Lie algebras

Action of Weyl group on zero-weight space

Action du groupe de Weyl sur l'espace de poids nul

Bruno Le Floch a, Ilia Smilga b

a Princeton Center for Theoretical Science, Princeton, NJ 08544, USA
b Yale University Mathematics Department, PO Box 208283, New Haven, CT 06520-8283, USA

A R T I C L E I N F O

Article history:
Received 31 May 2018
Accepted after revision 26 June 2018
Available online 13 July 2018
Presented by Michèle Vergne

A B S T R A C T

For any simple complex Lie group, we classify irreducible finite-dimensional representations ρ for which the longest element w_0 of the Weyl group acts non-trivially on the zero-weight space. Among irreducible representations that have zero among their weights, w_0 acts by $\pm \text{Id}$ if and only if the highest weight of ρ is a multiple of a fundamental weight, with a coefficient less than a bound that depends on the group and on the fundamental weight.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Pour tout groupe de Lie complexe simple, nous classifions les représentations irréductibles ρ de dimension finie telles que le plus long mot w_0 du groupe de Weyl agisse non trivialement sur l'espace de poids nul. Parmi les représentations irréductibles dont zéro est un poids, w_0 agit par $\pm \text{Id}$ si et seulement si le plus haut poids de ρ est un multiple d'un poids fondamental, avec un coefficient plus petit qu'une borne qui dépend du groupe et du poids fondamental.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main theorem

Consider a reductive complex Lie algebra \mathfrak{g}. Let \tilde{G} be the corresponding simply-connected Lie group.

We choose in \mathfrak{g} a Cartan subalgebra \mathfrak{h}. Let Δ be the set of roots of \mathfrak{g} in \mathfrak{h}^*. We call Λ the root lattice, i.e. the abelian subgroup of \mathfrak{h}^* generated by Δ. We choose in Δ a system Δ^+ of positive roots; let $\Pi = \{\alpha_1, \ldots, \alpha_r\}$ be the set of simple roots in Δ^+. Let $\sigma_1, \ldots, \sigma_r$ be the corresponding fundamental weights. Let $W := N_\tilde{G}(\mathfrak{h})/Z_\tilde{G}(\mathfrak{h})$ be the Weyl group, and let w_0 be its longest element (defined by $w_0(\Delta^+) = -\Delta^+$).

E-mail addresses: blefloch@princeton.edu (B. Le Floch), ilia.smilga@normalesup.org (I. Smilga).
URL: http://gauss.math.yale.edu/~is362/index.html (I. Smilga).

https://doi.org/10.1016/j.crma.2018.06.005
1631-073X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
For each simple Lie algebra, we call \((e_1, e_2, \ldots)\) the vectors called \((e_1, e_2, \ldots)\) in the appendix to [2], which form a convenient basis of a vector space containing \(h^*\). Throughout the paper, we use the Bourbaki conventions [2] for the numbering of simple roots and their expressions in the coordinates \(e_i\).

In the sequel, all representations are supposed to be complex and finite-dimensional. We call \(\rho_\lambda\) (resp. \(V_\lambda\)) the irreducible representation of \(g\) with highest weight \(\lambda\) (resp. the space on which it acts). Given a representation \((\rho, V)\) of \(g\), we call \(V^\lambda\) the weight subspace of \(V\) corresponding to the weight \(\lambda\).

Definition 1.1. We say that a weight \(\lambda \in h^*\) is radical if \(\lambda \in \Lambda\).

Remark 1. An irreducible representation \((\rho, V)\) has non-trivial zero-weight space \(V^0\) if and only if its highest weight is radical.

Definition 1.2. Let \((\rho, V)\) be a representation of \(g\). The action of \(W = N_G(h)/Z_G(h)\) on \(V^0\) is well-defined, since \(V^0\) is by definition fixed by \(h\), hence by \(Z_G(h)\). Thus \(w_0\) induces a linear involution on \(V^0\). Let \(p\) (resp. \(q\)) be the dimension of the subspace of \(V^0\) fixed by \(w_0\) (resp. by \(-w_0\)). We say that \((p, q)\) is the \(w_0\)-signature of the representation \(\rho\) and that the representation is:

- \(w_0\)-pure if \(pq = 0\) (of sign +1 if \(q = 0\) and of sign −1 if \(p = 0\));
- \(w_0\)-mixed if \(pq > 0\).

Remark 2. Replacing \(\tilde{G}\) by any other connected group \(G\) with Lie algebra \(g\) (with a well-defined action on \(V\)) does not change the definition. Indeed the center of \(\tilde{G}\) is contained in \(Z_G(h)\), so acts trivially on \(V^0\).

Our interest in this property originates in the study of free affine groups acting properly discontinuously (see [7]). We prove the following complete classification. To the best of our knowledge, this specific question has not been studied before; see [4] for a survey of prior work on related, but distinct, questions about the action of the Weyl group on the zero-weight space.

Theorem 1.3. Let \(g\) be any simple complex Lie algebra; let \(r\) be its rank. For every index \(1 \leq i \leq r\), we denote by \(p_i\) the smallest positive integer such that \(p_i\sigma_i \in \Lambda\). For every such \(i\), let the “maximal value” \(m_i \in \mathbb{Z}_{\geq 0} \cup \{\infty\}\) and the “sign” \(\sigma_i \in \{\pm 1\}\) be as given in Table 1 on page 854.

