Partially Optimal Edge Fault-Tolerant Spanners

Greg Bodwin1 Michael Dinitz2 Caleb Robelle3

1University of Michigan

2Johns Hopkins University

3MIT

SODA ’22
Graph Spanners: Basics

Definition

Given graph $G = (V, E)$, subgraph H of G is a t-spanner of G if

$$d_H(u, v) \leq t \cdot d_G(u, v) \quad \text{for all } u, v \in V$$

- t is the stretch of the spanner.
- In this paper: G undirected, connected
- Sufficient for stretch condition to hold for all edges $\{u, v\} \in E$
Graph Spanners: Basics

Definition

Given graph $G = (V, E)$, subgraph H of G is a **t-spanner** of G if

$$d_H(u, v) \leq t \cdot d_G(u, v) \quad \text{for all } u, v \in V$$

- t is the **stretch** of the spanner.
- In this paper: G undirected, connected
- Sufficient for stretch condition to hold for all edges $\{u, v\} \in E$
Main Theorem

Theorem (Althöfer et al ’93)

- For any positive integer k, all graphs have a $(2k - 1)$-spanner with $O(n^{1+1/k})$ edges, and
- There exist graphs in which all $(2k - 1)$-spanners have $\Omega(n^{1+1/k})$ edges (assuming Erdős Girth Conjecture).
Main Theorem

Theorem (Althöfer et al '93)
- For any positive integer k, all graphs have a $(2k - 1)$-spanner with $O(n^{1+1/k})$ edges, and
- There exist graphs in which all $(2k - 1)$-spanners have $\Omega(n^{1+1/k})$ edges (assuming Erdös Girth Conjecture).

Upper bound statement existential, but actually algorithmic: greedy algorithm

\[
\begin{align*}
H & \leftarrow (V, \emptyset) \\
\text{for all } \{u, v\} \in E \text{ in nondecreasing weight order do} \\
& \quad \text{if } d_H(u, v) > (2k - 1) \cdot w(u, v) \text{ then} \\
& \quad \quad \text{add } \{u, v\} \text{ to } H \\
& \quad \text{end if} \\
\text{end for} \\
\text{return } H
\end{align*}
\]
Spanners For Distributed Systems

Go back to # edges.

In Theory, we’re done. We have a simple, optimal, textbook algorithm.

In Practice, spanners useful in many applications, but commonly used in distributed systems.

Imagine we build a 3-spanner of this network of computers, which need to talk to each other...
Spanners For Distributed Systems

Go back to \# edges.

In Theory, we’re done. We have a simple, optimal, textbook algorithm.

In Practice, spanners useful in many applications, but commonly used in distributed systems.

Imagine we build a 3-spanner of this network of computers, which need to talk to each other … but then one breaks.
Spanners For Distributed Systems

Go back to $\#$ edges.

In Theory, we’re done. We have a simple, optimal, textbook algorithm.

In Practice, spanners useful in many applications, but commonly used in distributed systems.

Imagine we build a **3-spanner** of this network of computers, which need to talk to each other . . . but then one breaks.
A subgraph $H \subseteq G$ is an f-Edge Fault Tolerant (EFT) $(2k - 1)$-spanner of G if, for every possible set F of $|F| = f$ edges, we have

\[H \setminus F \text{ is a } (2k - 1)\text{-spanner of } G \setminus F. \]

Equivalently: for all $u, v \in V$ and $F \subseteq E$ with $|F| \leq f$,

\[d_{H \setminus F}(u, v) \leq (2k - 1) \cdot d_{G \setminus F}(u, v) \]

f-Vertex Fault Tolerant (f-VFT): $F \subseteq V$.
Fault-Tolerant Spanners

Definition (Chechik, Langberg, Peleg, Roditty ’09)

A subgraph $H \subseteq G$ is an \mathbf{f}-Edge Fault Tolerant (EFT) $(2k - 1)$-spanner of G if, for every possible set F of $|F| = f$ edges, we have

$$H \setminus F \text{ is a } (2k - 1)\text{-spanner of } G \setminus F.$$

Equivalently: for all $u, v \in V$ and $F \subseteq E$ with $|F| \leq f$,

$$d_{H \setminus F}(u, v) \leq (2k - 1) \cdot d_{G \setminus F}(u, v)$$

\mathbf{f}-Vertex Fault Tolerant (\mathbf{f}-VFT): $F \subseteq V$.

