INTRODUCTION

The essential role of the kidneys is maintaining homeostasis. The kidneys do this by managing fluid levels, electrolyte balance, and other factors that keep the internal environment of the body consistent including excretion of toxic metabolites and drugs, regulation of osmolality, acid–base balance, hormone secretion, and blood pressure regulation (Finco, 1997). Renal dysfunction can occur following the use of certain medications or exposure to poisons (Barnett & Cummings, 2018). Some of the more important destructive renal effects are the result of induction of oxidative stress, followed by activation of nuclear factor kappa B (NF-κB) and increased production of inflammatory cytokines such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and cyclooxygenase-II (COX-II). These changes can lead to an imbalance in homeostasis between these inflammatory factors and the antioxidant defense of the cell, which eventually leads to a pathophysiological disorder and apoptosis (Liu et al., 2017; Tak & Firestein, 2001).

It has been reported that many natural products (NPs) with antioxidant properties have beneficial effects in the amelioration of nephrotoxicity in different in vivo and in vitro models of kidney damage. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Nrf2 is a basic leucine zipper (bZip) transcription factor that regulates gene expression of the antioxidant response elements (ARE). Nrf2 is involved in the cellular antioxidant-detoxification machinery. Nrf2 activation is a major mechanism of nephroprotective activity for these NPs, which facilitates its entry into the nucleus, primarily by inhibiting Kelch like-ECH-associated protein 1 (Keap1). The purpose of this article was to review the peer-reviewed literature of NPs that have shown mitigating effects on renal disorder by stimulating Nrf2 and thereby suggesting potential new therapeutic or prophylactic strategies against kidney-damaging xenobiotics.

KEYWORDS
herbal medicine, natural products, nephroprotective, nephrotoxicity, Nrf2, xenobiotics
bearing the antioxidant response element (ARE) (Chan et al., 1995; Liu et al., 2009). Under normal physiological conditions, cytoplasmic Nrf2 is inactive in its complex with the Kelch like-ECH-associated protein 1 (Keap1) and Cullin 3 (Cul3). This binding targets Nrf2 for proteasomal degradation to maintain low intracellular levels of this molecular complex. Oxidative and electrophilic stress antagonizes the inhibitory effect of Keap1 on Nrf2 and disrupts the Keap1-Cul3 ubiquitination system (Kansanen et al., 2013; Tonelli et al., 2018). Activated Nrf2 is translocated into the nucleus where a heterodimer is formed with small musculoaponeurotic fibrosarcoma proteins (Maf). The Nrf2 complex attaches to ARE which is located in the upstream promoter region of numerous genes, thereby encoding for the expression of antioxidant defense proteins (da Costa et al., 2019; Tebay et al., 2015). Factors produced in this signaling pathway include glutathione (GSH), glutathione peroxidase (GPx), and the thioredoxin antioxidant system and enzymes involved in phase-I and phase-II biotransformation of exogenous and endogenous products, nicotinamide adenine dinucleotide phosphate (NADPH) regeneration, and heme metabolism. The Nrf2/ARE signaling pathway plays a crucial role in cellular detoxification, antioxidation, and anti-inflammatory effects (Iranshahy et al., 2018; Tavakkoli et al., 2019) (Figure 1).

We evaluated the peer-reviewed literature for several natural products that have been reported to have a detoxifying and protective effect on the kidneys and classified them based on their potential nephroprotective activity.

2 METHODS

A comprehensive literature review was performed using the following keywords: “Nrf2” OR “nuclear factor erythroid 2 (NFE2)-related factor 2” AND “nephrotoxicity” OR “kidney injury” OR “nephrotoxic” OR “nephroprotective” OR “nephroprotection” OR “Xenobiotics” AND “natural compounds” OR “natural product” OR “phytochemical” OR “phytomedicine” OR “phytomedicine” OR “herbal medicine” OR “medicinal herb” OR “plant extract” in the article title or list of keywords. The electronic databases used were as follows: Scopus, PubMed, Google Scholar, and Web of Science. The wild-card asterisk (*) was utilized to enhance search accuracy. All bibliographies were reviewed to find relevant in vitro and in vivo studies published until February 2020. Only primary literature and not review articles were included. Duplicated, nonrelevant, and non-English language articles were excluded. Following these search criteria, we found 119 articles in the online databases, among which 56 were excluded, while the remaining 63 articles were included in the review.

3 NRF2 AND DRUGS-INDUCED NEPHROTOXICITY

3.1 Adriamycin

Adriamycin (Doxorubicin) is in the anthracycline and antitumor antibiotic family of medications used to treat breast cancer, bladder cancer, Kaposi’s sarcoma, lymphoma, and acute lymphocytic leukemia. Adriamycin increases ROS, NO, and other free radicals and reduces detoxifying enzymes such as GSH, GPx, glutathione S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD), resulting in oxidative stress in the kidneys if not controlled. Adriamycin is an inducer of focal segmental glomerulosclerosis (FSGS) and other renal diseases (Tacar et al., 2013).

Camelia Sinensis (white tea) contains several polyphenolic compounds with antioxidant properties (Espinosa et al., 2014). Consumption of white tea has been reported to have beneficial physiological effects in the prevention and treatment of gastric cancer, cardiovascular disorders, and nervous system injury (Serafini et al., 2002). Long-term administration of an aqueous white tea extract to mice protected the kidneys against oxidative damage of proteins and lipids caused by doxorubicin via activating the Nrf2/ARE signaling pathway. Interaction of Nrf2 with ARE after its upregulation accelerated the expression of detoxifying genes such as NAD(P)H quinone oxidoreductase 1 (NQO-1), GST-α1, and heme oxygenase 1 (HO-1) with a significant positive effect on the activity of the antioxidant enzymes CAT, SOD, and glutathione reductase (GR) (Espinosa et al., 2016).

2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is an active compound extracted from Polygonum multiflorum Thunb that is structurally similar to resveratrol. THSG belongs to the hydroxystilbene family of compounds. This NP is effective in improving the complications of aging (Ling & Xu, 2016), reducing disorders such as certain brain diseases, atherosclerosis (Zhang et al., 2008), diabetic nephropathy (Li, Cai, et al., 2010; Li, Huang, et al., 2010), and cardiac toxicity induced by doxorubicin (Zhang et al., 2009). An in vivo experiment showed that activation of Nrf2 by THSG protected the kidneys against the untoward effects of doxorubicin and reduced the expression of renal fibrotic genes by increasing NQO-1, NAD(P)H, and HO-1 production. Another effect of boosting these enzymes is to suppress the oxidation of cell thiols and their damage (Lin, Bayarsengee, et al., 2018).

Thymoquinone, a phytochemical compound, is the most potent and pharmacologically bioactive constituent of Nigella sativa and/or black seed essential oil that has a wide spectrum of activities and therapeutic potentials such as antioxidant (Jrah Harzallah et al., 2012), anti-inflammatory, anticancer (Woo et al., 2012), and antibacterial effects (Kouldi et al., 2011). Histological analysis of renal tissue has shown that thymoquinone reduced NADPH oxidase 4 (NOX4)-Nrf2 redox imbalance and doxorubicin-induced nephrotoxicity in rats. Adjusting this imbalance included a reduction in the production of TNF-α, IL-6, and other inflammatory factors, an increase in certain cellular proteins such as glutathione-S-transferases (GST) and SOD, ultimately resulting in enhanced kidney resistance to the drug-induced damage (Elsherbiny & El-Sherbiny, 2014).

3.2 Cisplatin

Cisplatin is an antineoplastic medication used to treat several types of cancers. However, this drug has significant toxic side effects on...
several vital organs, especially the kidneys, which limit its therapeutic usefulness (Oun et al., 2018). The evidence strongly supports the hypothesis that oxidative stress and inflammation play an important role in the toxicity of cisplatin (Chirino & Pedraza-Chaverri, 2009; Ojha et al., 2016). It has been suggested that antioxidants might reduce such side effects (Gómez-Sierra et al., 2018).

Andrographis paniculata is an annual herbaceous plant used to treat liver disorders, cardiovascular damage, and infectious diseases among other clinical applications. The plant contains a wide range of chemical constituents, including lactones, flavonoids, and diterpenoids (Akbar, 2011). An ethanolic leaf extract was reported to protect the kidney against toxicity caused by cisplatin via the Nrf2/kidney injury molecule 1 (KIM-1) cascade mechanism. More precisely, this extract downregulated the expression of the KIM-1 protein, thereby inhibiting the activity of the phosphatidylinositol 3 (PI3) secondary messenger. In addition, the leaf extract of this plant separated Keap1 from inactivated Nrf2, and stimulation of this pathway increased the production of phase-II detoxifying proteins. These changes eventually lead to reduced apoptosis and necrosis in kidney tissue (Adeoye et al., 2018).

Curcumin, another heptanoid NP, is a derivative of one of the polyphenolic compounds found in *Curcuma longa* linn. This substance has been reported to have beneficial therapeutic effects on several diseases such as metabolic syndrome, diabetic nephropathy, and neurological and liver disorders (Hatcher et al., 2008; Iranshahy et al., 2018; Trujillo et al., 2013). A curcumin and thymoquinone combination has been shown to be effective in alleviating renal side effects of cisplatin by regulating cellular protective proteins such as SOD, CAT, GPx, and HO-1. The combination also suppressed the secretion of inflammatory factors such as IL-6, TNF-α, NF-κB, KIM-1,

Figure 1 Mechanisms of nephroprotective activity of natural products by activating Nrf2 pathway against xenobiotics cytotoxicity.
and multidrug resistance protein (MRP)-1. The study found that the combination of thymoquinone and curcumin compared to diets containing only one of the compounds had a synergistic effect on reducing tissue damage and strengthening kidney function. No comparison, unfortunately, was made between the therapeutic response of thymoquinone and curcumin (Al Fayi et al., 2020).

