The Evolving Role of the Clinical Microbiology Laboratory in Identifying Resistance in Gram-Negative Bacteria: An Update

Andrea Endimiani, MD, PhD, FAMHa,*, Alban Ramettea, Daniel D. Rhoadsb, Michael R. Jacobsb

KEYWORDS
- AST • PCR • LAMP • MALDI-TOF • Sequencing • Rapid • Blood • T2MR

KEY POINTS
- Extensively drug resistant and pan–drug-resistant gram-negatives represent a global public health challenge.
- Rapid commercial phenotypic antimicrobial susceptibility tests now are available for laboratory use.
- Detection of resistance genes can be rapidly accomplished in cultures by immunoassays and nucleic acid amplification testing–based methods.
- Whole-genome sequencing directly on specimens is being developed for clinical applications.
- Advances have been made with direct detection of resistance genes from specimens.

INTRODUCTION
The clinical microbiology laboratory is challenged with detecting and characterizing antimicrobial resistance (AMR) in gram-negatives. Examples of recent and emerging resistance include the detection of extensively/pan–drug-resistant Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter spp producing carbapenemases (eg, KPC, NDM, and OXA types) together with other traits, such as 16S rRNA methylases and MCR, conferring resistance to aminoglycosides and polymyxins, respectively.1–3

* Corresponding author. Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Bern CH-3001, Switzerland.
E-mail addresses: andrea.endimiani@ifik.unibe.ch; aendimiani@gmail.com

Infect Dis Clin N Am (2020) –
https://doi.org/10.1016/j.idc.2020.08.001
0891-5520/20 © 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
More rapid identification of AMR is a perpetual goal. Increased emphasis on rapid detection of resistance has focused on infections with the highest morbidity and mortality, in particular sepsis associated with bloodstream infections (BSIs). A mean decrease in survival of 7.6% for each hour after onset of infection until effective antibiotics are administered has been reported in sepsis. Recent studies also have documented the value of more rapid resistance detection by the laboratory, which needs to be paired with more extralaboratory intervention. Rapid resistance detection has been shown to improve patient outcomes, with lower mortality, decreased hospital length of stay, lower superinfection and adverse drug reaction rates, and decreased costs.

Although the rapid detection of bacteria and their resistance mechanisms directly from blood specimens is still a challenging target, this has been achieved on growing blood cultures (BCs), which typically become positive after 12 hours to 16 hours of incubation. Many systems for rapid bacterial identification from positive BCs have been developed and, more recently, rapid automated antimicrobial susceptibility tests (ASTs) have been made available. Many of these systems also can detect AMR genes (ARGs).

AVAILABLE METHODS

Standard Antimicrobial Susceptibility Test Methods

Conventional AST procedures have been in use for many decades and follow methods and interpretations of various organizations, such as European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute (CLSI) as well as regulatory agencies such as US Food and Drug Administration (FDA) and European Agency for the Evaluation of Medicinal Products. These organizations have established reference AST methods based on minimum inhibitory concentration determination by microdilution and agar dilution, with incubation times ranging from 18 hours to 48 hours. Disk diffusion methods also have been standardized.

Many commercial methods for AST are available and are based on using these methods directly or by methods providing comparable results. Commercial systems using reference microdilution methods include, for instance, MicroScan WalkAway (Beckman) and Sensititre (Thermo Fisher Scientific). Methods providing results comparable to reference testing include gradient diffusion minimum inhibitory concentration determination (Etest [bioMérieux] and MTS [Liofilchem]), and automated systems, such as Vitk (bioMérieux), Phoenix (BD Diagnostic Systems), and the rapid versions of MicroScan and Sensititre. Several of the methods have faster turn-around time (TAT) than reference methods, and those automated are coupled with machine-generated results. Instruments that record and interpret disk diffusion zone also are available (eg, ADAGIO [Bio-Rad]; Scan 1200 [Interscience]; and SIR-scan [i2a]). Faster TAT also is available for disk diffusion testing using standard and enhanced media.

Antimicrobial Susceptibility Test Methods to Detect Resistance Mechanisms

These reference AST methods include methods for determination of resistance mechanisms, such as (1) the presence of extended spectrum β-lactamases (ESBLs) using cefotaxime and ceftazidime alone and combined with clavulanate and (2) the presence of carbapenemases using lowered carbapenem breakpoints, the modified carbapenem inactivation method, and enzyme inhibitors (eg, boronic and dipicolinic acids). These approaches are incorporated in many commercially available systems, such as those automated (eg, the Phoenix system) or those based on disk diffusion (eg, the disk diffusion Neo-Rapid CARB kit [Rosco]).
Rapid Antimicrobial Susceptibility Tests

The rapid AST systems include those based on flow cytometry; microfluidic; real-time high-resolution video imager; ATP bioluminescence; cell lysis; nanoechanical, electro-chemical, and optomechanical; and other techniques (reviewed by Endimiani and Jacobs14 and by Behera and colleagues15). Only several, so far, however, are available commercially.

The Accelerate Pheno system (Accelerate Diagnostics) combines species identification (ID) through fluorescence in situ hybridization probes with rapid ASTs based on time-lapse automated morphokinetic cell microscopic analysis. Both ID and AST are performed automatically on positive BCs, with results provided in maximum 1.5 hours and 7 hours, respectively (at least 24 hours before those provided with routine approaches).16 In a recent study, the system accurately identified the pathogens with a sensitivity ranging from 94.6% to 100%, whereas for the AST results, the categorical agreement was 97.9%.17 Overall, the Accelerate Pheno system may significantly anticipate the definitive antibiotic therapy, improving the outcome of BSI patients.18

The Alfred 60 (Alifax) is another automatic AST system implemented for positive BCs that provides results in approximately 6 hours. It analyzes the turbidity of bacteria that grow in broth and has demonstrated a 93% categorical agreement with the standard ASTs.19

Rapid Biochemical Tests to Detect Extended Spectrum β-Lactamase and Carbapenemase Producers

The ESBL NDP test is a rapid (15 minutes to 2 hours) and cost-effective biochemical test used to detect ESBL producers. ESBL production is evidenced by a color change (red to yellow) of the pH indicator phenol red due to acid formation resulting from cefotaxime hydrolysis that is reversed by adding tazobactam, with reported 93% sensitivity and 100% specificity for detecting ESBL-producing Enterobacteriales (ESBL-PE). The test has been evaluated on BC and urine samples, showing excellent sensitivity and specificity (>98% and >99%, respectively). This homemade test has been upgraded to a commercially available kit named Rapid ESBL NP test.20

The Carba NP test is an in-house assay designed to detect carbapenemase producers. It detects a change in pH due to the hydrolysis of imipenem in presence of carbapenemases in less than 2 hours. β-Lactamases are extracted rapidly from bacterial cells and then incubated with imipenem and phenol red. This test demonstrated an excellent ability to detect carbapenemases in Enterobacteriales and Pseudomonas spp, as well as in Acinetobacter spp, in an improved version (CarbAcinetobacter test),20,21 although there are concerns regarding the low sensitivity for OXA-48–like producers. The test also was implemented directly on positive BCs with carbapenemase-producing Enterobacteriales (CPE) and Pseudomonas spp, demonstrating greater than 98% sensitivity and 100% specificity.22,23 Notably, the Carba NP test is recommended for the confirmation of carbapenemase production in gram-negatives by the CLSI.7 This test now is available commercially in an easy-to-use rapid kit (RAPIDEC Carba NP test [bioMérieux]). Another version of the original Carba NP test (Carba NP II test) includes additional wells with clavulanic acid and EDTA, making the assay able to distinguish the different classes of carbapenemases.24 This test, however, is not commercially available.20

