Binding of the Mex67p/Mtr2p Heterodimer to FXFG, GLFG, and FG Repeat Nucleoporins Is Essential for Nuclear mRNA Export

Katja Sträßer, Jochen Baßler, and Ed Hurt
BZH, Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany

Abstract. It is not known how Mex67p and Mtr2p, which form a heterodimer essential for mRNA export, transport mRNPs through the nuclear pore. Here, we show that the Mex67p/Mtr2p complex binds to all of the repeat types (GLFG, FXFG, and FG) found in nucleoporins. For this interaction, complex formation between Mex67p and Mtr2p has to occur. MEX67 and MTR2 also genetically interact with different types of repeat nucleoporins, such as Nup116p, Nup159p, Nsp1p, and Rip1p/Nup40p. These data suggest a model in which nuclear mRNA export requires the Mex67p/Mtr2p heterodimeric complex to directly contact several repeat nucleoporins, organized in different nuclear pore complex subcomplexes, as it carries the mRNA cargo through the nuclear pore.

Key words: nucleocytoplasmic transport • Nup116 • Nup159 • Rip1 • nuclear pore complex

Introduction

Eukaryotic cells are subdivided into different compartments. Since transcription occurs in the nucleus and translation in the cytoplasm, mRNAs, among other export cargoes, need to be transported from the site of transcription to the site of translation. All these transport processes occur solely through the nuclear pore complexes (NPCs), which reside within the nuclear envelope. Whereas a mechanistic view has emerged of how proteins are transported back and forth through the nuclear pores (for review see Attaway and Englemier, 1998; Chierici et al., 1998), only little is known about the mechanism of nuclear RNA export, in particular mRNA export.

However, quite a number of proteins that are involved in the mRNA export process were identified in the past (for review see Strauss and Hurt, 1999). Not unexpectedly, some of the nucleoporins (Nups), the proteins that constitute the nuclear pores, were shown to be involved in mRNA export. These proteins could provide the stationary phase for nuclear transport. An example for a Nup with a role in mRNA export is NUP116 (Wente and Blobel, 1993). Nup116p, which is homologous to Nup100p and Nup145p-N (Wente et al., 1992; Fabre et al., 1994), interacts genetically with Nup1p (Wimmer et al., 1992). Common to Nup116p, Nup100p, and Nup145p-N is the GLFG repeat domain at the amino terminus (N domain), which can bind to karyopherin/importin-β-family transport receptors (Iovine et al., 1995; Iovine and Wente, 1997). Thus, repeat sequences of Nups were suggested to provide the binding sites for karyopherin/importin-β transport receptors for their passage through the pore channel (Rexach and Blobel, 1995). In addition, these three GLFG Nups contain a so-called NRM (Nup RNA binding motif) in their COOH-terminal domains (C domains), which can bind in vitro to homopolymeric RNA (Fabre et al., 1994). Only Nup116p harbors an evolutionarily conserved sequence, called the GLEBS (Gle2p binding sequence), which binds another mRNA export factor, Gle2p (Wente and Blobel, 1993; Murer et al., 1996; Bailer et al., 1998), which is evolutionarily conserved and was also studied in Schizosaccharomyces pombe (called Rae1p; Brown et al., 1995; Bharathi et al., 1997) and human (called mnrp41; Wood and Blobel, 1997). It is worth mentioning that Nup98, the higher eukaryotic homologue of Nup116p, plays a broad role in mRNA export mechanisms, including the export of mRNA (Powers et al., 1995; Radu et al., 1995; Pritchard et al., 1999; Zolotukhin and Felber, 1999). A further Nup in yeast involved in mRNA export, Rip1p (Nup40p), contains FG repeats and is thought to participate in the export of heat shock mRNA s (Saavedra et al., 1997).

There are two large subcomplexes at the NPC, the Nup82p and the Nup84p complex, that are essential for...
nuclear mRNA export. The Nup82p complex consists of three Nups: Nup159p, Nsp1p, and Nup82p (Grösch et al., 1995; Hurwitz and Blobel, 1995; Belgareh et al., 1998; Hurwitz et al., 1998). Mutants of NUP159 (RAT7) and NUP82 are strongly impaired in mRNA export (Gorsch et al., 1995; Grandi et al., 1995; Hurwitz and Blobel, 1995; Del Priore et al., 1997; Hurwitz et al., 1998). Interestingly, the N2 terminus of Nup159p binds to Dbp5p (Hodges et al., 1999; Schmitt et al., 1999), an ATPase with RNA helicase activity, shown to be essential for nuclear export of mRNA (Sny-Hodges et al., 1998; Teng et al., 1998). The Nup82p/Nsp1p/Nup159p complex is held together by coiled-coil protein–protein interactions, since all subunits exhibit heptad repeats in their COOH termini (Grandi et al., 1995; Belgareh et al., 1998; Hurwitz et al., 1998). Indeed, it has been shown experimentally that the C domains of Nup159p and Nup82p participate in complex formation and assembly into the NPCs (Kraemer et al., 1995; Belgareh et al., 1998; Hurwitz et al., 1998). Interestingly, the Nup82p complex was localized exclusively to the cytoplasmic side of the NPCs (Kraemer et al., 1995; Hurwitz et al., 1998). In terms of evolutionary conservation, the Nup82p complex seems to be the yeast counterpart of the higher eukaryotic Nup214/CA complex, in which CA/Nup214 is homologous to yeast Nup159p, and vertebrate Nup88/84 to yeast Nup82p (Bastos et al., 1997; Fornerod et al., 1997). Similar to the Nup82p complex, the Nup84p complex, which consists of six subunits, contains several proteins with a crucial role in nuclear mRNA export, such as Nup85p (Rat9p), Nup120p (Rat2p), and Nup145p-C (Rat10p) (Fabre et al., 1994; Wente and Blobel, 1994; Aitchison et al., 1995; Heath et al., 1995; Siniossoglou et al., 1996; Goldstein et al., 1996; D’Ockendorff et al., 1997). Interestingly, none of the proteins of this subcomplex contains repeat sequences.

Since proteins bind to the RNA during, or shortly after, transcription, it is widely accepted that the RNP particle is the substrate for export, not the naked RNA (for review, see Nakielny and Dreyfuss, 1999). Since some of these proteins shuttle between the nucleus and the cytoplasm, it was suggested that these proteins provide the signals for export and are exported in an exportin-dependent manner. One protein, though, that is directly involved in the export of mRNA is Mex67p. Mex67p requires complex formation with Mtr2p to become competent for binding to repeat sequences of Nups. Thus, the direct binding of Mex67p/Mtr2p to all of the repeat types (GLFG, FXFG, and FG) found in Nups appears to be crucial for the mechanism of transport of mRNP cargoes through the pores.