Daphnetin is a derivative of coumarin that can be extracted from Daphne odora. Daphnetin has diverse biological effects, including kinase inhibition and antiproliferative and antioxidant properties. Among the applications reported for daphnetin are depletion of SLE symptoms, reduction of cerebral ischemia/reperfusion injury, and inhibition of LPS-induced inflammatory enzymes (Liu et al., 2016). This bioactive substance suppressed OS in kidney tissue by enhancing the function of the Nrf2 and HO-1 genes, which in turn reduced the expression of the inflammatory mediators TNF-α and IL-1β. Declines in BUN, creatinine, and MDA and improvement in histopathological changes confirmed the effects of daphnetin on reducing cisplatin renal toxicity (Zhang, Qin, et al., 2018; Zhang, Gu, et al., 2018).

Dioscin is a steroid saponin isolated from Dioscorea nipponica (Cho et al., 2013) and Dioscorea zingiberensis (Li, Cai, et al., 2010; Li, Huang, et al., 2010). In addition to its antitumor (Hsieh et al., 2013), antithrombotic, antihyperlipidemic (Li, Cai, et al., 2010; Li, Huang, et al., 2010), antiviral, and antifungal activity (Cho et al., 2013), dioscin has been used following cisplatin treatment to help reduce kidney injury. Dioscin has been shown to have positive results in an animal model, in a normal rat kidney tubular epithelial line kidney injury. Dioscin has been shown to reduce the level of tissue damage markers and blood nitrogen levels (Qin et al., 2019).

6-Hydroxy-1-methylindole-3-acetonitrile (6-HMA) is a phytochemical found in the ethanol extract of the roots of Brassica rapa. The extract is efficient in managing some of the harmful complications of diabetes mellitus (Jung et al., 2008) and obesity (An et al., 2010). Treatment with 6-HMA improved cisplatin-induced renal damage by upregulating the expression of Nrf2 and by facilitating its nuclear translocation. In fact, activation of Nrf2 and its entry into the cell nucleus had a positive effect on ARE gene transcription and translational products of this gene, such as SOD, CAT, GR, HO-1, MAD, and GSH (Moon et al., 2013).

Isoorientin (3′,4′,5,7-tetrahydroxy-6-C-glucopyranosyl flavone) is found in several plants such as Phyllostachys pubescens, Gentiana patrinia and in the tubers of Pueraria tuberosa. Anti-inflammatory and antioxidant activity has been suggested for it (Anilkumar et al., 2017). Isoorientin lowered renal impairment biomarkers by inducing Nrf2, increasing detoxification molecules such as HO-1 and NQO-1, and activating the Sirt1/Sirt6 pathway. Isoorientin, by facilitating the expression of Sirt1 and Sirt6 and subsequently stimulating Nrf2, increased the transcription of the ARE gene and suppressed MAPKs, NF-κB, and p53 (Fan et al., 2020).

Kaempferol is a member of the flavonoid family of compounds found in vegetables such as kale, beans, tea, spinach, and broccoli. Antimalignant effects have been reported for kaempferol (Yoshida et al., 2008). Pretreatment with a kaempferol-containing supplement enhanced Nrf2-ARE interaction to inhibit NF-κB and the MAPK/ERK apoptosis cascades via reducing the release of inflammatory cytokines such as NO, IL-12, TNF-α, and IL-1β neutralizing ROS. Changes in these pathways downregulated TP53, Bax/Bcl-2, caspase-3,9, and poly ADP-ribose polymerase (PARP), so kaempferol was able to ameliorate renal injury caused by cisplatin (Wang et al., 2020).

Lycopene is a bright red carotenoid hydrocarbon found in red fruits and vegetables, such as tomatoes, red carrots, watermelons, grapefruits, and papayas, but not in strawberries or cherries. Although lycopene is chemically a carotene, it has no vitamin A activity. Foods that are not red may also contain lycopene, such as asparagus, guava, and parsley. Lycopene is a precursor of vitamin A and has antioxidant activity (Hedayati et al., 2019). Lycopene has been reported to attenuate various pathophysiological conditions (e.g., malignancy). It acts through different mechanisms including (a) regulation of the insulin-like growth factor (IGF)-1/insulin-like growth factor binding protein (IGFBP)-3 system (Giovannucci, 1999), (b) upregulation of the expression of cell cycle regulatory proteins,
Piceatannol, a stilbene hydroxylated analog of resveratrol, is found in the mango fruit. Mangiferin has been shown to be effective in improving hepatic dysfunction (Pal et al., 2013). Mangiferin acts by upregulating Nrf2 via stimulation of phosphatidylinositol 3-kinase (PI3K) and preventing caspase activation. To be more precise, mangiferin, by evoking PI3K and inducing nuclear translocation of Nrf2, improves the antioxidant capacity of the cell by increasing the expression of HO-1, CAT, SOD, GR, and GST and modulating inflammatory molecules such as TNF-α, IL-1β, IL-6, and IL-10. It also has a preventive role against oxidative stress damage on the Golgi apparatus and mitochondria by suppressing the apoptosis chain of Bax/Bcl-2 (Sadhukhan et al., 2018).

Lycopene is a colorless solid. It is classified as an alkylpyrazine. Tetramethylpyrazine is a phosphodiesterase suppressor, calcium antagonist, and antiplatelet aggregation mediator (Sheu et al., 2000). Suppression of high mobility group protein box 1 (HMGB1)/Toll-like receptor 4 (TLR4) and stimulation of the Nrf2/PPAR-γ signaling were observed with this medication. In response to the induction of TLR4, there was an increase in the NF-κB level with the release of chemokines. Nrf2 and PPAR-γ, separately, improved renal toxicity by inducing changes in the inflammatory gene expression (Michel & Menze, 2019).

Xanthohumol is found in the female inflorescences of *Humulus lupulus* (hops). It belongs to a class of compounds that contribute to the bitterness and flavor of hops. Xanthohumol significantly improved ROS-mediated cisplatin nephrotoxicity that appeared following the induction of Nrf2-mediated phase-II detoxifying enzymes including GSH, HO-1, and SOD. In addition, suppression of TLR4 expression and NF-κB phosphorylation reduced the release of inflammatory cytokines such as TNF-α, IL-12, IL-6, and COX-II and ultimately increased cell survival (Li et al., 2018).

3.3 Colistin

Colistin (polymyxin E) is an antibiotic used as a last resort for multidrug-resistant Gram-negative infections including pneumonia. Resistance to colistin first appeared in 2017. Colistin has significant renal and neurologic toxicity. Renal complications are manifested as a decrease in urine output with elevated blood urea nitrogen and serum creatinine, proteinuria, hematuria, and acute tubular necrosis (Abdelraouf et al., 2012).

Lycopene inhibited oxidative damage induced by colistin by stimulating the Nrf2/ARE/HO-1 signaling pathway and blocking p38, MAPK, NF-κB, Bax/Bcl-2, and the caspase-3 cascade. Lycopene plays a key role in the detoxification of oxidative damage caused by colistin (Dai et al., 2015). It also is effective in the recovery of renal
disorders caused by colistin in a manner similar to its action in cisplatin nephrotoxicity.

3.4 | Cyclophosphamide

Cyclophosphamide (cytophosphane) is a synthetic antineoplastic drug chemically related to nitrogen mustard. It is administrated to treat lymphoma, multiple myeloma, leukemia, ovarian cancer, breast cancer, small-cell lung cancer, neuroblastoma, and sarcoma and to suppress the immune system. However, its use is restricted due to acute inflammation of the urinary bladder (cystitis) and renal injury (Takehiko et al., 1992).

An aqueous leaf extract of *Olea europaea* (olive) contains a large number of phenolic compounds such as rutin, apigenin, oleuropein, triterpenes, chalcones, and luteolin (Meirinhos et al., 2005). Abd El-Azim reported the effective use of this plant in the treatment of hepatic toxicity caused by methotrexate (Abd El-Azim, 2014). In a rat model of cyclophosphamide-induced oxidative stress, an olive extract reduced the renal damage by activation of the Nrf2/HO-1 pathway and reduction of inflammation and apoptosis. Increasing the amount of NQO-1, SOD, CAT, and GSH along with decreasing IL-1β, TNF-α, Bax/Bcl-2 (B-cell lymphoma 2), and the caspase-3 molecular cascade was suggested as involved mechanisms (Alhaithloul et al., 2019).

3.5 | Cyclosporine

Cyclosporine A is a cyclic polypeptide immunosuppressant isolated from the fungus *Beauveria nivea*. It is used in postallogeneic organ transplants to reduce the activity of the patient’s immune system and therefore the risk of organ rejection. Cyclosporine A also causes reversible inhibition of immunocompetent lymphocytes in the G0- and G1-phase of the cell cycle. It is an antifungal, antirheumatic, immunosuppressive, and EC 3.1.3.16 (phosphoprotein phosphatase) inhibitor agent. However, its clinical use is limited due to its nephrotoxic properties (Grinyo & Cruzado, 2004).

Oleanolic acid is a pentacyclic triterpenic carboxylic acid isolated from *Olea europaea* (olive). Pharmacological properties such as liver protection and anticancer and anti-inflammatory properties have been reported for this substance (Liu, 1995). Oleanolic acid showed a generalized renoprotective effect against chronic cyclosporine nephropathy through metallothionein and the upregulation of the Nrf2/HO-1 pathway. Activation of the Nrf2/HO-1 pathway increased the levels of HO-1, NQO-1, SOD, GSH, S-transferase, and GCL via influencing the ARE gene, thereby reducing degradation and apoptosis (Yaxin et al., 2014). Research in a mouse model has supported the possibility that oleanolic acid may be a potential therapeutic agent for the treatment of cyclosporine A-induced nephrotoxicity involving Nrf2/ARE/HO-1.

Schisandra chinensis, a member of the Magnoliaceae family, contains several potential therapeutic compounds including deoxyschizandrin, schizandrin, schizantherin A, and schizanhenol (Wang et al., 2013). Its therapeutic applications include control of renal failure, menstrual disorders, and neurological diseases, and chemical protection of the liver and heart (Chun et al., 2014). The complex of active ingredients in *S. chinensis* also has been reported to act as free radical scavengers, which increased mRNA and several detoxifying enzymes by activation of Nrf2 and regulating NF-κB and p65. The *S. chinensis* extract has the potential to protect tubulointerstitial fibrosis, cell death, and the disruption of cyclosporine nephropathy. Expression of Nrf2/HO-1/P-glycoprotein genes including CAT, GPx, HO-1, and autophagy-related protein LC3A/B upregulation increased the antioxidant activity and cell life (Lai et al., 2017; Lai et al., 2015; Wu et al., 2018).

