Five Hundred Patients With Gut Malrotation

Thirty Years of Experience With the Introduction of a New Surgical Procedure

Kareem Abu-Elmagd, MD, PhD,George Mazariegos, MD,† Sherif Armanious, MD,* Neha Parekh, MS, RD, LD, CNCS,* Ayat ElSherif, MD,* Ajai Khanna, MD,† Beverly Kosmach-Park, DNP, RN, FAAN,† Giuseppe D’Amico, MD, Masato Fujiiki, MD, PhD,* Mohammed Osman, MD,* Marissa Scalish, MPAS, PA-C,* Amanda Pruchnicki, RN,* Elizabeth Newhouse, RN, MSN, CCTC,* Ahmed A. Abdelshafy, MD, PhD,‡ Erick Remer, MD,* Guillerme Costa, MD, PhD,* and R. Matthew Walsh, MD*

Objectives: Define clinical spectrum and long-term outcomes of gut malrotation. With new insights, an innovative procedure was introduced and predictive models were established.

Methods: Over 30 years, 500 patients were managed at 2 institutions. Of these, 274 (55%) were children at time of diagnosis. At referral, 204 (41%) patients suffered midgut-loss and the remaining 296 (59%) had intact gut with a wide range of digestive symptoms. With midgut-loss, 189 (39%) patients underwent surgery with gut transplantation in 174 (92%) including 16 of 31 (16%) who had autologous gut reconstruction. Ladd’s procedure was documented in 192 (38%) patients with recurrent or de novo volvulus in 41 (21%). For 80 patients with disabling gastrointestinal symptoms, gut malrotation correction (GMC) surgery “Kareem’s procedure” was offered with completion of the 270° embryonic counterclockwise-rotation, reversal of vascular-inversion, and fixation of mesenteric-attachments. Concomitant colonic dysmotility was observed in 25 (31%) patients.

Results: The cumulative risk of midgut-loss increased with volvulus, prematurity, gastrochisis, and intestinal atresia whereas reduced with Ladd’s and increasing age. Transplant cumulative survival was 63% at 10-years and 54% at 20-years with best outcome among infants and liver-containing allografts. Autologous gut reconstruction achieved 78% and GMC had 100% 10-year survival. Ladd’s was associated with 21% recurrent/de novo volvulus and worsening (P < 0.05) of the preoperative National Institute of Health patient-reported outcomes measurement system gastrointestinal symptom scales. GMC significantly (P ≤ 0.001) improved all of the symptomatology domains with no technical complications or development of volvulus. GMC improved quality of life with restored nutritional autonomy (P < 0.0001) and daily activities (P < 0.0001).

Conclusions: Gut malrotation is a clinicopathologic syndrome affecting all ages. The introduced herein definitive correction procedure is safe, effective, and easy to perform. Accordingly, the current standard of care practice should be redefined in this orphan population.

Keywords: autologous gut reconstruction, colonic dysmotility, congenital anomalies, embryonic rotation, gastrointestinal symptoms, gastrochisis, gut malrotation, Kareem’s procedure, gut malrotation correction surgery, gut transplantation, intestinal atresia, intestinal malrotation, Ladd’s procedure, mesenteric fixation, mid-gut volvulus, oro-cecal transit time, radiology (Ann Surg 2021;274:581–596)

The twentieth century witnessed great interest in gut development particularly the complex evolution of midgut.1–7 The different anomalies of embryonic rotation and mesenteric fixation were described. The midgut from the fixed point of the duodenum to the mid-transverse colon is attached to the posterior abdominal wall by a narrow mesenteric hilum.8 This incites the easy development of midgut volvulus with the superior mesenteric artery being the central axis of such a life-threatening event. More recently, advances have also been made concerning the molecular and genetic defects associated with these enigmatic abnormalities.9–11 Despite modern surgical advances, little progress has been made in the management of such a life-long potentially lethal inherited disorder.12–24

The clinical significance of embryonic midgut anomalies was revealed in the early 1920s allowing the 1930s seminal introduction of the life-saving Ladd’s procedure.8,25,26 The operation aimed to detorse volvulus and treat duodenal obstruction by releasing the Ladd bands. At the same time, the malrotation was reverted to an earlier stage, rather than corrected, with widening of the mesentery to reduce risk of recurrent volvulus.

Over the years, a few short-lived modifications were introduced to the gold standard Ladd’s procedure. The intent was to amend the anatomic deviation with limited stabilization of the mesentery.27–30 More recently, a plethora of scientific publications has emerged, mainly as case series with a few review articles.31–51 These reports attempted to better understand the disease spectrum and management strategies particularly among the adult population.

In 1990s, a new dimension was added to the management of patients with catastrophic midgut-loss.52 With the observed life-threatening complications associated with total parenteral nutrition (TPN), gut transplantation was introduced. Subsequently, autologous gut reconstruction has evolved as part of an integrated management strategy.53–54 In the light of these repercussions, a novel procedure was conceptualized by the primary author and judiciously implemented to treat patients with disabling digestive symptoms and prevent midgut volvulus. The operation stemmed from 30 years of experience in transplant and digestive surgery combined with recent revelations in mesenteric and neuroenteric embryonic development.53–56

This is the largest worldwide series that comprehensively addresses the clinicopathologic spectrum of gut malrotation (GM) in both children and adults. The long-term efficacy of gut transplantation and autologous reconstruction is also assessed. The technical details of the new procedure are illustrated and fully described. Lastly, outcome risk factors are identified and predictive models are established to guide the future management of this perplexing population.

From the *Cleveland Clinic Foundation, Cleveland, Ohio; †University of Pittsburgh Medical Center and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania; and ‡Ain-Shams University, Cairo, Egypt.

The authors report no conflicts of interest.

Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal’s Web site (www.annalsofsurgery.com).

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.

ISSN: 0003-4922/21/27404-0581
DOI: 10.1097/SLA.0000000000005072
METHODS

Study Design

This ambispective cohort study comprised of 500 gut malrotation (GM) patients. The retrospective group consisted of 204 (41%) patients referred with catastrophic midgut-loss. The prospective group included 125 (25%) with intact gut and disabling gastrointestinal symptoms that were referred for digestive surgery. The remaining 171 (34%) were retrieved from Cleveland Clinic electronic database with confirmed radiologic diagnosis utilizing an integrated natural language processing algorithm. The majority of gut-loss patients were referred for gut transplantation (GT) and/or autologous gut reconstruction (AGR) at the University of Pittsburgh Medical Center and most of the intact gut symptomatic patients were referred to Cleveland Clinic Center for Gut Rehabilitation and Transplantation.

The retrospective group (n = 204) was examined to assess long-term efficacy of GT and AGR. The prospective group (n = 125) was studied to define the clinical spectrum of the GM disorder and durability of the newly introduced gut malrotation correction (GMC) surgery. The collected data of the total 500 patients were stratified and analyzed to measure risk of midgut-loss and identify the distinctive clinical features of GM among those with intact gut.

The technical concept of the GMC procedure was born as the result of the primary author’s cumulative experience with organ transplant and digestive surgery. The instigated techniques of retrieving the intestinal allograft, preserving the recipient pancreato-duodenal-complex, and reconstructing native gut were seminal to the inception of GMC. The primary surgical principle of the procedure has been completion of the embryonic counter-clockwise-midgut rotation with establishment of the mesenteric-attachments. Colon resection was performed for patients with concomitant colonic dysmotility.

Core data including patient characteristics and pertinent clinical features were pooled from a computerized database. Chart review was conducted to obtain further relevant information. The nationally shared medical records were also accessed. Telehealth visits and telephone interviews were conducted for complete follow-up of the GT, AGR, and GMC patients especially in the midst of COVID-19 pandemic. Institutional Review Board approvals were obtained with an honest broker for data management.

