Sir,

It has been demonstrated that reactive stromal formation in solid tumours is associated with disease progression and poor outcome. Genes have been identified that are involved in biological processes such as angiogenesis and alterations in the extracellular matrix, including desmoplasia. (Gao et al, 2011; Planche et al, 2011; Berdiel-Acer et al, 2014; Dakhova et al, 2014; Duss et al, 2014).

The presence of stromal cells located in the interior of the tumour, surrounded by small groups or nests of tumour cells, is partly determinative of its (pre) metastatic capacity. Over the last decade, the tumour-stroma ratio (TSR) has gained significant interest in the disease prediction of patients with breast, colon, oesophageal, lung and cervical cancer. The elegance of the parameter is the use of conventional Hematoxylin & Eosin-stained slides for histopathological microscopy analysis. The use of a simple cut-off value, proven to be applicable for multiple solid tumour types, distinguishes between stroma-high and stroma-low tumours, of which the stroma-high tumours are independently associated with a relatively worse prognosis. (Mesker et al, 2007, 2009; Courrech Staal et al, 2010; West et al, 2010; Beck et al, 2011; Courrech Staal et al, 2011; de Kruif et al, 2011; Ahn et al, 2012; Huijbers et al, 2012; Moorman et al, 2012; Wang et al, 2012, 2013; Dekker et al, 2013; Liu et al, 2014; Park et al, 2014).

The TSR has demonstrated the highest prognostic power when looking at the population at triple-negative breast tumours. For this group of patients, the prognostic hazard ratio (HR) for disease recurrence was reported as high as 4.12 (P = 0.006) and 3.0 (P = 0.0034) for patients harbouring stroma-rich tumours. (10,13). Furthermore, within our own data set, oestrogen receptor-positive patients also show a significant relapse-free survival (RFS) difference in the disadvantage for stroma-producing tumours (RFS P = 0.001, HR 1.8). Similar results were observed in the POP study (de Kruif et al, 2011; Dekker et al, 2013). Now, Downey et al present the analysis of 118 female breast cancers with stromal formation resulting in a relatively favourable prognosis. These data are in contrast with formerly obtained data on breast and other solid cancers scoring the TSR parameter as described by our group (and subsequently validated by others). (Mesker et al, 2007, 2009; Courrech Staal et al, 2010; West et al, 2010; Beck et al, 2011; Courrech Staal et al, 2011; de Kruif et al, 2011; Ahn et al, 2012; Huijbers et al, 2012; Moorman et al, 2012; Wang et al, 2012, 2013; Dekker et al, 2013; Liu et al, 2014; Park et al, 2014).

First, Downey et al evaluate only one 9 mm² area at the tumour’s leading or non-leading edge. This area was selected with the emphasis that the advancing ‘front’ of a tumour may be more proliferative and the metabolic activity of tumour cells in this area is not compromised by a potential lack of nutrients. This method of TSR scoring of a given tumour underestimates the heterogeneity within the tumour concerning stromal production (Zhang et al, 2014). It is our personal experience that a solid tumour can be very heterogeneous for desmoplastic characteristics. Estimation of the TSR as indicated by our group entails evaluation of all available microscopic slides. Also for cervical, non-small lung and oesophageal cancer confirmatory data was observed (Courrech Staal et al, 2010, 2011; Wang et al, 2012, 2013; Liu et al, 2014).

Downey’s study also did not evaluate which patients were pre-treated with radio, chemo or endocrine therapy. The studies by Moorman et al (2012) and de Kruif et al (2011) excluded patients with neoadjuvant therapy as therapy influences the tissue arrangement including desmoplasia. Furthermore, no clinical-pathological data with respect to the proportion of stroma was provided, and neither were data for univariate analysis.

West et al (2010) used an identical approach as Downey for colorectal cancer, for this study an area of the luminal region was selected, resulting in a comparable cut-off points and survival data within stages I-III as given for the conventional TSR scoring. For this study no patients with pre-operative chemo or radiotherapy were included.

In the current setting we do not think that the reported method of Downey et al validates the approach of the TSR as it was only based on a subsampled tumour area. The previously described TSR by our group is determined on the distribution of the stroma within the complete tumour including areas with heterogeneity and highly aggressive stromal formation. These contrasting reports illustrate the use of stringent criteria for scoring intratumoural stromal formation in order to reliably integrate the TSR into clinical decision-making.

