Sero-Prevalence of Hepatitis B and Hepatitis C Virus Co-Infection among Pregnant Women in Nigeria

A.J Esan1*, C.T.Omisakin1, T.Ojo-Bola2, M.F Owoseni1, K.A Fasakin1, A.A Ogunleye3

1Hematology Department, Federal medical Centre, Ido-Ekiti, Nigeria
2Medical Microbiology Department, Federal Medical Centre, Ido-Ekiti, Nigeria
3Ondo State General Hospital, Okitipupa, Nigeria

*Corresponding author: ayodelejacob4u@gmail.com; ayodelejacob4u@yahoo.com

Received November 25, 2013; Revised January 18, 2014; Accepted February 09, 2014

Abstract
This study was carried out to determine sero-prevalence of hepatitis B and hepatitis C virus co-infection among pregnant women. Viral hepatitis during pregnancy is associated with high risk of maternal complications; infections with Hepatitis B virus (HBV) or the Hepatitis C virus (HCV) are public health problems. Worldwide, there are about 350 million HBV carriers and 130 to 170 million people infected with HCV. The presence of HBV and HCV was determined using third-generation enzyme immunoassay (EIA), reactive samples were further confirmed using enzyme linked immune sorbent assay (ELISA) (Bio-Rad, France). Age group 26-30 and 31-35 had highest frequency of 240 (36.98%) and 206 (31.74%) respectively in HBV and HCV. Sero prevalence of HBV and HCV were 44 (6.78%) and 9 (1.39%) respectively. Prevalence of HBV and HCV co-infection was 1 (0.15%) in age group 31-35. Proper management of maternal hepatitis during the prenatal phase ensures better outcomes in the infant, therefore screening of pregnant women for hepatitis B and C virus are necessary in order to identify those neonates at risk of transmission.

Keywords: Hepatitis B virus, Hepatitis C virus, transmission

Cite This Article: A.J Esan, C.T.Omisakin, T.Ojo-Bola, M.F Owoseni, K.A Fasakin, and A.A Ogunleye, “Sero-Prevalence of Hepatitis B and Hepatitis C Virus Co-Infection among Pregnant Women in Nigeria.” American Journal of Biomedical Research, vol. 2, no. 1 (2014): 11-15. doi: 10.12691/ajbr-2-1-3.

1. Introduction

Viral hepatitis is a life-threatening liver disease, caused by hepatitis B and C virus, and is a major public health problem, particularly in developing countries [31,51]. The prevalence of HBV and HCV in a population can be predicted by risk factors associated with the transmission of infection such as injections, blood products transfusion, surgical procedures, body tattooing, occupational injury, sexual and vertical transmission [1,3,41] many infected individuals deny history of any of these risks so that the likely source remains unidentified in some subjects [61] however, the prevalence varies from area to area and population to population due to variability in ethnicity and socioeconomic conditions [31,51]. Viral hepatitis is the inflammation of the liver caused by infection with the hepatitis viruses; it can also be due to toxins (notably alcohol, certain medications and plants), other infections and autoimmune diseases [4]. Viral hepatitis during pregnancy is associated with high risk of maternal complications. Infections with the Hepatitis B virus (HBV) or the Hepatitis C virus (HCV) are public health problems and are highly endemic in the sub-Saharan Africa [36,37]. Worldwide, there are about 350 million HBV carriers [28] and 130 to 170 million people infected with HCV [74]. HBV and HCV infections are a major cause of morbidity and mortality. Hepatitis B virus has a circular genome of partially double-stranded DNA. The virus is transmitted through infected blood, sexually and vertically (mother to child) in the perinatal period. Perinatal transmission is the most common mode of HBV transmission worldwide [68]. The Hepatitis B surface antigen (HBsAg) is the serologic hallmark of HBV infection, whilst the soluble extractable protein, the Hepatitis e antigen (HBeAg) is a marker for the highly infectious state. Chronic infection is defined by the presence of HBsAg for more than 6 months. Without immunization, up to 90% of infants born to mothers who are positive for HBsAg and HBeAg, become chronic carriers [17,46,62]. Hepatitis C virus is a single-stranded RNA virus, it is transmitted also through infected blood, sexually and vertically [21,47,73]. HCV has a long lag time between onset of infection and clinical manifestation of liver disease (up to 20 years) [52]. Chronic active hepatitis C infection is associated with increased incidence of preterm delivery and intra-uterine growth retardation [77]. Vertical transmission of HCV from mother to child occurs in 3-10% of pregnancies complicated by HCV infection [14]. Among pregnant women, chronic infection with HBV and HCV are often asymptomatic, and can lead to coagulation defects, postpartum haemorrhage, organ failure and high maternal mortality and poor outcomes of their newborns such as still births, neonatal deaths (NND), jaundice, anorexia (poor appetite), malaise, acute and chronic liver disease (liver cirrhosis) and hepatocellular
cancer. Maternal mortality has been shown to increase in pregnant women with liver cirrhosis [48]. Peri-natal transmission of this disease occurs if the mother has had acute Hepatitis B infection during late pregnancy, in the first postpartum or if the mother is a chronic HBsAg carrier [39]. The prevalence of HBV infection in Nigeria was estimated to be 2.4-18.4% of the population [53,58,71]. Also, the sero-prevalence of anti-HCV was 3.6% to 5% in previous studies in Nigeria [22,70]. This study was therefore designed to determine the sero-prevalence of Hepatitis B and C virus infections among apparently healthy pregnant women.

