MicroRNA-31-5p Exacerbates Lipopolysaccharide-Induced Acute Lung Injury via Inactivating Cab39/AMPKα Pathway

Wan-li Jiang,1 Kao-chang Zhao,2 Wen Yuan,3 Fang Zhou,4 Heng-ya Song,1 Gao-li Liu,1 Jie Huang,1 Jin-jing Zou,2 Bo Zhao,4 and Song-ping Xie1

1Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
2Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
3Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Huazhong University of Science and Technology, Wuhan 430016, China
4Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Correspondence should be addressed to Jin-jing Zou; zoujinjingwhu@163.com, Bo Zhao; zb14526@163.com, and Song-ping Xie; songping0428@126.com

Received 17 August 2020; Revised 11 September 2020; Accepted 16 September 2020; Published 8 October 2020

Academic Editor: Vinicius de Frias Carvalho

Copyright © 2020 Wan-li Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acute lung injury (ALI) and the subsequent acute respiratory distress syndrome remain devastating diseases with high mortality rates and poor prognoses among patients in intensive care units. The present study is aimed at investigating the role and underlying mechanisms of microRNA-31-5p (miR-31-5p) on lipopolysaccharide- (LPS-) induced ALI. Mice were pretreated with miR-31-5p agomir, antagomir, and their negative controls at indicated doses for 3 consecutive days, and then they received a single intratracheal injection of LPS (5 mg/kg) for 12 h to induce ALI. MH-S murine alveolar macrophage cell lines were cultured to further verify the role of miR-31-5p in vitro. For AMP-activated protein kinase α (AMPKα) and calcium-binding protein 39 (Cab39) inhibition, compound C or lentiviral vectors were used in vivo and in vitro. We observed an upregulation of miR-31-5p in lung tissue upon LPS injection. miR-31-5p antagomir alleviated, while miR-31-5p agomir exacerbated LPS-induced inflammation, oxidative damage, and pulmonary dysfunction in vivo and in vitro. Mechanistically, miR-31-5p antagomir activated AMPKα to exert the protective effects that were abrogated by AMPKα inhibition. Further studies revealed that Cab39 was required for AMPKα activation and pulmonary protection by miR-31-5p antagomir. We provide the evidence that endogenous miR-31-5p is a key pathogenic factor for inflammation and oxidative damage during LPS-induced ALI, which is related to Cab39-dependent inhibition of AMPKα.

1. Introduction

Acute lung injury (ALI) and the subsequent acute respiratory distress syndrome are devastating diseases manifested as severe refractory hypoxemia and multiple organ failure, which cause high mortality rates and poor prognoses among patients in the intensive care units. Despite the advances in mechanical ventilations and symptomatic therapies, no specific and effective management strategies are available for ALI patients [1, 2]. Lipopolysaccharide (LPS) is a major component of the outer membranes in Gram-negative bacteria and functions as a key pathogenic factor to induce sepsis-related ALI. Upon LPS exposure, the downstream nuclear factor kappa-B (NF-κB) is activated to trigger the synthesis of multiple inflammatory mediators, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). These cytokines in turn recruit leukocytes (e.g., neutrophils and macrophages) to infiltrate into lung tissue and further amplify sepsis-induced inflammation and lung injury [3, 4]. Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome acts as a molecular scaffold for the maturation of various procytokines that contributes to inflammatory injury during sepsis-related ALI [3, 4]. Besides, these leukocytes and excessive inflammation also promote an overproduction of reactive oxygen species (ROS) and elicit oxidative damage to pulmonary cells. In contrast, oxidative stress...
2. Materials and Methods

2.1. Reagents. LPS from *E. coli* 0111:B4 and compound C (CpC) were purchased from Sigma-Aldrich (St. Louis, MO, USA). The miR-31-5p agomir, antagonir, and their negative controls (AgNC for agomir and AntaNC for antagonir) were synthesized by GenePharma (Shanghai, China). The agomir sequence was 5'-AGGCAAGAUGCGGCAUAAGCUG-3', while the antagonir sequence was 5'-CAGCUAUGGCA GCAUCUUGCCU-3'. Assay kits for detecting the levels of IL-1β, IL-6, IL-18, TNF-α, malondialdehyde (MDA), 3-nitrotyrosine (3-NT), and 4-hydroxyneonal (4-HNE) and assay kits for detecting the activities of lactate dehydrogenase (LDH), myeloperoxidase (MPO), caspase-1, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (Gpx) were obtained from Abcam (Cambridge, MA, USA). Dichloro-dihydro-fluorescein diacetate (DCFH-DA) was purchased from Beyotime (Shanghai, China). Short hairpin RNAs against calcium-binding protein 39 (Cab39, also known as MO25α; shCab39) or the scramble control (shCtrl) was obtained from Santa Cruz Biotechnology (Dallas, Texas, USA) and then packaged to the lentiviral vectors. A bicinchoninic acid (BCA) protein assay kit was purchased from Abcam (Cambridge, MA, USA). The primary antibodies against the following proteins were purchased from Abcam (Cambridge, MA, USA): apoptosis-associated speck-like protein (ASC), NLRP3, Lamin B1, NRF2, and Cab39. Anti-phospho NF-κB P65 (p-P65), anti-total NF-κB P65 (t-P65), anti-p-AMPKα, anti-t-AMPKα, and anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were obtained from Cell Signaling Technology (Danvers, MA, USA).

