Experience in Treatment of Patients with Severe Influenza with Viral Pneumonia in ICU

Abstract

Objective: To explore the experience of severe influenza A viral pneumonia treatment.

Methods: The clinical data and treatment of 6 cases of severe influenza with virus RNA-positive pneumonia were analyzed.

Results: 3 cases of new H1N1 influenza, 3 cases did not do further nucleic acid subtype identification, patients were treated with oseltamivir. 3 patients with invasive pulmonary aspergillosis, 4 patients received invasive mechanical ventilation, 2 cases of pneumothorax. 3 patients received continuous hemofiltration for acute renal injury, 4 with ventilator-associated pneumonia in 5 patients with mechanical ventilation, and 5 patients died.

Conclusion: Suffering from severe underlying disease, the use of glucocorticoids, deep sedation, secondary pulmonary infection of influenza A virus causes severe pneumonia and high mortality.

Keywords: Influenza A virus; Pneumonia; Acute respiratory distress syndrome; Mechanical ventilation

Introduction

China has been infected with highly pathogenic avian influenza, H7N9 avian influenza and influenza A H1N1 influenza as a class B infectious diseases, group management [1-3], to control disease outbreaks, reduce mortality, play an important role. Along with the dangers of influenza virus to reduce, on November 4, 2013 national influenza a viruses according to the seasonal flu management [4], and release of human infection with highly pathogenic avian influenza and H7N9 category management. and the lifting of human infection with highly pathogenic avian influenza and H7N9 class A management. Lack of scientific understanding of influenza a viruses, fears of its harmful effects, affect the success rate of treatment of such diseases.

From February 25 to May 25, 2016, Qilu Hospital Molecular Biology Laboratory tested influenza virus nucleic acid for 73 respiratory specimens and another 3 specimen of broncho-alveolar lavage fluid (BALF) to Beijing Chaoyang Hospital to detect influenza A virus. The 14 people were diagnosed with influenza A, given oseltamivir capsules 150mg, twice a day. Respiratory distress was not relief, at 12:00 on 12th January with "severe pneumonia and lung-derived ARDS (severe)" admitted to Qilu hospital. During admission patient was severely ill, APACHE II 11, SOFA 5.0. Non-invasive mechanical ventilation (NPPV) for 2hours, with 15L/min oxygen support, oxygen saturation was maintaining 60% - 70%, tachycardia and respiratory distress were continuing, at 19:03 oral tracheal intubation was done, invasive mechanical ventilation was started. 13th January 2016 8:00 neck subcutaneous emphysema was found, CT showed double-lung grindstone-like exudation, mediastinal emphysema. From January 12 to January 16, intravenous methylprednisolone 80mg, q 12h; 1 17th January 19 intravenous methylprednisolone 120mg, q12h; 1 20th January 23 intravenous methylprednisolone 40mg,
Case 3: A 63 years old women, with H/O chronic obstructive pulmonary disease (COPD), repeated wheezing, cough, sputum for more than 20 years which increased with fever for 10 days, highest temperature of 39.5 °C. White blood cells 9.07 × 10^9/L, the proportion of neutrophils 75.6%, CRP 88.9mg/L. CT showed chronic bronchitis, interstitial pneumonia, arterial blood gas PHI 7.49, PaCO2 31mmHg, PaO2 54mmHg. Outside the hospital to give pipercillin/tazobactam treatment for 9 days. On March 16th, 2016 16:56 with “acute decompensated respiratory acidosis and hypoxemia” admitted to the second ward of intensive care medicine department, oral tracheal Intubation was done for mechanical ventilation. On March 9th and March 14th, BALF specimens confirmed that influenza A (universal) influenza virus and influenza A (H1N1) were positive for influenza virus, nasal administration of oseltamivir 150 mg twice daily. March 10 subcutaneous emphysema, chest radiograph showed mediastinal emphysema and pneumothorax, emergency thoracic closed drainage and tracheotomy were done. March 7th serum, March 8th and March 14th BALF specimens GM were 0.03, 0.22 and 4.82 (reference value <0.5). Disease was worsens, On March 14th at 16:00 patient was declared clinically death.

