Research Article

Frequency and antibiotic sensitivity of gram negative bacteria isolated from raw fish sold in Karachi, Pakistan

Maha Mansoor¹, Sadaf Naeem² and Asma Naim¹*
1. Department of Microbiology, University of Karachi, Karachi, Sindh-Pakistan
2. Department of Biochemistry, University of Karachi, Karachi, Sindh-Pakistan
*Corresponding author’s email: anaem@uok.edu.pk

Citation
Maha Mansoor, Sadaf Naeem and Asma Naim. Frequency and antibiotic sensitivity of gram negative bacteria isolated from raw fish sold in Karachi, Pakistan. Pure and Applied Biology. Vol. 8, Issue 2, pp1631-1640.
http://dx.doi.org/10.19045/bspab.2019.80105

Received: 13/04/2019 Revised: 23/06/2019 Accepted: 27/06/2019 Online First: 28/06/2019

Abstract
Fish serve as an important source of nutrition and also acts as a reservoir for different pathogenic organisms. Sewage pollution in the water bodies is the major source of pathogenic bacteria in seafood. In this study, the presence of Gram negative bacteria in raw fish samples was detected and the antibiotic susceptibility pattern of the isolates was determined. A total of 25 raw fish samples were collected at random from different local markets of Karachi in sterile zip-lock plastic bags. From these samples, a total of 73 Gram negative bacterial strains were isolated. Of these 73 Gram negative isolates, 6 were E. coli, 14 K. pneumoniae, 7 E. aerogenes, 4 E. cloacae, 5 C. freundii, 1 C. koseri, 2 P. vulgaris, 3 P. mirabilis, 7 Salmonella spp., 6 Shigella spp., 2 Serratia spp., 2 Pseudomonas spp., 7 Yersinia spp., 3 Aeromonas spp. and 4 were Vibrio spp. The most abundant species among all the isolated Gram negative bacteria was Klebsiella pneumoniae (19.17%) followed by Enterobacter aerogenes (9.59%), Salmonella spp. (9.59%) and Yersinia spp. (9.59%). Antibiotic susceptibility pattern of all the Gram negative isolates was determined by Kirby-Bauer disc diffusion method in which a panel of eight antibiotics was tested. The incidence of resistance was highest against Cefazolin (93.2%) and lowest resistance was observed against Gentamicin (1.4%). Of the 73 Gram negative isolates, 24 were found to be multi-drug resistant (MDR). In conclusion, the bacteriological analysis of raw fish samples showed that the quality of raw fish was poor as high bacterial load was obtained and enteric bacteria were isolated from most of the samples indicating fecal pollution. This study provides valuable information about the prevalence of MDR Gram negative pathogens in raw fish sold locally which could be useful in the selection of antibiotics for empirical treatment.

Keywords: Enteric bacteria; Fresh fish; Karachi; Multidrug resistant; Pre-enrichment

Introduction
Fish are consumed as a major source of protein and 30% of fish comes from aquaculture for human consumption [1]. Fish is more readily available food having low fat content and is taken into consideration because it is inexpensive or low cost source of protein in comparison with beef and goat meat so, easy to access by all social classes’ individuals [2,3]. Fish are enriched with micronutrients such as Vitamin D, minerals including Iodine, Magnesium, Selenium and Zinc than animal meat or other food (e.g. plants) and its consumption is helpful in reducing hunger or minimizing the deficiency of micronutrients thereby preventing disease in underdeveloped countries [2]. The easy availability and high nutritional value of fresh fish is responsible for its preferable consumption by coastal people [4]. Karachi being a coastal city has a well-developed fishery industry. However, very little attention is given to the microbiological quality of fresh fish sold at
local markets. Proper storage and handling practices are not followed by local vendors mainly due to ignorance, lack of facilities and professional training. There are many sources of contamination of seafood which are often difficult to identify [5]. The sources of contamination of fish include improper storage conditions i.e. maintaining temperature and moisture, allowing customers to deal with fish by their own, use of ice prepared from contaminated water, keeping fish on contaminated surfaces such as weighing balance and unhygienic practices [6], the intake of fecally contaminated water by fish and consumption of those fish can cause intoxication in consumers as they may be harbouring enteric pathogens [7]. All these factors can facilitate the contamination or spoilage of fish thereby resulting in foodborne illnesses.

