Evaluation and Numerical Simulation of Music Education Informationization Based on the Local Linear Regression Method

Jiping Liu

School of Art, West Anhui University, Lu’an 237012, Anhui, China

Correspondence should be addressed to Jiping Liu; 09000043@wxc.edu.cn

Received 19 April 2021; Revised 13 May 2021; Accepted 27 May 2021; Published 7 June 2021

Copyright © 2021 Jiping Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The study of this theoretical problem enables sparse or dense functional data, including educational information evaluation data. The choice of different weights is subjected to principal component analysis. The evaluation of music education informatization level mainly evaluates the status quo of music education informatization development, provides a basis for formulating and adjusting music education informatization development policies, and provides support for educational decision-making, to promote the sustainable and balanced development of music education informatization. The evaluation of music education informatization has become the key promotion work of music education informatization at this stage. This paper studies the convergence rate of functional principal components based on the local linear method under general weighting conditions. First, we introduce the related research on the estimation of mean and covariance function under general weighting. Secondly, for principal functional components under general weighting, namely, eigenvalues and eigen functions, the text gives the corresponding estimated values and derives its strong uniform convergence rate. Finally, the convergence rate was verified by simulation research. The estimation methods and conclusions of this article enrich the research of functional linear regression models and will help analyze the complex and changeable problems encountered in the application of music education information.

1. Introduction

The thesis is divided into four chapters to elaborate on the research work. The first chapter introduces the basic knowledge, related concepts, and current research status of this article. The second chapter deeply analyzes the dynamic and complex structure of the music education information system, determines the constituent elements of the music education information system, and analyzes the nonlinear relationship between the elements. The structural equation modelling method is used to analyze the relationship between the elements of the music education information system and the performance structure elements, to establish a music education information performance evaluation model, and discuss the application method of the model and the performance path optimization strategy. The third chapter analyzes the linear regression algorithm based on the rationality of the model by comparing the linear analysis, model analysis, evaluation analysis, numerical simulation, and traditional methods based on the research algorithm of this paper. Traditional methods include independent hypothesis estimation and hypothetical covariance matrix estimation. The fourth chapter summarizes the research of this paper. Finally, this article explains the value of this research and expectations for the future.

With the development of information technology, the ability of computers to acquire and store data has improved significantly, and many data types in various forms continue to emerge. In actual problem analysis, we often encounter a type of data with obvious functional characteristics. Information technology has penetrated all aspects of global economic and social life [1]. People’s working methods, learning methods, and lifestyles are undergoing profound changes. Learning space, mobile learning, ubiquitous learning, personalized learning, and lifelong learning have become the important feature of information development.
Incorporate education informatization into the overall national informatization development strategy, and deploy educational information networks in advance [2]. Educational circles generally believe that the theoretical logic of educational informatization is the "four-stage theory," that is, “start, application, integration, and innovation.” However, practical logic has proved that, with the same teaching system, apart from shallow applications, the integration of information technology and classroom teaching is an inaccessible road [3]. The relationship between two variables is a primary functional relationship; the graph is a straight line, called linear. When people measure things because of the objective conditions, what they get is the measured value, not the real value of things. In order to get the true value, an infinite number of measurements are required. Finally, the true value of the regression is calculated through these measurements, which is the origin of the regression. Now, that the strategic position of educational informatization has been determined, and the development goal of educational informatization has been planned; how to accelerate the development of educational informatization and promote education modernization has become a common method for empirical evaluation and modeling methods to determine indicator weights. The level of education informatization is measured, and the development of education informatization can be empirically evaluated. In determining the index weight, the commonly used methods can be divided into two categories: subjective weighting method and objective weighting method. The subjective empowerment method mainly includes the expert consultation method and analytic hierarchy process [10]. Voet et al. used the method of discussing and determining the evaluation index weight of students, teachers, and parents of different levels of schools by experts and then applied the combined matrix analysis method to measure and compare the level of education informatization [11]. Based on the analytic hierarchy process and gray relational analysis method, Gilmour et al. determined the weight of the measurement index of the informatization level of colleges and universities and measured and evaluated the informatization level of colleges and universities [12]. The objective weighting method mainly includes factor analysis method, multiple regression analysis method, cluster analysis method, principal component analysis method, and structural equation model method [13]. Lestari F et al. used multiple regression analysis to assess the level of primary and secondary school teachers’ information application ability and explored its key influencing factors [14]. Dickison et al. used principal component analysis to evaluate the informatization level of primary school teachers and students [15]. Syahrial et al. used exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) methods to evaluate the informatization level of 62 primary schools [16]. In summary, the structural equation model analysis method has gradually become a common method for empirical evaluation and research of the education informatization level and has been widely used.
At different stages of the development of music education informatization, the focus of evaluation of the music education informatization level should be shifted and emphasized along with the key content of national-level policy promotion and implementation [17]. To make the evaluation of the music education informatization level more scientific and reasonable, it is necessary to have a more comprehensive understanding and grasp of the development of music education informatization and the background of the time when the evaluation occurred. In the research of education informatization evaluation strategy, the evaluation index system of education informatization has become one of the research hotspots. To study the input cost of informatization teaching resources and related output benefits, Peng proposed performance evaluation indicators related to teaching resources [18]. Yi et al. have established an indicator system of the rural music education informatization level from two different perspectives of the development stage and development level, combined with the analytic hierarchy process, and inspected the development status of rural music education informatization from both vertical and horizontal perspectives [19]. On the basis of the national education informatization plan, Bi et al. put forward a five-dimensional indicator system for music education informatization through analysis and summary of a large number of domestic and foreign documents, including the level of infrastructure construction and the development and sharing of digital education resources. Five parts include the application level of education informatization, the level of management informatization, and the construction of guarantee mechanisms [20]. Geng et al. designed an indicator system for the balanced development of compulsory education in the region. In addition, some scholars have considered the evaluation strategies of the music education informatization level from different perspectives and designed a rich index system [21].

