CASE REPORT

Conversion therapy for advanced penile cancer with tislelizumab combined with chemotherapy: A case report and review of literature

Xiang-Yu Long, Shuang Zhang, Lian-Sha Tang, Xiang Li, Ji-Yan Liu

Abstract

BACKGROUND
Locally advanced penile squamous cell carcinoma with unresectable inguinal lymph node metastasis has a poor prognosis, and surgical treatment alone offers limited benefits. Effective conversion therapy regimens are urgently needed.

CASE SUMMARY
We describe a locally advanced penile squamous cell carcinoma patient with bulky, fixed inguinal lymph node metastasis complicated with genital skin ulcers who underwent inguinal lymph node dissection and achieved a pathological complete response with conversion therapy comprising immunotherapy plus chemotherapy.

CONCLUSION
For unresectable locally advanced penile squamous cell carcinoma, neoadjuvant immunotherapy combined with chemotherapy is a potential treatment approach. Biomarkers of immunotherapy efficacy need to be explored, and clinical trials are needed to test these strategies.

Key Words: Conversion therapy; Immunootherapy; PD-1 blockade; HPV; Penile squamous
INTRODUCTION

Penile carcinoma is a rare tumor in the male genitourinary system, and the main histopathological type is squamous cell carcinoma. The etiology of penile carcinoma is not entirely clear; however, there is a strong association with human papillomavirus (HPV)[1,2] and a chronic inflammatory state of the foreskin and glans[3,4]. According to previous studies, partial or total excision of the penis is the primary treatment for localized tumors[5]. Unfortunately, patients with penile squamous cell carcinoma (PSCC) are usually diagnosed in the advanced stage. For locally advanced PSCC patients with bulky, fixed, bilateral inguinal lymph node metatases and extra-nodal extension, surgery alone offers little benefit, and the prognosis is very poor[6-8]. The use of multiple strategies to reduce the pathological stage and even convert the case to operable can improve prognosis and increase the survival rate. Neoadjuvant chemotherapy is the usual treatment for this patient population[9], but multiple small cohort studies have demonstrated that nearly half of the patients do not benefit from neoadjuvant chemotherapy alone, highlighting the urgent need to find new and effective treatments[10,11].

In recent years, immune checkpoint inhibitors (ICIs) have become a hot topic in oncology treatment and the standard of care for cancers such as melanoma and lung cancer[12-16]. By inhibiting programmed cell death protein 1 (PD-1) or PD-1 ligand (PD-L1), ICIs block the inhibition of CD8+ effector T cells and reverse the suppressive tumor microenvironment, which may improve the prognosis of patients with disease resistant to other treatment modalities (e.g., chemotherapy/radiotherapy)[17]. For some unresectable tumors, neoadjuvant immunotherapy offers a potential solution by mediating tumor regression to the point of becoming operable or even cured[18,19]. Accumulating evidence in lung and breast cancer has demonstrated that neoadjuvant immunotherapy increases the rate of pathological response and improves overall survival[20,21]. However, immunotherapy combined with chemotherapy for patients with unresectable locally advanced PSCC has rarely been reported.

CASE PRESENTATION

Chief complaints

A 60-year-old male patient, who was found to have a subpreputial mass for 1 year, was admitted to the West China Hospital of Sichuan University for 3 mo after the diagnosis of unresectable penile cancer.

History of present illness

In February 2019, the patient went to Hubei Provincial People’s Hospital and complained of a subpreputial mass. The patient underwent partial penile resection plus partial biopsy of the left inguinal lymph node on November 12, 2019. The patient was admitted to the West China Hospital of Sichuan University 21 d after surgery, where an enhanced computed tomography (CT) of the pelvis showed multiple enlarged lymph nodes in the left inguinal region; the largest lymph node was 4.0 cm × 2.5 cm (Figure 1A). Inguinal lymph node biopsy was performed on December 11, 2019, and cancer cells were detected. The patient had a repeat CT scan on February 25, 2020, which indicated that the lesion had grown.
History of past illness
The patient had a history of hypertension for 10 years, and the highest blood pressure was 180/100 mmHg. The blood pressure was well controlled by oral amlodipine daily. Also, the patient had multiple sexual partners.

