Minimally invasive oesophagectomy versus open esophagectomy for resectable esophageal cancer: a meta-analysis

Waresijiang Yibulayin, Sikandaer Abulizi, Hongbo Lv and Wei Sun*

Abstract

Background: Open esophagectomy (OE) is associated with significant morbidity and mortality. Minimally invasive oesophagectomy (MIO) reduces complications in resectable esophageal cancer. The aim of this study is to explore the superiority of MIO in reducing complications and in-hospital mortality than OE.

Methods: MEDLINE, Embase, Science Citation Index, Wanfang, and Wiley Online Library were thoroughly searched. Odds ratio (OR)/weighted mean difference (WMD) with a 95% confidence interval (CI) was used to assess the strength of association.

Results: Fifty-seven studies containing 15,790 cases of resectable esophageal cancer were included. MIO had less intraoperative blood loss, short hospital stay, and high operative time \((P < 0.05) \) than OE. MIO also had reduced incidence of total complications; \((OR = 0.700, 95\% \ CI = 0.626 \sim 0.781, \ P_V < 0.05) \), pulmonary complications \((OR = 0.527, 95\% \ CI = 0.431 \sim 0.645, \ P_V < 0.05) \), cardiovascular complications \((OR = 0.770, 95\% \ CI = 0.681 \sim 0.872, \ P_V < 0.05) \), and surgical technology related (STR) complications \((OR = 0.639, 95\% \ CI = 0.522 \sim 0.781, \ P_V < 0.05) \), as well as lower in-hospital mortality \((OR = 0.668, 95\% \ CI = 0.539 \sim 0.827, \ P_V < 0.05) \). However, the number of harvested lymph nodes, intensive care unit (ICU) stay, gastrointestinal complications, anastomotic leak (AL), and recurrent laryngeal nerve palsy (RLNP) had no significant difference.

Conclusions: MIO is superior to OE in terms of perioperative complications and in-hospital mortality.

Keywords: Minimally invasive esophagectomy, Open esophagectomy, Complications, Mortality

Background

A global incidence of esophageal cancer has increased by 50% in the past two decades. Each year, around 482,300 people are diagnosed with esophageal cancer, and 84.3% die of the disease worldwide [1, 2]. At present, the primary method of treating patients with esophageal cancer has been surgery. However, the traditional open esophagectomy (OE) procedure has high complication rates resulting in significant morbidity and mortality [3, 4]. Various studies showed in-hospital mortality between 1.2 and 8.8% [4–7], even as high as 29% [8].

Minimally invasive oesophagectomy (MIO), which was first described in the 1990s [9, 10], was attributed to be superior in reducing postoperative outcomes, without compromising oncological outcomes and avoiding thoracotomy and laparotomy. The basis of minimally invasive techniques in esophageal surgery is to maintain the therapy effectiveness and quality of traditional operations, while reducing perioperative injury. Nevertheless, the real benefits of minimally invasive approach for esophagectomy are still controversial [11–13]. A number of meta-analyses and even randomized controlled trials demonstrated MIO to be superior in reducing risk of postoperative outcomes, but their results are not very consistent, especially on the issue of in-hospital mortality [14–30]. Furthermore, these studies ignored preoperative clinical data and other Chinese relevant literatures. We, therefore, performed a meta-analysis combining the relevant publications and comprehensively assess the superiority of MIO.

* Correspondence: yuan2559052@163.com
Department of Thoracic Surgery, Tumor Hospital of Xinjiang Medical University, Urumqi, China

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Materials and methods
Search strategy
MEDLINE, Embase, Science Citation Index, Wanfang, and Wiley Online Library were thoroughly searched with terms “Minimally Invasive Esophagectomy” or “Open Esophagectomy,” “Esophagectomy,” “MIE,” “laparasc,” “thoracosc,” “VATS,” “transhiatal” (date until May 2016). Relevant literatures containing full text were back tracked thoroughly, while abstracts and unpublished reports were excluded.

Selections of studies
Inclusion criteria The inclusion criteria are as follows: (1) randomized or non-randomized controlled studies with parallel controls, (2) comparison on OE versus MIO, (3) sufficient data of estimated odds ratios (ORs)/weighted mean difference (WMD) and 95% confidence intervals (CIs).

Exclusion criteria The exclusion criteria are as follows: (1) studies that were not compared or case report, (2) incomplete literature, and (3) overlapped studies.

Data extraction
Two investigators read all the included literatures carefully and extracted all the data, such as first author, published year, numbers of case and controls, outcomes of interest, etc. If two investigators have divergent ideas on any data, the third investigator would be asked to check and reach consensus on the data.

Outcomes of interest
(1) Definition of MIO was thoracoscopic/laparotomy-assisted esophagectomy, hybrid minimally invasive esophagectomy, total thoracoscopic/hand-assisted thoracotomy, hand-assisted laparotomy, or minilaparotomy/laparoscopic esophagectomy.
(2) Preoperative clinical data included age, neoadjuvant therapy, comorbidity, TNM staging, and gender.
(3) Postoperative data contained operative duration, blood loss, intensive care unit (ICU) stay, hospital stay, and harvested lymph nodes.
(4) The complications are as follows. (1) Mortality included in-hospital mortality and 30-day mortality. (2) Pulmonary complications included pneumonia, respiratory failure, adult respiratory distress syndrome (ARDS), etc. (3) Cardiovascular complications included arrhythmia, heart failure, acute myocardial infarction, deep vein thrombosis, pulmonary embolism, etc. (4) Gastrointestinal complications included gastric tip necrosis, anastomotic stricture, delayed gastric emptying, gastric volvulus, etc. (5) Surgical technology related (STR) complications included splenic laceration, tracheal laceration, pneumothorax, chylothorax, hemorrhage, etc.

