DISCOVERY OF A LATE L DWARF: WISEP J060738.65+242953.4

PHILIP J. CASTRO AND JOHN E. GIZIS
Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA; pcastro@udel.edu, gizis@udel.edu

Received 2011 August 24; accepted 2011 October 19; published 2012 January 18

ABSTRACT

We discover a late-type L dwarf, WISEP J060738.65+242953.4 (W0607+2429), by comparing the Wide-field Infrared Survey Explorer (WISE) preliminary data release to the Two Micron All Sky Survey (2MASS) in search of high proper motion objects (≥0.3 yr⁻¹). W0607+2429 was found to have a proper motion of 0.57 ± 0.02 yr⁻¹. Based on colors and color–color diagrams using 2MASS and Sloan Digital Sky Survey photometry, we estimate the spectral type (optical) to be L8 within a spectral sub-type. Based on the spectral type estimated we find W0607+2429 to have a distance of 7.8 +1.4 ±1.2 pc, making it one of only four very late L dwarfs within 10 pc, and the third closest L dwarf overall. This close L/T transition will play a pivotal role in resolving outstanding issues of condensate clouds of low-temperature atmospheres.

Key words: brown dwarfs – infrared: stars – proper motions – stars: distances – stars: individual (WISE J060738.65+242953.4) – stars: late-type

Online-only material: color figures

1. INTRODUCTION

The Wide-field Infrared Survey Explorer (WISE) mission is an all-sky survey, whose bands are centered on wavelengths 3.4 μ (W1), 4.6 μ (W2), 12 μ (W3), and 22 μ (W4), achieving 5σ point source sensitivities. One of the main scientific goals of the WISE mission is to detect cool brown dwarfs (BDs), ranging from T dwarfs to the evasive Y dwarfs (Wright et al. 2010; Mainzer et al. 2011). It accomplishes this by observing at wavelengths where the spectral energy distribution of late T dwarfs and Y dwarfs peak (Wright et al. 2010). The WISE preliminary release has yielded multiple late T dwarf discoveries (Burgasser et al. 2011b; Mainzer et al. 2011; Wright et al. 2011). As an all-sky survey, WISE provides an ideal platform, in conjunction with other all-sky surveys such as the Two Micron All Sky Survey (2MASS), to study the proper motion of BDs by creating an all-sky multi-epoch survey. By comparing WISE to 2MASS, with similar photometric bands, and a sizable difference in epochs, −10 yr, these two all-sky surveys provide an ideal setup to find BDs with large proper motion (nearby BDs). Multi-epoch searches using WISE have already produced numerous BD discoveries (Aberasturi et al. 2011; Liu et al. 2011; Loutré et al. 2011; Gizis et al. 2011a, 2011b; Scholz et al. 2011).

Late L dwarfs are characterized by very red near-infrared colors (J − Ks ~ 2), H2O absorption, and CO absorption in the K band. Early T dwarfs have a reversal of near-infrared colors to blue (J − Ks ~ 0), brightening of the J band (Dahn et al. 2002), weakening of CO absorption, and the strengthening of CH4 (the onset of CO to CH4 conversion) and H2O absorption, where the unambiguous detection of CH4 at the H and K bands is the defining characteristic of T dwarfs (Kirkpatrick 2005). This L/T transition occurs over a small temperature range of ~200–300 K (Kirkpatrick 2005) and is believed to be caused by the depletion of condensate clouds, where the driving mechanism for the depletion is inadequately explained by current cloud models (Burgasser et al. 2011a). The bluer J − K and the brightening of the J band at the L/T transition can be explained by decreasing cloudiness. A mechanism suggested for the L/T dwarf spectral-type transition is the appearance of relatively cloud-free regions across the disk of transition L/T dwarfs as they cool (Marley et al. 2010). The complex dynamic behavior of condensate clouds of low-temperature atmospheres at the L/T transition is one of the leading problems in BD astrophysics today (Burgasser et al. 2011a).

