Effects of Salinity on Yield, Yield Components and Water Productivity of Black Carrot (Daucus Carota L.) Under Water Stress Condition

Mehmet ALTUN1*, Hakan ARSLAN2

1Agricultural Structures and Irrigation Department, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
2Agricultural Structures and Irrigation Department, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey

Article Info
Received: 10.11.2021
Accepted: 24.02.2022
Online published: 15.03.2022
DOI: 10.29133/yyutbd.1021957

Abstract: Salinity and drought are some of the main problems affecting global crop yields. In this study, interaction effects of irrigation interval and salinity on yield, soil salinity, other parameters of black carrot were evaluated in a covered rain shelter. The treatments consist of three different irrigation intervals (4 days (I1), 6 days (I2), and 8 days (I3)) with 6 different irrigation water salinity levels (0.38 (S1), 1.5 (S2), 3.0 (S3), 5.0 (S4), 7.0 (S5) and 10.0 (S6) dS m⁻¹). The results indicated that the effect of interaction between irrigation interval and salinity was significant on yield, evapotranspiration, chlorophyll content, and soluble solid content (SSC). Yield and evapotranspiration decreased significantly with an increase in salinity and irrigation intervals. The highest yield was observed in I1S1, and the yield response (Ky) in the black carrot was 1.39. The irrigation water salinity up to 1.5 dS m⁻¹ was nonsignificant on yield. However, the increase in soil salinity by 1 dS m⁻¹ caused a decrease of 3.83%, 2.93%, and 3.03% in the yields of I1, I2, and I3, respectively. Moreover, increasing the salinity of irrigation water reduced the chlorophyll content and carrot juice pH value. The result of the study indicated that black carrot is sensitive to salt and water deficit, and the maximum irrigation interval using saline water should not be more than 6 days. Therefore, it can be concluded that in regions where salinity is high, more frequent irrigation minimizes losses that may occur in yield.

Keywords
Irrigation water salinity
Black carrot
Soil salinity
Irrigation interval
Drought

To Cite: Altun M, Arslan H, 2021 Effects of Salinity on Yield, Yield Components and Water Productivity of Black Carrot (Daucus Carota L.) Under Water Stress Condition. Yuzuncu Yil University Journal of Agricultural Sciences, 32(1): 106-118.
DOI: https://doi.org/10.29133/yyutbd.1021957

Su Stres Koşulları Altında Tuzluluğun Siyah Havuç Bitkisinin (Daucus Carota L.) Verim, Verim Bileşenleri ve Bitki Su Tüketimi Üzerine Etkileri

Makale Bilgileri
Geliş: 10.11.2021
Kabul: 24.02.2022
Online yayınımlama: 15.03.2022
DOI: 10.29133/yyutbd.1021957

ÖZ: Tuzluluk ve kuraklık, küresel anlamda bất실 üretimini etkileyen en önemli önemli problemlerden bazılardır. Bu çalışma, sulama aralığı ve sulama suyu tuzluluğun siyah havucun verim ve büyüme parametreleri ile toprak tuzluluğ tarafından etkilenen bitkinin bir Panelsı olayı ile kapalı bir alanda yapılmıştır. Çalışma, 6 farklı sulama suyu tuzluluğu seviyesi (0.38 (S1), 1.5 (S2), 3.0 (S3), 5.0 (S4) 7.0 (S5) ve 10.0 (S6) dS/m, 3 farklı sulama aralığına (4 gün...
Anahtar Kelimeler
Sulama tuzluluğu, Siyah havuç, Toprak tuzluluğu, Sulama aralığı, Kuraklık

(i), 6 gün (I) ve 8 gün (I) yürütülmüş. Çalışma sonucunda sulama aralığı ve sulama suyu tuzluluğunun interaksyon etkisinin verim, bitki su tüketimi, klorofil içeriği ve suya çözünebilir katı madde miktarı (ŞÇKM) üzerinde önemli derecede etki ettiği belirlenmiştir. Tuzluluk ve sulama aralıklarının artmasıyla birlikte siyah havuçun verimi ve bitki su tüketimi değerleri önemli derecede azalıştırılmıştır. En yüksek verim I₁ X S konusundan elde edilmiş ve verim tepkisi faktörü (Ky) 1.39 olarak belirlenmiştir. Sulama suyu tuzluluğunun 1.5 dS/m ve kadar olması siyah havuçun veriminde herhangi bir azalmaya neden olmadı belirlenmiş bununla birlikte toprak tuzluluğundaki 1 dS/m lik artış, I₁ ve I₂ sulama aralıklarında sırasıyla % 3.83, % 2.93 ve % 3.03 oranında azalmaya neden olmuştur. Sulama suyu tuzluluğundaki artış klorofıl içeriğini ve havuç suyunun pH değerini düşürmüştür. Araştırma sonucunda, siyah havuçun tuz ve su kısıtına karşı hassas olduğu ve tuzlu su kullanılması durumunda siyah havuç için sulama aralığının en fazla 6 gün olması gerektiği tespit edilmiştir. Sulama suyu tuzluluğunun yüksek olduğu bölgelerde daha sık sulama yapılması ile verimde oluşabileceği belirlenmiştir.

1. Introduction

Salinity and drought are two of the most important abiotic stresses, which have affected almost every aspect of plant growth and development, including seed germination, vegetative growth, and reproductive development (Arslan et al., 2018; Sahin et al., 2018; Desire and Arslan, 2021; Ors et al., 2021). Nowadays, the world is experiencing a gradual decrease in freshwater resources (Yerli et al., 2019) as a result of increased salt in irrigation water sources such as rivers, streams, and underground aquifers. Irrigating crops with saline waters causes a reduction in yield and an increase in soil salinity. It is estimated that about 20% of the agricultural land in the world is affected by salt (Munns, 2002). Salt stress prevents the growth of plants by causing osmotic and ionic stress. Salinity becomes a serious concern when soluble salts occur in excessive concentrations in the soil or water. Salinity is a major yield-reducing factor in arid and semi-arid areas (Puvanitha and Mahendran, 2017). With the increase of salt amount in the root rhizosphere, osmotic stress occurs, and this causes a decrease in the amount of usable water.

