Collective interactions augment influenza A virus replication in a host-dependent manner

Kara L. Phippsa, Ketaki Gantia, Silvia Carnaccinib, Miglena Manandharc, Nathan T. Jacobsa, Brett E. Pickettc, Gene S. Tanc,d,f, Lucas M. Ferrerib, Daniel R. Perezb,e and Anice C. Lowena,d,*

aDepartment of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
bDepartment of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, United States of America.
cJ. Craig Venter Institute, La Jolla, California, United States of America
dEmory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, Georgia, United States of America
eCenter of Research on Influenza Pathogenesis (CRIP) CEIRS, New York, New York, United States of America.
fDivision of Infectious Disease, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America.

*Address correspondence: anice.lowen@emory.edu
Infection with a single influenza A virus (IAV) is only rarely sufficient to initiate productive infection. Here, we exploit both single-cell approaches and whole-animal systems to show that the extent of IAV reliance on multiple infection varies with virus strain and host species. Influenza A/guinea fowl/HK/WF10/99 (H9N2) [GFHK99] virus exhibits strong dependence on collective interactions in mammalian systems. This reliance focuses viral progeny production within coinfected cells and therefore results in frequent genetic exchange through reassortment. In contrast, GFHK99 virus has greatly reduced dependence on multiple infection in avian systems, indicating a role for host factors in viral collective interactions. Genetic mapping implicated the viral polymerase as a major driver of multiple infection dependence. Mechanistically, quantification of incomplete viral genomes showed that their complementation only partly accounts for the observed reliance on coinfection. Indeed, even when all polymerase components are detected in single-cell mRNA sequencing, robust polymerase activity of GFHK99 virus in mammalian cells is reliant on multiple infection. In sum, IAV collective interactions not only augment reassortment, but can also overcome species-specific barriers to infection. These findings underscore the importance of virus-virus interactions in IAV infection, evolution and emergence.
Introduction

Classically, an infectious unit has been defined as a single virus particle which delivers its genome to a cell, initiates the viral reproductive program, and yields progeny viruses. Increasingly, however, the importance to infection of collective interactions among viruses is being recognized. The delivery of multiple virus genomes to a cell allows both antagonistic and mutually beneficial interactions to occur, and these interactions in turn have the potential to shape transmission, pathogenicity, and viral evolutionary pathways.

Recent work has revealed several distinct mechanisms by which multiple viral genomes are co-delivered to a target cell. Diverse taxa including enterovirus, norovirus and rotavirus have all been observed to emerge from cells as groups of particles clustered within extracellular vesicles. Adhesion of virus particles to bacterial cell surfaces has a similar clustering effect and increases coinfection of target cells by poliovirus. The aggregation of free virions was found to yield multi-particle infectious units in the case of vesicular stomatitis virus (VSV). Various mechanisms of direct cell-to-cell spread also serve to deliver multiple viral genomes to the same cell. The implications of multiple infection in these diverse systems are still being explored. In a number of cases, however, collective delivery was demonstrated to increase the efficiency of infection relative to free virus particles, or to increase the rate of genetic exchange through recombination.

Whether brought about through coordinated infection with physically-linked virions or through independent infection events, the presence of multiple viral genomes within a cell creates the potential for their interaction to alter the course of infection. When distinct variants coinfect, mutually beneficial effects, such as reciprocal compensation for deleterious mutations, can increase overall fitness. In the case of IAV, several lines of evidence point to a major role in infection for multiplicity reactivation, the process by which segmented genomes lacking one or more functional segments complement each other. Conversely, negative interactions can also arise in which deleteriously mutated genes act in a dominant negative fashion.
Defective interfering particles, which often potently interfere with the production of infectious progeny from a coinfected cell, are the most extreme example of such antagonism20-22.

Importantly, multiple infection with identical viral genomes can also alter infection outcomes. Such cooperation was documented for VSV and HIV, where rates of transcription and replication were enhanced with increasing multiplicity of infection (MOI)23,24. Similarly, faster kinetics of virus production were seen at high MOI for poliovirus and an H3N2 subtype IAV19,25. In these instances, it is thought that increased copy number of infecting viral genomes provides a kinetic benefit important in the race to establish infection before innate antiviral responses take hold. Indeed, it has been suggested that multiple infection may be particularly relevant for facilitating viral growth under adverse conditions, such as antiviral drug treatment3,26.

For IAV, an important adverse condition to consider is that of a novel host environment. IAVs occupy a broad host range, including multiple species of wild waterfowl, poultry, swine, humans and other mammals27,28. Host barriers to infection typically confine a given lineage to circulation in one species or a small number of related species29,30. Spillovers occur occasionally, however, and can seed novel lineages. When a novel IAV lineage is established in humans, the result is a pandemic of major public health consequence31,32. The likelihood of successful cross-species transfer of IAV is determined largely by the presence, absence, and compatibility of host factors on which the virus relies to complete its life cycle, and on the viruses’ ability to overcome antiviral defenses in the novel host33-35.

Owing to the segmented nature of the IAV genome, multiple infection results in viral genetic exchange through reassortment36,37. If coinfecting viral genomes are distinct, reassortment will yield genotypic diversity that may facilitate evolution, including adaptation to a new host38. Indeed, reassortment involving human seasonal viruses and IAV adapted to non-human hosts was central to the emergence of the last three pandemic strains39,40. Thus, among the interactions that occur between coinfecting viruses, reassortment is critical to consider for IAV.
Our objective herein was to assess the degree to which IAV relies on the delivery of multiple viral genomes to a cell to ensure production of progeny. In particular, we sought to determine whether this phenotype varies with host species and with virus strain. We therefore examined multiplicity dependence in avian and mammalian cells for two highly divergent avian-origin IAVs, influenza A/mallard/Minnesota/199106/99 (H3N8) [MaMN99] virus and influenza A/guinea fowl/Hong Kong/WF10/99 (H9N2) [GFHK99] virus. While MaMN99 virus is typical of IAV commonly isolated from wild ducks, GFHK99 virus is representative of the G1 lineage of H9N2 viruses prevalent in the poultry of Southeast Asia, Middle East, and North Africa41,42. Results from all virus/cell combinations tested confirm prior reports that cells multiply-infected with IAV produce more viral progeny than singly-infected cells. Importantly, however, the proportion of viral progeny that emerge from coinfected cells varies greatly with virus-host context. The GFHK99 strain exhibits an acute dependence on multiple infection in mammalian cells that is not seen for MaMN99 virus in mammalian cells or for GFHK99 virus in avian cells. The polymerase of the GFHK99 virus drives its host-specific dependence on multiple infection. In line with this finding, both bulk and single-cell measurements of viral RNA showed that polymerase activity in mammalian cells is enhanced with multiple infection. A need for complementation of incomplete viral genomes partially accounts for this cooperative effect. Importantly, however, single cell data indicate that additional multiplicity-dependent mechanisms support RNA synthesis by the GFHK99 virus in mammalian cells. Thus, our data point to an important role for multiple infection in determining the potential for IAV replication in diverse hosts.

Results

\textit{Virus-host interactions dictate degree of multiplicity dependence}

To evaluate the extent to which IAV relies on multiple infection for productive infection, we initially used coinfection and reassortment as readouts. Reassortment is a useful measure for
coinfection dependence because reassortant viruses must arise from coinfected cells. To ensure accurate quantification of reassortment, coinfections were performed under single-cycle conditions with homologous viruses that differ only by a silent mutation in each segment and the presence of either an HA or HIS epitope tag fused to the HA protein. Such homologous virus pairings were generated in both MaMN99 and GFHK99 strain backgrounds and were named MaMN99 WT / MaMN99 VAR and GFHK99 WT / GFHK99 VAR. Tracking of HA and HIS expression by flow cytometry provides a measure of infection that can be compared across cell lines. Quantification of cells expressing one or both epitope tags furthermore gives a means of assessing levels of coinfection across a range of MOIs.

Coinfection and reassortment between homologous viruses of the MaMN99 or GFHK99 strain backgrounds were examined in Madin-Darby canine kidney (MDCK), chicken DF-1 and human A549 cells (Figure 1, Supplementary Figure 1). Analysis of MDCK cells infected with the GFHK99 viruses at MOIs ranging from 10 to 0.01 PFU per cell revealed a near linear relationship between total HA+ cells and dual-HA+ cells, suggesting that the GFHK99 strain is strictly dependent on multiple infection for HA expression in these cells (Figure 1A). HA production resulting from infection with a single strain was more common for GFHK99 in DF-1 cells or MaMN99 in MDCK cells, indicating a lesser dependence on multiple infection (Figure 1A). The more dependent expression of any HA protein is on coinfection, the more linear the relationship between the percentages of dual-HA+ cells and HA+ cells becomes. Conversely, a more quadratic relationship indicates less dependence on coinfection, as individual particles are more often able to express HA independently. We therefore quantified the degree of linearity from the regression models of each dataset and found that only GFHK99 virus in MDCK cells exhibits appreciable linearity in the relationship between HA+ and dual-HA+ cells (Figure 1B).

Genotyping of progeny virus from coinfections similarly revealed that reassortment levels vary by virus strain and cell type. In line with observed levels of coinfection, GFHK99 virus exhibits high levels of reassortment in MDCK cells even at low MOIs, indicating that nearly all
progeny virus is produced from WT-VAR1 coinfected cells (Figure 1C). GFHK99 coinfection in A549 cells is also characterized by high levels of reassortment, although less extreme than those seen in MDCK cells (Supplementary Figure 1). Compared to GFHK99, MaMN99 viruses infecting MDCK cells show lower levels of reassortment (Figure 1C). Moreover, reassortment of GFHK99 viruses is markedly reduced in DF-1 cells compared to that seen in MDCK cells (Figure 1D). These results clearly reveal differing degrees of multiplicity dependence for different virus/cell pairings and therefore indicate that multiple infection dependence, rather than solely being an intrinsic property of a virus strain, is determined through virus-host interactions.

That all virus/cell pairings tested show evidence of multiplicity dependence is highlighted by comparison of the experimental reassortment data to a theoretical prediction that assumes infection is perfectly efficient (Figure 1C, 1D). This theoretical prediction was published previously, and is derived from a computational model in which the number of viral progeny produced by an infected cell is constant. Because singly- and multiply-infected cells make equivalent numbers progeny, reassortment is predicted to increase only gradually at low levels of infection (low %HA+) where coinfection is relatively rare. By contrast, reassortment observed experimentally reaches high levels much more rapidly. High reassortment indicates that viral progeny production is focused in the proportion of the infected cell population that is multiply infected. Coinfection dependence, therefore, is evident in all virus-cell pairings, but particularly strong for GFHK99 in MDCK cells.

