The complete mitochondrial genome of *Cycas debaoensis* revealed unexpected static evolution in gymnosperm species

Sadaf Habib¹,², Shanshan Dong², Yang Liu², Wenbo Liao¹*, Shouzhou Zhang²*

¹ School of Life Sciences, Sun Yat-sen University, Guangzhou, China, ² Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China

* lsslwb@mail.sysu.edu.cn (WL); shouzhouz@szbg.ac.cn (SZ)

Abstract

Mitochondrial genomes of vascular plants are well known for their liability in architecture evolution. However, the evolutionary features of mitogenomes at intra-generic level are seldom studied in vascular plants, especially among gymnosperms. Here we present the complete mitogenome of *Cycas debaoensis*, an endemic cycad species to the Guangxi region in southern China. In addition to assemblage of draft mitochondrial genome, we test the conservation of gene content and mitogenomic stability by comparing it to the previously published mitogenome of *Cycas taitungensis*. Furthermore, we explored the factors such as structural rearrangements and nuclear surveillance of double-strand break repair (DSBR) proteins in *Cycas* in comparison to other vascular plant groups. The *C. debaoensis* mitogenome is 413,715 bp in size and encodes 69 unique genes, including 40 protein coding genes, 26 tRNAs, and 3 rRNA genes, similar to that of *C. taitungensis*. *Cycas* mitogenomes maintained the ancestral intron content of seed plants (26 introns), which is reduced in other lineages of gymnosperms, such as *Ginkgo biloba*, *Taxus cuspidata* and *Welwitschia mirabilis* due to selective pressure or retroprocessing events. *C. debaoensis* mitogenome holds 1,569 repeated sequences (> 50 bp), which partially account for fairly large intron size (1200 bp in average) of *Cycas* mitogenome. The comparison of RNA-editing sites revealed 267 shared non-silent editing site among predicted vs. empirically observed editing events. Another 33 silent editing sites from empirical data increase the total number of editing sites in *Cycas debaoensis* mitochondrial protein coding genes to 300. Our study revealed unexpected conserved evolution between the two *Cycas* species. Furthermore, we found strict collinearity of the gene order along with the identical set of genomic content in *Cycas* mt genomes. The stability of *Cycas* mt genomes is surprising despite the existence of large number of repeats. This structural stability may be related to the relative expansion of three DSBR protein families (i.e., *RecA*, *OSB*, and *RecG*) in *Cycas* nuclear genome, which inhibit the homologous recombinations, by monitoring the accuracy of mitochondrial chromosome repair.
Introduction

Mitochondrial (mt) genomes provide a substantial genetic information for phylogenetic reconstructions and exploration of essential cellular processes. Recent advances in high-throughput sequencing technologies has significantly facilitated the assemblage of plant mt genomes, and analysis of their structural diversity and evolutionary trends [1–3]. Among major land plant groups, mitochondrial genomes of the earliest land plant groups are relatively conserved due to narrow size variation and similar gene content [4, 5]. Conversely, mitogenomes of vascular plants exhibit highly dynamic characters: from 66 Kb in Viscum scurrollideum [2] to 11 Mb in Larix sibirica [6], with known genes ranging from 19 to 64 excluding duplicate genes and ORFs (Open reading frames), and intron content ranging from 5 in Viscum [2] to 26 in farns and early diverging gymnosperms [7, 8]. Additionally, plant mitogenomes vary significantly in their nucleotide substitution rates, RNA editing site abundance, and the occurrence of repeat-mediated recombinations [1, 2, 9, 10]. Moreover, plant mitochondria also exhibit extensive inter- or intraspecific variation in genome size and structure, resulting from large sequence duplications and frequent rearrangements in angiosperms [11–13]. However, this phenomenon is less explored in gymnosperms.

Research of mitogenome for vascular plants has been focused mostly on angiosperms. In contrast to the well-studied angiosperms, only 11 mt genomes has been reported for gymnosperms to date (as of April. 2021). Gymnosperms, with approximately 1,000 species, are considered as economically and ecologically significant plants as they account for roughly 40% of the world’s forests flora [14, 15]. Among the main lineages gymnosperms, mitogenome has representative for each of the five major groups, i.e., cycads: Cycas taitungensis [8], ginkgo: Ginkgo biloba [9], gnetophytes: Welwitschia mirabilis [9], Pinaceae (Pinus taeda, [direct submission at NCBI, MP991879.1] Picea abies [16], Picea glauca [17], Picea sitchensis [18], Pinus lambertiana [19], Pinus sylvestris [https://www.ncbi.nlm.nih.gov/assembly/GCA_900143225.1/], Larix sibirica [6]) and Conifers II: Taxus cuspidata [20].

Gymnosperm mitogenomes are featured by structural dynamics with 40 [9] to 69 [8] genes, 10 to 26 introns [21] and highly variable intergenic spacer regions [20]. Despite having significant variation among genes and non-coding regions (repeated sequences, introns, and plastid and nucleus derived sequences) in gymnosperms, the range of draft mitogenome size divergence of 346 Kb in G. biloba to 11 Mb in L. sibirica is primarily due to the unidentified DNA [6] and mechanism of mitogenome expansion is differed among gymnosperms [20]. The phenomenon of inter- or intra-specific variation is less studied among gymnosperms. Mitogenomes of P. abies, P. glauca, and L. sibirica are revealed to be extensively rearranged but with exact gene order is unknown due to their highly fragmented mt-genomes [6, 22]. Among gymnosperms, study of interspecific variations in earliest diverging group would improve the entire view on the evolutionary pattern of its mechanism in gymnosperms.

Structural rearrangements among mt genomes are usually related to the abundance of repeated sequences as they can lead to the translocations and inversions of varying stoichiometry by mediating intragenomic homologous recombinations [2, 3, 23]. Among the three earliest nonvascular land plant lineages, absence of repeated sequences in moss mitogenomes and the lack of rearrangements [24], or the presence of repeats and rearrangements in hornworts [25] support this hypothesis. However, liverworts showed somewhat inconsistent pattern in having repeats but with low frequency of recombination [4]. On the other hand, mitogenomes of vascular plants are rich in repeated sequences, which explain their structural lability, with many rearrangements observed even among the inter-familial, inter or infra-generic species [24]. However, inter-specific gene order rearrangements have never been tested in gymnosperms due to the fewer availability of gymnosperm mt genomes and needs further
explorations for a comprehensive understanding of the evolution and diversification of gymnosperm mitogenomes.

Cycads (Cycadales) along with *G. biloba* (Ginkgoales) form the earliest diverging clade of gymnosperms, and is sister to all other gymnosperms [26]. *G. biloba* is a sole species of Ginkgoales, hence cycads are an appropriate group for investigating the ancestral condition and structural stability of mitochondrial genome in gymnosperms. Moreover, *Cycas* mitogenome was among the richest in repeated sequence in mitogenome [20, 24], therefore, it is a perfect candidate to demonstrate the amplitude of genome rearrangement in gymnosperms, and among closely related species in different lineages of land plants, where the genome embarked on a path of radical structural evolution, among all eukaryotes. Cycads are contemporary relic gymnosperm that has been originated before the mid-Permian, and were in their splendor during the Jurassic–Cretaceous [27, 28]. Currently, relics of these enigmatic plants are distributed in the tropical and subtropical regions of the world [28, 29].

