FOLIATIONS OF CONTINUOUS Q-PSEUDOCONCAVE GRAPHS

THOMAS PAWLASCHYK† AND NIKOLAY SHCHERBINA

Abstract. We show that the graph of a continuous map $f : G \to \mathbb{R}^k \times \mathbb{C}^p$, defined on an open set G in $\mathbb{C}^n_z \times \mathbb{R}^k_u$, is locally foliated by complex n-dimensional submanifolds if and only if its complement is n-pseudoconvex in $(G + i\mathbb{R}^k) \times \mathbb{C}^p \subset \mathbb{C}^n_z \times \mathbb{C}^k_u + iv \times \mathbb{C}^p$ (in the sense of Rothstein).

1. Introduction

One of the classical and fascinating theorems by Hartogs from 1909 states that a continuous function $f : \Delta^n \to \mathbb{C}$ is holomorphic on a polydisk $\Delta^n \subset \mathbb{C}^n_z$ if and only if the complement of its graph $\Gamma(f) = \{ (z, \zeta) : z \in G, \zeta = f(z) \}$ is a domain of holomorphy in $\Delta^n \times \mathbb{C}$. In this spirit, we prove the following result (see Theorem 5.7 of this paper).

Main Theorem. Let n, k, p be integers with $n \geq 1$, $p \geq 0$ and let $k \in \{0, 1\}$ such that $N = n + k + p \geq 2$. Let G be an open set in $\mathbb{C}^n_z \times \mathbb{R}^k_u$ and let $f : G \to \mathbb{R}^k_v \times \mathbb{C}^p$ be a continuous map such that the complement of the graph $\Gamma(f)$ in $\mathbb{C}^N_{z,u+iv,\zeta}$ is Hartogs n-pseudoconvex in the sense of Rothstein [Rot55]. Then $\Gamma(f)$ is locally foliated by n-dimensional complex submanifolds.

This statement generalizes not only Hartogs’ theorem (case $n \geq 1$, $k = 0$ and $p = 1$), but also results in [She93] (case $n = 1$, $k = 1$ and $p = 0$) and in [Chi01] (case $n \geq 2$, $k = 1$ and $p = 0$). The most important case in this paper is $n = k = 1$. From these results we easily derive all the other cases. Results in the case $n \geq 1$, $k \geq 2$ and $p \geq 0$ are not known to us yet.

2010 Mathematics Subject Classification. Primary 32F10, 32D20; Secondary 37F75.

Key words and phrases. q-plurisubharmonic functions, q-pseudoconcave sets, singularity sets, foliations by holomorphic manifolds.

†Research of the first author was supported by the Deutscher Akademischer Austauschdienst (DAAD) and Conacyt México under the PPP Proaexus Project No. 51240052; and by the Deutsche Forschungsgemeinschaft (DFG) under the grant SH 456/1-1, Pluripotential Theory, Hulls and Foliations.
Since the graphs of functions $f : \mathbb{C}^n \to \mathbb{C}_\zeta$ are hypersurfaces in $\mathbb{C}^{n+1}_{z,\zeta}$, pseudoconvexity of their complement is meaningful. In contrast, the graphs of continuous maps, as in our setting above, are surfaces of higher codimension, so that pseudoconvexity is not a proper condition anymore and needs to be replaced by q-pseudoconvexity. The reason is that the continuity principle with discs fails if the dimension of the graph is too low. A continuity principle with analytic surfaces of higher dimension is therefore the key. It is equivalent to Hartogs q-pseudoconvexity in the sense of Rothstein [Rot55] and the $(n - q - 1)$-pseudoconvexity in the sense of Hunt and Murray [HM78]. Notice that in the smooth setting q-pseudoconvexity is $(q - 1)$-convexity in the sense of Grauert and Andreotti.

The paper is organized as follows. In Sections 2 and 3 we collect some (mainly known) facts on q-plurisubharmonic functions and q-pseudoconvex sets. In Section 4 we present results on the relation of Levi q-pseudoconvex sets and q-pseudoconvexity, which will form the essential tools to prove the main theorem. In the last Section 5 we prove the main theorem.

These results were obtained jointly by the authors of this paper and were included in the doctoral thesis [Paw15] of the first author. They have not been published yet, since we intended to proceed with further investigations in hope to prove more general statements. Meanwhile, Takeo Ohsawa proved in [Ohs20] a statement similar to our result in the case $k = 0$ using L^2-methods. As it appears that our result is more general ($k = 0, 1$) and its verification uses different techniques, we felt motivated to finalize our paper and present our results in its original form given in the above mentioned thesis.

2. On q-plurisubharmonic functions

In this section, we introduce the most important functions of this paper: the q-plurisubharmonic functions in the sense of Hunt and Murray [HM78]. A collection of results on q-plurisubharmonic functions (and q-pseudoconvex sets) can be found in the doctoral thesis [Paw15] of the first author.

Definition 2.1. Let $q \in \{0, \ldots, n-1\}$ and let ψ be an upper semi-continuous function on an open set Ω in \mathbb{C}^n.

1. The function ψ is called *subpluriharmonic on* Ω if for every ball $B \subseteq U$ and every function h which is pluriharmonic on a neighborhood of \overline{B} with $\psi \leq h$ on bB we already have that $\psi \leq h$ on \overline{B}.

2. The function ψ is *q-plurisubharmonic on* Ω if ψ is subpluriharmonic on $\pi \cap \Omega$ for every complex affine plane π of dimension $q + 1$.
(3) If \(q \geq n \), every upper semi-continuous function on \(\Omega \) is by convention \(q \)-pluri-
subharmonic.

(4) The set of all \(q \)-plurisubharmonic functions on \(\Omega \) is denoted by \(\mathcal{PSH}_q(\Omega) \).

(5) An upper semi-continuous function \(\psi \) on \(\Omega \) is called \emph{strictly \(q \)-plurisubharmonic}
on \(\Omega \) if for every \(C^\infty \)-smooth non-negative function \(\theta \) with compact support in \(\Omega \) there is a positive number \(\varepsilon_0 \) such that \(\psi + \varepsilon \theta \) remains \(q \)-plurisubharmonic on \(\Omega \) for every real number \(\varepsilon \) with \(|\varepsilon| \leq \varepsilon_0 \).

We give a list of properties of \(q \)-plurisubharmonic functions.

\textbf{Proposition 2.2.} Every below mentioned function is defined on an open set \(\Omega \) in \(\mathbb{C}^n \) unless otherwise stated.

(1) The 0-plurisubharmonic functions are exactly the plurisubharmonic functions, and the \((n-1)\)-plurisubharmonic functions are the subpluriharmonic functions.

(2) Every \(q \)-plurisubharmonic function is \((q+1)\)-plurisubharmonic.

(3) \cite{Ste84} If \(\psi \) is \(q \)-plurisubharmonic and \(\varphi \) is \(r \)-plurisubharmonic, then \(\psi + \varphi \) is\((q+r)\)-plurisubharmonic.

(4) \cite{HM78} An upper semi-continuous function \(\psi \) is \(q \)-plurisubharmonic on \(\Omega \) if and only if it is locally \(q \)-plurisubharmonic on \(\Omega \), i.e., for each point \(p \) in \(\Omega \) there is a neighborhood \(U \) of \(p \) in \(\Omega \) such that \(\psi \) is \(q \)-plurisubharmonic on \(U \).

(5) \cite{Fu92, Die06} A function \(\psi \) is \(q \)-plurisubharmonic on an open set \(\Omega \) in \(\mathbb{C}^n \) if and only if \(\psi \circ f \) is \(q \)-plurisubharmonic for every holomorphic mapping \(f : D \to \Omega \), where \(D \) is a domain in \(\mathbb{C}^{q+1} \) (or even \(\mathbb{C}^k \) with \(k \geq q+1 \)).

(6) Let \(\Omega_1 \) be an open set in \(\Omega \), \(\psi \) be a \(q \)-plurisubharmonic function on \(\Omega \) and \(\psi_1 \) be a \(q \)-plurisubharmonic function on \(\Omega_1 \) such that

\[
\limsup_{w \to z \atop w \in \Omega_1} \psi(w) \leq \psi(z) \quad \text{for every} \quad z \in \partial \Omega_1 \cap \Omega.
\]

Then the subsequent function is \(q \)-plurisubharmonic on \(\Omega \),

\[
\varphi(z) := \begin{cases}
\max\{\psi(z), \psi_1(z)\}, & z \in \Omega_1 \\
\psi(z), & z \in \Omega \setminus \Omega_1
\end{cases}
\]

A smooth (strictly) \(q \)-plurisubharmonic function can be characterized by counting the eigenvalues of its complex Hessian matrix.