Subtle definition: H only has to be “fault-tolerant” if G is “fault-tolerant”

- Relative fault-tolerance
Fault-Tolerant Spanners

Question: How much “extra” above \(n^{1+1/k} \) do we need to pay for \(f \)-fault tolerance?
Fault-Tolerant Spanners

Question: How much “extra” above $n^{1+1/k}$ do we need to pay for f-fault tolerance?

Reasonable intuition:

- Natural approach: redundancy. Build a bunch of different spanners so that for all F, at least one spanner is unaffected.
- Needs at least $f + 1$ redundancy, pay extra factor of f.

Theorem (Bodwin, Dinitz, Robelle '18)

Existential lower bounds on f-fault tolerance:

- f-VFT $(2k - 1)$-spanner: \(\Omega(1 - \frac{1}{k})n + 1/k)\) edges.
- For $k = 2$:
 \[
 f - EFT(2k - 1) - \text{spanner: } \Omega(f \left(1 - \frac{1}{k}\right)n^3) \text{ edges.}
 \]
- For $k \geq 3$:
 \[
 \Omega(f^2(1 - \frac{1}{k})n + fn) \text{ edges.}
 \]
Fault-Tolerant Spanners

Question: How much “extra” above $n^{1+1/k}$ do we need to pay for f-fault tolerance?

Reasonable intuition:
- Natural approach: redundancy. Build a bunch of different spanners so that for all F, at least one spanner is unaffected.
- Needs at least $f + 1$ redundancy, pay extra factor of f

Theorem (Bodwin, D, Parter, Vassilevska Williams ’18)

Existential lower bounds on f-fault tolerance:

- **f-VFT $(2k - 1)$-spanner:** $\Omega \left(f^{1-1/k}n^{1+1/k}\right)$ edges.
- **f-EFT $(2k - 1)$-spanner:**
 - $k = 2$: $\Omega \left(f^{1-1/k}n^{1+1/k}\right) = \Omega \left(f^{1/2}n^{3/2}\right)$ edges.
 - $k \geq 3$: $\Omega \left(f^{\frac{1}{k}(1-1/k)}n^{1+1/k} + fn\right)$ edges.
Vertex Fault-Tolerant Spanner Bounds

Spanner Size	Runtime	Greedy?	Citation
$\tilde{O} (k^{O(f)} \cdot n^{1+1/k})$	$\tilde{O} (k^{O(f)} \cdot n^{3+1/k})$		[CLPR '10]
$\tilde{O} (f^{2-1/k} \cdot n^{1+1/k})$	$\tilde{O} (f^{2-2/k} \cdot mn^{1+1/k})$		[DK '11]
$O (\exp(k)f^{1-1/k} \cdot n^{1+1/k})$	$O (\exp(k) \cdot mn^{O(f)})$	✓	[BDPV '18]
$O (f^{1-1/k} \cdot n^{1+1/k})$	$O (mn^{O(f)})$	✓	[BP '19]
$O (kf^{1-1/k} \cdot n^{1+1/k})$	$\tilde{O} (f^{2-1/k} \cdot mn^{1+1/k})$	✓*	[DR '20]
$O (f^{1-1/k} \cdot n^{1+1/k})$	$\tilde{O} (f^{1-1/k}n^{2+1/k} + mf^2)$	✓*	[BDR '21]
Vertex Fault-Tolerant Spanner Bounds

Spanner Size	Runtime	Greedy?	Citation
$\tilde{O}(k^{O(f)} \cdot n^{1+1/k})$	$\tilde{O}(k^{O(f)} \cdot n^{3+1/k})$		[CLPR '10]
$\tilde{O}(f^{2-1/k} \cdot n^{1+1/k})$	$\tilde{O}(f^{2-2/k} \cdot mn^{1+1/k})$		[DK '11]
$O\left(\exp(k)f^{1-1/k} \cdot n^{1+1/k}\right)$	$O\left(\exp(k) \cdot mn^{O(f)}\right)$	✓	[BDPV '18]
$O\left(f^{1-1/k} \cdot n^{1+1/k}\right)$	$O\left(mn^{O(f)}\right)$	✓	[BP '19]
$O\left(kf^{1-1/k} \cdot n^{1+1/k}\right)$	$\tilde{O}(f^{2-1/k} \cdot mn^{1+1/k})$	✓*	[DR '20]
$O\left(f^{1-1/k} \cdot n^{1+1/k}\right)$	$\tilde{O}\left(f^{1-1/k}n^{2+1/k} + mf^2\right)$	✓*	[BDR '21]

So VFT essentially resolved!
Edge Fault-Tolerant Spanner Bounds

What about edge fault-tolerance?

