Selective Small-Molecule Agonists of G Protein–Coupled Receptor 40 Promote Glucose-Dependent Insulin Secretion and Reduce Blood Glucose in Mice

Carina P. Tan, Yue Feng, Yun-Ping Zhou, George J. Eiermann, Aleksandr Petrov, Changyou Zhou, Songnian Lin, Gino Salituro, Peter Meinke, Ralph Mosley, Taro E. Akiyama, Monica Einstein, Sanjeev Kumar, Joel P. Berger, Sander G. Mills, Nancy A. Thornberry, Lihu Yang, and Andrew D. Howard

OBJECTIVE—Acute activation of G protein–coupled receptor 40 (GPR40) by free fatty acids (FFAs) or synthetic GPR40 agonists enhances insulin secretion. However, it is still a matter of debate whether activation of GPR40 would be beneficial for the treatment of type 2 diabetes, since chronic exposure to FFAs impairs islet function. We sought to evaluate the specific role of GPR40 in islets and its potential as a therapeutic target using compounds that specifically activate GPR40.

RESEARCH DESIGN AND METHODS—We developed a series of GPR40-selective small-molecule agonists and studied their acute and chronic effects on glucose-dependent insulin secretion (GDIS) in isolated islets, as well as effects on blood glucose levels during intraperitoneal glucose tolerance tests in wild-type and GPR40 knockout mice (GPR40−/−).

RESULTS—Small-molecule GPR40 agonists significantly enhanced GDIS in isolated islets and improved glucose tolerance in wild-type mice but not in GPR40−/− mice. While a 72-h exposure to FFAs in tissue culture significantly impaired GDIS in islets from both wild-type and GPR40−/− mice, similar exposure to the GPR40 agonist did not impair GDIS in islets from wild-type mice. Furthermore, the GPR40 agonist enhanced insulin secretion in perfused pancreata from neonatal streptozotocin-induced diabetic rats and improved glucose levels in mice with high-fat diet–induced obesity acutely and chronically.

CONCLUSIONS—GPR40 does not mediate the chronic toxic effects of FFAs on islet function. Pharmacological activation of GPR40 may potentiate GDIS in humans and be beneficial for overall glucose control in patients with type 2 diabetes.

Diabetes 57:2211–2219, 2008

L oss of glucose-dependent insulin secretion (GDIS) from the pancreatic β-cell is responsible for the onset and progression of type 2 diabetes (1,2). Oral agents that stimulate insulin secretion, such as sulfonylureas and related ATP-sensitive K+ channel blockers, reduce blood glucose and have been used as a first-line type 2 diabetes therapy for nearly 30 years (3,4). However, these agents act to force the β-cell to secrete insulin continuously regardless of prevailing glucose levels, thereby promoting hypoglycemia and accelerating the loss of islet function and, eventually, diminished efficacy (5,6). Despite the availability of a range of agents for type 2 diabetes, many diabetic patients fail to achieve or to maintain glycemic targets (7–9). In addition, stricter glycemic guidelines have been proposed to help define a path toward diabetes prevention through identifying and treating the pre-diabetes state (10). Agents that induce GDIS have great potential to replace sulfonylureas as a first-line therapy for the treatment of type 2 diabetes. In particular, agents that have positive effects on arresting or even reversing β-cell demise would represent a major therapeutic advance toward addressing the lack of durability seen with current therapies and perhaps obviate the need for eventual insulin intervention (11–13). The recent emergence of glucagon-like peptide 1–based GDIS agents (14–16), including inhibitors of dipeptidyl peptidase-4 (17) and peptidase-stable analogs such as exendin-4 (18), is undoubtedly a major advance in such a direction. Nevertheless, it remains to be observed whether glucagon-like peptide 1–related agents truly exert durable beneficial effects on β-cell mass and function.

The molecular pharmacology of lipid and lipid-like mediators that signal through G protein–coupled receptors (GPCRs) has expanded significantly over the past few years. To date, several orphan GPCRs have been paired with lysophospholipids, bile acids, arachidonic acid metabolites, dioleoyl phosphatidic acid, and short-, medium-, and long-chain free fatty acids (FFAs) (19–21). From these discoveries, GPR40 (GPR40), GPR119, and GPR120 have been reported to play a role in regulating GDIS and therefore have potential as novel targets for the treatment of type 2 diabetes (22–26). GPR40 is a Gq-coupled, family A GPCR that is highly expressed in β-cells of human and rodent islets. Several naturally occurring medium- to long-chain FFAs and some thiazolidinedione peroxisome proliferator–activated receptor-γ agonists specifically activate GPR40 (27,28). Activation of GPR40 by FFAs (29–32) or...
synthetic compounds (23,33) enhances insulin secretion through the amplification of intracellular calcium signaling.

