What Humans Contribute to Atmospheric CO₂: Comparison of Carbon Cycle Models with Observations

Hermann Harde
Experimental Physics and Materials Science, Helmut-Schmidt-University, Hamburg, Germany
Email address: harde@hsu-hh.de

To cite this article:
Hermann Harde. What Humans Contribute to Atmospheric CO₂: Comparison of Carbon Cycle Models with Observations. *Earth Sciences*. Vol. 8, No. 3, 2019, pp. 139-159. doi: 10.11648/j.earth.20190803.13
Received: April 3, 2019; Accepted: May 11, 2019; Published: June 12, 2019

Résumé :
Le Groupe intergouvernemental sur l'évolution du climat (IPCC, GIEC) part du principe que l'augmentation de la concentration atmosphérique de CO₂ a, au cours des dernières années, été presque exclusivement déterminée par les émissions anthropiques, et que cette augmentation est responsable de la hausse des températures depuis le début de l'ère industrielle. Vu les conséquences très importantes de ces affirmations, nous examinons dans cette contribution d’un œil critique les différents modèles de cycle du carbone et les comparons avec les observations. Nous les comparons également avec une alternative où le dégazage et l'absorption naturelles sont des fonctions de la température, avec une absorption proportionnelle à la concentration de CO₂. Nous montrons que cette dernière approche est en accord avec toutes les observations, et que ce ne sont donc pas les activités humaines qui sont responsables de la croissance observée du CO₂ et de l'augmentation attendue la température, mais tout au contraire c’est la température qui pilote l’essentiel de l'augmentation du CO₂. Par conséquent, ce n'est pas le CO₂ mais bien des phénomènes naturels qui sont responsables de tout changement climatique observé.

1. Introduction
Selon l'interprétation du Groupe Intergouvernemental sur le changement climatique (IPCC ou GIEC) la variation de la concentration atmosphérique en CO₂ au cours des dernières années résulterait presque exclusivement des émissions anthropiques ; cette augmentation est, via un « effet de serre », rendue responsable de l'augmentation de la température depuis le début de l'ère industrielle (voir 5e rapport d'évaluation, AR5 [1]). Ces affirmations et ces prédictions se fondent sur des modèles théoriques plus ou moins raffinés du cycle du carbone et leur comparaison avec des observations. Une bonne concordance des résultats des calculs avec les observations n’est qu’une condition nécessaire, mais nullement une condition suffisante pour que ces modèles soient fiables : ces modèles doivent aussi être conformes aux principes physiques qui régissent la nature.
L’importance des conséquences présumées du carbone anthropique sur les changements climatiques à venir suffit à motiver un examen critique des principales hypothèses utilisées dans ces modèles du cycle du carbone. Dans cette contribution, nous considérons trois approches théoriques qui ont la faveur du GIEC et qui se concentrent principalement sur l'effet des activités humaines causées par le changement d'utilisation des sols (Land Use Change, LUC) (voir par exemple Le Quéré et al. [2] ; CICERO [3]) et par les émissions de combustibles fossiles (Fossil Fuel Emissions, FFE) (CDIAC [4]), et supposent que les effets de l'environnement physique [NdT : la température par exemple] ont été constants au cours des 270 dernières années. Nous montrons que les principales conséquence de cette séparation entre le carbone anthropique et le carbone du cycle naturel est l’introduction d’une nouvelle échelle de temps, la durée d’adaptation ou d’ajustement (adjustment time) qui diffère sensiblement du temps de séjour [NdT : ce temps de séjour est le rapport stock/(flux annuel sortant) qui est aussi la durée moyenne de la vie d’une molécule de CO₂ dans l’air] ; ce temps de séjour caractérise l’absorption naturelle du CO2 de l'atmosphère par les autres réservoirs [océans, végétation, …].
Nous comparons les simulations de chacune de ces approches avec les observations faites à l’observatoire du Mauna Loa (Keeling et al. [5] ; AR5 [1] Chap.6 - Fig. 6.3, p. 476), et les comparons aussi avec notre description alternative du cycle du carbone atmosphérique (Harde [6]), fondée sur un processus d’absorption
simple, du premier ordre, valable pour tout le cycle avec une seule échelle de temps, le temps de séjour, et avec, en plus, la prise en compte des variations naturelles du dégazage et de l'absorption du CO\textsubscript{2} avec la température.

[NdT: du premier ordre signifie décrit par une équation différentielle simple du premier ordre par rapport au temps telle que dy(t)/dt = a y(t) + b z(t) ; ici ce sera par exemple : dC(t)/dt = - C(t) /(4 + u(t)) + z(t). C(t) quantité de carbone dans l’atmosphère, z(t) flux de carbone entrant dans l'atmosphère ; 4 + u(t) est une durée de vie ou temps de séjour du carbone dans l’atmosphère lentement variable dans le temps.]

Nous ne modélisons pas le carbone dans l'ensemble du système Terre-Atmosphère ; nous nous concentrons sur le seul CO\textsubscript{2} dans l'atmosphère, qui est régis par la loi de conservation de la matière.

Avec cette relation fondamentale de conservation et un processus d'absorption du premier ordre, nous montrons que les activités humaines n’ont qu’une influence mineure sur l'augmentation du CO\textsubscript{2} dans l'atmosphère, et que la principale contribution doit être expliquées par les effets naturels, en particulier la température, qui est responsable de plus de 85% de l'augmentation du CO\textsubscript{2} depuis la révolution industrielle.

Par conséquent, ce n'est pas le CO\textsubscript{2}, mais principalement des effets naturels qui contrôlent les changements climatiques observés.

2. Le concept physique

La base de nos considérations est la différence entre le flux de CO\textsubscript{2} entrant dans l'atmosphère et le flux qui en sort vers des réservoirs extérieurs, ce qui détermine la concentration de CO\textsubscript{2} dans l'atmosphère. Cela peut être comparé à une piscine (voir aussi Salby [7]) avec un flux entrant f\textsubscript{in} et un flux sortant f\textsubscript{out} : le changement de m\textsubscript{W} de la quantité d'eau dans la piscine sur l'intervalle de temps dt est donnée par la différence de ces flux :

\[
dm(t) / dt = f_{in}(t) - f_{out}(t)
\]

Ces flux déterminent le temps moyen de renouvellement ou temps moyen de séjour \(\tau_R\) qu'il faut pour changer complètement l'eau dans le bassin. Dans des conditions d'équilibre \(f_{in} = f_{out}\), la quantité totale d'eau dans le bassin m\textsubscript{W} est échangée dans un temps \(\tau_R\)

\[
\tau_R = m_W / f_{in} = m_W / f_{out}
\]

et inversement c'est la mesure du flux sortant

\[
f_{out} = m_W / \tau_R
\]

Comme pour le bassin, nous pouvons considérer l'équilibre du CO\textsubscript{2} atmosphérique avec un flux \(e_T(t)\) de CO\textsubscript{2} de la surface vers l'atmosphère, et un flux total \(a_T(t)\) absorbé par les réservoirs autres que l’atmosphère (figure 1).

Figure 1. Emissions de CO\textsubscript{2} par la surface vers l’atmosphère (flèches rouges) and absorption du CO\textsubscript{2} par la surface (flèches bleues).
En général, le flux entrant peut être divisé en dégazages naturels \(e_N(t) \) et en émissions anthropiques \(e_A(t) \), venant des émissions de combustibles fossiles et des changements d'utilisation des sols.

Le flux sortant est déterminé par l'absorption discontinue ou continue de CO\(_2\) par les océans et par les terres et leur végétation. Par ailleurs, le flux total absorbé \(a_T(t) \) est également fait d'une fraction \(a_N(t) \), proportionnelle au stock venant des émissions naturelles, et d'une fraction, \(a_A(t) \), proportionnelle au stock venant des émissions anthropiques. Il en résulte un bilan massique total, la loi de conservation :

\[
\frac{dC(t)}{dt} = \frac{dC_N(t)}{dt} + \frac{dC_A(t)}{dt} = e_T(t) - a_T(t) = e_N(t) + e_A(t) - a_N(t) - a_A(t) \quad (4)
\]

qui régit la concentration de CO\(_2\) dans l'atmosphère.

En général, tous ces flux changent avec le temps et dépendent aussi de la masse totale \(C(t) \), qui peut être considérée comme somme d'un \(C_N(t) \) dépendant du temps, causé par les dégazages naturels, et d'un \(C_A(t) \) venant des émissions anthropiques et dépendant du temps, avec \(C(t) = C_N(t) + C_A(t) \).

Cette équation doit, en général, être résolue numériquement.

Revenons à l'analogie de la piscine : on a un temps de séjour moyen pour le CO\(_2\) dans l'atmosphère \(\tau_R = C(t) / e_T(t) = C(t) / a_T(t) \quad (5) \)

et le flux absorbé est

\[
a_T(t) = C(t) / \tau_R \quad (6)
\]

Avec (4), nous ne modélisons pas le cycle du carbone dans le système complet Terre-Atmosphère (Earth Atmosphere System). Cela nécessiterait une analyse plus vaste tenant compte des processus dans les systèmes autres que l'atmosphère et des échanges entre ces systèmes. Notre analyse se concentre sur le CO\(_2\) dans l'atmosphère, qui découle de la loi de conservation de la masse. Soit dit en passant, cette loi physique a été dite être une description imparfaite car à un seul compartiment (voir par exemple Köhler et al. [8]), parce que -selon cette critique- elle ne prend pas en compte les détails des réservoirs ou compartiments autres que l'atmosphère. Comme on le verra, cette critique est confuse [un rideau de fumée].

Avec l'inclusion des flux de surface totaux \(e_T \) et \(a_T \) qui rendent compte des flux entrant et sortant (absorbé), l'équation d'équilibre (4) détermine entièrement l'évolution du CO\(_2\) dans l'atmosphère. Le détail des autres réservoirs, largement inobservables, est sans importance. Il y a une bonne raison pour que le CO\(_2\) atmosphérique soit entièrement décrit par cette seule équation : cette équation découle de l'équation de continuité tridimensionnelle, la loi physique qui régit la distribution du CO\(_2\) atmosphérique sur tout le globe.

Sous forme de flux, l'équation de continuité est donnée par

\[
\frac{\partial c}{\partial t} = - \text{div}(Vc) \quad (7)
\]

où la concentration locale de CO\(_2\), \(c \), est transportée à la vitesse \(V \).

Intégrée sur tout le volume de l'atmosphère, par application du théorème de la divergence [l'intégrale sur un volume de la divergence d'un vecteur \(\mathbf{X} \) est égale à l'intégrale de \(\mathbf{X} \cdot \mathbf{n} \) sur la surface de ce volume, \(\mathbf{n} \) normale à la surface], (7) devient l'équation d'équilibre (4) pour le CO\(_2\) moyen sur tout le globe. Si cette équation (4) était fausse, la loi physique fondamentale dont elle découle le serait aussi.

La figure 2 montre les émissions anthropiques \(e_A(t) \) somme des effets du changement d'affectation des sols (LUC) (voir par exemple Le Quéré et al. [2] ; CICERO [3]) et des émissions de combustibles fossiles (FFE) (CDIAC [4]). Alors que les émissions LUC (en rouge-brun) sont restées pratiquement constantes au cours des 170 dernières années, les émissions fossiles FFE (en bleu) ont, ces dernières années, rapidement augmenté.
Figure 2. Total des émissions anthropiques $e_A(t)$ dues au changement d'utilisation des sols (rouge-brun) et aux émissions des combustibles fossiles (en bleu). Les données de Le Quéré et al [2] et du CDIAC [4] sont l'une au-dessus de l'autre.

La figure 3 montre à nouveau les émissions anthropiques totales (carrés rouges) et l'anomalie des température $\Delta T(t)$ (triangles bleus) selon la moyenne annuelle mondiale des stations météo du Goddard Institute for Space Studies (GISS) [9].

Figure 3. Émissions anthropiques $e_A(t)$ (carrés rouges) avec ajustement exponentiel (ligne verte) et anomalies des températures en moyenne annuelle et globale (données GISS, triangles bleus)

Les émissions anthropiques peuvent être approchées par une exponentielle de la forme

$$e_A(t) = e_{A0} \left(\exp \left(\left(t-t_0 \right)/\tau_e \right) + b \right) \quad (8)$$

avec les paramètres : $e_{A0} = 0,026$ ppm/an, $\tau_e = 50$ ans, $t_0 = 1750$ et $b = 4$. L'intégrale de cet $e_A(t)$ correspond, à quelques millièmes près, à l'intégrale sur le temps des émissions FFE + LUC.
À première vue, l'évolution presque synchrones des émissions des combustibles fossiles et de l'anomalie de la température semble justifier que l'influence humaine soit le moteur de l'augmentation de la température mondiale. Mais un examen plus approfondi révèle déjà des écarts systématiques, en particulier entre 1940 et 1970, où les émissions augmentent, alors que la température stagne ou même diminue légèrement. Il convient d'examiner ce phénomène plus en détail, notamment en comparant directement les calculs du modèle d'augmentation du CO₂, basés sur les émissions de combustibles fossiles et le changement d'affectation des sols, avec les observations faites au Mauna Loa depuis 1958 (Keeling et al. [5] ; AR5 [1] Chap.6 - Fig.6.3, p. 476). Dans la présente contribution, nous examinerons le cycle du carbone avec les hypothèses du GIEC selon lesquelles les émissions humaines sont la cause principale de l'augmentation du CO₂, avant de voir le bilan du cycle complet du carbone, y compris ses variations naturelles dépendant de la température (voir aussi : Harde [6] ; Salby [7], [10, 11]).

3. Les cycles du carbone anthropique

Pour expliquer l'augmentation du CO₂ au cours des dernières années et prévoir sa progression, les rapports d'évaluation du GIEC se basent sur l'équation (4), mais utilisent des hypothèses restrictives (voir AR5 [1] Chap.6), qui peuvent être résumées par les points suivants :

1. Avant 1750 et en première approximation aussi avant 1850, on présuppose des conditions d'équilibre avec une concentration de CO₂ C₀(1750) ≈ 280 ppm déterminée par des flux naturels émis ou dégazés et absorbés constants e₀ = a₀ d'environ 93 ppm/an (AR5 [1] Chap.6-Fig.6.1).

2. Avec cette concentration et ces flux, l'équation (5) donne un temps de séjour moyen τ₀ (à l'époque préindustrielle : τ₀) du CO₂ dans l'atmosphère de l'année
 \[\tau_0 = C_0 / e_0 = C_0 / a_0 = 3 \text{ ans} \] (9)
 Note : Le même résultat découle de (4) pour des flux entrants et sortants en équilibre et avec un flux absorbé équivalent à (6), proportionnel à la concentration C₀
 \[dC_0 / dt = e_0 - a_0 = e_0 - a_0 C_0 = e_0 - C_0 / \tau_0 \] (10)
 où a₀ = 1/τ₀ est l'absorptivité et τ₀ le temps de séjour. [NdT : le stock correspondant à une unité injectée dans l'air en t=0 décroît en exp(-t/ τ₀)]
 [NdT : le a₀ de la figure 6.1 du GIEC ne distingue pas la respiration de la végétation qui rejette dans la journée et l'année presque la moitié du carbone absorbé d'où τ₀ =589/(109 +60) = 3,5 au lieu de τ₀ = 589 / (109 / 2 + 60) = 5,1]

3. On suppose que l'augmentation de la concentration de CO₂ au cours des 170 dernières années est presque exclusivement due aux émissions anthropiques provenant de la combustion de combustibles fossiles et du changement d'affectation des sols ; les émissions naturelles au cours de cette période sont supposées être, depuis 170 ans, restées les mêmes qu'à l'époque préindustrielle. L'augmentation de la concentration est attribuée à une réabsorption seulement partielle des émissions anthropiques, dont une fraction, appelée « fraction aéroportée » ou Airborne Fraction ou AF avec AF = Δe₀/e₀, est supposée rester perpétuellement dans l'atmosphère. Alors
 \[\Delta e_A(t) = AF \cdot e_A(t) \] (11)
est la partie non absorbée, qui s'accumule dans l'atmosphère et
 \[a_A(t) = e_A(t) - \Delta e_A(t) = e_A(t) (1- AF) \] (12)
représente la fraction absorbée des émissions anthropiques. En fait, le GIEC pose AF = 44% (AR5 [1] Chap.6, p. 495 ; Le Quéré et al. [12]).