There are dozens of known very late L dwarfs at the L/T transition. There are 26 L7–L8 dwarfs with optical (opt) classification and 24 L7–L9.5 dwarfs with solely near-infrared (NIR) classification listed in the Dwarf Archives¹ as of 2011 February 14 (Gelino et al. 2009), and four additional L7–L8 dwarfs from Schmidt et al. (2010). However, there are only three very late L dwarfs within 10 pc. The L8 (opt) dwarf DENIS-P J0255-4700 (Martin et al. 1999) at 4.97 ± 0.10 pc (Costa et al. 2006), the recently discovered L7.5 (NIR) dwarf WISE J180026.60+013453.1 at 8.8 ± 1.0 pc (Gizis et al. 2011a), and the L8 (opt) dwarf 2MASS J02572581-3105523 (Kirkpatrick et al. 2008) at 9.7 ± 1.3 pc (Looper et al. 2008b). Clearly very late L dwarfs within 10 pc are rare. These close L/T transition BDs are fundamental in providing observational constraints to understanding the low-temperature atmospheres of these objects.

We present the discovery of a late L dwarf, WISEP J060738.65+242953.4 (W0607+2429), as part of a continued effort to discover BDs by their high proper motion between 2MASS and WISE (Gizis et al. 2011a, 2011b). In Section 2 we present our analysis; the discovery of W0607+2429, determine the proper motion, and estimate the spectral type based on colors and color–color diagrams, distance, and other physical properties. In Section 3 we will summarize our findings and discuss future work.

2. ANALYSIS

2.1. Discovery

We used the same criteria to search for high proper motion objects as Gizis et al. (2011b), but extended the search to red colors. We searched for WISE sources that had detections at W1 (3.4 μ), W2 (4.6 μ), and W3 (12 μ), no 2MASS counterpart within 3″,
and red colors $W1 - W2 > 0.3$. WISE and 2MASS images were used to create finder charts to visually search for high proper motion candidates. WISEP J060738.65+242953.4 (W0607+2429) was found to have a separation of $\approx 7''$ from a 2MASS source to the northeast, 2MASSW J06073908+2429574. The WISE source shows colors that are red, $W1 - W2 = 0.60 \pm 0.05$, consistent with that of a late L dwarf/early T dwarf (Mainzer et al. 2011), where the 2MASS source has red colors that are consistent with an L dwarf (Kirkpatrick et al. 2000), $J - H = 1.18 \pm 0.05$ and $H - K_s = 0.57 \pm 0.05$. SDSS J060738.79+242954.4 (DR7) was found between the 2MASS and WISE positions at an intermediate epoch, and was recognized as having very red colors, $i - z = 3.08 \pm 0.04$, indicative of a late L dwarf (Schmidt et al. 2010), see Figure 1 bottom right image. We positively identify the 2MASS and the Sloan Digital Sky Survey (SDSS) source as W0607+2429 at their respective epochs. With a high proper motion indicating a nearby object and red colors in 2MASS, SDSS, and WISE indicating a late spectral type, we confidently claim the detection of a nearby ultracool dwarf. A finder chart for W0607+2429 showing a clear linear sequence of positions at the epoch of 2MASS, SDSS, and WISE is shown in Figure 1.

2.2. Proper Motion

We calculate the difference in position of W0607+2429 between the 2MASS, SDSS, and WISE epochs based on reference stars within 5', with the uncertainty in position based on the uncertainties in the 2MASS, SDSS, and WISE catalogs. We determine the proper motion of W0607+2429 by using a linear least-squares fit to the relative position at the 2MASS, SDSS, and WISE epochs, as shown in Figure 2. We find a proper motion of $\mu_\alpha \cos(\delta) = -0.47 \pm 0.01$ yr$^{-1}$ and $\mu_\delta = -0.33 \pm 0.02$ yr$^{-1}$, with total motion 0.57 ± 0.02 yr$^{-1}$. We corrected for the parallactic motion of the 2MASS, SDSS, and WISE positions using NOVAS V3.0 software (Kaplan et al. 2009) based on the estimated distance (see Section 2.4) of W0607+2429. In the WISE preliminary release source catalog a pipeline processing error resulted in a declination bias of 0.5', to account for the declination bias the actual declination errors of all WISE sources were inflated by adding a 0.5' error term in quadrature. However, it was discovered that this pipeline processing error affected WISE sources fainter than W1 > 13.0. We restricted WISE sources to W1 < 13.0 and W0607+2429 (W1 < 13.0) is not affected, we removed this 0.5' error term from the reported declination error to determine the actual error in calculating the proper motion. For more details see the Explanatory Supplement to the WISE Preliminary Data Release Products. We use the astrometry and photometry from SDSS DR7 (Abazajian et al. 2009) rather than DR8 (Aihara et al. 2011) due to astrometric errors associated with DR8; we use the DR8 image in Figure 1. We note that the astrometry is different by 50 mas for W0607+2429, and the photometry in the i and z band are almost identical for W0607+2429, between DR7 and DR8. For additional information regarding the astrometric errors in DR8 refer to SDSS III.

