Aquatic health indicators: holistic evaluation tools for sustainable management of a tropical oxbow lake ecosystem

DIPANKAR GHOSH AND JAYANTA KUMAR BISWAS
University of Kalyani, Kalyani - 741 235, West Bengal, India
e-mail: kjelider@gmail.com

ABSTRACT
Quantitative relationship of primary productivity and fish productivity and estimating aquatic health indices in tropical oxbow lake ecosystems remains to be addressed as predictors of fisheries yield in sustainable management. The aquatic health indicators and aquatic health status assessed with biological properties of phytoplankton, zooplankton, macroinvertebrates, macrophytes and fish in a semi-closed tropical oxbow lake ecosystem in the eastern India were studied along with socio-ecological and socio-economical aspects. Five ecological classes namely phytoplankton, zooplankton, macroinvertebrate, macrophyte and fish have been championed as effective biological indicators supported by physicochemical attributes. The established aquatic health indices registered the health status as moderate to poor. Organic loading and consequent nutrient enrichment and water quality deterioration during monsoon led to more homogeneous benthic biotic assemblage. With observed diverse nature of each trophic level of the ecosystem, there occurred a downstream ‘spillover’ of diversity along the food chain. The ‘structure affecting structure’ argument goes in tune with the theory of consumers controlling species diversity. Total 38 fish productivity regression equation models explained clearly that fish abundance and productivity were declining due to high anthropogenic activities of jute retting and indiscriminate uses of fishing gears of various mesh sizes during monsoon and thereafter, which need to be regulated.

Keywords: Aquatic health, Fish productivity, Jute retting, Oxbow lake

Introduction
A central principle of an ecosystem-based approach to fisheries management is the recognition that fisheries yield is mainly limited by primary production. To predict future fishery yield, environmental mechanisms have received a great deal of attention. Though the “bottom up” model to describe the productivity of fishery resources has been tested in a variety of ways and across a range of ecosystem types including coastal lagoons, estuaries, open marine systems and freshwater environments, much ambiguity remains regarding the predictive value of metrics of primary productivity to estimate fishery production. Anthropogenic impacts such as increased loadings of phosphorus in freshwater ecosystems are associated with increased phytoplankton biomass and subsequent fish yields in many lake ecosystems which necessitate verifying the quantitative relationships between primary production and fish productivity. Some works on oxbow lake management are widely and dispersedly available although the oxbow lakes are often described as “kidneys of the landscape” (Mitsch and Gosselink, 1986). Several workers have attempted to study the hydro-biological profile of varied water bodies with intent of assessing the quality of water. Wetlands represent a transitional zone between terrestrial uplands and aquatic bodies and are characterised by a large number of ecological niches which establish huge biological diversity. The wetlands of West Bengal were studied by several authors in the past (Mukherjee and Palit, 2001; Mandal et al., 2003; Chakrabarty et al., 2004; Biswas et al., 2005; Palit et al., 2006; Biswas et al., 2007; Mandal and Mukherjee, 2007; Palit and Mukherjee, 2007; Bala and Mukherjee, 2011; Biswasroy et al., 2011)

Varied correlation studies on primary and secondary productivity (fish productivity) of different ecosystems have been conducted in the past (Srinivasan, 1972; Melack, 1976; Noreiga-Curtis, 1979; Olah et al., 1986; Iverson, 1990; Ware, 2000; Ware and Thomson, 2005; Chassot et al., 2007; Hayat and Javed, 2008; Friedland et al., 2012) where the ineffectiveness of primary production as an indicator of fisheries yield at a global scale was consistent with theoretical arguments supporting a more nuanced and complex relationship between the two quantities. However, information available on quantitative relationship of primary and fish productivity or estimating aquatic health indices in a tropical oxbow ecosystem in Ganga River basin in Nadia District in particular is lacking, which remain to be addressed as predictors of fisheries yields for adopting sustainable management measures.
Materials and methods

Study area

The Chhariganga Oxbow Lake, an abandoned, fractioned water body derived from the river Ganga located in Nakashipara Development Block of Nadia District, West Bengal, India (23.5800°N, 88.3500°E) was selected at random for the study. It is situated about 90 km away from the Kalyani University Campus, Nadia and nearly 40 km away from the line of Tropic of Cancer towards the north. It is a semi-closed type freshwater oxbow lake and receives water from the river Ganga during monsoon through a narrow channel at the north-east corner. The oxbow lake is spread over an area of 58.28 ha with an annual average depth of 2.6 m. It also stores rain water. The catchment area of the oxbow lake is nearly 600 ha (Fig. 1). The monsoon or rainy season from July to October, post-monsoon or winter from November to February and pre-monsoon or dry season from March to June are the distinct seasons of this region. There was an occasional inundation of surrounding banks during the monsoon. The oxbow lake is subjected to all forms of human activities including jute retting during monsoon, fishing in the oxbow lake and agriculture in the catchment areas. It is the only source of irrigation water to the adjacent agriculture communities. Summary of data collected on the Chhariganga Oxbow Lake and the summary of data on aquatic health indicators collected and analysed are given in Table 1 and 2.

Physicochemical, biological and socio-ecological/economical analyses

The aquatic health indicators and aquatic health status of the Chhariganga Oxbow Lake Ecosystem (COLE) were assessed along with biological properties of phytoplankton, zooplankton, macroinvertebrate, macrophyte and fish. Physicochemical parameters were monitored as per Ghosh and Biswas (2017e; 2018). Biological parameters viz., phytoplankton (Ghosh and Biswas, 2015e), zooplankton (Ghosh and Biswas, 2014; 2015a), macroinvertebrates (Ghosh and Biswas, 2015b; 2017e), macrophytes (Ghosh and Biswas, 2015d), fishing gears and diversity (Ghosh and Biswas, 2017a; 2017c) were monitored. Fish sampling and assessment of productivity were carried out as per Ghosh and Biswas (2017b; 2017d). Socio-ecological and socio-economical studies were undertaken as described by Ghosh and Biswas (2016a, b).

