Abstract: The review is devoted to the chemical diversity of steroids produced by soft corals and their determined and potential activities. There are about 200 steroids that belong to different types of steroids such as secosteroids, spirosteroids, epoxy- and peroxy-steroids, steroid glycosides, halogenated steroids, polyoxygenated steroids and steroids containing sulfur or nitrogen heteroatoms. Of greatest interest is the pharmacological activity of these steroids. More than 40 steroids exhibit antitumor and related activity with a confidence level of over 90 percent. A group of 32 steroids shows anti-hypercholesterolemic activity with over 90 percent confidence. Ten steroids exhibit anti-inflammatory activity and 20 steroids can be classified as respiratory analeptic drugs. Several steroids exhibit rather rare and very specific activities. Steroids exhibit anti-osteoporotic properties and can be used to treat osteoporosis, as well as have strong anti-eczemic and anti-psoriatic properties and antispasmodic properties. Thus, this review is probably the first and exclusive to present the known as well as the potential pharmacological activities of 200 marine steroids.

Keywords: soft corals; steroids; chemical diversity; antitumor; anti-inflammatory; anti-eczemic; anti-psoriatic; biological activity prediction; PASS

1. Introduction

Soft corals belong to the order of Alcyonacea (class Octocorallia, Anthozoa, Cnidaria), formerly known as gorgonians [1,2] living in all the oceans of the world, especially in the tropics and subtropics. In addition, photosynthetic corals are successfully cultivated in artificial conditions and are the subject of chemical and biomedical investigation [3,4]. Soft corals produce more than 5800 secondary metabolites [5], including rare and unusual fatty acids [6–13], terpenoids [14–16], quinones [17], alkaloids [18–23], glycosides [24–31] and steroids [18,32–37]. It is known that many secondary metabolites isolated from marine invertebrates including soft corals, exhibit anticancer and other pharmacological activities [38–45].

In this review, we will look at rare and unusual steroids isolated from soft corals belonging to the order of Alcyonacea. The biological activity of many steroids has not been determined and we present the pharmacological activities detected experimentally and predicted based on the structure-activity relationships using the PASS (Prediction of Activity Spectra for Substances) software. PASS estimates the probabilities of several thousand biological activities with an average accuracy of about 96%. Probability of belonging to the class of “actives” Pa is calculated for each activity, providing the assessment of the hidden pharmacological potential of the investigated soft coral steroids [42].
2. Steroids Derived from the Genus *Sinularia*

Sinularia is a specific group of soft octocorals, a genus belonging to the family Alcyoniidae (class Anthozoa, phylum Cnidaria) and it includes about 175 actual species, 47 of which have been described only in the last quarter of a century [46,47]. *Sinularia* species are the most abundant corals in the entire Indo-Pacific region, especially in shallow water and dominate reef substrates [47]. Nowadays, many species of coral of the genus *Sinularia* are well adapted and cultured for biological and medical research and they are also an excellent source of many biologically active metabolites, including diterpenoids, unusual steroids and triterpenoids [15,19,38,40,48,49].

Three steroids, ergosta-5,24(28)-diene-3β,4α-diol (1), 24(S),28-epoxyergost-5-ene-3β,4α-diol (2) and dissesterol (3) were found in the methanol extract of the Vietnamese soft coral *Sinularia nanolobata*. Compound (2) exhibited moderate cytotoxicity against acute leukemia (HL-60) cell line with IC$_{50}$ value of 33.5 µM and a weak effect on the hepatoma cancer (HepG2) and colon adenocarcinoma (SW480) cell lines with IC$_{50}$ values of 64.3 and 71.0 µM, respectively [50]. The structures of the steroids (1–18) are shown in Figure 1 and the potential biological activities are shown in Table 1.

![Figure 1. Bioactive steroids derived from the genus Sinularia.](image-url)
Table 1. Probable biological activities of steroids derived from the genus Sinularia estimated by PASS (Prediction of Activity Spectra for Substances).

No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Biological Activity, (Pa) *
1	Antineoplastic (0.840) Proliferative diseases treatment (0.705) Antimetastatic (0.562) Anticarcinogenic (0.542)	Anti-hypercholesterolemic (0.920) Hypolipemic (0.798) Atherosclerosis treatment (0.637) Hyperparathyroidism treatment (0.523)	Respiratory analeptic (0.857) Anesthetic general (0.851) Anti-inflammatory (0.792) Antibacterial (0.754)
2	Antineoplastic (0.833) Chemopreventive (0.738) Proliferative diseases treatment (0.643) Antimetastatic (0.626)	Anti-hypercholesterolemic (0.840) Hypolipemic (0.646) Atherosclerosis treatment (0.634)	Anti-inflammatory (0.806) Anesthetic general (0.800) Respiratory analeptic (0.789) Antiinflammatory (0.616)
3	Antineoplastic (0.765) Dementia treatment (0.512)	Anti-hypercholesterolemic (0.655) Hypolipemic (0.530)	Immunosuppressant (0.735) Anti-inflammatory (0.667)
4	Antineoplastic (0.798) Apoptosis agonist (0.751) Antimetastatic (0.524)	Hypolipemic (0.732) Cholesterol synthesis inhibitor (0.545)	Immunosuppressant (0.799) Anti-inflammation (0.748) Antibacterial (0.642)
5	Proliferative diseases treatment (0.967) Chemopreventive (0.958) Anticarcinogenic (0.907) Antineoplastic (0.902) Dementia treatment (0.508)	Anti-hypercholesterolemic (0.947) Hypolipemic (0.781) Atherosclerosis treatment (0.609)	Respiratory analeptic (0.992) Anti-inflammatory (0.900) Neuroprotector (0.880) Antiinflammatory (0.768) Antibacterial (0.797)
6	Chemopreventive (0.839) Anticarcinogenic (0.907) Antineoplastic (0.902)	Anti-hypercholesterolemic (0.937) Hypolipemic (0.809) Neuroprotector (0.767) Atherosclerosis treatment (0.592)	Respiratory analeptic (0.896) Anesthetic general (0.828) Anti-inflammatory (0.778) Antibacterial (0.797)
7	Antineoplastic (0.861) Proliferative diseases treatment (0.716) Anticarcinogenic (0.956) Antimetastatic (0.560)	Anti-hypercholesterolemic (0.883) Hypolipemic (0.771) Atherosclerosis treatment (0.675)	Respiratory analeptic (0.868) Anti-inflammation (0.821) Anti-inflammatory (0.755) Antibacterial (0.603) Antimycobacterial (0.569)
8	Antineoplastic (0.852) Proliferative diseases treatment (0.766) Anticarcinogenic (0.732)	Anti-hypercholesterolemic (0.955) Hypolipemic (0.876) Neuroprotector (0.788) Atherosclerosis treatment (0.658)	Respiratory analeptic (0.856) Anti-inflammatory (0.750) Anti-mycobacterial (0.653)
9	Chemopreventive (0.902) Antineoplastic (0.858) Proliferative diseases treatment (0.821)	Anti-hypercholesterolemic (0.911) Atherosclerosis treatment (0.548) Hypolipemic (0.548)	Respiratory analeptic (0.896) Immunosuppressant (0.765)
10	Antineoplastic (0.776) Apoptosis agonist (0.601)	Anti-hypercholesterolemic (0.909)	Antiprotozoal (Plasmodium) (0.778) Anti-inflammatory (0.765)
11	Antineoplastic (0.807) Apoptosis agonist (0.747) Proliferative diseases treatment (0.596)	Anti-hypercholesterolemic (0.630)	Respiratory analeptic (0.930) Anti-asthmatic (0.627)
12	Antineoplastic (0.838)	Anti-hypercholesterolemic (0.909)	Anti-inflammation (0.792)
13	Apoptosis agonist (0.790) Antineoplastic (0.781)	Respiratory analeptic (0.772) Immunosuppressant (0.744)	Antiinflammatory (0.708)
14	Antineoplastic (0.824) Proliferative diseases treatment (0.610)	Anti-hypercholesterolemic (0.909) Lipid metabolism regulator (0.672)	Respiratory analeptic (0.907) Anti-inflammatory (0.673)
15	Antineoplastic (0.865) Proliferative diseases treatment (0.812) Anticarcinogenic (0.730)	Anti-hypercholesterolemic (0.930) Hypolipemic (0.827) Atherosclerosis treatment (0.646)	Respiratory analeptic (0.970) Anti-inflammatory (0.904) Antibacterial (0.586)
16	Antineoplastic (0.838) Proliferative diseases treatment (0.729) Antimetastatic (0.651)	Anti-hypercholesterolemic (0.909) Hypolipemic (0.786)	Respiratory analeptic (0.937) Antiinflammatory (0.789) Cardiotonic (0.626)
17	Antineoplastic (0.730)	Anti-hypercholesterolemic (0.679)	Immunosuppressant (0.722)
18	Antineoplastic (0.925) Proliferative diseases treatment (0.787) Prostate cancer treatment (0.670)	Anti-hypercholesterolemic (0.913) Hypolipemic (0.626) Lipid metabolism regulator (0.566)	Respiratory analeptic (0.780) Autoimmune disorders treatment (0.908) Antiinflammation (0.525)

* Pa is the probability of belonging to the class of “actives”; only activities with Pa > 0.5 are shown.

Steroids, 8αH-3β,11-dihydroxy-5α,6α-expoxy-24-methylene-9,11-secocholestan-9-one (4) and crassarosteroside A (5) were obtained from Sinularia granosa and S. crassa soft coral extracts [51,52], respectively. Steroids (3), 3β-hydroxyergosta-5,24(28)-diene-7-one (6), ergosta-3β,5α,6β-triol (7) have been
isolated from *Sinularia conferta* and *S. nanolobata* [53,54] and compound (7) and 3β,7α-dihydroxyergosta-5,24(28)-diene (8) were detected in MeOH extract of the soft coral *S. cruciata* [55].

The reef soft coral *S. brassica*, which was cultured in an aquarium, afforded four steroids with methyl ester groups, sinubrasones A (9), B (10), D (11) and C (12). Compounds 9 and 10 were shown to exhibit significant cytotoxicity and compounds 11 and 12 were demonstrating attracting anti-inflammatory activities [56]. Steroids, 5,6β-epoxy-gorgosterol (13) and leptosteroid (14) were isolated and structurally elucidated from the Vietnamese soft coral *Sinularia leptoclados*. Both compounds obtained showed significant cytotoxicity against HepG2 (IC₅₀ = 21.1 µM) and colon adenocarcinoma (IC₅₀ = 28.6 µM) cell lines [54].

The cytotoxic steroid, crassarosterol A (15), which was originally found in the soft coral *S. crassa* [57] was later found in *S. arborea* [58] and *S. flexibilis* [59]. Analysis of its biological activity has shown that it exhibits cytotoxicity toward K562 and MOLT-4 leukemia cancer cells. Originally a steroid, 24-methyl-5β-cholest-24(28)-en-1α,3β,5β-triol-6-one, which was named gibberoketosterol (16) was identified from the lipophilic extracts of a Taiwanese soft coral *S. gibberosa* by Ahmed and co-workers in 2003 [60] and showed that to exhibit moderate cytotoxicity against the growth of Hepa59T/VGH cancer cells and it was later discovered in *S. numerosa* [61]. A methanol extract of the soft coral *S. microspiculata* revealed two steroids, 7-oxo-gorgosterol (17) and 16α-hydroxy-sarcosterol (18) [62]. Soft coral from Southern Taiwan *S. leptoclados* yielded a secosterol (19) [63].

The soft coral *S. flexibilis* appears to be one of the few corals most studied and described in the scientific literature. The structures of the steroids (19-36) are shown in Figure 2 and the potential biological activities are shown in Table 2. Yu and co-workers have used this organism to study steroids. Thus, a series of steroids (20–25) was isolated from the methanolic extract and their structures were established as: 5α,8α-epidioxygorgosta-6-en-3β-ol (20), 5α,8α-epidioxygorgosta-6,9(11)-dien-3β-ol (23), 22α,28-epidioxycholesta-5,23(E)-dien-3β-ol (25A), its C-22 epimer (25B) and compound (24) [64]. *S. nanolobata* yielded a sterol, sarcophytosterol (26), along with steroids (3) and (6) [65]. An unusual steroid, 3-(1′,2′-ethandiol)-cholest-3β,5α,6α,11α-tetraol (27) and secosteroid (28) were isolated from the South China sea gorgonian *S. suberosa* [66]. Two secosteroids (29) and (30) has been determined in Australian soft coral *Sinularia* sp. [67,68]. C18-Oxygenated steroidal ketal (31) was found in a Pacific soft coral extract of the genus *Sinularia* [69]. The minor sterol, ergosta-5,24(28),25-trien-3β-ol (32), was isolated from the soft coral extract of the genus *Sinularia*, its structure was determined and it was synthesized [70] and soft coral *S. dissecta* yielded polyhydroxylated sterol (33) [71,72] and a similar sterol (34) detected in the *S. numerosa* [73].

Kobayashi and co-workers conducted studies of the soft coral *S. mayi*, *S. gibberosa*, *S. dissecta* and *Sinularia* sp. collected off the coast of Japan and identified a series of steroids (35–42) but the biological activity of the isolated steroids was not determined [74–78]. The structures of the steroids (37–58) are shown in Figure 3 and the potential biological activities are shown in Table 3. A 11α,12α-epoxy-steroid (43) was identified in *S. dissecta* [79], a 3β,6α,9β,19α-tetraol-steroid (44) was derived from *S. inexplicita* [80].

Octocoral *S. leptoclados* is a source of bioactive 9,11-seco steroids and steroid 3β,11-dihydroxy-9,11-seco-gorgost-5-en-9-one (45) showed the highest γ-peroxisome proliferator-activated receptor (PPARγ) activity with an IC₅₀ value of 8.3 µM for inhibiting human breast adenocarcinoma cell (MCF-7) growth. In addition, this steroid modulated the expression of various PPARγ-regulated downstream biomarkers including cyclin D1, cyclin-dependent kinase, B-cell lymphoma 2 (Bcl-2), p38 and extracellular-signal-regulated kinase [81,82] and two cytotoxic 5,8-epidioxy-steroid (46) and also (47) were found in *Sinularia* sp. [83,84]. Similar steroidal glycosides (48–51) were isolated from water-methanol solutions of the soft coral *S. crispa* [85], *Sinularia* sp. [86] and *S. gibberosa* [87].

Two cytotoxic secosteroids, 22α-Acetoxy-24-methylene-3β,6α,11-trihydroxy-9,11-seco-cholest-7-en-9-one (52) and 11-acetoxy-24-methylene-1β,3β,6α-trihydroxy-9,11-seco-cholest-7-en-9-one (53) have been isolated from the soft coral *S. nanolobata* [61].
Two unusual steroidal derivatives named erectsterates A (54) and B (55), a pair of epimers at C-10, were isolated from the South China Sea soft coral S. erecta. Both compounds are rare steroids with a high degradation in ring B and an ester linkage between A and C/D rings, like the known compounds chaxines B and D from an edible mushroom Agrocybe chaxinga [88]. Compound (55) showed cytotoxic activity against A549 (human adenocarcinoma), HT-29 (human colorectal adenocarcinoma), SNU-398 (hepatocellular carcinoma) and Capan-1 (human pancreatic ductal adenocarcinoma) cancer cell lines [89].

Figure 2. Bioactive steroids derived from the genus Sinularia.

Table 2. Probable biological activities of steroids derived from the genus Sinularia estimated by PASS.