2. Materials and Methods

Apparently 649 healthy pregnant women who attended the antenatal clinic of the Federal Medical Centre Ido-Ekiti, Ekiti State, Nigeria from February 2012 to September 2013 were recruited for the study after obtaining their consent. 4 ml of venous blood was collected by venepuncture into a plain bottle and allowed to clot. The presence of Hepatitis B surface antigen (HBsAg) and Presence of antibodies against HCV (anti-HCV) was determined using third-generation enzyme immunoassay (EIA), rapid test ELISA kits (Acon Laboratories, USA); reactive samples were further confirmed using enzyme linked immune sorbent assay (ELISA) (Bio-Rad, France), the procedures were described by the manufacturer of the kit. An ethical clearance for this study was obtained from ethical and research committee.

Table 1. Age distribution and prevalence of HBV among pregnant women

Age group	No of samples screened for HBV	No of samples screened for HCV	HBV Sero-positivity	HCV Sero-positivity
15-20	15 (2.31%)	15 (2.31%)	2 (4.55%)	-
21-25	75 (11.56%)	75 (11.56%)	7 (15.91%)	-
26-30	240 (36.98%)	240 (36.98%)	11 (25.00%)	-
31-35	206 (31.74%)	206 (31.74%)	16 (36.36%)	-
36-40	86 (13.25%)	86 (13.25%)	5 (11.36%)	-
41-above	27 (4.16%)	27 (4.16%)	3 (6.82%)	-
Total	649 (100%)	649 (100%)	44 (100%)	9 (100%)

3. Results

Apparently 649 health pregnant women within the age group 15-41 above between February 2012 and September 2013 were recruited for this study from Federal Medical Centre, Ido-Ekiti. Age group 26-30 and 31-35 had highest frequency 240 (36.98%) and 206 (31.74%) respectively in HBV and HCV while age group 15-20 and 41-above had lowest frequency 15 (2.31%) and 27 (4.16%) respectively in HBV and HCV. Sero prevalence of hepatitis B virus (HBV) and hepatitis C virus (HCV) were 44 (6.78%) and 9 (1.39%) respectively. Age group 26-30 and 31-35 had highest prevalence of HBV and HCV as showed in Table 1 and Table 2. Prevalence of HBV and HCV co-infection was 1 (0.15%) in age group 31-35 as showed in Table 3.

