Tables, bounds and graphics of the smallest known sizes of complete caps in the spaces $\text{PG}(3, q)$ and $\text{PG}(4, q)$

Daniele Bartoli
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,
Via Vanvitelli 1, Perugia, 06123, Italy. E-mail: daniele.bartoli@unipg.it

Alexander A. Davydov, Alexey A. Kreshchuk
Institute for Information Transmission Problems (Kharkevich institute)
Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, GSP-4, Moscow, 127994
Russian Federation. E-mail: {adav,krsch}@iitp.ru

Stefano Marcugini and Fernanda Pambianco
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,
Via Vanvitelli 1, Perugia, 06123, Italy. E-mail: {stefano.marcugini,fernanda.pambianco}@unipg.it

Abstract
In this paper we present and analyze computational results concerning small complete caps in the projective spaces $\text{PG}(N, q)$ of dimension $N = 3$ and $N = 4$ over the finite field of order q. The results have been obtained using randomized greedy algorithms and the algorithm with fixed order of points (FOP). The computations have been done in relatively wide regions of q values; such wide regions are not considered in literature for $N = 3, 4$. The new complete caps are the smallest known. Basing on them, we obtained new upper bounds on $t_2(N, q)$, the minimum size of a complete cap in $\text{PG}(N, q)$, in particular,

$$t_2(N, q) < \sqrt{N + 2} \cdot q^{\frac{N-1}{2}} \sqrt{\ln q}, \quad q \in L_N, \quad N = 3, 4,$$

*The research of D. Bartoli, S. Marcugini and F. Pambianco was supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project “Geometrie di Galois e strutture di incidenza”) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM). The research of A.A. Davydov and A.A. Kreshchuk was carried out at the IITP RAS at the expense of the Russian Foundation for Sciences (project 14-50-00150).
\[
t_2(N, q) < \left(\sqrt{N + 1} + \frac{1.3}{\ln(2q)} \right) \frac{N-1}{q^2} \sqrt{\ln q}, \quad q \in L_N, \quad N = 3, 4,
\]

where

\[L_3 := \{q \leq 4673, \text{ prime} \} \cup \{5003, 6007, 7001, 8009\},\]
\[L_4 := \{q \leq 1361, \text{ prime} \} \cup \{1409\}.
\]

Our investigations and results allow to conjecture that these bounds hold for all \(q\).

Mathematics Subject Classification (2010). 51E21, 51E22, 94B05.

Keywords. Small complete caps, projective spaces, upper bounds on the smallest size of a complete cap, quasi-perfect codes

1 Introduction

Let \(PG(N, q)\) be the \(N\)-dimensional projective space over the Galois field \(\mathbb{F}_q\) of order \(q\). A cap \(K\) in \(PG(N, q)\) is a set of points no three of which are collinear. A cap \(K\) is complete if it is not contained in a larger cap or, equivalently, if every point of \(PG(N, q) \setminus K\) is collinear with two points of \(K\). Caps in \(PG(2, q)\) are also called arcs and they have been widely studied by many authors in the past decades. In particular, we refer to the surveys and the results in the works \([1, 6, 8, 9, 18, 19, 26, 30]\) (see also the references therein) for the known constructions and bounds on the size of complete arcs in projective planes. If \(N > 2\) only few constructions and bounds are known.

Caps and in particular arcs have been intensively studied for their connection with Coding Theory. A linear \(q\)-ary code with length \(n\), dimension \(k\), and minimum distance \(d\) is denoted by \([n, k, d]_q\). If a parity-check matrix of a linear \(q\)-ary code is obtained by taking as columns the homogeneous coordinates of the points of a cap in \(PG(N, q)\), then the code has minimum distance 4 (with the exceptions of the complete 5-cap in \(PG(3, 2)\) giving rise to the \([5, 1, 5]_2\) code and the complete 11-cap in \(PG(4, 3)\) corresponding to the Golay \([11, 6, 5]_3\) code). In particular, complete caps of size \(n\) in \(PG(N, q)\) correspond to non-extendable \([n, n - N - 1, 4]_q\) codes. In the case \(N = 2\) these codes are MDS, that is they attain the Singleton bound, whereas if \(N = 3\) they are Almost MDS, since their Singleton defect is equal to 1.

Another important parameter concerning linear codes is the covering radius. The covering radius of an \([n, k, d]_q\) code \(C\) is the minimum integer \(r = r(C)\) such that any vector of \(\mathbb{F}_q^n\) has distance at most \(r\) from \(C\). Complete caps correspond to quasi-perfect linear codes, that is codes with \(r(C) = \left\lfloor \frac{d-1}{2} \right\rfloor + 1\), since they have minimum distance 4 and covering radius 2; see also \([13, 17]\). The covering density \(\mu(C)\), introduced in \([17]\), is one of the parameters characterizing the covering quality of an \([n, k, d]\)-code \(C\) and it is
defined by
\[\mu(C) = \frac{1}{q^{n-k}} \sum_{i=0}^{r(C)} (q - 1)^i \binom{n}{i}. \]

Note also that caps are connected with quantum codes; see e.g. [23,34].

In general, a central problem concerning caps is to determine the spectrum of the possible sizes of complete caps in a given space; see [26,27] and the references therein. Of particular interest for applications to Coding Theory is the lower part of the spectrum; in fact, small complete caps in projective Galois spaces correspond to quasi-perfect linear codes with minimum distance 4 and small density; see for example [16,19].

Let \(t_2(N, q) \) be the minimum size of a complete cap in \(\text{PG}(N, q) \).

The exact values of \(t_2(N, q) \) are known only for small \(q \). For instance, \(t_2(3, q) \) is known only for \(q \leq 7 \); see [19, Tab. 3].

Whereas the trivial lower bound for \(t_2(N, q) \) is \(\sqrt{2}q^{(N-1)/2} \), general constructions of complete caps whose size is close to this lower bound are only known for \(q \) even; see [19,20,24,25,31]. According to the survey paper [27], the smallest known complete caps in \(\text{PG}(3, q) \), with \(q \) arbitrary large, have size approximately \(q^{3/2}/2 \) and were presented by Pellegrino in 1998 [32]. However, Pellegrino's completeness proof appears to present a major gap, and counterexamples can be found; see [10, Sect. 2]. Recently, using a modification of the approach of [29], the probabilistic upper bound \(cq^{N-1}/2 \log 300 q \), with \(c \) constant, for the value \(t_2(N, q) \) has been obtained; see [11,12]. Computer assisted results on small complete caps in \(\text{PG}(N, q) \) and \(\text{AG}(N, q) \) are given in [10,19,21,22,30,33]. Here and further, \(\text{AG}(N, q) \) is the \(N \)-dimensional affine space over the field \(\mathbb{F}_q \).

In this paper we obtain by computer searches results concerning upper bounds on the functions \(t_2(3, q) \) and \(t_2(4, q) \). These searches requested a huge amount of memory and execution time. In particular, we constructed small complete caps in \(\text{PG}(3, q) \) and \(\text{PG}(4, q) \) using two different approaches: the algorithm with fixed order of points (FOP), for \(q \in L_3 \) in \(\text{PG}(3, q) \) and \(q \in L_4 \) in \(\text{PG}(4, q) \), and randomized greedy algorithms, for \(q \in G_3 \) in \(\text{PG}(3, q) \) and \(q \in G_4 \) in \(\text{PG}(4, q) \), where

\[
L_3 := \{ q \leq 4673, \text{ prime} \} \cup \{ 5003, 6007, 7001, 8009 \},
\]
\[
G_3 := \{ q \leq 3701, \text{ prime} \} \cup \{ 3803, 3907, 4001, 4289 \},
\]
\[
L_4 := \{ q \leq 1361, \text{ prime} \} \cup \{ 1409 \},
\]
\[
G_4 := \{ q \leq 463, \text{ prime} \}.
\]

Note that such relatively wide regions of \(q \) values are not considered in literature for \(\text{PG}(3, q) \) and \(\text{PG}(4, q) \).

