Weak emission line quasars are a rare and puzzling group of objects. In this paper we present one more object of this class found in the Sloan Digital Sky Survey (SDSS). The quasar SDSS J094533.99+100950.1, lying at \(z = 1.66 \), has practically no C IV emission line, a red continuum very similar to the second steepest of the quasar composite spectra of Richards et al., is not strongly affected by absorption and the Mg II line, although relatively weak, is strong enough to measure the black hole mass. The Eddington ratio in this object is about 0.45, and the line properties are not consistent with the trends expected at high accretion rates. We propose that the most probable explanation of the line properties in this object, and perhaps in all weak emission line quasars, is that the quasar activity has just started. A disk wind is freshly launched so the low ionization lines which form close to the disk surface are already observed but the wind has not yet reached the regions where high ionization lines or narrow line components are formed. The relatively high occurrence of such a phenomenon may additionally indicate that the quasar active phase consists of several sub-phases, each starting with a fresh build-up of the Broad Line Region.

Key words: galaxies:active - galaxies:quasars:emission lines - galaxies:quasars:absorption lines - galaxies:quasars:individual:SDSS J094533.99+100950.1

1 INTRODUCTION

Strong, broad emission lines are the characteristic signature of Active Galactic Nuclei (AGN). However, the Sloan Digital Sky Survey (SDSS) finds, among thousands of new AGN, rare objects with very weak or almost absent emission lines (Fan et al. 1999, Shemmer et al. 2009, Diamond-Stanic et al. 2009, Plotkin et al. 2010). Most of these objects, forming a new class of weak line quasars (hereafter referred to as WLQs), have been found primary at high redshifts (\(z \geq 2 \)). A few sources lying relatively close by have been studied in greater detail: PHL 1811 (\(z = 0.19 \); Leighly et al. 2007), PG 1407+265 (\(z = 0.94 \); McDowell et al. 1995), and HE 0141-3932 (\(z = 1.80 \); Reimers et al. 2005). The study of WLQs optical/UV continuum properties, X-ray and radio emission shows no obvious difference from typical emission line quasars and no apparent similarity to the weak-line BL Lac objects (Shemmer et al. 2009).

No generally accepted explanation for the weakness/absence of emission lines has been found so far. Possibilities so far considered include: 1) dust obscuration or extreme broad absorption line (BAL) effect, which is unlikely since there are no signs of the deep and broad absorption troughs in the spectra (Anderson et al. 2001, Collinge et al. 2005) and the X-ray absorbing column is low compared with BAL QSOs (\(N_H < 5 \times 10^{22} \) cm\(^{-2}\), Shemmer et al. 2009). 2) Gravitational lensing does not remove the emission lines (Shemmer et al. 2006), and strong C III\] and C IV lines are found in gravitationally amplified quasars (e.g. Dobrzycki et al. 1999, Wayth et al. 2005). 3) Relativistic beaming is a good explanation for the absence of strong lines in BL Lac objects but WLQs, in contrast to BL Lacs, have bluer optical/UV continua, are radio quiet and show no variability or strong polarization (Shemmer et al. 2009, Diamond-Stanic et al. 2009). 4) The difference in the ionizing continuum also faces difficulties since at least the observed part of the continuum in those sources looks typical for a quasar. However, those objects may still emit more vigorously in the unobserved UV, thus having a higher accretion rate than the average quasars, which may affect the lines, as e.g. seen through the Baldwin effect. No black hole mass determination or Eddington ratio was possible for the sample of objects analyzed by Shemmer et al. (2009) so as to confirm or reject this hypothesis. In this paper we present a new WLQ...
object found in the SDSS survey which opens a possibility to address this issue.

2 SELECTION PROCEDURES AND OBSERVED PROPERTIES OF THE QUasar SDSS J094533.99+100950.1

SDSS J094533.99+100950.1 was serendipitously discovered by us while searching the full SDSS DR5 (Adelman-McCarthy et al. 2007) spectral database with the aim of finding interesting quasars for which atypical line and/or continuum properties would prohibit them being found and classified as quasars by the SDSS automatic pipeline. In particular, we looked for quasars with extreme blue continua (these would have been missed due to colour cuts used by the SDSS to avoid regions of colour space dominated by white dwarfs, A-stars and M star+white dwarf pairs - see Richards et al. 2002) and quasars with normal (unreddened by dust) continua but with non-standard emission line properties. We analyzed all, 1,048,960, spectra available in the SDSS DR5 spectral database, classified by the SDSS automatic procedures into: galaxies, quasars, stars, sky, and unclassifiable objects (see Adelman-McCarthy et al. 2007).

The spectrum of SDSS J094533.99+100950.1 appeared as particularly interesting, showing a normal quasar continuum but with atypical, weak emission lines, with practically nonexistent C IV and C III], and weak, although clearly visible, Mg II. The object was identified as a quasar by the SDSS pipeline due to the presence of the Mg II line, and is hence also included in the Schneider et al. (2007) SDSS quasar catalogue. The spatial coordinates are $\alpha = 146.39163, \delta = 10.163927$ and the determined redshift is $z = 1.66160 \pm 0.00025$. The quasar’s spectrum was observed on April 25, 2003 and classified as “excellent” by the SDSS database.

2.1 Emission line measurements - modelling of the spectrum

In order to study the weak emission line properties of our WLQ we modeled the spectrum by fitting a power law to the underlying continuum, accounting for blended iron emission (the iron template of Vestergaard & Wilkes 2001 was used) and fitting single Gaussians to the emission and absorption lines. Atmospheric emission lines that still remained after the automatic pipeline reduction were first removed, and the spectrum was corrected for Galactic reddening using the Cardelli et al. (1989) extinction curve, adopting a colour excess of $E(B-V) = 0.06$ determined from the Galactic neutral hydrogen column from Dickey & Lockman (1990) and Stark et al. (1992), and assuming a fixed conversion of $N(HI)/E(B-V) = 5.0 \times 10^{21} \text{cm}^{-2} \text{mag}^{-1}$ (Burstein & Heiles 1978).