To sum up, domestic and foreign research institutions, experts, and scholars have discussed and proposed informatization evaluation index systems or scales from different angles. Some of these evaluation tools are created using corresponding evaluation methods, and some are established based on corresponding evaluation models. The former has been discussed in the previous article and here is mainly to discuss the establishment of evaluation tools based on evaluation models. In the field of music education informatization, typical research results include school informatization application evaluation model and rural music education informatization level model. The rural music education informatization level model is based on STAR, SRF, or national informatization indicator composition plan and is created using the interpretation structure model method. The school informatization application evaluation model is based on the original CIPP evaluation model and combined with the characteristics of education informatization. Although these evaluation models are suitable for evaluation in the field of education informatization, the evaluation of the development level of education informatization is not a true evaluation of education informatization, and there is a lack of attribution analysis of performance development and corresponding path optimization strategies. For this reason, it is necessary to create a scientific and reasonable performance evaluation model in the field of music education informatization and then create corresponding performance evaluation tools.

3. Intervention System Optimization

3.1. Linear Regression Information Model Constructions.

Modelling is a cognitive scientific form and thinking process. It has different modelling methods for different research objects. After consulting the research results of model construction at home and abroad, it is found that, in the field of educational informationization, common modelling methods include factor analysis, interpretation structure modelling, and structural equation modelling. Factor analysis is an important and practical method in modern statistics and a branch of multivariate statistical analysis. This method enables researchers to reduce a set of variables that reflect the nature, state, and characteristics of things into a few factors that can reflect the internal connection and inherent and determine the essential characteristics of things. The factor analysis method is currently the most widely used psychology research method and is widely used in economics, sociology, education, archaeology, and other disciplines. Researchers can use factor analysis to extract several decisive factors from several variables, establish theoretical hypotheses, and then use factor analysis to repeatedly verify the hypothesis until it is established. Therefore, the factor analysis method is used to form a scientific concept and then construct a powerful cognition and auxiliary tool for thinking models and theoretical systems [22]. At the same time, factor analysis is also an objective and highly scientific mathematical reasoning method. The factor analysis method enables researchers to step out of the purely speculative field, base their theories and research on a relatively solid mathematical foundation, and make the research results more scientific and objective. Figure 1 is the basic structure diagram of the content of educational information construction.

Research the convergence rate of functional principal components based on the local linear method under general weighting conditions. The study of this theoretical problem enables functional principal component analysis for either sparse or dense functional data, including music education evaluation data, through the choice of different weights. This paper focuses on the convergence speed of the eigenvalue and eigen function estimation value and shows the convergence speed of the variance estimation of the measurement error.

