Do large brains of long-living mammals prefer non-newly generated, immature neurons?

Brain plasticity is heterogeneous in mammals: Brain regeneration and repair are the dream of every neurobiologist as well as every common citizen in the world who knows that most neurological diseases, dementia and other age-related problems affecting the central nervous system (CNS) do represent a heavy health and social burden. Effacious regenerative processes are not a natural property of the mammalian CNS, rather, due to evolutionary constraints they seem substantially reduced (if compared to those occurring in non-mammalian vertebrates) and hardly inducible by therapeutic approaches (reviewed in Martin et al., 2011). Paradoxically, different types of remarkable structural plastic processes have been shown to occur in the young and adult mammalian brain, spanning from widespread synaptic plasticity and gliogenesis to a more spatially-restricted, yet clearly demonstrable, genesis of new neurons (references in Martin et al., 2011). The failure in mammalian brain regeneration can be explained by a combination of several factors acquired through evolution (e.g., brain complexity, scarcity of stem cells, incapability of cell de-differentiation, role of immune system; see Bonfanti, 2011 for review). Ultimately, all aspects involved converge into two main reasons: i) unlike non-mammalian vertebrates (e.g., fish or amphibians) in which neurogenic processes are far more extended and also provide repair, mammals have retained mostly the physiological role of plasticity, useful to cope with environmental changes but hardly helpful in regeneration; ii) adult mammalian neurogenesis appears to be highly reduced in humans with respect to rodents (Sanai et al., 2011; Paredes et al., 2015), recent work carried out in dolphins further confirming that it can be vestigial in large-brained, long-living mammals (Parolisi et al., 2017). Especially humans face further neurological risks in the future since their population is growing more and more independent of other age-related processes in contrast with their extended (and progressively increasing) lifespan.

The "immature" neurons: non-newly generated, young cells in the adult brain: In parallel with research on brain stem cells and related neurogenic processes which have dominated the field during the last three decades, some studies identified cell populations in the adult brain which express markers usually found in newly generated neurons (Bonfanti et al., 1992; Bonfanti and Nacher, 2012), yet being born prenatally (Gómez-Climent et al., 2008). The best known example is a subpopulation of neurons located in the layer II of the piriform cortex, within the paleocortex, namely, the evolutionarily oldest part of the cerebral cortex (Figure 1A, B). These cells express markers of immaturity, such as doublecortin (DCX), a microtubule-associated protein of neuronal migration and polysialic acid-neuronal cell adhesion molecule (PSA-NCAM) (a low-adhesive form of the neural cell adhesion molecule, involved in structural plasticity rather than in stabilization of cell-cell contacts). The cortical "immature" neurons display various morphologies, which were named differently by Authors who studied them across the years (see Bonfanti and Nacher, 2012). Most of them fall into two cell types as to their size and morphology: type 1 cells, small and mostly bipolar, and type 2 cells, larger and with longer, ramified dendrites (Figure 1A), the former being usually far more abundant than the latter (Piumatti et al., 2018). The piriform cortex is a three-layered cortex interposed in the olfactory pathways, from the olfactory bulb to the hippocampus. Since neurons in these three regions do express markers of immaturity and are involved in striking processes of structural plasticity (the olfactory bulb and hippocampus being also sites of adult neurogenesis), the DCX+/PSA-NCAM+ cells of the piriform cortex were considered potentially newly generated. Nevertheless, most studies carried out in the last decades substantially excluded such hypothesis (reviewed in Nacher and Bonfanti, 2015), confirming that these cells are born prenatally then remaining in a prolonged stage of immaturity for extended periods, theoretically throughout life (Gómez-Climent et al., 2008). Analyses conducted in other (non-rodent) species described similar cells to reach into the neocortex (reviewed in Bonfanti and Nacher, 2012), thus suggesting that immature neurons might differ as to their abundance and location in the cerebral cortex. On this basis, we have considered the relevance, origin, and distribution of immature neurons in sheep, namely, animals with far larger brain and longer lifespan than rodents (Piumatti et al., 2018). In addition to canonical locations within neurogenic sites, neurons expressing DCX and PSA-NCAM were found to be present in the whole cerebral cortex (including neocortex) and in several subcortical regions (Figures 1 and 2), involving both white (external capsule) and grey matter (amygdala and claustrum). By using a combination of the cellular proliferation marker Ki-67 and pulse labelling of 5-bromo-2′-deoxyuridine (BrDU, injected both during pregnancy and through adulthood), the study by Piumatti et al. (2018) shows that all these immature neuronal populations were born prenatally and were not newly generated after birth. Hence, immature neurons are widespread in sheep with respect to laboratory rodents (Figure 1C). In addition to their extension into layer II of the whole neocortex (a brain region processing higher cognitive functions), they are also present in neuroanatomical domains involved in the coupling of emotions and to show an intermediate degree of immaturity with respect to the cells generated by the possible fate and functional role of immature neurons (still unknown, as discussed below), underline the idea that they could have higher importance in some animal species in a general picture of heterogeneous brain structural plasticity which includes a sharp reduction of adult neurogenesis in some large mammals.

