Mutation rate and the emergence of drug resistance in *Mycobacterium tuberculosis*

M. McGrath\(^1\)*, N. C. Gey van Pittius\(^1\), P. D. van Helden\(^1\), R. M. Warren\(^1\)+ and D. F. Warner\(^2\)+

\(^1\)DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Tygerberg 7505, South Africa; \(^2\)MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, P/Bag X3, Rondebosch 7700, South Africa

*Corresponding author. Tel: +27219389073; Fax: +27219389476; E-mail: marietab@sun.ac.za

†Contributed equally.

The emergence and spread of multidrug-resistant strains of *Mycobacterium tuberculosis* remains a major concern of tuberculosis control programmes worldwide, as treatment depends on low-efficacy, toxic compounds that often lead to poor outcomes. *M. tuberculosis* develops drug resistance exclusively through chromosomal mutations, in particular single-nucleotide polymorphisms. Moreover, in laboratory assays the organism exhibits a spontaneous mutation rate that is at the lower end of the bacterial spectrum. Despite this, whole-genome sequencing technology has identified unexpected genetic diversity among clinical *M. tuberculosis* populations. This suggests that the mycobacterial mutation rate may be modulated within the host and, in turn, implies a potential role for constitutive and/or transient mutator strains in adaptive evolution. It also raises the possibility that environmental factors might act as key mutagens during *M. tuberculosis* infection. Here we consider the elements that might influence the mycobacterial mutation rate in vivo and evaluate the potential roles of constitutive and transient mutator states in the generation of drug resistance mutations. In addition, we identify key research questions that will influence future efforts to develop novel therapeutic strategies for a disease that continues to impose a significant global health burden.

Keywords: genetic diversity, adaptive mutagenesis, evolution, constitutive mutator, transient mutator

Introduction

Mycobacterium tuberculosis is the causative agent of tuberculosis (TB) in humans. TB remains a massive global health problem and the emergence of multidrug-resistant (MDR) (resistant to rifampicin and isoniazid) and extensively drug-resistant (XDR) (MDR with added resistance to a fluoroquinolone and an injectable second-line agent) strains, coupled with the lack of new effective drugs to combat the disease, is of major concern.\(^1\) Recently, totally drug-resistant (TDR) cases have been described, but WHO has yet to define this form of drug-resistant TB.\(^2\) Treatment of MDR-TB and XDR-TB requires prolonged chemotherapy with expensive and less efficient drugs that often lead to undesirable side effects.\(^3\) TDR-TB might be untreatable with currently available drugs. For this reason, a greater understanding of how drug resistance arises and might be prevented is of critical importance.

In *M. tuberculosis*, genetically encoded drug resistance arises exclusively through chromosomal mutations,\(^4,5\) the majority of which are single-nucleotide polymorphisms (SNPs).\(^6\) In general, mutations occur spontaneously\(^7\) as a consequence of errors that arise during DNA replication at a rate of one mutation per 10,000–100,000 bp per round of replication.\(^8\) Correction by proof-reading exonucleases reduces the rate \(\sim 2\) log-fold,\(^9\) with post-replicative DNA mismatch repair ensuring a further \(3\) log-fold reduction.\(^9\) The bacterial mutation rate is, in turn, defined as the probability of a mutation occurring per cell division, and so is determined per bacterium per generation.\(^10\) The calculated rates for the *in vitro* evolution of resistance to various antibiotics are shown for *M. tuberculosis* and related mycobacteria in Table 1.

In this review, we discuss the different factors that might contribute to the emergence of drug resistance mutations in *M. tuberculosis* during host infection. In particular, we evaluate whether spontaneous errors during DNA replication and repair are sufficient to drive the evolution of drug-resistant *M. tuberculosis* strains within the host or if additional factors contribute to the emergence of these mutant strains. Understanding the mechanisms and pathways that influence the mutation rate might identify targets for novel agents designed to prevent the development of drug resistance\(^21\) or to potentiate the activity of existing antituberculars.\(^22\) In addition, it could aid the identification of environmental or host immune factors that could be manipulated,\(^23\) as well as inform the design of new drug regimens for the treatment of *M. tuberculosis*.
M. tuberculosis mutates at a low rate in vitro

M. tuberculosis does not exhibit an elevated mutation rate relative to most other bacteria, under in vitro conditions, it is estimated that the organism makes a mutational error at two bases in every 10,000 genomes copied. This is despite the fact that the DNA repair complement of M. tuberculosis does not include homologues of known mismatch repair (MMR) enzymes. Escherichia coli mutants lacking MMR components are considered strong heritable mutator strains; however, this does not apply to M. tuberculosis. In this review, the term ‘mutator’ is applied both to a strain that exhibits a higher mutation rate compared with its progenitor and to a gene that, when mutated, confers a higher mutation rate on the organism. Instead, it has been proposed that MMR deficiency may, in fact, exert selective pressure on M. tuberculosis, resulting in a more stable genome over time, as is suggested by the lower than expected degree of polymorphism amongst simple sequence repeats (SSRs) in the M. tuberculosis genome. SSRs (also called microsatellites) consist of repeats of 1–6 bp units and are particularly prone to polymerase slippage, which can lead to frameshift mutations. Long tracts comprising more than seven repeats of the microsatellite unit are more prone to slippage than short tracts, and may contribute to genome instability. A lack of MMR would, therefore, be expected to result in an elevated rate of mutation frequency, the proportion of mutants within a bacterial population at a given timepoint. No data were available on mutation rate.