Here, we present the complete mitogenome of *C. debaoensis*, a cycad species endemic to the Guangxi region in southern China, to test stability of gymnosperm mitogenome at inter-species level by comparing it with the available mitogenome of *C. taitungensis*. Moreover, our study will elucidate the factors affecting structural rearrangements and genetic basis underlying, i.e., the nuclear surveillance of double-strand break repair (DSBR) protein.

Material and methods

Mitochondrial DNA and RNA isolation and mitogenome assembly

The plant tissue of a cultivated *C. debaoensis* tree was collected from Shenzhen Fairy Lake Botanical Garden, Shenzhen, China. No specific permission was required for collection of plant sample used in current study. The sample was identified by Zhang Shouzhou, and the voucher specimen ((No. ZhangSZ2020001) was deposited in SZG (Herbarium of Shenzhen Fairy Lake Botanical Garden, Shenzhen, China). Genomic DNA and RNA was isolated using the CTAB method with modifications described by [30]. The quality and quantity of DNA and RNA were examined using 1% Agarose gel electrophoresis and Qubit fluorometer, respectively. After extraction, 20 μg high-quality DNA were subjected to Nanopore sequencing on an ONT PromethION 48 platform at Nextonomics (Wuhan, China). About 1 μg of high quality DNA and RNA were fragmented and used to construct paired-end NGS sequencing libraries of insert size 350 and 200 bp, respectively, according to the manufacturer’s instructions (Illumina, CA, USA), and then sequenced on an Illumina HiSeq 2000 at Nextonomics Biosciences (Wuhan, China).

The raw genomic and transcriptomic reads were trimmed and filtered for adaptors, low quality and duplicate reads using Trimmomatic (https://github.com/timflutre/trimmomatic). The long Nanopore reads were then *de novo* assembled using NextDenovo (https://github.com/Nextomics/NextDenovo). The raw genome assembly were polished using Illumina paired-end reads using Pilon [31] for three times. The corrected genome assembly was then searched by blast using the previously published mt genome of *C. taitungensis* (AP009381). One mt contig of 527,762 bp was found as a result. Sequencing depth and read coverage of this contig was checked with Illumina DNA-seq reads. The resultant mt contig was overlapped with at the two ends, yielding a circular chromosome of 413,715 bp.

The draft mitogenome of *C. debaoensis* was annotated as previously described by [8, 9]. Briefly, protein coding genes (PCGs) and rRNA genes were annotated by Blastn searches of the non-redundant database at National Center for Biotechnology Information (NCBI) website. The exact gene and exon/intron boundaries were manually adjusted in Geneious v10.0.2, (Biomatters, www.geneious.com) and further corroborated by aligning each gene to its
orthologs from currently available annotated plant mitochondrial genomes at NCBI (www.ncbi.nlm.nih.gov/genome/organelle). The tRNA genes were identified using tRNAscan-SE 2.0 [32]. The annotated *C. debaoensis* mitochondrial genome assembly is deposited to CNSA of China National GeneBank DataBase (CNGBdb) with accession number CNA0019277, and read mapping file in fastq format was submitted to GenBank under the accession number of SRR13558328. The mitogenome map (Fig 1) was drawn using OGDRAW v1.2 [33].

Repeats, tandem repeats, Bpu-like elements and plastid derive repeats

Repeats identification of *C. debaoensis* mt genome (≥ 50 bp) was done using ROUSFinder.py script following the procedure of Wynn & Christensen [34], and tandem repeats (TRs) were detected using Tandem Repeats Finder using default parameters [35]. Bpu-like elements and plastid homologous sequences were identified using Blastn (E-value ≤ 1e-6, word size = 7), as described by [9]. Briefly, *C. taitungensis* 36 Kb Bpu-like consensus sequence (AAGGTTATCCCTTCTCGATGCCAGAGGGAG) described by [8] was used as a query to search the Bpu-like elements in *C. debaoensis* and *C. taitungensis*, with 7 mismatches (including gaps) to the 36 Kb Bpu-like consensus sequence (known as dominant type Bpu-like sequence hereafter) were allowed for calculations. For searching of plastid derived (cp) sequences, *C. debaoensis* mt genome was blasted against the available cp genomes of *Cycas* at NCBI. Genes with simultaneous occurrences in cp and mt genome (*atp1/atpA, rpl16, rps4, rrn26/rrn23*, and *rrn18/rrn16*) were not considered.

Identification of genome rearrangements and DSBR protein analyses

Forty-six representative species of land plants including six gymnosperm mt genomes (excluding the highly fragmented mt-genomes of Pinacea) were selected to determine the inter-generic and inter-species genome rearrangements among gymnosperms and other major land plant groups (S1 Table). The data matrix was constructed based on the order of all PCGs, rRNA and tRNA in the genome along with their transcriptional direction, excluding foreign or non-functional pseudo genes (S1 Table). Duplicated genes and parts of trans-spliced genes were treated independently. The final data matrix was then used to identify genome rearrangements. Pairwise comparison of the mt genomes was conducted using double cut and join (DCJ) model under the likelihood criterion [36], implemented with UniMoG [37]. This program estimates the minimal rearrangement events between a pair of mt genomes. The phylogenetic tree topologies for these representative taxa were drawn from 1KP project [38], and visualized with heatmap of mt genome rearrangements using the online platform OmicShare tools (http://www.omicshare.com/tools/Home/Soft/heatmap).

Genome stability and prohibition of the recombination between repeated DNA sequences was linked to the nuclear encoded double-strand break repair (DSBR) proteins [39]. Relative expansion of these gene family members in mitochondrial genomes can explain the enhance of nuclear surveillance of DSBR protein maintaining the mt genomic structures and function. Characterization of six frequently reported DSBR proteins i.e., *MSH* [40], *RecA* [41, 42]; *RecX* [4], *RecG* [43], *OSB* [44], and the *Whirlies* [45, 46], was conducted following the steps described by [4]. Sixteen vascular plant species with majority of them from gymnosperms were selected for analyses (S2 Table). HMMER [47] was used to perform Hidden Markov Model (HMM) searches at E-value of 1e-6 and alignment length ≥ 50%, using Pfam domains of *RecA* (PF00154; *RecA* gene), *RecX* (PF02631; *RecX* gene), SSB (PF00436; *OSB* gene), MutS_V (PF00488; *MSH* gene), Whirly (PF08536; *Why* gene), and DEAD and Helicase_C (PF00270, PF00271; *RecG* gene) as query to search the annotated proteins in selected vascular
Fig 1. The map of mitochondrial genome of *Cycas debaoensis*. Genes (along with exon numbers) shown inside and outside of the circle are transcribed in clockwise and counter-clockwise directions, respectively. Plastid derive tRNAs are indicated with a ‘-cp’ suffix.

https://doi.org/10.1371/journal.pone.0255091.g001
RNA editing site identification

RNA editing sites were predicted for *C. debaoensis* protein coding genes (CDS) using the online tool PREP-Mt [53], with the default cutoff score set to 0.2. Availability of high depth RNA-seq data made it possible to calculate the empirical RNA-editing sites on protein coding genes (CDS) in *C. debaoensis*. As PREP-Mt predicts the nonsilent RNA editing sites, we only compare the predicted RNA-editing sites to the empirically annotated RNA-editing sites on CDS of *C. debaoensis*, following the methods described in [54] and [55]. Briefly, RNA-seq clean reads were mapped to the reference genome file containing the CDS of *C. debaoensis* using TopHat2 [56]. The accepted mapping hits in bam format were sorted using Samtools [57] and Bcftools [58]. The resultant vcf file was used to generate the snp file using a perl script (Dryad Digital Repository, accession 10.5061/dryad.nzs7h44ms). Potential genomic SNPs were then removed manually by filtering the RNA editing annotation file against the SNP sites by their positions on the genome sequence. Finally, the annotation file of RNA editing sites was manually checked against transcriptome mapping bam file in Geneious v10.0.2 to acquire exact number of RNA editing sites. The WGS read mapping file and transcriptome mapping bam file have been deposited in the Short Read Achieve (SRA) database of NCBI under the accession number of SRR13558328 and SRR13528745, respectively.

