A model of particles cold forming as collapsed Bose–Einstein condensate of gammons

Abstract

The paper brings supplementary arguments regarding the possibility of cold particles forming as collapsed cold clusters of gammons—considered as pairs: $\gamma = (e^+ e^-)$ of axially coupled electrons with opposed charges. It is argued physico-mathematically that the particles cold forming from chiral quantum vacuum fluctuations is possible at $T \to 0 K$, either by a vortexial, magnetic–like field or by already formed gammons, in a “step–by–step” process, by two possible mechanisms: a)–by clusterizing, with the forming of preons $z = 34 m_e$, and of basic bosons: $z_p = 7 z^0; z_z = 4 z^0$, with hexagonal symmetry and thereafter–of cold quarks and pseudo–quarks, by a mechanism with a first step of $z^0 / (q^+ q^-)$–pre–cluster forming by magnetic interaction and a second step of $z^0 / (q^+ q^-)$–collapsed cluster forming, with the aid of magnetic confinement, and b)–by pearlitizing, by the transforming of a bigger Bose–Einstein condensate into smaller gammonic pre–clusters which may become particle–like collapsed BEC.

Keywords: cold genesis, Bose–Einstein condensate, quasi–crystal quark, dark energy, quantum vortex

Commentary

In a previous paper were presented briefly some basic particle models resulted from a cold genesis theory of matter and fields of the author, (CGT), regarding the cold forming process of cosmic elementary particles, formed–according to the theory, as collapsed cold clusters of gammons—considered as pairs: $\gamma = (e^+ e^-)$ of axially coupled electrons with opposed charges, which gives a preonic, quasi–crystalline internal structure of cold formed quarks with hexagonal symmetry, based on $z^0 = 34 m_e$ preon–experimentally evidenced in Krasznahorkay et al., but considered as X–boson of a fifth force, of lepton–to quark binding, and on two cold formed bosonic ’zeroons’ $z_p = 4 z^0 = 136 m_e$; and $z_z = 7 z^0 = 238 m_e$ formed as clusters of degenerate electrons with degenerate mass and magnetic moment and with degenerate charge $e^+ = (2 / 3) e$, (characteristic to the up–quark–in the quantum mechanics).

According to this theory, based on the Galilean relativity, the magnetic field is generated by an etherono–quantonic vortex $\Gamma_M = \Gamma_A + \Gamma_\mu$ of s–ethers (sinergons–with mass $m_s = 10^{-50} kg$) giving the magnetic potential A by an impulse density: $p_i(r) = (\rho \cdot c)$, and of quanta (h–quanta, with mass: $m_q = h \cdot c^2 = 7.37 \times 10^{-51} kg$) forming compact clusters of sinergons) giving the magnetic moment and the magnetic induction

By an impulse density: $p_i(r) = (\rho \cdot v)$, the nuclear field resulting from the attraction of the quantum impenetrable volume v_i of a nucleon in the total field generated according to fields superposition principle, by the N^+ superposed vertices $\Gamma^+_\mu(r)$ of component degenerate electrons of another nucleon, having an exponential variation of quanta impulse density, the nuclear potential resulting in the form:

\[V_n (r) = \nu_n P_n = V_n^0 \cdot e^{-r / \eta}; P_n (r) = \left(\frac{1}{2} \right) \rho_n (r) \cdot c^2 \]

By an electron model with radius: $a = 1.41 fm$ and with exponential variation of the quantum volume density and of the magnetic field quanta: $\rho_e (r) = \rho_s (r) = \rho_e^0 \cdot e^{-r / \eta}; \eta \approx 0.96 fm; \rho_e^0 = 2.22 \times 10^{-14} kg / m^3$

In the base of some neo–classic (pre–quantum) relations of the electric and magnetic fields:

\[E(r) \cdot \pm k_1 \rho(r) \cdot v_i = \frac{1}{2} \frac{\Delta \rho^2}{\Delta \tau}; \quad q_i = \frac{4 \pi \rho^2}{k_1}; \quad B = k_1 \cdot \rho (r) \cdot v_i \cdot \left(k_1 \cdot \frac{4 \pi \sigma^2}{e} \cdot 1.56 \times 10^{10} \cdot \frac{m^2}{c} \right) \cdot \left(\frac{v_i}{c} \right) \]

In two relative recent papers, were brought arguments for two possible mechanisms of cold particles forming as collapsed Bose–Einstein condensate (BEC) without destruction:

a) by clusterizing and cold collapsing without destruction, from a gammonic quasi–crystallin pre–cluster N^+ or b) by pearlitizing, by the fragmenting of a bigger BEC. The particles cold forming by clusterizing may results—according to CGT, in a “step–by–step” process, supposing:

1. z^0 / z^0 pre–cluster/cluster forming, with the aid of magnetic confinement, with a metastable equilibrium interdistance between gammons with antiparallel magnetic moments: $d_e = a = 1.41 fm$

2. z^0 / z^0 pre–cluster/cluster forming

3. z^0 / z^0–quark or neutral pseudo–quark pre–cluster/cluster forming;
A model of particles cold forming as collapsed Bose–Einstein condensate of gammons