Fig. 1 Study flow chart explaining the selection of 57 studies included in the meta-analysis
Study	Year	Country	Cases (M/OE)	Gender (M) (M/OE)	Age, years (M/OE)	NT (M/OE)	NOS (M/OE)	Hybrid	Preoperative comorbidity (M/OE)	TNM stage (M/OE)
Nguyen	2000	USA	18/36	7/29	64 ± 12/67 ± 8	9/9	6	MIE	NR	NR
Osugi	2003	Japan	77/72	64/57	63.7 ± 9.6/64 ± 9-3	NR	7	TA	NR	NR
Kunisaki	2004	Japan	15/30	12/21	62.3 ± 8.1/63 ± 6	NR	6	MIE	NR	NR
Bernabe	2004	USA	17/14	16/11	63.9 ± 13.5/64.1 ± 10.7	NR	6	TA	NR	NR
Van den Broek	2004	Netherlands	25/20	19/14	63 ± 8/64 ± 8	17/4	7	TA	NR	NR
Braghetto	2006	Chile	47/119	NR	NR	0/0	8	MIE	NR	NR
Bresadola	2006	Italy	14/14	8/13	61.9 ± 7.7/59.3 ± 10.9	NR	6	MIE	NR	NR
Shiraishi	2006	Japan	116/37	94/31	61.5 ± 8.1/66.5 ± 9.3	26/10	7	Hybrid	NR	NR
Smithers	2007	Australia	332/114	267/104	64 (27–85)/62.5 (29–81)	136/29	8	Hybrid	NR	NR
Benzoni	2007	Italy	9/13	6/11	63.6 ± 2.6/60.2 ± 2.4	6/6	8	TA	NR	NR
Fabian	2008	USA	22/43	16/31	63 (46–80)/61 (35–82)	9/16	7	MIE	NR	NR
Parameswaran	2009	UK	50/30	45/21	67 (47–81)/68 (47–81)	32/12	8	MIE	NR	NR
Saha	2009	UK	16/28	13/24	65 (50–80)/64 (35–78)	NR	8	MIE	NR	NR
Zingg	2009	Australia	56/98	45/71	66.3 ± 1.3/67.8 ± 1.1	40/48	8	MIE	4/7	13/35
Pham	2010	USA	44/46	41/33	63 ± 8.6/61 ± 10.7	29/23	6	MIE	NR	NR
Perry	2010	USA	21/21	18/17	69 ± 8/61 ± 9	NR	7	MIE	NR	NR
Hamouda	2010	UK	51/24	44/23	62/60	44/20	7	MIE	NR	NR
Safranek	2010	UK	75/46	53/38	60 (44–77)/64 (41–74)	71/34	7	Hybrid	NR	NR
Schoppmann	2010	Australia	31/31	25/21	61.5 (36–75)/58.6 (34–77)	15/7	8	MIE	6/8	10/8
Schröder	2010	Germany	238/181	198/151	61.1 (60–62)/57.8 (56–59)	144/66	6	TA	NR	NR
Mehran	2011	USA	44/44	43/40	61.0 (42–79)/62.5 (38–83)	31/30	7	MIE	NR	NR
Berger	2011	USA	65/53	51/38	61 (41–78)/62 (40–86)	28/43	6	MIE	NR	NR
Lee	2011	Japan	74/64	73/61	59.7 ± 10.3/56.6 ± 11.6	47/52	8	Hybrid	NR	NR
Nafeux	2011	Belgium	65/101	52/81	63 (41–82)/64 (29–82)	NR	8	MIE	11/24	6/13
Yamakawa	2011	Japan	109/107	87/95	64.6 ± 8.5/64.7 ± 8.0	85/68	8	TA	20/20	11/13
Bierie	2012	Netherlands	59/56	43/46	62 (34–75)/62 (42–75)	59/56	8	MIE	NR	NR
Maas	2012	Netherlands	50/50	41/33	62.5 (57–69)/65 (57–69)	23/13	8	MIE	NR	NR
Briez	2012	France	140/140	110/117	NR	67/69	8	TA	NR	NR
Kinjo	2012	Japan	106/79	87/70	62.7 ± 7.4/63.3 ± 8.6	54/11	7	MIE	NR	NR
Mamidanna	2012	UK	1155/6347	892/4870	NR	7	MIE	400/2234	141/782	90/598
Sihag	2012	USA	38/76	29/61	61.4 ± 8.1/63.3 ± 9.3	25/46	7	MIE	6/16	8/13
Sundaram	2012	USA	47/57	38/52	67.3 (42–79)/61.7 (34–84)	35/40	8	MIE	33/42	11/14
Table 1 Characteristics of included studies in this meta-analysis (Continued)

Study	Country	Neoadjuvant Therapy	Age Range	Follow-up	Sex	Operative Approach	Mortality	Major Complications	Overall Complications	Length of Stay	Mortality	Major Complications	Overall Complications
Tsujimoto 2012	Japan	NT	70 ± 5.4/67 ± 10.1	8/16	6	TA	NR	NR	NR	12/14	10/13		
Javidfar 2012	USA	NT	65 (56–74)/68 (60–74)	51/96	7	MIE	9/23	9/23	22/35	65/96	27/69		
Bailey 2013	UK	NT	65 (37–78)/62 (38–78)	33/31	7	TA	NR	NR	NR	NR	NR		
Ichikawa 2013	Japan	NT	63.8 ± 8.5/64.6 ± 8.6	54/64	8	TA	23/35	21/24	26/37	101/81	51/79		
Kitagawa 2013	Japan	NT	63 (47–77)/64 (39–83)	8/11	7	MIE	NR	NR	NR	8/8	NR		
Noble 2013	UK	NT	66 (45–85)/64 (36–81)	13/11	8	MIE	NR	NR	NR	NR	NR		
Parameswaran 2013	UK	NT	64 (5–64)/64 (51-77)	50/17	7	Hybrid	NR	NR	NR	NR	43/8	23/11	
Takeno 2013	Japan	NT	63.7/64.2	NR	8	TA	NR	NR	NR	NR	NR		
Kuiper 2013	UK	NT	61/62	7	Hybrid	12/3	9/7	NR	112/41	23/33			
Schneider 2014	UK	NT	62.3 (35–74)/66.7 (45–79)	7/45	6	MIE	NR	NR	NR	16/36	2/24		
Daiko 2015	Japan	NT	66 (49–78)/65 (49–76)	NR	7	MIE	NR	NR	NR	NR	23/32	8/1	
Kauppi 2015	Finland	NT	66 (51–85)/63 (39–82)	6/12	8	MIE	14/17	12/14	17/13	28/25	46/54		
Law 1997	China	NT	66 (43–80)/63 (36–84)	NR	7	MIE	NR	NR	NR	5/15	13/45		
Chen 2010	China	NT	61 ± 7/66 ± 6	NR	7	MIE	15/4	10/3	9/2	42/15	25/23		
Gao 2011	China	NT	58.5 ± 7.3/59.1 ± 6.4	NR	6	MIE	NR	NR	NR	54/40	42/38		
Shen 2012	China	NT	60.9 ± 9/62.6 ± 8.7	NR	6	MIE	NR	NR	NR	41/44	35/27		
Liu 2012	China	NT	62.3 ± 10/65.8 ± 7.6	NR	6	MIE	13/18	40/37	6/8	51/43	47/62		
Mao 2012	China	NT	62/60	6	TA	NR	NR	NR	27/21	7/17			
Wang 2012	China	NT	61.6 ± 8.7/61.2 ± 8.8	37/44	6	MIE	NR	NR	NR	201/234	59/88		
MU 2014	China	NT	60 (55–66)/59 (54–62)	NR	6	MIE	NR	NR	NR	120/109	56/33		
Meng 2014	China	NT	59.7 ± 9.3/61.1 ± 6.7	NR	7	MIE	11/14	27/31	12/10	56/50	38/39		
Zhang 2014	China	NT	62.4 ± 8/61.8 ± 8.4	NR	6	MIE	NR	NR	NR	41/42	19/19		
Chen 2015	China	NT	57 (41–72)/56 (48–71)	NR	7	MIE	4/2	1/0	2/3	56/55	3/4		
Yang 2015	China	NT	62 ± 9/62 ± 8	NR	7	MIE	NR	NR	NR	44/43	18/19		
Li 2015	China	NT	73 (70–83)/73 (70–85)	NR	7	MIE	NR	NR	NR	64/188	25/126		

