Where to find lossless metals?

Xiaolei Hu,1,2 Zhengran Wu,1,2 Zhilin Li,1,3,‡ Qiunan Xu,4 Kun Chen,1,2 Kui Jin,1,3 Hongming Weng,1,3,† and Ling Lu1,3,*

1Institute of Physics, Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China.
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
3Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
4Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao 266237, China.

Hypothetical metals having optical absorption losses as low as those of the transparent insulators, if found, could revolutionize optoelectronics. We perform the first high-throughput search for lossless metals among all known inorganic materials in the databases of over 100,000 entries. The 381 candidates are identified — having well-isolated partially-filled bands — and are analyzed by defining the figures of merit and classifying their real-space conductive connectivity. The existing experimental evidence of most candidates being insulating, instead of conducting, is due to the limitation of current density functional theory in predicting narrow-band metals that are unstable against magnetism, structural distortion, or electron-electron interactions. We propose future research directions including conductive oxides, intercalating layered materials, and compressing these false-metal candidates under high pressures into eventual lossless metals.

I. INTRODUCTION

Optical photons and electrons, the most important carriers for information and energy, have never been guided efficiently inside the same material due to the high absorption loss of metals. Dielectrics transport photons as in optical fibers and metals conduct electrons as in copper wires. At the photon energy much above that of the lattice phonons, the optical absorption is dominated by the electronic transitions (direct or indirect) between the occupied and empty states. For all existing metals, at any optical frequency, there are always occupied and empty states available for the absorption process to take place (Fig. 1a), causing the common misimpression that metals have to be lossy due to the so called free-carrier absorption.

Fortunately, the carriers in solids are never free electrons, since their density of states (DOS) can be highly modified by the lattice potentials. It is indeed theoretically possible [1, 2] for a metal to have zero single-electron transition rate in an energy bandwidth in which the photon absorption can be as low as that in insulators (Fig. 1b). This happens when there is a well-isolated metallic band (of band width W as in Fig. 1c) at the Fermi level with a lossless bandwidth of

$$\hbar \Delta \omega = \min \{ G_c, G_v \} - W > 0.$$ \hspace{1cm} (1)

Eq. 1 is the lossless criteria in which the band separation, minimal values of G_c, G_v, have to be larger than W. G_c, G_v are the energy differences from the Fermi level to the edges of conduction and valence bands. Here, lossless means the absence of single-electron absorption — the same sense that insulators are considered lossless below the bandgap where the imaginary part of the dielectric constant ($\varepsilon_1 + i \varepsilon_2$) vanishes ($\varepsilon_2 = 0$). Higher order processes, involving multiple electrons, multiple phonons and multiple photons, have much lower probabilities and are neglected. This picture of lossless metals was proposed by Medvedeva and Freeman [1] in the context of ideal transparent conductors and by Khurgin and Sun [4] in the context of ideal plasmonic metamaterials. Although electrides [1] and 2D metals [3] have been suggested as possible directions, lossless metals remain elusive.

The scientific and technological impact of lossless metal is far-reaching. For transparent electronics [1, 4, 5], the inevitable trade-off between conductivity and transmissivity could be broken. For plasmonics [2, 3, 6], the numerous remarkable scientific demonstrations, such as cloaking and perfect lens, may deliver practical applications. In reality, even if ε_1 is positive and $\Delta \omega$ is narrow, lossless metals still have exciting consequences, such as the waveguiding both electricity and light! We notice that the three-band configuration of lossless metals is similar to, although having very different requirements, that of the intermediate-band materials [8], a class of compounds expected to increase the solar-cell efficiency by absorbing a wider spectrum. The field of intermediate-band solar cells also lacks candidate materials [9].

In the rest of the paper, we first introduce the joint-density-of-states (JDOS) picture [8] for understanding lossless metals. Then, a large-scale computational search is performed to find all potential candidates within the framework of the band theory. The candidates are ranked by the figures of merits (W and $\Delta \omega$) and classified into three classes for their potential conduction paths in the
real space. After compiling the previous experimental data on the candidate materials, we explain the deficiency of current theory in predicting lossless metals and discuss the next research agenda.

II. JDOS MODEL OF ABSORPTION

The dielectric constant ($\varepsilon_2 = 0$) of a lossless metal cannot be described by the regular Drude model, whose intra-band absorption is $\varepsilon_2^{\text{intra}}(\omega) = \frac{\omega_p^2}{\omega(\omega + \Gamma^2)}$, where ω_p is the plasma frequency and Γ is the constant electron scattering rate. It is proposed in Ref. [3] that a frequency-dependant $\Gamma(\omega) \propto \text{JDOS}(\omega)$, with JDOS proportionality, correctly gives $\varepsilon_2 = 0$ inside the lossless bandwidth. The scattering rate is roughly proportional to the JDOS of electrons, because the JDOS captures the phase space of the initial and final states. Here, $\text{JDOS}(\omega) = \int_0^\omega \text{DOS}(\omega')\text{DOS}(\omega')d\omega'$ relaxes the momentum conservation to account for the indirect transitions.

Our JDOS-Drude intra-band model is

$$\Gamma(\omega) = \frac{\text{JDOS}(\omega)}{\omega \cdot \text{DOS}^2(E_F)} \Gamma_{dc},$$ \hspace{1cm} (2)

where $\text{DOS}(E_F)$ is the DOS at Fermi energy. At zero frequency, $\Gamma(0) = \Gamma_{dc} = \epsilon_0 \frac{\omega_p^4}{2\pi \rho_{dc}} (\sim 30\text{THz} \text{ in silver})$, in which ρ_{dc} is the measurable resistivity of direct current (dc) and ϵ_0 is the vacuum permittivity. Compared to that in Ref. [3], there is no fitting parameter in our model.

We find that $\varepsilon_2 \propto \text{JDOS}/\omega^2$ can be used as a qualitative estimation of material absorption (as shown in Fig. 1) for both intra- and inter-band losses. At low frequencies, the intra-band loss dominates and $\varepsilon_2^{\text{intra}}(\omega) \propto \text{JDOS}/\omega^2$. At high frequencies, the inter-band loss dominates and the $\varepsilon_2^{\text{inter}} \propto \text{JDOS}/\omega^2$ scaling is still valid. Since the transition rate, in Fermi’s golden rule, is proportional to the vector potential squared $A^2 = (E/\omega)^2$, where E is the electric field [10]. Since the band theory only works in the single-particle regime, it is beneficial to formulate everything using DOS and JDOS that are valid for both interacting and non-interacting electron systems. Equivalently, lossless means zero JDOS.

III. HIGH-THROUGHPUT SEARCH

We search for lossless metals in two computational online material databases of Materials...
Project (https://materialsproject.org) and AFLOW (http://aflow.org) with a total of 190762 material entries (in September 2020), shown in Fig. 2. In the main text, we analyze the materials that have experimental relevance — those listed in the Inorganic Crystal Structure Database (ICSD: https://icsd.fiz-karlsruhe.de), a comprehensive collection of experimental crystal data. The rest of the materials, not listed in ICSD, are analyzed in the Appendix B. Among the 92153 ICSD IDs covered in the two databases, there are 49681 unique compounds after we merge the redundant entries of identical stoichiometries and space groups. The band-structure data are available for 42729 compounds and 21196 of them are metals — having partially-filled metallic bands at the Fermi levels.

Each band structure in the databases represents a ground state, either magnetic or non-magnetic, predicted by the density functional theory (DFT) [4, 11]. For non-magnetic ground states, we can directly apply the lossless criteria of Eq. 1 and the energy limit of the search is up to 10 eV. Among the 14463 nonmagnetic (spin-degenerate) metals, we find 431 lossless-metal candidates. For the rest metals with magnetic ground states (spins splitting), we are actually more concerned about their properties at room temperature (for optical applications) above most magnetic-transition temperatures. In order to estimate their nonmagnetic properties from the available magnetic band structures while keeping enough potential candidates at this step, we relax the lossless criteria to be one of the spin bands satisfying the lossless criteria and obtain 1141 loss-metal candidates. (791 of them satisfies the lossless criteria unconditionally considering both spins.) This spin-criteria is justified by the fact that magnetism mostly split the two spins in the band structures.