The reciprocal equilibrium γ–pre–cluster forming (Figure 2) (Figure 3)–collapsed quark cluster forming;

a4) pre–cluster of quarks or pseudo–quarks forming;

a5) elementary particle/dark boson forming, or directly:

a1’) quark pre–cluster forming (Figure 2) (Figure 3)–collapsed quark cluster forming;

a2’) elementary particle/dark boson forming (cluster of quarks with the current mass in the same baryonic impenetrable quantum volume, u_i, Table 1). The particles cold forming by pearlitizing supposes:

b1) the formation of a bigger BEC of gammons, with the concentration of particles: $N_b \approx 1 / a^3 = 3.57 \times 10^{44}$, ($a=1.41$ fm), in a strong gravitational or magnetic field: $B_\gamma = (2.2 \times 10^8 + 0.3 \times 10^7) \Gamma $, at temperatures $T = T_b = (4.8 \times 10^{-11} + 1.8 \times 10^{-10}) K < T_g$, i.e.–Much lower than the transition temperature T_g –corresponding to a very low (negligible) fraction N_γ / N; (N(T_b)–the initial concentration of particles, for example, for $N \approx 10^{32}$, $T_{\text{ew}}(B=0)=1464 K$), the length along the B_γ–field, of a gammonic BEC with the concentration N_b formed at $T=T_g$ resulting of value: $L \approx 2.5 \times 10^{-7} m$;

b2) The pearlitizing of the resulted BEC by large temperature oscillation around the transition value T_g. The necessity of temperature oscillation around the transition value T_g for the BEC’s pearlitizing results as consequence of the residual (reciprocal) magnetic interactions around gammons, which gives a superficial tension σ .

For example, considering a radius r_b of meta–stable equilibrium of a drop of BEC formed by the BEC’s pearlitizing and maintained by the equilibrium between the force generated by the internal vibration (thermal) energy $F(r_b) = V \cdot N \cdot k_B T_1$ and the force generated by the surface tension σ:

$$ \frac{dE}{dr} = -P_e \frac{dV}{dr} + \sigma dS = 0 \quad ; \quad V = \frac{4\pi}{3} r^3 \quad ; \quad S = 4\pi r^2 ; \quad (3) $$

Figure 1 The e^\pm–pre–cluster forming.

Because $\sigma = (\frac{1}{2}) F_e / 1$, (the force rectangular on unit length), for: $N_b \approx 1 / a^3 = 3.57 \times 10^{44}$, ($a=1.41$ fm–the metastable equilibrium inter–distance of gammons), 4 the equilibrium radius is:

$$ r_p = \frac{2\sigma}{P_0} = \frac{F_0}{P_0} \approx \frac{F}{P_0} \approx \frac{\mu_0}{4\pi} \frac{V}{d_e} \frac{1}{N \cdot k_B T_1} \quad [m] \quad (4) $$

Figure 2 The m_γ-and r'–quark pre–cluster forming.

Figure 3 The cold forming of baryonic quarks.

In which d_i is the inter–distance between adjacent gammons and l_j is the length of a gammon. It is necessary in consequence–for estimate the value r_p, to estimate the value of gammon’s length and magnetic moment μ_γ.

It was argued in CGT, that is not logical to consider at an inter–distance $d_i < r_i = h / 2 \pi m_e c = 386 \; fm$, a value of the electron’s magnetic moment radius: d_i, higher than the inter–distance d_i, resulting a value: $r_p \approx 5.5 \times 10^{-9} m$ for $T_{\gamma \ast} = 10^8 K$ with $r_p \sim 1 / T_1$, by the use of equation (2) and with $r_p \approx d_i$. 5

If we use the expression (2) of the B–field, because the magnetic moment radius r_μ, represents in the etheronic, quantum–vortexial model of magnetic moment, the radius until which the B–field quanta have the light speed c, and because–for $d_i < r_i$, for $(e^+ - e^-)$ interaction is maintained the relation:$B = E/c$, we may re–write this relation in the form:

$$ B(d) \approx \frac{E(d)}{c} = \frac{\mu_0}{4\pi d_e c} \frac{e(r')}{2 \pi d_e} \approx \frac{\mu_0}{2\pi} \frac{e(r')}{d} ; \quad a < d < r_i \implies r_p \approx d \quad (5) $$

Resulting in consequence, the expression of the electron’s magnetic moment at inter–distances $d_i \lesssim r_i$. The reciprocal equilibrium position of gammonic electrons, in the particular case of a semi–hard gamma quantum considered–in CGT, as gammonic pair: $(e^+ - e^-)$, may be estimated by equation (5), imposing a correspondence with the conclusion of quantum mechanics regarding the $(e^+ - e^-)$ pair production, which indicates as minimal energy value of an external electric or magnetic field which may convert the gamma quantum into stable electrons, the value: $E_{\gamma} = 2m_e c^2$. In CGT, based on the classical mechanics and relativity, this value E_{γ} has the sense of the energy necessary to ‘split’ the gamma quantum into the component electrons with opposed charges.
A model of particles cold forming as collapsed Bose–Einstein condensate of gammons

In which we considered a possible degenerate charge, \(e^* \leq e \). This interpretation is logical by the fact that the nuclear \(E \)-field may split the \(\gamma \)-quantum only if it can act over internal \(e(e^*) \)-charges of opposed sign.

Between \(e \) and \((\gamma/e) \), considering an electric permittivity \(\varepsilon = \varepsilon_0 \varepsilon_a \approx \varepsilon_a \), we have the next significant possibilities:

1. \(e^* = e \Rightarrow d_e = 1.5a \);
2. \(e^* = e \Rightarrow d_e = \sqrt[3]{2/3}e \);
3. \(e^* = \left(\frac{2}{3}\right)e \Rightarrow d_e = \left(\frac{2}{3}\right)a \).

