In vitro and in vivo protective effects of proteoglycan isolated from mycelia of *Ganoderma lucidum* on carbon tetrachloride-induced liver injury

Xiao-Jun Yang, Jing Liu, Lin-Bai Ye, Fan Yang, Li Ye, Jin-Rong Gao, Zheng-Hui Wu

Abstract

AIM: To investigate the possible mechanism of the protective effects of a bioactive fraction, *Ganoderma lucidum* proteoglycan (GLPG) isolated from *Ganoderma lucidum* mycelia, against carbon tetrachloride-induced liver injury.

METHODS: A liver injury model was induced by carbon tetrachloride. Cytotoxicity was measured by MTT assay. The activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined with an automatic multifunction-biochemical analyzer and the levels of superoxide dismutase (SOD) and TNF-α were determined following the instructions of SOD kit and TNF radioimmunounassay kit. Liver sections were stained with hematoxylin and eosin (H&E) for histological evaluation and examined under light microscope.

RESULTS: We found that GLPG can alleviate the L-02 liver cells injury induced by carbon tetrachloride (CCl₄) through the measurements of ALT and AST activities and the administration of GLPG to L-02 cells did not display any toxicity. Furthermore, histological analysis of mice liver injury induced by CCl₄ with or without GLPG pretreatment indicated that GLPG can significantly suppress the toxicity induced by CCl₄ in mice liver. We also found that GLPG reduced TNF-α level induced by CCl₄ in the plasma of mice, whereas increased SOD activity in the rat serum.

CONCLUSION: GLPG has hepatic protective activity against CCl₄-induced injury both in vitro and in vivo. The possible anti-hepatotoxic mechanisms may be related to the suppression of TNF-α level and the free radical scavenging activity.

© 2006 The WJG Press. All rights reserved.

Key words: *Ganoderma lucidum* proteoglycan (GLPG); Carbon tetrachloride (CCl₄); Liver injury; Hepatic protective activity

Yang XJ, Liu J, Ye LB, Yang F, Ye L, Gao JR, Wu ZH. *In vitro* and *in vivo* protective effects of proteoglycan isolated from mycelia of *Ganoderma lucidum* on carbon tetrachloride-induced liver injury. **World J Gastroenterol** 2006; 12(9):1379-1385

http://www.wjgnet.com/1007-9327/12/1379.asp

INTRODUCTION

The mainstream pharmaceutical industry makes use of many plant products[1][10]. In traditional Chinese medicine (TCM) many products from plants are used in the treatment of a wide range of disorders including cancer[2][8]. Moreover, the researches on the bioactive ingredients and the investigation of the functional mechanism of natural products used in TCM are becoming increasingly important. Several substances which are successful in tumor therapy, such as betulinic acid and indirubin, have been elucidated by molecular biological and cell biological methods[4][8].

Fungi are an important source of materials in TCM. Extracts from about 200 species of fungi have been shown to stimulate immunoactivity and inhibit the growth of different kinds of tumors[8][9]. *Ganoderma lucidum* (Leyss. ex Fr.) *Karst* is a medicinal mushroom belonging to the polyporaceae of aphyllorphales. Its fruiting body is called “Lingzhi” in China and “Reishi” in Japan. For hundreds of years, this mushroom has been regarded as a TCM or a folk medicine used in the prevention and treatment of various human diseases, such as chronic bronchitis, hepatitis, hypertension, hypercholesterolemia, tumorigenic disease and immunological disorders in China and other Asian countries[9][10].