Table 1. Published rates for evolution of drug resistance to various antibiotics in M. tuberculosis and related mycobacteria

Antibiotic	Strain	Mutation rate	Reference(s)
Isoniazid	H37Rv	2.56×10⁻⁸	11
Isoniazid	MTB72	3.2×10⁻⁷	12
Rifampicin (1 mg/L)	H37Rv	2.25×10⁻¹⁰ to 3.32×10⁻⁹	11
Rifampicin (2 mg/L)	H37Rv	2.9×10⁻⁹ to 2.4×10⁻⁷	13–15
Rifampicin (2 mg/L)	Harlingen	1.4×10⁻⁷	13
Rifampicin (2 mg/L)	Beijing clinical isolates	7.9×10⁻⁹ to 1.3×10⁻⁸	13
Rifampicin (2 mg/L)	Erdman	2.1×10⁻⁹	16
Rifampicin (2 mg/L)	H37Rv with reduced catalase and peroxidase activity, and no mutation in katG	8.76×10⁻⁷ to 2.24×10⁻⁶	14
Rifampicin (2 mg/L)	H37Rv with katG mutation or deletion	2.7×10⁻⁷ to 3.3×10⁻⁶	14
Rifampicin (2 mg/L)	H37Rv with katG mutation or deletion, exposed to H₂O₂	4×10⁻⁷ to 6×10⁻⁷	14
Rifampicin (2 mg/L)	H37Rv mutants with DinB1, DinB2 and double knockouts	2.3×10⁻⁹	15
Rifampicin (5 or 10 mg/L)	H37Rv	6×10⁻⁷	17
Rifampicin (8 mg/L)	MTB72	9.81×10⁻⁹ to 6.45×10⁻⁸	12,18
Rifampicin (8 mg/L)	typical Beijing strains (erg, mut2 and mut74 mutations)	7.73×10⁻⁸ to 2.49×10⁻⁷	18
Rifampicin (8 mg/L)	atypical Beijing strain	5.76×10⁻⁷ to 1.21×10⁻⁷	18
Rifampicin (8 mg/L)	LAM strain (Ag85C mutation)	8.18×10⁻⁸	18
Rifampicin (8 mg/L)	LAM strain (Ag85C mutation and katG mutation)	6.28×10⁻⁸ to 7.2×10⁻⁸	18
Rifampicin (8 mg/L)	T1 spoligotype family	2.85×10⁻⁸	18
Rifampicin (8 mg/L)	T1 spoligotype family (with katG mutation)	1.33×10⁻⁸	18
Rifampicin (8 mg/L)	MTB72 with katG deletions at amino acids 315 and 463	9.69×10⁻⁸	18
Rifampicin (8 mg/L)	MTB72 with partial katG deletion	5.71×10⁻⁷	18
Ethambutol	H37Rv	1×10⁻⁷ to 6.4×10⁻⁷	11
Streptomycin	H37Rv	2.95×10⁻⁸	11
&-cyclosinerine	H37Rv	9×10⁻¹¹	11
R207910/TMC207 (diarylquinolone ATP synthase inhibitor) at 0.3 mg/L	H37Rv and clinical isolates	4×10⁻⁷ to 8.9×10⁻⁸	4
R207910/TMC207 (diarylquinolone ATP synthase inhibitor) at 0.9 mg/L	H37Rv and clinical isolates	2.4×10⁻⁹ to 3.9×10⁻⁸	4
Ciprofloxacin	Mycobacterium fortuitum	5.1×10⁻⁹	19
Levofoxacin	M. fortuitum	3.8×10⁻⁹	19
Moxifloxacin	M. fortuitum	4.2×10⁻⁹	19
Pyrazinamide	M. tuberculosis clinical isolates	1×10⁻⁵c	20

*a*All strains are of M. tuberculosis unless stated otherwise.

*b*Units are per bacterium per generation.

*c*Mutation frequency, the proportion of mutants within a bacterial population at a given timepoint. No data were available on mutation rate.

Published rates for evolution of drug resistance to various antibiotics in M. tuberculosis and related mycobacteria.
N-terminal region—are not associated with a higher rate of mutation relative to base substitutions.

The absence of MMR in \textit{M. tuberculosis} might nevertheless contribute to genetic variation. Amongst other functions, MMR is known to prevent recombination between non-identical sequences during repair of double-stranded DNA breaks in other bacterial systems. In \textit{Mycobacterium smegmatis}, abrogation of nucleotide excision repair (NER) function results in an increased number of gene conversion events arising from mismatch errors during homologous recombination, suggesting that NER may (partially) compensate for the loss of MMR in mycobacteria. However, the fact that NER does not distinguish between the parent and daughter strands, whereas MMR does, raises the possibility that mutation fixation—rather than avoidance—might be a common outcome. The lack of an MMR system might also promote exchange of divergent DNA sequences, thus driving genome evolution, since evidence suggests that recombination can occur in \textit{M. smegmatis} when divergent loci are flanked by sequences of perfect homology. The mechanisms ensuring genomic stability in \textit{M. tuberculosis} therefore represent an important area for future research.

Generation of drug resistance-conferring mutations in \textit{M. tuberculosis} during infection

As noted above, \textit{M. tuberculosis} does not display an elevated in vitro mutation rate compared with other bacteria. For this reason, drug-resistant mutants of \textit{M. tuberculosis} are expected to be rare, and are predicted to arise as a consequence of spontaneous errors in DNA replication that are subsequently selected under applied drug pressure. Multiple factors could influence the rate of selection of drug-resistant mutants in the host, including the relative fitness of individual mutants, patient compliance with prescribed drug regimens, pharmacokinetic variability amongst patients, spatial heterogeneity in drug distribution, and the size of the infecting bacterial population. The rate of selection of a particular mutation should, however, not be confused with the basal mutation rate. The fundamental principle remains; errors in DNA replication must occur in order to generate the base substitutions and other types of mutations that lead to drug resistance. It is not entirely clear, though, whether a relatively low mutation rate is sufficient to account for the elevated rates of acquired drug resistance observed clinically. Is the mutation rate within the host modulated in some way to bring about sufficient diversity from which drug resistance can be selected?

In a pioneering study, Ford et al. applied whole-genome sequencing (WGS) technology to detect the mutational events that arose in \textit{M. tuberculosis} during experimental infection of non-human primates. Using a flexible range of predicted mycobacterial replication rates, the authors estimated the rate at which the observed mutations must have arisen in vivo. Unexpectedly, this estimated in vivo mutation rate was very similar to that which was inferred from in vitro fluctuation analyses, and, moreover, did not differ for active versus latently infected animals. In other words, \textit{M. tuberculosis} does not appear to enter into a hypermutable state within the host. Work by Saunders et al. reinforced the idea that drug resistance mutations are rare. In this case, the authors sequenced the genomes of serial isolates obtained from a TB patient over 12 years, a period that correlated with the emergence of strains resistant to isoniazid and, subsequently, rifampicin. WGS analysis suggested that only two SNPs—in \textit{katG} and \textit{rpoB}—differentiated the drug-resistant isolates from susceptible strains, indicating that the mutation rate in the host is very low. The reference genome employed in this study was assembled from pooled data from all the serial isolates. It is possible, therefore, that other SNPs present at low frequencies were not detected. In addition, the authors estimated the bacillary population to be in the order of 10^{13} cells/lung, which far exceeds predicted values for \textit{M. tuberculosis} infections.