NT neoadjuvant therapy, NOS Newcastle-Ottawa quality assessment scale, MIE minimally invasive oesophagectomy, including MIE, TA, and hybrid MIE, OE open esophagectomy, MIE total minimally invasive esophagectomy, TA thoracoscopic-assisted MIE, Hybrid hybrid minimally invasive esophagectomy
Table 2: Outcomes of complication in included studies

Study	Total MIO/OE	Pulmonary MIO/OE	Circulatory system MIO/OE	Digestive system MIO/OE	AL MIO/OE	RLNP MIO/OE	STR MIO/OE	Mortality MIO/OE
Nguyen	2/6	1/1			1/2	3/4	0/4	0/1
Osugi	25/27	12/14	3/2		NR	2/1	11/9	4/4
Kunisaki	NR	0/1	NR		NR	2/1	3/3	NR
Bernabe	NR	NR	NR	7/8	NR	NR	NR	NR
Van den Broek	14/18	2/2	NR	3/5	2/3	2/3	2/4	NR
Braghetto	18/72	7/22	0/3		4/6	3/17	0/2	1/0
Bresadola	NR	1/2	1/0		NR	1/2	3/1	NR
Shiraishi	NR	25/12	13/9		NR	12/9	42/10	6/5
Smithers	207/76	106/44	60/24		83/9	17/11	8/0	25/14
Benoni	NR	0/2	NR		0/1	1/1	1/1	NR
Fabian	15/31	1/18	5/8	1/0	3/3	1/2	0/3	1/4
Parameswaran	24/15	4/2	0/3	3/1	4/1	6/0	5/4	NR
Saha	3/6	NR	NR		NR	2/3	NR	0/2
Zingg	19/20	17/33	NR		NR	11/11	NR	2/2
Phar	34/27	13/9	18/16		3/1	4/5	6/0	3/10
Perry	13/17	2/3	5/8	5/4	4/6	1/2	2/5	NR
Harnouda	NR	15/5	5/3	3/1	4/2	NR	3/0	NR
Safranek	NR	19/13	NR	17/4	11/1	10/1	5/5	3/1
Schoppmann	NR	5/17	NR	0/1	1/8	4/13	3/4	NR
Schröder	NR	18/17	NR		NR	7/11	NR	NR
Mehran	NR	14/15	9/9	18/8	11/6	NR	NR	NR
Berger	31/32	10/22	1/6		NR	9/6	NR	5/4
Lee	NR	11/20	NR		NR	10/18	NR	4/8
Nafteux	44/61	17/47	11/13		13/6	5/10	NR	6/9
Yamasaki	26/38	7/15	3/6	0/2	6/4	17/20	3/5	0/2
Biere	NR	14/35	1/1	1/0	7/4	1/8	1/1	3/1
Maas	21/33	9/13	3/6		NR	4/3	3/5	2/5
Briez	50/83	22/60	NR	6/4	8/6	NR	NR	2/10
Kinjo	54/54	22/31	10/5	8/9	11/13	21/10	4/10	NR
Mamidanna	NR	276/1419	165/1035		NR	NR	NR	46/274
Sihag	NR	1/33	5/19		NR	0/2	NR	3/5
Sundaram	28/41	5/19	9/19	26/10	4/4	1/1	10/11	2/1
Tsujimoto	13/16	2/10	NR	1/1	7/3	2/2	1/4	1/5
Javidfar	NR	9/26	29/56	19/33	5/7	3/0	22/38	3/7
Bailey	NR	15/18	4/9	1/0	1/0	NR	6/15	2/2
Ichikawa	94/117	20/33	17/38	4/5	14/27	60/77	2/2	0/8
Kitagawa	NR	6/14	NR		NR	NR	13/20	2/1
Noble	NR	14/18	10/7		NR	5/2	NR	2/2
Parameswaran	42/12	7/2	2/1	14/2	NR	2/1	6/3	3/1
Takeno	39/69	NR	NR		NR	NR	NR	4/15
Kubo	57/35	13/16	NR	2/0	10/7	37/14	18/19	2/2
Schneider	7/13	NR	NR		NR	NR	NR	0/2
Daiko	10/12	NR	NR		NR	6/4	3/6	2/6

Yibulayin et al. World Journal of Surgical Oncology (2016) 14:304
Statistical analysis
Data was analyzed using STATA 11 (Stata Corp LP, College Station, Texas, 2011). Fixed or random effects models [31] were used. Odds ratio (OR) was used for categorical variables, while weighted mean difference (WMD) was used for continuous variables, such as operative time, harvested lymph nodes, and blood loss [32]. Q test was used to check the heterogeneity among each study. If the heterogeneity was high ($I^2 > 50$%), Random Effects Model was used to calculate the pooled OR/WMD. Otherwise, the fixed effects model was used [33]. If the heterogeneity test was statistically significant, sensitivity analysis, subgroup analysis, and the influence of every study on the overall effect were performed.

