RELATIVE SINGULAR VALUE DECOMPOSITION AND APPLICATIONS TO LS-CATEGORY

E. MACÍAS-VIRGÓS, M.J. PEREIRA-SÁEZ, AND DANIEL TANRÉ

Abstract. Let \(\text{Sp}(n) \) be the symplectic group of quaternionic \((n \times n)\)-matrices. For any \(1 \leq k \leq n \), an element \(A \) of \(\text{Sp}(n) \) can be decomposed in \(A = \begin{bmatrix} \alpha & T \\ \beta & P \end{bmatrix} \) with \(P \) a \((k \times k)\)-matrix.

In this work, starting from a singular value decomposition of \(P \), we obtain what we call a relative singular value decomposition of \(A \). This feature is well adapted for the study of the quaternionic Stiefel manifold \(X_{n,k} \), and we apply it to the determination of the Lusternik-Schnirelmann category of \(\text{Sp}(k) \) in \(X_{2k-j,k} \), for \(j = 0, 1, 2 \).

1. Introduction

Let \(\mathbb{H}^n \) be the quaternionic \(n \)-space (with the structure of a right \(\mathbb{H} \)-vector space) endowed with the Hermitian product \(\langle u, v \rangle = u^* v \). For \(0 < k \leq n \), we denote by \(\text{Sp}(n) \) the Lie group of matrices, \(A \in \mathbb{H}^{n \times n} \), such that \(AA^* = I_n \) and by \(X_{n,k} \) the Stiefel manifold of linear maps \(\phi: \mathbb{H}^k \to \mathbb{H}^n \) which preserve the Hermitian product. Alternatively, the elements of \(X_{n,k} \) are the orthonormal \(k \)-frames of \(\mathbb{H}^n \), represented by a matrix \(x \in \mathbb{H}^{n \times k} \) such that \(x^* x = I_k \). Usually we shall write \(x = \begin{bmatrix} T \\ P \end{bmatrix} \), with \(P \in \mathbb{H}^{k \times k} \). Let \(\phi_0 \in X_{n,k} \) be the inclusion \(\mathfrak{v} \mapsto \begin{bmatrix} 0 \\ \mathfrak{v} \end{bmatrix} \), represented by the matrix \(x_0 = \begin{bmatrix} \mathfrak{v}^T \\ I_k \end{bmatrix} \).

The linear left action of \(\text{Sp}(n) \) on \(X_{n,k} \) is transitive and the isotropy group of \(x_0 \) is isomorphic to \(\text{Sp}(n-k) \). Therefore the Stiefel manifold \(X_{n,k} \) is diffeomorphic to \(\text{Sp}(n)/\text{Sp}(n-k) \) and there is a principal

2010 Mathematics Subject Classification. Primary 15A33; Secondary 22E20, 22F30, 55M30.

Key words and phrases. Matrices over quaternions; Symplectic group; Quaternionic Stiefel manifold; Lusternik-Schnirelmann category.

The three authors are partially supported by the MINECO and FEDER research project MTM2016-78647-P.
fibration

\[\text{Sp}(n-k) \xrightarrow{i} \text{Sp}(n) \xrightarrow{\rho} X_{n,k}. \]

If we write \(A = \begin{bmatrix} \alpha & T \\ \beta & P \end{bmatrix} \in \text{Sp}(n) \), with \(T \in \mathbb{H}^{(n-k)\times k} \) and \(P \in \mathbb{H}^{k\times k} \), the application \(\rho: \text{Sp}(n) \to X_{n,k} \) is defined by \(\rho(A) = \begin{bmatrix} T \\ P \end{bmatrix} \). If \(P \in \text{Sp}(k) \), we may choose \(T = 0 \) and get an element of \(X_{n,k} \). This gives a canonical inclusion,

\[\iota_{n,k}: \text{Sp}(k) \to X_{n,k}. \]

We shall come back below on some aspects of this inclusion. First, we characterize the matrices \(P \in \mathbb{H}^{k\times k} \) that can be completed with \(T \in \mathbb{H}^{(n-k)\times k} \) for getting an element \(\begin{bmatrix} T \\ P \end{bmatrix} \in X_{n,k} \). In Proposition 2.2, we prove that such \(T \) exists if, and only if, the eigenvalues of \(P^*P \) (that is, the singular values of \(P \)), belong to the interval \([0, 1]\) and the multiplicity of the eigenvalue 1 is greater than or equal to \(2k - n \).

Next, we use the well-known (8) singular value decomposition (SVD, in short) of \(P \in \mathbb{H}^{k\times k} \) for the determination of the possible completions of it in an element of \(X_{n,k} \). More precisely, in Theorem 3.1 starting from the SVD of \(P \in \mathbb{H}^{k\times k} \), satisfying the previous criterion, we describe the various matrices of \(\text{Sp}(n) \) of the shape \(\begin{bmatrix} \alpha & T \\ \beta & P \end{bmatrix} \). This gives a “relative SVD of a matrix in \(\text{Sp}(n) \)’’.

We apply this decomposition to the study of the Lusternik-Schnirelmann category (in short LS-category). Let us recall first that an open subset \(U \) of a topological space \(X \) is called categorical if \(U \) is contractible in \(X \). The LS-category, \(\text{cat} X \), of \(X \) is defined as the least integer \(m \geq 0 \) such that \(X \) admits a covering by \(m+1 \) categorical open sets (2).

The LS-category is a homotopy invariant that turns out to be useful in areas such as dynamical systems and symplectic geometry. But it is also particularly difficult to compute. A longstanding problem is the determination of the LS-category of Lie groups. In the case of unitary and special unitary Lie groups, Singhof determined \(\text{cat} U(n) = n \) and \(\text{cat} SU(n) = n - 1 \) (17), using eigenvalues. This method cannot be carried out for the symplectic groups \(\text{Sp}(n) \) due to the non-commutativity of quaternions (11). Some progress has been made for small \(n \) with \(\text{cat} \text{Sp}(2) = 3 \) (16), \(\text{cat} \text{Sp}(3) = 5 \) (3), or with bounds as \(\text{cat} \text{Sp}(n) \leq \binom{n+1}{2} \) (12) and \(\text{cat} \text{Sp}(n) \geq n + 2 \) when \(n \geq 3 \) (4).
Proposition 4.6 we show how Theorem 3.1 supplies an explicit minimal categorical open cover of $\text{Sp}(2)$.

Some partial results also exist for the LS-category of symplectic Stiefel manifolds. For instance, in [15], Nishimoto proves $\text{cat}_{X_{n,k}} = k$ when $n \geq 2k$, making use of eigenvalues of associated complex matrices. Different techniques of proof have been given for this result, as the use of the Cayley transform in [14], or Morse-Bott functions in [6]. Let us also mention that Morse-Bott functions are also present in [9], [13] for the study of LS-category. Finally recall the existence of a lower bound for the LS-category of Stiefel manifolds, generally better than the classical cup-length, established by Kishimoto in [7], and recalled in Theorem 4.1.