2.2. Experimental Models. Male C57BL/6 mice (8–10 weeks old) received a single intratracheal injection of LPS (5 mg/kg) for 12 h to induce ALI in vivo, while an equal volume of saline was used as the negative control. In a separate study, the mice were intratracheally injected with a lethal dose of LPS (25 mg/kg) for survival analysis [3, 14]. For the treatment of *mir*-31-5p duplexes, the mice were intravenously treated with *mir*-31-5p agomir, antagonir, and their negative controls at indicated doses for 3 consecutive days before LPS injection according to a previous study [14]. To inhibit AMPKα in mice, CpC (20 mg/kg) was intraperitoneally injected every two days from 1 week before *mir*-31-5p manipulation [20]. For Cab39 knockdown in lung tissue, the mice were exposed to a single intravenous injection of 2 × 10⁷ PFU shCab39 or shCtrl as a control [21]. All experimental procedures were in accordance with the *Animal Research: Reporting of In Vivo Experiments* (ARRIVE) guidelines and also approved by the Animal Ethics Committee of Renmin Hospital of Wuhan University (approval no. WDRM 20190114).

2.3. Pulmonary Function Evaluation. Pulmonary function was calculated from the continuous respiratory data using the Buxco system (Sharon, CT, USA). Airway resistance, dynamic lung compliance, and pulmonary ventilation were carried out in anesthetized mice after a brief acclimation to the chamber.

2.4. Blood Gas Analysis. A heparinized PE10 polyethylene catheter was used to collect blood samples from the right common carotid artery of the mice, and then the blood gas parameters were analyzed by an IL GEM® Premier 3000 blood gas analyzer.

2.5. Lung Wet-to-Dry Ratio Calculation. After they were excised, the lungs were blotted dry and weighed immediately to obtain the wet weight. Next, the lungs were dried at 80 °C for 4 days until constant weight to get the dry weight [3]. The lung wet-to-dry ratio was calculated to assess pulmonary edema.

2.6. Bronchoalveolar Lavage Fluid (BALF) Measurement. After euthanasia, the mice received intratracheal injections...
of 1 mL ice-cold phosphate-buffered saline (PBS, pH = 7.4) for 3 times to collect the BALF samples, which were then centrifuged at 1500 rpm for 5 min at 4°C to pellet the cells [3, 4]. The cell-free supernatants were stored at -80°C for detecting cytokines and total proteins. The sedimented cell pellets were resuspended in 0.5 mL PBS and counted by Wright-Giemsa’s staining and a hemocytometer. Total protein concentrations were directly measured using a BCA protein assay kit, while the inflammatory cytokines were measured using the enzyme-linked immunosorbent assay (ELISA) kits.

2.7. Cell Culture and Treatments. MH-S, a murine alveolar macrophage cell line, was purchased from ATCC (Manassas, VA) and cultured in RPMI 1640 medium containing 10% fetal bovine serum. Cells were preincubated with miR-31-5p agomir (50 nmol/L), antagomir (100 nmol/L), or their negative controls for 24 h using the Lipofectamine 6000 Reagent (Beyotime; Shanghai, China), followed by LPS stimulation for AMPK (100 ng/mL) for an additional 6 h as previously described [14]. For AMPKa inhibition, the cells were pretreated with C6Pc (20 μmol/L) at 12 h before miR-31-5p manipulation [20]. For Cab39 silence, the macrophages were preinfected with lentivirus carrying shCab39 (MOI = 50) or shCtrl for 4 h and then maintained for an additional 24 h before miR-31-5p manipulation.

2.8. Western Blot and Quantitative Real-Time PCR. Total protein samples from cultured cells or lung tissues were homogenized with RIPA lysis buffer, and then the protein concentrations were measured using the BCA protein assay kit [22–24]. Next, equal amounts of proteins were separated by SDS-PAGE gel and electrotransferred onto polyvinylidene fluoride membranes. The membranes were then blocked in 5% nonfat milk at room temperature for 1.5 h, followed by incubation with primary antibodies at 4°C overnight. On the second day, the protein bands were probed by peroxidase-conjugated secondary antibodies at room temperature for 1 h and then scanned using the Image Lab Analysis Software (Bio-Rad; Hercules, CA, USA) under visualization by an electrochemiluminescence reagent. Total RNA was extracted using the TRIzol Reagent and then reversely transcribed to cDNA by a reverse transcriptase kit (Takara; Tokyo, Japan) [25–28]. Real-time PCR was performed using the SYBR Green Master Mix (Takara Bio Inc.) on a CFX96 Touch Detection System (Bio-Rad; Hercules, CA, USA). The expression of miRNA was normalized to Gapdh, while the miR-31-5p level was corrected on U6. The primer sequences were as follows: miR-31-5p-forward, 5′-CGAGGCAAGATGCTGGCA-3′ and reverse, 5′-AGTG CAGGGTCCGAGGTATT-3′; U6-forward, 5′-GCTTCCGCAGAGTTATT-3′; U6-forward, 5′-GCTTCCGCAGAGTTATT-3′; U6-forward, 5′-GCTTCCGCAGAGTTATT-3′. miR-31-5p expression was measured using a Bio-Tek microplate reader at the excitation and emission wavelengths of 485 nm and 535 nm, respectively. All data were presented as the mean ± standard deviation (SD) and analyzed using the SPSS 22.0 software. The data were calculated by comparing the significance between two groups, whereas the differences among three or more groups were calculated by one-way ANOVA analysis followed by Tukey’s post hoc test. Statistical significance was defined as P < 0.05.