\footnote{In this work, calculations were performed using computational resources of Multipurpose Computing Complex of National Research Centre “Kurchatov Institute”, \url{http://computing.kiae.ru}}
Using the data obtained by the computer searches we present different functions which approximate the values $t_2(3, q)$ and $t_2(4, q)$, as done in [1–6, 8, 9] for the minimum size of complete arcs in projective planes $\text{PG}(2, q)$. The main estimates obtained in this paper are given in the following theorem, see also Sections 5 and 6.

Theorem 1.1. Let $t_2(N, q)$ be the minimum size of a complete cap in the projective space $\text{PG}(N, q)$. Let L_3 and L_4 be the sets of values of q given by relations (1.1) and (1.3), respectively. The following upper bounds on $t_2(N, q)$ hold.

A. Upper bounds with the constant multiplier $\sqrt{N + 2}$:

$$t_2(N, q) < \sqrt{N + 2} \cdot q^{\frac{N-1}{2}} \sqrt{\ln q}, \quad q \in L_N, \quad N = 3, 4. \quad (1.5)$$

B. Upper bounds with a decreasing multiplier $\beta_N(q)$:

$$t_2(N, q) < \beta_N(q)q^{\frac{N-1}{2}} \sqrt{\ln q}, \quad \beta_N(q) = \sqrt{N + 1} + \frac{1.3}{\ln(2q)}, \quad q \in L_N, \quad N = 3, 4. \quad (1.6)$$

Our investigations and results (see figures and observations in Sections 5 and 6) allow to conjecture that the estimates of Theorem 1.1 especially the bound with constant multiplier $\sqrt{N + 2}$, hold for every prime power q.

Conjecture 1.2. In $\text{PG}(3, q)$ and $\text{PG}(4, q)$, the upper bounds (1.5), (1.6) hold for all q.

Remark 1.3. In the works [2–4], the sizes of small complete arcs in $\text{PG}(2, q)$ are given for all power prime $q \leq 301813$. In this work, we obtained complete arcs in $\text{PG}(2, q)$ for $301813 < q \leq 321007$, q power prime. The results of [2–4] and of this work give the following upper bounds for $\text{PG}(2, q)$:

$$t_2(2, q) < 1.05 \sqrt{3q \ln q} < \sqrt{2 + 2} \cdot q^{\frac{2}{2}} \sqrt{\ln q}, \quad q \leq 321007.$$

So, the upper bounds (1.5) hold also for $N = 2$ in a wide region of q values.

As far as this is known to the authors, complete caps obtained in this work are the smallest known in literature for $\text{PG}(3, q)$ with $q \in \{61, 67, 71, 73, 79, 83\}$, $97 \leq q \in L_3$, and $\text{PG}(4, q)$ with $17 \leq q \in L_4$. In particular, the results of this work improve ones of the papers [19, 22, 33].

The paper is organized as follows. In Section 2, we describe the main features of the algorithms used in our searches. In Section 3, some types of upper bounds on $t_2(N, q)$ are discussed. In Section 4, we shortly give the content of tables collecting sizes of small complete caps obtained with the help of the algorithms of Section 2 (the tables are placed in Appendix). In Sections 5 and 6 we analyze the results presented in the tables and illustrated the analysis by graphics. In Section 7, we do some conclusions from the present work.

Some results of this paper were briefly presented in [7].
2 Algorithms for small caps in PG(N, q)

In this section we describe two different algorithms used to construct small complete caps in PG($3, q$) and PG($4, q$). First of all note that the number of points of PG(N, q) is of order q^N and for instance, if $q \simeq 5 \cdot 10^3$ then $|\text{PG}(3, q)| \simeq 1.2 \cdot 10^{11}$: this represents a strong constraint for any algorithm which investigates subsets of points in projective spaces.

2.1 Algorithm with fixed order of points (FOP)

This algorithm is a particular type of random algorithm. Some variants of the algorithm FOP for PG($2, q$) and PG($3, q$) are given in [1, 2, 4, 7, 8]. In this work we describe the algorithm FOP for the arbitrary space PG(N, q).

Firstly we fix a particular order on the points of PG(N, q). The algorithm builds a complete cap step by step adding a new point at each step, until a complete cap is obtained.

Let $K^{(i-1)}$ be the cap obtained at the $(i-1)$-th step. Among the points not lying on bisecants of $K^{(i-1)}$, the first point in the fixed order is added to $K^{(i-1)}$ to obtain $K^{(i)}$.

Suppose that the points of PG(N, q) are ordered as $A_1, A_2, \ldots, A_{qN+1}$. Consider the empty set as root of the search and let $K^{(j)}$ be the partial solution obtained in the j-th step, as extension of the root. We put

$$K^{(0)} = \emptyset, \quad K^{(1)} = \{A_1\}, \quad K^{(2)} = \{A_1, A_2\}, \quad m(1) = 2, \quad K^{(j+1)} = K^{(j)} \cup \{A_{m(j)}\},$$

$$m(j) = \min \left\{ i \in \left[m(j-1) + 1, \frac{q^{N+1} - 1}{q-1} \right] \mid \# P, Q \in K^{(j)} : A_i, P, Q \text{ are collinear} \right\},$$

i.e. $m(j)$ is the minimum subscript i such that the corresponding point A_i does not lie on a bisecant of $K^{(j)}$. The process ends when a complete cap is obtained, that is no other points can be added.

We decided to choose a particular order on the points of PG(N, q). For seek of simplicity, we considered only q prime. Let the elements of the field $\mathbb{F}_q = \{0, 1, \ldots, q-1\}$ be treated as integers modulo q. Let the points A_i of PG(N, q) be represented in homogenous coordinates so that

$$A_i = (x_0^{(i)}, x_1^{(i)}, \ldots, x_N^{(i)}), \quad x_j^{(i)} \in \mathbb{F}_q,$$

where the leftmost non-zero element is 1. The points of PG(N, q) are sorted according to the lexicographic order on the $(N+1)$-tuples of their coordinates. This order is called a lexicographical order of points. We call lexicap a cap obtained by the algorithm FOP with the lexicographical order of points. We denote by $t_{\text{L}}^2(N, q)$ the size of a complete lexicap in PG(N, q). It is important that for such a lexicographical order for prime q, the size $t_{\text{L}}^2(N, q)$ of a complete lexicap and its set of points depend on N and q only.
From a geometrical point of view the lexicographical order of points is a random order. Clearly, different orders on the points of PG(N, q) can determine different size of the complete cap obtained by the algorithm. Due to our experiences in similar types of search (see [1, 2, 5, 6, 8, 9]) we can conjecture that the choice of the order determines only a small perturbation on the size of the complete caps obtained. For instance, in [8, Fig. 11], sizes of complete arcs in PG(2, q) obtained by the algorithm FOP with the lexicographical and the so-called Singer orders of points are compared. The percentage difference between the sizes is approximately in the interval $[-4\%, +4\%]$ for $q \geq 1000$.

Connections of the algorithm FOP with algorithms of Coding Theory are noted in [2, Remark 3.1] and [8, Remark 2.1].

\subsection{Randomized greedy algorithms}

A different approach can be used to obtain small complete caps in PG(N, q). In general, small complete caps in PG(N, q) obtained using randomized greedy algorithms have size smaller than those obtained with programs of type FOP as described in the previous subsection; see [1, 6, 8, 9, 18, 21].