REFERENCES

Ahn S, Cho J, Sung J, Lee JE, Nam SJ, Kim KM, Cho EY (2012) The prognostic significance of tumor-associated stroma in invasive breast carcinoma. Tumour Biol 33(5): 1573–1580.

Beck AH, Sangori AR, Leung S, Marinelli RJ, Nielsen TO, van de Vijver MJ, West RB, van den Rijn M, Koller D (2011) Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci Transl Med 3(108): 108ra113.

Berdiel-Acer M, Sanz-Pamplona R, Calon A, Cuadras D, Berenguer A, Sanjuan X, Paules MJ, Salazar R, Moreno V, Balle A, Villanueva E, Mollevi J (2014) Differences between CAFs and their paired NCF from adjacent colonic mucosa reveal functional heterogeneity of CAFs, providing prognostic information. Mol Oncol 8(7): 1290–1305.

Courrech Staal EF, Wouter MW, van Sandick JW, van Velthuysen ML, Spitzer-Naaykens JM, Wouters MW, Mesker WE, Tollenaar RA (2010) The stromal part of adenocarcinomas of the oesophagus: does it conceal targets for therapy? Eur J Cancer 46(4): 720–728.

Courrech Staal EF, Spier VM, van de Vijver MJ, Spitzer-Naaykens JM, Wouters MW, Mesker WE, Tollenaar RA, van Sandick JW (2011) Reproducibility and validation of stromal tumour ratio scoring on oesophageal adenocarcinoma biopsies. Eur J Cancer 47(3): 375–382.

Dakhova O, Bowley D, Ittmann M (2014) Genes upregulated in prostate cancer reactive stroma promote prostate cancer progression in vivo. Clin Cancer Res 20(1): 100–109.

Dekker TJA, van de Velde CJH, van Pelt GW, Kroeper JP, Sing, Robert L, Smith VTHBM, Tollenaar RAEM, Mesker WE (2013) Prognostic significance of the tumor-stroma ratio: validation study in node-negative premenopausal breast cancer patients from the EORTC perioperative chemotherapy (POP) trial (10854).

Breast Cancer Res Treat 139(2): 371–379.

Duss S, Brinkhaus H, Bristow NJ, Wielage T, Frey DM, Schaefe DJ, Bentires-Alj MA (2014) Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells. Breast Cancer Res 16(3): R60.

Gao Q, Wang XY, Qu SJ, Zhou J, Shi YH, Zhang BH, Fan J (2011) Tumour stroma reaction related gene signature predicts clinical outcome in human hepatocellular carcinoma. Cancer Sci 102(8): 1522–1531.

Huijbers A, Tollenaar RA, v Pelt GW, Zeestraaten EC, Dutton S, Mcconkey CC, Domingo E, Smith VT, Midgley R, Warren BF, Johnstone EC, Kerr DJ, Mesker WE (2012) The use of the basal marker E-cadherin as a strong prognosticator for stage II and III colorectal cancer patients, validation in the VICTOR trial. Ann Oncol 24(1): 179–185.

de Kruif EM, van Nes JG, van de Velde CJ, Putter H, Smith VT, Lievens G, Kluiver PJ, Tollenaar RA, Mesker WE (2011) Tumour stroma ratio in the primary tumour is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res Treat 125(3): 687–696.

Liu J, Liu J, Li J, Chen Y, Guan X, Wu X, Hao C, Sun Y, Wang Y, Wang X (2014) Tumour-stroma ratio is an independent predictor for survival in early cervical carcinoma. Gynecol Oncol 132(1): 81–86.
Reponse to: comment on, ‘Tumour-stroma ratio (TSR) in oestrogen-positive breast cancer patients’

C L Downey1, S A Simpkins1, D L Holliday1, J L Jones2, L B Jordan3, J Kulka4, A M Hanby1 and V Speirs*,1

1Leeds Institute of Cancer & Pathology, University of Leeds, St James’s University Hospital, Leeds L59 7TF, UK; 2Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK; 3Department of Pathology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK and 42nd Department of Pathology, Semmelweis University Budapest, Üllői út 93 1091, Hungary

Sir,

We thank Dr Mesker et al for their comments on our study, (Downey et al, 2014) recognising their significant work promoting the concept of using tumour-stroma ratio (TSR) to determine the outcome in cancer (Mesker et al, 2007, 2009; Courrech Staal et al, 2010, 2011; de Kruif et al, 2011; Dekker et al, 2013; Huijbers et al, 2013).

