Charge-Density Wave Driven Giant Thermionic-Current Switching in 1T-TaS$_2$/2H-TaSe$_2$/2H-MoS$_2$ Heterostructure

Mehak Mahajan and Kausik Majumdar*

1T-TaS$_2$ exhibits several resistivity phases due to the modulation of charge density wave (CDW). The fact that such phase transition can be driven electrically has attracted a lot of attention in the recent past toward active-metal based electronics. However, the bias-driven resistivity switching is not very large (less than five-fold), and an enhancement in the same will highly impact such phase transition devices. One aspect that is often overlooked is that such phase transition is also accompanied by a significant change in the local temperature due to the low thermal conductivity of 1T-TaS$_2$. In this work, such electrically driven phase transition induced temperature change is exploited to promote carriers over a thermionic barrier in a 1T-TaS$_2$/2H-TaSe$_2$/2H-MoS$_2$ T-Junction, achieving a 964-fold abrupt switching in the current through the MoS$_2$ channel. The device is highly reconfigurable and exhibits an abrupt reduction in current as well when the biasing configuration changes. The results are promising for several electronic applications, including neuromorphic chips, switching, nonlinear devices, and industrial electronics such as current and temperature sensing.

1. Introduction

The charge density wave (CDW) driven phase transition in layered materials like TaS$_2$, TaSe$_2$, NbSe$_2$, and TiSe$_2$ has attracted a lot of attention in the recent past due to their structural, thermal, magnetic, electrical, and optical properties.[1–5] Out of all these, 1T-TaS$_2$ exhibits polymorphic states with distinctive resistive phases, that can be achieved by thermal,[6,7] mechanical,[8,9] optical,[10,11] and electrical[12,13] excitation. On heating, 1T-TaS$_2$ transits from commensurate (C) to triclinic (T) phase at 223 K, T to non-commensurate (NC) phase at 283 K, NC to incommensurate (IC) phase at 353 K and IC to metallic phase at 550 K. On the other hand, 2H-TaSe$_2$ that undergoes C to NC phase transition at 90 K and NC to metallic phase at 120 K shows a slight change in slope of resistance versus temperature curve. Unlike 1T-TaS$_2$, 2H-TaSe$_2$ does not exhibit a sharp change in the resistance during the phase transitions.

The fact that in 1T-TaS$_2$, the resistance switching through such phase transitions can be obtained through Joule heating by electrical driving,[12–14] has led to several electronic and optoelectronic device applications.[10,15–17] The resistance switching ratio plays an important role in determining the performance of these devices. However, the degree of the resistance switching is often weak, less than five,[12,13,16] depending on the flake thickness, measurement temperature, and crystal quality. Any technique that can enhance the ratio of the resistance switching will be of great importance in such phase transition-based device applications. In this work, we propose a method using a 1T-TaS$_2$/2H-TaSe$_2$/2H-MoS$_2$ T-junction, where we achieve a gate-controllable current switching ratio up to 964 driven by CDW phase change in 1T-TaS$_2$ – which is more than 190-fold enhancement in the switching ratio compared to existing reports. The principle of operation of the device exploits the abrupt change in the junction temperature due to an abrupt change in the current resulting from Joule heating induced CDW phase transition in TaS$_2$. This, in turn, helps to promote carriers over a thermionic barrier, modulating the net probe current. Interestingly, the proposed device is electrically reconfigurable between a positive jump (enhancement in current) and a negative jump (reduction in current). Such reduction in current can be modeled as an effective negative differential resistance (NDR), as shown earlier.[17]