The Blue-Carba test is another in-house biochemical assay for carbapenemases detection, but it uses a different indicator (bromothymol blue) and a simplified protocol compared with the Carba NP test. The main advantage of the Blue-Carba is its faster TAT, because there is no need to extract the β-lactamase(s) from colonies. Overall, the
test shows comparable performance to the in-house Carba NP, with reported better sensitivity for the detection of OXA-type carbapenemases.25 In a recent study with CPE, Carba NP had higher specificity than Blue-Carba (98.9\% vs 91.7\%, respectively), whereas both tests had 100\% sensitivity.26 A commercially available version of Carba NP (Neo-CARB kit, formerly Rapid CARB Screen) has shown similar sensitivity (97\% vs 98\%, respectively) but superior specificity (100\% vs 83\%) compared with the Carba NP test.27 In contrast, in another evaluation, the Carba NP had sensitivities of 91\% for \textit{Enterobacterales} and 100\% for \textit{P aeruginosa}, whereas those for the Rapid CARB Screen kit were 73\% and 67\%, respectively; the specificity of both tests was 100\%.28

\textbf{Biochemical Tests to Detect Other Resistance Phenotypes}

The Rapid Polymyxin NP test (ELITechGroup) is a commercial assay that quickly detects polymyxin resistance quickly. This test is based on the detection of glucose metabolism related to bacterial growth (when resistant to polymyxins) in the presence of a defined concentration of colistin. The formation of acid metabolites is evidenced by a color change of the pH indicator red phenol in less than 2 hours. The assay showed greater than 98\% sensitivity and greater than 94\% specificity.33,34 It also was evaluated for detection of colistin-resistant \textit{Enterobacterales} directly from BCs, exhibiting excellent discrimination between colistin resistant and susceptible isolates.35

Based on the same principle used in the Rapid Polymyxin NP, further rapid phenotypic tests to detect aminoglycoside-resistant and fosfomycin-resistant \textit{Enterobacterales} have been developed.36,37 Because \textit{Acinetobacter baumannii} and \textit{P aeruginosa} do not metabolize glucose, a new assay (Rapid ResaPolymyxin \textit{Acinetobacter/Pseudomonas} NP test) based on the utilization of resazurin (alamarBlue) has been developed. Metabolically active cells (polymyxin-resistant) reduce blue resazurin to the pink product resorufin. In less than 4 hours, the test showed 100\% sensitivity and 95\% specificity.38

\textbf{Immunochromatographic Tests}

Antigen detection can be used to detect enzymes or cell components of bacteria that are associated with AMR. The immunochromatographic tests often are lateral flow assays (LFAs) where antigen detection is identified by visualization of a line (as in pregnancy tests). These LFAs are useful because of their rapidity (results within 15 minutes), low cost, and accuracy that typically are comparable to nucleic acid amplification testing.39

The LFAs designed to detect \textit{β}-lactamases started being commercialized in 2015 to 2016. Although at the beginning they were targeting only one enzyme (eg, OXA-48),
nowadays multiplex LFAs are available. For instance, the RESIST-4 O.K.N.V. kit (Coris BioConcept) detects OXA-48-like, KPC, NDM, and VIM carbapenemases, with greater than 99% sensitivity and 100% specificity in culture strains belonging to Enterobacterales and Pseudomonas spp. The NG-Test CARBA 5 (NG Biotech) detects the 5 most common carbapenemases: KPC, OXA-48-like, VIM, IMP, and NDM. Having shown 99.3% sensitivity and 99.8% specificity for cultured colonies, this LFA now is FDA-cleared. Remarkably, CARBA 5 also has demonstrated high accuracy when testing positive BCs for detecting CPE (sensitivity and specificity of >97.7% and >96.1%, respectively). An LFA to detect the colistin resistance traits MCR-1 also has been developed.

Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectroscopy

The matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectroscopy (MS) nowadays is used routinely to identify bacterial species from growth on agar plates as well as organisms present in positive BCs. Overall, the main advantages of MALDI-TOF MS are its speed, relatively low costs, and consistency. Numerous studies also have assessed the utility of MALDI-TOF MS for the identification of β-lactam degradation products in the presence of hydrolyzing β-lactamases, including directly from positive BCs and urine. In particular, many investigators have evaluated the identification of carbapenemase producers where antibiotics (imipenem, meropenem, and ertapenem) are incubated with the organism and then analyzed for degradation products of the antibiotics with the MS; the time required to do this assay is approximately 1 hour to 4 hours. Bruker Daltonics also produces the MBT STAR-Carba IVD commercial kit to rapidly detect carbapenemase producers. The assay showed high sensitivity (100%) and specificity (>98%) for CPE but not for OXA-23/-24–producing A baumannii. All of these MALDI-TOF MS approaches, however, can detect only the presence of β-lactam hydrolysis as a generic resistance mechanism and not the specific enzyme (eg, distinguishing NDM from KPC); this identical information can be obtained easily by implementing rapid and cost-effective biochemical tests (discussed previously) or polymerase chain reaction (PCR)-based methods. The MALDI-TOF MS is able to detect the specific KPC-2 peak (28,544 m/z) in Enterobacterales and P aeruginosa with both sensitivity and specificity of 100%.

Single and Multiplex Endpoint Polymerase Chain Reaction

A single PCR frequently is sufficient for detection of a unique ARG of interest. Subsequent DNA sequencing, however, may be necessary (eg, to distinguish SHVs with ESBL from those with non-ESBL spectrum). Results of PCR amplification can be obtained in less than 3 hours to 4 hours for simple amplification to greater than or equal to 24 hours if DNA sequencing is required. Making use of multiple primer sets, multiplex endpoint PCRs have the advantage of simultaneously amplifying many different targets. In the past, numerous single and multiplex PCRs have been designed to detect ARGs, including ESBL, carbapenemase, aminoglycoside-modifying enzyme, and outer membrane porin genes associated with carbapenem resistance (revised by Endimiani and Jacobs and Lupo and colleagues).

Single- and Multiplex Real-Time Polymerase Chain Reaction

Real-time PCR consists of an amplification reaction of the target gene coupled with the detection of the exponentially amplified DNA product by various methods, such as monitoring fluorescence emission with SYBR Green or TaqMan probes. Real-time PCR avoids time consuming steps, such as running gels; is sensitive, reliable, and cost-effective; and usually does not require DNA sequencing. Modern
apparatuses also can perform a high-resolution melting analysis of DNA products, giving information on single-nucleotide polymorphisms in the sequence.52

