Simulation of Variable Speed Wind Turbines based on Open-Source Solutions: application to Bachelor and Master Degrees

Ana Fernández-Guillamón1 and Ángel Molina-García1

Abstract
This paper describes variable speed wind turbine (Types 3 and 4, IEC 61400-27-1) simulations based on an open-source solution to be applied to Bachelor and Master Degrees. It is an attempt to improve the education quality of such sustainable energy by giving an open-source experimental environment for both undergraduate and graduate students. Indeed, among the renewable sources, wind energy is currently becoming essential in most power systems. The simulations include both one-mass and two-mass mechanical models, as well as pitch angle control. A general overview of the structure, control, and operation of the variable speed wind turbine is provided by these easy-to-use interactive virtual experiments. In addition, a comparison between commercial and open-source software packages is described and discussed in detail. Examples and extensive results are also included in the paper. The models are available in Scilab-Xcos file exchange for power system education and researcher communities.

Keywords
VSWT, Modeling, Education, FOSS

Nomenclature
BSc Bachelor degree
DC Direct current
DFIG Doubly fed induction generator
ECTS European Credit Transfer System
EHEA European Higher Education Area
FOSS Free open-source solution
FSWT Fixed speed wind turbine
MSc Master degree
PhD Philosophiæ doctor
RES Renewable energy sources
TSO Transmission system operator
VSWT Variable speed wind turbine
WT Wind turbine

Introduction
During the last decade, aspects such as climate change, energy dependence, fossil resource scarcity and the increasing costs of nuclear power, have promoted the integration of Renewable Energy Sources (RES) into power systems1. Among these renewable resources, wind power is the most popular alternative developed and currently integrated into the grid2. Actually, since 2001, the global cumulative installed wind capacity has suffered an exponential growth, see Figure 1. As a consequence, the wind energy sector is promoting new employment opportunities3. These employment opportunities include direct employment — manufacturing, installation, and O&M, including direct and indirect employments determined by O&M, including direct and indirect employments determined by Cameron and Van Der Zwaan. However, and in spite of this relevant employment opportunity, it was reported in 2017 a 'lack of talent' in the renewable energy sector5. Consequently, it has been demanded by the sector new educational programs aiming to meet the increasing human capital requirement for RES, especially in wind power areas6. Moreover, these activities require heterogeneous educational backgrounds, involving engineering, technician, economics, marketing, management and customer services7. To overcome these deficiencies, some European universities have already started to implement new bachelor degrees (BSc), master degrees (MSc) and philosophiæ doctor (PhD), as summarised in Table 1. Other universities include renewable energy subjects in industrial engineering BSc, either as core academic or optional subjects.

Engineering students need to experiment and observe what they are taught in the theory sessions to improve their knowledge in topic10. In fact, virtual experimenting is considered an alternative solution for the practical sessions of the 'Wind energy' subject, facing the lack of wind energy experimental laboratories mainly due to the expensive costs of such teaching equipment. Laboratory scaled-workbench solutions11 and lab-scale experiments12 have been previously proposed to overcome the high...
cost of such equipment. E-learning trends have also been considered by some authors as an alternative to lab-scale experiments. Other authors have developed a remarkable amount of modules for wind teaching purposes mostly based on commercial software packages \cite{13,14} (Matlab, Multisim, LabView, DigSilent) or packages that must run within commercial solutions, such as SimPower \cite{5,10} or MatDyn \cite{17}. During the last decade, a continued effort to promote the use of Free Open-Source Solutions (FOSS) for engineering education has been developed under different projects, taking into account the educational and pedagogical benefits provided by such open-source software \cite{18,19}. Several advantages are found if comparing FOSS with commercial software, such as reducing costs of licenses, prevention of illegal copying and promoting self-learning and independent study. \cite{20}.

