Is inflammation the cause of pre-eclampsia?

Wenda Ramma and Asif Ahmed

Abstract

It has been proposed that either excessive inflammation or an imbalance in angiogenic factors cause pre-eclampsia. In the present review, the arguments for and against the role of inflammation and/or angiogenic imbalance as the cause of pre-eclampsia are discussed on the basis of the Bradford-Hill criteria for disease causation. Although both angiogenic imbalance and systemic inflammation are implicated in pre-eclampsia, the absence of temporality of inflammatory markers with pre-eclampsia challenges the concept that excessive inflammation is the cause of pre-eclampsia. In contrast, the elevation of anti-angiogenic factors that precede the clinical signs of pre-eclampsia fulfills the criterion of temporality. The second most important criterion is the dose–response relationship. Although such a relationship has not been proven between pro-inflammatory cytokines and pre-eclampsia, high levels of anti-angiogenic factors have been shown to correlate with increased incidence and disease severity, hence satisfying this condition. Finally, as the removal of circulating sFlt-1 (soluble fms-like tyrosine kinase receptor-1) from pre-eclamptic patients significantly improves the clinical outcome, it fulfills the Hill’s experiment principle, which states that removal of the cause by an appropriate experimental regimen should ameliorate the condition. In contrast, treatment with high doses of corticosteroid fails to improve maternal outcome in pre-eclampsia, despite suppressing inflammation. Inflammation may enhance the pathology induced by the imbalance in the angiogenic factors, but does not by itself cause pre-eclampsia. Development of therapies based on the angiogenic and cytoprotective mechanisms seems more promising.

Background

Pre-eclampsia is an important cause of maternal and perinatal mortality affecting 5–7% of pregnant women [1]. Clinically, it is defined as the de novo onset of hypertension (systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg) and proteinuria (≥ 300 mg/24 h) after 20 weeks of gestation. In extreme cases, serious complications of pre-eclampsia can include acute renal failure, seizures (eclampsia), pulmonary oedema, acute liver injury, haemolysis and/or thrombocytopenia. The last three signs occur together as part of the HELLP (haemolysis, elevated liver enzymes and low platelets) syndrome, a severe variant of pre-eclampsia. Apart from the hypertension and proteinuria, the central nervous system also plays a role, such as headache and hyperrelexia.

Pre-eclampsia has been cited as “the disease of theories” because of its unknown aetiology [2]. In recent years, endothelial dysfunction has emerged as the leading phenomenon responsible for the clinical signs of the disorder [3]. Endothelial dysfunction is commonly linked to the impairment of the NO (nitric oxide) pathway and decrease in NO bioavailability [4,5]. Factors proposed to cause endothelial dysfunction in pre-eclampsia include poor placental vascular remodelling and placental ischaemia, oxidative stress [6,7], excessive inflammation [8], imbalance in angiogenic factors [9–12] and the loss of endogenous protective regulators [3,13–15].

Poor placentation and reduction in uterine blood flow (placental ischaemia) has for a long time been proposed to be the leading cause for the increase in oxidative and endoplasmic reticulum stress, production of potent pro-inflammatory mediators and anti-angiogenic factors in pre-eclampsia [16,17]. However, the role of inadequate placental vascular remodelling due to defective trophoblast invasion as the leading cause of pre-eclampsia has been disputed on the basis of evidence that failure to remodel the uterine arteries is also associated with intrauterine growth restriction, where no signs of hypertension and proteinuria are observed [18].

More recently, the ‘excessive inflammation’ and the ‘angiogenic imbalance’ theories were highlighted as the cause of pre-eclampsia. Although a generalized systemic inflammation is common to all pregnancies [19], Redman et al. [8] proposed that pre-eclampsia is not intrinsically different from normal pregnancy, but it is at the extreme end of a continuous spectrum of inflammatory responses that are a feature of pregnancy itself. In parallel, Ahmed [9] had proposed that
it is the imbalance in angiogenic factors that cause pre-eclampsia; in particular, the increase in sFlt-1 (soluble Fms-like tyrosine kinase receptor-1) and sEng (soluble endoglin) and the decrease in PlGF (placenta growth factor). In the present review, the arguments for the role of inflammation and angiogenic imbalance as the cause of pre-eclampsia are discussed on the basis of the Bradford–Hill criteria for disease causation (Table 1).

Evidence of inflammation in pre-eclampsia

In 1997, the angiogenic imbalance hypothesis proposed that pre-eclampsia arises due to loss of VEGF (vascular endothelial growth factor) activity as a result of rise in sFlt-1 [9]. This gained support when it was shown that sFlt-1 levels increased in the amniotic fluid [20] and placenta [21] of pre-eclamptic women. The role of sFlt-1 in the aetiology of pre-eclampsia acquired serious recognition when it was shown that adenoviral overexpression of sFlt-1 in pregnant rats mimicked the clinical manifestations of pre-eclampsia [10]. Indeed, anti-VEGF therapy also promotes hypertension and proteinuria in cancer patients [22]. Furthermore, the circulating level of maternal sFlt-1 is significantly elevated before the onset of the disorder and persisted until delivery [23]. High levels of sFlt-1 causes endothelial dysfunction [10,24,25] and inhibits angiogenesis [26,27] by binding to and antagonizing the function of both VEGF and PlGF [28]. In addition, the circulating levels of VEGF and PlGF are decreased before the onset of pre-eclampsia [12,29]. Both VEGF [30,31] and PlGF [32] have been shown to stimulate NO release [33], indicating that their loss would lead to a reduction in NO production. Like sFlt-1, sEng is elevated early in pre-eclampsia [11] and limits the activity of TGFβ1 (transforming growth factor β1) signalling and eNOS (endothelial nitric oxide synthase) [34,35], hence promoting vascular dysfunction and inhibiting angiogenesis [11].