In contrast, Sun et al. utilized more sensitive WGS technology to track genomic changes in serial sputum samples obtained from three patients over the course of anti-TB treatment. In this case, the authors reported a high degree of diversity in the serial clinical specimens, an observation that is consistent with the idea that mutation rates in vivo might be higher than previously proposed; for example, between 8 and 41 SNPs arose during treatment in each sample, and as many as 34 SNPs were unique to a single sample. Interestingly, the majority of the SNPs were detected at frequencies below 20% in each sample, indicating that the sputum bacillary population was characterized by significant microheterogeneity at each timepoint. These observations are supported by other studies that employed Sanger sequencing to investigate the resistance-determining regions of specific target genes. For example, serial \textit{M. tuberculosis} isolates obtained from patients over a period of 12 years revealed a diversity of mutations within \textit{rpsL}. Similarly, Mariam et al. detected different \textit{rpsL} and \textit{rrs} mutations in serial isolates obtained from a single patient. These authors also reported transient co-existence of some mutations as well as successive clonal sweeps of other mutations, suggesting a dynamic interplay between the genetic variability of the infecting bacillus and the selective pressures associated with host infection.

The extent to which the sputum bacillary population can be considered representative of the total infecting mycobacterial population is not known. For this reason, the above studies might be limited by their dependence on organisms obtained from sputum. In a key study, bacilli isolated from discrete pulmonary lesions in patients with chronic TB were shown to possess different drug resistance allelic. It seems likely, therefore, that the micro-environments represented by each lesion may contribute to the heterogeneity observed within the TB population in the host. However, WGS analyses in the non-human primate model revealed significant heterogeneity among \textit{M. tuberculosis} bacilli isolated within single lesions.

The mycobacterial replication rate

The levels of genetic diversity identified in the studies above imply that \textit{M. tuberculosis} might have an elevated mutation rate within the host compared with that calculated in vitro. However, it is important to remember that the fixation of spontaneous mutations occurs during replication; the mutation rate is, therefore, dependent on the rate of replication. This raises the possibility that the replication rate may be higher in the host than previously thought. Until recently, the prevailing dogma held that the rate of acquisition of dual resistance (required for MDR-TB) was the product of the individual mutation rates for rifampicin and isoniazid; that is, in the order of 10^{-16}. This requires that, for the evolution of MDR strains, a total population of at least 10^{16} bacilli must
be present within any infected individual prior to the initiation of treatment. A recently proposed mathematical model suggests otherwise. In developing the model, Colijn et al.38 allowed for the possibility that a single drug-resistant mutant may arise early following infection, and could replicate to a large enough population from which the probability of the emergence of a second drug-resistance mutation would not be so low. Critically, they also considered the possibility that a greater number of replication events might occur during the initial infection period than has previously been assumed from in vitro estimates, an idea that is supported by recent evidence from experimental infections of macrophages47 and mice.48 Applying this set of revised parameters, Colijn et al.38 showed that the likelihood of emergence of drug resistance prior to initiation of anti-TB therapy is much higher than previously expected, even when basing the calculation on published in vitro mutation rates for specific TB drugs.

Human TB can be usefully divided into three broad phases: active, chronic and reactivated TB.49 Based on data from animal models of infection, it is assumed that the total number of M. tuberculosis bacilli remains stable during chronic TB and that these are in a state of slow replication or non-replication.50,51 Recent evidence suggests, however, that the apparently stable bacillary numbers conceal a population that is cycling continuously between active replication and death.48 Utilizing a ‘clock’ plasmid that is lost from daughter cells during division, Gill et al.48 demonstrated that, during chronic infection in the mouse model, a balance is established between bacillary replication and death. This implies that the replication rate may be higher than previously thought during chronic TB in humans and is consistent with an emerging appreciation of latent TB as a continuum of mycobacterial growth states.52,53 To date, the clock plasmid has only been assessed in the mouse model,48 which fails to recapitulate key features of human disease.54,55 It will be interesting, therefore, to see whether an alternative model, such as the non-human primate,16,56 yields similar results.

Is the mycobacterial mutation rate altered during host infection, and might this explain the observed rates of acquired drug resistance? From the above discussion, it is clear that additional research is required to address this question. There are many factors that might influence the mutation rate; these are considered below and summarized in Table 2, together with the corresponding knowledge gaps.

Table 2. Factors potentially affecting the mutation rate in M. tuberculosis (Mtb) and corresponding knowledge gaps

Cellular mechanisms	Knowledge gaps
Lack of MMR	Does the lack of this system play a role in generating genetic variation in Mtb?
SSRs	Are SSRs hypermutable?
Mutations in 3R\(^{\text{a}}\) genes	Does the location of SSRs in Mtb have any effect on mutation rate?
Do genetically stable mutator strains occur	Do sublineages of certain spoligotype families have varying mutation rates?
within populations of TB in the host?	How do the polymorphisms detected in 3R genes of various Mtb strains\(^{\text{a}}\) affect their mutation rate?
Do different drug-resistant Mtb mutants	If certain spoligotype families are associated with drug resistance, why are they better able to adapt to drug pressure?
have different mutation rates?	
Existing drug resistance-conferring mutations	Do Mtb use mistranslation as a means to adapt to environmental stress and, if so, how does it do so?
Mistranslation	Does transcriptional mutagenesis play a role in the emergence of drug resistance in Mtb?
Transcriptional mutagenesis	Does Mfd, or the process of transcription-coupled repair, play a role in the emergence of drug resistance?
Error-prone DNA polymerases	How important a role does DnaE2 play in the emergence of drug resistance in the host?

External factors	
Antibiotics	Do certain antibiotic combinations/regimens increase the probability of acquired drug resistance?
Antiretroviral drugs	Do antibiotics, other than fluoroquinolones, used to treat Mtb, increase its mutation rate in vitro?
Host environment	Do antiretrovirals, especially NRTIs, increase the mutation rate of Mtb in vitro or in vivo?
Is the exposure of Mtb to UV radiation long	Is desiccation a stress relevant to acquired drug resistance in Mtb?
enough to cause up-regulation of the SOS	Does oxidative stress drive the evolution of drug resistance?
response?	How could the down-regulation of DNA repair enzymes contribute to the up-regulation of the mutation rate?
Is desiccation a stress relevant to acquired	Do different DNA-damaging stresses in the host contribute to the up-regulation of the mutation rate, e.g.
drug resistance in Mtb?	alkylative stress, low pH, hypoxia?
Does tobacco smoke affect the mutation rate	Is there a strong association between burning of fossil fuels/smoking and drug resistance?
of Mtb?	Does tobacco smoke affect the mutation rate of Mtb?

