Coordinate representation of particle dynamics in AdS and generic static spacetimes

Harald Dorn1, George Jorjadze1,2, Chrysostomos Kalousios1 and Jan Plefka1

1 Institut für Physik der Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany
2 Razmadze Mathematical Institute, M Aleksidze 1, 0193, Tbilisi, Georgia

E-mail: dorn@physik.hu-berlin.de, jorj@physik.hu-berlin.de, ckalousi@physik.hu-berlin.de and jan.plefka@physik.hu-berlin.de

Received 29 November 2010
Published 11 February 2011
Online at stacks.iop.org/JPhysA/44/095402

Abstract
We discuss the quantum dynamics of a particle in static curved spacetimes in a coordinate representation. The scheme is based on the analysis of the squared energy operator E^2, which is quadratic in momenta and contains a scalar curvature term. Our main emphasis is on AdS spaces, where this term is fixed by the isometry group. As a byproduct the isometry generators are constructed and the energy spectrum is reproduced. In the massless case the conformal symmetry is realized as well. We show the equivalence between this quantization and the covariant quantization, based on the Klein–Gordon-type equation in AdS. We further demonstrate that the two quantization methods in an arbitrary $(N+1)$-dimensional static spacetime are equivalent to each other if the scalar curvature terms both in the operator E^2 and in the Klein–Gordon-type equation have the same coefficient equal to $\frac{N-1}{4N}$.

PACS numbers: 04.62.+v, 03.65.Pm, 11.10.Ef

1. Introduction

In generic spacetimes the notion of a quantized particle becomes dependent on the local coordinate system \cite{1}. Only in the presence of a high degree of symmetry one is able to define particles in a global covariant manner. In anti-de Sitter space AdS_{N+1}, like in the most prominent case of Minkowski space $\mathbb{R}^{1,N}$, particles are identified with unitary irreducible representations of the corresponding isometry groups \cite{2}.

The aim of this paper is twofold. On one side we want to make a contribution to the study of the quantization problem for a relativistic particle in a generic static spacetime. There, at least, the spectral problem for the energy in certain suitably chosen coordinate systems is a
reasonable one. Its study includes ordering problems. We will show that even in the absence of further symmetries, one nevertheless can fix the ordering ambiguity. For this purpose, we insist on general covariance with respect to space and require equivalence of the quantization based on the Klein–Gordon equation to quantization after Hamiltonian reduction realized in a coordinate representation.

The second aim is the application of the coordinate representation, to be developed in the body of the paper, to the quantized particle in AdS$_{N+1}$. In this case, the ordering ambiguity can be fixed exclusively within the coordinate representation by demanding that the algebra of the isometry generators $\mathfrak{so}(2, N)$ can be realized. In this way we will find a coordinate version of the unitary irreducible representations of $\text{SO}(2, N)$. Of course we will reproduce all well-known results concerning the spectrum of the relevant quantum numbers, see e.g. [3]. With the AdS/CFT correspondence in mind we present this technique also because of its potential use for string quantization in AdS$_{N+1}$.

The paper is organized as follows. We first start with some introductory aspects of the coordinate representation in generic static spacetimes and then specialize to AdS$_{N+1}$ with its $\text{SO}(2, N)$ representation. After this, still for AdS$_{N+1}$, a comparison with the spacetime covariant treatment based on the Klein–Gordon equation is made. Finally, we come back to generic static spacetimes.

Let us consider a $(N+1)$-dimensional spacetime with coordinates x^μ, $\mu = (0, 1, \ldots, N)$ and a static metric tensor

$$g_{\mu\nu} = \begin{pmatrix} g_{00}(x) & 0 \\ 0 & g_{mn}(x) \end{pmatrix}$$

(1.1)

where $g_{00} = -e^f$ and g_{mn} are functions only of the spatial coordinates x^n ($n = 1, \ldots, N$).

The dynamics of a particle in this background is described by the action

$$S = \int d\tau (p_\mu \dot{x}^\mu + \lambda (g^{\mu\nu} p_\mu p_\nu + M^2)),$$

(1.2)

and in the gauge $x'^0 = \tau$ it reduces to an ordinary Hamiltonian system

$$S = \int d\tau (p_n \dot{x}^n - E(p, x)),$$

(1.3)

where $E(p, x) = -p_0 > 0$ is the particle energy.

