Efficacy of botanicals against *Alternaria solani* causing early blight of tomato

Ragupathi KP, PR Renganayaki, S Sundareswaran, S Mohan Kumar and A Kamalakannan

Abstract
Tomato is one of the commercial vegetable crops, being affected with many diseases, among which early blight caused by *Alternaria solani* resulting in huge yield loss. As an alternative to the agro chemicals, botanicals were widely adopted owing to its eco friendliness. Several botanical extracts were prepared and screened against this seed borne pathogen. All treatment showed the varied antifungal activity against the pathogen. Among the screened botanicals percent growth inhibition of pathogen was higher in zimmu leaf extract (89%). Plant biometric observations viz., seed germination (94%) and seedling vigor (2383) was maximum with lower percent disease index (12%) was recorded in zimmu leaf extract treated seeds and seedlings of tomato cultivar PKM 1.

Keywords: Botanicals, early blight, *Alternaria solani*, Zimmu

Introduction
Tomato (*Solanum lycopersicum* L.) is the second most important vegetable crop considered as “protective food” because of its high nutritive value. Tomato is found to suffer from a variety of disease caused by fungi, bacteria, viruses and nematodes. The important diseases include damping off, early blight, late blight, Fusarium wilt, *Verticillium* wilt, bacterial wilt and tomato mosaic virus. Among the diseases early blight caused by *Alternaria solani* (Ellis and Martin) Jones and Grout is one of the most severe disease in India can cause direct loss by the infection of fruits and indirect loss by reducing plant vigour and incurring loss both at pre and post-harvest stages causing 35 to 78 per cent reduction in yield (Jones et al., 1993) [9]. The effective management strategy of the disease could be through cultural practices, chemical, biological control and use of resistant variety. Wide use of synthetic fungicides can cause environmental hazards and have ill effects on human beings and animals. The chemical fungicides not only develop fungicidal resistance but also accumulate in food and ground water as residues. In order to overcome these problems the development of alternative methods which are safe to the environment, non-toxic to humans and animals and are rapidly biodegradable, one such strategy is use of botanicals to control fungal plant diseases. Plants are the richest source of organic chemicals and produce wide variety of eco-friendly secondary metabolites with antifungal activities (Riaz et al., 2010) [8]. Use of botanicals in plant disease management assumes special significance by being an ecofriendly and cost effective strategy, which can be used in integration with other strategies for a greater levels of crop protection with sustained crop yields. Objective of the present investigation is to find out the eco-friendly management strategies for early blight of tomato.

Material and Methods
Collection and extraction of botanical extracts
Fresh samples of medicinal plants with antifungal constituents (listed in Table 1) were collected. 100 g of leaves from each botanical was washed thoroughly under running tap water, dried with blotting paper, cut into smaller pieces and ground using a sterile mortar and pestle by adding 100 ml of sterile distilled water. Finally, it was filtered through two layers of cheesecloth and the extract was then centrifuged at 10,000 rpm for 15 min and the supernatant alone was transferred to a fresh tube.
The extract was then sterilized using 0.2 µm disposable syringe filters. The filtrate (100%) was further diluted to required concentrations for further use (Tiwari and Singh, 2005) [20].

Symptomology of Alternaria solani on tomato
The first symptom of the early blight disease caused by Alternaria solani on tomato appeared as small brown water soaked lesions on the older leaf. The symptoms were oval or angular in shape from 1 to 4 mm diameter and there was a narrow chlorotic zone around the spot. These spots enlarged and covered the entire stem and petioles leading to withering of the plants. Symptoms also developed on calyx and flower buds in the form of minute brown to dark brown spots which enlarged later and spread to sepals and fruits resulting in premature dropping of fruits.

Table 1: Botanicals used for testing their efficacy against Alternaria solani
S. No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Scale	Description
0	No symptoms on the leaf
1	0-5 per cent leaf area infected and covered by spot, no spot on petiole and branches
2	6-20 per cent leaf area infected and covered by spot, some spots on petiole
3	21-40 per cent leaf area infected and covered by spot, spots also seen on petiole, branches
4	41-70 per cent leaf area infected and covered by spot, spots also seen on petiole, branches, stem
5	>71 per cent leaf area infected and covered by spot, spots also seen on petiole, branch, stem and fruits

Pathogenicity test
The pure culture of Alternaria solani was obtained by single spore isolation method and sub culture was used for pathogenicity test by following Koch’s postulate. The pathogenicity test was carried by pre-inoculation with spore suspension and homogenized mycelial bits of A. solani on foliage of 30 days old plants of PKM 1 cultivar of tomato. After inoculation, the symptoms appeared on inoculated leaves as brown, oval or angular necrotic spots with concentric rings and surrounded by a border of yellow host tissue. The fungus was re-isolated and purified culture from these artificially infected leaves was similar to that of original culture. The plants which were not inoculated with the fungal spore suspension did not show any symptoms of the disease. Thus pathogenicity on tomato was confirmed.