Carbon tetrachloride (CCl₄) is a xenobiotic producing hepatotoxicity in human beings and animals[10][11]. In fact
it has been shown that the trichloromethyl radical formed in the metabolism of CCl₄ via the liver microsomal cytochrome P₄₅₀ system, reacts rapidly with molecular oxygen to produce trichloromethyl peroxy radicals. These radicals react with unsaturated fatty acids of phospholipids present in cell membranes, initiating lipid peroxidation in liver cells[12, 13]. Hydrogen atoms are removed from unsaturated fatty acids by such radical-generated carbon-centered lipid radicals[13]. These lipid radicals quickly add molecular oxygen to form lipid peroxyl radicals which in turn abstract hydrogen atoms from other molecules, thereby propagating the process of lipid peroxidation[14]. Transition metals such as copper and iron can catalyze oxygen free radical reactions that lead to peroxidation of membrane lipids or inactivation of antioxidant defense[15]. Previous studies have also reported involvement of iron as a mediator of CCl₄-hepatotoxicity[16]. When the amount of reactive oxygen species (ROS) production exceeds the capacity of the endogenous cellular antioxidant system, significant cellular injury can occur[17, 18]. Treatment of animals with different antioxidants such as vitamin E[19], vitamin E-like compounds[20], 5-methylthioadenosine[21], colchicine[22] and desferrioxamine[23] can significantly improve hepatic conditions by reducing CCl₄-induced damage.

Ganoderma lucidum contains many biologically active components[24, 25]. Previous studies suggested that **Ganoderma lucidum** polysaccharide (GLP), one of the main efficacious ingredients of **Ganoderma lucidum** Karst, has been under modern pharmacological research in recent 30 years and is effective in modulating immune functions, inhibiting tumor growth, resisting invasion of various viruses[9, 26, 27]. Miyazaki and Nishijima[9] have isolated a heteroglycan from the fruit body of Ganoderma lucidum. Moreover, Some researchers have isolated several hypoglycemic glycans from another fraction of the same crude polysaccharide[28].

Though the fruit body and the spores of **Ganoderma lucidum** have been used as medicines for a long time, no data is available about the protective activity of extracts from mycelium on CCl₄-induced liver injury. The main aim of this study was to investigate the effects of GLPG isolated from mycelium of **Ganoderma lucidum** on CCl₄-induced liver injury in vivo and in vitro, and the possible mechanism of the hepatic protective activity of GLPG.

MATERIALS AND METHODS

Materials and reagents

Ganoderma lucidum (Fr.) Karst (Ganodermataceae) was preserved in our laboratory. RPMI-1640, trypsin, penicillin and streptomycin were purchased from Gibco BRL (Grand Island, NY, USA). SOD kit was purchased from Jiancheng Bioengineering Institute of Nanjing. TNF radioimmunoassay kit was purchased from Jiuding Corporation (Tianjin, China). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), crystal violet and trypan blue were from Sigma (St. Louis, MO). L-02 cells were obtained from China Center for Type Culture Collection (CCTCC, Wuhan, Hubei). All the other commercially available chemicals used were of the highest grade.

Extraction and purification of GLPG

Ganoderma lucidum (Fr.) Karst was extracted as previously described[29]. In brief, fungal mycelia were collected by filtration, dried and disrupted, and then the residue was extracted with 30-40 fold boiling water for 30 min. After centrifugation, the supernatant solution was concentrated under reduced pressure and intensively dialyzed. The retentate was added to three volumes of ice cold EtOH to precipitate the crude extracts. Then the sample was allowed to stand overnight at 4 °C and then centrifuged. The precipitate obtained was lyophilized. The lyophilized products were a dark brownish powder of water-soluble substance.

To purify the crude products, a portion of crude polysaccharide fraction was dissolved in double-distilled water and centrifuged to remove the insoluble materials. The supernatant was applied onto the DEAE-cellulose column and eluted with 0.1 N NaCl. Each perk eluent was separately pooled, concentrated, dialyzed, and three volumes of ice cold EtOH was added to precipitate the polysaccharides. The polysaccharide content in each fraction was determined by phenol-sulfuric acid method[30]. The GLPG fraction was lyophilized and further dissolved to indicate the concentrations for subsequent experiments.

Animal treatment and CCl₄-induced hepatotoxicity

Male BALB/c mice weighing 18-22 g (6-8 wk old), were provided by Experimental Animal Center, Wuhan University, and fed with standard diet and tap water. The animals were housed in cages (4-5 each cage) and maintained at 24 ± 2 °C, under 50-60% relative humidity in a 12 h light/dark cycle throughout the experiment.