Definitions

The diagnosis was established utilizing different imaging techniques and was further confirmed during surgery. Supplementary

| TABLE 1. Clinical Features of the 500 Patients According to Age at Time of Gut Malrotation Diagnosis |

Variable	Total	Children (<18 yr)	Adults (≥ 18 yr)	P Value
Number of patients (%)	500	274 (55)	226 (45)	NA
Geographic distribution (%)				0.5
National	469 (94)	255 (93)	214 (95)	
International	31 (6)	19 (7)	12 (5)	
Sex (Female : Male)	1.2 : 1	0.8 : 1	2.1 : 1	<0.0001
Race/Ethnicity (White : African-American)	8.6 : 1	8.1 : 1	9.3 : 1	<0.0001
Prematurity	126 (25)	115 (42)	11 (5)	<0.0001
Associated abdominal congenital anomalies (%)	216 (43)	174 (64)	42 (19)	<0.0001
Gastrochisis	77 (15)	65 (24)	12 (5)	<0.0001
Intestinal atresia	65 (13)	57 (21)	8 (4)	<0.0001
Gastrochisis + intestinal atresia	15 (3)	14 (5)	1 (0.4)	0.3080
Accessory gut organs	59 (12)	38 (14)	21 (9)	0.1114
Genetically syndromes (%)	51 (10)	36 (13)	15 (7)	0.015
Thrombophilia (%)	25 (5)	9 (3)	16 (7)	0.003
Age at time of diagnosis (median [IQR], yr)	13 [0–37]	0.1 [0–6]	40 [28–57]	<0.0001
Duration between symptoms and diagnosis (yr)	0–5	341 (68)	219 (80)	122 (54)
	>5	159 (32)	55 (20)	104 (46)
Clinical presentation at referral (%)				<0.0001
Midgut-loss	204 (41)	174 (64)	30 (13)	
Disabling digestive symptoms	125 (25)	40 (15)	85 (38)	
Nonspecific digestive symptoms	171 (34)	60 (22)	111 (49)	
History of Volvulus (%)	254 (51)	196 (72)	58 (26)	<0.0001
Connective tissue/autoimmune (%)	25 (5)	5 (2)	20 (9)	0.0003
Gut dysmotility (%)	56 (11)	20 (7)	36 (16)	0.002
Total parenteral nutrition (%)	228 (46)	190 (69)	38 (17)	<0.0001
Prior abdominal surgery				
Number of patients (%)	441 (88)	260 (95)	181 (80)	<0.0001
Number of procedures (mean ± SD)	3 ± 3	3 ± 2	2 ± 2	0.07
Ladd’s procedure (%)	192 (38)	116 (42)	76 (34)	0.05
Open	143 (74)	100 (86)	43 (57)	<0.0001
Laparoscopic	49 (26)	16 (14)	33 (43)	
Prior organ/cell transplant (%)	26 (5)	14 (5)	12 (5)	0.5
Surgical management (%)	269 (54)	187 (68)	82 (36)	<0.0001
Gut transplantation (GT)	174 (65)	157 (84)	17 (21)	
Autologous gut reconstruction (AGR)	15 (5)	8 (4)	7 (8)	
Gut malrotation correction (GMC) surgery	80 (30)	22 (12)	58 (71)	
Overall survival (%)	383 (77)	197 (72)	186 (82)	0.01

5Sixteen patients had prior autologous gut reconstruction (AGR).
6As of February 15, 2021.
Figure-1, http://links.lww.com/SLA/D256 identifies different abnormal locations and configurations of the midgut visceral (Fig. 1A) and vascular (Fig. 1B) structures. The type of malrotation was difficult to be categorized because of prereferral midgut-loss or prior Ladd’s procedure.

Gut malrotation syndrome (GMS) was defined by a cluster of disabling digestive symptoms. Dysmotility was diagnosed in symptomatic patients with delayed orocecal and colonic transit time. GT was indicated for irreversible gut failure with TPN-associated complications including liver failure.54 AGR is a digestive surgery that restores gut continuity and remodels intestinal transit time.54

Study Population
The study was conceived in the mid-2000s with the observed steady GM-associated midgut-loss referral to transplantation and was launched with the 2010 development of GMC surgery. Of the 500 collated patients, 274 (55\%) were children at the time of GM diagnosis. Midgut-loss was present in 204 (41\%) whereas 296 (59\%) had intact gut with a wide range of digestive symptoms and other extra-gastrointestinal associated pathology. The clinical features of the total population according to age of diagnosis and status of midgut are summarized in Tables 1 and 2, respectively.

Of the 204 midgut-loss patients, 189 (93\%) underwent surgical intervention; AGR in 31 (16\%) (Table 3) and GT in 174 (92\%) including 16 of the AGR patients (Table 4). The remaining 15 (7\%) continued to receive TPN because of poor surgical candidacy or unwillingness to proceed with transplant. Of the 125 prospectively-studied patients with disabling digestive symptoms, 80 (64\%) underwent GMC surgery (Table 5) with the complexity of a few patients as shown in Supplementary Figure-2, http://links.lww.com/SLA/D256. Surgery was deferred in the remaining 45 (36\%) because of national/international health insurance denial (n = 16), covid-19 pandemic (n = 14), socioeconomic barriers (n = 8) or patient/parent desire (n = 7).

Evaluation
The referred patients with midgut-loss underwent a thorough initial evaluation to assess nutritional status, gut anatomy, and associated pathology.53,54 The prereferral diagnostic studies and operative reports were independently reviewed by 2 of the coauthors to confirm

Table 2. Descriptive Features of the 500 Gut Malrotated Patients According to Status of Gut Anatomy at Time of Referral

Variable	Midgut-loss (%)	Intact Midgut (%)	P Value
Number of patients (%)	204 (41)	296 (59)	NA
Geographic distribution (%)			0.322
National	190 (93)	279 (94)	
International	14 (7)	17 (6)	
Sex (Female / Male)	90 / 114	186 / 110	<0.0001
Race (White / African-American)	180 / 24	266 / 28	0.002
Age at time of diagnosis (median [IQR], yr)	1 [0–8]	29 [10–52]	<0.0001
≤1	131 (64)	42 (14)	
>1 to < 18	43 (21)	58 (20)	
18 to ≤ 40	24 (12)	96 (32)	
>40 to ≤60	6 (3)	55 (19)	
>60	0 (0)	45 (15)	
Prematurity (%)	96 (47)	30 (10)	<0.0001
Associated abdominal congenital anomalies (%)	143 (70)	73 (25)	<0.0001
Gastroschisis	67 (47)	10 (14)	<0.0001
Intestinal atresia	52 (36)	13 (18)	<0.0001
Gastroschisis + intestinal atresia	15 (11)	0 (0)	<0.0001
Accessory gut organs	9 (6)	50 (68)	<0.0001
Time between symptoms and diagnosis (yr)			
0–5	172 (84)	169 (57)	<0.0001
>5	32 (16)	127 (43)	
History of volvulus (%)	198 (97)	56 (19)	<0.0001
History of Ladd’s procedure (%)	50 (25)	142 (48)	<0.0001
Open	45 (90)	98 (69)	
Laparoscopic	5 (10)	44 (31)	
Prior abdominal surgery			
Number of patients (%)	200 (98)	241 (81)	<0.0001
Number of procedures (median [IQR])	3 [2–5]	2 [1–4]	<0.0001
Prior organ/cell transplant (%)	6 (3)	20 (7)	0.025
Gut dysmotility (%)	16 (8)	40 (14)	<0.0001
Connective tissue / autoimmune (%)	5 (2)	20 (7)	<0.0001
Genetic syndromes (%)	15 (7)	36 (12)	0.104
Thrombophilia (%)	19 (10)	6 (2)	0.228
Total parental nutrition (%)	199 (98)	29 (10)	<0.0001
Surgical management (%)	189 (93)	80 (27)	<0.0001
Gut transplantation (GT)	174 (92)a	0 (0)	
Autologous gut reconstruction (AGR)	15 (8)	0 (0)	
Gut malrotation correction (GMC) surgery	0 (0)	80 (100)	
Overall survival (%)	123 (60)	260 (88)	<0.0001

NA indicates non-applicable.
aSixteen patients failed prior autologous gut reconstruction.
bas of February 15, 2021.
the history of malrotation. Targeted clinical, laboratory, radiologic, endoscopic and histopathologic examinations were established to assess candidacy for gut rehabilitation and/or transplantation.54

