Table S1: Extracellular Fluxes into Cell

Component	Early Exponential Low Gln	Early Exponential Gln Suppl	Late Exponential Low Gln	Late Exponential Gln Suppl
Antibody	-65	-61	-51	-44
Biomass	-620	-590	-200	-200
Glucose	100	110	31	31
Lactate	-58	-73	4.8	6.7
Alanine	-8.4	-17	-1.7	-3
Asparagine	14	14	4.2	3.9
Aspartate	1.2	-4	9.6	8.5
Glutamine	2.1	19	0.3	2.1
Glutamate	-1.4	-3.3	2	1.3

All fluxes are relative to control group glucose (defined as 100). Negative indicates production, positive indicates consumption. All fluxes are given in unit/cell-day.
Early Exponential Low Gln Media MFA Results

Reaction Name	Chemical Reaction	Flux	Standard Err	95% Low	95% High
Glucose In	G6P_EX -> G6P	100.0	0.0	100.0	100.0
R2	G6P -> F6P	81.8	6.1	79.9	96.1
R3 net	F6P <-> G3P + G3P	89.1	2.1	87.6	94.1
R3 exch	F6P <-> G3P + G3P	0.0	18907.8	0.0	Inf
R4	G3P -> PEP	174.2	528.8	170.5	183.4
PEP to Pyr	PEP -> PYR	174.2	528.7	170.5	183.8
Pyr to Lac net	PYR <-> LAC	57.7	2.9	52.1	63.3
Pyr to Lac exch	PYR <-> LAC	0.0	82157.3	0.0	244.1
R7	G6P -> P5P + CO2	14.2	6.1	0.0	18.0
R8 net	P5P + P5P <-> S7P + G3P	3.6	2.0	-1.1	4.9
R8 exch	P5P + P5P <-> S7P + G3P	0.0	13.6	0.0	Inf
R9 net	S7P + G3P <-> F6P + E4P	3.6	2.0	-1.1	4.9
R9 exch	S7P + G3P <-> F6P + E4P	0.0	18907.8	0.0	Inf
R10 net	P5P + E4P <-> F6P + G3P	3.6	2.0	-1.1	4.9
R10 exch	P5P + E4P <-> F6P + G3P	0.0	7.3	NaN	NaN
R11	PYR -> ACCOA + CO2	108.0	508.8	99.6	120.9
R12 net	ACCOA + OAA <-> ICI	110.2	246.9	93.6	128.0
R12 exch	ACCOA + OAA <-> ICI	2086875.9	18907.8	893.5	Inf
R13 net	ICI <-> AKG + CO2	110.2	246.9	93.6	128.0
R13 exch	ICI <-> AKG + CO2	19.1	44.4	10.3	31.0
R17 net	FUM <-> MAL	109.3	227.0	91.3	128.7
R17 exch	FUM <-> MAL	10086011.6	18907.8	8628.2	Inf
R18 net	MAL <-> OAA	85.4	18908.8	68.9	103.0
R18 exch	MAL <-> OAA	9729464.5	18907.8	8628.2	Inf
R19	OAA -> PEP + CO2	0.0	15.8	0.0	3.3
R20 net	MAL <-> PYR + CO2	24.0	18906.8	20.0	29.8
R20 exch	MAL <-> PYR + CO2	0.0	18907.8	0.0	4.9
R21	PYR + CO2 -> OAA	17.0	18907.8	0.0	21.8
Ala Out net	ALA <-> ALA.EX	8.4	0.8	6.7	10.0
Ala Out exch	ALA <-> ALA.EX	12.5	27760.4	9.5	47.0
Arg In	ARG_EX -> ARG	7.7	18907.8	7.3	10.9
Asn In net	ASN.EX <-> ASN	14.2	0.7	12.9	15.6
Asn In exch	ASN.EX <-> ASN	13.9	19084.5	0.0	Inf
Asp In net	ASP.EX <-> ASP	1.2	0.1	0.9	1.4
Asp In exch	ASP.EX <-> ASP	57.7	149.1	42.8	72.7
Cys In net	CYS.EX <-> CYS	2.3	0.3	2.1	2.5
Cys In exch	CYS.EX <-> CYS	3.3	18907.8	0.0	Inf
Gln Out net	GLN <-> GLN.EX	-2.1	0.2	-2.5	-1.7
Gln Out exch	GLN <-> GLN.EX	3.5	11.3	2.6	12.7
Glu In net	GLU.EX <-> GLU	-1.4	0.1	-1.7	-1.1
Glu In exch	GLU.EX <-> GLU	5.0	0.0	5.0	5.0
Gly Out net	GLY <-> GLY.EX	0.5	0.1	0.3	0.7
Gly Out exch	GLY <-> GLY.EX	31.1	3052.9	0.0	84.2
His in	HIS_EX -> HIS	1.9	0.1	1.7	2.0
Ile In	ILE_EX -> ILE	4.3	0.2	4.0	4.5
Leu In	LEU_EX -> LEU	10.1	18907.8	9.4	24.2
Lys In	LYS_EX -> LYS	26.1	28361.2	7.3	28.9
Met In	MET_EX -> MET	3.7	0.2	3.4	3.9
Phe In	PHE_EX -> PHE	7.9	18907.8	3.5	9.4
Pro In	PRO_EX -> PRO	18.1	18907.8	17.3	21.4
Ser In net	SER.EX <-> SER	11.8	1.2	9.4	14.1
