Molecular Cloning and Expression of a Phosphoinositide-specific Phospholipase C of Dictyostelium discoideum*

(Received for publication, April 29, 1992)

A. Lyndsay Drayer‡ and Peter J. M. van Haastert
From the Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

A number of phosphoinositide-specific phospholipases C (PLC) of different species have recently been cloned. The predicted amino acid sequences of these isoforms contain two highly conserved domains. Here we report the identification of a PLC gene of Dictyostelium by using the polymerase chain reaction. Primers were designed coding for highly conserved amino acid regions located within one of the conserved domains of PLCs. Cloning and sequencing of the polymerase chain reaction product revealed one unique PLC-like sequence. This sequence was used to screen a library and isolate several overlapping cDNA clones. The complete cDNA was expressed in Dictyostelium cells resulting in increased basal levels of inositol 1,4,5-trisphosphate and enhanced PLC activity. The identified Dictyostelium PLC, DdPLC, encodes a protein with a calculated molecular mass of 91 kDa. The deduced amino acid sequence contains the two conserved domains found in other PLC isoforms, separated by a short variable region. The C-terminal part of the protein shows strong homology with the mammalian PLC-5 isoform. DdPLC is expressed at all stages of development, with an increase in transcription during starvation and in the culminating fruiting body.

Phosphoinositide-specific phospholipase C (PLC)1 is a major enzyme in the transmembrane signal transduction pathway. It activates the inositol cycle by hydrolyzing phosphatidylinositol 4,5-bisphosphate to form the intracellular second messenger molecules inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and diacylglycerol (1). Ins(1,4,5)P3; releases Ca2+ from internal stores, whereas diacylglycerol activates protein kinase C. Calcium mobilization and protein kinase C activation is essential for many cellular activities as they mediate processes such as secretion, cell growth, motility, and proliferation (2).

The transmembrane signal transduction pathway in the cellular slime mold Dictyostelium discoideum has been studied extensively (3). Both chemotaxis and cell differentiation are a result of signal transduction events. Extracellular cAMP is the signal molecule that binds to surface receptors (4) and thus activates the effector enzymes adenylate cyclase, guanylate cyclase, and PLC. During starvation cAMP acts as a chemoattractant and causes the single amoebas to aggregate. In the aggregates extracellular cAMP regulates the expression of cell type-specific genes to induce differentiation (5). Stimulation of Ins(1,4,5)P3 formation by GTPγS in permeabilized cells indicates the involvement of G proteins in the activation of PLC (6, 7). The signal transduction pathway in higher eukaryotes appears to be similar to that of D. discoideum (8).

In mammalian cells a hormone is the extracellular activating signal comparable with cAMP in Dictyostelium. A number of mammalian PLC cDNAs and two PLC genes from Drosophila melanogaster, norpA and plc-21, have been isolated (9–17). They encode proteins varying in size from 85 to 154 kDa. The PLC isoforms are divided into three structural groups, α, β, γ, and δ, based on the location of two conserved domains in the primary structures of the enzymes (18). There are indications for the presence of a fourth group, α, not containing the conserved domains and with a lower molecular weight than enzymes in the other groups (19–22). The norpA gene from Drosophila is transcribed specifically in the head and is involved in the phototransduction pathway. The plc-21 gene encodes two transcripts that are expressed in the central nervous system. The function of the multiple isoforms in mammalian cells has still to be established. They are expressed in a number of tissues, and one cell type can express more than one isoform. In vitro experiments the isoforms show different activities and substrate specificities (18).

We have used PCR (23) to identify a PLC gene from D. discoideum, DdPLC, using degenerate oligonucleotide primers coding for highly conserved amino acid sequence regions within one of the conserved domains. DdPLC is a single copy gene with a 2.8-kb transcript encoding a 91-kDa protein. Transcription appears to be enhanced during cell aggregation, it decreases during slug formation, and increases in the culminating fruiting body. The deduced amino acid sequence of DdPLC predicts the A and B domains that are found in other PLC isoforms and a C-terminal domain that is homologous with the terminus of bovine PLC-5. To examine whether DdPLC codes for an active phospholipase C enzyme we overexpressed DdPLC in D. discoideum and observed an increase in both basal Ins(1,4,5)P3 levels and PLC activity.

