Palynological Studies to Determine Pollen Resources of Bombus haemorrhoidalis Smith

Narinderjit Singh, Kiran Rana*, Harish K. Sharma, Meena Thakur and R.K. Thakur

Department of Entomology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India

*Corresponding author

ABSTRACT

Palynological studies of pollen loads were carried out to determine the pollen sources for bumble bees under mid-hill conditions of Himachal Pradesh during 2016. The pollen loads were collected from queens and workers of B. haemorrhoidalis captured with the help of an insect net and then were released. A total of 73 pollen loads were collected. Microscopic preparations were made and palynological analysis was carried out. The analysis showed the occurrence of 68 pollen types served as pollen sources for bumble bee from amongst the fruit trees, medicinal plants, ornamentals, vegetable crops, weeds and wild trees. Out of these, 21 pollen types which formed homogenous pollen loads were considered as principal forage plants namely Solanum melongena, S. lycopersicum, Capsicum annuum, Digitalis purpurea, Digitalis lanata, Oenothera biennis, Martynia annua, Hibiscus syriacus, Agapanthus umbellatus, Salvia moorcroftiana, Moluccella laevis, Cassia sophera, C. fistula, Clitoria ternatea, Actinidia deliciosa, Peltophorum ferrugineum, Lupinus hartwegii, Dahlia imperialis, D. pinnata, Zinnia elegans and Justicia adhatoda.

Keywords: Bombus haemorrhoidalis, Pollen plants, Pollen loads, Pollen analysis.

Article Info

Accepted: 26 August 2017
Available Online: 10 September 2017

Introduction

Bumble bees (Bombus spp.) are beneficial insects belonging to order Hymenoptera (Family: Apidae). They have important advantages in their ability to visit flowers in closed spaces (Biliński, 1973, 1976), buzz mechanism while collecting pollen from anthers (Buchmann, 1983), and especially long proboscis in some species (Sladen, 1912). These are important pollinators of crops especially where honey bees (Apis spp.) are ineffective or their activity is limited by adverse climatic conditions. They are particularly important pollen vectors for many entomophilous crops and wild flowers which require cross pollination, and can also improve success rates in partly self-fertile or wind pollinated species (Corbet et al., 1991). These are ecologically as well as economically important pollinators in cool and temperate crops and also act as model organisms in specific research (Ayasse and Jarau, 2014). Bumble bees are known for providing a service of significant pollination as their pollen loads carry a greater dry mass than those of honey bees (Broussard et al., 2011). Bumblebees require pollen for their reproduction as it is the sole protein source for developing larvae, and recent evidence suggests that adult workers have an ongoing need for pollen throughout their lives (Smeets...
and Duchateau, 2003). The composition of social bee’s corbicular pollen loads contains information about both the bee’s foraging behavior and the surrounding floral landscape (Marchand et al., 2015).

Palynology is the study of pollen grains produced by seed plants and spores. Pollens can be used to determine foraging resources, pollination mechanisms, migration routes and source zones of insects and pollinators (Jones and Jones, 2001). The palynological analysis of pollen loads allows the identification of plant species visited by bees for pollens and this method is more efficient than visual observation based methods because it allows the identification of a greater number of visited plant species with lower labour inputs involved (Teper, 2005). The palynological studies of pollen loads of bumble bees in different parts of the world have been carried out but no such type of work has been done in our country. Keeping all this in view, the present investigation was undertaken to determine the pollen sources of bumble bee (Bombus haemorrhoidalis) under mid-hill conditions of Himachal Pradesh.

Materials and Methods

Preparation of standard pollen slides

The standard pollen slides were prepared by using the fresh and mature flowers of Nauni area. Pollen grains from fresh flowers were placed on microscopic slide and few drops of ethyl alcohol (96%) were dropped on slide. The fat substances appeared on the slide after dropping/pouring alcohol, were cleaned with the help of blotting paper. Then microscopic slides were treated with 1-2 drops of acetylolysis mixture. This mixture was prepared fresh at every time by mixing 9 parts of acetic anhydride with 1 part of sulfuric acid. Then the content on microscopic slides was lightly warmed on alcoholic lamp so that it could not get darker. The content was washed up with ethyl alcohol (70%) and fixed with D.P.X mountant by placing a cover slip over it.