Many in-house single or multiplex platforms for detecting plasmid-mediated AmpC (pAmpC), ESBL, carbapenemase, and other ARGs have been designed (eg, Endimiani and Jacobs14 and Lupo and colleagues51), and many commercially available kits now are available. For example, Check-Points Health B.V. provides quantitative multiplex real-time PCR kits to detect ESBL and carbapenemase genes directly from peri/rectal swabs. Results are available within 2 hours to 3 hours, along with genotypic differentiation of the \textit{bla} types based on probes labeled with different fluorescent dyes. Kits can be adapted to the BD MAX system (Becton-Dickinson), a diagnostic platform that operates as an open real-time PCR, allowing automated sample lysis, extraction, amplification, and detection processes. The Check-Direct ESBL screening kit detects CTX-M and SHV ESBL genes. For rectal swabs, it displayed sensitivity of 88% to 95% and specificity of 96% to 99%.53,54 The Check-Direct CPE assay identifies \textit{bla}\textsubscript{KPC}, \textit{bla}\textsubscript{NDM}, \textit{bla}\textsubscript{VIM}, and \textit{bla}\textsubscript{OXA-48-like}, with reported sensitivity of 100% and specificity of 88% to 100%, respectively. Moreover, compared with standard approaches, this molecular system reduced TAT from 18 hours to 24 hours (using direct culture) or 48 hours (using broth enrichment) to only 3 hours.55–58 For both Check-Direct kits, false-positive results (negative by culture) can arise from the presence of DNA residual of dead bacteria, or detection of bacteria harboring, but not expressing, \textit{bla} genes.53,54,56,58

GeneXpert (Cepheid) is another real-time PCR system that performs fully automated nucleic acid detection and analysis directly from clinical samples. To minimize contamination, it is a cartridge-based, closed, self-contained platform. The company provides many cartridges for detection of different pathogens and ARGs. Among them, the Xpert Carba-R (v2) cartridge is designed to detect \textit{bla}\textsubscript{KPC}, \textit{bla}\textsubscript{NDM}, \textit{bla}\textsubscript{IMP}, \textit{bla}\textsubscript{VIM}, and \textit{bla}\textsubscript{OXA-48-like}, requiring 2 minutes of hands-on time and less than 48 minute to achieve results.59 For rectal swabs, this kit demonstrated overall sensitivity of 97% to 100% and specificity of 99%. As for Check-Direct, the Xpert Carba-R assay reported the presence of carbapenemase genes in culture-negative samples.60,61 In another study, Xpert Carba-R was implemented for rapid screening for colonization with carbapenemase-producing species, coupled with implementation of infection prevention strategies. Isolation of positive patients led to a reduction in both colonization (from 28.6% to 5.6%; \textit{P}<.05) and infection (from 35.7% to 2.8%; \textit{P}<.05) rates during the study period.62

Other companies have developed further real-time PCR-based platforms to detect carbapenemases, \textit{mcr-1/-2} associated with polymyxins resistance and other ARGs. Examples include PANA RealTyper CRE kit (PANAGENE)63; Tandem-Plex CRE EU kit (AusDiagnostics)64; Acuitas AMR Gene Panel (OpGen)65; and GenePOC Carba/Reovgene Carba C assay (Meridian Bioscience).66 Their analytical performance directly on clinical samples, however, has not yet been extensively evaluated.

BioFire FilmArray

The BioFire FilmArray (bioMérieux) is a closed, very rapid (1-hour), fully automated system (only 2 minutes hands-on-time) that combines DNA extraction from samples, nested multiplex PCRs, post-PCR amplicon high-resolution melting analysis, and automated interpretation of results.67 This method initially was developed for the detection of respiratory pathogens,68 but later additional assays have been developed. The FilmArray Blood Culture Identification (BCID) kit has been approved by FDA for direct implementation on positive BCs. It identifies 27 targets, including gram-positives, gram-negatives, 6 \textit{Candida} spp, and the ARGs \textit{mecA}, \textit{vanA/B}, and
Similarly, the FilmArray Pneumonia Panel plus has 34 targets, including 27 major respiratory pathogens and several ARGs (mecA/C, blaKPC, blaNDM, blaVIM, blaIMP, blaOXA-48-like, blaCTX-M, and blaKPC).

The FilmArray BCID has been evaluated in numerous recent studies. In a large multicenter trial (2207 samples), the system showed an identification sensitivity greater than 96%. Moreover, sensitivity and specificity for mecA were both 98%, whereas those for vanA/B and blaKPC were both 100%. In another study, it was shown that the use of the BCID system reduced the time to optimal antimicrobial treatment in ICU patients by an average of 10 hours (from 15 hours to 5 hours; P<.05). Although focusing on bacteremia due to gram-positives, another analysis showed that the implementation of the BCID panel resulted in shorter postculture length of stay and saved approximately $30,000 per 100 patients tested. A new BC panel (BCID2), able to detect further species and ARGs (including major carbapenemases and mcr-1), will be released shortly.

Loop-Mediated Isothermal Amplification

The loop-mediated isothermal amplification (LAMP) method allows amplification and fluorescent detection of the target DNA at a constant temperature, avoiding the need for a thermocycler. Genomic extraction from samples is not required as the activity of the Bst DNA polymerase is not hampered by serum or heparin. Recently, many investigators have designed in-house LAMP platforms to detect different ARGs. Overall, for clinical samples the LAMP was very rapid (<1-hour), more sensitive, and with a lower limit of detection than PCR-based approaches.

The commercially available eazyplex LAMP system (Amplex Diagnostics) consists of a series of freeze-dried and ready-to-use kits coupled by real-time photometric detection of amplified targets using the transportable Genie II instrument (OptiGene). One of the kits was designed to detect KPC, NDM, OXA-48, VIM, OXA-23, OXA-24/40, and OXA-58 carbapenemase genes. Its first evaluation was performed on *Acinetobacter* spp and all isolates were characterized correctly in less than 30 minutes. In another study focusing on *Enterobacterales*, an advanced kit (eazyplex SuperBug CRE kit) was assessed to detect KPC, VIM, NDM, OXA-48–like, and CTX-M-1/-9–like genes: all carbapenemase and/or CTX-M producers were identified correctly within 15 minutes.

The same kit also was used directly on 50 urine samples, 30 of which contained ESBL producers; the assay showed sensitivity of 100% and specificity of 97.9%, with results obtained in less than 20 minutes. Recently, it was shown that implementation of the eazyplex SuperBug CRE kit on positive BCs significantly improved the clinical outcome of BSIs due to CTX-M- and/or KPC/VIM-producing *Escherichia coli* and *Klebsiella pneumoniae*. In particular, after notification of SuperBug CRE results (on average 20 hours after sample collection), the proportion of appropriate treatment increased from 6% to 71% and from 30% to 92% for BSIs caused by KPC/VIM and CTX-M producers, respectively. Extended kit versions able to further detect pAmpCs (eazyplex AmpC), OXA-23–like, OXA-24/40–like, OXA-58–like, and OXA-181–like (eazyplex SuperBug complete A/B/C and Acinetob), IMI, GES, GIM (eazyplex SuperBug expert), and the mcr-1 (eazyplex SuperBug mcr-1) genes also are available.

