Liver transplantation for metastatic neuroendocrine tumor: A case report and review of the literature

Wojciech C Blonski, K Rajender Reddy, Abraham Shaked, Evan Siegelman, David C Metz

Abstract

Neuroendocrine tumors are divided into gastrointestinal carcinoids and pancreatic neuroendocrine tumors. The WHO has updated the classification of these lesions and has abandoned the term “carcinoid”. Both types of tumors are divided into functional and non-functional tumors. They are characterized by slow growth and frequent metastasis to the liver and may be limited to the liver for long periods. The therapeutic approach to hepatic metastases should consider the number and distribution of the liver metastases as well as the severity of symptoms related to hormone production and tumor bulk. Surgery is generally considered as the first line therapy. In patients with unresectable liver metastases, alternative treatments are dependent on the type and the growth rate. Initial treatments consist of long acting somatostatin analogs and/or interferon. Streptozocin-based chemotheraphy is usually reserved for symptomatic patients with rapidly advancing disease, but generally the therapy is poorly tolerated and its effects are short-lived. Locoregional therapy directed such as hepatic-artery embolization and chemoembolization, radiofrequency thermal ablation and cryosurgery, is often used instead of systemic therapy, if the disease is limited to the liver. However, liver transplantation should be considered in patients with neuroendocrine metastases to the liver that are not accessible to curative or cytoreductive surgery and if medical or locoregional treatment has failed and if there are life threatening hormonal symptoms. We report a case of liver transplantation for metastatic neuroendocrine tumor of unknown primary source and provide a detailed review of the world literature on this controversial topic.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Liver metastases; Neuroendocrine tumors; Liver transplantation

Blonski WC, Reddy KR, Shaked A, Siegelman E, Metz DC. Liver transplantation for metastatic neuroendocrine tumor: A case report and review of the literature. World J Gastroenterol 2005;11(48): 7676-7683. http://www.wjgnet.com/1007-9327/11/7676.asp

INTRODUCTION

Neuroendocrine tumors are divided into gastrointestinal carcinoids and pancreatic neuroendocrine tumors[1]. However, it is suggested that they may be grouped together and be categorized into functional and non-functional tumors[2] to indicate the clinical manifestations of syndromes caused by hypersecretion of neuropeptides and biogenic amines at supraphysiologic levels[2-3]. These tumors are very rare and occur with an incidence of 2 per 100 000/year (with a slight female predominance) for carcinoids[4-6] and 1-1.5 per 100 000/year for pancreatic neuroendocrine tumors[1].

Gastrointestinal carcinoid tumors originate from cells of the diffuse neuroendocrine system, which is composed of amine-and peptide-producing cells[8]. These cells are scattered throughout the body and predominantly occur in the submucosa of the large and small intestine, stomach and larger bronchi[1]. In 85% of all cases they arise in the lung, stomach, ileum, appendix and rectum[1]. Although the majority of these tumors are nonfunctional, certain primary site locations, such as the ileum and bronchi, have a predilection for producing the carcinoid syndrome[1]. This syndrome is characterized by flushing, diarrhea, abdominal pain and less often by wheezing and heart disease and is predominantly caused by the production of serotonin[10]. Other biological substances, produced by carcinoid tumors, such as kalikrein and prostaglandins also take part in the pathogenesis of the carcinoid syndrome[8]. Overall, the carcinoid syndrome develops in only 5% of all carcinoid tumor patients, but this figure rises to approximately 60% in cases with liver metastases[11]. Prior to metastasizing to the liver, carcinoid tumors are usually
silent because their secretory products are inactivated in the liver[8,9]

Pancreatic endocrine tumors arise from pleuropotential stem cells within the pancreas[9,10] and those that are functional produce biologically active peptides such as gastrin, insulin, glucagon, vasoactive intestinal polypeptide, somatostatin, growth hormone releasing factor, and pancreatic polypeptide which are responsible for distinct clinical syndromes[11-13]. Gastrinomas and the insulinomas are the most common functional pancreatic endocrine tumors whereas all others are rare[1,11]. Non-functional pancreatic neuroendocrine tumors (45-50\% of all pancreatic neuroendocrine tumors) exhibit no specific syndromes; such tumors present only with symptoms due to tumor mass[13,14]