Materials and Methods

Yeast Strains, DNA Recombinant Work, and Microbiological Techniques

The strains used in this study are listed in Table I. Microbiological techniques, plasmid transformation, plasmid recovery, gene disruption, mating, sporulation of diploids, and tetrad analysis were done essentially as described (Santos-Rosa et al., 1998). DNA recombinant work, such as restriction analysis, end-filling, ligations, and PCR amplifications was performed according to Maniatis et al. (1982). Leptomycin B (LMB) treatment of CRM1T539C cultures was done as described (Neville and Rosbash, 1999).

Plasmids

For this study, the following previously described plasmids were used: pRS314-MEX67, pRS314-Mex67p, plu N100-Mex67, pRS314-mex67-5, pRS314-mex67-7, pRS314-mex67-7 (AS44-559), pRS314-mex67(L552)p, pRS314-mex67-7 (LL1EE), pET8c-H155-MEX67 (Segref et al., 1997), pNOPGFP-MTR2, pET9d-MEX67, pPR-OEX-MTR2 (Santos-Rosa et al., 1998), pRS314-mex67-6 (Strätzer and Hurt, 1999), pVPD16 (pEU2-Nup159Δrepeats), pVPD17 (pEU2-Nup159 C domain; Del Priore et al., 1997), pGEX4T-3 (A mersham Pharmacia Biotech), pSP304 (pGEX-3T-NUP116 GLFG-repeat; amino acids 631–730 (Iovine and Wente, 1997), pSf410 (pGEX-3T-1 + R1P3-1-FG; Strahm et al., 1999), pSB32-ala6-nsp1-C (Wimmer et al., 1993), pN100-Nup116 (Wimmer et al., 1992), pDC-CR M1 and pDC-CRM1T539C (Neville and Rosbash, 1999).

A Ncol-PstI fragment coding for Nsp1 amino acids 274–564 plus the ADH1 terminator was amplified by PCR and cloned into the pET9d vector containing a TVE-clavage site to obtain pET9d-GST-Nsp1. For construction of pGEX-4T-3-FGnup140, an EcoRI-Xmal PCR fragment coding for amino acids 457–590 of Nup115 was cloned into pGEX4T-3.

A NheI restriction site was generated by site-directed PCR mutagenesis of the codon of MEX67 (pRS314-MEX67-Nhe1). This site was convenient for generation of temperature-sensitive (ts) mutants within the C domain (see below). pRS315-mex67A2C was derived from pRS314-mex67A2C (see below) by subcloning the mex67A2C open reading frame (ORF)-containing SacI fragment into SacI-cut pRS315. For construction of an NH2-terminally GFP-tagged version of Mex67p, the ORF of MEX67 was amplified by PCR, creating an NdeI and a BamHI site, cloned into the same sites of pNOOPPATA1L, and subcloned into pNOPGFPFA1L (Helmuth et al., 1998). pRS315-GFP-mex67A1C and pRS315-GFP-mex67A2C were cloned in the same way, but with mex67A1C or mex67A5C as templates for the PCR reaction. For cloning pRS424-mex67 (AS44-558) and pRS424-mex67(L552)p, the SacI fragment of pRS314-mex67(AS44-558) or pRS314-mex67(L552)p containing the otherwise lethal gene disruptions of mtr2, and p15, when expressed in yeast, can complement the corresponding mutant MEX67 ORF was subcloned into pRS424 linearized with SacI.

For expression of GFP-Mex67pC-NLS and GFP-Mex67pLRR-NLS
in yeast, the sequence coding for the corresponding amino acids (483–599 for the COOH-terminus and 155–264 for the LEU2-rich repeat) was amplified by PCR creating PstI sites and cloned into the PstI site of pRS314-mex67 (Senger et al., 1998). RecombinantMex67p or individual domains without theHis5tag were overexpressed inE. coli, by inserting the entireMEX67 ORF, the ORF coding for the ΔC domain, the N + LRR domain (residue 3–308), the middle M domain (residue 252–494), and the ΔM + C domain (residue 303–599) of MEX67, or the M domain of thermosensitive mex67-5, carrying a single point mutation (H400Y), into pET9d (Novagen).

Isolation of the mex67ΔC Alleles

Mutations in the C domain ofMEX67 were generated by mutagenic PCR, generation of a library inE. coli, and transformation into theMEX67 shufflstrain as described (Siniossoglou et al., 2000). In detail, pRS314-MEX67-Nhel was amplified by PCR under suboptimal conditions (5 mM MgCl2, 0.5 mM MnCl2, 1 mM dGTP, 1 mM dCTP, 1 mM dTTP, 0.2 mM dATP, 1 μg template DNA, 5 U Taq DNA polymerase). The PCR product was gel-purified and digested with Nhel and EcoNI to release the C domain ofMEX67, and inserted into pRS314-MEX67-Nhel cut with the same enzymes. The mutagenized library was first transformed intoE. coli. 5,600 transformants were obtained, from which the plasmid DNA was iso-

Purification of GST-tagged Proteins

GST-tagged proteins were expressed inBL21. TheE. coli pellet was dis-

In Vitro Binding Assay

The GST-fusion proteins (1:10 diluted) were rebound to 25 μlGSH-bead slurry per binding assay. A 45 min incubation at 1 h for 4°C, the beads were washed with universal buffer containing 20 mM GSH.

Preparation of Double Disruption Strains

TheNUP159 andNSP1 shuttle strains were mated to mex67::His3 strain complemented bypLEU2-mex67-5 and diploids selected onSDC (−ura, −leu) plates, respectively. A titer sporation and tetrads analysis, haploid progeny were screened for an interaction between NUP159 and Mex67p (centrifuged in an ultracentrifuge for 1 h at 100,000 g) was added to theGSH-beads and incubated for 1 h at 4°C. The beads were finally washed with universal buffer and the proteins were bound to the beads eluted with sample buffer.

Analytical Ultracentrifugation of the Mex67p/Mtr2p Complex

For further purification of the Mex67p/Mtr2p complex, the eluate from theN-TNTA column was purified byFPLC on aMonoS column prepared by Beckman XL-A centrifuge and a 60 Ti Beckman rotor. The sample was centrifuged in an ultracentrifuge for 1 h at 50,000 rpm and the partially purified complex collected using the Beckman XL-A package. Using linear regression anal-

Miscellaneous

SDS-PAGE and Western blot analyses were performed according to Siniossoglou et al. (1996). In situ hybridization ofpoly(A)+ RNA and fluoros-
ene microscopy of GFP-tagged proteins were done as described (D’Oye et al., 1994; Santos-Rosa et al., 1998). M ultiple sequence alignment ofNTP2 proteins from human, Saccharomyces cerevi-
siases, Neurospora crassa, and a Ras-GAP binding protein: p15 (human), Mex67p (S. cerevisiae), Mex67p (S. pombe), and TAP proteins from human and Drosophila melanogaster, was done using ClustalW1.8 (http://dot.imgen.bcm.tmc.edu:9331/multi-align/multi-align.html) and Boxshade 3.21 (http://www.ch.embnet.org/software/BOX_form.html).