Patients with intact gut and disabling symptoms were typically referred after needless work-up for eating, somatoform, and mental health disorders. Accordingly, a few specific studies were conducted to confirm the diagnosis and exclude other gastrointestinal/systemic disorders. Motility studies were conducted for constipated patients including sitz markers and orocecal transit time with gastric emptying, anorectal manometry, and defecography in selected cases (Supplementary Figure-3, http://links.lww.com/SLA/D256). With a total of 65 points, frequency and severity were measured before surgery and during the last follow-up. Lower scores indicate improvement of the GI symptoms. Patients were typically asked to answer the questionnaire to confirm the diagnosis and exclude other gastrointestinal/systemic disorders. The well-established National Institute of Health (NIH) symptomology scales were modified and self-reported by the GMC surgery patients.60 The 8 symptomatology scales were recently described.54 A total of 31 patients underwent AGR as a definitive treatment or bridge to transplant. Intestinal lengthening was performed in 23 (74%) patients; Bianchi in 6 (26%) and serial transverse enteroplasty in 17 (74%). The freely mobile part of the duodenum was also lengthened. Correction of the residual gut anatomic location with mesenteric fixation was performed after completion of the reconstructive procedure(s). With descriptive features summarized in Table 3, 16 (52%) patients ultimately required GT.

Surgical Procedures

Autologous Gut Reconstruction

The remedial procedures including bowel lengthening were recently described.54 A total of 31 patients underwent AGR as a definitive treatment or bridge to transplant. Intestinal lengthening was performed in 23 (74%) patients; Bianchi in 6 (26%) and serial transverse enteroplasty in 17 (74%). The freely mobile part of the duodenum was also lengthened. Correction of the residual gut anatomic location with mesenteric fixation was performed after completion of the reconstructive procedure(s). With descriptive features summarized in Table 3, 16 (52%) patients ultimately required GT.

Gut Transplantation

The donor and recipient operative techniques were previously published.52 Of the 174 patients, 77 (44%) required primary liver-free allografts with most being isolated intestine (Table 4). The remaining 97 (56%) received liver-containing allografts with 10 multivisceral including stomach, duodenum, pancreas, intestine, and liver. With an overall retransplantation rate of 13%, 4 recipients successfully received a third allograft. Transplant types are...
Attention was first directed towards dissection of the duodenum through a combined anterior and posterior approach. In most cases, the duodenal wall was tethered anteriorly by the uncinate process/gastrocolic ligament and trapped posteriorly between the posterior pancreatic surface and retroperitoneal cava (Fig. 1A). There was a single example of the proximal duodenum being imprisoned within the liver parenchyma and proximal jejunum being detained in a diaphragmatic defect because of prior reconstructive surgery during infancy (Fig. 1B,C). Internal hernia with cocoon of the midgut was observed in 3 cases with situs ambiguous in one and history of multiple Ladd’s in 2 (Fig. 1D).

The next step was dissection of the colon that was mostly located in the center or left side of the abdomen (Fig. 1E). The transverse and/or left colon were commonly tortuous with contracted mesentery and involved multiple Ladd’s in 2 (Fig. 1D).

With a few exceptions, most of the procedures were elective. Through a midline incision, the abdomen was explored with identification of the midgut anatomy including duodenum, cecocolon, and mesenteric hilum. Tissue dissection was sharp with judicious use of thermal hemostasis. Omentectomy and adhesiolysis were often required because of prior abdominal surgeries. Ladd bands were never seen in any of the patients.

Illustrated in Supplementary-Figure-5, http://links.lww.com/SLA/D256 with clinical data featured in Table 4.

GMC Surgery

Contrary to Ladd’s (Supplementary-Figure-6, http://links.lww.com/SLA/D256), the 2 essential steps of the GMC “Kareem’s” procedure were liberation of the duodenum with completion of the 270° counterclockwise-rotation and establishment of all mesenteric attachments. The aim was to alleviate gastrointestinal symptoms and prevent volvulus. Resection of the convoluted colon was performed in patients with distorted or shortened mesocolon and colonic dysmotility.

With a few exceptions, most of the procedures were elective. Through a midline incision, the abdomen was explored with identification of the midgut anatomy including duodenum, cecocolon, and mesenteric hilum. Tissue dissection was sharp with judicious use of thermal hemostasis. Omectomy and adhesiolysis were often required because of prior abdominal surgeries. Ladd bands were never seen in any of the patients.

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.

Table 4. Transplantation for Irreversible Gut Failure after Loss of the Malrotated Intestine

Variable	Total	Liver-Free	Liver-Containing	P Value	
Number of recipients/allografts	174 / 200	77 / 86	97 / 114	NA	
Recipient age (mean ± SD, yr)	9 ± 7	13 ± 12	4 ± 4	<0.0001	
Children / adults	150 / 24	59 / 18	91 / 6	0.001	
Recipient sex (Female : Male)	1 : 1.5	1 : 1.5	1 : 1.4	0.896	
Recipient age at time of gut failure (yr)	4 ± 4	9 ± 8	2 ± 2	<0.0001	
≤1 yr	114 (66)	33 (43)	81 (84)	<0.001	
>1 to ≤18	40 (23)	29 (38)	11 (11)	0.56	
≥18	20 (11)	15 (19)	5 (5)	0.018	
Prematurity (%)	138 (79)	46 (60)	92 (95)	<0.0001	
Abdominal wall/gut	103 (59)	34 (44)	69 (71)	0.003	
Cardiopulmonary/neurocognitive	35 (20)	12 (16)	23 (24)	0.184	
Thrombophilia (%)	17 (10)	10 (13)	4 (4)	0.005	
Prior liver/stem cell transplant	5 (3)	2 (3)	3 (3)	0.853	
Total abdominal surgery (mean ± SD)	3 ± 2	4 ± 2	3 ± 2	0.36	
Length of residual midgut	Small bowel (mean ± SD, cm)	20 ± 17	20 ± 17	20 ± 16	0.95
Large bowel (≥50%)	145 (83)	60 (78)	85 (88)	0.08	
TPN duration (median [IQR], month)	20 [12–42]	25 [13–67]	18 [12–33]	0.006	
Gut dysmotility (%)	8 (5)	8 (10)	0 (0)	<0.0001	
Prior autologous gut reconstruction (%)	16 (9)	6 (8)	10 (10)	0.56	
Total serum bilirubin (mean ± SD, mg/dl)	11 ± 13	2 ± 2	17 ± 13	<0.0001	
Liver pathology (steatosis/fibrosis/cirrhosis)	54 / 75 / 43	40 / 35 / 0	14 / 40 / 43	0.001	
Primary allograft (%)	Intestine/modifed multivisceral	76 / 1	76 / 1	NA	NA
Liver/intestine/full multivisceral	87 / 10	NA	87 / 10	NA	
Retransplantation (%)	22 (13)	13 (17)	9 (9)	0.057	
Positive T/TB cell cross-match (n = 169, %)	23 (14)	9 (12)	14 (15)	0.626	
Splenectomy (%)	42 (24)	2 (3)	40 (41)	<0.0001	
Thymoglobulin/camphath-1H induction (%)	103 (59)	52 (68)	51 (53)	0.046	
Portal drainage (%)	28 (16)	21 (29)	9 (9)	0.001	
Cold ischemia time (mean ± SD, hour)	12 ± 3	10 ± 3	13 ± 3	0.002	
Length of hospital stay (mean ± SD, week)	8 ± 6	7 ± 5	9 ± 6	0.011	
Graft loss (death/graft failure) (%)	110 (55)	60 (70)	50 (44)	0.0004	
Chronic allograft rejection	31 (18)	22 (29)	9 (9)	0.001	
Lymphoproliferative disorder (PTLD)	29 (16)	11 (14)	17 (18)	0.056	
Graft versus host disease (GVHD)	14 (8)	6 (8)	8 (8)	0.9	
Overall patient survival (%)	101 (59)	60 (70)	50 (44)	0.0004	
TPN-free survival (%)	90 (89)	32 (80)	58 (95)	0.017	
Follow-up (mean ± SD, yr)	11 ± 8	9 ± 7	11 ± 8	0.06	

NA indicates non-applicable; modified multivisceral includes stomach, duodenum, and pancreas en bloc with the intestine; full multivisceral is en bloc inclusion of the stomach, duodenum, pancreas, intestine, and liver. TPN, total parenteral nutrition.

