Cloning and Sequencing of the Coenzyme B_{12}-binding Domain of Isobutyryl-CoA Mutase from *Streptomyces cinnamonensis*, Reconstitution of Mutase Activity, and Characterization of the Recombinant Enzyme Produced in *Escherichia coli*\(^*\)

(Received for publication, August 2, 1999)

Ananda Ratnatilleke, Jan W. Vrijbloed, and John A. Robinson\(\ddagger\)

From the Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

The coenzyme B_{12}-dependent isobutyryl-CoA mutase (ICM\(^1\); butanoyl-CoA:2-methylpropanoyl-CoA mutase, EC 5.4.99.13) catalyzes the reversible rearrangement of isobutyryl-CoA to n-butyryl-CoA, which is similar to, but distinct from, that catalyzed by methylnaloxyl-CoA mutase. ICM has been detected so far in a variety of aerobic and anaerobic bacteria, where it appears to play a key role in valine and fatty acid catabolism. ICM from *Streptomyces cinnamonensis* is composed of a large subunit (IcmA) of 62.5 kDa and a small subunit (IcmB) of 14.3 kDa. icmB encodes a protein of 136 residues with high sequence similarity to the cobalamin-binding domains of methylnaloxyl-CoA mutase, glutamate mutase, methyleneglutarate mutase, and cobalamin-dependent methionine synthase, including a conserved DXHXXG cobalamin-binding motif. Using IcmA and IcmB produced separately in *Escherichia coli*, we show that IcmB is necessary and sufficient with IcmA and coenzyme B_{12} to afford the active ICM holoenzyme. The large subunit (IcmA) forms a tightly associated homodimer, whereas IcmB alone exists as a monomer. In the absence of coenzyme B_{12}, the association between IcmA and IcmB is weak. The ICM holoenzyme appears to comprise an \(\alpha_2\beta_2\)-heterotetramer with up to two molecules of bound coenzyme B_{12}. The equilibrium constant for the ICM reaction at 30 °C is 1.7 in favor of isobutyryl-CoA, and the pH optimum is near 7.4. The \(K_m\) values for isobutyryl-CoA, n-butyryl-CoA, and coenzyme B_{12} determined with an equimolar ratio of IcmA and IcmB are 57 ± 13, 54 ± 12, and 12 ± 2 \(\mu\)M, respectively. A \(V_{\text{max}}\) of 38 ± 3 units/ng IcmA and a \(k_{\text{cat}}\) of 39 ± 3 s\(^{-1}\) were determined under saturating molar ratios of IcmB to IcmA.

\(\dagger\) To whom correspondence should be addressed. Tel.: 41-1-635-4242; Fax: 41-1-635-6812; E-mail: robinson@oci.unizh.ch.

\(\ddagger\) The abbreviations used are: ICM, isobutyryl-CoA mutase; MCM, methylnaloxyl-CoA mutase; DMB, dimethylbenzimidazole; kb, kilobase pair(s); ORF, open reading frame.

\(\ast\) This work was supported by the Swiss National Science Foundation and the Stipendium Commission of the Swiss Federal Government. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The nucleotide sequence(s) reported in this paper has been submitted to the GenBank\(\textsuperscript{\text{TM}}\)/EBI Data Bank with accession number(s) AJ246005.

