Epigenetics: Recent Advances and Its Role in the Treatment of Alzheimer’s Disease

Xuewen Xiao¹, Xixi Liu¹ and Bin Jiao¹,²,³*

¹Department of Neurology, Xiangya Hospital, Central South University, Changsha, China, ²National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China, ³Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China

Objective: This review summarizes recent findings on the epigenetics of Alzheimer’s disease (AD) and provides therapeutic strategies for AD.

Methods: We searched the following keywords: “genetics,” “epigenetics,” “Alzheimer’s disease,” “DNA methylation,” “DNA hydroxymethylation,” “histone modifications,” “non-coding RNAs,” and “therapeutic strategies” in PubMed.

Results: In this review, we summarizes recent studies of epigenetics in AD, including DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs. There are no consistent results of global DNA methylation/hydroxymethylation in AD. Epigenetic genome-wide association studies show that many differentially methylated sites exist in AD. Several studies investigate the role of histone modifications in AD; for example, histone acetylation decreases, whereas H3 phosphorylation increases significantly in AD. In addition, non-coding RNAs, such as microRNA-16 and BACE1-antisense transcript (BACE1-AS), are associated with the pathology of AD. These epigenetic changes provide us with novel insights into the pathogenesis of AD and may be potential therapeutic strategies for AD.

Conclusion: Epigenetics is associated with the pathogenesis of AD, including DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs, which provide potential therapeutic strategies for AD.

Keywords: Alzheimer’s disease, epigenetic, DNA methylation, DNA hydroxymethylation, histone modifications, non-coding RNA (ncRNA)

INTRODUCTION

Alzheimer’s disease (AD) is a devastating neurological disease characterized by progressive cognitive impairments. As the most common form of dementia in the world, AD accounts for an estimated 60–80% of dementia cases worldwide (1). It is estimated that 50 million people are living with dementia worldwide currently, and the figure will increase to 152 million by 2050 (2). The common hypotheses of AD include amyloid cascade hypothesis, tau propagation, neuroimmune activation, mitochondrial cascade hypotheses, and infectious hypothesis (3).

AD can be classified into familial and sporadic AD based on family history. Three causative genes, including presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP) are involved in the pathogenesis of familial AD in an autosomal-dominant trait (4, 5). PSEN1 is the
most common genetic cause in familial AD, and the second involved gene is \textit{PSEN2}. \textit{PSEN1} and \textit{PSEN2} encode the presenilins, which are catalytic subunits of BACE1. \textit{APP} is the third involved gene that encodes the APP from which amyloid-β peptide is cleaved. These genetic mutations trigger the cascade of amyloid-β deposition, resulting in cognitive impairments in patients with AD (6, 7).

The genetics of sporadic AD are much more complex than that of familial AD. With the developments of genetic sequencing technology, particularly the Genome-Wide Association Study (GWAS), scientists have identified a number of loci containing susceptibility alleles in sporadic AD. One of the most important loci is the apolipoprotein E gene (\textit{APOE}), and the three major isoforms are \textit{APOE} ε2, ε3, and ε4 based on two-point mutations (rs429358 and rs7412). The \textit{APOE} ε4 haplotype increases the likelihood of the onset of AD (8). Since 2009, tens of GWAS studies on AD have identified more than 20 novel loci including \textit{ABCA7}, \textit{BIN1}, \textit{CD33}, \textit{CLU}, \textit{CR1}, \textit{CD2AP}, \textit{EPHA1}, \textit{MS4A6A-MS4A4E}, \textit{PICALM}, and \textit{SORL1}, among others (9, 10).

Currently, much attention has been drawn to the nongenetic factors. Nongenetic factors are of paramount significance in the etiology of AD. Increasing evidence identifies multiple nongenetic factors for AD, most of which are related to lifestyle. A systematic review and meta-analysis based on the current evidence proposes 21 nongenetic factors for the prevention of AD, such as low level of education, hypertension, hyperhomocysteinemia, diabetes, obesity in late life, depression, and stress (11). The underlying mechanisms of how these nongenetic factors affect AD are not fully understood. The common hypotheses include oxidative stress, inflammation, brain reserve theory, the hypoperfusion hypothesis, and hypomethylation theory (12). In the 5xFAD mouse model, environmental enrichment, a combination of cognitive and sensory stimulation and social interaction, improves cognitive impairment via altering epigenetic markers (13).

Epigenetics may explain the roles of non-genetic factors involved in AD and help us to better understand the etiology of AD. Epigenetics was so named first by Conrad Waddington in the 1940’s, and it is now defined as the study of molecules without changing the DNA sequence (14). Specifically, epigenetics includes DNA methylation/hydroxymethylation, histone modifications, and non-coding RNA regulation. These modifications play a crucial role in the gene readout, such as gene silencing, transcription, and post-transcriptional RNA processing. Therefore, epigenetics makes a significant impact on the disease (15, 16). Evidence shows that epigenetics is involved in the pathogenesis of AD (Figure 1). Here, we review recent findings on the epigenetics of AD and its potential therapeutic strategies.

**DNA METHYLATION/ HYDROXYMETHYLATION IN AD**

DNA methylation refers to methylation of the nucleobases in DNA by a set of proteins called DNA methyltransferases (DNMTs). Most of the methylated nucleobases are cytosines in CpGs and CpHs (H = A, T, C), forming 5-methylcytosine (5 mC). Five mC is mostly enriched in CpG dinucleotides (17). Although a lot of attention on DNA methylation focuses on CpGs, CpHs methylation is found to be associated with gene expression in neurons (18). In addition to 5 mC, methylation of another nucleobase is identified. In mouse prefrontal cortical neurons, deoxyadenosine methylation on N6 (m6dA) is correlated with gene expression and the formation of memory (19). DNMTs include DNA methyltransferase 1, DNA methyltransferase 3A, and DNA methyltransferase 3B (20). DNA hydroxymethylation is the hydroxymethylation of the cytosine to develop 5-hydroxymethylcytosine (5 hmC), and 5 hmC is converted from 5 mC by ten-eleven translocase (TET) isoforms (21). CpG and CpH are abbreviations for the cytosine and other nucleobases divided by a phosphate. The methyl/hydroxymethyl groups are located in the major groove of the DNA helix where many DNA-binding proteins make contact. Therefore, DNA methylation can lead to gene silencing, X-chromosome inactivation, and genomic imprinting. The exact functions of DNA hydroxymethylation remain unclear, and it may promote or repress gene expression by binding to regulatory regions of a gene (22, 23).

To date, a variety of studies have analyzed the role of DNA methylation in AD. One of the most studied genes of DNA methylation is the \textit{APP} gene. CpG dinucleotides are enriched in the 5’ region of the \textit{APP} gene, and alteration of its methylation levels can affect APP expression. Some studies identify hypomethylation of the \textit{APP} gene in patients with AD compared with normal controls by analyzing postmortem brains or peripheral blood leucocytes in vitro (24–26), whereas, two other studies show no differences between AD and normal controls (27, 28). The reasons for the different results are not well-understood. Possible explanations include different test methods, different tissues examined, and relatively small sample sizes (29). Specifically, these studies examine the \textit{APP} methylation levels in postmortem brain tissues or blood from a few AD patients and normal controls. Large-scale studies on methylation of the \textit{APP} gene may address such different results in the future. Meanwhile, by analyzing genomic DNA, there are markedly different methylation levels of the \textit{APP} gene in different human tissues (30). Therefore, the different tissues examined may also account for the different findings in the \textit{APP} methylation levels. Furthermore, methylcytosines are reduced in the \textit{APP} gene with age, which may be associated with Aβ deposition in AD (31). In addition to age, gender affects the methylation levels of the \textit{APP} gene. Hypermethylation of the \textit{APP} gene is identified in the female mouse cerebral cortex compared to male mice (32).

\textit{PSEN1} and \textit{PSEN2} genetic methylation patterns do not differ significantly between AD samples and normal controls (27, 28). After adjusting for gender and \textit{APOE}, there are no significant methylation levels of \textit{PSEN1} and \textit{PSEN2} between AD patients and normal controls (33). No difference in \textit{PSEN1} methylation levels is observed in the AD mouse model, suggesting that Aβ production is not associated with \textit{PSEN1} methylation (34). Nevertheless, reduced methylation of the \textit{PSEN1} gene is identified in the human cerebral cortex (35, 36). In blood DNA, \textit{PSEN1} methylation is significantly downregulated in AD patients compared to normal controls, which is associated with
higher \textit{PSEN1} expression during the progression of AD (37). The inconsistent findings may be associated with significant interindividual methylation variance of the \textit{PSEN1} gene (38). For \textit{APOE}, two studies show that there is no significant difference in DNA methylation levels in postmortem brain tissues between AD patients and normal controls (39, 40). However, Foraker et al. observe a significant decrease in DNA methylation levels of \textit{APOE} by evaluating methylation profiles of AD postmortem brains in vitro (41). The reason for this inconsistency may result from the detection platform. The previous two studies mainly focus on \textit{APOE} promoter regions lacking CpG islands based on bead-chip. In the subsequent study, CpG methylation of \textit{APOE} is obtained by pyrosequencing, which is more reliable in reflecting \textit{APOE} methylation levels (41). Another study demonstrates that non-neuronal cells mainly contribute to the low levels of \textit{APOE} DNA methylation in AD patients (42).

Further, a lot of studies examine methylation sites of candidate susceptibility genes for AD (Figure 2). An et al. show that the
2′,5′-oligoadenylate (2-5A) synthetase gene is hypomethylated in AD cells in vitro (43). Sanchez-Mut et al. show that TBXA2R, SORBS3, and SPTBN4 are hypermethylated in 12 distinct AD mouse brain regions, suggesting that the axon initial segment and cAMP response element-binding protein (CREB) activation pathway is involved in AD pathogenesis (44). Lei Yu et al. demonstrate that DNA methylation levels in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 are associated with greater odds for pathological AD by examining 28 reported AD loci discovered from recent GWAS reports on AD, which indicate that the change of DNA methylation of AD risk genes contribute to the etiology of AD (45). The hypermethylation of BDNF is repeatedly observed in AD patients' blood samples, which might be a diagnostic marker of AD (46, 47). Nevertheless, Carboni et al. find that BDNF, SIRT1, and PSEN1 exhibit no different methylation patterns in AD compared with controls using peripheral blood samples in vitro. The inconsistency among the studies may result from methodological differences. Bisulphite pyrosequencing technology and methylation-specific primer real-time PCR cover different CpGs when evaluating CpG sites in BDNF (48).

Fabio Coppedè et al. show that there are no methylation differences in DNA repair genes between patients with AD and non-affected individuals, including OGG1, PARP1, MRE11A, BRCA1, MLH1, and MGMT (49). Ma et al. find that UQRC1 is highly methylated in patients with AD by studying peripheral blood samples of AD, suggesting that inflammation and oxidative stress may contribute to AD (50). The DNA methylation level of PLD3 is increased and correlated with hippocampal Aβ in AD hippocampus compared to controls (51). A lower DNA methylation level at TREM2 is observed in AD patients and associated with TREM2 mRNA expression, which may be a biomarker for AD (52). CRTC1 is hypomethylated in the AD hippocampus and associated with p-tau deposition (53). Hypomethylation of CpGs in BIN1 is identified in participants with AD and confers risk to AD by studying peripheral blood, indicating it may be a biomarker for AD (54). The methylation level of BIN1 is associated with neuritic plaque pathology in the peripheral blood (55). Furthermore, the methylation levels of OPRM1 and OPRL1 are significantly increased in AD compared to controls, suggesting that opioid receptor genes may be potential biomarkers for diagnosing AD (56). The DNA methylation level of PICALM is decreased and linked to cognitive decline in AD (57). Elevated ANKI DNA methylation exists in the entorhinal cortex of AD, and is associated with AD pathology (58). Similarly, another study also identifies that hypermethylated ANKI is observed in the entorhinal cortex, superior temporal gyrus, and prefrontal cortex (39). Methylation of ABCA2 is negatively associated with AD risk and may be a therapeutic target of AD (59). Furthermore, other studies identify many genes without methylation changes between AD and normal controls, such as SORL1, SIRT1, SST, SSTR4, HSPA8, HSPA9, SIRT3, and ABCA7 (40, 60–63) (Table 1).