The pleiotropic effects of FFAs on the pancreatic β-cell are well known. The fact that FFAs are in vitro ligands for GPR40 is suggestive of the link to the wealth of existing literature data on the acute, stimulatory effects of FFAs on insulin release (34,35). However, FFAs also exert suppressive or detrimental effects on β-cells. Lipotoxicity of β-cells, a condition observed with chronic exposure to high FFA levels, results in impairment in their function and a resulting diminution in their insulin secretory capacity (36,37). Currently, there is an ongoing debate on whether GPR40 mediates the deleterious effects of FFAs on islet function (lipotoxicity) and whether an antagonist of GPR40 is preferable to an agonist for the treatment of type 2 diabetes (38,39). Since FFAs can both be metabolized within cells to act as intracellular signaling molecules (35) and activate more than one receptor (20), they cannot be used as specific and selective tools to unravel the role that GPR40 plays in the β-cell. It is therefore necessary to identify small molecules that specifically activate GPR40.

In the following discussion, we will detail the identification and in vitro pharmacology of a novel series of synthetic GPR40 agonists. Using isolated islets from wild-type and homozygous GPR40 knockout (GPR40−/−) mice (to confirm the on-target activity of small-molecule activators), we not only extended previous findings that acute activation of GPR40 enhances GDIS in pancreatic β-cells but also showed that long-term exposure to the GPR40 agonist, in contrast to FFAs, did not impair β-cell function, thus dissociating the activation of GPR40 from β-cell lipotoxicity. Finally, acute and subchronic dosing of the GPR40 agonist robustly reduced the blood glucose excursion during an intraperitoneal glucose tolerance test (IPGTT) in wild-type, but not GPR40−/−, mice.

RESEARCH DESIGN AND METHODS

Generation of GPR40 stable cell lines. Human and mouse GPR40 stable cell lines were generated in either Chinese hamster ovary (CHO) cells, stably expressing nuclear factor of activated T-cells (NFAT BLA), or human embryonic kidney (HEK) 293 cells. The expression plasmids were transfected using lipofectamine (Invitrogen), following the manufacturer’s instructions. Stable cell lines were generated following the appropriate drug selection.

Fluorometric imaging plate reader–based intracellular calcium assay. GPR40/CHO NFAT BLA cells were seeded into black-well clear-bottom 384-well plates (Costar) 1 day before the assay. The cells were incubated with 20 μl/well of Hanks’ buffered salt solution buffer with 0.1% BSA, 2.5 mmol/l probenecid, and 8 μmol/l Fluo-4 AM at room temperature for 100 min. Compounds were dissolved in 50% DMSO and diluted to desired concentrations by assay buffer and added to the cells in 5× solution (13.3 μmol/l). Fluorescence output was measured using a fluorometric imaging plate reader (FLIPR®) (Molecular Devices) 10 s before compound addition.

Measurement of inositol 1,4,5-triphosphate production. Human GPR40-HEK293 stable cells were plated at 16,000 cells/well on 96-well poly-l-lysine–coated plates and cultured for 72 h in Dulbecco’s modified Eagle’s medium (25 mmol/l glucose) with 10% fetal bovine serum, 25 mmol/l HEPES, and a selection of antibiotics. Cells were then washed with Hanks’ buffered salt solution buffer and further incubated for 18 h in 150 μl ‘H-inositol labeling media (inositol- and serum-free Dulbecco’s modified Eagle’s medium), to which [3H]-inositol (NEN/PerkinElmer, Waltham, MA) was added to a final specific radioactivity of 1 μCi/150 μl. Agonist titrations have typically been performed by half-log dilutions run in duplicate in 11-point processing. The plates were counted in the MicroBeta instrument (PerkinElmer).