With a few exceptions, most of the procedures were elective. Through a midline incision, the abdomen was explored with identification of the midgut anatomy including duodenum, cecocolon, and mesenteric hilum. Tissue dissection was sharp with judicious use of thermal hemostasis. Omentectomy and adhesiolysis were often required because of prior abdominal surgeries. Ladd bands were never seen in any of the patients.

Illustrated in Supplementary-Figure-5, http://links.lww.com/SLA/D256 with clinical data featured in Table 4.
With completion of the 180° counterclockwise enteromesenteric-rotation, vascular-inversion was consequentially reversed (Fig. 2D). The right-sided newly-oriented cecum and ascending colon were then fixed to the posterior and parietal peritoneum (Fig. 1D). Subsequently, the root of the mesentery was snugly anchored to the posterior peritoneum along the long diagonal axis between the fixed lower right cecum and upper left neo-ligament of Treitz (Fig. 1E). Segmental transverse or left colon resection was required for patients with contracted mesentery and redundant colon (Figure 3A–B). Subtotal colectomy was required for patients with severe colonic dysmotility (Figure 3C). After restoration of gut continuity, colopexy and sigmoidopexy were completed (Fig. 3). Full technical details are available at Cleveland Clinic video platform. https://www.youtube.com/user/ClevelandClinic

Postoperative Care

Infection prophylaxis was utilized for all patients. Thrombo-prophylaxis was universal and life-long anticoagulation was needed for thrombophilic individuals. Prokinetic and anti-diarrheal agents were prescribed for thrombophilic individuals. Prokinetic and anti-diarrheal agents were required for AGR patients with periodic treatment of bacterial overgrowth in selected cases. GLP-2 was given to a single AGR patient who failed TPN weaning.

The complex management of transplant recipients stemmed from the high intestinal allograft immunogenicity and intricacy of the surgical procedures. Immunosuppression was tacrolimus-based with induction/preconditioning in 103 (59%) of the study patients. Postoperative monitoring included early diagnosis and treatment of rejection, graft versus host disease (GVHD), hyperacute rejection, early post-transplant mortality, and hospital and readmission rates.

Statistical Analysis

Statistical analysis was performed with Stata software (StataCorp, College Station, TX). Continuous variables were expressed as mean ± standard deviation (SD) or median (interquartile range, IQR). Categorical variables were expressed as counts (percentages). The Chi-square test or Fisher’s exact test was used to compare categorical variables between groups. The Student’s t-test or Mann-Whitney U test was used to compare continuous variables between groups. Logistic regression was used to evaluate the association of the outcomes with the independent variables. A p-value of <0.05 was considered significant.
posttransplant lymphoproliferative disorders (PTLD), and cytomegaloviral infection.

Long-term follow-up included regular visits which were more frequent and comprehensive for the transplant recipients. The GMC surgery patients required yearly follow-up with upper gastrointestinal contrast series for certain patients (Supplementary Figure-7, http://links.lww.com/SLA/D256).

Quality of Life Assessment
The assessment was limited to the surgical patients. A chart review was completed for the transplant survivors with special focus on neurocognitive functions, mental health issues, and socioeconomic status documented by mental health professionals. The GMC surgery patients were prospectively evaluated for changes in the modified eight NIH-PROMIS gastrointestinal symptom domains and TPN requirement. Postoperative complications, hospital readmissions, reoperations, and current body mass index status were used as surrogate markers of global health. The physical performance status of transplant survivors and GMC surgery patients was assessed utilizing the Karnofsky/Lansky scale system.

Data Management and Statistical Analysis
Data were collated into a master file and stratified according to age at time of GM diagnosis and status of midgut. The prospectively collected data of the midgut-loss patients were classified according to the type of surgical intervention. Both AGR and GT patients were sub-grouped according to subsequent need for transplant and type of required allograft, respectively. The GMC surgery group was classified according to status of colonic motility.

Data were summarized as mean ± standard deviation or median (interquartile range, IQR) for continuous and percentages for categorical variables. Group differences were assessed with paired/unpaired t test, ANOVA, and nonparametric Kruskal-Wallis rank-sum. Noncontinuous variables were examined using the Pearson chi-square test.

Time to development of midgut volvulus with and without midgut-loss was illustrated in a scatter plot. Survival and cumulative risk of midgut-loss were calculated using Kaplan-Meier product limit and group comparison was with log-rank test. All events were computed as of February 15, 2021.
FIGURE 2. The technical steps of the gut malrotation correction (GMC) surgery “Kareem’s procedure”. After dissection of the duodenum, the third and fourth part were rotated (curved arrow) to the left side 180° behind the mesenteric hilum (superior mesenteric artery and vein) to complete the embryonic 270° counterclockwise midgut rotation (A-B). With proper vascular orientation, duodenopexy was completed with interrupted silk sutures creating a neo-ligament of Treitz (red arrow) in the left upper abdominal compartment (B-C). After complete dissection and freeing of the colon, the cecum and right colon were placed in the right side of the abdominal cavity and fixed into the posterior and lateral peritoneum, respectively (D). Note the resultant subsequent reversal of the vascular inversion (red arrow). After colonic resection, when indicated, the mesenteric root is fixed to the posterior peritoneum along the diagonal long axis (double arrow line) between the cecum and neo-ligament of Treitz with interrupted silk sutures (E).

FIGURE 3. Concomitant colon resection with the gut malrotation correction (GMC) surgery. A) Segmental resection of the transverse colon in patients with convoluted and contracted transverse mesocolon (insert). B) Segmental left colon resection in patients with convoluted and redundant descending / sigmoid colon (insert). C) Subtotal colectomy in patients with severe colonic dysmotility with a colo-ileal anastomosis in a side to end fashion. Note completion of the colopexy after the colonic resection. In patients with pelvic floor dysfunction, sigmoidopexy as well as rectopexy are indicated (B-C).
Predictive Modeling

The total population was computed to develop midgut-loss predictive and GMS defined models. For midgut-loss, Cox proportional hazard model was used with time to event being calculated from date of birth to date of midgut-loss or last follow-up. Age at time of GM diagnosis, sex, race, prematurity, gastrochisis, intestinal atresia, autoimmune/systemic disorders, Ladd’s, and volvulus were computed as exposure variables. For the GMS model, the 125 patients with disabling gastrointestinal symptoms were computed in reference to the rest of the 296 intact gut patients. The exposure variables were abdominal pain, gastro-esophageal reflux, nausea/vomiting, bloating, and altered bowel habits. The stepwise variable selection and univariate/multivariate analyses methods were used to develop the generalized linear regression model. All analyses were done using R software package (R studio, version 3.5.2, Boston, MA).

RESULTS

Total Population Descriptive Analysis

The complexity of the total study population was indicated by history of volvulus in 51% and associated abdominal congenital anomalies in 43% with genetic, connective tissue, and gut motility disorders in 26%. History of abdominal surgery was documented in 88%. Prior transplants included liver (n = 17), kidney (n = 3), stem cell (n = 3), heart (n = 2), and double-lung (n = 1). History of Ladd’s was documented in 192 (38%) patients.

Sex, race, prematurity, associated abdominal congenital anomalies, duration of symptoms, prior abdominal surgeries, and volvulus were significant features of both early GM diagnosis (Table 1) and midgut-loss (Table 2). History of Ladd’s, connective tissue disease, autoimmune disorders, and dysmotility were observed at a significantly (P < 0.0001) higher rate among patients with intact gut. The digestive symptoms among the 296 patients with intact gut were abdominal pain (67%), gastro-esophageal reflux (36%), nausea/vomiting (58%), bloating (38%), constipation (45%), and/or diarrhea (29%). GMS was identified in 42% of the study population.

The distribution of midgut-loss according to age is shown in Figure 4A. The inverse correlation between age and volvulus development is illustrated in Figure 4B. Note the highest incidence of volvulus and midgut-loss during the first year of life, including 30 neonates.

