Daintain/AIF-1 Plays Roles in Coronary Heart Disease via Affecting the Blood Composition and Promoting Macrophage Uptake and Foam Cell Formation

Junhan Wanga,c,e Yanying Zhaob,e Wei Wanga,e Zhongxia Dua Dongjing Yana Chenhong Lid Zhengwang Chena

aKey Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; bCollege of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; cDepartment of laboratory, Affiliated hospital of Huazhong University of Science and Technology, Wuhan, China; dThe Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central of University for Nationalities, Wuhan, China; eThese authors contributed equally to this study

Key Words
Inflammatory factor daintain/AIF-1 • Superoxide dismutase (SOD) • Oxidized low density lipoprotein (ox-LDL) • Scavenger receptor A (SRA) • Atherosclerosis

Abstract
\textbf{Background:} Daintain/AIF-1 is an inflammatory polypeptide factor/allograft inflammatory factor 1 derived from macrophages. It is characterized in APOE−/− mice as a novel inflammatory factor associated with atherosclerosis. The purpose of this study was to characterize its function in human atherosclerosis. \textbf{Methods:} Immunohistochemistry was used to identify the expression of daintain/AIF-1 in vessel segments within and far from atherosclerotic plaques; High-performance liquid chromatography (HPLC) was used to display the effects of daintain/AIF-1 on C-reactive protein (CRP), oxidative capacity and superoxide dismutase (SOD) \textit{in vivo}; Oil Red O Staining was used to show the effects of daintain/AIF-1 on uptake of oxidized low density lipoprotein (ox-LDL) into \textit{U937} cells, a macrophage line; Western Blot was used to test scavenger receptor A (SRA) expression. \textbf{Results:} A high density of daintain/AIF-1 was observed in the tunica intima and media of coronary artery with atherosclerotic plaque, and fewer daintain/AIF-1 in the vessels without atherosclerotic plaque; Daintain/AIF-1 injected intravenously into \textit{BALB/c} mice boosted oxidative capacity, significantly impaired SOD activities and augmented the CRP level in blood. According to the oil red O test, daintain/AIF-1 profoundly facilitated the uptake of ox-LDL in \textit{U937} macrophages and formation of foam cells in the endothelium. We also found that the molecular mechanisms are effective by promoting overexpression of SRA on macrophages. \textbf{Conclusion:} These findings implicate that the inflammatory factor daintain/AIF-1 is closely associated with atherogenesis, and could be further characterized as a novel risk factor for atherosclerosis.

Chenhong Li and Zhengwang Chen
The Lab Memb Ion Channels and medicine, College of Biomedical Engineering South-Central of University for Nationalities, Wuhan 430074 (China) and Key Lab Mol Biophys Ministry of Education, College of Life Science and Technology HUST Wuhan 430074 (China) E-Mail lichhust@yahoo.com and E-Mail zwchen@hust.edu.cn
Introduction

Recent advances in medical science have established a fundamental role for inflammation in mediating all stages of atherosclerosis leading to the thrombotic complications of atherosclerosis [1-3]. These new findings have renovated and expanded the knowledge of the LDL metabolism pathway and low density lipoprotein receptor (LDLR) pathway in the formation of atherosclerosis, which were mainly discovered and elucidated by Brown and Goldstein [4, 5]. Although atherosclerosis has been recognized as a chronic inflammatory condition, the links between the risk factors and molecular mechanisms of pathogenesis have yet to be fully understood, and more novel risk factors may be found and identified. In the mid-1990s, daintain/AIF-1 was cloned out from rat with cardiac allografts chronic rejection [6], isolated and chemically characterized from porcine intestines [7]. According to the later investigations on this peptide and its synonyms Iba1 (ionized Ca\(^{2+}\)-binding adapter) [8], MRF-1 (microglia response factor-1) [9], this polypeptide takes important roles in other inflammatory diseases including autoimmune neuritis, systemic sclerosis, type 1 diabetes and breast cancer [10, 11]. In this study, we further, from newly visual angle, investigated daintain/AIF-1 is involved in atherogenesis via facilitating uptake of oxidized low density lipoprotein (ox-LDL) and foam cell formation in the endothelium.

Materials and Methods

Immunohistochemistry

The artery vessel specimens were collected from the CHD patients during surgical treatment in Wuhan Asia Heart Hospital. The tissues were fixed with 4% formalin for overnight and embedded in paraffin. The procedures for the collection of these samples were carried out in accordance with guidelines from the Ministry of Health of The People’s Republic of China, and approved by the Local Hospital Ethics Committee.

The daintain/AIF-1 used in this study was prepared as reference [7]. The monoclonal antibodies against daintain/AIF-1 were prepared [12] and diluted 1:50. The formalin-fixed and paraffin-embedded tissues were cut into 4 μm sections. Routine immunohistochemical methods were employed.

