Effects of nanoporous structure of anodic films on adhesive strength between aluminum alloys and polyamide resin

Kota SATO, Hidetaka ASOH and Hitomi YAMAMOTO

In this study, the effects of the nanoporous structure of anodic films on adhesive strength between aluminum alloys and polyamide resin were systematically investigated. To compare the anchoring effect, the alumina films with different dimensions (e.g., pore density, pore diameter and pore depth) were formed on A6063 aluminum alloys by various anodizing conditions. The adhesive strength at the interface between the adherent (anodized aluminum) and adhesive (thermoplastic elastomer resin) was evaluated by a method for determining the tensile lap-shear strength of rigid-to-rigid bonded assemblies. The higher pore density and larger pores in anodic films were important factors for improving the adhesive strength and increasing the adhesion interface area and the amount of adhesive impregnated into the pores. The adhesive strength of aluminum after anodizing in phosphoric acid at 60 V and subsequent pore widening was 17.4 MPa, which was ~3.5 times higher than that of an aluminum substrate without surface treatment.

(Received February 2, 2021 Accepted April 1, 2021)

Keywords: aluminum; anodizing; porous anodic film; adhesive strength

1. 緒 言

近年のエネルギー問題の解決策として構造物の軽量化が求められており、軽量かつ加工性に優れたアルミニウム合金は自動車や航空機などの様々な製品に利用されている1-4). 加工された部品を製品へと組み立てる際に、材料の組み合わせが多岐にわたるため、従来の機械的接合技術（ボルト締結、かめなど）だけではなく、ねじやベレットといった余剰部品のない接合技術として接着も用いられる5). 接着剤を介して二つの接合対象材料を接着させる場合、平滑なアルミニウム合金の表面では接着強度にばらつきが生じるため、研磨や薬品などの処理で表面をエッティングあるいは改質し、アンカー効果や化学的結合力によって接着強度を安定させる、さらに向上させるといった方法が古くから用いられてきた6)-10).

薬品処理のうち環境負荷が低いアルミド酸化をアルミニウムに施すと、表面にボラス構造を持つアルミナ皮膜が生成する11)-13). 生成した皮膜によりアルミウム合金に対して耐食性が付与されるだけでなく、生成した孔に樹脂が浸透することで接着強度の向上に寄与すると考えられている14)-19). 村岡らは、ポリアセタール樹脂とH3PO4電解液で処理したA5052アルミニウム合金との引張せん断強度を評価するとともに、接着界面となるアノード酸化ポーラスアルミナ皮膜の比表面積をガス吸着法で測定した。その結果、作製した皮膜の比表面積が大きいほど、つまり孔が深く孔密度が高いほど接着強度が向上すると報告した15). また、Nagatoらは、H3PO4電解液で処理したA5052アルミニウム合金の表面をプラズマ処理でフッ素塩化エポキシ樹脂との接着強度を、アンカー効果と化学結合の効果に区別してT形角離試験（JIS K 6854-2）で評価した。高接着強度が得られた試料は孔径が大きく、走査型電子顕微鏡（SEM）によっては孔径に樹脂が多く残っていたことを観察し、界面破壊より樹脂の凝縮破壊が大きいと考察した。加えて、有限要素法によるシミュレーション結果において、孔径が大きいほど樹脂の凝縮破壊が大きくなったことから、大きく深い孔ほどアンカー効果が発現し接着強度が向上すると報告した16). さらに、Zhangらは、2024アルミニウム合金を供試材として、H2SO4-H3PO4混合電解液のH2SO4濃度を調整し、空孔率（酸化膜の全体積に占める孔の体積割合）を変化させた試料と接着剤との接着強
化学成分を表1に示す。A6063アルミニウム合金にH3PO4 60 mass%を用いて加圧を2000 mAとしたときの成膜状態を示す。SEM写真は、SEM（スキャン電子顕微鏡）で撮影されたものである。

Table 1 Chemical composition of A6063 aluminum alloy (mass%).