In this work, we study the subspace LS-category of $\text{Sp}(k)$ in $X_{n,k}$, denoted $\text{cat}_{X_{n,k}} \text{Sp}(k)$. This means that we are looking for families of open sets in $X_{n,k}$ covering $\text{Sp}(k)$ whose elements are contractible in $X_{n,k}$. We prove in Propositions 5.1, 5.2 and 5.3 that $$\text{cat}_{X_{2k-j,k}} \text{Sp}(k) \leq \text{cat} \text{Sp}(j), \quad \text{for } j = 0, 1, 2,$$
and we wonder if this is still true for any $j \geq 0$.

Notations and Conventions. For any pair of square matrices (not necessarily of the same size) the relation $A \sim B$ means: “A is invertible if and only if B is so.”

If (t_1, \ldots, t_q) is a sequence of quaternions, we denote by $\text{diag}(t_i)_{q \times q}$ the $(q \times q)$-matrix having the t_i's on the diagonal and 0 otherwise.

2. Stiefel manifolds

In this section, we consider a matrix $P \in \mathbb{H}^{k \times k}$ and study the existence of a “companion” $T \in \mathbb{H}^{(n-k) \times k}$ which gives an element $\begin{bmatrix} T \\ P \end{bmatrix}$ of $X_{n,k}$.

An element of $X_{n,k}$ can be represented by a matrix $x = \begin{bmatrix} T \\ P \end{bmatrix}$, with $T \in \mathbb{H}^{(n-k) \times k}$ and $P \in \mathbb{H}^{k \times k}$. The preservation of the Hermitian product corresponds to the equation $x^*x = I_k$, which becomes $$T^*T + P^*P = I_k.$$

Definition 2.1. A matrix $P \in \mathbb{H}^{k \times k}$ is n-admissible if there exists $T \in \mathbb{H}^{(n-k) \times k}$ such that $\begin{bmatrix} T \\ P \end{bmatrix} \in X_{n,k}$. The integer number $e = 2k - n$ is called the excess of $X_{n,k}$.
Admissible matrices can be entirely characterized by eigenvalues.

Proposition 2.2. A matrix \(P \in \mathbb{H}^{k \times k} \) is \(n \)-admissible if, and only if, the eigenvalues of \(P^*P \) belong to the interval \([0, 1]\) and the multiplicity of the eigenvalue 1 is greater than or equal to the excess \(e = 2k - n \).

Let us notice that the second condition is automatically verified if \(e \leq 0 \).

Proof. Let

\[
P = U \begin{bmatrix} I_{p \times p} & 0 & 0 \\ 0 & \text{diag}(t_i)_{q \times q} & 0 \\ 0 & 0 & 0_{r \times r} \end{bmatrix} V^*
\]

be the SVD of \(P \), with \(p + q + r = k \), \(U, V \in \text{Sp}(k) \), \(p, q, r \geq 0 \) and \(0 < t_i < 1 \).

- If there exists \(T \in \mathbb{H}^{(n-k) \times k} \) such that \(\begin{bmatrix} T \\ P \end{bmatrix} \in X_{n,k} \), the equality \(T^*T + P^*P = I_k \) implies

 \[
 T^*T = V \begin{bmatrix} 0_{p \times p} & 0 & 0 \\ 0 & \text{diag}(1-t_i^2)_{q \times q} & 0 \\ 0 & 0 & 0_{r \times r} \end{bmatrix} V^* \in \mathbb{H}^{k \times k}.
 \]

As \(T^*T \) is hermitian semi-definite positive, we deduce \(1-t_i^2 > 0 \) and \(0 < t_i < 1 \). For any non-square matrix \(T \in \mathbb{H}^{(n-k) \times k} \), it is known that \(\text{rank}(T^*T) = \text{rank}(T) \), see Lemma 2.4. This implies \(q + r \leq \min(n-k, k) \) and

\[
p = k - (q + r) \geq k - \min(n-k, k) = 2k - n = e.
\]

- Suppose now \(t_i \in [0, 1[\) and \(p \geq e \). We consider the matrix

\[
T = \begin{bmatrix} 0_{p' \times p} & 0 & 0 \\ 0 & \text{diag}(s_i)_{q \times q} & 0 \\ 0 & 0 & 0_{r \times r} \end{bmatrix} V^*,
\]

with \(0 < s_i = \sqrt{1-t_i^2} < 1 \) and \(p' + q + r = n - k \). Then we have

\[
T^*T + P^*P = I_k \quad \text{and} \quad \begin{bmatrix} T \\ P \end{bmatrix} \in X_{n,k}.
\]

Let us recall the Study determinant (\(\text{[I]} \)) useful for the detection of invertible matrices. As any quaternionic matrix \(M \in \mathbb{H}^{n \times n} \) can be written as \(M = X + jY \) with \(X, Y \in \mathbb{C}^{n \times n} \), we associate to \(M \) a complex matrix, \(\chi(M) \), defined by

\[
\chi(M) = \begin{bmatrix} X & -\overline{Y} \\ Y & \overline{X} \end{bmatrix} \in \mathbb{C}^{2n \times 2n}.
\]
The Study determinant of M, defined by $\text{Sdet}(M) = \sqrt{\text{det} \chi(M)}$, verifies the following properties.

1. The matrix M is invertible if, and only if, $\text{Sdet}(M) \neq 0$.
2. If $M, N \in \mathbb{H}^{n \times n}$, then $\text{Sdet}(MN) = \text{Sdet}(M) \text{Sdet}(N)$.
3. If N is obtained from M by adding a left multiple of a row to another row or a right multiple of a column to another column, then we have $\text{Sdet}(M) = \text{Sdet}(N)$.
4. If M is a triangular matrix then $\text{Sdet}(M)$ equals $|m_{11} \cdots m_{nn}|$, the norm of the product of the elements of the diagonal.

We complete these properties by the following one, well adapted to the quaternionic matrices appearing in the last sections.

Lemma 2.3. Let $M \in \mathbb{H}^{m \times n}$ and $N \in \mathbb{H}^{n \times m}$. Then we have

$$\text{Sdet}(I_m + MN) = \text{Sdet}(I_n + NM).$$

Proof. This is a classical argument,

$$\text{Sdet} \begin{bmatrix} I_m + MN & -M \\ 0 & I_n \end{bmatrix} = \text{Sdet} \begin{bmatrix} I_m & 0 \\ N & I_n + NM \end{bmatrix}. \quad \square$$

We end this section with the following lemma, used in the proof of Theorem 3.1. It is a classical result and we give the proof for the convenience of the reader.

Lemma 2.4. Let $M \in \mathbb{H}^{m \times n}$ be a non-necessarily square quaternionic matrix. Then, we have $\ker M^* M = \ker M$ and $\ker MM^* = \ker M^*$.

