AMPHIBIAN SKIN SECRETIONS: A POTENTIAL SOURCE OF PROTEOLYTIC ENZYMES

I. Nikolaieva 1, Yu. Dudkina 1, D. Oliinyk 1, O. Oskyrko 1, O. Marushchak 2, T. Halenova 1

"Biotechnologia Acta" V. 11, No 5, 2018
https://doi.org/10.15407/biotech11.05.042
P. 42-48, Bibliography 22, English
Universal Decimal Classification: 615.919+577.152.34
The aim of the work was to study the protein content and proteolytic activity of the skin glands secretions of 10 the most common types of amphibians on the territory of Ukraine such as *B. bombina*, *B. variegata*, *B. bufo*, *B. viridis*, *R. temporaria*, *P. ridibundus*, *P. esculentus*, *P. fuscus*, *S. salamandra*, as well as the hybrid of *B. bombina* and *B. variegata* species. It was shown that the skin secretions of the studied amphibians contained a wide range of proteins with a molecular weight in the range from 8 to 150 kDa. By enzyme electrophoresis using gelatin, fibrinogen and collagen as substrates, it was found that they contained proteinases that differ in substrate specificity. It was revealed that the skin glands secretions of *B. bombina*, *S. salamander* species, as well as the hybrid of *B. bombina* and *B. variegata* species were characterized by increased protein content with gelatinase and collagen activity.

Key words: amphibians, skin gland secretions, proteolytic activity.
molecules from amphibian skin: Their biological activities with reference to therapeutic potentials for possible drug development.

Ind. J. Exp. Biol.
2007, 45, 579–593.

2. *Clarke B. T.* The natural history of amphibian skin secretions, their normal functioning and potential medicinal applications. *Biol. Rev.* 1997, 72 (3), 365–379. https://doi.org/10.1111/j.1469-185X.1997.tb00018.x

3. *Morishita S.*, *Shoji M.*, *Oguni Y.*, *Ito C.*, *Noguchi K.*, *Sakanashi M.* Congestive heart failure model in rabbits: effects of digoxin and a drug containing toad venom. *Jpn. J. Pharmacol.* 1991, 56 (4), 427–432. https://doi.org/10.1254/jjp.56.427

4. *Marenah L.*, *Flatt P. R.*, *Orr D. F.*, *McClean S.*, *Shaw C.*, *Abdel-Wahab Y. H.* Skin secretion of the toad *Bombina variegata* contains multiple insulin-releasing peptides including bombesin and entirely novel insulinotropic structures. *Biol. Chem.* 2004, 385 (3–4), 315–321. https://doi.org/10.1515/BC.2004.027

5. *Shimizu Y.*, *Inoue E.*, *Ito C.* Effect of the water-soluble and non-dialyzable fraction isolated from Senso (Chan Su) on lymphocyte proliferation and natural killer activity in C3H mice. *Biol. Pharm. Bull.* 2004, 27 (2), 256–260. https://doi.org/10.1248/bpb.27.256

6. *Barberio C.*, *Delfino G.*, *Mastromei G.* A low molecular weight protein with antimicrobial activity in the cutaneous ‘venom’ of the yellowbellied toad (*Bombina variegata pachypus*). *Toxicon*. 1987, 25 (8), 899–909.
https://doi.org/10.1016/0041-0101(87)90250-9

7. Soravia E., Martini G., Zasloff M. Antimicrobial properties of peptides from Xenopus granular gland secretions. *FEBS Lett.* 1988, 228, 337–342. https://doi.org/10.1016/0014-5793(88)80027-9

8. Yasin B., Pang M., Turner J. S., Cho Y., Dinh N. N., Waring A. J., Lehrer R. I., Wagar E. A. Evaluation of the inactivation of infectious Herpes simplex virus by hostdefense peptides, *Eur. J. Clin. Microbiol. Infect. Dis.* 2000, 19 (3), 187–194. https://doi.org/10.1007/s100960050457