GLPG was diluted with saline and given orally by gavage for 20 d, at daily doses of 300, 600 and 900 mg/kg as aqueous extract. The saline control group received equal amounts of saline given orally for 20 d. During this treatment, carbon tetrachloride was introduced to the mice orally (1600 mg/kg CCl₄, mixed with corn oil) for the last 3 d. The same volume of corn oil was given to vehicle control mice orally for the last 3 d. After 3 d, the mice were euthanized under ether anesthesia, blood and liver samples were collected.

Cell culture and liver cells injury induction

L-02 cells were cultured in RPMI-1640 medium supplemented with 10 % heat inactivated fetal bovine serum (FBS), 100 IU/mL penicillin, 100 μg/mL streptomycin and 250 U/mL insulin. The cells were maintained at 37 °C in a humidified atmosphere containing 5% CO₂ and subcultured 2-3 times a week.

Semi-confluent L-02 cells in 24-well culture plate (Falcon, NJ, USA) were divided into control group, dimethyl sulfoxide (DMSO) vehicle group, GLPG group, and CCl₄-induced hepatotoxicity group (20 mmol/L final concentration) with or without GLPG at various concentrations. After 4 h the culture supernatant was collected and stored at -20 °C.

Cytotoxicity assay

Cytotoxicity was measured by MTT assay. The cells were
seeded in 96-well culture plate (Falcon, NJ, USA) at the concentration of 4×10⁴ cells per well in 100 μL medium. After incubation of the cells for 12 h at 37 ℃, various concentrations of GLPG were added and the incubation was continued for 48 h, or at a given concentration of GLPG (200 μg/mL final concentration) the incubation time was prolonged for 72 h. Then the viable cells were determined by MTT reduction assay. In brief, MTT was dissolved in phosphate-buffered saline (PBS) at 5 mg/mL and sterilized by filtration to remove insoluble residue present in some batches of MTT. At the indicated time, the MTT solution (20 μL) was added to each well. After incubation for 5 h, cell culture medium was removed carefully, and 150 μL dimethyl sulfoxide (DMSO) was added to each well and mixed thoroughly to dissolve the dark purple crystals. The plate was incubated for 10 min at room temperature, to ensure that all formazane were dissolved. The plate was then read on a Perkin-Elmer ELISA reader (HTS7000 plus) at a wavelength of 570 nm.

The effects of GLPG on cell proliferation and viability were compared according to the commonly accepted method of staining cells with trypan blue. L-02 cells were seeded in 96-well plate at the concentration of 2×10⁴ cells per well in 100 μL of RPMI-1640 medium. The cells were incubated with or without various concentrations of GLPG for 48 h. Then the cells were trypsinized and collected. The number of cells was determined in a Neubauer hemacytometer using the trypan blue exclusion method, and the mean values were calculated.

Assay of ALT and AST activities in vivo and in vitro
As a marker of hepatocyte necrosis, the activities of ALT and AST were determined with an automatic multifunction-biochemical analyzer (Beckman, USA) in serum and cell culture medium.

Superoxide dismutase (SOD) determination
Wistar rats weighing 80-120 g (7 wk old) were divided into 3 groups, 22 rats each group. GLPG was diluted with saline and given orally for 10 wk at daily doses of 1 000 and 3 000 mg/kg as an aqueous extract. The saline control group received equal amount of saline given orally for 10 wk. After 10 wk the rats were sacrificed by decapitation and the serum was collected to determine the activity of SOD, according to the instructions of the kit used.

SOD measurement method was based on the principle in which xanthine reacts with xanthine oxidase to generate superoxide radicals reacting with 2-(4-iodon phenyl)-3-(4-nitrophenol)-5-phenyltetrazolium chloride (INT) to form a red formazan dye. The SOD activity was then measured as previously described [32].

