Seesaw Type I and III at the LHeC

Liang Hana, Xiao-Gang Heb,c, Ma Wen-Gana, Wang Shao-Minga, and Zhang Ren-Youa

aDepartment of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026
bINPAC and Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240
cDepartment of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei

E-mail: hanl@ustc.edu.cn, hexg@phys.ntu.edu.tw, sawg@ustc.edu.cn, smwang@mail.ustc.edu.cn, zhangry@ustc.edu.cn

Abstract: We study the potential of testing the seesaw type-I and III models at the Large Hadron-electron Collider (LHeC), an e-p collision mode at the CERN collider. The e-p collision mode provides an excellent place to study lepton number violating processes $e^-p \rightarrow N_{ij} + X \rightarrow e^+W^-j + X$, $e^-p \rightarrow N_{ij} + X \rightarrow \tau^+W^\mp j + X$ and $e^-p \rightarrow E_{ij} + X \rightarrow \tau^-Zj + X$ with W and Z into hadron jets. Here $N_{1,2,3}$ and $E_{1,2,3}$ are heavy Majorana neutrinos and heavy charged leptons, and j is a hard hadron jet. Although the process $e^-p \rightarrow N_{ij} + X \rightarrow e^+W^-j + X$ is stringently constrained from neutrinoless double-beta decay, there are solutions where this constraint can be satisfied with sizeable production cross section. With the electron energy $E_e = 140$ GeV and proton energy $E_p = 7$ TeV, we find that the cross section for the heavy charged lepton E production can reach a few fb when the heavy charged lepton mass $m_E < 600$ GeV. For the heavy neutrino N production, the cross section can be as large as a few fb for the mass scale as high as 1 TeV, higher than what can be achieved by the p-p collision mode of LHC with the same related heavy neutrino couplings.

Keywords: The Seesaw Models, Heavy Neutrino, Large Hadron-electron Collider(LHeC).
1. Introduction

Various experiments have now established that neutrinos have masses and mixes with each other [1]. The masslessness of the neutrinos in the minimal standard model (SM) implies that one has to go beyond it to account for this observation. Among a number of possibilities that have been proposed, the most popular ones are the seesaw scenarios [2–17] in which new particles are introduced with masses sufficiently large to make the neutrino masses small.

In the so-called seesaw type-I (ST-I) and type-III (ST-III) models [11–17], the heavy particles responsible for giving masses to the light neutrinos are neutral fermions – the heavy neutrinos. The best way to test seesaw models is to produce the heavy neutrino N, as well as their charged partners in the case of the ST-III model. Several studies of seesaw models at the LHC in p-p collision mode have been carried out [18–44]. It has been shown that at the LHC single production of heavy seesaw particle with mass of order a few hundred GeV can be probed [38]. For the ST-III model, pair production of heavy seesaw particle up to 1 TeV can be achieved [38–42].

In this work we study the possibility of testing the ST-I and ST-III models at the Large Hadron-electron Collider (LHeC), an possible operation mode with e-p collision for the LHC. The e-p collision mode provides an excellent place to study lepton number violating processes $e^-p \rightarrow N_{ij} + X \rightarrow e^+W^-j + X$, $e^-p \rightarrow N_{ij} + X \rightarrow \tau^\pm W^\mp j + X$ and $e^-p \rightarrow E_{ij} + X \rightarrow \tau^- Z j + X$ with W and Z into hadron jets. Although there is stringent constraint from neutrinoless double-beta decay, it only constrains the $e^-p \rightarrow N_{ij} + X \rightarrow e^+W^-j + X$ process. Even for the $e^-p \rightarrow N_{ij} + X \rightarrow e^+W^-j + X$ process, there are solutions with
non-degenerate heavy neutrinos which can satisfy the constraint from neutrinoless double-beta decay. Then the cross sections for the processes $e^- p \rightarrow N_{ij} + X \rightarrow e^+ W^+_j + X$ ($i = 1, 2, 3$) can be sizeable. With the electron energy $E_e = 140$ GeV and proton energy $E_p = 7$ TeV, we find that the cross section for the heavy charged lepton E production can reach a few fb when the heavy charged lepton mass $m_E < 600$ GeV. For the heavy neutrino N production, the cross section can be as large as a few fb for the mass scale as high as 1 TeV, higher than what can be achieved by the p-p collision mode of LHC with the same related heavy neutrino couplings.

2. Theoretical Models and Calculations

2.1 The Seesaw Type-I Model

In the ST-I model, the seesaw mechanism is realized by introducing right-handed neutrinos that are singlets under the SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$ and can therefore have Majorana masses [11–16]. We assume for definiteness that there are three of these heavy neutrinos, N_{iR}, responsible for giving masses to the light neutrinos, ν_{iL}. The Lagrangian describing the masses of the neutrinos can be written as

$$\mathcal{L} = -\bar{N}_{iR}(Y_D)_{ij}\tilde{H}^T L_j L - \frac{1}{2}\bar{N}_{iR}(M_N)_{ij}N^c_{jR} + \text{H.c.},$$

(2.1)

where summation over $i, j = 1, 2, 3$ is implied. Y_D is the 3×3 Yukawa coupling matrix. $\tilde{H} = i\tau_2 H^*$ with τ_2 being the usual Pauli matrix. $H = (\phi^+, (v + h + i\eta)/\sqrt{2})^T$ is the Higgs doublet and v its vacuum expectation value. $L_{iL} = (\nu_{iL} \ l_{iL}^T)^T$ is the left-handed lepton doublet. M_N is the Majorana mass matrix, and N^c_{iR} is the charge conjugation of N_{iR}.

In the $(\nu_L, N^c_R)^T$ basis the mass matrix is given by

$$M_{\text{seesaw}} = \begin{pmatrix} 0 & m_D^T \\ m_D & M_N \end{pmatrix},$$

(2.2)

with the Dirac mass matrix $m_D = vY_D/\sqrt{2}$.

One can relate the weak eigenstates ν_{iL} and N^c_{iR} to the corresponding mass eigenstates according to

$$\begin{pmatrix} \nu_L \\ N_R^c \end{pmatrix} = U \begin{pmatrix} \nu_{mL} \\ N_{mL} \end{pmatrix}, \quad U \equiv \begin{pmatrix} V_{\nu\nu} & V_{\nu N} \\ V_{N\nu} & V_{NN} \end{pmatrix}.$$

(2.3)

where ν_{mL} and N_{mL} are column matrices containing the mass eigenstates. Thus U is unitary and diagonalizes M_{seesaw},

$$\begin{pmatrix} \hat{m}_\nu & 0 \\ 0 & \hat{M}_N \end{pmatrix} = U^T M_{\text{seesaw}} U,$$

(2.4)

where $\hat{m}_\nu = \text{diag}(m_{\nu_1}, m_{\nu_2}, m_{\nu_3})$ and $\hat{M}_N = \text{diag}(m_{N_1}, m_{N_2}, m_{N_3})$. Note that the sub-matrices $V_{\nu\nu}$, $V_{\nu N}$, $V_{N\nu}$, and V_{NN} are not unitary.
In the mass eigenstate basis, dropping the subscript m for mass eigenstate fields, the gauge and Higgs interactions with N are given by

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} (\bar{l}_L \gamma^\mu V_{PMNS} \nu_L W^-_\mu + \bar{l}_L \gamma^\mu V_{IN} N_L W^-_\mu + \text{H.c.})$$

$$\mathcal{L}_{NC} = \frac{g}{2c_W} (\bar{\nu}_L \gamma^\mu V_{PMNS} V_{PMNS} \nu_L + \bar{N}_L \gamma^\mu V_{IN} V_{PMNS} \nu_L$$

$$\quad + \bar{\nu}_L \gamma^\mu V_{PMNS} V_{IN} N_L + \bar{\nu}_L \gamma^\mu V_{IN} V_{PMNS} \nu_L) Z_\mu$$

$$\mathcal{L}_S = \frac{g}{2M_W} [\bar{\nu}_L m_\nu V_{PMNS} V_{PMNS} \nu_L + \bar{N}_L M_N V_{IN} V_{PMNS} \nu_L$$

$$\quad + \bar{\nu}_L m_\nu V_{PMNS} V_{IN} N_L + \bar{\nu}_L M_N V_{IN} V_{PMNS} \nu_L + \text{H.c.}] h \tag{2.5}$$

where g is the $SU(2)_L$ coupling and $c_W = \cos \theta_W$ with θ_W being the Weinberg angle. $V_{IN} = V_{\nu N}$. The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix $V_{PMNS} = V^\nu_{\nu}$ is the usual light neutrino mixing matrix [45, 46]. Strictly speaking it is not unitary in seesaw models. But to the leading order the non-unitary effects can be neglected.

