Title
Cytokines as mediators of chemotherapy-associated cognitive changes: current evidence, limitations and directions for future research.

Permalink
https://escholarship.org/uc/item/7jd8q2c1

Journal
PloS one, 8(12)

ISSN
1932-6203

Authors
Cheung, Yin Ting
Lim, Si Rong
Ho, Han Kiat
et al.

Publication Date
2013

DOI
10.1371/journal.pone.0081234

Peer reviewed
Cytokines as Mediators of Chemotherapy-Associated Cognitive Changes: Current Evidence, Limitations and Directions for Future Research

Yin Ting Cheung1,2, Si Rong Lim1, Han Kiat Ho1, Alexandre Chan1,2*

1 Department of Pharmacy, National University of Singapore, Singapore, Singapore, 2 Department of Pharmacy, National Cancer Centre Singapore, Singapore, Singapore

Abstract

Objectives: While various clinical and pharmacological determinants for chemotherapy-associated cognitive impairment have been identified, conflicting evidence suggests that cytokines might play an intermediary role. The objective of this systematic review was to evaluate the current evidence pertaining to the associations among chemotherapy, cytokines induction and cognitive impairment in cancer patients.

Methods: A literature search with PubMed and SciVerse Scopus was conducted in March 2013 to gather relevant articles and abstracts that fulfilled the inclusion and exclusion criteria. This review included studies that had performed objective and/or subjective cognitive assessments and cytokine measurements on defined populations of cancer patients who received chemotherapy.

Results: High methodological heterogeneity existed among the selected studies which differed in cancer populations, subject characteristics, cognitive endpoints, types of cytokines tested and their measurement methods. Weak to moderate correlations were observed between IL-1β, IL-6, TNF-α levels, and different degrees of cognitive impairment. Different types of chemotherapy treatments might lead to varying presentations and severities of cytokine-induced cognitive impairment. Notably, the time concordance between the onset of cytokine induction and occurrence of cognitive impairment was not well elucidated. A number of confounding factors was identified to interfere with the expression levels of cytokines; these confounders included subjects’ cancer types, ages, genders, genetics and psychosocial characteristics such as anxiety, depression and fatigue.

Conclusion: Although existing studies observed cognitive impairment and cytokine dysregulation in patients who receive chemotherapy, our results suggest that the intermediary role of cytokines in post-chemotherapy cognitive impairment is still controversial and requires further evaluation. A list of methodological recommendations is proposed to harmonize future studies of this subject matter.

Introduction

Numerous recent studies have been conducted on cognitive changes in breast cancer patients[1–9]. These cancer survivors commonly experience a subtle yet notable change in cognitive function after receiving chemotherapy, a phenomenon termed “chemobrain” or “chemofog”. The reported prevalence of cognitive impairment varies widely from 6 to 75%, with patients experiencing moderate to severe levels of impairment across studies[3,4]. Cognitive impairment includes deficits in various cognitive domains, such as impaired memory, alertness or attention, learning, processing speed and executive functioning. As cognitive changes have an adverse affect on cancer patients’ daily functioning and quality of life[2,5–7], much recent research has attempted to ascertain the determinants and mechanisms that contribute to this “chemobrain” phenomenon.

Multiple factors have been postulated as determinants of cognitive changes in cancer patients, including demographical, physiological, psychological, pathological and pharmacological determinants[4,8,9]. Notably, recent experimental studies have suggested that pro-inflammatory cytokines may be mediators of chemotherapy-associated cognitive changes[10–17]. Cytokine induction in the central nervous system has been suggested to mediate "sickness behavior" in patients with severe infection or cancer, together with the adverse neuropsychiatric effects of treatment with interferon and interleukins[13]. It has been widely acknowledged that cytokines and inflammatory markers may give rise to a cluster of cancer-related symptoms including fatigue, depression and stress, which are also associated with cognitive changes[10–30]. In summary, cytokines play a dominant role in the neuroimmunoendocrine processes-induced by cancer cells and cytotoxic chemotherapy.
Chemotherapeutic agents, which are mostly unable to cross the blood-brain-barrier (BBB) due to its molecular size, can cause toxicity to the brain indirectly via the pro-inflammatory cytokine pathways. Cytokines can then penetrate the BBB readily by active transport and through circumventricular regions in the brain[30,31]. They bind to the endothelial receptors in the brain vasculature to stimulate the release of other inflammatory mediators, such as cell adhesion molecules, chemokines, nitric oxide and prostanoids, that impede the integrity of the BBB[32,33]. In the brain, cytokines elicit local inflammation through oxidative and nitrosative processes, especially in the hippocampus and regions of the brain with abundant cytokine receptors[34–40]. For example, animal studies have suggested that doxorubicin could increase the level of circulating TNF-α that penetrates the BBB to cause the induction of nitric oxide synthase leading to overproduction of reactive nitric species and reactive oxygen species that act on brain mitochondria to cause oxidative stress[10]. These reactions would ultimately lead to the clinical presentations of cognitive dysfunction[15,16,41–44]. Figure 1 provides a brief summary of how cytokines may function as a mechanistic mediator in chemotherapy-associated cognitive changes.

To gain a better understanding of the role that cytokines play in the “chemobrain” phenomenon, it is necessary to evaluate the sequence of events involving chemotherapy and the cytokine-based immune response that affects cognitive functioning in cancer patients. Thus far, there is a paucity of studies specifically evaluating the relationship between chemotherapy, cytokine induction and cognitive changes. This review is designed to investigate the possible mediatory role that cytokines play in the neurocognitive sequelae of chemotherapy, and to identify potential confounding factors that may affect the accurate assessment of cytokines as biological determinants of chemotherapy-induced cognitive impairment. The review findings are used to propose a set of methodological guidelines for studies involving this subject matter.

Methods

A literature search was conducted using PubMed and SciVerse Scopus in March 2013. Only articles in English published before March 2013 were reviewed. The search was carried out using the following combination of keywords: “cancer,” “chemotherapy,” “cytokines,” “chemokines,” “cognitive,” “neuropsychological,” “neurotoxicities,” “chemobrain,” “chemofog,” “tumor necrosis factor or TNF,” “interferon or IFN,” “interleukin or IL,” “colony-stimulating factors or CSF,” “growth factors,” “memory,” “concentration,” “processing speed,” “learning,” and “alertness.” The Medical Subject Headings (MESH) application in PubMed was also utilized. The review included original reports and abstracts from oncology meetings, such as the American Society of Clinical Oncology (ASCO), the European Society for Medical Oncology (ESMO), the San Antonio Breast Cancer Symposium (SABCS), the Multinational Association of Supportive Care in Cancer (MASCC) and the International Cognition and Cancer

Figure 1. Role of cytokines and other determinants in chemotherapy-induced cognitive impairment. Multiple factors have been postulated as determinants of cognitive changes in cancer patients, including demographical, physiological, psychological, pathological and pharmacological determinants. Recent experimental studies have suggested that pro-inflammatory cytokines may be mediators of chemotherapy-associated cognitive changes.

doi:10.1371/journal.pone.0081234.g001
Heterogeneity of Studies

Overview of Literature Search

Results and Discussion

Overview of Literature Search

The results of the literature search are depicted in Figure 2. Thirteen selected articles fulfilled the inclusion criteria[22,41,45–55], of which six articles were full texts and seven articles were abstracts presented at oncology meetings. Four abstracts[45–48] were found to involve the same colorectal cancer populations at different times; therefore, the abstract with either the latest or the most comprehensive set of data was utilized in the review. One abstract[54] was identical to a full text article[53].