Ser In exch	SER.EX <-> SER	17.0	2564.9	0.0	40.8
Thr In	THR_EX -> THR	5.5	528.9	5.1	12.2
Reaction Name	Chemical Reaction	Flux	Standard Err	95% Low	95% High
---------------	------------------	------	--------------	---------	----------
Tyr In	TYR_EX -> TYR	0.0	18907.8	0.0	5.6
Val In	VAL_EX -> VAL	6.3	0.5	5.9	6.7
R43 net	PYR <-> ALA	15.5	0.9	13.8	17.2
R43 exch	PYR <-> ALA	0.0	34461.2	NaN	NaN
R44 net	AKG <-> GLU	0.9	26.1	-2.3	3.6
R44 exch	AKG <-> GLU	124.9	270.9	97.1	166.9
R45 net	GLU <-> GLN	2.4	0.3	1.9	2.8
R45 exch	GLU <-> GLN	626.5	18907.8	4.8	Inf
R46	ARG -> GLU + CO2	2.0	18907.8	0.0	5.1
R47 net	OAA <-> ASP	-7.9	0.8	-9.3	-6.5
R47 exch	OAA <-> ASP	346.9	889.8	249.6	554.0
R48 net	ASP -> ASN	-11.5	0.7	-12.9	-10.2
R48 exch	ASP -> ASN	16.5	18907.8	NaN	NaN
R49 net	G3P <-> SER	5.9	528.9	0.6	8.5
R49 exch	G3P <-> SER	0.0	9.7	0.0	1.8
R50 net	SER <-> GLY + CO2	9.5	528.9	3.0	10.1
R50 exch	SER <-> GLY + CO2	30.2	2689.0	3.0	72.6
R51	SER -> CYS	0.0	0.3	0.0	0.2
R52	PHE -> TYR	4.2	18907.8	0.0	5.6
R53	PRO -> GLU	6.1	18907.8	0.0	9.3
R54	PROC OA + CO2 -> 0.5*SUC + 0.5*SUC	0.0	0.6	0.0	0.4
R55	VAL -> VAL1 + CO2	0.0	0.6	0.0	0.4
R56	VAL1 -> PROC OA + CO2	0.0	0.6	0.0	0.4
R57	ACAC -> ACC OA + ACC OA	18.3	9459.1	11.8	21.1
R58	LEU -> LEU1 + CO2	0.1	18907.8	0.0	3.6
R59	LEU1 + CO2 -> ACC OA + ACAC	0.1	18907.8	0.0	3.6
R60	THR -> GLY + ACC OA	0.0	528.9	0.0	6.6
R61	KETOADI -> ACAC + CO2	18.3	28361.2	0.0	21.1
R62	LYS -> KETOADI + CO2	18.3	28361.2	0.0	21.1
R63	TYR -> 0.5*SUC + 0.5*SUC + 0.5*SUC	0.0	46.3	NaN	1.4
R64	TYR1 -> ACAC + CO2	0.0	46.3	NaN	NaN
Lact Out net	LAC <-> LAC.EX	57.7	2.9	52.1	63.3
Lact Out exch	LAC <-> LAC.EX	13.3	18907.8	5.9	31.6
Symmetric B1 net	AKG <-> SUC + CO2	109.3	273.0	91.3	128.7
Symmetric B1 exch	AKG <-> SUC + CO2	8.2	18.7	0.0	18.8
Symmetric B2 net	SUC <-> FUM	109.3	227.0	91.3	128.7
Symmetric B2 exch	SUC <-> FUM	2420400.4	18907.8	0.0	Inf
PYR In net	0*PYR.EX <-> 0*PYR	0.0	18907.8	NaN	NaN
PYR In exch	0*PYR.EX <-> 0*PYR	0.0	18907.8	NaN	NaN
GLX 2	0*GLU -> 0*GLX	0.2	18907.8	NaN	NaN
ASX 1	0*ASN -> 0*ASX	0.0	18907.8	0.0	Inf
ASX 2	0*ASP -> 0*ASX	1.7	18907.8	NaN	NaN
Ser Dilution	0*SER -> SER.ms	100.5	18907.8	0.0	100.6
Ser Dilution 2	SER.ul -> SER.ms	0.4	18907.8	0.0	101.0
Ser Dilution 3	SER.ms -> sink	101.0	0.0	101.0	101.0
Pyr Dilution 1	0*PYR -> PYR.ms	24.0	12830.0	0.0	Inf
Pyr Dilution 2	PYR.ul -> PYR.ms	11.4	6078.2	NaN	NaN
Pyr Dilution 3	PYR.ms -> PYR.sink	35.3	18907.8	31.6	Inf
Mal Dilution 2	MAL ul -> MAL.ms	0.1	18907.8	NaN	NaN
Mal Dilution 3	MAL.ms -> MAL.sink	0.1	18907.8	NaN	NaN
Reaction Name	Chemical Reaction	Flux	Standard Err	95% Low	95% High
---------------	-------------------	------	--------------	---------	----------
CIT Dil 2	ICl.ul -> ICl.ms	0.2	18907.8	NaN	Inf
CIT Dil 3	ICl.ms -> ICl.sink	0.2	18907.8	NaN	NaN

"Net" reactions indicate the net flux in the forward direction for reversible reactions. "Exchange" reactions represent the forward flux for the reaction as written. Dilution reactions help account for unlabeled sources of certain measured metabolites.