Table 2. Age distribution and prevalence of HBV among pregnant women

Age group	No of samples screened for HBV	No of samples screened for HCV	No of HBV and HCV positivity	No of HBV and HCV co-infection
15-20	15 (2.31%)	15 (2.31%)	2 (3.77%)	-
21-25	75 (11.56%)	75 (11.56%)	7 (13.21%)	-
26-30	240 (36.98%)	240 (36.98%)	13 (24.53%)	-
31-35	206 (31.74%)	206 (31.74%)	22 (41.51%)	1 (0.15%)
36-40	86 (13.25%)	86 (13.25%)	6 (11.32%)	-
41- above	27 (4.16%)	27 (4.16%)	3 (5.66%)	-
Total	649 (100%)	649 (100%)	53 (100%)	1

4. Discussion

Infections due to Hepatitis B and Hepatitis C viruses (HBV, HCV) are significant health problems around the globe. Worldwide, viral hepatitis is the commonest cause of hepatic dysfunction in pregnancy. The prevalence of HBV varies between 2% in developed countries where the prevalence is low to about 8% in developing countries where infection is endemic with sex, age and socioeconomic status as important risk factors for infection [5,27,56]. Countries are classified as having low endemic rates (< 2%), intermediate endemic rates (2-8%), or high endemic rates (> 8%) positive for HBV. In our study, the frequency of Hepatitis B and Hepatitis C infections among pregnant woman attending the Federal Medical Centre, Ido-Ekiti were 6.78% and 1.39% respectively while 0.15% was recorded for both HBV and HCV co-infection. Prevalence of 6.78% and 1.39% for HBV and HCV respectively in this present study was supported by WHO’s report for Nigeria, with prevalence of HBV and HCV greater than 8% and 1.2% respectively [76]. Previous studies on prevalence of HBV done in Southeast Nigeria reported (2.2%) [51], Obi reported
Gabon (Ndong-Atome et al.) compared to 1.39% of HCV in this present study he also reported 7.3% for anti HCV which was much higher than the 0.5% recorded by Buseri et al., 2008 which was higher compared to this present study.Batool et al., 2008 reported 2.2% for HBV and 0.08% for HBV and HCV co-infection which was lower compared to prevalence in this present study [24]. Elsheikh reported 5.6% for HBV and 0.6% for Anti-HCV which was lower compared to the prevalence reported in this study; also stated that none of the participants were aware of their condition and age, parity, gestational age, residence, history of blood transfusion, dental manipulations, tattooing and circumcision did not contribute significantly to increased HBV sero-positivity [24]. This difference may be as a result of the type of population studied, different geographical regions, genetic factors and socioeconomic status, also regional differences in risk factors and cultural practices may be responsible for these variations in prevalence rates. Sero-epidemiological studies of different populations show marked variations and differences. The age of acquiring infection is the major determinant of the incidence and prevalence rates [27]. In this study it was found that most of the patients fell within the age group 26–30 and 31–35 because these were the majority age groups attended antenatal clinic of the hospital. Mortada et al., 2013 reported that HBV was detected at a higher rate in pregnant women aged greater than 25 years than in women aged less than 25 years, the difference was not statistically significant. Habiba and Memon 2007 from Pakistan also reported that the majority of those that tested positive to HBV were in the age range 25-35 years which was similar to this present study. Other studies also observed a high prevalence rate of HBV in pregnant women greater than 25 years than those less than 25 years [25,66]. The increased age among HBV positive mothers may be due to the chance of exposure to HBV and HCV for each pregnancy. However, Eke et al., 2011 reported a highest prevalence of HBV among pregnant women whose age ranged 20-24 years. The authors attributed that difference to the early marriage and pregnancy of women in South-Eastern Nigeria. Hence, those positive to HBV are likely to be picked when screened during their antenatal care. Pregnant women are considered at a higher risk due to increased exposure to risk factors (such as blood transfusion, intravenous drugs or surgical procedures) [13]. In our study most of the patients were found to be multi gravida patients. Azhar et al., 2012 reported a higher frequency of HBV infection among multigravidae. It might be at increased risk of HBV and HCV infection among multigravidae because of their past pregnancies, hospital admission blood transfusion and/or any surgical procedure in the past [33]. Therefore, with each pregnancy and childbirth chances of exposure to HBV and HCV become greater. Rural residence could also be a risk factor for HBV and HCV infection, socioeconomic conditions among the poor and less educated, and crowded living condition especially in the rural areas, may contribute to HBV and HCV exposure [16,29].