Element	Si	Fe	Mn	Mg	Al	Bal.
	0.48	0.16	0.06	0.49		

2. 実験方法

2.1 供試材の作製

試料は、Table 1に化学組成を示したA6063-T3アルミニウム合金を用いた。短間状に加工した試料を真空脱脂（2000 °C）し、前処理としてアセトン中間脱脂洗浄による脱脂を5 min 施した。その後、反応面積を約2000 mm²に固定するために下端から38 mmの位置にPTEF製テープを巻き、SEM写真は、SEM（スキャン電子顕微鏡）で撮影されたものである。

Table 2 Anodizing conditions and the dimensions of the anodic films formed on A6063 aluminum alloy.

Electrolyte	Voltage /V	Anodizing time /min	Pore widening /μm	Pore size /μm	Pore distance /μm	Film thickness /μm
a	1 mol dm⁻³ H₂SO₄	10	20	-	27	2.1
b	1 mol dm⁻³ H₃PO₄	60	28	99	150	2.3
c	0.5 mol dm⁻³ H₃PO₄	120	10	96	300	1.6
d	1 mol dm⁻³ H₂SO₄	180	10	96	440	1.8
e	1 mol dm⁻³ H₃PO₄	60	28	30	142	1.5
f	1 mol dm⁻³ H₂SO₄	120	10	90	331	2.0
g	0.5 mol dm⁻³ H₂SO₄	120	10	60	206	1.7
h	1 mol dm⁻³ H₃PO₄	180	20	90	331	1.8
i	1 mol dm⁻³ H₂SO₄	60	14	-	80	2.0
j	1 mol dm⁻³ H₃PO₄	60	56	-	150	3.9
k	2 mol dm⁻³ H₃PO₄	120	56	-	150	2.0

2.2 皮膜構造の観察

皮膜構造の評価には、電界放出形走査電子顕微鏡（FEG-SEM, JEOL JSM-6701F）を用い、分析用の断面試料は、集束イオンビーム加工装置（FIB, Hitachi NX2000）を用いて作製した。SEM写真は、SEM（スキャン電子顕微鏡）で撮影されたものである。

2.3 接着強度試験

アルミニウム合金と樹脂の接着強度評価にあたり、精密万能試験機（島製作所 AG-X 100 kN）でJIS K 6685（接着剤-剛性被着材の引張せん断接着強さ試験方法）に基づく試験を実施した。本手法は、樹脂、接着剤、塗層などとの接着強度評価に広く使用されている。試験片の接着部分を主軸とし平行な引張方向を被着材に与え、剛性被着材間における単重ね合わせ部分にせん断方向の負荷を与えることによってせん断接着強さを測定することができる。

同条件で定電圧電解を施した試料の間に、重ね合わせ部分の接着面積が3.13 cm²となるようポリアミド系熱可塑性フィルム状接着剤（日本マテリアルエルファル®NT）を挟み込み、160°Cに設定したホットプレスを用いて62.8 kPaで5 min圧着した。その後、徐冷し100°C以下になってから除荷し室温まで冷却後、接着強度試験4回行った。本研究では、同条件で作製した8試料（被着材）を、2試料ずつ4組で測定を実施し、4回の測定のうちかけ離れた測定値1回を除いた3回の平均値を求め引張せん断接着強さとした。比較対象には、
脱脂のみを施したA6063アルミニウム合金試料を用いた。
2.4 接着強度試験後の剥離面の観察
接着強度試験を行った試料において剥離面を樹脂/皮膜界面、皮膜表面、樹脂側に分けてSEMを用いて観察することで破壊形態を評価した。

3. 結果および考察
3.1 定電圧電解を用いた皮膜の作製
試料に電解を施した際の電解密度・時間曲線をFig. 1に示す。いずれの試料も電解初期のバリヤー層生成時の電流値が出力電圧の上限（500 A m⁻²）に達し、その後急下降を経て再上昇しポーラス層生成を示す典型的な電解挙動を示した。H₂SO₄電解液中10 VあるいはH₃PO₄電解液中60 Vで定電圧電解した試料a、b、c、dでは電流値が40 A m⁻²の定常値を示した。厚さ2 μmの皮膜を作製する際のアノード酸化に要した電気量は、いずれの条件でも40~52 kC m⁻²であり、試料作製時の再現性は良好であった。しかしH₂SO₄電解液中120、180 Vで定電圧電解した試料c、g、d、hでは、設定した電解時間内では定電流電流に達することなく、電流は電解終了まで上昇を続けた。