Case 4: A 46 years old male, was well enough, he was engaged for a long time in interior decoration and housing demolition. On March 1st, 2016 due to “fever and cough for 5 days” stayed in a local hospital, his white blood cells were 4.8 × 10^9/L, 72.1% neutrophils, chest radiograph shows bronchitis. Given roxithromycin as treatment, wheezing, shortness of breath increased, with lips cyanosis. On March 3rd, CT showed double-lung diffuse grinding glass changes, suggesting that infectious lesions. On March 4th arterial blood gas shows PaO2 24mmHg, lactic acid 3.7mmol/L, Tracheal intubation was done for invasive mechanical ventilation, methylprednisolone, imipenem, oseltamivir and other treatment were given. On March 6th at 9:09 admitted to the second ward of intensive care medicine department, APACHE II 29 points, SOFA 11 points. PiCCO showed extravascular lung water 21ml/kg, permeability index 4.0. On March 8th at 10:00 tracheotomy was done, analgesic and sedative and muscle relaxation strategies to maintain RASS-2 points to +1 points. Tracheal microscope lumen a lot of watery mucus congestion and erosion, bleeding of mucous membrane of airway, ETA specimen shown in negative influenza a viral antigen detection (colloidal gold), viral (common) flu virus influenza A (H1N1) influenza virus RNA positive. Feeding oseltamivir 150mg twice a day. On March 14th and March 21st, On March 25th influenza A (H1N1) influenza virus nucleic acid is still positive. Serum GM 0.21 and 0.20, respectively on March 6th and March 15th, On March 6th, March 8th, and March 14th, and March 25th GM BALF samples were 4.0, 3.0, 3.99, 3.25, combined with voriconazole and caspofungin in IPA. Disease progression, patients with acute kidney injury, between March 14th and March 9th at 22:00 CRRT intervention but hypoxemia is improving steadily. On March 17th methylprednisolone intravenous infusion 40mg QD. On March 23rd tracheoscopy tracheal mucus membrane as shown in a large number of white pseudo-membranous attachment, mucosal erosion bleeding, tracheal mucus examination of Aspergillus fumigatus hyphae. In patients with refractory cough, man vs computer obviously, combined with dexamethasone, Atracurium and other sedative and muscle relaxant. Oxygen demand enhanced and worsen, septic shock, on March 27th at 7:41 patient was death.

Case 5: A 54 years old women, farmer, history of hypertension and bronchiectasis for 20 years, with the history of nephrotic syndrome and chronic renal insufficiency for 1.5 years. Edema

Citation: Mohammad N, Xiao-Fang H, Ti-Yao S, Fan Z, Yang MA et al. (2017) Experience in Treatment of Patients with Severe Influenza with Viral Pneumonia in ICU. J Anesth Crit Care Open Access 7(6): 00286. DOI: 10.15406/jacca.2017.07.00286
Experience in Treatment of Patients with Severe Influenza with Viral Pneumonia in ICU

Mohammad N, Xiao-Fang H, Ti-Yao S, Fan Z, Yang MA et al. (2017) Experience in Treatment of Patients with Severe Influenza with Viral Pneumonia in ICU. J Anesth Crit Care Open Access 7(6): 00286. DOI: 10.15406/jacca.2017.07.00286

Influenza is a viral respiratory tract infection caused by influenza viruses. The influenza virus is a negative-strand RNA virus with a segmented genome. Influenza viruses are divided into three types: A, B, and C, with type A being the most common and causing the majority of human infections. The influenza virus has a high degree of antigenic variation, which is the basis for the need for annual vaccination. The influenza virus is transmitted through respiratory droplets or direct contact with infected individuals. The symptoms of influenza include fever, cough, sneezing, sore throat, muscle aches, fatigue, and sometimes diarrhea and vomiting. In severe cases, it can lead to secondary bacterial pneumonia.

