Communicating Precision Medicine Research: Multidisciplinary Teams and Diverse Communities

Julie A. Beansa, Susan B. Trinidadb, Erika Blacksher, Vanessa Y. Hiratsukaa, d, Paul Spicer, Erica L. Woodahl, Bert B. Boyerg, Cecil M. Lewis Jr.e, h, Patrick M. Gaffney, Nanibaa’ A. Garrison, Wylie Burkeb

aResearch Department, Southcentral Foundation, Anchorage, AK, USA; bDepartment of Bioethics and Humanities, University of Washington, Seattle, WA, USA; cDepartment of History and Philosophy of Medicine, University of Kansas City Medical Center, Kansas City, Kansas, United States of America Center for Practical Bioethics, Kansas City, MO, USA; dCenter for Human Development, University of Alaska Anchorage, Anchorage, AK, USA; eDepartment of Anthropology, University of Oklahoma, Norman, OK, USA; fDepartment of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA; gDepartment of Obstetrics and Gynecology, Oregon Health & Sciences University, Portland, OR, USA; hLaboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA; iGenes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; jInstitute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA; kInstitute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; lDivision of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA

Keywords
Education in genetics · Genetic communication · Multidisciplinary team · Precision medicine · Risk communication

Abstract
Introduction: Precision medicine research investigates the differences in individuals’ genetics, environment, and lifestyle to tailor health prevention and treatment options as part of an emerging model of health care delivery. Advancing precision medicine research will require effective communication across a wide range of scientific and health care disciplines and with research participants who represent diverse segments of the population. Methods: A multidisciplinary group convened over the course of a year and developed precision medicine research case examples to facilitate precision medicine research discussions with communities. Results: A shared definition of precision medicine research as well as six case examples of precision medicine research involving genetic risk, pharmacogenetics, epigenetics, the microbiome, mobile health, and electronic health records were developed. Discussion/Conclusion: The precision medicine research definition and case examples can be used as planning tools to establish a shared understanding of the scope of precision medicine research across multidisciplinary teams and with the diverse communities in which precision medicine research will take place. This shared understanding is vital for successful and equitable progress in precision medicine.

© 2022 The Author(s). Published by S. Karger AG, Basel
Introduction

Precision medicine is an emerging model for health care delivery that considers differences in individuals’ genomics, environment, and lifestyle to offer tailored interventions for prevention and treatment. The term carries forward much that was previously referred to as personalized medicine [1]. While the emphasis is on finding the right care for the individual patient, precision medicine introduces an ambitious expansion of the scope and volume of information to be included in tailoring strategies for patient care, including not only genomics – the primary focus in calls for personalized medicine – but also exposure data, behavioral information, and social determinants of health [2]. Research required to test and validate precision medicine in clinical practice thus must include a multitude of data types. In turn, it is necessary that investigators from multiple disciplines work in concert to accurately interpret and translate these data for clinical application [2, 3]. Participant diversity in race, ethnicity, gender, and socioeconomic status is also paramount but thus far lacking [4, 5].

The value of multidisciplinary research has been recognized by leading research agencies, including the National Institutes of Health (NIH) [6]. Scientific innovation requires collective creativity [7], and funding announcements frequently require multidisciplinary teams [8]. Multidisciplinary collaboration has been integral to the success of several research consortia addressing aspects of precision medicine research, including Centers of Excellence in Ethical, Legal, and Social Implications Research [9], the Pharmacogenomics Research Network (PGRN) [10–13], the Electronic Medical Records and Genomics Research (eMERGE) Network [14, 15], and the Clinical Sequencing Evidence-Generating Research (CSER) Consortium [16].

Communication across multidisciplinary collaborations can be challenging, particularly due to a lack of conceptual clarity and consistency in the definition of terms used across different disciplines, often for the same or similar concepts [17, 18]. This challenge is amplified when research teams seek to work in partnership with communities. In this setting, scientific experts must not only develop plain-language explanations for technical concepts but also engage community partners to help them understand salient cultural, material, social, and historical factors that are relevant to the research. Scherr et al. [19] acknowledge that critical communication moments will arise in the course of precision medicine research efforts to integrate its results into health care. Noting that “communication failures may significantly disrupt critical advancement,” the authors point to the importance of effective communication across multidisciplinary teams and the need to develop a common language for teams conducting precision medicine work [19]. Specific challenges communicating about precision medicine research and eventually precision health care with community members include explaining the possible benefits of participation in precision medicine efforts, potential privacy implications, and the potential for receiving unexpected and unwanted information [20].

The authors of this manuscript are researchers from two multidisciplinary teams engaged with several American Indian and Alaska Native (AIAN) communities and research review processes for precision medicine research projects across the USA. In this context, it has become apparent that researchers must provide concrete examples and definitions of precision medicine research to accurately elicit tribal leadership’s, tribal health care providers’, and community members’ questions and concerns about precision medicine and precision medicine research in AIAN communities [21, 22].