3.2 SEMによる作製した皮膜の観察
作製した皮膜の表面と断面のSEM像をFig. 2に示す。また、Table 2に実験条件とともに孔径、孔間距離、皮膜厚さを示した。

3.2.1 孔密度（孔間距離）の依存性
H₂SO₄電解液中でアノード酸化し作製した試料aでは直径12 nm程度の孔が確認され、90 nm程度の不規則な開口形状の孔も確認された。これは、合金成分の分離により局所的な電流集中や酸化皮膜の溶解性に違いが生じたためと考えられる。また、断面SEM像より厚さ2.1 μm程度の均一な皮膜が観察され、孔径27 nm程度の膜面に垂直な孔を持つ典型的なポーラス構造が確認された（Fig. 2 a）。H₃PO₄電解液中で作製した試料b、c、dでは、それぞれFig. 2 aと同じ観察倍率で比較すると、直径99、96、96 nm程度の比較的大きい孔が観察され、孔間距離は試料作製時の生成電圧である60、120、180 Vにほぼ比例し150、300、440 nm程度であった。皮膜断面のSEM像からは、孔の停止や孔の枝分れが確認された（Fig. 2 b、c、d、中、矢印部）。また、Fig. 2 c、dで顕著に観察されるように、皮膜表層部の孔（初期孔）は、皮膜内部の定常孔に比べて小さく、最表面と皮膜内部では単位面積当たりの孔数、つまり孔密度が異なり、皮膜内部ほど孔密度が減少していることがわかる。孔が長距離で規則的に配列する、いわゆる自己規則化条件で作製したポーラスアルミニウム皮膜の空孔率は10%程度（21）であり、孔径孔間距離の割合が1/3程度であることが知られているが、H₃PO₄電解液中60 Vで作製した試料bの孔径孔間距離は0.63 m、空孔率は40%程度と見積もられた。一方、H₂SO₄電解液中120 Vで作製した試料cあるいは180 Vで作製した試料dの孔径は10、4.8%程度であり、高電圧で作製した皮膜ほど空孔率が小さく、厚いセル壁を有していることがわかった。

3.2.2 孔径・空孔率の依存性
試料bに孔径拡大処理を30、60 min施した試料e、fの皮膜表面の孔径は142、166 nm程度へと拡大し（Fig. 2 e、f）、試料g、hに孔径拡大処理を施した試料g、hの孔径はそれぞれ206、331 nm程度へと拡大した（Fig. 2 g、h）。孔径拡大処理を施したいずれの試料も元の試料と比べて孔間距離（孔径度）は変わらず、皮膜の厚さ（孔深さ）に関しても大きな差異は見られなかったが、セル壁が薄くなり空孔率の増加が見られた。試料f、hでは図中矢印で示すように一部ポーラス層のセル壁が溶解して陥没し結合した孔が生じていた。さらには、一部バリヤー層が溶解することで貫通孔となり、皮膜表面層面では局所的に変化で皮膜下部に空洞が生じている箇所も観察された。

3.3 皮膜厚さの依存性
試料bと同条件で、電解時間を半分（14 min）にして作製した試料i、電解時間を2倍（56 min）にして作製した試料jの皮膜厚さはそれぞれ1.1、1.39 μm程度であり、試料b（28 min）の皮膜厚さが2.3 μm程度だったことから、皮膜は電解時間にほぼ比例して成長したことがわかった（Fig. 2 b、i、j）。試料i、jの孔径は78、99、138 nm程度であり、生成電圧が同じ20 Vであるにも関わらず、電解時間が長いほど酸性電解液による皮膜の溶解量が増加し、最表面の孔径が大きくなくなった。

3.4 ポーラス構造の依存性
接着強度に及ぼすアンカー効果の影響をさらに調査するため、試料b（60 V）の作製条件をもとに上層μ mm、試料c（120 V）の作製条件をもとに下層μ mm、厚さ合計2 μmの孔密度の異なる2層構造を持つ試料kを作製した。試料kの表面の孔径は80 nm程度で、皮膜表面には電解時の化学溶解の影響による凹凸が見られた（Fig. 2 k）。断面SEM像より、上層では試料bと同程度の厚さのセル壁と孔の枝分れが見られた。上層から下層にかけて一部の孔が成長を停止し一部の孔が成長を続けることで下層を形成し、下層では試料kと同程度の厚さのセル壁が確認された。上層の孔数が下層に比べて約4倍多く、皮膜内部ほど孔径が大きなポーラス構造を有する。