Furthermore, we investigated whether the editing frequencies in gymnosperm species are shaped by selection constraint on genes as suggested by Jobson and Qiu [59]. Three gymnosperm taxa included in the analysis are *C. debaoensis*, *G. biloba* and *T. cuspidata*. We calculate the gene-specific rates of evolution, at both synonymous (*d*$_S$) and nonsynonymous (*d*$_N$) sites estimated using CODONML implement in PAML [60]. Editing frequency (%) for each gene is calculated as $\{\text{A [number of edited sites]/B [gene length]}\} \times 100$.

Results and discussion

Genome size and gene content of *C. debaoensis*

The *C. debaoensis* mitogenome is assembled into a single circular molecule of 413,715 bp (CNGBdb accession: CNA0019277), a size in similar range to *C. taitungensis*, *G. biloba* and *T. cuspidata* with genome size of 414 Kb, 346 Kb and 414 Kb, respectively. However, *W. mirabilis* (978 Kb) and species of Pinaceae (*P. taeda*, 1.19 Mb [https://www.ncbi.nlm.nih.gov/nuccore/NC_039746.1/]; *P. glauca*, 5.9 Mb [17]; *P. abies*, 4.3 Mb [16]; *P. sitchensis*, 5.5 Mb [18]; *P. lambertiana*, 3.9 Mb [19]; *P. sylvestris*, 986 Kb [https://www.ncbi.nlm.nih.gov/assembly/GCA_900143225.1/]; *L. sibirica*, 11.7 Mbp [6]) have extremely expanded mitochondrial genomes. We compare the general features of mitogenomes of representative taxa of all five major lineages of gymnosperms (Table 1). *C. debaoensis* mitogenome has a GC content of 46.9% (Table 1), similar to *C. taitungensis* that with a GC content of 46.9%, and lies within a range (i.e., < 50%) of *P. taeda*, early angiosperms [61], and two lycophytes species (*Huperzia* and *Isoetes*). However, GC content of *G. biloba*, *W. mirabilis*, *T. cuspidata*, and ferns mt genomes is found to be > 50%. Consistent with *C. taitungensis*, mitogenome of *C. debaoensis* encodes 69 unique genes, containing 40 protein coding genes, 26 tRNAs, and a same set of 3 rRNA genes (*rrn5*, *rrn16*, and *rrn26*) as in angiosperms (Table 1). The total gene length of * Cycas* is about
87.7 Kb, which accounts for 21% of the total mt genome length, including about 32 Kb (8.4% of total genome length and 36% of total gene length) of protein coding sequences. The protein exon length among observed gymnosperm species lies within the range of 29.7 Kb in W. mirabilis (29 PCGs), to 34 Kb in G. biloba (41 PCGs), which accounts for only 3% and 9.8% of the total gene length, respectively. Although, there is significant difference in the number of mitochondrial genes, the variation of noncoding DNA content is the major contributor towards large size mitogenomes of gymnosperms [7, 20]. In addition to gene content, other factors associated with mitogenome expansion include foreign sequences, size and number of repeated sequences [10, 62–65]. However, in case of gymnosperms, an ample amount of unidentified DNA denoted to the mitogenome expansion [9, 22], and the above mentioned factors have negligible contribution towards overall mitogenome length variation (Table 1).

Evolution of intron content of Cycas and across land plants

The evolution of intron content is conservative with comparison of the two Cycas mitochondrial genomes. Twenty-six group II introns disrupt 10 protein coding genes (ccmFC, cox2, nad1, nad2, nad4, nad5, nad7, rpl2, rps3, rps10) in mt-genomes in both Cycas species (Table 1), including 21 cis-spliced (adding up to 51 Kb and 12.3% of total genome length) and 5 trans-spliced introns (i.e., nad1i394, nad1i669, nad2i542, nad5i1455, and nad5i1477). The early diverging Pinus and Cycas mt genomes retain ancestral intron content of seed plants (26 introns). However, in addition to five shared trans-spliced introns, eight more introns are shifted from cis- to trans- spliced in P. taeda, Picea abies and Picea glauca mt-genomes (Fig 2). Intron content of G. biloba (30 Kb; 11%) only differs from Cycas owing to the loss of one intron (rps10i235) in it (Table 1). The intron content is greatly declined in subsequent lineages, e.g., T. cuspidata and W. mirabilis maintain 15 and 10 introns, respectively (Fig 2). Most of the seed plant mitochondrial introns are first evolved in ferns as Psilotum and Ophioglossum share 23 and 19 introns with seed plants, respectively. However, trans-splicing of nad1i394,

Features	C. debaoensis	C. taitungensis	G. biloba	P. taeda	W. mirabilis	T. cuspidata
Accession	CNA0019277	AP009381	KM672373	MF991879.1	KT313400	MN593023
Size (Kb)	413	414	346	1,191	978	468
GC%	46.9	46.9	50.4	47	53	50.39
Genes	69	69	66	58	40	46
tRNAs	26	26	23	12	8	10
rRNAs	3	3	3	6	3	4
PCGs	40	40	40	40	29	32
Introns	26	26	25	26	10	15
Total gene length (Kb)	87.6 (21%)	87.6 (21%)	80.4 (23%)	72.8 (6%)	50.6 (5%)	59 (12%)
Protein exons (Kb)	32.3 (8.4%)	32.3 (8.4%)	34 (9.8%)	33.8 (2%)	29.7 (3%)	31 (6.6%)
Cis-spliced introns (Kb)	51.2 (12.3%)	51.2 (12.3%)	39.1 (11%)	26.5 (2.2%)	5.9 (0.7%)	6.9 (1.2%)
Intergenic spacer (Kb)	326 (79%)	326 (79%)	266 (77%)	1118 (94%)	928 (95%)	410 (88%)
Plastid origin (Kb)	16 (3.8%)	17 (4.1%)	0.3 (0.1%)	5.6 (0.5%)	7.9 (0.8%)	0 (0%)
Nuclear origin (Kb)	3.4 (0.8%)	3.4 (0.8%)	1.9 (0.6%)	5.3 (0.5%)	2.5 (0.3%)	3.5 (0.8%)
Repeats (Kb)	51.7 (12.5%)	54.3 (13%)	32 (9.3%)	170 (14.2%)	50 (5.0%)	62 (13.2%)
TRs (Kb)	23 (5.7%)	22 (5.3%)	36 (1.1%)	71 (6.0%)	24 (2.5%)	48 (10.2%)
Bpu-like elements	486	504	19	0	0	0

* C. taitungensis dominant type Bpu-like sequence used as query.