From the mass shell condition $g^{\mu\nu} p_\mu p_\nu + M^2 = 0$ one obtains the squared energy

$$E^2 = e^f g_{mn}(x) p_m p_n + M^2 e^f(x).$$

(1.4)

This function can be associated with the Hamiltonian of a non-relativistic particle moving in the potential $M^2 e^f(x)$ in a curved background with the metric tensor

$$h_{mn}(x) = e^{-f(x)} g_{mn}(x).$$

(1.5)

Quantizing this system in the coordinate representation, one gets the Hilbert space with wavefunctions $\psi(x)$ and the scalar product

$$\langle \psi_2 | \psi_1 \rangle = \int d^N x \sqrt{h(x)} \psi_2^*(x) \psi_1(x),$$

(1.6)

where $h(x) = \det h_{mn}(x)$. The Hermitian momentum operators are $p_n = -i \partial_n - \frac{1}{2} \partial_n \log h$.

Since (1.4) is quadratic in momenta, the ordering ambiguities contain at most second derivatives of $h_{mn}(x)$. Requiring general covariance in the reduced manifold, the freedom due to ordering ambiguities is parameterized by a constant a in

$$E^2 = -\Delta_h + a R_h(x) + M^2 e^f(x),$$

(1.7)
where Δ_h is the covariant Laplace operator for the metric $h_{\mu\nu}$, and R_h denotes the corresponding scalar curvature [4] (for further references see [5]). One of our tasks is to fix the value of a.

2. Classical description of the AdS particle

AdS_{N+1} is realized as a hyperboloid $X^A X_A = -R^2$, where $X^A, A = (0', 0, 1, \ldots, N)$ are coordinates of the embedding space $\mathbb{R}^{2,N}$, which we parameterize by

$$
X^0 = \frac{R \sin \theta}{\sqrt{1 - x^2}}, \quad X^0 = \frac{R \cos \theta}{\sqrt{1 - x^2}}, \quad X^a = \frac{R x_a}{\sqrt{1 - x^2}},
$$

(2.1)

with $x^2 := x_a x^a < 1$. The polar angle θ is interpreted as a dimensionless time coordinate $\theta = x^0$, since the induced metric tensor on the hyperboloid has the structure (1.1) with

$$
g_{00} = -\frac{R^2}{1 - x^2}, \quad g_{mn} = \frac{R^2}{1 - x^2} \left(\delta_{mn} + \frac{x_m x_n}{1 - x^2} \right),
$$

(2.2)

If a vector field $\mathcal{V} = \mathcal{V}^\mu \partial_\mu$ generates spacetime isometry transformations, i.e. $\mathcal{L}_\mathcal{V} g_{\mu\nu} = 0$, then $J = \mathcal{V}^\mu p_\mu$ is a Noether integral of the system (1.2), and in the gauge $x^0 = \tau$ it becomes $J = \mathcal{V}^\mu(\tau, x) p_\mu - \mathcal{V}^\mu(\tau, x) E(p, x)$, where E is the particle energy obtained from (1.4).

The isometries of AdS_{N+1} are the $\text{SO}(2, N)$ transformations generated by the vector fields \mathcal{V}_{AB}, whose action on the embedding space coordinates is $\mathcal{V}_{AB}(X^C) = \delta^C_A X_B - \delta^C_B X_A$. By (2.1) we then find

$$
\mathcal{V}_{00} = -\partial_\theta, \quad \mathcal{V}_{mn} = x_a \partial_m - x_m \partial_a, \\
\mathcal{V}_{0\tau} = -x_n \cos \theta \partial_\theta - \sin \theta \mathcal{V}_n, \quad \mathcal{V}_{\tau 0} = x_n \sin \theta \partial_\theta - \cos \theta \mathcal{V}_n,
$$

(2.3)

where $V_n = \partial_n - x_n D$ and D is the dilatation operator $D = x_m \partial_m$. The corresponding Noether integrals are given by (again in the gauge $\tau = x^0 = \theta$)

$$
J_{00} = E = \sqrt{p^2 - (p \cdot x)^2 + \frac{M^2 R^2}{1 - x^2}}, \quad J_{mn} = p_m x_n - p_n x_m,
$$