Which fate and function for the immature neurons? In spite of stimulating hypotheses about the possible fate of the immature neurons throughout life of individuals, a definitive proof for their functional integration into the pre-existing neural circuits is at present lacking (Rothman et al., 2011). The observation that the number of immature neurons does not increase after birth (Kipnis et al., 2008), that immature neurons in the adult cortex are recruited through time, without the need to be generated ex novo. In their original study, Gómez-Climent et al. (2008) showed that immature neurons in the cortical layer II are ensheathed by astroglial lamellae which would prevent them from receiving synapses. This observation, to be further confirmed with thorough structural and functional analyses, raises an intriguing question: how these "naked" neurons can survive in the assembling cortical tissue without establishing contacts with other neuronal cells? By using a combination of neuronal markers for maturity/immaturity (Piumatti et al., 2018), the DCX "immature" neurons of the sheep brain were found to be different depending on the brain region. Indeed, brain plasticity, in terms of structural remodeling of neuronal circuits, is a common feature across developmental ages and brain regions, the key difference between the developing and adult brain being only that of scale (Berry and Nedivi, 2016). For instance, the visual system retains a high degree of plasticity in terms of reorganization of the adult visual cortex in experimental conditions (e.g., monocular deprivation or environmental enrichment; references in Berry and Nedivi, 2016). The existence of immature neurons could be among the factors explaining why cortical plasticity is still present during adulthood well beyond the critical periods of the developing/young brain. The results obtained in sheep strongly support the view that such kind of "non-neurogenic" plasticity might have an evolutionary choice in large-brained, long-living mammals whose brains are less efficient to
perform adult neurogenesis with respect to rodents. Adult neurogenesis is an expensive biological process, likely less suitable for large brains able to perform high cognitive functions in long-living mammals (Bonfanti, 2011; Paredes et al., 2015; Parolisi et al., 2017). Yet, convincing results about the real rate of adult neurogenesis are available only in a few mammalian species, mostly depicting the extremes: high neurogenic capacity in laboratory rodents and strong reduction in humans and dolphins. Thus, we lack systematic quantitative analyses in mammals. In parallel, we need quantitative, really comparable data on the distribution of immature neurons in widely different mammalian species. In perspective, at least two types of analyses are required: i) systematic studies of the rate of adult neurogenesis in different mammals (current literature on this aspect is fragmentary and hardly comparable, still preventing the attainment of a "decrease slope" beyond the extremes); ii) comparative analyses on the occurrence and relative amount of immature neurons to be performed on a wide range of mammalian species and orders (including humans).

