Electrochemical activation of C–H by electron-deficient W₂C nanocrystals for simultaneous alkoxylation and hydrogen evolution

Xiu Lin¹, Shi-Nan Zhang¹, Dong Xu¹, Jun-Jun Zhang¹, Yun-Xiao Lin¹, Guang-Yao Zhai¹, Hui Su¹, Zhong-Hua Xue¹, Xi Liu¹, Markus Antonietti², Jie-Sheng Chen¹ & Xin-Hao Li¹

The activation of C–H bonds is a central challenge in organic chemistry and usually a key step for the retro-synthesis of functional natural products due to the high chemical stability of C–H bonds. Electrochemical methods are a powerful alternative for C–H activation, but this approach usually requires high overpotential and homogeneous mediators. Here, we design electron-deficient W₂C nanocrystal-based electrodes to boost the heterogeneous activation of C–H bonds under mild conditions via an additive-free, purely heterogeneous electrocatalytic strategy. The electron density of W₂C nanocrystals is tuned by constructing Schottky heterojunctions with nitrogen-doped carbon support to facilitate the preadsorption and activation of benzylic C–H bonds of ethylbenzene on the W₂C surface, enabling a high turnover frequency (18.8 h⁻¹) at a comparably low work potential (2 V versus SCE). The pronounced electron deficiency of the W₂C nanocatalysts substantially facilitates the direct deprotonation process to ensure electrode durability without self-oxidation. The efficient oxidation process also boosts the balancing hydrogen production from as-formed protons on the cathode by a factor of 10 compared to an inert reference electrode. The whole process meets the requirements of atomic economy and electric energy utilization in terms of sustainable chemical synthesis.

¹School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China. ²Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, Potsdam, Germany. ©email: xinhaoli@sjtu.edu.cn

https://doi.org/10.1038/s41467-021-24203-8
direct activation of C–H bonds via selective oxidation of hydrocarbons is of great interest for organic hydrocarbons. As a typical and important transformation path of C–H bonds, selective dehydrogenation of C–H bonds have been widely used for the production of high value-added compounds such as alcohols, and ketones, and ethers. However, the relative stability of C(sp²)–H bonds adjacent to aromatic rings make C–H activation quite challenging, and either extreme and rather toxic oxidants as chromium or selenium compounds or noble-metal-catalysts (based on rhodium or palladium) at high temperatures have to be applied to obtain acceptable conversions. Moreover, the as-formed side product water from the cleavage of C–H bonds via oxydehydrogenation is free of value. As a result, sustainable strategies are highly desirable to further decrease the economic and environmental footprints of C–H activation processes.

Electrochemical transformation is recognized as an environmentally friendly method for the production of various functional molecules driven by electricity under mild conditions. Pioneering works of electrochemical synthesis using homogeneous catalysis have demonstrated the advantages of this technique for C–H activation[11–13], which includes selective oxidation[14], amination[15], epoxidation[16], and dehydrogenative coupling reactions[17]. Most of these reactions have a high atom economy and excellent compatibility with flow reactors for continuous synthesis[18,19]. The current strategies to boost the transformation of specific substrates mainly rely on the involvement of functional additives[11,20] (e.g., organic ligands, bases, and mediators), a high work potential, and/or sacrificial transition metal electrodes[21], which all will severely limit real-industry applications. Principally, the preparation of cost-effective and active electrode materials is at least as important as the development of a methodology for selective C–H bonds activation[22–29] and only non-targeted, commercial first-generation electrodes (such as carbon rod, platinum, and reticulated vitreous carbon) are applied as the current collectors in electrochemical organic synthesis at the moment. The significant progress reported using well-designed reaction-specific electrodes in improving the catalytic activity for water splitting, nitrogen reduction reactions, and even carbon dioxide reduction reactions[30–33] further manifests the huge gap between the design of electrode materials and the requirements of sustainable electrochemical organic synthesis.

