Design and Analysis of RS Sort

Harsh Ranjan¹, Sumit Agarwal¹ and Niraj Kumar Singh¹

¹Department of Computer Science & Engineering, B.I.T. Mesra, Ranchi-835215, India Email
address of the corresponding author: niraj_2027@yahoo.co.in

Abstract:
This paper introduces a new comparison base stable sorting algorithm, named RS sort. RS Sort involves only the comparison of pair of elements in an array which ultimately sorts the array and does not involve the comparison of each element with every other element. RS sort tries to build upon the relationship established between the elements in each pass. Suppose there is an array containing three elements a_1, a_2, a_3 and if a relationship exist such that $a_1 < a_2$ and $a_2 < a_3$ then it can be established that $a_1 < a_3$ and so there is no need to compare a_1 and a_3. Sorting is a fundamental operation in computer science. RS sort is analyzed both theoretically and empirically. We have performed its Empirical analysis and compared its performance with the well-known quick sort for various input types.

Keywords: - algorithm, quick sort, RS sort, theoretical analysis, empirical analysis, uniform distribution model, poisson model, binomial model,

1. INTRODUCTION
This paper introduces a new comparison base stable sorting algorithm, named RS sort. Though many sorting algorithms have been developed, no single technique is best suited for all applications. In basic comparison sort algorithm we need to check each element with the rest of the array in order to find its appropriate location. In RS sort we only need to compare selective pairs of whose elements are distant apart in a defined manner. This selective comparison among elements saves a fair amount of time and comparisons.

Although the theoretical worst case complexity of RS sort is $Y_{\text{word}}(n) = O(n \sqrt{n})$, the experimental results reveal that with $O_{\text{emp}}(nlgn)^{1.333}$ time complexity for typical inputs it can perform optimally.

2. ALGORITHM: RS SORT
RS Sort involves only the comparison of pair of elements in an array which ultimately sorts the array and does not involve the comparison of each element with every other element. RS sort tries to build upon the relationship established between the elements in each pass. For an input (a_1, a_2, a_3) let $a_1 < a_2$ and $a_2 < a_3$, then it can be easily inference that $a_1 < a_3$ and so there is no need to compare a_1 and a_3. RS sort uses this technique to place each element in their appropriate location by saving significantly large number of comparisons.

RS sort first determines the minimum length such that all elements get placed in their appropriate locations. This length refers to the maximum forward distance a particular index can be compared with. It starts with this length and goes down to one at each point comparing every element only with one element that is a fixed length forward to it. This minimum value of length can be easily found out by binary search as for all values greater than this length the array will be sorted and for
all values less than it, it will be partially sorted. If there is an array of four elements then initially
a₁ needed to be compared with a₂, a₃, a₄ and same goes for a₂, a₃ and a₄ before completing the
sorting but if length equals two then in first loop a₁ is compared only with a₃ and a₂ is compared
only with a₄ and in the second loop when length decrements by one a₁ gets compared only with a₂,
a₂ gets compared only with a₃ and a₃ gets compared only with a₄. These comparisons takes place
one by one and at each point the value at an index might change and the updated value at that index
gets used for future comparisons. Thus in only five comparisons when length equals to two and
three when length equals to one we have sorted the entire array instead of a total of twelve. This
differences increases greatly as the size of array increases.

This minimum length does not have a general formula which can be given for all input size but a
rough estimate can be made which gives the minimum value for most of the cases and for few
cases it gives a slightly higher value which ultimately does the sorting job perfectly. Let us denote
this minimum values by K. Then K=T *\text{lgn} \text{ where } T = \left\lfloor \frac{\sqrt{1+8\pi n-1}}{2\pi n} \right\rfloor

Derivation of T: Let n denote the input size of a sample and h equals to lgn. Maximum jump
required by any element to go to its correct position = n-1 (smallest element is at the last position
or largest at first.) After x iteration maximum jump that can be made by any element from its given
location by RS sort is = 1+2+3+…+x. Multiplying x by h and summing the above series we get
\((x*h)*(x*h+1)/2\). Now this value needs to be greater than n-1 so that every element can reach its
appropriate location in worst case. On comparing them: \((x*h)*(x*h+1)/2\geq n\) (Replacing n by n-1
for calculation ease.) Considering x*h=z, we have: \(z(z+1) \geq 2n\)
\[z^2 + z - 2 \geq 0 \]
\[z = \frac{-1 + \sqrt{1 + 8n}}{2} \text{ , and since } z=x*h, \text{ we get} \]
\[x = \frac{\sqrt{1 + 8n} - 1}{2\pi n}. \]
Thus T=[x], for covering boundary cases at some places. On solving this quadratic relation for x
since h is a constant gives the required formula for T as \(T = \left\lfloor \frac{\sqrt{1+8\pi n-1}}{2\pi n} \right\rfloor\). The minimum length is
given as T*lgn. It can be seen that in general case any length less than this can’t sort the array
totally as each element would not end up at their appropriate location and every length greater will.