Recently, there were several genome-wide methylation analyses of AD. By examining genome-wide enhancer methylation levels in the prefrontal cortex of AD patients, Li et al. identify 1,224 enhancer regions methylated differentially and most of their methylation levels are decreased in AD neurons, which are associated with Aβ, tau, and cognitive impairment (65). Humphries et al. show that 1,106 of 5,147 CpG sites differ between LOAD patients and controls, 87.3% of which are hypomethylated and related to the myelination network in LOAD (66). Moreover, Watson et al. identify 479 differentially methylated regions in patients with AD compared to normal controls by performing a genome-wide screen of DNA methylation in the temporal gyrus of AD, and 475 of these regions are involved in neuron function and development (67). De Jager et al. show that 11 of 415,848 interrogated CpGs are significantly associated with the AD pathological burden by studying AD autopsied brains, including CpGs in ABCA7.
| Gene | Function | Tissue type | Main finding | References |
|------|----------|-------------|--------------|------------|
| APP  | Amyloid precursor protein | Human postmortem cerebellum, parietal lobe and temporal lobe | Hypomethylation | (24) |
| APP  | Amyloid precursor protein | Human postmortem temporal lobe | Hypomethylation | (25) |
| APP  | Amyloid precursor protein | Human peripheral blood samples | Hypomethylation | (26) |
| APP/PSEN1/PSEN2 | Amyloid precursor protein/component of γ-secretase | Human postmortem frontal cortex and hippocampus | No differences | (27) |
| APP/PSEN1/PSEN2 | Amyloid precursor protein/component of γ-secretase | Human postmortem frontal cortex, parietal cortex, temporal cortex, and cerebellum | No differences | (28) |
| PSEN1/PSEN2 | Component of γ-secretase | Human peripheral blood | No differences | (33) |
| PSEN1 | Component of γ-secretase | Human postmortem cerebral cortex | Hypomethylation | (35) |
| PSEN1 | Component of γ-secretase | Human postmortem cerebral cortex | Hypomethylation | (36) |
| PSEN1 | Component of γ-secretase | Human peripheral blood | Hypomethylation | (37) |
| APOE | Risk gene for AD | Human peripheral blood | Hypomethylation | (39) |
| APOE | Risk gene for AD | Human peripheral brain tissues (entorhinal and auditory cortices and hippocampus) | No differences | (40) |
| 2′,5′-oligoadenylate (2-5A) synthetase | An enzyme induced by interferon (IFN) | Human skin fibroblasts | Hypomethylation | (41) |
| SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 | Risk gene for AD | Human dorsolateral prefrontal cortex tissue | Their methylation was associated with AD pathologies | (45) |
| BDNF | Nerve growth factor | Human peripheral blood samples | Hypermethylation | (46) |
| BDNF | Nerve growth factor | Human peripheral blood samples | Hypermethylation | (47) |
| BDNF, SIRT1, and PSEN1 | Nerve growth factor/Sirtuin 1/Component of γ-secretase | Human peripheral blood samples | No difference | (48) |
| OGG1, PARP1, MRE11A, BRCA1, MLH1, and MGMT | DNA repair | Human peripheral blood samples | No differences | (49) |
| UQRC1 | A subunit of the respiratory chain protein | Human peripheral blood samples | Hypermethylation | (50) |
| PLD3 | Risk gene for AD | Human hippocampal samples | Hypermethylation | (51) |
| TREM2 | Risk gene for AD | Human peripheral blood samples | Hypermethylation | (52) |
| CRT1 | CREB regulated transcription coactivator 1 | Human postmortem hippocampus | Hypermethylation | (53) |
| BIN1 | Risk gene for AD | Human peripheral blood samples | Hypermethylation | (54) |
| OPRM1 and OPRL1 | Opioid receptor genes | Human peripheral blood samples | Hypermethylation | (56) |
| PICALM | Risk gene for AD | Human peripheral blood samples | Hypermethylation | (57) |
| ANK1 | Encoding for ankyrin-1 | Human postmortem entorhinal cortex | Hypermethylation | (58) |
| ABCA2 | Risk gene for AD | Human peripheral blood samples | Methylation of ABCA2 was negatively associated with AD risk | (59) |
| SORL1 and SIRT1 | Risk gene for LOAD | Human postmortem brain tissues (entorhinal and auditory cortices and hippocampus) and peripheral blood leukocytes | No difference | (40) |
| SST and SSTR4 | Somatostatin and its receptor | Human postmortem brain tissue (middle temporal and superior frontal gyrus) | No difference | (60) |
| HSPA8 and HSPA9 | Chaperone | Human postmortem brain tissue (entorhinal and auditory cortices and hippocampus) and peripheral blood samples | No difference | (61) |
| PSEN1, BACE1, MTHFR, DNMT1, DNMT3A, and DNMT3B | PSEN1 and BACE1: Aβ production MTHFR: one-carbon metabolism DNMT1, DNMT3A, and DNMT3B: DNA methylation | Human peripheral blood samples | No difference | (62) |
TABLE 1 | Continued

| Gene       | Function                                           | Tissue type                           | Main finding                  | References |
|------------|----------------------------------------------------|---------------------------------------|-------------------------------|------------|
| ABCA7      | Risk gene for AD                                   | Human peripheral blood samples        | No differences                | (63)       |
| TREM2      | Risk gene for AD                                   | Human postmortem hippocampus          | Hyperhydroxymethylation       | (64)       |
| TBX32R/SORBS3/SPTBN4 | Family of G protein-coupled receptors/involved in synapsis/member of the axon initial segment | C57BL/6J mice and human postmortem frontal cortex | Hypermethylation             | (44)       |
| PSEN1      | Component of γ-secretase                           | TgCRND8 mice brains and blood         | No differences                | (34)       |

BDNF, brain derived neurotrophic factor; SIRT1, Sirintub 1; OGG1, 8-Oxo guanine DNA Glycosylase; PARP1, Poly-ADP-ribose polymerase-1; MRE11A, Meiotic Recombination 11 Homolog A; BRCA1, breast cancer 1; MTHFR, Methylenetetrahydrofolate Reductase; DNMT1, DNA Methyltransferase 1; DNMT3A, DNA Methyltransferase 3 Alpha; DNMT3B, DNA Methyltransferase 3 Beta.

and BIN1 regions (68). Moreover, an epigenome-wide study identifies that DNA methylation of OXT is associated with the risk of AD, indicating it may be a novel promising biomarker or therapeutic target in AD (69). In another epigenome-wide DNA methylation study, among 17,895 differentially methylated CpG sites, there are 11,822 hypermethylated CpGs and 6,073 hypomethylated CpGs in the superior temporal gyrus of AD patients (70). When examining 420,852 DNA methylation sites from four brain regions in late-onset AD and neurotypical controls, 858 sites show differential methylation patterns, indicating that DNA methylation may contribute to AD (71). Altuna et al. profile genome-wide DNA methylation levels in the hippocampus of AD patients in which 118 AD-related differentially methylated positions are found, and these positions are linked to phosphorylated tau burden (72). The first integrated base-resolution genome-wide study finds 39 CpG site-specific and 27 AD region-specific epigenetic changes in AD, providing reliable epigenetic signatures for the diagnosis and treatment of AD (73) (Table 2).

Global DNA methylation/hydroxymethylation is the percentage of methylcytosine/hydroxymethylcytosine of total cytosine. The percentage of methylation of CCGG sites exhibits no significant difference by investigating DNA methylation in the human brain (78). Moreover, no significant global 5mC and 5hmC changes are found in the entorhinal cortex of AD patients (79). Some studies find that the levels of global 5mC and 5hmC is decreased in patients with AD (80–82). However, in postmortem AD cortex, global levels of 5 mC and 5 hmC are significantly increased in AD samples and correlated with biomarkers of AD (83). Global increased 5mC levels are identified in the postmortem frontal cortex from AD patients (84). By analyzing DNA isolated from peripheral blood, global DNA methylation levels are upregulated in AD patients and correlated with cognitive impairments (85). The reasons for the difference are far from being understood. One possible reason is that they investigated different brain regions. Nevertheless, some findings are contradictory even for the same test method and brain region. The differences in test method procedures and sample size may account for the different findings. In addition to studies in postmortem brain regions, global DNA methylation/hydroxymethylation was also investigated in the AD mouse model. The 5xFAD mouse model is composed of two APP and two PSEN1 mutations. Global high levels of 5-mC and a reduction of 5-hmC were observed in the 5xFAD mouse model, which are related to cognition and paralleled with Aβ deposition (86). In the 3xTg-AD mouse model, global methylation and hydroxymethylation levels are reduced (87). In the SAMP8 mouse model, global DNA methylation levels are decreased while 5-hmC levels are upregulated (88).