Because for a photon–like gammon its length must exceed its diameter proportional with the speed, it results that the case a) corresponds to a relativist gammon \((v \rightarrow c)\), which—in CGT, may have simultaneously rest mass and the \(c\)-speed, and the case c) correspond to a linked gammon, which is confined inside a bigger elementary particle (mesonic or baryonic), the degenerate charge \(e^* = \left(\frac{2}{3}\right)e \) being specific to the up–quark, \((p\text{-quark in CGT})\).

So the case b) corresponds to a gammonic pre–cluster, in accordance also with the quantum mechanics.

Table 1

Basic quarks: \(m_i = (z_i m_i^0) \)	135.2 \(m_e \)
Derived quarks: \(p'(n) = m_i(n_i) + 2z_a \)	\(m_2 = m_1 + e^- + \sigma_\varepsilon = 137.8 \ m; m_2 \rightarrow m_1 + e^- + \psi_\varepsilon; (\sigma_\varepsilon = (e^* + e^-) \rightarrow \psi_\varepsilon) \)
Mesons: \((q\overline{q})\)	\(\mu^- = 2Z_1 + e^- = 205 \ m_0 / \mu^- = 206.7 \ m \)
	\(-p_\varepsilon = 2p + n = 1836.2m_0; n = 2n + p = 1838.5m_0; p_\varepsilon^*, n_\varepsilon = 1836.1; 1838.7 \ m_0 \)
	\(\pi^0 = m_1 + \overline{m}_1 = 270.4m_0 / \pi^0 = 264.2 \ m_0 \)
	\(-\Lambda^0 = s + n + p = 2218.2m_0; \Lambda^0 = 2182.7 \ m_0 \)
	\(\pi^+ = m_1 + \overline{m}_1 = 273 \ m_0 / \pi^+ = 273.2 \ m_0 \)
	\(-\Delta^{(++)} = s^* + \lambda^* + p^+ (\pi^-) = 2445.6; 2453.4 \ m_0 / \Delta^{(++)} = 2411 \pm 4 \ m_0 \)
	\(K^+ = m_1 + \overline{K} = 987 \ m_0 / K^+ = 966.3 \ m_0 \)
	\(-\Sigma^- = \nu + 2p = 2346.2m_0; \Sigma^- = \nu + 2n = 2351.4m_0; / \Sigma^+, \Sigma^0 = 2327; 2342.6 \ m_0 \)
	\(K^0 = m_1 + \overline{K} = 989.6 \ m_0 / K^0 = 974.5 \ m_0 \)
	\(-\Sigma^0 = \nu + n + p = 2348.8 \ m_0 = 2333 \ m_0 \)
	\(\eta^0 = m_1 + \Gamma = 1125.6 \ m_0 / \eta^0 = 1073 \ m_0 \)
	\(-\Xi^0 = 2s + p = 2586.8 \ m_0; \Xi^- = 2s + n = 2589.4 \ m_0; / \Xi^0, \Xi^- = 2572; 2587.7 \ m_0 \)
	\(-\Omega^- = 3\nu = 3371.4 \ m_0 / \Omega^- = 3278 \ m_0 \)

The degenerate charge’s radius: \(r_e(e^*) = \sqrt[3]{2/3}e \) for \(d_e = a \), results from (6), according to a CGT’s relation:

\[
e^* (a) = 4\pi r_e^2 k_1 k_1 = \varepsilon (\varepsilon a) = 4\pi r_e^2 k_1 k_1 = \varepsilon (\varepsilon a) = \pi (r_e + r_\varepsilon)^2 \varepsilon \Rightarrow r_e \approx 0.9d_e; S = \pi (r_e + r_\varepsilon)^2 \varepsilon
\]

but in the hypothesis: \(e = \varepsilon_0 e_\varepsilon \approx e_\varepsilon \). However, the so–called “stopped light experiment”\(^{10,11}\) showed that a Bose–Einstein condensate determine a high slowing of the light passed through it, at a value \(\nu_c < c \), so for \(d_e \approx a \), by the known relation: \(n = c / \nu_c \approx \sqrt{e} / \varepsilon \) it results that we may consider the approximation: \(e = \varepsilon_0 e_\varepsilon \approx e_\varepsilon \) only in the case: \(d_e = 1.5a \), corresponding to a relativist gammon, for the case b) and c) resulting that \(e_\varepsilon > 1 \), so–the charge degeneration may be less accentuate, \(e^* (a) > \sqrt[3]{2/3}e \), because the decreasing of the \(V_e \)-potential with \(e \). By the proportionality between \(n, \varepsilon \) and the quanta density, deduced in CGT: \(n, \varepsilon \approx \rho_e \), because the proportionality: \(\rho_e \sim r^{-2} \) for \(r > a \), it results that:

\[
\rho_e \sim r^{-2}, (r > a) \Rightarrow e(a) / e(d_e) \approx (d_e / a)^2 = 2.2 \quad (8)
\]

As consequence, the relation (6) must be re–written in the approximate form:

\[
E_\gamma = 2m_e^2 = \varepsilon^2 + \varepsilon^2 + B_\varepsilon \cdot \mu_\varepsilon (d_e) = \frac{\varepsilon^2}{4\pi e_0 d_i} + \frac{\varepsilon^2}{4\pi e_0 d_i} + \frac{\varepsilon^2}{8\pi e_0 d_i}
\]

