FLOQUET THEORY BASED ON NEW PERIODICITY CONCEPT ON TIME
SCALES

MURAT ADIVAR AND HALIS CAN KOYUNCUOĞLU

Abstract. In this paper, we construct a unified Floquet theory for homogeneous and nonhomogeneous periodic systems defined on time scales that are periodic with respect to new periodicity concept based on shift operators \(\delta \). New periodicity concept on time scales enables the use of Floquet theory for the investigation of periodicity and stability of the solutions of linear dynamic systems on time scales which are not additive periodic (but periodic in shifts), such as \(q^Z := \{ q^n : n \in \mathbb{Z} \} \cup \{ 0 \} \) where \(q > 1 \). By constructing the solution of matrix exponential equation we establish a canonical Floquet decomposition theorem. Determining the relation between Floquet multipliers and Floquet exponents, we give a spectral mapping theorem on periodic time scales in shifts. Finally, we utilize the constructed theory to discuss stability properties of the system.

1. Introduction

In the existing literature the theory of periodic systems has taken a prominent attention due to its tremendous application potential in engineering, biology, biomathematics, chemistry etc. Floquet theory serves as an important tool for investigation of periodic solutions and stability theory of dynamic systems. Floquet theory of differential and difference systems can be found in [17] and [18], respectively. Floquet theory of Volterra equation is handled in [8]. In [6], Floquet theory is used to analyze stability theory for nonlinear integro-differential equations. Additionally, a generalization of Floquet theory for nonlinear systems is studied in [20].

Providing a wide perspective to discrete and continuous analyses, time scale calculus is an useful theory for the unification of differential and difference dynamic systems. For the sake of brevity we suppose familiarity with time scale calculus. For a comprehensive review on time scale theory, we refer readers [9] and [10]. Investigation of dynamic systems on time scales has many advantageous aspects since this approach avoids the separate studies for differential and difference systems by using the similar arguments. This advantage motivated the researchers in recent years to develop time scale analogues of existing theories for discrete, \(q \)-difference, and differential equations. For instance in [7], the authors construct a Floquet theory for additive periodic time scales and focus on Putzer representations of matrix logarithms. By the term "additive periodic time scale" we mean an arbitrary, closed, non-empty subset \(\mathbb{T} \) of reals satisfying the following property:

\[
\text{there exists a } P \in \mathbb{T} \text{ such that } t \pm P \in \mathbb{T} \text{ for all } t \in \mathbb{T}.
\]

(1.1)

In [14], DaCunha unified Floquet theory for nonautonomous linear dynamic systems based on Lyapunov transformations by using matrix exponential on time scales (see [9] Section 5). Afterwards, DaCunha and Davis improved the results of [14] in [13]. Note that in [13] and [14] the authors study Floquet theory only for the additive periodic time scales. However, additive periodicity assumption is a strong restriction for the class of time scales on which dynamic equations with periodic solutions can be constructed. For instance, the time scale

\[
\overline{q^Z} := \{ q^n : n \in \mathbb{Z} \} \cup \{ 0 \}, \; q > 1
\]

is not additive periodic. Since \(q \)-difference equations are the dynamic equations constructed on the time scale \(q^Z \), there is no way to investigate periodic solutions of \(q \)-difference equations by means...
of additive periodicity arguments. A \(q \)-difference equation is an equation including a \(q \)-derivative \(D_q \), given by

\[
D_q (f) (t) = \frac{f(qt) - f(t)}{(q-1)t}, \quad t \in q^\mathbb{Z},
\]

of its unknown function. Notice that the \(q \)-derivative \(D_q (f) \) of a function \(f \) turns into ordinary derivative \(f' \) if we let \(q \to 1 \). As an alternative to difference equations the \(q \)-difference equations are used for the discretization of differential equations. Hence, one may intuitively deduce that if periodicity possible for the solutions of differential equations, then it should be possible to study periodicity of solutions of \(q \)-difference equations.

In recent years, the shift operators, denoted \(\delta_{\pm} (s, t) \), are introduced to construct delay dynamic equations and a new periodicity concept on time scales. We give a detailed information about the shift operators in further sections. We may refer to the studies [2], [3], [11] and [11] for the basic definitions, properties and some applications of shift operators on time scales. In particular, we direct the readers to [1] for the construction of new periodicity concept on time scales. The motivation of new periodicity concept in [1] stems from the following ideas:

I.1. Once a starting point \(t \in T \) is determined, a periodic time scale \(T \) should contain an element at each backward or forward step with size \(P \).

I.2. Addition is not always the way to step forward and backward on a time scale, for instance, the shift operators \(\delta_{\pm} (2, t) = 2^{\pm 1} t \) lead to one unit shifts backward and forward over the time scale \(\{2^n : n \in \mathbb{Z}\} \cup \{0\} \).

I.3. Since the shift operators \(\delta_{\pm} \) helps us to characterize the backward and forward steps on a time scale, the periodic time scale can be redefined to be the one satisfying the following property:

\[
\delta_{\pm} (P, t) \in T \text{ for all } t \in T
\]

for a fixed \(P \in T \).

This type of approach enable us to regard a large class of time scales as periodic even though they are not additive periodic. For instance, the time scale \(\overline{q}^{\mathbb{Z}} \) is periodic in shifts \(\delta_{\pm} (s, t) = s^{\pm} t \) since

\[
\delta_{\pm} (q, t) = q^{\pm} t \in T \text{ for all } t \in T.
\]

Therefore, one may define a \(q^k \)-periodic function \(f \) on \(\overline{q}^{\mathbb{Z}} \) as follows:

\[
f \left(q^{\pm k} t \right) = f (t) \text{ for all } t \in \overline{q}^{\mathbb{Z}} \text{ and a fixed } k \in \{1, 2, \ldots \}.
\]

More generally, a \(T \)-periodic function \(f \) on a \(P \)-periodic time scale \(T \) in shifts \(\delta_{\pm} \) can be defined as follows

\[
f (\delta_{\pm} (T, t)) = f (t) \text{ for all } t \in T \text{ and a fixed } T \in [P, \infty) \cap T.
\]

In this paper, we use Lyapunov transformation (see [13] Definition 2.1) and the new periodicity concept developed in [1] to construct a unified Floquet theory on time scales. As an alternative to the existing literature, our Floquet theory and stability results are valid on more time scales, such as \(q^{\mathbb{N}_0} \) and

\[
\bigcup_{k=1}^{\infty} \left[3^{\pm k}, 2.3^{\pm k} \right] \cup \{0\}
\]

which cannot be covered by [13] and [14]. It should be mentioned that periodic functions and Floquet theory on the time scale

\[
q^{\mathbb{N}_0} = \{q^n : q > 1 \text{ and } n = 0, 1, 2, \ldots \}
\]

are constructed in [12]. However, the author of [12] regards a \(q^\omega \)-periodic function \(f \) on \(q^{\mathbb{N}_0} \) as the one satisfying

\[
f (q^{\omega} t) = \frac{1}{q^\omega} f (t) \text{ for all } t \in q^{\mathbb{N}_0} \text{ and a fixed } \omega \in \{1, 2, \ldots \}.
\]

According to this periodicity definition the function \(g (t) = 1/t \) is \(q \)-periodic over the time scale \(q^{\mathbb{N}_0} \). However, unlike the classic periodic functions in the existing literature, the function \(g (t) = 1/t \) does not repeat its values at each period \(t, q^\omega t, (q^\omega)^2 t, \ldots \) In parallel with classic periodicity perception, we define periodic function which repeats its values after fixed number of steps. For instance, our
definition classifies the function \(h(t) = (-1)^{\frac{\ln t}{\ln q}} \) as a \(q^2 \)-periodic function on \(q^2 = \{ q > 1 : q^n, n \in \mathbb{Z} \} \) since
\[
h \left(\delta_\pm \left(q^2, t \right) \right) = (-1)^{\frac{\ln t}{\ln q} + \frac{\ln \delta_\pm}{\ln q}} = (-1)^{\frac{\ln t}{\ln q}} = h(t).
\]
Obviously, the function \(h(t) \) repeats the values \(-1\) and \(1\) after each backward/forward step with the size \(q^2 \). Consequently, the use of new periodicity concept based on shifts \(\delta_\pm \) in Floquet theory provides not only a generalization but also a different approach to already existing literature (e.g. [12]) in particular cases.

We organize the paper as follows: after introducing the basic concepts in second section, we discuss in third section the Floquet theory based on new periodicity concept on time scales. We finalized our study by giving applications of our results to stability theory.

2. Preliminaries

2.1. Time scales and matrix exponential. In this section we give some basic definitions and results that we require in our further analysis.

A time scale, denoted by \(\mathbb{T} \), is an arbitrary, nonempty and closed subset of real numbers. The operator \(\sigma : \mathbb{T} \to \mathbb{T} \) called forward jump operator is defined by \(\sigma(t) := \inf \{ s \in \mathbb{T}, s > t \} \). The step size function \(\mu : \mathbb{T} \to \mathbb{R} \) is given by \(\mu(t) := \sigma(t) - t \). We say a point \(t \in \mathbb{T} \) is right dense if \(\mu(t) = 0 \), and right scattered if \(\mu(t) > 0 \). Furthermore, a point \(t \in \mathbb{T} \) is said to be left dense if \(\rho(t) := \sup \{ s \in \mathbb{T}, s < t \} = t \) and left scattered if \(\rho(t) < t \). A function \(f : \mathbb{T} \to \mathbb{R} \) is said to be rd-continuous if it is continuous at right dense points and its left sided limits exists at left dense points. The set \(\mathbb{T}^k \) is defined in the following way: If \(\mathbb{T} \) has a left-scattered maximum \(m \), then \(\mathbb{T}^k = \mathbb{T} - \{m\} \); otherwise \(\mathbb{T}^k = \mathbb{T} \). Moreover, the delta derivative of a function \(f : \mathbb{T} \to \mathbb{R} \) at a point \(t \in \mathbb{T} \) is defined by
\[
f^\Delta(t) := \lim_{s \to t, s \neq \sigma(t)} \frac{f(\sigma(t)) - f(s)}{\sigma(t) - s}.
\]

Definition 1. A function \(p : \mathbb{T} \to \mathbb{R} \) is said to be regressive if \(1 + \mu(t)p(t) \neq 0 \) for all \(t \in \mathbb{T}^k \). We denote by \(\mathcal{R} \) the set of all regressive rd-continuous functions.

Definition 2 (Exponential function). Let \(\varphi \in \mathcal{R} \) and \(\mu(t) > 0 \) for all \(t \in \mathbb{T} \). The exponential function on \(\mathbb{T} \) is defined by
\[
e_{\varphi}(t, s) = \exp \left(\int_s^t \frac{1}{\mu(z)} \log(1 + \mu(z)\varphi(z)) \right) \Delta z.
\]

It is well known that if \(p \in \mathcal{R}^+ \), then \(e_p(t, s) > 0 \) for all \(t \in \mathbb{T} \). Also, the exponential function \(y(t) = e_p(t, s) \) is the solution to the initial value problem \(y^\Delta = p(t)y, \ y(s) = 1 \). Other properties of the exponential function are given in the following lemma:

Lemma 1. [9] Theorem 2.36] Let \(p, q \in \mathbb{R} \). Then
i. \(e_0(t, s) \equiv 1 \) and \(e_p(t, t) \equiv 1 \);
ii. \(e_p(\sigma(t), s) = (1 + \mu(t)p(t))e_p(t, s) \);
iii. \(\frac{1}{e_p(t, s)} = e_{\ominus p}(t, s) \) where, \(\ominus p(t) = \frac{-p(t)}{1 + \mu(t)p(t)} \);
iv. \(e_p(t, s) = \frac{1}{e_{\ominus p}(s, t)} = e_{\ominus p}(s, t) \);
v. \(e_p(t, s)e_p(s, r) = e_p(t, r) \);
vi. \(\left(\frac{1}{e_{\ominus p}(s, t)} \right)^\Delta = -\frac{p(t)}{e_{\ominus p}(s, t)} \).

Definition 3 (Matrix Exponential). [9] Definition 5.18] Let \(t_0 \in \mathbb{T} \) and assume that \(A \in \mathcal{R} \) is an \(n \times n \) matrix-valued function. The unique matrix solution of the IVP
\[
Y^\Delta = A(t)Y, \ Y(t_0) = I,
\]
where \(I \) denotes as usual \(n \times n \) identity matrix, is called the matrix exponential function, and is denoted by \(e_A (\cdot, t_0) \).

Theorem 1. [9] Theorem 5.21] Let \(A, B \in \mathcal{R} \) be \(n \times n \) matrix-valued functions on time scale \(\mathbb{T} \), then we have
(1) \(e_0(t,s) \equiv I \) and \(e_A(t,t) \equiv I \), where 0 and I indicate the zero matrix and the identity matrix, respectively,
(2) \(e_A(\sigma(t), s) = (I + \mu(t) A(t)) e_A(t, s) \),
(3) \(e_A(t, s) = e_A^{-1}(s, t) \),
(4) \(e_A(t, s) e_A(s, r) = e_A(t, r) \),
(5) \(e_A(t, s) e_B(t, s) = e_{A \oplus B}(t, s) \), where
\[
(A \oplus B)(t) = A(t) + B(t) + \mu(t) A(t) B(t).
\]

Theorem 2. [4] Theorem 5.24 (Variation of Constants). Let \(A \in \mathbb{R} \) be an \(n \times n \) matrix-valued function on \(\mathbb{T} \) and suppose that \(f : \mathbb{T} \to \mathbb{R}^n \) is rd-continuous. Let \(t_0 \in \mathbb{T} \) and \(y_0 \in \mathbb{R}^n \). Then the initial value problem
\[
y^{\Delta} = A(t)y + f(t), \quad y(t_0) = y_0
\]
has a unique solution \(y : \mathbb{T} \to \mathbb{R}^n \). Moreover, this solution is given by
\[
y(t) = e_A(t, t_0)y_0 + \int_{t_0}^t e_A(t, \sigma(\tau)) f(\tau) \Delta \tau.
\]

2.2. Shift Operators and new periodicity concept based on shift operators.

In this section, we aim to introduce basic definitions and properties of shift operators. The following definitions, lemmas and examples can be found in [1], [2], [3] and [4].