Collection of pollen loads from corbicular of bumble bee while visiting flowers

Foraging bumble bee queens and workers of B. haemorrhoidalis with pollen loads were captured with the help of an insect net on different sampling dates at 15 days interval from February onwards throughout the year. Pollen loads were carefully removed with a dissecting needle into an individual specimen tubes and the bees were released unharmed. The microscopic preparations of pollen loads were made on the same day or were put in well labeled vials under refrigeration for preparation of slides later on.

Preparation of pollen slides

Microscopic preparations of pollens from pollen loads were made by using acetyolysis method given by Avetisjan (1950). Pollen load was placed on microscopic slide and few drops of 96%ethyl alcohol were dropped on it. The fat substances appeared on the slide after pouring alcohol was cleaned gently with blotting paper. Few drops of freshly prepared acetylolysis mixture were added on to the slides which comprised of acetic anhydride mixed with concentrated sulphuric acid in the ratio 9:1. Then the content on microscopic slides was lightly warmed on alcohol lamp so that it could not get darker. The content was washed up with 70%ethyl alcohol and mounted with D.P.X. The prepared slides were studied under light microscope for morphological studies and photomicrograph of pollen grains was taken. The measurement of pollen grains was taken with “Magnus Pro” software. The pollen grains were divided into five categories on basis of size of pollen grains as per classification given by Sawyer (1981).
Table 1: Description of pollen grains found in bumble bee pollen loads and their morphology