3. Results

3.1. miR-31-5p Antagomir Alleviates LPS-Induced ALI in Mice. We first explored whether miR-31-5p expression was altered during ALI, and the data identified an upregulation of miR-31-5p levels in lung tissue upon LPS injection (Figure 1(a)). As shown in Figure 1(b), miR-31-5p antagomir normalized the aberrant miR-31-5p expression in LPS-injured lungs to a physiological level at the dose of 100 mg/kg; therefore, we selected this dose of miR-31-5p antagomir in our further study. Intriguingly, miR-31-5p antagonist treatment decreased airway resistance and increased lung compliance and pulmonary ventilation in mice with LPS-induced ALI (Figure 1(c)). Accordingly, the reduced partial pressure of arterial oxygen (PaO2) was also prevented by miR-31-5p antagomir (Figure 1(d)). LPS injection caused severe pulmonary edema and protein leakage, which were attenuated in mice with miR-31-5p antagomir.
treatment, as confirmed by the decreased wet-to-dry ratio of lung tissue and BALF protein concentrations (Figures 1(e) and 1(f)). LDH is a critical marker of cellular damage, and the increased LDH activity in lung tissue after LPS injection was remarkably decreased by \textit{miR-31-5p} antagomir (Figure 1(g)). Moreover, \textit{miR-31-5p} antagomir treatment could improve the survival status of LPS-challenged mice (Figure 1(h)). Collectively, we conclude that \textit{miR-31-5p} antagomir alleviates lung injury and enhances the respiratory function of LPS-treated ALI mice.

3.2. \textit{miR-31-5p} Agomir Aggravates LPS-Induced ALI in Mice.

We then investigated whether the increased \textit{miR-31-5p} expression could accelerate LPS-induced ALI in mice. As depicted in Figure 2(a), \textit{miR-31-5p} agomir elicited almost two times expression of \textit{miR-31-5p} in lung tissue upon LPS stimulation at the dose of 50 mg/kg; thus, we used this dose in the next study. As mentioned above, the mice with LPS injection had lower PaO$_2$ that was further decreased by \textit{miR-31-5p} antagomir treatment (Figure 2(b)). Besides, the airway resistance was further decreased, and the lung

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{\textit{miR-31-5p} antagomir alleviates LPS-induced ALI in mice. (a) Pulmonary \textit{miR-31-5p} levels after LPS (5 mg/kg) treatment for the indicated times ($n=6$). (b) Pulmonary \textit{miR-31-5p} levels in mice with different doses of \textit{miR-31-5p} antagomir treatment upon LPS (5 mg/kg) stimulation for 12 h ($n=6$). (c) The mice were pretreated with \textit{miR-31-5p} antagomir (100 mg/kg) for 3 consecutive days and then received LPS (5 mg/kg) stimulation for an additional 12 h. Respiratory function, including airway resistance, lung compliance, and pulmonary ventilation was detected in mice ($n=6$). (d) PaO$_2$ in mice ($n=6$). (e) Lung wet-to-dry ratio ($n=8$). (f) Total protein levels in BALF ($n=6$). (g) LDH activities in lung tissue ($n=6$). (h) The survival rate in mice with or without \textit{miR-31-5p} antagomir protection after a lethal dose (25 mg/kg) of LPS injection ($n=20$). Data are mean ± SD. *$P<0.05$ versus the matched group. NS indicates no significance.}
\end{figure}
compliance and pulmonary ventilation were further decreased in miR-31-5p agomir-treated mice upon LPS stimulation (Figure 2(c)). LPS-induced edema and injury were also exacerbated in mice with miR-31-5p agomir treatment (Figures 2(d)–2(f)). In the survival study, the mice treated with miR-31-5p agomir all died at 36 h post-LPS injection (data not shown). These findings indicate that miR-31-5p agomir aggravates LPS-induced ALI in mice.

3.3. miR-31-5p Antagomir Reduces Intrapulmonary Inflammation in LPS-Treated Mice. We next evaluated the effect of miR-31-5p antagomir on LPS-induced intrapulmonary inflammation in mice and found that miR-31-5p antagomir effectively decreased the levels of BALF IL-6 and TNF-α (Figure 3(a)). Besides, miR-31-5p antagomir pretreatment remarkably reduced the accumulation of total cells, macrophages, and neutrophils in BALF (Figure 3(b)). Accordingly, the levels of IL-6 and TNF-α, as well as MPO activity in the lungs of ALI mice, were also suppressed by miR-31-5p antagomir treatment (Figures 3(c) and 3(d)). NLRP3 inflammasome plays pivotal roles in inflammatory response and LPS-induced ALI [3, 4]. Here, we found that miR-31-5p antagomir decreased NLRP3 inflammasome component expression, including ASC and NLRP3, and also strongly reduced caspase-1 activity in LPS-treated lungs (Figures 3(f) and 3(g)). As expected, the releases of IL-1β and IL-18 were also suppressed (Figure 3(h)). NF-κB acts as an inflammation-related transcription factor that is required for NLRP3 inflammasome activation and ALI progression [34]. Interestingly, NF-κB phosphorylation and nuclear accumulation were markedly suppressed in miR-31-5p antagomir-treated lungs upon LPS injection (Figure 3(i)). Taken together, we prove that miR-31-5p antagomir reduces intrapulmonary inflammation in LPS-treated mice.

3.4. miR-31-5p Antagomir Mitigates Intrapulmonary Oxidative Damage in LPS-Treated Mice. Oxidative stress is the other feature of LPS-induced ALI [3, 14]. As shown in Figures 4(a)–4(c), the lungs with LPS stimulation had increased ROS generation and oxidative products for lipids (MDA and 4-HEN) and proteins (3-NT) that were significantly decreased by miR-31-5p antagomir. SOD, CAT, and Gpx are three key intracellular antioxidant enzymes to scavenge the excessive free radicals for redox homeostasis. We observed that miR-31-5p antagomir restored total SOD, CAT, and Gpx activities in lungs with LPS injury (Figure 4(d)). NRF2 is an important transcription factor in regulating the expression of numerous antioxidant enzymes, and we thus detected whether miR-31-5p antagomir affects the NRF2 pathway. As depicted in Figure 4(e), LPS significantly decreased NRF2 expression and nuclear accumulation in lung tissue, yet to a lesser extent compared to those in lung tissue with miR-31-5p antagomir protection. Altogether, these data demonstrate an antioxidant role of miR-31-5p antagomir in LPS-induced ALI.