Strain and host specific phenotypes are also evident in vivo

To determine whether host-dependent reliance on multiple infection extended to in vivo infection, we performed coinfections with MaMN99 WT and VAR viruses in guinea pigs and GFHK99 WT and VAR1 viruses in guinea pigs and quail. To ensure use of comparable effective doses for each virus/host pairing, the 50% infectious dose (ID50) of each virus mixture was first determined experimentally in the animal models used. Guinea pigs were then infected
intrasnasally with 10^2 GPID$_{50}$ of either the GFHK99 or MaMN99 WT/VAR mixture and nasal washes were collected daily. Japanese quail were infected with 10^2 QID$_{50}$ of the GFHK99 virus mixture via an oculo-naso-tracheal route and tracheal swabs were collected daily. To evaluate the frequency of reassortment, plaque isolates from these upper respiratory samples were genotyped for each animal on each day. Because multicycle replication in vivo allows the propagation of reassortants, analysis of genotypic diversity rather than percent reassortment is more informative for these experiments. Thus, the effective diversity (Hill’s N$_2$) was calculated for each dataset and plotted as a function of time post-inoculation (Figure 1E, 1F). The viruses collected from GFHK99 infected guinea pigs show much higher genotypic diversity throughout the course of infection than viruses isolated from MaMN99 infected guinea pigs (Figure 1E) or GFHK99 infected quail (Figure 1F). These data indicate that the virus-host interactions which determine dependence on multiple infection in cell culture extend to in vivo infection.

Multiple infection enhances viral growth

The abundant reassortment observed with GFHK99 viruses in mammalian systems suggests that multiple infection plays a major role in determining the productivity of an infected cell. We therefore hypothesized that increasing MOI would augment the burst size, or viral output, of infected cells and that the magnitude of this effect would be greater for GFHK99 in MDCK cells than for GFHK99 in DF-1 cells or MaMN99 in MDCK cells. To test this prediction, we infected over a range of MOIs with the same mixtures of GFHK99 WT and VAR$_1$ or MaMN99 WT and VAR viruses used above and then measured PFU produced per cell under single-cycle conditions. Under non-saturating conditions (determined by flow cytometry to be MOI <1 PFU per cell, as shown in Supplementary Figure 2), increasing MOI resulted in accelerated viral growth and higher burst size for all three virus/cell pairings (Figure 2A-C). As predicted, however, increasing the MOI of GFHK99 in MDCK cells resulted in a further enhancement of
viral amplification (Figure 2D). Thus, the benefit conferred by multiple infection was greater for GFHK99 in MDCK cells compared to either MaMN99 in MDCK cells or GFHK99 in DF-1 cells. We reasoned that the cooperative effect observed might result from i) complementation of incomplete viral genomes or ii) a benefit of increased viral genome copy number per cell. In an effort to differentiate between these possibilities, we measured growth of GFHK99 in MDCK and DF-1 cells infected at a range of MOIs greater than 1 PFU per cell. Because these conditions are saturating (Supplementary Figure 2), incomplete viral genomes are unlikely to be prevalent and any benefit of increasing MOI would be attributable to increasing genome copy numbers per cell. In both cell types, MOIs between 1 and 20 PFU per cell result in similar peak viral titers (Figure 2E-F). This saturation of cooperation at higher MOIs suggests diminishing returns from additional genome copies above a certain threshold. Calculation of fold change in viral amplification revealed that burst size was either unchanged or negatively affected by increasing MOI above 1 PFU per cell (Figure 2G). Whether this threshold is imposed by a need for complementation or another mechanism sensitive to saturation remained unclear. Overall, however, the increase in viral amplification with increased multiplicity at sub-saturating MOIs strengthened our prior conclusion that viral growth, and particularly productivity of GFHK99 virus in MDCK cells, is enhanced by multiple infection.

The viral polymerase is a major determinant of multiple infection dependence

To identify viral genetic determinants of multiple infection dependence, we mapped segments responsible for the high reassortment phenotype of GFHK99 in MDCK cells. Reverse genetics was used to place one or more genes from GFHK99 into a MaMN99 background. We created a panel of chimeras containing the HA, NP, or the full polymerase complex and NP (3PNP) of GFHK99 virus in the MaMN99 background. We also generated the reciprocal swap of this last genotype in which NS, M, NA and HA segments were derived from GFHK99. These segment groupings were selected for exchange based on their functions in the viral life cycle. For each
chimeric genotype, homologous WT and VAR strains were generated to allow tracking of homologous reassortment.

Coinfections with matched WT and VAR strains were performed in MDCK cells and HA expression and reassortment were measured as in Figure 1. When levels of dual HA positivity are assessed, most MaMN99:GFHK99 chimeric genotypes cluster together with the parental MaMN99 virus, suggesting a relatively low dependence on multiple infection for HA expression (Figure 3A-B). By contrast, the MaMN99:GFHK99 3PNP genotype gives results similar to those of the parental GFHK99 (Figure 3A-B). Quantification of reassortment revealed that all chimeric viruses reassort at a higher frequency than MaMN99 parental strains but that the MaMN99:GFHK99 3PNP viruses show the highest reassortment, comparable to that seen for the parental GFHK99 genotype (Figure 3C-D). Thus, while other viral genes may make minor contributions, the viral polymerase is the primary genetic determinant of the high reassortment exhibited by GFHK99 in MDCK cells and defines a need for cooperation between coinfecting viruses.

Multiple infection enhances viral RNA replication

Because genetic mapping of the GFHK99 high reassortment phenotype implicated the viral polymerase, we sought to ascertain the effects of multiple infection on polymerase function. We therefore measured GFHK99 WT viral RNA synthesis in the absence and presence of increasing amounts of a homologous coinfecting virus. To evaluate host specificity, we did this analysis in both MDCK and DF-1 cells. The coinfecting virus, GFHK99 VAR₂, was generated in the GFHK99 background to avoid genetic incompatibility and carries silent mutations in each segment that disrupt primer binding sites. Cells were infected with low MOI (0.005 PFU per cell) of GFHK99 WT virus to ensure receipt of a single copy of the virus genome. Concurrently, cells were infected with increasing doses of GFHK99 VAR₂ virus. Digital droplet PCR (ddPCR) with primers specific for GFHK99 WT cDNA was then used to quantify replication of WT genomes.
The results show that, in both cell types, coinfection with low to moderate doses of the VAR₂ virus increases levels of GFHK99 WT vRNA (Figure 4A). At the highest doses of VAR₂ virus used, however, a suppressive effect is observed. Importantly, the amount of coinfection required to reach maximal vRNA production differs among cell lines: in MDCK cells 10-fold more VAR₂ virus (1 PFU per cell) is needed than in DF-1 cells (0.1 PFU per cell). The maximal impact of VAR₂ virus on WT vRNA production is also greater in MDCK cells: a ~60-fold enhancement is seen, compared to only ~2-fold in DF-1 cells.

To verify these observations in a more physiologically relevant system, we repeated the experiment in primary human tracheobronchial epithelial (HTBE) cells differentiated at an air-liquid interface. Similar to MDCK cells, these primary human cells exhibit maximal GFHK99 WT RNA production with addition of 1 PFU per cell GFHK99 VAR₂ virus (Figure 4B). Peak RNA replication is >10 fold higher in HTBE cells than without coinfecting virus.

Thus, in all three cell types tested, the introduction of coinfecting VAR₂ virus reveals a cooperative effect acting at the level of RNA synthesis. At very high doses of VAR₂ virus, WT RNA levels decline, suggesting competition for a limited resource at these extreme MOIs. Most notably, the magnitude of the cooperative effect and the amount of VAR₂ virus needed to reach maximal WT RNA levels are much greater in mammalian cells than avian cells. These differing outcomes indicate that the multiplicity dependence of GFHK99 polymerase function is modulated by host factors that differ between mammalian and avian hosts.

Multiple infection accelerates viral replication and transcription

To more finely assess the effects of multiplicity on polymerase function in various virus-host combinations, we measured vRNA, mRNA, and cRNA over time following low or high MOI infection (Figure 5A). MaMN99 and GFHK99 viruses were examined in MDCK cells and GFHK99 virus in DF-1 cells. To evaluate the activity of the viral polymerase when the encoding genes are supplied as low or single copies, a dose of 0.5 RNA copies per cell was used for
infection. Under these low MOI conditions, all three viral RNA species accumulate at a significantly higher rate for GFHK99 in DF-1 cells and MaMN99 in MDCK cells than for GFHK99 in MDCK cells (Figure 5B). In defining a high MOI dose, we elected to use HA expressing units, as determined by flow cytometry, rather than genome copy number (Supplementary Figure 3). This measure gives a functional readout for polymerase activity, and therefore allows a dose to be chosen that ensures the vast majority of cells carry an active viral polymerase. The high MOI dose used was 3.0 HA expressing units per cell. At this high MOI, accumulation of GFHK99 mRNA, vRNA and cRNA in MDCK cells occurs at a similar rate to that seen for GFHK99 in DF-1 cells or MaMN99 in MDCK cells (Figure 5C). Thus, a host-specific defect in GFHK99 polymerase activity that affects synthesis of all three viral RNA species is seen at low MOI. This defect is, however, resolved under conditions where multiple infection is prevalent.

Single cell mRNA sequencing reveals a need for cooperation beyond complementation

An important limitation of working with bulk RNA extracted from a population of cells is the inability to distinguish between i) low, but uniform, RNA synthesis in all cells and ii) robust RNA synthesis in only a minority of cells. To elucidate the basis for cooperation at higher MOIs, it was important to determine which of these scenarios gives rise to the low average viral RNA levels that characterize low MOI infection with GFHK99 in MDCK cells. A highly heterogeneous picture, with abundant viral RNAs in a minority of cells, would be expected if incomplete viral genomes are common but cells with a complete set of polymerase genes support robust viral RNA synthesis. Conversely, uniformly low levels of viral products would be expected if even complete viral genomes cannot support robust polymerase activity in the context of singular infection.