Azder et al. (2020) examined the effects of different water-deficit treatments on evapotranspiration, yield, and growth parameters of Çapia pepper in Tekirdağ, and they stated that the yield values increased as the amount of irrigation water increased. To achieve higher yields from crops, the relationship between the water, salinity, and crop yield should be well known. In several studies, the effects of the water deficit on yield and photosynthetic characteristics of plants have been studied, and variations between plants have been reported (Sahin et al., 2016; Bell et al., 2018; Coban et al., 2018; Ozturk and Korkut, 2018; Ekinci and Basbag, 2019; Cakmakci et al., 2021). The irrigation interval should be a maximum of 14 days for pumpkin (Yavuz et al., 2015) and 7 days for corn (Abd El-Halim and Razek, 2014) to get the highest yield.

Plants have varying tolerance to salinity. Therefore, it is important to know the relationship between salt and yield of plants and salinity threshold values for salinity management. According to Kiremit and Arslan (2016), the percentage of leek yield decrease under increasing soil salinity (ECE) as 0% at 1.1 dS m⁻¹, 11% at 2.84 dS m⁻¹, 19% at 4.65 dS m⁻¹, 25% at 5.6 dS m⁻¹, 38% at 6.41 dS m⁻¹ and 43% at 8.27 dS m⁻¹. The salinity threshold values for stevia and carrot are 2.0 dS m⁻¹ and 2.5 dS m⁻¹, respectively (Unlukara et al., 2011; Reis et al., 2015). They suggested that these plants should not be irrigated with higher salinity water. Rodrigues et al. (2020) investigated the influence of different electrical conductivities (1.0, 2.0, 3.0, 4.0, and 5.0 dS m⁻¹) of irrigation water salinity on maize crops. They found an increase in salinity reduced unhusked and husked ear weights, cob weight, 1000-grain weight, and yield. However, ear length and diameter were not affected by the increased salinity. Dastranj and Sepaskhah (2019) also showed that water deficit and salinity significantly affected saffron yield and growth parameters.

The combined effects of salinity and water constraint on plant growth and development are more than the effects of each stress separately. There is little literature on the interaction effect of irrigation intervals and irrigation water salinity on yield and yield components. Sepaskhah and Yarami (2009) investigated the effects of 4 different irrigation intervals and 4 different irrigation water salinity on the
yield of the saffron crop. They have concluded that saffron is a salt-sensitive plant, and irrigation interval has to be a maximum of 2 days to avoid yield reduction. Abedinpour and Rohami (2017) suggested that soybean plants should be irrigated at 7 days intervals with 1 dS m$^{-1}$ EC of water to get the highest yield. Yuan et al. (2019) examined the interaction effects of irrigation regimes and salinities on corn yield and yield parameters. They suggested that irrigation with 370 mm water with 3 g L$^{-1}$ salinity could be applied to attain maximum yield.

The effects of irrigation and salinity on yield and yield parameters of black carrot have not been studied in the literature. This study was conducted to evaluate the main and interactive effects of irrigation intervals and salinity, as well as the yield and yield parameters, evapotranspiration, and soil salinity of black carrot (Daucus Carota L.).

2. Material and Methods

2.1. Study site

This study was conducted between May and August 2017 in a covered rain shelter at Ondokuz Mayis University Research Field at Samsun, Turkey. The indoor temperature and relative humidity ranged from 12.5 °C to 27.2 °C and 58.8% to 85% throughout the growing period, respectively.

2.2. Experimental design and treatments

The physical properties of the soil were analyzed and classified as a sandy loam (SL). The soil analysis results are shown in (Table 1).

Parameter	Values
ECe (dS m$^{-1}$)	0.63
pH	7.80
Field capacity (%)	33.24
Wilting point (%)	14.56
Sand (%)	52.3
Silt (%)	38.3
Clay (%)	9.4
Soil texture	Sandy-loam
Organic matter (%)	1.24
P$_2$O$_5$ (kg ha$^{-1}$)	40
K$_2$O (kg ha$^{-1}$)	500

The soil was sieved through 2 mm and after each pot was filled with 17.5 kg air-dried soil. Sand-gravel materials of 2.5 kg were placed at the bottom of each pot to provide drainage. The seeds were placed in Petri dishes and later placed in the incubator for germination before planting. The seeds were germinated at 25°C and 75% humidity in the incubator for 3 days. After germination, five germinated seeds were planted in each pot. The pots were 28 cm in height, 29 cm in diameter, and 18.5 L.

The six irrigation water salinity treatments consisted of 0.38 dS m$^{-1}$ (S$_1$), 1.5 dS m$^{-1}$ (S$_2$), 3 dS m$^{-1}$ (S$_3$), 5 dS m$^{-1}$ (S$_4$), 7 dS m$^{-1}$ (S$_5$), 10 dS m$^{-1}$ (S$_6$) with three intervals: 4 days (I$_1$), 6 days (I$_2$) and 8 days (I$_3$). In the study, 18 treatments were used with combinations of 3 replicates given a total of 54 pots in a randomized complete block design. The irrigation water salinity was prepared for each treatment by mixing CaCl$_2$, MgSO$_4$, and NaCl salts. The fertilizer rates were 90 kg ha$^{-1}$ N and 90 kg ha$^{-1}$ P$_2$O$_5$ (Diammonium phosphate), the full dose of P fertilizer and a half dose of N fertilizer were given before planting, and the other half of N fertilizer was given 20 days after salt application (Unlukara et al., 2011).