Assays of C-reactive protein and activity of superoxide dismutase in the blood

BALB/c mice (18-20 g, from the standard animal center of the China Medical College) in the experimental group (n=10) were intravenously injected with daintain/AIF-1 in saline at a dose of 5 μg/g body weight, and the mice in control group were injected with saline alone. The administration was repeated at 24 h after the first injection. At 30 h, the mice were bled into evacuated tubes containing trisodium citrate as anticoagulant. The plasma was separated in a refrigerated centrifuge at 4 °C. C-reactive protein was analyzed with a Clinical Chemistry Analyzer (CL-8000S, HIMADZU, Japan). SOD activity was measured with the Sigma-Aldrich 19160 superoxide dismutase assay kit (Sigma, St. Louis, Missouri, USA) according to the manufacturer’s protocol.

We took 20 μL of plasma from the centrifuged blood of each mouse and made a plasma mixture. A total of 200 μL mixture was obtained from the experiment and control groups. After addition of dithiothreitol (DTT) 528 μg into the plasma mixture, the two kinds of plasma were stirred at 4 °C for 30 min. For denaturation and sedimentation of proteins, we added 40 μL of 5% concentration of trichloroacetic acid into the two mixtures respectively and shook for 30 min at 4°C. The two samples of plasma were centrifuged at 10,000 rpm for 10 min at 4 °C. 80 μL supernatants of each group were used for lyophilization. The dried materials were then dissolved in 120 μL of 0.1% trifluoroacetic acid respectively. After centrifugation, the supernatants were applied in aliquots to HPLC on column Pharmacia-LKB TSK ODS 120-T (10 μm, 300 × 7.8 mm). For elution, we used a linear gradient of 0-30% acetonitrile in 0.1% trifluoroacetic acid (60 min, 1.5 mL/min).

Effect of daintain/AIF-1 on U937 macrophages uptaking ox-LDL

U937 cells were obtained from The American Type Culture Collection (ATCC) (Manassas, Virginia, USA) and cultured in Dulbecco’s modified eagle medium supplemented with 10% heat-inactivated fetal calf
plasma, 100 U/ml penicillin and 100 μg/ml streptomycin. Human native LDL was purchased from Sigma-Aldrich Corp. (St. Louis, Missouri, USA); ox-LDL was prepared as described by Hone et al. [13]. The PMA-derived U937 cells were prepared [14] and incubated in the presence of daintain/AIF-1 at 0, 1, 10, and 100 ng/mL for 24 h in Series II water jacketed CO2 incubator.

The cultured monolayer cells were washed and exposed to ox-LDL (20μg/ml) for 24 h. The macrophages were washed and fixed with 4% paraformaldehyde, and stained with oil red O to detect intracellular neutral lipids. The numbers of oil red O-positive lipid droplets were counted, and cells with greater than 10 lipid droplets per cell (n = 5) were scored as "lipid-laden foam cells," as described by [14].

To test the SRA on the cultured PMA-derived U937 as described above, the cells were collected and followed by ultrasoniced to prepare the protein sample. The lysates from 1×10⁵ cells/ml were applied to 12% polyacrylamide gel electrophoreses under reducing conditions, then transferred to a nitrocellulose membrane. Membranes were blocked with 5% nonfat powdered milk in TBST buffer (0.1 mol/L Tris-HCl, pH 8.0, containing 1.5 mol/L NaCl and 0.5% Triton X-100). Membranes were incubated with a 1:1,000 dilution of SRA antibody and a 1:10,000 dilution of goat anti-rabbit secondary antibody (Santa Cruz Biotechnology, Santa Cruz, California).

Statistics

t-test is used to analyze the data. The results will be considered significant when P values ≤0.05.

Results

Location of daintain/AIF-1 in CHD artery

The coronary artery vessel specimens from 17 CHD were tested by immunohistochemical stains. The vessel segments with atherosclerotic plaque were selected as experimental group, and the vessel segments which are far from atherosclerotic plaque were selected as control group. The stained results revealed an abundant expression and a brown staining of daintain/AIF-1 in the tunica intima and media of the coronary artery vessel specimens with atherosclerotic plaque, and fewer expression in control group (Fig. 1).