Let \(\lambda\) be a dominant weight.

(i) If \(\lambda \neq \Lambda\), then the \(w_0\)-signature of the representation \(\rho_\lambda\) is \((0, 0)\).

(ii) If \(\lambda = kp_i\sigma_i\) for some \(1 \leq i \leq r\) and \(0 \leq k \leq m_i\), then \(\rho_\lambda\) is \(w_0\)-pure of sign \((\sigma_i)^k\).

(iii) Finally, if \(\lambda \in \Lambda\) but is not of the form \(\lambda = kp_i\sigma_i\) for any \(1 \leq i \leq r\) and \(0 \leq k \leq m_i\), then \(\rho_\lambda\) is \(w_0\)-mixed.

Example 1. Any irreducible representation of \(SL(2, \mathbb{C})\) is isomorphic to \(S^k\mathbb{C}^2\) (the \(k\)-th symmetric power of the standard representation) for some \(k \in \mathbb{Z}_{\geq 0}\). Its \(w_0\)-signature is \((0, 0)\) if \(k\) is odd, \((1, 0)\) if \(k\) is divisible by 4 and \((0, 1)\) if \(k = 2\) modulo 4. This confirms the \(A_1\) entries \((p_1, m_1, \sigma_1) = (2, \infty, -1)\) of Table 1.

Table 1 also gives the values of \(p_i\). These are not a new result; they are immediate to compute from the known descriptions of the simple roots and fundamental weights (given e.g. in [2]).

Point (i) is an immediate consequence of Remark 1.

For point (ii), we show in Section 3 that certain symmetric and antisymmetric powers of defining representations of classical groups are \(w_0\)-pure, and that almost all representations listed in point (ii) are sub-representations of these powers. The finitely many exceptions are treated by an algorithm described in Section 2.

For point (iii), we prove in Section 4 that the set of highest weights of \(w_0\)-mixed representations of a given group is an ideal of the monoid of dominant weights. For any fixed group, this reduces the problem to checking \(w_0\)-mixedness of finitely many representations. In Section 5, we immediately conclude for exceptional groups and for low-rank classical groups by the algorithm of Section 2; we proceed by induction on rank for the remaining classical groups.

2. An algorithm to compute explicitly the \(w_0\)-signature of a given representation

Proposition 2.1. Any simple complex Lie group \(G\) admits a reductive subgroup \(S\) whose Lie algebra is isomorphic to \(sl(2, \mathbb{C})^t \times \mathbb{C}^t\), where \((t, s)\) is the \(w_0\)-signature of the adjoint representation of \(G\), and whose \(w_0\) element is compatible with that of \(G\), in the sense that some representative of the \(w_0\) element of \(S\) is a representative of the \(w_0\) element of \(G\). This subgroup \(S\) can be explicitly described.

Note that \(s + t = r\) (the rank of \(G\)) and that \(t = 0\) except for \(A_n\) (\(t = \lceil \frac{n}{2} \rceil\)), \(D_{2n+1}\) (\(t = 1\)) and \(E_6\) (\(t = 2\)).
Table 1
Values of (p_i, m_i, σ_i) for simple Lie algebras. Theorem 1.3 states that among irreducible representations with a highest weight λ that is radical, only those with λ of the form $kp_i m_i$, with $k \leq m_i$, are w_0-pure, with a sign given by σ_i. We write N.A. for σ_i sign entries that are not defined due to $m_i = 0$. Since $A_1 \cong B_1 \cong C_1$ and $B_2 \cong C_2$ and $A_3 \cong D_3$, the results match up to reordering simple roots (namely reordering $i = 1, \ldots, r$).

$A_{r \geq 1}$			
$i = 1$ or r	$r + 1$	∞	$(-1)^{r+1/2}$
$1 < i < r$	$r = 3$	$r = 4$	0
$r > 3$	$r = 1$	-1	
$r = 1$	$r = 2$	2	1
$r > 2$	$r = 3$	1	1
i odd > 2	$i = 3$	1	1
$r > 3$	$i = 4$	2	1
i even > 2	$i = 4$	2	1

$B_{r \geq 1}$			
$i = 1$	$r > 1$	∞	$(-1)^{r-\frac{1}{2}}$
$i = 2$	$r = 2$	$r = 2$	2
$i < r$	$i = 2$	$r = 2$	2
$i = r$	$r = 1.2$	2	1
$i = r$	$r > 2$	1	0
i odd > 2	$i = 3$	2	1
$r = 3$	$i = 4$	1	1
i even > 2	$i = 4$	2	1

$C_{r \geq 1}$			
$i = 1$	$r = 2$	2	∞
$i = 2$	$r = 2$	2	1
i odd > 2	$i = 3$	2	0
$r = 3$	$i = 4$	1	1
i even > 2	$i = 4$	2	1

$D_{1 \geq 3}$			
r odd	$i = 1$	2	∞
$i = 1$	$r - 1$	1	0
i even > 2	$i = 2$	2	∞
$r = 4$	1	0	N.A.
i odd > 2	$i = 2$	2	1
$r = 4$	$i = 3$	1	1
i even > 2	$i = 3$	2	1