Before starting the experiment, the pots were saturated with tap water and weighted to determine the field capacity (WFC) of each pot. Irrigation applications were started 15 days after sowing and all pots were irrigated with saline water at intervals of 4, 6, and 8 days. The following equation was used to calculate the amount of irrigation water (IW) applied to the pots in each irrigation.
Altun and Arslan / Effects of Salinity on Yield, Yield Components and Water Productivity of Black Carrot (Daucus Carota L.) Under Water Stress Condition

\[IW = \frac{W_{FC}-W}{Pw} \times \frac{1}{1-LF} \]

(Eq. 1)

Where; \(W_{FC} \), Weight of pots in field capacity (kg), \(W \) = weight of the pots before irrigation (kg), \(Pw \) = Water density (1 kg l⁻¹) \(LF \) =Leaching fraction (leaching fraction was used as 15% (Ayers and Wescot, 1989).

The evapotranspiration was determined the following.

\[ET = IW - D \pm \Delta S \]

(Eq. 2)

Where; \(ET \): Evapotranspiration, \(IW \) = Irrigation amount (L), \(D \) = Amount of drainage water (L), \(\Delta S \) = Difference in amount of soil water between irrigation

Water use efficiency (WUE) were determined using Eq. (3) (Howell et al. 1990)

\[WUE = \frac{Y_a}{ET} \]

(Eq. 3)

Where; \(WUE \): Water use efficiency (g pot.mm⁻¹), \(Y_a \)= Black carrot fresh weight (g pot⁻¹), \(ET= \) Evapotranspiration (mm)

The following equation was used to determine the yield response factor (Ky).

\[\left(1 - \frac{Y_a}{Y_m}\right) = Ky \times \left(1 - \frac{ET_a}{ET_m}\right) \]

(Eq. 4)

Where; \(Y_m \) and \(ET_m \): maximum yield and maximum evapotranspiration from the control treatment, respectively; \(Y_a \) and \(ET_a \), Black carrot fresh weight (g pot⁻¹), and actual evapotranspiration (mm) taken as from each salinity treatment (Doorenbos and Kassam, 1986).

2.3. Plant and soil analysis

The yield, fruit juice EC, and fruit juice pH values were determined in each lysimeter. Chlorophyll content of the youngest and fully expanded leaves was measured with a portable chlorophyll meter (Minolta SPAD-502), and the SSC was measured using a reflectometer (ATC-I, Atago, Japonya).

At the end of the experiment, soil samples were collected from the midpoint of each pot to determine the electrical conductivity and pH values of the soils. Soil salinity and pH values were determined by using Eutech pc510 EC / pH meter at soil saturation paste.

2.4. Statistical analysis

The data were analyzed using analysis of variance (ANOVA) with SPSS 21.0 software to determine the interaction effect between irrigation interval and salinity on the black carrot. The difference between the means was compared with Duncan's multiple comparison test at a level p<0.05. The 3-D graphs were drawn with design expert 11.0 software.

3. Results and Discussion

3.1. Yield and Yield components

The irrigation intervals and irrigation water salinity had significant effects on yield (\(p < 0.01 \)) while irrigation intervals × irrigation water salinity interactions were statistically significant on yield (\(p < 0.05 \)) (Table 2).

In all irrigation intervals, increasing salinity significantly decreased the yield of carrots, and the yield was not significantly different between S₁ and S₂. S₃, S₄, S₅, and S₆ decreased in yield by 20%, 25%, 29%, and 41%, respectively, compared to S₁ (Table 3). Salt stress, by affecting cell division and elongation, causes a decrease in the number of cells and cell division rate in the root and stem in plants, which causes a shortening in the height and weight of the plants. Salinity value up to 1.5 dS m⁻¹ did not cause a significant reduction in the yield. The black carrot plant was determined to be sensitive to
salinity. Kim et al. (2016) reported that the threshold value for the salinity of lettuce and Chinese cabbage is 0.9 dS m\(^{-1}\) and 1.5 dS m\(^{-1}\), respectively. Increased salinity caused a significant decrease in tomato and oregano yields (Ahmed et al., 2017; Hancioglu et al., 2019).

The yields of I\(_1\) and I\(_2\) decreased by 3% and 19%, respectively, compared to I\(_1\). However, no statistically significant difference in yield was observed between I\(_1\) and I\(_2\) treatments. Drought negatively affects the yield of the plant as it causes loss of turgor, decrease in energy balance, and decrease in enzymatic activity, cell division, elongation, and differentiation. Ramezanifar et al. (2021) conducted a study on the interactive effects of salinity and water scarcity on spinach. The results of their study indicated that salinity and water scarcity were significant on plant growth and yield. Similarly, Hazrat et al. (2017) and Yurtseven et al. (2012) found that deficit irrigation decreased crop yields.

In each irrigation interval, the highest yields were obtained from treatment irrigated with S\(_1\) (Table 3). However, the yield of black carrots under fresh irrigation was preserved by order I\(_1\) × S\(_1\) > I\(_2\) × S\(_1\) > I\(_3\) × S\(_1\). In I\(_1\) and I\(_2\), except for I\(_1\) × S\(_1\), there was no statistically significant difference in yields of all the same irrigation water salinity. Irrigation using saline water should be a maximum of 6 days of irrigation interval to avoid decreased yield.

Table 2. Analysis of variance of irrigation intervals (I), salinity (S), and their interactions (I*S) on black carrot yield, yield components, and evapotranspiration

Parameter	S	I	I*S
Yield (gr pot\(^{-1}\))	56.96**	38.36**	2.46*
Chlorophyll content	104.92**	895.47**	215.99**
SSC	4.29**	9.88**	2.44*
Water Juice EC	20.35**	6.94**	0.83 ns
Water Juice pH	11.19**	8.23***	1.22 ns
ET (mm)	38.34**	182.00**	6.68**
WUE (gr mm\(^{-1}\))	8.23**	15.49**	1.33 ns
EC\(_e\)	274.26**	5.79**	1.59 ns
pH\(_e\)	84.05**	16.97**	0.90 ns

ns = not significant; *p < 0.05; **p < 0.01.

The black carrot yield had a curvilinear relationship with irrigation water salinity and irrigation interval (Fig. 1). Decreasing irrigation intervals from 8 to 4 days had curvilinearly increased crop yield at the lowest salinity. Under the highest salinity conditions, crop yield was increased slightly with decreasing irrigation intervals from 8 to 4 days. The highest carrot yield was determined with frequent irrigation intervals and low salinity, whereas the lowest yield was recorded in crops irrigated with 10 dS m\(^{-1}\) irrigation water and under high irrigation intervals. Sepaskhah and Yarami (2009) recommended that irrigation intervals need to be more frequent when using saline water to avoid water stress for Saffran.