Liver metastases develop in 46-93\% of patients with neuroendocrine tumors and can involve large portions of the liver before becoming symptomatic[12]. They exhibit a slow growth despite their multilocular and bilateral occurrence in most cases[13] and may be limited to the liver for long periods[14]. Surgery is generally the first line therapy for patients with liver metastases due to neuroendocrine tumors[15-17]. Potentially curative resection is considered in patients with solitary or unilobar hepatic metastases and without radiological evidence of systemic disease[18]. However, curative resection is possible only in approximately 20\% of patients[19], because liver metastases frequently diffuse at the time of diagnosis[8]. In patients with bulky disease, preoperative hepatic artery embolization is recommended in order to decrease the blood flow and shrink tumors[20]. In patients with previously resected or resectable primary tumors, regional nodal disease and metastases confined to the liver, cytoreductive surgery is recommended, provided that preoperative imaging confirms that the primary and regional diseases are controlled or controllable and 90\% or more of the bulk of the tumor can be removed[14]. In patients with unresectable liver metastases alternative treatments that can be considered include immunotherapy (somatostatin analogs and/or alpha-interferon) and chemotherapy (usually streptozocin-based). Additional therapy such as hepatic-artery embolization or chemoembolization, radiofrequency ablation and cryosurgery are pursued as needed[21-24]. Some studies report a tumoricidal effect of somatostatin analogs such as octreotide and lanreotide in 36.5-75\% of treated patients lasting for 3-12 months[21-24]. Furthermore, treatment with high-dose somatostatin analogs may induce apoptosis in neuroendocrine tumors[25]. In addition, small liver metastases (diameter less than 1-2 cm) may respond to radiopharmaceutical agents such as Y (90)- and In (131)-labeled octreotide which involve insertion of radiotherapeutic agents directly into the tumor[26]. A recent study suggested that the administration of combinations of Y (90)- and Lu (177)-labeled octreotide in patients with tumors of different sizes may allow wider tumor penetration[27]. In patients with bilobar hepatic tumors, hepatic artery embolization combined with octreotide treatment has also been proposed[28]

Liver transplantation is considered in patients with neuroendocrine metastases to the liver which are not accessible to curative or cytoreductive surgery, tumors which do not respond to medical or interventional treatment and in tumors causing uncontrollable life-threatening hormonal symptoms (severe hypoglycemia, gastrointestinal hemorrhage, severe diarrhea, valvulopathy)[29,30] providing the disease has not extended beyond the liver, although certain hormonal symptoms (e.g. insulinoma) may be less amenable to transplantation than others.

We report herein a case of liver transplantation due to metastatic neuroendocrine tumor of unknown primary source. In addition, we present a comprehensive review of liver transplantation in patients with metastatic neuroendocrine tumors.

CASE REPORT

A 61-year-old white male with a prior history of hypertension and arteriosclerotic heart disease was referred in May 1999 for evaluation of multiple liver metastases from an unclear primary source. In the 4-5 years prior to referral, he described that he had flushing and cough. The flushing was primarily on his face, lasted for about an hour at a time and was precipitated by heat. In the few months prior to referral he developed episodes of fevers, chills and lassitude and had been treated briefly with antibiotics with a good response. The patient had lost about 16 pounds, which was attributed to dieting and anxiety. Physical examination revealed hepatomegaly. Ultrasound of the right upper quadrant and CT scanning of the chest and abdomen revealed multiple metastases in the liver but no other obvious primary tumor (Figure 1A). Laboratory data included a urinalysis which was negative, a serum albumin of 2.9 gm/dL (n.: 3.5-5.0), an elevated alkaline phosphatase of 197 IU/L (n.: 12-41), an ALT of 96 IU/L (n.: 10-60), an AST of 57 IU/L (n.: 10-42), a BUN of 18 mg/dL (n.: 6-20), a normal serum calcium and normal chloride and electrolytes. His total bilirubin was 1.0 mg/dL (n.: 0.2-1.0) and his total protein was 6.7 gm/dL (n.: 6.4-8.2). His CBC was within normal limits.