Due to increase in the cases of food intoxication or poisoning, it is a major concern now to consider presence of pathogens in food and its control [8]. Seafood or fish acts as a reservoir or vehicle for bacteria which are pathogenic for human and capable of causing infections [5,9]. Enteric bacteria present in seafood indicate fecal pollution of the aquatic environment [5]. A major source of food contamination is fecal contamination indicated by the presence of members of family Enterobacteriaceae such as Salmonella spp., Proteus spp., Escherichia coli and Klebsiella spp. To improve the quality of food and to reduce the occurrence of food borne illnesses proper screening of zoonotic bacterial pathogens in food is needed [10]. Most of the foodborne diseases in large proportion are caused by bacterial pathogens (76%) than by viruses (21%) followed by parasites (2.6%). Main pathogenic bacteria carried by seafood are E.coli, Salmonella enterica, Listeria monocytogenes and Vibrio spp. [11,12]. The contaminated raw or partially cooked food consumption poses a higher risk to the human health [13]. Common pathogenic bacteria of family Enterobacteriaceae which can be isolated from fish and its environment are Klebsiella spp., Citrobacter spp., Salmonella spp., E. coli and Proteus spp. [14]. Micro-organisms carried by fish are based on their environment where they are present [15]. There is very little data available regarding the prevalence of pathogenic bacteria and the antibiotic resistance in locally available fish. Therefore, this study was aimed to detect the presence of Gram negative bacteria from raw fish samples sold at local markets in Karachi, Pakistan and to evaluate the antibiotic susceptibility pattern of the Gram negative bacteria thereby assessing the quality of fish sold locally.

Materials and methods

Sample collection

A total of 25 raw fish samples were randomly collected in a sterile zip lock plastic bags separately from different shops of local markets in Karachi, Pakistan. The fish species collected for this study were Tilapia sp., Pangasius sp., Lutjanus argentimaculatus (Red snapper), Labeorohita (Rohu) and Scomberomorus guttatus (King Mackerel/Surmai).

Sample processing

Total viable count/ Total plate count

The sample was serially diluted and 0.1ml of the 10^{-3} and 10^{-4} dilution was transferred to Plate Count Agar (PCA) media plates separately to make lawn and plates were incubated at 37°C for 24-48 hours.

Pre-enrichment of sample

10 gm of fish sample was weighed and inoculated into 100 ml of Buffered Peptone Water in a flask. The flask containing sample was then incubated at 37°C for 3 hours.

Isolation of bacteria

Streaking on media plates

A loopful inoculum of pre-enriched sample was streaked on MacConkey’s Agar and on Bismuth Sulphide Agar media plates with the help of sterile wire loop to obtain isolated colonies. All the media plates were incubated at 37°C for 24 hours.
Subculture

The different types of isolated colonies were picked from different media plates and streaked on Nutrient agar media plates for the purpose of sub-culturing. All the media plates were incubated at 37°C for 24 hours.

Purification and maintenance of culture

The isolated colonies with different morphology after sub-culturing were picked and maintained on Nutrient Agar slants. These cultures were further characterized and identified biochemically.

Biochemical identification

Bergey’s manual of Systemic Bacteriology [16] was followed to identify purified cultures. The identification scheme included Gram staining and Biochemical tests i.e. Catalase test, Oxidase test, Carbohydrate fermentation test, Indole test, MR test, VP test, Citrate utilization test, Nitrate reduction test and Motility testing.

Antibiotic susceptibility testing

The antibiotic susceptibility pattern of all the isolated Gram negative bacteria was tested by Kirby-Bauer disc diffusion method [17] against the following antibiotics i.e. Chloramphenicol 30μg (C), Ceftriaxone 30μg (CRX), Cefazolin 30μg (KZ), Gentamicin 10μg (CN), Ofloxacin 5μg (OFX), Oxacillin 1μg (Ox), Tetracycline 30μg (TE) and Trimethoprim-Sulfamethoxazole 25μg (SXT).