Aiming at applications under room-temperature where most materials lose their magnetic ordering, we perform non-magnetic recalculations for all 1572 candidates (431 non-magnetic plus 1141 magnetic candidates), with improved accuracy, to double-check whether they still satisfy the lossless criteria. The high-throughput computations in the databases have compromised settings for speed, while we include the spin-orbit coupling, f-orbitals, as well as experimental lattice data from ICSD. Our ab-initio recalculations are performed using the Vienna Ab initio Simulation Package (VASP) with the generalized gradient approximation (GGA) plus Coulomb repulsion (U), detailed in the Appendix A.

First, we drop the 306 candidates whose chemical formula is in fact different from their ICSD entries. They miss hydrogen atoms in the calculations due to the lack of the hydrogen positions in ICSD. Second, we drop 242 candidates whose DFT calculations do not converge, mostly due to the inclusion of the f-orbitals from rare earth elements such as Terbium (Tb) and Ytter-
bium (Yb). Third, in the remaining 1024 candidates with correct composition and converging band structures, 637 candidates no longer satisfy the lossless criteria. Our recalculation is more restrictive for two major reasons. On one hand, the magnetic candidates, from the previous screening step, are not necessarily lossless for their nonmagnetic band structures. On the other hand, the database band structures are based on the computationally-relaxed structures (with GGA DFT), which usually converge to larger lattice constants than the experimental values. An expanded lattice leads to flatter bands so the lossless criteria is easier to be met with the relaxed structures compared to the experimental structures. After all, we have 381 lossless-metal candidates left after the nonmagnetic recalculations.

IV. FIGURES OF MERIT

The metallic-band width \(W\) and lossless bandwidth \(\hbar \Delta \omega\) are the two figures of merit for lossless metals. Larger \(W\) usually implies higher mobility and better conductors while larger \(\hbar \Delta \omega\) means lower optical absorption.

We remove candidates whose metallic-band width \(W\) is too narrow to be metals in reality (Fig. 2). It is well known that a narrow electronic band at Fermi level results in correlation effects (low kinetic energy compared to Coulomb repulsion \(U\)) that DFT has a limited predictive power. For example, \(W < U\) is considered a condition for Mott insulators, where the \(U\) values are mentioned in Appendix A. This is especially true for \(d/f\) orbitals that are intrinsically narrow-banded and spatially localized. Sadly, the lossless metal falls right into this category, because a narrow metallic band is required to satisfy the lossless criteria and 355 of the 381 candidates contain \(d/f\) orbitals (from transition-metal elements) in their isolated metallic bands. Consequently, we set an empirical lower limit of 0.5 eV on the metallic-band width and remove 229 candidates whose metallic bands are made of \(d/f\) electrons and, at the same time, \(W < 0.5\) eV. We do not constrain \(s/p\) orbitals which are usually handled well by DFT. It is worth-noting that, in the case when the metallic band \(W\) consists of several individually isolated sub-bands, only the bandwidth of the partially-filled isolated sub-bands are used as the figure of merit.

We also remove candidates whose lossless bandwidth \(\hbar \Delta \omega\) is too narrow to support low optical absorption in reality (Fig. 2). Although the electron DOS vanishes abruptly at the band edge in a perfectly periodic crystal, real crystals are imperfect and it is well known that the absorption edge drops exponentially with photon energy — the Urbach tails. The slope of the tail, reflecting crystal disorder, is quantified by the Urbach energy — a temperature-dependent energy scale across which the absorption coefficient drops by \(1/e\). In Fig. 2, the room-temperature Urbach energies of two ternary compounds, 34 meV in SrTiO\(_3\) \cite{15} and 78 meV in LiNbO\(_3\) \cite{16}, are used to estimate the minimum lossless bandwidth needed to achieve a low enough absorption loss. We do not use the smallest Urbach energies (\(\sim 10\) meV) in Si and GaAs, because most other materials could not be grown with such high crystalline qualities. We find that \(\hbar \Delta \omega > 0.3\) eV is necessary to realize a lower absorption coefficient than that of the indium tin oxide (ITO \cite{17}), the standard transparent conductor. The 0.3 eV lower bound removes 113 candidates (out of 381), including the LiTi\(_2\)O\(_4\) — a novel transparent superconductor discussed in the later section.

V. REAL-SPACE ANALYSIS

88 candidates are left with reasonably wide metallic-band width \(W\) and lossless bandwidth \(\hbar \Delta \omega\). Theoretically, a large \(\hbar \Delta \omega\) ensures optical transparency, but a wide \(W\) cannot always ensure electrical conduction. Because conduction depends more on the real-space wavefunctions than the reciprocal-space band dispersions. For example, localized unpaired electrons cannot flow in the lattice, but they appear as “metals” (partially-filled bands across Fermi level) in the band theory (assuming global Bloch modes across the crystal). So we study whether the conductive atoms — the atoms contributing to the electron DOS at the Fermi level \((\pm 50\) meV)— are closely-spaced enough to connect a current path in the crystal. The connectivity of these conductive atoms is determined by the spatial overlap of their atomic radii \cite{13}. Illustrated in Fig. 2, the conductive connectivity can be three dimensional (3D), low-dimensional (2D, 1D), or in isolated clusters (0D), according to which we classify the 88 candidates into three classes with 15, 13, and 60 materials, respectively. The candidates of class I, II and most candidates of class III are tabulated in Table I.

The materials in Class I have 3D conductive connectivity for potential current paths in vertex-sharing or edge-sharing polyhedrons. The narrow metallic band originates from the localized \(d/f\) orbitals. The isolation of the metallic bands is partly due to the large and uniform splitting of the \(d/f\) bands in the crystal fields of high symmetries (high space groups). A typical material example is pyrochlore molybdate (Nd\(_2\)Mo\(_2\)O\(_7\)) shown in Fig. 3, that is experimentally verified to be a metal (resistance decreases with the decrease of temperature) and is a ferromagnet below the Curie temperature of \(\sim 90\) K \cite{22, 23}.

The materials in Class II have low-dimensional conductive connectivity, in which the atoms connect more closely in one or two dimensions. The weaker coupling in certain directions facilitates bands of less dispersions and narrower bandwidths \cite{23}. A typical example is calcium nickelate CaNi\(_2\)O\(_8\) in Fig. 3. Nickel dioxide (NiO\(_2\)) is a layered insulator having an isolated narrow conduction band (see Appendix C). Calcium intercalation, in NiO\(_2\), supplies itinerant electrons and raises the Fermi level into the middle of this narrow conduction band, thus satis-
The materials in Class III consist of distanced atomic clusters (forming narrow metallic bands), which are easier, than the other two classes, to satisfy the lossless criteria in DFT calculations. However, the weak couplings between the clusters impede electric conduction. A typical example is the solid oxygen O_2 (P64/mmc) in Fig. 3c, showing a huge lossless bandwidth of $\hbar \Delta \omega = 2.55$ eV with an isolated metallic-band width of $W = 3.17$ eV. This molecular crystal consists of dense arrangement of diatomic molecules under high pressure. In experiments, this phase forms at \sim17GPa and is not conducting. The oxygen metallizes under a much higher pressure around 100GPa [8, 24] (see Appendix C for the O$_2$ phase diagram).