To evaluate the heterogeneity of viral RNA synthesis at the single cell level, we used single-cell mRNA sequencing. We infected DF-1 or MDCK cells with GFHK99 virus under single-cycle conditions and collected cells at 8 h post-infection for mRNA barcoding on the 10X
Genomics Chromium platform prior to sequencing. The relative abundance of mRNA from each viral transcript was calculated by normalizing to the median number of transcripts per cell in that infection. Cells in which at least one viral mRNA molecule was detected were analyzed further. The number of cells that met this criterion ranged between 182 and 478 per infection condition (MOI and cell type combination). We found that the amount of detected GFHK99 viral mRNA varies widely between individual DF-1 cells (*Figure 6A*), which is consistent with previous observations. In contrast, GFHK99 viral mRNA levels are uniformly low in MDCK cells under the relatively low MOI conditions used.

Because only subset of a cell’s transcripts is captured and therefore reliably detected, the 10X platform does not allow a robust determination of segment presence or absence in a cell. Where viral mRNAs derived from a given segment are detected, however, one can conclude that the corresponding vRNA was present. To evaluate whether low transcript abundance corresponded to the lack of one or more polymerase-encoding segments, we therefore stratified the data based on detection of all four segments necessary to support transcription (PB2, PB1, PA and NP) (*Figure 6A*). Viral transcript levels are markedly increased in DF-1 cells that contained the PB2, PB1, PA, and NP segments compared to those in which one or more of these segments was not detected. Averaging across all MOIs, a 10-fold increase in transcript abundance was noted in DF-1 cells (*p* < 10\(^{-16}\), linear mixed effects model). In contrast, viral transcription in MDCK cells is consistently low, and the presence of polymerase complex confers no benefit (*Figure 6A*).

Data presented above from bulk samples indicate that multiple infection is needed for efficient GFHK99 transcription in MDCK cells. To measure the impact of coinfecting virus in individual cells, we repeated the single-cell sequencing experiment with the addition of genetically marked variants of GFHK99 virus. For an mRNA sequencing assay, marker mutations proximal to the poly-A tail of the viral transcripts are needed; we therefore generated variant viruses that carry synonymous nucleotide changes near the 5’ end of each vRNA,
GFHK99 mVAR₁ and GFHK99 mVAR₂. Cells were inoculated with GFHK99 WT and GFHK99 mVAR₁ viruses in a 1:1 ratio and the combined MOI was the same as that used for GFHK99 WT in the first experiment. Coinfection with GFHK99 mVAR₂ virus was performed simultaneously and this virus was used at the concentration found to be optimal for WT viral RNA replication in Figure 4A; the MOI therefore differed between DF-1 (0.1 PFU per cell) and MDCK (1.0 PFU per cell) cells. After mRNA sequencing, cells in which transcripts from all eight mVAR₂ virus segments were detected were analyzed further. Between 131 and 240 cells per infection condition (MOI, cell type, virus strain) met this criterion. The viral transcript levels per cell detected in this second experiment are shown in Figure 6B alongside data from the first experiment for comparison. In this figure, GFHK99 WT and GFHK99 mVAR₁ mRNAs are plotted separately; the concordance between these two datasets gives an indicator of reproducibility. In comparing the two infections, we observe that total viral transcript abundance is 72% lower in MDCK cells compared to DF-1 cells in the first infection ($p < 10^{-16}$, linear mixed effects model), but this effect is almost entirely mitigated by the presence of mVAR₂ virus, as transcript abundance is reduced by only 11% in MDCK cells in the second infection ($p < 10^{-16}$, linear mixed effects model). This reduction in the disparity between DF-1 and MDCK cell viral transcript abundance resulted from the fact that mVAR₂ virus increased transcript abundance by 102% in DF-1 cells, but 545% in MDCK cells ($p < 10^{-16}$, linear mixed effects model) (Figure 6B). These data underscore the significance of viral collective interaction to ensure productive infection in diverse hosts.

Frequency of incomplete GFHK99 genomes in MDCK cells is moderate

Our single-cell sequencing results suggest that the presence of a complete viral genome in the infected cell is not sufficient to support robust transcription of GFHK99 vRNAs. All eight viral gene segments are, however, necessary for productive infection and could play an important role in the reliance of GFHK99 virus on multiple infection in mammalian systems. We therefore
sought to quantify the frequency with which fewer than eight vRNAs are replicated in GFHK99 infected MDCK cells. Given the sensitivity limitations of the single-cell mRNA sequencing method, we employed a single-cell assay that we designed previously for this purpose19. MDCK cells were coinfectected with a low MOI of GFHK99 WT virus and a high MOI of GFHK99 VAR\textsubscript{2} virus. The GFHK99 VAR\textsubscript{2} virus acts to ensure propagation of the WT virus gene segments, even when less than the full WT viral genome is available for transcription and replication. Following inoculation, single cells were sorted into wells which contain a naïve cell monolayer and multicycle replication was allowed for 48 h. To determine which viral gene segments were present in the initially sorted cell, RT-qPCR with primers that differentiate WT and VAR\textsubscript{2} gene segments was applied. As detailed in the Methods, the frequencies of VAR\textsubscript{2} virus infection, WT virus infection, and each distinct WT segment were used to estimate the probability that a cell infected with a single WT virus would contain a given segment. We termed the resultant parameter Probability Present (\textit{P}_P). The experimentally determined \textit{P}_P values vary among the segments, with a range of 0.57 to 0.88 (Figure 7A). The product of the eight \textit{P}_P values gives an estimate of the proportion of singular infections in which all eight segments are available for replication. This estimate is 6.5\% for GFHK99 in MDCK cells.

The high reassortment of GFHK99 WT and VAR\textsubscript{1} viruses in MDCK cells indicates that progeny viruses predominantly originate from multiply infected cells in this system. To evaluate whether incomplete viral genomes account for this focusing of GFHK99 virus production within multiply infected cells, we used our previously published computational model of IAV coinfection and reassortment18. In this model, the frequency of segment delivery upon replication is governed by eight \textit{P}_P parameters and an infected cell only produces virus if at least one copy of all eight segments are present. Importantly, in this model the amount of virus produced from productively infected cells is constant – there is no additional benefit to multiple infection. When the eight experimentally determined \textit{P}_P values for GFHK99 virus in MDCK cells are used to parameterize the model, the theoretical prediction of reassortment frequency is much lower than
that observed experimentally for GFHK99 WT and VAR₁ viruses in MDCK cells (Figure 7B). This discrepancy indicates that the frequency of missing segments cannot fully account for the high reassortment seen. Thus, the collective interactions on which the GFHK99 virus relies for replication in mammalian systems appears to extend beyond complementation. A full viral genome is necessary, but not sufficient, to support robust replication.

Discussion

Using small genetic tags and a range of molecular tools for their detection, we investigated the determinants of and mechanistic basis for IAV multiplicity dependence. Our data reveal that both viral and host features dictate the degree to which productive IAV infection relies on cooperation. Thus, multiple infection dependence is a property determined through interaction between the virus and the infected cell, rather than an intrinsic property of the virus. Differences between virus strains and host systems in multiple infection dependence lead to phenotypic differences in the amount of reassortment that occurs upon coinfection. The demonstration of these reassortment differences in mammalian and avian models points to the relevance of viral collective interactions for IAV evolution and emergence. Mechanistically, our data indicate that multiple infection is needed in part for complementation of incomplete viral genomes, but that such complementation is not sufficient to ensure productive infection in all virus-host systems. Rather, we see that the GFHK99 polymerase requires a second form of cooperation to support efficient RNA synthesis in mammalian cells. For this reason, robust infection of GFHK99 virus in mammalian systems is achieved only in the context of high MOI infection. Thus, the data presented reveal that infection efficiency and the need for cooperation varies with virus-host context, and the viral polymerase is a major driver of this phenotype.

An important implication of viral genome segmentation is the potential for replication of incomplete genomes within infected cells\(^2\). For most segmented viruses of vertebrates, including IAV, each segment encodes at least one essential gene product and a genome lacking one or
more functional segments cannot support the production of progeny viruses. Complementation is therefore a major class of collective interaction for viruses with segmented genomes, the relevance of which likely depends on the extent to which delivery and replication of the various genome segments is coordinated for a given virus species. For IAV, we and others have demonstrated that, within singly-infected cells, a subset of segments fails to be replicated or expressed with high frequency. Specifically, for influenza A/Panama/2007/99 (H3N2) virus in MDCK cells, we found that delivery of a single viral genome results in replication of all eight segments only 1.2% of the time. Data reported herein for GFHK99 virus indicate that a somewhat higher proportion of replicated viral genomes are complete – namely, 6.5%. Thus, GFHK99 virus is partially dependent on complementation for productive infection in this cell line. However, the high levels of reassortment seen between GFHK99 WT and VAR viruses in mammalian cells indicate that additional cooperative interactions are at play. This is made clear by the discrepancy between observed GFHK99 virus reassortment and the reassortment levels expected if complementation is the only cooperative effect considered. A necessary but insufficient role for complete viral genomes is further supported by the results of single cell mRNA sequencing of GFHK99 virus infected MDCK cells. Here, viral transcripts are produced at low copy numbers even when all four segments needed to support viral RNA synthesis are confirmed to be present. This outcome is in contrast to that observed for GFHK99 virus in DF-1 cells and to that reported previously for WSN virus in A549 cells, where the heterogeneity in viral transcript levels among cells could be attributed in part to the apparent absence of one or more polymerase complex genes. Notably, however, the restriction of GFHK99 viral transcription in MDCK cells was largely mitigated by the addition of a homologous coinfecting virus. These data point to a model in which the presence of not just complete genomes, but rather multiple copies of the viral genome, are needed to overcome host-specific barriers to GFHK99 infection in mammalian systems.
Insight into the nature of this second cooperative interaction is gleaned from the observation that the amount of viral RNA produced from a constant input of GFHK99 WT viral genomes is significantly increased with the addition of a homologous virus that is genetically tagged to allow independent detection. Because GFHK99 WT virus RNAs can be quantified separately from the coinfecting VAR₂ virus RNAs, we can conclude that the coinfecting virus functions in trans to support GFHK99 WT virus replication. This interaction is likely to occur at the protein level, with increased genome copy number supporting the expression of higher levels of viral polymerase proteins or cofactors. This proposed mechanism is supported by prior work showing that the IAV polymerase can act in trans to propagate temperature sensitive (ts) variants at non-permissive temperatures⁴⁷.

