Latest Results on Bottom Spectroscopy and Production with CDF

Igor V. Gorelov

Department of Physics and Astronomy, MSC07 4220, University of New Mexico, 800 Yale Blvd. NE, Albuquerque, NM 87131, USA

Abstract

Using data collected with the CDF Run II detector, new measurements on bottom production cross-sections are presented. The latest achievements in bottom hadron spectroscopy are discussed. The results are based on a large sample of semileptonic and hadronic decays of bottom states made available by triggers based on the precise CDF tracking system.

1 First Observation of the Baryons Σ_b and Σ_b^* in CDF

The bottom $\Sigma_b^{(*)}$ states decay strongly into Λ_b^0 by emitting soft pion as shown in Figure 1. Our results are based on data collected with the CDF II detector [2] and corresponding to an integrated luminosity of $\sim 1.1 \text{ fb}^{-1}$. The trigger used in this study is based on displaced tracks. It reconstructs with the central tracker a pair of $p_T \gtrsim 2.0 \text{ GeV}/c$ tracks at Level 1 and enables secondary vertex selection at Level 2 requiring each of these tracks to have impact parameter measured by the CDF silicon detector SVX II larger than 120 μm. The signals of $\Sigma_b^{(*)\pm}$ states were sought in the decay chain $\Sigma_b^{(*)\pm} \to \Lambda_b^0 \pi^{\pm}_{\text{soft}}, \Lambda_b^0 \to \Lambda_c^+ \pi^-, \Lambda_c^+ \to pK^-\pi^+$. To remove the contribution due to a mass resolution

of each Λ_b^0 candidate and to avoid absolute mass scale systematic uncertainties, the $\Sigma_b^{(*)\pm}$ candidates were reconstructed in the mass difference Q-value spectra defined as $Q = M(\Lambda_b^0 \pi^{\pm}_{\text{soft}}) - M(\Lambda_b^0) - M_{\text{PDG}}(\pi^{\pm})$ for every charge state of $\Sigma_b^{(*)\pm}$ candidates. Here we assume also that the width of the weakly decaying Λ_b^0 candidate is determined by the corresponding detector mass resolution. The fitted experimental spectra are shown at Figure 2 and fit results are summarized in Tables 1 and 2 [3].

Figure 1: The low lying Σ_b- and Λ_b-like b-baryons and their strong decays with pion emissions.
2 Observation and Mass Measurement of the Baryon Ξ_b

The bottom cascade baryons Ξ_b consist of a single bottom quark, one strange quark and one light quark. Theoretical predictions for these heavy baryons are outlined in Table 3. We consider the lowest lying Ξ_b states that decay weakly and the $\Xi_b^{(*)}$ states that decay radiatively or strongly via pion emission. The Ξ_b candidates are reconstructed in the decay chain $\Xi_b \rightarrow J/\psi \Xi^-$ with secondary states $J/\psi \rightarrow \mu^+\mu^-$ and $\Xi^- \rightarrow \Lambda^0\pi^-$, $\Lambda^0 \rightarrow p\pi^-$ (see Figure 3). Since experiments with bubble chambers the strange cascade, given its long decay path of $c \cdot \tau = 4.91$ cm, is identified as a charged track with a 1-track decay vertex at the end formed by a kinked soft pion track as shown at Figure 3. The subse-

Table 1: The masses resulting from the simultaneous fit of both spectra [9].

State	Q or $\Delta\Sigma^+$ (MeV/c²)	Mass (MeV/c²)
Σ^+_b	$Q_{\Sigma^+_b} = 48.5^{+2.0+0.2}_{-2.2-0.3}$	5807.8$^{+4.0}_{-2.2}$ ± 1.7
Σ^-_b	$Q_{\Sigma^-_b} = 55.9 \pm 1.0 \pm 0.2$	5815.2 ± 1.0 ± 1.7
Σ^0_{b*}	$\Delta\Sigma^+ = 21.2^{+0.0+0.4}_{-1.9-0.3}$	5829.6$^{+1.6+1.7}_{-1.8-1.8}$

Table 2: The fitted yields [9] of the identified Σ^0_{b*} states. The combined significance of all four peaks relative to the null hypothesis well exceeds 5 Gaussian standard deviations.

Table 3: Theoretical expectations for properties of bottom cascade baryons containing a single b- quark [9]. The lowest lying states have a light quark pair with momentum $j_{sq} = 0$ while the next ones have light quarks aligned with $j_{sq} = 1$.