\(^{\text{a}}\)3R genes are involved in DNA replication, recombination and repair.
Spontaneous mutations in genes coding for DNA metabolic proteins can lead to the emergence of mutator strains that carry a short-term selective advantage owing to their capacity to produce a higher number of adaptive mutations. In some cases, these mutators are maintained owing to the linkage of the mutator allele with other beneficial mutations, but only as long as the fitness gain counterbalances (or exceeds) the cost inherent in the increased risk of generating deleterious mutations. For this reason, mutations associated with elevated mutation rates are expected to be lost from bacterial populations over time. The adaptive mutations may, however, become fixed if the mutator alleles revert to wild-type, or if suppressor mutations occur.

There has been considerable interest in the potential association of mutator alleles with the emergence of drug resistance in M. tuberculosis. For example, mutations in mutT4 and mutT2 appeared to define certain sublineages of Beijing isolates. Beijing strains have been linked with the emergence of drug resistance in some settings, however, the apparent association of specific strains with drug resistance could reflect transmission, a possibility that is consistent with the fact that no direct link has been demonstrated between the reported DNA repair mutations and the emergence of drug resistance. Instead, biochemical evidence suggests that the observed mutations might not impact DNA repair function at all. Moreover, although mutT2 and mutT4 are annotated as DNA repair-type Nudix hydrolases, the substrate specificity of these enzymes in vitro suggests a role separate from DNA repair, perhaps in regulating nucleotide availability. Consistent with this idea, MutT2 and MutT4 do not function as antimutator proteins. It is possible, however, that the observed mutations confer other phenotypes that indirectly affect the acquisition of drug resistance, but not via a DNA repair pathway—e.g. the G58R mutation in mutT2 has been proposed to increase the replication rate in macrophages.

The evidence for the association of Beijing strains with an elevated mutation rate is mixed. In one study, various Beijing strains as well as non-Beijing strains were subjected to fluctuation analyses to determine their respective mutation rates. The assumption that mutator strains would exhibit at least a 10-fold higher mutation rate than corresponding ‘non-mutator’ strains; however, the authors observed no difference between the principal regulator and key mutagenic polymerase of the mycobacterial SOS response, respectively—expression of dnaE2 was modestly, but significantly, up-regulated in S522L, H526D and S531W rpoB mutants, with S522L showing the highest constitutive expression. This is an intriguing observation; however, given that DnaE2 depends on the activity of the imuA′- and imuB-encoded accessory factors—which, like dnaE2, are included in the mycobacterial SOS regulon—the functional consequences of increased levels of DnaE2 alone remain unclear. In other work, the same authors demonstrated that an isoniazid-resistant Haarlem strain harbouring an S315T mutation in katG was also associated with an increased mutation rate. Again, this is an intriguing observation, and suggests that other unidentified strain-dependent mutations could interact with drug resistance-conferring mutations to confer a mutator phenotype.

Transient mutagenesis

In contrast to constitutive mutator strains, a transient mutator phenotype results in a temporary increase in the mutation rate. There are a number of mechanisms by which this may occur: mis-translation of proteins, especially those involved in accurate
transcriptional mutagenesis and the up-regulation of error-prone DNA polymerases. Consistent with the multiplicity of mechanisms that can generate this phenotype, it is likely that transient mutator strains are responsible for the majority of adaptive mutations in bacterial populations.

Transcriptional mutagenesis occurs when RNA polymerase bypasses DNA lesions, inserting incorrect nucleotides into the mRNA. If one of the resulting mutant proteins confers an altered growth phenotype, it may in turn lead to DNA replication past the mutagenic lesion, which could lead to the fixation of the mutation. Alternatively, the mRNA containing an error may encode a protein involved in DNA repair or replication, which could lead to a transient mutator phenotype. The transcription-repair coupling factor, Mfd, recruits the NER repair machinery to sites where RNA polymerase is stalled. Mfd was shown to play a role in mutagenesis in Bacillus subtilis and to mediate point mutations conferring fluoroquinolone resistance in Campylobacter jejuni. Currently, nothing is known about transcriptional mutagenesis in M. tuberculosis, suggesting this as a potentially useful area of future research.

Mistranslation describes any error that affects the accurate translation of mRNA into protein. A major mechanism by which this occurs is through mischarging of tRNAs, which can happen when the tRNA gene is mutated or when aminoacyl-tRNA synthetases are defective in their editing capabilities. Mistranslation was associated with an elevated mutation rate under conditions of stress in Candida albicans, Acinetobacter baylyi and E. coli. To date, there are no published data on the impact of mistranslation on the mycobacterial mutation rate.

Perhaps the most intensively studied transient mutator system is the bacterial SOS response, which is induced by DNA damage. In most bacteria, the SOS response is regulated by the RecA/LexA system; during normal growth, SOS genes are negatively regulated by the LexA repressor protein. Following genotoxic damage, RecA protein binds to single-stranded DNA at sites of DNA lesions and replicon arrest to form RecA–ssDNA filaments that can interact with LexA, stimulating its cleavage and de-repressing SOS regulon genes. Unlike bacteria such as E. coli, whose SOS regulons include multiple Y-family DNA polymerases capable of translesion synthesis (‘TLS’), the DNA damage response in M. tuberculosis is limited to the dnaE1- and dnaE2-encoded catalytic (α) subunits of the C-family DNA polymerase III. M. tuberculosis encodes two DinB-like Y-family polymerases, however, neither is induced as part of the mycobacterial SOS response. Critically, deletion of dnaE2 has been shown to reduce the frequency of rifampicin resistance emergence in the mouse model, thereby implicating the mutagenic cassette as a major mechanism driving adaptive evolution during chronic infection. It is tempting, therefore, to speculate that DnaE2-dependent translesion synthesis functions in mycobacterial evolution; however, this requires further investigation.

Another low-fidelity repair system recently characterized in M. smegmatis, a model organism for M. tuberculosis, is that of non-homologous end joining (NHEJ). Three proteins seem to be key to this process: Ku, LigD and LigC. Even though NHEJ cannot strictly be considered a transient mutator system, it has the potential to elevate mutagenesis if up-regulated under certain conditions, a possibility that requires further investigation.