Results

The Middle Domain of Mex67p Binds to Mtr2p

Mex67p is a multidomain protein, which exhibits an N, LRR, M, and C domain (Fig. 1; see also Segref et al., 1997). Previous work indicated that a single point mutation within the M domain (H[400]Y, mex67-5) impairs both the association of M ex67p with the nuclear pores and interaction with M tr2p in vivo (Segref et al., 1997; Santos-Rosa et al., 1998).

Since coexpression of His6-Mtr2p and untagged M ex67p in E. coli allows heterodimer formation and subsequent affinity purification of a stable complex, we could test which domain of M ex67p can associate with His-tagged M tr2p. This revealed that the M domain (Mex67-M [252–494]) can associate with M tr2p, allowing affinity purification of a His6-M tr2p/M ex67-M (252–494) complex from E. coli (Fig. 1). The other domains seem to not interact with His6-M tr2p in this in vivo assembly assay. However, we cannot exclude this with certainty, since for example, most of the N+LRR domain precipitates in E. coli and is thus present in lower amounts in the soluble supernatant as compared with the other domains (Fig. 1, compare lanes H and S). However, since we coexpress His-M tr2p and the N+LRR domain in E. coli, in principle they are able to interact, which could render the N+LRR domain soluble as it does for the full-length protein. Therefore, although we cannot exclude that a more soluble N+LRR domain would interact with M tr2p, our data show that the M domain of M ex67p directly binds to M tr2p.

Since the mex67-5 mutation causes dissociation from M tr2p in yeast, we tested whether this mutant M domain does not interact with M tr2p in E. coli any longer. As anticipated, Mex67-M (H[400]Y) or full-length Mex67p (H[400]Y) can no longer bind to His6-M tr2p in the E. coli system (data not shown). This shows that the M domain of Mex67p directly interacts with M tr2p, and that this interaction is required for the in vivo interaction of Mex67p with the nuclear pores, since a mutant in the M domain in the context of the full-length protein mislocalized to the cytoplasm (Segref et al., 1997).

The C Domain of Mex67p, which Is Not Essential for Cell Growth, Is Important for mRNA Export and Exhibits NES Activity

To study the role of the C domain of Mex67p, we searched for ts mutants mapping to this part of Mex67p. We were able to isolate two new ts alleles, which encode Mex67p proteins lacking most of the C domain (Fig. 2, A and B). Mex67ΔC1 and Mex67ΔC2 cells grow more slowly at permissive temperatures and are thermosensitive for growth at 37°C. However, both mex67ΔC mutants are complemented by overexpression of MTR2 (Fig. 2 B). Thus, MTR2 overproduction can compensate for the lack of the Mex67 C domain (see Discussion). This shows that the C domain of Mex67p is important, but not essential, for Mex67p function. This result was unexpected, since we previously showed that a short deletion within the C domain (Δ544–559; see also Fig. 2 A) or a single point mutation (L[552]P) renders yeast cells nonviable at all temperatures (Segref et al., 1997). However, this is not due to a dominant-negative phenotype, because the mex67ΔC2 mutant expressing the mex67 (Δ544–559) allele is viable (Fig. 2 C). When the expression of Mex67p (Δ544–559) or (L[552]P) was analyzed by Western blotting, these mutant proteins are barely detectable (Fig. 2 D, lanes 2 and 3), but are seen when overexpressed from high-copy (hc) plasmids (Fig. 2 D, lanes 4 and 5). Overproduced Mex67p (Δ544–559) or M ex67pΔC2 can be complemented by the mex67 strain (data not shown). We could not analyze the expression of M ex67pΔC1 or M ex67pΔC2 by Western blotting (see Fig. 2 D, lanes 2 and 3), since the Mex67p antibodies are mainly directed against the C domain (data not shown; Sträßer, K., unpublished results). However, other data suggest that Mex67pΔC1 or Mex67pΔC2 are more stably expressed than Mex67p (Δ544–559) or Mex67p L[552]P.

To find out whether the mutations in the C domain af-
fect nuclear mRNA export, poly(A)⁺ RNA localization was analyzed by in situ hybridization. At permissive temperature, ~50% of the mex67ΔC2 cells accumulate poly(A)⁺ RNA inside the nucleus (Fig. 3 A). This percentage further increases when cells are shifted to the restrictive temperature (Fig. 3 A). However, the inhibition of mRNA export is only partial in this mutant, since a significant cytoplasmic poly(A)⁺ signal is still evident. This is in contrast to other mex67 mutants (e.g., mex67-5), which exhibit a rather fast onset and a complete block of mRNA export (Hurt et al., 2000). When tagged with GFP and expressed in mex67⁰ cells (for expression see Fig. 3 B, right, Western blot), GFP-Mex67pΔC fusion proteins no longer exhibit a nuclear envelope staining, but distribute to the nucleus and the cytoplasm with a tendency for a higher accumulation in the nucleus in most of the cells (Fig. 3 B, left). Interestingly, the steady state location of GFP-tagged Mtr2p changes in mex67ΔC cells; Mtr2p is also no longer concentrated at the nuclear envelope, but tends to accumulate in the nucleus (Fig. 3 C). When the intracellular localization of GFP-Mex67pΔC2 was analyzed in cells that express hC MTR2, Mex67pΔC2 no longer accumulates in the nucleus. Although a ring-like staining of GFP-Mex67pΔC2 is not reestablished by hC MTR2, it appears that GFP-Mex67pΔC2 is more efficiently reexported into the cytoplasm (Fig. 3 D). This would be consistent with our in vitro findings that Mtr2p facilitates Mex67p interaction with repeat Nups, which could speed up nuclear export (see below). Taken together, these data show that the C domain of Mex67p is required for efficient nuclear mRNA export and nuclear envelope localization at steady state.

