Pose estimation by extended Kalman filter using noise covariance matrices based on sensor output
Ayuko SAITO*, Satoru KIZAWA2, Yoshikazu KOBAYASHI2 and Kazuto MIYAWAKI2

Abstract
This paper presents an extended Kalman filter for pose estimation using noise covariance matrices based on sensor output. Compact and lightweight nine-axis motion sensors are used for motion analysis in widely various fields such as medical welfare and sports. A nine-axis motion sensor includes a three-axis gyroscope, a three-axis accelerometer, and a three-axis magnetometer. Information obtained from the three sensors is useful for estimating joint angles using the Kalman filter. The extended Kalman filter is used widely for state estimation because it can estimate the status with a small computational load. However, determining the process and observation noise covariance matrices in the extended Kalman filter is complicated. The noise covariance matrices in the extended Kalman filter were found for this study based on the sensor output. Postural change appears in the gyroscope output because the rotational motion of the joints produces human movement. Therefore, the process noise covariance matrix was determined based on the gyroscope output. An observation noise covariance matrix was determined based on the accelerometer and magnetometer output because the two sensors’ outputs were used as observation values. During a laboratory experiment, the lower limb joint angles of three participants were measured using an optical 3D motion analysis system and nine-axis motion sensors while participants were walking. The lower limb joint angles estimated using the extended Kalman filter with noise covariance matrices based on sensor output were generally consistent with results obtained from the optical 3D motion analysis system. Furthermore, the lower limb joint angles were measured using nine-axis motion sensors while participants were running in place for about 100 seconds. The experiment results demonstrated the effectiveness of the proposed method for human pose estimation.

Keywords: Kalman filter, Motion sensor, Noise covariance matrix, Pose estimation, Sensor fusion

Introduction
Compact and lightweight nine-axis motion sensors have been developed through advances in micro-electromechanical systems technology; they have come to be used for motion analysis in widely various fields [1-8]. The nine-axis motion sensors are applicable both indoors and outdoors because of their portability. Several experiments have been conducted to measure the motion of a skier gliding down a slope and jumping off a hill using motion sensors [9,10].

The nine-axis motion sensors include a three-axis gyroscope, a three-axis accelerometer, and a three-axis magnetometer. Using information obtained from the motion sensors, several sensor fusion algorithms have been proposed for pose estimation: as one example, a sensor fusion algorithm that can correct gyroscope drift using information obtained from the other two sensors has been used for human pose estimation during daily activities and exercise [11-13]. Furthermore, a sensor fusion algorithm able to correct the magnetometer output using information obtained from a gyroscope has been used for pose estimation in a variable magnetic field [14,15]. The Kalman filter [16-20] and the complementary filter [21-25] are some pose estimation methods using sensor fusion.

The Kalman filter estimates the system state with a small computational load. Nevertheless, determining the process and observation noise covariance matrices in the Kalman filter is complicated. For a case in which the process and observation noise covariance matrices are time-invariant, the estimation accuracy might decrease if the sensor output noise increases. Moreover, the noise of the sensor output might vary because of long-term measurements. For that reason, adjusting the noise covariance matrices based on sensor output is important.
To estimate the lower limb joint angles for this study, a method was devised to determine the process and observation noise covariance matrices in the extended Kalman filter based on sensor output. The postural change appears in the gyroscope output because the rotational motion of the joints produces human movement. Therefore, the process noise covariance matrix was set based on the gyroscope output. When the accelerometer output increased, the observation noise covariance matrix was set to increase. The observation noise covariance matrix was also set to increase when the magnetometer output drastically changed. During a laboratory experiment, the lower limb joint angles of three participants were measured using an optical 3D motion analysis system and nine-axis motion sensors while the participants were walking. Several studies have demonstrated that an optical 3D motion analysis system measured human movement with high accuracy. Therefore, the system is used for verifying the pose estimation accuracy in widely diverse fields [26-29]. We verified the accuracy of the proposed method by comparing its results to those of an optical 3D motion analysis system. Furthermore, the lower limb joint angles were measured using nine-axis motion sensors while the participants were running in place. Finally, the effectiveness of the proposed method was verified using experiment results.