From the above assessment of ecological, biological and socio-ecological/economical properties, the aquatic health indicators (as modified after Alberta Environment, 2007) and aquatic health status were evaluated for the Chhariganga Oxbow Lake during April, 2013 - March, 2014.

Statistical analyses

Statistical analyses including mean, standard deviation and the degree of relationships among different physicochemical factors of water and sediment were determined using linear regression with the help of MS-Excel and then presented in textual, tabular and graphical forms. The level of statistical significance was accepted at p<0.05.

Results and discussion

Aquatic health and productivity analyses

List of the aquatic health indices and pollution status of the Chhariganga Oxbow Lake Ecosystem (COLE) based on different aquatic health indicators is presented in
Table 1. Summary of data collected from Chhariganga Oxbow Lake

Assessment	Parameters
Ecological	For pre-monsoon, monsoon and post-monsoon
	(A) Physicochemical analyses
	✓ Sediment (pH and organic carbon)
	✓ Water Transparency, pH, Temperature, Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Chemical oxygen demand COD, Ammonium nitrogen (NH₄-N), Nitrite nitrogen (NO₂-N), Nitrate nitrogen (NO₃-N), Orthophosphate, Total hardness, Total alkalinity, Gross primary productivity (GPP) and Net primary productivity (NPP)
	(B) Biological (Biodiversity analyses)
	✓ Plankton (Phytoplankton and Zooplankton)
	✓ Macroinvertebrate
	✓ Macrophyte
	✓ Fish
Economical	✓ Fish productivity, Demand and sale proceeds, Income, Employment
	✓ Occupation and livelihoods generation, Dependency on fishing,
	Involvement of women in different economic activities
	✓ Income sources, House and land holdings pattern, Opportunities
	✓ Fish consumption frequency, per capita consumption and sustenance need, Food sufficiency pattern
	✓ Average price in changed climate, Adaptive measures, Constraints analyses on resource utilisation
	✓ Cooperative management - economic, technical, marketing constraints, Finance capital for aquaculture
	✓ Cooperative records on fish productivity, Income and profits
	✓ Estimation of sustainable fish productivity
Social	✓ Educational, professional, legal and ethical aspects, Living standards
	✓ Community needs and constraints, Priority problems, Encroachments and other activities of non fishers
	✓ Households involvement in fishing and fishing frequency, Crafts and gears used in fishing, Days of operation
	✓ Constraints analyses of cooperative management (social, technical and general)
	✓ Opinion on ecological changes in last 30 years, Biodiversity for sustainable management
	✓ Knowledge level on oxbow lake ecosystem management benefits and dangers
	✓ Priority issues for sustainable management, Overall ranking of importance values of major issues
	✓ Conducting seminars/meetings with all stakeholders

Table 2. Summary of data collected and analysed on aquatic health indicators

S. No.	Season	Phytoplankton	Zooplankton	Macroinvertebrates	Macrophytes	Fish											
		PRM	MON	POM													
1		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
2		x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
3		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
4		x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
5		x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
6		x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
7		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
8		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
9		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
10		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
11		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
12		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
13		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
14		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
15		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Index S. No 6-7 for both in biomass and number but S. No 9-12 for number only, not for biomass of the aquatic health indicators, ✓ refers to ‘Yes to be done’ and x refers to ‘Not to be done’

PRM = Pre-monsoon, MON = Monsoon, POM = Post-monsoon
Table 3. The COLE looks polluted (bad to moderate) based on Shannon Wiener Index (SWI) of macroinvertebrate, phytoplankton, zooplankton, macrophytes and fish. Zooplankton SWI clearly indicated overall bad condition and macrophyte SWI showed overall moderate pollution throughout the year. The fish SWI revealed bad status except during monsoon when inflowing water from river helps in contributing slightly higher diversity and thus making moderate pollution status of the COLE during the monsoon when the macroinvertebrate and phytoplankton SWI diversity values pinpointed the bad ecological status of COLE. The overall pollution status of the Chhariganga Oxbow Lake based on both physicochemical and biological analyses is bad to moderate in all respects.

Physicochemical properties and biological abundance

In present study on oxbow lake, we found highly significant correlation between water nitrate nitrogen content and phytoplankton density; biochemical oxygen demand (BOD) and macroinvertebrate density; sediment organic content and macroinvertebrate standing biomass; water pH and macrophytes density as well as total alkalinity and effective water spread area (EWSA) fish productivity (g m⁻² d⁻¹) (Table 4). Similarly highly positive correlations were also found between temperature/hardness/alkalinity and zooplankton density; BOD and macroinvertebrates biomass; macroinvertebrate biomass and fish catch per gear effort (CPGE) (n e⁻¹); ammonium nitrogen/nitrate nitrogen/DO and macrophytes biomass; orthophosphate/sediment organic content/BOD and macroinvertebrates density; zooplankton density and CPGE (g e⁻¹); recorded area (RAW) fish biomass and EWSA fish biomass (r=0.89); EWSA fish density and RAW fish density/biomass (r=0.95) as well as EWSA fish density and EWSA fish biomass. But present results also clearly demonstrated very strong negative correlation between phytoplankton density and zooplankton density; macrophytes density and orthophosphate content; macrophytes biomass and DO/ water ammonium nitrogen/nitrate nitrogen; fish CPGE (g e⁻¹) and water ammonium nitrogen as well as fish CPGE

