Mechanism of Phosphoryl Transfer in the Dimeric IIABMan Subunit of the \textit{Escherichia coli} Mannose Transporter*

(Received for publication, September 29, 1998, and in revised form, December 10, 1998)

Regula Gutknecht, Karin Flükiger, Regina Lanz, and Bernhard Erni‡

\textit{From the Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012, Bern, Switzerland}

The mannose transporter of \textit{Escherichia coli} is a membrane-bound hexokinase. It catalyzes the phosphorylation of mannose to mannose-1-phosphate and is a member of the phosphoenolpyruvate (PEP)-dependent carbohydrate transporters. These transporters utilize the energy of the ATP-ADP exchange for the active transport of nutrients into cells. The mannose transporter is a heterotetramer consisting of two A subunits (IIAMan) and two B subunits (IIDMan). The A subunits carry out the bulk of the transport activity and are responsible for the selectivity of the transporter. The B subunits, on the other hand, are responsible for the phosphorylation and dephosphorylation of the substrate.

TheIIAMan subunit is a homodimer (see Fig. 1A). Each monomer comprises two independently folding domains, the A domain (residues 1–133) and the B domain (residues 156–323) connected by a 23-residue long alanine-proline-rich linker. The B domain contains a five-stranded parallel\(\beta\)-sheet (strand order 4\(\beta\)-A\(\beta\)-A\(\beta\)-3\(\beta\)) covered by helices on either face ((\(\beta\)A),\(\beta\)B). Four strands are parallel, and the fifth antiparallel strand which forms one edge of the sheet is swapped between the subunits in the dimer. This domain is phosphorylated during phosphoryl transfer from HPr to IID, and is located at the topological switchpoint of the fold. Its imidazole ring is hydrogen bonded to Asp-67, which acts as a general base increasing the nucleophilicity of the imidazole ring (19). The domain

* This study was supported by Grant 31-45838.95 from the Swiss National Science Foundation and by contributions from the Ciba-Geigy National Laboratory, Upton, NY. ‡ To whom correspondence should be addressed. Tel.: ++41 (0)31 631 48 87; E-mail: erni@ibc.unibe.ch.
Mannose Transporter

It has been shown previously (34) that the active site mutants of IIABMan, H10C, and H175C, are completely inactive when assayed alone, but that approximately 3% of wild-type activity is recovered when the purified proteins are mixed in a 1:1 ratio. Here we show, that much higher activity is recovered when the purified mutants are mixed, completely unfolded with GuHCl, and then renatured. True heterodimers form only under these drastic conditions. Phosphoryl transfer between subunits within the dimer is very efficient, whereas transfer between different dimers is possible but inefficient.

EXPERIMENTAL PROCEDURES

Bacterial Strains, Overproduction, and Purification of Proteins—E. coli W2127ΔHIC (manXYZ ptsHtrr (42)) was transformed with derivatives of pfI encoding wild-type and mutant IIABMan (34). IIABMan was overexpressed and purified as described (34). Enzyme I and HPr were purified, and membranes containing IICMan-IIDMan were prepared as described (42, 43).

GuHCl Unfolding and Renaturation of IIABMan—Stock solution of purified wild-type and mutant IIABMan were adjusted to a protein concentration of 5 mg/ml. Volumes from the different stocks were mixed to achieve the desired molar ratios or molar fractions. The mixtures were then split in two aliquots. One aliquot was diluted with 8 M GuHCl to a final concentration of 4 M GuHCl (37), and to the other aliquot, the same volume of buffer A (10 mM MOPS, pH 7.0, 50 mM NaCl, 0.5 mM dithiothreitol) was added. Both samples were incubated for 2 h at room temperature. Both samples were then diluted 20–60-fold with buffer A to the desired IICMan concentration (3–125 μg/ml) and incubated for another 2 h at 4 °C.

Assay for Phosphotransferase Activity—In vitro phosphorylation of \[^{14}C\]Glc was assayed by ion-exchange chromatography as described (34). 100 μl of incubation mixture contained 0.5 μg of enzyme I, 2.5 μg of HPr, and 0.5 μl of crude membranes (~4 μg of protein) containing the IICMan-IIDMan complex. The final concentration of renatured IIABMan varied between 3 ng and 130 ng/100 μl of incubation mixture. The exact values are indicated in the figure legends. The specific activity of \[^{14}C\]Glc was 1000 cpm/nmol.