Personal and family history
Family and personal history were unremarkable. He had no significant medical history or drug allergy.

Physical examination
A poor general condition, Eastern Cooperative Oncology Group score of 2 points. A subpreputial mass located in the left groin was palpable, with a size of 10 cm × 6 cm. The mass was hard, fixed and inactive. No other apparently positive signs were found.

Laboratory examinations
The patient was admitted to our hospital, and the relevant blood tests were normal.
Imaging examinations

The patient was admitted to the West China Hospital of Sichuan University 21 d after surgery, where an enhanced CT of the pelvis showed multiple enlarged lymph nodes in the left inguinal region; the largest lymph node was 4.0 cm × 2.5 cm (Figure 1A). After consultation with a multidisciplinary team, the decision was reached that it would be difficult to perform a complete inguinal lymph node dissection. The patient was enrolled in a clinical trial of CDP1, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody. However, a larger inguinal lesion developed after 6 cycles of CDP1. The lesion was evaluated as progressive disease by CT scan (Figure 1B). Next, the patient received chemotherapy (paclitaxel 240 mg D1 plus cisplatin 40 mg D1-3) after withdrawal from the clinical trial. After the 1st cycle of chemotherapy, no change in the tumor mass was found (Figure 1C).

FINAL DIAGNOSIS

Locally advanced PSCC with unresectable inguinal lymph node metastasis (T3N3M0, IV).

TREATMENT

Distal penectomy and biopsy of the left inguinal lymph node were subsequently performed. The postoperative pathological biopsy showed high-/medium-differentiated squamous carcinoma of the penis invading the penile corpus cavernosum, with no involvement of the uroepithelium. Pathological biopsy of the left inguinal lymph node showed loss of normal lymph node structure and multifocal cancerous infiltration of fibrous tissue. The final pathological stage was IV (pT3N3M0), and the timeline of treatment and procedures is shown in Figure 2.

Tislelizumab, a humanized IgG4 anti-PD-1 monoclonal antibody [22], was added to the chemotherapy regimen. After three cycles of treatment with tislelizumab plus chemotherapy, the inguinal ulcer in the patient healed. Moreover, enhanced pelvic CT (Figure 1D) indicated that the inguinal mass was significantly smaller, and the effect of conversion therapy was obvious. Based on the effects of the combination therapy, bilateral inguinal lymph node dissection was performed.

OUTCOME AND FOLLOW-UP

Postoperative pathological examination indicated no tumor in 21 inguinal lymph nodes on the left side or in 18 inguinal nodes on the right side. Some lymph nodes presented as necrotic with multinucleated giant cell reactions, indicating a complete response to the treatment strategy. After surgery, the patient continued taking 200 mg tislelizumab alone for three cycles and requested to discontinue immunotherapy due to irritating side effects (diarrhea/abdominal pain). The patient had no evidence (Figure 1E) of tumor recurrence at regular postoperative follow-ups over 12 mo.

DISCUSSION

Chemotherapy is commonly used as a translational therapy for patients with locally advanced unresectable PSCC. However, despite a meaningful response to systemic chemotherapy, long-term survival rates are disappointing, with 2-year progression-free survival and disease-specific survival rates of 12% and 28%, respectively[10,23,24]. Moreover, patients with disease that is resistant to chemotherapy have a worse prognosis. Therefore, there is an urgent need to find new translational therapeutic strategies with higher efficacy and low toxicity profiles. Based on the experience with advanced non-small cell lung cancer and melanoma, PD-(L)1 blockade plus chemotherapy may be a promising option[12-16].

