Possible evidence for elliptic gluon distribution from $\cos 4\phi$ azimuthal asymmetry in diffractive pion pair production in ultraperipheral heavy ion collisions

Yoshikazu Hagiwara, Cheng Zhang, Jian Zhou, and Ya-jin Zhou

Key Laboratory of Particle Physics and Particle Irradiation (MOE), Institute of Frontier and Interdisciplinary Science, Shandong University, (QingDao), Shandong 266237, China

A sizable $\cos 4\phi$ azimuthal asymmetry in exclusive di-pion production near ρ^0 resonance peak in ultraperipheral heavy ion collisions recently has been reported by STAR collaboration. We show that both elliptic gluon Wigner distribution and final state soft photon radiation can give rise to this azimuthal asymmetry. The fact that the QED effect alone severely underestimates the observed asymmetry might signal the existence of the nontrivial correlation in quantum phase distribution of gluons.

Introduction. The study of nucleon/nucleus multiple dimensional partonic structure has been widely recognized as one of the most important frontiers of hadronic physics. Within perturbative QCD factorization framework, 3D partonic structure of nucleon is quantified by transverse momentum dependent distributions(TMDs) and generalized parton distributions(GPDs). The mother distribution of these two, namely quantum phase space Wigner distribution later was introduced [1] to accommodate more comprehensive information on nucleon internal structure, such as parton canonical orbital angular momentum [2–5], the quantum correlation between the position and momentum of partons. The Fourier transform of the Wigner distribution known as the generalized TMD distributions(GTMDs) [6, 7] are also often used in phenomenological studies. Pioneered by a recent work [8], a few proposals for extracting the Wigner distribution in hard scattering processes in ep/A collisions for gluon sector [8–19] and pp collisions for quark sector [20] have been put forward.

One special gluon Wigner distribution commonly referred to as the elliptic gluon Wigner distribution [8] recently attracts a lot of attentions [9–18]. It describes an azimuthal correlation between the impact parameter and gluon transverse momentum. In the small x limit, this gluon distribution can be dynamically generated either from a semi-classical model or from small x evolution. In the kinematic region where nuclear recoil transverse momentum and gluon transverse momentum are comparable, the MV model calculation predicates a rather sizable correlation [17], which we view as the very encouraging result. This distribution is proposed to be extracted via a $\cos 2\phi$ azimuthal asymmetry in diffractive di-jet production in ep/A collisions. To avoid the contributions from the final state soft gluon radiation to the asymmetry [21–25], it is necessary to directly measure nuclear recoil transverse momentum instead of the total transverse momentum of di-jet, which imposes the big challenge to experimental measurement.

On the other hand, among many exciting topics [26–34], ultraperipheral heavy ion collisions(UPCs) provide us unique chances to investigate partonic structure of nucleus before the advent of the EIC era. In particular, with the discovery of linear polarization of coherent photons [35–39], a new experimental avenue is opened to study nucleus structure via the novel polarization dependent observables in photonuclear reactions, which already led to fruitful results [40–43]. By coupling with elliptic gluon distribution, linearly polarized coherent photon distribution also plays an important role in inducing the $\cos 4\phi$ asymmetry in exclusive $\pi^+\pi^-$ pair production in ultraperipheral heavy ion collisions recently reported by STAR collaboration [39], where ϕ is the azimuthal angle between pion’s transverse momentum and the pion pair’s total transverse momentum.

To be more specific, the $\cos 4\phi$ asymmetry partially results from an interference contribution. Near the ρ^0 resonance peak, the di-pion is dominantly from the decay of ρ^0 which is produced in the coherent photonuclear reaction. However, there is also a non-negligible contribution to the pair invariant mass spectrum from the interference contributions between direct pions production and those from the ρ^0 decay [44–45]. Such an interference effect not only leads to sizable deviation from the Breit-Wigner resonance shape [44], but also generates the mentioned $\cos 4\phi$ azimuthal modulation. The underlying physics of the $\cos 4\phi$ modulation from the interference effect is that the orbital angular momentum carried by di-pion in the direct production amplitude and in the conjugate ρ^0 de-
The azimuthal asymmetry can result from the final state soft photon radiation effect \cite{22} as well, our numerical results suggest that the QED effect alone is not sufficient to account for the observed asymmetry.