Early Exponential Gln-Supp. Media MFA Results

Reaction Name	Chemical Reaction	Flux	Standard Err	95% Low	95% High
Glucose In	G6P_EX -> G6P	111.6	0.0	111.6	111.6
R2	G6P -> F6P	97.0	7.8	91.5	108.1
R3 net	F6P <-> G3P + G3P	102.1	2.6	100.2	106.2
R3 exch	F6P <-> G3P + G3P	175900.6	20992.0	NaN	Inf
R4	G3P -> PEP	202.7	49.1	197.0	210.0
PEP to Pyr	PEP -> PYR	202.7	51.2	197.0	210.0
Pyr to Lac net	PYR <-> LAC	72.7	3.8	66.1	79.2
Pyr to Lac exch	PYR <-> LAC	6.4	20992.0	NaN	Inf
R7	G6P -> P5P + CO2	10.8	7.8	0.0	16.2
R8 net	P5P + P5P <-> S7P + G3P	2.6	2.6	-1.1	4.4
R8 exch	P5P + P5P <-> S7P + G3P	0.0	28.3	NaN	19.1
R9 net	S7P + G3P <-> F6P + E4P	2.6	2.6	-1.1	4.4
R9 exch	S7P + G3P <-> F6P + E4P	1.0	20992.0	NaN	Inf
R10 net	P5P + E4P <-> F6P + G3P	2.6	2.6	-1.1	4.4
R10 exch	P5P + E4P <-> F6P + G3P	0.5	4.7	0.0	14.4
R11	PYR -> ACCOA + CO2	121.6	48.9	111.9	133.9
R12 net	ACCOA + OAA <-> ICI	105.1	54.7	94.0	119.4
R12 exch	ACCOA + OAA <-> ICI	948530.4	20992.0	NaN	Inf
R13 net	ICI <-> AKG + CO2	105.1	54.7	94.0	119.4
R13 exch	ICI <-> AKG + CO2	8.9	4.3	5.4	13.5
R17 net	FUM <-> MAL	118.1	55.4	104.3	135.3
R17 exch	FUM <-> MAL	4013805.5	20992.0	1912.2	Inf
R18 net	MAL <-> OAA	102.4	20992.0	86.7	114.2
R18 exch	MAL <-> OAA	6277086.9	20992.0	4878.7	Inf
R19	OAA -> PEP + CO2	0.0	9.1	0.0	2.4
R20 net	MAL <-> PYR + CO2	15.7	20992.0	11.1	41.1
R20 exch	MAL <-> PYR + CO2	18.8	20992.0	18.1	24.9
R21	PYR + CO2 -> OAA	0.0	20992.0	NaN	10.6
Ala Out net	ALA <-> ALA.EX	17.4	1.8	13.9	20.8
Ala Out exch	ALA <-> ALA.EX	73.2	20.2	59.7	80.7
Arg In	ARG_EX -> ARG	12.2	20992.0	11.3	16.3
Asn In net	ASN.EX <-> ASN	13.8	0.7	12.4	15.1
Asn In exch	ASN.EX <-> ASN	20.1	16379.4	NaN	45.9
Asp In net	ASP.EX <-> ASP	-4.0	0.4	-4.7	-3.2
Asp In exch	ASP.EX <-> ASP	134.8	90.9	110.2	165.9
Cys In net	CYX.EX <-> CYX	2.2	0.3	1.9	2.3
Cys In exch	CYX.EX <-> CYX	0.4	20992.0	0.0	Inf
Gln Out net	GLN <-> GLN.EX	-18.6	1.0	-20.1	-17.3
Gln Out exch	GLN <-> GLN.EX	0.0	0.0	0.0	0.0
Glu In net	GLU.EX <-> GLU	-3.3	0.3	-4.0	-2.7
Glu In exch	GLU.EX <-> GLU	5.0	0.0	5.0	5.0
Gly Out net	GLY <-> GLY.EX	0.0	0.1	-0.2	0.2
Gly Out exch	GLY <-> GLY.EX	8.1	235.7	0.0	40.4
His In	HIS.EX -> HIS	1.7	0.1	1.6	1.9
Ile In	ILE_EX -> ILE	4.0	0.2	3.7	4.3
Leu In	LEU_EX -> LEU	9.5	20992.0	8.9	16.2
Lys In	LYS.EX -> LYS	13.5	31488.4	6.8	17.3
Met In	MET_EX -> MET	3.5	0.2	3.2	3.7
Phe In	PHE_EX -> PHE	7.3	20992.0	3.3	8.9
Pro In	PRO_EX -> PRO	11.3	20992.0	10.5	19.5
Ser In net	SER.EX <-> SER	10.1	1.0	8.2	12.1
Ser In exch	SER.EX <-> SER	0.0	195.8	NaN	22.4
Thr In	THR_EX -> THR	8.6	49.1	4.9	12.5
Reaction Name	Chemical Reaction	Flux	Standard Err	95% Low	95% High