The main difference between the two types of algorithm is that at every step a randomized greedy algorithm maximizes an objective function f and only some steps are executed in a random manner. The number of these steps, their ordinal numbers, and some other parameters of the algorithm have been taken intuitively. Also, if the same maximum of f can be obtained in distinct ways, one way is chosen randomly.

We start constructing a complete cap by using a starting point set S_0. In the i-th step one point is added to the set S_{i-1} and we obtain a point set S_i. As the value of the objective function f we consider the number of covered points in PG(N, q), that is, points that lie on bisecants of S_i.

On every random i-th step we take $d_{q, i}$ randomly chosen points of PG(N, q) not covered by S_{i-1} and compute the objective function f adding each of these $d_{q, i}$ points to S_{i-1}. The point providing the maximum of f is included into S_i. On every non-random j-th step we consider all points not covered by S_{j-1} and add to S_{j-1} the point providing the maximum of f.

As S_0 we can use a subset of points of an arc obtained in previous stages of the search.

A generator of random numbers is used for random choices. To obtain caps with distinct sizes, starting conditions of the generator are changed for the same set S_0. In this way the algorithm works in a convenient limited region of the search space to obtain examples improving the size of the cap from which the fixed points have been taken.

In order to obtain arcs with new sizes, sufficiently many attempts should be made with randomized greedy algorithms. “Predicted” sizes could be useful for understanding if a good result has been obtained. If the result is not close to the predicted size, the attempts are continued.
We obtain small complete caps in PG(N, q) in two stages.

At the 1-st stage, we take the frame as S_0 and create a starting complete cap K_0 using in the beginning of the process δ_q random steps with distinct $d_{q,i}$. All the subsequent steps are non-random.

At the 2-nd stage we execute n_q attempts to get a complete cap. For every attempt, the starting conditions of the random generator are different from the previous ones, whereas the set S_0 is the same. Two or three among the first five steps of every attempt are random, the rest of them are non-random.

The values $d_{q,i}$, δ_q, and n_q are given intuitively depending on q and (for $d_{q,i}$) on $|S_{i-1}|$ and on the stage of the process. Of course, CPU performance affects the algorithm parameters choice.

Cap sizes obtained by the randomized greedy algorithms depend on many factors, but in general the results are better than the ones obtained by the algorithm FOP. Unfortunately, this approach requires a huge amount of execution time and therefore this type of search has been executed only for a relatively small region of values of q.

3 General types of bounds for the value $t_2(N, q)$

Let $t_2(N, q)$ be the size of the smallest complete cap in PG(N, q). In this section we propose different types of bounds for these values, generalizing the approach proposed for estimates on $t_2(2, q)$ in [2,6,8]. Also, let $t^G_2(N, q)$ denote the smallest size of a complete cap in PG(N, q) obtained using greedy algorithms. Finally, remind that $t^L_2(N, q)$ is the size of the complete lexicap in PG(N, q) obtained by the algorithm FOP with the lexicographical order of points.

Let $\beta_N(q)$, $\beta_N^G(q)$, and $\beta_N^L(q)$ be some functions of q defined as follows:

$$\beta_N(q) = \frac{t_2(N, q)}{q^{\frac{N-1}{2}} \sqrt{\ln q}}, \quad \beta_N^G(q) = \frac{t^G_2(N, q)}{q^{\frac{N-1}{2}} \sqrt{\ln q}}, \quad \beta_N^L(q) = \frac{t^L_2(N, q)}{q^{\frac{N-1}{2}} \sqrt{\ln q}}. \quad (3.1)$$

From (3.1) we obtain

$$t_2(N, q) = \beta_N(q) q^{\frac{N-1}{2}} \sqrt{\ln q}, \quad t^G_2(N, q) = \beta_N^G(q) q^{\frac{N-1}{2}} \sqrt{\ln q}, \quad t^L_2(N, q) = \beta_N^L(q) q^{\frac{N-1}{2}} \sqrt{\ln q}. \quad (3.2)$$

Clearly $t_2(N, q) \leq \min\{t^G_2(N, q), t^L_2(N, q)\}$ and in general, due to the main features of the two algorithms, $t^G_2(N, q) \leq t^L_2(N, q)$ always holds. This implies

$$\beta_N(q) \leq \beta_N^G(q) \leq \beta_N^L(q), \quad \beta_N(q) \leq \min\{\beta_N^G(q), \beta_N^L(q)\}. \quad (3.3)$$

We consider two types of upper bounds on $t_2(N, q)$.

7
A. Upper bounds with the constant multiplier $\sqrt{N} + 2$. For this type, we consider upper bounds on $\beta_N(q)$ equal to a value dependent on N but independent of q.

B. Upper bounds with a decreasing multiplier $\beta_N(q)$. For this type, we find upper bounds on $\beta_N(q)$ as a decreasing function of q denoted by $\beta_{\text{up}}^N(q)$. This function looks like

$$\beta_{\text{up}}^N(q) = a + \frac{b}{\ln(cq)},$$

where a is a value dependent on N but independent of q, whereas b, c are constants independent of N and q.

4 The content of tables

Results of our computer searches are collected in tables given in Appendix.

In Table 1, for $q \in L_3$, we collected the sizes $t_L^2(3, q)$ (t_L^2 for short) of complete lexicaps in PG$(3, q)$ obtained using the algorithm FOP with the lexicographical order of points, see Section 2.1.

In Table 2, for $q \in G_3$, the sizes $t_G^2(3, q)$ (t_G^2 for short) of complete caps in PG$(3, q)$ obtained using randomized greedy algorithms, see Section 2.2 are given.

Note that for $q \in \{61, 67, 71, 73, 79, 83, 97\}$ sizes $t_G^2(3, q)$ in Table 2 improve the ones from [19, Table 7]. Also, the values of $t_G^2(3, q)$ given in Table 2 are smaller than the sizes of complete caps in AG$(3, q)$ obtained in [33, Section 3]. The improvements are written in Table 2 in bold font.

In Table 3 we collected the sizes $t_L^2(4, q)$ (t_L^2 for short) of complete lexicaps in PG$(4, q)$, $q \in L_4$, obtained by the algorithm FOP with lexicographical order of points, see Section 2.1.

In Table 4 we give the sizes $t_G^2(4, q)$ (t_G^2 for short) of complete caps in PG$(4, q)$, $q \in G_4$, obtained by the randomized greedy algorithms, see Section 2.2.

Note that the size $t_G^2(4, 17)$ in Table 4 improves the one from [19, Table 8]. Also, the values of $t_G^2(4, q)$ given in Table 4 are smaller than the sizes of complete caps in AG$(4, q)$ obtained in [22, Theorem 1.1]. The improvements are written in Table 4 in bold font.

5 Small complete caps in PG$(3, q)$

The values $t_L^2(3, q)$ written in Table 1 are shown in Figure 1 by the 2-nd solid black curve. In turn, the values $t_L^2(4, q)$, given in Table 3, are shown by the 2-nd solid black curve in Figure 2.

