Statistical Analysis of Multiwavelength Light curves

S. Larsson
Department of Astronomy and Department of Physics, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden, The Oskar Klein Centre for Cosmoparticle Physics, Stockholm, Sweden

Since its launch in 2008 the Fermi Large Area Telescope provides regular monitoring of a large sample of gamma-ray sources on time scales from hours to years. Together with observations at other wavelengths it is now possible to study variability and correlation properties in a much more systematic and detailed way than ever before. The paper describe some of the statistical methods and tools that have been, or can be, used to characterize variability and to study the relation between multiwavelength light curves. Effects and limitations due to time sampling, measurement noise, non-stationarity etc are illustrated and discussed.

1. INTRODUCTION

The combination of gamma-ray and radio observations together with measurements in other wavelength bands has created extraordinary opportunities to study multiwavelength properties of Active Galactic Nuclei, in particular for blazars. Among the aims are to better answer questions like, how are the components of the spectral energy distribution (SED) related? Do the components originate from one or more spatial regions? Does Compton seed photons originate locally or from a source external to the jet? Are hadronic cascades an important contribution to the gamma-ray emission? There are theoretical predictions of potentially observable effects that can be searched for, such as spectral softening associated with particle cooling during flare decay [9]. From an observational point of view however, the first aim is to characterize source variability and correlations between different spectral bands. Simultaneously the wealth of new data also allow us to search for new and previously unobserved phenomena.

The increasing amount of multiwavelength data on blazars allow us to attack some of the unresolved questions in a statistically more comprehensive way instead of studies based on a restricted number of individual cases. The importance of this is particularly clear when one considers the complex and apparently unsystematic multiwavelength behaviour revealed by earlier investigations.

Available data from different spectral bands differ in terms of Signal-to-Noise, time sampling, observation length etc. The interpretation of observed variability and correlations is complicated not only by measurement noise and sampling but also by the stochastic variability itself, which means that observed variability properties may change with time and that even unrelated time series can exhibit chance correlations in time limited observations. All these effects needs to be considered in the analysis and interpretation of the observations.

1.1. Data Properties

Fermi Large Area Telescope (LAT) has a large field of view, covering about 20% of the sky at any particular time. Except for some shorter pointed observations it is operated in a sky surveying mode, mapping the full sky every 3 hours. This provides a regular monitoring of all the gamma-bright blazars on the sky. In total, about 1000 blazars were detected in the data of the first two years of operation and included in the second LAT AGN catalog [2]. The signal-to-noise is such that a few tens of sources are typically detected in time bins of one to a few days, while hundreds of AGNs are significantly measured in time bins of one to a few weeks.

The regular sampling of the Fermi LAT observations is a great advantage in the data analysis, not just for the gamma-ray analysis itself but also for the analysis of observations at other wavelengths. Radio and optical observations are often of high signal-to-noise but the time sampling is in most cases less regular. It is then an advantage that the sparse data can be compared with a more densely covered light curve.

One limitation with Fermi light curves is however, that it is often not possible to choose a single bin width that both resolve variability at high flux levels and at the same time detect the source at low flux levels. This commonly results in upper limits which are hard to handle in the high level analysis. A way to remedy this is to use a non-constant bin width chosen to give approximately the same signal-to-noise for each bin. A procedure to create such adaptive binned light curves for Fermi data is described in [15]. An alternative approach based on Bayesian Blocks has also been developed [21].

While Fermi has been operating for 3.5 years many blazars have been followed in optical and radio for tens of years. This provides valuable information on variability on longer time scales than is accessible by Fermi. This has a bearing on for example duty cycles and on the question of non-stationarity of the variability.
1.2. Analysis tools

The analysis tools that have been applied to study blazar variability include, excess variance, flare profile fitting, flux distribution (duty cycles), power density spectra, auto correlation function, structure function, and wavelets. Multiwavelength correlations can be investigated by e.g. direct light curve comparisons, flux - flux plots, the cross correlation function and the cross spectrum. An overview of these methods with direct relevance to blazar variability analysis is given in [20]. Here we will instead focus on some of the practical aspects of cross correlation analysis.