Measurement method

Definition of roll-pitch-yaw

The 3D posture of the sensor is represented by the roll angle (ϕ) around the x-axis, the pitch angle (θ) around the y-axis, and the yaw angle (ψ) around the z-axis. The reference coordinate system is a right-handed system with a vertical z-axis. The counterclockwise rotation is defined as positive. The reference coordinate system and the definition of the joint angles are presented in Fig. 1.

Roll-pitch-yaw calculation

For this study, Euler angles (roll, pitch, and yaw) were calculated using nine-axis motion sensors. The nine-axis motion sensor (SS-WS1792; Sports Sensing Co., Ltd.) used for this study includes a three-axis gyroscope (±1500 dps), a three-axis accelerometer (±16 G), and a three-axis magnetometer (±10 Gauss). The $38 \times 53 \times 11$ mm sensor weighs 30g.

The initial roll and pitch angles were calculated using the accelerometer output at rest [30,31]. The relation between the acceleration sensor output and the gravitational acceleration in the reference coordinate system is expressed using Eq. (1) because the accelerometer measures only the gravitational acceleration while at rest:

$$i^A = (o^R_i)^T o^A, \quad (i = 1,2,3,4)$$

where

$$i^A = \begin{bmatrix} i_A_z & 0 & 0 \\ 0 & i_A_y & 0 \\ 0 & 0 & i_A_z \end{bmatrix}, \quad o^A = \begin{bmatrix} 0 \\ 0 \\ g \end{bmatrix}.$$

Therein, i^A denotes the accelerometer output, o^A represents the acceleration in the reference coordinate system, and g stands for gravitational acceleration. For the experiment, sensors 1, 2, 3, and 4 were placed respectively on the waist, left thigh, left shank, and left foot. In addition, the rotational matrix from the sensor coordinate system to the reference system o^R_i is the following:

$$o^R_i = \begin{bmatrix} \cos i^\theta & 0 & -\sin i^\theta & 0 \\ \sin i^\theta & 0 & \cos i^\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos i^\theta & 0 & -\sin i^\theta & 0 \\ 0 & 0 & 0 & \cos i^\psi & -\sin i^\psi \\ -\sin i^\theta & 0 & \cos i^\theta & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos i^\psi & -\sin i^\psi \\ 0 & \sin i^\psi & \cos i^\psi \end{bmatrix}.$$

Then, the accelerometer output i^A is represented by substituting Eq. (2) into Eq. (1) as shown below:
The initial roll and pitch angles using Eq. (3) are:

\[i\phi_A = \tan^{-1} \frac{i\dot{a}_y}{i\dot{a}_x} \quad (\pi < i\phi_A < \pi) \quad (4) \]

\[i\theta_A = \tan^{-1} \frac{i\dot{a}_z}{\sqrt{i\dot{a}_x^2 + i\dot{a}_y^2}} \quad (\pi < i\theta_A < \pi) \quad (5) \]

where \(i\dot{a}_x, i\dot{a}_y, \) and \(i\dot{a}_z \) respectively denote the initial roll and pitch.

To correct the yaw angle, calculations require the roll \(i\phi_A \), pitch \(i\theta_A \), and magnetometer output as:

\[
\begin{bmatrix}
i\dot{\psi}_y \\
i\dot{\psi}_z \\
i\dot{\theta}_c
\end{bmatrix} = \begin{bmatrix}
\cos i\phi_A \\
0 \\
-\sin i\phi_A
\end{bmatrix} \begin{bmatrix}
i\dot{\phi}_c \\
i\dot{\theta}_c \\
i\dot{\psi}_c
\end{bmatrix} + \begin{bmatrix}
\dot{c}_{m_x} \\
\dot{c}_{m_y} \\
\dot{c}_{m_z}
\end{bmatrix}
\]

\[
\begin{align*}
i\dot{x}_{t+1} &= iF(i\psi_t, i\dot{\psi}_t) + i\omega_t, \\
i\dot{y}_t &= iH(i\dot{x}_t) + i\nu_t,
\end{align*}
\]