His serum gastrin level was 38 pg/mL (n.: 0-100), serum chromogranin A level was 275 ng/mL (n.<50) and serum pancreatic polypeptide was 258 pg/mL (n.<312). 24-h urine analysis for 5-hydroxyindolacetic acid was normal. A transcutaneous liver biopsy was positive for neuroendocrine tumor. The tumor was strongly positive for neuron specific enolase, synaptophysin, insulin, S100 and chromogranin. An OctreoScan showed liver and midline abdominal foci of increased radiotracer uptake compatible with neuroendocrine lesions. There were no neuroendocrine lesions within the lungs and mediastinum. His small bowel enema was normal. An upper endoscopy revealed a few small prepyloric ulcers with no evidence of Helicobacter pylori. In addition, there was evidence of extrinsic antral compression from the left lobe of the liver. An echocardiogram was performed which showed a thickened and calcified aortic valve and mitral valve with mild mitral regurgitation. A diagnosis of metastatic...
Neuroendocrine tumors represent an unusual group of rare tumors due to their slow growth and ability to produce and secrete a multitude of peptide hormones and amines. These substances give rise to different clinical syndromes related to the peptide production, such as the carcinoid syndrome, insulinoma syndrome, Zollinger-Ellison syndrome, glucagonoma syndrome, WDHA syndrome and somatostatinoma syndrome. However, as in this case, many patients have nonfunctional tumors and present with hepatic metastases. In most cases neuroendocrine metastases to the liver are located in both lobes. Gastrointestinal carcinoid tumors, especially those located in the small intestine or ascending colon, are the most common neuroendocrine tumors presenting with liver metastases. Gastrointestinal carcinoids and pancreatic neuroendocrine tumors have different degrees of malignant potential and frequency of liver metastases.

The therapeutic approach to hepatic metastases should consider the natural history of the disease and the progression and severity of symptoms caused by both hormone production and tumor mass. In contrast to nonendocrine tumors, therapy for hepatic metastases from neuroendocrine tumors with liver transplantation is reasonable because the disease may be confined to the liver for extended periods and the growth is slow. The presence of liver metastases from neuroendocrine tumors is a very important prognostic factor for decreased survival. The 5-year survival rate in untreated patients is approximately 30%, and chemotherapy only prolongs life by a mean of 12-24 mo.

There have been several single-center (Table 1) retrospective analyses and three multicenter retrospective studies of liver transplantation in patients with liver metastases from neuroendocrine tumors. They are summarized in Table 1. However, closer review of these reports reveals that some of the patients were part of more than one publication. Several tumor and patient characteristics influence the outcome following liver transplantation. A large retrospective study of 637 patients who underwent OLT between 1968 and 1991, observed that 67% of patients with carcinoid tumors had recurrence. The authors concluded that patients with slowly growing metastatic neuroendocrine tumors might be suitable candidates for liver transplantation.
Table 1 Liver transplantation for metastatic neuroendocrine tumors