https://doi.org/10.1371/journal.pone.0255091.t001

87.7 Kb, which accounts for 21% of the total mt genome length, including about 32 Kb (8.4% of total genome length and 36% of total gene length) of protein coding sequences. The protein exon length among observed gymnosperm species lies within the range of 29.7 Kb in W. mirabilis (29 PCGs), to 34 Kb in G. biloba (41 PCGs), which accounts for only 3% and 9.8% of the total gene length, respectively. Although, there is significant difference in the number of mitochondrial genes, the variation of noncoding DNA content is the major contributor towards large size mitogenomes of gymnosperms [7, 20]. In addition to gene content, other factors associated with mitogenome expansion include foreign sequences, size and number of repeated sequences [10, 62–65]. However, in case of gymnosperms, an ample amount of unidentified DNA denoted to the mitogenome expansion [9, 22], and the above mentioned factors have negligible contribution towards overall mitogenome length variation (Table 1).
nad1i669, nad2i542, nad5i1455, and nad5i1477 introns predominantly occur in gymnosperms and angiosperms (Fig 2). Liverworts lack all of these group II introns, except nad2i709. However, hornworts and mosses share 10 group II introns with seed plants (Fig 2). Mitochondrial intron content is highly conserved within major lineages of land plants, though varies greatly among them. Overall, intron loss and trans-splicing is most prevalent in gymnosperms in comparison to other land plants. The gradual intron losses from early diverging lineages to the derived ones in gymnosperms may be related to retro-processing events for the introns removed at 3' ends, or selective pressure to retain the introns at near to 3' and 5' ends [20].

Repeats, tandem repeats and Bpu-like elements

Mitochondrial genome of *C. debaoensis* appears to have 1,569 repeated sequences of longer than 50 bp, adds up to 51.7 Kb in length, i.e., 12.5% of the total mt genome length (Table 1). *C. taitungensis* contains 1,522 repeated sequences of a total of 54.3 Kb in length, which accounts for about 13% of the total genome. Interestingly, no large repeats (> 1 Kb) are found in *C. debaoensis*, compared to *C. taitungensis* having 2 large repeats. Both species share numerous repeats of intermediate (100–900 bp) and short length (< 100 bp). The repeated sequence proportion of gymnosperms covers about 9–14% of the total mt genome length, except for *W. mirabilis* with only 5% of repetitive sequence in its mt genome (Table 1). The proportion of repetitive sequences varies greatly among major land plant groups. The earliest land plants have few (mosses), to an average of 4.5% (liverworts) of repeated sequences in their mt-genomes [4, 24]. On the other hand, ferns (*Psilotum* about 57% of genome; *Ophioglossum* about 40% of genome) and also angiosperm species such as *Nymphaea* (49%) have the most repeat-rich mitogenomes [7, 22].

Repeat insertion events are considered contributing significantly to intron size expansion [7, 66]. Comparing the length of 26 cis-spliced introns found in *Cycas* with four gymnosperms (*G. biloba*, *P. taeda*, *T. cuspidata*, and *W. mirabilis*) and other vascular plant representatives reveals that ferns (*Ophioglossum, Psilotum, Cycas*, and *P. taeda*) have introns of relatively longer in length along with abundant repeated sequences, as compared to lycophytes and angiosperms (Table 2). Intron lengths of *cox2i691, nad2i1282, nad4i1399, nad4i976* and *nad7i676* are > 1000 bp longer, and of *rpl2i917* was > 500 bp longer in *Cycas* than in any of their gymnosperm counterparts (Table 2). Whereas, *cmmFci829, rps10i235* and *rps3i257* are > 1000 bp longer in *P. taeda* than all other observed taxa (Table 2). These elongated introns appear to have abundant repeated sequences, which are responsible for longer introns in *Cycas* and *P. taeda* mt genomes. Moreover, *C. debaoensis* mt genome contain 23 Kb (5.7% of total genome length) of tandem repeat sequences (TRs), which is comparable to *C. taitungensis* having 22 Kb (5.3%) of tandem repeats (Table 1). Despite the considerable disparity among TRs proportion in gymnosperms, their impact on overall genome size expansion is trivial.

C. taitungensis mitogenome contained abundant short interspersed repetitive elements known as Bpu-like sequences/elements [8]. These mobile elements are characterized by having two conserved terminal direct repeats (AAAGG) and a recognition site for the restriction endonuclease, known as Bpu10I (CCTGAAGC; nt 15–21). We retrieve 486 variants of Bpu-like elements in *C. debaoensis* using the dominant type Bpu-like sequence as a query. Among these variants, 251 Bpu-like sequences show 100% identity to the dominant 36 bp Bpu-like sequence. Another 41 sequences are 100% identical to the dominant Bpu-like sequence, but with reduced sequence length of 29–35 bp (S3 Table). Using the same parameters, *C. taitungensis* is found to have 504 variants of Bpu-like elements, 309 of them are 100% identical to the dominant type 36 bp Bpu-like sequence (S3 Table). Moreover, another 36 Bpu-like elements of 30–35 bp are 100% identical to the dominant type Bpu-like sequence. Bpu-like insertion sites for *C. debaoensis* and *C. taitungensis* are mostly found to be orthologous (S3 Table). Using the same parameters, we blast the Bpu-like-elements against the *G. biloba, T. cuspidata, W. mirabilis* and *P. taeda* mt genomes. *G. biloba* is found to have 19 Bpu-like sequence with only one (35 bp) of them showing 100% identity to the dominant type of Bpu-like elements in *Cycas* (Table 1). All the other *Ginkgo* Bpu-like variants are differed from the dominant *Cycas* Bpu-like sequence at position 9 (C to A), 17 (T to C) and 28 (A to G), but have conserved terminal repeats (position 1–4 and 33–36) and Bpu10I endonuclease recognition site (position 15–21) similar to *Cycas*. Using this *Ginkgo* Bpu-like consensus sequence (AAGGTTATACCTTTCGAGCCGTAGCCGAGGGAAGG), nearly 100 variants of Bpu-like elements are identified in
G. biloba [9]. Bpu-like elements are missing in other gymnosperm mitogenomes (Table 1). These results confirm the expansion of Bpu-like elements only in Cycas and G. biloba. Based on the most recent phylogenetic reconstruction of cycad [67], C. taitungensis belonged to the earliest diverging Clade I (Sections Panzhihuaenses and Asiorientales), and C. debaoensis was classified to be part of partially supported clade II (The core Stangerioides clade). Comparing the two Cycas mt genomes, Bpu-like elements appears to be static in Cycas evolution, possibly since the divergence between cycads and ginkgo, which might imply some functional significance.

Genome structural evolution across land plants, and repeat-triggered recombinations in Cycas

We explore the inter-species and inter-generic mitogenome rearrangement across the major land plant groups along with the number of repeats, and then plotted the results beside a phylogenetic gradient of land plants. It is generally believed that repeated sequences (≥ 50 bp) within the mitochondrial genome create opportunities for intragenomic recombination [23, 40, 68]. Such events involve a crossing-over via homologous recombination between repeated

Table 2. Intron size variations among vascular plant mitogenomes.