It is clear from the above expressions that the heavy neutrinos N_R can interact with the SM gauge bosons via mixing at the tree level. The leading parton level single heavy seesaw particle production at e-p collision is through

$$e + q \rightarrow N + q' \ (\text{through t-channel } W\text{-exchange.}) \ . \tag{2.6}$$

Combining the interaction Lagrangian in Eq.(2.3) and the charged quark current interaction,

$$\mathcal{L}' = -\frac{g}{\sqrt{2}} (\bar{u} \gamma^\mu V_{CKM} d W^+_\mu + \text{H.c.}) \ , \tag{2.7}$$

where V_{CKM} is the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix [47,48] for quarks, we obtain the corresponding amplitudes, for example, \mathcal{M} for $e^- (p_1) + u(p_2) \rightarrow N_i(p_3) + d(p_4)$,

$$\mathcal{M} = i \frac{g^2}{2} (V_{IN})_{i1} V_{ud}^* \frac{g_{\mu\nu}}{t - m_W^2}$$

$$\quad \times \left[N_i \gamma^\mu P_L \bar{e} \gamma^\nu P_L u + \frac{1}{m_W} N_i (m_{N_i} P_L - m_e P_R) e \bar{d} (m_d P_L - m_u P_R) u \right] \ , \tag{2.8}$$

where $t = (p_1 - p_3)^2$. We obtain the t-channel W-exchange cross section for the partonic process $e^- (p_1) + q(p_2) \rightarrow N_i(p_3) + q'(p_4)$ expressed as

$$\sigma_W(e^- q \rightarrow N_i q') = \int_{t_0}^{t_1} \frac{d^4V_{IN} |V_{IN}|^2}{64\pi s p^2_{IN}} \frac{1}{(t - m_W^2)^2}$$

$$\quad \times \left\{ |V_{qq'}|^2 (p_1 \cdot p_2)(p_3 \cdot p_4), \ \text{if } q = u, c, q' = d, s, b. \right.$$

$$\left. |V_{qq'}|^2 (p_1 \cdot p_4)(p_2 \cdot p_3), \ \text{if } q = d, s, q' = \bar{u}, \bar{c}. \right. \tag{2.9}$$
where
\[\hat{s} = (p_1 + p_2)^2, \]
\[p_{in}^2 = \frac{(\hat{s} + m_2^2 - m_1^2)^2}{4\hat{s}} - m_2^2, \]
\[p_{out}^2 = \frac{(\hat{s} + m_2^2 - m_1^2)^2}{4\hat{s}} - m_4^2, \]
\[\hat{t}_0 = \frac{(m_1^2 - m_2^2 - m_3^2 + m_4^2)^2}{4\hat{s}} - (p_{in} + p_{out})^2, \]
\[\hat{t}_1 = \frac{(m_1^2 - m_2^2 - m_3^2 + m_4^2)^2}{4\hat{s}} - (p_{in} - p_{out})^2. \] (2.10)

2.2 The Seesaw Type-III Model

The ST-III model consists of, in addition to the SM particles, left-handed triplet leptons with zero hypercharge, \(\Sigma_L \sim (1, 3, 0) \) under \(SU(3)_C \times SU(2)_L \times U(1)_Y \) [17]. We write the component fields as
\[\Sigma_L = \left(\begin{array}{c} \Sigma_0^L / \sqrt{2} \\ \Sigma_1^L \\ -\Sigma_0^L / \sqrt{2} \end{array} \right). \] (2.11)

The charge conjugated form is
\[\Sigma_c^L = \left(\begin{array}{c} \Sigma_0^c / \sqrt{2} \\ \Sigma_1^c \\ -\Sigma_0^c / \sqrt{2} \end{array} \right). \] (2.12)

Note that \(\Sigma_c^L \) is right-handed field.

The renormalizable Lagrangian involving \(\Sigma_L \) (\(\Sigma_c^L \)) is given by
\[\mathcal{L} = \text{Tr}[\Sigma_L i\gamma_\mu D^\mu \Sigma_L] - \frac{1}{2} \text{Tr}[\Sigma_L M_{\Sigma} \Sigma_L + \Sigma_L M_{\Sigma}^T \Sigma_L] - L_L \sqrt{2} Y_{\Sigma}^T \Sigma_L \bar{H} - \bar{H}^T \Sigma_L \sqrt{2} Y_{\Sigma} L_L. \] (2.13)

One can define \(\Psi = \Sigma_0^L + \Sigma_1^L \) with \(\Psi_L = \Sigma_0^L \), \(\Psi_R = \Sigma_1^L \) to obtain the charged and neutral lepton mass matrices in the basis, \((l_L, \Psi_L)^T\) and \((\nu_L, \Sigma_0^L)^T\), respectively, as
\[\left(\begin{array}{cc} m_l & 0 \\ vY_{\Sigma} & M_{\Sigma} \end{array} \right), \left(\begin{array}{cc} 0 & vY_{\Sigma}/2\sqrt{2} \\ vY_{\Sigma}/2\sqrt{2} & M_{\Sigma}/2 \end{array} \right). \] (2.14)

The diagonalization of the mass matrices can be achieved by making unitary transformations on the triplet, the charged and neutral leptons defined in the following
\[\left(\begin{array}{c} l_{L,R} \\ \Psi_{L,R} \end{array} \right) \rightarrow U_{L,R} \left(\begin{array}{c} l_{mL,R} \\ E_{mL,R} \end{array} \right), \left(\begin{array}{c} \nu_L \\ \Sigma_0^L \end{array} \right) \rightarrow U_0 \left(\begin{array}{c} \nu_{mL} \\ N_{mL} \end{array} \right), \] (2.15)

where \(U_{L,R} \) and \(U_0 \) are 6 \(\times \) 6 unitary matrices which we decompose them into 3 \(\times \) 3 block matrices as
\[U_L \equiv \left(\begin{array}{cc} U_{LL} & U_{LP} \\ U_{LP} & U_{P} \end{array} \right), \quad U_R \equiv \left(\begin{array}{cc} U_{RR} & U_{RP} \\ U_{RP} & U_{P} \end{array} \right), \quad U_0 \equiv \left(\begin{array}{cc} U_{00} & U_{0\Sigma} \\ U_{0\Sigma} & U_{00\Sigma} \end{array} \right). \] (2.16)
To the leading order, we have gauge and Higgs interaction terms involving heavy triplet leptons as [39–42]

\[
\mathcal{L}_{NC(A+Z)} = e \bar{E} \gamma^\mu E A_\mu + g_C \bar{E} \gamma^\mu Z \mu ,
\]

\[
\mathcal{L}_{NCZ} = \left(\frac{g}{2c_W} \right) \mathcal{D}(V^T_{PMNS} V_{lN} \gamma^\mu P_L - V^T_{PMNS} V_{lN} \gamma^\mu P_R) N + \sqrt{2} |V_{IN} \gamma^\mu P_L E + \text{H.c.}| Z \mu ,
\]

\[
\mathcal{L}_{CC} = -g |E \gamma^\mu N + \frac{1}{\sqrt{2}} \bar{V}_{IN} \gamma^\mu P_L N + \bar{V}^T_{IN} V^T_{PMNS} \gamma^\mu P_R \bar{N} | W^- \mu + \text{H.c.} ,
\]

\[
\mathcal{L}_S = -\frac{g}{2M_W} \mathcal{D}(V^T_{PMNS} V_{lN} \tilde{M}_N P_R + V^T_{PMNS} V_{lN} \tilde{M}_N P_L) N + \sqrt{2} |V_{IN} \tilde{M}_E P_R E | h + \text{H.c.} ,
\]

with \(V_{IN} \equiv V_{lN}^L = -Y^l_M v M_{\Sigma}^{-1}/\sqrt{2} \). In the above, all fields are in mass eigenstates. \(\tilde{M}_E, \tilde{M}_N \) are eigen-mass matrices of \(E, N \).