C-reactive protein increased and activity of superoxide dismutase inhibited by Daintain

The average level of C-reactive protein in BALB/c mice plasma was 0.90 ± 0.45 mg/L, but the level in the plasma of mice injected with daintain/AIF-1 increased to 2.32 ± 0.47 mg/L (Fig. 2A). These results show that daintain/AIF-1 significantly increased the concentrations of C-reactive protein in vivo. Simultaneously, using the conventional assay kits, we determined that SOD activity in the plasma of mice injected with daintain/AIF-1 was 278 ± 6U/mL compared with 341 ± 17 U/mL in the plasma of those injected with saline (Fig. 2B). The SOD activity was decreased by 18.5% of the injected saline mice. This outcome ascertains that daintain/AIF-1 significantly impairs the activity of SOD in vivo. Finally using DTT reduction method, we determined the oxidative capacity of the blood of mice injected with daintain/AIF-1 and the mice injected with saline respectively. The results showed that the blood from the mice injected with daintain/AIF-1 consumed 96% DTT compared with
80% DTT consumed in the mice injected with saline (Fig. 2C). This result indicates that daintain/AIF-1 can enhance oxidative capacity in vivo.

Daintain/AIF-1 promotes U937 macrophages uptaking ox-LDL

When U937 macrophages incubated in ox-LDL (20 μg/mL) were exposed to concentration gradients of daintain/AIF-1 of 0, 1, 10, 100 ng/mL respectively, we observed that daintain/AIF-1 at 10 ng/mL intensely stimulated U937 macrophages to uptake ox-LDL, and accumulation of lipid droplets in the U937 cytoplasm, and foam cells were largely formed in the medium (Fig. 3A and 3B). These results showed that daintain/AIF-1 concentration at 1 ng/mL had no significant effect on uptake of ox-LDL vs the control medium. At a concentration of 100 ng/mL daintain/AIF-1, the effect on uptaking was not significantly different from the 10 ng/mL concentration (Fig. 3B).

To explore the influence of daintain/AIF-1 on U937 uptake ox-LDL, we investigated whether daintain/AIF-1 could up-regulate the expression of SRA on U937 macrophages, which play a pivotal role for phagocytosis of ox-LDL and further foam cell formation [15].
Equal number of phorbol-12-myristate-13-acetate (PMA) -derived U937 cells was seeded into 24-well plates. By western blot, we inspected that daintain/AIF-1 potentially promoted SRA over expression on U937 macrophages, and the expression was gradually increased by the increased concentrations of daintain/AIF-1 (Fig. 3C).

Discussion

On account of inflammatory characteristics of polypeptide daintain/AIF-1, and atherosclerosis as a kind of chronic inflammatory condition, we further investigated how daintain/AIF-1 is associated with atherogenesis. By using immunohistochemical approaches, we firstly found a dense daintain/AIF-1 distribution in the tunica intima and media of the artery segment with atherosclerotic plaque from the Chinese individuals with CHD, and almost not in the artery segment without atherosclerotic plaque, which strongly suggests that daintain/AIF-1 plays a role in atherogenesis, special the formation of atherosclerotic plaque. We also in vivo investigated the effects of daintain/AIF-1 on production of CRP in BALB/c mice. The result showed that daintain/AIF-1 significantly increased the concentration of CRP in blood. Whether CRP is a causal factor in the pathogenesis of atherosclerosis is still a debated topic [16]. However, it is accepted that the elevated CRP in blood is a risk factor, which has been adopted as an indicator for diagnosis of cardiovascular disease [17]. Our results have demonstrated that daintain/AIF-1 is one of upstream elements which influences the level of CRP in organism.

Using DTT reduction method, we find that daintain/AIF-1 can notably enhance the oxidative capacity in blood of BALB/c mice. Growing evidences indicate that the oxidative capacity in blood can directly damage artery vessels through several pathways. For example, it constitutes the essential microenvironment for overproduction of reactive oxygen species leading to oxidative stress, playing further roles for atherogenesis [18, 19]. The stronger oxidative capacity in blood also promotes oxidation of LDL-C into ox-LDL-C, the latter is the substrate for formation of foam cells [20]. Daintain/AIF-1 can notably enhance the oxidative capacity in blood, implying that daintain/AIF-1 takes roles in the above biochemical reactions leading to atherogenesis in organisms. Furthermore, daintain/AIF-1 can impair the activity of plasma SOD in vivo. It has been demonstrated that SOD activity in arterial vessel is required not only to prevent deleterious effects of superoxide anion, but also to preserve NO activity and prevent peroxynitrite production [21].

It is well known that foam cells formed and accumulated in artery are the key events for atherogenesis [22]. Using oil red O to detect the intracellular neutral lipids, we discovered that in vitro, daintain/AIF-1 largely promoted the foam cell formation by its stimulating overexpression of SRA on U937 macrophages. In the meantime, the overexpressed SRA largely facilitated ingestion of ox-LDL by U937. It has been verified that SRA plays essential roles in the phagocytosis of macrophages for foam cell formation. It is inferable that daintain/AIF-1 could facilitate foam cell formation by upregulating expression of SRA on macrophages in the inflammatory region of artery.