Compared to DNA methylation, relatively few studies analyze the role of DNA hydroxymethylation in AD. As we mentioned previously, 5hmC is the specific product of DNA hydroxymethylation. Five hmC is highly concentrated in the central nervous system and plays an important role in neurodevelopment and neurological function (89, 90). The triggering receptor expressed on myeloid cells (TREM2) is a receptor in brain microglia and contributes to the pathogenesis of AD (91). When examining DNA hydroxymethylation levels in TREM2, Celarain et al. find that the 5hmC levels were increased in AD patients and involved in TREM2 mRNA expression (64) (Table 1). Shu et al. demonstrate that the 5hmC levels are decreased in the hippocampus in a mouse model of AD, whereas another study finds that the 5hmC levels are significantly increased in it in AD patients. Different tissue types may explain the contradictory findings (92, 93). The genome-wide distribution of 5hmC finds that 517 differentially hydroxymethylated regions (DhMRs) are significantly associated with neuritic plaques, whereas 60 DhMRs are associated with neurofibrillary tangles (74). Moreover, there are 325 genes containing differentially hydroxymethylated loci in AD from genome-wide analyses of 5hmC in the prefrontal cortex of postmortem AD patients, involving neuronal projection development and neurogenesis (75). By studying genome-wide profiles of 5mC and 5hmC profiles in frontal cortex tissues from Chinese AD patients, two significant transcription factor-binding motifs, hypoxia-inducible factor 2α, and hypoxia-inducible factor 1α are enriched in the differentially hydroxymethylated regions (76). As mentioned previously, DNA hypermethylation in ANKI
| Design and cases | Tissue type | Methylation sites | Main finding | References |
|------------------|-------------|------------------|--------------|------------|
| 101 individuals with no/mild, moderate and severe AD pathology (Braak stage: 1–2 n = 38 individuals, 3–4 n = 32, and 5–6 n = 31 individuals, respectively) | Human postmortem prefrontal cortex | 1.2 million CpG and CpH sites in enhancers | 1,224 differentially methylated enhancer regions; most of which are hypomethylated at CpH sites in AD neurons | (65) |
| AD cases (N = 10) compared to normal controls (N = 10) and disease controls (DLB N = 10) | Human postmortem temporal pole | 5,147 CpG sites on 465 genes | 1,106 of the 5,147 CpG sites differed between LOAD patients and controls, and 87.3% of them were hypomethylated in LOAD | (66) |
| AD patients (N = 34) and non-AD subjects (N = 34) | Human postmortem superior temporal gyrus | 461,272 autosomal CpGs | 479 differentially methylated regions in AD patients, and 475 of these regions are involved in neuron function, metabolism and development | (67) |
| Investigating AD methylation state with the burden of AD pathology prospectively (N = 708) | Human postmortem dorsolateral prefrontal cortex | 415,848 interrogated CpGs | 11 of 415,848 interrogated CpGs are significantly associated with AD pathological burden, including CpGs in the ABCA7 and BIN1 regions | (68) |
| Comparison of AD patients (45) with age-matched controls (N = 35) and converters to AD dementia (N = 54) and non-converters (N = 42) | Human postmortem middle temporal gyrus and peripheral blood samples | Epigenome-wide patterns of DNA 5 mC and 5 hmC | DNA methylation of OXT was associated with AD risk in the elderly | (69) |
| 34 patients with late-onset AD and 34 controls without dementia | Human postmortem superior temporal gyrus | 17,895 differentially methylated CpG sites | There were 11,822 hypermethylated CpGs and 6,073 hypomethylated CpGs | (70) |
| Late-onset AD patients (N = 24) and controls (N = 49) | Human postmortem hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum | 420,852 DNA methylation sites | 858 sites showed differential methylation patterns | (71) |
| 26 AD patients and 12 control subjects | Human postmortem hippocampal samples | 5-methylcytosine | 118 AD-related differentially methylated positions were identified | (72) |
| 371 AD patients and 163 control subjects | Normal and AD patient derived iPSCs, neural progenitor cells, and cortical neuronal cells | 5-methylcytosine (5mC), 5-hydroxymethyl-cytosine (5 hmC), and 5-formylcarboxy-cytosine (5fC/caC) | 39 CpG site-specific and 27 AD region-specific epigenetic changes | (73) |
| Identifying AD DhMRs associated with AD pathology (N = 30) | Human postmortem dorsolateral prefrontal cortex tissue | 5-hydroxymethylcytosine (5 hmC) at specific genomic loci | 517 DhMRs significantly associated with neuritic plaques while 60 DhMRs associated with neurofibrillary tangles | (74) |
| Comparison of AD (N = 6) with control cases (N = 5) | Human postmortem frontal cortex | 5-methylcytosine and 5-hydroxymethylcytosine (5 hmC) | There were 325 genes containing differentially hydroxymethylated loci in AD | (75) |
| Late-onset AD (LOAD) (n = 5) and neurologically normal controls (n = 5) | Human postmortem frontal cortex tissues | 16,165 DHMRs annotated to 8,149 genes | HIF2 α and HIF1α was enriched in the DhMRs | (76) |
| 96 individuals | Human postmortem cortex tissues | 5-methylcytosine and 5-hydroxymethylcytosine (5 hmC) | Hypohydroxymethylation in ANK1 was found in entorhinal cortex of AD patients | (77) |

DLB, Dementia with Lewy bodies; ATP, binding cassette subfamily A member 1; BIN1, box-dependent-interacting protein 1; OXT, Oxytocin; DhMRs: differentially hydroxymethylated regions; HIF2 α, hypoxia-inducible factor 2α; HIF1α, hypoxia-inducible factor 1α; ANK1, Ankyrin 1.
is identified in AD (58). Hypohydroxymethylation in ANKI is also found in the entorhinal cortex of AD patients in an epigenome-wide association study, further highlighting the significant role of ANKI in the development of AD (77) (Table 2).

It is increasingly becoming accepted that mitochondria play a significant role in the pathogenesis of AD (94). Blanch et al. show that mitochondrial 5 mC levels increase, whereas no significant differences in 5 hmC levels are identified in AD (95). However, another study finds that mitochondrial 5 hmC is significantly increased in the superior temporal gyrus of AD subjects (93). The different test methods among these studies may account for the different findings of mitochondrial 5 hmC in brain tissue. In APP/PS1 transgenic mice, the displacement loop mitochondrial methylation level is reduced while 12 S rRNA gene mitochondrial methylation is increased, indicating that mitochondrial DNA methylation may play a role in the AD development (96).

**HISTONE MODIFICATIONS IN AD**

Histone is a kind of octamer consisting of pairs of H2A, H2B, H3, and H4, which form the nucleosome with DNA. Histone can be modified at the N-terminal tails, and the modifications can affect the three-dimensional structure of the chromatin, leading to the changes in the transcription of genes. The common histone modifications include acetylation, methylation, and ubiquitination. The modifications are controlled by a specific set of enzymes, such as acetyltransferases and deacetylases (97).

To date, there have been several studies of histone modifications in AD. A genome-wide study of H3K27 acetylation in AD observed 4,162 differential acetylicom variation peaks between AD patients and normal controls, which were associated with Aβ and tau pathology (98). Zhang et al. show that histone acetylation is significantly decreased in the temporal lobe of patients with AD compared with that of controls, which is consistent with the previous finding in an APP/PS1 mouse model of AD, highlighting that histone acetylation is involved in AD (99, 100). Narayan et al. demonstrate that acetyl histone H3 and H4 levels are significantly increased in postmortem AD brain tissue compared with normal controls by investigating global acetyl histone levels (101). Another study shows a significant increase of monoctytic H4K12 acetylation in transgenic AD mouse models and MCI patients (102). Global histone H3 acetylation levels exhibit a significant increase in the frontal cortex in end-stage AD patients, supporting that histone acetylation plays an important role in AD (103). These studies highlight that histone acetylation levels are increased on a global scale in the AD brain. Anderson et al. observe notable decreases in methylation of H2B and H4 residues, whereas, the ubiquitination of H2B residue increases. These post-translational histone modifications are related to AD pathology and of great significance in the development of AD (104). With regard to the regulators of histone modifications, in APP/PS1 mice, age is associated with the global levels of histone modifications, suggesting that age is one of the main risk factors in the histone modifications of AD (105). An epigenome-wide association study demonstrates that tau protein affects histone acetylation changes and an altered chromatin structure in AD prefrontal cortices (106) (Table 3).

**NON-CODING RNAs IN AD**

Non-coding RNAs (ncRNAs) are defined as RNA molecules that are not translated into a protein. Less than 2% of the human genome encodes proteins, and the rest produces thousands of ncRNAs, including small ncRNAs (smaller than 200 nucleotides in length), such as microRNAs, small interfering RNAs, piwi-interacting RNAs, and a variety of long ncRNAs (longer than 200 nucleotides) (107).

One of the best characterized small ncRNAs in AD is microRNA. Many microRNAs are surrounded by the CpG island and located within exons, intergenic regions, or introns of genes (108). MicroRNAs can enhance or repress messenger RNA transcription by binding to the 3′ untranslated region or the promoter of the target gene (109). In sporadic AD, microRNAs play an important role in Aβ production and neurofibrillary tangle formation (Figure 3). Two studies demonstrate that microRNA-16 inhibits the expression of APP both in vitro and in vivo, which may be a therapeutic target of AD (110, 111). As mentioned previously, BACE1 is one of the APP-cleaving enzymes in the production of Aβ. By investigating changes in 328 microRNA expression profiles, Hébert et al. find that microRNA cluster microRNA-29a/b-1 suppressed endogenous BACE1 expression, and it is significantly decreased in sporadic AD patients (112). MicroRNA-200a-3p also reduces the expression of BACE1 and is confirmed to be decreased in the hippocampus of APP/PS1 and SAMP8 mice as well as in blood plasma from AD patients (113). MicroRNA-340 is decreased in the hippocampus of an AD mouse model and associated with the overproduction of Aβ by targeting BACE1 (114). MicroRNA-31 reduces the mRNA levels of BACE1 and improves memory deficits in AD triple-transgenic (3xTg-AD) female mice (115). Moreover, microRNA-107, microRNA-124, microRNA-195, microRNA-298, and microRNA-328 are also associated with the expression of BACE1 (116–119). Another recent study shows that microRNA-298 represses the expression of BACE1, APP, Aβ40, and Aβ42 in the cell model, suggesting that microRNA-298 may be a therapeutic target for AD (120). Meanwhile, the addition of microRNA-34a-5p and microRNA-125b-5p reduces Aβ by targeting BACE1 (121). Abnormally phosphorylated tau protein is another key pathological hallmark of AD. Li et al. find that microRNA-219-5p is significantly upregulated in brain tissues of AD patients, contributing to tau phosphorylation and AD progression (122). MicroRNA-125b promotes the phosphorylation of tau by activating cyclin-dependent kinase 5 (CDK5) and p35/25, and microRNA-125b is increased in AD patients (123). Similarly, overexpression of microRNA-125b results in tau hyperphosphorylation by targeting phosphatases DUSP6 and PEP1CA (124). In HEK293/tau cells, microRNA-425-5p overexpression promotes tau phosphorylation through targeting HSPB8 in AD (125). MicroRNA-132, the most significantly downregulated microRNA in AD, is associated with lower levels of tau phosphorylation by regulating EP300,
TABLE 3 | Histone modifications in AD.

| Histone modifications | Tissue type | Main findings | References |
|-----------------------|-------------|---------------|------------|
| H3K27 acetylation     | Human postmortem entorhinal cortex samples | 4,162 differential acetylomic variation peaks between AD and normal controls | (98) |
| Histone acetylation   | Human postmortem temporal lobe | Decreased significantly in AD | (99) |
| H3 and H4 acetylation | Human postmortem temporal gyrus | Increased significantly in AD | (101) |
| H3 acetylation        | Human postmortem frontal cortex | Increased substantially in AD | (103) |
| H4 acetylation        | Human postmortem frontal cortex | Decreased significantly in AD | (104) |
| H2B ubiquitination    | Human postmortem frontal cortex | Increased significantly in AD | (104) |
| Histone acetylation   | Hippocampus of AD APP/PS1 mouse | Decreased significantly in AD | (100) |
| H4K12 acetylation     | Transgenic AD mouse models and MCI/AD patients monocytes | Increased significantly in AD | (102) |

H3K27: histone H3 at lysine 27; H2B, histone 2B; H3, histone H3; H4, histone H4; H4K12: histone H4 at lysine 12; MCI, mild cognitive impairment.