Definition 4. Let \(\mathbb{T}^* \) be a nonempty subset of the time scale \(\mathbb{T} \) including a fixed number \(t_0 \in \mathbb{T}^* \) such that there exists operators \(\delta_{\pm} : [t_0, \infty)_{\mathbb{T}} \times \mathbb{T}^* \to \mathbb{T}^* \) satisfying the following properties:

1. The function \(\delta_{\pm} \) are strictly increasing with respect to their second arguments, if

\[
(T_0, t), (T_0, u) \in D_{\pm} := \{(s, t) \in [t_0, \infty)_{\mathbb{T}} \times \mathbb{T}^* : \delta_{\pm}(s, t) \in \mathbb{T}^* \},
\]

then
\[
T_0 \leq t \leq u \implies \delta_{\pm}(T_0, t) \leq \delta_{\pm}(T_0, u);
\]

2. If \((T_1, u), (T_2, u) \in D_{-} \) with \(T_1 < T_2 \), then \(\delta_{-}(T_1, u) > \delta_{-}(T_2, u) \) and if \((T_1, u), (T_2, u) \in D_{+} \) with \(T_1 < T_2 \), then \(\delta_{+}(T_1, u) < \delta_{+}(T_2, u) \);

3. If \(t \in [t_0, \infty)_{\mathbb{T}} \), then \((t, t_0) \in D_{+} \) and \(\delta_{+}(t, t_0) = t \). Moreover, if \(t \in \mathbb{T}^* \), then \((t, t) \in D_{+} \) and \(\delta_{+}(t, t) = t \);

4. If \((s, t) \in D_{+} \), then \((s, \delta_{+}(s, t)) \in D_{+} \) and \(\delta_{+}(s, \delta_{+}(s, t)) = t \);

5. If \((s, t) \in D_{-} \) and \((u, \delta_{-}(s, t)) \in D_{-} \), then \((s, \delta_{-}(u, t)) \in D_{-} \) and \(\delta_{-}(u, \delta_{-}(s, t)) = \delta_{-}(s, \delta_{-}(u, t)) \).

Then the operators \(\delta_{+} \) and \(\delta_{-} \) are called forward and backward shift operators associated with the initial point \(t_0 \) on \(\mathbb{T}^* \) and the sets \(D_{+} \) and \(D_{-} \) are domain of the operators, respectively.

Example 1. The following table shows the shift operators \(\delta_{\pm}(s, t) \) on some time scales:

\(\mathbb{T} \)	\(t_0 \)	\(\mathbb{T}^* \)	\(\delta_{-}(s, t) \)	\(\delta_{+}(s, t) \)
\(\mathbb{R} \)	\(0 \)	\(\mathbb{R} \)	\(t - s \)	\(t + s \)
\(\mathbb{Z} \)	\(0 \)	\(\mathbb{Z} \)	\(t - s \)	\(t + s \)
\(\mathbb{N}^{1/2} \cup \{0\} \)	1	\(\mathbb{Q}^{*} \)	\(\frac{1}{2} \)	\(\frac{3}{2} \)
\(\mathbb{N}^{1/2} \)	0	\(\mathbb{N}^{1/2} \)	\((t^2 - s^2)^{1/2} \)	\((t^2 + s^2)^{1/2} \)

Lemma 2. Let \(\delta_{\pm} \) be the shift operators associated with the initial point \(t_0 \). Then we have the following:

1. \(\delta_{-}(t, t) = t_0 \) for all \(t \in [t_0, \infty)_{\mathbb{T}} \);
2. \(\delta_{-}(t_0, t) = t \) for all \(t \in \mathbb{T}^* \);
3. If \((s, t) \in D_{+} \), then \(\delta_{+}(s, t) = u \) implies \(\delta_{-}(s, u) = t \) and if \((s, u) \in D_{-} \), then \(\delta_{-}(s, u) = t \) implies \(\delta_{+}(s, t) = u \);
4. \(\delta_{+}(t, \delta_{-}(s, t_0)) = \delta_{-}(s, t_0) = t_0 \) for all \((s, t) \in D_{+} \) with \(t \geq t_0 \);
5. \(\delta_{-}(u, t) = \delta_{+}(t, u) \) for all \((u, t) \in ([t_0, \infty)_{\mathbb{T}} \times [t_0, \infty)_{\mathbb{T}}) \cap D_{+} \);
6. \(\delta_{+}(s, t) \in [t_0, \infty)_{\mathbb{T}} \) for all \((s, t) \in D_{+} \) with \(t \geq t_0 \);
7. \(\delta_{-}(s, t) \in [t_0, \infty)_{\mathbb{T}} \) for all \((s, t) \in ([t_0, \infty)_{\mathbb{T}} \times [s, \infty)_{\mathbb{T}}) \cap D_{-} \);
Corollary 1. Let P be a time scale with the shift operators δ_\pm associated with the initial point $t_0 \in \mathbb{T}_*$, then \mathbb{T} is said to be periodic in shifts δ_\pm, if there exists a $p \in (t_0, \infty)_{\mathbb{T}_*}$ such that $(p, t) \in D_\pm$ for all $t \in \mathbb{T}_*$. P is called the period of \mathbb{T} if

$$P = \inf \{ p \in [t_0, \infty)_{\mathbb{T}_*} : (p, t) \in D_\pm \text{ for all } t \in \mathbb{T}_* \} > t_0.$$

Observe that an additive periodic time scale must be unbounded. The following example indicates that a time scale, periodic in shifts, may be bounded.

Example 2. The following time scales are not additive periodic but periodic in shifts δ_\pm.

1. $\mathbb{T}_1 = \{ \pm n^2 : n \in \mathbb{Z} \}$, $\delta_\pm(P, t) = \begin{cases} \left(\sqrt[3]{t} \pm \sqrt[3]{P} \right)^2 & \text{if } t > 0 \\
\pm P & \text{if } t = 0, P = 1, t_0 = 0, \\
-\left(\sqrt[3]{t} \pm \sqrt[3]{P} \right)^2 & \text{if } t < 0 \end{cases}$

2. $\mathbb{T}_2 = q^n$, $\delta_\pm(P, t) = p^{\pm 1}, P = q, t_0 = 1$,

3. $\mathbb{T}_3 = \cup_{n \in \mathbb{Z}} [2^{2n}, 2^{2n+1}]$, $\delta_\pm(P, t) = p^{\pm 1}, P = 4, t_0 = 1$,

4. $\mathbb{T}_4 = \left\{ \frac{q^n}{1 + q^n} : q > 1 \text{ is constant and } n \in \mathbb{Z} \right\} \cup \{0, 1\}$,

$$\delta_\pm(P, t) = \frac{q^{\ln(\frac{\ln(1 + q^n)}{\ln(\frac{p^n}{1 + q^n})})}}{1 + q^{\ln(\frac{\ln(1 + q^n)}{\ln(\frac{p^n}{1 + q^n})})}}, \quad P = \frac{q}{1 + q}.$$

Notice that the time scale \mathbb{T}_4 in Example 2 is bounded above and below and

$$\mathbb{T}_4^* = \left\{ \frac{q^n}{1 + q^n} : q > 1 \text{ is constant and } n \in \mathbb{Z} \right\}.$$

Corollary 1. Let \mathbb{T} be a time scale that is periodic in shifts δ_\pm with the period P. Then we have

$$\delta_\pm(P, \sigma(t)) = \sigma(\delta_\pm(P, t)) \text{ for all } t \in \mathbb{T}_*.$$ \hspace{1cm} (2.1)

Example 3. The time scale $\mathbb{T} = (-\infty, 0] \cup [1, \infty)$ cannot be periodic in shifts δ_\pm. Because if there was a $p \in (t_0, \infty)_{\mathbb{T}_*}$ such that $\delta_\pm(p, t) \in \mathbb{T}_*$, then the point $\delta_\pm(p, 0)$ would be right scattered due to (2.7). However, we have $\delta_\pm(p, 0) < 0$ by (i) of Definition 1. This leads to a contradiction since every point less than 0 is right dense.

Definition 6 (Periodic function in shifts δ_\pm). Let \mathbb{T} be a time scale P-periodic in shifts. We say that a real valued function f defined on \mathbb{T}_* is periodic in shifts δ_\pm if there exists a $T \in [P, \infty)_{\mathbb{T}_*}$ such that

$$(T, t) \in D_\pm \text{ and } f(\delta^T_\pm(t)) = f(t) \text{ for all } t \in \mathbb{T}_*,$$ \hspace{1cm} (2.2)

where $\delta^T_\pm(t) = \delta_\pm(T, t)$. T is called period of f, if it is the smallest number satisfying (2.2).

Example 4. Let $\mathbb{T} = \mathbb{R}$ with initial point $t_0 = 1$, the function

$$f(t) = \sin \left(\frac{\ln|t|}{\ln(1/2)} \pi \right), \quad t \in \mathbb{R}^* := \mathbb{R} - \{0\}$$
is 4-periodic in shifts δ_{\pm} since

$$f(\delta_{\pm}(4, t)) = \begin{cases} f(t/4^\pm 1) & \text{if } t \geq 0 \\ f(t/4^\pm 1) & \text{if } t < 0 \end{cases}$$

$$= \sin\left(\frac{\ln |t| \pm 2 \ln (1/2)}{\ln (1/2)} \pi\right)$$

$$= \sin\left(\frac{\ln |t|}{\ln (1/2)} \pi \pm 2\pi\right)$$

$$= \sin\left(\frac{\ln |t|}{\ln (1/2)} \pi\right)$$

$$= f(t).$$

Definition 7 (Δ-periodic function in shifts δ_{\pm}). Let \mathbb{T} be a time scale P-periodic in shifts. A real valued function f defined on \mathbb{T}^* is Δ-periodic function in shifts if there exists a $T \in [P, \infty)_T$, such that

$$(T, t) \in D_{\pm} \text{ for all } t \in \mathbb{T}^*$$

the shifts δ_{\pm}^T are Δ-differentiable with rd-continuous derivatives

and

$$f(\delta_{\pm}^T(t)) \delta_{\pm}^T(t) = f(t)$$

for all $t \in \mathbb{T}^*$, where $\delta_{\pm}^T(t) = \delta_{\pm}(T, t)$. The smallest number T satisfying (2.3) is called period of f.

Example 5. The function $f(t) = 1/t$ is Δ-periodic function on $q\mathbb{T}$ with the period $T = q$.

The following result is useful for integration of functions which are Δ-periodic in shifts.

Theorem 3. Let \mathbb{T} be a time scale that is periodic in shifts δ_{\pm} with period $P \in (t_0, \infty)_{\mathbb{T}^*}$ and f a Δ-periodic function in shifts δ_{\pm} with the period $T \in [P, \infty)_{\mathbb{T}^*}$. Suppose that $f \in C_{rd}(\mathbb{T})$, then

$$\int_{t_0}^t f(s) \Delta s = \int_{\delta_{\pm}(t_0)}^{\delta_{\pm}(t)} f(s) \Delta s.$$

For more examples of periodic time scales, periodic functions and Δ-periodic functions in shifts, we refer readers [1].

3. Floquet theory based on new periodicity concept

In this section we use Lyapunov transformation and construct a unified Floquet theory based on new periodicity concept to give necessary and sufficient conditions for existence of periodic solutions of homogeneous and nonhomogeneous dynamic equations on time scales.

Hereafter, we suppose that \mathbb{T} is a periodic time scale in shifts δ_{\pm} and that the shift operators δ_{\pm} are Δ-differentiable with rd-continuous derivatives. For brevity, we use the term ”periodic in shifts” to mean periodicity in shifts δ_{\pm}. Throughout the paper, we use the notation $\delta_{\pm}^T(t)$ to indicate the shifts $\delta_{\pm}(T, t)$. Furthermore, we denote by $\delta_{\pm}^{(k)}(T, t)$, $k \in \mathbb{N}$, the k-times composition of shifts of δ_{\pm}^T with itself, namely,

$$\delta_{\pm}^{(k)}(T, t) := \delta_{\pm}^T \circ \delta_{\pm}^T \circ \ldots \circ \delta_{\pm}^T(t).$$

Observe that, the period of a function f does not have to be equal to period of the time scale on which f is determined. However, for simplicity of our results we set the period of time scale \mathbb{T} to be equal to period of the all functions defined on \mathbb{T}.

Definition 8. [13] Definition 2.1] A Lyapunov transformation is an invertible matrix $L(t) \in C^{1}_{rd}(\mathbb{T}, \mathbb{R}^{n \times n})$ satisfying

$$\|L(t)\| \leq \rho \text{ and } |\det L(t)| \geq \eta \text{ for all } t \in \mathbb{T}$$

where ρ and η are arbitrary positive reals.
3.1. **Homogenous Case.** In this section we consider the regressive time varying linear dynamic initial value problem

\[x^\Delta (t) = A(t) x(t), \quad x(t_0) = x_0, \]

where \(A : T^* \rightarrow \mathbb{R}^{n \times n} \) is \(\Delta \)-periodic in shifts with period \(T \). Notice that if the time scale is additive periodic, then \(\delta^\Delta_\pm(T, t) = 1 \) and \(\Delta \)-periodicity in shifts becomes the same as the periodicity in shifts. Hence, the homogeneous system we consider in this section is more general than that of [13] and [14].

In [15], the solution of the system (3.1) (for an arbitrary matrix \(A \)) is expressed by the equality

\[x(t) = \Phi_A(t, t_0) x_0, \]

where \(\Phi_A(t, t_0) \), called the transition matrix for the system (3.1), is given by

\[
\Phi_A(t, t_0) = I + \int_{t_0}^t A(\tau_1) \Delta \tau_1 + \int_{t_0}^t A(\tau_1) \int_{t_0}^{\tau_1} A(\tau_2) \Delta \tau_2 \Delta \tau_1 + \ldots \\
+ \int_{t_0}^t A(\tau_1) \int_{t_0}^{\tau_1} A(\tau_2) \ldots \int_{t_0}^{\tau_{i-1}} A(\tau_i) \Delta \tau_i \ldots \Delta \tau_1 + \ldots . \tag{3.2}
\]

As mentioned in [13] the matrix exponential \(e_A(t, t_0) \) is not always identical to \(\Phi_A(t, t_0) \) since

\[A(t) e_A(t, t_0) = e_A(t, t_0) A(t) \]

is always true but the equality

\[A(t) \Phi_A(t, t_0) = \Phi_A(t, t_0) A(t) \]

is not. It can be seen from (3.9) that one has \(e_A(t, t_0) \equiv \Phi_A(t, t_0) \) only if the matrix \(A \) satisfies

\[A(t) \int_s^t A(\tau) \Delta \tau = \int_s^t A(\tau) \Delta \tau A(t). \]

In preparation for the next result we define the set

\[P(t_0) := \left\{ \delta^{(k)}_+ (T, t_0), \quad k = 0, 1, 2, \ldots \right\}, \tag{3.3} \]

and the function

\[\Theta(t) := \sum_{j=1}^{m(t)} \delta_+ (\delta^{(j-1)}_+ (T, t_0), \delta^{(j)}_+ (T, t_0)) + G(t), \tag{3.4} \]

where

\[m(t) := \min \left\{ k \in \mathbb{N} : \delta^{(k)}_+ (T, t_0) \geq t \right\}, \tag{3.5} \]

and

\[G(t) := \begin{cases} 0 & \text{if } t \in P(t_0) \\ -\delta_+ (t, \delta^{(m(t))}_+ (T, t_0)) & \text{if } t \notin P(t_0) \end{cases}. \tag{3.6} \]

Remark 1. For an additive periodic time scale we always have \(\Theta(t) = t - t_0 \).