Under this scenario, the present paper focuses on the simulation of Variable Speed Wind Turbines (VSWTs) within the ‘Wind energy’ subject by using the Scilab open-source solution. These practical sessions are currently included in both Electrical Engineering BSc and Renewable Energy MSc —Universidad Politécnica de Cartagena, Spain—. Under this framework, we provide our students a visual, friendly and open-source tool for VSWT simulation purposes, including WT parameter analysis and a comparison between two WT mechanical models commonly used by researchers \cite{31}, one-mass and two-mass mechanical models. These simulations give the students a comprehensive view of VSWTs, and allow them to analyse their main curves. The contributions of the paper can be then summarised as:

(i) Using an open-source mathematical software for simulation purposes,
(ii) Analysing how wind speed variations can modify the pitch angle and, subsequently, the power coefficient and mechanical power of VSWTs.
(iii) Determining the optimum tip speed ratio and power coefficient for different pitch angles, including the mechanical power and turbine rotational speed values.
(iv) Comparing the responses of generator and turbine rotational speeds depending on the mechanical model used.

These objectives are developed under a teaching scenario according to the current European educational framework. The models are available in Scilab-Xcos file exchange for power system education and researcher communities.

Educational framework in Europe: EHEA

In 1999, 29 European Ministers of Education signed ‘The Bologna Declaration’, considered as the first attempt to create a new European Higher Education Area (EHEA) \cite{22}. Nowadays, this EHEA involves 48 countries, and the main key-points can be summarised as follows:

- Harmonisation of the Grade-system to promote European mobility students among the different countries. It involves the development of comparable criteria and methodologies among the universities, as well as the recognition of foreign degrees in other institutions and countries.
- Introduction of the European Credit Transfer System (ECTS). Each ECTS credit accounts for between 25-27 hours, including the learning hours of the students. Therefore, assuming that students devote 40 h/week to study and learning tasks, each Grade level academic session should account for a maximum of 60 ECTS.
- Harmonisation of the teaching stages in all EHEA countries: BSc, MSc, and PhD. To access the following teaching cycle, it is required a successful finishing of the previous stage (BSc or MSc, respectively).

In most European countries, EHEA has thus promoted a significant change in the universities, moving from the traditional teacher-oriented approach to a more learner-centred approach. Moreover, in West European countries —such as Austria, Germany, and Spain—, the Bologna Process has been considered as a tool of domestic leverage by

Table 1. European universities including new BSc, MSc and PhD related to energy and RES

Degree	Name	University	Country
BSc:	Energy engineering	University of Southern Denmark	Denmark
BSc:	Energy engineering	Aalborg University	Denmark
BSc:	Energy engineering	Universidad Carlos III de Madrid	Spain
BSc:	Energy engineering	Universidade Politécnica de Madrid	Spain
BSc:	Energy engineering	Universidad Politécnica de Cataluña	Spain
BSc:	Renewable energy engineering	Stuttgart University	Germany
BSc:	Renewable energy engineering	Berlin International College	Germany
BSc:	Renewable energy engineering	Universidad Autonoma de Barcelona	Spain
BSc:	Renewable energy engineering	Universidad del País Vasco	Spain
BSc:	Renewable thermal & power engineering	National Research University	Russia
MSc:	Renewable energy engineering	Carl Von Ossietzky Universitat Oldenburg	Germany
MSc:	Renewable energy engineering	Universidade Politécnica de Cartagena	Spain
MSc:	Renewable energy engineering	University of Aberdeen	UK
MSc:	Renewable energy engineering	Kingdon University	UK
MSc:	Renewable energy engineering	Henri Wall University	UK
MSc:	Renewable energy engineering	Technical University of Denmark	Denmark
MSc:	Wind energy	Norwegian University of Science and Technology	Norway
MSc:	Wind energy	Universidade Nacional de Educação a Distancia	Spain
PhD:	Renewable energy	Aalborg University	Denmark
PhD:	Renewable energy	Universidade Politécnica de Cartagena	Spain
PhD:	Renewable energy	Universidad de Jaén	Spain
PhD:	Wind energy	Technical University of Denmark	Denmark
PhD:	Wind energy	The University of Sheffield	UK
Wind turbines. Preliminaries