The structure determination of the cobalamin-binding domain of MetH, a member of the methyltransferase family, revealed for the first time a protein-bound form of methylcobalamin, a vitamin B_{12} derivative (10). The coenzyme B_{12} was bound to the protein with a histidine residue providing an axial imidazole ligand to cobalt, replacing the DMB group appended to the corrin ring. This key histidine residue is found in the motif DXHXXG, which is conserved in some (but not all) of the coenzyme B_{12}-dependent mutases (11). The crystal structure of MCM from *P. shermanii* revealed not only an active site, inaccessible to solvent, embedded along the axis of the \((\beta\alpha)_h\)-barrel in MutB (7, 8), but also the coordination of cobalt in coenzyme B_{12} by the histidine in the conserved DXHXXG motif within the C-terminal cobalamin-binding domain. In the case of several polyketide antibiotic-producing streptomyctetes, where it appears to play a key role in valine and fatty acid catabolism as well as in the production of fatty acid-CoA thioester building blocks for polyketide antibiotic biosynthesis (4). In earlier work (5), purification of ICM from the monensin-producing microorganism *Streptomyces cinnamonensis* gave a protein (IcmA) of ~65 kDa whose gene was subsequently cloned and expressed in *Escherichia coli*. However, recombinant IcmA alone showed no ICM activity. Using IcmA with a His\(_6\) tag attached to its N terminus, a second subunit of ICM with an apparent mass of ~17 kDa as determined by SDS-polyacrylamide gel electrophoresis (denoted IcmB) was isolated by affinity chromatography from *S. cinnamonensis*, which gave ICM activity when combined with IcmA and coenzyme B_{12} (5). In this work, we describe for the first time the cloning and sequencing of the gene encoding IcmB and the first characterization of ICM reconstituted from small and large subunits produced separately in *E. coli*.

The MCMs from *S. cinnamonensis* (2) and *Propionibacterium shermanii* (6) are heterodimers with subunits of ~79 kDa (MutB) and ~65 kDa (MutA). Several crystal structures of *P. shermanii* MCM were reported recently (7–9), which revealed a single coenzyme B_{12} molecule bound to the 728-residue MutB protein, sandwiched between a \(\beta\alpha)_h\)-triosephosphate isomerase barrel and a C-terminal, flavodoxin-like, cobalamin-binding domain. IcmA from *S. cinnamonensis*, however, comprises only 566 residues (5), corresponding to a loss of the entire ~160-residue C-terminal cobalamin-binding domain from MutB. The sequence of the \((\beta\alpha)_h\)-barrel in MutB comprising residues A1–A400 is highly conserved in IcmA. Residues A401–A559 in MutB correspond to a largely helical linker, which connects the \((\beta\alpha)_h\)-barrel with the cobalamin-binding domain (residues A560–A728). The linker residues A401–A559 correspond in a sequence alignment approximately with residues 393–560 in IcmA, although the sequence identity in this region is only ~18%. But after just 6 more residues, IcmA terminates.

The structure determination of the cobalamin-binding domain of MetH, a member of the methyltransferase family, revealed for the first time a protein-bound form of methylcobalamin, a vitamin B_{12} derivative (10). The coenzyme B_{12} was bound to the protein with a histidine residue providing an axial imidazole ligand to cobalt, replacing the DMB group appended to the corrin ring. This key histidine residue is found in the motif DXHXXG, which is conserved in some (but not all) of the coenzyme B_{12}-dependent mutases (11). The crystal structure of MCM from *P. shermanii* revealed not only an active site, inaccessible to solvent, embedded along the axis of the \((\beta\alpha)_h\)-barrel in MutB (7, 8), but also the coordination of cobalt in coenzyme B_{12} by the histidine in the conserved DXHXXG motif within the C-terminal cobalamin-binding domain. In the case of
Isobutyryl-CoA Mutase

of ICM, however, the large subunit (IcmA) contains no contiguous cobalamin-binding domain, but instead requires a separate small subunit (IcmB) to bind coenzyme B$_12$ and to afford active mutase (5). This suggested that IcmB has taken on the role of a separate cobalamin-binding domain in ICM, a conclusion that is confirmed here by the high sequence similarity between IcmB and the cobalamin-binding domains of MutB, methylene glutarate mutase, and MethH as well as the small subunit (MutS) of glutamate mutase.

EXPERIMENTAL PROCEDURES

Bacterial Strains—*S. cinnamonensis* A38235, a high-yield producer of monensin A, was a gift of Lilly. *E. coli* BL21(DE3) pLysS (12) was purchased from Novagen.