Assay for Protein Phosphorylation—The rate and the extent of protein phosphorylation was measured as described (45). The incubation mixture (50 mM NaP, pH 7.4, 5 mM MgCl\textsubscript{2}, 2.5 mM NaF, 2.5 mM dithiothreitol) contained, per 250 μl, 1.5 μg of enzyme I, 2.5 μg of HPr, and 85 μg of IIABMan. The phosphorylation reaction was started by adding to the incubation mixture at 24 °C \[^{33}P\]PEP to a final concentration of 80 μM. Aliquots of 40 μl were withdrawn at the indicated time points and diluted into 1 ml of 80% ammonium sulfate solution at 4 °C. The protein precipitates were collected on glass microfibre filters (GF/F, Whatman) under suction, washed, and counted in a liquid scintillation counter. The background counts because of enzyme I and HPr (less than 10%) were subtracted from the counts of the complete system. Phosphorylated proteins were analyzed on 17.5% polyacrylamide gels as described (21). 20-μl incubation mixtures contained 134 μM \[^{33}P\]PEP, 0.15 μg of enzyme I, 0.46 μg of HPr, 10 μg of IIABMan, and 0.3 μl of IICMan-IIDMan-containing membranes.

RESULTS

Functional Interaction of Subunits in IIABMan Dimers—Wild-type IIABMan, H10C, H175C, and H10C/H175C double mutant were purified by phosphocellulose chromatography and gel filtration. A 1:1 mixture of purified H10C and H175C has about 5% of the specific activity of wild-type IIABMan. The activity increases nonlinearly at low concentration, and the concentration activity profile does not change after 24 h of preincubation (Fig. 2). These results suggest that the activity is because of transient association between two different inactive heterodimers (second order reaction) and that most monomers do not exchange to form heterodimers. However, when mixtures of H10C and H175C were denatured in GuHCl and then refolded by rapid dilution, a 20-fold higher specific phosphotransferase activity was obtained (Fig. 3A). When H10C and H175C were mixed in different proportions, the activity profile was bell-shaped with a maximum at a 1:1 molar ratio (Fig. 3B), as

Fig. 1. Hypothetical model of the mannose transporter complex. A. HPr and the two monomers of the IIABMan complex are in different shades of gray. The orientation of the IIB (PDB code 1BLE) and HPr (1POH, (55)) in the complex with the IIA dimer (1PDO) are taken from the model proposed by Schauder et al. (23). The active site histidines H10, H175, and H15 are shown in ball and stick representation. IICMan and IIDMan span the membrane. The cartoon of IIABMan was produced using MOLSCRIPT (56). B, backbone representation of IIABMan with the alanine-proline-rich linkers in a fully extended conformation. C, schematic representation of cis and trans orientations of the IIA dimer relative to the IIB domains with monomers. Active site contacts are indicated in black.

contains a 180° twisted seven-stranded β-sheet (strand order 3241567, 1–6 are parallel and 7 is antiparallel) covered by helices on both faces, as deduced from the IIB-Lev subunit which is 47% identical to the IIBMan domain. His-175, which accepts the phosphorolysis from H10 and transfers it to the sugar, is located on an exposed loop between the first β-strand and α-helix (23).

