Counting perfect matchings in graphs that exclude a single-crossing minor

Radu Curticapean*

Abstract

A graph H is single-crossing if it can be drawn in the plane with at most one crossing. For any single-crossing graph H, we give an $O(n^4)$ time algorithm for counting perfect matchings in graphs excluding H as a minor. The runtime can be lowered to $O(n^{1.5})$ when G excludes K_5 or $K_{3,3}$ as a minor.

This is the first generalization of an algorithm for counting perfect matchings in $K_{3,3}$-free graphs (Little 1974, Vazirani 1989). Our algorithm uses black-boxes for counting perfect matchings in planar graphs and for computing certain graph decompositions. Together with an independent recent result (Straub et al. 2014) for graphs excluding K_5, it is one of the first nontrivial algorithms to not inherently rely on Pfaffian orientations.

1 Introduction

A perfect matching of a graph $G = (V, E)$ is a set $M \subseteq E$ of $|V|/2$ vertex-disjoint edges. For an edge-weighted graph G with weights $w : E \to \mathbb{Q}$, we consider the problem of computing $\text{PerfMatch}(G) = \sum_M \prod_{e \in M} w(e)$, where the outer sum ranges over all perfect matchings M of G. If $w(e) = 1$ for all $e \in E(G)$, this quantity plainly counts perfect matchings of G.

The problem PerfMatch arises in statistical physics as the dimer problem [9, 17]. In algebra and combinatorics, the quantity PerfMatch(G) for bipartite G is better known as the permanent of the (bi-)adjacency matrix of G. The complexity of its evaluation is of central interest in counting complexity [18] and algebraic complexity [3]. In fact, the permanent was the first natural problem with a polynomial-time decision version that was shown #\mathbb{P}-hard, even for zero-one weights, thus demonstrating that counting can be harder than decision.

To cope with this hardness, several reliefs were proposed: If counting may be relaxed to approximate counting, then the problem becomes feasible: It was shown in [8] that PerfMatch(G) admits a fully polynomial randomized approximation scheme on graphs G with non-negative edge weights. If the exact value of PerfMatch(G) is required, but G may be restricted to a specific class of graphs, then a rather short list of polynomial-time algorithms is known:

For planar G, the value PerfMatch(G) can be computed in time $O(n^{1.5})$ by [17, 9]. Interestingly, this algorithm from 1967 predates the hardness result for general graphs. Note that planar graphs exclude both $K_{3,3}$ and K_5 as a minor. In [12, 20], the previous algorithm was generalized to a (parallel) algorithm on graphs G that are only required to exclude the minor $K_{3,3}$. Orthogonally to this, it was shown in [7] that PerfMatch(G) admits an $O(4^n n^3)$

*Saarland University, Dept.of Computer Science, curticapean@cs.uni-sb.de
algorithm on graphs that can be embedded on a surface of genus \(g \). Recently, and independently of this work, a (parallel) polynomial-time algorithm was shown in [16] for computing PerfMatch\((G)\) on graphs excluding \(K_5 \) as a minor. In the present paper, we show:

Theorem 1. Let \(H \) be a single-crossing graph, i.e., \(H \) can be drawn in the plane with at most one crossing. Then there is an \(\mathcal{O}(n^4) \) time algorithm for computing PerfMatch\((G)\) on input graphs \(G \) that exclude \(H \) as a minor. If \(H \) is one of the single-crossing graphs \(K_5 \) or \(K_{3,3} \), then the runtime can be lowered to \(\mathcal{O}(n^{1.5}) \).

Note that the excluded minor \(H \), rather than \(G \), is required to be single-crossing: Algorithms for single-crossing \(G \) would follow from a very simple reduction to the planar case.

Theorem 1 directly generalizes the algorithm for graphs excluding \(K_{3,3} \) or \(K_5 \), but is orthogonal to the result for bounded-genus graphs: The graph consisting of \(n \) disjoint copies of the single-crossing graph \(K_5 \) has genus \(\Theta(n) \), but excludes \(K_{3,3} \) as a minor. Thus, Theorem 1 applies on this graph, while the algorithm for bounded-genus graphs does not. Conversely, the class of torus-embeddable graphs includes all single-crossing graphs. Thus, the algorithm for bounded-genus graphs applies here, while Theorem 1 does not.