4. Pour tenir compte des changements de l’absorption par les autres réservoirs en fonction de la concentration atmosphérique, cette absorption est supposée être la somme de termes exprimant chacun une
décroissance exponentielle différente [en \(\exp(-t/\tau)\)] avec une constante de temps \(\tau\) différente. Cette absorption est proportionnelle aux seules émissions humaines, et non pas à la concentration réelle \(C(t)\) (voir (12)). Avec ces hypothèses on a des approches plus ou moins sophistiquées pour expliquer l'augmentation de la concentration de \(\text{CO}_2\) dans l'atmosphère. Trois d'entre elles vont être brièvement caractérisées et discutées dans cette contribution. Elles émanent toutes du même concept de base qui consiste à isoler et mettre de côté l'échange (dégazage et absorption) naturel de carbone entre l'atmosphère et les autres réservoirs et à ne considérer que le seul cycle du carbone « anthropique ».

3.1. Une AF Airborne Fraction constante

Avec des flux naturels émis (dégazés) et absorbés constants au cours de l'ère industrielle \((e_{N0} = a_{N0})\) et une Airborne Fraction AF constante sur toute cette période, l'équation d'équilibre (4) se réduit à la forme simple

\[
\frac{dC(t)}{dt} = \Delta e_A(t) = AF e_A(t) \quad (13)
\]

et change de manière synchrone avec \(e_A(t)\).

La concentration en fonction du temps s'en déduit par intégration de (13) sur l'ère industrielle :

\[
C(t) = C(1750) + AF \int_{1750}^{t} e_A(t') \, dt' \quad (14)
\]

Le bilan carbone des 270 dernières années implique une Airborne Fraction AF de 42 % (voir Le Quéré et al. [2], Tableau 9). Ensuite, avec une concentration initiale \(C(1750) = C_{N0} = 280\) ppm, on calcule l’évolution montrée par la ligne verte du haut de la figure 4 qui peut être comparée aux mesures (diamants bleus) faites au Mauna Loa (Tans & Keeling [13]) depuis 60 ans. Cette comparaison montre des concentrations généralement trop élevées, en particulier pour les périodes passées. Ce peut être dû à une concentration initiale trop importante en 1750, mais la pente ne colle pas bien. Il est probable que le flux \(e_A(t)\) est trop grand, en particulier à cause des LUC qui de toutes façons ne sont connus qu’à ± 50 % près. Un accord étonnamment bon peut être trouvé avec un flux anthropique \(e_A'(t)\) réduit de 0,21 ppm/an, et une AF de 48 % (les croix vertes), soit 6 % de plus que la moyenne de AF sur l'ère industrielle.

Les courbes calculées [vertes] sont lisses sans accident : c’est l’effet de l’intégration sur le temps sur l'ensemble des émissions anthropiques depuis 1750 ; la dérivée de ces courbes est le flux "moyen" des émissions ; les accidents de la courbe rouge des émissions sont fortement aplatis.

Figure 4. Concentration de \(\text{CO}_2\) calculée avec une Airborne Fraction de 42 % (ligne verte) comparée aux observations au Mauna Loa (diamants bleus). Une simulation avec AF = 48 % et des émissions réduites est représentée par les croix vertes (courbe du milieu). Les émissions anthropiques \(e_A(t)\) sont figurées par les carrés rouges.
3.2. Le modèle de Berne

Le modèle d'absorption du CO₂ dit de Berne (par exemple, Joos et al. [14]) est une description plus complexe du cycle du carbone qui a été reprise ou imitée par d'autres modèles [NdT : ce sont des modèles en compartiments supposés a priori en équilibre statique entre eux, donnant un système d'équations différentielles linéaires]. Ce modèle a différents « puiss » associés à des échelles de temps différentes, d'où pour décrire l'évolution après une perturbation causée par une impulsion transitoire de CO₂ ajoutée à l'atmosphère, une décroissance en somme d'exponentielles [NdT : cette somme d'exponentielles est appelée réponse impulsionnelle en électronique et en automatismes]. En ajustant les cinq termes du modèle du cycle du carbone de Berne (Joos et al. [14] ; Hansen et al. [15, 16]), l'écart à l'équilibre en réponse à une perturbation en impulsion de Dirac $\Delta e = \delta(0)$ exprime ce qui reste dans l’air au bout de t années par la fraction

$$R(t) = \frac{(e(t) - e_{équilibre})}{\Delta e} = 0,18 + 0,14 \exp(-t/420) + 0,18 \exp(-t/70) + 0,24 \exp(-t/21) + 0,26 \exp(-t/3,4) \quad (15)$$

La figure 5 montre la décroissance sur 200 ans du reste $R(t)$ de la perturbation (courbe rouge)

La figure 5 montre aussi la décroissance du Δ^{14}C observée à Vermunt et à Schauinsland (Levin et al. [17]) après l'arrêt des essais de bombes thermonucléaires dans l’atmosphère; Δ^{14}CO₂ est le rapport isotopique 14C/12C corrigé et exprimé en écart à l'étalon d'acide oxalique. Cette décroissance est bien représentée par une seule exponentielle avec une constante de temps de 15 ans (soit $\exp(- (t - 1964) / 15$)) (pointillés bleus). Les données de Hua et al. [18] et Turnbull et al. [19] montrent des décroissances du Δ^{14}CO₂ presque identiques avec un constante de 16,5 ans.

[NdT : ce temps, 15 ans, relativement long par rapport à la durée de vie du CO₂ ordinaire (5 ans) vient du vidage progressif de la stratosphère, où le 14C des bombes a été injecté et stocké au moment de l’explosion, vers la troposphère]
Pour calculer la concentration de CO₂ atmosphérique par le modèle de Berne (par exemple, Joos [14]),
l'émission de CO₂ anthropique dans l'atmosphère est considérée comme une série d'impulsions annuelles. La
concentration de CO₂ atmosphérique C(t) au moment t est supposée être la somme des émissions antérieures
\(e_A(t')\) au moment \(t'\) multipliées par la fraction \(R(t-t')\) de (15) d'où une AF (Airborne Fraction) dépendant du
temps.

Avec un flux anthropique bien approché par (8) (voir figure 3) il vient :
\[
C(t) = C(t_0) + \int_{t_0}^{t} e_A(t') R(t-t') \, dt' = C(t_0) + e_{A0} \left[c_e \exp\left(- \frac{t - t_0}{\tau_0} \right) - c_0 \exp\left(- \frac{t - t_0}{\tau_1} \right) - c_2 \exp\left(- \frac{t - t_0}{\tau_2} \right) - c_3 \exp\left(- \frac{t - t_0}{\tau_3} \right) - c_4 \exp\left(- \frac{t - t_0}{\tau_4} \right) \right] + 0.18 \, b \, (t-t_0) \tag{16}
\]

Avec
\[
c_e = 0.18 \cdot \tau_e + 0.14 \cdot \tau_{e1} + 0.18 \cdot \tau_{e2} + 0.24 \cdot \tau_{e3} + 0.26 \cdot \tau_{e4};
\]
\[
c_0 = 0.18 \cdot \tau_e - b \cdot (0.14 \cdot \tau_1 + 0.18 \cdot \tau_2 + 0.24 \cdot \tau_3 + 0.26 \cdot \tau_4);
\]
\[
c_1 = 0.14 \cdot (\tau_{e1} + b \cdot \tau_1);
\]
\[
c_2 = 0.18 \cdot (\tau_{e2} + b \cdot \tau_2);
\]
\[
c_3 = 0.24 \cdot (\tau_{e3} + b \cdot \tau_3);
\]
\[
c_4 = 0.26 \cdot (\tau_{e4} + b \cdot \tau_4);
\]
\[
\tau_{e} = \tau_e / (\tau_{e} + \tau_{g}); \quad \tau_g = 50 \, \text{yr}; \quad \tau_1 = 420 \, \text{yr}; \quad \tau_2 = 70 \, \text{yr}; \quad \tau_3 = 21 \, \text{yr}; \quad \tau_4 = 3.4 \, \text{yr}; \quad b = 4;
\]

Cette approche présuppose également une concentration de CO₂ à l’équilibre \(C_{\text{équilibre}}\) en 1750, \(C_{\text{équilibre}} = 280\) ppm, et exclut toute variation du flux des dégazages naturels depuis le début de l’ère industrielle !

Figure 6. Comparaison du modèle de Berne (courbe supérieure en vert) avec les observations du Mauna Loa (diamants bleus). Une simulation avec des émissions anthropiques réduites de 0,18 ppm pour mieux approcher les observations est représentée par les croix vertes. Les carrées rouges sont les émissions \(e_A(t)\).

La concentration calculée avec (16) du CO₂ atmosphérique est la ligne verte continue en haut de la figure 6. Le modèle de Berne, comme le modèle AF à fraction constante restant perpétuellement dans l’air, dit des concentrations calculées trop fortes. Diminuer les émissions anthropiques de 0,18 ppm/an amène un très bon accord avec les données du Mauna Loa.

Mais, à cause des hypothèses prises pour fabriquer ces modèles AF et de Berne, il y a quelques gros problèmes très fondamentaux :
1. Avec des émissions supplémentaires dans l'atmosphère, même à flux constant, il est impossible de jamais revenir à un équilibre.

2. Ces émissions s'accumuleront dans l'atmosphère : dans le modèle de Berne 18%, et dans le modèle simple AF 48% des émissions resteront perpétuellement dans l'atmosphère.

3. C'est une conséquence du défaut de ces modèles qui accumulent des émissions en excès par rapport à celles de l'époque préindustrielle, et en supposent une absorption seulement partielle, proportionnelle au flux supplémentaire et non pas à la concentration du CO₂ dans l'air !

4. Le modèle de Berne utilise plusieurs échelles de temps différentes pour l'absorption [420 ans, 70 ans, 21 ans, 3,5 ans] bien que la décroissance du 14C montre une décroissance exponentielle unique en exp(-t/15) avec une seule échelle de 15 ans ou moins.

5. Des variations des dégazages naturels de 1% d'une année sur l'autre, vues lors des El Niños et des explosions volcaniques, sont assez supérieures aux émissions humaines, et devraient s'accumuler dans l'atmosphère, puisque ces modèles ne considèrent que les seules émissions supplémentaires, et supposent des absorptions quasi-constantes, ce qui est très invraisemblable.

Pour éviter certains de ces défauts, un autre type de modèles suppose un processus d'absorption du premier ordre, mais ne l'applique qu'aux changements de concentration $C_A(t)$ causés par les émissions anthropiques.

3.3. L'absorption croît avec la concentration

Puisque le taux d'absorption anthropique $a_A(t)$ est, par hypothèse proportionnel au flux anthropique $e_A(t)$ (voir Eq.(12)) et que ce taux détermine directement la fraction anthropique $C_A(t)$ de la concentration de CO₂, par analogie avec (6) ou (10), nous en déduisons :

$$a_A(t) = e_A(t) \times (1- AF) = C_A(t)/\tau_A$$

qui convertit le terme d'absorption dans (4) en un terme proportionnel à la fraction anthropique $C_A(t)$ de la concentration (pour une approche similaire, voir par exemple Siegenthaler & Sarmiento [20] ; Dietze [21] ; Cawley [22] ; Lüdecke & Weiss [23]). Pour $e_{N0} = a_{N0}$, cela donne l'équation entre flux :

$$dC(t)/dt = e_A(t) - C_A(t)/\tau_A = e_A(t) - (C(t) - C_{N0})/\tau_A$$

où τ_A est le temps d'absorption des molécules dans l'atmosphère, qui, dans la terminologie du GIEC, contrôle l' "ajustement" de l'atmosphère uniquement dû aux activités humaines. Avec la figure 4 et avec (17), nous pouvons estimer ce temps d'ajustement, qui pour $C_A = (393 - 280)$ ppm = 113 ppm, $e_A = 4,7$ ppm/an (toutes ces valeurs ont été calculées en moyenne sur les 10 ans des années 2007-2016, voir Le Quéré et al. [2], tableau 7) et le AF ajusté = 48% de la figure 4 donne

$$\tau_A = C_A(t)/((1- AF) e_A(t)) = 46$$

L'intégration numérique de (18) avec ce temps d' "ajustement", le flux $e_A(t)$ et une concentration initiale préindustrielle $C_{N0} = 280$ ppm est la ligne verte en haut de la figure 7. Avec un flux corrige $e'_A(t) = e_A(t) - 0,3$ ppm/an et le temps d' "ajustement" de l’équation (19) cette approche (les croix vertes à la figure 7) donne un bon accord avec les observations au Mauna Loa (diamants bleus). Ce temps d'absorption est presque identique au temps d'ajustement de 48 ans trouvé à partir d'un simple calcul de flux présenté dans Harde [6], Eq. (9).
Figure 7. Calcul de la concentration en CO$_2$ pour un temps d'ajustement $\tau_A = 46$ ans (ligne verte en haut) et comparaison avec les observations au Mauna Loa (diamants bleus). Une simulation avec des émissions réduites de 0,3 ppm/an est tracée sous forme de croix vertes. Les émissions anthropiques $e_A(t)$ sont aussi tracées (carrés rouges).

3.4. Influence des dégazages naturels

Ainsi, avec les paramètres qui vont bien, toutes les approches que nous venons de voir reproduisent bien les observations au Mauna Loa. Mais tous ces modèles sont fondés sur des hypothèses et des conditions aux limites différentes, certaines étant en contradiction les unes avec les autres. Ne peut donc être correcte qu’une seule de ces approches ou aucune d’entre elles.

Une bonne reproductions des observations n’est pas un critère suffisant pour s’assurer de la validité d’un modèle : un modèle doit aussi être en accord avec des principes physiques de base. Ces principes seuls peuvent nous donner une explication physiquement cohérente du cycle du carbone, qui est dominé à plus de 95 % par les dégazages naturels et subit en permanence des impacts environnementaux.

Il est également évident que ce cycle était, à l’époque paléoclimatique, régi par les mêmes principes qu’aujourd’hui où l’on a aussi des émissions humaines. Ainsi, avant d’aller plus loin, il semble raisonnable de nous concentrer d’abord sur trois questions fondamentales :

1. Comment la nature pouvait-elle être en équilibre avant l’ère industrielle ? Certains climatologues considèrent l’échange naturel de carbone comme un cycle fermé, qui s’est déroulé de la même façon pendant des milliers d'années sans variation importante. Mais si l’on considère les périodes glaciaires et interglaciaires ou même seulement l’Holocène, il faut reconnaître que la concentration atmosphérique de CO$_2$ a toujours varié sur des périodes plus ou moins longues.

Des variations lentes ne sont pas, par elles-mêmes, un indice de non-équilibre : elles peuvent aussi venir de variations du flux dégazé au cours du temps. Mais une adaptation à de telles variations naturelles n’est pas possible lorsque les émissions ne font que s'accumuler, comme le supposent les modèles AF et de Berne pour les émissions anthropiques, qui ne parviennent jamais à l'équilibre. Ainsi, une adaptation aux activités volcaniques, aux variations de température ou même aux variations saisonnieres nécessite que le cycle naturel ait un processus d'absorption qui soit -plus ou moins- proportionnel à la concentration $C_P(t)$ à l'époque préindustrielle, un peu comme celui vu dans le 3ème modèle pour les émissions anthropiques. Ainsi, il faut supposer un processus du premier ordre aussi pour le cycle naturel : l'équation d'équilibre pour les périodes préindustrielles prend alors la forme, analogue à (10) :

$$\frac{dC_P(t)}{dt} = e_P(t) - C_P(t) / \tau_{RP} \quad (20)$$
avec \(\varepsilon_P(t) \) flux des dégazages et \(\tau_{RP} \) temps de séjour à l’époque préindustrielle.

Un équilibre est atteint lorsque le côté gauche de (20) est égal à zéro. Le temps de séjour est alors \(\tau_{RP} = C_P(t)/\varepsilon_P(t) \). La même relation avait été trouvée à partir du modèle de flux simple avec un temps de résidence \(\tau_{R0} = 3 \) ans en 1750 [sans tenir compte de la respiration de la végétation].

Un tel temps de résidence ou d’absorption pour le cycle naturel est en bon accord avec les variations saisonnières observées et est également conforté par la décroissance du \(\Delta^{14}C \), comme nous le verrons en détail au paragraphe 5.7.3.

