Micro-Clustering: Finding Small Clusters in Large Diversity

Takeaki Uno\(^1\), Hiroki Maegawa, Takanobu Nakahara\(^2\), Yukinobu Hamuro\(^3\),
Ryo Yoshinaka\(^4\), Makoto Tatsuta\(^1\)

\(^1\) uno@nii.jp, National Institute of Informatics, Japan
\(^2\) Senshu University, Japan
\(^3\) Kwansei Gakuin University, Japan
\(^4\) Kyoto University, Japan

Abstract. We address the problem of un-supervised soft-clustering that we call micro-clustering. The aim of the problem is to enumerate all groups composed of records strongly related to each other, while standard clustering methods find boundaries at where records are few. The existing methods have several weak points; generating intractable amount of clusters, quite biased size distribution, robustness, etc. We propose a new methodology data polishing. Data polishing clarifies the cluster structures in the data by perturbating the data according to feasible hypothesis. In detail, for graph clustering problems, data polishing replaces dense sub-graphs that would correspond to clusters by cliques, and deletes edges not included in any dense subgraph. The clusters are clarified as maximal cliques, thus easy to be found, and the number of maximal cliques is reduced to tractable numbers. We also propose an efficient algorithm so that the computation is done in few minutes even for large scale data. The computational experiments demonstrate the efficiency of our formulation and algorithm, i.e., the number of solutions is small, such as 1,000, the members of each group is deeply related, and the computation time is short.

1 Introduction

Unsupervised clustering is one of the central tasks in data analysis. It is used in various areas and has many applications, such as Web access log analysis, recommendation, herding, and mobility analysis. It is actually a data mining task since we can hopefully find some groups that are not known, or not easy to explain from background knowledge. Usually, unsupervised clustering algorithms aim to partition the data into several groups, or to obtain distributions of group members. However, this approach is often not efficient for big data with large diversity, since many elements may belong to several or no groups. Another approach is to find groups of elements that are deeply related to each other. Examples are community mining in social networks and biclustering by pattern mining. We here call the groups of elements deeply related to each other micro-clusters, and the problem of mining micro-clusters micro-clustering.
Modeling and problem formulation of micro-clustering are non-trivial. For example, consider a similarity graph of a data in which the vertices are elements, and two vertices are connected if the corresponding two elements are similar, or strongly related. A clique (complete subgraph) of a similarity graph is a good candidate for micro-clustering, thus we are motivated to enumerate all maximal cliques in the graph, where a maximal clique is a clique included in no other clique. Community mining often uses maximal clique enumeration in social networks in which the cliques are considered as cores of the communities. However, similarity graphs usually include a huge number of maximal cliques due to ambiguities, thus maximal cliques enumeration is often intractable in practice. Some propagation methods extract structures that can be seen as micro-clusters. Then, completeness becomes a difficult issue. Repetitive executions of these methods yield many similar groups corresponding to one group, and often miss some weak groups that are hidden by intensive groups. Global optimization approach such as modularity maximization or graph cut. To the best of our knowledge, there is no efficient method for micro-clustering.

One of the difficulty of micro-clustering is the problem formulation; the clusters in the data is hard to describe only with mathematical terms. “Enumeration of maximal cliques” involves numerous solutions, “modularity maximization” gives incentives to enlarge large clusters much more, “finding local dense structures by propagation (random walks)” hides small weak clusters surrounding a dense and relatively large cluster. The form of clusters differ in many kinds of data and problems, and our objectives, so it is naturally difficult, and there may be no general answer. On the other hand, we have known the result of the clustering algorithms are often good, and valuable to use for machine learning, visualization, natural language processing, etc. This fact implies that computing good clusters might be easier than modeling the clusters in general terms. According to the Vapnik’s principle, now we might solve a difficult problem to solve a relatively easier problem, that is said to be not a good approach. It is worth considering how to obtain good clusters without mathematically written problem formulation.

In this paper, instead of solving clustering problem directly, we address the problem of eliminating the ambiguity to make the clustering easy. We propose a new concept called data polishing that is to clarify the structures in data to be found by modifying the data according to feasible hypothesis. For example, it modifies the input graph so that similar structures (groups, patterns, segments, etc.) considered to be the same one (having the same meaning) will be unified into one. The goal of the data polishing is that we will have one to one correspondence between the objects (meanings) we want to find, and the structures modeling the objects. The difference from data cleaning is that data cleaning usually correct the each entity of the data to delete the noise, thus does not aim to change the solutions to the original data, while data polishing actively modifies the data so that the solutions will change. For example, consider an example

5 maximal clique and maximum cliques are different; a maximum clique is clique of the maximum size.
of community mining by finding cliques of size k. A typical data cleaning deletes vertices of degrees less than $k - 1$ so that no clique of size k will be missed. In a data polishing way, we consider that a community is a pseudo clique (dense subgraph) in the graph, thus replace pseudo cliques by cliques. This drastically changes the result of the clique mining. A community in an SNS network is a dense subgraph, but it usually has many missing edges, thus it is not a clique. These missing edges are actually “truth” and not noise, thus they are difficult to recognize them as pairs that should be connected, with the data cleaning analogy. However, a community is preferred to be a clique, in the sense of the motivation of modeling of communities. Data polishing modifies the data so that the structures we want to find will be what we think they should be, instead of allowing the individual record to be broken. We observe that when the graph is clear such that it is composed only of cliques corresponding to communities, the mining results will be fine. This is the origin of the idea of data polishing.

The enumeration of pseudo cliques is actually a hard task; graphs often include much more maximal pseudo cliques compared to maximal cliques. Instead of enumerating pseudo cliques, we use a feasible hypothesis; two vertices have many common neighbors in the graph if they are included in a dense subgraph of a certain size (see Figure 1). We can also use a similarity of neighbors instead of the number of common neighbors. It is possible that two vertices are included in a dense subgraph but have few common neighbors for example a graph composed of a vertex v and a clique. In such cases, v and the clique should not be in the same micro-cluster, thus we think this hypothesis is acceptable. We find all vertex pairs having at least a certain number of common neighbors (or the similarity of neighbors is no less than the given threshold), and connect each pair by an edge. On the other hand, we delete all edges whose endpoints do not satisfy the condition, since they are considered as not being in the same cluster. We repeat this operation until the graph will not change, and obtain a “polished” graph.

In summary, our micro-clustering algorithm is composed of three parts, (1) construction of the similarity graph, (2) data polishing, and (3) maximal clique enumeration. As the number of maximal cliques becomes small through data polishing, (3) is not a difficult task. The computational cost of (1) and (2) depends on the choice of the similarity measure and the definition of data polishing. Usually these tasks are not heavy because the data and graph are usually sparse. Our computational experiments show the efficiency of our data polishing algorithm. For example, it reduces the number of maximal cliques in a social network from 33,000 to 300 and in a similarity graph of news articles from over 55 million to 100,000. The contents of the cluster are acceptable and understandable, at least in our computational experiments. The detection accuracy of clusters for randomly generated data is significantly better compared to existing algorithms. The quality and the performance of our algorithm drastically outperforms the existing algorithms.

The organization of this paper is as follows. The next section introduces the notations. In Section 3, we describe our model of data polishing for micro-
clustering in a graph, and describe a fast algorithm for data polishing and similarity graph construction in Section 4. Section 5 explains an algorithm for maximal clique enumeration. In Section 6, we show the results of computational results, and discuss the result in Section 7. We conclude the paper in Section 8.

1.1 Related Works

There are many unsupervised clustering algorithms. Typical algorithms partition data into two or several groups by learning the boundaries of the groups. A typical approach to obtain many clusters is to recursively apply these clustering algorithms. However, in the top levels of the partition, finding a boundary composed of boundaries of many clusters is very difficult, and micro-clusters are often broken by global cuts.