Results

Total aerobic count was determined and a very high bacterial load was observed on Plate Count Agar from all 25 raw fish samples which was interpreted as too numerous to count (TNTC). A Total of 73 Gram negative bacterial strains were isolated. Among 73 Gram negative bacterial strains, 64 belonged to different genera of the family Enterobacteriaceae (i.e. Escherichia, Klebsiella, Enterobacter, Salmonella, Shigella, Citrobacter, Serratia, Proteus and Yersinia), while 9 belonged to non-Enterobacteriaceae genera (i.e. Pseudomonas, Aeromonas and Vibrio). The most frequently isolated Gram negative bacteria was found to be Klebsiella pneumoniae (19.17%) followed by Enterobacter aerogenes, Salmonella spp., and Yersinia spp. (9.6% each) (Table 1).

Antibiotic susceptibility pattern of all the Gram negative isolates was determined against Ofloxacin (5μg), Gentamycin (10μg), Trimethoprim-Sulfamethoxazole or Co-trimoxazole (25μg), Chloramphenicol (30μg), Cefazolin (30μg), Ceftriaxone (30μg), Tetracycline (30μg) and Oxacillin (1μg). The resistance pattern of the isolated Gram negative bacteria against different antibiotics is given in (Table 2). The highest number of organisms were resistant to Cefazolin (93.15%) followed by Oxacillin (89.04%) and Ceftriaxone (30%) while maximum number of organisms were susceptible to Gentamicin (98.63%) followed by Ofloxacin (93.15%) and Chloramphenicol (93.15%).

Of the 73 Gram negative isolates obtained from fish, 24 were resistant to multiple drugs, however none of the isolates of genus Proteus showed multidrug resistance. Highest frequency of multidrug resistance was observed among Yersinia spp. and Salmonella spp. followed by Serratia marcescens, Pseudomonas, Escherichia coli, Enterobacter aerogenes and Citrobacter freundii (Table 3).

The resistance of bacteria with respect to the number of antibiotics is given in (Figure 1). The highest number of isolates were resistant to a combination of two antibiotics and none of the isolates were resistant to all the antibiotics tested. Few strains were sensitive to all the eight antibiotics tested and organisms were found to be tolerant to a maximum of six antibiotics simultaneously. The occurrence of multidrug resistance (MDR) was also noted among the different species of Gram negative bacteria isolated. Salmonella (57%) and Yersenia (57%) species exhibited the highest rate of MDR strains, followed by E. coli (50%) (Table 4).
Table 1. Frequency of gram negative bacteria isolated from fish samples

Gram negative bacteria	Number (#)	Percentage (%)
Escherichia coli	6	8.22
Enterobacter aerogenes	7	9.59
Enterobacter cloacae	4	5.48
Citrobacterfreundii	5	6.85
Citrobacterkoseri	1	1.37
Klebsiella pneumoniae	14	19.17
Proteus vulgaris	2	2.74
Proteus mirabilis	3	4.11
Salmonella spp.	7	9.59
Shigella spp.	6	8.22
Serratia spp.	2	2.74
Yersinia spp.	7	9.59
Pseudomonas spp.	2	2.74
Aeromonas spp.	3	4.11
Vibrio spp.	4	5.49
Total	**73**	**100**

Table 2. Antibiotic susceptibility pattern of gram negative bacteria (n=73)