Table 2 Outcomes of complication in included studies (Continued)

Study	Total complication	Pulmonary	Circulatory system	Digestive system	AL	RLNP	STR	Mortality
Kauppi	37/48	13/15	17/27	5/14	5/5	0/4	12/11	NR
Law	NR	4/15	3/16	NR	0/2	4/8	NR	NR
Chen	NR	7/10	NR	2/0	1/0	NR	2/1	NR
Gao	31/36	13/11	NR	7/12	7/6	2/4	1/2	2/3
Shen	32/28	5/6	9/8	1/1	16/14	7/2	2/3	0/1
Liu	22/38	5/21	4/13	3/5	2/4	3/4	3/5	1/3
Mao	14/16	0/2	1/6	0/1	8/1	5/3	NR	NR
Wang	90/145	12/23	21/36	11/13	26/32	6/7	8/16	2/11
MU	28/22	6/4	NR	NR	12/4	NR	NR	1/1
Meng	24/41	9/24	4/11	2/2	6/7	4/4	3/4	1/4
Zhang	NR	4/7	3/5	3/2	3/2	2/1	2/1	NR
Chen	14/19	2/4	3/5	NR	2/3	4/5	1/1	NR
Yang	19/31	NR	NR	NR	NR	NR	NR	NR
Li	32/137	8/51	9/34	2/5	19/45	18/49	4/19	3/16

Table 3 Differences between MIO and OE surgery patients

Variables	No. studies	WMD/OR (95%CI)	P_v	P_Q	I^2 (%)	P_E
Age, years	57 (n = 15790)	$-0.343 (-1.200, 0.514)$	0.433	<0.05	68.1	0.059
NT	34 (n = 5138)	1.364 (1.042,1.785)	0.024	<0.05	73.0	0.362
Comorbidity						
Cardiovascular	16 (n = 10337)	0.913 (0.815,1.022)	0.112	0.030	44.2	0.930
Pulmonary	15 (n = 9779)	0.949 (0.819,1.099)	0.485	0.881	0	0.722
Diabetes	15 (n = 9983)	0.942 (0.798,1.111)	0.476	0.457	0	0.082
Operating time, min	46 (n = 6260)	24.427 (10.912,37.943)	<0.05	<0.05	96.1	0.155
Blood loss, ml	40 (n = 5285)	$-196.060 (~255.195,-136.926)$	<0.05	<0.05	98.9	0.592
LN harvest	46 (n = 6390)	$-1.275 (~5.851,3.301)$	0.585	<0.05	99.8	0.786
LOS, day	45 (n = 13899)	$-3.660 (~4.891,2.428)$	<0.05	<0.05	86.0	0.175
ICU stay, day	27 (n = 10761)	$-1.599 (~2.680, ~0.518)$	0.004	<0.05	98.2	0.078
Complication						
Total complication	35 (n = 5991)	0.700 (0.6260,0.781)	<0.05	0.012	38.5	0.178
Pulmonary	50 (n = 14781)	0.527 (0.431,0.645)	<0.05	<0.05	60.3	<0.05
Circulatory system	36 (n = 12883)	0.770 (0.681,0.872)	<0.05	0.427	2.4	0.386
Digestive system	21 (n = 4081)	1.097 (0.835,1.442)	0.507	0.083	31.7	0.664
AL	50 (n = 7528)	1.023 (0.870,1.202)	0.785	0.304	8.5	0.018
RLNP	37 (n = 5429)	1.108 (0.917,1.339)	0.289	0.089	24.8	0.014
STR	39 (n = 5991)	0.639 (0.522,0.781)	<0.05	0.918	0	0.206
Mortality	38 (n = 14132)	0.668 (0.539,0.827)	<0.05	0.944	0	0.508

NT neoadjuvant therapy, LN lymph node, LOS length of hospital stay, ICU intensive care unit, AL anastomotic leak, RLNP recurrent laryngeal nerve palsy, STR surgical technology-related, Mortality in-hospital/30-day mortality, P_v the P value for pooled, P_Q the P value for Q test, P_E the P value for Egger's test.
and Galbraith Plot Analysis were performed to find out potential origin of heterogeneity. Egger’s Test and Begg’s Funnel Plot were used for diagnosis of potential publication bias [34]. A P value <0.05 was considered as statistical significance. Duval and Tweedie nonparametric “trim and fill” procedure was used to assess the possible effect of publication bias [35].

The Newcastle Ottawa Quality Assessment Scale was used to assess the validity and quality of studies [36], as recommended in the Cochrane Handbook [37]. This scale assigns a star rating based on pre-specified criteria. A total number of quality star ranged from one (low quality) to nine (high quality). A maximum of one star can be attained for each category, except comparability, which has maximum of two stars. The more the stars, the higher is the quality of study.

Results

Study characteristics

A flow chart of the literature search process is shown in Fig. 1. A total of 1021 unique records were identified by search strategy; 917 records were excluded; 16 studies were meta-analyses or systematic overviews [14–19]; ten were review; and four were letter; nine studies did not compare the outcomes of interest [3, 5–12], and six studies were duplicate to previous study. Therefore, 57 studies containing 15,790 cases (both MIO and OE) were included in this meta-analysis [30, 38–93].

Preoperative clinical data as well as quality star ranging from 6 to 8 are shown in Table 1. Of 15,790 cases, 5235 (33.2%) were MIO and 10,555 (66.8%) were OE. Thirty one studies were done in European countries and 26 in Asian countries, where 13 were from China [45–57]. Moreover, 39 studies involved total MIE, 12 studies thoracoscopic-assisted MIE (TA), and seven studies were hybrid (TA + MIE). TNM staging were reported in 40 studies (6265 cases), where 1973 patients (64.4%) in the MIO group and 1042 patients (32.5%) in the OE group were of early stage (stages I and II), mainly male (78.4% (MIO) vs 68.3% (OE)).

Preoperative clinical data

Fifty-seven studies reported patient’s age. There was no statistical significance between two groups after pooled
analysis ($\text{WMD} = -0.343$, $95\% \text{CI} = -1.200 \sim 0.514$, $P_V < 0.433$). Thirty-three studies (5243 cases) reported that the patients in MIE group received more neoadjuvant therapy ($\text{WMD} = -0.343$, $95\% \text{CI} = 1.042 \sim 1.785$, $P_V = 0.024$). Sixteen studies reported preoperative comorbidity, where there was no statistical significance between two groups ($P_V > 0.05$).