For finding clusters in a similarity graph, Girvan-Newman clustering algorithms\cite{4} and its many variants are often used. The algorithms partition the data into many groups according to the modularity, i.e., a model of clustering quality. However, they often produce few very large groups that are a mixture of many micro-clusters and many quite small groups. We observed this in our computational experiments.

Some random walk algorithms and propagation algorithms\cite{6,11} find a cluster from a seed vertex. The obtained cluster can be seen as a main cluster among those to which the seed vertex belongs. For enumeration, we often apply these algorithms to all vertices individually. This results in many quite similar groups that correspond to one cluster; on the other hand, weak clusters hidden by strong clusters may be missed. Moreover, even one execution of these algorithms takes sufficiently long time, the total computation time becomes huge.

Some researchers attempted to enumerate maximal cliques from graphs. For example, Kumar et al. enumerated bipartite maximal cliques from Web link graphs\cite{9}. However, the number of solutions is usually so huge. In our experiments, the number of maximal cliques in a similarity graph from Reuters news articles was above 50,000,000. There are currently no algorithm to drastically reduce the number of maximal cliques.
An idea to remove edges from the network so that extraction of clusters will become easy has been proposed by Satuluri et al. [15], that is called *local sparsification*. The idea to identify the edges to be removed from the network is same as our method, but they do not add edges, and do not repeat the process, thus the result would be quite different. Also a similar idea exists that is called stochastic flow clustering method [16]. The idea is update distance matrix iteratively so that the items belonging to the same cluster would have distance of zero. Compared to this, our method can be considered as a discrete version with allowing scalable algorithms applicable to large scale graph data.

2 Preliminary

A database D is a collection of records T_1, \ldots, T_n. A record can be any kinds of structures, but we restrict the database such that each record belongs to the same class of structures, such as itemsets, sequences, and labeled graphs. For a similarity measure sim, the similarity graph $G_{\text{sim}}(D)$ of the database D is the graph such that the vertex set is its records, and an edge connects two records u and v if and only if $\text{sim}(u, v) \geq \theta$. We simply write the similarity graph $G = (V, E)$ and assume that $V = \{1, \ldots, n\}$ if there is no confusion. A clique is a set of vertices such that every pair of vertices is connected by an edge. Cliques are usually defined by a subgraph, but in this paper we use this definition for conciseness. A clique included in no other clique is called maximal. The size of a clique is the number of its vertices.

A pair of vertices not connected by an edge is called non-edge. The density of a graph $G = (V, E)$ is the ratio of edge existences, i.e., $\frac{|E|}{\binom{|V|}{2}}$. The density of a vertex set U is defined by the density of the subgraph $G[U] = (U, E[U])$, where $E[U]$ is the set of edges that are connecting two vertices in U. A pseudo clique is a vertex set having sufficiently large density, such as that with density no less than the threshold δ. We call a vertex set of density δ-pseudo clique.

For vertex v in G, a vertex adjacent to v is called a neighbor of v. The set of neighbors of v is denoted by $N(v)$. $N[v]$ denotes $N(v) \cup \{v\}$ and is called the closed neighbor. A vertex w is a common neighbor of vertices u and v if w is adjacent to both u and v. The degree of a vertex v is the number of vertices adjacent to v, and denoted by $d(v)$. For a subgraph K of G, the degree of v in K is the number of vertices in K that are adjacent to v and denoted by $d_K(v)$. The minimum degree in K is $\min_{v \in K} d_K(v)$.

3 Data Polishing for Micro-Clustering

We first state our micro-clustering problem from conceptual aspects, and propose our data polishing algorithms to clarify the clusters. We also state some properties that are mathematical aspects of our algorithms. Note that the statements of properties are of the worst cases, thus they do not mean the average cases. Micro-clusters are groups of data records that are similar or related to
each other, and desired to have one meaning, or correspond to one group. By considering the applications of micro-clustering, micro-clusters should satisfy the following conditions.

1. Quantity (the number of micro-clusters found should not be huge)
2. Independence (micro-clusters should not be similar to each other)
3. Coverage (all micro-clusters should be found)
4. Granularity (the granularity of micro-clusters should be the same)
5. Rigidity (the micro-clusters found should not change due to un-essential changes such as random seeds or indices of records)

From conditions 3 and 4, we approach the micro-clustering problem by structural enumeration, since structures such as trees and cliques are considered to correspond micro-clusters with similar granularity. Condition 5 leads us not to use randomness and computation depends on the vertex ID ordering. For the remaining conditions 1 and 2, we can observe that the ambiguity in the data makes algorithms violating the conditions; noise drastically increase the structures to be enumerated, and the structures are too similar thereby not independent. In a graph, micro-clusters are considered to correspond to dense subgraphs, and the non-edges in the dense subgraphs are ambiguity. We also consider that edges included in no clusters are also ambiguity. The concept of data polishing for micro-clustering comes from these; add edges for these non-edges, and remove these edges from the graph. For identifying these non-edges and edges, we consider the following feasible hypothesis.

If vertices u and v are in the same clique of size k, u and v have at least $k - 2$ common neighbors. Thus, we have $|N[u] \cap N[v]| \geq k$, and this is a necessary condition that u and v are in a clique of size at least k. We call this condition k-common neighbor condition. If u and v are in a sufficiently large pseudo clique, they are also expected to satisfy this condition. For example, the average degree in a pseudo clique of size $2k$ whose edge density is 80% is $1.6k$, thus any of its two vertices satisfy the condition with high probability. On the contrary, if two vertices do not satisfy the condition, they belong to a pseudo clique with very small probability. Even though they belong to a pseudo clique, they actually seem to be disconnected in the clique, thus we may consider they should not be in the same cluster. Let $P^k(G) = (V, E')$ where E' is the correction of edges connecting vertex pairs satisfying the k-common neighbor condition, and the polishing process is the computation of $P^k(G)$ from G. We call this process k-intersection polishing.

The following property assures that we can find pseudo cliques as cliques in the processed graph.

Property 1. A vertex set $K \subseteq V$ of γk vertices is a clique in $P^k(G)$ when the minimum degree of K in G is at least $(\gamma + 1)k/2$.

Proof. Any two vertices u and v have at most $2 \times (\gamma k - 1 - \frac{(\gamma + 1)k}{2}) = \gamma k - 2 - k$ non-common neighbors. Thus, $|N[u] \cap N[v]| \geq k$. □

Note that the density of K is always no less than $(\gamma + 1)/2\gamma$.

Thus we choose a number τ putting smaller subgraphs also increase in real world data. Hence, by repeatedly computing the condition of the theorem is far from tight, we can expect that the densities of cliques with sufficiently large density increases its density in $P^k(G)$ more than that in G if $1 - \delta \leq \frac{(s-1)(\gamma-1)^2}{s^2\gamma^2}$.