2.3. Spectral-type Estimate

We produce the color versus spectral-type plots for $i - z$ and $i - J$ from Schmidt et al. (2010), and overplot W0607+2429; see

2 http://wise2.ipac.caltech.edu/docs/release/prelim/expsup/sec6_5.html
3 http://www.sdss3.org/dr8/algorithms/astrometry.php#caveats
Figure 2. Best-fit line determining proper motion based on the relative 2MASS, SDSS (DR7), and WISE positions of W0607+2429 for right ascension (left) and declination (right).

(A color version of this figure is available in the online journal.)

Figure 3. Color vs. spectral type for L dwarfs using data from Schmidt et al. (2010) with W0607+2429 overplotted. The diamonds show the mean values of color for each spectral type with the error bars showing the standard deviation (the standard deviation reflects the intrinsic scatter in each spectral type). The red circle is W0607+2429, whose position in color space is consistent with that of a late L dwarf.

(A color version of this figure is available in the online journal.)

Figure 3. The $i - z$ and $i - J$ colors are relatively good predictors of spectral type (Schmidt et al. 2010). It is clear from Figure 3 that W0607+2429 is a late L dwarf.

We produce color–color diagrams from Schmidt et al. (2010) using their Table 1 data and one additional L8 dwarf from their Table 5, and overplot W0607+2429. Figure 4 shows four color–color diagrams, where all four show W0607+2429 consistently lies in the color–color space that is the locus of L8 dwarfs. Based on the colors of W0607+2429, with confidence we estimate the spectral type as L8 within a spectral sub-type. We note that W0607+2429 has colors that are too red to be considered a T0 dwarf, with $J - W_2 = 3.27 \pm 0.05$ and $H - W_2 = 2.09 \pm 0.05$ (Mainzer et al. 2011), $J - K_s \not\sim 0$ (Kirkpatrick 2005), and 2MASS colors that place W0607+2429 far from the T dwarf locus in a $J - H$, $H - K_s$ color–color diagram (Kirkpatrick et al. 2000).

2.4. Distance

We estimate the distance by using the spectral-type–absolute-magnitude relationships fromLooper et al. (2008a) for 2MASS photometry and Schmidt et al. (2010) for SDSS photometry. We find distance estimates of 7.9 ± 1.2 pc from 2MASS J photometry, 7.9 ± 1.2 pc from 2MASS H photometry, 8.4 ± 1.1 pc...
2.5. Other Physical Properties

W0607+2429 has a tangential velocity of 21$^{+4}_{-3}$ km s$^{-1}$, within range of transverse motions for other L dwarfs from Faherty et al. (2009), who quote a median value of 25 km s$^{-1}$ and a dispersion of 19 km s$^{-1}$. This v_{tan} is consistent with that expected for a member of the Galactic thin disk (Faherty et al. 2009). Spectral-type–effective-temperature (Looper et al. 2008a) and spectral-type–absolute-bolometric-magnitude (Burgasser 2007) relationships give a $T_{\text{eff}} = 1460 \pm 90$ K and a log $L/L_{\odot} = -4.56 \pm 0.09$, where the uncertainty in T_{eff} comes from the rms in the spectral-type–effective-temperature relation and the uncertainty in log L/L_{\odot} is from the rms in the spectral-type–absolute-bolometric-magnitude relation. Based on these physical properties, theoretical isochrones from Baraffe et al. (2003) give a range of 0.5 Gyr and 0.03 M_{\odot} to 10 Gyr and 0.072 M_{\odot}. W0607+2429 is in the substellar regime, as are all of the latest L dwarfs (Kirkpatrick 2005).