3.5 EDSによる皮膜への樹脂含浸度の評価
樹脂接着後の皮膜の断面の構成元素をEDSで分析し、その元素マッピング（Al、O、C）の典型的な結果をFig. 3に示す。
Fig. 2 Surface and cross-sectional SEM images of anodic oxide films with different porous structures. The insets in Fig. 2 (a) indicate high magnification images of porous structures marked by the square in each image. Anodizing was conducted under the conditions shown in Table 2. The scale bar applies to images in the figure, both in surface and cross-sectional images.
Fig. 3 Cross-sectional EDS maps of selected samples (Sample No. a, b, c, g). Anodized aluminum specimens were prepared following conditions: (a) 1 mol dm\(^{-3}\) H\(_2\)SO\(_4\) at 10 V, (b) 1 mol dm\(^{-3}\) H\(_3\)PO\(_4\) at 60 V, (c, d) 0.5 mol dm\(^{-3}\) H\(_3\)PO\(_4\) at 120 V.

3.4 接着強度試験
3.4.1 孔密度・孔径（空孔率）の効果
本研究で調査した全試料の接着強度試験の結果をFig. 4(a)に示す。Fig. 4(b) より、アノード酸化を施していない素地（図中、Sub. と表記）と樹脂との接着強度5.0 MPaを基準とし、各試料の接着強度を比べた場合、アノード酸化を施した試料a、b、c、dの接着強度は9.1、10.1、8.3、5.3 MPaといずれも素地より高い値を示した。素地の接着強度（5.0 MPa）が、主にアルミウム表面と樹脂との化学結合ならびに素地自体の凹凸に起因すると考えた場合、基準値からの増加分はポラス構造によるアンカー効果と考えることができる。つまり、試料aにおいては孔とは異なる直径90 nm程度の窪み、試料b、c、dにおいては96 nm以上の孔に樹脂が含浸することで接着強度が向上したと考察された。また、試料dくくの順で孔密度が高くいずれも孔径が同程度であったことから、村岡らの結果15と同様に孔密度が高いほど接着界面の接着面積（皮膜表面に加え孔内部の面積を足した総面積）が増加し、接着強度が高まる傾向が見られた。

Fig. 4(c) より、試料bに孔径拡大処理を30 min 施した試料c（孔径142 nm）の接着強度は10.1 MPaと試料bとの差がなかったが、孔径拡大処理を60 min 施した試料f（孔径166 nm）の接着強度は今回調査した中で最も高い17.4 MPaを示し、この値はポラス皮膜が存在しない素地（基準値）の約3.5倍の接着強度に相当した。同様に試料cに孔径拡大処理を60 min 施した試料g（孔径206 nm）の接着強度は15.5 MPaと基準値の3倍程度の高い値を示した。また、試料dに孔径拡大処理を90 min 施した試料h（孔径331 nm）においても接着強度は7.7 MPaと試料dと比べて高い値を示した。よって、孔密度が一定であれば孔径が大きいほど接着強度が高まる傾向が見られ、Nagato・らの結果16と一致した。

したがって、孔径が同一であれば孔密度が高いほど、孔密度が同一であれば空孔率が大きいほど接着強度の向上に寄与すると考えられ、Zhangらの結果17と同一傾向を示した。言い換えれば、空孔率が大きいほどより多くの樹脂が孔に含浸し、界面における機械的あるいは化学的結合力が高まったとも考えられた。既報15-17の見解に加え、本研究で得られた結果から、接着強度は、アルミウム合金や接着剤の種類によらず、被着材であるポラスアルミナ皮膜の孔構造に最も影響を受けることが明らかとなった。

3.4.2 孔深さの効果
Fig. 4(d) より、試料i（皮膜厚さ1.1 μm）、b（2.3 μm）、j（3.9 μm）の接着強度は12.1、10.1、9.7 MPaであり素地（基準値）の5.0 MPaと比べて向上しているものの、1～4 μm間の孔深さの違いによる接着強度の著しい差は見られなかった（Fig. 4 i, b, j）。よって、140 nm未満の孔径を持つ皮膜においては樹脂が孔の底部まで含浸していたとしても、試料表面から1 μm以内の最表層のポラス構造が接着強度を決定する重要な因子と考えられた。

