Adams, Jeffrey; He, Xuhua; Nie, Sian
Partial orders on conjugacy classes in the Weyl group and on unipotent conjugacy classes.
(English) Zbl 07337380
Adv. Math. 383, Article ID 107688, 28 p. (2021)

Summary: Let G be a reductive group over an algebraically closed field and let W be its Weyl group. In a series of papers, Lusztig introduced a map from the set $[W]$ of conjugacy classes of W to the set $[G_u]$ of unipotent classes of G. This map, when restricted to the set of elliptic conjugacy classes $[W_e]$ of W, is injective. In this paper, we show that Lusztig’s map $[W_e] \to [G_u]$ is order-reversing, with respect to the natural partial order on $[W_e]$ arising from combinatorics and the natural partial order on $[G_u]$ arising from geometry.

MSC:
20G07 Structure theory for linear algebraic groups
06A07 Combinatorics of partially ordered sets
20F55 Reflection and Coxeter groups (group-theoretic aspects)
20E45 Conjugacy classes for groups

Keywords:
reductive groups; Weyl groups; conjugacy classes; partial orders

Software:
CHEVIE

Full Text: DOI arXiv

References:
[1] Atlas of Lie Groups and Representations (2019)
[2] Brenti, F.; Björner, A., Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, vol. 231 (2005), Springer: Springer New York · Zbl 1110.05001
[3] Carter, R., Conjugacy classes in the Weyl group, Compos. Math., 25, 1-59 (1972) · Zbl 0254.17005
[4] Deligne, P.; Lusztig, G., Representations of reductive groups over finite fields, Ann. Math. (2), 103, 1, 103-161 (1976) · Zbl 0336.20029
[5] Dudas, O.; Malle, G., Decomposition matrices for low-rank unitary groups, Proc. Lond. Math. Soc. (3), 110, 6, 1517-1557 (2015) · Zbl 1364.20005
[6] Geck, M.; Hiss, G.; Lübeck, F.; Malle, G.; Pfeiffer, G., CHEVIE-a system for computing and processing generic character tables, Appl. Algebra Eng. Commun. Comput., 7, 175-210 (1996) · Zbl 0847.20006
[7] Geck, M.; Pfeiffer, G., Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Mathematical Society Monographs. New Series, vol. 21 (2000), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York · Zbl 0996.20004
[8] Hamacher, P., The geometry of Newton strata in the reduction modulo p of Shimura varieties of PEL type, Duke Math. J., 164, 15, 2899-2955 (2015) · Zbl 1335.14008
[9] Hartl, U.; Viehmann, E., The Newton stratification on deformations of local G-shtukas, J. Reine Angew. Math., 656, 87-129 (2011) · Zbl 1225.14036
[10] He, X., Minimal length elements in some double cosets of Coxeter groups, Adv. Math., 215, 469-503 (2007) · Zbl 1149.20035
[11] He, X., Geometric and homological properties of affine Deligne-Lusztig varieties, Ann. Math. (2), 179, 367-404 (2014) · Zbl 1321.14040
[12] He, X., Hecke algebras and p-adic groups, (Current Developments in Mathematics 2015 (2016), Int. Press: Int. Press Somerville, MA), 73-135 · Zbl 1372.20057
[13] He, X., Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties, Ann. Sci. Éc. Norm. Supér., 49, 1125-1141 (2016) · Zbl 1375.14166
[14] He, X.; Nie, S., Minimal length elements of extended affine Weyl group, Compos. Math., 150, 1903-1927 (2014) · Zbl 1335.20003
[15] de Jong, A. J.; Oort, F., Purity of the stratification by Newton polygons, J. Am. Math. Soc., 13, 209-241 (2000) · Zbl 0954.14007

[16] Lusztig, G., Hecke Algebras with Unequal Parameters, CRM Monographs Ser., vol. 18 (2003), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI, enlarged and updated version at · Zbl 1051.20003

[17] Lusztig, G., Character sheaves on disconnected groups I, Represent. Theory, 7, 374-403 (2003) · Zbl 1072.20052

[18] Lusztig, G., From conjugacy classes in the Weyl group to unipotent classes, Represent. Theory, 15, 494-530 (2011) · Zbl 1263.20045

[19] Lusztig, G., From conjugacy classes in the Weyl group to unipotent classes, II, Represent. Theory, 16, 189-211 (2012) · Zbl 1264.20043

[20] Lusztig, G., From conjugacy classes in the Weyl group to unipotent classes, III, Represent. Theory, 16, 450-488 (2012) · Zbl 1307.20040

[21] Malle, G., Generalized Deligne-Lusztig characters, J. Algebra, 159, 64-97 (1993) · Zbl 0812.20024

[22] Malle, G., Green functions for groups of type $\{E_6\}$ and $\{F_4\}$ in characteristic 2, Commun. Algebra, 21, 747-798 (1993) · Zbl 0815.20033

[23] Spaltenstein, N., Classes unipotents et sous-groupes de Borel, Lecture Notes in Math., vol. 946 (1982), Springer · Zbl 0486.20025

[24] Viehmann, E., Newton strata in the loop group of a reductive group, Am. J. Math., 135, 2, 499-518 (2013) · Zbl 1278.14062

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.