Our data implicate the viral polymerase in defining an acute reliance on cooperation for efficient viral RNA synthesis and viral progeny production. While our experiments focused on only two avian IAVs, it is well known that avian-adapted IAV polymerases require adaptive changes for efficient replication in mammalian cells³³,⁴⁸,⁴⁹. The conformation or composition of the GFHK99 viral polymerase may lead to defects in transcription or replication due to poor interactions with mammalian host factors, such as ANP32A⁵⁰. Low functionality of the viral polymerase complex may furthermore lead to the synthesis of abortive products, such as mini viral RNAs⁵¹. Thus, the multiplicity dependence of GFHK99 in mammalian systems may be a manifestation of poor adaptation of the viral polymerase to the host cell. Importantly, however, it appears that this lack of adaptation can be at least partially overcome when multiple viral genomes are delivered to the same cell. While MaMN99 virus is also not adapted to mammalian systems, it is only distantly related to GFHK99 virus and is representative of viruses that circulate in a taxonomically and geographically distinct avian population compared to the poultry hosts of GFHK99 virus. It will be important in future studies to delineate further the IAV lineages and host contexts in which an acute need for cooperation exists.
The clear involvement of the polymerase does not exclude the possibility that other virus-host interactions may impact the need for cooperation. In fact, reassortment levels measured for chimeric GFHK99-MaMN99 viruses indicated that other viral components contribute to the high reassortment phenotype of GFHK99 virus. For example, it has been postulated that the pH of fusion of HA, which dictates when the viral genome is released from endosomes, determines the amount of time that viral gene segments are vulnerable to diffusion or degradation during transit to the nucleus. Because stochastic loss of a subset of gene segments prior to nuclear import would likely be overcome through multiple infection, HA pH of fusion may determine the need for cooperation in some virus-host contexts. The contribution of particular viral proteins to coinfection dependence is relevant for understanding barriers to zoonotic infection and predicting the likelihood of reassortment following zoonoses.

The H9N2 subtype is of particular relevance in the context of zoonotic infection as viruses of this subtype are highly prevalent at the poultry-human interface, sporadic human infections have been reported, and H9N2 viruses share several related genes with H5N1 and H7N9 subtype viruses that have caused hundreds of severe human infections. The G1 lineage to which the GFHK99 virus belongs circulates widely in the poultry of Southeast Asia and North Africa and reassorts frequently with other poultry adapted IAVs. The prevalence of reassortment suggests that the internal gene segments – which comprise the six non-HA, non-NA segments – are compatible with other genotypes. Our comparison of reassortment in guinea pigs and quail furthermore indicates that reassortment could be particularly prevalent in the context of zoonotic infection of mammals. This phenotype of high reassortment in mammals is expected to extend to the H5N1 and H7N9 subtype viruses of public health concern, which carry polymerase genes related to those of the GFHK99 virus. While reassortment is typically deleterious owing to negative epistasis among heterologous segments, a high frequency of reassortment creates greater opportunity for fit genotypes to
arise and adapt, and should therefore be considered in assessing the risk of emergence posed by non-human adapted IAVs.

Our work reveals an underappreciated facet of virus-host interactions: the extent to which IAV relies on cooperation with coinfecting viruses is both strain and host dependent. Varied phenotypes of multiplicity dependence occurring in different virus-host contexts likely have important implications for viral fitness and viral evolution. Differences in coinfection dependence are expected to lead to differences in the viral dose required to establish a new infection, which in turn has implications for both the likelihood of transmission and the predominant mode of transmission. For example, transmission among close contacts is associated with the transfer of higher viral loads. Reliance on cooperation is also expected to impact the spatial dynamics of viral spread within an individual. For example, long-distance dispersal of virus within a host is less likely to be productive in a system where the virus is highly dependent on cooperative interactions. Finally, the features which impact coinfection dependence are also likely to impact viral evolution by changing how a virus population samples the available sequence space. As discussed above, multiplicity dependence increases the opportunity for genetic exchange through reassortment, which may in turn slow the accumulation of deleterious mutations and allow coupling of advantageous mutations. A need for cooperation would also be predicted to increase the likelihood that less fit variants are propagated as a result of phenotypic hiding in coinfected cells. Thus, host and strain specificity in multiple infection dependence are likely to play an important role in determining the outcomes of IAV infection and evolution in diverse hosts.

Acknowledgements

We thank David Stallknecht (University of Georgia) for providing the A/mallard/MN/199106/99 (H3N8) biological isolate. We thank Hui Tao, Shamika Danzy, and Ginger Geiger for technical assistance. This work was funded in part by NIH R01 AI127799 (to ACL and DRP); NIH/NIAID
Centers of Excellence in Influenza Research and Surveillance (CEIRS), contract numbers HHSN272201400004C (to ACL) and HHSN272201400008C (to DRP). Additional funds were provided by the Georgia Research Alliance and the Georgia Poultry Federation (to DRP) and NIH/NIAID Genomic Centers for Infectious Diseases (GCID), Award Number U19AI110819.

Methods

Cells

Madin-Darby canine kidney (MDCK) cells, a gift from Peter Palese, Icahn School of Medicine at Mount Sinai were used in coinfection experiments, growth curves, and dosage experiments with increasing amounts of GFHK99 VAR₂ virus added. MDCK cells from Daniel Perez at University of Georgia were used for plaque assays as this variant of the MDCK line was found to yield more distinct plaques for the GFHK99 strain. Both MDCK cell lines were maintained in minimal essential medium (MEM; Gibco) supplemented with 10% fetal bovine serum (FBS; Atlanta Biologicals), penicillin (100 IU), and streptomycin (100 µg per mL) (PS; Corning). A549 cells (ATCC CCL-185) were maintained in F-12K nutrient mixture with L-glutamine (Corning) supplemented with 10% FBS and PS. 293T cells (ATCC CRL-3216) and DF-1 cells (ATCC CRL-12203) were maintained in Dulbecco’s minimal essential medium (DMEM; Gibco) supplemented with 10% FBS and PS. Human tracheobronchial epithelial (HTBE) cells from a single donor were acquired from Lonza and were amplified and differentiated into air-liquid interface cultures as recommended by Lonza and described by Danzy et al.⁶⁹ All cells were cultured at 37°C and 5% CO₂ in a humidified incubator.

Viruses

All viruses used in this study were generated through reverse genetics⁷⁰. 293T cells transfected with reverse genetics plasmids 16-24 h prior were injected into the allantoic cavity of 9-11 day old embryonated chicken eggs and incubated at 37°C for 40-48 h. The resultant egg passage 1
stocks were used in experiments. Defective interfering segment content of PB2, PB1, and PA segments was confirmed to be minimal for each virus stock, following a method described previously\(^{71}\). The reverse genetics system for influenza A/guinea fowl/Hong Kong/WF10/99 (H9N2) virus was reported previously\(^{72,73}\). This strain has been referred to as WF10 in previous publications\(^{72-74}\) but, for consistency with other strains used in the present manuscript, is referred to herein as GFHK99. A low passage isolate of influenza A/mallard/Minnesota/199106/99 (H3N8) virus, referred to herein as MaMN99, was obtained from David Stallknecht at the University of Georgia\(^{75}\). The virus was passaged once eggs and then the eight cDNAs were generated and cloned into the pDP2002 vector\(^{76}\). To increase the efficiency of virus recovery for rescues containing polymerase components from the MaMN99 virus, pCAGGS support plasmids encoding PB2, PB1, PA, and NP proteins of the A/WSN/33 (H1N1) strain were supplied.

GFHK99 WT and MaMN99 VAR viruses were engineered to contain a 6XHis epitope tag plus GGGS linker at the N terminus of the HA protein following the signal peptide. GFHK99 VAR\(_1\) and MaMN99 WT viruses contain similarly modified HA genes, with an HA epitope tag plus a GGGS linker inserted at the N terminus of the HA protein\(^{77}\).

Silent mutations introduced by site directed mutagenesis were used to confer altered melting properties to allow high resolution melt genotyping of WT and VAR\(_1\) segment origin. Mutations introduced in to GFHK99 VAR\(_1\) and MaMN99 VAR viruses are listed in **Supplementary Table 1**. Mutations introduced into the GFHK99 VAR\(_2\) strain were designed to confer unique primer binding sites relative to GFHK99 WT virus for use in digital PCR-based genotyping. The mutations introduced are also listed in **Supplementary Table 1**. Viruses used for single cell mRNA sequencing, GFHK99 mVAR\(_1\) and GFHK99 mVAR\(_2\), were generated from the GFHK99 WT strain with no HIS tag, following the approach described in Russell et al.\(^{43}\). The mutations introduced were designed to be detected where sequence data is available from only the 3’ end of each transcript. Site directed mutagenesis was therefore used to place two silent
mutations proximal to the stop codon in each viral cDNA. The mutations allow differentiation among the segments of the three strains. All such mutations are reported in Supplementary Table 1.

Coinfection in cultured cells for quantification of coinfection and reassortment

MDCK, DF-1, or A549 cells were seeded at a density of 4×10^5 cells per well in 6-well dishes 24 h before inoculation. Virus inoculum was prepared by combining WT and VAR viruses at high titer in a 1:1 ratio based on PFU titers, and then diluting in PBS to achieve MOIs ranging from 10 to 0.01 PFU per cell. Synchronized infection conditions were used, as follows. Cell monolayers were washed three times with PBS and placed on ice. Chilled virus inoculum was added to each well at a 250 µL volume and incubated at 4°C for 45 minutes with occasional rocking. Inoculum was aspirated and cell monolayer was rinsed three times with cold PBS before addition of warm virus medium. Due to low viral growth of GFHK99 virus in DF-1 cells, acid inactivation of inoculum virus was performed at 1 h post-infection for this cell type. For acid inactivation, media was aspirated and replaced with 500 µL of PBS-HCl, pH 3.00 and incubated 5 min at 37°C. Cells were then washed once with PBS before the addition of virus medium. At 3 h post-infection, virus medium was replaced with ammonium chloride-containing virus medium. GFHK99 virus infected cells were harvested at 12 h post infection due to high amounts of CPE at later time points. Cells infected with MaMN99 virus and MaMN99:GFHK99 chimeric viruses were harvested at 16 h post-infection. Virus medium for each cell line was prepared by supplementing the appropriate media (MDCK, MEM; DF1, DMEM; A549, F12K) with 4.3% bovine serum albumin and penicillin (100 IU), and streptomycin (100 µg per mL). Ammonium chloride-containing virus medium was prepared by the addition of HEPES buffer and NH₄Cl at final concentrations of 50 mM and 20 mM, respectively, to virus media.
Determination of infection levels based on HA surface expression. To enumerate infected cells, surface expression of HIS and HA epitope tags was detected by flow cytometry. This method was previously described in detail. The percentage of cells that were positive for either or both epitope tags is expressed as percentage of cells HA⁺. The percentage of cells that were positive for both epitope tags is expressed as percentage of cells dual-HA⁺. The relationship between these two parameters was evaluated by plotting % cells dual-HA⁺ against % cells HA⁺ and regressing the resultant curve as a quadratic polynomial (% cells dual-HA⁺) = \(\beta_2 \cdot (\% \text{ cells HA}^+) \) + \(\beta_1 \cdot (\% \text{ cells HA}^+) \), where \(\beta_2 \) and \(\beta_1 \) are genotype-specific. From the regression models, we then quantified the degree of linearity using the equation % linearity = \(\frac{|\beta_1|}{|\beta_1| + |\beta_2|} \).