Sr. No.	Common Name	Scientific Name	Family	Flowering Period	Photomicrograph of pollen grain	Pollen Description	Type of Pollen Loads	Habit and Nature
1	Field pea	*Pisum sativum* L.	Fabaceae	Jan-March	![Image](sample)	Long, medium*, bilateral symmetry	+	Climber, vegetable
2	Basuti	*Justicia adhatoda* L.	Acanthaceae	Feb-April	![Image](sample)	Long, large, radial symmetry	++	Shrub, Wild plant
3	Mustard	*Brassica campestris* L.	Brassicaceae	Feb-March	![Image](sample)	Round, small, radial symmetry	+	Herb, oilseed
4	Pot marigold	*Calendula officinalis* L.	Asteraceae	Feb-April	![Image](sample)	Round, small, spinolous, radial symmetry	+	Herb, ornamental
5	Blue thistle	*Echium vulgare* L.	Boraginaceae	Feb-April	![Image](sample)	Oval, very small, bilateral symmetry	+	Herb, ornamental
6	Annual chrysanthemum	*Glebionis coronaria* (L.) Cass. ex Spach	Asteraceae	Feb-April	![Image](sample)	Round, small, spinolous, radial symmetry	+	Herb, ornamental
No.	Name	Genus	Family	Season	Shape, Symmetry	Growth Form, Purpose		
-----	-----------------	------------------------	-------------	----------	------------------------------------	----------------------------		
7	Paperflower	*Helichrysum bracteatum* (Vent.) Andrews	Asteraceae	Feb-April	Round, small, spinolous, radial symmetry	Herb, ornamental		
8	Lupin	*Lupinus hartwegii* Lindl.	Fabaceae	Feb-April	Rounded triangular, medium	++ Herb, ornamental		
9	Common poppy	*Papaver rhoeas* L.	Papaveraceae	Feb-April	Rounded triangular, small, radial symmetry	+ Herb, ornamental		
10	Peach	*Prunus persica* (L.) Batsch	Rosaceae	Feb-March	Triangular, medium, bilateral symmetry	+ Tree, Fruit		
11	Kainth	*Pyrus pashia* L.	Rosaceae	Feb-March	Rounded triangular, small, radial symmetry	+ Tree, Fruit		
12	Pear	*Pyrus communis* L.	Rosaceae	Feb-March	Rounded triangular, medium	+ Tree, Fruit		
13	Radish	*Raphanus sativus* (L.) Domin	Brassicaceae	Feb-March	Round, small, radial symmetry	+ Herb, Vegetable		
14	Rosemary	*Rosmarinus officinalis* L.	Lamiaceae	Feb-March	Round, medium, radial symmetry	+ Shrub, Medicinal		
No.	Common Name	Scientific Name	Family	Flowering Period	Petal Description	Petal Symmetry	Plant Type	
-----	-------------	-----------------	--------	------------------	-------------------	---------------	-----------------	
15.	Rubus	*Rubus ellipticus* Sm.	Rosaceae	Feb-March	Trilobed, small, bilateral symmetry	+	Shrub, Wild plant	
16.	Scutellaria	*Scutellaria albida* L.	Lamiaceae	Feb-March	Round, small, bilateral symmetry	+	Herb, Weed	
17.	Rocket larkspur	*Delphinium ajacis* L.	Ranunculaceae	March-May	Oval, small, radial symmetry	+	Herb, ornamental	
18.	Apple	*Malus domestica* Borkh	Rosaceae	March-April	Rounded triangular, small, radial symmetry	+	Tree, Fruit	
19.	Yellow bells	*Teco mastans* (L.) Juss. ex Kunth	Bignoniaceae	March-April, June-July, Sept-Oct	Round, medium, bilateral symmetry	+	Shrub, ornamental	
20.	White clover	*Trifolium repens* L.	Fabaceae	March-June	Oval, small, bilateral symmetry	+	Herb, Weed	
21.	Wild tobacco	*Nicotia natabacum* L.	Solanaceae	March-May	Rounded triangular, small	+	Herb, Wild plant	
22.	Kachnar	*Bauhinia variegate* L.	Fabaceae	March-April	Triangular, medium, bilateral symmetry	+	Tree, ornamental	
No.	Species	Family	Season	Flower Description	Growth Form			
-----	---	--------------------	----------	---	--------------------			
23	Snapdragon/Dog flower	Antirrhinum majus L.	March-May	Rounded, triangular, small, bilateral symmetry	++ Herb, ornamental			
24	Kiwifruit	Actinidia deliciosa Liang and Ferguson	April-May	Round, small	++ Climber, Fruit			
25	Himalayan horse chestnut	Aesculus indica (Wall. ex Camb.) Hook.	April-June	Oval, small, bilateral symmetry	+ Tree, ornamental			
26	Field thistle	Cirsium sp	April-June	Round, medium, spinolous,	+ Herb, Weed			
27	Woolly/Grecian foxglove	Digitalis lanata Ehrh.	April-July	Round, very small,	++ Herb, Medicinal			
28	Common foxglove	Digitalis purpurea L.	April-June	Round, small	++ Herb, Medicinal			
29	Duranta	Duranta primuli L.	April-Oct	Triangular, small, bilateral symmetry	+ Shrub, ornamental			
30	Jacaranda	Jacaranda mimosifolia D.Don	April-June	Round, medium, radial symmetry	+ Tree, ornamental			
31	Bells of Ireland	Moluccella laevis L.	April-June	Round, small, radial symmetry	++ Herb, ornamental			
No.	Species	Family	Flower Period	Flower Description	Height	Use		
-----	---------------------------------	-----------------	---------------	--	--------	--------------		
32.	Pomegranate *Punica granatum L.*	Lythraceae	April-June	Round, small, radial symmetry	+	Tree, Fruit		
33.	Sage *Salvia moorcroftiana Wall. exBenth.*	Lamiaceae	April-May	Round, large, radial symmetry	++	Herb, Medicinal		