Suppose $H(x)$ is a random process defined on a fixed interval $X=[0,1]$, the mean function $\delta(t)=F\{H(x)\}$, and the covariance function $\mu(s,t)=\cos\{H(s)\{M(t)\}$. The observed value of the random process at the observation point X_{ij} is represented by G_{ij}.
Minimize the weighted least squares method to obtain the local linear estimation value:

$$H(s,t) = \sum_{i=0}^{m} \beta_i.$$

Finally, in order to estimate the variance of the measurement error, minimize formula (5) to obtain a local linear estimate of $V(x) = v(t) + \phi^2$:

$$\sum_{i=0}^{a} (\varphi_{i} + \varphi_{j}) \sum_{j=0}^{b} E_v[(M_{ij} - m) \cdot \left[G_{ij} - (\chi_{0} + \chi_{1}) \cdot (M_{ij} - m) \right]^3].$$

The convergence speed of the estimated eigenvalues is shown in the following equation:

$$F(\chi_{i} - \chi_{j}) = O\left(\log_{2}\frac{m_{j}}{m_{i}}\right) + v_{1} + v_{2} + \ldots + v_{n} + \log_{2}\left(\sum_{i=0}^{a} (h_{i} - 1)\varphi_{i}\right)^2.$$

informatization is mainly reflected in the application of information technology in teaching and learning. The application level of informatization in teaching includes the level of informatization office of teachers, the teaching situation of teachers using information technology to assist course, and the application of information technology in the teaching evaluation level. The level of informatization learning application mainly assesses students’ application of information technology in school and outside school.

The evaluation of the training level of informatization talents covers a total of four aspects: teachers’ information technology application ability and training situation, students’ information technology ability and training situation, school leadership information leadership level and training situation, and school information technology full-time personnel team construction level.

The evaluation index system for the construction level of informatization hardware facilities mainly includes two categories: the construction level of informatization teaching facilities and the construction level of the campus network. Among them, the construction level of informatization teaching facilities includes evaluation indicators for the construction of informatization teaching stems, the construction of smart classrooms, the level of desktop computers, the level of mobile equipment, and the existing problems of infrastructure. The construction level of campus network mainly evaluates the construction and application level of the school’s Internet and wireless network access.

The level of informatization resources construction mainly includes the evaluation index system in terms of

$$G_{ij} = H_i(M_{ij}) + \eta_{ij} + \lambda_{ij}, i \leq [1,n] \text{ and } j \leq [0,m].$$

First, the local linear estimation of the mean function $\delta(t) = \chi_{0}$, minimizing the following local weighted least squares objective function with respect to (χ_{0}, χ_{1}) to obtain

$$\sum_{i=0}^{a} (\varphi_{i} + \varphi_{j}) \sum_{j=0}^{b} E[M_{ij} - m] \cdot \left[G_{ij} - (\chi_{0} + \chi_{1}) \cdot (M_{ij} - m) \right]^3.$$

Second, in order to estimate the covariance function $\mu(s,t)$, first estimate $E(s,t) = F[H(s) | H(t)]$, and then, we can get the following formula:

$$\delta(s,t) = H(s,t) - \frac{1}{2} \delta(s) \delta(t) \cdot \sum_{i,j=0}^{a} \delta(s_{ij}).$$

Model setting is that the researcher forms a model of the relationship between a set of variables based on previous theories and existing knowledge through inferences and assumptions. Based on the analysis of the above latent variables and observation variables, this paper sets up a music education informationization performance evaluation model, as shown in Figure 2. This model aims to explore the relationship between the music education informatization level and the elements of the music education information system and the relationship between the music education informatization performance level and the music education informationization performance structural elements and further explore the direct and indirect effects of the music education informationization level on the performance level.

3.2. Informatization Evaluation Research. The empirical evaluation framework of education informatization proposed by the research is based on the evaluation of the level of informatization application. The level of infrastructure hardware facilities and informatization resources is the environmental foundation, the level of informatization talent training is human support, and the level of informatization of education management is an intelligent method. The measurement of the level of guarantee system construction is regarded as support. It aims to promote the application of information technology in teaching and learning through the evaluation and measurement of the development level of various dimensions and further promotes the cultivation of new talents. The application of
teaching software equipment, informatization teaching resources construction, informatization resource sharing, digital library, and e-book resource construction. The evaluation index system of the educational management informatization level includes information technology ability and informatization office level of school administrators, construction level of hardware facilities for school management, and construction and update of school portals.