3.5. miR-31-5p Agomir Exacerbates LPS-Induced Intrapulmonary Inflammation and Oxidative Damage in Mice. In contrast, the mice treated with miR-31-5p agomir had increased BALF IL-6 and TNF-α levels, and LPS-
triggered infiltrations of inflammatory cells to the lung tissue were also augmented by miR-31-5p agomir (S1A and S1B). Correspondingly, pulmonary IL-6 and TNF-α levels and MPO activity were increased in miR-31-5p agomir-treated mice upon LPS stimulation (Figures S1C and S1D). Besides, LPS-induced activation of NLRP3 inflammasome was further promoted in miR-31-5p-overexpressed lungs, as verified by the elevated IL-1β, IL-18, and caspase-1 activities (Figures S1E and S1F). Meanwhile, miR-31-5p agomir evidently increased ROS generation in LPS-injured lungs, followed by massive production of MDA, 4-HNE, and 3-NT (Figures S1G-S1I). Overall, the above findings identify a necessary role of miR-31-5p in LPS-induced ALI in mice; however, the expression pattern of miR-31-5p,
either by overexpression or inhibition, did not affect inflammation, oxidative stress, or pulmonary function under basal conditions.

3.6. miR-31-5p Modulates Inflammation and Oxidative Stress in LPS-Treated Macrophages. Based on the in vivo data, we next investigated whether miR-31-5p could modulate LPS-induced inflammation and oxidative stress in MH-S alveolar macrophages in vitro. Consistent with the in vivo findings, macrophages with LPS treatment had increased expression and secretion of IL-6 and TNF-α that were suppressed by miR-31-5p antagomir incubation (Figures 5(a) and 5(b)). miR-31-5p antagomir also suppressed LPS-induced activation of NLRP3 inflammasome in MH-S cells, as confirmed by the decreased caspase-1 activity, ASC/NLRP3 protein levels, and IL-1β and IL-18 releases (Figures 5(c)–5(e)). In addition, we observed that miR-31-5p antagomir suppressed intracellular ROS production and decreased MDA, 4-HNE, and 3-NT formation in macrophages upon LPS stimulation (Figures 5(f)–5(h)). Conversely, the macrophages with miR-31-5p agomir treatment had increased inflammatory response and oxidative damage upon LPS stimulation (Figures S2A–S2E). These findings imply that miR-31-5p modulates inflammation and oxidative stress in LPS-treated macrophages.

3.7. miR-31-5p Antagomir Prevents LPS-Induced Inflammation, Oxidative Stress, and ALI via Activating AMPKα In Vivo and In Vitro. We next tried to clarify whether AMPKα was required for the protective effects of miR-31-5p antagomir against LPS-induced ALI. As depicted in Figure 6(a), LPS-induced AMPKα inactivation was prevented by miR-31-5p antagomir, while it was further exacerbated by miR-31-5p agomir (Figures 6(a) and 6(b)). To verify
the involvement of AMPKα, the mice were injected with CpC to inhibit AMPKα activity in miR-31-5p antagonir-treated mice. As depicted in Figures 6(c)–6(e), CpC abrogated the inhibitory effects of miR-31-5p antagonir against LPS-induced intrapulmonary inflammation and leukocyte infiltration. Besides, miR-31-5p antagonir lost its antioxidant capacity in CpC-treated lungs (Figures 6(f)–6(h)). As mentioned above, miR-31-5p antagonir protected against LPS-induced pulmonary injury, edema, and dysfunction, yet it failed to do so in the lungs with AMPKα inhibition (Figures 6(i)–6(l)). To further determine the necessity of AMPKα in miR-31-5p antagonir-mediated anti-
inflammatory and antioxidant effects in vitro, the MH-S alveolar macrophages were pretreated with CpC. As shown in Figures S3A and S3B, AMPKα inhibition notably blunted the anti-inflammatory effect of miR-31-5p antagonim in vitro, as evidenced by the unaffected IL-6, TNF-α, IL-1β, and IL-18 levels. Of note, miR-31-5p antagonim decreased
the levels of ROS content, MDA, 4-HNE, and 3-NT formation in macrophages, but not in those with CpC treatment (Figures S3C–S3E). These studies define AMPKα as a potential molecular target for the protective effects of miR-31-5p antagonist against LPS-induced ALI.

3.8. miR-31-5p Antagomir Activates AMPKα via Increasing Cab39 Expression. We finally investigated the possible pathway through which miR-31-5p antagonist activated AMPKα. TargetScan software was used to predict the potential target of miR-31-5p, and we observed a putative binding site of miR-31-5p in the 3′-UTR of Cab39 that serves as a scaffold protein for AMPKα activation (Figure 7(a)) [35]. Besides, LPS-elicited Cab39 suppression in lungs was preserved by miR-31-5p antagomir (Figure 7(b)). To examine whether miR-31-5p can directly bind to the 3′-UTR of Cab39, a dual-luciferase reporter gene assay was performed. As shown in Figure 7(c), luciferase activities were significantly inhibited when miR-31-5p was cotransfected with the luciferase plasmid harboring wild type Cab39 3′-UTR, yet it failed to do the same when the binding site was mutated. To strengthen the role of Cab39 in AMPKα activation by miR-31-5p antagomir, we knocked down Cab39 expression in lung tissue using lentiviral vectors (Figure 7(d)). As expected, Cab39 silence blocked AMPKα activation in miR-31-5p antagonist-treated murine lungs, accompanied by increased levels of BALF IL-6 and TNF-α as well as ROS generation (Figures 7(e)–7(g)). Accordingly, the beneficial effects of miR-31-5p antagonist against LPS-induced pulmonary edema and dysfunction were also retarded after Cab39 silence (Figures 7(h) and 7(i)). Consistent with the in vivo data, AMPKα activation by miR-31-5p antagonist was counteracted in macrophages with shCab39 infection, and the inhibitory effects on inflammation and ROS generation were also abolished (Figures 7(j) and 7(k)). Therefore, we summarize that Cab39 is required for miR-31-5p antagomir-mediated AMPKα activation and the subsequent pulmonary protection against LPS-induced ALI.