SPAD is proportional to the chlorophyll of the leaf. The main and interaction effects of the irrigation interval and salinity on chlorophyll in black carrots were statistically significant (Table 2). Increased irrigation interval and salinity resulted in a significant decrease in chlorophyll content (Table 3). The highest value was obtained in I\(_1\) × S\(_1\) (40.90), and the lowest value was obtained in I\(_3\) × S\(_6\) (14.67). In salty conditions, the decrease in the amount of chlorophyll in plants can be explained by the increase in the activity of the chlorophyllase enzyme, which breaks down chlorophyll (Rao and Rao, 1981). It has been determined in studies that water constraint and/or salinity stress in a negative way affect the chlorophyll content in plants (Cakmakci et al., 2017; Shah et al., 2017; Guzel et al., 2018; Kiremit and Arslan, 2018; Rostami et al., 2018).

The two-way ANOVA showed that irrigation interval, irrigation water salinity, and interaction of irrigation salinity and irrigation interval had a significant effect on soluble solids content (SSC) (Table 2). SSC varied between 5.64 % and 13.34 % in all treatments and increased in increasing salinity levels but reduced as the irrigation interval increased (Table 3). Similarly to our finding, a high salinity caused an increase in the SSC content of the tomato (Ruiz et al., 2015; El-Mogy et al., 2018)
Table 3. The interaction effect of irrigation interval (I) and salinity (S) on black carrot yield, chlorophyll content (CCI), soluble solid content (SSC), water juice salinity, and water juice pH

Irrigation Intervals Effect (I)	Yield	CCI	SSC	Water Juice EC (dS m⁻¹)	Water Juice pH
I₁ (4 days)	250.7 ± 13a	38.1 ± 0.4a	10.2 ± 0.4a	10.9 ± 0.5a	5.7 ± 0b
I₂ (6 days)	242 ± 13a	34.5 ± 0.9b	8.3 ± 0.6b	9.5 ± 0.7b	5.8 ± 0a
I₃ (8 days)	202.5 ± 8.9b	23.4 ± 0.7c	9.5 ± 0.4a	9.8 ± 0.5b	5.8 ± 0a

Salinity effect (S)

S₁ (0.38 dS m⁻¹)	S₂ (1.50 dS m⁻¹)	S₃ (3.0 dS m⁻¹)	S₄ (5.0 dS m⁻¹)	S₅ (7.0 dS m⁻¹)	S₆ (10.0 dS m⁻¹)
289.7 ± 14.3a	273.7 ± 9.6a	232.3 ± 11.1b	218.2 ± 9.9bc	206 ± 8.7c	170.4 ± 5.5d
37.3 ± 1.3a	34.4 ± 1.7b	33 ± 2c	31 ± 2.6d	29.4 ± 2.7e	26.8 ± 3.2f
7.5 ± 0.7b	8.6 ± 0.6ab	10.1 ± 0.7a	10.6 ± 0a	9 ± 0.7ab	10.3 ± 0.7a
7.3 ± 0.4a	9 ± 0.4d	9.7 ± 0.4cd	10.2 ± 0.4bc	11.1 ± 0.5bc	13.3 ± 0.5a
5.9 ± 0a	5.8 ± 0bc	5.8 ± 0bc	5.7 ± 0c	5.7 ± 0c	5.7 ± 0c

Irrigation Intervals x Salinity Interaction

Irrigation Intervals	Yield	CCI	SSC	Water Juice EC (dS m⁻¹)	Water Juice pH
I₁					
S₁	336.3 ± 11.8a	40.9 ± 1a	10.8 ± 0a-d	8.5 ± 0.70	5.8 ± 00
S₂	295.7 ± 3.9b	38.5 ± 0.2b	11 ± 0.7a-d	9.6 ± 0.70	5.8 ± 00
S₃	251.2 ± 5.2c	38.2 ± 0.5b-d	11.6 ± 0.4abc	9.9 ± 0.70	5.8 ± 00
S₄	232.3 ± 2.8ced	37.5 ± 0.1b-e	12.1 ± 1ab	11.1 ± 0.80	5.7 ± 00
S₅	214.1 ± 6d	36.7 ± 0.1c-e	9.4 ± 2.3bcd	12.5 ± 0.60	5.6 ± 0.10
S₆	174.5 ± 6fg	36.8 ± 0.1b-e	10.7 ± 2.3a-d	14.1 ± 0.60	5.7 ± 0.10

Irrigation Intervals	Yield	CCI	SSC	Water Juice EC (dS m⁻¹)	Water Juice pH
I₂					
S₁	287 ± 11.7b	38.5 ± 0b	6 ± 0.5e	6.6 ± 0.60	6.1 ± 00
S₂	286.7 ± 2.2b	36.4 ± 0.3d-f	8.7 ± 1cd-e	8.2 ± 0.20	5.8 ± 00
S₃	253.3 ± 11.1cd	35.8 ± 0.3ef	10.1 ± 1.4bced	9.9 ± 0.40	5.8 ± 00
S₄	232.3 ± 13.5ced	37.5 ± 0.8be	11.2 ± 1.2a-d	11.1 ± 0.60	5.7 ± 00
S₅	219.3 ± 22.1de	32.5 ± 0.1g	9.8 ± 0.1bced	9.4 ± 0.50	5.7 ± 0.10
S₆	174.8 ± 14fg	28.9 ± 0.6h	7.8 ± 1.6e	13.6 ± 0.50	5.7 ± 00