Table 3. Aquatic health indices (p<0.05) of the Chhariganga Oxbow Lake ecosystem

S. No	Season	Phytoplankton	Zooplankton	Macroinvertebrate	Macrophyte	Fish											
		PRM	MON	POM													
1	RAW total abundance / density	3650	4680	8760	520	440	125	129	359	191	113.2	27.3	120.45	0.83	2.21	1.54	
2	EWSA total abundance/ density	3650	4680	8760	520	440	125	129	359	191	113.2	27.3	120.45	0.83	2.21	1.54	
3	RAW Standing biomass (g m⁻³)	X	X	X	X	X	X	95.64	286.65	178.56	424.49	281.78	1816.72	17.33	17.43	10.19	
4	EWSA Standing biomass (g m⁻³)	X	X	X	X	X	X	95.64	286.65	178.56	424.49	281.78	1816.72	17.33	17.43	10.19	
5	Relative abundance and proportion	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
6	% EPT	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
7	EPT index	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	
8	CPUE (g h⁻¹)	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	
9	CPUE (n h⁻¹)	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	
10	CPGE (g e⁻¹)	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	
11	CPGE (n e⁻¹)	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	
12	Taxon richness	22	14	23	6	5	4	14	14	18	36	22	44	28	23	26	
13	Shannon Wiener diversity Index	2.16	1.61	2.42	1.53	1.37	1.33	2.1	1.88	2.12	2.64	2.45	3.14	1.82	2.02	1.19	
14	Taxon evenness	0.7	0.61	0.77	0.85	0.85	0.96	0.8	0.71	0.73	0.74	0.79	0.83	0.83	0.64	0.36	
15	Simpson’s dominance Index	0.19	0.32	0.14	0.28	0.3	0.27	0.15	0.22	0.2	0.12	0.13	0.06	0.13	0.38	0.21	0.81
16	Simpson’s diversity Index	0.81	0.68	0.86	0.72	0.7	0.73	0.85	0.78	0.8	0.88	0.87	0.94	0.72	0.79	0.49	
17	Invasive species	Nil															
18	Productivity	1.26	0.61	1.04	x	x	x	x	x	x	x	x	x	x	0.53	0.18	0.21
19	Trophic classification	Oligo to Mesotrophic	x	x	x	x	x	x	x	x	x	x	x	x	x	x	
20	Aquatic health and pollution status	M	B	M	B	B	B	M	B	M	M	M	B	B	B	B	

PRM=Pre-monsoon, MON=Monsoon, POM=Post-monsoon, RAW=Recorded area of water body, EWSA=Effective water spread area, Density of plankton (no. m⁻³) and of others (n m⁻³), M=Moderate, B=Bad; Index S. No 11-14 for number only, not for biomass of the aquatic health indicators, ✓ refers to ‘Yes done’ (please refer to respective results sections of 4.2 & 4.7), X refers to ‘Not done’, phytoplankton productivity as NPP (g C m⁻² d⁻¹) and average fish productivity of EWSA (g m⁻² d⁻¹)
(g e⁻³) and macrophytes biomass. Similarly significant negative correlations were also found between water ammonium nitrogen content and zooplankton density; macroinvertebrate density and transparency/water pH; fish CPGE (g e⁻³) and phytoplankton density as well as macrophytes density/biomass and RAW fish productivity (g m⁻² d⁻¹).

Physicochemical properties and fish production

The fish productivity (g m⁻² d⁻¹) showed positive correlation with sediment organic carbon content and BOD, chemical oxygen demand (COD), orthophosphate (OP), macroinvertebrates density, CPGE (n e⁻3), catch per unit effort (CPUE) (n h⁻¹) and fish density in RAW in contrast with EWSA, where the fish productivity (g m⁻² d⁻¹) showed positive correlation with water transparency, water pH, primary productivity (r=0.69) and macrophytes density. The fish productivity (g m⁻² d⁻¹) of both RAW and EWSA exhibited positive correlations with temperature, hardness and alkalinity, zooplankton density, CPGE (g e⁻³) and CPUE (g h⁻¹) and showed negative correlation with sediment pH and NH₄. EWSA fish productivity (g m⁻² d⁻¹) strongly correlated (r=1) with total alkalinity (Table 4). In the analyses on correlation coefficients of different physicochemical parameters and EWSA fish productivity, the latter was influenced by almost all the parameters studied and remarkably by the sediment pH, transparency, hardness,
alkalinity, CPUE and CPGE whereas the RAW fish productivity is considerably influenced by the water pH, DO, orthophosphate, macrophytes density and biomass as well as CPGE. Fish productivity of the EWSA was found strongly correlated with the total alkalinity but inversely to the sediment pH. The correlation coefficients (r=0.79) of CPUE and CPGE indicate similarity in their meaning. The correlation coefficient (r=0.90) between the fish density and its standing biomass in both RAW and EWSA indicated highly significant positive correlation between them.

Twenty regression equations were confirmed based on the relationship of primary production and fish production in the COLE (Table 5). Out of which, 4 regression equations of primary productivity (GPP and NPP) and fish productivity (g m⁻² d⁻¹) were calculated to be with negative slopes as they are negatively correlated in case of RAW and another 4 of them with negative intercepts but with the best positive correlation coefficients (0.79 and 0.84) when fish productivity was considered in g m⁻³ d⁻¹ for EWSA. But as both the primary (X) and secondary productions (Y) are positively correlated (r=0.69 and 0.63) in EWSA, the remaining 12 regression equations were shown positive. The regression equation in EWSA is calculated as log Y =6.89+0.22X, r=0.64, where gross primary productivity and fish productivity (EFP) are in g O₂ m⁻³ day⁻¹ and natural logarithm value in kg ha⁻¹ yr⁻¹ considered respectively. The equation became Y =0.10+0.18X, r=0.69, when we considered GPP in gO₂ m⁻³ d⁻¹ and EWAS fish productivity (EFP) in g m⁻³ d⁻¹, again became Y =0.10+0.49X, r=0.69, for GPP in gC m⁻³ d⁻¹ and EFP in g m⁻³ d⁻¹ and Y = 0.40X-0.22, r=0.84, for EFP in g m⁻³ d⁻¹. Likewise considering NPP in gO₂ m⁻³ d⁻¹, we found Y =0.17+0.21X, r=0.63 for EFP in g m⁻² d⁻¹ and Y = 0.18X-0.17, r=0.79, for EFP in g m⁻³ d⁻¹.