Proof. Partition the vertices of K into

$$P = \{ v \in V \mid (\gamma + 1)k/s \leq d_K(v) < (\gamma + 1)k/2 \},$$

$$Q = \{ v \in V \mid (\gamma + 1)k/2 \leq d_K(v) < (s-1)(\gamma + 1)k/s \},$$

and

$$R = \{ v \in V \mid (s-1)(\gamma + 1)k/s \leq d_K(v) \}.$$

Let $p = |P|$ and $q = |Q|$. Concerning the numbers M and M' of non-edges in K and K in $P^k(G)$, respectively, we have the following:

$$M = (1 - \delta)\frac{\gamma^2k^2}{2} < (1 - \delta)\frac{\gamma^2k^2}{2}$$

(1)

$$M > \frac{1}{2} \left(\gamma - \frac{\gamma + 1}{2} \right) \gamma k + \left(\gamma k - \frac{(s-1)(\gamma + 1)k}{s} \right) q$$

(2)

$$= \left(\frac{p}{4} + \frac{q}{2s} \right) (\gamma - 1)k,$$

(3)

$$M' \leq pq + \frac{p(p-1)}{2} \leq p \left(q + \frac{p}{2} \right).$$

(4)

From Eq. (3), we have $q < \frac{2sM}{(\gamma - 1)k} - \frac{s}{2}p$. Together with Eq. (1),

$$M' < p \left(\frac{2sM}{(\gamma - 1)k} - \frac{s-1}{2}p \right)$$

$$= \frac{s-1}{2} \left(p - \frac{2sM}{(s-1)(\gamma - 1)k} \right)^2 + \frac{2(sM)^2}{(s-1)((\gamma - 1)k)^2}$$

$$\leq \frac{2s^2M^2}{(s-1)((\gamma - 1)^2k^2)}.$$

Therefore, we have $\frac{M'}{M} < \frac{2s^2M^2}{(s-1)(\gamma - 1)^2k^2} < \frac{s^2(1-\delta)\gamma^2k^2}{(s-1)(\gamma - 1)^2k^2} \leq 1$ from Eq. (1) and

$$\left(1 - \delta \right) \leq \frac{(s-1)(\gamma-1)^2}{s^2\gamma^2}.$$

Corollary 1. Let K be a $8/9$-pseudo clique of γk vertices whose minimum degree is at least $(\gamma + 1)k/3$. The density of K always increases by k-intersection polishing if $\gamma > 2 + 2^{1/2} \simeq 3.4142$.

From the theorem and corollary, we see that any sufficiently large pseudo clique with sufficiently large density increases its density in $P^k(G)$. Since the condition of the theorem is far from tight, we can expect that the densities of smaller subgraphs also increase in real world data. Hence, by repeatedly computing $P^k(G)$, $P^k(P^k(G))$ and so on, we hope that it will converge to a graph $P^{k*}(G)$ satisfying $P^{k*}(G) = P^k(P^{k*}(G))$. However, there is a counter example, thus we choose a number τ and repeat the computation at most τ times.
Theorem 2. There is a graph $G' = (V', E')$ such that $P^k(G'') \neq G''$ holds for any $G'' = P^k(P^k(\cdots P^k(G') \cdots))$ for $k > 4$.

Proof. We describe the example shown in Figure 2. In the figure, B and C are a set of $k - 2$ vertices such that vertex $\{a\}$, B and (B, C) induce complete bipartite graphs where no vertex pair in B or C is connected. For each $u \in B$ and $v \in C$, we put a clique of size $k + 2$ so that the clique includes (u, v) but no other vertex in the graph. This is to make u and v always have at least $k + 2$ common neighbors. For each $v \in B \cup C$, we prepare vertices w_1 and w_2, and put two cliques of size $k + 2$ including only (a, w_i) and (w_i, v) in the same manner. This is to increase the common neighbors of a and v by two.

Let us consider $|N[u] \cap N[v]|$ for each vertex pair (u, v). For each edge (u, v) in an attached clique, $|N[u] \cap N[v]| \geq k + 2$. Each vertex $u \notin \{a\} \cup B \cup C$ satisfies $|N[u] \cap N[v]| \leq 2$ for any vertex v not in the clique that includes u. Any vertex pair (u, v) taken from B or C satisfies $|N[u] \cap N[v]| \leq k - 1$. For each $v \in B$, we have $|N[a] \cap N[v]| = 4$, and for each $v \in C$, we have $|N[a] \cap N[v]| = k$. Hence, when we apply one iteration of k-intersection polishing with $k > 4$, all edges between a and B disappear and all non-edges between a and C become edges. The edge set of the new graph is different from the original graph, but the new graph is isomorphic to the original. Therefore, the statement holds.

It is worth mentioning that this statement holds if k-intersection polishing is defined by a usual neighbor but not a closed neighbor, i.e., $N(u) \cap N(v)$.

We call a graph G polished if it does not change by data polishing process. In particular, we call G k-intersection polished if G satisfies $G = P^k(G)$.

Theorem 3. A k-intersection polished graph $G = (V, E)$ has at most $O(|V|^k)$ maximal cliques.

Proof. Suppose that a vertex set $S, |S| = k$ is included in two distinct cliques K and K'. Then, for any two vertices $u \in K$ and $v \in K'$, $S \subseteq N[v], N[u]$ hold, thus $|N[u] \cap N[v]| \geq k$. This implies that such u and v are always connected by an edge, and thus $K \cup K'$ is a clique. Hence, we can observe that any vertex subset
$S \subseteq V$ of size k is included in at most one maximal clique. Since any maximal clique of size at least k includes at least one vertex subset of size k, we can see that the number of maximal cliques of size at least k is at most nC_k. The number of cliques of size at most $k - 1$ is bounded by n^k, the number of maximal cliques in G is bounded by $nC_k + n^k = O(n^k)$. Therefore, the statement holds.

This theorem demonstrates that k-intersection polishing reduces the number of maximal cliques. Moreover, a limited number of maximal cliques makes some problems easy. For example, we can say that maximal clique enumeration in G can be solved in polynomial time in the size of G, since the enumeration is done in linear time in the number of maximal cliques. We can also observe a tractability on the maximum clique problem.

Corollary 2. The maximum clique problem in a graph G polished by k-intersection polishing can be solved in polynomial time, $O(n^{k+2.376})$ time in particular.

Proof. The algorithm MACE enumerates all maximal cliques in time $O(Mn^{2.376})$, where M is the number of maximal cliques in G. This together with the above theorem leads to finding a maximum clique in $O(n^{k+2.376})$ time. However, we can observe that some polished graphs have a huge number of maximal cliques for large k. The following property demonstrates that there are some graphs having exponentially many maximal cliques.

Theorem 4. There is a series of infinitely many k-intersection polished graphs that have exponentially many maximal cliques. In particular, a graph of $n^2/4 + 3n/2$ vertices has at least $2^{n/2}$ maximal cliques for some k.

Proof. Let G be a graph of vertex set $V = \{1, \ldots, n\}$ such that any vertex pair except for $2i - 1$ and $2i$ for $i = 1, \ldots, n/2 - 1$ is connected by an edge. G is the removal of a perfect matching from a complete graph. We assume that n is a multiplier of 2. The graph has exactly $2^{n/2}$ maximal cliques, since any choice of one vertex from each non-edge forms a maximal clique. Any u and v satisfies $|N[u] \cap N[v]| = n - 2$ in G. We add vertices and edges to G to obtain a graph G' satisfying the statement.

Let $V_1 = \{1, 3, 5, \ldots, n - 1\}$ and $V_2 = \{2, 4, 6, \ldots, n\}$ be a partition of V into two subsets of equal size. We then consider sets of vertices $U_0 = V_2$, and $U_i = V_1 \setminus \{2i - 1\} \cup \{2i\}$, for $1 \leq i \leq n/2$. We can see that any edge in G is included in at least one of U_j, $0 \leq j \leq n/2$, and no non-edge is included in some U_j. For each U_j, we add $n/2$ vertices and connect edges so that U_j and the added vertices form a clique. The obtained graph is denoted by $G' = (V', E')$. We have $|V'| = n + (n/2 + 1) \times n/2 = n^2/4 + 3n/2$. Observe that by the addition, a pair of vertices increases their common neighbors by $n/2$ if and only if they are connected by an edge. Thus, the graph is an n-intersection polished graph. We can see that any maximal clique in G other than U_j is a maximal clique in G', thus we still have $2^{n/2}$ maximal cliques. Therefore, the statement holds. For real world data, k-intersection polishing generates acceptable clusters in some cases such as when the pseudo cliques are disjoint. However, it often does not work well if there are many vertices adjacent to several large degree vertices.
(hubs), since these vertices form a very large clique even though they are not related. This property is often observed in many kinds of networks such as social networks, and Web link networks. The cause is that two vertices are connected, even though many of their neighbors are not common. In such cases, instead of \(k \)-intersection model, similarity measures are preferable such as the Jaccard coefficient. By using similarity, vertices adjacent to many different vertices will not be connected.