2. Cross Correlation

For two discrete, evenly sampled light curves, \(x(t_i)\) and \(y(t_i)\), the Cross Correlation Function (CCF) as a function of time lag \(\tau\) is,

\[
CCF(\tau) = \frac{1}{N} \sum_{i=1}^{N} \frac{[x(t_i) - \bar{x}] [y(t_i - \tau) - \bar{y}]}{\sigma_x \sigma_y}
\]

(1)

Where \(\bar{x}\), \(\sigma_x\) and \(\bar{y}\), \(\sigma_y\) are mean and standard deviation for each of the two light curves.

The presence of measurement noise increases the standard deviation in the data and hence reduces the correlation amplitudes as computed by eq. 1. This bias can be removed by replacing \(\sigma_x \sigma_y\) in the equation by \(\sqrt{(\sigma_x^2 - e_x^2)(\sigma_y^2 - e_y^2)}\), where \(e_x\) and \(e_y\) are the measurement errors.

Long term astronomical light curves, such as those produced by blazar monitoring programs, are almost always unevenly sampled or contain data gaps. The two main approaches used to handle uneven sampling in cross correlation analysis is the Interpolated Cross Correlation Function (ICCF) and the Discrete Cross Correlation Function (DCCF). These methods as well as the Z-transformed Discrete Correlation Function (ZDCF) are briefly described below.

2.1. Recipes to calculate the Cross Correlation Function for Unevenly Sampled Light curves

2.1.1. The Discrete Cross Correlation Function, DCCF

In the DCCF (or DCF) method, introduced by [10], a contribution to the DCCF is calculated only using the actual data points. Each pair of points, one from each of the two light curves, gives one correlation value at a lag corresponding to their time separation. For two light curves with N and M data points respectively this gives an Unbinned Cross Correlation Function (UCCF),

\[
UCCF_{ij} = \frac{(x_i - \bar{x})(y_j - \bar{y})}{\sigma_x \sigma_y}
\]

(2)

The DCCF is then obtained by averaging the UCCF in time lag bins. To illustrate this we use the two light curves of PKS 1510-089 shown in Figure 1 to compute the UCCF and DCCF. These are presented in Figure 2. It is in general recommended to calculate, for each DCCF lag, the means and variances using only the data points in the overlap interval [20] [25]. This is sometimes referred to as the local DCCF.

A point to notice is that a large variation in observational coverage over the light curve can have a strong effect on the DCCF amplitudes. This is particularly true if e.g. flares are densely covered with observations while more quiescent levels are observed more sparsely. The remedy is to rebin close data points to some minimum separation.

2.1.2. The Interpolated Cross Correlation Function, ICCF

In the ICCF method [12] [13], the light curve is linearly interpolated and resampled onto a regular grid. It is common to calculate the ICCF twice (where interpolation is done in each of the light curves, one at a time) and average these.

2.1.3. The Z-transformed Discrete Correlation Function, ZDCF

The ZDCF method [4], is base on the DCCF method but with a number of modifications. The first is that DCCF bin widths are non-equal and chosen so that the number of points averaged is the same for each bin. (This can of course also be applied to the usual DCCF). The second is the z-transformation of the DCCF. This transforms the DCCF into a version
2.3. Estimate of correlation strength and time lag

The CCF does not preserve all information contained in the light curves. It is useful mainly because it extracts some aspects of the relation between the two light curves, in particular the amplitude and time lag of correlated variability. Therefore, the aim of the CCF analysis is, in general, to estimate the significance of a correlation peak, its amplitude and time lag with uncertainties.

2.3.1. Model Dependent Monte Carlo Methods

Uncertainties of computed CCFs can be estimated by comparison with the analysis of simulated light curves [8] [17]. The analysis consists of

- Monte Carlo simulation of synthetic light curves. The variability is in general assumed to be described by red noise and is typically simulated by the method described in [23]. The time resolution should typically be higher than that of the observations (if resampling is needed in step 2).
- Sample the simulated time series at the same times and bin widths as the observations.
- Compute the CCF for each pair of simulated light curves and determine the time lag and amplitude at the peak.
- Repeat N times and compare the distribution in time lag and amplitude with those of the data to estimate uncertainties.

2.3.2. Model Independent Monte Carlo Methods

A model independent Monte Carlo method to estimate uncertainties due to measurement noise and uneven sampling was introduced by [19]. This is a recipe to compute uncertainties in a time lag determination, not in the individual DCCF values, since the latter are in general strongly correlated. The error estimation proceeds through the following steps

- Add white noise with standard deviation equal to the 1 sigma errors to the data.
- Make a bootstrap-like selection of data points.
- Compute the CCF and determine the time lag at the peak.
- Repeat N times and compute rms(lag).