Production of IcmA and Assay—IcmA was produced in *E. coli* BL21 pLysS(pET3a-icmA) as described earlier (13). The ICM assay was as described earlier (2). Briefly, n-butyryl-CoA (or isobutyryl-CoA; 280 μM final concentration) was added to an assay mixture containing 50 μM coenzyme B$_12$, 50 mM potassium phosphate (pH 7.4), and IcmA and IcmB. The reaction was incubated in the dark at 30 °C, typically until 10–15% conversion of substrate to product, and then stopped by addition of 100 μl of 2 M KOH containing 0.002% (v/v) n-valeric acid. After acidifying with 100 μl of 15% (v/v) H$_2$SO$_4$ and saturating with NaCl, the solution was extracted with EtOAc. The analysis was carried out directly by gas chromatography using a FFAP capillary column (10 m × 0.53 mm; Hewlett-Packard Co.).

Purification of IcmB—IcmB was purified from both *S. cinnamonensis* and *Streptomyces lividans* TK64 as described earlier (5). The N-terminal amino acid sequences of both proteins were determined by the Edman method using an automated sequencer. The N-terminal signal amino acid sequences of both proteins were determined by the Akviral.

Characterization of IcmA and IcmB—Native molecular masses were determined by gel filtration chromatography (Superose 12 HR 10/30 column, Amersham Pharmacia Biotech) in buffer D (50 mM Tris-HCl (pH 7.5), 1 mM benzamidine, 1 mM phenylmethylsulfonyl fluoride, 1 mM dithiothreitol, 0.1% (v/v) 2-mercaptoethanol, and 5% (v/v) glycerol). The cell-free extract (~35 mg of protein) was applied to a Q-Sepharose column (1.5 × 7 cm; Fast flow, Amersham Pharmacia Biotech) equilibrated with buffer B (50 mM Tris-HCl (pH 7.5) and 5 mM EDTA). The column was washed with 20 column volumes of buffer B and then eluted at a flow rate of 3 ml/min with a linear gradient of 0–1 M KCl in buffer B over 100 ml. The fractions containing IcmB eluted in the range 100–350 mM KCl as detected by an Icm activity assay. The Icm-active fractions were pooled (20 mg of protein) and dialyzed against buffer C (50 mM Tris-HCl (pH 7.5) and 0.5 mM EDTA) containing 1 mM dithiothreitol.

The dialyzed sample (18 mg of protein) from above was rechromatographed on the MonoQ column (HR 5/5, Amersham Pharmacia Biotech) equilibrated with buffer C. The column was washed with 50 column volumes of buffer C and then eluted at a flow rate of 1.5 ml/min using a 0–1 M KCl gradient in buffer C over 100 ml. The fractions eluting between 90 and 200 mM KCl possessed the highest ICM activity and were pooled and dialyzed against buffer C (yield of 5 mg of protein).

Expression of icmB—General DNA manipulations were performed in *E. coli* (13) and *Streptomyces* (14) as described. Two oligonucleotides were designed based on the N-terminal protein sequence of IcmB (S DGHDRGAKVIARAL and Separonase column in buffer D (pH 7.4) at 30 °C. For the ICM reaction at pH 7.4 and 30 °C was obtained by determining the equilibrium concentrations of both n-butyryl-CoA and isobutyryl-CoA. Assays contained 25 mM IcmA, 25 mM IcmB, and 0.1 mM coenzyme B$_12$ in 3.2 ml of 50 mM potassium phosphate buffer (pH 7.4) equilibrated at 30 °C. n-Butyryl-CoA or isobutyryl-CoA (140 μM) was added to start the reaction; and periodically, samples were taken to determine the ratio of isobutyryl-CoA to n-butyryl-CoA. This experiment was then repeated using 10 different starting ratios of n-butyryl-CoA to isobutyryl-CoA (ratios in the range 0.4–2.1) roughly in the range of the estimated equilibrium constant determined above. The equilibrium constant for the ICM reaction was obtained by plotting the change in [isobutyryl-CoA] vs the [isobutyryl-CoA]/[n-butyryl-CoA] ratio. This gave K_{eq} = 1.7 ± 0.05 in favor of isobutyryl-CoA.

Kinetic Analyses—For determination of K_m and V_{max} values, initial velocities were determined using the gas chromatography assay (see above) in 50 mM potassium phosphate buffer (pH 7.4) at 30 °C. For the measurement of K_m values, IcmA and IcmB (each at 5 nm) were used in a 1:1 molar ratio. The conversion of substrate to product was followed by withdrawing samples from the assay mixture (typically five time points for each assay) up to a maximum of 10–15% conversion, and these data were used to calculate initial rates. Typically, six different substrate
results.