EXPERIMENTAL PROCEDURES

Standard DNA techniques were performed as described by Sambrook et al. (24) unless otherwise stated.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Dept. of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands. Fax: 31-50-634165.

‡ The abbreviations used are: PLC, phospholipase C; Ins(1,4,5)P3, inositol 1,4,5-trisphosphate; GTPγS, guanosine 5'-O-(3-thiotriphosphate); PCR, polymerase chain reaction; SDS, sodium dodecyl sulfate; kb, kilobase(s); bp, base pair(s); Heps, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; EGTA, ethyleneglycolbis(oxymethylene-nitri)lacetate.

1 The GenBank/EMBL Data Bank accession number(s) is L18387.
Cloning of Dictyostelium Phospholipase C

Fig. 1. DDPLC cDNA clones (A) and nucleotide and deduced amino acid sequence of DDPLC cDNA (B). A, the schematic structure of the Dictyostelium PLC cDNA sequence is shown. The coding region is indicated as an open box and the 5′- and 3′-untranslated sequences as heavy lines. The position of the PCR240bp fragment, cDNA clones, and digestion sites used for subcloning of restriction fragments are indicated. Note: the sequence predicts nine Tag1 sites. B, amino acids are numbered beginning at the first ATG, the putative initiation codon.

Fig. 2. Northern analysis of DDPLC. NC-4 cells were starved on non-nutrient agar and harvested at the indicated times. RNA was isolated and hybridized with probe PCR240bp. Time 0 represents RNA from vegetative cells. The symbols represent the different stages of *D. discoideum* development. The DDPLC transcript is indicated by an arrow.

Fig. 3. Genomic Southern analysis of DDPLC. Genomic DNA from NC-4 cells was digested with EcoRI (E), *NcoI* (N), and double digested with EcoRI/*NcoI* (E/N). Numbers on the left indicate size in kb of HindIII-digested phage λDNA. The Southern blots were hybridized with cDNA clone L1.5 (A) or the 5′ 600-bp EcoRI fragment of clone C1 (B).

Fig. 4. Overexpression of DDPLC in Dictyostelium cells. Northern analysis of mass cultured DDPLC sense overexpression cells (lane 2, DDPLC sense bulk), one clonal cell line (lane 3, DDPLC sense 12), and control cells (lane 1, DDBS18). A, RNA was isolated from vegetative cells and hybridized with probe PCR240bp. The DDPLC transcript is indicated by an arrow. B, the same blot was reprobed with an actin DNA fragment as a control.

DNA Amplification—Degenerate primers coding for different stretches of highly conserved amino acids within domain A from rat and bovine *β*, and *γ* and *δ* PLC isoenzymes and the *norPD* gene from *Drosophila* were designed, taking the frequency of codon usage in Dictyostelium into consideration. The sequences of the sense primers were

```
5′-GA(A/G)(T/C)(A/T)-(A/T/G)GA(T/C)TG(T/C)TGG-3′
```

(PLCSA′B), and of the antisense primers 5′-

```
5′-A(A/G)(A/T/G)AT(A/T/G)AC(A/T)GG(A/G)TA(A/T)(T/G)G-3′
```

(PLCSA′B), 5′-CCA(A/G)CA(T/C)TA(C/T)-3′. Restriction enzyme cleavage sites and two extra nucleotides were added

Fig. 2. Northern analysis of DDPLC. NC-4 cells were starved on non-nutrient agar and harvested at the indicated times. RNA was isolated and hybridized with probe PCR240bp. Time 0 represents RNA from vegetative cells. The symbols represent the different stages of *D. discoideum* development. The DDPLC transcript is indicated by an arrow.

Fig. 3. Genomic Southern analysis of DDPLC. Genomic DNA from NC-4 cells was digested with EcoRI (E), *NcoI* (N), and double digested with EcoRI/*NcoI* (E/N). Numbers on the left indicate size in kb of HindIII-digested phage λDNA. The Southern blots were hybridized with cDNA clone L1.5 (A) or the 5′ 600-bp EcoRI fragment of clone C1 (B).