Intron	Lycophytes	Ferns	Gymnosperms	Angiosperms								
	Huperzia	Selaginella	Ophioglossum	Psilotum	Cycas	Ginkgo	Pinus	Taxus	Welwitschia	Liriodendron	Phoenix	
1	ccmFci829	-	-	4328	1063	1003	2609*	-	-	1042	949	
2	cox2i373	2318	Θ	-	-	2973	2662	Θ	Θ	-	2752	1289
3	cox2i691	2528	2111	-	-	3991*	2722	Θ	-	Θ	2220	1596
4	nad1i394	1673	3130	-	5451	Θ	Θ	Θ	Θ	Θ	Θ	
5	nad1i477	1490	5503	2998	4736	1873	1501	2,157	Θ	-	1419	1431
6	nad1i669	3108	2963	4590	4325	Θ	Θ	Θ	Θ	Θ	Θ	
7	nad1i728	3402	4061	3287	3860	3945	3672	Θ	Θ	Θ	4748	Θ
8	nad2i1282	-	-	2159	3196	3491*	2355	Θ	-	Θ	1453	1387
9	nad2i156	1518	5175	2174	4537	2093	1450	1536	Θ	-	1444	1234
10	nad2i542	-	1322	1913	4978	Θ	Θ	Θ	Θ	Θ	Θ	
11	nad2i709	-	1546	1803	1510	2433	2390	2015	2,364	-	2618	2487
12	nad4i1399	-	2779	2704	7382	5452*	3438	1820	Θ	-	2899	2807
13	nad4i461	2921	2004	5060	2120	2080	1810	Θ	Θ	Θ	1350	1370
14	nad4i976	-	4298	3025	6688	5707*	4382	3510	Θ	-	4413	3767
15	nad5i1455	2908	2486	3271	3879	Θ	Θ	Θ	Θ	Θ	Θ	
16	nad5i1477	2870	2314	1432	4121	Θ	Θ	Θ	Θ	Θ	Θ	
17	nad5i1872	-	-	623	549	912	1233	844	804	-	1316	945
18	nad5i230	-	4366	7669	899	870	1,177	1,293	-	845	861	
19	nad7i140	-	642	1688	2904	1183	1017	1558	-	-	875	856
20	nad7i209	-	1809	-	3495	1585	1633	Θ	2,461	2144	1754	1766
21	nad7i676	-	609	1092	3487	2420*	1137	1105	-	-	1013	999
22	nad7i917	-	1656	5564	8206	1938	1861	Θ	-	2431	1904	1802
23	rpl2i917	747	-	1769	777	1344*	782	Θ	#	-	1471	1622
24	rps10i235	819	-	-	-	885	-	2,064*	#	-	838	1137
25	rps2i325	1108	-	1667	1899	984	2,985*	-	-	-	-	
26	rps3i74	3030	-	6506	1935	2980	2281	3199	-	-	1878	1832

- # and Θ indicate the missing intron, missing gene and trans-spliced introns respectively. Whereas
* indicates the significant intron expansion with evidence of repeat abundance in Cycas debaoensis and Pinus taeda mt genomes.

https://doi.org/10.1371/journal.pone.0255091.t002
sequences inside a circular genome [39], and result in a novel genome structure. Inter-species and inter-generic rearrangements within bryophytes are not much prominent due to their relatively conserved mitogenomes with fewer number of repeats. Mosses with fewer repeated sequences required 2–4 and 6 inter- and infra-generic rearrangements, respectively. Liverworts with repeated sequences of intermediate abundance among bryophytes, have nearly static mitogenomes. Hornworts appeared to have more number of repeats than mosses and liverworts. Only one inter-specific translocation event occurred among two Anthoceros species, and a maximum of 3 inter-generic rearrangements among the observed taxa (Fig 3; S4 Table). Hence, the relationship between number of repeats and genomic rearrangements is not fully supported in bryophytes. However, in angiosperms, inter-specific rearrangements are reported in all of the observed taxa with fairly large number of repeats (Fig 3). Angiosperms
require 11 rearrangements on average to get collinear gene order at infra-generic level. Surprisingly, despite having large number of repeats (>1500), mitogenomes of *C. debaoensis* and *C. taitungensis* share exactly a same gene order. Whereas, 34, 44, 32, and 34 rearrangements are required by *Cycas* mt genomes to get complete collinearity with that of the *G. biloba*, *P. taeda*, *T. cuspidata*, and *W. mirabilis*, respectively (Fig 3; S4 Table). In pairwise comparison, gymnosperm mitogenome require a minimum of 27 (between *P. taeda* and *W. mirabilis*) to a maximum of 44 (between *P. taeda* and *Cycas*) rearrangements to get the same gene order. Any two gymnosperm mitogenome varies by 31 rearrangements on average (Fig 3; S4 Table). The strict collinearity among the gene order along with the identical set of genomic content in *Cycas* mt genomes confirm their structural stability, lack of recombination, and support the hypothesis that repeats may not be sufficient for recombination to occur within the mt genomes [4].

Genomic rearrangements in mt genomes presumably accompany by cis- to trans-spliced intron transitions. Bryophytes have fewer or no rearrangements in each major group, and lacks the trans-spliced introns in their mitogenomes (Figs 2 and 3). However, *Sleginella moelleriophyllum* (lycophyte) has extensively rearranged mitochondrial genome and with four trans-spliced introns [13]. Conversely, angiosperm mitogenomes with numerous trans-spliced introns show extensive DNA rearrangement (Figs 2 and 3). Among gymnosperms, our analyses of genomic rearrangements indicate that *P. taeda* with highest number of trans-spliced intron (13 trans-spliced introns) need 44 and 42 rearrangements to get collinearity with early diverging *Cycas* and *G. biloba*. Furthermore, *Picea* mt genomes are also appeared to be highly recombinogenic [22] along with extensive trans-splicing events. Thus, the occurrence of trans-splicing with recombinogenic mitogenomes in gymnosperms suggests that shifts from cis- to trans-splicing in plant mitochondria is mainly caused by genomic rearrangements [21].

Nuclear surveillance of mt genome stability of *Cycas*

The overall stability in gene content and genome structure in *Cycas* mt genomes is significant. The structural stability of mt genomes is related to the nuclear encoded DSBR genes, which hinders the homologous recombinations, by monitoring the accuracy of mitochondrial genome repair [39]. Six frequently reported DSBR genes include the *RecA*, OSB, MSH, *RecX*, Why, and *RecG* [4, 40, 43--45]. We have screened the exemplars of the major vascular plant groups along with seven representatives from major gymnosperm lineages (S2 Table) for these genes and gene families, and analyze their copy numbers in gymnosperms. Phylogenetic reconstruction of six DSBR genes reveals relatively higher expansion of three DSBR protein families (*RecA*, OSB, and *RecG*) in *C. debaoensis* nuclear genome (S1 Fig). Similar set of DSBR proteins are found to be expanded in liverworts, causing their compact mt genomes [4]. These DSBR proteins also show considerable expansion in *G. biloba* and *P. taeda* as compared to other land plant representatives, which suggests possible existence of mt genome stability within these two groups. *G. biloba* also found to have limited repeat mediated recombinational activity [9], which indicates that these nuclear encoded proteins perform a certain level of recombination surveillance, controlling homologous recombination within the mitogenome. Although subcellular localization and *in vivo* function of some of these DSBR proteins needs further investigation, the notable expansion of these protein families among compact mt genomes such as in liverworts [4] and *Cycas* (present study) cannot be completely neglected.