3.6 | Epirubicin

Epirubicin is an anthracycline drug used in combination with other medications to treat breast cancer. Similar to other anthracyclines, epirubicin acts by intercalating DNA strands, resulting in a complex formation that inhibits DNA and RNA synthesis (Khasraw et al., 2012). Unfortunately, the renal toxicity of epirubicin limits its usefulness.

Paeonol (2′-Hydroxy-4′-methoxyacetophenone) is a phenolic compound found in the herb *Moutan cortex*. It has been shown to have a variety of effects, such as treating liver cancer and heart damage (Chen et al., 2012; Li et al., 2012). Paeonol exerts its nephroprotective effects through upregulating the Nrf2/HO-1 signaling pathway and facilitating HO-1, GSH, GR, GST, CAT, and SOD biosynthesis. By impeding IKK/ixB phosphorylation and p65 nuclear translocation, paeonol reduced the transcription of the NF-κB pathway genes that induced tissue inflammation and suppressed caspase-9, caspase-3, and Bax/Bcl-2 in an animal model (Wu et al., 2017).

3.7 | Gentamicin

Gentamicin is an aminoglycoside antibiotic used to treat Gram-negative bacterial infections including bone infections, endocarditis, pelvic inflammatory disease, meningitis, pneumonia, urinary tract infections, and sepsis. Gentamicin, however, can cause ototoxicity and kidney problems following prolonged use. If used during pregnancy, it can harm the developing fetus (Ali et al., 2011).

Actinidia delicosa (kiwi fruit) is a fruit rich in vitamins C, E, and K, potassium, magnesium, fiber, polyphenols, carotenoids, and flavonoids. The high concentration of these antioxidants plays an important role in maintaining a healthy lifestyle (Park et al., 2012). Liang and his colleagues have reported the antiproliferative effects of kiwi fruit on cancer cells (Liang et al., 2007). In vitro and in vivo evaluation showed that kiwi fruit restored renal function after gentamicin-provoked necrosis and suppressed exponential growth of cancer cells. These findings suggested that the antiproliferative effects of...
kiwi fruit are most likely related to the Nrf2-mediated antioxidant mechanism and the expression of NF-κB and pro-inflammatory proteins such as inducible nitric oxide synthase (iNOS), COX-II, TNF-α, and IL-6 (Mahmoud, 2017).

Pinocembrin (5,7-dihydroxyflavonone), a flavonoid, is an antioxidant found in damiana, honey, fingerroot, propolis, and the rhizomes of *Boesenbergia pandurata* (Punvittayagul et al., 2011). Pinocembrin has the potential for the treatment of cerebral ischemia, intracerebral hemorrhage, neurodegenerative diseases, cardiovascular diseases, and atherosclerosis (Shi et al., 2011). The nephroprotective effect of pinocembrin against gentamicin-induced fibrosis was studied in vivo. Results showed that a treatment program containing pinocembrin controlled the renal pathogenesis through modulating the Nrf2/HO-1 and NQO-1 signaling pathways with activation of the organic anion transporter 3 (OAT3) mechanism thus improving renal function in rodents (Promsan et al., 2015).

Riceberry bran is obtained from Thai rice and contains a vitamin E complex (tocopherols and tocotrienols), β-carotene, γ-oryzanol, and anthocyanins (cyanidin-3-glucoside and peonidin-3-glucoside). The anticancer effect of this bran extract in a human cancer cell line was investigated by Leardkamolkarn, et al. (Leardkamolkarn et al., 2011). The inflammation and necrotic effects of gentamicin on the kidneys were reduced. Arjinajarn and colleagues have speculated that increasing the expression of antioxidant enzymes such as SOD, CAT, NQO-1, and HO-1 regulated the protective properties of protein kinase C (PKC)/Nrf2 and facilitated OAT3 expression and repair of tubular protein function (Arjinajarn et al., 2016).

3.8 Methotrexate

Methotrexate (amethopterin) is a chemotherapy agent and an immune system suppressant used to treat breast cancer, leukemia, lung cancer, lymphoma, gestational trophoblastic disease, osteosarcoma, and rheumatoid arthritis (Vena et al., 2018). Methotrexate acts by inhibiting the dihydrofolate reductase enzyme, blocking the production of folic acid, thereby inhibiting the production of purines and pyrimidines, and interfering with DNA synthesis and repair.

Berberine is a quaternary ammonium salt found in *Berberis vulgaris* (barberry), *Berberis aristata* (tree turmeric), *Mahonia aquifolium* (Oregon grape), *Hydrastis canadensis* (goldenseal), *Xanthorrhiza simplicissima* (yellowroot), *Phellodendron amurense* (Amur cork tree), *Coptis chinensis* (Chinese goldthread), *Tinospora cordifolia*, *Argemone mexicana* (prickly poppy), and *Eschscholzia californica* (California poppy) (Imenshahidi & Hosseinzadeh, 2016). Some of the benefits of berberine include reducing liver damage (Iranshahy et al., 2018) and neurological disorders (Tavakkoli et al., 2019). Experiments in rats and cell viability tests have shown that berberine improved the texture of the kidney and the concentration of several serum biomarkers. Modulation of the Keap1/Nrf2 and NF-κB/P38 MAPK signaling pathways and the Bax/Bcl-2/caspase-3 protein has been suggested as the potential mechanism. Nrf2/COX-II cascade triggered the production of antioxidant enzymes such as SOD, CAT, NQO-1, and HO-1, suppressed the expression of COX-II, TNF-α, NF-κB, and IL-1β and inhibited apoptosis. Furthermore, berberine consumption attenuated oxidative stress, toxicity, and hemorrhage in the kidney after methotrexate administration (Hassanein et al., 2019).

Chicoric acid, obtained from a variety of herbs including *Ocimum basilicum*, *Cichorium intybus*, and *Echinacea purpurea*, is a phenolic product of the phenylpropanoid class of compounds and is a derivative of both caffeic acid and tartaric acid (Lee & Scagel, 2009). Chicoric acid has been used to treat lead poisoning (Mu et al., 2019). Chicoric acid has been reported to activate the Nrf2/ARE antioxidant defense system and to increase the mRNA expression of SOD, CAT, GPx, GST, GR, NQO-1, and HO-1. Activation of this system prevented the biosynthesis of chemokine like IL-1β by the damping of NF-κB, the nucleotide-binding domain (leucine-rich-containing family), and the pyrin domain-containing the 3 (NLRP3) inflammasome axis. These alterations lead to attenuation of oxidative damage in the kidneys due to methotrexate (Abd El-Twab et al., 2019).

Commiphora molmol, a member of the Burseraceae family, is used in the production of myrrh which has been suggested as the active chemical in *Giardia*’s diet (Mahmoud et al., 2019). An oleo-gum resin extract of *C. molmol* has both anti-inflammatory and antioxidant activity following Nrf2-dependent activation of HO-1, SOD, and CAT, NF-κB downregulation, and inhibition of GPx, Bax/Bcl-2, and caspase-3. Its administration along with methotrexate prevented or at least reduced the renal toxicity in rats induced by methotrexate (Mahmoud et al., 2018).

Enoxolone (18 β-Glycyrrhetinic acid) is a pentacyclic triterpenoid aglycone derivative of glycyrrhizin that is isolated from *Glycyrrhiza glabra* (licorice). It also has antioxidant and anti-inflammatory properties (Eisenbrand, 2006). Enoxolone has been reported to be nephroprotective against the untoward effects of methotrexate by upregulating the Nrf2/ARE signaling pathway and increasing antioxidant enzymes including SOD, CAT, HO-1, GPx, and GST in rats (Abd El-Twab et al., 2016).

Ferulic acid, a hydroxycinnamic acid, is a phenolic phytochemical in the plant cell wall that can covalently bond to molecules such as arabinoxylans. The antioxidant properties of ferulic acid have led to its use in the treatment of cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer (Srinivasan et al., 2007). Laboratory data indicated that ferulic acid provided beneficial properties for treatment of methotrexate-induced renal disorder and acute kidney injury through Nrf2/ARE/HO-1 upregulation, control of the NF-κB inflammasome axis, a downstream molecular complex of NLRP3/caspase-1/ASC, and modulating PPARγ expression (Mahmoud et al., 2019).

Formononetin is an isoflavone isolated from *Trifolium pratense* and *Astragalus membranaceus* that has been used as an adjuvant drug for cancer treatment (Kim et al., 2019). Formononetin targeted the Nrf2/Keap1 and PI3K/Akt signaling pathways and consequently increased the level of HO-1, CAT, SOD, GSH, and GPx antioxidants. Formononetin also inhibited inflammatory mediators such as COX-II, TNF-α, NF-κB, IL-1β, and iNOS and the activity of the Bax/Bcl-2 and caspase-3 cascades. Supplements containing formononetin have been suggested as being beneficial in preventing or reducing the destruction of the renal epithelium (Aladaileh et al., 2019).
Vincamine, another natural indole alkaloid with potential medical properties, is isolated from *Vinca minor*. It is a vascular stimulant (Yin & Sun, 2011). A methotrexate treated animal model demonstrated that vincamine modulated the signs of renal disease and the level of selected inflammatory cytokines. The proposed pathway for the effect of vincamine was on the Nrf2 signal, followed by an incremental change in the levels of SOD, CAT, GPx, GST, and GR enzymes with a devaluation in the release of COX-II, TNF-α, NF-κB, IL-1β, and iNOS (Shalaby et al., 2019).

4 | NRF2 AND TOXICANT-INDUCED NEPHROTOXICITY

4.1 | Arsenic

Arsenic is a toxic heavy metal and ubiquitous industrial pollution. Exposure to high levels of arsenic increases the risk of damage to various organs including skin, liver, lung, kidneys, brain, and the cardiovascular system (Flora, 2011).