where

\[
iF(x, \omega) = \begin{bmatrix}
i\phi + \sin i\phi \sec i\theta \omega_y \cdot Ts + \cos i\phi \sec i\theta \omega_z \cdot Ts \\
i\theta + \cos i\phi \omega_y \cdot Ts - \sin i\phi \omega_z \cdot Ts \\
i\psi + \cos i\phi \sec i\theta \omega_z \cdot Ts + \sin i\phi \omega_y \cdot Ts
\end{bmatrix},
\]

\[
iH(x) = \begin{bmatrix}
i\dot{\psi}_c \\
i\dot{\phi}_c \\
i\dot{\theta}_c
\end{bmatrix} = \begin{bmatrix}
i\psi_t \\
i\phi_t \\
i\theta_t
\end{bmatrix}
\]

Extended Kalman filter

State-space model

The roll, pitch, and yaw angles of each sensor placed on the lower limb are estimated by the sensor fusion using the extended Kalman filter. The nonlinear state equation was developed using Eq. (9). The nonlinear observation equation was developed using Eq. (7) and the acceleration sensor output. The nonlinear state and observation equations are shown respectively in Eqs. (10) and (11):

\[
i\dot{x}_{t+1} = iF(i\psi_t, i\dot{\psi}_t) + i\omega_t, \\
i\dot{y}_t = iH(i\dot{x}_t) + i\nu_t,
\]

where

\[
iF(x, \omega) = \begin{bmatrix}
i\phi + \sin i\phi \sec i\theta \omega_y \cdot Ts + \cos i\phi \sec i\theta \omega_z \cdot Ts \\
i\theta + \cos i\phi \omega_y \cdot Ts - \sin i\phi \omega_z \cdot Ts \\
i\psi + \cos i\phi \sec i\theta \omega_z \cdot Ts + \sin i\phi \omega_y \cdot Ts
\end{bmatrix},
\]

\[
iH(x) = \begin{bmatrix}
i\dot{\psi}_c \\
i\dot{\phi}_c \\
i\dot{\theta}_c
\end{bmatrix} = \begin{bmatrix}
i\psi_t \\
i\phi_t \\
i\theta_t
\end{bmatrix}
\]
respectively denote the gyroscope outputs for the \(x, y, \) and \(z \) axes. Also, \(iA_{x_i} \), \(iA_{y_i} \), and \(iA_{z_i} \) respectively express the accelerometer output for the \(x, y, \) and \(z \) axes. Therefore, \(i\omega_i \) and \(i\nu_i \) denote white noise.

\[\text{Yaw angle } i\psi_n, \text{ which was calculated using the magnetometer output, and the accelerometer output were used as the observation values in Eq. (11). Eq. (1) represents the relation between the accelerometer output and gravitational acceleration. Consequently, the yaw angle of the state values was used in Eq. (17) for calculating the likelihood of the represented by Eqs. (10) and (11). Here, Eq. (16) and Eq. (15) are shown below:} \]

\[
\begin{align*}
\phi_i & = iA_{x_i}, \\
i\omega_t & = \frac{\partial iF(\phi_i, i\omega_i)}{\partial \phi_i}, \\
Q_t & = \frac{\partial iH(\phi_i)}{\partial \phi_i}, \\
\end{align*}
\]

\[\text{where } iQ_t = \begin{bmatrix} i\Omega_{0,t} & 0 & 0 \\ 0 & i\Omega_{\omega,t} & 0 \\ 0 & 0 & i\Omega_{\nu,t}\end{bmatrix}. \]

\[i\Omega_{\nu,t} = a\sqrt{i\omega_x^2 + i\omega_y^2 + i\omega_z^2 + b}, \]

\[i\Omega_{\omega,t} = \frac{1}{2} \sum_{j=1}^{N} \left(i\log(iB_j^2 + \frac{i\nu_j^2}{i\nu_j}) \right). \]