Herein, we present the proof-of-concept application of electron-deficient W₂C nanocrystal-based electrodes for the highly efficient electrochemical activation of C–H bonds, highlighting the key importance of the modified physicochemical properties of electrode materials in boosting additive-free C–H activation reactions. A nanoheterojunction composed of W₂C nanocrystals and nitrogen-doped carbons has been rationally designed to control the number of electrons flowing from W₂C nanocrystals to nitrogen-doped carbons by increasing the doping concentration in the carbon supports to enhance the interfacial Schottky effect. The as-formed electron-deficient W₂C nanocrystal-based electrode acts as a functional anode to simultaneously facilitate the alkylation of ethylene with methanol on the anode and the balancing hydrogen evolution reaction on the cathode. Both the experimental and theoretical results indicate the key role of the electron deficiency of the W₂C nanocrystals in capturing ethylene with the anode to significantly increase the reaction rates of alkylation and hydrogen evolution reaction processes simultaneously and ensure the stability of the anode without sacrificing the current collector.

Identification of electron-deficient W₂C nanocrystals. The highly coupled structure of W₂C/NC dyads makes it possible to form a rectifying interface for modulation of the electron density of W₂C nanocrystals. The density functional theory (DFT) calculation results (Supplementary Figs. 11, 12) predict electron transfer from W₂C to nitrogen-doped carbons, resulting in more pronounced electron-deficient regions in W₂C nanocrystals suggested by the electron density difference stereograms (Fig. 1d) of the W₂C model supported on pristine carbons (W₂C/C). The total number of electrons transferred from the small W₂C cluster to the nitrogen-doped carbon support (Fig. 1e) increases from 0.338 to 0.397 as more nitrogen atoms (from 1.4 to 3.0 at.%) are doped into the carbon support models (Supplementary Fig. 12). The electron density difference stereograms (Fig. 1d) of the W₂C model supported on pristine carbons (W₂C/C) and the total number of electrons transferred from the small W₂C cluster to the nitrogen-doped carbon support (Fig. 1e) increases from 0.338 to 0.397 as more nitrogen atoms (from 1.4 to 3.0 at.%) are doped into the carbon support models (Supplementary Fig. 12)–1 on the basis of the X-ray photoelectron spectroscopy (XPS) analysis results, while the trend is not affected by the cluster stoichiometry (Supplementary Fig. 13). As depicted in Fig. 1f, the nanoheterojunction of W₂C and NC has a rectifying contact, with electrons flowing from the W₂C side with a lower Fermi level (E_F) to the NC side, generating electron-deficient W₂C due to the interfacial Schottky barrier. Indeed, the electron donation from the W₂C nanocrystals to the nitrogen-rich carbon supports is experimentally confirmed by the gradual shift in W 4f XPS peaks to higher energy (Fig. 1g) from 34.2 via 34.4 to 34.5 eV for W₂C/N₁₄C, W₂C/N₃₂C, and W₂C/N₅₀_C, respectively, resulting in gradually increased work functions (Fig. 1h and Supplementary Fig. 14) from 5.4 via 5.6 to 5.7 eV. A similar trend for the electron density of W₂C nanocrystals in W₂C/NC samples is also demonstrated by the most positive W M₄,5 peak (Supplementary Fig. 15) of the W₂C/N₁₄C materials among all samples. All of the above results indicate the formation of electron-deficient W₂C nanocrystals and the successful further enhancement of electron deficiencies by increasing the nitrogen contents in the carbon supports.

Catalytic performance and reaction pathways of catalysts. Inspired by the success in modifying the electron density of W₂C nanocrystals, we further evaluated the possible catalytic activity of W₂C/NC catalysts for electrochemical alkylation of ethylene with methanol under mild conditions as a model reaction. Considering that the reported methods for alkylation of C–H bonds usually require highly active additives/oxidants and/or a