Comme les concentrations du CO\(_2\) changeaient en permanence à l’époque préindustrielle nous devons aussi nous demander :

2. Peut-on vraiment supposer que le cycle naturel ait été constant au cours des 270 dernières années ?

Presque tous les jours, nous voyons des phénomènes et des processus naturels produire des perturbations et des variations importantes, par exemple, les éruptions volcaniques, les tremblements de terre, les phénomènes El Niño - La Niña, les oscillations internes et externes, le réchauffement climatique ou les variations saisonnières. Tous ces phénomènes ont une influence directe sur la fraction \(C_N(t) \) d’origine naturelle du CO\(_2\) dans l’atmosphère. Par conséquent, le bilan du cycle naturel, aussi à l’ère industrielle, doit être exprimé explicitement par un taux d’émission \(\varepsilon_N(t) \) dépendant du temps et un temps de séjour \(\tau_N(t) \) dépendant du temps. Ce dernier peut être légèrement affecté par des variations internes ou externes, mais ne doit pas s’écarter de manière significative de l’époque préindustrielle ou de 1750. Autrement dit l’équilibre doit obéir à la même relation principale qu’à l’époque préindustrielle avec :

\[
\frac{dC_N(t)}{dt} = \frac{\varepsilon_N(t) - C_N(t)}{\tau_N(t)}
\]

Enfin, il faut se poser la question :

3. Le cycle anthropique peut-il être considéré séparément du cycle naturel ? De la discussion précédente, on peut conclure que l’équation du bilan total pour les modèles respectifs ressemble à

\[
\frac{dC(t)}{dt} = \frac{dC_N(t)}{dt} + \frac{dC_A(t)}{dt} = \left(\varepsilon_N(t) - \frac{C_N(t)}{\tau_N(t)} \right) + \begin{cases} \varepsilon_A(t) \cdot AF & AF Model \\ \varepsilon_A(t) \cdot R(t'-t) & Bern Model \\ \varepsilon_A(t) - C_A / \tau_A & 1. Order Mod. \end{cases}
\]

Dans tous les cas, cette équation dépend de deux ou plusieurs temps de séjour indépendants, un temps court avec \(\tau_R(t) \approx 3 \) ans pour l'absorption des émissions naturelles, et un temps de séjour infini pour 48% des émissions dans le modèle AF, cinq temps de séjour attachés aux différents puits du modèle de Berne, et enfin dans le 3ème modèle, un temps d’ajustement de 46 ans ; tous ces temps de séjour longs sont spécifiques à l’adaptation de l’atmosphère aux émissions anthropiques supplémentaires.

Mais maintenant il est bien évident que les molécules émises par la nature et celles émises par l'homme ne peuvent pas être traitées différemment. Tant qu'aucune saturation de l'absorption n'est observée, ce qui est bien le cas (voir annexe A), une émission supplémentaire venant de l'homme doit subir le même processus d'absorption que les dégazages naturels. Leur appliquer des traitements différents est en contradiction flagrante avec le principe d'équivalence ! En conséquence de ce principe, il ne peut y avoir qu’un seul et unique temps d'absorption, \(\tau_R \), avec le même processus d'absorption pour les émissions humaines et les dégazages naturels.

4. Le cycle complet du carbone

Les considérations précédentes montrent qu'une analyse réaliste de l'échange de CO\(_2\) entre l'atmosphère et les réservoirs adjacents doit inclure les variations naturelles, celles dues à la température ou celles dues à des événements tels que les El Niño ou les éruptions volcaniques. Une analyse réaliste doit également tenir...
compte de l’absorption commune à tous les apports naturels et humains, qui est proportionnelle à la concentration apparente de CO\(_2\) et est représentée par un temps de séjour unique (voir également : Essenhigh [24] ; Salby [7, 10] ; Harde [6] ; Berry [25]).

Résumons les principales différences avec les schémas comptables précédemment évoqués par les principes fondamentaux suivants :

1. Des changements dans le cycle naturel du carbone dus à une augmentation continue de la température au cours de l'ère industrielle sont à inclure dans l'équation de bilan (4) par un terme dépendant de la température pour les dégazages naturels, et avec un autre terme pour l'absorption dépendant de la température.

2. Les écarts à une concentration d'équilibre \(C_{équilibre}\) dus à des changements naturels ou à des émissions anthropiques supplémentaires sont compensés ou contrôlés dans le cycle du carbone par un taux d'absorption qui change proportionnellement à la concentration effective dans l’air \(C\) (selon un processus du premier ordre, voir Eq. (6)).

3. Les molécules émises dans l’atmosphère peuvent avoir plusieurs sources différentes, naturelles et artificielles, mais (jusqu’à présent) elles n’ont que ces puits naturels communs que sont les océans et la végétation des continents, qui ne font pas de différence entre les dégazages naturels et les émissions anthropiques.

4. Il n’existe aucune indication que l’absorption soit soudainement devenue saturée et que le temps de séjour \(\tau_R\) ait augmenté d’un ou deux ordres de grandeur de \(\tau_{R0}\) [3 à 5 ans] à \(\tau_A\) [46 ans], lorsque la concentration atmosphérique a dépassé un niveau de 280 ppm. \(\tau_R\) ne peut avoir changé, continûment, de l’époque préindustrielle à l’époque actuelle qu’entre 3 et 4 ans, en synchronisme avec la concentration atmosphérique et en accord avec (5) et (9).

5. La décroissance exponentielle du \(^{14}\text{C}\) observée dans la troposphère après l’arrêt des essais de bombes thermonucléaires dans l’atmosphère en 1963 [en fait vers 1975] est un argument fort en faveur d’un processus d’absorption du CO\(_2\) du premier ordre par la terre [la végétation] et par les océans avec une constante de temps unique déterminée par le flux de CO\(_2\) de l’atmosphère vers les réservoirs adjacents (voir figure 5). Seule une absorption de ce type garantit que le cycle du carbone peut se stabiliser et réagir de manière adéquate à toute perturbation transitoire, comme des variations saisonnières ou des activités volcaniques.

6. Pour les processus d’absorption en parallèle par les océans, par la biosphère et par l’altération des roches, l'absorptivité \(\alpha\) est la somme des différentes voies d’absorption \(\alpha_i\) avec \(\alpha_R = \alpha_1 + \alpha_2 + ... + \alpha_N\) et \(\tau_R = \frac{1}{\alpha_R}\).

L’absorption n’est pas limitée par le processus le plus lent comme le suppose le modèle de Berne, mais déterminée par la somme de tous les processus, avec une seule et même absorptivité \(\alpha_R\) pour toutes les molécules. L’inverse de \(\alpha_R\) est le temps de séjour \(\tau_R\) du CO\(_2\) dans l’atmosphère. Ces principes sont intégrés dans une équation d’équilibre, la loi générale de conservation, qui d’une part inclut les dégazages naturels dépendant de la température et donc du temps et les émissions anthropiques, et d’autre part considère un temps de séjour (ou de résidence) \(\tau_R\) unique fonction de la température, qui décrit l’absorption collective ou nette de toutes les molécules.

Il n’y a pas de différence entre un temps de résidence et un temps d'ajustement

\[
dC(t) / dt = e_N(T(t)) + e_A(t) / \tau_R(T(t)) \quad (23)
\]

Au premier ordre on peut supposer que le flux du dégazage naturel et le temps de séjour croissent linéairement avec l'anomalie de température \(\Delta T\) :

\[
e_N(T(t))= e_{N0} + \beta_e \Delta T(t) \quad \text{et} \quad \tau_R(T(t)) = \tau_{R0} + \beta_T \Delta T(t) \quad (24)
\]

\(\beta_e\) et \(\beta_T\) sont les coefficients de température des dégazages naturels et du temps d'absorption. Dans le cas général d'une absorption qui saturerait les réservoirs externes, \(\tau_R\) dépendrait aussi de \(C(t)\). Mais jusqu'à présent, aucun effet de saturation n'a pu être clairement identifié (voir annexe A). Avec l’anomalie de température \(\Delta T(t)\) et les émissions anthropiques \(e_A(t)\) représentées à la figure 3, l’équation (23) peut être résolue numériquement.
La figure 8 montre la simulation de la concentration de CO2 dans l'atmosphère (courbe verte) sur la période de 1880 à 2016, pour laquelle on dispose de données de température fiables (GISS [9]), alors que les mesures directes de CO2 au Mauna Loa (diamants bleus) n’ont commencé qu’en 1958. Les données de température ont été utilisées avec un lissage par moyenne mobile sur ±5 ans. Nous obtenons un bon accord avec les observations pour un flux du dégazage naturel eN0 = 93,3 ppm/an, τR0 = 3 ans (tous deux en accord avec (9)) et des coefficients de température βe = 10 ppm/an/°C et βr = 0,37 an/°C. De bons résultats sont aussi obtenus avec un βe plus grand (jusqu'à 24 ppm/an/°C) et un βr plus petit (→ 0) ou vice versa avec un βr plus grand (jusqu'à 0,74 an/°C) et un βe plus petit (→ 0).

Ainsi tant que les flux des dégazages naturels et des émissions anthropiques et qu’un au moins des coefficients de température ne sont pas connus avec plus de précision, nous ne pouvons déterminer qu’une combinaison de ces paramètres, et non leurs valeurs exactes. La figure 8 montre aussi une simulation pour laquelle les émissions anthropiques ont été mises à zéro (en magenta).

Figure 8. Concentration du CO2 calculée avec une émission et une absorption fonction de la température (en vert). À comparer aux observations du CO2 au Mauna Loa (diamants bleus). Simulations sans les émissions anthropiques (en magenta), et avec les seules émissions anthropiques (en bleu). La différence entre les deux courbes verte et magenta résulte des activités humaines.

Ces courbes montrent à l’évidence que, sur la base de l’équation (23), la contribution anthropique à l’augmentation observée du CO2 au cours des 150 dernières années est nettement inférieure à l’influence naturelle. Ainsi, en moyenne sur la période 2007-2016, les émissions anthropiques n’ont contribué que 4,3 % de la concentration totale de 393 ppm et leur part dans l’augmentation atmosphérique de 113 ppm depuis 1750 n’est que 17 ppm ou 15 %.

La contribution dominante, les 85%, vient des influences naturelles qui à la figure 8 sont la différence entre la courbe magenta et l’horizontale à 280 ppm. La contribution purement anthropique à la concentration atmosphérique, sans effet des températures, est l’écart entre la courbe bleue et la ligne horizontale à 280 ppm. Pour un temps de séjour τR0 = 3 ans, les émissions humaines ne peuvent pas avoir contribué plus de 14,5 ppm ; avec un τR croissant au cours de l’ère industrielle, du fait de l’influence de la température, cette contribution augmentera légèrement à 17 ppm, comme le montre la différence entre les courbes en vert et en magenta (voir la flèche verticale rouge).

À l’équilibre, la contribution relative des activités humaines à la concentration totale de CO2 est toujours déterminée par le rapport du flux anthropique au flux total entrant dans l’atmosphère, et ne dépend pas du temps de séjour (Eq.(23) ; Harde [6], Eq.(14)).
Notons qu'une simulation sans émissions anthropiques, mais avec des coefficients de température légèrement plus élevés ($\beta_t = 0.48$ an/$°C$ ou $\beta_e = 13.3$ ppm/an/$°C$) fait monter la courbe magenta de façon qu'elle coïncide presque exactement avec la courbe en vert. Ainsi, l'évolution observée au Mauna Loa pourrait être retrouvée sans implication de $e_A(t)$, contrairement aux interprétations du GIEC. Jusqu'à présent, nous n'avons pris en compte que des mesures de CO$_2$ moyennées sur l’année, mais il est intéressant de regarder de plus près les données mensuelles au Mauna Loa (voir Keeling et al. [5] ; AR5 [1] Chap.6 - Fig. 6.3, p. 476) montrées à la figure 9 (diamants magenta). La courbe en "dents de scie" est une indication évidente de la variation des flux des dégazages et des absorptions de CO$_2$, fonctions de l'activité solaire et de la température, au fil des saisons. En général, cette modulation est dite venir de la plus grande masse de terres émergées dans l'hémisphère Nord, où l'absorption par la photosynthèse a lieu principalement pendant la saison de croissance de la végétation, tandis que la libération de CO$_2$ par des processus hétérotrophes domine pendant les autres saisons.

Figure 9. Séries temporelles mensuelles des concentrations de CO$_2$ mesurées au Mauna Loa (diamants magenta) et des températures de l'air enregistrées à Hawaii (triangles bleus).

Cependant, des effets locaux semblent avoir aussi une influence directe sur ces données. La figure 9 montre également la moyenne mensuelle de la température de l'air à Hawaï (Triangles bleus) avec des variations saisonnières de 3°C à 4°C (NOAA [26]). Des changements presque synchrones sont constatés sur la température de surface des océans (NOAA [27]). La concentration de CO$_2$ suit ces variations de température avec un retard de 6 à 7 mois (voir aussi Salby [7]).

[NdT : ces variations $C(t+6$ mois$) - C(t-6$ mois$)$ sont superposables avec $T(t)$; le retard de 6 mois vient de la comparaison erronée de $C(t+6$ mois$) - C(t-6$ mois$)$ avec $T(t+6$ mois$) - T(t-6$ mois$)$; la vraie corrélation est entre $C(t+6$ mois$) - C(t-6$ mois$)$ et $T(t)$.]

Un calcul incluant les émissions humaines et utilisant l'anomalie modulée de la température de l'air $\Delta T(t)$ à Hawaii (NOAA [26]) est présenté à la figure 10 (diamants bleus).
Figure 10. Concentration mensuelle en CO₂ intégrée à partir de l'équation d'équilibre avec une émission et une absorption dépendant de la température et un temps de séjour initial de 3 ans (Triangles bleus).

Comparaison avec les observations du CO₂ du Mauna Loa (diamants magenta).

Cet excellent accord avec les mesures mensuelles de CO₂ du Mauna Loa (Diamants Magenta) est obtenu avec une simple réponse linéaire des dégazages naturels à l'anomalie de température avec sa modulation saisonnière, avec un temps de séjour de valeur initiale $\tau_{R0} = 3$ ans et une augmentation moyenne avec la température légèrement non linéaire en $\Delta T^{1.5}(t)$ qui rend compte de la dépendance non linéaire des dégazages océaniques par rapport à la température et de l'absorption du CO₂ (voir sous-section 5.6). La température moyenne de l'air à Hawaï se caractérise par une augmentation assez linéaire dans le temps : ce qui fait que, à la différence de la figure 8, il n'y a plus d'écarts autour de 1970.

Une analyse détaillée de la courbe du Mauna Loa (Salby [7, 10, 11]) et des études indépendantes sur la corrélation des dégazages et des températures (Humplum et al. [28]) montrent que le temps d'absorption réel de 3 ans à 4 ans, tel que dérivé de (9) et basé sur les estimations du GIEC, pourrait être significativement plus court, de 8 mois à 12 mois, ceci au moins pendant les périodes de croissance de la végétation sur terre et dans les océans, mais aussi dans des zones telles que l'Atlantique Nord où les eaux froides de la surface plongent dans les profondeurs (downwelling). Dans ces conditions, de la même manière que le temps de séjour se raccourcit, le flux total dégazé augmente (c'est généralement le paramètre le plus incertain des flux estimés). Comme le mélange avec le CO₂ produit par l'homme est dans le rapport des émissions anthropiques aux émissions totales, cette fraction diminue encore. Ainsi, avec un temps d'absorption de $\tau_{R0} = 1$ an et un flux total $e_1 = 298$ ppm/an, les émissions anthropiques de 4,7 ppm/an ne contribueraient pas plus de 1,6 % ou 6 ppm au CO₂ atmosphérique. Toutefois, pour avoir une évaluation plus prudente et en accord avec les estimations du GIEC (AR5 [1], Chap.6 - Fig. 6.1), nous nous baserons sur les conditions dérivées des simulations des figures 8 et 10 avec $\tau_{R0} = 3$ ans.

5. Discussion
Tous les schémas présentés pour décrire la concentration de CO$_2$ dans l'atmosphère partent de l'équation d'équilibre qui tient compte des flux allant vers les réservoirs autres que l'atmosphère et des flux qui en reviennent.

Pourtant, les approches de la section 3 que l’on retrouve dans le gros de la littérature limitent ces flux aux seuls cycles d'émission-absorption anthropiques, tandis que les émissions ou dégazages naturels et leur absorption sont supposées être les mêmes depuis 270 ans ! Toute modification de ces flux est donc simplement ignorée dans le bilan total.

En outre, deux de ces approches utilisent un bilan unilatéral pour ce cycle, uniquement contrôlé par les flux entrants et indépendant de la concentration atmosphérique réelle. Ces grosses déficiences des modèles ont des conséquences fatales sur l'interprétation du cycle du carbone que l’on en peut tirer.

5.1. Une nouvelle échelle de temps

Ne tenir compte que des seuls flux anthropiques revient à introduire une nouvelle échelle de temps pour l'absorption des émissions anthropiques et d’elles seules ! (voir paragraphe 3.4). Comme ces émissions et leurs variations sont d’un ordre de grandeur trop petites pour expliquer les variations de concentration observées ces dernières années, des modèles du cycle du carbone introduisent simplement un facteur tampon supplémentaire, la « durée d'ajustement ». Cette nouvelle échelle de temps permet d’accumuler des molécules dans l’atmosphère pendant un temps suffisamment long pour arriver à des valeurs de la concentration de CO$_2$ dans l’air conformes aux observations.