Noise covariance matrices based on sensor output

The process and observation noise covariance matrices in the extended Kalman filter were determined based on the state-space model dynamics and the sensor noise. The postural change appears in the gyroscope output because the rotational motion of the joints produces human movement. Consequently, the process noise covariance matrix was determined based on the gyroscope output as presented below:

\[\text{In those equations, } iP \text{ represents the error covariance matrix, } iV \text{ denotes the prediction error matrix, } iB \text{ stands for the prediction error variance matrix, and } iK \text{ denotes the Kalman gain. Therein, } iQ \text{ and } iR \text{ respectively denote the covariance matrices of process noise } i\omega_i \text{ in the nonlinear state equation and observation noise } i\nu_i \text{ in the nonlinear observation equation.} \]
Participants and experiment conditions

Three healthy participants (A, B, and C) were examined during the experiment. Anthropometric data are shown in Table 1. After maintaining the upright posture for about 5 s, the first step that a participant took was with the left foot. They were instructed to walk using a natural stride in time with a metronome (70 bpm). Measurement started simultaneously when a participant started to maintain the upright posture. The measurements finished when the participant placed the right foot flat on the floor during the sixth step. Following an explanation of the purpose and requirements of the study, the participants gave their written informed consent to participate in the study. Study approval was obtained from the Research Ethics Board, Kogakuin University, and National Institute of Technology, Akita College.

During the experiment, kinematic data were collected using an optical 3D motion analysis system (Bonita 10; Vicon Motion Systems Ltd.), two force plates (9286; Kistler Japan Co. Ltd.), and four nine-axis motion sensors in synchronization. The heel strike and toe off were ascertained from force plate data. The sensors were placed on the waist, left thigh, left shank, and left foot using double-sided tape and elastic straps. The sensor positions are presented in Fig. 2. Definitions of the length of the thigh, shank, and foot were referred from reports of earlier research studies.

![Sensor positions and sensor coordinate system.](image)

Table 1 Anthropometric data

Participant	Height [m]	Weight [kg]	Age [years]
A	1.78	60	20
B	1.72	65	20
C	1.80	56	21
In the early stance phase and the end of the swing phase, the ankle joint angle obtained from NBS (Only process noise) is much smaller than the result obtained from the optical 3D motion analysis system, whereas the ankle joint angle obtained from NBS (Only observation noise) is generally consistent with the result obtained using the optical 3D motion analysis system. The results indicate that the observation noise covariance matrix based on the gyroscope output contributed to increased accuracy at the early stance phase and at the end of the swing phase. Therefore, the process noise covariance matrix based on the gyroscope output and the observed noise covariance matrix based on the accelerometer and magnetometer output might have contributed to the increased accuracy at different phases.

For knee and hip joint angles, all results show the same tendency. However, NBS (red line) has the smallest RMSE in all results of all three joints. The results show that using both processes of noise covariance matrix based on the gyroscope output and the observed noise covariance matrix based on the accelerometer and magnetometer output might have contributed to increased accuracy. The two noise covariance matrices seem to have influenced one another.

Running experiment

Participants and experiment conditions

The nine-axis motion sensors measured lower limb joint angles of the same participants while they were running in place to verify the effectiveness of NBS when continuously capturing data of fast-moving participants. The nine-axis motion sensors were placed in the same positions as those used for the verification experiment. The measurement time was about 100 s. During the experiment, kinematic data were collected using an optical 3D motion analysis system with four nine-axis motion sensors in synchronization. Participants were instructed to run in place in time with a metronome (150 bpm) after maintaining the upright posture for about 5 s. The sampling frequencies of the nine-axis motion sensors and the optical 3D motion analysis system were 100 Hz.

Results

Table 4 shows parameters a to f for the running
Table 2 Adjusting parameters of NBS in the walking experiment.