Evidence of angiogenic factors in pre-eclampsia

In 1997, the angiogenic imbalance hypothesis proposed that pre-eclampsia arises due to loss of VEGF (vascular endothelial growth factor) activity as a result of rise in sFlt-1 [9]. This gained support when it was shown that sFlt-1 levels increased in the amniotic fluid [20] and placenta [21] of pre-eclamptic women. The role of sFlt-1 in the aetiology of pre-eclampsia acquired serious recognition when it was shown that adenoviral overexpression of sFlt-1 in pregnant rats mimicked the clinical manifestations of pre-eclampsia [10]. Indeed, anti-VEGF therapy also promotes hypertension and proteinuria in cancer patients [22]. Furthermore, the circulating level of maternal sFlt-1 is significantly elevated before the onset of the disorder and persisted until delivery [23]. High levels of sFlt-1 causes endothelial dysfunction [10,24,25] and inhibits angiogenesis [26,27] by binding to and antagonizing the function of both VEGF and PlGF [28]. In addition, the circulating levels of VEGF and PlGF are decreased before the onset of pre-eclampsia [12,29]. Both VEGF [30,31] and PlGF [32] have been shown to stimulate NO release [33], indicating that their loss would lead to a reduction in NO production. Like sFlt-1, sEng is elevated early in pre-eclampsia [11] and limits the activity of TGFβ1 (transforming growth factor β1) signalling and eNOS (endothelial nitric oxide synthase) [34,35], hence promoting vascular dysfunction and inhibiting angiogenesis [11].

Inflammation compared with angiogenic imbalance hypothesis

Temporal relationship

According to Hill [50], causation can be determined using the temporal relationship, which implies that the cause of a disorder must precede its clinical signs. Numerous studies have shown that maternal circulatory sFlt-1 is elevated as early as 5–10 weeks before the onset of pre-eclampsia [23,51,52] and sEng is elevated as early as 11–13 weeks of
gestation before the development of pre-eclampsia [53–58]. Furthermore, a decrease in urinary PlGF also precedes the onset of pre-eclampsia [12]. Collectively, these observations provide evidence of the cause and effect relationship between the angiogenic imbalance theory and pre-eclampsia.

In contrast, neutrophil activation [38,59] and elevation of Th1 pro-inflammatory cytokines [49,60–62] have been shown to occur at the time of diagnosis of pre-eclampsia. In addition, a prospective nested case control study and a longitudinal study revealed that, at 18 weeks of gestation, the levels of inflammatory parameters including TNFα, IL-6 and IFNγ were not elevated in women who later developed pre-eclampsia compared with healthy controls [63,64]. The lack of a temporal relationship between the inflammatory cytokines and the maternal syndrome of pre-eclampsia puts into question the long-held concept that pre-eclampsia is caused by ‘excessive inflammation’.

Interestingly, the study by Lynch et al. [65] suggested that early activation of the complement system in pregnancy elevates the concentrations of circulating complement-activated fragment Bb that could be associated with the subsequent development of pre-eclampsia, independent of the release of anti-angiogenic factors [43]. However, given the heterogeneous nature of pre-eclampsia and the small number of pre-eclamptic patients in this study (32 patients who developed pre-eclampsia), additional studies are needed to evaluate the relative implications of complement activation in the pathogenesis of pre-eclampsia.

Strength of association and consistency

Compelling and consistent data from clinical studies conducted in various centres have confirmed that circulating levels of sFlt-1, sEng and PlGF gave the highest strength of association with the clinical manifestation of early-onset pre-eclampsia, satisfying the two criteria of causation: strength of association between the cause and the disease and the consistency of association in different settings [23,51,66,67].

In contrast, clinical data vary greatly with respect to differences in specific level of inflammatory cytokines between normal pregnant women and pre-eclamptic women. Jonsson et al. [68] examined serum levels of 20 different cytokines and found significant differences in only two, IL-6 and IL-8, between pre-eclamptic and normal pregnant women. Sharma et al. [69] observed similar increase in serum IL-6 and IL-8 levels, but also found a significant increase in serum TNFα and a decrease in IL-10 in pre-eclamptic pregnant women compared with normal pregnant women. Additional studies have found increases in placental and/or peripheral blood levels of the inflammatory cytokines IL-2, IL-12, IL-15, IL-18 and IFNγ in pre-eclamptic pregnant women [69–71]. In contrast, Freeman et al. [72] observed that the serum levels of IL-10 and TNFα are increased from the first to the third trimester in healthy control pregnancies to nearly the same degree as in women with pre-eclampsia [72]. The inconclusive and contradictory findings about the inflammatory cytokines challenge the role of inflammation as the main cause of pre-eclampsia. Furthermore, with the exception of a few studies [73,74], many studies have failed to find a strong and consistent strength of association between the increase in inflammatory status and the clinical signs of pre-eclampsia, weakening the role of inflammation as the cause of pre-eclampsia.