GSK3b, Rbfox1, proteases Calpain2, and caspases 3/7 (126). MicroRNA-124-3p inhibits abnormal tau hyperphosphorylation through targeting the Caveolin-1-Pi3K/Akt/GSK3β pathway in AD (127). MicroRNA-106b reduces tau phosphorylation induced by Aβ42 by inhibiting the expression of Fyn (128). In 3xTg-AD mice, knocking out microRNA-369 is associated with tau hyperphosphorylation via regulating Fyn and SRPK2 signaling pathways (129). MicroRNA-326 decreases tau hyperphosphorylation and improves cognitive functions of AD through the JNK signaling pathway (130). Elevating the levels of microRNA-330 reduces Aβ production and alleviates oxidative stress through the MAPK signaling pathway (134). In APP/PS1 mice, microRNA-138 enhances Aβ production and improves cognitive impairment by decreasing the expression of sirtuin 1 protein (135). MicroRNA-98 improves oxidative stress and downregulates Aβ production by activating the Notch signaling pathway (136). In addition to microRNAs, cortical circular RNAs (circRNAs) are associated with AD diagnosis, clinical dementia severity, and neuropathological severity, suggesting the potentially significant role of circRNA in the pathogenesis of AD (137). CircRNA KIAA1586 is significantly enriched in AD-associated biological processes and may be a novel risk factor in the pathogenesis of AD (138). CircRNA circ_0000950 promotes neuron apoptosis, inhibits the production of neurite outgrowth, and increases the levels of inflammatory cytokine levels via sponging microRNA-103 in AD (139). CircRNA circ_0000950 promotes neuron apoptosis, inhibits the production of neurite outgrowth, and increases the levels of inflammatory cytokine levels via sponging microRNA-103 in AD (139). CircRNA circ_0000950 promotes neuron apoptosis, inhibits the production of neurite outgrowth, and increases the levels of inflammatory cytokine levels via sponging microRNA-103 in AD (139). CircRNA circ_0000950 promotes neuron apoptosis, inhibits the production of neurite outgrowth, and increases the levels of inflammatory cytokine levels via sponging microRNA-103 in AD (139). CircRNA circ_0000950 promotes neuron apoptosis, inhibits the production of neurite outgrowth, and increases the levels of inflammatory cytokine levels via sponging microRNA-103 in AD (139). CircRNA circ_0000950 promotes neuron apoptosis, inhibits the production of neurite outgrowth, and increases the levels of inflammatory cytokine levels via sponging microRNA-103 in AD (139). CircRNA circ_0000950 promotes neuron apoptosis, inhibits the production of neurite outgrowth, and increases the levels of inflammatory cytokine levels via sponging microRNA-103 in AD (139). CircRNA circ_0000950 promotes neuron apoptosis, inhibits the production of neurite outgrowth, and increases the levels of inflammatory cytokine levels via sponging microRNA-103 in AD (139). CircRNA circ_0000950 promotes neuron apoptosis, inhibits the production of neurite outgrowth, and increases the levels of inflammatory cytokine levels via sponging microRNA-103 in AD (139).
which may be potential biomarkers in AD (141). In addition, 147 circRNAs are differentially expressed in different AD brain regions, most of which are found in the parahippocampal gyrus, supporting that circRNAs in the parahippocampal gyrus may be biomarkers in AD (142).

In the central nervous system, long ncRNAs (lncRNAs) are prevalent and play a critical role in the pathogenesis of AD (143). A conserved lncRNA called BACE1-antisense transcript (BACE1-AS) increases BACE1 mRNA stability and generates additional Aβ in AD patients as well as in APP transgenic mice, and knockdown of BACE1-AS improves memory (144, 145). The BACE1-AS level differs significantly between pre-AD and healthy controls as well as full-AD and healthy controls, indicating that BACE1-AS may be a potential biomarker of AD (146). LncRNAs, including S1A, 17A, and NDM29, increase the formation of Aβ and contribute to the pathogenesis of AD (147). LncRNA SOX21-ASI is upregulated in the AD mouse model, and its inhibition reduces neuronal oxidative stress and suppresses neuronal apoptosis via the Wnt signaling pathway (148). LncRNA BC200 levels are enhanced significantly in AD brains and involved in dendritic loss by regulating local protein synthesis (149). Brain-derived neurotrophic factor antisense RNA (BDNF-AS) is an lncRNA that represses BDNF expression. The inhibition of BDNF-AS results in neuronal growth and differentiation, which may be the novel pharmacological target in AD (150). LncRNA Sox2OT represses Sox2 gene expression, involving neurogenesis and neuronal differentiation (151). In APP/PS1 mice, lncRNA EBF3-AS is upregulated in the hippocampus and related to neuron apoptosis by regulating EBF3 expression (152). LncRNA NAT-Rad18 increases the likelihood of apoptosis under DNA damage-related stress via targeting RAD18 (153). LncRNA TUG1 promotes neuronal apoptosis in the hippocampus by increasing microRNA-15a levels and suppressing ROCK1 expression (154). In the SAMP8 mouse model, lifestyle, including diet, exercise, and environmental enrichment, results in epigenetic changes (20). In addition, 3112 differentially expressed lncRNAs are identified in the SAMP8 mouse model, most of which are intergenic and exon sense-overlapping (155). In the AD brain, 16 age-associated and 13 gender-associated lncRNAs are identified; among them, lncRNAs SNHG19, LINC00672, RNF144A-ASI, LY86-ASI, and LINC00639 are associated with the pathology of AD (156). Nuclear paraspeckle assembly transcript 1 (NEAT1), a lncRNA that is widely expressed in cells, is of great importance in various biological and pathological processes by mediating target genes’ expression (157). NEAT1 is involved in Aβ clearance by regulating the expression of endocytosis-related genes in AD (158). Additionally, in an APP/PS1 transgenic mouse model, NEAT1 is increased and promotes the pathogenesis of AD via upregulating PTEN-induced putative kinase 1 (PINK1)’s ubiquitination and degradation, which provided a potential therapeutic strategy in AD (159) (Table 4).

The mechanisms underlying epigenetic regulation of non-coding RNAs in AD are complex. As we mention, circRNAs mediate the effect of microRNAs (139). MicroRNAs are regulated by chromatin modifications and DNA methylation, which are implicated in AD by targeting messenger RNA (mRNA) expression (182). Dysregulated circRNAs are associated with the increased number of downstream target mRNAs in the Tg2576 AD mouse model, indicating that circRNA-microRNA-mRNA may play a significant role in the pathogenesis of AD (183). Emerging evidence shows that lncRNAs are involved in multiple epigenetic processes, such as DNA methylation, via regulating the interactions of target genes with chromatin-remodeling enzymes. Most lncRNAs are located in the nucleus, in which they work as scaffolds for chromatin modifiers or transcriptional co-regulators to exhibit regulatory functions (184). In addition, lncRNAs can alter transcription, mRNA stability, alternative splicing, and translational activity in AD, resulting in aberrant gene expression (14). Overall, the deregulated and complex non-coding RNAs are closely associated with core pathophysiological processes of AD via regulating gene expression at different levels, including transcription, RNA processing, and translation (185).

**EPIGENETIC THERAPEUTIC STRATEGIES FOR AD**

DNA hypomethylation of pathogenetic genes is associated with the overproduction of Aβ (186). Oliveira et al. find that DNA methyltransferase Dnmt3a2 is decreased in the hippocampus of mice, and the restoration of Dnmt3a2 recovered the cognitive functions (160, 187). Further, betaine, a methyl donor, ameliorates the memory deficits in mice (161). Another methyl donor, S-adenosylmethionine (SAM), is decreased in the cerebrospinal fluid of AD patients (188). SAM reduces the production of Aβ and tau phosphorylation by upregulating PSEN1 and BACE1 expression in vivo, which improves the cognitive status in AD mouse models (162). The treatment with alcohol extracts from G. lucidum increases methylation regulators and improves memory in APP/PS1 AD model mice (163). In AD and mild cognitive impairment patients, B vitamin intake results in hypermethylation of NUDT15 and TXNRD1, which is associated with better cognitive performance (164). The supplementation of folic acid, a methyl donor, improves cognitive functions in participants who tend to decline with age (165). Interestingly, maternal supplementation of resveratrol promotes cognitive decline in the SAMP8 mice offspring via increasing global methylation levels and decreasing hydroxymethylation levels (166). Consequently, the DNA methyltransferase or the methyl donor may be potential treatments for patients with AD.

Meanwhile, hypermethylation is involved in the development of AD as well; thus, the decrease of methylation levels in some genes may also be a promising therapeutic strategy (109). DNMT inhibitors are used in the treatment of hematopoietic malignancy (189). Also, the administration of DNMT inhibitors is used in some neurodegenerative diseases, such as Friedreich’s ataxia (190). Although DNMT inhibitors possess the potential for the therapy of AD, the lack of gene-specificity and security is the main difficulty needed to resolve before its use in AD patients (177). As we previously mentioned, the epigenetic markers are altered in the 5xFAD mouse model. Treatment of UNC0642 inhibits the methyltransferase activity G9a/GLP and restores cognition by reducing 5mC and increasing 5hmC in the 5xFAD mouse model (167). The knockout of the Tet1 gene enhances.
**TABLE 4** | Non-coding RNAs in AD.

| Non-coding RNAs | Tissue type | Main findings | References |
|-----------------|-------------|---------------|------------|
| MicroRNA-29a/b-1 | AD patients postmortem sporadic brain | MicroRNA-29a/b-1 could suppress BACE1 expression and was significantly decreased in AD | (112) |
| MicroRNA-107 | Human temporal cortex samples | Decreased microRNA-107 expression | (116) |
| MicroRNA-298 | Primary human cell culture model | MicroRNA-298 repressed the expression of BACE1, APP, Aβ40, and Aβ42 | (120) |
| MicroRNA-34a-5p and microRNA-125b-5p | Serum samples of 27 AD patients | MicroRNA-34a-5p and microRNA-125b-5p reduced Aβ production | (121) |
| MicroRNA-125b | Primary neurons | MicroRNA-125b caused tau hyperphosphorylation | (124) |
| MicroRNA-132 | Primary mouse and human wild-type neurons | MicroRNA-132 was associated with the lower levels of tau phosphorylation | (126) |
| MicroRNA-219-5p | Human postmortem brain tissues | MicroRNA-219-5p was increased and associated with tau phosphorylation in AD | (122) |
| MicroRNA-125b | Human postmortem brain specimens | MicroRNA-125b could promote the phosphorylation of tau and was enhanced in AD | (123) |
| MicroRNA-346 | Primary human brain cultures | MicroRNA-346 upregulated APP translation and Aβ production | (132) |
| MicroRNA-644 | Human HEK293, HeLa cells, and mouse Neuro2A cells | MicroRNA-644 downregulated the formation of Aβ | (133) |
| circRNA | Neuropathologically confirmed AD case and control brain tissues | CircRNA was associated with AD diagnosis, clinical dementia severity and neuropathological severity | (137) |
| Circ-AXL, circ-GPHN and circ-PCCA | Cerebrospinal fluid from AD patients and control subjects | Circ-AXL, circ-GPHN and circ-PCCA differed significantly between AD patients and normal controls | (141) |
| circRNA | Human postmortem brain samples | 147 circRNAs were differentially expressed in different AD brain regions | (142) |
| BACE1-AS | Human postmortem brain samples | BACE1-AS could increase BACE1 mRNA stability and generate additional Aβ | (144) |
| 51A, 17A, and NDM29 | Postmortem AD brain samples and AD cerebrospinal fluid | 17A, 51A, and NDM29 increase Aβ formation and/or the Aβ42/Aβ40 ratio | (147) |
| LncRNAs | Human postmortem brain samples | SNHG19 and LINC00672, RNF144A-AS1, LY96-AS1, and LINC00639 were associated with the pathology of AD | (156) |
| BC200 | Human postmortem brain samples | BC200 levels enhanced significantly in AD brains | (149) |
| BDNF-AS | Human and mouse cell lines | BDNF-AS repressed BDNF expression | (150) |
| Sox2OT | AD mouse cerebral cortex | Sox2OT repressed Sox2 gene expression, involving in neurogenesis and neuronal differentiation | (151) |
| EBF3-AS | Hippocampus of APP/PS1 mice | EBF3-AS was upregulated in hippocampus and related to neuron apoptosis | (152) |
| NAT-Rad18 | AD rat cortical neurons | NAT-Rad18 increased the likelihood of apoptosis | (153) |
| TUG1 | AD mice model | TUG1 promoted neuronal apoptosis | (154) |
| LncRNAs | SAMP8 mice | 3,112 differentially expressed lncRNAs were found in hippocampus | (155) |
| NEAT1 | APPswe/PS1dE9 double transgenic mouse model | NEAT1 is involved in Aβ clearance | (158) |
| NEAT1 | APP/PS1 transgenic mice model | NEAT1 promoted the pathogenesis of AD | (159) |
| MicroRNA-124-3p | N2a/APP695swe cells | MicroRNA-124-3p inhibited abnormal tau hyperphosphorylation | (127) |
| MicroRNA-106b | SH-SY5Y cells | MicroRNA-106b reduced tau phosphorylation | (128) |
| MicroRNA-330 | C57 mice | MicroRNA-330 reduced Aβ production and alleviated oxidative stress | (134) |
| MicroRNA-138 | APP/PS1 mice | MicroRNA-138 reduced Aβ production and improved cognitive impairment | (135) |
| MicroRNA-98 | AD mice model | MicroRNA-98 improved oxidative stress and downregulated Aβ production | (136) |
| MicroRNA-369 | 3xTg-AD mice | MicroRNA-369 was associated with tau hyperphosphorylation | (129) |
| MicroRNA-425-5p | AD and HEK293/tau cells | MicroRNA-425-5p overexpression promoted tau phosphorylation | (125) |
cognitive function by oxidizing 5 mC to 5 hmC and reducing methylation levels of the brain in mice (191).