We denote the similarity of \(N[u] \) and \(N[v] \) by \(\text{sim}(u,v) \), where \(N[u] \) and \(N[v] \) are more similar when \(\text{sim}(u,v) \) is large. For example, if the similarity measure is the Jaccard coefficient, \(\text{sim}(u,v) = \frac{|N[u]\cup N[v]|}{|N[u]\cap N[v]|} \). We define a graph \(P_{\text{sim}(\theta)}(G) \) in the same manner, i.e., \(P_{\text{sim}(\theta)}(G) = (V, \{(u,v) | \text{sim}(u,v) \geq \theta\}) \). The operation of computing \(P_{\text{sim}(\theta)}(G) \) is called \(\theta \)-sim polishing, and a graph is called \(\theta \)-sim polished if \(G = P_{\text{sim}(\theta)}(G) \). In particular, if the similarity measure is the Jaccard coefficient, they are \(\theta \)-Jaccard polishing and \(\theta \)-Jaccard polished. Unfortunately, even in these cases polishing may not converge for some graphs.

Theorem 5. For every \(\theta \in (0, 1/4] \cup (3/11, 2/7] \), there is a graph \(G = (V,E) \) such that \(P_{\text{sim}(\theta)}(G) \neq G \) and \(P_{\text{sim}(\theta)}(P_{\text{sim}(\theta)}(G)) = G \).

Proof. We define a graph \(G_{m_1,m_2,n} = (V,E) \) as follows. Let

\[
V = \{a\} \cup B \cup C \cup \bigcup_{i,j \in \{1,\ldots,n\}} D_{i,j}
\]

where \(B = \{b_1,\ldots,b_n\} \), \(C = \{c_1,\ldots,c_n\} \), \(|D_{i,i}| = m_1 \), and \(|D_{i,j}| = m_2 \) for \(i \neq j \). The edge set \(E \) is defined so that \(\{a\} \times B \) and \(B \times C \) form bicliques and \(D_{i,j} \cup \{b_i,c_j\} \) forms a clique for each \(i,j \). No other vertices are connected. Then, for each \(i,j \in \{1,\ldots,n\} \) and \(d \in D_{i,j} \),

\[
\begin{align*}
N[a] &= \{a\} \cup B, & |N[a]| &= n + 1, \\
N[b_i] &= \{a,b_i\} \cup C \cup \bigcup_{j} D_{i,j}, & |N[b_i]| &= m_1 + (n-1)m_2 + n + 2, \\
N[c_j] &= \{c_j\} \cup B \cup \bigcup_{i} D_{i,j}, & |N[c_j]| &= m_1 + (n-1)m_2 + n + 1, \\
N[d] &= D_{i,j} \cup \{b_i,c_j\}, & |N[d]| &= m + 2.
\end{align*}
\]
where \(m = m_1 \) if \(d \in D_{i,i} \) and \(m = m_2 \) otherwise. Thus, for \(i' \neq i, j' \neq j, d' \in D_{i,j} \setminus \{d\} \) and \(d'' \notin \{a\} \cup B \cup C \cup D_{i,j}, \)

\[
\begin{align*}
N[a] \cap N[b_i] &= \{a, b_i\}, & \sim(a, b) &= \frac{2}{2n + m_1 + (n - 1)m_2 + 1}, \\
N[b_i] \cap N[b_i'] &= \{a\} \cup C, & \sim(b_i, b_i') &= \frac{n + 1}{2m_1 + 2(n - 1)m_2 + n + 3}, \\
N[c_j] \cap N[c_{j'}] &= B, & \sim(c_j, c_{j'}) &= \frac{n}{2m_1 + 2(n - 1)m_2 + n + 2}, \\
N[a] \cap N[c_j] &= B, & \sim(a, c_j) &= \frac{m + 2}{m_1 + (n - 1)m_2 + n + 2}, \\
N[b_i] \cap N[c_j] &= D_{i,j} \cup \{b_i, c_j\}, & \sim(b_i, c_j) &= \frac{2}{2m_1 + 2(n - 1)m_2 - m + 2n + 1}, \\
N[b_i] \cap N[d] &= D_{i,j} \cup \{b_i, c_j\}, & \sim(b_i, d) &= \frac{m + 2}{m_1 + (n - 1)m_2 + n + 2}, \\
N[c_j] \cap N[d] &= D_{i,j} \cup \{b_i, c_j\}, & \sim(c_j, d) &= \frac{m + 2}{m_1 + (n - 1)m_2 + n + 1}, \\
N[d] \cap N[d'] &= D_{i,j} \cup \{b_i, c_j\}, & \sim(d, d') &= 1, \\
N[d] \cap N[d''] &\leq 1 & \sim(d, d'') &\leq \frac{1}{\min\{m_1, m_2\} + m_2 + 3}
\end{align*}
\]

and \(\sim(u, v) = 0 \) for any other pairs of distinct \(u \) and \(v \).

Now we discuss when the graph \(P^{\text{sim}(\theta)}(G_{m_1, m_2, n}) \) will be symmetric to \(G \) in the sense that edges between \(\{a\} \) and \(B \) have been removed and \(\{a\} \times C \) have become a biclique while the other edges are preserved. This occurs when \(f(m_1, m_2, n) < \theta \leq g(m_1, m_2, n) \) for

\[
f(m_1, m_2, n) = \max \{\sim(a, b_i), \sim(b_i, b_i'), \sim(c_j, c_{j'}), \sim(d, d'')\}
\]

and

\[
g(m_1, m_2, n) = \min \{\sim(a, c_j), \sim(b_i, c_j), \sim(b_i, d), \sim(c_j, d), \sim(d, d')\}.
\]

We have

\(m_1 \)	\(m_2 \)	\(n \)	\(f(m_1, m_2, n) \)	\(g(m_1, m_2, n) \)
1	2	2	3/11	2/7
2	2	2	3/13	1/4
2	2	3	2/9	4/17 (> 3/13)
2	3	2	1/5	2/9
3	3	3	1/6	3/14 (> 1/5)

and for all \(m \geq 3, \)

\[
g(m, m, 3) > g(m + 1, m + 1, 3) > f(m, m, 3) > f(m + 1, m + 1, 3).
\]

Note that \(\lim_{n \to \infty} g(m, m, 3) = 0 \). Therefore, for every \(\theta \in (0, 1/4] \cup (3/11, 2/7] \), there is a graph \(G \) satisfying the property of the theorem. \(\square \)
Finally, we describe our micro-clustering algorithm and data polishing algorithm. Here \(\tau \) is the number of the maximum repetitions.

Algorithm Micro-Clustering_Similarity \((D:\text{database}, \theta', \theta:\text{thresholds for record similarity and neighbor similarity})\)

1. construct the similarity graph \(G_{\text{sim}'}(D) \) with threshold \(\theta' \)
2. \(G' = \text{GraphPolishing_for_Cluster} (G_{\text{sim}'}(D), \theta) \)
3. output all maximal cliques of \(G' \)

Algorithm GraphPolishing_for_Cluster \((G = (V, E) : \text{graph}, \theta:\text{threshold})\)

1. for \(i := 1 \) to \(\tau \)
2. \(E' := \{(u, v) | \text{sim}(u, v) \geq \theta \} \)
3. if \(E' = E \) then break
4. end for
5. output \(G' = (V, E') \)

The maximal clique enumeration is done by algorithms such as MACE\(^6\) and Tomita’s algorithm \(^7\). For the computation of \(\mathcal{P}_{\text{sim}}(\theta)(G) \) and similarity graph for set families (transaction databases), the algorithm described in the next section is efficient\(^8\).