Irrigation Intervals	Yield	CCI	SSC	Water Juice EC (dS m⁻¹)	Water Juice pH
I₃					
S₁	245.9 ± 11.4c	32.5 ± 0.7g	8.2 ± 0.9de	6.9 ± 0.30	6 ± 00
S₂	238.6 ± 11.6cd	28.3 ± 2.2h	8.5 ± 1.3de	9.1 ± 10	5.9 ± 0.10
S₃	192.3 ± 12ef	25.1 ± 0.8t	11 ± 1.8a-d	9.3 ± 1.20	5.8 ± 0.10
S₄	191.6 ± 21.3ef	20.9 ± 0.5j	9.2 ± 0.6bced	10.3 ± 0.50	5.8 ± 00
S₅	184.5 ± 4.8fg	19.1 ± 0.5j	10.1 ± 0.9bced	11.4 ± 0.40	5.7 ± 00
S₆	162 ± 10.6g	14.7 ± 0.4k	13.4 ± 0.4a	12.1 ± 0.90	5.7 ± 0.10

LSD₀.05 I 12.01*** 0.75*** 1.23*** 0.87*** 0.057***
LSD₀.05 S 16.62*** 1.04*** 1.70*** 1.20*** 0.079***
LSD₀.05 I x S 28.80* 1.79** 2.94* 2.08** 0.14ns

I₁: 4 day irrigation intervals; I₂: 6 day irrigation intervals; I₃: 8 day irrigation intervals; S₁: 0.38 dS m⁻¹; S₂: 1.50 dS m⁻¹; S₃: 3.0 dS m⁻¹; S₄: 5.0 dS m⁻¹; S₅: 7.0 dS m⁻¹; S₆: 7.0 dS m⁻¹. The values marked with different letters show statistically significant at p < 0.05. ns = not significant; *p < 0.05; **p < 0.01.

The electrical conductivity (EC) values of fruit juice varied between 6.56 and 14.09 dS m⁻¹ (Table 3). Irrigation interval and salinity affected a significant effect on juice salinity, but their interaction was not statistically significant. The treatment of I₁×S₆ acquired the highest value, whereas I₁×S₀ obtained the lowest value. Kiran et al. (2018) determined that the increase in irrigation water salinity caused an increase in the salinity of the eggplant plant juice. The main effect of irrigation interval and salinity on water juice pH was significant and decreased with increasing salinity. The effects of interaction between irrigation interval and salinity were also insignificant. Furthermore, the differences in water juice pH between I₁ and I₂ were significant, while I₃, I₄, I₅, and I₆ were not significant. Korkmaz et al. (2016) found that the pH value of tomato juice decreased significantly with increasing salinity.
3.2. Evapotranspiration and water use efficiency

The main and interactive effects of irrigation intervals and salinity on evapotranspiration were statistically significant (Table 2). Evapotranspiration followed the order \(I_1 > I_2 > I_3 \), and for \(I_2 \) and \(I_3 \), it decreased by 19.2\% and 28.60\%, respectively, compared to \(I_1 \) (Table 4). By increasing the irrigation water salinity, evapotranspiration decreased statistically significantly, and no statistical difference was determined between \(S_1 \) and \(S_2 \) treatments. Evapotranspiration in \(S_3 \), \(S_4 \), \(S_5 \), and \(S_6 \) decreased by 5\%, 14\%, 16\%, and 28\%, respectively, compared to \(S_1 \).

It is thought that the increase in soil salinity was effective on the decrease in plant water consumption since the water and nutrient intake of plants decreased due to the effect of osmotic conditions due to high salinity. Similar to our results, Unlukara et al. (2008) and Jiang et al. 2012 determined that increased irrigation water salinity decreased evapotranspiration on lettuce and wheat. The highest evapotranspiration value was obtained at \(I_1 \times S_1 \) with the lowest irrigation water salinity (0.38 dS m\(^{-1}\)) and lowest irrigation interval (4 days), while the lowest evapotranspiration value was obtained under the conditions with the highest irrigation water salinity and irrigation interval (\(I_3 \times S_6 \)). The evapotranspiration in \(I_2 \times S_2 \) and \(I_3 \times S_2 \) treatments decreased by 14\% and 33\%, respectively, when compared to the \(I_1 \times S_2 \) treatment. There was no statistically significant difference in evapotranspiration for all salinity treatments of \(I_3 \) except \(S_6 \). Turhan and Kuşcu (2019) examined the effect of different water salinity levels on salt tolerance, evapotranspiration, plant height, leaf area of eggplant in the greenhouse. The results indicated that the evapotranspiration of eggplant was significantly affected by increasing salinity levels.

The irrigation water salinity and irrigation intervals had linear and curvilinear effects on evapotranspiration (Fig 2). Evapotranspiration decreased sharply with irrigation intervals up to 6 days and decreased linearly after that at all irrigation water conditions. Furthermore, evapotranspiration declined increasingly at all irrigation water saline conditions.
Figure 2. The interactive effects of irrigation interval (I) and salinity (S) and on evapotranspiration (ET).

\[ET = 380.658 - 64.19I - 63.07S - 34.98IS + 24.24I^2 \]

\[SE = 6.30 4.52 ** 5.27 *** 6.46 *** 7.659 ** \]

\[r^2 = 0.889*** \]

***: p < 0.001; **: p < 0.01.

Table 4. The interaction effect of irrigation interval (I) and salinity (S) on black carrot evapotranspiration, water use efficiency, soil salinity, and soil pH

Irrigation Intervals	ET (mm)	WUE	Soil EC (dS m\(^{-1}\))	Soil pH
I\(_1\) (4 days)	483.6 ± 18.6a	0.52 ± 0.01a	6.96 ± 1.03a	7.32 ± 0.07a
I\(_2\) (6 days)	390 ± 13.4b	0.62 ± 0.03a	7.03 ± 1.44a	7.35 ± 0.07a
I\(_3\) (8 days)	344.9 ± 9c	0.59 ± 0.02b	6.14 ± 0.86b	7.19 ± 0.03b

Salinity Effect (S)