The level of the informatization guarantee system mainly measures the informatization of the region/school of the aspects of informatization leadership guarantee, informatization policy and system guarantee, technical and method support for teachers, fund investment and distribution guarantee, informatization monitoring, and evaluation practice.

The measurement model explains how latent variables are measured by the corresponding explicit variables, and the structural model refers to the relationship between latent variables [23–25]. In the structural equation model, variables are divided into two categories: explicit variables and latent variables according to their measurability. Explicit variables refer to indicators or variables that can be directly measured in scientific research, and latent variables refer to indicators or variables that cannot be directly measured or observed in research:

\[
\begin{align*}
X_i &= X_i \eta_i + \delta_i + \log_2 \sqrt{m_i}, \\
Y_i &= X_i \eta_i + \delta_i + \log_2 \sqrt{m_i},
\end{align*}
\]

Our experimental data are all processed by our own program, and all other data are compiled or experimentally obtained by ourselves.

The level of education informatization involves multiple indicators, so certain data calculation methods need to be used to collect multiple indicators, and finally, a comprehensive indicator is obtained, which reflects the comprehensive level of education informatization. This method is usually called multi-index comprehensive evaluation method. Among the comprehensive evaluation methods, the most used method is the linear weighting method. The linear weighting method takes the objective function as a single dependent variable and divides the object into multiple weighting factors. The final value of the dependent variable is obtained by multiplying and adding the weight of different independent variables in each grouping and their corresponding values. The application formula is shown in the following:

\[
S(x) = \sum_{i=0}^{n} \omega_i \cdot s_i + \beta \cdot s_i.
\]

4. Results Analysis

4.1. Informational Linear Analyses. Our experiments use Section 3.1 of the text, which focuses on analyzing through these formulas and then automating these formulas by means of programming.

Factor analysis is a common analytical method to test the validity of the facet. Through exploratory factor analysis, on the one hand, the facet validity of the questionnaire can be tested; on the other hand, the common factors of the observed variables can be clustered to achieve the purpose of compressing variables [26–29]. The factor analysis method first needs to determine the questionnaire items for the KMO test and Bartlett sphere test. According to Kaiser’s point of view, the KMO value is greater than 0.85. The results of the KMO test and the Bartlett sphere test for the 30 items in this study are shown in Figure 3. The results showed that the value of the KMO test was 0.897, and the Bartlett sphere test was \(p < 0.005 \), indicating that the data are correlated and suitable for factor analysis. The larger the KMO, the more suitable it is to perform a factor analysis. The KMO value is at least 0.71–0.82, which is quite suitable; 0.83–0.94 is suitable.

In order to ensure the effect of the questionnaire survey on the dynamic evaluation of the music education informatization level in the county and increase the response rate of the questionnaire, the researcher contacted the music education information management department in advance, and the researcher sent the questionnaire to the respondent and explained to the respondent. The significance and requirements of the survey help the questionnaire to read and think carefully and to withdraw it on the spot after the questionnaire is done. The subjects of the questionnaire include students, teachers, information technology teachers, information technology managers, school leaders, and relevant managers of the Education Bureau. A total of 360 questionnaires were distributed this time, and 300 questionnaires were returned. After detailed screening and processing, there are 280 valid questionnaires remaining. The basic information statistics of the questionnaire survey are shown in Figure 4.

The statistical data obtained from the empirical study is calculated according to the calculation formula of this article, and the score of each indicator of the basic education informatization level is obtained. The situation of inspecting the informatization level of music education is shown in Figure 5.

4.2. Information Model Analysis. The goodness of fit of the model obtained by the regression analysis meets the index regulations and is still within an acceptable range, and the coefficients of the independent variables entering the model have a high significance level. The regression model can more clearly show the information effect. The VIF of the independent variables in the regression model (RM) are all less than 10, indicating that there is no multicollinearity between the independent variables. The overall test result of the regression model is shown in Figure 6. For music education in strong counties of education represented by music education, music education informatization planning, music education informatization facilities, and music education informatization resources are the key to the success of music education informatization. The investment in education informatization resources, facilities, and music education informatization talents is to build two platforms of technology and talent for music education informatization. The application of music education informatization and the
effect of music education informatization are the most critical indicators of music education informatization.

