Unicompartmental knee arthroplasty is superior to high tibial osteotomy for the treatment of medial unicompartmental osteoarthritis

A systematic review and meta-analysis

Linke Huang, MDa,b, Yinglong Xu, MDb,c, Linhua Wei, MDb,e, Guangzhi Yuan, MDa, Weiwei Chen, PhDb, Shiying Gao, MDa, Wei Liu, MDa, Zhen Tan, MDa, Jinmin Zhao, MDb

Abstract

Background: Unicompartmental knee arthroplasty (UKA) and high tibial osteotomy (HTO) are widely used for the treatment of medial unicompartmental knee osteoarthritis (OA). However, the best approach remains controversial. This study aimed to present a systematic review and a meta-analysis to directly compare the clinical outcomes between HTO and UKA. We hypothesized that the clinical outcomes after UKA and HTO would be similar.

Methods: Electronic databases (Web of Science, PubMed, Embase, CENTRAL, and Biosis Preview) were searched for related studies published before November 30, 2021. Retrospective and prospective studies that directly compared the postoperative outcomes between UKA and HTO were included. Odds ratio (ORs) and 95% confidence interval (CIs) for complications, revision to total knee arthroplasty (TKA), and weighted mean difference (MD) and 95% CIs in range of motion (ROM), pain, walking speed and function score were evaluated. Two reviewers independently assessed the quality of the studies. Subgroup and sensitivity analyses were performed to explore the heterogeneity.

Results: Twenty-three retrospective and 6 prospective studies were included. A total of 3004 patients (3084 knees) were evaluated for comparison. Complications (OR, 4.88, 95% CI: 2.92–6.86) were significantly greater in the HTO group than in the UKA group. Postoperative function scores including Lysholm score (MD, −2.78, 95% CI: −5.37 to −0.18) and Hospital for Special Surgery (HSS) score (MD, −2.80, 95% CI: −5.39 to −0.20) were significantly lower in the HTO group than the UKA group. The postoperative ROM was similar between HTO and mobile-bearing UKA (MD, −3.78, 95% CI: −15.78 to 8.22). However, no significant differences were observed between the HTO and UKA group in terms of postoperative pain, walking speed, and revision to TKA. UKA appears to be more suitable for the elderly, and both mobile-bearing UKA and HTO are viable surgical options for younger active individuals.

Conclusions: UKA is superior to HTO in minimizing complications and enhancing postoperative function scores. Mobile-bearing UKA has a similar ROM compared with HTO. Both HTO and UKA provide satisfactory clinical outcomes in terms of walking speed, relieving pain, and revision to TKA. UKA appears to be more suitable for the elderly, and both mobile-bearing UKA and HTO are viable surgical options for younger active individuals.

Abbreviations: AH Grade = Ahlbäck Grade, BKS = the Baily knee score, BOA = the British Orthopaedic Association score, CI = confidence interval, CWHTO = closed-wedge high tibial osteotomy, FB = fixed-bearing unicompartmental knee arthroplasty, FJS = The Forgotten Joint Score, HTO = high tibial osteotomy, HSS = Hospital for Special Surgery, IKDC = International Knee Documentation Committee knee score, K–L Grade = Kellgren–Lawrence grade, KSS = Knee Society score, MB = mobile-bearing unicompartmental knee arthroplasty, MD = the weighted mean difference, NC = not clear, OA = osteoarthritis, OR = odds ratio, OWHTO = opening-wedge high tibial osteotomy, RCT = randomized controlled trial, ROM = range of motion, SE = standard error, UKA = unicompartmental knee arthroplasty, VAS = visual analogue scale, WOMAC = Western Ontario and McMaster Universities Osteoarthritis Index

Keywords: high tibial osteotomy, medial unicompartmental osteoarthritis, meta-analysis, unicompartmental knee arthroplasty

1. Introduction

Osteoarthritis (OA) is a major cause of impairment that affects more people than any other joint disease. Knee joints are most frequently afflicted by OA. It has been reported that arthritic change is mostly found in the medial compartment in 10%–29.5% of all cases. For mild unicompartmental knee OA (Kellgren–Lawrence grade [K–L grade] I), conservative
2. Methods

2.1. Search strategy

The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. All authors determined the research protocol before starting the bibliographic searches. The study protocol was recorded in the PROSPERO International Prospective Register of Systematic Reviews, Number CRD42020165829. The electronic databases PubMed, Embase, Web of Science, CENTRAL (using Ovid platform), and Biosis Preview (using Ovid platform) were searched for related studies until before November 30, 2021, without language restrictions. To maximize the search sensitivity and specificity, the search strategy for the 5 databases followed the combination of Medical Subject Headings with expressions. Ethical approval was not required, as this study utilized published data.

2.2. Selection criteria

Two reviewers independently evaluated the search outcomes for inclusion in this systematic review by inspecting abstracts, titles, or complete texts. Discordance between the 2 investigators was settled through consensus or discussion with a third researcher. All prospective and retrospective controlled studies that met the inclusion criteria were included. The inclusion criteria were as follows: (1) the study was a prospective or controlled trial; (2) the subjects were patients with degenerative knee OA; (3) the study compared HTO with UKA; (4) the study included at least one outcome, such as pain, complications, functions, and revision to total knee arthroplasty. The exclusion criteria were as follows: (1) case series; (2) registration study; (3) cost-effectiveness study; (4) study indirectly comparing HTO with UKA; (5) no valid data could be extracted from a published study; (6) cadaver or animal studies; (7) studies that included patients with traumatic arthritis or rheumatoid arthritis.