Proof. The inclusion $\ker M \subset \ker M^* M$ is direct. On the other hand, if $u \in \ker M^* M$, we get $|M(u)|^2 = \langle Mu, Mu \rangle = \langle u, M^* Mu \rangle = 0$ and $u \in \ker M$. A similar argument gives the second equality. \quad \square

3. Relative singular value decomposition in $\text{Sp}(n)$

In this section, we establish a “relative singular value decomposition” of the elements of $\text{Sp}(n)$. This structure proves to be effective for the study of the injection $\text{Sp}(k) \to X_{n,k}$ as it appears in Section 5.
Theorem 3.1. For any $k \leq n$, an element A of $\text{Sp}(n)$ can be written in blocks as follows,

$$A = \begin{bmatrix}
m \begin{bmatrix} I_{p'} & 0 & 0 \\
0 & \text{diag}(\cos \theta_i)_{q \times q} & 0 \\
0 & 0 & 0_r \end{bmatrix} & \ell^* & m \begin{bmatrix} 0_{p' \times p} & 0 & 0 \\
0 & -\text{diag}(\sin \theta_i)_{q \times q} & 0 \\
0 & 0 & 0 \end{bmatrix} & b^* \\
a \begin{bmatrix} 0_{p \times p'} & 0 & 0 \\
0 & \text{diag}(\sin \theta_i)_{q \times q} & 0 \\
0 & 0 & 0_r \end{bmatrix} & \ell^* & a \begin{bmatrix} I_p & 0 & 0 \\
0 & \text{diag}(\cos \theta_i)_{q \times q} & 0 \\
0 & 0 & 0_r \end{bmatrix} & b^* \end{bmatrix}$$

with $\theta_i \in [0, \pi/2]$, $a, b \in \text{Sp}(k)$, $m, \ell \in \text{Sp}(n-k)$, $p \geq 2k-n$, $p+q+r = k$ and $p'+q+r = n-k$.

Proof. Let $A = \begin{bmatrix} \alpha & T \\
\beta & P \end{bmatrix} \in \text{Sp}(n)$, with $P \in \mathbb{H}^{k \times k}$. The SVD of P gives

$$P = a \begin{bmatrix} I_p & 0 & 0 \\
0 & \text{diag}(c_i)_{q \times q} & 0 \\
0 & 0 & 0_r \end{bmatrix} b^*,$$

with $a, b \in \text{Sp}(k)$, $p+q+r = k$ and $0 < c_i < 1$. From $T^*T + P^*P = I_k$, we deduce

$$T^*T = I_k - b \begin{bmatrix} I_p & 0 & 0 \\
0 & \text{diag}(c_i^2)_{q \times q} & 0 \\
0 & 0 & 0_r \end{bmatrix} b^* \quad (1)$$

with $0 < s_i < 1$ and $s_i^2 = 1-c_i^2$. We proceed in three steps, determining successively T, β and α.

Step 1. Let p' such that $p' + q + r = n - k$. The matrix T can be written as

$$T = m \begin{bmatrix} 0_{p' \times p} & 0 & 0 \\
0 & -\text{diag}(s_i)_{q \times q} & 0 \\
0 & 0 & 0 \end{bmatrix} b^* \quad (2)$$

if, and only if, the columns $(b_i)_{1 \leq i \leq k}$ and $(m_j)_{1 \leq j \leq n-k}$ of the matrices b and m, respectively, verify:

$$T(b_i) = 0 \quad \text{for} \quad 1 \leq i \leq p,$$

$$T(b_{p+i}) = -m_{p'+i}s_i \quad \text{for} \quad 1 \leq i \leq q,$$

$$T(b_{p+q+i}) = m_{p'+q+i} \quad \text{for} \quad 1 \leq i \leq r.$$
We therefore have to establish these three properties from (1). The equation (3) is a direct consequence of Lemma 2.4. Next, the equations (4) and (5) define the vectors \((m'_{p+i})_{1 \leq i \leq q+r}\). They constitute an orthogonal system because the same holds for the corresponding \((b_i)\). In fact, from (1) and (4), we deduce for \(1 \leq i \leq q\),

\[
\langle m'_{p+i}, m'_{p+i} \rangle = \frac{1}{s_i^2} \langle T(b_{p+i}), T(b_{p+i}) \rangle = \frac{1}{s_i^2} \langle b_{p+i}, T^*T(b_{p+i}) \rangle = 1,
\]

and analogously \(\langle m'_{p+i}, m'_{p+j} \rangle = 0\) for \(i \neq j\).

We also have \(\langle m'_{p+i}, m'_{p+q+j} \rangle = \delta_{i,j}\) for \(1 \leq i, j \leq r\). Thus it suffices to complete \((m'_{p+i})_{1 \leq i \leq q+r}\) in an orthonormal basis to get the announced expression of \(T\).

Step 2. We determine \(\beta \in \mathbb{H}^{k \times (n-k)}\) such that \(\beta \beta^* + PP^* = I_k\). This equality gives

\[
\beta \beta^* = I_k - a \begin{bmatrix} I_p & 0 & 0 \\ 0 & \text{diag}(s_i^2)_{q \times q} & 0 \\ 0 & 0 & I_r \end{bmatrix} a^*
\]

\(\text{(6)}\)

\[
= a \begin{bmatrix} 0_p & 0 & 0 \\ 0 & \text{diag}(s_i^2)_{q \times q} & 0 \\ 0 & 0 & I_r \end{bmatrix} a^*.
\]

The argumentation developed in the first step brings a matrix \(\ell \in \text{Sp}(n-k)\) such that

\[
\beta^* = \ell \begin{bmatrix} 0_{p' \times p} & 0 & 0 \\ 0 & \text{diag}(s_i)_{q \times q} & 0 \\ 0 & 0 & I_r \end{bmatrix} a^*.
\]

\(\text{(7)}\)

As in the first step, the columns \((\ell'_{p+i})_{1 \leq i \leq q+r}\) are explicitly determined, but for the family \((\ell_i)_{1 \leq i \leq p'}\) the only requirement is to have an orthonormal basis \((\ell_j)_{1 \leq j \leq p'+q+r}\).