Histopathological examination
Liver was removed, fixed overnight in 10% buffered formalin and paraffin-embedded. The sections were stained with hematoxylin and eosin (H&E) for histological evaluation and examined under light microscope. In brief, 4-μm thick sections of paraffin-embedded mice liver were dewaxed in xylene, rehydrated in graded alcohol series, and washed with distilled water for 2 min. Subsequently, the sections were stained with hematoxylin for 5 min at room temperature. After 15 min, the sections were counterstained with eosin for 2 min, dehydrated in graded alcohol series, washed with xylene, and blocked by rosin. H&E- stained slides were observed under microscope at ×40 magnifications.

Measurement of plasma TNF-α level
Plasma TNF-α level was determined by TNF radioimmunoassay kit. All the mice were introduced orally with CCl₄ with or without GLPG, and the mice in control group were euthanized, then the blood was collected in the tubes with previous addition of 25 μL of heparin solution (4 000 IU). The plasma samples obtained after centrifugation at 3 000 r/min for 10 min at 4 ℃ were stored at -70 ℃ until assay.

The TNF-α levels of plasma samples were measured by sequential-saturation-type assay as previously described [33]. In brief, 200 μL of standard sample, the plasma samples, and the control were added to each tube, then 100 μL anti-TNF-α antibody was added to each tube and mixed thoroughly. After 18 h of incubation at 4 ℃, 100 μL of solution containing radioactive label was added to each tube and mixed. After a further incubation for 3 h at 37 ℃, 1 000 μL of the secondary antibody was added for 15 min. The tubes were centrifuged at 3 600 r/min for 20 min, the supernatant was discarded carefully. The gamma cpm of deposition was measured with a gamma counter, and the plasma TNF-α levels were measured by standard sample curve diagram. TNF-α values were expressed as ng/mL.

Statistical analysis
Data were expressed as mean ± SD. The difference between the means of two groups was evaluated by ANOVA. P < 0.05 was considered statistically significant.

RESULTS

Effects of GLPG on cytotoxicity
Compared with the L-02 cells administrated with GLPG and the control cells, there was no obvious change occurred in cell growth and morphology (Figures 1A and 1B). Trypan blue exclusion method showed that the total cell number of L-02 cells treated with GLPG was approximately 96 % as compared to that of the control cells. Even at the GLPG concentration was 1 024 μg/mL, the cytotoxicity was still very low as compared to the control group. Trypan blue exclusion method showed that the total cell number of L-02 cells administrated with GLPG was approximately 96 % as compared to that of the control cells. Even at the GLPG concentration was 1 024 μg/mL, the cytotoxicity was still very low as compared to the control group.

Detection of liver weight and assay of ALT and AST activities in vivo and in vitro
Compared to the control and GLPG groups, GLPG (300, 600 and 900 mg/kg) markedly ameliorated hepatic injury induced by CCl₄. The liver weight (Table 1) and serum ALT and AST activities (Table 2) were observed in mice 24 and 72 h after CCl₄ administration. The liver weight did not increase compared to CCl₄-treated group. Furthermore, the serum ALT and AST activities in GLPG pretreatment groups induced by CCl₄ were lower than those in CCl₄-treated group. Simultaneously, GLPG treatment reduced...
the serum ALT and AST activities in a dose-dependent manner within the similar range of concentrations, indicating that GLPG showed anti-hepatotoxic activities on CCl₄-induced liver injury.

Administration of GLPG also showed anti-hepatotoxic activity in L-02 cells injury induced by CCl₄. GLPG at concentrations of 100, 250 and 500 μg/mL suppressed the activities of ALT and AST in a dose-dependent manner (Figure 2).

Superoxide dismutase (SOD) assay

According to the results of SOD assay, the activity of SOD in the serum of rats pretreated with GLPG increased significantly compared with that of control group. As shown in Figure 3, compared to the control group, the activities of SOD in the group administered orally with GLPG at the concentrations of 1 000 mg/kg and 3 000 mg/kg increased by 57.2 % and 70.6 %, respectively.