Author	Year	Number of patients	Actuarial survival (%)	Comments	Ref. no
			no 1 (yr) 2 (yr) 3 (yr) 4 (yr) 5 (yr)		
O'Grady	1987	2 nr nr nr nr nr	2 carcinoids, 1 death at 7 mo, 1 symptom free at 12 mo after LT	53	
Makowka	1989	5 nr nr nr nr nr	3 alive 7, 16 and 34 mo after LT	35	
Arnold	1989	4 nr nr nr nr nr	2 no recurrence 20, 38 moths after LT, 2 deaths 7, 8 mo (chronic rejection)	54	
Bramley	1990	1 nr nr nr nr nr	VIP-oma, no tumor 12 mo after LT	55	
Alsina	1990	2 nr nr nr nr nr	1 carcinoid and 1 PNT no symptoms 5, 13 mo after LT	56	
Penn	1991	13 nr nr nr nr nr	9 carcinoids, 4PNT; 67% recurrence for carcinoids	42	
Bechstein	1994	30 52 52 52 52 nr nr	multicenter study at the time of report: 57% alive, 43% dead, 30% recurrence, 70% no evidence of disease	43	
Allessiani	1995	14 nr nr nr nr nr	cluster transplantation, recurrence rate 45.5%	44	
Routley	1995	11 82 nr nr nr nr	7 carcinoids, 2 PNT, 2 ET-primary unknown; 6 alive (2 carcinoids) 8-106 mo after LT; 5 deaths (3 carcinoids) in 8-67 mo after LT	45	
Curtiss	1995	3 nr nr nr nr nr	3 alive 12, 20, 30 mo after LT	57	
Anthuber	1996	4 nr nr nr nr nr	4 deaths 10 days and 4, 8, 33 mo after LT	58	
Doussset	1996	9 nr nr nr nr nr	4 carcinoids, 5 PNT; 3 (carcinoid) alive 15, 24, 62 mo after LT, 6 deaths 6, 7, 12, 83 days and 7, 8 mo after LT	59	
Le Treut	1997	31 58 51 47 36 36	multicenter study, 11 centers in Europe; disease free survival: 45% at 1 yr, 29% at 3 yr, 17% at 5 yr after LT; higher survival for carcinoids (69% at 5 yr) than for non-carcinoids (8% at 4 yr)	46	
Le Treut	1997	37 66 56 46 46 46	literature review, 14 centers, higher survival for non-carcinoids (83% at 2 yr) than carcinoids (34% at 2 yr)	46	
Lang	1997	12 nr nr nr nr nr	9 alive-median survival 55 mo (4 no recurrence 2, 57, 58, 103.5 mo after LT)	47	
Lehnert	1998	103 68 60 53 47 47	multicenter study; disease-free survival: 60% at 1 yr, 48% at 2 yr, 42% at 3 yr, 32% at 4 yr, 24% at 5 yr; favorable prognostic factors: age>50 yr, limited operation (survival 65% at 5 yr)	48	
Pilchmayr	1998	15 nr nr nr nr nr	11 alive, 4 with no recurrence, the longest survival 10 yr after LT	49	
Gottwald	1998	1 nr nr nr nr nr	Gastrinoma, alive with good liver function after LT	60	
Frilling	1998	4 nr nr nr nr nr	3 carcinoids (2 alive, 1 dead 32 d after LT), IPNT (death 4 days after LT); 1 recurrence-free	61	
Pascher	2000	4 nr nr nr nr nr	4 carcinoids; 2 deaths 14, 42 mo after LT, 2 alive 36, 76 mo after LT	62	
Claude	2000	1 nr nr nr nr nr	1 carcinoid	63	
Coppa	2001	9 100 100 100 70 70	Disease-free survival 53% at 5 yr	19	
Ringe	2001	5 nr nr nr nr nr	4 alive (2 tumor-free survivals 4-25 mo after LT); 1 death 0.2 month after LT	64	
Olausson	2002	9 89 nr nr nr nr	5 PNT, 4 carcinoids; 7 OLT, 2 MVT; 8 alive, 6 no evidence of disease, 4 recurrent tumors 9-36 mo after LT	29	
Rosenau	2002	19 89 nr nr nr nr	Survival at 10 yr 50%; recurrence free survival 56% at 1 yr, 21% at 5 and 10 yr; survival 100% at 7 yr with Ki67<5% and regular E-cadherin staining; survival 0% at 7 yr with Ki67>5% and E-cadherin aberrant staining	50	
Fernandez	2003	5 nr nr nr nr nr	2 alive and recurrence free 3, 6 yr after LT; 3 deaths 4, 10, 17 mo after LT	65	
Amarapurkar	2003	14 nr nr nr nr nr	MIB-1 index >5%: recurrence at median 11 mo, survival median 13 mo MIB-1 index <5%: recurrence at median 69 mo, survival median 80.5 mo	66	
Cahlin	2003	10 nr 80 nr nr nr	7 OLT, 3 MVT; 2 yr survival 100% for carcinoids; 67% for PNT; 2 yr disease-free survival 75% for carcinoids and 33% for PNT	51	
Florman	2004	11 73 nr nr nr nr	1 patients disease-free at 5 yr after LT	52	
Ahlman	2004	12 nr nr nr nr nr	8 after OLT alive at time of study, 2 after MVT died 4 mo after LT; other 2 after MVT with no recurrence at 8, 36 mo.	14	

LT: liver transplantation; OLT: orthotopic liver transplantation; MVT: multivisceral transplantation; PNT: pancreatic endocrine tumors, nr: results not reported
These data were further supported by another experience on 30 patients from 14 centers who underwent OLT for metastatic neuroendocrine tumors. It was noted that the actuarial survival, often combined with other upper abdominal resective procedures, for the entire group of patients was 52% after 1 year and remained stable for another 24 mo. Overall, mortality during the first year after transplantation due to recurrent tumor was 17%.

