Topological phases and pumps in the Su–Schrieffer–Heeger model periodically modulated in time

Xiao-Long Lü and Hang Xie

Department of Physics, Chongqing University, Chongqing, People’s Republic of China

E-mail: xiehang2001@hotmail.com

Received 9 May 2019, revised 12 August 2019
Accepted for publication 21 August 2019
Published 9 September 2019

Abstract

By the Floquet theory, we transform the Su–Schrieffer–Heeger model with the periodically modulated nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions into an effective 2D model, which holds the total Chern number of ± 1 modulated by the parameter θ. Under a staggered electric potential, the topological phase diagrams of the effective 2D model are reshaped and similar to the well-known Haldane model. While under a staggered Zeeman field, the topological phase diagram has the same shape as the former case, but with different Chern numbers, such as the spin and valley Chern numbers. With the combination of the staggered Zeeman field and the electric field, the effective 2D model holds even richer topological phases. At last, we find some types of topological pump, which can generate the time-averaged current without any bias voltage. The current depends on their different Chern numbers. In other words, we can modulate the parameters to obtain various Chern numbers to control the topological pump.

Keywords: topological, floquet, SSH model

(Some figures may appear in colour only in the online journal)
(NNN) hoppings were modulated by some phase parameters [17]. In contrast to these works, we periodically modulate the \(h_N \) and NNN hoppings in time with the combination of the staggered Zeeman field and staggered electric potential [25] to acquire abundant topological phases characterized by the spin Chern number, the valley Chern number and the spin-valley Chern number [26–28]. By the Floquet theory, we can obtain richer topological phases than Li et al.’s work with the effect of the external fields. In addition, some topological pump will also happen in our system. The type of the pump depends on its topological phase. The pump mechanism results from the NN and NNN hoppings periodically modulated in time.

This paper is organized as follows. In section 2, we introduce 1D tight-binding model with the NN and NNN hoppings modulated in time. In section 3, we transform the 1D model into an effective 2D model with the use of the Floquet theory and give some discussions on the Floquet theory. In section 4, we give the main results for the topological phases and topological pump effect of this effective 2D model.

2. Models and methods

2.1. 1D SSH model

We consider a 1D dimerized lattice with one unit cell containing A and B sites, shown in figure 1. Here the NN and NNN hoppings are periodically modulated in time, and the corresponding bonds have opposite phases [29]. We also apply both perpendicular staggered Zeeman field and electric potential to this lattice. Thus the tight-binding Hamiltonian of this system consists of the SSH chain (\(H_{\text{SSH}} \)) and the external field (\(H_{\text{ex}} \))

\[
H = H_{\text{SSH}} + H_{\text{ex}},
\]

where

\[
H_{\text{SSH}} = \sum_m | t_1 c_m^A c_{m+1}^C + t_2 c_m^A c_{m+1}^C + t_3 c_m^B c_{m+1}^C | + \sum_N \left[t_B c_m^A c_{m+1}^{A, +} + t_C c_m^B c_{m+1}^{B, +} \right] + \text{H.C.},
\]

\[
H_{\text{ex}} = \sum_{\alpha=1}^2 \mu_\alpha \epsilon c_m^\alpha c_m^\alpha + \sum_{i=1}^N \delta c_i^a c_i^a,
\]

In equation (1), \(c_m^A, c_m^B, c_{m+1}^C \) are the fermion creation (annihilation) operators on the sublattice A and B in the Nth unit cell. In the first term, \(t_1 = t \left(1 + 2 \delta \cos \omega t \right) \) and \(t_2 = t \left(1 - 2 \delta \cos \omega t \right) \) with \(\delta \) being the driving amplitude. This term represents the NN hopping with opposite phases. The second term represents the NNN hopping, \(t_3 = 2 \theta \cos (\omega t + \theta) \). In these expressions, \(h \) is the driving amplitude and \(\theta \) is a phase parameter which can vary from 0 to \(2\pi \) continuously. The external fields (\(H_{\text{ex}} \)) includes a perpendicular staggered Zeeman field \(M \) and an electrical staggered potential \(\Delta \). The latter is induced by the site-dependent electric field, where \(\mu_\alpha = +1 \) (1) for the A (B) site. In addition, \(\sigma^z \) is the Pauli matrix of z component.