Sequence and Expression of icmB—The 1.65 kb of S. cinnamonensis genomic DNA, isolated from a library using oligonucleotides encoding the N terminus of IcmB, were sequenced and analyzed using CODONPREFERENCE in the GCG software (16). This revealed two complete ORFs (ORF1 and ORF2) and one (ORF3) with incomplete sequence data (Fig. 3). ORF1, translated in frame, IcmB eluted with an apparent mass of 17 kDa, suggesting that the icmB gene encodes a protein with a mass of 4,203 Da, consistent with the deduced protein sequence (Table I). A putative ORF2, immediately upstream of ORF1, encoded a protein of only 55 residues and, with a mass of 14,333 Da, represented by Equation 1,

\[
 v = \frac{V_{\text{max}}[A][B]}{K_{\text{M}}[A] + K_{\text{M}}[B] + K_{\text{M}}[A][B] + K_{\text{M}}[A][B]}
\]

where \(v \), \(V_{\text{max}} \), [A], and [B] are the initial velocity, maximum velocity, concentrations of the first substrate A and second substrate B, respectively (18). \(K_{\text{M}} \) is the Michaelis constant for substrates A and B and the dissociation constant for the first substrate A, respectively. The initial velocity data was fit to Equation 1 using the computer program Leonora Version 1.0 (19, 20) (see Fig. 7, A and B).

The Hill constant \((h)\) was measured by varying the IcmB concentration (1–55 nM) at one fixed concentration of IcmA (5 nM), and fitting initial rates to the following form of the Hill equation (Equation 2),

\[
\frac{V_{\text{max}}}{V_{\text{max}} - \omega} = h \times \log_{10} [\text{IcmB}]
\]

RESULTS

Sequence and Expression of icmB—The 1.65 kb of S. cinnamonensis genomic DNA, isolated from a library using oligonucleotides encoding the N terminus of IcmB, were sequenced and analyzed using CODONPREFERENCE in the GCG software (16). This revealed two complete ORFs (ORF1 and ORF2) and one (ORF3) with incomplete sequence data (Fig. 3). ORF1, translated in frame, IcmB eluted with an apparent mass of 17 kDa, suggesting that the icmB gene encodes a protein with a mass of 4,203 Da, consistent with the deduced protein sequence (Table I).

To produce IcmB in E. coli, NdeI and BamHI sites were introduced at the 5'- and 3'-ends of icmB such that the NdeI site encodes an ATG start codon, and the gene was cloned in the expression vector pET3a (12). After introduction into E. coli BL21(DE3) pLysS, the production of active IcmB could be detected in cell extracts in an assay with IcmA and coenzyme B12. After isolation by standard methods (see “Experimental Procedures”), the protein was homogeneous as determined by SDS-polyacrylamide gel electrophoresis (Fig. 4), with an apparent mass of ~17 kDa, as observed in earlier work (5). An electrospray mass spectrum of IcmB gave a molecular ion with a mass of 14,203 Da, consistent with the deduced protein sequence minus methionine.

Characterization of ICM—Upon gel filtration chromatography, IcmB eluted with an apparent mass of 17 kDa, suggesting

Protein sequence	Identity	Similarity	Chain length
MutB of GM	24	48	137
GlmB of GM	24	49	137
MutB of MCM			
S. cinnamonensis	67	70	733
P. shermanii	37	57	614
MGM (C. barikeri)	37	57	614
MGM (E. coli)	22	50	1227
MCM-like small protein	56	73	147
P. horikoshii	56	76	144

Protein sequence	Identity	Similarity	Chain length
MGM	24	48	137
MCM	24	49	137

The predicted ribosome-binding site for ORF1 (icmB) is underlined.