No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Biological Activity, (Pa) *
19	Antineoplastic (0.759)	Antimetastatic (0.661)	Anti-hypercholesterolemic (0.800)
			Hypolipemic (0.653)
			Anesthetic general (0.768)
			Antibacterial (0.615)
20	Apoptosis agonist (0.941)	Antineoplastic (0.761)	Chemopreventive (0.687)
			Atherosclerosis treatment (0.747)
			Lipoprotein disorders treatment (0.567)
			Antiprotozoal (Plasmodium) (0.791)
			Antioxidant (0.650)
			Antifungal (0.634)
21	Apoptosis agonist (0.982)	Chemopreventive (0.945)	Antineoplastic (0.920)
			Atherosclerosis treatment (0.909)
			Hypolipemic (0.831)
			Antiprotozoal (Plasmodium) (0.845)
			Immunosuppressant (0.733)

Figure 2. Bioactive steroids derived from the genus Sinularia.
No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Biological Activity, (Pa) *
19	Antineoplastic (0.759)	Anti-hypercholesterolemic (0.800)	Anesthetic general (0.768)
	Antimetastatic (0.661)	Hypolipemic (0.653)	Antibacterial (0.615)
20	Apoptosis agonist (0.941)	Atherosclerosis treatment (0.747)	Antiprotozoal (Plasmodium) (0.791)
	Antineoplastic (0.761)	Lipoprotein disorders treatment (0.567)	Antioxidant (0.650)
	Chemopreventive (0.687)		Antifungal (0.634)
21	Apoptosis agonist (0.982)	Atherosclerosis treatment (0.909)	Antiprotozoal (Plasmodium) (0.845)
	Chemopreventive (0.945)		Immunosuppressant (0.733)
	Antineoplastic (0.920)	Lipoprotein disorders treatment (0.816)	Anti-hypercholesterolemic (0.799)
	Prostate cancer treatment (0.680)		Antiparkinsonian, rigidity relieving (0.730)
22	Apoptosis agonist (0.969)	Atherosclerosis treatment (0.841)	Antiprotozoal (Plasmodium) (0.828)
	Chemopreventive (0.897)	Lipoprotein disorders treatment (0.701)	Antioxidant (0.670)
	Antineoplastic (0.740)	Hypolipemic (0.645)	Antifungal (0.619)
	Chemopreventive (0.880)	Anti-hypercholesterolemic (0.559)	Anti-inflammatory (0.523)
	Antimetastatic (0.645)		
	Proliferative diseases treatment (0.513)		
23	Apoptosis agonist (0.962)	Atherosclerosis treatment (0.626)	Antiprotozoal (Plasmodium) (0.623)
	Chemopreventive (0.755)		Antileukemic (0.552)
	Antineoplastic (0.740)		
	Proliferative diseases treatment (0.577)		
24	Apoptosis agonist (0.994)	Atherosclerosis treatment (0.833)	Antiprotozoal (Plasmodium) (0.693)
	Chemopreventive (0.966)	Hypolipemic (0.785)	Immunosuppressant (0.692)
	Antineoplastic (0.905)	Anti-hypercholesterolemic (0.746)	Antiparkinsonian, rigidity relieving (0.672)
	Prostate cancer treatment (0.546)	Lipoprotein disorders treatment (0.594)	
25A	Antineoplastic (0.816)	Anti-hypercholesterolemic (0.788)	Antiprotozoal (Plasmodium) (0.868)
	Proliferative diseases treatment (0.577)	Hypolipemic (0.635)	Immunosuppressant (0.766)
25B	Antineoplastic (0.819)	Anti-hypercholesterolemic (0.784)	Antiprotozoal (Plasmodium) (0.861)
	Proliferative diseases treatment (0.581)	Hypolipemic (0.635)	Immunosuppressant (0.756)
26	Antineoplastic (0.758)	Anti-hypercholesterolemic (0.867)	Respiratory analeptic (0.809)
	Chemopreventive (0.797)	Hypolipemic (0.640)	Immunosuppressant (0.711)
	Proliferative diseases treatment (0.642)	Anxiolytic (0.736)	Anti-inflammatory (0.689)
	Prostate cancer treatment (0.598)	Atherosclerosis treatment (0.526)	Anti-inflammator (0.560)
27	Antineoplastic (0.886)	Anti-hypercholesterolemic (0.686)	Anti-inflammator (0.696)
	Apoptosis agonist (0.856)	Atherosclerosis treatment (0.630)	Anti-inflammator (0.696)
28	Antineoplastic (0.876)	Hypolipemic (0.724)	Immunosuppressant (0.669)
	Apoptosis agonist (0.874)	Anti-hypercholesterolemic (0.677)	Anesthetic (0.570)
	Chemopreventive (0.696)	Atherosclerosis treatment (0.620)	Anti-inflammator (0.553)
29	Antineoplastic (0.763)	Anti-hypercholesterolemic (0.831)	Respiratory analeptic (0.625)
	Chemopreventive (0.631)	Hypolipemic (0.625)	Antibacterial (0.573)
	Proliferative diseases treatment (0.541)	Prostate disorders treatment (0.536)	Antifungal (0.558)
30	Antineoplastic (0.807)	Anti-hypercholesterolemic (0.915)	Anti-inflammator (0.736)
	Proliferative diseases treatment (0.651)	Lipid metabolism regulator (0.768)	Antibacterial (0.582)
31	Antineoplastic (0.885)	Hypolipemic (0.616)	Anti-inflammator (0.911)
32	Antineoplastic (0.910)	Anti-hypercholesterolemic (0.955)	Respiratory analeptic (0.959)
	Proliferative diseases treatment (0.882)	Atherosclerosis treatment (0.596)	Antiprotozoal (Plasmodium) (0.667)
33	Antineoplastic (0.831)	Anti-hypercholesterolemic (0.903)	Anti-inflammator (0.870)
	Proliferative diseases treatment (0.698)	Hypolipemic (0.685)	Anti-fungal (0.783)
	Apoptosis agonist (0.593)	Atherosclerosis treatment (0.546)	Neumoprotector (0.636)
34	Apoptosis agonist (0.864)	Anti-hypercholesterolemic (0.889)	Anti-inflammator (0.735)
	Proliferative diseases treatment (0.700)	Lipoprotein disorders treatment (0.587)	Antibacterial (0.550)
35	Antineoplastic (0.805)	Hypolipemic (0.529)	Immunosuppressant (0.640)
36	Antineoplastic (0.883)	Hypolipemic (0.795)	Anti-inflammator (0.763)
	Apoptosis agonist (0.848)	Anti-hypercholesterolemic (0.772)	Anti-fungal (0.753)
	Proliferative diseases treatment (0.665)	Atherosclerosis treatment (0.666)	Antibacterial (0.588)

* Only activities with Pa > 0.5 are shown.
Figure 3. Bioactive steroids derived from the genus *Sinularia*.

Table 3. Biological activities of steroids derived from the genus *Sinularia* estimated by PASS.

No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Biological Activity, (Pa) *
37	Antineoplastic (0.915) Proliferative diseases treatment (0.722)	Anti-hypercholesterolemic (0.910) Lipid metabolism regulator (0.675)	Autoimmune disorders treatment (0.889) Neuroprotector (0.700)
38	Antineoplastic (0.895) Proliferative diseases treatment (0.673)	Anti-hypercholesterolemic (0.910) Atherosclerosis treatment (0.695) Lipid metabolism regulator (0.575)	Autoimmune disorders treatment (0.874) Anti-inflammatory (0.717) Neuroprotector (0.700)
39	Antineoplastic (0.903) Proliferative diseases treatment (0.768) Dementia treatment (0.554)	Anti-hypercholesterolemic (0.947) Lipid metabolism regulator (0.768)	Autoimmune disorders treatment (0.829) Neuroprotector (0.835) Anti-inflammatory (0.786)
40	Apoptosis agonist (0.823) Antineoplastic (0.815) Proliferative diseases treatment (0.610)	Hypolipemic (0.713)	Anti-fungal (0.737) Anti-inflammatory (0.705) Anti-bacterial (0.597)
A steroid named dissectolide (56) was purified from the methanol extract of soft coral *S. dissecta* [90]. The isolated steroid inhibits the growth of *Balanus amphitrite* larvae [91]. The ethyl acetate extract of a reef soft coral *S. brassica*, which was cultured in a tank, afforded two steroids, sinubrasones A (57) and B (58). Both highlighted products to exhibit significant cytotoxicity [92].
3. Steroids Derived from the other Coral’s Genera

The 17β,20β-epoxy-23,24-dimethylcholest-5-ene-3β,22-diacetate (59) and three unusual steroids (60–62) including secosteroid (62) were isolated from the Indian Ocean soft coral Sarcophyton crassocaula [93]. Cytotoxic steroids (63–67) were obtained from the acetone and MeOH extract of the soft coral Nephthea erecta [94]. A steroid with a spiro-ring A, B system named chabrolosteroid C (66) and chabrolosteroid A (68) were isolated from an organic extract of a Taiwanese soft coral Nephthea chabrolii [95]. The soft coral Umbellulifera petasites produces the steroid (68) and petasiterone B (69), as well as 5α-pregna-20-en-3-one (70), 5α,8α-epidioxycholest-6-en-3β-ol (71), 5α,8α-epidioxy-24(S)-methylcholesta-6,22-dien-3β-ol (72) and 5α,8α-epidioxy-24α-ethyl-cholesta-6,22-dien-3β-ol (73) have been found in the soft coral Alcyonium gracillimum [96–98]. The structures of the steroids (59–84) are shown in Figure 4 and the potential biological activities are shown in Table 4.

Figure 4. Bioactive steroids derived from soft corals.
Unique highly oxygenated 13,17-seco steroids with split D ring were obtained from extracts of a Japanese octocoral of the genus *Dendronephthya* collected off the Izu Peninsula and named isogosterones A–D (74–77). The resulting steroids have inhibited the settlement of the *B. amphitrite* cyprid larvae [99]. Steroid, named 6-epi-yonarasterol B (78) was found in the Formosan gorgonian coral *Echinomuricea* sp. (family Plexauridae) [100].

Lactonic steroid derivatives with an unprecedented 1,10-secoergostane skeleton, stoloniolide I and II (79 and 80) and stoloniferones A (81), D (82), J (83), L (84) and O (85), which showed cytotoxic activity were found in the Okinawan soft coral *Clavularia viridis* [101–104].

Table 4. Probable biological activities of steroids derived from soft coral species estimated by PASS.

No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional biological activity, (Pa) *
59	Antineoplastic (0.886) Apoptosis agonist (0.648)	Anti-hypercholesterolemic (0.819) Cholesterol synthesis inhibitor (0.570)	Respiratory analeptic (0.888) Immunomodulator (HIV) (0.850)
60	Antineoplastic (0.843) Apoptosis agonist (0.780) Dementia treatment (0.528)	Neuroprotector (0.611) Nootropic (0.587) Hypolipemic (0.536)	Respiratory analeptic (0.835)
61	Antineoplastic (0.892) Apoptosis agonist (0.639)		Anti-inflamatory (0.599)
62	Antineoplastic (skin cancer) (0.650) Antineoplastic (0.652)		Anti-inflamatory (0.608) Immunomodulator (HIV) (0.568)
63	Antineoplastic (0.788) Apoptosis agonist (0.628)	Hypolipemic (0.738) Cholesterol synthesis inhibitor (0.660)	Antifungal (0.699) Anti-inflamatory (0.623)
64	Antineoplastic (0.824) Apoptosis agonist (0.634)	Hypolipemic (0.707) Cholesterol synthesis inhibitor (0.533)	Antifungal (0.777)
65	Antineoplastic (0.841) Proliferative diseases treatment (0.732) Apoptosis agonist (0.713)	Anti-hypercholesterolemic (0.848) Hypolipemic (0.762) Cholesterol synthesis inhibitor (0.615)	Respiratory analeptic (0.947) Immunosuppressant (0.834)
66	Antineoplastic (0.761) Proliferative diseases treatment (0.575)	Anti-hypercholesterolemic (0.824) Atherosclerosis treatment (0.636)	Respiratory analeptic (0.833)
67	Chemopreventive (0.882) Antineoplastic (0.830) Proliferative diseases treatment (0.738)	Anti-hypercholesterolemic (0.884) Atherosclerosis treatment (0.679)	Anti-inflamatory (0.860) Respiratory analeptic (0.848)
68	Antineoplastic (0.744)		Anti-inflamatory (0.691)
69	Antineoplastic (0.875) Proliferative diseases treatment (0.856)	Anti-hypercholesterolemic (0.918) Atherosclerosis treatment (0.618)	Anti-inflamatory (0.903) Nootropic (0.654)
70	Antineoplastic (0.822) Prostate disorders treatment (0.796)	Anti-hypercholesterolemic (0.634)	Erythropoiesis stimulant (0.858) Immunomodulator (HIV) (0.858)
71	Apoptosis agonist (0.964) Chemopreventive (0.906) Antineoplastic (0.854)	Atherosclerosis treatment (0.865) Lipoprotein disorders treatment (0.761)	Antiprotozoal (Plasmodium) (0.876) Respiratory analeptic (0.766)
72	Apoptosis agonist (0.982) Chemopreventive (0.945) Antineoplastic (0.920)	Atherosclerosis treatment (0.909) Hypolipemic (0.831) Lipoprotein disorders treatment (0.816)	Antiprotozoal (Plasmodium) (0.845)
73	Apoptosis agonist (0.970) Chemopreventive (0.929) Antineoplastic (0.883)	Atherosclerosis treatment (0.904) Anti-hypercholesterolemic (0.856) Hypolipemic (0.838)	Antiprotozoal (Plasmodium) (0.828)
74	Antineoplastic (0.891) Proliferative diseases treatment (0.600)	Hypolipemic (0.683)	Anti-inflamatory (0.816) Antiprotozoal (Plasmodium) (0.719)
75	Antineoplastic (0.932) Proliferative diseases treatment (0.611)	Anti-hypercholesterolemic (0.612)	Anti-inflamatory (0.886)
76	Antineoplastic (0.933) Proliferative diseases treatment (0.623)		Anti-inflamatory (0.902) Respiratory analeptic (0.823)
77	Antineoplastic (0.905) Chemopreventive (0.617)	Autoimmune disorders treatment (0.587)	Anti-inflamatory (0.863) Antiprotozoal (Plasmodium) (0.653)
78	Apoptosis agonist (0.854) Antineoplastic (0.787)	Anti-hypercholesterolemic (0.769) Atherosclerosis treatment (0.635)	Respiratory analeptic (0.941)
79	Antineoplastic (0.887) Apoptosis agonist (0.880) Chemopreventive (0.605)	Anti-hypercholesterolemic (0.808) Hypolipemic (0.787) Atherosclerosis treatment (0.689)	Anti-inflamatory (0.682)
Polyhydroxygenated steroids, hipposterone M (86), hippisterol G (87) and hippusterokeratol A (88) that demonstrated cytotoxicity against the anti-HCMV (human cytomegalovirus) were obtained from extracts of Taiwanese octocoral *Isis hippuris* collected at Orchid Island [105]. The structures of the steroids (85–111) are shown in Figure 5 and the potential biological activities are shown in Tables 5 and 6. Steroid, named erectasteroid H (89), showed cytotoxic activity against P-388 (leukemia) and HT-29 [106] and spirosteroid (90) have been isolated from the Formosan soft coral *N. erecta* [107,108].