In this model, there is also the possibility of producing the heavy charged leptons, \(E \). The heavy seesaw particle production at the e-p collider involves the following partonic processes,

\[
e^- q \rightarrow N q' \ (\text{through t-channel } W\text{-exchange.}) ,
\]

\[
e^- q \rightarrow E^- q \ (\text{through t-channel } Z\text{- and } h\text{-exchange.})
\]

The cross section, \(\sigma_W(e^- q \rightarrow N q') \), has the same expression as that given in Eq.(2.9). The t-channel \(Z\)- and \(h\)-exchange for \(E \) production cross section, \(\sigma_Z h(e^- q \rightarrow E^- q) \), can be obtained using the interactions in Eq.(2.17). The contribution from \(h\)-exchange involves a small light quark-Higgs Yukawa coupling and therefore is small. For the \(Z\)-exchange contribution, we denote the processes as \(e^- (p_1) + q(p_2) \rightarrow E^- (p_3) + q(p_4) \) and have

\[
\sigma_Z h(e^- q \rightarrow E^- q) = \int_{t_0}^{t_1} \frac{d \hat{t}}{32 \pi c_W^4 s_{\mu \mu}^2} \left[\frac{1}{(\hat{t} - m_Z^2)^2} \right] \times \begin{cases}
\left[g_L^2 (q) (p_1 \cdot p_2) (p_3 \cdot p_4) + g_R^2 (q) (p_1 \cdot p_2) (p_3 \cdot p_4) \right], & \text{if } q = u, c, d, s. \\
\left[g_R^2 (q) (p_1 \cdot p_2) (p_3 \cdot p_4) + g_L^2 (q) (p_1 \cdot p_2) (p_3 \cdot p_4) \right], & \text{if } q = \bar{u}, \bar{c}, \bar{d}, \bar{s}.
\end{cases}
\]

where \(\hat{t}, p_{\mu \mu}, t_0 \) and \(t_1 \) have the same definitions as in Eqs.(2.9)-(2.10), and

\[
g_L (u) = g_L (c) = g_L (\bar{u}) = g_L (\bar{c}) = \frac{1}{2} - \frac{2}{3} s_W^2 ,
\]

\[
g_R (u) = g_R (c) = g_R (\bar{u}) = g_R (\bar{c}) = -\frac{2}{3} s_W^2 ,
\]

\[
g_L (d) = g_L (s) = g_L (\bar{d}) = g_L (\bar{s}) = -\frac{1}{2} + \frac{1}{3} s_W^2 ,
\]

\[
g_R (d) = g_R (s) = g_R (\bar{d}) = g_R (\bar{s}) = \frac{1}{3} s_W^2 .
\]

3. Numerical analysis

3.1 Production of \(N \) and \(E \) at the LHeC

To obtain the cross sections for \(e^- p \rightarrow N_j + X \) process (\(j \) indicates a hard quark jet) in the ST-I and ST-III models, and for the \(e^- p \rightarrow E^- j + X \) process in the ST-III model, one
needs to fold in the parton distributions (PDFs) of the proton. We use CTEQ6L1 PDFs for the LO calculations.

The calculations for the processes $e^- p \rightarrow N_1 j + X$ and $e^- p \rightarrow E_1^- j + X$ involve the contributions of the partonic processes $e^- q \rightarrow N_1 q'$ (where $q = u,d,c,s$ and $q' = u,d,s,c,b$), and $e^- q \rightarrow E_1^- q$ (where $q = u,d,c,s$), respectively. We neglect the masses of electron and light quarks u,d,s, and assume $m_b = 115$ GeV. For the CKM quark mixing parameters, we will use central values $\lambda = 0.2257$, $A = 0.814$, $\rho = 0.135$ and $\bar{\eta} = 0.349$ in Ref. [1] to determine the angles and phases in the Particle Data Group (PDG) parametrization of CKM matrix and use them in our numerical calculations. We have, $s_{12} = 0.2257$, $s_{23} = 0.0415$, $s_{13} = 0.00359$ and $\delta = 68.88^\circ$. The other input parameters involved are taken as [1]:

\[
\alpha^{-1}(m_{Z}^2) = 127.918, \quad m_{Z} = 91.1876 \text{ GeV}, \quad m_{W} = 80.398 \text{ GeV}, \\
m_{c} = 1.3 \text{ GeV}, \quad m_{b} = 4.2 \text{ GeV}. \tag{3.1}
\]

As a demonstration of numerical results we take $E_p = 7$ TeV, $E_e = 70$ GeV or 140 GeV, and set the factorization scales $\mu_f = \frac{1}{2}m_{N_i}$ for process $e^- p \rightarrow N_1 j + X$, and $\mu_f = \frac{1}{2}m_{E_1}$ for process $e^- p \rightarrow E_1^- j + X$.

In Fig.1 and Fig.2 we depict the production rates of the processes $e^- p \rightarrow N_1 j + X$ in the ST-I and ST-III models and $e^- p \rightarrow E_1^- j + X$ in the ST-III model as functions of the masses of N_1 and E_1^-, respectively. For the $N_1 j$ production process the $\sigma(e^- p \rightarrow N_1 j + X)/|\langle V_{IN} \rangle_{11}^2|$ results in both the ST-I and ST-III models are the same. In Table 1 we also list some of the representative numerical results which are read off from Fig.1 and Fig.2.

Whether it is possible at the LHeC to test the ST-I and ST-III models not only depends on the masses of the heavy states, but also crucially depends on how large V_{IN} can be in order to have sufficient number of N_i and E_i^- to be produced. If there is only one generation, one would obtain V_{IN} of order m_D/m_N whose magnitude is $\sqrt{|m_{\nu}/m_N|}$. With light neutrino mass constrained to be less than of order 1 eV, the magnitude of mixing V_{IN} is

| $m_{N_i}(m_{E_1})$ (GeV) | $\sigma(e^- p \rightarrow N_1 j + X)/|\langle V_{IN} \rangle_{11}^2|$ (pb) | $E_e = 70$GeV | $E_e = 140$GeV | $E_e = 70$GeV | $E_e = 140$GeV |
|--------------------------|---|-------------|-----------|-------------|-----------|
| 100 | 147.8 | 211.1 | 103.4 | 153.7 |
| 200 | 75.15 | 117.2 | 49.71 | 81.89 |
| 400 | 22.67 | 46.29 | 13.46 | 29.63 |
| 600 | 6.049 | 19.46 | 3.27 | 11.55 |
| 800 | 1.125 | 7.614 | 0.552 | 4.22 |
| 1000 | 0.1028 | 2.549 | 0.0448 | 1.32 |