---------------	-------------------	------	--------------	---------	----------
Tyr In	TYR_EX -> TYR	0.2	20992.0	NaN	5.5
Val In	VAL_EX -> VAL	5.9	0.5	5.5	6.3
R43 net	PYR <-> ALA	24.1	1.8	20.6	27.5
R43 exch	PYR <-> ALA	153.0	53.3	0.0	179.5
R44 net	AKG <-> GLU	-13.0	6.6	-17.6	-8.6
R44 exch	AKG <-> GLU	363.4	188.3	274.8	518.0
R45 net	GLU <-> GLN	-14.4	1.0	-16.0	-13.1
R45 exch	GLU <-> GLN	0.0	33.8	0.0	8.6
R46	ARG -> GLU + CO2	6.8	20992.0	0.0	10.8
R47 net	OAA <-> ASP	-2.8	0.9	-4.4	-1.1
R47 exch	OAA <-> ASP	70.2	44.8	59.2	82.6
R48 net	ASP <-> ASN	-11.3	0.7	-12.6	-9.9
R48 exch	ASP <-> ASN	26.2	20992.0	5.7	64.0
R49 net	G3P <-> SER	2.6	48.9	-0.4	7.4
R49 exch	G3P <-> SER	0.0	6.9	0.0	3.0
R50 net	SER <-> GLY + CO2	5.0	49.0	1.3	8.9
R50 exch	SER <-> GLY + CO2	10.2	196.6	3.8	42.7
R51	SER -> CYS	0.0	0.3	0.0	0.3
R52	PHE -> TYR	3.7	20992.0	0.0	5.3
R53	PRO -> GLU	0.0	20992.0	0.0	8.5
R54	PROCOA + CO2 -> 0.5*SUC + 0.5*SUC	0.0	0.5	0.0	0.3
R55	VAL -> VAL1 + CO2	0.0	0.5	0.0	0.3
R56	VAL1 -> PROCOA + CO2	0.0	0.5	0.0	0.3
R57	ACAC -> ACCOA + ACCOA	6.2	10496.5	2.1	10.1
R58	LEU -> LEU1 + CO2	0.1	20992.0	NaN	6.7
R59	LEU1 + CO2 -> ACCOA + ACAC	0.1	20992.0	NaN	6.7
R60	THR -> GLY + ACCOA	3.5	49.0	0.0	7.2
R61	KETOADI -> ACAC + CO2	6.1	31488.4	0.0	10.0
R62	LYS -> KETOADI + CO2	6.1	31488.4	0.0	10.0
R63	TYR -> 0.5*SUC + 0.5*SUC + TYR1	0.0	7.5	NaN	1.5
R64	TYR1 -> ACAC + CO2	0.0	7.5	NaN	1.5
Lact Out net	LAC <-> LAC.EX	72.7	3.8	66.1	79.2
Lact Out exch	LAC <-> LAC.EX	0.0	1.5	0.0	26.0
Symmetric B1 net	AKG <-> SUC + CO2	118.1	60.7	104.3	132.7
Symmetric B1 exch	AKG <-> SUC + CO2	13.3	9.4	0.6	27.5
Symmetric B2 net	SUC <-> FUM	118.1	55.4	104.3	135.3
Symmetric B2 exch	SUC <-> FUM	2815217.5	20992.0	174.3	Inf
PYR In net	0*PYR.EX <-> 0*PYR	0.0	29688.0	NaN	NaN
PYR In exch	0*PYR.EX <-> 0*PYR	0.0	20992.0	0.0	Inf
GLX 2	0*GLU -> 0*GLX	4.7	20992.0	NaN	Inf
ASX 1	0*ASN -> 0*ASX	766.5	20992.0	0.0	Inf
ASX 2	0*ASP -> 0*ASX	0.2	20992.0	NaN	Inf
Ser Dilution 2	0*SER -> SER.ms	97.9	20992.0	0.0	98.0
Ser Dilution 3	SER.ms -> sink	101.0	0.0	101.0	101.0
Pyr Dilution 1	0*PYR -> PYR.ms	100.8	20992.0	NaN	100.9
Pyr Dilution 2	PYR.ul -> PYR.ms	0.1	20992.0	0.0	50.3
Pyr Dilution 3	PYR.ms -> PYR.sink	101.0	0.0	101.0	101.0
Mal Dilution 2	MALul -> MAL.ms	0.0	20992.0	0.0	Inf
Mal Dilution 3	MAL.ms -> MAL.sink	0.0	20992.0	0.0	Inf
"Net" reactions indicate the net flux in the forward direction for reversible reactions. "Exchange" reactions represent the forward flux for the reaction as written. Dilution reactions help account for unlabeled sources of certain measured metabolites.