The coral *Klyxum flaccidum* produced the secosteroid, klyflaccisteroid K (91), which showed significant anti-inflammatory activity in suppressing superoxide anion generation and elastase release, with IC₅₀ values of 5.8 and 1.5 µM, respectively [109] and the coral *Pinnigorgia* sp. produces bioactive 9,11-secosteroids, pinnisteroids A and C (92 and 93) displayed remarkable inhibitory effects on the generation of superoxide anions and the release of elastase in human neutrophils, with IC₅₀ values from 2.3 to 3.3 µM [110]. The soft coral *Lobophytum laevigatum* contained unusual steroid, (22S,24S)-24-methyl-22,25-epoxyfurost-5-ene-3,20β-diol (94) and demonstrated significantly upregulated PPAR transcriptional activity dose-dependently in Hep-G2 cells [111].

The 9,11-secosteroids, pinnigorgiols A (95), B (96) and E (97) with a rare carbon skeleton, a tricyclo[5,2,1]decane ring, were isolated from a gorgonian coral identified as *Pinnigorgia* sp. Isolated compounds displayed inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils [112,113]. 16,22-Epoxy-20β,23S-dihydroxycholest-1-ene-3-one (98) unusual cholestan derivatives, was isolated from the South China Sea gorgonian coral *Subergorgia suberosa*. A series of cytotoxic steroids, verrucosteroids A (99), B (100), D (101) and F (102), which demonstrated anticancer activity against eight human cancer cell lines as LNCaP (prostate cancer), HepG2, KB (epidermoid carcinoma), MCF-7, SK-Mel2 (melanoma), HL-60, LU-1 (lung cancer) and SW480 were isolated from the Vietnamese gorgonian *Verruella corona* [114].

A series of steroids (103–111) was found and isolated for studying their biological activity from the genus *Alcyonium*. A steroid isolated from the Formosan soft coral *Alcyonium* sp. (Alcyoniidae) 3α,7α, 12α-triacetoxy-5β-cholanic acid (103) [115] and steroids (104–107) were obtained from the crude extract of *A. gracilum* which exhibited moderate cytotoxicity (IC₅₀ 22 µg/mL) and antiviral activity (IC₅₀ 8 µg/mL) against P388 and HSV-1 (human α-herpesvirus), respectively [116,117]. Steroid derivatives 3-methoxy-19-norpregna-1,3,5(10),20-tetraene (108), 3-(4-O-acetyl-deoxy-β-galactopyranosyloxy)-19-norpregna-1,3,5(10),20-tetraene (109) were isolated from *A. gracilum*, which was collected from the Gulf of Sagami, Japan [118] and cytotoxic 24-methylcholesterol-4(5),24(28)-diene-3β,6β-diol (110) has been isolated from *A. patagonicum*, which was collected from the South China Sea [119]. The acetone extract of *Alcyonium* sp., which was collected from Taketomi Island, Okinawa, yielded steroid, 3α-O-acetyl-pregnedioside-A (111) [120].

Another series of cytotoxic steroids called sterone steroids A (112), B (113), D (114), F (115) and G (116, activity is shown in Table 7) were isolated from the methylene chloride extract of the Formosan soft coral *Stereonephthya crystalliana*. The extract of this coral showed significant cytotoxicity against A549, HT-29 and P-388 cancer cells in vitro [121]. Another two cytotoxic named sclerosteroids D (117) and E (118) were found in the soft coral *Scleronephthya gracilum* [122].
4-hydroxymethyl-5β-pregn-3, 20-dione (119) has been isolated from the South China Sea gorgonian Subergorgia suberosa [123].

Figure 5. Bioactive steroids derived from soft corals.
Table 5. Probable biological activities of steroids derived from soft coral species estimated by PASS.

No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Biological Activity, (Pa) *
85	Apoptosis agonist (0.902)	Anti-hypercholesterolemic (0.894)	Anti-inflammatory (0.829)
	Antineoplastic (0.879)	Atherosclerosis treatment (0.650)	Immunosuppressant (0.799)
86	Antineoplastic (0.891)	Anti-hypercholesterolemic (0.841)	Angiogenesis inhibitor (0.910)
	Neutroprotector (0.727)		Respiratory analeptic (0.848)
87	Antineoplastic (0.864)	Anti-hypercholesterolemic (0.836)	Anesthetic general (0.910)
	Neutroprotector (0.806)		Angiogenesis inhibitor (0.895)
88	Antineoplastic (0.868)	Anti-hypercholesterolemic (0.623)	Angiogenesis inhibitor (0.765)
	Hypolipemic (0.521)		Anti-asthmatic (0.630)
89	Chemopreventive (0.882)	Anti-hypercholesterolemic (0.884)	Anti-inflammatory (0.860)
	Apoptosis agonist (0.668)	Hyperlipemic (0.623)	Anti-asthmatic (0.542)
90	Chemopreventive (0.761)	Anti-hypercholesterolemic (0.824)	Respiratory analeptic (0.833)
	Antineoplastic (0.761)	Atherosclerosis treatment (0.636)	Immunosuppressant (0.740)
91	Apoptosis agonist (0.767)	Hyperlipemic (0.520)	Antiprotozoal (0.723)
	Antineoplastic (0.597)	Atherosclerosis treatment (0.500)	Immunosuppressant (0.534)
92	Antineoplastic (0.871)	Anti-hypercholesterolemic (0.832)	Nootropic (0.744)
	Apoptosis agonist (0.859)	Atherosclerosis treatment (0.687)	
93	Antineoplastic (0.812)	Hyperlipemic (0.764)	Immunosuppressant (0.652)
	Apoptosis agonist (0.837)	Atherosclerosis treatment (0.575)	Nootropic (0.602)
94	Antineoplastic (0.935)	Anti-hypercholesterolemic (0.789)	Immunomodulator (HIV) (0.958)
	Apoptosis agonist (0.833)		Respiratory analeptic (0.923)
95	Antineoplastic (0.860)	Hyperlipemic (0.748)	Immunosuppressant (0.773)
	Apoptosis agonist (0.844)	Anti-hypercholesterolemic (0.536)	安善民jective treatment (0.608)
96	Antineoplastic (0.773)	Hyperlipemic (0.595)	Anti-eczematogenic (0.864)
97	Antineoplastic (0.776)	Hyperlipemic (0.559)	Anti-eczematogenous (0.856)
98	Antineoplastic (0.809)	Anti-hypercholesterolemic (0.672)	Respiratory analeptic (0.935)

* Only activities with Pa > 0.5 are shown.

Table 6. Probable biological activities of steroids derived from soft coral species estimated by PASS.

No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Biological Activity, (Pa) *
99	Antineoplastic (0.893)	Hyperlipemic (0.736)	Respiratory analeptic (0.842)
	Apoptosis agonist (0.791)	Atherosclerosis treatment (0.717)	Anti fungal (0.821)
100	Antineoplastic (0.885)	Hyperlipemic (0.738)	Respiratory analeptic (0.849)
	Apoptosis agonist (0.793)	Atherosclerosis treatment (0.712)	Anti fungal (0.825)
101	Antineoplastic (0.887)	Hyperlipemic (0.906)	Respiratory analeptic (0.934)
	Apoptosis agonist (0.764)	Neutroprotector (0.892)	Immunosuppressant (0.725)
	Proliferative diseases treatment (0.712)	Hyperlipemic (0.733)	Immunomodulator (HIV) (0.925)
	Dementia treatment (0.629)	Autoimmune disorders treatment (0.675)	Anesthetic general (0.786)
102	Antineoplastic (0.870)	Hyperlipemic (0.823)	Respiratory analeptic (0.932)
	Prostate cancer treatment (0.786)	Atherosclerosis treatment (0.879)	Immunosuppressant (0.939)
	Apoptosis agonist (0.642)	Cholesterol synthesis inhibitor (0.736)	Respiratory analeptic (0.932)
103	Proliferative diseases treatment (0.834)	Anti-hypercholesterolemic (0.918)	Analgetic (0.864)
	Antineoplastic (0.805)	Atherosclerosis treatment (0.655)	Antiviral (Influenza) (0.789)
		Cholesterol synthesis inhibitor (0.650)	Antiprotozoal (0.691)
104	Proliferative diseases treatment (0.886)	Neurodegenerative diseases treatment (0.566)	Anti-inflammatory (0.849)
	Antineoplastic (0.886)		Anti protozoal (0.828)
	Anticarcinogenic (0.832)		
	Dementia treatment (0.752)		
	Alzheimer’s disease treatment (0.700)		
105	Apoptosis agonist (0.931)	Hyperlipemic (0.807)	Nootropic (0.895)
	Antineoplastic (0.892)	Atherosclerosis treatment (0.607)	Anti-inflammatory (0.854)
	Chemopreventive (0.793)	Autoimmune disorders treatment (0.531)	Antiprotozoal (Plasmodium) (0.633)
106	Antineoplastic (0.760)		Anti protozoal (0.933)
107	Proliferative diseases treatment (0.823)	Neurodegenerative diseases treatment (0.562)	Anti protozoal (0.862)
	Dementia treatment (0.795)	Anti-hypercholesterolemic (0.539)	Respiratory analeptic (0.846)
	Alzheimer’s disease treatment (0.688)	Andropause treatment (0.527)	Nootropic (0.671)
Probable biological activities of steroids derived from soft coral species estimated by PASS.

Table 6. Cont.

No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Biological Activity, (Pa) *
108	Antineoplastic (0.743)	Anti-hypercholesterolemic (0.613)	Immunomodulator (HIV) (0.776)
	Prostate disorders treatment (0.719)		
109	Antineoplastic (0.871)	Neuroprotector (0.981)	Respiratory analeptic (0.941)
	Apoptosis agonist (0.649)	Anti-hypercholesterolemic (0.946)	Vasoprotector (0.883)
	Prostate disorders treatment (0.634)	Acute neurologic disorders treatment (0.749)	Antiprotozoal (Leishmania) (0.870)
110	Antineoplastic (0.860)	Anti-hypercholesterolemic (0.934)	Nootropic (0.810)
	Chemopreventive (0.812)	Cholesterol synthesis inhibitor (0.746)	Respiratory analeptic (0.785)
	Proliferative diseases treatment (0.694)	Atherosclerosis treatment (0.645)	Immunomodulator (HIV) (0.730)
111	Chemopreventive (0.873)	Anti-hypercholesterolemic (0.809)	Respiratory analeptic (0.941)
	Antineoplastic (0.853)	Neuroprotector (0.731)	Hepatoprotectant (0.891)
	Proliferative diseases treatment (0.814)	Hypolipemic (0.612)	Antithrombotic (0.618)

* Only activities with Pa > 0.5 are shown.

Table 7. Probable biological activities of steroids derived from soft coral species estimated by PASS.

No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Biological Activity, (Pa) *	
112	Antineoplastic (0.864)	Neuroprotector (0.786)	Immunomodulator (HIV) (0.895)	
	Apoptosis agonist (0.850)	Anti-hypercholesterolemic (0.774)	Erythropoiesis stimulant (0.894)	
	Prostate disorders treatment (0.705)	Cholesterol synthesis inhibitor (0.524)	Anesthetic general (0.865)	
	Dementia treatment (0.629)			
113	Antineoplastic (0.848)	Neuroprotector (0.950)	Respiratory analeptic (0.981)	
	Apoptosis agonist (0.826)	Anti-hypercholesterolemic (0.821)	Anesthetic general (0.918)	
	Proliferative diseases treatment (0.608)	Spasmolytic (0.684)	Cardiotonic (0.813)	
		Hypolipemic (0.621)	Antithrombotic (0.567)	
114	Chemopreventive (0.853)	Neuroprotector (0.971)	Respiratory analeptic (0.987)	
	Antineoplastic (0.889)	Anti-hypercholesterolemic (0.877)	Anesthetic general (0.938)	
	Apoptosis agonist (0.837)			
	Dementia treatment (0.673)			
115	Chemopreventive (0.942)	Neuroprotector (0.983)	Respiratory analeptic (0.989)	
	Antineoplastic (0.901)	Anti-hypercholesterolemic (0.919)	Anesthetic general (0.949)	
	Apoptosis agonist (0.837)			
	Proliferative diseases treatment (0.788)	Spasmolytic (0.656)	Antiprotozoal (Leishmania) (0.927)	
		Erythropoiesis stimulant (0.851)		
	Dementia treatment (0.665)			
116	Chemopreventive (0.918)	Neuroprotector (0.983)	Respiratory analeptic (0.989)	
	Antineoplastic (0.893)	Anti-hypercholesterolemic (0.919)	Anesthetic general (0.949)	
	Proliferative diseases treatment (0.890)			
		Acute neurologic disorders treatment (0.636)	Antiprotozoal (Leishmania) (0.936)	
	Dementia treatment (0.738)			
117	Antineoplastic (0.757)	Neuroprotector (0.852)	Respiratory analeptic (0.853)	
	Prostate disorders treatment (0.678)	Anti-hypercholesterolemic (0.828)	Erythropoiesis stimulant (0.851)	
	Proliferative diseases treatment (0.599)	Lipid metabolism regulator (0.732)	Immunomodulator (HIV) (0.829)	
118	Antineoplastic (0.869)			
	Apoptosis agonist (0.775)			
	Alzheimer’s disease treatment (0.571)			
119	Antineoplastic (0.900)			
	Prostate disorders treatment (0.741)			
120	Antineoplastic (0.869)			
	Apoptosis agonist (0.775)			
	Alzheimer’s disease treatment (0.671)			
121	Antineoplastic (0.863)			
	Apoptosis agonist (0.724)			
122	Antineoplastic (0.747)	Lipid metabolism regulator (0.507)		
	Proliferative diseases treatment (0.641)			
123	Antineoplastic (0.762)			
	Chemopreventive (0.643)	Anti-hypercholesterolemic (0.671)		
	Proliferative diseases treatment (0.619)	Cholesterol synthesis inhibitor (0.545)		
124	Antineoplastic (0.882)			
	Prostate disorders treatment (0.648)			
125	Antineoplastic (0.877)			
	Apoptosis agonist (0.773)			
	Alzheimer’s disease treatment (0.721)			

* Only activities with Pa > 0.5 are shown.
Table 7. Cont.

No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Biological Activity, (Pa) *
126	Antineoplastic (0.870)		Immunosuppressant (0.788)
	Apoptosis agonist (0.683)		Growth stimulant (0.537)
127	Antineoplastic (0.850)		Anti-inflammatory (0.581)
	Apoptosis agonist (0.796)		Anti-psoriatic (0.762)
	Chemopreventive (0.853)		Anti-inflammatory (0.724)
	Prostate disorders treatment (0.539)		Anti-inflammatory (0.724)
128	Antineoplastic (0.831)		Anti-psoriatic (0.762)
	Apoptosis agonist (0.685)	Anti-hypercholesterolemic (0.594)	Anti-inflammatory (0.724)
	Chemopreventive (0.542)	Cholesterol synthesis inhibitor (0.552)	Immunosuppressant (0.601)
129	Apoptosis agonist (0.844)		Anti-inflammatory (0.581)
	Antineoplastic (0.796)	Anti-hypercholesterolemic (0.551)	Anti-inflammatory (0.724)
	Chemopreventive (0.631)	Cholesterol synthesis inhibitor (0.307)	Anesthetic (0.689)
130	Antineoplastic (0.858)	Anti-hypercholesterolemic (0.894)	Anti-psoriatic (0.762)
	Apoptosis agonist (0.853)	Lipid metabolism regulator (0.615)	Angiogenesis inhibitor (0.920)
	Chemopreventive (0.840)	Neuroprotector (0.611)	Respiratory analeptic (0.901)
	Prostate disorders treatment (0.539)		Anesthetic general (0.807)
131	Antineoplastic (0.906)	Anti-hypercholesterolemic (0.711)	Angiogenesis inhibitor (0.920)
	Chemopreventive (0.926)	Lipid metabolism regulator (0.695)	Anti-inflammatory (0.724)
	Apoptosis agonist (0.785)	Hypolipemic (0.599)	Urrolithiasis treatment (0.722)
132	Antineoplastic (0.901)	Anti-hypercholesterolemic (0.770)	Angiogenesis inhibitor (0.920)
	Prostate disorders treatment (0.670)	Neuroprotector (0.700)	Respiratory analeptic (0.901)
	Apoptosis agonist (0.627)	Hypolipemic (0.597)	Anesthetic general (0.807)

*Only activities with Pa > 0.5 are shown.