The values $t_G^2(3, q)$ from Table 2 are shown in Figure 1 by the bottom dashed blue curve. In the scale of Figure 1 the curves $t_L^2(3, q)$ and $t_G^2(3, q)$ are very close to each other.
Figure 1: PG(3, q). Upper bound $t_2(3, q) < \sqrt{3 + 2 \cdot q^{N-1}} \sqrt{\ln q} = \sqrt{5} \sqrt{q \ln q}$ (top dashed-dotted red curve) vs sizes $t^L_2(3, q)$ of complete lexicaps, $q \in L_3$ (the 2-nd solid black curve) and sizes $t^G_2(3, q)$ of complete caps obtained by greedy algorithms, $q \in G_3$ (bottom dashed blue curve).
$\sqrt{N + 2 \cdot q^{N-1}/2 \cdot \sqrt{\ln q}} = \sqrt{6q^{3/2} \sqrt{\ln q}}$

Figure 2: PG(4, q). Upper bound $t_2(4, q) < \sqrt{4 + 2 \cdot q^{4-1}/2 \cdot \sqrt{\ln q}} = \sqrt{6q^{3/2} \sqrt{\ln q}}$ (top dashed-dotted red curve) vs sizes $t_2^L(4, q)$ of complete lexicaps, $q \in L_4$ (the 2-nd solid black curve) and sizes $t_2^G(4, q)$ of complete caps obtained by greedy algorithms, $q \in G_4$ (bottom dashed blue curve).
Note that for all $q \in G_3$, we have $t^G_2(3, q) < t^L_2(3, q)$. So, as already pointed out above, the use of greedy algorithms provides better results, that is the size of the complete caps obtained is smaller. However, randomized greedy algorithms require in general more execution time than algorithm FOP, since they require more investigations at each step, trying to maximize a particular objective function as illustrated in Section 2.2. For this reason we have been able to obtain the data for a smaller region of values of q than by the FOP algorithm.

Figure 3a shows the percentage difference between $t^L_2(3, q)$ and $t^G_2(3, q)$.

![Figure 3a: PG(3, q)](image)

![Figure 3b: PG(4, q)](image)

Figure 3: **Percentage difference between** $t^L_2(N, q)$ **and** $t^G_2(N, q)$. a) $N = 3$, PG(3, q); b) $N = 4$, PG(4, q)

Observation 5.1. From Tables 1 and 2 and Figure 3a, one sees that the percentage difference between $t^L_2(3, q)$ and $t^G_2(3, q)$ given by

$$\frac{t^L_2(3, q) - t^G_2(3, q)}{t^L_2(3, q)} \times 100\%$$
is relatively small and it tends to decrease when \(q \) grows. In particular, in the region \(q \in [503 \ldots 3701] \) this difference decreases approximately from 7% to 4%.

Figure 4a shows the values \(\beta_3^L(q) \) and \(\beta_3^G(q) \) obtained by (3.1) from the sizes collected in Tables 1 and 2. Also, in this figure, upper bounds \(\beta_{3}^{up}(q) = \sqrt{N + 1 + \frac{1.3}{\ln(2q)}} = 2 + \frac{1.3}{\ln(2q)} \) and the line-bound \(y = \sqrt{N + 2} = \sqrt{5} \) are presented in red color.

![Figure 4a](image)

Figure 4: Upper bounds \(\beta_N(q) = \frac{t_{2}(N,q)}{q \sqrt{\ln q}} < \sqrt{N + 2} \) (dashed-dotted red line \(y = \sqrt{N + 2} \)) and \(\beta_N(q) < \beta_{N}^{up}(q) = \sqrt{N + 1 + \frac{1.3}{\ln(2q)}} \) (top dashed red curve) vs values of \(\beta_N^L(q), q \in L_N \) (the 2-nd solid black curve) and \(\beta_N^G(q), q \in G_N \) (bottom solid blue curve).

a) \(N = 3, \ PG(3, q) \); b) \(N = 4, \ PG(4, q) \)

By Tables 1, 2 and Figure 4a, it holds that, see (3.3),

\[
\beta_3(q) \leq \min\{\beta_3^G(q), \beta_3^L(q)\} < \sqrt{N + 2} = \sqrt{5}, \quad q \in L_3; \tag{5.1}
\]
\[\beta_3(q) \leq \min\{\beta_3^G(q), \beta_3^L(q)\} < \beta_3^{up}(q) = \sqrt{N + 1} + \frac{1.3}{\ln(2q)} = \sqrt{3 + 1} + \frac{1.3}{\ln(2q)} = 5.2 \]

This implies upper bounds for PG(3, q) in Theorem 1.1. The upper bound (1.5) for \(N = 3\), based on (5.1), is shown by the dashed-dotted red curve in Figure 1. This bound is presented also by the dashed-dotted red line \(y = \sqrt{N + 2} = \sqrt{5}\) in Figure 1a. The bound (1.6) for \(N = 3\), based on (5.2), is given by the dashed red curve in Figure 4a.

Figure 5a shows the percentage differences between \(\sqrt{5}\) and \(\beta_3^L(q)\) and \(\sqrt{5q\ln q}\) and \(t_2^L(3, q)\). (These percentage differences are equal to each other.)

Observation 5.2. From Table 1 and Figure 4a one sees that the curve \(\beta_3^L(q)\) has a decreasing trend. Therefore the difference \(\sqrt{5} - \beta_3^L(q)\), and the corresponding percent differences

\[\frac{\sqrt{5} - \beta_3^L(q)}{\sqrt{5}} \times 100\% = \frac{\sqrt{5q\ln q} - t_2^L(3, q)}{\sqrt{5q\ln q}} \times 100\%, \]

tend to increase when \(q\) grows, see Figure 5a. This raises confidence in the correctness of the bound (1.5) for \(N = 3\).

Concerning the execution time, the search for the small complete cap in PG(3, 7001) lasted 2 months with a processor AMD Opteron(TM) Processor 6212, 2.6 Ghz, and used 85GB of memory.

6 Small complete caps in PG(4, q)

Figures 2 and 3b show the values \(t_2^L(4, q), t_2^G(4, q)\) collected in Tables 3, 4 and the corresponding values \(\beta_4^L(q), \beta_4^G(q)\) obtained by (3.1). Also, in these figures, upper bounds are presented. Note that in the scale of Figure 2 the curves \(\sqrt{6q^{\frac{3}{2}}\ln q}, t_2^L(4, q)\), and \(t_2^G(4, q)\) are very close to each other.

Figure 3b shows the percentage difference between \(t_2^L(4, q)\) and \(t_2^G(4, q)\).

Observation 6.1. Even if for all \(q \in G_4\) the inequality \(t_2^G(4, q) < t_2^L(4, q)\) holds, see Figure 2, the difference in percentage between these two values given by

\[\frac{t_2^L(4, q) - t_2^G(4, q)}{t_2^L(4, q)} \times 100\% \]

is relatively small and it tends to decrease when \(q\) grows, see Figure 3b. In particular, in the region \(q \in [101 \ldots 443]\) this difference decreases approximately from 10% to 5%.
Figure 5: Percentage difference between $\frac{\sqrt{5} - \beta_L^3(q)}{\sqrt{5}} \cdot 100\% = \frac{\sqrt{5}q\sqrt{\ln q - t_2^L(3,q)}}{\sqrt{5}q\sqrt{\ln q}} \cdot 100\%$ for $N = 3$, PG(3, q).

b) PG(4, q)

Percentage difference between $\frac{\sqrt{6} - \beta_L^4(q)}{\sqrt{6}} \cdot 100\% = \frac{\sqrt{6}q^3\sqrt{\ln q - t_2^L(4,q)}}{\sqrt{6}q^3\sqrt{\ln q}} \cdot 100\%$ for $N = 4$, PG(4, q).

a) PG(3, q)

b) PG(4, q)
Figure 4b shows the values $\beta^L_4(q)$ and $\beta^G_4(q)$ obtained by (3.1) from the sizes collected in Tables 3 and 4. Also, in this figure, upper bounds $\beta^\text{up}_4(q) = \sqrt{N+1} + \frac{1.3}{\ln(2q)} = \sqrt{4+1} + \frac{1.3}{\ln(2q)} = \sqrt{5} + \frac{1.1}{\ln q}$, $q \in L_4$ and the line-bound $y = \sqrt{N+2} = \sqrt{6}$ are presented in red color.

