Chapter

Contribution of Infrared Spectroscopy to the Vibrational Study of Ethylenediammonium Chloride Thiocyanate: \((C_2H_{10}N_2)\) (Cl NCS)

Sahel Karoui and Slaheddine Kamoun

Abstract

The \(C_2H_{10}N_2\) Cl NCS (EDCT) compound is characterized by using infrared spectroscopy. The infrared spectrum of the title compound was recorded (400–4000 cm\(^{-1}\)) at room temperature and discussed, essentially in terms of vibrational modes of \([C_2H_{10}N_2]^2+\) cations and \([\text{SCN}]^-\) and \([\text{Cl}]^-\) anions. Ethylenediammonium thiocyanate chloride crystallizes, at room temperature, in the triclinic system, space group \(P1\) (\(C_i\)). The entities \([C_2H_{10}N_2]^2+\), \([\text{SCN}]^-\) and \([\text{Cl}]^-\) occupy sites of symmetry \((C_1)\). Several ground state thermodynamic parameters were calculated using the \textit{ab initio} Hartree-Fock (HF) and DFT (B3LYP) methods with 6-31++G (d, p) and 6-311++G (d, p) basic sets such as vibration frequencies, rotation constants, and optimized molecular geometry. The comparison between the theoretical and experimental infrared spectrum showed good agreement.

Keywords: ethylenediammonium chloride thiocyanate, IR, vibrational spectra, DFT calculations

1. Introduction

This chapter is devoted to the characterization of \(C_2H_{10}N_2\) Cl NCS by infrared vibrational spectroscopy. These studies make it possible to highlight the structural analogies and to possibly provide some additional information to those obtained by X-ray diffraction. In this chapter, we used group theory; indeed, this valuable tool allows both to count the normal vibration modes of vibration of a crystal and to describe these vibrations in symmetrical coordinate terms. In addition, an attempt is made to assign the various modes of vibration to all the bands that have appeared. It is based on predictions theories and previous work carried out on similar compounds. Infrared is a research tool can also provide exquisite structural insights into the molecule and characterizes the vibrational modes of the molecules and has enfolded within it much information on chemical structure [1]. The combined use of FT-IR spectroscopy extracts most of the obtainable information and these are the popular tools in the chemist and physicist. Amine, amino acid and Schiff bases [2–6] have recently been the focus of coordination chemists due to their
preparative accessibilities, structural varieties, and varied denticities. With those purposes, first, the EDCT was synthesized [7] and then characterized it by Infrared Spectroscopy. Simultaneously, to obtain the ground state optimized geometries and the vibrational wavenumbers of the different normal modes, we carried out the ab initio HF and DFT calculations. Here, the hybrid B3LYP method was used together with the 6-31++G (d, p) and 6-311++G (d, p) basis sets [8].

2. Experimental details

2.1 Synthesis

The title compound has been obtained by mixing, in stoichiometric proportions, a solution of ethylenediamine, a freshly prepared solution of thiocyanic acid HSCN and a solution of potassium halide. KX (X = Cl) [7].

2.2 IR spectroscopy

Infrared absorption spectrum was recorded at room temperature in the 400–4000 cm$^{-1}$ frequency range on a Perkin-Elmer spectrometer equipped with a Universal ATR Accessory (UATR).

2.3 Computational details

Numerous studies [9–12] have shown that the method DFT-B3LYP in combination with the bases 6-31++G (d, p) and 6-311++G (d, p) allowed to determine with precision energies, molecular structures and infrared vibratory frequencies. In the ground state the molecular structure of the C$_2$H$_{10}$N$_2$Cl NCS (EDCT) phase calculated was optimized by the use of the DFT/B3LYP methods with the methods 6-31++G (d, p) and 6-311++G (d, p) base set, and the calculated optimized structure was used in vibrational frequency calculations. The calculated harmonic vibratory frequencies and the minimal energy of the geometric structure were scaled by (B3LYP) with the base set 6-31++G (d, p) and 6-311++G (d, p) base set, and the calculated optimized structure was used in vibrational frequency calculations. The calculated harmonic vibratory frequencies and the minimal energy of the geometric structure were scaled by (B3LYP) with the base set 6-31++G (d, p) and 6-311++G (d, p). HF/DFT calculations for EDCT are performed using GAUSSIAN 03W program [13, 14]. On the other hand, the energies of the frontier orbital’s were used to calculate the gap energy values and some interesting descriptors in order to predict their reactivities an behaviors at the same level of theory [14–17].