Taken together, the data showed that the overexpressed daintain/AIF-1, the novel inflammatory polypeptide derived from macrophage lineages, is closely associated with atherogenesis via affecting the blood composition and promoting macrophage uptake and foam cell formation, and suggested that daintain/AIF-1 could be further characterized as a novel risk factor for atherogenesis.

Acknowledgements

This work was supported by grants from the National Science Foundation of China (30972848, 81271234 and 81172511), the Chinese 863 Program (2002AA214061), Hubei Health funding (jx6b25) and the special funds of basic research operating expenses for universities in China (CZZ11009).
References

1. Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115-126.
2. Libby P: Inflammation in atherosclerosis. Nature 2002;420:868-874.
3. Hansson GK: Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685-1695.
4. Brown MS, Goldstein JL: Lowering plasma cholesterol by raising LDL receptors. N Engl J Med 1981;305:515-517.
5. Goldstein JL, Brown MS: The LDL receptor. Arterioscler Thromb Vasc Biol 2009;29:431-438.
6. Utans U, Arceci RJ, Yamashita Y, Russell ME: Cloning and characterization of allograft inflammatory factor-1: a novel macrophage factor identified in rat cardiac allografts with chronic rejection. J Clin Invest 1995;95:2954-2962.
7. Chen ZW, Ahren B, Ostenson CG, Cintra A, Bergman T, Möller C, Fugx K, Mutt V, Jornvall H, Efendic S: Identification, isolation, and characterization of daintain (allograft inflammatory factor 1), a macrophage polypeptide with effects on insulin secretion and abundantly present in the pancreas of prediabetic BB rats. Proc Natl Acad Sci U S A 1997;94:13879-13884.
8. Imai Y, Kohsaka S: Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia 2002;40:164-174.
9. Tanaka S, Suzuki K, Watanabe M, Matsuda A, Tone S, Koike T: Upregulation of a new microglial gene, mrf-1, in response to programmed neuronal cell death and degeneration. J Neurosci 1998;18:6358-6369.
10. Schluesener HJ, Seid K, Meyermann R: Effects of autoantigen and dexamethasone treatment on expression of endothelial-monocyte activating polypeptide II and allograft-inflammatory factor-1 by activated macrophages and microglial cells in lesions of experimental autoimmune encephalomyelitis, neuritis and uveitis. Acta Neuropathol 1999;97:119-126.
11. Del Galdo F, Artlett CM, Jimenez SA: The role of allograft inflammatory factor 1 in systemic sclerosis. Curr Opin Rheumatol 2006;18:588-593.
12. Fu K, Zhao YY, Tang WX, Zhong Y, Yang TB, Wang JH: Preparation and identification of monoclonal antibodies against daintain. Hybridoma (Larchmt) 2006;25:95-97.
13. Hone DM, Tacket CO, Harris AM, Kay B, Losonsky G, Levine MM: Evaluation in volunteers of a candidate live oral attenuated Salmonella typhi vector vaccine. J Clin Invest 1992;90:412-420.
14. Huh HY, Pearce SF, Yesner LM, Schindler JL, Silverstein RL: Regulated expression of CD36 during monocyte-to-macrophage differentiation: potential role of CD36 in foam cell formation. Blood 1996;87:2020-2028.
15. de Winther MP, van Dijk KW, Havekes LM, Hofker MH: Macrophage scavenger receptor class A: A multifunctional receptor in atherosclerosis. Arterioscler Thromb Vasc Biol 2000;20:290-297.
16. Schunkert H, Samani NJ: Elevated C-reactive protein in atherosclerosis—chicken or egg? N Engl J Med 2008;359:1953-1955.
17. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR: Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002;347:1557-1565.
18. Griendling KK, Fitzgerald GA: Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation 2003;108:2034-2040.
19. Kondo T, Hirose M, Kageyama K: Roles of oxidative stress and redox regulation in atherosclerosis. J Atheroscler Thromb 2009;16:532-538.
20. Aviram M: Macrophage foam cell formation during early atherogenesis is determined by the balance between pro-oxidants and anti-oxidants in arterial cells and blood lipoproteins. Antioxid Redox Signal 1999;1:585-594.
21. Luoma JS, Stralin P, Marklund SL, Hiltunen TP, Sarkioja T, Yla-Herttuala S: Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol 1998;18:157-167.
22. Takenaka T, Takahashi K, Kobayashi T, Oshima E, Iwasaki S, Suzuki H: Oxidized low density lipoprotein (Ox-LDL) as a marker of atherosclerosis in hemodialysis (HD) patients. Clin Nephrol 2002;58:33-37.