WTs are usually classified as fixed speed wind turbines (FSWTs) or variable speed wind turbines (VSWTs), see Figure 3. FSWTs work at the same rotational speed regardless of the wind speed. On the other hand, VSWTs can operate around their optimum power point for each wind speed, using a partial or full additional power converter, see Figure 4. As a result, VSWTs are considered as more efficient solutions than FSWTs. With the aim of providing generic electrical simulation models of wind power generation, different standards have been developed such as the IEC 61400–27–1.

Simulation tool review

Various mathematical computational packages are available for research and educational purposes. Among the different solutions, Matlab is widely considered as the most often used software. Moreover, it is commonly recommended for electrical and electronics students, due to its user-friendly and easily understood by the students. Matlab software combines a desktop environment tuned for iterative analysis and design processes with a programming language that expresses matrix and array mathematics directly, as stated in its website. However, as Matlab is commercial software, alternative open-source solutions have been developed in the last decades. The most popular free mathematical software alternatives to Matlab are the following: Freemat, Mathnium, Octave, R and Scilab. One of the most comprehensive study found in the literature review has been addressed by Glavelis et al., but excluding Matlab. Tables 2–5 summarise a full comparison between Matlab and the FOSS alternatives. These tables provide a complete characterisation by considering supported data types, language constructs, the functionality of the programming environment, help facilities and speed comparison analysis respectively. With regard to the computational time costs, Glavelis et al. conclude that the best average performance between the aforementioned FOSS is Scilab. Rubtsova and Korolev affirm that Scilab can be considered as the most complete open-source alternative to Matlab. Scilab also includes Xcos, a graphical editor of dynamic systems very similar to Simulink graphical editor in Matlab. Therefore, teaching material developed with Matlab/Simulink can be successfully replaced by equivalent material developed with Scilab/Xcos through some adjustments and moderate additional effort. In conclusion, and considering the extended comparison depicted in Tables 2–5 as well as such contributions discussed in this Section, Scilab-Xcos is selected in this paper as the most suitable open-source software for our proposals. Nevertheless, other studies can be found in the specific literature to help learners in Bachelor and Master Degree levels based on other free software solutions. For example, Qin et al. recently show the initial efforts in the creation of OpenRES—an open-source JModelica.org library for renewable energy resources. Kanoj et al. simulate an autonomous wind energy conversion system for irrigation purpose employing induction machines using Python.

Simulation set-up & results

As was previously discussed, the authors have proposed practical sessions with Scilab-Xcos in the ‘Wind energy’ subject of both the Electrical Engineering BSc and
Renewable Energy MSc of Universidad Politécnica de Cartagena (Spain). The VSWT model is based on the GE 3.6 model available in the specific literature. The model corresponds to a type 3 WT, though the proposed simulation can be also applied to a type 4 WT, as stated in. Source codes and data models are provided to the students. Actually, files are also available to other researchers and students through the following link. Additional analysis can be also proposed to extend these simulations toward a more complex study, mainly focused on post-graduate students. For example, a more complex wind turbine model discussed by the authors in can be used to analyze grid code compliance. In a similar way, more realistic wind speed profiles characterized in can be also considered for simulations.

Scilab simulation

Based on the different scripts prepared by the authors, students can graphically analyze the relationship among the main parameters of wind turbines (previously introduced in theoretical sessions): \(\beta, \lambda, v_w, C_p, P_{\text{mech}} \) and \(\Omega_{WT} \). By using the Scilab-Xcos scripts, the students can compare their graphical results facing the estimated VSWT curves. These curves are following described. Results are also included as examples of our practical sessions.