The paper is structured as follows. We compute the contributions to the asymmetry from both elliptic gluon distribution and final state soft photon radiation in the next section, followed by the numerical results presented in Sec.III. The paper is summarized in Sec.IV.

cos 4φ azimuthal asymmetry in exclusive pion pair production

We start by briefly reviewing the calculation of polarization independent diffractive p^0 production (for the recent experimental studies of the process, see Refs. \cite{49–51}). It is conventionally formulated in the dipole model \cite{32–34}, where the whole process is divided into three steps: quasi-real photon splitting into quark and anti-quark pair, the color dipole scattering off nucleus, and subsequently recombining to form a vector meson after penetrating the nucleus target. Following this picture, one can directly write down the p^0 production amplitude (see Refs. \cite{40–43} for more details),

$$A(x_g, \Delta_\perp) = \int d^2b_\perp e^{-i\Delta_\perp \cdot b_\perp} \int \frac{d^2r_\perp}{4\pi} N(r_\perp, b_\perp) [\Omega(K)](r_\perp)$$

(1)

where $N(r_\perp, b_\perp)$ is the dipole-nucleus scattering amplitude Δ_\perp is recoil transverse momentum. And $[\Omega(K)]$ denotes the overlap of photon wave function and the vector meson wave function,

$$[\Omega(K)](r_\perp) = \frac{N_{eeq}}{\pi} \int_0^1 dz \int d^2q_e \Omega^e(|r_\perp|, z)K_0(|r_\perp|, e_f)$$

(2)

$$\times \left[z^2 + (1-z)^2 \right] \frac{\partial^2 \Omega^e(|r_\perp|, z)}{\partial |r_\perp|^2} \frac{\partial K_0(|r_\perp|, e_f)}{\partial |r_\perp|} e^{i(z-\frac{1}{2})\Delta_\perp \cdot r_\perp}$$

where z stands for the fraction of photon’s light-cone momentum carried by quark. Quark and antiquark helicities and color sumbs have been performed in the above formula. K_0 is a modified Bessel function of the second kind. Ω is the scalar part of vector meson wave function. Note that a phase factor $e^{i(z-\frac{1}{2})\Delta_\perp \cdot r_\perp}$ is included to account for the non-forward correction \cite{14–15}.

One can easily derive the dipion production amplitude by multiplying the p^0 production amplitude with a simplified Breit-Wigner form which describes the transition from p^0 to $\pi^+ \pi^-$,

$$M_r = iA(x_g, \Delta_\perp)\frac{f_{p \pi \pi} P_\perp \cdot \hat{k}_\perp}{Q^2 - M_\rho^2 + iM_\rho \Gamma_\rho}$$

(3)

where M_ρ is p^0 mass. Q is the invariant mass of dipion system and P_\perp is defined as $P_\perp = (p_{1\perp} - p_{2\perp})/2$ with $p_{1\perp}$ and $p_{2\perp}$ being the produced pions’ transverse momenta.

The polarization vector of the incident photon is replaced with its transverse momentum k_\perp by making use of the fact that the coherent photons are naturally linearly polarized. $f_{p \pi \pi}$ is the effective coupling constant and fixed to be $f_{p \pi \pi} = 12.24$ according to the optical theorem with the parameter $\Gamma_\rho = 0.156$ GeV. With this production amplitude, it is straightforward to obtain the polarization independent cross section $\frac{d\sigma}{dP \cdot S}$ where $P \cdot S$ represents the phase phase.

The mentioned cos 4φ azimuthal asymmetry can be induced by soft photon radiation from the final state charged pion particles. The corresponding physics from the final state photon radiation is captured by the soft factor which enters the differential cross section formula via \cite{21–24},

$$\frac{d\sigma(q_\perp)}{dP \cdot S} = \int d^2q_\perp \frac{d\sigma_0(q_\perp)}{dP \cdot S} S(q_\perp - q_\perp')$$

(4)

where σ_0 is the leading order Born cross section whose full expression can be found in Ref. \cite{40–43}. The soft factor is expanded at the leading order as \cite{24},

$$S(l_\perp) = \delta(l_\perp) + \frac{\alpha_e}{\pi q_\perp^2} \left\{ c_0 + 2c_2 \cos 2\phi + 2c_4 \cos 4\phi + \ldots \right\}$$

(5)

where ϕ is the angle between P_\perp and soft photon transverse momentum $-l_\perp$. When the final state particle mass is much smaller than P_\perp, there exists the analytical expressions for the coefficients $c_0 \approx \ln \frac{Q^2}{m_e^2}$, $c_2 \approx \ln \frac{Q^2}{m_e^2} + \delta y \sin \delta y - 2 \cos^2 \frac{\delta y}{2} \ln [2(1 + \cosh \delta y)]$, $c_4 \approx \frac{Q^2}{m_e^2}$, and $c_4 \approx 0.42$. The rapidity dependence of these coefficients is quite mild for RHIC kinematics and is neglected.