The underlying power law continuum was fitted to regions of spectrum uncontaminated by emission lines and away from blended iron emission. The continuum windows used are shown in Table 2 (model “Cont”) and taken from Forster et al. (2001). Blended iron emission was modeled using the UV iron template of Vestergaard & Wilkes (2001) to spectral windows defined in Forster et al. (2001) (Table 2 model “Fe1”). We also experimented with slightly modified iron windows which excluded spectral regions of C II] $\lambda 2327$ and O II] $\lambda 2441$ emission and/or C IV and Mg II NAL absorption (models “Fe2” and “Fe3” in Table 2). We present the results of our continuum and iron modelling in Table 2.

In model no. 1 (Cont-Fe1-best in Table 2) we followed the procedure described in Vestergaard & Wilkes (2001), where first the underlying power law continuum was fitted and subtracted from the spectrum, followed by the modelling of iron emission. The Vestergaard & Wilkes (2001) iron template spectrum was broadened by convolving with Gaussian functions of widths between 900 km s$^{-1}$ and 9000 km s$^{-1}$ and separated by steps of 250 km s$^{-1}$, while conserving the total flux in each template. We chose the broadening value for which χ^2 was lowest. Finally, we subtracted the best iron fit from the spectrum and again fit-

Model	Fitting windows
Cont	1455-1470, 1690-1700, 2160-2180, 2225-2250, 3010-3040, 3240-3270
Fe12	2020-2120, 2250-2340, 2440-2650, 2900-3000
Fe23	2020-2120, 2250-2300, 2500-2650, 2850-3000
Fe34	1490-1502, 1705-1730, 1760-1800, 2250-2320, 2470-2625, 2675-2715, 2735-2755, 2855-3010
ContFe45	1455-1470, 1685-1700, 2020-2120, 2190-2210, 2250-2300, 2450-2650, 2850-3070
ContFe56	1440-1470, 1700-1820, 1950-2400, 2450-2700, 2850-3100
ContFe67	1455-1470, 1690-1700, 2020-2120, 2160-2180, 2225-2650, 2900-3000, 3010-3040, 3240-3270, 3350-3400

Column (1) - name of model; column (2) - wavelength range of spectral windows in which the model was fit.
1 - continuum fitted as a power law in Forster et al. (2001) continuum windows;
2 - iron template fitted in Forster et al. (2001) iron spectral windows, excluding wavelength range 2340-2440Å (atmosphere artifact + feature at 2350Å);
3 - iron template fitted in Forster et al. (2001) iron windows, with regions around C II] $\lambda 2327$ and O II] $\lambda 2441$ excluded, and 2850-2900Å window (at red side of Mg II) added for a more consistent fit;
4 - iron template fitted in spectral windows defined by Vestergaard & Wilkes (2001), with regions of C II] emission and narrow absorption at C IV (1427-1505Å) and Mg II (2715-2735Å) excluded;
5 - power law continuum and iron emission fitted simultaneously in the “Cont” and “Fe1” windows (some windows are narrower or slightly shifted to better match the model with the spectrum);
6 - power law continuum and iron emission fitted simultaneously in optimum windows chosen by us and created by comparison of the Richards et al. (2003) composites and Vestergaard & Wilkes (2001) iron template;
7 - power law continuum and iron emission fitted simultaneously in the “Cont” model windows complemented with a 3350-3400Å window and iron windows from Forster et al. (2001).
WLQ SDSS J094533.99+100950.1

Figure 1. The restframe spectrum of SDSS J094533.99+100950.1 corrected for Galactic reddening (yellow line), the binned spectrum of the quasar (red line), its fitted, underlying continuum (blue line) and iron emission (green line). For comparison, in black, the Richards et al. (2003) composite spectrum (no. 3) is shown, greyshifted to match the SDSS J094533.99+100950.1 spectrum.

The best continuum and iron emission fit, is represented by model no. 1 (Cont-Fe1-best). It has the lowest reduced χ^2 value and visually gives the best fit to iron emission in the vicinity of the Mg II line, which then leads to the best Mg II emission line fit (as shown by the lowest χ^2 and weakest residuals). In Fig. 1 we plot this continuum and iron emission fit over the restframe, Galaxy dereddened spectrum of SDSS J094533.99+100950.1. The fit is also included in Fig. 2 and the emission line and central engine properties derived further in the text are made using this model.

The best fit continuum has a power law index, α_{λ} ($f_{\lambda} \propto \nu^{\alpha_{\lambda}}$) equal to -1.232 ± 0.017, which is equivalent to $\alpha_{\nu} = -0.77$ ($f_{\nu} \propto \nu^{\alpha_{\nu}}$). Therefore, the SDSS J094533.99+100950.1 continuum is, in this respect, almost identical to the no. 3 quasar composite from Richards et al. (2003). However, we also compared quantitatively the underlying continua of SDSS J094533.99+100950.1 and Richards et al. (2003) composites no. 1-4 by fitting the latter with a power law (to the same spectral windows as for our WLQ - the “Cont” model from Table 1) and allowing for internal reddening. We checked both Gaskell et al. (2004) and SMC-bar (Sofia et al. 2006) extinction curves. We modified the composites and allowed for either reddening or dereddening. The lowest χ^2 was obtained for composite 4 dereddened by $E(B-V) = 0.75$ for Gaskell et al. (2004) extinction, which is relatively high due to its weak dependence on wavelength, which thus requires large reddening to produce any significant change in spectral shape. For the case of SMC-bar extinction curve a lower value is needed, $E(B-V) = 0.02$. For composite 3 of Richards et al. (2003) no reddening/dereddening was required an acceptable fit. For the other two composites reddening was required but the fit was always worse than for pure, unreddened composite 3. Since the exact wavelength dependence of the intrinsic reddening in quasars is still under debate, we decided to use...
Hryniewicz et al. composite 3 for comparison. In Fig. 1 we show the Richards et al. (2003) composite no. 3, plotted over the rest frame SDSS J094533.99+100950.1 spectrum, corrected for Galactic extinction.