Heterogeneity of Studies

Despite fulfilling the inclusion and exclusion criteria, the objectives of most of the included studies were not fully aligned with the purpose of determining the relationship between chemotherapy, cytokine levels and cognitive impairment. Some studies did not investigate the association between post-chemotherapy cognitive changes and cytokine dysregulation. There was a high level of heterogeneity among the selected studies. These inconsistencies included variations in patient characteristics, types of chemotherapy, types of cytokines measured, methods of measuring cytokines and types of cognitive assessments. Heterogeneity existed because cognitive function was not the primary endpoint in some of the selected studies. For example, two studies[22,50] were designed primarily to investigate the effects of chemotherapy and cytokine levels on patients’ quality of life and fatigue.

The included studies were conducted on a variety of cancer populations, including breast cancer[41,49,53,55], colorectal cancer[45], head and neck cancer[51], lymphoma[50] and acute myelogenous leukemia[22]. Hence, the type, dose intensity, route of administration and duration of chemotherapy treatment varied across the studies. The common chemotherapy drugs of interest were doxorubicin, cyclophosphamide, methotrexate, irinotecan and oxaliplatin. Examples of chemotherapy regimens that were administered to patients included CAF/AC[55], CMF[55], BEAC[50] and CHOP[50] (see Table 1).

The studies evaluated different cytokines, including pro-inflammatory cytokines, anti-inflammatory cytokines and cytokine receptors. The choice of cytokines for measurement was similar in most studies. All of the selected studies measured the serum levels of IL-1β, IL-6 or/and TNF-α. These cytokines were the biomarkers of interest in these studies probably because they have been shown to be strong candidates for mediating the components of sickness behavior[11], including cognitive impairment in neurological diseases such as Alzheimer’s disease and multiple sclerosis[13,30]. Baseline assessments of cytokine levels and cognitive functioning were performed in majority of the included studies. However, subsequent measurements were conducted at different time points, ranging from 24 hours to 3 years after chemotherapy administration.

Subjective and/or objective cognitive assessments were carried out to determine patients’ cognitive status. Objective assessments involved traditional neuropsychological batteries such as Trail-making test A and B[36], the Hopkins verbal learning test[57], and computerized testing such as the CANTAB[58]. Subjective assessments included self-report questionnaires using the EORTC-QLQ-C30 health-related quality of life tool[59] and the Functional Assessment of Cancer Therapy-Cognition (FACT-Cog)[60]. Two of the studies used imaging techniques to evaluate the relationship among structural changes in the brain, cognitive impairment and cytokine dysregulation[41,53].

Summary of Selected Studies and Important Findings

Eight articles [six full manuscripts[22,41,50,51,53,55] and two abstracts[45,49]] were included in this review (Table 1). Information from full text and abstracts are presented separately.

One of the most recent studies was conducted by Ganz et al.[53]. This prospective cohort study involved 49 chemotherapy-receiving and 44 non-chemotherapy-receiving breast cancer patients. Assessment on patients’ cognitive function was performed using an objective neuropsychological (NP) battery and self-reported Squire Memory Questionnaire, at baseline within 3 months of completing primary breast cancer treatment but before initiating breast cancer targeted endocrine therapy, 6 months later and 12 months later. Brain imaging with positron emission tomography (PET) scans was evaluated in a subset of patients. The authors observed an increase of sTNF-RII among chemotherapy exposed patients, as compared to non-chemotherapy receiving patients (2560 ± 100 pg/ml vs. 2113 ± 104 pg/ml; p = 0.0019). Higher baseline sTNF-RII in chemotherapy patients was significantly associated with increased self-reported memory complaints. In chemotherapy exposed patients, the longitudinal decline in sTNF-RII was significantly correlated with fewer memory complaints over 12 months (r = −0.34, p = 0.04). No significant association between objective neuropsychological tests and pro-inflammatory cytokines was reported.

In another recently published cross-sectional study, Kesler et al.[41] evaluated the association among serum cytokine levels, left hippocampal volumes and objective memory performance in 20 chemotherapy-receiving breast cancer patients and 23 healthy controls. The assessments were conducted 4.8 ± 3.4 years post-chemotherapy. It was found that the breast cancer group had reduced left hippocampal volumes (p < 0.01) and cognitive performance and evaluated levels of IL-6 (p < 0.003) and TNF-α (p < 0.0001), as compared to healthy controls. In the breast cancer group, in the breast cancer group, lower left hippocampal volume was associated with higher levels of TNF-α (β = 1.56; p = 0.04) and lower IL-6 (β = 0.734, p = 0.03). The interaction between TNF-α and IL-6 was also significant (β = 1.23; p = 0.04). These associations were not observed in the healthy control group. Authors concluded post-chemotherapy altered hippocampal volume and verbal memory difficulties may be mediated by TNF-α and IL-6 in breast cancer patients.
Janelsins et al. [55] compared the severity of self-reported cognitive disturbances and cytokine dysregulation (IL-6, IL-8, and MCP-1) between 54 breast cancer patients who received doxorubicin-based (with cyclophosphamide, or cyclophosphamide plus fluorouracil; AC/CAF) chemotherapy or cyclophosphamide, methotrexate, and fluorouracil (CMF), prior to on-study chemotherapy cycle 2 and after two consecutive chemotherapy cycles. It was found that cytokine elevation of IL-6, IL-8, and MCP-1 was more apparent in patients who received doxorubicin-based group than the CMF group. Change in MCP-1 levels was negatively associated with self-reported forgetfulness (p = 0.019).

The final selected study that involved breast cancer patients was presented as an abstract [49]. Hence there is limited evidence and conclusion drawn from this abstract. This case-control study involved three groups of breast cancer patients: Cases who had received chemotherapy and self-reported cognitive dysfunction on
Table 1. Summary of methods and results from selected studies (Studies are listed in alphabetical order).

