On Almost Complete Subsets of a Conic in $\text{PG}(2, q)$, Completeness of Normal Rational Curves and Extendability of Reed-Solomon Codes

D. Bartolia, A. A. Davydovb, S. Marcuginia, and F. Pambiancoa

a Department of Mathematics and Computer Sciences, Università degli Studi di Perugia
daniele.bartoli@unipg.it stefano.marcugini@unipg.it fernanda.pambianco@unipg.it

b Kharkevich Institute for Information Transmission Problems
Russian Academy of Sciences, Moscow, Russia
adav@iitp.ru

Abstract

A subset \mathcal{S} of a conic \mathcal{C} in the projective plane $\text{PG}(2, q)$ is called almost complete (AC-subset for short) if it can be extended to a larger arc in $\text{PG}(2, q)$ only by the points of $\mathcal{C} \setminus \mathcal{S}$ and by the nucleus of \mathcal{C} when q is even. New upper bounds on the smallest size $t(q)$ of an AC-subset are obtained, in particular,

$$t(q) < \sqrt{q(3 \ln q + \ln \ln q + \ln 3)} + \sqrt{\frac{q}{3 \ln q}} + 4 \sim \sqrt{3q \ln q};$$

$$t(q) < 1.835 \sqrt{q \ln q}.$$

The new bounds are used to increase regions of pairs (N, q) for which it is proved that every normal rational curve in $\text{PG}(N, q)$ is a complete $(q + 1)$-arc or, equivalently, that no $[q + 1, N + 1, q - N + 1]_q$ generalized doubly-extended Reed-Solomon code can be extended to a $[q + 2, N + 1, q - N + 2]_q$ MDS code.

1The research of D. Bartoli, S. Marcugini, and F. Pambianco was supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project “Geometrie di Galois e strutture di incidenza”) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM).

2 The research of A.A. Davydov was carried out at the IITP RAS at the expense of the Russian Foundation for Sciences (project 14-50-00150).
Mathematics Subject Classification (2010). 51E21, 51E22, 94B05.

Keywords. Projective planes, almost complete subsets of a conic, small almost complete subsets, completeness of normal rational curves, extendability of Reed-Solomon codes

1 Introduction

Let $\text{PG}(N, q)$ be the N-dimensional projective space over the Galois field \mathbb{F}_q of order q. An n-arc in $\text{PG}(N, q)$ with $n > N + 1$ is a set of n points such that no $N + 1$ points belong to the same hyperplane of $\text{PG}(N, q)$. An n-arc of $\text{PG}(N, q)$ is complete if it is not contained in an $(n + 1)$-arc of $\text{PG}(N, q)$. In $\text{PG}(N, q)$ with $2 \leq N \leq q - 2$, a normal rational curve is any $(q + 1)$-arc projectively equivalent to the arc $\{(1, t, t^2, \ldots, t^N) : t \in \mathbb{F}_q\} \cup \{(0, \ldots, 0, 1)\}$.

For an introduction to projective geometries over finite fields see [1–3].

Let an $[n, k, d]_q$ code be a q-ary linear code of length n, dimension k, and minimum distance d. If $d = n - k + 1$, it is a maximum distance separable (MDS) code. The code dual to an $[n, k, n - k + 1]_q$ MDS code is an $[n, n - k, k + 1]_q$ MDS code.

Points (in the homogeneous coordinates) of an n-arc in $\text{PG}(N, q)$ treated as columns define a generator matrix of an $[n, N + 1, n - N]_q$ MDS code. If an n-arc in $\text{PG}(N, q)$ is complete then the corresponding $[n, N + 1, n - N]_q$ MDS code cannot be extended to an $[n + 1, N + 1, n - N + 1]_q$ MDS code. For properties of linear MDS codes and their equivalence to arcs see e.g. [1–14].

The j-th column of a generator matrix of a $[q + 1, N + 1, q - N + 1]_q$ generalized doubly-extended Reed-Solomon (GDRS) code has the form $(v_j, v_j \alpha_j, v_j \alpha_j^2, \ldots, v_j \alpha_j^N)^T$, where $j = 1, 2, \ldots, q$; $\alpha_1, \ldots, \alpha_q$ are distinct elements of \mathbb{F}_q; v_1, \ldots, v_q are nonzero (not necessarily distinct) elements of \mathbb{F}_q. Also, this matrix contains one more column $(0, \ldots, 0, v)^T$ with $v \neq 0$. The code, dual to a GDRS code, is a GDRS code too.

Points (in the homogeneous coordinates) of a normal rational curve in $\text{PG}(N, q)$ treated as columns define a generator matrix of a $[q + 1, N + 1, q - N + 1]_q$ GDRS code. Proposition 1.1 is well known.

Proposition 1.1. Let N and q be fixed integers with $2 \leq N \leq q - 2$. Moreover, let q be a prime power. The following statements are equivalent:

• Every normal rational curve in $\text{PG}(N, q)$ is a complete $(q + 1)$-arc;
• No $[q + 1, N + 1, q - N + 1]_q$ GDRS code can be extended to a $[q + 2, N + 1, q - N + 2]_q$ MDS code.

Due to Proposition 1.1, all results given below on completeness of normal rational curves can be reformulated in coding theory language for extendability of GDRS codes.

The completeness of normal rational curves and related problems are considered in numerous works starting from Segre’s paper [15] of 1955; see for example [1–20], where
surveys and references can be found. In particular, the following conjecture, connected with the famous Segre’s three problems, is well known.

Conjecture 1.2. Let \(2 \leq N \leq q - 2 \). Every normal rational curve in \(\text{PG}(N, q) \) is a complete \((q + 1)\text{-arc}\) except for the cases \(q \) even and \(N \in \{2, q - 2\} \) when one point can be added to the curve.

Remark 1.3. As a comment to Conjecture 1.2 for \(q \) even, note the following. If \(N = 2 \), the point which can be added to a normal rational curve is unique. But if \(N = q - 2 \), there are many points in \(\text{PG}(q - 2, q) \) which extend a normal rational curve to a \((q + 2)\text{-arc}\), see [13, Theorem 3.10] for the geometrical characterization of these points.

Remark 1.4. If \(k \geq q \) then an \([n, k, n - k + 1]\)q MDS code has length \(n \leq k + 1 \), see e.g. [10, 11]. For \(2 \leq N \leq q - 2 \), the well known MDS conjecture assumes that an \([n, N + 1, n - N]_q\) MDS code (or equivalently an \(n\)-arc in \(\text{PG}(N, q) \)) has length \(n \leq q + 1 \) except for the cases \(q \) even and \(N \in \{2, q - 2\} \) when \(n \leq q + 2 \). The MDS conjecture considers all MDS codes (or all arcs) whereas Conjecture 1.2 says only something about normal rational curves (or GDRS codes). If the MDS conjecture holds for some pair \((N, q)\) then Conjecture 1.2 holds too, but in general the reverse is not true.

For many pairs \((N, q)\) Conjecture 1.2 is proved, see [11, 14–20] and the references therein; but in general, completeness of normal rational curves is an open problem. The main known results are given in Table 1 where \(p \) and \(p_0(h) \) are prime. For rows 1–6 of Table 1 in fact, the MDS conjecture is proved. In [5], see row 7 of Table 1 it is proved that a subset of size \(3(N - 1) - 6 \) of a normal rational curve in \(\text{PG}(N, q) \), \(q \) odd, cannot be extended to an arc of size \(q + 2 \). This means that \(3N - 3 \leq q + 1 \) (otherwise the curve could not contain a such subset). So, \(N \leq \frac{q + 4}{3} \). The regions of \(N \) in rows 10–11 cover the ones in rows 6–8; we included rows 6–8 in Table 1 as the methods used for them are useful for further research.

For the problem of completeness of normal rational curves we use tools connected with almost complete subsets of a conic in the projective plane \(\text{PG}(2, q) \).

An \(n\)-arc in \(\text{PG}(2, q) \) is a set of \(n \) points no three of which are collinear. A point \(P \) of \(\text{PG}(2, q) \) is covered by an arc \(\mathcal{K} \subset \text{PG}(2, q) \) if \(P \) lies on a bisecant of \(\mathcal{K} \). Throughout the paper, \(\mathcal{C} = \{(1, t, t^2) : t \in \mathbb{F}_q\} \cup \{(0, 0, 1)\} \) is a fixed conic in \(\text{PG}(2, q) \). Any point subset of \(\mathcal{C} \) is an arc. For even \(q \), denote by \(\mathcal{O} \) the nucleus of \(\mathcal{C} \). Let

\[
\mathcal{M}_q := \begin{cases}
\text{PG}(2, q) \setminus \mathcal{C} & \text{if } q \text{ odd} \\
\text{PG}(2, q) \setminus (\mathcal{C} \cup \{\mathcal{O}\}) & \text{if } q \text{ even}
\end{cases}
\]

Definition 1.5. (i) In \(\text{PG}(2, q) \), an almost complete subset of the conic \(\mathcal{C} \) (AC-subset, for short) is a proper subset of \(\mathcal{C} \) covering all the points of \(\mathcal{M}_q \). An \(n\)-AC-subset is an AC-subset of size \(n \).

(ii) An AC-subset is minimal if it does not contain a smaller AC-subset.
Table 1: Pairs \((N, q)\) for which it is proved that every normal rational curve in \(\text{PG}(N, q)\) is a complete \((q + 1)\)-arc

no.	\(q\)	\(N\)	Reference
1	\(q = p^{2h+1}, p \geq 3, h \geq 1\)	\(q - \frac{1}{3}\sqrt{pq} + \frac{20}{7p}p - 3 < N \leq q - 3\)	[2] Table 3.4
2	\(q = p^h, p \geq 5\)	\(q - \frac{1}{7}\sqrt{q} + 1 < N \leq q - 3\)	[2] Table 3.4
3	\(q = p^h \geq 23^2; p \geq 3; q \neq 5^5, 3^6; h\) even for \(q = 3\)	\(q - \frac{1}{2}\sqrt{q} - 1 < N \leq q - 3\)	[2] Table 3.4
4	\(q = 2^h, h > 2\)	\(q - \frac{1}{3}\sqrt{q} - \frac{11}{4} < N \leq q - 5\)	[2] Table 3.4
5	\(q = p\)	\(2 \leq N \leq p - 1\)	[4, 6, 16, 17]
6	\(q = p^2\)	\(2 \leq N \leq 2\sqrt{q} - 3\)	[4, 6, 16, 17]
7	\(q\) odd	\(N \leq \frac{q + 4}{3}\)	[5, Theorem 1.4]
8	all \(q\)	\(3 \leq N \leq q + 2 - 6\sqrt{q\ln q}\)	[19, Theorem 3.3]
9	\(q = p^{2h+1}; p \geq p_0(h); p_0(h)\) is the smallest \(\hat{p}\) satisfying \(\sqrt{\hat{p}} > 24\sqrt{(2h + 1)\ln \hat{p}} + \frac{20}{\hat{p}^{h+1}} - \frac{20}{\hat{p}^{2h+1}}\)	\(2 \leq N \leq q - 2\)	[19, Theorem 3.5]
10	\(q\) odd	\(2 \leq N \leq q - 2 - \sqrt{7(q + 1)\ln q}\)	[18, Theorem 9.2]
11	\(q\) even	\(3 \leq N \leq q - 1 - \sqrt{7(q + 1)\ln q}\)	[18, Theorem 9.2]

Note that an AC-subset \(S\) is an arc that can be extended to a larger arc in \(\text{PG}(2, q)\) only by the points of \(C \setminus S\) and by the nucleus \(O\) when \(q\) is even. The term “almost completeness” was introduced in [18, p. 94] for objects in the affine plane \(\text{AG}(2, q)\).

Denote by \(t(q)\) the smallest size of an AC-subset in \(\text{PG}(2, q)\).

In this work we provide new upper bounds on \(t(q)\). This is an open problem. It is addressed, for example, in [19–21]. In [21], by probabilistic methods, it is proved that

\[
t(q) < 6\sqrt{q\ln q}. \tag{1.1}
\]

In [19, Theorem 3.1], using the results and approaches of [20], the following connection between \(t(q)\) and the completeness of normal rational curves is proved:

under the condition

\[
3 \leq N \leq q + 2 - t(q), \tag{1.2}
\]

every normal rational curve in \(\text{PG}(N, q)\) is a complete \((q + 1)\)-arc.