5. Conclusion

Proper management of maternal hepatitis during the prenatal phase ensures better outcomes in the infant, therefore screening of pregnant women for hepatitis B and C virus are highly necessary in order to identify those neonates at risk of transmission, to whom preventive
intervention can be instituted irrespective of maternal hepatitis B and C virus carriage status; this may be the most effective approach to hepatitis B and C virus prevention and control.

Recommdation

Pregnant woman should be mandatorily and routinely screened for hepatitis B and C virus infection as part of antenatal care services in their booking; also infants and new borns must be systematically immunized against hepatitis B and C virus infection. Public awareness, complete immunization against viral hepatitis, better sanitation facilities, safe drinking water, increased availability of antenatal care for early detection and well equipped hospitals for intensive care will go long way in the reduction of viral hepatitis in pregnancy and also its associated maternal and per-natal mortality and morbidity.

References

[1] Abdigdaard N, Peterslund NA (1991). Hepatitis C virus transmitted by tattooing needle. *Lancet*. 338: 460.

[2] Agary L, Lecointe GL. Prevalence of Hepatitis B virus and hepatitis C in antenatal patients in Gwagwalada-Abuja, Nigeria.

[3] Akbar N, Basuki B, Mulyanto, Garabrant DH, Sulaiman A, Noer HM (1997). Ethnicity, Socioeconomic status, transusions and risk of hepatitis B and C infection. *J Gastroenterol Hepatol*; 12: 752-757.

[4] Af Nowtain MA, Taylor M, Ram CT, et al., 2004 A New Section in Cancer Offering Timedly and Targeted information, *Can J Clin*.; 54: 23-25.

[5] Alkor EA and Erhabor ON (2007). Seroprevalence of hepatitis B surface antigenaemia in children in a tertiary health institution in the Niger delta of Nigeria. *Niger J Med*, 16: 250-251.

[6] Al Awaidy S, Abu-Elyazeed R, Al Hosani H, et al., 2006 Sero-epidemiology of hepatitis B infection in pregnant women in Oman, Qatar and the United Arab Emirates. *J infect.* 52 (3): 202-206.

[7] Al-Shamahy HA (2000). Prevalence of hepatitis B surface antigen and risk factors of HBV infection in a sample of healthy mothers and their infants in Sana’a, Yemen. *Afr Health Sci.; 20:* 464-467.

[8] Awole M, Gebre-Selassie S (2005). Seroprevalence of HBsAg and its risk factors among pregnant women in Jimma, Southwest Ethiopia. *Ehiop J Health Dev*; 19 (1): 45-50.

[9] Azhar T, Khan IA, Mohsein S, Usman J (2012). Antenatal screening for hepatitis B and C virus infection in pregnant women in a tertiary care hospital of Rawalpindi. Available on line at: http://www.pafmj.org. 2011.

[10] Batayneh N, Bidour S (2002). Risk of perinatal transmission of hepatitis B virus in *J. Infect Dis Obst Gynaecol*; 10: 127-132.

[11] Batool A, Bano KA, Khan MU, Hussain R (2008). Antenatal screening of women for Hepatitis B and C in an outpatient department. *J Dow Unvers Health Sc;* 2: 32-35.

[12] Bertolini DA, Pinho JRR, Saraceni CP, et al., 2006 Prevalence of serological markers of hepatitis B virus in pregnant women from Parana state, Brazil. *Braz J Med Bio Res*; 39 (8): 1083-1090.

[13] Beasley RP, Hwang LY, Lee GC, Lan CC, Roan CH, Huang FY (1983). Prevention of perinatally transmitted hepatitis B virus infections with hepatitis B immune globulin and hepatitis B vaccine. *Lancet*. 2: 1099-1101.

[14] Berkley EMF, Leslie KK, Arora S, Qualls C, Dunkelberg JC (2008). Chronic Hepatitis C in Pregnancy. *Obstet. Gynecol.* 112: 304-310.