Only the A domain participates in the dimer interface. The monomer-monomer interaction occurs through the interlocked β-strands and an extensive contact area of 1700 Å² composed mainly of hydrophobic residues. This confers high stability, and the IIABMan dimer can be dissociated only concomitant with complete denaturation (37). The B domain interacts with the transmembrane IICMan-IIDMan complex of the mannose transporter. The IIABMan-IICMan-IIDMan complex, which can be purified intact, has a stoichiometry closest to 2:1:2 (38–40). The IIABMan dimer can also be purified as a soluble protein. Dissociated from the transmembrane IICMan-IIDMan complex, IIABMan has an elongated form. Ratios \(f/f_0\) of 1.81 and 1.72 were calculated from the sedimentation coefficient \((s_{20,w} = 3.7 S)\) determined by analytical ultracentrifugation (37) and the diffusion coefficient \((D = 4.73 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1})\) determined by dynamic light scattering, respectively. The axial ratio of >10:1 derived from \(f/f_0\) (41) is compatible with a fully extended dimer (Fig. 1B) composed of the central A dimer (50 Å along the major axis), the two linkers (66 Å when fully elongated), and the two B domains (35 Å average diameter).
expected for a binomial distribution of active heterodimers and inactive homodimers. The activities of heterodimers between wild-type and mutated subunits was characterized in the following experiments. Constant amounts of wild-type IIABMan were mixed with increasing amounts of either H10C or H175C. One-half of the mixture was denatured with GuHCl and then renatured by dilution, the other was diluted only. The phosphotransferase activity remained approximately constant at all concentrations of H10C and H175C (Fig. 3C) independently of whether 100% of wild-type IIABMan occurs as homodimer (no GuHCl) or whether only 11% of IIABMan was in homodimers and the rest in heterodimers with an inactive subunit. The activity was linearly dependent upon the concentration of wild-type IIABMan when wild-type and H10C or H175C were mixed in different molar ratios, denatured, and then renatured (Fig. 3D). This suggests that the presence of a subunit with only one inactive domain in a heterodimer has no effect on the overall phosphotransferase activity of the wild-type subunit. Mixtures between wild-type IIABMan and an excess of the H10C/H175C double mutant were prepared to characterize the phosphoryl transfer between A and B domains on the same subunit. The concentration of wild-type IIABMan was kept constant, and the concentration of the double mutant increased to a maximum of 16:1 (Fig. 3, E and F). At a concentration ratio of 16:1, when only 6% of the wild-type protein is in homodimers and 94% in heterodimers with the double mutant, the activity is still 60% of the control and identical to the activity of the non-denatured mixture. The 40% decrease of activity is because of competition of the excess of inactive homodimers (8-fold over active homodimers) for the IICMan-IIDMan complex. Competitive inhibition becomes more pronounced when the concentration of IICMan-IIDMan is rate-limiting. Under these conditions, the phosphotransferase activity is reduced to 50% when the concentration of wild-type homodimer plus heterodimer equals the concentration of the H10C/H175C homodimer (Fig. 3F).

With each experiment, a control with pure wild-type IIABMan was carried along as a reference for 100% activity and as control of refolding yield. The activity recovered after rapid dilution of wild-type IIABMan was 80 ± 30% (Table I, column IIABMan homodimer). The specific activity of heterodimers was calculated as follows. The activity contributed by IIABMan wild-type homodimers was subtracted from the total phosphotransferase activity of a mixture of all dimers. The resulting difference was then divided by the concentration of heterodimers in the mixture. The concentrations of homo- and heterodimers were calculated from the binomial distribution. The specific activities of the different dimers are summarized in Table I. The turn-over number of wild-type IIABMan from experiment to experiment varies between 2500 min\(^{-1}\) and 1200 min\(^{-1}\). The H10C-H175C heterodimer has a turnover of 370 min\(^{-1}\). This is 37% of the activity of wild-type IIABMan measured under the same conditions. The turn-over numbers of heterodimers between a wild-type subunit and either H10C or H175C are 50 and 45% of wild-type homodimer, and the turnover-number of a heterodimer between a wild-type subunit and a H10C/H175C double mutant is 30%.

Protein Phosphorylation—IIABMan is phosphorylated with \[^{32}\text{P}\]PEP in the presence of enzyme I and HPr and is dephosphorylated in the presence of IICMan-IIDMan complex. Competitive inhibition becomes more pronounced when the concentration of IICMan-IIDMan is rate-limiting. Under these conditions, the phosphotransferase activity is reduced to 50% when the concentration of wild-type homodimer plus heterodimer equals the concentration of the H10C/H175C homodimer (Fig. 3F).
Mannose Transporter

The specific activities were calculated from Fig. 3, A-E and the control experiments with pure wild-type IIAMan. The specific activities (in bold) of the homo- and heterodimers were calculated from the measured activity of the mixtures of dimers, the measured specific activity of pure wild-type IIAMan homodimers (in bold), and the concentrations of hetero- and homodimers in the mixtures derived from the binomial distribution (in italics).

Table I

	Measured for mixture of all dimers	Calculated for		
		IIAMan homodimer	Active heterodimer	Inactive homodimer
		nmol Glc 6-phosphate/nm dimer/min		
IIAMan . IIAMan	Mixeda	2550		
	GuHClb	1586		
	Mixed	1230		
	GuHCl	996		
H10C . H175C (1:1)	Mixed	10c		
	GuHCl	186		
IIAMan . IIAMan	Mixed	2656		
	GuHCl	1805		
	Mixed	1813		
	GuHCl	1787		
IIAMan . IIAMan	Mixed	2246		
	GuHCl	1387		
IIAMan . H175C (1:8)	Mixed	1580		
	GuHCl	1432		
IIAMan . IIAMan	Mixed	1154		
	GuHCl	1496		
IIAMan . H10C/H175C (1:16)	Mixed	834		
	GuHCl	921		

a IIAMan components mixed and diluted.
b IIAMan components mixed, denatured and refolded by dilution.
c % recovered wild-type IIAMan activity after denaturation and refolding.
d Activity of heterodimer in % of wild-type dimer.
* Activity due to phosphoryltransfer between dimers.