Mais il semble très, très douteux que 280 ppm, l’équivalent de la fraction venant des dégazages naturels puissent, en 3-4 ans, être échangés avec les réservoirs autres que l’atmosphère tandis que 45% des émissions humaines s’accumulent dans l'atmosphère pendant des milliers d'années.

Cette « durée d'ajustement » τ_A n’est rien d’autre qu'un facteur d'amplification pour que le cumul du flux des émissions anthropiques corresponde aux observations. C’est évident pour l'approche décrite au paragraphe 3.3 (voir Eqs. (18) et (19)), où le flux net intégré est proportionnel à $e_A(t)$ et τ_A. C’est implicite et caché dans les deux autres schémas. Pour une airborne fraction AF constante, la durée d’ajustement pour la fraction $\Delta e_A = AF \cdot e_A(t)$, qui s’accumule dans l'atmosphère, est infinie !

Dans ces conditions, toute émission supplémentaire identique aux précédentes contribue à une augmentation linéaire de la concentration, et toute modification du flux de ces émissions n’affecte que légèrement la forme de cette augmentation. Dans ce cas - avec une durée de vie infinie des molécules émises dans l'atmosphère et un flux « anthropique » émis donné par le FFE du CDIAC [4] et le LUC de Le Quéré et al. [2] (voir figure 2)- AF est le seul paramètre libre qui contrôle la valeur de la concentration et sa dérivée temporelle ou pente (voir (14)). Comparer la concentration croissante et le cumul des émissions amène une AF de 42 %. Un modèle réaliste devrait alors pouvoir reproduire les observations avec cette fraction AF restée dans l'air. Mais nos simulations précédentes (voir figure 4) ont montré que ça ne marche ni pour les valeurs ni pour la forme des courbes. Cette discordance serait plus grande encore s’il fallait tenir compte des émissions naturelles supplémentaires dues à l'augmentation globale de la température. Une bonne cohérence ne peut être trouvée qu'avec un flux d'émissions anthropiques minoré et un AF corrigé.

Dans le modèle de Berne plus complexe ce sont cinq nouvelles échelles de temps qui sont introduites. Ceci se voit sur la fonction de réponse [ou réponse impulsionnelle] avec ses cinq constantes de temps (voir (15)). Si le dernier terme de (15) ressemble à la décroissance décrite par la durée de séjour τ_R, les autres termes de (15) représentent une absorption limitée par différents réservoirs extérieurs avec des constantes de temps différentes, dont une est infinie. Une simulation avec cette fonction de réponse, équivalente à une airborne fraction dépendant du temps, reproduit assez bien la tendance générale de l'augmentation de la concentration (voir figure 6), mais tout comme avec les points 3.1 et 3.3, un accord satisfaisant avec les mesures au Mauna Loa n'est obtenu qu'en réduisant les émissions anthropiques et en négligeant tout dégazage naturel supplémentaire.

5.2. Les processus d'absorption du premier ordre
Les approches 3.1 et 3.2 emploient une définition tout à fait exceptionnelle pour les flux entre l'atmosphère et les réservoirs avec lesquels elle communique. Les flux absorbés sont considérés comme indépendants de la concentration atmosphérique réelle, mais ils sont censés s'adapter en proportion directe du flux des émissions anthropiques soit avec une Airborne Fraction fixe, soit avec une Airborne Fraction variable dans le temps.

Tant que ces émissions anthropiques ne sont pas nulles, la concentration atmosphérique augmente encore et toujours, indépendamment de sa valeur ; de plus, à émissions constantes, le système n'atteint jamais un état stable. Si une telle corrélation très bizarre entre les flux des émissions (anthropiques) et l’absorption existait réellement, elle ne pourrait pas être limitée aux seules émissions anthropiques et être désactivée pour les dégazages naturels. En raison du principe d'équivalence, elle devrait être valable pour les deux. En outre, avant 1750, le processus d'absorption ne pouvait pas être complètement différent de celui de l'ère industrielle ou changer tout soudainement avec les premières émissions anthropiques. Les conséquences dramatiques de l'application du modèle de Berne aux émissions totales sont illustrées à la figure 11. La concentration de CO2 dans l'atmosphère (ligne verte) exploserait jusqu'aux niveaux observés il y a 500 millions d'années, et ne permettrait jamais d'atteindre des conditions de régime permanent du genre de celui supposé avant 1750. En moyenne, une telle augmentation au cours des 270 dernières années équivaut à un AF = 35%.

![Figure 11. Simulation de la concentration de CO2 avec le modèle de Berne en partant des émissions totales, dégazages naturels plus émissions anthropiques (en vert). On voit en bas un calcul avec les seules émissions anthropiques (croix vertes) et les observations au Mauna Loa (diamants bleus).](image)

Un processus d’absorption ne tenant compte que du flux des émissions anthropiques et non de la concentration dans l’atmosphère semble totalement irréaliste (voir également le paragraphe 3.4). Il doit être rejeté, même si la simulation pour les seules émissions anthropiques (croix vertes) permet de retrouver les observations au Mauna Loa (diamants bleus). Un bilan qui ne fait qu'additionner les émissions nettes, et qui refuse que le flux absorbé croisse avec la concentration atmosphérique, est en contradiction avec les observations réelles et porte atteinte aux lois physiques fondamentales.

Le CO2 n'est pas un gaz noble, qui s'accumule indifféremment dans un compartiment ouvert après une émission ; il est dissous dans les océans et converti en molécules organiques par la photosynthèse. Cette
absorption obéit à un processus d'absorption du premier ordre : l’absorption croît avec la concentration dans l’atmosphère ou avec la différence des pressions partielles entre l’atmosphère et un réservoir externe 1. Ce phénomène vaut tant que la concentration C ou la différence des pressions partielles est non nulle, c'est-à-dire indéfiniment. Contrairement aux paragraphes 3.1 et 3.2, l’approche 3.3 décrit un processus d'absorption du premier ordre, mais limité aux seules modifications anthropiques de la concentration de CO₂ dans l’atmosphère.

Fondamentalement, (22) troisième cas est un "Ansatz" [une relation conjecturée mais commode pour faire un calcul] et la considération de changements par rapport à une concentration de référence serait correcte, si elle incluait également les variations du dégazage naturel au cours de la période considérée.

Mais l’erreur fondamentale du paragraphe 3.3 est l’introduction d'une nouvelle constante d'absorption indépendante, la durée d'ajustement, pour l'absorption des seules émissions anthropiques supplémentaires au lieu d'utiliser le même processus d'absorption, qui contrôle déjà plus de 95% du cycle du carbone, et qui – pour de bonnes raisons physiques – vaut aussi bien aux époques préindustrielles que depuis le début de l'ère industrielle.

5.3. L'environnement en tant que puits net

Les observations de la concentration atmosphérique et les estimations des émissions anthropiques font conclure très souvent que l'augmentation du CO₂ atmosphérique n'est pas d'origine naturelle mais anthropique. En écrivant le bilan global du carbone atmosphérique sous la forme (voir par exemple Cawley [22])

\[\frac{dC}{dt} - e_A(t) = e_N(t) - a_T(t) < 0 \] (25)

Il est évident que le flux naturel net, \(e_N - a_T \) peut très bien être évalué sans connaître \(e_N \) et \(a_T \) dont les valeurs sont très incertaines. Comme les variations de la concentration, \(\frac{dC}{dt} \), sont inférieures au flux des émissions anthropiques, la partie gauche de (25) est négative et l'absorption naturelle \(a_T \) doit être supérieure aux émissions naturelles \(e_N \). Toutefois, de cette affirmation correcte que l'environnement a agi comme un puits net tout au long de l'ère industrielle, on tire souvent des conclusions erronées en disant que la nature ne peut être la cause de l’augmentation observée du CO₂.

Supposons un instant que \(e_N \) soit le flux des dégazages naturels pour le système en équilibre, et que \(e_A \) représente un flux supplémentaire d'émissions humaines ou naturelles ou les deux. En réalité, et dans tous les modèles examinés avec la Airborne Fraction ou avec une absorption du premier ordre, le flux net ou croissance de la concentration croît plus lentement que ces émissions supplémentaires et, donc, \(a_T \) devient plus grand que \(e_N \).

Ainsi, que les deux membres de l’égalité (25) deviennent négatifs veut seulement dire qu'avec des émissions supplémentaires, qu'elles soient d'origine humaine ou naturelle, la nature agit toujours comme un puits croissant (par rapport à un équilibre précédent). Tant qu'une fraction arbitraire des émissions humaines est impliquée, l'environnement est toujours un puits net. Ceci est vrai par définition, puisque jusqu'à présent, il n'existe pas d'absorption artificielle.

Mais cela ne dit rien sur les émissions naturelles supplémentaires de l'ère industrielle, puisque l'émission et l'absorption sont en grande partie des processus indépendants ; l’absorption n’empêche pas la nature de faire croître ses dégazages.

Une logique analogue et tout aussi bizarre est utilisée par Richardson [29], qui considère les valeurs moyennes de l'accumulation atmosphérique nette = 1,7 ppm/an et des émissions humaines \(e_A(t) = 3 \) ppm/an dans un équilibre

\[\frac{dC}{dt} - \frac{dC_A}{dt} = \frac{dC_N}{dt} < 0, \] (26)

et avec la relation \(<\frac{dC_A}{dt}> = e_A(t) \) fait disparaître toutes les absorptions de la partie anthropique du stock de l’air. De cette relation, on déduit que la contribution moyenne de la nature a été d'éliminer du CO₂ de

1 Les processus de diffusion, qui agissent proportionnellement à la différence des concentrations entre les deux réservoirs, peuvent être considérés comme consistant en un flux sortant proportionnel à la concentration atmosphérique \(C_a \) et un flux entrant proportionnel à la concentration dans le réservoir \(C_r \).
l'atmosphère, pour en tier la même conclusion erronée que Cawley, à savoir que la tendance à long terme de l'augmentation du CO₂ ne peut pas être expliquée par des causes naturelles.

Cet argument est réfuté par les figures 8 et 10.

Que l'environnement ait été comme un puits net tout au long de l'ère industrielle est la conséquence d'un taux d'absorption dynamique, qui n'est contrôlé que par la concentration totale de CO₂, \(C = C_N + C_A \). Ainsi, même en cas de dégazages naturels supplémentaires et/ou de changements de température jouant sur l'absorptivité, l'absorption totale tente toujours - avec un certain retard - de compenser les émissions totales qui, bien sûr, comprennent aussi la contribution anthropique.

En d'autres termes : comme la nature ne peut pas faire la distinction entre les dégazages naturels et les émissions humaines, la nature est toujours un puits net tant que les émissions humaines ne sont pas nulles. Ainsi, à l'exception d'événements temporaires courts comme les activités volcaniques, l'environnement agira généralement comme un puits net, ce même en présence de dégazages naturels croissants.

Égaler dans (26) \(<\text{d}C_A/\text{dt}> \) aux seules émissions anthropiques est une violation de la conservation de la masse !

Ce n'est qu'en remplaçant \(<\text{d}C_A/\text{dt}> \) par \(e_A(t) - C_A/\tau_R \), que l'éq. (26) satisfait à la loi de conservation ; remplacer en plus \(<\text{d}C_N/\text{dt}> \) par \(e_N(t) - C_N/\tau_R \) convertit (26) en (23).

Nous soulignons à nouveau et encore qu'un traitement séparé des cycles du carbone naturel et du carbone humain avec leurs concentrations respectives \(C_A \) et \(C_N \) n'est possible que si et seulement si aucune contribution ne manque et si les deux bilans sont associés dans une équation des flux avec un seul et même temps de séjour (ou de résidence).

5.4. Un modèle trop simple

Souvent, des climatologues affirment que les changements de CO₂ dans l'atmosphère ne peuvent pas être compris si l'on ne prend pas en compte les changements dans les systèmes extérieurs à l'atmosphère (voir par exemple AR5 [1], Chap.6 ; Köhler et al. [8]) ; ils caractérisent la loi de conservation comme une description imparfaite à un seul compartiment - parce qu'une seule équation de bilan ne tiendrait pas compte des détails dans les autres réservoirs ou compartiments. En particulier, ils font référence à la chimie des carbonates dans l'océan, où le CO₂ est principalement converti en ions bicarbonate.

[NdT : le carbone est présent sous trois formes dont les proportions varient fortement (et en quelques instants) avec les températures de l'eau de mer : 90% d'ions bicarbonates \(\text{HCO}_3^- \), 10% d'ions carbonates \(\text{CO}_3^{2-} \) et 1% d'acide carbonique ou CO₂].

Comme il n'y a qu'environ 1% sous forme de CO₂ dissous, ils affirment que seule cette petite fraction pourrait être échangée avec l'atmosphère, et qu'en raison de cet effet la chimie des carbonates limiterait fortement l'absorption océanique de CO₂ anthropique.

[NdT : en réalité la pression partielle du CO₂ dans l’eau de mer dépend que du DIC ou carbone inorganique total, de l’alcalinité totale, de la salinité et surtout des températures ; les trois formes du carbone dissous dans l’eau de mer se convertissent en permanence entre elles]

[NdT : à une température donnée la relation \(\text{p}_{\text{CO}_2} / \text{p}_{\text{CO}_2} = 10.5 \) DIC / DIC dite relation de Revelle, montre qu’augmenter de 10% le DIC double la pression partielle \(\text{p}_{\text{CO}_2} \) ; l’invocation de cette relation (Köhler et al. [8]) sert souvent à escamoter l’effet des températures ; les descentes et les remontées de carbone entre l’océan de surface et l’océan profond ôtent tout intérêt à cette relation car le carbone de l’eau de surface est en permanence renouvelé]

Pour la compréhension des changements de CO₂ dans l'atmosphère, les changements dans les systèmes extérieurs n’ont qu'un intérêt limité. La loi régissant le CO₂ dans l'atmosphère (4) et sous une forme plus élaborée (23) est autonome. Avec l'inclusion des flux de surface \(e(t) \) et \(a(t) = C(t) / \tau_R(t) \), qui tiennent compte des influences des réservoirs adjacents sur le CO₂ atmosphérique, les détails des autres réservoirs de
carbone n'ont aucune importance. Cette caractéristique de la physique qui nous gouverne est non seulement puissante, mais c’est une chance. Pour la chimie des carbonates, notons que dans un passé lointain de la Terre, le CO₂ de l’air a été, croît-on, presque 20 fois supérieur à sa concentration actuelle (par exemple, Royer et al. [30]). La plus grande partie a été absorbée par les océans, où la masse de carbone est aujourd’hui plus de quarante fois celle du carbone de l’atmosphère. Selon le GIEC, même à l’époque moderne, les océans représentent 40 % de l’absorption globale de CO₂ (ARS5 [1], Fig.6.1)

[NdT : si l’on considère la productivité primaire nette de la végétation (nette de sa respiration) les océans représentent presque 60% de l'absorption globale]

Par rapport aux autres puits, l’absorption océanique de CO₂ n’est évidemment pas limitée (voir annexe A) ; le CO₂ anthropique qui ‘y est accumulé depuis le début de l’ère industrielle fait moins de 1 % du carbone océanique. Le dégazage océanique de CO₂ [NdT : chaque année 0,25% du stock océanique] contraste avec cette perturbation mineure de l’absorption. Grâce à la remontée permanente d'eau riche en carbone, les océans contribuent considérablement au dégazage naturel du CO₂ (Zhang [31]). Les modèles de la section 3 diffèrent de notre approche, qui prend en compte les émissions et les absorptions humaines mais aussi celles de la nature ; ces modèles partent de l’idée simple et très visiblement absurde que pendant des milliers d’années, le CO₂ a circulé comme un gaz inerte dans un système fermé, et que ce n’est qu’avec la révolution industrielle que ce cycle fermé a échappé à tout contrôle à cause des petites injections des émissions humaines.