Isolation of pancreatic islets and the static GDIS assay. Pancreatic islets of Langerhans from wild-type and GPR40−/− mice (littermates) were isolated from wild-type and GPR40−/− mice by collagenase digestion and discontinuous Ficoll gradient separation (40). The islets were cultured overnight in RPMI-1640 medium with 11 mmol/l glucose to facilitate recovery from the isolation process. Insulin secretion was determined by a 1-h static incubation in Krebs-Ringer bicarbonate (KRb) buffer in a 96-well format as previously described (41). Briefly, islets were first preincubated in KRb medium with 2 mmol/l glucose for 30 min and then transferred to a 96-well plate (one islet/well) and incubated with 200 μl of the KRb medium with 2 or 16 mmol/l glucose in the presence or absence of oleate, palmitate, or testing compounds for 60 min. The buffer was removed from the wells at the end of the incubation and assayed for insulin levels using the Ultrasensitive Rat Insulin ELISA kit (ALPCO Diagnostics, Salem, NH).

Chronic treatment of islets and GDIS. Islets, isolated from wild-type and GPR40−/− mice (littermates), were cultured in RPMI-1640 medium (11 mmol/l glucose and 10% FCS) with vehicle or 125 μmol/l FFAs (a 1:1 mixture of oleate:palmitate) as described previously (42), or a 5 μmol/l GPR40 small-molecule agonist for 3 days. The FFAs were added directly to the culture medium from 100× stock solutions in distilled water (for oleate) or 95% ethanol (for palmitate). After the 3-day exposure to oleate, palmitate, or GPR40 small-molecule agonist, insulin secretion was determined by the 1-h static incubation in KRb buffer with either 2 or 16 mmol/l glucose following a 30-min preincubation in the KRb buffer with 2 mmol/l glucose, as described above for the acute GDIS assay.

Islet perfusion. For islet perfusion, batches of 25 islets each were perfused in parallel microchambers (Biovail International, Minneapolis, MN) with oxygenated KRb medium with 2 or 16 mmol/l glucose at a rate of 0.5 ml/min, and the fractions of the perfusate were collected once per minute for insulin measurement (43). Insulin concentration in aliquots of the incubation or perfusion buffers was measured by the Ultrasensitive Rat Insulin ELIA kit from ALPCO Diagnostics (Windham, NH).

The neonatal streptozotocin-induced diabetes rat model and pancreas perfusion. Timed pregnant Wistar rats were purchased from Charles River Laboratories. Pups were dosed with vehicle (0.5 mol/l citrate, pH 4.5) or 100 mg/kg i.p. streptozotocin (STZ) (Sigma-Aldrich) 48 h after birth. At 3 weeks of age, male pups were separated and housed, two per cage. Food and water were given ad libitum, and rats were maintained on a 12-h light-dark cycle. Perfusion experiments were performed when rats were 8 weeks old, as described previously (44). For each surgery, rats were sedated with nedbual anesthesia (100 mg/kg i.p.). The periocular cavity was then opened, and the celiac artery was ligated down. A 27-g cannula was inserted into the celiac artery for perfusate influx, and another cannula was inserted in the portal vein for perfusate efflux. Immediately following surgery, rats were placed into a 37°C whole-body perfusion chamber and perfused at 3 ml/min with a modified KRb buffer (O2 saturated; 37°C). Perfusate contained 2 or 16 mmol/l glucose supplemented with vehicle (DMSO), 10 μmol/l compound B, or 30 mmol/l L-arginine. Perfusion was recovered in 1-min intervals and stored frozen at −70°C until analysis. Insulin was determined using a rat-specific insulin radioimmunoassay kit (Millipore, Billerica, MA). All procedures were approved by the Merck Rahway Institutional Animal Care and Use Committee.

IPGTT. Male GPR40−/− and littermate wild-type C57BL/6N mice (7–11 weeks of age) from Taconic Farms (Germantown, NY) were housed 10 per cage and fed with rodent diet (Teklad 7012) and water ad libitum. On the morning of study, mice (n = 5–7 per group) were fasted for 5–6 h. Animals were then treated orally with vehicle (10 ml/kg 0.25% methylcellulose), Cpd-B, or Cpd-C 60 min before the IPGTT (2 g/kg i.p. dextrose). Blood glucose levels were determined from tail bleeds taken at −60, 0, 20, 40, and 60 min after dextrose administration as a challenge. The blood glucose excursion profile from t = 0–60 min was used to integrate an area under the curve (AUC) for each treatment. Percent inhibition values for each treatment were generated from the AUC data after subtraction of the AUC of the vehicle and water group, which received vehicle at −60 min and water at 0 min. Concentrations of test compound in mouse plasma were determined by liquid chromatography/tandem mass spectrometry in blood samples collected at 60 min of the IPGTT (2 h after dosing).

