirus in velvety free-tailed bats (Molossus molossus) and Brazilian free-tailed bats (Tadarida brasiliensis) from urban areas of southern Brazil. Virus Genes. 2013 Mar 16. Epub ahead of print. http://dx.doi.org/10.1007/s11262-013-0899-x

8. Anthony SJ, Ojeda-Flores R, Rico-Chavez O, Navarrete-Macias I, Zambrana-Torralbo C, Rostal MK, et al. Coronaviruses in bats from Mexico. J Gen Virol. 2013;94:1028–38. http://dx.doi.org/10.1099/vir.0.049759-0

9. Gloza-Rausch F, Ipsen A, Seebens A, Gottsche M, Panning M, Felix Drexler J, et al. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg Infect Dis. 2008;14:626–31. http://dx.doi.org/10.3201/eid1404.071439

10. Amann A, Baldwin H, Corman V, Kloze S, Owusu M, Enkrumah E, et al. Human betacoronavirus 2C EMC/2012-related viruses in bats, Ghana and Europe. Emerg Infect Dis. 2013;19:456–9. http://dx.doi.org/10.3201/eid1903.121503

Address for correspondence: Samuel R. Dominguez, Department of Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, 13123 E 16th Ave, Aurora, CO 80045, USA; email: samuel.dominguez@ucdenver.edu

Vibrio cholerae O1 El Tor and O139 Bengal Strains Carrying ctxBET, Bangladesh

To the Editor: Cholera, caused by Vibrio cholerae, continues to affect millions of persons in disease-endemic areas where safe drinking water is scarce and sanitation is poor. Of 7 cholera pandemics recorded since 1817, V. cholerae serogroup O1 classical (CL) biotype was associated with the sixth, whereas the seventh (ongoing) pandemic was initiated by V. cholerae O1 biotype El Tor (ET), which displaced CL in the early 1960s (1). During 1992–1993, a V. cholerae non-O1 serogroup, designated V. cholerae O139 synonym Bengal, initiated cholera epidemics in India and Bangladesh by transiently displacing V. cholerae O1 ET biotype (2). V. cholerae O139 was less frequently associated with cholera in Bangladesh than V. cholerae ET in 1994 and the years following, until 2005 (3); it has been undetected since then. Meanwhile, V. cholerae ET has shown genetic changes since 2001, and isolates carry the ctxB gene of the CL biotype (ctxBET) in Bangladesh (4). Although the genetic transition from ctxBET to ctxB3+ was observed during 1998–1999 for V. cholerae O139 (5), V. cholerae strains carrying ctxBET were considered extinct, i.e., undetected for about a decade.

During June 2012–December 2013, the International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B) systematically conducted ongoing epidemiologic ecological surveillance in Dhaka, Chhatak, and Mathbaria and isolated V. cholerae strains (n = 500 [clinical/environmental]; Dhaka [n = 110/94], Mathbaria [n = 90/79], Chhatak [n = 111/16]). Of the 500 V. cholerae isolates, 496 were confirmed as O1 and 4 as O139 Bengal, on the basis of serologic, phenotypic, and genetic properties (3,6–8).
All *V. cholerae* O1 and O139 isolates were positive for ctxA, tlc, ace, and zot and possessed ET biotype–specific markers tcpA^{ET}, hly^{ET}, and rtxC. Mismatch amplification mutation assay–PCR (9) demonstrated ctxB^{ET} allele in 492 *V. cholerae* O1 ET strains (altered ET), whereas ctxB^{ET} was found in 8 isolates (4 *V. cholerae* O1 ET and 4 *V. cholerae* O139).

Nucleotide sequencing of ctxB showed that the translated sequences of *V. cholerae* O1 and O139 strains carrying ctxB^{ET} were identical to those of the ET reference strain N16961 (GenBank accession no. NC_002505), with tyrosine and isoleucine at positions 39 and 68, respectively, as opposed to altered ET, which possesses histidine and threonine at positions 39 and 68, respectively (4). PCR additionally showed that the *V. cholerae* O1 and O139 Bengal strains carrying ctxB^{ET} had the ET biotype–specific RS1 element gene rstC and repressor gene rstR^{ET}, suggesting prototype ET attributes (7).

Three *V. cholerae* strains carrying ctxB^{ET} were first isolated in 2011 from surface water: one O1 strain and one O139 strain from Mathbaria and one O1 strain from Chhatak. In 2012, *V. cholerae* O1 carrying ctxB^{ET} was isolated from cholera patients in Mathbaria and Chhatak (n = 1 each). Also, 3 O139 strains carrying ctxB^{ET} were isolated from surface water in Dhaka. The confirmed *V. cholerae* O1 and O139 Bengal strains carrying ctxB^{ET} were of particular interest because altered ET strains carrying ctxB^{CL} have been deemed the cause of endemic cholera in Bangladesh since 2001 (4) and globally (10).

V. cholerae strains carrying ctxB^{ET} were closely related to the pre-2001 *V. cholerae* strains carrying ctxB^{ET}, as were the O139 Bengal strains carrying ctxB^{ET}. Two lines of evidence support this close relationship. First, the antimicrobial drug resistance patterns of 3 of the *V. cholerae* O139 strains isolated in Dhaka during 2012 were resistant to trimethoprim/sulfamethoxazole (25 µg), whereas the remaining O139 and 4 O1 strains were susceptible to all drugs tested, including azithromycin (15 µg), ciprofloxacin (5 µg), gentamicin (10 µg), ampicillin (10 µg), tetracycline (30 µg), and erythromycin (15 µg). Second, pulsed-field gel electrophoresis (PFGE) of NotI-digested genomic DNA showed identical banding patterns for the 4 *V. cholerae* O1 strains carrying ctxB^{ET} and the pre-2001 ET strains, including N16961, and the DNA pattern differed from that of the altered ET associated with endemic cholera in Bangladesh (Figure). All 4 *V. cholerae* O139 strains had typical O139 Bengal banding patterns, shown by PFGE, except that 1 strain had an extra band (Figure). Comparison of PFGE patterns with those of previously isolated *V. cholerae* O139 strains (1993–2005) showed that recently isolated strains (2011–2012) belonged to 1 of the ancient clones, suggesting that the strain has been present in Bangladesh since 1993 (Figure).