$D_{1 \geq 4}$			
r even	$i = 1$	2	∞
$i = 1$	$r - 1$	1	0
i even > 2	$i = 2$	2	∞
$r = 4$	1	0	N.A.
i odd > 2	$i = 2$	2	1
$r = 4$	$i = 3$	1	1
i even > 2	$i = 3$	2	1

Proof. Let $(h^*)^{-w_0}$ be the -1 eigenspace of w_0. Recall that two roots α and β are called strongly orthogonal if $\langle \alpha, \beta \rangle = 0$ and neither $\alpha + \beta$ nor $\alpha - \beta$ is a root. Table 2 exhibits pairwise strongly orthogonal roots $\{\alpha_1, \ldots, \alpha_4\} \subseteq \Delta$ spanning $(h^*)^{-w_0}$ as a vector space. (Our sets are conjugate to those of [1], but these authors did not need the elements w_0 to match.) We then set

$$s := h \oplus \bigoplus_{i=1}^{r} (g^{\alpha_i} \oplus g^{-\alpha_i}),$$

where g^{α} denotes the root space corresponding to α. This is a Lie subalgebra of g, as follows from $[g^{\alpha}, g^{\beta}] \subseteq g^{\alpha + \beta}$ and from strong orthogonality of the α_i. It is isomorphic to $\mathfrak{sl}(2, \mathbb{C})^r \times \mathbb{C}^r$, because it has Cartan subalgebra h of dimension $r = s + t$ and a root system of type A_r. We define S to be the connected subgroup of G with algebra s.

Let $\overline{\sigma} := \exp \left(\frac{X_{\alpha_1} - Y_{\alpha_1}}{2} \right) \in S$, where for every α, X_{α} and Y_{α} denote the elements of g introduced in [3, Theorem 719]. We claim that $\overline{\sigma} := \prod_{i} \overline{\sigma_i}$ is a representative of the w_0 element of S and of the w_0 element of G. By [3, Proposition 11.35], $\overline{\sigma_i}$ is a representative of the reflection s_{α_i}, which shows the first statement. Now since the α_i are orthogonal, the product of s_{α_i} acts by $-id$ on their span $(h^*)^{-w_0}$ and acts trivially on its orthogonal complement, like w_0.

Then the w_0-signature of any representation ρ of G is equal to that of its restriction $\rho | _S$ to S. We use branching rules to decompose $\rho | _S = \bigoplus \rho_i$ into irreducible representations of S. The total w_0-signature is then the sum of those of the ρ_i.
Each ρ_i is a tensor product $\rho_{i,1} \otimes \cdots \otimes \rho_{i,s} \otimes \rho_{i,Ab}$, where $\rho_{i,j}$ for $1 \leq j \leq s$ is an irreducible representation of the factor $s_j \simeq sl(2, \mathbb{C})$, and $\rho_{i,Ab}$ is an irreducible representation of the abelian factor isomorphic to \mathbb{C}^n. The w_0-signature of ρ_i is then the “product” of those of these factors, according to the rule $(p, q) \otimes (p', q') = (pp' + qq', pp' - qp')$. The w_0-signatures of all irreducible representations of $sl(2, \mathbb{C})$ have been described in Example 1: the w_0-signature of $\rho_{i,Ab}$ is just $(1, 0)$ if the representation is trivial and $(0, 0)$ otherwise.

Branching rules are provided by several software packages. We implemented our algorithm separately in LiE [10] and in Sage [8]. In Sage, we used the Branching Rules module [9], largely written by Daniel Bump.

3. Proof of (ii): that some representations are w_0-pure

We must prove that representations of highest weight $\lambda = kp_1 \sigma_1, k \leq m_i$ are w_0-pure of sign σ_k^3 (with data p_i, m_i, σ_i given in Table 1). We denote by \square the defining representation of each classical group $(C^{n+1} \text{ for } A_n, C^{2n+1} \text{ for } B_n, C^{2n} \text{ for } C_n$ and $D_n)$, and introduce a basis of it: for every $k \in \{-1, 0, 1\}$ and i such that ϵ_{ij} (or for A_n its orthogonal projection onto h^+) is a weight of \square, we call h_{ij} some nonzero vector in the corresponding weight space.

For exceptional groups, all m_i are finite, so the algorithm of Section 2 suffices; we also use it for the representations with highest weight $2\sigma_3$ of C_3 and $2\sigma_4$ of C_4.

Most other cases are subrepresentations of $S^m\square$ of A_n or D_{2n+1}, or of $S^m\square$ or $A^m\square$ or $S^2(\Lambda^2\square)$ of B_n or C_n or D_{2n}, all of which will prove to be w_0-pure. Here $S^m\rho$ and $A^m\rho$ denote the symmetric and the antisymmetric tensor powers of a representation ρ. The remaining cases are mapped to these by the isomorphisms $B_2 \simeq C_2$ and $A_3 \simeq D_3$ and the outer automorphisms $Z/2Z$ of A_n and Z_3 of D_4.