4. Discussion

Our present study indicates that miR-31-5p is upregulated in murine lungs upon LPS stimulation and that this upregulation is instrumental for the provocation of inflammation and oxidative damage both in mice and in cultured macrophages. miR-31-5p antagonist attenuates, while miR-31-5p agonism exacerbates pulmonary injury and dysfunction in LPS-treated mice. Besides, we report that miR-31-5p antagonist reduces proinflammatory cytokine secretion, ROS generation, and lung injury via activating AMPKα, and conversely, AMPKα inhibition by CpC blocks the pulmonary protection in vivo and in vitro. Further data identify Cab39 as a direct target of miR-31-5p, and miR-31-5p antagonist prevents LPS-induced Cab39 downregulation and thus activates AMPKα. We report here for the first time that endogenous miR-31-5p is a key pathogenic factor for inflammation and oxidative damage during LPS-induced ALI.

Excessive inflammation and oxidative stress are thought to play critical roles in the initiation and progression of ALI [3, 36]. Inflammatory cells and the proinflammatory cytokine notably trigger free radical overproduction, and ROS in turn activates the inflammatory programs, which create a vicious cycle to accelerate inflammation and oxidative damage and provoke the occurrence of ALI [5]. Upon LPS stimulation, NF-κB is phosphorylated and translocated from the cytoplasm to the nucleus, where it binds to its consensus sequence on the promoter-enhancer region of targeted genes and drives the transcription of inflammatory cytokines [37]. Besides, the local inflammation also recruits circulating leukocytes into the lung tissue and further amplifies the inflammatory response. Inflammosomes function as the molecular scaffolds for inflammatory response and are essential for the maturation of multiple procytokines [38–40]. Emerging studies demonstrate a central role of NLRP3 inflammasome in the pathological process of ALI. Upon stimulation, the ASC adaptor interacts with the NLRP3 scaffold to activate caspase-1, which then proteolytically cleaves the precursors of multiple proinflammatory cytokines and releases the mature forms, including IL-1β and IL-18 [3, 4, 14]. Consistently, LPS stimulation activated NF-κB and NLRP3 inflammasome in the present study, and elicited increases of multiple proinflammatory cytokines in lung tissues and cultured alveolar macrophages, which were notably blunted by miR-31-5p antagonist treatment. Oxidative stress is also implicated in the development of ALI. Free radicals, such as hydrogen peroxide and superoxide anion, are increased in lung tissue in response to LPS injury, which directly cause lipid and protein peroxidation, resulting in the injury and death of lung cells [3]. Besides, ROS overproduction by LPS challenge in lung tissue also triggers the dissociation of thioredoxin interacting protein (TXNIP) from thioredoxin, which then binds to and activates NLRP3 inflammasome [39, 41]. The redox sensor NRF2 is physiologically retained in the cytoplasm by Kelch-like ECH-associated protein 1 (KEAP1), but it detaches from KEAP1 upon oxidative stress and subsequently translocates to the nucleus to trigger the antioxidant response [22]. Herein, we observed that miR-31-5p antagomir restored NRF2 expression and nuclear accumulation in LPS-induced ALI, thereby preventing ROS overproduction and oxidative damage.

miR-31-5p is a well-known tumor-associated microRNA and participates in the progression of various tumors, including lung cancer, colorectal cancer, and hepatocellular carcinoma [16, 17]. Emerging studies indicate that miR-31-5p also plays indispensable roles in maintaining the pathophysiological homeostasis in noncancerous tissues. Liu et al. proved that miR-31-5p could repress the proliferation and differentiation of tongue myoblasts [42]. Results from Ji et al. indicated that miR-31-5p silence significantly alleviated the doxorubicin-induced myocardial apoptosis and cardiac dysfunction in mice [43]. A very recent study by Toyonaga et al. demonstrated that miR-31-5p was required for colonic epithelial cell integrity and could predict the clinical outcomes in patients with Crohn’s disease [19]. We herein for the first time identified the pathogenic role of miR-31-5p in LPS-induced inflammation, oxidative stress, and ALI. Cab39 functions as a scaffold protein of liver kinase B1 (LKB1), an upstream kinase of AMPKα, and stabilizes the
Figure 7: Continued.
LKB1’s activity through forming a heterotrimeric complex with the STE20-related kinase adaptor in the cytoplasm with the [35, 44]. In the current study, we observed that miR-31-5p directly bound to the 3′-UTR of Cab39 to inhibit its expression, while miR-31-5p antagomir restored the Cab39 protein level, accompanied by an increased AMPKα phosphorylation and the improvement on LPS-induced inflammation, oxidative stress, and pulmonary dysfunction. Despite being famous as an energy sensor, AMPKα also plays indispensable roles in regulating inflammation and oxidative stress. Its activation was reported to reduce ROS generation and prevent diabetes-, sepsis-, or doxorubicin-induced cardiac injury [45–47]. In line with our findings, some investigators proved that AMPKα notably enhanced the expression and nuclear translocation of NRF2 to scavenge the excessive free radicals [3, 10]. Besides, a recent study found that AMPKα activation effectively decreased p47phox expression and phosphorylation, thereby decreasing the generation of free radicals [48]. Previous data indicated that the inhibition of oxidative stress by AMPKα significantly blocked NLRP3 inflammasome activation and inflammatory damage [3, 10, 48]. NF-xB is essential for NLRP3 inflammasome activation, and the findings from us and other laboratories demonstrated that NF-xB inhibition was sufficient to alleviate the activation of NLRP3 inflammasome [34]. Moreover, results from Chen et al. revealed that AMPKα regulated dynamin-related protein 1-mediated mitochondrial fission and thereby restrained NLRP3 inflammasome activation [49]. Collectively, our data defined miR-31-5p as a promising therapeutic target for the treatment of ALI.