The aims of this paper are as follows: obtain new upper bounds on the smallest size of an AC-subset of a conic in \(\text{PG}(2, q)\); using the bounds, extend regions of pairs \((N, q)\) for which it is proved that every normal rational curve in \(\text{PG}(N, q)\) is a complete \((q + 1)\)-arc.
The paper is organized as follows. In Section 2 the main results of this paper are formulated. In Section 3 we consider an estimate of the number of new covered points in one step of a step-by-step algorithm constructing AC-subsets. In Section 4 implicit and explicit upper bounds on \(t(q) \), based on the results of Section 3, are obtained. In Section 5 computer assisted bounds on \(t(q) \) are studied. In Section 6, new bounds on \(t(q) \) are applied to the problem of completeness of normal rational curves. Finally, in Appendix tables of the smallest known sizes \(t(q) \) of AC-subsets in PG\((2, q) \) are given.

2 The main results

We introduce the following set of prime powers.

\[
Q_1 := \{8 \leq q \leq 139129, \ q = p^m, \ p \text{ prime, } m \geq 2\}. \tag{2.1}
\]

Throughout the paper we denote

\[
\Phi(q) = \sqrt{q(3 \ln q + \ln \ln q + \ln 3)} + \sqrt{\frac{q}{3\ln q}} + 4 \sim 3\sqrt{q \ln q}; \tag{2.2}
\]

\[
\Theta(q) = \begin{cases}
1.62\sqrt{q \ln q} & \text{for } 8 \leq q \leq 17041 \\
1.635\sqrt{q \ln q} & \text{for } 17041 < q \leq 33013 \\
1.674\sqrt{q \ln q} & \text{for } q \in Q_1 \\
\min\{1.835\sqrt{q \ln q}, \Phi(q)\} & \text{for all } q \geq 5
\end{cases}, \tag{2.3}
\]

where

\[
\min\{1.835\sqrt{q \ln q}, \Phi(q)\} = \begin{cases}
1.835\sqrt{q \ln q} & \text{for } q < 12755807 \\
\Phi(q) & \text{for } 12755807 \leq q
\end{cases}.
\]

The main result of this paper is Theorem 2.1 based on Theorems 4.10, 4.12, and 5.1.

Theorem 2.1. The following upper bound on the smallest size \(t(q) \) of an AC-subset of the conic \(C \) in PG\((2, q) \) holds:

\[
t(q) < \Theta(q). \tag{2.4}
\]

Similarly to [19], we use upper bounds on \(t(q) \) to prove the completeness of the normal rational curves as arcs in projective spaces. From Theorem 2.1 and [19] Theorems 3.1,3.5 we obtained Corollaries 2.2 and 2.3; see Section 6.

Corollary 2.2. Let

\[
3 \leq N \leq q + 2 - \Theta(q). \tag{2.5}
\]

Then every normal rational curve in PG\((N, q) \) is a complete \((q + 1) \)-arc.
Corollary 2.3. Let $h \geq 1$ be a fixed integer. Let $p_0(1) = 757$, $p_0(2) = 1399$, $p_0(3) = 2129$, $p_0(4) = 2887$, $p_0(5) = 3623$. Also, for $h \geq 6$ let $p_0(h)$ be the smallest odd prime p satisfying

$$\sqrt{p} > 4c\sqrt{(2h + 1)\ln p} + \frac{29}{4p^{h-0.5}} - \frac{20}{p^{h+0.5}},$$

(2.6)

where $c = 1.62$ for $6 \leq h \leq 19$, $c = 1.635$ for $20 \leq h \leq 28$, $c = 1.835$ for $h \geq 29$.

Then for every odd prime $p \geq p_0(h)$ in $\text{PG}(N, q)$ with $q = p^{2h+1}$, $2 \leq N \leq q-2$, every normal rational curve is a complete $(q+1)$-arc.

Remark 2.4. In (2.6), the term $\frac{29}{4p^{h-0.5}} - \frac{20}{p^{h+0.5}}$ quickly decreases when h grows. Therefore, practically, use of inequality $\sqrt{p} > 16c^2(2h + 1)\ln p$ gives the same result as for (2.6). In particular, we have checked this for $h \leq 16$.

In Section 4 we consider also implicit upper bounds on $t(q)$.

All bounds on $t(q)$ obtained in this paper are better than the bound of (1.1).

Corollaries 2.2 and 2.3 extend regions of pairs (N, q) for which it is proved that every normal rational curve in $\text{PG}(N, q)$ is a complete $(q+1)$-arc.

Corollary 2.2 improves the results of [13, Theorem 9.2], cf. (2.5) and rows 10–11 of Table 1 in (2.5) the region on N values is greater by $\sim 0.8\sqrt{q\ln q}$.

Corollary 2.3 gives essentially smaller values $p_0(h)$ than [19, Theorem 3.5]. By Corollary 2.3 we have $\{p_0(1), p_0(2), \ldots, p_0(16)\} = \{757, 1399, 2129, 2887, 3623, 4621, 5417, 6247, 7079, 7919, 8779, 9629, 10499, 11383, 12253, 13147\}$. For comparison, [19, Theorem 3.5], see row 9 of Table II provides $\{p_0(1), p_0(2), \ldots, p_0(16)\} = \{16831, 29663, 43037, 56747, 70769, 85009, 99431, 114031, 128767, 143651, 158647, 173741, 188953, 204251, 219629, 235091\}$.

3 The number of new covered points in one step of a step-by-step algorithm constructing AC-subsets

Assume that an AC-subset is constructed by a step-by-step algorithm (Algorithm, for short) adding a new point to the subset on every step. As an example, we mention the greedy algorithm that on every step adds to the subset a point providing the maximal possible (for the given step) number of new covered points.

Let $w > 0$ be a fixed integer. Consider the $(w+1)$st step of Algorithm. This step starts from a w-subset $K_w \subset C$ constructed in the previous w steps. Let $U(K_w)$ be the subset of points of M_q not covered by the subset K_w.

Let the subset K_w consist of w points A_1, A_2, \ldots, A_w. Let $A_{w+1} \in C \setminus K_w$ be the point that will be included into the subset in the $(w+1)$st step. Denote by $U(K_w \cup \{A_{w+1}\})$ the subset of points of M_q not covered by the new subset $K_w \cup \{A_{w+1}\}$.

Let AB be the line through points A and B. The point A_{w+1} defines a bundle $B(A_{w+1}) = \{A_{1}A_{w+1}, A_{2}A_{w+1}, \ldots, A_{w}A_{w+1}\}$ of w tangents (unisecants) to K_w which are
bisecants of \(C \). In order to obtain the next subset \(K_{w+1} \), we may include to \(K_w \) any of \(q + 1 - w \) points of \(C \setminus K_w \). So, there exist \(q + 1 - w \) distinct points \(A_{w+1} \) and \(q + 1 - w \) distinct bundles. Introduce the set of \(w(q + 1 - w) \) lines

\[
B^\cup_{w+1} = \bigcup_{A_{w+1} \in C \setminus K_w} B(A_{w+1}).
\]

Let \(P^\cup_{w+1} \) be the point multiset consisting of all points of \(B^\cup_{w+1} \). A point that is the intersection of \(m \) lines of \(B^\cup_{w+1} \) has multiplicity \(m \) in \(P^\cup_{w+1} \).

Let \(\Delta(A_{w+1}) \) be the number of the new covered points in the \((w + 1)\)st step. Denote by \(N(A_{w+1}) \) the set of new points covered by \(K_w \cup \{ A_{w+1} \} \). By definition,

\[
N(A_{w+1}) = U(K_w) \setminus U(K_w \cup \{ A_{w+1} \}),
\]

\[
\Delta(A_{w+1}) = \#N(A_{w+1}) = \#U(K_w) - \#U(K_w \cup \{ A_{w+1} \}).
\]

Introduce the point multiset

\[
N^\cup_{w+1} = \bigcup_{A_{w+1} \in C \setminus K_w} N(A_{w+1}) \subset P^\cup_{w+1}.
\]

By the definitions above,

\[
\#N^\cup_{w+1} = \sum_{A_{w+1} \in C \setminus K_w} \Delta(A_{w+1}).
\]

Let \(P \in U(K_w) \subset M_q \) be a point not covered by \(K_w \). Every point of \(M_q \) lies at most on two tangents of \(C \). The rest of lines through this point and the points of \(C \) are bisecants. Therefore, among the \(w \) lines connecting \(P \) with \(K_w \) there are at least \(w - 2 \) bisecants of \(C \). None of those bisecants is a bisecant of \(K_w \) otherwise the point \(P \) would be covered. Hence, all bisecants of \(C \) through \(P \) and \(K_w \) belong to \(B^\cup_{w+1} \). It means that every point of \(U(K_w) \) is included in \(N^\cup_{w+1} \) at least \(w - 2 \) times. So,

\[
\#N^\cup_{w+1} \geq (w - 2) \cdot \#U(K_w). \tag{3.1}
\]

Remark 3.1. For even \(q \), every point of \(M_q \) lies on one tangent of \(C \). Therefore for even \(q \), in relation (3.1) we may change \(w - 2 \) by \(w - 1 \). Also, for odd \(q \), an internal point does not belong to any tangent of a conic whereas each of the \(\frac{1}{2} q(q + 1) \) external points lies on two distinct tangents. Hence for odd \(q \), in (3.1) we may change \((w - 2) \cdot \#U(K_w) \) by \((w - 2) \cdot \#U(K_w) + 2 \max \{ 0, \#U(K_w) - \frac{1}{2} q(q + 1) \} \). These changes could slightly improve estimates below. However, for simplicity of presentation, we save relation (3.1) as it is.
By the above, the average number, say $\Delta_{w+1}^{\text{aver}}$, of new covered points in a bundle in the $(w+1)$st step is as follows

$$\Delta_{w+1}^{\text{aver}} = \frac{\sum_{A_{w+1} \in C \setminus K_w} \Delta(A_{w+1})}{q + 1 - w} \geq \frac{(w - 2) \cdot U(K_w)}{q + 1 - w}.$$

Clearly,

$$\max_{A_{w+1} \in C \setminus K_w} \Delta(A_{w+1}) \geq \lceil \Delta_{w+1}^{\text{aver}} \rceil.$$

So, we have proved the following lemma.

Lemma 3.2. For an arbitrary step-by-step algorithm, there exists a point A_{w+1} providing

$$\Delta(A_{w+1}) \geq \left\lceil \frac{(w - 2) \cdot U(K_w)}{q + 1 - w} \right\rceil.$$

Note that the greedy algorithm always finds the point A_{w+1} with property (3.2).

4 Upper bounds on the smallest size of an AC-subset based on properties of step-by-step algorithms

We denote

$$t^*(q) = \frac{t(q)}{\sqrt{q \ln q}}.$$

Let $t(q) < f(q)$. Then $t^*(q) < f(q)/\sqrt{q \ln q}$. The upper bounds on $t^*(q)$ are more convenient for graphical representation than bounds on $t(q)$. If $f(q)$ is called “Bound L”, say, then we call $f(q)/\sqrt{q \ln q}$ “Bound L*”.

4.1 Implicit bound A

By Section 3,

$$\#U(K_w \cup \{A_{w+1}\}) = \#U(K_w) - \Delta(A_{w+1}) \leq \#U(K_w) - \left\lceil \frac{(w - 2) \cdot U(K_w)}{q + 1 - w} \right\rceil.$$

(4.1)

Define U_w as an upper bound on $\#U(K_w)$:

$$\#U(K_w) = U_w - \delta \leq U_w; \quad \delta \geq 0.$$

(4.2)
By (4.1), (4.2),
\[
\#U(K_w \cup \{A_{w+1}\}) \leq U_w - \delta - \left\lceil \frac{(w - 2)(U_w - \delta)}{q + 1 - w} \right\rceil = U_w - \left\lceil \frac{(w - 2)U_w + (q + 3 - 2w)\delta}{q + 1 - w} \right\rceil.
\]

From now on, we suppose
\[q + 3 > 2w.\] (4.3)

Under condition (4.3), it holds that
\[
\#U(K_w \cup \{A_{w+1}\}) = \#U(K_w) - \Delta(A_{w+1}) \leq U_w - \left\lceil \frac{(w - 2)U_w}{q + 1 - w} \right\rceil. \tag{4.4}
\]

Assume that there exists a \(w_0\)-subset \(K_{w_0} \subset C \subset PG(2, q)\) that does not cover at most \(U_{w_0}\) points of \(M_q\). Then, starting from values \(w_0\) and \(U_{w_0}\), one can iteratively apply the relation (4.4) and obtain eventually \(\#U(K_w \cup \{A_{w+1}\}) = 0\) for some \(w\), say \(w_{\text{fin}}\). Clearly, \(w_{\text{fin}}\) depends on \(w_0\) and \(U_{w_0}\), i.e. we have a function \(w_{\text{fin}}(w_0, U_{w_0})\). The size \(k\) of the obtained AC-subset is as follows:
\[k = w_{\text{fin}}(w_0, U_{w_0}) + 1 \text{ under condition } \#U(K_{w_{\text{fin}}(w_0, U_{w_0})} \cup \{A_{w_{\text{fin}}(w_0, U_{w_0})+1}\}) = 0.\]

From the above we have the following theorem.