Step 3. We are reduced to decompose the matrix \(\alpha \in \mathbb{H}^{(n-k) \times (n-k)}\). From \(AA^* = I_n = A^*A\), we deduce

\[
\alpha \alpha^* + TT^* = I_{n-k},
\]

\(\text{(8)}\)

\[
\alpha^*T + \beta^*P = 0,
\]

\(\text{(9)}\)

\[
\alpha^* \alpha + \beta^* \beta = I_{n-k}.
\]

\(\text{(10)}\)

As before, we denote by \((m_j)_{1 \leq j \leq n-k}\) and \((\ell_j)_{1 \leq j \leq n-k}\) the columns of the matrices \(m\) and \(\ell\) respectively. Replacing \(T\) by its value (2), we deduce from (8) that the family \((m'_{p+q+i})_{1 \leq i \leq r}\) is a basis of \(\ker \alpha \alpha^* = \ker \alpha^*\), see Lemma 2.4.
The replacement of T, β, P by their value in (9) gives the equality
\[
\alpha^* m \begin{bmatrix}
0_{p' \times p} & 0 & 0 \\
0 & -\text{diag}(s_i)_{q \times q} & 0 \\
0 & 0 & -I_r
\end{bmatrix} = -\ell \begin{bmatrix}
0_{p' \times p} & 0 & 0 \\
0 & \text{diag}(s_i)_{q \times q} & 0 \\
0 & 0 & 0_r
\end{bmatrix},
\]
which implies the relations
\[
\begin{align*}
\alpha^* m_{p'+i} &= \ell_{p'+i} c_i, \quad \text{for } 1 \leq i \leq q, \\
\alpha^* m_{p'+q+i} &= 0, \quad \text{for } 1 \leq i \leq r.
\end{align*}
\]
Thus, for proving (13)
\[
\alpha = m \begin{bmatrix}
I_{p'} & 0 & 0 \\
0 & \text{diag}(c_i)_{q \times q} & 0 \\
0 & 0 & 0_r
\end{bmatrix} \ell^*,
\]
it remains to establish
\[
\alpha \ell_i = m_i, \quad \text{for } 1 \leq i \leq p'.
\]
For that, starting from an orthonormal basis $(\ell_j)_{1 \leq j \leq n-k}$ built in Step 2, we have to prove that we could have taken $m_i = \alpha \ell_i$ for $1 \leq i \leq p'$ in order to complete an orthonormal basis $(m_j)_{1 \leq j \leq n-k}$ as we built in Step 1.

From (10) and (7), we deduce
\[
\alpha^* \alpha = \ell \begin{bmatrix}
I_{p'} & 0 & 0 \\
0 & \text{diag}(c_i)_{q \times q} & 0 \\
0 & 0 & 0_r
\end{bmatrix} \ell^*,
\]
which implies $\alpha^* \alpha \ell_i = \ell_i$, for all $1 \leq i \leq p'$. We prove now the orthonormality of $(m_j)_{1 \leq j \leq n-k}$.

- Let $1 \leq j, k \leq p'$. We have
 \[
 \langle m_j, m_k \rangle = \langle \alpha \ell_j, \alpha \ell_k \rangle = \langle \ell_j, \alpha^* \alpha \ell_k \rangle = \langle \ell_j, \ell_k \rangle,
 \]
 which gives an orthogonality relation for $j \neq k$ and $\langle m_j, m_j \rangle = 1$.

- Let $1 \leq j \leq p'$ and $1 \leq k \leq q$. We have:
 \[
 \begin{align*}
 \langle m_j, m_{p'+q+k} \rangle &= \langle \alpha \ell_j, m_{p'+q+k} \rangle = \langle \ell_j, \alpha^* m_{p'+q+k} \rangle \\
 &= \langle \ell_j, \ell_{p'+k} \rangle c_k = 0.
 \end{align*}
 \]

- Let $1 \leq j \leq p'$ and $1 \leq k \leq r$. We have:
 \[
 \begin{align*}
 \langle m_j, m_{p'+q+k} \rangle &= \langle \alpha \ell_j, m_{p'+q+k} \rangle = \langle \ell_j, \alpha^* m_{p'+q+k} \rangle \\
 &= \langle \ell_j, 0 \rangle = 0. \quad \square
 \end{align*}
 \]

The following particular case of Theorem 3.1 corresponds to $k = 1$ and $2k - n \leq 0$.

Corollary 3.2. Let \(n \geq 2 \). Any element of \(\text{Sp}(n) \) can be written as

\[
P = \begin{pmatrix}
 m \begin{bmatrix} I_{n-2} & 0 \\ 0 & \cos \theta \end{bmatrix} \ell^* & m \begin{bmatrix} 0 \\ -\sin \theta \end{bmatrix} E \\
 [0 \sin \theta] \ell^* & (\cos \theta) E
\end{pmatrix},
\]

with \(m, \ell \in \text{Sp}(n-1) \), \(\cos \theta \in [0,1] \), \(E \in \text{Sp}(1) \).

4. Background on LS-category

We recall basic definitions and properties of the Lusternik-Schnirelmann category (LS-category in short). We also state the results on the LS-category of Stiefel manifolds obtained by T. Nishimoto ([15]) and D. Kishimoto ([7]) as well as the technique for the construction of categorical open subsets, introduced by the authors in [14].

The definition of LS-category has been recalled in the introduction, see [2] for more details. If \(X \) is an \((m-1) \)-connected CW-complex, then there is the upper bound,

\[
\text{cat} \ X \leq \frac{\dim X}{m}.
\]

As \(\dim X_{n,k} = \dim \text{Sp}(n) - \dim \text{Sp}(n-k) = k(4n - 2k + 1) \), we get (see [5, Proposition 2.1] for the connectivity of \(X_{n,k} \))

\[
\text{cat} \ X_{n,k} \leq \frac{k(4n - 2k + 1)}{4(n-k) + 3}.
\]

A lower bound is given by the cup length in the cohomology algebra but, for Stiefel manifolds, there is also a lower bound, due to Kishimoto.

Theorem 4.1 ([7]). We have

\[
\text{cat} \ X_{n,k} \geq \begin{cases}
 k & \text{if } n \geq 2k - 1, \\
 k + 1 & \text{if } n = 2k - 2 \text{ or } n = 2k - 3, \\
 k + 2 & \text{if } n \leq 2k - 4.
\end{cases}
\]

In the particular case \(n \geq 2k \), Nishimoto has computed the LS-category of \(X_{n,k} \), using the number of eigenvalues of an associated complex matrix.

Theorem 4.2 ([15]). If \(n \geq 2k \) then \(\text{cat} \ X_{n,k} = k \).

Remark 4.3. From Theorem 4.1, Theorem 4.2 and (15), we can deduce for instance: \(\text{cat} \ X_{3,2} = 2 \) and \(\text{cat} \ X_{4,3} = 4 \).

Nishimoto’s result can also be proven ([14]) from Cayley open subsets, defined as follows.
Theorem 4.4 ([14, Theorem 1.2]). Let $P \in \mathbb{H}^{k \times k}$ be an n-admissible matrix. The Cayley open subset
\[
\Omega(P) = \left\{ \begin{bmatrix} \tau \\ \pi \end{bmatrix} \in X_{n,k} \mid \pi + P^* \text{ invertible} \right\}
\]
is categorical in $X_{n,k}$.