This model periodically modulated in time can be treated by the Floquet theory introduced in references [21, 22]. If a Hamiltonian has the time-periodic property [30, 31]: \(H(t) = H(t + T) \), we can apply the Floquet formalism to get the so-called Floquet states [32] \(\varphi_\alpha = e^{-i \omega \epsilon} | \theta_\alpha (t) \rangle \), where \(| \theta_\alpha (t) \rangle = | \theta_\alpha (t + T) \rangle \) and \(\omega \) are the Floquet modes and \(\epsilon_\alpha \) are the associated quasi-energies. One gets this Floquet operator \(HF = H(t) - i \delta t \) by inserting these solutions into the time-dependent Schrodinger equation, thus \(HF | \theta_\alpha (t) \rangle = \epsilon_\alpha | \theta_\alpha (t) \rangle \). By using the Fourier transformation, we have

\[
| \theta_\alpha (t) \rangle = \sum_m e^{i m \omega t} | \varphi_m^{\alpha} \rangle \quad \text{and} \quad H_N = \frac{1}{T} \int_0^T HF e^{-i \omega t} dt.
\]

One can get

\[
\sum_m H_N^{cm} | \varphi_m^{\alpha} \rangle = \epsilon_\alpha | \varphi_m^{\alpha} \rangle,
\]

where

\[
H_N^{cm} = \frac{1}{T} \int_0^T H(t) e^{i (m-n) \omega t} dt - m \omega \delta_{nm}, \quad \text{(2)}
\]

which is the Floquet Hamiltonian expanded in the Hilbert space [33].

Then we can use the Floquet Hamiltonian to rewrite the Hamiltonian \(H \) as

\[
H_N^{SSH} = \sum_N \delta_{nm} c_m^A c_{m+1}^C + \sum_N \delta_{nm} c_m^B c_{m+1}^C + \text{H.C.}
\]

\[
+ \sum_N \delta_{nm} (c_m^A c_{m+1}^C \delta_{nm+1} + c_m^B c_{m+1}^C \delta_{nm+1}) + \text{H.C.}
\]

\[
+ \sum_N \delta_{nm} (c_m^A c_{m+1}^C + c_m^B c_{m+1}^C) + \text{H.C.}, \quad \text{(3)}
\]

where \(N \) is the number of unit cells and the Floquet modes are represented by the indices \(n \) and \(m \).

2.2. 2D Effective model

Followed from the work of Gomez-Leon and Platero [21], one can treat the Floquet modes \(n \) as a second parameter and transform it into the momentum \(k_f \) in an extra dimension (f direction). Thus the Hamiltonian in equation (2) can be regarded as an effective 2D tight-binding model. But the last term in equation (2) breaks the translational symmetry in this effective 2D model. Actually we can treat the frequency \(\omega \) as small enough in order to be satisfied with the translational symmetry. Thus the last term in the Hamiltonian (2) can be regarded as an effective electric field \(E_{\text{eff}} = \omega \) [21, 22]. By this
approximation, we may follow the Bloch theorem and define
the effective wavevector $k_f = \frac{2\pi}{m_0}n = \frac{2\pi}{\theta}$, where $n (n = \frac{2\pi}{\theta})$ is
the photon number. We obtain an effective momentum space
with k_f ranged in $[-\pi, \pi]$.

By using the Fourier transformation and the periodic boundary condition, we can easily rewrite the Hamiltonian H as

$$H_{SSH} = \sum_k \rho_k^* h(k) \rho_k,$$

where $\rho_k = (a_k, b_k)$ and $h(k) = \begin{bmatrix} B_1 & B_2 \\ B_1 & B_4 \end{bmatrix}$ with

$$B_1 = 4h \cos k_x \cos (k_f - \theta),$$
$$B_2 = t + 2\delta \cos k_f + i (\cos k_x - i \sin k_x) - 2\delta \cos k_f (\cos k_x - i \sin k_x),$$
$$B_3 = t + 2\delta \cos k_f + i (\cos k_x + i \sin k_x) - 2\delta \cos k_f (\cos k_x + i \sin k_x),$$
$$B_4 = 4h \cos(k_x) \cos(k_f + \theta).$$

Alternatively, $h(k)$ can be expressed in the form

$$h(k) = h_I + d(k) \cdot \sigma,$$

where I is the identity matrix and $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ are the Pauli matrices. The coefficients of Pauli matrices are defined as

$$h_I = 2h \cos(k_x) (\cos(k_f - \theta) + \cos(k_f + \theta)), d_x = t + 2\delta \cos k_f + t \cos(k_x) - 2\delta \cos k_f \cos(k_x),$$
$$d_y = -2\delta \cos k_f \sin(k_x) + t \sin(k_x),$$
$$d_z = 2h \cos(k_x) (\cos(k_f - \theta) - \cos(k_f + \theta)).$$