5.5. Plusieurs constantes de temps différentes
Les différentes échelles de temps introduites avec les modèles de la section 3 représentent différents processus d’absorption des molécules de CO₂ atmosphérique par les réservoirs -ou compartiments- extérieurs à l’atmosphère. Les principes physiques font qu’il est impossible qu'un processus d'absorption puisse différencier les molécules des dégazages naturels de celles émises par l’homme. L’absorption -ou séquestration temporaire- est - à l’exception de très petites corrections pour les effets isotopiques - la même pour toutes les molécules. L’absorption ne peut pas non plus diminuer de manière inattendue de plus d'un ordre de grandeur avec le début de l’ère industrielle ou en raison d’une augmentation de quelques pourcent du flux total des dégazages et des émissions. Les observations montrent qu’aucune saturation n’a pu être constatée au cours des dernières années (annexe A). Les océans et les continents sont constitués d’un nombre infini de sources et de puits de CO₂ qui agissent en parallèle, émettant du CO₂ dans l’atmosphère et l’absorbant à nouveau. De la même manière que les différents flux émis ou dégazés s’additionnent pour faire une émission totale, les flux absorbés avec des absorptivités individuelles αi – ils varient à proportion de la concentration réelle du CO₂ - s’additionnent pour former une absorption totale qui est un effet collectif

\[a_T = a_1 + a_2 + \ldots + a_N \]

L’absorption collective conduit donc à une décroissance exponentielle d’une perturbation du CO₂ avec une vitesse unique

\[\alpha_R = 1/ \tau_R = a_1 + a_2 + \ldots + a_N \]

Cette vitesse de décroissance est plus rapide que celle de tout puits individuel et prévaut tant que la concentration de CO₂ dans la terre est non nulle (voir : Harde [6] ; Salby [11]). Le comportement décrit ci-dessus est une conséquence de la loi de conservation et s’oppose au modèle de Berne, où la décroissance se fait à des vitesses multiples.

Un traitement du CO₂ avec une décroissance exponentielle multiple obéit à :

\[C = C_{10} \exp(-a_1 t) + C_{20} \exp(-a_2 t) + \ldots + C_{N0} \exp(-a_N t) = C_1 + C_2 + \ldots + C_N \]

La dérivée par rapport au temps est :

\[\frac{dC}{dt} = -a_1 C_{10} \exp(-a_1 t) - a_2 C_{20} \exp(-a_2 t) - \ldots - a_N C_{N0} \exp(-a_N t) \]

\[= -a_1 C_1 - a_2 C_2 - \ldots - a_N C_N = -(a_1 + a_2 + \ldots + a_N) C \]
Dans le modèle de Berne les puits correspondant aux diverses vitesses de décroissance (ai) ne fonctionnent pas collectivement, mais indépendamment les uns des autres. Après quelques temps de décroissance (1/ai), les puits les plus rapides deviennent dormants. La décroissance globale continue alors uniquement avec les puits les plus lents, qui éliminent le CO₂ très progressivement. C'est pour cette raison que ce traitement laisse une perturbation du CO₂ atmosphérique durer plus de mille ans (figure 5).

Au contraire avec le comportement exigé par la loi de conservation la perturbation décroît aussi vite ou plus vite que la vitesse du puits le plus rapide (voir (28)). La décroissance observée du ¹⁴C montre que l'absorption correspondante est déterminée par un seul temps de décroissance et fonctionne avec une échelle de temps d'une décennie seulement (voir figure 5). Cette échelle de temps est la même pour le cycle naturel du carbone et pour le cycle anthropique. Il n'est donc pas réaliste de faire la différence entre un temps de séjour et différents temps d'ajustement.

Dans ce contexte, notons qu'en raison des réémissions de ¹⁴CO₂ provenant de réservoirs externes à la troposphère, le temps de séjour réel du ¹⁴CO₂ et celui de ses autres isotopologues ne peut être que plus court, inférieur à une décennie (pour plus de détails, voir la sous-section 5.7.3 et l'annexe B).

[NdT : les différentes constantes de temps de la formule de Berne découlent de la résolution par transformation de Laplace d'un système d'équations linéaires dy(t)/dt = Σ aij yj(t) + ej(t) δi1 avec δi1 =1 et δi1 =0 pour i>1 ; les flux naturels entre les compartiments (océans, végétation et sols, atmosphère) sont ainsi escamotés et les réservoirs supposés a priori en équilibre entre eux ; les émissions anthropiques eA(t) sont alors la seule et unique perturbation depuis le préindustriel]

5.6. Dépendance à l'égard de la température

Les relations (9) ou (10) montrent qu'avec l'augmentation de la concentration atmosphérique au cours de l'ère industrielle de 280 ppm à 400 ppm, ou bien le temps de séjour doit, avec la température, avoir augmenté de 3 ans à environ 4 ans, ou bien τR est considéré comme constant et les émissions totales [dé gazages naturels plus émissions anthropiques] sont passées de 93 ppm/an à environ 130 ppm/an, ce qui a fait croître la concentration.

Ces deux cas limites sont en accord avec une anomalie de température d'environ 1,2 °C sur cette période (voir GISS [9]), quand nous supposons les coefficients de température maximum βτ = 0,74 an/°C ou βe = 24 ppm/an/°C.

Cependant, en général, tant les dégazages naturels que les absorptions dépendent de la température et, ensemble, pilotent la dérivée par rapport au temps de la concentration de CO₂ dans l'atmosphère, comme le montre la figure 8 : avec un seul temps de séjour des molécules de CO₂ dans l'air, quelle que soit leur origine, ce ne sont pas les activités humaines, mais presque uniquement les dégazages naturels qui doivent être identifiés comme étant les principaux facteurs de l'augmentation observée du CO₂ dans l'atmosphère. Les différents mécanismes [d’absorption et de dégazage] dépendent de la température et d'autres caractéristiques de l'environnement : ils ne peuvent pas avoir été constants pendant toute l'ère préindustrielle ! L'hypothèse fondamentale selon laquelle le dégazage et l'absorption naturels sont restés constants pendant la période préindustrielle est fausse. Et c'est encore moins vrai pour l'ère industrielle, une période que le GIEC caractérise par ce qu'il affirme être l'augmentation de température la plus rapide de l'Holocène ou même depuis le dernier interglaciaire [vers 130 000 ans BP].

Par exemple la pression partielle du CO₂ dans l'eau de mer (sea water sw) change avec la température comme

\[p_{CO2}^{sw}(T) = p_{CO2}^{sw}(T_0) \ exp \left[0,0433 \ (T-T_0) \right] \] (voir : Takahashi et al. [32]).

Une augmentation de 1°C provoque un changement de la pression d'environ 18 µatm, ce qui augmente le flux sortant de l'océan ou réduit le flux entrant. Des observations au-dessus de l'océan Atlantique Nord (voir Benson et al. [33]) montrent qu’une différence de pression ∆pCO₂ entre l'atmosphère et l'océan de 1 µatm contribue à un changement de flux de δfœ ≈ 0,075 mol/m²/an = 3,3 g/m²/an. Une surface océanique [sans banquise] de 320 millions de km² et ∆pCO₂ = 18 µatm feraient, pour +1°C [par rapport au préindustriel], un dégazage accru ou une moindre absorption de Δf ≈ 19 Pg/an soit 2,4 ppm/an. On doit s'attendre à une
variation encore plus forte pour la végétation terrestre (Lee [34] ; Salby [11]). Ces facteurs amènent une croissance du CO₂ dans l'atmosphère bien plus importante que toutes les activités humaines, mais leurs contributions sont complètement ignorées dans les schémas officiels de la comptabilité du carbone. La fonte du permafrost et les émissions des volcans sur terre et sous l'eau, et les éventuelles émissions lors de tremblements de terre, ne sont pas non plus prises en compte. Enfin, des estimations de la respiration obscure (nocturne) des plantes suggèrent qu’en cas de réchauffement climatique, la respiration de la plante [entière] pourrait être environ 30% plus grande que les estimations actuelles (Huntingford et al. [35]). Cette longue liste de phénomènes naturels est, dans les modèles préférés du GIEC, complètement ignorée et écartée.

Tout aussi incohérente est l’hypothèse que l'absorption supplémentaire de CO₂ anthropique, qui depuis le début de l'ère industrielle fait moins de 1 % du total du carbone océanique, aurait, d'une manière ou d'une autre, dépassé la capacité de stockage des océans et d'autres réservoirs de surface et souterrains, capacité qui est de plusieurs ordres de grandeur supérieure.

Une absorption réduite est plutôt la conséquence du réchauffement climatique que de la saturation. En raison de la loi de Henry et de sa dépendance à la température, la pression partielle dans l'eau de mer augmente, et la solubilité du CO₂ dans l'eau diminue de façon exponentielle avec la température et, par conséquent, réduit l'absorption de CO₂.

[NdT : la solubilité dans l'eau (loi de Henry) en équilibre avec l’air découle de la pression partielle du soluté, ici le CO₂ dans l’eau ; comme il n’y a pas d’équilibre entre l’air l’océan mais des zones de dégazage et des zones d’absorption où le carbone océanique est constamment renouvelé c’est la pression partielle pCO₂sw qui compte].

Souvent, cet effet est mal interprété comme une saturation causée par une capacité tampon limitée et dépendant de la concentration de l’air en CO₂. Mais ici nous considérons une absorption qui change avec la température, comme cela est bien connu pour toutes les réactions chimiques, dont l'équilibre varie avec la température. On ne sait pas bien comment la pompe biologique (voir annexe A) et la photosynthèse sur terre sont pilotées par la température, mais il est évident qu'elles varient aussi de manière exponentielle avec la température (Lee (34)). La figure 12 présente un diagramme de dispersion qui montre l'étroite corrélation entre la concentration de CO₂ dans l'atmosphère et l'anomalie de la température globale moyenne de l'océan et des terres (GISS [9]). Cette dernière est contrôlée à plus de 60% par l'influence solaire et à moins de 40% par le CO₂ en tant que rétroaction des gaz à effet de serre (Harde [36, 37]). [NdT : ces estimations ignorent l’existence de la vapeur d’eau dans l’air ou la supposent a priori constante !]

Figure 12. Concentration en CO₂ au Mauna Loa (points bleus) et courbe de tendance (ligne noire) \(y = 326 \exp(0,2 x) \) en fonction de l'anomalie \(x \) de la température moyenne globale terres et océans. [soit 65,2 ppm/°C]
5.7. Arguments du GIEC en faveur d'une origine humaine de l'augmentation du CO2
La discussion précédente a clairement montré qu'une description cohérente du cycle du carbone, qui soit en plein accord avec toutes les observations et les relations physiques, ne peut reposer que sur un même traitement pour toutes les molécules de CO2 qu'elles viennent des dégazages naturels ou des combustibles fossiles.
Cela signifie : le cycle du carbone anthropique ne peut être séparé du cycle du carbone naturel ; il n'existe qu'un seul temps de séjour des molécules de CO2 dans l'atmosphère ; et l'absorption de toutes ces molécules obéit à un principe ou équation du premier ordre.
Mais nous devons encore examiner dans quelle mesure cette description contredit les arguments clés (lines of evidence ou éléments de preuve) présentés par le GIEC pour affirmer que la croissance du CO2 est causée par l'homme, ou dans quelle mesure ces arguments clés viennent aussi conforter notre approche alternative.
Dans le AR5 [1], sous-chapitre 6.3.2.3, on lit : "Avec un degré de confiance très élevé, l'augmentation des émissions de CO2 dues à la combustion de combustibles fossiles et celles résultant du changement d'affectation des sols sont la cause principale de l'augmentation observée de la concentration de CO2 dans l'atmosphère". Le GIEC énumère ensuite cinq arguments à l'appui de cette conclusion (les citations suivantes du GIEC ne sont pas traitées comme des références bibliographiques supplémentaires).

5.7.1. Diminution de l'O2 atmosphérique
"La diminution observée de la teneur en O2 de l'atmosphère au cours des deux dernières décennies et la teneur en O2 plus faible dans l'hémisphère nord par rapport à l'hémisphère sud sont compatibles avec la combustion de combustibles fossiles (voir la figure 6.3 et la section 6.1.3.2 ; Keeling et al., 1996 ; Manning et Keeling, 2006)".
Cet argument ne peut justifier une augmentation du CO2 principalement due à l'homme, car cet "élément de preuve" est tout aussi valable pour notre approche, qui inclut évidemment la même quantité d'émissions anthropiques. La combustion de combustibles fossiles absorbe de l'oxygène de l'atmosphère dans un rapport stoechiométrique étroitement défini qui dépend de la teneur en carbone du combustible. Cette teneur est la même dans notre bilan et dans les modèles du GIEC, et par conséquent, la vitesse de la diminution de l'oxygène et celle de la croissance du CO2 dû à la combustion est la même, indépendamment de toute émission supplémentaire d'origine naturelle.
La différence fondamentale par rapport à l'hypothèse du GIEC est que les émissions anthropiques ne s'accumulent pas dans l'atmosphère pendant de longues périodes ou perpétuellement. Elles ont le même temps de séjour que le CO2 des dégazages naturels, en moyenne 4 ans ou moins, et ne contribuent donc qu'à hauteur de 15 %, voire moins, à l'augmentation observée depuis 1750.
Dans ce contexte, il devrait également être clair que CO2 et O2 se comportent de manière tout juste anticyclique dans la photosynthèse et dans le cycle de la respiration de la végétation. De plus, les réactions biochimiques dans l'atmosphère sont complètement différentes pour CO2 et O2 : le CO2 ne réagit pas dans l'atmosphère, tandis que O2 oxyde d'autres composés. Toutes ces réactions sont directement contrôlées par la température. Comparée à la teneur en oxygène de l'atmosphère d'environ 21%, une diminution de 80 ppm sur 20 ans est relativement faible : elle ne dépasse pas 0,4‰ (0,0004). Tant que ce cycle de l'oxygène n'est pas mieux connu, une diminution observée de l'oxygène atmosphérique ne peut prouver que l'augmentation du CO2 est causée principalement par l'homme. Au mieux, elle peut confirmer les données du CDIAC, qui sont les mêmes dans notre approche et dans les modèles du GIEC.

5.7.2. Un rapport isotopique 13C/12C moindre dans les combustibles fossiles
"Le CO2 provenant des combustibles fossiles et de la biosphère terrestre a un rapport entre isotopes stables 13C/12C inférieur à celui du CO2 dans l'atmosphère. Cela fait baisser le rapport 13C/12C du CO2 atmosphérique et, en moyenne annuelle, on a des valeurs 13C/12C légèrement inférieures dans l'hémisphère nord (figure 6.3). Ces signaux sont mesurés dans l'atmosphère".
Ce n'est pas non plus un argument en faveur d'une augmentation du CO₂ principalement due à l'homme, car avec notre approche, nous nous attendons également à une telle diminution de la concentration en 13CO₂. Le rapport 13C/12C dans l'atmosphère ou sa valeur normalisée δ^{13}C$_{atm}$ est mesuré au Mauna Loa et à la station du pôle sud (voir AR5 [1], figure 6.3). Au Mauna Loa, par exemple, on a une diminution moyenne de 0,7‰ de -7,6‰ en 1980 à -8,3‰ en 2010. Au cours de ces 30 années, les émissions anthropiques ont augmenté de 1,8 ppm/an, passant de 2,5 ppm/an en 1980 à 4,3 ppm/an en 2010 (CDIAC [4]). Rapporté au total des émissions et des dégazages naturels [total pris à 100 ppm/an respiration comprise] ça fait une augmentation de 1,8 %. En raison du principe d'équivalence, les émissions de combustibles fossiles ne peuvent pas s'accumuler dans l'atmosphère mais sont absorbées avec la même probabilité que les molécules de CO₂ des dégazages naturels. Ainsi, au premier ordre, le rapport 13C/12C dans l'atmosphère ne peut être dilué que proportionnellement à la moindre concentration en 13C des combustibles fossiles et au rapport du flux d'origine humaine au flux total.

Des corrections plus petites viendront du fractionnement isotopique pour les molécules plus légères et d'une probabilité de dégazage légèrement plus élevée pour les molécules qui viennent d'être absorbées (ré-emission, voir point suivant). Comme les émissions de combustibles fossiles ont moins de 13C que l'air, δ^{13}C$_{fuel-atm} = -18$‰ par rapport à l'atmosphère, ou (δ^{13}C$_{fuel-VPDB} = -25$‰ par rapport à la référence standard du carbonate PDB (Coplen [38]), l'augmentation des émissions humaines sur ces 30 ans ne peut avoir contribué qu'à une diminution de $\Delta = (\delta^{13}$C)$_{fuel-atm} \times 1,8 \% \times 1,8 \% \times -0,32$‰ ce qui aurait fait ($\delta^{13}$C)$_{atm} = -7,92$‰ en 2010. La différence entre -7,92‰ et -8,3‰, est à expliquer.