Theoretically, in the primary tumor, PD-(L)1 blockade relieves the suppressive immune microenvironment, restores the activity of exhausted cytotoxic T cells and mediates tumor regression[25]. Simultaneously, chemotherapy causes tumor cell necrosis and the release of more tumor antigens. In the presence of ICIs, dendritic cells can present antigens to T cells more efficiently, thereby initiating tumor-specific T cell proliferation and activation. Activated T cells enter the bloodstream from tumor-draining lymph nodes and migrate to tumor sites and distant micrometastases, shrinking the primary lesion and reducing postoperative distant recurrence[26]. In addition, the preoperatively induced systemic immune response generates long-term immune memory and prevents tumor recurrence[27]. These results suggest that immunotherapy combined with chemotherapy is a promising translational treatment strategy.
Numerous factors are involved in the effectiveness of immunotherapy. To explore treatment options, we performed immunohistochemistry and next-generation sequencing analysis of samples from our patient. PD-L1 expression in tumor tissues is a validated companion diagnostic test for predicting the efficacy of treatment with ICIs. Several studies have shown that 40%-60% of PSCC patients express PD-L1 (PD-L1 positivity defined by > 5% tumor cell expression), and high PD-L1 expression is positively associated with worse stage and prognosis[28] and with fewer tumor-infiltrating lymphocytes in tumor tissue[29]. The PD-L1 expression score for our patient was 40% (tumor proportion score), which provided the rationale for the therapeutic use of ICIs for patients with PSCC.

Tumor mutation burden (TMB) is the number of nonsynonymous somatic mutations in coding regions of tumor cells per megabase of DNA. PSCC is a heterogeneous disease, harboring approximately 5.45 genomic alterations per tumor[30]. TMB has been suggested as a promising immunotherapeutic marker in many cancer types[31]. However, the TMB cutoff values are not the same in different cancers[32]. In our case, the patient had a TMB of 5.0 mutations per megabase, slightly higher than the median value (4.5 mutations per megabase) in PSCC, and a recent report suggested that mutations in select genes may be a better predictor than TMB[33]. High microsatellite instability is another valid marker of sensitivity to ICIs. In our case, the tumor was microsatellite stable; the literature reports a low incidence of high microsatellite instability in PSCC[34].

More interestingly, laboratory testing for our patient revealed the presence of HPV16 DNA. Patients with HPV+ PSCC have a better prognosis than those with HPV- disease[35]. The possible mechanism is that the virus increases the production of neoantigens while increasing the number of infiltrating CD8+ T cells in the tumor microenvironment[36]. Does this mean that HPV could be a meaningful biomarker for immunotherapy? Considering the impact of HPV on cancer, several clinical trials of combination immunotherapy with HPV-targeted vaccines have been conducted in HPV-associated malignancies. Current results regarding the association between the status of HPV and the expression of PD-L1 are conflicting and need to be confirmed by more studies. However, the differences in TMB between patients with HPV- and HPV+ PSCC are minimal[28].

In addition, our patient had high expression of EGFR by immunohistochemistry and was treated experimentally with CDP1. Several studies have shown that high EGFR expression detected by immunohistochemistry is frequent in PSCC[37]. High expression of EGFR may be associated with poor prognosis, implying the potential for better effects upon targeting EGFR[38]. Retrospective studies[39] have shown that the use of cetuximab or dacomitinib (a pan-HER tyrosine kinase inhibitor) provides benefit to only a small number of patients. Our patient experienced disease progression after attempting CDP1 therapy. Next-generation sequencing of this case showed the p.E453K mutation in PIK3CA. In colon cancer, PIK3CA mutations are significantly associated with clinical resistance to anti-EGFR monoclonal antibodies[40].

CONCLUSION
In conclusion, this case report described HPV+ locally advanced inoperable PSCC that responded well to ICI plus chemotherapy. The tumor was converted to operable, and the patient underwent inguinal lymph node dissection. The patient achieved a pathological complete response. Postoperative disease-free survival exceeded 12 mo, with the expectation of continued prolongation of survival. For this group, immunotherapy combined with chemotherapy is a promising translational treatment option. However, more clinical trials are needed to validate this hypothesis, and effective biomarkers need to be further explored.
FOOTNOTES

Author contributions: Long XY and Liu JY conceived and designed the project; Long XY, Zhang S and Li X were responsible for the sample collection; Long X and Liu JY wrote the manuscript and are responsible for all data present in current research.