(a) Ankle joint

Participant	Adjusting parameters	A	B	C	D	E	F
A	0.00001	0.1	0	1	0		
B	0.00001	0.1	0	1	0		
C	0.00001	0.1	0	1	0		

(b) Knee joint

Participant	Adjusting parameters	A	B	C	D	E	F
A	0.00001	0.1	0	1	0		
B	0.00001	0.1	0	1	0		
C	0.00001	0.1	0	10	0		

(c) Hip joint

Participant	Adjusting parameters	A	B	C	D	E	F
A	0.00001	0.1	0	1	0		
B	0.00001	0.1	0	1	0		
C	0.00001	0.1	0	10	0		

Fig. 3 Left lower limb joint angles during walking obtained using optical 3D motion analysis system, the extended Kalman filter using NBS, NBS (Only observation noise), NBS (Only process noise), and the extended Kalman filter using CNC (participant A).
The estimated joint angles of participant A are presented in Figs. 4, 5, and 6. In each of Figs. 4–6, panels (a) present results obtained over the entire measurement time. Panels (b) present results obtained between 33 s and 35.5 s from the start of measurements. In each of Figs. 4–6, panels (b) are used for a detailed examination of the results. Black solid curves present results obtained from the optical 3D motion analysis system. Red solid curves present results obtained from NBS. Blue solid curves present results obtained from CNC.

The estimated ankle joint angle using NBS in Fig. 4(a) changes periodically between -25° and 25° over the entire measurement time, which is generally consistent with results obtained using the optical 3D motion analysis system. The estimated ankle joint angle using CNC in Fig. 4(a) changes periodically between -70° and 0° over the entire measurement time. Although the waveform of the result obtained using CNC in Fig. 4(b) is similar to

Noise covariance matrix	Ankle joint (deg)	Knee joint (deg)	Hip joint (deg)
NBS	3.17	2.41	3.18
NBS (Only process noise)	4.80	3.24	3.41
NBS (Only observation noise)	4.71	2.57	3.22
CNC	4.88	2.54	3.24

Table 4 Adjusting parameters of NBS in the running experiment.

(a) Ankle joint

Participant	a	b	c	d	e	f
A	0.1	0	10	0	1000	0
B	0.1	0	10	0	1000	0
C	0.1	0	10	0	1000	0

(b) Knee joint

Participant	a	b	c	d	e	f
A	0.00001	0	0.1	0	1	0
B	0.00001	0	100	0	1000	0
C	0.00001	0	100	0	1000	0

(c) Hip joint

Participant	a	b	c	d	e	f
A	0.1	0	10	0	1000	0
B	0.001	0	10	0	1000	0
C	0.001	0	10	0	1000	0

1 experiment, which were determined to maximize the 16 log-likelihood in Eq. (22). From the running 17 experiment, different parameters were obtained 18 among the joints. In addition, parameters a, c, and e 19 for running measurements tended to be larger than 20 those in the walking measurement. The results 21 indicate that the noise covariance matrices for the 22 running experiment might have had larger values 23 because the process and observation noise can 24 increase if the motion velocity increases. 25 The estimated joint angles of participant A are 26 presented in Figs. 4, 5, and 6. In each of Figs. 4–7 27 measurements, Panels (a) present results obtained over the entire 3.28 time. Panels (b) present results obtained 29 between 33 s and 35.5 s from the start of 30
the result obtained using NBS, the result obtained using CNC is much smaller than that obtained using NBS. Additionally, the waveform of the result obtained using CNC has a larger dorsiflexion peak than that obtained using NBS at about 33.7, 34.4, and 35.2 s.

The estimated knee joint angle obtained using NBS in Fig. 5(a) changes periodically between 20° and 110° over the entire measurement time, which are generally consistent with the results obtained using the optical 3D motion analysis system. Whereas the estimated knee joint angle using CNC in Fig. 5(b) changes periodically between -60° and 0° over the entire measurement time. Although the waveform of the result obtained using CNC in Fig. 5(b) is similar to the result obtained using NBS, the result obtained using CNC is much smaller than that obtained using NBS. Additionally, the waveform of the result obtained using CNC has a smaller flexion peak than that obtained using NBS at about 33.6, 34.4, and 35.2 s.
The hip joint angle estimated using NBS in Fig. 6(a) changes periodically between 10° and 15° over the entire measurement time, which are generally consistent with results obtained using the optical 3D motion analysis system. The estimated knee joint angle using CNC in Fig. 6(a) changes periodically between -35° and -15° over the entire measurement time. Although the waveform of the result obtained using CNC in Fig. 6(b) is similar to the result obtained using NBS, the result obtained using CNC is much smaller than that obtained using NBS. All results obtained for the other two participants showed similar tendencies. The results demonstrated the effectiveness of the extended Kalman filter using NBS.