- Lower bound: $\Omega \left(f^{1/k} \left((1-1/k) n^{1+1/k} + fn \right) \right) \ [BDPV \ '18]$
- Upper bound: $O \left(f^{1-1/k} \cdot n^{1+1/k} \right) \ [BDR \ '21]$
Edge Fault-Tolerant Spanner Bounds

What about edge fault-tolerance?

- Lower bound: $\Omega \left(f^{1/(1-k)} n^{1+1/k} + fn \right)$ [BDPV '18]
- Upper bound: $O \left(f^{1-1/k} \cdot n^{1+1/k} \right)$ [BDR '21]

Theorem

Every n-node graph has an f-EFT $(2k - 1)$-spanner H with

$$|E(H)| = \begin{cases}
O \left(k^2 f^{1/2-1/(2k)} n^{1+1/k} + kfn \right) & \text{k is odd} \\
O \left(k^2 f^{1/2} n^{1+1/k} + kfn \right) & \text{k is even.}
\end{cases}$$
Edge Fault-Tolerant Spanner Bounds

dependence on f (log$_f$ scale)
Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

\[H \leftarrow (V, \emptyset) \]

for all \(\{u, v\} \in E \) in nondecreasing weight order

do
 if there exists \(F \subseteq V \setminus \{u, v\} \) (for VFT) or \(F \subseteq E \) (for EFT) with \(|H| \leq f \) such that \(d_{H \setminus F}(u, v) > (2k - 1) \cdot w(u, v) \) then
 add \(\{u, v\} \) to \(H \)
 end if
end for

return \(H \)
Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams ’18]

\[
H \leftarrow (V, \emptyset) \\
\text{for all } \{u, v\} \in E \text{ in nondecreasing weight order} \\
do \\
\quad \text{if there exists } F \subseteq V \setminus \{u, v\} \text{ (for VFT) or } F \subseteq E \text{ (for EFT) with } |H| \leq f \text{ such that } d_{H \setminus F}(u, v) > (2k - 1) \cdot w(u, v) \text{ then} \\
\quad \quad \text{add } \{u, v\} \text{ to } H \\
\quad \text{end if} \\
end for \\
return \ H
\]
Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

\[H \leftarrow (V, \emptyset) \]

for all \(\{u, v\} \in E \) in nondecreasing weight order do

 if there exists \(F \subseteq V \setminus \{u, v\} \) (for VFT) or \(F \subseteq E \) (for EFT) with \(|H| \leq f \) such that \(d_{H \setminus F}(u, v) > (2k - 1) \cdot w(u, v) \) then

 add \(\{u, v\} \) to \(H \)

end if

end for

return \(H \)

\[
\begin{align*}
\text{H} &\leftarrow (V, \emptyset) \\
\text{for all} \ \{u, v\} &\in E \ \text{in nondecreasing weight order do} \\\n\text{if there exists} \ F &\subseteq V \setminus \{u, v\} \ (\text{for VFT}) \ \text{or} \ F &\subseteq E \ (\text{for EFT}) \ \text{with} \ |H| \leq f \ \text{such that} \ d_{H \setminus F}(u, v) > (2k - 1) \cdot w(u, v) \ \text{then} \\\n\text{add} \ \{u, v\} &\text{to} \ H \\
\end{align*}
\]

\[k = 2, f = 1 \]
Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

\[
\begin{align*}
H & \leftarrow (V, \emptyset) \\
\text{for all } \{u, v\} & \in E \text{ in nondecreasing weight order} \\
\text{do} & \\
\text{if there exists } F & \subseteq V \setminus \{u, v\} \text{ (for VFT) or } F \subseteq E \text{ (for EFT) with } |H| \leq f \text{ such that } d_{H \setminus F}(u, v) > (2k - 1) \cdot w(u, v) \text{ then} \\
\text{add } \{u, v\} & \text{ to } H \\
\text{end if} & \\
\text{end for} & \\
\text{return } & H
\end{align*}
\]
Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

\[
H \leftarrow (V, \emptyset)
\]