Antibiotics	Frequency of isolates	Resistant	Intermediate	Susceptible						
		No.	%	Average zone of inhibition (mm)+SD	No.	%Ag	Average zone of inhibition (mm)+SD	No.	%Age	Average zone of inhibition (mm)+SD
Chloramphenicol (30μg)		02	2.74	5.5 ± 6.40	3	4.11	14 ± 1.73	68	93.15	26.13 ± 5.31
Cefazolin (30μg)		68	93.15	4.02 ±6.54	02	2.74	23 ± 1.41	03	4.11	29.33 ± 4.93
Trimethoprim-sulfamethoxazole (25μg)		05	6.85	0	01	1.37	14 ± 0	57	78.08	26.51 ± 4.85
Gentamicin (10μg)		00	0.00	0	01	1.37	14 ± 0	72	98.63	19.15 ± 3.44
Ofloxacin (5μg)		03	4.12	11 ± 1.73	02	2.74	14 ± 0	68	93.15	28.39 ± 6.65
Oxacillin (1μg)		65	89.04	9 ± 0	01	1.36	12 ± 0	07	9.58	20.42 ± 6.94
Ceftriaxone (30μg)		19	26.02	17.35 ± 5.64	14	19.18	23.94 ± 0.680	40	54.79	28.69 ± 3.67
Tetracycline (30μg)		04	5.48	5.25 ± 6.07	05	6.84	12.6 ± 0.894	64	87.67	23 ± 6.10
Table 3. Antibiotic resistance profile of different species of gram negative isolates from fish samples

Gram negative isolates	No.	C	KZ	SXT	CN	OFX	Ox	CRX	TE
Escherichia coli	6	-	6(100)	1(17)	-	1(17)	6(100)	3(50)	-
Enterobacter aerogenes	7	1(14)	7(100)	1(14)	-	-	7(100)	3(43)	1(14)
Enterobacter cloacae	4	-	3(75)	-	-	-	4(100)	-	1(25)
Citrobacter freundii	5	-	3(60)	1(20)	-	-	2(40)	3(60)	-
Citrobacter koseri	1	-	1(100)	-	-	-	1(100)	-	-
Klebsiella pneumoniae	14	-	14(100)	2(14)	-	1(7)	14(100)	1(7)	-
Proteus vulgaris	2	-	2(100)	-	-	-	2(100)	-	-
Proteus mirabilis	3	-	3(100)	-	-	-	3(100)	-	-
Salmonella spp.	7	1(14)	6(86)	2(29)	-	-	6(86)	3(43)	-
Shigella spp.	6	-	5(83)	-	-	-	4(67)	1(17)	1(17)
Serratia spp.	2	-	2(100)	-	-	-	-	1(50)	-
Yersinia spp.	7	-	7(100)	-	-	-	7(100)	3(43)	1(14)
Pseudomonas spp.	2	1(50)	2(100)	-	-	-	2(100)	1(50)	-
Aeromonas spp.	3	1(33)	3(100)	-	-	1(33)	-	2(67)	1(33)
Vibrio spp.	4	-	4(100)	-	1(25)	-	4(100)	1(25)	-
Total	**73**	**4**	**68(93.2)**	**6(8.2)**	**1(1.4)**	**3(4)**	**62(85)**	**22**	**(30)**

C=Chloramphenicol, KZ=Cefazolin, SXT=Trimethoprim-sulfamethoxazole, CN=Gentamicin, OFX=Ofloxacin, Ox=Oxacillin, CRX=Ceftriaxone and TE=Tetracycline

Figure 1. Multidrug resistant gram negative bacteria with respect to the number of antibiotics
Table 4. Frequency of multidrug resistance among different species of gram negative fish isolates

Gram negative bacteria	Total number of isolates	Multiple antibiotic resistant organisms	
		Number (#)	Percentage (%)
Escherichia coli	6	3	50
Enterobacter aerogenes	7	2	28.57
Enterobacter cloacae	4	1	25
Citrobacter freundii	5	2	40
Citrobacter koseri	1	-	-
Klebsiella pneumoniae	14	3	21.43
Proteus vulgaris	2	-	-
Proteus mirabilis	3	-	-
Salmonella spp.	7	4	57.14
Shigella spp.	6	1	16.66
Serratia spp.	2	1	50
Yersinia spp.	7	4	57.14
Pseudomonas spp.	2	1	50
Aeromonas spp.	3	1	33.33
Vibrio spp.	4	1	25
Total	**73**	**24**	**100**
Percentage	**100**	**32.87**	**100**

