Experimental Results of the Search for Unitals in the Projective Planes of Order 25

Stoicho D. Stoichev

Department of Computer Systems, Technical University of Sofia
email:stoi@tu-sofia.bg

Abstract
In this paper we present the results from a program developed by the author that finds the unitals of the known 193 projective planes of order 25. There are several planes for which we have not found any unital. One or more than one unitals have been found for most of the planes. The found unitals for a given plane are nonisomorphic each other. There are a few unitals isomorphic to a unital of another plane.

A t-$(v; k; \lambda)$ design D is a set X of points together with a family B of k-subsets of X called blocks with the property that every t points are contained in exactly λ blocks. The design with $t = 2$ is called a block-design. The block-design is symmetric if the role of the points and blocks can be changed and the resulting configuration is still a block-design. A projective plane of order n is a symmetric 2-design with $v = n^2 + n + 1$, $k = n + 1$, $\lambda = 1$. The blocks of such a design are called lines. A unital in a projective plane of order $n = q^2$ is a set U of $q^3 + 1$ points that meet every line in one or $q + 1$ points.

In the case of projective planes of order $n = 25$ we have: $q = 5$, the projective plane is $2 - (651; 26; 1)$ design, the unital is a subset of $5^3 + 1 = 126$ points and every line meets 1 or 6 points from the subset.

Key words: projective plane, design, graph, isomorphism, automorphism, group, stabilizer, exact algorithm, heuristic algorithm, partition, generators, orbits and order of the graph automorphism group.

Article Outline

1. Introduction
2. Experimental results
3. Concluding remarks
Acknowledgements
References

1. Introduction

We assume familiarity with the basics of the combinatorial designs (cf., e.g. [1]). A t-$(v; k; \lambda)$ design D [1] is a set X of points together with a family B of k-subsets of X called blocks with the property that every t points are contained in exactly λ blocks. The design with $t = 2$ is called a block-design. The block-design is symmetric if the role of the points and blocks can be changed and the resulting configuration is still a block-design. A projective plane of order n is a symmetric 2-design with $v = n^2 + n + 1$, $k = n + 1$, $\lambda = 1$. The blocks of such a design are called lines. A unital in a projective plane of order $n = q^2$ is a set U of $q^3 + 1$ points that meet every line in one or $q + 1$ points.

In the case of projective planes of order $n = 25$ we have: $q = 5$, the projective plane is $2 - (651; 26; 1)$ design, the unital is a subset of $5^3 + 1 = 126$ points and every line meets 1 or 6 points from the subset.
The experimental results of the algorithm in [5] for the known planes of order 16 [4] are given in [6].

2. Experimental results

In [8] we present the text of the current paper and the experimental results (in Appendix) from a program that finds the unitals in all 193 known projective planes of order 25 from the website [3]. The vertex labels in this websites start from 0, but in our program and results the starting label is 1. The program we use in present paper is based on the algorithm described in [5]. In [5] we describe the algorithm for finding unitals and maximal arcs in projective planes of order 16. In this paper we use the same algorithm but with parameters for a plane of order 25. The algorithm is heuristic – it does not guarantee finding all possible unitals of a given plane. All fond unitals of an unital are nonisomorphic each other. There are planes with no found unitals.

The results for each plane contain values for the following variables:

1. Name of the plane
2. Order of the plane automorphism group
3. Number of the orbits of the plane automorphism group
4. Order of the unital automorphism group
5. Number of the orbits of the unital automorphism group
6. Sizes of the orbits of the unital automorphism group
7. Labels of the vertices of the unital

The information for 1 to 3 is present for each plane and the information for 4 to 7 is present for each found unital.

Example (for the plane A1.HTM, see the text below - from the line with ‘A1.HTM’ : The order of the plane automorphism group is 360000 and the number of its orbits is 8. Then, the results for all 9 found unitals follow. The orders of their automorphism groups are 144, 24, 20, 15, 10, 10, 10.

A1.HTM
ORDER OF THE PLANE AUTOMORPHISM GROUP 360000
NUMBER OF THE ORBITS OF THE PLANE AUTOMORPHISM GTOUP= 8
ORDER OF THE UNITAL AUTOMORPHISM GROUP= 144
NUMBER OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP = 3
SIZES OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP= 1- 72 2- 48
3- 6
UNITAL= 6 7 8 9 10 11 30 31 32 34 35 39 181 182 183
184
209
210
211
212
213
214
215
216
229
232
237
238
240
241
242
243
244
245
246
247
248
249
250
251
252
266
270
271
274
275
276
277
287
289
290
291
292
293
294
295
296
297
298
299
300
301
303
304
307
308
309
353
355
357
359
361
363
364
365
366
367
368
369
376
378
379
381
384
387
606
607
608
609
611
615
616
617
618
619
620
621
628
632
634
635
636
638
640
643
646
647
648
651
ORDER OF THE UNITAL AUTOMORPHISM GROUP= 24
NUMBER OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP = 8
SIZES OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP= 1- 24 2- 24
3- 24 4- 24 5- 24 6- 4 7- 1 8- 1
UNITAL=