Table 1: The numerical results for the cross sections for $e^- p \rightarrow N_1 j + X$ in the ST-I and ST-III models, and $e^- p \rightarrow E_1^- j + X$ in the ST-III model at the LHeC as the functions of m_{N_i} and m_{E_1}, respectively. There we take $E_p = 7$ TeV.
Figure 1: The cross sections for $N_{1\ell}$ production at the LHeC as the functions of m_{N_1} with $E_p = 7$ TeV, where the full-line is for $E_e = 70$ GeV and the dashed-line for $E_e = 140$ GeV.

bounded by $10^{-6} \sqrt{100 \text{GeV}/m_N}$. Even with m_N of order 100 GeV, the mixing is extremely small. With such a small mixing it is not possible to produce enough number of heavy neutrinos to study its properties at the LHeC. However, this conclusion is true only for one generation of neutrino. With more than one generation, one can evade the constraint
\[|V_{lN}| = \sqrt{|m_\nu/m_N|}. \] There are solutions of the form \(V_{lN} = V_0 + V_\delta \) satisfying constraints on light neutrino masses and mixing with some of the elements in \(V_0 \) to be left unconstrained from neutrino masses \([22, 49–58]\), as long as \(V_0M_NV_0^T = 0 \) which requires that \(V_0 \) being rank one \([58]\). Such solutions have interesting implications \([59–61]\). Constraints on the sizes of elements in \(\epsilon = V_{lN}V_{lN}^\dagger \) then come from flavor changing neutral current processes. For the ST-I model, we have the constraints as \([38, 62, 63]\)

\[
\epsilon_{11} \leq 3.0 \times 10^{-3}, \quad \epsilon_{22} \leq 3.2 \times 10^{-3}, \quad \epsilon_{33} \leq 6.2 \times 10^{-3}, \quad (3.2)
\]

and Refs. \([62–64]\) give the limitations as

\[
|\epsilon_{12}| \leq 1 \times 10^{-4}, \quad |\epsilon_{13}| \leq 0.01, \quad |\epsilon_{23}| \leq 0.01. \quad (3.3)
\]

For heavy neutrinos coupling to the electron, neutrinoless double-beta decay imposes \([65]\)

\[
\left| \sum_{i=1}^{3} (V_{lN})_{3i}^2/m_N \right| \leq 5 \times 10^{-8} \text{GeV}^{-1}. \quad (3.4)
\]

Finally, there are also constraints from searches for SM-singlet neutrinos by the L3 and DELPHI experiments at LEP \([66, 67]\) on the individual elements \((V_{lN})_{2i}\) and \((V_{lN})_{3i}\) which may be stronger than those inferred from Eqs. \((3.2)\) and \((3.3)\), depending on \(m_{N_i}\).

For the ST-III model, because additional \(E^\pm\) exist in the model the constraints are slightly stronger. They are \([38, 62, 63]\)

\[
\epsilon_{11} \leq 3.6 \times 10^{-4}, \quad \epsilon_{22} \leq 2.9 \times 10^{-4}, \quad \epsilon_{33} \leq 7.3 \times 10^{-4}, \quad (3.5)
\]

whereas from the measurements of lepton-flavor violating transitions \([68]\)

\[
|\epsilon_{12}| \leq 1.7 \times 10^{-7}, \quad |\epsilon_{13}| \leq 4.2 \times 10^{-4}, \quad |\epsilon_{23}| \leq 4.9 \times 10^{-4}. \quad (3.6)
\]

In addition, direct searches for heavy charged leptons at colliders impose constraints on the mass of \(E\), and hence the mass of \(N\) as well, namely \(m_{N_i}, m_{E_i} \gtrsim 100 \text{GeV}\).

If the heavy neutrinos are nearly degenerate, we can get the relation for the cross sections from Eq.\((2.4)\) expressed as

\[
\sigma(e^-p \to N_{ij} + X) : \sigma(e^-p \to N_{2j} + X) : \sigma(e^-p \to N_{3j} + X) = |(V_{lN})_{1i}|^2 : |(V_{lN})_{12}|^2 : |(V_{lN})_{13}|^2, \quad (3.7)
\]

From the definition of \(\epsilon\) matrix we have \(\epsilon_{11} = \sum_{i=1}^{3} |(V_{lN})_{1i}|^2\). Then we obtain

\[
\sum_{i=1}^{3} \sigma(e^-p \to N_{ij} + X) = \sum_{i=1}^{3} |(V_{lN})_{1i}|^2 \sigma(e^-p \to N_{ij} + X)/|(V_{lN})_{1i}|^2 \\
= \epsilon_{11} \sigma(e^-p \to N_{1j} + X)/|(V_{lN})_{11}|^2. \quad (3.8)
\]

Analogously the relations of Eqs.\((3.7)\) and \((3.8)\) are also satisfied by the production processes \(e^-p \to E^-_i j + X\) with the nearly degenerate heavy charged lepton \(E^-_i\).
From Fig.1 and Fig.2, one can read off the cross sections for N and E productions with appropriate constraints. Eq.(3.4) gives the strongest constraint on the couplings. Using that constraint literally, it is not possible to have large enough events produced. However, note that the couplings in Eq.(3.4) involve a summation of terms not necessarily positively defined. If one can reconstruct the N_i mass eigenstates which may be able to do with sufficient mass splitting, the production cross sections will be proportional to the square of the absolute value of each term. There are chances of cancelation between terms [58] and leave individual terms sizeable. Such cancelation occurrence has to be determined by experiments. We will discuss this more later. Here we will assume that this is the case, and then take the upper bounds $\epsilon_{11} = 3 \times 10^{-3}, 3.6 \times 10^{-4}$ for the ST-I and ST-III models, respectively, for discussions. From the figures we see that for $E_e = 70$ GeV, the cross section for N production in the ST-I model, can be as high as a few fb with mass as large as 700 GeV. For $E_e = 140$ GeV, even with a mass scale as large as a TeV the cross section can be more than a fb. These cross sections are much higher than that can be achieved for single N production at the LHC. With an integrated luminosity of 100 fb$^{-1}$, there are several hundred events can be produced and analyzed. For the ST-III model, the event number is smaller. But can still have hundreds of events for the mass scale to be as high as 800 GeV with $E_e = 140$ GeV. In this case there is also the possibility of studying E production. The mass scale can be probed up 800 GeV too.

3.2 Signals of N and E

The identification of the productions of N and E can be studied by reconstructing decay products of N and E. In order to have large enough production cross sections, the parameter $(V_{lN})_{ij}$ need to be close to their allowed bounds. With these bounds, N and E will decay inside the detector. The final states will involve a lepton and a W or Z from N or E decays, and it would be most convenient to choose the charged lepton in the final states to analyze. To keep the analysis as simple as possible, one can reconstruct the final W and Z using their hadronic decay modes. This procedure will reduce the available events for analysis depending on the branching ratios of N and E decays. We now provide some details.

In the ST-I model, the dominant decay modes for N are

$$\Gamma(N_i \to \ell^- W^+) = \Gamma(N_i \to \ell^+ W^-) = \frac{g^2}{64\pi} |(V_{lN})_{\ell i}|^2 \frac{m_{N_i}^3}{m_W^2} \left(1 - \frac{m_W^2}{m_{N_i}^2}\right) \left(1 + \frac{m_W^2}{m_{N_i}^2} - 2 \frac{m_W^4}{m_{N_i}^4}\right),$$

$$\sum_{m=1}^3 \Gamma(N_i \to \nu_m Z^0) = \frac{g^2}{64\pi c_W} \sum_{\ell=1}^3 |(V_{lN})_{\ell i}|^2 \frac{m_{N_i}^3}{m_Z^2} \left(1 - \frac{m_Z^2}{m_{N_i}^2}\right) \left(1 + \frac{m_Z^2}{m_{N_i}^2} - 2 \frac{m_Z^4}{m_{N_i}^4}\right),$$

$$\sum_{m=1}^3 \Gamma(N_i \to \nu_m h^0) = \frac{g^2}{64\pi} \sum_{\ell=1}^3 |(V_{lN})_{\ell i}|^2 \frac{m_{N_i}^3}{m_W^2} \left(1 - \frac{m_h^2}{m_{N_i}^2}\right)^2. \tag{3.9}$$