[NdT pour un temps de séjour de 5 ans on aurait eu

Année	Concentration de CO₂ anthropiques	Concentration de CO₂ naturels
1980	11.6 ppm	337 ppm
2010	18.6 ppm	388 ppm

Le dégazage naturel ramène à l'atmosphère du CO₂ de rapport isotopique celui de l'air ambiant 50 ans plus tôt ; son δ^{13}C reflète aussi les fluctuations dues aux températures intertropicales du dégazage océanique dont le CO₂ est de δ^{13}C 1,5‰ plus négatif que celui de l'air ambiant et est bien plus négatif que le δ^{13}C des ions carbonate et bicarbonate]

Une explication possible de ce déclin plus rapide du (δ^{13}C)$_{atm} \times -8,3$‰ peut être - même avec les océans comme source et un rapport 13C/12C de l'eau de mer plus grand que dans l'air (en particulier dans la couche de surface) - que les molécules de 12CO₂ plus légères sont plus facilement dégazées par la surface de l'océan que le 13CO₂, d'ou dans l'air une moindre teneur [relativement au 12C] en 13C et une teneur en 13C plus élevée dans la couche supérieure de l'eau (voir aussi : Siegenthaler & Münich [39]). Nous savons également que les isotopologues de l'eau s'évaporent à des vitesses légèrement différentes. Un tel comportement est en accord avec l'observation selon laquelle avec des températures plus élevées, la concentration totale de CO₂ dans l'atmosphère augmente, mais la concentration relative de 13CO₂ diminue. Ceci peut être observé, par exemple, lors des événements El Niño (voir : M. L. Salby [40], figure 1.14 ; Etheridge et al. [41] ; Friedli et al. [42]).

Rappelons encore que la courbe du Mauna Loa présente une variation saisonnière avec une augmentation de la concentration en CO₂ d'octobre à mai et une diminution de juin à septembre. L'augmentation est due à la respiration de la végétation et à la décomposition de matières organiques, principalement dans l'hémisphère nord, aux effets de la température dans l'hémisphère sud et à des effets locaux de la température. Le (δ^{13}C)$_{atm}$ est anticyclique par rapport à la concentration de l'air en CO₂ (AR5 [1], figure 6.3), est minimum quand le CO₂ est maximum et présente des variations saisonnières de 0,3‰ à 0,4‰, du même ordre de grandeur que l'effet des combustibles fossiles. Une augmentation du 13C dans les couches supérieures des océans résulte également d'une efficacité accrue de la photosynthèse qui préfère le 12CO₂ plus léger. Le plancton accumule cette forme et s'enfonce dans les couches inférieures, où il se décompose et, après un temps plus long, est émis en plus grande concentration dans les fortes remontées d'eau, notamment dans l’est du Pacifique tropical. On sait aussi que les concentrations de 13C ne sont pas réparties de manière uniforme à la surface de la Terre. Ainsi, on peut s'attendre à ce que les activités volcaniques et tectoniques libèrent du carbone avec des δ^{13}C différents.
Ainsi, il ne fait aucun doute que les émissions de combustibles fossiles dilueront légèrement la concentration de $^{13}\text{CO}_2$ dans l'air. Mais en supposant des conditions régulières pour le processus d'absorption (principe d'équivalence), les émissions fossiles contribuent pour moins de 50% à la diminution observée du $\delta^{13}\text{C}$. La différence doit être expliquée par des processus biogéochimiques supplémentaires. En particulier, les cycles saisonniers et les événements comme les El Niños sont des indications claires d'une modulation forte de la valeur du $\left(\delta^{13}\text{C}\right)_{\text{atm}}$ par la température. Par conséquent, la baisse observée du rapport $^{13}\text{C}/^{12}\text{C}$ au cours des dernières années n'est pas, et de loin, la confirmation d'une théorie du réchauffement climatique anthropique (AGW).

L'affirmation très répandue mais fausse selon laquelle "environ la moitié des émissions sont restées dans l'atmosphère depuis 1750" et "l'élimination de tout le CO2 émis par l'homme dans l'atmosphère par des processus naturels prendra quelques centaines de milliers d'années (confiance élevée)" (voir AR5 [1], Chap. 6-Résumé et Encadré 6.1) peut être très simplement réfutée par les mesures isotopiques faites au Mauna Loa. Si l'augmentation de 113 ppm du CO2 depuis 1750 (28,8 % de 393 ppm (moyenne prise sur 2007 à 2016)) ne venait que des effets humains accumulés dans l'atmosphère, la valeur réelle ($\left(\delta^{13}\text{C}\right)_{\text{atm}}$ aurait dû diminuer de $\Delta = \left(\delta^{13}\text{C}\right)_{\text{fuel-atm}} \times 28,8 \% = -18,00 \times 28,8 \% = -5,2\% \approx -7\% -5,2\% = -12,2\%$, ce qui n'est pas du tout le cas ! Le $\left(\delta^{13}\text{C}\right)_{\text{atm}}$ en 1750 est là supposé avoir été -7\%.

5.7.3. Les combustibles fossiles sont dépourvus de radiocarbone

"Comme le CO_2 des combustibles fossiles est dépourvu de carbone radioactif (^{14}C), les reconstitutions du rapport isotopique $^{14}\text{C}/^{12}\text{C}$ du CO2 atmosphérique par les cernes de croissance des arbres montrent une tendance à la baisse, comme prévu pour l'ajout de CO2 fossile (Stuiver et Quary, 1981 ; Levin et al., 2010). Pourtant, les essais d'armes nucléaires ont dans les années 1950 et 1960 compensé cette tendance à la baisse en ajoutant du ^{14}C dans l'atmosphère. Comme cette impulsion de ^{14}C induite par les armes nucléaires dans l'atmosphère s'estompe, on observe que le rapport isotopique $^{14}\text{C}/^{12}\text{C}$ du CO2 atmosphérique reprend sa tendance à la baisse (Naegler et Levin, 2009 ; Graven et al., 2012)".

Pour le ^{14}C, nous pouvons faire presque les mêmes commentaires que pour le ^{13}C. Le CO2 fossile dépourvu de ^{14}C réduit le rapport $^{14}\text{C}/^{12}\text{C}$ de l'atmosphère : ça vaut pour notre approche comme pour les schémas du GIEC. Mais, comme aucune accumulation spécifique de molécules anthropiques n'est possible (principe d'équivalence), cette diminution ne peut être que proportionnelle à la fraction combustibles fossiles sur émissions totales. Avant 1960, cette proportion n'était pas supérieure à 1 % et elle est actuellement d'environ 4,3 %. Le ^{14}C se forme continuellement dans la haute atmosphère à partir du ^{14}N par bombardement de neutrons cosmiques, puis s'oxyde rapidement en $^{14}\text{CO}_2$. Sous cette forme, il se trouve dans l'atmosphère et pénètre dans les plantes et les animaux par la photosynthèse et la chaîne alimentaire. Le rapport isotopique $^{14}\text{C}/^{12}\text{C}$ dans l'air est d'environ 1,2-10^{-12}, et peut être déduit soit de la radioactivité du ^{14}C, qui avec une demi-vie moyenne de 5730 ans se désintègre en ^{14}N en émettant simultanément une particule bêta, soit d'une mesure directe de la quantité de ^{14}C dans un échantillon avec un spectromètre de masse à accélérateur. Les combustibles fossiles plus vieux que plusieurs demi-vies du radiocarbone sont dépourvus de ^{14}C. Cette influence sur les mesures du radiocarbone est connue depuis les recherches de H. Suess [43] qui a observé une diminution plus importante du ^{14}C (d'environ 3,5%) sur les arbres des zones industrielles. Cet effet dit " de Suess " ou " industriel " est important pour les datations par la méthode du radiocarbone.

Mais pour des études climatiques, il n'apporte aucune information nouvelle, confirme seulement les calculs basés sur le rapport des flux « fossiles » au total des émissions (voir ci-dessus), et montre clairement qu'une accumulation supposée de CO2 anthropique dans l'atmosphère contredit les observations.

Plus important pour les études climatiques, après le pic d'injection de ^{14}C par les essais de bombes thermonucléaires vers 1963, le ^{14}C peut servir de traceur sensible dans la biosphère et l'atmosphère pour étudier les processus de mélange et d'échange de carbone. Les essais de bombes H ont produit une énorme quantité de neutrons thermiques et presque doublé l'activité du ^{14}C dans l'atmosphère ; depuis la fin des essais, la décroissance de l'activité du radiocarbone en excès peut être étudiée : elle est presque totalement indépendante de la durée de vie de la radioactivité, et découle uniquement ou presque de l'absorption par les
réservoirs autres que l'atmosphère. Ce déclin a déjà été vu à la figure 5 sur l’indice Δ^{14}CO2 calculé par comparaison de l’activité à celle de l’acide oxalique corrigée de sa décroissance, sur une combinaison des mesures à Vermunt et à Schauinsland (points magenta et triangles verts ; données de Levin et al. [17]). La décroissance du Δ^{14}CO2 est bien représentée par une seule exponentielle avec une constante de temps d'environ 15 ans (tiretés bleus). Pour des observations similaires, voir également Hua et al (18) et Turnbull et al (19).

Ainsi, la décroissance satisfaite à la relation

\[\frac{dC_{14}}{dt} = -\frac{C_{14}}{\tau_{14}} \]

où \(C_{14} \) représente la concentration excédentaire de radiocarbone au-dessus d'une concentration de fond dans l'atmosphère. L'absorption est proportionnelle à la concentration instantanée avec un temps d'absorption apparent \(\tau_{14} \) légèrement supérieur à une décennie.

Le CO2 atmosphérique ne peut changer que par un déséquilibre des flux de surface \(e_T \) et \(a_T \) ; ça vaut de la même manière pour tous les isotopologues du CO2. Le temps d'élimination (ou temps de séjour) du CO2 dans l'atmosphère en découle. Si le CO2 est perturbé par une impulsion, par exemple par un pic transitório d'émission ou de dégazage, la diminution qui suit découle de l'élimination du CO2 de la perturbation \(C' \), élimination proportionnelle à sa concentration instantanée.

Cette élimination déterminée par le déséquilibre entre \(e_T \) et \(a_T \) est régie par la forme perturbée de l'équation d'équilibre :

\[\frac{dC'}{dt} = -\frac{C'}{\tau_R} \]

qui a la même forme que la décroissance observée du \(^{14}C \) après suppression de la source thermonucléaire à l'origine de la perturbation.

Mais il y a encore une différence importante entre ces équations. Eq.(32) est la forme perturbée de (23)

\[\frac{dC}{dt} = \epsilon_N(T(t)) + \epsilon_A(t) - C(t) / \tau_R(T(t)) \]

avec un temps caractéristique \(\tau_R \) qui est le temps de séjour ; 1/\(\tau_R \) est la vitesse d'élimination du CO2 de l'atmosphère, résultat de l'équilibre entre tous les processus d'absorption et d'émission.

En revanche, (31) décrit un processus de désintégration, qui tient implicitement compte d'un certain pompage de radiocarbone vers l'atmosphère (voir annexe B. (37)). Ainsi, de tout le \(^{14}C \) qui est retiré de l'atmosphère avec la constante de temps \(\tau_R \) - de la même manière pour tous les isotopes -, seule une petite fraction est complétement séquestrée sous la surface de la Terre après un premier processus d'absorption ; une fraction significative retourne à l'atmosphère par le dégazage (par exemple, par la décomposition de la végétation qui a absorbé ce \(^{14}C \)), et, en moyenne, il faudra plusieurs cycles d'absorption-dégazage pour éliminer complètement ce \(^{14}C \) de l'atmosphère. Cela modifie simplement l'absorption effective du radiocarbone, mais sa décroissance reste exponentielle (voir figure 5).

A la différence d'un effet de dilution par les émissions de combustibles fossiles, effet mineur (voir annexe B), ces cycles d'absorption-dégazage ralentissent la décroissance par rapport à ce qu'elle serait en présence de la seule absorption pure.

Le temps d'absorption apparent – celui de la courbe de décroissance du \(^{14}C \) – est donc plus long que le temps d'absorption réel. Dans ce contexte, soulignons qu'à part quelques influences mineures dues au fractionnement isotopique toute les isotopologues du CO2 sont impliqués dans les mêmes cycles de d'absorption-dégazage multiples. Mais dans (23) ou (32), cela est déjà pris en compte dans le bilan total via les flux dégazés, pour lesquels l’origine des molécules et le nombre de recyclages est sans importance. En revanche, les isotopologues du \(^{14}CO2 \) sont identifiés par leur radioactivité : dans le cas pire sans aucun processus de dilution ou d'échange avec un réservoir externe, \(\tau_{14} \) approcherait de la durée de vie radioactive, tandis qu’en cas de forte diffusion, dilution ou séquestration du \(^{14}C \) dans des réservoirs externes , \(\tau_{14} \) convergerait vers \(\tau_R \). La décroissance observée du \(^{14}C \) vue à la figure 5, est donc une borne supérieure de \(\tau_R \). Ces temps caractéristiques \(\tau_R \) et \(\tau_{14} \) sont tous deux très considérablement plus courts que le temps d'ajustement demandé par le GIEC.

La décroissance exponentielle du \(^{14}C \) avec un seul temps caractéristique prouve que les modèles à plusieurs temps de relaxation sont erronés. En même temps, ça démontre clairement l'existence d'un processus d'absorption du premier ordre tel que vu à la section 4. 2 5.
5.7.4. Les émissions de combustibles fossiles sont plus grandes dans l'hémisphère nord
"La plupart des émissions de CO₂ provenant des combustibles fossiles ont lieu dans les pays industrialisés au nord de l'équateur. En conséquence, en moyenne annuelle, les stations de mesure du CO₂ atmosphérique dans l'hémisphère nord enregistrent des concentrations de CO₂ plus élevées que les stations de l'hémisphère sud comme en témoignent les observations du Mauna Loa (Hawaii) et du pôle Sud (voir figure 6.3). La différence des concentrations moyennes annuelles entre les deux stations a augmenté à proportion de la différence croissant entre les hémisphères des émissions de combustion de combustibles fossiles (Figure 6.13 ; Keeling et al., 1989 ; Tans et al., 1989 ; Fan et al., 1999)".

Les émissions terrestres les plus fortes proviennent des forêts tropicales, et non des zones industrielles. Les émissions océaniques les plus fortes sont visibles sur la carte de Takahashi et al. Elles se situent entre 10°N et 10°S dans le Pacifique tropical oriental. Néanmoins, il ne fait aucun doute que les émissions industrielles laissent leurs empreintes dans l'atmosphère et la biosphère (effet Suess). L'influence et l'ampleur de ces émissions ont déjà été discutées ci-dessus, et leur impact différent sur les deux hémisphères peut être estimé à partir de la figure 6.3c de AR5 [1] qui montre une diminution légèrement plus rapide du δ¹³C atm dans l'hémisphère nord parce que les émissions industrielles sont principalement localisées dans cet hémisphère. La figure 6.13 de AR5 [1] illustre encore plus clairement la différence entre les flux émis dans les hémisphères nord et sud, 8 PgC/an [3,8 ppm], qui peut être observée comme une différence de concentration entre les hémisphères de 3,8 ppm.

Mais cela ne contredit absolument pas notre résultat de la section 4, à savoir que les 4,7 ppm/an de FFE (Fossil Fuel Emissions) et de LUC (Land Use Changes) (moyenne sur 10 ans) contribuent 17 ppm ou 4,3 % des 393 ppm (moyenne sur 2007-2016). Leur impact est du même ordre de grandeur que les variations saisonnières observées au Mauna Loa [-7 ppm de mai à octobre et +9 ppm d’octobre à mai] avant lissage et calculs de type moyenne mobile.

[NdT Les différences entre le Mauna Loa et le Pôle Sud oscillent depuis 10 ans entre -0,8 ppm mi-septembre et +7,8 ppm mi-avril avec une moyenne annuelle vers 3,7 ppm]

5.7.5. Les émissions causées par l'homme ont augmenté de manière exponentielle
"Le flux des émissions de CO₂ provenant de la combustion de combustibles fossiles et du changement d'utilisation des terres a été presque exponentiellement croissant avec le temps et l'augmentation du CO₂ dans l'atmosphère a aussi été presque exponentielle, et représente environ la moitié des émissions, ce qui est en accord avec un grand nombre de preuves sur les changements des stocks de carbone dans chacun des réservoirs du cycle du carbone présenté dans ce chapitre".

L'importance et l'influence des émissions fossiles FFE et des changement d'utilisation des sols LUC sur la concentration de CO₂ dans l'atmosphère ont été largement discutées dans les sections précédentes. Ce n'est qu'en violant des principes physiques fondamentaux comme le principe d'équivalence ou en niant des causalités fondamentales comme un processus d'absorption du premier ordre avec un seul temps d'absorption que l'augmentation du CO₂ peut être reproduite avec les seules émissions anthropiques. En revanche, nous avons pu démontrer que, suite à l'augmentation de la température au cours de l'ère industrielle et en conformité avec toutes les lois physiques, la presque totalité de l'augmentation observée du CO₂ doit être expliquée par des changements des dégazages et absorption naturels. Les simulations reproduisent presque tous les détails de l'augmentation observée du CO₂ atmosphérique (voir les figures 8 et 10). Les observations des dégazages naturels montrent qu’ils augmentent de manière exponentielle avec la température (Takahashi et al. [32] ; Lee [34]).