VI. EXISTING EXPERIMENTS

We go through the existing experimental literature on the candidates in Table I and note their key feedback information (the references are listed in Appendix C). The cold truth is that, experimentally, most candidates are false metals and real insulators [25], except Nd$_2$Mo$_2$O$_7$ (and the LiTi$_2$O$_4$ discussed in the next section). The false positive prediction of metals is a common problem...
Formula	Space group	W (eV)	$\hbar \Delta \omega$ (eV)	Conductive connectivity	Magnetism (T_C/T_N)	Color	Conduction
Class I							
CoCO$_3$	167	0.61	1.95	3D AFM (18K)		Insulator	
K$_2$CeCo$_2$(NO$_2$)$_{12}$	201	0.85	1.70	3D			
Ba$_2$CoMoO$_6$	225	1.12	1.32	3D AFM (20K)	Black		
Sr$_2$CoMoO$_6$	225	1.30	1.24	3D AFM (36K)	Black		
NiMo$_4$	12	0.71	0.91	3D FM (22K)	Light green		
Ba$_2$GdMoO$_6$	225	0.93	0.89	3D	Black		
Class I							
KCoF$_3$	221	1.67	0.80	3D AFM (114K)	Rosy	Insulator	
Nd$_2$Mo$_2$O$_7$	227	2.02	0.59	3D FM (90K)	Black	Metal	
CoTiO$_3$	148	0.74	0.44	3D AFM (38K)	Green	Insulator	
CaCr$_2$O$_4$	62	1.69	0.42	3D AFM (43K)	Insulator		
CaCu$_3$Ti$_4$O$_{12}$	204	0.89	0.40	3D AFM (24K)	Insulator		
CuSiO$_3$	148	1.13	0.37	3D FM (110K)	Black	Insulator	
Li$_2$IrO$_3$	70	2.75	0.36	3D FM (38K)	Insulator		
Bi$_2$Cu$_3$B$_4$O$_{14}$	1	0.90	0.35	3D FM (25K)	Green	Insulator	
NiF$_2$	58	1.67	0.30	3D AFM (73K)	Insulator		
Class II							
CaNi$_4$O$_8$	166	1.33	0.91	2D			
Se$_2$Cu$_2$O$_5$	33	0.61	0.80	1D AFM (16K)	Insulator		
VCl$_3$	148	1.19	0.66	2D FM	Insulator		
CuZrTiO$_3$	19	0.94	0.55	1D AFM	Insulator		
CuInOPO$_4$	62	0.69	0.51	1D Green	Insulator		
Class II							
Li$_2$CuO$_2$	71	1.13	0.48	1D AFM (9K)	Brown	Insulator	
BaCu$_2$S$_2$O$_7$	62	0.95	0.42	1D AFM (9.2K)	Dark blue	Insulator	
Co$_2$B$_2$O$_5$	2	1.55	0.41	1D AFM (45K)	Violet	Insulator	
CsNiBr$_3$	194	1.14	0.37	1D AFM (70K)	Orange-brown	Insulator	
CaCuGe$_2$O$_6$	14	0.58	0.36	1D AFM, Jahn-Teller	Insulator		
Cu(OH)$_2$F	14	1.75	0.36	2D AFM, Jahn-Teller	Insulator		
Class III							
NaO$_2$	205	0.71	3.57	0D AFM (193K)	Insulator		
O$_2$	194	3.17	2.55	0D High-pressure	Dark red	Insulator	
Rb$_4$O$_6$	220	0.42	2.44	0D AFM	Black	Insulator	
Li$_2$O$_2$	58	1.84	2.28	0D AFM (7K)	Insulator		
K$_2$BaCo(NO$_2$)$_6$	69	1.14	1.61	0D Jahn-Teller	Insulator		
Nb$_2$(PO$_4$)$_3$	167	1.16	1.52	0D Jahn-Teller	Black	Insulator	
Rb$_2$NbCl$_6$	225	0.71	1.52	0D Jahn-Teller	Insulator		
RbSb	216	0.96	1.27	0D	Insulator		
Class III							
K$_2$TaCl$_6$	225	0.98	1.03	0D Jahn-Teller	Black	Insulator	
K$_3$Na(RuO$_4$)$_2$	15	0.59	0.97	0D AFM (70K)	Black	Insulator	
LiBa$_2$Cu$_3$O$_6$	69	0.56	0.96	0D Jahn-Teller	Insulator		
Sr$_2$CoWO$_6$	225	1.65	0.77	0D AFM (24K)	Dark brown	Insulator	
Ba$_2$MgReO$_6$	225	1.50	0.75	0D AFM	Black blue	Insulator	
KRu$_4$O$_4$	88	0.78	0.74	0D AFM (150K)	Black	Insulator	
Cu(HCOO)$_2$	14	0.97	0.69	0D AFM (17K)	Light blue	Insulator	
SrCu$_2$(BO$_3$)$_2$	140	0.99	0.59	0D AFM (1.4K)	Blue	Insulator	
CuSe$_2$O$_5$	15	0.84	0.48	0D AFM	Green	Insulator	
Ba$_2$CoWO$_6$	225	1.93	0.44	0D AFM (17K)	Brown	Insulator	

T_C/T_N: Curie/Neel temperature of magnetic transition. FM: ferromagnetism. AFM: antiferromagnetism.
of DFT for complex materials involving transition-metal elements, d/f electrons, narrow bands, magnetism, or correlation effects. In reality, these materials usually find insulating ground states of lower energies, than the predicted metallic states, by structure distortions, magnetic orderings, or electron-electron interactions. As can be seen in Table I, magnetism and cooperative Jahn-Teller distortion are observed for most candidates.

Magnetic orders are difficult to predict. Even the para-magnetic states above the temperatures of magnetic phase transitions, containing localized magnetic moments, remains a challenge for DFT [24]. So far, our recalculations are nonmagnetic, assuming zero local magnetic moments. The above facts cast doubts on whether more candidates would turn out to be true metals or whether the electronic state of Nd$_2$Mo$_2$O$_7$ (Fig. 3a) is predicted accurately enough to satisfy the lossless criteria in experiments.

Optical loss is a property not having much data in the literature. In most reports, only the sample color is mentioned. But we do require the broad-band dielectric constants $\varepsilon(\omega)$, using tools such as the ellipsometry or transmission/reflection, to verify the predictions. Note that the optical absorption (ε_2) is sensitive to the sample quality, so low loss is generally harder to verify experimentally than electric conduction.

VII. THE CASE OF LiTi$_2$O$_4$

One positive prediction of our search is lithium titanate LiTi$_2$O$_4$ (Fd$\bar{3}$m), a well studied metal having a superconducting ground state [37], rather than the magnetic orders or Jahn-Teller distortions observed for the false-metal candidates or the magnetic metal Nd$_2$Mo$_2$O$_7$ in Table I. Thin-film LiTi$_2$O$_4$ is transparent [38] with a reasonably low optical loss [28]. Prepared by the pulsed laser deposition, the film deteriorates in air and its quality is usually limited by oxygen vacancies. Bulk single crystals of LiTi$_2$O$_4$ are difficult to grow [29].

Although the above experimental feedback of LiTi$_2$O$_4$ agrees with our predictions in Appendix C, its theoretical lossless bandwidth is too narrow ($\hbar\Delta\omega = 0.12$ eV) to support an optical absorption much lower than that of ITO. Nevertheless, it is encouraging to find that realistic metal satisfying the lossless criteria can exist. A metal of a larger lossless bandwidth awaits identification.

VIII. FUTURE DIRECTIONS

Although the feedback from existing experiments indicate the drawbacks of the current high-throughput approach in finding lossless metals, the candidates in Table I still serve as reasonable starting points. Efforts should be made to study their failure modes, their actual electronic structures and their optical properties. These efforts involve ab-initio calculations beyond simple DFT [25] such as the dynamical mean-field theory (DMFT), as well as the experimental attempts in growing and characterizing the high-quality single-crystal samples that most of the candidates lack.