From Tables 3, 4 and Figure 4b, we have, see (3.3), $\beta_4(q) \leq \min\{\beta^G_4(q), \beta^L_4(q)\} < \sqrt{N+2} = \sqrt{6}$, $q \in L_4$; (6.1)

$\beta_4(q) \leq \min\{\beta^G_4(q), \beta^L_4(q)\} < \beta^\text{up}_4(q) = \sqrt{N+1} + \frac{1.3}{\ln(2q)} = \sqrt{4+1} + \frac{1.3}{\ln(2q)} = \sqrt{5} + \frac{1.1}{\ln q}$, $q \in L_4$. (6.2)

This implies bounds for PG(4, q) in Theorem 1.1

The upper bounds (1.5) for $N = 4$, based on (6.1), are shown by the dashed-dotted red curves in Figure 2. This bound is presented also by the dashed-dotted red line $y = \sqrt{N+2} = \sqrt{6}$ in Figure 4b. The bound (1.6) for $N = 4$, based on (6.2), is given by the dashed red curve in Figure 4b.

Figure 5b shows the percentage differences between $\sqrt{6}$ and $\beta^L_4(q)$ and $\sqrt{6}q\sqrt{\ln q}$ and $t^L_2(4,q)$. (These percentage differences are equal to each other.)

Observation 6.2. From Table 3 and Figure 4b one sees that the curve $\beta^L_4(q)$ have a decreasing trend. Therefore the difference $\sqrt{6} - \beta^L_4(q)$ and the corresponding percent differences

$$\frac{\sqrt{6} - \beta^L_4(q)}{\sqrt{6}} \times 100\% = \frac{\sqrt{6}q \frac{3}{2} \sqrt{\ln q} - t^L_2(3,q)}{\sqrt{6}q \frac{3}{2} \sqrt{\ln q}} \times 100\%$$

tend to increase when q grows, see Figure 5b. This raises confidence in the correctness of the bound (1.3) for $N = 4$.

7 Conclusion

In this paper we presented and analyze computational results concerning small complete caps in PG(3, q), $q \leq 4673$, q prime, and $q = 5003, 6007, 7001, 8009$, and PG(4, q), $q \leq 1361$, q prime, and $q = 1409$.

The results have been obtained using randomized greedy algorithms and the algorithm with fixed order of points (FOP). Tables 1–4 and Figures 1–5 show that the sizes $t^G_2(N,q)$ of complete caps obtained by greedy algorithms are smaller than sizes $t^L_2(N,q)$ of complete caps formed by the algorithm FOP with the lexicographical order of points. This allows, in particular, to increase the regions of q values where the proposed upper bounds hold, see Figures 1–4 and relations (3.3), (5.1), (5.2), (6.1), (6.2).
In the other side, the percent difference between \(t^L_2(N,q) \) and \(t^G_2(N,q) \) is relatively small and it decreases when \(q \) grows, see Observations 5.1 and 6.1. Execution time of greedy algorithms is essentially greater than for the algorithm FOP. The sizes \(t^G_2(N,q) \) depend not only on \(q \) and \(N \) but also on parameters \(d_{q,i}, \delta_q, n_q \) of greedy algorithms, see Section 2.2. These parameters are not always chosen optimal due to restrictions of the computer time.

At the same time, the sizes \(t^L_2(N,q) \) depend on \(q \) and \(N \) only. Therefore the behavior of the curves \(\beta^L_N(q) \) obtained from \(t^L_2(N,q) \) allows to understand the order of value and effectively estimate the smallest sizes \(t_2(N,q) \) of complete caps for \(N = 3,4 \) in the considered regions of \(q \), see Figures 4, 5.

Moreover, the decreasing trend of the curves \(\beta^L_N(q) \), see Figures 4, 5, allow us to conjecture that the upper bounds on \(t_2(3,q) \) and \(t_2(4,q) \) we obtained, especially the bounds \((1.5) \) with constant multiplier \(\sqrt{N+2} \), hold for any \(q \) prime power.

As far as this is known to the authors, new complete caps obtained in this work are the smallest known in literature.

8 Appendix. Tables of sizes of the small complete caps in \(\text{PG}(3,q) \) and \(\text{PG}(4,q) \)

In Table 1, for \(q \in L_3 \), we collected the sizes \(t^L_2(3,q) \) (\(t^L_2 \) for short) of complete lexicaps in \(\text{PG}(3,q) \) obtained using the algorithm FOP with the lexicographical order of points, see Section 2.1.

In Table 2, for \(q \in G_3 \), the sizes \(t^G_2(3,q) \) (\(t^G_2 \) for short) of complete caps in \(\text{PG}(3,q) \) obtained using randomized greedy algorithms, see Section 2.2, are given.

In Table 3 we collected the sizes \(t^L_2(4,q) \) (\(t^L_2 \) for short) of complete lexicaps in \(\text{PG}(4,q) \), \(q \in L_4 \), obtained by the algorithm FOP with lexicographical order of points, see Section 2.1.

In Table 4 we give the sizes \(t^G_2(4,q) \) (\(t^G_2 \) for short) of complete caps in \(\text{PG}(4,q) \), \(q \in G_4 \), obtained by the randomized greedy algorithms, see Section 2.2.
Table 1. Sizes $t^L_2(3, q) = t^L_2$ of complete lexicaps in $\text{PG}(3, q)$, $q \in L_3$

q	t^L_2												
2	8	3	8	5	16	7	23	11	37	13	49	17	69
19	71	23	91	29	118	31	125	37	156	41	175	43	183
47	202	53	232	59	257	61	273	67	304	71	324	73	328
79	356	83	382	89	410	97	449	101	474	103	481	107	502
109	512	113	540	127	603	131	626	137	660	139	671	149	725
151	732	157	761	163	790	167	814	173	854	179	874	181	893
191	944	193	951	197	981	199	990	211	1050	223	1112	227	1138
229	1154	233	1179	239	1212	241	1208	251	1275	257	1300	263	1334
269	1368	271	1381	277	1412	281	1429	283	1442	293	1501	307	1582
311	1605	313	1619	317	1628	331	1720	337	1750	347	1801	349	1813
353	1841	359	1868	367	1912	373	1952	379	1989	383	2002	389	2043
397	2083	401	2113	409	2149	419	2205	421	2219	431	2267	433	2291
439	2329	443	2342	449	2384	457	2419	461	2447	463	2462	467	2476
479	2549	487	2596	491	2621	499	2668	503	2692	509	2735	521	2791
523	2801	541	2913	547	2931	557	2988	563	3024	569	3057	571	3084
577	3112	587	3170	593	3195	599	3248	601	3254	607	3260	613	3317
617	3334	619	3356	631	3430	641	3482	643	3493	647	3512	653	3543
659	3592	661	3601	673	3676	677	3693	683	3706	691	3777	701	3832
709	3873	719	3934	727	3992	733	4044	739	4056	743	4080	751	4117
757	4154	761	4184	769	4229	773	4266	787	4337	797	4403	809	4468
811	4471	821	4544	823	4565	827	4578	829	4582	839	4652	853	4725
857	4764	859	4769	863	4784	877	4856	881	4886	883	4897	887	4920
907	5030	911	5076	919	5102	929	5187	937	5214	941	5249	947	5277
953	5318	967	5404	971	5433	977	5447	983	5507	991	5566	997	5580
1009	5671	1013	5672	1019	5724	1021	5713	1031	5779	1033	5807	1039	5822
1049	5900	1051	5908	1061	5979	1063	5976	1069	6010	1087	6132	1091	6142
1093	6158	1097	6195	1103	6205	1109	6242	1117	6307	1123	6332	1129	6358
1151	6495	1153	6510	1163	6554	1171	6628	1181	6701	1187	6716	1193	6745
1201	6797	1213	6886	1217	6912	1223	6935	1229	6957	1231	7002	1237	7025
1249	7100	1259	7164	1277	7265	1279	7286	1283	7274	1289	7343	1291	7341
1297	7397	1301	7411	1303	7415	1307	7452	1319	7523	1321	7519	1327	7552
Table 1. Continue 1. Sizes $t_L^2(3, q) = t_L^2$ of complete lex caps in $\text{PG}(3, q)$, $q \in L_3$