For the construction of matrix \(R \), a solution of the matrix exponential equation, it is necessary to define the real power of a matrix.

Definition 9 (Real power of a matrix). [13] Definition A.5] *Given an \(n \times n \) nonsingular matrix \(M \) with elementary divisors \(\{(\lambda - \lambda_i)^{m_i}\}_{i=1}^{k} \) and any \(r \in \mathbb{R} \), the real power of the matrix \(M \) is given by*

\[M^r := \sum_{i=1}^{k} P_i(M) \lambda_i^r \left[\sum_{j=0}^{m_i-1} \frac{\Gamma(r+1)}{j! \Gamma(r-j+1)} \left(\frac{M - \lambda_i I}{\lambda_i} \right)^j \right], \tag{3.7} \]

where

\[P_i(\lambda) := a_i(\lambda) b_i(\lambda), \]
To see this, first suppose that
t\in \mathbb{R}.

In any case, we have
r, s
for any
I
where we use (3.9) along with Θ (3.4) and real power of a nonsingular matrix e.

It has been deduced by [13, Proposition A.3] that the set \{P_i(M)\}_{i=1}^{k} is orthogonal. That is, for any \(r, s \in \mathbb{R}\) we have \(M^{r+s} = M^r M^s\).

In the following theorem we construct the matrix \(R\) as a solution of matrix exponential equation.

Theorem 4. For a nonsingular, \(n \times n\) constant matrix \(M\) a solution \(R : \mathbb{T} \to \mathbb{C}^{n \times n}\) of matrix exponential equation

\[
e_R (\delta^T_+ (t_0) , t_0) = M
\]

can be given by

\[
R(t) = \lim_{s \to t} \frac{M^{\delta^T_+(\Theta(s) - \Theta(t))} - I}{\Theta (t) - s}, \tag{3.8}
\]

where \(I\) is the \(n \times n\) identity matrix and \(\Theta\) is as in (3.4).

Proof. Let’s construct the matrix exponential function \(e_R (t, t_0)\) as follows

\[
e_R (t, t_0) := M^{\delta_+(\Theta(t))} \text{ for } t \geq t_0, \tag{3.9}
\]

where \(\Theta\) is given by (3.4) and real power of a nonsingular matrix \(M\) is given by (3.7). To show that the function \(e_R (t, t_0)\) constructed in (3.9) is the matrix exponential we first observe that

\[
e_R (t_0, t_0) = M^{\delta_+(\Theta(t_0))} = I,
\]

where we use (3.9) along with \(\Theta(t_0) = G(t_0) = 0\). Second, differentiating (3.9) we obtain

\[
e_R^\Delta (t, t_0) = R(t) e_R (t, t_0).
\]

To see this, first suppose that \(t\) is right-scattered. Then, we have

\[
e_R^\Delta (t, t_0) = \frac{e_R (\sigma(t), t_0) - e_R (t, t_0)}{\sigma(t) - t}
= \frac{M^{\delta_+(\Theta(\sigma(t))} - M^{\delta_+(\Theta(t))}}{\sigma(t) - t}
= \frac{M^{\delta_+(\Theta(\sigma(t)) - \Theta(t))} - I}{\sigma(t) - t} M^{\delta_+(\Theta(t))}
= R(t) e_R (t, t_0).
\]

If \(t\) is right dense, then \(\sigma(t) = t\). Setting \(s = t + h\) in (3.4) and using (3.9) we get

\[
e_R^\Delta (t, t_0) = \lim_{h \to 0} \frac{e_R (t + h, t_0) - e_R (t, t_0)}{h}
= \lim_{h \to 0} \frac{M^{\delta_+(\Theta(t+h))} - M^{\delta_+(\Theta(t))}}{h}
= \lim_{h \to 0} \frac{M^{\delta_+(\Theta(t+h)) - \Theta(t))} - I}{h} M^{\delta_+(\Theta(t))}
= R(t) e_R (t, t_0).
\]

In any case, we have \(e_R^\Delta (t, t_0) = R(t) e_R (t, t_0)\). Finally, it follows from Lemma [2] that

\[
\Theta (\delta^T_+ (t_0)) = \delta_- (t_0, \delta^T_+ (t_0)) = \delta^T_+ (t_0) = T,
\]

and therefore,

\[
e_R (\delta^T_+ (t_0), t_0) = M^{\delta_+(\Theta(\delta^T_+(t_0))} = M
\]

The proof is complete. □

Corollary 2. The matrices \(R(t)\) and \(M\) have identical eigenvectors.
Proof. For any eigenpairs \(\{ \lambda_i, v_i \} \), \(i = 1, 2, \ldots, n \) of \(M \), we get by using \(Mv_i = \lambda_i v_i \) that
\[
\lim_{s \to t} M^t \frac{\Theta(s(t)) - \Theta(s)}{\Theta(s(t))} v_i = \lim_{s \to t} \lambda_i t \frac{\Theta(s(t)) - \Theta(s)}{\Theta(s(t))} v_i.
\]
This implies
\[
R(t)v_i = \lim_{s \to t} \left(\lambda_i t \frac{\Theta(s(t)) - \Theta(s)}{\sigma(t) - s} - 1 \right) v_i.
\]
(3.10)
Substituting \(\gamma_i(t) = \lim_{x \to -t} \left(\lambda_i t \frac{\Theta(s(t)) - \Theta(s)}{\sigma(t) - s} - 1 \right) \) into \((3.10) \) we conclude that \(R(t) \) has the eigenpairs \(\{ \gamma_i(t), v_i \}_{t=1}^n \). \(\square \)

Lemma 3. Let \(T \) be a time scale and \(P \in \mathcal{R}(\mathbb{T}^*, \mathbb{R}^{n \times n}) \) be a \(\Delta \)-periodic matrix valued function in shifts with period \(T \), i.e.
\[
P(t) = P\left(\delta^T_- (t) \right) \delta^T_+ (t)
\]
Then the solution of the dynamic matrix initial value problem
\[
Y^\Delta (t) = P(t) Y(t) \, , \, Y(t_0) = Y_0,
\]
(3.11)
is unique up to a period \(T \) in shifts. That is
\[
Phi_P(t, t_0) = \Phi_P \left(\delta^T_+ (t) , \delta^T_+ (t_0) \right)
\]
(3.12)
for all \(t \in \mathbb{T}^* \).

Proof. By \([9] \), the unique solution to \((3.11) \) is \(Y(t) = \Phi_P (t, t_0) Y_0 \). Observe that
\[
Y^\Delta (t) = \Phi_P^\Delta (t, t_0) Y_0 = P(t) \Phi_P (t, t_0) Y_0
\]
and
\[
Y(t_0) = \Phi_P (t_0, t_0) Y_0 = Y_0.
\]
To verify \((3.12) \) we first need to show that \(\Phi_P \left(\delta^T_+ (t) , \delta^T_+ (t_0) \right) Y_0 \) is also solution for \((3.11) \). Since the shift operator \(\delta_+ \) is strictly increasing, the chain rule (\([9\], Theorem 1.93]) yields
\[
\left[\Phi_P \left(\delta^T_+ (t) , \delta^T_+ (t_0) \right) \right] Y_0^\Delta = P\left(\delta^T_+ (t) \right) \delta^T_+ (t) \Phi_P \left(\delta^T_+ (t) , \delta^T_+ (t_0) \right) Y_0
\]
\[
= P(t) \Phi_P \left(\delta^T_+ (t) , \delta^T_+ (t_0) \right) Y_0.
\]
On the other hand, we have
\[
\Phi_P \left(\delta^T_+ (t) , \delta^T_+ (t_0) \right) \big|_{t=t_0} Y_0 = \Phi_P \left(\delta^T_+ (t_0) , \delta^T_+ (t_0) \right) Y_0 = Y_0.
\]
This means \(\Phi_P \left(\delta^T_+ (t) , \delta^T_+ (t_0) \right) Y_0 \) solves \((3.11) \). From the uniqueness of solution of \((3.11) \), we get \((3.12) \). \(\square \)

One may similarly prove the next result.

Corollary 3. Let \(T \) be a time scale and \(P \in \mathcal{R}(\mathbb{T}^*, \mathbb{R}^{n \times n}) \) be a \(\Delta \)-periodic matrix valued function in shifts, i.e.
\[
P(t) = P\left(\delta^T_+ (t) \right) \delta^T_+ (t)
\]
Then
\[
e_p (t, t_0) = e_p \left(\delta^T_+ (t) , \delta^T_+ (t_0) \right).
\]
(3.13)

Theorem 5 (Floquet decomposition). Let \(A \) be a matrix valued function that is \(\Delta \)-periodic in shifts with period \(T \). The transition matrix for \(A \) can be given in the form
\[
\Phi_A (t, \tau) = L(t) e_R (t, \tau) L^{-1} (\tau) \, , \, \text{for all} \, t, \tau \in \mathbb{T}^*,
\]
(3.14)
where \(R : \mathbb{T} \to \mathbb{C}^{n \times n} \) and \(L(t) \in \mathcal{C}^1_r (\mathbb{T}^*, \mathbb{R}^{n \times n}) \) are both periodic in shifts with period \(T \) and invertible.
Proof. Setting \(M := \Phi_A (\delta^T_+ (t_0), t_0) \) define the matrix \(R \) as in Theorem 4. Then we have
\[
e_R (\delta^T_+ (t_0), t_0) = \Phi_A (\delta^T_+ (t_0), t_0).
\]
Define the matrix \(L (t) \) by
\[
L (t) := \Phi_A (t, t_0) e^{-1}_R (t, t_0).
\]
Obviously, \(L (t) \in C^1_{rd} (\mathbb{T}^*, \mathbb{R}^{n \times n}) \) and \(L \) is invertible. The equality
\[
\Phi_A (t, t_0) = L (t) e_R (t, t_0).
\]
along with (3.16) implies
\[
\Phi_A (t_0, t) = e^{-1}_R (t, t_0) L^{-1} (t)
\]
Combining (3.16) and (3.17), we obtain (3.14). To show periodicity of \(L \) in shifts we use (3.12) (3.13) to get
\[
L (\delta^T_+ (t)) = \Phi_A (\delta^T_+ (t), t_0) e^{-1}_R (\delta^T_+ (t), t_0)
\]
\[
= \Phi_A (\delta^T_+ (t), \delta^T_+ (t_0)) \Phi_A (\delta^T_+ (t_0), t_0) e_R (t_0, \delta^T_+ (t))
\]
\[
= \Phi_A (\delta^T_+ (t), \delta^T_+ (t_0)) e_R (\delta^T_+ (t), \delta^T_+ (t_0)) e_R (\delta^T_+ (t_0), \delta^T_+ (t))
\]
\[
= \Phi_A (\delta^T_+ (t), \delta^T_+ (t_0)) e^{-1}_R (\delta^T_+ (t), \delta^T_+ (t_0))
\]
\[
= \Phi_A (t, t_0) e^{-1}_R (t, t_0)
\]
\[
= L (t).
\]
This completes the proof.

Hereafter, we shall refer to (3.14) as the Floquet decomposition for \(\Phi_A \). The following result can be proven similar to [13] Theorem 3.7.

Theorem 6. Let \(\Phi_A (t, t_0) = L (t) e_R (t, t_0) \) be a Floquet decomposition for \(\Phi_A \). Then, \(x (t) = \Phi_A (t, t_0) x_0 \) is a solution of the \(T \)-periodic system (3.1) if and only if \(z (t) = L^{-1} (t) x (t) \) is a solution of the system
\[
z^\Delta (t) = R (t) z (t), \quad z (t_0) = x_0.
\]

Theorem 7. There exists an initial state \(x (t_0) = x_0 \neq 0 \) such that the solution of (3.1) is \(T \)-periodic in shifts if and only if one of the eigenvalues of
\[
e_R (\delta^T_+ (t_0), t_0) = \Phi_A (\delta^T_+ (t_0), t_0)
\]
is 1.

Proof. Suppose that \(x (t_0) = x_0 \) and \(x (t) \) is a solution of (3.1) which is \(T \)-periodic in shifts. By Theorem 5 the Floquet decomposition of \(x \) is given by
\[
x (t) = \Phi_A (t, t_0) x_0 = L (t) e_R (t, t_0) L^{-1} (t_0) x_0,
\]
which also yields
\[
x (\delta^T_+ (t)) = L (\delta^T_+ (t)) e_R (\delta^T_+ (t), t_0) L^{-1} (t_0) x_0.
\]
By \(T \)-periodicity of \(x \) and \(L \) in shifts, we have
\[
e_R (t, t_0) L^{-1} (t_0) x_0 = e_R (\delta^T_+ (t), t_0) L^{-1} (t_0) x_0,
\]
and therefore,
\[
e_R (t, t_0) L^{-1} (t_0) x_0 = e_R (\delta^T_+ (t), \delta^T_+ (t_0)) e_R (\delta^T_+ (t_0), t_0) L^{-1} (t_0) x_0.
\]
Since \(e_R (\delta^T_+ (t), \delta^T_+ (t_0)) = e_R (t, t_0) \) the last equality implies
\[
e_R (t, t_0) L^{-1} (t_0) x_0 = e_R (t, t_0) e_R (\delta^T_+ (t_0), t_0) L^{-1} (t_0) x_0
\]
and thus
\[
L^{-1} (t_0) x_0 = e_R (\delta^T_+ (t_0), t_0) L^{-1} (t_0) x_0.
\]
Since $L^{-1}(t_0)x_0 \neq 0$, we see that $L^{-1}(t_0)x_0$ is an eigenvector of the matrix $e_R(\delta^T_+(t_0), t_0)$ corresponding to an eigenvalue of 1.