It is obvious from the equations that fish production (secondary production) is related to primary production in the oxbow lake. Good correlation was also found between primary productivity and secondary fish productivity (kg ha⁻¹ yr⁻¹) besides positive regression equations in EWSA. Several workers reported strong relationships between primary production (or chlorophyll-a as a proxy of primary production) and fish yield in freshwater environments (Goodyear et al., 1972; Srinivasan, 1972; Melack, 1976; Noreiga-Curtis, 1979) as well as in ocean and coastal environments (Iverson, 1990; Ware and Thomson, 2005; Frank et al., 2006; Chassot et al., 2007; Friedland et al., 2012). The fish production efficiency which is the fish yield (g m⁻³ d⁻¹) expressed as a percentage of the primary production (GPP in g C m⁻³ d⁻¹) varied between 16.11 - 32.02% in EWSA of the present oxbow lake and

Table 5. Relationship of primary production and fish production (p<0.05)

COLE	Primary productivity (X)	Fish productivity (Y)	Through Oxygen production	Through Carbon production
RAW	GPP (gO₂ m⁻³ d⁻¹)	RFP kg ha⁻¹ yr⁻¹	log Y = 7.66 -0.19 X, r=0.60	-
	EFP g ha⁻¹ yr⁻¹	log Y = 6.89+ 0.22X, r=0.64	-	-
EWSA	GPP (gC m⁻³ d⁻¹)	EFP g m⁻² d⁻¹	Y =0.10+0.18X, r=0.69	-
	EFP g m⁻³ d⁻¹	Y = 0.15X-0.22, r=0.84	-	-
	pFP g m⁻² y⁻¹	Y =28.76+55.48X, r=0.69	-	-
RAW	NPP (gO₂ m⁻³ d⁻¹)	RFP kg ha⁻¹ yr⁻¹	log Y =7.71 - 0.27X, r=0.67	-
	EFP g ha⁻¹ yr⁻¹	log Y = 7.00+ 0.25X, r=0.57	-	-
EWSA	NPP (gC m⁻³ d⁻¹)	EFP g m⁻² d⁻¹	Y =0.17+0.21X, r=0.63	-
	EFP g m⁻³ d⁻¹	Y = 0.18X-0.17, r=0.79	-	-
	EFP g m⁻² y⁻¹	Y =52.25+63.43X, r=0.63	-	-

RFP=RAW fish productivity, EFP=EWAS fish productivity, RAW=Recorded area of water body, EWAS=Effective water spread area, d=Day, y=Year, h=Hour, Y= Fish yield or fish production, COLE= Chhariganga Oxbow Lake ecosystem
Table 6. Seasonal relationship between fish abundance and fish production (p<0.05)

S. No.	Y	X	Fish productivity (g m⁻³ d⁻¹)	Fish productivity (g m⁻³ d⁻¹)
1	PRM	MON	Y=2.57+1.21X, r=0.82	Y=2.55+1.21X, r=0.82
2	MON	PRM	Y=2.85+0.56X, r=0.82	Y=2.80+0.56X, r=0.82
3	PRM	POM	Y=1.96X-0.29, r=0.94	Y=1.96X-0.28, r=0.95
4	POM	PRM	Y=1.16+0.46X, r=0.94	Y=1.14+0.46X, r=0.95
5	PRM	YR	Y=2.16+0.62X, r=0.91	Y=2.07+0.62X, r=0.91
6	YR	PRM	Y=1.62+1.34X, r=0.91	Y=1.69+1.34X, r=0.91
7	YR	POM	Y=3.21+2.42X, r=0.79	Y=3.28+2.42X, r=0.79
8	POM	YR	Y=2.73+0.26X, r=0.79	Y=2.67+0.26X, r=0.79
9	YR	MON	Y=7.64+1.42X, r=0.66	Y=7.65+1.42X, r=0.66
10	MON	YR	Y=5.16+0.30X, r=0.66	Y=5.06+0.31X, r=0.66
11	MON	POM	Y=0.19+1.36X, r=0.96	Y=0.17+1.36X, r=0.96
12	POM	MON	Y=0.61+0.68X, r=0.96	Y=0.60+0.68X, r=0.96
13	RFP	RFB	Y=0.35+0.001X, r=0.17	Y=0.141+0.0004X, r=0.20
14	RFP	CPGEa	Y=0.01X-0.07, r=0.79	Y=0.005X-0.001, r=0.95
15	RFP	CPUEa	Y=0.23+0.04X, r=0.25	Y=0.04X-0.013, r=0.94
16	EFP	EFB	Y=0.54+0.004X, r=0.49	Y=0.20+0.002X, r=0.39
17	EFP	CPGEa	Y=0.03X-0.11, r=0.65	Y=0.011X-0.07, r=0.44
18	EFP	CPUEa	Y=0.33X-0.63, r=0.98	Y=0.20X-0.52, r=0.90