(i) \(C_p - v_w \) curve: The rotor performance of a WT is characterized by its power coefficient \(C_p \), having a limit of \(\frac{27}{28} \approx 59\% \) according to the Betz limit. The power coefficient \(C_p \) can be estimated depending on the pitch angle \(\beta \) and the tip speed ratio \(\lambda \):

\[
C_p(\lambda, \beta) = \sum_{i=0}^{4} \sum_{j=0}^{4} \alpha_{i,j} \beta^i \lambda^j, \tag{1}
\]

where coefficients \(\alpha_{i,j} \) are taken from Table 6. The tip speed ratio \(\lambda \) is defined as

\[
\lambda = \frac{\Omega_0 \cdot R \cdot \Omega_{WT}}{V_w}, \tag{2}
\]

where \(\Omega_0 \) is the rotor base speed (rad/s), \(\Omega_{WT} \) refers to the rotor speed (pu), \(R \) is the rotor radius (m) and \(v_w \) is the wind speed (m/s). According to Miller et al., the rotor reference speed is normally 1.2 pu, assuming that \(\Omega_{WT} = 1.2 \). The pitch angle can vary between 0 and \(27^\circ \). Cut-in and cut-out wind speeds for this WT model are \(4 \) m/s and \(25 \) m/s, respectively. With all these considerations, the \(C_p - v_w \) curve depending on the pitch angle can be estimated as depicted in Figure 5. From these results, students can graphically check that the higher pitch angle \(\beta \), the lower power coefficient. These lower power coefficient values also reduce the shaft mechanical power, as explained afterwards.

(ii) \(C_p - \lambda \) curve: According to the specific literature, \(C_p \) is usually considered as a function of the tip speed ratio \(\lambda \), moreover, the \(C_p - \lambda \) curve is necessary for developing the turbine control and guaranteeing a safe operation of the WT. According to the definition of \(\lambda \) in eq. (2), and considering a constant wind speed value, if the WT rotational speed is low, too much wind will pass undisturbed through the blades. On the contrary, if the rotational speed value is high (\(\lambda \approx 13 \)), the rotating blades appear as a ‘solid disc’ to the wind, creating a large amount of drag. In practice, the specific literature suggests that the optimum \(\lambda \) for a three-bladed WT is generally estimated as \(\lambda_{\text{opt}} \approx 7 \), as seen in Figure 6. Figure 6 shows the \(C_p - \lambda \) curve depending on the pitch angle. According to the results and the theoretical sessions given to the students, the larger pitch angle \(\beta \) value, the lower power coefficient.
Moreover, it can be determined an optimum value of the tip speed ratio \(\lambda_{\text{opt}} \) for each \(\beta \) value—which addresses an optimum \(C_p \) value accordingly. Due to the VSWT power converter performances, they are able to work on each optimum \(C_p \) value for each wind speed. This point is a spotlight that should be clarified and highlighted for the students.

(iii) \(P_{\text{mech}} - \Omega_{\text{WT}} \) curve: The mechanical power \(P_{\text{mech}} \) is obtained from:

\[
P_{\text{mech}} = K_{\text{rotor}} \cdot C_p \cdot v_w^3,
\]

being \(K_{\text{rotor}} = \frac{1}{2} \cdot \frac{1}{\pi} \cdot \rho \cdot A_r (S_n, \text{the rated power}, \rho \text{ the air density, } A_r \text{ the swept area by the blades}), C_p \text{ the power coefficient, and } v_w \text{ the wind speed. The power coefficient } C_p \text{ is estimated with eq. (1). By considering } K_{\text{rotor}} = 0.00145, P_{\text{mech}} \text{ is obtained in pu on the MW base of the wind turbine. In line with the literature review, } P_{\text{mech}} \text{ is commonly plotted vs the rotor rotational speed } \Omega_{\text{WT}}, \text{ which can vary between } 0 \text{ and the corresponding reference value (1.2 pu). Two different options are then proposed to analyse the } P_{\text{mech}} - \Omega_{\text{WT}} \text{ curve:}