Plastid derived sequences

The *C. debaoensis* mitogenome possesses 22 plastid derived insertions ranging from 62 bp to 2,707 bp (Table 3) encompassing the total length of 16 Kb, which accounts for 3.8% of total mt
genome length. These plastid-derived sequences are similar to *C. taitungensis* plastid insertions with slight variation in length (i.e., 17 Kb; 4%). These plastid insertions include three functional tRNAs *trnHGUG*, *trnMCAU* (2 copies), *trnSGGA*, and nonfunctional fragments of seven protein coding genes. In other gymnosperms, plastid derived sequences have very little (<1%) to no (in *T. cuspidata*) contribution towards the genome length. Plastid insertions are less common among early diverging land plant groups, such as bryophytes [4], lycophytes [69], and ferns [7]. In contrast, angiosperms typically have higher proportion of plastid derived sequences, their earliest diverging groups contain 13 Kb (*Nymphaea*) to 138 Kb (*Amborella*) of plastid insertions [10, 66]. In monocots, plastid derived sequences range from 22 Kb in *Oryza* [70] to 24 Kb in *Zea* [71]. Eudicots appeared to have relatively fewer plastid DNA sequences such as with 4.4 Kb in *Arabidopsis* [72], 2.1 Kb in *Vigna* [64], and 7.7 Kb in *Beta* [73]. The relative proportion of plastid derived sequences to the whole genome length in early diverging angiosperms and monocots is similar to *Cycas* (3 to 6%), however, eudicots contain low percentage (<2%) of plastid derived sequences similar to derived lineages of gymnosperms [9, 20, 66]. Overall, this pattern highlighted that the origin of plastid derived sequences in plant mitochondrion most likely to be appeared in ancestors of vascular plants, expand in early diverging lineages and begin to decline laterally in more derived groups.

RNA editing in *Cycas*

Using *in silico* prediction method, a total of 1,181 non-silent RNA editing sites are discovered in proteins coding genes of *C. debaoensis*. However, RNA-seq reads mapping identify only

Insertion	Identity (%)	Length	Start	End	Plastid genes	E-value	Bit score
1	92.796	2707	388082	390750	None	0	3847
2	92.737	1308	390781	392071	None	0	1855
3	89.939	1471	110970	112426	*ycf3*	0	1851
4	95.951	1062	393537	394582	*atpB*	0	1709
5	84.731	1670	112464	114041	*ycf3*-*trnS*	0	1561
6	88.306	1334	203429	204727	*psbA*	0	1554
7	97.308	743	395525	396529	*rbcL*	0	1254
8	95.979	746	392139	392872	*atpE*-*atpB*	0	1201
9	98.353	607	392902	393508	*atpB*	0	1064
10	91.871	775	387315	388082	*ndhC*	0	1059
11	97.373	609	394883	395491	*rbcL*	0	1035
12	87.262	683	205250	205928	*matK*	0	754
13	87.884	553	114933	115459	None	0	617
14	88.024	501	202625	203116	*trnHGUG*	0	562
15	88.475	295	204916	205204	*trnKUUU*	0	340
16	97.674	172	394651	394822	*rbcL*	0	296
17	85.507	207	114716	114915	None	0	206
18	93.636	110	205988	206097	*matK*	0	165
19	86.885	122	203240	203361	*psbA*	0	134
20	94.118	85	255735	255819	*trnMCAU*	0	130
21	94.595	74	391862	391793	*trnMCAU*	0	113
22	91.935	62	25479	25539	*trnMCAU*	0	86.1

* represents partial sequence.

https://doi.org/10.1371/journal.pone.0255091.t003
358 RNA-editing sites, and 267 editing sites are shared between the predicted and empirically annotated editing sites, all of them are C→U editing (Fig 4A; S5 Table), indicating high discrepancy between predicted and empirical editing sites. RNA editing sites appear with highest chance at 2nd codon position with 190 editing sites followed by 77 editing sites at 1st codon. As only non-silent editing sites are predicted with PREP-Mt, we manually check 87 unique empirically detected editing sites to identify the number of silent mutations. Thirty-three silent editing sites are recovered, with 31 of them occur at 3rd codon positions (S6 Table). Overall, we confirm 300 editing sites in protein coding genes of *C. debaoensis* with editing site abundance of 10.3%, 63.3% and 26.3% at 1st, 2nd and 3rd codon position, respectively. Amino acid changes from non-silent editing events mainly involved Pro→Leu (70), Ser→Leu (65), and Ser→Phe (34), which results in increase of hydrophobicity of these amino acids (Fig 4B). In total, 89% of editing events of amino acid conversion are from hydrophilic→hydrophobic (Fig 4C), which is important for stabilization and functionalization of protein structures [74], and protein-protein interfaces [75]. Furthermore, we
found that membrane-bounded and soluble protein coding genes have experienced similar selective pressures as there is no clear pattern among editing efficiency and gene substitution rates \((d_N \text{ and } d_S \text{ vs. editing efficiency %}) \) of three observed gymnosperm taxa (S7 Table). Empirical data regarding abundance of RNA-editing sites in gymnosperm is limited [20]. Future studies with expanded taxon sampling covering major gymnosperm lineages need to be conducted to study the phylogenetic distribution and broad impact of selection based evolution of RNA editing in gymnosperms.

Conclusion

We assembled the mitochondrial genome of *Cycas debaoensis* and compared it with *Cycas taitungensis*, mt genome of representative gymnosperms, and other major land plant lineages. Our results confirmed that mitogenome of *Cycas* are highly conserved in both gene content and gene order. The stability of *Cycas* mt genomes and lack of recombinations is unexpected in the case of their highly repetitive mt genomes. These repeated sequences significantly contributed to the fairly large size of introns. In addition, we revealed that the stability of *Cycas* mt genome is positively correlated to the expansion of three DSBR protein families in *Cycas* nuclear genome.

Supporting information

S1 Fig. Phylogenetic trees of six DSBR protein sequences from 16 vascular plants taxa inferred by Iqtree. * and # indicate the position of cycad species i.e., *Cycas debaoensis* and *Cycas panzhihuaensis*, respectively.

(PDF)

S1 Table. Comparison of gene content and gene order from 46 selected land plant mitochondrial genomes.

(TXT)

S2 Table. List of 16 vascular plant species for DSBR protein identification.

(XLSX)

S3 Table. Bpu-like elements observed in mitogenome of *Cycas debaoensis* and *Cycas taitungensis*.

(XLSX)

S4 Table. Gene order rearrangements among representative species of major land plant groups.

(XLSX)

S5 Table. RNA-editing sites shared among predicted vs. empirically observed in protein coding regions of *Cycas debaoensis*.

(XLSX)

S6 Table. Silent RNA-editing sites empirically observed in protein coding regions of *Cycas debaoensis*.

(XLSX)

S7 Table. Gene specific rates of evolution of soluble (Italicized) and membrane-bounded protein coding genes, at both synonymous \((d_S) \) and nonsynonymous \((d_N) \) sites, with total RNA editing frequency.

(XLSX)
Acknowledgments
We are grateful to Yang Peng and Na Li at the Shenzhen Fairylake Botanical Garden for the lab assistances and technical support.

Author Contributions
Conceptualization: Yang Liu, Shouzhou Zhang.
Data curation: Sadaf Habib, Shanshan Dong.
Formal analysis: Sadaf Habib, Shanshan Dong.
Funding acquisition: Shouzhou Zhang.
Investigation: Sadaf Habib, Shanshan Dong, Yang Liu, Wenbo Liao.
Methodology: Sadaf Habib.
Project administration: Shanshan Dong, Yang Liu, Wenbo Liao, Shouzhou Zhang.
Resources: Shouzhou Zhang.
Software: Sadaf Habib, Shanshan Dong.
Supervision: Yang Liu, Wenbo Liao, Shouzhou Zhang.
Validation: Shanshan Dong, Yang Liu, Wenbo Liao, Shouzhou Zhang.
Writing – original draft: Sadaf Habib.
Writing – review & editing: Yang Liu, Wenbo Liao, Shouzhou Zhang.