2.3. Data extraction

Data were independently extracted from the selected studies by 2 researchers. The extracted data included study name, date, study design, participant demographics, baseline characteristics, outcomes. The study authors were contacted by email to clarify unclear data. Data were recorded using Microsoft Excel and Word software. Outcomes included surgical complications (e.g., infection), pain score, functional score (e.g., Lysholm score), range of motion (ROM), walking speed, and revision to TKA at the last follow-up.

2.4. Study quality evaluation

The study quality was independently evaluated by 2 reviewers. The Newcastle–Ottawa scale was employed to classify the bias risk of non-randomized comparative studies corresponding to each study design (cohort or case-control) and the Cochrane Risk of Bias tool was employed to evaluate randomized control trials. Discordance between the 2 investigators was settled through consensus or discussion with a third researcher.

2.5. Statistical analysis

The RevMan 5.3 software for Windows was employed to perform statistical analysis. Dichotomous data were evaluated using the odds ratio (OR) and associated 95% confidence interval (CI) through the Mantel-Haenszel (M-H) Method. The weighted mean difference (MD) and corresponding 95% CI values were used to define the continuous data value through the Inverse Variance Method. I² tests and P values for the Cochrane Q tests were used to evaluate heterogeneity. When I² value was < 50% and P value was > .1, a fixed-effects model was employed for the meta-analysis; otherwise, a random-effects model was selected. Subgroup and sensitivity analyses were performed to explore potential sources of heterogeneity. A funnel plot was used to examine the publication bias.

3. Results

3.1. Literature screening process and results

A total of 3672 published manuscripts were retrieved from 5 electronic database searches. 1937 duplicates were removed and 1659 records were excluded after screening the titles or abstracts. Because there was no useful information or other reasons, an additional 47 studies were removed based on abstracts or complete articles. Eventually, 29 studies that met the inclusion criteria were included, 6 of them were prospective randomized trials and 23 were retrospective comparative studies. The literature screening process and the results are shown in Fig. 1.
3.2. Study characteristics and quality

A total of 1388 patients/1412 knees were treated with HTO and 1616 patients/1672 knees were treated with UKA for medial compartmental knee OA.\cite{9–11,13,14,18–41} The minimum mean follow-up times for HTO and UKA were 3.6 months and 3.7 months,\cite{11} respectively. The maximum follow-up time for HTO and UKA was 17 years for both.\cite{32} The HTO type has been reported as opening-wedge HTO (OWHTO)\cite{9–11,18,19,21–24,26,29,35–41} and closing-wedge HTO (CWHTO)\cite{13,14,20,30–34} in eighteen and 8 studies, respectively. One study included 38 OWHTO and 19 CWHTO,\cite{25} and 1 study included 57 OWHTO and 36 Demo-HTO.\cite{28} UKA protheses have been reported as fixed-bearing\cite{9,11,13,14,19,20,23,24,26–29,31,36–39,41} and mobile-bearing UKA\cite{10,21,22,24,27,28,33–36,38,39} in 13 and 12 studies, respectively, but 4 studies did not mention the UKA type.\cite{18,37,40,41} Tables 1, 2 show the details of the included studies, and Tables 3, 4 show their quality. Revision to TKA, which was the most cited result, was employed to obtain a funnel plot analysis of publication bias. The asymmetric features of the funnel plot suggest a certain publication bias (Fig. 2).

3.4. Outcomes

3.4.1. Complications. Complications included hematoma, vessel and nerve injury, infection, deep venous thrombosis or pulmonary embolism, nonunion, dislocation, failure of fixation, and bedsores. Nineteen studies reported procedure-related complications.\cite{9–11,13,14,19,21,23,24,26–29,31,36–39,41} Complications occurred at a significantly higher rate in the HTO group than in the UKA group (OR, 4.88, 95% CI: 2.92–6.86, \(I^2 = 20\%\), \(P < .00001\); Fig. 3).

3.4.2. Revision to TKA. Fourteen studies with 1965 patients reported 176 subjects who underwent revision to TKA.\cite{9,10,14,19,20,25,28,29,31,32,37–39,41} The pooled data showed that the OR for the revision rate was 1.70 (95% CI: 0.74–3.91, \(I^2 = 73\%\), \(P = .21\); Fig. 4), and there was no significant difference between the 2 groups. Sensitivity analysis was performed to explore potential sources of heterogeneity. After excluding the study of Rodkey 2021, the OR for the revision rate was 2.35 (95% CI: 1.16–4.77, \(I^2 = 56\%\), \(P = 0.02\)). HTO had a greater revision rate than UKA.

3.4.3. Range of motion. Ten studies\cite{9,11,18,20,24,29,33,35,39,40} compared ROM between HTO and UKA. The pooled data suggested that the difference in ROM between the HTO and UKA groups was not statistically significant (MD, 3.17, 95% CI: –1.63 to 7.98, \(I^2 = 98\%\), \(P = .20\); Fig. 5). In subgroup analysis, the HTO group showed a greater motion range than the fixed-bearing UKA group (MD, 9.13, 95% CI: 4.00–14.27,
Table 1

Summary of characteristics, patient demographic details for each study.