For $A_n = sl(n + 1, \mathbb{C})$, the defining representation is $\square = C^{n+1} = \text{Span}(h_1, \ldots, h_{n+1})$. A representative $\overline{w_0} \in SL(n + 1, \mathbb{C})$ of w_0 acts on \square by $h_j \mapsto h_{j-n+j}$ for $1 \leq j < n + 1$ and by $h_{n+1} \mapsto \sigma_1 h_1$ where $\sigma_1 = (-1)^{(n+1)/2}$, the sign being such that det $\overline{w_0} = -1$. We consider the representation $S^{m(1+1)}\square$. Its zero-weight space V^0 is spanned by symmetrized tensor products $h_{j_1} \otimes \cdots \otimes h_{j_{n+1}}$, in which each h_1 appears equally many times, namely k times. Hence, V^0 is one-dimensional (the representation is thus w_0-pure) and spanned by the symmetrization of $v = h_{j_1}^k \otimes h_{j_2}^k \otimes \cdots \otimes h_{j_{n+1}}^k$. We compute $\overline{w_0} \cdot v = h_{n+1}^k \otimes h_{j_1}^k \otimes \cdots \otimes h_{j_{n+1}}^k \otimes (\sigma_1 h_1)$, whose symmetrization is equal to σ_1^k times that of v; this gives the announced sign σ_1^k.

For $D_{2n+1} = so(4n + 2, \mathbb{C})$, the defining representation is $\square = C^{4n+2} = \text{Span}(h_{\pm j} | 1 \leq j \leq 2n + 1)$ and $\overline{w_0}$ maps $h_{\pm j} \mapsto h_{\mp j}$ for $1 \leq j \leq 2n$, but fixes h_{2n+1}. The zero-weight space V^0 of $S^{2k}\square$ is spanned by symmetrizations of $h_{j_1} \otimes h_{j_2} \otimes \cdots \otimes h_{j_k} \otimes h_{-j_k}$, each of which is fixed by $\overline{w_0}$. The representation is w_0-pure with $\sigma_1 = +1$, as announced.

The cases of B_n = $so(2n + 1, \mathbb{C})$, C_n = $sp(2n, \mathbb{C})$ and $D_{n \text{ even}} = so(2n, \mathbb{C})$ are treated together:

- B_n has $\square = C^{2n+1} = \text{Span}(h_j | -n \leq j \leq n)$ and $\overline{w_0}$ acts by $h_j \mapsto h_{-j}$ for $j \neq 0$ and $h_0 \mapsto (-1)^j h_0$;
- C_n has $\square = C^{2n} = \text{Span}(h_{\pm j} | 1 \leq j \leq n)$ and $\overline{w_0}$ acts by $h_j \mapsto h_{-j}$ and $h_{-j} \mapsto -h_j$ for $j > 0$;
- D_n has $\square = C^{2n} = \text{Span}(h_{\pm j} | 1 \leq j \leq n)$ and, for even \square acts by $h_j \mapsto h_{-j}$ for all j.

First consider $A^m\square$ and $S^m\square$. Their zero-weight spaces are spanned by (anti)symmetrizations of $h_{j_1} \otimes h_{-j_1} \otimes \cdots \otimes h_{j_k} \otimes h_{-j_k}$, where $2k + l = m$. Each of these vectors is fixed by $\overline{w_0}$ up to a sign that only depends on the group, the representation, and (on k, or equivalently l, m). For C_n and D_n we have $l = 0$ so for each m the representation is w_0-pure, with a sign $(-1)^k$ for $S^{2k}\square$ of C_n and $\Lambda^{2k}\square$ of D_n, and no sign otherwise. For $A^m\square$ of B_n we note that $l \in \{0, 1\}$ is fixed by the parity of m so the representation is w_0-pure; its sign is $(-1)^{ml+k} = (-1)^{mm+(m/2)} = \sigma_m$. For $S^m\square$ of B_n, only the parity of l is fixed, but the sign $(-1)^m = (-1)^{ml} = \sigma_m$ still only depends on the representation; it confirms the data of Table 1.

Finally, consider the representation $S^2(\Lambda^2\square)$. Its zero-weight space is spanned by symmetrizations of $(h_j \otimes h_{-j}) \otimes (h_k \otimes h_{-k})$ and $(h_j \otimes h_{-k}) \otimes (h_{-j} \otimes h_k)$ all of which are fixed by $\overline{w_0}$.

4. Cartan product: w_0-mixed representations form an ideal

Let G be a simply-connected simple complex Lie group and N a maximal unipotent subgroup of G. Define $\mathbb{C}[G/N]$ the space of regular (i.e. polynomial) functions on G/N. Pointwise multiplication of functions is G-equivariant and makes $\mathbb{C}[G/N]$ into a \mathbb{C}-algebra without zero divisors (because G/N is irreducible as an algebraic variety).

Theorem 4.1 ([5, (3.20)–(3.21)]). Each finite-dimensional representation of G (or equivalently of its Lie algebra g) occurs exactly once as a direct summand of the representation $\mathbb{C}[G/N]$. The \mathbb{C}-algebra $\mathbb{C}[G/N]$ is graded in two ways:

- by the highest weight λ, in the sense that the product of a vector in V_λ by a vector in V_μ lies in $V_{\lambda+\mu}$ (where V_λ stands here for the subrepresentation of $\mathbb{C}[G/N]$ with highest weight λ);
- by the actual weight λ, in the sense that the product of a weight vector with weight λ by a weight vector with weight μ is still a weight vector, with weight $\lambda + \mu$.
For given λ and μ, we call Cartan product the induced bilinear map $\odot : V_\lambda \times V_\mu \to V_{\lambda+\mu}$. Given $u \in V_\lambda$ and $v \in V_\mu$, this defines $u \odot v \in V_{\lambda+\mu}$ as the projection of $u \otimes v \in V_\lambda \otimes V_\mu = V_{\lambda+\mu} \oplus \ldots$. Since $\mathbb{C}[G/N]$ has no zero divisor, $u \odot v \neq 0$ whenever $u \neq 0$ and $v \neq 0$. We deduce the following.