2. Results and Discussion

The 3D schematic diagram of the proposed triple layered T-junction is shown in Figure 1a. The inset of Figure 1b shows the optical image of the device D_1 fabricated by exfoliating a few layer MoS$_2$ flake on Si/SiO$_2$ substrate followed by layer-by-layer dry transfer of TaSe$_2$ and TaS$_2$ flakes, respectively (see Experimental Section for complete fabrication steps). The current (I)–voltage (V) characteristics of the TaS$_2$/TaSe$_2$ junction of the device D_1 probed between terminals T and T$_3$ (with terminal M kept open) at 296 K are shown in Figure 1b. The abrupt hysteretic jump in the current (≈ 1.24) results from the reduction in the TaS$_2$ resistance owing to electrically driven NC-IC CDW phase transition. Note that TaSe$_2$ being highly conductive, carries ample current to drive NC-IC phase transition of TaS$_2$ in TaS$_2$/TaSe$_2$ junction.[3] Also, the low thermal conductivity of TaSe$_2$ compared to Au contact further aids in raising the local...
temperature of the channel.\cite{18,19} The current jump can be further enhanced at low temperatures by invoking phase transition through multiple metastable states of TaS\textsubscript{2} using the external electric field.\cite{10,16} Figure 1c depicts the I–V characteristics of the TaS\textsubscript{2}/TaSe\textsubscript{2} junction of the device D_a at 150 K showing a current jump of 1.77×10^{-5} A. Note that when a material with lower conductivity (such as SnSe\textsubscript{2}) replaces the series components, the current jump is significantly reduced. The overall current is suppressed, which reduces the Joule heating. Hence, the phase transition in TaS\textsubscript{2} does not occur anymore (Figure S1, Supporting Information).

The current–voltage characteristics of TaSe\textsubscript{2}/MoS\textsubscript{2} junction (probed between terminals T\textsubscript{S} and M Keeping terminal T open) and TaS\textsubscript{2}/MoS\textsubscript{2} junction (probed between terminals T and M keeping terminal T\textsubscript{S} open) as a function of back-gate voltage (V_g) varying from −50 to 50 V in steps of 10 V at 296 K are outlined in Figure 1d,e, respectively. The forward and reverse sweep directions of the voltage during measurement (indicated by the black arrows in Figure 1d,e) show negligible hysteresis, suggesting excellent interface quality in the device. The corresponding gate-dependent current–voltage characteristics of both the junctions at 150 K are depicted in Figure S2a,b, Supporting Information, respectively.

2.1. Reconfigurable Abrupt Current Switching in T-Junction

We now show the characteristics of 1T-TaS\textsubscript{2}/2H-TaSe\textsubscript{2}/2H-MoS\textsubscript{2} T-junction that is reconfigurable between abrupt current increment and decrement by utilizing the modulation of the MoS\textsubscript{2} resistance through an external gate voltage. In this device, we pass a high current through a voltage bias through the TaS\textsubscript{2}/TaSe\textsubscript{2} path and use the branched out MoS\textsubscript{2} channel current as a probe. The equivalent circuit diagram of the four terminal device D_a is shown in Figure 2a wherein R_1, R_2, and R_3 correspond to the effective resistance of TaSe\textsubscript{2}, TaS\textsubscript{2}, and MoS\textsubscript{2} flakes, respectively. Here, R_3 includes both the TaSe\textsubscript{2}/MoS\textsubscript{2} Schottky junction resistance and the MoS\textsubscript{2} channel resistance, and both the components are tunable by the gate voltage. A global back gate is connected to the fourth terminal of the device. Figure 2b shows the variation of MoS\textsubscript{2} channel current (I_{M}) with V_g of the device D_a when we apply the bias at T\textsubscript{S} terminal while keeping T and M terminals grounded. The characteristics show current decrement behavior for both $V_{M} < 0$ V and $V_{M} > 0$ V for V_{g} varying from −50 to 50 V in steps of 10 V at 296 K. When the external bias exceeds the threshold voltage for the NC-IC phase transition of TaS\textsubscript{2}, the TaS\textsubscript{2} resistance abruptly reduces resulting in the abrupt increment in the TaS\textsubscript{2} current, and hence a simultaneous reduction in the MoS\textsubscript{2} current. The peak-to-valley current ratio (PVCR) obtained for $V_{M} < 0$ V and $V_{M} > 0$ V at 296 K are shown in bottom panel of Figure 2g. A simplistic way to further improve the PVCR values is by increasing the switching ratio of the TaS\textsubscript{2} resistance, which directly regulates the abrupt change in the MoS\textsubscript{2} current. A base temperature lower than the C-T phase transition temperature can be utilized to achieve such enhancement. We operate the device (D_a) at a temperature below the C-T transition temperature to invoke field-driven metastable states of TaS\textsubscript{2} that increase the abrupt current jump by $1.42 \times$ in comparison to room temperature. Figure 2c depicts I_M versus V_g, characteristics delineating current decrement at
The corresponding PVCR values at 150 K are shown in the top panel of Figure 2g reaching a maximum value of 1.27 at $V_g = -50$ V for $V_T > 0$ V which is higher in comparison to the room temperature values.