Histone deacetylases (HDACs) inhibit gene expression and are associated with memory impairment by restricting access of transcription factors to memory storage-related genes (192). HDAC inhibitors (HDACi) are considered to be the potential therapeutic strategy in AD. Trichostatin A, an HDACi, restores contextual freezing performance and H4 acetylation levels in the APP/PS1 mouse model of AD (100). Valproic acid (VPA) is one of the first discovered HDACi and beneficial in memory enhancement in the mouse model of AD (168). Histone deacetylase 2 (HDAC2) inhibitors improve memory by promoting the formation and growth of dendritic spines in mice (193, 194). Sodium phenylbutyrate, an HDACi, also alleviates memory impairment in transgenic AD mice by inducing neurotrophin expression via the protein kinase C (PKC)-cAMP-response element-binding protein (CREB) pathway (169). M344, an HDACi, lowers the expression of Aβ and prevents cognitive decline with the normalization of several pathogenic pathways in triple transgenic (APPsw/PS1M146V/TauP301L) mice in vivo (170). A mercaptoacetamide-based class II HDACi and a hydroxamide-based class I and II HDACi reduce Aβ levels in vitro and rescue memory loss in AD mice (171). The downregulated PU.1 expression is associated with lower AD risk in a genome-wide association study (195). High-throughput screening of FDA-approved drugs reveals a HDACi, vorinostat, decreases PU.1 expression and may be a useful therapeutic approach in AD (172). Moreover, the administration of RGFP-966, a selective HDAC3 inhibitor, improves cognitive function in the AD mouse model and decreases Aβ and tau in neurons from AD patients, further supporting the significant role of HDACi in patients beyond the AD mouse model (173). Therefore, HDACi can be seen as a potential therapeutic agent for AD. However, HDACi is widely targeted and inevitably causes various side effects, including apoptosis and arrest of the cell cycle; therefore, successful experiments in AD animal models are seldom feasible for clinical application in humans. To increase the sensitivity of HDACi is a critical issue in the future (196). Moreover, histone acetyltransferase (HAT) is involved in the formation of CREB binding protein (CBP), which has an important role in memory (197). The expression of CBP could help transgenic AD mice recover memory impairment. The activator of histone acetyltransferases CBP/p300 is capable of passing the blood–brain barrier and extending the recent memory duration in B57BL/6J male mice in vivo, which may be a potential treatment target in AD (174). In the late-stage FAD mouse model, the inhibitors of euchromatic histone methyltransferases decrease histone hypermethylation and improve synaptic deficits and cognitive functions, providing a possible novel therapeutic strategy for AD (175).

Noncoding RNAs are also involved in the pathogenesis of AD. The decreased expression of BACE1 is obtained by

### TABLE 4 | Continued

| Non-coding RNAs | Tissue type | Main findings | References |
|-----------------|-------------|---------------|------------|
| MicroRNA-326    | AD mice models | MicroRNA-326 decreased tau hyperphosphorylation and improved cognitive functions | (130) |
| MicroRNA-195    | ApoE4/+/ mice | MicroRNA-195 diminished tau hyperphosphorylation and Aβ burden | (131) |
| MicroRNA-31     | Hippocampus of 17-month-old AD triple-transgenic (3xTg-AD) female mice | MicroRNA-31 was able to reduce the mRNA levels of BACE1 | (115) |
| MicroRNA-200a-3p | Hippocampus of APP/PS1 and SAMP8 mice as well as in blood plasma from AD patients | MicroRNA-200a-3p could reduce the expression of BACE1 and confirmed to be decreased in AD | (113) |
| MicroRNA-16     | Hippocampus of aged SAMP8 mice and murine cells | MicroRNA-16 led to reduced APP protein expression and was decreased in AD mice | (111) |
| MicroRNA-340    | Hippocampus of AD model SAMP8 mouse | MicroRNA-340 was decreased and associated with the overproduction of Aβ | (114) |
| BACE1-AS        | SAMP8 mice | Knockdown of BACE1-AS inhibited BACE1 and improved memory | (145) |
| SOX21-AS        | AD mice model | LncRNA SOX21-AS1 was unregulated and resulted in neuronal oxidative stress in AD | (149) |
| MicroRNA-195    | SAMP8 mice and HEK293 cells | SAMP8 mice and HEK293 cells | (119) |
| MicroRNA-124    | Cellular AD model | MicroRNA-124 was steadily altered and associated with BACE1 | (117) |
| MicroRNA-298 and microRNA-328 | Neuronal (N2a) and fibroblastic (NIH 3T3) cells | MicroRNA-298 and microRNA-328 were associated with BACE1 | (118) |
| circRNA circ_0000950 | Cellular AD model | Circ_0000950 promoted neuron apoptosis, inhibited the production of neurite outgrowth, and increased the levels of inflammatory cytokines levels | (139) |
| circRNA CircNF1-419 | SD rat model | CircNF1-419 upregulated autophagy and reduced Aβ and tau | (140) |

circRNA, circular RNA; BACE1-AS, BACE1-antisense transcript; SOX21-AS1, SOX21 antisense RNA 1; NEAT1, Nuclear paraspeckle assembly transcript 1.
### TABLE 5 | Epigenetic therapeutic strategies in AD.

| Therapeutic strategies | Model | Main findings | References |
|------------------------|-------|---------------|------------|
| Dnmt3a2 (DNA methyltransferase) | Aged mice | The raise Dnmt3a2 level in the hippocampus of aged mice enhanced cognitive ability | (160) |
| Betaine (a methyl donor) | Male ddY strain mice | Betaine treatment ameliorate memory deficit | (161) |
| S-adenosylmethionine (SAM, a methyl donor) | TgCRND8 mice | SAM reduced the Aβ production and improved the memory | (162) |
| Alcohol extracts from G. lucidum | APP/PS1 AD model mice | It increased methylation regulators and improved memory | (163) |
| B vitamin | AD patients and mild cognitive impairment patients | It resulted in hypermethylation of NUDT15 and TXNRD1 and better cognitive performance | (164) |
| Folic acid | Participants who tend to decline with age | The supplementation of folic acid improved cognitive functions | (165) |
| Resveratrol | SAMP8 mice | It promoted cognitive decline in the SAMP8 mice offspring | (166) |
| UNC0642 | 5xFAD mouse model | It inhibited the methyltransferase activity G9a/GLP and restored cognition | (167) |
| Trichostatin A | AD mouse model | It restored contextual freezing performance | (100) |
| Valproic acid (VPA, a histone deacetylase inhibitor) | APPswe/PS1ΔE9 (APP/PS1) transgenic mice | VPA decreased Aβ deposition and increased memory ability | (168) |
| Sodium phenylbutyrate (a histone deacetylase inhibitor) | 5xFAD mice | Sodium phenylbutyrate improved memory and spatial learning | (169) |
| M344 (a histone deacetylase inhibitor) | Triple transgenic (APPsw/PS1M146V/TauP301L) mice | M344 lowered the expression of Aβ and prevent cognitive decline | (170) |
| Mercaptoacetamide-based class II HDACi and a hydroxamide-based class I and II HDACi | 3xTg AD mice | They reduced Aβ levels in vitro and rescued memory loss | (171) |
| Vorinostat | Primary human brain tissue | It decreased PU.1 expression and was associated with lower AD risk | (172) |
| RGFP-966 | AD mice model | It improved cognitive functions | (173) |
| CBP/p300 (an activator of histone acetyltransferase) | 3xTg-AD mice | CBP/p300 extended the recent memory duration | (174) |
| The inhibitors of euchromatic histone methyltransferases | AD mouse model | It decreased histone hyper-methylation and cognitive functions | (175) |
| Short-interfering RNA | AD mice models | It decreased the expression of BACE1 | (176) |
| RNA interference | AD mice models | It downregulated the expression of APP, PSEN1, PSEN2 | (177) |
| MicroRNA-384 mimic | SH-SY5Y cells | MicroRNA-384 mimic downregulated the expression of APP and BACE1 | (178) |
| Anti-microRNA-146a-base treatment | AD mouse model | It improved cognitive functions in AD | (179) |
| Inhibitor of microRNA-34c | AD mice models | It could enhance the memory ability | (180) |
| Knockdown of BACE1-AS by lentivirus | SAMP8 mice | It improved learning behaviors and memory | (145) |
| MicroRNA-124 | SH-SY5Y cells | It decreased apoptosis and decreased Aβ-induced viability inhibition | (181) |

HDACi, inhibitor of histone deacetylase; BACE1-AS, BACE1-antisense transcript; NUDT15, nudix hydrolase 15; TXNRD1, thioredoxin reductase 1.

short-interfering RNA, resulting in the reduction of Aβ and tau phosphorylation levels in AD transgenic mice (176). The expression of APP, PSEN1, and PSEN2 was downregulated by RNA interference, such as short-interfering RNA and short hairpin RNA, which provide a promising therapeutic strategy in the future (177). MicroRNA mimics and anti-microRNAs are being developed by decreasing target protein expression in AD. MicroRNA-384 mimic downregulating the expression of APP and BACE1 in SH-SY5Y cells, demonstrating that microRNA-384 may be a potential target in AD (178). Anti-microRNAs complement respective microRNAs and reduce their levels to restore homeostasis. In the AD mouse model, microRNA-146a is upregulated, and anti-microRNA-146a-base treatment improves cognitive functions and regulates the inflammatory response by using the viral vector delivery system (179). In addition, a number of other microRNAs are the potential treatment targets in AD. MicroRNA-34c increases in the hippocampus and blood of patients with AD, and its
inhibitor enhances memory in AD mice models in vivo (180). LncRNA BACE1-AS is positively associated with BACE1 protein expression in vitro and in vivo, and knockdown of BACE1-AS by short interfering RNA improves cognitive function in a mouse model of AD (145). MicroRNA-339-5p, microRNA-29c, and microRNA-124 decrease BACE1 expression in vitro (181, 198, 199) (Table 5). MicroRNA-101 suppresses APP and Aβ expression in hippocampal neurons in vitro (200). MicroRNA-153 decreases APP expression in primary human fetal brain cultures (201). Consequently, non-coding RNAs may be potential targets for AD therapy in the future. Currently, there are several problems in the treatment of AD through non-coding RNAs, including altering such targets, off-target effects, and delivery methods (202). However, it is worthwhile to investigate non-coding RNAs in AD by appropriate understanding and safe manipulation (203).