Of note, there exist some limitations in the current study. First, an invasive respiratory mechanics as previously described would be more appropriate to evaluate pulmonary function [50]. Second, whether miR-31-5p affects the production of free radicals need to be confirmed. Besides, the role of miR-31-5p in other pulmonary cells, e.g., the lung epithelial cells, during the progression of ALI should be investigated in further studies.

**Data Availability**

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

**Conflicts of Interest**

The authors declare that there are no conflicts of interests.

**Authors’ Contributions**

Wan-li Jiang, Jin-jing Zou, Bo Zhao, and Song-ping Xie conceived the hypothesis and designed the study. Wan-li Jiang, Kao-chang Zhao, Wen Yuan, Fang Zhou, and Heng-ya Song carried out the experiments and acquired the data. Gao-li Liu and Jie Huang conducted the data analysis. Wan-li Jiang, Kao-chang Zhao, Jin-jing Zou, and Bo Zhao drafted the manuscript. Wan-li Jiang, Bo Zhao, and Song-ping Xie revised the manuscript. All authors approved the final version of the manuscript. Wan-li Jiang, Kao-chang Zhao, Wen Yuan, and Fang Zhou contributed equally to this work.

**Acknowledgments**

This work was supported by the National Natural Science Foundation of China (No. 81801954), the Natural Science Foundation of Hubei Province (No. 2019CFFB307), and the Fundamental Research Funds for the Central Universities (No. 2042019kf0057).

**Supplementary Materials**

Figure S1: miR-31-5p antagomir increases inflammation and oxidative stress in LPS-treated macrophages. Figure S2: miR-31-5p antagomir activates AMPKα via increasing Cab39 expression. (a) Putative binding site of miR-31-5p in Cab39 3′-UTR. (b) Representative western blot images and the statistical data (n = 6). (c) Luciferase activity in cells transfected with wild type of mutant Cab39 3′-UTR after miR-31-5p antagomir treatment (n = 6). (d) Cab39 mRNA level in lung tissue (n = 6). (e) Representative western blot images and the statistical data (n = 6). (f) IL-6 and TNF-α levels were measured in BALF (n = 6). (g) ROS content was measured by DCFH-DA in lung tissue (n = 6). (h) Lung wet-to-dry ratio (n = 8). (i) PaO2 was detected in mice (n = 6). (j) Representative western blot images and the statistical data (n = 6). (k) IL-6 and TNF-α levels in the medium and intracellular ROS content in the macrophages (n = 6). Data are mean ± SD. *P < 0.05 versus the matched group. NS indicates no significance.
antioxidant effects of miR-31-5p antagonim in LPS-treated macrophages. (Supplementary Materials)

References

[1] C. L. Aurierma, H. Zhuo, K. Delucchi et al., “Acute respiratory distress syndrome-attributable mortality in critically ill patients with sepsis,” Intensive Care Medicine, vol. 46, no. 6, pp. 1222–1231, 2020.

[2] J. F. Avecillas, A. X. Freire, and A. C. Arroliga, “Clinical epide- miology of acute lung injury and acute respiratory distress syndrome: incidence, diagnosis, and outcomes,” Clinics in Chest Medicine, vol. 27, no. 4, pp. 549–557, 2006.

[3] X. T. Huang, W. Liu, Y. Zhou et al., “Galectin-1 ameliorates lipopolysaccharide-induced acute lung injury via AMPK-Nrf2 pathway in mice,” Free Radical Biology & Medicine, vol. 146, pp. 222–233, 2020.

[4] H. H. Yang, J. X. Duan, S. K. Liu et al., “A COX-2/sEH dual inhibitor PTUPB alleviates lipopolysaccharide-induced acute lung injury in mice by inhibiting NLRP3 inflammasome activation,” Theranostics, vol. 10, no. 11, pp. 4749–4761, 2020.

[5] S. Li, M. Hong, H. Y. Tan, N. Wang, and Y. Feng, “Insights into the role and interdependence of oxidative stress and inflammation in liver diseases,” Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 4234061, 21 pages, 2016.

[6] Y. Liu, W. Xu, T. Zhai, J. You, and Y. Chen, “Silibinin amelio- rates hepatic lipid accumulation and oxidative stress in mice with non-alcoholic steatohepatitis by regulating CFLAR-JNK pathway,” Acta Pharmacutica Sinica, B, vol. 9, no. 4, pp. 745–757, 2019.

[7] X. Zhang, Z. G. Ma, Y. P. Yuan et al., “Rosmarinic acid attenu- ates cardiac fibrosis following long-term pressure overload via AMPKα/Smad3 signaling,” Cell Death & Disease, vol. 9, no. 2, p. 102, 2018.

[8] C. Hu, X. Zhang, W. Wei et al., “Matrine attenuates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via maintaining AMPKα/UCP2 pathway,” Acta Pharmacutica Sinica, B, vol. 9, no. 4, pp. 690–701, 2019.