Since the C domain of TAP contains a nuclear export activity (NES; Bear et al., 1999; Braun et al., 1999; Kang and Cullen, 1999; Truant et al., 1999), we wanted to test whether Mex67p exhibits such an activity as well, which can contribute to nuclear export of Mex67p. Previously, we have shown that Mex67p contains a short sequence in its C domain, which resembles the leucine-rich Rev NES, and indeed acts as NES in the Xenopus oocyte system (Segref et al., 1997). The entire C domain of Mex67p, including this NES-like motif, was attached to an NLS-containing GFP reporter. The NLS corresponds to the RGG domain of Npl3p (Senger et al., 1998). When expressed in yeast, GFP-Mex67pΔC-NLS was predominantly detected in the cytoplasm by fluorescence microscopy (Fig. 4 A, expression is at the top and localization is at the bottom). In contrast, the same GFP-NLS construct lacking the C domain of Mex67p (GFP-NLS) strongly accumulated in the nucleus (Fig. 4 B). When the Mex67p C domain carrying the short deletion (Δ544–559) or the single point mutation L(552)→P in the NES-like sequence was fused to GFP-
NLS and expressed in yeast, the corresponding fusion accumulated in the nucleus. This suggests that the NLS domain of Mex67p has nuclear export or cytoplasmic retention activity. To further distinguish between these possibilities, the GFP-Mex67p-C-NLS construct was expressed in the xpo1-1 mutant, which is defective in nuclear export of cargoes containing a Rev-type NES (Stade et al., 1997). Interestingly, GFP-Mex67p-C-NLS accumulates in the nucleus of xpo1-1 cells already after a five-minute shift to the restrictive temperature (Fig. 4 C). This could mean that the NES receptor, Xpo1p-Crm1, is involved in the nuclear export of the C domain of Mex67p. To show this in an independent way, GFP-Mex67p-C-NLS was expressed in a Saccharomyces cerevisiae strain, in which Xpo1p has been made LMB-sensitive by site-specific mutagenesis of a critical residue within Xpo1p (Neville and Rosbash, 1999). Likewise, nuclear export of GFP-Mex67p-C-NLS is inhibited in this engineered S. cerevisiae LMB-sensitive strain when LMB is added to the growth medium (Fig. 4 C). Whether this NES in the C domain of Mex67p is also active in the context of the intact protein is not clear, since full-length Mex67p-GFP does not significantly accumulate inside the nucleus in xpo1-1 cells, but remains predominantly located at the nuclear envelope (Santos-Rosa et al., 1998). However, Mex67p also can associate with nuclear pores by direct interaction of the Mex67p/Mtr2p complex with repeat Nups (see below).

The Mex67p/Mtr2p Complex Binds to Repeat Sequences of Nup116p, Nup159p, Rip1p, and Nsp1p

The data above indicate that the C domain of Mex67p plays a role in the in vivo association of the Mex67p/Mtr2p complex with nuclear pores, and that Xpo1p may contribute to this process. However, Mex67p may associate directly with NPCs, since TAP, the human homologue of Mex67p, interacts with FG-repeat sequences of human CAN/Nup214 and hCG–Rip1p (Katahira et al., 1999). We tested the interaction with different yeast repeat Nups in an in vitro assay. First, FG repeats derived from Nup159p were tested for binding to the Mex67p/Mtr2p complex. Nup159p is essentially involved in nuclear mRNA export and homologues to human CAN/Nup214 (Gorsch et al., 1995). The Mex67p/Mtr2p complex binds strongly to immobilized GST-FG Nup159p beads, but not at all to GST, which served as a negative control (Fig. 5 A). The binding of Mex67p/Mtr2p to GST-FG Nup159p beads is stable up to a salt concentration of at least 500 mM KAc.

To test whether repeat sequences from other Nups can associate with the Mex67p/Mtr2p complex, G L FG repeats from Nup116p, F X FG repeats from Nsp1p, and FG repeats from Rip1p were all fused to GST and immobilized on GST beads, and were tested in the in vitro binding assay. In this case, a whole cell lysate from E. coli expressing moderate levels of both recombinant Mex67p and His6-Mtr2p served as a source for the Mex67p/Mtr2p complex (Fig. 5 B, L). This lysate was first cleared from unsoluble proteins by ultracentrifugation, before it was incubated with GST beads carrying the different Nup repeat sequences. Strikingly, among the many different E. coli proteins, only the recombinant Mex67p/His6-Mtr2p complex bound to the various Nup repeats (Fig. 5 B). To determine whether Mex67p and Mtr2p bind as a heterodimeric complex to Nup repeats, we compared it side by side to the Mex67p/Mtr2p complex purified by gel filtration chromatography (see Materials and Methods) after SDSPAGE and Coomassie staining (Fig. 5 C). The exact molecular weight of the Mex67p/Mtr2p complex was determined to be 85 ± 3 kD by analytical ultracentrifugation, indicating a 1:1 stoichiometry of the complex (see Materials and Methods). Furthermore, the Mex67p/Mtr2p complex eluted slightly faster from an FPLC Superdex 200 column than a defined 92- and 95-kD protein complex, respectively (Sinning, I., and M. Groves, unpublished data), again con-
The intensities of the Coomassie-stained Mex67p and Mtr2p bands are similar for the highly purified complex and the complex, respectively, which is pulled down by Nup116p repeats (Fig. 5 C). We also quantified the intensity of the Mex67p and Mtr2p bands derived from the Coomassie-stained gel of Fig. 5 B, lane 2, and correlated these values with the relative mass of both proteins. This determination revealed a 1:1 stoichiometry of the Mex67p and Mtr2p bands when bound to Nup116 repeats (data not shown). Thus, Mex67p and Mtr2p bind as a heterodimer to repeat sequences.

To get a first hint about the relative affinities of the Mex67p/Mtr2p complex to the different repeat sequences (GLFG, FXFG, and FG), we varied the concentration of the Mex67p/Mtr2p complex within the E. coli lysate by dilution with cold lysate (a lysate that does not contain the Mex67p/Mtr2p). These lysates, with decreasing concentrations of Mex67p/Mtr2p, but the same amount of total protein, were then incubated with GST repeats derived from Nup116p, Nup159p, Nsp1p, or Rip1p. Clearly, Nup116p repeats exhibit the highest binding affinity for the Mex67p/Mtr2p complex (binding is observed up to a 1:10 dilution), whereas Nup159p and Nsp1p repeats already lost binding to the complex when the lysate was diluted 1:5 (Fig. 5 D).

In contrast to the complex, His6-Mtr2p or His6-Mex67p alone did not bind to (for example) GST-FG Nup159 (Fig. 5 E) or GST-GLFG Nup116 (data not shown). Although we cannot exclude that the single subunits are correctly folded in E. coli, notably Mtr2p alone is soluble in high concentrations and Mex67p can also be recovered in the soluble supernatant of E. coli lysates in reasonable amounts (Fig. 5 E). All this shows that the Mex67p/Mtr2p heterodimer, but not the single subunits, exhibits a significant affinity for different Nup repeats, since the complex is specifically and efficiently selected on Nup repeats from a whole cell lysate. This binding of Mex67p/Mtr2p to repeat Nups could be a crucial step during nuclear mRNA export through the nuclear pores (see Discussion).