Allitrinin (diallyl trisulfide/DATS), a member of the organosulfur family of compounds, is produced by the hydrolysis of allicin in garlic. Many health benefits of garlic are attributed to DATS and include anticancer effects, platelet aggregation, blood pressure reduction, decreases in cholesterol levels, and increases in levels of reactive oxygen species (Powolny & Singh, 2008). DATS selectively kills cancerous cells in the prostate and breast, leaving healthy cells unharmed. This effect is attributed to increased reactive oxygen species (ROS) within cancer cells, increased number of cells that arrest in the G2 phase of mitosis, and increased caspase-3 activity. Allitrinin facilitated the entry of Nrf2 into the nucleus by activating the PI3K/Akt cascade. Akt attaches to Keap1 and separates from Nrf2. The activated Nrf2 upregulated ARE gene expression, enhanced the production of protective enzymes such as HO-1, glutamylcysteine synthetase (GCS), and SOD, and reduced the NF-κB level, which ultimately promoted cell survival against oxidative damage in renal tissue (Miltonprabu et al., 2017).

Sulforaphane, a compound within the isothiocyanate group of organosulfur compounds, is found in cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. It is produced when myrosinase transforms glucoraphanin, a glucosinolate, into sulforaphane following damage to the plant. A recent clinical study has suggested that sulforaphane can be used to treat chronic inflammatory diseases such as rheumatoid arthritis, diabetes, and cardiovascular injury (Mazarakis et al., 2020). Sulforaphane increased the production of phase-II protective enzymes such as HO-1, GSH, SOD, CAT, GPx, and GST by stimulating the PI3K/Akt signal and then inducing Nrf2 to enter the cell nucleus and upregulating the expression of the ARE gene. In addition, sulforaphane has been shown to have a direct inhibitory effect on thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), and protein carbonyl content (PCC), preventing apoptosis and improving renal damage caused by arsenic (Thangapandiyan et al., 2019).

Tannic acid has been reported to have several therapeutic applications including anti-neuroinflammatory effects. Commercial tannic acid is extracted from the following plant parts: Tara pods (*Caesalpinia spinosa*), gallnuts from *Rhus semilatata* or Quercus infectoria or Sicilian sumac leaves (*Rhus coriaria*) (Wu et al., 2019). In addition to enhancing the immune response to some pathogens, tannic acid by affecting the Nrf2 molecular pathway, facilitated the synthesis of beneficial enzymes such as GSH, total sulphhydril, GST, SOD, MAD, and glucose-6-phosphate dehydrogenase (G6PDH). It also reduced the release of inflammatory cytokines such as IL-6, IL-8, and TNF-α, inhibited the NF-κB signal, diminished the expression of Bax/Bcl-2 proteins, prevented apoptosis, and relieved kidney damage caused by arsenic (Jin et al., 2020).

4.2 | Atrazine

Atrazine is an herbicide of the triazine class used to prevent pre-emergence broadleaf weeds. It is a major source of drinking water pollution. Exposure to atrazine is associated with teratogenic events and endocrine, brain, liver, and heart disorders. Because of its accumulation in the kidneys, renal damage is a common outcome of atrazine exposure (Zhang, Qin, et al., 2018; Zhang, Gu, et al., 2018).

Lycopene has the potential to trigger AMPK to phosphorylate Nrf2. By promoting HO-1 and NQO-1 genes downstream, Nrf2 increased the level of phase-II enzymes such as SOD, CAT, and GSH-Px and lowered the autophagy-related genes (Beclin-1 and ATGs) and proteins (p62/SQSTM and LC3). This beneficial property of lycopene has been shown to reduce renal toxicity caused by atrazine (Lin, Bayarsengee, et al., 2018; Lin, Xia, et al., 2018).

4.3 | Cadmium

Cadmium is a heavy metal environmental pollutant (Järup & Åkesson, 2009). The kidney is the main organ affected by chronic exposure because cadmium is preferentially absorbed by receptor-mediated endocytosis in the kidneys where it binds to metallothionein and accumulates. Degradation of the cadmium–metallothionein complex by lysosomal enzymes releases cadmium into the cytosol, resulting in the release of ROS and cellular damage and apoptosis in renal tissue (Panel, E. C, 2009).

Carnosic acid (salvin) is a benzenediol abietane diterpene found in rosemary (*Rosmarinus officinalis*) and common sage (*Salvia officinalis*). Carnosic acid is used in the food, health, and cosmetics industries for its antioxidant and antimicrobial properties (Birtić et al., 2015). Experimental results have shown that administration of carnosic acid was effective in reducing cadmium-induced renal toxicity. Carnosic acid prevented defects to DNA and other macromolecules by facilitating Nrf2, increasing SOD, CAT, GST, GPx, and GR enzymes, and modulating HO-1, transforming growth factor β (TGF-β), and small molecules against decapentaplegic (Smad)-3/7 (Das et al., 2019). Activation of both Nrf2 and Smad prevented inflammation and...
The herbal(s) or microorganism(s)	Type of extract	Bioactive compounds/dose/route	Class	Molecular tests
Camellia sinensis	Aqueous	15 or 45 mg kg⁻¹ day⁻¹ for 12 months/oral	Polyphenol	Nrf2; NQO-1; HO-1; GST-α1; SOD1; SOD2; SOD3; CAT; GPx
Polygonum multiflorum	Ethanolic	2.3,5,4-Tetrahydroxystilbene-2-O-b-D-glucoside 2.5 and 10 mg kg⁻¹ day⁻¹ for 24 days/oral	Polyphenol	HO-1; NQO-1; Nrf2; FN; COL1A1; COL4A1; COL4A2; Podocin
Nigella sativa	Aqueous	Thymoquinone 50 mg kg⁻¹ day⁻¹ for 3 weeks/oral		Nrf2; GAPDH; MDA; SOD; GST; LPO; NOX4; TNF-α; IL-6; IL-10
Andrographis paniculata	Ethanolic	200 and 400 mg kg⁻¹ day⁻¹ for 7 days/oral		AOPP; H2O2; MDA; NO; MPO; NPT; PT; XO; TP urine; PC; SOD; GSH; GPx; GST
Curcuma Longs Linn		Curcumin 100 mg/kg/oral for 5 days	Polyphenol	TNF-α; IL-6; MRP-1; KIM-1; Akt; Nrf2; HO-1; Caspase-3; NFKβ; SOD; CAT; GR; GPx
Daphne odora		Daphnetin 2.5, 5, 10 mg/kg/oral for 3 days/intraperitoneal	Coumarin	MDA; IL-1β; TNF-α; Nrf2; HO-1; p-NF-κB p65; NF-κB p65; p-IκBα; IκBα; ROS
Embelia ribes		Embelin 25 and 50 mg kg⁻¹ day⁻¹ for 2 weeks/oral	Hydroxy benzoquinone	Nrf2; IL-1β; IL-6; TNF-α; Nrf2; HO-1; GSH; GR; GST; CAT; SOD; MDA
Rhododendron dauricum		Farrerol 20 mg/kg/intraperitoneal		Cell viability; Nrf2; HO-1; NQO-1; Keap1; NOX4; p-JNK; T-JNK; p-ERK; T-ERK; p-p38; T-p38; p-NF-κB; p-p65; NLRP3; p-p53; p53; Bcl-2; Bax; Caspase-3; MDA; SOD; GSH; MPO; MDA; SOD; GST; GSH-Px; miR-34a; Nrf2; HO-1; GCLC; GCLM; AP-1; COX-II; IκB-α; HMGB1; NF-κB; IL-1β; IL-6; TNF-α; Sirt1; Keap1
Brassica rapa	Methanolic	6-Hydroxy-1-methylindole-3-acetonitrile 25, 50, or 100 μM for 3 hr/oral		Creatinine; LDH; Nrf2; HO-1; SOD; CAT; GR; H2O2; MDA; GSH
Phyllostachys pubescens, Gentiana Patrinia and buckwheat		Isoorientin 50 mg/kg for 3 days/intraperitoneal	Flavone	Cell viability; Sirt1; Sirt6; Nrf2; HO-1; NQO-1; Keap1; NOX4; p-JNK; T-JNK; p-ERK; T-ERK; p-p38; T-p38; p-NF-κB; p-p65; NLRP3; p-p53; p53; Bcl-2; Bax; Caspase-3; MPO; MDA; SOD; GSH
		Kaempferol 50, 100, 150 and 200 mg/kg for 2 weeks/oral	Flavonoid	Nrf2; HO-1; TBARS; iNOS; GSH; SOD; CAT; GR; SOD; NQO-1; Caspase-3; Caspase-9; Bax; Bcl-2; TP53; PARP; IL-12; TNF-α; MDA; SOD; NQO-1; Caspase-9; Bax; Bcl-2; TP53; PARP; IL-12; TNF-α; MPO p38; Phosphorylated-JNK; JNK phosphorylated-p38; p38 Phosphorylated-ERK1/2
Solanum lycopersicum		Lycopene 6 mg kg⁻¹ day⁻¹ for 10 days/oral	Carotenoid	Nrf2; HO-1; β-Actin; CAT; GPx; SOD; NF-κB
Mangifera indica		Mangiferin 5–30 μM/oral	Flavonoid	NDH; SDH; IL-1β; TNFα; IL-6; IL-10; NF-κB; Bax; Bcl-2; Caspase-3; Calpain; Caspase-12; Nrf2; HO-1; SOD-2
Cassia garrettiana and Rheum undulatum		Piceatannol 10 mg kg⁻¹ day⁻¹ for 7 days/intraperitoneal	Hydroxylated analog of resveratrol	GCLC; GCLM; GST; HO-1; KIM-1; NGAL; Nrf2; NF-κB; OCT-2
Allium sativum		S-allylcysteine 6,25, 12.5, 15, 20, 25, 50, 100, 150 and 200 mg/kg		MDA; Oxidized proteins; GSH; Nrf2; PKCζ2; p47phox, gp91phox; CAT; GPx; GR

