Chemistry student’s virtual laboratory self-efficacy: A scale development

Y Romika* and S Atun
Pendidikan Kimia, Program Pascasarjana, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta 55281, Indonesia.
*yoniromika29@yahoo.com

Abstract. Self-efficacy is described as an individual's beliefs about their abilities to complete an action. It is a part of the social cognitive theory in the chemistry learning process. Self-efficacy consists of six aspects, namely the choice of activities, effort, perseverance, learning, achievement and strategy or orientation. The objective of this study was to develop an instrument of chemistry student virtual Laboratory self-efficacy (CSVL-SE) in a virtual laboratory within the chemical equilibrium topic. This research used research and development (R&D) method. The data was obtained through a self-efficacy questionnaire. The expert confirmed the content validity with 26 items that had been administered to 60 students in senior high school. Rasch Model used to analyse the data that met the unidimensionality, item fit, difficulty or ability estimation, reliability, and information function. The findings showed that 26 items match into the Rasch Model with reliability person and reliability item of 0.84 and 0.97. So that, this instrument is appropriate to collect the data.

1. Introduction
Self-efficacy is something that humans must have to do something, as well as in the learning process. Self-efficacy is a person's belief about their ability to organize and execute an action in order to achieve the desired goal [1]. Based on cognitive social theory, self-efficacy will affect the choice of activities, effort, persistence, [2] achievement, learning and strategy-oriented [3]. Further, students who have higher level of self-efficacy will have more influence on education because of their high motivation [4]. Thus, low level of students’ self-efficacy tend to evade many tasks, especially difficult or challenging ones [3].

Chemistry is a discipline of science that contains many abstract concepts that often cause problems in conceptual learning [5] so that practical activities are needed to prove the theory being studied. However, the fact is that there are still many schools that do not have adequate laboratory facilities. This is supported by other researcher which states that in the 2015/2016 academic year the percentage of high schools having adequate laboratories was only around 36.23% consisting of 44.33% for state schools and 28.11% for schools private [6]. The development of science and technology that continues to grow day by day can be a solution to the limited availability of laboratories. one of the learning media that can replace laboratory functions is a virtual laboratory. Students who used virtual chemistry lab both as a replacement and supplement of hands-on laboratory mostly had a better level of self-efficacy [7].

Self-efficacy value has a positive influence on academic performance of the students in chemistry lessons [8,9]. Furthermore, application of virtual laboratories works to increase self-efficacy [10]. Thus, the use of virtual laboratory media significantly improved the learning outcomes of the students [11].
However, learning outcomes cannot only be measured from the cognitive aspect. Mastery learning students are also influenced by low motivation and self-efficacy [12]. The cognitive and affective aspects assessment of learning outcomes should be done concurrently. Students who have a good affective aspect will also have good cognitive skills in learning process [13]. Thus, it is a necessary integrated instrument of chemistry student virtual laboratory self-efficacy that needs to be developed which aims to know student's self-efficacy when doing experimental use virtual laboratory. This study aims to measure the validity and the reliability of self-efficacy instrument and its development in the chemical equilibrium topic. Thus, to analyze the items quality using item response theory. In addition, this research would give information about its construct validity.

2. Method
There were 60 participants of 12th-grade students in the special region of Yogyakarta, Indonesia in this study. Procedural development research model which is descriptive research, provide the following steps to produce self-efficacy questionnaire as the final product. So that the result of this instrument will be applied in research and development (R&D) to know self-efficacy chemistry students using Virtual Laboratory in chemical Equilibrium. Thus, from the self-efficacy theory, the researchers arrange the validity of the content who confirmed to experts' judgment. The questionnaires used to know empirical validity value.