Histological analysis

We examined the effects of GLPG at various doses (300, 600 and 900 mg/kg) on histopathological changes of CCl₄-induced liver injury in mice in vivo. GLPG showed strong

Table 1 Effect of GLPG on liver weight in mice with CCl₄-induced hepatic injury after 72 h (mean ± SD)

Group	Liver weight (g)
Control	1.77 ± 0.26
GLPG (500 mg/kg)	1.74 ± 0.21
CCl₄ (1600 mg/kg)	2.22 ± 0.34
CCl₄ (1600 mg/kg) + GLPG (300 mg/kg)	1.67 ± 0.17
CCl₄ (1600 mg/kg) + GLPG (600 mg/kg)	1.57 ± 0.18
CCl₄ (1600 mg/kg) + GLPG (900 mg/kg)	1.52 ± 0.14

*P<0.05 vs CCl₄-treatment group; *P<0.01, *P<0.001 vs control group; n = 10 mice.

Table 2 Effects of GLPG on ALT and AST activities in mice with CCl₄-induced hepatic injury after 24 h and 72 h (mean ± SD)

Group	ALT (U/L)	AST (U/L)
Control		
GLPG (500 mg/kg)		
CCl₄ (1600 mg/kg)		
CCl₄ (1600 mg/kg) + GLPG (300 mg/kg)		
CCl₄ (1600 mg/kg) + GLPG (600 mg/kg)		
CCl₄ (1600 mg/kg) + GLPG (900 mg/kg)		

*P<0.05 vs CCl₄ treatment group; *P<0.01, *P<0.001 vs control group; n = 20 mice.
hepatic protective activity. Significant changes of liver tissue were observed in carbon tetrachloride-induced group after 24 h and 72 h (Figures 4C and 4D) as compared to the control group (Figure 4A) and the GLPG pretreated group (Figure 4B). No obvious histopathological change was observed in control and GLPG groups. Both the control group and the GLPG group had no infiltrations and hemorrhagic signs. Figure 4C shows the histological changes after 24 h of CCl₄ post-administration with a marked liver injury. After 72 h of CCl₄ post-administration, liver lobule structures disappeared and necrotic hepatic tissues induced by CCl₄ with pretreatment GLPG (300 mg/kg) after 24 h (Figure 4E) and 72 h (Figure 4F) were had no evident recovery. Liver injury and necrotic hepatic tissue recovered markedly. As shown in Figure 4G-J, basophilic granules and many double-nuclear regenerative liver cells appeared 24 and 72 h after GLPG pretreatment at different doses (600 mg/kg and 900 mg/kg). These results showed that GLPG could alleviate CCl₄-induced liver injury in vivo in mice.

Measurement of plasma TNF-α level

Figure 5 showed that the changes of TNF-α levels in the plasma of experimental groups 48 h after CCl₄ treatment with or without GLPG at different doses. Low TNF-α levels were detected in the plasma of the control group and GPLG group. In contrast, a marked rise of TNF-α level was found in the plasma of CCl₄-pretreatment group. Simultaneously, GLPG (500 mg/kg) can decrease the level of TNF-α in the plasma of mice treated with CCl₄ (data not shown). Administration of GLPG at 300, 600 and 900 mg/kg significantly suppressed the levels of TNF-α in dose-dependent manner after 48 h. The mean values of TNF-α levels at 48 h were 34 %, 51.3 % and 64.2 % at 300, 600 and 900 mg/kg respectively.
DISCUSSION

Rapid lipid peroxidation of the membrane structural lipids has been proposed as the basis of CCl₄ liver toxicity[16-18]. In fact the first step in liver injury induced by CCl₄ is the formation of reactive oxygen species (ROS) that may further lead to membrane peroxidation or cell injury. There is evidence that Kupffer cells as well as hepatocytes have inducible cytochrome P-450 and are capable of metabolizing CCl₄ or other toxic species[19]. Moreover, it was reported that Kupffer cell activation is a crucial step in hepatocyte injury induced by CCl₄ or other toxic agents[17-18]. Transition metal ions like Cu²⁺ and Fe³⁺ play an important role as components of proteins essential for biological functions. However, these metals can also initiate Haber-Weiss and Fenton reactions where superoxide anions are transformed into detrimental hydroxyl radicals which are in turn responsible for attack of the membrane polyunsaturated fatty acids[20]. The use of metal chelating agents may have therapeutic effect by reducing the oxidative burst and the consequent membrane lipid peroxidation[19-20]. Previous findings have shown that transition metals can mediate free radical production after CCl₄ administration in rats[16, 41-42]. Treatment of these animals with agents capable of chelating these metal ions can protect hepatocytes against damage by reducing oxidative burst and lipid peroxidation[41, 43].

