THE BAUM-CONNES ASSEMBLY MAP AND
THE GENERALIZED BASS CONJECTURE

C. OGLE (OSU)

May 2007

INTRODUCTION

In the early 1980’s, P. Baum and A. Connes defined an assembly map

(0.1) \[A^a_G : KK^G(C(EG), \mathbb{C}) \to K^G_t(C^*(G)) \]

where \(G \) denotes a locally compact group, \(EG \) the classifying space for proper \(G \)-actions, \(C(EG) \) the \(G \)-algebra of complex-valued functions on \(EG \) vanishing at infinity, and \(KK^G(C(EG), \mathbb{C}) \) the \(G \)-equivariant \(KK \)-groups of \((EG) \) with coefficients in \(\mathbb{C} \), while \(K^G_t(C^*(G)) \) represents the topological \(K \)-groups of the reduced \(C^* \)-algebra of \(G \). The original details of this map appeared (a few years later) in [BC1] and [BC2], with further elaborations in [BCH]. As shown in [BC3], when \(G \) is discrete the left-hand side admits a Chern character which may be represented as

\[ch^BC_*^G(G) : KK^G(C(EG), \mathbb{C}) \to \bigoplus_{x \in fin(<G>)} H_*^{BG_x; \mathbb{C}} \otimes HP_{er}^*(\mathbb{C}) \]

where \(fin(<G>) \) is the set of conjugacy classes of \(G \) corresponding to elements of finite order, \(G_x \) the centralizer of \(g \) in \(G \) where \(x = <g> \), and \(HP_{er}^*(\mathbb{C}) \) the periodic cyclic homology of \(\mathbb{C} \). Note that \(H_*^{BH; \mathbb{C}} \otimes HP_{er}^*(\mathbb{C}) \) are simply the 2-periodized complex homology groups of \(BH \), and (via the classical Atiyah-Hirzebruch Chern character) can be alternatively viewed as the complexified \(K \)-homology groups of \(BH \). Upon complexification, the map \(ch^BC_*^G(G) \) is an isomorphism. The original construction of Baum and Connes \(A^a_G \) was analytical. Motivated by the need to construct a homotopical analogue to their map, we constructed an assembly map in [O1] which we will denote here as

\[A^h^G_*^G \otimes \mathbb{C} : H_*^{BG_x; \mathbb{K}(\mathbb{C})} \otimes \mathbb{C} \to K^G_t(C^*(G)) \otimes \mathbb{C} \]

where \(\mathbb{K}(\mathbb{C}) \) denotes the 2-periodic topological \(K \)-theory spectrum of \(\mathbb{C} \). The construction of this map amounted to an extension of the classical assembly map constructed in [L] which was designed to take into account the contribution coming from the conjugacy classes of finite order. The two

Key words and phrases. Baum-Connes Assembly map, Baum-Connes Conjecture, Bass Conjecture.
essential features of $A_{*,h}^G \otimes \mathbb{C}$, shown in [O1], were (i) it factors through $K_*^t(\mathbb{C}[G]) \otimes \mathbb{C}$ (where $K_*^t(\mathbb{C}[G])$ denotes the Bott-periodized topological K-theory of the complex group algebra, topologized with the fine topology), and (ii) the composition of $A_{*,h}^G \otimes \mathbb{C}$ with the complexified Chern-Connes-Karoubi-Tillmann character $c_h^G : K_*^e(\mathbb{C}[G]) \otimes \mathbb{C} \to HC_*^e(\mathbb{C}[G])$ was effectively computable (see below). What we did not do in [O1] was show that $A_{*,a}^G \otimes \mathbb{C}$ and $A_{*,h}^G \otimes \mathbb{C}$ agree. Since this initial work, there have been numerous extensions and reformulations of the Baum-Connes assembly map, as well as of the original Baum-Connes conjecture, which states that the map in (0.1) is an isomorphism. These extensions typically are included under the umbrella term “Isomorphism Conjecture”, (formulated for both algebraic and topological K-theory; cf. [DL], [FJ], [LR]). Thanks to [HP], we now know that the different formulations of these assembly maps (e.g., homotopy-theoretic vs. analytical) agree.