for all \(\{u, v\} \in E \) in nondecreasing weight order do

\(\text{if there exists } F \subseteq V \setminus \{u, v\} \text{ (for VFT) or } F \subseteq E \text{ (for EFT) with } |H| \leq f \text{ such that } d_{H \setminus F}(u, v) > (2k - 1) \cdot w(u, v) \text{ then} \)

add \(\{u, v\} \) to \(H \)

end if

end for

return \(H \)
Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

\[
H \leftarrow (V, \emptyset)
\]

for all \(\{u, v\} \in E \) in nondecreasing weight order

\[
d_{H,F}(u, v) > (2k - 1) \cdot w(u, v)
\]

then

add \(\{u, v\} \) to \(H \)

end if

end for

return \(H \)

\[k = 2, f = 1\]
Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

\[
H \leftarrow (V, \emptyset)
\]

for all \(\{u, v\} \in E \) in nondecreasing weight order do

if there exists \(F \subseteq V \setminus \{u, v\} \) (for VFT) or \(F \subseteq E \) (for EFT) with \(|H| \leq f \) such that \(d_{H \setminus F}(u, v) > (2k - 1) \cdot w(u, v) \) then

add \(\{u, v\} \) to \(H \)

end if

end for

return \(H \)
Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

\[
H \leftarrow (V, \emptyset)
\]

for all \(\{u, v\} \in E \) in nondecreasing weight order
\[
do
\]
if there exists \(F \subseteq V \setminus \{u, v\} \) (for VFT) or \(F \subseteq E \) (for EFT) with \(|H| \leq f \) such that \(d_{H \setminus F}(u, v) > (2k - 1) \cdot w(u, v) \) then
\[
\text{add } \{u, v\} \text{ to } H
\]
end if
\end do

return \(H \)

Intuition: \(H \) should be “almost” high-girth

- How do we define “almost”?
Greedy Fault-Tolerant Spanner Algorithm

Originally proposed by [Bodwin, D, Parter, Vassilevska Williams '18]

\[
H \leftarrow (V, \emptyset)
\]

for all \(\{u, v\} \in E \) in nondecreasing weight order do
 if there exists \(F \subseteq V \setminus \{u, v\} \) (for VFT) or \(F \subseteq E \) (for EFT) with \(|H| \leq f \) such that \(d_{H \setminus F}(u, v) > (2k - 1) \cdot w(u, v) \) then
 add \(\{u, v\} \) to \(H \)
 end if
end for

return \(H \)

Intuition: \(H \) should be “almost” high-girth

- How do we define “almost”?

Structural: There is a large high-girth subgraph in \(H \)

Moore-like: Suitable adaptations of the arguments for high-girth graphs also apply
Main Difficulty for Edge Fault-Tolerance

VFT: structural approach (BP ’19, BDR ’21)
 ▶ Greedy spanner “almost” high-girth because it has large high-girth subgraph
 ▶ Blocking sets (BP’19), or direct from algorithm (BDR ’21)

Problem: Can’t use this idea to get improved bounds for edge fault-tolerance!
 ▶ Bodwin-Patel showed can’t use blocking sets to get below $f^{1-1/k}n^{1+1/k}$
 ▶ (this paper, informal): if there was a structural argument, then it would imply the Erdős girth conjecture for $k = 7$ (currently unknown)
Main Difficulty for Edge Fault-Tolerance

VFT: structural approach (BP ’19, BDR ’21)
- Greedy spanner “almost” high-girth because it has large high-girth subgraph
 - Blocking sets (BP’19), or direct from algorithm (BDR ’21)

Problem: Can’t use this idea to get *improved* bounds for edge fault-tolerance!
- Bodwin-Patel showed can’t use blocking sets to get below $f^{1-1/k} n^{1+1/k}$
- (this paper, informal): if there was a structural argument, then it would imply the Erdős girth conjecture for $k = 7$ (currently unknown)

Approach:
- *Strong* blocking sets
- More sophisticated version of Moore bounds on graphs with small strong blocking sets
Strong Blocking Sets

Definition (strong t-blocking set)

A *strong t-blocking set* of a graph $G = (V, E)$ is a set $B \subseteq E \times E$ where for every cycle C in G with $|C| \leq t$, there exists $(e, e') \in B$ such that:

- $e, e' \in C$ and $e \neq e'$, and
- Either e or e' is the *highest-weight* edge in C

If G unweighted, “highest-weight” determined by ordering used by greedy algorithm.
Strong Blocking Sets

Definition (strong t-blocking set)

A *strong t-blocking set* of a graph $G = (V, E)$ is a set $B \subseteq E \times E$ where for every cycle C in G with $|C| \leq t$, there exists $(e, e') \in B$ such that:

- $e, e' \in C$ and $e \neq e'$, and
- Either e or e' is the *highest-weight* edge in C

If G unweighted, “highest-weight” determined by ordering used by greedy algorithm.