4 Algorithm for Fast Data Polishing

A straightforward way to compute \(\text{sim}(u, v) \) for all pairs of \(u \) and \(v \) takes at least \(O(|V|^2) \) time. This is very heavy when \(|V| \) is large, such as one million. We can not avoid this difficulty when the similarity graph or the polished graph is dense, and thus has \(\Theta(|V|^2) \) edges. In fact, this implies that elements are similar to many others, thus there are only few clusters. They can be tractable by usual clustering algorithms such as \(k \)-means. Micro-clustering aims to find many small clusters, thus such dense graphs are not interesting, and we assume that polished graphs are sparse. However, Even with this assumption, computation less than square time is non-trivial. For efficient computation, we observe the following.

Observation: In many similarity measures for neighbors, \(\text{sim}(u, v) \geq \theta \) only when \(|N[u] \cap N[v]| > 0 \)

If the similarity graph is sparse, the intersection size \(|N[u] \cap N[v]| \) is zero for almost all pairs of vertices, and only few pairs satisfy \(|N[u] \cap N[v]| > 0 \). Moreover, many similarity measure for sets can be computed quickly with the use of \(|N[u] \cap N[v]| \), since \(|N[u] \cup N[v]| = |N[u]| + |N[v]| - |N[u] \cap N[v]| \), \(|N[u] \setminus N[v]| = |N[u]| - |N[u] \cap N[v]| \), and so on. Therefore, we describe an algorithm for computing the intersection of closed neighbors, for each pair having non-empty intersection. The algorithm is actually a kind of folklore and often used

\(^6\) http://research.nii.ac.jp/~uno/codes.html

\(^7\) http://research.nii.ac.jp/~uno/codes.html
in literature[15]. The algorithm can be seen as a variant of the transposition of a matrix represented in a sparse manner. We additionally show a bound for computation time when the degree sequence of the graph satisfies the Zipf’s law. To the best of our knowledge, this is the first theoretical result that explains the reason this folklore algorithm is fast in practice. We begin with the following property.

Property 2. \(N[u]\) has non-empty intersection with \(N[v]\) if and only if \(u\) and \(v\) are both in \(N[w]\) for some \(w\).

From this property, we can see the following property.

Property 3. \(|N[u] \cap N[v]|\) is equal to the number of vertices \(w \in N[u]\) such that \(v \in N[w]\).

We can see that \(|N[u] \cap N[v]|\) for all \(v\) can be computed by scanning \(N[w]\) for all \(w \in N[u]\), i.e., we scan \(N[w]\) one by one. For each \(v \in N[w]\), we increase the counter for \(v\), then the counter will be the intersection size after all scans. This idea is described as the following algorithm.

```plaintext
for each \(w \in N[u]\) do
  for each \(v \in N[w]\) s.t. \(v < u\), \(intersection[v] := intersection[v] + 1\)
end for
```

In the algorithm, we want to output non-zero intersection size. For the sake, we use a list \(L\) that keeps the vertices having non-empty intersection with \(u\). A vertex \(v\) is inserted to \(L\) when \(intersection[v]\) is changed from 0 to 1. The following algorithm computes the intersection size for all pairs by executing the above algorithm for all \(u \in V\).

Algorithm NeighborIntersection \((G = (V, E))\)

1. \(intersection[u] := 0\) for each \(u \in V\)
2. for each \(u \in V\) do
3. \(L := \emptyset\)
4. for each \(w \in N[u]\) do
5. for each \(v \in N[w]\) s.t. \(v < u\) do
6. if \(intersection[v] = 0\) then insert \(v\) to \(L\)
7. \(intersection[v] := intersection[v] + 1\)
8. end for
9. end for
10. for each \(v \in L\) output \(\{v, u\}\) \(intersection[v]\), \(intersection[v] := 0\)
11. end for

Note that this algorithm also works for set families (transaction databases) where a set family (transaction database) \(F\) is a collection of subsets of a set (an itemset) \(E\). The computation time of the algorithm is \(O(\sum_{u \in V} \sum_{w \in N[u]} |\{v \in N[w] \mid v < u\}|)\). The term \(\sum_{u \in V} \sum_{w \in N[u]}\) means that “for all pairs of \(u\) and
its closed neighbors \(w' \), thus is equivalent to \(\sum_{w \in V} \sum_{u \in N[w]} \). Therefore, the computation time is \(\sum_{w \in V} \sum_{u \in N[w]} \{v \in N[w] \mid v > u\} = O(\sum_{w \in V} |N[w]|^2) \).

Because we want to understand the practical performance of this algorithm, we consider about the assumption of Zipf’s law. It is known that real world data often satisfies Zipf’s law, for example scale free graphs. We assume that the degree sequence of the similarity graph is within a Zipf’s law, i.e., the expected value of the degree of the \(i \)th vertex is \(\alpha/i^\Delta \) for some constant \(\alpha \) and \(\Delta \). For stating a time complexity, we consider the case in which for some constants \(c \) and \(\beta \), any vertex \(w \) satisfies \(|N[w]| \leq \max\{c\alpha/w^\Delta, \beta\} \). Since the time complexity does not change even if few vertices violate the condition, this assumption would be acceptable. We have the following by Zipf’s law.

\[
\sum_{w \in V} |N[w]|^2 \leq \sum_{w \in V} \max\{c\alpha/w^\Delta, \beta\}^2 \\
\leq \sum_{w \in V} (c\alpha/w^\Delta)^2 + \sum_{w \in V} \beta^2 \\
\leq \alpha^2 \sum_{w \in V} (1/w^2\Delta) + O(|V|)
\]

Thus, the computation time is bounded by \(O(\alpha^2 \log |V|) \) for \(\Delta = 1/2 \), and \(O(\alpha^2) \) for \(\Delta > 1/2 \). For example, if \(\alpha \), which is intuitively the number of appearances of the most frequently appearing items, is \(O(|V|^{1/2}) \), the algorithm terminates in \(O(|V| \log |V|) \) time if \(\Delta = 1/2 \), and \(O(|V|) \) time if \(\Delta > 1/2 \).

Theorem 6. For a given similarity graph \(G = (V,E) \), algorithm NeighborIntersection terminates in \(O(\alpha^2 \log |V|) \) time for \(\Delta = 1/2 \), and \(O(\alpha^2) \) time for \(\Delta > 1/2 \), if the degree of the \(i \)th vertex is at most \(\max\{c\alpha/i^\Delta, \beta\} \) time, where \(c, \beta, \) and \(\Delta \) are constant numbers.

An implementation of this algorithm is available at our Website (http://research.nii.ac.jp/~uno/codes.html). The name of the implementation is SSPC.

4.1 Equivalence to frequent itemset mining

A transaction database is a database composed of records such that each record \(T_i \) is a subset of a set of items \(I \). The frequency of an itemset \(P \subseteq I \) is the number of transactions including \(P \). For a threshold \(\sigma \), \(P \) is called a frequent itemset if its frequency is no less than \(\sigma \). The problem of enumerating all frequent itemsets is a fundamental problem in data mining thus has been extensively studied and has many applications. Consider the transaction database \(\{N[u] \mid u \in V\} \) where \(V \) is regarded as \(I \). Since the number of transactions including itemset \(\{T_u, T_v\} \) is equal to the number of vertices \(w \) such that \(u, v \in N[w] \), the frequency of \(\{T_u, T_v\} \) is equal to \(|N[u] \cap N[v]| \). Thus, we can find all pairs of vertices having non-empty neighbor intersection by enumerating all frequent itemsets of size two.
with $\sigma = 1$. In fact, LCM algorithm\cite{19,18} for frequent itemset mining uses an algorithm similar to NeighborIntersection to compute the frequencies of itemsets $P \cup \{e\}$ for all e, and it has a good practical efficiency for real world large scale databases.