Citation: Arghirescu M. A model of particles cold forming as collapsed Bose–Einstein condensate of gammons. Phys Astron Int J. 2018;2(4):260–267.
DOI: 10.15406/paij.2018.02.00096
A model of particles cold forming as collapsed Bose–Einstein condensate of gammons

with $\varepsilon_\varphi = \varepsilon(a) / \varepsilon(d) \approx 2$, resulting that: $V_{\varphi}(a) = V_\varphi(a)$. This result explains also the possibility of particles forming by clusterizing, by the conclusion that—in a plane section of a preonic z^φ–pre–cluster formed with hexagonal symmetry, the inter–distance of metastable equilibrium $d = a$ results by the equality $V_{\varphi}(a) = V_\varphi(a)$ for the interaction with the central electron, either by electrostatic attraction and magnetic repelling or by magnetic attraction and electrostatic repelling (Figure 1) (Figure 4), the gammonic pre–cluster's collapsing resulting by the attraction between adjacent circularly disposed gammonic electrons, the central chain of axially coupled gammons giving the z^φ–preon magnetic moment, which explains similarly the cold confining of a pre–cluster of z^φ–preons, and so on (Figure 5).

The total collapse of the gammon is impeded—according to CGT, by a repulsive field and force with exponential variation, generated by the 'zeroth' vibrations of the electron's kernel (centroid) and acting over a quantum volume of the electron: $V_r(r_c \approx d)$ with a force: $F_r(d) = 2S_p R_p(d) e^\varphi$, (which explains also the non–annihilation interaction of field quanta with the interaction surface $S_p = \pi d^2$ of the repelled electron.

We may consider—in consequence, that the gammonic electrons have a remnant vibration of spin and of translation between the interdistances: $d = 1.5a$ and $d = (\sqrt{3})a$, as consequence of the self–resonance induced by the repulsive potential $V_r(d)$, the value $d = a$ being a mean value, the equilibration between the attraction force $F_r(d)$ of magnetic and electric type, and the repulsive force $F_{\varphi}(d) = -eV_\varphi(d)$, being realized at $d \leq d = (\sqrt{3})a$, the action of magnetic potential V_φ being diminished by V_r with a factor $f_\varphi \leq 1$.

For the approximation of the superficial tension $\sigma = F_r / 2l$, according to the previous considerations, we may approximate that—as the gammonic pre–cluster's surface with a mean interdistance $d = a$ between adjacent gammons, the binding force $F_r(a)$ is given by the magnetic interaction between gammons, the electric interaction force between gammons (of inter–dipoles type) being considered compensated by the repulsive force $F_{\varphi}(d)$, in a simplified model.

At increased temperatures $T_\varphi \geq T_b$, the linking (magnetic) energy resulted from equation (9): $V_{\varphi}(a) \approx m_\varphi c^2$, is diminished by the vibration energy according to a relation of the total binding energy of the form: $V_\varphi(a) = f_d V(a) - k_T T_\varphi$, ($f_d \sim T_\varphi$–diminishing factor), which explains also the thermal–quantum splitting, the binding force (considered as magnetic for the pre–cluster:), being in this case:

$F_r(a) = F_{\varphi}(a) \left(1 - \frac{T_\varphi}{T_c}\right) = f_d \frac{m_\varphi c^2}{a} \left(1 - \frac{T_\varphi}{T_c}\right) ; T_c = f_d \frac{m_\varphi c^2}{k_b} = 5.9 \times 10^9 K$ (10)

In consequence, we may approximate the expression of the superficial tension $\sigma = F_r / 2l$, as being given by the magnetic interaction force between two adjacent gammonic electrons, according to the approximation relation:

$\sigma = \frac{F}{2 l} = \frac{F_r}{2 a} = f_d \frac{m_\varphi c^2}{2 a} \left(1 - \frac{T_\varphi}{T_c}\right) ; T_c = f_d \frac{m_\varphi c^2}{k_b} = 5.9 \times 10^9 K$ (11)

with $f_d \approx (1 - F_\varphi(a) / F_{\varphi}(a)) \leq 1$. The equilibrium radius r_p of the pearlitic gammonic pre–cluster results in this case according to the approximate relation:

$r_p = \frac{2 \sigma}{\rho_0} = \frac{2 m_\varphi c^2}{k_b} \frac{1}{T_\varphi} \frac{1}{T_c} \approx \frac{8.3 \times 10^{-6}}{T_\varphi} [m]$ (12)

For $T_\varphi = T_b \approx 10^5 K$ and $f_d = 0.1$, it results: $r_p \approx 8 \times 10^{-9} m$. When $T_\varphi > T_b$, the (metastable) equilibrium radius results smaller, according to (12), ($r_p < r_b$), but because the equilibrium inter–distance cannot decrease when the internal energy $k_T T_\varphi$ increases, according to equation (4), it results that the equilibrium radius of the BEC may be re–obtained at the specific decreased value only by the decreasing of the particles number of the BEC, so thepearlization with the forming of quasi–cylindrical pre–clusters of baryonic neutral particles corresponding to a radius: $r_p < r_b$ may be formed by large oscillations of the internal temperature T_φ–given by the boson’s vibrations, around the value $T^* \approx T_b$.