Currently, a few drugs are available for the treatment of AD. No drug can cure or stop disease development. Given the huge number and seriousness of AD, the need for clinical trials is necessary. To date, most of the clinical trials of AD have targeted Aβ, tau protein (204). Several clinical trials investigate epigenetics for the treatment of AD. Oral betaine was given in eight AD patients; however, the efficacy of betaine could not be determined due to the lack of controls and small sample size (205). With the use of S-adenosylmethionine and nutricetical, almost 30% improvement in the neuropsychiatric inventory and activities of daily living is observed in AD patients compared to normal controls (206). RDN-929, a selective HDAC inhibitor, is being investigated in a phase I clinical trial for the treatment of AD patients. The result is not disclosed at clinicaltrials.gov. EVP-0334, also called FRM-0334, a CNS-penetrant HDACi, phase I testing of AD is completed; however, no result is posted (207). Because increasing evidence shows that epigenetics plays an essential role in AD, the drugs related to epigenetics may be breakthroughs for AD in the future.

CONCLUSION

To date, although some genetic and non-genetic factors are well-studied, the pathogenesis of AD remains unclear. Epigenetics provides us with an important insight into how AD develops. There is an increasing number of studies about epigenetics in AD patients, including DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs. Epigenetic genome-wide association (EGWA) studies show that many differentially methylated sites exist in AD compared with normal controls. Several studies investigate the role of histone modifications in AD. Non-coding RNAs play an important role in the pathogenesis of AD. LncRNAs, such as BACE1-AS, increases BACE1 mRNA stability and generates additional Aβ in AD. These studies show us that epigenetics is of great importance in AD, suggesting that epigenetics can be a potential intervention target in treating AD given the reversible nature of epigenetic changes. Therapeutic attempts include the use of inhibitors of HDACs, DNA methyltransferase, and inhibitors of non-coding RNAs, which have shown some exciting results in animal studies. Despite the numerous and exciting findings of epigenetics in AD, the results are less satisfying. The data is often controversial and lacks definite results. There is a need to design some larger longitudinal cohorts to study the epigenetic changes of AD, which may help us better understand the pathogenesis of AD and find novel strategies to treat AD in the future.

AUTHOR CONTRIBUTIONS

BJ was involved in the review design, modified, and revised the manuscript. XX and XL searched and reviewed the articles. XX wrote the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This study was supported by the National Natural Science Foundation of China (No. 81701134 to BJ) and Provincial Technology Innovation Guidance Plan Project of Hunan (No. 2108SK52601 to BJ).

REFERENCES

1. Alzheimer’s disease facts and figures. Alzheimers Dement (2016) 12:459–509. doi: 10.1016/j.jalz.2016.03.001
2. Patterson C. World Alzheimer Report 2018. The State of the Art of Dementia Research: New Frontiers. An Analysis of Prevalence, Incidence, Cost and Trends. Alzheimer’s Disease International. (2018).
3. Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. (2019) 179:312–39. doi: 10.1016/j.cell.2019.09.001
4. Tang M, Ryman DC, Mcdade E, Jasielec MS, Buckles VD, Cairns NJ, et al. Neurological manifestations of autosomal dominant familial Alzheimer’s disease: a comparison of the published literature with the dominantly inherited Alzheimer network observational study (DIAN-OBS). Lancet Neurol. (2016) 15:1317–25. doi: 10.1016/S1474-4422(16)30229-0
5. Wang JC, Alinaghi S, Tafakhori A, Sikora E, Azcona LJ, Karkheira S, et al. Genetic screening in two Iranian families with early-onset Alzheimer’s disease identified a novel PSEN1 mutation. Neurobiol Aging. (2018) 62-24.e215–7. doi: 10.1016/j.neurobiolaging.2017.10.011
6. Hunter S, Brayne C. Understanding the roles of mutations in the amyloid precursor protein in Alzheimer disease. Mol Psychiatr. (2018) 23:81–93. doi: 10.1038/mp.2017.218
7. Lanoiselee HM, Nicolas G, Wallon D, Rovelet-Lecruix A, Lacour M, Rousseau S, et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases. PloS Med. (2017) 14:e1002270. doi: 10.1371/journal.pmed.1002270
8. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. (1993) 261:921–3. doi:10.1126/science.8346443
9. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. (2013) 45:1452–8. doi: 10.1038/ng.2802
10. Sims R, Williams J. Defining the genetic architecture of Alzheimer’s disease: where next. *Neurodegener Dis.* (2016) 16:6–11. doi: 10.1159/00040841

11. Yu JT, Xu W, Tan CC, Andreu S, Suckling J, Evangelou E, et al. Evidence-based prevention of Alzheimer’s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. *J. Neurol. Neurosurg. Psychiat.* (2020). doi: 10.1136/jnnp-2019-321913. [Epub ahead of print].

12. Kivipelto M, Mangialashes F. Nagurdy T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. *Nat Rev Neurol.* (2018) 14:653–66. doi: 10.1038/s41588-018-0070-3

13. Grifán-Ferré C, Iziqjero V, Otero E, Puigoriol-Ilamola D, Corpas R, Sanfeliz C, et al. Environmental enrichment improves cognitive deficits, AD hallmarks and epigenetic alterations presented in 5xFAD mouse model. *Front Cell Neurosci.* (2018) 12:2244. doi: 10.3389/fncel.2018.00224

14. Cavalli G, Heazed E. Advances in epigenetics link genes to the environment and disease. *Nature.* (2019) 571:889–99. doi: 10.1038/s41586-019-1411-0

15. Waddington CH. The epigenotype 1942. Int J Epidemiol. (2012) 41:10–3. doi: 10.1093/ije/dys184

16. Qureshi IA, Mehler MF. Understanding neurological disease mechanisms in the era of epigenetics. *JAMA Neurol.* (2013) 70:703–10. doi: 10.1001/jamaneurol.2013.1443

17. Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. *Pharmacol Ther.* (2019) 195:172–83. doi: 10.1016/j.pharmthera.2018.11.001

18. Guo JL, Su Y, Shin JH, Shin JS, Li H, Xie B, et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. *Nat Neurosci.* (2014) 17:215–22. doi: 10.1038/nn.3607

19. Li X, Zhao Q, Wei W, Lin Q, Magnan C, Emami MR, et al. The DNA modification N6-methyl-2′-deoxyadenosine (m6dA) drives activity-induced gene expression and is required for fear extinction. *Nat Neurosci.* (2019) 22:534–44. doi: 10.1038/s41593-019-0339-x

20. Grifán-Ferré C, Corpas R, Puigoriol-Illamola D, Palomera-Ávalos V, Sanfeliz C, Pallás M. Understanding epigenetics in the neurodegeneration of Alzheimer’s disease: SAMP8 mouse model. *J. Alzheimers Dis.* (2018) 62:943–63. doi: 10.3233/JAD-170664

21. Morris-Blanco KC, Kim T, Lopez MS, Bertogliat MJ, Chelluboina V, et al. Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. *J Neuropathol Exp Neurol.* (2014) 73:1164–70. doi: 10.1002/jn.23782

22. Furuaya TK, da Silva PN, Payao SL, Rasmussen LT, de Labio RW, Bertolucci PH, et al. SORL1 and SIRT1 mRNA expression and promoter methylation patterns of multiple genes from peripheral blood leucocytes of patients with familial Alzheimer disease. *Hum Mol Genet.* (2018) 27:3267–82. doi: 10.1093/hmg/ddy085

23. Foraker J, Millard SP, Leong L, Thomson Z, Chen S, Keene CD, et al. The AP0E gene is differentially methylated in Alzheimer’s disease. *J Alzheimers Dis.* (2015) 48:745–55. doi: 10.3233/JAD-143060

24. Furuya TK, da Silva PN, Payao SL, Rasmussen LT, de Labio RW, Bertolucci PH, et al. SORL1 and SIRT1 mRNA expression and promoter methylation levels in aging and Alzheimer’s disease. *Neurochem Int.* (2012) 61:973–5. doi: 10.1016/j.neuint.2012.07.014

25. Forker J, Millard SP, Leong L, Thomson Z, Chen S, Keene CD, et al. The APOE gene is differentially methylated in Alzheimer’s disease. *J Alzheimers Dis.* (2013) 48:745–55. doi: 10.3233/JAD-143060

26. Rogaev EI, Lukiw WJ, Lav Rushina S, Rogaeva EA, St. George-Hyslop PH. The upstream promoter of the beta-amyloid precursor protein gene (APP) shows differential patterns of methylation in human brain. *Genomics.* (1994) 22:346–7. doi: 10.1006/geno.1994.1393

27. Waddington CH. The epigenotype 1942. *Int J Epidemiol.* (2012) 41:10–3. doi: 10.1093/ije/dys184

28. Brohede J, Rinde M, Winblad B, Graff C. A DNA methylation study of Alzheimer’s disease: SAMP8 mouse model. *Methods Mol Biol.* (2018) 1676:185–96. doi: 10.1007/978-1-4939-7315-6_11

29. Rogaev IE, Lukiw WJ, Lavrushina S, Rogaeva EA, St. George-Hyslop PH. The upstream promoter of the beta-amyloid precursor protein gene (APP)
Xiao et al. Epigenetics of Alzheimer's Disease

49. Coppede F, Tannorella P, Stocco A, Chico L, Siciliano G, Bonuccelli U, et al. Methylation analysis of DNA repair genes in Alzheimer's disease. Mech Ageing Dev. (2017) 161:105–11. doi: 10.1016/j.mad.2016.04.003

50. Ma SL, Tang NL, Lam LC. Association of gene expression and methylation networks with UQCRC1 to the predisposition of Alzheimer’s disease in a Chinese population. J Psychiatr Res. (2016) 76:143–7. doi: 10.1016/j.jpsychires.2016.02.010

51. Blanco-Luquin I, Altuna M, Sanchez-Ruiz de Gordoa J, Urdanoz-Casado A, Roldan M, Camara M, et al. PLD3 epigenetic changes in the hippocampus of Alzheimer's disease. Clin Epigenetics. (2018) 10:116. doi: 10.1186/s41314-018-0547-3

52. Ozaki Y, Yoshino Y, Yamazaki K, Sao T, Mori Y, Ochi S, et al. DNA methylation of UQCRC1 to the predisposition of Alzheimer’s disease. J Alzheimers Dis. (2015) 44:977–87. doi: 10.3233/JAD-141989

53. Mendioroz M, Celarain N, Altuna M, Sanchez-Ruiz de Gordoa J, Zelaya A, et al. Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer’s disease. Acta Neuropathol. (2019) 137:557–69. doi: 10.1007/s00401-019-01966-5

54. Salcedo-Tacuma D, Pardos R, Saenz A, Pacheco A, et al. Differential methylation levels in CpGs of the BIN1 gene in individuals with Alzheimer disease. Alzheimer Dis Assoc Disord. (2019) 33:321–6. doi: 10.1097/WAD.0000000000000329