Conversely, let us assume that 1 is an eigenvalue of $e_R(\delta^T_+(t_0), t_0)$ with corresponding eigenvector z_0. This means z_0 is real valued and nonzero. Using $e_R(t, t_0) = e_R(\delta^T_+(t), \delta^T_+(t_0))$, we arrive at the following equality
\[
z(\delta^T_+(t)) = e_R(\delta^T_+(t), t_0)z_0 = e_R(\delta^T_+(t), \delta^T_+(t_0))e_R(\delta^T_+(t_0), t_0)z_0 = e_R(\delta^T_+(t), \delta^T_+(t_0))z_0 = e_R(t, t_0)z_0 = z(t),
\]
which shows that $z(t) = e_R(t, t_0)$ is T-periodic in shifts. Applying the Floquet decomposition and setting $x_0 := L(t_0)z_0$, we obtain the nontrivial solution x of (3.18) as follows
\[
x(t) = \Phi_A(t, t_0)x_0 = L(t)e_R(t, t_0)L^{-1}(t_0)x_0 = L(t)e_R(t, t_0)z_0 = L(t)z(t),
\]
which is T-periodic in shifts since L and z are T-periodic in shifts.

\section{Nonhomogeneous Case.} Let us focus on the nonhomogeneous regressive time varying linear dynamic initial value problem
\[
x^\Delta(t) = A(t)x(t) + F(t), \quad x(t_0) = x_0,
\]
where $A : T^* \to \mathbb{R}^{n \times n}$, $f \in C_{rd}(T^*, \mathbb{R}^n) \cap \mathcal{R}(T^*, \mathbb{R}^n)$. Hereafter, we suppose both A and F are Δ-periodic in shifts with the period T.

\begin{lemma}
A solution $x(t)$ of (3.18) is T-periodic in shifts if and only if $x(\delta^T_+(t)) = x(t)$ for all $t \in T^*$.
\end{lemma}

\begin{proof}
Suppose that $x(t)$ is T-periodic in shifts. Let us define $z(t)$ as
\[
z(t) = x(\delta^T_+(t)) - x(t).
\]
Obviously $z(t_0) = 0$. Moreover, if we take delta derivative of both sides of (3.19), we have the following:
\[
\begin{align*}
z^\Delta(t) &= [x(\delta^T_+(t)) - x(t)]^\Delta \\
&= x^\Delta(\delta^T_+(t)) - x^\Delta(t) \\
&= x^\Delta(\delta^T_+(t))\delta^\Delta_+(t) - x^\Delta(t) \\
&= A(\delta^T_+(t))x(\delta^T_+(t))\delta^\Delta_+(t) + F(\delta^T_+(t))\delta^\Delta_+(t) - A(t)x(t) - F(t).
\end{align*}
\]
Since A and F are both Δ-periodic in shifts with the period T, we have
\[
z^\Delta(t) = A(t)x(\delta^T_+(t)) + F(t) - A(t)x(t) - F(t) \\
= A(t)[x(\delta^T_+(t)) - x(t)] \\
= A(t)z(t).
\]
By uniqueness of solutions, we can conclude that $z(t) \equiv 0$ and that $x(\delta^T_+(t)) = x(t)$ for all $t \in T^*$.
\end{proof}

\begin{theorem}
For any initial point $t_0 \in T^*$ and for any function F that is Δ-periodic in shifts with period T, there exists an initial state $x(t_0) = x_0$ such that the solution of (3.18) is T-periodic in shifts if and only if there does not exist a nonzero $z(t_0) = z_0$ and $t_0 \in T^*$ such that the T-periodic homogeneous initial value problem
\[
z^\Delta(t) = A(t)z(t), \quad z(t_0) = z_0,
\]
has a solution that is T-periodic in shifts.
\end{theorem}
Proof. In \[5\], the following representation for the solution of (3.18) is given
\[
x(t) = X(t) X^{-1}(\tau)x_0 + \int_\tau^t X(t) X^{-1}(\sigma(s)) f(s) \Delta s,
\]
where \(X(t)\) is a fundamental matrix solution of the homogeneous system (5.1) with respect to initial condition \(x(\tau) = x_0\). As it is done in \([5]\), we can express \(x(t)\) as follows
\[
x(t) = \Phi_A(t, t_0)x_0 + \int_{t_0}^t \Phi_A(t, \sigma(s)) F(s) \Delta s.
\]

By the previous lemma we know that \(x(t)\) is \(T\)-periodic in shifts if and only if \(x(\delta^T_+(t_0)) = x_0\) or equivalently
\[
[I - \Phi_A(\delta^T_+(t_0), t_0)] x_0 = \int_{t_0}^{\delta^T_+(t_0)} \Phi_A(\delta^T_+(t_0), \sigma(s)) F(s) \Delta s.
\]

By guidance of Theorem 7, we have to show that (3.18) has a solution with respect to initial condition \(x(t_0) = x_0\) if and only if \(e_R(\delta^T_+(t_0), t_0)\) has no eigenvalues equal to 1.

Let \(e_R(\delta^T_+(\eta), \eta) = \Phi_A(\delta^T_+(\eta), \eta)\), for some \(\eta \in T^*\), has no eigenvalues equal to 1. That is,
\[
\det [I - \Phi_A(\delta^T_+(\eta), \eta)] \neq 0.
\]

Invertibility and periodicity of \(\Phi_A\) imply
\[
0 \neq \det [\Phi_A(\delta^T_+(t_0), \delta^T_+(\eta)) (I - \Phi_A(\delta^T_+(\eta), \eta)) \Phi_A(\eta, t_0)] = \det [\Phi_A(\delta^T_+(t_0), \delta^T_+(\eta)) \Phi_A(\eta, t_0) - \Phi_A(\delta^T_+(t_0), t_0)].
\]

By periodicity of \(\Phi_A\), the invertibility of \([I - \Phi_A(\delta^T_+(t_0), t_0)]\) is equivalent to (3.22) for any \(t_0 \in T^*\).

Thus, (3.21) has a solution
\[
x_0 = [I - \Phi_A(\delta^T_+(t_0), t_0)]^{-1} \int_{t_0}^{\delta^T_+(t_0)} \Phi_A(\delta^T_+(t_0), \sigma(s)) F(s) \Delta s
\]
for any \(t_0 \in T^*\) and for any \(\Delta\)-periodic function \(F\) in shifts with period \(T\).

Suppose that (3.21) has a solution for every \(t_0 \in T^*\) and every \(\Delta\)-periodic function \(F\) in shifts with period \(T\). Let us define the set \(P_-(t)\) as
\[
P_-(t) = \left\{ k \in \mathbb{Z} : \delta^{(k)}(T, t) \right\}.
\]
It is clear that, \(P_-(t) = P_-(\delta^T_+(t))\). Additionally, let the function \(\xi\) be defined by
\[
\xi(t) := \prod_{s \in P_-(t) \cap [t_0, t]} (\delta^{\Delta T}(s))^{-1}
\]
\[
= (\delta^{\Delta T}(\delta^-(T, t)))^{-1} \times (\delta^{\Delta T}(\delta^{(2)}(T, t)))^{-1} \times \ldots \times (\delta^{\Delta T}(\delta^{(m^-(t))}(T, t)))^{-1},
\]
where \(m^-(t) = \max \left\{ k \in \mathbb{Z} : \delta^{(k)}(T, t) \geq t_0 \right\}\). By definition of \(\xi\), we have
\[
\xi(\delta^{\Delta T}_+(t)) = \prod_{s \in P_-(\delta^{\Delta T}_+(t)) \cap [t_0, \delta^{\Delta T}_+(t)]} (\delta^{\Delta T}_+(s))^{-1}
\]
\[
= \prod_{s \in P_-(t) \cap [t_0, \delta^{\Delta T}(t)]} (\delta^{\Delta T}(s))^{-1}
\]
\[
= (\delta^{\Delta T}_+(t))^{-1} \prod_{s \in P_-(t) \cap [t_0, t]} (\delta^{\Delta T}(s))^{-1}
\]
\[
= (\delta^{\Delta T}_+(t))^{-1} \xi(t).
\]
which shows that \(\xi \) is \(\Delta \)-periodic in shifts with period \(T \). For an arbitrary \(t_0 \) and corresponding \(F_0 \), we can define a regressive and \(\Delta \)-periodic function \(F \) in shifts as follows

\[
F(t) := \Phi_A (\sigma(t), \delta^T_+ (t_0)) \xi(t) F_0, \quad t \in [t_0, \delta^T_+ (t_0)] \cap T. \tag{3.23}
\]

Then, we have

\[
\delta^T_+ (t_0) \int_{t_0}^t \Phi_A (\delta^T_+ (t_0), \sigma(s)) F(s) \Delta s = F_0 \int_{t_0}^t \xi(s) \Delta s. \tag{3.24}
\]

Thus, (3.21) can be rewritten as follows

\[
[I - \Phi_A (\delta^T_+ (t_0), t_0)] x_0 = \int_{t_0}^t \xi(s) \Delta s. \tag{3.25}
\]

For any \(F \) that is constructed in (3.23), and hence for any corresponding \(F_0 \), (3.25) has a solution for \(x_0 \) by assumption. Therefore,

\[
\det[I - \Phi_A (\delta^T_+ (t_0), t_0)] \neq 0.
\]

Consequently, \(e_R(\delta^T_+ (t_0), t_0) = \Phi_A (\delta^T_+ (t_0), t_0) \) has no eigenvalue 1. Then, we can conclude by Theorem 7 (3.20) has no periodic solution in shifts. The proof is complete. \(\square \)

Example 6. Consider the time scale \(\mathbb{T} = q\mathbb{Z} \) that is \(q \)-periodic in shifts \(\delta_{\pm}(s, t) = s^{\pm 1}t \) associated with the initial point \(t_0 = 1 \). Let us define the matrix function \(A(t) : \mathbb{T} \to \mathbb{R}^{n \times n} \) as follows

\[
A(t) = \begin{bmatrix} t \quad 0 \\ 0 \quad 1 \end{bmatrix}.
\]

Then

\[
A(\delta^q_+(t)) \delta^{\Delta q}_+(t) = \begin{bmatrix} \frac{1}{q^t} \\ 0 \end{bmatrix} \times q = \begin{bmatrix} \frac{1}{q^t} \\ 0 \end{bmatrix} = A(t),
\]

which shows that \(A \) is \(\Delta \)-periodic in shifts with period \(q \).

Consider the system

\[
x^{\Delta}(t) = \begin{bmatrix} \frac{1}{q^t} \\ 0 \end{bmatrix} x(t),
\]

with the transition matrix \(\Phi_A(t, 1) \) given by

\[
\Phi_A(t, 1) = \begin{bmatrix} e_{1/q}(t, 1) \\ 0 \end{bmatrix},
\]

where \(q \)-exponential function defined as

\[
e_p(t, t_0) = \prod_{s \in [t_0, t]} [1 + (q - 1)s p(s)].
\]

By (3.12), we get

\[
\Phi_A (\delta^q_+ (t), \delta^q_+ (1)) = \Phi_A (t, 1)
\]

and

\[
\Phi_A (\delta^q_+ (1), 1) = \Phi_A (q, 1) = \begin{bmatrix} q \\ 0 \end{bmatrix}.
\]

Now, as in Theorem 4 we have

\[
e_R(q, 1) = \Phi_A (q, 1) = \begin{bmatrix} q \\ 0 \end{bmatrix} = M.
\]
Then \(R(t) \) in the Floquet decomposition is given by

\[
\begin{align*}
R(t) &= \frac{1}{qt-t} \left[M^\frac{1}{q}(\Theta(qt)-\Theta(t)) - I \right] \\
&= \frac{1}{(q-1)t} \left[M^\frac{1}{q} x q - I \right] \\
&= \frac{1}{(q-1)t} [M - I] \\
&= \left[\frac{q^{-1}}{(q-1)t} 0 \right. \\
&\left. \quad \frac{q^{-1}}{(q-1)t} \right] = \left[\frac{1}{t} \ 0 \right. \\
&\left. \quad \frac{1}{t} \right].
\end{align*}
\]

By (3.11), we have

\[
\begin{align*}
e_R(t,1) &= M^\frac{1}{q}(\Theta(t)) \\
&= M^\frac{1}{q} [\delta_{-}(1.4)+...+\delta_{-}(t_{m(t)}-1,t_{m(t)})] \\
&= M^\frac{1}{q} m(t) = M^m(t).
\end{align*}
\]

Then, the matrix function \(L \) which is \(q \)-periodic in shifts is obtained as follows:

\[
L(t) = \Phi_A(t,1) e_R^{-1}(t,1) \\
= \left[\begin{array}{cc} t & 0 \\ 0 & t \end{array} \right] \left[\begin{array}{cc} q^{-m(t)} & 0 \\ 0 & q^{-m(t)} \end{array} \right] \\
= \left[\begin{array}{cc} t & 0 \\ 0 & t \end{array} \right] \left[\begin{array}{cc} \frac{1}{t} & 0 \\ 0 & \frac{1}{t} \end{array} \right] = I
\]

since \(q^{-m(t)} = q^{-n} = t^{-1} \) for \(T = q^Z \).

