UNBOUNDED NORM CONTINUOUS OPERATORS
AND STRONG CONTINUOUS OPERATORS ON
BANACH LATTICES

ZHANGJUN WANG, ZILI CHEN, AND JINXI CHEN

Abstract. In this paper, using the unbounded norm convergence in Banach lattices, we define new classes of operators, named unbounded norm continuous (for short, \(un\)-continuous) and strong continuous operators. We study the properties of those operators and the relationship with other operators.

1. Introduction

The notion of unbounded order convergence (uo-convergence, for short) was investigated in [3]. A net \((x_\alpha)\) in Riesz space \(E\) unbounded order converges to \(x\) in \(E\), if \(|x_\alpha - x| \wedge u \rightarrow 0\) for all \(u \in E_+\). After that, A. Bahram-nezhad et al. proposed the definition of unbounded order continuous operators in [7]. A closely related notion of unbounded norm convergence (un-convergence, for short) was introduced and systematically studied in [4]. A net \((x_\alpha)\) in Banach lattice \(E\) unbounded norm converges to \(x\) in \(E\), if \(|x_\alpha - x| \wedge u \rightarrow 0\) for all \(u \in E_+\).

In [5], M. Kandic et al. gave the definition of (sequentially) un-compact operators and obtained the relationships between weakly compact operators and sequentially un-compact operators. Recently, O. Zabeti in [6] proposed a new so-called unbounded absolute weak convergence (uaw-convergence). A net \((x_\alpha)\) in Banach lattice \(E\) unbounded weak converges to \(x\) in \(E\), if \(|x_\alpha - x| \wedge u \wrightarrow 0\) for all \(u \in E_+\).

Now, we define new classes of operators:

Definition 1.1. An operator \(T : E \rightarrow F\) between two Banach lattice is said to be:

1. unbounded norm continuous (or, \(un\)-continuous for short), if \(x_\alpha \overset{un}{\rightarrow} 0\) in \(E\) implies \(Tx_\alpha \overset{un}{\rightarrow} 0\) in \(F\).
(2) unbounded σ-norm continuous (or, un-σ-continuous for short), if \(x_n \xrightarrow{un} 0 \) in \(E \) implies \(Tx_n \xrightarrow{un} 0 \) in \(F \).

Definition 1.2. An operator \(T : E \to F \) between two Banach lattices is said to be:

1. boundedly unbounded norm continuous (or, bun-continuous for short), if \(Tx_\alpha \xrightarrow{un} 0 \) in \(E \) for any norm bounded un-null net \((x_\alpha)\) in \(E \).
2. boundedly unbounded σ-norm continuous (or, bun-σ-continuous for short), if \(Tx_n \xrightarrow{un} 0 \) in \(E \) for any norm bounded un-null sequence \((x_n)\) in \(E \).

Definition 1.3. An operator \(T : E \to F \) from Banach lattice \(E \) to Banach space \(F \) is said to be:

1. strong continuous, if \(x_\alpha \xrightarrow{un} 0 \) in \(E \) implies \(T x_\alpha \to 0 \) in \(F \).
2. strong σ-continuous, if \(x_n \xrightarrow{un} 0 \) in \(E \) implies \(T x_n \to 0 \) in \(F \).

The collection of all un-continuous operators form Banach lattice \(E \) to Banach lattice \(F \) will be denoted by \(L_{un}(E, F) \), similarly, \(L_{un \sigma}(E, F) \).

The collection of all boundedly unbounded \(\sigma \)-norm continuous operators form Banach lattice \(E \) to Banach lattice \(F \) will be denoted by \(L_{bun}(E, F) \), similarly, \(L_{bun \sigma}(E, F) \).

The collection of all strong continuous operators form Banach lattice \(E \) to Banach space \(F \) will be denoted by \(L_s(E, F) \), similarly, \(L_{s \sigma}(E, F) \).

Let \(L(E, F) \) denote the vector space of all continuous operators, we have

\[
L_s(E, F) \subset L_{s \sigma}(E, F) \subset L(E, F)
\]

\[
L_s(E, F) \subset L_{un}(E, F), L_{s \sigma}(E, F) \subset L_{un \sigma}(E, F)
\]

2. **Results**

Lemma 2.1. Let \(B \) be a projection band and \(P \) the corresponding band projection, then \(P \) is un-continuous.