3.4.3 2層構造のアンカー効果
Fig. 4(d) より、孔密度の異なる2層構造を持つ試料kの接着強度は12.9 MPaを示し、試料iの接着強度（12.1 MPa）と同程度であることから、試料表面からの1 μm以内の皮膜構造が接着に影響を及ぼすという前述の結果を支持した。また、2 μmという皮膜厚さの観点から、孔の寸法が少ない試料b、cの接着強度10.1、8.3 MPaと比べた場合、2層構造を持つ試料kの方が接着強度が高かった。複雑な孔形状を持つ試料kの内部まで樹脂が浸し出し発現したアンカー効果に加え、皮膜表面の凹凸も接着強度の向上に寄与したと考えられた。

3.5 接着強度試験後の試料の剥離面の観察
試料bと比較的高い接着強度を示した試料gの接着強度試験後の外観と表面SEM像をFig. 5に示す。外観観察より、どちらの試料でも剥離面（接着面）全体に樹脂が残存していたことから、樹脂の凝集破壊が主な破壊要因と考えられた。
Fig. 4 Adhesion strength of anodic oxide films with different porous structures: (a) overall comparison, (b) effect of pore distance, (c) effect of porosity, (d) effect of film thickness. Anodized aluminum specimens were prepared under the conditions shown in Table 2. Each value is the average of three measurements.

Fig. 5 SEM images of samples after lap shear test. (a) Sample No. b and (b) Sample No. g.

SEM観察でも外観観察同様に樹脂の凝集破壊が確認され、皮膜の破壊、つまり被着材料側の破壊は見られなかったが、残存していた樹脂と皮膜表面のポーラス構造が同一面に観察され、皮膜の孔から引張方向に伸びている樹脂も確認することができる（Fig. 5 a-3, b-3 中，矢印部）。つまり、凝集破壊部分が大半を占めるものの樹脂/皮膜界面における界面破壊も混在しているといえる。

また，樹脂表面では孔に含浸していた樹脂が引き伸ばされ破断した痕跡が確認され（Fig. 5 a-4, b-4 中，矢印部）。孔に含浸していた樹脂自体の凝集破壊も接着強度に影響を及ぼすと考えられた。したがって，接着強度の向上には接着面積の増加やアンカー効果だけでなく，皮膜の空孔率を大きくし，樹脂の含浸量を増加させ，界面における機械的あるいは化学的结合力を高めることも重要であることが明らかになった。剥離面の観察結果に加え，接着強度試験の結果のばらつきが少なかったことからも，接着は良好に行われ，破壊は主に樹脂層内部での凝集破壊であることがわかった。

4. 結 言

A6063アルミニウム合金を供試材として，樹脂の接着強度に及ぼすアノード酸化皮膜の孔構造の影響を見明らかにすることを目的に，作製した試料の孔構造をSEMで観察し，接着強度を引張せん断接着強さ試験で評価した結果，以下の結論を得た。
（1）H₂SO₄溶液解液またはH₂PO₃溶液解液を電解液として皮膜の孔径、孔密度（孔間距離）、孔深さ（厚さ）の異なる11種類の試料を作製した。ボリアミド系の樹脂との接着におい
て、生成電圧60 V以上、孔径が少なくとも100 nm以上あれば
樹脂が孔の底部まで浸透することがEDSの分析結果より確
認された。

（2）アノード酸化を施したすべての試料の接着強度は、ア
ノード酸化を施していない素地の接着強度（5.0 MPa）より高
い値を示した。これは、被着材表面のポーラス構造のアン
カー効果に起因する。

（3）H₂PO₃溶液解液中60-180 Vで作製した同程度の大きさの
孔を持つ試料では、孔密度が低い60 Vで作製した試料が高い
接着強度（10.1 MPa）を示し、接着界面の面積（皮膜表
面に加え孔内部の面積を足した総面積）の増加が、接着強度
の向上に効果的であった。