In the above equations, we have assumed that V_{PMNS} is unitary. For the ST-III model, the neutral heavy neutrino N has the same form as that in the ST-I model given above,
while for the heavy charged lepton E decay widths are given by

$$
\sum_{m=1}^{3} \Gamma(E_i^+ \to \bar{\nu}_m W^+) = \frac{g^2}{32 \pi} \sum_{\ell=1}^{3} |(V_{lN})_{\ell i}|^2 \frac{m_{E_i}^3}{m_W^2} \left(1 - \frac{m_W^2}{m_{E_i}^2}\right) \left(1 + \frac{m_W^2}{m_{E_i}^2} - 2 \frac{m_W^4}{m_{E_i}^4}\right),
$$

$$
\Gamma(E_i^+ \to \ell^+ Z^0) = \frac{g^2}{64 \pi c^2_W} \frac{|(V_{lN})_{\ell i}|^2}{m_Z^2} \frac{m_{E_i}^3}{m_Z^2} \left(1 - \frac{m_Z^2}{m_{E_i}^2}\right) \left(1 + \frac{m_Z^2}{m_{E_i}^2} - 2 \frac{m_Z^4}{m_{E_i}^4}\right),
$$

$$
\Gamma(E_i^+ \to \ell^+ h^0) = \frac{g^2}{64 \pi} |(V_{lN})_{\ell i}|^2 \frac{m_{E_i}^3}{m_W^2} \left(1 - \frac{m_h^2}{m_{E_i}^2}\right)^2.
$$

(3.10)

Figure 3: The branching ratios for $N \to l^\pm W^\mp$ and $E^\pm \to l^\pm Z$ as functions of m_N and m_E.

In Fig. 3, we show the branching ratio for $N \to l^\pm W^\mp$ and $E^\pm \to l^\pm Z$ as functions of heavy seesaw mass. We see that the branching ratios are of order 33% and 25% when the heavy neutrino and heavy charged lepton masses are large enough, for example above 200 GeV.

Combining the hadronic decay branching ratios for W^\mp and Z are 67.6% and 69.91%, we find that although there are reduction factors, but there are still 22% and 17% of the produced N and E can be analyzed by $N \to l^\pm + W^\mp$ and $E^\pm \to l^\pm + Z$ followed by W and Z decay into hadronic final states, respectively.

3.3 The process $e^- p \to l^\pm W^\mp j + X$

There are two types of processes, $e^- p \to l^+ W^- j + X$ and $e^- p \to l^- W^+ j + X$, which can be used to study the heavy neutrinos N_i ($i = 1, 2, 3$). The former type also contains information about the Majorana nature of N_i.

After a straightforward calculation, we find that, for degenerate heavy neutrinos, the cross sections for the processes $e^-p \to l^+W^-j + X$ with $l = e, \mu, \tau$ are proportional to $|\kappa_{11}|^2$, $|\kappa_{12}|^2$ and $|\kappa_{13}|^2$, respectively, where the κ matrix is defined as

$$\kappa = V_{lN}^*V_{lN}^\dagger .$$

(3.11)

Analogously, the cross sections for the processes $e^-p \to l^-W^+j + X$ ($l = e, \mu, \tau$) are proportional to $|\epsilon_{11}|^2$, $|\epsilon_{12}|^2$ and $|\epsilon_{13}|^2$ with the definition of

$$\epsilon = V_{lN}^*V_{lN}^\dagger .$$

(3.12)

Being a lepton number conserving process, $e^-p \to e^-W^+j + X$ has large SM background, therefore, may be difficult to analyze. The process $e^-p \to e^+W^-j + X$ which violates lepton number by two units may be more interesting to study. However, if the heavy neutrinos are indeed nearly degenerate and one cannot separately identify whether e^+ is from which N_i, the constraint from the neutrinoless double-beta decay (Eq. (3.4)) implies that

$$|\kappa_{11}| \leq 5 \times 10^{-5} \times \frac{m_N}{1000 \text{GeV}} ,$$

(3.13)

then the cross section for the process $e^-p \to e^+W^-j + X$ is too small to be measured. In this case the cross section for $e^-p \to e^+W^-j + X$ is too small to be measured.

If the heavy neutrinos have sufficiently large mass splitting, one can reconstruct the individual N_i state by the invariant mass of e^+W^-, then one can have $e^-p \to e^+W^-j + X$ with three different invariant mass of e^+W. The coherent cancelation in the degenerate case would not happen with each of the cross section proportional to the product of $|(V_{lN})_{1i}|^2$ and the N_i branching ratio into e^+. To this end we note that $|(V_{lN})_{1i}|^2$ much larger than $|\kappa_{11}|$ is possible by noticing the following: In the degenerate heavy neutrino case, the constraint in Eq. (3.4) is proportional to κ_{11}. But for non-degenerate case, using $V_{lN}M_NV_{lN}^T \approx 0$ the condition for large V_{lN} solution, one can have solutions such that the combination of V_{lN} and m_{N_i} in Eq. (3.4) is automatically equal to zero if $(m_{N_1}^2 - m_{N_2}^2)m_{N_3}/(m_{N_1}^2 - m_{N_3}^2)m_{N_2} = -(V_{lN})_{13}/(V_{lN})_{12}$. The mass splitting and the couplings are therefore not separately constrained leaving the possibility of large mass splitting and couplings. In this case, one can then combine constraints $\epsilon_{11} < 3 \times 10^{-3}$ and $\epsilon_{11} < 3.6 \times 10^{-4}$, for ST-I and ST-III, respectively, to estimate the production cross section.

Another new class of lepton number violating processes which are most promising to study at the LHeC are $e^-p \to l^\pm W^\mp j + X$ ($l = \mu, \tau$) channels with W decaying into hadron jets j_W. All these processes violate generation lepton number. For l^\pm the lepton number is violated by two units. The detection of this class of processes therefore can also reveal the Majorana nature of the heavy leptons. Since the SM backgrounds for these processes are small, they provide the opportunity to verify the existence of heavy neutrinos $N_{1,2,3}$ cleanly without the possible stringent constraint from neutrinoless double-beta decay even the heavy neutrinos are degenerate.

Considering the fact that the upper bounds of $|\epsilon_{12}|$ and $|\epsilon_{13}|$ are relatively large (see Eq. (3.3) for the ST-I model and Eq. (3.6) for the ST-III model), the processes

$$e^-p \to N_{1,2,3} + j + X \to l^-W^+ + j + X \to l^-j_W + j + X , \quad (l = \mu, \tau)$$

(3.14)
Table 2: The numerical results of the cross sections for the process $e^- p \rightarrow \tau^- W^+ j + X$ and the total decay widths of the heavy neutrinos by taking $|\epsilon_{13}| = 0.01$ for the ST-I model and $|\epsilon_{13}| = 4.2 \times 10^{-4}$ for the ST-III model, respectively. $\Gamma(N)$ and σ represent the decay width of N and the cross section for the process $e^- p \rightarrow \tau^- W^+ j + X$, respectively. There we take $E_p = 7$ TeV.

m_N (GeV)	ST-I model	ST-III model				
	$\Gamma(N)$ (GeV)	$\sigma(e^- p \rightarrow \tau^- W^+ j + X)$ (fb)	$\Gamma(N)$ (GeV)	$\sigma(e^- p \rightarrow \tau^- W^+ j + X)$ (fb)		
100	1.017×10^{-3}	1413	0.005663	1.132 $\times 10^{-4}$	22.40	
200	0.05089	372.7	580.5	0.005663	5.901	
400	0.5081	96.30	196.7	0.05655	1.530	
600	1.773	25.08	80.29	0.1974	0.3952	
800	4.251	4.744	31.24	0.4731	0.07312	
1000	8.345	0.5709	10.67	0.9287	0.00689	0.1645

The processes $e^- p \rightarrow N_{1,2,3} + j + X \rightarrow l^+ W^- + j + X \rightarrow l^+ j_W + j + X$, $(l = \mu, \tau)$ will be proportional to $|\kappa_{12}|$ and $|\kappa_{13}|$. Unlike κ_{11}, there are no cancelations in κ_{12} and κ_{13}, in general. Therefore, they can have the same order of magnitude as that for ϵ_{12} and ϵ_{13} leading to similar cross sections as that of $e^- p \rightarrow N_{1,2,3} + j + X \rightarrow l^- W^+ + j + X \rightarrow l^- j_W + j + X$. In the following we will concentrate on l^- cases.