[15] Buseri FI, Seiyobo E, Jeremiah ZA (2010). Surveying infections among pregnant women in the Niger Delta, Nigeria. *J. Global Infect Dis.;* 2: 203-211.

[16] Bwogi J, Braka F, Makumbi I, Mishra V, Baknamatumah B, Nanyunja M, Opio A, Downing R, Biriyahwabo B, Lewis RF (2009). Hepatitis B infection is highly endemic in Uganda: findings from a national serosurvey. *Afr Health Sci.;* 9: 98-108.

[17] Chang MH (2000). Natural history of hepatitis B virus infection in children. *J. Gastroenterol. Hepatol.* 15: 16-19.

[18] Clegg T (1991). Hepatitis B surface and e antigen seropositivity in mothers and cord blood at Port Moresby General Hospital: Implication for a control program. *Papua New Guinea Med J*; 34: 234-237.

[19] Dawaki SS, Kawo AH (2006). Seroprevalence of Hepatitis B surface antigen (HBsAg) in pregnant women attending an urban maternity hospital in Kano, Nigeria. *Nig J Microbiol.;* 20: 705-709.

[20] Damale NKR, Lassey AT, Bekoe V (2005). Hepatitis B surface seroprevalence among patiartns in Accra, Ghana. *Int J Gynecol and Obstet.* 90: 240-241.

[21] Dienstag JL (1983). Non-A, non-B hepatitis. *Recognition, epidemiology, and clinical features. Gastroenterol.* 85: 439-462.

[22] Duru MU, Aluyi HAS, Anukam KC (2009). Rapid screening for co-infection of HIV and HCV in pregnant women in Benin City, Edo state, Nigeria. *Afr Health Sci.;* 9: 137-142.

[23] Eke AC, Eke UA, Ofiafor CI, Ogbuagu A (2011). Prevalence, correlates and pattern of hepatitis B surface antigen in a low resource setting. *Virolog.;* 8: 12.

[24] Elsheikh R, Daak A, Elsheikh M, Karsany M, Adam I (2007). Hepatitis B virus and hepatitis C virus in pregnant Sudanese women. *Virolog. J A* (1): 104.

[25] El-Maghrawe R, Furarah AR, El-Figih K, El-Urshafy S, Ghenghesh KS (2010). Maternal and neonatal seroprevalence of Hepatitis B surface antigen (HBsAg) in Tripoli, Libya. *J Infect Dev Ctries;* 4: 168-170.

[26] Euler GL, Wooten KG, Baughman AL, et al., 2003. Hepatitis B surface antigen prevalence among pregnant women in urban areas: Implications for testing, reporting, and preventing perinatal transmission. *Pediatrics;* 111 (5 part 2): 1192-1197.

[27] Ezebguo CN, Agbonlahor DE, Nwosu GO, Igwe CU, Agba MI, Okpala HO, Ikaroha CI (2004). The seroprevalence of hepatitis B surface antigen and human Immunodeficiency Virus among pregnant women in Anambra state, Nigeria. *Shiraz E-Medical Journal;* 5: 1-25.

[28] Goldstein ST, Zhou F, Hadler SC, Bell BP, Mast EE, Margolis HS (2005). A mathematical model to estimate global hepatitis B disease burden and vaccination impact. *Int. J. Epidemiol.* 34: 1329-1339.

[29] Gray Davis L, Weber DJ, Lemon SM (1989). Horizontal transmission of hepatitis B virus. *Lancet.* 1: 889-893.

[30] Habiba SA, Memon MA (2007). Prevalence of Hepatitis B infection in pregnant women in a tertiary care hospital. *Infectious Disease Journal of Pakistan;* 35-38.

[31] Haider Z, Khan AA, Rehman K, Janjua MI, Iqbal J, Chistihi MA, et al., 1994 Sero-diagnosis of Viral hepatitis in 93 patients admitted with acute hepatitis in three different teaching hospitals in Lahore. *J Pak Med Assoc;* 44: 182-4.

[32] Kang HS, Song BC, Ji CX, et al., 2004 Serologic markers of hepatitis B virus in pregnant women in Jeju island. *Korean J Hepatol;* 10 (3): 191-196.