The general form of the rate equation for a bireactant mechanism is represented by Equation 1,

\[
 v = \frac{V_{\text{max}}[A][B]}{K_{\text{M}}[A] + K_{\text{M}}[B] + K_{\text{M}}[A][B] + K_{\text{M}}[A][B]}
\]

where \(v \), \(V_{\text{max}} \), [A], and [B] are the initial velocity, maximum velocity, concentrations of the first substrate A and second substrate B, respectively (18). \(K_{\text{M}} \) is the Michaelis constant for substrates A and B and the dissociation constant for the first substrate A, respectively. The initial velocity data was fit to Equation 1 using the computer program Leonora Version 1.0 (19, 20) (see Fig. 7, A and B).

The Hill constant \((h)\) was measured by varying the IcmB concentration (1–55 nM) at one fixed concentration of IcmA (5 nM), and fitting initial rates to the following form of the Hill equation (Equation 2),

\[
\frac{V_{\text{max}}}{V_{\text{max}} - \omega} = h \times \log_{10} [\text{IcmB}]
\]

where \(h \), \(V_{\text{max}} \), and \([A] \) are the Hill constant, initial velocity, and concentration of the first substrate A, respectively. The initial velocity data was fit to Equation 1 using the computer program Leonora Version 1.0 (19, 20) (see Fig. 7, A and B).

The Hill constant \((h)\) was measured by varying the IcmB concentration (1–55 nM) at one fixed concentration of IcmA (5 nM), and fitting initial rates to the following form of the Hill equation (Equation 2),

\[
\frac{V_{\text{max}}}{V_{\text{max}} - \omega} = h \times \log_{10} [\text{IcmB}]
\]

where \(h \), \(V_{\text{max}} \), and \([A] \) are the Hill constant, initial velocity, and concentration of the first substrate A, respectively. The initial velocity data was fit to Equation 1 using the computer program Leonora Version 1.0 (19, 20) (see Fig. 7, A and B).
a largely monomeric protein. Under the same conditions, IcmA eluted from the column with an apparent mass of 135 kDa, almost double the calculated mass of 62.5 kDa, indicating a homodimer. Gel filtration of a 1:1 molar ratio of IcmA to IcmB led to the elution of the two subunits separately from the column at the expected apparent masses. When IcmA and IcmB were first incubated with coenzyme B12, a single major peak eluted from the gel filtration column with an apparent mass of ~152 kDa. This peak showed a UV spectrum with λ\text{max} at 522 and 375 nm, characteristic of enzyme-bound coenzyme B12. The pH optimum for the ICM reaction was ~7.4, and the activity diminished only slightly at pH 6.0 and 8.0.

Kinetics—The steady-state kinetic properties of the enzyme were investigated. The two subunits and coenzyme B12 are necessary and sufficient to observe ICM activity with n-butyryl-CoA or isobutyryl-CoA as substrate. The specific activity of the enzyme was seen to vary with the molar ratio of IcmA to IcmB in the assay. The activity approached saturation only after a severalfold molar excess of IcmB to IcmA was present (Fig. 6). The plot of activity against IcmB concentration appeared slightly sigmoidal, suggestive of some degree of cooperativity in formation of the holoenzyme from IcmA, IcmB, and coenzyme B12. Fitting the velocity data to Equation 2 gave a Hill coefficient of 1.34 ± 0.02.

Under the standard assay conditions, as used during the earlier purification of IcmA (5), the specific activity of the enzyme in the presence of a 1:1 molar ratio of IcmA to IcmB was ~8.0 μmol/min/mg. In the earlier work (5), after partial purification of IcmA from extracts of *S. cinnamonensis*, the specific activity was ~0.023 μmol/min/mg, and after reconstitution of mutase from recombinant His6-IcmA and IcmB isolated from *S. cinnamonensis*, it was ~1.0 μmol/min/mg.

