Comparison of Urinary Adiponectin in the Presence of Metabolic Syndrome in Peri- and Postmenopausal Women

Patsama Vichinsartvichai (✉️ patsama@nmu.ac.th)  
Navamindradhiraj University

Rattana Teeramara  
Navamindradhiraj University

Titima Jirasawas  
Navamindradhiraj University

Prirayapak Sakoonwatanyoo  
Navamindradhiraj University

Research Article

Keywords: urinary adiponectin, metabolic syndrome, menopause, menopausal transition.

Posted Date: October 6th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-950874/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License
Abstract

Objectives

To find the association between urinary adiponectin and metabolic syndrome (MetS) in peri- and postmenopausal women and its potential application as a noninvasive screening for MetS.

Methods

A cross-sectional study was conducted in healthy peri- and postmenopausal women (defined by STRAW+10 staging) age at least 40 years who attended annual checkup or menopause clinic were recruited. Baseline demographic data, MENQOL, anthropometric measurements, blood pressure, laboratory (FBS, total cholesterol, HDL-C, LDL-C, TG) and urinary adiponectin were collected. The MetS was diagnosed according to JIS 2009.

Results

290 peri- and postmenopausal women had participated. The prevalence of Mets among our participants was 18%. Urinary adiponectin levels were similar in peri- and postmenopausal women with and without MetS (2.6±2.2 vs 2.3±1.9 ng/mL, respectively, \( P = 0.55 \)). Urinary adiponectin provides no diagnostic value for MetS (AUC = 0.516).

Conclusions

Urinary adiponectin has no role in screening and diagnosis of MetS in peri- and postmenopausal women. The quest toward noninvasive screening for MetS is still going on.

Introduction

Women in Thailand and around the world live longer [1]. With a limited fertile years, they spend about a third of their life in postmenopause [2]. Menopause-induced estrogen deficiency contributes to many health-related consequences including metabolic syndrome (MetS)[3]. MetS is a combination of abnormalities in body metabolism initiated from abdominal obesity and insulin resistance [3]. The redistribution of body fat during menopausal transition toward visceral fat could explain this phenomenon [4].

The visceral fat secretes many hormones that involve in MetS such as adiponectin, leptin, and ghrelin [5]. Adiponectin is a vasoactive peptide that exerts anti-diabetic, anti-atherosclerotic, anti-obesity, and anti-inflammatory effects [6]. It prevents the metabolic deterioration toward MetS and expresses cardioprotection. Serum adiponectin is negatively correlated with MetS and could be used as a biomarker.
for MetS [7]. In our previous study, we reported the diagnostic performance of serum adiponectin for screening of MetS in peri- and postmenopausal women and found that serum adiponectin perform moderately well in the screening of MetS [7]. Adiponectin can be filtered out into glomerular basement membrane in kidneys and excreted into urine [6, 8].

Since the global pandemic of COVID-19 [9], the annual checkup visit especially blood sampling has very limited access. Telemedicine and in-home screening may be the ‘new normal’ in the health checkup and monitoring [10]. Menopause is an independent factor for severe COVID-19 infection and increase mortality rate [11–13]. Noninvasive, in-home screening for MetS such as saliva or urine test could be beneficial during social-distancing period among COVID-19 pandemic. Unfortunately, there is no noninvasive biomarkers for MetS available.

To the best of our knowledge, there has not been any validation study of urinary adiponectin for screening of MetS. We would like to find the association between urinary adiponectin and MetS in peri- and postmenopausal women and explore its potential application as a noninvasive, in-home screening for MetS.

**Methods**

**Study design and participants**

Healthy peri- and postmenopausal women aged at least 40 years old (defined by STRAW+10 stage of reproductive aging [14]) who attended an annual health check-up at check-up clinic, or a visit at menopause clinic at a university hospital, were recruited during January – December 2020. The participants who had history of stroke, cardiovascular disease, cancer, polycystic ovary syndrome, diagnosed with any inflammatory diseases (SLE, autoimmune disease, rheumatoid arthritis, etc.), on immunosuppressive therapy, steroid or NSAIDs, and chronic kidney disease were excluded. The study was conducted in accordance with the ethical principles of the Declaration of Helsinki, and the study protocol was approved by the Vajira Institutional Review Board. The informed consents were obtained from all subjects.