Suppose we apply the bias at the TaS$_2$ terminal while keeping terminals T_S and M grounded as depicted in the equivalent circuit in Figure 2d. In that case, the MoS$_2$ current exhibits an abrupt increment instead of a decrement at the phase...
transition. When we apply a high electric field across the TaS2/TaSe2 junction, the TaS2 phase transition occurs, which reduces the resistance of the TaS2 branch resulting in the abrupt increment in the TaS2 current as well as the MoS2 current. Here, the total current flow through R3 instead of R1 (in the case of TaSe2 biasing) as shown by the arrows in Figure 2d. Figure 2e,f shows the gate voltage (V_g) dependent current increment characteristics for both $V_T<0$ V and $V_T>0$ V at 296 and 150 K, respectively. The corresponding current increment factor as the function of V_g for both 296 and 150 K is shown in Figure 2h. Current increment factor reaches a maximum value of ≈ 4 at 150 K for $V_T>0$ V which is $\approx 2.75 \times$ higher than the room temperature value.

The low-temperature current increment factor of four cannot solely result from phase transition induced resistance switching of TaS2 as it is limited to a factor of ≈ 1.77 as shown in Figure 1c. In addition to IT-TaS2, 2H-TaSe2 also exhibits CDW phase transitions at 90 and 120 K. However, it does not cause any abrupt discontinuity in the TaSe2 resistance apart from a slight slope change in resistance versus temperature curve.[13,20,21] The overall change in resistance of the TaSe2 branch from the estimated temperature values (discussed later) is small and rules out the contribution of TaSe2 resistance change to the current jump. Also, the heat equation solution of the channel and the in situ Raman measurement exclude the possibility of structural phase transition of MoS2 from the semiconducting (2H) to metallic (IT) phase. The abrupt current increment due to the TaS2 phase transition increases the local temperature along the device channel. The 1D heat equation solution (using FEM) for the TaS2/TaSe2 channel estimates that the local temperature increment due to Joule heating is sufficient to invoke TaS2 phase transitions (see Figure S3, Supporting Information), depending upon the base temperature as well as the external bias. However, it is not enough to induce structural 2H to IT phase transition in MoS2,22 This argument is further supported by bias-dependent Raman measurement (see Figure S4, Supporting Information), wherein j-peaks have not been observed, which could otherwise confirm the presence of the IT-phase of MoS2.

Such a large current increment can be explained by the enhanced thermionic carrier injection across the TaSe2/MoS2 barrier with a sudden increase in the junction temperature resulting from the Joule heating induced phase transitions of TaS2, as detailed next. The mechanism is schematically illustrated in Figure 3a,b. The abrupt jump in temperature due to the CDW phase transition in TaS2 causes a corresponding increment in temperature at the TaSe2/MoS2 junction due to efficient heat conduction through the TaS2/TaSe2 interface. That, in turn, enhances the kinetic energy of the carriers, forcing them to pass through a smaller region. Apart from weaker heat dissipation efficiency, the smaller junction area helps in two other ways. First, when the junction area is small, the fractional contribution of the junction resistance to the total device resistance increases. That helps to achieve a larger switching ratio since the hot carriers, due to the phase transition-induced temperature change, primarily modulate the junction resistance. Second, a smaller overlap area helps to remove any trapped residue and air from the interface during annealing, which in turn helps to achieve closer proximity between MoS2 and TaSe2/TaS2 heater, helping the MoS2 layer to achieve a higher temperature effect at the junction during the switching. I_M versus V_T of device Db for selective V_g values varying from 20 to 50 V (step size: 10 V) at 300 K for $V_T<0$ V is depicted in Figure 4a. Similarly, Figure 4b shows the I_M versus V_T for $V_T>0$ V at V_g equal to 0, 30, and 50 V. The corresponding current increment factors during the phase transition are plotted in Figure 4c showing a maximum value of ≈ 3 at $V_g=-10$ V for $V_T>0$ V at 300 K which is $2 \times$ higher in comparison to the current increment factor of device Da.