Supported by the Key Research and Development Program of Guang’an, China, No. 2019ZYZF0121.

Informed consent statement: Consent was obtained from the patient for publication of this report.

Conflict-of-interest statement: All the authors have stated that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Xiang-Yu Long 0000-0003-3824-4476.

S-Editor: Liu JH

L-Editor: Filipodia

P-Editor: Liu JH

REFERENCES

1. Fleherty A, Kim T, Giuliano A, Magliocco A, Hakky TS, Pagliaro LC, Spiess PE. Implications for human papillomavirus in penile cancer. *Urol Oncol* 2014; 32: 53.e1-53.e8 [PMID: 24239463 DOI: 10.1016/j.urolonc.2013.08.010]

2. Olesen TB, Sand FL, Rasmussen CL, Albiere V, Toft BG, Norrild B, Munk C, Kjer SK. Prevalence of human papillomavirus DNA and p16**ink4a** in penile cancer and penile intraepithelial neoplasia: a systematic review and meta-analysis. *Lancet Oncol* 2019; 20: 145-158 [PMID: 30573285 DOI: 10.1016/S1470-2045(18)30682-X]

3. Minhas S, Manseck A, Watya S, Hegarty PK. Penile cancer—prevention and premalignant conditions. *Urology* 2010; 76: S24-S35 [PMID: 20691883 DOI: 10.1016/j.urology.2010.04.007]

4. Diller J, von Krogh G, Horenblas S, Meijer CJ. Etiology of squamous cell carcinoma of the penis. *Scand J Urol Nephrol Suppl* 2000; 189-193 [PMID: 11144896 DOI: 10.1080/00365590050509913]

5. Philippou P, Shabbir M, Malone P, Nigam R, Muneer A, Ralph DJ, Minhas S. Conservative surgery for squamous cell carcinoma of the penis: resection margins and long-term oncological control. *J Urol* 2012; 188: 803-808 [PMID: 22818137 DOI: 10.1016/j.juro.2012.05.012]

6. Graafland NM, van Boven HH, van Werkhoven E, Moonen LM, Horenblas S. Prognostic significance of extranodal extension in patients with pathological node positive penile carcinoma. *J Urol* 2010; 184: 1347-1353 [PMID: 20723934 DOI: 10.1016/j.juro.2010.06.016]

7. Pandey D, Mahajan V, Kannan RR. Prognostic factors in node-positive carcinoma of the penis. *J Surg Oncol* 2006; 93: 133-138 [PMID: 16425300 DOI: 10.1002/jso.20414]

8. Wang JY, Zhu Y, Tang SX, Zhang HL, Qin XJ, Zhang SL, Dai B, Ye DW. Prognostic significance of the degree of extranodal extension in patients with penile carcinoma. *Asian J Androl* 2014; 16: 437-441 [PMID: 24480925 DOI: 10.4103/1008-682X.122862]

9. Bandini M, Pederzoli F, Necchi A. Neoadjuvant chemotherapy for lymph node-positive penile cancer: current evidence and knowledge. *Curr Opin Urol* 2020; 30: 218-222 [PMID: 31913205 DOI: 10.1097/MOU.0000000000000719]

10. Azizi M, Aydin AM, Hajiran A, Lai A, Kumar A, Peyton CC, Chahoud J, Pagliaro LC, Necchi A, Spiess PE. Systematic Review and Meta-Analysis-Is there a Benefit in Using Neoadjuvant Systemic Chemotherapy for Locally Advanced Penile Squamous Cell Carcinoma? *J Urol* 2020; 203: 1147-1155 [PMID: 31928407 DOI: 10.1097/JU.0000000000001746]

11. Paz Rojas JF, Ballestas Almario CA, Garcia-Perdomo HA. Effectiveness and safety of adjuvant chemotherapy compared to neoadjuvant chemotherapy in patients with penile cancer and positive lymph nodes regarding overall survival and free disease survival: a systematic review and meta-analysis. *Urol Oncol* 2022; 40: 200.e11-200.e18 [PMID: 35307290 DOI: 10.1016/j.urolonc.2022.02.014]