Example 7. Suppose that \(\mathbb{T} = \cup_{k=0}^{\infty} \left[3^{\pm k}, 2.3^{\pm k} \right] \cup \{0\} \). Then, \(\mathbb{T} \) is 3-periodic in shifts \(\delta_{\pm} (s,t) = s \pm 3t \). If we set \(A(t) = 1/t \), then we get

\[
A(\delta_{\pm} (3, t)) A^\Delta (3, t) = A(3t) 3 = \frac{1}{t} = A(t)
\]

which shows that \(A \) is \(\Delta \)-periodic in shifts with the period 3. Consider the system

\[
x^\Delta (t) = \left[\begin{array}{cc} \frac{1}{t} & 0 \\ 0 & \frac{1}{t} \end{array} \right] x(t)
\]

whose transition matrix is given by

\[
\Phi_A(t,1) = \left[\begin{array}{cc} e_{1/t}(t,1) & 0 \\ 0 & e_{1/t}(t,1) \end{array} \right].
\]

Then

\[
\Phi_A(\delta_3^\Delta (1),1) = \Phi_A (3,1) = \left[\begin{array}{cc} e_{1/3}(3,1) & 0 \\ 0 & e_{1/3}(3,1) \end{array} \right].
\]

As in Theorem 4, we can write that

\[
e_R(3,1) = \Phi_A (3,1) = \left[\begin{array}{cc} e_{1/3}(3,1) & 0 \\ 0 & e_{1/3}(3,1) \end{array} \right] = M.
\]

On the other hand, by (3.8) and (3.9) we have

\[
e_R(t,1) = M^\frac{1}{q}(\Theta(t)) \\
= \left\{ \begin{array}{ll} M^\frac{1}{q} [3m(t)-3m(t)/t] & \text{if } t \notin P(1) \\ M^\frac{1}{q} m(t) & \text{if } t \in P(1) \end{array} \right.,
\]
and

\[R(t) = \lim_{s \to t} \frac{M^{\frac{1}{\sigma(t)}[\Theta(t)-\Theta(s)]}}{s(t) - s} - I \]

\[= \begin{cases}
\frac{2}{T} \left(M^{\frac{1}{\sigma(t)}[\Theta(t)]} - I \right) & \text{if } \sigma(t) > t \\
\frac{1}{T} \log |M| & \text{if } \sigma(t) = t
\end{cases} \]

where \(P(t) \) and \(m(t) \) are defined by (3.3) and (3.4), respectively. Then we obtain the matrix function \(L(t) \) which is 3-periodic in shifts as follows:

\[L(t) = \Phi_A(t, 1) e_R^{-1}(t, 1) \]

\[= \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix} \begin{pmatrix} e_{1/3}(3, 1) & 0 \\ 0 & e_{1/3}(3, 1) \end{pmatrix} \frac{1}{T} \Theta(t). \]

Example 8. Consider the time scale \(\mathbb{T} = \mathbb{R} \) that is periodic in shifts \(\delta_{\pm}(s, t) = s \pm 1 \) associated with the initial point \(t_0 = 1 \). Let us define the matrix function \(A(t) : \mathbb{T}^* \to \mathbb{R}^{n \times n} \) as follows

\[A(t) = \begin{pmatrix} \frac{1}{t} \cos \left(\frac{\pi \ln t}{\ln q} \right) & 0 \\ 0 & \frac{1}{t} \cos \left(\frac{\pi \ln t}{\ln q} \right) \end{pmatrix}. \]

Then \(A(t) \) is \(\Delta \)-periodic in shifts with the period 4. The following system

\[x^\Delta(t) = \begin{pmatrix} \frac{1}{t} \cos \left(\frac{\pi \ln t}{\ln q} \right) & 0 \\ 0 & \frac{1}{t} \cos \left(\frac{\pi \ln t}{\ln q} \right) \end{pmatrix} x(t) \]

has the transition matrix

\[\Phi_A(t, 1) = \begin{pmatrix} e_{u(t)}(t, 1) & 0 \\ 0 & e_{u(t)}(t, 1) \end{pmatrix}, \]

where \(u(t) = \frac{1}{t} \cos \left(\frac{\pi \ln t}{\ln q} \right) \). Moreover,

\[\Phi_A(\delta_{\pm}(1), 1) = \Phi_A(4, 1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = M. \]

Thus, \(R(t) \) is 2x2 zero matrix, and hence, \(e_R(t, 1) = I \). Finally, the matrix function \(L(t) \) which is 4-periodic in shifts is obtained as follows:

\[L(t) = \Phi_A(t, 1) e_R^{-1}(t, 1) \]

\[= \Phi_A(t, 1). \]

3.3. **Floquet multipliers and Floquet exponents.** In this section we investigate Floquet multipliers and exponents for the system (3.1). Let \(\Phi_A(t, t_0) \) be the transition matrix and \(\Phi(t) \) the fundamental matrix at \(t = \tau \) (i.e. \(\Phi(\tau) = 1 \)) for the system (3.1). Then, we can write any fundamental matrix \(\Psi(t) \) as follows

\[\Psi(t) = \Phi(t) \Psi(\tau) \text{ or } \Psi(t) = \Phi_A(t, t_0) \Psi(t_0). \]

Definition 10. Let \(x_0 \in \mathbb{R}^n \) be a nonzero vector and \(\Psi(t) \) be any fundamental matrix for the linear dynamic system (3.1). The vector solution of the system with initial condition \(x(t_0) = x_0 \) is given by \(\Phi_A(t, t_0) \). We define the monodromy operator \(M : \mathbb{R}^n \to \mathbb{R}^n \) as follows:

\[M(x_0) := \Phi_A(\delta_x(t_0), t_0) x_0 = \Psi(\delta_x(t_0)) \Psi^{-1}(t_0) x_0. \]

The eigenvalues of the monodromy operator are called Floquet multipliers of the linear system (3.1).

Similar to [13, Theorem 5.2 (i)] we can give the following result:

Remark 2. The monodromy operator of the linear system (3.1) is invertible. In particular, every characteristic multiplier is nonzero.

Theorem 9. The monodromy operator \(M \) corresponding to different fundamental matrices of the system (3.1) is unique.
Proof. Suppose that M_1 and M_2 are the monodromy operators corresponding to fundamental matrices $Ψ_1(t)$ and $Ψ_2(t)$, respectively. By using Definition 10, we can express the monodromy operator $M_2(x_0)$ corresponding to $Ψ_2(t)$ as

$$M_2(x_0) = Ψ_2(δ^T_+(t_0)) Ψ_2^{-1}(t_0) x_0.$$

Using (3.26), we get

$$M_2(x_0) = Ψ_2(δ^T_+(t_0)) Ψ_2^{-1}(t_0) x_0 = Ψ_1(δ^T_+(t_0)) Ψ_2(τ) Ψ_2^{-1}(τ) Ψ_1^{-1}(t_0) x_0 = Ψ_1(δ^T_+(t_0)) Ψ_1^{-1}(t_0) x_0 = M_1(x_0).$$

The proof is complete.

By using Theorem 10, (3.26) and (3.27), we obtain

$$Φ_A(t, t_0) = Ψ_1(t) Ψ_1^{-1}(t_0) = L(t) e_R(t, t_0) L^{-1}(t_0)$$

(3.28)

and

$$M(x_0) = Φ_A(δ^T_+(t_0), t_0) x_0 = Ψ_1(δ^T_+(t_0)) Ψ_1^{-1}(t_0) x_0.$$ (3.29)

If we combine (3.28) and (3.29), we get

$$Φ_A(δ^T_+(t_0), t_0) = Ψ_1(δ^T_+(t_0)) Ψ_1^{-1}(t_0) = L(δ^T_+(t_0)) e_R(δ^T_+(t_0), t_0) L^{-1}(δ^T_+(t_0)).$$

By using the periodicity in shifts of L, we have

$$Φ_A(δ^T_+(t_0), t_0) = L(t_0) e_R(δ^T_+(t_0), t_0) L^{-1}(t_0).$$

(3.30)

Hence, we arrive at the next result:

Corollary 4. The Floquet multipliers of the system (3.7) are the eigenvalues of the matrix $e_R(δ^T_+(t_0), t_0)$.

Definition 11 (Floquet exponent). The Floquet exponent of the system (3.7) is the function $γ(t)$ satisfying the equation

$$e_γ(δ^T_+(t_0), t_0) = λ,$$

where $λ$ is the Floquet multiplier of the system.

Definition 12. [9, Definition 2.4] Let $−π/h < ω ≤ π/h$. Then Hilger purely imaginary number $iω$ is defined by $ω = iπ \frac{\text{im}_h}{h}$. For $z \in C_h$, we have that $i \text{Im}_h(z) \in T_h$. Also, when $h = 0$, $iω = iω$.

Theorem 10. Suppose that $γ(t) ∈ R$ is a Floquet exponent of the system (3.7) satisfying $e_γ(δ^T_+(t_0), t_0) = λ$, where $λ$ is a corresponding Floquet multiplier of the T-periodic system. Then $γ(t) + i \omega \frac{2πk}{δ^T_+(t_0) - t_0}$ is also a Floquet exponent for (3.7) for all $k ∈ Z$.

Proof. For all \(k \in \mathbb{Z} \) and any \(t_0 \in \mathbb{T}^* \) we have
\[
e^{-2\pi i k \delta_+^T (t_0) - t_0} (\delta_+^T (t_0), t_0) = e^{-2\pi i k \delta_+^T (t_0) - t_0} (\delta_+^T (t_0), t_0)
\]
\[
e^{-2\pi i k \delta_+^T (t_0) - t_0} \left(\int_{t_0}^{t} \frac{i2\pi k}{\delta_+^T (t_0) - t_0} \Delta \tau \right)
\]
\[
e^{-2\pi i k \delta_+^T (t_0) - t_0} \left(\int_{t_0}^{t} \frac{i2\pi k}{\delta_+^T (t_0) - t_0} \Delta \tau \right)
\]
\[
e^{-2\pi i k \delta_+^T (t_0) - t_0} \left(\int_{t_0}^{t} \frac{i2\pi k}{\delta_+^T (t_0) - t_0} \Delta \tau \right)
\]
\[
e^{-2\pi i k \delta_+^T (t_0) - t_0} \left(\int_{t_0}^{t} \frac{i2\pi k}{\delta_+^T (t_0) - t_0} \Delta \tau \right)
\]
which gives the desired result. \(\square \)

The next result can be proven similar to [13, Theorem 5.3].

Theorem 11. Let \(R (t) \) be a matrix function as in Theorem 4 with eigenvalues \(\gamma_1 (t), \ldots, \gamma_n (t) \) repeated according to multiplicities. Then \(\gamma_1^k (t), \ldots, \gamma_n^k (t) \) are the eigenvalues of \(R^k (t) \) and eigenvalues of \(e_R \) are \(e_{\gamma_1}, \ldots, e_{\gamma_n} \).

Lemma 5. Let \(\mathbb{T} \) be a time scale that is \(p \)-periodic in shifts \(\delta_{\pm} \) associated with the initial point \(t_0 \) and \(k \in \mathbb{Z} \). If \(\delta_+^p (t_0) - t_0 \in \mathbb{Z} \), then the functions \(e^{-2\pi i k \delta_+^p (t_0) - t_0} \) and \(e^{-2\pi i k \delta_-^p (t_0) - t_0} \) are \(p \)-periodic in shifts.

Proof. If \(\delta_+^p (t_0) - t_0 \in \mathbb{Z} \), then we have
\[
e^{-2\pi i k \delta_+^p (t_0) - t_0} (\delta_+^p (t_0), t_0) = \exp \left(\int_{t_0}^{t} \frac{i2\pi k}{\delta_+^p (t_0) - t_0} \Delta \tau \right)
\]
\[
e^{-2\pi i k \delta_+^p (t_0) - t_0} \left(\int_{t_0}^{t} \frac{i2\pi k}{\delta_+^p (t_0) - t_0} \Delta \tau \right)
\]
\[
e^{-2\pi i k \delta_+^p (t_0) - t_0} \left(\int_{t_0}^{t} \frac{i2\pi k}{\delta_+^p (t_0) - t_0} \Delta \tau \right)
\]
\[
e^{-2\pi i k \delta_+^p (t_0) - t_0} \left(\int_{t_0}^{t} \frac{i2\pi k}{\delta_+^p (t_0) - t_0} \Delta \tau \right)
\]
which proves the periodicity of \(e^{-2\pi i k \delta_+^p (t_0) - t_0} \). The periodicity of \(e^{-2\pi i k \delta_-^p (t_0) - t_0} \) can be proven by using

the periodicity of \(e^{-2\pi i k \delta_-^p (t_0) - t_0} \) and the identity \(e_{\pm \alpha} = 1/e_{\pm \alpha} \). \(\square \)

Remark 3. Notice that the condition \(\delta_+^p (t_0) - t_0 \in \mathbb{Z} \) holds not only for all additive periodic time scales but also for the many time scales that are periodic in shifts. For example for the 2-periodic time scales \(\mathbb{T} \) and \(\bigcup_{k=0}^{\infty} [2 \pm k, 2 \pm (k+1)] \cup \{0\} \) in shifts \(\delta_{\pm} (s, t) = s \pm 1 \) associated with the initial point \(t_0 = 1 \), the condition \(\delta_+^p (t_0) - t_0 \in \mathbb{Z} \) is always satisfied.
Theorem 12. If $\gamma(t)$ is a Floquet exponent for the system \((3.1)\) and $\Phi_A(t,t_0)$ is the associated transition matrix, then there exists a Floquet decomposition of the form

$$\Phi_A(t,t_0) = L(t)e_R(t,t_0)$$

such that $\gamma(t)$ is an eigenvalue of $R(t)$.

Proof. Consider the Floquet decomposition $\Phi_A(t,t_0) = L(t)e_R(t,t_0)$. By Definition 11, there exists a characteristic multiplier λ such that $e_\gamma\left(\delta^T_+(t_0),t_0\right) = \lambda$. Moreover, there is an eigenvalue $\tilde{\gamma}(t)$ of $\tilde{R}(t)$ so that $e_{\tilde{\gamma}}\left(\delta^T_+(t_0),t_0\right) = \lambda$, where $\tilde{\gamma}(t)$ can be defined as

$$\tilde{\gamma}(t) := \gamma(t) + i\frac{2\pi k}{\delta^T_+(t_0) - t_0}$$

by Theorem 10. If we set

$$R(t) := \tilde{R}(t) \ominus i\frac{2\pi k}{\delta^T_+(t_0) - t_0}$$

and

$$L(t) := \tilde{L}(t)e_{\delta^T_+(t_0)-t_0}^\circ I(t,t_0),$$

then we can write

$$\tilde{R}(t) := R(t) \ominus i\frac{2\pi k}{\delta^T_+(t_0) - t_0},$$

and hence,

$$L(t)e_R(t,t_0) = \tilde{L}(t)e_{\delta^T_+(t_0)-t_0}^\circ I(t,t_0)e_R(t,t_0) = \tilde{L}(t)e_{\delta^T_+(t_0)-t_0}^\circ I\oplus_R(t,t_0) = \tilde{L}(t)e_R(t,t_0).$$

This means $\Phi_A(t,t_0) = L(t)e_R(t,t_0)$ is another Floquet decomposition where $\gamma(t)$ is an eigenvalue of $R(t)$. \hfill \Box

Theorem 13. Suppose that λ is a characteristic multiplier of the system \((3.1)\) and that $\gamma(t)$ is the corresponding Floquet exponent. Then, \((3.1)\) has a nontrivial solution of the form

$$x(t) = e_\gamma(t,t_0)q(t)$$

satisfying

$$x(\delta^T_+(t)) = \lambda x(t),$$

where q is a T-periodic function in shifts.

Proof. Let $\Phi_A(t,t_0)$ be the transition matrix of \((3.1)\) and $\Phi_A(t,t_0) = L(t)e_R(t,t_0)$ is Floquet decomposition such that $\gamma(t)$ is an eigenvalue of $R(t)$. There exists a nonzero vector $u \neq 0$ such that $R(t)u = \gamma(t)u$, and therefore, $e_R(t,t_0)u = e_\gamma(t,t_0)u$. Then, we can represent the solution $x(t) := \Phi_A(t,t_0)u$ as follows

$$x(t) = L(t)e_R(t,t_0)u = e_\gamma(t,t_0)L(t)u.$$

If we set $q(t) = L(t)u$, the last equality implies \((3.31)\). Thus, the first part of the theorem is proven.