3. Result and Discussion

3.1 Unidimensionality
Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) approaches used to test the unidimensionality [14]. CFA is appropriate when the scale has known factor properties, while an EFA is more appropriate when the scale is relatively undetermined. The KMO-MSA value in this study is .631. This result indicates that the sample is qualified (.631 > .05) and the result test of Barlett Sphericity indicates that the variable of this study is correlated (.00 < .05). Thus, this study proper on unidimensionality or construct validity. If the KMO-MSA is higher than 0.6 and significant at α <0.05 for Bartlett Sphericity test, a factor of the correlation matrix is assumed [15]. The result presented in Table 1.

Test	Student’s virtual laboratory self-efficacy	Conclusion for Factor Analysis
KMO-MSA test	.631	Appropriate
The significance value of Barlett Sphericity test*	.00	Appropriate

*statistical significance level of .05

Based on KMO-MSA results obtained that the KMO value fulfilled. Hence, assumption of the unidimensionality can be analyzed by using the EFA. The results are presented in Table 2.

Component	Initial Eigenvalues Total % of Variance	Component	Initial Eigenvalues Total % of Variance		
1	5.356	20.599	6	1.362	5.240
2	4.621	17.773	7	1.295	4.980
3	2.068	7.953	8	.981	3.773
4	1.749	6.725	9	.957	3.681
5	1.560	6.000	…	.74	.285
Table 2 shows that 7 eigenvalues have values greater than 1,000. Thus the variance of the 7 factors presented as the response of tested participants to the integrated assessment. Total variance of 7 factors can account is 69.27%. The unidimensionality assumption result can also be observed through the scree plot. Thus, scree plot illustrated the eigenvalues by the number of components that preserve the factors.

![Scree Plot](image)

Figure 1. CSVL-SE scree plot

Figure 1 confirms the integrated assessment instrument of seven factors. The percentage of a dominant factor was 20.599%. The output in exploratory factor analysis has a dominant factor with over 20% of the variance, it means that the unidimensionality assumption could be considered acceptable [16].

3.2 Items Fit

The Partial Credit Model 1 Parameter Logistic (PCM 1-PL) used in the Rasch Model appropriated for the polytomous data analysis. The fit index requires for measure item empirically in Rasch Model. As stated in Boone [17] the criteria used to know the appropriate item as it follows, (a) Outfit Mean Square (MNSQ) Value accepted: $0.5 < \text{MNSQ} < 1.5$; (b) Outfit Z-standard (ZSTD) value accepted: $-2.0 < \text{ZSTD} < +2.0$; and (c) Point Measure Correlation value (Pt Mean Corr) between: $0.4 < \text{Pt Mean Corr} < 0.85$. The list of the item fit results are presented in table 3 below.

Table 3. Result of Item Fit analysis

Item	Outfit MNSQ	Outfit ZSTD	Pt- Measure Correlation	Conclusion	Item	Outfit MNSQ	Outfit ZSTD	Pt- Measure Correlation	Conclusion
25	1.49	2.5	.22	Not fit	16	.96	-.1	.36	Fit model
24	1.39	1.9	.20	Fit model	19	.95	-.2	.47	Fit model
3	1.24	1.2	.35	Fit model	6	.96	-.2	.36	Fit model
7	1.24	1.4	.35	Fit model	5	.97	-.1	.44	Fit model
2	1.21	1.1	.22	Fit model	21	.95	-.3	.51	Fit model
22	1.18	1.1	.45	Fit model	14	.93	-.3	.29	Fit model
9	1.16	1.0	.46	Fit model	13	.83	-.9	.40	Fit model
18	1.14	.9	.32	Fit model	20	.82	-1.0	.36	Fit model
26	1.04	.3	.49	Fit model	11	.82	-1.2	.46	Fit model
23	1.01	.1	.26	Fit model	10	.74	-1.4	.47	Fit model
15	1.02	.2	.31	Fit model	1	.72	-1.6	.37	Fit model
12	1.02	.2	.50	Fit model	17	.68	-2.2	.61	Fit model
4	1.01	.1	.54	Fit model	8	.64	-2.6	.66	Fit model

If the item fit statistic is acceptable, then the item can be considered as a valid item [18]. The analysis was used to detect whether the items have functioned properly in measuring or not. According to Table...
3, the item fit measurement output analysis were used Winstep program. 1 item is not a fit model, namely item 25 and rest of the item are fit model, so that the item can be considered as a valid item.