Study	Design	HTO type/UKA model	Number of operation knees	Age (y)	Female/ Male	BMI (kg/m²)	OA severity grade	Follow-up	
Liu 2021	Retrospective	OWHTO/MB	HTO	48	59.5 ± 3.5	32/16	28.1 ± 1.8	K-L grade 2/3	3.3 Y
		UKA	49	61.2 ± 2.8	31/18	27.3 ± 2.1	26.1 ± 3.8	K-L grade 2/3	22.9 M
Watanabe 2021	Retrospective	OWHTO/UKA	HTO (48 patients)	48	61.3 ± 9.8	NC	24.1 ± 2.8	K-L grade 2/3	22.5 M
Rodkey 2021	Retrospective	OWHTO/UKA	HTO	113	40 ± 20	12/101	29.6	NC	5.3 Y
Lin 2021	Retrospective	OWHTO/MB	HTO	53	60.1 ± 10.2	40/13	26.3 ± 3.2	K-L grade 2/3	6.3 Y
Jn 2021	Retrospective	OWHTO/MB	HTO	61	61.4 ± 4.7	46/15	26.0 ± 3.1	More than 1 y	
Zhang 2020	Retrospective	OWHTO/UKA	HTO	67	63.1 ± 4.9	65/2	25.5 ± 2.8	15/52	
Hou 2020	Retrospective	OWHTO/MB	HTO	83	53.7 ± 5.2	66/17	27.7 ± 4.1	40.2 ± 13.5 M	
Chen 2020	Retrospective	OWHTO/MB	HTO	30	NC	NC	NC	NC	
Jacquet 2020	Retrospective	OWHTO/UKA	HTO	49	56.1 ± 5.6	13/5	25.9 ± 3.2	1.0–2.2 Y	
Song 2019	Retrospective	OWHTO/UKA	HTO	113	40	12/101	29.6	5.3 Y	
Jin 2021	Retrospective	OWHTO/MB	HTO	67	61.4 ± 4.7	46/15	26.0 ± 3.1	More than 1 y	
Zhang 2020	Retrospective	OWHTO/UKA	HTO	109	51.8 ± 6.9	86/23	26.4 ± 3.6	40.2 ± 13.5 M	
Hou 2020	Retrospective	OWHTO/MB	HTO	30	NC	NC	NC	NC	
Chen 2020	Retrospective	OWHTO/MB	HTO	30	NC	NC	NC	NC	
Jacquet 2020	Retrospective	OWHTO/UKA	HTO	49	56.1 ± 5.6	13/5	25.9 ± 3.2	1.0–2.2 Y	
Song 2019	Retrospective	OWHTO/UKA	HTO	113	40	12/101	29.6	5.3 Y	
Jin 2021	Retrospective	OWHTO/MB	HTO	67	61.4 ± 4.7	46/15	26.0 ± 3.1	More than 1 y	
Zhang 2020	Retrospective	OWHTO/UKA	HTO	109	51.8 ± 6.9	86/23	26.4 ± 3.6	40.2 ± 13.5 M	
Hou 2020	Retrospective	OWHTO/MB	HTO	30	NC	NC	NC	NC	
Chen 2020	Retrospective	OWHTO/MB	HTO	30	NC	NC	NC	NC	
Jacquet 2020	Retrospective	OWHTO/UKA	HTO	49	56.1 ± 5.6	13/5	25.9 ± 3.2	1.0–2.2 Y	
Song 2019	Retrospective	OWHTO/UKA	HTO	113	40	12/101	29.6	5.3 Y	
Jin 2021	Retrospective	OWHTO/MB	HTO	67	61.4 ± 4.7	46/15	26.0 ± 3.1	More than 1 y	
Zhang 2020	Retrospective	OWHTO/UKA	HTO	109	51.8 ± 6.9	86/23	26.4 ± 3.6	40.2 ± 13.5 M	
Hou 2020	Retrospective	OWHTO/MB	HTO	30	NC	NC	NC	NC	
Chen 2020	Retrospective	OWHTO/MB	HTO	30	NC	NC	NC	NC	
Jacquet 2020	Retrospective	OWHTO/UKA	HTO	49	56.1 ± 5.6	13/5	25.9 ± 3.2	1.0–2.2 Y	
Song 2019	Retrospective	OWHTO/UKA	HTO	113	40	12/101	29.6	5.3 Y	
Jin 2021	Retrospective	OWHTO/MB	HTO	67	61.4 ± 4.7	46/15	26.0 ± 3.1	More than 1 y	
Zhang 2020	Retrospective	OWHTO/UKA	HTO	109	51.8 ± 6.9	86/23	26.4 ± 3.6	40.2 ± 13.5 M	

AH Grade = Ahlbäck Grade, CWHTO = closed-wedge high tibial osteotomy, FB = fixed-bearing unicompartmental knee arthroplasty, HTO = high tibial osteotomy, K–L Grade = Kellgren–Lawrence grade, M = month, MB = mobile-bearing unicompartmental knee arthroplasty, NC = not clear, OWHTO = opening-wedge high tibial osteotomy, UKA = unicompartmental knee arthroplasty, Y = year.
I² = 68%, P = .0005; Fig. 5). However, no significant difference was observed in ROM between HTO and mobile-bearing UKA groups (MD −3.78, 95% CI: −15.78 to 8.22, I² = 99%, P = .54; Fig. 5) and unknown type UKA groups (MD, −0.63, 95% CI: −5.67 to 4.41, P = .81; Fig. 5).