In this study, a water soluble substance, Ganoderma lucidum proteoglycan was isolated from mycelia of Ganoderma lucidum by EtOH precipitation and DEAE-cellulose column chromatography. GLPG is a proteoglycan consisting of about 86.4 % carbohydrates and has antioxidant activity against CCl₄-induced liver injury. Treatment with GLPG could ameliorate hepatic injury induced by CCl₄. Administration of GLPG significantly decreased ALT and AST activities in CCl₄-induced liver injury in vivo and in vitro (Table 2 and Figure 2). Histological changes observed in GLPG-pretreatment groups were less than in CCl₄-induced group. Some histological changes, such as hemorrhage, inflammatory infiltration and necrosis in hepatic tissue, were simultaneously improved after pretreatment with GLPG. These results suggested that the hepatic protective activity of GLPG against CCl₄-induced liver injury was in a dose-dependent manner.

Though the scavenging effect of Ganoderma lucidum polysaccharide (Gl-PS) has been reported [25, 43-44], no report is available about the hepatic protective activity of GLPG. In our study, the activity of SOD after pretreatment with GLPG increased significantly in the serum of rats, while SOD could eliminate peroxide in vivo, suggesting that GLPG might scavenge the free radicals induced by CCl₄.

Although it is generally believed that the hepatic protective activity of GLPG is mainly due to its ability to scavenge free radicals induced by CCl₄. However, there may be other mechanisms. A large amount of this cytokine may be interpreted as a progression of hepatic damage[27]. TNF-α induced by CCl₄ may contribute to cellular damage in liver injury. The antioxidant activity of GLPG can reduce TNF-α level in the plasma of mice, thus inhibit inflammation occurrence. Though the mechanism of GLPG down-regulates CCl₄-induced TNF-α level in vivo in mice remains unknown, the suppression of GLPG on TNF-α level might play an important role in its hepatic protective activity against CCl₄-induced liver injury.

In conclusion, GLPG exhibits strong hepatic protective activity against CCl₄-induced liver injury both in vivo and in vitro. And the possible anti-hepatotoxic mechanisms may be related to the suppression of TNF-α level and the free radical scavenging activity.