The longest survival, 42 mo, was in a patient who died from recurrent carcinoid tumor. Overall, at the time of this study 57% of patients were alive, 30% had developed recurrence, 43% had died and 70% did not have evidence of disease recurrence. Based on their observations they proposed that extrapancreatic primary neuroendocrine tumors be treated with radical hepatic resection followed by medical therapy and that the tumor response should be evaluated before considering liver transplantation. Even the primary pancreatic primary tumors with slow growth that do not respond to medical therapy can be considered for liver transplantation but with a combination of a pancreatic resection procedure.

The role of abdominal cluster transplantation was best described in 57 patients presenting with primary or metastatic liver tumors. Abdominal cluster transplantation for metastatic neuroendocrine liver tumors had a better 3-year survival rate (64%) than for patients who underwent this procedure due to sarcoma (44%), hepatocellular carcinoma (25%), cholangiocarcinoma (20%) and other adenocarcinomas (20%). OLT was found to be effective in controlling symptoms that were caused by carcinoid metastases to the liver. The tumor recurrence was not necessarily associated with early recurrence of symptoms. The patients with non-carcinoid tumors were found to have a higher likelihood of prolonged disease-free survival than those with carcinoid tumors. On the other hand Le Treut et al. found significantly higher survival in patients with metastatic carcinoid tumors (80% after 1 year and 69% after 5 years) than in patients with non-carcinoid neuroendocrine tumors who underwent OLT (38% after 1 year and 8% after 4 years). However additional analysis of 37 cases of OLT for metastatic neuroendocrine tumors presented in the literature revealed significantly higher survival rates in patients with non carcinoid apudomas (83% after 2 years) than in patients with carcinoids (34% after 2 years).

When liver transplantation was done only in cases with unresectable liver tumor, untreatable hormonal symptoms or massive tumor bulk and without extrahepatic tumors at the time of transplantation, patients were observed to derive benefit from OLT. A characteristic of the patients who did not have recurrence during follow up was that they had less than 40–50% tumor bulk in the explant. Thus, it has been suggested that OLT may be also regarded as curative treatment in some patients with neuroendocrine metastases who have relatively low tumor burden. In contrast, Florman found only 1 rare case of 5-year disease free survival among 11 transplanted patients. Moreover, it was claimed that due to only few reports in the literature of 5-year disease free survival (4.6%), OLT cannot be considered as a curative procedure.

Other prognostic indicators that have been suggested include a limited operation and age of <50 years. Patients with such features had an overall 5-year survival of 65% and median survival of more than 8 years. On the other hand, patients who underwent extended operations including upper abdominal exenteration or Whipple’s operation had 1-year survival of 50% and 5-year survival of 31%. Therefore, an extended operation (Whipple’s operation, abdominal exenteration) and age ≥ 50 years were considered as independent indicators of poor outcome and thus extensive surgery does not translate into better outcomes perhaps because of the high rate of post operative morbidity and mortality (10 of 11 patients with such features died after a median of 7 mo). Interestingly, location of the primary tumor, tumor histology and treatment with somatostatin were not found to be prognostic factors, although patients with primary tumors located in the pancreas or gastrinoma seemed to have poorer outcomes. The outcome of liver transplantation showed a highly significant survival difference between patients with metastases from neuroendocrine tumors and other tumors such as colorectal carcinoma, melanoma, choriocarcinoma or pancreatic carcinoma. The 5-year survival was 86.7% in patients with neuroendocrine metastases and 0% in patients with other malignancies.

Little is known about tumor markers as prognostic factors. It has been demonstrated that low tumor expression of the immunohistochemical marker, Ki67 (<5%), and the adhesion molecule, E-cadherin, might be associated with a favorable outcome after liver transplantation for metastatic neuroendocrine tumors. Patients (n = 12) with an increased expression of the markers (Ki67 ≥ 5% positive cells and/or E-cadherin staining) showed decreased survival (median 46 mo) whereas patients (n = 5) with low expression of these markers showed increased survival (median 90 mo). It was also suggested that the combination of these two markers had an excellent specificity and sensitivity to predict a survival of 7 years after liver transplantation. Further study showed that liver transplantation for metastatic well-differentiated neuroendocrine tumors with a low expression of protein Ki67 (Ki67 < 10%) resulted in relief of hormonal symptoms and long disease-free periods. Another study suggested that MIB-1 antibody expression might have prognostic value in patients undergoing liver transplantation for metastatic carcinoid tumors. The authors assessed the cell proliferative activity by MIB-1 antibody labeling in 14 patients with metastatic neuroendocrine liver tumors (7 carcinoids, 7 non-carcinoids) who underwent liver transplantation. In this group, two patients remained alive and disease-free at 96 and 192 mo after liver transplantation. MIB-1 index was calculated by dividing the number of tumor cells with positive staining for MIB-1 antibody by the total number of tumor cells. It was shown that patients with a MIB-1 index of greater than 5% showed early tumor recurrence (median 11 mo) and shorter survival (median 13 mo).
whereas patients with a MIB-1 index of less than 5% showed late tumor recurrence (median 69 mo) and longer survival (median 80.5 mo). The low MIB-1 index (<5%) was found to have a sensitivity of 71% and a specificity of 83% for predicting survival of greater than 2 years.