Marine withanolides, paraminabeolides A (120), B (121), C (122), D (123) and F (124) and same compounds named minabeolides 1 (125) and 5 (126) were obtained from lipid extracts of the Formosan soft coral Paraminabea acronocephala. Two compounds (121) and (125) demonstrated cytotoxic toward Hep G2 cancer cells [124]. Twenty years earlier Minabeolides-1 (125) and -5 (126) as C28 steroidal lactones of the withanolide class have been isolated from a soft coral Minabea sp., collected in Truk Lagoon [125].

Secosteroid (127) with epoxide at C-5 and C-6 group from the Formosan soft coral Cespitularia hypotentaculata exhibited cytotoxicity against HT-29 cells [126]. The structures of the steroids (112–132) are shown in Figure 6 and the potential biological activities are shown in Table 5. Two steroids, 11-acetoxy-9,11-secosterols, pinnisterols E (128) and I (129) with a 1,4-quinone moiety, were discovered from the gorgonian coral Pinnigorgia sp. Both identified compounds reduced elastase enzyme release [127]. (22R,23S,24S)-Polyoxygenated steroid named hippuristerone A (130) has been isolated from a Taiwanese gorgonian I. hippuris [128,129]. A rare steroid derivative named griffipregnone (131) has been isolated from the octocoral Dendronephthya griffini and showed anti-inflammatory activity [130]. An unusual hemiketal steroid, named cladiellin A (132) was isolated from the soft coral Cladiella sp. [131] and a similar steroid 23-keto-cladiellin A (133) was obtained from the monohydroxylated sterol fraction of soft coral Chromonephthea braziliensis [132]. The structures of the steroids (133–156) are shown in Figure 7 and the potential biological activities are shown in Table 8. An unusual pentacyclic hemiacetal sterol nephthoacetal (134) and acetyl derivative (135) were isolated from soft coral Nephthea sp. Compound (134) exhibited a significant inhibitory effect with EC_{50} value of 2.5 µg/mL, while having low toxicity with LC_{50} > 25.0 µg/mL. The in vitro cytotoxic activity of two compounds exhibited moderate cytotoxicity with IC_{50} values of 12 and 10 µg/mL, respectively [133].
from the monohydroxylated sterol fraction of soft coral *Chromonephthea braziliensis* [132].

The structures of the steroids (133–156) are shown in Figure 7 and the potential biological activities are shown in Table 8. An unusual pentacyclic hemiacetal sterol nephthoacetal (134) and acetyl derivative (135) were isolated from soft coral *Nephthea* sp. Compound (134) exhibited a significant inhibitory effect with EC\(_{50}\) value of 2.5 µg/mL, while having low toxicity with LC\(_{50}\) > 25.0 µg/mL. The in vitro cytotoxic activity of two compounds exhibited moderate cytotoxicity with IC\(_{50}\) values of 12 and 10 µg/mL, respectively [133].

Figure 6. Bioactive steroids derived from soft corals.
Figure 7. Bioactive steroids derived from soft corals.
Table 8. Probable biological activities of steroids derived from soft coral species estimated by PASS.

No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Biological Activity, (Pa) *	
133	Antineoplastic (0.819)	Prostate disorders treatment (0.701)	Respiratory analeptic (0.793)	
			Immunomodulator (HIV) (0.743)	
134	Antineoplastic (0.888)	Proliferative diseases treatment (0.699)	Ankylosing spondylitis treatment (0.839)	
		Anticarcinogenic (0.618)	Antiprotozoal (0.773)	
			Antiprotozoal (Plasmodium) (0.697)	
135	Antineoplastic (0.900)	Neurodegenerative diseases treatment (0.519)	Anti-inflammatory (0.861)	
136	Antineoplastic (0.871)		Antiprotozoal (0.763)	
	Apoptosis agonist (0.585)		Antiprotozoal (Plasmodium) (0.683)	
137	Antineoplastic (0.880)	Proliferative diseases treatment (0.607)	Antiprotozoal (0.821)	
			Antiprotozoal (Plasmodium) (0.700)	
138	Antineoplastic (0.856)	Proliferative diseases treatment (0.651)	Anti-hypercholesterolemic (0.813)	
		Prostate disorders treatment (0.586)	Neuroprotector (0.734)	
			Anti-inflammatory (0.929)	
139	Antineoplastic (0.842)		Immunomodulator (HIV) (0.868)	
			Anesthetic general (0.813)	
140	Antineoplastic (0.780)	Apoptosis agonist (0.562)	Neuroprotector (0.722)	
			Anti-hypercholesterolemic (0.609)	
			Immuno-modulator (HIV) (0.861)	
141	Antineoplastic (0.862)	Chemoprotective (0.694)	Hypolipemic (0.554)	
			Cholesterol synthesis inhibitor (0.509)	
			Immunosuppressant (0.753)	
			Antiprotozoal (Plasmodium) (0.658)	
142	Chemopreventive (0.989)	Proliferative diseases treatment (0.969)	Anti-hypercholesterolemic (0.977)	
	Antineoplastic (0.874)		Neuroprotector (0.989)	
	Alzheimer’s disease treatment (0.570)		Hepatoprotectant (0.986)	
			Respiratory analeptic (0.978)	
			Antimycobacterial (0.939)	
143	Antineoplastic (0.749)		Anti-eczematic (0.729)	
			Dermatologic (0.651)	
			Anti-psoriatic (0.570)	
144	Antineoplastic (0.796)		Hypolipemic (0.660)	
	Apoptosis agonist (0.750)		Hepatoprotectant (0.748)	
			Anti-eczematic (0.739)	
145	Antineoplastic (0.697)	Antineoplastic (bladder cancer) (0.568)	Neuroprotector (0.580)	
			Immunobacterial (0.688)	
			Antifungal (0.620)	
146	Antineoplastic (0.735)	Prostate disorders treatment (0.696)	Neuroprotector (0.580)	
			Immunomodulator (HIV) (0.817)	
			Anti-eczematic (0.808)	
147	Antineoplastic (0.828)	Proliferative diseases treatment (0.699)	Neuroprotector (0.640)	
		Acute neurologic disorders treatment (0.626)	Anti-inflammatory (0.920)	
			Respiratory analeptic (0.838)	
148	Antineoplastic (0.837)	Apoptosis agonist (0.607)	Neuroprotector (0.684)	
		Autoimmune diseases treatment (0.611)	Anti-inflammatory (0.889)	
			Antiprotozoal (Leishmania) (0.571)	
149	Antineoplastic (0.851)	Proliferative diseases treatment (0.687)	Neuroprotector (0.771)	
		Acute neurologic disorders treatment (0.600)	Anti-inflammatory (0.923)	
			Immunomodulator (HIV) (0.859)	
150	Antineoplastic (0.849)	Proliferative diseases treatment (0.709)	Neuroprotector (0.736)	
		Anti-hypercholesterolemic (0.434)	Acute neurologic disorders treatment (0.615)	Anti-inflammatory (0.910)
			Anti-inflammatory (0.910)	
			Antiprotozoal (Leishmania) (0.584)	
151	Antineoplastic (0.818)	Apoptosis agonist (0.571)	Respiratory analeptic (0.858)	
			Cardiotonic (0.612)	
152	Antineoplastic (0.832)	Proliferative diseases treatment (0.578)	Anti-hypercholesterolemic (0.789)	
			Respiratory analeptic (0.894)	
			Immunomodulator (HIV) (0.857)	
153	Antineoplastic (0.837)	Proliferative diseases treatment (0.598)	Anti-hypercholesterolemic (0.789)	
			Respiratory analeptic (0.897)	
			Immunomodulator (HIV) (0.858)	
154	Apoptosis agonist (0.862)	Proliferative diseases treatment (0.623)	Anti-hypercholesterolemic (0.911)	
	Antineoplastic (0.846)		Hypolipemic (0.751)	
			Cholesterol synthesis inhibitor (0.611)	
			Antidiabetic (type 2) (0.617)	
			Antifungal (0.584)	
155	Antineoplastic (0.738)	Proliferative diseases treatment (0.647)	Anti-hypercholesterolemic (0.845)	
			Cholesterol synthesis inhibitor (0.562)	Respiratory analeptic (0.911)
			Myocardial infarction treatment (0.906)	
156	Antineoplastic (0.737)		Anti-hypercholesterolemic (0.538)	
			Myocardial infarction treatment (0.889)	Respiratory analeptic (0.813)

* Only activities with Pa > 0.5 are shown.
Extract of the soft coral *Deudronephthya gigantea* demonstrated the antiproliferative effect against the proliferation of HL-60 human leukemia cells and MCF-7 human breast cancer cells. The steroid 12-hydroxy-16,17-dimethyl-preg-4-ene-1,20-dione (136) was isolated from the coral sterol fraction [134].

Krempenes A (137) and B (138) are unprecedented pregnane-type steroids that have been isolated from the marine soft coral *Cladiella kremphi* [135]. Steroid (137) contains a very unusual structural motif, with a hexacyclic oxadithiino unit fused to the steroidal ring A.

A rare steroidal hydroperoxide, 13,14-seco-22-norergosta-4,24(28)-dien-19-hydro-peroxide-3-one (139) has been found in the diethyl ether fraction of the Red Sea soft coral, *Litophyton arboreum* [136]. Steroid glycoside, dimorphoside B (140) has been isolated from the Western Pacific gorgonian *Anthoplexaura dimorpha* as the cell-division inhibitors in the sea urchin egg assay [137]. A unique unprecedented spinaeamine-bearing pregnane named scleronine (141) produces a Chinese soft coral *Scleronephthya* sp. [138].

Two secosteroids, 3β,11-dihydroxy-5β, 6β-epoxy-9,11-secocholestan-9-one (142) and 3β, 11-dihydroxy-5β,6β-epoxy-9,11-secogorgostan-9-one (143) have been found and identified from extracts of the Taiwanese soft coral *Cespitularia taeniata* [139–141].

Two steroids (144 and 145) and pregna-1,4,20-trien-3-one (146) have been isolated from the Pacific octocoral *Carijoa multiflora*. Compound (144) possesses a spiropregnane-based steroidal skeleton and showed antibacterial activity [142]. Compounds (145 and 146) and similar pregnane steroids (147 and 148) have been isolated from a gorgonian *Carijoa* sp. collected from the South China Sea. Compounds (146, 147 and 148) exhibited cytotoxicity against the human hepatoma cell line Bel-7402, with IC₅₀ values of 9.3, 11.0 and 18.6 µM, respectively [143]. The Hainan soft coral *Scleronephthya gracillimum* releases pregnane analogue (149) [144] and two unique chloro-pregnane steroids (150 and 151) have been isolated from the eastern Pacific octocoral *Carijoa multiflora* [145]. Another three chlorinated marine steroids, yonarasterols G (152), H (153) and I (154), were isolated from the Okinawan soft coral, *Clavularia viridis* [146].

Unusual steroid thioesters, parathioesters A (155) and C (156) were isolated from the 2-propanol extract of the soft coral *Paragorgia* sp. collected in Madagascar. Both compounds displayed cytotoxicity against a panel of three human tumor cell lines at the micromolar level [147].

The soft coral *Lobophytum michaelae* that lives on the coast of Taitung and its ethyl acetate extract contained three cytotoxic polyoxygenated steroids called michosterols A-C (157–159) [148] and also ethyl acetate extract the gorgonian *Leptogorgia* sp. collected from the South China Sea contained dihydroxy-ketosterone (160) [149]. The structures of the steroids (157–177) are shown in Figure 8 and the potential biological activities are shown in Table 9.

The natural analog of calcitriol (1,25-dihydroxy-vitamin D₃, 161) called astrogorgiadiol (162) was first isolated in 1989 by Fusetani and co-workers [150] and another 9,10-secosteroids called calicoferols B (163), D (164) and E (165) have been isolated from an undescribed gorgonian of the genus *Muricella* [151,152].

Cytotoxic steroidal saponins, astrogorgiosides A (166) bearing acetamido-glucose moiety and astrogorgioside C (167) with a 19-nor and bearing an aromatized B ring steroid aglycone were obtained from the gorgonian *Astrogorgia dumbea* collected near Dongshan Island in the East China Sea. Both isolated compounds exhibited moderate cytotoxic activity with IC₅₀ values of 26.8 and 45.6 µM against human tumor cells Bel-7402 and K562, respectively [153]. Rare pregnane derivative, 3-dimethoxy-5α-pregnan-20-one (168) has been detected in ethanol extract the Indian ocean gorgonian *Subergorgia suberosa*, collected from the Mandapam area, Tamil Nadu, India [154].

The cholestane class steroidal hemiacetals named anastomosacetal A (169) and D (170) were obtained from the gorgonian coral *Euplexaura anastomosans*, collected off the shore of Keomun Island, South Sea Korea [155]. Gorgonian species, *Bebryce indica*, collected off the coast of Sanya (Hainan, China) was found to contain steroidal glycoside named bebrycoside (171) [156]. Bebrycoside (171) and similar 27-O-[β-D-arabino-pyranosylo]-20β,22α-dihydroxy-cholest-4-ene-3-one, named muriellasteroid D (172) and also rare steroid 22α-O-acetyl-2β-O-methylen-[4β-hydroxy-phenyl]-cholest-4-ene-3-one,
named muricellasteroid E (173) have been isolated from the EtOH/CH₂Cl₂ extracts of the South China Sea gorgonian coral Muricella flexuosa. Compounds 172 and 173 showed moderate cytotoxicity against A375, K562 and A549 cancer cell lines [157].

Figure 8. Bioactive steroids derived from soft corals.

Table 9. Probable biological activities of steroids derived from soft coral species estimated by PASS.

No.	Antitumor and Related Activity (Pa)*	Lipid Metabolism Regulators (Pa)*	Additional Biological Activity (Pa)*
157	Antineoplastic (0.749)	Anti-hypercholesterolemic (0.825)	Anti-inflammatory (0.881)
158	Antineoplastic (0.701)	Prostate disorders treatment (0.629)	Anti-hypercholesterolemic (0.929)
		Hypolipemic (0.645)	Anti-seborrheic (0.868)
			Radioprotector (0.801)
159	Apoptosis agonist (0.791)	Hypolipemic (0.680)	Anti-psoriatic (0.795)

Figure 8. Bioactive steroids derived from soft corals.
Table 9. Probable biological activities of steroids derived from soft coral species estimated by PASS.