Lemma 4.2. The set of highest weights of w_0-mixed irreducible representations of g is an ideal I_g of the additive monoid M of dominant elements of the root lattice.

Proof. Consider a w_0-mixed representation V_λ and a representation V_μ whose highest weight is radical. We can choose $u_+ \in V_\lambda$ and $u_- \in V_\mu$ in the zero-weight space of V_λ such that $w_0 \cdot u_+ = u_+$ and $w_0 \cdot u_- = -u_-$. Then, choose $v \in V_\mu$ such that $w_0 \cdot v = \pm v$ for some sign. Then $u_+ \odot v$ and $u_- \odot v$ are non-zero elements of the zero-weight space of $V_{\lambda+\mu}$, which $w_0 \cdot v$ acts by opposite signs.

5. **Proof of (iii): that other representations are w_0-mixed.**

Let T^Table_g be the set of dominant radical weights that are not of the form $\lambda = kp_m \sigma_i$, $k \leq m_1$ (with data p_i, m_i given in Table 1). Observe that T^Table_g is an ideal of M. In Section 3 we showed $I_g \subseteq T^\text{Table}_g$. We now show that $T^\text{Table}_g \subseteq I_g$, namely that V_{λ} is w_0-mixed for radical λ other than those described by Table 1. By Lemma 4.2, it is enough to show this for the basis of T^Table_g. For any given group, T^Table_g has a finite basis, so we simply used the algorithm of Section 2 to conclude for $A_{\leq 5}, B_{\leq 4}, C_{\leq 5}, D_{\leq 6}$ and all exceptional groups.

Now let g be one of $A_{\geq 5}, B_{\geq 4}, C_{\geq 5}, D_{\geq 6}$ and λ be in T^Table_g. We proceed by induction on the rank of g.

Define as follows a reductive Lie subalgebra $f \times g' \subset g$:

- if $g = sl(n, \mathbb{C})$, choose $f \times g' \simeq (gl(1, \mathbb{C}) \times sl(2, \mathbb{C})) \times sl(n-2, \mathbb{C})$, where f has the roots $\pm (e_1 - e_n)$ and g' has the roots $\pm (e_1 - e_j)$ for $1 \leq i < j < n$;
- if $g = so(n, \mathbb{C})$, we choose $f \times g' \simeq so(4, \mathbb{C}) \times so(n-4, \mathbb{C})$, where f has the roots $\pm e_1 \pm e_2$ and g' has the roots $\pm e_i \pm e_j$ for $3 \leq i < j \leq n$;
- if $g = sp(2n, \mathbb{C})$, we choose $f \times g' \simeq sp(2, \mathbb{C}) \times sp(2n-2, \mathbb{C})$, where f has the roots $\pm 2e_1$ and g' has the roots $\pm e_i \pm e_j$ for $2 \leq i < j \leq n$.

In all three cases, $f \times g'$ and g share their Cartan subalgebra, hence restricting a representation V of g to $f \times g'$ does not change the zero-weight space V^0. Additionally, consider any connected Lie group G with Lie algebra g: then the w_0 elements of the connected subgroup of G with Lie algebra $f \times g'$ and of G itself coincide, or more precisely have a common representative in G, because the Lie algebras have the same Lie subalgebra s defined in Proposition 2.1. It follows that a representation of g is w_0-mixed if and only if its restriction to $f \times g'$ is.

Next, decompose $V_\lambda = \bigoplus_i (V_{\xi_i} \otimes V_{\mu_i})$ into irreducible representations of $f \times g'$, where ξ_i and μ_i are dominant weights of f and g', respectively. Consider the subspace

$$V_{\lambda}^{(0,*)} := \bigoplus_i (V_{\xi_i}^0 \otimes V_{\mu_i}) \subset V_\lambda$$

fixed by the Cartan algebra of f. It is a representation of g' whose zero-weight subspace coincides with that of V_λ. The direct sum obviously restricts to radical ξ_i, and $\dim V_{\xi_i}^0 = 1$ because we chose f to be a product of $sl(2, \mathbb{C})$ and $gl(1, \mathbb{C})$ factors. Thus the w_0 element of g acts on $V_{\xi_i}^0 \otimes V_{\mu_i}$ in the same way, up to a sign, as the w_0 element of g' acts on V_{μ_i}.

Lemma 5.2 shows that $V_{\lambda}^{(0,*)}$ has an irreducible subrepresentation V_v such that $v \in T^\text{Table}_g$. By the induction hypothesis, V_v is then w_0-mixed hence w_0 has both eigenvalues ± 1 on the zero-weight space $V_v^0 \subset V_{\lambda}^{(0,*)}$, namely V_λ is w_0-mixed.

This concludes the proof of Theorem 1.3.