The candidates also indicate promising directions for future searches. Obviously, majority of the entries in Table I are oxides [30]. In Class I, transition-metal compounds with high spatial symmetries are promising material systems, for examples the double perovskites (such as Ba$_2$CoMoO$_6$), pyrochlore (Nd$_2$Mo$_2$O$_7$), and spinel (LiTi$_2$O$_4$). In Class II, layered insulators of a narrow band near Fermi level (such as the SnS$_2$ and NiO$_2$ presented in Appendix C) worth the attention, since their Fermi levels could be tuned by intercalation.

Inspired by the solid oxygen in Class III, we propose a novel high-pressure route to lossless metals. Conceptually, there are two ways to obtain narrow-band metals. One way is expanding the lattice constant of a metal [2] to narrow its bandwidth while maintaining its conduction. However, there is no experimental technique to do that. The other way is shrinking the lattice constant of a false-metal candidate in order to widen its metallic bandwidth into a metal, through an insulator-metal transition, while maintaining a finite lossless bandwidth. The standard high-pressure technique using diamond-anvil cell is well suited for this purpose, since both the transmission/reflection and the resistance can be monitored when the pressure is applied to the sample [31].

IX. CONCLUSION

We perform the first high-throughput screening for the elusive lossless metals. Starting from 44660 distinctive inorganic materials in ICSD, we obtain 88 high-quality candidates, while most of them are found to be insulating in experiments. Lossless metals are difficult to predict using the current condensed-matter theory due to the complexity of the candidate material systems. Nevertheless, our results shine light on a few hopeful directions including oxide conductors, low-dimensional metals, and compressing the false-metal candidates. Finally, we emphasize that our current search is far from complete, because the data quantity and accuracy in the databases are still under development. The search could also be extended to organic materials [32].

ACKNOWLEDGMENT

We acknowledge the SC2 group at our institute led by Kui Jin for investigating LiTi$_2$O$_4$. This work is supported by the Chinese Academy of Sciences through the Youth Innovation Promotion Association (2021008), the Project for Young Scientists in Basic Research (YSBR-021), the Strategic Priority Research Program (XDB33000000), the Informatization Plan (CAS-WX2021SF-0102), the Inter-
disciplined Innovation Team, and the International Partnership Program with the Croucher Foundation (112111KYSB20200024), by the National Key R&D Program of China (2017YFA0303800, 2017YFA0303800, 2018YFA0305700), by Natural Science Foundation of China (12025409, 11721404, 11974415, 12025409, 11721404, 11974415, 11925408, 11921004, 12188101), and by Beijing Natural Science Foundation (Z200008).

[1] J. E. Medvedeva and A. J. Freeman, “Combining high conductivity with complete optical transparency: A band structure approach,” EPL (Europhysics Letters) 69, 583 (2005).
[2] J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Applied Physics Letters 96, 181102 (2010).
[3] M. N. Gjerding, M. Pandey, and K. S. Thygesen, “Band structure engineered layered metals for low-loss plasmonics,” Nature communications 8, 15133 (2017).
[4] Xiwen Zhang, Lijun Zhang, et al., “Intrinsic transparent conductors without doping,” Physical review letters 115, 176602 (2015).
[5] G. Brunius, F. Ricci, V. Ha, et al., “Transparent conducting materials discovery using high-throughput computing,” npj Computational Materials 5, 1–13 (2019).
[6] J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS bulletin 37, 768–779 (2012).
[7] O. D. Miller, A. G. Polimeridis, et al., “Fundamental limits to optical response in absorptive systems,” Optics express 24, 3329–3364 (2016).
[8] A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Physical Review Letters 78, 5014 (1997).
[9] D. JR. Baqui˜ ao and G. M. Dalpian, “Computational screening of bulk materials with intrinsic intermediate band,” Computational Materials Science 158, 382–388 (2019).
[10] G. Grosso and G. P. Parravicini, Solid state physics (Aca
demic press, 2013).
[11] A. Jain et al., “A high-throughput infrastructure for density functional theory calculations,” Computational Materials Science 50, 2295–2310 (2011).
[12] S. Curtarolo et al., “AFL OW: an automatic framework for high-throughput materials discovery,” Computational Materials Science 58, 218–226 (2012).
[13] F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953).
[14] S.S. Mitra and B. Bendow, Optical Properties of Highly Transparent Solids (Plenum, New York, 1975).
[15] D Goldschmidt and HL Tuller, “Fundamental absorption edge of SrTiO$_3$ at high temperatures,” Physical Review B 35, 4360 (1987).
[16] R. Bhatt et al., “Urbach tail and bandgap analysis in near stoichiometric LiNbO$_3$ crystals,” Phys. Status Solidi A 209, 176–180 (2012).
[17] T. AF Kónig et al., “Electrically tunable plasmonic behavior of nanocube–polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS nano 8, 279–287 (2014).
[18] J. C Slater, “Atomic radii in crystals,” The Journal of Chemical Physics 41, 3199–3204 (1964).
[19] I. Kézsmárki et al., “Charge dynamics near the electron-correlation induced metal-insulator transition in pyrochlore-type molybdates,” Physical review letters 93, 266401 (2004).
[20] I. Kézsmárki et al., “Magneto-optical effect induced by spin chirality of the itinerant ferromagnet Nd$_2$Mo$_2$O$_7$,” Physical Review B 72, 094427 (2005).
[21] PN Bityutskij and VI Khitrova, “Electron diffracton investigation into crystal structures of anhydrous nickelates of alkaline earth elements (Ca, Sr, Ba),” Kristallografiya 29, 450–454 (1984).
[22] M Bronold, C Pettenkofer, and W Jaegermann, “Alkali metal intercalation into SnS$_2$,” Applied Physics A 52, 171–179 (1991).
[23] Y. Akahama, H. Kawamura, et al., “New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid,” Physical review letters 74, 4690 (1995).
[24] K Shimizu, Eremets MI, K Suhara, and K Amaya, “Oxynge under high pressure-temperature dependence of electrically resistance,” The Review of High Pressure Science and Technology 7, 784–786 (1998).
[25] O. I Malyi and A. Zunger, “False metals, real insulators, and degenerate gapped metals,” Applied Physics Reviews 7, 041310 (2020).
[26] D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan, “High temperature superconductivity in the Li-Ti-O ternary system,” Materials Research Bulletin 8, 777–784 (1973).
[27] A. Kumutani et al., “Growth processes of lithium titanate thin films deposited by using pulsed laser deposition,” Applied Physics Letters 101, 123103 (2012).
[28] M. Zhao, J. Lian, et al., “Investigation of the optical properties of LiTi$_2$O$_4$ and Li$_4$Ti$_5$O$_{12}$ spinel films by spectroscopic ellipsometry,” Optical Materials Express 6, 3366–3374 (2016).
[29] C Chen, M Spears, F Wondre, and J Ryan, “Crystal growth and superconductivity of LiTiO$_3$ and Li$_4$Ti$_5$O$_{12}$,” Journal of Crystal Growth 250, 139–145 (2003).
[30] N. Tsuda, K. Nasu, A. Fujimori, and K. Siratori, Electronic conduction in oxides, Vol. 94 (Springer Science & Business Media, 2000).
[31] A. Jayaraman, “Diamond anvil cell and high-pressure physical investigations,” Reviews of Modern Physics 55, 65 (1983).
[32] L S Xie, G. Skorupskii, and M. Dinc˘ a, “Electrically conductive metal–organic frameworks,” Chemical reviews 120, 8536–8580 (2020).
Appendix A: Settings for first-principle calculations

The calculations in the workflows are performed by VASP [1] with standard generalized gradient approximation (GGA) of the Perdew–Burke–Ernzerhof (PBE)-type exchange-correlation potential [2]. The pseudopotential files that we used are from PAW (projector augmented wave) datasets v.54 in VASP and are selected to be consistent with what are used in both databases (Materials Project and AFLOW). The DFT + U method is based on the simplest rotationally invariant formulation while the values of U are consistent with those used in both databases [3, 4]. The cut-off energy of the plane wave basis set is set to be the ENMAX value in the pseudopotential file plus 25%. A Γ–centered Monkhorst-Pack grid with 40 k-points per Å$^{-1}$ is used for the self-consistent calculations. A doubly dense grid is used for the density-of-states calculations with an energy interval of 5 meV. The k-points files along high symmetry lines for band structure calculations are consistent with the choices in Materials Project. The spin-orbital coupling is included. The optical dielectric constants are computed by WIEN2k [5, 6] using our JDOS model in the main text.
Appendix B: Search workflow without ICSD ids

In the main text, we presented the workflow (Fig. 2a) and candidates (Table I and Table II) from the high-throughput search among materials in ICSD, those have been reported in experiments. Here we present the workflow (Fig. S1) and candidates (Table S1) from the high-throughput search among materials NOT in ICSD, those have NOT been reported in experiments.