Microarrays

Microarrays possess great diagnostic capacity because they can simultaneously detect and analyze a large number of target genes. In the past, numerous in-house assays have been designed to characterize ARGs, but their implementation was difficult because of problems related to standardization of the procedures.
Recently, commercially available microarrays have become available. These platforms are easy to perform and can be updated readily, although the TAT is rather long (6–8 hours) and commercial kits are relatively expensive.51 Check-Points Health B.V. has developed an automated DNA microarray platform to detect the major \textit{bla} genes. Over the past 10 years, several kits have been released, including Check KPC/ESBL, Check-MDR CT101, CT102, CT103, and CT103XL. Overall, these assays showed high accuracy in detecting ESBL, pAmpC, and carbapenemase genes in cultured strains.80–82 Moreover, one of these kits (Check-KPC/ESBL) was used to detect ESBL and KPC genes directly from positive BCs, reducing the reporting time of these resistance traits by 18 hours to 20 hours.83 The latest microarray kit made available by the company (New Check-MDR CT103XL) can detect the most epidemiologically important ESBL, pAmpC, and carbapenemase, along with the \textit{mcr-1} and \textit{mcr-2} genes. In a recent evaluation against a collection of \textit{Enterobacteriales}, all \textit{bla} and \textit{mcr-1/2} genes were correctly identified.84

\textbf{Verigene System}

Verigene (Luminex Corporation) is an automated multiplex microarray-based system that uses small aliquots of positive BC broths to identify a panel of major bacterial pathogens and ARGs. Results are available within 2.5 hours from Gram stain result on positive BCs. The test uses a disposable kit and cartridge, the latter inserted in a processor (5-minute hands-on-time) that carries out extraction of nucleic acid and microarray reactions. Final results are obtained by inserting the cartridge into a dedicated reader. Assays for gram-positives and gram-negatives are available. The Verigene gram-negative BC nucleic acid (BC-GN) test can identify \textit{E coli}, \textit{K pneumoniae}, \textit{K oxytoca}, \textit{P aeruginosa}, \textit{S marcescens}, \textit{Acinetobacter} spp, \textit{Proteus} spp, \textit{Citrobacter} spp, \textit{Enterobacter} spp, and the ARGs \textit{blaKPC}, \textit{blaNDM}, \textit{blaCTX-M}, \textit{blaVIM}, \textit{blaIMP}, and \textit{blaOXA}. In a large study (1847 BCs), agreement of the BC-GN assay with the reference method for monomicrobial cultures was \textit{E coli}, 100%; \textit{K pneumoniae}, 92.9%; \textit{P aeruginosa}, 98.9%; and \textit{Acinetobacter} spp, 98.4%. Agreement for identification of ARGs was \textit{blaCTX-M}, 98.9%; \textit{blaKPC/VIM/IMP}, 100%; \textit{blaNDM}, 96.2%; and \textit{blaOXA}, 94.3%.85 Numerous studies also have demonstrated that implementation of Verigene BC-GN has a significant positive clinical impact. For instance, it was shown that ID (mean 10.9 hours vs 37.9 hours, respectively; \textit{P}<.001) and time to effective therapy for BSI due to ESBL producers were achieved more quickly (mean 7.3 hours vs 41.4 hours, respectively; \textit{P} = .04); moreover, length of intensive care unit (ICU) stay (12.0 days vs 16.2 days, respectively) and 30-day mortality (8.1% vs 19.2%, respectively) were significantly lowered.86

\textbf{T2 Magnetic Resonance}

The T2 magnetic resonance (T2MR) (T2 Biosystems) is a recently marketed system that combines PCR amplification, hybridization with nanoparticles and T2MR in a closed apparatus to detect diverse targets directly from complex matrices, such as blood.87 With a limit of detection of 1 colony-forming unit/mL, the system can identify 5 \textit{Candida} spp (T2Candida Panel) or \textit{E faecium}, \textit{Staphylococcus aureus}, \textit{K pneumoniae}, \textit{P aeruginosa}, and \textit{E coli} (T2Bacteria Panel) from 2 mL of whole blood.88 In ICU patients, T2Bacteria Panel showed sensitivity of 83.3% and specificity of 97.6% in detecting bacterial targets that were present in BCs. Sensitivity increased to 89.5% when patients with clinical indication of infection, regardless of BC results, were considered. A considerable number of patients, especially those receiving anti-microbials, had T2Bacteria-positive/BC-negative results. Mean times to detection of
species or negative results were 5.5 hours and 6.1 hours, respectively; in comparison, those for conventional BCs were 25.2 hours and 120 hours, respectively. Recently, the company has developed a panel (T2Resistance) to rapidly detect 13 ARGs (bla\textsubscript{KPC}, bla\textsubscript{NDM/IMP/VIM}, bla\textsubscript{OXA-48}, bla\textsubscript{CTX-M-14/15}, bla\textsubscript{CMY/DHA}, vanA/B, and mecA/C).

Next-Generation Sequencing

In the clinical setting, whole-genome sequencing of bacteria increasingly is used to inform on the emergence and spread of AMR, with the final objective to better tailor antimicrobial prescription. No method other than pathogen genomic sequencing can deliver complete ARG and species identification directly from positive BCs or provide a full picture of the susceptibility profile as well as insights about novelty, transmission, and virulence of associated genetic elements. Genomic workflows typically involve several steps, from raw sequence data production to the further processing of the generated data into interpretable nucleic acid sequences using bioinformatic tools.

Over the past 15 years, the low-throughput, costly, yet accurate, Sanger sequencing has been replaced by high-throughput sequencing technologies, such as 454 pyrosequencing (discontinued in 2013) and Illumina sequencing. Currently, clinical genomic applications are based mostly on Illumina sequencing technology, which allows for the sequencing of entire genomes in mixed samples or the detection of sequence variants with enough coverage and with satisfactory base accuracy. Although successfully used to profile human-associated antibiotic resistomes (eg, Forsberg and colleagues and Gonzalez-Escalona and colleagues), the short reads (few hundreds of bases) produced by the Illumina technology may lead to downstream sequence processing difficulties (eg, for contig assembly), especially when multiple copies of the same genes, high GC, or homopolymeric regions are present in the target genome.

High-quality de novo microbial genome assemblies can alternatively be obtained via Pacific Biosciences SMRT sequencing, which may produce sequences efficiently, even when long repeat regions are present. The via Pacific Biosciences technology introduced in 2011, however, needs significant capital investment, dedicated personnel, and laboratory space, which may explain why only few applications have been reported in the clinical setting. Consequently, clinically applicable workflows that provide straightforward, affordable, and comprehensive resistome characterization still are lacking, and technologies addressing those needs are highly desirable.

Oxford Nanopore Technologies introduced its first product, MinION, consisting of a single-molecule sensing system embedded in a cheap, light-weight (100-g) sequencer. Nanopore sequencing works by threading individual DNA or RNA molecules through nanoscopic pores fixed to a membrane on which an ionic current is applied. As the molecule passes through the pore, the current is altered as a function of the identity of the base and of its residues. This signal then is recorded and converted into a nucleotide sequence by a suite of bioinformatic tools, while further processing of the data is done using software scripts provided by the company and by the user community. The strategy of Oxford Nanopore Technologies was to let a limited number of laboratories assess the sequencing performance of the device, acknowledging the developing nature of the technology. This early access to this technology has helped rapidly develop wet laboratory protocols, software scripts to optimize the sequencing process and also downstream analyses by a large group of users. It also lets users explore potential applications, thus contributing to publicize the new technology across a large array of scientific fields in a record amount of time. Nanopore reads are long, often reaching lengths greater than 100 kb, and typically capture...
entire genomic fragments, which facilitates downstream analysis of the genomic context when ARGs are identified. This is significant particularly for clinical applications that aim at reducing TAT, particularly when a culture-independent, direct processing method to detect mixed microbial populations in samples is needed. In that respect, Cao and colleagues demonstrated that bacterial species and strain information could be obtained within 30 minutes of nanopore sequencing based on approximately 500 reads, whereas initial drug-resistance profiles could be established in less than 2 hours, and complete resistance profiles could be available within 10 hours.