Theorem 4.1. (implicit bound \(A(w_0, U_{w_0})\)) Let the values \(w_0\), \(U_{w_0}\), and \(w_{\text{fin}}(w_0, U_{w_0})\) be defined and calculated as above. Let also \(w_{\text{fin}}(w_0, U_{w_0}) < \frac{q+3}{2}\). Then it holds that
\[t(q) \leq w_{\text{fin}}(w_0, U_{w_0}) + 1.\]

It is easily seen that, for any \(q\), there exists a 5-subset \(K_5 \subset C \subset PG(2, q)\) that does not cover \(\#U(K_5) = \#M_q - (10q - 25) \leq U_5 = (q - 5)^2\) points of \(M_q\). The corresponding implicit bound \(A^*(5, (q - 5)^2)\) (i.e. the value \((w_{\text{fin}}(5, (q - 5)^2) + 1)/\sqrt{q \ln q}\) is shown by the third blue curve on Figs. 1 and 2.

Observation 4.2. In the region \(7 \leq q \leq 55711\) the implicit bound \(A^*(5, (q - 5)^2)\) tends to increase with the maximal value \(A^*(5, (q - 5)^2) \sim 1.8341\) for \(q = 55711\). In the region \(55711 < q \leq 14000029\) the bound \(A^*(5, (q - 5)^2)\) tends to decrease with the minimal value \(A^*(5, (q - 5)^2) \sim 1.8180\) for \(q = 13995829\), see Fig. 2.
Figure 1: Upper bounds on sizes of AC-subsets divided by $\sqrt{q \ln q}, q \leq 253009$; bound C^* equal to $\Phi(q)/\sqrt{q \ln q}$ (top dashed-dotted red curve); implicit bound B^* (the 2-nd magenta curve); bound (4.21) (dashed red line $y = 1.835$); implicit bound $A^*(5, (q - 5)^2)$ (the 3-rd blue curve); bound (5.6) (dashed red line $y = 1.635$); bound (5.7) (dashed red line $y = 1.674$); the smallest known sizes of AC-subsets divided by $\sqrt{q \ln q}$, i.e. values $t^*(q)$ (bottom black curve). Vertical dashed lines $x = 33013$ and $x = 139129$ mark regions of complete computer search, respectively, for all prime powers q and all non-prime q's.
Figure 2: Upper bounds on sizes of AC-subsets divided by $\sqrt{q \ln q}$, $q \leq 14000029$: bound C^* equal to $\Phi(q)/\sqrt{q \ln q}$ (top dashed-dotted red curve); implicit bound B^* (the 2-nd magenta curve); bound (4.21) (dashed red line $y = 1.835$); implicit bound $A^*(5, (q - 5)^2)$ (the 3-rd blue curve)
4.2 A truncated iterative process

From (4.1) we have that

\[\#U(K_w \cup \{A_{w+1}\}) = \#U(K_w) - \Delta(A_{w+1}) \leq U_w \left(1 - \frac{w - 2}{q + 1 - w}\right). \] \hfill (4.5)

Clearly, \(\#U(K_1) \leq U_1 = q^2 \). Using (4.5) iteratively, we obtain

\[\#U(K_w \cup \{A_{w+1}\}) = U_{w+1} \leq q^2 f_q(w), \] \hfill (4.6)

where

\[f_q(w) = \prod_{i=1}^{w} \left(1 - \frac{i - 2}{q + 1 - i}\right). \] \hfill (4.7)

From now on, we will stop the iterative process when \(\#U(K_w \cup \{A_{w+1}\}) \leq \xi \) where \(\xi \geq 1 \) is some value that we may assign to improve estimates. Note that if some point \(P \in \mathcal{M}_q \) is not covered by \(K_w \cup \{A_{w+1}\} \), one always can find a point \(A_{w+2} \in \mathcal{C} \setminus (K_w \cup \{A_{w+1}\}) \) such that \(P \) is covered by \(K_w \cup \{A_{w+1}, A_{w+2}\} \). It means that after the end of the iterative process we can add at most \(\xi \) points of \(\mathcal{C} \) to the running subset in order to get a \(k \)-AC-subset with size \(k \) satisfying

\[w + 1 \leq k \leq w + 1 + \xi \] \hfill (4.8)

Theorem 4.3. Let \(\xi \geq 1 \) be a fixed value independent of \(w \). Let \(w < \frac{q^2 + 3}{2} \) satisfy

\[f_q(w) = \prod_{i=1}^{w} \left(1 - \frac{i - 2}{q + 1 - i}\right) \leq \frac{\xi}{q^2}. \] \hfill (4.9)

Then it holds that

\[t(q) \leq w + 1 + \xi. \] \hfill (4.10)

Proof. By (4.6), to provide the inequality \(\#U(K_w \cup \{A_{w+1}\}) \leq \xi \) it is sufficient to find \(w \) such that \(q^2 f_q(w) \leq \xi \). Now (4.10) follows from (4.8). \(\square \)

Clearly, we should choose \(\xi \) such that \(w + 1 + \xi \) is small under condition \(\#U(K_w \cup \{A_{w+1}\}) \leq \xi \).

In order to get more simple forms of upper bounds on \(t(q) \) we will find an upper bound on \(f_q(w) \) of (4.7). To this end we use the Taylor series \(e^{-\alpha} = 1 - \alpha + \frac{\alpha^2}{2} - \frac{\alpha^3}{6} + \ldots \), whence

\[1 - \alpha < e^{-\alpha} \text{ for } \alpha \neq 0. \] \hfill (4.11)
4.3 Implicit bound B

Lemma 4.4. It holds that

\[f_q(w) = \prod_{i=1}^{w} \left(1 - \frac{i - 2}{q + 1 - i} \right) < e^{-S}, \]

(4.12)

where

\[-w + (q - 1) \ln \frac{q + 1}{q + 1 - w} < S < -w + (q - 1) \ln \frac{q}{q - w}. \]

(4.13)

Proof. By (4.11),

\[\prod_{i=1}^{w} \left(1 - \frac{i - 2}{q + 1 - i} \right) < e^{-S}, \quad S = \sum_{i=1}^{w} \frac{i - 2}{q + 1 - i}. \]

Also,

\[S = \sum_{i=1}^{w} \frac{i - 2}{q + 1 - i} = \sum_{u=-1}^{w-2} \frac{u}{q - 1 - u} = -w + \sum_{u=-1}^{w-2} \left(\frac{u}{q - 1 - u} + 1 \right) = -w + (q - 1) \sum_{u=-1}^{w-2} \frac{1}{q - 1 - u} = -w + (q - 1) \sum_{t=q+1-w}^{q} \frac{1}{t}. \]

It is well known that

\[\ln(q + 1) < \sum_{t=1}^{q} \frac{1}{t} < 1 + \ln q. \]

Therefore,

\[\ln(q + 1) - \ln(q + 1 - w) < \sum_{t=q+1-w}^{q} \frac{1}{t} = \sum_{t=1}^{q} \frac{1}{t} - \sum_{t=1}^{q-w} \frac{1}{t} < \ln q - \ln(q - w). \]

Corollary 4.5. Let \(\xi \geq 1 \) be a fixed value independent of \(w \). Let \(w < \frac{q + 3}{2} \) satisfy

\[w - (q - 1) \ln \frac{q + 1}{q + 1 - w} \leq \ln \frac{\xi}{q^{2}}. \]

Then it holds that

\[t(q) \leq w + 1 + \xi. \]

Proof. We substitute (4.12) and (4.13) in (4.9).
Corollary 4.6. (implicit bound B) Let \(w < \frac{q+3}{2} \) satisfy
\[
w - (q-1) \ln \frac{q+1}{q+1-w} \leq \ln \frac{1}{q\sqrt{3q\ln q}}.
\]
Then it holds that
\[
t(q) \leq w + 1 + \sqrt{\frac{q}{3\ln q}}.
\]
Proof. In the assertions of Corollary 4.5 we use \(\xi = \sqrt{\frac{q}{3\ln q}} \). □

The implicit bound \(B^* \) is shown by the second magenta curve on Figs. 1 and 2.

4.4 Explicit bounds

By (4.7) and (4.11), we have
\[
f_q(w) < \prod_{i=1}^{w} \left(1 - \frac{i-2}{q}\right) < \prod_{i=1}^{w} e^{-(i-2)/q} = e^{-w(w^2-3w)/2q} < e^{-(w-2)^2/2q}.
\]

(4.14)

Lemma 4.7. Let \(\xi \geq 1 \) be a fixed value independent of \(w \). The value
\[
\frac{q + 3}{2} > w \geq \sqrt{2q} \sqrt{\ln \frac{q^2}{\xi} + 3}
\]

satisfies inequality (4.9).

Proof. By (4.14), to provide (4.9) it is sufficient to find \(w \) such that
\[
e^{-(w-2)^2/2q} < \frac{\xi}{q^2}.
\]
As \(w \) should be an integer, in (4.15) one is added. Inequality \(w < \frac{q+3}{2} \) is obvious. □

Theorem 4.8. In \(PG(2,q) \) it holds that
\[
t(q) \leq \sqrt{2q} \sqrt{\ln \frac{q^2}{\xi} + \xi + 4}, \quad \xi \geq 1,
\]

(4.16)

where \(\xi \) is an arbitrarily chosen value.

Proof. The assertion follows from (4.10) and (4.15). □
Remark 4.9. We consider the function of ξ of the form

$$
\phi(\xi) = \sqrt{2q} \sqrt{\ln \frac{q^2}{\xi}} + \xi + 4.
$$

Its derivative by ξ is

$$
\phi'(\xi) = 1 - \frac{1}{\xi} \sqrt{\frac{q}{2 \ln \frac{q^2}{\xi}}}.
$$

Put $\phi'(\xi) = 0$. Then

$$
\xi^2 = \frac{q}{4 \ln q - 2 \ln \xi}.
$$

(4.17)

We find ξ in the form $\xi = \sqrt{\frac{q}{c \ln q}}$. By (4.17), $c = 3 + \frac{\ln c + \ln \ln q}{\ln q}$. For simplicity, we choose $c = 3$. Then $\xi = \sqrt{\frac{q}{3 \ln q}}$ and the value

$$
\phi' \left(\sqrt{\frac{q}{3 \ln q}} \right) = 1 - \sqrt{\frac{3 \ln q}{3 \ln q + \ln \ln q + \ln 3}}
$$

is close to zero for growing q. Also, it is easy to check the following: $\phi'(1) < 0$ if $q \geq 9$, $\phi'(\xi)$ is an increasing function, $0 < \phi' \left(\sqrt{\frac{q}{3 \ln q}} \right) < \phi'(\sqrt{q}) = 1 - \sqrt{\frac{1}{3 \ln q}}$.

So, the choice $\xi = \sqrt{\frac{q}{3 \ln q}}$ in (4.16) seems to be convenient.

Theorem 4.10. (Bound C) The following upper bound on the smallest size $t(q)$ of an AC-subset in $\text{PG}(2, q)$ holds.

$$
t(q) < \Phi(q) = \sqrt{q(3 \ln q + \ln \ln q + \ln 3)} + \sqrt{\frac{q}{3 \ln q}} + 4 \sim \sqrt{3q \ln q}.
$$

(4.18)

Proof. We substitute $\xi = \sqrt{\frac{q}{3 \ln q}}$ in (4.16). \qed

The bound C* (i.e. the value $\Phi(q)/\sqrt{q \ln q}$) is shown by the top dashed-dotted red curve on Figs. 1 and 2.

Remark 4.11. If in (4.16) we take $\xi = 1$ and $\xi = \sqrt{q}$, we obtain bounds (4.19) and (4.20):

$$
t(q) < 2 \sqrt{q \ln q} + 5.
$$

(4.19)

$$
t(q) < \sqrt{3q \ln q} + \sqrt{q} + 4.
$$

(4.20)

It can be shown that bounds (4.19) and (4.20) are worse than (4.18).