S\(_1\) (0.38 dS m\(^{-1}\))	457.1 ± 34.1a	0.64 ± 0.02a	6.83 ± 0.05f	7.72 ± 0.04a
S\(_2\) (1.50 dS m\(^{-1}\))	440.3 ± 22.8ab	0.63 ± 0.02a	5.13 ± 0.28d	7.3 ± 0.04c
S\(_3\) (3.0 dS m\(^{-1}\))	435.1 ± 25.3b	0.54 ± 0.02b	2.82 ± 0.32c	7.48 ± 0.02b
S\(_4\) (5.0 dS m\(^{-1}\))	393.7 ± 20.8c	0.56 ± 0.04b	7.08 ± 0.02e	7.19 ± 0.03d
S\(_5\) (7.0 dS m\(^{-1}\))	382.8 ± 18.9c	0.55 ± 0.03b	10.04 ± 0.59	7.14 ± 0.08
S\(_6\) (10.0 dS m\(^{-1}\))	327.7 ± 10.7d	0.52 ± 0.02b	13.07 ± 0.49a	6.96 ± 0.04f

Irrigation Intervals x Salinity Interaction

I\(_1\)	S\(_1\)	587.5 ± 14.3a	0.57 ± 0.03	0.66 ± 0.03	7.79 ± 0.06
I\(_2\)	S\(_1\)	416.5 ± 18.5d	0.69 ± 0.04	0.71 ± 0.06	7.74 ± 0.05
I\(_3\)	S\(_1\)	375.9 ± 25.2ae	0.5 ± 0.03	10.47 ± 0.59	7.16 ± 0.02

The values marked with different letters show statistically significance at p < 0.05; ns = not significant; *p < 0.05; ** p < 0.01.
Water use efficiency (WUE) was significantly affected by irrigation interval and irrigation water salinity, while their interaction was not statistically significant (Table 2). The WUE of I₁, I₂, I₃ were 0.52, 0.62, and 0.59 g mm⁻¹ at the same salinity level, respectively, and there was no statistical difference between I₂ and I₃ (Table 4). The WUE value decreased as irrigation salinity increased, and the difference in WUE was insignificant between S₁ and S₂. Irrigation salinity up to 1.5 dS m⁻¹ has no negative effect on water use efficiency. Ors and Suarez (2016) stated that salinity had a negative effect on WUE.

3.3. Soil salinity and soil pH

Soil salinity showed significant differences with irrigation interval and salinity; however, interactions of the effect of the treatment were not significant (Table 2). There was no statistical difference between I₁ and I₂ in terms of soil salinity. The average soil salinity in I₃ was 11.6 % less than in I₁. Evapotranspiration of I₁ was the lowest, so the soil salinity was lower than other irrigation intervals (Table 4).

The highest salinity in the soil was in the I₆ treatments in all irrigation intervals, while the lowest was in the S₂ treatments. There was no increase in salinity values of S₁ soils from the beginning of the experiment for all irrigation intervals. Similar to our results, the increase in irrigation water salinity caused an increase in soil salinity, and the decrease in irrigation water amount for the same salinity level decreased the soil salinity (Chen et al., 2017; Mosaffa and Sepashah, 2019).

The relationship between mean values of soil salinity and other parameters (yield, evapotranspiration, chlorophyll content, and fruit juice salinity) obtained from the three irrigation intervals is shown in (Fig. 3). The yield decreased linearly with the increase in soil salinity at all irrigation intervals, and the growth reduction per unit increase in soil salinity for yield at I₁, I₂, and I₃ was 3.83%, 2.93%, and 3.03% per dS m⁻¹, respectively. Evapotranspiration significantly decreased with increased soil salinity for all irrigation intervals and decreased by 18.71 mm, 5.85 mm, and 6.63 mm for I₁, I₂, and I₃, respectively, with the increase in soil salinity by 1 dS m⁻¹. The reduction in chlorophyll content of I₁ and I₂ similarly occurred with the increase in soil salinity, whereas the chlorophyll content of I₃ decreased sharply compared to I₁ and I₂. This may be due to excessive water stress on I₃ and, thus, decreased soil water availability for crops. The fruit juice salinity increased linearly with increasing soil salinity. The effect of soil salinity on fruit juice salinity was found to be higher than the irrigation interval.

The main effect of irrigation level and irrigation water salinity on soil pH was significant. I₁ and I₂ treatments were significantly higher than I₃ treatments. The value of soil pH was reduced significantly as the irrigation water salinity increased, and the highest mean pH value was 7.72 for S₁ (Table 4).

Figure 3. Relationships between mean fruit weight, evapotranspiration, chlorophyll juice water EC with soil salinity.

(* p < 0.01, *: p<0.05)
3.4. Yield response factor

The relative yield reduction (Ky) value was calculated by using fruit weights obtained from the I1 treatment with the highest yield, and the Ky value was determined to be 1.39 (Fig. 4). When Ky ≤ 1 is higher, the plant is tolerant of salinity-related drought (Katerji et al., 1998). In literature, there is no report about the black carrot, but Carvalho et al. (2016) reported that the Ky value of carrot was 0.82 under different irrigation regimes. The black carrot was found to be sensitive to water stress caused by salt stress. Moreover, when saline water was applied for black carrot irrigation, the yield was significantly affected by saline water.

![Figure 4. Relationship between relative evapotranspiration and yield of the black carrot plant.](image)

Conclusion

This study investigated the interaction effects of irrigation interval salinity on the yield, yield parameters, evapotranspiration, and water use efficiency of black carrots. As the irrigation water salinity increased, soil salinity and SSC values increased, but yield, evaporation, chlorophyll, and soil pH values decreased. There was no statistically significant difference between the yields of I1 and I2, irrigated with water having the same salinity except for I1S1. It can be concluded that the 4 and 6 days irrigation intervals will provide the same yield under the same water salinity treatment. The highest yield was obtained from I1S1 and the lowest yield from I1S6, and the difference was a 42.20 % decrease in yield. A linear relationship between soil salinity, yield, and evapotranspiration was observed, and a unit increase in soil salinity caused a decrease in plant yield of 2.93 % to 3.83 %, depending on the irrigation interval. Irrigation water salinity up to 1.5 dS m⁻¹ was determined not to cause a significant reduction in yield, and the Ky value of black carrot was calculated as 1.39. The carrot plant was found to be sensitive to salinity and water stress. The irrigation interval should be a maximum of 6 days to avoid a decrease in the yield of black carrot, and more frequent irrigation should be done in case of using high saltwater. Water deficit under saline conditions may cause more yield reduction in plants. It is definitely recommended to carry out additional studies to investigate the combined effects of salinity and drought stress on plants.

