Supporting Information

Surfactant-Free Microemulsion Composed of Isopentyl Acetate, n-Propanol, and Water

Yuan Liu a, Jie Xu a *, Huanhuan Deng a, Jiaxin Song a, Wanguo Hou b *

Fig. S1. Molecular structures of (a) isopentyl acetate and (b) n-propanol.

Fig. S2. Scan-rate dependence of anodic peak currents in microemulsions at $f_{IA}=0.050$ with (a) $R_{P/W} = 8.0/2.0$ and (b) $R_{P/W} = 7.0/3.0$.

a School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

$^*_{a,b}$ Corresponding author.

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2017
Fig. S3. IA dilution lines with different \(R_{p/w} \) values for cyclic voltammetry, fluorescence spectroscopy, and UV-visible spectroscopy measurements.
Fig. S4. Diffusion coefficient (D_p) of K$_3$Fe(CN)$_6$ in microemulsions as a function of f_{IA} at various R_{PW}. The concentration of K$_3$Fe(CN)$_6$ was 0.65 g·L$^{-1}$.
Fig. S5. (A, B) D_p of K$_3$Fe(CN)$_6$, (C, D) I_{393}/I_{373} of pyrene, and (E, F) λ_{max} of MO in microemulsions at (A, C, E) $R_p/W = 9/1$ and (B, D, F) $R_p/W = 8.0/2.0$ as a function of f_{iA}.
Fig. S6. (A) D_p of K$_3$Fe(CN)$_6$, (B) I_{393}/I_{373} of pyrene, and (C) λ_{max} of MO in microemulsions at $R_{\text{P/W}} = 7.0/3.0$ as a function of f_{IA}.
Fig. S7. Cryo-TEM images of samples (A) a, (B) b, (C) c, and (D) d. The samples a and b fall in the O/W subregion, and the samples c and d fall in the BC and W/O subregions, respectively, as marked in Fig. 1.