Periodic square-well potential and spontaneous breakdown of \(PT \)-symmetry

August 14, 2018

Vít Jakubský\(^1\), Miloslav Znojil\(^2\)
Ústav jaderné fyziky AVČR, 250 68 Řež, Czech Republic

Abstract

A particle moving on a circle in a purely imaginary one-step potential is studied in both the exact and broken \(PT \)-symmetric regime.

1 Introduction

In textbooks on quantum mechanics one finds a lot of solvable models. They mostly offer just a rough approximation to a physical situation. At the same time, their simplicity enables us to avoid some inessential technical difficulties. In this sense they provide a basic insight in physical phenomena appearing in complicated realistic systems.

Also the basic properties of \(PT \)-symmetric quantum mechanics [1] may be tested by the most elementary quantum mechanical models. One of them has been proposed in [2] as a description of a particle moving in a purely imaginary antisymmetric potential. In its time-independent Schroedinger equation

\[
H\psi = \left[-\frac{d^2}{dx^2} + iZ\frac{x}{|x|}\right]\psi(x) = E\psi(x), \quad x \in (-1, 0) \cup (0, 1)
\] (1)

the Dirichlet boundary conditions were introduced at \(x = \pm 1 \). The role of the growing non-Hermiticity \(Z \) was studied and shown to induce a spontaneous breakdown of the \(PT \)-symmetry at \(Z \approx 4.475 \) (cf. also [3]).

\(^1\)jakub@ujf.cas.cz
\(^2\)znojil@ujf.cas.cz
An interesting application of the latter model has been found in [4] where the whole supersymmetric hierarchy of solvable potentials has been assigned to the most trivial “zeroth-term” member (1) of the family.

In the present note we intend to replace the Dirichlet boundary conditions at \(x = \pm 1\) (mimicking a simple confined motion) by their periodic alternative which would represent the slightly more sophisticated motion of the particle along a circle.

Our main motivation stems from an observation [5] that a weakening of the Hermiticity (or, in our present language, of \(T\)-symmetry [6]) to \(PT\)-symmetry may cause serious difficulties in some exactly solvable models. In [5] this problem has been revealed during a study of angular Schrödinger equations with certain potentials of a multiple-well shape over the circle. Unfortunately, even after a replacement of these potentials by their schematic square-well forms, the solution of the related bound-state problem proved more or less purely numerical.

We see the main source of the latter difficulty in an over-complicated structure of the underlying trigonometric secular equations in the “realistic” multi-square-well cases. For this reason we intend to return to the “non-realistic” single-step potential in equation (1) subject to the periodic boundary conditions. We shall show and see that a graphical analysis of such a problem remains tractable non-numerically.

2 \(PT\)-symmetric regime

Assuming that the energies are real, the solution of (1) may be sought in the form

\[
\begin{align*}
\psi_1(x) &= A_1 e^{kx} + A_2 e^{-kx}, & x \in (0, 1), \\
\psi_2(x) &= B_1 e^{k^*(x+1)} + B_2 e^{-k^*(x+1)}, & x \in (-1, 0),
\end{align*}
\]

where \(k^2 = -E + iZ\). Ambiguity in coefficients \(A_i, B_i\) will be eliminated by application of the following periodic boundary conditions

\[
\psi_1(1) = \psi_2(-1), \quad \psi_1'(1) = \psi_2'(-1), \quad \psi_1(0) = \psi_2(0), \quad \psi_1'(0) = \psi_2'(0). \quad (3)
\]

Substituting (2) into (3), we obtain a system of linear equations for unknown coefficients \(A_i, B_i\). It has non-trivial solution if and only if the determinant of its matrix \(W\) vanishes,

\[
\det W = 4e^{2k}(-1 + e^{2k})^2k^2 = 0 \quad (4)
\]
Dividing k into its real and imaginary part and using the following relations

$$E = s^2 - t^2, \quad 2st = Z, \quad k = t + is,$$

we can rewrite (4) as

$$\det W' = 4e^{-2t}(-1 + e^{2t})^2t^2 + \frac{2Z^2}{t^2}(-1 + \cos\left(\frac{Z}{t}\right)) = 0. \quad (5)$$

For large t the first term in (5) is dominant and exponentially grows to infinity, see Fig.1. The roots t have a positive upper bound and the energy is bounded from below, consequently.