Dose–response relationship

To date, the only cure for pre-eclampsia is the delivery of the baby and the removal of the placenta. Pre-eclampsia also occurs in molar pregnancies (absence of fetus), indicating that it is the placenta and not the fetus that causes the condition. Increase in placental mass, as in singletons to twins, triplets and quadruplets, also increases the incidence of pre-eclampsia. In twin pregnancies, a 2-fold increase in the level of sFlt-1 and an increase in the sFlt-1/PlGF ratio were observed [75]. In a secondary analysis of the NICHD (National Institute of Child Health and Human Development) MFMU (Maternal–Fetal Medicine Unit) trial of aspirin to prevent pre-eclampsia in high-risk pregnancies, the odds of developing pre-eclampsia were significantly increased among women with multiple placentae for each 2-fold elevation in sFlt-1, sEng and the ratio of angiogenic factors, and significantly decreased for each 2-fold elevation in circulating PlGF between 7 and 26 weeks of gestation [76]. Importantly, the fractional excretion of angiogenic factors was significantly higher in women with severe pre-eclampsia compared with those with mild pre-eclampsia or pregnant controls [77], demonstrating that the increase in sFlt-1 is directly proportional to the severity of the disorder. It is also worth noting that sFlt-1 can only induce hypertension and proteinuria in mice when its levels reach above a certain critical threshold [24], supporting the theory that women with fetal growth restriction, despite having elevated levels of sFlt-1 compared with controls, do not exhibit signs of hypertension or proteinurea [78]. These studies clearly demonstrate the dose–response relationship between the level of anti-angiogenic factors and the incidence and severity of pre-eclampsia. To our knowledge, such a relationship has not been established between pro-inflammatory cytokines and pre-eclampsia.

Specificity and experiment

Animal studies provide strong evidence linking sFlt-1 and sEng to the pathogenesis of pre-eclampsia [10,11,25,79–86]. In pregnant rats, sEng acts synergistically with sFlt-1 to induce endothelial dysfunction, hypertension, severe proteinuria and HELLP syndrome [11]. Furthermore, neutralization of sFlt-1 below a critical threshold using VEGF eliminates the signs of pre-eclampsia in mice [24,84]. In addition, Ahmad and Ahmed [26] showed previously that immunoprecipitation of sFlt-1 from placental conditioned medium of pre-eclamptic women restored angiogenesis as demonstrated by in vitro tube formation. Following on from this concept, recently, an elegant study by Thadhani et al. [87] showed that the extractions of sFlt-1 from the plasma of pre-eclamptic patients by apheresis (using a negatively charged dextran sulfate cellulose column to which positively...
Charged sFlt-1 is adsorbed), resulted in an approximate 35% reduction in circulating sFlt-1. As a consequence, this was accompanied by a reduction and stabilization of maternal blood pressure leading to an increase in gestational age in two patients by 16 days (for singleton pregnancy) and 19 days (twin pregnancy) respectively. Collectively, these separate studies fulfill the criteria of specificity and strengthen evidence for the role of anti-angiogenic factors as the likely candidates for the pre-eclampsia.

Several studies have attempted to show that inflammation itself causes the clinical signs of pre-eclampsia. For example, Faas et al. [88] showed that infusion of a single dose of endotoxin to pregnant rats caused glomerular damage in the kidney, as well as hypertension and proteinuria. In addition, Hayakawa et al. [62], who developed an animal model of immune-mediated abortion and pre-eclampsia due to excessive activation of Th1/Th2 lymphocyte, showed that in vitro-activated splenocytes with IL-12 and IL-4 injected into pregnant mice induced hypertension, proteinuria and histological renal changes, but not in controls. In a more recent study, Zenclussen et al. [89] showed that activated Th1-like cells, but not Th2-like cells, injected into mice led to elevated blood pressure, proteinuria and kidney damage exclusively in pregnant mice [89]. In support of these studies, other groups have reported that immunosuppression or inhibition of the inflammatory network improves the aforementioned pathological conditions.

Indeed, in a rat model of pregnancy-induced hypertension, as described previously [90], pharmacological immunosuppression of lymphocytes improved blood pressure and endothelial function [91,92], indicating that prevention of T-cell proliferation may decrease hypertension. In a more recent study, Zhou et al. [93] showed that injection of angiotensin-II receptor-agonistic autoantibodies induced pre-eclampsia-like features in mice and the inhibition of IL-6 in these mice inhibited these signs. Despite these studies, the proposal that pre-eclampsia is primarily an inflammatory disorder is somewhat at odds with clinical experience of the use of corticosteroids used to accelerate fetal lung maturation. A prospective double-blind randomized clinical trial of 24 mg of betamethasone given as two 12 mg doses 24 h apart and repeated weekly confirmed the known beneficial effects of this treatment on neonatal outcome, but failed to show any beneficial effect to the mother [94]. This dose of betamethasone is equivalent to 160 mg of prednisolone, which would be regarded as a huge dose of corticosteroid and which would be expected to have major effects in other inflammatory conditions. Moreover, in a similar clinical trial, dexamethasone failed to improve the outcome of women with HELLP syndrome [95].