q	t_L^2										
1361	7766	1367	7830	1373	7838	1381	7913	1399	7997	1409	8054
1427	8178	1429	8176	1433	8207	1439	8236	1447	8281	1451	8318
1459	8381	1471	8441	1481	8495	1483	8538	1487	8530	1489	8557
1499	8613	1511	8676	1523	8769	1531	8814	1543	8895	1549	8914
1559	8955	1567	9020	1571	9064	1579	9103	1583	9131	1597	9212
1607	9276	1609	9294	1613	9315	1619	9340	1621	9369	1627	9403
1657	9575	1663	9608	1667	9643	1669	9640	1693	9810	1697	9818
1709	9902	1721	9969	1723	9990	1733	10063	1741	10101	1747	10127
1759	10206	1777	10297	1783	10358	1787	10368	1789	10393	1801	10450
1823	10605	1831	10653	1847	10748	1861	10837	1867	10869	1871	10902
1877	10918	1879	10943	1889	11006	1901	11122	1907	11113	1913	11154
1933	11296	1949	11376	1951	11413	1973	11563	1979	11591	1987	11632
1997	11672	1999	11698	2003	11718	2011	11746	2017	11778	2027	11848
2039	11952	2053	12027	2063	12082	2069	12159	2081	12184	2083	12229
2089	12250	2099	12297	2111	12392	2113	12387	2129	12482	2131	12523
2141	12544	2143	12588	2153	12629	2161	12699	2179	12787	2203	12957
2213	13025	2221	13062	2237	13153	2239	13161	2243	13208	2251	13259
2269	13388	2273	13405	2281	13448	2287	13464	2293	13524	2297	13539
2311	13616	2333	13760	2339	13811	2341	13829	2347	13849	2351	13890
2371	13997	2377	14066	2381	14073	2383	14063	2389	14123	2393	14142
2411	14247	2417	14280	2423	14332	2437	14427	2441	14466	2447	14468
2467	14581	2473	14654	2477	14634	2503	14818	2521	14934	2531	15021
2543	15058	2549	15121	2551	15140	2557	15184	2579	15283	2591	15345
2609	15485	2617	15563	2621	15582	2633	15625	2647	15723	2657	15809
2663	15820	2671	15934	2677	15945	2683	15933	2687	15985	2689	15992
2699	16062	2707	16090	2711	16180	2713	16139	2719	16172	2729	16255
2741	16310	2749	16371	2753	16385	2767	16473	2777	16552	2789	16641
2797	16699	2801	16713	2803	16739	2819	16820	2833	16905	2837	16946
2851	17029	2857	17062	2861	17059	2879	17176	2887	17225	2897	17324
2909	17395	2917	17429	2927	17496	2939	17556	2953	17657	2957	17704

18
Table 1. Continue 2. Sizes $t_2^L(3, q) = t_2^L$ of complete lexicaps in $PG(3, q)$, $q \in L_3$

q	t_2^L										
2969	17759	2971	17782	2999	17935	3001	17935	3009	18275	3023	18401
3037	18200	3041	18237	3049	18444	3067	18537	3079	18549	3083	18580
3089	18524	3109	18643	3119	18713	3121	18707	3137	18818	3163	18971
3169	19034	3181	19109	3187	19155	3191	19210	3203	19218	3209	19274
3211	19353	3221	19327	3229	19402	3251	19540	3257	19586	3259	19613
3299	19841	3301	19853	3307	19903	3313	19962	3319	20011	3323	20059
3331	20033	3343	20159	3347	20185	3359	20246	3361	20261	3371	20305
3389	20432	3391	20447	3407	20537	3413	20523	3433	20681	3449	20790
3461	20907	3463	20885	3467	20909	3469	20946	3491	21082	3499	21118
3517	21272	3527	21292	3529	21323	3533	21345	3539	21389	3541	21409
3557	21476	3559	21476	3571	21571	3581	21654	3583	21661	3593	21730
3613	21819	3617	21872	3623	21911	3631	21993	3643	22053	3659	22143
3671	22211	3673	22237	3677	22286	3691	22303	3697	22397	3701	22439
3719	22507	3727	22560	3733	22613	3739	22691	3761	22789	3767	22821
3779	22909	3793	22979	3797	23032	3803	23071	3821	23164	3823	23168
3847	23346	3851	23385	3853	23396	3863	23411	3877	23570	3881	23563
3907	23769	3911	23768	3917	23769	3919	23824	3923	23832	3929	23865
3943	23967	3947	24005	3967	24114	3989	24253	4001	24351	4003	24349
4013	24419	4019	24472	4021	24481	4027	24530	4049	24631	4051	24665
4073	24838	4079	24798	4091	24888	4093	24919	4099	24989	4111	25051
4129	25139	4133	25184	4139	25232	4153	25311	4157	25312	4159	25358
4201	25606	4211	25720	4217	25712	4219	25756	4229	25802	4231	25807
4243	25896	4253	25968	4259	25994	4261	26014	4271	26091	4273	26073
4289	26178	4297	26213	4327	26421	4337	26482	4339	26491	4349	26560
4363	26666	4373	26704	4391	26864	4397	26882	4409	26967	4421	27021
4441	27173	4447	27221	4451	27230	4457	27270	4463	27306	4481	27417
4493	27512	4507	27619	4513	27641	4517	27683	4519	27678	4523	27658
4549	27845	4561	27949	4567	27958	4583	28080	4591	28144	4597	28195
4621	28322	4637	28446	4639	28421	4643	28454	4649	28487	4651	28525
4663	28614	4673	28667	5003	30823	6007	37344	7001	43831	8009	50515
Table 2. Sizes $t_G^2(3,q) = t_G^2$ of complete caps in $\text{PG}(3,q)$ obtained using randomized greedy algorithms, $q \in G_3$