The definition of precision medicine, and the research required to enable it, leaves much room for interpretation. For example, concepts such as “genetic change” must be explained and clarified as its meaning can include such diverse phenomena as inherited risk, somatic mutations, epigenetic influences, and alterations in the microbiome that may be set in motion by social and environmental exposures. Furthermore, the meaning of the “environment” needs to be clarified and extended beyond “lifestyle” [23] and concerns such as historical trauma, structural inequities (e.g., related to access to education or employment), and changes in diet and other behaviors occurring with urbanization and acculturation must be considered [24–27].

The layers of complexity and scope of precision medicine research must be communicated clearly to support collaboration with AIAN communities [21, 22]. Transparency is particularly important to enable large precision medicine research efforts to move forward equitably in underrepresented populations [28]. Some AIAN groups have shown interest in participation in genetic research, with the understanding that research is to be conducted with transparent research practices, under the oversight of AIAN leadership, and must directly benefit the health of AIAN communities [21, 22, 29–33]. Research using biospecimens is an especially sensitive aspect of research, requiring individual and community protections [34–36]. Trustworthy practice also requires
that researchers include the community in discussion throughout the entire research process and not wait to communicate with the community until the end of the research project [12, 28, 37–40]. While researchers should provide a clear definition of precision medicine research scope for all communities with which they work, AIAN tribal communities are sovereign nations with the authority to require that researchers do so [41–44]. This paper describes the process this multidisciplinary team used to address these needs and presents the products that resulted from this process, including a definition of precision medicine research and case examples to illustrate its scope among the research team.

Materials and Methods

This work is based on a collaboration between two research consortia: (1) the Northwest-Alaska Pharmacogenomics Network (NWA-PGRN), a collaboration of researchers from Oregon Health & Science University, Southcentral Foundation, the University of Montana, and the University of Washington and tribal communities in Alaska and Montana partnered to address pharmacogeneric and precision medicine research with AIAN populations [10–13, 45]; and (2) the University of Oklahoma’s Center for the Ethics of Indigenous Genomic Research (CEIGR), a university and community partnership Center of Excellence in Ethical, Legal, and Social Implications Research that formed to support AIAN communities to determine how to best approach genomic research [46, 47]. The NWA-PGRN and CEIGR investigators have expertise in anthropology, bioethics, epigenetics, genetics, pharmacology, and public health and collaborate with six AIAN communities across the USA on genomic research projects addressing community-identified health priorities related to genomic and precision medicine research. To prepare for community discussions about what constitutes precision medicine research, as well as its potential benefits and concerns, these teams convened a working group to develop precision medicine research case examples.

Case Example Development Process

Through regular teleconferences, working group members suggested examples to illustrate a range of precision medicine research applications. During this process, the group reached consensus about the scope of precision medicine research and defined next steps to develop case examples.

Health topics of highest priority to the tribal communities partnering with the NWA-PGRN and CEIGR were discussed. The working group divided into pairs based on interest and expertise to develop current, plausible examples on specific topics of interest to the AIAN communities they partner with, including diabetes/obesity, asthma, vitamin D insufficiency, colon cancer, medication management, and mental health. As discussion advanced, however, it was recognized that different components of precision medicine research could cut across multiple disease foci. The group decided to reorient the process to develop examples based on different precision medicine approaches and research strategies that could address health outcomes of interest to AIAN communities. The precision medicine approaches highlighted were genetic risk assessment, pharmacogenetics, epigenetics, microbiome, mobile health (mHealth), and electronic health record (EHR) research. Based on experience working with AIAN communities, the group identified five areas of content to be addressed for each example: (1) description of topic area, (2) example of research application, (3) involvement required of AIAN community members, (4) possible benefits of the research, and (5) possible drawbacks of the research [21, 22, 29, 30, 32, 48, 49].

A subcommittee (WB, JAB, SBT, EB) standardized the case examples to ensure similar length and a tenth-grade reading level for accessibility to individuals with a wide range of backgrounds. The revised examples were then brought back to the larger team for review and final revision. Once the larger team reached consensus on the definition and case examples, the precision medicine definition, case examples, and this draft manuscript were reviewed by the SCF community-level research review committee, including tribal leadership, for AIAN community acceptability and revised based on recommendations provided prior to journal submission [42].

Results

The need for a unified precision medicine definition quickly became apparent as working group members used different sets of ideas and language to describe precision medicine research. For example, views differed within the group about whether genomics is a necessary component of all precision medicine. In addition, the group debated the definition and significance of social environment as a component in precision medicine research. These points are particularly relevant to inclusion of the case example concerning EHR-based research and to the inclusion of social and behavioral environments in epigenetic and microbiome research. To align the group to a common understanding of the boundaries of precision medicine research, the group developed a working document to define precision medicine research, which was refined during the process of developing the case examples.

During the standardization process, the subcommittee collated the various definitions of precision medicine research from the topic-specific examples and developed an overarching, standalone precision medicine research definition (S1 File). The precision medicine research definition begins with a brief overview of precision medicine research followed by high-level examples of precision medicine research (Box 1). Next is a description of how precision medicine research might be accomplished using a variety of data sources from large data sets, followed by a description of the potential benefits and risks of doing precision medicine research for both individuals and
communities. Last, the definition provides a description of the All of Us research program as an example of a precision medicine research project with active recruitment and a description of how researchers would gain access to All of Us program data collected for precision medicine research.