Chronic treatment of established diet-induced obesity mice with GPR40 agonist. C57BL/6N mice (Taconic Farms) were switched to a high-fat diet (60% kcal, R4129; Research Diet) at the age of 6 weeks, which was continued throughout the study. Cpd-A was given to the established diet-induced obesity (eDIO) mice at age 20 weeks (14 weeks on the high-fat diet) at 10 mg/kg (oral gavage, once a day) for 10 days. On day 10 of the treatment, an IPGTT was performed as described above.

Calculations and statistics. All data are expressed as means ± SE. Statistical analysis was conducted by using either single-factor ANOVA or Student’s t test, as appropriate. Statistical significance was defined as P < 0.05.

RESULTS

Identification of small-molecule GPR40 agonists. The intracellular signal transduction pathway of GPR40 pro-
ceeds through the activation of the G_α class of G_α proteins with subsequent phospholipase C activation, generation of inositol 1,4,5-triphosphate (IP$_3$), and intracellular Ca$^{2+}$ release. We confirmed that multiple medium- and long-chain FFAs activated human and mouse GPR40 expressed in CHO cells (Fig. 1A and B), whereas the short-chain FFAs (propionic, butyric, and pentanoic acid) had minimal activation against the mouse and human receptors. There also appeared to be a general increase in potency across the saturated fatty acids with increasing chain length from hexanoic acid (C6:0) to lauric acid (C12:0), as reported previously. A good correlation of potency was observed between human and mouse GPR40 by fatty acids and small-molecule agonists. Representative dose responses of various fatty acids (Fig. 1A) measured by the FLIPR assay. EC$_{50}$ values for various fatty acids are means ± SE of three independent titration experiments. Cpd-B (and its des-methyl analog Cpd-C) is a full agonist at either the human or mouse GPR40 receptors, with EC$_{50}$s ranging from 15 to 300 nmol/l. In general, a good correlation was observed between both assays with respect to the rank order of potency for a variety of analogs.

Acute effects of FFAs and GPR40 agonist on GDIS in islets from wild-type and GPR40$^{-/-}$ mice. Small-molecule agonists of GPR40 have been shown by others (23,33) to enhance GDIS in insulinoma cell lines, but it has yet to be established that activation of GPR40 with synthetic agonists would enhance GDIS in primary islets. We thus examined the acute effects of FFAs and GPR40 agonists (Cpd-B and Cpd-C) on GDIS in islets from GPR40$^{-/-}$ and wild-type mice in both the human and mouse GPR40$^{-/-}$ mice. Small-molecule agonists of GPR40 have been shown by others (23,33) to enhance GDIS in insulinoma cell lines, but it has yet to be established that activation of GPR40 with synthetic agonists would enhance GDIS in primary islets. We thus examined the acute effects of FFAs and GPR40 agonists (Cpd-B and Cpd-C) on GDIS in islets from GPR40$^{-/-}$ and wild-type mice in both 1-h static incubations (Fig. 2A and B) and in islet perifusion experiments (Fig. 2C). Insulin secretory responses to glucose were comparable in wild-type and GPR40$^{-/-}$ islets in the static incubation assay. Fatty acid treatment (200 µmol/l oleate or palmitate) significantly promoted glucose-dependent insulin secretion in wild-type islets (oleate 1.9 ± 0.4-fold, palmitate 2.4 ± 0.3-fold; $n = 6$; $P < 0.01$ for both) but not in the GPR40$^{-/-}$ islets (oleate 1.2 ± 0.3-fold, palmitate 1.8 ± 0.5-fold; $n = 6$; $P > 0.05$ for both). Likewise, the two small-molecule GPR40 agonists, when tested at 10 µmol/l, significantly augmented GDIS in wild-type islets but were totally inactive in the GPR40$^{-/-}$ islets (Fig. 2A). The
GPR40 AGONIST REDUCES BLOOD GLUCOSE IN MICE