If we assume that the heavy neutrinos of three generations are quasi-degenerated and have the same mass (m_N) and decay width, we get the relation of $\sigma(e^- p \rightarrow \mu^- W^+ j + X) : \sigma(e^- p \rightarrow \tau^- W^+ j + X) = |\epsilon_{12}|^2 : |\epsilon_{13}|^2$. In our numerical calculations, we take the upper bounds $|\epsilon_{12}| = 1 \times 10^{-4}$, $|\epsilon_{13}| = 0.01$ for the ST-I model and $|\epsilon_{12}| = 1.7 \times 10^{-7}$, $|\epsilon_{13}| = 4.2 \times 10^{-4}$ for the ST-III model, respectively.

In Table 2, we list some of the numerical results of the cross sections for the process $e^- p \rightarrow \tau^- W^+ j + X$ and total decay widths of heavy neutrinos with different values of m_N in both the ST-I and ST-III models. The total decay widths of heavy neutrinos could be obtained from their dominant decay modes: $N_{1,2,3} \rightarrow l^+ W^-, l^- W^+, \nu Z, \bar{\nu} Z, \nu h, \bar{\nu} h$. We can see from the table that the cross section for the $e^- p \rightarrow \tau^- W^+ j + X$ process can reach few hundreds of fb when the heavy neutrino mass is several hundred GeV. Since $|\epsilon_{12}|^2/|\epsilon_{13}|^2 \sim 10^{-4} - 10^{-7}$, and $\sigma(e^- p \rightarrow \tau^- W^+ j + X) < 2.02 \times 10^3$ fb (see Table 2), we obtain that the production cross sections for $e^- p \rightarrow \mu^- W^+ j + X$ process in the ST-I and ST-III models are 10^{-4} and 10^{-7} smaller than for the $\tau^- W^+ j$ production process, respectively, and

$$
\sigma(e^- p \rightarrow \mu^- W^+ j + X) = \sigma(e^- p \rightarrow \tau^- W^+ j + X) \times \frac{|\epsilon_{12}|^2}{|\epsilon_{13}|^2} < 2.02 \times 10^{-1} \text{ fb}.
$$

Therefore, we can conclude that $e^- p \rightarrow \tau^- W^+ j + X$ is an ideal signal process for search the heavy neutrinos, but the $e^- p \rightarrow \mu^- W^+ j + X$ process is not, due to its small cross section.
In Fig. 4 and Fig. 5, we depict the cross sections for the process $e^- p \rightarrow \tau^- W^+ j + X$ at the LHeC as functions of the mass of N in the ST-I and ST-III models, respectively. For $E_e = 140$ GeV in the ST-I model, with 100 fb^{-1} integrated luminosity, there are over one thousand events for the lepton number violating process study for a seesaw mass scale of 1 TeV. Lowering E_e to 70 GeV, the reach of the seesaw mass scale is also lowered, but can still have more than a thousand events to be studied for seesaw mass scale as high as 700 GeV. For the ST-III model, more than a hundred events will be accumulated when $m_N < 700$ and 400 GeV for the case of $E_e = 140$ and 70 GeV, respectively.

3.4 The process $e^- p \rightarrow \ell^- Z j + X$

Analogous to the N production, $e^- p \rightarrow E_{1,2,3}^- j + X \rightarrow \ell^- Z + j + X \rightarrow \ell^- j Z + j + X$ with $\ell = \mu, \tau$ are lepton number violating processes, therefore, might be signal processes for the search of the heavy charged leptons $E_i (i = 1, 2, 3)$. But the $e^- p \rightarrow E_{1,2,3}^- j + X \rightarrow e^- Z + j + X \rightarrow e^- j Z + j + X$ channel can not be an ideal signal process for testing the type-III sea saw model because of the large SM background.

Since the experimental upper bound for $|\epsilon_{12}|$ is 1.7×10^{-7} which is much smaller than that for $|\epsilon_{13}|$ in the ST-III model, only the $\tau^- Z j$ production rate with interchanging heavy charged leptons $e^- p \rightarrow E_{1,2,3}^- j + X \rightarrow \tau^- Z j + X$ is significant. We assume all the heavy charged leptons of three generations are quasi-degenerated and have the same mass (m_E) and decay width, and take $|\epsilon_{13}| = 4.2 \times 10^{-4}$ in the ST-III model. In Fig. 5 we present the m_E dependence of the cross section for the $\tau^- Z j$ production at the LHeC, where the full-line is for $E_e = 70$ GeV and the dashed-line for $E_e = 140$ GeV. Some of the numerical
Figure 5: The cross sections for the $\tau^- W^+ j$ production in the ST-III model at the LHeC as functions of m_N with $E_p = 7$ TeV and $|\epsilon_{13}| = 4.2 \times 10^{-4}$, where the full-line is for $E_e = 70$ GeV and the dashed-line for $E_e = 140$ GeV.

Table 3: The numerical results of the cross sections for the process $e^- p \rightarrow \tau^- Zj + X$ and the total decay widths of the heavy charged leptons in the ST-III model. $\Gamma(E)$ and σ represent the decay width of E and the cross section for the process $e^- p \rightarrow \tau^- Zj + X$, respectively. There we take $E_p = 7$ TeV and $|\epsilon_{13}| = 4.2 \times 10^{-4}$.

m_E (GeV)	$\Gamma(E)$ (GeV)	$\sigma(e^- p \rightarrow \tau^- Zj + X)$ (fb)	$E_e = 70$GeV	$E_e = 140$GeV
100	1.014×10^{-4}	4.622	6.877	
200	0.003993	5.297	8.731	
400	0.03822	1.337	2.944	
600	0.1324	0.3187	1.126	
800	0.3165	0.05343	0.4077	
1000	0.6205	0.00435	0.1270	

results in Fig.5 are listed in Table 3. We can see from these results that the cross section for the $e^- p \rightarrow E_{1,2,3}^- j \rightarrow \tau^- Zj + X$ process can reach a few fb when the heavy charged lepton mass $m_E < 600$ and 400 GeV for $E_e = 140$ and 70 GeV, respectively.

4. Conclusions

We have studied the potential of testing the seesaw type I and III models at the LHeC. The e-p collision mode provides an excellent place to study lepton number violating processes
Figure 6: The cross sections for the $\tau^{-}Zj$ production in the ST-III model at the LHeC as functions of m_E with $E_p = 7$ TeV and $|\epsilon_{13}| = 4.2 \times 10^{-4}$, where the full-line is for $E_e = 70$ GeV and the dashed-line for $E_e = 140$ GeV.