Fig. 4. Overexpression of DDPLC in Dictyostelium cells. Northern analysis of mass cultured DDPLC sense overexpression cells (lane 2, DDPLC sense bulk), one clonal cell line (lane 3, DDPLC sense 12), and control cells (lane 1, DDBS18). A, RNA was isolated from vegetative cells and hybridized with probe PCR240bp. The DDPLC transcript is indicated by an arrow. B, the same blot was reprobed with an actin 15 DNA fragment as a control.

DNA Amplification—Degenerate primers coding for different stretches of highly conserved amino acids within domain A from rat and bovine *β*, and *γ* and *δ* PLC isoenzymes and the *norPD* gene from *Drosophila* were designed, taking the frequency of codon usage in Dictyostelium into consideration. The sequences of the sense primers were

```
5′-GA(A/G)(T/C)(A/T/C/G)GA(T/C)TG(T/C)TGG-3′
```

(PLCSA′B), and of the antisense primers 5′-

```
5′-A(A/G)(A/T/G)AT(A/T/G)AC(A/T)GG(A/G)TA(A/T)(T/G)G-3′
```

(PLCSA′B), 5′-CCA(A/G)CA(T/C)TA(C/T)-3′. Restriction enzyme cleavage sites and two extra nucleotides were added

Fig. 2. Northern analysis of DDPLC. NC-4 cells were starved on non-nutrient agar and harvested at the indicated times. RNA was isolated and hybridized with probe PCR240bp. Time 0 represents RNA from vegetative cells. The symbols represent the different stages of *D. discoideum* development. The DDPLC transcript is indicated by an arrow.

Fig. 3. Genomic Southern analysis of DDPLC. Genomic DNA from NC-4 cells was digested with EcoRI (E), *NcoI* (N), and double digested with EcoRI/*NcoI* (E/N). Numbers on the left indicate size in kb of HindIII-digested phage λDNA. The Southern blots were hybridized with cDNA clone L1.5 (A) or the 5′ 600-bp EcoRI fragment of clone C1 (B).

Fig. 4. Overexpression of DDPLC in Dictyostelium cells. Northern analysis of mass cultured DDPLC sense overexpression cells (lane 2, DDPLC sense bulk), one clonal cell line (lane 3, DDPLC sense 12), and control cells (lane 1, DDBS18). A, RNA was isolated from vegetative cells and hybridized with probe PCR240bp. The DDPLC transcript is indicated by an arrow. B, the same blot was reprobed with an actin 15 DNA fragment as a control.

DNA Amplification—Degenerate primers coding for different stretches of highly conserved amino acids within domain A from rat and bovine *β*, and *γ* and *δ* PLC isoenzymes and the *norPD* gene from *Drosophila* were designed, taking the frequency of codon usage in Dictyostelium into consideration. The sequences of the sense primers were

```
5′-GA(A/G)(T/C)(A/T/C/G)GA(T/C)TG(T/C)TGG-3′
```

(PLCSA′B), and of the antisense primers 5′-

```
5′-A(A/G)(A/T/G)AT(A/T/G)AC(A/T)GG(A/G)TA(A/T)(T/G)G-3′
```

(PLCSA′B), 5′-CCA(A/G)CA(T/C)TA(C/T)-3′. Restriction enzyme cleavage sites and two extra nucleotides were added

Fig. 2. Northern analysis of DDPLC. NC-4 cells were starved on non-nutrient agar and harvested at the indicated times. RNA was isolated and hybridized with probe PCR240bp. Time 0 represents RNA from vegetative cells. The symbols represent the different stages of *D. discoideum* development. The DDPLC transcript is indicated by an arrow.

Fig. 3. Genomic Southern analysis of DDPLC. Genomic DNA from NC-4 cells was digested with EcoRI (E), *NcoI* (N), and double digested with EcoRI/*NcoI* (E/N). Numbers on the left indicate size in kb of HindIII-digested phage λDNA. The Southern blots were hybridized with cDNA clone L1.5 (A) or the 5′ 600-bp EcoRI fragment of clone C1 (B).

Fig. 4. Overexpression of DDPLC in Dictyostelium cells. Northern analysis of mass cultured DDPLC sense overexpression cells (lane 2, DDPLC sense bulk), one clonal cell line (lane 3, DDPLC sense 12), and control cells (lane 1, DDBS18). A, RNA was isolated from vegetative cells and hybridized with probe PCR240bp. The DDPLC transcript is indicated by an arrow. B, the same blot was reprobed with an actin 15 DNA fragment as a control.