At low temperature, we could further enhance the current jump as depicted in I_M versus V_T characteristics of device Db at 77 K (see Figure 4d,e for $V_T<0$ V and $V_T>0$ V, respectively) for different V_g values. The corresponding current increment factors are plotted in Figure 4f for both $V_T<0$ V and $V_T>0$ V. We could enhance the MoS2 current by a factor of ≈ 964 at $V_g=10$ V for $V_T>0$ V as represented in Figure 4f. As discussed earlier, such a huge jump can not solely arise from electrically

2.2. Giant Current Increment Driven by Thermionic Switching

To explore the thermionic effect due to local temperature switching, we fabricate another triple layered T-junction (Db) comprising a narrow MoS2 channel with a reduced junction overlap area (see the optical image in the inset of Figure 4a). Here we choose a small junction overlap area between MoS2 and the TaS2/TaSe2 to further increase the temperature by

![Figure 3](https://www.advancedsciencenews.com/sbimage/2200866/article_images/c379b059.png)
driven TaS$_2$ phase transition. And, we must invoke the corresponding sudden rise in the junction temperature due to the abrupt enhancement in current through TaS$_2$/TaSe$_2$ during the CDW phase transition of TaS$_2$. Figure 4g depicts the variation of the current increment factor as a function of V_g at 77, 120, and 160 K for $V_T > 0$ V. Such a strong temperature dependence in the current increment factor suggests possible usage of the technique in sensing temperature.

In Figure 4f for $V_T > 0$ V, the current jump ratio at the phase transition exhibits a strong non-monotonic behavior with V_g. Also, the ratio shows an opposite trend for $V_T < 0$ V, particularly when $V_g < 0$ V. The origin of such behavior is explained in Figure 5. In the case of $V_T > 0$ V, that is, when MoS$_2$ injects electrons into TaSe$_2$, there are three different regions of device operation (namely A, B, and C as shown in Figure 4c,f) as schematically explained in Figure 5a. Note that, due to the high electrical conductivity of TaSe$_2$ in comparison to TaS$_2$ (in particular, at a low temperature), the floating voltage at the triple junction is small; hence the drop across the MoS$_2$ channel is also small (estimated to be <26 mV). Due to such a small effective drain voltage, the current through the MoS$_2$ channel strongly depends on the drain barrier as well in the different regimes of operation. In the current situation, where TaSe$_2$ acts as the drain contact for $V_T > 0$ V configuration, the drain barrier plays an even more important role. We recently found that due to van der Waals nature of the contact interface, TaSe$_2$ exhibits strong Fermi level depinning[23] with layered semiconductors. Accordingly, due to the relatively large work function of TaSe$_2$, the conduction band offset between MoS$_2$ and TaSe$_2$ is large. On the other hand, due to Fermi level pinning, Ni/MoS$_2$ junction has a relatively small Schottky barrier height.[24] That leads to a larger drain barrier compared to the source barrier at the small effective drain bias as schematically shown in Figure 5a, and hence the TaSe$_2$/MoS$_2$ interface controls the drain current.

In region A, that is, for $V_g < 0$ V, electrons do not see any barrier at the drain side and can quickly transfer into TaSe$_2$ (see top panel of Figure 5a). Thus, the current does not change much with the abrupt increase in temperature during the CDW phase transition. In region B, the electrons from the MoS$_2$ region require to overcome the drain barrier to be transferred to TaSe$_2$ (see middle panel of Figure 5a), and thus the current is a strong function of the local temperature at the drain barrier. The current induced Joule heating can increase the local temperature to ~230 K for a base temperature of 77 K (see Figure S3, Supporting Information, for simulated results). The current jump ratio simulated for various barrier heights (ϕ_b varying

Figure 4. Giant current increment in triple layered junction. a,b) I_M versus V_T for selected V_g at 300 K for $V_T < 0$ (in (a)) and $V_T > 0$ (in (b)) depicting abrupt current increment. Forward and reverse sweeps are indicated by black arrows. The inset of (a) shows the optical image of the fabricated triple layered T-junction (D$_b$) (scale bar: 5 µm). d,e) I_M versus V_T for selected V_g at 77 K for $V_T < 0$ (in (d)) and $V_T > 0$ (in (e)) depicting abrupt current increment. c,f) Current increment factor as the function of V_g at 300 K (in (c)) and 77 K (in (f)) extracted from (a,b) and (d,e), respectively. g) Current increment factor as a function of V_g at 77, 120, and 160 K.
from 30 to 80 meV) by solving modified Richardson’s equation \[^{[24]}\] at temperatures of 120, 150, 180, 210, and 240 K with respect to 77 K is shown in Figure S5, Supporting Information. The simulation results clearly show that the current ratio before and after the phase transition can go as high as 10⁴ depending respect to 77 K is shown in Figure S5, Supporting Information. The simulation results clearly show that the current ratio before and after the phase transition can go as high as 10⁴ depending on \(V_g\), the origin of which is not very clear and could result from a local temperature does not affect the current, reducing the current ratio before and after the phase transition. Beyond region C, at an even higher positive \(V_g\), we observe an increment in the current increment factor, the origin of which is yet not very clear and could result from a \(V_g\) dependent change in the relative resistance between the source and the drain barriers.

