Evolution of Tetragonal Phase in the FeSe Wire Fabricated by a Novel Chemical-Transformation Powder-in-Tube Process

Hiroki Izawa, Yoshikazu Mizuguchi, Toshinori Ozaki, Yoshihiko Takano, and Osuke Miura

Department of Electrical and Electronic Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

1 National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

Received June 20, 2011; accepted July 30, 2011; published online December 13, 2011

We fabricated superconducting FeSe wires by the chemical-transformation powder-in-tube (PIT) process. The obvious correlation between annealing temperature and phase transformation was observed. Annealing above 500 °C produced wire-core transformation from hexagonal to tetragonal phase. Furthermore the hexagonal phase completely transformed into the tetragonal phase by annealing at 1000 °C. With increasing annealing temperature, the superconducting property was dramatically improved, associated with the evolution of the tetragonal phase.

© 2012 The Japan Society of Applied Physics

1. Introduction

Fe-based superconductor is one of the candidate materials for superconducting applications, owing to the high transition temperature (Tc) and high upper critical field (Hc2).1-10 Several kinds of Fe-based superconducting wires have been fabricated using the superconducting materials of BaFe2As2, SmFeAsO, and FeSe systems.11-18 To date, the highest record of critical current density (Jc) over 10⁴ A/cm² at 4.2 K was achieved in the Ba1-xKxFe2As2 wire.12

Among the Fe-based superconducting materials, FeSe has several advantages for application because of the simplest crystal structure and composition.10,19-22 Low anisotropy23-25 and relatively low toxicity compared to the FeAs-based compounds are also advantageous for applications. Furthermore, the Tc of FeSe was enhanced up to 37 K under high pressure of 4-6 GPa, while the ambient Tc is only ~10 K.26-29 Large enhancements of Tc have been observed in strain-stressed Fe-chalcogenide thin films, bulk poly crystals, and wires as well.30,31 In these respects, Fe-chalcogenide superconductor is a great candidate material used in superconducting application. However, the present record of the highest Jc in Fe-chalcogenide wires is 1027 A/cm² at 4.2 K,35 10 times as low as that of FeAs-based wires. To achieve higher Jc using Fe-chalcogenide superconductors, a new wire fabrication process should be created.

Recently we reported a successful fabrication of FeSe superconducting wire by an unconventional powder-in-tube (PIT) method based on chemical transformation of the wire core using an Fe sheath. Via a wire fabrication process, the wire core transformed from hexagonal FeSe₁₋₄ (non-superconducting) to tetragonal FeSe (superconducting) upon a diffusion of Fe from the pure Fe sheath by annealing.32 In this article, we report a systematic study on the annealing temperature dependences of structural changes and transport properties of the FeSe superconducting wires fabricated by the chemical-transformation PIT process.

2. Experimental Methods

FeSe superconducting wires were fabricated by the chemical-transformation PIT process. Figure 1 shows a schematic chart for wire fabrication process. Firstly, we synthesized precursor powders of hexagonal FeSe₁₋₂ by solid state reaction. Pure Fe powder (99.9%) and pure Se chips (99.9999%) were used as starting materials. These materials were sealed into an evacuated quartz tube, and heated at 700 °C for 10 h. The obtained precursor was packed into a pure Fe tube with outer and inner diameters of 6.2 and 4.0 mm, respectively. The tube sealed with two edge caps of pure Fe was groove-rolled into a rectangular wire with a size of ~2 mm. The obtained wire was cut into several pieces, sealed into an evacuated quartz tube, and then annealed at various annealing temperature (Ta) of 400-1000 °C. The cross section of the wire was observed using an optical microscope. The crystal structure was characterized by X-ray diffraction (XRD) using a Cu Kα radiation. Temperature dependence of total resistivity down to 2 K was measured using a four-terminal method, where the total resistivity was estimated using the total cross-sectional area including Fe sheath.

3. Results and Discussion

Figure 2 shows the optical-microscope images of the obtained cross section for Ta = (a) 400, (b) 800, and (c) 1000 °C, respectively. Dense core without voids was observed for all specimens.

Figure 3 shows the XRD patterns for the FeSe₁₋₂ precursor and wire core annealed at 400-1000 °C. The peaks of FeSe₁₋₂ precursor was well indexed using the hexagonal space group of P6₃/mmc. The estimated lattice parameters were a = 3.602(2) Å and c = 5.894(6) Å. With increasing Ta, peaks of the hexagonal phase were suppressed, in contrast the peaks of tetragonal phase were appeared. For Ta > 500 °C, the ratio of the tetragonal phase to the hexagonal phase was over 70%. Finally, the peaks of the hexagonal phase disappeared at Ta = 1000 °C, while a small peak of Fe was detected. The lattice constants of the tetragonal phase were estimated to be a = 3.777(2) Å and c = 5.535(7) Å. To discuss the evolution of the hexagonal-tetragonal transformation by annealing, we plotted the Ta dependence of the existence ratio of the hexagonal phase in Fig. 4. The ratio of the hexagonal phase was defined as Ihex/(Ihex + Itet), where Ihex and Itet were the first peak intensities for the hexagonal and tetragonal phase, respectively. Dramatic changes were observed at two critical points. The first critical Ta exists between 400 and 500 °C. The second critical Ta is between 900 and 1000 °C. This shows that the annealing temperature would be a key parameter of FeSe wire fabrication process.