Following the standard procedure, the soft factor in Eq. (5) can be extended to all orders by exponentiating the azimuthal independent part to the Sudakov factor in the transverse position space. The resummed cross section takes the form \cite{21–24},

$$\frac{d\sigma(q_\perp)}{dP \cdot S} = \int \frac{d^2r_\perp}{(2\pi)^2} \left[1 - \frac{2\alpha_e c_2}{\pi} \cos 2\phi_r + \frac{\alpha_e c_4}{\pi} \cos 4\phi_r \right] e^{i\phi_\perp - q \cdot Sud(r_\perp)} \int d^2q_\perp' e^{i\eta_\perp - q \cdot Sud(r_\perp')} \frac{d\sigma(q_\perp')}{dP \cdot S}$$

(6)

Here ϕ_r is the angle between r_\perp and P_\perp. In the following numerical estimation, we took into account power corrections from the soft factor following the method outlined in Ref. \cite{24}. The Sudakov factor at one loop is given by \cite{24},

$$Sud(r_\perp) = \frac{\alpha_e}{\pi} c_0 \ln \frac{P_\perp^2}{\mu_r^2}$$

(7)
with $\mu = 2e^{-\gamma_E}/|r_\perp|$. The Sudakov factor plays a critical role in yielding perturbative high q_\perp tail of lepton pair produced in UPCs [37, 50].

We now turn to derive the direct di-pion production amplitude. In the collinear factorization, the transition from quark-antiquark pair to dipion pair is described by the nonperturbative and universal dipion distribution amplitude DA [37, 56] for the current case. For the quasi-real photon case, the transition probability is determined by fitting to HERA data. To simplify expression, ζ is defined as

$$\zeta = f_{\text{obs}}^2 Q^2 r_\perp^2 / 4 e^{-\frac{Q^2 r_\perp^2}{4}}$$

where ζ is determined by fitting to the polarization averaged cross section and the cos 4ϕ azimuthal modulation. For the virtual photon case, one can carry out the integration over the azimuthal angles of r_\perp and b_\perp. The direct production amplitude is re-written as

$$M_d = i \zeta (1 - \zeta) \cos(2\phi_k + 3\phi_P) \mathcal{E}(x_g, \Delta_\perp) + i \zeta (1 - \zeta) \cos(\phi_k - 3\phi_P) \mathcal{A}_d(x_g, \Delta_\perp) + ...$$

where we only keep the angular structures which contribute to the azimuthal independent interference cross section and the cos 4ϕ azimuthal modulation. ϕ_k, ϕ_P and ϕ_Δ represent the azimuthal angles of different transverse momenta respectively. $\mathcal{E}(x_g, \Delta_\perp)$ and $\mathcal{A}_d(x_g, \Delta_\perp)$ are given by

$$\mathcal{E}(x_g, \Delta_\perp) = -e e_q N_{\text{C}} C \mathcal{E} e^{i\phi} \frac{\text{d}^2\phi}{4} \frac{Q_\perp^2 r_\perp^2}{4} e^{-\frac{Q_\perp^2 r_\perp^2}{4}}$$

where \mathcal{A}_d contributes to the polarization independent interference cross section, which will be compared with STAR data to fix the constant C. As there is no experimental evidence suggesting that the azimuthal dependent amplitude must be real, we insert a phase on the right hand side of Eq. [14]. To have a maximal asymmetry, we assume $\delta \phi = \pi/2$ in the following numerical calculation.

The coefficient E has been explicitly computed in the MV model for different kinematic regions [10, 12, 10, 17]. In this work, it is treated as a free parameter since the kinematics of interest is in the non-perturbative region.