IIA function, can be excluded because H10C was isolated from an E. coli strain with a chromosomal deletion of the manXYZ operon. It is likely, that phosphorylation of IIB is a consequence of high local concentration of HPr which binds to mutated IIA and then nonspecifically delivers the phosphoryl group to a nearby His-175. Phosphorylation at His-10, whether in wild-type IIABMan or in H10C results in an increased stabilization of the IIABMan dimer against dissociation by sodium dodecyl sulfate, and this effect is not reversed as a consequence of dephosphorylation by IICMan-IIDMan and mannose (Fig. 4B).

DISCUSSION

IIAMan consists of two domains, IIA and IIB, that sequentially transfer a phosphoryl group from the phosphoryl carrier protein HPr to the transported sugar. IIAMan is a homodimer. The subunits are tightly linked through mutual exchange of α-helices (in *cis*) and one trans), and interruption of one of the two pathways results in a reduction of the activity by 20% to 30% of the control.

The results confirm our previous observation of interallelic complementation (34) and similar observations by others (26, 31, 46, 47). But in the case of IIAMan, the interpretation has changed. The weak complementation was because of phosphoryl transfer between randomly colliding homodimers. IIABMan dimers do not exchange, as evident from the structure of the IIABMan dimer (19). However, the linker (Fig. 1B) allows sterically constrained interaction between IIA and IIB domains on different dimers. The linker allows the IIA dimer to dock on the IIABMan-IICMan-IIDMan complex in either of two orientations (Fig. 1C). The *cis* orientation is presented in Fig. 1A.

A IIAMan mutant with His-86 on the IIA domain replaced by Asn was described to have the same properties as H175C mutant with an inactive IIB domain (34, 36). However, the x-ray structure of IIA showed that His-86 is in a surface-exposed loop and far from the active site. In addition, His-86 is not conserved in any of the homologous proteins (see below). Both observations make His-86 an unlikely target for mutagenesis.

Bacillus subtilis, *Klebsiella pneumoniae*, *Vibrio furnissii*, and *Lactobacillus casei* express transporters homologous to the mannose transporter of E. coli except that IIA and IIB are expressed as separate proteins subunits and not as two domains connected by an alanine-proline-rich linker (48–51). Using the Basic Local Alignment Search Tool (BLAST) program, IIA homologs with alanine-proline-rich or Q-linkers (52, 53) were found in bacterial genomes2 (complete and in progress) of: *Yersinia pestis*, *Actinobacillus actinomycetemcomitans*, *Enterobacteriaceae*.

2 http://www.ncbi.nlm.nih.gov/BLAST/unfinishedgenome.html.
IIABMan-IIICMan complex must be much stronger than binding of a monomeric IIB subunit because the dimer forms two contacts per molecule, whereas a IIB monomer forms only one (54). Although not covalent in the chemical sense, binding might become very strong, and IIAB remain membrane-bounded for most of the time. Uniting of IIB from the IIC-IIID complex is necessary whenever IIB has a regulatory function and must diffuse to other targets. For example, monomeric IIBLev of B. subtilis is not only a subunit of the fructose transport complex, but it also can phosphorylate and thereby inactivate the transcriptional activator LevR (16–18). An analogous situation is observed in E. coli. The transporter for Glc and GlcNAc (IIICBGlcIIAGlc and IIICBGlcNAc) are homologous, but whereas IIICBGlcNAc is a three-domain protein, IIAGlc and IIICBGlc are independent subunits. IIAGlc plays a pivotal role in regulation of catabolite repression and inducer inclusion, and it has been shown to interact with glycerol kinase, the transporters for lactose and maltose, and adenylate cyclase (5–12). These interactions with soluble and membrane-bound target proteins require that IIAGlc can freely diffuse through the cell.

The structural stability of the IIAB dimers and their mechanism of phosphoryl transfer might be unique among the different families of dimeric PTS transporters. Nevertheless, it indicates that interactions between different subunits within a dimer (first order reaction) as well as interactions between different dimers (second order reaction) have to be taken into consideration when weak interallelic complementation is observed. The ease with which stable heterodimers can be generated by reversible unfolding will facilitate the characterization by fluorescence energy transfer of domain motions that might occur during phosphorylation and transport of mannose.