12. Hamidi O, Puzanov I, Dummer R, Schachter J, Daud A, Daudendorf D, Blank C, Cranmer LD, Robert C, Pavlick AC, Gonzalez R, Hodi FS, Ascierto PA, Salama AKS, Margolin KA, Gangadhar TC, Wei Z, Ebhuingha S, Ibrahim N, Ribas A. Final analysis of a randomised trial comparing pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory advanced melanoma. *Eur J Cancer* 2017; 86: 37-45 [PMID: 28961465 DOI: 10.1016/j.ejca.2017.07.022]

13. Weber JS, D’ Angelo SP, Minor D, Hodi FS, Gutzmer R, Neys B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD, Linette GP, Thomas L, Lorigan P, Grossmann KF, Hassel JC, Maio M, Szol M, Ascierto PA, Mohr P, Chmielowski B,
Evidence of Microsatellite Instability and Loss of Mismatch-Repair-Protein Expression in Squamous Cell Carcinoma of the

PJ, Frampton GM. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden.

F, He Y, Sun J, Tabori U, Kennedy M, Lieber DS, Roels S, White J, Otto GA, Ross JS, Garraway L, Miller VA, Stephens PJ, Spicer J, Lu S, Provencio M, Mitsudomi T, Awad MM, Broderick SR, Brahmer JR, Swanson SJ, Kerr K, Wang C, Ciucanu T, Veber D, Zou Q, Li H, Furman J, Kuderer N, Fontana F, Ito H, Chen KN, Vokes EE, Taiye JM, Do R, Forde PM, Nivolumab plus Chemotherapy in Resectable Lung Cancer. N Engl J Med 2022; 386: 1973-1985 [PMID: 35403841 DOI: 10.1056/NEJMoa2201710]

Tarantino P, Gandini S, Trapani D, Criccitelli C, Curigliano G. Immunotherapy addition to neoadjuvant chemotherapy for early triple negative breast cancer: A systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol 2021; 159: 103223 [PMID: 33482345 DOI: 10.1016/j.critrevonc.2021.103223]

Ye D, Liu J, Zhou A, Zou Q, Li H, Fu C, Hu H, Huang J, Zhu S, Jin J, Ma L, Guo J, Li F, Tan HB. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett 2020; 470: 126-133 [PMID: 3173093 [PMID: 3173093 DOI: 10.1016/j.canlet.2019.11.009]

Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 2020; 367 [PMID: 32001626 DOI: 10.1126/science.aax182]

Keung EZ, Ukpokwannu EW, Cogdill AP, Wargo JA. The Rational and Emerging Use of Neoadjuvant Immune Checkpoint Blockade for Solid Malignancies. Ann Surg Oncol 2018; 25: 1814-1827 [PMID: 29050764 DOI: 10.1245/s10434-018-5978-9]

Ottenhoff SR, Djajadiningrat RS, Thygesen HH, Jakobs PJ, Jóźwiak K, Heeren AM, de Jong J, Sanders J, Horenblas S, Jordanova ES. The Prognostic Value of Immune Factors in the Tumor Microenvironment of Penile Squamous Cell Carcinoma. Front Oncol 2018; 8: 1253 [PMID: 29942303 DOI: 10.3389/fonc.2018.00125]

Puijens ST, Vledder H, van der Weijden E, Janssen SL, van der Linden J, van Putten WL, Kooyman RC, van Krieken JHM, van der Putten W, van der Schoot C, van der Stelt S, van der Vaart AJ, van der Velden E, van der Velden L, van der Zee J. Prognostic value of immune cell infiltration in patients with penile squamous cell carcinoma. J Clin Oncol 2021; 39: 842-859 [PMID: 33139907 DOI: 10.1097/JCO.2020-00565-9]