$e^-p \rightarrow N_{ij}+X \rightarrow e^+W^-j+X$ and $e^-p \rightarrow N_{ij}+X \rightarrow \tau^-W^+j+X$ with W into hadron jets. Here $N_{1,2,3}$ are heavy Majorana neutrinos and j is a hard hadron jet. Although the process $e^-p \rightarrow N_{ij}+X \rightarrow e^+W^-j+X$ is stringently constrained from neutrinoless double-beta decay, there are solutions where this constraint can be satisfied with sizeable production cross section. For the process $e^-p \rightarrow N_{ij}+X \rightarrow \tau^\pm W^\mp j+X$, the neutrinoless double-beta decay constraint does not apply. With $E_e = 140$ GeV and $E_p = 7$ TeV, we find that the cross section for the heavy neutrino N can be higher than what can be achieved by the p-p collision mode of LHC with same related heavy neutrino couplings. For $E_e = 140$ GeV, with 100 fb^{-1} integrated luminosity, there are over one thousand events for the lepton number violating process study for a seesaw mass scale of 1 TeV. Lowering E_e to 70 GeV, the reach of the seesaw mass scale is also lowered, but can still have more than a thousand events to be studied for seesaw mass scalae as high as 700 GeV. For the ST-III model, more than a hundred events will be accumulated when $m_N < 700$ and $m_N < 400$ GeV for the case of $E_e = 140$ and $E_e = 70$ GeV, respectively. With e-p collision mode we can use the process $e^-p \rightarrow E_{1,2,3}j+X \rightarrow \tau^-Zj+X$ with Z into hadron jets to study the heavy charged leptons in the ST-III model, whose cross section can reach a few fb when the heavy charged lepton mass $m_E < 600$ and 400 GeV for $E_e = 140$ and 70 GeV, respectively.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China(No.-10875112, No.10675110), and the Specialized Research Fund for the Doctoral Program of Higher Education(No.20093402110030), and in part by NSC and NCTS.
References

[1] C. Amsler et al. [Particle Data Group], “Review of particle physics,” Phys. Lett. B 667, 1 (2008) and 2009 partial update for the 2010 edition.

[2] W. Konetschny and W. Kummer, “Nonconservation Of Total Lepton Number With Scalar Bosons,” Phys. Lett. B 70, 433 (1977).

[3] J. Schechter and J.W.F. Valle, “Neutrino Masses In SU(2) X U(1) Theories,” Phys. Rev. D 22, 2227 (1980).

[4] T.P. Cheng and L.F. Li, “Neutrino Masses, Mixings And Oscillations In SU(2) X U(1) Models Of Electroweak Interactions,” Phys. Rev. D 22, 2860 (1980).

[5] A. Zee, “A Theory Of Lepton Number Violation, Neutrino Majorana Mass, And Oscillation,” Phys. Lett. B 93, 389 (1980), [Erratum-ibid. B 95, 461 (1980)].

[6] R.N. Mohapatra and G. Senjanovic, “Neutrino Masses And Mixings In Gauge Models With Spontaneous Parity Violation,” Phys. Rev. D 23, 165 (1981).

[7] G. Lazarides, Q. Shafi, and C. Wetterich, “Proton Lifetime And Fermion Masses In An SO(10) Model,” Nucl. Phys. B 181, 287 (1981).

[8] K.S. Babu, “Model of ‘Calculable’ Majorana Neutrino Masses,” Phys. Lett. B 203, 132 (1988).

[9] E. Ma, “Pathways to Naturally Small Neutrino Masses,” Phys. Rev. Lett. 81, 1171 (1998), [arXiv:hep-ph/9805219].

[10] A. Pilaftsis, “Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields,” Z. Phys. C 55, 275 (1992), [arXiv:hep-ph/9901206].

[11] P. Minkowski, “$\mu \to e\gamma$ at a rate of one out of 10^9 muon decays?” Phys. Lett. B 67, 421 (1977).

[12] T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, edited by O. Sawada and A. Sugamoto (KEK, Tsukuba, 1979), p. 95.

[13] M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by P. van Nieuwenhuizen and D. Freedman (North-Holland, Amsterdam, 1979), p. 315.

[14] S.L. Glashow, in Proceedings of the 1979 Cargese Summer Institute on Quarks and Leptons, edited by M. Levy et al. (Plenum Press, New York, 1980), p. 687.

[15] R.N. Mohapatra and G. Senjanovic, “Neutrino mass and spontaneous parity nonconservation,” Phys. Rev. Lett. 44, 912 (1980).

[16] W. Y. Keung and G. Senjanovic, “Majorana Neutrinos And The Production Of The Right-Handed Charged Gauge Boson,” Phys. Rev. Lett. 50, 1427 (1983).

[17] R. Foot, H. Lew, X.G. He, and G.C. Joshi, “Seesaw neutrino masses induced by a triplet of leptons,” Z. Phys. C 44, 441 (1989).

[18] T. Han and B. Zhang, “Signatures for Majorana Neutrinos at Hadron Colliders,” Phys. Rev. Lett. 97, 171804 (2006), [arXiv:hep-ph/0604064].

[19] A. Atre, T. Han, S. Pascoli, B. Zhang, “The Search for Heavy Majorana Neutrinos,” JHEP 0905, 030 (2009), [arXiv:0901.3589 [hep-ph]].
[20] F. del Aguila, J. A. Aguilar-Saavedra and R. Pittau, “Neutrino physics at large colliders,” J. Phys. Conf. Ser. 53, 506 (2006), [arXiv:hep-ph/0606198].

[21] F. del Aguila, J. A. Aguilar-Saavedra and R. Pittau, “Heavy neutrino signals at large hadron colliders,” JHEP 0710, 047 (2007), [arXiv:hep-ph/0703261].

[22] J. Kersten and A. Y. Smirnov, “Right-Handed Neutrinos at LHC and the Mechanism of Neutrino Mass Generation,” Phys. Rev. D 76, 073005 (2007), [arXiv:0705.3221 [hep-ph]].

[23] S. Bar-Shalom, G. Eilam, T. Han and A. Soni, “Charged Higgs Boson Effects in the Production and Decay of a Heavy Majorana Neutrino at the LHC,” Phys. Rev. D 77, 115019 (2008), [arXiv:0803.2835 [hep-ph]].

[24] P. F. Pérez, T. Han and T. Li, “Testability of Type I Seesaw at the CERN LHC: Revealing the Existence of the B-L Symmetry,” Phys. Rev. D 80, 073015 (2009), [arXiv:0907.4186 [hep-ph]].

[25] E. J. Chun, K. Y. Lee and S. C. Park, “Testing Higgs Triplet Model and Neutrino Mass Patterns,” Phys. Lett. B 566, 142 (2003), [arXiv:hep-ph/0304069];

[26] T. Han, H. E. Logan, B. Mukhopadhyaya and R. Srikanth, “Neutrino masses and lepton-number violation in the Littlest Higgs scenario,” Phys. Rev. D 72, 053007 (2005), [arXiv:hep-ph/0505260].

[27] C. S. Chen, C. Q. Geng, J. N. Ng and J. M. S. Wu, “Testing Radiative Neutrino Mass Generation at the LHC,” JHEP 0708, 022 (2007), [arXiv:0706.1964 [hep-ph]].

[28] A. Hektor, M. Kadastik, M. Muntel, M. Raidal and L. Rebane, “Testing neutrino masses in little Higgs models via discovery of doubly charged Higgs at LHC,” Nucl. Phys. B 787, 198 (2007), [arXiv:0705.1495 [hep-ph]].

[29] T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, “Pair Production of Doubly-Charged Scalars: Neutrino Mass Constraints and Signals at the LHC,” Phys. Rev. D 76, 075013 (2007), [arXiv:0706.0441 [hep-ph]].

[30] J. Garayoa and T. Schwetz, “Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC,” JHEP 0803, 009 (2008), [arXiv:0712.1453 [hep-ph]].

[31] M. Kadastik, M. Raidal and L. Rebane, “Direct determination of neutrino mass parameters at future colliders,” Phys. Rev. D 77, 115023 (2008), [arXiv:0712.3912 [hep-ph]].

[32] A. G. Akeroyd, M. Aoki and H. Sugiyama, “Probing Majorana Phases and Neutrino Mass Spectrum in the Higgs Triplet Model at the LHC,” Phys. Rev. D 77, 075010 (2008), [arXiv:1007.4019 [hep-ph]].