FIG. 2. The acute effect of fatty acids and GPR40 agonists on GDIS in islets isolated from wild-type and GPR40^{−−} mice. To investigate the effects of long-term activation of GPR40 by FFAs or GPR40-selective agonists on insulin function, islets were isolated from the GPR40^{−−} and wild-type littermates and cultured for 72 h with or without FFAs (a 1:1 mixture of palmitate and oleate at a total final concentration of 125 μmol/l) or Cpd-B (5 μmol/l). Insulin secretion was measured in 1-h static incubation assays after the 3-day culture period. There was no difference in glucose- or KCl-stimulated insulin secretion between GPR40^{−−} and wild-type islets cultured in normal medium. As previously reported (38), the 3-day exposure to FFAs equally and significantly inhibited GDIS in wild-type and GPR40^{−−} islets (Fig. 3A). In addition, insulin secretion in response to membrane depolarization caused by 30 mmol/l KCl and islet insulin content were also diminished identically by the 3-day FFA treatment in islets from wild-type and GPR40^{−−} animals (Fig. 3A and B). In contrast, chronic treatment of islets (wild-type and knockout) with Cpd-B did not have any effect on GDIS, indicating that the GPR40 agonism, whether evoked with FFAs or structurally distinct small molecules, is not involved in the impairment of insulin secretion seen with chronic fatty acid treatment. The 3-day continuous exposure to Cpd-B apparently did not cause desensitization of the β-cells to GPR40 activation, as GDIS could be enhanced equally well when fresh compound was added to the islets that had been treated for 3 days by the compounds (data not shown).

Effects of a GPR40 agonist on insulin secretion from the in situ pancreas perfusion of the neonatal STZ (nSTZ)-induced diabetic rat. To begin to explore the potential of GPR40 agonism for the treatment of type 2 diabetes, we tested the efficacy of GPR40 agonists on ex vivo GDIS from the perfused pancreata of nSTZ-induced diabetic rats (44,45). Compared with isolated islets, this model is an attractive way to study insulin secretion dynamics in situ, as it provides improved resolution and fidelity that approaches the native setting. As shown in Fig. 4A, the pancreata from vehicle (sham) rats exhibited identical biphasic insulin secretory responses to both glucose (16 mmol/l) pulses, which were totally lost in pancreata from the nSTZ-induced diabetic rats. When present in the perfusate at 10 μmol/l during the glucose (16 mmol/l) stimulation phase, Cpd-B induced a pronounced enhancement of insulin secretion when compared with vehicle-treated pancreata (AUC_{insulin}: 249 ± 67 vs. 29 ± 6 for 10 min each sequentially (with 10 min washout by 2 mmol/l glucose in between). Insulin released during those stimulation was measured once per minute. Data are means ± SE of three independent experiments. *P < 0.05 compared with 16 mmol/l glucose alone.
with vehicle (veh) control.

developed manner from 3 to 100 mg/kg, with maximum
significantly reduced blood glucose excursion in a dose-
means.

means.

insulin measurement following acid ethanol extraction (FFAs or Cpd-B present. Similarly treated islets were also used for islet
measurement by the static insulin secretion assay in KRB medium with no
FFAs or Cpd-B). Glucose-lowering efficacy of Cpd-B was well maintained
(44 ± 0.8 g for the vehicle vs. 45 ± 0.8 g for the Cpd-B group; n = 8; P > 0.05) the chronic treatment.

to determine whether acute dosing of GPR40 agonist
BM. Cpd-B, a small-molecule GPR40 agonist on glucose excursion dur-
glycopeptide 1 mimetic exendin-4 was included as a
positive control, and it completely prevented any glu-
cose excursion at a concentration of 0.0025 mg/kg.

demonstrate that the observed Cpd-C–induced glu-
cose lowering was GPR40 dependent, the effects of the
ligand on blood glucose excursion during an IPGTT were
investigated again in a cohort of GPR40−/− mice and
littermate wild-type mice. The administration of 30 mg/kg
Cpd-C again resulted in a significant suppression of
AUCglycose during IPGTT in the wild-type mice. In contrast,
the same dose of the compound exerted no inhibition of
blood glucose excursion in the GPR40−/− mice (Fig. 5B).

The above findings demonstrated that robust glucose
lowering in normal wild-type mice by Cpd-C is mediated
by GPR40.