REFERENCES

1. Pezzuto JM. Plant-derived anticancer agents. Biochem Pharmacol 1997; 53: 121-133
2. Li D, Yang SL, Lian W. Exploration of clinical study of antileukemia cell drug-resistance by traditional Chinese medicine. Zhong Xi Yi Jie He Za Zhi 1995; 15: 636-637
3. Psha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CW, Fong HH, Kinghorn AD, Brown DM. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1995; 1: 1046-1051
4. Hoesel R, Leclerc S, Endicott JA, Nobel ME, Lawrie A, Tunnah P, Lesot M, Damienes E, Marie D, Marko D, Niederberger E, Tang W, Eisenbrand G, Meijer L, Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1999; 1: 60-67
5. Wang HX, NG TB, Liu WK, Ooi VE, Chang ST. Polysaccharide-peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages. Int J Biochem Cell Biol 1996; 28: 601-607
6. Wang HX, Liu WK, Ng TB, Ooi VE, Chang ST. The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology 1996; 31: 205-211
7. Ng TB. A review of research on the protein-bound polysaccharide (polysaccharopeptido, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). Gen Pharmacol 1998; 30: 1-4
8. Wasser SP, Weis AL. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 1999; 19: 65-96
9. Lin ZB. Modern research of Ganoderma Lucidum. Ed. Beijing: Beijing Medical University Press 2001: 219-309
10. Brattin WJ, Glende E, Recknagel RO. Pathological mechanisms in carbon tetrachloride hepatotoxicity. J Free Radic Biol Med 1985; 1: 27-38
11. Comporti M. Lipid peroxidation and cellular damage in toxic liver injury. Lab Invest 1985; 53: 599-623
12. Recknagel RO, Glende EA Jr, Dolak JA, Waller RL. Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther 1989; 43: 139-154
13. McCay PB, Lai EU, Poyer JL, DuBois CM, Janzen EG. Oxygen- and carbon-centered free radical formation during carbon tetrachloride metabolism. Observation of lipid radicals in vivo and in vitro. J Biol Chem 1984; 259: 2135-2143
14. Muriel P. Peroxidation of lipids and liver injury. In: Baskin SI, Salem H, eds. Antioxidants, oxidants and free radicals. Washington, DC: Taylor and Francis Publications 1987: 237-257
15. Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984; 219: 1-14
16. Younes M, Siegers CP. The role of iron in the paracetamol- and CCl₄-induced lipid peroxidation and hepatotoxicity. Chem Biol Interact 1985; 55: 327-334
17. Slater TF. Free-radical mechanisms in tissue injury. Biochem J 1984; 222: 1-15
18. Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull 1993; 49: 481-493
19. Sodergren E, Cederberg J, Vessby B, Basu S. Vitamin E reduces lipid peroxidation in experimental hepatotoxicity in rats. Eur J Nutr 2001; 40: 10-16
20 Campo GM, Squadrito F, Ceccarelli S, Calo M, Avenoso A, Campo S, Squadrito G, Altavilla D. Reduction of carbon tetrachloride-induced rat liver injury by IRFI 042, a novel dual vitamin E-like antioxidant. *Free Radic Res* 2001; 34: 379-393

21 Simile MM, Banni S, Angironi E, Carta G, De Miglio MR, Muroni MR, Calvisi D, Carru A, Pascale RM, Foa E. 5’-Methylthioadenosine administration prevents lipid peroxidation and fibrogenesis induced in rat liver by carbon-tetrachloride intoxication. *J Hepatol* 2001; 34: 386-394

22 Das D, Pemberton PW, Burrows PC, Gordon C, Smith A, McMahon RF, Warnes TW. Antioxidant properties of colchicine in acute carbon tetrachloride induced rat liver injury and its role in the resolution of established cirrhosis. *Biochim Biophys Acta* 2000; 1502: 351-362

23 Mansour MA. Protective effects of thymoquinone and desferrioxamine against hepatotoxicity of carbon tetrachloride in mice. *Life Sci* 2000; 66: 2583-2591

24 Lee SY, Rhee HM. Cardiovascular effects of mycelium extract of *Ganoderma lucidum*: inhibition of sympathetic outflow as a mechanism of its hypotensive action. *Chem Pharm Bull* (Tokyo) 1990; 38: 1359-1364

25 Lin JM, Lin CC, Chen MF, Ujie T, Takada A. Radical scavenger and antihepatotoxic activity of *Ganoderma formosanum*, *Ganoderma lucidum* and *Ganoderma neo-japonicum*. *J Ethnopharmacol* 1995; 47: 33-41

26 Lin ZB. Recent advances in Chinese Herbal Drugs-Actions and Uses. Ed. Beijing: Scientific Publishing House; 1999: 133-140

27 Kim YS, Ed SK, Oh KW, Lee C, Han SS. Antitherapeutic activities of acidic protein bound polysaccharide isolated from *Ganoderma lucidum* alone and in combinations with interferon. *J Ethnopharmacol* 2000; 72: 451-458

28 Miyazaki T, Nishijima M. Studies on fungal polysaccharides. XXVII. Structural examination of a water-soluble, antitumor polysaccharide of *Ganoderma lucidum*. *Chem Pharm Bull* (Tokyo) 1981; 29: 3611-3616