Despite the almost identical continua, the two spectra are widely different with respect to the emission line properties. The Mg II emission line is clearly present but the narrow component in the line profile is absent. The contribution of the Fe II and Fe III is almost typical, while the Si III]+C III] and C IV emission is extremely weak compared with a typical quasar. There are also two deep but narrow absorption components (clearly resolved into doublets in the unbinned data plot), blueshifted by \(\sim 8300 \) km s\(^{-1}\) with respect to the C IV and Mg II emission line position expected from WLQ’s adopted redshift.

The emission and absorption lines were fitted using Gaussians and the fits were performed for all continuum and iron models defined in Table 2. The different models had no significant effect on the absorption line fits (resulting in less than 11% difference in equivalent widths) and so in Table 3 we give the values for one model only Cont-Fe1-best.

The Mg II emission line was more influenced by the choice of continuum and iron models, and the equivalent width varied from fit to fit by a few percent, with a 15% difference between the Cont-Fe1-best and the extreme value (see Table 3). The measured kinematic width depended on the spectral decomposition, and varied from 5390 km s\(^{-1}\) up to 6290 km s\(^{-1}\), depending on the model used. However, in all studied cases the line was relatively strong and broad. Therefore, we consider that the properties of the Mg II line are determined reliably which is important from the point of view of black hole mass determination. The C IV line is consistently faint in all models, although some fits indicate the presence of a very weak line while others give values consistent with zero intensity.

For comparison, in Table 4 we give the typical emission line parameters measured for QSOs. Single component fits and two (narrow and broad) component fits are given whenever possible. We see that the Mg II line intensity is a factor of \(\sim 2 \) lower than the mean Mg II line intensity of sources found in the Large Bright Quasar Survey (LBQS, Forster et al. 2001) or observed with the Faint Object Spectrograph on the Hubble Space Telescopes (FOS, Kuraszkiewicz et al. 2002) as well as the value found for the single component Mg II fits to the Richards et al. (2003) steep composite. However, C IV line (as well as C III]) is over 20 times fainter. The weakness of C IV - typically one of the strongest quasar lines - qualifies the object as a WLQ. However, the presence of Mg II allows for an estimate of the global physical parameters of our source.

We also tested the possibility that the redshift determination based on the Mg II line is inaccurate and we allowed the line centroid and the position of the iron line complexes to shift arbitrarily. This did not improve the fit significantly although a possibility of such a shift by a few hundred km s\(^{-1}\) cannot be rejected.

Since WLQs have been occasionally suggested to be a BAL (McDowell et al. 1995), we also calculated the BI index (Weymann et al. 1991) in the vicinity of the Mg II line. We obtained a value consistent with zero. Also the AI index (Hall et al. 2002) for this quasar is zero if we take the unbinned spectrum where NAL doublets are clearly resolved.

![Figure 2](image-url)
Table 2. Properties of fitted continuum and iron emission template for different fitting windows.

No	continum	Fe II template	\(\chi^2/\text{ndf.} \)	fitting windows					
	\(\alpha_\lambda \)	\(F_{3000\lambda} \)	FWHM	scale factor	REW				
1.	Cont-Fe1-best	\(-1.232 \pm 0.017 \)	\((5.24 \pm 0.69) \cdot 10^{-16} \)	\(1650 \pm 130 \)	0.01176	0.00027	82	1.51	Cont
	Cont	—	—	—	—	—	—	—	
	Fe	—	—	—	—	—	—	—	
2.	Cont-Fe1	\(-1.233 \pm 0.017 \)	\((5.24 \pm 0.69) \cdot 10^{-16} \)	\(2150 \pm 380 \)	0.01139	0.00027	79	1.56	Cont
	Cont	—	—	—	—	—	—	—	
	Fe	—	—	—	—	—	—	—	
3.	Cont-Fe2	\(-1.233 \pm 0.017 \)	\((5.24 \pm 0.69) \cdot 10^{-16} \)	\(2680 \pm 420 \)	0.01208	0.00027	84	1.58	Cont
	Cont	—	—	—	—	—	—	—	
	Fe	—	—	—	—	—	—	—	
4.	Cont-Fe3	\(-1.240 \pm 0.017 \)	\((5.24 \pm 0.69) \cdot 10^{-16} \)	\(3440 \pm 550 \)	0.01070	0.00027	75	1.57	Cont
	Cont	—	—	—	—	—	—	—	
	Fe	—	—	—	—	—	—	—	
5.	Cont-Fe4	\(-1.194 \pm 0.011 \)	\((5.40 \pm 0.43) \cdot 10^{-16} \)	\(1140 \pm 190 \)	0.00849	0.00043	58	1.55	Cont-Fe4
	Cont+Fe	—	—	—	—	—	—	—	
	Fe	—	—	—	—	—	—	—	
6.	Cont-Fe5	\(-1.243 \pm 0.010 \)	\((5.22 \pm 0.40) \cdot 10^{-16} \)	\(2500 \pm 300 \)	0.01195	0.00053	85	1.71	Cont-Fe5
	Cont+Fe	—	—	—	—	—	—	—	
	Fe	—	—	—	—	—	—	—	
7.	Cont-Fe6	\(-1.215 \pm 0.012 \)	\((5.35 \pm 0.43) \cdot 10^{-16} \)	\(1179 \pm 190 \)	0.01083	0.00043	74	1.69	Cont-Fe6
	Cont+Fe	—	—	—	—	—	—	—	
	Fe	—	—	—	—	—	—	—	

Column (1) - model number; column (2) - model name: fits no. 1–4 have continuum modeled as a power law in spectral windows defined by model “Cont” in Table 1, independently from the iron emission fitted in iron spectral windows defined by models Fe1,2,3 in Table 1; fits no. 5–7 have continuum and iron emission fit simultaneously to windows defined by models ContFe4,5,6 in Table 1. Column (3) lists the power law index, \(\alpha_\lambda \) (where \(f_\lambda \propto \lambda^{\alpha_\lambda} \)). Column (4) shows the amplitude of the continuum measured at 3000 Å. Columns (5)-(7) list rest frame full width at half maximum (FWHM) of the Fe II template, scaling factor, and Fe II rest frame equivalent width (REW), respectively. The reduced \(\chi^2 \) of the fitting procedure is shown in Column (8). Column (9) lists the fitting windows used by us and defined in Table 1.