Whole-genome sequencing–based AMR predictions and antibiotic-resistance phenotypes often are concordant, with high sensitivity and specificity (>95%) reported for many phenotypes across several pathogen species, although some notable exceptions were found, such as with levofloxacin resistance in P. aeruginosa, where sensitivity and specificity may be below 95%. Successful genomic applications in the context of bacterial drug-resistance characterization include the analysis of the structure and insertion site of an antibiotic resistance island in Salmonella Typhi and the characterization of carbapenemase and ESBL genes in gram-negatives. A functional metagenomics approach combined with nanopore sequencing was reported by van der Helm and colleagues to characterize the resistome of clinical samples: clones from metagenomic expression libraries, derived from fecal samples obtained from an ICU patient, which could grow on each of a panel of 7 antibiotics, were selected, pooled, and barcoded with custom adapters and sequenced with the MinION nanopore sequencer. Resistome profiling identified a variety of ARGs with annotation accuracies of greater than 97% mean sequence identity, such as blaCTX-M and blaTEM, genes coding for aminoglycoside-modifying enzymes, and diverse genes encoding ribosomal and efflux mediated resistance to tetracycline antibiotics.

Despite successful applications for strain identification and resistome profiling, emerging sequencing technologies that offer real-time, long-read, single-molecule sequencing of DNA or RNA molecules need further development in terms of (1) sensitivity, especially when applied to mixed samples, for which high-sequence yields providing sufficient genome coverage are required; (2) sequencing accuracy to overcome the high error rate of the current nanopore sequencing technology (currently at approximately 4% per raw read), so that AMR-associated with mutations in chromosomal genes also can be identified or multilocus sequencing typing schemes that attempt to identify bacterial strains from nanopore data be obtained reliably; meanwhile, several postsequencing algorithms may be used to produce polished reads with accuracy greater than 98% to 99%; those algorithms include several rounds of mapping the raw reads to a consensus sequence in order to improve the overall consensus sequence quality; (3) costs of flow cell and associated consumables; and (4) easy-to-use bioinformatic tools and interfaces that facilitate the interpretation of the sequencing results by clinicians and that would enable a broader adoption of the technology in clinical settings in different countries.

Overall, single-molecule, real-time sequencing technologies, which may help better identify and characterize the genomic makeup of drug-resistant bacteria, have been shown not only to be technically feasible but also time and cost effective. Moreover, portable technology and rapid TAT provide actionable results with respect to infection control, implementation of personalized antibiotic treatment in high-risk patients, and on-site monitoring of resistome in both clinical and environmental settings. It is hoped that diagnostic laboratories soon will be able to implement routine genome sequencing as part of their surveillance programs for drug-resistant bacteria.
DISCUSSION

The spread of extensively drug-resistant and pan–drug-resistant gram-negatives has challenged the clinical microbiology laboratory to recognize the presence of responsible resistance mechanisms, appreciate their clinical significance, and develop techniques to rapidly detect their existence. This overall challenge is significant and, in many instances, difficult to address when conventional AST fails to recognize the presence of clinically important resistance mechanisms, such as ESBLs and carbapenemases. A further challenge is to rapidly detect these resistance traits in established cultures as well as directly from specimens. This review shows the impressive advances that have been made in rapid detection of resistance in cultures (eg, positive BCs). Moreover, direct detection of ARGs from screening specimens (eg, rectal swabs) is a reality, whereas that from other primary samples (eg, whole blood) in the routine clinical context still is on the horizon.

There also is the inherent conflict between choosing between phenotypic and genotypic methods. Genotypic methods are rapid and can be used to test cultures as well as specimens but are limited by the complexity of the genetic targets and the continuing emergence of new resistance mechanisms. Phenotypic methods are slow and best suited for use on cultures, but speed has been improved significantly using rapid AST systems. It is likely that these challenges will continue as new resistance mechanisms emerge and that phenotypic and genotypic methods will continue to be needed and used in parallel.

DISCLOSURE

A. Endimiani is a consultant for MSD (Merck Sharp and Dohme AG). M.R. Jacobs and D.D. Rhoads received grant support from bioMérieux and OpGen. A. Ramette received travel grants from Oxford Nanopore Technologies to attend scientific conferences. The sponsor had no role in the design, execution, interpretation, or writing of the study. A. Endimiani and A. Ramette are supported by the Swiss National Science Foundation (SNF), NRP72 National Research Programme, Antimicrobial Resistance (SNF grant no. 177378). A. Endimiani also is supported by SNF grant no. 170063.

REFERENCES

1. Bonomo RA, Burd EM, Conly J, et al. Carbapenemase-producing organisms: a global scourge. Clin Infect Dis 2018;66(8):1290–7.
2. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 2017;30(2):557–96.
3. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int J Antimicrob Agents 2015;45(6):568–85.
4. Kothari A, Morgan M, Haake DA. Emerging technologies for rapid identification of bloodstream pathogens. Clin Infect Dis 2014;59(2):272–8.
5. Timbrook TT, Morton JB, McConeghy KW, et al. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis 2017;64(1):15–23.
6. Altun O, Almuyayawi M, Luthje P, et al. Controlled evaluation of the new BacT/alert virtuo blood culture system for detection and time to detection of bacteria and yeasts. J Clin Microbiol 2016;54(4):1148–51.
7. CLSI. Performance standards for antimicrobial susceptibility testing: 29th informational supplement. Wayne (PA): Clinical and Laboratory Standard Institute; 2019. CLSI document M100-S29.

8. EUCAST. European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for interpretation of MICs and zone diameters Version 90, valid from 2019-01-01. 2019.

9. Humphries RM, Kircher S, Ferrell A, et al. The continued value of disk diffusion for assessing antimicrobial susceptibility in clinical laboratories: report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group. J Clin Microbiol 2018;56(8).

10. Perillaud C, Pilmis B, Diep J, et al. Prospective evaluation of rapid antimicrobial susceptibility testing by disk diffusion on Mueller-Hinton rapid-SIR directly on blood cultures. Diagn Microbiol Infect Dis 2019;93(1):14–21.

11. European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 2.0. July 2017.

12. Ong CH, Ratnayake L, Ang MLT, et al. Diagnostic Accuracy of BD Phoenix CPO detect for carbapenemase production in 190 enterobacteriaceae isolates. J Clin Microbiol 2018;56(12):e01043-18.

13. Noel A, Huang TD, Berhin C, et al. Comparative evaluation of four phenotypic tests for detection of carbapenemase-producing gram-negative bacteria. J Clin Microbiol 2017;55(2):510–8.

14. Endimiani A, Jacobs MR. The changing role of the clinical microbiology laboratory in defining resistance in gram-negatives. Infect Dis Clin North Am 2016;30(2):323–45.

15. Behera B, Anil Vishnu GK, Chatterjee S, et al. Emerging technologies for antibiotic susceptibility testing. Biosens Bioelectron 2019;142:111552.

16. Charnot-Katsikas A, Tesic V, Love N, et al. Use of the accelerate pheno system for identification and antimicrobial susceptibility testing of pathogens in positive blood cultures and impact on time to results and workflow. J Clin Microbiol 2018;56(1). e01166-17.

17. Pancholi P, Carroll KC, Buchan BW, et al. Multicenter Evaluation of the Accelerate PhenoTest BC kit for rapid identification and phenotypic antimicrobial susceptibility testing using morphokinetic cellular analysis. J Clin Microbiol 2018;56(4). e01329-17.