Postoperative data

Forty-six studies (6260 cases) reported that operative time was higher in MIO group (Table 3, pooled $\text{WMD} = 1.364$, $95\% \text{CI} = 10.912 \sim 37.943$, $P_V < 0.05$). Forty studies (5285 cases) reported less blood loss in MIO group ($\text{WMD} = -1.96$, $95\% \text{CI} = -255.195 \sim -136.926$, $P_V < 0.05$). Duration of hospital stay (13,899 cases), including ICU stay (10,761 cases), were found to be significantly lower in MIO group ($\text{WMD} = -1.599$, $95\% \text{CI} = -2.680 \sim -0.518$, $P_V < 0.05$ and $\text{WMD} = -3.66$, $95\% \text{CI} = -4.891 \sim -2.428$, $P_V < 0.05$). There was no significant difference between two groups in forty-six studies (6390 cases) reported for harvested lymph nodes (Table 3, $\text{WMD} = -1.275$, $95\% \text{CI} = -5.851 \sim 3.301$, $P_V = 0.585$). There was significant heterogeneity in the outcome among all the indices of postoperative data. Stratified analysis was performed according to ethnicity (Asian/Caucasian); however, heterogeneity still existed in subgroups. We then gradually removed small sample size, with emphasis on not altering the overall qualitative results.

Complications

MIO and total complications

Thirty-five studies including 5991 cases reported total complications, where 41.5% (1206/2907) were allocated to MIE group and 48.2% (1486/3084) were allocated to OE group, with overall morbidity of 44.9% (2692/5991) (see Table 2).

Low heterogeneity was found among studies ($I^2 = 38.5\%$, $P_Q = 0.012$), so the fixed effects model was used (see Table 3). The pooled $OR = 0.70$, $95\% \text{CI} = 0.626 \sim 0.781$, $P_V < 0.05$ indicated total complication was significantly lower in MIO group (Fig. 2). Publication bias was assessed by Egger’s Test and Begg’s Funnel Plot; no publication bias could be discovered ($P_E = 0.178$).

MIO and pulmonary complications

Fifty studies including 14,781 cases reported pulmonary complications, where 17.1% (813/4761) were in MIO group and 22.6% (2264/10,020) were in OE group, with overall morbidity of 20.8% (3077/14,781).

Fig. 3 Meta-analysis for MIE and pulmonary complications
There was very strong evidence of reduced risk of pulmonary complications in the MIO group (OR = 0.527, 95%CI = 0.431 - 0.645, \(P_V < 0.05 \)), with statistical heterogeneity (\(I^2 \) of 60.3%, \(P_O = 0.012 \)) (Fig. 3, Table 3). In order to find out other sources of heterogeneity, Galbraith Plot Analysis was performed to identify which study results in the heterogeneity (Fig. 4). Pham et al. [52] and Mamidanna et al. [66] were outliers from the Galbraith Plot Analysis and \(I^2 \) values decreased after removing the study (OR = 0.502 95%
CI = 0.425 ~ 0.592, $P_V < 0.05$, $I^2 = 26.6\%$, $P_Q = 0.05$). However, the funnel plot figure (Fig. 5) showed significant statistical difference ($P_E < 0.05$), indicating the possibility of publication bias.

MIO and mortality

Thirty-eight studies addressed the mortality (MIO 4379 vs OE 9753). The mortality risk was 3.8% (124/4379) in MIO group versus 4.5% (437/9753) in OE group. There was very strong evidence of reduced mortality in MIO group (OR = 0.668, 95% CI = 0.539 ~ 0.827, $P_V < 0.05$), with statistical homogeneity (I^2 of 0%, $P_Q = 0.944$) (Fig. 6).

MIO and cardiovascular complications

Thirty-six studies reported cardiovascular complications (MIO 3745 vs OE 9138). There was very strong evidence of reduced cardiovascular complications in MIO group (OR = 0.770, 95% CI = 0.681 ~ 0.872, $P_V < 0.05$), with statistical homogeneity (I^2 of 2.4%, $P_Q = 0.944$) (Fig. 7).

MIO and surgical technology related (STR) complications

Thirty-nine studies reported STR complications (MIO2933 vs OE 3058). There was very strong evidence of reduced STR complications in MIO group (OR = 0.770, 95% CI = 0.681 ~ 0.872, $P_V < 0.05$), with statistical homogeneity (I^2 of 9.7%, $P_Q = 0.944$) (Fig. 8).

MIO and gastrointestinal complications

Twenty-one studies reported gastrointestinal complications (MIO 1872 vs OE 2209). There was no evidence of reduced gastrointestinal complications in MIO group (OR = 1.097, 95% CI = 0.835 ~ 1.442, $P_V = 0.507$), with statistical homogeneity (I^2 of 8.5%, $P_Q = 0.304$) (Table 3).

MIO and anastomotic leak (AL)

Fifty studies reported anastomotic leak (MIO 3680 vs OE 3848). There was no evidence of reduced anastomotic leak in MIO group (OR = 1.023, 95% CI = 0.870 ~ 1.202, $P_V = 0.785$), with statistical homogeneity (I^2 of 8.5%, $P_Q = 0.304$) (Table 3).
Yibulayin et al. World Journal of Surgical Oncology (2016) 14:304

Publication bias analysis

Publication bias was assessed by Egger’s Test and Begg’s Funnel Plot. Begg’s Funnel Plot is shown in Fig. 5, with significant statistical difference ($P_E < 0.05$) (Table 3). This indicated the possibility of publication bias, so sensitivity analysis using “trim and fill” method was carried out, with the aim to impute hypothetically negative unpublished studies, to mirror the positive studies that cause funnel plot asymmetry [35], and to show consistent and stable results between MIO and pulmonary complications (Fig. 9), anastomotic leak, and recurrent laryngeal nerve palsy.

MIO and recurrent laryngeal nerve palsy (RLNP)

Thirty-seven studies reported recurrent laryngeal nerve palsy (MIO 2624 vs OE 2805). There was no evidence of reduced RLNP in MIO group (OR = 1.108, 95% CI = 0.917 ~ 1.339, $P_V = 0.289$), with statistical homogeneity (I^2 of 24.8%, $P_Q = 0.089$) (Table 3).

Sensitivity analysis

As sample size for cases and controls in all studies is not same (ranging from 9 to 6347), we gradually removed small sample size without altering the qualitative overall results. According to the sensitivity analysis shown in Fig. 10, we removed the Mamidanna et al. [66], without alteration, where I^2 values decreased, indicating that the results were stable.