Field binaries are primarily equal brightness/mass systems in tightly bound orbits (<20 AU), where the separation of binary systems peaks at ∼10 AU (Allen 2007; Burgasser et al. 2007). A secondary to W0607+2429 of equal or earlier spectral type (\lesssimL8) would have been detected at ∼8 AU based on the FWHM (∼1″) of SDSS in the i and z band. If W0607+2429 was an unresolved binary system, it would push the distance estimate out to 11.1 pc. The highest resolution imaging/spectroscopy is warranted to search for a companion to W0607+2429. The sensitivity of current imaging surveys begins to fall off at separations of \lesssim3–4 AU, where there is a model predicted frequency peak of binarity (Allen 2007). Rare nearby L dwarfs (Gizis et al. 2011a) such as W0607+2429, if found to have companions, will help to fill this void. A summary of characteristics for W0607+2429 is found in Table 1.

3. CONCLUSIONS

We have discovered a high proper motion late L dwarf, WISEP J060738.65+242953.4 (W0607+2429), with a proper motion of 0.57 ± 0.02 yr$^{-1}$ and an estimated spectral type (optical) of L8 based on its colors. We estimate a distance of $7.8^{+1.2}_{-1.3}$ pc based on this spectral type, placing W0607+2429 as the third closest L dwarf, and one of only four very late L dwarfs within 10 pc.
Table 1
Parameters of WISEP J060738.65+242953.4

Parameters	WISEP J060738.65+242953.4
WISE R.A. (J2000)	06:07:38.65
WISE Decl. (J2000)	+24:29:53.5
WISE epoch\(^a\)	2010.30
SDSS R.A. (J2000)	06:07:38.79
SDSS Decl. (J2000)	+24:29:54.5
SDSS epoch	2006.98
SDSS Data Release/Run/Rerun	DR7/6586/664
2MASS R.A. (J2000)	06:07:39.08
2MASS Decl. (J2000)	+24:29:57.5
2MASS epoch	1998.11
i – z (mag)	3.08 ± 0.04
i – J (mag)	5.80 ± 0.06
z – J (mag)	2.72 ± 0.04
J – K\(_s\) (mag)	1.75 ± 0.05
WISE W1 (mag)	11.55 ± 0.03
WISE W2 (mag)	10.95 ± 0.02
WISE W3 (mag)	9.93 ± 0.05
WISE W4 (mag)	>8.54
SDSS J (mag)	20.02 ± 0.03
SDSS Z (mag)	16.94 ± 0.01
2MASS J (mag)	14.22 ± 0.03
2MASS H (mag)	13.04 ± 0.03
2MASS K\(_s\) (mag)	12.47 ± 0.02
Spectral type (optical est.)	1.8
\(\mu_\text{hel} \cos(\delta)\) (mas yr\(^{-1}\))	-470 ± 10
\(\mu_\text{ls}\) (mas yr\(^{-1}\))	-330 ± 20
Distance (pc)	7.8\(^{+14}_{-12}\)
\(v_\text{tan}\) (km s\(^{-1}\))	21\(^{+3}_{-2}\)
\(T_\text{eff}\) (K)	1460 ± 90
\(\log L/L_\odot\)	-4.56 ± 0.09

Note. \(^a\) The WISE epoch is the average of the first and last run.

Follow-up spectroscopy is necessary to confirm the spectral type of W0607+2429, parallax measurements are needed to determine the distance with more confidence, and highest resolution imaging/spectroscopy is warranted to determine binarity. Observations to determine the photometric variability and polarization of W0607+2429 will address theories regarding the inhomogeneity of cloud cover and the color change across the L/T transition (Marley et al. 2010). Improving these inadequate models of L/T transition dwarf atmospheres has implications beyond BDs, such as hot exoplanets (HR 8799b) that are analogs to L and T dwarfs (Fortney 2005; Currie et al. 2011). W0607+2429 will serve as a fundamental testbed to further resolve outstanding issues regarding the L/T transition.