18. Henig O, Cooper CC, Kaye KS, et al. The hypothetical impact of Accelerate Pheno system on time to effective therapy and time to definitive therapy in an institution with an established antimicrobial stewardship programme currently utilizing rapid genotypic organism/resistance marker identification. J Antimicrob Chemother 2019;74(Supplement_1):i32–9.

19. Van den Poel B, Meersseman P, Debaeye Y, et al. Performance and potential clinical impact of Alfred60(AST) (Alifax(R)) for direct antimicrobial susceptibility testing on positive blood culture bottles. Eur J Clin Microbiol Infect Dis 2019.

20. Decousser JW, Poirel L, Nordmann P. Recent advances in biochemical and molecular diagnostics for the rapid detection of antibiotic-resistant Enterobacteriaceae: a focus on β-lactam resistance. Expert Rev Mol Diagn 2017;17(4):327–50.

21. Dortet L, Poirel L, Errera C, et al. CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. J Clin Microbiol 2014;52(7):2359–64.
22. Dortet L, Brechard L, Poirel L, et al. Rapid detection of carbapenemase-producing Enterobacteriaceae from blood cultures. Clin Microbiol Infect 2014;20(4):340–4.

23. Dortet L, Boulanger A, Poirel L, et al. Bloodstream infections caused by Pseudomonas spp.: how to detect carbapenemase producers directly from blood cultures. J Clin Microbiol 2014;52(4):1269–73.

24. Dortet L, Poirel L, Nordmann P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob Agents Chemother 2012;56(12):6437–40.

25. Pires J, Novais A, Peixe L. Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol 2013;51(12):4281–3.

26. Pires J, Tinguely R, Thomas B, et al. Comparison of the in-house made Carba-NP and Blue-Carba tests: Considerations for better detection of carbapenemase-producing Enterobacteriaceae. J Microbiol Methods 2016;122:33–7.

27. Huang TD, Berhin C, Bogaerts P, et al. Comparative evaluation of two chromogenic tests for rapid detection of carbapenemase in Enterobacteriaceae and in Pseudomonas aeruginosa isolates. J Clin Microbiol 2014;52(8):3060–3.

28. Yusuf E, Van Der Meeren S, Schallier A, et al. Comparison of the Carba NP test with the Rapid CARB Screen Kit for the detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2014;33(12):2237–40.

29. Renvoise A, Decre D, Amarsy-Guerle R, et al. Evaluation of the betaLacta test, a rapid test detecting resistance to third-generation cephalosporins in clinical strains of Enterobacteriaceae. J Clin Microbiol 2013;51(12):4012–7.

30. Gallah S, Benzerara Y, Tankovic J, et al. beta LACTA test performance for detection of extended-spectrum β-lactamase-producing Gram-negative bacilli directly on bronchial aspirates samples: a validation study. Clin Microbiol Infect 2018;24(4):402–8.

31. Bayraktar B, Baris A, Malkocoglu G, et al. Comparison of Carba NP-Direct, Carbapenem Inactivation Method, and beta-CARBA tests for detection of carbapenemase production in enterobacteriaceae. Microb Drug Resist 2019;25(1):97–102.

32. Meier M, Hamprecht A. Rapid detection of carbapenemases directly from positive blood cultures by the beta-CARBA test. Eur J Clin Microbiol Infect Dis 2019;38(2):259–64.

33. Nordmann P, Jayol A, Poirel L. Rapid detection of polymyxin resistance in enterobacteriaceae. Emerg Infect Dis 2016;22(6):1038–43.

34. Jayol A, Kieffer N, Poirel L, et al. Evaluation of the Rapid Polymyxin NP test and its industrial version for the detection of polymyxin-resistant Enterobacteriaceae. Diagn Microbiol Infect Dis 2018;92(2):90–4.

35. Jayol A, Dubois V, Poirel L, et al. Rapid detection of polymyxin-resistant entero-bacteriaceae from blood cultures. J Clin Microbiol 2016;54(9):2273–7.

36. Nordmann P, Poirel L, Mueller L. Rapid detection of fosfomycin resistance in Escherichia coli. J Clin Microbiol 2019;57(1). e01531-18.

37. Nordmann P, Jayol A, Dobias J, et al. Rapid Aminoglycoside NP test for rapid detection of multiple aminoglycoside resistance in enterobacteriaceae. J Clin Microbiol 2017;55(4):1074–9.
38. Lescaet M, Poirel L, Tinguely C, et al. A resazurin reduction-based assay for rapid detection of polypeoxin resistance in Acinetobacter baumannii and Pseudomonas aeruginosa. J Clin Microbiol 2019;57(3): e01563-18.

39. Bishop JD, Hsieh HV, Gasperino DJ, et al. Sensitivity enhancement in lateral flow assays: a systems perspective. Lab Chip 2019;19(15):2486–99.

40. Wareham DW, Shah R, Betts JW, et al. Evaluation of an Immunochromato- graphic Lateral Flow Assay (OXA-48 K-SeT) for Rapid Detection of OXA-48-like carbapenemases in enterobacteriaceae. J Clin Microbiol 2016;54(2):471–3.

41. Glupczynski Y, Evrard S, Huang TD, et al. Evaluation of the RESIST-4 K-SeT assay, a multiplex immunochromatographic assay for the rapid detection of OXA-48-like, KPC, VIM and NDM carbapenemases. J Antimicrob Chemother 2019;74(5):1284–7.

42. Hopkins KL, Meunier D, Naas T, et al. Evaluation of the NG-Test CARBA 5 multiplex immunochromatographic assay for the detection of KPC, OXA-48-like, NDM, VIM and IMP carbapenemases. J Antimicrob Chemother 2018;73(12):3523–6.

43. Takissian J, Bonnin RA, Naas T, et al. NG-Test Carba 5 for rapid detection of carbapenemase-producing enterobacterales from positive blood cultures. Antimicrob Agents Chemother 2019;63(5). e00011-19.

44. Giordano L, Fiori B, D’Inzeo T, et al. Simplified testing method for direct detection of carbapenemase-producing organisms from positive blood cultures using the NG-Test Carba 5 Assay. Antimicrob Agents Chemother 2019;63(7). e00550-19.

45. Volland H, Dortet L, Bernabeu S, et al. Development and multicentric validation of a lateral flow immunoassay for rapid detection of MCR-1-Producing Enterobacteriaceae. J Clin Microbiol 2019;57(5). e01454-18.

46. Bryson AL, Hill EM, Doern CD. Matrix-assisted laser desorption/ionization time-of-flight: the revolution in progress. Clin Lab Med 2019;39(3):391–404.

47. Neonakis IK, Spandidos DA. Detection of carbapenemase producers by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). Eur J Clin Microbiol Infect Dis 2019;38(10):1795–801.

48. Rapp E, Samuelsen O, Sundqvist M. Detection of carbapenemases with a newly developed commercial assay using Matrix Assisted Laser Desorption Ionization-Time of Flight. J Microbiol Methods 2018;146:37–9.

49. Dortet L, Tande D, de Briel D, et al. MALDI-TOF for the rapid detection of carbapenemase-producing Enterobacteriaceae: comparison of the commercialized MBT STAR(R)-Carba IVD Kit with two in-house MALDI-TOF techniques and the RAPIDEC(R) CARBA NP. J Antimicrob Chemother 2018;73(9):2352–9.