Materials Project	AFLOW
126152	64610
77634	55354
No ICSD	In ICSD
48518	9256
In ICSD	No ICSD

Analyzed in main text

71846 (Redundancy removed)

Fig. S 1. Workflow of the search for lossless metal among materials in the computational database of Material Project and AFlow but not in the experimental database of ICSD.

Table. S I. Lossless-metal candidates without ICSD IDs. Representative candidates are given for each class, ranked by the lossless bandwidth. The full list are tabulated in the Supplementary Excel file. These materials may not exist.

Class I	Class II	Class III									
Formula	Space group	W (eV)	h\(\Delta\omega\) (eV)	Formula	Space group	W (eV)	h\(\Delta\omega\) (eV)	Formula	Space group	W (eV)	h\(\Delta\omega\) (eV)
YbF\(_3\)	225	4.76	2.81	ZrCoO\(_3\)	148	0.61	0.89	F	194	4.21	7.90
Ba\(_2\)HoMoO\(_6\)	225	1.09	1.00	Li\(_2\)Co\(_3\)TeO\(_4\)	166	1.67	0.83	BaF\(_3\)	139	2.20	5.62
KLuO\(_3\)	221	3.23	0.79	CrF\(_5\)	71	0.78	0.79	RbNaO\(_3\)	221	2.42	4.74
MnNF\(_3\)	62	1.45	0.73	Li\(_2\)CuF\(_4\)	65	0.99	0.77	Cs\(_2\)NaLiF\(_6\)	225	4.50	3.38
CsTbO\(_3\)	221	2.48	0.60	NaMnO\(_2\)	194	1.08	0.64	CaSbF\(_6\)	148	0.58	3.20
Cu\(_2\)OF\(_2\)	141	1.32	0.56	LiTiO\(_2\)	194	1.59	0.58	LiSn(PO\(_3\))\(_4\)	60	0.56	2.39
V\(_2\)Si\(_2\)O\(_7\)	227	0.81	0.47	TiCoF\(_3\)	221	1.55	0.46	RbS	123	2.04	2.25
LiAg\(_2\)F\(_4\)	227	0.77	0.40	CuCl\(_2\)	166	0.68	0.45	SbP\(_2\)O\(_7\)	14	0.28	1.68
Na\(_2\)Ni\(_2\)O\(_{10}\)	2	1.54	0.38	NaNb\(_2\)O\(_4\)	57	1.90	0.38	Li\(_2\)BiO\(_6\)	148	0.65	1.06
SrC\(_2\)	166	5.04	0.37	Ni(OH)\(_2\)	12	0.99	0.34	Ba\(_2\)ScReO\(_6\)	225	1.84	0.44
Appendix C: More examples

a LiTi$_2$O$_4$ (Fd-3m)

![LiTi2O4_structure](image)

b Band structure

![Band_structure](image)

c Dielectric constant

![Dielectric_constant](image)

Fig. S 2. Class-I lossless metal candidate LiTi$_2$O$_4$ (space group 227). The narrow lossless bandwidth of 0.12eV could be enlarged by pulling down the Fermi level.

a η phase

![eta_phase](image)

b Phase diagram of O$_2$

![Phase_diagram](image)

c ζ phase

![zeta_phase](image)

Fig. S 3. Class-III lossless metal candidate O$_2$ (η-phase, space group 194). a, η-phase band structure. b, The phase diagram of high-pressed O$_2$ [7]. c, Structure of metallic ζ-O$_2$ is still unknown. The crystal structure we use here is isomorphic to ε-O$_2$ (space group 12) with the lattice parameters: $a = 3.332$ Å, $b = 4.426$ Å, $c = 6.866$ Å, $\beta = 116.4^\circ$ [8].
Fig. S 4. Class-II lossless metal candidate Ca(NiO$_2$)$_4$ (space group 166), compared with NiO$_2$ (space group 166).

Fig. S 5. Class-II lossless metal candidate KSnS$_2$ (space group 166), compared with SnS$_2$ (space group 186).

Appendix D: Experimental literature of ICSD candidates
Class	Formula	Space group	W (eV)	$\delta\Delta\omega$ (eV)	Conductive connectivity	Magnetism (T_C/T_N)	Distortion	Color	Conduction	Reference			
Class I	CoCO$_3$	167	0.61	1.95	3D	AFM (18K)	Insulator				[9, 10]		
	K$_5$CeCo$_2$(NO$_2$)$_{12}$	201	0.85	1.70	3D						[11]		
	Ba$_2$MoMoO$_6$	225	1.12	1.32	3D	AFM (20K)	Black				[12, 13]		
	Sr$_2$CoMoO$_6$	225	1.30	1.24	3D	AFM (36K)	Black	Insulator			[14, 15]		
	NiMoO$_4$	12	0.71	0.91	3D	FM (22K)	Light green				[16]		
	Ba$_2$GdMoO$_6$	225	0.93	0.88	3D		Black	Insulator			[17, 18]		
	KCoF$_3$	221	1.67	0.80	3D	AFM (114K)	Rosy	Insulator			[19, 20]		
	Nd$_2$Mo$_2$O$_7$	227	2.02	0.59	3D	FM (90K)	Black	Metal			[21, 22]		
	CoTiO$_3$	148	0.74	0.44	3D	AFM (38K)	Green	Insulator			[24, 26]		
	CaCr$_2$O$_4$	62	1.69	0.42	3D	AFM (43K)	Insulator				[27]		
	CaCu$_3$Ti$_5$O$_{12}$	204	0.89	0.40	3D	AFM (24K)	Insulator				[28, 30]		
	CuSiO$_3$	148	1.13	0.37	3D	AFM (110K)	Black	Insulator			[31]		
	Li$_2$IrO$_3$	70	2.75	0.36	3D	FM (38K)	Insulator				[32]		
	Bi$_2$Cu$_3$B$_4$O$_{14}$	1	0.90	0.35	3D	FM (25K)	Green	Insulator			[33, 34]		
	NiF$_2$	58	1.67	0.30	3D	AFM (73K)	Insulator				[35, 36]		
	LiTi$_2$O$_4$	227	2.37	0.12	3D	Superconductor (13.7K)	Blue	Metal			[37, 38]		
Class II	CaNi$_4$O$_8$	166	1.33	0.91	2D						[39]		
	Sc$_2$Cu$_2$O$_5$	33	0.61	0.80	1D	AFM (16K)	Insulator				[40]		
	VCl$_3$	148	1.19	0.66	2D	FM					[41, 42]		
	CuZrTiO$_5$	19	0.94	0.55	1D	AFM	Green	Insulator			[43, 44]		
	CuInOPO$_4$	62	0.69	0.51	1D						[45]		
	Li$_2$Cu$_2$O$_2$	71	1.13	0.48	1D	AFM (9K)	Brown	Insulator			[46, 48]		
	BaCu$_2$Si$_2$O$_7$	62	0.95	0.42	1D	AFM (9.2K)	Dark blue	Insulator			[49, 50]		
	Co$_2$B$_2$O$_4$	2	1.55	0.41	1D	AFM (45K)					[51, 52]		
	Ca$_3$Cu$_2$Si$_2$O$_{26}$	15	0.96	0.38	2D		Bluish-green	Insulator			[53]		
	CsNiBr$_3$	194	1.14	0.37	1D	AFM (70K)	Orange-brown	Insulator			[54, 55]		
	CaCuGe$_2$O$_6$	14	0.58	0.36	1D	AFM, Jahn-Teller	Insulator				[56, 57]		
	Cu(OH)$_2$F	14	1.75	0.36	2D	AFM, Jahn-Teller	Insulator				[59, 60]		
	KS$_n$S$_2$	166	1.14	0.36	2D						[61]		
Class III	Na$_2$O	205	0.71	3.57	0D	AFM (193K)	Insulator				[62, 63]		
	O$_2$	194	3.17	2.55	0D	High-pressure	Dark red	Insulator			[64, 65]		
	Rb$_4$O$_6$	220	0.42	2.44	0D	AFM	Black	Insulator			[66, 67]		
	Li$_2$O	58	1.84	2.28	0D	AFM (7K)		Insulator			[68, 69]		
	K$_2$BaCo(NO$_2$)$_6$	69	1.14	1.61	0D						[70, 72]		
	Nb$_2$(PO$_4$)$_3$	167	1.16	1.52	0D						[73]		
	Rb$_2$NbCl$_6$	225	0.71	1.52	0D						[74]		
	RbSb	216	0.96	1.27	0D						Insulator	[75]	
	K$_2$TaCl$_6$	225	0.98	1.03	0D						[76, 77]		
	K$_4$Na(RuO$_4$)$_2$	15	0.59	0.97	0D	AFM (70K)	Black	Insulator			[78]		
	Li$_2$Ba$_2$Cu$_3$O$_6$	69	0.56	0.96	0D						[79]		
	Sr$_2$CoWO$_6$	225	1.65	0.77	0D	AFM (24K)		Insulator			[80]		
	Ba$_2$MgReO$_6$	225	1.50	0.75	0D						Black	Insulator	[81, 82]
	K$_2$RuO$_4$	88	0.78	0.74	0D	AFM (150K)	Black	Insulator			[83]		
	Cu(HCOO)$_2$	14	0.97	0.69	0D	AFM (17K)	Light blue	Insulator			[84, 85]		
	SrCu$_2$(BO$_3$)$_2$	140	0.99	0.59	0D	AFM (1.4K)	Blue	Insulator			[86, 87]		
	CuSe$_2$O$_5$	15	0.84	0.48	0D							[88]	
	Ba$_2$CoWO$_6$	225	1.93	0.44	0D	AFM (17K)	Brown	Insulator			[89]		