\textbf{Definition 2.3.} Let \(\psi \) be twice differentiable at a point \(p \). For \(X, Y \in \mathbb{C}^n \) we define the \emph{Levi form} of \(\psi \) at \(p \) by

\[
\mathcal{L}_\psi(p)(X, Y) := \sum_{k,l=1}^n \frac{\partial^2 \psi}{\partial z_k \partial \overline{z}_l}(p) X_k Y_l.
\]
We have the following characterization of smooth \(q\)-plurisubharmonic functions (see Lemma 2.6 in [HM78]):

Theorem 2.4. Let \(q \in \{0, \ldots, n-1\}\) and let \(\psi\) be a \(C^2\)-smooth function on an open subset \(\Omega\) in \(\mathbb{C}^n\). Then \(\psi\) is (strictly) \(q\)-plurisubharmonic if and only if the Levi matrix \(L_\psi(p)\) has at most \(q\) negative (\(q\) non-positive) eigenvalues at every point \(p\) in \(\Omega\).

In the same paper [HM78] the local maximum property was shown.

Theorem 2.5 (Local maximum property). Let \(q \in \{0, \ldots, n-1\}\) and \(\Omega\) be a relatively compact open set in \(\mathbb{C}^n\). Then any function \(u\) which is upper semi-continuous on \(\overline{\Omega}\) and \(q\)-plurisubharmonic on \(\Omega\) fulfills

\[
\max_{\overline{\Omega}} \psi = \max_{\partial A} \psi.
\]

Słodkowski generalized in [Sło86] the previous results to analytic sets in his Proposition 5.2 and Corollary 5.3.

Theorem 2.6 (Local maximum principle for analytic sets). Fix an integer number \(q \in \{0, \ldots, n-1\}\). Let \(A\) be an analytic subset of an open set \(\Omega\) in \(\mathbb{C}^n\) with \(\dim_z A \geq q+1\) for all \(z \in A\) and let \(\psi\) be a \(q\)-plurisubharmonic function on \(A\), i.e. for every point \(z \in A\) the function \(\psi\) extends to a \(q\)-plurisubharmonic function on some open neighborhood of \(z\) in \(\Omega\). Then for every compact set \(K\) in \(A\) we have that

\[
\max_K \psi = \max_{b_A K} \psi.
\]

Here, by \(b_A K\) we mean the relative boundary of \(K\) in \(A\).

3. On \(q\)-pseudoconvex sets

Several characterizations of \(q\)-pseudoconvexity in \(\mathbb{C}^n\) can be found in the literature. We may refer, for example, to [Fuj64], [Sło86] and [Mat96]. Out of these notions we need the \(q\)-pseudoconvexity in the sense of Rothstein [Rot55] which is based on generalized Hartogs figures.

Definition 3.1. (1) We write \(\Delta^n_r := \Delta^n(0) = \{z \in \mathbb{C}^n : \max_j |z_j| < r\}\) for the polydisc with radius \(r > 0\) and \(A^n_{R,R} := \Delta^n_R \setminus \Delta^n_r\) for the open annulus with radii \(r > 0\) and \(R > 0\) centered at the origin in \(\mathbb{C}^n\).

(2) Let \(1 \leq k < n\) be fixed integers, and \(r\) and \(R\) be real numbers in the interval \((0, 1)\). An Euclidean \((n-k,k)\) Hartogs figure \(H_e\) is the set

\[
H_e := (\Delta_1^{n-k} \times \Delta_r^k) \cup (A_{R,1}^{n-k} \times \Delta_1^k) \subset \Delta_1^{n-k} \times \Delta_1^k = \Delta_1^n.
\]
(3) A pair \((H, P)\) of domains \(H\) and \(P\) in \(\mathbb{C}^n\) with \(H \subset P\) is called a (general) \((n-k, k)\) Hartogs figure if there is an Euclidean \((n-k, k)\) Hartogs figure \(H_e\) and a biholomorphic mapping \(F\) from \(\Delta_1^n\) onto \(P\) such that \(F(H_e) = H\).

(4) An open set \(\Omega\) in \(\mathbb{C}^n\) is called Hartogs \(k\)-pseudoconvex if it admits the Kontinuitätsatz with respect to the \((n-k, k)\)-dimensional polydiscs, i.e., given any \((n-k, k)\) Hartogs figure \((H, P)\) such that \(H \subset \Omega\), we already have that \(P \subset D\).

Another notion of \(q\)-pseudoconvexity is as follows.

Definition 3.2. We say that an open set \(\Omega\) in \(\mathbb{C}^n\) is \(q\)-pseudoconvex (in \(\mathbb{C}^n\)) if there exists a continuous \(q\)-plurisubharmonic exhaustion function \(\Phi\) for \(\Omega\), i.e., for every \(c \in \mathbb{R}\) the set \(\{z \in \Omega : \Phi(z) < c\}\) is relatively compact in \(\Omega\).

In regards to the definition of 0-plurisubharmonic functions and the classical Kontinuitätsatz, 0-pseudoconvexity and Hartogs \((n-1)\)-pseudoconvexity of sets are equivalent to their pseudoconvexity. Notice that every domain in \(\mathbb{C}^n\) is \((n-1)\)-pseudoconvex (see [5]). In fact, \(q\)-pseudoconvexity of sets is the same as their Hartogs \((n-q-1)\)-pseudoconvexity. We will use both properties later on.

A proof of the following statement and an extended list of notions which are equivalent to \(q\)-pseudoconvexity can be found in [10] or in [15].

Theorem 3.3. Let \(q \in \{0, \ldots, n-2\}\) and \(\Omega\) be an open set in \(\mathbb{C}^n\). Then the following statements are all equivalent.

1. The set \(\Omega\) is Hartogs \((n-q-1)\)-pseudoconvex.
2. For some/all complex norm(s) \(\| \cdot \|\) the boundary distance function
 \[
 z \mapsto -\log d_{\| \cdot \|}(z, b\Omega) = -\log \inf \{\|z - w\| : w \in b\Omega\}
 \]
 is \(q\)-plurisubharmonic on \(\Omega\).
3. \(\Omega\) is \(q\)-pseudoconvex.
4. Let \(\{A_t\}_{t \in [0,1]}\) be a family of \((q+1)\)-dimensional analytic subsets in some open set \(U\) in \(\mathbb{C}^n\) that continuously depend on \(t\) in the Hausdorff topology. Assume that the closure of \(\bigcup_{t \in [0,1]} A_t\) is compact. If \(\Omega\) contains the boundary \(bA_1\) and the closure \(\overline{A_t}\) for each \(t \in [0,1]\), then the closure \(\overline{A_1}\) also lies in \(\Omega\).

We recall the definition, the basic properties and some examples of relative \(q\)-pseudoconvex sets, which were originally introduced by Z. Słodkowski in chapter 4 of [5]. They will mainly serve to simplify our notations.

Definition 3.4. Given two open sets \(U \subset V\) in \(\mathbb{C}^n\), the set \(U\) is said to be \(q\)-pseudoconvex in \(V\) if there is a neighborhood \(W\) of \(bU \cap V\) in \(\mathbb{C}^n\) such that the function
$z \mapsto -\log d(z, bU)$ is q-plurisubharmonic on $U \cap W$. Here, $d(z, bU)$ is induced by the Euclidean distance.

The following proposition is a part of Theorem 4.3 and Corollary 4.7 in Słodkowski’s article [Sło86].

Proposition 3.5. Let $U \subset V$ be open sets in \mathbb{C}^n. Then the following statements are equivalent.

1. U is q-pseudoconvex in V.
2. There exist a neighborhood W of $bU \cap V$ in V and a q-plurisubharmonic function ψ on $W \cap U$ such that $\psi(z)$ tends to $+\infty$ whenever z approaches the relative boundary $bU \cap V$.
3. For every point p in $V \cap bU$ there exists an open ball $B_r(p)$ centered in p such that the intersection $U \cap B_r(p)$ is q-pseudoconvex in \mathbb{C}^n.

We continue by presenting some examples of relative q-pseudoconvex sets.

Example 3.6. (1) Let φ be q-plurisubharmonic on an open set V in \mathbb{C}^n and let c be a real number. Then the set $U = \{z \in V : \varphi(z) < c\}$ is q-pseudoconvex in V. If, moreover, the set V is q-pseudoconvex itself, then U is q-pseudoconvex (in \mathbb{C}^n).

(2) Let Ω be an open set in \mathbb{C}^n and let h be a smooth q-holomorphic function on Ω in the sense of Basener [Bas76], i.e. $\overline{\partial}h \wedge (\partial \overline{\partial}h)^q = 0$. Let $\Gamma(h) := \{(z, h(z)) \in \mathbb{C}^{n+1} : z \in \Omega\}$ be the graph of f over Ω. Then the function $(z, w) \mapsto 1/(h(z) - w)$ is q-holomorphic on $U := (\Omega \times \mathbb{C}) \setminus \Gamma(h)$ by [Bas76], so the function $\psi(z, w) := -\log |h(z) - w|$ is q-plurisubharmonic on U by [HM78]. It has the property that $\psi(z, w)$ tends to $+\infty$ whenever (z, w) approaches the graph $\Gamma(h)$. Hence, the open set U is q-pseudoconvex in $V := \Omega \times \mathbb{C}$ by Proposition 3.5(2). A converse statement is not known except for Hartog’s theorem which appears in the holomorphic case $q = 0$.