Graphs excluding a single-crossing minor \(H \) have already been studied: By a decomposition theorem [14], which constitutes a fragment of the general graph structure theorem for general \(H \)-minor free graphs [15], such graphs can be decomposed into planar graphs and graphs of bounded treewidth, and it was shown in [5] how to compute such decompositions. Furthermore, approximation algorithms for the treewidth and other invariants of such graphs are known [5, 6], as well as \(\mathcal{O}(n \log n) \) algorithms for computing maximum flows [3].

Our algorithm requires black-boxes for PerfMatch on planar graphs and for finding the decompositions described above. We also use the concept of matchgates from [19], but can limit ourselves to a self-contained fragment of their theory. All required ingredients are introduced in Section 2 and used in Section 3 to present the algorithm proving Theorem 1.

2 Mise en place

Let \(\mathbb{F} \) be a field supporting efficient arithmetic operations. Graphs \(G = (V, E) \) are undirected and may feature parallel edges and weights \(w : E \to \mathbb{F} \). We allow zero-weight edges \(e \in E \) with \(w(e) = 0 \) and write \(|G| := |V(G)| \).

A graph \(G \) is planar if it admits an embedding \(\pi \) into the plane without crossings, and single-crossing if it admits an embedding into the plane with at most one crossing. Examples for single-crossing graphs are \(K_5 \) and \(K_{3,3} \). A plane graph is a pair \((G, \pi) \), where \(\pi \) is a planar embedding of \(G \). Given a plane graph \((G, \pi) \) and a cycle \(C \) in \(G \), we say that \(C \) bounds a face in \(G \) if one of the regions bounded by \(C \) in \(\pi \) is empty.

We write \(\mathcal{P}M[G] \) for the set of perfect matchings of \(G \) and define \(w(M) = \prod_{e \in M} w_G(e) \) and \(\text{PerfMatch}(G) = \sum_{M \in \mathcal{P}M[G]} w(M) \). As already noted, despite its \#P-hardness on general graphs, the value \(\text{PerfMatch}(G) \) can be computed in polynomial time for planar \(G \).

Theorem 2. For planar graphs \(G \), the value \(\text{PerfMatch}(G) \) can be computed in time \(\mathcal{O}(n^{1.5}) \).

Proof. (Sketch of [13]) In time \(\mathcal{O}(n) \), we can compute a set \(S \subseteq E(G) \) such that the following holds: After flipping the sign of \(w(e) \) for each edge \(e \in S \), we obtain a new planar graph with adjacency matrix \(A' \) satisfying \(\text{PerfMatch}(G) = \sqrt{\det(A')} \). If \(A' \) is the adjacency matrix of a planar graph, then \(\det(A') \) can be computed in time \(\mathcal{O}(n^{1.5}) \) by [14], noted also in [19]. \(\square \)
2.1 Graph minors and decompositions

A graph H is a minor of $G = (V, E)$ if H can be obtained from G by repeated edge/vertex-deletions and edge-contractions. The contraction of $uv \in E$ identifies vertices $u, v \in V(G)$ to a new vertex w and replaces possible edges $uz \in E$ or $vz \in E$ for $z \in V(G)$ by a new edge wz. For a graph class \mathcal{H}, write $\mathcal{C}[\mathcal{H}]$ for the class of all graphs G such that no $H \in \mathcal{H}$ is a minor of G. By Kuratowski’s theorem, $\mathcal{C}[K_3, K_5]$ coincides with the planar graphs. Other graph classes can also be expressed by forbidden minors. In fact, Robertson and Seymour’s graph structure theorem [15] describes the structure of graphs in $\mathcal{C}[\mathcal{H}]$ for arbitrary \mathcal{H}. We use a fragment of this theorem that applies only when H is single-crossing: Roughly speaking, graphs in $\mathcal{C}[\mathcal{H}]$ consist of planar graphs and constant-size graphs that are glued together in a well-specified way. Our algorithm will crucially rely on these decompositions.

Definition 1. Let F, F' be graphs, both containing a vertex set K. Write $F \oplus_K F'$ for the graph obtained from the disjoint union of F and F' by identifying, for each $v \in K$, the two copies of v. This may create parallel edges between vertices in K.

- In the following, let G be a graph. A decomposition $\mathcal{T} = (T, G)$ of G is a rooted tree T with a family of graphs $G = \{G_t\}_{t \in V(T)}$ such that the following holds:

 1. For $st \in E(T)$, the set $K[s, t] := V(G_s) \cap V(G_t)$ is a clique, the so-called attachment clique at st, possibly containing zero-weight edges in G_s or G_t. If s is the parent of t, we call $K[s, t]$ the navel of t.

