Normal charge densities in quantum critical superfluids

Blaise Goutéraux

Center for Theoretical Physics,
CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, France

Thursday January 9, 2020

Workshop on Strange Metals, Lorentz Center, Leiden University
Based on [arXiv:1912.08849] with Eric Mefford.

Special thanks to Tomas Andrade and Richard Davison for collaboration at an early stage!

My research is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 758759).
Superfluidity arises from the spontaneous breaking of a U(1) symmetry – the condensate transports mass/charge without friction.

The order parameter can be modeled by a complex scalar with Mexican hat potential, which acquires a vev.

The vev of the condensate is given by the modulus, the phase is a gapless mode (no energy cost, linear dispersion relation) – the Goldstone boson.
The long-wavelength, low-energy dynamics of superfluids are well-described by the Landau-Tisza hydrodynamic model.

Consistent coupling of the Goldstone mode (superfluid phase) to the conserved densities of the system.

\[\partial_{\mu} T^{\mu\nu} = F^{\mu\nu} , \quad j_{\mu} = 0 , \quad \partial_{\mu} j^{\mu} = 0 , \quad u^{\mu} \partial_{\mu} \varphi = \mu \]

Modified constitutive relations and thermodynamics compared to ordinary hydrodynamics

\[T^{\mu\nu} = (\epsilon_n + P) u^{\mu} u^{\nu} + P \eta^{\mu\nu} + \frac{\rho_s}{\mu} \partial_{\mu} \varphi \partial^{\nu} \varphi , \quad j^{\mu} = \rho_n u^{\mu} + \frac{\rho_s}{\mu} \partial_{\mu} \varphi . \]

\[\epsilon_n + P = T_s + \rho_n \mu , \quad \rho = \rho_n + \rho_s , \]

\[dP = s dT + \rho d\mu - \frac{\rho_s}{2\mu} d(\partial_{\nu} \varphi \partial^{\nu} \varphi + \mu^2) . \]
Retarded Green’s functions can be computed by linearizing around equilibrium [Kadanoff&Martin].

Eg for the electric conductivity

\[\sigma(\omega) = \frac{i}{\omega} G^{R}_{jx,jx}(\omega, 0) = \frac{i}{\omega} \left[\frac{\rho_n^2}{\mu \rho_n + sT} + \frac{\rho_s}{\mu} \right]. \]

The second contribution to the \(\omega = 0 \) pole is the macroscopic manifestation of superfluidity.

In a real superconductor, translations are broken, the first term gives rise to a Drude peak. Hence \(\rho_s \neq 0 \) implies a diverging conductivity and vanishing resistivity \(\rho_{dc} = 0 \).

\[\sigma(\omega) = \frac{\rho_n^2}{(\mu \rho_n + sT)(\Gamma - i\omega)} + \frac{\rho_s}{\mu} \frac{i}{\omega}. \]
Hydrodynamics cannot be used to solve for the equation of state. To compute the temperature dependence of e.g. ρ_s, ρ_n, a microscopic theory or an EFT is needed.

In BCS superconductors, the normal density is exponentially suppressed as $T \to 0$.

In 4He, $\rho_n \sim T^4$.

In the relativistic superfluid EFT of [Son'02], $\rho_n \sim T^{d+1}$ [Delacrétaz, Hofman & Mathys'19].

These theoretical results agree with experiments, and suggest that the system must be entirely superfluid at $T = 0$.
In 2016, Bozovic et al. published a study of the superfluid density in very overdoped LSCO films.
They reported two surprising features

- The superfluid density is anomalously low.
- It has a linear behaviour with temperature, while standard ‘dirty’ BCS theory predicts T^2.
Then [Mahmood et al'18] measured the ac conductivity of these films and reported a very modest loss of spectral weight below T_c. They conclude that this implies that $\rho_n(T=0) \equiv \rho_n^{(0)} \neq 0$, once again at odds with BCS.
So must $\rho_n^{(0)} = 0$ always?

How does this fit with the experiments on overdoped cuprates?

Let’s use holographic methods.

We will construct phases which have $\rho_n^{(0)} \neq 0$.
Gravity in Anti de Sitter is dual to certain strongly-coupled Quantum Field Theories in one spatial dimension less \[\text{[Maldacena'97]}\].

Intuitive explanation why the entropy of black holes is the area of the horizon \[\text{[Bekenstein,Hawking]}\], not its volume.