RS sort is analyzed both theoretically and empirically. We have done theoretical analysis to get its
worst case performance in terms of big-oh notation. Average case analysis is done using statistical

```
Algorithm: RS_Sort (A, n):
//Here A [0: n-1] is the input array of size n
FOR (I=T[lgn]: I>=1; I=I-1) // T = \left\lfloor \frac{\sqrt{1+8\pi n-1}}{2\pi n} \right\rfloor
  FOR (J=0; J+I<n; J=J+1)
    IF (A[J]>A [J+I])
      Exchange (A[J], A [J+I])
```

2.1 ANALYSIS OF RS SORT
bound estimate (also called empirical-O).
2.1.1 Theoretical Analysis (Worst case only)
Referring to the pseudo code (it contains two for loops) of RS sort its runtime complexity is expressed as the following summation equation:

\[
(n) = \sum_{i=1}^{i=\sqrt{n}} \sum_{j=0}^{j=n} (1)
\]

The worst case equation is: \(Y_{\text{worst}}(n) = O(T*\sqrt{n}) - O(n)\)

\[
T = \left[\frac{n^{1.8n-1}}{2*\sqrt{n}}\right]
\]

which is obtained by substituting

2.1.2 Empirical Analysis (Average case only)
This section includes empirical results obtained for average case analysis of RS and quick sorts. The algorithm was run for data obtained from various uniform and non-uniform discrete distribution data model like Uniform distribution, Poisson distribution and Binomial distribution. The performance of RS sort is also compared with standard version of quick sort algorithm (Hoare, 1962) for the similar input types. The observed mean time (in sec) of 1000 trials was noted in table (1). Average case analysis was done by directly working on program run time to estimate the weight based statistical bound over a finite range by running computer experiments (Fang et al. 2006; Sacks et al. 1989). This estimate is called empirical \(O\) (Chakraborty and Sourabh, 2010; Sourabh and Chakraborty, 2007). Here time of an operation is taken as its weight. Weighing permits collective consideration of all operations into a conceptual bound which we call a statistical bound in order to distinguish it from the count based mathematical bounds that are operation specific. The way we design and analyze our computer experiment has certainly a great impact on the credibility of empirical-\(O\). See reference (Chakraborty and Sourabh, 2010) for more insight into the philosophy behind statistical bound and empirical-\(O\). The statistical analysis and the various interpretations are guided by (Mathews 2010).

The samples are generated randomly, using a random number generating function, to characterize discrete uniform, poisson, and binomial distribution models with \(k, \lambda,\) and \((m, p)\) as its respective parameters. Our sample sizes lie in between \(1*10^5\) and \(20*10^5\).

Table 1: Observed mean times in second(s) for RS and quick sorts

	RS SORT	QUICK SORT				
	\(DU\)	\(Poisson\)	Binomial \((400, 0.5)\)	\(DU\)	\(Poisson\)	Binomial \((400, 0.5)\)
	\(k = 50\)	\(\lambda = 4\)		\(k = 50\)	\(\lambda = 4\)	
100000	0.203	0.187	0.187	0.218	1.422	0.125
200000	0.531	0.515	0.531	0.812	5.688	0.421
300000	0.969	0.937	1.000	1.811	9.883	0.938
400000	1.500	1.508	1.515	3.213	14.313	1.641
500000	2.112	2.161	2.140	5.057	19.524	2.516
600000	2.793	2.915	2.828	7.299	25.139	3.657
700000	3.500	3.619	3.484	10.067	30.213	5.234
Below we present two comparative plots for RS against the quick sort. The figures 1&2 reveal the superiority of RS sort for discrete uniform and poisson distribution data models for the specified parameter values.

	800000	4.328	4.619	4.298	13.047	37.169	6.406
900000	5.141	5.301	5.121	16.364	42.130	8.110	
1000000	6.023	6.042	5.984	20.251	46.929	10.016	
1100000	6.953	7.027	6.938	24.564	51.142	12.095	
1200000	7.924	7.975	7.933	29.095	56.521	14.438	
1300000	8.876	9.079	8.876	34.219	60.998	16.986	
1400000	9.878	10.079	9.891	39.496	64.321	19.579	
1500000	10.997	11.108	10.969	45.355	69.032	22.501	
1600000	12.050	12.239	12.047	51.707	74.328	25.693	
1700000	13.290	13.548	13.291	58.335	78.431	28.485	
1800000	14.441	14.774	14.449	65.279	84.320	32.563	
1900000	15.627	15.907	15.835	72.787	90.001	36.222	
2000000	16.871	17.243	17.070	80.403	95.113	41.012	

![Plot of n versus y (discrete uniform distribution, k=50)](image)

Figure (1): Plot of n versus y (discrete uniform distribution, k=50)
Table 2: General Regression Analysis: Y versus n, nlogn, n^2

Box-Cox transformation of the response with specified lambda = 0.75

Regression Equation

\[Y^{0.75} = 0.0383403 - 3.90451e-006 \ n + 3.88879e-007 \ n \log n - 4.74249e014 \ n^2 \]

Coefficients

Term	Coef	SE Coef	T	P
Constant	0.0383403	0.0250803	1.52870	0.146 n
-0.0000039	0.0000001	0.0000010	-3.79282	0.002 nlogn
0.0000004	0.0000001	7.38394	0.000 n^2	-
0.0000000	0.0000000	-1.06788	0.301	