Table 3. Rest frame absorption lines properties of SDSS J094533.99+100950.1

Line	\(\lambda_{em} \)	\(\lambda_0 \)	REW	FWHM	Shift	\(z_{abs} \)
	[Å]	[Å]		[km s\(^{-1}\)]	[km s\(^{-1}\)]	

fit: Cont-Fe1-best

Line	\(\lambda_{em} \)	\(\lambda_0 \)	REW	FWHM	Shift	\(z_{abs} \)
Mg II	2796.357	2721.30 ± 0.51	-3.79\(^{+0.34}_{-0.31}\)	343 ± 82	-8268 ± 57	1.59016
	2803.536	2728.26 ± 0.58		290 ± 110	-8272 ± 64	1.59013
C IV	1548.189	1506.39 ± 0.22	-3.35\(^{+0.42}_{-0.47}\)	455 ± 63	-8318 ± 44	1.58975
	1550.775	1509.24 ± 0.24		269 ± 69	-8251 ± 49	1.59031

Column (1) - name of absorption line, column (2) - the wavelength of the line seen in laboratory. The absorption lines were fitted with Gaussians to a dereddened, rest frame, Fe II subtracted quasar spectrum. Column (3) - wavelength of the minimum intensity of the line in the fit. Column (4) - Rest frame Equivalent Width (REW) of the doublet (computed as a sum of two Gaussians). Column (5) Full Width at Half Maximum (FWHM) of the absorption line. Column (6) lists the line blueshift in km s\(^{-1}\). We present measurements for the Cont-Fe1-best model from Table 2 only, as other models gave similar results.

- There is also no sign of a C IV BAL, where the observed spectrum allows detection of such a component blueshifted up to \(\sim 20000 \) km s\(^{-1}\). We conclude that SDSS J094533.99+100950.1 is not a BAL or a mini-BAL object.

2.2 Spectral energy distribution

We compiled the broad band spectral energy distribution (SED) of SDSS J094533.99+100950.1 using the data archives and software of the Virtual Observatory (VO)\(^1\) and the Galaxy Evolution Explorer (GALEX)\(^2\) database. This included optical u, g, r, i and z photometry from SDSS, and near-IR J, H and K\(_s\) photometry from the Two Micron All Sky Survey (2MASS) and near- (NUV) and far-ultraviolet

\(^{1}\) http://www.euro-vo.org/
\(^{2}\) http://galex.stsci.edu/
No other spectra or photometric data points were found in the VO within the matching radius of 5". All available images of the quasar and its vicinity were downloaded. The quasar is visible in the SDSS and 2MASS images, and also on the Palomar Observatory Sky Survey (POSS) plates in the optical and near-IR. No X-ray data (XMM-Newton, RXTE, INTEGRAL) were found. We searched for X-ray spectra in the ROSAT catalogues, but found no sources with a flux significantly higher than the X-ray background (Soltan, private communication). The radio properties of our quasar and its neighbourhood were checked in the Parkes-MIT-NRAO (4850 MHz survey), and in the Faint Images of the Radio Sky at Twenty-centimeters (VLA FIRST, 1.4 GHz). In both cases the radio background was found and the spatial resolution was too low to observe the quasar. The same results were obtained for IRAS and EUVE catalogues - the signal did not differ significantly from the background.

The SED of SDSS J094533.99+100950.1 is shown in Fig. 3. It does not differ significantly from typical quasar SEDs (e.g. Elvis et al. 1994, Richards et al. 2006), consistent with the conclusion reached by Diamond-Stanic et al. (2009) for other WLQs. The deviation from the Elvis et al. (1994) median SED in the far UV (at NUV and FUV GALEX data points) is due to the simple interpolation between the UV and soft X-rays in the Elvis et al. (1994) SED, which does not constrain the true QSO SED at λ < 1000 Å. However, lower flux in the far-UV remains a possibility in our WLQ, which may lead to low CIV emission due to lower ionizing flux.

Table 4. Rest frame emission lines properties of SDSS J094533.99+100950.1.

Line	λ_0 [Å]	REW [Å]	FWHM [km s$^{-1}$]	z_{em}
fit: Cont-Fe1-best				
Mg II λ2800	2800.29 ± 0.79	15.3$^{+1.1}_{-0.9}$	5490 ± 220	1.66187
C III λ1909 + Si III λ1892	1906.7 ± 2.3	1.68$^{+0.61}_{-0.52}$	4800 ± 4800	1.65845
C IV λ1549	1544.9 ± 2.3	1.49$^{+0.61}_{-0.64}$	4000 ± 1100	1.65451
fit: Cont-Fe1				
Mg II λ2800	2800.60 ± 0.81	15.5$^{+1.1}_{-1.0}$	5690 ± 230	1.66217
C III λ1909 + Si III λ1892	1905.6 ± 2.4	1.69$^{+0.63}_{-0.53}$	5000 ± 500	1.65680
C IV λ1549	1545.6 ± 2.2	1.41$^{+0.79}_{-0.62}$	3800 ± 1100	1.65572
fit: Cont-Fe2				
Mg II λ2800	2800.85 ± 0.83	15.2$^{+1.1}_{-1.0}$	5750 ± 240	1.66240
C III λ1909 + Si III λ1892	1904.6 ± 2.5	1.69$^{+0.64}_{-0.54}$	5100 ± 5100	1.65539
C IV λ1549	1545.9 ± 2.3	1.36$^{+0.78}_{-0.60}$	3800 ± 1100	1.65632
fit: Cont-Fe3				
Mg II λ2800	2801.64 ± 0.92	15.9$^{+1.2}_{-1.1}$	6290 ± 270	1.66316
C III λ1909 + Si III λ1892	1903.9 ± 2.7	1.64$^{+0.66}_{-0.55}$	5200 ± 5200	1.65455
C IV λ1549	1545.7 ± 2.5	1.18$^{+0.77}_{-0.58}$	3600 ± 1200	1.65597
fit: Cont-Fe4				
Mg II λ2800	2799.28 ± 0.91	14.0$^{+1.2}_{-1.1}$	5670 ± 250	1.66091
C III λ1909 + Si III λ1892	1905.6 ± 2.5	1.32$^{+0.59}_{-0.48}$	4400 ± 4400	1.65680
C IV λ1549	1543.7 ± 2.6	1.59$^{+0.91}_{-0.71}$	4300 ± 1300	1.65252
fit: Cont-Fe5				
Mg II λ2800	2804.77 ± 0.76	16.0$^{+1.1}_{-1.0}$	5600 ± 220	1.66614
C III λ1909 + Si III λ1892	1902.5 ± 2.5	1.91$^{+0.68}_{-0.58}$	5400 ± 5400	1.65252
C IV λ1549	1547.4 ± 2.4	1.11$^{+0.73}_{-0.55}$	3400 ± 1100	1.65888
fit: Cont-Fe6				
Mg II λ2800	2798.84 ± 0.87	14.1$^{+1.2}_{-1.1}$	5390 ± 240	1.66050
C III λ1909 + Si III λ1892	1906.0 ± 2.4	1.33$^{+0.67}_{-0.55}$	4300 ± 4300	1.65738
C IV λ1549	1543.7 ± 2.6	1.45$^{+0.85}_{-0.68}$	4200 ± 1300	1.65244