For the determination of \(K_n \) values, the initial rates were typically measured at six different substrate concentrations in the range 13.3–200 μM, and for each fixed concentration of substrate, rates were typically determined at five different coenzyme B12 concentrations between 4.8 and 200 μM. A 1:1 molar ratio of IcmA to IcmB was used throughout. The data were fitted to Equation 1 by nonlinear least-squares regression using the computer program Leonora Version 1.0 (Fig. 7, A and B). The apparent \(K_n \) values determined were 54 ± 12 μM for n-butyryl-CoA, 57 ± 13 μM for isobutyryl-CoA, and 12 ± 2 μM for coenzyme B12. The \(V_{\text{max}} \) was determined to be 38 ± 5 units/mg IcmA from a Hanes plot (Fig. 7C) using varying concentrations of n-butyryl-CoA and saturating amounts of IcmB (15-fold molar excess compared with IcmA). Assuming one active site per IcmA monomer, \(k_{\text{cat}} = 39 ± 3 \) s⁻¹ at saturating concentrations of IcmB.

DISCUSSION

icmA and icmB are not adjacent in the chromosome of *S. cinnamonensis*. In contrast, mutA and mutB from this organism share overlapping start and stop codons (2), a device that may lead to transcriptional coupling and hence to the production of stoichiometric amounts of the two proteins. It is presently unclear how far apart icmA and icmB are in the *S. cinnamonensis* genome, although the regions extending over 8 kb upstream and 11 kb downstream of icmA, isolated in an earlier work (5), do not contain sequences similar to icmA. Two hyperthermophilic bacteria, *Archeoglobus fulgidus* (21) and *Pyrococcus horikoshii* (22), whose genomes have now been completely sequenced, each contain two ORFs of similar size and sequence to icmA and icmB, although they were reported as MCM-like sequences. *mcmA1* and *mcmA2* from *A. fulgidus* encode proteins of 548 and 144 residues and are located only 2.5 kb apart, whereas the large and small ICM-like genes in *P. horikoshii* encoded proteins of 563 and 147 residues, but are located ~230 kb apart. It is interesting to speculate that, in both organisms, these MCM-like proteins might be components of ICM. However, this remains to be proven. The distinguishing features of ICM include an MCM-like large subunit of only ~65 kDa, with a separate small subunit of ~14 kDa providing the cobalamin-binding domain. An isolated report has appeared of a propionate-induced MCM from *Euglena gracilis* that contains two mutases with apparent molecular masses of 72,000 and 17,000 Da (23). Neither protein, however, has yet been purified to homogeneity.
B12 is added, and then IcmA binds to IcmB in a cooperative fashion that IcmA and IcmB interact only weakly until coenzyme ICM.

Suitable for accurate initial velocity measurements. Notwithstanding this, in the determination of K_m values, a nonlinear least-squares regression fitting of the initial velocities to a velocity equation for a bireactant system converged for both substrates. Double-reciprocal plots gave sets of lines that intersected on or close to the x axis (Fig. 7, A and B). The results are consistent with either a random or ordered sequential mechanism, involving the reversible formation of a ternary complex between enzyme, substrate, and coenzyme B12. The k_{cat} value of 39 ± 3 s$^{-1}$ determined for ICM (Fig. 7C) assumes one active site per IcmA monomer subunit.

The apparent K_m values for n-butyryl-CoA and isobutyryl-CoA are in the same range as the K_m values reported elsewhere for methylmalonyl-CoA and succinyl-CoA with MCM (26), but are at least an order of magnitude lower than the apparent K_m for glutamate with glutamate mutase, measured under comparable conditions (1:1 molar ratio of MutE to MutS) (Table II). It is interesting to note that MCM and ICM have similar substrate structures and most likely similar substrate-binding sites in their large subunits (see below), reflecting the similar K_m values for their substrates. On the other hand, ICM and glutamate mutase share a similar mode of cobalamin binding involving two independent subunits and have similar K_m values for coenzyme B12. In comparison, a significantly lower K_m is found for coenzyme B12 with MCM (Table II).

Early insights into the structures of cobalamin-dependent enzymes came from a primary sequence comparison between the C-terminal domains (now also known as a/β-domains) of MetH and MCM (from both prokaryotic and eukaryotic organisms) with MutS of bacterial glutamate mutase (11). This revealed a region of highly conserved sequence comprising the motif DXXHXXG (where X is any amino acid), which was invariant in all the proteins examined. After the determination of the crystal structure of the cobalamin-binding fragment of MetH, Drennen et al. (10) were able to define a sequence fingerprint for cobalamin binding that included D275XXH278XGG \ldots S304XL \ldots G322G. This fingerprint is also apparent in IcmB (Fig. 8).