[9] R. Ranieri, E. Ciaglia, G. Amoridi et al., “N6-isopentenyladenosine dual targeting of AMPK and Rab7 prenylation inhibits melanoma growth through the impairment of autophagic flux,” Cell Death & Differentiation, vol. 25, no. 2, pp. 353–367, 2018.

[10] H. Lv, Q. Liu, Z. Wen, H. Feng, X. Deng, and X. Ci, “Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis,” Redox Biology, vol. 12, pp. 311–324, 2017.

[11] J. Xing, Q. Wang, K. Coughlan, B. Viollet, C. Moriasi, and M. H. Zou, “Inhibition of AMP-activated protein kinase accentuates lipopolysaccharide-induced lung endothelial bar- rier dysfunction and lung injury in vivo,” The American Journal of Pathology, vol. 182, no. 3, pp. 1021–1030, 2013.

[12] X. Li, Y. Tian, M. J. Tu, P. Y. Ho, N. Batra, and A. M. Yu, “Bioengineered miR-27b-3p and miR-328-3p modulate drug metabolism and disposition via the regulation of target ADME gene expression,” Acta Pharmacutica Sinica, B, vol. 9, no. 3, pp. 639–647, 2019.

[13] N. Zhang, H. Zhang, Y. Liu et al., “SREBP1, targeted by miR-18a-5p, modulates epithelial-mesenchymal transition in breast cancer via forming a co-repressor complex with Snail and HDAC1/2,” Cell Death and Differentiation, vol. 26, no. 5, pp. 843–859, 2019.

[14] Z. Wang, J. Yan, F. Yang, D. Wang, Y. Lu, and L. Liu, “Micro- RNA-326 prevents sepsis-induced acute lung injury via targeting TLR4,” Free Radical Research, vol. 54, no. 6, pp. 408–418, 2020.

[15] J. Wang, R. Huang, Q. Xu et al., “Mesenchymal stem cell-derived extracellular vesicles alleviate acute lung injury via transfer of miR-27a-3p,” Critical Care Medicine, vol. 48, no. 7, pp. e599–e610, 2020.

[16] J. Wen, K. Xiong, A. Aili et al., “PEX5, a novel target of micro- RNA-31-5p, increases radioresistance in hepatocellular carci- noma by activating Wnt/β-catenin signaling and homologous recombination,” Theranostics, vol. 10, no. 12, pp. 5322–5340, 2020.

[17] Y. Chen, H. Zhao, H. Li et al., “LINC01234/microRNA-31- 5p/MAGEA3 axis mediates the proliferation and chemoresis- tance of hepatocellular carcinoma cells,” Mol Ther Nucleic Acids., vol. 19, pp. 168–178, 2020.

[18] S. Kim, K. S. Lee, S. Choi et al., “NF-κB-responsive miRNA-31- 5p elicits endothelial dysfunction associated with preeclampsia via down-regulation of endothelial nitric-oxide synthase,” Journal of Biological Chemistry, vol. 293, no. 49, pp. 18989– 19000, 2018.

[19] T. Toyonaga, E. C. Steinbach, B. P. Keith et al., “Decreased colonic Activin receptor-like kinase 1 disrupts epithelial bar- rier integrity in patients with Crohn’s disease,” Cellular and Molecular Gastroenterology and Hepatology, vol. 10, no. 4, pp. 779–796, 2020.

[20] Z. G. Ma, J. Dai, W. B. Zhang et al., “Protection against cardiac hypertrophy by geniposide involves the GLP-1 receptor/-AMPKα signalling pathway,” British Journal of Pharmacology, vol. 173, no. 9, pp. 1502–1516, 2016.

[21] R. He, Y. Li, L. Zhou et al., “miR-146b overexpression amelio- rates lipopolysaccharide-induced acute lung injury in vivo and in vitro,” Journal of Cellular Biochemistry, vol. 120, pp. 2929– 2939, 2018.

[22] X. Zhang, C. Hu, C. Y. Kong et al., “FNDCS5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT,” Cell Death and Differentiation, vol. 27, no. 2, pp. 540–555, 2020.

[23] Z. G. Ma, Y. P. Yuan, X. Zhang et al., “Clq-tumour necrosis factor-related protein-3 exacerbates cardiac hypertrophy in mice,” Cardiovascular Research, vol. 115, no. 6, pp. 1067–1077, 2019.

[24] Z.-G. Ma, J. Dai, Y. P. Yuan et al., “T-bet deficiency attenuates cardiac remodelling in rats,” Basic Research in Cardiology, vol. 113, no. 3, p. 19, 2018.

[25] C. Hu, X. Zhang, N. Zhang et al., “Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin-induced cardiotoxicity,” Clinical and Transla- tional Medicine, vol. 10, no. 3, 2020.

[26] X. Zhang, C. Hu, N. Zhang et al., “Matrine attenuates patho- logical cardiac fibrosis via RPS5/p38 in mice,” Acta Pharmaco- logica Sinica, 2020.

[27] X. Zhang, J. X. Zhu, Z. G. Ma et al., “Rosmarinic acid alleviates cardiomyocyte apoptosis via cardiac fibroblast in doxorubicin-induced cardiotoxicity,” International Journal of Biological Sciences, vol. 15, no. 3, pp. 556–567, 2019.

[28] Z. G. Ma, X. Zhang, Y. P. Yuan et al., “A77 1726 (leunomide) blocks and reverses cardiac hypertrophy and fibrosis in mice,” Clinical Science, vol. 132, no. 6, pp. 685–699, 2018.