Reaction Name	Chemical Reaction	Flux	Standard Err	95% Low	95% High
CIT Dil 2	ICl.ul -> ICl.ms	0.0	20992.0	NaN	Inf
CIT Dil 3	ICl.ms -> ICl.sink	0.0	20992.0	NaN	Inf
Reaction Name	Chemical Reaction	Flux	Standard Err	95% Low	95% High
--------------	------------------	------	--------------	---------	---------
Glucose In	G6P_EX -> G6P	30.3	0.0	30.3	30.3
R2	G6P -> F6P	18.9	7.6	16.7	29.1
R3 net	F6P <-> G3P + G3P	25.0	2.5	24.2	28.5
R3 exch	F6P <-> G3P + G3P	7322.9	20764.8	NaN	Inf
R4	G3P -> PEP	53.0	2.7	51.3	57.7
PEP to Pyr	PEP -> PYR	53.0	20764.8	51.3	69.7
Pyr to Lac net	PYR <-> LAC	-4.8	0.3	-5.2	-4.3
Pyr to Lac exch	PYR <-> LAC	69.1	301636.2	27.3	Inf
R7	G6P -> P5P + CO2	10.2	7.6	0.0	12.3
R8 net	P5P + P5P <-> S7P + G3P	3.1	2.5	-0.4	3.8
R8 exch	P5P + P5P <-> S7P + G3P	0.0	222.2	NaN	Inf
R9 net	S7P + G3P <-> F6P + E4P	3.1	2.5	-0.4	3.8
R9 exch	S7P + G3P <-> F6P + E4P	0.0	20764.8	0.0	Inf
R10 net	P5P + E4P <-> F6P + G3P	3.1	2.5	-0.4	3.8
R10 exch	P5P + E4P <-> F6P + G3P	0.0	13.1	0.0	8.5
R11	PYR -> ACCOA + CO2	63.7	7.5	61.0	69.3
R12 net	ACCOA + OAA <-> ICI	54.4	7.8	50.1	61.6
R12 exch	ACCOA + OAA <-> ICI	2023361.9	20764.8	445.2	Inf
R13 net	ICI <-> AKG + CO2	54.4	7.8	50.1	61.6
R13 exch	ICI <-> AKG + CO2	120.9	51.9	56.3	215.6
R17 net	FUM <-> MAL	53.7	14.8	49.0	61.5
R17 exch	FUM <-> MAL	10089949.6	20764.8	1569.9	Inf
R18 net	MAL <-> OAA	43.5	29365.9	38.8	57.8
R18 exch	MAL <-> OAA	10097623.8	20764.8	1252.6	Inf
R19	OAA -> PEP + CO2	0.0	20764.8	0.0	6.2
R20 net	MAL <-> PYR + CO2	10.2	29365.9	6.3	13.7
R20 exch	MAL <-> PYR + CO2	0.0	20764.8	0.0	3.4
R21	PYR + CO2 -> OAA	0.0	20764.8	0.0	3.4
Ala Out net	ALA <-> ALA.EX	1.7	0.2	1.4	2.1
Ala Out exch	ALA <-> ALA.EX	0.5	21544.3	NaN	11.5
Arg In	ARG_EX -> ARG	2.0	0.2	1.9	2.3
Asn In net	ASN.EX <-> ASN	4.1	0.4	3.3	4.9
Asn In exch	ASN.EX <-> ASN	577.9	2205825.9	13.3	Inf
Asp In net	ASP.EX <-> ASP	9.6	0.5	8.7	10.5
Asp In exch	ASP.EX <-> ASP	978.5	1025.4	308.5	Inf
Cys In net	CYS.EX <-> CYS	0.9	0.2	0.8	0.9
Cys In exch	CYS.EX <-> CYS	1.1	20764.8	0.0	Inf
Gln Out net	GLN <-> GLN.EX	-0.3	0.1	-0.4	-0.2
Gln Out exch	GLN <-> GLN.EX	0.0	0.0	0.0	0.0
Glu In net	GLU.EX <-> GLU	2.0	0.2	1.6	2.4
Glu In exch	GLU.EX <-> GLU	3.1	0.2	2.7	3.5
Gly Out net	GLY <-> GLY.EX	-0.4	0.1	-0.6	-0.2
Gly Out exch	GLY <-> GLY.EX	33.3	741.2	0.0	308.6
His In	HIS.EX -> HIS	0.7	0.0	0.6	0.7
Ile In	ILE.EX -> ILE	1.5	0.1	1.4	1.6
Leu In	LEU.EX -> LEU	3.9	0.4	3.4	4.7
Lys In	LYS.EX -> LYS	2.8	0.3	2.7	3.2
Met In	MET.EX -> MET	1.2	0.0	1.1	1.3
Phe In	PHE.EX -> PHE	1.5	0.2	1.4	1.8
Pro In	PRO_EX -> PRO	4.2	7.5	3.9	6.2
Ser In net	SER.EX <-> SER	6.4	0.6	5.1	7.6
Ser In exch	SER.EX <-> SER	2.4	211.4	0.0	70.4
Thr In	THR.EX -> THR	2.7	0.3	2.1	3.2
Reaction Name	Chemical Reaction	Flux	Standard Err	95% Low	95% High