In the absence of deeper insights on the fate of immature neurons, we still do not know if such putative reservoir of young cells can have a role in regeneration and/or in the prevention of neurological disorders linked to aging. A role in regeneration is at present unlikely, since most scientific literature supports the incapability of these cells to be generated ex novo, at least in physiological conditions (Nacher and Bonfanti, 2015). Only a few studies addressed the behavior of immature neurons in the brain affected by lesions or neurodegenerative diseases. A recent report suggested that substantial structural plasticity can occur in DCX+ neurons of the rat piriform cortex after induction of status epilepticus (Sakurai et al., 2017), thus opening the possibility that immature neurons can be responsive in pathological states. Furthermore, the increase in number of DCX+ neurons in experimental conditions does suggest an even challenging idea: that mature cells of the adult brain might re-express some features of immaturity, and thus re-acquire features of immaturity. Most likely, a reserve of "stand by" neurons not fully integrated into neural circuits might be an implement for large brains of long-living mammals to cope with structural/cognitive impairing linked to aging.

In conclusion, in the awareness of a substantial reduction of adult neurogenesis in humans, the non-newly generated immature neurons could be an alternative source of brain plasticity with unknown potential, on which it might be worthwhile to invest further efforts in future research.

References

Berry KP, Nedivi E (2016) Experience-dependent structural plasticity in the visual system. Neuron 89:1081-1092.

Bonfanti L (2011) From hydra regeneration to human brain plasticity: a long trip through narrowing roads. ScientificWorldJournal 11:1270-1299.

Bonfanti L, Olive S, Poulain DA, Theodosis DT (1992) Mapping of the distribution of cell adhesion molecule. Adapted from Piumatti et al. (2018) with permission of the Journal of Neuroscience.

Bonfanti L, Nacher J (2012) New scenarios for neuronal structural plasticity in the adult piriform cortex. Prog Neurobiol 98:122-137.

Berry KP, Nedivi E (2016) Experience-dependent structural plasticity in the visual system. Neuron 89:1081-1092.

Bonfanti L, Olive S, Poulain DA, Theodosis DT (1992) Mapping of the distribution of NCAM: polysialic acid-neural cell adhesion molecule. Adapted from Piumatti et al. (2018) with permission of the Journal of Neuroscience.

Bonfanti L, Nacher J (2012) New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol 98:1-15.

Gómez-Climent MA, Castillo-Gómez E, Varela G, Guirado R, Blasco-Báñez JM, Crespo C, Martínez-Guijarro FJ, Nacher J (2008) A population of prematurely generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex 18:2229-2240.

Martino G, Pflachno S, Bonfanti L, Schwartz M (2011) Brain regeneration in physiological and pathological; the immune signature driving therapeutic plasticity of neuronal stem cells. Physiol Rev 91:1281-1304.

Nacher J, Bonfanti L (2015) New neurons from old beliefs in the adult piriform cortex? A Commentary on: "Occurrence of new neurons in the piriform cortex". Front Neuroanat 9:62.

Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A (2016) Brain size and neurogenesis. J Comp Neurol 524:646-664.

Parolisi R, Cozzi B, Bonfanti L (2017) Non-neurogenic SVZ-like niche in dolphins, mammals devoid of olfaction. Brain Struct Funct 222:2635-2639.

Piumatti M, Palazzo O, La Rosa C, Crociara P, Parolisi R, Luzzati F, Lévy F, Bonfanti L (2018) Non-newly generated, “immature” neurons in the sheep brain are not restricted to cerebral cortex. J Neurosci 38:626-642.

Sakurai M, Suzuki H, Tomita N, Sunden Y, Shimada A, Miyata H, Morita T (2017) Enhanced neurogenesis and possible synaptic reorganization in the piriform cortex of adult rat following kainic acid-induced status epilepticus. Neuropathology doi: 10.1111/neup.12445.

Sanai N, Nguyen T, invie RA, Mirzaed Z, Tsai HH, Hsu W, Ngal L, McGregor MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382-386.