T_C/T_N: Curie/Neel temperature of magnetic transition. FM: ferromagnetism. AFM: antiferromagnetism.

Table S II. Lossless-metal candidates in ICSD with experimental references. The band structures and dielectric constants of the candidates are appended at the end of this Supplementary Material.
K. M. Mogare, W. Klein, E. M. Peters, and M. Jansen, K
J. T. Sparks and T. Komoto, Magnetic properties of NaO
H. Ishikawa, T. Takayama, et al.
K. Shimizu, K. Suhara, M. Ikumo, M. Eremets, and K. Amaya, Superconductivity in oxygen, Nature 393, 767 (1998).
J. Winterlik, G. H. Fecher, et al., Challenge of magnetism in strongly correlated open-shell 2p systems, Physical review letters 102, 016401 (2009).
J. Winterlik, G. H. Fecher, et al., Exotic magnetism in the alkali sesquioxides Rb$_2$O$_6$ and Cs$_4$O$_6$, Physical review B 79, 214410 (2009).
L. Andrews, Infrared spectrum, structure, vibrational potential function, and bonding in the lithium superoxide molecule LiO$_2$, The Journal of Chemical Physics 50, 4288 (1969).
H. Smith, R. Nicklow, L. Raubenheimer, and M. Wilkinson, Antiferromagnetism in potassium superoxide KO$_2$, Journal of Applied Physics 37, 1047 (1966).
J. Bertrand and D. Carpenter, Structure of K$_2$BaCo(NO$_3$)$_6$, Inorganic Chemistry 5, 514 (1966).
J. Bertrand, D. t. Carpenter, and A. Kalyanaraman, The structure of K$_2$BaCo(NO$_3$)$_6$ at 233 K: a static Jahn-Teller distortion, Inorganica Chimica Acta 5, 113 (1971).
Y. Morioaka and I. Nakagawa, Far-infrared spectra of K$_2$MM'(NO$_3$)$_6$ (M: Pb and Ba; M': Cu and Co): effect of dynamical distortion, Spectrochimica Acta Part A: Molecular Spectroscopy 37, 437 (1981).
M. Sugantha, U. Varadaraju, and G. S. Rao, Synthesis and characterization of NZP phases, AM'$_3$+M''$_3$+P$_3$O$_{12}$, Journal of solid state chemistry 111, 33 (1994).
H. Henke, The significance of the Jahn-Teller effect for the phase transitions of K$_2$NbCl$_6$ and Rb$_2$NbCl$_6$, Zeitschrift für Kristallographie 222, 477 (2007).
C. Authors and editors of the volumes III/17E-17F-41C, NaSb, KSb, RbSb, CsSb semiconducting properties, Non-Tetrahedrally Bonded Elements and Binary Compounds I , 1 (1998).
L. Jongen and G. Meyer, Dipotassium hexachlorotantalate (IV), K$_2$TaCl$_6$, Acta Crystallographica Section E: Structure Reports Online 60, 191 (2004).
H. Ishikawa, T. Takayama, et al., Ordering of hidden multipoles in spin-orbit entangled 5d1 Ta chlorides, Physical Review B 100, 045142 (2019).
K. M. Mogare, W. Klein, E. M. Peters, and M. Jansen, K$_2$Na(RuO$_4$)$_2$ and Rb$_3$Na(RuO$_4$)$_2$, two new rhenates with glaserite structure, Solid state sciences 8, 500 (2006).
J. K. Burdett, S. A. Gramsch, and B. T. Schilf, A charge-stabilized Jahn-Teller distortion of the mixed valence system NaBa$_2$Cu$_3$O$_6$, Zeitschrift für anorganische und allgemeine Chemie 621, 1508 (1995).
M. Viola, M. Martinez-Lope, et al., Structure and magnetic properties of Sr$_2$CoWO$_6$: an ordered double perovskite containing Co$^{2+}$(HS) with unquenched orbital magnetic moment, Chemistry of materials 15, 1655 (2003).
J. Longo and R. Ward, Magnetic compounds of hexavalent rhenium with the perovskite-type structure, Journal of the American Chemical Society 83, 2816 (1961).
A. Sleight and J. Weiner, Magnetic and electrical properties of Ba$_2$MReO$_6$ ordered perovskites, Journal of Physics and Chemistry of Solids 33, 679 (1972).
C. A. Marjerrison, C. Mauws, et al., Structure and magnetic properties of KRuO$_4$, Inorganic chemistry 55, 12897 (2016).
J. R. Günter, The crystal structure of topotactically dehydrated copper (II) formate tetrahydrate, Journal of Solid State Chemistry 35, 43 (1980).
T. Castner and M. Seehra, Critical behavior of the electron-paramagnetic-resonance linewidth of a spin-1/2 two-dimensional antiferromagnet, Physical Review B 47, 578 (1993).
R. W. Smith and D. A. Keszler, Synthesis, structure, and properties of the orthoborate SrCu$_2$(BO$_3$)$_2$, Journal of Solid State Chemistry 93, 430 (1991).
G. Liu, J. Luo, et al., In-plane substitution effect on the magnetic properties of the two-dimensional spin-gap system SrCu$_2$(BO$_3$)$_2$, Physical Review B 73, 194414 (2006).
R. Becker and H. Berger, Reinvestigation of CuSe$_2$O$_5$, Acta Crystallographica Section E: Structure Reports Online 62, i256 (2006).
C. Khattak, J. Hurst, and D. Cox, Crystal growth, and electrical and magnetic properties of Ba$_2$CoWO$_6$, Materials Research Bulletin 10, 1343 (1975).
Class	I
Formula	CoCO$_3$
Space group	167 (R-3c)
W	0.57 eV
$\hbar\Delta\omega$	2.17 eV