34.	Kangaroo apple *Solanum lacinatum Ait.*	Solanaceae	April-Aug	Oval, small, radial symmetry	+	Shrub, Medicinal		
35.	Chicory *Cichorium intybus L.*	Asteraceae	May-June	Trilobed, spinolous, medium, bilateral symmetry	+	Herb, Medicinal		
36.	Blue African lily *Agapanthus umbellatus L.*	Amaryllidaceae	May-July	Boat shaped, large, bilateral symmetry	++	Herb, ornamental		
37.	Capsicum *Capsicum annuum var. grossum (L.) Sendt.*	Solanaceae	May-July	Trilobed, small, bilateral symmetry	++	Shrub, Vegetable		
38.	Rose of Sharon *Hibiscus syriacus L.*	Malvaceae	May-Aug	Round, very large, echinateradial symmetry	++	Shrub, ornamental		
39.	Garden pink-sorrel *Oxalis latifolia Kunth*	Oxalidaceae	May-July	Round, small, radial symmetry	+	Herb, Weed		
No.	Plant	Scientific Name	Family	Flowering Period	Flower Description	Growth Form	Type	
-----	------------------	--	-------------	------------------	--	-----------------	---------------	
40	Tomato	*Solanum lycopersicum* L.	Solanaceae	May-Oct	Round, very small, radial symmetry	++	Herb, Vegetable	
41	Brinjal	*Solanum melongena* L.	Solanaceae	May-Oct	Oval, small, bilateral symmetry	++	Shrub, Vegetable	
42	Chinese trumpet vine	*Tecoma grandiflora* (Thunb.) Loisel.	Bignoniaceae	May-June	Round, small, bilateral symmetry	+	Climber, ornamental	
43	Green chilly	*Capsicum annuum* var*annuum* L.	Solanaceae	June-Sept	Oval, small, bilateral symmetry	+	Shrub, Vegetable	
44	Cucumber	*Cucumis sativus* L.	Cucurbitaceae	June-Sept	Rounded triangular, large	+	Climber, Vegetable	
45	Purple coneflower	*Echinacea purpurea* (L.) Moench	Asteraceae	June-July	Round, small, spinolous, radial symmetry	+	Herb, Medicinal	
46	Gladiolus	*Gladiolus hybrida* L.	Iridaceae	June-Aug	Long, large, bilateral symmetry	+	Herb, ornamental	
47	Bitter gourd	*Momordica charantia* L.	Cucurbitaceae	June-Sept	Round, large, radial symmetry	+	Climber, Vegetable	
No.	Plant Name	Scientific Name	Family	Flowering Period	Flower Description	Growth Form	Use	
-----	--------------------------	---	--------------	-----------------	---	-------------	------------------	
48	Evening-primrose	*Oenothera biennis* L.	Onagraceae	June-Aug	Trilobed, large, bilateral symmetry	++	Herb, Medicinal	
49	Yellow gulmohar	*Peltophorum ferrugineum* Benth.	Fabaceae	June-Aug	Round, medium, bilateral symmetry	++	Tree, ornamental	
50	French beans	*Phaseolus vulgaris* L.	Fabaceae	June-Sept	Triangular, medium	+	Climber, Vegetable	
51	Clary sage	*Salvia sclarea* L.	Lamiaceae	June-July	Oval, medium, radial symmetry	+	Herb, Medicinal	
52	Krishna neel	*Anagallis arvensis* L.	Primulaceae	June-July	Oval, small, bilateral symmetry	+	Herb, Weed	
53	Okra	*Abelmoschus esculentus* (L.) *Moench*	Malvaceae	June-Sept	Round, very large, echinate, radial symmetry	+	Shrub, Vegetable	
54	Zinnia	*Zinnia elegans* Jacq.	Asteraceae	July-Oct	Round, small, spinolous, radial symmetry	++	Herb, ornamental	
---	---	---	---	---	---			
55.	Aparajita	*Clitoria ternatea* L.	Fabaceae	July-Sept	Triangular, large, bilateral symmetry	++	Climber, Medicinal	
56.	Dahlia	*Dahlia pinnata* Cav.	Asteraceae	Aug-Nov	Round, small, spinolous, radial symmetry	++	Herb, ornamental	
57.	White datura	*Daturas tramonium* L.	Solanaceae	July-Aug	Round, medium, radial symmetry	+	Shrub, Medicinal	
58.	Basant	*Hypericum perforatum* L.	Hypericaceae	July-Sept	Oval, very small, bilateral symmetry	+	Herb, Medicinal	
59.	Amaltas	*Cassia fistula* L.	Fabaceae	July-Aug	Round, small, radial symmetry	++	Tree, ornamental	
60.	Wild salvia	*Salvia coccinea* Buc’hoz ex Etl.	Lamiaceae	July-Sept	Oval, large, bilateral symmetry	+	Herb, Wild	
61.	Van bhindi	*Solanum khasianum* C.B. Clarke	Solanaceae	July-Aug	Oval, small, bilateral symmetry	+	Herb, Medicinal	
62.	Kasunda	*Cassia sophera* (L.)Roxb	Fabaceae	July-Sept	Rounded triangular, small	++	Shrub, Wild plant	
No.	Species	Family	blooming	Pollen Characteristics	Pollination Type	Insect Type		
-----	--------------------------------	------------------	----------	------------------------	------------------	-------------		
63	Roxburgh'sfoal	*Dicliptera bupleuroides* L.	Acanthaceae	Aug-Nov	Long, medium, bilateral symmetry	Herb, Weed		
64	Common morning-glory	*Ipomoea purpurea* (L.) Roth	Convolvulaceae	Aug-Sept	Round, very large, radial symmetry	Climber, Weed		
65	Cat's claw	*Martynia annua* L.	Martyniaceae	Aug-Oct	Round, large, radial symmetry	Herb, Medicinal		
66	Cotton rosemallow	*Hibiscus mutabilis* L.	Malvaceae	Sept-Oct	Round, very large, echinate radial symmetry	Tree, ornamental		
67	Dronpushpi	*Leucas cephalotes* (Roth) Spreng.	Lamiaceae	Sept-Oct	Round, small, radial symmetry	Herb, Medicinal		
68	Tree dahlia	*Dahlia imperialis* Roezl ex Ortgies	Asteraceae	Nov-Dec	Round, small, radial symmetry	Tree, ornamental		