No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Biological Activity, (Pa) *
157	Antineoplastic (0.749)	Anti-hypercholesterolemic (0.625)	Anti-inflammatory (0.881)
158	Antineoplastic (0.701)	Anti-hypercholesterolemic (0.929)	Anti-seborectic (0.868)
	Prostate disorders treatment (0.629)	Hypolipemic (0.645)	Radioprotector (0.801)
159	Apoptosis agonist (0.791)	Hyperlipemic (0.680)	Anti-psoriatic (0.795)
	Antineoplastic (0.797)		Immunosuppressant (0.726)
160	Antineoplastic (0.913)	Atherosclerosis treatment (0.628)	Anti-eczematic (0.844)
	Apoptosis agonist (0.862)	Anti-hypercholesterolemic (0.587)	Anti-psoriatic (0.820)
	Proliferative diseases treatment (0.687)		
161	Antineoplastic (0.860)	Anti-hypercholesterolemic (0.789)	Anti-osteoporotic (0.913)
	Apoptosis agonist (0.851)	Atherosclerosis treatment (0.724)	
	Proliferative diseases treatment (0.700)	Cholesterol synthesis inhibitor (0.617)	Anti-osteoporotic (0.870)
162	Antineoplastic (0.872)	Anti-hypercholesterolemic (0.943)	Anesthetic general (0.917)
	Apoptosis agonist (0.811)	Hypolipemic (0.730)	Respiratory anaphetic (0.869)
	Proliferative diseases treatment (0.786)	Atherosclerosis treatment (0.648)	Nootropic (0.698)
163	Antineoplastic (0.937)	Anti-hypercholesterolemic (0.370)	Anti-eczematic (0.973)
	Apoptosis agonist (0.906)	Hypolipemic (0.788)	Anti-psoriatic (0.963)
	Proliferative diseases treatment (0.886)	Atherosclerosis treatment (0.744)	Anti-osteoporotic (0.961)
	Antiparkinsonian, rigidity relieving (0.729)	Hyperparathyroidism treatment (0.842)	
	Multiple sclerosis treatment (0.565)		Hypercalcemia treatment (0.509)
164	Antineoplastic (0.706)	Anti-hypercholesterolemic (0.882)	Hepatic disorders treatment (0.824)
	Proliferative diseases treatment (0.608)	Atherosclerosis treatment (0.723)	Anti-osteoporotic (0.665)
165	Antineoplastic (0.750)	Anti-hypercholesterolemic (0.791)	Hepatic disorders treatment (0.816)
	Atherosclerosis treatment (0.700)	Acute neurologic disorders treatment (0.635)	Anesthetic general (0.774)
	Cholesterol synthesis inhibitor (0.632)		Anti-osteoporotic (0.663)
166	Antineoplastic (0.694)	Anti-hypercholesterolemic (0.852)	Hepatic disorders treatment (0.817)
	Apoptosis agonist (0.578)	Hypolipemic (0.788)	Anti-osteoporotic (0.678)
	Proliferative diseases treatment (0.542)	Atherosclerosis treatment (0.744)	
167	Antineoplastic (0.789)	Anti-hypercholesterolemic (0.891)	Anti-eczematic (0.894)
	Apoptosis agonist (0.726)	Atherosclerosis treatment (0.630)	Anti-psoriatic (0.777)
	Proliferative diseases treatment (0.608)	Acute neurologic disorders treatment (0.560)	Anti-osteoporotic (0.736)
168	Proliferative diseases treatment (0.947)	Neuroprotector (0.981)	Respiratory anaphetic (0.987)
	Dementia treatment (0.657)	Anti-hypercholesterolemic (0.971)	Hepatoprotectant (0.945)
		Hypolipemic (0.778)	Anesthetic general (0.903)
169	Proliferative diseases treatment (0.920)	Anti-hypercholesterolemic (0.962)	Respiratory anaphetic (0.991)
	Dementia treatment (0.661)	Neuroprotector (0.952)	Anesthetic general (0.922)
		Acute neurologic disorders treatment (0.783)	Spasmolytic (0.719)
170	Antineoplastic (0.793)	Neuroprotector (0.732)	Anesthetic general (0.815)
	Proliferative diseases treatment (0.605)	Hypolipemic (0.592)	Cardiotonic (0.770)
171	Antineoplastic (0.872)	Neuroprotector (0.762)	Anti-inflammatory (0.923)
	Alzheimer’s disease treatment (0.634)	Anti-hypercholesterolemic (0.633)	Nootropic (0.672)
	Proliferative diseases treatment (0.625)	Neurodegenerative diseases treatment (0.618)	Anti-inflammatory (0.890)
172	Antineoplastic (0.871)	Neuroprotector (0.762)	Respiratory anaphetic (0.894)
	Alzheimer’s disease treatment (0.681)	Anti-hypercholesterolemic (0.963)	Anesthetic general (0.890)
	Dementia treatment (0.576)	Neuroprotector (0.706)	
173	Proliferative diseases treatment (0.922)	Anti-hypercholesterolemic (0.859)	Respiratory anaphetic (0.962)
	Antineoplastic (0.842)	Neuroprotector (0.706)	Anti-ischemic, cerebral (0.864)
174	Proliferative diseases treatment (0.935)	Anti-hypercholesterolemic (0.927)	Anti-ischemic, cerebral (0.944)
	Antineoplastic (0.837)	Neuroprotector (0.773)	Respiratory anaphetic (0.940)
	Dementia treatment (0.616)	Hypolipemic (0.584)	Anti-thrombotic (0.720)
175	Antineoplastic (0.793)	Anti-hypercholesterolemic (0.954)	Respiratory anaphetic (0.979)
	Neuroprotector (0.754)	Hypolipemic (0.704)	Anesthetic general (0.927)
			Anti-ischemic, cerebral (0.667)
176	Antineoplastic (0.893)	Anti-hypercholesterolemic (0.899)	Respiratory anaphetic (0.979)
	Proliferative diseases treatment (0.768)	Atherosclerosis treatment (0.754)	Immunomodulator (HIV) (0.912)
177	Antineoplastic (0.812)	Neuroprotector (0.938)	Respiratory anaphetic (0.964)
	Dementia treatment (0.505)	Anti-hypercholesterolemic (0.912)	Immunomodulator (HIV) (0.933)
		Atherosclerosis treatment (0.548)	Anesthetic general (0.917)

*Only activities with Pa > 0.5 are shown.

Rare, a spiroketal steroid, 22-acetoxy-3,25-dihydroxy-16,24,20-24-bisepoxy-(3β,16α,20S,22R, 24S)-cholest-5-ene (174) was isolated from the Indian Ocean gorgonian, Gorgonella umbraculum [158]
and trihydroxy sterol, pregna-5-ene-3β,20α,21-triol (175) has been isolated from the Gulf of California gorgonian *Muricea cf. austera* [159]. Oxysterols (176–181) were detected and identified from an octocoral of the genus *Gorgonia* from the eastern Pacific of Panama [160]. The structures of the steroids (178–187) are shown in Figure 9 and the potential biological activities are shown in Table 10.

![Figure 9](image-url)

Figure 9. Bioactive steroids derived from soft corals.

No.	Antitumor and Related Activity, (Pa) *	Lipid Metabolism Regulators, (Pa) *	Additional Biological Activity, (Pa) *
178	Antineoplastic (0.886)	Anti-hypercholesterolemic (0.716)	Respiratory analeptic (0.966)
	Apoptosis agonist (0.829)	Hypolipemic (0.596)	Immunosuppressant (0.837)
	Proliferative diseases treatment (0.710)	Atherosclerosis treatment (0.588)	Anesthetic general (0.775)
179	Antineoplastic (0.901)	Anti-hypercholesterolemic (0.839)	Respiratory analeptic (0.979)
	Proliferative diseases treatment (0.832)	Atherosclerosis treatment (0.597)	Anesthetic general (0.841)
180	Antineoplastic (0.897)	Anti-hypercholesterolemic (0.865)	Respiratory analeptic (0.974)
	Apoptosis agonist (0.858)	Atherosclerosis treatment (0.639)	Anesthetic general (0.904)
	Proliferative diseases treatment (0.778)	Respiratory analeptic (0.973)	Anesthetic general (0.731)
181	Antineoplastic (0.842)	Anti-hypercholesterolemic (0.658)	Respiratory analeptic (0.941)
	Apoptosis agonist (0.779)	Hypolipemic (0.633)	Anesthetic (0.842)
	Proliferative diseases treatment (0.711)	Atherosclerosis treatment (0.630)	Cardiotonic (0.730)
182	Apoptosis agonist (0.828)	Hypolipemic (0.636)	Anesthetic (0.902)
	Antineoplastic (0.827)	Atherosclerosis treatment (0.630)	Anti-thrombotic (0.573)
	Proliferative diseases treatment (0.536)	Cholesterol synthesis inhibitor (0.519)	Spasmolytic (0.538)
183	Apoptosis agonist (0.898)	Hypolipemic (0.660)	Anesthetic (0.869)
	Antineoplastic (0.852)	Atherosclerosis treatment (0.618)	Immunosuppressant (0.798)
	Proliferative diseases treatment (0.519)	Lipid metabolism regulator (0.533)	Anti-inflammatory (0.792)
184	Apoptosis agonist (0.881)	Neuroprotector (0.603)	Respiratory analeptic (0.915)
	Antineoplastic (0.797)	Hypolipemic (0.568)	Antifungal (0.828)
	Proliferative diseases treatment (0.611)		Anti-asthmatic (0.645)
185	Alzheimer’s disease treatment (0.633)		Antiprotozoal (0.663)
186	Antineoplastic (0.934)		Anti-inflammatory (0.934)
	Apoptosis agonist (0.792)		Anti-asthmatic (0.645)
	Antimetastatic (0.502)		Antiprotozoal (Plasmodium) (0.601)
187	Antineoplastic (0.934)		Anti-inflammatory (0.934)
	Apoptosis agonist (0.792)		Anti-asthmatic (0.645)
	Antimetastatic (0.502)		Antiprotozoal (Plasmodium) (0.601)

* Only activities with Pa > 0.5 are shown.
The *I. hippuris*, as well as other species of this genus, belong to the bamboo corals that live in the Central-West Pacific, the Indian Ocean, as well as in the Red Sea [161]. Studies of these corals in the last quarter of a century have shown that they satisfy their metabolic requirements for carbon through the products of photosynthesis [162] and only about 9% from bacterioplankton. These corals synthesize many metabolites, which are highly oxidized products that are oxidized by their own endogenous oxygen. These include numerous highly oxygenated and spiroketal steroids, many of which demonstrate anticancer activity against many cancer cells [163–170].

Over twenty polyoxygenated steroids, including (22S)-2α,3α-diacetoxy-11β,18β-dihydroxy-24-methyl-18,20β,22,25-diepoxy-5α-furostane (182), (22S)-2α,3α-diacetoxy-11β-hydroxy-24-methyl-22,25-epoxy-5α-furostan-18,20β-lactone (183) as well as (184–187) were extracted with a mixture of n-hexane and CH₂Cl₂ from the *I. hippuris* living in the southeast coast of Taiwan. Many of the steroids showed cytotoxic activity against Hep G2, Hep 3B, A549, MCF-7 and MDAMB-231 cells [171].

4. Comparison of Biological Activities of Natural Soft Coral Steroids

The biological activity of the molecule depends on its structure, which allows analyzing the structure-activity relationships (SAR). This idea was first proposed by Brown and Fraser in 1868 [172] more than 150 years ago; however, it was further developed in the mid-1970s [173,174].

The quantitative structure-activity relationships (QSAR) paradigm was first implemented in toxicology, pharmaceutical and medicinal chemistry, and, ultimately, various aspects of organic and bioorganic chemistry [175]. For over 50 years, the QSAR paradigm has been widely used due to its original postulate that activity was a function of the structure described by electronic attributes, hydrophobicity or steric properties [176]. The rapid and extensive development of methodologies and computational methods led to the definition and refinement of many approaches that introduce the paradigm into the practice of research and development [177].

Several computer programs can estimate with some degree of certainty the pharmacological activities of organic metabolites isolated from natural sources or synthetic compounds [178–180]. Classical (Q)SAR methods are based on the analysis of (quantitative) structure-activity relationships for a single or several biological activities using the compounds belonging to the same chemical series as the training set [181].

Computer program PASS, which is continuously updating and improving for the past thirty years [182], is based on the analysis of a heterogeneous training set included information about more than a million known biologically active compounds with data on ca. 10,000 biological activities [183,184]. Chemical descriptors implemented in PASS, which reflect the peculiarities of ligand-target interactions and original realization of the Bayesian approach for elucidation of structure-activity relationships provide the average accuracy and predictivity for several thousand biological activities equal to about 96% [185,186]. In several comparative studies, it was shown that PASS outperforms in predictivity some other recently developed methods for estimation of biological activity profiles [187,188]. Freely available via Internet PASS Online web-service [189] is used by more than twenty thousand researchers from almost a hundred countries to determine the most promising biological activities for both natural and synthetic compounds [184,186,190–193]. To reveal the hidden pharmacological potential of the natural substances, we are successfully using PASS for the past fifteen years [194–198].

In the current study, we obtained PASS predictions for two hundred steroids produced by soft corals. PASS estimates are presented as Pa values, which correspond to the probability of belonging to a particular class of “actives” for each predicted biological activity. The higher the Pa value is, the higher is the confidence that the experiment will confirm the predicted biological activity [186].

We have selected about 200 steroids, of which 50 belong to the genus *Sinularia*, which represent different types of steroids such as seco steroids, spiro steroids, epoxy- and peroxy-steroids, steroid glycosides, halogenated steroids and steroids containing sulfur or nitrogen heteroatoms. The types of steroids presented represent the chemical diversity of these secondary metabolites. Therefore, the pharmacological activities of various types of steroids are of great interest.
Analyzing the data obtained using PASS, we can state that almost all steroids presented in this article exhibit potential anti-tumor activity with varying degrees of reliability. In addition, forty-one steroids demonstrate anti-tumor and related activity with a confidence level of more than 90 percent, which is of significant interest to the pharmaceutical industry. Figure 10 shows the distribution of steroids with antitumor and related activities in the corals of the genus Sinularia. This group of steroids has a high degree of certainty over 90 percent.

Figure 10. 3D column graph of steroids derived from soft corals of the genus Sinularia that show antitumor and related activities. The letters represent the steroid numbers shown in Figures 1–3 and Tables 1–3: A—(5), B—(9), C—(18), D—(20), E—(21), F—(22), G—(24), H—(32), I—(37), J—(39), K—(49), L—(50) and M—(51). Steroids that belong to this group, according to the data obtained by the PASS, have confirmed more than 90 percent of their biological activity.

We highlighted other activities in a separate column and named them Lipid metabolism regulators, which include such properties of steroids as anti-hypercholesterolemic, treatment of atherosclerosis, cholesterol synthesis inhibitor and hypolipemic activity. This group includes 32 steroids that show anti-hypercholesterolemic activity with over 90 percent confidence. It is known that hypercholesterolemia and oncogenesis are interrelated, as shown in many studies [199–203]. Therefore, these data are also of great practical interest in identifying the etiology of cancer and its treatment. The column additional activity presents the activities that steroids demonstrate and some activities can also be attributed to the main ones since the reliability of the activities of some steroids exceeds 90 percent of the reliability. For example, the crassarosteroside A (5) water-soluble steroidal glycoside isolated from the Soft Coral S. crassa, according to the authors of the article, demonstrated cytotoxicity against human liver carcinoma (HepG2 and HepG3) [51,52]. Our studies have shown that it demonstrates strong antitumor activity and can be successfully used for the treatment of proliferative diseases, in addition, it demonstrates anti-hypercholesterolemic activity and is also a respiratory analeptic. Figure 11 shows the predicted and calculated (log activities) pharmacological activities of crassarosteroside A.