The smoothly bounded q-pseudoconvex sets can be characterized in terms of q-plurisubharmonic defining functions.

Definition 3.7. Let U be an open set in \mathbb{C}^n.

1. The set U is called Levi q-pseudoconvex (resp. strictly Levi q-pseudoconvex) at the point $p \in bU$ if there exist a neighborhood W of p and a C^2-function φ on W such that $\nabla \varphi(p) \neq 0$, $U \cap W = \{z \in W : \varphi(z) < 0\}$ and, moreover, such that its Levi form L_φ at p has at most q negative (resp. q non-positive) eigenvalues.
on the holomorphic tangent space

\[H_p bU = \{ X \in \mathbb{C}^n : \sum_{j=1}^{n} \frac{\partial \varrho}{\partial z_j}(p) X_j = 0 \}. \]

(Clearly, the definition of Levi pseudoconvexity does not depend on the defining function.)

(2) Let \(V \) be an open neighborhood of \(U \) with \(U \subseteq V \). Then \(U \) is called (strictly) Levi \(q \)-pseudoconvex in \(V \) if it is (strictly) Levi \(q \)-pseudoconvex at every point \(p \in bU \cap V \). A strictly Levi \(q \)-pseudoconvex set in \(\mathbb{C}^n \) is also simply called strictly \(q \)-pseudoconvex.

We present some facts about Levi \(q \)-pseudoconvex sets.

Remark 3.8. If \(U \subset \mathbb{C}^n \) is strictly \(q \)-pseudoconvex at a boundary point \(p \) and \(\psi \) is a defining function for \(U \) at \(p \), then for a large enough constant \(c > 0 \) the function \(\exp(c\psi) - 1 \) is strictly \(q \)-plurisubharmonic on some ball \(B \) centered at \(p \) and still defines \(U \) at \(p \). Therefore, in view of Example 3.6 (1), \(U \cap B \) is \(q \)-pseudoconvex.

The next theorem is the main result in [Sur84]. We will establish its converse statement later in Corollary 4.2.

Theorem 3.9. Every Levi \(q \)-pseudoconvex set is \(q \)-pseudoconvex. More precisely, it admits a \(C^2 \)-smooth \(q \)-plurisubharmonic exhaustion function.

4. Duality Principle of \(q \)-Pseudoconvex Sets

In this section, we study the link between strictly \(q \)-pseudoconvex sets and their complements. Their relation leads to two duality theorems. The first one is due to Basener (see Proposition 6 in [Bas76]).

Theorem 4.1. If an open set \(\Omega \) in \(\mathbb{C}^n \) is strictly \(q \)-pseudoconvex at some point \(p \in b\Omega \), then for every small enough neighborhood \(V \) of \(p \) the set \(V \cap (\mathbb{C}^n \setminus \overline{\Omega}) \) is not \((n-q-2) \)-pseudoconvex at every point of \(b\Omega \cap V \). More precisely (and in view of Theorem 3.3 above), for each \(w \) in \(b\Omega \cap V \) and every neighborhood \(U \subset V \) of \(w \) there is a family \(\{A_t\}_{t \in [0,1]} \) of \((n-q-1) \)-dimensional complex submanifolds of \(U \) which is continuously parameterized by \(t \) and fulfills

1. \(A_t \subset (\mathbb{C}^n \setminus \overline{\Omega}) \) for every \(t \in [0,1] \),
2. \(w \in A_1 \), but \(A_1 \setminus \{w\} \subset (\mathbb{C}^n \setminus \overline{\Omega}) \).

Proof. Fix the point \(p \in b\Omega \). By Proposition 6 in [Bas76] there exists a neighborhood \(V \) of \(p \) in \(\mathbb{C}^n \) such that for every point \(w \) in \(b\Omega \cap V \) the following properties hold after an appropriate holomorphic change coordinates on \(V \),

\[w = 0 \quad \text{and} \quad \Re(z_1) < 0 \quad \text{for every} \quad z \in V \cap (\overline{\Omega} \setminus \{w\}) \cap (\mathbb{C}^{n-q} \times \{0\}^q). \]
Let \(U \Subset V \) be any neighborhood of \(w \). Then there are real numbers \(\varepsilon > 0 \) and \(r > 0 \) such that for each \(t \in [0, 1] \) the submanifold

\[
A_t = \{(1 - t)\varepsilon \times B_r^{n-q-1}(0) \times \{0\}\}
\]

is contained in \(U \). Finally, the properties \((4.1)\) imply that the family \(\{A_t\}_{t \in [0, 1]} \) has the desired properties.

As an application we can improve Suria’s observation (see Theorem 3.9) which fully clarifies the relation between Levi \(q \)-pseudoconvexity and \(q \)-pseudoconvexity.

Corollary 4.2. Let \(\Omega \) be an open set in \(\mathbb{C}^n \) which is \(C^2 \)-smoothly bounded. Then \(\Omega \) is Levi \(q \)-pseudoconvex if and only if it is \(q \)-pseudoconvex.

Proof. Due to Suria’s Theorem 3.9 it only remains to prove that, if \(\Omega \) is \(q \)-pseudoconvex, then it is Levi \(q \)-pseudoconvex. Suppose that \(\Omega \) is not Levi \(q \)-pseudoconvex at some boundary point \(p \) of \(\Omega \). Then there are a neighborhood \(W \Subset U \) of \(p \) and a \(C^2 \)-smooth defining function \(q \) for \(\Omega \) at \(p \) defined on \(W \) such that its Levi form has at most \(n-q-2 \) non-negative eigenvalues on the holomorphic tangent space to \(b\Omega \) at \(p \). Hence, \(-q \) is a defining function for \(D := \mathbb{C}^n \setminus \overline{\Omega} \) at \(p \) whose Levi form has at most \(n-q-2 \) non-positive eigenvalues on the holomorphic tangent space to \(b\Omega \) at \(p \). This means that \(D \) is strictly \((n-q-2)\)-pseudoconvex at \(p \). But then Theorem 4.1 implies that \(\Omega \) is not \(q \)-pseudoconvex near \(p \), which is absurd. Therefore, \(\Omega \) has to be Levi \(q \)-pseudoconvex at \(p \). \(\square \)

In order to establish a converse statement of Theorem 4.1 we need the following lemma.

Lemma 4.3. Let \(q \in \{0, \ldots, n-1\} \) and let \(\psi \) be a \(C^2 \)-smooth strictly \(q \)-plurisubharmonic function on an open set \(V \) in \(\mathbb{C}^n \). Assume that \(V \) contains two compact sets \(K \) and \(L \) which fulfill the following properties:

1. \(K, L \subset \{ z \in V : \psi(z) \leq 0 \} \)
2. \(L \cap \{ z \in V : \psi(z) = 0 \} = \emptyset \)
3. \(K \cap \{ z \in V : \psi(z) = 0 \} \neq \emptyset \)

Under these conditions, there exist a point \(z_0 \in bK \), a neighborhood \(U \Subset V \) of \(z_0 \) and a \(C^2 \)-smooth strictly \(q \)-plurisubharmonic function \(\varphi \) on \(U \) satisfying:

1. \(K, L \subset \{ z \in U : \varphi(z) \leq 0 \} \)
2. \(L \cap \{ z \in U : \varphi(z) = 0 \} = \emptyset \)
3. \(K \cap \{ z \in U : \varphi(z) = 0 \} = \{ z_0 \} \)
4. \(\nabla \varphi \neq 0 \) on \(\{ z \in U : \varphi(z) = 0 \} \)
In other words, the set \(G := \{ z \in U : \varphi(z) < 0 \} \) is strictly \(q \)-pseudoconvex in \(U \), contains \(L \), and \(K \) touches \(bG \) from the inside of \(G \) only at the point \(z_0 \).

Proof. We proceed similarly to the proof of Proposition 3.2 in [HST17]. Let \(\delta > 0 \) and \(V_\delta := B_{1/\delta}(0) \cap \{ z \in V : d(z,bV) > \delta \} \). We choose \(\delta > 0 \) so small that the conditions (1) to (3) of this lemma still hold if we replace \(V \) by \(U := V_\delta \).