The second part is proven by the following equality.

$$x(\delta^T_+(t)) = e_\gamma(\delta^T_+(t),t_0)q(\delta^T_+(t))$$

$$= e_\gamma(\delta^T_+(t),\delta^T_+(t_0))e_\gamma(\delta^T_+(t_0),t_0)q(t)$$

$$= e_\gamma(\delta^T_+(t_0),t_0)e_\gamma(t,t_0)L(t)u$$

$$= e_\gamma(\delta^T_+(t_0),t_0)x(t)$$

$$= \lambda x(t).$$

The preceding theorem provides a procedure for the construction of a solution to the system \((3.1)\) when a characteristic multiplier is given. In the following theorem, we show that two solutions corresponding to two distinct characteristic multipliers are linearly independent.
Theorem 14. Let λ_1 and λ_2 be the characteristic multipliers of the system (3.1) and γ_1 and γ_2 are Floquet exponents such that

$$e_{\gamma_i}(\delta^+_+(t_0), t_0) = \lambda_i, \quad i = 1, 2.$$

If $\lambda_1 \neq \lambda_2$, then there exist T-periodic functions q_1 and q_2 in shifts such that

$$x_i(t) = e_{\gamma_i}(t, t_0)q_i(t), \quad i = 1, 2$$

are linearly independent solutions of (3.1).

Proof. Let $\Phi_A(t, t_0) = L(t)e_R(t, t_0)$ and $\gamma_1(t)$ be an eigenvalue of $R(t)$ corresponding to nonzero eigenvector v_1. Since λ_2 is an eigenvalue of $\Phi_A(\delta^+_+(t_0), t_0)$, by Theorem 11 there is an eigenvalue $\gamma(t)$ of $R(t)$ satisfying

$$e_\gamma(\delta^+_+(t_0), t_0) = \lambda_2 = e_{\gamma_2}(\delta^+_+(t_0), t_0).$$

Hence, for some $k \in \mathbb{Z}$ we have $\gamma_2(t) = \gamma(t) \odot \frac{2\pi}{\delta^+_+(t_0) - t_0}$. Furthermore, $\lambda_1 \neq \lambda_2$ implies that $\gamma(t) \neq \gamma_1(t)$. If v_2 is a nonzero eigenvector of $R(t)$ corresponding to eigenvalue $\gamma(t)$, then the eigenvectors v_1 and v_2 are linearly independent. Similar to the related part in the proof of Theorem 13 we can state the solutions of the system (3.1) as follows:

$$x_1(t) = e_{\gamma_1}(t, t_0) L(t) v_1$$

and

$$x_2(t) = e_{\gamma}(t, t_0) L(t) v_2.$$

Since $x_1(t_0) = v_1$ and $x_2(t_0) = v_2$, the solutions $x_1(t)$ and $x_2(t)$ are linearly independent. Moreover, the solution x_2 can be rewritten in the following form

$$x_2(t) = e_{\gamma_2}(t, t_0) e_{\gamma(t) \odot \gamma_2}(t, t_0) L(t) v_2
= e_{\gamma_2}(t, t_0) e_{\frac{2\pi}{\delta^+_+(t_0) - t_0}}(t, t_0) L(t) v_2.$$

(3.33)

Letting $q_1(t) = L(t) v_1$ and $q_2(t) = e_{\frac{2\pi}{\delta^+_+(t_0) - t_0}}(t, t_0) L(t) v_2$ in (3.32) and (3.33), respectively, we complete the proof.

4. Floquet Theory and Stability

In this section, we employ the unified Floquet theory that we established in previous sections to investigate the stability characteristics of the regressive periodic system

$$x^A(t) = A(t) x(t), \quad x(t_0) = x_0.$$

(4.1)

We know by Theorem 4 that the matrix R in the Floquet decomposition of Φ_A is given by

$$R(t) = \lim_{s \to 1} \Phi_A(\delta^+_+(t_0), t_0) \frac{e^{[\Theta(s(t)) - \Theta(s)]\pi}}{\pi - s} - I.$$

(4.2)

Also, Theorem 6 concludes that the solution $z(t)$ of the uniformly regressive system

$$z^A(t) = R(t) z(t), \quad z(t_0) = x_0$$

(4.3)

can be expressed in terms of the solution $x(t)$ of the system (4.1) as follows: $z(t) = L^{-1}(t)x(t)$, where $L(t)$ is the Lyapunov transformation given by (3.15).

In preparation for the main result we can give the following definitions and results which can be found in [13].

Definition 13 (Stability). The time varying linear dynamic equation (4.1) is uniformly stable if there exists a positive constant α such that for any t_0 the corresponding solution $x(t)$ satisfies

$$\|x(t)\| \leq \alpha \|x(t_0)\|, \quad t \geq t_0.$$

Theorem 15. The time varying linear dynamic equation (4.1) is uniformly stable if and only if there exists a $\alpha > 0$ such that the transition matrix Φ_A satisfies

$$\|\Phi_A(t, t_0)\| \leq \alpha, \quad t \geq t_0.$$
Definition 14 (Exponential stability). The time varying linear dynamic equation (4.1) is uniformly exponentially stable if there exist positive constants α, β with $-\beta \in \mathbb{R}^+$ such that for any t_0 the corresponding solution $x(t)$ satisfies

$$\|x(t)\| \leq \|x(t_0)\| e^{-\beta(t-t_0)}, \ t \geq t_0.$$

Moreover, necessary and sufficient conditions for exponential stability can be stated as the following:

Theorem 16. The time varying linear dynamic equation (4.1) is uniformly exponentially stable if and only if there exist $\alpha, \beta > 0$ with $-\beta \in \mathbb{R}^+$ such that the transition matrix Φ_A satisfies

$$\|\Phi_A(t, t_0)\| \leq \alpha e^{-\beta(t-t_0)}, \ t \geq t_0.$$

Definition 15 (Asymptotical stability). The system (4.1) is said to be uniformly asymptotically stable if it is uniformly stable and given any $c > 0$, there exists a $K > 0$ so that for any t_0 and $x(t_0)$, the corresponding solution $x(t)$ satisfies

$$\|x(t)\| \leq c\|x(t_0)\|, \ t \geq t_0 + K.$$

Given a constant $n \times n$ matrix M, let S be a nonsingular matrix that transforms M into its Jordan canonical form

$$J := S^{-1}MS = \text{diag} [J_{m_1}(\lambda_1), \ldots, J_{m_k}(\lambda_k)],$$

where $k \leq n$, $\sum_{i=1}^{k} m_i = n$, λ_i are the eigenvalues of M, and $J_m(\lambda)$ is an $m \times m$ Jordan block given by

$$J_m(\lambda) = \begin{bmatrix} \lambda & 1 & & & \\
-\lambda & \lambda & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & 1 \\
& & & -\lambda & \lambda \end{bmatrix}.$$

Definition 16. \cite{[19]} See also \cite{[13]} Definition 7.1\] The scalar function $\gamma : \mathbb{T} \to \mathbb{C}$ is uniformly regressive if there exists a constant $\theta > 0$ such that $0 < \theta^{-1} \leq |1 + \mu(t) \gamma(t)|$, for all $t \in \mathbb{T}^\infty$.

Lemma 6. Each eigenvalue of the matrix $R(t)$ in (4.5) is uniformly regressive.

Proof. Define $\Lambda(t, s)$ by

$$\Lambda(t, s) := \Theta(\sigma(t)) - \Theta(s).$$

As we did in Corollary \cite{[2]} let

$$\gamma_i(t) = \lim_{s \to t} \left(\frac{\lambda_i^{\frac{1}{\sigma(t-s)}} - 1}{\sigma(t-s)} \right), \ i = 1, 2, \ldots, k$$

be any of the $k \leq n$ distinct eigenvalues of $R(t)$. Now, there are two cases:

(1) If $|\lambda_i| \geq 1$, then

$$|1 + \mu(t) \gamma_i(t)| = \lim_{s \to t} \left| 1 + \mu(s) \frac{\lambda_i^{\frac{1}{\sigma(t-s)}} - 1}{\sigma(t-s)} \right| = \lim_{s \to t} \left| \lambda_i^{\frac{\sigma(t-s)}{\sigma(t)}} \right| > 1.$$

(2) If $0 \leq |\lambda_i| < 1$, then,

$$|1 + \mu(t) \gamma_i(t)| = \lim_{s \to t} \left| 1 + \mu(s) \frac{\lambda_i^{\frac{1}{\sigma(t-s)}} - 1}{\sigma(t-s)} \right| = \lim_{s \to t} \left| \lambda_i^{\frac{\sigma(t-s)}{\sigma(t)}} \right| \geq |\lambda_i|.$$

If we set $\theta^{-1} := \min\{1, |\lambda_1|, \ldots, |\lambda_k|\}$, then we obtain

$$0 < \theta^{-1} < |1 + \mu(t) \gamma_i(t)|,$$

where we used Remark \cite{[2]} to get $0 < \theta^{-1}$. \hfill \Box
Definition 17. [13, Definition 7.3] A nonzero, delta differentiable vector \(w(t) \) is said to be a dynamic eigenvector of a matrix \(H(t) \) associated with the dynamic eigenvalue \(\xi(t) \) if the pair satisfies the dynamic eigenvalue problem

\[
W_\Delta(t) = H(t)W(t) - \xi(t)W^\sigma(t), \quad t \in T^k.
\]

We call \(\{\xi(t), w(t)\} \) a dynamic eigenpair. Also, the nonzero, delta differentiable vector

\[
\chi_i := e_{\xi_i}(t, t_0)w_i(t),
\]

is called the mode vector of \(M(t) \) associated with the dynamic eigenpair \(\{\xi_i(t), w_i(t)\} \).

Now, we can give the following results similar to [13, Lemma 7.4, Theorem 7.5]:

Lemma 7. Given the \(n \times n \) regressive matrix \(K \), there always exists a set of \(n \) dynamic eigenpairs with linearly independent eigenvectors. Each of the eigenpairs satisfies the vector dynamic eigenvalue problem (4.5) associated with \(H \). Furthermore, when the \(n \) vectors form the columns of \(W(t) \), then \(W(t) \) satisfies the equivalent matrix dynamic eigenvalue problem

\[
W_\Delta(t) = H(t)W(t) - W^\sigma(t)\Xi(t), \quad \text{where } \Xi(t) := \text{diag} [\xi_1(t), \ldots, \xi_n(t)].
\]

Theorem 17. Solutions to the uniformly regressive (but not necessarily periodic) time varying linear dynamic system (4.1) are:

1. stable if and only if there exists a \(\gamma > 0 \) such that every mode vector \(\chi_i(t) \) of \(K(t) \) satisfies \(\|\chi_i(t)\| \leq \gamma < \infty, t > t_0, \) for all \(1 \leq i \leq n; \)
2. asymptotically stable if and only if, in addition to (1), \(\|\chi_i(t)\| \to 0, t > t_0, \) for all \(1 \leq i \leq n, \)
3. exponentially stable if and only if there exists \(\gamma, \lambda > 0 \) with \(-\lambda \in R^+(T, R) \) such that \(\|\chi_i(t)\| \leq \gamma e_\lambda(t, t_0), t > t_0, \) for all \(1 \leq i \leq n. \)

Definition 18. For each \(k \in N_0 \) the mappings \(h_k : T \times T^k \to R^+ \), recursively defined by

\[
h_0(t, t_0) := 1, \quad h_{k+1}(t, t_0) = \int_{t_0}^t \left(\lim_{s \to r} \frac{\Lambda(t, s)}{\sigma(r) - s} \right) h_k(r, t_0) \Delta r \quad \text{for } n \in N_0,
\]

are called monomials, where \(\Lambda(t, s) \) is given by (4.4).

Remark 4. For an additive periodic time scale we always have \(\Theta(t) = t - t_0 \), and hence, \(\Lambda(t, s) = \sigma(t) - s \).

Lemma 8. Let \(T \) be a time scale which is unbounded above and \(\gamma(t) \) be an eigenvalue of \(R(t) \). If there exists a constant \(H \geq t_0 \) such that

\[
\inf_{t \in [H, \infty)_T} \left[-\left(\lim_{s \to t} \frac{\Lambda(t, s)}{\sigma(t) - s} \right)^{-1} \Re_{\gamma(t)} \right] > 0
\]

holds, then

\[
\lim_{t \to \infty} h_k(t, t_0) e_{\gamma(t)}(t, t_0) = 0, \quad k \in N_0.
\]

Proof. It suffices to show that \(\lim_{t \to \infty} h_k(t, t_0) e_{\Re_{\gamma(t)}}(t, t_0) = 0 \) (see [16, Theorem 7.4]). We proceed by mathematical induction. For \(k = 0 \), we know that \(h_0(t, t_0) = 1 \) and by [19], we have

\[
\lim_{t \to \infty} e_{\Re_{\gamma(t)}}(t, t_0) = 0 \quad \text{for } t_0 \in T.
\]
Suppose that it is true for a fixed $k \in \mathbb{N}$ and focus on the $(k + 1)^{th}$ step.

$$\lim_\limits{t \to \infty} h_{k+1}(t, t_0) e^{R \mu \gamma(t)}(t, t_0)$$

$$= \lim_\limits{t \to \infty} \left[\mathfrak{R} \lim_{s \to \tau} \left(\frac{A(t, s)}{\sigma(t) - s} \right) h_k(t, t_0) \Delta t + \mathfrak{J} \lim_{s \to t} \left(\frac{A(t, s)}{\sigma(t) - s} \right) h_k(t, t_0) \right] e^{\ominus R \mu \gamma(t)}(t, t_0)^{-1}$$

$$= \lim_\limits{t \to \infty} \left[\mathfrak{R} \lim_{s \to \tau} \left(\frac{A(t, s)}{\sigma(t) - s} \right) h_k(t, t_0) \Delta t + \mathfrak{J} \lim_{s \to t} \left(\frac{A(t, s)}{\sigma(t) - s} \right) h_k(t, t_0) \right] e^{\ominus R \mu \gamma(t)}(t, t_0)$$

$$= \lim_\limits{t \to \infty} \left[\mathfrak{R} \lim_{s \to \tau} \left(\frac{A(t, s)}{\sigma(t) - s} \right) h_k(t, t_0) e^{R \mu \gamma(t)}(t, t_0) \right] \ominus R \mu \gamma(t)$$

where we used (119) together with [9, Theorem 1.120] to obtain the second equality. Since

$$\ominus R \mu \gamma_i(t) = \frac{-R \mu \gamma(t)}{1 + \mu(t) R \mu \gamma(t)},$$

the last term in (111) can be written as

$$\lim_\limits{t \to \infty} \left[\mathfrak{R} \lim_{s \to \tau} \left(\frac{A(t, s)}{\sigma(t) - s} \right) h_k(t, t_0) e^{R \mu \gamma(t)}(t, t_0) \right] \ominus R \mu \gamma(t)$$

$$= \lim_\limits{t \to \infty} \left[\mathfrak{R} \lim_{s \to \tau} \left(\frac{A(t, s)}{\sigma(t) - s} \right) h_k(t, t_0) e^{R \mu \gamma(t)}(t, t_0) \right] \ominus R \mu \gamma(t)$$

$$\leq \lim_\limits{t \to \infty} \left[\mathfrak{R} \lim_{s \to \tau} \left(\frac{A(t, s)}{\sigma(t) - s} \right) h_k(t, t_0) e^{R \mu \gamma(t)}(t, t_0) \right] \ominus R \mu \gamma(t)$$

Now, one may use (3.4) and (4.4) to get the inequality

$$1 + \mu(t) R \mu \gamma(t) = \left| 1 + \mu(t) \lim_{s \to t} \left(\frac{A(t, s)}{\sigma(t) - s} \right) \right| \leq \max \{1, |\lambda| \}$$

which along with (4.12) implies

$$\lim_\limits{t \to \infty} h_{k+1}(t, t_0) e^{R \mu \gamma(t)}(t, t_0) = 0$$

as desired. \qed

Theorem 18. Let $\{\gamma_i(t)\}_{i=1}^n$ be the set of conventional eigenvalues of the matrix $R(t)$ given in (4.2) and $\{w_i(t)\}_{i=1}^n$ be the set of corresponding linearly independent dynamic eigenvectors as defined by Lemma [7]. Then, $\{\gamma_i(t), w_i(t)\}_{i=1}^n$ is a set of dynamic eigenpairs of $R(t)$ with the property that for each $1 \leq i \leq n$ there are positive constants $D_i > 0$ such that

$$||w_i(t)|| \leq D_i \sum_{k=0}^{m_i-1} h_k(t, t_0),$$

holds where $h_k(t, t_0)$, $k = 0, 1, ..., m_i - 1$, are the monomials defined as in (4.8) and m_i is the dimension of the Jordan block which contains the i^{th} eigenvalue, for all $1 \leq i \leq n$.