Discussion

The prevalence of antibiotic resistant bacteria in fish is a public health concern. In the present study, total aerobic count was performed to assess the hygienic quality of fish. The results represented that the fish were of poor quality and unsafe to consume without proper washing and cooking as high bacterial load was observed on Plate Count Agar in form of uncountable colonies which was interpreted as too numerous to count (TNTC). Ghosh and Mandal [18] also reported a high viable bacterial count (25.1+0.28x10^6 CFUg^-1) in gills of fish. In another study, a very high total viable count (TVC) was observed in fresh fish in comparison with frozen fish. The main reason for low bacterial load in frozen fish is the storage temperature that facilitates the inactivation of bacterial enzymes ceasing their cellular activity and division [19].

In this study, Gram negative bacteria identified as *Escherichia coli*, *Klebsiella pneumoniae*, *Enterobacter aerogenes*, *Enterobacter cloacae*, *Proteus mirabilis*, *Proteus vulgaris*, *Salmonella* spp., *Shigella* spp., *Citrobacter freundii*, *Pseudomonas* spp., *Serratia marcesens*, *Yersinia* spp., *Aeromonas* spp. and *Vibrio* spp. were isolated from fish samples. These opportunistic and potential pathogenic organisms have also been reported in other studies from different parts of the world [20-24]. The members of the family Enterobacteriaceae are universally considered as a marker of hygienic quality of food and water [25]. In this study, the most frequently isolated Gram negative bacteria was found to be *Klebsiella pneumoniae* (19.17%) which could be due to the unhygienic processing of fish and fecal contamination, as *Klebsiella* are not only found in the mucosal lining of mammals where they colonize and contribute towards the source of fecal contamination of food but are also common in the environment i.e. water, sewage, soil and plants [26].

Antibiotic susceptibility pattern of the Gram negative bacteria isolated from raw fish was also determined against eight commonly used antibiotics representing different classes of antibiotics. Most of the isolates were found to be resistant to Cefazolin (93.2%) and Oxacillin (85%)
while Gentamicin and Ofloxacin were the most effective antibiotics against these isolates. In this study, 24 bacterial strains out of 73 were found to be multidrug resistant. Organisms exhibiting resistance to 3 or more antibiotics were considered as multidrug resistant (MDR). High frequency of MDR bacteria in fish have also been reported by Matyar et al. [27] from Turkey, Schmidt et al. [28] from Denmark and Chelossi et al. [29] from Western Mediterranean fish farms. The prevalence of antibiotic resistant pathogenic bacteria in fish in the current study concurs with the findings of Agoba et al.[30] and Barat et al. [31] who have also reported a high rate of antibiotic resistance among Gram negative bacteria. The emergence of antimicrobial resistance which can be due to different mechanisms like organism is naturally resistant, horizontal transfer of resistance genes from one organism to another, unnecessary addition of antibiotics in animal feed to increase their productivity and also the overuse of antimicrobial agents result in the spread of antibiotic resistance among pathogenic bacteria. Otherwise these antimicrobial agents are used for the prevention of diseases and in the maintenance of health in its appropriate use [32].

Cefazolin is the first generation Cephalosporin which inhibits cell wall synthesis by binding Penicillin binding proteins to stop peptidoglycan synthesis. In this study, 93.15% resistance was observed. In a previous study, 15-48% resistance was reported against Cefazolin from fish farm samples [33]. In case of Oxacillin, 89.04% resistance was observed which is higher than 15.8% resistance reported by Schmidt et al. [28]. Ceftriaxone, a third generation Cephalosporin, works by inhibiting bacterial cell wall synthesis after binding to penicillin-binding proteins (PBP) or transpeptidases preventing the cross linking of peptidoglycan. In this study, 30% of the isolates were resistant to this antibiotic. However, de Almeida et al. [34] reported a single isolate resistant to Ceftriaxone and Verner-Jeffreys et al. [35] reported all the isolates susceptible to it, which are contrasting to current findings. In this study, 9.6% isolates were resistant to trimethoprim-sulfamethoxazole, a bactericidal drug which works by inhibiting folic acid synthesis. This finding is consistent with the 0-15% resistance reported by Newaj-Fyzul et al. [36] but lower than 23.4% resistance reported by Brahmi et al.[37] in bacteria including E. coli, K. pneumoniae and Enterobacter isolates.