If we put, see Remark 4.9, $c = 3 + \frac{\ln c + \ln \ln q}{\ln q}$, $\xi = \sqrt{\frac{q}{3 \ln q + \ln \ln q + 1}}$, we improve bound (4.18). But, the improvement is unessential whereas the bound takes a lengthy form.
Theorem 4.12. The following upper bound on the smallest size $t(q)$ of an AC-subset in $\text{PG}(2, q)$ holds.

$$t(q) < 1.835\sqrt{q \ln q}.$$ (4.21)

Proof. For $q \leq 12755807$ we checked by computer that the implicit bound $A(5, (q-5)^2) < 1.8341\sqrt{q \ln q}$; so in this region the assertion is provided by the bound $A(5, (q-5)^2)$, see Observation 4.2 and Fig. 2. It is easy to see that $\Phi(q)/\sqrt{q \ln q}$ is a decreasing function of q. Moreover, $\Phi(q)/\sqrt{q \ln q} < 1.835$ for $q = 12755807$. So, for $q > 12755807$ the assertion is provided by the bound C.

The bound (4.21) is presented by the dashed red line $y = 1.835$ in Figs. 1 and 2.

5 Computer assisted results on $t(q)$ and $t^*(q)$

Let $\overline{t}(q)$ be the smallest known size of an AC-subset in $\text{PG}(2, q)$. Let $\overline{t}(q) = \overline{t}(q)/\sqrt{q \ln q}$. We denote the following sets of values of q: $Q_2 := \{5 \leq q \leq 33013, \ q \text{ prime power}\}; Q_3 := \{5 \leq q \leq 32, \ q \text{ prime power}\}; Q_4 := Q_1 \cup \{160801, 208849, 253009\}$. Let Q_1 be as in (2.1).

For the set Q_3 we obtained by computer search the smallest sizes $t(q)$ of AC-subsets of \mathcal{C} in $\text{PG}(2, q)$, see Table 2. The algorithm, used in the search, fixes a conic, computes all the non-equivalent point subsets of the conic of a certain size (6 in our complete cases) and extends each of them trying to obtain a minimal AC-subset. Each time an example is found only smaller examples are looked for. Minimality is checked explicitly: once we have found an AC-subset we test that deleting from it a point in all possible ways no almost complete subset is obtained. All computations are performed using the system for symbol calculations MAGMA [22].

q	$t(q)$												
5	5	19	11	11	10	11	9	16	17	19	13	27	17
7	6	13	14	29	16	25	15	31	19	23	13	32	15
6	8	12	12	13	19	25	12	14	20	27	17	30	18
9	6	13	14	27	18	25	13	31	19	24	15	33	20
11	8	15	15	29	19	27	15	32	20	28	16	35	21
13	8	16	16	31	20	29	16	33	21	30	17	37	22
16	9	17	17	32	21	31	17	34	22	31	18	39	23
17	10												

For the sets Q_2 and Q_4 we obtained small AC-subsets of \mathcal{C} in $\text{PG}(2, q)$ by computer search³. For it we used step-by-step randomized greedy algorithms similar to those

³The computer search for $q \in Q_2 \cup Q_4$ has been carried out using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute”, http://ckp.nrcki.ru/
from [23], see also the references therein. Recall that at each step a randomized greedy algorithm maximizes some objective function \(f \), but some steps are executed in a random manner. Also, if one and the same maximum of \(f \) can be obtained in different ways, the choice is made at random. As the value of the objective function, the number of points lying on bisecants of the running subset is considered.

As far as the authors know, sizes of AC-subsets, obtained by the mentioned computer search, are the smallest known. The corresponding values of \(\overline{t}(q) \) are shown by the bottom black curve in Fig. 1. Recall that, \(t^*(q) = \frac{t(q)}{\sqrt{q \ln q}} \).

The values \(\overline{t}(q) \) and \(\overline{t'}(q) \) for \(q \in Q_4 \) and prime \(q \in Q_2 \) are given in Tables 3 and 4, respectively, see Appendix. As values of \(\overline{t}(q) \) are not integers, in Tables 3 and 4 we give rounded values of \(\overline{t}(q) \), moreover we round up. This explains the entry “\(\overline{t}(q) < \)” in the top of columns.

In Table 4, the values \(\overline{t}(q) \) are written for not all \(q \)'s. The rules for entries \(\overline{t}(q) \) are as follows. Assume that the following holds: \(q' < q'' \); the values \(\overline{t}(q') \) and \(\overline{t}(q'') \) are written in Table 4; no value \(\overline{t}(q) \) is written in the table if \(q' < q < q'' \). Then \(\overline{t}(q') \leq \overline{t}(q'') \) and \(\overline{t}(q) \leq \overline{t}(q') \) with \(q' < q < q'' \).

For example, one may take \(q' = 19 \) and \(q'' = 307 \). We see that no value \(\overline{t}(q) \) is written in Table 4 if \(19 < q < 307 \). We have \(\overline{t}(19) \approx 1.471 < \overline{t}(307) \approx 1.479 \) and \(\overline{t}(q) \leq 1.471 \) with \(19 < q < 307 \).

So, in Table 4, the blank on place \(\overline{t}(q) \) means that \(\overline{t}(q) \leq \overline{t}(q') \) under the conditions that \(q' < q \), value \(\overline{t}(q') \) is written in the table, and no value \(\overline{t}(q^*) \) is written if \(q' < q^* < q \).

By computer search for the sets \(Q_2 \) and \(Q_4 \), see Tables 3 and 4, we have Theorem 5.1.

Theorem 5.1. The following upper bounds on the smallest size \(t(q) \) of an AC-subset of the conic \(C \) in PG(2,\(q \)) hold:

\[
\begin{align*}
\text{\(t(q) < 1.525\sqrt{q \ln q} \),} & \quad 8 \leq q \leq 887, \ q \text{ prime power, } q \neq 11; \quad (5.1) \\
\text{\(t(q) < 1.548\sqrt{q \ln q} \),} & \quad 887 < q \leq 1553, \ q \text{ prime power;} \quad (5.2) \\
\text{\(t(q) < 1.572\sqrt{q \ln q} \),} & \quad 1553 < q \leq 2351, \ q \text{ prime power, } q = 11; \quad (5.3) \\
\text{\(t(q) < 1.585\sqrt{q \ln q} \),} & \quad 2351 < q \leq 4027, \ q \text{ prime power;} \quad (5.4) \\
\text{\(t(q) < 1.620\sqrt{q \ln q} \),} & \quad 4027 < q \leq 17041, \ q \text{ prime power;} \quad (5.5) \\
\text{\(t(q) < 1.635\sqrt{q \ln q} \),} & \quad 17041 < q \leq 33013, \ q \text{ prime power, } q = 7; \quad (5.6) \\
\text{\(t(q) < 1.674\sqrt{q \ln q} \),} & \quad q = p^m, \ p \text{ prime, } m \geq 2, \ q \in Q_1; \quad (5.7) \\
\text{\(t(q) < 1.686\sqrt{q \ln q} \),} & \quad q = 160801, 208849, 253009. \quad (5.8)
\end{align*}
\]
The bounds (5.6), (5.7) are presented by dashed red lines $y = 1.635, y = 1.674$ in Fig. 1.

6 New bounds on $t(q)$ and completeness of normal rational curves

Proof of Corollary 2.2. We substitute the new bounds of Theorem 2.1 in relation (1.2) taken from [19, Theorem 3.1].

Proof of Corollary 2.3. We act analogously to the proof of [19, Theorem 3.5], changing in it $6\sqrt{q \ln q}$ by $c\sqrt{q \ln q}$. As the result we obtain inequality (2.6).

By (2.6), for $c = 1.835, h \geq 29$, we have $p_0(h) \geq 33079 > 33013$; but for $c = 1.835, h \leq 28$, it holds that $p_0(h) \leq 31840 < 33013$. So, by (4.21) and (5.1)–(5.6), we may take $c = 1.835$ for $h \geq 29$ and $c = 1.635$ for $h \leq 28$.

Again we use (2.6). For $c = 1.635, h \geq 20$, we have $p_0(h) \geq 17091 > 17041$; but for $c = 1.635, h \leq 19$, it holds that $p_0(h) \leq 16164 < 17041$. So, by (5.1)–(5.6), we may take $c = 1.635$ for $20 \leq h \leq 28$ and $c = 1.62$ for $h \leq 19$.

Now for $h = 1, \ldots, 5$ we found $p_0(h)$ as a solution of (2.6) taking c on the base Theorem 5.1. For the given h, at the beginning we obtain $p_0(h)$ with $c = 1.62$. Then we decrease c using (5.1)–(5.4) and get a smaller $p_0(h)$. For $c = 1.62$ we obtain $p_0(1) = 877, p_0(2) = 1543, p_0(3) = 2273, p_0(4) = 3037, p_0(5) = 3821$. So, we may put $c = 1.525$ for $h = 1, c = 1.548$ for $h = 2, c = 1.572$ for $h = 3, c = 1.585$ for $h = 4, 5$, see (5.1), (5.2), (5.3), and (5.4), respectively. Solutions of inequality (2.6) for these (c, h) are the values $p_0(1), \ldots, p_0(5)$ written in the assertion of the corollary.

Remark 6.1. We can also improve the result of [19, Theorem 3.4]. If in the proof of [19, Theorem 3.4] one uses the new bound $t(q) < 1.835\sqrt{q \ln q}$ instead of (1.1) then the following assertion can be proved: for prime $p \geq 76207$ every normal rational curve in $\text{PG}(N, p)$ with $2 \leq N \leq p - 2$ is a complete $(q + 1)$-arc.

For comparison note that in [19, Theorem 3.4] the value $p > 1007215$ is pointed out.

Of course, due to the results of [1, 16, 17], see row 5 of Table 1 we know that for all primes p normal rational curves in $\text{PG}(N, p)$ are complete.

The authors are grateful to participants of the Coding Theory seminar at the Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences for the constructive and useful discussion of the work.

References

[1] Hirschfeld, J.W.P., Projective geometries over finite fields, Oxford: Clarendon; New York: Univ. Press, 1998, 2nd ed.
[2] Hirschfeld, J.W.P., and Storme, L., The Packing Problem in Statistics, Coding Theory and Finite Projective Spaces: Update 2001, *Finite Geometries (Proc. 4th Isle of Thorns Conf., July 16-21, 2000)*, Blokhuis, A., Hirschfeld, J.W.P., Jungnickel, D., and Thas, J.A., Eds., Dev. Math., vol. 3, Dordrecht: Kluwer, 2001, pp. 201–246.

[3] Hirschfeld, J.W.P., and Thas, J.A., Open Problems in Finite Projective Spaces, *Finite Fields Their Appl.*, 2015, vol. 32, no. 1, pp. 44–81.

[4] Ball, S., *Finite Geometry and Combinatorial Applications*, Cambridge Univ. Press, London Math. Soc. Student Texts, vol. 82, 2015.

[5] Ball, S., and De Beule, J., On Subsets of the Normal Rational Curve, [arXiv:1603.06714](https://arxiv.org/abs/1603.06714) [mathCO], 2016.

[6] Chowdhury, A., Inclusion Matrices and the MDS Conjecture, [arXiv:1511.03623v2](https://arxiv.org/abs/1511.03623) [mathCO], 2015.

[7] Hirschfeld, J.W.P., Korchmáros, G., and Torres, F., *Algebraic Curves over a Finite Field*, Princeton: Princeton Univ. Press, 2008.

[8] Klein, A., and Storme, L., Applications of Finite Geometry in Coding Theory and Cryptography, *NATO Science for Peace and Security Series - D: Information and Communication Security*, vol. 29, 2011, *Information Security, Coding Theory and Related Combinatorics*, Crnković, D., and Tonchev, V., Eds., pp. 38–58.

[9] Landjev, I., and Storme, L., Galois Geometry and Coding Theory, *Current Research Topics in Galois geometry*, De. Beule, J., and Storme, L., Eds., Chapter 8, Nova Science Publisher, 2011, pp. 185–212.

[10] MacWilliams, F.J., and Sloane, N.J.A., *The Theory of Error-Correcting Codes*, North-Holland, 1977.

[11] Roth, R.M., *Introduction to Coding Theory*, Cambridge Univ. Press, 2007.

[12] Storme, L. and Thas, J.A., Complete k-Arcs in PG(n, q), q Even, *A collection of contributions in honour of Jack van Lint. Discrete Math.*, 1992, vol. 106/107, pp. 455–469.