Antifungal activity assay of botanical extracts by using Poison food technique
Plant extracts at 10% concentration from the each stock solution were added in 20 ml of sterilized potato dextrose agar in petri plates. A 5 mm diameter of the actively growing mycelium disc of the pathogen of 6–7 day old culture was placed in the center of the petri dish. Plates without plant extract served as negative control. Plates were incubated at 27 °C. Triplicates were maintained for each treatment. Radial growth of mycelium was measured after seven days of incubation. The results were compared with negative control.

The experiment was repeated thrice and mean of three readings was taken for calculations. The percent inhibition of the fungus in treatments was calculated using following formula

\[
\text{Percentage of inhibition} = \frac{A - B}{A} \times 100
\]

Where,
A= Radius of pathogen in control plate, B = Radius of pathogen in treatment plate.

Evaluation of botanicals against Alternaria solani of tomato
Seeds were treated with 10% botanical extracts for 12 h and dried back to original moisture content. Pin prick method of Alternaria solani inoculation was followed. The leaves were injured with sterilized pin and the mycelial disc of pathogen was placed over the injured leaf portion and covered with moist cotton and incubated inside the moist chamber. The plants were sprayed frequently with water for 2 days. After 48 h, the plants were sprayed with different botanicals. The plant biometric observations viz., Germination%, Root length, Shoot length, Vigour index was recorded and the per cent disease index (PDI) was calculated by using following formula proposed by Wheeler (1969) [22].
Germination (%)
Seeds were soaked in botanical extracts for 12 h and then shade dried. Four replicates of 100 seeds were uniformly placed on standard germination paper roll-towel medium and kept in germination room maintained at 25± 2°C and 90 ±2 per cent relative humidity. After 14 days, the seedlings were evaluated as total number of normal seedlings and germination as percentage. (ISTA, 1993) [8].

Botanical name	Average Colony diameter (mm)	Per cent Growth Inhibition (%)
Azadirachta indica Juss	36.23	59.74
Zingiber officinale	31.41	65.10
Allium sativum L	18.90	79.00
Allium cepa	25.34	71.84
Datura stramonium L	72.23	19.74
Ocimum tenuiflorum	50.98	43.36
Lawsonia inermis	22.29	75.23
Psoralea corylifolia	28.97	67.81
Mentha citrata	47.24	47.51
Catharanthus roseus	74.41	17.32
Zinnia	10.07	88.81
Aloe vera	63.75	29.17
Vitex negundo	59.92	33.42
Eucalyptus globulus Labill.	48.29	46.34
Nigella sativa L	66.64	25.96
Calotropis gigantea L	57.82	35.76
Coleus forskohlii	34.77	61.37
Curcuma longa L.	32.19	64.23
Control	90.00	51.76
Mean	45.87	
SEd	0.86	1.29
C D (P = 0.05)	1.78	2.66

Vigour index
The Vigour index was calculated and compared by adopting the following formula and expressed as whole number. (Abdul-Baki and Anderson, 1973) [1].
Vigour Index = Germination (%) x Mean total length of seedling (Root+ Shoot length) in cm.

Results and Discussion
Antifungal activity assay of botanical extracts
The result presented in Table 3 revealed that all the treatments were statistically significant and all the treatments performed better as compared to control. Among the botanicals used the minimum Alternaria solani colony diameter was recorded with zimmu leaf extract. It also exhibited the higher (89%) growth inhibition of the pathogen. The antifungal components presented in the botanicals is responsible for restricting the pathogen growth. The similar results were reported by Ho et al., 2007; Ghosh et al., 2002; Kagale et al., 2004; Najjaa et al., 2007; Lazarevic et al., 2011 [6, 5, 10, 16, 12] on various crops. Lazarevic et al. (2005) reported that the compounds of zimmu leaf extract which showed strong antifungal activity against R. solani were phenolic compounds. Muthukumar et al. (2010) [15] identified the presence of 22 compounds in the zimmu leaf extract through GC-MS analysis.

Effect of botanicals on germination and biometrics of tomato
The result presented in Table 4 revealed that all the treatments were statistically significant and all the treatments performed better as compared to control. Among the botanicals used the plant biometrics viz., maximum germination per cent (94%), seedling length (25 cm) and vigour index (2383) was recorded in zimmu leaf extract. Lower percent disease index (12%) was also recorded in zimmu leaf extract treatment. Control recorded minimum germination of 61% with lower vigour and it also had maximum percent disease index of 70% as compared with other treatments. The similar results were reported by Chen et al., 2011; Phay et al., 1999; Huang et al., 2012; Karthikeyan et al., 2007; Muthukumar et al., 2010; Bowers and Locke, 2000; Thangavelu et al., 2013 [3, 2, 17, 7, 11, 15, 19] on various crops.