In the vicinity of $t = 0$ the determinant in (5) exhibits oscillations caused by the dominance of the non-positive second term. Still, a positive perturbation caused by the first term implies the existence of the infinitely many real and non-degenerate nodal doublets in each oscillation at the sufficiently small t. Empirically, this feature has been observed in [5] but its essence lied hidden in the complicated form of the determinant.

To study the spectrum for infinitesimally small $Z (= 2st)$, it is convenient to rewrite (4) in its alternative s-representation

$$8s^2(-1 + \cos(2s)) + e^{-\frac{Z}{s}}\left(-1 + e^{\frac{Z}{s}}\right)^2\frac{Z^2}{s^2} = 0 \quad (6)$$

Obviously, in the hermitian limit $Z \to 0$ the energies coincide with the spectrum of the circular oscillator, $E_n = s^2 = \pi^2n^2$. We can ask how these
“unperturbed” energies will be effected by a very small perturbation \(Z > 0 \). It can be expected that there will appear correction terms in energy description. The secular equation (11) can be rewritten as

\[
(t \sinh t + s \sin s)(t \sinh t - s \sin s) = 0.
\] (7)

We expect the correction to the hermitian case in the following form

\[
s = n\pi + \rho(t), \quad \rho = \sum_{0}^{\infty} A_i t^i.
\] (8)

Substituting the ansatz into (7) and comparing coefficients at the corresponding powers of \(t \), we get

\[
\rho_\pm = \pm \frac{(-1)^n}{n\pi} t^2 + \left(-\frac{1}{n^3\pi^3} \pm \frac{(-1)^n}{n\pi} \right) t^4 + \cdots
\]

(9)

In contrast to unperturbed spectrum of infinite square-well, the energies of \(PT \)-symmetric square-well are divided into two families. They are

\[
E^+_n = (n\pi + \rho_+)^2 - t^2, \quad E^-_n = (n\pi + \rho_-)^2 - t^2.
\] (10)

\section{Violation of \(PT \)-symmetry}

It has been observed in [3] that as the coupling \(Z \) rises over a critical value \(Z^{(\text{crit})} \), two lowest energy levels of the infinite square-well coalesce and become complex conjugate simultaneously. This happens repeatedly as the coupling rises, so that there exists a sequence of critical values

\[
Z_0^{(\text{crit})} < Z_1^{(\text{crit})} < Z_2^{(\text{crit})} < \ldots < Z_{\nu}^{(\text{crit})}
\] (11)

for which the corresponding energy pair \(\{E_{2\nu}, E_{2\nu+1}\} \) merges and becomes complex.

We can observe the very same situation in the case of periodic boundary conditions. In Fig.2, an intersection of \(Z = \text{const} \) with the boarders of black and white area determines the root of (15). Merging of the highest roots for rising coupling \(Z \) is then quite transparent.

In order to study the system in the broken \(PT \)-symmetry regime, we make the following ansatz of the wave function associated with energy \(E^+ = E + i\epsilon \)

\[
\psi_1(x) = A_1 \sinh k(1 - x) + A_2 \cosh k(1 - x), \quad x \in (0, 1)
\]
Figure 2: Determinant vanishes on the border curve of black and white area.

\[\psi_2(x) = B_1 \sinh l^* (1 + x) + B_2 \cosh l^* (1 + x), \quad x \in (-1, 0) \quad (12) \]

where \(k^2 = -E + i\epsilon - iZ \) and \(l^2 = -E - i\epsilon - iZ \). In analogy with exact PT-symmetry case, we substitute (12) into the boundary conditions and get a system of linear equations. The corresponding secular equation

\[2k(1 - \cosh k \cosh l^*) - \frac{k^2 + l^2}{l^*} \sinh k \sinh l^* = 0 \quad (13) \]

is complex valued and contains two complex parameters that are mutually related

\[k = s - it, \quad l = p - iq \Rightarrow E = t^2 - s^2 = p^2 - q^2, \quad \epsilon = pq - st. \]

It is convenient to make further re-parametrization

\[s = K \sinh \alpha, \quad t = K \cosh \alpha, \quad p = K \sinh \beta, \quad q = K \cosh \beta \]

Imaginary part of the energy is

\[\epsilon = \frac{K^2}{2} (\sinh 2\beta - \sinh 2\alpha) \]

where \(K = \sqrt{\frac{Z}{\sinh 2\alpha + \sinh 2\beta}} \). The parameters \(\alpha \) and \(\beta \) are solution of (13). Their values obtained numerically for several fixed \(Z \) can be found in Tab.1.
Table 1: Dependence of E on the coupling Z in the vicinity of the first two critical values $Z_0^{(\text{crit})}$, $Z_1^{(\text{crit})}$. The first values of interaction correspond to preserved PT-symmetry so that parameters α and β coincide. As the interaction grove over the critical value, the parameters diverse.