TABLE 1 Summary of useful NPs against nephrotoxicity of xenobiotics by activating Nrf2 pathway.
Nephrotoxic agent and dose/route	Study model	Sources of NPs	Ref.
Adriamycin 100 mg/kg/intraperitoneal	Sprague–Dawley rats	Herbal	(Espinosa et al., 2016)
Adriamycin 10 mg/kg/intravenous	Balb/c mice	Herbal	(Lin, Bayarsengee, et al., 2018)
Adriamycin 3.5 mg/kg twice weekly/intraperitoneal	Sprague–Dawley rats	Herbal	(Elscherbiny & El-Sherbiny, 2014)
Cisplatin 10 mg kg⁻¹ day⁻¹ for 7 days/intraperitoneal	Wistar rats	Herbal	(Adeoye et al., 2018)
Cisplatin 5 mg/kg/intraperitoneal	HEK 293 cell	Herbal	(Al Faiy et al., 2020)
Cisplatin 20 mg kg⁻¹ day⁻¹ for 4 days/intraperitoneal	C57BL/6 mice	Herbal	(L. Zhang, Gu, et al., 2018)
Cisplatin 7 mg/kg/intraperitoneal	Wistar rats and Normal rat kidney epithelial cell	Herbal	(Y. M. Zhang et al., 2017)
Cisplatin 5 mg/kg/intraperitoneal	Sprague–Dawley rats	Herbal	(Qin et al., 2019)
Cisplatin 20 mg/kg/intraperitoneal	C57BL/6 Mice and Mouse tubular epithelial cells (MTECs) and human proximal tubule cells (HK-2)	Herbal	(Ma et al., 2019)
Cisplatin 50 mM For 6 hr/intraperitoneal	Renal epithelial cell line derived from the porcine kidney	Herbal	(Moon et al., 2013)
Cisplatin 20 mg/kg/intraperitoneal	C57BL/6 Mice and Mouse renal tubular epithelial cells (mTECs)	Herbal	(Fan et al., 2020)
Cisplatin 20 mg/kg/intraperitoneal	Balb/C mice	Herbal	(Wang et al., 2020)
Cisplatin 7 mg kg⁻¹ day⁻¹ for 10 day/intraperitoneal	Wistar rats	Herbal	(Sahin et al., 2010)
Cisplatin 2, 5, 10, 15, 20, 25, 30, 40, and 50 μM in a serum-free medium/oral	Swiss mice and Normal kidney epithelial (NKE) cell	Herbal	(Sadhukhan et al., 2018)
Cisplatin 7 mg/kg/intraperitoneal	Wistar rats	Herbal	(Wahdan et al., 2019)
Cisplatin 7.5 mg/kg/intraperitoneal	Wistar rats	Herbal	(Gomez-Sierra et al., 2014)
TABLE 1 (continues)