The accuracy of our results is better and more efficient. The basic idea of the calculation method of the music education informatization level index is to adopt the comprehensive index method, through the combination of multiple comprehensive evaluation methods, to calculate the five-dimensional index values of five schools, as shown in Figure 7. In the specific process of solving the comprehensive index, to ensure a more reliable evaluation result, firstly use the analytic hierarchy process, the CRITIC method, the subjective and objective combination weighting method, the gray correlation analysis method, and other single evaluation methods to calculate separately. We evaluate the comprehensive index value and the index value of the five dimensions of each school, and then, use the combined evaluation method based on the overall difference to combine each single evaluation method.

4.3. Information Evaluations and Analysis. Use the evaluation method identified above to comprehensively evaluate the level of education informatization with the school as a unit. First, using tools such as MATLAB, YAAP, and SPSS, respectively, calculate the evaluation results of the analytic hierarchy process, the CRITIC method, the combination weighting method, and the gray correlation method. The evaluation conclusions obtained through the above evaluation methods have the problem of inconsistent dimensions. Therefore, these conclusions are standardized in the

Figure 1: The basic structure diagram of the content of education informatization construction.

Figure 2: Music education information model.
logarithmic form, and the standardized evaluation results of 10 schools are calculated, as shown in Figure 8. Second, follow the steps in the second part of the processing flow to verify the compatibility of the methods. For the evaluation results of the four evaluation methods, because the evaluation methods that are obviously inconsistent cannot be excluded intuitively, the cluster analysis method is used to verify the compatibility of each method. After the first round of cluster analysis, the four evaluation methods are divided into two categories, of which the gravy correlation analysis method becomes a single category, and the other three methods are clustered into one category. To further verify the degree of compatibility between the gravy correlation analysis method, which is a single category, and all other methods, the evaluation results of the other three methods are averaged, and this average vector is combined with the evaluation result vector of the gravy correlation analysis. Correlation analysis results show a significant correlation between the two. Therefore, it can be concluded that the four evaluation methods adopted are mutually compatible and can be used to carry out a combined evaluation.

Calculate the average value of the evaluation results of the compatible methods after standardization, and then, calculate the correlation coefficient \(r \) between the evaluation conclusions of each evaluation method and the average value, respectively, and obtain the drift degree of each single
method evaluation conclusion. According to the experimental results, the evaluation results obtained by using these four evaluation methods are compatible, and the drift of the calculated results is very small, which is suitable for comprehensive evaluation of the survey data. The relationship between the degree of drift of the evaluation results of each single evaluation method is analytic hierarchy process CRITIC method < combination weighting method < gray correlation method. The data of music education in other schools in the survey sample were processed, respectively, and the calculation results of the average drift degree of the four evaluation methods were obtained, as shown in Figure 9.

The music education informatization development evaluation model points out that the application of informatization and the development of informatization subjects have a significant positive impact on the efficiency of basic education informatization. Therefore, in-depth application of informatization and research on the subject development are the ways to improve the effectiveness of music education
In the face of the continuous innovation of educational technology and the continuous development of education informatization, past achievements may be honours, but they may also be burdens. The path taken in the past may be a shortcut, but it may also be a detour. Facts have shown that when facing the introduction of new technologies, accepting new things, and adopting new models, when existing technologies have achieved certain results in educational applications, the effects and effectiveness are outstanding; relevant stakeholders often hold reservations or even conflict. Attitude prefers to maintain the original development path. The rapid development of information technology requires continuous changes in the application of information technology and, at the same time, requires the main body’s information efficiency to match it. Therefore, for the informatization of music education, it is impossible to think of breaking the convention and reforming the application path when the existing technology application cannot meet the practical needs or solve the development contradiction. Should always pay attention to the frontier of technology, participate in information training in time, introduce new technologies into information technology classrooms, introduce subject teaching, continuously strengthen the breadth and depth of information technology.
applications, and continue to actively optimize and fine-tune paths according to self-demand. The optimized results of this path will continue to promote the efficiency of music education informatization.