Results
Preparation and characterization of W₂C/NₓC. The W₂C/NC catalysts were prepared via a modified nanoconfinement method (Supplementary Fig. 1) from a mixture of dicyandiamide and ammonium tungstate, followed by N₂-protected thermal pyrolysis at high temperatures. The nitrogen contents (x at.%) of the W₂C/NₓC samples could be tuned from 3.0 via 2.3 to 1.4 at.% (Supplementary Fig. 2 and Table 1) by elevating the condensation temperatures from 1000 to 1200 °C (for experimental details please see the experimental section). The morphology (Supplementary Fig. 3), surface area (Supplementary Fig. 4), structure (Supplementary Fig. 5), and W content (Supplementary Table 1) of W₂C/NₓC samples are well maintained, as reflected by their scanning electron microscopy (SEM) images. Transmission electron microscopy (TEM) observations (Fig. 1a–c and Supplementary Figs. 6–8) further reveal the presence of few-layer-graphene-supported W₂C nanocrystals with a mean size of 2.5 nm (Fig. 1a and Supplementary Fig. 9) and a typical lattice fringe of 0.24 nm (Fig. 1b), which corresponds to the (002) plane of α-W₂C.[34,35] The formation of W₂C is doubly confirmed by its X-ray diffraction (XRD) pattern (Supplementary Fig. 10), matching well with that of typical α-W₂C (JCPDS# 35-776)[36]. Detailed elemental mapping images (Fig. 1c) exhibit nanometer-sized W-rich areas with a homogeneous distribution of N atoms along with the whole carbon support, indicating an integrated structure of W₂C nanocrystals on the nitrogen-doped carbons.
high reaction temperature, we initially tested the possibility of additive-free alkoxylation of ethylbenzene with methanol using only a simple electrolyte containing lithium perchlorate and W2C/N3.0C-based electrodes under ambient conditions (Fig. 2 and Supplementary Fig. 16). No product was detected without applying a working potential for various electrodes in our electrochemical system (Supplementary Fig. 17a–c), illustrating that the methoxylation reaction cannot proceed spontaneously. Widely used commercial electrodes, including reticulated vitreous carbon (RVC), boron-doped diamond (BDD), and lead oxide, exhibit poor activity (Supplementary Fig. 17d) in our additive-free electrocatalytic system. Surprisingly, a complete conversion of ethylbenzene can be achieved on the W2C/N1.4C electrode with high selectivity to the target product (1-methoxyethyl)benzene (Fig. 2a, b and Supplementary Fig. 18) and a total carbon balance of approximately 95%, confirming the possibility of highly efficient alkoxylation of C–H bonds on a well-designed heterogeneous electrode without sacrificing additives. The fact that control electrodes with the same amount of bare NC sample, W2C catalyst, or a mechanical mixture of the two components (Fig. 2c) give much lower conversions of ethylbenzene than the W2C/N1.4C electrode under fixed conditions further indicates a synergistic effect between W2C and N3.0C components in facilitating the transformation of ethylbenzene.