Volvulus after Ladd’s Procedure

With the intent to treat, volvulus was documented in 97 of the 192 patients who underwent Ladd’s procedure with an overall incidence of 51%. The midgut was rescued in 50 patients with an overall success rate of 21%. Of these, 18 (44%) ultimately lost the midgut.

Autologous Gut Reconstruction

Of the 31 AGR patients, 22 (71%) were children with none of the patients having hepatic cirrhosis (Table 3). The ultimate need for GT was denoted by higher percentages of perinatal diagnosis, younger age, associated gut anomalies particularly gastrochisis, and shorter bowel length. In the AGR-only patients, the number of primary reconstructive procedures was significantly higher with less need for bowel lengthening (Table 3).

With a median follow-up of 3 years (range: 1–11), 22 (71%) were alive including those who were rescued with transplant achieving an overall TPN-free survival of 55%. TPN-dependent survivors were alive including those who were rescued with transplant achieving an overall TPN-free survival of 55%. TPN-dependent survivors were alive including those who were rescued with transplant achieving an overall TPN-free survival of 55%. TPN-dependent survivors were alive including those who were rescued with transplant achieving an overall TPN-free survival of 55%.

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
Gut Transplantation

At the time of transplant, 150 (86%) patients were children with a higher need for liver-containing allograft (61%) particularly among infants (84%) (Table 4). Interestingly, liver-containing transplant was required at a significantly higher rate among premature children and patients with abdominal wall and/or gut anomalies. With a maximum of 13 prior abdominal surgeries, 5 patients had prior liver (n = 4) or stem cell (n = 1) transplant. A few years after transplant, the 4 liver recipients developed midgut volvulus complicated with mesenteric infarction requiring retransplantation with liver-free (n = 1) and liver-containing (n = 3) visceral allografts. Operative and postoperative details are given in Table 4.

With a mean follow-up of 11 ± 8 years, 101 (58%) patients were alive with TPN-free survival of 89%. Leading causes of death were sepsis (52%), rejection (23%), PTLD (11%), technical complications (10%), and GVHD (8%). With a maximum follow-up of 30 years, cumulative patient survival was 86% at 1-year, 71% at 5-years, 63% at 10-years, and 54% at 20-years (Fig. 5A). Infants (Fig. 5B) and liver-containing allografts (Fig. 5C) had the best survival with 20-year rates of 64% and 61%, respectively.

Neurocognitive and mental health disorders were documented in 45% and 60% of 89 current survivors, respectively. Common impairments were intellectual disability, developmental delay, anxiety, depression, and autism. Risk factors were age at time of midgut-loss (odds ratio = 1.1, P = 0.017) and associated congenital disorders (odds ratio = 2.4, P = 0.04).

Most adult survivors completed high school or higher education with the younger age group continuing to attend schools with an overall education index of 97%. With 56% still being students, 30% were fully employed with 3% homemakers. The remaining 11% were either unemployed (6%) or in preschool/day care (5%). Equally impressive was the achievement of 80% to 100% Lansky/Karnofsky performance score in 85% of total survivors. Remarkably, 2 female recipients gave birth to a total of 3 healthy children and 4 male patients fathered 6 children.

GMC Surgery “Kareem’s Procedure”

Of the 80 GMC surgery patients, 74 (92%) were adults and 6 (8%) were children including a 13-month old baby. Associated colonic dysmotility was observed in 25 (31%) patients (Table 5). The dysmotility patients were all White with female predominance. Other distinguishing features were concomitant connective tissue disease and autoimmune disorders including Ehlers Danlos syndrome, older age at time of diagnosis, bacterial overgrowth, and shorter duration of symptoms.

Surgical correction of the midgut anatomic abnormalities was complete in all but 1 adult patient with long-segment duodenal atresia requiring duodenojejunal reconstruction at birth. As such, all the steps of GMC surgery were performed with the exception of fixing the entire duodenum to the right of the mesenteric hilum (Supplementary Figure-8, http://links.lww.com/SLA/D256). Simultaneous foregut reconstruction was performed in 6 patients; gastrogastro (n = 2), gastroplasty (n = 1), jejunal interposition (n = 1), reversal of fundoplication (n = 1), and simultaneous gastric-bypass (n = 1). Prior bariatric surgery was documented in 3 patients with sleeve (n = 2) and Roux-en Y (n = 1). Duodenoplasty was required for 4 incidental duodenal diverticulae with ectopic gastric

FIGURE 5. Kaplan-Meier cumulative survival among the 269 surgically treated patients: A) Overall transplant patient survival, B) Recipient survival according to age, C) Survival of the liver-free and liver-containing allografts, and D) Survival of the gut malrotation correction (GMC) surgery patients compared to autologous reconstructive and transplant surgery. Note best transplant survival among infants and liver-containing allografts with no mortalities among GMC surgery patients.

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
mucosa in one. With reduction of 2 jejunal intussusception, midgut reconstruction was required in another case with enterocutaneous fistula due to a technically-flawed operation before referral. Colon resection was required at a significantly ($P = 0.007$) higher rate among dysmotility patients with concomitant need for pyloroplasty and diverting stoma in few cases (Table 5). It is imperative to emphasize that these adjunct digestive surgeries were performed in the patients who needed colon resection.

With the perioperative data given in Table 5, there were no technical complications. With minimal operative blood loss, the mean operative time was 6.5 hours. In patients with no history of multiple abdominal operations or need for simultaneous foregut and colonic surgeries, the mean operative time was 4.1 ± 1 hour with a minimum of 2.9 and maximum of 6 hours. Nonetheless, all procedures were open with hand-sewn anastomoses in the milieu of a teaching environment. The postoperative hospital recovery was relatively slow among patients with motility disorders.

Postoperative complications developed in a total of 7 (9%) patients with 4 experiencing Clavien-Dindo grade I-II due to wound and line infections. The remaining 3 had grade Illa-Iva with short-lived respiratory insufficiency due to fluid overload, line placement-induced pneumothorax, and intra-abdominal infection with percutaneous drainage. Hospital readmission within the first 90 postoperative days was required for 3 (5%) of the non-colonic dysmotility patients due to line-induced bacteremia ($n = 2$) and vague abdominal pain ($n = 1$). Another 3 (16%) gut dysmotility patients were admitted within the first year for uncomplicated sigmoid diverticulitis, line infection, and radiologically-proven functional bowel obstruction.

None of the patients required surgical intervention. However, a total of 11 (10%) patients with recurrent refractory constipation required completion colectomy during the study period with concomitant ventral hernia repair in 5 cases.

With a mean follow-up of 36 ± 23 months, all patients were alive with no single example of de novo or recurrent volvulus. The long-term survival was better compared to those who developed midgut-loss and underwent AGR and/or GT (Fig. 5D).

With a maximum of 10 year follow-up and exclusion of patients with adjunct major foregut reconstruction, the preoperative scores of the eight NIH-PROMIS gastrointestinal symptom scales significantly ($P < 0.001$) improved in all of the 74 study patients (Fig. 6A). The same level of significance was also observed among patients with worsening symptoms after Ladd’s (Fig. 6B). Similar results were observed among patients with and without gut dysmotility (Fig. 7A). Furthermore, such a significant improvement was maintained among the 22 patients without colon resection (Fig. 7B). These testimonial results leave no doubt concerning the therapeutic efficacy of GMC surgery in treating the GM-associated digestive symptoms (Fig. 7B). All of the 13 patients with preoperative-TPN achieved full nutritional autonomy maintaining an average body mass index of 25 kg/m2.

The preoperative Karnofsky/Lansky performance scores significantly ($P < 0.0001$) improved after GMC surgery. The preoperative scores were below 50% in 52 (65%) patients and between 50% and 70% in the remaining 28 (35%). At the last follow-up, most patients experienced performance scores of 80% to 100% resuming full daily activities.