Let \(B := B_\delta(0) \) and consider the function \(f: B \to \psi(U) \) defined by \(f(w) := \max_{z \in K} \psi(z + w) \). Pick a point \(p \in K \cap \{ z \in U : \psi(z) = 0 \} \). Since \(\psi \) is strictly \(q \)-plurisubharmonic, it follows from the local maximum property (see Theorem 2.6) that \(\{ \psi > 0 \} \cap W \) is not empty for any neighborhood \(W \) of \(p \). Hence, since \(p \) belongs to \(K \) and since \(f(0) = \psi(p) = 0 \), the image \(f(B) \) contains a non-empty open interval \(I = (0, \delta') \) for some \(\delta' > 0 \). Since \(f(B) \) lies in \(\psi(U) \), Sard’s theorem implies that there exists a regular value \(f(w_0) \) inside \(I \) which is so close to \(\psi(p) = 0 \) that the conditions (1) to (3) are still valid for the function \(\psi_0(z) := \psi(z + w_0) - f(w_0) \) instead of \(\psi \). Notice that 0 is now a regular value for \(\psi_0 \).

Let \(z_0 \) be a point in \(K \) with \(f(w_0) = \psi(z_0 + w_0) \), so that \(\psi_0(z_0) = 0 \). For \(\varepsilon > 0 \), we define \(\varphi(z) := \psi_0(z) - \varepsilon |z - z_0|^2 \). Then it is easy to see that \(K \cap \{ z \in U : \varphi(z) = 0 \} \) only contains the point \(z_0 \), so we also obtain property (c). Now if \(\varepsilon > 0 \) is small enough, then the function \(\varphi \) is still strictly \(q \)-plurisubharmonic. Besides of that, the function \(\varphi \) fulfills also the properties (a) and (b). Finally, by the choice of \(f(w_0) \), zero is a regular value for \(\varphi \), so we also gain the property (d).

The next result is the second duality theorem and a converse statement to Theorem 4.1.

Theorem 4.4. Let \(\Omega \) be a domain in \(\mathbb{C}^n \) which is not \(q \)-pseudoconvex. Then there exist a point \(p \in b\Omega \), a neighborhood \(V \) of \(p \) and a strictly Levi \((n-q-2) \)-pseudoconvex set \(G \) in \(V \) such that the set \(V \setminus \Omega \) is contained in \(G \cup \{ p \} \) and \(\Omega \) touches \(bG \) from the inside of \(G \) only at \(p \).

Proof. Since \(\Omega \) is not \(q \)-pseudoconvex, there exists a \((q+1,n-q-1)\)-Hartogs figure \((H,P)\) and a biholomorphic mapping \(F \) on \(\Delta := \Delta_q^+(0) \) onto its image in \(\mathbb{C}^n \) such that \(H = F(H_e) \) lies in \(\Omega \), but \(P = F(\Delta_q^+(0)) \) is not contained entirely in \(\Omega \) for the Euclidean Hartogs figure (recall Definition 5.1).

\[
H_e = (\Delta_{p+1}^+ \times \Delta_{n-q-1}^-) \cup (A_{R,1}^{q+1} \times \Delta_1^{n-q-1}) \subset \mathbb{C}_z^{q+1} \times \mathbb{C}_w^{n-q-1}.
\]

By shrinking \(\Delta \) if necessary, we can assume that \(F \) is defined on a neighborhood of the closure of \(\Delta \). We set \(M := F^{-1}(\mathbb{C}^n \setminus \Omega) \cap \Delta \). Now let \(\alpha, \beta \in (0,1) \) and set

\[
K_0 := (\Delta_1^{q+1} \times \Delta_0^{n-q-1}) \cap M \quad \text{and} \quad L_0 := (\Delta_1^{q+1} \times A_{\beta,1}^{n-q-1}) \cap M.
\]
Since $\Phi(H_{\alpha})$ lies in Ω, we can find an appropriate $\alpha \in (0,1)$ such that K_0 is not empty. Fix some $\beta \in (0,1)$ with $\alpha < \beta$. Recall that $|w|_{\infty} = \max_{j=1,\ldots,n-q-1} |w_j|$ and consider the function $u(w) := -\log |w|_{\infty}$. By the assumptions made on H and P, we can find a large enough number $c \in \mathbb{R}$ such that $M \subset D_c(u) := \{(z,w) \in \Delta : u(w) < c\}$. (4.2)

Let $k \in \mathbb{N}$ and define the function u_k by

$$u_k(w) := -\frac{1}{k} \log |(w^1,\ldots,w^{n-q-1})| + \frac{1}{k} |w|^2.$$

Then the function u_k is C^∞-smooth and strictly $(n-q-2)$-plurisubharmonic on $\mathbb{C}_w^{n-q-1} \setminus \{0\}$ \cite{PZ15}. Moreover, the sequence $(u_k)_{k \in \mathbb{N}}$ converges to u uniformly on compact sets in $\mathbb{C}_w^{n-q-1} \setminus \{0\}$. Therefore, and in view of property (4.2), we can pick an integer k_0 so large that M lies in $D_{c_k}(u_k) := \{(z,w) \in \Delta : u_k(w) < c_k\}$ for every $k \geq k_0$. Define

$$c_k := \inf \{a \in \mathbb{R} : M \subset D_a(u_k)\}.$$

Now we fix an even larger $k \geq k_0$ so that $L_0 \cap D_{c_k}(u_k)$ is empty. Then it is easy to see that K_0 intersects $\{(z,w) \in \Delta : u_k(w) = c_k\}$ in a point $\zeta_0 \in \Delta$. Finally, we set $U := F^{-1}(\Delta)$, $K := F^{-1}(K_0)$, $L := F^{-1}(L_0)$ and $\psi := u_k \circ F^{-1}$ and verify that the conditions (1) to (3) in Lemma 4.3 all are satisfied. Thus, it follows from this lemma that there are a point p in $b\Omega$, a neighborhood V of p and a strictly $(n-q-2)$-plurisubharmonic function on V such that the set $G := \{z \in V : \varphi(z) < 0\}$ is the desired strictly Levi $(n-q-2)$-pseudoconvex set in V, whose boundary bG shares only a single point with $b\Omega$ in V. \hfill \square

5. On q-PSEUDOCONCAVE GRAPHS

In this section, we will analyze whether submanifolds or graphs of a continuous function admit a local complex foliation under the condition that its complement is q-pseudoconvex. The goal is to generalize Hartogs’ theorem and the results in \cite{Shc93} and \cite{Chi01}.

Theorem 5.1 (Hartogs, 1909). A continuous function $f : G \rightarrow \mathbb{C}_z$ is holomorphic on a domain $G \subset \mathbb{C}^2_z$ if and only if the complement of its graph $\Gamma(f) = \{(z,f(z)) : z \in G\}$ is pseudoconvex in $G \times \mathbb{C}_z$.

In order to simplify our notations, we introduce a generalized version of concavity.

Definition & Remark 5.2. Let $q \in \{0,\ldots,N\}$ and let S be a closed subset of an open set Ω in \mathbb{C}^N.

We say that S is (Hartogs) q-pseudoconcave in Ω if $\Omega' := \Omega \setminus S$ is (Hartogs) q-pseudoconvex in Ω, i.e., for every point p in bS there exists a ball B in Ω such that $B \cap \Omega'$ is (Hartogs) q-pseudoconvex.

In view of Theorem 3.3 the set S is q-pseudoconcave in Ω if and only if it is Hartogs $(N - q - 1)$-pseudoconcave in Ω. For the sake of a better presentation, we shall prefer, only in this section, the notion of Hartogs q-pseudoconcavity rather than q-pseudoconcavity.

Using the duality theorems of the previous section, we obtain the first relation of foliated sets and q-pseudoconcavity.

Proposition 5.3. Let $q \in \{1, \ldots, N - 1\}$ and let S be a closed subset of an open set Ω in \mathbb{C}^N. Assume that the boundary $b\Omega S$ of S in Ω is locally filled by q-dimensional analytic sets, i.e., for every point p in $b\Omega S$ there is a neighborhood W of p in Ω such that for each point z in $b\Omega S \cap W$ there exists a q-dimensional analytic subset A_z of W with $z \in A_z \subset S$. Then S is Hartogs q-pseudoconcave in Ω.

Proof. Assume that the statement is false. Then, according to Theorem 4.4, there exist a boundary point p of S in Ω, a neighborhood V of p and a strictly $(q - 1)$-pseudoconvex set G in V such that $S \cap V$ touches bG from the inside of G exactly in p. In view of Remark 3.8, we can construct a strictly $(q - 1)$-plurisubharmonic function ψ on some neighborhood U of p in V which defines G near p. By the assumption made on $b\Omega S$, there are a neighborhood W of p and a q-dimensional analytic subset A of W with $p \in A \subset S$. But then $\psi(p) = 0$ and $\psi < 0$ on $A \cap U$ outside p, which contradicts the local maximum principle (see Theorem 2.6). Therefore, S has to be Hartogs q-pseudoconcave in Ω. \hfill \Box

We present a converse statement on the complex foliation of Hartogs q-pseudoconcave CR-submanifolds. For this we need to extend Definition 3.7 as follows.