3. Results and discussion

3.1 Molecular geometry

The structure of the EDCT belongs to C$_1$ point group symmetry and its molecular structure is obtained from GAUSSAN 03W and GAUSSVIEW programs are shown in Figure 1. The molecule contains one diprotated ethylenediammonium cation, one Cl$^-$ and one SCN$^-$ anions. The comparative optimized structural parameters such as bond lengths and bond angles are presented in Table 1. The comparative graphs of bond lengths and bond angles of ethylenediammonium chloride thiocyanate for two sets are presented in Figures 2 and 3 respectively. Most of the optimized bond lengths are slightly higher than the experimental values, depending on the theoretical values, because the theoretical calculations belong to isolated molecules in the gas phase and the experimental results to solid state molecules. The
Figure 1.
Molecular structure of ethylenediammonium chloride thiocyanate.

Geometrical parameters	Methods	Experimental value [12]		
	HF/6-311++G (d. p)	B3LYP/6-31++G (d. p)	B3LYP/6-311++G (d. p)	
Bond length (Å)				
S(1)–C(1)	1.6314	1.6324	1.6324	1.6358(12)
C(1)–N(1)	1.1651	1.1687	1.1651	1.1573(16)
C(2)–N(2)	1.4847	1.4284	1.4847	1.4798(14)
C(3)–N(3)	1.4817	1.5107	1.4817	1.4834(15)
C(2)–C(3)	1.5066	1.5334	1.5066	1.5054(15)
C(2)–H(1C2)	0.9763	1.0926	0.9763	0.9700
C(2)–H(2C2)	1.0059	1.0927	1.0059	0.9700
C(3)–H(1C3)	0.9694	1.0971	0.9694	0.9700
C(3)–H(2C3)	1.0299	1.0930	1.0299	0.9700
N(2)–H(1 N2)	0.9048	1.0333	0.9048	0.8900
N(2)–H(2N2)	0.8967	1.0357	0.8967	0.8900
N(2)–H(3N2)	0.8660	1.0264	0.8660	0.8900
N(3)–H(1N3)	0.8665	1.0202	0.8665	0.8900
N(3)–H(2N3)	0.8639	1.0540	0.8639	0.8900
N(3)–H(3N3)	0.8715	1.0219	0.8715	0.8900
Bond angle (°)				
N(1)–C(1)–S(1)	173.60	170.71	171.76	178.48(11)
N(2)–C(2)–C(3)	114.00	115.16	114.16	113.06(9)
N(3)–C(3)–C(2)	113.46	113.75	113.72	112.98(9)
C(2)–N(2)–H(1N2)	109.86	111.45	111.44	109.5
C(2)–N(2)–H(2N2)	107.14	111.99	112.00	109.5
C(2)–N(2)–H(3N2)	110.63	112.81	112.83	109.5
Table 1.
Optimized geometrical parameters for ethylenediammonium chloride thiocyanate computed at HF/6-311++G (d. p), B3LYP/6-31++G (d. p) and B3LYP/6-311++G(d. p) basis sets.

Geometrical parameters	Methods			
	HF/6-31++G (d. p)	B3LYP/6-31++G (d. p)	B3LYP/6-311++G (d. p)	Experimental value [12]
C(3)–N(3)–H(1N3)	112.06	113.78	113.77	109.5
C(3)–N(3)–H(2N3)	111.40	112.73	112.77	109.5
C(3)–N(3)–H(3N3)	107.78	107.37	107.38	109.5
N(2)–C(2)–H(1C2)	107.63	106.91	106.89	109.0
N(2)–C(2)–H(2C2)	105.68	105.49	105.65	109.0
N(3)–C(3)–H(1C3)	106.94	107.64	107.64	109.0
N(3)–C(3)–H(1C3)	107.95	105.96	105.94	109.0
C(2)–C(3)–H(1C3)	107.81	108.17	108.14	109.0
C(2)–C(3)–H(2C3)	111.33	111.69	111.62	109.0
C(3)–C(2)–H(1C2)	111.34	111.77	111.73	109.0
H(1C2)–C(2)–H(2C2)	107.22	108.54	108.49	109.0
H(2C3)–C(3)–H(1C3)	110.86	108.27	108.30	107.8
H(1N2)–N(2)–H(2N2)	106.29	103.41	103.45	109.5
H(1N2)–N(2)–H(3N2)	108.76	108.24	108.27	109.5
H(2N2)–N(2)–H(3N2)	108.54	108.53	108.59	109.5
H(1N3)–N(3)–H(2N3)	112.15	112.78	112.80	109.5
H(1N3)–N(3)–H(3N3)	106.29	103.84	103.89	109.5
H(2N3)–N(3)–H(3N3)	107.41	107.83	107.88	109.5
N(2)–C(2)–C(3)–N(3)	74.53	74.32	74.36	72.09 (12)