**Outcome measures**

All participants were undergone a clinical and biochemical evaluations. The anthropometric measurements (waist circumference, hip circumference, and height) were carried out according to the World Health Organization recommendations [15]. Weight was measured in kilograms. The waist-hip ratio (WHR) was calculated and stratified into android (WHR ≥ 0.85) and gynoid (WHR < 0.85) body fat distribution pattern. The body mass index (BMI) was calculated and stratified into normal (BMI < 23.0kg/m²), overweight (BMI 23.0–29.9 kg/m²), and obese (BMI ≥ 30.0 kg/m²)[16]. Height was measured while standing in light clothes without footwear. The standard sphygmomanometer was placed at the same level with the participants’ chest for blood pressure measurement.
Afterward, a two-part questionnaire was self-administered. The first part comprised of demographic data including age, lifestyle (alcohol consumption, eating habits, and smoking), menstrual history, marital status, parity, education, occupation, and family history of metabolic diseases. The second part was the Thai version of MENQOL questionnaire. The MENQOL was translated and validated at our institution, with Cronbach’s alpha = 0.8940\[17\]. The MENQOL questionnaire consists of 29 items within four domains, vasomotor (3 items), psychosocial (7 items), physical (16 items), and sexual (3 items). The participants were demanded to rate their experience of each of the items within the previous month and to score the bothersome of each symptom in a Likert scale ranging from 0 (not disturbed at all) to 6 (extremely disturbed). The investigators supervised the self-administered questionnaire or interviewed and completed the questionnaire for illiterate participants.

After overnight fast, the blood specimen was drawn for bio-chemical evaluations including complete blood count (CBC), fasting blood glucose (FBG), triglyceride (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). The biochemical assays were conducted in an ISO 15189 certified biochemical laboratory at the department of clinical pathology. The FBG, total cholesterol, HDL-C, and TG were analyzed with auto-analyzer (SIEMENS Dimension® EXL™ 200, USA) and reported as mg/dL. LDL-C was calculated using the Friedewald equation and reported as mg/dL.

Urine adiponectin was measured by ultrasensitive human adiponectin ELISA kit (Invitrogen, Thermo Fisher Scientific, Austria) \[18\] with auto-analyzer (TECAN® SUNRISE, Austria). Urine samples were collected and transferred to pyrogen/endotoxin-free tubes, and then snap frozen at -20˚C for further analysis according to the manufacturer recommendation. Each sample was assayed in duplicate with 10-fold dilution using quantitative sandwich enzyme immunoassay technique. The range of measured concentrations is 0–32 ng/mL using diluted reconstituted standard human adiponectin according to the manufacturer protocol. The coefficient variation (%CV) of intra- and inter-assay were less than 8.31% and 9.69%, respectively.

Criteria for diagnosis of MetS

The diagnosis of MetS was made following the Joint Interim Statement 2009 (JIS 2009) criteria \[19\] where the participants had at least three of the following criteria: 1) abdominal obesity defined as waist circumference ≥ 80 cm for Asian women; 2) elevated TG ≥ 150 mg/dl or drug treatment for elevated triglycerides; 3) reduced HDL-C < 50 mg/dl or drug treatment for reduced HDL-C; 4) elevated blood pressure defined as systolic ≥ 130 mmHg and/or diastolic ≥ 85 mmHg or antihypertensive drug treatment; and 5) elevated fasting glucose ≥ 100 mg/dl or drug treatment of elevated glucose.

Statistical analysis

From our previous study \[20\], we found that prevalence of metabolic syndrome in peri- and postmenopausal women was 21.4%. We required 290 participants in this study with α = 0.05, and 80% power.
All data were analyzed using IBM SPSS statistics version 22.0 (SPSS Inc., USA). Data were presented as mean±SD, number (%), or percentage (95% confidence interval – CI), as appropriate. Urinary adiponectin was analyzed and compared among participants with and without MetS using independent sample t-test or one-way ANOVA as appropriate. Pearson's correlation coefficient was determined for the correlation between urinary adiponectin and MetS components. The area under the curve (AUC) of receiver operating characteristic (ROC) curve analysis for diagnosing MetS was performed to obtain the diagnostic performance and cutoff of urinary adiponectin for diagnosis of MetS by Yuden index. The p-value of < 0.05 was considered statistically significant.