Conclusions
The present investigation revealed that extracts of many medicinal plants had inhibitory effect against Alternaria solani. Phytochemicals liberated from the plant extracts act better against the pathogen. Hence these could be exploited as an alternate management strategy for chemical pesticides in the management of early blight of tomato. The future studies focusing on identification and elucidation of the active ingredients present in these medicinal plants having potential antimicrobial properties will be the need of hour.

References
1. Abdul-Baki AA, Anderson JD. Vigour determination in soybean seed by multiple criteria. Crop Sci 1973;13:630-633.
2. Bowers JH, Locke JC. Effect of botanical extracts on the population density of Fusarium oxysporum in soil and control of Fusarium wilt in the greenhouse. Plant Dis 2000;84:300-305.
3. Chen CH, Chou TW, Cheng LH, Ho CW. In vitro anti-adenoviral activity of five Allium plants. J. Taiwan Ins. Chem. Eng 2011;42:228-232.
4. Datar VV, Mayee CD. Assessment of loss in tomato yield due to early blight. Indian Phytopath 1981;3(4)191-195.
5. Ghosh M, Thangamani D, Thapliyal M, Yasodha R, Gurumurthi K. Purification of a 20 KDa antifungal protein from Plumbago capensis a medicinal plant. J. Med. Aromat. Plant Sci 2002;24:16-18.
6. Ho WC, Wu TY, Su HJ, Ko WH. Effect of oriental medicinal plant extracts on spore germination of Alternaria brassicicola and nature of inhibitory substances from speed weed. Plant Dis 2007;91:1621-1624.
7. Huang YH, Wang RC, Li CH, Zuo CW, Wei YR, Zhang L. Control of Fusarium wilt in banana with Chinese leek. Eur. J. Plant Pathol 2012;134:87-95.
8. ISTA. Proceedings of International Seed Test Association, International Rules for Seed Testing. Seed Sci Technol 1993;21:1152.
9. Jones JB, Jones JP, Stall RE, Zitter TA. Compendium of tomato diseases. St. Paul, American Phytopathological society. St. Paul Minnesota, USA. 1993, 28-29.
10. Kagale S, Marimuthu T, Thayumanavan B, Nandakumar R, Samiyappan R. Antimicrobial activity and induction of systemic resistance in rice by leaf extract of Datura metel against Rhizoctonia solani and Xoo. Physiol. Mol. Plant Pathol 2004;65:91-100.
11. Karthikeyan M, Sandosskumar R, Radhajeyalakshmi R, Mathiyazhagan S, Khabbas SE, Ganasamurthy K, et al. Effect of formulated zimmu (Allium cepa L. × Allium sativum L.) extract in the management of grain mold of sorghum. J. Sci. Food Agric 2007;87:2495-2501.
12. Lazarevic JS, Dordevic AS, Zlatkovic BK, Radulovic NS, Palic RM. Chemical composition and antioxidant and antimicrobial activities of essential oil of Allium sphaerocephalon L. subsp. sphaerocephalon (Liliaceae) inflorescence. J. Sci. Food Agric 2011;91:322-329.
13. Mahapatra SS, Swain NC. Biological management of pod rot disease of groundnut. J. Plant Prot. Environ 2013;10:48-52.
14. Mishra RK, Gupta RP. Screening of Antagonists against Alternaria porricausin purple blotch of onion J. Mycol. Pl. Pathol 2008;38:645-656.
15. Muthukumar A, Eswaran A, Nakkeeran S, Sangeetha G (2010). Efficacy of plant extracts and biocontrol agents against Pythium aphanidermatum inciting cherry damping-off. Crop Prot. 29:1483-1488.
16. Najjaa H, Neffati M, Zouari S, Ammar E. Essential oil composition and antibacterial activity of different extracts of Allium roseum L., a North African endemic species. Comptes Rendus Chimie 2007;10:820-826.
17. Phay N, Higashiyama T, Tsuji M, Matsuura H, Fukushima Y, Yokota A, et al. An antifungal compound from roots of Welsh onion. Phytochemistry 1999;52:271-74.
18. Riaz T, Khan SN, Javaid A. Management of corm-rot disease of gladiolus by plant extracts. Nat. Prod. Res 2010;24:1131-1138.
19. Thangavelu R, Ganga Devi P, Gopi M, Mustafaa MM. Management of Eumusae leaf spot disease of banana caused by Mycosphaerella eumusa with Zimmu (Allium cepa x Allium cepa) leaf extract. Crop Prot 2013;46:100-105.
20. Tiwari S, Singh A. Possibility of using latex extracts of Nerium indicum plant for control of predatory fish, Channa punctatus. Asia Fish. Sci 2005;18:161-73.
21. Verma PK, Gandhi SK. Bioefficacy of some plant extracts and biocontrol agents against Alternaria solani and their compatibility. Plant Disease Research 2007;22(1):12-17.
22. Wheeler BEJ. An introduction to Plant disease. John Wily and Sons Limited, London 1969, 301.