Figure 2.
Bond length differences between theoretical (HF and DFT) approaches.
angles and binding lengths of B3LYP are compared with those of HF, the formers are generally larger than later and the values calculated by B3LYP are well correlated with the experimental data. The parameters (the vibration frequencies and the thermodynamic properties) represent a good approximation. The data presented in Table 1 show that the theoretical HF and DFT levels (B3LYP/6-311++G (d, p)) generally estimate the same values for some link lengths and angles. The calculated C—N bond lengths are found same at two positions (C2—N2 and C3—N3) is 1.4847 and 1.5066 Å (HF and DFT), 0.0049 and 0.0012 Å, respectively, differed from the experimental value 1.4798(14) and 1.5054(15) Å [15–17]. The [C2H10N2]2+ dication shows an eclipsed conformation. The calculated N—C—C—N torsion angle is 74.53° (HF and DFT), 2.44° differed from the experimental value 72.09(12)° [7]. The thiocyanate ion, present as a monodentate ligand, is almost linear. The calculated angle is 173.60° but the experimental value 178.48 (11)° and an average calculated and experimental C—S and C—N bond lengths are 1.6314 and 1.1651, 1.6358 (12) and 1.1573 (16) Å [7], respectively.

3.2 Vibrational analysis

3.2.1 Contribution of IR spectrometry to the vibrational study of C2H10N2 Cl NCS

3.2.1.1 Theoretical analysis of C2H10N2 Cl NCS vibrations

The factor group method of classifying fundamental vibrational modes of crystals, as developed by Bhagavantam and Venkatarayudu [18], is certainly the most powerful method of treating C2H10N2 Cl NCS crystal structure. The unit cell of C2H10N2 Cl NCS contains 18 atoms which correspond to 54 degrees of vibrational freedom. To simplify the discussion of the IR data, the vibrational modes will be considered in two groups: the internal modes of SCN− anions and (C2H10N2)2+ cations. Ethylenediammonium thiocyanate chloride crystallizes, at room temperature,
in the triclinic system, space group P1 (C\textsubscript{i}). The entities \([\text{C}_2\text{H}_{10}\text{N}_2]^{2+}\), \([\text{SCN}]^-\) and \([\text{Cl}]^-\) occupy sites of symmetry (C\textsubscript{i}).

3.2.1.2 Counting by the factor group method

The number of normal modes of vibration of the group SCN− isolated of ideal symmetry C\textsubscript{∞v} is given by the representation:

\[
\Gamma_{\text{SCN}} = 2A_1 + E_1
\]

(1)

While that of an isolated group \([\text{C}_2\text{H}_{10}\text{N}_2]^{2+}\) of symmetry C\textsubscript{2v} is given by the irreducible representation:

\[
\Gamma_{[\text{C}_2\text{H}_{10}\text{N}_2]^{2+}} = 11A_1 + 8A_2 + 9B_1 + 8B_2
\]

(2)

The correlation diagram is given in Table 2. The counting of the main vibrations of this compound by the factor group method leads to the following results:

- Overall vibration representation: \(\Gamma_{(ni)} = 54A_1 + 54A_u\)
- Translation modes: \(\Gamma_{(T')} = 9A_1 + 9A_u\)
- Rotation mode: \(\Gamma_{(R')} = 5A_1 + 5A_u\)
- The representation of the internal vibrations is: \(\Gamma_{(n'i)} = 40A_1 + 40A_u\)

The analysis in terms of internal vibrations, rotation R' and translation T' , is given in Table 3 with their activities in IR.

3.2.1.3 Enumeration by the site group method

This method was used in order to have a detailed description of the symmetry and the nature of the internal vibrations (deformation in the plane or out of the plane, symmetrical or asymmetrical elongation, torsion, etc.).

3.2.1.3.1 Vibrations of \([\text{C}_2\text{H}_{10}\text{N}_2]^{2+}\) in group (C\textsubscript{i})

To describe the vibrations of the organic cation, we considered separately the vibrations of the groups (-NH\textsubscript{3}) and (-CH\textsubscript{2}-) and the skeleton \((\text{C}_2\text{N}_2)^{2+}\).

a. Description of the normal modes of vibration of the grouping (▬NH\textsubscript{3})

The group (▬NH\textsubscript{3}) supposed free, has the symmetry 3 m (C\textsubscript{3v}), it presents nine internal vibrations schematized in Figure 4.

\[
2A1 + A2 + 3E
\]

(3)

Each group (▬NH\textsubscript{3}) occupies a site (C\textsubscript{i}) in the cation. The use of correlation tables allows us to describe the symmetry of these vibrations in the molecular group of the cation (Table 4). The result is:

\[
\Gamma_{\text{NH}_3} = 18A_1 + 18A_u
\]

(4)
b. Description of the normal modes of vibration of the grouping (▬CH₂▬)

The group (▬CH₂▬) supposed free, has the symmetry mm2 (C\textsubscript{2v}), it has six internal vibrations schematized in Figure 5.