Proof. By Lemma [7] it is obvious that, $\{\gamma_i(t), w_i(t)\}_{i=1}^n$ is the set of eigenpairs of $R(t)$. First, there exists an appropriate $n \times n$ constant, nonsingular matrix S which transforms $\Phi_A \left(\delta_T^M (t_0), t_0 \right)$
to its Jordan canonical form given by

\[J := S^{-1} \Phi_A \left(\delta_+^T (t_0), t_0 \right) S \]

\[
= \begin{bmatrix}
J_{m_1} (\lambda_1) & \cdots & J_{m_d} (\lambda_d)
\end{bmatrix}_{n \times n},
\tag{4.14}
\]

where \(d \leq n, \sum_{i=1}^d m_i = n \), \(\lambda_i \) are the eigenvalues of \(\Phi_A \left(\delta_+^T (t_0), t_0 \right) \). By utilizing above determined matrix \(S \), we define the following:

\[K (t) := S^{-1} R (t) S \]

\[
= S^{-1} \left(\lim_{s \to t} \frac{\Phi_A \left(\delta_+^T (t_0), t_0 \right)^{\lambda(t,s)} - I}{\sigma (t) - s} \right) S
\]

\[= \lim_{s \to t} S^{-1} \Phi_A \left(\delta_+^T (t_0), t_0 \right)^{\lambda(t,s)} S - I.
\]

This along with \[33\] Theorem A.6] yields

\[K (t) = \lim_{s \to t} \frac{J^{\lambda(t,s)} - I}{\sigma (t) - s}.
\]

Note that, \(K (t) \) has the block diagonal form

\[K (t) = \text{diag} \left[K_1 (t), \ldots, K_d (t) \right] \]

in which each \(K_i (t) \) given by

\[K_i (t) := \lim_{s \to t} K_i (t) := \lim_{s \to t} \begin{bmatrix}
\frac{\lambda_i^{\lambda(t,s)} - 1}{\sigma (t) - s} & \cdots & \frac{n-2}{\prod_{k=0}^{n-2} (\lambda_i^{\lambda(t,s) - k})} \\
\frac{n-3}{\prod_{k=0}^{n-3} (\lambda_i^{\lambda(t,s) - k})} & \cdots & \frac{\lambda_i^{\lambda(t,s) - n+1}}{\sigma (t) - s}
\end{bmatrix}_{m_i \times m_i}.
\]

It should be mentioned that, since \(R (t) \) and \(K (t) \) are similar, they have the same conventional eigenvalues

\[\gamma_i (t) = \lim_{s \to t} \left(\frac{\lambda_i^{\lambda(t,s)} - 1}{\sigma (t) - s} \right), \quad i = 1, 2, \ldots, n,
\]

with corresponding multiplicities. Moreover, if we set the dynamic eigenvalues of \(K (t) \) to be same as conventional eigenvalues \(\gamma_i (t) \), then the corresponding dynamic eigenvectors \(\{ u_i (t) \}_{i=1}^n \) of \(K (t) \) can be given by \(u_i (t) = S^{-1} w_i (t) \).

We can prove this claim by showing that \(\{ \gamma_i (t), u_i (t) \}_{i=1}^n \) is a set of dynamic eigenpairs of \(K (t) \). By Definition \[17\] we can write that

\[u_i^{\Delta} (t) = S^{-1} w_i^{\Delta} (t) \]

\[
= S^{-1} R (t) w_i (t) - S^{-1} \gamma_i (t) w_i^{\sigma} (t)
\]

\[= K (t) S^{-1} w_i (t) - \gamma_i (t) S^{-1} w_i^{\sigma} (t)
\]

\[= K (t) u_i (t) - \gamma_i (t) u_i^{\sigma} (t),
\]

for all \(1 \leq i \leq n \) and this proves our claim. Now, we have to show that \(u_i (t) \) satisfies \[4.13\]. Since \(\{ \gamma_i (t), u_i (t) \}_{i=1}^n \) is the set of dynamic eigenpairs of \(K (t) \), it satisfies \[4.15\] for all \(1 \leq i \leq n \).
By choosing the i^{th} block of $K(t)$ with dimension $m_i \times m_i$, we can construct the following linear dynamic system:

$$
v^\Delta(t) = \tilde{K}_i(t) v(t) = \lim_{s \to t} \begin{bmatrix}
0 & \frac{1}{(\sigma(t)-s)\lambda_{i,1}} & \frac{1}{(\sigma(t)-s)\lambda_{i,2}} & \cdots & \frac{1}{(\sigma(t)-s)\lambda_{i,m}} \\
0 & \frac{1}{(\sigma(t)-s)\lambda_{i,1}} & \frac{1}{(\sigma(t)-s)\lambda_{i,2}} & \cdots & \frac{1}{(\sigma(t)-s)\lambda_{i,m}} \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & \frac{1}{(\sigma(t)-s)\lambda_{i,1}} & \frac{1}{(\sigma(t)-s)\lambda_{i,2}} & \cdots & \frac{1}{(\sigma(t)-s)\lambda_{i,m}} \\
\frac{1}{(\sigma(t)-s)\lambda_{i,m-1}} & \cdots & \frac{1}{(\sigma(t)-s)\lambda_{i,m-1}} & \ddots & \ddots & \ddots \\
\frac{1}{(\sigma(t)-s)\lambda_{i,m}} & \cdots & \frac{1}{(\sigma(t)-s)\lambda_{i,m}} & \cdots & \ddots & \ddots \\
\end{bmatrix}
\prod_{j=0}^{n-3} \frac{(\sigma(t)-s)\lambda_{i,j}}{(\sigma(t)-s)\lambda_{i,j}} ^{n-j}, \quad (4.16)
$$

where $\tilde{K}_i(t) := K_i(t) \oplus \gamma_i(t) I$. There are m_i linearly independent solutions of (4.16). Let us denote these solutions by $v_{i,j}(t)$, where i corresponds to the i^{th} block matrix $K_i(t)$ and $j = 1, \ldots, m_i$. For $1 \leq i \leq d$, we define $l_i = \sum_{s=0}^{m_i} m_s$, with $m_0 = 0$. Then, the form of an arbitrary $n \times 1$ column vector $u_{i,j}$ for $i \leq j \leq m$ can be given as

$$
u_{i,j} = \left[\begin{array}{c}
0, \ldots, 0, u_{i,j}^T(t), 0, \ldots, 0 \end{array} \right]_{1 \times n}, \quad (4.17)
$$

When we consider the all vector solutions of (4.15), the solution of the $n \times n$ matrix dynamic equation

$$
U^\Delta(t) = K(t) U(t) - U^\sigma(t) \Gamma(t),
$$

where $\Gamma(t) := \text{diag} [\gamma_1(t), \ldots, \gamma_n(t)]$, can be written as

$$
U(t) := \left[u_1, \ldots, u_{m_1 \times m_1}, \ldots, u_{(\sum_{k=1}^{i-1} m_k) \times m_1}, \ldots, u_{(\sum_{k=1}^{d} m_k) \times m_1 - 1}, u_n \right]
$$

$$
= \left[\begin{array}{cccc}
v_{1,1} & v_{1,2} & \cdots & v_{1,m_1} \\
v_{1,1} & \ddots & \ddots & \vdots \\
& \ddots & \ddots & \ddots \\
v_{1,1} & & \ddots & \ddots \\
\end{array} \right]_{m_1 \times m_1} \left[\begin{array}{cccc}
v_{d,1} & v_{d,2} & \cdots & v_{d,m_d} \\
v_{d,1} & \ddots & \ddots & \vdots \\
& \ddots & \ddots & \ddots \\
v_{d,1} & & \ddots & \ddots \\
\end{array} \right]_{m_d \times m_d} \left[\begin{array}{c}
v_1, \ldots, v_{i-1}, u_{i-1,1}, \ldots, u_{i-1,m_1}, \ldots, u_{n-1,1}, \ldots, u_n \end{array} \right]_{n \times 1}
$$

The m_i linearly independent solutions of (4.16) have the form

$$
v_{i,1}(t) := [v_{i,m_1}(t), 0, \ldots, 0]_{m_i \times 1}^T, \quad v_{i,2}(t) := [v_{i,m_1-1}(t), v_{i,m_1}(t), 0, \ldots, 0]_{m_i \times 1}^T, \quad \ldots, \quad v_{i,m_i-1}(t) := [v_{i,1}(t), v_{i,2}(t), \ldots, v_{i,m_i-1}(t), v_{i,m_i}(t)]_{m_i \times 1}^T.
$$
Moreover, we have the following solutions:

\[v_{i,m_i}^\Delta(t) = 0, \]
\[v_{i,m_i-1}^\Delta(t) = \lim_{s \to t} \frac{[\Lambda(t,s)]}{T(\sigma(t) - s)\lambda_i} v_{i,m_i}(t), \]
\[v_{i,m_i-2}^\Delta(t) = \lim_{s \to t} \frac{\prod_{k=0}^{1} [1 + \Lambda(t,s) - k]}{2(\sigma(t) - s)\lambda_i^2} v_{i,m_i}(t) + \lim_{s \to t} \frac{\Lambda(t,s)}{T(\sigma(t) - s)\lambda_i} v_{i,m_i-1}(t), \]
\[\vdots \]
\[v_{i,1}^\Delta(t) = \lim_{s \to t} \frac{\prod_{k=0}^{m_i-2} [1 + \Lambda(t,s) - k]}{(m_i - 1)! (\sigma(t) - s)\lambda_i^{m_i-1}} v_{i,1}(t) + \lim_{s \to t} \frac{\Lambda(t,s)}{T(\sigma(t) - s)\lambda_i} v_{i,2}(t). \]

Moreover, we have the following solutions:

\[v_{i,m_i}(t) = 1, \quad v_{i,m_i-1}(t) = \int_{t_0}^{t} \frac{\Lambda(\tau,s)}{T(\sigma(\tau) - s)\lambda_i} v_{i,m_i}(\tau) \Delta \tau, \]
\[v_{i,m_i-2}(t) = \int_{t_0}^{t} \lim_{s \to t} \frac{\prod_{k=0}^{1} [1 + \Lambda(\tau,s) - k]}{2(\sigma(\tau) - s)\lambda_i^2} v_{i,m_i}(\tau) \Delta \tau + \int_{t_0}^{t} \lim_{s \to t} \frac{\Lambda(\tau,s)}{T(\sigma(\tau) - s)\lambda_i} v_{i,m_i-1}(\tau) \Delta \tau, \]
\[\vdots \]
\[v_{i,1}(t) = \int_{t_0}^{t} \lim_{s \to t} \frac{\prod_{k=0}^{m_i-2} [1 + \Lambda(\tau,s) - k]}{(m_i - 1)! (\sigma(\tau) - s)\lambda_i^{m_i-1}} v_{i,1}(\tau) \Delta \tau \]
\[+ \int_{t_0}^{t} \lim_{s \to t} \frac{\prod_{k=0}^{m_i-3} [1 + \Lambda(\tau,s) - k]}{(m_i - 2)! (\sigma(\tau) - s)\lambda_i^{m_i-2}} v_{i,1}(\tau) \Delta \tau + \int_{t_0}^{t} \lim_{s \to t} \frac{\Lambda(\tau,s)}{T(\sigma(\tau) - s)\lambda_i} v_{i,2}(\tau) \Delta \tau. \]
Then we can show that each $v_{i,j}$ is bounded. There exist constants $B_{i,j}$, $i = 1, \ldots, d$ and $j = 1, \ldots, m_i$, such that

$$|v_{i,m_i}(t)| = 1 \leq B_{i,m_i} h_0(t, t_0) = B_{i,m_i},$$

$$|v_{i,m_i-1}(t)| \leq \int_{t_0}^{t} \lim_{\tau \to \tau'} \left(\frac{\Lambda(\tau, s)}{T(\sigma(\tau) - s)\lambda_i} \right) v_{i,m_i}(\tau) \Delta \tau \leq \frac{1}{T \lambda_i} \int_{t_0}^{t} \lim_{\tau \to \tau'} \left(\frac{\Lambda(\tau, s)}{\sigma(\tau) - s} \right) h_0(\tau, t_0) \Delta \tau$$

$$\leq \frac{h_1(t, t_0)}{T \lambda_i} \leq B_{i,m_i-1} h_1(t, t_0),$$

$$|v_{i,m_i-2}(t)| \leq \int_{t_0}^{t} \lim_{\tau \to \tau'} \left(\prod_{k=0}^{\infty} \left(\frac{1}{T \lambda_i} \Lambda(\tau, s) - k \right) \right) \frac{2(\sigma(\tau) - s)\lambda_i^2}{(\sigma(\tau) - s)^2} v_{i,m_i}(\tau) \Delta \tau$$

$$+ \int_{t_0}^{t} \lim_{\tau \to \tau'} \left(\frac{\Lambda(\tau, s)}{T(\sigma(\tau) - s)\lambda_i} \right) v_{i,m_i-1}(\tau) \Delta \tau.$$
Proof. Let \(D_i := \|S\| \beta_i \) for all \(1 \leq i \leq n \). The proof is complete. \(\square \)

Definition 19. [13] Definition 7.8] Let \(\mathcal{C}_\mu := \left\{ z \in \mathbb{C} : z \neq - \frac{1}{\mu(t)} \right\} \). Given an element \(t \in \mathbb{T}^k \) with \(\mu(t) > 0 \), the Hilger circle is defined by

\[
\mathcal{H}_t := \{ z \in \mathbb{C}_\mu : \text{Re}(z) < 0 \}.
\]

If \(\mu(t) = 0 \), Hilger circle becomes

\[
\mathcal{H}_t := \{ z \in \mathbb{C} : \text{Re}(z) < 0 \}.
\]

Now, we can state the main stability theorem. This theorem shows strong relationship between the stability results of the \(T \)-periodic time varying linear dynamic system (4.1) and the eigenvalues of the corresponding time varying linear dynamic system (4.3).

