Infectious Diseases among US Resident Student Travelers after Return to the United States: A GeoSentinel Analysis, 2007–2017

966. Inhibition of Host Neuraminidase Increases Susceptibility to Invasive Pulmonary Aspergillosis

Kristina M. Angelo, DO, MPH; Handum; Jean Haulman, MD; Anne Terry, ARNP; Daniel Leung, MD; Lin H. Chen, MD; Elizabeth Barnett, MD; Stefan Hagmann, MD; Noreen Hynes, MD, MPH, FIDSA; Bradley Connor, MD; Susan Anderson, MD and David Flamer, MD, FIDSA1. Centers for Disease Control and Prevention, Atlanta, Georgia; 2. University of Washington, Seattle, Washington; 3. Division of Infectious Diseases, University of Utah, Salt Lake City, Utah; 4. Harvard School of Medicine, Cambridge, Massachusetts; 5. Pediatric Infectious Diseases, Boston University School and School of Medicine, Boston, Massachusetts; 6. Steven and Alexandra Cohen Children’s Medical Center of New York, New Hyde Park, New York; 7. Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland; 8. New York Center for Travel and Tropical Medicine, New York, New York; 9. Stanford University, Palo Alto, California and 10. Boston University School of Public Health, Boston, Massachusetts

Session: 124. Adventures with Globally Acquired Infections
Friday, October 5, 2018: 10:30 AM

Background. The number of US students studying abroad has more than tripled over the past 20 years. As study abroad programs diversify their destinations, more students are traveling to developing regions, increasing their risk of infectious diseases. Few data exist describing infections acquired by US students while traveling internationally. We describe the spectrum of disease among students who have returned from international travel and suggest how to reduce illness among these travelers.

Methods. GeoSentinel is a global network of travel and tropical medicine providers that monitors travel-related morbidity. Records of US resident student travelers, 17–24 years old, who returned to the United States and were given a confirmed travel-related diagnosis at one of 15 US GeoSentinel sites during 2007–2017. Those with uncertain exposure categories were excluded. Records were analyzed to describe demographic and travel characteristics and diagnoses.

Results. There were 423 students included. The median age was 21 years; 69% were female. Over 70% had a pretravel consultation with a healthcare provider. The most common exposure region was sub-Saharan Africa (112 travelers; 26%); the most common exposure countries were India (44 students; 11%), Ecuador (28; 7%), Ghana (25; 6%), and China (24; 6%). Students presented to a GeoSentinel site a median of 8 days (range: 0–181) after travel; 98% were outpatients. The most common diagnoses were gastrointestinal (45%) and dermatologic (17%). Of 581 confirmed diagnoses, 125 (22%) were female-related diagnoses at one of 15 US GeoSentinel sites during 2007–2017. Those with uncertain exposure categories were excluded. Records were analyzed to describe demographic and travel characteristics and diagnoses.

Conclusion. Students experienced travel-related infections despite a large proportion receiving pretravel consultations. Students (especially those traveling to a less developed region) need to receive specific pretravel instructions (including suggestions for behavioral modification, vaccination, and medication prophylaxis when applicable) to prevent gastrointestinal, vector-borne, sexually transmitted, and vaccine-preventable diseases.

Disclosures. All authors: No reported disclosures.

967. Inhibition of Host Neuraminidase Increases Susceptibility to Invasive Pulmonary Aspergillosis

Frank Van De Veerdonk, Jr, MD, PhD; Iftian Dewi, MD; Christina Cunha, PhD; Lore Vander Beek, MD; Martin Jager, PhD; Mark Gressens, PhD; Agustin Resendiz, PhD; Karren Lagrou, MD; Greetje Van De Velde, MD; Joost Wauters, MD and Agostina Cervalho, PhD; Radboud University, Nijmegen, Netherlands; 2. Radboudumc, Nijmegen, Netherlands; 3. Braga University, Braga, Portugal; 4. University of Leuven, Leuven, Belgium; 5. UZ Leuven, Leuven, Netherlands, Department of Laboratory Medicine and National Reference Center for Mycosis, Excellence Center for Medical Mycology (ECMM), University Hospitals Leuven, Leuven, Belgium and 6. UZ Leuven, Leuven, Belgium

Session: 125. Fungal Infections
Friday, October 5, 2018: 10:30 AM

Background. Influenza-associated aspergillosis (IAA) is an emerging fungal infection with high mortality and morbidity and the pathogenesis of this disease is not well understood. Interestingly, the number of IAA case reports has increased since the widespread use of neurnadase inhibitors, such as oseltamivir in 2009. We set out to determine whether oseltamivir could contribute to the pathogenesis of IAA by exacerbating host responses.

Methods. First, peripheral blood mononuclear cells (PBMCs) and neutrophils from healthy donors were stimulated with neurnadase inhibitor or Fg. Treatment with oseltamivir did not alter cytokine production compared to those treated with Fg alone. In addition, PBMCs and neutrophils were pretreated with oseltamivir or Fg alone prior to stimulation. Cytokines were measured from supernatants after 24 hours of incubation at 37°C. C57BL/6 and BALB/c mice were treated with oseltamivir prior to intranasal challenge with Fg. Immunosuppression was induced by corticosteroid or cyclophosphamide.