3.4.4. Postoperative pain

Thirteen studies reported postoperative pain.[13,14,18,19,21–23,26,30,32,33,35,41] Different assessment systems have been used to assess pain. Based on the available data, 7 studies[18,19,21,23,26,35,41] included information on postoperative pain, which was assessed by the visual analogue...
The present analysis showed no statistically significant difference between the 2 groups (MD, 0.39, 95% CI: −0.01 to 0.79, \(I^2 = 91\% , P = .06 \); Fig. 6).

3.4.5. Walking speed

No significant differences were found in walking speed between the HTO and UKA groups (MD, −0.02, 95% CI: −0.07 to 0.04, \(I^2 = 0\% , P = .56 \); Fig. 7), as reported in 4 studies\[13,30,33,34\] involving 148 knees.

3.4.6. Function score

There are several different scoring systems to compare the postoperative functional outcomes between the 2 groups.\[9–11,13,14,18–33,35,36,38–41\] However, only a few studies provided the mean and standard deviation (SD) of the same scoring system used in our meta-analysis. Seven studies\[11,23,25,33,38–40\] involving 644 patients reported a lower Lysholm score in the HTO group than in the UKA group (MD, −2.78, 95% CI: −5.37 to −0.18, \(I^2 = 78\% , P = .04 \); Fig. 8). The Hospital for Special Surgery (HSS) score was estimated in 6 studies,\[19,23,33,36,41\] The HTO group had worse HSS than the UKA group (MD, −2.80, 95% CI: −5.39 to −0.20, \(I^2 = 75\% , P = .03 \)). Five studies used the Knee Society Score (KSS) to assess postoperative knee function. The results showed no significant difference between the HTO and UKA groups (MD, −0.26, 95% CI: −1.94 to 1.41, \(I^2 = 33\% , P = .76 \)). Four studies\[9,20,23\] used the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). The meta-analysis of WOMAC results showed no differences between the 2 groups (MD, −0.26, 95% CI: −1.94 to 1.41, \(I^2 = 33\% , P = .76 \)).

4. Discussion

The main findings of this meta-analysis were that UKA was superior to HTO in terms of complications and postoperative function scores (Lysholm and HSS scores). Subgroup analysis revealed that mobile-bearing UKA had a similar ROM to HTO, whereas fixed-bearing UKA resulted in a worse ROM than HTO. In addition, there were no significant differences in revision to TKA, relief of postoperative pain, and walking speed between the 2 groups. However, there were differences among the included studies due to different research types, sample sizes, implant designs, matching criteria, operative techniques, and outcome measurements. These differences might be due to significant between-study heterogeneity which could affect
the accuracy of the meta-analysis results. Rodkey 2021 had a higher revision rate than other studies while contributing to significant heterogeneity. Therefore, a sensitivity analysis was applied to exclude Rodkey 2021 from the analysis to decrease heterogeneity. The results showed that UKA had a lower revision rate than HTO, which is consistent with the previous study.

Traditionally, UKA has been recommended for the older sedentary population, and HTO has been indicated for younger active individuals. However, with improvements in implant design and surgical techniques, the traditional distinction between UKA and HTO in terms of surgical indications is becoming less clear. Medial mobile-bearing UKA also showed excellent results in patients under 60 years of age as well as in patients over 60 years of age. Jacquet et al. reported that HTO offered a statistically meaningful faster return to sports and professional activities. HTO had a greater patient rate capable of performing impact activities (62% for HTO vs. 28% for UKA) and increased scores of sport-related functions 2 years after surgery compared to UKA. Song et al. suggested that long-term survival was similar between HTO and UKA in patients with similar demographic data. A previous meta-analysis suggested that UKA was more appropriate for older patients,
while HTO provided a better performance of physical activity for younger patients, due to a shorter rehabilitation period and quicker functional recovery. Similar results were observed in relation to postoperative complications, postoperative knee score, and postoperative revision rates to TKA when comparing the OWHTO and UKA groups. In our study, the pooled data demonstrated that UKA was superior to HTO in terms of complications and postoperative Lysholm and HSS scores. UKA may be more suitable for the elderly than HTO because of its safety and better postoperative function.

Various studies have pointed out that mobile-bearing UKA is different from fixed-bearing UKA in terms of restoring natural knee kinematics and reducing contact stress and wear. In our study, subgroup analysis was performed to compare fixed-bearing and mobile-bearing UKA with HTO. Compared to HTO, fixed-bearing UKA had a lower ROM. However, no statistically significant difference in ROM was observed between mobile-bearing UKA and HTO. The advantage of HTO is that the integrity of the knee joint is preserved and the postoperative ROM often depends on the preoperative condition. On
the other hand, postoperative ROM after UKA depends on the surgical techniques employed, prosthetic designs, and patient preoperative conditions. For younger active individuals, both mobile-bearing UKA and HTO could be considered as surgical options.