Ainsi, aucune des « lines of evidence » précédentes [5.7.1 à 5.7.5] ne peut justifier l'affirmation ci-dessus selon laquelle "la combustion de combustibles fossiles et le changement d'utilisation des terres sont la cause dominante de l'augmentation observée de la concentration de CO₂ dans l'atmosphère".

En fait, ces lines of evidence s'appliquent de la même manière à notre concept, et ne peuvent pas démentir notre approche. Les études isotopiques confirment plutôt notre Ansatz d'un processus d'absorption du
6. Conclusion

L'augmentation du CO₂ au cours des dernières années s'explique bien par une seule équation d'équilibre, la loi de conservation (23), qui considère le cycle complet du CO₂ atmosphérique, avec des dégazages naturels dépendants de la température et donc du temps, des activités humaines et un processus d'absorption dépendant de la température, qui est proportionnel à la concentration effective. Cette absorption est caractérisée par une seule échelle de temps, le temps de séjour d'environ 3 ans [NdT si on néglige la respiration de la végétation, de 5 ans sinon], qui, au cours de l'ére industrielle, a légèrement augmenté avec la température. Seul ce concept est en totale conformité avec toutes les observations et les causalités naturelles. Il confirme les recherches précédentes (Salby [7, 10] ; Harde [6]) et met en évidence les principales erreurs de plusieurs modèles du cycle du carbone utilisés pour décrire le CO₂ atmosphérique, modèles très cités mais qui sont essentiellement des fabrications ad hoc ; ces erreurs amènent la conclusion fatale que l'augmentation du CO₂ atmosphérique au cours des 270 dernières années est principalement d'origine anthropique.

Avec une évaluation prudente, la figure 8 montre que la contribution anthropique à l'augmentation du CO₂ observée au cours de l'ére industrielle est nettement inférieure à celle des dégazages naturels. À l'équilibre, cette contribution est donnée par le rapport des émissions humaines aux dégazages naturels. En moyenne, sur la période 2007-2016, les émissions anthropiques (FFE et LUC ensemble) n'ont contribué que 4,3 % à la concentration totale de 393 ppm et leur contribution à l'augmentation atmosphérique de 113 ppm depuis 1750 ne dépasse pas 17 ppm, soit 15 %. Avec d'autres évaluations de l'absorption, la contribution des émissions anthropiques est plus faible encore. Ainsi, en vérité ce ne sont pas les émissions anthropiques, mais principalement les processus naturels, en particulier la température, qui doivent être considérés comme les principales causes de l'augmentation du CO₂ observée au cours des 270 dernières années comme aussi sur les périodes paléoclimatiques.

Remerciements

L'auteur remercie le professeur Murry Salby, anciennement de l'université Macquarie de Sydney, pour de nombreuses discussions stimulantes lors de la préparation du document, et Jordi López Fernández, de l'Institut d'évaluation environnementale et d'études sur l'eau de Barcelone, pour son soutien lors de la recherche de données de température. Cette recherche n'a bénéficié d'aucune subvention spécifique de la part d'organismes de financement des secteurs public, commercial ou à but non lucratif.

Annexes

Annexe A

L'efficacité de l'absorption par les réservoirs externes à l'atmosphère aurait diminué, en raison de changements de la Airborne Fraction AF définie arbitrairement (par exemple, Le Quéré et al. [12] ; Canadell et al. [44]). Ces affirmations sont douteuses car elles reposent sur la présomption que les changements de la teneur de l’air en CO₂ sont exclusivement d'origine anthropique. Ces affirmations ne sont pas non plus étayées par des données récentes sur l’absorption. De plus, les incertitudes sur l'émission et l'absorption sont plus grandes que les effets de toute modification de l’AF.

Ballantyne et al. (46) sont arrivés à une conclusion similaire. Ils ont utilisé les mesures du CO₂ atmosphérique mondial et les inventaires des émissions de CO₂ pour évaluer les changements des sources et des puits de CO₂ au cours des 50 dernières années. Leur analyse du bilan de masse indique que l'absorption nette de CO₂ a augmenté de manière significative, d'environ 0,05 GtC/an² et, qu'entre 1960 et 2010,
l'absorption globale a en fait doublé, passant de 2.4 Gt-C/an à 5 Gt-C/an (soit de 1,1 ppm/an à 2,4 ppm/an). Il en découle que, sans une connaissance quantitative de l'évolution des dégazages naturels, les interprétations basées sur l'AF ne sont que des spéculations infondées. L'absorption et le dégazage du CO₂ atmosphérique par les océans sont simulés à l'aide de modèles océaniques complexes. La quantité de CO₂ entrant ou sortant de la surface des océans est calculée à partir de la différence entre les pressions partielles du CO₂ dans l'air et dans l'océan de surface modifiée par le facteur Revelle.

[NdT : cette relation de Revelle \(\frac{dpCO_2}{pCO_2} = \frac{dDIC}{DIC} \) ne vaut qu'à une température et sert à escamoter l'effet de la température sur le dégazage ; pour un même DIC (quantité totale de carbone inorganique dissous exprimée par exemple en moles de carbone par kilogramme d'eau de mer), la pression partielle \(pCO_2 \) varie d'un facteur 4 entre -1°C et 31°C]

Cependant, la plupart de ces modèles partent d'hypothèses qui ne sont pas en accord avec les observations (voir, par exemple, Steele [47]). Ils supposent que la couche de surface absorbe le CO₂ et est en équilibre avec la concentration atmosphérique. Sur cette base, ils calculent la quantité de carbone inorganique dissous (DIC) qui aurait été ajoutée à l'océan en fonction de l'augmentation du CO₂ atmosphérique depuis l'époque préindustrielle.

En réalité, la couche de surface n'est pas en équilibre avec l'atmosphère. Une différence de concentration résulte de la conversion du CO₂ en carbone organique par photosynthèse. Le carbone organique produit s'enfonce alors dans les profondeurs de l'océan, où il est séquestré. Ce transport descendant vers les profondeurs de l'océan est connu sous le nom de pompe biologique. Dans le bassin nord-est de l'Atlantique, par exemple, Benson et al. [33] ont fait état de différences de pression saisonnières entre l'océan et l'atmosphère : \(\Delta pCO_2 = -70 \mu \text{atm} \) et un flux air-mer de CO₂ de 220 g/m²/an. Ce n'est que dans les régions où la forte remontée de DIC (Dissolved Inorganic Carbon) des profondeurs de l'océan dépasse la séquestration du carbone par photosynthèse que le CO₂ peut être dégazé dans l'atmosphère : ça se passe principalement dans les océans tropicaux (Takahashi et al. [32] ; Zhang et al. [31]). Plusieurs modèles estiment que, sans la pompe biologique, le CO₂ atmosphérique serait supérieur de 200 à 300 ppm aux niveaux actuels (voir aussi Evans [48]). Avec l'augmentation de la production primaire, l'exportation de carbone en profondeur augmente également.

[NDT : M. Levy et al. *Physical pathways for carbon transfers between the surface mixed layer and the ocean interior*, Global Biogeochem. Cycles, 27, 1001–1012, doi:10.1002/gbc.20092, 2013, trouve 265 Gt-C/an descendant vers les profondeurs contre 10 Gt-C/an pour le carbone organique].

Arrigo et al (49) ont rapporté que, depuis 1998, la production primaire annuelle dans l'Arctique a augmenté de 30%. Steinberg et al. [50] ont observé une augmentation de 61% du méso-plancton entre 1994 et 2006 dans la mer des Sargasses. Les coccolithophores de l'Atlantique Nord ont augmenté de 37% entre 1990 et 2012 (Krumhardt et al. [51]). Et Chavez et al. [52] ont constaté une augmentation spectaculaire de la production primaire dans le courant du Pérou depuis la fin de la petite période glaciaire (LIA). Ensemble, l'augmentation de la production primaire et le transport descendant [ou obduction] du carbone organique sont suffisants pour expliquer l'absorption du CO₂ anthropique dans l'atmosphère (Steele [47]). De plus, les changements saisonniers du CO₂ en surface illustrent le fait que l'absorption du CO₂ par les océans et l'accumulation du DIC près de la surface sont déterminées, non pas par le facteur Revelle, mais par la pompe biologique.

Evans et al [48] ont, à partir de données de bouées au large des côtes de Newport, Oregon, décrit le fait que chaque photosynthèse printanière abaisse le CO₂ de surface des océans à 200 ppm - bien en dessous des concentrations atmosphériques actuelles et bien plus bas que ce que l'on pourrait attendre d'un équilibre avec une atmosphère préindustrielle. Le CO₂ anthropique présent dans les eaux de surface est alors rapidement éliminé. Il est bien connu que des concentrations plus élevées de CO₂ amplifient la photosynthèse. Du fait de l'augmentation du CO₂ atmosphérique, la communauté planctonique consomme 39% de DIC en plus (Riebesell et al. [53]). En été et en automne, le CO₂ de surface peut rapidement augmenter jusqu'à 1000 ppm - plus de deux fois la concentration de CO₂ dans l'atmosphère. Les eaux de surface augmentent alors considérablement le dégazage naturel vers l'atmosphère. Inversement, en hiver, le CO₂ de surface reste à environ 340 ppm. Malgré une photosynthèse réduite, le CO₂ dans les eaux de surface reste alors en dessous
de l'équilibre avec l'atmosphère, ce qui reflète une élimination efficace par transport vers le bas [ou obduction] par la pompe biologique. Il est à noter que ces fortes variations saisonnières du CO₂ dans les eaux de surface se voient à l'évidence dans les enregistrements du CO₂ atmosphérique (voir figures 9 et 10). En régime permanent ans la diffusion du CO₂ dans l'océan prendrait, croit-on, environ un an pour équilibrer une perturbation atmosphérique. Mais, lorsque l'augmentation de la lumière du soleil améliore la photosynthèse, cet équilibre n'est plus atteint. Le CO₂ de la perturbation est alors simplement transporté en profondeur, où il ne communique plus avec les eaux de surface (McDonnell et al. [54]). Dans ces conditions, l'absorption du CO₂ n'est pas limitée par le facteur Revelle mais par la pompe biologique. Les processus susmentionnés sont essentiellement contrôlés par la lumière du soleil et la température. Il n'y a aucune raison de croire que la production primaire nette, la pompe biologique et la séquestration du CO₂ par rapport aux eaux de surface seraient les mêmes aujourd'hui qu'il y a 270 ans, lorsque la température et le CO₂ atmosphérique étaient probablement plus faibles. Pour simuler le transport du carbone dans l'océan, des modèles complexes supposent un comportement que l'on retrouve dans des traceurs comme les chlorofluorocarbures (CFC). Comme ces espèces chimiques s'accumulent près de la surface de l'océan, les modèles du carbone supposent que le carbone en fait autant. Mais contrairement aux CFC, qui sont inertes, le CO₂ qui pénètre dans les eaux ensoleillées est par la photosynthèse rapidement converti en matière organique (Steele [47]). Bien que les CFC dissous et le carbone dissous soient transportés passivement de la même manière, les particules de carbone organique (vivant ou mort) se comportent très différemment : elles s'enfoncent rapidement, éliminant le carbone des eaux de surface par des mécanismes qui n'opèrent pas sur les CFC. L'élimination du carbone des eaux de surface dépend de la vitesse d'enfoncement et aussi de la vitesse de décomposition de la matière organique. Après être descendu sous la pycnocline (à des profondeurs de 500 à 1000 mètres), le carbone est effectivement séquestré - car l'eau à ces profondeurs ne remonte pas à la surface avant des siècles (Weber et al. [55]). Pour l'atmosphère, cette séquestration à long terme se traduit par une élimination qui est en fait permanente. Avant que ce carbone ne puisse retourner dans l'atmosphère, les réserves de combustibles fossiles seront épuisées depuis longtemps. La combinaison des vitesses d'enfoncement et de la profondeur de la séquestration suggère qu'une fraction importante de la production primaire est séquestrée en quelques jours à quelques semaines (Steele [47]). Par conséquent, l'augmentation de la production primaire entraîne une augmentation proportionnelle et une exportation rapide du carbone en profondeur. Si la productivité marine a augmenté depuis l'époque préindustrielle, elle aura également séquestré le carbone anthropique respectif dans les profondeurs de l'océan. Les observations sur des bassins océaniques suggèrent que, depuis le petit âge de glace, la productivité marine et l'exportation de carbone ont effectivement augmenté à mesure que les océans se réchauffaient (Chavez et al. (52) ; Abrantes et al. (56)).

Annexe B

Le signal radiocarbone des bombes thermonucléaires explosant dans l'atmosphère est un traceur sensible pour étudier les flux dans le cycle du carbone, en particulier pour déterminer une borne supérieure du temps de résidence du CO₂ dans l'atmosphère, et l’absorption par des réservoirs extérieurs. Le carbone 14 obéit à l'équation d'équilibre

$$\frac{dC_{14}}{dt} = e_{14} - C_{14} / \tau_{14} \quad (33)$$

e_{14} est le flux des émissions et des dégazages, qui découle de la production continue de ^{14}C par les rayons cosmiques, [NdT : du vidage progressif de la stratosphère vers la troposphère] et des émissions anthropiques. La décroissance après le pic du ^{14}C des bombes de 1963 satisfait alors à la relation (voir le paragraphe 5.7.3, (31))

$$\frac{dC'_{14}}{dt} = - C'_{14} / \tau_{14} \quad (34)$$

où C'_{14} représente l'excès de concentration de radiocarbone par rapport à la concentration de fond dans l'atmosphère, et τ_{14} est le temps d'absorption apparent d'environ 15 ans. Les mesures de la radioactivité ou par spectrométrie de masse sur accélérateur ne disent pas le nombre absolu d’atomes ^{14}C mais son rapport au nombre d’atomes ^{13}C ou ^{12}C. Comme la concentration totale de CO₂ n'est pas constante depuis 1960 ce qui
affecte les mesures relatives, l'activité mesurée du 14C doit être corrigée pour obtenir la véritable concentration C'_{14}. Ces corrections sont importantes pour la datation de matériaux et pour les mesures du 14C dans l'atmosphère. Sans cette compensation des changements de la concentration totale, la désintégration du 14C et le niveau de fond seraient modifiés de plusieurs dizaines de pourcents. La plupart des données corrigées sont spécifiées sous forme de fractionnement corrigé en pour mille $\%$ – en écarts par rapport à l'activité standard de l'acide oxalique corrigée de sa décroissance radioactive (voir Stuiver&Polach [57]) :

$$\Delta^{14}C = \left[\frac{A_{SN}}{A_{ABS}} - 1 \right] \times 1000$$ \hspace{2cm} (35)

A_{SN} est l’activité de l’échantillon corrigée du fractionnement isotopique déduit de l’observation des isotopes 13C ; A_{ABS} est l’activité du standard international (acide oxalique standard). A_{SN} se déduit de l'activité mesurée A_{S} de l’échantillon

$$A_{SN} = A_{S} \times \left[1 - \frac{2(25 + \delta^{13}C)}{1000} \right]$$ \hspace{2cm} (36)

où $\delta^{13}C$ est spécifié en $\%$ par rapport au standard de la bélemnite de Pee Dee. Cette procédure prend en compte les émissions de combustibles fossiles, qui sont dépourvues de 14C et sont plus pauvres en 13C. Ainsi, les émissions humaines diluent les rapports 14C/12C et 13C/12C de l’atmosphère. Ces corrections sont importantes pour les datations, mais l’effet industriel et la dilution observée se voient-ils sur la décroissance du 14C dans l’atmosphère ?

Pour répondre à cette question, nous comparons les données originales de Δ^{14}CO$_2$ à Vermunt et à Schauinsland présentées à la figure 5, avec une distribution hypothétique de Δ^{14}CO$_2$, trouvée pour une valeur fixe de δ^{13}C pendant la période d'observation, ce qui suppose qu'il n'y ait pas de dilution supplémentaire. Pour ce faire, il faut d'abord recalculer l'activité des échantillons A_{S} de (35) et (36) avec la série connue des valeurs du δ^{13}C, par exemple au Mauna Loa (AR5 [1], Chap. 6, Figure 6.3c, les données manquantes de 1964-1976 peuvent être extrapolées à partir de cet enregistrement), puis simuler la courbe de décroissance avec les nouvelles activités A_{S}, calculées pour un δ^{13}C constant celui de 1964, δ^{13}C(1964) = -7.4$\%$.