\[2A_1 + A_2 + B_1 + 2B_2 \quad (5) \]

The (▬CH₂▬) groups occupy E(C\textsubscript{1}) sites in the cation, the correlation method allows us to determine their vibrational symmetry in the C\textsubscript{1} molecular group of the cation (Table 5). The result is:

\[\Gamma_{\text{CH}_2} = 12A_1 + 12A_2 \quad (6) \]

C\textsubscript{1}	n\textsubscript{i}	n\textsubscript{e}	R'	T'	Activity							
	EDA (C\textsubscript{2v})	SCN- (C\textsubscript{2v})	CF- (C\textsubscript{2v})	EDA (C\textsubscript{2v})	SCN- (C\textsubscript{2v})	CF- (C\textsubscript{2v})	EDA (C\textsubscript{2v})	SCN- (C\textsubscript{2v})	CF- (C\textsubscript{2v})	IR	R	
Ag	54	36	4	0	3	2	0	3	3	3	-	+
Au	54	36	4	0	3	2	0	3	3	3	+	-

Table 3.
Enumeration of internal and external modes of C\textsubscript{1}H\textsubscript{10}N\textsubscript{2}Cl NCS in C\textsubscript{1}.
c. Description of the vibration modes of the skeleton (NC$_2$N)

To describe the vibrations of the skeleton (NC$_2$N), the corresponding symmetrical coordinates as a function of the internal coordinates have been calculated as follows:

- Increased C▬N bonds: Δr_i ($i = 1, 2$)
- Increased C▬C bonds: Δr_3
- Increase of the CCN bond angles: $\Delta \phi_i$ ($i = 1, 2$)
- Torsion of DC links: τ_{CC}

GM (-NH$_3$)	(-NH$_3$)	GM (-NH$_3$)	GS (-NH$_3$)	GF (Crystal)
3m C$_{3v}$	m C$_s$	2mm C$_{2v}$	C$_l$	C$_l$
(\nu, \delta) $2A_1$	$5A'$	$5A_1$	$18A$	$18A_{2g}$ (2\nu, 2\delta, 4\nu, 4\delta, 2\nu, 4\delta)
(\delta) A_2	$4A_2$	$5B_1$	$18A$	$18A_{2u}$ (2\nu, 2\delta, 4\nu, 4\delta, 2\nu, 4\delta)
(\nu, \delta, \delta) $3E$	$4B_2$			

Table 4.

Internal modes of (-NH$_3$) in (C$_l$).
The number of coordinates is $6 = 3N-6$ (N: number of atoms in the backbone, here $N = 4$). Using the transforms of each coordinate under the symmetry operations of the point group C_s corresponding to the cation, six symmetrized coordinates were calculated (Table 6). At each coordinate a vibration mode has been assigned. These vibrations are shown schematically in Figure 6. The description of the normal modes of the NC_2N backbone and their activities in IR are shown in Table 7. The irreducible representation of the internal vibration modes of the skeleton in C_i is:

$$\text{Skeletal} = 6\text{Ag} + 6\text{Au} \quad (7)$$

d. Description of the vibration modes of SCN^-

The internal vibrations of the SCN^- anion have already been studied [2], they are described in terms of symmetrized coordinates as a function of the internal coordinates. These modes are divided in the group $C_{\infty v}$ as follows:

$$\Gamma_{(\text{SCN}^-)} = 2\text{A}_1(\Sigma^+) + E_1(\Pi) \quad (8)$$

GM (-CH$_2$)	(-CH$_2$)	GM (-CH$_3$)	GS (-CH$_3$)	GM (Crystal)
mm2 C_{3v}	$m \text{ C}_s$	mm2 C_{3v}	$E \text{ C}_1$	C_1
ν_1, δ_1	2A_1	ν_3, δ_2	3A^α	3A_2
δ_1	3A^α	ν_3, δ_2	3B_1	12A
δ_2	3B_1	ν_3, δ_2	12A	$12\text{A}_u (2\nu_3, 2\delta_2, 2\nu_3, 2\delta_2, 2\nu_3, 2\delta_2)$

Table 5. Internal modes of (-CH$_3$) in (C_i).
Table 6.

Symmetric vibrational coordinates of NC$_2$N in (C$_{2v}$).