 2. For $t \in V(T)$, define $G_{\leq t}$: If t is a leaf, then $G_{\leq t} = G_t$. If t has children s_1, \ldots, s_r with navels K_1, \ldots, K_r, then $G_{\leq t} = G_t \oplus_{K_1} G_{\leq s_1} \oplus_{K_2} \cdots \oplus_{K_r} G_{\leq s_r}$. If t is the root, we require that $G_{\leq t}$ is isomorphic to G after removal of all zero-weight edges.

- For $c \in \mathbb{N}$, the decomposition \mathcal{T} is c-nice if G_t is given as a plane graph whenever $|V(G_t)| > c$. Furthermore, if K is an attachment clique in G_t, then $|K| \leq 3$. If $|K| = 3$ and K is not the navel of G_t, then K is required to bound a face in G_t.

- If $|V(G_t)| \leq k$ for all $t \in V(T)$, then \mathcal{T} is a tree-decomposition of width k of G. The treewidth of G is defined as $\min\{k \in \mathbb{N} \mid G$ has a tree-decomposition of width $k + 1\}$.

Figure 1: (left) \mathcal{T} is almost 5-nice: Either $|V(G_t)| \leq 5$ or G_t is a plane graph whose non-navel attachment cliques bound faces, with the exception of one triangle K at the root. Zero-weight edges are drawn with dashed lines. (right) The offending attachment clique K is repaired.
Remark 1. The above definition of treewidth, used e.g. in [10], is equivalent to the more common one that uses “bags”. It is also verified that, if T is a decomposition of G and K is a clique in G, then there is some node t in T such that $K \subseteq V(G_t)$.

Theorem 3. For every single-crossing graph H, there is a constant $c \in \mathbb{N}$ such that the following holds: For every $G \in \mathcal{C}[H]$, a c-nice decomposition $T = (T, G)$ of G can be found in time $O(n^4)$. Additionally, T satisfies the size bounds $\sum_{t \in V(T)} |G_t| \in O(n)$ and $|T| \in O(n)$.

Proof. Using the decomposition algorithm presented in [5], we compute in $O(n^4)$ time a decomposition $T' = (T', G')$ that satisfies the following: For each $t \in V(T')$, either G_t has treewidth $\leq c$, or G_t is a plane graph whose attachment cliques K satisfy $|K| \leq 3$. Furthermore, T' satisfies the size bounds stated in the theorem for T.

By local patches at nodes $t \in V(T)$, we successively transform T' to a c-nice decomposition T. This involves (i) splitting nodes t of treewidth $\leq c$ into trees of constant-size parts, and (ii) splitting planar nodes into multiple planar nodes whose non-navel attachments bound faces.

With Z_t denoting the set of nodes added to T' by patching t, we show along the way that the local size bound $\sum_{z \in Z_t} |G_z| \in O(|G_t|)$ holds. This implies the claimed size bounds on T.

(i) Let G_t have treewidth $\leq c$. Using [2], compute in time $O(2^c n)$ a tree-decomposition $R = (R, B)$ of width c of G_t with $B = \{B_r\}_{r \in V(R)}$ and $|R| \in O(|G_t|)$. Let K be the navel of t and let r be an arbitrary node of R satisfying $K \subseteq V(B_r)$, which exists by Remark 1. Declare r as root of R and attach R to T' by deleting t from T', disconnecting possible children of t, and inserting R with root r at the place of t. For every child s of t in T' that was disconnected this way, do the following: By Remark 1, its navel, which is a clique, is contained in B_p for some node p of R. Add the edge ps to T'. Processing t this way adds $|R| \in O(|G_t|)$ new nodes z to T', each with $|G_z| \leq c$, showing the local size bound for t.

(ii) Similar to [4]. Let K be an attachment clique of G_t that does not bound a face, as in Figure 1. Then t has a neighbor s such that the subgraph F bounded by $K = K[s, t]$ in the embedding of G_t contains other vertices than K. Delete $F - K$ from G_t. Add a new node t' adjacent to t and define $G_{t'} := F$ with zero weight at all edges in $F[K]$. For each child r of t whose navel is contained in $V(F)$, replace the edge rt of T by rt'. If the newly created graph $G_{t'}$ contains another attachment clique that does not bound a face, recurse on $G_{t'}$.

For (ii), we see that $|Z_t| \leq |G_t|$ since every recursion step deletes at least one vertex from its current subgraph of G_t. Secondly, the local size bound holds at t since every recursion step introduces at most 3 new vertices, namely the copy of K in the child node.