FIGURE 6. The impact of gut malrotation correction (GMC) surgery on the modified preoperative National Institute of Health (NIH) patient-reported outcomes measurement information system (PROMIS) gastrointestinal Symptom Scales. A) The total study patients ($n = 74$) with highly significant improvement in each of the symptom domains. B) The sub-cohort with prior Ladd’s procedure and complete study points ($n = 34$). Note worsening of the symptom scales after Ladd’s with significant improvement after GMC surgery. The significant improvement in the eighth oral restricted intake scale is not shown in the figure because of data limitations in the utilized illustration computer program.
Outcome Analysis and Predictive Models

With univariate analysis, volvulus, prematurity, gastroschisis, intestinal atresia, and male sex were risk factors for midgut-loss. Ladd’s, autoimmune/systemic disorders, White race, and increasing age were associated with reduced probability of midgut-loss. The overall cumulative risk of midgut-loss among the total population was 30% at 10 years, 43% at 50 years, and 47% at 80 years (Fig. 8A). The cumulative risk with each variable is depicted in Figure 8B to F.

With the intent to treat, midgut-loss still occurred with Ladd’s at a cumulative incidence of 18% at 10-years, 31% at 50-years, and 38% at 80-years (Fig. 8F). With multivariate analysis, volvulus, prematurity, gastroschisis, and intestinal atresia continued to be significant midgut-loss risk factors while Ladd’s and increasing age continued to be associated with reduced risk of gut-loss (Table 6). Full details including the receiving operating characteristics (ROC) curve and the linear predictive equation are exhibited in Supplementary Figure-9A, http://links.lww.com/SLA/D256.

The generalized linear predictive model defined GMS with abdominal pain, nausea/vomiting, and bloating being the distinctive clinical symptoms. The syndrome was identified in 42% of the study patients. With the overall probability of 0.96, bloating had the highest statistical weight. With multivariate analysis, gut dysmotility, White race, Ladd’s procedure, and female sex were significant predictors of GMS (Table 6). The model was formulated with 91% sensitivity and 94% specificity. Full details including the linear predictive equation are provided in Supplementary Figure-9B, http://links.lww.com/SLA/D256.

DISCUSSION

With great wisdom, Professor Ladd warned us that GM is rare enough so that it is likely to escape the mind and it is common enough to be important.8 He also stated that timely and suitable surgical intervention offers the only chance for cure and restoration of the health of these patients.26 Accordingly, scientists and clinicians across the world continued to tackle such a puzzling and potentially lethal disorder.2–7,9–24,62–64

During the last century, the field has experienced certain misconceptions and controversies. Most physicians continued to believe that GM is a childhood disorder.44–46 The congenital syndrome was also considered as a simple morphologic anomaly resulting in misnomenclature of the type of malrotation.1 Of utmost importance, have been the surgical controversies concerning restitution of the mesenteric-attachments and management of the asymptomatic patients.15–20,36 This study and other recently published data emphasized the clinicopathologic diversity of the syndrome with subtle and often overlooked symptoms in a considerable number of patients.13–24,65,66 With increased awareness and frequent use of dedicated imaging studies, it is anticipated that there will be less misdiagnosis with increased recognition of GM as a clinical syndrome particularly in adults.
Recent years witnessed new paradigms in the pathogenesis of GM. The role of the mesentery in the embryonic development and support of the human digestive organs has been elucidated.4–7,9,55,56 In addition, human biologists and geneticists advocated an interplay between the aberrant enteric nervous system and the abnormally rotated midgut67,68 Such a notion was supported by the recent documentation of intrinsic neuropathologic abnormalities in a malrotated human intestine.69 A similar study is currently in progress at our institution with intriguing initial results. Accordingly, it is time for clinicians and surgeons to recognize GM as an enteromesenteric syndrome with intrinsic motility disorders.

This large series addressed the full clinical spectrum of GM in both children and adults. There was an observed wide gap between onset of symptoms, diagnosis, and surgical treatment. Associated genetic defects and other congenital abdominal anomalies seemed to drive the earlier childhood diagnosis.70–72 Connective tissue, autoimmune, and gut motility disorders were common among patients with adulthood diagnosis. These commonalities could be partially

TABLE 6. Predictors of Midgut-loss and Development of Gut Malrotation Syndrome (GMS)

	Hazard Ratio (HR)	95% Confidence Interval	\(P\) Value
Midgut Loss (N = 500)			
Volvulus	27.144	11.861–62.120	<0.001
Prematurity	2.137	1.556–2.937	<0.001
Gastroschisis	1.667	1.209–2.999	0.002
Intestinal atresia	1.445	1.028–2.032	0.034
Ladd’s procedure	0.323	0.228–0.457	<0.001
Age at time of diagnosis	0.945	0.931–0.958	<0.001

Gut Malrotation Syndrome (n = 296)	Odds Ratio (OR)	95% Confidence Interval	\(P\) Value
Gut dysmotility	14.99	4.9–45	0.003
Race/Ethnicity (White)	4.11	1.23–13.7	0.021
Ladd’s procedure	1.8	1.06–3.06	0.028
Sex (female)	1.76	1.01–3.08	0.046

FIGURE 8. The Kaplan-Meier cumulative risk of midgut-loss in patients with gut malrotation. A) Total population, B) According to development of volvulus, C) Prematurity, D) Gastroschisis, E) Intestinal atresia, and F) Ladd’s procedure. Volvulus was the most significant risk factor and Ladd’s procedure was protective. Solid lines are the curves for cumulative risk, dotted lines are patients at risk, and shaded areas are the confidence interval (CI).
explained by the differential disruption of the intercellular molecular and genetic signals that regulate migration, differentiation and maturation of the endodermic, mesodermic, and neural crest cells. It has also been speculated that intraperitoneal vascular insults could be another contributing factor.7–7,9

The many faces of malrotated gut were portrayed with special emphasis on clinical presentations in milieu of age at diagnosis and necessity for surgical intervention. The development of midgut volvulus with the imminent risk of mesenteric infarction was the most devastating feature particularly among the pediatric population.7,7,9 This study is the first to document the cumulative incidence of midgut-loss with identification of several risk factors including volvulus, prematurity, gastrochisis, and intestinal atresia. Along with other scattered publications, Ladd’s procedure and increasing age reduced but did not prevent the risk of volvulus.15–24,31–48

Patients with intact gut experienced digestive symptoms which were commonly incapacitating. With the first adult case being reported in 1960s, recent literature highlighted the common development of GM symptoms in both adults and children.57–41 This study is the first to define the GMS comprising of pain, nausea/vomiting, and bloating. The frequency and severity of these symptoms varied according to the distorted anatomy and altered motility of midgut with the development of intermittent volvulus.17–19,49–51 The designed herein patient-generated report captured the breadth and depth of the patient illness experience.

With the largest series and the longest follow-up ever reported in the literature, this study featured recent advances in the surgical management of midgut malrotated patients. With massive midgut-loss, integrative surgical management with ACR and GT achieved long-term 10-year survival of 78% and 63%, respectively. Infants experienced the best outcome with 20-year survival rate of 64%. Overall, 2 decades of functional survival were attainable with better quality of life. One of the primary objectives of this study was to introduce the new operation and assess its therapeutic efficacy. The surgical principles of the GMC surgery stemmed from the normal embryonic development and rotation of the human midgut. In contrast to Ladd’s, the procedure normalizes the enteromesenteric structural and vascular anatomy with restoration of the defective interface between the mesentry and retroperitoneum.

The anatomically-based procedure is safe, effective, and easy to perform in all ages. It should be recognized as an integral part of the surgical armamentarium. Collective efforts should be directed towards training both pediatric and adult digestive surgeons as a part of the surgical training curriculum with establishment of a current procedural terminology (CPT) code. It remains to be seen if the procedure can be laparoscopically performed.