Class	Symmetric coordinate	Vibration modes
A_1	$S_{A1}^A = \frac{1}{\sqrt{2}} (\Delta r_1 + \Delta r_2)$	Symmetrical elongation C-N vs (C-N)
	$S_{A1}^B = \Delta r_3$	Symmetrical elongation C-C vs (C-C)
	$S_{A1}^B = \frac{1}{\sqrt{2}} (\Delta \phi_1 + \Delta \phi_2)$	Symmetrical deformation in the plane CCN: δs (CCN)
B_1	$S_{B1}^B = \tau_{cc}$	Twist out of the plane CCN: τ_{cc}
B_2	$S_{B1}^B = \frac{1}{\sqrt{2}} (\Delta r_1 - \Delta r_2)$	Asymmetrical elongation C-N: ν_{as} (C-N)
	$S_{B1}^A = \frac{1}{\sqrt{2}} (\Delta \phi_1 - \Delta \phi_2)$	Asymmetrical deformation in the plane CCN: δ_{as} (CCN)

These vibrations are shown schematically in Figure 7. The vibrational analysis in terms of internal vibrations is given in Table 8. The distribution of normal SCN group modes and their IR activity are shown in Table 9. The irreducible representation of the internal vibration modes of SCN$^-$ in C$_i$ is:

$$\Gamma_{SCN^-} = 4Ag + 4Au$$

3.3 Group theory analysis

The comparisons of the experimental infrared spectra for EDCT, by using HF/6-311++G (d, p), (B3LYP) 311++G (d, p) and (B3LYP)/6-31++G (d, p) theory level, with the corresponding average predicted demonstrate good correlations as observed in Figure 8. Using the split triple valence base as well as the diffuse and polarization functions for computed harmonic vibratory frequencies of EDCT, 6-31++G (d, p) and 6-311++G (d, p), the frequencies FT-IR observed for various vibration modes were presented in Table 10. The comparative values of IR intensities activities are presented in Table 11 and their corresponding graph given in Figure 9. The comparative graph of vibratory frequencies calculated by the HF and

![Figure 6](image-url)

Figure 6.

Normal modes of NC$_2$N skeleton vibration in (C$_{2v}$).
DFT methods to HF/6-311++G (d, p), B3LYP/6-31++G (d, p) and B3LYP/6-311++G (d, p). The basic sets for the EDCT are shown in Figure 10. It appears from the figure that the frequencies calculated by B3LYP with 6-31++G (d, p) of basis sets are closer to the experimental frequencies as HF method with 6-311++G (d, p) base set.

3.4 Bands assignments

3.4.1 NH₃ modes

The asymmetric stretching νₙ(NH₃) of symmetries (Ag + Au) are observed in IR at 3325 and 3326 cm⁻¹. The symmetric stretching νₛ(NH₃) of symmetries (Ag + Au) are observed in IR at 3210 cm⁻¹. The asymmetric deformation δₕ(NH₃) of symmetry (Ag + Au) observed IR at 1500 and 1570 cm⁻¹. The symmetric deformation δₛ(NH₃) of symmetries (Ag + Au) are observed in IR at 1467 cm⁻¹. The Rocking δ₉(NH₃) of symmetries (Ag) are observed only in IR at 493 and 498 cm⁻¹. The torsion δₜ(NH₃) of symmetries (Au) observed in IR at 483 cm⁻¹. The rocking and twisting modes are assigned as predicted by the calculations and in accordance with the expected regions for similar compounds [7, 8, 19, 20], as observed in Table 10.

![Figure 7. Normal modes of vibration of the anion SCN⁻ in (C∞v).](image-url)
3.4.2 CH₂ modes

By comparison with previous works reported on similar compounds containing [C₂H₁₀N₂]²⁺ [21], we have attributed the bands observed in IR at 3222 and 2427 cm⁻¹ to asymmetric stretching νas(CH₂) and symmetric νs(CH₂) of symmetries (Ag + Au), respectively. The asymmetric deformation δas(CH₂) and symmetric δs(CH₂) is observed at 1452 and 1200 cm⁻¹ in IR spectrum at 1341 and 1454 cm⁻¹. The calculated frequencies of B3LYP/6-31++G (d, p) and B3LYP/6-311++G (d, p) methods for CH₂ asymmetric and as asymmetric vibrations showed excellent agreement with recorded spectrum as well as literature data. The Rocking δρ(CH₂) of symmetries (Ag + Au) are observed in IR at 1000 cm⁻¹. The torsion δτ(CH₂) of symmetry (Ag + Au) observed in IR at 1124 cm⁻¹. The rocking and twisting modes are assigned as predicted by calculations, as indicated in Table 10.

3.4.3 Skeletal modes

The NCCN skeleton gives six normal modes of vibration that may be described as three skeleton stretching (2νCN + 1νCC), two NCCN deformation modes and one torsional mode around the C–C bond. The symmetrical elongations of the symmetry skeleton νs (CC) of symmetries (Ag + Au) appear in IR at 750 cm⁻¹. The asymmetric stretching νas(CCN) of symmetries (Ag + Au) observed in IR at 544 cm⁻¹. The symmetric stretching νs(CCN) of symmetries (Au) observed in IR at 532 cm⁻¹. The asymmetric deformation δas(CCN) of symmetry (Ag + Au), is observed in IR at 435 cm⁻¹. The symmetric deformation δs(CCN) of symmetry (Au) observed only in IR at 430 cm⁻¹.