An illustration of the distribution of lags used to estimate the uncertainty is shown in Figure 3. This is known as the Cross Correlation Peak Distribution [16]. The method assumes that the variance in position of the lag peak depends linearly on the...
variance of white noise in the light curve. When the Signal-to-noise is low this is no longer the case. One can then choose to add the three noise components (white noise in light curve 1, 2 and the bootstrap selection) one at a time and in a final step add the three lag variances.

In most cases the determination of the CCF peak position is best done by fitting a function (e.g. a Gaussian) to the peak. The range of the fit should be wide enough to consistently find the peak in a large number of simulations but not so wide that it is determined by the base [19].

2.3.3. Mixed Source Correlation

To estimate the significance of correlation peaks in the presence of stochastic variability, one approach that has been used is based on simulated red noise light curves as described in section 2.3.1. Since a fairly large number of radio and gamma-ray light curves of blazars is now available an alternative approach is possible. One can study the probability of chance correlations by mixed source correlation. This is done by correlating a radio light curve for a source with the gamma-ray light curves of all the other sources and compare the chance correlations in these DCCFs with any observed peak in the actual DCCF for the source (see Figure 4). Under the assumption that the variability properties are similar for the different sources, the probability distribution of the resulting DCCFs should reflect the occurrence of chance correlations. An important advantage of the method is that it does not require any characterization of the variability properties, except the assumption that these are similar for all the sources used in the mixed analysis. Compared to light curve simulations the disadvantage is that the number of light curves that can be used is limited.

The mixed source correlation method has been applied to the correlation of Fermi and Fgamma radio light curves [11]. In that case the time sampling of the radio light curves differ from source to source, while all gamma-ray light curves have the same time bins. An identical relative time sampling is therefore achieved when a single source radio light curve is correlated with the gamma-ray light curves of all other sources with similar properties.

2.3.4. Peak significance estimate using Bartlett’s formula

As described in [22] it is also possible to estimate significances using Bartlett’s formula [6]. Under the null hypothesis, i.e. no intrinsic correlation, the variance of the distribution of CCF points are,

\[\sigma^2(CCF(\tau_j)) = \frac{1}{N_{pair}} \sum_{i=1}^{N_{pair}} ACF_1(\tau_i)ACF_2(\tau_i) \]

\[(3) \]

Figure 3: Distribution of 600 lag estimates using the model independent approach [19]. The two input light curves contained sinusoidal oscillations with zero intrinsic lag. Due to white noise the actual lag determined from the correlation peak was near +1.2 days. The method adds an additional white noise component with the same rms as in the initial light curves. Many such pairs are produced and the distribution of the estimated lags is used to estimate an uncertainty for the lag.

Figure 4: In mixed source correlation unrelated light curves are correlated and the resulting DCCF is used to estimate the probability of chance correlations.

where \(ACF_1 \) and \(ACF_2 \) are the autocorrelation functions of the two light curves and \(N_{pair} \) the number of pairs contributing at the lag \(\tau_j \).

3. Other issues

3.1. The effect of trends on the CCF

If one of the two correlated light curves contains an unrelated background trend the correlation function can be severely distorted. In such cases it is necessary to detrend the light curve, e.g. by polynomial subtraction, before calculating the CCF. A detrending may
increase or decrease the signal-to-noise in the lag determination. This is because long time scales have few points and tend to be noisy but if detrending removes most of the signal we are left with noise.

It is also worth noting that if the light curves contain correlated variability on different time scales it is often useful to compute CCFs both with and without detrending, since these can be sensitive to different variability time scales.

3.2. Complex correlations

Many investigations have been made of correlations between blazar light curves for different wavelength bands. Strong correlations are often seen between optical and gamma-rays, while the radio - optical and radio - gamma-ray correlations appear to be weaker. The SMARTS optical/near-IR monitoring of Fermi sources has been used to study correlations with the gamma-ray variability for six blazars [3]. Correlated variability were reported for these sources, except for the high synchrotron peaked BL Lac, PKS 2155-304. Only one of the sources, PKS 1510-089, showed evidence for a time lag. The same 2-week lag of optical relative to gamma-rays that was seen from SMARTS data for this source was also described in [2] where it was further shown that each of the three analyzed flares exhibited a similar time lag. A detailed comparison of the light curves showed that the envelope (start and end) of each flare is about the same in the two bands but the shape of the flare is different. The ratio of gamma-ray to optical flux is higher in the beginning of the flare than towards the end. On top of this the flares exhibit strong variability on shorter time scales which is partly correlated and responsible for a correlation peak near zero lag.