PRM=Pre-monsoon, MON=Monsoon, POM=Post-monsoon, YR=year, CPGE= Fish catch per gear effort (g e⁻¹), CPUE= Fish catch per unit effort (g h⁻¹), RFB=RAW fish standing biomass (g m⁻³), RFP= RAW fish productivity (g m⁻³ d⁻¹), RAW=Recorded area of water body, EFB=EWSA fish standing biomass (g m⁻³), EFP= EWSA fish productivity (g m⁻³ d⁻¹), EWSA=Effective water spread area
macrophyte SWI. The fish Simpson’s diversity index (FSI) had strong correlation with fish SWI unlike macrophyte SWI (Table 7). Physicochemical parameters including water pH, transparency, BOD, COD (except temperature, ammonium nitrogen and nitrate nitrogen) and biological parameters (primary productivity and biodiversity) were found to be having significant impacts on fish richness. Parameters including water temperature, DO, NH$_3$-N, NO$_2$-N, phytoplankton SWI, macroinvertebrate richness as well as macrophyte richness and its SWI had more effects on fish diversity (SWI). Fish SWI showed positive correlation with zooplankton richness and SWI among the diversity indices of other community. The fish SWI had no linear relationship with water transparency but had inverse relationship with water DO content, which may also be attributed to the fish and turbid flood water influx from the river and higher organic solids due to jute retting event leading to poor transparency and DO levels as well as highest fish catch during the monsoon.

Biodiversity and productivity

Phytoplankton richness and SWI showed strong correlation with fish richness (r=0.87, 0.75) but inverted to fish SWI (Table 8). Zooplankton richness and diversity index were strongly correlated with fish richness, diversity and productivity. Zooplankton diversity was strongly correlated with fish productivity (g m$^{-2}$ d$^{-1}$). Macroinvertebrates richness and diversity index were strongly correlated with fish richness but inverted to fish diversity (SWI). Their SWI of diversity was strongly correlated with fish productivity (g m$^{-2}$ d$^{-1}$) but not with their richness. Their richness highly correlated with fish richness (r=0.71). Overall fish richness and fish diversity (SWI) were correlated with fish productivity (g m$^{-2}$ d$^{-1}$). Fish diversity (SWI) also strongly correlated

Table 7. Correlation coefficients of physicochemical parameters and biodiversity indices (p<0.05)

Parameter	PS	PS'	ZS	ZH'	MS	MH'	MPS	MPH'	FS	FH'	FE	FSI
SpH	-0.23	-0.01	-0.94	-1.00	0.65	-0.26	0.03	0.43	-0.68	-0.46	-0.35	-0.47
SOC	-0.87	-0.75	-0.39	-0.67	-0.12	-0.89	-0.72	-0.38	-1.00	0.34	0.46	0.34
Tr	0.65	0.47	0.69	0.89	-0.23	0.67	0.43	0.04	0.94	0.00	-0.13	0.01
WpH	1.00	0.99	-0.16	0.18	0.63	1.00	0.98	0.81	0.84	-0.79	-0.86	-0.79
T	-0.51	-0.68	0.91	0.72	-1.00	-0.49	-0.72	-0.94	-0.03	0.95	0.90	0.95
DO	0.88	0.96	-0.56	-0.25	0.90	0.87	0.97	0.98	0.54	-0.97	-0.99	-0.97
BOD	-0.94	-0.84	-0.25	-0.56	-0.27	-0.95	-0.81	-0.51	-0.99	0.48	0.59	0.47
COD	-0.92	-0.81	-0.31	-0.60	-0.21	-0.93	-0.78	-0.46	-1.00	0.43	0.54	0.42
NH$_3$-N	0.53	0.70	-0.90	-0.70	1.00	0.51	0.73	0.94	0.05	-0.95	-0.91	-0.96
NO$_2$-N	0.87	0.75	0.39	0.67	0.12	0.89	0.72	0.38	1.00	-0.34	-0.46	-0.34
NO$_3$-N	0.46	0.64	-0.93	-0.76	0.99	0.44	0.68	0.92	-0.03	-0.93	-0.88	-0.93
OP	-1.00	-0.98	0.14	-0.19	-0.61	-1.00	-0.97	0.82	-0.80	0.78	0.85	0.77
TH	0.12	-0.10	0.98	0.99	-0.74	0.14	-0.15	-0.53	0.59	0.56	0.45	0.57
TA	0.16	-0.06	0.97	1.00	-0.71	0.19	-0.11	-0.49	0.62	0.53	0.41	0.53
GPP	0.87	0.74	0.41	0.69	0.10	0.88	0.70	0.36	1.00	-0.33	-0.45	-0.32
NPP	0.90	0.79	0.33	0.62	0.18	0.92	0.76	0.44	1.00	-0.41	-0.52	-0.40
PS	0.92	0.10	0.23	0.59	1.00	0.96	0.78	0.87	-0.76	-0.83	-0.75	
PH'	-0.31	0.01	0.75	0.97	1.00	0.90	0.75	-0.88	-0.93	-0.88		
ZS	0.94	-0.87	-0.08	-0.36	-0.70	0.40	0.73	0.63	0.73			
ZH'	-0.65	0.26	-0.03	-0.43	0.68	0.46	0.35	0.47				
MS	0.56	0.78	0.96	0.11	-0.97	-0.94	-0.97					
MH'	0.96	0.76	0.89	-0.74	-0.82	-0.73						
MPS	0.92	0.71	-0.90	-0.95	-0.90							
MPH'	0.38	-1.00	-1.00	-1.00								
FS	-0.34	-0.46	-0.33									
FH'	0.99	1.00										
FE	0.99											