5 Maximal Clique Enumeration

Maximal clique enumeration also has long history from the 1970’s\cite{2,17}. In the 2000’s, researches began on practical large scale data as the growth of data centric science. The number of maximal cliques is usually tractable even for large scale data in such area. Recent algorithms such as Makino-Uno algorithm\cite{10} (MACE) and Tomita’s\cite{13} can enumerate in short time in such cases. The enumeration frameworks of these algorithms are quite different, but both they work well in practice. As reported in \cite{13}, Tomita’s algorithm is faster in dense graphs, and MACE is faster in sparse graphs.

MACE is a depth first search type algorithm traversing the maximal clique space. It starts from the lexicographically maximum clique, and moves to another clique recursively by adding a vertex, removing non-adjacent vertices to it, and adding addible vertices lexicographically. Duplication is avoided by introducing a tree shaped transversal route induced by parent-child relation between maximal cliques. Since the algorithm explores no redundant clique, the computation time per maximal clique is bounded by polynomial, and the practical performance is good.

On the other hand, Tomita’s algorithm is a branch and bound type. It starts from the empty set, and recursively adds vertices in a lexicographic order. At every iteration, it chooses a pivot vertex, and re-orders the vertices so that the vertices adjacent to the pivot are located at the latter part. Since any clique composed only of vertices adjacent to the pivot is not maximal because we can add the pivot to it, we can omit the recursive calls with the addition of these vertices, in this ordering. This pruning works well especially in dense graphs. When we want to find only maximal cliques of at least a given threshold size, we have one more advantage. We can delete vertices of degrees smaller than the threshold, even in the subgraph given to the recursive calls. This pruning is not applicable to MACE.

6 Experiments

We now explain the results of our computational experiments. Our implementations were coded in C, without any sophisticated library such as binary trees. All experiments were conducted on a standard PC that are for consumer’s use. Note that none of the implementations used multi-cores. The codes and the instances are available at our Website (http://research.nii.ac.jp/~uno/codes.html). As test instances, we prepared three types of data; randomly generated data, business relation among Japanese companies, and Reuters news articles. As shown below, the results suggest that our data polishing algorithm satisfies the
requirements for micro-clustering, that are quantity, independence, coverage, granularity, and rigidity.

The first instances are randomly generated graphs for evaluating how well clustering methods can efficiently find micro-clusters. First, we initialized a graph with no edge, and randomly put h original cliques of size 30 on the graph, so that each vertex is included in at most b cliques, by re-choosing a vertex when that vertex was already included in b cliques. We made graphs of 50,000, 100,000, and 350,000 vertices, and h is set to 1,000, 3,000, and 10,000 for each case, respectively. b is multiplicity that the number of micro-clusters one vertex can belong to, and in practice it would range from one to five or bit more. For each vertex v, we randomly re-connect several edges incident to v. For each edge (v, u), with probability $1 - p$, we replace the end point u by a randomly selected vertex u'. Note that this operation does not change the degree of v but changes the degrees of u and u'. We tried the graphs of all combinations of $b = 1, 2, 4$, $h = 1,000, 3,000, 10,000$, and $p = 0.3, 0.5, 0.9, 1.0$

We evaluated accuracy by F-value-like measure that takes into account both precision and recall. For each original clique C, let $\kappa(C)$ be the maximum of $|C \cap C'|$ among all clusters C' found by an algorithm, and for each C', let $\kappa(C')$ be the maximum of $|C \cap C'|$ among all original cliques. We can then consider the precision and recall as $\kappa(C)/|C|$ and $\kappa(C')/|C'|$, respectively. Let P be the average of $\kappa(C)/|C|$ and R be the average of $\kappa(C')/|C'|$ over all original cliques and clusters. The F-value-like measure is defined by $(P + R)/(2 \times P \times R)$. The reason we choose the best for precision and recall comes from the principle of data mining. Data mining approaches basically enumerate all candidates. In this sense, it is preferable if we can find some solutions that correspond to hidden structures, even though the number of solutions is a bit large.

We examined Metis[7], Girvin-Newman[4], DBscan[3] and graph polishing with the Jaccard coefficient with thresholds 0.07, 0.15 and 0.3. DBscan inputs sparse distance matrix, thus we set distance of two vertices to one if there connected by an edge, and otherwise the distance is not defined. The parameters “eps” is set to 1.5, and “MinPts” is set to 30 for $b = 1$, and to 50 otherwise. Actually, the cluster sizes produced by Girvin-Newman were quite biased, the accuracy were not good. The results by Metis and DBscan were also so. On the contrary, the results by graph polishing were good in many cases. As the decrease of the similarity threshold, the number of clusters and the accuracy increased. In particular, the accuracy was almost 1 in less noisy cases, while that of Metis was below 0.5. The number of clusters was not so large, even with threshold 0.07. The accuracy did not change much when the problem sizes or b increased. It is interesting that the accuracy of Metis increased in such cases.

The second instance involved business relation data among Japanese companies in which the vertices are the companies, and two companies are connected when they trade. The data is of year 2012 and provided by Teikoku DataBank Limited, Japan. The numbers of vertices and edges in the graph are 3,282 and 35,168, respectively, and the graph has 32,953 maximal cliques.
We apply our graph polishing algorithm with the PMI (pointwise mutual information) of 0.5, 0.6, 0.7, 0.8, 0.9. The PMI of A and B, $A, B \subseteq E$ is a similarity measure defined by $\log(|A \cap B| \times |E|/|A| \times |B|)$. The changes in the number of edges and number of maximal cliques are summarized in Table 4. The visualization of the graphs are shown in Figure 3. Many clusters were clarified as cliques, and some vertices belonged to more than one cluster, while we cannot see anything in the original graph. Examples of clusters are as follows.

- Toyota Motor, Suzuki Motor, Yamaha Motor, Daihatsu Motor, Mazda Motor, Isuzu Motor, Nissan Motor, Hino Motor, Fuji Heavy Industries, Honda Motor, Mitsubishi Motor, Sato Shoji, Jidosha Buhin Kogyo
- Nissan Shatai, Aichi Machine Industry, Calsonic Kansei, Sincerity Passion Kindness, JFE Container, SNT, Zero, Unipres, Kokusai, Gexeed
- Tsuchiya, Insight, Career Bank, Japan Care Service, Econic, JPN Holdings, Accordia Golf

#cls., p	Polish 0.07	Polish 0.15	Polish 0.3	Metis	DBscan	Newman
	acc. #cls.	acc. #cls.	acc. #cls.	acc. #cls.	acc. #cls.	acc. #cls.
1,000, 0.3	0.993 1,601	0.798 1,552	0.229 4,891	0.072 1,396	0.256 710	0.329 27
3,000, 0.3	0.991 3,217	0.484 5,075	0.146 1,631	0.119 3,299	0.190 2,404	0.158 18
10,000, 0.3	0.993 11,088	0.574 15,970	0.153 10,169	0.305 11,431	0.203 7,868	0.140 40
1,000, 0.5	0.999 1,155	0.998 1,026	0.619 2,772	0.065 1,396	0.381 732	0.312 59
3,000, 0.5	1 4,273	0.991 3,152	0.299 10,375	0.117 3,299	0.315 2,380	0.159 36
10,000, 0.5	1 15,379	0.993 10,390	0.352 37,892	0.302 11,431	0.329 7,952	0.080 87
1,000, 0.9	1 1,173	1 3,364	1 2,929	0.064 1,379	0.798 785	0.451 396
3,000, 0.9	1 4,249	1 4,300	1 3,467	0.114 3,277	0.803 2,379	0.352 636
10,000, 0.9	1 14,585	1 17,472	1 13,106	0.304 11,326	0.799 7,843	0.183 1,001
1,000, 1.0	1 999	1 999	1 999	0.092 1,000	1 1,000	1 1,000
3,000, 1.0	1 2,999	1 2,999	1 2,999	0.154 3,000	1 3,000	1 3,000
10,000, 1.0	1 9,999	1 9,999	1 9,999	0.634 10,000	1 10,000	1 10,000

The first cluster is of all Japanese car manufacturers, a car parts manufacturer, and a trading company of metal materials. The second is of car parts manufacturers, trading companies on car parts, and those of transportation and containers. The third is of human resources, land development, and investment. Four of them are companies from Hokkaido, a prefecture of Japan. We can see deep relations among the members according to corporate affairs and regions. On the other hand, the clusters seemed to cover the related companies, for example all motor companies are in a cluster.