[33] Khattak ST, Ali Marwat M, Khattak ID, Khan TM, Naheed T (2009). Comparison of frequency of hepatitis b and hepatitis c in pregnant women in urban and rural area of district Swat. *J Ayub Med Coll Abbottabad;* 21: 12-15.

[34] Khalil KMK, Al-Mazrou YY, Al-Jeffri M, Al-Ghamdi YS, Mishkhas A, Bakhir M, Eisa M, Nageeb M, Tumash S (2005). Seroprevalence of hepatitis B surface antigen in pregnant Saudi women. *Eastern Mediterranean Health J;* 11: 640-647.

[35] Kumar A, Sharma KA, Gupta RK, Kar P, Chakravarti A (2007). Prevalence and risk factors for hepatitis C virus among pregnant women. *Ind. J. Med. Res.* 126: 211-215.

[36] Kramvis A, Kew M (2007). Epidemiology of hepatitis B virus in Africa, its genotypes and clinical associations of genotypes Hepatitis. *Res. 37 (Supplement 1):* 9-19.

[37] Kwan LC, Cho Y, Lee SS (1997). The declining HBsAg carriage rate in pregnant women in Hong Kong. *Epidemiol Infect.* 119 (2): 281-283.

[38] Kuru U, Turan O, Kuru N, et al., 1996 Prevalence of hepatitis B virus infection in pregnant Turkish women and their families. *Eur Clinical Microbiol Infect Dis;* 15 (3): 248-251.

[39] Levy M, Koren G (1991). Hepatitis B vaccine in pregnancy: Maternal and fetal safety. *Am J Perinatol;* 8: 227-232.

[40] Lin HH, Kao JH, Chang TC, et al., 2003. Secular trend of age specific prevalence of hepatitis B Surface and e antigenemia in pregnant in Taiwan. *J Med Viral;* 69 (4):66-70.
Study; Infection among Egyptian Pregnant Women - A Single Center virus prevalence and genetic diversity among pregnant women in Vezinet F, Mahe A, Rousset D, Kazanji M (2008). Hepatitis C 168. Hanaa El - Karaksy (2013). Prevalence of Hepatitis B Virus El Din Hamdi, Mohamed Ehab, Shaimaa Shaaban Khamiss and 157. Epidemiol Infect 301 (6745): 210-212. Mishra L, Seeff LB (1992). Viral hepatitis, A though E, complicating pregnancy. Gastroenterol. Clin. North Am. 21 (4): 873-887.

Mortada EL-Shabrawi, Mohamed Farouk Mohamed, Mona Salah 927. Tassopoulos NC, Papaevangelou GJ, Sjogren MH, Roumeliotou-Karayannis A, Gerin JL, Purcell RH (1987). Natural history of acute hepatitis B surface antigen-positive hepatitis C in Greek adults. Gastroenterol. 92 (6): 1844-1850.

Tran TT (2009). Understanding cultural barriers in hepatitis B virus infection. Cleveland Clin. J. Med. 76 (Suppl 3): 10-13.

Tsega E, Tsega M, Mengesha B, et al., 1988 Transmission of hepatitis B virus infection in Ethiopia with emphasis on the importance of vertical transmission. Int J Epidemiol; 17 (4): 874-879.

Ugbobor O, Aightrior M, Osazuwa F, Enabudoso E, Zabyo O (2011). The prevalence of hepatitis B and C viral infections among pregnant women. North Am. J. Med. Sci. 3 (5): 238-241.

Ugwuji EI, Ugwu NC (2010). Seroprevalence of Hepatitis B surface Antigen and Liver Function Tests among Adolescents in Aba, south Eastern Nigeria. The Internet J. Trop. Med. 6 (2): 1-6.

Vazquez-Martinez JL, Coreno –Juarez MO, Montano – Estrada LF, et al., 2003 Seroprevalence of hepatitis in pregnant women in Mexico, Salud publica Mex; 45 (3): 165-170.