Animal models and reassortment in vivo

Quail eggs obtained from the College of Veterinary Medicine, University of Georgia, were hatched at the Poultry Diagnostic and Research Center, University of Georgia. Two days before virus inoculation, quail sera were confirmed to be seronegative for IAV exposure by NP ELISA (IDEXX, Westbrook, ME). At 3-weeks of age, birds were moved into a HEPA in/out BSL2 facility and each group divided into individual isolator units.

Groups (n=6) of 3-week old Japanese quail (Coturnix Japonica) were used to determine the 50% quail infectious dose of the 1:1 GFHK99 WT and GFHK99 VAR₁ virus mixture. Each quail was inoculated with 500 µl by oculo-naso-tracheal route of virus mixture in PBS, at increasing concentrations of 10⁰ to 10⁶ TCID₅₀ per 500 µL. Tracheal and cloacal swab specimens were collected daily from each bird in brain heart infusion media (BHI). Swab samples were analyzed by TCID₅₀ assay and titers of tracheal swabs collected at 4 d post-inoculation were used to determine the QID₅₀ by the Reed and Muench method. Virus was not detected in cloacal swabs. QID₅₀ was found to be equivalent to 1 TCID₅₀.
To quantify reassortment in quail, samples collected from quail (n=6) infected with the 10^2 TCID_{50} dose of the 1:1 GFHK99 WT and GFHK99 VAR\textsubscript{1} virus mixture were used. These were the same birds as used to determine QID_{50}. Virus shedding kinetics were determined by plaque assay of tracheal swab samples and samples from days 1, 3, and 5 were chosen for genotyping of virus isolates.

Female Hartley strain guinea pigs weighing 250-350 g were obtained from Charles River Laboratories. The GPID_{50} of GFHK99 WT/VAR\textsubscript{1} and MaMN99 WT/VAR virus mixtures were determined as follows. Groups of four guinea pigs were inoculated intranasally with virus mixture in PBS at doses of 10^0 to 10^5 PFU per 300 µL inoculum. Daily nasal washes were collected in 1 mL PBS and titered by plaque assay. Results from day 2 nasal washes were used to determine the GPID_{50} by the Reed and Muench method78. The GPID_{50} of GFHK99 virus was found to be 2.1 x 10^3 PFU, while that of MaMN99 virus was determined to be 2.1 x 10^1 PFU.

To evaluate reassortment kinetics in guinea pigs, groups of six animals were infected with 10^2 x GPID_{50} of the aforementioned GFHK99 WT / VAR\textsubscript{1} virus mixture or the MaMN99 WT / VAR virus mixture. Virus inoculum was given intranasally in a 300 µl volume of PBS. Nasal washes were performed on days 1-6 post-inoculation and titered for viral shedding by plaque assay. HRM genotyping was performed on samples collected on day 1, 3, and 5 for each guinea pig.

Quantification of reassortment and effective diversity

Reassortment was quantified for in vitro coinfection supernatants, guinea pig nasal washes, and quail tracheal swabs as described previously77. Briefly, plaque assays were performed in 10 cm dishes to isolate virus clones. 1 mL serological pipettes were used to collect agar plugs into 160 µl PBS. Using a ZR-96 viral RNA kit (Zymo), RNA was extracted from the agar plugs and eluted in 40 µl nuclease free water (Invitrogen). Reverse transcription was performed using Maxima RT (Thermofisher) according to the manufacturer’s protocol. The resulting cDNA was diluted 1:4 in
nuclease free water and each cDNA was combined with segment specific primers and Precision Melt Supermix (Bio-Rad) and analyzed by qPCR in a CFX384 Touch real-time PCR detection system (Bio-Rad) designed to amplify a ~100 bp region of each gene segment which contains a single nucleotide change in the VAR virus. The qPCR was followed by high-resolution melt (HRM) analysis to differentiate WT and VAR amplicons\(^7^9\). Precision Melt Analysis software (Bio-Rad) was used to determine the parental virus origin of each gene segment based on melting properties of the cDNAs and comparison to WT and VAR controls.

Viral genotypic diversity was quantified as reported previously\(^8^0\) by calculating Simpson's Index, given by \(D = \text{sum}(p_i^2)\), where \(p_i\) represents the proportional abundance of each genotype\(^8^1\). Simpson's Index accounts for both the raw number of species and variation in abundance of each, and is sensitive to the abundance of dominant species. Because Simpson's Index does not scale linearly, each sample's Simpson's Index value was converted to a corresponding Hill number to derive its effective diversity, \(N_2 = 1/D\), which is defined as the number of equally abundant species required to generate the observed diversity in a sample community. Because it scales linearly, Hill's \(N_2\) allows a more intuitive comparison between communities (i.e., a community with \(N_2 = 10\) species is twice as diverse as one with \(N_2 = 5\)) and is suitable for statistical analysis by basic linear regression methods\(^8^3\). Robust linear models of \(N_2\) vs. time were regressed using the R package robustlmm.

Single-cycle viral growth kinetics

DF-1 or MDCK cells were seeded at 4x10^5 cells per well in 6 well dishes 24 h prior to infection. GFHK99 WT / VAR\(_1\) virus mixture was serially diluted using PBS. Synchronized infection conditions as described above were used with acid inactivation of inoculum virus and addition of ammonium chloride medium at 3 h post-infection. At each time point, 120 µl supernatant was collected. Viral titers for each sample were assessed by plaque assay in MDCK cells. Each MOI condition was used in 5-6 wells in parallel infections. Three wells served as technical replicates.
for growth curve sampling while the remaining wells were harvested at 24 h post-infection to enumerate HA expressing cells via flow cytometry. In cases where acid inactivation was inefficient, the replicate was eliminated, and data are plotted in duplicate.

Effect of increasing multiple infection on viral RNA replication

For DF-1 and MDCK cell experiments, 12 well plates were seeded with 3x10^5 cells per well 24 h prior to infection. For HTBE cells, cells were cultured at an air-liquid interface as previously described. Cell surfaces were rinsed three times with PBS prior to inoculation. Triplicate wells were then mock infected with PBS or inoculated with 0.005 PFU per cell of GFHK99 WT and 0, 0.1, 0.5, 1, 3, and 5 PFU per cell of GFHK99 VAR_2 virus and placed at 37°C. After 55 minutes, inoculum was aspirated, and cells were rinsed three times with PBS and virus medium was added at 500 µl per well. Media was exchanged for ammonium chloride treated media 3 h later. At 12 h post infection, virus media was removed and cells were harvested using RNAProtect Cell Reagent (Qiagen). RNA was extracted using RNAeasy columns (Qiagen). RNA was diluted to 500 ng per µL for MDCK cells and 120 ng per µL for DF-1 cells. A 12 µl volume of this diluted RNA was used in reverse transcription with Maxima RT per protocol instructions. Digital droplet PCR was performed on the resultant cDNA using a combination of PB2, M, and NS primers specific for the GFHK99 WT virus (final primer concentration of 200 nM) with QX200™ ddPCR™ EvaGreen Supermix (Bio-Rad). WT copy number is determined as cDNA copies per ng of input RNA. WT fold-change was calculated by dividing the copies/ng result obtain in each VAR_2 positive condition by value of copies per ng from the average of the triplicate WT-only samples.

Strand-specific quantification of viral RNA species over time

MOIs used in this experiment were 0.5 RNA copies per cell for the low MOI and 3.0 HA expressing units/cell for the high MOI. Concentrations of virus mixtures in RNA copies per mL
were determined by quantifying at least four gene segments by ddPCR and taking the average. HA expressing units per mL was measured by counting HA positive cells via flow cytometry in the relevant cell type. Specifically, cells were infected with serial dilutions of virus under synchronized, single cycle conditions. At 24 h post infection, cells were harvested and flow cytometry was performed as described above, targeting His and HA epitope tags. HA expression units per mL for each virus and cell combination was calculated based on the linear range of %HA⁺ cells plotted as a function of volume of virus added to cells (Supplementary Figure 3).

Viruses used for this experiment were the same GFHK99 WT/VAR₁ or MaMN99 WT/VAR virus mixtures used to measure reassortment, but in this case each mixture was considered as a single virus population (i.e. the RT ddPCR assay outlined below to quantify viral m/c/vRNA does not differentiate between WT and VAR genotypes).

Twelve well plates were seeded with 2x10⁵ cells per well of MDCK or DF-1 cells and incubated at 37°C for 24 h. Synchronized, single cycle infection conditions were used, as described above. Chilled virus was added at a volume of 125 µL per well. At 0, 1, 2, 4, 6, 8, and 10 h post infection, virus medium was aspirated and cells were harvested using 400 µL of CELLprotect solution (Qiagen). RNA was extracted from infected cells using the Qiagen RNAeasy Mini kit. Three reverse transcription reactions per sample were set up with three different primers, each containing different nucleotide barcode tags and targeting a distinct species (mRNA, vRNA, and cRNA) of segment 8 (Supplementary Table 4). Maxima RT was used according to the manufacturer’s instructions and combined with 300 ng MDCK or 150 ng DF-1 RNA.