Environmental mutagens

Antibiotics

Antibiotics target essential functions and therefore impose a strong selective force for genetic resistance. At subinhibitory concentrations, antibiotics can also act as mutagens, driving the emergence of drug-resistant mutants, a phenomenon that has been demonstrated in vitro for different bacterial species and a variety of antibacterial classes. M. tuberculosis may encounter subinhibitory drug concentrations as a result of patient non-compliance, poor absorption by the gastrointestinal tract, poor penetration of—or activity in—certain parts of the lung and host genetic factors that impact drug metabolism and clearance. M. tuberculosis might also inadvertently be exposed to broad-spectrum antibiotics (e.g. fluoroquinolones) in patients undergoing treatment for other respiratory infections (e.g. community-acquired pneumonia). Subinhibitory concentrations of ciprofloxacin, a fluoroquinolone whose mechanism of action results in the induction of the mycobacterial SOS response, have been shown to elevate in vitro mutagenesis in related mycobacterial species. Moreover, there is some evidence to suggest that fluoroquinolone use prior to diagnosis of TB may be associated with first-line drug resistance, especially if multiple prescriptions have been given. However, this topic is controversial owing to conflicting evidence.

It is likely, too, that antibiotics that do not act directly on DNA metabolic processes can lead to DNA damage. For example, multiple studies have reported that bactericidal antibiotics of very different classes—including β-lactams, fluoroquinolones and aminoglycosides—are united by a common mechanism of killing that results in the generation of hydroxyl radicals. Although very recent studies have questioned the general applicability of the model, there is some evidence implicating the antibiotic-dependent formation of reactive oxygen species (ROS) in an elevated mutation rate. In M. tuberculosis, the production of ROS has been directly correlated with the ability to eliminate an antibiotic-tolerant bacillary population in vitro; however, to our knowledge, the link between ROS and mutagenesis has not been explored.

Genome-wide expression studies demonstrated that fluoroquinolones induce up-regulation of SOS clusters in M. tuberculosis, whereas inhibitors of translation do not. Consistent with the prediction that isoniazid might potentially generate ROS, genome-wide studies have detected up-regulation of the SOS response and recA following isoniazid exposure. Similarly, the ligD gene, essential for mycobacterial NHEJ, was also induced. To date, however, the effect of subinhibitory concentrations of anti-TB antibiotics on the mutation rate of the organism has not been investigated in vitro, or in patients developing drug-resistant TB. Although challenging, an analysis of the drug regimens or drug combinations that could lead to an increased rate of emergence of drug resistance in M. tuberculosis-infected patients could, therefore, be of...
great value in estimating the risk of acquisition of drug resistance during chemotherapy.

Antiretroviral drugs

It was previously suggested that antiretroviral drugs may affect the mutation rate of *M. tuberculosis*. However, the evidence for an association between HIV status and *M. tuberculosis* drug resistance on an individual level is mixed. One class of antiretroviral comprises nucleoside reverse transcriptase inhibitors (NRTIs), which have been associated with mutagenic effects in animal models and humans. NRTIs are nucleoside analogues and may be genotoxic in bacteria owing to their ability to be incorporated into bacterial DNA, causing chain termination, which itself may lead to the induction of the SOS response. Alteration of nucleotide pools and conformational changes in DNA polymerase might similarly also lead to reduced replication fidelity. However, while NRTIs are known to elevate the mutation rate of the HIV genome, there are no published studies that have assessed their potential effects on *M. tuberculosis*.

TB pathogenesis and the host environment

The discrepancies observed between apparent mutation rates (and frequencies) in vivo and those measured in vitro suggest that the factors modulating the mutation rate during host infection might be very different from those operating under laboratory conditions. For example, a Beijing strain was associated with an elevated *in vitro* frequency of rifampicin resistance—but not isoniazid resistance—compared with EAI strains; yet the converse was observed in a mouse model of infection. Similarly, Bergal et al. detected different types of isoniazid resistance-conferring mutations in vitro versus those generally observed clinically. Therefore, determining the mutagenic stimuli and DNA-damaging events encountered *in vivo* may be critical to the identification of those factors that drive adaptive evolution and the emergence of drug resistance during host infection.

M. tuberculosis encounters many DNA-damaging influences during the infectious lifecycle (reviewed by Gorna et al.). For example, during aerosol transportation, bacilli are likely to encounter UV radiation and desiccation. UV radiation induces expression of lexA, dnaE2 and recA, while *M. smegmatis* mutants defective in *ku* and ligD are susceptible to desiccation. Expression of *ku* was also higher in granulomas than in broth. In addition, the *mutT2* gene, which may be involved in hydrolysis of 8-oxo-dGTP, was down-regulated in response to lung surfactant. This could lead to an increase in 8-oxo-dGTP in nucleotide pools and elevated mutagenesis.

Oxidative stress is a major mutagenic influence encountered by *M. tuberculosis* in the host. Macrophages, as an antibacterial defence mechanism, produce ROS and reactive nitrogen intermediates (RNI). These reactive species interact with nucleotides, resulting in chemical modifications that can lead to base mispairing and DNA damage. DNA damage can, in turn, lead to an up-regulation of error-prone DNA repair. *M. tuberculosis* is well armed against oxidative stress; moreover, mechanisms to detoxify ROS and RNI are essential for the survival of this pathogen in the host. The high levels of redundancy in these and specific DNA repair pathways might, therefore, indicate a critical role in pathogenesis. The high GC content of the genome also suggests that *M. tuberculosis* may be especially vulnerable to oxidative damage. Similarly, observations from the non-human primate model suggest a role for ROS in the spectrum of mutations observed.

In contrast, analyses by O’Sullivan et al. of mutations in *rpoB* and *pncA* in clinical isolates suggest a pattern inconsistent with oxidative stress as the major driver of bacillary evolution. Their study was based on the assumption that resistance to isoniazid most often occurs before resistance to rifampicin (conferring by mutations in *rpoB*) or pyrazinamide (conferring by mutations in *pncA*). Isoniazid resistance is conferred by mutations in *katG*, encoding an enzyme that functions in the oxidative stress response. Mutations in *katG*, including the clinically dominant S315T mutation, have been shown to have a detrimental effect on the activity of this enzyme. Therefore, *katG* mutants are expected to undergo mutagenesis driven by oxidative stress. However, O’Sullivan et al. did not observe the expected overall increase in G to A or C to T mutations in the genes analysed.