This article calls for 2 evidence-based recommendations. First, the current favorable long-term outcomes with gut rehabilitation and transplantation substantiate a definitive rather than a comfort care for neonates and infants with midgut infarction.61,75,79 Second, the proven herein therapeutic efficacy of GMC warrants utilization of the procedure for the GM symptomatic patients, those with volvulus after Ladd’s, and expectantly the asymptomatic patients.7,9 Despite the need for additional long-term follow-up, the entailed enteromesenteric corrections are proven to preclude the risk of midgut volvulus. Furthermore, new advances in the perinatal diagnosis of midgut malrotation/volvulus with prompt surgical intervention are expected to enhance the outcome of such a potentially life-threatening complication.78–80

ACKNOWLEDGMENTS

The authors would like to thank their patients for their great efforts in increasing public and medical community awareness about congenital malrotation underscoring its potential life-threatening and disabling effects on digestive health. They extend their gratitude to the Cleveland Clinic, the University of Pittsburgh medical team, Center of Medical Art, and Ms. Sabrina Phillips.

REFERENCES

1. Dott NM. Anomalies of intestinal rotation: their embryology and surgical aspects: with report of five cases. Br J Surg. 1923;11:251–286.
2. Snyder WH Jr, Chaffin L. Embryology and pathology of the intestinal tract: presentation of 40 cases of malrotation. Ann Surg. 1954;140:368–379.
3. Firor HV, Harris VJ. Rotational abnormalities of the gut: re-emphasis of a neglected facet, isolated incomplete rotation of the duodenum. Am J Roentgenol. 1974;120:315–321.
4. Kluth D, Jaeschke-Melli S, Fiegel H. The embryology of gut rotation. In seminars in pediatric surgery. Elsevier. 2003;275–279.
5. Soffers JR, Hikspoors PJ, Mekonen HK, et al. The growth pattern of the human intestine and its mesentery. BMC Dev Biol. 2015;15:1–16.
6. Kim WK, Kim H, Ahn DH, et al. Timetable for intestinal rotation in staged human embryos and fetuses. Birth Defects Res A Clin Mol Teratol. 2003;67:941–945.
7. Elumalai G, ALL. Malrotation of midgut: embryological basis and its clinical significance. Elitir Embryol. 2016;100:43420–43424. 103: 45657-45660.
8. Ladd WE. Congenital obstruction of the duodenum in children. N Engl J Med. 1932;206:277–283.
9. Martin V, Shaw-Smith C. Review of genetic factors in intestinal malrotation. Pediatr Surg Int. 2010;26:769–781.
10. Wang Y, Chen S, Yan W, et al. Congenital short-bowel syndrome: clinical and genetic presentation in China. J Parenter Enter Nutr. 2020. doi: 10.1002/jpen.1974.
11. Le X, Chen H, Sun X, et al. Assessment of plasma microRNAs in congenital intestinal malrotation. Mol Med Rep. 2020;22:3289–3298.
12. Welch G, Arzy A, Ziervogel M. The surgery of malrotation and midgut volvulus: a nine year experience in neonates. Ann Royal Coll Surg Engl. 1985;65:244–247.
13. Mehall JR, Chandler JC, Mehall RL, et al. Management of typical and atypical intestinal malrotation. J Pediatr Surg. 2002;37:1169–1172.
14. Kapfer SA, Rappold JF. Intestinal malrotation—not just the pediatric surgeon’s problem. J Am Coll Surg. 2004;199:628–635.
15. Malek MM, Burd RS. Surgical treatment of malrotation after infancy: a population-based study. J Pediatr Surg. 2005;40:285–289.
16. Malek MM, Burd RS. The optimal management of malrotation diagnosed after infancy: a decision analysis. Am J Surg. 2006;191:45–51.
17. McVay MR, Kokoska ER, Jackson RJ, et al. The changing spectrum of intestinal malrotation: diagnosis and management. Am J Surg. 2007;194:712–719.
18. Lampi B, Levin TL, Berdon WE, et al. Malrotation and midgut volvulus: a historical review and current controversies in diagnosis and management. Pediatr Radiol. 2009;39:359–366.
19. Nehra D, Goldstein AM. Intestinal malrotation: varied clinical presentation from infancy through adulthood. Surgery. 2011;149:386–393.
20. Lodwick DL, Minneci PC, Deans KJ. Current surgical management of intestinal rotational abnormalities. Curr Opin Pediatr. 2015;27:383–388.
21. Covey SE, Putnam LR, Anderson KT, et al. Prophylactic versus symptomatic Ladd procedures for pediatric malrotation. J Surg Res. 2016;205:327–330.
22. Langer JC. Intestinal rotation abnormalities and midgut volvulus. Surg Clin. 2017;97:147–159.
23. Kunitz C, Shawyer AC. The surgical management of malrotation: a Canadian Association of Pediatric Surgeons survey. J Pediatr Surg. 2017;52:853–858.
24. Neville JJ, Gallagher J, Mitra A, et al. Adult presentations of congenital Midgut Malrotation: a systematic review. World J Surg. 2020;44:1771–1778.
25. Ladd WE. Congenital obstruction of the small intestine. J Am Med Assoc. 1935;101:1453–1458.
26. Ladd WE. Surgical diseases of the alimentary tract in infants. N Engl J Med. 1936;215:705–708.
27. Wangensteen O. New operative techniques in the management of bowel obstruction. Surg Gynec Obst. 1942;78:675–692.
28. Estrada RL. Anomalies of Intestinal Rotation and Fixation: Including Mesentericoparietal Hernias. Illinois, USA: Thomas, Springfield; 1958.
29. Rees JR, Redo SF. Anomalies of intestinal rotation and fixation. Am J Surg. 1968;116:834–841.
30. Gohl ML, DeMeester TR. Midgut malrotation in adults: an aggressive approach. Am J Surg. 1975;129:319–323.

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
40. Devlin H. Midgut malrotation causing intestinal obstruction in adult patients. *Int J Surg Case Rep*. 2014;5:259–261.

41. Janik JS, Ein SH. Normal intestinal rotation with non-fixation: a cause of late presentation. *J Pediatr Surg*. 2020;55:1809–1814.

42. Al-Hadidi A, Gonzalez DO, Besner GE, et al. Multiple recurrences of midgut volvulus in an adult patient—the case for pexy? A case report and review of the literature. *Int J Surg Case Rep*. 2020;66:91–95.

43. Moldrem AW, Papatsonatou H, Broker H, et al. Late presentation of intestinal malrotation: an argument for elective repair. *World J Surg*. 2008;32:1426–1431.

44. Penco JM, Murillo JC, Hernández A, et al. Anomalies of intestinal rotation and fixation: a “malrotation” syndrome. *Pediatric Radiol*. 2004;34:837–851.

45. Negri E, Coletta R, Morabito A. Congenital short bowel syndromes: systematic review of a rare condition. *J Pediatric Surg*. 2020;55:1809–1814.

46. Ford EG, Senac MO Jr, Srikanth M, et al. Malrotation of the intestine in neonates and infants. *Int J Pediatr Surg*. 1990;25:1139–1142.

47. Husberg B, Salehi K, Peters T, et al. Congenital intestinal malrotation in adults: an argument for elective repair. *World J Surg*. 2010;34:1398–1407.

48. Abu-Elmagd KM. Preservation of the native spleen, duodenum, and pancreas in patients with multivisceral transplantation: nomenclature, dispute of origin, and proof of premise. *Transplantation*. 2007;84:1208–1209.

49. Pickhardt PJ, Bhalla S. Intestinal malrotation in adolescents and adults: spectrum of clinical and imaging features. *Am J Roentgenol*. 2002;179:1429–1435.

50. Spiegel BM, Hays RD, Bolus R, et al. Development of the NIH patient-reported outcomes measurement information system (PROMIS) gastrointestinal symptom scales. *J Gastroenterol*. 2014;109:1804–1814.

51. Abu-Elmagd KM, Kosmach-Park B, Costa G, et al. Long-term survival, nutritional autonomy, and quality of life after intestinal and multivisceral transplantation. *Ann Surg*. 2012;256:494–508.

52. Stauffer U, Herrmann P. Comparison of late results in patients with corrected intestinal malrotation with and without fixation of the mesentery. *J Pediatr Surg*. 1980;15:9–12.

53. Murphy FL, Sparron AL. Long-term complications following intestinal malrotation and the Ladd’s procedure: a 15 year review. *Pediatr Surg Int*. 2006;22:326–329.