Column (1) - name of emission line, column (2) - wavelength of the maximum intensity of the line in the fit (emission lines were fitted with a Gaussian to a dereddened, rest frame, FeII subtracted quasar spectrum), column (3) - Rest frame Equivalent Width (REW) of the line, column (4) - Full Width at Half Maximum (FWHM) of the emission line, Column (5) redshift. The fitting window for Mg II is 2750–2840Å, for C IV 1530–1580Å, and for C III + Si III 1880–1940Å.

(FUV) photometry from GALEX (Edge, private communication).

The SED of SDSS J094533.99+100950.1 is shown in Fig. 3. It does not differ significantly from typical quasar SEDs (e.g. Elvis et al. 1994, Richards et al. 2006), consistent with the conclusion reached by Diamond-Stanic et al. (2009) for other WLQs. The deviation from the Elvis et al. (1994) median SED in the far UV (at NUV and FUV GALEX data points) is due to the simple interpolation between the UV and soft X-rays in the Elvis et al. (1994) SED, which does not constrain the true QSO SED at λ < 1000 Å. However, lower flux in the far-UV remains a possibility in our WLQ, which may lead to low CIV emission due to lower ionizing flux.

3 Global Parameters of SDSS J094533.99+100950.1

Our WLQ has a monochromatic luminosity at 3000Å of $L_\lambda(3000Å) = 2.95 \times 10^{46}$ erg s$^{-1}$, (assuming $H_0 = 71$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_\Lambda = 0.73$ and $\Omega_m = 0.27$ - Spergel et al. 2007).
Table 5. Emission line properties in other quasar samples.

Line	REW(composite) [Å]	REW(FOS) [Å]	FWHM(FOS) km s \(^{-1}\)	REW(LBQS) [Å]	FWHM(LBQS) km s \(^{-1}\)
MgII	single 30.14	136 ± 92 \(^{1}\)	3840 ± 1850	39 ± 22	5160 ± 120
	broad 33 ± 8	8230 ± 1850	37 ± 22	8660 ± 300	
	narrow 29 ± 9	3260 ± 760	28 ± 13	3510 ± 110	
C\(\text{III}\)	21.45	21 ± 5	4890 ± 780	28 ± 15	7820 ± 170
C\(\text{IV}\)	broad 26.86	21 ± 16 \(^{1}\)	4430 ± 3070	38 ± 20	7720 ± 150
	narrow 30 ± 4	11090 ± 1070	45 ± 23	10960 ± 360	

Emission line parameters of SDSS J094533.9-100950 are compared with: in column (2) the Richards et al. (2003) composite no. 3 (Fig. 1) built on the basis of 770 quasar spectra, in columns (3),(4) the 158 AGN observed with Faint Object Spectrograph on the Hubble Space Telescopes (FOS; heterogeneous sample of mixed type AGN, Kuraszkiewicz et al. 2002) and in columns (5),(6) the 993 quasars from the Large Bright Quasar Survey (LBQS; Forster et al. 2001). In Column (1) “single” means that the line was fitted by a single Gaussian, while “broad” and “narrow” refer to the broad and narrow components of the line.

\(^{1}\) - The single Gaussian fits to Mg II and C IV emission lines in FOS were based only on a few, low quality spectra and thus may not be representative.

\[M_{BH} = 3.4 \times 10^6 \left(\frac{\lambda L_{\text{3000Å}}}{10^{44} \text{ergs}^{-1}} \right)^{0.58 \pm 0.10} \left(\frac{\text{FWHM}_{\text{MgII}}}{1000 \text{ km s}^{-1}} \right)^2 M_\odot (1) \]

\[M_{BH} = 2.9 \times 10^6 \left(\frac{L_{\text{MgII}}}{10^{42} \text{ergs}^{-1}} \right)^{0.57 \pm 0.12} \left(\frac{\text{FWHM}_{\text{MgII}}}{1000 \text{ km s}^{-1}} \right)^2 M_\odot (2) \]

where \(\lambda L_{\text{3000Å}} \), and \(L_{\text{MgII}} \) are the monochromatic continuum luminosity at 3000 Å and the Mg II line intensity, respectively. Using the Mg II width from the best fit (Cont-Fitbest in Table 1) we obtain a black hole mass of \(2.7 \times 10^9 M_\odot \) from equation (1). This is a typical value for a distant quasar (e.g. Kelly et al. 2008, Vestergaard et al. 2008). Using equation (2) we obtain a slightly lower value of the black hole mass, of \(1.5 \times 10^9 M_\odot \). Similar values of \(M_{BH} \) are obtained when using formulae from McLure & Dunlop (2004).