Current knowledge about the role of liver transplantation for patients with neuroendocrine liver metastases indicates that liver transplantation should be considered only in selected individuals. Coppa et al. proposed that selection of patients with non-resectable metastatic neuroendocrine tumors for liver transplantation should be based on the Milan criteria: young patients (less than 50 years) with carcinoids confirmed by histology, with less than 50% of the liver replaced by metastases, with a primary tumor (originating from the gastrointestinal tract) drained by the portal venous system, an absence of extrahepatic disease and stable disease during the pretransplantation period. In a group of nine patients who underwent liver transplantation based on these criteria the 5-year survival was 70% and the 5-year disease-free survival was 53%. On the other hand, in the group of 20 patients who were treated by liver resection due to less advanced liver metastases, the 5-year survival was 67% and the 5 year disease-free survival was 29%. Our patient had a 27 mo survival and the less than ideal outcome may have been because of some of the poor prognostic factors of age>50, tumor bulk exceeding 50%, and regional metastasis. Furthermore, whether immunosuppression after OLT has any effect on the rate of tumor recurrence or not is pure speculation. Thus, given the shortage of donor organs and the high rate of tumor recurrence, we currently believe that OLT should only be undertaken, when other therapeutic approaches including combinations of regional or systemic chemotherapy and hormone inhibitors together with partial hepatectomy have failed.

There is a need for prospective studies in large numbers of patients to fully evaluate the role of liver transplantation in patients with metastatic neuroendocrine tumors who may gain many years of effective palliation with careful selection. However, suboptimal outcomes may occur if case selection is compromised.