* Classification of pollen grains based on size (Sawyer, 1981), <20µm (Very small), 20-30µm (Small), 30-50µm (Medium), 50-100 µm(Large), >100 µm (Very large), + Multifloral pollen loads, ++ Unifloral pollen loads
Results and Discussion

Pollen analysis of pollen loads recorded 68 plant species belonging to 27 botanical families as pollen source to bumblebees throughout their active season during 2016 under mid hill conditions of Himachal Pradesh (Table 1). The most dominant pollen types belonged to family Asteraceae (9), Fabaceae (9), Solanaceae (8) and Lamiaceae (7). These are distributed to 51% herbs, 19% shrubs, 18% tree species and 12% climbers. Twenty one pollen loads were found to be homogeneous (one-species). These plant species were considered as principle forage plants of B. haemorrhoidalis namely Solanum melongena, S. lycopersicum, Capsicum annuum, Digitalis purpurea, D. lanata, Oenothera biennis, Martynia annua, Hibiscus syriacus, Agapanthus umbellatus, Salvia moorcroftiana, Moluccella laevis, Cassia sophera, C. fistula, Clitoria ternatea, Actinidia delicosa, Peltophorum ferrugineum, Lupinus harrowii, Dahlia imperialis, D. pinnata, Zinnia elegans and Justicia adhatoda.

The pollen morphology varies among different plant species; occur in varying shapes and sizes. They also show variation in symmetry, exine structure and sculpture. A great variation was observed in pollen types of the plant species belongs to family Fabaceae. The plant species belonging to family Asteraceae have spinolous and small pollen grains whereas in family Malvaceae pollen grain types are echinate and large in size. Pisum sativum, Justicia adhatoda Dicliptera bupleuroides and Gladiolus hybrid pollens are long and have bilateral symmetry. The pollen grains of both species of Tecoma (Bignoniaceae) are tricolporate and bilateral. Pollen grains of plants of Rosaceae family were triangular and trilobed having small to medium size. The pollen grains of plant species of Cucurbitaceae are large, round and triangular. Pollen grains of Agapanthus umbellatus L. (Amaryllidaceae) are boat shaped and bilateral. The pollen morphology is useful to identify various species and taxa in their respective families (Shubharani et al., 2013). Pollen study have significant application in recognition of bee plants (Noor et al., 2009).