A notable feature in the crystal structures of both the cobalamin-binding fragment of MetH from E. coli (10) and MCM from P. shermanii (7) is the replacement of the DMB ligand from cobalt of the coenzyme by the histidine residue in the DXXHXXG motif. The protein brings the cobalamin cofactor to a base-off/His-on form and places the DMB group in a central hydrophobic cleft in the cobalamin-binding domain. The histidine participates in a hydrogen-bonding network comprising 3 residues: His799-Asp757-Ser810 in MetH and His610-Asp608-Lys604 in MCM. In the case of IcmB, the corresponding residues appear to be well conserved and are represented by His205-Asp186-Lys14, which most likely are also involved in binding coenzyme B12. The other residues in the fingerprint sequence appear to line the hydrophobic cleft, to interact with the dis-
placed DMB group, and thereby to anchor the cobalamin molecule to the protein. These comparisons therefore suggest that the residues contacting the lower face of the corrin ring are conserved in IcmB and these other cobalamin-binding proteins.

The structural conservation of the cobalamin-binding domain is readily apparent from the available crystal structures of MetH and MCM as well as the NMR solution structure of MutS (27). The tertiary structures of the cobalamin-binding domains in MCM and MetH are essentially superimposable (7). The core structure consists of a five-stranded twisted parallel β-sheet surrounded by five α-helixes. The NMR solution structure of the coenzyme B12-free form of MutS also revealed a similar tertiary structure (27), except for the first α-helix, which in solution appeared slightly disordered. The displacement of the DMB group of coenzyme B12 upon binding to the cobalamin-binding domain appears to be a common feature of several (but not all) coenzyme B12-dependent mutases.

As shown in earlier work (5), the sequence of the (β/α)-barrel in MutB comprising residues A1–A400 (7) is highly conserved in IcmA. This suggests that the triosephosphate isomerase barrel and much of the acyl-CoA-binding site identified in the crystal structure of MutB are also conserved in IcmA. The triosephosphate isomerase barrel uses a hole through its center to bind substrate, but also appears to open in the absence of ligand (8). Many of the residues that interact with CoA along the hole seem to be highly conserved in a sequence comparison with IcmA (Fig. 9). One residue, TyrA89 in MutB, is conserved in all MCM sequences and is located near the bottom of the substrate-binding hole near to the interface with coenzyme B12. A Y89F mutant of MCM was prepared recently, and its structure was determined by crystallography (28). Although the mutant enzyme structure was essentially superimposable on the wild-type structure and the K_m for succinyl-CoA was not significantly affected, the k_{cat} of the mutant was 580-fold lower than that of the wild type. Hence, it was suggested that TyrA89 plays a key role in the MCM reaction, although not as a site for a protein-based radical. In the sequence comparison with IcmA (5), this TyrA89 residue corresponds to Phe80, so the hydrogen-bonding ability of a Tyr-OH is not needed at this site in ICM. The k_{cat} values for ICM and wild-type MCM are very similar (Table II).

Very recently, a crystal structure of MCM with bound substrate revealed an interaction between ArgA207 in MCM and the carboxyl group of methylmalonyl-CoA (9). As far as the different substrate specificities of MCM and ICM are concerned, it is intriguing to note that this ArgA207 residue corresponds to Phe80, so the hydrogen-bonding ability of a Tyr-OH is not needed at this site in ICM. The k_{cat} values for ICM and wild-type MCM are very similar (Table II).