Remark 2. For $H \in \{K_{3,3}, K_5\}$, an $O(1)$-nice decomposition T can be found in time $O(n)$: Instead of computing T' by [5] in the first step, use [1] for $H = K_{3,3}$ or [13] for $H = K_5$.

2.2 Matchgates and signatures

In the following, we present the concept of matchgates from [19], as these will play a central role in our algorithm. We limit ourselves to a small self-contained fragment of their theory.

Definition 2 ([19]). A matchgate $\Gamma = (G, S)$ is a graph G with a set of external vertices $S \subseteq V(G)$. Its signature $\text{Sig}(\Gamma) : 2^S \to \mathbb{F}$ is the function that maps $X \subseteq S$ to PerfMatch($G - X$).

Remark 3. For $\Gamma = (G, S)$ with $|S| = k$, we represent $\text{Sig}(\Gamma)$ by a vector in \mathbb{F}^{2^k}. If we can compute PerfMatch($G - X$) for $X \subseteq S$ in time t, then we can compute $\text{Sig}(\Gamma)$ in time $O(2^k t)$.

The matchgates from Propositions 6.1 and 6.2 in [19], each drawn as a plane graph
with a set \(S \subseteq \{a, b, c\} \) as external vertices on the outer face. Below each matchgate, its
signature is given as a vector of length \(2^{|S|} \) with entries ordered as \(\emptyset, a, b, c, ab, ac, bc, abc \) or a
subsequence thereof. If \(f \) is even or odd, then at least one matchgate \(\Gamma \) satisfies \(\text{Sig}(\Gamma) = f \): If \(|S| = 3 \) and \(f \) is even, then either the first or second matchgate applies. If \(|S| = 3 \) and \(f \) is odd, the third or fourth matchgate applies. If \(|S| \leq 2 \), a matchgate of the second row applies.

The signature of \(\Gamma \) describes its behavior in sums with other graphs:

Lemma 1. For matchgates \(\Gamma = (G, S) \) and \(\Gamma' = (G', S) \), let \(G^* = G \oplus_S G' \). Then
\[
\text{PerfMatch}(G^*) = \sum_{Y \subseteq S} \text{Sig}(\Gamma, Y) \cdot \text{Sig}(\Gamma', S \setminus Y).
\]

Proof. Each \(M \in \mathcal{PM}[G^*] \) induces a unique partition into \(M = N \cup N' \) with \(N \subseteq E(G) \) and \(N' \subseteq E(G') \). Since \(M \) is a perfect matching, every \(v \in V(G^*) \) is matched in exactly one of \(N \) or \(N' \). For vertices \(v \not\in S \), the choice of \(N \) or \(N' \) independent of \(M \).

For \(Y \subseteq S \), let \(\mathcal{M}_Y \subseteq \mathcal{PM}[G^*] \) denote the perfect matchings of \(G^* \) with \(S \setminus Y \) matched by \(N \) and \(Y \) matched by \(N' \). Since \(\{\mathcal{M}_Y\}_{Y \subseteq S} \) partitions \(\mathcal{PM}[G^*] \), we have \(\text{PerfMatch}(G^*) = \sum_{Y \subseteq S} \sum_{M \in \mathcal{M}_Y} w(M) \). It remains to show \(\sum_{M \in \mathcal{M}_Y} w(M) = \text{Sig}(\Gamma, Y) \cdot \text{Sig}(\Gamma', S \setminus Y) \): This follows since every \(M \in \mathcal{M}_Y \) can be written as \(M = N \cup N' \) with \((N, N') \in \mathcal{PM}[G - Y] \times \mathcal{PM}[G' - (S \setminus Y)] \) and the correspondence between \(M \) and \((N, N') \) is bijective.

Since the only information used about \(G' \) in [19] is contained in \(\text{Sig}(\Gamma') \), we conclude:

Corollary 1. Let \(\Gamma = (F, S) \) and \(\Gamma' = (F', S) \) and let \(G \) be a graph with \(S \subseteq V(G) \). If \(\text{Sig}(\Gamma) = \text{Sig}(\Gamma') \), then \(\text{PerfMatch}(G \oplus_S \Gamma) = \text{PerfMatch}(G \oplus_S \Gamma') \).

Whenever \(\Gamma \) has \(\leq 3 \) external vertices, we can find a small planar matchgate \(\Gamma' \) with the
same signature. We show this in the next fact, essentially from [19]. Together with Corollary 1, we will use \(\Gamma' \) to mimic \(\Gamma \), similarly to an idea in [4] for mimicking flow networks.