Definition 5.4. Let $\Gamma = \{\varphi_1 = \ldots = \varphi_r = 0\}$ be a C^2-smooth submanifold in \mathbb{C}^N such that $\nabla \varphi_j(p) \neq 0$ for each $j = 1, \ldots, r$.

1. The holomorphic tangent space $H_{p,\Gamma}$ to Γ at some point p in Γ is given by

$$H_{p,\Gamma} := \bigcap_{j=1}^r \left\{ X \in \mathbb{C}^N : (\partial^\varphi_j(p), X) = \sum_{l=1}^N \frac{\partial^\varphi_j}{\partial z_l}(p)X_l = 0 \right\}.$$

2. If the complex dimension of $H_{p,\Gamma}$ has the same value d at each point p in Γ, then we say that Γ is a CR-submanifold.

3. The Levi null space of Γ at p is the set

$$N_p := \bigcap_{j=1}^r \left\{ X \in H_{p,\Gamma} : L_{\varphi_j}(p)(X, Y) = 0 \text{ for every } Y \in H_{p,\Gamma} \right\}.$$
Proposition 5.5. Let $\Gamma = \{\varphi_1 = \ldots = \varphi_r = 0\}$ be a real C^2-smooth CR-submanifold of some open set Ω in \mathbb{C}^N of codimension $r \in \{1, \ldots, 2N - 1\}$ and fix a number $q \in \{1, \ldots, N - 1\}$. Assume further that the complex dimension of the holomorphic tangent space to Γ at every point in Γ equals q and that it is Hartogs q-pseudoconcave in Ω. Then Γ is locally foliated by complex q-dimensional submanifolds.

Proof. Since the Levi null space lies inside the holomorphic tangent space to Γ, it is clear that its complex dimension does not exceed q. We claim that the complex dimension of N_p is equal to q for each point $p \in \Gamma$, so that N_p coincides with $H_p\Gamma$.

In order to get a contradiction, suppose that there is a point p in Γ such that N_p is a proper subspace of $H_p\Gamma$. This implies that there is an index j_0 in $\{1, \ldots, r\}$ and a vector X_0 in $H_p\Gamma$ such that $L_{\varphi_{j_0}}(p, X_0, X_0) \neq 0$. Indeed, a priori, if $N_p \subseteq H_p\Gamma$, there exist two vectors X' and Y' in $H_p\Gamma$ such that

$$L_{\varphi_{j_0}}(p)(X', Y') \neq 0.$$

If $L_{\varphi_{j_0}}(p, X', X') \neq 0$ or $L_{\varphi_{j_0}}(p, Y', Y') \neq 0$, we are done and proceed by picking $X_0 = X'$ or, respectively, $X_0 = Y'$. Otherwise, if $L_{\varphi_{j_0}}(p, X', X')$ and $L_{\varphi_{j_0}}(p, Y', Y')$ both vanish, we can choose an appropriate complex number ν which satisfies

$$L_{\varphi_{j_0}}(p, X' + \nu Y', X' + \nu Y') = 2\text{Re}(\nu L_{\varphi_{j_0}}(p)(X', Y')) \neq 0.$$

Then we continue with $X_0 := X' + \nu Y'$. Now without loss of generality we can assume that $j_0 = 1$ and $L_{\varphi_1}(p, X_0, X_0) > 0$. For a positive constant μ we define another function

$$\varphi := \varphi_1 + \mu \sum_{j=1}^{r} \varphi_j^2.$$

Since, by the assumptions on Γ, the gradients $\nabla \varphi_1, \ldots, \nabla \varphi_r$ do not vanish at p, there is a neighborhood U of p such that the set $S := \{z \in U : \varphi(z) = 0\}$ is a real hypersurface containing $\Gamma \cap U$, so that $H_p\Gamma$ becomes a subspace of H_pS. Moreover, for $X \in H_p\Gamma$ we can easily compute the Levi form of φ at p,

$$L_{\varphi}(p, X, X) = L_{\varphi_1}(p, X, X) + 2\mu \sum_{j=1}^{r} |(\partial \varphi_j(p), X)|^2, \quad (5.1)$$

We assert that H_pS contains an $(N - q)$-dimensional subspace E on which $L_{\varphi}(p, \cdot)$ is positive. To see this, consider the complex normal space $N_p\Gamma$ to $H_p\Gamma$ in H_pS,

$$N_p\Gamma := \{Y \in H_pS : \sum_{l=1}^{N} Y_lX_l = 0 \text{ for every } X \in H_p\Gamma\}.$$
Observe that $N_p \Gamma$ has dimension $d := N - q - 1$ and choose a basis Y_1, \ldots, Y_d of $N_p \Gamma$. Let E be the complex span of the vectors X_0 from above and Y_1, \ldots, Y_d. Since X_0 belongs to $H_p \Gamma$, but Y_1, \ldots, Y_d do not, the dimension of E equals $N - q$.

We set $E_0 := \{ Z \in E : |Z| = 1 \}$ and $M := \{ Z \in E_0 : \mathcal{L}_{\varphi_1}(p, Z, Z) \leq 0 \}$.

If M is empty, then $\mathcal{L}_{\varphi}(p, \cdot, \cdot)$ is positive on E and we can put $\mu = 0$.

If M is not empty, notice first that, if Z lies in M, then $R(p, Z) > 0$ (recall the equation (5.1) for the definition of $R(p, Z)$). Otherwise Z belongs to $H_p \Gamma$ and, therefore, it is a multiple of X_0, i.e., $Z = \lambda X_0$ for some complex number λ. But then $\mathcal{L}_{\varphi_1}(p, Z, Z) = |\lambda|^2 \mathcal{L}_{\varphi_1}(p, X_0, X_0) > 0$ and Z lies in M at the same time, which is absurd. Hence, $R(p, Z) > 0$ for every vector Z in M. Since E_0 is compact and Γ is C^2-smooth, we can find constants $c_0 > 0$ and $c_1 > 0$ such that $R(p, Z) \geq c_0$ for every Z in M and $\mathcal{L}_{\varphi_1}(p, Z, Z) \geq -c_1$ for every Z in E_0. Now we can choose μ so large that $-c_1 + \mu c_0 > 0$ in order to obtain that $\mathcal{L}_{\varphi}(p, Z, Z) > 0$ for each Z in E_0. Since $\mathcal{L}_{\varphi}(p, \lambda X, \lambda X) = |\lambda|^2 \mathcal{L}_{\varphi}(p, X, X)$ for every X in E and λ in \mathbb{C}, we have that $\mathcal{L}_{\varphi}(p, \cdot, \cdot)$ is positive on $E \setminus \{0\}$.

Therefore, in both cases, the Levi form \mathcal{L}_{φ} at p is positive definite on the $(N - q)$-dimensional space E. Hence, $\{ \varphi < 0 \}$ is strictly $(q - 1)$-pseudoconvex at p. But then, in view of Theorem 4.1, the submanifold Γ cannot be Hartogs q-pseudoconcave near p, which is a contradiction. Finally, we can conclude that $N_p = H_p \Gamma$. By assumption, these two spaces have constant dimension q on Γ, so Theorem 1.1 in \cite{Fre74} implies that Γ admits a local foliation by complex q-dimensional submanifolds. \qed

In the previous statement we are in a comfortable situation of a smooth submanifold. Locally such a smooth submanifold can be described as the graph of a smooth mapping $f : G \subset \mathbb{C}^q \times \mathbb{R}^k \to \mathbb{R}^k \times \mathbb{C}^p$. Now if we drop the smoothness assumption and replace it by continuity, the graph of f can be considered as a “continuous CR-surface” whose complex structure we may study.

Main setting. Fix integers $n \geq 1$ and $k, p \geq 0$ such that $N = n + k + p \geq 2$. Then \mathbb{C}^N splits into the product

$$
\mathbb{C}^N = \mathbb{C}^N_{z, w, \zeta} = \mathbb{C}^n_w \times \mathbb{C}^k_z \times \mathbb{C}^p_{\zeta} = \mathbb{C}^n_z \times (\mathbb{R}^k_u + i\mathbb{R}^k_{\zeta}) \times \mathbb{C}^p_{\zeta},
$$

where $w = u + iv$. Let G be an open set in $\mathbb{C}^n_z \times \mathbb{R}^k_{u}$ and let $f = (f_v, f_{\zeta})$ be continuous on G with image in $\mathbb{R}^k_u \times \mathbb{C}^p_{\zeta}$. Then the graph of f is given by

$$
\Gamma(f) = \{(z, w, \zeta) \in \mathbb{C}^n_z \times \mathbb{C}^k_u \times \mathbb{C}^p_{\zeta} : (z, u, \zeta) \in G, (v, \zeta) = f(z, u)\}.
$$

Moreover, we denote by $\pi_{z, u}$ the natural projection

$$
\pi_{z, u} : \mathbb{C}^n_z \times \mathbb{C}^k_u \to \mathbb{C}^n_z \times \mathbb{R}^k_u, \quad \pi_{z, u}(z, w) \mapsto (z, u).
$$
We are interested in the question whether Γ admits a local foliation by complex submanifolds. In this context, we first have to study the q-pseudoconcavity of the graph of f.