The third instance is of news articles from Reuters news, a well known mass media. The name of the dataset is RCV1 (English), and the provider is the National Institute of Standards and Technology (NIST). The articles are from 20/Aug/1996 to 19/Aug/1997, and the number of articles is 806791. Each article
Table 2. Results when $b = 2$ (acc. = accuracy, #cls. = #clusters)

#cls., p	Polish 0.07 acc.	Polish 0.15 acc.	Polish 0.3 acc.	Metis acc.	DBscan acc.	Newman acc.
	#cls.	#cls.	#cls.	#cls.	#cls.	#cls.
1,000, 0.3	0.853 1,694	0.679 1,448	0.197 3,742	0.057 1,194	0.304 63	0.287 17
3,000, 0.3	0.518 15,868	0.463 4,252	0.145 3,871	0.111 2,888	0.269 511	0.267 46
10,000, 0.3	0.616 15,683	0.498 14,389	0.151 15,928	0.371 9,917	0.274 1,517	0.269 113
1,000, 0.5	0.998 2,111	0.944 1,129	0.476 2,217	0.072 1,194	0.417 147	0.286 17
3,000, 0.5	0.999 4,533	0.867 3,740	0.269 6,518	0.110 2,888	0.359 697	0.291 23
10,000, 0.5	1 13,402	0.881 11,880	0.298 22,267	0.371 9,917	0.366 2,218	0.356 31
1,000, 0.9	0.999 1,489	1 4,967	0.896 5,306	0.066 1,183	0.477 270	0.451 396
3,000, 0.9	1 31,289	1 8,136	0.834 9,409	0.111 2,874	0.359 785	0.161 122
10,000, 0.9	1 168,539	1 26,567	0.842 33,678	0.341 9,861	0.372 2,704	0.190 195
1,000, 1.0	0.999 1,303	0.999 1,303	0.999 1,303	0.082 781	0.459 241	0.082 26
3,000, 1.0	1 3,776	1 3,776	1 3,776	0.145 2,117	0.365 711	0.098 23
10,000, 1.0	1 10,758	1 10,758	1 10,758	0.475 7,149	0.375 2,387	0.301 43

Table 3. Results when $b = 4$ (acc. = accuracy, #cls. = #clusters)

#cls., p	Polish 0.07 acc.	Polish 0.15 acc.	Polish 0.3 acc.	Metis acc.	DBscan acc.	Newman acc.
	#cls.	#cls.	#cls.	#cls.	#cls.	#cls.
1,000, 0.3	0.819 2,162	0.658 1,438	0.198 3,789	0.055 1,166	0.273 131	0.281 20
3,000, 0.3	0.460 23,929	0.454 4,108	0.153 4,441	0.108 2,787	0.215 692	0.236 67
10,000, 0.3	0.543 24,965	0.483 1,4053	0.157 1,6940	0.511 9,587	0.227 2111	0.290 152
1,000, 0.5	0.994 2,666	0.916 1,129	0.475 1,973	0.068 1,166	0.329 193	0.325 16
3,000, 0.5	0.995 5,925	0.815 3,853	0.282 5,904	0.113 2,787	0.230 690	0.271 16
10,000, 0.5	0.997 13,653	0.832 12,449	0.304 20,301	0.532 9,587	0.247 2,201	0.377 47
1,000, 0.9	0.997 1,489	1 4,967	0.896 5,306	0.066 1,183	0.477 270	0.451 396
3,000, 0.9	1 31,289	1 8,136	0.834 9,409	0.111 2,874	0.359 785	0.161 122
10,000, 0.9	1 168,539	1 26,567	0.842 33,678	0.341 9,861	0.372 2,704	0.190 195
1,000, 1.0	0.999 1,303	0.999 1,303	0.999 1,303	0.082 781	0.459 241	0.082 26
3,000, 1.0	1 3,776	1 3,776	1 3,776	0.145 2,117	0.365 711	0.098 23
10,000, 1.0	1 10,758	1 10,758	1 10,758	0.475 7,149	0.375 2,387	0.301 43
was converted to “bag of words” which is a set of words that the article includes. Even though two or more identical words appear in an article, we consider them as appearing once, thus no two identical words appeared in the bag of words of an article. To remove words appearing quite often, and some special words such as ID, we ignored words appearing in at least 1% of articles, or less than ten articles.

We constructed a similarity graph of the articles so that vertices were articles, and two vertices were connected when the Jaccard coefficient between corresponding articles was no less than 0.2. We applied maximal clique enumeration (MACE), Metis, Girvin-Newman, and our micro-clustering to the graph and obtained the clusters. MACE did not terminate in one hour, and produced more than 50 million maximal cliques. The sizes were relatively large on average, likely due to exponentially many cliques included in a large dense subgraph. The number of the clusters in the results of Girvin-Newman, Metis, micro-clustering was 25,826, 97,260 and 96,607, respectively. The sizes of clusters by Girvin-Newman were biased, so that the maximum and second maximum are 240,787 and 75,384, i.e., 30% and 9% of all the articles. At the same time there were
many small clusters 2 or 3 in size. The sizes from Metis were not biased; almost all clusters were 7 or 8 in size, and the maximum was 10. However, it seemed to be too much uniform. We could find several clusters that would be mixtures of several topics such as the following two clusters.

TOKYO 1996-11-22 JAPAN: Daimon -96/97 parent forecast.
TOKYO 1996-11-22 JAPAN: Daimon - 6mth parent results.
TOKYO 1996-08-30 JAPAN: Daimon - 96/97 div forecast.
TOKYO 1997-03-28 JAPAN: Daimon -96/97 parent forecast.
BRUSSELS, Belgium BELGIUM: EU, Mexico sign cognac and tequila deal.
MANILA 1996-10-31 PHILIPPINES: PHILIPPINE STOCKS - factors to watch - Oct 31.
BRUSSELS 1996-10-03 BELGIUM: WTO finds against Japan on liquor tax - EU official.

WASHINGTON 1996-10-21 USA: PRESS DIGEST - Washington Post Business - Oct 22.
WASHINGTON 1997-03-27 USA: Farallon group raises Strawbridge stake.
OLDWICK, N.J. 1997-04-15 USA: A.M. Best upgrades Exel to A plus from A.
LONDON 1997-06-02 UK: EXEL to buy stake in Lloyds managing agency.
NEW YORK 1997-06-09 USA: UC’NWIN says appoints Niall Duggan as CEO.
PHILADELPHIA 1997-07-14 USA: Strawbridge cuts distribution to holders.
AKRON, Ohio 1996-10-01 USA: ABC Dispensing names Crate CFO.

In the results of our graph polishing, the cluster sizes range from 1 to 292, and most of the clusters were of from 2 to 10 in size. Not many clusters seemed to be mixtures, as with Metis’s. On the contrary, there were many articles that had the same title, or almost the same titles. Their contexts must be deeply related, thus they should be in the same cluster. We selected some strings composed of several words that were common prefixes of many articles, and counted the number of clusters including the strings. The results are summarized in Table 5. Here (1) means that the number of clusters is one, but two clusters of (1) were merged into one. We can see that Metis tended to partition articles that should have been included in the same cluster. On the other hand, Girvan-Newman tended to gather non-deeply related articles in a cluster. Our graph polishing did not tend to do both, and seemed to obtain good clusters, compared to two popular clustering methods. In the examples in Table 5, we showed some clusters that would correspond to local areas. In such cases, the words used in the article should be categorized according to the local areas, such as India, and the result of the Girvan-Newman will be good.