Abbreviating $KK_*^e(C(EG), \mathbb{C})$ as $K_*^G(EG)$ (read: the equivariant K-homology of the proper G-space EG), our main result is

Theorem 1. There is a commuting diagram

$$
\begin{array}{ccc}
K_*^G(EG) & \xrightarrow{A_{*,DL}^G} & K_*^t(\mathbb{C}[G]) \\
\downarrow \text{id} & & \downarrow \text{id} \\
HC_*^{fin}(\mathbb{C}[G]) & \xrightarrow{HC_*^e} & HC_*^e(\mathbb{C}[G])
\end{array}
$$

where $A_{*,DL}^G$ is the homotopically defined assembly map of [DL], $HC_*^e(\mathbb{C}[G]) := \bigoplus_{x \in fin(<G>)} HC_*^{e}(\mathbb{C}[G])_x \cong \bigoplus_{x \in fin(<G>)} H(BG_x; \mathbb{C}) \otimes HC_*^e(\mathbb{C})$ is the elliptic summand of $HC_*^e(\mathbb{C}[G])$ [JOR], the lower horizontal map is the obvious inclusion, and the Chern character c_h^G becomes an isomorphism upon complexification for $* \geq 0$.

Let β denote a bounding class, (G, L) a discrete group equipped with a word-length, and $H_{\beta,L}(G)$ the rapid decay algebra associated with this data [JOR]. We write $K_*^t(H_{\beta,L}(G))$ for the Bott-periodic topological K-theory of the topological algebra $H_{\beta,L}(G)$. The Baum-Connes assembly map for $H_{\beta,L}(G)$ is defined to be the composition

$$(BC) \quad A_{*,DL}^G : K_*^G(EG) \xrightarrow{A_{*,DL}^G} K_*^t(\mathbb{C}[G]) \xrightarrow{ch_*} K_*^t(H_{\beta,L}(G))$$

where the second map is induced by the natural inclusion $\mathbb{C}[G] \hookrightarrow H_{\beta,L}(G)$. In [JOR], we conjectured that the image of $ch_* : K_*^t(H_{\beta,L}(G)) \to HC_*^e(H_{\beta,L}(G))$ lies in the elliptic summand $f_{\text{in}}HC_*^e(H_{\beta,L}(G))$ (conjecture β-SrBC). As the inclusion $\mathbb{C}[G] \hookrightarrow H_{\beta,L}(G)$ sends $f_{\text{in}}HC_*^e(\mathbb{C}[G])$ to $f_{\text{in}}HC_*^t(H_{\beta,L}(G))$, naturality of the Chern character c_h^G and Theorem 1 implies

Corollary 2. If $A_{*,DL}^G$ is rationally surjective, then β-SrBC is true.

Since going down and then across is rationally injective, we also have (compare [O1])

Corollary 3. The assembly map $A_{*,DL}^G \otimes \mathbb{Q}$ is injective for all discrete groups G.

We do not claim any great originality in this paper. In fact, Theorem 1, although not officially appearing in print before this time, has been a “folk-theorem” known to experts for many years. The connection between the Baum-Connes Conjecture (more precisely a then-hypothetical Baum-Connes-type Conjecture for $\mathbb{C}[G]$) and the stronger Bass Conjecture for $\mathbb{C}[G]$ discussed in [JOR] was noted by the author in [O2].
There is some overlap of this paper with the results presented in [Ji]. A special case of Theorem 1 (for \(* = 0 \) and \(\mathbb{C}[G] \) replaced by the \(\ell^1 \)-algebra \(\ell^1(G) \)) appeared as the main result of [BCM].

Proof of Theorem 1

We use the notation \(F_*^{fin}(\mathbb{C}[G]) \) to denote the elliptic summand \(\bigoplus_{x \in fin(<G)>} F_*(\mathbb{C}[G]) \) where \(F_*(-) = HH_*(-), HN_*(-), HC_*(-) \) or \(HPer_*(-) \). To maximize consistency with [LR], we write \(S \) for the (unreduced) suspension spectrum of the zero-sphere \(S^0 \), \(HN(R) \) resp. \(HH(R) \) the Eilenberg-MacLane spectrum whose homotopy groups are the negative cyclic resp. Hochschild homology groups of the discrete ring \(R \), and \(K^a(R) \) the non-connective algebraic \(K \)-theory spectrum of \(R \), with \(K^a_*(R) \) representing its homotopy groups. By [LR], diag. 1.6] there is a commuting diagram

\[
\begin{align*}
H_*^G(EG; S) & \rightarrow K_*^a(\mathbb{Z}[G]) \\
H_*^G(EG; HN(\mathbb{Z})) & \rightarrow HN_*^{fin}(\mathbb{Z}[G]) \rightarrow HN_*^a(\mathbb{Z}[G]) \\
H_*^G(EG; HH(\mathbb{Z})) & \rightarrow HH_*^{fin}(\mathbb{Z}[G]) \rightarrow HH_*^a(\mathbb{Z}[G])
\end{align*}
\]