Conclusions

For this study, a method for ascertaining the process and observation noise covariance matrices in the extended Kalman filter based on sensor output was constructed to estimate the lower limb joint angles. The lower limb joint angles of the three healthy participants during walking and running were estimated using the method. Results yielded the following conclusions.

1. The joint angles obtained from the extended Kalman filter using the process and observation noise covariance matrices based on sensor output were generally consistent with results obtained using the optical 3D motion analysis system in the verification experiment.
2. In the running motion analysis, the results obtained using noise covariance matrices based on sensor output indicated that the estimated joint angles changed periodically within an appropriate range. The results obtained using the constant noise matrices indicated that the estimated joint angles changed abnormally.

Noise covariance matrices based on sensor output can be effective for accurate pose estimation, because noise covariance matrices can be time-variable when continuously capturing human motion with long-term measurements. The proposed methods is expected to be useful for estimating motion in sports and healthcare applications.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by JSPS KAKENHI Grant Number JP 20K19588.

Authors’ Contributions

AS conceived the study and drafted the manuscript. AS and KM carried out all experiments and analyzed the data. YK and SK participated in the research design and sequence alignment. All authors read and approved the final manuscript.

Acknowledgments

Not applicable

Author details

Department of Mechanical Science and Engineering, Kogakuin University
2665-1 Nakanomachi, Hachioji, Tokyo 192-0015, Japan
Ayuko SAITO

Department of Mechanical Engineering and Robotics, National Institute of Technology (KOSEN), Akita College, 1-1 Iijima-Bunkyo-cho, Akita 011-8511, Japan
Satoru KIZAWA, Yoshikazu KOBAYASHI and Kazuto MIYAWAKI

Corresponding author
Correspondence to Ayuko SAITO.
E-mail of corresponding author: saito@cc.kogakuin.ac.jp