5. Conclusion

Based on the structural equation modelling method, this research innovatively constructs a performance evaluation model for music education informatization. The model consists of two parts: a measurement model and a structural model. The measurement model represents the correlation between observed variables and latent variables, and the structural model represents the causal relationship between latent variables. This model innovatively reveals the causal relationship between the constituent elements of the music education information system and the music education information performance structure. And, compared with the existing performance evaluation model, it cannot only guide the development of performance evaluation tools but also guide the application of performance evaluation results and optimize the path of performance improvement. This is also an innovation. In the functional data analysis literature, there are many methods to analyze dense data or sparse data, but there is few data analysis other than these two types. Due to the different ways of these two data types, it is not obvious how to choose the correct analysis method when dealing with real data. In short, the research on the level of music education informatization still has a lot to be further deepened and expanded. In the future, we will continue to work hard to achieve new progress. Our results have better utility compared to other studies, and we are less expensive, more efficient, and have shorter lead times.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The study was supported by Key Teaching and Research Project of Anhui Province (Grant no. 2019jyxmt0349) and Anhui University Humanities and Social Science Research Key Project (Grant no. SK2019A0435).

References

[1] X. Peng and J. Dai, “Research on the assessment of classroom teaching quality with q-rung orthopair fuzzy information based on multiparametric similarity measure and combinative distance-based assessment,” International Journal of Intelligent Systems, vol. 34, no. 7, pp. 1588–1630, 2019.
[2] S. Fadli and K. Imtihan, “Implementation of MOORA method in evaluating work performance of honorary teachers,” SinkrOn, vol. 4, no. 1, pp. 128–135, 2019.
[3] A. Onan, “Mining opinions from instructor evaluation reviews: a deep learning approach,” Computer Applications in Engineering Education, vol. 28, no. 1, pp. 117–138, 2020.
[4] J. König, D. J. Jäger-Biela, and N. Glutsch, “Adapting to online teaching during COVID-19 school closure: teacher education and teacher competence effects among early career teachers in Germany,” European Journal of Teacher Education, vol. 43, no. 4, pp. 608–622, 2020.
[5] F. Lautenbach and A. Heyder, “Changing attitudes to inclusion in preservice teacher education: a systematic review,” Educational Research, vol. 61, no. 2, pp. 231–253, 2019.
[6] J. Gustems-Carnicer, C. Calderón, and D. Calderón-Garrido, “Stress, coping strategies and academic achievement in teacher education students,” European Journal of Teacher Education, vol. 42, no. 3, pp. 375–390, 2019.
[7] J. Tondev, R. Scherer, E. Baran, F. Siddiq, T. Valtonen, and E. Sointu, “Teacher educators as gatekeepers: preparing the next generation of teachers for technology integration in
education,” *British Journal of Educational Technology*, vol. 50, no. 3, pp. 1189–1209, 2019.

[8] J. Alfin, A. H. Fuad, A. Z. Fuad, M. Nur, L. Yuanita, and B. K. Prahani, “Development of group science learning (GSL) model to improve the skills of collaborative problem solving, science process, and self-confidence of primary schools teacher candidates,” *International Journal of Instruction*, vol. 12, no. 1, pp. 147–164, 2019.

[9] X. Zhai, Y. Yin, J. W. Pellegrino, K. C. Haudek, and L. Shi, “Applying machine learning in science assessment: a systematic review,” *Studies in Science Education*, vol. 56, no. 1, pp. 111–151, 2020.

[10] N. Amelia, A. G. Abdullah, and Y. Mulyadi, “Meta-analysis of student performance assessment using fuzzy logic,” *Indonesian Journal of Science and Technology*, vol. 4, no. 1, pp. 74–88, 2019.

[11] M. Voet and B. De Wever, “Teachers’ adoption of inquiry-based learning activities: the importance of beliefs about education, the self, and the context,” *Journal of Teacher Education*, vol. 70, no. 5, pp. 423–440, 2019.

[12] A. F. Gilmour, C. E. Majekia, A. W. Sheaffer, and J. H. Wehby, “The coverage of classroom management in teacher evaluation rubrics,” *Teacher Education and Special Education: The Journal of the Teacher Education Division of the Council for Exceptional Children*, vol. 42, no. 2, pp. 161–174, 2019.