REFERENCES

1. Metz DC, Jensen RT. Endocrine tumors of the gastrointestinal tract and pancreas. In: Rustgi AK, ed. Gastrointestinal and Liver Disease. Edinburgh: Elsevier Science Ltd 2003; 681-719
2. Klöppel G, Perren A, Heitz PU. The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann N Y Acad Sci 2004; 1014: 13-27
3. Oberg K, Kvale L, Caplin M, Delle Fave G, de Herder W, Rindi G, Ruszniewski P, Wolleran EA, Wiedenmann B. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol 2004; 15: 966-973
4. Modlin IM, Sandor A. An analysis of 8305 cases of carcinoid tumors. Cancer 1997; 79: 813-829
5. Levi F, Te VC, Randimbison L, Rindi G, La Vecchia C. Epidemiology of carcinoid neoplasms in Vaud, Switzerland, 1974-97. Br J Cancer 2000; 83: 952-955
6. Quadevlieg PF, Visser O, Lamers CB, Janssen-Heijnen ML, Taal BG. Epidemiology and survival in patients with carcinoid disease in The Netherlands. An epidemiological study with 2391 patients. Ann Oncol 2001; 12: 1295-1300
7. Delcore R, Friesen SR. Gastrointestinal neuroendocrine tumors. J Am Coll Surg 1994; 178: 187-211
8. McStay MK, Caplin ME. Carcinoid tumour. Minerwa Med 2002; 93: 389-401
9. Norheim I, Oberg K, Theodorsson-Norheim E, Lindgren PG, Lundqvist G, Magnusson A, Wide L, Wilander E. Malignant carcinoid tumors. An analysis of 103 patients with regard to tumor localization, hormone production, and survival. Ann Surg 1987; 206: 115-125
10. Jansen RT, Norton JA. Pancreatic endocrine tumors. In: Feldman M, Friedman LS, Sleisenger MH, eds. Sleisenger and Fordtran’s Gastrointestinal and liver disease. 7th ed. Philadelphia: Saunders, 2002: 988-1016
11. McLoughlin JM, Kuhn JA, Lamont JT. Neuroendocrine Tumors of the Pancreas. Curr Treat Options Gastroenterol 2004; 7: 355-364
12. Chamberlain RS, Caines D, Brown KT, Saltz L, Jamnig W, Fong Y, Blumgart LH. Hepatic neuroendocrine metastases: does intervention alter outcomes? J Am Coll Surg 2000; 190: 432-445
13. Frilling A, Rogiers X, Malago M, Liedke O, Kaun M, Broelsch CE. Liver transplantation in patients with liver metastases of neuroendocrine tumors. Transplant Proc 1998; 30: 3298-3300
14. Ahlman H, Friman S, Cahlin C, Nilsson O, Jansson S, Wångberg B, Olausson M. Liver transplantation for treatment of metastatic neuroendocrine tumors. Ann N.Y Acad Sci 2004; 1014: 265-269
15. Que FG, Nagorney DM, Batt KS, Linz LJ, Kvolks LK. Hepatic resection for metastatic neuroendocrine carcinomas. Ann J Surg 1995; 169: 36-42
16. Benevento A, Boni L, Frediani L, Ferrari A, Dionigi R. Result of liver resection as treatment for metastases from noncolorectal cancer. J Surg Oncol 2000; 74: 24-29
17. Norton JA, Warren RS, Kelly MG, Zuraek MB, Jensen RT. Aggressive surgery for metastatic liver neuroendocrine tumors. Surgery 2003; 134: 1057-1065
18. Sutcliffe R, Maguire D, Ramage J, Rela M, Heaton N. Management of neuroendocrine liver metastases. Ann J Surg 2004; 187: 39-46
19. Coppa J, Pulvirenti A, Schiavo M, Romito R, Collini P, Di Bartolomeo M, Fabbri A, Regalina A, Mazzaferrero V. Resection versus transplantation for liver metastases from neuroendocrine tumors. Transplant Proc 2001; 33: 1537-1539
20. Miller CA, Ellison EC. Therapeutic alternatives in metastatic neuroendocrine tumors. Surg Oncol Clin N Am 1998; 7: 863-879
21. Eriksson B, Renstrup J, Imam H, Oberg K. High-dose treatment with lanreotide of patients with advanced neuroendocrine gastrointestinal tumors: clinical and biological effects. Ann Oncol 1997; 8: 1041-1044
22. Saltz L, Trochanowski B, Buckley M, Heffernan B, Niedzwiecki D, Tao Y, Kelsen D. Octreotide as an antineoplastic agent in the treatment of functional and nonfunctional neuroendocrine tumors. Cancer 1993; 72: 244-248
23. Welin SV, Janson ET, Sundin A, Stridsberg M, Lavenius E, Granberg D, Skogseid B, Oberg KE, Eriksson BK. High-dose treatment with a long-acting somatostatin analogue in patients with advanced midgut carcinoid tumours. Eur J Endocrinol 2004; 151: 167-173
24. Arnold R, Trautmann ME, Creutzfeldt W, Benning R, Benning M, Neuhaus C, Jürgensen R, Stein K, Schäfer H, Bruns C, Dennler HJ. Somatostatin analogue octreotide and inhibition of tumour growth in metastatic endocrine gastroenteropancreatic tumours. Gut 1996; 38: 430-438
25. Imam H, Eriksson B, Lukinius A, Janson ET, Lindgren PG, Wilander E, Oberg K. Induction of apoptosis in neuroendocrine tumors of the digestive system during treatment with somatostatin analogs. Acta Oncol 1997; 36: 26.
Orthotopic liver transplantation in the treatment of metastatic neuroendocrine tumors of the liver. *Liver Transpl Surg* 1995; 1: 118-121

Le Treut YP, Delpero JR, Doussset B, Cherqui D, Segol P, Mantion G, Hannoun L, Benhamou G, Launois B, Boilott O, Doncica J, Bismuth H. Results of liver transplantation in the treatment of metastatic neuroendocrine tumors. A 31-case French multicenter report. *Ann Surg* 1997; 225: 355-364

Lang H, Oldhafer KJ, Weimann A, Schlitt HJ, Scheumann GF, Flemming P, Ringe B, Pichlmayr R. Liver transplantation for metastatic neuroendocrine tumors. *Ann Surg* 1997; 225: 347-354