Fact 1. For every matchgate \(\Gamma = (G, S) \) with \(|S| \leq 3\), there is a matchgate \(\Gamma' = (F, S) \) with
\(\text{Sig}(\Gamma) = \text{Sig}(\Gamma') \) such that \(F \) is a plane graph on \(\leq 7 \) vertices with \(S \) on its outer face.

Proof. We call \(f : 2^S \to \mathbb{F} \) even if \(f(X) = 0 \) for all \(X \) of odd cardinality, and we call \(f \) odd
if \(f(X) = 0 \) for all \(X \) of even cardinality. Since every matching features an even number of
matched vertices, \(\text{Sig}(\Gamma) \) is even/odd if \(|G| \) is even/odd. Hence Figure 2 adapted from [19]
contains a matchgate with signature \(\text{Sig}(\Gamma) \) after suitable substitution of edge weights.
3 Proof of Theorem 1

By Theorem 3, if G excludes a fixed single-crossing minor H, we can find a c-nice decomposition $\mathcal{T} = (T, \mathcal{G})$ with $c \in O(1)$. This \mathcal{T} satisfies $\sum_{t \in V(\mathcal{T})} |G_t| \in O(n)$ and $|T| \in O(n)$.

For $t \in V(T)$, let $n_t = |G_t|$. For non-root nodes $t \in V(T)$ with navel K, define the matchgate $\Gamma_{\leq t} = (G_{\leq t}, K)$. For the root $r \in V(T)$, note that $G_{\leq r} = G$. Since r has no navel, write $\Gamma_{\leq r} = (G, \emptyset)$ by convention.

We compute $\text{Sig}(\Gamma_{\leq t})$ for each $t \in V(T)$ by a bottom-up traversal of \mathcal{T}. This computes $\text{Sig}(\Gamma_{\leq r}, \emptyset)$ for the root r, which is equal to $\text{PerfMatch}(G)$ by definition. To process $t \in V(T)$, we assume that $\text{Sig}(\Gamma_{\leq r})$ is known for each child r of t. This is trivially true if t is a leaf and will be assumed by induction for non-leaf nodes. We then compute $\text{Sig}(\Gamma_{\leq t})$ as follows:

- If G_t has $\leq c$ vertices, let $V = V(G_t)$, let $\Delta_0 = (G_t, V)$ and compute $\text{Sig}(\Delta_0)$ in time $2^{O(c^2)}$ by brute force. Let s_1, \ldots, s_b be the children of t, with navels $K_1, \ldots, K_b \subseteq V$.
 For $1 \leq i \leq b$, define $\Delta_i = (G_t \oplus_{K_i} \Gamma_{\leq s_1} \oplus_{K_2} \cdots \oplus_{K_i} \Gamma_{\leq s_i}, V)$ and successively compute $\text{Sig}(\Delta_i)$ from the values of $\text{Sig}(\Delta_{i-1})$ and $\text{Sig}(\Gamma_{\leq s_i})$ by means of Lemma 1 and Remark 3. After completing this, since the external nodes V of Δ_b trivially include the navel of t, we obtain $\text{Sig}(\Gamma_{\leq t})$ as a restriction of $\text{Sig}(\Delta_b)$.

- If G_t is planar, first perform the following for each attachment clique K of G_t:
 1. Let s_1, \ldots, s_b denote the children of t with navel K and define the matchgate $\Delta = (G_{\leq s_1} \oplus_{K} \cdots \oplus_{K} G_{\leq s_b}, K)$. Recall that $|K| \leq 3$ since \mathcal{T} is nice.
 2. Use Lemma 1 to compute $f = \text{Sig}(\Delta)$ and use Fact 2 to obtain a planar matchgate Φ on external vertices K with $\text{Sig}(\Phi) = f$ and K on its outer face.
 3. Replace G_t by $G_t \oplus K \Phi$, resulting in a planar graph. Planarity is obvious if $|K| \leq 2$. If $|K| = 3$, recall that K lies on the outer face of Φ, and that K bounds a face in G_t. The union of such planar graphs preserves planarity.

After processing all attachment cliques, the graph G_t is planar and has $O(n_t)$ vertices. By Corollary 1 we have $\text{Sig}(\Psi) = \text{Sig}(\Gamma_{\leq t})$ for $\Psi = (G_t, K)$, where K with $|K| \leq 3$ is the navel of t. Compute $\text{Sig}(\Psi)$ by Theorem 2 and Remark 3 in time $O(n_t^{1.5})$.