(a) Constant pitch angle (\(\beta \)) and variable wind speed (\(v_w \)). \(\beta \) is fixed at 0° and the wind speed is gradually increased from 4 to 12 m/s for the sake of clarity of the figure, see Figure 7. \(P_{\text{mech}} - \Omega_{\text{WT}} \) curves then reach their maximum values at the optimum power coefficient according to results depicted in Figure 6. Moreover, due to the cubic dependence between \(v_w \) and \(P_{\text{mech}} \), such mechanical power run up as wind speed increases (please compare, for instance, \(P_{\text{mech}} \) at \(v_w = 4 \) m/s and \(v_w = 8 \) m/s).

(b) Constant wind speed (\(v_w \)) and variable pitch angle (\(\beta \)). In this case, wind speed is fixed at \(v_w = 12 \) m/s and \(\beta \) is increased from 0 to 19°. Figure 8 shows the results obtained under this assumption. As in previous cases, a \(\beta \) increasing reduces the mechanical power due to the power coefficient decreasing. In our opinion, it is interesting for the students to estimate the mechanical power differences between \(\beta = 0^\circ \) and \(\beta = 19^\circ \) —which correspond \(\approx 3250 \) kW for the selected WT—. These results allow the student to evaluate in detail the severe mechanical power \(P_{\text{mech}} \) dependence on the pitch angle.

Xcos simulation

As was previously discussed, the selected VSWT has been simulated by the authors by using the Scilab-Xcos open-source solution. Apart from the parameters previously analysed (\(\beta, \lambda, v_w, C_p, P_{\text{mech}} \), and \(\Omega_{\text{WT}} \)), the graphical Xcos environment allows us to determine the electrical power \(P_e \) provided by the WT and the generator rotational speed \(\Omega_g \). The block diagram of the VSWT simulated within this graphical environment is depicted in Figure 9. A comparison between two different mechanical models of the rotor is also carried out in our practical sessions: (i) One-mass mechanical model and (ii) Two-mass mechanical model. Therefore, the block labelled as ‘Mechanical model’ in Figure 9 corresponds to both approaches. This block is then modified depending on the mechanical model under consideration. The reference rotational speed \(\Omega_{\text{ref}} \) is estimated from the measured active power \(P_{\text{ef}} \):

\[
\Omega_{\text{ref}} = -0.67 \cdot P_{\text{ef}}^2 + 1.42 \cdot P_{\text{ef}} + 0.51,
\]

being \(P_{\text{ef}} \) the measured electrical power \(P_e \) after a delay \(T_f \). The block diagram is depicted in Figure 10. When the electrical measured power \(P_{\text{ef}} \) is below 0.75 pu, the rotational speed reference is calculated according to eq. (4). If \(P_{\text{ef}} \) is over 0.75 pu, the pitch controller must keep constant the rotational speed at \(\Omega_{\text{ref}} = 1.2 \) pu.

The blades are pitched to limit the maximum mechanical power delivered to the shaft. It is carried out by a combination of two controllers, (i) traditional pitch control and (ii) pitch compensation, see Figure 11. Both controllers
are modelled through conventional PI controllers, and including an anti windup. In reference to the pitch angle controller, the input variable to such PI controller is the difference between the actual rotor rotational speed and the reference rotor speed ($\Omega_{\text{err}} = \Omega_{\text{WT}} - \Omega_{\text{ref}}$). Regarding the pitch compensation PI controller, the input is determined from the difference between the electrical power P_e and the maximum power $P_{\text{max}} = 1$. The power coefficient and, subsequently, the mechanical power P_{mech} can be estimated by using eq. (1) and (3), respectively. The block diagram to calculate P_{mech} with Xcos is depicted in Figure 12. The WT rotational speed Ω_{WT} is estimated depending on the mechanical model. In this way, if the equivalent one-mass model is considered for simulations, the inertia equation provides $\Omega_{\text{WT}} = \Omega_{g}$,

$$\Omega_{\text{WT}}(s) = \frac{P_e(s) - P_{\text{mech}}(s)}{2H_{\text{WT}} \cdot s}, \quad (5)$$

being H_{WT} the WT equivalent inertia constant. Figure 13 shows the one-mass mechanical model block diagram implemented in Scilab–Xcos.