---------------	-------------------	-------	--------------	---------	----------
Tyr In	TYR_EX -> TYR	1.5	0.2	1.3	1.7
Val In	VAL_EX -> VAL	3.2	0.3	2.6	3.8
R43 net	PYR <-> ALA	4.3	0.2	3.9	4.6
R43 exch	PYR <-> ALA	0.0	197741.8	NaN	Inf
R44 net	AKG <-> GLU	1.4	7.5	-0.7	1.8
R44 exch	AKG <-> GLU	5036795.7	20764.8	82.9	Inf
R45 net	GLU <-> GLN	1.4	0.1	1.2	1.5
R45 exch	GLU <-> GLN	4884523.6	20764.8	10.6	Inf
R46	ARG -> GLU + CO2	0.0	0.2	0.0	0.3
R47 net	OAA <-> ASP	-10.9	0.6	-12.1	-9.6
R47 exch	OAA <-> ASP	67.3	14.4	47.9	91.6
R48 net	ASP <-> ASN	-3.1	0.4	-3.9	-2.2
R48 exch	ASP <-> ASN	54.8	20764.8	NaN	Inf
R49 net	G3P <-> SER	-0.6	0.8	-2.0	0.1
R49 exch	G3P <-> SER	2.5	63.2	0.5	12.5
R50 net	SER <-> GLY + CO2	2.4	0.3	1.7	3.0
R50 exch	SER <-> GLY + CO2	20.2	489.5	0.0	138.2
R51	SER -> CYS	0.0	0.2	0.0	0.1
R52	PHE -> TYR	0.1	0.2	0.0	0.3
R53	PRO -> GLU	0.0	7.4	NaN	2.0
R54	PROCOA + CO2 -> 0.5*SUC + 0.5*SUC	0.7	0.3	0.1	1.3
R55	VAL -> VAL1 + CO2	0.7	0.3	0.1	1.3
R56	VAL1 -> PROCOA + CO2	0.7	0.3	0.1	1.3
R57	ACAC -> ACCOA + ACAC	0.3	0.6	NaN	1.2
R58	LEU -> LEU1 + CO2	0.3	0.4	0.0	1.1
R59	LEU1 + CO2 -> ACCOA + ACAC	0.3	0.4	0.0	1.1
R60	THR -> GLY + ACAC	0.5	0.3	0.0	1.0
R61	KETOADI -> ACAC + CO2	0.0	0.3	0.0	0.4
R62	LYS -> KETOADI + CO2	0.0	0.3	0.0	0.4
R63	TYR -> 0.5*SUC + 0.5*SUC + TYR1	0.0	0.2	0.0	0.4
Lact Out net	LAC <-> LAC.EX	-4.8	0.3	-5.2	-4.3
Lact Out exch	LAC <-> LAC.EX	0.0	20764.8	0.0	9.1
Symmetric B1 net	AKG <-> SUC + CO2	53.0	14.7	48.6	60.7
Symmetric B1 exch	AKG <-> SUC + CO2	14.7	10.4	1.5	29.2
Symmetric B2 net	SUC <-> FUM	53.7	14.8	49.0	61.5
Symmetric B2 exch	SUC <-> FUM	10097522.9	20764.8	0.0	Inf
PYR In net	0*PYR.EX <-> 0*PYR	0.2	29365.9	NaN	NaN
PYR In exch	0*PYR.EX <-> 0*PYR	0.0	20764.8	0.0	Inf
GLX 2	0*GLU -> 0*GLX	39.4	20764.8	NaN	Inf
ASX 1	0*ASN -> 0*ASX	0.5	20764.8	0.0	Inf
ASX 2	0*ASP -> 0*ASX	111.1	20764.8	0.0	Inf
Ser Dilution	0*SER -> SER.ms	0.0	29365.9	NaN	NaN
Ser Dilution 2	SER.ul -> SER.ms	7.8	20764.8	NaN	NaN
Ser Dilution 3	SER.ms -> sink	7.8	20764.8	NaN	Inf
Pyr Dilution 1	0*PYR -> PYR.ms	2.6	29365.9	NaN	NaN
Pyr Dilution 2	PYR.ul -> PYR.ms	0.5	20764.8	NaN	NaN
Pyr Dilution 3	PYR.ms -> PYR.sink	3.1	20764.8	NaN	Inf
Mal Dilution 2	MALul -> MAL.ms	0.1	20764.8	NaN	Inf
Mal Dilution 3	MAL.ms -> MAL.sink	0.1	20764.8	NaN	Inf
Reaction Name	Chemical Reaction	Flux	Standard Err	95% Low	95% High
---------------	---------------------	------	--------------	---------	----------
CIT Dil 2	ICl.ul -> ICl.ms	0.0	20764.8	NaN	Inf
CIT Dil 3	ICl.ms -> ICl.sink	0.0	20764.8	NaN	Inf

"Net" reactions indicate the net flux in the forward direction for reversible reactions. "Exchange" reactions represent the forward flux for the reaction as written. Dilution reactions help account for unlabeled sources of certain measured metabolites.