SpH=Sediment pH, SOC=Sediment organic carbon, Tr=Transparency, T=Temperature, WpH=Water pH, TH=Total hardness, TA=Total alkalinity, PS=Phytoplankton richness, PH'=Phytoplankton Shannon Wiener diversity index, ZS=Zooplankton richness, ZH'=Zooplankton Shannon Wiener diversity index, MS=Macroinvertebrate richness, MH'=Macroinvertebrate Shannon Wiener diversity index, MPS=Macrophytes richness, MPH'=Macrophytes Shannon Wiener diversity index, FS=Fish richness, FH'=Fish Shannon Wiener diversity index, FE=Fish Evenness index, FSI=Fish Simpson’s diversity index (SDI)
Table 8. Correlation coefficients of biodiversity and fish productivity (p<0.05)

Indicator	RFP	FS	FH'	EFP2	EFP3
PS	-0.95	0.87	-0.76	0.24	0.47
PH'	-1.00	0.75	-0.68	0.03	0.27
ZS	0.39	0.40	0.73	0.94	0.82
ZH'	0.07	0.68	0.46	1.00	0.95
MS	-0.80	0.11	-0.97	-0.65	-0.43
MH'	-0.95	0.89	-0.74	0.27	0.49
MPS	-1.00	0.71	-0.90	-0.02	0.22
MPH'	-0.93	0.38	-1.00	-0.42	-0.18
RFP	-0.69	0.92	0.06	0.06	-0.19
FS	-0.34	0.68	0.83		
FH'	0.45	0.21			

*PS=Phytoplankton richness, PH'=Phytoplankton Shannon Wiener diversity index, ZS=Zooplankton richness, ZH'=Zooplankton Shannon Wiener diversity index, MS=Macroinvertebrate richness, MH'=Macroinvertebrate Shannon Wiener diversity index, MPS=Macrophytes richness, MPH'=Macrophytes Shannon Wiener diversity index, RFP=RAW fish productivity (g m⁻² d⁻¹), RAW=Recorded area of water body, EFP=EWSA fish productivity (g m⁻² d⁻¹), EFP'=EWSA fish productivity (g m⁻² d⁻¹), EWSA=Effective water spread area

Table 8. Correlation coefficients of biodiversity and fish productivity (p<0.05)

Indicator	RFP	FS	FH'	EFP2	EFP3
PS	-0.95	0.87	-0.76	0.24	0.47
PH'	-1.00	0.75	-0.68	0.03	0.27
ZS	0.39	0.40	0.73	0.94	0.82
ZH'	0.07	0.68	0.46	1.00	0.95
MS	-0.80	0.11	-0.97	-0.65	-0.43
MH'	-0.95	0.89	-0.74	0.27	0.49
MPS	-1.00	0.71	-0.90	-0.02	0.22
MPH'	-0.93	0.38	-1.00	-0.42	-0.18
RFP	-0.69	0.92	0.06	0.06	-0.19
FS	-0.34	0.68	0.83		
FH'	0.45	0.21			

The present study including its outputs and their analysis was presented in the DPSIR (Driver-Pressure-State-Impact-Response) framework that could be adopted as a template for sustainable management of similar oxbow lake ecosystems satisfying the triple bottom lines of ecological/environmental protection, economic viability and social security (Fig. 2). The findings from the study will benefit the planning and management of sustainable fisheries and conservation of these natural resources at national level.

The fish diversity was significantly correlated with its productivity of recorded area than the effective area and the fish productivity was more strongly correlated with its standing biomass of EWSA compared to RAW. This may also be attributed to fish influx through the flood water from the river during monsoon.

The poor health status assessed with the physicochemical properties does also corroborate with the findings of the studies on the same oxbow lake assessed with diversity indices of rotifer (Ghosh and Biswas, 2014), zooplankton (Ghosh and Biswas, 2015a), macroinvertebrates (Ghosh and Biswas, 2015b), macrophytes (Ghosh and Biswas, 2015d), phytoplankton (Ghosh and Biswas, 2015e), fish diversity (Ghosh and Biswas, 2017a; 2017c), fish productivity (Ghosh and Biswas, 2017b; 2017d) and physicochemical studies (Ghosh and Biswas, 2017c; 2018) undertaken during the same period of study in the same oxbow lake.

In the present oxbow lake ecosystem, lone fish productivity regression equation model between the pre-monsoon and post-monsoon season is found negative indicating huge decline in fish abundance, availability and productivity during the post-monsoon compared to pre-monsoon. Negative intercepts of fish productivity models with fish catch per unit or gear effort and almost no slopes with the fish abundance may also be attributed to the high anthropogenic activities including jute retting, indiscriminate use of fishing gears of various mesh size during monsoon and post-monsoon, which resulted in the decline in fish abundance, availability and productivity in the oxbow lake. The flooded turbid water from river Ganga and jute retting processes during the monsoon had significant impacts on fish diversity and fish productivity in the oxbow lake ecosystem. We also observed diverse trophic levels of the ecosystem under study. The ‘spillover’ of diversity occurs to other parts of the ecosystem. This ‘structure affecting structure’ argument goes in tune with the theory of consumers controlling species diversity (Worm et al., 2002).
Drivers
- Population pressure
- Use, misuse, and abuse of ecosystem
- Unsustainable and harmful fishing practices
- Overexploitation
- Stormwater runoff
- Social and economical constraints
- Cooperative mismanagement

Pressure
- Jute retting
- Indiscriminate use of harmful fishing gears
- Organic loading
- Macrophyte infestation
- Influx of turbid water
- Nutrient and pesticide influx
- Mounting population pressure of fisher population in 30 years (4.9 times)

State
- Degradation of water quality
- Oligo to mesotrophic nutrient status
- Gradual impoverishment of biodiversity
- Gradual deterioration of ecosystem health
- Moderate lake productivity with eroding fish diversity
- Existing fish productivity (66.70±0.82 t yr⁻¹) supports 23.33% livelihood
- Fish productivity regulated by zooplankton and macrophytes diversity
- Poor socioeconomic conditions of fishers