On the radial direction, for a pre–cluster with the radius $r < r_b$, the electric interaction between gammons having the electron’s charge in surface, may be neglected for $d < a$ and we may consider that the
magnetic potential V, between gammons is partially equilibrated by the vibration energy k_T and by the repulsive potential $V(d)$ acting over a quantum volume of the electron: $v^i_T(r_e \leq d)$.

For conformity with the general electrogravitic form of CGT, we will take for the repulsive force $F(d)$, the form correspondent with equation (2):

$$F(d) = -V(r_e) = q e \cdot E = S_r \cdot \rho \cdot c^2 \cdot e^\eta \cdot \eta S_r = \pi r_e^2 \cdot \rho \cdot c^2 \cdot \eta S_r \leq d_i$$

i.e., considering an exponential variation of the quanta density and a quasi–elastic interaction of V–field quanta (approximated with small radius–in report with the radius r_e of the static q–charge) with the interaction surface:

$$S_r(\frac{r_e + r_h}{r_e}) \approx S_r(\frac{r_e}{r_e}) = \pi r_e^2 \approx \frac{\pi}{2} S_r'$$

(14)

Considering the effective action of the V–field quanta over the q_e pseudo–charge in a quasi–constant solid angle α, $F(d)$ may be expressed as given by the solution of equations (6) +(7): $r_e \leq d_i$, which may be used to approximate the value of the reciprocal magnetic moment: $\mu = \frac{\eta}{2} e \cdot c \cdot d_i$.

Because the magnetic force results from the gradient of quanta density $\rho^0 = \rho(d)$ which gives by equation (2), the magnetic induction B(d), we must deduce the magnetic force considering that the mutual magnetic moment μ of the attracted electron is quasi–constant to a short derivation interval Δd_i, retrieving the expression of the magnetic force between two degenerate electrons in the form:

$$F_\mu = \mu(e) \cdot \nabla B(e) \cdot \epsilon = \frac{d e^2}{d d_i} \cdot \frac{\eta}{k_1} \approx \frac{\eta}{k_1} \approx \frac{\frac{1}{4} \pi r_{E}^2}{\eta}$$

(15)

which results from the exponential variation of the V–field quanta density inside the electron’s quantum volume, $f_{\mu} \sim T_i$ being a diminishing factor resulted by the periodically partial destroying of the internal ethereal–quantonic vortex ν_T of the magnetic moment by the vibration energy: $e_N \approx k_T T_i$. By (15) the equality: $F(d_i) = F_{\mu}(d_i)$, over $T_i \ll T_r$, gives:

$$F_{\mu} = \frac{\eta}{k_1} \approx \frac{\frac{1}{4} \pi r_{E}^2}{\eta} = 2 S_r \cdot \rho \cdot c^2 \cdot e^\eta \approx 2 \pi d \cdot \rho \cdot c^2$$

(16)

with $\rho = \rho_0(a) = \frac{\mu_o}{k_1} \approx 5.17 \times 10^{-13}$ kg/m3 and with:

$$\rho_0 \approx \frac{\mu_o}{k_1} \approx 2.22 \times 10^{14}$ kg/m3$

resulting that: $d_i / \eta \ll T_i$.

At low temperatures, because the magnetic moment results–according to CGT–by the energy of ethereal–quantonic winds of the quantum vacuum, we may take $f_{\mu} \approx 1$. For the kernel of a formed particle, because the superdense centroids of quasi–electrons are contained (quasi)–integrated inside its impenetrable quantum volume v_T, we may approximate that–for a protonic m–quark with $N = 756$ quasi–electrons with the centroids included in the quark’s impenetrable quantum volume of radius $r_q \approx 0.21$ fm, we have $d_i(T_i) \approx 0.02$ fm at $T_i \ll T_q$.

Considering that at $T_i \ll T_q$, (for example–at $T_q \approx 1K$), the pre–cluster’s collapse is stopped at $d_i \approx 0.02$ fm, with $f_{\mu} \approx 1$ it results that $\rho_0^0(T_i) / \rho_0^0 = \rho_{\mu}^0(T_i) / \rho_0 \approx (d_i / \eta) \approx 0.02$. Because $\rho_0^0(T_i) / \rho_0 \leq 1$, it results that the cluster cannot be equilibrated at an inter–distance $d_i / \eta \approx 0.96$ fm2. Because d_i / η being close to but higher than $d_i \approx \frac{(2/3)}{a}$ corresponding to c–case), the conclusion that the mean inter–distance d_i=a between the electrons of the gammonic pre–cluster is one of un–stable equilibrium, is justified.

It results that–at temperatures $T_i < T_q$, the resulted pearlitic pre–clusters with radius $r_e < r_f$ may collapse because the residual (reciprocal) magnetic moments of the gammons and because the decreasing of the internal energy: ρV(r) more than the superficial energy: $\sigma \cdot S(r)$, from equation (3) resulting that: $r_i / r_e < 1$ or $r_i \cdot V \leq \sigma \cdot S(r)$. It results a slow variation of ρ_0^0 with the internal temperature T_i, of the fraction $\rho_0^0(T_i) / \rho_0^0 \approx (d_i / \eta)$ but with the consequence of inflation generating or of collapsing of the gammonic pre–cluster, at high variation.