Proof. According to \(|P_B x_\alpha - P_B x| \wedge u \leq |x_\alpha - x| \wedge u \), it is obviously. \(\square \)

We know that norm convergence is un-convergence, so strong continuous operator is continuous operator. But the opposite is false, for example the identited operator is continuous operator, but it is not strong continuous operator. Let \((e_n)\) denote the stand basis of \(l_p \), \((1 \leq p < \infty)\), by [xxx], we have \(e_n \xrightarrow{un} 0 \), but \(\|Ie_n\| = 1 \).

Proposition 2.2. Let \(E, F \) be Banach lattices, if \(E \) has strong order unit, then \(L_s(E, F) = L_{s \sigma}(E, F) = L(E, F) \)

Proof. According to [5, theorem 2.3], if \(E \) has strong order unit, then the un-topology of \(E \) agrees with norm topology, so we have that. \(\square \)
Strong continuous operator is un-continuous operator, the reverse is false.

Corollary 2.3. Let E, F be Banach lattices, if F has strong order unit, then $L_{un}(E, F) = L_s(E, F)$.

Strong continuous operators maps *un*-compact subset to relatively compact subset. Strong continuous operator is strong σ-continuous operator, but the reverse is false. We have the following result.

Proposition 2.4. Let E be Banach lattice and F Banach space, $L_s(E, F) = L_{s\sigma}(E, F)$, if the one of the following valids:

1. E has quasi-interior point;
2. E has order continuous norm.

Proof. By [5, theorem 3.2], we have un-topology is metrizable iff E has quasi-interior. A subset A of E is un-compact is sequentially un-compact and the norm topology is metrizable. \square

According to [5, proposition 5.3], we have that the set of all un-continuous functionals in E' is an ideal. Now, we will ask when it is band.

Proposition 2.5. If E is a Banach lattice, then the order bounded un-continuous functionals forms a band of E^\sim.

Proof. Let $0 \leq f_\beta \uparrow f$ in E^\sim be order bounded un-continuous functionals. And let $0 \leq x_\alpha \xrightarrow{un} 0$ in E. Then for each β and each $v \in R^+$ we have

$$0 \leq f(x_\alpha) \wedge v \leq (f - f_\beta)(x_\alpha) \wedge v + f_\beta(x_\alpha) \wedge v$$

Since $f_\beta \uparrow f$ and order bounded, so the first term converges to zero. And since f_β is un-continuous, so the second term converges to zero, we have it is a band. \square

Corollary 2.6. If E is a Banach lattice, then the order bounded un-σ-continuous functionals forms a band of E^\sim.

Now, we study the order structure of un-continuous operator.

Let $T : E \to F$ be a positive operator between Riesz spaces, we say that an operator $S : E \to F$ is dominated by T whenever $|Sx| \leq T|x|$ holds for each $x \in E$.

Problem 2.7. (1) When the un-continuous operator has modulus and the modulus is un-continuous.

(2) Whether the un-continuous operator has dominated property.
Theorem 2.8. Let E, F be Banach lattices, and $T : E \to F$ is lattice homomorphism and un-continuous operator, then $|T|$ is un-continuous operator.

Proof. Obviously, the modulus of T exists. We show that $|T|$ is un-continuous.

Let $x_\alpha \xrightarrow{un} 0$, since T is un-continuous operator, then we have $Tx_\alpha \wedge v \to 0$ for all $v \in F_+$. Since $|T|x = \sup\{|Ty| : |y| \leq x\}$ and T is lattice homomorphism, so $|Ty_\alpha| = T|y_\alpha| \leq Tx_\alpha$. So, we have $Ty_\alpha \xrightarrow{un} 0$, $|T|x_\alpha \xrightarrow{un} 0$, $|T|$ is un-continuous. □

Corollary 2.9. Let E, F be Banach lattices, and $T : E \to F$ is lattice homomorphism and un-σ-continuous operator, then $|T|$ is un-σ-continuous operator.

Theorem 2.10. If a positive un-continuous operator $T : E \to F$ dominates S, then S is un-continuous.

Proof. Let $x_\alpha \xrightarrow{un} 0$, then $|x_\alpha| \xrightarrow{un} 0$ by [xxx]. Since T is un-continuous operator, so $T|x_\alpha| \xrightarrow{un} 0$. Since $|Sx| \wedge u \leq (T|x|) \wedge u$ for all $u \in F_+$, so $Sx_\alpha \xrightarrow{un} 0$, so S is un-continuous operator. □

Corollary 2.11. If a positive un-σ-continuous operator $T : E \to F$ dominates S, then S is un-σ-continuous.