There remains to state and prove two lemmas. Let g be A_{n-1}, B_n, C_n or D_n and let λ be a dominant radical weight of g. It can then be expressed in the standard basis e_1, \ldots, e_n as $\lambda = \sum_{i=1}^n \lambda_i e_i$ where $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ are integers subject to: for A_{n-1}, $\sum \lambda_i = 0$; for $B_n, \lambda_n \geq 0$; for $C_n, \lambda_n \geq 0$ and $\sum \lambda_i \in 2\mathbb{Z}$; for D_n, $\lambda_{n-1} \geq |\lambda_n|$ and $\sum \lambda_i \in 2\mathbb{Z}$. In addition, let $f \times g' \subset g$ be the subalgebra defined above. We identify weights of g' with the corresponding weights of g (acting trivially on the Cartan subalgebra of f). Note that this introduces a shift in their coordinates: the dual of the Cartan subalgebra of g' is spanned by a subset of the vectors e_1 (corresponding to g) that starts at e_2 or e_3, not at e_1 as expected.

Lemma 5.1. Let μ be the dominant weight of g' defined as follows:

- for A_{n-1}, $\mu = \left(\sum_{i=1}^{n-1} \lambda_i e_{i+1}\right) + \lambda_n e_{n+1}$, where $1 < \ell < n$ is an index such that $\lambda_{\ell-1} + \lambda_\ell \geq 0 \geq \lambda_{\ell} + \lambda_{\ell+1}$ (when several ℓ obey this, μ does not depend on the choice);
- for B_n, $\mu = \sum_{i=1}^{n+1} \lambda_i e_{i+2}$;
Then V_{μ} is a sub-representation of the space $V_{\lambda}^{(0,*)}$ defined earlier.

Proof for A_{n-1}. Let $v = \sum_{i=1}^{n-2} \lambda_i e_i$, be a dominant rational weight of g'. The weight v is among weights of $V_{\lambda}^{(0,*)}$ if and only if it is among weights of V_{λ}. The condition is that $(\lambda - \bar{v}, \sigma_k) \geq 0$ for all k, where \bar{v} is the unique dominant weight of g in the orbit of v under the Weyl group of g.

Explicitly, $\bar{v} = \left(\sum_{i=1}^{p-1} v_{i+1} \epsilon_i \right) + \sum_{i=1}^{p} v_{i+1} \epsilon_i$, where p is any index such that $v_p \geq 0 \geq v_{p+1}$. Then the condition is $\sum_{i=1}^{k} \lambda_i \geq \sum_{i=1}^{k-1} \lambda_i + \lambda_k$ for $1 \leq k < p$ and $\sum_{i=1}^{k} \lambda_i \geq \sum_{i=1}^{k-1} \lambda_i + \lambda_p$ for $p < k < n$. Let us show that this is equivalent to

$$\sum_{i=2}^{k} v_i \leq \min \left(\sum_{i=1}^{k-1} \lambda_i, \lambda_k \right)$$

for all $2 \leq k \leq n - 2$. (2)

In one direction, the only non-trivial statement is that $2 \sum_{i=1}^{p} \lambda_i \geq \sum_{i=1}^{p-1} \lambda_i + \sum_{i=1}^{p+1} \lambda_i \geq 2 \sum_{i=1}^{p} \lambda_i$, where we used $2\lambda_p \geq \lambda_p + \lambda_{p+1}$. In the other direction, we check $\sum_{i=2}^{k} v_i \leq \sum_{i=1}^{k} \lambda_i$ for $k \leq p - 1$ using $v_2 \geq \cdots \geq v_p \geq 0$, and similarly for $p + 1 \leq k$ using $0 \geq v_{p+1} \geq \cdots \geq v_n$.

Now, $\lambda_{\ell-1} + \lambda_{\ell} \geq 0 \geq \lambda_{\ell+1} + \lambda_{\ell+2} \geq \lambda_{\ell-1} \geq \lambda_{\ell-1} + \lambda_{\ell} + \lambda_{\ell+1} \geq \lambda_{\ell+1} \geq \lambda_{\ell+2}$, so μ is a dominant weight of g'. It is radical because $\sum_{i=2}^{k} v_i \leq \sum_{i=1}^{k} \lambda_i$ is 0. Furthermore, μ saturates all bounds (2) with v replaced by μ, as seen using $\lambda_{\ell-1} + \lambda_{\ell} \geq 0 \geq \lambda_{\ell+1} + \lambda_{\ell+2}$ respectively. In particular, we deduce that μ is among the weights of $V_{\lambda}^{(0,*)}$, hence some irreducible summand $V_{\nu} \subset V_{\lambda}^{(0,*)}$. The dominant radical weight v of g' must also obey (2), namely $\sum_{i=2}^{k} v_i \leq \sum_{i=1}^{k} \mu_i$ (due to the aforementioned saturation). Since μ is dominant and among weights of V_{ν}, we must also have $(\nu - \mu, \sigma_k') \geq 0$ for all fundamental weights σ_k' of g'. This is precisely the reverse inequality $\sum_{i=2}^{k} v_i \geq \sum_{i=1}^{k} \mu_i$. We conclude that $\nu = v$. \square

Proof for B_n. Let $e = 1$ for C_n and otherwise $e = 2$. Again, a dominant radical weight $v = \sum_{i=1}^{n-2} (v_i e_i)$ of g' is a weight of $V_{\lambda}^{(0,*)}$ if and only if all $(\lambda - \bar{v}, \sigma_k) \geq 0$, where \bar{v} is the unique dominant weight of g in the Weyl orbit of v. In all cases, $\bar{v} = \sum_{i=1}^{n-2} |v_{i+1} + e_i|$, where the absolute value is only useful for the v_n component for D_n. The condition is worked out to be $\sum_{i=1}^{k} \lambda_i \geq \sum_{i=1}^{k} |v_{i+1} + e_i|$ for $1 \leq k \leq n - e$. It is easy to check that μ is a dominant radical weight of g' and that it obeys these conditions.