Effect of acute and chronic treatment with GPR40
agonist on IPGTT glucose levels in eDIO mice. To
further evaluate the potential of GPR40 activation for
treatment of type 2 diabetes, we studied the effect of
GPR40 agonist (Cpd-B) on IPGTT glucose levels in high-fat
diet–induced obese (eDIO) mice both acutely and sub-
chronically. We induced eDIO in C57BL/6 mice with a 60%
high-fat diet for 14 weeks (started at age 6 weeks). The
effects of Cpd-B (10 mg/kg, oral gavage) on IPGTT glucose
were tested before and after 10 days of continuous dosing
(10 mg/kg, daily). The eDIO mice weighed significantly
heavier (42 ± 0.6 vs. 28 ± 0.4 g; n = 8; P < 0.001) and
manifested impaired glucose tolerance compared with
mice on regular diet (AUCglycose: 18,311 ± 272 vs. 13,540 ±
326 mg·dl−1·60 min−1; n = 8; P < 0.001). Acute treatment
of the eDIO mice with Cpd-B (10 mg/kg) significantly
reduced IPGTT glucose levels by ~50% (Fig. 6A). The
glucose-lowering efficacy of Cpd-B was well maintained
after a subchronic dosing. As measured by the IPGTT
performed on the last day of compound treatment (Fig.
6B), 10 mg/kg Cpd-B reduced glucose excursion by 70%,
similar to the acute efficacy achieved in these mice before
the initiation of the 10-day dosing period. Although we did
not measure food intake in this study, the chronic efficacy
does not appear to be attributable to any changes in food
take and body weight of the mice. There were no
differences in body weight between vehicle- and Cpd-B–
treated mice either before (42 ± 0.6 g for the vehicle vs.
41 ± 0.7 g for the Cpd-B group; n = 8; P > 0.05) or after
(44 ± 0.8 g for the vehicle vs. 45 ± 0.8 g for the Cpd-B
group; n = 8; P > 0.05) the chronic treatment.

to determine whether acute dosing of GPR40 agonist
BM. Cpd-B, a small-molecule GPR40 agonist on glucose excursion dur-
Finally, Cpd-C possesses excellent oral bioavailability
(~100%), a plasma half-life of 8 h, time to reach
maximum concentration (Tmax) of 3 h, and maximum
concentration (Cmax) of 1.4 µmol/l, following a 2 mg/kg
oral dose (data not shown). The oral administration of
Cpd-C, 1 h before the dextrose challenge in the IPGTT,
significantly reduced blood glucose excursion in a dose-
dependent manner from 3 to 100 mg/kg, with maximum
efficacy (73% inhibition of AUCglycose) achieved at ~30
mg/kg and a corresponding plasma concentration of 37
µmol/l measured 2 h postdose (Fig. 5A). The glucagon-
like peptide 1 mimetic exendin-4 was included as a
positive control, and it completely prevented any glu-
cose excursion at a concentration of 0.0025 mg/kg.

The discovery of its activation by medium- and long-chain FFAs has
sparked considerable interest in and experimentation on
this receptor, from basic research to potential drug dis-
cover efforts. Nevertheless, there are still several impor-

ng/20 min with glucose alone; n = 4; P < 0.01). The
restoration of insulin secretion by Cpd-B mainly occurred
in the first phase of β-cell responses. Cpd-B also enhanced
insulin secretion stimulated by 30 mmol/l arginine at the
end of the perfusion experiment.

Effect of GPR40 agonist on IPGTT glucose levels in wild-type and GPR40−/− mice. To extend the above
results to an in vivo setting, we tested the effects of our
small-molecule GPR40 agonists on glucose excursion during
IPGTT in normal lean mice. Cpd-C was selected for
this experiment based on pharmacokinetic considerations. Cpd-C possesses excellent oral bioavailability
(~100%), a plasma half-life of 8 h, time to reach
maximum concentration (Tmax) of 3 h, and maximum
concentration (Cmax) of 1.4 µmol/l, following a 2 mg/kg
oral dose (data not shown). The oral administration of
Cpd-C, 1 h before the dextrose challenge in the IPGTT,
significantly reduced blood glucose excursion in a dose-
dependent manner from 3 to 100 mg/kg, with maximum
efficacy (73% inhibition of AUCglycose) achieved at ~30
mg/kg and a corresponding plasma concentration of 37
µmol/l measured 2 h postdose (Fig. 5A). The glucagon-
like peptide 1 mimetic exendin-4 was included as a
positive control, and it completely prevented any glu-
cose excursion at a concentration of 0.0025 mg/kg.
tant questions that remain to be answered. How much does GPR40 contribute to the acute (stimulatory) and chronic (inhibitory) effects of FFAs on islet function? What will be the consequences of acute and chronic activation of GRP40 with a pharmacophore on islet function and beyond? Can agonists of GPR40 stimulate sufficient GDIS to result in the reduction of blood glucose in normal and diabetic animals? We set out to address some of these questions in this study using potent selective agonists of the receptor in conjunction with GPR40 knockout mice.