Band structure

![Band structure](image)

DOS

![DOS](image)

Dielectric constant

$h\Delta\omega = 2.17$ eV

Class	I
Formula	Ba$_2$CoMoO$_6$
Space group	225 (Fm-3m)
W	0.97 eV
$\hbar\Delta\omega$	1.56 eV

Band structure

![Band structure](image)

DOS

![DOS](image)

Dielectric constant

$h\Delta\omega = 1.56$ eV

Class	I
Formula	Sr$_2$CoMoO$_6$
Space group	225 (Fm-3m)
W	1.25 eV
$\hbar\Delta\omega$	1.28 eV

Band structure

![Band structure](image)

DOS

![DOS](image)

Dielectric constant

$h\Delta\omega = 1.28$ eV

Class	I
Formula	Ba$_2$GdMoO$_6$
Space group	225 (Fm-3m)
W	0.84 eV
$\hbar\Delta\omega$	1.05 eV

Band structure

![Band structure](image)

DOS

![DOS](image)

Dielectric constant

$h\Delta\omega = 1.05$ eV
Class	I
Formula	Nd$_2$Mo$_2$O$_7$
Space group	227 (Fd-3m)
W	1.88 eV
$\hbar\Delta\omega$	0.80 eV

Class	I
Formula	Li$_2$IrO$_3$
Space group	70 (Fddd)
W	2.56 eV
$\hbar\Delta\omega$	0.63 eV

Class	I
Formula	CoTiO$_3$
Space group	148 (R-3)
W	0.74 eV
$\hbar\Delta\omega$	0.50 eV

Class	I
Formula	KCoF$_3$
Space group	221 (Pm-3m)
W	1.66 eV
$\hbar\Delta\omega$	0.48 eV
CuSiO$_3$

Class	I
Formula	CuSiO$_3$
Space group	148 (R-3)
W	1.12 eV
$\hbar \Delta \omega$	0.41 eV

Bi$_2$Cu$_5$B$_4$O$_{14}$

Class	I
Formula	Bi$_2$Cu$_5$B$_4$O$_{14}$
Space group	1 (P1)
W	0.90 eV
$\hbar \Delta \omega$	0.34 eV

CaCu$_3$Ti$_4$O$_{12}$

Class	I
Formula	CaCu$_3$Ti$_4$O$_{12}$
Space group	204 (Im-3)
W	0.91 eV
$\hbar \Delta \omega$	0.28 eV

CaNi$_4$O$_8$

Class	II			
Formula	CaNi$_4$O$_8$			
Space group	166 (R-3m)			
W	1.30 eV			
$\hbar \Delta \omega$	1.04 eV			
Class	Formula	Space group	W	$\hbar\Delta\omega$
-------	---------	-------------	-----	-----------------
II	CuInOPO$_4$	62 (Pnma)	0.69 eV	0.53 eV
	Li$_2$CuO$_2$	71 (Immm)	1.12 eV	0.50 eV
	BaCu$_2$Si$_2$O$_7$	62 (Pnma)	0.94 eV	0.46 eV
	CsNiBr$_3$	194 (P63/mmc)	1.07 eV	0.41 eV

![Band structure](image1)

![DOS](image2)

![Dielectric constant](image3)

![Band structure](image4)

![DOS](image5)

![Dielectric constant](image6)

![Band structure](image7)

![DOS](image8)

![Dielectric constant](image9)
Class	II
Formula	Cu(OH)F
Space group	14 (P21/c)
W	1.69 eV
$\hbar\Delta \omega$	0.40 eV

Class	II
Formula	KSnS$_2$
Space group	166 (R-3m)
W	1.13 eV
$\hbar\Delta \omega$	0.37 eV

Class	II
Formula	CaCuGe$_2$O$_6$
Space group	14 (P21/c)
W	0.58 eV
$\hbar\Delta \omega$	0.35 eV

Class	III
Formula	O$_2$
Space group	12 (C2/m)
W	1.08 eV
$\hbar\Delta \omega$	4.67 eV
Class	III
-------	-----
Formula	NaO$_2$
Space group	205 (Pa-3)
W	0.70 eV
$\hbar\Delta \omega$	3.60 eV

Class	III
Formula	NaO$_2$
Space group	58 (Pnmm)
W	1.20 eV
$\hbar\Delta \omega$	3.51 eV

Class	III
Formula	CsO$_2$
Space group	139 (I4/mmm)
W	0.85 eV
$\hbar\Delta \omega$	3.24 eV

Class	III
Formula	O$_2$
Space group	69 (Fmmm)
W	3.29 eV
$\hbar\Delta \omega$	3.03 eV
Class	III
---------	------
Formula	RbO₂
Space group	139 (I₄/mmm)
W	0.92 eV
$\hbar\Delta \omega$	2.94 eV

Class	III
Formula	KO₂
Space group	139 (I₄/mmm)
W	1.15 eV
$\hbar\Delta \omega$	2.75 eV

Class	III
Formula	O₂
Space group	194 (P6₃/mmc)
W	3.16 eV
$\hbar\Delta \omega$	2.57 eV

Class	III
Formula	Rb₄O₆
Space group	220 (I-43d)
W	0.41 eV
$\hbar\Delta \omega$	2.48 eV
Class	III
-------	-----
Formula	LiO₂
Space group	58 (Pnm)
W	1.83 eV
$\hbar\Delta\omega$	2.29 eV

Dielectric constant

$$\hbar\Delta\omega = 2.29 \text{ eV}$$

Class	III
Formula	Rb₂CoPb(NO₂)₆
Space group	202 (Fm-3)
W	0.49 eV
$\hbar\Delta\omega$	2.01 eV

Dielectric constant

$$\hbar\Delta\omega = 2.01 \text{ eV}$$

Class	III
Formula	Ca₃ReO₆
Space group	14 (P21/c)
W	0.89 eV
$\hbar\Delta\omega$	1.95 eV

Dielectric constant

$$\hbar\Delta\omega = 1.95 \text{ eV}$$

Class	III
Formula	K₂CoPb(NO₂)₆
Space group	202 (Fm-3)
W	0.50 eV
$\hbar\Delta\omega$	1.89 eV

Dielectric constant

$$\hbar\Delta\omega = 1.89 \text{ eV}$$
Class	III
Formula	K_2WCl_6
Space group	225 (Fm-3m)
W	0.58 eV
$\hbar \Delta \omega$	1.87 eV

Dielectric constant

$\bar{\hbar} \Delta \omega = 1.87$ eV

Class	III
Formula	K_2MoCl_6
Space group	225 (Fm-3m)
W	0.56 eV
$\hbar \Delta \omega$	1.80 eV

Dielectric constant

$\bar{\hbar} \Delta \omega = 1.80$ eV

Class	III
Formula	Rb_2NbCl_6
Space group	225 (Fm-3m)
W	0.51 eV
$\hbar \Delta \omega$	1.73 eV

Dielectric constant

$\bar{\hbar} \Delta \omega = 1.73$ eV

Class	III
Formula	$\text{K}_2\text{BaCo(NO}_2)_6$
Space group	69 (Fmmm)
W	1.13 eV
$\hbar \Delta \omega$	1.72 eV