In addition to the precision medicine research definition, this process generated six precision medicine research case examples as detailed below, addressing genetic risk assessment, pharmacogenetics, epigenetics, microbiome, mHealth, and EHR research (S2 File). Each example includes five standardized sections, using a frequently-asked-questions format, answering questions often asked by AIAN community members [21, 22, 29, 30, 32, 33, 48, 49]. The first section provides lay definitions followed by a description of plausible research conduct for research with the community, what a participant might need to do to participate in that type of research, and the possible benefits and drawbacks to the research.

Genetic Risk Assessment

Genetic risk is anticipated to play an important role in precision medicine and is therefore an important component of precision medicine research. Research in this area evaluates inherited susceptibilities to health risks. For example, rare gene variants in the BRCA1 and BRCA2 genes confer a high lifetime risk of developing breast and ovarian cancer. Other rare gene variants are associated with high risk for other conditions that disproportionally affect AIAN communities, including colorectal cancer and coronary heart disease. Although these gene variants are likely to be present in only a small proportion of the population, their identification can enable tailored prevention and early detection efforts. Other gene variants result in moderately increased risks for common conditions of interest to AIAN communities, such as asthma and diabetes, and could inform public health research through the evaluation of interactions between genetic risk and environmental exposures [50]. For example, a genetic risk for asthma may not be expressed in a clean air environment, but the same risk may be amplified by exposure to cigarette smoke or other environmental stressors.

Pharmacogenetics

Pharmacogenetics research investigates how genetic testing can be used to increase therapeutic efficacy and improve drug safety based on an individual’s genetic profile. Pharmacogenetics may provide the most concrete example of how precision medicine can be implemented into everyday health care delivery, with pharmacogenetic testing associated with improvement in drug response in many therapeutic areas including psychiatry, cardiovascular disease, pain management, and cancer [51–54]. Yet, even with the potential to improve patient outcomes, underserved populations – including AIAN communities – continue to be underrepresented in pharmacogenetics research [45]. Community members in NWA-PGRN studies are familiar with pharmacogenetics due to past and ongoing research conducted with their communities, and some have shared first-hand experience with the potential side effects of prescription and over-the-counter drugs [37, 55, 56], which may be addressed by this research.

Epigenetics

Epigenetic research studies how structural modifications that do not change the sequence of DNA can alter gene expression, resulting in changes in health risk. DNA methylation and histone modification are two of the more commonly studied forms of epigenetic modification. For example, environmental and behavioral factors including diet, lifestyle, social experiences, and exposure to pollutants are all thought to contribute to epigenetic changes. These changes persist as cells divide and can thus be passed on to future generations, where they may contribute to long-term risk for chronic conditions such as diabetes. The effects of historical trauma, changes in diet associated with urbanization or lack of access to subsistence foods, and persistent health disparities are relevant health priorities of AIAN communities that epigenetics may be able to address [57–59].

Microbiome

Human microbiome research studies microbes, including bacteria, fungi, parasites, and viruses that have residence on and within the healthy body. With respect to precision medicine research, microbiome information may produce biomarkers for diagnosing disease, refining current probiotics and prebiotics, discovering new pharmaceuticals, identifying opportunistic pathogens, and predicting antibiotic resistance [60]. Precision editing of the microbiome may mitigate microbial-connected illnesses as well as an array of multifactorial conditions of concern to AIAN communities, including obesity, diabetes, cardiovascular disease, and cancer [61]. For example, the microbiome is implicated in inflammatory diseases of the gastrointestinal tract, such as colitis, and it has been demonstrated that the severity of inflammation can be reduced by treatments that change the way microbes grow [62]. Therapeutic approaches informed by microb-
ome research might include the use of medications or other interventions that influence changes in the microbiome.

Mobile Health

mHealth technologies track individual, patient-specific data to aid in bridging the gap between clinical research and lived experiences. For example, mobile devices are capable of supporting snapshot assessments of social and environmental indicators. In addition, sensor technologies in mobile phones and wearable fitness tracking devices provide opportunities for direct, passive assessment of personal health indicators [63]. mHealth applications have the capability to monitor critical parameters such as blood glucose, blood pressure, and heart rhythm [64]. Through GIS technology, this patient-specific information can be tied to geographic location, thereby opening opportunities for fine-grained analysis to evaluate and contextualize health behavior. Precision medicine research approaches with mHealth, such as All of Us, have explicit plans to collect data through mobile technology. mHealth research lends itself to personalized disease management, the tracking of which creates a large repository of data points that will aid in the development of precision medicine. At the same time, these data collection technologies raise important privacy concerns as the level of personal detail in the data can permit ready reidentification.