We now study the angular correlation in the dipole amplitude $N(b_\perp, r_\perp)$ which reads in the MV model [60, 61],

$$N(b_\perp, r_\perp) = 1 - e^{-\alpha_s C_F \frac{\text{d}^2\phi}{4} \int d^2 x_g \mu_A(x_g) \left[\ln \left(\frac{b_\perp^2 + r_\perp^2 - 4}{b_\perp^2 + r_\perp^2} \right) \right]^2}$$

where $\mu_A(x_g)$ is the color source distribution. If $\mu_A(x_g)$ is not uniformly distributed in the transverse plane of nucleus, a nontrivial angular correlation between b_\perp and r_\perp can arise. By Taylor expanding the above expression and ignoring high order harmonics, one obtains

$$N(b_\perp, r_\perp) \approx 1 - \exp \left[-Q_\perp^2 (b_\perp^2 + r_\perp^2) / 4 \right]$$

$$+ E (b_\perp^2 r_\perp^2) 2 \cos(2\phi_b - 2\phi_r) Q_\perp^2 (b_\perp^2 + r_\perp^2) e^{-Q_\perp^2 (b_\perp^2 + r_\perp^2)}$$

The coefficient E has been explicitly computed in the MV model for different kinematic regions [10, 12, 10, 17]. In this work, it is treated as a free parameter since the kinematics of interest is in the non-perturbative region.

$$\mathcal{E}(x_g, \Delta_\perp) = -e e_q N_{\text{C}} C \frac{\text{d}^2\phi}{4} \frac{Q_\perp^2 r_\perp^2}{4} e^{-\frac{Q_\perp^2 r_\perp^2}{4}}$$

$$\times J_2(|\Delta_\perp| b_\perp) J_1(|r_\perp| P_\perp) \frac{\partial K_0(|r_\perp| e_f)}{\partial r_\perp}$$

$$\mathcal{A}_d(x_g, \Delta_\perp) = -e e_q N_{\text{C}} C \frac{\text{d}^2\phi}{4} \frac{Q_\perp^2 r_\perp^2}{4} e^{-\frac{Q_\perp^2 r_\perp^2}{4}}$$

$$\times J_0(|\Delta_\perp| b_\perp) J_1(|r_\perp| P_\perp) \frac{\partial K_0(|r_\perp| e_f)}{\partial r_\perp}$$

where \mathcal{A}_d contributes to the polarization independent interference cross section, which will be compared with STAR data to fix the constant C. As there is no experimental evidence suggesting that the azimuthal dependent amplitude must be real, we insert a phase on the right hand side of Eq. [14]. To have a maximal asymmetry, we assume $\delta \phi = \pi/2$ in the following numerical calculation.

Since the two incoming nuclei take turns to act as the coherent photon source and the target, one should sum over these two possibilities on the amplitude level.
The observed diffractive pattern at low transverse momentum crucially depends on such double slit interference effect. Following the method outlined in Refs [40], we also include the double slit interference effect in the calculation of the interference cross section from direct production and decay production, the azimuthal dependence part of which is given by,

\[
\frac{d\sigma_I}{d\mathcal{P} \cdot \mathcal{S}} = \frac{\zeta(1-\zeta)M_p \Gamma_\alpha}{2(2\pi)^7((Q^2-M^2)^2+M^2\Gamma^2)\Delta}\int d^2\Delta_x \int d^2\Delta_f \int d^2\Delta_b \int d^2\Delta_b' \delta^2(k_1+\Delta_\perp - q_1) \\
\times \cos(3\phi_p - \phi_k - 2\phi_{\Delta}) \cos(\phi_p - \phi_{\Delta}) \left\{ e^{i\phi_{\Delta}(k_1-k_2)} F^*(x_2, \Delta'_1) F(x_1, k_1) F(x_1, k_1') + \right.
\]

\[
\left. + e^{i\phi_{\Delta}(\Delta_\perp-k_2)} F^*(x_2, \Delta'_1) F(x_1, k_1) F(x_2, k_1') + \right.
\]

\[
\left. + e^{i\phi_{\Delta}(\Delta_\perp-k_1)} F^*(x_2, \Delta'_1) F(x_1, k_1) F(x_1, k_1') \right\} + \text{c.c.}
\]

(16)

where \(d\mathcal{P} \cdot \mathcal{S} = d^2p_1 \cdot d^2p_2 \cdot dy_1 \cdot dy_2 \cdot d^2b_\perp \cdot \). \(y_1\) and \(y_2\) are the final state pions’ rapidities. \(k_1, \Delta_\perp, k_1', \Delta_\perp'\) are incoming photon’s transverse momenta and nucleus recoil transverse momenta in the amplitude and the conjugate amplitude respectively. \(b_\perp\) is the transverse distance between the center of the two colliding nuclei. \(F(x, k_1)\) describes the probability amplitude for finding a photon carries certain momentum. The squared \(F(x, k_1)\) is just the standard photon TMD distribution \(f(x, k_1)\). Using the equivalent photon approximation, one has,

\[
F(x, k_\perp) = \frac{Z\sqrt{\alpha_s}}{\pi} |k_\perp| \frac{F(k_1^2 + x^2M_p^2)}{(k_1^2 + x^2M_p^2)}(17)
\]

where \(x\) is constrained according to \(x = \sqrt{P^2-m^2}(e^{y_1} + e^{y_2})\). \(M_p\) is proton mass. \(Z\) is the nuclear charge number. \(F\) is the nuclear charge form factor parametrized with the standard Woods-Saxon distribution. Note that the incoming photon carry the different transverse momenta in the amplitude and the conjugate amplitude since we fixed \(\beta_{\Delta}\). [56] [67] [72].