Dielectric constant

$\bar{\hbar} \Delta \omega = 1.72$ eV
Class	III
Formula	Nb$_2$(PO$_4$)$_3$
Space group	167 (R-3c)
W	0.99 eV
$\hbar\Delta\omega$	1.71 eV

Class	III
Formula	RbSb
Space group	216 (F-43m)
W	0.68 eV
$\hbar\Delta\omega$	1.66 eV

Class	III
Formula	Sr$_2$ZnReO$_6$
Space group	87 (I4/m)
W	0.96 eV
$\hbar\Delta\omega$	1.60 eV

Class	III				
Formula	Ba$_2$MgReO$_6$				
Space group	225 (Fm-3m)				
W	1.10 eV				
$\hbar\Delta\omega$	1.40 eV				
Class	III	Class	III	Class	III
-------	---------	-------	---------	-------	---------
Formula	Tl_2MoCl_6	Formula	K_2TaCl_6	Formula	$\text{Ba}_2\text{CaReO}_6$
Space group	225 (Fm-3m)	Space group	225 (Fm-3m)	Space group	87 (I4/m)
W	0.63 eV	W	0.56 eV	W	1.14 eV
$\hbar\Delta\omega$	1.40 eV	$\hbar\Delta\omega$	1.32 eV	$\hbar\Delta\omega$	1.30 eV

Dielectric constant

$\bar{h}\Delta\omega = 1.40$ eV

$\bar{h}\Delta\omega = 1.32$ eV

$\bar{h}\Delta\omega = 1.30$ eV

$\bar{h}\Delta\omega = 1.20$ eV
Class	Formula	Space group	W	$\hbar \Delta \omega$
III	RbSb	225 (Fm-3m)	1.72 eV	1.05 eV
III	Ba$_2$CdReO$_6$	225 (Fm-3m)	0.80 eV	1.05 eV
III	Ba$_2$CaReO$_6$	225 (Fm-3m)	1.19 eV	1.04 eV
III	K$_3$Na(RuO$_4$)$_2$	15 (C2/c)	0.53 eV	1.02 eV
Class	III			
-------	-----			
Formula	Ba$_2$ZnReO$_6$			
Space group	225 (Fm-3m)			
W	0.97 eV			
$\hbar\Delta\omega$	1.01 eV			

Class	III
Formula	Sr$_2$CoWO$_6$
Space group	225 (Fm-3m)
W	1.15 eV
$\hbar\Delta\omega$	0.99 eV

Class	III
Formula	I$_2$Sb$_2$F$_{11}$
Space group	5 (C2)
W	0.63 eV
$\hbar\Delta\omega$	0.99 eV

Class	III
Formula	Sr$_2$MgReO$_6$
Space group	139 (I4/mmm)
W	1.24 eV
$\hbar\Delta\omega$	0.97 eV
Class	III
-------	-----
Formula	LiBa$_2$Cu$_3$O$_6$
Space group	69 (Fmmm)
W	0.54 eV
$\hbar\Delta\omega$	0.94 eV

Band structure

DOS

Dielectric constant

$h\Delta\omega = 0.94$ eV

Class	III
Formula	CuZrF$_6$
Space group	148 (R-3)
W	0.54 eV
$\hbar\Delta\omega$	0.89 eV

Band structure

DOS

Dielectric constant

$h\Delta\omega = 0.89$ eV

Class	III
Formula	NaBa$_2$Cu$_3$O$_6$
Space group	69 (Fmmm)
W	0.56 eV
$\hbar\Delta\omega$	0.87 eV

Band structure

DOS

Dielectric constant

$h\Delta\omega = 0.87$ eV

Class	III
Formula	S$_3$Cl$_3$AsF$_6$
Space group	2 (P-1)
W	0.69 eV
$\hbar\Delta\omega$	0.80 eV

Band structure

DOS

Dielectric constant

$h\Delta\omega = 0.80$ eV
Class	III
Formula	KRuO$_4$
Space group	88 (I41/a)
W	0.72 eV
$\hbar\Delta\omega$	0.79 eV

Class	III
Formula	K$_5$YCo$_2$(NO$_2$)$_{12}$
Space group	201 (Pn-3)
W	1.07 eV
$\hbar\Delta\omega$	0.78 eV

Class	III
Formula	Cu(HCOO)$_2$
Space group	14 (P21/c)
W	0.95 eV
$\hbar\Delta\omega$	0.73 eV

Class	III
Formula	Ba$_2$CoWO$_6$
Space group	225 (Fm-3m)
W	1.50 eV
$\hbar\Delta\omega$	0.72 eV
Class	III
-------	-----
Formula	$K_2Co(SeO_3)_2$
Space group	166 (R-3m)
W	0.71 eV
$\hbar \Delta \omega$	0.70 eV

![Band structure, DOS, and Dielectric constant for $K_2Co(SeO_3)_2$.](image1)

Class	III
Formula	SrCu$_2$(BO$_3$)$_2$
Space group	121 (I-42m)
W	0.95 eV
$\hbar \Delta \omega$	0.64 eV

![Band structure, DOS, and Dielectric constant for SrCu$_2$(BO$_3$)$_2$.](image2)

Class	III
Formula	SrCu$_2$(BO$_3$)$_2$
Space group	140 (I4/mcm)
W	0.98 eV
$\hbar \Delta \omega$	0.62 eV

![Band structure, DOS, and Dielectric constant for SrCu$_2$(BO$_3$)$_2$.](image3)

Class	III
Formula	Ba$_3$Cr$_2$O$_8$
Space group	166 (R-3m)
W	0.52 eV
$\hbar \Delta \omega$	0.61 eV

![Band structure, DOS, and Dielectric constant for Ba$_3$Cr$_2$O$_8$.](image4)
Class	III	Formula	Space group	W (eV)	$\hbar\Delta\omega$ (eV)
		CsRbP	216 (F-43m)	0.88	0.59
		Cu(HSeO$3)_2$	14 (P21/c)	0.82	0.56
		CuSe$_2$O$_5$	15 (C2/c)	0.82	0.51
		CsMn(CN)$_3$	225 (Fm-3m)	2.16	0.44
Class	III				
---------	------				
Formula	Na$_4$Al$_3$(SiO$_4$)$_3$				
Space group	218 (P-43n)				
W	0.84 eV				
$\hbar\Delta\omega$	0.42 eV				

Band structure

![Band structure](image)

DOS

![DOS](image)

Dielectric constant

$\hbar\Delta\omega = 0.42$ eV

Class	III
Formula	CuC$_5$H$_7$NO$_4$ · 2H$_2$O
Space group	15 (C2/c)
W	0.60 eV
$\hbar\Delta\omega$	0.41 eV

Band structure

![Band structure](image)

DOS

![DOS](image)

Dielectric constant

$\hbar\Delta\omega = 0.41$ eV

Class	III
Formula	Tl$_5$YCo$_2$(NO$_2$)$_{12}$
Space group	201 (Pn-3)
W	0.98 eV
$\hbar\Delta\omega$	0.38 eV

Band structure

![Band structure](image)

DOS

![DOS](image)

Dielectric constant

$\hbar\Delta\omega = 0.38$ eV

Class	III
Formula	Na$_2$Cu$_3$Ge$_4$O$_{12}$
Space group	2 (P-1)
W	1.00 eV
$\hbar\Delta\omega$	0.37 eV

Band structure

![Band structure](image)

DOS

![DOS](image)

Dielectric constant

$\hbar\Delta\omega = 0.37$ eV
Class	III
Formula	CH$_3$NH$_3$Cu(HCOO)$_3$
Space group	62 (Pnma)
W	1.55 eV
$\hbar \Delta \omega$	0.36 eV

Dielectric constant

\[\hbar \Delta \omega = 0.36 \text{ eV} \]