EHR Data

The real-time collection of patient health information and clinical care in the EHR is integral to moving precision medicine research forward, as are adaptations in the EHR to accommodate genomic data [65]. Health researchers and health care systems conduct aspects of precision medicine research when they use EHR data to identify population-level patterns that indicate opportunities to improve patient care [66, 67]. This vast repository of data is currently used to develop predictor algorithms for preventive health, risk for surgery complications and death, Alzheimer’s disease, suicide attempt, and antibiotic resistance [68–71]. Machine learning techniques can supplement precision medicine research with information derived from other electronic data sources, such as biorepositories [72]. Primary and secondary care EHR data can potentially guide the use of precision medicine in health care delivery; in turn, data produced in these visits and recorded in the EHR will help investigators to refine the application of genetic risk, pharmacogenetics, epigenetics, microbiome, and mHealth in precision medicine research.

Discussion/Conclusion

This multidisciplinary team developed case examples to foster discussion on whether and how precision medicine research aligns with tribal health priorities and community perspectives regarding privacy, return of results, and data stewardship. A shared definition of precision medicine research brought the group to a common understanding of what precision medicine research entails and helped to guide the development of the case examples. These concrete examples of precision medicine research can be used to promote discussion of potential health care or policy proposals that might emerge from precision medicine research studies, as well as the implications of precision medicine research for privacy, return of results, and data stewardship to communities and research participants. For example, the precision medicine research definition, as well as the pharmacogenetics and genetic risk examples, were used to develop newsletter and newspaper articles to raise awareness of precision medicine research with AIAN communities [73]. The precision medicine research definition and the case examples were recently used to facilitate discussion in dialog and deliberative forums to gather perspectives of how precision medicine research may align with tribal health priorities, return of precision medicine research results to tribal communities, and data stewardship of precision medicine research data [33, 74]. Post-deliberation survey data from the cross-site deliberation, which brought leaders from across several tribes together, found that the majority of deliberants (7 of 10) found the information presented was “clear and easy to understand” [74].

In addition to providing draft language on the scope of precision medicine research that research teams can consider when working with communities, the case examples offer an opportunity to introduce potential benefits and harms. Each example points to specific ways in which precision medicine approaches might improve health care. They also offer insights into the kind of burdens participants in precision medicine research might experience and the potential risks to individuals and communities, including privacy concerns related to the nature and scope of data collected in precision medicine research.

An interesting area of clarification for the group was around the topic of secondary data analysis and the inclusion of the EHR as an aspect of precision medicine research. Researchers routinely use the EHR as a data source for primary research as well as for secondary data analysis. The EHR is a significant potential source of data for
precision medicine research [75]. However, many research participants want more information about the research in which their information is used, including de-identified information [36]; and the secondary use of data for research purposes has been noted as a concern by AIAN leaders [30] and by Indigenous people throughout the world [44]. Additionally, other populations have asked for transparency regarding use of EHR for research purposes [76]. Moreover, how EHR data are used [77], the inclusion of the community in the analysis and interpretation of the data [78], and who the EHR data can be shared with [79] are of known concern to many AIAN communities. This example emphasizes the need for multidisciplinary teams to develop a shared vernacular and intent regarding precision medicine research and to consult with communities throughout the research process, including secondary data analysis.

There are limitations to the precision medicine definition and precision medicine case examples described here. The precision medicine definition and case examples were developed as a starting point for the research team to come to a common understanding of what constitutes precision medicine research. These documents were not intended to be shared with the public as written but instead were designed to outline the elements that should be addressed when working with communities on precision medicine research projects. The tenth-grade reading level may need to be adjusted prior to dissemination for public audiences. In a similar vein, the definition and case examples may be useful when training students and staff new to precision medicine research teams, and in these instances, more technical language might need to be incorporated. Last, a communication expert was not part of the multidisciplinary team. Future areas of research on this topic should include individuals with expertise in science or health communication who may be able to fully consider more applicable readability formulas or other communication tools that could add value to a revision of the precision medicine research definition and/or case examples.

Clear communication of the scope of precision medicine research and eventually precision medicine in health care delivery is necessary to engage health care stakeholders (e.g., providers, patients, policymakers) [22, 80]. Multidisciplinary input is required to develop training material for researchers and health care delivery staff to communicate with the public about precision medicine [81]. Procedures for communicating genetic test results, including genetic risk and for fostering behavior change to address such results have been identified as an area of needed development [82]. Interdisciplinary training programs and university clinical programs could use the shared definition and case examples to facilitate classroom discussion on communicating individual- and community-level risks and benefits of precision medicine research. The precision medicine research definition document could be used as a reference document for staff in the informed consent process for precision medicine research or clinical care. The materials put forth by this multidisciplinary working group provide starting points with a shared language that can be used to develop training materials for community members and leaders, as well as students, trainees, and fellows, providers, and other professionals involved with the advancement of precision medicine. Furthermore, the materials can assist in communication of precision medicine research efforts and results involving diverse research and lay communities.

Acknowledgments

We would like to acknowledge the partners within the Northwest-Alaska Pharmacogenomics Network and the Center for the Ethics of Indigenous Genomic Research.