Author	Study design	Subjects	Chemotherapy regimens	Cytokines tested	Neuropsychological assessments	Results and study conclusion	Dysregulation of post-chemotherapy cytokine levels	Association between cytokine level and cognitive changes	
Gan 2011	Prospective cohort	5 head and neck cancer, 5 head and neck cancer	Cisplatin-based	IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, TNF-α, IFN-γ, GM-CSF	Multiplex immunoassay	FACT-Cog NP T1: Pre-ctx; T2: Post-ctx	X	X	
Ganz 2012	Prospective cohort	49 breast cancer, 44 breast cancer	Mixed regimens: Anthracycline-based, taxane-based	IL-6, IL-1RA, sTNF-RII, CRP	ELISA Squire Memory Questionnaire	NP and PET scan imaging T1: Post-ctx (Pre-end tx); T2: 6 m; T3: 12 m	X	X	
Janelsins, 2011	Prospective cohort (from a randomized clinical trial)	54 breast cancer, Not applicable	AC/CAF or CMF	MCP-1, IL-6, IL-8	ELISA Cognitive items from Fatigue Symptom Checklist	Not applicable T1: Cycle 2; AC/CAF;	X	X	
Kesler, 2012	Cross-sectional	42 breast cancer (cytokines tested for 20 patients)	Mixed regimens: Anthracycline-based, S-FU-based and MTX	IL-1β, IL-6, IL-8, IL-10, TNF-α, IFN-γ	Multiplex immunoassay	Multifactorial Memory Questionnaire Ability Scale NP (and hippocampal volume measurement)	Mean 4.8±3.4 years Post-ctx	X	
Knobel, 2000	Cross-sectional	33 lymphoma, 10 healthy	CHOP +/- methotrexate	IL-6, TNF-α, sTNF-p55 and p75 receptor	Immunoassay using cell-line cultures	EORTC-QLQ-C30-Cognitive functioning scale	N/A Mean 6 years from ctx	X	
Meyers, 2005	Cohort	19 acute myelogenous leukemia; Labosotory normative controls for cytokine level assessment	Lipasaunocin + cytoxan or topotecan, +/- thalidomide	IL-1β, IL-1RA, IL-6, IL-8, TNF-α	ELISA Not applicable	NP T1: Pre-ctx; X	X	(association found between baseline cytokine level and cognitive status in the Ctx patients)	
Meyers, 2005	Cohort	35 myelodysplastic syndrome	Lipasaunocin + cytoxan or topotecan, +/- thalidomide	IL-1β, IL-1RA, IL-6, IL-8, TNF-α	ELISA Not applicable	NP T1: Pre-ctx; X	X	(association found between baseline cytokine level and cognitive status in the Ctx patients)	
Meyers, 2005	Cohort	20 breast cancer	Mixed regimens: Not specified	IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, TNF-α, IFN-γ, GM-CSF	Not specified	FACT-Cog	NP	Median 2 years post-diagnosis	X
Meyers, 2005	Cohort	117 colorectal cancer;	Mixed regimens: oxaliplatin-based and irinotecan-based	IL-1β, IL-6, TNF-α, IFN-γ, GM-CSF, IL-8, IL-10, IL-12	Multiplex immunoassay	FACT-Cog CANTAB and NP	T1: Pre-ctx; X	X	

Notes:
- **Chemotherapy receiving:** Indicates whether the study focused on subjects receiving chemotherapy.
- **Non-chemotherapy receiving:** Indicates whether the study compared subjects not receiving chemotherapy.
- **Cytokines tested:** Lists the specific cytokines measured in each study.
- **Neuropsychological assessments:** Describes the cognitive assessments used.
- **Results and study conclusion:** Outlines the findings and conclusions drawn from the study results.
- **Time of assessment:** Specifies the timing of the assessments relative to chemotherapy administration.
- **Dysregulation of post-chemotherapy cytokine levels:** Indicates any observed dysregulation in cytokine levels.
- **Association between cytokine level and cognitive changes:** Notes any observed associations between cytokine levels and changes in cognitive function.
Table 1. Cont.

Chemotherapy regimen	Cytokines tested	Measurement techniques	Subjective	Objective
Chemotherapy receiving	Types			
	Non-chemotherapy receiving			

Author Study design	Subjects	Chemotherapy regimen	Non-chemotherapy regimen	
Meyers et al. [22]	33 lymphoma patients 4–10 years after receiving chemotherapy regimen ABMT. Patients also completed the self-reported FACT-Cog questionnaire.	72 metastatic colorectal cancer	72 healthy	
		cisplatin-based chemotherapy were evaluated using objective NP tests and self-reported FACT-Cog. They were assessed at baseline before their anti-cancer treatment and a mean duration of 20 months later. It was found that patients receiving cisplatin performed more poorly on objective CF than patients who received only radiotherapy. However, the difference was not statistically different and association was not established between objective cognitive functioning and patients’ cytokine levels.		
		A total of 54 myelogenous leukemia or myelodysplastic syndrome were recruited in the Meyers et al. study [22]. Objective NP tests were administered at baseline before the start of their chemotherapy treatment, and one month later. The patients’ cognitive performances and cytokines levels were compared against population references and laboratory normative controls, respectively. At baseline, patients’ cognitive functioning was below reference values. Higher IL-6 levels also were associated with worse performance on the executive functioning while higher IL-8 levels were related to better memory performance. However, it is important to note that, there were insufficient individuals that had follow-up cytokine levels and post-chemotherapy cognitive functioning. Hence, limited conclusions can be drawn from this study.		
		The other 4 studies were conducted in other cancer populations.		
		In the study conducted by Gan et al. [51], cognitive functioning of five head and neck cancer patients who were treated with radiotherapy and another 5 cancer patients who received both with radiotherapy and cisplatin-based chemotherapy were evaluated using objective NP tests and self-reported FACT-Cog. They were assessed at baseline before their anti-cancer treatment and a mean duration of 20 months later. It was found that patients receiving cisplatin performed more poorly on objective CF than patients who received only radiotherapy. However, the difference was not statistically different and association was not established between objective cognitive functioning and patients’ cytokine levels.		
		A total of 54 myelogenous leukemia or myelodysplastic syndrome were recruited in the Meyers et al. study [22]. Objective NP tests were administered at baseline before the start of their chemotherapy treatment, and one month later. The patients’ cognitive performances and cytokines levels were compared against population references and laboratory normative controls, respectively. At baseline, patients’ cognitive functioning was below reference values. Higher IL-6 levels also were associated with worse performance on the executive functioning while higher IL-8 levels were related to better memory performance. However, it is important to note that, there were insufficient individuals that had follow-up cytokine levels and post-chemotherapy cognitive functioning. Hence, limited conclusions can be drawn from this study.		
		The other 4 studies were conducted in other cancer populations.		
		In the study conducted by Gan et al. [51], cognitive functioning of five head and neck cancer patients who were treated with radiotherapy and another 5 cancer patients who received both with radiotherapy and cisplatin-based chemotherapy were evaluated using objective NP tests and self-reported FACT-Cog. They were assessed at baseline before their anti-cancer treatment and a mean duration of 20 months later. It was found that patients receiving cisplatin performed more poorly on objective CF than patients who received only radiotherapy. However, the difference was not statistically different and association was not established between objective cognitive functioning and patients’ cytokine levels.		
		A total of 54 myelogenous leukemia or myelodysplastic syndrome were recruited in the Meyers et al. study [22]. Objective NP tests were administered at baseline before the start of their chemotherapy treatment, and one month later. The patients’ cognitive performances and cytokines levels were compared against population references and laboratory normative controls, respectively. At baseline, patients’ cognitive functioning was below reference values. Higher IL-6 levels also were associated with worse performance on the executive functioning while higher IL-8 levels were related to better memory performance. However, it is important to note that, there were insufficient individuals that had follow-up cytokine levels and post-chemotherapy cognitive functioning. Hence, limited conclusions can be drawn from this study.		
		The other 4 studies were conducted in other cancer populations.		
		In the study conducted by Gan et al. [51], cognitive functioning of five head and neck cancer patients who were treated with radiotherapy and another 5 cancer patients who received both with radiotherapy and cisplatin-based chemotherapy were evaluated using objective NP tests and self-reported FACT-Cog. They were assessed at baseline before their anti-cancer treatment and a mean duration of 20 months later. It was found that patients receiving cisplatin performed more poorly on objective CF than patients who received only radiotherapy. However, the difference was not statistically different and association was not established between objective cognitive functioning and patients’ cytokine levels.		