References
1. Richardson AO, Rice DW, Young GJ, Alverson AJ, Palmer JD. The “fossilized” mitochondrial genome of Liriodendron tulipifera; ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate. BMC Biology. 2013; 11(1): 1–17.
2. Skippington E, Barkman TJ, Rice DW, Palmer JD. Miniaturized mitogenome of the parasitic plant Viscum scurulideum is extremely divergent and dynamic and has lost all nad genes. Proc Natl Acad Sci USA. 2015; 112(27): E3515–E3524. https://doi.org/10.1073/pnas.1504491112 PMID: 26100885
3. Mower JP, Sloan DB, Alverson AJ. Plant mitochondrial genome diversity: the genomics revolution. In: Wendel JH, editor. Plant Genome Diversity Volume 1: plant genomes, their residents, and their evolutionary dynamics. vol. 1. New York: Springer; 2012. p. 123–144.
4. Dong S, Zhao C, Zhang S, Zhang L, Wu H, Liu H, et al. Mitochondrial genomes of the early land plant lineage liverworts (Marchantiophyta): Conserved genome structure, and ongoing low frequency recombination. BMC Genomics. 2019; 20.
5. Liu Y, Wang B, Li L, Qiu YL, Xue J. Conservative and dynamic evolution of mitochondrial genomes in early land plants. Genomics Chloroplasts Mitochondria Springer Neth. 2012; 35: 159–174.
6. Putintseva YA, Bondar EI, Simonov EP, Sharov VV, Oreshkova NV, Kuzmin DA, et al. Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome. BMC Genomics. 2020; 21(1): 654. https://doi.org/10.1186/s12864-020-07601-4 PMID: 32972367
7. Guo W, Zhu A, Fan W, Mower JP. Complete mitochondrial genomes from the ferns Ophioglossum californicum and Psilotum nudum are highly repetitive with the largest organellar introns. New Phytol. 2017; 213(1): 391–403. https://doi.org/10.1111/nph.14135 PMID: 27599928
8. Chaw SM, Shih A, Wang D, Wu YY, Liu SM, Chou TY. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol. 2008; 25: 603–615. PMID: 18192697
9. Guo W, Grewe F, Fan W, Young GJ, Knoop V, Palmer JD, et al. Ginkgo and Welwitschia mitogenomes reveal extreme contrasts in gymnosperm mitochondrial evolution. Mol Biol Evol. 2016; 33: 1448–1460. PMID: 26831941
10. Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, et al. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science. 2013; 342 (6165): 1468–1473. https://doi.org/10.1126/science.1246275 PMID: 24357311

11. Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, Lin GN, et al. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics. 2007; 177(2): 1173. PMID: 17660568

12. Bentolina S, Stefanof. A reevaluation of rice mitochondrial evolution based on the complete sequence of male-fertile and male-sterile mitochondrial genomes. Plant Physiol. 2012; 158(2): 996–1017. PMID: 22128137

13. Chang S, Yang T, Du T, Huang Y, Chen J, Yan J, et al. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica. BMC Genomics. 2011; 12: 497. https://doi.org/10.1186/1471-2164-12-497 PMID: 21988783

14. Armenise L, Simeone MC, Piredda R, Schirone B. Validation of DNA barcoding as an efficient tool for taxon identification and detection of species diversity in Italian conifers. Eur J For Res. 2012; 131(5): 1337–1353.

15. Wang X-Q, Ran J-H. Evolution and biogeography of gymnosperms. Mol Phylogenet Evol. 2014; 75: 24–40. https://doi.org/10.1016/j.ympev.2014.02.005 PMID: 24565948

16. Nystedt B, Street NR, Wetterborn A, Zuccolo A, Lin Y-C, Scofield DG, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013; 497(7451): 579–584. https://doi.org/10.1038/nature12211 PMID: 23698360

17. Jackman SD, Warren RL, Gibb EA, Vandervalk BP, Mohammad H, Chu J, et al. Organellar genomes of White Spruce (Picea glauca): assembly and annotation. Genome Biol Evol. 2015; 8(1): 29–41. PMID: 26645680

18. Jackman SD, Coombe L, Warren RL, Kirk H, Trinh E, MacLeod T, et al. Largest complete mitochondrial genome of a gymnosperm, Sitka Spruce (Picea sitchensis), indicates complex physical structure. Genome Biol Evol. 2020; 12(7): 1174–1179.

19. Kristian AS, Jill LW, Alexsey Z, Daniela P, Marc C, Charis C, et al. Sequence of the sugar pine megagnome. Genetics. 2016; 204(1): 1613–1626. PMID: 27794028

20. Kan S-L, Shen T-T, Gong P, Ran J-H, Wang X-Q. The complete mitochondrial genome of Taxus sulpidata (Taxaceae): eight protein-coding genes have transferred to the nuclear genome. BMC Evol Biol. 2020; 20(1): 10. https://doi.org/10.1186/s12862-020-1582-1 PMID: 31959109

21. Guo W, Zhu A, Fan W, Adams RP, Mower JP. Extensive shifts from cis- to trans-slicing of gymnosperm mitochondrial introns. Mol Biol Evol. 2020; 37(6): 1615–1620. PMID: 32027368

22. Sullivan AR, Eldjfell Y, Schiffthaler B, Delhomme N, Asp T, Hebelstrup KH, et al. The mitogenome of norway spruce and a reappraisal of mitochondrial recombination in plants. Genome Biol Evol. 2020; 12(1): 3586–3598. PMID: 31774499

23. André C, Levy A, Walbot V. Small repeated sequences and the structure of plant mitochondrial genomes. Trends in Genet. 1992; 8(4): 128–132. https://doi.org/10.1016/0168-9525(92)90370-J PMID: 1631955

24. Liu Y, Medina R, Goffinet B. 350 My of mitochondrial genome stasis in mosses, an early land plant lineage. Mol Biol Evol. 2014; 31: 24980738

25. Xue JY, Liu Y, Li L, Wang B, Qiu YL. The complete mitochondrial genome sequence of the hornwort Phaeoceros laevis: retention of many ancient pseudogenes and conservative evolution of mitochondrial genomes in hornworts. Curr Genet. 2010; 56(1): 53–61. https://doi.org/10.1007/s00294-009-0279-1 PMID: 19998039

26. Ran J-H, Shen T-T, Wang M-M, Wang X-Q. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proc Royal Soc B. 2018; 285: 20181012. https://doi.org/10.1098/rspb.2018.1012 PMID: 29925623

27. Mustoe G. Coevolution of cycads and dinosaurs. Cycad Newsletter. 2007; 65: 6–9.

28. Nagalingum N, Marshall C, Quental T, Rai H, Little D, Mathews S. Recent synchronous radiation of a living fossil. Science. 2011; 334(6057): 796–799. https://doi.org/10.1126/science.1209926 PMID: 22021670

29. Hermse NJ, Taylor EL, Taylor TN. Morphology and ecology of the Antarcticycas plant. Rev Palaeobot Palynol. 2009; 153: 108–123.

30. Porebski S, Bailey LG, Baum BR. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep. 1997; 15(1): 8–15.

31. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014; 9(11): e112963. https://doi.org/10.1371/journal.pone.0112963 PMID: 25409509
32. Lowe TM, Chan PP. tRNAscan-SE On-line; integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016; 44(W1): W54–W57. PMID: 27174935

33. Greiner S, Lehwalk P, Bock R. OrganelarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organelar genomes. Nucleic Acids Res. 2019; 47(W1): W59–W64. PMID: 30949694

34. Wynn EL, Christensen AC. Repeats of unusual size in plant mitochondrial genomes; identification, incidence and evolution. G3 (Bethesda, Md). 2019; 9(2): 549–559.