Absolute copy number of cDNA was determined by ddPCR. Forward and reverse primers for vRNA, mRNA, or cRNA of NS at a total concentration of 200 nM were combined with diluted cDNA and QX200™ ddPCR™ EvaGreen Supermix (Bio-Rad). Primer sequences are given in Supplementary Table 4. Thermocycler protocol was as follows: 95°C for 5 min, [95°C
for 30s, 57°C for 60s] repeat 40x, 4°C for 5 min, 90°C for 5 min, 4°C hold. Copy number was normalized to RNA input to give final results in units of copy number per ng RNA.

Single-cell mRNA sequencing

For this assay, viruses were titered in DF-1 cells using flow cytometry with anti-NP antibody (Abcam, clone 9G8). DF-1 cells were used because they give allow more sensitive detection of GFHK99 virus infection than MDCK cells. Cells were infected with serial dilutions of virus under synchronized, single-cycle conditions. At 24 h post-infection, cells were harvested and flow cytometry was performed as described above, targeting NP. HA expression units per mL for each virus and cell combination was calculated based on the linear range of % cells NP+ plotted as a function of volume of virus added to cells (Supplementary Figure 3).

To preform single-cell mRNA sequencing, MDCK and DF-1 cells were seeded into 6-well plates at 5x10^5 cells per well. At 24 h post seeding, MDCK and DF-1 cells from an extra well were harvested and re-counted to ensure accuracy of cell number for infection. MDCK or DF-1 cells were then infected with a 1:1 ratio of GFHK99 WT virus and GFHK99 mVAR1 virus that amounted to a MOI of 0.02, 0.06, 0.2 or 0.6 NP units per cell. GFHK99 mVAR2 virus was added to MDCK and DF-1 cell infections at MOIs of 1 PFU per cell and 0.1 PFU per cell, respectively.

Virus stocks were diluted serially in cold 1X PBS and incubated on ice until use. Before infection, cells were washed three times with cold 1X PBS and placed on ice. To infect, cells were inoculated with a 200 µL volume inoculum (at appropriate concentrations) and placed on ice for 45 minutes, with rocking every 10 minutes. The inoculum was then aspirated and 2 mL of pre-warmed (at 37°C) virus medium was added. Plates were incubated at 37°C for 3 h. Afterwards, the virus medium was replaced with 2 mL of pre-warmed virus medium supplemented with HEPES buffer and NH₄Cl at final concentrations of 50 mM and 20 mM, respectively. Plates were placed back into the incubator for an additional 5 h. Subsequently,
culture media was aspirated and cells washed once with 1X PBS. Cells were then trypsinized with 200 µL of 0.25% Trypsin EDTA until all cells came off the plate and were mono-dispersed. To each well, 0.5 mL of virus medium was added and replicates were pooled (2 wells per MOI). Cells for each sample were counted. Samples were spun at 150 rcf for 3 minutes and washed with 0.5 mL of 1X PBS/0.04% BSA. Washings were performed two more times. Finally, cells were resuspended with 1X PBS/0.04% BSA to get a final cell count of 7 x 10^5 cells per mL for each sample. Preparation for single-cell transcriptomic sequencing follows the protocol for 10x Genomics Chromium Single Cell platform.

Analysis of viral transcripts from single cells was performed with the sequencing data from all experiments in R using the CellRanger package (https://github.com/bpickett/Influenza-10X). Briefly, the CellRanger software assigns each read to individual cells and transcripts based on two sets of unique molecular identifiers that are ligated prior to amplification. This approach allows the quantification of amplification bias at both the cellular and transcript levels. The first step of the analytical workflow was to map the reads to concatenated transcriptomes of IAV with the transcriptomes of dog or chicken to analyze MDCK and DF-1 cell infections, respectively. Protein coding regions for the dog and chicken transcriptomes were identified in the GTF file associated with genome builds CanFam3.1.94 and Gallus gallus-5.0.94, respectively, while IAV coding regions were extracted from the reverse-complement sequences of the GFHK99 strains. For each experiment, all transcripts with non-zero numbers of mapped reads were then normalized to the median number of transcripts per cell to enable cross-experiment comparison. The read counts for all eight unspliced IAV transcripts for each MOI and cell type were subsequently extracted from the complete set and saved in separate files. A quantitative analysis was then performed to compare the number of IAV transcripts that were identified from each of the experimental variables. Unless otherwise stated, data was analyzed
using total viral transcripts, derived from all eight vRNA segments. The aligned sequencing data is available on the GEO database with the accession number GSE135553.

Single-cell sorting assay for measurement of \(P_p \) values

Segment specific \(P_p \) values were determined as previously described for influenza A/Panama/2007/99 (H3N2) virus19, and as follows. \(4 \times 10^5 \) MDCK cells were seeded into each well of a 6-well dish. 24 h later, cells were washed 3x with PBS and inoculated with \(0.018 \) PFU per cell of GFHK99 WT virus and \(1 \) PFU per cell of GFHK99 VAR\textsubscript{2} virus in a 250 \(\mu \)L volume of PBS. Virus was allowed to attach at 37\(^\circ \)C for 1 h. Inoculum was then removed and cells were rinsed 3x with PBS and 2 mL of virus medium was added to the well. After 1 h at 37\(^\circ \)C, medium was removed and cells were washed 3x with PBS and harvested by addition of Cell Dissociation Buffer (Corning). Cells were resuspended in complete medium and washed 3x with 2 mL FACS buffer (2\% FBS in PBS). A final resuspension step was performed in PBS containing 1\% FBS, 10 mM HEPES, and 0.1\% EDTA. Cells were strained through a cell strainer cap (Falcon) and sorted on a BD Aria II cell sorter. Gating was performed to remove debris and multiplets and one event per well was sorted into each well of a 96 well plate containing MDCK monolayers at 30\% confluency in 50 \(\mu \)l virus medium supplemented with 1 \(\mu \)g per mL TPCK-treated trypsin. Following the sort, an additional 50 \(\mu \)l of virus medium plus trypsin was added to each well and plates were centrifuged at 1,800 rpm for 2 minutes to promote cell attachment. Plates were incubated at 37\(^\circ \)C for 48 h to allow propagation of virus from the sorted cell.

RNA was extracted from infected cells in the 96 well plate using a ZR-96 Viral RNA Kit (Zymo Research) per manufacturer instructions. Extracted RNA was converted to cDNA using universal influenza primers85 and Maxima RT according to manufacturer instructions. After conversion, cDNA was diluted 1:4 with nuclease-free water and used as template (4 \(\mu \)L per reaction) for segment-specific qPCR using SsoFast EvaGreen Supermix (Bio-Rad) in 10 \(\mu \)l
reactions, with 200 nM final primer concentration. Primers employed targeted each segment of
GFHK99 WT virus, as well as the PB2 and PB1 segments of GFHK99 VAR₂ virus. Primer
sequences are listed in Supplementary Table 3.

Given the MOI of GFHK99 WT virus used in the experiments, an appreciable number of
wells are expected to receive two or more viral genomes, and so a mathematical adjustment is
needed to estimate the probability of each genome segment being delivered by a single virion.
Using the relationship between MOI and the fraction of cells infected from Poisson statistics,
i.e., \(f = 1 - e^{-\text{MOI}} \), the probability of the \(i \)th segment being present in a singly infected cell, or \(P_{P,i} \),
can be calculated from the 96-well plate using the following equation:

\[
P_{P,i} = \frac{\text{MOI}_i}{\text{MOI}_{wt}} \frac{-\ln (1 - f_i)}{-\ln (1 - f_{wt})} = \frac{\ln (1 - C_i/A)}{\ln (1 - B/A)}
\]

where \(A \) is the number of VAR₂⁺ wells, \(B \) is the number of WT⁺ wells (containing any WT
segment), and \(C_i \) is the number of wells positive for the WT segment in question. Wells that
were negative for VAR₂ virus segments were excluded from analysis.
Figure 1. Coinfection and reassortment frequencies indicate that IAV multiplicity dependence varies with virus strain and host species. A-D) MDCK or DF-1 cells were coinfected with homologous WT and VAR viruses of either GFHK99 or MaMN99 strain backgrounds at a range of MOIs. Following a single cycle of infection, cells were analyzed for HA expression by flow cytometry and plaque clones derived from cell supernatants were genotyped. The relationship between % cells HA positive and % cells dually HA positive (A) varies with strain and cell type, resulting in curves of differing % linearity (B). GFHK99 and MaMN99 viruses exhibit different reassortment levels in MDCK cells, but both show high reassortment relative to a theoretical prediction in which singly infected and multiply infected cells have equivalent burst sizes (C). GFHK99 virus reassortment levels differ in MDCK and DF-1 cells, but reassortment under both conditions remains high relative to the theoretical prediction in which multiple infection confers no advantage (D). In guinea pigs (n=6), GFHK99 WT and VAR_{1} viruses exhibit higher reassortment than MaMN99 WT and VAR viruses, as indicated by increased genotypic diversity (E). The GFHK99 WT and VAR_{1} viruses exhibit higher reassortment in guinea pigs than in quail (n=5) (F). Guinea pig data shown in panels E and F are the same. Shading represents 95% CI.

Figure 2. Increasing MOI increases viral productivity at sub-saturating, but not saturating MOIs. MDCK and DF-1 cells were infected under single cycle conditions at a range of MOIs in triplicate wells for each MOI. A-E) Viral titers observed at the indicated MOIs are plotted against time post-infection. F) Fold change in amplification (viral input / maximum output) relative to the MOI=0.01 PFU per cell condition is plotted for each virus-cell pairing. G) Burst size, calculated as maximum PFU output / number of HA^{+} cells detected by flow cytometry, is plotted for each virus-cell pairing tested in the higher MOI range.
Figure 3. Coinfection and reassortment of chimeric viruses reveals a major role for the viral polymerase. Reverse genetics was used to place one or more genes from GFHK99 virus into a MaMN99 background. Coinfections with homologous WT and VAR strains were performed in MDCK cells as in Figure 1. The relationship between % cells HA positive and % cells dually HA positive (A) varies with genotype, resulting in curves of differing % linearity (B). Reassortment levels vary with genotype (C), with the chimeric strain carrying GFHK99 PB2, PB1, PA and NP segments exhibiting comparable levels to GFHK99. Experimental results are compared to a theoretical prediction in which singly infected and multiply infected cells have equivalent burst sizes (Prediction). Differences in reassortment levels among the viruses tested are highlighted by plotting the % reassortment at 10% HA+ cells, as interpolated from each regression curve (D). Data shown for GFHK99 and MaMN99 viruses are the same as those displayed in Figure 1.