[13] Storme, L. and Thas, J.A., k-Arcs and Dual k-Arcs, *13th British Combinatorial Conference (Guildford, 1991)*. Discrete Math., 1994, vol. 125, pp. 357–370.

[14] Thas, J.A., M.D.S. Codes and Arcs in Projective Spaces: A Survey, *Matematiche (Catania)*, 1992, vol. 47, no.2, pp. 315–328.

[15] Segre, B., Curve Razionali Normali e k-Archi Negli Spazi Finiti, *Ann. Mat. Pura Appl.*, 1955, vol. 39, pp. 357–379.
[16] Ball, S., On Sets of Vectors of a Finite Vector Space in which Every Subset of Basis Size is a Basis, *J. Eur. Math. Soc.*, 2012, vol. 14, pp. 733–748.

[17] Ball, S., and De Beule, J., On Sets of Vectors of a Finite Vector Space in which Every Subset of Basis Size is a Basis II, *Des. Codes Cryptogr.*, 2012, vol. 65, no. 1, pp. 5–14.

[18] Korchmáros, G., Storme, L., and Szönyi, T., Space-Filling Subsets of a Normal Rational Curve, *J. Statist. Plan. Infer.*, 1997, vol. 58, no. 1, pp. 93–110.

[19] Storme, L., Completeness of Normal Rational Curves, *J. Algebraic Combin.*, 1992, vol. 1, no. 2, pp. 197–202.

[20] Storme, L., and Thas, J.A., Generalized Reed-Solomon Codes and Normal Rational Curves: an Improvement of Results by Seroussi and Roth, in *Advances in Finite Geometries and Designs*, Hirschfeld, J.W.P., Hughes, D.R., and Thas, J.A., Eds., Oxford University Press, Oxford, 1991, pp. 369-389.

[21] Kovács, S.J., Small Saturated Sets in Finite Projective Planes, *Rend. Mat. (Roma)*, 1992, vol. 12, pp. 157–164.

[22] Bosma, W., Cannon, J., and C. Playoust, The Magma Algebra System. I. The User Language, *J. Symbolic Comput.*, 1997, vol. 24, pp. 235–265.

[23] Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk, A.A., Marcugini, S., and Pambianco, F., Upper Bounds on the Smallest Size of a Complete Arc in a Finite Desarguesian Projective Plane Based on Computer Search, *J. Geom.*, 2016, vol. 107, no. 1, pp. 89–117.
Appendix. Tables of the smallest known sizes $\tilde{t}(q)$ of AC-subsets in $\text{PG}(2, q)$

Table 3. The smallest known sizes $\tilde{t}(q)$ of AC-subsets in $\text{PG}(2, q)$ and values $\overline{t^*}(q)$,
q non-prime, $q \in \{8 \leq q \leq 139129, q = p^m, p$ prime, $m \geq 2\} \cup \{160801, 208849, 253009\}$

q	p^m	$\tilde{t}(q)$	q	p^m	$\tilde{t}(q)$	q	p^m	$\tilde{t}(q)$
8	2^4	6	16	2^7	15	25	5^2	12
49	7^2	18	121	11^2	33	169	13^2	41
289	17^2	58	512	2^9	84	729	3^6	102
1024	2^10	127	10609	103^2	503	1024	2^10	127
1681	41^2	173	1681	11^3	150	2187	3^7	203
2401	7^4	214	2401	13^3	203	3481	59^2	309
4489	67^2	309	4489	17^3	325	5329	73^2	341
6859	19^3	393	6859	83^2	394	8192	2^13	435
8192	2^13	435	10609	103^2	503	12167	23^3	545
12167	23^3	545	15625	5^6	629	15625	5^6	629
16807	7^5	655	16807	7^5	663	19321	13^2	712
19321	13^2	712	21287	3^7	203	21287	3^7	203
22801	151^2	778	22801	151^2	778	26569	163^2	849
29791	31^3	904	29791	31^3	904	32761	181^2	952
32761	181^2	952	37249	193^2	1025	37249	193^2	1025
44521	211^2	1133	44521	211^2	1133	51529	227^2	1230
51529	227^2	1230	57121	239^2	1302	57121	239^2	1302
63001	251^2	1378	63001	251^2	1378	63001	251^2	1378

$\overline{t^*}(q)$ values for non-prime q are given for $q \leq 139129$. For prime q, $\overline{t^*}(q)$ is not computed.
Table 3. Continue

q	p^m	$\bar{t}(q)$	$\bar{t}(q)$	$\bar{t}(q)$
68921	41^4	1451	1.656	
73441	271^2	1501	1.655	
78961	281^2	1561	1.655	
83521	17^4	1614	1.659	
96721	311^2	1748	1.659	
103823	47^3	1824	1.666	
117649	7^6	1954	1.668	
124609	353^2	2021	1.672	
131072	2^{17}	2077	1.672	
160801	401^2	2332	1.680	
69169	263^2	1452	1.654	
76729	277^2	1541	1.659	
79507	43^3	1571	1.659	
85849	293^2	1637	1.658	
97969	313^2	1761	1.660	
109561	331^2	1878	1.666	
120409	347^2	1985	1.673	
128881	359^2	2058	1.672	
134689	367^2	2110	1.673	
208849	457^2	2686	1.680	
72361	269^2	1489	1.655	
78125	5^7	1553	1.656	
80089	283^2	1576	1.658	
94249	307^2	1723	1.659	
100489	317^2	1786	1.661	
113569	337^2	1917	1.668	
121801	349^2	1999	1.674	
130321	19^4	2070	1.671	
139129	373^2	2142	1.669	
253009	503^2	2991	1.686	
Table 4. The smallest known sizes $\overline{t}(q)$ of AC-subsets in $\text{PG}(2, q)$ and values $\overline{\tau}(q)$, $13 \leq q \leq 33013$, q prime

q	$\overline{t}(q)$	$\overline{\tau}(q)$	$\overline{t}(q)$	$\overline{\tau}(q)$	$\overline{t}(q)$	$\overline{\tau}(q)$	$\overline{t}(q)$	$\overline{\tau}(q)$	
13	8	1.386	17	1.441	19	1.471	23	1.529	
31	14	37	16	41	16	43	16	47	
53	20	59	21	61	22	67	23	71	
73	24	79	25	83	26	89	24	97	
101	30	103	30	107	31	109	32	113	
127	35	131	36	137	37	139	37	149	
151	39	157	40	163	41	167	42	173	
179	43	181	44	191	45	193	46	197	
199	47	211	48	223	50	227	51	229	
233	51	239	53	241	53	251	54	257	
263	55	269	56	271	57	277	58	281	
283	58	293	59	307	62	1.479	311	62	
317	62	331	64	337	65	347	66	349	
353	67	359	68	367	68	373	69	379	
383	70	389	71	397	72	401	73	1.489	
419	75	1.492	421	74	431	76	433	76	439
443	77	449	78	457	79	1.494	461	79	463
467	80	479	81	487	82	1.494	491	82	499
503	83	509	84	521	85	523	85	541	
547	88	1.499	557	89	1.500	563	89	569	
577	91	1.503	587	92	1.504	593	92	599	
607	93	613	94	617	95	1.509	619	95	
641	97	643	97	647	97	653	98	659	
661	99	1.512	673	100	677	100	683	101	
701	102	709	103	719	104	727	104	733	
739	105	743	106	751	107	1.518	757	107	
769	108	773	108	787	109	797	111	1.522	
811	112	821	112	823	113	827	113	829	
839	114	853	115	857	116	1.525	859	116	
877	117	881	117	883	118	887	118	907	
911	120	919	120	929	121	937	122	941	
947	123	953	123	967	124	971	125	1.530	
983	125	991	126	997	127	1.531	1009	128	
1019	128	1021	128	1031	129	1033	129	1039	
1049	130	1051	131	1061	131	1063	132		
1087	133	1091	133	1093	134	1097	134		
1109	135	1117	136	1123	136	1129	137		
1153	138	1163	139	1171	139	1181	140		
1193	141	1201	141	1213	143				
1229	144	1231	144	1237	144	1249	145		
1277	147	1279	147	1283	147	1289	148		
1297	148	1301	149	1.543	1303	149	1307	149	
1321	150	1327	150	1361	153	1.544	1367	153	

q prime
q	$\bar{t}(q)$	$\bar{t}(q)$	$\bar{t}(q)$	$\bar{t}(q)$	$\bar{t}(q)$	$\bar{t}(q)$	
1381	153	1399	155	1409	156	1423	157
1427	157	1429	157	1439	158	1447	158
1451	159	1453	159	1471	160	1481	160
1483	161	1487	161	1493	161	1499	162
1511	162	1523	163	1531	163	1543	164
1549	165	1559	166	1567	166	1571	166
1579	167	1597	167	1601	168	1607	168
1609	169	1619	169	1621	169	1627	170
1637	171	1663	172	1667	172	1669	172
1693	174	1699	174	1709	175	1721	175
1723	176	1741	177	1747	177	1753	178
1759	178	1783	179	1789	180	1801	181
1811	182	1823	182	1831	183	1847	183
1861	185	1871	185	1873	185	1877	185
1893	186	1901	187	1907	187	1913	188
1931	189	1949	190	1951	190	1973	191
1999	192	1993	192	1997	192	2003	192
2011	193	2017	193	2027	194	2029	194
2039	194	2063	196	2081	197	2083	197
2087	197	2089	197	2099	198	2111	199
2129	200	2131	200	2137	200	2141	201
2153	202	2161	202	2179	203	2203	204
2213	205	2221	205	2237	206	2239	206
2251	206	2267	208	2269	207	2273	208
2287	208	2293	209	2297	208	2309	209
2333	211	2339	211	2341	211	2347	212
2357	213	2371	212	2377	212	2381	213
2389	213	2393	213	2399	214	2411	214
2423	215	2437	216	2441	217	2447	217
2467	218	2473	219	2477	219	2503	219
2531	220	2539	221	2543	222	2549	223
2551	222	2579	223	2591	224	2593	223
2609	224	2621	225	2633	225	2647	227
2657	228	2663	228	2671	229	2677	229
2687	230	2689	230	2693	230	2699	231
2707	231	2713	231	2719	231	2729	232
2741	231	2749	231	2753	231	2767	232
2789	233	2791	233	2797	234	2801	234
2819	235	2833	235	2837	236	2843	236
2851	236	2861	237	2879	238	2887	238
2897	238	2909	239	2917	239	2927	240
2939	241	2957	241	2963	241	2969	242
2971	242	3001	243	3011	244	3019	244