（4）孔径拡大処理を施した試料は、いずれも孔径拡大前の
試料と比べて1.7倍から1.9倍程度の高い接着強度を示した。
今回調査した中で最も高い接着強度（17.4 MPa）を示した試
料は、皮膜厚さ1.9μmで直径166 nmの孔を持つポーラス構造
であり、アノード酸化を施することで、素地ののみに対し3.5倍の
接着強度向上効果を示した。

（5）H₂PO₃溶液解液を用いて作製した皮膜厚さ1～4 μmの試
料において、孔の深さの違いによる接着強度の差は見られな
かった。140 nm未満の孔径を持つ皮膜においては、試料表面
から1 μm以内の被着層のポーラス構造が、接着強度を決定す
る重要な因子であった。

（6）孔密度の異なる2層構造を持つ試料の接着強度（12.9
MPa）は、孔の分裂が少ない試料（10.1 MPa）と比べて高かっ
た。複雑な孔形状を持つ皮膜内に樹脂が浸入し発現したアン
カー効果が、接着強度の向上に寄与したと考えられた。

（7）接着強度試験後の剥離面観察ならびに接着強度試験の
結果の再現性的高さから、ポリアミド系樹脂と被着材の接着
は良好であり、破壊は主に樹脂層内部での凝集破壊であるこ
とがわかった。接着強度の向上には孔形成による接着面積の
増加やアンカー効果だけでなく、皮膜の空孔率を大きくし樹
脂の含浸量を増加させ、界面における機械的あるいは化学的
結合力を高めることも重要であることが明らかになった。

参考文献
1) 松田加一，吉田英雄：軽金属，53（2003），483-489，doi.org/10.
2) 青木昇二：軽金属，63（2013），260-270，doi.org/10.2464/jilm.63.
3) 吉田英雄，林詠，越包成：軽金属，65（2015），441-454，doi.org/10．
4) 橋井健夫：軽金属，68（2018），487-493，doi.org/10.2464/jilm.68.
5) 前田芳明：軽金属，69（2019），532-535，doi.org/10.2464/jilm.69.
6) 畠山永三，内山利光：軽金属，35（1985），176-187，doi/10.
7) 柳原義一：溶接学会誌，70（2001），409-415，doi.org/10.2207/
8) 渡辺光広，石田清也，杉木貴治，小岩一郎，本間英夫：レク
トロニクス実装学会誌，10（2007），134-139，doi.org/10.5104/
9) 山口忠太郎，山本正樹，共田孝，花落宗浩，板藤英貴：軽金属
10）中間勝彦：表面技術，66（2015），338-341，doi.org/10.4139/sfj.66.
11) 山口裕：軽金属，59（2009），204-215，doi.org/10.2464/jilm.59.
12) 阿部洋孝，小野幸子：表面技術，65（2014），406-413，doi/10．
13) 田村英昭，中島大志，長々里，夏井俊恒，鈴木亮輔：軽金属
14）A. Bjorgum, F. Lapique, J. Wahlman and K. Redford: Int J Adhes
Adhes, 23 (2003), 401-412, doi.org/10.1016/S0143-7496 (03) 00071-
15) 村岡哲樹，長谷川真一，前田利樹：軽金属学会第129回秋開大
会講演概要。（2015），229-230。
16）K. Nagato, T. Yamaguchi and M. Nakao: CIRP Annals, doi.org/10.
17) P. Zhang and Y. Zuo: Mater. Chem. Phys, 231 (2019), 9-20, doi/organ/10.1016/j.matchemphys.2019.04.008.
18）長谷川真一，三村達矢，小山高弘，児島洋一：表面技術，65
19) 日野宏，桑野亮一，水田政人，水田英生，金谷裕人：表面技
術，67 (2016)，691-693，doi.org/10.4139/sfj.67.691.
20）菅原利明：表面技術，49 （1998），138-142，doi.org/10.4139/sfj.49.
21) 小野幸子，阿部洋孝，斎藤真希子，石黒英由紀：Electrochemistry, 71 (2003)，105-107，doi.org/10.5796/electrochemistry.71.105.
22) S. Ono, M. Saito, M. Ishiguro and H. Asoh: J. Electrochem. Soc., 151
B473, doi.org/10.1149/1.1767838