Tetracycline is a bacteriostatic drug and inhibits bacterial protein synthesis. In this study, only 6.8% resistance was observed to tetracycline among the isolated Gram negative bacteria which is much lower than the 52% reported by Newaj-Fyzul et al. [36]. In this study, only 5.5% isolates were resistant to Chloramphenicol. Verner-Jeffreys et al. [35] reported a high resistance (56%) to chloramphenicol in their fish isolates. Ofloxacin, a broad spectrum second generation fluoroquinolone drug acts by inhibiting DNA gyrase or topoisomerase IV to inhibit bacterial cell division. In this study, 4.1% resistance was observed by the isolated Gram negative bacteria. Similar findings of low resistance to ofloxacin was also reported in a previous study where out of 94 clinical isolates from fish, 78% to 80% of isolates (members of family Enterobacteriaceae and Staphylococcus) were susceptible to Ofloxacin [32]. Gentamicin, a member of aminoglycoside drug whose mode of action is to inhibit the protein synthesis by binding with 30s ribosomal subunit was found to be the most effective antibiotic. In this study, only a single isolate belonging to Vibrio spp. was resistant to Gentamicin. Similar findings were reported by Kathleen et al. [38] where 1.1% isolates were also resistant to gentamicin. In another study, 50% to 90% of bacterial isolates among which most were Gram negative and member of family
Enterobacteriaceae showed susceptibility to Gentamicin [32].

The differences in the antibiotic resistance pattern of these isolates from other researches could be due to the fact that fish sold in the local market are the catch from natural marine waters while most of the reported studies are based on the samples obtained from aquacultures and also bacterial flora differs among various geographical regions.

The quality of fish can be maintained or food products can be saved not only from pathogenic bacterial species but also from other micro-organisms by following the guidelines provided by Centre for Disease Control and Prevention (CDC), The International Commission on Microbiological Specifications for Foods (ICMSF) and Hazard Analysis Critical Control Point (HACCP). Fish should be microbiologically examined for the presence of pathogens especially enteric pathogens (belonging to family Enterobacteriaceae), hygienic practices should be followed during collection, processing, transportation and distribution of food. Fish processing environment, equipment and storage conditions such as appropriate cold temperature and humidity should also be maintained and fish should be properly cooked before it is consumed in order to prevent foodborne illnesses or food poisoning.

Conclusion

In this study a number of Gram negative food-borne pathogens were isolated from raw fish samples including *E. coli*, *Klebsiella* spp., *Enterobacter* spp., *Citrobacter* spp., *Proteus* spp., *Salmonella* spp., *Shigella* spp., *Serratia* spp., *Pseudomonas* spp., *Yersinia* spp., *Aeromonas* spp. and *Vibrio* spp. Resistance against different antibiotics was also observed by most of the isolates and some isolates also showed multidrug resistance. So, it is important to assess the quality of fish before it is being consumed and to consider the emergence of resistance among Gram negative bacteria by the observed isolates because they are a threat to public health worldwide and difficult to treat. Efforts should be directed to improve the quality of fish sold at local markets and proper storage facilities should be provided to the vendors/merchants.

Authors’ contributions

Conceived and designed the experiments: A Naim, Performed the experiments: M Mansoor, A Naim & S Naem, Analyzed the data: A Naim & M Mansoor, Contributed materials/analysis/tools: A Naim & S Naem, Wrote the paper: A Naim & M Mansoor.

References

1. Hastein T, Hjeltnes B, Lillegaard A, Skare JU, Berntssen M & Lundbye AK (2006). Food Safety hazards that occur during the production stage: challenges for fish farming and the fishing industry. *Rev Sci Technol* 25(2): 607–625.