On the other hand, for \(V_g < 0\) V, \(\phi_D\) acts as a source contact, and the electrons are injected from \(\phi_D\) to the \(\phi_S\) channel. At high negative \(V_g\), that is, region D, the carrier injection is determined by thermionic transport over the Schottky barrier height at \(\phi_D/\phi_S\) interface, as shown in the top panel of Figure 5b, and hence contributes to higher current jump. However, for \(V_g > 0\) V (region E), the current increment ratio decreases monotonically as the carrier injection is dominated by the tunneling phenomenon schematically shown in the bottom panel of Figure 5b.

In similarity to device \(D_b\), the \(I_M\) versus \(V_n\) characteristics of device \(D_b\) exhibits current decrement for \(V_n\) biasing at both 300 and 77 K (see Figure S6, Supporting Information). The corresponding \(I_M\) versus \(V_g\) (depicting current increment) and \(I_M\) versus \(V_n\) (depicting current decrement) characteristics for device \(D_b\) at 120 and 160 K are outlined in Figures S7 and S8, Supporting Information, respectively. The current increment characteristics have been repeatedly observed in several devices, some of which are outlined in Figures S9 and S10, Supporting Information.

3. Conclusion

The technique proposed in this work demonstrates a unique way of significantly amplifying the resistance switching ratio typically obtained from a TaS\(_2\) CDW phase transition. That is achieved by exploiting enhanced carrier injection through a Schottky barrier height by the abrupt increment in the local temperature during the phase transition. Accordingly, the technique can be applied to enhance the device performance in several applications where \(\phi_D\) phase transition is used, for example, in detecting infrared photons and neuromorphic applications. In addition, the gate tunable sharp jump in current can be useful for sensing applications, such as temperature and current. On the other hand, the enhancement in the \(\phi_D\) channel current during the CDW phase transition of \(\phi_S\) provides an excellent probe to monitor the local temperature of \(\phi_S\).

4. Experimental Section

Triple Layered T-Junction Device Fabrication and Characterization:
1T-TaS\(_2\)/2H-TaSe\(_2\)/2H-MoS\(_2\) T-junction was fabricated in the following manner. First, the thin flakes of MoS\(_2\) were mechanically exfoliated on a heavily doped Si substrate coated with 285 nm thick SiO\(_2\) using polydimethylsiloxane (PDMS), followed by dry transfer of TaSe\(_2\) and TaS\(_2\) flakes, respectively. A rotational stage controlled the alignment during each layer transfer to form the T-junction. The complete exfoliation and dry transfer processes were done at room temperature. The substrate was then spin-coated with a high contrast positive resist—polymethyl methacrylate (PMMA) 950 C3 and softly baked for 2 min at 180 °C. Patterns were formed through electron beam lithography with an electron beam dose of 200 μC cm\(^{-2}\), an electron beam current of 300 pA, and an acceleration voltage of 20 KV. The pattern development was carried out in 1:3 MIBK/IPA developer solution followed by IPA wash and blow drying in N\(_2\). Metal contacts were formed by blanket deposition of 10 nm Ni / 50 nm Au using a DC magnetron sputter coating system in the presence of Ar plasma at 5×10\(^{-3}\) Torr. Excess metal lift-off was carried out by immersing the substrate in acetone for 15 – 30 min, followed by IPA wash for 30 s and blow drying in N\(_2\). Buffered HF solution was used to etch the back oxide from the substrate, and highly conducting silver paste was used for the back gate contact.