References

Abd El-Halim, A.A., & Abd El-Razek, U. (2014). Effect of different irrigation intervals on water saving, water productivity and grain yield of maize (Zea mays L.) under the double ridge-furrow planting technique. *Archives of Agronomy and Soil Science*. 60.

Abedinpour, M., & Rohani, E. (2016). Effects of magnetized water application on soil and maize growth indices under different amounts of salt in the water. *Journal of Water Reuse and Desalination*, 7(3): 319-325.
Ahmed, N., Mahmud, N., Zaman, M. A., Ferdous, Z., & Halder, S. C. (2017). Effect of Different Salinity Level on Tomato (Lycopersicon esculentum) Production under Climate Change Condition in Bangladesh. Annu. Res. Rev. Biol, 13(3): 1-9.

Arslan, H., Kiremit, M. S., & Gungor, A. (2018). Impacts of different water salinity levels on salt tolerance, water use, yield, and growth of chives (Allium schoenoprasum). Communications in Soil Science and Plant Analysis, 49(20): 2614-2625.

Ayers, R. S., & Westcot, D. W. (1989). Water Quality for Agriculture. Irrigation and Drainage Paper, No. 29, FAO, Rome. 174 p.

Azder, G., Gocmen, E., & Istanbulluoglu, A. (2020). Effects of Different Irrigation Levels on Yield and Yield Components of Kapya Pepper (Capsicum Annum Cv. Kapija) Under Tekirdag Conditions. Journal of Tekirdag Agriculture Faculty, 17(3), 422-431.

Bell, J. M., Schwartz, R., McInnes, K. J., Howell, T., & Morgan, C. L. (2018). Deficit irrigation effects on yield and yield components of grain sorghum. Agricultural Water Management, 203: 289-296.

Çakmakci, Ö., Çakmakci, T., Durak, E. D., Demir, S., & Sensoy, S. (2017). Effects of arbuscular mycorrhizal fungi in melon (Cucumis melo L.) seedling under deficit irrigation. Fresenius Environmental Bulletin, 26(12), 7513-7520.

Carvalho, D., N. Oliveira, Dionizio, H., Felix, L. F., Guerra, J. G. U. & Salvador, C. A. (2016). Yield, water use efficiency, and yield response factor in carrot crop under different irrigation depths. Ciência Rural, 46(7): 1145-1150.

Chen, L., Li, C., Feng, Q., Wei, Y., Zheng, H., Zhao, Y., & Li, H. (2017). Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China. Science of the Total Environment, 598: 64-70.

Coban, F., Ozer, H., Ors, S., Sahin, U., Yildiz, G., & Çakmakci, T. (2018). Effects of deficit irrigation on essential oil composition and yield of fennel (Foeniculum vulgare Mill) in a high-altitude environment. Journal of Essential Oil Research, 30(6), 457-463.

Çakmakci, T., Çakmakci, Ö., Şensoy, S., & Şahin, Ü. (2021). The effect of biochar application on some physical properties of pepper (capsicum annuum L.) in deficit irrigation conditions. 7th International Eurasia Agriculture and Natural Sciences Congress, 23 October, 38-44.

Dastrañj, M., & Sepaskhah, A. R. (2019). Saffron response to irrigation regime, salinity and planting method. Scientia Horticulturae, 251, 215-224.

Desire, M., & Arslan, H. (2021). The Effect of Salicylic Acid On Photosynthetic Characteristics, Growth Attributes, and Some Antioxidant Enzymes on Parsley (Petroselinum crispum L.) Under Salinity Stress. Gesunde Pflanzen, 73, 435–444.

Doorenbos, J., & Kassam A.H. (1986). Yield response to water. FAO. Irrigation and Drainage Paper No:13. Rome, 193p.

Ekinçi, R., & Basbag, S. (2019). Determination of the effects of limited irrigation on some morphological properties of cotton (G. hirsutum L.). Yuzuncu Yil University Journal of Agricultural Sciences, 29(4), 792-800.

El-Mogy, Mohamed M., Garchery, C., & Stevens, R. (2018). Irrigation with saltwater affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agriculturae Scandinavica, Section B. Soil & Plant Science, 68(8): 727-737.

Guzel, S., Odun, U. C., Çakmakci, T., Çakmakci, O., & Sahin, U. (2018). The effect of cucumber (Cucumis sativus) cultivation in aquaponic and hydroponic systems on plant nutrient elements and antioxidant enzyme activity. Fresenius Environmental Bulletin, 27(1), 553-558.

Hancioglu, N. E., Kurunc, A., Tontul, I., & Topuz, A. (2019). Irrigation water salinity effects on oregano (Origanum onites L.) water use, yield and quality parameters. Scientia Horticulturae, 247, 327-334.

Hazrati, S., Tahmasebi-Sarvestani, Z., Mokhtassi-Bidgoli, A., Mohammadi, H., & Nicola, S. (2017). Effects of zeolite and water stress on growth, yield and chemical compositions of aloe vera, I. Agric. Water Manage. 181: 66–72.

Howell, T. A., Cuenca, R. H., & Solomon, K. H. (1990). Crop yield response. In Chapter 5 in management of farm Irrigation Systems, ed. by G. J. Hoffman, T. A. Howell, and K. H. Solomon, 93–122. St. Joseph, MI: American Society of Agricultural Engineers Monograph, ASAE. 1040 pp.
Jiang, J., Huo, Z.L., Feng, S.F., & Zhang, C.B. (2012). Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crop Res. 137: 78–88.

Katerji N., Hoorn, J. W., Hamdy, A., & Mastrorilli, M. (1998). The response of Tomatoes, A Crop of Indeterminate Growth, to Soil Salinity. Agricultural Water Management 38: 59–68.