Figure 5 shows the temperature dependence of total resistivity from 50 to 2 K for Ta = 400-1000 °C. With increasing Ta, the drop of resistivity corresponding to...
superconducting transition became larger and transition became sharper. Figure 6 shows the annealing temperature dependence of T_{onset} and T_{offset}, where the resistivity was 90 and 10% of normal-state resistivity just above T_c, respectively. Both T_{onset} and T_{offset} were enhanced with increasing T_a. A dramatic enhance of T_{onset} was observed around $T_a = 400{\pm}500 \degree C$, at which the hexagonal-tetragonal transformation was activated. For $T_a > 600 \degree C$, T_{offset} was observed and strongly enhanced with increasing T_a, while the XRD patterns showed almost no differences. This indicates annealing at a higher temperature enhances connectivity of boundary between the sheath and the superconducting core. For $T_a = 1000 \degree C$, a large enhance of T_{onset} and T_{offset} were observed, and the highest critical current density of 218 A/cm2 (at 4.2 K and 0 T) was obtained for this wire as reported in ref. 16. These tendencies seem to correspond with that in Fig. 4, indicating that the annealing temperature is one of the most important parameter to enhance transport properties of FeSe wire as well. By optimization of annealing conditions, the transport properties of FeSe wire will be greatly enhanced.

4. Summary

We fabricated superconducting FeSe wires by the novel chemical-transformation PIT process, and investigated annealing temperature dependence of structural and superconducting properties. The obvious correlation between annealing temperature and phase transformation was observed. Annealing above 500 $\degree C$ produced the wire-core transformation from hexagonal to tetragonal phase. Furthermore the hexagonal phase completely transformed into the tetragonal phase by annealing at 1000 $\degree C$. With increasing...
annealing temperature, the superconducting property was improved, associated with the evolution of tetragonal phase.