50. Figueroa-Espinosa R, Costa A, Cejas D, et al. MALDI-TOF MS based procedure to detect KPC-2 directly from positive blood culture bottles and colonies. J Microbiol Methods 2019;159:120–7.

51. Lupo A, Papp-Wallace KM, Sendi P, et al. Non-phenotypic tests to detect and characterize antibiotic resistance mechanisms in Enterobacteriaceae. Diagn Microbiol Infect Dis 2013;77(3):179–94.

52. Navarro E, Serrano-Heras G, Castano MJ, et al. Real-time PCR detection chem- istry. Clin Chim Acta 2015;439:231–50.

53. Souverein D, Euser SM, van der Reijden WA, et al. Clinical sensitivity and speci- ficity of the Check-Points Check-Direct ESBL Screen for BD MAX, a real-time PCR for direct ESBL detection from rectal swabs. J Antimicrob Chemother 2017;72(9):2512–8.
54. Engel T, Slotboom BJ, van Maarseveen N, et al. A multi-centre prospective evaluation of the Check-Direct ESBL Screen for BD MAX as a rapid molecular screening method for extended-spectrum beta-lactamase-producing Enterobacteriaceae rectal carriage. J Hosp Infect 2017;97(3):247–53.

55. Nijhuis R, Samuelsen O, Savelkoul P, et al. Evaluation of a new real-time PCR assay (Check-Direct CPE) for rapid detection of KPC, OXA-48, VIM, and NDM carbapenemases using spiked rectal swabs. Diagn Microbiol Infect Dis 2013;77(4):316–20.

56. Huang TD, Bogaerts P, Ghilani E, et al. Multicentre evaluation of the Check-Direct CPE(R) assay for direct screening of carbapenemase-producing Enterobacteriaceae from rectal swabs. J Antimicrob Chemother 2015;70(6):1669–73.

57. Lau AF, Fahle GA, Kemp MA, et al. Clinical Performance of Check-Direct CPE, a Multiplex PCR for Direct Detection of bla(KPC), bla(NDM) and/or bla(VIM), and bla(OXA)-48 from Perirectal Swabs. J Clin Microbiol 2015;53(12):3729–37.

58. Antonelli A, Arena F, Giani T, et al. Performance of the BD MAX instrument with Check-Direct CPE real-time PCR for the detection of carbapenemase genes from rectal swabs, in a setting with endemic dissemination of carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis 2016;86(1):30–4.

59. Dortet L, Fusaro M, Naas T. Improvement of the Xpert Carba-R Kit for the detection of carbapenemase-producing enterobacteriaceae. Antimicrob Agents Chemother 2016;60(6):3832–7.

60. Tato M, Ruiz-Garbajosa P, Traczewski M, et al. Multisite evaluation of cepheid Xpert Carba-R assay for detection of carbapenemase-producing organisms in rectal swabs. J Clin Microbiol 2016;54(7):1814–9.

61. Hoyos-Mallecot Y, Ouzani S, Dortet L, et al. Performance of the Xpert((R)) Carba-R v2 in the daily workflow of a hygiene unit in a country with a low prevalence of carbapenemase-producing Enterobacteriaceae. Int J Antimicrob Agents 2017;49(6):774–7.

62. Zhou M, Kudinha T, Du B, et al. Active Surveillance of Carbapenemase-Producing Organisms (CPO) Colonization With Xpert Carba-R assay plus positive patient isolation proves to be effective in CPO containment. Front Cell Infect Microbiol 2019;9:162.

63. Jeong S, Kim JO, Jeong SH, et al. Evaluation of peptide nucleic acid-mediated multiplex real-time PCR kits for rapid detection of carbapenemase genes in gram-negative clinical isolates. J Microbiol Methods 2015;113:4–9.

64. Meunier D, Woodford N, Hopkins KL. Evaluation of the AusDiagnostics MT CRE EU assay for the detection of carbapenemase genes and transferable colistin resistance determinants mcr-1/-2 in MDR Gram-negative bacteria. J Antimicrob Chemother 2018;73(12):3355–8.

65. Evans SR, Tran TTT, Hujer AM, et al. Rapid molecular diagnostics to inform empiric use of ceftazidime/avibactam and ceftolozane/tazobactam against Pseudomonas aeruginosa: PRIMERS IV. Clin Infect Dis 2019;68(11):1823–30.

66. Lucena Baaza L, Pfennigwerth N, Hamprecht A. Rapid and easy detection of carbapenemases in enterobacterales in the routine laboratory using the new GenePOC Carba/Revegene Carba C Assay. J Clin Microbiol 2019;57(9). e00597-19.

67. Poritz MA, Blaschke AJ, Byington CL, et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS One 2011;6(10):e26047.
68. Babady NE. The FilmArray respiratory panel: an automated, broadly multiplexed molecular test for the rapid and accurate detection of respiratory pathogens. Expert Rev Mol Diagn 2013;13(8):779–88.

69. Salimnia H, Fairfax MR, Lephart PR, et al. Evaluation of the filmarray blood culture identification panel: results of a multicenter controlled trial. J Clin Microbiol 2016;54(3):687–98.

70. Verroken A, Despas N, Rodriguez-Villalobos H, et al. The impact of a rapid molecular identification test on positive blood cultures from critically ill with bacteremia: A pre-post intervention study. PLoS One 2019;14(9):e0223122.

71. Pardo J, Klinker KP, Borgert SJ, et al. Clinical and economic impact of antimicrobial stewardship interventions with the FilmArray blood culture identification panel. Diagn Microbiol Infect Dis 2016;84(2):159–64.

72. Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): Overview and potential applications. J Infect Chemother 2015;21(3):202–6.

73. Liu W, Zou D, Li Y, et al. Sensitive and rapid detection of the new Delhi metallo-β-lactamase gene by loop-mediated isothermal amplification. J Clin Microbiol 2012;50(5):1580–5.

74. Nakano R, Nakano A, Ishii Y, et al. Rapid detection of the Klebsiella pneumoniae carbapenemase (KPC) gene by loop-mediated isothermal amplification (LAMP). J Infect Chemother 2015;21(3):202–6.

75. Vergara A, Zbormyrska Y, Mosqueda N, et al. Evaluation of a loop-mediated isothermal amplification-based methodology to detect carbapenemase carriage in Acinetobacter clinical isolates. Antimicrob Agents Chemother 2014;58(12):7538–40.

76. Garcia-Fernandez S, Morosini MI, Marco F, et al. Evaluation of the eazyplex(R) SuperBug CRE system for rapid detection of carbapenemases and ESBLs in clinical Enterobacteriaceae isolates recovered at two Spanish hospitals. J Antimicrob Chemother 2015;70(4):1047–50.

77. Hinc V, Ziegler J, Straub C, et al. Extended-spectrum beta-lactamase (ESBL) detection directly from urine samples with the rapid isothermal amplification-based eazyplex(R) SuperBug CRE assay: Proof of concept. J Microbiol Methods 2015;119:203–5.

78. Fiori B, D’Inzeo T, Posteraro B, et al. Direct use of eazyplex((R)) SuperBug CRE assay from positive blood cultures in conjunction with inpatient infectious disease consulting for timely appropriate antimicrobial therapy in Escherichia coli and Klebsiella pneumoniae bloodstream infections. Infect Drug Resist 2019;12:1055–62.