Impact
- Organic pollution: moderate to high
- Decline in fish diversity (41%), standing biomass and productivity during postmonsoon
- Hike in fish catch (>3.7 times) and catch per gear effort (>2.6 times) during monsoon
- Fall in fish production (>50%) and fish standing biomass (>41%) during post-monsoon.
- Exclusion and shifting of 76.67% fishers to other livelihood options
- Harmful impacts of fishing gear on fish diversity: Seine net > Gillnet > Dip net > Cone net > Long lines > Line & hook
- Most notable ecological changes in 30 years in oxbow lake ecosystem: hike in uses of lake water for agri-irrigation, conversion of lake area into crop lands, and fall in per capita fish catch of fishers (6.6 times), avenue for fish migration from river to oxbow lake

Response
- Prevention and regulation of jute retting
- Regulation of fishing gears (seine net and gill nets)
- Observance of fishing close season
- Germplasm conservation and breeding of indigenous fishes
- Need for desilting, demarcation, cooperative storage, fish feed production unit, adequate credit with low interest rate and insurance cover, regulating water lifting
- Macrophyte management
- Sensitisation and awareness building among fishers
- Promotion of ecotourism and organic aquaculture using pen culture technology in PPP mode
- Fish inventorying

Fig. 2. DPSIR model depicting assessment and management of Chhariganga Oxbow Lake ecosystem towards sustainability through adoption of preventive, curative, adaptive and ameliorative measures

Acknowledgements

Authors acknowledge the research facilities provided by the Department of Ecological Studies of University of Kalyani; Department of Fisheries of Govt. of West Bengal and Kutirpara Fishermen Co-operative Society Ltd. of Nakasipara Development Block, Nadia, West Bengal, India.

References
Alberta Environment 2007. Information synthesis and initial assessment of the status and health of aquatic ecosystems.
in Alberta (surface water quality, sediment quality and non-fish biota). Technical Report # 278/279-01, North/South Consultants Inc., Clearwater Environmental Consultants Inc. and Patricia Mitchell Environmental Consulting, Water for Life - Healthy Aquatic Ecosystems Edmonton, Alberta, www.gov.ab.ca/env.

APHA 1998. Standard methods for the examination of water and wastewater, 20th edn. Clesceri, L. S., Greenberg, A. E. and Eaton, A. D. (Eds.), American Public Health Association,Washington, DC, USA.

Bala, G. and Mukherjee, A. 2011. Physicochemical properties of sediments and their role in the production process of some wetlands of Nadia District, West Bengal. J. Environ. Sociobiol., 8(2): 253-256.

Biswas, M., Bandyopadhyay, S., Roy, P. K. and Mazumdar, A. 2005. A holistic approach of participatory management of wetland: Bhomra Beel - A case study. J. Inst. Public Health Eng., India, 4: 37-41.

Biswas, M., Roy, P. K. and Mazumdar, A. 2007. A comparative study of users’ perception of wetland regions. J. Environ. Prot., 27(3): 209-215.

Biswasroy, M., Samal, N. R., Roy, P. K. and Mazumdar, A. 2011. Watershed management with emphasis on freshwater wetland: A case study of a flood plain wetland in West Bengal, India. Global NEST J., 13(1): 1-10.

Chakraborty, I., Dutta, S. and Chakraborty, C. 2004. Limnology and plankton abundance in selected beels of Nadia District of West Bengal. Environ. Ecol., 22(3): 576-578.

Chassot, E., Melin, F., Le Pape, O. and Gascuel, D. 2007. Bottom-up control regulates fisheries production at the scale of eco-regions in European seas. Mar. Ecol. Prog. Ser., 343: 45-55. doi.org/10.3354/meps06919.

Frank, K. T., Petrie, B., Shackell, N. L. and Choi, J. S. 2006. Reconciling differences in trophic control in mid-latitude marine ecosystems. Ecol. Lett., 9: 1096-1105. DOI:10.1111/j.1461-0248.2006.00961.x.

Friedland, K. D., Stock, C., Drinkwater, K. F., Link, J. S., Leaf, R. T., Shank, B. V., Rose, J. M., Pilsaln, C. H. and Fogarty, M. J. 2012. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE, 7(1): 28945. doi:10.1371/journal.pone.0028945, available at www.plosone.org.

Ghosh, D. and Biswas, J. K. 2014. Rotifera diversity indices: Assessment of aquatic health of an oxbow lake ecosystem in West Bengal. Internat. J. Curr. Res., 6(12): 10554-10557.

Ghosh, D. and Biswas, J. K. 2015a. Zooplankton diversity indices: Assessment of an Ox-bow lake ecosystem for sustainable management in West Bengal. Int. J. Adv. Biotechnol. Res., 6(1): 37-43.

Ghosh, D. and Biswas, J. K. 2015b. Macroinvertebrates’ diversity indices: quantitative bio-assessment of ecological health status of an ox-bow lake in eastern India. J. Adv. Environ. Health Res., 3(2): 78-90. http://jaehr.muk.ac.ir.

Ghosh, D. and Biswas, J. K. 2015c. Impact of jute retting on native fish diversity and aquatic health of roadside transitory water bodies: An Assessment in Eastern India. J. Ecol. Eng.,16(4):14-21, DOI:10.12911/22998993/59342.

Ghosh, D. and Biswas, J. K. 2015d. Biomonitoring macrophytes and abundance for rating aquatic health of an oxbow lake ecosystem in Ganga River basin. Am. J. Phytoped. Clin. Ther., 3(10): 602-621, www.ajpct.org.