References

1. King, K., Yoon, S. W., Perkins, N. C. and Najaf, K., Wireless MEMS inertial sensor system for golf swing dynamics, Sensors and Actuators A: Physical, Vol.141, No. 2 (2008), pp.619–630.
2. Favre, J., Aissaoui, R., Jolles, B. M., Guise, J. A. and Aminian, K., Functional calibration procedure for 3D knee joint angle description using inertial sensors, Journal of Biomechanics, Vol.42, No. 14 (2009), pp.2330–2335.
3. Ameli, S., Naghdy, F., Stirling, D., Naghdy, G. and Aghmesheh, M., Objective clinical gait analysis using inertial sensors and six minute walking test, Pattern Recognition, Vol.63 (2017), pp.246–257.
4. Nüesch, C., Roos, E., Pagenstert, G. and Mündermann, A., Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system, Journal of Biomechanics, Vol.57 (2017), pp.32–38.
5. Kruk, E., Schwab, A. L., Helm, F. C. T. and Veeger, H. E. J., Getting in shape: Reconstructing three-
1 dimensional long-track speed skating kinematics
2 by comparing several body pose reconstruction techniques, Journal of Biomechanics, Vol.69/57
3 (2018), pp.103–112.
4 58
5 6. Bavan, L., Surmacz, K., Beard, D., Mellon, S. and
6 Rees, J., Adherence monitoring of rehabilitation60
7 exercise with inertial sensors: A clinical validation61
8 study, Gait & Posture, Vol.70 (2019), pp.211–217. 62
9 7. Hullfish, T. J., Fu, Q., Stoeckl, B. D., Gebhard, P, 63
10 M., Mauck, R. L. and Baxter, J. R., Measuring64
11 clinically relevant knee motion with a self-65
12 calibrated wearable sensor, Journal of 66
13 Biomechanics, Vol.89, No. 24 (2019), pp.105–109.67
14 8. Nazarzahri, M., Noamani, A., Ahmadian, N. and68
15 Rouhani, H., Sensor-to-body calibration procedure69
16 for clinical motion analysis of lower limb using70
17 magnetic and inertial measurement units, Journal71
18 of Biomechanics, Vol.85, No. 6 (2019), pp.224–72
19 229. 73
20 9. Hirose, K., Doki, H., Koda, S. and Nagasaku, K., 74
21 Studies of the dynamic analysis and motion75
22 measurement of skiing turn using extended76
23 Kalman filter, Transactions of the Japan Society of77
24 Mechanical Engineers, Series C, Vol.77, No. 7748
25 (2011), pp.470–480 (in Japanese). 79
26 10. Chardonnens, J., Favre, J., Cuendet, F., Gremion, 80
27 G. and Aminian, K., A system to measure the81
28 kinematics during the entire ski jump sequence82
29 using inertial sensors, Journal of Biomechanics,83
30 Vol.46, No. 1 (2013), pp.56–62. 84
31 11. Hirose, K., Doki, H. and Kondo, A., Studies of85
32 orientation measurement in sports using inertial86
33 and magnetic field sensors, Japan Society of Sports87
34 Industry, Vol.22, No. 2 (2012), pp.255–262 (in88
35 Japanese). 89
36 12. Saito, A., Miyawaki, K., Kizawa, S. and90
37 Kobayashi, Y., A study of estimating the knee joint91
38 angle during walking using the motion sensors92
39 (Focusing on the effect of centrifugal acceleration93
40 and tangential acceleration), Transactions of the94
41 JSME, Vol.84, No. 857 (2018a), DOI:95
42 10.1299/transjsme.17-00488 (in Japanese). 96
43 13. Saito, A., Miyawaki, K., Komatsu, A. and Iwami,97
44 T., A study of sensor position for thigh and lower98
45 leg motion sensors during walking (Focusing on99
46 the knee sagittal plane angle), Transactions of the100
47 JSME, Vol.84, No. 865 (2018b), DOI:101
48 10.1299/transjsme.18-00263 (in Japanese). 102
49 14. Kondo, A., Doki, H. and Hirose, K., A study of103
50 calibration method of magnetic field sensor for104
51 body motion measurement using inertial sensor105
52 Proceedings of the Sports Engineering and Humano106
53 Dynamics (2013), DOI:107
54 10.1299/jsmeshd.2013._212-1_ (in Japanese). 108
55 15. Saito, A., Nara, Y. and Miyawaki, K., A study of109
56 estimating knee joint angle using motion sensors110
57 under conditions of magnetic field variation,111
58 Transactions of the JSME, Vol.85, No. 873 (2019),112
59 DOI: 10.1299/transjsme.19-00061 (in Japanese).113
60 16. Rigatos, G. G., Extended Kalman and Particle114
61 Filtering for sensor fusion in motion control of115
62 mobile robots, Mathematics and Computers in116
63 Simulation, Vol.81, No. 3 (2010), pp.590–607.117
64 17. Adachi, S. and Maruta, I., Fundamentals of118