The repulsive force increasing with the temperature T_i may be approximated by a relation specific to metals. Considering that the value $\rho_0^0 \approx \rho_0^0 \approx 2.21 \times 10^{13}$ kg/m3 is attained at a temperature close to those of quarks deconfining: $T_i \approx 2 \times 10^{13} K$, it results an approximation relation of ρ_0^0 density variation with the temperature:

$$\Delta \rho_0^0 \approx \alpha \cdot \Delta T_i$$

(17)

with $\rho_0^0 \approx 0.02 \rho_0^0$ resulting: $\alpha \approx 2.5 \times 10^{-13}$ K$^{-1}$. So, we may approximate that $f_{\mu} \approx (1 - (F_i / F_{\mu})) \approx 0.98$. At very low temperatures T_i the repulsive force F_i is maintained–according to equations (7), (13) & (17), because the maintaining of the ‘zeroth’ vibrations of the electronic superdense kernels (centroids) which creates the disturbance which generates the scalar density part: ρ_0^0, according to CGT. This phenomenon explains the fact that the quasi–crystallin cluster of electronic centroids of the particle’s kernel not collapses neither at very low temperatures, explaining the particle’s lifetime increasing with the temperature’s decreasing.

If the internal pre–cluster’s temperature T_i is maintained close to the metastable equilibrium value $T_i = T_q$, the pre–cluster’s collapsing may still occur in a strong magnetic field, by the aid of the magneto–
gravitic potential $V_{mg}(r)$, according to CGT.8

This conclusion may be argued by the hypothesis of the magnetic fluxon $\phi = h / 2e \approx 2 \times 10^{-15}$ Wb, considering that the $\xi\nu$ – vortex–tubes of the B–field are fluxon ϕ_0 with a section radius r_0, with a linear decreasing of the impulse density: $\rho_\nu = \rho(r) \propto r^{-1}$, for $r \leq r_0$, (which is specific to vortex–tubes) and with the mean density: ρ_ν approximate equal with those resulted from the local B_i–

$$V_{mg}(r) = \frac{v_\nu c(r)}{2} = \frac{v_\nu c}{4 \pi r} \left[\frac{m_\nu \cdot B(R)}{k_i \cdot c} \right] = \frac{v_\nu c}{4 \pi r} \left[\frac{\phi_0 B(R)}{k_0} \right] \Rightarrow \rho_\nu (r) = \frac{\rho_0}{r} = \frac{m_\nu}{2 \pi r_0} \Rightarrow m_\nu = 2 \rho_\nu r_0 r $$. (18)

with $(m_\nu = 4.27 \times 10^{-14}$ kg/m – the fluxon’s mass on unit lengt). For $l = N^{-1/3} \approx r_0$, we have:

$$V_{mg}(r) = (v_\nu c) B(R) / 4 \pi k_i \approx 1.76 \times 10^{-12} B(R)$$ a negligible value comparative to: $V = \mu_0 x B(R)$, but which can initiates the clustering process of a preonic $\xi\nu$ – pre–cluster forming or of an photon or of an electron forming–around a superdense kernel (half of an electronic neutrino–in the electron’s case, according to CGT),13 but at high values of the B–field or of magnetic field–like etherono–quantonic vortexes formed in the quantum vacuum as chiral fluctuations.

The necessity of a high value of the B–field–like chiral fluctuations intensity in the process of particles cold forming directly from the primordial “dark energy”, results in accordance with a particle–like sub–solitons forming condition17 which specifies that the energy $E = m c^2$ of the mass–generating chiral soliton field, (given–in this case by a sinergono–quantonic vortex $\Gamma_{p} = \Gamma_{A} + \Gamma_{B} = 2 \pi \cdot c \cdot \xi\nu$), should be double, at least, comparing to the mass energy: $E_m = mc^2$ of the generated sub–solitons; ($E_{\nu} \geq 2E_m$).

The generalization to the scale of an atomic nucleus permits to consider an atomic nucleus as a (non–collapsed) fermionic condensate with quasi–crystalline arrangement of nucleons, which may explain the nucleonic “magic” numbers of maximal stability,2,4 the nuclear fission reactions–well described by the droplet nuclear model, being explained by a nuclear local phase transformation at the internal temperature increasing–determined by the nucleons’ vibrations.

Mathematically this phenomenon may be equated by equation (11), by modifying the volume term: $E = a_v A$ and the surface term $E = a_s A^{2/3}$ from the Bethe–Weizsäcker semi–empirical formula of the nuclear binding energy, based on the liquid drop model proposed by George Gamow, where A is the atomic number and $a_v = E_b - \left(\frac{3}{5} \right) E_F = 15.8 MeV \approx a_b = 17.8 MeV$ –the volume and the surface term coefficients, given as difference between the binding energy of the nucleons to their neighbours: $E_b = 40 MeV$ and $E = \left(\frac{3}{5} \right) E_F$ –the kinetic energy per nucleon, depending on its Fermi energy.

A generalized form of the binding energy formula for a gammonic BEC, may be obtained writing the kinetic term E_k in the form: $k_0 T_0$, which gives:

$$E_N \approx E_b \left(A - A^2 \right)^{2} \left(1 - \frac{E_k}{E_b} \right) ; E_b = \frac{T_0}{k_0} ; E = k_0 T (19)$$

with $T_0 = E_b / k_0$ and $E = k_0 T$–the mean vibration energy of the particles and E_k–the binding energy per particle. The vibrations induced by interaction particles such as a neutron which can split an uranium nucleus, may explain by equation (19), the fact that the nuclear fission is explained by the “drop” nuclear model, even if the nuclear properties and even the nuclear “magic” numbers of nucleons which gives the maximal nuclear stability: 2, 8, 20, 28, (40), 50, 82, 126, may be explained also by a solid rotator type of nuclear model, particularly–of quasi–crystalline type, as those deduced in CGT2,4 which explains the “magic” nuclear numbers as resulting from quasi–crystalline forms of alpha particles, with $Z = \Sigma \left(2\pi^2 \right)$, $(n \in N)$.