3.3 Difficulty/ability estimation
The item difficulty index was used to find out the proper answer at specific ability levels of the problem. The difficulty index was measured to get proportion of test takers responding to the item accurately. A good instrument item have difficulty value may range between -2.0 logit and +2.0 logit [19]. An item categorized as a very difficult item with difficulty index above +2.00 logit and considered as a very easy item if they have difficulty index below -2.0 logit. As a result, 26 items are obtained fit in the measurement. The list of the item difficulty are presented in Table 4 below.

Table 4. Item difficulty of (CSVL-SE)

Item Number	Difficulty index	Category	Item Number	Difficulty Index	Category
21	1.61	Very difficulty	25	-.05	Medium
26	1.50	Very difficulty	23	-.65	Easy
11	1.39	Very difficulty	3	-.76	Easy
9	1.35	Very difficulty	5	-.84	Easy
18	1.17	Very difficulty	1	-.88	Easy
8	1.10	Very difficulty	14	-.88	Easy
17	1.10	Very difficulty	24	-.88	Easy
4	1.03	Very difficulty	20	-.03	Very easy
22	.86	Difficulty	10	-1.07	Very easy
12	.80	Difficulty	15	-1.15	Very easy
7	.36	Difficulty	2	-1.19	Very easy
6	.29	Difficulty	16	-1.48	Very easy
19	.06	Difficult	13	-1.79	Very easy

3.4 Reliability
The measurements that can be replicated are defined as reliability. Before any measurement instruments or assessment tools can be used for research and applied, their reliability must be established. The result of Rash analyzed show Alpha Cronbach's value was found to be 0.80. This implies that there is an approximately 80% of the consistency in producing the similar results over and over again. Thus, the assessment of CSVL-SE has high reliability. The finding was supported by Ceniza and Cereno [21] the reliability was high reliability with coefficient range 0.81 - 1.0, range 0.61 - 0.80 indicates moderate reliability, range 0.41 - 0.60 means reasonable reliability, range 0.10 - 0.40 means low reliability, and lower than 0.10 means there is no reliability.

Table 5. Person and Item reliability statistic result

Parameter (N)	MNSQ	ZSTD	MNSQ	ZSTD	Separation	Reliability	Category
Persons (60)	.99	-.4	1.00	-.3	2.30	.84	High
Items (26)	.99	-.1	1.00	.0	5.43	.97	Excellent

*Cronbach alpha (KR-20) Person Raw Score Test Reliability = .80

The reliability of the instrument was analyzed by the person and item analysis. The person's reliability is 0.84, indicates high reliability with 2.30 separation index. Further, the item reliability is 0.97, indicates excellent reliability with 5.43 separation index (Table 5). The person reliability indicates 84% consistency from all of the items instrument. Item reliability indicates 97% consistency items in acquire the similar result over and over again.

3.5 Information Function
The information function test is very useful feature of the item response theory. Capability levels estimated in the information function test [22]. The information function is the sum of the item information functions in the test [19]. Therefore, the higher the test information function is, the items in the test also have a high information function.

![Test Information Function](image)

Figure 2. Test Information for CSVL-SE

Figure 2 it can be concluded that 26 items tested on 60 students show that these items are suitable for knowing the level of ability of students in the low, medium and high categories. The final result of CSVL-SE has 25 items that fit with the Rasch Model. The reliability of person and item were categorized as high and excellent consecutively. The difficulty of the item was normally distributed on a five-category. Afterward, the information function test indicated the statement used is not too difficult and give good information of correspondent ability.