We thank the anonymous referee for suggestions that helped to improve the manuscript. We thank the Annie Jump Cannon Fund at the University of Delaware for support. This research has benefited from the M, L, and T dwarf compendium housed at DwarfArchives.org and maintained by Chris Gelino, Davy Kirkpatrick, and Adam Burgasser. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, University of Florida, the French Participation Group, the German Participation Group, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.

REFERENCES

Abajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543
Aberasturi, M., Solano, E., & Martin, E. L. 2011, A&A, 534, L7
Alhara, H., Allende Prieto, C., An, D., et al. 2011, ApJS, 193, 29
Allen, P. R. 2007, ApJ, 668, 492
Baraffe, I., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H. 2003, A&A, 402, 701
Burgasser, A. J. 2007, ApJ, 659, 655
Burgasser, A. J., Bardalez-Gagliuffi, D. C., & Gizis, J. E. 2011a, AJ, 141, 70
Burgasser, A. J., Cushingham, M. C., Kirkpatrick, J. D., et al. 2011b, ApJ, 735, 116
Burgasser, A. J., Reid, I. N., Siegler, N., et al. 2007, in Protostars and Planets, ed. V. ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson: AZ: Univ. Arizona Press), 427
Costa, E., Méndez, R. A., Jao, W.-C., et al. 2006, AJ, 132, 1234
Currie, T., Burrows, A., Ioth, Y., et al. 2011, ApJ, 729, 128
Dahn, C. C., Harris, H. C., Vrba, F. J., et al. 2002, AJ, 124, 1170
Faherty, J. K., Burgasser, A. J., Cruz, K. L., et al. 2009, AJ, 137, 1
Fortney, J. J. 2005, MNras, 364, 649
Gelino, C. R., Kirkpatrick, J. D., & Burgasser, A. J. 2009, in AIP Conf. Proc. 1094, Cool Stars, Stellar Systems and the Sun, ed. E. Stempels (Melville, NY: AIP), 481
Gizis, J. E., Burgasser, A. J., Faherty, J. K., Castro, P. J., & Shara, M. M. 2011a, AJ, 142, 171
Gizis, J. E., Trujillo, N. W., & Burgasser, A. J. 2011b, ApJ, 736, L34
Kaplan, G., Bangert, J., Bartlett, J., Puatau, W., & Monet, A. 2009, User’s Guide to NOVAS 3.0, Vol. USNO Circular 180 (Washington, DC: USNO)
Kirkpatrick, J. D. 2005, ARA&A, 43, 195
Kirkpatrick, J. D., Cruz, K. L., Barman, T. S., et al. 2008, ApJ, 689, 1295
Kirkpatrick, J. D., Reid, I. N., Liebert, J., et al. 1999, ApJ, 519, 802
Kirkpatrick, J. D., Reid, I. N., Liebert, J. et al. 2000, AJ, 120, 447
Liu, M. C., Deacon, N. R., Magnier, E. A., et al. 2011, ApJ, 740, L32
Looper, D. L., Gelino, C. R., Burgasser, A. J., & Kirkpatrick, J. D. 2008a, ApJ, 685, 1183
Looper, D. L., Kirkpatrick, J. D., Curti, R. M., et al. 2008b, ApJ, 686, 528
Louter, N. P., Luhman, K. L., Lowrance, P. J., & Bochanski, J. J. 2011, ApJ, 739, 81
Mainzer, A., Cushing, M. C., Skrutskie, M., et al. 2011, ApJ, 726, 30
Marley, M. S., Saumon, D., & Goldblatt, C. 2010, ApJ, 723, L117
Martín, E. L., Delfosse, X., Basri, G., et al. 1999, AJ, 118, 2466
Reid, I. N., Kirkpatrick, J. D., Gizis, J. E., et al. 2000, AJ, 119, 369
Schmidt, S. J., West, A. A., Hawley, S. L., & Pineda, J. S. 2010, AJ, 139, 1808
Scholz, R.-D., Bihain, G., Schnurr, O., & Storm, J. 2011, A&A, 532, L5
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
Wright, E. L., Mainzer, A., Gelino, C., & Kirkpatrick, D. 2011, arXiv:1104.2569