It is possible, though, that fitness plays a greater role in defining the mutation spectra of resistance genes in clinical isolates. This interpretation is consistent with evidence from another study that investigated the effect of lowering the pH on mutational events during *in vitro* culture of *M. tuberculosis*. Although the decrease in pH impacted the mutation frequency only slightly, there was a major effect on the mutation spectrum, in which rare, ‘less-fit’ mutations were observed. As discussed above, there is the possibility that less-fit mutants are associated with up-regulated expression of *dnaE2*, which might provide the opportunity for the development of compensatory mutations, a possibility that requires further investigation.

Smoking and air pollution

An association between drug resistance and smoking or tobacco use has been observed in some cases. Cigarette smoke contains mutagenic chemicals and smoking and environmental pollutants could also alter the redox balance, in turn affecting the mutation rate. A compound typically generated during combustion, 1,6-dinitropyrene (1,6-DNP), increased the incidence of drug resistance in *Pseudomonas aeruginosa*. Whether this compound, and other similar compounds, are important mutagens in the development of drug resistance in *M. tuberculosis* remains to be determined.

Conclusions

M. tuberculosis has a low mutation rate *in vitro*, yet seems capable of generating surprisingly high levels of genomic diversity within the host. However, determining whether the mutation rate is modulated during host infection is complicated by the fact that it is difficult to distinguish between the rate of selection for drug resistance and the rate at which the genotypic diversity for selection is itself generated. Moreover, the extent to which the mycobacterial replication rate itself is modulated during host infection remains unknown. Therefore, it is not clear whether the mutation rate of *M. tuberculosis* is higher in the host than *in vitro* or whether there are factors specific to the *in vivo* environment that might drive mutagenesis. Knowledge of the contribution made by transient and constitutive mutator strains to the mutation rate and, therefore, the evolution of drug resistance in *M. tuberculosis* represents an
important area for future research as part of continued efforts to inhibit—and prevent—the acquisition of drug resistance.

Funding

This work was funded by a grant from the National Research Foundation (to D. F. W.). M. M. has financial support from the National Research Foundation and the Ernst and Ethel Eriksen Trust.

Transparency declarations

None to declare.