Z	α	β	$\text{Re}E$
5.542309	0.474944	0.474944	5.041586
5.542310	0.474653	0.474870	5.044077
5.54232	0.474125	0.475399	5.044078
5.54240	0.472878	0.476652	5.044080
5.55	0.457619	0.492438	5.044371
6	0.358129	0.622216	5.062183
6.5	0.318347	0.693565	5.083353
17.90123	0.325829	0.325829	25.61820
17.90124	0.325575	0.326139	25.60761
17.90126	0.325540	0.326356	25.60762
17.90200	0.323724	0.328189	25.60769
17.95	0.308679	0.344308	25.61228
19	0.253831	0.422062	25.71469

Comparing α and β, we can estimate the critical values of interaction quite precisely. The first five values are

\[Z_0^{(\text{crit})} \in (5.542309, 5.542310), \quad Z_1^{(\text{crit})} \in (17.90123, 17.90124) \]
\[Z_2^{(\text{crit})} \in (33.54495, 33.54495), \quad Z_3^{(\text{crit})} \in (51.20617, 51.20618) \]
\[Z_4^{(\text{crit})} \in (70.3093, 70.3095). \] \hspace{1cm} (14)

We can compare these results with infinite square-well. In [3], the first two members of the sequence (11) were determined as $Z_0^{(\text{crit})} \in (4.4748, 4.4754)$, $Z_1^{(\text{crit})} \in (12.80154, 12.80156)$. In our case of periodic boundary conditions, the critical values of the coupling seem to be risen. We propose that periodic boundary conditions strengthen PT-symmetry of the system.

4 Discussion and Outlook

The paper was intended as a connection between [2], [3] and [5]. To meet this intention, we studied solutions of (1) with periodic boundary conditions.

On one hand, the simpler choice of the potential allowed a deeper insight into spectral behavior of periodic square-well, which was the missing link
in [5]. We made a basic analytical observation and found approximation of energies for very small couplings Z. On the other hand, we could compare our results with the ones corresponding to the infinite square-well [2], [3]. This was interesting mainly in the regime of broken PT-symmetry. After the comparison, one concludes that PT-symmetry is weakened by Dirichlet boundary conditions or vice versa, it is strengthened in the circular domain.

There is a lot of opened questions. One can ask how is the energy dependence of the critical interaction values. The similar task has been solved in [7] for quartic harmonic oscillator $H = -\frac{p^2}{2} + x^4 + Aix$. It was shown that the relation $a = |A|E^{-\frac{1}{2}}$ holds asymptotically for a certain constant a.

Similarly to [5], (1) can be seen as an angular Schroedinger equation of more dimensional problem. The presented results could be also understood as a preliminary step to more-dimensional models.

Work supported from the budget of the AS CR project AV 0Z 1048901. Participation of M. Z. partially supported by grant GA AS CR, grant Nr. 104 8302

References

[1] C. M. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243
[2] M. Znojil, Phys.Lett.A 285 7 (2001) 7
[3] M. Znojil, G. Levai, Mod.Phys.Lett A 16 (2001) 2273
[4] B. Bagchi, S. Mallik, C. Quesne, Mod.Phys.Lett. A 17 (2002) 1651
[5] M. Znojil, J.Phys.A: Math.Gen. 36 (2003) 7825
[6] C. M. Bender, D. C. Brody and H. F. Jones, Phys. Rev. Lett. 92 (2004) 119902
[7] C. M. Bender, M. Berry, P. Meisinger, M. Van Savage, M. Simsek, J.Phys.A 34 (2001) L31
[8] C. M. Bender, S. Boettcher, H.F. Jones, M. Van Savage, J. Phys. A 32 (1999) 4945