To find out whether the COOH-terminal part of
Figure 5. Recombinant Mex67p/Mtr2p complex binds to different Nup repeat sequences. A, Nup159p-derived FG repeat sequences were expressed as a GST-fusion protein in E. coli and immobilized on GSH-beads, before incubation with partially purified Mex67p/His6-Mtr2p complex, also derived from E. coli. Bound proteins were eluted with SDS-sample buffer and analyzed by SDS-PAGE and Coomassie staining (top) or Western blotting (bottom) using anti-Mex67p and anti-Mtr2p antibodies, respectively. The pull-down experiment was carried out under different salt concentrations. Partially purified Mex67p/His6-Mtr2p complex (lane 1; L, load); GST-FG Nup159 immobilized on GSH-beads (lane 2; buffer); GST immobilized on GSH-beads (lane 3; buffer); immobilized GST-FG Nup159 incubated with Mex67p/His6-Mtr2p complex (lanes 4, 6, and 8) at the indicated salt concentrations; immobilized GST incubated with Mex67p/His6-Mtr2p complex (lanes 5, 7, and 9) at the indicated salt concentrations. The asterisks indicate GST-FG Nup159 and its breakdown products. B, Repeat sequences derived from Nup116p, Nup159p, Nsp1p, and Rip1p were expressed as GST-fusion proteins in E. coli and immobilized on GSH-beads, before incubation with E. coli whole cell lysates containing the recombinant Mex67p/His6-Mtr2p complex. After the binding reaction, GST-beads were eluted with SDS-sample buffer and analyzed by SDS-PAGE and Coomassie staining or Western blotting using anti-Mex67p and anti-Mtr2p antibodies. L, E. coli lysate containing the Mex67p/His6-Mtr2p complex; 1 and 2, incubation of beads with lysate or buffer alone, respectively. Soluble E. coli lysate (L) containing the Mex67p/His6-Mtr2p complex (lane 1); GST-GLFG Nup116p immobilized on GSH-beads incubated with lysate (lane 2) or buffer (lane 3); GST-FG Nup159p immobilized on GSH-beads incubated with lysate (lane 4) or buffer (lane 5); GST-FXFG Nsp1p immobilized on GSH-beads incubated with lysate (lane 6) or buffer (lane 7); GST-FG Rip1 immobilized on GSH-beads incubated with lysate (lane 8) or buffer (lane 9); GST immobilized on GSH-beads incubated with lysate (lane 10) or buffer (lane 11). The positions of Mex67p and His-Mtr2p are indicated. C, Comparison of the highly purified Mex67p/Mtr2p complex and Mex67p/Mtr2p bound to GST-Nup116p repeat sequences. 1, Protein standard; 2, recombinant Mex67p/His-Mtr2p complex, expressed in E. coli, and purified by Ni-NTA affinity, FPLC-M onoS, and gel filtration chromatography; 3, Mex67p and Mtr2p bound to GST-Nup116p repeats. In lane 2 and 3, similar amounts of Mex67p were loaded and analyzed by SDS-PAGE and Coomassie staining. D, Concentration-dependent binding of Mex67p/Mtr2p to Nup repeat sequences. An E. coli lysate with Mex67p/His-Mtr2p complex was used undiluted or diluted 1:5, 1:10, or 1:50 with cold lysate lacking Mex67p/Mtr2p, and the derived lysates were incubated with GST-Nup116p or GST-Nup159p repeat sequences. The amount of bound Mex67p/Mtr2p was analyzed by SDS-PAGE and Coomassie staining. 1–4, GST-Nup116p repeats; 5–8, GST-Nup159p repeats; 1 and 5, undiluted lysate; 2 and 6, 1:5 diluted lysate; 3 and 7, 1:10 diluted lysate; 4 and 8, 1:50 diluted lysate. A protein standard is also shown. Note that a protein from the E. coli lysate binds to GST-Nup116p repeats when little Mex67p/Mtr2p complex is present. E, GST-FG Nup159 containing GSH-beads (4–7; B, bound) were incubated with soluble E. coli cell lysates (1–3, L, load) that contain the recombinant Mex67p/His6-Mtr2p complex (lanes 1 and 4), recombinant His6p-Mex67p (lanes 2 and 5), and recombinant His6p-Mtr2p (lanes 3 and 6) or buffer (lane 7). After a 1-h incubation, proteins were eluted with SDS-sample buffer and analyzed by SDS-PAGE and Coomassie staining (top) or Western blotting (bottom) using anti-Mex67p and anti-Mtr2p antibodies.
M ex67p is necessary for the interaction of the M ex67p/ M trp2 complex with Nup repeat sequences, we deleted the C domain from M ex67p according to the ts COOH-terminal deletion mutants. When these M ex67pΔC constructs are coexpressed with H is5-M trp2 in E. coli, a corresponding M ex67pΔC/ M trp2 complex is assembled and still binds to all the different Nup repeat sequences (Fig. 6 and data not shown).

Repeat Nups NUP116, NUP159, RIP1, and NSP1 Interact Genetically with MEX67 and MTR2

Since the M ex67p/M trp2 heterodimer binds directly to Nup repeats, we tested for genetic interactions between the corresponding repeat Nups and M EX 67 or M TR2. Interestingly, mutations in the C domain of M ex67p, which lead to a nuclear mislocalization of M ex67p and M trp2, and partial inhibition of nuclear mRNA export (e.g., mex67ΔC1; see also Fig. 3), cause synergistic growth defects or synthetic lethality when combined with mutant alleles mapping in the different repeat Nups (Fig. 7). The strongest genetic interaction was found with the nup116::H IS3 null allele, which gives synthetic lethality not only with M ex67p COOH-terminal mutations, but also with the mex67-6 allele (Fig. 7 B), which has mutations in the N + LRR domain and interacts genetically and physically with the RNA–RNA annealing protein, Y ra1p (Sträßer and H urt, 2000). Synthetic lethal relationships were also detected between M ex67p COOH-terminal mutations and truncation alleles of NUP159 (e.g., lacking the N and FG domains), the rip1 null allele, or the nsp1-ala6 mutation (Fig. 7, B and C). In contrast, other mutant alleles of M EX 67 mapping in the M (mex67-5) and N + LRR (mex67-6) domains did not cause synthetic lethality when combined with these various Nup mutant alleles, with exception of the nup116::H IS3 allele (Fig. 7 B). In a similar way, mtr2 mutant alleles were tested for synthetic lethal relationships with these Nup mutants. This showed that (for example) the mtr2-26 allele (Santos-R osa et al., 1998) is synthetically lethal with the nup116::H IS3 null allele (data not shown). Thus, in vivo analysis revealed a genetic network of interactions, in which M EX 67 and M TR2 are functionally linked to repeat Nups and also interact physically.

Discussion

The M ex67p/M trp2 complex and its mammalian TAP/p15 counterpart act as a shuttling receptor for nuclear mRNA export, but the mechanism of movement through the nuclear pores is still unknown. In the past, we have shown...
that the intact Mex67p/Mtr2p complex exhibits in vivo a distinct NPC distribution, but impairment of the interaction between Mex67p and Mtr2p (e.g., by mutating either MEX67 or MTR2) causes dissociation of Mex67p from the pores and nuclear accumulation of mRNA (Segref et al., 1997; Santos-Rosa et al., 1998). Both biochemical and genetic data suggested that the Nup84p complex is one of the targets at the NPC with which the Mex67p/Mtr2p complex functionally interacts (see below).