The coefficient d_x can be extended in the following form which includes the Hamiltonian H_{ex}

$$d_x = 2h \cos(k_x) (\cos(k_f - \theta) - \cos(k_f + \theta)) + \Delta + sM,$$

where $s = 1 (-1)$ for spin-up (spin-down). By diagonalizing the Hamiltonian, one gets the eigenvalues $E(k) = h_I \pm \sqrt{\gamma}$ where $\gamma = d_x^2 + d_y^2 + d_z^2$. By setting $d_x^2 + d_y^2 = 0$, we find the Hamiltonian has two different extremum (Dirac) points; $K = (\pi, \frac{\pi}{2})$ and $K' = (\pi, \frac{-\pi}{2})$ in $k_x - k_f$ space. The Hamiltonian with the NN and NNN hoppings in the x direction, as well as with the coupling of different photon numbers (figure 2(a)), have been translated in $k_x - k_f$ space. And the band structure with NN and NNN hoppings in figure 2(b) shares the same Dirac points with the band structure with only NN hopping in figure 2(c). But the effect of NNN hopping makes the contribution to the Dirac mass used to modulate topological phases. We will discuss it in the next section. If
d_1 is zero, the effective 2D model is gapless; otherwise the system is gapped. Near these points, we can use the Dirac equation to describe the effective low-energy physics.

2.3. Topological invariance quantities

For the effective momentum space $\{k_x, k_f\}$, where k_f can be regarded as the second parameter in addition to the momentum in the real space (k_x). So the Chern number can be calculated by integrating the Berry curvature over the effective 2D Brillouin zone,

$$C = \frac{1}{2\pi} \int dk dk_f \left(\partial_{k_f} A_{k_x} - \partial_{k_x} A_{k_f} \right),$$

(7)

where $A_{k_x} = i \langle \varphi_+ (k) | \partial_{k_x} \varphi_+ (k) \rangle$ and $A_{k_f} = i \langle \varphi_+ (k) | \partial_{k_f} \varphi_+ (k) \rangle$ are the Berry connection defined in 2D effective space, with $\varphi_+ (k)$ obtained from the Hamiltonian in equation (5). As a topological invariant, the Chern number can be used to characterize the topological property of the 2D system. In this work, we can regard the 1D system as the effective 2D system so that the Chern number is also used to characterize topological property of 1D system [34, 35].

Expanded near the two Dirac points, the Hamiltonian in equation (5) can be expressed as

$$H (\tau) = 4t \delta \tau k_x \sigma_1 - t k_x \sigma_y + m_1^\tau \sigma_z,$$

(8)

where

$$m_1^\tau = 4h^* \sin \theta + \Delta + sM,$$

and $\tau = 1 (-1)$ for $K (K')$. We can transform equation (8) into the standard form,

$$H (\tau) = \sum_{ij} A_{ij} (\tau) k_i \sigma_j + m_1^\tau \sigma_z,$$

(9)

where the summation is over x and y dimensions. According to equation (9), one can get the resulting matrix A as

$$A (\tau) = \begin{pmatrix} \frac{e^2}{2h} & 4\delta \tau \\ -1 & 0 \end{pmatrix}.$$

(10)

It is clear that the two Dirac points (K and K') have opposite values for Det (A). Here we analytically derive the Chern number of the lower filled band into a simple formula. As we know [22], the Hall conductance may be written as

$$\sigma_{xy} = \frac{e^2}{2h} \text{sgn} (m_1^\tau) \text{sgn} (\text{Det} (A)),$$

(11)

or the four independent Chern numbers are expressed as

$$C_1^\tau = \frac{1}{2} \text{sgn} (m_1^\tau) \text{sgn} (\text{Det} (A))$$

(12)

due to that the Hall conductance is quantized in units of $\frac{e^2}{2h}$. With the help of equation (10), we can rewrite equation (12) as

\[\text{Figure 3.} \hspace{1cm} \text{(a) Total Chern number as a function of parameter } \theta, \hspace{0.5cm} \text{(b)–(d): energy band structures in the 2D effective model with (b) } \theta = -0.5\pi, \hspace{0.5cm} \text{(c) } \theta = 0, \hspace{0.5cm} \text{(d) } \theta = 0.5\pi. \hspace{1cm} \text{We set } t = 1 \text{ eV}, \delta = 1, \ h = 0.2t. \]
with $\tau = 1 \ (-1)$ for $K (K')$ and $s = +1 \ (-1)$ for spin-up (spin-down). The formula $m'_s = 4h\tau \sin \theta + \Delta + sM$ means that the different Dirac point raises up different Dirac gap with the same external field.