In CGT, this phenomenon is equated by multiplying the binding energy between two nucleons with a term depending on the vibration “liberty” (amplitude) of the nucleon, in the form:

$$L = \left(4 \pi r_{\nu}^3 / 3 \right) N_{\nu} = \left(4 \pi r_{\nu} / a \right)^3,N_{\nu} = 1 / a^3$$

the equations (12) & (19), for a metastable gammonic BEC, giving the binding energy in the form:

$$E_N = E_b \left(\frac{4 \pi}{3} \left(\frac{T_0}{T_c} \right)^2 \left(\frac{T}{T_c} \right) \right) - \left(\frac{4 \pi}{3} \right)^2 \left(\frac{T_0}{T_c} \right)^2 \left(\frac{T}{T_c} \right) \left(1 - \frac{T}{T_c} \right) \right) \left(1 - \frac{T}{T_c} \right) (20)$$.

Citation: Arghirescu M.A model of particles cold forming as collapsed Bose–Einstein condensate of gammons. Phys Astron Int J. 2018;2(4):260–267.
DOI: 10.15406/paij.2018.02.00096
with \(E_s \approx E_m \approx f_{s'} m_c c^2\); \(T_c \approx f_{s'} m_c c^2 / k_B\) \((f_{s'} \approx 0.98)\), the relation (20) showing that the increasing of the BEC’s temperature determines transition to a liquid-like phase and thereafter–pearlitzization, as consequence of the internal temperature increasing over the equilibrium value.

Conclusion

By the paper it is argued that the particles cold forming from quantum vacuum fluctuations—considered in the quantum mechanics, is possible at \(T \rightarrow 0K\), but usually by clusterizing, in specific conditions, as a “step–by–step” process in which the intrinsic rest mass/energy necessary for the particles forming: \(mc^2\), is acquired either by an initial quantum vortex corresponding to an intense magnetic–like field, with vortical energy comparable with those of the ultrior formed particle and with the producing of a dense kernel which may stabilize the quantum vortex, or by a less intense vortex but enough strong for increase locally the density of formed gammons or \((\approx 34fm)\) preons.

An argument for the particles forming process by clusterizing is the electronic Cooper pairs forming in superconductors, at low temperatures, well explained by the relation (9) resulted in this case in the form: \(V_F (\alpha) = -V_m (\alpha)\) and the possibility of fermionic condensate forming at very low temperatures also with electrons, explained in the same way, in CGT.

The vortex was identified as the logical way to explain the fermions pairs forming also in other theoretical models, but a vortex of etherons with the mass of \(10^{-40} \times 10^{-15} kg\)—considered as particles of the sub–quantum medium, (corresponding to the ‘dark energy’ concept), is not enough to explain the possibility of fermion forming from quantum vacuum, without a quantic component, with quantons of energy \(\varepsilon = h \lambda \approx 10^{-39}\) and having superdense centroids which—by vortical confining, can form a superdense centroid and a rest mass of the formed fermion. According to CGT, this mechanism may explain the background radiation (2.7K) photons forming as pairs of vectorial photons, in the Cold ProtoUniverse.

The possibility to explain the masses and the magnetic and electric properties of the elementary particles resulted from the cosmic radiation, in a preonic model, by a cold clusterizing process and with only two quasi–crystallin basic bosons: \(z_c = \Omega^2 = 136m_c\); \(z_e = \Omega^2 = 238m_c\), indicates—in our opinion, that after the electrons (negatrons and positrons) cold forming, the clusterizing was the main process of the particles forming in the Universe, by at least two steps: a)–the quasi–crystallin pre–cluster forming (of gammons or of formed \(z^0\)–preons or \(z_e\) and \(z_e\)–zerons) and b)–the pre–cluster’s cold collapsing, without destruction, with the maintaining of a quasi–crystallin arrangement of electronic centroids at the kernel’s level, as consequence of their ‘zeroth’ vibrations—which determines an internal scalar repulsive field.

The particles cold forming by clusterizing, in a Galilean relativity supposes the conclusion that the quantum vacuum contains cold gammons and \(z^0\)–preons as basic “field” which gives inertial mass of the resulted bigger particles, but also bigger leptons, such as pairs of muonic neutrino: \(\nu_{\mu} \approx 6\times 10^{-26}\) (of ring form), which may explain the known reaction: \(e^+e^- \rightarrow \mu^+\mu^-\), by the conclusion of the \(2\nu_{\mu}\)–neutrino pair splitting in the quantum vacuum by the interaction energy and the forming of \((e - \nu_{\mu})\) couples.

Also, in the case of the proton, is more logical that the external shell of the impenetrable quantum volume, corresponding in quantum mechanics to the gluonic part of the nucleon, has the inertial mass given by cold (“dark”) leptons, \(\nu_{\mu}\) photons, gammons or also \(z^0\)–preons (instead partons—as in the standard model of QM), coupled with oriented (antiparallel) magnetic moments, for example–as a (quasi)–circular chain of coupled \(z^0\)–preons around the impenetrable quantum volume (explaining a part of the quarks confining force) or also in the middle part of the quantum volume (corresponding to the proton’s root mean square radius of its charge, \(\eta = 0.86 fm\)).