2. Mohanty BP, Mahanty A, Ganguly S, Mitra T, Karunakaran D & Anandan R (2017). Nutritional composition of food fishes and their importance in providing food and nutritional security. *Food Chem* 2017.11.039.

3. Eltholth M, Fornace K, Grace D, Rushton J & Häslar B (2015). Characterisation of production, marketing and consumption patterns of farmed tilapia in the Nile Delta of Egypt. *Food Policy* 51:131–143.

4. Forsythe SJ (2010). The microbiology of safe food. 2nd Ed. Wiley-Blackwell, United Kingdom.

5. Kumar S, Lekshmi M, Parvathi A, Nayak BB & Varela MF (2017). Antibiotic resistance in seafood-borne pathogens. In: Singh OV, editor, Foodborne pathogens and antibiotic resistance. 1st Edition, John Wiley & Sons, Inc.

6. Chen HC & Chang PCM (2004). Frozen seafood safety and HACCP. In: Hui YH, Legarretta IG, Lim MH, Murrell KD, Nip W, editors, Handbook of frozen food. New York Marcel Dekker. pp 339-365.
7. Rani MK, Chelladurai G & Jayanthi G (2016). Isolation and identification of bacteria from marine market fish Scomberomorus guttatus (Bloch and Schneider, 1801) from Madurai District, Tamil Nadu, India. *J Parasit Dis* 40(3): 1062–1065.

8. Al Mutairi MF (2011). The incidence of Enterobacteriaceae causing food poisoning in some meat products. *Adv J Food Sci Technol* 3(2): 116–121.

9. Kromhout D, Bosschieter EB & de Lezenne CC (1985). The inverse relation between fish consumption and 20-year mortality from coronary heart disease. *N Engl J Med* 312: 1205–1209.

10. Gwida M, Hotzel H, Geue L & Tomaso H (2014). Occurrence of Enterobacteriaceae in raw meat and in human samples from Egyptian retail sellers. *Inter Sch Res Notices* Vol 2014, ID: 565671, 6 pages.

11. Adebayo-Tayo BC, Odu NN, Anyamele LM, Igwilohe NJPN & Okonko IO (2012). Microbial quality of frozen fish sold in uyo metropolils. *Nat Sci* 10(3): 71–77.

12. Eze EI, Echezona BC & Uzodinma EC (2011). Isolation and identification of pathogenic bacteria associated with frozen mackerel fish (Scomberscombris) in a humid tropical environment. *Afr J Agric Res* 6(7): 1918–1922.

13. Huss HH (1997). Control of indigenous pathogenic bacteria in seafood. *Food Control* 8(2): 91–98.

14. Borkar P, Tembhre M & Garg RK (2017). Study on isolation and characterization of Enterobacteriaceae in teleost fish of Bhopal lakes. *Asian J ExpSci* 31(1): 25–29.

15. Sichewo PR, Gono RK, Muzvondiwa JV & Sizanobuhle N (2013). Isolation and identification of pathogenic bacteria in edible fish: A case study of Fletcher Dam in Gweru, Zimbabwe. *Inter J SciRes* 2(9): 269–273.

16. Holt JG, Krieg PH, Sneath JT & Williams ST (1994). Bergey’s manual of determinative bacteriology. 9th Ed William and Wilkins, London.

17. Afshan S, Naim A & Saeed S (2006). Prevalence of antibiotic resistant bacterial pathogens isolated from conjunctivitis. *Inter J Biol Biotech* 3(4): 739–743.

18. Ghosh K & Mandal S (2010). Antibiotic resistant bacteria in consumable fishes from Digha coast, West Bengal, India. *Proc Zool Soc* 63(1): 13-20.

19. Pohooro A & Ranghoo-Sanmukhiya VM (2016). Food-borne bacterial load in fresh and frozen fish sold in Mauritius. *Inter Food Res J* 24(5).

20. Shokr NM, Mahmoud A & Ibrahim MS (2018). Detection of E. coli in Nile Tilapia from retail in Gharbiya Governorate. *Alexandria J Vet Sci* 59(1): 76-84.