With regard to the two-mass model approach, it assumes both rotor and blades as a single mass, and the generator as another mass, see Figure 14. Hence, two different rotational speeds are obtained: (i) rotor rotational speed Ω_{WT} and (ii) generator rotational speed Ω_{g}.

The speed control block estimates the difference between the current rotational speed (Ω) and the reference rotational speed value (Ω_{ref}) through a PI controller, as depicted in Figure 15. This error (Ω_{err}) is sent to the generator and power converter, determining the electrical power variation due to such rotational speed error (Ω_{err}). A subsequent additional electric power value is then incorporated to the initial electric power value ($P_{\text{elec,0}}$), as depicted in Figure 16.

Both parameters and values of the implemented model are summarised in Table 7. These parameters are tuned by using a set of typical wind speed values as an input.
With this aim, such wind speed input has been linearly increased from 5 m/s to 20 m/s in approximately 150 s time interval, see Figure 17(a). This wind speed variation is not a realistic evolution, but it represents an educational approach to analyse the evolution of the different parameters under wind speed variations. The results for the pitch angle, tip speed ratio, and power coefficient are summarised in Figure 17 for the one and two-mass mechanical models. As can be seen, pitch angle results (β) are very similar for both mechanical models, see Figure 17(b). However, more significant differences are obtained for tip speed ratio (λ) and power coefficient (C_p), see Figure 17(c) and 17(d) respectively. These discrepancies are directly related to the differences between \(\Omega_{WT} \) to be applied on each mechanical model. To clarify this point, Figure 18 depicts the rotational speeds of the turbine and generator —Figure 18(a) and 18(b)—, as well as the mechanical and electrical power evolution —Figure 18(c) and 18(d)—. As can be seen, turbine and generator rotational speeds of both models have different values, more especially below the reference value \(\Omega_{ref} = 1.2 \) pu. These differences are mainly due to the inertia constant values of both mechanical models —parameters given in Table 7—, which imply slight differences between \(\lambda \) and \(C_p \) as shown in Figure 17. With regard to \(P_{mech} \) and \(P_c \), shown in Figure 18(c) and 18(d), minor differences are obtained and similar results can be estimated from both mechanical models.

Conclusion

The high integration of wind energy into power systems has promoted new employment opportunities and a more relevance of such industrial sector. As a consequence, educational programs also need to evolve and upgrade in order to cover these sector requirements. Under this scenario, this paper describes the simulation of a VSWT proposed to the students of the ‘Wind energy’ subject in the Universidad Politécnica de Cartagena (Spain). An open-source software (Scilab-Xcos) is used and successfully assessed in our practical sessions. Through the different simulation proposals, the students are able to analyse graphically the influence among the main parameters of the wind turbines. Two different mechanical models of the rotor are introduced and simulated, comparing the differences of the results obtained between both mechanical models. The simulation experimenting proved to be an interesting alternative to conventional lectures and a suitable solution for practical sessions under a free open-source software environment.

Acknowledgement

This work was supported by ‘Ministerio de Educación, Cultura y Deporte’ of Spain (FPU16/04282).

References

1. Fernández-Guillamón A, Villena-Lapaz J, Viguera-Rodríguez A et al. An adaptive frequency strategy for variable speed wind turbines: Application to high wind integration into power systems. Energies 2018; 11(6): 1436.

2. Fernández-Guillamón A, Das K, Cutululis NA et al. Offshore wind power integration into future power systems: Overview and trends. Journal of Marine Science and Engineering 2019; 7(11): 399.

3. Fragkos P and Paroussos L. Employment creation in eu related to renewables expansion. Applied energy 2018; 230: 935–945.