35. Benson G. Tandem repeats finder; a program to analyze DNA sequences. Nucleic Acids Res. 1999; 27(2): 573–580. PMID: 9862982

36. Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics. 2005; 21(16): 3340–3346. PMID: 15951307

37. Hilker R, Sickinger C, Pedersen CNS, Stoye J. UniMoG—a unifying framework for genomic distance calculation and sorting based on DCJ. Bioinformatics. 2012; 28(19): 2509–2511. PMID: 22815356

38. Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, Graham SW, et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019; 574: 679–685. https://doi.org/10.1038/s41586-019-1693-2 PMID: 31645766

39. Maréchal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. New Phytol. 2010; 186(2): 299–317. https://doi.org/10.1111/j.1469-8137.2010.03195.x PMID: 20180912

40. Davila JL, Arrieta-Montiel MP, Wamboldt Y, Cao J, Hagmann J, Shedge V, et al. Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. BMC Biol. 2011; 9: 64. https://doi.org/10.1186/1741-7007-9-64 PMID: 21951689

41. Odahara M, Kuroiwa H, Kuroiwa T, Sekine Y. Suppression of repeat-mediated gross mitochondrial genome rearrangements by RecA in the moss Physcomitrella patens: The Plant cell. 2009; 21(4): 1182–1194. PMID: 19357088

42. Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA. Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell. 2007; 19(4): 1251–1264. PMID: 17468263

43. Odahara M, Masuda Y, Sato M, Wakazaki M, Harada C, Toyooka K, et al. RecG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats. PLoS Genet. 2015; 11(3): e1005080. https://doi.org/10.1371/journal.pgen.1005080 PMID: 25769081

44. Zaegel V, Guermann B, Le Ret M, Andrés C, Meyer D, Erhardt M, et al. The plant-specific ssDNA binding protein OSBF is involved in the stoichiometric transmission of mitochondrial DNA in Arabidopsis. The Plant Cell. 2006; 18(12): 3548–3563. PMID: 17189341

45. Cappadocia L, Maréchal A, Parent J-S, Lepage E, Sygusch J, Brisson N. Crystal structures of DNA-Whirly complexes and their role in Arabidopsis organelle genome repair. The Plant Cell. 2010; 22(6): 1849–1867. PMID: 20551348

46. Parent JS, Lepage E, Brisson N. Divergent roles for the two PolI-like organelle DNA polymerases of Arabidopsis. Plant Physiol. 2011; 156(1): 254–262.

47. Finn R, Clements J, Eddy SR. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011; 39: 29–37. PMID: 21593126

48. Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2017; 46(D1): D493–D496.

49. Finn RD, Bateman A, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2013; 42(D1): D222–D230. PMID: 24286371

50. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics. 2019; 20(4): 1160–1166. https://doi.org/10.1093/bib/bby108 PMID: 28968734

51. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015; 32(1): 268–274. PMID: 25371430

52. Emanuellisson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000; 300(4): 1005–1016. https://doi.org/10.1006/jmbi.2000.3903 PMID: 10981283

53. Mower JP. The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009; 37(Web Server issue): W253–W259. PMID: 19433507
54. Edera AA, Gandini CL, Sanchez-Puerta MV. Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria. Plant Mol Biol. 2018; 97(3): 215–231. https://doi.org/10.1007/s11103-018-0734-9 PMID: 29761268

55. Dong S, Zhao C, Zhang S, Wu H, Mu W, Wei T, et al. The amount of RNA editing sites in liverwort organelar genes is correlated with GC content and nuclear PPR protein diversity. Genome Biol Evol. 2019; 11: 3233–3239. PMID: 31651960

56. Kim D, Pernet C, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013; 14(4): R36. https://doi.org/10.1186/gb-2013-14-4-r36 PMID: 23618408

57. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25(16): 2078–2079. PMID: 19505943

58. Narasimhan V, Danecék P, Scally A, Xue Y, Tyler-Smith C, Durbin R. BCFTools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics. 2016; 32(11): 1749–1751. PMID: 26826718

59. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007; 24(8): 1586–91. PMID: 17483113

60. Jobson RW, Qiu YL. Did RNA editing in plant organelar genomes originate under natural selection or through genetic drift? Biol Direct. 2008; 3:43. https://doi.org/10.1186/1745-6150-3-43 PMID: 18939975

61. Dong S, Chen L, Liu Y, Wang Y, Zhang S, Yang L, et al. The draft mitochondrial genome of Magnolia biondii and mitochondrial phylogenomics of angiosperms. PLoS One. 2020; 15: e0231020. https://doi.org/10.1371/journal.pone.0231020 PMID: 32294100

62. Liu S-L, Zhuang Y, Zhang P, Adams KL. Comparative analysis of structural diversity and sequence evolution in plant mitochondrial genes transferred to the nucleus. Mol Biol Evol. 2009; 26(4): 875–891. PMID: 19168566

63. Goremykin VV, Lockhart PJ, Viola R, Velasco R. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants. Plant J. 2012; 71(4): 615–626. https://doi.org/10.1111/j.1365-313X.2012.05014.x PMID: 22469001

64. Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS One. 2011; 6(1): e16404. https://doi.org/10.1371/journal.pone.0016404 PMID: 21283772

65. Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Mol Evol. 2010; 27(6): 1436–1448. PMID: 21118192

66. Dong S, Zhao C, Chen F, Liu Y, Zhang S, Wu H, et al. The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genomics. 2018; 19(1): 614–614. https://doi.org/10.1186/s12864-018-4991-4 PMID: 30107780

67. Liu J, Zhang S, Nagalingum N, Chiang Y-C, Lindstrom A, Xun G. Phylogeny of the gymnosperm genus Cycas L. (Cycadaceae) as inferred from plastid and nuclear loci based on a large-scale sampling: Evolutionary relationships and taxonomical implications. Mol Biol Evol. 2018; 127. https://doi.org/10.1016/j.molbev.2018.05.019 PMID: 29783022

68. Hecht J, Grewe F, Knoop V. Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria. The root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol. 2011; 3: 344–358 PMID: 21436122

69. Liu Y, Wang B, Cui P, Li L, Xue J-Y, Yu J, et al. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants. PLoS One. 2012; 7(4): e35168. https://doi.org/10.1371/journal.pone.0035168 PMID: 22511984

70. Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, et al. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet and Genom. 2002; 268(4): 434–445. https://doi.org/10.1007/s00438-002-0767-1 PMID: 12471441

71. Clifton SW, Minx P, Fauron CMR, Gibson M, Allen JO, Sun H, et al. Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol. 2004; 136(3): 3486. PMID: 15542500

72. Giegé P, Brennicke A. RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci USA. 1999; 96(26): 15324–15329. https://doi.org/10.1073/pnas.96.26.15324 PMID: 10611383

73. Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res. 2000; 28(13): 2571–2576. PMID: 10871408
74. Zito F, Kuras R, Choquet Y, Kössel H, Wollman F-A. Mutations of cytochrome b6 in *Chlamydomonas reinhardtii* disclose the functional significance for a proline to leucine conversion by *petB* editing in maize and tobacco. Plant Mol Biol. 1997; 33(1): 79–86. https://doi.org/10.1023/a:1005734809834 PMID: 9037161

75. Benne R, Van Den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC. Major transcript of the fra-meshifted *coxII* gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986; 46(6): 819–826. https://doi.org/10.1016/0092-8674(86)90063-2