We now show that additional docking sites at the nuclear envelope contribute to the in vivo localization of the Mex67p/Mtr2p complex at the NPCs. Strikingly, the Mex67p/Mtr2p heterodimer, but not the single subunits, binds directly to all of the repeat types (GLFG, FXFG, and FG) found in Nups, as revealed in our in vitro reconstitution assay. For this in vitro binding, the C domain of Mex67p is not necessary in the context of the Mex67p/Mtr2p heterodimeric complex, since a Mex67pΔC/Mtr2p complex efficiently assembles in E. coli and still binds to the different Nup repeat sequences. This suggests that a core Mex67p/Mtr2p complex lacking the C domain of Mex67p can still interact with repeat Nups. This could explain why in vivo this core complex still supports cell growth at physiological temperatures (e.g., 30°C). Consistent with this finding is the observation that the human Mex67p homologue, TAP, when lacking the C domain is able to export CTE-containing RNA from the nucleus to the cytoplasm (Braun et al., 1999). Thus, the C domain of Mex67p may modulate the in vivo interaction of a core Mex67p/Mtr2p complex to Nup repeat sequences. Since the C domain exhibits a nuclear export activity, the entire domain, or part of it, may also contribute to efficient nuclear export of the shuttling Mex67p/Mtr2p complex by interacting with additional nuclear export factors, such as the NES-export receptor, Xpo1p/Crm1. A accordingly, the role of Xpo1p in nuclear mRNA export could be auxiliary, but not essential. Such a model would be consistent with earlier findings that the xpo1-1 mutant shows a significant mRNA export defect at the restrictive temperature (Stade et al., 1997), yet Xpo1p is not the major mRNA export receptor in S. cerevisiae (Neville and Roshbash, 1999).

Our data have clearly shown a distinct binding activity of the Mex67p/Mtr2p heterodimer, either with or without the Mex67p C domain, to all types of Nup repeat sequences. It is possible that Mtr2p within the Mex67p/Mtr2p complex enhances NPC binding by direct interaction with Nups. However, we assume that Mex67p significantly contributes to this NPC binding. How could the Mex67pΔC/Mtr2p complex bind to repeat sequences of Nups? We have found that in human cells, p15, which is homologous to NTF2, forms a heterodimeric complex with TAP/Mex67p (Katahira et al., 1999). It was discussed that the NTF2-like p15 may bind to repeat sequences of Nups (Katahira et al., 1999) in a similar way as NTF2 binds to FXFG Nups, such as Nsp1p or p62 (Clarkson et al., 1996; Chaillan-Huntington et al., 2000). The crystal structure of NTF2 shows that a hydrophobic cavity is made up by several conserved hydrophobic residues (e.g., Y-18 and Y-19), which bind an exposed aromatic residue (Phe72) within RanGDP (Bullock et al., 1996). It appears that Mtr2p is not homologous to p15 and NTF2, and therefore one cannot say whether it has a NTF2-fold. Interestingly, the M domains of Mex67p and TAP are similar to p15 and NTF2 in the sense that conserved thyrosines and phenylalanines with p15/NTF2 can be aligned with corresponding residues within the Mex67p/TAP family (Hurt, E., unpublished data). Thus, the M domain of Mex67p/TAP may have an NTF2-fold with a hydrophobic cavity. Accordingly, the M domain of Mex67p may interact with repeat Nups by a mechanism that is similar to the NTF2/FXFG or NTF2/Ran interaction. Accordingly, Mtr2p, which also binds to the M domain of Mex67p, could cooperatively affect binding of Mex67p to repeat Nups.

A nother possible interaction site of the Mex67p/Mtr2p complex at the nuclear pores is the Nup84p complex, which was previously shown to interact with Mtr2p in vivo (see Santos-Rosa et al., 1998). This would agree with the earlier finding that a significant fraction of Mtr2p remains NPC-associated, whereas mutated Mex67p dissociates from the pores (Santos-Rosa et al., 1998). Since no apparent affinity of Mtr2p alone to Nup repeats could be found in vitro, Mtr2p binding to Mex67p increases cooperatively the affinity of the Mex67p/Mtr2p heterodimer to different repeat Nups, such as Nup116p, Nup159p, Nsp1p, Rip1p, and possibly others. These interactions, which may be dynamic in vivo, may contribute to the localization of the Mex67p/Mtr2p complex at the pores.

Since GLFG, FXFG, or FG Nups are found at different sites within the structural framework of the NPC (Kraemer et al., 1995; Fahrenkrog et al., 1998; Stoffler et al., 1999; Strahm et al., 1999), a consecutive array of repeat Nups along the pore channel may provide transient docking sites for the shuttling Mex67p/Mtr2p complex. Accordingly, the Mex67p/Mtr2p heterodimer with bound mRNA cargo could translocate through the nuclear pores by consecutive interactions with different repeat Nups. In this sense, the Mex67p/Mtr2p complex resembles the shuttling importin/karyopherin β family members, which were also demonstrated to interact with different repeat Nups (Rexach and Blobel, 1995).

We have shown by immunogold labeling that Mex67p and Mtr2p are located at both the nuclear and cytoplasmic site of the pores (Santos-Rosa et al., 1998). The Nsp1p/Nup49p/Nup57p complex is also found at both sites of the NPC, but the Nup82p/Nup159p/Nsp1p complex, which is essentially involved in nuclear mRNA export, is located asymmetrically on the cytoplasmic site of the NPC (Kraemer et al., 1995, Hurwitz et al., 1998; Stoffler et al., 1999). Interestingly, the Nup116p/Gle2p complex was recently demonstrated to associate with the Nup82p complex (Bailer et al., 2000). These findings, together with our observation that the Mex67p/Mtr2p complex exhibits a strong physical and genetic interaction with the GLFG Nup, Nup116p, could explain the crucial role of Nup116p in nuclear mRNA export (Wente and Blobel, 1993; Fabre et al., 1995).

Thus, the Nup82p/Nsp1p/Nup159p complex and Nup116p/Gle2p complex could provide GLFG, FXFG, and FG repeat docking sites for the Mex67p/Mtr2p complex during passage through the pores and before release into the cytoplasm. Interestingly, the Nup84p complex, which consists of six Nups, all of them without repeat sequences (Sinioggosoglou et al., 1996), is also located on the cytoplasmic site of the NPC, and genetically interacts with...
the M667p/Mtr2p complex. Based on immunogold labeling data, all members of the Nup84p complex are found at both sites of the NPC (Rout et al., 2000) and this NPC module has multiple roles: it is involved in nuclear membrane and pore biogenesis and thus has a structural role within the NPC (Siniossoglou et al., 1996, 1998); it could interact with cytoskeletal structures and their loss in mutants alters NPC distribution within the nuclear membrane (for discussion and model, see D’eye et al., 1994; Stoffler et al., 1999); and it is involved in mRNA export and (for example) could play a role in binding to or release of the M667p/Mtr2p complex from repeat Nups. To further address the question of release factors, we plan to set up an in vitro assay to identify such putative dissociation factors by using whole cell yeast lysates or nuclear fractions as a source to remove M667p/Mtr2p from the different Nup repeats.