21. Ibrahim M, Al Shabeeb SS, Al Ramadhan GH & Imran PM (2017). Isolation of Enterobacteriaceae from raw seafoods sold in fish markets in Eastern province of Saudi Arabia. *Int J Adv Res* 5(3): 1711-1718.

22. Mhango M, Mpuchane SF & Gashe BA (2010). Incidence of indicator organisms, opportunistic and pathogenic bacteria in Fish. *Afr J Food Agri Nut Dev* 10(10): 4202-4218.

23. Davies AR, Capell C, Jehanno D, Nychas GJE & Kirby RM (2001). Incidence of food borne pathogens in European fish. *Food Control* 2: 67-71.

24. Papadopoulou C, Economou E, Zakas G, Salamoura C, Dontorou C & Apostolou J (2007). Microbiological and pathogenic contaminants of sea food in Greece. *J Food Qual* 30: 28-42.

25. Jordan D, Phillips D, Sumner J, Morris S & Jenson I (2007). Relationships between the density of different indicator organisms on sheep and beef carcasses and in frozen beef and sheep meat. *J Appl Microbiol* 102(1): 57-64.
26. Podschun R & Ullmann U (1998). Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4): 589-603.

27. Matyar F, Dincer S, Kaya A and Colak O (2004). Prevalence and resistance to antibiotics in Gram negative bacteria isolated from retail fish in Turkey. Annals Microbiol 54(2): 151-160.

28. Schmidt AS, Bruun MS, Dalsgaard I, Pedersen K & Larsen JL (2000). Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four Danish rainbow trout farms. Appl Environ Microbiol 66(11): 4908-4915.

29. Chelossi E, Vezzuli L, Milano A, Branzoni M, Fabiano M, Riccardi G and Banat IM (2003). Antibiotic resistance of benthic bacteria in fish-farm and control sediments of the Western Mediterranean. Aquaculture 219: 83-97.

30. Agoba EE, Adu F, Agyare C, Boamah VE & Boakye YD (2017). Antibiotic resistance patterns of bacterial isolates from hatcheries and selected fish farms in the Ashanti region of Ghana. J Microbiol Antimicrob 9(4): 35-46.

31. Saha D & Pal J (2002). In vitro antibiotic susceptibility of bacteria isolated from EUS-affected fishes in India. Lett Appl Microbiol 34: 311-316.

32. Njoku OE, Agwa OK & Ibiene AA (2015). Antibiotic susceptibility profile of bacteria isolates from some fish ponds in niger delta region of Nigeria. Brit Microbiol Res J 7(4): 167-173.

33. Su H, Ying G, Tao R, Zhang R, Fogarty LR & Kolpinc DW (2011). Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in south China. J Environ Monit 13: 3229-3236.

34. De Almeida MVA, Cangussú IM, de Carvalho ALS, Brito ILP & Costa RA (2017). Drug resistance, AmpC-β-lactamase and extended-spectrum β-lactamase-producing Enterobacteriaceae isolated from fish and shrimp. Rev Inst Med trop S Paulo Vol 59 São Paulo.

35. Verner-Jeffreys DW, Welch TJ, Schwarz T, Pond MJ, Woodward MJ, Haig SJ, Rimmer GSE, Roberts E, Morrison V & Baker-Austin C (2009). High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS One 4(12): e8388.

36. Newaj-Fyzul A, Mutani A, Ramsbhad A & Adesiyun A (2008). Prevalence of bacterial pathogens and their antimicrobial resistance in Tilapia and their pond water in Trinidad. Zoonoses Public Health 55: 206-213.

37. Brahmi S, Touati A, Dunyach-Remy C, Soto A, Pantel A & Lavigne J (2018). High prevalence of extended-spectrum beta-lactamase producing Enterobacteriaceae in wild fish from the Mediterranean Sea in Algeria. Microb Drug Resist 24(3): 290-298.

38. Kathleen MM, Samuel L, Felecia C, Reagan EL, Kasing A, Lesley M, &Toh SC (2016). Antibiotic resistance of diverse bacteria from aquaculture in Borneo. Inter J Microbiol ID: 2164761, 9 pages.