3.4.4 Internal modes of the thiocyanate group (SCN⁻)

The thiocyanate group (SCN⁻) has four vibrations in the C∞v group: two of valence denoted [ν₁(CS), ν₂(CN)] of symmetry (Σ⁺) and a doubly degenerate deformation
Figure 8.

(A) Experimental infrared spectrum of \(\text{C}_2\text{H}_{10}\text{N}_2\text{ClNCS} \) in the solid phase compared with the calculated with:

(B) \((\text{HF})/6-31++\text{G}(d, p)\),

(C) \(\text{B3LYP}/6-31++\text{G}(d, p)\)

and

(D) \(\text{B3LYP}/6-311++\text{G}(d, p)\).
vibration denoted δ_1 (SCN) of symmetry (π). From the bibliographic results [22–28] and the analysis by group theory, an attempt to attribute these vibrations observed in IR is illustrated in Table 10. The deformation δ_1 (SCN) of symmetry (1Au) is observed in IR at 409 and 424 cm$^{-1}$. The calculated frequencies of B3LYP/6-31++G (d, p) and

	Observed, HF/6-31++G (d, p), B3LYP/6-31++G (d, p) and B3LYP/6-311++G (d, p) level calculated vibrational frequency of ethylenediammonium chloride thiocyanate.				
19	1617(f)	1619	1613	1611	Combination bands
20	1570	1587	1582	1580	δ_ν(NH$_3$)
21	1500(m)	1532	1533	1539	δ_ν(NH$_3$)
22	1467(F)	1474	1486	1491	δ_ν(NH$_3$)
23	1452(m)	1458	1452	1453	δ_ν(CH$_3$)
24	-	1341	1345	1340	δ_ν(CH$_2$)
25	-	1287	1289	1292	δ_ν(CH$_2$)
26	1200(TF)	1204	1208	1211	δ_ν(CH$_2$)
27	-	1135	1146	1126	δ_ν(CH$_2$)
28	1124(TF)	1122	1122	1121	δ_ν(CH$_2$)
29	-	1050	1057	1061	δ_ν(CH$_2$)
30	1000 (F)	990	990	996	δ_ν(CH$_3$)
31	906(f)	909	901	921	Combination bands
32	818 (m)	831	864	874	Combination bands
33	758(f)	741	738	739	ν(CC)
34	544(f)	551	536	530	ν(CN)
35	532(TF)	504	508	512	ν(CN)
36	498(F)	499	488	481	δ_ν(NH$_3$)
37	493(m)	496	487	482	δ_ν(NH$_3$)
38	483(m)	473	475	471	2^\prime δ(NH$_3$)
39	450 (f)	458	450	451	ν(C\equivS)
40	448(f)	441	449	449	ν(C\equivS)
41	435(ep, f)	436	431	429	δ_ν(CCN)
42	430(f)	429	421	428	δ_ν(CCN)
43	424(f)	426	424	424	δ(SCN)
44	409(f)	402	406	402	δ(SCN)
45	-	88	83	81	δ_ν(NH$_3$)
46	-	67	72	72	ν(C\equivS)
47	-	42	44	48	δ(SCN)
48	-	30	28	36	ν(C\equivS)

Table 10.
Table 11. Comparative values of IR intensities activities between HF/6-31++G (d. p), B3LYP/6-31++G (d. p) and B3LYP/6-311++G (d. p) of ethylenediammonium chloride thiocyanate.

Mode nos.	IR intensity						
1	14.48	25	12.72	25	15.30	25	14.59
2	15.73	26	24.56	26	10.22	26	22.15
3	7.17	27	32.62	27	34.14	27	34.14
4	20.26	28	30.24	28	10.60	28	31.04
5	13.87	29	0.11	29	17.22	29	0.40
6	9.54	30	23.90	30	791	30	129.89
7	28.49	31	12.19	31	27.24	31	9.09
8	45.53	32	176.12	32	70.95	32	141.72
9	111.58	33	199.40	33	87.08	33	188.76
10	29.05	34	82.23	34	42.56	34	42.56
11	2.12	35	13.39	35	186.03	35	62.76
12	6.16	36	65.01	36	13.63	36	99.11
13	31.58	37	64.34	37	5.11	37	159.11
14	12.29	38	194.80	38	35.20	38	83.40
15	18.08	39	955.17	39	3.15	39	518.06
16	2.11	40	595.05	40	8.07	40	102.36
17	0.73	41	5.95	41	5.11	41	1.79
18	25.97	42	190.52	42	12.09	42	199.17
19	41.46	43	2.82	43	4.32	43	4.32
20	2.43	44	0.69	44	61.02	44	503.60
21	55.16	45	1.88	45	10.17	45	111.16
22	66.06	46	9.01	46	41.01	46	370.12
23	93.86	47	121.09	47	89.83	47	115.51
24	28.19	48	111.24	48	27.11	48	77.83