The first value of the black hole mass implies the Eddington ratio of 0.45. This value is very conservative from the point of view of possible super-Eddington accretion, which is possibly present in some AGN (Collin & Kawaguchi 2004, Jin et al. 2009). It is consistent with several other determinations of this ratio in quasars. Quasars in the redshift range between 1 and 2 in the study of Sulentic et al. (2006) have Eddington ratios between ~0.2 and ~1, the value 0.25 is the mean favoured by statistical studies of Shankar et al. (2008). Labita et al. (2009) found a value of 0.45 as a statistical upper limit of accretion rate in their sample of quasars. The second value based on black hole mass from equation (2) gives a somewhat higher ratio of 0.79, which is less reliable because of the weakness of the Mg II emission line. We also computed the mean and standard deviation of the Eddington ratio for all models in Table 2 and obtained the following means: 0.429 ± 0.037 using equation (1) and 0.752 ± 0.077 for equation (2). In the newest studies of the relation between Mg II line parameters and black hole mass - Wang et al. (2009) do not use Mg II equivalent width but rather the Mg II FWHM and continuum luminosity at 3000Å. Using the relation from Wang et al. (2009) the mean black hole mass is...
mass of SDSS J094533.99+100950.1 is \((3.09 \pm 0.23) \times 10^9 M_\odot\) and the mean Eddington ratio is 0.396 ± 0.026.

Additionally, since the Mg II emission line intensity is lower than in typical quasars, the second method is probably less reliable than the first, based on the continuum, and so the Eddington ratio of 0.45 is more likely.

4 DISCUSSION

The weak line quasar SDSS J094533.99+100950.1 is an exceptional object with almost nonexistent CIV emission, normal Fe II emission and visible, although somewhat fainter and atypical, Mg II emission line. The presence of iron emission with standard intensity argues against any relativistic enhancement of the continuum in this source. The quasar continuum is normal, similar to the steep composite no. 3 of Richards et al. (2003).

The lack of strong emission lines (except for Mg II) is likely to be intrinsic, consistent with the conclusion reached by Diamond-Stanic et al. (2009) for other WLQs. A remarkable property of the SDSS J094533.99+100950.1 spectrum is the presence of Low Ionization Lines (LILs) such as Mg II, which are thought to form close to the accretion disk surface (see e.g. Collin-Souffrin et al. 1988) and the absence of High Ionization Lines (HILs) such as CIV. The narrow component of Mg II, which is thought to form at larger distances from the nucleus, is also absent from the spectrum.

McDowell et al. (1995) listed 10 possible explanations for the weakness of emission lines in their WLQ, PG 1407+265, but rejected most of them on the basis of overall quasar properties. Among those remaining are: high extinction or BAL effects, which are inconsistent with SDSS J094533.99+100950.1 properties, and abnormal ionising continuum, which remains a possibility. In particular, the option of high (super-Eddington) accretion rate may seem attractive since the determination of the Eddington ratio for our object allows (but does not require) for such a possibility (see Sect. 3). However, the expected trends found by PCA analysis performed on the optical/UV emission line properties of PG QSO (Shang et al. 2003; see Fig. 10) show that, with increasing Eddington ratio, the UV Fe II emission (measured around Mg II) decreases, SiIII]+CIII] emission increases, and the widths of Mg II and SiIII]+CIII] lines decreases. The opposite is seen in our object. Additionally the Si IV line should become stronger, but this is not seen in the WLQs of Shemmer et al. (2009). Since the emission line properties of WLQs do not follow the trends for high \(L/L_{\text{Edd}}\) objects predicted by PCA analysis, something different than high \(L/L_{\text{Edd}}\) is causing the atypical emission line behaviour.

The only explanation, which in our opinion is currently consistent with the intriguing emission line properties of our WLQ is that the quasar activity in this source has just begun.

The formation of an accretion disk in an AGN is a long time phenomenon, occurring in millions of years (the viscous timescale in the outer disk, Siemiginowska et al. 1996).

However, when the disk finally approaches a black hole, i.e. when the inner radius moves from \(\sim 10 \sim 20R_{\text{Schw}}\) to ISCO (Inner Stable Circular Orbit), the disk’s luminosity rapidly increases on a hundred year timescale and X-ray emission starts (Czerny 2006).

The immediate stage after is the irradiation of the outer disk which happens in the light travel time across the region (years). At this stage the accretion disk continuum appears already to be typical for an AGN. However, neither the broad-line region (BLR) nor the narrow-line region (NLR) region, exist.

If our explanation is correct, our WLQ should have no narrow [O III]\(\lambda\lambda 5007\) emission but its LIL Hβ line should have already formed (as has the Mg II line). For our \(z = 1.6\) object these lines lie outside the observed wavelength range of the optical telescopes used by SDSS, but could, in principle, be observed using an IR facility. In another WLQ, PG 1407+265, (McDowell et al. 1995) the Hβ line is weak, contrary to our expectations. However, significant influence of the atmosphere above 9000Å leading to low spectrum quality at those wavelengths may partially hide the line (see Fig. 1 of McDowell et al. 1995). The puzzling properties of the X-ray emission of PG 1407+265 may be consistent with the young age of the source as the emission significantly varies in time, and is only occasionally dominated by a jet (Gallo 2006) indicating that a stable jet has not yet been launched.

A relatively young age was also suggested for the class of Narrow Line Seyfert 1 (NLS1) galaxies, in the context of cosmological evolution (Mathur 2000) but their BLR is well developed. WLQs thus possibly represent an even earlier stage but not necessarily in the sense of a global evolution since the argument of their young age is based on BLR formation stage. If the observed activity is the first active stage of the nucleus then indeed the WLQ stage should be seen first, later replaced by the NLS1 stage (with efficient growth of the central black hole), followed by the broad emission line stage (quasar or Seyfert 1). However, it is also possible that the observed active stage represents the source’s reactivation. The amount of intrinsic (nuclear) dust along the line of sight does not seem to be large and the past activity may be the natural explanation for such a clean environment for an otherwise young object. The large mass of the black hole, particularly in PG 1407+265 (log \(M_\text{BH} = 9.8\) based on CIV FWHM and the formula of Vestergaard & Peterson 2006) might rather indicate a relatively late evolutionary stage, favouring the reactivation scenario. A few stages of quasar life are also predicted by Hopkins & Hernquist (2009). They postulate that the life of quasars consists of a merger and a few episodes of high accretion rate. The activity is likely to cease through a “naked” AGN stage (Williams et al. 1999, Hawkins 2004) since when the accretion rate drops, the optical disk recedes outward and the component of the BLR linked to the disk wind disappears (e.g. Czerny et al. 2004, Elitzur & Ho 2009).