**Results**

290 peri- and postmenopausal women average aged 57.2±8.2 years were recruited. Eighteen percent of the participants had MetS (55 in 290 participants). Baseline characteristics and demographic information of participants was presented in Table 1.

| Characteristics                        | MetS (n = 55) | No MetS (n = 235) |
|----------------------------------------|---------------|-------------------|
| **Age (years)**                        | 57.2±8.2      | 54.3±8.3          |
| **Menopausal status, n (%)**           |               |                   |
| Perimenopause                          | 17 (30.9)     | 83 (35.3)         |
| Postmenopause                          | 38 (69.2)     | 152 (64.7)        |
| **Level of highest education, n (%)**  |               |                   |
| Elementary school                      | 16 (29.1)     | 37 (15.7)         |
| High school                            | 14 (25.5)     | 44 (18.7)         |
| Undergrad or higher                    | 25 (45.5)     | 151 (64.3)        |
| **Lifestyle behaviors, n (%)**         |               |                   |
| Current alcohol drinker                | 5 (9.1)       | 7 (3.0)           |
| Preferred of fatty food                | 30 (54.7)     | 76 (32.3)         |
| Regular exercise                       | 14 (25.5)     | 104 (44.3)        |
| Current smoker                         | 0 (0)         | 6 (2.6)           |

* independent sample t-test, ** Chi-square
Urinary adiponectin level in participants with MetS group was slightly higher than participants without Mets but did not reach statistical significance (2.6±2.2 vs 2.3±1.9 ng/mL, respectively, $p = 0.55$). Urinary adiponectin also stabled with the increment of component of MetS in our participants (Figure 1). Urinary adiponectin had negative correlations with waist circumference, body weight, BMI, FBG, TG, total cholesterol LDL-C, and HDL-C. The comparison of anthropometric measurements and metabolic profile was presented in Table 2. Urinary adiponectin could not discriminate peri- and postmeopausal with and without MetS. The ROC curve of urinary adiponectin was presented in Figure 2.
Table 2
Anthropometric measurements and metabolic profile of the participants (N = 290)

| Characteristics                      | MetS (n = 55) | No MetS (n = 235) | P-value* |
|--------------------------------------|---------------|------------------|----------|
| Urine adiponectin (ng/mL)            | 2.6±2.2       | 2.3±1.9          | 0.55     |
| Systolic BP (mmHg)                   | 134.2±9.9     | 122.5±13.3       | <0.001   |
| Diastolic BP (mmHg)                  | 80.6±13.7     | 75.1±10.9        | 0.02     |
| **Anthropometric measurements**      |               |                  |          |
| Body weight (kg)                     | 64.4±9.3      | 56.3±9.6         | <0.001   |
| Height (cm)                          | 155.3±5.3     | 155.6±6.9        | 0.79     |
| BMI (kg/m²)                          | 26.8±3.9      | 23.1±3.5         | <0.001   |
| Waist circumference (cm)             | 87.6±7.8      | 78.2±9.2         | <0.001   |
| Hip circumference (cm)               | 102.5±9.2     | 95.9±7.9         | <0.001   |
| Waist-to-hip ratio (WHR)             | 0.85±0.1      | 0.81±0.1         | <0.001   |
| Overweight and obesity, n (%)        | 36 (65.5)     | 53 (22.5)        | <0.001   |
| Abdominal obesity, n (%)             | 50 (90.5)     | 86 (36.6)        | <0.001   |
| **Body fat distribution pattern, n (%)** |         |                  | <0.001   |
| Gynoid (WHR<0.85)                    | 29 (52.7)     | 187 (79.6)       |          |
| Android (WHR ≥0.85)                  | 26 (47.3)     | 48 (20.2)        |          |
| **Metabolic profiles**               |               |                  |          |
| Fasting blood sugar (mg/dL)          | 114.1±34.4    | 93.9±8.6         | <0.001   |
| Total cholesterol (mg/dL)            | 237.2±44.3    | 226.6±41.6       | 0.096    |
| HDL (mg/dL)                          | 54.6±12.9     | 69.2±15.3        | <0.001   |
| LDL (mg/dL)                          | 154.1±39.6    | 140.5±35.9       | 0.014    |
| Triglyceride (mg/dL)                 | 166.6±75.8    | 94.7±38.0        | <0.001   |

*independent sample t-test, **chi-square

The quality of life in peri- and postmenopausal women with and without Mets were similarity across each domain (Table 3). However, the global quality of life was better in participants without MetS than those with MetS.
Table 3
MENQOL among participants (N = 290)

| MENQOL                  | MetS (n = 55) | No MetS (n = 235) | P-value* |
|-------------------------|---------------|-------------------|----------|
| Vasomotor domain        | 2.6±1.5       | 2.1±1.3           | 0.022    |
| Psychological domain    | 2.7±1.2       | 2.3±1.2           | 0.059    |
| Physical domain         | 3.2±1.1       | 2.9±1.1           | 0.045    |
| Sexual domain           | 4.3±2.9       | 3.4±2.8           | 0.042    |
| Global quality of life  | 3.1±1.0       | 2.7±1.0           | 0.007    |

* independent sample t-test

Discussion

Our study failed to find any association between urinary adiponectin and MetS in peri- and postmenopausal women. To the best of our knowledge, this is the first study to explore the potential use of ultrasensitive urinary adiponectin for MetS.