The herbal(s) or microorganism(s)	Type of extract	Bioactive compounds/dose/route	Class	Molecular tests
Schisandra sphenanthera	Ethanolic	Schisandrin 500 mg kg⁻¹ day⁻¹		NQO-1; HO-1; GCLC; GCLC; GSH; MDA; Nrf2; SOD
		Wuzhi tablet which contains 7.5 mg Schisantherin A per tablet for 10 days/intraperitoneal		
Ligusticum wallichii	Methanolic	Tetramethylpyrazine 50 and 100 mg kg⁻¹ day⁻¹ for 2 weeks/intraperitoneal		Bax; Bcl-2; HMGB-1; PPAR-γ; KIM-1; TLR4; Caspase-3; Nrf2; HO-1; NQO-1; TNF-α; IL-1β; ATP
		Sinapic acid 20 mg/kg/oral for 10 days/oral		SOD level; Catalase activity; GSH; Nitric Oxide; lipid peroxidation MDA; total protein; TNF-α; IL-6; MPO; NF-κB [p65]; Caspase; Bax 3; Bcl2; NRF2; HO-1
Humulus lupulus	Ethanolic	Xanthohumol 12.5, 25, 50 mg kg⁻¹ day⁻¹ for 3 days/intraperitoneal	Flavonoid	Nrf2; HO-1; MDA; SOD; GSH; DCFH-DA; DCF; TNF-α; IL-1β; IL-6; TLR4; NF-κB; lxβα
		Lycopene 5 and 20 mg kg⁻¹ day⁻¹ for 7 days/oral	Carotenoid	MDA; NO; iNOS; CAT; GSH; SOD; Caspase-3; Caspase-9; HO-1; Nrf2; NF-κB
Olea europaea leaf	Ethanolic	100, 150 and 200 mg kg⁻¹ day⁻¹ for 15 days/oral	Phenol	Bax; Bcl-2; Caspase-3; NF-κB; Nrf2; HMOX1; NQO-1; Actb; MDA; Protein carboxyl; NO; GSH; SOD; CAT; GPx; TNF-α; IL-1β
		Oleanolic acid 25 mg kg⁻¹ day⁻¹ for 7 days/intraperitoneal	Pentacyclic terpenoid	Caspase-3; α-SMA; Nrf2; Keap1; HO-1; NQO-1; Bax; Bcl-2; β-Actin; SOD1; SOD2; CAT; MDA; 8-iso-PGF2α-OhD
Schisandra chinensis	Ethanolic	54,108 and 216 mg/kg/oral	Alkaloid	MDA; CAT; GSH-Px; Creatinine; BUN; P-gp; Nrf2; HO-1; GAPDH
Moutan Cortex	Ethyl acetate	Paeonol 30 mg kg⁻¹ day⁻¹ for 4 days/ intrastragastical	Polyphenols	SCR; GSH; GR; GST; CAT; SOD; NO; iNOS; TNF-α; IL-6; Cyt c oxidase; Caspase-9; Caspase-3; Bax; Bcl-2; Nrf2; HO-1; p-NF-κB; p-IKKα/β; IkBa
Actinidia delicosa	Ethyl acetate	37 g/kg for 8 days/oral	Polyphenols	Nrf2; NF-κB; Na+-K+
Boesenberga pandurata	Ethyl acetate	Pinocembrin 50 and 75 mg kg⁻¹ day⁻¹ for 10 days/intraperitoneal	Flavonoids	Bax; Bcl-xl; Caspase-3; Nrf2; HO-1; NQO-1; PKCα; NOX4; MDA; SOD; Oat3; [3H]ES uptake
Oryza sativa	Methanolic	250, 500 or 1,000 mg kg⁻¹ day⁻¹ for 15 days/oral	Anthocyanins, β-carotene, γ-oryzanol, and vitamin E complex	[3 H]ES uptake; Oat3; PKC α; Nrf2; Keap 1; NQO-1; HO-1
		Berberine 50 mg/kg/day for 10 days/oral	Alkaloid	Nrf2; Keap1; P38; MAPK; NFκB; β-actin; NF-κB; TBPS; GSH; SOD; NO; Bax; Bcl-xl; Caspase-3; Caco-2; HepG2; Mcf7
Cichorium intybus, Ocimum basilicum and Echinacea purpurea	Ethanol	Chicoric acid 25 and 50 mg kg⁻¹ day⁻¹ for 15 days/oral gavage	Dicaffeyltartaric acid	NRF2; NQO-1; HO-1; Bax; Bcl-2; β-actin; KIM-1; ROS; MDA; NO; TNF-α; GSH; SOD; CAT; GPx; NF-κB; NF-κB p65; Caspase-3; NLRP3; Caspase-1 p20; IL-1β
Commiphora molmol	Ethanol	125 and 250 mg kg⁻¹ day⁻¹ for 15 days/oral	Hydroxycinnamic acid	Nrf2; NQO-1; HO-1; SOD; CAT; GPx; Bax; Bcl-2; GSH; GPx; NF-κB; TNF-α; IL-1β
		Ferulic acid 25 and 50 mg kg⁻¹ day⁻¹ for 15 days/oral	Hydroxycinnamic acid	Nrf2; NQO-1; HO-1; PPPB; Bax; Bcl-2; ROS; MDA; NO; SOD; CAT; GPx; Caspase-3; NLRP3; Caspase-1 p20; IL-1β; NF-κB p65; Cytochrome c
Nephrotoxic agent and dose/route	Study model	Sources of NPs	Ref.	
---------------------------------	----------------------	----------------	-----------------------------------	
Cisplatin 15 mg/kg/intraperitoneal	NIH mice	Herbal	(J. Jin et al., 2015)	
Cisplatin 7 mg/kg/intraperitoneal	Sprague–Dawley rats	Herbal	(Michel & Menze, 2019)	
Cisplatin 7 mg/kg/intraperitoneal	Wistar rats	Herbal	(Ansari, 2017)	
Cisplatin 20 mg/kg/intraperitoneal	C57BL/6 mice	Herbal	(Li et al., 2018)	
Colistin 15 mg kg⁻¹ day⁻¹ for 7 day/intravenous	Mice	Herbal	(Dai et al., 2015)	
Cyclophosphamide 150 mg/kg/intraperitoneal	Wistar rats	Herbal	(Alhaithloul et al., 2019)	
Cyclosporine 30 mg kg⁻¹ day⁻¹ For 4 weeks/subcutaneous injection	ICR mice	Herbal	(Hong et al., 2013)	
Cyclosporine 25 mg/kg/oral	Sprague–Dawley rats	Herbal	(Lai et al., 2015)	
Epirubicin 15 mg/kg/intravenous injection	Balb/c mice	Herbal	(Wu et al., 2017)	
Gentamicin 100 mg kg⁻¹ day⁻¹ For 8 weeks/intraperitoneal	Albino mice	Herbal	(Y. I. Mahmoud, 2017)	
Gentamicin 100 mg kg⁻¹ day⁻¹ For 10 days/intraperitoneal	Sprague–Dawley rats	Herbal	(Promsan et al., 2015)	
Gentamicin 100 mg kg⁻¹ day⁻¹ For 15 days/intraperitoneal	Sprague–Dawley rats	Herbal	(Arjinaïjarn et al., 2016)	
Methotrexate 20 mg/kg/intraperitoneal	Albino rats	Herbal	(Hassanein et al., 2019)	
Methotrexate 20 mg/kg/intraperitoneal	Wistar rats	Herbal	(Abd El-Twab et al., 2019)	
Methotrexate 20 mg/kg/intraperitoneal	Wistar rats	Herbal	(A. M. Mahmoud et al., 2018)	
Methotrexate 20 mg/kg/intraperitoneal	Wistar rats	Herbal	(A. M. Mahmoud, Hussein, et al., 2019)	
The herbal(s) or microorganism(s)	Type of extract	Bioactive compounds/dose/route	Class	Molecular tests
--------------------------------	----------------	------------------------------	-------	----------------
Glycyrrhiza glabra		18β-Glycyrrhetinic acid 50 and 100 mg kg⁻¹ day⁻¹ for 7 days/oral	Triterpene	Nrf2; HO-1; NO; TNF-α; GSH; SOD; GPx; CST; Bax; Bcl-2; β-actin; Kim-1
Trifolium pratense		Formononetin 10, 20, and 40 mg kg⁻¹ day⁻¹ for 10 days/oral	Isoflavone	Nf-κB; IL-1β; IL-6; TNF-α; COX-II; Nrf2; HO-1; GSH; GR; GST; CAT; SOD; MDA; LPO; TBARS; 8-Oxo-dG; NO; ATP; Caspase-3; Caspase-9; Cell viability
		Vincamine 10, 20 and 40 mg/kg/oral	Alkaloid	Nrf2; HO-1; MDA; SOD; CAT; NF-κB; IL-1β; IL-10; TNF-α; MPO; COX-II; Caspase-3
Allium sativum		Diallyl trisulfide 20, 40 and 80 mg/kg/day for 28 days/oral	Polysulfide	RBC; WBC; TBARS, LOOH; PC; ROS; NO; SOD; CAT; GPx; GST; GR; G6PD; GSH; TSH; Vitamin C; Vitamin E; Total ATPaseNa⁺/K⁺-ATPase; Ca²⁺ ATPase; Mg²⁺ ATPase
Cruciferous vegetables		Sulforaphane 80 mg kg⁻¹ day⁻¹ for 28 days/oral	Isothiocyanate	GSH; total sulphhydril; Vitamin C; Vitamin E; SOD; CAT; GPx; GST; GR
		Tannic acid 20 and 40 mg kg⁻¹ day⁻¹ for 10 days/oral	Polyphenol	CREA; CAT; GSH-Px; SOD; MDA; GSH; total sulphhydril; GST; GR; G6PDH; LOOH; PC; CD; IL-6; IL-8TNF-α; Bcl-2; Bcl-xl; p53; Bax; NF-κB p65; Nrf2; Keap1
		Lycopene 5 mg/kg for 21 days/oral	Carotenoid	T-AOC; T-SOD; MDA; GSH; GSH-Px; GSH-ST; H2O2; CAT; Nrf2; NQO-1; HO-1; ATGs; Beclin-1; LC3II/LC3I ratio; AKT1; MAPK1 p62/SQSTM; AMPK; p-AMPK protein;
Rosmarinus officinalis and Salvia officinalis	Aqueous	Carnosic acid 10 mg kg⁻¹ day⁻¹/oral	Diterpene	Cell viability; GSH; SOD; CAT; GPx; GST; GR; ROS; NO; H2O2; NADPH oxidase; TBARS; P-Smad3; TGF-β1; Smad7; Nrf2; Keap1; Cullin3; Ubiquitin; HO-1; Collagen IV; Bcl-2; Caspase-3; Caspase-8; Caspase-9; IL-6; IL-1β; TNF-α
Vitis vinifera	Aqueous	Proanthocyanidin 100 mg kg⁻¹ day⁻¹ for 4 weeks/oral	Flavonoid	GSH; total sulphhydril; Vitamin C; Vitamin E; SOD; CAT; GPx; GST; GR; G6PD; iNOS; Caspase-3; Total ATPases; Na⁺/K⁺-ATPase; Ca²⁺ ATPase; Mg²⁺ ATPase; NO; IL-6; IL-1β; NF-κB p65; LOOH; PCC
		Resveratrol 400 mg/kg for 90 days/oral	Polyphenolic	T-SOD; Cu-Zn SOD; GSH-Px; GST; CAT; T-AOC; H2O2; MDA; CYP450; Cyt b5; APNPD; ERND; Ah; NCR; Nrf2; SOD2; Sirt1; PGC-1α; TFAM; Sirt3; PRDX3; VDAC1; Cyt C
		Tangeretin 50 mg kg⁻¹ day⁻¹/oral	Flavonoid	Nrf2; Keap1; NQO-1; HO-1; NF-κB; TNF-α; IL-1β; IL-6; NF-κB/p65; GAPDH; ALT; ALP; Lipid peroxides Hydroperoxides; Protein carbonyls; Vitamin C; Vitamin E; GSH
		Luteolin 50 mg/kg/oral	Flavonoid	SOD2; CAT; GPX1; GSR; NFE2L2; HMOX1; TNF-α; IL-1β; IL-6; NOS2; Caspase-3; Bax; Bcl-2; LPO
Ziziphus spina-christi	Methanolic	300 mg/kg for 28 days/oral	Triterpene alcohol	Nrf2; HO-1; NQO-1; ROS; Superoxide; Bax; Bcl-2; Caspase activity; LDH; PARP; Cell viability
Rice bran oil		Cycloartenyl ferulate	Triterpene alcohol	Nrf2; HO-1; NQO-1; ROS; Superoxide; Bax; Bcl-2; Caspase activity; LDH; PARP; Cell viability
Nephrotoxic agent and dose/route	Study model	Sources of NPs	Ref.	
---------------------------------	-------------	---------------	------	
Methotrexate 20 mg/kg/intraperitoneal	Wistar rats	Herbal	(Abd El-Twab et al., 2016)	
Methotrexate 20 mg/kg/at day 7/intraperitoneal	Wistar rats and HepG2 cells	Herbal	(Aladaileh et al., 2019)	
Methotrexate 20 mg/kg/intraperitoneal	Sprague–Dawley rats	Herbal	(Shalaby et al., 2019)	
Arsenic 5 mg kg\(^{-1}\) day\(^{-1}\) for 4 weeks/intragastrically	Albino rats	Herbal	(Miltonprabu et al., 2017)	
Arsenic 5 mg kg\(^{-1}\) day\(^{-1}\) for 28 day/oral	Wistar rats	Herbal	(Thangapandiyan et al., 2019)	
Arsenic 5 mg kg\(^{-1}\) day\(^{-1}\)/intraperitoneal	Rats	Herbal	(W. Jin et al., 2020)	
Atrazine 50 mg/kg and 200 mg/kg/ for 21 days/oral	Mice	Herbal	(J. Lin, Xia, et al., 2018)	
Cadmium 4 mg kg\(^{-1}\) day\(^{-1}\)/oral	Normal Kidney Epithelial (NKE) Cells and Mice	Herbal	(Das et al., 2019)	
Cadmium 5 mg kg\(^{-1}\) day\(^{-1}\) for 4 weeks/oral	Wistar rats	Herbal	(Nazima et al., 2015)	
Cadmium 140 mg/kg/oral	Chicken	Herbal	(Q. Zhang et al., 2020)	
7,12-Dimethylbenz[a] anthracene 25 mg/kg/inhalation	Wistar rats	Herbal	(Lakshmi & Subramanian, 2014)	
Lead acetate 20 mg/kg/intraperitoneal	Rats	Herbal	(Albarakati et al., 2020)	
Mercury chloride 0.4 mg/kg/intraperitoneal	Wistar rats	Herbal	(Almeer et al., 2019)	
Paraquat	Proximal tubular cell line derived from normal human kidney	Herbal	(G. L. Hong et al., 2013)	

(Continues)
fibrosis by increasing the overall cellular antioxidant capacity and reducing cellular collagen production.

The seeds of *Vitis vinifera* (Grape) are rich in proanthocyanidins, a flavonoid that is a member of the family of polyphenolic compounds. Bagchi et al claimed that the proanthocyanidins were effective in controlling dysfunction of organs such as the heart (Bagchi et al., 2003). A grape seed proanthocyanidins extract increased the stability of renal cells against cadmium toxicity. The study demonstrated that inducing membrane-bound ATPase and interaction of Nrf2 with ARE stimulated the synthesis of HO-1, GCS, SOD, glutathione disulfide (GSSG), CAT, GPx, GST, and G6PD, and reduced the levels of inflammatory mediators such as TNF-α, NF-κB, IL-1β, IL-6, NO, and p65 (Nazima et al., 2015).

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a phytoalexin produced in several plants in response to physical damage or microbial attack. Resveratrol had a salutary effect in regulating the pathophysiology of some cardiovascular disorders, by slowing down the innate rate of aging (Baur & Sinclair, 2006). Its consumption was effective in reducing renal toxicity caused by cadmium. Elevated cell survival was hypothesized to occur by regulating Nrf2 (Zhang et al., 2020).

4.4 7,12-Dimethylbenz[a]anthracene

7,12-Dimethylbenz[a]anthracene (DMBA), a polycyclic aromatic hydrocarbon, is a carcinogenic organic pollutant and an immunosuppressor that is generated from the incomplete combustion of fossil fuels (Miyata et al., 2001). Renal damage is one of the harmful side effects of DMBA poisoning.

Tangeretin is a polymethoxylated flavone isolated from tangerines and other citrus peels with anticancer and cardiovascular and anti-inflammatory activity (Benavente-Garcia & Castillo, 2008). In a rodent study, tangeretin significantly increased the levels of both enzymatic and nonenzymatic antioxidants and decreased the inflammatory cytokines, lipid peroxides, and DNA damage markers. These effects have been suggested to be related to the regulation of Nrf2/Keap1 and its downstream effectors. Tangeretin increased the expression of the ARE gene due to its effect on Nrf2, thereby enhancing the levels of GSH, GST, and SOD and reducing OS markers such as MDA, peroxidase (POD), MPO, and iNOS (Lakshmi & Subramanian, 2014).

4.5 Lead

Lead has numerous industrial uses but, unfortunately, it also is a nondegradable environmental pollutant. Lead poisoning has many complications for various organs, especially the brain, blood, and kidneys, which can present with clinical symptoms such as abdominal pain, vomiting, joint and back pain, decreased learning ability, and anemia (Gidlow, 2004).