Coherence and plausibility criteria

According to the Hill’s criteria of causation, the association needs to be compatible with existing knowledge. The biology of VEGF helps to validate the role of the anti-angiogenic factor sFlt-1 as a cause of pre-eclampsia. VEGF is critical for endothelial cells homeostasis [96] and plays a crucial role in the health of fenestrated and sinusoidal endothelium found in the renal glomerulus, brain and liver [97], organs that are severely compromised in pre-eclampsia. VEGF activates both VEGFR (VEGF receptor)-1 and VEGFR-2 to stimulate NO required for angiogenesis [30,31,98–102], which suggests its beneficial role in the regulation of vascular tone and blood pressure [103]. Indeed, exogenously administered VEGF was shown to ameliorate post-cyclosporine-mediated hypertension, endothelial dysfunction and nephropathy [104,105]. Beneficial effects of VEGF have also been observed in animal models of kidney disease [106–108]. Furthermore, cancer patients receiving anti-VEGF therapy [22] or rats treated with VEGF-neutralizing antibody or sFlt-1 [109] exhibit pre-eclampsia-like symptoms, indicating that reduction in VEGF bioavailability is the likely initiator of vascular damage responsible for the main clinical signs of pre-eclampsia.

Increases in inflammatory cytokine production have been associated with endothelial dysfunction, increased placenta apoptosis, decreased angiogenesis and kidney abnormalities that are relevant to the pathophysiology of pre-eclampsia [110]. Endothelial cell damage induces the production of ET-1 (endothelin-1) [111,112]. In pregnant mice, ET-1 was shown to cause hypertension, proteinuria and renal damage. Furthermore, IL-6 acts downstream of TNFα to induce the release of ET-1 in mice. In addition, in the presence of autoantibodies from pre-eclamptic women, IL-6 mediates the release of ET-1 from human placental villous explants [93]. These studies validate the original in vitro observations of Collino et al. [113], which showed that pre-eclamptic sera induces nephrin shedding from podocytes through ET-1 release by endothelial glomerular cells. These separate studies show an association between inflammation and ET-1 in rodents, and ET-1 may play an important role in pre-eclampsia, but pregnant women with excessive inflammation and high levels of inflammatory cytokines, such as those with infections, do not always develop pre-eclampsia.

Conclusion

Collectively, the studies are important in elucidating the sequence of events involved in the progression of pre-eclampsia and its clinical signs (Figure 1). There is no doubt that both angiogenic imbalance and systemic inflammation are elevated in pre-eclampsia. However, on the basis of the evidence and arguments made above, we advocate that inflammation is a consequence rather than a cause of pre-eclampsia. The most essential criterion of Bradford–Hill is the principle of temporality, which states that when a factor is believed to cause a disease, the factor must necessarily always precede the occurrence of the disease. The absence of temporality between the elevation in the circulating inflammatory markers and the development of the maternal syndrome of pre-eclampsia challenges the concept that excessive inflammation is the cause of pre-eclampsia. In contrast, the increase in circulating anti-angiogenic factors, which precedes the clinical signs of pre-eclampsia, fulfils...
Advances in the Cellular and Molecular Biology of Angiogenesis 1623

Figure 1 | Progression of pregnancy to pre-eclampsia
A schematic diagram of the sequence of events along gestational age leading to the clinical signs of pre-eclampsia. EC, endothelial cell; HO-1, haem oxygenase 1; TGF-β, transforming growth factor β.

the condition of temporality. Another crucial criterion is the dose–response relationship, where increasing the level of exposure to a factor increases the incidence and severity of the disease. Although such a relationship has not been established between pro-inflammatory cytokines and pre-eclampsia, high levels of anti-angiogenic factors have been shown to correlate with increased incidence of the disorder and disease severity, hence satisfying this condition. Furthermore, Hill’s experiment criterion states that removal of the cause by an appropriate experimental regimen should ameliorate the condition. Indeed, compelling evidence supporting a role for anti-angiogenic factors as the leading cause of pre-eclampsia has recently been shown in a clinical study, where removal of circulating sFlt-1 from pre-eclamptic patients significantly improved the clinical outcome [87]. In contrast, treatment with high doses of corticosteroids failed to ameliorate the maternal outcome in pre-eclampsia despite suppressing inflammation.

Although inflammation may not be the cause of pre-eclampsia, it may enhance the pathology of the disorder in the presence of the anti-angiogenic factors. A recent study demonstrated that sFlt-1 act synergistically with pro-inflammatory mediators to activate endothelial cells compared with endothelial cells treated with TNFα alone [114]. Treatment with sFlt-1 or VEGF-neutralizing antibodies or blockade of VEGFR-1 and VEGFR-2 reduced the phosphorylation of Akt and eNOS leading to reduced NO bioavailability and increased endothelial dysfunction [114]. Furthermore, a recent study demonstrated that adenoviral overexpression of sFlt-1 in endothelial cells resulted in substantial inhibition of eNOS phosphorylation and NO production as well as a decrease in VEGFR-2 phosphorylation in pre-eclamptic placenta [27]. These separate results provide additional support for the original hypothesis put forward by Ahmed in 1997 [9] that lack of VEGF and NO bioavailability is responsible for the endothelial dysfunction in pre-eclampsia.