Kim, H., Jeong, H., Jeon, J., & Bae, S. (2016). Effects of Irrigation with Saline Water on Crop Growth and Yield in Greenhouse Cultivation. Water; 8: 127

Kiran, S., Kusvuran, S., Ates, C., & Ellialtıoglu, S.S. (2018). The changes of fruit quality parameters at using of different eggplant rootstock/scion combinations which growing under salt and drought stress. Derim, 35(2): 111-120.

Kiremit, M. S., & Arslan, H. (2016). Effects of irrigation water salinity on drainage water salinity, evapotranspiration and other leek (Allium porrum L.) plant parameters, Scientia Horticulturae, 201: 211-217.

Kiremit, M. S., & Arslan, H. (2018). Response of Leek (Allium porrum L.) to different irrigation water levels under rain shelter. Communications in Soil Science and Plant Analysis, 49: 1-10.

Korkmaz, A., Karagöl, A., & Horuz, A. (2016). The effects of humic acid added into the nutrient solution on yield and some fruit quality properties of tomato plant under the increasing NaCl stress conditions. Anadolu J Agr Sci, 31(2): 275-282.

Mosaffa, H. R., & Sepaskhah, A. R. (2019). Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods. Agricultural Water Management, 216: 444-456.

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell and environment, 25(2): 239-250.

Ors, S., and Suarez, D.L. (2016). Salt tolerance of spinach as related to seasonal climate. Hortic. Sci 43, 33–41.

Ors, S., Ekinci, M., Yildirim, E., Sahin, U., Turan, M., & Dursun, A. (2021). Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. South African Journal of Botany, 137, 335-339.

Ozturk, I., & Korkut, K. Z. (2018). The Effect of Drought in Different Development Periods on Yield and Yield Components in Bread Wheat (Triticum aestivum L) Genotypes. Journal of Tekirdag Agriculture Faculty, 15(2), 128-137.

Puvanitha, S., & Mahendran, S. (2017). Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Sch J Agric Vet Sci 4(4), 126–131.

Ramezanifar, H., Yazdanapanah, N., Golkar Hamzee Yazd, H., Tavousi, M., & Mahmoobabadi, M. (2021). Spinach Growth Regulation Due to Interactive Salinity, Water, and Nitrogen Stresses. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10407-1.

Reis M., Coelho, L., Santos, G., Kienle, U., & Beltrão, J. (2015). Yield response of stevia (Stevia rebaudiana Bertoni) to the salinity of irrigation water. Agricultural Water Management, 152: 217-221.

Rodrigues, V.D.S., Bezerra, F.M., Sousa, G.G.D., Fiusa, J.N., Leite, K.N., & Viana, T.V.D.A. (2020). Yield of maize crop irrigated with saline waters. Revista Brasileira de Engenharia Agricolae Ambiental, 24 (2): 101-105.

Rostami, A., & Amiri, E. (2018). Responses of Tomato Cultivars to Water-Deficit Conditions (Case Study: Moghan Plain, Iran). Communications in Soil Science and Plant Analysis, 49(18), 2267-2283.

Ruiz, M.S., Yasuor, H., Ben-Gal, A., Yermiyahu, U., Saranga, Y., & Elbaum R. (2015). Salinity induced fruit hypodermis thickening alters the texture of tomato (Solanum lycopersicum Mill) fruit. Sci Hortic. 192:244–249.

Sahin, U., Kuslu, Y., Kiziloglu, F. M., & Cakmakci, T. (2016). Growth, yield, water use and crop quality responses of lettuce to different irrigation quantities in a semi-arid region of high altitude. Journal of Applied Horticulture, 18(3).

Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S, & Yildirim, E. (2018). Effects of individual and combined effects of salinity and drought on physiological, nutritional, and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci. Hortic. 240(20), 196–204.
Sepaskhah, A. R., & Yarami, N. (2009). Interaction effects of irrigation regime and salinity on flower yield and growth of saffron. *The Journal of Horticultural Science and Biotechnology*, 84(2): 216-222.

Shah, S.H., Houborg, R., & McCabe, M.F., (2017). Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (*Triticum aestivum* L.). *Agronomy*, 7:61.

Turhan, A., & Kuşçu, H. (2019). Tuzluluk Stresinin Patlıcanada (*Solanum melongena* L.) Su Kullanım Etkinliği, Verim Bileşenleri, Yaprap Klorofil ve Karotenoid İçeriği Üzerine Etkileri. *Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi*, 29(1), 61-68.

Unlukara, A., Cemek, B., Kesmez, D.G., & Ozturk, A. (2011). Carrot (*Daucus carota* L.) yield and quality under salinity conditions. *Anadolu J Agr Sci.*, 26(1): 51–56.

Unlukara, A., Kurunc, A., Kesmez, D.G., & Yurtseven, E. (2008). Growth and evapotranspiration of okra (*Abelmoschus esculentus* L.) as influenced by salinity of irrigation water. *Journal of Irrigation and Drainage Engineering*. ASCE.0733-9437/134:28160).3.

Yavuz, D., Yavuz, N., Seymen, M., & Türkmen, Ö. (2015). Evapotranspiration, crop coefficient and seed yield of drip irrigated pumpkin under semi-arid conditions. *Scientia Horticulturae*, 197: 33-40.

Yerli, C., Şahin, Ü., Kızıloğlu, F.M., Tüfenkçi, Ş., & Örs, S. (2019). Van ilinde sâlîlık mısır, patates, şeker pancarı ve yoncanın su ayak izi. *Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi*, 29(2), 195-203.

Yuan, C., Feng, S. Huo, Z. & Ji, Q. (2019). Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. *Agricultural Water Management*, 212: 424-432.

Yurtseven, E., Ozturk, H.S., Avci, S. S. Altinok., & M.F. Selenay. (2012). Soil Salinity Changes Due to Different Irrigation Water Salinity and Leaching Fractions. *Soil, Water Journal*, 1 (1):38-46.