Consider now an irreducible summand $V_{\nu} \subset V_{\lambda}^{(0,*)}$ that has μ among its weights. On the one hand, $\sum_{i=1}^{k} \lambda_i \geq \sum_{i=1}^{k} |v_{i+1} + e_i|$ for $1 \leq k \leq n - e$, where the absolute value is only useful for v_n for D_n. On the other hand, $(\nu - \mu, \sigma_i') \geq 0$ for all dominant weights σ_i' of g' (in particular $e_1 + e_2 + \cdots + e_k$), so $\sum_{i=1}^{k} v_{i+1} + e_i \geq \sum_{i=1}^{k} \mu_{i+1} e_i$ for $1 \leq k \leq n - e$. The two inequalities fix $v_1 = \mu_1$ for all k, except $i = n$ when $\eta = 1$ for C_n and D_n; in these cases, we conclude by using $\sum_{i=1}^{n} v_i - \sum_{i=1}^{n} v_{i+1} = 2$, since both weights are radical. \square

Lemma 5.2. For any $\lambda \in T_{\bar{g}}^{\text{Table}}$, there exists $v \in T_{\bar{g}}^{\text{Table}}$ such that the representation of g' with highest weight v is a subrepresentation of $V_{\lambda}^{(0,*)}$.

Proof for A_{n-1}. Let $n \geq 7$. If the weight μ defined by Lemma 5.1 is in $T_{\bar{g}}^{\text{Table}}$, we are done. Otherwise, $\mu = m(n-2) \sigma_i'$ or $\mu = m(n-2) \sigma_i$ of $\eta = (n-3) m + l + k$ for integers $m \geq 1$ and $\langle k \rangle = -1$, with the exclusion of the case $k = l = m$ because of $\lambda \in T_{\bar{g}}^{\text{Table}}$. For these dominant weights, the particular irreducible summand $V_{\mu} \subset V_{\lambda}^{(0,*)}$ of Lemma 5.1 is w_0-pure, but we now determine another summand that is w_0-mixed. The branching rules from g to g' can easily be deduced from the classical branching rules from $g(n, C)$ to $g(n-1, C)$ (given for example in [5, Theorem 9.14]).

Namely, consider the representation of $g(n, C)$ on V_{λ} such that the diagonal $g(n, C)$ acts by zero. Then $V_{\lambda}^{(0,*)} \subset V_{\lambda}$ is the subspace on which all three $gl(n, C)$ factors of $gl(n, C) \times gl(n-2, C) \times gl(n-1, C)$ act by zero. It decomposes into irreducible representations of $g' \cong gl(n-2, C)$ with highest weights $\lambda' = \sum_{i=1}^{n-2} \lambda_i e_i$ such that $\sum \lambda_i' = 0$ and such that there exists $\lambda_1, \ldots, \lambda_{n-1}$ with $\sum \lambda_i = 0$ and $\lambda_1 \geq \lambda_1' \geq \lambda_2 \geq \cdots \geq \lambda_{n-1}$. In general, we have $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{n-1}$. In particular, we have $\lambda_1 \geq \lambda_1' \geq \lambda_2 \geq \cdots \geq \lambda_{n-1}$.

For B_n, C_n, and D_n, let $e = 1$ for C_n and otherwise $e = 2$. Again, a dominant radical weight $\nu = \sum_{i=1}^{n-2} (\nu_i e_i)$ of g' is a weight of $V_{\lambda}^{(0,*)}$ if and only if all $(\lambda - \bar{v}, \sigma_k) \geq 0$, where \bar{v} is the unique dominant weight of g in the Weyl orbit of v. In all cases, $\bar{v} = \sum_{i=1}^{n-2} |v_{i+1} + e_i|$, where the absolute value is only useful for ν_n for D_n. The condition is worked out to be $\sum_{i=1}^{k} \lambda_i \geq \sum_{i=1}^{k} |v_{i+1} + e_i|$ for $1 \leq k \leq n - e$. It is easy to check that μ is a dominant radical weight of g' and that it obeys these conditions.