4. Kaldellis JK and Zafirakis D. The wind energy (r) evolution: A short review of a long history. Renewable energy 2011; 36(7): 1887–1901.

5. Swift A, Tegen S, Acker T et al. Graduate and undergraduate university programs in wind energy in the united states. Wind Engineering 2019; 43(1): 35–46.

6. Duran M, Barrero F, Gonzalez-Prieto I et al. A scientific approach in wind energy courses for electrical engineers. In 2016 Technologies Applied to Electronics Teaching (TAEE). IEEE, pp. 1–6.

7. Sooriyaarachchi TM, Tsai IT, El Khatib S et al. Job creation potentials and skill requirements in, pv, csp, wind, water-to-energy and energy efficiency value chains. Renewable and Sustainable Energy Reviews 2015; 52: 653–668.

8. http://gwec.net/global-figures/graphs/.
9. Cameron L and Van Der Zwaan B. Employment factors for wind and solar energy technologies: a literature review. Renewable and Sustainable Energy Reviews 2015; 45: 160–172.

10. Cedazo R, Lopez D, Sanchez FM et al. Ciclope: Foss for developing and managing educational web laboratories. IEEE Transactions on Education 2007; 50(4): 352–359.

11. Arribas JR, Veganzones C, Blazquez F et al. Computer-based simulation and scaled laboratory bench system for the teaching and training of engineers on the control of doubly fed induction wind generators. IEEE Transactions on Power Systems 2011; 26(3): 1534–1543. DOI:10.1109/TPWRS.2010.2083703.

12. Duran MJ, Barrero F, Gonzalez-Prieto I et al. A scientific approach in wind energy courses for electrical engineers. In 2016 Technologies Applied to Electronics Teaching (TAEE). pp. 1–6. DOI:10.1109/TAEE.2016.7528239.

13. Bentounsi A, Djehlou H, Benalla H et al. Computer-aided teaching using matlab/simulink for enhancing an im course with laboratory tests. IEEE Transactions on Education 2010;
14. Tortoreli MD, Chatzarakis GE, Voudoukis NF et al. Teaching fundamentals of photovoltaic array performance with simulation tools. *International Journal of Electrical Engineering Education* 2017; 54(1): 82–94.

15. Moen A, Kamwa I, Brunelle P et al. Open data IEEE test systems implemented in SimPowerSystems for education and research in power grid dynamics and control. In 2015 50th International Universities Power Engineering Conference (UPEC). pp. 1–6. DOI:10.1109/UPEC.2015.7339813.

16. Das K, Hansen AD and Sørensen PE. Understanding icc standard wind turbine models using simpowersystems. *Wind Engineering* 2016; 40(3): 212–227. DOI:10.1177/0309524X16642058.

17. Cole S and Belmans R. MatDyn, a new Matlab-based toolbox for power system dynamic simulation. *IEEE Transactions on Power Systems* 2011; 26(3): 1129–1136. DOI:10.1109/TPWRS.2010.2071888.

18. Milano F and Vanfretti L. State of the art and future of OSS for power systems. In 2009 IEEE Power Energy Society General Meeting. pp. 1–7. DOI:10.1109/PES.2009.5275920.

19. Hsu HMJ. The emergence of Free and Open–Source Software on Campuses in Taiwan. In *Proceedings of the 2012 IEEE Global Humanitarian Technology Conference*. Washington, DC, USA: IEEE Computer Society. ISBN 978-0-7695-4849-4, pp. 403–407. DOI:10.1109/GHTC.2012.58.

20. Nehra V and Tyagi A. Free open source software in electronics engineering education: a survey. *International Journal of Modern Education and Computer Science* 2014; 6(5): 15–25.

21. Seixas M, Melício R and Mendes VMF. Simulation by discrete mass modeling of offshore wind turbine system with dc link. *International Journal of Marine Energy* 2016; 14: 80–100.