Figure 4. Coinfection enhances GFHK99 vRNA synthesis in a dose and host dependent manner. Cells were coinfected with 0.005 PFU per cell of GFHK99 WT virus and increasing doses of GFHK99 VAR2 virus. A) In MDCK and DF-1 cells, the fold change in WT vRNA copy number, relative to that detected in the absence of GFHK99 VAR2 virus, is plotted for various doses of GFHK99 VAR2 virus. B) In HTBE cells, the fold change in WT vRNA copy number, relative to that detected in the absence of GFHK99 VAR2 virus, is plotted for various doses of GFHK99 VAR2 virus. n=3 cell culture dishes per condition. Error bars represent standard error.

Figure 5. High multiplicity of infection is needed for robust GFHK99 polymerase activity in MDCK cells. Dishes of MDCK or DF-1 cells (n=3) were infected with GFHK99 or MaMN99 virus at low (0.5 RNA copies per cell) or high (3 HA expressing units per cell) MOI. NS segment vRNA, mRNA, and cRNA were quantified at the indicate time points (A-F). The average fold change from initial (t=0) to peak RNA copy number is plotted for low MOI infections (G) and high
MOI infections (H). Error bars represent standard error. Significance was assessed by two-way ANOVA with Dunnett’s test for multiple comparisons: *p < 0.05, **<0.01, ***<0.001. ns = not significant.

Figure 6. GFHK99 viral transcription is uniformly low in MDCK cells in the absence of coinfecting virus. (A) DF-1 or MDCK cells were infected with GFHK99 WT virus at three different MOIs (0.67, 0.2, 0.6 NP units per cell), and the transcriptomes of 1,816 individual infected cells were elucidated using the 10X Genomics Chromium platform. Ridge plots show distributions of log₁₀-transformed viral mRNA abundance, for all eight viral transcripts combined, in individual infected cells. The data are stratified by cell type (MDCK cells in blue, DF-1 cells in pink), MOI, and the presence of polymerase complex (light shading = cells missing PB2, PB1, PA, or NP; dark shading = cells in which PB2, PB1, and PA are all detected). The absence of a dark shaded distribution for MDCK cells at the lowest MOI is due to the absence of any cells in which all four of these segments were detected. (B) DF-1 or MDCK cells were infected and sequenced as in (A), but the inocula contained a 1:1 mixture of GFHK99 WT and GFHK99 mVAR₁ viruses at three different total MOIs (0.67, 0.2, 0.6 NP units per cell) and a constant amount of GFHK99 mVAR₂ virus (0.1 PFU per cell in DF-1 cells, 1.0 PFU per cell in MDCK cells). Left facet shows data from (A), and right facet shows data from WT/mVAR₁ coinfections with mVAR₂ virus, with WT and mVAR₁ transcript abundances partitioned into separate distributions in each infection. Vertical lines denote the median of each distribution. UMI = unique molecular identifier.

Figure 7. Incomplete GFHK99 virus genomes are present in MDCK cells but not sufficiently abundant to account for observed reassortment. Incomplete viral genomes were quantified experimentally by a single-cell based assay which relies on the amplification of incomplete viral genomes of GFHK99 WT virus (0.018 PFU per cell) by a genetically similar
coinfecting virus, GFHK99 VAR. Based on the rate of detection of GFHK99 WT virus segments in this assay, the probability that a given segment would be present and replicated in a singly infected MDCK cell is reported as \(P_p \). A) Summary of experimental \(P_p \) data. \(n = 2 \) biological replicates, shown in blue and red. Shading represents 95% CI. B) Experimentally obtained \(P_p \) values in A were used to parameterize a computational model\(^{18} \). Levels of reassortment predicted using the experimentally determined parameters are shown in red and blue. Levels of reassortment predicted if \(P_p=1.0 \) are shown with the dashed line. Observed reassortment of GFHK99 WT and VAR viruses in MDCK cells are shown with black circles. Observed data are the same as those plotted in Figure 1.

References

1. Leeks, A., Sanjuan, R. & West, S. A. The evolution of collective infectious units in viruses. *Virus Res* 265, 94-101, doi:10.1016/j.virusres.2019.03.013 (2019).
2. Brooke, C. B. Population Diversity and Collective Interactions during Influenza Virus Infection. *J Virol* 91, doi:10.1128/JVI.01164-17 (2017).
3. Sanjuan, R. Collective Infectious Units in Viruses. *Trends Microbiol* 25, 402-412, doi:10.1016/j.tim.2017.02.003 (2017).
4. Santiana, M. et al. Vesicle-Cloaked Virus Clusters Are Optimal Units for Inter-organismal Viral Transmission. *Cell Host Microbe* 24, 208-220 e208, doi:10.1016/j.chom.2018.07.006 (2018).
5. Chen, Y. H. et al. Phosphatidylerine vesicles enable efficient en bloc transmission of enteroviruses. *Cell* 160, 619-630, doi:10.1016/j.cell.2015.01.032 (2015).
6. Erickson, A. K. et al. Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination. *Cell Host Microbe* 23, 77-88 e75, doi:10.1016/j.chom.2017.11.007 (2018).
7. Andreu-Moreno, I. & Sanjuan, R. Collective Infection of Cells by Viral Aggregates Promotes Early Viral Proliferation and Reveals a Cellular-Level Allee Effect. *Current biology : CB* 28, 3212-3219.e3214, doi:10.1016/j.cub.2018.08.028 (2018).
8. Cuevas, J. M., Duran-Moreno, M. & Sanjuan, R. Multi-virion infectious units arise from free viral particles in an enveloped virus. *Nat Microbiol* 2, 17078, doi:10.1038/s41564-017-0006-z (2017).
9. Cifuentes-Munoz, N., Dutch, R. E. & Cattaneo, R. Direct cell-to-cell transmission of respiratory viruses: The fast lanes. *PloS Pathog* 14, e1007015, doi:10.1371/journal.ppat.1007015 (2018).
10. Lawrence, D. M. et al. Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. *J Virol* 74, 1908-1918, doi:10.1128/jvi.74.4.1908-1918.2000 (2000).
11. McDonald, D. et al. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. *Science* 300, 1295-1297, doi:10.1126/science.1084238 (2003).
12. Shirogane, Y., Watanabe, S. & Yanagi, Y. Cooperation between different RNA virus genomes produces a new phenotype. *Nat Commun* 3, 1235, doi:10.1038/ncomms2252 (2012).
Mortality and Years of Life Lost Associated with the 2009 A/H1N1 Pandemic in the US and
Comparison with Past Influenza Seasons. *PLoS Curr*, RRN1153, doi:k/-/-/35hpbywfdw14n/8 [pii] (2010).

Long, J. S., Mistry, B., Haslam, S. M. & Barclay, W. S. Host and viral determinants of influenza A virus species specificity. *Nat Rev Microbiol* **17**, 67-81, doi:10.1038/s41579-018-0115-z (2019).

Rajasbaum, R. *et al*. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. *PLoS Pathog* **8**, e1003059, doi:10.1371/journal.ppat.1003059 (2012).

Manz, B. *et al*. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein. *PLoS Pathog* **9**, e1003279, doi:10.1371/journal.ppat.1003279

Lowen, A. C. Constraints, Drivers, and Implications of Influenza A Virus Reassortment. *Annual review of virology* **4**, 105-121, doi:10.1146/annurev-virology-101416-041726 (2017).

Scholtissek, C. Molecular evolution of influenza viruses. *Virus Genes* **11**, 209-215 (1995).

Ma, E. J., Hill, N. J., Zabilansky, J., Yuan, K. & Runstadler, J. A. Reticulate evolution is favored in influenza niche switching. *Proc Natl Acad Sci U S A* **113**, 5335-5339, doi:10.1073/pnas.1522921113 (2016).

Kilbourne, E. D. Influenza pandemics of the 20th century. *Emerg Infect Dis* **12**, 9-14 (2006).

Smith, G. J. *et al*. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. *Nature* **459**, 1122-1125, doi:nature08182 [pii] 10.1038/nature08182 (2009).

Kayed, A. S. *et al*. Surveillance for avian influenza viruses in wild birds at live bird markets, Egypt, 2014-2016. *Influenza Other Respir Viruses* **13**, 407-414, doi:10.1111/irv.12634 (2019).

Xu, K. M. *et al*. The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005. *J Virol* **81**, 10389-10401, doi:10.1128/JVI.00979-07 (2007).

Russell, A. B., Trapnell, C. & Bloom, J. D. Extreme heterogeneity of influenza virus infection in single cells. *Elife* **7**, doi:10.7554/eLife.32303 (2018).

Zheng, G. X. *et al*. Massively parallel digital transcriptional profiling of single cells. *Nat Commun* **8**, 14049, doi:10.1038/ncomms14049 (2017).

Palese, P. & Shaw, M. L. in *Fields Virology* Vol. 1 (ed D. M. & Howley Knipe, P. M.) Ch. 41, 1151-1185 (Lippincott-Raven, 2013).

Lowen, A. C. It’s in the mix: Reassortment of segmented viral genomes. *PLoS Pathog* **14**, e1007200, doi:10.1371/journal.ppat.1007200 (2018).

Krystal, M., Li, R., Lyles, D., Pavlakis, G. & Palese, P. Expression of the three influenza virus polymerase proteins in a single cell allows growth complementation of viral mutants. *Proc Natl Acad Sci U S A* **83**, 2709-2713, doi:10.1073/pnas.83.8.2709 (1986).

Naffakh, N., Tomoiu, A., Rameix-Welti, M. A. & van der Werf, S. Host restriction of avian influenza viruses at the level of the ribonucleoproteins. *Annu Rev Microbiol* **62**, 403-424, doi:10.1146/annurev.micro.62.081307.162746 (2008).

Mehle, A. & Doudna, J. A. Adaptive strategies of the influenza virus polymerase for replication in humans. *Proc Natl Acad Sci U S A* **106**, 21312-21316, doi:0911915106 [pii] 10.1073/pnas.0911915106 (2009).

Long, J. S. *et al*. Species difference in ANP32A underlies influenza A virus polymerase host restriction. *Nature* **529**, 101-104, doi:10.1038/nature16474 (2016).

Te Velthuis, A. J. W. *et al*. Mini viral RNAs act as innate immune agonists during influenza virus infection. *Nature microbiology* **3**, 1234-1242, doi:10.1038/s41564-018-0240-5 (2018).
Schelker, M. et al. Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency. *PLOS Computational Biology* **12**, e1005075, doi:10.1371/journal.pcbi.1005075 (2016).