In conclusion, we provide evidence of the coexistence of *V. cholerae* O1 and O139 strains, which shows that strains carrying ctxB^{ET}, not isolated for approximately a decade in Bangladesh, have again been isolated (3). Although the epidemiologic importance of the observed genetic change in the ctxB is yet to be understood, the finding of *V. cholerae* strains carrying ctxB^{ET} in surface water of Bangladesh in 2011 and in association the following year with...
cholera may be yet another turning point, considering that the global pattern of cholera is changing rapidly.

This study was supported in part by National Institute of Health grant no. RO1A1039129 (under collaborative agreements between the Johns Hopkins Bloomberg School of Public Health and ICDDR,B) and National Institute of Infectious Diseases, Japan. ICDDR,B acknowledges with gratitude the commitment of the National Institutes of Health and the National Institute of Infectious Diseases to its research efforts.

Shah M. Rashed, Anwarul Iqbal, Shahnewaj B. Mannan, Tarequl Islam, Mahamud-ur Rashid, Fatema-tuz Johura, Haruo Watanabe, Nur A. Hasan, Anwar Huq, O. Colin Stine, R. Bradley Sack, Rita R. Colwell, and Munirul Alam

Author affiliations: International Center for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh (S.M. Rashed, A. Iqbal, S.B. Manna, T. Islam, M.-u. Rashid, F.-t. Johura, M. Alam); National Institute of Infectious Diseases, Tokyo, Japan (H. Watanabe); University of Maryland College Park, Maryland, USA (N.A. Hasan, A. Huq, R.R. Colwell); University of Maryland Baltimore, Maryland, USA (C. Stine); Johns Hopkins Bloomberg School of Public Health, Maryland, USA (R.B. Sack, R.R. Colwell).

DOI: http://dx.doi.org/10.3201/eid1910.130626

References

1. Sack DA, Sack RB, Nair GB, Siddique AK. Cholera. Lancet. 2004;363:223–33. http://dx.doi.org/10.1016/S0140-6736 (03)15328-7

2. Albert MJ, Siddique AK, Islam MS, Faruque AS, Ansaruzzaman M, Faruque SM, et al. Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet. 1993;341:704. http://dx.doi.org/10.1016/0140-6736(93)90481-U

3. Alam M, Hasan NA, Sadique A, Bhuiyan NA, Ahmed KU, Nusrin S, et al. Seasonal cholera caused by Vibrio cholerae serogroups O1 and O139 in the coastal aquatic environment of Bangladesh. Appl Environ Microbiol. 2006;72:4096–104. http://dx.doi.org/10.1128/AEM.00066-06

4. Nair GB, Qadri F, Holmgren J, Svennerholm AM, Safa A, Bhuiyan NA, et al. Cholera due to altered El Tor strains of Vibrio cholerae O1 in Bangladesh. J Clin Microbiol. 2006;44:4211–3. http://dx.doi.org/10.1128/JCM.01304-06

5. Bhuiyan NA, Nusrin S, Alam M, Morita M, Watanabe H, Ramamurthy T, et al. Changing genotypes of cholera toxin (CT) of Vibrio cholerae O139 in Bangladesh and description of three new CT genotypes. FEMS Immunol Med Microbiol. 2009;57:136–41. http://dx.doi.org/10.1111/j.1576-695X.2009.00590.x

6. Hoshino K, Yamasaki S, Mukhopadhyay AK, Chakraborthy S, Basu A, Bhattacharya SK, et al. Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae O1 and O139. FEMS Immunol Med Microbiol. 1998;20:201–7. http://dx.doi.org/10.1111/j.1574-695X.1998.tb01128.x

7. Nusrin S, Gil AI, Bhuiyan NA, Safa A, Asakura M, Lanata CF, et al. Peruvian Vibrio cholerae O1 El Tor strains possess a distinct region in the Vibrio seventh pandemic island-II that differentiates them from the prototype seventh pandemic El Tor strains. J Med Microbiol. 2009;58:342–54. http://dx.doi.org/10.1099/jmm.0.005397-0

8. Rashed SM, Mannan SB, Johura FT, Islam MT, Sadique A, Watanabe H, et al. Genetic characteristics of drug-resistant Vibrio cholerae O1 causing endemic cholera in Dhaka, 2006–2011. J Med Microbiol. 2012;61:1736–45. http://dx.doi.org/10.1099/jmm.0.049635-0

9. Morita M, Ohnishi M, Arakawa E, Bhuiyan NA, Nusrin S, Alam M, et al. Development and validation of a mismatch amplification mutation PCR assay to monitor the dissemination of an emerging variant of Vibrio cholerae O1 biotype El Tor. Microbiol Immunol. 2008;52:314–7. http://dx.doi.org/10.1111/j.1348-0421.2008.00041.x

10. Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JS, Kariuki S, et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature. 2011;477:462–5. http://dx.doi.org/10.1038/nature10392

Address for correspondence: Munirul Alam, ICDDR,B, GPO Box 128, Dhaka 1000, Bangladesh; email: munirul@icddrb.org