Statement of Ethics

The information reported in this manuscript did not involve human subject research and is exempt from Institutional Review Board review. However, a draft of this manuscript was reviewed and approved on April 14, 2020, by Southcentral Foundation (tribal community partner) Research Review committees and Board of Directors in Anchorage, Alaska, prior to journal submission. For further inquiries, please contact the corresponding author.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

This research was funded by the National Institutes of Health’s National Human Genome Research Institute, Grant No.s R01HG009500 and RM1HG009042, and the National Institute of General Medical Sciences, Grant No.s S06GM123545, U54GM104938, and P01GM116691. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Author Contributions

Conceptualization: Wylie Burke and Vanessa Y. Hiratsuka. Case examples curation: Julie A. Beans, Susan B. Trinidad, Erika Blacksher, and Wylie Burke. Funding acquisition: Wylie Burke, Vanessa Y. Hiratsuka, Bert B. Boyer, Erica L. Woodahl, and Paul Spicer. Methodology: Wylie Burke, Julie A. Beans, Susan B. Trinidad, and Erika Blacksher. Project administration: Julie A. Beans and Wylie Burke. Supervision: Wylie Burke and Vanessa Y. Hiratsuka. Developed case examples: Julie A. Beans, Vanessa Y. Hiratsuka, Susan B. Trinidad, Erika Blacksher, Wylie Burke, Cecil M. Lewis Jr, Erica Woodahl, Bert B. Boyer, Paul Spicer, Patrick M. Gaffney, and Nanibaa’ A. Garrison. Writing – original draft: Julie A. Beans, Vanessa Y. Hiratsuka, Susan B. Trinidad, Erika Blacksher, Wylie Burke, Cecil M. Lewis Jr, Erica Woodahl, Bert B. Boyer, and Paul Spicer. Writing – review and editing: Julie A. Beans, Vanessa Y. Hiratsuka, Susan B. Trinidad, Erika Blacksher, Wylie Burke, Cecil M. Lewis Jr, Erica L. Woodahl, Bert B. Boyer, Paul Spicer, Patrick M. Gaffney, and Nanibaa’ A. Garrison.

Data Availability Statement

The precision medicine definition and case examples developed as part of this process are included in this article and its online supplemental files (see www.karger.com/doi/10.1159/000525684 for all online suppl. material). For further inquiries, contact the corresponding author.

References

1. Juengst E, McGowan ML, Fishman JR, Settren RA Jr. From “personalized” to “precision” medicine: the ethical and social implications of rhetorical reform in genomic medicine. Hastings Cent Rep. 2016;46(5):21–33.
2. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015; 372(9):793–5.
3. Musunuru K, Arora P, Cooke JP, Ferguson JF, Hershberger RE, Hickey KT, et al. Interdisciplinary models for research and clinical endeavors in genomic medicine: a scientific statement from the American Heart Association. Circ Genom Precis Med. 2018;11(6): e000046.
4. Popejoy AB. Diversity in precision medicine and pharmacogenetics: methodological and conceptual considerations for broadening participation. Pharmacogenomics Pers Med. 2019;12:557–71.
5. Landry LG, Ali N, Williams DR, Rehm HL, Bonham VL. Lack of diversity in genomic databases is a barrier to translating precision medicine research into practice. Health Aff. 2018;37(5):780–5.
6. Bennett LM, Levine-Finley S, Gadlin H. Collaboration & team science: a field guide. National Cancer Institute; 2013.
7. Mazumdar M, Messinger S, Finkelstein DM, Goldberg JD, Lindsell CJ, Morton SC, et al. Evaluating academic scientists collaborating in team-based research: a proposed framework. Acad Med. 2015;90(10):1302–8.
8. Services DoHaH. Participant engagement and cancer genome sequencing (PE-CGS): research centers (U2C, clinical trial option); 2019. Available from: https://grants.nih.gov/grants/guide/rfa-files/RFA-CA-19-045.html.
9. McEwen JE, Boyer JT, Sun KY, Rothenberg KH, Lockhart NC, Guyer MS. The ethical, legal, and social implications program of the national human genome research institute: reflections on an ongoing experiment. Annu Rev Genomics Hum Genet. 2014;15:481–505.
10. Boyer BB, Dillard D, Woodahl EL, Whitener R, Thummel KE, Burke W. Ethical issues in developing pharmacogenetic research partnerships with American Indigenous communities. Clin Pharmacol Therapeut. 2011;89(3):343–5.
11. Woodahl EL, Lessko LJ, Hopkins S, Robinson RF, Thummel KE, Burke W. Pharmacogenetic research in partnership with American Indian and Alaska Native communities. Pharmacogenomics. 2014;15(9):1235–41.
12. Beans JA, Hiratsuka VY, Apok CR, Caindec K, Dillard DA, Robinson RF. Community dissemination in a tribal health setting: a pharmacogenetics case study. Am Indian Alsk Na- tive Ment Health Res. 2018;25(1):80–94.
13. Pharmaceutics UoWDoPs. Pharmacogenomic research network (PGRN) in North America; 2018. Available from: https://sap.washington.edu/department-of-pharmacutects/re- search/northwest-alaska-pharmacogenomic-research-network-pgrn/.
14. Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA, et al. The electronic medical records and genomics (eMERGE) network: past, present, and future. Genet Med. 2013;15(10):761–71.
15. Institute NHGR. Electronic medical records and genomics (eMERGE) Network; 2019. Available from: https://www.genome.gov/Funded-Programs-Projects/Electronic-Med- ical-Records-and-Genomics-Network-eMERGE.
16. Amendola LM, Berg JS, Horowitz CR, Angelo F, Bensen JT, Bieseker BB, et al. The clinical sequencing evidence-generating research consortium: integrating genomic sequencing in diverse and medically underserved populations. Am J Hum Genet. 2018;103(3):319–27.
17. McKibben KA, Lokker C, Wilczynski NL, Cliskisa D, Dobbins M, Davis DA, et al. A cross-sectional study of the number and frequency of terms used to refer to knowledge translation in a body of health literature in 2006: a Tower of Babel? Implement Sci. 2010;5:16.
18. Powell BJ, Waltz TJ, Chinman MJ, Damschroder LJ, Smith JL, Matthieu MM, et al. A refined compilation of implementation strategies: results from the expert recommendations for implementing change (ERIC) project. Implement Sci. 2015;10:21.
19. Scherr CL, Dean M, Clayton MF, Hesse BW, Silk K, Street RI, Jr, et al. A research agenda for communication scholars in the precision medicine era. J Health Commun. 2017;22(10):839–48.
20. Ratcliff CL, Kaphingst KA, Jensen JD. When personal feels invasive: foreseeing challenges in precision medicine communication. J Health Commun. 2018;23(2):144–52.
21. Beans JA, Woodbury RB, Wark KA, Hiratsuka VY, Spicer P. Perspectives on precision medicine in a tribally managed primary care setting. AJOB Empir Bioeth. 2020;11(4):246–56.
22. Woodbury RB, Beans JA, Wark KA, Spicer P, Hiratsuka VY. Community perspectives on communicating about precision medicine in an Alaska native tribal health care system. Front Commun. 2020;5:70.
23. Petersen A. The genetic conception of health: is it as radical as claimed? Health. 2006;10(4):481–500.
24. Walters KL, Mohammed SA, Evans-Campbell T, Beltrán RE, Chae DH, Duran B. Bodies don’t just tell stories, they tell histories: embodiment of historical trauma among American Indians and Alaska Natives. Du Bois Rev. 2011;8(1):179–89.
25. Deuster PA, Kim-Dorner SJ, Remaley AT, Poth M. Allostatic load and health status of African Americans and whites. Am J Health Behav. 2011;35(6):641–53.
26. Danai G, Singh GM, Paciorek CJ, Lin JK, Cowan MJ, Finucane MM, et al. The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. Circulation. 2013;127(14):1493–502, 1502e1–8.
Chun KM, Organista PB, Marin G. Acculturation: advances in theory, measurement, and applied research. American Psychological Association; 2017; 12(4).