In order to keep the numerical calculation of the Chern number (equation (7)) correct, the Fermi level should be kept in the bulk gap, or the Chern number is ill defined: the lower number (equation (7)) correct, the Fermi level should be kept in equation (6). However, one can choose suitable h_I to make sure that the two bands can be separated by a gap. Thus one can use the simple formula to clearly see how the topological property of the effective 2D system changes.

Before introducing the topological phase of the effective 2D system, we define four independent Chern numbers C_i introduced before: the total Chern number C, the spin Chern number C_s, the valley Chern number C_v, and the spin-valley Chern number C_{sv} [26],

\[
C = C^K_+ + C^{K'}_+ + C^K_- + C^{K'}_-,
\]
\[
C_s = \frac{1}{2} \left(C^K_+ + C^{K'}_+ - C^K_- - C^{K'}_- \right),
\]
\[
C_v = C^K_+ - C^K_- + C^{K'}_+ - C^{K'}_-,
\]
\[
C_{sv} = \frac{1}{2} \left(C^K_+ - C^{K'}_+ - C^K_- + C^{K'}_- \right).
\]

From equation (15), one gets that the boundary of the topological phase transition is defined by the condition of the two Dirac mass $\pm 4h \sin \theta = 0$ and these phase transition points are $\theta = 0, \pm \pi$. With this condition, one can plot the phase diagram associated with θ for the effective 2D system in figure 3. The total Chern number C is just modulated by the parameter θ, where $C = -1$ is in the region of $\theta = (-\pi, 0)$ and $C = 1$ in the region of $\theta = (0, \pi)$. From figures 3(b)–(d), the gap closing and reopening means the topological phase transition. It is interesting that the 1D model with the NN and NNN hoppings periodically modulated in time exhibits a topological phase transition with the parameter θ.

Next, we give detailed discussions on the topological phases with the external fields on this effective 2D model.

1. Perpendicular staggered electric potential

In this case, the staggered electric potential Δ is applied on the effective 2D model, and the Dirac mass is modified by $m'_s = \Delta + \tau 4h \sin \theta$. The condition to determine the phase boundary is that the Dirac mass $m'_s = 0$ or $\frac{\Delta}{4h} = \pm \sin \theta$. With this condition, one can plot the phase diagram in figure 4(a). In contrast to the phase diagram in figure 3(a), there is no new topological phase, but reshaped structure of the phase diagram. And the effective 2D model under the staggered potential shares a similar structure of the phase diagram of 2D Haldane model [18].

As well know [36], the Haldane model can hardly be realized in ordinary condensed matter due to the especially staggered magnetic flux. Here we give an easy way to realize the Haldane model.

2. Perpendicular staggered Zeeman field

If this Zeeman field is taken into account in the effective 2D model, the Dirac mass is $m'_s = sM + \tau 4h \sin \theta$. The condition of the phase boundary is that the Dirac mass equal θ.
to zero $m^+_x = 0$, or $\frac{M}{4\hbar} = \pm \sin \theta$ with $s = +1$ and -1 for spin-up or spin-down. With this condition, the phase diagram is plotted in figure 4(b), which has the same structure as figure 4(a). But the topological phase in figure 4(b) is completely different from figure 4(a). The spin and valley Chern numbers emerge under the staggered Zeeman field. Previous works [9, 11] about the effective 2D model just showed the total Chern number but not the other Chern numbers. Here we find that this effective 2D model may be utilized to obtain other Chern numbers with the staggered Zeeman field.