Legend and abbreviations:
- (listed according to alphabetical order within categories)
 - AC: doxorubicin and cyclophosphamide; CAF: cyclophosphamide, doxorubicin and 5-fluorouracil; CMF: cyclophosphamide, methotrexate and 5-fluorouracil; CHOP: cyclophosphamide, doxorubicin, vincristine and prednisolone;
 - CRP: C-reactive protein; ELISA: enzyme-linked immunosorbent assay; GM-CSF: granulocyte macrophage colony-stimulating factor; IFN: Interferon; IL-: Interleukin-; IL-1RA: interleukin-1 receptor antagonist; MCP-1: monocyte chemotactic protein-1; sTNF-RII: soluble tumor necrosis factor receptor-II; TNF: tumor necrosis factor.
 - CANTAB: Cambridge Neuropsychological Test Automated Battery; Ctx: chemotherapy treatment; Endo-tx: endocrine treatment; EORTC: European Organization for Research and Treatment of Cancer; FACT-Cog: Functional Assessment of Cancer Therapy – Cognitive Function; M: month; NP: traditional neuropsychological batteries; PET: positron emission tomography.
 - ""!"" refers to the authors’ observations that cytokine levels were elevated in chemotherapy-receiving study subjects, or the presence of a statistically significant correlation between chemotherapy and cognitive impairment; ""X"" refers to the authors’ observations that cytokine levels were not elevated in chemotherapy-receiving study subjects, or the absence of a statistically significant correlation between chemotherapy and cognitive impairment.
 - doi:10.1371/journal.pone.0081234.t001

The last selected study is presented in an abstract [43]. This prospective study was conducted on colorectal cancer patients. The chemotherapy group consisted of 176 non-metastatic and 72 metastatic colorectal cancer patients, while the non-chemotherapy group consisted of 117 colorectal cancer patients and 72 healthy controls. Patients completed the self-reporting FACT-Cog, NP tests and CANTAB, a computerized NP battery at baseline (pre-chemotherapy), 6 months and 12 months later. Results showed that cytokine levels were elevated in the chemotherapy group at all 3 time points of assessments (Data not shown; presented during oral presentation at ICCTF Conference in 2012). However, there
was no association between cytokine levels and cognitive functioning.

Relationships among Chemotherapy, Cytokines and Cognition

Although some studies observed dysregulation of cytokine levels with chemotherapy[41,53,55], they reported conflicting evidence with regards to the strength and direction of the association between changes in cytokine levels and cognition. Ganz et al. concluded that higher levels of sTNF-RII correlated with lower levels of baseline metabolism in the left inferior frontal gyrus in 17 breast cancer patients ($r = -0.55; p = 0.02$)[53]. The same study also found higher levels of sTNF-RII were significantly correlated with greater memory complaints on the Squire Memory Questionnaire after controlling for age, body mass index, radiation and depression, and time since last chemotherapy treatment among the 43 patients who received chemotherapy ($r = -0.34, p = 0.04$)[53]. Kesler et al. observed that lower left hippocampal volume of the brain was associated with poorer verbal memory performance, higher levels of TNF-α and lower levels of IL-6 in 20 chemotherapy-receiving breast cancer patients[41]. Meyers et al. observed that pre-chemotherapy levels of circulating IL-1, IL-6, IL-8 and TNF-α were higher in 54 chemotherapy-receiving cancer patients than in laboratory normal controls[22]. However, the same study did not assess the association between post-chemotherapy cytokine levels and cognitive changes.

The other studies did not find a significant correlation between cognitive impairment and cytokines[45,49–51]. Notably, the conclusions drawn by some studies were limited by the small sample size[50,51], or the lack of comparison with controls or baseline/follow-up assessments[22,41,50].

As chemotherapy agents are usually administered in combinations, it is more meaningful to evaluate the relationship between cytokine-induced cognitive impairment and chemotherapy regimens, rather than individual chemotherapeutic drugs. A recently published review also suggested that the accumulation of a combination of drugs, rather than individual drugs, may enhance neurotoxicity in cancer patients[4]. One study examined the effects of anthracycline-based (AC/CAF) chemotherapy and CMF on cytokine levels and cognitive impairment[55]. Significant increases in IL-6 ($p = 0.042$) and IL-8 ($p = 0.060$) levels were observed in the AC/CAF treatment group, whereas IL-6 was lowered in the CMF group ($p = 0.034$). Patients receiving AC/CAF experienced more severe symptoms including heavy-headedness, difficulty thinking, and problems with concentration. Similar degrees of forgetfulness were displayed in both groups of patients. Knobel et al. stated that poorer cognition was observed among lymphoma patients who received a combination of cyclophosphamide, doxorubicin, vincristine, prednisone (CHOP) and methotrexate, compared with patients who received only CHOP [data not presented][50]. This study provided preliminary evidence on how different chemotherapy regimens could affect cytokine levels and cognitive functioning differently. It was concluded that methotrexate’s ability to cross the BBB and obstruct brain vascularization might have caused the cognitive impairment[61–63].

The time concordance between the onset of cytokine induction and the occurrence of cognitive impairment was not clearly elucidated in these studies. Notably, the current evidence could not ascertain the exact timing of the onset of cognitive impairment[64–67]. One study reported that the circulating level of sTNF-RII was elevated at 6 months post-chemotherapy and declined to a level similar to that of non-chemotherapy controls at 12 months post-chemotherapy and an increase in cognitive complaints from baseline was significantly correlated with increases in sTNF-RII levels ($p = 0.05$)[53]. Evidence on the onset and duration of cytokine induction thus remains inconclusive.

Confounding Factors

Through this review, we identified a number of confounders that contributed to the heterogeneity of the studies which were not sufficiently accounted for. These confounders need to be evaluated and accounted for when studying the relationship between chemotherapy-associated cytokine induction and cognitive impairment. This discussion also forms the basis of our recommendations for future research.

1. Effects of cancer. The study populations differed among the selected studies; they included patients with different types and stages of cancers. Studies have shown that cancer cells are capable of producing cytokines[18,29]. For example, it was found that TNF and transforming growth factor (TGF) were elevated in patients with early-stage cancers, whereas patients with progressive disease had elevated levels of angiogenin, granulocyte macrophage colony-stimulating factor and TNF-β[18]. Hence, it is difficult to determine whether an elevated cytokine level is partially or entirely caused by chemotherapy, the progression of cancer or a combination of both. Non-cancer controls may not fully eliminate the effects of cancer on cytokine levels as studies have shown that there may be a potential dysregulation of cytokine levels in subclinical cancer states observed in healthy subjects[68,69]. Notably, individual variability (such as disease progression) can still exist within cancer controls. It is plausible that cytokine induction attributed by the different nature of cancers and anti-cancer treatments may cause varying levels of cognitive impairment in patients.

2. Effects of gender. Two studies evaluated the effects of gender on cognitive changes[46,50]. Males demonstrated more cognitive impairment than females in objective cognitive tests, although subjective (self-reported) cognitive complaints were higher among females[46,50]. It is postulated that higher levels of estrogen can offer neuro-protection, antioxidant properties[70] and maintenance of telomere lengths to protect against atrophic changes in the brain[71]. Although serum sex hormone levels have been measured[45], analysis was not performed to investigate their correlation with serum cytokine levels. The decrease in estrogen after menopause may increase pro-inflammatory IL-6 and TNF-α cytokine activity[24]. Higher subjective cognitive impairment among females may be attributable to neuroendocrine-related problems arising from chemotherapy-induced or aging-related menopause[72,73]. Studies have also revealed that testosterone replacement, which can potentially shift the cytokine balance to a state of reduced inflammation and suppress the expression of the pro-inflammatory cytokines TNF-α, IL-1β and IL-6, has been shown to improve some aspects of cognitive ability in males[74–76]. Therefore, the receipt of anti-hormonal treatment must be taken in account in the assessment of cognitive changes in patients, especially in cancers such as prostate, testicular and breast cancers.