References

1. WHO. Global Tuberculosis Report 2012. http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf (9 September 2013, date last accessed).
2. WHO. “Totally Drug-Resistant” Tuberculosis: a WHO Consultation on the Diagnostic Definition and Treatment Options, 2012. http://www.who.int/tb/challenges/xdr/xdrconsultation/en/ (9 September 2013, date last accessed).
3. WHO. Multidrug and Extensively Drug-Resistant TB (XDR-TB): 2010 Global Report on Surveillance and Response. http://whqlibdoc.who.int/publications/2010/9789241599191_eng.pdf (9 September 2013, date last accessed).
4. Huilic T, Verhasselt P, Koal A et al. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 2010; 54: 1022–8.
5. Gillespie SH. Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob Agents Chemother 2002; 46: 267–74.
6. Sandgren A, Strong M, Muthukrishnan P et al. Tuberculosis drug resistance mutation database. PLoS Med 2009; 6: e1000002.
7. Delbrück M. Spontaneous mutations of bacteria. Ann Missouri Bot Gard 1945; 32: 223–33.
8. Tippin B, Pham P, Goodman MF. Error-prone replication for better or worse. Trends Microbiol 2004; 12: 288–95.
9. Fijalkowska IJ, Schaaper RM, Jonczyk P. DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. FEMS Microbiol Rev 2012; 36: 1105–21.
10. Pope CF, O’Sullivan DM, McHugh TD et al. A practical guide to measuring mutation rates in antibiotic resistance. Antimicrob Agents Chemother 2008; 52: 1209–14.
11. David HL. Probability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosis. Appl Microbiol 1970; 20: 810–4.
12. Bergval I, Schuitema ARJ, Klater PR et al. Resistant mutants of Mycobacterium tuberculosis selected in vitro do not reflect the in vivo mechanism of isoniazid resistance. J Antimicrob Chemother 2009; 64: 515–23.
13. Werngren J, Hoffner SE. Drug-susceptible Mycobacterium tuberculosis Beijing genotype does not develop mutation-conferred resistance to rifampin at an elevated rate. J Clin Microbiol 2003; 41: 1520–4.
14. O’Sullivan DM, McHugh TD, Gillespie SH. The effect of oxidative stress on the mutation rate of Mycobacterium tuberculosis with impaired catalase/peroxidase function. J Antimicrob Chemother 2008; 62: 709–12.
15. Kana BD, Abrahams GL, Sung N et al. Role of the DinB homologs Rv1537 and Rv3056 in Mycobacterium tuberculosis. J Bacteriol 2010; 192: 2220–7.
16. Ford CB, Lin PL, Chase MR et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 2011; 43: 482–6.
17. Billington OJ, McHugh TD, Gillespie SH. Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother 1999; 43: 1866–9.
18. Bergval I, Kwok B, Schuitema A et al. Pre-existing isoniazid resistance, but not the genotype of Mycobacterium tuberculosis drives rifampicin resistance codon preference in vitro. PLoS ONE 2012; 7: e29108.
19. Gillespie SH, Basu S, Dickens AL, O’Sullivan DM et al. Effect of subinhibitory concentrations of ciprofloxacin on Mycobacterium fortuitum mutation rates. J Antimicrob Chemother 2005; 56: 5186–93.
20. Stoffels K, Mathys V, Faivre-Dufaux M et al. Systematic analysis of pyrazinamide-resistant spontaneous mutants and clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2012; 56: 5186–93.
21. Warner DF. The role of DNA repair in M. tuberculosis pathogenesis. Drug Discov Today Dis Mech 2010; 7: e5–11.
22. Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 2010; 8: 423–35.
23. Schwegmann A, Brombacher F. Host-directed drug targeting of factors hijacked by pathogens. Sci Signal 2008; 1: r88.
24. Mizrahi V, Andersen SJ. DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence? Mal Microbiol 1998; 29: 1331–9.
25. Miller JH. Spontaneous mutants in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol 1996; 50: 625–43.
26. Wanner RM, Güthlein C, Springer B et al. Stabilization of the genome of the mismatch repair deficient Mycobacterium tuberculosis by context-dependent codon choice. BMC Genomics 2008; 9: 249.
27. Sreenu VB, Kumar P, Nagaraju J et al. Simple sequence repeats in mycobacterial genomes. J Biosci 2007; 32: 3–15.
28. Kumar P, Nagarajaram HA. A study on mutational dynamics of simple sequence repeats in relation to mismatch repair system in prokaryotic genomes. J Mol Evol 2012; 74: 127–39.
29. Machowski EE, Barichievy S, Springer B et al. In vitro analysis of rates and spectra of mutations in a polymorphic region of the Rv0746 PE_PGRS gene of Mycobacterium tuberculosis. J Bacteriol 2007; 189: 2190–5.
30. Güthlein C, Wanner RM, Sander P et al. Characterization of the mycobacterial NER system reveals novel functions of the uvrD1 helicase. J Bacterial 2009; 191: 555–62.
31. Springer B, Sander P, Sedlacek L et al. Lack of mismatch correction facilitates genome evolution in mycobacteria. Mal Microbiol 2004; 53: 1601–9.
32. Blower SM, Chou T. Modeling the emergence of the ‘hot zones’: tuberculosis and the amplification dynamics of drug resistance. Nat Med 2004; 10: 1111–6.
33. Cohen T, Murray M. Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat Med 2004; 10: 1117–21.
34. Lipstich M, Levin BR. Population dynamics of tuberculosis treatment: mathematical models of the roles of non-compliance and bacterial heterogeneity in the evolution of drug resistance. Int J Tuberc Lung Dis 1998; 2: 187–99.
35. Srivastava S, Pasipanodya JG, Meek C et al. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J Infect Dis 2011; 204: 1951–9.
36. Hermens R, Deris JB, Hwa T. On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient. Proc Natl Acad Sci USA 2012; 109: 10775–80.
88 Slupska MM, Baikalov C, Lloyd R. 2007; Proc Natl Acad Sci USA 2010; 107: 3657–62.
89 Saxowsky TT, Doetsch PW. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? DNA Repair (Amst) 2007; 6: 474–88.
90 B gating D, Peignon P-A, Sarasin A. Transcriptional mutagenesis induced by B-oxaguanine in mammalian cells. PLoS Genet 2009; 5: e1000577.
91 Drake JW. Too many mutants with multiple mutations. Crit Rev Biochem Mol Biol 2007; 42: 247–58.
92 Prabha S, Rao DN, Nagaraja V. Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor. PLoS One 2011; 6: e19131.
93 Reynolds NM, Lazazzera BA, Ibba M. Cellular mechanisms that control mistranslation. Nat Rev Microbiol 2010; 8: 849–56.
94 Bacher JM, Schimmel P. An editing-defective aminoacyl-tRNA synthetase is mutagenic in aging bacteria via the SOS response. Proc Natl Acad Sci USA 2007; 104: 1907–12.
95 Slupsk MM, Baikov C, Lloyd Ret al. Mutator tRNAs are encoded by the Escherichia coli mutator genes mutA and mutC: a novel pathway for mutagenesis. Proc Natl Acad Sci USA 1996; 93: 4380–5.
96 Smollett KL, Smith KM, Kahramanoglu C et al. Global analysis of the regulation of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J Biol Chem 2012; 287: 22004–14.
97 Wang Y, Huang Y, Xue C et al. ClpR protein-like regulator specifically recognizes RecA protein-independent promoter motif and broadly regulates expression of DNA damage-inducible genes in mycobacteria. J Biol Chem 2011; 286: 31159–67.
98 Gong C, Bongiorno P, Martins A et al. Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat Struct Mol Biol 2005; 12: 304–12.
99 Stephanou NC, Gao F, Bongiorno P et al. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J Biol Chem 2007; 189: 5237–46.
100 Gorna AE, Bowater RJ, Dzidek J. DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin Sci (Lond) 2010; 119: 187–202.
101 Pitcher RS, Green AJ, Brzostek A et al. NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair (Amst) 2007; 6: 1271–6.
102 Baharougu Z, Mazel D. Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: a route towards multiresistance. Antimicrob Agents Chemother 2011; 55: 2438–41.
103 Cohen SE, Walker GC. The transcription elongation factor NusA is required for stress-induced mutagenesis in Escherichia coli. Curr Biol 2010; 20: 80–5.
104 Gutierrez A, Laureti L, Crussard S et al. β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 2013; 4: 1610.
105 Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 2010; 37: 311–20.
106 Nagel R, Chan A. Mistranslation and genetic variability: the effect of streptomycin. Mutat Res 2006; 601: 162–70.
107 Thi TD, López E, Rodríguez-Rojas A et al. Effect of recN inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. J Antimicrob Chemother 2011; 66: 531–8.
108 Veigl ML, Schneiter S, Mollis S et al. Specificities mediated by neighboring nucleotides appear to underlie mutation induced by antiflox in E. coli. Mutat Res 1991; 246: 75–91.
109 Mitchison DA. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int J Tuberc Lung Dis 2006; 10: 10–5.
110 Bcoupe AJ, Davis SS, Wilding IR. Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm Res 1991; 8: 360–4.
111 Kjellsson MC, Via LE, Geh A et al. Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob Agents Chemother 2012; 56: 446–57.
112 Warnich L, Drägermüller BI, Pepper MS et al. Pharmacogenomic research in South Africa: lessons learned and future opportunities in the Rainbow Nation. Curr Pharmacogenomics Person Med 2011; 9: 191–207.
113 Long R, Chang H, Hoeppner V et al. Empirical treatment of community-acquired pneumonia and the development of fluoroquinolone-resistant tuberculosis. Clin Infect Dis 2009; 48: 1354–60.
114 O’Sullivan DM, Hinds J, Butcher PD et al. Mycobacterium tuberculosis DNA repair in response to subinhibitory concentrations of ciprofloxacin. J Antimicrob Chemother 2008; 62: 1199–202.
115 Maliki M, Chavda K, Zhao X et al. Induction of mycobacterial resistance to quinolone class antimicrobials. Antimicrob Agents Chemother 2012; 56: 3879–87.
116 Deutschendorf C, Goldani LZ, dos Santos RP. Previous use of quinolones: a surrogate marker for first line anti-tuberculosis drugs resistance in HIV-infected patients? Braz J Infect Dis 2012; 16: 142–5.
117 Park IN, Hong SB, Oh YM et al. Impact of short-term exposure to fluoroquinolones on ofloxacin resistance in HIV-negative patients with tuberculosis. Int J Tuberc Lung Dis 2007; 11: 29–34.
118 Foti JJ, Devadoss B, Winkler JA et al. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 2012; 336: 315–9.
119 Grant SS, Kaufmann BB, Chand NS et al. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc Natl Acad Sci USA 2012; 109: 12147–52.
120 Keren I, Wu Y, Inocencia J et al. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 2013; 339: 1213–6.
121 Liu Y, Imlay JA. Cell death from antibiotics without the involvement of reactive oxygen species. Science 2013; 339: 1210–3.
122 Cirz RT, Chin JK, Andes DR et al. Induction of mycobacterial resistance to fluoroquinolones mediates mutagenesis and promotes antituberculosis drug resistance. Antimicrob Agents Chemother 2012; 56: 287–93.
123 Cirz RT, Chin JK, Andes DR et al. Induction of mycobacterial resistance to fluoroquinolones mediates mutagenesis and promotes antituberculosis drug resistance. Antimicrob Agents Chemother 2012; 56: 287–93.
response to anti-bacterial compounds. *Tuberculosis (Edinb)* 2004; 84: 263–74.