Florman S, Toure B, Kim L, Gondolesi G, Roayaie S, Krieger N, Fishbein T, Emre S, Miller C, Schwartz M. Liver transplantation for neuroendocrine tumors. *J Gastrointest Surg* 2004; 8: 208-212

Lehnert T. Liver transplantation for metastatic neuroendocrine carcinoma: an analysis of 103 patients. *Transplantation* 1998; 66: 1307-1312

Pichlmayr R, Weimann A, Oldhafer KJ, Schlitt HJ, Tusch G, Raab R. Appraisal of transplantation for malignant tumors of the liver with special reference to early stage hepatocellular carcinoma. *Eur J Surg Oncol* 1998; 24: 60-67

Rosenau J, Bahr MJ, von Wassewelski R, Mengel M, Schmidt HH, Nashan B, Lang H, Klemmuer J, Manns MP, Boeker KH. Ki67, E-cadherin, and p53 as prognostic indicators of long-term outcome after liver transplantation for metastatic neuroendocrine tumors. *Transplantation* 2002; 73: 386-394

Cahlin C, Friman S, Ahlman H, Backman L, Mjornstedt L, Lindner P, Herlenius G, Olausson M. Liver transplantation for metastatic neuroendocrine tumor disease. *Transplant Proc* 2003; 35: 809-810

O’Grady JG, Polson RJ, Rolles K, Calne RY, Williams R. Liver transplantation for malignant disease. Results in 93 consecutive patients. *Ann Surg* 1988; 207: 373-379

Arnold JC, O’Grady JG, Bird CL, Calne RY, Williams R. Liver transplantation for primary and secondary hepatic apudomas. *Br J Surg* 1989; 76: 248-249

Bramley PN, Lodge JP, Losowsky MS, Giles GR. Treatment of metastatic vipoma by liver transplantation. *Clin Transplant* 1990; 4: 276-279

Alsina AE, Bartus S, Hull D, Rosson R, Schweizer RT. Liver transplant for metastatic neuroendocrine tumor. *J Clin Gastroenterol* 1990; 12: 533-537

Curtiss SI, Mor E, Schwartz ME, Sung MW, Hytiroglou P, Thung SN, Sheiner PA, Emre S, Miller CM. A rational approach to the use of hepatic transplantation in the treatment of metastatic neuroendocrine tumors. *J Am Coll Surg* 1995; 180: 184-187

Anhuber M, Jauch KW, Briel J, Groh J, Schildberg FW. Results of liver transplantation for gastroenteropancreatic tumors. *World J Surg* 1996; 20: 73-76

Doussset B, Saint-Marc O, Pitre J, Soubrane O, Houssin D, Chapuis Y. Metastatic endocrine tumors: medical treatment, surgical resection, or liver transplantation. *World J Surg* 1996; 20: 908-914

Gottwald T, Köveker G, Bühning M, Lauchart W, Becker HD. Diagnosis and management of metastatic gastrinoma by multimodal treatment including liver transplantation: report of a case. *Surg Today* 1998; 28: 551-558

Pascher A, Steinmüller T, Radke C, Hosten N, Wiedemann B, Neuhaus P, Bechstein WO. Primary and secondary hepatic manifestation of neuroendocrine tumors. *Langenbecks Arch Surg* 2000; 385: 265-270

Claure RE, Drover DD, Haddow GR, Esquivel CO, Angst MS. Orthotopic liver transplantation for carcinoid tumor metastatic to the liver: anesthetic management. *Can J Anaesth* 2000; 47: 334-337

Ringe B, Lorf T, Döppens K, Canelo R. Treatment of hepatic metastases from gastroenteropancreatic neuroendocrine
tumors: role of liver transplantation. *World J Surg* 2001; 25: 697-699

64 Fernández JA, Robles R, Marin C, Hernández Q, Sánchez Bueno F, Ramírez P, Rodríguez JM, Luján JA, Navalón JC, Parrilla P. Role of liver transplantation in the management of metastatic neuroendocrine tumors. *Transplant Proc* 2003; 35: 1832-1833

65 Amarapurkar AD, Davies A, Ramage JK, Stangou AJ, Wight DG, Portmann BC. Proliferation of antigen MIB-1 in metastatic carcinoid tumours removed at liver transplantation: relevance to prognosis. *Eur J Gastroenterol Hepatol* 2003; 15: 139-143