An intermittent character for the quasar activity is also more consistent with the statistics of WLQ. The sources are rare but not as rare as we might expect (based on the following discussion). The irradiation causes the formation of a wind in the upper disk atmosphere, and this material slowly rises up in the vertical direction. This wind is customarily now considered as the source of the material from...
BLR clouds (Murray et al. 1995; Proga et al. 2000; Chelouche & Netzer 2003; Everett 2005). The initial rise is not highly supersonic. Assuming velocities $\sim 100 \text{ km s}^{-1}$ (e.g. Proga 2003, Everett 2005) we can estimate how much time the material takes to depart significantly from the disk’s surface layers. Assuming a disk radius of 1 pc, a rise by ten percent of the radial distance takes 1000 years, and at that stage the low ionization lines forming close to the disk, like MgII and Hβ appear. The rise to the height comparable to the radial distance takes a factor 10 times longer, and only after that time the highly ionized lines such as CIV appear in the spectrum. The narrow emission line components take longer to form and are likely to be absent at the initial stages. A similar argument was used for the explanation of the relative faintness of the [O III] line in GPS quasars which are also thought to be relatively young (Vink et al. 2006). Thus, a WLQ phase lasts for about 1000 years. There are almost 100 quasars classified as WLQ (Shemmer et al. 2009, Diamond-Stanic et al. 2009, Plotkin et al. 2010) in the whole sample of $\sim 10^5$ SDSS quasars. However only a fraction of those, including SDSS J094533.99+100950.1 (this paper), PG 1407+265 (McDowell et al. 1995) and HE 0141-3032 (Reimers et al. 2005), may represent a more advanced stage with partially developed low ionization lines. Therefore, the probability of observing this evolutionary stage can be estimated as $10^{-3} \sim 10^{-4}$. This would indicate that the typical duration of a quasar’s active phase is only $10^6 \sim 10^7$ years. On the other hand, the lifetime of the luminous phase of quasars is $\sim 10^7 \text{ t}_{\text{QSO}} < \sim 10^8 \text{ yrs}$ (Haiman & Hui, 2001), but in some sources extends over a period $\sim 10^9 \text{ yrs}$ (Martini & Weinberg, 2001). The two numbers can be reconciled if the total active phase of a quasar consists typically of 100 separate subphases, each of those starting with a WLQ stage of BLR buildup.

The increasing probability of occurrence of WLQ among high redshift objects (Diamond-Stanic et al. 2009) agrees with our hypothesis if, in the earlier Universe, minor mergers are more frequent and the typical single active subphase lasts shorter.

Thus the SDSS J094533.99+100950.1 quasar with its remarkable properties may have a Rosetta stone impact on our understanding of quasar activity cycle and the nature of WLQ.

Finally, it is important to note that the definition of a WLQ has not been yet worked out. Some objects with extremely faint/nonexistent lines, may indeed be BL Lacs. Others, like PHL 1811 (Leighly et al. 2007), considered as a WLQ prototype, may be explained by higher Eddington ratio since the lines are not only fainter but also narrower (MgII line of 2550 ± 110 km s$^{-1}$ vs. 5490 ± 220 km s$^{-1}$ in J094533.99+100950.1). Our hypothesis of young/newly active sources would not apply to those classes of objects.

5 CONCLUSIONS

Quasar SDSS J094533.99+100950.1 is an exceptional example of the Weak Line Quasar class. The broad band spectrum is typical for quasars, very similar to the second stepest composite spectrum of Richards et al. (2003). It has a relatively well developed broad MgII line and the typical FeII contribution but its high ionization lines, like CIV, are weak/absent. The BAL phenomenon is not visible in the spectrum so the lack of CIV line is an intrinsic property of the source. The presence of MgII and typical FeII emission excludes a non-thermal, blazar-like origin of the spectrum. The significant width of MgII line (FWHM of 5500 km s$^{-1}$) and the FeII properties argue in turn against an extremely high accretion rate in this object. Objects like these are difficult to find since a typical search for WLQs, based on finding spectra with extremely weak or non-existent emission lines is likely to miss sources where one of the lines is relatively strong. However, such objects are important to find/study as they are likely to shed light on the mechanism driving all (or at least some) WLQs.

In the present paper we propose the following hypothesis for the nature of WLQ. AGN are generally classified according to their viewing angle and Eddington ratio. However, those objects evolve and some evolutionary stages may be too short to produce a consistent equilibrium between various emitting components in the nucleus like the BLR, NLR and the accretion disk. It is an interesting possibility that the WLQ class represents such a stage, at the onset of quasar activity. The relatively high occurrence of these sources may additionally suggest that a quasar's active phase has an intermittent character. The whole active phase consists of several subphases, each starting with a slow development of the BLR region which manifests itself as a WLQ phenomenon. Further observational tests of this hypothesis are clearly needed.

ACKNOWLEDGMENTS

We would like to thank an anonymous referee for useful comments that improved our paper. We are grateful to Marianne Vestergaard for providing us with the iron emission template. We would also like to thank Andrzej Soltan for data search in ROSAT catalogues, Alastair Edge for helpful remarks about GALEX and 2MASS missions and Belinda Wilkes for advices during improving this paper. This work makes use of EURO-VO software, tools or services. The EURO-VO has been funded by the European Commission through contract numbers RI31675 (DCA) and 011892 (VO-TECH) under the 6th Framework Programme and contract number 212104 (AIDA) under the 7th Framework Programme. This work was supported in part by N N203 380136 and by the Polish Astronpatic Network 621/E-78/BWSN-0068/2008.