Consider now an irreducible summand $V_{\nu} \subset V_{\lambda}^{(0,*)}$ that has μ among its weights. On the one hand, $\sum_{i=1}^{k} \lambda_i \geq \sum_{i=1}^{k} |v_{i+1} + e_i|$ for $1 \leq k \leq n - e$, where the absolute value is only useful for ν_n for D_n. On the other hand, $(\nu - \mu, \sigma_i') \geq 0$ for all dominant weights σ_i' of g' (in particular $e_1 + e_2 + \cdots + e_k$), so $\sum_{i=1}^{k} v_{i+1} + e_i \geq \sum_{i=1}^{k} \mu_{i+1} e_i$ for $1 \leq k \leq n - e$. The two inequalities fix $v_1 = \mu_1$ for all k, except $i = n$ when $\eta = 1$ for C_n and D_n; in these cases, we conclude by using $\sum_{i=1}^{n} v_i - \sum_{i=1}^{n} v_{i+1} = 2$, since both weights are radical. \square
focus on the summand where \((\lambda_1^n)_{i=1}^n\) and \((\lambda_1^{n-1})_{i=1}^{n-1}\) and \((\lambda'_2)^{n-1}\) all take the form \((m, \ldots, m, l, k, -S)\) where \(S\) is the sum of all other entries, with a different number of \(m\) in each case. Given that we started in rank at least 6, the resulting weight \(\lambda''\) cannot be a multiple of a fundamental weight, hence \(\lambda'' \notin \mathcal{T}_0\). □

Proof for \(B_n\) with \(n \geq 5\), \(C_n\) with \(n \geq 6\), \(D_n\) with \(n \geq 7\). We recall \(\epsilon = 1\) for \(C_n\) and otherwise \(\epsilon = 2\). If the weight \(\mu\) defined by Lemma 5.1 is in \(\mathcal{T}_0\), we are done. Otherwise, \(\mu\) can take a few possible forms because we took rank \(\gamma = n - \epsilon\) large enough to avoid special values listed in Table 1. Note that, by construction of \(\mu = \sum_{i=1}^n \mu_i e_i\), we have \(\lambda_i = \mu_i + \epsilon\) for \(1 \leq i \leq n - 3\) for \(D_n\) and \(1 \leq i \leq n - 2\) for \(B_n\) and \(C_n\). The possible dominant radical weights not in \(\mathcal{T}_0\) are as follows.

- First, \(\mu = m \sigma_1^\epsilon = m e_1 + \epsilon\), where additionally \(m\) is even for \(C_n\) and \(D_n\). Then \(\lambda_1 = \mu_1 + \epsilon = m\) and \(\lambda_2 = \mu_2 + \epsilon = 0\) fix \(\lambda = m \sigma_1^\epsilon\), which is not in \(\mathcal{T}_0\).
- Second, \(\mu = 2m_2^\epsilon = 2(e_1 + \epsilon e_2 + \epsilon^2 e_3)\), except for \(D_n\) with odd \(n\). Then \(\lambda_1 = \lambda_2 = 2\) and \(\lambda_3 = 0\) fix \(\lambda = 2m_2^\epsilon\), which is not in \(\mathcal{T}_0\).
- Third, \(\mu = \sum_{i=1}^m e_i + \epsilon\) for some \(m \geq 2\), except for \(D_n\) with odd \(n\), and where additionally \(m\) is even for \(D_n\) with even \(n\) and for \(C_n\). Since \(\lambda_1 = \mu_1 + \epsilon = 1\) and \(\lambda\) is dominant, we deduce that either \(\lambda_1 = \cdots = \lambda_p = 1\) for some \(p\) and all other \(\lambda_i = 0\), or (only in the \(D_n\) case) \(\lambda_1 = \cdots = \lambda_{n-1} = 1 = -\lambda_n\). These weights \(\lambda\) are not in \(\mathcal{T}_0\). Note, of course, that \(p\) and \(m\) are not independent; for example for \(m \leq n - 3\) one has \(m = p\).
- Fourth, \(\mu = (\sum_{i=1}^{n-2} e_i + 2^\epsilon) - e_n\) for \(D_n\) with even \(n\). This weight is not of the form of Lemma 5.1 because one would need \(-1 = \lambda_{n-2} - \eta \geq -\eta \geq -1\); hence \(\eta = 1\) and \(\lambda_{n-2} = 0\), so \(\lambda_{n-1} = \lambda_n = 0\) so \(1 = \eta = \lambda_{n-1} + \lambda_n = 0\) (mod 2). □

Acknowledgements

We would like to thank Ernest Vinberg, who suggested the crucial idea of using Theorem 4.1 to prove Lemma 4.2; as well as Jeffrey Adams and Yifan Wang for some interesting discussions. The second author of the present paper was supported by the National Science Foundation grant DMS-1709952.

References

[1] Y. Agaoka, E. Kaneda, On local isometric immersions of Riemannian symmetric spaces, Tohoku Math. J. 36 (1984) 107–140.
[2] N. Bourbaki, Éléments de mathématique, groupes et algèbres de Lie : chapitres 4, 5 et 6, Hermann, 1968.
[3] B.C. Hall, Lie Groups, Lie Algebras and Representations: An Elementary Introduction, second edition, Springer International Publishing, 2015.
[4] J. Humphreys, Weyl group representations on zero weight spaces, http://people.math.umass.edu/~jeh/pub/zero.pdf, 2014.
[5] A.W. Knapp, Lie Groups Beyond an Introduction, Birkhäuser, 1996.
[6] V.L. Popov, E.B. Vinberg, Invariant Theory, Springer, 1994.
[7] I. Smilga, Proper affine actions: a sufficient criterion, submitted, available at arXiv:1612.08942.
[8] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.1), 2017, http://www.sagemath.org.
[9] The Sage Developers, Branching rules, http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/root_system/branching_rules.html.
[10] M.A.A. van Leeuwen, A.M. Cohen, B. Lisser, LiE, a package for Lie group computations, http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/, 2000.