The complicated dynamics of strongly-coupled quantum matter can be described non-perturbatively by solving Einstein’s equations in Anti de Sitter.
A superfluid can be realized in the boundary by spontaneously breaking a U(1) symmetry. This was originally done [Gubser’08, Hartnoll, Herzog & Horowitz’08] by coupling a charged, complex scalar to gravity

\[S = \int d^{d+2}x \sqrt{-g} \left[R - \frac{1}{4} F^2 - |D\eta|^2 - V(|\eta|) \right] . \]

At low temperatures, \(\eta \) condenses close to the horizon, leading to a spacetime with a lump of charged scalar field sitting outside the horizon.
The original solutions constructed by [Hartnoll, Herzog & Horowitz’08] were shown to obey the Landau-Tisza model of superfluid hydrodynamics [Sonner & Withers’10].
By considering a quartic potential, [Gubser & Nellore’09, Horowitz & Roberts’09] showed that two types of IR geometries were allowed:

\[ds^2_{IR} = -\frac{L_t^2}{r^{2z}} dt^2 + \frac{L_{IR}^2 dr^2 + L_x^2 d\vec{x}^2}{r^2} \]

Whether the AdS$_4$ or Lifshitz groundstate is selected depends on whether the gauge field is irrelevant at $T = 0$ close to the horizon or not, see Davison’s talk on Friday.
In the solutions just described, all the boundary charge at $T = 0$ is sourced by the condensate: $\rho_n^{(0)} = 0$.

This is a consequence of the vanishing horizon electric flux at $T = 0$.
To go beyond this, consider a more general action [Adams, Crampton, Sonner & Withers’12]

\[S = \int d^{d+2}x \sqrt{-g} \left[R - \frac{Z(\phi)}{4} F^2 - |D\eta|^2 - \frac{1}{2} (\partial\phi)^2 - V(\phi, |\eta|) \right]. \]

We also want to consider more general groundstates

\[ds^2_{\text{IR}} = r^{\frac{2}{d-2\theta}} \left[-\frac{L_t^2}{r^{2z}} dt^2 + \frac{L_R^2 dr^2 + L_x^2 d\vec{x}^2}{r^2} \right] \]

They violate hyperscaling [Charmousis, Goutéraux et al’10, Goutéraux & Kiritsis’11, Huijse, Sachdev & Swingle’11]

\[s \sim T^\frac{d-\theta}{z} \]
This holographic setup realizes the following scenario
\[S = \int d^{d+2}x \sqrt{-g} \left[R - \frac{Z(\phi)}{4} F^2 - |D\eta|^2 - \frac{1}{2} (\partial\phi)^2 - V(\phi, |\eta|) \right]. \]

- For small \(g \), the phase has \textbf{vanishing} horizon flux at \(T = 0 \).

\[ds_{IR}^2 = r^2 d\theta \left[-L_t^2 dt^2 + L_{IR}^2 dr^2 + L_x^2 d\vec{x}^2 \right] \]

\(z=1, \Theta \neq 0 \)
\[S = \int d^{d+2}x \sqrt{-g} \left[R - \frac{Z(\phi)}{4} F^2 - |D\eta|^2 - \frac{1}{2} (\partial\phi)^2 - V(\phi, |\eta|) \right]. \]

- For large \(g \), the phase has **non-vanishing** horizon flux at \(T = 0 \).

\[ds^2_{IR} = r^{\frac{2}{d}} \theta \left[- \frac{L_t^2}{r^{2z}} dt^2 + \frac{L_{IR}^2 dr^2 + L_x^2 d\vec{x}^2}{r^2} \right] \]
\[S = \int d^{d+2}x \sqrt{-g} \left[R - \frac{Z(\phi)}{4} F^2 - |D\eta|^2 - \frac{1}{2} (\partial\phi)^2 - V(\phi, |\eta|) \right]. \]

- For even larger g, the condensate disappears and the phase has **non-vanishing** horizon flux at $T = 0$.

\[
s_{dR}^2 = r^2 d\theta \left[-\frac{L_t^2}{r^{2z}} dt^2 + \frac{L_{IR}^2 dr^2 + L_x^2 d\vec{x}^2}{r^2} \right].
\]
Using the holographic dictionary, we compute $\rho_{n,s}$ numerically

Zero horizon flux: $\rho_n \simeq \frac{1 - c_{IR}^2}{c_{IR}^2} \frac{sT}{\mu} + ... \quad c_{IR} \equiv \frac{L_t}{L_x}$