Whereas inflammation itself may not be the leading cause of pre-eclampsia, it should also be recognized that pregnant women with risk factors associated with chronic inflammation (obesity, pre-pregnancy hypertension, diabetes mellitus and dyslipidaemia) are more likely to develop pre-eclampsia [115–118]. Furthermore, patients with autoimmune diseases, particularly systemic lupus erythematosus and antiphospholipid syndrome, have increased risks of developing pre-eclampsia [119,120]. The possibility that inflammatory mediators may have local autocrine or paracrine effects, which can lead to amplification of the anti-angiogenic factors’ effects, cannot be ruled out at this stage.

In conclusion, we hypothesize that inflammation is not a major contributor in the development of pre-eclampsia. In the interest of finding an effective treatment, our focus should be to target development of therapies based on the angiogenic [28,121] and cytoprotective [3] theories, which seem more promising.

Acknowledgements
We thank Professor Gordon Smith (University of Cambridge, Cambridge, U.K.) for helpful and stimulating discussions during the formulation of these ideas. We also acknowledge the contribution of all of the past and present researchers who have worked with us.
Funding

We are grateful to our funding agencies, in particular the Medical Research Council and British Heart Foundation for their generous support over the years.

References

1 World Health Organization (2005) Make Every Mother and Child Count. The World Health Report 2005, p. 63, WHO, Geneva
2 Dekker, G.A. and Sibai, B.M. (1998) Etiology and pathogenesis of pre-eclampsia: current concepts. Am. J. Obstet. Gynecol. 179, 1359–1375
3 Ahmed, A. (2011) New insights into the etiology of preeclampsia: identification of key elusive factors for the vascular complications. Thromb. Res. 127 (Suppl. 3), S72–S75
4 Cooke, J.P., Dzau, J. and Creager, A. (1991) Endothelial dysfunction in hypercholesterolemia is corrected by s-arginine. Basic Res. Cardiol. 86 (Suppl. 2), 173–181
5 Bivalacqua, T.J., Usta, M.F., Champion, H.C., Kadwitz, P.J. and Hellstrom, W.J. (2003) Endothelial dysfunction in erectile dysfunction: role of the endothelium in erectile physiology and disease. J. Androl. 24, 517–537
6 Roberts, J.M. and Redman, C.W. (1993) Pre-eclampsia: more than pregnancy-induced hypertension. Lancet 341, 1447–1451
7 Roberts, J.M., Taylor, R.N., Musci, T.J., Rodgers, G.M., Hubel, C.A. and McLaughlin, M.K. (1989) Preeclampsia: an endothelial cell disorder. Am. J. Obstet. Gynecol. 161, 1200–1204
8 Redman, C.W., Sacks, G.P. and Sargent, I.L. (1999) Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am. J. Obstet. Gynecol. 180, 499–506
9 Ahmed, A. (1997) Heparin-binding angiogenic growth factors in ovulatory menstrual cycle. Hum. Reprod. 12, 63–69
10 Maynard, S.E., Min, J.Y., Merchan, J., Lim, K.H., Li, J., Mondal, S., Libermann, T.A., Morgan, J.P., Sellke, F.W., Stillman, I.E. et al. (2003) Excess placental soluble fms-like tyrosine kinase-1 may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658
11 Venkatesha, S., Toporsian, M., Lam, C., Hanai, J., Mammoto, T., Kim, Y.M., Bdolah, Y., Lim, K.H., Yuan, H.T., Libermann, T.A. et al. (2004) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 10, 62–64
12 Levine, R.J., Thadhani, R., Qian, C., Lam, C., Lim, K.H., Yu, K.F., Blink, A.L., Sachs, B.P., Epstein, F.H., Sibai, B.M. et al. (2005) Urinary placental growth factor and risk of preeclampsia. JAMA, J. Am. Med. Assoc. 293, 77–85
13 Ahmed, A., Rahman, M., Zhang, X., Acevedo, C.H., Nijjar, S., Rushton, I., Bussolati, O. and St John, J. (2000) Induction of placental heme oxygenases help solve pre-eclampsia? Biochem. Soc. Trans. 28, S17–S37
14 Cudmore, M.J. and Ahmed, A. (2011) Autocrine activity of soluble Flt-1 controls endothelial cell function and angiogenesis. Vas. Cell 3, 15
15 Ahmed, A. and Cudmore, M. (2009) Can the biology of VEGF and haem oxygenases help solve pre-eclampsia? Biochem. Soc. Trans. 37, 1237–1242
16 Foidart, J.M., Schaaps, J.P., Chantraine, F., Munaut, C. and Lorquet, S. (2009) Dysregulation of anti-angiogenic agents (sFlt-1, PLGF, and endoglin) in preeclampsia: a step forward but not the definitive answer. J. Reprod. Immunol. 82, 106–111
17 Ahmed, A., Dunk, C., Kniss, D. and Wilkes, M. (1997) Role of VEGF receptor-1 (Flt-1) in mediating calcium-dependent nitric oxide release and limiting DNA synthesis in human trophoblast cells. Lab. Invest. 76, 779–793
18 Papapetropoulos, A., Garcia-Cardenas, G., Madri, J.A. and Sessa, W.C. (1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Invest. 100, 3131–3139
19 Khaliq, A., Dunk, C., Jiang, J., Shams, M., Li, X.F., Acevedo, C., Weich, H., Whittle, M. and Ahmed, A. (1999) Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: molecular evidence for "placental hypoxia" in intrauterine growth restriction. Lab. Invest. 79, 151–170
20 Bussolati, B., Dunk, C., Grohmann, M., Kontos, C.D., Mason, J. and Ahmed, A. (2001) Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitric oxide. Am. J. Pathol. 159, 993–1008
21 Jerke, M., Rivas-Elena, J.V., Prieto, M., Caron, R., Saz-Rodriguez, F., Perez-Barriocanal, F., Rodriguez-Barbero, A., Bernabeu, C. and Lopez-Novoa, J.M. (2004) Endoglin regulates nitric oxide-dependent vasodilatation. FASEB J. 18, 609–611
22 Toporsian, M., Gros, R., Kabir, M.G., Vera, S., Govindaraju, K., Eidelman, D.H., Husain, M. and Letarte, M. (2005) A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia. Circ. Res. 96, 684–692