4. Conclusion
The study found that a scale development of the chemistry student's virtual laboratory self-efficacy (CSVL-SE) instrument has strong validity of construct and content. Unidimensionality, item fit, difficulty or ability estimation, reliability, and information function has good value. This shows that this instrument can be useful for chemistry teachers and researchers to measure the self-efficacy of students using a Virtual laboratory on Chemistry in the topic of chemical equilibrium.

5. References
[1] Bandura A 1994 *Encyclopedia of human behavior (VS Ramachaudran, Ed.)* 4 71-81
[2] Schunk D H 2012 *Learning theories an educational perspective sixth edition* Pearson.
[3] Santrock 2011 *Educational psychology* New York: McGraw-Hill.
[4] Zimmerman BJ 2000 Self-efficacy: An essential motive to learn *Contemporary educational psychology* 25 1 82-91.
[5] Nakhele M B 1992 Why some students don't learn chemistry: Chemical misconceptions *Journal of chemical education* 69 3 191.
[6] Kemendikbud 2016 *Statistik sekolah menengah atas (SMA) 2015/ 2016* Jakarta: Pusat Data dan Statistik
[7] Nais MK, Sugiyarto KH, Ikhsan J 2018 The profile of students’ self-efficacy using virtual chem-lab in hybrid learning *InJournal of Physics: Conference Series* 1097 012060
[8] Willson-Conrad A, Kowalske MG 2018 Using self-efficacy beliefs to understand how students in a general chemistry course approach the exam process *Chemistry Education Research and Practice* 19 1 265-75.
[9] Ramnarain U, Ramaila S 2018 The relationship between chemistry self-efficacy of South African first year university students and their academic performance. *Chemistry Education Research and Practice* 19 1 60-7.
[10] Bautista NU, Boone WJ 2015 Exploring the impact of TeachME™ lab virtual classroom teaching simulation on early childhood education majors’ self-efficacy beliefs *Journal of Science Teacher Education* **26** 3 237-62.

[11] Brinson JR 2015 Learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: A review of the empirical research *Computers & Education* **87** 218-37.

[12] Dini N A, Novita D 2015 Penerapan model pembelajaran kooperatif tipe NHT (number head together) untuk meningkatkan self-efficacy siswa kelas XI pada materi pokok laju reaksi. *Unesa Journal of Chemical Education* **4** 27-33

[13] Austin A C, Ben-Daat H, Zhu M, Atkinson R, Barrows N, and Gould I R 2015 Measuring student performance in general organic chemistry *Chemistry Education Research and Practice* **1** 168-178

[14] Toland M D 2013 Practical guide to conducting an item response theory analysis *The Journal of Early Adolescence* **34** p 120 –151

[15] Pallant J F 2000 Development and validation of a scale to measure perceived control of internal states *Journal of Personality Assessment* **75** 308–37

[16] Barret B, Brown R L, Obasi C N Rasch analysis of the WURSS-21dimensional validation and assessment of invariance. 2016 *Journal of Lung, Pulm & Respiratory Researchh* **3** 46-53

[17] Boone W J, Staver J R, Yale M S 2014 *Rasch analysis in the human sciences* Dordrecht: Springer

[18] Korashy A F 1995 Applying the rasch model to the selection of items for a mental ability test. *Educational and Psychological Measurement* **55** 753-763

[19] Hambleton R, Swaminathan S 1991 *Fundamental of Items Response Theory* Los Angeles: Sage Publications.

[20] Adedoyin O O, Mokobi T 2013 Using IRT psychometric analysis in examining the quality of junior certificate mathematics multiple choice examination test items *International Journal of Asian Social Science* **3** 992-1011

[21] Ceniza, J.C, Cereno, D.C 2012 *Development of mathematic diagnostic test for DORSHS*.

[22] Baker FB, Kim SH 2017 *The basics of item response theory using R*. New York: Springer.

Acknowledgments

Thanks to Head Master and all teams Chemistry teachers of SMAN 1dan SMAN 2 Wonosari who has given helped to me in this reseach. And also thank to all my respondents who worked so well.