![Figure 13. Δ^{14}CO$_2$: comparaison de l’évolution à Vermunt et à Schauinsland (points magenta et triangles verts), avec une décroissance recalculée négligeant les effets de dilution (croix brunes). Une meilleure approximation par une exponentielle donne un temps caractéristique de 15 ans (en exp(-t/15) (magenta).](image-url)
La figure 13 présente les valeurs normalisées de Δ¹⁴CO₂ à Vermunt et à Schauinsland (diamants en bleu et triangles en vert ; données de Levin et al. [17]) (reproduction de la figure 5 à une échelle agrandie) et les compare avec la courbe de décroissance hypothétique Δ¹⁴CO₂ (croix brunes). Les écarts sur la période observée de 48 ans sont inférieurs à 2‰ et les graphes coïncident complètement à cette échelle. Ils sont bien être approchés par une seule exponentielle avec un temps de décroissance de 15 ans (ligne magenta).

Ainsi, tout effet de dilution des combustibles fossiles et des dégazages naturels peut être négligé pour la décroissance du ¹⁴C. La réémission vers l’atmosphère du ¹⁴C qui a été absorbé est bien plus évidente. A cette échelle de temps tout le ¹⁴C n’est pas directement séquestré sous la surface de la Terre, mais il faut plusieurs cycles avant qu’il soit complètement retiré de l’atmosphère. Ceci peut être décrit par un bilan de perturbation, qui, à la différence de (33), considère maintenant l’absorption régulière (caractérisée par le temps de séjour τₜₚ) et tient compte d’un flux de dégazage e¹⁴ₚ pour le ¹⁴C réémis (par exemple, par la décomposition de la végétation qui a absorbé ce ¹⁴C), avant qu’il ne soit séquestré ou distribué :

\[
dC'_{14}/dt = e'_{14} - C'_{14}/\tau_R = (C'_{14}/\tau_R - C'_{E,14}/\tau_{14}) - C'_{14}/\tau_R \# - C'_{14}/\tau_{14} (37)
\]

Les quantités avec un prime sont maintenant référencées par rapport aux valeurs non perturbées avant l’introduction de la source nucléaire. Il ressort d’un bilan pour la couche terrestre que, avec une bonne approximation, e’₁₄ est la différence du flux d’absorption atmosphérique C’₁₄/τₚ et du flux de séquestration C’₁₄/τ₁₄, pour lequel on a supposé que la concentration dans la couche supérieure C’₁₄, de la Terre est presque identique à la concentration C’₁₄ dans l’atmosphère.

Ainsi, la réémission modifie simplement l’absorption effective, qui, pour le ¹⁴C, est contrôlée par le temps d'absorption apparent τ₁₄ et non par le temps de séjour τₚ en accord avec (34). Contrairement à l’effet de dilution, qui est mineur, cela ralentit la décroissance par rapport à ce qu'elle serait en présence de la seule absorption. Le temps d'absorption apparent est donc plus long que le temps d'absorption réel, qui doit être inférieur à une décennie. L’intégration de (37) ou (34) reproduit exactement la décroissance exponentielle pure de la figure 13 avec un temps de division par 1/e τ₁₄ =15 ans.

Références

[1] AR5, In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), "Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.

[2] C. Le Quere et al., "Global Carbon Budget 2017", Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-123, Open Access Earth System Science Data Discussions, Manuscript under review for journal Earth Syst. Sci. Data, 2017.

[3] CICERO, Center for International Climate Research, Oslo. R. Andrew: http://folk.uio.no/roberan/GCP2017.shtml. 2017.

[4] CDIAC, 2017: Carbon Dioxide Information Analysis Center, http://cdiac.ornl.gov/trends/emis/glo_2014.html.

[5] C. D. Keeling, S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, H. A. Meijer, "Atmospheric CO₂ and ¹³CO₂ exchange with the terrestrial biosphere and oceans from 1978 to 2000: Observations and carbon cycle implications", In: Ehleringer, J. R., Cerling, T. E., Dearing, M. D. (Eds.), A History of Atmospheric CO₂ and Its Effects on Plants, Animals, and Ecosystems. Springer Science+Business Media, New York, NY, USA, and Heidelberg, Germany, pp. 83–113 (actualized by Scripps-Institutes, USA), 2005.

[6] H. Harde, "Scrutinizing the carbon cycle and CO₂ residence time in the atmosphere", Global and Planetary Change 152, pp. 19–26, 2017. http://dx.doi.org/10.1016/j.gloplacha.2017.02.009.
[7] M. L. Salby, "Atmospheric Carbon", Video Presentation, July 18, 2016. University College London. https://youtu.be/3q-M_uYkpT0.

[8] P. Kohler, J. Hauck, C. Volker, D. A. Wolf-Gladrow, M. Butzin, J. B. Halpern, K. Rice, R. E. Zeebe, Comment on “Scrutinizing the carbon cycle and CO2 residence time in the atmosphere” by H. Harde, Global and Planetary Change 164, pp. 67-71, 2017. https://doi.org/10.1016/j.gloplacha.2017.09.015

[9] GISS, 2017: Goddard Institute for Space Studies: https://data.giss.nasa.gov/gistemp/.

[10] M. L. Salby, "Relationship Between Greenhouse Gases and Global Temperature", Video Presentation, April 18, 2013. Helmut-Schmidt-University Hamburg https://www.youtube.com/watch?v=2ROw_cDKwc0.

[11] M. L. Salby, "What is Really Behind the Increase of Atmospheric CO2”? Helmut-Schmidt-University Hamburg, 10. October 2018, https://youtu.be/rohF6K2avtY

[12] C. Le Quere, M. R. Raupach, J. G. Canadell, G. Marland et al., "Trends in the sources and sinks of carbon dioxide", Nature Geosci., 2, pp. 831–836, 2009. doi:10.1038/ngeo689.

[13] P. Tans, NOAA/ESRL and R. Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/), 2017. https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html.

[14] F. Joos, M. Bruno, R. Fink, U. Siegenthaler, T. F. Stocker, C. Le Quere, J. L. Sarmiento, "An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake", Tellus B 48, pp. 397–417, 1996. doi:10.1034/j.1600-0889.1996.t01-2-00006.x.

[15] J. Hansen, M. Sato, P. Kharecha, G. Russell, D. W. Lea, M. Siddall, "Climate change and trace gases", Phil. Trans. R. Soc. A 365, pp. 1925–1954, 2007. doi:10.1098/rsta.2007.2052.

[16] J. Hansen, M. Sato, G. Russell, K. Pushker, "Climate sensitivity, sea level, and atmospheric CO2", Philos. Trans. R. Soc. A, 371, 20120294, 2013. doi:10.1098/rsta.2012.0294. https://www.nasa.gov/

[17] I. Levin, B. Kromer, and S. Hammer, "Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012", Tellus B 65, pp. 1-7, 2013.

[18] Q. Hua, M. Barbetti, A. Z. Rakowski, "Atmospheric radiocarbon for the period 1950–2010". RADIOCARBON 55, pp. 2059–2072, (2013). Supplementary Material Table S2c, https://doi.org/10.2458/azu_js_rc.v55i2.16177

[19] J. C. Turnbull, S. E. Mikaloff Fletcher, I. Ansell, G. W. Brailsford, R. C. Moss, M. W. Norris, K. Steinkamp, "Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand: 1954–2014", Atmos. Chem. Phys. 17, pp. 14771–14784, 2017. https://doi.org/10.5194/acp-17-14771-2017.

[20] U. Siegenthaler, J. L. Sarmiento, "Atmospheric carbon dioxide and the ocean", Nature 365, pp. 119-125, 1993.

[21] P. Dietze, IPCC's Most Essential Model Errors, 2001. http://www.john-daly.com/forcing/moderr.htm; (Carbon Model Calculations, http://www.john-daly.com/dietze/cmodcalc.htm).

[22] G. C. Cawley, "On the Atmospheric Residence Time of Anthropogenically Sourced Carbon Dioxide", Energy Fuels 25, pp. 5503–5513, 2011. dx.doi.org/10.1021/ef200914u

[23] H.-J. Ludecke, C. O. Weiss, "Simple Model for the Anthropogenically Forced CO2 Cycle Tested on Measured Quantities", JGEESI, 8(4), pp. 1-12, 2016. DOI: 10.9734/JGEESI/2016/30532.

[24] R. E. Essenhigh, "Potential dependence of global warming on the residence time (RT) in the atmosphere of anthropogenically sourced carbon dioxide", Energy Fuel 23, pp. 2773–2784, 2009. http://pubs.acs.org/doi/abs/10.1021/ef800581r.

[25] E. Berry, "Human CO2 has little effect on atmospheric CO2", 2019. https://edberry.com/blog/climate-physics/agw-hypothesis/contradictions-to-ipccs-climate-change-theory/

[26] NOAA, 2017:https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.GHCN/.v2/?bbox=bb%3A-161.488%3A16.360%3A-150.062%3A23.051%3Abb

[27] NOAA, 2018: http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ER SST/ version2/.SST/index.html http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ER SST/.version2/.SST/X/%28164W%29VALUES/T/%282018%28Jan%29"
O. Humlum, K. Stordahl, J. E. Solheim, "The phase relation between atmospheric carbon dioxide and global temperature", Global and Planetary Change 100, pp. 51-69, 2013.

M. Richardson, Comment on “The phase relation between atmospheric carbon dioxide and global temperature” by Humlum, Stordahl and Solheim, Global and Planetary Change 107, pp. 226-228, 2013.

D. L. Royer, R. A. Berner, I. P. Montanez, N. J. Tabor, D. J. Beerling, "CO2 as a primary driver of Phanerozoic climate", GSA Today 14, no. 3, 2004. doi: 10.1130/1052-5173(2004)

Y. G. Zhang, M. Pagani, J. Henderiks, H. Ren, "A long history of equatorial deep-water upwelling in the Pacific Ocean", Earth and Planetary Science Letters 467, pp. 1–9, 2017.

T. Takahashi, S. C. Sutherland, R. Wanninkhof, C. Sweeney, R. A. Feely et al., "Climatological mean and decadal change in surface ocean pCO2 and net sea-air CO2 flux over the global oceans", Deep-Sea Res. II, 56, pp. 554–577, 2009. doi:10.1016/j.dsr2.2008.12.009.

N. U. Benson, O. O. Osibanjo, F. E. Asuquo, W. U. Anake, "Observed trends of pCO2 and air-sea CO2 fluxes in the North Atlantic Ocean, Intern. J. Marine Science 4, pp. 1-7, 2014.

J.-S. Lee, "Monitoring soil respiration using an automatic operating chamber in a Gwangneung temperate deciduous forest", J. Ecology & Field Biology 34(4), pp. 411-423, 2011.

C. Huntingford, O. K. Atkin, A. Martinez-de la Torre, L. M. Mercado, M. A. Heskel, A. B. Harper, K. J. Bloomfield, O. S. O’Sullivan, P. B. Reich, K. R. Wytbers, E. E. Butler, M. Chen, K. L. Griffin, P. Meir, M. G. Tjoelker, M. H. Turnbull, S. Sitch, A. Wiltshire, Y. Malhi, "Implications of improved representations of plant respiration in a changing climate", NATURE COMMUNICATIONS 8, 1602, 2017. DOI: 10.1038/s41467-017-01774-z.

H. Harde, "Radiation Transfer Calculations and Assessment of Global Warming by CO2", International Journal of Atmospheric Sciences, Volume 2017, Article ID 9251034, pp. 1-30, 2017. https://doi.org/10.1155/2017/9251034.

H. Harde, "Was tragen CO2 und die Sonne zur globalen Erwarming bei"? 12. Internationale EIKE Klima- und Energiekonferenz und 13th International Conference on Climate Change (ICCC-13), Munchen, 23. u. 24. November, 2018, https://youtu.be/lrdG4mn_KCs.

T. B. Coplen, "Reporting of stable hydrogen, carbon and oxygen isotopic abundances", Pure and Applied Chemistry 66, pp. 273-276, 1994.

U. Siegenthaler, K. O. Munnich, "13C/12C fractionation during CO2 transfer from air to sea", In: Bolin, B. (Ed.): Carbon cycle modelling (SCOPE 16), John Wiley & Sons, pp. 249-257, 1981.

M. L. Salby, "Physics of the Atmosphere and Climate", Cambridge University Press, Cambridge 2012. (ISBN: 978-0-521- 76718-7).

D. M. Etheridge, L. P. Steele, R. L. Langenfelds, R. J. Francey, J.-M. Barnola, V. I. Morgan, "Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn", J. Geophys. Res. 101, pp. 4115-4128, 1996.

Friedli H., H. Lotscher, H. Oeschger, U. Siegenthaler, B. Stauffer, 1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries, Nature 324, pp. 237-238.

H. Suess, "Radiocarbon Concentration in Modern Wood", Science 122, Issue 3166, pp. 415-417, 1955. DOI: 10.1126/science.122.3166.415-a.

J. G. Canadell, Le Quere, C., Raupach, M. R., Field, C. B. Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P.,Houghton, R. A., and Marland G., "Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks", P. Natl. Acad.USA, 104(47), 18866–18870, 2007. doi:10.1073/pnas.0702737104.

M. Gloor, J. L. Sarmiento, and N. Gruber, "What can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction"? Atmos. Chem. Phys., 10. pp. 7739–7751, 2010. https://www.atmos-chem-phys.net/10/7739/2010/, doi:10.5194/acp-10-7739-2010.
[46] A. P. Ballantyne, C. B. Alden, J. B. Miller, P. P. Tans, J. W. C. White, "Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years", Nature 488, pp. 70-73, 2012. doi:10.1038/nature11299

[47] J. Steele, "How NOAA and Bad Modeling Invented an Ocean Acidification Icon", Part 2 – Bad Models, 2017. https://wattsupwiththat.com/2017/03/02/how-noaa-and-bad-modeling-invented-an-ocean-acidification-icon-part-2-bad-models/

[48] W. Evans, B. Hales, P. G. Strut, "Seasonal cycle of surface ocean pCO2 on the Oregon shelf", J. Geophys. Research 116, 2011, DOI: 10.1029/2010JC006625.

[49] K. R. Arrigo, G. L. van Dijken, "Continued increases in Arctic Ocean primary production", Progress in Oceanography 136, pp. 60-70, 2015, https://doi.org/10.1016/j.pocean.2015.05.002.

[50] D. K. Steinberg, M. W. Lomas, J. S. Cope, "Long-term increase in mesozooplankton biomass in the Sargasso Sea: Linkage to climate and implications for food web dynamics and biogeochemical cycling", Global Biogeochemical Cycle 26, 2012, DOI: 10.1029/2010GB004026.

[51] K. M. Krumhardt, N. S. Lovenduski, N. M. Freeman, N. R. Bates, "Apparent increase in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014", Biogeoosciences 13, pp. 1163-1177, 2016. doi:10.5194/bg-13-1163-2016, http://www.biogeosciences.net/13/1163/2016/.

[52] F. P. Chavez, M. Messie, J. T. Pennington, "Marine PrimaryProduction in Relation to Climate Variability and Change", Annu. Rev. Mar. Sci. 3, pp. 227–260, 2011, doi:10.1146/annurev.marine.010908.163917.

[53] U. Riebesell, K. G. Schulz, R. G. J. Bellerby, M. Botros, P. Fritsche, M. Meyerhofer, C. Neill, G. Nondal, A. Oschlies, J. Wohlers, E. Zollner, "Enhanced biological carbon consumptionin a high CO2 ocean", Nature 450, pp. 545-548, 2007, doi:10.1038/nature06267.

[54] A. M. P. McDonnell, K. O. Buesseler, "Variability in the average sinking velocity of marine particles", Limnology and Oceanography 55, pp. 2085–2096, 2010. DOI:10.4319/lo.2010.55.5.2085.

[55] T. Weber, J. A. Cram, S. W. Leung, T. DeVries, C. Deutsch, Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency, PNAS 113 no. 31, pp. 8606–8611, 2016, doi: 10.1073/pnas.1604414113.

[56] F. Abrantes, P. Cermeno, C. Lopes, O. Romero, L. Matos, J. Van Iperen, M. Rufino, V. Magalhaes, Diatoms Si uptake capacity drives carbon export in coastal upwelling systems, Biogeoosciences 13, pp. 4099–4109, 2016, https://doi.org/10.5194/bg-13-4099-2016

[57] M. Stuiver, H. A. Polach, "Discussion Reporting of 14C Data", RADIOCARBON 19, No. 3, pp. 355-363, 1977