REFERENCES

Adelman-McCarthy J. K. et al. 2007, ApJS, 172, 634
Anderson S.F. et al. 2001, AJ, 122, 503
Burstein D., Heiles C., 1978, ApJ, 225, 40
Cardelli J.A., Clayton G.C., Mathis J.S., 1989, ApJ, 345, 245
Chelouche D., Netzer H., 2003, MNRAS, 344, 223
Collin S., Kawaguchi T., 2004, A&A, 426, 797
Collin-Souffrin S., Dyson J.E., McDowell J.C., Perry J.J., 1988, MNRAS, 232, 539
Collinge M.J. et al. 2005, AJ, 129, 2542
Czerny B., 2006, in Gaskell C. M., McHardy I. M., Peterson B. M., S. G. Sergeev S. G. eds, ASP Conf. Ser. Vol. 360, AGN Variability from X-Rays to Radio Waves, San Francisco, p.265

WLQ SDSS J094533.99+100950.1
Czerny B., Róžańska A., Kuraskiewicz J., 2004, A&A, 428, 39
Diamond-Stanic A.M. et al., 2009, ApJ, 699, 782
Dickey J.M., Lockman F.J., 1990, ARA&A, 28, 215
Dobrzycki A., Engels D., Hagen H.-J., 1999, A&A, 349, L29
Elitzur M., Ho L.C., 2009, ApJL, 701, L91
Elvis M. et al., 1994, ApJS, 95, 1
Everett J.E., 2005, ApJ, 631, 689
Fan X. et al., 1999, ApJ, 526, L57
Forster K., Green P.J., Aldcroft T.L., Vestergaard M., Foltz C.B., Hewett P.C., 2001, ApJS, 134, 35
Gallo L.C., 2006, MNRAS, 365, 960
Gaskell C. M., Goosmann R. W., Antonucci R. R. J., Whysong D. H., 2004, ApJ, 616, 147
Haiman Z., Hui L., 2001, ApJ, 547, 27
Hall P. B. et al., 2002, ApJS, 141, 267
Hawkins M.R.S. 2004, A&A, 424, 519
Hopkins Ph. F., Hernquist L., 2009, ApJ, 698, 1550
Jin C.C., Done C., Ward M., Gierliński M., Mullaney J., 2009, MNRAS, 398, 16
Kelly B.C., Bechtold J., Trump J.R., Vestergaard M., Siemiginowska A., 2008, ApJS, 176, 355
Kong M.-Z., Wu X.-B., Wang R., Han J.-L., 2006, Chin. J. Astron. Astrophys, 6, 396
Kuraskiewicz J.K., Green P.J., Forster K., Aldcroft T.L., Evans I.N., Koratkar A. 2002, ApJS, 143, 257
Labita M., Decarli R., Treves A., Falomo R., 2009, MNRAS, 396, 1537
Leighly K.M., Halpern J.P., Jenskins E.B., Casebeer D., 2007, ApJS, 173, 1
Martini P., Weinberg D. H., 2001, ApJ, 547, 12
Mathur S., 2000. MNRAS, 314, L17.
McDowell J.C., Canizares C., Elvis M., Lawrence A., Markoff S., Mathur S., Wilkes B.J., 1995, ApJ, 450, 585
McLure R. J., Dunlop J. S., 2004, MNRAS, 352, 1390
Murray N., Chiang J., Grossman S.A., Voit G.M., 1995, ApJ, 451, 498
Plotkin R. M., et al., 2010, AJ, 139, 390
Proga D. 2003, ApJ, 585, 406
Proga D., Stone J.M., Kallman T.R., 2000, ApJ, 543, 686
Reimers D., Janknecht E., Fechner C., Agafonova I.I., Levshakov S.A., Lopez S. 2005, A&A, 435, 17
Richards G.T. et al., 2002, AJ, 123, 2945
Richards G.T. et al., 2003, AJ, 126, 1131
Richards G.T. et al., 2006, ApJS, 166, 470
Schneider D. P. et al., 2007, AJ, 134, 102
Shang Z., Wills B. J., Robinson E. L., Wills D., Laor A., Xie B., Yuan J., 2003, ApJ, 586, 52
Shankar F., Crocce M., Miralda-Escude J., Fosalba P., Weinberg D.H., 2008, arXiv:0810.3919
Shemmer O. et al. 2006, ApJ, 644, 86
Shemmer O. et al. 2009, ApJ, 696, 580
Shen Y., Greene J. E., Strauss M. A., Richards G. T., Schneider D. P., 2008, ApJ, 680, 169
Siemiginowska A., Czerny B., Kostyunin V. 1996, ApJ, 458, 491
Sofia U. J., Gordon K. D., Clayton G. C., Misselt K., Wolff M. J., Cox N. L. J., Ehrenfreund P., 2006, ApJ, 636, 753
Spergel D. N. et al., 2007, ApJS, 170, 377
Stark A., Gammie Ch.F., Wilson R.W., Bally J., Linke R.A., Helles C., Hurwitz M. 1992, ApJS, 79, 77
Sulentic J.W., Repetto P., Stirpe G.M., Marziani P., Dultzin-Hacyan D., Calvani M. 2006, A&A, 456, 929
Vestergaard M., Peterson B.M., 2006, ApJ, 641, 689
Vestergaard M., Wilkes B.J., 2001, ApJS, 134, 1
Vestergaard M., Fan X., Tremonti C.A., Osmer P.S., Richards G.T., 2008, ApJ, 674, L1
Vink J., Snellen I., Mack K.-H., Schilizzi R., 2006, MNRAS, 367, 928
Wang J.-G, Dong X.-B., Wang T.-G., Ho L., Yuan W., Wang H., Zhang K., Zhang S., Zhou H., 2009, ApJ, 707, 1334
Wayth R.B., O'Dowd M., Webster, R.L., 2005, MNRAS, 359, 561
Weymann R.J., Morris S.L., Foltz C.B., Hewett P.C., 1991, ApJ, 373, 23
Williams R.J.R., Baker A.C., Perry J.J. 1999, MNRAS, 310, 913

This paper has been processed by the authors using the Blackwell Scientific Publications\TeX style file.