DNA Amplification—Degenerate primers coding for different stretches of highly conserved amino acids within domain A from rat and bovine *β*, and *γ* and *δ* PLC isoenzymes and the *norPD* gene from *Drosophila* were designed, taking the frequency of codon usage in Dictyostelium into consideration. The sequences of the sense primers were

```
5′-GA(A/G)(T/C)(A/T/C/G)GA(T/C)TG(T/C)TGG-3′
```

(PLCSA′B), and of the antisense primers 5′-

```
5′-A(A/G)(A/T/G)AT(A/T/G)AC(A/T)GG(A/G)TA(A/T)(T/G)G-3′
```

(PLCSA′B), 5′-CCA(A/G)CA(T/C)TA(C/T)-3′. Restriction enzyme cleavage sites and two extra nucleotides were added

Fig. 2. Northern analysis of DDPLC. NC-4 cells were starved on non-nutrient agar and harvested at the indicated times. RNA was isolated and hybridized with probe PCR240bp. Time 0 represents RNA from vegetative cells. The symbols represent the different stages of *D. discoideum* development. The DDPLC transcript is indicated by an arrow.

Fig. 3. Genomic Southern analysis of DDPLC. Genomic DNA from NC-4 cells was digested with EcoRI (E), *NcoI* (N), and double digested with EcoRI/*NcoI* (E/N). Numbers on the left indicate size in kb of HindIII-digested phage λDNA. The Southern blots were hybridized with cDNA clone L1.5 (A) or the 5′ 600-bp EcoRI fragment of clone C1 (B).

Fig. 4. Overexpression of DDPLC in Dictyostelium cells. Northern analysis of mass cultured DDPLC sense overexpression cells (lane 2, DDPLC sense bulk), one clonal cell line (lane 3, DDPLC sense 12), and control cells (lane 1, DDBS18). A, RNA was isolated from vegetative cells and hybridized with probe PCR240bp. The DDPLC transcript is indicated by an arrow. B, the same blot was reprobed with an actin 15 DNA fragment as a control.
Phospholipase C activity (pmol of Ins(1,4,5)P₃ produced min⁻¹/10⁶ cells) and basal Ins(1,4,5)P₃ levels (pmol of Ins(1,4,5)P₃/10⁶ cells) were measured as described under *Experimental Procedures.* The data are presented as the mean ± S.D. of three independent experiments in triplicate. The difference between the control cells and the DdPLC sense overexpressing cells is significant, with p < 0.02.

TABLE 1

	Phospholipase C activity	Ins(1,4,5)P₃ levels				
	DdBS18	DdPLC sense bulk	DdPLC sense 12	DdBS18	DdPLC sense bulk	DdPLC sense 12
Exp. I	7.67 ± 2.70	32.08 ± 13.08	188.42 ± 56.99	1.28 ± 0.26	10.83 ± 2.00	10.44 ± 4.31
Exp. II	7.42 ± 2.44	35.00 ± 7.43	101.08 ± 15.55	1.28 ± 0.35	2.42 ± 0.20	3.44 ± 0.31
Exp. III	18.17 ± 4.48	47.00 ± 20.73	86.25 ± 23.35	0.92 ± 0.54	3.26 ± 0.53	5.69 ± 0.55

Cloning of Dictyostelium Phospholipase C

Phospholipase C activity from *Dictyostelium* strain NC-4 was isolated as described by Nellen et al. (25). A 30-cycle PCR was used for DNA amplification with a 1-min denaturing step at 94 °C and a 3-min annealing and extension step at 40 or 50 °C. Reactions were performed in 50 mM KCl, 10 mM Tris-HCl, pH 8.0, 4 mM MgCl₂, 80 μg/ml bovine serum albumin, 0.2 mM dNTPs, 100 μM concentration of 5' and 3' PCR primer, 10 ng of genomic DNA, and 2.5 units of Taq DNA polymerase (Promega Corp.) in a total volume of 100 μl. The amplified DNA was precipitated with ethanol and digested with the appropriate restriction enzymes. PCR products of the expected length were excised from low melting point agarose gel and purified. The fragments were ligated into compatible pGEM-7Zf(+) vector (Promega Corp.) and sequenced according to the dideoxy chain termination method (26). One of these clones, named PCR240bp, was used to screen a cDNA library.