In contrast to M667p, its human homologue TAP can interact with repeat Nups on its own (Katahira et al., 1999; Bachi et al., 2000), suggesting that the regulation of TAP binding to repeat Nups and its dissociation may follow a different mechanism than for M667p. However, TAP binds to p15, which is functionally related to Mtr2p, but not homologous in its primary sequence. It remains to be shown whether the TAP/p15 complex exhibits an increased binding affinity to repeat Nups as well. Therefore, the mechanism by which the mammalian TAP/p15 heterodimer dynamically interacts with nuclear pore proteins may have evolved differently.

In conclusion, we have shown that the M667p/Mtr2p complex interacts directly with different repeat domains of Nups. A transient association of this shuttle mRNA exporter with the nuclear pores is crucial for the mechanism of nuclear mRNA export. A co-ordinately, the M667p/Mtr2p heterodimer could interact successively with different repeat Nups during passage through the pore channel, before it is released into the cytoplasm.

The excellent technical assistance of A. lexandra Segref in the initial phase of this project is acknowledged. We thank D. N. S. Bailer for providing the nup116-H153 null mutant and the plasmid pGEX-4T-3-GST-FG NUP159; D. R. Imri Simin and M. Matthew Groves (European Molecular Biology Laboratory, Heidelberg, Germany) for performing the analytical ultracentrifugation of the purified M667p/Mtr2p complex; Dr. C. Cole (Dartmouth Medical School, Hanover, NH) for the nup159 disruption strain and plasmids pVPD16 and pVPD17; F. Stutz (McGill University, Montreal, Canada) for the p60 subunit; and Drs. J. G. W. A. Whalen, J. H. Yoon, R. Pu, M. Dasso, and R. Dhar. 1997. The human RAE1 gene is a functional homologue of Schizosaccharomyces pombe rae1 gene involved in nuclear export of Poly(A)+ RNA. Gene 198:251–258.

Braun, I. C., E. Rohrbach, C. Schmitt, and E. Izaurralde. 1999. TAP binds to the constitutive transport element (CTE) through a novel C-terminal binding motif that is sufficient to promote CTE-dependent RNA export from the nucleus. EMBO J. 18:1953–1962.

Brown, A., A. Bhardwaj, V. M. White, E. Fitzgerald, and R. Dhar. 1995. A mutation in the Schizosaccharomyces pombe rae1 gene causes defects in poly(A)+ RNA export and in the cytoskeleton. J. Biol. Chem. 270:14139–14143.

Bullock, T. L., W. D. Clarkson, H. K. Kent, and M. Stewart. 1996. The 1.6 Å resolution crystal structure of nuclear transport factor 2 (NTF2). J. Mol. Biol. 260:422–431.

Challain-Huntington, C., C. V. Bradavsky, J. Kuhmann, and M. Stewart. 2000. Dissecting the interactions between NTF2, RAN, and the nucleoporin XFXFG repeats. J. Biol. Chem. 275:5374–5379.

Clarkson, W., H. Kent, and M. Stewart. 1996. Separate binding sites on regions of Nup159p and Nup116p that are shared with Rpt2p and Mtr2p. J. Mol. Biol. 263:517–524.

Del Priore, V., C. V. Heath, C. A. Snay, A. M. McIlvan, I. L. Gorsch, S. Daager, and C. N. Cole. 1997. A structure/function analysis of Rat7p/Nup159p, an essential nucleoporin of Saccharomyces cerevisiae. J. Cell Sci. 110:2987–2999.

D’eye, V. L., C. V. Heath, A. L. Goldstein, C. A. Stave, and C. N. Cole. 1997. C-terminal truncations of the yeast nucleoporin Nup145p produce a rapid temperature-conditioned mRNA export defect and alterations to nuclear structure. Mol. Cell. Biol. 17:906–920.

D’eye, V., R. Wiege, and E. C. Hurt. 1994. A novel nuclear pore protein Nup133p with distinct roles in poly(A)+ RNA transport and nuclear pore distribution. EMBO J. (Europ. Mol. Biol. Organ.) 13:6062–6075.

Fabre, E., N. L. Schlaich, and E. C. Hurt. 1994. Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif. Cell. 78:275–289.

Fabre, E., N. L. Schlaich, and E. C. Hurt. 1995. Nucleocytoplasmic trafficking: what role for repeated motifs in nucleoporins? CSH Synp. Quant. Biol. LXX:677–685.

Fahrenkrog, B., E. C. Hurt, U. A. ebi, and N. Panté. 1998. Molecular architecture of the yeast nuclear pore complex: localization of Nsp1p subcomplexes. J. Cell Biol. 143:577–583.

Fornerod, M., J. V. Van deursen, S. Vanbaal, A. Reynolds, D. Davis, K. G. Murti, J. Fransen, and G. Rosweld. 1997. The human homologue of yeast Crm1p is in a dynamic subcomplex with Nup214 and a novel nuclear pore component Nup88. EMBO J. (Europ. Mol. Biol. Organ.) 16:807–816.

Goldstein, A. L. A., C. A. Snay, V. C. Heath, and C. N. Cole. 1996. Pleiotropic nuclear defects associated with a conditional allele of the novel nucleoporin rat7p/Nup159p. Mol. Cell. Biol. 16:971–984.

Gorsch, L. C., T. C. Dockendorff, and C. N. Cole. 1997. A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes. J. Cell Biol. 139:939–955.

Grüter, P., C. Emig, C. Weise, F. Huchoz, T. Pohl, and E. C. Hurt. 1995. A novel nuclear pore protein Nup82p which specifically binds to a fraction of Nsp1p. J. Cell Biol. 130:1263–1273.

Grüter, P., C. Tabernero, C. von Kobbe, C. Schmitt, C. Saavedra, A. Bachi, M. Wilm, B. K. Felber, and E. Izaurralde. 1998. TAP, the human homologue of M667p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell. Biol. 1:649–659.

Heath, C. V., C. S. Copeland, D. C. Abberg, V. Del Priore, M. Snyder, and C. N. Cole. 1995. Nuclear pore complex clustering and nuclear accumulation of poly(A)+ RNA associated with mutation of the Saccharomyces cerevisiae RAT2/NUP120 gene. J. Cell Biol. 130:1677–1697.