Unlike the oxidative alkoxylation reaction of C–H bonds by using various oxidants for dehydrogenation to generate water, our heterogeneous electrochemical system could achieve the full use of as-formed protons from the activation of C–H bonds and methanol for subsequent hydrogen evolution reactions, generating hydrogen gas bubbles on the cathode (Supplementary Fig. 19 and Supplementary Movie 1). Moreover, the calculated Faradaic efficiencies (Fig. 2d and Supplementary Fig. 20) are similar for the conversion of ethylbenzene to (1-methoxyethyl)benzene on the W2C/N3.0C anode (FSE: 42–46%) and hydrogen production on the Ti cathode (FSE: 42–55%), implying a cascade transformation of protons generated from the anode into hydrogen gas on the cathode. Even with an excess amount of methanol in the reactor, only a trace amount of formaldehyde (0.006 mmol) formed during the conversion of 0.5 mmol of ethylbenzene (Supplementary Fig. 21), well explaining the comparable Faradaic efficiencies for the reactions on anode and cathode without the obvious contribution of methanol dehydrogenation to the total FSE for hydrogen evolution reactions. Remarkably, the electron-deficient W2C in the W2C/N3.0C-based electrode substantially promotes the hydrogen evolution rate on the Ti cathode to 880 μmol (Fig. 2c), which is above 10 times that on the same Ti cathode (85 μmol) when using bare carbon cloth as the anode. The direct release of hydrogen gas on the counter electrode directly confirms the C–H bond activation via single-electron oxidation followed by deprotonation, because as-formed hydrogen atoms from direct hydrogen abstraction could not transfer from W2C-based working electrode via the electrolyte solution to the counter electrode for hydrogen gas production. The constant current density of the W2C/N3.0C anode under fixed conditions with different cathodes (Fig. 2f), including Pt mesh, Ti mesh, and carbon rod, further demonstrates that the activation of ethylbenzene on the W2C/N3.0C electrode is the rate dominating step for the whole reaction. The reaction pathways are reasonably proposed via deprotonation of ethylbenzene and followed by methanol addition on the basis of the additional quenching experiments with an additional
hydrogen production at the cathode when W2C/N3.0C and CC were used as the anode. The reaction conditions: ethylbenzene (0.5 mmol), lithium perchlorate (1 mmol), methanol (15 mL), W2C/N3.0C anode, and Ti mesh cathode at 2.0 V versus SCE at room temperature in a home-made electrolyzer (Supplementary Fig. 16).

The time courses of conversion (red) of ethylbenzene and selectivity (black) to (1-methoxyethyl)benzene on the W2C/N3.0C anode. Faradaic efficiency (%)

Investigation of the mechanism at heterojunction interfaces. The role of the electron-deficient W2C nanocrystals and the interfacial effect of the heterojunction catalysts on the electrochemical alkoxylation of C–H bonds were simulated via theoretical calculations and then validated by experimental evidence (Fig. 3). The optimized geometry (Fig. 3a, c) of ethylbenzene presents the preferred adsorption of benzylic C–H bonds on the W2C surface dependent on the electron-deficiency of W2C, indicating the feature role of W2C as an active component. This role was further validated by more negative onset potentials (<1.4 V versus SCE) for the electrochemical alkoxylation reaction on W2C/Nx,C anodes than that (>1.6 V versus SCE) of the bare carbon cloth electrode (Supplementary Fig. 23). However, the activation of adsorbed C–H bonds is enhanced by the electron-deficient surface of the W2C-0.07e− model, as reflected by the more pronounced electron density difference (Hirshfeld charge) of the preadsorbed C–H bonds (Fig. 3c and Supplementary Fig. 24) and a much lower calculated adsorption energy for ethylbenzene (Fig. 3e). Such strong adsorption of ethylbenzene molecules over the electron-deficient W2C surface was then experimentally validated by the temperature-programmed desorption (TPD) analysis results (Fig. 3f), exhibiting gradually elevated adsorption capacities over those of more electron-deficient W2C/Nx,C samples with similar surface areas. It should be noted that the bare carbon support (NC sample in Fig. 3f) provides a low adsorption capacity, only 21% of the best-in-class W2C/Nx,C sample (Supplementary Fig. 25).

More importantly, the electron deficiency-induced adsorption behavior of ethylbenzene on the final W2C/Nx,C-based anodes under a fixed bias in the electrochemical reactor was well expressed with the same trend in adsorption capacities (Fig. 3g) as that revealed by TPD results, making successive C–H dissociation process more favorable.

Indeed, the stronger interaction between preadsorbed ethylbenzene molecules and electron-deficient W2C significantly reduces the Gibbs free energy of each step of the whole alkoxylation reaction pathway (Fig. 3e). The dissociation of C–H bonds of ethylbenzene on the electron-deficient W2C catalyst (W2C-0.07e− model) is the rate-limiting step with a free energy change of only 0.34 eV, and the subsequent coupling of *C8H9 and *CH3O (*C8H9O) and desorption of as-formed (1-methoxyethyl)benzene (*C8H12O) proceed automatically. With similar configurations, the last three steps for the catalytic conversion of preadsorbed ethylbenzene molecules on the pristine W2C catalyst (W2C model) are thermodynamically uphill with a larger free energy change of 0.4 eV for the (*C8H9O) step, again indicating the key role of electron density in facilitating the whole reaction and desorption processes on the W2C surface. This electron-deficiency-dependent promotion effect on the activity of W2C was then unambiguously confirmed by the gradually oxidation peak (Supplementary Fig. 22) after the addition of butylated hydroxytoluene (BHT), and no observable signals of any possible radicals were detected, as indicated in Fig. 2a41,42.