DNA Screen and Sequencing—A λgt11 library prepared from 6-h developed *D. discoideum* cells was provided by P. Devreotes, Baltimore. The PLC-like clone PCR240bp was used as a probe to screen the library. The cDNA insert isolated in the first screen was used to screen the same library a second time to obtain the complete sequence.

Filter hybridizations were performed with blots containing the PCR240bp at 42 °C in 50% formamide, 6× SSC, 0.5% SDS. Washing was performed at the same temperature for 30 min in 5× SSC, 1% SDS. DdPLC transcript was quantitated using cross-hybridization with ribosomal RNA as an internal standard.

DNA and RNA Analysis—Total RNA isolated at 2-h intervals from a 28-h developmental program of *D. discoideum* NC-4 cells was a gift from P. Schaap, Leiden (27). The Northern blots were probed with the clone PCR240bp at 42 °C in 50% formamide, 5× Denhardt's solution, 1% SDS, 5× SSPE (75 mM NaCl, 50 mM NaH₂PO₄, 5 mM EDTA, pH 7.4). Washing was performed at the same temperature for 30 min in 5× SSPE, 1% SDS. DdPLC transcript was quantitated using cross-hybridization with ribosomal RNA as an internal standard.

Effect of DdPLC on *D. discoideum* Phospholipase C activity was determined as the amount of Ins(1,4,5)P₃ produced during a 20-s incubation after the addition of 6.9 mM CaCl₂, as described (32). Ins(1,4,5)P₃ levels were measured in the neutralized lysate by isotope dilution assay (33).

RESULTS

Amplification of a Genomic *D. discoideum* PLC Fragment—The highly conserved amino acid sequence regions within the different PLC isoenzymes from rat, bovine, and *Drosophila* were used to design primers to isolate a new PLC gene from *D. discoideum*. The sense primers PLC5'A and PLC5'B correspond to amino acid regions ELCW and HNTVL, whereas antisense primers PLC3'A, PLC3'B, and PLC3'C correspond to amino acid regions PYPVIL, ELCWD, and YPVIL, respectively.

PCR using primer combinations PLC5'A + PLC3'A, PLC5'B + PLC3'C, PLC5'B + PLC3'B, or PLC5'A + PLC3'C with annealing and extension reactions at 40 °C resulted in products of no distinct size but gave smear between 100 and 400 bp. PCR with annealing and extension reactions at 50 °C gave smears when using primers PLC5'B + PLC3'B, or PLC5'A + PLC3'C. However, a fragment of the expected size of about 240 bp was obtained with primers PLC5'B + PLC3'C.

After restriction enzyme digestion the fragment of 240 bp was ligated into the sequencing vector. Eight clones containing the 240-bp PCR product were sequenced. Of these, three clones were different from each other and did not contain a PLC-like structure. The other five clones were nearly identical and contained a PLC-like sequence as deduced from their putative amino acid sequence. One clone showed a 1-base substitution, probably caused by an error during PCR. The clone used in further studies was named PCR240bp.

Cloning and Sequence Analysis of Phospholipase C cDNA—The PLC-like insert from clone PCR240bp was used as a P-labeled probe to screen a λgt11 cDNA library. Two hybridizing clones of about 1.6 kb were isolated from 100,000 plaque-forming units and shown to be identical by restriction enzyme...
Fig. 5. Comparison of the primary structures of phospholipase C isoenzymes from bovine, Drosophila norpA (Dm), and Dictyostelium (Dd). A, the locations of the two conserved regions found in phosphoinositide-specific PLCs are denoted by boxes A and B. The numbers above each box refer to the percentage of identity in comparison with Dictyostelium PLC. The length of the bar represents 100 amino acids. B, amino acid sequence comparison of DdPLC with the conserved domains A and B of bovine, Drosophila, and Dictyostelium PLC, and with the C-terminal domain of bovine PLC-6. Highly conserved regions in all of the sequences are boxed, and identical residues are indicated by an asterisk. Arrows indicate the sequences used for designing PCR primers. Sequence data were obtained from the Swiss-Prot Sequence Database. Note: the N-terminal sequence of bovine PLC-8 has not been described; amino acid numbers refer to those of the nearly identical rat PLC-8.