Table 4. Continue 1
Table 4. Continue 2

q	\(\bar{t}(q) \)				
3041	245	3049 246	3061 247	3067 248	3079 248
3083	249	3089 248	3109 249	3119 249	3121 250
3137	250	3163 251	3167 251	3169 252	3181 252
3187	253	3191 253	3203 253	3209 254	3217 255
3221	254	3229 255	3251 255	3253 255	3257 256
3259	256	3271 256	3299 258	3301 258	3307 257
3313	258	3319 259	3323 259	3329 258	3331 258
3343	260	3347 260	3359 261	3361 260	3371 261
3373	261	3389 262	3391 262	3407 262	3413 262
3433	264	3449 264	3457 264	3461 265	3463 264
3467	265	3469 265	3491 266	3499 266	3511 267
3517	267	3527 268	3529 268	3533 268	3539 268
3541	268	3547 269	3557 269	3559 269	3571 270
3581	270	3583 270	3593 271	3607 271	3613 271
3617	272	3623 271	3631 273	3637 273	3643 273
3659	274	3671 274	3673 274	3677 274	3691 275
3697	275	3701 275	3709 276	3719 276	3727 277
3733	277	3739 277	3761 278	3767 279	3769 279
3779	279	3793 280	3797 280	3803 280	3821 281
3823	281	3833 281	3847 282	3851 282	3853 282
3863	282	3877 283	3881 283	3889 283	3907 284
3911	284	3917 284	3919 284	3923 284	3929 285
3931	285	3943 286	3947 286	3967 286	3989 288
4001	288	4003 288	4007 288	4013 288	4019 289
4021	288	4027 288	4049 291	4051 290	4057 290
4073	291	4079 291	4091 292	4093 292	4099 291
4111	292	4127 293	4129 293	4133 294	4139 293
4153	294	4157 294	4159 295	4177 295	4201 297
4211	297	4217 297	4219 297	4229 298	4231 298
4241	298	4243 298	4253 298	4259 298	4261 299
4271	299	4273 300	4283 300	4289 299	4297 300
4327	301	4337 302	4339 302	4349 302	4357 303
4363	303	4373 304	4391 304	4397 305	4409 305
4421	306	4423 305	4441 306	4447 307	4451 306
4457	307	4463 307	4481 307	4483 308	4493 308
4507	309	4513 308	4517 309	4519 309	4523 309
4547	310	4549 310	4561 311	4567 311	4583 312
4591	311	4597 312	4603 312	4621 313	4637 314
4639	314	4643 314	4649 314	4651 314	4657 314
4663	315	4673 315	4679 315	4691 316	4703 317
4721	317	4723 318	4729 317	4733 317	4751 318
4759	319	4783 320	4787 320	4789 320	4793 320
4799	320	4801 320	4813 321	4817 321	4831 322
Table 4. Continue 3

q	ℓ(q)	ℓ(q)									
4861	323		4909	325	1.592	4943	326		4973	327	
5009	328		5051	330		5099	331		5147	334	1.593
5189	336	1.595	5233	337		5281	338		5333	341	
5393	343		5449	344		5501	346		5564	352	
5659	353		5701	354		5743	356		5801	358	
5839	360	1.600	5861	360		5937	373		6029	366	
6067	368		6101	368		6143	370		6199	371	
6229	373		6271	374		6311	375		6343	377	
6373	377		6427	379		6481	381		6551	383	
6577	385		6637	386		6679	388				
Table 4. Continue 4

q	$\bar{q}(q)$	$\bar{q}(q)$	$\bar{q}(q)$	$\bar{q}(q)$	$\bar{q}(q)$	$\bar{q}(q)$				
6709	388	6719	389	6733	389	6737	389	6761	390	
6763	390	6779	390	6781	391	6791	391	6793	391	
6803	391	6827	391	6829	392	6833	392	6871	393	
6841	392	6863	393	6869	393	6871	393	6871	393	
6883	394	6907	395	6911	395	6917	395	6917	395	
6947	396	6959	397	6961	397	6967	397	6967	397	
6971	398	7019	399	7027	398	7039	399	7039	399	
7001	398	7057	400	7079	400	7103	401	7103	401	
7109	401	7127	402	7129	402	7151	403	7151	403	
7159	403	7187	404	7193	404	7207	405	7207	405	
7211	405	7219	405	7229	405	7237	406	7237	406	
7243	406	7253	406	7283	407	7297	408	7297	408	
7307	407	7321	408	7331	409	7333	409	7333	409	
7349	409	7385	409	7403	411	7411	411	7411	411	
7417	411	7451	412	7457	412	7459	412	7459	412	
7477	413	7487	413	7489	413	7499	414	7499	414	
7507	414	7523	415	7529	415	7537	415	7537	415	
7541	416	7549	416	7559	416	7561	416	7561	416	
7573	416	7583	417	7589	416	7591	417	7591	417	
7603	417	7607	417	7621	418	7639	419	7643	418	
7649	419	7669	419	7673	419	7681	420	7687	420	
7691	420	7699	420	7703	420	7717	421	7723	420	
7727	421	7741	422	7753	422	7757	422	7759	422	
7789	422	7793	423	7817	424	7823	424	7829	424	
7841	424	7853	425	7867	426	7873	426	7877	425	
7879	425	7863	425	7901	426	7907	427	7919	427	
7927	427	7933	427	7937	428	7949	428	7951	428	
7963	428	7993	429	8009	429	8011	428	8017	429	
8039	431	8053	431	8059	431	8069	431	8081	432	
8087	433	8101	432	8109	432	8110	432	8111	433	
8117	433	8123	433	8147	434	8161	434	8167	434	
8171	434	8179	435	8191	435	8209	435	8219	436	
8221	436	8231	437	8233	436	8237	437	8243	437	
8263	437	8269	437	8273	438	8287	438	8291	437	
8293	438	8297	438	8311	438	8317	440	8329	439	
8353	440	8363	440	8369	441	8377	441	8387	440	
8389	442	8419	442	8423	442	8429	443	8431	442	
8443	444	8447	443	8461	444	8467	443	8501	445	
8513	445	8521	445	8527	445	8537	445	8539	444	
8543	446	8563	446	8573	447	8581	447	8597	448	
8599	447	8609	448	8623	448	8627	448	8629	448	
8641	449	8647	450	8663	449	8669	450	8677	450	
q	$\bar{t}(q)$	$\bar{t}(q)$	$\bar{t}(q)$	$\bar{t}(q)$	$\bar{t}(q)$	$\bar{t}(q)$				
-----	--------------	--------------	--------------	--------------	--------------	--------------				
8681	450	8689	451	8693	450	8699	450	8707	451	
8713	450	8719	451	8731	451	8737	451	8741	452	
8747	452	8753	452	8761	452	8779	452	8783	452	
8803	453	8807	453	8819	454	8821	454	8831	455	
8837	454	8839	455	8849	455	8861	455	8863	456	
8867	456	8887	455	8893	456	8923	456	8929	456	
8933	457	8941	458	8951	458	8963	458	8969	458	
8971	458	8999	459	9001	459	9007	458	9011	459	
9013	459	9029	460	9041	461	9043	460	9049	460	
9059	462	1.609	9067	461	9091	462	9103	462	9109	462
9127	463	9133	464	9137	464	9151	463	9157	464	
9161	464	9173	464	9181	464	9187	465	9199	465	
9203	465	9209	465	9221	466	9227	465	9239	466	
9241	466	9257	467	9277	467	9281	468	9283	467	
9293	468	9311	469	9319	469	9323	469	9337	470	1.609
9341	469	9343	470	9349	469	9371	470	9377	471	
9391	471	9397	470	9403	470	9413	471	9419	471	
9421	471	9431	473	1.611	9433	471	9437	471	9439	472
9461	473	9463	472	9467	473	9473	473	9479	473	
9491	473	9497	474	9511	474	9521	474	9533	475	
9539	475	9547	475	9551	475	9587	476	9601	475	
9613	477	9619	477	9623	477	9629	478	9631	478	
9643	477	9649	479	9661	478	9677	478	9679	479	
9689	478	9697	479	9719	479	9721	480	9733	481	
9739	480	9743	480	9749	480	9767	481	9769	480	
9781	482	9787	481	9791	482	9803	482	9811	482	
9817	482	9829	483	9833	483	9839	484	9851	484	
9857	483	9859	483	9871	484	9883	484	9887	485	
9901	485	9907	486	9923	485	9929	485	9931	485	
9941	485	9949	487	9967	488	1.611	9973	487	10007	488
10009	487	10037	489	10039	489	10061	490	10067	490	
10069	489	10079	490	10091	490	10093	490	10099	491	
10103	490	10111	490	10133	492	10139	492	10141	492	
10151	492	10159	492	10163	492	10169	492	10177	493	
10181	493	10193	492	10211	494	10223	494	10243	495	
10247	494	10253	495	10259	495	10267	494	10271	496	
10273	494	10289	496	10301	496	10303	495	10313	496	
10321	496	10331	498	1.612	10333	497	10337	496	10343	497
10357	497	10369	498	10391	499	10399	498	10427	499	
10429	499	10433	500	10453	501	10457	500	10459	500	
10463	501	10477	500	10487	501	10499	501	10501	503	1.614
10513	502	10529	503	10531	502	10559	503	10567	503	
10589	503	10597	504	10601	504	10607	505	10613	504	
\(q \)	\(\bar{t}(q) < \)									
-----	--------	--------	--------	--------	--------	--------				
10627	505	10631	505	10639	504	10651	505	10657	505	
10663	507	10667	505	10687	506	10691	506	10709	507	
10711	507	10723	507	10729	507	10733	508	10739	507	
10753	508	10771	509	10781	509	10789	509	10799	510	
10831	510	10837	511	10847	511	10853	511	10859	511	
10861	511	10867	511	10883	511	10889	512	10891	511	
10903	512	10909	512	10937	513	10939	513	10949	513	
10957	514	10973	514	10979	514	10987	515	10993	515	
11003	515	11027	516	11047	516	11057	515	11059	516	
11069	517	11071	516	11083	517	11087	517	11093	517	
11113	518	11117	518	11119	518	11131	518	11149	519	
11159	519	11161	519	11171	519	11173	518	11177	520	
11197	521	11213	521	11239	522	11243	521	11251	521	
11257	522	11261	521	11273	522	11279	522	11287	522	
11299	523	11311	523	11317	523	11321	522	11329	523	
11351	524	11353	525	11369	525	11383	525	11393	525	
11399	525	11411	525	11423	526	11437	527	11443	527	
11447	526	11467	528	11471	527	11483	528	11489	526	
11491	528	11497	528	11503	527	11519	529	11527	529	
11549	530	11551	528	11579	530	11587	530	11593	531	
11597	530	11617	531	11621	531	11633	532	11657	532	
11677	533	11681	533	11689	533	11699	533	11701	533	
11717	534	11719	534	11731	534	11743	534	11777	536 1.614	
11779	536	11783	536	11789	535	11801	536	11807	536	
11813	536	11821	537	11827	537	11831	537	11833	536	
11839	537	11863	537	11867	537	11887	538	11897	538	
11903	538	11909	539	11923	539	11927	539	11933	539	
11939	539	11941	539	11953	540	11959	539	11969	540	
11971	540	11981	540	11987	541	12007	541	12011	541	
12037	542	12041	542	12043	542	12049	542	12071	543	
12073	542	12097	543	12101	544	12107	544	12109	544	
12113	543	12119	544	12143	545	12149	544	12157	545	
12161	545	12163	544	12197	546	12203	546	12211	547 1.614	
12227	545	12239	546	12241	546	12251	547	12253	546	
12263	547	12269	547	12277	548	12281	548	12289	548	
12301	549	12323	549	12329	549	12343	550	12347	549	
12373	549	12377	550	12379	550	12391	551	12401	550	
12409	551	12413	551	12421	552	12433	551	12437	552	
12451	552	12457	552	12473	553	12479	553	12487	552	
12491	554 1.614	12497	553	12503	553	12511	554	12517	554	
12527	554	12539	555	12541	555	12547	554	12553	555	
12569	555	12577	555	12583	555	12589	555	12601	556	
12611	556	12613	556	12619	556	12637	557	12641	556	
Table 4. Continue 7