Remark 4.5. Let $\text{diag}(0_s, -I_t, I_r) = \begin{bmatrix} 0_s & 0 & 0 \\ 0 & -I_t & 0 \\ 0 & 0 & I_r \end{bmatrix} \in \mathbb{H}^{k \times k}$ be the diagonal matrix defined by blocks from the null matrix $0_s \in \mathbb{H}^{s \times s}$ and the identity matrices $I_t \in \mathbb{H}^{t \times t}, I_r \in \mathbb{H}^{r \times r}$, with $s + t + r = k$ and $s, t, r \geq 0$. Then $\text{diag}(0_s, -I_t, I_r)$ is n-admissible if and only if $r + t \geq e$. In this case, we have the categorical open subset of $X_{n,k}$
\[
\Omega(0_s, -I_t, I_r) = \left\{ \begin{bmatrix} T \\ P \end{bmatrix} \in X_{n,k} \mid P + \text{diag}(0_s, -I_t, I_r) \text{ invertible} \right\}.
\]

From Theorem 3.1, we determine an explicit minimal categorical open cover of $\text{Sp}(2)$.

Proposition 4.6. The four open subsets $\Omega(I_2), \Omega(-I_2), \Omega(I_1, -I_1)$ and $\Omega(-I_1, I_1)$ constitute a categorical open cover of $\text{Sp}(2)$.

Proof. From Theorem 3.1 we know that any element of $\text{Sp}(2)$ can be written as
\[
P = \begin{bmatrix} m \cos \theta \ell^* & -m \sin \theta b^* \\ a \sin \theta \ell^* & a \cos \theta b^* \end{bmatrix},
\]
where a, b, m, ℓ are quaternionic numbers of norm 1 and $\cos \theta \in [0, 1]$. We set $\varepsilon_i = \pm 1$ for $i = 1, 2$ and $\text{diag}(\varepsilon_1, \varepsilon_2) = \begin{bmatrix} \varepsilon_1 & 0 \\ 0 & \varepsilon_2 \end{bmatrix}$. We observe $\text{diag}(\varepsilon_1, \varepsilon_2)^2 = I_2$ and we are looking for the property “$P + \text{diag}(\varepsilon_1, \varepsilon_2)$ is invertible”. Lemma 2.3 and easy calculations imply that
\[
P + \text{diag}(\varepsilon_1, \varepsilon_2) \sim \begin{bmatrix} m & 0 \\ 0 & a \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \ell^* & 0 \\ 0 & b^* \end{bmatrix} + \text{diag}(\varepsilon_1, \varepsilon_2)
\]
\[
\sim \begin{bmatrix} \ell^* & 0 \\ 0 & b^* \end{bmatrix} \text{diag}(\varepsilon_1, \varepsilon_2) \begin{bmatrix} m & 0 \\ 0 & a \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} + I_2
\]
\[
\sim \begin{bmatrix} \varepsilon_1 \ell^* m & 0 \\ 0 & \varepsilon_2 b^* a \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} + I_2
\]
\[
\sim \begin{bmatrix} \varepsilon_1 \ell^* m & 0 \\ 0 & \varepsilon_2 b^* a \end{bmatrix} + \begin{bmatrix} \cos \theta & \varepsilon_1 \ell^* \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}.
\]
We set $Q_1 = \varepsilon_1 \ell^* m$ and $Q_2 = \varepsilon_2 b^* a$.

Suppose $\cos \theta \neq 1$. This implies $\sin \theta \neq 0$ and we may use it as a “pivot” in the last matrix. This gives, by adding to the second row a left multiple of the first row,

$$P + \text{diag}(\varepsilon_1, \varepsilon_2) \sim \begin{bmatrix} \cos \theta + Q_1 & \sin \theta \\ -\sin \theta - (\sin \theta)^{-1}(\cos \theta + Q_2)(\cos \theta + Q_1) & 0 \end{bmatrix}.$$

Thus $P + \text{diag}(\varepsilon_1, \varepsilon_2)$ is not invertible if and only if

$$\sin^2 \theta + (\cos \theta + Q_2)(\cos \theta + Q_1) = 0 \iff 1 + \cos \theta Q_2 + (\cos \theta + Q_2)Q_1 = 0 \iff Q_1 = -(\cos \theta + Q_2)^{-1}(1 + \cos \theta Q_2).$$

The last writing makes sense since $\cos \theta \neq 1$ implies $\cos \theta + Q_2 \neq 0$ because $|Q_2| = 1$. If $(\varepsilon_1, \varepsilon_2)$ is given, the previous equation admits a unique solution (Q_1, Q_2). Therefore, among the matrices of the statement, we can find a matrix diag$(\varepsilon_1, \varepsilon_2)$ for which $P + \text{diag}(\varepsilon_1, \varepsilon_2)$ is invertible. (In fact, two of them suffice in this case.)

If $\cos \theta = 1$, then we have

$$P + \text{diag}(\varepsilon_1, \varepsilon_2) \sim \begin{bmatrix} 1 + Q_1' & 0 \\ 0 & 1 + Q_2' \end{bmatrix}. \quad \square$$

Let us notice that we need the four matrices of the statement to ensure the existence of one case such that $P + \text{diag}(\varepsilon_1, \varepsilon_2)$ is invertible. In fact, we already know from [16] that there is no categorical open cover of $\text{Sp}(2)$ with strictly less than 4 elements.

5. Subspace LS-category of $\text{Sp}(k)$ in the Stiefel manifold $X_{n,k}$

We give an upper bound for the subspace LS-category, $\text{cat}_{X_{2k-1,k}} \text{Sp}(k)$, of $\text{Sp}(k)$ in $X_{n,k}$, for $n \geq 2k$, $n = 2k - 1$ and $n = 2k - 2$. A question for the general case is also proposed.

If $n \geq 2k$, we first notice that the zero matrix $0_k \in \mathbb{H}^{k \times k}$ is n-admissible. Therefore $\text{Sp}(k)$ is included in the categorical open subset $\Omega(0_k)$ and the next result follows.

Proposition 5.1. If $0 < 2k \leq n$, we have $\text{cat}_{X_{n,k}} \text{Sp}(k) = 0$.

Consider now the second case.

Proposition 5.2. If \(n = 2k - 1 \), \(0 < k \), we have \(\text{cat}_{X_{2k-1,k}} \text{Sp}(k) \leq 1 \).

Proof. Observe that the matrices \(\text{diag}(0_{k-1}, I_1) \) and \(\text{diag}(0_{k-1}, -I_1) \) are \((2k - 1)\)-admissible. We decompose an element of \(P \in \text{Sp}(k) \) as

\[
P = \begin{bmatrix}
m & \begin{bmatrix} I_{k-2} & 0 \\ 0 & \cos \theta \end{bmatrix} \ell^* & m & \begin{bmatrix} 0 \\ -\sin \theta \end{bmatrix} E \\
[0 & \sin \theta] \ell^* & (\cos \theta) E & &
\end{bmatrix},
\]

with \(m, \ell \in \text{Sp}(k-1) \), \(\cos \theta \in [0, 1] \), \(E \in \text{Sp}(1) \).