Cloning of Dictyostelium Phospholipase C

Analysis and end sequencing. One clone, named L1.5, was sequenced entirely. It contained a 1,570-bp-long open reading frame encoding the conserved A domain and part of the B domain. As probe PCR240bp hybridized to a ≈ 3-kb mRNA in Northern analysis, L1.5 was used as a probe to screen the library a second time to obtain the complete sequence. In total one million plaque-forming units were screened, and 21 hybridizing clones were identified.

In Fig. 1A the cDNA clones are shown which were used to sequence the complete DdPLC cDNA sequence. Unfortunately, no full-length cDNA clone could be isolated. L15 does not contain the internal EcoRI restriction enzyme site because of a 2-bp deletion. The overlapping clones form a 2,788-bp cDNA sequence.

The nucleotide and deduced amino acid sequences of DdPLC are presented in Fig. 1B. The sequence contains an open reading frame of 2,403 nucleotides following the first ATG. This putative initiation codon at position 289 is flanked by a sequence that fits Kozak's criteria for a translation initiation codon (34). The next ATG at position 323 does not comply to Kozak's rule and is followed by an in-frame stop codon at position 337. The long open reading frame encodes a protein of 801 amino acids and has a predicted molecular mass of 91 kDa.

DdPLC RNA Expression—DdPLC gene expression was analyzed to determine whether transcription is developmentally regulated. Northern blots of RNA from a time course of development were hybridized with probe PCR240bp. Fig. 2 demonstrates that the 2.8-kb mRNA is present at all stages of development. After 2 h of starvation DdPLC is expressed at a 2-fold higher level than in vegetative cells. In the aggregating cells and during tip formation the levels are comparable with vegetative levels. Transcription is markedly decreased in the migrating slug. In the culminating fruiting body DdPLC levels are again increased. (The dip in expression at 6 h appears to be an artifact of the RNA isolation at this time point. Expression of a number of developmentally regulated genes using the RNA from this time course of development was also reduced at 6 h, as shown by Peters et al. (27).)
gested with restriction enzymes EcoRI and NcoI and analyzed by Southern hybridization. cDNA clone L1.5 and a 600-bp fragment 5′ from the EcoRI site of clone C1 were used as probes (Fig. 3, A and B). As L1.5 contains an NcoI site but no EcoRI site, hybridization with L1.5 showed two bands for DNA digested with NcoI and a single band for EcoRI-digested DNA. The lengths of the two bands found in the EcoRI/NcoI double digestion together correspond to the length of the band in the EcoRI digestion. Hybridization with the 600-bp fragment from clone C1 gave single bands in both the EcoRI- and NcoI-digested genomic DNA as expected. These results indicate that DdPLC is a single copy gene.

Expression of Dictyostelium Phospholipase C—A complete DdPLC cDNA sequence was constructed and inserted into the BS18 Dictyostelium expression vector in the sense orientation. AX3 cells transformed with this construct or with a control vector (BS18) were assessed for DdPLC RNA expression, basal Ins(1,4,5)P3 levels, and PLC activity. Measurements were done on mass cultured cells (DdPLCsense bulk) and on one clone (DdPLCsense 12) and were compared with control cells (DdBS18). Northern blots showed a substantially higher expression of the DdPLC messenger in the DdPLCsense-transformed cells (Fig. 4). The PLC activity in the DdPLCsense bulk cells showed a 4-fold increase, whereas in the clonal line the activity was increased up to 20-fold (Table I). Our results show that overexpression of DdPLC leads to a 2–7-fold increase in basal Ins(1,4,5)P3 levels (Table I). The difference between the control cells and the DdPLCsense overexpressing cells is significant, with \(p < 0.02 \).

Overexpression of PLC and the resulting increase in basal Ins(1,4,5)P3 levels did not influence growth and development in Dictyostelium.

DISCUSSION

In this paper we report the cloning of a PLC isoform from \(D. discoideum \) and overexpression of this PLC in Dictyostelium cells. The conserved amino acid sequences of previously identified PLC isoforms from other species were used to design PCR primers. Primers designed from the conserved regions HNTYL and YPVIL in domain A were successful in amplifying a PLC-like fragment of the expected size. Dictyostelium PCR240bp encodes many of the highly conserved amino acids in the same location as the other phosphoinositide-specific PLC enzymes. However, the cysteine in the sequence ELDYW, which was used to design a primer in other PCR experiments, was substituted for a valine in DdPLC.