Halbert CH, Allen CG, Jefferson M, Magwood GS, Melvin C, Babatunde OA, et al. Lessons learned from the medical university of South Carolina transdisciplinary collaborative center (TCC) in precision medicine and minority men’s health. Am J Mens Health. 2020;14(6):1557988320979236.

Hiratsuka VY, Beans JA, Blanchard JW, Reedy J, Blacksher E, Lund JR, et al. An Alaskan Native community’s views on genetic research, testing, and return of results: Results from a public deliberation. Plos One. 2020; 15(3):e0229540.

James R, Tsoise R, Sahota P, Parker M, Dillard D, Sylvester I, et al. Exploring pathways to trust: a tribal perspective on data sharing. 2019.

Reedy J, Blanchard JW, Lund J, Spicer PG, Byars C, Peercy M, et al. Deliberations about genomic research and biobanks with citizens of the chickasaw nation. Front Genet. 2020; 11:466.

Hiratsuka VY, Hahn MJ, Woodbury RB, Hull SC, Wilson DR, Bonham VL, et al. Alaska Native genomic research: perspectives from Alaska Native leaders, federal staff, and biomedical researchers. Genet Med. 2020;22(12):1935–43.

Trinidad SB, Blacksher E, Woodbury RB, Hopkins SE, Burke W, Woodahl EL, et al. Precision medicine research with American Indian and Alaska Native communities: results of a deliberative engagement with tribal leaders. Genet Med. 2022; 24(3):622–30.

Hiratsuka VY, Brown J, Dillard D. Views of biobanking research among Alaska native people: the role of community context. Prog Community Health Partnership. 2012;6(2):131–9.

Hiratsuka VY, Brown JK, Hoeft TJ, Dillard DA. Alaska native people’s perceptions, understandings, and expectations for research involving biological specimens. Int J Circumpolar Health. 2012;71:18642.

Trinidad SB, Fullerton SM, Ludman EJ, Jarvik GP, Larson EB, Burke W. Research ethics. Research practice and participant preferences: the growing gulf. Science. 2011;331(6015):287–8.

Morales CT, Muzquiz LI, Howlett K, Azure B, Bodnar B, Finley V, et al. Partnership with the confederated Salish and Kootenai Tribes: establishing an advisory committee for pharmacogenetic research. Prog Community Health Partnership. 2016;10(2):169–70.