As shown in [17] and [11] the radio - gamma-ray correlation is in general weak. While some gamma-ray flares appear to have a radio counterpart others do not, even for the same object. Other examples of variable correlation properties are flares that are seen in only one band, orphan flares [1], and significant changes in lag with time [8]. It is clear that the multiwavelength correlation properties of blazars are complex and that the studies up to now have not been able to disentangle this complexity. This shows that it is not sufficient to make intensive studies of individual sources but these needs to be complemented with wider statistical analysis of a larger sample of sources with the aim to make a synthesis of the variability and correlation properties and to investigate dependencies on source type and other properties.

3.3. Non-stationarity?

From available observations in all spectral ranges it appears that blazars exhibit variability on the longest accessible time scales. In shorter observations we can therefore expect the variability to show non-stationarity, such that e.g. mean and variance may differ from the long term mean. Two ways to limit such effects are to detrend the light curves and to use the local mean and variance as described above and in [25].

For longer time series it is possible to study non-stationary effects by dividing the data in segments and follow the evolution of the Power Density Spectrum and the CCF with time. A discussion of this topic can be found in [20] and references therein.

Acknowledgments

The author likes to thank the colleagues in the Fermi collaboration for inspiring and helpful discussions and is also grateful to the Swedish National Space Board for funding of this work.

References

[1] Abdo, A. A., et al. 2010a, Nature, 463, 919
[2] Abdo, A. A., et al. 2010b, Astrophys. J., 721, 1425
[3] Ackermann, M., et al., 2011, Astrophys. J., 743, 171
[4] Alexander T., 1997, in Maoz D., Sternberg A., Leibowitz E. M., eds, ASSL Vol. 218, Astronomical Time Series, 163
[5] Angelakis, E., et al., 2008, Memorie della Societa Astronomica Italiana, 79, 1042
[6] Bartlett M. S., 1955, An Introduction to Stochastic Processes, CUP: Cambridge
[7] Bonning, E. W. et al., 2012, submitted to Astrophys. J., [arXiv:1201.4380]
[8] Chatterjee, R., et al., 2008, Astrophys. J., 689, 79
[9] Dotson, A., Georganopoulos, M., Kazanas, D. & Perlman, E., 2011, 2011 Fermi Symposium proceedings - eConf C110509, [arXiv:1111.6551]
[10] Edelson, R. A., & Krolik, J. H., 1988, Astrophys. J., 333, 646
[11] Fuhrmann, L. et al., 2012, in preparation
[12] Gaskell M. C. & Peterson B. M., 1987, Astrophys. J. Suppl, 65, 1
[13] Gaskell, C. M. & Sparke, L. S. 1986, Astrophys. J., 305, 171
[14] Larsson, S. et al., 2012, these proceedings
[15] Lott, B., Escande, L., Larsson, S. & Ballet, J., 2012, submitted to Astronomy & Astrophysics, [arXiv:1201.4851]
[16] Maoz, D., & Netzer, H. 1989, MNRAS, 36, 21
[17] Max-Moerbeck, W. et al., 2012, these proceedings
[18] Peterson, B. M. 1993, PASP, 105, 247
[19] Peterson, B. M. et al., 1998, PASP, 110, 660
[20] Scargle, J. D., 2011, Proceedings of the Workshop "Fermi meets Jansky - AGN in Radio and Gamma-Rays", Savolainen, T., Ros, E., Porcas, R.W. & Zensus, J.A. (eds.), MPIfR, Bonn, June 21-23 2010
[21] Scargle, J. D., et al., 2012, in preparation.
[22] Smith, R. & Vaughan, S., 2007, MNRAS, 375, 1479
[23] Timmer, J., & Koenig, M. 1995, Astronomy & Astrophysics, 300, 707
[24] Wade, R.A. & Horne, K. 1988, Astrophys. J., 324, 411
[25] Welsh W. F., 1999, PASP, 111, 1347
[26] White, R. J. & Peterson, B. M., 1994, PASP, 106, 879

eConf C1111101