(3) Perpendicular staggered Zeeman field and electric potential

If both of the Zeeman filed and electric potential are taken into account for the effective 2D model, the Dirac mass is modified by $m^+_x = sM + r\hbar^2 \sin \theta + \Delta$. The condition of the phase boundary is $m^+_x = 0$ or $\frac{M}{4\hbar} = \pm \sin \theta - \frac{\Delta}{4\hbar}$ for spin-up, and $\frac{M}{4\hbar} = \pm \sin \theta + \frac{\Delta}{4\hbar}$ for spin-down. With this condition, one can get abundant topological phase diagrams as in figures 5(a) and (b). The topological phases depend on three parameters $\frac{M}{4\hbar}$, $\frac{\Delta}{4\hbar}$ and θ. We set the region $\frac{M}{4\hbar} > 1$ for figure 5(a) and the region $0 < \frac{\Delta}{4\hbar} < 1$ for figure 5(b). In addition, if we set $\frac{\Delta}{4\hbar} = 0$, the phase diagram is reduced to figure 4(b). In contrast to the figure 5(a), the new topological phase appears in the overlap region in figure 5(b). In one word, the effective 2D model can be utilized to realize the four Chern numbers with the help of both staggered potential and Zeeman field.

Here we emphasize that these topological properties are very robust in disorders. We add the on-site disorders (within the range of $[-0.1 \text{ eV}, 0.1 \text{ eV}]$) to the eight-site supercell SSH system. Then we numerically calculate the Berry curvature and Chern numbers for these disordered systems with the methods presented in our previous work [37]. We have verified that all the Chern numbers are unchanged in the phase diagrams of figures 3 and 4.

3.2. Floquet topological pump

As we mentioned, the last term in equation (3) can be proved to be an effective electric field $E_{\text{eff}} = \omega$ in the additional f direction [21, 22]. Following [22], one can rewrite the unidirectional current of the 1D model in the nth photon-number state as

$$j_x (n) = \sigma_{xy} \omega = \frac{e^2}{h} C \omega,$$

where $\sigma_{xy} = \frac{e^2}{h} C$ and C can be replaced by C_x, C_y and C_{xy} [38, 39] as well. So the sum of all the states of the 1D model can be written as

$$j_x (t) = \sum_n j_x (n) e^{-i n \omega t}.$$

This formula is the time-dependent one-dimensional current in the x direction. We take the time-averaged current of $j_x (t)$ over the period T as

$$\bar{j}_x = \frac{1}{T} \int_0^T j_x (t) dt = \frac{1}{T} \int_0^T \sum_n j_x (n) e^{-i n \omega t} dt = j_x (0) = \frac{e^2}{h} C \omega.$$

The \bar{j}_x above may also become the spin current \bar{j}_{sx}, the valley current \bar{j}_{vx} and the spin-valley current \bar{j}_{sxvx} when the total Chern number C is replaced by C_x, C_y and C_{xy} in equation (16). The time-averaged current \bar{j}_x (\bar{j}_{sx}, \bar{j}_{vx} and \bar{j}_{sxvx}) is dependent on the Chern number $C (C_x, C_y$ and $C_{xy})$, which means the effective 2D model with different topological state has different types of the time-averaged current. In other words, this model can generate a unidirectional current with an effective electric field, which is also the ratchet effect [22].
Here we generalized this ratchet effect into the spin and valley degree of freedom. Since they are related to the topological property, we call these time-averaged current j_x without bias voltage as the topological pump.

Now, we use the topological phase in figure 4 to discuss these topological pumps in detail. In figure 4(a), the total Chern number adjusted by the parameters is ± 1 or 0 in certain range of θ and $\Delta_4 h$, which is equivalent to that the topological pump has opposite direction (or zero) in x axis. It is interesting that the parameter θ and $\Delta_4 h$ can control the time-averaged charge current \overline{j}_x depicted in figure 6(a). In figure 4(b), the topological phases are dependent on the parameters $M_4 h$ and θ. And the parameter $M_4 h$ can motivate the new topological phases with C_s and C_v. In others word, the topological pump is for the spin/valley current in the x direction depicted in figure 6(b). In figure 5, the total Chern number (C), the spin Chern number (C_s), the valley Chern number (C_v) and the spin-valley Chern number (C_{sv}) all have the corresponding charge, spin, valley and spin-valley time-averaged currents in the x direction, which are not shown here.