23 Zimmerman, G.A., Prescott, S.M. and McIntyre, T.M. (1992) Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunity 159, 391–409
24 Cudmore, M., Ahmad, S., Al-ANI, B., Fujisawa, T., Coxall, H., Chudassama, K., Devey, L.R., Wigmore, S.J., Abbas, A., Hewett, P.W. and Ahmed, A. (2007) Negative regulation of soluble Flt-1 and soluble endoglin release by heparine and heparine-1. Circulation 115, 1789–1795
25 Cudmore, M.J., Ahmad, S., Sissaua, S., Ramm, W., Ma, B., Fujisawa, T., Al-ANI, B., Wang, K., Cai, M., Crispi, F. et al. (2011) Loss of Akt activity increases circulating soluble endoglin release in preeclampsia: identification of inter-dependency between Akt-1 and heparine-1. Eur. Heart J. doi:10.1093/eurheartj/ehr065
26 Burton, G.J., Woods, A.W., Jauniaux, E. and Kingdon, J.C. (2009) Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30, 473–482
27 Redman, C.W. and Sargent, I.L. (2010) Immunology of pre-eclampsia. Am. J. Reprod. Immunol. 63, 534–543
28 Ayak, P.T. and Matijevic, R. (2006) Placental ischaemia is a consequence rather than a cause of pre-eclampsia. Med. Hypotheses 67, 792–795
29 Wills, C., Morris, J.M., Danis, V. and Gallyer, E.D. (2003) Cytokine production by peripheral blood monocytes during the normal human ovulatory menstrual cycle. Hum. Reprod. 18, 1173–1178
40 Holthe, M.R., Staff, A.C., Berge, L.N., Fagerhol, M.K. and Lyberg, T. (2005) Calprotectin plasma level is elevated in preeclampsia. Acta Obstet. Gynecol. Scand. 84, 151–154
41 Braekke, K., Holthe, M.R., Harsem, N.K., Fagerhol, M.K. and Staff, A.C. (2005) A circulating marker of inflammation, is elevated in the maternal but not in the fetal circulation in preeclampsia. Am. J. Obstet. Gynecol. 193, 227–233
42 Belo, L., Santos-Silva, A., Caslake, M., Cooney, J., Pereira-Leite, L., Quintanilha, A. and Rebelo, I. (2003) Neutrophil activation and C-reactive protein concentration in preeclampsia. Hypertens. Pregnancy 22, 129–141
43 Lynch, A.M., Murphy, J.R., Gibbs, R.S., Levine, R.J., Giclas, P.C., Salmon, J.H., Lee, S.W. and Ryu, H.M. (2009) Soluble endoglin and placental growth factor (PlGF) in preeclampsia among very late gestation and puerperium. Ultrasound Obstet. Gynecol. 35, 680–687
44 Holthe, M.R., Staff, A.C., Berge, L.N. and Lyberg, T. (2004) Leukocyte adhesion molecules and reactive oxygen species in pregnancy. Obstet. Gynecol. 103, 913–922
45 Mosmann, T.R. and Sad, S. (1996) The expanding universe of T-cell responses: the TH2 phenotype? Immunol. Today 17, 316–319
46 Lynch, A.M., Murphy, J.R., Byers, T., Gibbs, R.S., Neville, M.C., Giclas, P.C., Salmon, J.H. and Holers, V.M. (2010) The role of interleukin-1 receptor antagonist in plasma of women with preeclampsia: a mechanism for endothelial dysfunction? Obstet. Gynecol. 115, 937–940
47 Hayakawa, S., Fujikawa, T., Fukuo, H., Chisima, F., Karasaki-Suzuki, M., Ohkoshi, E., Oh, H., Kyoshiji Fuji, T., Tochigi, M., Sato, K. et al. (2000) Murine fetal resorption and experimental pre-eclampsia are induced by both excessive Th1 and Th2 activation. J. Reprod. Immunol. 47, 121–138
48 Djurovic, D.J., Macmanus, F., Brown, E.A., Cherry, L., Norrie, J., Ramsay, J.E., Clark, P., Walker, I.D., Sattar, N. and Greer, I.A. (2004) Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension 44, 708–714
49 Mihai, D., Costin, N., Mihu, C.M., Blaga, L.D. and Pop, R.B. (2008) C-reactive protein, marker for evaluation of systemic inflammatory response in pre-eclampsia. Rev. Med. Chir. Soc. Med. Nat. Iasi 112, 1019–1025
50 De’Anna, R., Bavieria, G., Giordano, D., Todarello, G., Corrado, F. and Buemi, M. (2008) Second trimester neutrophil gelatinase-associated lipocalin as a potential prognostic marker of preeclampsia. Acta Obstet. Gynecol. Scand. 87, 1370–1373
51 Buhimschi, C.S., Baumberg, M.A., Dulay, A.T., Lee, S., Wehrum, M., Zhao, B., Boythory, M.G., Pettiker, C.M., Ali, U.A., Funici, E.F. and Buhimschi, I.A. (2010) The role of urinary soluble endoglin in the diagnosis of pre-eclampsia: comparison with soluble fms-like tyrosine kinase 1 to placental growth factor ratio. BJOG 117, 321–330
52 Monson, R., Ber, M., Mathiesen, L., Berg, G., Nieminen, K., Sharma, S., Enerudh, J. and Ekerfeldt, C. (2006) Cytokine mapping of sera from women with preeclampsia and normal pregnancies. J. Reprod. Immunol. 70, 83–91
53 Sharma, A., Satyam and Sharma, J.B. (2007) Leptin, IL-10 and inflammatory markers (TNF-α, IL-6 and IL-8) in pre-eclamptic, normotensive pregnant and healthy non-pregnant women. Am. J. Reprod. Immunol. 58, 21–30
54 Kaeli, I., Kaeli, B., Demir, M., Yildirm, B., Cevahir, N. and Demir, S. (2006) Aberrant uterine natural killer (NK)-cell activity and maternal vascular function before and after preeclampsia. BJOG 113, 913–922
55 Sverremark-Ekstrom, E. (2006) Aberrant uterine natural killer (NK)-cell activity and maternal vascular function before and after preeclampsia. BJOG 113, 913–922
56 Power, R.W., Jayabal, A., Clifton, R.G., Van Dorsten, P., Hauth, J.C., Klebanoff, M.A., Lindheimer, M.D., Sibai, B., Landon, M.E., Epshteyn, J., McEvedy, T., Midlovnik, M. et al. (2010) Soluble fms-like tyrosine kinase 1 (sFlt1), endoglin and placental growth factor (PlGF) in preeclampsia among high risk pregnancies. PLoS ONE 5, e13263
77 Buhimschi, C.S., Magloire, L., Funai, E., Norwitz, E.R., Kuczynski, E., Martin, R., Richman, S., Guller, S., Lockwood, C.J. and Buhimschi, I.A. (2006) Fractional excretion of angiogetic factors in women with severe preeclampsia. Obstet. Gynecol. 107, 1103–1113