Both HTO and UKA effectively relieved postoperative pain, which is the main factor that affects patient satisfaction. Borjesson et al. reported that patients in both groups improved pain during walking. In a study by Weale et al., 80% of the UKA group presented with mild or no pain compared to 43% of the osteotomy group. Koh et al. involved 123 HTO and 118 UKA patients, and the change in VAS was 5.2 and 5.8, respectively. Zhao et al. showed that the VAS in both groups decreased significantly at 1, 6, 12, and 24 months after surgery. In addition, the VAS of the UKA group 1 month postoperatively was lower than that of the HTO group by 12.2% ($P < 0.05$), whereas no differences were found at 3 months, 6 months, and 2 years postoperatively ($P > 0.05$).

Walking speed is a reliable functional outcome for determining the treatment results of OA patients. Both HTO and UKA can improve postoperative walking speed. Lind et al. demonstrated that walking speed in patients undergoing HTO was significantly enhanced in the postoperative period and that it was not different from that in healthy individuals. The top walking speed was 2.2 m/s in patients submitted to UKA, which was not significantly different from the healthy controls. Borjesson et al. reported that the walking speed of postoperative 5-year in the HTO and UKA groups increased to 1.13 m/s and 1.19 m/s from 1.07 m/s and 1.07 m/s preoperative, respectively. In the other studies, the postoperative walking speed with HTO and UKA increased to a certain degree. Our meta-analysis revealed no significant differences between the 2 groups.

Walking speed is a reliable functional outcome for determining the treatment results of OA patients. Both HTO and UKA can improve postoperative walking speed. Lind et al. demonstrated that walking speed in patients undergoing HTO was significantly enhanced in the postoperative period and that it was not different from that in healthy individuals. The top walking speed was 2.2 m/s in patients submitted to UKA, which was not significantly different from the healthy controls. Borjesson et al. reported that the walking speed of postoperative 5-year in the HTO and UKA groups increased to 1.13 m/s and 1.19 m/s from 1.07 m/s and 1.07 m/s preoperative, respectively. In the other studies, the postoperative walking speed with HTO and UKA increased to a certain degree. Our meta-analysis revealed no significant differences between the 2 groups.

Walking speed is a reliable functional outcome for determining the treatment results of OA patients. Both HTO and UKA can improve postoperative walking speed. Lind et al. demonstrated that walking speed in patients undergoing HTO was significantly enhanced in the postoperative period and that it was not different from that in healthy individuals. The top walking speed was 2.2 m/s in patients submitted to UKA, which was not significantly different from the healthy controls. Borjesson et al. reported that the walking speed of postoperative 5-year in the HTO and UKA groups increased to 1.13 m/s and 1.19 m/s from 1.07 m/s and 1.07 m/s preoperative, respectively. In the other studies, the postoperative walking speed with HTO and UKA increased to a certain degree. Our meta-analysis revealed no significant differences between the 2 groups.
Different scoring systems lead to inconsistency in the results of the function score. Cho et al.\cite{24} stated that the postoperative HSS score was significantly higher in the mobile-bearing UKA group than in the OWHTO group. Koh et al.\cite{21} used the new Knee Society scoring system to evaluate patient satisfaction. The satisfaction level in the UKA group was greater than that in the HTO group for more demanding physical tasks such as leisure/recreation activities.\cite{22} These findings are consistent with the study of Kim et al.\cite{23} Additionally, a better Lysholm score was observed in the UKA group than that in the HTO group.\cite{24,25} However, Jacquet et al.\cite{26} compared 91 HTO patients with 117 UKA patients in relation to the University of California Los Angeles score, Knee Injury and Osteoarthritis Outcome Score, Sports Sub-score, and KSS activity score. All these scores were significantly greater in the HTO group than in the UKA group.\cite{27} Yim et al.\cite{28} did not identify significant differences between UKA and HTO for medial unicompartmental OA in relation to return to recreational activity and short-term clinical results. Our meta-analysis found no differences between the 2 groups using pooled data from the KSS, Tegner, and WOMAC scoring systems. Good results were obtained for both the HTO and UKA groups. A prognostic score for medial unicompartmental knee OA should be established to estimate functional outcomes after the treatment of UKA or HTO.

The compound annual growth rate in the use of UKA from 2001 to 2007 in the United States was +4.7%, while that of HTO was −3.9%.\cite{29} Kawata et al. reported\cite{30} that the proportion of patients who underwent UKA increased from 4.0% in 2007 to 8.1% in 2014 and that of tibial osteotomy increased from 2.6% in 2007 to 5.5% in 2014, according to the Diagnosis Procedure Combination database in Japan. In Sweden, UKA use increased threefold during the early decade of the 21st century, while HTO use halved during this period.\cite{31} Ninimäki et al.,\cite{32,33} using the Finnish National Hospital Discharge Register, noted a steady 6.8% annual decrease in osteotomies, whereas UKA use increased substantially after Oxford UKA was introduced. The current trend indicates that UKA has become increasingly popular in medial unicompartmental OA patients and orthopedists. Fewer complications, higher function scores, and similar ROM might make mobile-bearing UKA more attractive to patients with medial unicompartmental knee OA.