54. El-Gohary Y, Alagat M, Gillick J. Long-term complications following operative intervention for intestinal malrotation: a 10-year review. *Pediatr Surg Int*. 2010;26:203–206.

55. Powell DM, Othersen HB, Smith C. Malrotation of the intestines in children: the effect of age on presentation and therapy. *J Pediatr Surg*. 1989;24:777–780.

56. Durkin ET, Lund DP, Shaaban AF, et al. Age-related differences in diagnosis and morbidity of intestinal malrotation. *J Am Coll Surg*. 2008;206:658–663.

57. Coombs R, Buick R, Gornall P, et al. Intestinal malrotation: the role of small intestinal dysmotility in the cause of persistent symptoms. *J Pediatr Surg*. 1991;26:553–556.

58. Khan N, Jaubert F, Sauvat F, et al. Fetal intestinal obstruction induces alteration of enteric nervous system development in human atresia. *Pediatr Res*. 2004;56:975–980.

59. Devane S, Coomes R, Smith V, et al. Persistent gastrointestinal symptoms after correction of malrotation. *Arch Dis Child*. 1992;67:218–221.

60. Hunter AG, Stevenson RE. Gastrochisis: clinical presentation and associations. *Am J Med Genet Part C Semin Med Genet*. 2008;148C:219–230.

61. Abdelhafiez A, Alagat M, Tareen F, et al. The incidence of symptomatic midgut malrotation post gastroschisis repair. *Eur J Pediatr Surg*. 2011;21:375–376.

62. Fawley JA, Abdelhafiez AH, Schultz JA, et al. The risk of midgut volvulus in patients with abdominal wall defects: a multi-institutional study. *J Pediatr Surg*. 2017;52:26–29.

63. Do WS, Marenco CW, Horton JD, et al. Predictors of bowel sequestration during nonlective ladd procedure for pediatric malrotation. *J Surg Res*. 2019;243:419–426.

64. Hong CR, Han SM, Staffa SJ, et al. Long-term outcomes of ultrashort bowel syndrome due to malrotation with midgut volvulus managed at an interdisciplinary pediatric intestinal rehabilitation center. *J Pediatr Surg*. 2019;54:964–967.

65. Duggan CP, Iakuc T. Pediatric intestinal failure. *N Engl J Med*. 2017;377:666–675.

66. Pet GC, McAdams RM, Melzer L, et al. Attitudes surrounding the management of neonates with severe necrotizing enterocolitis. *J Pediatr*. 2018;199:186–193. e183.

67. Graziano K, Islam D, Dasgupta R, et al. Asymptomatic malrotation: diagnosis and surgical management; an American Pediatric Surgical Association outcomes and evidence based practice committee systematic review. *J Pediatr Surg*. 2015;50:1783–1790.

68. Li X, Zhao Z, Li X, et al. Appearance of fetal intestinal obstruction on fetal MRI. *Prenat Diagn*. 2020;40:1398–1407.

69. Sciarrone A, Teruzzi E, Pertusio A, et al. Fetal midgut volvulus: report of eight cases. *J Matern Fetal Neonatal Med*. 2016;29:1322–1327.

70. Molvarec A, Babinszki Á, Kovács K, et al. Intrauterine intestinal obstruction due to fetal midgut volvulus: a report of two cases. *Fetal Diagn Ther*. 2007;22:38–40.

DISCUSSANT

Dr. Gail Besner

Thank you for allowing a pediatric surgeon to comment on Dr. Abu-Elmagd’s beautiful presentation of 500 patients with a history of intestinal malrotation. In this report, patients with significant intestinal loss mainly underwent transplantation, and those without intestinal loss but with disabling GI symptoms underwent a newly described procedure called “gut malrotation correction.” Ladd described his procedure to correct malrotation almost a century ago. Very interestingly however, the procedure that we as
Response Dr. Kareem M. Abu-Elmagd

Thank you, Dr. Besner for reviewing the manuscript and I greatly appreciate your kind remarks. First, I would like to address 2 controversial issues in your comments. The Ladd’s is not a correction procedure as clearly stated in the presentation and the manuscript. The procedure primarily aimed to rescue patients, particularly infants, with midgut volvulus and duodenal obstruction. Along with widening of the mesentery, the malrotated distal midgut was reverted to an earlier stage with 90 clockwise rotation to separate the cecum and right colon from the duodenum and proximal bowel. In essence, the midgut rotational anomaly was converted from asynchronous to synchronous mode.

Your statement that future midgut volvulus is extremely unlikely to occur after Ladd’s is an interesting one. In fact, this evidence-based study showed the contrary. Despite its potential nonelective therapeutic benefits and with the intent to treat, Ladd’s procedure was still associated with a cumulative risk of recurrent or de-novo midgut volvulus with mesenteric infarction of 10% at 10 years and up to 38% at 80 years. The manuscript fully addressed such a pivotal point with the longest ever published follow-up time. Nonetheless, we all must agree that every gut and every life matters.

To answer your 2 questions, I would like to clarify certain relevant points stated in your discussion. The tethered duodenum was found in almost every patient and the internal hernia was observed in only a few cases. The colon was redundant but coiled because of shortened and contracted mesentery. To fully address the first question, the gastrointestinal symptomatology domains data were analyzed in patients with and without colon resection and highlighted in the final manuscript. The improvement in each of the symptom scales continued to be highly significant in the cohort analyzed in patients with and without colon resection and without prior multiple abdominal surgeries and those who do not require adjunct procedures or extensive colon resection. I am committed to providing both the pediatric and adult surgeons with the exposure needed to perform such a simple procedure with the hope for imminent introduction of a safe laparoscopic approach.

If he were with us today, I believe that Professor Ladd would certainly welcome such an important contribution to the field since his landmark presentation at the Boston Surgical Society nearly a century ago.

Dr. Andreas Tzakis (Cleveland, OH)

I want to thank Dr. Abu-Elmagd for sharing his manuscript with me. This is a landmark paper. It not only reviews the author’s unique lifelong experience with the care of patients with GM but establishes guidelines for diagnosis and innovative treatment. A first principle is to stop applying just comfort measures for babies who lost their gut! Agree 100%. The first year of life is when most of these patients lose their gut. With transplantation more than half of them will live long term. There is a paradox: despite of hospitalizations, surgeries, immunosuppression, most survivors complete education, maintain full employment, and some gave childbirth.

I have 2 questions regarding the surgical treatment: Patients who underwent gut reconstruction suffered 22% mortality in the first postoperative year. Do you have a plan or proposals on how to mitigate these early losses? Losses after transplantation are continuous and present even more than 10 years after transplantation. The liver has a protective effect. The losses are for the most part due to undiagnosed rejections. We think that these undiagnosed rejections are due to lack of monitoring and for this reason we introduced serum Citrulline as a practical marker of intestinal damage. Like other markers we use in transplantation, it indicates damage and is not specific for rejection. If not Citrulline, do you have other suggestions for effective monitoring?

Dr. Kareem M. Abu-Elmagd

Thank you Andy for your kind remarks and your significant contribution to the field of intestinal and multivisceral transplantation.

First, I would like to emphasize that there was no mortalities after the GMC surgery. The 3 deaths among the AGR patients were inevitable due to SCID. Two patients died of infection and the third was a victim of fatal GVHD after stem cell transplant. It is imperative to emphasize that none of these 3 patients were candidate for GT because of the prohibitive risk of post-transplant GVHD due to the combined immune deficiency.

With GT, I agree that the field is waiting for a reliable, sensitive, and specific biomarker for early detection with prompt treatment of acute intestinal allograft rejection. However, sepsis, PTLD, GVHD, and the sinister problem of chronic rejection continued to play an important role in early and late graft loss. The favorable long-term outcome observed among the liver-containing allografts is a testimony of the immunoprotective effect of the liver that we have revealed more than two decades ago. Innovative tactics including achievement of clinical allograft tolerance are still needed to overcome the long-term hazards of chronic rejection among liver-free allografts and infection in multivisceral recipients. The annual meeting of this prestigious association witnessed, on at least 6 occasions, our contribution to the evolution of the field with the introduction of novel surgical techniques, effective immunosuppressive strategies, and better postoperative care.