29 Hikino H, Konno C, Mirin Y, Hayashi T. Isolation and hypoglycemic activity of ganoderans A and B, glycans of *Ganoderma lucidum* fruit bodies. *Planta Med* 1985; 539-540

30 Liu J, Yang F, Ye LB, Yang XY, Timani KA, Zheng Y, Wang YH. Possible mode of action of antitherapeutic activities of a proteoglycan isolated from the mycelia of *Ganoderma lucidum* in vitro. *J Ethnopharmacol* 2004; 95: 265-272

31 Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugar and related substances. *Anal Chem* 1956; 28: 350-356

32 Woolliams JA, Wiener G, Anderson PH, McMurray CH. Variation in the activities of glutathione peroxidase and superoxide dismutase and in the concentration of copper in the blood in various breed crosses of sheep. *Res Vet Sci* 1983; 34: 253-256

33 Teppo AM, Maury CP. Radioimmunoassay of tumor necrosis factor in serum. *Clin Chem* 1987; 33: 2024-2027

34 Rechnagel RO, Glende EA Jr. Carbon tetrachloride hepatotoxicity: an example of lethal cleavage. *CRC Crit Rev Toxicol* 1973; 2: 263-297

35 Poli G, Albano E, Dianzani MU. The role of lipid peroxidation in liver damage. *Chem Phys Lipids* 1987; 45: 117-142

36 Koo DR, Chermosky A, Brass EP. Identification and induction of cytochrome P450 2E1 in rat Kupffer cells. *J Pharmacol Exp Ther* 1991; 258: 1072-1076

37 Edwards MJ, Keller BJ, Kauffman FC, Thurman RG. The involvement of Kupffer cells in carbon tetrachloride toxicity. *Toxicol Appl Pharmacol* 1993; 119: 275-279

38 Adachi Y, Bradford BU, Gao W, Bojes HK, Thurman RG. Inactivation of Kupffer cells prevents early alcohol-induced liver injury. *Hepatology* 1994; 20: 453-460

39 Center SA. Chronic liver disease: current concepts of disease mechanisms. *J Small Anim Pract* 1999; 40: 106-114

40 Armstrong C, Leong W, Lees CJ. Comparative effects of metal chelating agents on the neuronal cytotoxicity induced by copper (Cu\(^{2+}\)), iron (Fe\(^{2+}\)) and zinc in the hippocampus. *Brain Res* 2001; 892: 51-62

41 Siegers CP, Steffen B, Younes M. Antidotal effects of deferrioxamine in experimental liver injury--role of lipid peroxidation. *Pharmacol Res Commun* 1988; 20: 337-343

42 Tsokos-Kuhn JO. Evidence in vivo for elevation of intracellular free Ca\(^{2+}\) in the liver after diquat, acetaminophen, and CCl\(_4\). *Biochim Pharmacol* 1989; 38: 3061-3065

43 Kim KC, Kim IG. *Ganoderma lucidum* extract protects DNA from strand breakage caused by hydroxyl radical and UV irradiation. *Int J Mol Med* 1999; 4: 273-277

44 Lee JM, Kwon H, Jeong H, Lee JW, Lee SY, Baek SJ, Surh YJ. Inhibition of lipid peroxidation and oxidative DNA damage by *Ganoderma lucidum*. *Phytother Res* 2001; 15: 245-249

45 Shi YL, James AE, Benzie IF, Buswell JA. Mushroom-derived preparations in the prevention of H\(_2\)O-induced oxidative damage to cellular DNA. *Teratog Carcinog Mutagen* 2002; 22: 103-111

46 You YH, Lin ZB. Protective effects of *Ganoderma lucidum* polysaccharides peptide on injury of macrophages induced by reactive oxygen species. *Acta Pharmacol Sin* 2002; 23: 787-791

47 Diehl AM. Cytokine regulation of liver injury and repair. *Immunol Rev* 2000; 174: 160-171

S- Editor Wang J I- Editor Wang XL E- Editor Wu M