78 Wollmer, M., Senges, R., Strick, P., Strasser, P., Meurer, B., Beckmann, M.W. and Schlembach, D. (2007) Angiogenic factors in maternal and fetal serum in pregnancies complicated by intrauterine growth restriction. Clin. Sci. 112, 51–57

79 Makris, A., Thornton, C., Thompson, J., Thomson, S., Martin, R., Ogle, W., Waugh, R., Mckenzie, P., Kirwan, P. and Hennery, A. (2007) Uteroplacental ischemia results in proteinuric hypertensive and elevated sFlt-1. Kidney Int. 71, 977–984

80 Roberts, L., LaMarca, B.B., Fournier, L., Bain, J., Cockrell, K. and Granger, J.P. (2006) Enhanced endothelin synthesis by endothelial cells exposed to seira from pregnant rats with decreased uterine perfusion. Hypertens. 47, 615–618

81 Agunanne, E.E., Uddin, M.N., Horvat, D. and Puschett, J.B. (2010) Contribution of angiogenic factors in a rat model of pre-eclampsia. Am. J. Physiol. 32, 332–339

82 Lu, F., Longo, M., Tamayo, E., Maner, W., Al-Hendy, A., Anderson, G.D., Hanks, G.D. and Saade, G.R. (2010) Long-term maternal cardiovascular function in a mouse model of sFlt-1-induced preeclampsia. Am. J. Physiol. 298, H189–H193

83 Suzuki, H., Oknishi, A., Matubara, S., Takei, Y., Murakami, M., Shibuya, M., Suzuki, K. and Saito, Y. (2007) Effect of recombinant placental growth factor 2 on hypertension induced by full-length mouse soluble fms-like tyrosine kinase 1 adenoviral vector in pregnant mice. Hypertension 50, 686–692

84 Bybault, I., Lu, F., Tamayo, E.H., Hanks, G.D., Longo, M., Kubicki, F. and Saade, G.R. (2010) Long-term maternal cardiovascular function in a mouse model of sFlt-1-induced preeclampsia. Am. J. Physiol. 298, H189–H193

85 Li, Z., Zhang, Y., Ming, M., Kapoun, A.M., Shao, Q., Kerr, I., Lam, A., O’Young, G., Sannaust, F., Stathis, P. et al. (2007) Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension 50, 1142–1147