3. Effects of aging. The age of subjects across the selected studies ranged widely, from 18 to 84 years. With the exception of one study[53], age was not routinely adjusted as a confounding factor. It was proposed that cancer treatments can cause cognitive impairment through the acceleration of the aging process, and the biologic mechanisms underlying cancer, cancer treatments, aging, neurodegeneration, and cognitive
Effects of psychosocial characteristics (fatigue, depression, anxiety and stress). Fatigue, depression, anxiety, distress and mood changes have been found to reduce patients’ cognitive functioning and could be mediated by chemotherapy-induced cytokines. A meta-analysis revealed a correlation between fatigue and serum cytokine levels of IL-6 and IL-1RA[87]. However, none of the three selected studies[45,49,50] that measured fatigue as one of their endpoints showed a correlation between cytokine levels and the occurrence of fatigue. Depression is found to disrupt the hypothalamic-pituitary-adrenal axis and production of cortisol and pro-inflammatory cytokines[13,29,30,88,89] through a positive feedback mechanism. To reinforce this relationship, studies have shown the effects of antidepressants on the reduction of pro-inflammatory cytokine levels[19]. Note that patients’ reports of cognitive problems during chemotherapy treatment were typically not related to objective cognitive test results, but to psychosocial parameters such as anxiety and depression[90].

Effects of genetic predisposition. Most of the selected studies did not account for genetic predisposition. Only two studies performed genotyping for the apoE gene[45,49], one of which reported that cognitive changes were not associated with the apoE genotype or elevated cytokine levels[45]. Yet, the apoE genotype has been associated with increased susceptibility to damage in the central nervous system and cognitive impairment[15]. Excessive secretion of pro-inflammatory cytokines such as IL-6 and IL-1 can occur in genetically predisposed individuals under stress[30,82]. Genetic polymorphisms may influence cytokine activity in Alzheimer’s disease and depression. It is worthwhile noting that other than the apoE genotype, polymorphisms in other cytokine gene variants may result in disrupted levels of cytokines[21,26,83] and may potentially affect cognition. One study discovered that a single-nucleotide polymorphism in the TNF-α-308 gene is associated with more severe cognitive deficits on three independent measures, namely, PAOFI Memory (p = 0.03), the Squire subjective memory questionnaire (p = 0.04) and the Multidimensional Fatigue Symptom Inventory – Mental (p = 0.005)[54]. Future study can focus on the identification of candidate genes that can influence cytokine activity and are associated with chemotherapy-induced neurotoxicity in cancer patients.

Effects of disturbances in the sleep-wake cycle. Increased serum cytokine levels have been found among cancer patients with dampened circadian rhythms[27]. Disordered sleep induces an inflammatory response that leads to an increase in IL-6 and TGF-α. These cytokines, termed nocturnal cytokines, have been shown to affect the sleep-wake cycle, causing a disruption in the neuroendocrine control of cortisol release, resulting in further release of pro-inflammatory cytokines[23]. Moreover, dysregulation in sleep is linked to cognitive impairment in the domains of attention, executive function and motor control ability[30,84–86].

Effects of psychosocial characteristics (fatigue, depression, anxiety and stress). Fatigue, depression, anxiety, distress and mood changes have been found to reduce patients’ cognitive functioning and could be mediated by chemotherapy-induced cytokines. A meta-analysis revealed a correlation between fatigue and serum cytokine levels of IL-6 and IL-1RA[87]. However, none of the three selected studies[45,49,50] that measured fatigue as one of their endpoints showed a correlation between cytokine levels and the occurrence of fatigue. Depression is found to disrupt the hypothalamic-pituitary-adrenal axis and production of cortisol and pro-inflammatory cytokines[13,29,30,88,89] through a positive feedback mechanism. To reinforce this relationship, studies have shown the effects of antidepressants on the reduction of pro-inflammatory cytokine levels[19]. Note that patients’ reports of cognitive problems during chemotherapy treatment were typically not related to objective cognitive test results, but to psychosocial parameters such as anxiety and depression[90].

Directions for Future Research

Based on the evidence and limitations of this review, a list of recommendations is proposed to improve the investigation of chemotherapy-induced cytokines as a biological determinant of cognitive changes in cancer patients (Table 2). To summarize, in line with ICCTF’s recommendations, it is suggested that studies of this subject matter should include a longitudinal design, appropriate choices of chemotherapy-receiving cancer patients, disease specific and healthy controls, inclusion of baseline and post-chemotherapy standard neuropsychological assessments and robust statistical analysis of longitudinal data[91]. In addition to these recommendations, it is also important to standardize the protocol and timing for the blood draw and measurement of cytokine levels, and account for the confounding factors mentioned in Figure 1. In particular, studies should control for anxiety, depressive and fatigue symptoms that are known widely in literature to be associated with cancer- and chemotherapy-induced cytokine activity[29].

To evaluate the role of cytokines as mediator of chemotherapy and cognitive impairment, it is recommended that investigators could provide a rationale behind the choice of cytokines or biomarkers tested in the studies. Other than the known pro-inflammatory cytokines (such as IL-1β, TNF-α and IL-6) that are associated with cognitive impairment, it may be worthwhile to evaluate the relationship between neurotoxicity and other less explored biomarkers, such as anti-inflammatory cytokines and vascular endothelial growth factor (VEGF) which may potentially exert a neuro-protective effect. For example, it has been suggested that VEGF can stimulate angiogenesis and modulate vascular permeability and promote neurogenesis[92]. Novel technologies such as multiplex immunoassay can be applied to enable the analysis of several cytokines of interest simultaneously[45,93]. Commercially available bead-conjugated antibodies permit the measurement of up to 25 different cytokines within a sample[93]. Validation studies have shown that results of multiplex immunoassay well correlate with traditional enzyme linked immunosorbent assay (ELISA) for a large majority of human cytokines and biomarkers[94,95]. Multiplex immunoassay also requires lower-volume samples to detect cytokines over a broad dynamic range of concentrations in a more cost-effective way[93,96–98]. This advantage is favorable for longitudinal studies that have high attrition rates, as there may be a limited number of samples to conduct ELISA[93]. If resources allow, key genotypes that affect cytokine-induced cognitive impairment should be explored to investigate the role of genetic determinants in the induction of cytokines.

The multi-factorial characteristic of this type of study also calls for a more robust analysis of the statistical data and an account of the various etiological agents involved. The use of Principal Component Analysis (PCA)[99] is suggested to facilitate the reorganization of data and examine the causes of variance in the data. For example, one group successfully used this technique to identify the association between baseline cancer-related fatigue and IL-6, IL-6R and IL-17 (variance = 76%)[100].

Other than clinical studies, animal models also offer several advantages for evaluating the effect of chemotherapy on cognitive outcomes[101–104]. Animal models can eliminate numerous confounders outlined in this review, such as the cancer itself, psychosocial characteristics and presence of other comorbidities. The time of administration of chemotherapeutic drugs, behavioral assessments and blood draw can be standardized in animal studies to reduce the variability observed in clinical studies. Results from animal models can aid in elucidating the biological mechanisms
involved in chemotherapy-induced cognitive changes and the specific underlying brain regions involved.

All current studies of this subject matter attempt to measure cytokine concentration in patients' serum/plasma, and not the cerebrospinal fluid (CSF). However, it is logistically challenging to obtain CSF from subjects in a research setting. It is proposed that for future studies that involve intrathecal administration of chemotherapeutic drugs, especially in leukemia patients, CSF can be collected to examine the relationship between the concentration of cytokine in CSF and cognitive functioning before and after the cancer treatment.