3.3. Experimental realization

The 1D SSH model can be easily realized in many systems, such as plasmonics, photonics and circuit QED [14–16], which is rationally used as our model. In a single degenerate optical cavity, the arbitrary long-range hopping periodically modulated in time can be realized [40, 41]. In one word, the 1D SSH model periodically modulated in time is experimentally implemented. The time-averaged current is proportional to the Chern number and an effective electric field ω which should be small enough to make sure the condition of translational symmetry in our 2D model. Actually we can take ω large enough in the above conditions to make the time-averaged current obviously observed. And the antiferromagnetic exchanged field can be implemented, in which the 1D SSH model is coupled to an antiferromagnetic insulator with large mismatching [42]. And with the perpendicular electric field, the staggered electric field can be easily obtained due to the mismatched sublattice A and B. With the reasonable parameter θ, nonzero value of the staggered antiferromagnetic exchanged and electric field can obtain the time-averaged current. In addition, the light-induced nonequilibrium Floquet phase has been realized by applying coherent phono modes [43, 44]. With a periodic electric field, the ratchet, equal to the pump, can be also realized in graphene breaking the spatial symmetry [45].

4. Summary

In summary, we utilize the effective 2D model and the Floquet theorem to study the topological phases of the SSH lattice with NN and NNN ac driven perturbations. In the presence of staggered potential and Zeeman field, we find this effective 2D model have four Chern numbers, which is different from previous works with just the total Chern number. What is interesting is that there exists nonzero time-averaged current. This topological pump is dependent on its topological phase. The mixing of two external fields in the effective 2D model generates very rich nontrivial phases, which also correspond to the rich types of topological pumps.

Acknowledgments

The authors thank Dr Tao Wang in the Wuhan Institute of Technology for his kind help in the discussions on Floquet theorem in driven systems. Financial support from the starting foundation of Chongqing University (Grants No. 0233001104429) and NSFC (11847301) are also gratefully acknowledged.
References