Lemma 5.6. Pick another integers $m \in \{1, \ldots, n\}$ and $r \in \{0, \ldots, p\}$ with $k + r \geq 1$. For $\mu_1, \ldots, \mu_r \in \{1, \ldots, p\}$ with $\mu_1 < \ldots < \mu_r$, we divide the coordinates of ζ into $\zeta' = (\zeta_{\mu_1}, \ldots, \zeta_{\mu_r})$ and the remaining coordinates $\zeta'' = (\zeta_j : j \in \{1, \ldots, p\} \setminus \{\mu_1, \ldots, \mu_r\})$ which we assume to be ordered by their index μ_j, as well. Finally, let Π be a complex m-dimensional plane in \mathbb{C}_z^m. We set $M = m + k + r$ and $\mathbb{C}_M := \Pi \times \mathbb{C}_w^k \times \mathbb{C}_\zeta'$, $G := \Pi \cap (\Pi \times \mathbb{R}_k^\mu)$ and $f_* := (f_v, f_{\zeta'})|_{G_*}$.

If the graph $\Gamma(f)$ is Hartogs n-pseudoconcave in $G \times \mathbb{R}_k^k \times \mathbb{C}_\zeta$, then the graph $\Gamma(f_*)$ is Hartogs m-pseudoconcave in $G_* \times \mathbb{R}_k^k \times \mathbb{C}_\zeta'$.

Proof. Since the Hartogs n-pseudoconcavity is a local property, after shrinking G if necessary and after a biholomorphic change of coordinates we can assume without loss of generality that $\Pi = \{0\}^{n-m} \times \mathbb{C}_w^m \subset \mathbb{C}_z^n$, where $z' = (z_1, \ldots, z_{n-m})$ and $z'' = (z_{n-m+1}, \ldots, z_n)$, and that the ζ-coordinates are ordered in such a way that $\zeta' = (\zeta_1, \ldots, \zeta_r)$ and $\zeta'' = (\zeta_{r+1}, \ldots, \zeta_p)$.

Assume that $\Gamma(f_*)$ is not Hartogs m-pseudoconvex in $G_* \times \mathbb{R}_k^k \times \mathbb{C}_\zeta'$ and recall that $M = m + k + r$. Then in view of Theorem 3.3 (3) and Theorem 3.3 there are a point p in $\Gamma(f_*)$ and a ball $B = B_\rho(p)$ in \mathbb{C}_M such that the set $(\mathbb{C}_M \setminus \Gamma(f_*)) \cap B$ is not $(M - m - 1) = (k + r - 1)$-pseudoconvex. Since B is pseudoconvex, according to Theorem 3.3 (4) there is a family $\{A_t\}_{t \in [0, 1]}$ of $(k + r)$-dimensional analytic sets A_t in \mathbb{C}_M which depends continuously on t and which fulfills the following properties:

- The closure of the union $\bigcup_{t \in [0, 1]} A_t$ is compact.
- For every $t \in [0, 1)$ the intersection $\overline{A_t} \cap \Gamma(f_*)$ is empty.
- $\partial A_t \cap \Gamma(f_*)$ is empty, as well.
- The set A_1 touches $\Gamma(f_*)$ at a point $p_0 = (z_0, w_0, \zeta'_0)$, where $z_0 = (z'_0, z''_0) = (0, z''_0)$ and $w_0 = u_0 + iv_0$.

Given some positive number ρ, consider the $(k + p)$-dimensional analytic sets

$$S_t := \{0\}^{n-m} \times A_t \times \Delta_{\rho}^{p-r}(f_{\zeta''}(z_0, u_0)) \subset \mathbb{C}_N.$$

It is easy to verify that the family $\{S_t\}_{t \in [0, 1]}$ of $(k + p)$-dimensional analytic sets violates the property (4) of Theorem 3.3. According to Theorem 3.3 (1) $\Gamma(f)$ cannot be Hartogs n-pseudoconvex, which is a contradiction to the assumption on $\Gamma(f)$. Hence, $\Gamma(f_*)$ has to be Hartogs m-pseudoconcave.

We are now able to prove the main theorem.
Theorem 5.7. Let n, k, p be integers with $n \geq 1$, $p \geq 0$ and $k \in \{0, 1\}$ such that $N = n + k + p \geq 2$. Let G be a domain in $\mathbb{C}^n \times \mathbb{R}^k$ and let $f : G \to \mathbb{R}^p \times \mathbb{C}_\zeta$ be a continuous function such that $\Gamma(f)$ is Hartogs n-pseudoconcave. Then $\Gamma(f)$ is locally the disjoint union of n-dimensional complex submanifolds.

Proof. The statement is of local nature, so we can assume that G is an open ball B in $\mathbb{C}^n \times \mathbb{R}^k$ and that $\Gamma(f)$ is bounded. We separate the problem into the subsequent cases.

Case $n \geq 1$, $k = 0$, $p = 1$. This is the classical Hartogs’ theorem (see [Sha92], Chapter III.42, Theorem 2).

Case $n \geq 1$, $k = 0$, $p \geq 1$. For each $j \in \{1, \ldots, p\}$ the set $\Gamma(f_{\zeta_j})$ is Hartogs n-pseudoconcave by Lemma 5.6. By Hartogs’ theorem, the functions f_j and therefore, the mapping $f = (f_1, \ldots, f_p)$ are holomorphic which means that $\Gamma(f)$ is a complex hypersurface.

Case $n = 1$, $k = 1$, $p = 0$. This was proved by the second author in [She93].

Case $n \geq 1$, $k = 1$, $p = 0$. This case has been treated by Chirka in [Chi01].

Case $n = 1$, $k = 1$, $p = 1$. By Lemma 5.6 the graph $\Gamma(f_\zeta)$ is Hartogs 1-pseudoconcave. According to [She93], it is locally foliated by a family of holomorphic curves $\{\gamma_\alpha\}_{\alpha \in I}$ represented as graphs of holomorphic functions g_α which are all defined on a disc D in \mathbb{C}_z that does not depend on the indexes $\alpha \in I$. Denote by π_z the standard projection of points in $\mathbb{C}^2_{z,u}$ into \mathbb{C}_z. We define another curves f^α_{ζ} by the assignment

$$
\gamma_\alpha \ni t \mapsto f^\alpha_{\zeta}(t) := f_\zeta(\pi_z(t), \Re(g_\alpha)(\pi_z(t))).
$$

Since for each $\alpha \in I$ the curve γ_α is represented by the graph $\Gamma(g_\alpha)$, the function $f^\alpha_{\zeta} : \gamma_\alpha \to \mathbb{C}_z$ is well-defined, and its graph is given by $\Gamma(f^\alpha_{\zeta}) = \Gamma(f|_{\pi_z,\alpha}(\gamma_\alpha))$. Here, $\pi_{z,u}$ means the standard projection of $\mathbb{C}^2_{z,w}$ to $\mathbb{C}_z \times \mathbb{R}_u$. We claim that the curve $\Gamma(f^\alpha_{\zeta})$ is holomorphic.

Suppose that there is some graph $\Gamma(f^{\alpha_0}_{\zeta})$ which is not holomorphic in a neighborhood of a point $(z_0, w_0) \in \gamma_{\alpha_0}$. After a local holomorphic change of coordinates, we can assume that $\gamma_{\alpha_0} = \Delta_r(z_0) \times \{w = 0\}$, where $\Delta_r(z_0) \in D$ is a disc in \mathbb{C}_z centered in z_0. After a reparametrization we can arrange that $\alpha_0 = 0$ and $(-1, 1) \subset I$. Since the curve γ_0 is of the form $\Delta_r(z_0) \times \{w = 0\}$ near z_0, we can treat f^0_{ζ} as a function $f^0_{\zeta} : \Delta_r(z_0) \to \mathbb{C}_z$. By our assumption that f^0_{ζ} is not holomorphic, in view of Hartogs’ theorem [5.1] it follows that the set $\Gamma(f^0_{\zeta})$ is not Hartogs 1-pseudoconcave in $\mathbb{C}^2_{z,\zeta}$. Then, by Theorem 4.3 there exist a point $p_1 = (z_1, \zeta_1) \in \Gamma(f^0_{\zeta})$, a small enough open neighborhood V of p_1 in $\mathbb{C}^2_{z,\zeta}$, a C^2-smooth strictly plurisubharmonic function $\varrho_1 = \varrho_1(z, \zeta)$ on V with $\nabla \varrho_1 \neq 0$, and radii $\sigma, r', r'' > 0$ with $r'' < r' < r$.
such that
\[
\Delta_{\sigma'} \times \Delta_{\sigma} \subset V, \quad \Gamma(f_{\xi}^0|_{\Delta_{\sigma'}}) \subset \Delta_{\sigma'} \times \Delta_{\sigma},
\]
(5.2)