Further, we tried instances taken from twitter, that is of tweets including a specified word, and make records of bag of words. We tried “lunch” as the word, and applied clustering algorithms. Actually the results were not good, and we could see no interesting cluster. This would be because that the tweets are similar to each other, and topics change smoothly. For example, there would be records of “go, restaurant, lunch”, “go, tasty, restaurant, lunch”, “visit, tasty, restaurant,
Table 5. Number of clusters including specified strings

Specification	Metis	Girvin-Newman	Polishing
Egyptian pound averages	18	5	7
INDIA: INDIA GOVERNMENT SECURITIES	37	1	1
India Kothari Pioneer MMMF	4	1	1
TAIWAN: Taiwan BSPA	13	1	2
USA: High Plains Wheat	26	4	4
Eurobonds - Expected new issues -Middle East	3	1	1
Eurobonds - Expected new issues -Asia	1	1	1
Eurobonds - Expected new issues (-central)	44	(1)	1
Eurobonds - Expected new issues -Latam	6	(1)	1

![Diagram](image)

Fig. 4. Unpolished data converted to polished data by data polishing

lunch”, “visit, tasty, restaurant, lunch, twice”… This intuitively implies that the boundaries of the topics are not clear, and topics are connected smoothly, in the data of bag of words. In such data, it seems that we can hardly find good clusters, or there would be no clusters.

7 Discussion

Data polishing can be seen as to find polished data from given un-polished data (see Figure 4). In the case of graph, we use a feasible hypothesis based algorithm for the task. However, we think another approach, for example minimizing the difference between the original graph and polishing graph. The approach has a theoretical advantage for model explanation, but the minimization problem is a hard optimization requiring long computation time. Although feasible hypothesis approaches cannot guarantee regarding approximation, it ensures that the obtained polished graph is generated with natural modifications, thus has less information loss.
Consider a graph made from a clique by subdividing each edge, where a subdivision replaces an edge by a path of two edges. In some models and data this graph should be recognized as a cluster, but our graph polishing deletes all edges, since any vertex pair has at most one common neighbor. On the other hand, consider a chain of cliques that overlap neighboring cliques. Graph polishing changes this graph to a clique if the size of each overlap is sufficiently large. In a usual sense, the cliques should be split if the chain is too long. As we discussed, data polishing is not ideal for taking into account global structures. At this point, we should consider that the clusters provided from graph polishing are still seeds or unification, but are better compared to those from existing algorithms.

We can apply clustering algorithms to polished graphs. In our experiments in another research [12], the clusters of features obtained by these algorithms on polished graphs increased the accuracy of a machine learning task. Polished graphs are not only for clustering, thus there are other possible application uses.

Similarity graph construction is a key issue to our graph polishing. The computational cost is usually large, and sometimes we have no approach to improve efficiency. In such cases, we can consider the use of approximation. There are several approaches to find similar elements from the data approximately and quickly. The obtained similarity graph is different from the exact one, but feasible hypothesis should also hold in the approximate graph. This should hold when data and clusters are larger, since the members should have many common neighbors.

8 Conclusion

We discussed requirements for the enumeration of many relatively small clusters of elements that are deeply related to each other, that we call micro-clustering. We proposed a new concept of data processing called “data polishing”, and formulated the clustering problem by data polishing and clique enumeration. Data polishing clarifies the local structures and groups by actively modifying the data according to some simple feasible hypothesis. The design of our algorithm is simple, and thus easily applicable to many kinds of data. Several statements were proved to ensure that we never miss large clusters in the similarity graph. We also showed a simple and efficient technique for the data polishing, and showed some complexity results for the computation time of the algorithm under the assumption of the Zipf distribution.

The computational experiments demonstrated the efficiency of our data polishing algorithm regarding accuracy and utility. Clusters provided with data polishing are usually not split nor mixed with others, while clusters often are with existing clustering algorithms. The sizes, quantities, and granularity of the clusters were good for practice. In previous studies, the clusters in big data were often used to data analysis algorithms such as machine learning, image recognition, and prediction. However, the disadvantages on the utility in the results of existing clustering seem to decrease the speed in the practical use. The de-
development of data polishing would increase the practicality of clusters in such areas.

Interesting future work would be to develop data polishing models for other kinds of data processing such as bi-clustering, segmentation, visualization, flow detection, and anonymization. It would also be interesting to improve our graph polishing algorithm so that we can deal with non-graphic data.

Acknowledgments: We gratefully thank Professor Takashi Washio of Osaka University, Professor Masaru Kitsuregawa of National Institute of Informatics, Professor Koji Tsuda and Masashi Sugiyama of Tokyo University, for their valuable comments, information, and support. We also express our appreciation to Teikoku DataBank Limited, Japan, for supplying the Japanese company business relation data. This research is supported by JST CREST, Japan.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo, Fast discovery of association rules, Advances in Knowledge Discovery and Data Mining, Chapter 12, AAAI Press / The MIT Press (1996).
2. E. A. Akkoyunlu, The Enumeration of Maximal Cliques of Large Graphs, SIAM J. Comp. 2, 1–6 (1973).
3. M. Ester, H. P. Kriegel, J. Sander, X. Xu, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, KDD96 (1996).
4. M. Girvan and M. E. J. Newman, Community Structure in Social and Biological Networks, Natl. Acad. Sci. USA 99, 7821–7826 (2002)
5. B. Goethals, the FIMI repository, http://fimi.cs.helsinki.fi/ (2003).
6. P. Judea, Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach, 2nd National Conference on Artificial Intelligence, 133–136 (1982).
7. G. Karypis, V. Kumar, METIS–Unstructured Graph Partitioning and Sparse Matrix Ordering System, version 2.0. (1995).
8. D. D. Lewis, Y. Yang, T. Rose, F. Li, RCV1: A New Benchmark Collection for Text Categorization Research, J. of Machine Learning Research 5, 361–397 (2004).
9. S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, Trawling the Web for Emerging Cyber-Communities, Proceedings of the Eighth International World Wide Web Conference, Toronto, Canada, 1999.
10. K. Makino and T. Uno, New Algorithms for Enumerating All Maximal Cliques, LNCS 3111 (Proc. SWAT 2004), 260–272 (2004).
11. C. D. Manning, P. Raghavan and H. Schütze, Introduction to Information Retrieval, Cambridge University Press, (2008).
12. T. Nakahara, T. Uno, Y. Hamuro, Prediction Model Using Micro-clustering, KES2014, 1488–1494 (2014).
13. E. Tomita, A. Tanaka and H. Takahashi, The Worst-case Time Complexity for Generating all Maximal Cliques and Computational Experiments, Theoretical Computer Science 363, 28–42 (2006).
14. UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/.
15. V. Satuluri, S. Parthasarathy, Y. Ruan, Local Graph Sparsification for Scalable Clustering, SIGMOD Conference 2011, pp. 721-732 (2011).
16. V. Satuluri, S. Parthasarathy, Scalable Graph Clustering using Stochastic Flows: Applications to Community Discovery, SIGKDD2009, 737–746 (2009)

17. S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm for generating all the maximal independent sets, SIAM J. Comput. 6, 505–517 (1977).

18. T. Uno, T. Asai, Y. Uchida, H. Arimura, An Efficient Algorithm for Enumerating Closed Patterns in Transaction Databases, LNAI 3245, 16–31 (2004).

19. T. Uno, M. Kiyomi, H. Arimura, LCM ver. 2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets, IEEE ICDM'04 Workshop FIMI'04 (2004).

20. T. Uno, An Efficient Algorithm for Solving Pseudo Clique Enumeration Problem, Algorithmica 56, 3–16 (2010).