Acknowledgment—We thank Annelies Meier for expert technical assistance.
REFERENCES

1. Rétey, J. (1982) in B12 (Dolphin, D., ed) Vol. 2, pp. 357–379, John Wiley & Sons, Inc., New York
2. Birth, A., Leiser, A., and Robinson, J. A. (1993) J. Bacteriol. 175, 3511–3519
3. Brendelberger, G., Rétey, J., Ashworth, D. M., Reynolds, K., Willenbrock, F., and Robinson, J. A. (1988) Angew. Chem. Int. Ed. Engl. 27, 1089–1090
4. Reynolds, K. A., O’Hagan, D., Gani, D., and Robinson, J. A. (1988) J. Chem. Soc. Perkin Trans. J 3195–3207
5. Zerbe-Burkhardt, K., Ratinatilleke, A., Philpom, N., Birth, A., Leiser, A., Vrijbloed, J. W., Hess, D., Hunziker, P., and Robinson, J. A. (1988) Angew. Chem. Int. Ed. Engl. 27, 1089–1090
6. Marsh, E. N., McKie, N., Davis, N. K., and Leadlay, P. F. (1989) Biochem. J. 260, 345–352
7. Mancia, F., Keep, N. H., Nakagawa, A., Leadlay, P. F., McSweeney, S., Rasmussen, B., Busecke, P., Diat, O., and Evans, P. R. (1996) Structure 4, 339–350
8. Mancia, F., and Evans, P. R. (1998) Structure 6, 711–720
9. Mancia, F., Smith, G. A., and Evans, P. R. (1999) Biochemistry 38, 7999–8005
10. Drennan, C. L., Huang, S., Drummond, J. T., Matthews, R. G., and Ludwig, M. L. (1994) Science 266, 1669–1674
11. Marsh, E. N. G., and Holloway, D. E. (1992) FEBS Lett. 310, 167–170
12. Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Methods Enzymol. 185, 60–89
13. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (eds) (1987) Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York
14. Hopwood, D. A., Bibb, M. J., Chater, K. F., Kieser, T., Bruton, C. J., Kieser, H. M., Lydiate, D. J., Smith, C. F., Ward, J. M., and Schrempf, H. (1985) Genetic Manipulation of Streptomyces: A Laboratory Manual, The John Innes Institute, Norwich, England
15. Norrander, J., Kempe, T., and Messing, J. (1983) Gene (Amst.) 26, 101–106
16. Deveraux, J., Haeberli, P., and Smithies, O. (1984) Nucleic Acids Res. 12, 387–395
17. Bradford, M. M. (1976) Anal. Biochem. 72, 248–254
18. Segel, I. H. (1993) Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems, John Wiley & Sons, Inc., New York
19. Cornish-Bowden, A. (1994) Leucora, a Computer Program: Steady State Kinetics on the IBM, Oxford University Press, New York
20. Cornish-Bowden, A. (1995) Analysis of Enzyme Kinetic Data, Oxford University Press, New York
21. Klenk, H. P., Clayton, R. A., O’L., W. K., K. A., K. R., D. (1997) Nature 390, 364–370
22. Kawarabayasi, Y., Sawada, M., Horikawa, H., Haikawa, Y., Hino, Y., Yamamoto, S., Sekine, M., Baba, S., Kosugi, H., Hosoyama, A., Nagai, Y., Sakai, M., Ogura, K., Otaka, R., Nakazawa, H., Takamiya, M., Ohluku, Y., Funahashi, T., Tanaka, T., Kudoh, Y., Yamazaki, J., Kudoh, N., Oguchi, A., Aoki, K., Nakamura, Y., Kikkawa, T., Horikoshi, K., Masuchi, Y., Shizuya, H., and Kikuchi, H. (1998) DNA Res. 5, 55–76
23. Watanabe, F., Abe, K., Tamura, Y., and Nakano, Y. (1996) Microbiology 142, 2631–2634
24. Holloway, D. E., and Marsh, E. N. G. (1994) J. Biol. Chem. 269, 20425–20430
25. Chen, H. P., and Marsh, E. N. G. (1997) Biochemistry 36, 14939–14945
26. Kellermeyer, R. W., Allen, S. H. G., Stjernholm, R., and Wood, H. G. (1964) J. Biol. Chem. 239, 2562–2569
27. Tollinger, M., Konrat, R., Hilbert, B. H., Marsh, E. N. G., and Krautler, B. (1998) Structure 6, 1021–1033
28. Thoma, N. H., Meier, T. W., Evans, P. R., and Leadlay, P. F. (1998) Biochemistry 37, 14386–14393