Theorem 19 (Floquet stability theorem). Let \(\mathbb{T} \) be a periodic time scale in shifts that is unbounded above. We get the following stability results of the solutions of the system (4.1) based on the eigenvalues \(\{ \gamma_i(t) \}_{i=1}^n \) of system (4.3):

1. If there is a positive constant \(H \) such that

\[
\inf_{t \in [H, \infty)_\mathbb{T}} \left[- \left(\lim_{s \to t} \frac{\Lambda(t,s)}{\sigma(t) - s} \right)^{-1} \text{Re}_\mu \gamma_i(t) \right] > 0
\]

for all \(i = 1, \ldots, n \), then the system (4.1) is asymptotically stable. Moreover, if there are positive constants \(H \) and \(\varepsilon \) such that (4.18) and

\[
- \text{Re}_\mu \gamma_i(t) \geq \varepsilon
\]

for all \(t \in [H, \infty)_\mathbb{T} \) and all \(i = 1, \ldots, n \), then the system (4.1) is exponentially stable.

2. If there is a positive constant \(H \) such that

\[
\inf_{t \in [H, \infty)_\mathbb{T}} \left[- \left(\lim_{s \to t} \frac{\Lambda(t,s)}{\sigma(t) - s} \right)^{-1} \text{Re}_\mu \gamma_i(t) \right] \geq 0
\]

for all \(i = 1, \ldots, n \), and if, for each characteristic exponent with

\[
\text{Re}_\mu (\gamma_i(t)) = 0 \quad \text{for all} \quad t \in [H, \infty)_\mathbb{T},
\]

the algebraic multiplicity equals the geometric multiplicity, then the system (4.1) is stable; otherwise the system (4.1) is unstable.

3. If there exists a number \(H \in \mathbb{R} \) such that

\[
\text{Re}_\mu (\gamma_i(t)) > 0
\]

for all \(t \in [H, \infty)_\mathbb{T} \) and some \(i = 1, \ldots, n \), then the system (4.1) is unstable.

Proof. Let \(e_R(t, t_0) \) be the transition matrix of the system (4.3) and \(R(t) \) be defined as in (4.12). Given the conventional eigenvalues \(\{ \gamma_i(t) \}_{i=1}^n \) of \(R(t) \), we can define the set of dynamic eigenpairs \(\{ \gamma_i(t), w_i(t) \}_{i=1}^n \) and from Theorem [18] the dynamic eigenvector \(w_i(t) \) satisfies (4.13). Moreover, let us define \(W(t) \) as the following:

\[
W(t) = e_R(t, \tau) e_\Xi (t, \tau)
\]

and we have

\[
e_R(t, \tau) = W(t) e_\Xi (t, \tau),
\]

where \(\tau \in \mathbb{T} \) and \(\Xi(t) \) is given as in Lemma [7] Employing (4.22), we can write that

\[
e_R(\tau, t_0) = e_\Xi (\tau, t_0) W^{-1}(t_0).
\]

By combining (4.22) and (4.23), the transition matrix of the system (4.3) can be represented by

\[
e_R(t, t_0) = W(t) e_\Xi (t, t_0) W^{-1}(t_0),
\]
where \(W(t) := [w_1(t), w_2(t), \ldots, w_n(t)] \). Furthermore, we can denote the matrix \(W^{-1}(t_0) \) as follows:

\[
W^{-1}(t_0) = \begin{bmatrix}
 v_1^T(t_0) \\
v_2^T(t_0) \\
 \vdots \\
v_n^T(t_0)
\end{bmatrix}.
\]

Since \(\Xi(t) \) is a diagonal matrix, we can write (4.24) as

\[
e_R(t, t_0) = \sum_{i=1}^{n} e_{\gamma_i}(t, t_0) W(t) F_i W^{-1}(t_0) ,
\]

where \(F_i := \delta_{ij} \) is \(n \times n \) matrix. Using \(v_i^T(t) w_j(t) = \delta_{i,j} \) for all \(t \in T \), we rewrite \(F_i \) as follows:

\[
F_i = W^{-1}(t) [0, \ldots, 0, w_i(t), 0, \ldots, 0].
\]

By means of (4.25) and (4.26) we have

\[
e_R(t, t_0) = \sum_{i=1}^{n} e_{\gamma_i}(t, t_0) w_i(t) v_i^T(t_0) = \sum_{i=1}^{n} \chi_i(t) v_i^T(t_0) ,
\]

where \(\chi_i(t) \) is mode vector of system (4.3).

Case 1. By (4.6), for each \(1 \leq i \leq n \), we can write that

\[
\| \chi_i(t) \| \leq D_i \sum_{k=0}^{d_i-1} h_k(t, t_0) |e_{\gamma_i}(t, t_0)| \\
\leq D_i \sum_{k=0}^{d_i-1} h_k(t, t_0) e_{\Re \mu(\gamma_i)}(t, t_0)
\]

where \(D_i \) is as in Theorem 18. \(d_i \) represents the dimension of the Jordan block which contains \(i^{th} \) eigenvalue of \(R(t) \). Using Lemma 8 we get

\[
\lim_{t \to \infty} h_k(t, t_0) e_{\Re \mu(\gamma_i)}(t, t_0) = 0
\]

for each \(1 \leq i \leq n \) and all \(k = 1, 2, \ldots, d_i - 1 \). This along with Theorem 17 implies that (4.3) is asymptotically stable. By Theorem 2, since the solutions of (4.1) and (4.3) are related by Lyapunov transformation, we can state that solution of (4.1) is asymptotically stable. For the second part, we first write

\[
\| \chi_i(t) \| \leq D_i \sum_{k=0}^{d_i-1} h_k(t, t_0) |e_{\gamma_i}(t, t_0)| \\
\leq D_i \sum_{k=0}^{d_i-1} h_k(t, t_0) e_{\Re \mu(\gamma_i) \oplus \varepsilon}(t, t_0) e_{\varepsilon}(t, t_0).
\]

If (4.19) holds, then \(\Re \mu(\gamma_i \oplus \varepsilon) \) satisfies (4.19). Hence, by Lemma 8 the term \(h_k(t, t_0) e_{\Re \mu(\gamma_i) \oplus \varepsilon}(t, t_0) \) converges to zero as \(t \to \infty \). That is, there is an upper bound \(C_k \) for the sum \(\sum_{k=0}^{d_i-1} h_k(t, t_0) e_{\Re \mu(\gamma_i) \oplus \varepsilon}(t, t_0) \).

Thus, Theorem 17 implies that (4.3) is exponentially stable. Using the above given argument (4.1) is exponentially stable.

Case 2. Assume that \(\Re \mu[\gamma_k(t)] = 0 \) for some \(1 \leq k \leq n \) with equal algebraic and geometric multiplicities corresponding to \(\gamma_k(t) \). Then the Jordan block of \(\gamma_k(t) \) is \(1 \times 1 \) and this implies

\[
\chi_k(t) = \beta_k e_{\gamma_k}(t, t_0).
\]
Thus,
\[
\lim_{t \to \infty} \|\chi_k(t)\| \leq \lim_{t \to \infty} \beta_k |e_{\gamma_k}(t, t_0)| \\
\leq \lim_{t \to \infty} \beta_k e^{\Re \mu(\gamma_k)(t, t_0)} = 0.
\]

By Theorem 17, the system (4.3) is stable. By Theorem 6, the solutions of (4.1) and (4.3) are related by Lyapunov transformation. This implies that the system (4.1) is stable.

Case 3. Suppose that \(\Re \mu(\gamma_i(t)) > 0\) for some \(i = 1, \ldots, n\). Then, we have
\[
\lim_{t \to \infty} \|e_R(t, t_0)\| = \infty,
\]
and by the relationship between solutions of (4.1) and (4.3), we can write that
\[
\lim_{t \to \infty} \|\Phi_A(t, t_0)\| = \infty.
\]
Therefore, (4.1) is unstable.

\[\square\]

Remark 5. In the case when the time scale is additive periodic, Theorem 19 gives its additive counterpart [13, Theorem 7.9]. For an additive time scale the graininess function \(\mu(t)\) is bounded above by the period of the time scale. However, this is not true in general for the times scales that are periodic in shifts. The highlight of Theorem 19 is to rule out strong restriction that obliges the time scale to be additive periodic. Hence, unlike [13, Theorem 7.9] our stability theorem (i.e. Theorem 19) is valid for \(q\)-difference systems.

We can state the following corollary as a consequence of Theorem 19.

Corollary 5. Consider the \(T\)-periodic linear dynamic system (3.1):

(1) If all Floquet multipliers have modulus less then 1, then the system (3.1) is exponentially stable;

(2) If all Floquet multipliers have modulus less then 1 or equal to 1, and if, for each Floquet multiplier with modulus less than 1, the algebraic multiplicity equals to geometric multiplicity, then the system (3.1) is stable, otherwise the system (3.1) is unstable, growing at rates of generalized polynomials of \(t\);

(3) If at least one Floquet multiplier has modulus greater than 1, then the system (3.1) is unstable.

Now, we can revisit our examples to make stability analysis:

Example 9. Let \(T = \mathbb{Q}^2\), \(q > 1\) and consider the following system
\[
x^\Delta(t) = A(t)x(t)
\]
\[
= \begin{bmatrix}
\frac{1}{t} & 0 \\
0 & \frac{1}{t}
\end{bmatrix}
x(t).
\]

As we did in Example 6 we obtain \(R(t)\) as follows:
\[
R(t) = \begin{bmatrix}
\frac{1}{t} & 0 \\
0 & \frac{1}{t}
\end{bmatrix}.
\]

Then \(R(t)\) has eigenvalues \(\gamma_{1,2}(t) = 1/t\) and
\[
\Re \mu(\gamma_{1,2}(t)) = \frac{|\mu(t)\gamma_{1,2}(t) + 1| - 1}{\mu(t)}
\]
\[
= \frac{|(qt - t)^{1/2} + 1| - 1}{qt - t}
\]
\[
= \frac{q - 1}{qt - t}
\]
\[
= \frac{1}{t} > 0.
\]
Thus, we can conclude by the preceding theorem that the system (4.28) is unstable.

REFERENCES

[1] M. Adıvar, A new periodicity concept for time scales, Math. Slovaca, to appear 2013.
[2] M. Adıvar, Function bounds for solutions of Volterra integro dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ., 7 (2010), 1-22.
[3] M. Adıvar and Y. N. Raffoul, Existence of resolvent for Volterra integral equations on time scales, Bull. of Aust. Math. Soc., 82-1 (2010), 139-155.
[4] M. Adıvar and E. A. Bohner, Halanay type inequalities on time scales with applications, Nonlinear Anal., 74-18 (2011), 7519-7531.
[5] M. Adıvar, Principal matrix solutions and variation of parameters formula for Volterra integro-dynamic equations on time scales, Glasg. Math. J., 53-3 (2011), 1-18.
[6] R. Agarwal, M. Bohner, A. Domoshnitsky and Y. Goltser, Floquet theory and stability of nonlinear integro-differential equations, Acta Math. Hungar., 109-4 (2005), 305-330.
[7] C. H. Ahlbrandt and J. Ridenhour, Floquet theory for time scales and Putzer representations of matrix logarithms, J. Difference Equ. Appl., 9-1 (2003), 77-92.
[8] L. C. Becker, T. A. Burton, and T. Krisztin, Floquet theory for a Volterra equation, J. London Math. Soc., 37-2 (1988), 141-147.
[9] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser, Boston, 2001.
[10] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[11] E. Çetin and F. S. Topal, Periodic solutions in shifts δ± for a nonlinear dynamic equation on time scales, Abstract and Applied Analysis, vol 2012.
[12] R. Chieochan, Periodic q-difference Equations. Ph.D. Thesis, Missouri University of Science and Technology, 2012.
[13] J. J. DaCunha and J. M. Davis, A unified Floquet theory for discrete, continuous, and hybrid periodic linear systems, J. Differential Equations, 251 (2011), 2987-3027.
[14] J. J. DaCunha, Lyapunov Stability and Floquet Theory for Nonautonomous Linear Dynamic Systems on Time Scales, Ph.D. Thesis, Baylor University, 2004.
[15] J. J. DaCunha, Transition matrix and generalized matrix exponential via the Peano-Baker series, J. Difference Equ. Appl., 11-15 (2005), 1245-1264.
[16] S. Hilger, Analysis on measure chains- A unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18-56.
[17] W. G. Kelley and A. C. Peterson, The Theory of Differential Equations, Classical and Qualitative, Prentice Hall, New York, 2004.
[18] W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction With Applications, Second Edition, Academic Press, New York, 2001.
[19] C. Pötzsche, S. Siegmund, F. Wirth, A spectral characterization of exponential stability for linear time-invariant systems on time scales, Discrete Contin. Dyn. Syst., 9 (2003), 1223-1241.
[20] C. Zhu and J. Shi, Generalization of the Floquet theory, Nonlinear Anal., 71 (2009), 1100-1107.

(M. Adıvar) IMZİR UNIVERSITY OF ECONOMICS, DEPARTMENT OF MATHEMATICS, 35330, IMZİR TURKEY
E-mail address: murat.adivar@ieu.edu.tr

(H. C. Koyuncuoğlu) IMZİR UNIVERSITY OF ECONOMICS, DEPARTMENT OF MATHEMATICS, 35330, IMZİR TURKEY
E-mail address: can.koyuncuoglu@ieu.edu.tr