q	t_G^2								
2	3	3	8	5	12	7	17	11	30
19	56	23	72	29	96	31	104	37	128
47	169	53	195	59	220	61	229	67	255
79	309	83	327	89	355	97	392	101	412
109	447	113	466	127	536	137	583	139	598
151	653	157	687	163	717	167	734	173	761
191	843	193	859	197	873	199	884	211	944
229	1043	233	1056	239	1091	241	1095	251	1155
269	1245	271	1249	277	1286	281	1304	283	1313
311	1459	313	1470	317	1489	331	1560	337	1597
353	1670	359	1709	367	1748	373	1787	379	1814
397	1910	401	1929	409	1973	419	2023	421	2037
439	2134	443	2149	449	2191	457	2228	461	2252
479	2351	487	2391	491	2414	499	2463	503	2478
523	2591	541	2696	547	2720	557	2777	563	2813
577	2890	587	2949	593	2982	599	3009	601	3018
617	3114	619	3103	631	3174	641	3227	643	3243
659	3322	661	3325	673	3405	677	3419	683	3462
709	3601	719	3638	727	3702	733	3750	739	3760
757	3868	761	3893	769	3925	773	3949	787	4030
811	4181	821	4220	823	4217	827	4248	829	4264
857	4431	859	4421	863	4454	877	4529	881	4558
907	4701	911	4739	919	4768	929	4829	937	4872
953	4971	967	5037	971	5060	977	5096	983	5125
1009	5283	1013	5308	1019	5345	1021	5374	1031	5402
1049	5503	1051	5514	1061	5564	1063	5578	1069	5616
1093	5745	1097	5766	1103	5794	1109	5835	1117	5896
1151	6088	1153	6093	1163	6137	1171	6192	1181	6269
1201	6381	1213	6428	1217	6455	1223	6482	1229	6509
1249	6645	1259	6701	1277	6821	1279	6836	1283	6867
1297	6923	1301	6941	1303	6969	1307	6990	1319	7062
1361	7283	1367	7321	1373	7365	1381	7393	1399	7494
1427	7640	1429	7688	1433	7716	1439	7748	1447	7782
1459	7850	1471	7910	1481	7970	1483	7966	1487	8027
1499	8093	1511	8137	1523	8225	1531	8269	1543	8345
1559	8437	1567	8490	1571	8507	1579	8548	1583	8579

\[2\] The sizes improving the ones from [19, Table 7] and [33, Section 3] are written in bold font.
Table 2. Continue. Sizes $t_G^q(3, q) = t_G^q$ of complete caps in $\text{PG}(3, q)$ obtained using randomized greedy algorithms, $q \in G_3$

q	t_2^G								
1607	8715	1609	8722	1613	8748	1619	8764	1621	8788
1657	9011	1663	9049	1667	9065	1669	9067	1693	9215
1709	9314	1721	9383	1723	9384	1733	9437	1741	9488
1759	9616	1777	9708	1783	9739	1787	9785	1789	9771
1823	9969	1831	10042	1847	10117	1867	10218	1871	10283
1877	10298	1879	10324	1889	10398	1901	10448	1907	10473
1933	10647	1949	10727	1951	10732	1973	10887	1979	10919
1997	11044	1999	11039	2003	11062	2011	11092	2017	11148
2039	11307	2053	11376	2063	11435	2081	11534	2083	11537
2089	11587	2099	11637	2111	11714	2113	11733	2129	11828
2141	11906	2143	11932	2153	11974	2161	12032	2179	12138
2213	12325	2221	12387	2237	12488	2239	12525	2243	12529
2269	12686	2273	12694	2281	12746	2287	12781	2293	12819
2311	12920	2333	13047	2339	13089	2341	13147	2347	13145
2371	13285	2377	13324	2381	13348	2383	13375	2389	13403
2411	13608	2417	13563	2423	13603	2437	13713	2441	13706
2467	13876	2473	13883	2477	13943	2503	14121	2521	14250
2543	14394	2549	14404	2551	14431	2557	14462	2579	14593
2699	15059	2671	15101	2677	15180	2683	15223	2687	15235
2741	15579	2749	15635	2753	15644	2767	15744	2777	15791
2797	15919	2801	15942	2803	15968	2819	16095	2833	16150
2851	16257	2857	16326	2861	16342	2879	16485	2897	16848
2909	16636	2917	16702	2927	16751	2939	16841	2953	16896
2969	16981	2971	17052	2999	17188	3001	17212	3011	17264
3037	17466	3041	17451	3049	17530	3061	17589	3067	17628
3089	17727	3109	17819	3119	17897	3121	17900	3137	17995
3169	18214	3181	18287	3187	18329	3191	18335	3203	18442
3221	18562	3229	18620	3251	18775	3253	18768	3257	18774
3299	19054	3301	19036	3307	19130	3313	19165	3319	19215
3331	19287	3343	19367	3347	19361	3359	19466	3361	19449
3389	19643	3391	19632	3407	19740	3413	19806	3433	19897
3461	20058	3463	20062	3467	20102	3469	20093	3491	20234
3517	20430	3527	20511	3529	20494	3533	20548	3539	20580
3557	20697	3559	20667	3571	20782	3581	20839	3583	20850
3613	21081	3617	21037	3623	21164	3631	21220	3637	21193
3671	21390	3673	21489	3677	21463	3691	21514	3697	21529
3907	22859	4001	23401	4289	25225				
Table 3. Sizes $t_L^2(4, q) = t_L^2$ of complete lexicaps in $\text{PG}(4, q)$, $q \in L_4$

q	t_L^2								
2	16	3	16	5	44	7	74	11	157
17	316	19	378	23	509	29	745	31	833
41	1296	43	1396	47	1602	53	1937	59	2302
67	2831	71	3086	73	3228	79	3681	83	3960
97	5069	101	5409	103	5581	107	5920	109	6095
127	7761	131	8138	137	8737	139	8943	149	9967
157	10857	163	11503	167	11972	173	12620	179	13312
191	14763	193	15026	197	15489	199	15755	211	17255
227	19371	229	19633	233	20157	239	20985	241	21282
257	23511	263	24404	269	25342	271	25588	277	26497
283	27386	293	28913	307	31160	311	31754	313	32100
331	35017	337	36027	347	37724	349	38090	353	38793
367	41182	373	42261	379	43332	383	44038	389	45118
401	47359	409	48830	419	50717	421	51132	431	52980
439	54573	443	55309	449	56538	457	58157	461	58926
467	60094	479	62545	487	64212	491	64999	499	66689
509	68745	521	71375	523	71800	541	75708	547	77032
563	80569	569	81925	571	82440	577	83791	587	86086
599	88749	601	89304	607	90711	613	92127	617	93061
631	96338	641	98664	643	99215	647	100114	653	101572
661	103550	673	106602	677	107510	683	108942	691	111219
709	115495	719	118167	727	120203	733	121660	739	123174
751	126409	757	128030	761	129041	769	131161	773	132247
797	138787	809	141999	811	142507	821	145352	823	145837
829	147565	839	150278	853	154310	857	155338	859	156008
877	161115	881	162240	883	162756	887	163911	907	169825
919	173333	929	176239	937	178683	941	179900	947	181636
967	187579	971	188822	977	190636	983	192545	991	194948
1009	200504	1013	201779	1019	203602	1021	204253	1031	207445
1039	209945	1049	213006	1051	213705	1061	216874	1063	217563
1091	226516	1093	227235	1097	228418	1103	230322	1109	232422
1123	236956	1129	238987	1151	246325	1153	246977	1163	250167
1181	256352	1187	258447	1193	260448	1201	263240	1213	267271
1223	270732	1229	272856	1231	273487	1237	275468	1249	279794
1277	289573	1279	290388	1283	291795	1289	293821	1291	294584
1301	298264	1303	298829	1307	300381	1319	304605	1321	305314
1409	337667								

22
Table 4. Sizes $t_2^G(q) = t_2^G$ of complete caps in $\text{PG}(4,q)$, $q \in G_4$, obtained by greedy algorithms

q	t_2^G										
2	9	3	11	5	31	7	56	11	121	13	162
19	309	23	425	29	625	31	695	37	935	41	1106
47	1386	53	1687	59	2013	61	2123	67	2476	71	2723
79	3253	83	3535	89	3982	97	4526	101	4868	103	5023
109	5512	113	5814	127	7021	131	7437	137	7987	139	8161
151	9316	157	9899	163	10510	167	10958	173	11545	179	12223
191	13573	193	13798	197	14266	199	14511	211	15902	223	17360
229	18162	233	18605	239	19382	241	19682	251	20997	257	21766
269	23453	271	23702	277	24532	281	25122	283	25391	293	26821
311	29490	313	29785	317	30380	331	32529	337	35153	347	35118
353	36082	359	37065	367	38371	373	39422	379	40383	383	41100
397	43984	401	44547	409	45964	419	47636	421	47899	431	49819
439	51320	443	52148	449	53257	457	54478	461	55632	463	56057