Luteolin is a flavone found in the leaves and bark of the aromatic flowering plant, *Salvia tomentosa*, clover blossoms, and ragweed pollen. Luteolin also occurs in the seeds of *Aiphanes aculeate*. Dietary sources of luteolin include celery, broccoli, green pepper, parsley, thyme, dandelion, perilla, chamomile tea, carrots, olive oil, peppermint, rosemary, navel oranges, and oregano. This NP has been used to treat obesity and insulin resistance (Xu et al., 2014). Pretreatment with luteolin triggered the binding of Keap1 and Nrf2, with the entry of this complex into the nucleus. The complex interacts with ARE resulting in the activation of HO-1. Under these conditions, transcription of genes encoding for ROS scavenger compounds was facilitated and cellular protection was enhanced by increased production of SOD, CAT, GPx, and GR. The suppression of NF-κB and the inactivation of MAPKs in the presence of luteolin downregulated the expression of TNF-α and IL-1β and enzymes (COX-II and iNOS) involved in tissue inflammation. Luteolin reduced the level of apoptotic markers and alleviated the severity of the lead-induced renal toxicity in rodents (Albarakati et al., 2020).

4.6 Mercury

Mercury is a heavy metal with industrial and agricultural applications. The elemental and organic forms of mercury exist as
environmental pollutants and target mostly the CNS, liver, and kidneys (Berndtsof, 2012). One mechanism suggested for renal failure resulting from mercury is the suppression of Sirt1/PGC-1α signaling. Mercury inhibited the Sirt1 deacetylation function, shutting down the PGC-1α and Nrf2 axes and exacerbating oxidative stress. The result was an abnormality in the mitochondria associated with increased dynamin-related protein 1 and decreased mitofusin 2. The mitochondrial dysfunction predisposed the renal cells to apoptosis (Li et al., 2019).

A Ziziphus spina-christi extract contains beneficial compounds such as flavonoids, alkaloids, tannins, triterpenoids, phytosterols, saponins, and essential oils. The fruit and leaves were used in Ancient Egyptian both as food and medicine. The compounds extracted from the plant continue to be prescribed to decrease inflammation and to modulate metabolic syndrome and immune system disorders as well as for its antitumor and antiprotozoa properties (Dkhil et al., 2018). The proposed mechanism of the protective effect of this extract on mercury-damaged kidneys is by elevating the expression of the Nrf2 gene resulting in the inhibition of Bax/Bcl-2 and apoptosis. The key factor appears to be stimulation of phase-II proteins such as CAT, GSH, GPX, GR, NQO-1, and HO-1, and the reduction of ROS and inflammatory modulators such as TNF-α, IL-1β, and NOS. Decreased DNA damage by cleavage of the DNA repair enzyme PARP and caspase-3 induction may also be involved (Almeer et al., 2019).

4.7 | Paraquat

Paraquat (N,N'-dimethyl-4,4'-bipyridinium dichloride) is also known as viologen, a family of redox-active heterocyclic compounds of similar structure. This herbicide is toxic to humans and animals due to its redox activity, which produces superoxide anions (Bacigalupo et al., 2005). Paraquat has been linked to the development of pulmonary fibrosis, Parkinson's disease, and renal and hepatic failure through involving mitochondria and excessive production of ROS (Ossowska et al., 2006; Tanner et al., 2011).

Cycloartenyl ferulate (CAF) is a triterpene alcohol extracted from rice bran oil-derived γ-oryzanol. γ-Oryzanol containing CAF has been used in Japan for menopausal symptoms, mild anxiety, stomach upset, and high cholesterol. CAF has several unique biological activities such as blood-cholesterol lowering, anticarcinogenicity, anti-inflammatory, and antioxidant properties (Nagasaka et al., 2007). Data from a study on HK-2 cells suggested that CAF had a renal protective effect via stimulating Nrf2. The level of detoxification enzymes, inhibition of lactate dehydrogenase (LDH), cell death-inducing enzymes (caspase), and cleavage of PARP, and improving mitochondrial function have been proposed as modes of action for CAF (Hong et al., 2013).

4.8 | Sodium oxalate

Sodium oxalate can give rise to mesenchymal–epithelial transition disorder (EMT), a condition where epithelial cells lose polarity and cell–cell adhesion. In the case of both renal fibrogenesis and end-stage renal disease (ESRD), EMT appears to be involved in the pathophysiology of the disease (Zeisberg & Kalluri, 2004).

Epigallocatechin gallate (epigallocatechin-3-gallate, EGCG) is the ester of epigallocatechin and gallic acid. The most abundant source is green tea (Camellia sinensis). Multiple applications have been proposed for EGCG, one of which is the prevention of oxalate-induced EMT in Madin–Darby canine kidney (MDCK) cells via activation of the Nrf2 pathway. The involvement of Nrf2 activation is based on the following: (a) enhancing translation of antioxidants, for example catalase, (b) lowering immunoreactive proteins such as vimentin, and (c) increasing the level of zonula occludens-1 (ZO-1) or tight junction protein-1 (Kanlaya et al., 2016).

4.9 | Tert-butyl hydroperoxide (t-BHP)

Tert-butyl hydroperoxide (t-BHP) is an organic peroxidase and environmental pollutant that has renal toxicity. Rashid and his colleagues...
as well as other researchers continue to look for NPs that show a potential to modify renal function following t-BHP poisoning (Rashid et al., 2013).

Mangiferin has been reported to protect kidney epithelial cells against t-BHP damage by affecting Nrf2. Activation of this molecular cascade accelerated the production of protective mediators against cellular stress such as HO-1, NQO-1, CAT, GPx, GR, and GST. These events decreased the expression of inflammatory intermediaries and ROS in macrophages exposed to t-BHP by suppressing the MAPK/NF-κB signaling pathway (Saha et al., 2016).

Rutin (quercetin-3-O-rutinoside, vitamin P) is a flavonoid extracted from citrus fruit. It is added to multivitamins and other drugs to control signs of blood and vascular disorders, hyperglycemia, and dyslipidemia (Fuentes et al., 2013). Rutin reduced the effects of t-BHP on the kidneys in an in vitro study. It stimulated Nrf2, up-regulated ARE gene expression, and increased antioxidant enzymes such as GPx, GST, GSH, SOD, and GR. In this study, rutin enhanced the antioxidant defense system against destructive cellular stresses such as ROS, NO, and iNOS (Singh et al., 2019).

4.10 | Titanium dioxide (TiO₂)

Titanium dioxide is the naturally occurring oxide of titanium, which is sourced from anatase, ilmenite, and rutile. TiO₂ in the form of nanoparticles is used in food, cosmetics, and plastics. It has potential detrimental health effects because it can accumulate in the kidneys causing cellular damage and necrosis. TiO₂ causes oxidative stress both by direct chemical reaction and by stimulating the onset of the inflammatory process that eventually leads to damage of cell membranes and other organelles such as mitochondria and damage to the DNA (Baranowska-Wójcik et al., 2020).

Moringa oleifera (drumstick tree or horseradish tree) grows in many tropical regions. It contains significant amounts of protein, amino acids, vitamins A, B, C, and E, β-carotene, minerals, and phenolic and flavonoid compounds. It has the potential to ameliorate leukemia and liver cancer (Khalafalla et al., 2010). Biochemical analyses and histopathological studies showed that a leaf extract reduced the effects of TiO₂-induced nephrotoxicity via up-regulating Nrf2, HO-1, and other detoxifying agents and then downregulating the expression of inflammatory factors such as KIM-1, NF-κB, TNF-α, and heat shock protein 70 (Hsp70) (Abdou et al., 2019) (Table 1).

5 | CONCLUSION

Understanding how NPs interact with cellular signaling pathways and altering the expression of genes will lead to a better insight into the treatment and potential prevention of chemical-induced renal toxicity. This paper reviews information regarding several bioactive molecules found in NPs that have been reported to mitigate or reduce the severity of xenobiotic-induced renal toxicity by affecting Nrf2. These NPs appear to play a pivotal role in detoxifying and protecting renal tissue against xenobiotic oxidative damage through stimulation of the Nrf2/ARE signaling pathway. Because Nrf2 up-regulation is accompanied by antioxidant and anti-inflammatory effects, activation of this signaling pathway may be involved in the antioxidant activity of these NPs. Keap1 inhibition and the facilitation of Nrf2 entry into the nucleus also have been suggested as important mechanisms contributing to Nrf2 activation by these NPs (Figure 1).

ACKNOWLEDGMENTS

The authors are thankful to Mashhad University of Medical Sciences for financial support.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

ORCID

Gholamreza Karimi https://orcid.org/0000-0002-1273-5448

REFERENCES

Abd El-Azim, A. O. (2014). Antioxidant effect of olive leaf extract on methotrexate-induced hepatic injury in rats. *Canadian Journal of Clinical Nutrition*, 2(1), 4–14. https://doi.org/10.14206/canad.j.clin.nutr.2014.01.02

Abd El-Twab, S. M., Hozayen, W. G., Hussein, O. E., & Mahmoud, A. M. (2016). 18beta-Glycyrrhetinic acid protects against methotrexate-induced kidney injury by up-regulating the Nrf2/ARE/HO-1 pathway and endogenous antioxidants. *Renal Failure*, 38(9), 1516–1527. https://doi.org/10.1080/0886022x.2016.1216722

Abd El-Twab, S. M., Hussein, O. E., Hozayen, W. G., Bin-Jumah, M., & Mahmoud, A. M. (2019). Chiccic acid prevents methotrexate-induced kidney injury by suppressing NF-κB/NLRP3 inflammasome activation and up-regulating Nrf2/ARE/HO-1 signaling. *Inflammation Research*, 68(6), 511–523. https://doi.org/10.1007/s00011-019-01241-z

Abdelraouf, K., Braggs, K. H., Yin, T., Truong, L. D., Hu, M., & Tam, V. H. (2012). Characterization of polymyxin B-induced nephrotoxicity: Implications for dosing regimen design. *Antimicrobial Agents and Chemotherapy*, 56(9), 4625–4629. https://doi.org/10.1128/AAC.00280-12