\(q \)	\(t(q) < \)	\(q \)	\(t(q) < \)	\(q \)	\(t(q) < \)	\(q \)	\(t(q) < \)	\(q \)	\(t(q) < \)
12647	556	12653	558	12659	557	12671	557	12689	558
12697	558	12703	558	12713	559	12721	559	12739	559
12743	559	12757	559	12763	559	12781	561	12791	561
12799	560	12809	561	12821	561	12823	562	12829	561
12841	560	12853	562	12889	563	12893	563	12899	563
12907	564	12911	564	12917	563	12919	563	12923	564
12941	565	12953	564	12959	565	12967	565	12973	565
12979	565	12983	565	13001	566	13003	565	13007	566
13009	565	13033	566	13037	566	13043	566	13049	567
13063	568	13093	568	13099	568	13103	568	13109	568
13121	569	13127	567	13147	569	13151	570	13159	569
13163	570	13171	570	13177	570	13183	570	13187	570
13217	573	13219	571	13229	571	13241	572	13249	572
13259	573	13267	572	13291	574	13297	573	13309	573
13313	573	13327	574	13331	573	13337	573	13339	573
13367	574	13381	575	13397	576	13399	576	13411	574
13417	576	13421	576	13441	577	13451	576	13457	578
13463	578	13469	576	13477	577	13487	578	13499	578
13513	579	13523	579	13537	578	13553	579	13567	580
13577	580	13591	581	13597	580	13613	580	13619	582
13627	581	13633	582	13649	581	13669	582	13679	582
13681	582	13687	582	13691	583	13693	583	13697	583
13709	583	13711	583	13721	582	13723	582	13729	583
13751	583	13757	584	13759	583	13763	584	13781	586
13789	584	13799	584	13807	586	13829	586	13831	586
13841	585	13859	586	13873	587	13877	586	13879	586
13883	587	13901	588	13903	587	13907	588	13913	588
13921	587	13931	589	13933	588	13963	590	13967	589
13997	590	13999	590	14009	590	14011	590	14029	591
14033	590	14051	591	14057	591	14071	591	14081	592
14083	592	14087	592	14107	592	14143	594	14149	593
14153	593	14159	593	14173	595	14177	595	14197	593
14207	594	14221	595	14243	596	14249	596	14251	595
14281	596	14293	597	14303	597	14321	597	14323	597
14327	599	14341	598	14347	598	14369	599	14387	600
14389	599	14401	600	14407	599	14411	600	14419	599
14423	600	14431	601	14437	601	14447	600	14449	600
14461	602	14479	601	14489	603	14503	601	14519	602
14533	603	14537	602	14543	603	14549	603	14551	603
14557	603	14561	604	14563	603	14591	604	14593	603
14621	605	14627	605	14629	604	14633	605	14639	605
14653	605	14657	605	14669	606	14683	605	14699	607
14713	607	14717	607	14723	607	14731	607	14737	607
\(q \)	\(\bar{t}(q) \)								
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
14741	607	14747	608	14753	608	14759	608	14767	608
14771	607	14779	609	14783	609	14797	608	14813	609
14821	609	14827	609	14831	610	14843	610	14851	610
14867	610	14869	610	14879	610	14887	611	14891	611
14897	611	14923	611	14929	611	14939	613	14947	613
14951	612	14957	612	14969	612	14983	613	15013	614
15017	614	15031	614	15053	614	15061	614	15073	615
15077	614	15083	615	15091	616	15101	617	15107	616
15121	616	15131	617	15137	617	15139	616	15149	618
15161	617	15173	618	15187	618	15193	618	15199	617
15217	618	15227	619	15233	618	15241	620	15259	620
15263	620	15269	619	15271	620	15277	619	15287	621
15289	621	15299	621	15307	621	15313	621	15319	621
15329	621	15331	622	15349	621	15359	622	15361	621
15373	622	15377	623	15383	622	15391	623	15401	622
15413	623	15427	623	15439	623	15443	623	15451	624
15461	625	15467	624	15473	624	15493	626	15497	625
15511	625	15527	626	15541	625	15551	626	15559	626
15569	626	15581	627	15583	626	15601	628	15607	628
15619	627	15629	628	15641	629	15643	628	15647	628
15649	628	15661	629	15667	629	15671	628	15679	628
15683	630	15727	630	15731	630	15733	630	15737	631
15739	630	15749	631	15761	631	15767	630	15773	631
15787	631	15791	631	15797	631	15803	632	15809	633
15817	632	15823	631	15859	634	15871	634	15881	633
15887	634	15889	634	15901	635	15907	634	15913	635
15919	635	15923	635	15937	635	15959	634	15971	636
15973	635	15991	636	16001	636	16007	637	16033	637
16057	638	16061	637	16063	637	16067	638	16069	638
16073	638	16087	639	16091	637	16097	639	16103	639
16111	639	16127	639	16139	640	16141	640	16183	641
16187	641	16189	641	16193	640	16217	641	16223	641
16229	641	16231	642	16249	642	16253	642	16267	642
16273	642	16301	643	16319	643	16333	644	16339	644
16349	645	16361	644	16363	645	16369	645	16381	645
16411	645	16417	646	16421	645	16427	646	16433	645
16447	647	16451	646	16453	647	16477	646	16481	647
16487	648	16493	646	16519	648	16529	647	16547	648
16553	649	16561	648	16567	648	16573	649	16603	649
16607	650	16619	650	16631	650	16633	651	16649	651
16651	651	16657	651	16661	651	16673	652	16691	650
16693	651	16699	652	16703	652	16729	653	16741	653
16747	653	16759	654	16763	653	16787	654	16811	654
Table 4. Continue 9

q	$\text{Tr}(q)$								
16823 654	<	16829 654	<	16831 654	<	16843 655	<	16871 656	
16879 656	<	16883 655	<	16889 655	<	16901 656	<	16903 657	
16921 657	<	16927 657	<	16931 657	<	16937 657	<	16943 656	
16963 657	<	16979 657	<	16981 658	<	16987 658	<	16993 657	
17011 659	<	17021 659	<	17027 659	<	17029 658	<	17033 659	
17041 659	<	17047 661 1.622	<	17053 660	<	17077 660	<	17093 661	
17099 661	<	17107 660	<	17117 660	<	17123 660	<	17137 661	
17159 662	<	17167 663	<	17183 662	<	17189 664	<	17191 662	
17203 664	<	17207 662	<	17209 662	<	17231 664	<	17239 663	
17257 664	<	17291 664	<	17293 665	<	17299 665	<	17317 665	
17321 666	<	17327 666	<	17333 666	<	17341 666	<	17351 666	
17359 666	<	17377 667	<	17383 667	<	17387 667	<	17389 667	
17393 667	<	17401 668	<	17417 668	<	17419 668	<	17431 667	
17443 668	<	17449 670 1.623	<	17467 669	<	17471 669	<	17477 668	
17483 669	<	17489 668	<	17491 669	<	17497 666	<	17509 670	
17519 671	<	17539 669	<	17551 671	<	17569 671	<	17573 670	
17579 671	<	17581 670	<	17597 671	<	17599 672	<	17609 672	
17623 672	<	17627 673	<	17657 672	<	17659 673	<	17669 673	
17681 673	<	17683 673	<	17707 674	<	17713 674	<	17729 674	
17737 674	<	17747 674	<	17749 674	<	17761 675	<	17783 676	
17789 675	<	17791 676	<	17807 676	<	17827 676	<	17837 676	
17839 676	<	17851 676	<	17863 677	<	17881 677	<	17891 677	
17903 678	<	17909 678	<	17911 678	<	17921 679	<	17923 678	
17929 677	<	17939 679	<	17957 679	<	17959 680	<	17971 679	
17977 679	<	17981 679	<	17987 680	<	17989 680	<	18013 679	
18041 681	<	18043 682	<	18047 681	<	18049 681	<	18059 682	
18061 681	<	18077 681	<	18089 682	<	18097 683	<	18119 682	
18121 682	<	18127 683	<	18131 683	<	18133 683	<	18143 683	
18149 682	<	18169 684	<	18181 683	<	18191 683	<	18199 683	
18211 685	<	18217 684	<	18223 685	<	18229 685	<	18233 685	
18251 685	<	18253 685	<	18257 685	<	18269 685	<	18287 686	
18289 687	<	18301 686	<	18307 686	<	18311 687	<	18313 686	
18329 687	<	18341 688	<	18353 687	<	18367 688	<	18371 687	
18379 687	<	18397 688	<	18401 689	<	18413 689	<	18427 688	
18433 689	<	18439 689	<	18443 689	<	18451 688	<	18457 690	
18461 690	<	18481 689	<	18493 691	<	18503 691	<	18517 691	
18521 692	<	18523 690	<	18539 691	<	18541 691	<	18553 691	
18583 692	<	18587 693	<	18593 692	<	18617 693	<	18637 692	
18661 693	<	18671 694	<	18679 695	<	18691 696 1.624	<	18701 694	
18713 696	<	18719 694	<	18731 696	<	18743 695	<	18749 695	
18757 696	<	18773 697	<	18787 697	<	18793 697	<	18797 697	
18803 697	<	18839 699	<	18859 698	<	18869 698	<	18899 698	
18911 699	<	18913 698	<	18917 699	<	18919 699	<	18947 700	
q	$\bar{t}(q)$								
-----	-------------	-----	-------------	-----	-------------	-----	-------------	-----	-------------
18959	700	18973	700	18979	701	19001	702	19009	701
19013	701	19031	702	19037	702	19051	702	19069	702
19073	702	19079	703	19081	703	19087	703	19121	704
19139	704	19141	705	19157	704	19163	703	19181	706
19183	704	19207	706	19211	705	19213	705	19219	706
19231	705	19237	705	19249	706	19259	707	19267	706
19273	707	19289	708	19301	708	19309	707	19319	708
19333	707	19373	709	19379	709	19381	709	19387	709
19391	709	19403	709	19417	710	19421	709	19423	710
19427	710	19429	711	19433	710	19441	709	19447	709
19457	712	19463	710	19469	711	19471	710	19477	711
19483	711	19489	711	19501	712	19507	710	19531	712
19541	712	19543	713	19553	713	19559	712	19571	713
19577	713	19583	713	19597	712	19603	714	19609	713
19661	714	19681	714	19687	715	19697	715	19699	716
19709	716	19717	716	19727	716	19739	716	19751	717
19753	717	19759	717	19763	717	19777	716	19793	717
19801	719	19813	718	19819	719	19841	718	19843	718
19853	719	19861	719	19867	719	19889	720	19891	720
19913	719	19919	721	19927	720	19937	720	19949	721
19961	721	19963	721	19973	720	19979	721	19991	721
19993	722	19997	722	20011	722	20021	721	20023	722
20029	722	20047	723	20051	722	20063	722	20071	723
20089	723	20101	724	20107	724	20113	724	20117	724
20123	723	20129	725	20143	723	20147	724	20149	725
20161	725	20173	726	20177	725	20183	726	20201	725
20219	726	20231	727	20233	727	20249	727	20261	727
20269	727	20287	726	20297	728	20323	728	20327	729
20333	728	20341	729	20347	728	20353	729	20357	728
20359	728	20369	729	20389	730	20393	729	20399	730
20407	729	20411	729	20431	731	20441	729	20443	730
20477	731	20479	731	20483	731	20507	732	20509	732
20521	733	20533	732	20543	732	20549	732	20551	733
20563	733	20593	733	20599	734	20611	733	20627	734
20639	735	20641	734	20663	734	20681	735	20693	736
20707	736	20717	735	20719	736	20731	736	20743	737
20747	737	20749	738	20753	736	20759	737	20771	737
20773	737	20789	738	20807	737	20809	738	20849	739
20857	740	20873	740	20879	740	20887	739	20897	739
20899	740	20903	740	20921	741	20929	740	20939	740
20947	741	20959	740	20963	743	20981	741	20983	741
21001	742	21011	741	21013	742	21017	741	21019	741
21023	742	21031	742	21059	743	21061	742	21067	743
Table 4. Continue 11

q	$\bar{t}(q)$	$\overline{T}(q)$									
21089	745		21101	745		21107	743		21121	745	
21143	746		21149	743		21157	745		21163	745	
21179	745		21187	746		21191	745		21193	745	
21221	746		21227	746		21247	746		21269	747	
21283	748		21313	749		21317	748		21319	747	
21341	749		21347	748		21377	749		21379	749	
21391	748		21397	749		21401	750		21407	750	
21433	751		21467	750		21481	750		21487	751	
21493	751		21499	752		21503	752		21517	752	
21523	752		21529	752		21557	752		21559	753	
21569	753		21577	752		21587	753		21589	754	
21601	753		21611	754		21613	755		21617	754	
21649	755		21661	754		21673	755		21683	756	
21713	756		21727	755		21737	756		21739	756	
21757	756		21767	758		21773	757		21787	758	
21803	758		21817	758		21821	757		21839	759	
21851	758		21859	757		21863	760		21871	759	
21893	759		21911	759		21929	760		21937	758	
21961	760		21977	761		21991	759		21997	760	
22013	761		22027	761		22031	762		22037	762	
22051	763		22063	763		22067	761		22073	762	
22091	763		22093	763		22109	762		22111	763	
22129	764		22133	764		22147	763		22153	764	
22159	764		22171	764		22189	766		22193	765	
22247	766		22259	765		22271	767		22273	766	
22279	766		22283	766		22291	767		22303	768	
22343	768		22349	768		22367	768		22369	768	
22391	769		22397	769		22409	770		22433	770	
22447	770		22453	770		22469	769		22481	771	
22501	771		22511	771		22531	772		22541	771	
22549	773		22567	773		22571	773		22573	773	
22619	773		22621	773		22637	773		22639	774	
22651	773		22669	775		22679	774		22691	774	
22699	774		22709	776		22717	775		22721	775	
22739	775		22741	776		22751	775		22769	777	
22783	775		22787	777		22807	778		22811	777	
22853	778		22859	777		22861	778		22871	778	
22901	777		22907	779		22921	779		22937	779	
22961	780		22963	780		22973	780		22993	780	
23011	782		23017	781		23021	782		23027	781	
23039	781		23041	781		23053	782		23057	781	
23063	782		23071	782		23081	782		23087	783	
23117	783		23131	783		23143	783		23159	783	
23167	784		23169	784		23179	784		23187	784	
Table 4. Continue 12