References

[1] Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk A., Marcugini, S., Pambianco, F.: Upper bounds on the smallest size of a complete arc in $\text{PG}(2,q)$ under a certain probabilistic conjecture. Problems Inform. Transmission 50, 320–339 (2014)

[2] Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk, A., Marcugini, S., Pambianco, F.: Upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane based on computer search. J. Geometry 107, 89–117 (2016)

[3] Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk, A., Marcugini, S., Pambianco, F.: Tables, bounds and graphics of the smallest known sizes of complete arcs in the plane $\text{PG}(2,q)$ for all $q \leq 160001$ and sporadic q in the interval $[160801 \ldots 430007]$. arXiv:1312.2155v3 [math.CO] (2015) http://arxiv.org/abs/1312.2155v3

[4] Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk, A., Marcugini, S., Pambianco, F.: Tables, bounds and graphics of sizes of complete lexiarcs in the plane $\text{PG}(2,q)$ for all $q \leq 301813$ and sporadic q in the interval $[301897 \ldots 430007]$ obtained by an algorithm with fixed order of points (FOP). arXiv:1404.469v2[math.CO] (2015) http://arxiv.org/abs/1404.469v2

3The sizes improving the ones from [19, Table 8] and [22, Theorem 1.1] are written in bold font
[5] Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., Pambianco, F.: *On sizes of complete arcs in PG(2, q).* Discrete Math. **312**, 680–698 (2012)

[6] Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., Pambianco, F.: *New upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane.* J. Geometry **104**, 11–43 (2013)

[7] Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., Pambianco, F.: *New upper bounds on the smallest size of a complete cap in the space PG(3, q).* In: Proc. VII Int. Workshop on Optimal Codes and Related Topics, OC2013, Albena, Bulgaria, pp. 26–32 (2013) http://www.moi.math.bas.bg/oc2013/a4.pdf

[8] Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., Pambianco, F.: *New types of estimates for the smallest size of complete arcs in a finite Desarguesian projective plane.* J. Geometry **106**, 1–17 (2015)

[9] Bartoli, D., Faina, G., Marcugini, S., Pambianco, F.: *On the minimum size of complete arcs and minimal saturating sets in projective planes.* J. Geometry **104**, 409–419 (2013)

[10] Bartoli, D., Faina, G., Giulietti, M.: *Small complete caps in three-dimensional Galois spaces.* Finite Fields Appl. **24**, 184–191 (2013)

[11] D. Bartoli, S. Marcugini, F. Pambianco, A probabilistic construction of low density quasi-perfect linear codes, In *Proc. XIV Int. Workshop on Algebraic and Combinatorial Coding Theory, ACCT2014, Svetlogorsk, Russia*, pp. 51–56, 2014. [http://www.moi.math.bas.bg/acct2014/a8.pdf](http://www.moi.math.bas/bg/acct2014/a8.pdf)

[12] Bartoli, D., Marcugini, S., Pambianco, F.: *A construction of small complete caps in projective spaces,* J. Geometry, to appear, DOI 10.1007/s00022-016-0335-1.

[13] Brualdi, R.A., Litsyn, S., Pless, V.S.: *Covering radius.* In: Pless, V.S., Huffman, W.C., Brualdi, R.A. (eds) *Handbook of Coding Theory, Vol. 1*, pp. 755–826. Elsevier, Amsterdam, The Netherlands (1998)

[14] Brualdi, R.A., Pless, V.S., Wilson, R.M.: *Short codes with a given covering radius.* IEEE Trans. Inform. Theory **35**, 99–109 (1989)

[15] Cohen, G.D., Honkala, I.S., Litsyn, S., Lobstein, A.C.: *Covering Codes,* Elsevier, Amsterdam, The Netherlands (1997)

[16] Cohen, G.D., Karpovsky, M.G., Mattson Jr., H.F., Schatz, J.R.: *Covering radius - survey and recent results.* IEEE Trans. Inform. Theory **31**, 328–343 (1985)
[17] Cohen, G.D., Lobstein, A.C., Sloane, N.J.A.: Further results on the covering radius of codes. IEEE Trans. Inform. Theory 32, 680–694 (1986)

[18] Davydov, A.A., Faina, G., Marcugini, S., Pambianco, F.: Computer search in projective planes for the sizes of complete arcs. J. Geometry 82, 50–62 (2005)

[19] Davydov, A.A., Faina, G., Marcugini, S., Pambianco, F.: On sizes of complete caps in projective spaces $PG(n,q)$ and arcs in planes $PG(2,q)$. J. Geometry 94, 31–58 (2009)

[20] Davydov, A.A., Giulietti, M., Marcugini, S., Pambianco, F.: New inductive constructions of complete caps in $PG(n,q)$, q even. J. Combin. Des. 18, 177–201 (2010)

[21] Davydov, A.A., Marcugini, S., Pambianco, F.: Complete caps in projective spaces $PG(n,q)$. J. Geometry 80, 23–30 (2004)

[22] Faina, G., Pasticci, F., Schmidt, L.: Small complete caps in Galois spaces. Ars Combin. 105, 299–303 (2012)

[23] Qiang Fu, Ruihu Li, Gen Xu, Luobin Guo: Entanglement-assisted quantum codes of distance four constructed from caps in $PG(5,4)$ and $PG(6,4)$. In: Int. Conf. on Future Computer and Communication Eng. (ICFCCE 2014), Tianjin, China, pp: 153 - 156 (2014)

[24] Gabidulin, E.M., Davydov, A.A., Tombak, L.M.: Linear codes with covering radius 2 and other new covering codes. IEEE Trans. Inform. Theory 37, 219–224 (1991)

[25] Giulietti, M.: Small complete caps in $PG(n,q)$, q even. J. Combin. Des. 15, 420–436 (2007)

[26] Hirschfeld, J.W.P., Storme, L.: The packing problem in statistics, coding theory and finite projective spaces. J. Statist. Planning Infer. 72, 355–380 (1998)

[27] Hirschfeld, J.W.P., Storme, L.: The packing problem in statistics, coding theory and finite geometry: update 2001. In: Blokhuis, A., Hirschfeld, J.W.P. et al., (eds.) Finite Geometries, Developments of Mathematics, vol. 3, Proc. of the Fourth Isle of Thorns Conf., Chelwood Gate, 2000, pp. 201–246. Kluwer Academic Publisher, Boston (2001)

[28] Hirschfeld, J.W.P., Thas, J.A.: Open problems in finite projective spaces. Finite Fields Their Appl. 32, 44–81 (2015)

[29] Kim, J.H., Vu, V.: Small complete arcs in projective planes. Combinatorica 23, 311–363 (2003)
[30] Östergård, P.R.J.: Computer search for small complete caps. J. Geometry 69, 172–179 (2000)

[31] Pambianco, F., Storme, L.: Small complete caps in spaces of even characteristic. J. Combin. Theory Ser. A 75, 70–84 (1996)

[32] Pellegrino, G.: On complete caps, not ovaloids, in the space PG(3, q) with q odd. Rend. Circ. Mat. Palermo 47, 141–168 (1998)

[33] Platoni, I.: Complete caps in AG(3, q) from elliptic curves. J. Alg. Appl. 13, 1450050 (8 pages) (2014)

[34] Tonchev, V.D.: Quantum codes from caps. Discrete Math. 308, 6368–6372 (2008)