Results from recent published imaging studies also support the hypothesis that chemotherapy affects the brain structure and provide research directions for candidate mechanisms of chemotherapeutic-induced cognitive change. Two included studies examined the relationship among structural changes in the brain, cytokine levels and cognitive impairment[41,53]. One of the studies found that IL-6 and TNF-α levels and hippocampal volumes were associated with verbal memory functioning despite its relatively small sample size[41]. Imaging studies play an important role in complementing and providing support for the role of pro-inflammatory cytokines in chemotherapy-associated brain injury and subsequent cognitive impairment. It allows researchers to identify the specific site of cognitive impairment and their relationship with physiological biomarkers.

Finally, research gaps remain to be filled regarding the role of cytokines in relation to cognitive changes in cancer patients (Table 3). Other than understanding the pattern of changes in cytokine levels during cancer treatment, it is also important to elucidate the effect size of the change that constitutes a significant clinical difference in cognitive functioning. Striving towards the answers to these research questions will lead to a better understanding of this neurocognitive phenomenon in cancer patients. It would be worthwhile to reflect upon what we know currently about this subject matter, and determine whether these terms are appropriate in describing this phenomenon. The terms “chemobrain” or “chemofog” may not accurately reflect the complexity of the multiple potential etiologies contributing to this

Table 2. Recommended methodological guidelines for future studies.

Criteria	Description	Checklist	
Inclusion of suitable controls (non-chemotherapy cancer patients with similar demographics).	To account for cytokine levels and cognitive impairment in cancer patients without chemotherapy.	Did the study include controls who do not require chemotherapy, and who had the identical type of cancer and demographics as the sample population?	
Account for co-morbidities (anemia, depression, anxiety, Alzheimer’s disease, multiple sclerosis, Parkinson’s, dementia, traumatic brain injury, etc.).	To account for changes in cytokine levels and cognitive impairment as a result of chemotherapy, rather than other factors.	Did the study account for non-cancer disease states?	
Account for other forms of treatment than chemotherapy. (hormonal therapy, cytokine therapy, radiation, antidepressants, etc.).	To account for changes in cytokine levels and cognitive impairment as a result of chemotherapy, rather than other forms of treatment.	Did the study account for patients who were receiving other forms of therapy that may affect cytokine levels and cognitive impairment?	
Inclusion of specific chemotherapeutic agents or regimens for assessment.	To understand the pharmacological effects of cytokine-induced cognitive impairment.	Did the study provide clear data regarding the type of chemotherapeutic drugs/regimen involved, the duration, cycles, doses, dose intensity and route of administration of the chemotherapy treatment?	
Inclusion of specific dose intensity, route of administration and duration of chemotherapeutic treatment.	To understand whether there is a correlation between route of administration/strength and duration of dosing with cytokine levels and cognitive impairment.		
Inclusion of both pre-chemotherapy baseline and post-chemotherapy assessments at appropriate intervals.	To account for changes in cytokine levels as a result of chemotherapy by comparing baseline measurement with post-chemotherapy measurement.	Were measurements carried out before and after patients received chemotherapy/surgery?	
If applicable, inclusion of pre-surgical baseline and post-surgical assessments at appropriate intervals.	To account for changes in cytokine levels as a result of tumor progression/tumor load by comparing pre-surgical measurement with post-surgical measurement.		
Inclusion of specific cytokines involved in the study.	To identify the specific cytokine and its effects on cognitive impairment.	Did the study specify the types of cytokines to be tested for?	
Accounting for accuracy of testing.	To minimize discrepancies in results due to the handling and processing of samples.	Did the study utilize published procedures for the testing of cytokine levels?	
Inclusion of standardized timing across the samples for extraction of blood samples.	Different timings of extraction may result in different levels of cytokines.	Did the study indicate a specific time for the extraction of cytokines from the sample and control population?	

doi:10.1371/journal.pone.0081234.t002
problem[105]. Results of this review suggest that cognitive impairment may represent a component of the cytokines- and inflammatory markers-mediated cluster of cancer- and treatment-related symptoms, such as fatigue, depression and stress.

Limitations of this review

Despite the well-defined inclusion criteria, the reviewed articles were heterogeneous in nature and a quality appraisal strategy could not be applied to them. Knowledge on the subject matter is in its infancy, and the availability of literature to substantiate and justify the findings from the selected studies is sparse. Moreover, conclusions drawn from the two abstracts are tentative in nature and subjected to changes when they are published.

Conclusion

Although some of the selected studies observed that patients on chemotherapy experienced cognitive impairment and dysregulation in pro-inflammatory cytokines of IL-1β, IL-6 and TNF-α, there is limited evidence to suggest that there is an association between the severity of cognitive impairment and cytokine dysregulation. Our results suggest that the intermediary role of cytokines in post-chemotherapy cognitive impairment is still controversial and requires further evaluation. Notably, due to the high heterogeneity of the studies included in this review, it is difficult to draw conclusive inferences regarding the causal relationship between chemotherapy and cytokine-induced cognitive impairment.

Understanding the mechanisms of the cytokines as mediators in chemotherapy-induced cognitive impairment will improve our knowledge of the clinical implications of ‘chemobrain.’ It is anticipated that the harmonization of methodologies will allow the pooling of results from robust studies and thus provide further insights on this subject matter. Such information will enable scientists with pharmacological insights to formulate therapies or appropriately adjust the current treatment regimes to minimize the effects of cytokine-induced cognitive impairment in patients with cancer.

Supporting Information

Checklist S1 PRISMA 2009 Checklist

(DOCX)

Acknowledgments

This study was presented as an oral presentation at the 2012 Multinational Association for Supportive Care in Cancer (MASCC) in New York, USA.

Author Contributions

Conceived and designed the experiments: YTC SRL HKH AC. Performed the experiments: YTC SRL HKH AC. Analyzed the data: YTC SRL HKH AC. Contributed reagents/materials/analysis tools: YTC SRL HKH AC. Wrote the paper: YTC SRL HKH AC.

References

1. Jain HS, Phillips KM, Chair S, Faus LA, Popa MA, et al. (2012) Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. J Clin Oncol 30: 3578–3587.

2. Cheung YT, Maung Shwe HG, Tan YP, Fan GKT, Ng RCH, et al. (2012) Cognitive changes in multidrug Asian breast cancer patients: A focus group study. Ann Oncol 23: 2547–2552.

3. Vardy J (2009) Cognitive function in breast cancer survivors. Cancer Treat Res 151: 307–419.

4. Cheung YT, Chui WK, Chan A (2011) Neuro-cognitive impairment in breast cancer patients: Pharmacological considerations. Crit Rev Oncol Hematol 83: 99–111.

5. Munir F, Burrows J, Yarker J, Kalawsky K, Bains M (2010) Women’s perceptions of chemotherapy-induced cognitive side effects on work ability: A focus group study. J Clin Nurs 19: 1362–1370.

6. Boykoj N, Moeni M, Subramanian SK (2009) Confronting chemobrain: an in-depth look at survivors’ reports of impact on work, social networks, and health care response. J Cancer Surviv 3: 1–10.

7. Reis-Arindt SA, Huch C, Perry MC (2010) Neuropsychological functioning and quality of life during the first year after completing chemotherapy for breast cancer. Psychooncology 19: 535–544.