Nonzero horizon flux: $\rho_n \simeq \frac{\rho_n^{(0)}}{\mu^2} + \# T^{1-\frac{\theta}{z}} + ...$

The temperature dependence is controlled by the scaling properties of the underlying normal groundstate.
Now, break translations weakly à la \cite{Andrade2013}:

\[
\sigma(\omega) = \frac{\rho_n^2}{(\mu \rho_n + sT)(\Gamma - i\omega)} + \frac{\rho_s i}{\mu \omega}.
\]

In the region with \(\rho_n^{(0)} \neq 0\), results qualitatively very similar to \cite{Bozovic2016, Mahmood2018}.

Consequence of the quantum critical properties of the underlying normal groundstate, not of disorder.
The specific heat has also been measured for very overdoped LSCO

\[\text{[Wen et al, PRB’04, Wang et al, PRB’04]}\]

\[C = \gamma_0 T + \ldots\]

The rapid drop is a consequence of the decreasing horizon flux/normal charge carriers as ‘doping’ is decreased in the holographic model.
Zero horizon flux: $\rho_n \simeq \frac{1 - c_{IR}^2}{c_{IR}^2} \frac{sT}{\mu} + \ldots \sim T^{d+1}, \quad c_{IR} \equiv L_t/L_x$

- Recall that for vanishing horizon flux, $z = 1$: emergent Lorentz symmetry.

- Our result exactly matches the relativistic superfluid EFT computation [Delacrétaz, Hofman & Mathys’19], with the lightcone velocity given by c_{IR}.

4He: $\rho_n \sim T^4$. Emergent relativistic symmetry with the lightcone velocity given by the phonon velocity.

- Ultimately, these results follow from the presence of a linearly dispersing mode at $T = 0$ (the Goldstone).
- How about Lifshitz phases? There we expect
 \[c_{IR} \equiv \frac{L_t}{L_x} r_h^{1-z} \sim T^{1-1/z} \] and \(\omega \sim k^z \) at \(T = 0 \).

- Let’s revisit the original holographic superconductors (no extra neutral scalar \(\phi \))

\[
S = \int d^{d+2}x \sqrt{-g} \left[R - \frac{1}{4} F^2 - |D\eta|^2 - V(|\eta|) \right].
\]
We find that $\rho_n^{(0)} = 0$ only if

$$\lim_{T\to 0} \frac{sT}{c_I^2 c_R} = 0 \quad \Rightarrow \quad z < d + 2 - \theta$$

Setting $d = 2$ and $\theta = 0$, $\rho_n^{(0)} = 0$ only if $z < 4$. This explains some earlier results by [Herzog & Yarom’09]
What are the consequences on the hydrodynamic (superfluid sound) modes?

Superfluid second sound mode:

\[c_2^2 = \left(\frac{s}{\rho} \right)^2 \frac{\rho_s}{(sT + \mu \rho_n)(\partial [s/\rho]/\partial T)_\mu}. \]

Zero horizon flux: \[c_2^2 = \frac{z}{(d-\theta)} c_{IR}^2 \sim T^{2-\frac{2}{z}} \]

Nonzero horizon flux: \[c_2^2 \sim sT \]

Superfluid second sound vanishes at \(T = 0! \)

Fourth sound (no normal velocity)

\[c_4^2 = \frac{\rho_s}{\mu \left(\frac{\partial \rho}{\partial \mu} \right)_s} \approx \frac{\rho_s}{d\rho}. \]

Crisp diagnostic of \(\rho_n^{(0)} \neq 0 \). Non-vanishing at \(T = 0 \).
In summary

- $\rho_n^{(0)}$ need not vanish, depending on whether there is residual horizon electric flux at $T = 0$ or $z < d + 2 - \theta$.

- $\rho_n^{(0)} \neq 0$ leads to phenomenology qualitatively in agreement with experiments on overdoped cuprates.

- Disorder does not play a role, everything is controlled by the scaling properties of the underlying normal groundstate. Superconductivity is an irrelevant deformation, even though there is a finite condensate at $T = 0$.

- We found

 $$\rho_s \simeq \rho_s^{(0)} + \# T^{1-\frac{\theta}{2}} \ldots$$

 Set $\theta = 0$: linear in T in behaviour, cf [Bozovic et al'16].

- Lifshitz superfluid effective field theory?