- Suppose \(1 + E \cos \theta \neq 0 \). Then we have

\[
P + \text{diag}(0_{k-1}, I_1) \\
\sim m \begin{bmatrix} I_{k-2} & 0 \\ 0 & \cos \theta \end{bmatrix} \ell^* + m \begin{bmatrix} 0 \\ \sin \theta \end{bmatrix} EE^*(E^* + \cos \theta)^{-1}[0 \sin \theta] \ell^*
\sim \begin{bmatrix} I_{k-2} & 0 \\ 0 & \cos \theta + \sin^2 \theta (E^* + \cos \theta)^{-1} \end{bmatrix}.
\]

Let us notice that

\[
\cos \theta + \sin^2 \theta (E^* + \cos \theta)^{-1} = E^*(E + \cos \theta)(E^* + \cos \theta)^{-1}
\]

is a quaternion of norm 1. Thus the matrix \(P + \text{diag}(0_{k-1}, I_1) \) is invertible.

- If \(1 + E \cos \theta = 0 \), then we have \(\cos \theta = 1 \) and \(E = -1 \). This implies \(P = \begin{bmatrix} m \ell^* & 0 \\ 0 & -1 \end{bmatrix} \) and \(P \in \Omega(0_{k-1}, -I_1) \).

In conclusion, we cover \(\text{Sp}(k) \) by the two open subsets \(\Omega(0_{k-1}, I_1) \) and \(\Omega(0_{k-1}, -I_1) \), which are contractible in \(X_{2k-1,k} \).

□

Finally, we state our last result in this direction.

Proposition 5.3. If \(n = 2k-2 \), with \(1 < k \), we have \(\text{cat}_{X_{2k-2,k}} \text{Sp}(k) \leq 3 \).

Proof. We prove that the four open subsets \(\Omega(0_{k-2}, 1, 1), \Omega(0_{k-2}, 1, -1), \Omega(0_{k-2}, -1, 1), \Omega(0_{k-2}, -1, -1) \) form a categorical open cover of \(\text{Sp}(k) \) in \(X_{2k-2,k} \). Let \(P \in \text{Sp}(k) \) that we write, by taking, in Theorem 3.1 a
block of size 2×2 at the bottom right corner, as

$$P = \begin{bmatrix} 0_{k-4,1} & 0_{k-4,1} \\ -\sin \theta_1 & 0 \\ 0 & -\sin \theta_2 \end{bmatrix},$$

(16)

$$P = \begin{bmatrix} I_{k-4} & 0 & 0 \\ 0 & \cos \theta_1 & 0 \\ 0 & 0 & \cos \theta_2 \end{bmatrix} \ell^* \begin{bmatrix} 0_{k-4,1} & 0_{k-4,1} \\ -\sin \theta_1 & 0 \\ 0 & -\sin \theta_2 \end{bmatrix},$$

where $\cos \theta_1, \cos \theta_2 \in [0, 1]$, $a, b \in \text{Sp}(2)$ and $m, \ell \in \text{Sp}(k-2)$.

First step. Claim: if $a^*b \in \Omega \begin{bmatrix} \cos \theta_1 & 0 \\ 0 & \cos \theta_2 \end{bmatrix}$ then $P \in \Omega(0_{k-2}, I_2)$.

Let $H = a \begin{bmatrix} \cos \theta_1 & 0 \\ 0 & \cos \theta_2 \end{bmatrix} b^* + I_2$. The hypothesis on a^*b implies the invertibility of H. Thus, we can use H as a “pivot” to add to the first block of columns the second block multiplied on the right by

$$X = H^{-1}a \begin{bmatrix} 0_{1,k-4} & \sin \theta_1 & 0 \\ 0_{1,k-4} & 0 & \sin \theta_2 \end{bmatrix} \ell^*$$

and we get

$$P + \text{diag}(0_{k-2}, I_2)$$

$$\sim m \begin{bmatrix} I_{k-4} & 0 & 0 \\ 0 & \cos \theta_1 & 0 \\ 0 & 0 & \cos \theta_2 \end{bmatrix} \ell^*$$

$$- m \begin{bmatrix} 0_{k-4,1} & 0_{k-4,1} \\ -\sin \theta_1 & 0 \\ 0 & -\sin \theta_2 \end{bmatrix} b^*H^{-1}a \begin{bmatrix} 0_{1,k-4} & \sin \theta_1 & 0 \\ 0_{1,k-4} & 0 & \sin \theta_2 \end{bmatrix} \ell^*$$

$$\sim \begin{bmatrix} I_{k-4} \\ 0_{2,k-4} \end{bmatrix} \begin{bmatrix} \cos \theta_1 & 0 & 0 \\ 0 & \cos \theta_2 \end{bmatrix} + \begin{bmatrix} \sin \theta_1 & 0 \\ 0 & \sin \theta_2 \end{bmatrix} b^*H^{-1}a \begin{bmatrix} \sin \theta_1 & 0 \\ 0 & \sin \theta_2 \end{bmatrix} \ell^*$$

(17)

We observe that

$$b^*H^{-1}a = \left(\begin{bmatrix} \cos \theta_1 & 0 \\ 0 & \cos \theta_2 \end{bmatrix} + a^*b \right)^{-1}.$$

We examine the different values of $\cos \theta_1$ and $\cos \theta_2$.
First, suppose “\(\cos \theta_1 \neq 1\) and \(\cos \theta_2 \neq 1\)””. With usual arguments, we deduce:

\[
P + \text{diag}(0_{k-2}, I_2) \sim \begin{bmatrix}
\frac{\cos \theta_1}{\sin^2 \theta_1} & 0 \\
0 & \frac{\cos \theta_2}{\sin^2 \theta_2}
\end{bmatrix} + b^* H^{-1} a \\
\sim a^* b \begin{bmatrix}
\cos \theta_1 & 0 \\
0 & \cos \theta_2
\end{bmatrix} + I_2 \\
\sim \begin{bmatrix}
\cos \theta_1 & 0 \\
0 & \cos \theta_2
\end{bmatrix} + b^* a.
\]

Thus the hypothesis on \(a^* b\) implies \(P \in \Omega(0_{k-2}, I_2)\) in this case.

- If \(\cos \theta_1 = \cos \theta_2 = 1\), then the hypothesis implies immediately that \(P \in \Omega(0_{k-2}, I_2)\).

- It only remains to consider \(\cos \theta_1 = 1\) and \(\cos \theta_2 \neq 1\). (Notice that the case \(\cos \theta_1 \neq 1\) and \(\cos \theta_2 = 1\) is similar.) We denote \(\theta = \theta_2\).