55. Yu L, Chibnik LB, Yang J, McCabe C, Xu J, Schneider JA, et al. Methylation profiles in peripheral blood CD4+ lymphocytes versus brain: the relation to Alzheimer’s disease pathology. Alzheimers Dement. (2016) 12:942–51. doi: 10.1016/j.jalz.2016.02.009

56. Smith AR, Smith RG, Burrage J, Troakes C, Al-Sarraj S, Kalaria RN, et al. Analysis of HSPA8 and HSPA9 mRNA expression and promoter methylation in patients with Alzheimer’s disease and healthy individuals. J Psychiatr Res. (2010) 44:76–82. doi: 10.1016/j.jpsychires.2010.04.012

57. Watson CT, Roussos P, Garg P, Ho DJ, Azam N, Katsel PL, et al. Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer’s disease. Genome Med. (2016) 8:5. doi: 10.1186/s13073-015-0258-8

58. De Jager PL, Srivastava G, Lunn K, Burgess J, Schalkwyk LC, Yu L, et al. Epigenetic changes in early elevations in brain DNA methylation at ANKI, BIN1, RHBDF2 and other loci. Nat Neurosci. (2014) 17:1156–63. doi: 10.1038/nn.3786

59. Bernstein AI, Lin Y, Street RC, Lin L, Dai Q, Yu L, et al. 5-Hydroxymethylcytosine- and 5-methylcytosine-associated epigenetic modifiers of Alzheimer’s disease. J Alzheimers Dis. (2015) 44:977–87. doi: 10.3233/JAD-141989

60. Grosser C, Neumann L, Horsthemke B, Zeschnigk M, van de Nes J. Parallel profiling of DNA methylation and hydroxymethylation highlights neuro-pathology-associated epigenetic variation in Alzheimer’s disease. Clin Epigenetics. (2019) 11:52. doi: 10.1186/s13148-019-0636-y

61. Schwob NG, Nalbantoglu J, Hastings KE, Mikkelsen T, Cashman NR. DNA methylation in brain of patients with Alzheimer’s disease. Ann Neurol. (1990) 28:91–4. doi: 10.1002/ana.410280117

62. Lashley T, Gami P, Valizadeh N, Li A, Reveta T, Balazs R. Alterations in global DNA methylation and hydroxymethylation are not detected in Alzheimer’s disease. Neuropharmacol Appl Neurobiol. (2015) 41:497–506. doi: 10.1111/pan.12183

63. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging. (2010) 31:2025–37. doi: 10.1016/j.neurobiolaging.2008.12.005

64. Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G, Hof PR, et al. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging. (2013) 34:2091–9. doi: 10.1016/j.neurobiolaging.2013.02.021

65. Condliffe D, Wong A, Troakes C, Proitsi P, Patel Y, Chouliaras L, et al. Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer’s disease brain. Neurobiol Aging. (2014) 35:1850–4. doi: 10.1016/j.neurobiolaging.2014.05.007

66. Rao JS, Keleshian VL, Klein S, Rapoport SI. Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Transl Psychiatry. (2012) 2:e132. doi: 10.1038/tp.2012.55

67. Di Francesco A, Arosio B, Falconi A, Miccioni Di Bonaventura MV, Karimi M, Mari D, et al. Global changes in DNA methylation in Alzheimer’s disease.
peripheral blood mononuclear cells. *Brain Behav Immun.* (2015) 45:139–44. doi: 10.1016/j.bbi.2014.11.002

86. Grünán-Ferré C, Sarroca S, Ivanova A, Puigoriol-Illamola D, Aguado F, Camins A, et al. Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in SAMP8 mice. *Aging (Albany NY).* (2016) 8:664–84. doi: 10.18632/aging.100906

87. Martínez-Iglesias O, Carrera I, Fernández-Novoa L, Cabacelos N, Cabacelos R. DNA methylation in neurodegenerative and cerebrovascular disorders. *Int J Mol Sci.* (2020) 21:2220. doi: 10.3390/ijms21062220

88. Cosín-Tomás M, Álvarez-López MJ, Companys-Alemany J, Kaliman P, González-Castillo C, Ortúñoa-Sañahín D, et al. Temporal integrative analysis of mRNA and microRNAs expression profiles and epigenetic alterations in female SAMP8, a model of age-related cognitive decline. *Front. Genet.* (2018) 9:596. doi: 10.3389/fgene.2018.00596

89. Globisch D, Munzel M, Muller M, Michalakis S, Wagner M, Koch S, et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. *PLoS ONE.* (2010) 5:e15367. doi: 10.1371/journal.pone.0015367

90. Cheng Y, Bernstein A, Chen D, Jin P. 5-Hydroxymethylcytosine: a new player in brain disorders? *Exp Neurol.* (2015) 268–3–9. doi: 10.1016/j.expneurol.2014.05.008

91. Colonna M, Wang Y. TREM2 variants: new keys to decipher Alzheimer disease-associated H3K27ac differences in the entorhinal cortex. *Epigenetics Chromatin.* (2018) 11:47. doi: 10.1186/s12864-016-2731-1

92. Shu L, Sun W, Li L, Xu Z, Lin L, Xie P, et al. Genome-wide alteration of mitochondrial DNA methylation pattern in Alzheimer disease-related pathology and in Parkinson disease. *Am J Pathol.* (2016) 186:385–97. doi: 10.1016/j.ajpath.2015.10.004

93. Bradley-Whitman MA, Lovell MA. Epigenetic changes in the progression of Alzheimer’s disease. *Mech Ageing Dev.* (2013) 134:846–95. doi: 10.1016/j.mad.2013.08.005

94. Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis. *J Alzheimer’s Dis.* (2010) 20(Suppl. 2):S625–79. doi: 10.3233/JAD-2010-100339

95. Blanch M, Mosquera JL, Ansoalega B, Ferrer I, Bararrachina M. Altered mitochondrial DNA methylation pattern in Alzheimer disease-related pathology and in Parkinson disease. *Am J Pathol.* (2016) 186:385–97. doi: 10.1016/j.ajpath.2015.10.004

96. Xu Y, Xu L, Han M, Liu X, Li F, Zhou X, et al. Altered mitochondrial DNA methylation and mitochondrial DNA copy number in an APP/PS1 transgenic mouse model of Alzheimer disease. *Biochem Biophys Res Commun.* (2019) 520:41–6. doi: 10.1016/j.bbrc.2019.09.094

97. Christopher MA, Kyle SM, Katz DJ. Neuroepigenetic mechanisms in disease. *Epigenetics Chromatin.* (2017) 10:47. doi: 10.1186/s13072-017-0150-4

98. Marzi SJ, Leung SK, Ribarska T, Hannon E, Smith AR, Pishva E, et al. A new player in brain disorders. *Front. Neurosci.* (2017) 11:1618–27. doi: 10.3389/fnins.2017.01618

99. Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H, Kirsch W. Targeted mRNA and microRNAs expression profiles and epigenetic alterations in susceptible and disease-resistant neurons in Alzheimer’s disease model mice. *Front Aging Neurosci.* (2019) 11:68. doi: 10.3389/fnagi.2019.00068

100. Klein HU, McCabe C, Gionesek E, Sullivan SE, Kaskow BJ, Tang A, et al. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. *Nat Neurosci.* (2019) 22:37–46. doi: 10.1038/s41593-018-0291-1

101. Zhou X, Xu J. Identification of Alzheimer’s disease-associated long noncoding RNAs. *Neurobiol Aging.* (2015) 36:2925–31. doi: 10.1016/j.neurobiolaging.2015.07.015

102. Moutinho C, Esteller M. MicroRNAs and epigenetics. *Adv Cancer Res.* (2017) 135:189–220. doi: 10.1016/bs.acr.2017.06.003

103. Wang J, Yu JT, Tan MS, Jiang T, Tan L. Epigenetic mechanisms in Alzheimer’s disease: implications for pathogenesis and therapy. *Aging Ageing Rev.* (2013) 12:1024–41. doi: 10.1016/j.arr.2013.05.003

104. Hebert SS, De Strooper B. Alterations of the microRNA network cause neurodegenerative disease. *Trends Neurosci.* (2009) 32:199–206. doi: 10.1016/j.tins.2008.12.003

105. Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y, et al. MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. *Neurobiol Aging. (2012) 33:522–34. doi: 10.1016/j.neurobiolaging.2010.04.034

106. Hebert SS, Horre K, Nolleti L, Papadopoulou AS, Mandewers M, Silahtaroglu AN, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. *Proc Natl Acad Sci USA.* (2008) 105:6415–20. doi: 10.1073/pnas.0710263105

107. Wang L, Liu J, Wang Q, Jiang H, Zeng L, Li Z, et al. MicroRNA-200a-3p mediates neuroprotection in Alzheimer-related deficits and attenuates amyloid-beta overproduction and tau hyperphosphorylation via coregulating BACE1 and PRKACB. *Front Pharmacol.* (2019) 10:806. doi: 10.3389/fphar.2019.00806

108. Marzi SJ, Leung SK, Ribarska T, Hannon E, Smith AR, Pishva E, et al. A new player in brain disorders. *Front. Neurosci.* (2017) 11:1618–27. doi: 10.3389/fnins.2017.01618

109. Xiao et al. Epigenetics of Alzheimer’s Disease
123. Ma X, Liu L, Meng J. MicroRNA-125b promotes neurons cell apoptosis and Tau phosphorylation in Alzheimer's disease. *Neurosci Lett.* (2017) 661:57–62. doi: 10.1016/j.neulet.2017.09.043

124. Banzhaf-Strathmann J, Benito E, May S, Arzberger T, Tahirovic S, Kretzschmar H, et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease. *Embo J.* (2014) 33:1667–80. doi: 10.15252/embj.201387576

125. Yuan J, Wu Y, Li L, Liu C. MicroRNA-124-3p promotes tau phosphorylation and cell apoptosis in Alzheimer's disease by targeting heat shock protein B8. *J Neural Trans.* (2020) 127:339–46. doi: 10.1007/s00702-019-02134-5

126. El Fatimy R, Li S, Chen Z, Mushannen T, Gongala S, Wei Z, et al. MicroRNA-132 provides neuroprotection for tauopathies through multiple signaling pathways. *Acta Neuropathol.* (2018) 136:537–55. doi: 10.1007/s00401-018-1880-5

127. Kang Q, Xiang Y, Li D, Liang J, Zhang X, Zhou F, et al. MiR-124-3p attenuates hyperphosphorylation of Tau protein-induced apoptosis via cavolin-1-PI3K/Akt/GSK3β pathway in N2a/APP695sw cells. *Oncotarget.* (2017) 8:23414–26. doi: 10.18632/oncotarget.15149

128. Liu W, Zhao J, Lu G. miR-106b inhibits tau phosphorylation at Tyr18 by targeting Fyn and serine/threonine-protein kinase 2. *Commun.* (2016) 478:852–7. doi: 10.1016/j.bbrc.2016.08.037

129. Banzhaf-Strathmann J, Benito E, May S, Arzberger T, Tahirovic S, Kretzschmar H, et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease. *Embo J.* (2014) 33:1667–80. doi: 10.15252/embj.201387576