Fig. 2 Catalytic performance of the electron-deficient W2C nanocrystal-based anode. a Schematic illustration of electrolyzer and proposed reaction pathway. b The time courses of conversion (red) of ethylbenzene and selectivity (black) to (1-methoxyethyl)benzene on the W2C/N3.0,C anode. c The hydrogen production on the cathode when W2C/N3.0,C and CC were used as the anode. d The time courses of Faradaic efficiencies for conversion of ethylbenzene on the anode and hydrogen production on the cathode, respectively. e Conversions of ethylbenzene on W2C/N3.0C and control anodes under standard conditions within 3 h. f Cyclic voltammetry curves of typical cathodes (Ti mesh, Pt mesh, and C rod) with the same W2C/N3.0,C anode. Standard reaction conditions: ethylbenzene (0.5 mmol), lithium perchlorate (1 mmol), methanol (15 mL), W2C/N3.0C anode, and Ti mesh cathode at 2.0 V versus SCE at room temperature in a home-made electrolyzer (Supplementary Fig. 16).
Calculated absorption configurations of each step of the ethylbenzene activation process on W2C (black and top) and W2C-0.07e− (red and bottom).

Faradaic efficiencies for ethylbenzene conversion on W2C/NxC electrodes at 2.0 V versus SCE for 3 h. (Fig. 5) with good to high conversions and excellent selectivity. Tolueno was methoxylated to (methoxymethyl)benzene with high conversion (1). Benzenes with alkyl chains, including propylbenzene, pentybenzene, isobutylene, and even halide-substituted substrates (2–6), were successfully transformed into target products with good conversions (20–98%) and very high selectivity (>99%). Alkoxylation of tertiary C–H in cumene (7) could also proceed smoothly with the alkoxylation product as the sole product. Alkylbenzenes with electron-withdrawing groups (8–11) were also tolerated on the electron-deficient W2C-based anode for highly selective alkoxylation reactions even with high steric hindrance. Tetralin and chroman (12 and 13), as substructures present in numerous drugs, underwent effective methoxylation. It is also not surprising that benzhydryls (14 and 15) with activated C–H bonds could be rapidly transformed into alkoxylation products under standard conditions with very high selectivity (>99%). Besides, electrochemical methoxylation could also apply for the late-stage modification of bioactive molecules. For example, celestolide (16) and ibuprofen methyl ester (17) were able to couple with methanol and shown excellent selectivity at benzylic position. Electron-deficient W2C-based anode was also powerful for the alkoxylation of ethylbenzene with different types of aliphatic alcohols (18–21). All these results again reveal the efficiency of the electron-deficient W2C catalyst for the benzylic...
Fig. 4 Stability and efficiency of C–H alkoxylation.

a) Current density change of W2C/N3.0C, Ti mesh, Ni plate, and RVC electrodes during the reaction.

b) Reusability of W2C/N3.0C under standard conditions within 3 h.

c) TOF values (for details, please see Supplementary Table 2) for methoxylation of benzylic C–H bonds on W2C/N3.0C-based heterogeneous system (solid sphere) and by state-of-the-art photocatalyst (Ir*(III) complex, blue circle) and homogeneous catalyst (CuCl, black circle).