As mammalian cells are known to contain more than one PLC isoform, we searched for other possible PLC genes in Dictyostelium by PCR and Southern analysis. PCR with primers designed in the regions HNTYL and YPVIL gave one unique PLC-like sequence in addition to a number of unrelated sequences. No other PLC-like sequences were found in the PCR product. Reactions using other primer combinations did not yield products of distinct sizes under the conditions tested. Southern blots hybridized under reduced stringency conditions (30% formamide at 42 °C) with the PLC sequence obtained by PCR did not show cross-reacting bands. In hybridization solutions containing 10% formamide many weakly hybridizing fragments were observed in addition to the strongly hybridizing DdPLC bands. Therefore, we have no indication for other PLC genes in Dictyostelium.

The deduced amino acid sequence of the cloned Dictyostelium PLC cDNA shows many characteristics of the PLC sequences from vertebrates and \(Drosophila \) (Fig. 5A). All PLC sequences contain two conserved A and B domains of about 140 and 120 amino acids, respectively. The different PLC isoforms, including DdPLC, show about 50% and 40% sequence identities in these domains. This suggests that vertebrate PLCδ, γ, and δ have about the same evolutionary distance to each other as to Dictyostelium with respect to these conserved domains. The N-terminal part of the proteins up to the A domain shows very little sequence identity but has a nearly identical length of 298–330 amino acids. The regions of the PLC proteins between the A and B domain is variable in both sequence and length. DdPLC does not contain regions similar to the nonreceptor tyrosine kinases of the src family as found in the PLCδ isoforms. A search for potential biological significance in this region using the UC/Gene program (IntelliGenetics/Genofit) revealed a putative protein kinase C phosphorylation site at position 524, a putative cAMP/cGMP-dependent kinase phosphorylation site at position 531, and an EF-hand calcium binding domain between positions 490 and 502. Finally, the C-terminal part of PLC proteins after the B domain can vary from 147 (PLC-δ) to 560 amino acids (PLC-β). The C-terminal part of DdPLC shows significant homology in length and sequence only with PLC-δ (see Fig. 5B).

In this study we show that overexpressing DdPLC in Dictyostelium results in an increase in both basal Ins(1,4,5)P3 levels and PLC activity, demonstrating that the cloned sequence encodes a PLC enzyme. The increase in PLC activity does not appear to influence growth or development as compared with control cells. From studies in mammalian systems it is known that overexpression of endogenous PLC-γ results in an increased Ins(1,4,5)P3 production in response to platelet-derived growth factor. However, this did not alter intracellular calcium signaling or induce DNA synthesis (35).

The development of efficient gene targeting systems in Dictyostelium has made it possible to use the cloned cDNA to study point mutations (30). By disrupting the DdPLC gene we hope to understand the role of this PLC isoform in the signal transduction pathway and its effect on chemotaxis and cell development.

Acknowledgments—We are grateful to P. Devreotes for providing the Agt11 library, R. Firtel for the BS18 expression vector, and P. Schaap for RNA samples from a developmental program. We thank Anthony Bominar for advice on the phospholipase C experiments and Sigrid Beiboer for performing the site-directed mutagenesis experiments.