By Theorem 3 and Remark 2, computing \mathcal{T} requires $O(n^4)$ time for general H or $O(n)$ time for $H \in \{K_{3,3}, K_5\}$. Processing \mathcal{T} requires time $O(|T| + \sum_{t \in T} n_t^{1.5})$: At node t, we spend either $2^{O(c^2)}$ or $O(n_t^{1.5})$ time. Since $\sum_{t \in T} n_t \in O(n)$ by the size bound of Theorem 3, it follows that $\sum_{t \in T} n_t^{1.5} \leq (\sum_{t \in T} n_t)^{1.5} \in O(n^{1.5})$. As $|T| \in O(n)$, the overall runtime claims follow.

4 Conclusions and future work

We presented a polynomial-time algorithm for $\text{PerfMatch}(G)$ on graphs $G \in \mathcal{C}[H]$ when H is single-crossing. Since structural results about graphs in $\mathcal{C}[H]$ for arbitrary (and not necessarily single-crossing) graphs H are known [15], it is natural to ask whether our approach can be extended to such graphs. We cautiously believe in an affirmative answer – in fact, Mingji Xia and the author made some progress towards a proof, but are still facing nontrivial obstacles.
References

[1] T. Asano. An approach to the subgraph homeomorphism problem. *Theor. Comp. Sci.*, 38(0):249–267, 1985.

[2] H. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. *SIAM J. Comput.*, 25(6):1305–1317, December 1996.

[3] P. Bürgisser. *Completeness and Reduction in Algebraic Complexity Theory*. Number 7 in Algorithms and Computation in Mathematics. Springer Verlag, 2000. 168 + xii pp.

[4] E. Chambers and D. Eppstein. Flows in one-crossing-minor-free graphs. *J. Graph Algorithms Appl.*, 17(3):201–220, 2013.

[5] E. Demaine, M. Hajiaghayi, N. Nishimura, P. Ragde, and D. Thilikos. Approximation algorithms for classes of graphs excluding single-crossing graphs as minors. *J. Comput. Syst. Sci.*, 69(2):166–195, 2004.

[6] E. Demaine, M. Hajiaghayi, and D. Thilikos. 1.5-approximation for treewidth of graphs excluding a graph with one crossing as a minor. In *APPROX*, pages 67–80, 2002.

[7] A. Galluccio and M. Loebl. On the theory of pfaffian orientations. I. Perfect matchings and permanents. *Electr. J. Comb.*, 6, 1999.

[8] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. *J. ACM*, 51(4):671–697, 2004.

[9] P. Kasteleyn. Graph theory and crystal physics. In *Graph Theory and Theoretical Physics*, pages 43–110. Academic Press, 1967.

[10] Igor Kriz and Robin Thomas. Clique-sums, tree-decompositions and compactness. *Discrete Mathematics*, 81(2):177 – 185, 1990.

[11] R. Lipton, D. Rose, and R. Tarjan. Generalized nested dissection. *SIAM Journal on Numerical Analysis*, 16(2):346–358, 1979.

[12] C. Little. An extension of Kasteleyn’s method of enumerating the 1-factors of planar graphs. In *Combinatorial Mathematics*, LNCS, pages 63–72. 1974.

[13] B. Reed and Z. Li. Optimization and recognition for K5-minor free graphs in linear time. In *LATIN 2008: Theoretical Informatics*, pages 206–215. 2008.

[14] N. Robertson and P. Seymour. Excluding a graph with one crossing. In *Graph Structure Theory*, pages 669–676, 1991.

[15] N. Robertson and P. Seymour. Graph minors. XVI. Excluding a non-planar graph. *Journal of Combinatorial Theory, Series B*, 89(1):43 – 76, 2003.

[16] S. Straub, T. Thierauf, and F. Wagner. Counting the number of perfect matchings in K5-free graphs. *Electronic Colloquium on Comp. Complexity (ECCC)*, 21(79), 2014.

[17] H. Temperley and M. Fisher. Dimer problem in statistical mechanics - an exact result. *Philosophical Magazine*, 6(68):1061–1063, 1961.

[18] L. Valiant. The complexity of computing the permanent. *Theor. C. Sci.*, pages 189–201, 1979.

[19] L. Valiant. Holographic algorithms. *SIAM J. Comput.*, 37(5):1565–1594, 2008.

[20] V. Vazirani. NC algorithms for computing the number of perfect matchings in $K_{3,3}$-free graphs and related problems. *Inf. Comput.*, 80(2):152–164, 1989.