Supplementary Material

Characterization of organic isomers: CID fragmentation technique on protonated hydroxybenzophenone isomers

Juan Z. Dávalos*, Luis R. Carlos, Héctor R. Loro, and Alexsandre F. Lago*

* Instituto de Química Física Rocasolano, CSIC. c/Serrano, 119. E-28006 Madrid, Spain
b Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210 - Rímac. Apartado 1301, Lima, Peru
c Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Av. Dos Estados, 5001, 09210-580, Santo André, SP, Brazil
E-mails: jdavalos@iqfr.csic.es, alexsandre.lago@ufabc.edu.br

Table of Contents

Figure S1. Optimized geometries, at the B3LYP/6-311++G(d,p) level of theory, of the of 2H+ rotamers and the transition states of their corresponding fragmentation routes ...S2
Figure S2. Optimized geometries, at the B3LYP/6-311++G(d,p) level of theory, of the of 3H+ rotamers and the transition states of their corresponding fragmentation routes ...S4
Figure S3. Optimized geometries, at the B3LYP/6-311++G(d,p) level of theory, of the of 4H+ rotamers and the transition states of their corresponding fragmentation routes ...S7
Figure S4. Optimized geometries, at B3LYP/6-311++G(d,p) level of theory, of fragments 105 m/z and 121 m/z ..S9
Figure S1. Optimized geometries, at the B3LYP/6-311++G(d,p) level of theory, of the 2H⁺ rotamers and the transition states of their corresponding fragmentation routes.
Figure S2. Optimized geometries, at the B3LYP/6-311++G(d,p) level of theory, of the 3H+ rotamers and the transition states of their corresponding fragmentation.
Figure S3. Optimized geometries, at the B3LYP/6-311++G(d,p) level of theory, of the 4H⁺ rotamers and the transition states of their corresponding fragmentation routes.
Figure S4. Optimized geometries, at B3LYP/6-311++G(d,p) level of theory, of fragments 105 m/z and 121 m/z.