[13] A. Gj, A. Dw, A. Dy et al., “Role and object domain-based access control model for graduate education information system,” *Procedia Computer Science*, vol. 176, pp. 1241–1250, 2020.

[14] F. Lestari, B. Saryantono, M. Syazali et al., “Cooperative learning application with the method of “network tree concept map”, based on Japanese learning system Approach,” *Journal for the Education of Gifted Young Scientists*, vol. 7, no. 1, pp. 15–32, 2019.

[15] P. Dickison, K. A. Haerling, and K. Lasater, “Integrating the National Council of State Boards of Nursing clinical judgment model into nursing educational frameworks,” *Journal of Nursing Education*, vol. 58, no. 2, pp. 72–78, 2019.

[16] S. Syahrial, A. Asrial, D. A. Kurniawan et al., “Increased behavior of students’ attitudes to cultural values using the inquiry learning model assisted by ethnoconstructivism,” *Journal of Educational Science and Technology (EST)*, vol. 5, no. 2, pp. 166–175, 2019.

[17] A. Onan, S. Korukoglu, and H. Bulut, “Ensemble of keyword extraction methods and classifiers in text classification,” *Expert Systems with Applications*, vol. 57, pp. 232–247, 2016.

[18] X. Peng and H. Huang, “Fuzzy decision making method based on CoCoSo with critic for financial risk evaluation,” *Technological and Economic Development of Economy*, vol. 26, no. 4, pp. 695–724, 2020.

[19] L. Yi, Z. Ying, and T. T. Wijaya, “The trend of mathematics teaching method has change from fragments to systematic,” *Jurnal Cendekia: Jurnal Pendidikan Matematika*, vol. 3, no. 2, pp. 471–480, 2019.

[20] M. Bi, Z. Zhao, J. Yang, and Y. Wang, “Comparison of case-based learning and traditional method in teaching postgraduate students of medical oncology,” *Medical Teacher*, vol. 41, no. 10, pp. 1124–1128, 2019.

[21] J. Geng, M. S.-Y. Jang, and C. S. Chai, “Hong Kong teachers’ self-efficacy and concerns about STEM education,” *The Asia-Pacific Education Researcher*, vol. 28, no. 1, pp. 35–45, 2019.

[22] A. I. Adekitan and E. Noma-Osaghae, “Data mining approach to predicting the performance of first year student in a university using the admission requirements,” *Education and Information Technologies*, vol. 24, no. 2, pp. 1527–1543, 2019.

[23] C. D. Gist, M. Bianco, and M. Lynn, “Examining grow your own programs across the teacher development continuum: mining research on teachers of color and nontraditional educator pipelines,” *Journal of Teacher Education*, vol. 70, no. 1, pp. 13–25, 2019.

[24] K. Shi, Y. Tang, X. Liu, and S. Zhong, “Secondary delay-partition approach on robust performance analysis for uncertain time-varying Lurie nonlinear control system,” *Optimal Control Applications and Methods*, vol. 38, no. 6, pp. 1208–1226, 2017.

[25] A. Zielonka, A. Sikora, M. Wozniak, W. Wei, Q. Ke, and Z. Bai, “Intelligent Internet of things system for smart home optimal convection,” *IEEE Transactions on Industrial Informatics*, vol. 17, no. 6, pp. 4308–4317, 2021.

[26] J. J. Chen and M. F. Liu, “Does the Internet expand the educational gap among different social classes: the protective role of future orientation,” *Frontiers in Psychology*, vol. 12, p. 1255, 2021.

[27] J. Yang, C. Wang, B. Jiang et al., “Visual perception enabled industry intelligence: state of the art, challenges and prospects,” *IEEE Transactions on Industrial Informatics*, vol. 17, no. 3, pp. 2204–2219, 2020.

[28] B. Yang, X. Li, Y. Hou et al., “Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses-A review,” *Energy and Buildings*, vol. 224, Article ID 110261, 2020.

[29] Q. Ke, J. Zhang, W. Wei et al., “A neuro-heuristic approach for recognition of lung diseases from X-ray images,” *Expert Systems with Applications*, vol. 126, pp. 218–232, 2019.