Lemma

The subgraph H output by the greedy algorithm has a strong $2k$-blocking set of size at most $f|E(H)|$.

Proof sketch: Same as non-strong lemma from Bodwin-Patel ’19
Moore Bounds

Can’t use structural approach – use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

Any graph G with girth at least $2k + 1$ has at most $O(n^{1+1/k})$ edges
Moore Bounds

Can’t use structural approach – use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

Any graph \(G \) with girth at least \(2k + 1 \) has at most \(O(n^{1+1/k}) \) edges.

Counting Lemma: Let \(d \) be average degree of \(G \). Then \(G \) has at least \(\Omega(n \cdot d^k) \) simple \(k \)-paths.
Moore Bounds

Can’t use structural approach – use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

Any graph G *with girth at least* $2k + 1$ *has at most* $O(n^{1+1/k})$ *edges*

Counting Lemma: Let d be average degree of G. Then G has at least $\Omega(n \cdot d^k)$ simple k-paths

Dispersion Lemma: No two simple k-paths can share the same endpoints $\implies \leq n^2$ simple k-paths
Moore Bounds

Can’t use structural approach – use strong blocking set for modified Moore bounds.

Theorem (Moore Bounds)

Any graph G with girth at least $2k + 1$ has at most $O(n^{1+1/k})$ edges

Counting Lemma: Let d be average degree of G. Then G has at least $\Omega(n \cdot d^k)$ simple k-paths

Dispersion Lemma: No two simple k-paths can share the same endpoints $\implies \leq n^2$ simple k-paths

\[
n \cdot d^k \leq n^2 \implies d \leq n^{1/k} \implies |E| = nd/2 = O(n^{1+1/k})
\]
Generalized Dispersion Lemma

Greedy spanner H has small strong blocking set.

Idea: For each $(x, y) \in S_{uv}$, inductively bound # of $u \rightarrow x$ paths and # of $y \rightarrow v$ paths.

To make induction work, helpful if heaviest edge not first or last, and for this to be true throughout induction.

Only count simple alternating k-paths: each even hop heavier than adjacent (odd) hops.
Generalized Dispersion Lemma

Greedy spanner H has small strong blocking set.

$$\Rightarrow$$ for all $u, v \in V$, there is some set S_{uv} of $O(kf)$ edges such that all simple $u - v$ k-paths use some edge of S_{uv} as heaviest edge.

Idea: For each $(x, y) \in S_{uv}$, inductively bound # $u - x$ paths and # $y - v$ paths.

To make induction work, helpful if heaviest edge not first or last, and for this to be true throughout induction.

Only count simple alternating k-paths: each even hop heavier than adjacent (odd) hops.
Generalized Dispersion Lemma

Greedy spanner H has small strong blocking set.

\implies for all $u, v \in V$, there is some set S_{uv} of $O(kf)$ edges such that all simple $u - v k$-paths use some edge of S_{uv} as heaviest edge.

Idea: For each $(x, y) \in S_{uv}$, inductively bound $\# u - x$ paths and $\# y - v$ paths.
Generalized Dispersion Lemma

Greedy spanner H has small strong blocking set.

\[\implies \text{for all } u, v \in V, \text{ there is some set } S_{uv} \text{ of } O(kf) \text{ edges such that all simple } u - v \text{ } k \text{-paths use some edge of } S_{uv} \text{ as } \textit{heaviest} \text{ edge.} \]

Idea: For each $(x, y) \in S_{uv}$, inductively bound $\# u - x$ paths and $\# y - v$ paths.

To make induction work, helpful if heaviest edge \textit{not} first or last, and for this to be true throughout induction.

- Only count simple \textit{alternating} k-paths: each even hop heavier than adjacent (odd) hops.
Generalized Dispersion Lemma

Greedy spanner H has small strong blocking set.

\Rightarrow for all $u, v \in V$, there is some set S_{uv} of $O(kf)$ edges such that all simple $u - v$ k-paths use some edge of S_{uv} as heaviest edge.