Acknowledgement

This work was partly supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

1) Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono: J. Am. Chem. Soc. 130 (2008) 3296.
2) Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono: J. Am. Chem. Soc. 128 (2006) 10012.
3) Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao: Chin. Phys. Lett. 25 (2008) 2215.
4) H. Kito, H. Eisaki, and A. Iyo: J. Phys. Soc. Jpn. 77 (2008) 063707.
5) M. Rotter, M. Tegel, and D. Johrendt: Phys. Rev. Lett. 101 (2008) 107006.
6) X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin: Solid State Commun. 148 (2008) 538.
7) K. Ishida, Y. Nakai, and H. Hosono: J. Phys. Soc. Jpn. 78 (2009) 062001.
8) Y. Mizuguchi and Y. Takano: J. Phys. Soc. Jpn. 79 (2010) 102001.
9) Y. Mizuguchi and Y. Takano: Z. Kristallogr. 226 (2011) 417.
10) F. C. Hsu, J. Y. Luo, K. W. The, T. K. Chen, W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. Y. Yan, and M. K. Wu: Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 14262.
11) Y. Mizuguchi, K. Deguchi, S. Tsuda, T. Yamaguchi, H. Takeya, H. Kumakura, and Y. Takano: Appl. Phys. Express 2 (2009) 063004.
12) K. Togano, A. Matsumoto, and H. Kumakura: Appl. Phys. Express 4 (2011) 043101.
13) Y. Ma, L. Wang, Y. Qi, Z. Gao, D. Wang, and X. Zhang: IEEE Trans. Supercond. 21 (2011) 2878.
14) M. Fujioka, T. Kota, M. Matoba, T. Ozaki, Y. Takano, H. Kumakura, and Y. Kamihara: Appl. Phys. Express 4 (2011) 063102.
15) T. Ozaki, K. Deguchi, Y. Mizuguchi, Y. Kawasaki, T. Tanaka, T. Yamaguchi, H. Kumakura, and Y. Takano: arXiv:1103.3602.
16) T. Ozaki, K. Deguchi, Y. Mizuguchi, Y. Kawasaki, T. Tanaka, T. Yamaguchi, S. Tsuda, H. Kumakura, and Y. Takano: arXiv:1103.0402.
17) T. Ozaki, K. Deguchi, Y. Mizuguchi, H. Kumakura, and Y. Takano: IEEE Trans. Appl. Supercond. 21 (2011) 2858.
18) Z. Gao, Y. Qi, L. Wang, D. Wang, X. Zhang, C. Yao, and Y. Ma: Supercond. Sci. Technol 24 (2011) 065022.
19) K. W. Yeh, T. W. Huang, Y. L. Huang, T. K. Chen, F. C. Hsu, P. M. Wu, Y. C. Lee, Y. Y. Chu, C. L. Chen, J. Y. Luo, D. Y. Yan, and M. K. Wu: Europhys. Lett. 84 (2008) 37002.
20) M. H. Fang, L. Spinu, B. Qian, H. M. Pham, T. J. Liu, E. K. Vehstedt, Y. Liu, and Z. Q. Mao: Phys. Rev. B 78 (2008) 224503.
21) Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano: J. Phys. Soc. Jpn. 78 (2009) 074712.
22) Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano: Appl. Phys. Lett. 94 (2009) 012503.
23) T. Kida, M. Kotani, Y. Mizuguchi, Y. Takano, and M. Hagiwara: J. Phys. Soc. Jpn. 79 (2010) 074706.
24) H. Lei, R. Hu, E. S. Choi, J. B. Warren, and C. Petrovic: Phys. Rev. B 81 (2010) 184522.
25) Y. Mizuguchi, K. Deguchi, Y. Kawasaki, T. Ozaki, M. Nagao, S. Tsuda, T. Yamaguchi, and Y. Takano: J. Appl. Phys. 109 (2011) 013914.
26) Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano: Appl. Phys. Lett. 93 (2008) 152505.
27) S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides: Phys. Rev. B 80 (2009) 064506.
28) S. Medvedev, T. M. McQueen, I. Trojan, T. Palayysuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser: Nat. Mater. 8 (2009) 630.
29) S. Masaki, H. Koteogawa, Y. Har, H. Tou, K. Murata, Y. Mizuguchi, and Y. Takano: J. Phys. Soc. Jpn. 78 (2009) 063704.
30) J. Ge, S. Cao, S. Yuan, B. Kang, and J. Zhang: J. Appl. Phys. 108 (2010) 053903.
31) E. Bellingeri, I. Pallecchi, R. Buzio, A. Gerbi, D. Marre, M. R. Cimerle, M. Tropeano, M. Putti, A. Palenzona, and C. Ferdeghini: Appl. Phys. Lett. 96 (2010) 102512.
32) Y. Mizuguchi, H. Izawa, T. Ozaki, Y. Takano, and O. Miura: Supercond. Sci. Technol. 24 (2011) 125003.
33) F. Inzumi and T. Ikeda: Mater. Sci. Forum 321–324 (2000) 198.
Hiroki Izawa was born in Funabashi, Chiba Prefecture, Japan in 1988. He received his B. Eng. (2010) degree from Tokyo Metropolitan University. Since 2011, he has been a graduate student in Tokyo Metropolitan University. He has been focusing on Fe-based superconducting wire application.

Yoshikazu Mizuguchi was born in Yokohama, Kanagawa Prefecture, Japan in 1983. He received his B. Sc. (2006), M. Sc. (2008), and D. Eng. (2010) degrees from the University of Tsukuba. He was a postdoctoral fellow (JSPS fellow) in the University of Tsukuba. Since 2011, he has been an assistant professor in Tokyo Metropolitan University. His research interests include superconductivity, magnetism, crystal growth, superconductivity application and exploration for new superconducting materials.

Toshinori Ozaki was born in Shirahama Town, Wakayama Prefecture, Japan in 1981. He received his B. Eng. (2005), M. Eng. (2007), and D. Eng. (2010) degrees from Nagoya University. Since 2010, he has been a postdoctoral fellow (JSPS fellow) in National Institute for Materials Science. His research interests include superconductivity, crystal growth, thin films, superconductivity applications.

Yoshihiko Takano was born in Yokohama, Kanagawa Prefecture, Japan in 1965. He received his B. Sc. (1989), M. Sc. (1991), and D. Sc. (1995) from Yokohama City University. He was a postdoctoral fellow in the Institute for Solid State Physics (ISSP) of the University of Tokyo, and Yokohama National University. He was a researcher in the National Institute for Materials Science (NIMS; 1995–2006). Since 2006, he has been a group leader of Nano Frontier Materials Group in NIMS. His recent focuses are diamond and iron-based superconductivity.

Osuke Miura was born in Musashino, Tokyo, Japan in 1964. He received his B. Sc. (1988) from Tokyo Metropolitan University and D. Eng. (1996) from Kyusyu University. He was a researcher in Furukawa Electric Co. Ltd. (1988–1995). He was an assistant professor in Tokyo Metropolitan University (1995–2006). Since 2007, he has been an associate professor in Tokyo Metropolitan University. His research field is superconductivity science and engineering. His recent focuses are magnetic flux pinning in RE123, MgB₂, Fe-based superconductors, and superconducting magnetic separation for industrial application.