In addition, some coral steroids show interesting pharmacological activities with a high degree of confidence, over 90%. For example, the following steroids 15, 32, 76, 138, 149, 150, 184, 185 and 187 show anti-inflammatory activity. And steroids 5, 14, 15, 50, 51, 65, 101, 114, 115, 116, 155, 169, 175, 176, 177, 178, 180 and 184 can be classified as respiratory analeptic drugs, which are central nervous system stimulants.
Steroids have also been found that exhibit rather rare and extremely specific activities. For example, steroids 18, 37 and 38 can be used to treat autoimmune diseases. Steroids 53, 54 and 161 show anti-osteoporotic properties and can be used to treat osteoporosis. Steroids 94 and 102 are immunomodulators that can be used in the treatment of patients with AIDS. Steroid 163 exhibited strong anti-eczematic and anti-psoriatic properties and steroid 125 exhibited anti-eczematic and spasmylic properties. Steroid 142 is a heptao-protector, steroid 86 is an inhibitor of angiogenesis and steroid 87 can be used as a general anesthetic.

5. Conclusions

About 200 soft coral steroids are classified as different types of steroids such as seco steroids, spirosteroids, epoxy- and peroxy-steroids, steroid glycosides, halogenated steroids, polyoxygenated steroids and steroids containing sulfur or nitrogen heteroatoms. There also have been found steroids that exhibit rather rare and extremely specific activities. The PASS program is constantly evolving by increasing the database of both natural and synthetic compounds and increasing biological activities by incorporating experimental data. Currently, PASS contains over 1,000,000 chemical structures of natural and synthetic compounds associated with over 10,000 biological activities. These activities are included in the program and are taken from published articles, reviews and other official medical profile documents. Thus, analyzing the presented steroids, it can be stated that more than 40 steroids demonstrate antitumor and related activity with a confidence level of more than 90 percent. Another group, which consists of 32 steroids, demonstrates anti-hypercholesterolemic activity with more than 90 percent confidence.

In addition, ten steroids exhibit anti-inflammatory activity and 20 steroids can be classified as respiratory analeptic drugs. Some steroids with rare structures exhibit anti-osteoporotic properties and can be used to treat osteoporosis, as well as exhibit strong anti-eczematic and anti-psoriatic properties, exhibit anti-eczema and antispasmodic properties. Thus, these data show that soft coral steroids are very interesting in terms of their medical use. However, this requires additional extensive research.

Funding: The study (GTA and PVV) was performed in the framework of the Program for Basic Research of State Academies of Sciences for 2013–2020.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Horvath, E.A. A review of gorgonian coral species (Cnidaria, Octocorallia, Alcyonacea) held in the Santa Barbara museum of natural history research collection: Focus on species from Scleraxonia, Holaxonia, and Calcaxonia—Part I: Introduction, species of Scleraxonia and Holaxonia (Family Acanthogorgiidae). *ZooKeys* 2019, 860, 1–66.

2. Jankowski, T.; Anokhin, B. Phylum Cnidaria. *Thorp. Covichs Freshwater Invertebrat*. 2019, 4, 93–111.

3. Boström-Einarsson, L.; Babcock, R.C.; Bayraktarov, E.; Ceccarelli, D.; Cook, N.; Ferse, S.C.A. Coral restoration—A systematic review of current methods, successes, failures and future directions. *PLoS ONE* 2020, 15, e0226631. [CrossRef]

4. Leaf, M.C.; Ferrier-Pages, C.; Petersen, D.; Osinga, R. Coral aquaculture: Applying scientific knowledge to ex situ production. *Rev. Aquacult.* 2014, 6, 1–18.

5. Li, G.; Li, P.; Tang, X. Natural products from corals. In *Symbiotic Microbiomes of Coral Reefs Sponges and Corals*; Li, Z., Ed.; Springer: Dordrecht, The Netherlands, 2019.

6. Imbs, A.B.; Maliotin, A.N.; Huyen, L.V.; Long, P.Q. Study of fatty acid composition of 17 coral species of Vietnam. *Vietnam. J. Sci. Technol.* 2005, 43, 84–91.

7. Imbs, A.B.; Demina, O.A.; Demidkova, D.A. Lipid class and fatty acid composition of the boreal soft coral *Gersemia rubiformis*. *Lipids* 2006, 41, 721–725. [CrossRef]

8. Imbs, A.B.; Luu, H.V.; Long, P.Q. Lipids of soft coral *Sinularia* species. *Chem. Nat. Comp.* 2007, 43, 610–611. [CrossRef]

9. Imbs, A.B.; Dautova, T.N. Use of lipids for chemotaxonomy of octocorals (Cnidaria: Alcyonaria). *Russ. J. Mar. Biol.* 2008, 34, 205–209. [CrossRef]

10. Imbs, A.B.; Yakovleva, I.M.; Pham, L.Q. Distribution of lipids and fatty acids in the zooxanthellae and host of the soft coral *Sinularia* sp. *Fish. Sci.* 2010, 76, 375–380. [CrossRef]

11. Imbs, A.B. Prostaglandins and oxylipins of corals. *Russ. J. Mar. Biol.* 2011, 37, 325–334. [CrossRef]

12. Imbs, A.B.; Yakovleva, I.M. Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: An experimental approach. *Coral Reefs* 2012, 31, 41–53. [CrossRef]

13. Imbs, A.B. Fatty acids and other lipids of corals: Composition, distribution, and biosynthesis. *Russ. J. Mar. Biol.* 2013, 39, 153–168. [CrossRef]

14. Elkhawas, Y.A.; Elissawy, A.M.; Elnaggar, M.S.; Mostafa, N.M.; Al-Sayed, E.; Bishr, M.M.; Singa, A.N.B.; Salama, O.M. Chemical diversity in species belonging to soft coral genus *Sacrophyton* and its impact on biological activity: A review. *Mar. Drugs* 2020, 18, 41. [CrossRef]

15. Sheu, J.H.; Chen, Y.H.; Chen, Y.-H.; Su, Y.-D.; Chang, Y.-C. Briarane Diterpenoids isolated from gorgonian corals between 2011 and 2013. *Mar. Drugs* 2014, 12, 2164–2181. [CrossRef]

16. Sikorsky, T.V.; Ermolenko, E.V.; Gloriozova, T.A.; Dembitsky, V.M. Mini Review: Anticancer activity of diterpenoid peroxides. *Vietnam J. Chem.* 2020, 58, 273–280. [CrossRef]

17. Sunassee, S.N.; Davies-Coleman, M.T. Cytotoxic and antioxidant marine prenylated quinones and hydroquinone. *Nat. Prod. Rep.* 2012, 29, 513–589. [CrossRef]

18. Hou, X.-M.; Yang, H.; Gu, Y.-C.; Wang, C.-Y.; Shao, C.-L. Chemical and bioactive marine natural products of coral-derived microorganisms (2015-2017). *Current Med. Chem.* 2019, 26, 6930–6941. [CrossRef]

19. Dembitsky, V.M. Bioactive cyclobutane-containing alkaloids. *J. Nat. Med.* 2008, 62, 1–33. [CrossRef]

20. Ismail, F.M.D.; Levitsky, D.O.; Dembitsky, V.M. Aziridine alkaloids as potential therapeutic agents. *Eur. J. Med. Chem.* 2009, 44, 3373–3387. [CrossRef]

21. Dembitsky, V.M. Naturally occurring bioactive cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. *Phytomedicine* 2014, 21, 1559–1581. [CrossRef]

22. Souza, C.R.M.; Bezerra, W.P.; Sout, J.T. Marine alkaloids with anti-inflammatory activity: Current knowledge and future perspectives. *Mar. Drugs* 2020, 18, 147. [CrossRef]

23. Xu, J.; Yi, M.; Ding, L.; He, S. A review of anti-inflammatory compounds from marine fungi, 2000–2018. *Mar. Drugs* 2019, 17, 636. [CrossRef]

24. Dembitsky, V.M. Chemistry and biodiversity of the biologically active natural glycosides. *Chem. Biodivers.* 2004, 1, 673–781. [CrossRef] [PubMed]

25. Dembitsky, V.M. Astonishing diversity of natural surfactants: 4. Fatty acid amide glycosides, their analogs and derivatives. *Lipids* 2005, 40, 641–660. [CrossRef] [PubMed]
26. Dembitsky, V.M. Astonishing diversity of natural surfactants: 5. Biologically active glycosides of aromatic metabolites. *Lipids 2005*, 40, 869–900. [CrossRef] [PubMed]
27. Dembitsky, V.M. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides. *Lipids 2005*, 40, 1081–1114. [CrossRef]
28. Dembitsky, V.M. Astonishing diversity of natural surfactants: 7. Biologically active hemi-and monoterpenoid glycosides. *Lipids 2006*, 41, 1–27. [CrossRef]
29. Dembitsky, V.M. Astonishing diversity of natural surfactants: 3. Carotenoid glycosides and isoprenoid glycolipids. *Lipids 2005*, 40, 535–557. [CrossRef]
30. Dembitsky, V.M. Astonishing diversity of natural surfactants: 1. Glycosides of fatty acids and alcohols. *Lipids 2004*, 39, 933–953. [CrossRef]
31. Dembitsky, V.M. Astonishing diversity of natural surfactants: 2. Polyether glycosidic ionophores and macrocyclic glycosides. *Lipids 2005*, 40, 219–248. [CrossRef]
32. Dembitsky, V.M. Antitumor and hepatoprotective activity of natural and synthetic neo steroids. *Prog. Lipid Res. 2020*, 79, 101048. [CrossRef] [PubMed]
33. Dembitsky, V.M.; Savidov, N.; Gloriozova, T.A. Natural sulphur-containing steroids: Origin and biological activities. *Vietnam J. Chem. 2018*, 56, 533–541. [CrossRef]
34. Vil, V.A.; Gloriozova, T.A.; Poroikov, V.V.; Terent’ev, A.O.; Savidov, N.; Dembitsky, V.M. Peroxy steroids derived from plant and fungi and their biological activities. *Appl. Microbiol. Biotechnol. 2018*, 102, 7657–7667. [CrossRef] [PubMed]
35. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Naturally occurring marine α,β-epoxy steroids: Origin and biological activities. *Vietnam J. Chem. 2018*, 56, 409–433. [CrossRef]
36. Dembitsky, V.M.; Savidov, N.; Poroikov, V.V.; Gloriozova, T.A.; Imbs, A.B. Naturally occurring aromatic steroids and their biological activities. *Appl. Microbiol. Biotechnol. 2018*, 102, 4663–4674. [CrossRef]
37. Zhukova, N.V.; Gloriozova, T.A.; Poroikov, V.V.; Dembitsky, V.M. Halogenated (Cl, Br and I) marine steroids and their biological activities: A brief review. *Pharma Innov. J. 2017*, 6, 456–462. [CrossRef]
38. Siddiq, A.; Dembitsky, V. Acetylenic anticancer agents. *AntiCancer Agents Med. Chem. 2008*, 8, 132–170. [CrossRef]
39. Kuklev, D.V.; Domb, A.J.; Dembitsky, V.M. Bioactive acetylenic metabolites. *Phytomedicine 2013*, 20, 1145–1159. [CrossRef]
40. Kuklev, D.V.; Dembitsky, V.M. Chemistry, origin, antitumor and other activities of fungal homo-dimeric alkaloids. *Mathews J. Pharmaceut. Sci. 2016*, 1, 004. [CrossRef]
41. Kilimnik, A.; Kuklev, D.V.; Dembitsky, V.M. Antitumor Acetylenic Lipids. *Mathews J. Pharmaceut. Sci. 2016*, 1, 005. [CrossRef]
42. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Novel antitumor agents: Marine sponge alkaloids, their synthetic analogs and derivatives. *Mini Rev. Med. Chem. 2005*, 5, 319–336. [CrossRef]
43. Wali, A.F.; Majid, S.; Rasool, S.; Shehada, S.B.; Abdulkareem, S.K.; Firdous, A.; Beigh, S.; Shakeel, S.; Mushtaq, S.; Akbar, I.; et al. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. *Saudi Pharm. J. 2019*, 27, 767–777. [CrossRef] [PubMed]
44. Matulja, D.; Wittine, K.; Malatesti, N.; Laclef, S.; Turks, M.; Markovic, M.K.; Ambrozić, G.; Marković, D. Marine natural products with high anticancer activities. *Curr. Med. Chem. 2020*, 27, 1243–1307. [CrossRef]
45. Di Costanzo, F.; Di Dato, V.; Ianora, A.; Romano, G. Prostaglandins in marine organisms: A review. *Mar. Drugs 2019*, 17, 428. [CrossRef]
46. McFadden, C.S.; Van Ooijen, L.P.; Beckman, E.J.; Benayahu, Y.; Alderslade, P. Molecular systematics of the speciose Indo-Pacific soft coral genus, *Sinularia* (Anthozoa: Octocorallia). *Invertebr. Biol. 2009*, 128, 303–323. [CrossRef]
47. Quattrini, A.M.; Wu, T.; Soong, K.; Jeng, M.S.; Benayahu, Y.; McFadden, C.S. A next generation approach to species delimitation reveals the role of hybridization in a cryptic species complex of corals. *BMC Evol. Biol. 2019*, 19, 116–132. [CrossRef]
48. Lakshmi, V.; Kumar, R. Metabolites from Sinularia species. *Nat. Prod. Res. 2009*, 23, 801–850. [CrossRef]
49. Chen, W.-T.; Li, Y.; Guo, Y.-W. Terpenoids of *Sinularia* soft corals: Chemistry and bioactivity. *Acta Pharm. Sin. B 2012*, 2, 227–237. [CrossRef]
50. Ngoc, N.T.; Huong, P.T.M.; Thanh, N.V.; Cuong, N.X. Steroid Constituents from the Soft Coral *Sinularia nanolobata*. *Chem. Pharm. Bull. 2016*, 64, 1417–1419. [CrossRef]
51. Chao, C.H.; Chou, K.J.; Huang, C.Y.; Wen, Z.H.; Hsu, C.H.; Wu, Y.C.; Dai, C.F.; Sheu, J.H. Steroids from the Soft Coral Sinularia crassa. Mar. Drugs 2012, 10, 439–450. [CrossRef]

52. Mariotti, N.G. The role of cnidaria in drug discovery. In The Cnidaria, Past, Present and Future; Goffredo, S., Dubinsky, Z., Eds.; Springer: Cham, Switzerland, 2016.