Summary of Model

| S = 0.0125067 | R-Sq = 100.00% | R-Sq(adj) = 100.00% | PRESS = 0.00435678 | R-Sq(pred) = 100.00% |

Analysis of Variance

Source	DF	Seq SS	Adj SS	Adj MS	F	P	
Regression	3	121.313	121.313	40.4387	258523	0.000000	n
1 121.174	14	0.002	0.0023	0.001597	nlogn	1	
0.139 0.009	0.0085	55	0.000002	n^2	1	0.0000000	
0.000 0.0002	1	0.301421					
Error	16	0.003	0.0030	0.0002			
Total	19	121.316					

Fits and Diagnostics for Unusual Observations for Transformed Response

| Obs | Y^0.75 | Fit | SE Fit | Residual | St Resid |
The program runtime data corresponding to the discrete uniform distribution samples is fitted for a quadratic model of type: \(y = b_0 + b_1 n + b_2 n \log n + b_3 n^2 \). The response variable is transformed using the Box-Cox transformation (Box and Cox, 1964) technique, with specified lambda equal to 0.75 where it is the parameter of this transformation, to get a suitable model. Below is the corresponding regression model (complete result is available in Table 2).

Regression Equation:

\[
y^{0.75} = 0.0383403 - 3.90451e-006 n + 3.88879e-007 n \log n - 4.74249e-014 n^2
\]

As the statistical significance of quadratic term is very weak we ignore it from our model. It reduces the resulting model as: \(y^{0.75} = 0.0383403 - 3.90451e-006 n + 3.88879e-007 n \log n \). Consequently we have \(y^{0.75} = O_{\text{emp}}(n \log n) \), which implies that \(y = O_{\text{emp}}(n \log n)^{1/0.75} = O_{\text{emp}}(n \log n)^{1.333} \). The standard error of this model is very low (S=0.0125067) and it explains almost all the variations (as R-Sq(adj) value is equal to 100%). These observations led us to conclude that the average case complexity of RS sort is: \(Y_{\text{avg}}(n) = O_{\text{emp}}(n \log n)^{1.333} \).
Interpretation of residual plots for Y:
The normal probability plot suggests that the errors are almost normally distributed. The plot of residuals versus the fitted value of the response reveals that the distribution of the ϵ_i has constant variance for all values of n within the range of experimentation. The plot of residuals versus observation order suggests that the errors are independently distributed, as there is no clear pattern in this plot.

3. **CONCLUSION**
Although the theoretical worst case complexity of RS sort is $Y_{\text{worst}}(n) = O(n \sqrt{n})$, the experimental results reveal that with $O_{\text{emp}}(nlgn)^{1.333}$ time complexity for typical inputs it can perform optimally. Interestingly, our algorithm, in average case could serve as a better choice for certain distribution data for which the popular quicksort algorithm is not an efficient choice. We leave the task of examining the behavior of RS sort for various continuous distribution inputs as a future work.

The general techniques for simulating the continuous and discrete as well as uniform and nonuniform random variables can be found in (Ross, 2001). For a comprehensive literature on sorting, see references (Knuth, 2001; Levitin 2009). For sorting with emphasis on the input distribution, (Mahmoud, 2000) may be consulted.

System specification: Below is the system specification.
Operating system: Windows 8 Pro (64-bit)
RAM: 4 GB
Hard Disk: 500 GB
Processor: Intel core i5, 2.5 GHz
Compiler: GNU GCC
Language: C++

Declaration:
"The authors declare that there is no conflict of interests regarding the publication of this article".

REFERENCES

Box, GEP. And Cox, DR. (1964) ‘An Analysis of Transformations’. Journal of Royal Statistical Society B, Vol. 26, pp. 211-243.

Chakraborty, S. and Sourabh, SK. (2010) A Computer Experiment Oriented Approach to Algorithmic Complexity, Lambert Academic Publishing.

Fang, KT., Li, R., and Sudjianto, A., (2006) Design and Modeling of Computer Experiments, Chapman and Hall.

Hoare, CAR. (1962) ‘Quick sort’, Computer Journal, 5(1), pp. 10-15.

Knuth, DE. (2000) The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison Wesely, Pearson Education Reprint.

Levitin, A. (2009) Introduction to the design & Analysis of Algorithms, 2nd ed., Pearson Education.
Mahmoud, H. (2000) Sorting: A Distribution Theory, John Wiley and Sons.

Mathews, P. (2010) Design of Experiments with MINITAB, New Age International Publishers, First Indian Sub-Continent Edition, 294.

Ross, S. (2001) A First Course in Probability, 6th Edition. Pearson Education.

Sacks, J. et al. (1989) ‘Design and Analysis of Experiments’, Statistical Science, Vol. 4, No. 4, pp. 409-423.
Sourabh, SK. and Chakraborty, S. (2007) ‘On Why Algorithmic Time Complexity Measure Can be System Invariant Rather than System Independent’, Applied Mathematics and Computation, Vol. 190, Issue 1, pp. 195-204.