The electrical measurements were carried out in a probe station with a base vacuum level of about 1.6 × 10\(^{-7}\) Torr at room temperature and 6.45 × 10\(^{-6}\) Torr at the low temperature with the supply of liquid N\(_2\).
Acknowledgements

This work was supported in part by a Core Research Grant from the Science and Engineering Research Board (SERB) under Department of Science and Technology (DST), a grant from Indian Space Research Organization (ISRO), a grant from MHRD under STARS, and a grant from MHRD, MeitY, and DST Nano Mission through NNetRA.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords

1T-TaS₂, 2H-MoS₂, 2H-TaSe₂, charge density waves, current switching, negative differential resistance, phase transitions

Received: August 2, 2022
Revised: August 30, 2022
Published online: September 18, 2022

[1] M. S. El-Bana, D. Wolverson, S. Russo, G. Balakrishnan, D. M. Paul, S. J. Bending, Supercond. Sci. Technol. 2013, 26, 125020.
[2] B. Yan, B. Zhang, H. Nie, G. Li, X. Sun, Y. Wang, J. Liu, B. Shi, S. Liu, J. He, Nanoscale 2018, 10, 20171.
[3] M. Mahajan, S. Kallatt, M. Dandu, N. Sharma, S. Gupta, K. Majumdar, Commun. Phys. 2019, 2, 88.
[4] E. Zhang, X. Xu, Y.-C. Zou, L. Ai, X. Dong, C. Huang, P. Leng, S. Liu, Y. Zhang, Z. Jia, X. Peng, M. Zhao, Y. Yang, Z. Li, H. Guo, S. J. Haigh, N. Nagaosa, J. Shen, F. Xiu, Nat. Commun. 2020, 11, 5634.
[5] W. Li, G. V. Naik, Appl. Phys. Lett. 2021, 118, 253104.
[6] R. Manzke, T. Buslaps, B. Pfalzgraf, M. Skibowski, O. Anderson, Europhys. Lett. 1989, 8, 195.
[7] A. H. Thompson, R. Gamble, J. Revelli, Solid State Commun. 1971, 9, 981.
[8] K. Bu, W. Zhang, Y. Fei, Z. Wu, Y. Zheng, J. Gao, X. Luo, Y.-P. Sun, Y. Yin, Commun. Phys. 2019, 2, 146.
[9] S. Sruthi, H. K. Kundu, P. Vishnubhotla, A. Bid, Phys. Rev. Mater. 2021, 5, 124003.
[10] C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, H. J. Fan, H. Zhang, W.-J. Liu, T. Yu, Z. Liu, ACS Nano 2018, 12, 11203.
[11] W. Li, G. V. Naik, Nano Letters 2020, 20, 7868.
[12] M. J. Hollander, Y. Liu, W.-J. Lu, L.-J. Li, Y.-P. Sun, J. A. Robinson, S. Datta, Nano Lett. 2015, 15, 1861.
[13] M. Yoshida, T. Gokuden, R. Suzuki, M. Nakano, Y. Iwasa, Phys. Rev. B 2017, 95, 121405.
[14] M. Mahajan, K. Murali, N. Kawatra, K. Majumdar, Phys. Rev. Appl. 2019, 11, 024031.
[15] M. Yoshida, R. Suzuki, Y. Zhang, M. Nakano, Y. Iwasa, Sci. Adv. 2015, 1, e1500606.
[16] G. Liu, B. Debnath, T. R. Pope, T. T. Salguero, R. K. Lake, A. A. Balandin, Nat. Nanotechnol. 2016, 11, 845.
[17] M. Mahajan, K. Majumdar, ACS Nano 2020, 14, 6803.
[18] M. D. Núñez Regueiro, J. M. Lopez-Castillo, C. Ayache, Phys. Rev. Lett. 1985, 55, 1931.
[19] B. Huettnner, Femtosecond Laser Pulse Interactions with Metals, Springer Series in Materials Science, Vol. 119, Springer, Dordrecht 2009, pp. 315–337.
[20] H. N. S. Lee, M. Garcia, H. L. McKinzie, A. Wold, J. Solid State Chem. 1970, 1, 190.
[21] M. Naito, S. Tanaka, J. Phys. Soc. Jpn. 1982, 51, 219.
[22] D. Y. Hwang, K. Choi, D. Suh, Nanoscale 2018, 10, 7918.
[23] K. Murali, M. Dandu, K. Watanabe, T. Taniguchi, K. Majumdar, Adv. Funct. Mater. 2021, 31, 2070513.
[24] D. Somvanshi, S. Kallatt, C. Venkatesh, S. Nair, G. Gupta, J. K. Anthony, D. Karmakar, K. Majumdar, Phys. Rev. B 2017, 96, 205423.