53. Ilhan, H.A.; Pulat, C.C. Cytotoxic and antitumor compounds from marine invertebrates. Encycl. Mar. Biotechnol. 2020. [CrossRef]

54. Ngoc, N.T.; Huong, P.T.M.; Van Thanh, N.; Chia, N.T.P.C. Cytotoxic steroids from the Vietnamese soft coral Sinularia conferta. Chem. Pharm. Bull. 2017. [CrossRef]

55. Gebreyesus, T.; Stoilov, I.; Luo, F.T.; Djerassi, C. Minor and trace sterols in marine invertebrates. 55. Steroids from the soft coral Sinularia crassa and their α-glucosidase inhibitory activity. Biorg. Chem. 2020, 104, 104281. [CrossRef]

56. Ahmed, A.F.; Dai, C.F.; Kuo, Y.H.; Sheu, J.H. 9,11-Secosteroids from the soft coral Sinularia dissecta. J. Org. Chem. 2014, 12, 385–393. [CrossRef]

57. Chen, K.H.; Dai, C.F.; Hwang, T.L.; Chen, C.Y.; Li, J.J.; Chen, J.J. Discovery of novel diterpenoids from Sinularia sp. Austral. J. Chem. 1982, 35, 69–75. [CrossRef]

58. Huang, C.Y.; Su, J.S.; Liaw, C.C.; Sung, P.J.; Chiang, P.L.; Hwang, T.L.; Chang-Feng Dai, J.-H.; Sheu, H. Bioactive steroids with methyl ester group in the side chain from a reef soft coral Sinularia brassica cultured in a tank. Mar. Drugs 2017, 15, 280. [CrossRef]

59. Wu, M.J.; Wang, H.; Jiang, C.S.; Guo, Y.W. 9,11-Secosteroids and polyhydroxylated steroids from two South China Sea soft corals Sarcopeython trocheliothorum and Sinularia flexibilis. Steroids 2014, 92, 56–61. [CrossRef]

60. Ahmed, A.F.; Dai, C.F.; Kuo, Y.H.; Sheu, J.H. 1α,3β,5β-Trihydroxy-24-methyl-enecholestan-6-one: A novel steroid from a soft coral Sinularia gibberosa. Steroids 2003, 68, 377–381. [CrossRef]

61. Tseng, Y.J.; Wang, S.K.; Duh, C.Y. Secosteroids and noncembranoids from the soft coral Sinularia nanolobata. Mar. Drugs 2013, 11, 3288–3296. [CrossRef]

62. Thanh, N.V.; Ngoc, N.T.; Anh, H.L.T.; Thung, D.C.; Thao, D.T.; Cuong, N.X. Steroid constituents from the soft coral Sinularia flexibilis. J. Asian Nat. Prod. Res. 2016, 18, 938–944. [CrossRef]

63. Su, J.H.; Tseng, Y.J.; Huang, H.H.; Ahmed, A.F.; Lu, C.K.; Wu, Y.C.; Sheu, J.H. 9,11-Secosteroids from the soft corals Sinularia lochmodes and Sinularia leichnoides and Sinularia leichnoides. J. Nat. Prod. 2006, 69, 850–852. [CrossRef] [PubMed]

64. Yu, S.; Deng, Z.; van Ofwegen, L.; Proksch, P.; Lin, W. 5, 8-Epidioxysterols and related derivatives from a Chinese soft coral Sinularia nanolobata. Steroids 2006, 71, 955–959. [CrossRef] [PubMed]

65. Ngoc, N.T.; Van Thanh, N.; Cuong, N.X.; Nam, N.H. Structure elucidation of eight new polyhydroxylated sterols from the soft coral Sinularia crassa. Vietnam J. Sci. Technol. 2017, 55, 258–262. [CrossRef]

66. Qia, S.H.; Gao, C.H.; Qian, P.Y.; Zhang, S. Steroids from the South China Sea Gorgonian Subergorgia suberosa. Nat. Prod. Commun. 2010, 5, 201–204. [CrossRef]

67. Kazlauskas, R.; Murphy, P.T.; Ravi, B.N.; Sanders, R.L.; Wells, R.J. Spermidine derivatives and 9,11-secoesteroids from a soft coral (Sinularia sp.). Austral. J. Chem. 1982, 35, 69–75. [CrossRef]

68. Bonini, C.; Cooper, C.B.; Kazlauskas, R.; Wells, R.J.; Djerassi, C. Minor and trace sterols in marine invertebrates. 41. Structure and stereochemistry of naturally occurring 9,11-seco sterols. J. Org. Chem. 1983, 48, 2108–2111. [CrossRef]

69. Ciminiello, P.; Fenical, W.; Paul, V.J. Structure assignments of two new C-18 oxygenated steroidal ketals isolated from a pacific soft coral of the genus Sinularia. Experientia 1990, 46, 980–982. [CrossRef]

70. Gebreyesus, T.; Stoilov, I.; Luo, F.T.; Djerassi, C. Minor and trace sterols in marine invertebrates 55. The isolation, structure elucidation and synthesis of ergosta-5,24(28),25-trien-3β-ol. Steroids 1985, 45, 447–452. [CrossRef]

71. Jagodzinska, B.M.; Trimmer, J.S.; Fenical, W.; Djerassi, C. Sterols in marine invertebrates. 49. Isolation and structure elucidation of eight new polyhydroxylated sterols from the soft coral Sinularia dissecta. J. Org. Chem. 1985, 50, 1435–1439. [CrossRef]

72. Jagodzinska, B.M.; Trimmer, J.S.; Fenical, W.; Djerassi, C. Sterols in marine invertebrates. 51. Isolation and structure elucidation of C-18 functionalized sterols from the soft coral Sinularia dissecta. J. Org. Chem. 1985, 50, 2988–2992.

73. Su, J.; Yu, X.; Zeng, L.; Mak, T.C.W. Noval Polyhydroxylated sterols from the Soft Coral Sinularia numeoro. J. Nat. Prod. 1999, 52, 934–940. [CrossRef]

74. Kobayashi, M.; Ishizaka, T.; Miura, N.; Mitsuhashi, H. Marine terpenes and terpenoids. III. Isolation and structures of two cembrane diols from the soft coral Sinularia mayi. Chem. Pharm. Bull. 1987, 35, 2314–2318.
75. Kobayashi, M.; Krishna, M.M.; Anjaneyulu, V. Marine Sterols. XXIV. Isolation of 24-Methylenecholestan-1α, 3β, 5α, 6β, 16β-pentol from *Sinaralia* sp. of soft coral. *Chem. Pharm. Bull.* 1992, 40, 2845–2846. [CrossRef]
76. Kobayashi, M.; Haribabu, B.; Anjaneyulu, V. Marine Sterol. XXV. Isolation of 23-demethylgorgost-7-ene-3β, 5α, 6β-triol and (24S)-ergostane-3β, 5α, 6β, 7β, 15α-pentol from soft corals of the Andaman and Nicobar Coasts. *Chem. Pharm. Bull.* 1993, 41, 87–89. [CrossRef]
77. Anjaneyulu, A.S.R.; Sagar, K.S.; Venugopal, M.J.R.V. Terpenoid and steroid constituents of the Indian Ocean soft coral *Sinaralia maxima*. *Tetrahedron* 1995, 51, 10997–11010. [CrossRef]
78. Liu, J.; Wu, X.; Yang, M.; Gu, Y.C.; Yao, L.G.; Huan, X.J.; Miao, Z.H.; Luo, H.; Guo, Y.W. Erectsterates A and B, a pair of novel highly degraded steroid derivatives from the South China Sea soft coral *Sinularia maxima*. *Tetrahedron* 1994, 59, 27–29.
79. Ramesh, P.; Venkateswarlu, Y. Novel steroid constituents of the gorgonian coral *Subergorgia suberosa*. *Tetrahedron* 2005, 61, 29 of 34.
80. Xu, S.; Guo, S.; Liu, Y.; Zeng, L. Isolation and identification of two steroids from *Sinularia dissecta*. *Zhong Yao Cai* 2001, 24, 34–35.
81. Weng, J.-R.; Chiu, C.F.; Sheu, J.H. A sterol from soft coral induces apoptosis and autophagy in MCF-7 breast cancer cells. *Mar. Drugs* 2017, 16, 238. [CrossRef]
82. Chang, Y.C.; Lai, K.H.; Kumar, S.; Chen, P.J.; Wu, Y.H.; Lai, C.L. 1H NMR-Based Isolation of Anti-Inflammatory 9,11-secosteroids from the octocoral *Sinularia leptoelcados*. *Mar. Drugs* 2020, 18, 271. [CrossRef]
83. Sheu, J.H.; Chang, K.C.; Sung, P.J.; Duh, C.Y. Chemical constituents of a formosan soft coral *Sinularia* sp. *J. Chin. Chem. Soc.* 1999, 46, 253–257. [CrossRef]
84. Sheu, J.H.; Chang, K.C.; Sung, P.J.; Duh, C.Y. A Cytotoxic 5α,8α-epidioxysterol from a soft coral *Sinularia* species. *J. Nat. Prod.* 2000, 63, 139–140. [CrossRef]
85. Tilikeratne, L.M.V.; Liyanage, G.K.; Ratnasooriya, W.D.; Ksebati, M.B.; Schmitz, F.J. A new spermatostatic glycoside from the soft coral *Sinularia crispa*. *J. Nat. Prod.* 1999, 52, 1143–1145. [CrossRef]
86. Subrahmanyan, C.; Kulaetheeswaran, R. Bioactive compounds from a new species of *Sinularia* soft coral. *Indian J. Chem.* 1999, 38B, 151–160. [CrossRef]
87. Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. *Nat. Prod. Rep.* 2005, 22, 15–61. [CrossRef]
88. Kawagishi, H.; Kawagishi, H.; Choi, J.; Choi, J.; Ogawa, A.; Ogawa, A.; Yazawa, K. Chaxines B, C, D, and E from the edible mushroom *Agrocybe chaixingu*. *Tetrahedron* 2009, 65, 9850–9853. [CrossRef]
89. Liu, J.; Wu, X.; Yang, M.; Gu, Y.C.; Yao, L.G.; Huan, X.J.; Miao, Z.H.; Luo, H.; Guo, Y.W. Erectsterates A and B, a pair of novel highly degraded steroid derivatives from the South China Sea soft coral *Sinularia erecta*. *Stereoids* 2020, 161, 108681. [CrossRef]
90. Jin, P.; Deng, Z.; Pei, Y.; Fu, H.; Lin, W. Polyhydroxylated steroids from the soft coral *Sinularia dissecta*. *Stereoids* 2005, 70, 487–493. [CrossRef]
91. Zhang, J.; Liang, Y.; Wang, K.L.; Liao, X.J.; Deng, Z.; Xu, S.H. Antifouling steroids from the soft coral *Subergorgia suberosa*. *Stereoids* 2014, 79, 1–6. [CrossRef]
92. Xiao, J.; Gao, M.; Fei, B.; Huang, G.; Diao, Q. Nature-derived anticancer steroids from the soft coral *Sinularia gracilimus*. *Fitoterapia* 2020, 147, 104757. [CrossRef]
93. Anjaneyulu, A.S.R.; Krishna Murthy, M.V.R.; Gowri, P.M. Novel epoxy steroids from the Indian ocean soft coral *Sarcophyton crassocaulis*. *J. Nat. Prod.* 2000, 63, 112–118. [CrossRef]
94. Cheng, S.Y.; Dai, C.F.; Duh, C.Y. Sesquiterpenoids and artificial 19-oxygenated steroids from the Formosan soft coral *Nepthia eecta*. *J. Nat. Prod.* 2007, 70, 1449–1453. [CrossRef]
95. Wang, S.K.; Fuu, S.Y.; Duh, C.Y. Novel steroids from the soft coral *Nepthia chabrolii*. *Tetrahedron* 2007, 63, 703–707. [CrossRef]
96. Huang, C.Y.; Chang, C.W.; Sheu, J.H. Bioactive steroids from the Formosan soft coral *Umellulifera petasites*. *Mar. Drugs* 2016, 14, 180. [CrossRef]
97. Seo, Y.; Jung, J.H.; Rho, J.R.; Shin, J. Isolation of novel bioactive steroids from the soft coral *Alcyonium gracillimum*. *Tetrahedron* 1995, 51, 2497–2506. [CrossRef]
98. Gunatilaka, A.A.L.; Gopichand, Y.; Schmitz, F.J.; Djerassi, C. Minor and trace sterols in marine invertebrates. Isolation and structure elucidation of nine new 5α, 8α-epidioxysterol sterols from four marine organisms. *J. Org. Chem.* 1981, 46, 3860–3866. [CrossRef]
99. Tomono, Y.; Hirota, H.; Fusetani, N. Isogosterones A-D, antifouling, 13,17-seco-steroids from an octocoral *Dendronephthya* sp. *J. Org. Chem.* 1999, 64, 2272–2275. [CrossRef]
100. Chung, H.M.; Hong, P.H.; Su, J.H. Bioactive compounds from a gorgonian coral *Echinomuricea* sp. (Plexauridae). *Mar. Drugs* 2012, 10, 1169–1179. [CrossRef]

101. Duh, C.Y.; Lo, I.W.; Wang, S.K.; Dai, C.F. New cytotoxic steroids from the soft coral *Clavularia viridis*. *Steroids* 2007, 72, 573–579. [CrossRef]

102. Kobayashi, M.; Lee, N.K.; Byeng, W.; Kazunori, S.; Kyogoku, Y.; Kitagawa, I. Stoloniferone-a, -b, -c, and -d, four new cytotoxic steroids from the Okinawan soft coral *Clavularia viridis*. *Tetrahedron Lett.* 1984, 25, 5925–5928. [CrossRef]

103. Kazuo, I.; Makoto, I.; Kinzo, W. Stoloniolide I and II, new marine lactonic steroids with an unprecedented 1,10-secoergostane skeleton, isolated from the Okinawan Soft Coral, *Clavularia viridis*. *Chem. Lett.* 1995, 24, 1109–1110.

104. Iwashima, M.; Nara, K.; Iguchi, K. New marine steroids, yonarasterols, isolated from the Okinawan soft coral *Clavularia viridis*. 2020, 30, 130–137. [CrossRef]

105. Chen, W.H.; Wang, S.K.; Duh, C.Y. Polyhydroxylated steroids from the bamboo coral *Isis hippuris*. *Mar. Drugs* 2011, 9, 1829–1839. [CrossRef]

106. Cheng, S.-Y.; Dai, C.-F.; Duh, C.-Y. New 4-methylated and 19-oxygenated steroids from the Formosan soft coral *Nepthea erecta*. *Steroids* 2007, 72, 653–659. [CrossRef]

107. Amir, F.; Koay, Y.C.; Yam, W.S. Chemical constituents and biological properties of the marine soft coral *Nepthea*. A review (Part 1). *Trop. J. Pharm. Res.* 2012, 11, 485–498.

108. Cheng, S.-Y.; Wen, Z.-H.; Wang, S.-K.; Chiang, M.Y.; El Gamal, A.A.H.; Dai, C.-F.; Duh, C.-Y. Revision of the absolute configuration at C(23) of lanostanoids and isolation of secondary metabolites from Formosan soft coral *Nepthea erecta*. *Chem. Biodiver.* 2009, 6, 86–95. [CrossRef]

109. Tsai, Y.Y.; Huang, C.Y.; Tseng, W.R.; Chiang, P.L.; Hwang, T.L.; Su, J.H.; Sung, P.J.; Dai, C.F.; Sheu, J.H. Klyflaccisteroids K-M, bioactive steroidal derivatives from a soft coral *Klyxum flaucidum*. *Bioorg. Med. Chem. Lett.* 2017, 27, 1220–1224. [CrossRef]

110. Chang, Y.C.; Kuo, L.M.; Hwang, T.L.; Yeh, J.; Wen, J.H.; Fang, L.S.; Wu, Y.C.; Lin, C.S.; Sheu, J.H.; Sung, P.J. Pinnisterols A–C, new 9,11-seco-steroids from a Gorgonian *Pinnigorgia* sp. *Mar. Drugs* 2016, 14, 12. [CrossRef]

111. Quang, T.H.; Ha, T.T.; Minh, C.V.; Kiem, P.V.; Huong, H.T.; Nhan, N.T.; Nhien, N.X.; Tung, N.H.; Thao, N.P.; Thuy, D.T. Cytotoxic and PPARs transcriptional activities of sterols from the Vietnamese soft coral *Alcyonium B*, and their three monoacetates, from an Okinawan soft coral of *Clavularia viridis*. 2016, 72, 999–1004. [CrossRef]

112. Chang, Y.C.; Hwang, T.L.; Sheu, J.H.; Wu, Y.C.; Sung, P.J. New anti-inflammatory 9,11-seco-steroids with a rare ring arrangement from a gorgonian coral *Pinnigorgia* sp. *Tetrahedron* 2016, 72, 103–106. [CrossRef]

113. Nam, N.H.; Ninh, N.N.; Ngoc, T.T.; Hong, H.S.; Chau, V.M. Cytotoxic steroids from the Vietnamese gorgonian *Verrucella corona*. *Steroids* 2018, 138, 57–63. [CrossRef]

114. Chen, W.C.; Sheu, J.H.; Fang, L.S.; Hu, W.P.; Sung, P.J. 3α,7α,12α-Triacetoxy-5β-cholanic acid, a steroid from the Formosan soft coral *Alcyonium* sp. (Alcyoniidae). *Nat. Prod. Res. Res.* 2006, 20, 748–753. [CrossRef]

115. Abdel-Latef, A.; Alarif, W.M.; Alburae, N.A.; Algandaby, M.M. Alcyonium octocorals: Potential source of diverse bioactive terpenoids. *Molecules* 2019, 24, 1370. [CrossRef]

116. Häder, D.-P. Natural bioactive compounds technological advancements. In *Bioactive Substances from Coral Reefs and Gorgonians*; Sinha, R.P., Häder, D.P., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 381–391.