According to the previous model, the revised Anderson’s model of proton, with attached positron having degenerate magnetic moment (CGT), explains in this case the proton’s charge, \(e^+\), by the conclusion that the secondary vortexes \(\Gamma_{\mu^+}\) induced by the \(\Gamma_{\mu^-}\)–vortex of the protonic positron” magnetic moment at the level of the superficially distributed internal leptons \(L_{\mu^+}\) increases the value of their magnetic moment parallel oriented \((\mu^+_{\mu^+\mu^-})\) and diminish the \(L_{\lepton}\)–lepton” magnetic moment anti–parallel oriented \((\mu^+_{\mu^+\mu^-})\), generating a roto–activity of the surface: \(\omega \times r = c\), with \(\omega \rightarrow \Gamma_{\mu^+}\), corresponding to a negative charge, \(\epsilon\), the proton’s charged surface attracting and polarizing adjacent vectorial photons (vexons, \(\omega^-\)– in CGT) with opposed magnetic moment, which gives the positive charge of the proton. At the \(K^+\) transforming of the proton, the lack of the protonic positron re–establish the equality between the values of the coupled leptonic magnetic moments of the particle’s surface, which becomes neutral by the loose of the previous attracted polarized vectorial photons which are carried by the released positron, being retained at the positron’s surface by the positronic magnetic moment, \(\mu_{\mu^+}\). Extrapolated to the electron case, the model explains the transforming of a \((e^-c^-)\) pair into two gamma–quanta by the conclusion of reciprocal charge cancelling by polarized vexons changement, (Figure 6).

![Figure 6](image)

According to the model, the electron radius of \(10^{-14}\) m experimentally evidenced by X–rays scattering is the radius of the electron’s kernel.

As secondary, particular possibility, the particles forming by pearlitzing supposes the forming of a bigger BEC of gammons, with the concentration of particles: \(N_{\gamma} \approx 1 / a^2 = 3.57 \times 10^{44}\), \((a=1.41 fm)\), in a strong gravitational or magnetic field and at very low temperature.
and the BEC’s fragmenting by the temperature oscillation around the transition value T_B and thereafter—the cold collapsing of the resulted pre–clusters, without their destruction. We suppose that this model of particles cold forming may explain a part of the dark matter, because that it supposes the forming of neutral particles without magnetic moment, with low interaction with the electromagnetic radiation.

In conclusion, the resulted explicative model of particles cold genesis may explain the existence of a huge number of material particles in the Universe, by the conclusion of cold (“dark”) photons and thereafter–of electronic neutrinos and cold electrons genesis in the Cold Proto–Universe’s period, by chiral (vortexial) fluctuations in the ‘primordial dark energy’–considered in CGT as omnidirectional fluxes of etherons and quantons circulated through a brownian part of etherons and quantons.

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest.

References

1. Arghirescu M. The Cold Genesis– A New Scenario of Particles Forming. Physics & Astronomy International Journal. 2017;1(5):1–5.
2. Arghirescu M. A Cold Genesis: Theory of Fields and Particles. viXra; 2012. p. 1–108.
3. Arghirescu M. The Cold Genesis of Matter and Fields. USA: Science Publishing Group; 2015. p. 1–222.
4. Arghirescu M. A Quasi–Unitary Pre–Quantum theory of Particles and Fields and some Theoretical Implications. International Journal of High Energy Physics. 2015;2(1):80–103.
5. Arghirescu M. A preonic quasi–crystal quark model based on a cold genesis theory and on the experimentally evidenced neutral boson of $34m_e$. Global Journal of Physics. 2016;5(1):496–504.
6. Krasznahorkay JA, Csatlós M, Csige L, et al. Observation of Anomalous Internal Pair Creation in 8Be: A Possible Signature of a Light, Neutral Boson. UAS: Cornell University Library; 2015. p. 1–5.
7. Arghirescu M. The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi–Crystal Model of Quarks and a Pre–Quantum Theory of Fields. International Journal of High Energy Physics. 2018;5(1):12–22.
8. Arghirescu M. The Possibility of Particles Forming from a Bose–Einstein Condensate, in an Intense Magnetic or Gravitational Field. International Journal of High Energy Physics. 2018;5(1):55–62.
9. Arghirescu M. A Revised Model of Photon Resulted by an Etherono–Quantonic Theory of Fields. Open Access Library Journal. 2015;2(10):1–9.
10. Hau LV, Harris SE, Dutton Z, et al. Ultra–slow, stopped, and compressed light in Bose–Einstein condensates gas. Nature. 1999;397(594):1–368.
11. Harris SE, Hau LV. Nonlinear Optics at Low Light Levels. Physical Review Letters. 1999;82(23).
12. de Broglie L. La thermodynamique “cachee” des particules. Ann de l’IHP Section A. 1964;1(1):1–20.
13. Kenneth S and Steven S. Observations on the Role of Charge Clusters in Nuclear Cluster Reactions. Journal of New Energy. 1996;1(3):1–11.
14. Keihn RM. The Falaco Effect, A Topological Soliton. USA: Talk at ’87 Dynamics Days; 1987.
15. Şomăcescu L. Electromagnetism and gravity in a unitary theory. Sweden: International Conf. of Gravitation; 1986.