Idea: For each $(x, y) \in S_{uv}$, inductively bound $\# u - x$ paths and $\# y - v$ paths

To make induction work, helpful if heaviest edge not first or last, and for this to be true throughout induction

- Only count simple alternating k-paths: each even hop heavier than adjacent (odd) hops
Generalized Dispersion Lemma

Greedy spanner H has small strong blocking set.

For all $u, v \in V$, there is some set S_{uv} of $O(kf)$ edges such that all simple $u - v$ k-paths use some edge of S_{uv} as heaviest edge.

Idea: For each $(x, y) \in S_{uv}$, inductively bound $\# u - x$ paths and $\# y - v$ paths

To make induction work, helpful if heaviest edge not first or last, and for this to be true throughout induction

- Only count simple alternating k-paths: each even hop heavier than adjacent (odd) hops

Lemma (Generalized Dispersion)

For any nodes u, v, the number of simple alternating $u - v$ k-paths is

- $O(k^2 f)^{(k-1)/2}$ if k is odd
- $O(k^2 f)^{k/2}$ if k is even
Generalized Counting Lemma

Need to show there are many simple alternating k-paths.

Lemma:
Any graph with at least k^n edges has at least one simple alternating k-path.

Proof:
Induction on k.

Lemma (Generalized Counting):
H has $\Omega(n \cdot (d/\text{slash}k)^k)$ simple alternating k-paths.

Proof Sketch.
Sample nodes to get subgraph, use previous lemma to argue many simple alternating k-paths, scale back up.
Generalized Counting Lemma

Need to show there are many simple alternating k-paths.

Lemma: Any graph with at least kn edges has at least one simple alternating k-path

Proof: Induction on k
Generalized Counting Lemma

Need to show there are many simple alternating k-paths.

Lemma: Any graph with at least kn edges has at least one simple alternating k-path

Proof: Induction on k

Lemma: Any graph with at least $2kn$ edges has at least kn simple alternating k-paths

Proof: Find a distinct simple alternating k-path for each “extra” edge
Generalized Counting Lemma

Need to show there are many simple alternating k-paths.

Lemma: Any graph with at least kn edges has at least one simple alternating k-path

Proof: Induction on k

Lemma: Any graph with at least $2kn$ edges has at least kn simple alternating k-paths

Proof: Find a distinct simple alternating k-path for each “extra” edge

Lemma (Generalized Counting)

H has $\Omega(n \cdot (d/k)^k)$ simple alternating k-paths.
Generalized Counting Lemma

Need to show there are many simple alternating k-paths.

Lemma: Any graph with at least kn edges has at least one simple alternating k-path

Proof: Induction on k

Lemma: Any graph with at least $2kn$ edges has at least kn simple alternating k-paths

Proof: Find a distinct simple alternating k-path for each “extra” edge

Lemma (Generalized Counting)

H has $\Omega(n \cdot (d/k)^k)$ simple alternating k-paths.

Proof Sketch.

Sample nodes to get subgraph, use previous lemma to argue many simple alternating k-paths, scale back up.
Putting It Together

Count simple alternating k-paths.

Odd k:

$$\Omega(n \cdot (d/k)^k) = O\left(n^2 (k^2 f)^{(k-1)/2}\right)$$

$$\implies d/k = O\left(n^{1/k} (k^2 f)^{1/2 (1-1/k)}\right)$$

$$\implies |E(H)| = \frac{nd}{2} = O\left(k^2 f^{1/2 (1-1/k)} n^{1+1/k}\right)$$

Even k:

$$\Omega(n \cdot (d/k)^k) = O\left(n^2 (k^2 f)^{k/2}\right)$$

$$\implies d/k = O\left(n^{1/k} (k^2 f)^{1/2}\right)$$

$$\implies |E(H)| = \frac{nd}{2} = O\left(k^2 f^{1/2} n^{1+1/k}\right)$$
Final Notes

Optimal for odd constant k, off by $f^{1/(2k)}$ for even constant k.

Main open question: close gap for even k!
 - Essentially always see difference between even/odd stretch due to bipartiteness (hence why stretch is always $2k - 1$)
 - Rare (but not unheard of) to see difference between even/odd k.
 - What is the correct bound???

Also off by k^2, but WLOG $k \leq O(\log n)$. Still would like to get rid of k factors!

Algorithm as stated takes exponential time!
 - Can turn into polytime using same idea as [D, Robelle PODC ’20]. Extra loss of $O(k^{1/2})$
Thanks!