22. Elias M. Impact of the bologna process on spanish students' expectations. *International Journal of Iberian Studies* 2010; 23(1): 53–62.

23. Harmsen R. *Future Scenarios for the European Higher Education Area: Exploring the Possibilities of ’Experimentalist Governance’*. Cham: Springer International Publishing. ISBN 978-3-319-20877-0, 2015. pp. 785–803. DOI:10.1007/978-3-319-20877-0_48.

24. Njiri JG and Soeffker D. State-of-the-art in wind turbine control: Trends and challenges. *Renewable and Sustainable Energy Reviews* 2016; 60: 377–393.

25. Sharma N and Gobbert MK. A comparative evaluation of matlab, octave, freemat, and scilab for research and teaching. *UMBC Faculty Collection* 2010;.

26. Vijayalakshmi S, Anuradha C, Ganapathy V et al. Direct driven wind energy conversion system connected to load using variable frequency transformer. *The International Journal of Electrical Engineering & Education* 2019; : 0020720919829011.

27. Kouroussis G, Fekih LB, Conti C et al. Easymod: A matlab/scilab toolbox for teaching modal analysis. In *19th International Congress on Sound and Vibration (ICSV19)*, Vilnius, Lithuania.

28. Glavelis T, Ploskas N and Samaras N. A computational evaluation of some free mathematical software for scientific computing. *Journal of Computational Science* 2010; 1(3): 150–158.

29. Rubtsova A and Korolev V. Scilab. creating graphical applications. In *Abstracts of XXIII international scientific and practical conference of young scientists and student*, volume 2. p. 292.

30. Arianto S, Yunaningsih RY, Astuti ET et al. Development of single cell lithium ion battery model using scilab/scicos. In *AIP Conference Proceedings*, volume 1711. AIP Publishing, p. 060007.

31. Tona P. Teaching process control with scilab and scicos. In *2006 American Control Conference*. pp. 6 pp.–.

32. Qin Y, Korkali M, Top P et al. A JModelica.org library for power grid dynamic simulation with Wind Turbine Control. In *2019 IEEE Power Energy Society General Meeting (PESGM)*. pp. 1–5.

33. Kanoj B, Sanu MA and Raju AB. Steady state analysis of autonomous wind energy conversion system for irrigation purpose employing induction machines using python — a free and open source software. In *2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS)*. pp. 292–297.

34. Miller NW, Sanchez-Gasca JJ, Price WW et al. Dynamic modeling of ge 1.5 and 3.6 mw wind turbine-generators for stability simulations. In *Power Engineering Society General Meeting, 2003, IEEE*, volume 3. IEEE, pp. 1977–1983.

35. Ullah NR, Thiringer T and Karlsson D. Temporary primary frequency control support by variable speed wind turbines – potential and applications. *IEEE Transactions on Power Systems* 2008; 23(2): 601–612.

36. Villena-Ruiz R, Jiménez-Buendía F, Hourubia-Escribano A et al. Compliance of a generic Type 3 WT model with the Spanish Grid Code. *Energies* 2019; 12(9). DOI:10.3390/en12091631.

37. Molina-García A, Fernández-Guillamón A, Gómez-Lázaro E et al. Vertical wind profile characterization and identification of patterns based on a Shape Clustering Algorithm. *IEEE Access* 2019; 7: 30890–30904. DOI:10.1109/ACCESS.2019.2902242.

38. Ragheb M and Ragheb AM. Wind turbines theory-the betz equation and optimal rotor tip speed ratio. In *Fundamental and advanced topics in wind power*. IntechOpen, 2011.

39. Ata R and Koçyigit Y. An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines. *Expert Systems with Applications* 2010; 37(7): 5454–5460.

40. Martínez-Lucas G, Sarasúa J and Sánchez-Fernández J. Frequency regulation of a hybrid wind–hydro power plant in an isolated power system. *Energies* 2018; 11(1): 239.