Discussion

At present, Centers for disease control and prevention (CDC) is responsible for the influenza virus Antigen screening, influenza virus typing and confirmation work [6]. Swine flu virus causes severe viral pneumonia, lower respiratory tract virus load than the upper respiratory tract and clear the slow, lower respiratory tract specimens should be at this time. Sensitivity of influenza virus Antigen by colloidal gold poor, mainly used in the screening test for influenza a virus. Influenza virus Alveolar acid detection high sensitivity and specificity, is the gold standard for diagnosis of viral pneumonia. For example, information on 4 cases of swine flu screening test for virus Antigen test was negative, six cases of influenza a virus RNA positive. Therefore, high-risk patients with swine flu should be repeatedly reviewed influenza antigens or viral nucleic acid testing. The information on three cases of swine flu and the other three cases could not confirm whether H7N9 or H5N1. Main reasons and clinical viral nucleic acid testing projects, specimen submission channel flow and other factors [6]. Past swine, H7N9, H5N1 influenza as a class b infectious disease, and take a class infectious diseases preventive and control measures, Guo Weiji control swine pandemic group a regulations. Large doses of oseltamivir (150 mg/times, 2 times a day), on the basis of long-term treatment (at least 7-10 days) [7], influenza virus Detox time still extended, severe pneumonia, impaired immune function lead to effective virus removal, or cannot effectively absorb the antiviral drug-related. BALF nuile acid positive influenza a virus, specimens, undoubtedly in crease the enthusiasm of staff fear and active care [5,6]. BALF samples after treatment against influenza virus nucleic acid positive reflect viral activity and pathogenicity, disputed [9,10]. At this point, the isolation of influenza a virus and determine its activity [11]. Home to carry out the technique, refer to the incubation period of influenza viruses reasonably isolated. The morbidity > after 7 days in hospital, does not have a contagious influenza virus.

Take the standard precautions, medical staff in this ward were not infected with swine flu. GM has limited value in serum of patients with non-severe agranulocytosis is recommended based on Bronchoscopic diagnosis IPA [12]. Developing severe influenza viral pneumonia in patients above 60 years old, or suffering from multiple diseases, such as COPD, diabetes, chronic kidney disease [1-3]. Severe cases with invasive pulmonary aspergillosis (IPA), a high mortality rate, this case 3, case 4, 5 patients were dead [13,14]. Large doses of corticosteroids are IPA not only risk factors also increase mortality in patients with severe influenza virus pneumonia [7,15].

Hormone lack secondary to viral pneumonia improve the curative effect of pulmonary fibrosis and the adverse effects of increased pulmonary infection, do not recommend hormones for the treatment of patients with influenza virus pneumonia [16-18]. This group of patients with paroxysmal cough violently, mechanical ventilation during the fight against severe, 2 cases of tension pneumothorax (50%). Such patients of ventilator-induced lung injury (VILI), with the exception of influenza virus-induced severe challenges to protective strategy of mechanical ventilation in patients with ARDS [19,20], and cough after viral infection of high sensitivity syndrome (CHS) about [21,22].

Therefore, diphenhydramine, and dextromethorphan, codeine and other drugs, not only to mitigate the adverse effects of intractable cough due to CHS [23] and avoid relying too much on deep sedation to improve human-machine synchronization to harm [24]. One-sided pursuit high oxygen and index led to evacuation breathing machine delay, especially concerns flu virus infection sex and take closed sucking phlegm, and fear pipeline accident of implementation deep calm and real rational constraints, measures [24,25], deterioration phlegm liquid drainage not Chang against, following sent to multiple resistance drug Bowman not moving Bacillus mainly of breathing machine correlation pneumonia [26], and blood flow infection, is patients mortality home high hot drop of important factors one of.

Study on the shortcomings of the present study is limited to a single Ward and small number of cases.

Citation: Mohammad N, Xiao-Fang H, Ti-Yao S, Fan Z, Yang MA et al. (2017) Experience in Treatment of Patients with Severe Influenza with Viral Pneumonia in ICU. J Anesth Crit Care Open Access 7(6): 00286. DOI: 10.15406/jacca.2017.07.00286
Experience in Treatment of Patients with Severe Influenza with Viral Pneumonia in ICU

Mohammad N, Xiao-Fang H, Ti-Yao S, Fan Z, Yang MA et al. (2017) Experience in Treatment of Patients with Severe Influenza with Viral Pneumonia in ICU. J Anesth Crit Care Open Access 7(6): 00286. DOI: 10.15406/jaccoa.2017.07.00286

Local Hospital Fund Projects

Shandong Science Fund (ZR2013HM088), Temple Research Fund (UF201404), national key specialties construction of clinical projects (2011-873).