Results. We demonstrate that IAA treatment with NA induced an enhanced immune response. Moreover, PBMCs and neutrophils treated with NA produced increased cytokine responses. Blocking NA in vitro with oseltamivir reduced Aspergillosus-induced cytokine responses. Next we investigated the effects of blocking neurnadase activity with oseltamivir in vivo. Immune competent mice and mice treated with the corticosteroid showed increased cytokine, lung fungal burden, and decreased cytokine production when treated with oseltamivir. These effects were not observed in cyclophosphamide-treated mice, suggesting that the effects of NA activity in anti-Aspergillosus host defense acts mainly via myeloid cells.

Conclusion. Our results provide evidence that host neurnadase activity is important for protective anti-Aspergillosus immune responses. Treatment with oseltamivir, thus blocking host NA activity, in a setting of corticosteroid use might therefore increase susceptibility to Aspergillus infection. These results warrant further study on the role of neurnadase and the effects of oseltamivir on susceptibility to invasive pulmonary aspergillosis during active influenza infection.

Disclosures. All authors: No reported disclosures.

968. Managing Invasive Aspergillosis in the Era of Diagnostic PCR and Increasing Triazole Resistance: A Modeling Study of Different Strategies

Robert Van De Peppel, MD; Martha Van Der Beek, MD, PhD; Mark De Boer, MD PhD and Jaco Wallinga, Prof., PhD.1. Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands; 2. Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands and 3. Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands

Session: 125. Fungal Infections
Friday, October 5, 2018: 10:30 AM

Background. Triazole resistance in Aspergillus spp. is emerging and complicates prophylaxis and treatment of invasive Aspergillosis (IA) worldwide. New polymere chain reaction (PCR) tests on broncho-alveolar lavage (BAL) fluid allow for detection of triazole resistance on a genetic level, which opened up new possibilities for targeted therapy. In the absence of clinical trials, a modeling study delivers estimates of the added value of resistance detection with PCR and which empiric therapy would be optimal when local resistance rates are known.

Methods. We performed a decision-analytic modeling study based on epidemiological data of IA, extended with estimated dynamics of resistance rates and treatment effectivenss. We compared 6 clinical strategies that differ in the use of PCR diagnostics (A: not used, B used) and in empiric therapeutic choice in case of unknow triazole susceptibility: Voriconazole (1, VOR), Liposomal Amphotericin B (2, LAmB), or both (3). Outcome measures were proportion of correct treatment, survival, and serious adverse events.

Results. Implementing Aspergillus PCR tests was projected to result in residual treatment susceptibility mismatches of <5% for a triazole resistance rate up to 20% (using VOR). Empiric LAmB outperformed VOR at resistance rates higher than 5–20%, depending on PCR use and estimated survival benefits of VOR over LAmB (Figure 1). Combination therapy of VOR and LAmB performed best at all resistance rates but the advantage over the other strategies should be weighed against the expected increased number of drug-related serious adverse events (Figure 2). The advantage of combination therapy over LAmB monotherapy became smaller at higher triazole-resistance rates.

Conclusion. Introduction of current Aspergillus PCR tests on BAL-fluid is an effective way to increase the proportion of patients that receive targeted therapy for IA. The results indicate that close monitoring of background resistance rates and of adverse drug events are important to attain the potential benefits of LAmB. The choice of strategy ultimately depends on the probability of triazole resistance, the availability of PCR, and individual patient characteristics.
Background. Mucormycosis is a lethal fungal infection caused by Mucorales. Inhalation is the major route of entry resulting in rhino-orbital or pulmonary infections. Nasal and lung epithelial cells are among the first cells that encounter inhaled spores. We sought to identify the nasal and lung epithelial cell receptors interacting with Rhizopus during tissue invasion.

Methods. R. delemar-induced nasal (CCL30) or lung epithelial (A549) cell invasion was studied using Uvetix dye, while host cell injury was determined by JC-1 release assay. Epithelial cell receptors were isolated by affinity purification of biotinylated host cell membrane proteins and then identified by LC-MS. Blocking antibodies were used to confirm the role of the receptor in the invasion/injury assays. For survival studies, ICR mice were immunosuppressed with cyclophosphamide and cortisone acetate on day −5 and 0, and then infected with isolate 4275. For comparison, neutrophils were treated with β1α3 integrin-blocking mAb 6C7 in the presence or absence of 4 μg/mL C. albicans. Neutrophils were imaged by time-lapse fluorescent microscopy and scanning electron microscopy (SEM).

Results. R. delemar invades and damages both cells in a time-dependent manner. Nasal Grp78 and alveolar β1α3 integrin were identified as putative receptors. Polyclonal antibodies targeting Grp78 or β1 integrin blocked R. delemar-mediated endocytosis of nasal and lung cells by ~70%. Also, anti-Grp78 and anti-β1 integrin antibodies blocked R. delemar-induced nasal and lung cell injury by ~60% (P < 0.001). Elevated glucose, iron, or BHB increased the expression of nasal Grp78 by 2- to 6-fold which resulted in enhanced R. delemar-mediated invasion and injury of host cells, while having no effect on β1α3 integrin expression. Finally, β1 antibodies protected mice from mucormycosis with median survival time of 16 days for treated mice versus 11 days for placebo and an overall survival of 30% versus 0% for placebo mice (P = 0.0006).

Conclusion. The upregulation of Grp78 on nasal epithelial cells in response to physiological elevated concentrations of glucose, iron, and BHB and subsequent enhanced invasion likely provide insights into why diabetes in ketoacidosis are infected with the rhino-orbital mucormycosis rather than pulmonary disease. Our studies also provide a foundation for therapeutic interventions against mucormycosis.

Disclosures. All authors: No reported disclosures.