Claw KG, Anderson MZ, Begay RL, Tsoise KS, Fox K, Garrison NA, et al. A framework for enhancing ethical research with Indigenous communities. Nat Commun. 2018;9(1):2957.

Trinidad SB, Ludman EJ, Hopkins S, James RD, Hoeft TJ, Kinigak A, et al. Community dissemination and genetic research: moving beyond results reporting. Am J Med Genet A. 2015;167(7):1542–50.

Elm JHL, Handeland T. Momentum and longevity for trivally driven health equity science: evidence from the gathering for health project. Hum Biol. 2020;91(3):153–62.

Beans JA, Saunkeah B, Brian Woodbury R, Ketchum TS, Spicer PG, Hiratsuka VY. Community protections in American Indian and Alaska native participatory research: a scoping review. Soc Sci. 2019;8(4):127.

Hiratsuka VY, Beans JA, Robinson RF, Shaw JL, Sylvester I, Dillard DA. Self-determination in health research: an Alaska Native example of tribal ownership and research regulation. Int J Environ Res Public Health. 2017;14(11):1324.

Saunkeah B, Beans JA, Peercy MT, Hiratsuka VY, Spicer P. Extending research protections to tribal communities. Am J Bioeth. 2021; 21(10):5–12.

Garrison NA, Hudson M, Ballantyne LL, Garba I, Martinez A, Taulili M, et al. Genomic research through an indigenous lens: understanding the expectations. Annu Rev Genomics Hum Genet. 2019;20:495–517.

Fohner AE, Volk KG, Woodahl EL. Democratizing precision medicine through community engagement. Clin Pharmacol Therapeut. 2019;106(3):488–90.

Hiratsuka VY, Beans JA, Reedy J, Yracheta JM, Peercy MT, Saunkeah B, et al. Fostering ethical, legal, and social implications research in tribal communities: the center for the ethics of indigenous genomic research. J Empiric Res Hum Res Ethics. 2019;15(4):271–8.

Blanchard J, Hiratsuka V, Beans JA, Lund J, Saunkeah B, Yracheta J, et al. Power sharing, capacity building, and evolving roles in ELSE: the center for the ethics of indigenous genomic research. Collaborations. 2020;3(1):18.

Avey JP, Hiratsuka VY, Beans JA, Trinidad SB, Tyndale RF, Robinson RF. Perceptions of pharmacogenetic research to guide tobacco cessation by patients, providers and leaders in a tribal healthcare setting. Pharmacogenom. 2011;10(1):25–33.

Shaw JL, Robinson R, Starks H, Burke W, Dillard DA. Risk, reward, and the double-edged sword: perspectives on pharmacogenetic research and clinical testing among Alaska Native people. Am J Public Health. 2013;103(12):2220–5.

National Institutes of Health. NIH establishes new research in social epigenomics to address health disparities. 2017. Available from: https://www.nih.gov/news-events/news-releases/nih-establishes-new-research-social-epigenomics-address-health-disparities.

Corponi F, Fabbri C, Serretti A. Pharmacogenetics in psychiatry. Adv Pharmacol. 2018;83:297–331.

Leopold JA, Losalzalo J. Emerging role of precision medicine in cardiovascular disease. Circ Res. 2018;122(9):1302–15.

Olivera G, Sendra L, Herrero MJ, Puig C, Aliño SF. Colorectal cancer: pharmacogenetics support for the correct drug prescription. Pharmacogenomics. 2019;20(10):741–63.

Yoshida K, Nishizawa D, Ide S, Ichinohe T, Fukuda KI, Ikeda K. A pharmacogenetics approach to pain management. Neuropsychopharmacol Rep. 2018;38(1):2–8.

Khan BA, Robinson R, Fohner AE, Muzquiz LI, Schilling BD, Beans JA, et al. Cytochrome P450 genetic variation associated with tamoxifen biotransformation in American Indian and Alaska native people. Clin Transl Sci. 2018;11(3):312–21.

Dorfman EH, Brown Trinidad S, Morales CT, Howlett K, Burke W, Woodahl EL. Pharmacogenomics in diverse practice settings: implementation beyond major metropolitan areas. Pharmacogenomics. 2015;16(3):227–37.

Au NT, Reyes M, Boyer BB, Hopkins SE, Black J, O’Brien D, et al. Dietary and genetic insights from a Yup'ik Alaska Native population. Plos One. 2012;12(4):e0173616.

Conching AKS, Thayer Z. Biological pathways for historical trauma to affect health: a conceptual model focusing on epigenetic modifications. Social Sci Med. 2019;230:74–82.

Jacobs-Wingo JI, Espery DK, Groom AV, Phillips LE, Haverkamp DS, Stanley SL. Causes and disparities in death rates among urban American Indian and Alaska Native populations, 1999–2009. American journal of public health. 2016;106(5):906–14.

Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392–400.