[1] Von Klitzing K, Dorda G and Pepper M 1980 New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance Phys. Rev. Lett. 45 494–7
[2] Kane C L and Mele E J 2005 Z(2) topological order and the quantum spin Hall effect Phys. Rev. Lett. 95 146802
[3] Hasan M Z and Kane C L 2010 Colloquium: topological insulators Rev. Mod. Phys. 82 3045–67
[4] Moore J E and Balents L 2007 Topological invariants of time-reversal-invariant band structures Phys. Rev. B 75 121306
[5] Qi X L, Hughes T L and Zhang S C 2008 Topological field theory of time-reversal invariant insulators Phys. Rev. B 78 195424
[6] Pan H, Li X, Jiang H, Yao Y G and Yang S Y A 2015 Valley-polarized quantum anomalous Hall phase and disorder-induced valley-filtered chiral edge channels Phys. Rev. B 91 045404
[7] Pan H, Li Z S, Liu C C, Zhu G B, Qiao Z H and Yao Y G 2014 Valley-polarized quantum anomalous Hall effect in silicene Phys. Rev. Lett. 112 106802
[8] Ganeshan S, Sun K and Das Sarma S 2013 Topological zero-energy modes in gapless commensurate Aubry–André–Harper models Phys. Rev. Lett. 110 180403
[9] Hadad Y, Khanikaev A B and Alu A 2016 Self-induced topological transitions and edge states supported by nonlinear staggered potentials Phys. Rev. B 93 155112
[10] Downing C A and Weick G 2018 Topological plasmons in dimerized chains of nanoparticles: robustness against long-range quasistatic interactions and retardation effects Eur. Phys. J. B 91 253
[11] Su W P, Schrieffer J R and Heeger A J 1979 Solitons in polyacetylene Phys. Rev. Lett. 42 1698–701
[12] Ryu S, Schnyder A P, Furusaki A and Ludwig A W W 2010 Topological insulators and superconductors: tenfold way and dimensional hierarchy New J. Phys. 12 065010
[13] Altland A and Zirnbauer M 1997 Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures Phys. Rev. B 55 1142–61
[14] Engelhardt G, Benito M, Platero G and Brandes T 2017 Topologically enforced bifurcations in superconducting circuits Phys. Rev. Lett. 118 197702
[15] Downing C A and Weick G 2017 Topological collective plasmons in biparticle chains of metallic nanoparticles Phys. Rev. B 95 125426
[16] Schomerus H 2013 Topologically protected midgap states in complex photonic lattices Opt. Lett. 38 1912–4
[17] Li L H, Xu Z H and Chen S 2014 Topological phases of generalized Su–Schrieffer–Heeger models Phys. Rev. B 89 085111
[18] Haldane F D M 1988 Model for a quantum Hall-effect without landau-levels–condensed-matter realization of the parity anomaly Phys. Rev. Lett. 61 2015–8
[19] Bomantara R W and Gong J B 2018 Quantum computation via Floquet topological edge modes Phys. Rev. B 98 165421
[20] Yang C, Li L H and Chen S 2018 Dynamical topological invariant after a quantum quench Phys. Rev. B 97 060304
[21] Gomez-Leon A and Platero G 2013 Floquet-Bloch theory and topology in periodically driven lattices Phys. Rev. Lett. 110 200403
[22] Zou J Y and Liu B G 2017 Quantum Floquet anomalous Hall states and quantized ratchet effect in one-dimensional dimer chain driven by two ac electric fields Phys. Rev. B 95 205125
[23] Hatsugai Y 1993 Chern number and edge states in the integer quantum Hall-effect Phys. Rev. Lett. 71 3697–700
[24] Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Quantum spin-hall effect and topologically invariant Chern numbers Phys. Rev. Lett. 97 036808
[25] Bahari M and Hosseini M V 2016 Zeeman-field-induced nontrivial topological phases in a one-dimensional spin-orbit-coupled dimerized lattice Phys. Rev. B 94 125119
[26] Ezawa M 2015 Monolayer topological insulators: silicene, germanene, and stanene J. Phys. Soc. Japan 84 121003
[27] Ezawa M 2013 Photoinduced topological phase transition and a single dirac-cone state in silicene Phys. Rev. Lett. 110 026603
[28] Hao N N, Zhang P, Wang Z G, Zhang W and Wang Y P 2008 Topological edge states and quantum Hall effect in the Haldane model Phys. Rev. B 78 075438
[29] Dal Lago V, Atala M and Torres L E F F 2015 Floquet topological transitions in a driven one-dimensional topological insulator Phys. Rev. A 92 023624
[30] Grifoni M and Hanggi P 1998 Driven quantum tunneling Phys. Rep. 304 229–354
[31] Kohler S, Lehmann J and Hanggi P 2005 Driven quantum transport on the nanoscale Phys. Rep. 406 379–443
[32] Zou J Y and Liu B G 2016 Floquet Weyl fermions in three-dimensional stacked graphene systems irradiated by circularly polarized light Phys. Rev. B 93 205435
[33] Sambe H 1973 Steady states and quasienergies of a quantum-mechanical system in an oscillating field Phys. Rev. A 7 2203–13
[34] Lepri S, Livi R and Politi A 1998 On the anomalous thermal conductivity of one-dimensional lattices Europhys. Lett. 43 271–6
[35] Jeckelmann E, Zhang C L and White S R 1999 Metal-insulator transition in the one-dimensional Holstein model at half filling Phys. Rev. B 60 7950–5
[36] Shao L B, Zhu S L, Sheng L, Xing D Y and Wang Z D 2008 Realizing and detecting the quantum Hall effect without Landau levels by using ultracold atoms Phys. Rev. Lett. 101 246810
[37] Li X L, Xie Y and Xie H 2018 Topological and magnetic phase transition in silicon-like zigzag nanoribbons New J. Phys. 20 043054
[38] Prarakijjak W and Sooddchomshom B 2018 Large magnetoresistance dips and perfect spin-valley filter induced by topological phase transitions in silicene J. Magn. Magn. Mater. 452 407–14
[39] Tahir M, Manchon A, Sabeeh K and Schwingenschlogl U 2013 Quantum spin-valley Hall effect and topological insulator phase transitions in silicene Appl. Phys. Lett. 102 162412
[40] Luo X W, Zhou X X, Li C F, Xu J S, Guo G C and Zhou Z W 2015 Quantum simulation of 2D topological physics in a 1D array of optical cavities Nat. Commun. 6 7704
[41] Zhou X F et al 2017 Dynamically manipulating topological physics and edge modes in a single degenerate optical cavity Phys. Rev. Lett. 118 083603
[42] Qiao Z H et al 2014 Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator Phys. Rev. Lett. 112 116404
[43] Hubener H, De Giovannini U and Rubio A 2018 Phonon driven floquet matter Nano Lett. 18 1535–42
[44] Shin D, Hubener H, De Giovannini U, Jin H, Rubio A and Park N 2018 Phonon-driven spin-Floquet magneto-valleytronics in MoS2 Nat. Commun. 9 638
[45] Drexler C et al 2013 Magnetic quantum ratchet effect in graphene Nat. Nanotechnol. 8 104–7