We do not know the relationship between un-continuous operators and continuous operators.

Problem 2.12. If or not, un-continuous operator is continuous operator, and the reverse?

Theorem 2.13. Let E, F be Banach lattices, then we have the following assertions:

(1): If $T \in L_{un}(E, F)$ and F has strong order unit, then T is continuous operator;

(2): If $T : E \to F$ is an onto lattice homomorphism and continuous operator, then $T \in L_{un}(E, F)$.

Proof. (1): Assume $x_\alpha \to 0$, then $x_\alpha \xrightarrow{un} 0$. Since T is un-continuous operator, so we have $Tx_\alpha \xrightarrow{un} 0$. Since F has strong order unit, by [5, theorem 2.3], we have $Tx_\alpha \to 0$, so T is continuous operator.

(2): Assume $x_\alpha \xrightarrow{un} 0$. Since T is onto homomorphism, then for each $u \in E_+$, we have $v \in F_+$ such that $Tu = v$. Thus,

$$T(|x_\alpha| \wedge u) = |Tx_\alpha| \wedge v \to 0$$

for all $u \in E_+$. Hence, T is un-continuous. □
Corollary 2.14. Let E, F be Banach lattices, then we have the following assertions:

(1): If $T \in L_{un\sigma}(E, F)$ and F has strong order unit, then T is continuous operator;

(2): If $T : E \to F$ is an onto lattice homomorphism and continuous operator, then $T \in L_{un\sigma}(E, F)$.

Example 2.15. Consider the Lozanovsky-like example $T : L_p[0, 1] \to c_0$ $(1 < p < \infty)$, given by

$$T(f) = (\int_0^1 f(x)\sin xdx, \int_0^1 f(x)\sin 2xdx, \ldots)$$

for $f \in L_p[0, 1]$. Let (f_n) be a norm bounded sequence in $L_p[0, 1]$ for which $f_n \xrightarrow{un}\ 0$ holds, so $f_n \xrightarrow{uaw}\ 0$. By [6, theorem 7], we have $f_n \xrightarrow{w}\ 0$ and thus $T(f_n) \xrightarrow{w}\ 0$. Since c_0 atomic and order continuous, by [5, proposition 4.16], $T(f_n) \xrightarrow{un}\ 0$. Hence, T is $bun\sigma$-continuous.

Now, we study the adjoint property.

Theorem 2.16. Let E, F be Banach lattices, E' is atomic and, E, E' and F are order continuous. If $T : E \to F$ is a continuous operator, then $T' : F' \to E'$ is bun-continuous.

Proof. Let (x'_α) be a norm bounded un-null net in F'. Since F has order continuous norm, by [5, theorem 8.1], $x'_\alpha \xrightarrow{w^*} 0$ in F'. Since T is continuous operator, so T' is w^* continuous operator, thus $T'x'_\alpha \xrightarrow{w^*} 0$. Now, by [5, theorem 8.4], we have $T'x'_\alpha \xrightarrow{un}\ 0$. Hence, T' is bun-continuous.

Acknowledgement. xxxxxxx

References

[1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, 2006.
[2] P. Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991.
[3] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, J. Math. Anal. Appl. 415(2), 2014, 931-947.
[4] Y. Deng, M. O’Brien and V. G. Troitsky, Unbounded norm convergence in Banach lattices, Positivity.21(3),2018,963-974.
[5] M. Kandić, M. A. A. Marabe and V. G. Troitsky, Unbounded norm topology in Banach lattices, J. Math. Anal. Appl. 451(1), 2017, 259-279.
[6] Zabeti, Omid, Unbounded absolute weak convergence in Banach lattices, Positivity 22.3 (2018): 837-843.
[7] Bahramnezhad, Akbar, and Kazem Haghejad Azar, Unbounded order continuous operators on Riesz spaces, Positivity 22.3 (2018): 837-843.
School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan, China, 610000.
E-mail address: zhangjunwang@my.swjtu.edu.cn

School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan, China, 610000.
E-mail address: zlchen@swjtu.edu.cn

School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan, China, 610000.
E-mail address: jinxichen@swjtu.edu.cn