Photon 2007
3 Correlated $b\bar{b}$ Production in CDF II Detector

In this chapter we cover briefly a unique analysis on a paired $b\bar{b}$ production measurement. As leading order (LO) processes dominate $b\bar{b}$ production, $\sigma_{b\bar{b}}$, while next-to-leading (NLO) processes are essential for inclusive $\sigma_{b\bar{b}}$ studies, the measurement of $\sigma_{b\bar{b}}$ will help to disentangle LO and NLO contributions and to resolve the controversy between the Run I DØ and CDF measurements [8]. We select dimuon events with invariant masses $5 < M(\mu^+\mu^-) < 80 \text{ GeV}/c^2$, outside of the domain populated by sequential decays of single b-quarks and Z^0 modes, and extract $\sigma(b \rightarrow \mu^- + X, \bar{b} \rightarrow \mu^+ + X)$, subtracting contributions from $c\bar{c}$, prompt Drell-Yan pairs, γ- and b-onium prompt decays, π^-, K-decays, and misidentified dimuon candidates. The signal and background contributions are determined by fitting the experimental 2-dimensional impact parameter $d_0(\mu_1), d_0(\mu_2)$.

Photon 2007
distribution to corresponding templates expected for various dimuon sources. The method exploits the fact that the shape of the $d_0(\mu)$ distribution is largely determined by the lifetime of its parent heavy hadron. The analysis is based on a data sample of total luminosity $L = 740 \pm 10 \text{pb}^{-1}$ collected with the CDF dimuon trigger [2] having no biases with respect to $d_0(\mu)$ distribution. The projection of the 2-dimensional fit onto $d_0(\mu)$ comprising various background contributions is shown in Figure 6. The extracted experimental cross-section is found to be $\sigma(b \rightarrow \mu^-, \bar{b} \rightarrow \mu^+) = 1549 \pm 133 \text{pb}$. The errors include statistical and systematic uncertainties added in quadratures. From this measurement we derive $\sigma(b\bar{b}, p_T \geq 6 \text{GeV}/c, |y| \leq 1) = 1618 \pm 148 \text{nb}$. The systematic uncertainty due to choice of the fragmentation model is $\sim 25\%$.

4 Summary

CDF announces the first observation of four bottom baryon $\Sigma_b^{(*)\pm}$ resonance states. CDF has also observed the strange bottom cascade baryon Ξ^-_b, and our measurements are in agreement with the DØ observation and with theoretical predictions. CDF II detector has measured the correlated production cross-section of $b\bar{b}$ pairs with b-quarks identified in their muonic semileptonic modes. The measurement is consistent with theoretical expectations. Using NLO Monte-Carlo production cross-section in the kinematic domain $(p_T \geq 6 \text{GeV}/c, |y| \leq 1)$ has been derived.

5 Acknowledgments

The author is grateful to his colleagues from the CDF B-Physics Working Group for useful suggestions and comments made during preparation of this talk. The author thanks S. C. Seidel for support of this work.

References

[1] Slides: [http://indico.cern.ch/materialDisplay.py?contribId=53&sessionId=18&materialId=slides&confId=3841]

[2] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71 032001 (2005).

[3] T. Aaltonen et al. (CDF Collaboration), arXiv:0706.3868v1 [hep-ex]. Submitted to Phys. Rev. Lett.

[4] J. G. Körner, M Krämer and D. Pirjol, Prog. Part. Nucl. Phys. 33 787 (1994), arXiv:hep-ph/9406359v1 and references herein.
[5] W-M Yao et al. (Particle Data Group) J. Phys. G 33 1 (2006).

[6] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 99 052002 (2007), [arXiv:0707.0589v2 [hep-ex]].

[7] V. M. Abazov et al. (The DØ Collaboration), Phys. Rev. Lett. 99 052001 (2007), [arXiv:0706.1690v3 [hep-ex]].

[8] F. Happacher, P. Giromini and F. Ptohos, “Status of the observed and predicted $b\bar{b}$ production at the Fermilab Tevatron”, Phys. Rev. D 73 014026 (2006). See also references herein.

[9] S. Frerejone, P. Nason and B. R. Webber, JHEP 0308, 007 (2003) [arXiv:hep-ph/0305252]. See also //http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO for code downloads.

[10] M. L. Mangano, P. Nason and G. Ridolfi, Nucl. Phys. B 373, 295 (1992). See also //http://www.ge.infn.it/ridolti for code downloads.

[11] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).

[12] A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne, Eur. Phys. J. C 4, 463 (1998) [arXiv:hep-ph/9803445].

[13] C. Peterson et al., Phys. Rev. D 27 105 (1983).