\[
\Gamma(f_{\xi}^0|_{\Delta_{\sigma'}}) \subset \{ \varrho_1 \leq 0 \}, \quad \Gamma(f_{\xi}^0|_{\Delta_{\sigma'}}) \cap \{ \varrho_1 = 0 \} = \{ (z_1, \zeta_1) \},
\]
and \(\Gamma(f_{\xi}^0|_{\Delta_{\sigma'}}) \cap \{ \varrho_1 = 0 \} = \emptyset \),
(5.3)

where each disc \(\Delta_{\sigma} \) mentioned above is assumed to be centered in \(z_1 \), \(A_{\sigma',\sigma''} := \Delta_{\sigma'} \setminus \overline{\Delta_{\sigma}} \) and the disc \(\Delta_{\sigma} \) is assumed to be centered in \(\zeta_1 \). For \(\alpha \in (-1, 1) \) we set \(\gamma_{\alpha} := \Gamma(g_{\alpha}|_{\Delta_{\sigma'}}) \) and \(\Gamma_{\alpha} := \Gamma(f_{\xi}^0|_{\gamma_{\alpha}}) \). Since \(f \) is continuous and since the family \(\{ \gamma_{\alpha} \}_{\alpha \in I} \) depends continuously on \(\alpha \), it follows from (5.3) that there is a number \(\tau \in (0, 1) \) such that
\[
K := \bigcup_{\alpha \in [-\tau, \tau]} \Gamma_{\alpha} \subset \Delta_{\sigma'} \times \mathbb{C}_w \times \Delta_{\sigma},
\]
(5.4)

and \(\varrho_1 < 0 \) on \(\Gamma_{\alpha} \cap \big(\overline{A_{\sigma',\sigma''}} \times \mathbb{C}^2_{w,\zeta} \big) \) for every \(\alpha \in [-\tau, \tau] \),

where \(\varrho_1 \) is now considered as a function defined on \(\{(z, w, \zeta) \in \mathbb{C}^3 : (z, \zeta) \in V \} \).

Since the curves in the family \(\{ \gamma_{\alpha} \}_{\alpha \in I} \) are holomorphic, the set \(A := (\gamma_{-\tau} \cup \gamma_{\alpha_0} \cup \gamma_{\tau}) \cap (\Delta_{\sigma} \times \mathbb{C}_w) \) is a closed analytic subset of the pseudoconvex domain \(\Delta_{\sigma} \times \mathbb{C}_w \). Let \(h \) be a holomorphic function on \(A \) defined by \(h \equiv 0 \) on \(\gamma_{\pm \tau} \) and \(h \equiv 1 \) on \(\gamma_{\alpha_0} \). Then there exists a holomorphic extension \(\hat{h} \) of \(h \) into the whole of \(\Delta_{\sigma} \times \mathbb{C}_w \) (see Theorem 4 in paragraph 4.2 of chapter V in [GR04]). Hence, the function \(\varrho_2(z, w) := \log |\hat{h}(z, w)| \) is plurisubharmonic on \(\Delta_{\sigma} \times \mathbb{C}_w \) and satisfies \(\varrho_2 \equiv -\infty \) on \(\gamma_{\pm \tau} \). Now for \(\varepsilon > 0 \) we define
\[
\psi_0(z, w, \zeta) := \varrho_1(z, \zeta) + \varepsilon \varrho_2(z, w),
\]
where \(\varrho_1 \) is the defining function from above. By the inequality (5.4) and the properties of \(\varrho_2 \), for a sufficiently small \(\varepsilon > 0 \) we obtain that
\[
\psi_0 < 0 \text{ on } L := \bigcup_{\alpha \in [-\tau, \tau]} \left(\Gamma_{\alpha} \cap \big(\overline{A_{\sigma',\sigma''}} \times \mathbb{C}^2_{w,\zeta} \big) \right) \cup \Gamma_{\tau} \cup \Gamma_{-\tau}.
\]
(5.5)

By the choice of the point \((z_1, \zeta_1) \) above and by the inclusion \((z_1, 0) \in \gamma_{\alpha_0} \), we have that \(\varrho_1(z_1, \zeta_1) = 0 \), \(\varrho_2(z_1, 0) = 0 \) and, therefore, \(\psi_0(z_1, 0, \zeta_1) = 0 \). Since \((z_1, 0, \zeta_1) \) belongs to \(K \), it follows from the inequality (5.5) that \(\psi_0 \) attains a non-negative maximal value on \(K \) outside \(L \). Since \(\psi_0 \) is plurisubharmonic on a neighborhood of \(K \), by using standard methods on the approximation of plurisubharmonic functions
we can assume without loss of generality that ψ_0 is C^∞-smooth and strictly plurisubharmonic on a neighborhood of K, satisfies the property \((5.5)\) and still attains its maximum on K outside L.

Now it is easy to verify that K, L and $\psi := \psi_0 - \max_K \psi_0$ fulfill all the conditions (1) to (3) of Lemma \[4.3\]. Thus, there exist a point p_2 in $K \setminus L$, a neighborhood U of p_2 containing K and L and a C^2-smooth strictly plurisubharmonic function φ on U so that $G := \{(z, w, \zeta) \in U : \varphi(z, w, \zeta) < 0\}$ is strictly pseudoconvex in U, $\varphi < 0$ on L, $\varphi \leq 0$ on K and $\varphi(z, w, \zeta)$ vanishes on K if and only if $(z, w, \zeta) = p_2$.

Since G is strictly pseudoconvex at p_2, we derive from Theorem \[4.4\] that the graph $\Gamma(f)$ cannot be 1-pseudoconcave, which is a contradiction to the assumption made on $\Gamma(f)$. As a conclusion, the curves in $\{\Gamma(f_\zeta^\alpha)\}_{\alpha \in I}$ have to be holomorphic. This leads to the desired local complex foliation of $\Gamma(f)$.

Case $n \geq 1$, $k = 1$, $p = 1$. According to Lemma \[5.6\] with $m = n$ and $r = 0$, the graph $\Gamma(f_e)$ is Hartogs n-pseudoconcave in $B \times \mathbb{R}_+$, where B is a ball in $\mathbb{C}_z^n \times \mathbb{R}_ u$.

Hence, by Chirka’s result (see the case $n \geq 1$, $k = 1$, $p = 0$), the graph $\Gamma(f_e)$ is foliated by a family $\{A_\alpha\}_{\alpha \in I}$ of holomorphic hypersurfaces A_α. For $\alpha \in I$ define the function

$$
\left. f_\zeta^\alpha : A_\alpha \rightarrow C_\zeta \right| \text{ by } \left. f_\zeta^\alpha = f_\zeta|_{\pi_{z,u}(A_\alpha)} \right.
$$

and identify $\Gamma(f_\zeta^\alpha)$ with $\Gamma(f|_{\pi_{z,u}(A_\alpha)})$. Suppose that some function $f_\zeta^{\alpha_0}$ is not holomorphic. Then, by Hartogs’ theorem of separate holomorphicity, there is a complex one-dimensional curve σ_{α_0} in A_{α_0} on which $f_\zeta^{\alpha_0}$ is not holomorphic near a point $p_0 \in \sigma_{\alpha_0}$. After a change of coordinates we can assume that $p_0 = 0$, $f_\zeta^{\alpha_0}(0) = 0$ and $\sigma_{\alpha_0} = \Delta \times \{z_2 = \ldots = z_n = w = 0\}$ in a neighborhood of 0, where Δ is the unit disc in \mathbb{C}_{z_1}. We set $L := \mathbb{C}_{z_1} \times \{0\}^{n-1}$. By Lemma \[5.6\] the graph $\Gamma(f_\bullet)$ of $f_\bullet := f|_{(B \setminus (L \times \mathbb{R}_+))}$ is Hartogs 1-pseudoconcave in $\mathbb{C}_{z_1,w,\zeta}$. Thus, in view of the considered above case $n = k = p = 1$, the graph $\Gamma(f_\bullet)$ is foliated by complex curves of the form

$$
(f_\bullet|\zeta)^\beta : \gamma_\beta \rightarrow C_\zeta \quad \text{with} \quad (f_\bullet|\zeta)^\beta = (f_\bullet|_{\pi_{z,u}(\gamma_\beta)}),
$$

where $\{\gamma_\beta\}_{\beta \in I}$ is a family of holomorphic curves of a foliation of $\pi_{z_1,w}(\Gamma(f_\bullet))$. From the uniqueness of the foliation on $\pi_{z_1,w}(\Gamma(f_\bullet))$ we deduce that $\pi_{z_1,w}(\sigma_{\alpha_0})$ coincides (at least locally) with a curve γ_{β_0} containing 0. Hence, in some neighborhood of 0 we have that $\gamma_{\beta_0} = \Delta \times \{0\}$ and therefore

$$
\left. f_\zeta^{\alpha_0} \right|_{\sigma_0} = \left. f_\zeta|_{\Delta \times \{z_2 = \ldots = z_n = 0\} \times \{u = 0\}} \right.
$$

$$
= \left. (f_\bullet|_{\Delta \times \{u = 0\}}) \right|_{\pi_{z,u}(\gamma_{\beta_0})} = (f_\bullet|_{\zeta})_{\beta_0}.
$$
This means that \(f^\alpha_0 \) has to be holomorphic on a neighborhood of 0 in \(\sigma_\alpha_0 \), which is a contradiction to the choice of \(f^\alpha_0 \) and \(\sigma_\alpha_0 \). Hence, \(\{ \Gamma(f^\alpha_0) \}_{\alpha \in I} \) is the desired foliation of \(\Gamma(f) \).