Surgeon experience may have played a key role in the final results. Previous studies have shown that, with increasing experience, operative factors such as surgery time and estimated blood loss decrease, and patient factors such as postoperative complications and length of hospital stay decrease.\cite{34,35} Junior surgeons had higher rates of complications and surgical site infections than did senior surgeons.\cite{36} Postoperative function after UKA was reduced in supervised junior resident and unsupervised senior resident surgeon groups compared to that in attending surgeons.\cite{37} In the included studies, HTO and UKA might have been completed by surgeons with varying levels of experience, which influenced the evaluation results, and thus affected the final conclusions drawn from our meta-analysis.

In comparison with similar previous meta-analyses,\cite{38,39,40,41,42,43,44,45} more new studies were updated (published up to November 30, 2021) and more accurate comparison between HTO and UKA was performed. More importantly, in the subgroup analysis, our study is the first to compare HTO with fixed-bearing UKA and mobile-bearing UKA. An important result of this meta-analysis is that the mobile-bearing UKA was not different from the HTO in ROM, whereas the fixed-bearing UKA had less ROM than HTO. This difference can be attributed to the implant design of mobile-bearing UKA.\cite{46,47}

We believe that our meta-analysis has certain limitations that deserve consideration. First, the funnel plot indicated that there may be a certain publication bias in our meta-analysis, which may affect the accuracy of the results. Grey literature and unpublished data should be extracted in future studies. Second, most of the included studies incompletely reported random methods, blind methods, and allocation concealment, which could result in a high risk of bias in implementation and measurement. Third, the lack of standardization of the clinical results in the evaluated articles is another important factor that can make it difficult to compare the results of these studies. The results of these studies can be influenced by the potential presence of statistical bias. Fourth, most of the included studies did not mention the details of the studies. Clinical outcomes were influenced by surgical details such as patient characteristics, rehabilitation program, surgeon experience, UKA types, and HTO techniques. Further details should be disclosed to understand the impact of these confounding factors on the results. Fifth, heterogeneity, which is inevitable in meta-analyses, reduces the credibility of the results. Therefore, we applied subgroup and sensitivity analyses to reduce heterogeneity and improve the reliability of the conclusions. Furthermore, 23 of 29 included studies were retrospective studies, which had a lower quality of evidence compared to RCTs. Reliable conclusions need to be confirmed by multicenter RCTs with large sample sizes.

5. Conclusions

Both HTO and UKA for the treatment of medial unicompartmental knee OA can achieve good clinical outcomes in relation to revision to TKA, pain relief, and walking speed. However, UKA is better than HTO in minimizing complications and increasing postoperative Lysholm and the HSS scores. The ROM of mobile-bearing UKA was similar to that of HTO. UKA appears to be more suitable for older patients, and both mobile-bearing UKA and HTO are viable surgical options for active younger individuals. The results presented here should be interpreted cautiously as they may contain some limitations. Further multicenter RCTs with large sample sizes are needed to verify the findings of this meta-analysis.

Author contributions

LH, YX, and JZ provided ideas for this study and helped draft the manuscript. LH and YX collected data. LH, YX, and GY analyzed the data. LW, GY, WC, SG, and WL helped interpret the data. LH, ZT, and JZ edited and reviewed the manuscript. All the authors have read and approved the final manuscript.

References

[1] Smith WB, Steinberg J, Scholtes S, et al. Medial compartment knee osteoarthritis: age-stratified cost-effectiveness of total knee arthroplasty, unicompartmental knee arthroplasty, and high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2017;25:924–33.
[2] Ledingham J, Regan M, Jones A, et al. Radiographic patterns and associations of osteoarthritis of the knee in patients referred to hospital. Ann Rheum Dis. 1993;52:520–6.
[3] Wise BL, Niu J, Yang M, et al. Patterns of compartment involvement in tibiofemoral osteoarthritis in men and women and in whites and African Americans. Arthritis Care Res. 2012;64:847–52.
[4] Chen G, Xu B, Xie J, et al. Comparison of clinical and biomechanical outcomes between partial fibulectomy and drug conservative treatment for medial knee osteoarthritis. Biomed Res Int. 2019;2019:4575424.
[5] D’Ambrosi R, da Silva M, Moura JLM, et al. Radiographic and clinical evolution of the Oxford unicompartmental knee arthroplasty. [published online ahead of print July 16, 2021]. J Knee Surg. doi: 10.1055/s-0041-1731718.
[6] Ji W, Luo C, Zhan Y, et al. A residual intra-articular varus after medial opening wedge high tibial osteotomy (HTO) for varus osteoarthritis of the knee. Arch Orthop Trauma Surg. 2019;139:743–50.
[7] D’Ambrosi R, Buda M, Nuara A, et al. Patellar height after unicompartmental knee arthroplasty: comparison between fixed and mobile bearing. [published online ahead of print October 20, 2021]. J Knee Surg. doi: 10.1007/s00402-021-04183-6.
Tuncay I, Bilsel K, Elmadag M, et al. Evaluation of mobile bearing.

Jeon YS, Ahn CH, Kim M-K. Comparison of HTO with articular.