Figure 9. Comparative graph of IR intensities by HF and DFT (B3LYP).
B3LYP/6-31++G (d, p) methods for SCN deformation symmetric vibrations showed excellent agreement with recorded spectrum as well as literature data. We note a rise of degeneracy of the symmetry π of δ_1 (SCN) with a burst of 33 cm$^{-1}$. The symmetric stretching ν_1 (C=S) of symmetries (1Ag + 1Au) are observed in IR at 450 and 484 cm$^{-1}$. The calculated frequencies of B3LYP/6-31++G (d, p) and B3LYP/6-311++G (d, p) methods for C=S symmetric vibrations showed excellent agreement with recorded spectrum as well as literature data. The symmetric stretching ν_2 (C=N) of symmetries (1Ag + 1Au), predicted by the group theory, are observed in IR at 1616 cm$^{-1}$.

3.5 Other molecular properties

Several calculated thermodynamic parameters are presented in Table 12. Scale factors have been recommended [29] for an accurate prediction in determining the

Parameters	HF/6-31++ (d, p)	B3LYP/6-31++ (d, p)	B3LYP/6-311++G (d, p)
Zero point vibration energy	105.84889	100.34649	98.57158
Rotational constants	1.55409	1.63393	1.55409
	0.47626	0.52535	0.47626
	0.37522	0.46146	0.37522
Rotational temperature	0.07458	0.07842	0.07458
	0.02286	0.02521	0.02286
	0.01801	0.02215	0.01801
Energy			
Translational	0.889	0.889	0.889
Rotational	0.889	0.889	0.889
Vibrational	108.982	105.524	105.017
Total	110.759	107.302	107.394
Molar capacity at constant volume			
Translational	2.981	2.981	2.981
Rotational	2.981	2.981	2.981
Vibrational	19.092	29.415	17.227
Total	25.054	25.377	23.189
Parameters	HF/6-311++ (d, p)	B3LYP/6-31++(d, p)	B3LYP/6-311++G (d, p)
------------	------------------	-------------------	----------------------
Entropy			
Translational	41.025	41.025	41.025
Rotational	31.426	31.426	31.074
Vibrational	15.540	15.594	15.589
Total	87.792	87.546	87.587
Dipole moment	39.4045	38.6462	38.6426

Table 12.
Theoretically computed zero point vibrational energy (kcal mol\(^{-1}\)), rotational constants (GHz), rotational temperature (K), thermal energy (kcal mol\(^{-1}\)), molar capacity at constant volume (cal mol\(^{-1}\) K\(^{-1}\)) entropies (cal mol\(^{-1}\) K\(^{-1}\)) and dipole moment (Debye) for ethylenediammonium chloride thiocyanate.

zero-point vibration energies, and the entropy. It can be seen that the total energies decrease with the increase of the size of the basic set. Changes in the total entropy of EDCT at room temperature and in different basic sets are only marginal.

4. Conclusions

The present document attempts to define the appropriate frequency assignments for the thiocyanate ethylenediammonium chloride compound from the FT-IR spectrum. Vibrational frequencies and infrared intensities are calculated and analyzed by the theoretical HF and DFT (B3LYP) levels, using the 6-31++G (d, p) and 6-311++G (d, p) base sets. The comparison between the calculated vibrational frequencies and the experimental values indicates that both methods can predict the FT-IR spectra of the title compound. The results of DFT-B3LYP method indicate better fit to experimental ones than ab initio HF upon evaluation of vibrational frequencies. Several thermodynamic parameters of the title molecule are comparatively discussed. The observed and the calculated wavenumbers are found to be in good agreement with majority modes.

Author details

Sahel Karoui* and Slaheddine Kamoun
Laboratory of Material Engineering and Environment (LR11ES46), National School of Engineering, Sfax, Tunisia

*Address all correspondence to: karouisahel@yahoo.fr

IntechOpen

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

[1] Konig JL, Antoon MK. Recent applications of FT-IR spectroscopy to polymer systems. Applied Optics. 1978;17:1374

[2] Neumann T, Werner J, Jess I, Näther C. Poly[(1,3-thiocyanato-jN,S)(isonicotinato-jN,O)(ethanol-jO)-cadmium(II)]. Acta Crystallographica. 2012;68:1338

[3] Wohlert S, Jess I, Näther C. Crystal structure of di-aqua-bis-(2,6-di-methyl-pyrazine-jN)bis-(thio-cyanato-jN)cobalt(II) 2,5-di-methyl-pyrazine tris-olvate. Acta Crystallographica. 2013;69:195