Wejstal R, Widell A, Mansson A, Hermodsson S, Norkrans G (1992). Sexual transmission of hepatitis C virus: Relation of Age to the Clinical Expression of Disease and Subsequent Development of the Carrier State. J. Infect. Dis. 151 (4): 599-603.

Melbye M, Biggar RJ, Wantzin P, Krogsgaard K, Ebbesen P, Becker NG (1990). Sexual transmission of hepatitis C virus: Cleveland Clin. J. Med. Coll. Abbottabad, 22: 13-16.

Sidibe S, Sacko BY and Traore I (2001). Prevalence of serologic markers of the Hepatitis B virus In pregnant women of Bamako, Mali. Bull. Soc Pathol Exot; 94 (4): 339-341.

Strickland GT (2002). HCV in developing countries. Postdoc Doc (Africa); 24: 18-20.

Taseer IU, Ishaq F, Hussain L, Safdar S, Mirbahar AM, Faiz SA (2010). Frequency of anti-HCV, HBsAg and related risk factors in pregnant women at Nishtar Hospital, Multan. J Ayub Med Coll Abbottabad; 22: 131-16.

Sellati M P, Inwoley, A clai mi et al 2003. Prevalence of Hepatitis B/C virus and HCV genotypes in HIV positive and negative women in Abidjan, Ivory coast West Africa, 8 (1): 974.

Mali. Bull Soc Pathol Exot; 94 (4): 339-341.

Sidibe S, Sacko BY and Traore I (2001). Prevalence of serologic markers of the Hepatitis B virus in pregnant women of Bamako, Mali. Bull. Soc Pathol Exot; 94 (4): 339-341.

Strickland GT (2002). HCV in developing countries. Postdoc Doc (Africa); 24: 18-20.

Taseer IU, Ishaq F, Hussain L, Safdar S, Mirbahar AM, Faiz SA (2010). Frequency of anti-HCV, HBsAg and related risk factors in pregnant women at Nishtar Hospital, Multan. J Ayub Med Coll Abbottabad; 22: 131-16.

Tassopoulos NC, Papaevangelou GJ, Sjogren MH, Roumeliotou-Karayannis A, Gerin JL, Purcell RH (1987). Natural history of acute hepatitis B surface antigen-positive hepatitis C in Greek adults. Gastroenterol. 92 (6): 1844-1850.

Tran TT (2009). Understanding cultural barriers in hepatitis B virus infection. Cleveland Clin. J. Med. 76 (Suppl 3): 10-13.

Tsega E, Tsega M, Mengesha B, et al., 1988 Transmission of hepatitis B virus infection in Ethiopia with emphasis on the importance of vertical transmission. Int J Epidemiol; 17 (4): 874-879.

Ugbobor O, Aightrior M, Osazuwa F, Enabudoso E, Zabyo O (2011). The prevalence of hepatitis B and C viral infections among pregnant women. North Am. J. Med. Sci. 3 (5): 238-241.

Ugwuji EI, Ugwu NC (2010). Seroprevalence of Hepatitis B Surface Antigen and Liver Function Tests among Adolescents in Abakaliki, South Eastern Nigeria. The Internet J. Trop. Med. 6 (2): 1-6.

Vazquez-Martinez JL, Coreno –Juarez MO, Montano – Estrada LF, et al., 2003 Seroprevalence of hepatitis in pregnant women in Mexico, Salud publica Mex; 45 (3): 165-170.

Wejstal R, Widell A, Mansson A, Hermodsson S, Norkrans G (1992). Mother-to-Infant Transmission of Hepatitis C Virus. Ann. Internal Med. 117 (11): 887-890.

World Health Organization. (2011). Factsheet No 164.

WHO/EPi (1990). Protocol for assessing prevalence of hepatitis B infection in antenatal patients. WHO/EPi/GEN/90.6 1990.

World Health Organization (1999). Global surveillance and control of hepatitis C. Report of a WHO Consultation organized in collaboration with the Viral Hepatitis Prevention Board. JHVH; 6: 35-47.

Zanetti AR, Tanzi E, Newell ML (1999). Mother-to-infant transmission of hepatitis C virus. J Hepatol. 31: 96-100.