GPR40 has been previously shown to mediate part of the enhancement of GDIS by FFAs (i.e., the acute effect of FFAs on insulin secretion) (22,23,29–33,38) but not the chronic toxic effects of FFAs in islets (38). The results from this study are largely consistent with those findings.

FIG. 4. A: Insulin responses to two pulses of 16 mmol/l glucose stimulation in pancreata perfused in situ from normal and nSTZ-induced diabetic rats. Data are means ± SE of three preparations for each group. The pancreata from the normal rats exhibited identical biphasic insulin secretory responses to both glucose pulses, which were totally lost in pancreata from the nSTZ-induced diabetic rats. B: Insulin responses to glucose stimulation in the presence or absence of Cpd-B in perfused pancreata from the nSTZ-induced diabetic rats. Pancreata from the nSTZ-induced diabetic rats were challenged first by 16 mmol/l glucose and then by 30 mmol/l arginine (with 15 min washout in between) with or without 10 μmol/l Cpd-B. Data are means ± SE of five pancreatic preparations for both groups.
Our data indicate that both oleate and palmitate lost the majority of their actions on GDIS in GPR40-depleted islets, thus suggesting that GPR40 is a major, if not the sole, mediator of the acute stimulatory action of FFAs on GDIS (no attempt was made to calibrate precisely their EC_{50} and maximal activity on insulin secretion). The residual effects of FFAs observed in the GPR40^{-/-} islets could be mediated by the intracellular metabolism/oxidation of FFAs (35) or by additional cell surface receptors such as GPR120 (23).

The potential role of GPR40 in mediating the chronic inhibitory effects of FFAs on islet function is also a matter of debate. Overexpression of GPR40 selectively in pancreatic β-cells caused dramatic disintegration of the islets and severe hyperglycemia in an insulin promoter factor 1–GPR40 transgenic line (39). On the other hand, islets from the GPR40 knockout mice appear to be as vulnerable as wild-type islets to the detrimental effects from FFAs in vitro (38). Our study has provided additional support for the latter observation, namely, that GPR40 does not mediate β-cell lipotoxicity. Similar to what was shown by Latour et al. (38), we found that 3 days of exposure to FFAs caused comparable inhibi-

FIG. 5. Glucose-lowering efficacy of Cpd-C in wild-type C57BL/6 and GPR40^{-/-} mice. A: Effects of increasing doses of Cpd-C on blood glucose levels during the IPGTT in wild-type mice. C57BL/6 mice were dosed with vehicle (0.25% methylcellulose) or Cpd-C (1–100 mg/kg) by oral gavage at ~60 min, followed by intraperitoneal glucose challenge (2 g dextrose per kg body wt; same volume of H_{2}O only for the vehicle-water group) at 0 min. Blood glucose levels were measured in whole-blood samples obtained by tail sniping at the intervals indicated in the graphs. The percent inhibition of glucose levels was calculated based on the glucose AUC during the 60-min IPGTT for each group after subtracting the values from those of the baseline (no drug and no glucose) control group. Data are means ± SE of 7–10 mice per group. *P < 0.01 compared with vehicle-treated animals. B: The GPR40^{-/-} mice and the littermate wild-type mice were dosed with vehicle or 30 mg/kg Cpd-C 60 min before the IPGTT as described above for A. Data are means ± SE of 7–10 mice per group. *P < 0.05 compared with vehicle treated animals.
GPR40 AGONIST REDUCES BLOOD GLUCOSE IN MICE

FIG. 6. Effects of chronic treatment with GPR40 agonist (Cpd-B) on IPGTT glucose levels in high-fat diet–induced obese (eDIO) mice. C57BL/6 mice were switched to a 60% high-fat diet (D12492i) at the age of 6 weeks and kept on the same diet throughout the study. The treatment with the GPR40 agonist (10 mg/kg Cpd-B, oral gavage, once a day) was started 14 weeks after the initiation of high-fat–diet feeding. An IPGTT (1 g dextrose/kg body wt) was performed on day 0 (A) and day 10 (B) of the 10-day-long treatment with Cpd-B to compare the glucose-lowering efficacy of Cpd-B before (A) and after (B) the chronic treatment. The final dose on day 10 was given 1 h before glucose challenge. Blood glucose levels were measured in whole-blood samples obtained by tail snipping at the intervals indicated in the graphs. There were eight mice per group. Single-factor ANOVA was used to compare the difference in glucose AUC among the groups. *P < 0.01 compared with vehicle-treated DIO mice.