Late Exponential Gln-Supp. Media MFA Results

Reaction Name	Chemical Reaction	Flux	Standard Err	95% Low	95% High
Glucose In	G6P_EX -> G6P	30.3	0.0	30.3	30.3
R2	G6P -> F6P	21.1	8.7	19.4	23.8
R3 net	F6P <-> G3P + G3P	25.7	2.9	25.1	28.2
R3 exch	F6P <-> G3P + G3P	0.0	21159.6	NaN	769832.7
R4	G3P -> PEP	53.0	3.0	51.5	56.0
PEP to Pyr	PEP -> PYR	63.7	21159.6	62.2	69.0
Pyr to Lac net	PYR <-> LAC	-6.6	0.3	-7.2	-6.0
Pyr to Lac exch	PYR <-> LAC	2746.9	8799978.2	127.3	1744566.5
R7	G6P -> P5P + CO2	7.9	8.7	0.4	9.6
R8 net	P5P + P5P <-> S7P + G3P	2.3	2.9	-0.2	2.8
R8 exch	P5P + P5P <-> S7P + G3P	0.0	73.3	NaN	Inf
R9 net	S7P + G3P <-> F6P + E4P	2.3	2.9	-0.2	2.8
R9 exch	S7P + G3P <-> F6P + E4P	0.0	21159.6	0.0	69006.2
R10 net	P5P + E4P <-> F6P + G3P	2.3	2.9	-0.2	2.8
R10 exch	P5P + E4P <-> F6P + G3P	0.0	10.5	0.0	4.7
R11	PYR -> ACCOA + CO2	64.2	3.2	61.7	67.9
R12 net	ACCOA + OAA <-> ICI	58.3	4.0	53.5	63.8
R12 exch	ACCOA + OAA <-> ICI	47.2	22.4	17.7	116.4
R13 net	ICI <-> AKG + CO2	58.3	4.0	53.5	63.8
R13 exch	ICI <-> AKG + CO2	51.9	19.5	23.5	114.3
R17 net	FUM <-> MAL	58.8	4.4	53.5	64.7
R17 exch	FUM <-> MAL	298.1	277.2	88.8	1811917.6
R18 net	MAL <-> OAA	59.3	29924.3	53.3	66.8
R18 exch	MAL <-> OAA	8451004.3	21159.6	385.7	Inf
R19	OAA -> PEP + CO2	10.7	21159.6	0.0	14.4
R20 net	MAL + PYR + CO2	-0.6	29924.3	-4.4	14.4
R20 exch	MAL + PYR + CO2	0.0	21159.6	0.0	14.4
R21	PYR + CO2 -> OAA	0.0	21159.6	0.0	4.4
Ala Out net	ALA <-> ALA.EX	3.0	0.3	2.4	3.6
Ala Out exch	ALA <-> ALA.EX	0.2	21841.2	NaN	2.9
Arg In	ARG_EX -> ARG	2.0	0.2	1.9	2.2
Asn In net	ASN.EX <-> ASN	3.9	0.4	3.2	4.7
Asn In exch	ASN.EX <-> ASN	4.4	2261.3	NaN	9.8
Asp In net	ASP.EX <-> ASP	8.5	0.4	7.7	9.4
Asp In exch	ASP.EX <-> ASP	91.4	16.2	67.8	130.3
Cys In net	CYS.EX <-> CYS	0.9	0.2	0.8	0.9
Cys In exch	CYS.EX <-> CYS	4.7	21159.6	0.0	141397.0
Gln Out net	GLN <-> GLN.EX	-2.1	0.1	-2.3	-1.9
Gln Out exch	GLN <-> GLN.EX	0.0	0.0	0.0	0.0
Glu In net	GLU.EX <-> GLU	1.3	0.1	1.1	1.6
Glu In exch	GLU.EX <-> GLU	3.7	0.1	3.4	4.0
Gly Out net	GLY <-> GLY.EX	-0.1	0.1	-0.3	0.1
Gly Out exch	GLY <-> GLY.EX	9.7	87.9	0.8	35.2
His in	HIS.EX -> HIS	0.7	0.0	0.6	0.7
Ile In	ILE.EX -> ILE	1.5	0.1	1.4	1.6
Leu In	LEU.EX -> LEU	4.9	0.9	3.7	6.2
Lys In	LYS.EX -> LYS	2.8	0.3	2.6	3.1
Met In	MET.EX -> MET	1.2	0.0	1.1	1.3
Phe In	PHE.EX -> PHE	1.4	0.1	1.3	1.7
Pro In	PRO.EX -> PRO	4.1	1.5	3.9	4.6
Ser In net	SER.EX <-> SER	5.8	0.6	4.7	6.9
Ser In exch	SER.EX <-> SER	0.0	58.4	0.0	11.1
Thr In	THR.EX -> THR	2.5	0.3	2.1	3.0
Reaction Name	Chemical Reaction	Flux	Standard Err	95% Low	95% High
---------------	-------------------	-------	--------------	---------	----------
Tyr In	TYR_EX -> TYR	1.7	0.2	1.4	2.0