[4] Reinert T, Jess I, Näther C. Bis(3-tert-butylpyridine-jN)bis(4-tertbutylpyridine-jN)bis(thiocyanato-jN)-cadmium. Acta Crystallographica. 2012;68:1372

[5] Werner J, Boeckmann J, Jess I, Näther C. Catena-Poly[[bis(3-acetylpyridine-jN)-cadmium]-di-l-selenocyanatoj2N:Se;j2Se:N]. Acta Crystallographica. 2012;68:704

[6] Jan B, Näther C. Catena-Poly[[bis[bis(3-aminopropyl)-amine-j3N, N’, N”] (thiocyanato-jN)-cadmium]-l4-sulfato-j4 O,O:00,00] methanol hemisolvate]. Acta Crystallographica. 2011;67:1201-1202

[7] Karoui S, Kamoun S, Michaud F. Ethylenediammonium chloride thiocyanate. Acta Crystallographica. 2013;69:669

[8] Jornet D, Bartovsky P, Domingo LR, Tormos R, Miranda MA. A characterization of the raman modes in a j-aggregate-forming dye: A comparison between theory and experiment. The Journal of Physical Chemistry. 2010;114B:11920

[9] Bartlett HE, Jurriaanse A, De Haas K. Activity coefficients of aqueous thiocyanic acid solutions from electromotive force, transference number, and freezing- point depression measurements. Canadian Journal of Chemistry. 1969;47(16):2981-2986

[10] Zhang J, Xiao HM. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane. The Journal of Chemical Physics. 2002;116:10674

[11] Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH. Computational studies on polynitrohexaaazaadmantanes as potential high energy density materials. The Journal of Physical Chemistry A. 2006;110:5929

[12] Chen ZX, Xiao JM, Xiao HM, Chiu YN. Studies on heats of formation for tetrazole derivatives with density functional theory B3LYP method. The Journal of Physical Chemistry A. 1999;103:8062

[13] Basis sets density functional (DFT) methods. Gaussian 03 Program. Wallingford, CT: Gaussian Inc.; 2000

[14] Frisch MJ, Nielsen AB, Holder AJ. Gauss View Users Manual. Pittsburgh, PA: Gaussian Inc.; 2000

[15] Kamoun S, Jouini A, Kamoun M, Daoud A. Structure of ethylenediammonium bis(dihydrogenmonophosphate). Acta Crystallographica. 1989;C45:481-482

[16] Karoui S, Kamoun S, Jouini A. Synthesis, structural and electrical properties of [C_3H_3O_2][SnCl(NCS)_2]. Journal of Solid State Chemistry. 2013;197:60-68
[17] Kamoun S, Kamoun M, Daoud A. Etude par spectroscopic (IR et Raman) de l’ethylenediammonium bis dihydrogen&nominophosphate $\text{NH}_2(\text{CH}_2)_2\text{NH}_2(\text{H}_2\text{P}_0_4)$. Spectrochimica Acta Part A. 1991;47:1051-1059

[18] Bhagavantam S, Venkatarayudu T. Raman effect in relation to crystal structure. Proceedings of the Indiana Academy of Sciences. 1939;9:224

[19] Ouasri A, Jeghnou H, Rhandour A, Dhamelincourt MC, Dhamelincourt P, Mazzah A, et al. Structural phase transition in $[\text{NH}_3(\text{CH}_2)_5\text{NH}_3]\text{BiCl}_5$: Thermal and vibrational studies. Journal of Raman Spectroscopy. 2005;36:791-796

[20] Jeghnou H, Ouasri A, Rhandour A, Dhamelincourt MC, Dhamelincourt P, Mazzah A, et al. Structural phase transition in $(\text{n-C}_4\text{H}_9\text{NH}_3)_2\text{SiF}_6$: DSC and Raman studies. Journal of Raman Spectroscopy. 2005;36:1023-1028

[21] Durig JR, Panikar SS, Iwata T, Gounev TK. Conformational stability of ethylenediamine from temperature dependent infrared spectra of liquid xenon solutions, r0 structural parameters, ab initio calculations, and vibrational assignments. Journal of Molecular Structure. 2010;984:58-67

[22] Oden LL, Decius JC. The infrared spectrum of ammonium thiocyanate from 90 to 300°C. Spectrochimica Acta Part A. 1964;20:667-874

[23] Durig JR, Pate CB. Spectrochimica Acta Part A. 1972;28:1031-1038

[24] Wickleder C, Larsen P. Ca(SCN)_2 and $\text{Ca(SCN)}_2\cdot 2\text{H}_2\text{O}$: Crystal structure, thermal behavior and vibrational spectroscopy. Zeitschrift für Naturforschung. 2002;57:1419-1426

[25] Lieber E, Rao CNR, Ramachandran J. The infrared spectra of organic thiocyanates and isothiocyanates.