Butt, K. M. et al. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. *J Clin Microbiol* **43**, 5760-5767, doi:10.1128/JCM.43.11.5760-5767.2005 (2005).

Peiris, M. et al. Human infection with influenza H9N2. *Lancet* **354**, 916-917, doi:10.1016/S0140-6736(03)18415-9 (1999).

Guan, Y. et al. H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. *J Virol* **74**, 9372-9380 (2000).

Guan, Y., Shortridge, K. F., Krauss, S. & Webster, R. G. Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? *Proc Natl Acad Sci USA* **96**, 9363-9367 (1999).

Lam, T. T. et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. *Nature* **502**, 241-244, doi:10.1038/nature12515 (2013).

Wu, A. et al. Sequential Reassortments Underlie Diverse Influenza H7N9 Genotypes in China. *Cell Host Microbe* **4**, 446-452, doi:S1931-3128(13)00298-9 (2013).

Gu, M., Xu, L., Wang, X. & Liu, X. Current situation of H9N2 subtype avian influenza in China. *Vet Res* **48**, 49-49, doi:10.1186/s13567-017-0453-2 (2017).

Pusch, E. A. & Suarez, D. L. The Multifaceted Zoonotic Risk of H9N2 Avian Influenza. *Vet Sci* **5**, 82, doi:10.3390/vetsci5040082 (2018).

White, M. C. & Lowen, A. C. Implications of segment mismatch for influenza A virus evolution. *J Gen Virol* **99**, 3-16, doi:10.1099/jgv.0.000989 (2018).

Villa, M. & Lassig, M. Fitness cost of reassortment in human influenza. *PLoS Pathog* **13**, e1006685, doi:10.1371/journal.ppat.1006685 (2017).

Varble, A. et al. Influenza A virus transmission bottlenecks are defined by infection route and recipient host. *Cell Host Microbe* **16**, 691-700, doi:10.1016/j.chom.2014.09.020 (2014).

Gallagher, M. E., Brooke, C. B., Ke, R. & Koelle, K. Causes and Consequences of Spatial Within-Host Viral Spread. *Viruses* **10**, doi:10.3390/v10110627 (2018).

Chao, L., Tran, T. & Matthews, C. Muller’s Ratchet and the Advantage of Sex in the Rna Virus 6. *Evolution; international journal of organic evolution* **46**, 289-299, doi:10.1111/j.1558-5646.1992.tb02038.x (1992).

Froissart, R. et al. Co-infection weakens selection against epistatic mutations in RNA viruses. *Genetics* **168**, 9-19, doi:10.1534/genetics.104.030205 (2004).

Novella, I. S., Reissig, D. D. & Wilke, C. O. Density-dependent selection in vesicular stomatitis virus. *J Virol* **78**, 5799-5804, doi:10.1128/JVI.78.11.5799-5804.2004 (2004).

Wilke, C. O. & Novella, I. S. Phenotypic mixing and hiding may contribute to memory in viral quasispecies. *BMC Microbiol* **3**, 11, doi:10.1186/1471-2180-3-11 (2003).

Danzy, S. et al. Mutations to PB2 and NP proteins of an avian influenza virus combine to confer efficient growth in primary human respiratory cells. *J Virol* **88**, 13436-13446, doi:10.1128/JVI.01093-14 (2014).

Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. A DNA transfection system for generation of influenza A virus from eight plasmids. *PNAS* **97**, 6108-6113, doi:10.1073/pnas.100133697 (2000).
Schwartz, S. L. & Lowen, A. C. Droplet digital PCR: A novel method for detection of influenza virus defective interfering particles. *J Virol Methods* **237**, 159-165, doi:10.1016/j.jviromet.2016.08.023 (2016).

Perez, D. R., Webby, R. J., Hoffmann, E. & Webster, R. G. Land-based birds as potential disseminators of avian mammalian reassortant influenza A viruses. *Avian Dis* **47**, 1114-1117 (2003).

Song, H., Nieto, G. R. & Perez, D. R. A new generation of modified live attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates. *J Virol* **81**, 9238-9248, doi:JVI.00893-07 [pii] 10.1128/JVI.00893-07 (2007).

Sorrell, E. M., Wan, H., Araya, Y., Song, H. & Perez, D. R. Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus. *Proc Natl Acad Sci U S A* **106**, 7565-7570, doi:0900877106 [pii] 10.1073/pnas.0900877106 (2009).

Brown, J. D. *et al.* Intestinal excretion of a wild bird-origin H3N8 low pathogenic avian influenza virus in mallards (Anas Platyrhynchos). *Journal of wildlife diseases* **48**, 991-998, doi:10.7589/2011-09-280 (2012).

Chen, H. *et al.* Partial and full PCR-based reverse genetics strategy for influenza viruses. *PLoS One* **7**, e46378, doi:10.1371/journal.pone.0046378 PONE-D-12-21490 [pii] (2012).

Marshall, N., Priyamvada, L., Ende, Z., Steel, J. & Lowen, A. C. Influenza virus reassortment occurs with high frequency in the absence of segment mismatch. *PLoS Pathog* **9**, e1003421, doi:10.1371/journal.ppat.1003421 (2013).

Reed, L. J. & Muench, H. A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS12. *American Journal of Epidemiology* **27**, 493-497, doi:10.1093/oxfordjournals.aje.a118408 (1938).

Wittwer, C. T., Reed, G. H., Gundry, C. N., Vandersteen, J. G. & Pryor, R. J. High-resolution genotyping by amplicon melting analysis using LCGreen. *Clin Chem* **49**, 853-860 (2003).

Richard, M., Herfst, S., Tao, H., Jacobs, N. T. & Lowen, A. C. Influenza A virus reassortment is limited by anatomical compartmentalization following co-infection via distinct routes. *J Virol*, doi:10.1128/JVI.02063-17 (2017).

Simpson, E. H. Measurement of diversity. *Nature* **163**, 688-688 (1949).

Hill, M. O. Diversity and evenness: a unifying notation and its consequences. *Ecology* **54**, 427-432 (1973).

Jost, L. Entropy and diversity. *Oikos* **113**, 363-375 (2006).

Drayman, N., Kler, S., Ben-nun-Shaul, O. & Oppenheim, A. Rapid method for SV40 titration. *J Virol Methods* **164**, 145-147, doi:10.1016/j.jviromet.2009.12.003 (2010).

Zhou, B. *et al.* Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. *J Virol* **83**, 10309-10313, doi:JVI.01109-09 [pii] 10.1128/JVI.01109-09 (2009).
Figure 1

(A) % cells dual-HA+ vs % cells HA+.

(B) Virus:cell
- GFHK99 in MDCK
- GFHK99 in DF-1
- MaMN99 in MDCK

(C) % reassortment vs % cells HA+.

(D) % reassortment vs % linearity.

(E) Effective diversity (Hill's N_s) vs time post-inoculation (days).

(F) Effective diversity (Hill's N_s) vs time post-inoculation (days).
Figure 2

A

Virus Titer (PFU/mL)

MOI 20

MOI 10

MOI 5

MOI 3

MOI 1

MOI 0.1

Time Post-infection (h)

B

Virus Titer (PFU/mL)

MOI 20

MOI 10

MOI 5

MOI 3

MOI 1

MOI 0.1

Time Post-infection (h)

C

Virus Titer (PFU/mL)

MOI 20

MOI 10

MOI 5

MOI 3

MOI 1

MOI 0.1

Time Post-infection (h)

D

Fold change in amplification

Virus:cell

MaMN99 in MDCK

GFHK99 in DF-1

GFHK99 in MDCK

E

Virus Titer (PFU/mL)

MOI 20

MOI 10

MOI 5

MOI 3

MOI 1

MOI 0.1

Time Post-infection (h)

F

Virus Titer (PFU/mL)

MOI 20

MOI 10

MOI 5

MOI 3

MOI 1

MOI 0.1

Time Post-infection (h)

G

MDCK burst size (PFU/HA⁺ cell)

DF-1 burst size (PFU/HA⁺ cell)

Virus:cell

MaMN99 in MDCK

GFHK99 in DF-1

GFHK99 in MDCK

MOI (log₁₀ PFU/cell)
Figure 3

A

GFHK99 segments
- All GFHK99
- PB2 + PB1 + PA + NP
- HA + NA + M + NS
- HA
- NP
- None, all MaMN99

% cells dual-HA+

% cells HA+

y = x

B

GFHK99 segments
- All GFHK99
- PB2 + PB1 + PA + NP
- NP
- HA + NA + M + NS
- HA
- None, all MaMN99

% linearity

D

% reassortment at 10% HA+

Prediction
Figure 4

A

Fold Change (WT RNA copies)

GFHK99 Var2 MOI (PFU/cell)

B

Fold Change (WT RNA copies)

GFHK99 Var2 MOI (PFU/cell)
Figure 5

A. GFHK99 in MDCK

Low MOI

RNA copies/μL (Log10)

Time post infection (h)

B. GFHK99 in DF-1

RNA copies/μL (Log10)

Time post infection (h)

C. MaMN99 in MDCK

RNA copies/μL (Log10)

Time post infection (h)

D. Low MOI

RNA copies/μL (Log10)

Time post infection (h)

E. High MOI

RNA copies/μL (Log10)

Time post infection (h)

F. High MOI

RNA copies/μL (Log10)

Time post infection (h)

G. Low MOI

Fold Change (RNA copies)

VRNA, mRNA, cRNA

H. High MOI

Fold Change (RNA copies)

VRNA, mRNA, cRNA

Legend:
- vNS
- mNS
- cNS

vRNA
mRNA
cRNA

Fold Change (RNA copies)

0 1 2 3 4 5 6 7

0 2 4 6 8 10 12

Time post infection (h)

0 2 4 6 8 10 12

RNA copies/μL (Log10)

0 2 4 6 8 10 12

Time post infection (h)

0 2 4 6 8 10 12

RNA copies/μL (Log10)

0 2 4 6 8 10 12

Time post infection (h)
Figure 6

A

![Graph showing log10 normalized UMI counts per cell for DF-1 and MDCK cells with and without polymerase and NP expression.](image)

B

![Graph showing log10 normalized UMI counts per cell for virus alone and virus with mVAR2.](image)
Figure 7

A

B