Acknowledgments—We thank S. Mukhija (ARPIDA AG, Münchenstein) for the gift of 32PP|PEP, S. D. Snyder (Protein Solutions Inc., Charlottesville) for determining the diffusion coefficient by dynamic light scattering, and S. Schauder for the help with preparing Fig. 1.

REFERENCES
1. Postma, P. W., Lengeler, J. W., and Jacobson, G. R. (1993) Microbiol. Rev. 57, 543–594.
2. Postma, P. W., Lengeler, J. W., and Jacobson, G. R. (1996) in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F. C., Curtiss, R., Ingraham, J. L., Lin, E. C. C., Low, K. B., Magasanik, B., Reznikoff, W. S., Riley, M., Schaechter, M., and Umbarger, H. E., eds) pp. 1149–1174, ASM Press, Washington, D. C.
3. Erni, B. (1992) Int. Rev. Cytol. 137A, 127–148.
4. Meadow, N. D., Fox, D. K., and Roseman, S. (1990) Annu. Rev. Biochem. 59, 497–542.
5. Peterkofsky, A., Seok, Y.-J., Amin, N., Thapar, R., Lee, S. Y., Klevit, R. E., Waygood, E. B., Anderson, J. W., Gruschus, J., Huq, H., and Gollop, N. (1995) Biochemistry 34, 8950–8959.
6. Peterkofsky, A., Reizer, A., Reizer, J., Gollop, N., Zho, P. P., and Amin, N. (1993) Prog. Nucleic Acid Res. Mol. Biol. 44, 31–65.
7. Hurley, J. H., Faber, H. R., Worthylake, D., Meadow, N. D., Roseman, S., Pettigrew, D. W., and Remington, S. J. (1993) Science 259, 673–677.
8. Van der Vlag, J., Van Dam, K., and Postma, P. W. (1995) J. Bacteriol. 176, 3518–3526.
9. Van der Vlag, J., and Postma, P. W. (1995) Mol. Gen. Genet. 248, 236–241.
10. Osumi, T., and Saier, M. H., Jr. (1988) Proc. Natl. Acad. Sci. U. S. A. 79, 1457–1461.
11. Saier, M. H., Novotny, M. J., Comeau-Fuhrman, D., Osumi, T., and Desai, J. D. (1983) J. Bacteriol. 155, 1351–1357.
12. Dean, D. A., Reizer, J., Nikaido, H., and Saier, M. H., Jr. (1990) J. Bacteriol. 172, 21005–21010.
13. Stülke, J., Arnaud, M., Rapport, G., and Martin-Verstraete, I. (1998) Mol. Microbiol. 28, 865–874.
14. Schnetz, K., and Rab, B. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 5074–5078.
15. Schnetz, K., Stülke, J., Gertz, S., Kruger, S., Krieg, M., Hecker, M., and Rab, B. (1996) J. Bacteriol. 178, 1971–1979.
16. Martin-Verstraete, I., Debarbouille, M., Klier, A., and Rapport, G. (1994) J. Mol. Biol. 241, 178–192.
17. Debarbouille, M., Martin-Verstraete, I., Klier, A., and Rapport, G. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 2212–2216.
18. Martin-Verstraete, I., Avrion, V., Stülke, J., Galanier, A., Erni, B., Rapport, G., and Deutscher, J. M. (1986) Mol. Microbiol. 2, 281–293.
19. Nuno, R. S., Markovic-Housley, Z., Genovesio-Taverne, J. C., Flükiger, K., Rizkallah, P. J., Jansen, J. N., Schürmer, T., and Erni, B. (1996) J. Mol. Biol. 259, 502–511.
20. Sliz, P., Engelmann, R., Hengstenberg, W., and Pai, E. F. (1997) Structure (Lond.) 5, 775–788.
21. Eberstadt, M., Grdadolnik, S. G., Gemmecker, G., Kessler, H., Buhr, A., and Erni, B. (1996) *Biochemistry* **35**, 11286–11292
22. Van Moenfort, R. I. M., Pijning, T., Kalk, R. H., Reizer, J., Saier, M. H., Jr., Thunnissen, M. M. G. M., Robillard, G. T., and Dijkstra, B. W. (1997) *Structure (Lond.)* **5**, 217–225
23. Schauder, S., Nunn, R. S., Lanz, R., Erni, B., and Schirmer, T. (1998) *J. Mol. Biol.* **276**, 591–602