117. Tomono, Y.; Hirota, H.; Imahara, Y.; Fusetani, N. Four new steroids from two octocorals. *J. Nat. Prod.* 1999, 62, 1538–1541. [CrossRef] [PubMed]

118. Manzo, E.; Ciavatta, M.L.; Nuzzo, G.; Gavagnin, M. Terpenoid content of the Antarctic soft coral *Alcyonium antarcticum*. *Nat. Prod. Commun.* 2009, 4, 1615–1619. [CrossRef]

119. Kobayashi, M.; Iiyama, Y.; Orito, S.; Kurosaka, Y.; Kitagawa, I. Five new steroidal glycosides, pregneniodiside-A, B, and their three monoacetates, from an Okinawan soft coral of *Alcyonium* sp. *Tetrahedron Lett.* 1984, 25, 3731–3734. [CrossRef]

120. Fang, H.Y.; Liaw, C.C.; Chao, C.H.; Wen, Z.H.; Wu, Y.C. Bioactive pregnane-type steroids from the soft coral *Scleronephthya gracillimum*. *Tetrahedron* 2012, 68, 9694–9700. [CrossRef]
Chao, C.H.; Chou, K.J.; Wen, Z.H.; Wang, G.H.; Wu, Y.C.; Dai, C.F.; Sheu, J.H. Paraminabeolides A-F, cytotoxic and anti-inflammatory marine withanolides from the Soft Coral Paraminabea acronocephala. J. Nat. Prod. 2011, 74, 1132–1141. [CrossRef]

Ksebati, M.B.; Schmitz, F.J. Minabeolides: A group of withanolides from a Soft Coral, Minabea sp. J. Org. Chem. 1998, 53, 3926–3929. [CrossRef]

Duh, C.-Y.; Li, C.-H.; Wang, S.-K.; Dai, C.-F. Diterpenoids, norditerpenoids, and secosteroids from the Formosan soft coral Cespitularia hypotentaculara. J. Nat. Prod. 2006, 69, 1188–1192. [CrossRef]

Chang, Y.-C.; Hwang, T.L.; Sung, P.J.; Pinnisterols D–J, new 11-acetoxy-9,11-secosterols with a 1,4-quinone moiety from Formosan Gorgonian coral Pinnigorgia sp. (Gorgoniidae). Mar. Drugs 2017, 15, 11. [CrossRef]

Sheu, J.H.; Huang, L.F.; Chen, S.P.; Yang, Y.L. Hippuristerones E pneumonolide from the octocoral Nitrogen-containing verticillene diterpenoids from the Taiwanese soft coral Cespitularia hypotentaculara. Tetrahedron Lett. 2000, 41, 7885–7888. [CrossRef]

Shanura Fernando, I.P.; Asanka Sanjeewa, K.K.; Kim, H.S.; Wang, L.; Lee, W.W.; Jeon, Y.J. Apoptotic and antiproliferative properties of 3β-hydroxy-Δ5-steroidal congeners from a partially purified column fraction of Dendronephthya gigantea against HL-60 and MCF-7 cancer cells. J. Appl. Toxicol. 2017, 37, 1–10.

Huang, X.; Deng, Z.; Zhu, X.; van Ofwegen, L.; Proksch, P.; Lin, W. Krempenes A–D: A series of unprecedented pregnane-type steroids from the marine soft coral Cladiella sp. Organic Lett. 2005, 7, 991–994. [CrossRef]

Cheng, W.; Liu, Z.; Yu, Y.; van Ofwegen, L.; Proksch, P.; Yu, S.; Lin, W. A new spiropregnane-based steroid. J. Nat. Prod. 2013, 76, 3458–3466. [CrossRef]
144. Dorta, E.; Diaz-Marrero, A.R.; Cueto, M.; D’Croz, L.; Maté, J.L.; San-Martin, A.; Darias, J. Two unique chloro-pregnane steroids have been isolated from the eastern Pacific octocoral Cariproa Multiflora. Tetrahedron Lett. 2004, 45, 915–917. [CrossRef]

145. Han, L.; Wang, C.Y.; Huang, H.; Shao, C.L.; Liu, Q.A.; Qi, J.; Sun, X.P.; Zhai, P.; Gu, Y.C. A new pregnane analogue from Hainan soft coral Sclerophyta gracillimum. Biochem. Syst. Ecol. 2010, 38, 243–246. [CrossRef]

146. Iwashima, M.; Nara, K.; Nakamichi, Y.; Iuchi, K. Three new chlorinated marine steroids, yonarasterols G, H and I, isolated from the Okinawa soft coral, Clavularia viridis. Steroids 2001, 66, 25–32. [CrossRef]

147. Poza, J.; Fernández, R.; Reyes, F.; Reyes, F.; Jiménez, C.; Jiménez, C. Isolation, biological significance, synthesis, and cytotoxic evaluation of new natural parathioasteroids A-C and analogues from the soft coral Paragorgia sp. J. Org. Chem. 2008, 73, 7978–7984. [CrossRef]

148. Huang, C.Y.; Tseng, W.R.; Ahmad, A.F.; Chiang, P.L.; Tai, C.J.; Hwang, T.L.; Dai, C.F.; Sheu, J.H. Anti-inflammatory effects of Gorgonian Isis hippuris on histologic grade score of adenocarcinoma mammae tissue in C3H mice strain. Ph.D. Dissertation, Diponegoro University, Semarang, Indonesia, 2009.

149. Kapustina, I.I.; Makarieva, T.N.; Guzii, A.G.; Kalinovsky, A.I.; Popov, R.S.; Dyshlovoy, S.A.; Grebnev, B.B.; Anisatusholihah, A. The...
168. Liang, C.H.; Chou, T.H.; Yang, C.C.; Hung, W.J.; Chan, L.C.; Cheng, D.L.; Wang, G.H. Cytotoxic effect of *Discosoma sp.*, *Isis hippuris* and *Nepthia chabrolii* on human oral SCC25 cells. *J. Taiwan Inst. Chem. Eng.* 2010, 41, 333–337. [CrossRef]

169. Putra, M.Y.; Wibowo, J.T.; Murniasih, T. A review of chemistry and biological activities of the Indonesian Octocorallia. *J. Appl. Pharm. Sci.* 2017, 7, 219–227.

170. Sayuti, M.; Rukmi, W.D.; Yuniarta, P. Secondary metabolites and antioxidant potentials of sea Bamboo (*Isis hippuris*). *Diaka Univ. J. Pharm. Sci.* 2019, 18, 13–20. [CrossRef]

171. Chao, C.H.; Huang, L.F.; Yang, Y.L.; Su, J.H.; Wang, G.H.; Chiang, M.Y.; Wu, Y.C.; Dai, C.F.; Sheu, J.H. Polyoxygenated steroids from the Gorgonian *Isis hippuris*. *J. Nat. Prod.* 2005, 68, 880–885. [CrossRef]

172. Brown, A.C.; Fraser, T.R. The connection of chemical constitution and physiological action. *Trans. Roy. Soc. Edinburg* 1868, 25, 224–242.

173. Parascandola, J. The controversy over structure-activity relationships in the early twentieth century. *Pharm. Hist.* 1974, 16, 54–63.

174. Barlow, R.B. Structure-activity relationships. *Trends Pharm. Sci.* 1979, 1, 109–111. [CrossRef]

175. Hansch, C.; Leo, A. *Substituent Constants for Correlation Analysis in Chemistry and Biology*; John Wiley & Sons: New York, NY, USA, 1979.

176. Schultz, T.W.; Cronin, M.T.D.; Walker, J.D.; Aptula, A.O. Quantitative structure–activity relationships (QSARs) in toxicology: A historical perspective. *J. Mol. Struct. Theorchem.* 2003, 622, 1–22. [CrossRef]

177. Allen, T.E.H.; Goodman, J.M.; Gutsell, S.; Russell, P.J. Quantitative predictions for molecular initiating events using three-dimensional quantitative structure–activity relationships. *Chem. Res. Toxicol.* 2020, 33, 324–333. [CrossRef]

178. Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr. Computational methods in drug discovery. *Pharm. Rev.* 2014, 66, 334–395. [CrossRef]

179. Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. *Beilstein J. Org. Chem.* 2016, 12, 2694–2718. [CrossRef]

180. Kohk, D.B.; Amaral, M.; Bomke, J.; Grädler, U.; Musil, D. Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. *J. Chem. Theor. Comput.* 2018, 14, 3859–3869. [CrossRef]

181. Cherkasov, A.M.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J. QSAR modeling: Where have you been? Where are you going to? *J. Med. Chem.* 2014, 57, 4977–5010. [CrossRef]

182. Burov, Y.V.; Poroikov, V.V.; Korolchenko, L.V. National system for registration and biological testing of chemical compounds: Facilities for new drugs search. *Bull. Natl. Center Biol. Active Comp.* 1990, 1, 4–25.

183. Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.; Filimonov, D.; Poroikov, V.; Oprea, T. QSAR without Borders. *Chem. Soc. Rev.* 2020, 49, 3525–3564. [CrossRef]

184. Poroikov, V.V.; Filimonov, D.A.; Gloriozova, T.A.; Lagunin, A.A.; Druzhilovskiy, D.S.; Rudik, A.V. Computer-aided prediction of biological activity spectra for organic compounds: The possibilities and limitations. *Russ. Chem. Bull.* 2019, 68, 2143–2154. [CrossRef]

185. Filimonov, D.A.; Druzhilovskiy, D.S.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Dmitriev, A.V.; Pogodin, P.V.; Poroikov, V.V. Computer aided prediction of biological activity spectra for chemical compounds: Opportunities and limitations. *Biom. Chem. Res. Method* 2018, 1, e00004. [CrossRef]

186. Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskiy, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. *Chem. Heterocycl. Compd.* 2014, 50, 444–457. [CrossRef]

187. Anusevicius, K.; Mickevicius, V.; Stasevych, M.; Zvarych, V.; Komarowska-Porokhnyavets, O.; Novikov, V.; Tarasova, O.; Gloriozova, T.; Poroikov, V. Design, synthesis, in vitro antimicrobial activity evaluation and computational studies of new N-(4-iodophenyl)-β-alanine derivatives. *Res. Chem. Internat.* 2015, 41, 7517–7540. [CrossRef]

188. Druzhilovskiy, D.S.; Rudik, A.V.; Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Poroikov, V.V. Online resources for the prediction of biological activity of organic compounds. *Russ. Chem. Bull.* 2016, 65, 384–393. [CrossRef]

189. PASS Online URL. Available online: http://www.way2drug.com/passonline/ (accessed on 20 October 2020).

190. Lagunin, A.A.; Goel, R.K.; Gawande, D.Y.; Priyanka, P.; Gloriozova, T.A.; Dmitriev, A.V.; Ivanov, S.M.; Rudik, A.V.; Konova, V.I.; Pogodin, P.V.; et al. Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: A critical review. *Nat. Prod. Rep.* 2014, 31, 1585–1611. [CrossRef]
191. Savidov, N.; Gloriozova, T.A.; Poroikov, V.V.; Dembitsky, V.M. Highly oxygenated isoprenoid lipids derived from fungi and fungal endophytes: Origin and biological activities. Steroids 2018, 140, 114–124. [CrossRef]

192. Gawande, D.Y.; Druzhilovsky, D.; Gupta, R.C.; Poroikov, V.; Goel, R.K. Anticonvulsant activity and acute neurotoxic profile of Achyranthes aspera Linn. J. Ethnopharmacol. 2017, 202, 97–102. [CrossRef]

193. Goel, R.K.; Poroikov, V.; Gawande, D.; Lagunin, A.; Randhawa, P.; Mishra, A. Revealing medicinal plants useful for comprehensive management of epilepsy and associated co-morbidities through in silico mining of their phytochemical diversity. Planta Med. 2015, 81, 495–506.

194. Vil, V.; Terent’ev, A.O.; Al Quntar, A.A.A.; Gloriozova, T.A.; Savidov, N.; Dembitsky, V.M. Oxetane-containing metabolites: Origin, structures and biological activities. Appl. Microbiol. Biotechnol. 2019, 103, 2449–2467. [CrossRef]

195. Dembitsky, V.M.; Dzhemileva, L.; Gloriozova, T.; D’yakonov, V. Natural and synthetic drugs used for the treatment of the dementia. Biochem. Biophys. Res. Commun. 2020, 523, 772–783. [CrossRef]

196. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Naturally occurring isocyano/isothiocyanato compounds: Their pharmacological and SAR activities. Mathews J. Pharm. Sci. 2016, 1, 003.

197. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Biological activities of organometalloid (As, At, B, Ge, Si, Se, Te) steroids. J. Appl. Pharm. Sci. 2017, 7, 184–202.

198. Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Pharmacological profile of natural and synthetic compounds with rigid adamantane-based scaffolds as potential agents for the treatment of neurodegenerative diseases. Biochem. Biophys. Res. Commun. 2020, 529, 1225–1241. [CrossRef]

199. Herbev, I.I.; Ivankova, N.V.; Katkooi, V.R.; Mamaeva, O.A. Colorectal cancer and hypercholesterolemia: Review of current research. Exp. Oncol. 2005, 27, 166–178.

200. Papanagnou, P.; Stivarou, T.; Papageorgiou, I.; Papadopoulos, G.E.; Pappas, A. Marketed drugs used for the management of hypercholesterolemia as anticancer armament. Onco Targets Ther. 2017, 10, 4393–4411. [CrossRef]

201. Levitsky, D.O.; Dembitsky, V.M. Anti-breast cancer agents derived from plants. Nat. Prod. Bioprospect. 2015, 5, 1–16. [CrossRef]

202. Cho, J.H.; Weinstein, D.A.; Lee, Y.M. Emerging roles of autophagy in hepatic tumorigenesis and therapeutic strategies in glycogen storage disease type IA: A review. J. Inherit. Metab. 2020. [CrossRef]

203. De Cicco, P.; Catani, M.V.; Gasperi, V.; Sibilano, M.; Quaglietta, M.; Savini, I. Nutrition and breast cancer: A literature review on prevention, treatment and recurrence. Nutrients 2019, 11, 1514. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).