120 Bradford WZ, Martin JN, Reingold AL et al. The changing epidemiology of acquired drug-resistant tuberculosis in San Francisco, USA. *Lancet* 1996; 348: 928–31.

121 Sergeev R, Colijn C, Murray M et al. Modeling the dynamic relationship between HIV and the risk of drug-resistant tuberculosis. *Sci Transl Med* 2012; 4: 135ra67.

122 Walker DM, Kajon AE, Torres SM et al. WR1065 mitigates AZT-dld-induced mutagenesis and inhibits viral replication. *Environ Mol Mutagen* 2009; 50: 460–72.

123 Wutzler P, Trust R. Genetic risks of antiviral nucleoside analogues—a survey. *Antiviral Res* 2001; 49: 55–74.

124 Mamber SW, Brookshire KW, Forenza S. Induction of the SOS response in *Escherichia coli* by azidothymidine and dideoxynucleosides. *Antimicrob Agents Chemother* 1990; 34: 1237–43.

125 Jewell NA, Chen R, Raices R et al. Nucleoside reverse transcriptase inhibitors and HIV mutagenesis. *J Antimicrob Chemother* 2003; 52: 547–50.

126 Rachman H, Strong M, Ulrichs T et al. Unique transcriptome signature of *Mycobacterium tuberculosis* in pulmonary tuberculosis. *Infect Immun* 2006; 74: 1233–42.

127 Schwab U, Rohde KH, Wang Z et al. Transcriptional responses of *Mycobacterium tuberculosis* to lung surfactant. *Microb Pathog* 2009; 46: 185–93.

128 Jain R, Kumar P, Varshney U. A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G:C mutations and protection against oxidative stress in mycobacteria. *DNA Repair (Amst)* 2007; 6: 1774–85.

129 Kurthkoti K, Varshney U. Base excision and nucleotide excision repair pathways in mycobacteria. *Tuberculosis (Edinb)* 2011; 91: 533–43.

130 O’Sullivan DM, McHugh TD, Gillespie SH. Analysis of rpoB and pncA mutations in the published literature: an insight into the role of oxidative stress in *Mycobacterium tuberculosis* evolution? *J Antimicrob Chemother* 2005; 55: 674–9.

131 Saint-Joanis B, Souchon H, Wilming M et al. Use of site-directed mutagenesis to probe the structure, function and isoazid activity of the catalase/peroxidase, KatG, from *Mycobacterium tuberculosis*. *Biochem J* 1999; 338: 753–60.

132 Wang Z-Y, Xiong M, Fu L-Y et al. Oxidative DNA damage is important to the evolution of antibiotic resistance: evidence of mutation bias and its medicinal implications. *J Biomol Struct Dyn* 2012; 31: 729–33.

133 Kurthkoti K, Varshney U. Base excision and nucleotide excision repair pathways in mycobacteria. *Tuberculosis (Edinb)* 2011; 91: 533–43.

134 Wang Z-Y, Xiong M, Fu L-Y et al. Oxidative DNA damage is important to the evolution of antibiotic resistance: evidence of mutation bias and its medicinal implications. *J Biomol Struct Dyn* 2012; 31: 729–33.

135 O’Sullivan DM, McHugh TD, Gillespie SH. Analysis of rpoB and pncA mutations in the published literature: an insight into the role of oxidative stress in *Mycobacterium tuberculosis* evolution? *J Antimicrob Chemother* 2005; 55: 674–9.

136 Saint-Joanis B, Souchon H, Wilming M et al. Use of site-directed mutagenesis to probe the structure, function and isoazid activity of the catalase/peroxidase, KatG, from *Mycobacterium tuberculosis*. *Biochem J* 1999; 338: 753–60.

137 DeVito JA, Morris S. Exploring the structure and function of the mycobacterial KatG protein using trans-dominant mutants. *Antimicrob Agents Chemother* 2003; 47: 188–95.

138 Jenkins C, Bacon J, Allnutt J et al. Enhanced heterogeneity of rpoB in *Mycobacterium tuberculosis* found at low pH. *J Antimicrob Chemother* 2009; 63: 1118–20.

139 Ruddy M, Bolabanova Y, Graham C et al. Rates of drug resistance and risk factor analysis in civilian and prison patients with tuberculosis in Samara Region, Russia. *Thorax* 2005; 60: 130–5.

140 Dalton T, Cegielski P, Akksilp S et al. Prevalence of and risk factors for resistance to second-line drugs in people with multidrug-resistant tuberculosis in eight countries: a prospective cohort study. *Lancet* 2012; 380: 1406–17.

141 Fujita K, Kamataki T. Predicting the mutagenicity of tobacco-related N-nitrosamines in humans using 11 strains of *Salmonella typhimurium* YG7108, each coexpressing a form of human cytochrome P450 along with NADPH-cytochrome P450 reductase. *Environ Mol Mutagen* 2001; 38: 339–46.

142 Yim SH, Hee SS. Bacterial mutagenicity of some tobacco aromatic nitrogen bases and their mixtures. *Mutat Res* 2001; 492: 13–27.

143 Kumar A, Farhana A, Guidry L et al. Redox homeostasis in mycobacteria: the key to tuberculosis control? *Expert Rev Mol Med* 2011; 13: e39.

144 Miyahara E, Nishie M, Takumi S et al. Environmental mutagens may be implicated in the emergence of drug-resistant microorganisms. *FEMS Microbiol Lett* 2011; 317: 109–16.