Discussion

MIO has been investigated for decades and is considered to be advantageous compared to OE. However, in the previous studies, the analyzed groups of patients who underwent MIO were small and the reports were mostly retrospective comparative studies, and there was no consensus as to which operative method is superior [94]. Therefore, an updated meta-analysis is performed, which includes the largest and the most complete collections of published data.

We found higher operative duration in the MIO group, consistent with Kunisaki’s [40], Shiraishi’s [45],
and randomized controlled trials [30] reported, perhaps due to surgeons' familiarization with a new and complex techniques. Blood loss in the MIO group was found to be lower compared with OE, in accordance with the results of several case reported and recently published meta-analyses [14, 20].

A shorter hospital stay in the MIO group indicated a faster postoperative recovery than OE group, consistent with other published meta-analyses [14, 20, 21, 30]. We did not find a significant number of harvested lymph nodes in the MIO group [23]. However, significant heterogeneity was seen among all indices of postoperative data, explained by the fact that postoperative data are dependent on operator and tumor characteristics.

Total complication rates varied between 20.5 and 63.5% (Table 2). The MIO group showed lower total complication rates, pulmonary complications occupying the major part. However, a number of studies have reported significantly lower pulmonary complications for those who underwent MIO 17.1% (813/4761) versus OE 22.6% (2264/10,020), with overall morbidity of 20.8% (3077/14,781), consistent with the result of 3.1–37.0% from other studies [15–20, 45, 58–76, 95].

Kinugasa et al. and Ferguson et al. [95, 96] noted that development of pneumonia post procedure was associated with worse prognosis for overall survival ($P < 0.01$). In addition, Dumont et al. [97] also showed that two thirds of all fatal complications were respiratory in nature. Sauvanet et al. [98] reported that pulmonary morbidity was associated with age >60, with no significant differences in two groups.

The pooled OR of 0.527 showed MIO to be more advantageous than OE in reducing pulmonary morbidity. Although statistical heterogeneity and publication bias were found, we demonstrated the superiority of MIO through statistical methods. However, several factors have been associated with pulmonary complications post procedure, including preoperative status, intraoperative details, and postoperative details [99].

Gex et al. reported that overall 30-day mortality rate was 4.3% between 2004 and 2009, compared with 7.6% in
Our study found the overall 30-day mortality rate of 5.8% and the pooled OR of 0.668, showing that MIO to be advantageous than OE in reducing mortality. The main advantages of MIO over conventional OE are minimal trauma, small incision, less blood loss, etc. [6]. Other factors independently associated with 30-day mortality included TNM staging, preoperative neoadjuvant therapy, comorbidity, diabetes, increased age, and intraoperative blood loss. However, there was no difference between two groups in terms of age and comorbidity. We found increased number of patients having neoadjuvant therapy in MIO group and patients selected for MIO were always in the early stages. The bias in the selection of patients may have influenced the accuracy of the conclusion, which should be taken into consideration.

Arrhythmia, heart failure, pulmonary embolism, and other cardiovascular complications are recognized as common problems that caused significant morbidity and mortality. Zhou et al. [24] reported significant decrease in the morbidity of arrhythmia and pulmonary embolism in MIO group. Corresponding to this, (see Table 3), we found MIO to be superior to OE in reducing morbidity of system complications, according to the pooled OR = 0.777. Weidenhaget et al. [101] also indicated that the perforation from minimally invasive surgery as such could decrease the risks leading to arrhythmia.

Rizk et al. [102] indicated that “surgical technology related complications,” defined as complications caused directly by operative techniques, had no relationship with overall survival post procedure. However, in our meta-analysis, we found strong evidence of reduced risk of STR complications in the MIO group.

Anastomotic leakage (AL) is a serious complication of esophageal resection and is associated with significant morbidity and mortality [4]. In accordance with Zhou et al’s conclusion [17], we also did not find the evidence of reduced risk of anastomotic leak in the MIO group. Similarly, we also did not find any significant differences in two groups in terms of RLNP and gastrointestinal complications.

Although we conducted comprehensive meta-analysis, our study still has its limitations. (1) Out of 57 studies, only one study is randomized controlled trial (RCT), while others were case-control or cross-sectional designs. Seven studies were of small sample size, which might have influenced the final results of our study. (2) Patients selected for MIO are unlikely to have been representative of the general population of esophageal cancer. We found more patients having neoadjuvant therapy in MIO group, and the patients selected for MIO were always in the early stages, creating selection bias. (3) In order to highlight the advantages of MIO, surgeons would prefer to publish positive results, and
unsatisfactory results may have been less inclined in their papers; all these can lead to publication bias. (4) In our study, we compared MIO with OE. MIO consists of different procedures. Although we performed a subgroup analysis according to different procedures, the results were also not qualitatively altered. However, lots of differences exist among these procedures, which will affect the quality of this meta-analysis, and the learning curve of MIO is quite steep, which may influence the outcome of MIE. These limitations may result in an overestimation or underestimation of the effect of MIO. In addition, 19 studies did the follow-up visit, and all those studies indicated that the 3-year survival, 5-year survival, and overall recurrence rate did not differ between the two groups. Due to the difficulty in data extraction, no pooled analysis was performed, which may have influential role in this study.

Conclusions
In summary, this meta-analysis indicates that MIO is a feasible and a reliable surgical procedure and is superior to OE, with less perioperative complications and in-hospital mortality. However, due to certain limitations of this study, as aforementioned above, further large sample and RCT studies are needed to estimate the effect of MIO and establish the guidelines for future.

Abbreviations
MIE: Minimally invasive esophagectomy; MIO: Minimally invasive oesophagectomy; OE: Open esophagectomy; RLNP: Recurrent laryngeal nerve palsy; STR: Surgical technology related; TA: Thoracoscopic assisted

Acknowledgements
None.

Funding
The authors declare no funding disclosures or sponsors to this study.

Availability of data and materials
The database supporting the conclusion of this article is included within the article and its additional files (fig file and table file).