The emergence of this nontrivial azimuthal correlations can be intuitively understood as follows: the linearly polarized photon state is the superposition of different helicity states. As illustrated in Fig. 1, the incoming photon carries 1 unit spin angular momentum in the amplitude while it carries -1 unit spin angular momentum in the conjugate amplitude. The orbital angular momentum transferred to quark pair via the two gluon exchange is 2 unit angular momentum as far as the elliptic gluon distribution is concerned. As a result, the orbital angular momentum carried by the produced dipion system is 3 unit in the amplitude and -1 in the conjugate amplitude correspondingly. Such interference amplitude leads to a \(\cos 4\phi\) angular modulation. If one averages over coherent photon polarization, this mechanism gives rise to \(\cos 2\phi\) asymmetry as well, though the dominant contribution it comes from different source [40].

Numerical estimations. We now introduce models/parametrizations that are necessary for numerical calculations. First of all, the dipole-nucleus scattering amplitude (the azimuthal independent part) is parametrized in terms of dipole-nucleon scattering amplitude \(N(r_\perp)\) [73] [77].

\[
N(b_\perp, r_\perp) \approx 1 - |1 - 2\pi B_p T_A(b_\perp) N(r_\perp)|^4
\]

(18)

where we adopt the GBW model for \(N(r_\perp)\). We also made the numerical estimates with a more sophisticated treatment for \(N(r_\perp)\) [76] [78], which leads to the similar results. The nuclear thickness function \(T_A(b_\perp)\) is determined with the Woods-Saxon distribution in our numerical calculation, and \(B_p = 4.6 GeV^{-1}\). For the scalar part of vector meson function, we use “Gauss-LC” wave function also taken from Ref. [73] [74]:

\[
\Omega^+(r_\perp, z) = \beta z(1-z) \exp \left[-\frac{r^2}{2\rho^2} \right] \text{ with } \beta = 4.47,
\]

\[
R^2 = 21.9 GeV^{-2}.
\]

The nuclear thickness function is estimated with the Woods-Saxon distribution, \(F(k^2) = \int d^3r e^{i\vec{k}\cdot\vec{r}} \exp\left[i(r-R_W S)/\rho_0\right] / \rho_0\) where \(R_WS\) (Au: 6.38fm) is the radius and \(d\) (Au:0.535fm) is the skin depth. \(C^0\) is the normalization factor.

UPCs events measured at RHIC are triggered by detecting accompanied forward neutron emissions. The impact parameter dependence of the probability for emitting any number of neutrons from an excited nucleus (referred to as the “Xn” event) is described by the function, \(P(n; \vec{b} \perp) = 1 - \exp[-P_0(n; \vec{b} \perp)]\) with \(P_0(n; \vec{b} \perp) = 5.45 \times 10^{-5} \frac{Z(n-A-Z)}{A^2/\lambda b^2} \text{ fm}^2\). Therefore, the “tagged” UPC
cross section is defined as,
\[2\pi \int_{2R_A}^{\infty} \tilde{b}_\perp d\tilde{b}_\perp P^2(\tilde{b}_\perp) d\sigma(\tilde{b}_\perp, ...) \]
\[(19) \]

With all these ingredients, we are ready to perform numerical study of the \(\cos 4\phi \) azimuthal asymmetry for RHIC kinematics.

We first compute the azimuthal averaged cross section and compare it with STAR data to fix the coefficient \(C \approx -10 \) which determines the relative magnitude between the direct pion pair production and that via \(\rho^0 \) decay. We then are able to compute the \(\cos 4\phi \) asymmetry from the elliptic gluon distribution. The QED and the elliptic gluon distribution contributions to the asymmetry are separately presented in Fig. 2. If we only take into account the final state soft photon radiation effect, the theory calculation severely underestimates the experimental data. To match the STAR data \[39\], a rather large value of the coefficient \(E = 0.4 \) in the Eq. \[12\] which is roughly one order of magnitude larger than the perturbative estimate for \(E \) \[10, 17\], has been used in our numerical calculation. Since we are dealing with the deep non-perturbative region, it is hard to tell whether such large value for \(E \) is reasonable or not. Moreover, there is a lot of uncertainties associated with the transition from quark pair to di-pion. Other non-perturbative model for describing this transition might lead to a much larger asymmetry with the same value of \(E \). Nevertheless, as demonstrated in Fig. 2 it is clear that the \(\cos 4\phi \) gluon distribution is a necessary element to account for the observed asymmetry (around 10\%).