	$\bar{t}(q)$	$\bar{t}^{(q)}$	$\bar{t}^{(q)}$	$\bar{t}^{(q)}$	$\bar{t}^{(q)}$	$\bar{t}^{(q)}$				
23173	784	23189	784	23197	785	23201	784	23203	784	
23209	785	23227	785	23251	786	23269	786	23279	785	
23291	786	23323	787	23339	787	23357	788	23369	788	
23371	788	23399	789	23417	788	23431	788	23447	789	
23459	789	23473	789	23497	791	23509	790	23531	791	
23537	791	23539	791	23549	792	23557	793	1.629	23561	792
23563	792	23567	792	23581	791	23593	792	23599	792	
23603	793	23609	793	23623	792	23627	793	23629	793	
23633	792	23663	792	23669	793	23671	793	23677	793	
23687	794	23689	794	23719	794	23741	794	23743	794	
23747	795	23753	795	23761	793	23767	795	23773	795	
23789	796	23801	796	23813	795	23819	796	23827	798	1.629
23831	796	23833	797	23857	796	23869	796	23873	797	
23879	797	23887	797	23893	798	23899	798	23909	798	
23911	797	23917	798	23929	799	23957	798	23971	799	
23977	799	23981	800	23993	800	24001	800	24007	799	
24019	799	24023	800	24029	799	24043	800	24049	800	
24061	800	24071	801	24077	802	24083	801	24091	801	
24097	801	24103	802	24107	802	24109	802	24113	803	
24121	801	24133	802	24137	803	24151	802	24169	803	
24179	803	24181	803	24197	803	24203	803	24223	804	
24229	802	24239	804	24247	804	24251	805	24281	805	
24317	805	24329	806	24337	805	24359	806	24371	807	
24373	807	24379	806	24391	808	24407	808	24413	807	
24419	807	24421	808	24439	808	24443	807	24469	808	
24473	809	24481	808	24499	809	24509	808	24517	810	
24527	809	24533	809	24547	808	24551	811	24571	810	
24593	811	24611	811	24623	811	24631	811	24659	812	
24671	812	24677	812	24683	812	24691	813	24697	813	
24709	813	24733	812	24749	814	24763	814	24767	814	
24781	814	24793	815	24799	814	24809	814	24821	816	
24841	816	24847	815	24851	815	24859	815	24877	815	
24889	816	24907	816	24917	817	24919	817	24923	817	
24943	817	24953	818	24967	818	24971	818	24977	818	
24979	817	24989	817	25013	818	25031	818	25033	820	1.629
25037	818	25057	820	25073	819	25087	821	1.629	25097	818
25111	821	25117	820	25121	820	25127	821	25147	820	
25153	820	25163	822	25169	820	25171	821	25183	820	
25189	822	25219	821	25229	823	25237	823	25243	824	1.629
25247	822	25253	822	25261	822	25301	823	25303	824	
25307	824	25309	823	25321	825	25339	824	25343	825	
25349	824	25357	825	25367	824	25373	825	25391	825	
\(q \)	\(\bar{r}(q) < \)	\(q \)	\(\bar{r}(q) < \)	\(q \)	\(\bar{r}(q) < \)	\(q \)	\(\bar{r}(q) < \)			
---	---	---	---	---	---	---	---			
25409	825	25411	826	25423	827	25439	827			
25453	827	25457	826	25463	826	25469	827			
25523	829	25537	827	25541	829	25561	828			
25579	829	25583	829	25589	828	25601	830			
25609	830	25621	830	25633	831	1.630	25639			
25657	831	25667	830	25673	830	25679	830			
25699	835	25699	835	25699	835	25703	838			
25703	831	25717	831	25733	832	25741	834			
25759	832	25763	831	25771	831	25793	833			
25801	833	25819	834	25841	833	25847	833			
25867	834	25873	833	25889	835	25903	835			
25919	836	25931	836	25933	836	25939	835			
25951	835	25969	835	25981	835	25997	835			
26003	836	26017	836	26021	837	26029	838			
26053	837	26083	837	26099	837	26107	838			
26113	838	26119	839	26141	839	26153	839			
26171	840	26177	841	26183	840	26189	841			
26209	841	26227	840	26237	841	26249	841			
26261	840	26263	841	26267	841	26293	841			
26309	841	26317	843	26321	841	26339	843			
26357	841	26371	843	26387	844	26393	843			
26407	844	26417	844	26423	844	26431	844			
26449	845	26459	845	26479	845	26489	845			
26501	846	26513	846	26539	846	26557	846			
26573	847	26591	848	26597	847	26627	848			
26641	848	26647	847	26669	849	26681	849			
26687	849	26693	850	26699	849	26701	848			
26713	849	26717	850	26723	850	26729	848			
26737	849	26759	851	26777	851	26783	850			
26813	851	26821	850	26833	851	26839	852			
26861	851	26863	853	26879	852	26881	850			
26893	852	26903	853	26921	852	26927	853			
26951	853	26953	854	26959	855	26981	854			
26993	854	27011	854	27017	856	27031	855			
27059	856	27061	854	27067	856	27073	856			
27091	856	27103	856	27107	856	27109	856			
27143	857	27179	856	27191	856	27197	857			
27239	859	27241	859	27253	858	27259	859			
27277	858	27281	859	27283	860	27299	859			
27337	860	27361	862	27367	861	27397	861			
27409	861	27427	861	27431	862	27437	862			
27457	862	27479	862	27481	863	27487	863			
27527	864	27529	863	27539	864	27541	864			
27581	865	27583	864	27611	866	27617	864			
Table 4. Continue 14

q	$\tilde{t}(q)$	$\tilde{t}(q)$	$\tilde{t}(q)$	$\tilde{t}(q)$	$\tilde{t}(q)$					
27647	864	27653	865	27673	867	27693	866	27691	866	
27697	867	27701	866	27733	868	27737	867	27739	867	
27743	867	27749	867	27751	867	27763	868	27767	868	
27773	866	27779	869	27791	868	27793	869	27799	868	
27803	869	27809	868	27817	868	27823	868	27827	868	
27847	868	27851	869	27883	870	27893	869	27901	870	
27917	871	27919	871	27941	871	27943	872	27947	870	
27953	872	27961	872	27967	871	27983	872	27997	871	
28001	872	28019	872	28027	873	28031	872	28051	873	
28057	872	28069	874	28081	872	28087	875	1.632	28097	874
28099	873	28109	874	28111	874	28123	873	28151	876	
28163	875	28181	875	28183	875	28201	876	28211	876	
28219	875	28229	875	28277	876	28279	876	28283	876	
28289	875	28297	876	28307	877	28309	878	28319	877	
28349	876	28351	878	28387	879	28393	877	28403	878	
28409	878	28411	879	28429	878	28433	880	28439	881	
28447	880	28463	879	28477	880	28493	881	28499	881	
28513	880	28517	881	28537	881	28541	881	28547	881	
28549	882	28559	883	28571	882	28573	883	28579	883	
28591	882	28597	882	28603	884	1.632	28607	882	28619	882
28621	882	28627	883	28631	884	28643	882	28649	884	
28657	883	28661	883	28663	883	28669	883	28687	884	
28697	884	28703	883	28711	885	28723	884	28729	884	
28751	883	28753	885	28759	883	28771	885	28789	886	
28793	885	28807	884	28813	887	28817	885	28837	887	
28843	884	28859	886	28867	886	28871	886	28879	888	
28901	888	28909	887	28921	889	28927	888	28933	887	
28949	888	28961	888	28979	889	29009	888	29017	889	
29021	890	29023	888	29027	890	29033	891	29059	891	
29063	891	29077	889	29101	891	29123	892	29129	892	
29131	890	29137	892	29147	891	29153	891	29167	893	
29173	893	29179	893	29191	892	29201	894	29207	893	
29209	893	29221	893	29231	892	29243	892	29251	894	
29269	893	29287	894	29297	894	29303	894	29311	895	
29327	894	29333	896	29339	895	29347	895	29363	895	
29383	895	29387	896	29389	896	29399	895	29401	896	
29411	895	29423	895	29429	897	29437	896	29443	896	
29453	896	29473	898	29483	898	29501	898	29527	898	
29531	897	29537	899	29567	898	29569	900	29573	900	
29581	899	29587	900	29599	899	29611	899	29629	900	
29633	900	29641	900	29663	900	29669	900	29671	901	
29683	900	29717	901	29723	902	29741	902	29753	902	
29759	902	29761	902	29789	902	29803	903	29819	903	
q	$\bar{r}(q)$	$\bar{r}(q)$	$\bar{r}(q)$	$\bar{r}(q)$	$\bar{r}(q)$	$\bar{r}(q)$				
-----	--------------	--------------	--------------	--------------	--------------	--------------				
29833	903	29837	903	29851	904	29863	905	29867	903	
29873	905	29879	904	29881	903	29917	904	29921	905	
29927	904	29947	905	29959	906	29983	906	29989	907	
30011	907	30013	906	30029	907	30047	906	30059	908	
30071	907	30089	908	30091	903	30117	904	30121	910	
30109	909	30113	908	30119	909	30133	908	30137	909	
30139	909	30161	910	30169	910	30181	909	30187	910	
30197	910	30203	910	30211	910	30223	909	30241	910	
30253	911	30259	911	30269	910	30271	911	30293	911	
30307	912	30313	913	1.633	30319	912	30323	911	30341	911
30347	911	30367	913	30389	912	30391	914	30403	913	
30427	914	30431	914	30449	913	30467	913	30469	915	
30491	914	30493	914	30497	914	30509	915	30517	915	
30529	915	30539	915	30553	915	30557	916	30559	916	
30577	916	30593	915	30631	917	30637	917	30643	917	
30649	916	30661	915	30671	917	30677	918	30689	917	
30697	918	30703	917	30707	918	30713	917	30727	919	
30757	919	30763	919	30773	920	30781	918	30803	921	
30809	919	30817	921	30829	920	30839	921	30841	920	
30851	919	30853	921	30859	922	1.633	30869	920	30871	921
30881	919	30893	922	30911	922	30931	922	30937	920	
30941	922	30949	921	30971	922	30977	921	30983	923	
31013	925	31019	923	31033	924	31039	923	31051	925	
31063	925	31069	924	31079	925	31081	925	31091	924	
31121	926	31123	926	31139	925	31147	924	31151	927	
31153	925	31159	926	31177	926	31181	926	31183	927	
31189	928	31193	927	31219	927	31223	927	31231	927	
31237	928	31247	927	31249	928	31253	927	31259	927	
31267	928	31271	928	31277	928	31307	928	31319	929	
31321	929	31327	929	31333	930	31337	928	31357	928	
31379	929	31387	930	31391	930	31393	930	31397	930	
31469	931	31477	930	31481	931	31489	932	31511	930	
31513	930	31517	931	31531	932	31541	932	31543	932	
31547	933	31567	934	31573	933	31583	933	31601	933	
31607	935	1.634	31627	933	31643	934	31649	934	31657	934
31663	935	31667	934	31687	936	31699	936	31721	934	
31723	937	1.635	31727	935	31729	935	31741	936	31751	937
31769	937	31771	936	31793	937	31799	936	31817	936	
31847	937	31849	938	31859	938	31873	938	31883	937	
31891	938	31907	939	31957	939	31963	938	31973	939	
31981	940	31991	940	32003	940	32009	941	32027	941	
32029	939	32051	941	32057	941	32059	940	32063	941	
32069	940	32077	941	32083	941	32089	941	32099	941	
q	$\overline{t}(q)$	$\overline{t}(q)$	$\overline{t}(q)$	$\overline{t}(q)$	$\overline{t}(q)$	$\overline{t}(q)$				
-----	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------				
32117	942	32141	941	32143	942	32159	943			
32173	943	32183	943	32191	941	32203	944			
32213	944	32233	944	32251	943	32257	945			
32261	945	32297	945	32303	946	32309	946			
32321	945	32323	945	32341	947	32377	946			
32359	947	32363	946	32369	947	32371	947			
32381	946	32401	947	32413	946	32423	946			
32429	947	32441	946	32467	947	32479	948			
32491	948	32497	948	32507	947	32531	949			
32533	947	32537	947	32563	950	32569	950			
32573	949	32579	949	32587	950	32603	950			
32611	951	32621	950	32633	951	32653	951			
32687	951	32693	951	32707	952	32713	952			
32719	951	32749	953	32771	953	32779	953			
32789	952	32797	953	32801	952	32803	953			
32833	953	32839	954	32843	954	32869	954			
32909	956	32911	955	32917	956	32933	955			
32941	957	1.635	32957	955	32969	956	32971	956		
32987	955	32993	957	32999	957	33013	957			