24. Meins, M., Zanolari, B., Rosenbusch, J. P., and Erni, B. (1988) *J. Biol. Chem.* **263**, 12986–12993
25. Boer, H., ten Hoeve-Duurkens, R. H., Schuurman-Wolters, G. K., Dijkstra, A., and Robillard, G. T. (1994) *J. Biol. Chem.* **269**, 17863–17871
26. Chen, Q., and Amster-Choder, O. (1998) *Biochemistry* **37**, 8714–8723
27. Boer, H., ten Hoeve-Duurkens, R. H., Lolkema, J. S., and Robillard, G. T. (1995) *Biochemistry* **34**, 3239–3247
28. Meijberg, W., Schuurman-Wolters, G. K., and Robillard, G. T. (1998) *J. Biol. Chem.* **273**, 7949–7956
29. Lanz, R., and Erni, B. (1988) *J. Biol. Chem.* **263**, 12239–12243
30. Meijberg, W., Schuurman-Wolters, G. K., and Robillard, G. T. (1996) *Biochemistry* **35**, 2759–2766
31. Boer, H., ten Hoeve-Duurkens, R. H., and Robillard, G. T. (1996) *Biochemistry* **35**, 12901–12908
32. Vogler, A. P., and Lengeler, J. W. (1988) *Mol. Gen. Genet.* **213**, 175–178
33. Vogler, A. P., Broekhuizen, C. P., Schuitema, A., Lengeler, J. W., and Postma, P. W. (1988) *Mol. Microbiol.* **2**, 719–726
34. Stolz, B., Huber, M., Markovic-Housley, Z., and Erni, B. (1993) *J. Biol. Chem.* **268**, 27094–27099
35. Erni, B. (1989) *EMS Microbiol. Rev.* **63**, 13–23
36. Erni, B., Zanolari, B., Graff, P., and Kocher, H. P. (1989) *J. Biol. Chem.* **264**, 18733–18741
37. Markovic-Housley, Z., Cooper, A., Lustig, A., Flükiger, K., Stolz, B., and Erni, B. (1994) *Biochemistry.* **33**, 10977–10984
38. Rhiel, E., Flükiger, K., Wehrli, C., and Erni, B. (1994) *Biol. Chem. Hoppe-Seyler* **375**, 551–559
39. Huber, F., and Erni, B. (1996) *Eur. J. Biochem.* **239**, 810–817
40. Erni, B., Zanolari, B., and Kocher, H. P. (1987) *J. Biol. Chem.* **262**, 5238–5247
41. Cantor, C. R., and Schimmel, P. R. (1980) in *Biophysical Chemistry*, pp. 557–565, W. H. Freeman and Co., San Francisco
42. Mao, Q., Schunk, T., Flükiger, K., and Erni, B. (1995) *J. Biol. Chem.* **270**, 5258–5265
43. Erni, B., and Zanolari, B. (1985) *J. Biol. Chem.* **260**, 15495–15503
44. Deleted in proof
45. Gutknecht, R., Lanz, R., and Erni, B. (1998) *J. Biol. Chem.* **273**, 12234–12238
46. Van Weeghel, R. P., Meyer, G., Pas, H. H., Keck, W., and Robillard, G. T. (1991) *Biochemistry* **30**, 9478–9485
47. Van Weeghel, R. P., van der Koek, Y. Y., Pas, H. H., Elferink, M. K., and Robillard, G. T. (1991) *Biochemistry.* **30**, 1768–1773
48. Veyrat, A., Monedero, V., and Perez-Martinez, G. (1994) *Microbiology (U. K.)* **140**, 1141–1149
49. Wehrmeier, U. F., and Lengeler, J. W. (1994) *Biochim. Biophys. Acta* **1208**, 348–351
50. Bouma, C. L., and Roseman, S. (1996) *J. Biol. Chem.* **271**, 33457–33467
51. Martin-Verstraete, I., Déharbouillé, M., Klier, A., and Rapoport, G. (1990) *J. Mol. Biol.* **214**, 657–671
52. Wootton, J. C., and Drummond, M. H. (1989) *Protein Eng.* **2**, 535–543
53. Perham, R. N. (1991) *Biochemistry* **30**, 8501–8512
54. Fersht, A. R. (1985) in *Enzyme Structure and Mechanism*, pp. 308, W. H. Freeman and Company, New York
55. Jia, Z., Quail, J. W., Waygood, E. B., and Delbaere, L. T. J. (1993) *J. Biol. Chem.* **268**, 22490–22501
56. Kraulis, P. J. (1991) *J. Appl. Crystallogr.* **24**, 946–950