8. Vardy J, Wefel JS, Ahles T, Tamock IF, Schagen SB (2008) Cancer and cancer-therapy related cognitive dysfunction: an international perspective from the Venice cognitive workshop. Ann Oncol 19: 625–629.

9. Minisini A, Atalay G, Bottomley A, Puglisi F, Piccart M, et al. (2004) What is the effect of systemic anticancer treatment on cognitive function? Lancet Oncol 5: 273–282.

10. Ahise CI, Suhana R, Tungpong J, Vore M, St Clair D, et al. (2010) Chemo brain (chemo fog) as a potential side effect of doxorubicin administration: role of cytokine-induced, oxidative/nitrosative stress in cognitive dysfunction. Adv Exp Med Biol 678: 147–156.

11. Banks WA, Farr SA, Morley JE (2002) Entry of blood-borne cytokines into the central nervous system: effects on cognitive processes. Neuroimmunomodulation 10: 319–327.

12. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco G, et al. (2010) Role of interleukin-1β in postoperative cognitive dysfunction. Ann Neurol 68: 360–368.

13. Krenzel Z, Remig DG (2000) Cytokines and the brain: implications for clinical psychiatry. Ann J Psychiatry 157: 683–694.

14. Lemic J, Kling MA, Hauser P (1998) Cytokines and brain function: relevance to interferon-alpha-induced mood and cognitive changes. Semin Oncol 25: 30–30.
with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav Immun 30 Suppl: S109–16.

42. Das S, Basu A (2008) Inflammation: a new candidate in modulating adult neurogenesis. J Neurosci Res 86: 1199–1208.

43. Mundt AL, Gianales H, Blansmoosch SM, Manuck SB, Hariri AR (2008) Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry 64: 410–490.

44. McAlpine J, Baune BT (2009) Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev 33: 353–366.

45. Vardy JL, Dhillon H, Xu W, Roukes S, Dodd A, et al (2012) Cognition function in colorectal cancer patients: a longitudinal prospective study. Intional Cognition and Cancer Task Force [Abstract].

46. Vardy JL, Dhillon H, Xu W, Dodd A, Park A, et al (2009) Cognitive function and fatigue in colorectal cancer (CRC) patients: Baseline assessments prior to chemotherapy. J Clin Oncol 27: 158 (suppl; abstr 9577) [Abstract].

47. Vardy J, Rouke S, Galica J, Pond G, Park A, et al (2006) Cytokine levels in patients (pts) with localized colorectal cancer (CRC) after surgery and their relationship to fatigue and cognitive function. Clin Oncol 24: 185 (suppl; abstr 3623) [Abstract].

48. Vardy J, Rouke S, Pond GR, Galica J, Park A, et al (2007) Cognition function and fatigue in cancer patients after chemotherapy: A longitudinal cohort study in patients with colorectal cancer (CRC). J Clin Oncol 25: 185 (suppl; abstr 9099) [Abstract].

49. Booth CM, Vardy J, Cradley A, Rouke S, Pond G, et al (2006) Cytokine profile associated with chemotherapy for breast cancer: An exploratory case-control study. J Clin Oncol 24: 185 (suppl; abstr 8501) [Abstract].

50. Knobel H, Loe H, Nordby J, Kolstad AL, Espesk K, et al (2000) High level of fatigue in lymphoma patients treated with high dose chemotherapy. J Intern Med 247: 146–155.

51. Van H, Bernstein LJ, Brown J, Ringash J, Valkila M, et al (2011) Cognitive functioning after radiotherapy or chemotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 81: 126–134.

52. Ganz PA, Castellon SA, Silverman DH, Kwan L, Bower JE, et al (2011) Does circulating tumor necrosis factor (TNF) play a role in post-chemotherapy cerebral dysfunction in breast cancer survivors (BCS)?: J Clin Oncol 29: 188 (suppl; abstr 9008) [Abstract].

53. Ganz PA, Bower JE, Kwan L, Castellon SA, Silverman DH, et al. (2013) Does tumor necrosis factor-alpha (TNF-α) play a role in post-chemotherapy cerebral dysfunction? Brain Behav Immun 30 Suppl: S99–108.

54. Ganz PA, Kwan L, Castellon SA, Silverman DH, et al. (2012) Cognitive complaints in breast cancer patients: Associations with therapy and cytokine markers. International Cognition and Cancer Task Force [Abstract].

55. Janetsis MC, Maintain KM, Palesh OG, Mobile SG, Peppone L, et al. (2011) Differential expression of cytokines in breast cancer patients receiving different chemotherapies: implications for cognitive impairment research. Support Care Cancer 20: 831–839.

56. Keit RM (1958) Validity of the Trail Making Test as an Indicator of Organic Brain Damage. Percept Mot Skills 8: 271–276.

57. Shapiro AM, Benedict RH, Scher D, Brandt J (1999) Construct and Concurrent Validity of the Hopkins Verbal Learning Test-revised. Clin Neuropsychol 13: 348–353.

58. Fray PJ, Robbins TW (1996) CANTAB Battery: Proposed Utility in Neuro Oncology. Neuro Oncol 18: 499–504.

59. Aaronsen NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, et al. (1993) The EORTC QLQ-C30 core quality-of-life instrument: a multi-lingual cross-cultural validation. J Clin Oncol 11: 1754–1767.

60. Meuser JL, Twardowski P, Sultana R, Pond G, et al. (2006) Cytokine levels in patients with colorectal cancer (CRC). J Clin Oncol 24: 185 (suppl; abstr 9099) [Abstract].

61. Sioka C, Kyriatis AP (2009) Central and peripheral nervous system toxicity of common chemotherapeutic agents. Cancer Chemother Pharmacol 63: 761–767.

62. Seigers R, Twardowski P, Sultana R, Pond G, et al. (2006) Cytokine profile associated with chemotherapy for breast cancer: An exploratory case-control study. J Clin Oncol 24: 185 (suppl; abstr 8501) [Abstract].

63. Wright AA, Asimakopoulos K, Pronkou G, Giannakopoulos F, Kalofonos HP (2011) Either Called “Chemosbrain” or “Chemotoxic,” the Long-Term Chemotherapy-Induced Cognitive Decline in Cancer Survivors Is Real. J Pain Symptom Manage 41: 126–139.
Cytokines and Cognitive Changes

60. Purdie MP, Lan Q, Bagni R, Hocking WG, Baris D, et al. (2011) Pre-diagnostic serum levels of cytokines and other immune markers and risk of non-Hodgkin lymphoma. Cancer Res 71: 4898–4907.

61. Rangkanun N, Shabda CF, Wang SS, Morgan G, Lan Q, et al. (2006) Genetic variation in TNF and IL-10 and risk of non-Hodgkin lymphoma: A report from the InterLymph Consortium. Lancet Oncol 7: 27–30.

62. Unfer TC, Conterato GM, da Silva JC, Duarte MM, Emanuelli T (2006) Influence of hormone replacement therapy on blood antioxidant enzymes in menopausal women. Clin Chim Acta 369: 73–77.

63. Lee DC, Im JA, Kim JH, Lee HR, Shim JY (2005) Effect of long-term hormone therapy on telomere length in postmenopausal women. Yonsei Med J 46: 471–479.

64. Ganz PA, Greendale GA, Petersen L, Kahn B, Bower J (2003) Breast cancer in younger women: reproductive and late effects of treatment. J Clin Oncol 21: 4184–4193.

65. Kostaf MT (1986) Physical and psychologic distress associated with adjuvant chemotherapy in women with breast cancer. J Clin Oncol 4: 678–684.

66. Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channey KS, et al. (2004) The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab 89: 3313–3318.

67. Beauchet O (2006) Testosterone and cognitive function: Current clinical evidence of a relationship. Eur J Endocrinol 155: 773–781.

68. Amore M, Innamorati M, Costi S, Sher L, Girardi P, et al. (2012) Partial androgen deficiency, depression, and testosterone supplementation in aging men. Int J Endocrinol 2012.

69. Ahles TA, Root JC, Ryan EL (2012) Cancer- and cancer treatment-associated cognitive change: An update on the state of the science. J Clin Oncol 30: 3675–3686.

70. Peterson PK, Chao CC, Carson P, Hu S, Nichol K, et al. (1994) Levels of tumor necrosis factor alpha, interleukin 6, interleukin 10, and transforming growth factor beta are normal in the serum of the healthy elderly. Clin Infect Dis 19: 1158–1159.

71. Weij J, Xu H, Davies JL, Hemmings GP (1992) Increase of plasma IL-6 concentration with age in healthy subjects. Life Sci 51: 1953–1956.

72. Hager K, Macier J, Krieger S, Platt D, Seefried G, et al. (1994) Interleukin-6 and selected plasma proteins in healthy persons of different ages. Neuronal Aging 15: 771–772.

73. Ahles TA, Saykin AJ, McDonald BC, L, Y, Furstenberg CT, et al. (2010) Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. J Clin Oncol 28: 4434–4440.

74. Ahles TA, Saykin AJ (2007) Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer 7: 192–201.

75. Vandenbroucke K, Goris A (2003) Cytokine gene polymorphisms in multifactorial diseases: gateways to novel targets for immunotherapy? Trends Pharmacol Sci 24: 204–208.

76. Corsi-Cabrera M, Arce C, Del Rio-Portilla IY, Perez-Garcia E, Guevara MA (1999) Amplitude reduction in visual event-related potentials as a function of sleep deprivation. Sleep 22: 181–189.

77. McCarthey ME, Waters WF (1997) Decreased attentional responsivity during sleep deprivation: orienting response latency, amplitude, and habituation. Sleep 20: 115–120.

78. Plücher JJ, Walters AS (1997) How sleep deprivation affects psychological variables related to college students’ cognitive performance. J Am Coll Health 46: 121–128.

79. Schubert C, Hong S, Natarajan I, Mills PJ, Dimidule JE (2007) The association between fatigue and inflammatory marker levels in cancer patients: a quantitative review. Brain Behav Immun 21: 413–427.

80. Antoni MH, Lechner S, Díaz A, Vargas S, Holley H, et al. (2009) Cognitive behavioral stress management effects on psychosocial and physiological adaptation in women undergoing treatment for breast cancer. Brain Behav Immun 23: 580–591.

81. Raison CL, Demetrashvili M, Capuron L, Miller AH (2005) Neuropsychiatric adverse effects of interferon-alpha: recognition and management. CNS Drugs 19: 105–123.

82. Pullens MJ, De Vries J, Roukema JA (2010) Subjective cognitive dysfunction in breast cancer patients: A systematic review. Psychooncology 19: 1127–1130.

83. Weifel JS, Vardy J, Ahles T, Schagen SB (2011) International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol 12: 703–708.

84. De Almodovar CR, Lambrechts D, Mazzone M, Carmellet P (2009) Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 89: 607–648.

85. Leng SX, McElhaney JE, Walton JD, Xie D, Fedarko NS, et al. (2008) ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci 63: 879–884.

86. Sachdeva N, Asthana D (2007) Cytokine quantitation: Technologies and applications. Front Biosci 12: 4682–4699.

87. DuPont NC, Wang K, Wadlwa PD, Callahane JF, Nelson EL (2005) Validation and comparison of luminex multiplex cytokine analysis kits with ELISA: Determinations of a panel of nine cytokines in clinical sample culture supernatants. J Reprod Immunol 66: 173–191.

88. Ahles TA, Root JC, Ryan EL (2012) Cancer- and cancer treatment-associated cognitive change: An update on the state of the science. J Clin Oncol 30: 3675–3686.

89. Peterson PK, Chao CC, Carson P, Hu S, Nichol K, et al. (1994) Levels of tumor necrosis factor alpha, interleukin 6, interleukin 10, and transforming growth factor beta are normal in the serum of the healthy elderly. Clin Infect Dis 19: 1158–1159.

90. Wei J, Xu H, Davies JL, Hemmings GP (1992) Increase of plasma IL-6 concentration with age in healthy subjects. Life Sci 51: 1953–1956.

91. Hager K, Macier J, Krieger S, Platt D, Seefried G, et al. (1994) Interleukin-6 and selected plasma proteins in healthy persons of different ages. Neuronal Aging 15: 771–772.

92. Ahles TA, Saykin AJ, McDonald BC, L, Y, Furstenberg CT, et al. (2010) Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. J Clin Oncol 28: 4434–4440.

93. Ahles TA, Saykin AJ (2007) Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer 7: 192–201.

94. Vandenbroucke K, Goris A (2003) Cytokine gene polymorphisms in multifactorial diseases: gateways to novel targets for immunotherapy? Trends Pharmacol Sci 24: 204–208.

95. Corsi-Cabrera M, Arce C, Del Rio-Portilla IY, Perez-Garcia E, Guevara MA (1999) Amplitude reduction in visual event-related potentials as a function of sleep deprivation. Sleep 22: 181–189.

96. McCarthey ME, Waters WF (1997) Decreased attentional responsivity during sleep deprivation: orienting response latency, amplitude, and habituation. Sleep 20: 115–120.

97. Plücher JJ, Walters AS (1997) How sleep deprivation affects psychological variables related to college students’ cognitive performance. J Am Coll Health 46: 121–128.

98. Schubert C, Hong S, Natarajan I, Mills PJ, Dimidule JE (2007) The association between fatigue and inflammatory marker levels in cancer patients: a quantitative review. Brain Behav Immun 21: 413–427.

99. Jolliffe IT (2002) Principal Component Analysis, Second Edition. Library of Congress Cataloging-in-Publication Data: 487.

100. Yennurajalingam S, Reuben JM, Palmer JL, Cohen EN, Tin S, et al. (2011) Cancer-related-fatigue (CRF) is associated with IL-6, IL-6R and IL-17, while IL-8 and IL-6 are associated with no improvement of CRF after treatment. Support Care Cancer 19: S233.

101. Long JM, Lee GD, Kelley-Bell B, Sperandler EL, Perez EJ, et al. (2011) Preserved learning and memory following 5-fluorouracil and cyclophosphamide treatment in rats. Pharmacol Biochem Behav 100: 203–211.

102. Winocur G, Henkelman M, Wojnowics JM, Zhang H, Binno MA, et al. (2012) The effects of chemotherapy on cognitive function in a mouse model: A prospective study. Clin Cancer Res 18: 3112–3121.

103. Christie LA, Acharya MM, Parekh VK, Nguyen A, Martirosian V, et al. (2012) Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res 18: 1954–1965.

104. Walker EA, Foley JJ, Clark-Vetri R, Raffa RB (2011) Effects of repeated administration of chemotherapeutic agents tamoxifen, methotrexate, and 5-fluorouracil on the acquisition and retention of a learned response in mice. Psychopharmacology 217: 537–548.

105. Hurria A, Somolo G, Ahles T (2007) Renaming “chemobrain”. Cancer Invest 25: 373–377.