Fig. 5 Scope of substrates catalyzed by W2C/N3.0C anode. Standard reaction conditions: 1-15, substrate (0.5 mmol), lithium perchlorate (1 mmol), methanol (15 mL), W2C/N3.0C anode, and Ti mesh cathode with a controlled potential of 2.0 V versus SCE reference electrode for 18 h at room temperature. 16 and 17, bioactive molecules (0.25 mmol) for 18 h and 4 h, respectively. 18-21, ethylbenzene (0.5 mmol), alcohols (15 mL), W2C/N3.0C anode, and Ti mesh cathode with a controlled potential of 2.0 V versus SCE reference electrode for 18 h at room temperature.
C–H bonds alkoxylaion with excellent chemical tolerance to various functional groups.

Discussion
In this work, we have demonstrated the key role of electron-deficient W2C nanocrystals as electrode materials in boosting the activity and durability for electrochemical activation of C–H bonds via a heterogeneous pathway. We successfully tuned the electron density of W2C nanocrystals by constructing Schottky heterojunctions with nitrogen-doped carbons to achieve preferred adsorption of benzylic C–H bonds of ethylbenzene on the W2C surface and facilitate subsequent C–H activation, which is the rate-limiting step. Unlike conventional oxidative alkoxylaion to generate water, the as-formed aromatics can be reversibly reduced using a Bruker D8 Advance X-ray diffractometer equipped with a Cu Kα source, providing new insights into the mechanism and catalytic activity of W2C/NxC heterojunctions.

Materials characterization
Powder X-ray diffraction patterns (XRD) were performed on a Bruker D8 Advance X-ray diffractometer equipped with a Cu Kα source. Powder XRD patterns were recorded in the 2θ range of 10° to 60° with a step size of 0.02° and a count time of 200 s per step. The XRD patterns were analyzed using the PowderCell software (P Strohalm, Czech Republic) to determine the crystallographic phases and phase purity.

Electrochemical measurements
All of the electrochemical experiments were performed on a standard three-electrode system on an electrochemical station (CHI 660E, Shanghai CH Instruments Company). Working electrodes were composed of W2C/NxC catalysts supported by carbon cloth. The catalyst ink was prepared by sonication and dispersing 5 mg of catalyst into a solution containing 700 μL of ethanol, 350 μL of water, and 160 μL of 0.1 M HCl. The ink was thoroughly mixed, and droplets were prepared by gently dipping 150 μL of ink onto carbon cloth (1 × 1 cm) and dried at 120 °C for 1 h in the oven. Titanium (Ti) meshes with a size of 1 × 1 cm and saturated calomel electrode (SCE) were employed as counter and reference electrodes, respectively. The control electrodes with different sample loading were prepared by dipping 50, 100, and 200 μL of ink on carbon cloth, respectively. The electrocatalytic reactions were conducted in 15 ml of methanol with 61 μL of ethylbenzene (0.5 mmol) and 0.106 g of lithium perchlorate (1 mmol) at room temperature in a home-made electrolyzer in which methanol was not only used as a solvent but also simultaneously used as a reactant. The electrocatalytic stability tests of catalyst for the reaction between ethylbenzene and methanol were evaluated using the same reaction potential for four consecutive cycles, and electrodes would have to dry at 120 °C before the next reaction.

Electrode adsorption experiments were conducted in an electrolyzer containing 1.5 mmol of ethylbenzene, 15 mL of methanol, and 1 mmol of lithium perchlorate with W2C/NxC anodes, Ti mesh cathode, and saturated calomel electrode. To accurately measure the adsorption volume of ethylbenzene before transforming (1-methoxethyl)benzene, we performed at 2 V versus SCE for 10 min. After the completion of adsorption, the residual volume of ethylbenzene in solution was obtained by extraction and analyzed on gas chromatography-mass spectrometry (GC-MS, Shimadzu QP2010SE) with dodecane as internal standard. And the adsorption volume for ethylbenzene on W2C/NxC (Cads) was calculated using the equation of

\[C_{ads} = \frac{n_{ads} - n_{ads,0}}{n_{ads,0}} \]

where

\[n_{ads} \]

is the number of moles for the specific product (mole),

\[n_{ads,0} \]

is the number of moles exchanged for product formation, which is 2 e in this reaction; \(F \) is the Faraday constant of 96487 C mol\(^{-1}\); \(Q \) is the passed charge.