Ali SM, Pal SK, Wang K, Palma NA, Sanford E, Bailey M, He J, Elvin JA, Chmieliecki J, Squallace R, Dow E, Morosini D, Bergman AM, van Werkhoven E, Vegt E, Horenblas S. Immune cells within the tumor microenvironment: The blockade of immune checkpoints in cancer immunotherapy. Crit Rev Oncol Hematol 2016; 97: 33-39 [PMID: 26670666 DOI: 10.1016/j.critrevonc.2015.0243]

Chan TA, Varechmann A, Suvorov V, Quezada SA, Stenzinger A, Peters S. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 2019; 30: 44-56 [PMID: 30395155 DOI: 10.1093/annonc/mdy495]

McGrail DJ, Pilié PG, Rashid NU, Voorwerk L, Slagter M, Cohen M, Jonach E, Khusraw M, Heimberger AB, Lim B, Ueno NT, Litton JK, Ferrarotto R, Chang JT, Moulder SL, Lin SY. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol 2021; 32: 661-672 [PMID: 33736924 DOI: 10.1093/annonc/mdab006]

Chatzis ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, Chmieliecki J, Huang F, He Y, Sun J, Tabori U, Kennedy M, Lieber DS, Roels S, White J, Otto GA, Ross JS, Garaaway L, Miller VA, Stephens PJ, Frampton GM. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 2017; 9: 34 [PMID: 28420420 DOI: 10.1186/s13073-017-0424-2]

Stoehr R, Wendler O, Giedl J, Gaisa NT, Richter G, Campean V, Burger M, Wullich B, Bertsz S, Hartmann A. No Evidence of Microsatellite Instability and Loss of Mismatch-Repair-Protein Expression in Squamous Cell Carcinoma of the Penis. Pathobiology 2019; 86: 145-151 [PMID: 30650417 DOI: 10.1159/000495251]

Lont AP, Kroon BK, Horenblas S, Gallee MP, Berkhof J, Meijer CJ, Snijders PJ. Presence of high-risk human
papillomavirus DNA in penile carcinoma predicts favorable outcome in survival. *Int J Cancer* 2006; **119**: 1078-1081
[PMID: 16570278 DOI: 10.1002/ijc.21961]

36 Ahmed ME, Falasiri S, Hajiran A, Chahoud J, Spiess PE. The Immune Microenvironment in Penile Cancer and Rationale for Immunotherapy. *J Clin Med* 2020; **9** [PMID: 33080912 DOI: 10.3390/jcm9103334]

37 Gu W, Zhu Y, Ye D. Beyond chemotherapy for advanced disease-the role of EGFR and PD-1 inhibitors. *Transl Androl Urol* 2017; **6**: 848-854 [PMID: 29184782 DOI: 10.21037/tau.2017.03.92]

38 Carthon BC, Ng CS, Pettaway CA, Pagliaro LC. Epidermal growth factor receptor-targeted therapy in locally advanced or metastatic squamous cell carcinoma of the penis. *BJU Int* 2014; **113**: 871-877 [PMID: 24053151 DOI: 10.1111/bju.12450]

39 Necchi A, Lo Vullo S, Perrone F, Raggi D, Giannatempo P, Calareso G, Nicolai N, Piva L, Biasoni D, Catanzaro M, Torelli T, Stagni S, Togliardi E, Colecchia A, Busico A, Gloghini A, Testi A, Mariani L, Salvioni R. First-line therapy with dacomitinib, an orally available pan-HER tyrosine kinase inhibitor, for locally advanced or metastatic penile squamous cell carcinoma: results of an open-label, single-arm, single-centre, phase 2 study. *BJU Int* 2018; **121**: 348-356 [PMID: 28921872 DOI: 10.1111/bju.14013]

40 Sartore-Bianchi A, Martini M, Molinari F, Veronese S, Nichelatti M, Artale S, Di Nicolantonio F, Saletti P, De Dosso S, Mazzucchelli L, Frattini M, Siena S, Bardelli A. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. *Cancer Res* 2009; **69**: 1851-1857 [PMID: 19223544 DOI: 10.1158/0008-5472.CAN-08-2466]