Case \(n = 1, k = 1, p \geq 1 \). We derive from Lemma 5.6 with \(m = 1 \) and \(r = 0 \) that the graph \(\Gamma(f_v) \) is Hartogs 1-pseudoconcave. It follows then from the theorem of the second author (see case \(n = k = 1, p = 0 \) above) that the graph \(\Gamma(f_v) \) is foliated by the family \(\{ \gamma_\alpha \}_{\alpha \in I} \) of holomorphic curves \(\gamma_\alpha \). Define similarly to the previous cases for \(\alpha \in I \) the mapping \(f^\alpha_\zeta = (f^{\alpha_1}_\zeta, \ldots, f^{\alpha_p}_\zeta) : \gamma_\alpha \to \mathbb{C}^p_\zeta \) by \(f^\alpha_\zeta := f^\alpha|_{\pi_{z,u}(\gamma_\alpha)} \).

(5.6)

Since \(\Gamma(f_v, f_j) \) are Hartogs 1-pseudoconcave due to Lemma 5.6 with \(m = 1 \) and \(r = 1 \), it follows by the same arguments as in the case \(n = k = p = 1 \) that for each \(j \in \{1, \ldots, p\} \) the component \(f^{\alpha_j}_\zeta : \gamma_\alpha \to \mathbb{C}_{\zeta_j} \) is holomorphic. Hence, the curve \(f^\alpha_\zeta \) is holomorphic, as well, so that \(\Gamma(f) \) is foliated by the family \(\{ \Gamma(f^\alpha_\zeta) \}_{\alpha \in I} \) of holomorphic curves.

Case \(n \geq 1, k = 1, p \geq 1 \). The proof is nearly the same as in the previous case \(n = k = 1, p \geq 1 \). We only need to replace the curves \(\{ \gamma_\alpha \}_{\alpha \in I} \) in (5.6) by complex hypersurfaces \(\{ A_\alpha \}_{\alpha \in I} \) obtained from Chirka’s result (case \(n \geq 1, k = 1, p = 0 \)) and to apply the case \(n \geq 1, k = 1, p = 1 \) to each \(j = 1, \ldots, p \) in order to show that \(f^{\alpha_j}_\zeta : A_\alpha \to \mathbb{C}_{\zeta_j} \) is holomorphic on \(A_\alpha \). Then \(\{ \Gamma(f^\alpha_\zeta) \}_{\alpha \in I} \) is a complex foliation of \(\Gamma(f) \).

The proof of the theorem is finally complete. \(\square \)

So far, we do not have techniques to treat the case \(n = 1, k = 2 \) and \(p \geq 0 \). The next example shows that it is not always possible to foliate a 1-pseudoconcave real 4-dimensional submanifold in \(\mathbb{C}^3 \) by complex submanifolds, but it is still possible to do this by analytic subsets.\(^1\)

Example 5.8. For a fixed integer \(k \geq 2 \) consider the function

\[
f(z_1, z_2) := \begin{cases}
 z_1z_2^{2+k}/z_2, & \text{if } z_2 \neq 0 \\
 0, & \text{if } z_2 = 0
 \end{cases}
\]

It is \(\mathcal{C}^k \)-smooth on \(\mathbb{C}^2 \) and holomorphic on complex lines passing through the origin, since \(f(\lambda v) = \lambda^{2+k} f(v) \) for every \(\lambda \in \mathbb{C}^* := \mathbb{C} \setminus \{0\} \) and each vector \(v \in \mathbb{C} \). Therefore, in view of [Bas76], the function \(f \) is 1-holomorphic on \(\mathbb{C}^2 \), so \(\psi(z_1, z_2, w) := -\log |f(z_1, z_2) - w| \) is 1-plurisubharmonic outside \(\{ f = w \} \) by

\(^1\)Thanks to Prof. Kang-Tae Kim for this example.
Due to Theorem 3.3, this means that the graph $\Gamma(f)$ of f is a 1-pseudo-concave real 4-dimensional submanifold of \mathbb{C}^3 which does not admit a regular foliation near the origin, but admits a singular one which is given by the family of holomorphic curves $\{\Gamma(f|_{C^*_v})\}_{v \in \mathbb{C}^2}$. Of course, the problem arises because the complex Jacobian of f has non-constant rank near the origin.

References

[Bas76] R. F. Basener. Nonlinear Cauchy-Riemann equations and q-pseudoconvexity. Duke Math. J., 43(1):203–213, 1976.

[Chi01] E. M. Chirka. Levi and Trépreau theorems for continuous graphs. Tr. Mat. Inst. Steklova, 235(Anal. i Geom. Vopr. Kompleks. Analiza):272–287, 2001.

[Die06] N. Q. Dieu. q-plurisubharmonicity and q-pseudoconvexity in \mathbb{C}^n. Publ. Mat., 50:349–369, 2006.

[Fre74] M. Freeman. Local complex foliation of real submanifolds. Math. Ann., 209:1–30, 1974.

[Fuj64] O. Fujita. Sur les familles d’ensembles analytiques. J. Math. Soc. Japan, 16:379–405, 1964.

[Fuj92] O. Fujita. On the equivalence of the q-plurisubharmonic functions and the pseudoconvex functions of general order. Ann. Reports of Graduate School of Human Culture, Nara Women’s Univ., 7:77–81, 1992.

[GR04] H. Grauert and R. Remmert. Theory of Stein spaces. Classics in Mathematics. Springer-Verlag, Berlin, 2004. Translated from the German by Alan Huckleberry, Reprint of the 1979 translation.

[HM78] L. R. Hunt and J. J. Murray. q-plurisubharmonic functions and a generalized Dirichlet problem. Michigan Math. J., 25, 1978.

[HST17] T. Harz, N. Shcherbina, and G. Tomassini. On defining functions and cores for unbounded domains I. Math. Z., 286(3-4):987–1002, 2017.

[Mat96] K. Matsumoto. Boundary distance functions and q-convexity of pseudoconvex domains of general order in Kähler manifolds. J. Math. Soc. Japan, 48(1):85–107, 1996.

[Ohs20] T. Ohsawa. Generalizations of theorems of Nishino and Hartogs by the L^2 method. preprint, 2020.

[Paw15] T. Pawlaschyk. On some classes of q-plurisubharmonic functions and q-pseudoconcave sets. Dissertation. University of Wuppertal, 2015.

[PZ13] T. Pawlaschyk and E. S. Zeron. On convex hulls and pseudoconvex domains generated by q-plurisubharmonic functions, part I. J. Math. Anal. App., 408:394–408, 2013.

[PZ16] T. Pawlaschyk and E. S. Zeron. On convex hulls and pseudoconvex domains generated by q-plurisubharmonic functions, part II. Bol. Soc. Mat. Mex. (3), 33:367–388, 2016.

[Rot55] W. Rothstein. Zur Theorie der analytischen Mannigfaltigkeiten im Raume von n komplexen Veränderlichen. Math. Ann., 129:96–138, 1955.

[Sha92] B. V. Shabat. Introduction to complex analysis. Part II, volume 110 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1992. Functions of several variables, Translated from the third (1985) Russian edition by J. S. Joel.

[Shc93] N. V. Shcherbina. On the polynomial hull of a graph. Indiana Univ. Math. J., 42(2):477–503, 1993.
Z. Słodkowski. The Bremermann-Dirichlet problem for q-plurisubharmonic functions. *Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)*, 11(2):303–326, 1984.

Z. Słodkowski. Local maximum property and q-plurisubharmonic functions in uniform algebras. *J. Math. Anal. Appl.*, 115(1):105–130, 1986.

G. V. Suria. q-pseudoconvex and q-complete domains. *Comp. Math.*, 53:105–111, 1984.

Thomas Pawlaschyk, Faculty of Mathematics und Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany

E-mail address: pawlaschyk@uni-wuppertal.de

Nikolay Shcherbina, Faculty of Mathematics und Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany

E-mail address: shcherbina@math.uni-wuppertal.de