The Faradaic efficiency (\(F_{\text{Faraday}} \)) was calculated as follow:

\[F_{\text{Faraday}} = \frac{n_{ads} - n_{ads,0}}{n_{ads,0}} \]

where

\[n \]

is the number of moles for the product; \(N \) is the number of moles of active metal sites determined from ICP-AES.

Theoretical calculation
The spin polarization density functional theory (DFT) calculations were performed by the DMol3 program on Materials Studio. The generalized gradient approximation method with Perdew-Burke-Ernzerhof functional (GGA-PBE) was used for describing the exchange-correlation interaction among electrons. The numerical plus polarization (DNP) basis set was employed, while an accurate DFT semi-core pseudopotentials (DSPP) was adapted to describe the metal atoms. The 6 × 6 × 1 k-points were used for sampling the irreducible Brillouin zone. Hexagonal W2C (002) facets were modeled in terms of the slabs of 5 × 5 supercells with 14.76 × 14.76 Å and 120°, and W2C cluster model was placed above a 6 × 6 supercell of graphene lattice. The vacuum slab was set as 20 Å to calculate all periodic models. The structure of the carbon support models was constructed on the basis of concentrations of pyridinic N and graphitic N dopants in the carbon lattice from the XPS analysis results. It should be noted that the bond lengths of small cluster models were fixed during the calculations. The charge exchange was calculated based on a small W2C cluster and NC support. The mean number of 0.07 electrons per atom (Supplementary Fig. 12) according to HRTEM (Fig. 1b) and XRD (Supplementary Fig. 10) analysis.

The Gibbs free energy change (\(\Delta G \)) for each step of ethylene activation was calculated as follows:

\[\Delta G = \Delta E + AZPE - T\Delta S = 298.15 K \]

where \(\Delta E \), \(AZPE \), and \(\Delta S \) are the changes in the reaction energy, zero-point energy, and entropy, respectively.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.
Received: 15 March 2021; Accepted: 3 June 2021; Published online: 23 June 2021