ORDER OF THE UNITAL AUTOMORPHISM GROUP = 20
NUMBER OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP = 8
SIZES OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP = 1- 20 2- 20 3- 20 4- 20 5- 20 6- 20 7- 5 8- 1
UNITAL =

ORDER OF THE UNITAL AUTOMORPHISM GROUP = 15
NUMBER OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP = 10
SIZES OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP = 1- 15 2- 15 3- 15 4- 15 5- 15 6- 15 7- 15 8- 15 9- 5 10- 1
UNITAL =

ORDER OF THE UNITAL AUTOMORPHISM GROUP =
NUMBER OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP =
SIZES OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP =
ORDER OF THE UNITAL AUTOMORPHISM GROUP = 10
NUMBER OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP = 14
SIZES OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP=
1- 10 2- 10 3- 10 4- 10 5- 10 6- 10 7- 10 8- 10 9- 10 10- 10 11- 10 12- 10 13- 5 14- 1
UNITAL=
10 27 31 37 39 43 46 54 56 61 64 67 72 78 85
188
95 100 114 116 118 131 133 147 148 153 155 163 174 182 190
201
209 212 214 216 217 226 234 244 246 254 256 258 260 263
264
283 285 287 294 302 303 306 310 315 320 326 327 343 346 349
350
356 359 363 364 370 373 376 394 398 401 411 413 418 424 425
433 443 448 452 458 463 465 467 470 475 479 495 504 511 516
518
524 530 536 539 541 544 546 549 553 555 564 565 568 570 572
593
595 597 601 603 606 608 610 622 629 630 634 639 645 648
ORDER OF THE UNITAL AUTOMORPHISM GROUP = 10
NUMBER OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP = 14
SIZES OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP=
1- 10 2- 10 3- 10 4- 10 5- 10 6- 10 7- 10 8- 10 9- 10 10- 10 11- 10 12- 10 13- 5 14- 1
UNITAL=
10 27 30 35 36 41 48 57 58 59 69 75 78 81 83
85
87 91 99 103 106 114 117 131 138 145 148 153 158 161 162
171
176 184 188 191 192 197 200 211 216 220 222 223 230 233 251
254
259 268 269 276 278 283 284 291 304 307 309 311 319 322 325
341
359 361 366 379 380 384 388 396 398 403 409 421 422 423 429
441
442 447 449 450 451 457 469 473 474 476 485 488 491 493 499
509
510 512 513 520 528 530 535 539 544 550 551 564 568 574 576
580
581 584 594 595 597 603 609 613 614 615 620 627 642 643
ORDER OF THE UNITAL AUTOMORPHISM GROUP = 10
NUMBER OF THE ORBITS OF THE UNITAL AUTOMORPHISM GROUP = 14
3. Concluding remarks

By our algorithm we have found new unitals in projective plane of order 25, but not all of them.
The following approaches can be used to find more or all unitals: (a) Development of improved algorithms by finding new conditions for pruning the search tree; (b) Transformation of the solution for one plane to solution for another plane (R. Mathon's approach - in private communication); (c) Development of parallel algorithms.

Acknowledgements

The author would like to thank Vladimir Tonchev for suggesting the problem of developing an algorithm for finding unitals in projective planes and for giving the general idea of such an algorithm - use of unions of orbits, and for extensive discussions and exchanges for many years.
References

[1] Colbourn C. J., J. H. Dinitz (Eds.) The CRC handbook of Combinatorial Designs, CRC Press, New York, 1996.
[2] Hamilton N., S. D. Stoichev, V. D. Tonchev. Maximal Arcs and Disjoint Maximal Arcs in Projective Planes of Order 16. J. Geom. 67 (2000), 117{126.
[3] Projective Planes of Order 25: http://www.cs.uwa.edu.au/~gordon/planes16/index#planes
[4] Royle G. F. Known planes of Order 16:
http://www.cs.uwa.edu.au/~gordon/planes16/index#planes
[5] Stoichev S. D. Algorithms for finding unitals and maximal arcs in projective planes of order 16, Serdica J. Computing 1 (2007), 279-292.
[6] Stoichev S. D., V. D. Tonchev. Unital Designs in Planes of Order 16. Discrete Applied Mathematics 102 (2000), 151{158.
[7] Stoichev S. D. Polynomial time and space exact and heuristic algorithms for determining the generators, orbits and order of the graph automorphism group,arXiv:1007.1726v2 [cs.DS] (2010).
[8] Stoichev S. D. Experimental Results of the Search for Unitals in Projective Planes of Order 25, http://sdstoichev1.wordpress.com/2012/02/16/experimental-results-of-the-search-for-unitals-in-projective-planes-of-order-25/