130. Diling C, Yinrui G, Longkai Q, Xiaocui T, Yadi L, Xin Y, et al. Circular RNA circFAM14A-19 enhances autophagy to ameliorate senile dementia by binding with Alzheimer's disease pathogenesis. *Exp Ther Med.* (2018) 17:4019–27. doi: 10.3892/etm.2018.7292

131. Banzhaf-Strathmann J, Benito E, May S, Arzberger T, Tahirovic S, Kretzschmar H, et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease. *Embo J.* (2014) 33:1667–80. doi: 10.15252/embj.201387576

132. Long JM, Maloney B, Rogers JT, Lahiri DK. Novel upregulation of amyloid-beta protein by targeting Fyn in a model of Alzheimer's disease. *BMC Neurosci.* (2017) 8:24314–26. doi: 10.18632/oncotarget.15149

133. Lu Y, Tan L, Wang X. Circular HDAC9/microRNA-138/sirtuin-1 multiple signaling pathways. *Frontiers in Neurology.* (2020) 11:83. doi: 10.3389/fneur.2020.00824-3

134. Chen FZ, Zhao Y, Chen HZ. MicroRNA-98 reduces amyloid-beta protein production and improves oxidative stress and mitochondrial dysfunction in Alzheimer's disease pathogenesis. *Mol Psychiat.* (2020). doi: 10.1038/s41380-020-0824-3

135. Long JM, Maloney B, Rogers JT, Lahiri DK. Novel upregulation of amyloid-beta precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5'-untranslated region: Implications in Alzheimer's disease. *Mol Psychiat.* (2019) 24:345–63. doi: 10.1038/s41380-018-0266-3

136. He B, Chen W, Zeng J, Tong W, Zheng P. MicroRNA-326 decreases tau phosphorylation and neuron apoptosis through inhibition of the JNK signaling pathway by targeting VAV1 in Alzheimer's disease. *J Cell Physiol.* (2020) 235:480–93. doi: 10.1002/jcp.28988

137. Knauss JL, Miao N, Kim SN, Nie Y, Shi Y, Wu T, et al. Long noncoding RNA RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer's disease. *Frontiers in Neurology.* (2019) 10:22197–214. doi: 10.33888/fbioe.2019.1629773

138. Luo Q, Chen Y. Long noncoding RNAs and Alzheimer's disease. *Clin Interv Aging.* (2016) 11:867–72. doi: 10.2147/CIA.S107037

139. Zhang L, Fang Y, Cheng X, Lian YJ, Xu HL. Silencing of long noncoding RNA SOX21-AS1 relieves neuronal oxidative stress injury in mice with Alzheimer's disease by upregulating foxd3/5 via the Wnt signaling pathway. *Mol Neurobiol.* (2015) 56:3522–37. doi: 10.1007/s12035-018-1299-y

140. Mus E, Hof PR, Tiedge H. Dendritic BC200 RNA in aging and in Alzheimer's disease. *Proc Natl Acad Sci USA.* (2007) 104:10679–84. doi: 10.1073/pnas.0701532104

141. Knauss JL, Miao N, Kim SN, Nie Y, Shi Y, Wu T, et al. Long noncoding RNA Sox2ot and transcription factor YY1 co-regulate the differentiation of cortical neural progenitors by repressing Sox2. *Cell Death Dis.* (2018) 9:799. doi: 10.1038/s41419-018-0840-2

142. Gu C, Chen C, Wu R, Huang W. Long non-coding RNA NEAT1-untranslated region: Implications in Alzheimer's disease. *Cell Mol Life Sci.* (2020) 77:3769–79. doi: 10.1007/s00018-020-03503-0

143. Knauss JL, Miao N, Kim SN, Nie Y, Shi Y, Wu T, et al. Long noncoding RNA Sox2ot and transcription factor YY1 co-regulate the differentiation of cortical neural progenitors by repressing Sox2. *Cell Death Dis.* (2018) 9:799. doi: 10.1038/s41419-018-0840-2

144. Li X, Wang SW, Li XL, Yu FY, Cong HM. Knockdown of long non-coding RNA TUG1 depresses apoptosis of hippocampal neurons in Alzheimer's disease by elevating microRNA-15a and repressing ROC1 kinase expression. *Inflamm Res.* (2020) 69:897–910. doi: 10.1007/s00011-020-01364-8

145. Hong H, Mo Y, Li D, Xu Z, Liao Y, Yin P, et al. Aberrant expression profiles of IncRNAs and their associated nearby coding genes in the hippocampus of the SAMP8 mouse model with AD. *Mol Ther Nucleic Acids.* (2020) 20:140–54. doi: 10.1016/j.omtn.2020.02.008

146. Yang H, Wang H, Shang H, Chen X, Yang S, Qu Y, et al. MicroRNA-150-5p promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer's disease. *Cell Cycle.* (2019) 18:2197–214. doi: 10.1089/cell.2019.1629773
endocytosis-related genes expression. *Cell Mol Life Sci.* (2019) 76:3005–18. doi: 10.1007/s00018-019-03074-9

159. Huang Z, Zhao J, Wang W, Zhou J, Zhang J. Depletion of lncRNA NEAT1 rescues mitochondrial dysfunction through NEDD4L-dependent PINK1 degradation in animal models of Alzheimer’s disease. Front Cell Neurosci. (2020) 14:28. doi: 10.3389/fncel.2020.00228

160. Oliveira AM, Hemstedt TJ, Bading H. Rescue of aging-associated decline in Dmtn3a2 expression restores cognitive abilities. *Nat Neurosci.* (2012) 15:1111–13. doi: 10.1038/nn.3151

161. Kunisawa K, Nakashima N, Nagao M, Nomura T, Kinoshita S, Hiratsuka X et al. Epigenetics of Alzheimer’s Disease. *Exp Neurol.* (2017) 314:1–16. doi: 10.1016/j.expneurol.2017.03.004

162. Fuso A, Nicolia V, Ricceri L, Cavallaro RA, Isopi E, Mangia F, et al. S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice. *Neurobiol Aging.* (2012) 33:1482.e1481–1416. doi: 10.1016/j.neurobiolaging.2011.12.013

163. Lai G, Guo Y, Chen D, Tang X, Shuai O, Yong T, et al. Alcohol extracts from ganoderma lucidum delay the progression of Alzheimer’s disease by regulating DNA methylation in rodents. *Front Pharmacol.* (2019) 10:2272. doi: 10.3389/fphar.2019.00272

164. An Y, Feng L, Zhang X, Wang Y, Yao T, et al. Dietary intakes and biomarker patterns of folate, vitamin B(6), and vitamin B(12) can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. *Clim Epigenetics.* (2019) 11:139. doi: 10.1086/643148-19-0741-y

165. Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. *Lancet.* (2007) 369:208–16. doi: 10.1016/S0140-6736(07)60109-3

166. Izquierdo V, Palomera-Avalos V, López-Ruiz S, Canudas AM, Pallás M, Grifán-Ferré C. Maternal resveratrol supplementation prevents cognitive decline in senescent mice offspring. *Int J Mol Sci.* (2020) 21:10334. doi: 10.3390/ijms20051134

167. Grifán-Ferré C, Marsal-García L, Bellver-Sanchis A, Kondengaden SM, Griñán-Ferré C, Marsal-García L, Bellver-Sanchis A, Kondengaden SM, Grifán-Ferré C. Maternal resveratrol supplementation prevents cognitive decline in senescent mice offspring. *Int J Mol Sci.* (2020) 21:10334. doi: 10.3390/ijms20051134

168. Van den Hove DL, Kompris K, Lardenoije R, Kenis G, Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: an integrative review. *Prog Neurobiol.* (2017) 156:1–68. doi: 10.1016/j.pneurobio.2017.03.007

169. Millan MJ. Special emphasis on benzamides. *Behav Brain Res.* (2017) 114:E9135–44. doi: 10.1016/j.bbr.2015.06.004

170. Kumar D, Aggarwal M, Kaas GA, Lewis J, Wang J, Ross DL, et al. Tet1 oxidase challenges and opportunities for therapy. *Genet Res Int.* (2013) 2013:852080. doi: 10.1155/2013/852080

171. Amin SA, Adhikari N, Kotagiri S, Jha T, Ghosh B. Histone deacetylase 3 inhibitors in learning and memory processes with special emphasis on benzamides. *Eur J Med Chem.* (2019) 166:369–80. doi: 10.1016/j.ejmech.2019.01.077

172. Graf G, Rei D, Gual JS, Wang WY, Seo J, Hennig KM, et al. An epigenetic blocker of cognitive functions in the neurodegenerative brain. *Nature.* (2012) 483:222–6. doi: 10.1038/nature10849
194. Song JM, Sung YM, Nam JH, Yoon H, Chung A, Moffat E, et al. A mercaptoacetamide-based class II histone deacetylase inhibitor increases dendritic spine density via RasGRF1/ERK pathway. *J Alzheimers Dis.* (2016) 51:591–604. doi: 10.3233/JAD-150717

195. Huang KL, Mocrega E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. *Nat Neurosci.* (2017) 20:1052–61. doi: 10.1038/nn.4587

196. Yang SS, Zhang R, Wang G, Zhang YF. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer’s disease. *Transl Neurodegener.* (2017) 6:19. doi: 10.1186/s40035-017-0089-1

197. Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. *Proc Natl Acad Sci USA.* (2010) 107:22687–92. doi: 10.1073/pnas.1012851108

198. Long JM, Ray B, Lahiri DK. MicroRNA-339-5p down-regulates protein expression of beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects. *J Biol Chem.* (2014) 289:5184–98. doi: 10.1074/jbc.M113.518241

199. Lei X, Lei L, Zhang Z, Zhang Z, Cheng Y. Downregulated miR-29c correlates with increased BACE1 expression in sporadic Alzheimer’s disease. *Int J Clin Exp Pathol.* (2015) 8:1565–74.

200. Vilardo E, Barbato C, Ciotti M, Cogoni C, Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. *J Biol Chem.* (2010) 285:18344–51. doi: 10.1074/jbc.M110.112664

201. Long JM, Ray B, Lahiri DK. MicroRNA-153 physiologically inhibits expression of amyloid-beta precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. *J Biol Chem.* (2012) 287:31298–310. doi: 10.1074/jbc.M112.366336

202. Idda ML, Munk R, Korsnes M. Noncoding RNAs in Alzheimer’s disease. *Wiley Interdiscip Rev RNA.* (2018) 9:1463. doi: 10.1002/wrna.1463

203. Liu X, Jiao B, Shen L. The epigenetics of Alzheimer’s disease: factors and therapeutic implications. *Front Genet.* (2018) 9:579. doi: 10.3389/fgene.2018.00579

204. Huang JK, Chao SP, Huang YF. Clinical trials of new drugs for Alzheimer disease. *J Biomed Sci.* (2020) 27:18. doi: 10.1186/s12929-019-0609-7

205. Knopman D, Patterson M. An open-label, 24-week pilot study of the methyl donor betaine in Alzheimer disease patients. *Alzheimer Dis Assoc Disord.* (2001) 15:162–5. doi: 10.1097/00002093-200107000-00008

206. Remington R, Chan A, Paskavitz J, Shea TB. Efficacy of a vitamin/nutriceutical formulation for moderate-stage to later-stage Alzheimer’s disease: a placebo-controlled pilot study. *Am J Alzheimers Dis Other Dement.* (2009) 24:27–33. doi: 10.1177/1533317508325094

207. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. *Nat Rev Drug Discov.* (2012) 11:384–400. doi: 10.1038/nrd3674

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Xiao, Liu and Jiao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.