[33] W. Chao, S. Luo, Z. Z. Xing and S. Zhou, “A Compromise between Neutrino Masses and Collider Signatures in the Type-II Seesaw Model,” Phys. Rev. D 77, 016001 (2008), [arXiv:0709.1069 [hep-ph]].

[34] W. Chao, Z. G. Si, Z. Z. Xing and S. Zhou, “Correlative signatures of heavy Majorana neutrinos and doubly-charged Higgs bosons at the Large Hadron Collider,” Phys. Lett. B 666, 451 (2008), [arXiv:0804.1265 [hep-ph]].

[35] P. F. Pérez, T. Han, G. Y. Huang, T. Li and K. Wang, “Testing a neutrino mass generation mechanism at the Large Hadron Collider,” Phys. Rev. D 78 071301 (2008), [arXiv:0803.3450 [hep-ph]].
[36] P. F. Pérez, T. Han, G. Y. Huang, T. Li and K. Wang, “Neutrino masses and the CERN LHC: Testing the type II seesaw mechanism,” Phys. Rev. D 78 015018 (2008), [arXiv:0805.3536 [hep-ph]].

[37] P. F. Pérez, T. Han, T. Li and M. J. Ramsey-Musolf, “Leptoquarks and Neutrino Masses at the LHC,” Nucl. Phys. B 819, 139 (2009), [arXiv:0810.4138 [hep-ph]].

[38] F. del Aguila and J.A. Aguilar-Saavedra, “Distinguishing seesaw models at LHC with multi-lepton signals,” Nucl. Phys. B 813, 22 (2009), [arXiv:0808.2468 [hep-ph]].

[39] R. Franceschini, T. Hambye and A. Strumia, “Type-III seesaw at LHC,” Phys. Rev. D 78, 033002 (2008), [arXiv:0805.1613 [hep-ph]].

[40] B. Bajc, M. Nemevsek and G. Senjanovic, “Probing seesaw at LHC,” Phys. Rev. D 76, 055011 (2007), [arXiv:hep-ph/0703080].

[41] P. F. Pérez, “Type III Seesaw and Left-Right Symmetry,” JHEP 0903, 142 (2009), [arXiv:0809.1202 [hep-ph]].

[42] T. Li and X.G. He, “Neutrino masses and heavy triplet leptons at the LHC: Testability of the type III seesaw mechanism” Phys. Rev. D 80, 093003 (2009), [arXiv:0907.4193 [hep-ph]].

[43] K. Huitu, S. Khalil, H. Okada, S. K. Rai “Signatures for right-handed neutrinos at the Large Hadron Collider,” Phys. Rev. Lett. 101, 181802 (2008), [arXiv:0803.2799].

[44] A. Arhrib, B. Bajc, D. K. Ghosh, T. Han, G. Y. Huang, I. Puljak and G. Senjanovic, “Collider Signatures for Heavy Lepton Triplet in Type I+III Seesaw,” arXiv:0904.2390 [hep-ph].

[45] Z. Maki, M. Nakagawa, and S. Sakata, “Remarks on the unified model of elementary particles,” Prog. Theor. Phys. 28, 870 (1962).

[46] B. Pontecorvo, “Neutrino experiments and the question of leptonic-charge conservation,” Sov. Phys. JETP 26, 984 (1968), [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)].

[47] N. Cabbibo, “Unitary Symmetry and Leptonic Decays,” Phys. Rev. Lett. 10, 531 (1963).

[48] M. Kobayashi and T. Maskawa, “CP-Violation in the Renormalizable Theory of Weak Interaction,” Prog. Theor. Phys. 49, 652 (1973).

[49] W. Buchmuller and D. Wyler, “Dilatons and majorana neutrinos,” Phys. Lett. B 249, 458 (1990).

[50] W. Buchmuller and C. Greub, “Heavy Majorana neutrinos in electron - positron and electron - proton collisions,” Nucl. Phys. B 363, 345 (1991).

[51] J. Gluza, “On teraelectronvolt Majorana neutrinos,” Acta Phys. Polon. B 33, 1735 (2002), [arXiv:hep-ph/0210002].

[52] G. Ingelman and J. Rathsman, “Heavy Majorana neutrinos at e p colliders,” Z. Phys. C 60, 243 (1993).

[53] A. Pilaftsis, “Resonant tau leptogenesis with observable lepton number violation,” Phys. Rev. Lett. 95, 081602 (2005), [arXiv:hep-ph/0408103].

[54] A. Pilaftsis and T.E.J. Underwood, “Electroweak-scale resonant leptogenesis,” Phys. Rev. D 72, 113001 (2005), [arXiv:hep-ph/0506107].
[55] E. Ma, “Deciphering the Seesaw Nature of Neutrino Mass from Unitarity Violation,” Mod. Phys. Lett. A 24, 2161 (2009), [arXiv:0904.1580 [hep-ph]].

[56] Z.Z. Xing, “Naturalness and Testability of TeV Seesaw Mechanisms,” Prog. Theor. Phys. Suppl. 180, 112 (2010), [arXiv:0905.3903 [hep-ph]].

[57] X.G. He and E. Ma, “Seesaw Options for Three Neutrinos,” Phys. Lett. B 683, 178 (2010), [arXiv:0907.2737 [hep-ph]].

[58] X.G. He, S. Oh, J. Tandean, and C.C. Wen, “Large Mixing of Light and Heavy Neutrinos in Seesaw Models and the LHC,” Phys. Rev. D 80, 073012 (2009), [arXiv:0907.1607 [hep-ph]].

[59] X.G. He and S. Oh, “Lepton FCNC in Type III Seesaw Model,” JHEP 0909, 027 (2009), [arXiv:0902.4082 [hep-ph]].

[60] S.C. Park, K. Wang, and T.T. Yanagida, “Neutrino mass from a hidden world and its phenomenological implications,” Phys. Lett. B 685, 309 (2010), [arXiv:0909.2937 [hep-ph]].

[61] J. H. Chen, X. G. He, J. Tandean and L. H. Tsai, “Effect on Higgs Boson Decays from Large Light-Heavy Neutrino Mixing in Seesaw Models,” arXiv:1001.5215 [hep-ph].

[62] F. del Aguila, J. de Blas, and M. Perez-Victoria, “Effects of new leptons in Electroweak Precision Data,” Phys. Rev. D 78, 013010 (2008), [arXiv:0803.4008 [hep-ph]].

[63] F. del Aguila, J.A. Aguilar-Saavedra, J. de Blas, and M. PerezVictoria, “Electroweak constraints on see-saw messengers and their implications for LHC,”, arXiv:0806.1023 [hep-ph].

[64] S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela, and J. Lopez-Pavon, “Unitarity of the Leptonic Mixing Matrix,” JHEP 0610, 084 (2006), [arXiv:hep-ph/0607020].

[65] G. Belanger, F. Boudjema, D. London, and H. Nadeau, “Inverse neutrinoless double beta decay revisited,” Phys. Rev. D 53, 6292 (1996), [arXiv:hep-ph/9508317].

[66] O. Adriani et al. [L3 Collaboration], “Search For Isosinglet Neutral Heavy Leptons In Z0 Decays,” Phys. Lett. B 295, 371 (1992).

[67] P. Abreu et al. [DELPHI Collaboration], “Search for neutral heavy leptons produced in Z decays,” Z. Phys. C 74, 57 (1997), [Erratum-ibid. C 75, 580 (1997)].

[68] A. Abada, C. Biggio, F. Bonnet, M.B. Gavela, and T. Hambye, “μ → eγ and τ → lγ decays in the fermion triplet seesaw model,” Phys. Rev. D 78, 033007 (2008), [arXiv:0803.0481 [hep-ph]].