9. Chinchar V. G., Wang J., Murti G., Carey C., Rollins-Smith L. Inactivation of frog virus 3 and channel catfish virus by esculentin-2P and ranatuerin-2P, two antimicrobial peptides isolated from frog skin. *Virology.* 2001, 288 (2), 351–357. https://doi.org/10.1006/viro.2001.1080

10. Montecucchi P. C., Gozzini L., Erspamer V., Melchiorri P. The primary structure of tryptophan containing peptides from skin extracts of *Phyllomedusa rhodei* (tryptophyllins). *Int. J. Pept. Protein Res.* 1984, 24 (4) 276–281. https://doi.org/10.1111/j.1399-3011.1984.tb02720.x

11. Montecucchi P. C., de Castiglione R., Piani S., Gozzini L., Erspamer V. Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of *Phyllomedusa sauvagei*. *Int. J. Pept. Protein Res.* 1981, 17 (3), 275–283.
12. Mecikoglu M., Saygi B., Yildirim Y., Karadag-Saygi E., Ramadan S., Esemenli T. The effect of proteolytic enzyme serratiopeptidase in the treatment of experimental implant-related infection. J Bone Joint Surg. Am. 2006, 88 (6), 1208–1214. https://doi.org/10.2106/JBJS.E.00007

13. Jianwu Z., McClean S., Thompson A., Yang Z., Shaw C., Rao P., Bjourson A. J. Purification and characterization of novel antimicrobial peptides from the skin secretion of Hylarana guentheri. Peptides. 2006, 27, 3077–3084. https://doi.org/10.1016/j.peptides.2006.08.007

14. Bradford M. M. A rapid and sensitive method for quantities of utilizing the principle of protein binding. Anal. Biochem. 1976, 7 (72), 248–254.

15. Laemmli K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227 (5259), 680–685. https://doi.org/10.1038/227680a0

16. Ostapchenko L., Savchuk O., Burlova-Vasilieva N. Enzyme electrophoresis method in analysis of active components of haemostasis system. Adv. Biosci. Biotechnol. 2011, 2, 20–26. https://doi.org/10.4236/abb.2011.21004

17. Abhishek D., Hippargi R. V., Amit N. Gandhare Toad skin-secretions: Potent source of pharmacologically and therapeutically significant compounds. Int. J. Pharmacol. 2008, 5 (2), 17–23.
18. van Zoggel H., Hamma-Kourbali Y., Galanth C., Ladram A., Nicolas P., Courty J., Amiche M., Delbé J. Antitumor and angiostatic peptides from frog skin secretions. *Amino Acids*. 2012, 42 (1), 385–395. https://doi.org/10.1007/s00726-010-0815-9

19. Wilkesman J., Kurz L. Protease analysis by zymography: a review on techniques and patents. *Recent Pat. Biotechnol*. 2009, 3 (3), 175–184. https://doi.org/10.2174/187220809789389162

20. Joung-Yoon K., Seung-Bae L., Ki Rok K., Suk-Ho C. Isolation and characterization of a 32-kDa fibrinolytic enzyme (FE-32kDa) from *Gloydius blomhoffii sinicus* venom. *J. Pharmacopunct.* 2013, 17 (1), 44–50. https://doi.org/10.3831/KPI.2014.17.006

21. Shekhter A. B., Balakireva A. V., Kuznetsova N. V., Vu kolova M. N., Litvitsky P. F., Zamyatnin A. A. Collagenolytic enzymes and their applications in biomedicine. *Curr. Med. Chem.* 2017, 24, 1–19. https://doi.org/10.2174/0929867324666171006124236

22. Alipour H., Raz A., Zakeri S., Dinparast Djadid N. Therapeutic applications of collagenase (metalloproteases): A review. *Asian Pacific J. Trop. Biomed*. 2016, 6 (11), 975–981. https://doi.org/10.1016/j.apjtb.2016.07.017