 — Suppose \(a^* b\) is diagonal, i.e., \(a^* b = \begin{bmatrix} u & 0 \\ 0 & v \end{bmatrix}\). The equality (17) becomes

\[
P + \text{diag}(0_{k-2}, I_2) \sim \begin{bmatrix} 1 & 0 \\ 0 & \cos \theta \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & (v + \cos \theta)^{-1} \sin^2 \theta \end{bmatrix} \\
\sim \begin{bmatrix} 1 & 0 \\ 0 & \cos \theta + (v + \cos \theta)^{-1} \sin^2 \theta \end{bmatrix} \\
\sim (v + \cos \theta)^{-1} ((v + \cos \theta) \cos \theta + \sin^2 \theta) \\
\sim 1 + v \cos \theta.
\]

As \(\cos \theta \neq 1\), the quaternionic number \(1 + v \cos \theta\) is different from 0 and \(P + \text{diag}(0_{k-2}, I_2)\) is invertible.

 — If the matrix \(a^* b\) is not diagonal, we know from [10, Proposition 5.1] that it has the form \(a^* b = \begin{bmatrix} u & -\gamma v \\ v & \gamma u \end{bmatrix}\) with \(|\gamma| = 1\), \(v \neq 0\) and \(|v|^2 + |u|^2 = 1\). The equality (17) becomes

\[
P + \text{diag}(0_{k-2}, I_2) \sim \begin{bmatrix} 1 & 0 \\ 0 & \cos \theta \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \sin \theta \end{bmatrix} b^* H^{-1} a \begin{bmatrix} 0 & 0 \\ 0 & \sin \theta \end{bmatrix}.
\]

We compute

\[
b^* H^{-1} a = \left(\begin{bmatrix} 1 & 0 \\ 0 & \cos \theta \end{bmatrix} + a^* b\right)^{-1}.
\]
Denote
\[K = \begin{bmatrix} 1 & 0 \\ 0 & \cos \theta \end{bmatrix} + a^*b = \begin{bmatrix} u + 1 \\ v \end{bmatrix} \begin{bmatrix} -\bar{\nu}\gamma \\ v\bar{\nu}^{-1}\gamma + \cos \theta \end{bmatrix}. \]

If \(X \) is such that
\[v\bar{\nu}^{-1}\gamma + \cos \theta - vX = 0, \]
then we have
\[K^{-1} = \begin{bmatrix} 1 & -X \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u + 1 & -\bar{\nu}\gamma - (u + 1)X \\ v & 0 \end{bmatrix}^{-1} \]
\[= \begin{bmatrix} 1 & -X \\ 0 & 1 \end{bmatrix} \left((-\bar{\nu}\gamma - (u + 1)X)^{-1} (\bar{\nu}\gamma + (u + 1)X)^{-1}(u + 1)v^{-1} \right). \]

This implies
\[P + \text{diag}(0_{k-2}, I_2) \]
\[\sim \cos \theta(\bar{\nu}\gamma + (u + 1)X) + \sin^2 \theta(u + 1)v^{-1} \]
\[\sim \cos \theta(\bar{\nu}\gamma + (u + 1)\bar{\nu}v^{-1}\gamma) + \cos \theta(u + 1)v^{-1} \cos \theta + \sin^2 \theta(u + 1)v^{-1} \]
\[\sim \cos \theta(\bar{\nu}v + u\bar{\nu} + \bar{\nu})v^{-1}\gamma + (u + 1)v^{-1} \]
\[\sim \cos \theta(1 + \bar{\nu})v^{-1}\gamma + (u + 1)v^{-1}. \]

If this last quaternionic number is equal to zero, we have an equality of modules:
\[(\cos \theta) |1 + \bar{\nu}| |v|^{-1} = |1 + u| |v|^{-1} \]
which is impossible since \(\cos \theta \neq 1 \) and \(|1 + u| \neq 0 \). Therefore, in this last case, we have also the invertibility of \(P + \text{diag}(0_{k-2}, I_2) \) and the claim is proven.

Second step. Now we assume that \(a^*b \notin \Omega \begin{bmatrix} \cos \theta_1 & 0 \\ 0 & \cos \theta_2 \end{bmatrix} \). We observe:
- if \(a^*b = \begin{bmatrix} u \\ 0 \end{bmatrix} \) then the hypothesis implies \(\cos \theta_1 = 1 \) and \(u = -1 \) or \(\cos \theta_2 = 1 \) and \(v = -1 \).

We develop the different cases.
- Let \(a^*b = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \) with \(\cos \theta_1 = 1 \) and \(\cos \theta_2 \neq 1 \). We denote \(\theta = \theta_2 \). We replace \(b^* = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \) by its value in the expression of \(P \)
and get

\[
P = \begin{bmatrix}
m & \begin{bmatrix} I_{k-4} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \cos \theta \end{bmatrix} \ell^* & m & \begin{bmatrix} 0_{k-4,1} & 0_{k-4,1} \\ 0 & 0 \\ 0 & -\overline{v} \sin \theta \end{bmatrix} a^* \\
a & \begin{bmatrix} 0_{1,k-4} & 0 \\ 0 & \sin \theta \end{bmatrix} \ell^* & a & \begin{bmatrix} -1 & 0 \\ 0 & \overline{v} \cos \theta \end{bmatrix} a^*
\end{bmatrix}.
\]

Using the bottom right-hand term as pivot of \(P + \text{diag}(0, -I_2)\) gives, with computations similar to those in the first step, that

\[
P \in \Omega(0_{k-2}, -1, -1).
\]

- The second case with \(\cos \theta_2 = 1\) and \(\cos \theta_1 \neq 1\), \(v = -1\) gives the same result,

\[
P \in \Omega(0_{k-2}, -1, -1).
\]

- The last case, \(\cos \theta_1 = \cos \theta_2 = 1\) corresponds to

\[
P = \begin{bmatrix} m \ell^* & 0 \\ 0 & ab^* \end{bmatrix}
\]

and \(P \in \Omega(0_{k-2}, -1, -1)\).

- If \(a^*b\) is not diagonal, we shall prove that \(\cos \theta_1 = \cos \theta_2 = 1\).

In fact, \(a^*b\) has the form \(a^*b = \begin{bmatrix} u & -\overline{v} \gamma \\ v & \overline{v} u v^{-1} \gamma \end{bmatrix}\) with \(|\gamma| = 1\), \(v \neq 0\) and \(|v|^2 + |u|^2 = 1\). Then, \(a^*b \notin \Omega \begin{bmatrix} \cos \theta_1 & 0 \\ 0 & \cos \theta_2 \end{bmatrix}\) if and only if

\[
a^*b + \begin{bmatrix} \cos \theta_1 & 0 \\ 0 & \cos \theta_2 \end{bmatrix} = \begin{bmatrix} u + \cos \theta_1 & -\overline{v} \gamma \\ v & \overline{v} u v^{-1} \gamma + \cos \theta_2 \end{bmatrix}
\]

is not invertible.

From now on we shall denote \(c_1 = \cos \theta_1\) and \(c_2 = \cos \theta_2\).