[29] S. Qi, L. Guo, S. Yan, R. J. Lee, S. Yu, and S. Chen, “Hypocrellin A-based photodynamic action induces apoptosis in A549 cells.”
through ROS-mediated mitochondrial signaling pathway,” *Acta Pharmacutica Sinica B*, vol. 9, no. 2, pp. 279–293, 2019.
[30] M. B. Afonso, P. M. Rodrigues, A. L. Simão et al., “miRNA-21 ablation protects against liver injury and necroptosis in cholestasis,” *Cell Death & Differentiation*, vol. 25, no. 5, pp. 857–872, 2018.
[31] H. H. Seo, S. Lee, C. Y. Lee et al., “Multipoint targeting of TGFβ/Wnt transactivation circuit with microRNA 384-5p for cardiac fibrosis,” *Cell Death and Differentiation*, vol. 26, no. 6, pp. 1007–1123, 2019.
[32] W. Pan, L. Wang, X. F. Zhang et al., “Hypoxia-induced microRNA-191 contributes to hepatic ischemia/reperfusion injury through the ZONAB/Cyclin D1 axis,” *Cell Death and Differentiation*, vol. 26, no. 2, pp. 291–305, 2019.
[33] L. Chen, L. Chen, Z. Qin et al., “Upregulation of miR-489-3p and miR-630 inhibits oxaliplatin uptake in renal cell carcinoma by targeting OCT2,” *Acta Pharmacutica Sinica B*, vol. 9, no. 5, pp. 1008–1020, 2019.
[34] Z. Xue, Z. Zhang, H. Liu et al., “lncRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation,” *Cell Death & Differentiation*, vol. 26, no. 1, pp. 130–145, 2019.
[35] Y. Kuwabara, T. Horige, O. Baba et al., “MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway,” *Circulation Research*, vol. 116, no. 2, pp. 279–288, 2015.
[36] Y. Lu, Y. Jiang, L. Ling, Y. Zhang, H. Li, and D. Chen, “Beneficial effects of Houttuynia cordata polysaccharides on ‘two-hit’ acute lung injury and endotoxic fever in rats associated with anti-complementary activities,” *Acta Pharmacutica Sinica B*, vol. 8, no. 2, pp. 218–227, 2018.
[37] A. Mukherjee, T. Hidvegi, P. Araya, M. Ewing, D. B. Stolz, and D. H. Perlmutter, “NFXB mitigates the pathological effects of misfolded α1-antitrypsin by activating autophagy and an integrated program of proteostasis mechanisms,” *Cell Death and Differentiation*, vol. 26, no. 3, pp. 455–469, 2019.
[38] Z. Wang, G. Xu, Y. Gao et al., “Cardamonin from a medicinal herb protects against LPS-induced septic shock by suppressing NLRP3 inflammasome,” *Acta Pharmacutica Sinica B*, vol. 9, no. 4, pp. 734–744, 2019.
[39] X. Zhou, Y. Wu, L. Ye et al., “Aspirin alleviates endothelial gap junction dysfunction through inhibition of NLRP3 inflammasome activation in LPS-induced vascular injury,” *Acta Pharmacutica Sinica B*, vol. 9, no. 4, pp. 711–723, 2019.
[40] J. Zhu, Z. Hu, X. Han et al., “Dopamine D2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of β-arrestin2 and NLRP3,” *Cell Death and Differentiation*, vol. 25, no. 11, pp. 2037–2049, 2018.
[41] X. Q. Ding, W. Y. Wu, R. Q. Jiao et al., “Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition,” *Pharmacological Research*, vol. 137, pp. 64–75, 2018.
[42] B. Liu, C. Liu, W. Cong et al., “Retinoic acid-induced microRNA-31-5p suppresses myogenic proliferation and differentiation by targeting CamKIIδ,” *Skeletal Muscle*, vol. 7, no. 1, p. 8, 2017.
[43] X. Ji, W. Ding, T. Xu et al., “MicroRNA-31-5p attenuates doxorubicin-induced cardiotoxicity via quaking and circular RNA Pan3,” *Journal of Molecular and Cellular Cardiology*, vol. 140, pp. 56–67, 2020.
[44] J. Boudeau, A. F. Baas, M. Deak et al., “MO25α/β interact with STRADα/β enhancing their ability to bind, activate and localize LKB1 in the cytoplasm,” *The EMBO Journal*, vol. 22, no. 19, pp. 5102–5114, 2003.
[45] Z. G. Ma, Y. P. Yuan, S. C. Xu et al., “CTRP3 attenuates cardiac dysfunction, inflammation, oxidative stress and cell death in diabetic cardiomyopathy in rats,” *Diabetologia*, vol. 60, no. 6, pp. 1126–1137, 2017.
[46] S.-H. Huang, M. Xu, H.-M. Wu et al., “Isoquercitrin attenuated cardiac dysfunction via AMPK-dependent pathways in LPS-treated mice,” *Molecular Nutrition & Food Research*, vol. 62, article e180955, 2018.
[47] Y. Y. Meng, Y. P. Yuan, X. Zhang et al., “Protection against doxorubicin-induced cytotoxicity by geniposide involves AMPKα-signaling pathway,” *Oxidative Medicine and Cellular Longevity*, vol. 2019, Article ID 7901735, 12 pages, 2019.
[48] P. Song, D. F. Shen, Y. Y. Meng et al., “Geniposide protects against sepsis-induced myocardial dysfunction through AMPKα-dependent pathway,” *Free Radical Biology & Medicine*, vol. 152, pp. 186–196, 2020.
[49] Q. Chen, J. H. Lei, J. Bao et al., “BRCA1 deficiency impairs mitophagy and promotes inflammasome activation and mammary tumor metastasis,” *Advanced Science*, vol. 7, no. 6, article 1903616, 2020.
[50] N. M. Pinheiro, F. P. Santana, R. R. Almeida et al., “Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile,” *The FASEB Journal*, vol. 31, no. 1, pp. 320–332, 2016.