REFERENCES

1. Berridge, M. J., and Irvine, R. F. (1989) Nature 341, 197–205
2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1989) Molecular Biology of the Cell, 2nd Ed., pp 661–726, Garland Publishing Inc., New York
3. Janssens, P. M. W., and van Haastert, P. J. M. (1987) Microbiol. Rev. 51, 406–418
4. Klein, P. S., Sun, T. J., Saxe, C. L., III, Kimmel, A. R., Johnson, R. L., and Devreotes, P. N. (1988) Science 241, 1467–1472
5. Greiber, G. (1987) Annu. Rev. Biochem. 56, 863–879
6. van Haastert, P. J. M., De Vries, M. J., Penning L. C., Roovers, E., van der Kjaer, J., Ernenue, C., and van Lookeren Campagne, M. M. (1989) Biochim. J. 264, 577–596
7. Europe-Finner, G. N., and Newell, P. C. (1987) J. Cell Sci. 77, 515–517
8. van Haastert, P. J. M., Janse, P. M. W., and Ernenue, C. (1991) Eur. J. Biochem. 195, 289–300
9. Bloomquist, B. T., Shortridge, R. D., Schneuwly, S., Perdew, M., Montell, C., Steller, H., Rubin, C., and Pak, W. L. (1988) Cell 54, 723–733
10. Sub, P. G., Ryu, S. H., Moon, K. H., and Rhee, S. G. (1988) Cell 54, 161–168
11. Emori, Y., Homma, Y., Sorimachi, H., Kawasaki, H., Nakahara, O., Suzuki, K., and Takekawa, T. (1989) J. Biol. Chem. 264, 21885–21890
12. Otto, S., Matsu, A., Nagawa, Y., and Kaga, Y. (1988) FEBS Lett. 242, 216–220
13. Stahl, M. L., Ferenz, C. R., Kelleher, K. L., Krisz, R. W., and Knopf, J. L. (1989) J. Biol. Chem. 264, 292–294
14. Katan, M., Krisz, R. W., Totty, N., Philp, R., Meudrim, E., Aldape, R. A., Knopf, J. L., and Parker, P. J. (1988) Cell 54, 171–177
15. Sub, P. G., Ryu, S. H., Moon, K. H., Sub, H. W., and Rhee, S. G. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5419–5423
16. Burgess, W. H., Dionne, C. A., Kaplow, J. M., Friesel, R., Zilberstein, A., Schlessinger, J., and Jaffe, M. (1989) Mol. Cell. Biol. 9, 4770–4777
17. Shortridge, R. D., Yoon, J., Lending, C. R., Bloomquist, B. T., Perdew, M., Pak, W. L., Sub, P. G., and Sub, H. W. (1988) Cell 54, 21885–21890
18. Rhee, S. G., Sub, P. G., Ryu, S. H., and Lee, S. Y. (1989) Science 244, 546–550
19. Bennett, C. F., Balcarek, J. M., Varriachio, A., and Crooke, S. T. (1988) Nature 334, 269–270

The Journal of Biological Chemistry

Vol. 263, No. 22, April 15, 1988

18391

Downloaded from www.jbc.org at University of Groningen on August 23, 2007

Cloning of Dictyostelium Phospholipase C
20. Tompkins, T. A., and Moscarello, M. A. (1991) J. Biol. Chem. 266, 4228-4236
21. Hofmann, S. L., and Majerus, P. W. (1982) J. Biol. Chem. 257, 6461-6469
22. Takenawa, T., and Nagai, Y. (1981) J. Biol. Chem. 256, 6769-6775
23. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988) Science 239, 487-491
24. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., pp 7.39-7.48, 9.31-9.40, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
25. Nellen, W., Datta, S., Reymond, C., Sivertsen, A., Mann, S., Crowley, T., and Firtel, R. A. (1989) Methods Cell Biol. 28, 67-100
26. Sanger, F., Nicklen, S., and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 5463-5467
27. Peters, D. J. M., Cammans, M., Smit, S., Spek, W., van Lookeren Campagne, M. M., and Schaap, F. (1991) Dev. Genet. 12, 25-34
28. Kunkel, T. A., Roberts, J. D., and Zakour, R. A. (1987) Methods Enzymol. 154, 367-382
29. Kumagai, A., Pupillo, M., Gunderson, R., Miake-Lye, R., Devreotes, P. N., and Firtel, R. A. (1988) Cell 57, 265-272
30. De Lozanne, A., and Spudich, J. A. (1987) Science 236, 1086-1091
31. Watts, D. J., and Ashworth, J. M. (1979) J. Biol. Chem. 219, 171-174
32. Bominaar, A. A., Kesbeke, F., Staar-Jagalska, B. E., Peters, D. J. M., Schaap, P., and van Haastert, P. J. M. (1991) J. Cell Sci. 100, 825-831
33. van Haastert, P. J. M. (1988) Anal. Biochem. 177, 115-119
34. Kozak, M. (1989) J. Biol. Chem. 264, 367-382
35. Margolis, B., Zilberstein, A., Franks, C., Felder, S., Kremer, S., Ullrich, A., Rhee, S. G., Skocekii, K., and Schlessinger, J. (1980) Science 248, 607-610