86 Thadhani, R., Kisner, T., Hagmann, H., Bossung, V., Noack, S., Lu, F., Longo, M., Tamayo, E., Maner, W., Al-Hendy, A., Anderson, G.D., Agunanne, E.E., Uddin, M.N., Horvat, D. and Puschett, J.B. (2010) The Authors Journal compilation ©2010 with HELLP syndrome: a double-blind, placebo-controlled, randomized clinical trial. Am. J. Obstet. Gynecol. 193, 1591–1598

87 Kellems, R.E. and Xia, Y. (2011) Autoantibody-mediated hypertension in a rat model of pregnancy-induced hypertension. Am. J. Hypertens. 24, 1107–1114

88 Zhou, C.C., Irani, R.A., Dai, Y., Blackwell, S.C., Hicks, M.J., Ramin, S.M., Guzik, T.J., Hoch, N.E., Brown, K.A., McCann, L.A., Rahman, A., Dikalov, S., Elmarakby, A.A., Quigley, J.E., Imig, J.D., Pollock, J.S. and Pollock, D.M. (2007) Effect of recombinant placental growth factor 2 on hypertension induced by full-length mouse soluble fms-like tyrosine kinase 1 adenoviral vector in pregnant mice. Hypertension 50, 1129–1135

89 Thadhani, R., Kisner, T., Hagmann, H., Bossung, V., Noack, S., Schaarschmidt, W., Jank, A., Kribs, A., Cornely, O.A., Kreyssig, C. et al. (1994) A new animal model for human preeclampsia: ultra-low-dose saline infusion. Am. J. Pathol. 145, 396.e1–396.e7

90 Ericena, V. and Quaggan, S.E. (2004) The role of VEGF-A in glomerular development and function. Curr. Opin. Nephrol. Hypertens. 13, 9–15

91 Eriksson, L.G., Qing, D., Morsa, A., Kalluri, R. and Arteaga, C. (2004) Neutralization of circulating VEGF-A reduces renal injury in DOCA-salt hypertensive rats. Am. J. Physiol. 287, R76–R83

92 Ahmad, S., Hewett, P.W., Wang, P., Al-Ani, B., Budmure, M., Fujiwara, T., Haigh, J.J., le Noble, F., Wang, L., Malik, B., Haddad, M.A., Kalluri, R. and Arteaga, C. (2003) Vascular endothelial growth factor receptor-2 (Flt-1) induces proteinuria. J. Biol. Chem. 278, 1275–1282

93 Ferrara, N. (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611

94 Esser, S., Wollburg, K., Wollburg, H., Breier, G., Kurzchalia, T. and Risau, W. (1998) Vascular endothelial growth factor induces endothelial cell fenestration in vitro. J. Cell Biol. 140, 947–959

95 Muroharu, T., Asahara, T., Silver, M., Bauters, C., Masuda, H., Kalka, C., Keaney, M., Chen, D., Symes, J.F., Fishman, M.C. et al. (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest. 101, 2567–2578

96 Poston, L. (2006) Endothelial dysfunction in pre-eclampsia. Mol. Aspects Med. 27, 159–202

97 Bussolati, B., Dunk, C., Grohman, M., Kontos, C.D., Mason, J. and Ahmed, A. (2001) Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitric oxide. Am. J. Pathol. 159, 993–1008

98 Ahmad, S., Hewett, P.W., Wang, P., al-Ani, B., Budmure, M., Fujiwara, T., Haigh, J.J., le Noble, F., Wang, L., Malik, B., Haddad, M.A., Kalluri, R. and Arteaga, C. (2006) Direct evidence for endothelial vascular endothelial growth factor receptor factor-1 function in nitric oxide-mediated angiogenesis. Circ. Res. 99, 715–722

99 Cindrova-Davies, T., Sanders, D.A., Burton, G.J. and Charnock-Jones, D.S. (2011) Soluble Flt1 sensitizes endothelial cells to inflammatory cytokines by antagonizing VEGF receptor-mediated signaling. Cardiovasc. Res. 89, 671–679

100 Sinha, B., Dekker, G. and Kuperminc, M. (2005) Pre-eclampsia. Lancet 365, 785–799
116 Sibai, B.M., Ewell, M., Levine, R.J., Klebanoff, M.A., Esterlitz, J., Catalano, P.M., Goldenberg, R.L. and Joffe, G. (1997) Risk factors associated with preeclampsia in healthy nulliparous women: the Calcium for Preeclampsia Prevention (CPEP) Study Group. Am. J. Obstet. Gynecol. 177, 1003-1010

117 Duckitt, K. and Harrington, O. (2005) Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. Br. Med. J. 330, 565

118 Catov, J.M., Bodnar, L.M., Ness, R.B., Barron, S.J. and Roberts, J.M. (2007) Inflammation and dyslipidemia related to risk of spontaneous preterm birth. Am. J. Epidemiol. 166, 1312–1319

119 Giannakopoulos, B., Passam, F., Ioannou, Y. and Krilis, S.A. (2009) How we diagnose the antiphospholipid syndrome. Blood 113, 985–994

120 Hanly, J.G. (2003) Antiphospholipid syndrome: an overview. Can. Med. Assoc. J. 168, 1675-1682

121 Maynard, S.E. and Karumanchi, S.A. (2011) Angiogenic factors and preeclampsia. Semin. Nephrol. 31, 33-46

Received 23 August 2011
doi:10.1042/BST20110672