As \(v \neq 0\), we can take the matrix \(X = v^{-1}(\overline{v} u v^{-1} \gamma + c_2),\) so

\[
\begin{bmatrix} u + c_1 & -\overline{v} \gamma \\ v & \overline{v} u v^{-1} \gamma + c_2 \end{bmatrix} \sim \begin{bmatrix} u + c_1 & -\overline{v} \gamma - (u + c_1)X \\ v & 0 \end{bmatrix},
\]

which is not invertible if and only if

\[-\overline{v} \gamma - (u + c_1)X = 0.\]

It follows

\[-\overline{v} \gamma = (u + c_1)v^{-1}(\overline{v} u v^{-1} \gamma + c_2) = \frac{1}{|v|^2}(|u|^2 \overline{v} \gamma + u \overline{v} c_2 + c_1 u \overline{v} \gamma + \overline{v} c_1 c_2),\]

hence

\[-|v|^2 \overline{v} \gamma = |u|^2 \overline{v} \gamma + u \overline{v} c_2 + c_1 u \overline{v} \gamma + \overline{v} c_1 c_2\]
and
\[-\bar{v}\gamma = u\bar{v}c_2 + c_1 \bar{u}\bar{v}\gamma + \bar{v}c_1 c_2,\]
because $|u|^2 + |v|^2 = 1$. Finally,
\[-(1 + c_1 \bar{u})\bar{v}\gamma = (u + c_1)c_2 \bar{v}\]
and, taking modules,
\[(19) \quad |1 + c_1 u| = |u + c_1|c_2.\]

We have:
(1) $c_2 \neq 0$: if $c_2 = 0$, $c_1 u = -1$ then $c_1|u| = 1$ so $|u| \geq 1$, which is impossible because $v \neq 0$;
(2) let us suppose $c_2 < 1$: from equation (19) we have $|1 + c_1 u|^2 < |u + c_1|^2$ and we deduce $1 - c_2^2 < (1 - c_2^2)|u|^2$, but $1 - c_2^2 \neq 0$, so $|u|^2 > 1$, a contradiction;
(3) now, as $c_2 = 1$, equation (19) is $|1 + c_1 u| = |u + c_1|$, which is equivalent to $1 - c_2^2 = (1 - c_2^2)|u|^2$, but $|u|^2 < 1$, so $c_2^2 = 1$.

Hence, $\cos \theta_1 = \cos \theta_2 = 1$ as stated.

From Proposition 4.6 we deduce the result. \qed

The previous results lead naturally to the following intriguing question.

Problem 5.4. Let k and j with $k \geq j$, do we have

\[\text{cat}_{X_{2k-j,k}} \text{Sp}(k) \leq \text{cat} \text{Sp}(j)?\]

Propositions 5.1, 5.2 and Proposition 5.3 give an affirmative answer for $j = 0, 1, 2$.

References

[1] Helmer Aslaksen, *Quaternionic determinants*, Math. Intelligencer 18 (1996), no. 3, 57–65. MR 1412993 (97j:16028)
[2] Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, *Lusternik-Schnirelmann category*, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857 (2004e:55001)
[3] Lucía Fernández-Suárez, Antonio Gómez-Tato, Jeffrey Strom, and Daniel Tanré, *The Lusternik-Schnirelmann category of Sp(3)*, Proc. Amer. Math. Soc. 132 (2004), no. 2, 587–595. MR 2022385 (2004m:55005)
[4] Norio Iwase and Mamoru Mimura, *L-S categories of simply-connected compact simple Lie groups of low rank*, Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), Progr. Math., vol. 215, Birkhäuser, Basel, 2004, pp. 199–212. MR 2039767 (2005a:55001)
[5] I. M. James, *The topology of Stiefel manifolds*, Cambridge University Press, Cambridge-New York-Melbourne, 1976, London Mathematical Society Lecture Note Series, No. 24. MR 0431239
[6] Hiroyuki Kadzisa and Mamoru Mimura, *Morse-Bott functions and the Lusternik-Schnirelmann category*, J. Fixed Point Theory Appl. **10** (2011), no. 1, 63–85. MR 2825740 (2012k:58016)

[7] Daisuke Kishimoto, *L-S category of quaternionic Stiefel manifolds*, Topology Appl. **154** (2007), no. 7, 1465–1469. MR 2310478

[8] Terry A. Loring, *Factorization of matrices of quaternions*, Expo. Math. **30** (2012), no. 3, 250–267. MR 2990115

[9] Enrique Macías-Virgós, John Oprea, Jeff Strom, and Daniel Tanré, *Height functions on quaternionic Stiefel manifolds*, J. Ramanujan Math. Soc. **32** (2017), no. 1, 1–16. MR 3621032

[10] Enrique Macías-Virgós and María José Pereira-Sáez, *Left eigenvalues of 2×2 symplectic matrices*, Electron. J. Linear Algebra **18** (2009), 274–280. MR 2519914

[11] , *Symplectic matrices with predetermined left eigenvalues*, Linear Algebra Appl. **432** (2010), no. 1, 347–350. MR 2566482 (2010m:15020)

[12] , *An upper bound for the Lusternik-Schnirelmann category of the symplectic group*, Math. Proc. Cambridge Philos. Soc. **155** (2013), no. 2, 271–276. MR 3091519

[13] Enrique Macías-Virgós, María José Pereira-Sáez, and Daniel Tanré, *Morse theory and the Lusternik-Schnirelmann category of quaternionic Grassmannians*, Proc. Edinb. Math. Soc. (2) **60** (2017), no. 2, 441–449. MR 3653866

[14] , *Cayley transform on Stiefel manifolds*, J. Geom. Phys. **123** (2018), 53–60. MR 3724775

[15] Tetsu Nishimoto, *On the Lusternik-Schnirelmann category of Stiefel manifolds*, Topology Appl. **154** (2007), no. 9, 1956–1960. MR 2319267

[16] Paul A. Schweitzer, *Secondary cohomology operations induced by the diagonal mapping*, Topology **3** (1965), 337–355. MR 0182969 (32 #451)

[17] Wilhelm Singhof, *On the Lusternik-Schnirelmann category of Lie groups*, Math. Z. **145** (1975), no. 2, 111–116. MR 0391075 (52 #11897)

(E. Macías-Virgós) INSTITUTE OF MATHEMATICS, UNIVERSITY OF SANTIAGO DE COMPOSTELA, 15782 SPAIN.

E-mail address: quique.macias@usc.es

(M.J. Pereira-Sáez) FACULDADE DE ECONOMIA E EMPRESA, UNIVERSIDADE DA CORUÑA, 15071 SPAIN.

E-mail address: maria.jose.pereira@udc.es

(Daniel Tanré) DÉPARTEMENT DE MATHÉMATIQUES, FACULTÉ DES SCIENCES ET TECHNOLOGIES, UNIVERSITÉ DE LILLE, 59655 VILLENEUVE D’ASCQ CEDEX, FRANCE.

E-mail address: Daniel.Tanre@univ-lille.fr