65 Kalman filter (2012), pp. 95–111, Tokyo Denki119
66 University Press (in Japanese). 120
67 18. Ran, C. and Deng, Z., Self-tuning weighted121
68 measurement fusion Kalman filtering algorithm,122
69 Computational Statistics & Data Analysis, Vol.56,123
70 No. 6 (2012), pp.2112–2128. 124
71 19. Kamil, M., Chobtrong, T., Günes, E. and Haid, M.,125
72 Low-cost object tracking with MEMS sensors,126
73 Kalman filtering and simplified two-filter-smoothing, Applied Mathematics and Computation,127
74 Vol.235 (2014), pp.323–331. 128
75 20. Zheng, Z., Qiu, H., Wang, Z., Luo, S. and Lei, Y.,129
76 Data fusion based multi-rate Kalman filtering with130
77 unknown input for on-line estimation of dynamic131
78 displacements, Measurement, Vol.131 (2019),132
79 pp.211–218. 133
80 21. Baerveldt, A. J. and Klang, R., A low-cost and134
81 low-weight attitude estimation system for an135 autonomous helicopter, Proceedings of IEEE136 International Conference on Intelligent137 Engineering Systems (1997), pp.391–395. 138
82 22. Mahony, R., Hamel, T. and Pflimlin, J. M.,139 Complementary filter design on the special140 orthogonal group SO(3), Proceedings of the141 44th IEEE Conference on Decision and Control, and the142 European Control Conference 2005 (2005),143 pp.1477–1484. 144
83 23. Euston, M., Coote, P., Mahony, R., Kim, J. and145 Hamel, T., A complementary filter for attitude146 estimation of a fixed-wing UAV, Proceedings of147 2008 IEEE/RSJ International Conference of148 Intelligent Robots and Systems (2008), pp.340–149
84 345. 150
85 24. Mahony, R., Hamel, T. and Pflimlin, J. M.,151 Nonlinear complementary filters on the special152 orthogonal group, IEEE Transactions on153 Automatic Control, Vol.53, No. 5 (2008), pp.1203–154
86 1218. 155
87 25. Sugihara, T., Masuya, K. and Yamamoto, M., A156 complementary filter for high-fidelity attitude157 estimation based on decoupled linear/nonlinear158 properties of inertial sensors, Journal of the159 Robotics Society of Japan, Vol.31, No. 3 (2013),160 pp.251–262 (in Japanese).
26. Aoki, K., The brand-new technology: Motion analysis system, Journal of the Society of Biomechanisms, Vol.32, No. 3 (2008), pp.167–172 (in Japanese).
27. Ehara, Y., The VICON, Journal of the Society of Biomechanisms, Vol.32, No. 2 (2008), pp.107–111 (in Japanese).
28. Syam, P. N., Sheila, G., Graham, A., Rami, A. and Weijje, W., A method to calculate the centre of the ankle joint: A comparison with the Vicon® Plug-in-Gait model, Clinical Biomechanics, Vol.25, No. 6 (2010), pp.582–587.
29. Stief, F., Böhm, H., Michel, K., Schwirtz, A. and Döderlein, L., Reliability and accuracy in three-dimensional gait analysis: A comparison of two lower body protocols, Journal of Applied Biomechanics, Vol.29 (2013), pp.105–111.
30. Vaganay, J., Aldon, M. J. and Fournier, A., Mobile robot attitude estimation by fusion of inertial data, Proceedings of the IEEE International Conference on Robotics and Automation (1993), pp.277–282.
31. Jurman, D., Jankovec, M., Kamnik, R. and Topic, M., Calibration and data fusion solution for the miniature attitude and heading reference system, Sensors and Actuators A: Physical, Vol.138, No. 2 (2007), pp.411–420.
32. Hirose, K. and Kondo, A., Special Issues No. 3: Measurement Technique for Ergonomics, The Japanese Journal of Ergonomics, Vol.50, No. 4 (2014), pp.182–190 (in Japanese).
33. Miyamoto, G., Sonobe, M., Shibata, K. and Hirose, K., Development of gait measurement system using IMU sensors, Proceedings of the Chugoku and Shikoku Regional Conference (2019), DOI: 10.1299/jsmecs.2019.57.1001 (in Japanese).
34. Jurman, D., Jankovec, M., Kamnik, R. and Topic, M., Calibration and data fusion solution for the miniature attitude and heading reference system, Sensors and Actuators A: Physical, Vol.138, No. 2 (2007), pp.411–420.
35. Ae, M., Tang, H. and Yokoi, T., Estimation of inertia properties of the body segments in Japanese athletes, Biomechanism, Vol.11 (1992), pp.23–33 (in Japanese).
36. Yamamoto, H. and Yanagida, Y., The various patterns of knee angle in the stance phase, The Society of Physical Therapy Science, Vol.26, No. 2 (2011), pp.269–273 (in Japanese).