Conclusion. We studied \(\cos 4\phi \) azimuthal asymmetry in exclusive di-pion production near \(\rho^0 \) resonance peak in UPCs. Both the final state soft photon radiation effect and the elliptic gluon distribution can give rise to such a asymmetry. It is shown that the QED effect alone, which can be cleanly computed, is not adequate to describe the STAR data. On the other hand, with some model dependent input, a better agreement with the preliminary STAR data is reached after including the elliptic gluon distribution contribution, though the theory calculation still underestimates the measured asymmetry. This thus leads us to conclude that the observed \(\cos 4\phi \) asymmetry might signal the very existence of the non-trivial quantum correlation encoded in elliptic gluon distribution.

Acknowledgments. We thank Raju Venugopalan, Zhang-bu Xu, James Daniel Brandenburg and Chi Yang for valuable discussions. J. Zhou has been supported by the National Natural Science Foundation of China under Grant No. 11675093. Y. Zhou has been supported by the National Natural Science Foundation of China under Grant No. 116875093. Y. Zhou has been supported by the National Natural Science Foundation of Shandong Province under Grant No. ZR2020MA098, C. Zhang is supported by the China Postdoctoral Science Foundation under Grant No. 2019M662317.

References

1. A. V. Belitsky, X.-d. Ji, and F. Yuan, Phys. Rev. D 69, 074014 (2004), hep-ph/0307383.
2. C. Lorce and B. Pasquini, Phys. Rev. D 84, 014015 (2011), 1106.0139.
3. Y. Hatta, Phys. Lett. B 708, 186 (2012), 1111.3547.
4. X. Ji, X. Xiong, and F. Yuan, Phys. Rev. Lett. 109, 152005 (2012), 1202.2843.
5. Y. Hatta, Y. Nakagawa, F. Yuan, Y. Zhao, and B. Xiao, Phys. Rev. D 95, 114032 (2017), 1612.02445.
6. S. Meissner, A. Metz, and M. Schlegel, JHEP 08, 056 (2009), 0906.5323.
7. S. Meissner, A. Metz, M. Schlegel, and K. Goede, JHEP 08, 038 (2008), 0805.3165.
8. Y. Hatta, B.-W. Xiao, and F. Yuan, Phys. Rev. Lett. 116, 202301 (2016), 1601.01585.
9. T. Altinoluk, N. Armesto, G. Beuf, and A. H. Rezaeian, Phys. Lett. B 758, 373 (2016), 1511.07452.
10. J. Zhou, Phys. Rev. D 94, 114017 (2016), 1611.02397.
11. Y. Hagivara, Y. Hatta, R. Pasechnik, M. Tasevsky, and O. Teryaev, Phys. Rev. D 96, 034009 (2017), 1706.01765.
12. E. Iancu and A. H. Rezaeian, Phys. Rev. D 95, 094003 (2017), 1702.03943.
13. R. Boussarie, Y. Hatta, B.-W. Xiao, and F. Yuan, Phys. Rev. D 98, 074015 (2018), 1807.08697.
14. Y. Hatta, B.-W. Xiao, and F. Yuan, Phys. Rev. D 95, 114026 (2017), 1703.02085.
15. H. Mäntysaari, N. Mueller, and B. Schenke, Phys. Rev. D 99, 074004 (2019), 1902.05087.
16. H. Mäntysaari, N. Mueller, F. Salazar, and B. Schenke, Phys. Rev. Lett. 124, 112301 (2020), 1912.05586.
17. H. Mäntysaari, K. Roy, F. Salazar, and B. Schenke, Phys. Rev. D 103, 094026 (2021), 2011.02464.
18. A. Dumitru, H. Mäntysaari, R. Paatelainen, K. Roy, F. Salazar, and B. Schenke, in 28th International Workshop on Deep Inelastic Scattering and Related Subjects (2021), 2105.10144.
19. S. Bhattacharya, A. Metz, V. K. Ojha, J.-Y. Tsai, and J. Zhou (2018), 1802.10550.