(1.1)

where the top horizontal map is the composition

\[
H_*^G(EG; S) \rightarrow H_*^G(EG; K^a(\mathbb{Z})) \rightarrow K_*^a(\mathbb{Z}[G])
\]

referred to as the the restricted assembly map for the algegraic \(K \)-groups of \(\mathbb{Z}[G] \). The other two horizontal maps are the assembly maps for negative cyclic and Hochschild homology respectively. The upper left-hand map is induced by the map from the sphere spectrum to the Eilenberg-MacLane spectrum \(HN \), which may be expressed as the composition of spectra \(S \rightarrow K^a(\mathbb{Z}) \rightarrow HN \). By [LR], the composition on the left is a rational equivalence.

Let \(\mathbb{C}^\delta \) denote the complex numbers \(\mathbb{C} \) equipped with the discrete topology. Tensoring with \(\mathbb{C} \) and combined with the inclusion of group algebras \(\mathbb{Z}[G] \hookrightarrow \mathbb{C}^\delta[G] \), (1.1) yields the commuting diagram

\[
\begin{align*}
H_*^G(EG; \mathbb{Q}) \otimes \mathbb{C} & \rightarrow K_*^a(\mathbb{C}^\delta[G]) \otimes \mathbb{C} \\
\cong & \\
HN_*^{fin}(\mathbb{C}[G]) & \rightarrow HN_*^a(\mathbb{C}[G])
\end{align*}
\]

(1.2)

Next, we consider the transformation from algebraic to topological \(K \)-theory, induced by the map of group algebras \(\mathbb{C}^\delta[G] \rightarrow \mathbb{C}[G] \) which is the identity on elements. By the results of [CK], [W] and [T], there is a commuting diagram

\[
\begin{align*}
K_*^a(\mathbb{C}^\delta[G]) \otimes \mathbb{C} & \rightarrow K_*^t(\mathbb{C}[G]) \otimes \mathbb{C} \\
\cong & \\
HN_*^a(\mathbb{C}[G]) & \rightarrow HPer_*^a(\mathbb{C}[G])
\end{align*}
\]

(1.3)
where \(ch_*(\mathbb{C}[G]) \) is the Connes-Karoubi Chern character for the fine topological algebra \(\mathbb{C}[G] \), and the bottom map is the transformation from negative cyclic to periodic cyclic homology.

We can now consider our main diagram

\[
\begin{array}{cccccc}
H^G_c(EG; \mathbb{C}) \otimes K_*(\mathbb{C}) & \rightarrow & K^*_c(\mathbb{C}[G] \otimes \mathbb{C}) & \rightarrow & K^*_c(\mathbb{C}[G] \otimes \mathbb{C} K_*(\mathbb{C}) & \rightarrow & K^*_c(\mathbb{C}[G] \otimes \mathbb{C}) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
H^t_{Per}(\mathbb{C}[G]) & \rightarrow & H^t_{Per}(\mathbb{C}[G]) & \rightarrow & H^t_{Per}(\mathbb{C}[G]) & \rightarrow & H^t_{Per}(\mathbb{C}[G]) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
H^t_{Per}(\mathbb{C}[G]) & \rightarrow & H^t_{Per}(\mathbb{C}[G]) & \rightarrow & H^t_{Per}(\mathbb{C}[G]) & \rightarrow & H^t_{Per}(\mathbb{C}[G]) \\
\end{array}
\]

(1.4) \[H^t_{Per}(\mathbb{C}[G]) \otimes K_*(\mathbb{C}) \rightarrow H^t_{Per}(\mathbb{C}[G]) \]