References

1. Human Avian Influenza Treatment Program (Revised Edition 2005) (2006). Chinese Journal of Medicinal Guide 2: 177-179.
2. Influenza A H1N1 Influenza treatment program (2009). Chinese Journal of Critical Care Medicine (electronic version) 1: 19-24.
3. Human infection H7N9 avian influenza diagnosis and treatment program (2014). Infectious Diseases Information 1: 1-4.
4. Guidelines for the Diagnosis and Treatment of Influenza (2011). Journal of Community Medicine 5: 66-74.
5. Pan H, Zhang X, Hu J, Chen J, Pan Q (2015) A case report of avian influenza H7N9 killed a young doctor in Shanghai, China. BMC Infect Dis 15: 237.
6. Unexplained pneumonia case monitoring, troubleshooting and management guidelines 2013.
7. Abdel-Ghafar AN, Ootpitayasunondh T, Gao Z, Hayden FG, Nguyen DH, et al. (2008) Writing Committee of the Second World Health Organization Consultation on Clinical Aspects of Human Infection with Avian Influenza, Update on avian influenza A (H5N1) virus infection in humans. N Engl J Med 358(3): 261-273.
8. Longxing Ying, Zeng Weizhong, Li Shunwu (2010) Clinical Nursing of 34 Cases of Severe Influenza A H1N1. Journal of Nursing 16(28): 60-62.
9. Fielding JE, Kelly HA, Mercer GN, Glass K (2014) Systematic review of influenza A (H1N1) pdm09 virus shedding: duration is affected by severity, but not age. Influenza Other Respir Viruses 8(2): 142-150.
10. Kwong JC (2016) Editorial Commentary: Symptoms and Viral Shedding in Naturally Acquired Influenza Infections. Clin Infect Dis 62(4): 438-439.
11. Rodriguez A, Aharez-Rocha L, Sirvent JM, Zaragoza R, Nieto M, et al. (2012) Recommendations of the Infectious Diseases Work Group (GTEI) of the Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC) and the Infections in Critically Ill Patients Study Group (GEIPC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) for the diagnosis and treatment of influenza A/H1N1 in seriously ill adults admitted to the Intensive Care Unit. Med Intensiva 36(2): 103-137.
12. Patterson TF, Thompson GR, Denning DW, Fishman JA, Hadley S, et al. (2016) Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 63(4): e1-e60.
13. Analysis of risk factors of prognosis in patients with acute respiratory distress syndrome (2012). Journal of Shandong University (Health Sciences) 3: 93-95.
14. Liu Han, Zhang Jianming, Du Bin (2010) Invasive pulmonary fungosis in 4 cases. Chinese Journal of Infection and Chemotherapy 10(1): 57-58.
15. Kim SH, Hong SB, Yun SC, Choi WI, Ahn JJ, et al. (2011) Corticosteroid treatment in critically ill patients with pandemic influenza A/H1N1 2009 infection: analytic strategy using propensity scores. Am J Respir Crit Care Med 183(9): 1207-1214.
16. QIN Tie-he, LI Yi-min, WANG Zong-hong (2014) Study on some problems in the diagnosis and treatment of human infection with H7N9 avian influenza. Guangdong Medicine 3: 333-335.
17. Influenza influenza antiviral treatment and prevention of Chinese experts consensus (2016). General practice and education 2: 124-130.
18. Lamontagne F, Quiroz Martinez H, Adhikari NK, Cook DJ, Koo KK, et al. (2013) Corticosteroid use in the intensive care unit: a survey of intensivists. Can J Anaesth 60(7): 652-629.
19. Evaluation of mechanical ventilation in patients with ARDS from autopsy of lung tissue (2010). Journal of Shandong University (Health Sciences) 2: 161-163.
20. Fang Yi, Qiu Haibo (2015) Treatment of acute respiratory distress syndrome: the need to follow the ten principles. Chinese Journal of Critical Care Medicine 1: 33-38.
21. Dipinigaitis PV (2014) Effect of viral upper respiratory tract infection on cough reflex sensitivity. J Thorac Dis 6(Suppl 7): S708-711.
22. Dipinigaitis PV, Dhar S, Johnson A, Gayle Y, Brew J, et al. (2015) Inhibition of cough reflex sensitivity by diphenhydramine during acute viral respiratory tract infection. Int J Clin Pharm 37(3): 471-474.
23. Song WJ, Chang YS, Morice AH (2014) Changing the paradigm for cough: does ‘cough hypersensitivity’ aid our understanding? Asia Pac Allergy 4(1): 3-13.
24. Shehabi Y, Bellomo R, Reade MC, Bailey M, Bass F, Howe B, et al. (2012) Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. Am J Respir Crit Care Med 186(8): 724-731.
25. Kamal Aktar, Han Hui, Ding Shifang (2015) Clinical analysis of 17 patients with severe myasthenia gravis. Chinese Journal of Critical Care Medicine 4: 306-309.
26. Kalil AC, Metersky ML, Kompas M, Muscedere J, Sweeney DA, et al. (2015) Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 63(5): e61-e111.