Authors’ contributions
YW collected and analyzed the data and drafted the manuscript. WS contributed to the designing, writing, and editing of the manuscript, searching for and adding references, and correspondence with the co-authors. AS and HL offered the technical or material support. All authors read and approved the final manuscript.
References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.
2. Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin. 1999;49:33–64. 1.
3. Schweigert M, Dubeaz C, Stadhuber RJ, Muschweck H, Stein HJ. Treatment of intrathoracic esophageal anastomotic leaks by means of endoscopic stent implantation. Interact Cardiovasc Thorac Surg. 2011;12:147–51.
4. Morita M, Nakano T, Fujisaka Y, Kubo N, Yarnashita N, Yoshinaga K, Saeke H, Emi Y, Kakeji Y, Shirabe K, Maehara Y. In-hospital mortality after a surgical resection for esophageal cancer: analyses of the associated factors and historical changes. Ann Surg Oncol. 2011;18:1757–65.
5. Hulscher JB, van Sandick JW, de Boer AG, Vijnghoven BP, Tijssen JG, Fockens P, Stalmeier PF, Ten KF, van Dekken H, Obertop H, et al. Extended transthoracic resection compared with limited transthoracic resection for adenocarcinoma of the esophagus. N Engl J Med. 2002;347:1662–9.
6. Luketich JD, Alvelo-Rivera M, Buenaventura PO, Christie NA, McCaughan JS, Litle VR, Schauer PR, Close JM, Fernando HC. Minimally invasive esophagectomy: outcomes in 222 patients. Ann Surg. 2003;238:846–94. 494–495.
7. Dimick JB, Baigler DO, Birkmeyer JD. Are mortality rates for different operations related?: implications for measuring the quality of noncardiac surgery. Med Care. 2006;44:774–8.
8. Earlam R, Curha-Melj R. Oesophageal squamous cell carcinoma: I. A critical review of surgical treatment and the literature. J Thorac Dis. 2013;21:130–7.
9. Sarkaria IS, Rish NP. Robotic-assisted minimally invasive esophagectomy: the Ivor Lewis approach. Thorac Surg Clin. 2014;24:211–22.
10. D’Journo XB, Thomas PA. Current management of esophageal cancer. CA Cancer J Clin. 2014;64:1621–9.
11. Van den Broek WT, Makay O, Berends FJ, Yuan JZ, Houdijk AP, Meijer S, Makay O, Berends FJ, Yuan JZ, Houdijk AP, Meijer S, Cuesta MA. Laparoscopically assisted transhiatal resection for malignancies of the distal esophagus. Surg Endosc. 2004;18:181–7.
12. Bernabe KQ, Bolton JS, Richardson WS. Laparoscopic hand-assisted versus open transhiatal esophagectomy: a case–control study. Surg Endosc. 2005;19:334–7.
13. Osugi H, Takemura M, Higashino M, Takada N, Lee S, Kinoshita H. A comparison of video-assisted thoracoscopic esophagectomy and radical lymph node dissection for squamous cell cancer of the oesophagus. Br J Surg. 2003;90:108–13.
14. Kunisaki C, Hatot S, Imada T, Akiyama H, Ono H, Otsuka Y, Matsuda G, Torisumas A, Moruma K, Shimada H. Video-assisted thoracoscopic esophagectomy with a voice-controlled robot: the AESOP system. Surg Laparosc Endosc Percutan Tech. 2004;14:323–7.
15. 2005. 32009:9022–6.
16. Blackwell A, Blackwell A, et al. Surgical management of esophageal cancer: evolution and review. Surg Laparosc Endosc Percutan Tech. 2012;22:383–6.
17. Zhou C, Zhang L, Wang H, Ma X, Shi B, Chen W, He J, Wang K, Liu P, Ren Y. Superiority of minimally invasive esophagectomy in reducing in-hospital mortality of patients with resectable oesophageal cancer: a meta-analysis. PLoS One. 2015;10:e0132889.
18. Dantoc MM, Cox MR, Estlick GD. Evidence to support the use of minimally invasive esophagectomy for esophageal cancer: a meta-analysis. Arch Surg. 2012;147:768–76.
19. Schmer E, Perry K, Melvin WS. Minimally invasive esophagectomy for esophageal cancer: evolution and review. Surg Laparosc Endosc Percutan Tech. 2012;22:383–6.
20. Utley L, Campbell F, Rhodes M, Cantrell A, Stegenga H, Lloyd-Jones M. Minimally invasive esophagectomy versus open surgery: is there an advantage? Surg Endosc. 2015;29:724–31.
21. Jacobs M, Macfield RC, Elbers RG, Sitnikova K, Korflage U, Smets EM, Henselmann I, van Berge HM, de Haas JC, Blazelie BM, Sprangers MA. Meta-analysis shows clinically relevant and lasting deterioration in healthcare-related quality of life after esophageal cancer surgery. Qual Life Res. 2014;23:1097–115.
22. Bierer BS, van Berge HM, Mass KW, Bonavita L, Garcia JR, Gisbertz SS, Klinkenbijl JH, Hoffmann MW, de Lange ES, et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label randomised controlled trial. Lancet. 2012;379:987–92.
23. Mantel N, Haenzel W. Statistical aspects of the analysis of data from retrospective studies of diseases. J Natl Cancer Inst. 1959;22:719–48.
24. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.
25. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.
26. Egger M, Davey SG, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.
27. Willi C, Bodemann P, Ghali WA, Fairis PD, Cornuz J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2007;298:2654–64.
28. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 3 Dec 2016.
29. Higgins JP, Altmann DG, Gotschke JC, Jopin P, Moher D, Osman AD, Savovic J, Schulz KF, Weeks L, Steine JA. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
30. Nguyen NT, Follette DM, Schneider PD, Roberts P, Goodnight JJ. Comparison of minimally invasive esophagectomy with transthoracic and transhiatal esophagectomy. Surg Endosc. 2000;13:5920–5.
31. 2013:23:1097–115.
32. Biere S, van Berge HM, Maas KW, Bonavita L, Rosman C, Garcia JR, Gisbertz SS, Klinkenbijl JH, Hoffmann MW, de Lange ES, et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label randomised controlled trial. Lancet. 2012;379:987–92.
33. Mantel N, Haenzel W. Statistical aspects of the analysis of data from retrospective studies of diseases. J Natl Cancer Inst. 1959;22:719–48.
34. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.
35. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.
36. Egger M, Davey SG, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.
37. Will C, Bodemann P, Ghali WA, Fairis PD, Cornuz J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2007;298:2654–64.
38. The Newcastl-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 3 Dec 2016.
39. Higgins JP, Altmann DG, Gotschke JC, Jopin P, Moher D, Osman AD, Savovic J, Schulz KF, Weeks L, Steine JA. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
40. Nguyen NT, Follette DM, Schneider PD, Roberts P, Goodnight JJ. Comparison of minimally invasive esophagectomy with transthoracic and transhiatal esophagectomy. Surg Endosc. 2000;13:5920–5.
41. Osugi H, Takemura M, Higashino M, Takada N, Lee S, Kinoshita H. A comparison of video-assisted thoracoscopic esophagectomy and radical lymph node dissection for squamous cell cancer of the oesophagus with open operation. Br J Surg. 2003;90:108–13.
42. Kunisaki C, Hatot S, Imada T, Akiyama H, Ono H, Otsuka Y, Matsuda G, Torisumas A, Moruma K, Shimada H. Video-assisted thoracoscopic esophagectomy with a voice-controlled robot: the AESOP system. Surg Laparosc Endosc Percutan Tech. 2004;14:323–7.
43. Bernabe KQ, Bolton JS, Richardson WS. Laparoscopic hand-assisted versus open transhiatal esophagectomy: a case–control study. Surg Endosc. 2005;19:334–7.
44. Van den Broek WT, Makay O, Berends FJ, Yuan JZ, Houdijk AP, Meijer S, Cuesta MA. Laparoscopically assisted transhiatal resection for malignancies of the distal esophagus. Surg Endosc. 2004;18:181–7.
84. Shen Y, Zhang Y, Tan L, Feng M, Wang H, Khan MA, Liang M, Wang Q. Extensive mediastinal lymphadenectomy during minimally invasive esophagectomy: optimal results from a single center. J Gastrointest Surg. 2012;16:715–21.
85. Liu BX, Li Y, Qin JJ, Zhang RX, Liu XB, Sun HB, Liu SL. Comparison of thoraco-laparoscopic and open three-field subtotal esophagectomy for esophageal cancer. Zhonghua Wei Chang Wai Ke Za Zhi. 2012;15:938–42.
86. Mao T, Fang WT, Gu ZT, Yao F, Guo XF, Chen WH. Comparative study of perioperative complications and lymphadenectomy between minimally invasive esophagectomy and open procedure. Zhonghua Wei Chang Wai Ke Za Zhi. 2012;15:922–5.
87. Wang H, Tan LJ, Li JP, Shen YX, Zhang Y, Feng MX, Wang Q. Evaluation of safety of video-assisted thoracoscopic esophagectomy for esophageal carcinoma. Zhonghua Wei Chang Wai Ke Za Zhi. 2012;15:926–9.
88. Mu J, Yuan Z, Zhang B, Li N, Lyu F, Mao Y, Xue Q, Gao S, Zhao J, Wang D, et al. Comparative study of minimally invasive versus open esophagectomy for esophageal cancer in a single cancer center. Chin Med J (Engl). 2014;127:747–52.
89. Meng F, Li Y, Ma H, Yan M, Zhang R. Comparison of outcomes of open and minimally invasive esophagectomy in 183 patients with cancer. J Thorac Dis. 2014;6:1218–24.
90. Zhang J, Xu M, Guo M, Mei X, Liu C. Analysis of postoperative quality of life in patients with middle thoracic esophageal carcinoma undergoing minimally invasive Ivor-Lewis esophagectomy. Zhonghua Wei Chang Wai Ke Za Zhi. 2014;17:915–9.
91. Chen X, Yang J, Peng J, Jiang H. Case-matched analysis of combined thoracoscopic-laparoscopic versus open esophagectomy for esophageal squamous cell carcinoma. Int J Clin Exp Med. 2015;8:13516–23.
92. Yang J, Lyu B, Zhu W, Chen J, He J, Tang S. A retrospective cohort comparison of esophageal carcinoma between thoracoscopic and laparoscopic esophagectomy and open esophagectomy. Zhonghua Wai Ke Za Zhi. 2015;53:378–81.
93. Li J, Shen Y, Tan L, Feng M, Wang H, Xi Y, Wang Q. Is minimally invasive esophagectomy beneficial to elderly patients with esophageal cancer? Surg Endosc. 2015;29:925–30.
94. Wallner G, Zgodzinski W, Masiak-Segit W, Skoczylas T, Dabrowski A. Minimally invasive surgery for esophageal cancer - benefits and controversies. Kardiochir Torakochirurgia Pol. 2014;11:151–5.
95. Ferguson MK, Durkin AE. Preoperative prediction of the risk of pulmonary complications after esophagectomy. J Thorac Cardiovasc Surg. 2002;123:661–9.
96. Kinugasa S, Tachibana M, Yoshimura H, Ueda S, Fuji T, Dhar DK, Nakamoto T, Nagasue N. Postoperative pulmonary complications are associated with worse short- and long-term outcomes after extended esophagectomy. J Surg Oncol. 2004;88:71–7.
97. Dumont P, Wihlm JM, Hentz JG, Roeslin N, Lion R, Monard G. Respiratory complications after surgical treatment of esophageal cancer. A study of 309 patients according to the type of resection. Eur J Cardiothorac Surg. 1995;9:539–43.
98. Sausenet A, Mariette C, Thomas P, Lozac'h P, Segol P, Tiet E, Delpero JR, Collet D, Leborgne J, Pradere B, et al. Mortality and morbidity after resection for adenocarcinoma of the gastroesophageal junction: predictive factors. J Am Coll Surg. 2005;201:253–62.
99. D’Amico TA. Outcomes after surgery for esophageal cancer. Gastrointest Cancer Res. 2007;1:188–96.
100. Gez G, Genstel E, Righini M, LE Gal G, Augesky D, Roy PM, Sanchez O, Verschuren F, Rutschmann OT, Penneger T, Perrier A. Is atrial fibrillation associated with pulmonary embolism? J Thromb Haemost. 2012;10:347–51.
101. Weidenhagen R, Hard WH, Guertznitz KU, Eichhorn ME, Speltberg F, Jauch KW. Anastomotic leakage after esophageal resection: new treatment options by endoluminal vacuum therapy. Ann Thorac Surg. 2010;89:1674–81.
102. Ritz NP, Bach PB, Schiag D, Bains MS, Turnbull AD, Karpeh M, Brennan MF, Rusch VW. The impact of complications on outcomes after resection for esophageal and gastroesophageal junction cancer. J Am Coll Surg. 2004;198:42–50.