The top left square commutes by (1.2), and the middle top square commutes by (1.3). The upper right square commutes by virtue of the fact that the Connes-Karoubi-Chern character is a homomorphism of graded modules, which maps the \(K^*_c(\mathbb{C}) \)-module \(K^*_c(\mathbb{C}[G]) \) to the \(H^t_{Per}(\mathbb{C}[G]) \)-module \(H^t_{Per}(\mathbb{C}[G]) \), with the map of base rings induced by isomorphism \(ch_*(\mathbb{C}[\{id\}]) : K^*_c(\mathbb{C}) \otimes \mathbb{C} \longrightarrow H^t_{Per}(\mathbb{C}). \) The lower left square commutes trivially, while the lower right commutes by the naturality of the inclusion \(H^t_{Per}(\mathbb{C}[G]) \hookrightarrow H^t_{Per}(\mathbb{C}[G]) \) with respect to the module structure over \(H^t_{Per}(\mathbb{C}) \). Summarizing, we get a commuting diagram

\[
\begin{array}{cccccc}
H^G_c(EG; \mathbb{C}) \otimes K_*(\mathbb{C}) & \rightarrow & K^*_c(\mathbb{C}[G] \otimes \mathbb{C}) & \rightarrow & K^*_c(\mathbb{C}[G]) & \rightarrow & \mathbb{C} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
H^t_{Per}(\mathbb{C}[G]) & \rightarrow & H^t_{Per}(\mathbb{C}[G]) & \rightarrow & H^t_{Per}(\mathbb{C}[G]) & \rightarrow & HC^*_c(\mathbb{C}[G]) \\
\end{array}
\]

(1.5)

where the bottom square is induced by the transformation \(H^t_{Per}(_ \rightarrow HC^*_c(_ _)) \), which respects the summand decomposition indexed on conjugacy classes. Restricted the elliptic summand yields the map \(H^t_{Per}(\mathbb{C}[G]) \rightarrow HC^*_c(\mathbb{C}[G]) \) which is an isomorphism for \(* \geq 0 \), implying the result stated in Theorem 1.

References

[BC1] P. Baum, A. Connes, *Geometric K-theory for Lie groups and foliations*, Enseign. Math. 46 (2000), 3 – 42.
[BC2] P. Baum, A. Connes, *K-theory for discrete groups*, Operator algebras and Applications (Lon. Math. Soc. Lect. Notes) 159 (1988), 1 – 20.
[BC3] P. Baum, A. Connes, *Chern character for discrete groups*, A Fête of Topology (Acad. Press) (1988), 163 – 232.
[BCH] P. Baum, A. Connes, N. Higson, *Classifying spaces for proper actions and K-theory of group C*-algebras, C*-algebras 1943 – 1993: a fifty year celebration* (Contemporary Mathematics) 167 (1994), 241 – 291.
[BCM] A. Berrick, I. Chatterji, G. Mislin, *From Acyclic groups to the Bass conjecture for amenable groups*, Math. Ann. 329 (2004), no. 4, 597 – 621.
[CK] A. Connes and M. Karoubi, *Caractère multiplicatif d’un module de Fredholm*, C. R. Acad. Sci. Paris 299 (1984), 963 – 968.
[DL] J. Davis, W. Lück, *Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory*, K-theory 15 (1998), 201 – 252.
[FJ] T. Farrell, L. Jones, *Isomorphism conjectures in algebraic K-theory*, Jour. Amer. Math. Soc. **6** (2) (1993), 249 – 297.

[HP] I. Hambleton, E. Petersen, *Identifying assembly maps in K- and L- theory*, K-theory **6** (1992), 235 – 265.

[Ji] R. Ji, *Bivariant Chern character and the analog Baum-Connes map*, Operator Algebras and Operator Theory (Contemporary Mathematics) **228** (1998), 133 – 149.

[L] J. Loday, *K-théorie algébrique et représentation de groupes*, Ann. Sci. Ecole Norm. Sup. **9** (1976), 309 – 377.

[LR] W. Lück, H. Reich, *Detecting K-theory by cyclic homology*, Math. Ann. **328** (2004), 27 – 57.

[MF] A. Miščenko, A. Fomenko, *The index of elliptic operators over C*-algebras*, Izv. Akad. Nauk. USSR Ser. Mat. **43** (1979), 831 – 859.

[JOR] R. Ji, C. Ogle, R. Ramsey, *Rapid decay algebras and a generalization of the Bass conjecture*, submitted (2007).

[O1] C. Ogle, *Assembly maps, K-theory and hyperbolic groups*, K-theory **6** (1992), 235 – 265.

[O2] C. Ogle, *private communication to P. Baum and A. Connes* (1989).

[T] U. Tillmann, *K-theory of fine topological algebras, Chern character, and assembly*, K-theory **6** (1992), 57 – 86.

[W] C. Weibel, *Nil K-theory maps to cyclic homology*, Trans. Amer. Math. Soc. **303** (2) (1987), 541 – 558.