Hellmuth, K., D. M. Lau, F. R. Bischoff, M. Kinzler, E. C. Hurt, and G. Simos. 1998. Yeast Los1p has properties of an exportin-like nucleocytoplasmic
transport factor for tRNA. Mol. Cell. Biol. 18:6364–6366.
Hodges, C.A., H.V. Colot, P. Stafford, and C.N. Cole. 1999. Rat8p/Dbp5p is a
shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and
suppresses the mRNA export defect of xpo1-1 cells. EMBO (Eur. Mol. Biol. ORg.)
18:5778–5788.
Hurt, E., S. Hansson, B. Schmelzi, L. Dau, D. Tollervey, and G. Simons. 1999.
A novel in vivo assay reveals inhibition of ribosomal mRNA export in ran-cy
and nuclear pore mutants. J. Cell Biol. 144:389–401.
Hurt, E., K., Sträßer, A. Segref, N. Schlachter, C. Presutti, D. Tollervey, and R.
Jansen. 2000. Me67p mediates the nuclear export of a variety of Pol II tran-
scripts. J. Biol. Chem. 275:8361–8368.
Hurwitz, M.E., and G. Blobel. 1995. NUP82 is an essential yeast nuclear pore
protein required for poly(A) RNA export. J. Cell Biol. 130:1275–1281.
Iovine, M., C. Strambio-de-Castillia, and G. Blobel. 1998. Two yeast nu-
clear pore complex proteins involved in mRNA export form a cytoplas-
meric oriented subcomplex. Proc. Natl. Acad. Sci. USA. 95:11241–11245.
Iovine, M., K., and S.R. Wente. 1997. A nuclear export signal in Kap95p is re-
quired for both recycling the import factor and interaction with the nucle-
oporin GLFG repeat regions of Nup116p and Nup100p. J. Cell Biol. 137:
797–811.
Iovine, M. J.L. Watkins, and S.R. Wente. 1995. The GLFG repetitive region of
the nucleoporin Nup116p interacts with Kap95p, an essential yeast nu-
clear import factor. J. Cell Biol. 131:1699–1713.
Kang, Y.B., and B.R. Cullen. 1999. The human Tap protein is a nuclear mRNA
export factor that contains novel RNA-binding and nucleocytoplasmic trans-
port sequences. Genes Dev. 13:1126–1139.
Katahira, J., K. Sträßer, A. Podtelejnikov, M. Mann, J.J. Jung, and E.C. Hurt.
1999. The Mex67p-mediated nuclear mRNA export pathway is conserved from
yeast to human. EMBO (Eur. Mol. Biol. Org.) J. 18:2593–2609.
Kraemer, D., and G. Blobel. 1997. mrnp 41 binding protein mrm41 localizes to
both nucleus and cytoplasm. Proc. Natl. Acad. Sci. USA. 94:9119–9124.
Kraemer, D., C. Strambio-de-Castillia, G. Blobel, and M.P. Rout. 1995. The
essential yeast nucleoporin NUP159 is located on the cytoplasmic side of the
nuclear pore complex and serves in karyopherin-mediated binding of trans-
port substrate. J. Biol. Chem. 270:19017–19021.
Künzler, M., and E.C. Hurt. 1998. Csa1p functions as the nuclear export recep-
tor for importin β in yeast. FEBS Lett. 432:185–190.
Laue, T.M., A.E. Johnson, C.T. Esmon, and D.A. Yphantis. 1984. Structure of
bovine blood coagulation factor Va. Determination of the subunit associa-
tion for importin α and α-importin. J. Biol. Chem. 259:1339–1348.
Martinat, T., E.T. Frisch, and J. Sambrook. 1982. Molecular Cloning: A Labo-
ratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,
New York.
Mattaj, I.W., and L. Englemier. 1998. Nucleocytoplasmic transport: the soluble
phase. Annu. Rev. Biochem. 67:265–306.
Murphy, R., J.L. Watkins, and S.R. Wente. 1995. GLE2, a Saccharomyces cere-
siae homologue of the Schizosaccharomyces pombe export factor RAL1, is
required for nuclear pore complex structure and function. Mol. Biol. Cell.
7:1921–1937.
Nakielny, S., and G. Dreyfuss. 1999. Transport of proteins and RNAs in and out
of the mammalian nuclear pore complex. J. Cell Biol. 149:31–41.
Pasquinelli, A.E., R.K. Ernst, E. Lund, C. Grimm, M.L. Zapp, D. Rekosh, M.L.
Zlotukhin, A.S., and B.K. Felber. 1999. Nucleoporins Nup98 and Nup214 par-
ticipate in nuclear export of human immunodeficiency virus type 1 Rev.
protein, interacts directly with Mex67p and is required for mRNA export.
EMBO (Eur. Mol. Biol. Org.) J. 19:410–420.
Stutz, F., J. Kantor, D. Zhang, T. McCarthy, M. Neville, and M. Rosbash. 1997.
The yeast nucleoporin Rlp1p contributes to multiple export pathways with
no essential role for its FG-repeat region. Genes Dev. 11:2857–2868.
Truant, R., Y.B. Kang, and B.R. Cullen. 1999. The human tap nuclear RNA ex-
port factor contains a novel transportin-dependent nuclear localizatoin sig-
nal that lacks nuclear export signal function. J. Biol. Chem. 274:32167–32171.
Tseng, S.S.L., P.L. Weaver, Y. Liu, M. Hromi, A.M. Tarsakoff, and T.H.
Chang. 1998. Dbp5p, a cytosolic RNA helicase, is required for poly(A)
RNA export. EMBO (Eur. Mol. Biol. Org.) J. 17:2651–2662.
Wente, S.R., and G. Blobel. 1993. A temperature-sensitive NUP116 null mut-
ant forms a nuclear envelope seal over the yeast nuclear pore complex
thereby blocking nucleocytoplasmic traffic. J. Cell Biol. 123:275–284.
Wente, S.R., and G. Blobel. 1994. NUP145 encodes a novel yeast glycine-leu-
cine-phenylalnine-glycine (GLFG) nucleoporin required for nuclear enve-
lope structure. J. Cell Biol. 125:955–969.
Wente, S.R., M.P. Rout, and G. Blobel. 1992. A new family of yeast nucleoporin
proteins. J. Cell Biol. 119:705–723.
Wiseman, C.V., D. Voy, P. Grandi, U. Nehrbass, and E. Hurt. 1992. A new sub-
class of nucleoporins that functionally interacts with nuclear pore protein
NSP1. EMBO (Eur. Mol. Biol. Org.) J. 11:5051–5061.
Wiseman, C.V., D. Voy, U. Nehrbass, N. Schlachter, and E.C. Hurt. 1993. A
protease that cleaves a general arrest of the nuclear pore complex in yeast.
In Protein Synthesis and Targeting in Yeast. A. P. Brown, M. F. Tuite, and
J.E.G. McCarthy, editors. Springer-Verlag, Berlin, Heidelberg. 269–281.
Yan, C., L.H. Lee, and L.I. Davids. 1998. Crm1p mediates regulated nuclear ex-
port of a yeast A-P-lifespan transcription factor. EMBO (Eur. Mol. Biol. ORg.)
J. 17:4164–4172.
Zolotukhin, A.S., and B.K. Felber. 1999. Nucleoporins Nup98 and Nup214 par-
ticipate in nuclear export of human immunodeficiency virus type 1 Rev.
Virol. 7:120–127.

The Journal of Cell Biology, Volume 150, 2000 706