None of our ER-positive cohort (118 female, 62 males; Downey et al, 2014) received neoadjuvant therapy of any type. Neoadjuvant treatment induces pathological changes in the tumour, hence would render samples unsuitable for TSR analysis. We were limited in the amount of information that could be supplied in a short communication, however univariate and multivariate outcomes were provided.

We found high stromal content was related to better survival across genders in ER-positive disease (Downey et al, 2014), contrasting data in triple-negative breast cancer (de Kruif et al, 2011; Dekker et al, 2013). As breast cancer is heterogeneous, subtle differences in stromal biology may exist between breast cancer subtypes, potentially impacting on outcome. Notably, tubular carcinoma, a type of invasive breast ductal carcinoma with an abundant stroma (Figure 1), is almost always ER-positive and has a favourable prognosis (Rakha et al, 2010).

Methodological heterogeneity exists between sampling methods used to assess TSR. Two key issues stand out: (1) lack of standardisation in TSR measurement, (2) area of tissue selected for analysis. Our in-house computer algorithm method selects a 9 mm² area of a digitally scanned H&E image (Downey et al, 2014). Recent related work assessed TSR manually in a single section from the most invasive tumour area (Gujam et al, 2014). Mesker et al favour assessment of the whole slide, even suggesting an evaluation of all available microscope slides. Although rigorous assessment is to be commended, this technique may have practical implications for histopathologists should TSR evaluation ever become routine. Alternative approaches should be considered, compared and validated.

We believe that there is much more to be done in dictating outcome, than simply its proportion in relation to tumour. There is a need to examine the cell types that coexist within tumour stroma, for example, fibroblasts and immune cells (Hanahan and Coussens, 2012); a recent issue of this journal showed that patients with a high TSR had significantly reduced inflammatory cell infiltrate within their stroma (Gujam et al, 2014). It remains possible that discrepancies observed between studies of TSR in breast cancer may be due in part to components of the stromal microenvironment.

Consistent with all emerging techniques it takes time for the ideal methodology to become accepted in the field. We respectfully suggest the best way to achieve this for TSR is through collaboration, comparing different techniques, using carefully selected sub groups of breast cancer and working towards reaching a consensus, taking account not only of the stroma but the cells within.

REFERENCES

Courrech Staal EF, Smit VT, van Velthuysen ML, Spitzer-Naaykens JM, Wouters MW, Mesker WE, Tollenaar RA, van Sandick JW (2011) Reproducibility and validation of tumour stroma ratio scoring on oesophageal adenocarcinoma biopsies. Eur J Cancer 47: 375–382.

Courrech Staal EF, Wouters MW, van Sandick JW, Takkenberg MM, Smit VT, Jungubburt JM, Spitzer-Naaykens JM, Karsten T, Hartgrink HH, Mesker WE, Tollenaar RA (2010) The stromal part of adenocarcinomas of the oesophagus: does it conceal targets for therapy? Eur J Cancer 46: 720–728.

de Kruif EM, van Nes JG, van de Velde CJ, Putter H, Smit VT, Liersen GJ, Kuppen PJ, Tollenaar RA, Mesker WE (2011) Tumour-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res Treat 125: 687–696.

Dekker TJ, van de Velde CJ, van Pelt GW, Kroep JR, Julien JP, Smit VT, Tollenaar RA, Mesker WE (2013) Prognostic significance of the tumour-stroma ratio: validation study in node-negative premenopausal breast cancer patients from the EORTC perioperative chemotherapy (POP) trial (10854). Breast Cancer Res Treat 139: 371–379.

Downey CL, Simpkins SA, White J, Holliday DL, Jones JL, Jordan LB, Kulka J, Pollock S, Rajan SS, Thysgen HH, Hanby AM, Speirs V (2014) The prognostic significance of tumour-stroma ratio in oestrogen receptor-positive breast cancer. Br J Cancer 110: 1744–1747.

Figure 1. Tubular carcinoma showing arrangement of tumour cells in characteristic tubes (stars) embedded within an abundant multicellular stroma. Scale bar = 200 μm.

*Correspondence: Dr WE Mesker, E-mail: w.e.mesker@lumc.nl
Published online 13 November 2014
© 2015 Cancer Research UK. All rights reserved 0007 – 0920/15

http://creativecommons.org/licenses/by-nc-sa/3.0/