Abdou, K. H., Moselhy, W. A., Mohamed, H. M., El-Nahass, E. S., & Khalifa, A. G. (2019). *Moringa oleifera* leaves extract protects titanium dioxide nanoparticles-induced nephrotoxicity via Nrf2/HO-1 signaling and amelioration of oxidative stress. *Biological Trace Element Research*, 187(1), 181–191. https://doi.org/10.1007/s12011-018-1366-2

Adeoye, B. O., Asenuga, E. R., Oyagbemi, A. A., Omobowale, T. O., & Adedapo, A. A. (2018). The protective effect of the ethanol leaf extract of *Andrographis paniculata* on cisplatin-induced acute kidney injury in rats through nrf2/KIM-1 signalling pathway. *Drug Research*, 68(1), 23–32. https://doi.org/10.1055/s-0043-118179

Akbar, S. (2011). *Andrographis paniculata*: A review of pharmacological activities and clinical effects. *Alternative Medicine Review*, 16(1), 66–77.
Khasraw, M., Bell, R., & Dang, C. (2012). Epirubicin: Is it like doxorubicin in breast cancer? A Clinical Review. Breast, 21(2), 142–149. https://doi.org/10.1016/j.breast.2011.12.012

Kim, C., Lee, J. H., Ko, J.-H., Chinnathambi, A., Alharbi, S. A., Shair, O. H. M., Sethi, G., & Ahn, K. S. (2019). Formononetin regulates multiple oncogenic signaling cascades and enhances sensitivity to bortezomib in a multiple myeloma mouse model. Biomolecules, 9(7), 262. https://doi.org/10.3390/biom9070262

Ko, J.-H., Lee, S.-G., Yang, W., Um, J.-Y., Sethi, G., Mishra, S., Shanmugam, M., & Ahn, K. (2018). The application of embelin for cancer prevention and therapy. Molecules, 23(3), 621. https://doi.org/10.3390/molecules23030621

Koudhi, B., Zmantar, T., Jrah, H., Souiden, Y., Chaieb, K., Mahdouani, K., & Bakhrouf, A. (2011). Antibacterial and resistance-modifying activities of thymoquinone against oral pathogens. Annals of Clinical Microbiology and Antimicrobials, 10(1), 29. https://doi.org/10.1186/1476-0711-10-29

Lai, Q., Luo, Z., Wu, C., Lai, S., Wei, H., Li, T., Wang, Q., & Yu, Y. (2017). Attenuation of cyclosporine A induced nephrotoxicity by schisandrin B through suppression of oxidative stress, apoptosis and autophagy. International Immunopharmacology, 52, 15–23. https://doi.org/10.1016/j.intimp.2017.08.019

Lai, Q., Wei, J., Mahmoodurrahman, M., Zhang, C., Quan, S., Li, T., & Yu, Y. (2015). Pharmacokinetic and nephroprotective benefits of using Schisandra chinensis extracts in a cyclosporine A-based immune-suppressive regime. Drug Design, Development and Therapy, 9, 4997–5018. https://doi.org/10.2147/DDDT.S89876

Lakshmi, A., & Subramanian, S. P. (2014). Tangeretin ameliorates oxida-

Lee, J., & Scagel, C. F. (2009). Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chemistry, 115(2), 650–656. https://doi.org/10.1016/j.foodchem.2008.12.075

Li, C., Cai, F., Yang, Y., Zhao, X., Wang, C., Li, J., Jia, Y., Tang, J., & liu, Q. (2010). Tetrahydroxystilbene glucoside ameliorates diabetic nephropathy in rats: Involvement of SIRT1 and TGF-β1 pathway. European Journal of Pharmacology, 649(1–3), 382–389. https://doi.org/10.1016/j.ejphar.2010.09.004

Li, F., Yao, Y., Huang, H., Hao, H., & Ying, M. (2018). Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways. International Immunopharmacology, 61, 277–282. https://doi.org/10.1016/j.intimp.2018.05.017

Li, H., Huang, W., Wen, Y., Gong, G., Zhao, Q., & Yu, G. (2010). Anti-

Liang, J., Wang, X., Zhen, H., Zhong, Z., Zhang, W., Zhang, W., & Li, W. (2007). Study on anti-tumor effect of extractions from roots of Actinidia delicosa. Zhong yao cai = Zhongyaocai = Journal of Chinese Medicinal Materials, 30(10), 1279–1282.

Lin, E. Y., Bayarsengee, U., Wang, C. C., Chiang, Y. H., & Cheng, C. W. (2018). The natural compound 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside protects against Adriamycin-induced nephropathy through activating the Nr2f2-Keap1 antioxidant pathway. Environmental Toxicology, 33(1), 72–82. https://doi.org/10.1002/tox.22496

Lin, J., Xia, J., Zhao, H.-S., Hou, R., Talukder, M., Yu, L., Guo, J.-Y., & Li, J.-L. (2018). Lycopene triggers Nr2f2-AMPK cross talk to alleviate atra nine-induced nephrotoxicity in mice. Journal of Agriculture and Food Chemistry, 66(46), 12385–12394. https://doi.org/10.1021/acs.jafc.8b04341

Ling, S., & Xu, J.-W. (2016). Biological activities of 2, 3, 5, 4’-tetrahyd roxystilbene-2-O-β-D-glucoside in antiaging and anti-aging-related disease treatments. Oxidative Medicine and Cellular Longevity, 2016, 4973239.

Liu, J. (1995). Pharmacology of oleic acid and ursolic acid. Journal of Ethnopharmacology, 49(2), 57–68. https://doi.org/10.1016/0378-8741(95)0032-2

Liu, J., Chen, Q., Jian, Z., Xiong, X., Shao, L., Jin, T., Zhu, X., & Wang, L. (2016). Daphnetin protects against cerebral ischemia/reperfusion injury in mice via inhibition of TLR4/NF-κB signaling pathway. BioMed Research International, 2016, 2816056.

Liu, M., Grigoryev, D. N., Crowe, M. T., Haas, M., Yamamoto, M., Reddy, S. P., & Rabb, H. (2009). Transcription factor Nr2f2 is protective during ischemic and nephrotic acute kidney injury in mice. Kidney International, 76(3), 277–285. https://doi.org/10.1038/ki.2009.157

Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflam-
mation. Signal Transduction and Targeted Therapy, 2(1), 1–9. https://
doi.org/10.1038/sigtrans.2017.23

Ma, N., Wei, W., Fan, X., & Ci, X. (2019). Farerrol attenuates cisplatin-induced nephrotoxicity by inhibiting the reactive oxygen species-mediated oxidation, inflammation, and apoptotic signaling pathways. Frontiers in Physiology, 10, 1419. https://doi.org/10.3389/fphys.2019.01419

Mahmoud, A. M., Germouch, M. O., Al-Anazi, K. M., Mahmoud, A. H., Farah, M. A., & Allam, A. A. (2018). Commiphora molmol protects against methylxenate-induced nephrotoxicity by up-regulating Nr2f2/ARE/HO-1 signaling. Biomedicine & Pharmacotherapy, 106, 499–509. https://doi.org/10.1016/j.biopha.2018.06.171

Mahmoud, A. M., Hussein, O. E., Abd El-Twab, S. M., & Hozayen, W. G. (2019). Ferulic acid protects against methylxenate nephrotoxicity via activation of Nr2f2/ARE/HO-1 signaling and PPARgamma, and suppression of NF-kappaB/NLRP3 inflammasome axis. Food & Function, 10, 4593–4607. https://doi.org/10.1039/c9fo00114j

Mahmoud, S. S., Aly, E., Fahmy, Z. H., & El Shenawy, A. (2019). Effect of Commiphora molmol on mice infected by Giardia lamblia. Journal of Biosciences and Medicines, 7(10), 50.

Mahmoud, Y. I. (2017). Kiwi fruit (Actinidia delicosa) ameliorates gentamicin-induced nephrotoxicity in albino mice via the activation of Nr2f2 and the inhibition of NF-κB. Biomedicine & Pharmacotherapy, 94, 206–218. https://doi.org/10.1016/j.biopharma.2017.07.079

Mazarakis, N., Sibson, K., Licciard, P. V., & Karagiannis, T. C. (2020). The potential use of L-sulfonaphane for the treatment of chronic inflammatory diseases: A review of the clinical evidence. Clinical Nutrition, 39(3), 664–675. https://doi.org/10.1016/j.clnu.2019.03.022

Meirinhos, J., Silva, B. M., ValentÃo, P., Seabra, R. M., Pereira, J. A., Dias, A., Andrade, P. B., & Ferreres, F. (2005). Analysis and quantification of flavonoidic compounds from Portuguese olive (Olea europaea L.) leaf cultivars. Natural Product Research, 19(2), 189–195.

Michel, H. E., & Menze, E. T. (2019). Tetramethylpyrazine guards against cisplatin-induced nephrotoxicity in rats through inhibiting HMGB1/TLR4/NF-kB and activating Nr2f2 and PPAR-gamma signaling pathways. European Journal of Pharmacology, 857, 172422. https://doi.org/10.1016/j.ejphar.2019.172422
Experimental Pharmacology and Physiology, 35(3), 310–316. https://doi.org/10.1111/j.1440-1681.2007.04824.x

Zhang, Y., Tao, X., Yin, L., Xu, L., Xu, Y., Qi, Y., Han, X. U., Song, S., Zhao, Y., Lin, Y., Liu, K., & Peng, J. (2017). Protective effects of dioscin against cisplatin-induced nephrotoxicity via the microRNA-34a/sirtuin 1 signalling pathway. British Journal of Pharmacology, 174(15), 2512–2527. https://doi.org/10.1111/bph.13862

How to cite this article: Molaei E, Molaei A, Abedi F, Hayes AW, Karimi G. Nephroprotective activity of natural products against chemical toxicants: The role of Nrf2/ARE signaling pathway. Food Sci Nutr. 2021;9:3362–3384. https://doi.org/10.1002/fsn3.2320