References

1. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).
2. Liu, M. et al. Photocatalytic methylation of non-activated sp³ and sp² CH bonds using methanol on GaN. ACS Catal. 10, 6248–6253 (2020).
3. Li, T. et al. Photoelectrochemical oxidation of organic substrates in organic media. Nat. Commun. 8, 390 (2017).
4. Li, X.-H., Chen, J.-S., Wang, X., Sun, J. & Antonietti, M. Metal-free activation of dioxygen by graphene/C_{6}N_{6} nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. J. Am. Chem. Soc. 133, 8074–8077 (2011).
5. Tundo, P., Arico, F., Rosamilia, A. E. & Memoli, S. Synthesis of dialkyl ethers by decarbonylation of dialkyl carbonates. Green. Chem. 10, 1182–1189 (2008).
6. Weidemann, V. & Maisen, W. Alkylic oxidations of olefins to enones. Synthesis 45, 2201–2221 (2013).
7. Hashiguchi, B. G., Bischof, S. M., Konnink, M. M. & Periana, R. A. Designing catalysts for functionalization of unactivated C–H bonds based on the CH activation reaction. Acc. Chem. Res. 45, 885–889 (2012).
8. Dhakshinamoorthy, A., Asiri, A. M. & Garcia, H. Formation of C–H bonds by visible light mediated photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 36, 37–49 (2017).
9. Horn, E. J. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81 (2016).
10. Sperry, J. B. & Wright, D. L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chem. Soc. Rev. 35, 605–621 (2006).
11. Wang, H., Gao, X., Lv, Z., Abdullah, T. & Lei, A. Recent advances in oxidative R₃SiH/R₃Si–H cross-coupling with hydrogen evolution via photo-/electrochemistry: focus review. Chem. Rev. 119, 6769–6787 (2019).
12. Yu, M., Shi, W. & Lei, A. Photo/electrochemical oxidation induced C–H bond functionalization. Scient. Sin. Chim. 51, 188–200 (2021).
13. Xia, H. & Lei, A. Photoelectrochemical dehydrogenative cross-coupling of heteroarenes with aliphatic CH bonds. Chin. J. Org. Chem. 40, 3471–3472 (2020).
14. Das, A., Nutting, J. E. & Stahl, S. S. Electrochemical C–H oxidation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source. Chem. Sci. 10, 7542–7548 (2019).
15. Sauerermann, N., Mei, R. & Ackermann, L. Electrochemical C–H amination by carbon catalysts in a renewable solvent. Angew. Chem. Int. Ed. 57, 5090–5094 (2018).
16. Hollmann, F., Hofstetter, K., Habicher, T., Hauer, B. & Schmid, A. Direct electrochemical regeneration of monoxygenase substrates for biocatalytic asymmetric epoxidation. J. Am. Chem. Soc. 127, 6540–6541 (2005).
17. Song, L. et al. Dual electrocatalysis enables enantioselective hydroxylation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).
18. Kong, W.-J. et al. Flow rhodaelectro-catalyzed alkyne annulations by versatile thiol–maleimide click chemistry in a flow reactor. Tetrahedron Lett. 61, 5085–5089 (2020).
19. Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).
20. Yang, M. et al. Sodium-catalyzed alkylation of diazoalkanes with allylic thiocarbamates in the presence of water. J. Org. Chem. 85, 4013–4020 (2020).
21. Wang, H., Gao, X., Lv, Z., Abdullah, T. & Lei, A. Recent advances in oxidative R₃SiH/R₃Si–H cross-coupling with hydrogen evolution via photo-/electrochemistry: focus review. Chem. Rev. 119, 6769–6787 (2019).
22. Wang, H., Li, W., Zhu, Q., Sun, J. & Wang, W. Efficient electrochemical production of fuel from water and CO₂. Nat. Commun. 11, 265 (2020).
23. Lin, Y.-X. et al. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nat. Commun. 10, 4308 (2019).
24. Liu, Y.-X. et al. Schottky barrier induced coupled interface of electron-rich N-doped carbon and electron-deficient Cu: in-built Lewis acid-base pairs for highly efficient CO₂ fixation. J. Am. Chem. Soc. 141, 38–41 (2018).
25. Cho, S.-Y. et al. Electrochemical selective hydrogenation of carbon dioxide in both protic and aprotic media. ACS Catal. 11, 18527–18531 (2020).
26. Xu, Z.-H. et al. Electrochemical reduction of N₂ to NH₃ by donor–acceptor coupled N,N and Au nanoparticles with a 67.8% Faradaic efficiency. J. Am. Chem. Soc. 144, 14976–14980 (2019).
27. Vasiliadis, A. et al. Electrochemical reduction of CO₂ to ethane through stabilization of an ethoxy intermediate. Angew. Chem. Int. Ed. 59, 19649–19653 (2020).
28. Chen, C. et al. Coupling N₂ and CO₂ in H₂ to synthesize urea under ambient conditions. Nat. Chem. 12, 67–72 (2020).
29. Yin, Z. et al. Cu/Pd nanoparticles as a robust catalyst for electrochemical allylic alkylation. Angew. Chem. Int. Ed. 59, 15933–15936 (2020).
30. Liu, W.-J. et al. Efficient electrochemical production of glutaric acid and H₂ through glucose electrolysis. Nat. Commun. 11, 265 (2020).

Author contributions
X.-H.L. and X.L. designed the experiments. X.L. conducted the preparation of the W₂C/Ni electrode and performed the experiments. H.T. and T.W. performed the density functional theory calculations and results analysis. D.X., J.-Z. and J.-S.C. oversaw all of the research phases and revised the manuscript. The authors declare no competing interests.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (21922105, 217270102082, and 22071146), Shanghai Science and Technology Committee (19JC1412600 and 20520711600), and the SJTU-MPI partner group.

Competing interests
The authors declare no competing interests.