Analysis of pollen loads reveals that this region is rich in bee pollen plants. The flowering plants of an area having good value as bee pasture are necessary for development of bee colonies. Bumble bees visited these plants extensively for development and colony multiplication. It is a known fact that, due to bee activity farmers are benefitted tremendously because of the ample presence of bee foraging plants in the vicinity of their farms as bee pollination increase the crop yield in a kind of mutualistic relationships (Sahli and Conner, 2007). According to Thakur (2012) in India, about 80 percent or more of the crop plants are dependent on insect pollination. The identification and propagation of bumble bee flora will help in improving the development of bombiculture. University of Horticulture and Forestry, Nauni Solan is the pioneer research institute for developing technology for laboratory rearing of bumble bee in the country. This study will also be useful for conservation and multiplication of economically important multipurpose plants.

Acknowledgement

Authors are thankful to All India Coordinated Research Project on honey bees and pollinators for providing financial and technical help.

References

Avetisjan, B.M., 1950. Uproshennijaceto linijmetodobrabortnikipilci.
Ayasse, M., and Jarau, S. 2014. Chemical ecology of bumble bees. Annual Review of Entomology. 59: 299-319.

Biliński, M., 1973. Praktyczna metodauzyskiwianarodzintrzmieli do zapylaniarœlinuprawnych. Zesz. Probl.Post.NaukRol. 131: 177-182.

Biliński, M., 1976. Chówtrz mieli w izolatorach. Pszczeln. Zesz. Nauk. 20: 41-68.

Broussard, M., Rao, S., Stephen, W.P. and White, L. 2011. Native bees, honeybees, and pollination in Oregon Cranberries. Hortscience. 46: 885-888.

Buchmann, S.L., 1983. Buzz pollination in angiosperms. In: Jones CE, Little RJ, editors. Handbook of experimental pollination biology. New York: Van Nostrand Reinhold; pp. 73–113.

Corbet, S.A., Williams, I.H., and Osborne, J.L. 1991. Bees and the pollination of crops and wild flowers in the European Community. Bee World. 72: 47-59

Jones, G.D., and Jones, S.D. 2001. The use of pollen and its implication for Entomology. Neotropical Entomology 30: 314-349.

Marchand, P., Harmon-Threatt, A.N. and Chapela, I. 2015. Testing models of bee foraging behavior through analysis of pollen loads and floral density data. Ecological Modelling, 313: 41-49.

Noor, M.J., Khan, M.A. and Camphor, E.S. 2009. Palynological analysis of pollen loads from pollen sources of honeybees in Islamabad, Pakistan. Pakistan Journal of Botany. 41: 495-501.

Sahli, H.F., and Conner, J.K. 2007. Visitation, effectiveness and efficiency of 15 genera of visitors to wild radish, Raphanus raphanistrum (Brassicaceae). American Journal of Botany. 94: 203-209.

Sawyer, R., 1981. Pollen identification for beekeepers. University College Cardiff Press, Cardiff, U.K. pp. 14-15

Shubharani, R., Roopa, P. and Sivaram, V. 2013. Pollen morphology of selected bee forage plants. Global Journal of Bio-Science and Biotechnology. 2: 82-90.

Sladen, F.W.L., 1912. The bumble bee life history and how to domesticate it. London: Mac Millan, 253p.

Smeets, P., and Duchateau, M.J. 2003. Longevity of Bombus terrestris workers (Hymenoptera: Apidae) in relation to pollen availability, in the absence of foraging. Apidologie. 34: 333–337.

Teper, D., 2005. Comparison of food plants of Bombus terrestris L. and Bombus lapidarius L. based on pollen analysis of their pollen loads. Journal of Apicultural Science. 49: 43-50.

Thakur, M., 2012. Bees as Pollinators – Biodiversity and Conservation. International Research Journal of Agricultural Science and Soil Science. 2(1): 1-7.

How to cite this article:

Narinderjit Singh, Kiran Rana, Harish K. Sharma, Meena Thakur and Thakur, R.K. 2017. Palynological Studies to Determine Pollen Resources of Bombus haemorrhoidalis Smith. Int.J.Curr.Microbiol.App.Sci. 6(9): 2590-2602. doi: https://doi.org/10.20546/ijcmas.2017.609.319