Krych AJ, Reardon P, Sousa P, et al. Unicompartmental knee arthro-

Cho W-J, Kim J-M, Kim W-K, et al. Mobile-bearing unicompart-

Ryu SM, Park JW, Na HD, et al. High tibial osteotomy versus uni-

Jacquet C, Gulagaci F, Schmidt A, et al. Opening wedge high tib-

Zhao S, Zhang J, Xu Z, et al. Comparative analysis of the medium-term

Higgins JPT, Altman DG, Gotzsche PC, et al. The cochrane collab-

Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale

Fu D, Li G, Chen K, et al. Comparison of high tibial osteotomy and

Akizuki S, Shibakawa A, Takizawa T, et al. The long-term outcome of high

Takeuchi R, Umemoto Y, Aratake M, et al. A mid term comparison of open

Huang et al. Medicine (2022) 101:30 www.md-journal.com

Tuhanioglu U, Ogor HU, Seyfettinoglu F, et al. High tibial osteotomy in

Borgesson M, Weidenhielm L, Mattsson E, et al. Gait and clinical mea-

Stukenenborg-Colman C, Wirth CJ, Lazovic D, et al. High tibial osteo-

Ivarsson I, Gillquist J. Rehabilitation after high tibial osteotomy and

Jefferson RJ, Whittle MW. Biochemical assessment of unicomp-

Lobenhoffer P. Indication for unicompartmental knee replacement ver-

Cao Z, Mai X, Wang J, et al. Unicompartmental knee arthroplasty vs

Wewers ME, Lowe NK. A critical review of visual analogue scales

Watanabe S, Akagi R, Ninomiya T, et al. Comparison of joint aware-

Rodkey DL, McMillan LJ, Slaven SE, et al. Unicompartmental knee arthroplasty: more conversions, fewer complications than proximal tibial osteotomy in a young population. J Arthroplasty. 2021;36:3878–82.

Chen R, Ge H, Chen W. Comparison of one-year follow-up effective-

Liu S, Zhou G, Chen X, et al. Changes in kinematic parameters after unicompartmental knee arthroplasty and high tibial osteotomy. Chin J Tissue Eng Res. 2021;26:406–12.

Watanabe S, Akagi R, Ninomiya T, et al. Comparison of joint aware-

Takeuchi R, Umemoto Y, Aratake M, et al. A mid term comparison of open wedge high tibial osteotomy vs unicompartmental knee arthroplasty for medial compartment osteoarthritis of the knee. J Orthop Surg Res. 2012;10:565.

Borgesson M, Weidenhielm L, Mattsson E, et al. Gait and clinical mea-

Stukenenborg-Colman C, Wirth CJ, Lazovic D, et al. High tibial osteo-

Ivarsson I, Gillquist J. Rehabilitation after high tibial osteotomy and

Jefferson RJ, Whittle MW. Biochemical assessment of unicomp-

Lobenhoffer P. Indication for unicompartmental knee replacement ver-

Cao Z, Mai X, Wang J, et al. Unicompartmental knee arthroplasty vs

Wewers ME, Lowe NK. A critical review of visual analogue scales

Rodkey DL, McMillan LJ, Slaven SE, et al. Unicompartmental knee arthroplasty: more conversions, fewer complications than proximal tibial osteotomy in a young population. J Arthroplasty. 2021;36:3878–82.

Chen R, Ge H, Chen W. Comparison of one-year follow-up effective-

Liu S, Zhou G, Chen X, et al. Changes in kinematic parameters after unicompartmental knee arthroplasty and high tibial osteotomy. Chin J Tissue Eng Res. 2021;26:406–12.

Watanabe S, Akagi R, Ninomiya T, et al. Comparison of joint aware-

Takeuchi R, Umemoto Y, Aratake M, et al. A mid term comparison of open wedge high tibial osteotomy vs unicompartmental knee arthroplasty for medial compartment osteoarthritis of the knee. J Orthop Surg Res. 2012;10:565.

Borgesson M, Weidenhielm L, Mattsson E, et al. Gait and clinical mea-

Stukenenborg-Colman C, Wirth CJ, Lazovic D, et al. High tibial osteo-

Ivarsson I, Gillquist J. Rehabilitation after high tibial osteotomy and

Jefferson RJ, Whittle MW. Biochemical assessment of unicomp-

Lobenhoffer P. Indication for unicompartmental knee replacement ver-

Cao Z, Mai X, Wang J, et al. Unicompartmental knee arthroplasty vs

Wewers ME, Lowe NK. A critical review of visual analogue scales

Rodkey DL, McMillan LJ, Slaven SE, et al. Unicompartmental knee arthroplasty: more conversions, fewer complications than proximal tibial osteotomy in a young population. J Arthroplasty. 2021;36:3878–82.

Chen R, Ge H, Chen W. Comparison of one-year follow-up effective-

Liu S, Zhou G, Chen X, et al. Changes in kinematic parameters after unicompartmental knee arthroplasty and high tibial osteotomy. Chin J Tissue Eng Res. 2021;26:406–12.

Watanabe S, Akagi R, Ninomiya T, et al. Comparison of joint aware-

Takeuchi R, Umemoto Y, Aratake M, et al. A mid term comparison of open wedge high tibial osteotomy vs unicompartmental knee arthroplasty for medial compartment osteoarthritis of the knee. J Orthop Surg Res. 2012;10:565.