Previous studies explored the use of urinary adiponectin for the screening or early detection of microvascular injury in diabetes mellitus [8, 21], and SLE [22], glomerular injury and proteinuria in IgA nephropathy [23]. Furthermore, another study found that high urinary adiponectin levels were associated with the severity of arterial stiffness and have positive correlation with FBG, TG and blood pressure [24]. In those studies, urinary adiponectin performed quite well to detect the injury of microvasculature or glomerular unit. The advance progression of disease and higher degree of microvascular injury increase the excretion of urinary adiponectin. The microvascular injury in our cohort (peri- and postmenopausal women with MetS) might be minimal because the early detection and treatment of MetS before the occurrence of metabolic diseases might delay the microvascular injury. Monitoring the changes of urinary adiponectin over time during menopausal transition or during the development of MetS until cardiovascular event might help us confirm our hypothesis in the future.

The quality of life in peri- and postmenopausal women with and without MetS in this study were similar in every domain unlike our previous survey [4], where those women with MetS or android body fat distribution pattern had poorer quality of life in vasomotor and psychological domain. This finding explained by the age of participants. In this study, women with MetS were significantly older than women without MetS this study while average age between two groups were similar in our previous study. The severity of vasomotor symptoms can relieve spontaneously over time without any treatment [25]. In other words, our participants with MetS might pass the early postmenopausal years for a while so they had less vasomotor symptoms.
We recruited a vast number of participants, so we are confident that urinary adiponectin was not different during the early stage of metabolic disease. However, the urinary adiponectin in women with and without MetS might be different in other race where lifestyle, body habitus, and also gene expression were different.

**Conclusions**

Urinary adiponectin level is not different in the presence of MetS in peri- and postmenopausal women. Further investigation should focus on the other marker that can potentially use as noninvasive screening test for MetS. The study of urinary adiponectin in peri- and postmenopausal women is still warrant further investigation to see its changes during menopausal transition or the progression of metabolic diseases toward cardiovascular events.

**Declarations**

**Ethics approval and consent to participate**

The study was conducted in accordance with the ethical principles of the Declaration of Helsinki, and the study protocol was approved by the Vajira Institutional Review Board. The informed consents were obtained from all subjects.

**Consent for publication**

Not applicable.

**Availability of data and materials**

The datasets generated during and/or analysed during the current study are not publicly available due to informed consent and confidentiality but are available from the corresponding author on reasonable request.

**Competing interests**

The authors declare that they have no competing interests.

**Funding**

This study was supported by Navamindradhiraj University Research Fund. The funding source has not been involved in study design, data collection, analysis, interpretation, writing report and submission.

**Authors' contributions**

PV designed, analyzed, interpreted data, and contributed to writing manuscript. RT designed, associated with lab results, interpreted data and contributed to writing manuscript. TJ designed, interpreted data. PS
designed, analyzed, interpreted data, and was a major contributor to the laboratory testing. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank all lab scientists who work tirelessly until this project is finished, and all the participants who cordially participated in this project even during the peak of COVID-19 pandemic.