Ghosh, D. and Biswas, J. K. 2015e. Impact of jute retting on phytoplankton diversity and aquatic health: Biomonitoring in a tropical oxbow lake. J. Ecol. Eng., 16(5): 15-25. DOI: 10.12911/22998993/60449.

Ghosh, D. and Biswas, J. K. 2016a. Impact of anthropogenic pressures on changes of tropical oxbow lake ecosystem in Ganga River basin: Socioecological surveys, issues and strategies for sustainable management. Int. J. Chem. Aquat. Sci. (IJCA), 2(1): 21-34.

Ghosh, D. and Biswas, J. K. 2016b. Socioeconomic constraints of a tropical oxbow lake ecosystem in Ganga River basin: and strategies for sustainable management. Int. J. Chem. Aquat. Sci. (IJCA), 2(3): 1-20.

Ghosh, D. and Biswas, J. K. 2017a. Erosion of fish diversity: Ranking degree of dangers of unsustainable fishing gears in a tropical oxbow lake in eastern India. IJCBS Res. Paper, 3(12): 1-17.

Ghosh, D. and Biswas, J. K. 2017b. Fish productivity: Assessing sustainability in a tropical oxbow lake of Nadia District, West Bengal, India. Arch. Agric. Environ. Sci., 2(1): 6-20.

Ghosh, D. and Biswas, J. K. 2017c. Fish fauna faces anthropogenic double trouble: Erosion of fish diversity in tropical oxbow lake of the Ganga River basin in Eastern India. J. Biodivers. Endangered Species, 5: 188. doi:10.4172/2332-2543.1000188.

Ghosh, D. and Biswas, J. K. 2017d. Catch per unit efforts and impacts of gears on fish abundance in an oxbow lake ecosystem in eastern India. J. Environ. Health Eng., Manag., 4(3): 169-175. doi:10.15171/EHEM.2017.24.

Ghosh, D. and Biswas, J. K. 2017e. Efficiency of Pollution Tolerance Index (PTI) of macroinvertebrates in detecting aquatic pollution in an oxbow lake in India. Univ. Sci., 22(3): 237-261. doi:http://dx.doi.org/10.11144/Javeriana.SC22-3.eopt.

Goodyear, C. P., Boyd, C. E. and Beyers, R. J. 1972. Relationship between primary productivity and mosquito fish (Gambusia affinis) production in large microcosms. Limnol. Oceanogr., 17(3): 445-450. doi.org/10.4319/lo.1972.17.3.0445.
Dipankar Ghosh and Jayanta Kumar Biswas

Hayat, S. and Javed, M. 2008. Regression studies of planktonic productivity and fish yields with reference to physico-chemical parameters of the ponds stocked with sub-lethal metal stressed fish. *Int. J. Agric. Biol.*, 10: 561-565.

Iverson, R. L. 1990. Control of marine fish production. *Limnol. Oceanogr.*, 35: 1593-1604. doi.org/10.4319/lo.1990.35.7.1593.

Mandal, S. and Mukherjee, A. 2007. Wetlands and their macrophytes in Purulia District, West Bengal. *J. Env Ecol.*, 25(3): 564-570.

Mandal, S., Mandal, D. and Palit, D. 2003. A preliminary survey of wetlands plants in Purulia District, West Bengal. *J. Appl. Pure Biol.*, 18(2): 247-252.

Melack, J. M. 1976. Primary productivity in tropical lakes. *Trans. Am. Fish. Soc.*, 106(5): 575-580.

Mitsch, W. J. and Gosselink, J. G. 1986. *Wetlands*, VanNostard Reinhold, New York, USA.

Mukherjee, A. and Palit, D. 2001. Macrophyte diversity in wetlands of Birbhum District, West Bengal: Economic prospects. In: Dadhich, L. (Ed.), *Biodiversity: Strategies for conservation*. APH Publishing Corporation, New Delhi, p. 245-262.

Noreiga-Curtis, P. 1979. Primary productivity and related fish yield in intensely manured ponds. *Aquaculture*, 17: 335-344. doi.org/10.1016/0044-8486(79)90088-7.

Olah, J., Sinha, V. R. P., Ayyappan, S., Purushothaman, C. S. and Radheyshyam, S. 1986. Primary production and fish yields in fish ponds under different management practices, FAO Corporate Document Repository. *Aquaculture*, 58: 111-122.

Palit, D., Bala, G. and Mukherjee, A. 2006. Sedges of wetlands of Birbhum District, West Bengal. *Flora Fauna*, 12(2): 269-274.

Palit, D. and Mukherjee, A. 2007. An inventory of wetlands in Birbhum District, West Bengal and their successional characteristics. *Env. Ecol.*, 25(1): 173-176.

Srinivasan, A. 1972. Energy transformations through primary productivity and fish production in some tropical freshwater impoundments and ponds. In: Kajak, Z. and Hilbricht-Ilikowska, A (Eds.), *Productivity problems in freshwaters*. Polish Scientific Publishers, Warsaw, p. 505-514. http://www.fao.org/docrep/field/003/ac176e/AC176E09.htm.

Ware, D. M. and Thomson, R. E. 2005. Bottom-up ecosystem trophic dynamics determine fish production in the north-east Pacific. *Science*, 308: 1280-1284. DOI: 10.1126/science.1109049.

Ware, D. M. 2000. Aquatic ecosystems: Properties and models. In: Harrison, P. J. and Parsons, T. R., (Eds.), *Fisheries oceanography: An integrative approach to fisheries ecology and management*. Blackwell Science, Oxford, UK, p. 161-200.

Worm, B., Lotze, H. K., Hillebrand, H. and Sommer, U. 2002. Consumer versus resource control of species diversity and ecosystem functioning. *Nature*, 417: 848-851. doi: 10.1038/nature00830.