Borgesson M, Weidenhielm L, Mattsson E, et al. Gait and clinical mea-

Stukenenborg-Colman C, Wirth CJ, Lazovic D, et al. High tibial osteo-

Ivarsson I, Gillquist J. Rehabilitation after high tibial osteotomy and

Jefferson RJ, Whittle MW. Biochemical assessment of unicomp-

Lobenhoffer P. Indication for unicompartmental knee replacement ver-

Cao Z, Mai X, Wang J, et al. Unicompartmental knee arthroplasty vs

Wewers ME, Lowe NK. A critical review of visual analogue scales

Rodkey DL, McMillan LJ, Slaven SE, et al. Unicompartmental knee arthroplasty: more conversions, fewer complications than proximal tibial osteotomy in a young population. J Arthroplasty. 2021;36:3878–82.

Chen R, Ge H, Chen W. Comparison of one-year follow-up effective-

Liu S, Zhou G, Chen X, et al. Changes in kinematic parameters after unicompartmental knee arthroplasty and high tibial osteotomy. Chin J Tissue Eng Res. 2021;26:406–12.

Watanabe S, Akagi R, Ninomiya T, et al. Comparison of joint aware-

Takeuchi R, Umemoto Y, Aratake M, et al. A mid term comparison of open wedge high tibial osteotomy vs unicompartmental knee arthroplasty for medial compartment osteoarthritis of the knee. J Orthop Surg Res. 2012;10:565.
[52] Burton A, Williams S, Brockett CL, et al. In vitro comparison of fixed- and mobile meniscal-bearing unicompartmental knee arthroplasties. J Arthroplasty. 2012;27:1452–9.

[53] Lind M, McClelland J, Wittwer JE, et al. Gait analysis of walking before and after medial opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2013;21:74–81.

[54] Jones GG, Kotti M, Witk AV, et al. Gait comparison of unicompartmental and total knee arthroplasties with healthy controls. Bone Joint J. 2016;98-B Suppl. B:16–21.

[55] Krych AJ, Beardon P, Sousa P, et al. Unicompartmental knee arthroplasty provides higher activity and durability than valgus-producing proximal tibial osteotomy at 5 to 7 years. J Bone Joint Surg Am Vol. 2017;99:113–22.

[56] Nwachukwu BU, McCormick FM, Schairer WW, et al. unicompartmental knee arthroplasty versus high tibial osteotomy: united states practice patterns for the surgical treatment of unicompartmental arthritis. J Arthroplasty. 2014;29:1586–9.

[57] Kawata M, Sasabuchi Y, Inui H, et al. Annual trends in knee arthroplasty and tibial osteotomy: analysis of a national database in Japan. Knee. 2017;24:1198–205.

[58] W-Dahl A, Robertsson O, Lidgren L. Surgery for knee osteoarthritis in younger patients. Acta Orthop. 2010;81:161–4.

[59] Ninimaki TT, Eskelinen A, Obtonen P, et al. Incidence of osteotomies around the knee for the treatment of knee osteoarthritis: a 22-year population-based study. Int Orthop. 2012;36:1399–402.

[60] Park Y, Lee SB, Seok SO, et al. Perioperative surgical complications and learning curve associated with minimally invasive transforaminal lumbar interbody fusion: a single-institute experience. Clin Orthop Surg. 2015;7:91–6.

[61] Hysou SJ, Han S, Kim KJ, et al. Adolescent idiopathic scoliosis surgery by a neurosurgeon: learning curve for neurosurgeons. World Neurosurg. 2018;110:e129–34.

[62] Skovrlj B, Cho SK, Caridi JM, et al. Association between surgeon experience and complication rates in adult scoliosis surgery: a review of 5117 cases from the scoliosis research society database 2004-2007. Spine (Phila Pa 1976). 2015;40:1200–5.

[63] Storey R, Frampton C, Kieser D, et al. Does orthopaedic training compromise the outcome in knee joint arthroplasty? J Surg Educ. 2018;75:1292–8.

[64] Fu YW, Liu BG, Luo J, et al. Meta analysis of unilateral condylar replacement and high tibial osteotomy in the treatment of medial compartment osteoarthritis of the knee. Zhongguo Gu Shang. 2018;31:1156–63.

[65] Han S-B, Kyung H-S, Seo I-W, et al. Better clinical outcomes after unicompartmental knee arthroplasty when comparing with high tibial osteotomy. Med. 2017;96:e9268.

[66] Rodriguez-Merchan EC. Unicompartmental Knee Osteoarthritis (UKOA): unicompartmental Knee Arthroplasty (UKA) or High Tibial Osteotomy (HTO)? Arch Bone Jt Surg. 2016;4:307–313.

[67] Spahn G, Hofmann GO, von Engelhardt LV, et al. The impact of a high tibial valgus osteotomy and unicompartmental medial arthroplasty on the treatment for knee osteoarthritis: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013;21:96–112.

[68] Zhang Q-D, Guo W-S, Liu Z-H, et al. Meta-analysis of unicompartmental knee arthroplasty versus high tibial osteotomy in the treatment of unicompartmental knee osteoarthritis. Zhong hua yi xue za zhi. 2009;89:2768.

[69] Gandhi R, Ayeni O, Davey JR, et al. High tibial osteotomy compared with unicompartmental arthroplasty for the treatment of medial compartment osteoarthritis: a meta-analysis. Curr Orthop Pract. 2009;20:164–9.

[70] Cao Z, Niu G, Gong C, et al. Comparison of fixed-bearing and mobile-bearing unicompartmental knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty. 2019;34:3114–3123.e3.