References

1. Institute for Population and Social Research, Mahidol University: Population in Thailand in 2019. Mahidol Population Gazette 2019, 28.
2. Atisook R: Median Age of Postmenopausal Women at Out Patient Unit of Siriraj Hospital Siriraj Medical Journal 1995, 47:5.
3. Gordon T, Kannel WB, Hjortland MC, McNamara PM: Menopause and coronary heart disease. The Framingham Study. Annals of internal medicine 1978, 89(2):157–161.
4. Kutheerawong L, Vichinsartvichai P: The influence of body fat distribution patterns and body mass index on MENQOL in women living in an urban area. Climacteric: the journal of the International Menopause Society 2016, 19(1):66–70.
5. Pulkkinen L, Ukkola O, Kolehmainen M, Uusitupa M: Ghrelin in diabetes and metabolic syndrome. International journal of peptides 2010, 2010.
6. Morikawa M, Naito R, Mita K, Watabe S, Nakaishi K, Yoshimura T, Miura T, Hashida S, Ito E: Subattomole detection of adiponectin in urine by ultrasensitive ELISA coupled with thio-NAD cycling. Biophys Physicobiol 2015, 12:79–86.
7. Wattanapol P, Vichinsartvichai P, Sakoonwatanyoo P: Serum adiponectin is a potential biomarker for metabolic syndrome in peri-and postmenopausal women. Gynecological endocrinology: the official journal of the International Society of Gynecological Endocrinology 2020, 36(7):620–625.
8. von Eynatten M, Liu D, Hock C, Oikonomou D, Baumann M, Allolio B, Korosoglou G, Morcos M, Campean V, Amann K et al: Urinary adiponectin excretion: a novel marker for vascular damage in type 2 diabetes. Diabetes 2009, 58(9):2093–2099.
9. Cucinotta D, Vanelli M: WHO Declares COVID-19 a Pandemic. Acta Biomed 2020, 91(1):157–160.
10. Temesgen ZM, DeSimone DC, Mahmood M, Libertin CR, Varatharaj Palraj BR, Berbari EF: Health Care After the COVID-19 Pandemic and the Influence of Telemedicine. Mayo Clin Proc 2020, 95(9S):S66-S68.
11. Wang XW, Hu H, Xu ZY, Zhang GK, Yu QH, Yang HL, Zheng JH: Association of menopausal status with COVID-19 outcomes: a propensity score matching analysis. Biol Sex Differ 2021, 12(1):16.
12. Gersh F, Lavie CJ, O’Keefe JH: Menopause Status and Coronavirus Disease 2019 (COVID-19). Clinical Infectious Diseases 2020.
13. Ding T, Zhang J, Wang T, Cui P, Chen Z, Jiang J, Zhou S, Dai J, Wang B, Yuan S et al: Potential Influence of Menstrual Status and Sex Hormones on female SARS-CoV-2 Infection: A Cross-sectional Study from Multicentre in Wuhan, China. Clin Infect Dis 2020.

14. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, Sherman S, Sluss PM, de Villiers TJ: Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. The Journal of clinical endocrinology and metabolism 2012, 97(4):1159–1168.

15. World Health Organization: Waist circumference and waist–hip ratio. report of a WHO expert consultation 2008:5–7.

16. Thai Health Promotion Foundation: Overweight and Obesity Patients Guideline. Thai Health Promotion Foundation Information Center 2015, 12.

17. Pongpatiroj A, Sripramote M, Wanitwanathong K: Effect of hormone replacement therapy on the quality of life in postmenopausal women. Vajira Med J 2001, 45:1–11.

18. Thermo Fisher Scientific I: Human Adiponectin ELISA Kit Enzyme-linked Immunosorbent Assay for quantitative detection of human Adiponectin. In.

19. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC, Jr.: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120(16):1640–1645.

20. Vichinsartvichai P, Sirirat S: Hematologic parameters as the predictors for metabolic syndrome in perimenopausal and postmenopausal women living in urban area: a preliminary report. Przegląd menopauzalny = Menopause review 2016, 15(2):90–95.

21. Yamakado S, Cho H, Inada M, Morikawa M, Jiang YH, Saito K, Nakaishi K, Watabe S, Takagi H, Kaneda M et al: Urinary adiponectin as a new diagnostic index for chronic kidney disease due to diabetic nephropathy. BMJ open diabetes research & care 2019, 7(1):e000661.

22. Rovin BH, Song H, Hebert LA, Nadasdy T, Nadasdy G, Birmingham DJ, Yung Yu C, Nagaraja HN: Plasma, urine, and renal expression of adiponectin in human systemic lupus erythematosus. Kidney international 2005, 68(4):1825–1833.

23. Shimotomai T, Kakei M, Narita T, Koshimura J, Hosoba M, Kato M, Komatsuda A, Ito S: Enhanced urinary adiponectin excretion in IgA-nephropathy patients with proteinuria. Renal failure 2005, 27(3):323–328.

24. Jeon WS, Park JW, Lee N, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park CY, Youn BS: Urinary adiponectin concentration is positively associated with micro- and macro-vascular complications. Cardiovasc Diabetol 2013, 12:137.

25. Treatment of menopause-associated vasomotor symptoms: position statement of The North American Menopause Society. Menopause (New York, NY) 2004, 11(1):11–33.
Figures

Figure 1

The mean urinary adiponectin (ng/mL) among participants without any components of MetS and those with 1-5 components of diagnostic criteria were statistically similar (P=0.535).
Figure 2

ROC curve of urinary adiponectin in the diagnosis of MetS. The area under the curve is 0.516 which represents no diagnostic value of urinary adiponectin for MetS.