79. Miller MB, Tang YW. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 2009;22(4):611–33.

80. Endimiani A, Hujer AM, Hujer KM, et al. Evaluation of a commercial microarray system for detection of SHV-, TEM-, CTX-M-, and KPC-type β-lactamase genes in Gram-negative isolates. J Clin Microbiol 2010;48(7):2618–22.

81. Bogaerts P, Hujer AM, Naas T, et al. Multicenter evaluation of a new DNA microarray for rapid detection of clinically relevant bla genes from β-lactam-resistant gram-negative bacteria. Antimicrob Agents Chemother 2011;55(9):4457–60.

82. Cunningham SA, Vasoo S, Patel R. Evaluation of the check-points check MDR CT103 and CT103 XL microarray kits by use of preparatory rapid cell lysis. J Clin Microbiol 2016;54(5):1368–71.

83. Fishbain JT, Sinyavskiy O, Riederer K, et al. Detection of extended-spectrum β-lactamase and Klebsiella pneumoniae Carbapenemase genes directly from
blood cultures by use of a nucleic acid microarray. J Clin Microbiol 2012;50(9): 2901–4.

84. Bernasconi OJ, Principe L, Tinguely R, et al. Evaluation of a New Commercial Microarray Platform for the Simultaneous Detection of beta-Lactamase and mcr-1 and mcr-2 Genes in Enterobacteriaceae. J Clin Microbiol 2017;55(10): 3138–41.

85. Ledeboer NA, Lopansri BK, Dhiman N, et al. Identification of gram-negative bacteria and genetic resistance determinants from positive blood culture broths by use of the verigene gram-negative blood culture multiplex microarray-based molecular assay. J Clin Microbiol 2015;53(8):2460–72.

86. Walker T, Dumadag S, Lee CJ, et al. Clinical impact of laboratory implementation of Verigene BC-GN microarray-based assay for detection of gram-negative bacteria in positive blood cultures. J Clin Microbiol 2016;54(7): 1789–96.

87. Neely LA, Audeh M, Phung NA, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med 2013;5(182):182ra154.

88. Clancy CJ, Nguyen MH. T2 magnetic resonance for the diagnosis of bloodstream infections: charting a path forward. J Antimicrob Chemother 2018; 73(suppl_4):iv2–5.

89. De Angelis G, Posteraro B, De Carolis E, et al. T2Bacteria magnetic resonance assay for the rapid detection of ESKAPEc pathogens directly in whole blood. J Antimicrob Chemother 2018;73(suppl_4):iv20–6.

90. Eichenberger EM, Thaden JT. Epidemiology and mechanisms of resistance of extensively drug resistant gram-negative bacteria. Antibiotics (Basel) 2019; 8(2):37.

91. Hendriksen RS, Bortolaia V, Tate H, et al. Using genomics to track global antimicrobial resistance. Front Public Health 2019;7:242.

92. Schurch AC, van Schaik W. Challenges and opportunities for whole-genome sequencing-based surveillance of antibiotic resistance. Ann N Y Acad Sci 2017;1388(1):108–20.

93. Forsberg KJ, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012;337(6098):1107–11.

94. Gonzalez-Escalona N, Allard MA, Brown EW, et al. Nanopore sequencing for fast determination of plasmids, phages, virulence markers, and antimicrobial resistance genes in Shiga toxin-producing Escherichia coli. PLoS One 2019; 14(7):e0220494.

95. Salzberg SL, Phillippy AM, Zimin A, et al. GAGE: A critical evaluation of genome assemblies and assembly algorithms. Genome Res 2012;22(3):557–67.

96. Chin CS, Alexander DH, Marks P, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10(6): 563–9.

97. Quick J, Quinlan AR, Loman NJ. A reference bacterial genome dataset generated on the MinION portable single-molecule nanopore sequencer. Gigascience 2014;3:22.

98. Ma ZS, Li L, Ye C, et al. Hybrid assembly of ultra-long Nanopore reads augmented with 10x-Genomics contigs: Demonstrated with a human genome. Genomics 2019;111(6):1896–901.

99. van der Helm E, Imamovic L, Hashim Ellabaan MM, et al. Rapid resistome mapping using nanopore sequencing. Nucleic Acids Res 2017;45(8):e61.
100. Cao MD, Ganesamoorthy D, Elliott AG, et al. Streaming algorithms for identification of pathogens and antibiotic resistance potential from real-time MinION(TM) sequencing. Gigascience 2016;5(1):32.

101. Su M, Satola SW, Read TD. Genome-based prediction of bacterial antibiotic resistance. J Clin Microbiol 2019;57(3). e01405-18.

102. Kos VN, Deraspe M, McLaughlin RE, et al. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother 2015;59(1):427–36.

103. Ashton PM, Nair S, Dallman T, et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 2015;33(3):296–300.

104. Judge K, Harris SR, Reuter S, et al. Early insights into the potential of the Oxford Nanopore MinION for the detection of antimicrobial resistance genes. J Antimicrob Chemother 2015;70(10):2775–8.

105. Turton JF, Doumith M, Hopkins KL, et al. Clonal expansion of Escherichia coli ST38 carrying a chromosomally integrated OXA-48 carbapenemase gene. J Med Microbiol 2016;65(6):538–46.

106. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 2015;12(8):733–5.

107. Votintseva AA, Bradley P, Pankhurst L, et al. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J Clin Microbiol 2017;55(5):1285–98.

108. Bradley P, Gordon NC, Walker TM, et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 2015;6:10063.
Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. **It is crucial that you NOT make direct edits to the PDF using the editing tools as doing so could lead us to overlook your desired changes.** Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof.

Location in article	Query / Remark: Click on the Q link to find the query’s location in text. Please insert your reply or correction at the corresponding line in the proof
Q1	Please add a list of Clinics Care Points to the text. Clinics Care Points are a set of evidence-based pearls and pitfalls relevant to the point of care. Please note, these are different from Key Points.
Q2	Please verify your preferred correspondence address to be published and provide any missing information. Elsevier recommends not using your personal home address.
Q3	For your co-authors, please verify their affiliations and provide a complete address for the affiliations listed. The address will appear on the footnote of the first page of your article and will be published. Once again, Elsevier recommends not using personal home addresses. Also, please note that we will send each contributing author a copy of this issue to their mentioned address.
Q4	Please approve the short title to be used in the running head at the top of each right-hand page.
Q5	Please clarify whether the degree "FAMH" is an American fellowship degree. If so, please delete the degree in author byline and retain only in Contributor’s list.
Q6	Please provide professional degrees (e.g., PhD, MD) for the authors "Alban Ramette, Daniel D. Rhoads, Michael R. Jacobs".
Q7	Are author names and order of authors OK as set?
Q8	This is how your names will appear on the contributors’ list. **Please add your academic titles, if missing, as well as any other necessary titles and professional affiliations.**
ANDREA ENDIMIANI, MD, PhD, FAMH, Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
ALBAN RAMETTE, Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
DANIEL D. RHoads, Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA

(continued on next page)
The evolution of resistance to antimicrobial agents in gram-negatives has challenged the role of the clinical microbiology laboratory to implement new methods for their timely detection. Recent development has enabled the use of novel methods for more rapid pathogen identification, antimicrobial susceptibility testing, and detection of resistance markers. Commonly used methods improve the rapidity of resistance detection from both cultured bacteria and specimens. This review focuses on the commercially available systems available together with their technical performance and possible clinical impact.
Thank you for your assistance.