REFERENCES

1. Leahy JL: Pathogenesis of type 2 diabetes mellitus. Arch Med Res 36:197–209, 2005
2. Wajchenberg BL: Beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 28:187–218, 2007
3. Doyle ME, Egan JM: Pharmacological agents that directly modulate insulin secretion. Pharmacol Rev 55:105–131, 2003
4. Rendell M: The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs 64:1339–1358, 2004
5. Maedler K, Carr RD, Bosco D, Zuegg RB, Berney T, Donath MY: Sulfonylurea-induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 90:501–506, 2005
6. Del Guerra S, Marselli L, Lapi R, Boggi U, Mosca F, Benzi L, Del Prato S, Marchetti P: Effects of prolonged in vitro exposure to sulphonylureas on the function and survival of human islets. J Diabetes Complications 19:60–64, 2005
7. U.K. Prospective Diabetes Study Group: U.K. Prospective Diabetes Study 30:1448–1453, 2007
8. Alberti KG, Zimmet P, Shaw J: International Diabetes Federation: a consensus on type 2 diabetes prevention. Diabetes 44:1249–1258, 1995
9. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O’Neill MC, Zinman B, Viberti G: Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443, 2006
10. Grant RW, Wexler DJ, Watson AJ, Lester WT, Cagliero E, Campbell EG, Nathan DM: How doctors choose medications to treat type 2 diabetes: a national survey of specialists and academic generalists. Diabetes Care 30:1448–1453, 2007
11. Holman RR, Monagle P, Warram JH, Sattar N, Stratton IM, Cull CA, Holman R: Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47:581–589, 2004
12. Rhoden CJ: Type 2 diabetes: a matter of beta-cell life and death? Science 307:380–384, 2005
13. Prentki M, Nolan CJ: Islet beta cell failure in type 2 diabetes. J Clin Invest 116:1902–1912, 2006
14. Drucker DJ: The biology of incretin hormones. Cell Metab 3:153–165, 2006
Brubaker PL: Incretin-based therapies: mimetics versus protease inhibitors. Trends Endocrinol Metab 18:240–245, 2007

Herman GA, Stein PP, Thornberry NA, Wagner JA: Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes: focus on sitagliptin. Clin Pharmacol Ther 81:761–767, 2007

DeFronzo RA, Ratner RE, Han J, Liang Y, Baumann C, Lenhard J, Murray WV, Damaret KT, Kuo GH: Synthesis and biological evaluation of 3-aryl-3-(4-phenoxy)-propionic acid as a novel series of G protein-coupled receptor 40 agonists. J Med Chem 50:2807–2817, 2007

Prentki M, Vischer S, Glenday MC, Regazzi R, Deeney JT, Corkey BE: Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Clin Invest 117:2502–2510, 2006

Warnotte C, Gilon P, Nenquin M, Henquin JC: Mechanisms of the stimulation of insulin release by saturated fatty acids: a study of palmitate effects in mouse β-cells. Diabetes 43:703–711, 1994

Zhou YP, Grill VE: Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biogenesis through a glucose fatty acid cycle. J Clin Invest 99:870–876, 1997

Poitout V, Robertson RP: Glucolipotoxicity: fuel excess and [beta]-cell dysfunction. Endocr Rev 29:351–366, 2008

Steneberg P, Rubins N, Bartoo-Shifman R, Walker MD, Edlund H: The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab 12:245–258, 2010

Lacy PE, Kostianovsky M: Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16:35–39, 1967

Herrington J, Zhou YP, Bugianski RM, Dulski F, Kem C, Warren VA, Smith MM, Kohler MG, Garsky VM, Sanchez M, Wagner M, Raffaelli K, Banerjee P, Ahaghotu C, Wunderler D, Priest BT, Mehl JT, Garcia ML, McManus OB, Kaczorowski GJ, Langerhans from the rat pancreas.

C.P. TAN AND ASSOCIATES

DIABETES, VOL. 57, AUGUST 2008