Val In	VAL_EX -> VAL	2.8	0.3	2.3	3.3
R43 net	PYR <-> ALA	5.5	0.3	4.9	6.1
R43 exh	PYR <-> ALA	0.0	629344.5	NaN	4453.0
R44 net	AKG <-> GLU	0.1	1.5	-0.5	0.5
R44 exh	AKG <-> GLU	121.6	36.5	72.0	272.6
R45 net	GLU <-> GLN	0.0	0.2	-0.7	-0.2
R45 exh	GLU <-> GLN	3045443.3	21159.6	NaN	Inf
R46	ARG -> GLU + CO2	0.0	0.2	0.0	0.2
R47 net	OAA <-> ASP	-9.7	0.6	-10.8	-8.5
R47 exh	OAA <-> ASP	34.4	4.5	27.2	42.9
R48 net	ASP <-> ASN	-2.9	0.4	-3.6	-2.1
R48 exh	ASP <-> ASN	19.2	21159.6	NaN	Inf
R49 net	G3P <-> SER	0.1	0.7	-1.1	1.4
R49 exh	G3P <-> SER	2.2	23.9	0.1	4.9
R50 net	SER <-> GLY + CO2	2.7	0.3	2.1	3.3
R50 exh	SER <-> GLY + CO2	13.2	135.6	2.3	43.6
R51	SER -> CYS	0.0	0.2	0.0	0.1
R52	PHE -> TYR	0.0	0.1	0.0	0.3
R53	PRO -> GLU	0.0	1.5	NaN	0.4
R54	PROCOA + CO2 -> 0.5*SUC + 0.5*SUC	0.4	0.3	0.0	0.9
R55	VAL -> VAL1 + CO2	0.4	0.3	0.0	0.9
R56	VAL1 -> PROCOA + CO2	0.4	0.3	0.0	0.9
R57	ACAC -> ACCOA + ACCOA	1.6	0.9	0.4	2.8
R58	LEU -> LEU1 + CO2	1.4	0.8	0.2	2.6
R59	LEU1 + CO2 -> ACCOA + ACAC	1.4	0.8	0.2	2.6
R60	THR -> GLY + ACCOA	0.4	0.3	0.0	0.9
R61	KETOADI -> ACAC + CO2	0.0	0.3	NaN	0.3
R62	LYS -> KETOADI + CO2	0.0	0.3	NaN	0.3
R63	TYR -> 0.5*SUC + 0.5*SUC + TYR1	0.2	0.2	0.0	0.6
R64	TYR1 -> ACAC + CO2	0.2	0.2	0.0	0.6
Lact Out net	LAC <-> LAC.EX	-6.6	0.3	-7.2	-6.0
Lact Out exh	LAC <-> LAC.EX	0.0	21159.6	0.0	2.7
Symmetric B1 net	AKG <-> SUC + CO2	58.2	4.2	53.2	63.9
Symmetric B1 exh	AKG <-> SUC + CO2	0.0	6.6	0.0	4.9
Symmetric B2 net	SUC <-> FUM	58.8	4.4	53.5	64.7
Symmetric B2 exh	SUC <-> FUM	0.0	21159.6	NaN	441074.3
PYR In net	0*PYR.EX <-> 0*PYR	-0.3	29924.3	NaN	NaN
PYR In exh	0*PYR.EX <-> 0*PYR	0.0	21159.6	0.0	NaN
GLX 2	0*GLU -> 0*GLX	4.3	21159.6	NaN	Inf
ASX 1	0*ASN -> 0*ASX	4.8	21159.6	NaN	Inf
ASX 2	0*ASP -> 0*ASX	3.1	21159.6	0.0	NaN
Ser Dilution 2	0*SER -> SER.ms	9.7	29924.3	0.0	NaN
Ser Dilution 3	SER.ms -> sink	11.0	21159.6	NaN	Inf
Pyr Dilution 1	0*PYR -> PYR.ms	1.5	29924.3	NaN	NaN
Pyr Dilution 2	PYR.ul -> PYR.ms	1.0	21159.6	NaN	NaN
Pyr Dilution 3	PYR.ms -> PYR.sink	2.5	21159.6	NaN	Inf
Mal Dilution 2	MALul -> MAL.ms	0.3	21159.6	NaN	Inf
Mal Dilution 3	MAL.ms -> MAL.sink	0.3	21159.6	NaN	Inf
Reaction Name	Chemical Reaction	Flux	Standard Err	95% Low	95% High
---------------	----------------------	------	--------------	---------	----------
CIT Dil 2	ICl.ul -> ICl.ms	0.2	21159.6	NaN	Inf
CIT Dil 3	ICl.ms -> ICl.sink	0.2	21159.6	NaN	Inf

"Net" reactions indicate the net flux in the forward direction for reversible reactions. "Exchange" reactions represent the forward flux for the reaction as written. Dilution reactions help account for unlabeled sources of certain measured metabolites.