Ocvirk S, Wilson AS, Posma JM, Li JV, Koller KR, Day GM, et al. A prospective cohort analysis of gut microbial co-metabolism in Alaska Native and rural African people at high and low risk of colorectal cancer. Am J Clin Nutr. 2020;111(2):406–19.

Zhu W, Winter MG, Byndloss MD, Spiga L, Duerkop BA, Hughes ER, et al. Precision editing of the gut microbiota ameliorates colitis. Nature. 2018;553(7687):208–11.

Kim J, Marcussen-Clavertz D, Yoshuchi K, Smyth JM. Potential benefits of integrating ecological momentary assessment data into mHealth care systems. BioPsychosoc Med. 2019;13(1):19.

Hayes DF, Markus HS, Leslie RD, Topel EJ. Personalized medicine: risk prediction, targeted therapies and mobile health technology. BMC Med. 2014;12:37.

Abul-Husn NS, Kenny EE. Personalized medicine and the power of electronic health records. Cell. 2019;177(1):58–69.

Burton LC, Anderson GF, Kues IW. Using electronic health records to help coordinate care. Milbank Q. 2004;82(3):457–81.

Slow- Carroll S, Edwards JN, Rodin D. Using electronic health records to improve quality and efficiency: the experiences of leading hospitals. Issue Brief. 2012;17(1):1–40.
68 Bihorac A, Ozrazgat-Baslanti T, Ebadi A, Motaei A, Madkour M, Pardalos PM, et al. My-SurgeryRisk: development and validation of a machine-learning Risk algorithm for major complications and death after surgery. *Ann Surg.* 2019;269(4):652–62.

69 Xu J, Wang F, Xu Z, Adekkanattu P, Brandt P, Jiang G, et al. Data-driven discovery of probable Alzheimer’s disease and related dementia subphenotypes using electronic health records. *Learn Health Syst.* 2020;4(4):e10246.

70 Lewis-Epstein O, Baruch S, Hadany L, Stein GY, Obolski U. Predicting antibiotic resistance in hospitalized patients by applying machine learning to electronic medical records. *Clin Infect Dis.* 2021;72(11):e848–55.

71 Simon GE, Johnson E, Lawrence JM, Rossom RC, Ahmedani B, Lynch FL, et al. Predicting suicide attempts and suicide deaths following outpatient visits using electronic health records. *Am J Psychiatry.* 2018;175(10):951–60.

72 Alaa AM, Bolton T, Di Angelantonio E, Rudd JHF, Van Der Schaar M. Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423, 604 UK Biobank participants. *PLoS One.* 2019;14(5):e0213653.

73 Woodahl EL, George KM. Precision medicine research Can Lead to Better health for all. *Charkoosta News.* 2019. Updated December 12, 2019. Available from: http://www.charkoosta.com/news/precision-medicine-research-can-lead-to-better-health-for-all/article_0a0d0374-1c3c-11ea-bcca-a3b2b631c16.html.

74 Blacksher E, Trinidad SB, Woodbury RB, Hopkins SE, Woodahl EL, Boyer BB, et al. Deliberations about the ethics of precision medicine research: addressing inequity and diversity in democratic deliberation design and evaluation. *J Empir Res Hum Res Ethics.* 2022;17(3):304–16.

75 Sitapati A, Kim H, Berkovich B, Marmor R, Singh S, El-Kareh R, et al. Integrated precision medicine: the role of electronic health records in delivering personalized treatment. *Wiley Interdiscip Rev Syst Biol Med.* 2017;9(3):e1378.

76 Andrews SM, Raspa M, Edwards A, Moultrie R, Turner-Brown L, Wagner L, et al. “Just tell me what’s going on”: the views of parents of children with genetic conditions regarding the research use of their child’s electronic health record. *J Am Med Inform Assoc.* 2020;27(3):429–36.

77 Angal J, Petersen JM, Tobacco D, Elliott AJ; Prenatal Alcohol in SIDS and Stillbirth Network. Ethics review for a multi-site project involving tribal nations in the Northern Plains. *J Empir Res Hum Res Ethics.* 2016;11(2):91–6.

78 Harding A, Harper B, Stone D, O’Neill C, Berger P, Harris S, et al. Conducting research with tribal communities: sovereignty, ethics, and data-sharing issues. *Environ Health Perspect.* 2012;120(1):6–10.

79 Filippi MK, Young KL, Nazir N, Williams C, Brown T, Choi WS, et al. American Indian/Alaska native willingness to provide biological samples for research purposes. *J Commun Health.* 2012;37(3):701–5.

80 Pritchard DE, Moeckel F, Villa MS, Housman LT, McCarty CA, McLeod HL. Strategies for integrating personalized medicine into healthcare practice. *Per Med.* 2017;14(2):141–52.

81 Rubanovich CK, Cheung C, Mandel J, Bloss CS. Physician preparedness for big genomic data: a review of genomic medicine education initiatives in the United States. *Hum Mol Genet.* 2018;27(R2):R250–8.

82 Arora NS, Davis JK, Kirby C, McGuire AL, Green RC, Blumenthal-Barby JS, et al. Communication challenges for nongeneticist physicians relaying clinical genomic results. *Per Med.* 2016;14(5):423–31.