(2.4)

$$
J_{0\tau} = E x_a \cos \tau + ((p \cdot x) x_n - p_n) \sin \tau, \quad J_{\tau 0} = ((p \cdot x) x_n - p_n) \cos \tau - E x_n \sin \tau.
$$

(2.5)

Note that the Casimir invariant of these integrals is constant $\frac{1}{2} J_{AB} J^{AB} = M^2 R^2$ and the minimal value of energy E_0 is equal to $E_0 = M R$.

At $\tau = 0$, the boost generators reduce to

$$
J_{0\nu} = E x_\nu, \quad J_{\nu 0} = (p \cdot x) x_\nu - p_\nu.
$$

(2.6)

We also use their complex combinations

$$
Z_n = J_{0\nu} + i J_{\nu 0}, \quad Z^*_n = J_{0\nu} - i J_{\nu 0},
$$

(2.7)

which in quantum theory become lowering and raising operators for the energy spectrum.

The Poisson brackets of the functions (2.4) and (2.6) form the $\mathfrak{so}(2, N)$ algebra. Its compact part $\mathfrak{so}(2) \oplus \mathfrak{so}(N)$ is trivially realized by E and the rotation generators J_{mn}, and the rest of the algebra can be written as

$$
\{ E, Z_n \} = -i Z_n, \quad [Z_m, Z_n] = 0, \quad [Z_m, Z^*_n] = 2i \delta_{mn} E - 2 J_{mn},
$$

(2.8)

$$
\{ J_{lm}, Z_n \} = \delta_{ln} Z_m - \delta_{mn} Z_l.
$$

(2.9)

3 For notational convenience we write the spatial coordinates with down indices.

4 More precisely, E is the particle energy measured in units of $1/R$.

3

4
The squared energy in AdS is given by

\[E^2 = h^{mn}(x) p_m p_n + \frac{M^2 R^2}{1 - x^2}, \]

(2.10)

with \(h^{mn}(x) = \delta_{mn} - \frac{x_m x_n}{1 - x^2} \). Its inverse is the matrix

\[h_{mn}(x) = \delta_{mn} + \frac{x_m x_n}{1 - x^2} \quad \text{and} \quad h = \frac{1}{1 - x^2}. \]

(2.11)

It is just the metric tensor of the \(N \)-dimensional unit semi-sphere.

Concluding this section we consider the massless particle in AdS. For \(M = 0 \) action (1.2) is invariant under conformal transformations. In AdS\(N+1 \) those, which are not isometries, are generated by the conformal Killing vectors \(\mathcal{V}_A \) with the property (see for example [6]) \(^5\)

\[\mathcal{V}_A(X_B) = R \delta^B_A + X_A X_B R, \quad \mathcal{L}_{\mathcal{V}_A} g_{\mu\nu} = \frac{2X_A}{R} g_{\mu\nu}. \]

(2.12)

Then, from (2.1) one gets

\[\mathcal{V}_0 = \sqrt{1 - x^2} (\cos \theta \partial_\theta - \sin \theta D), \quad \mathcal{V}_0 = -\sqrt{1 - x^2} (\sin \theta \partial_\theta + \cos \theta D), \]

\[\mathcal{V}_n = \sqrt{1 - x^2} \partial_n. \]

(2.13)

The corresponding dynamical integrals at \(\tau = 0 \) become

\[C_0' = -\sqrt{1 - x^2} E, \quad C_0 = -\sqrt{1 - x^2} (p \cdot x), \quad C_n = \sqrt{1 - x^2} p_n, \]

(2.14)

where \(E \) is the energy of the massless particle, with

\[E^2 = p^2 - (p \cdot x)^2. \]

(2.15)

This \(E^2 \) coincides with the Hamiltonian of a free particle on the unit semi-sphere. That is why the massless particle reaches the boundary in a finite time.

3. AdS particle in coordinate representation

A consistent quantization of the particle dynamics in AdS\(N+1 \) should provide a unitary irreducible representation of the SO\((2, N) \) group. We use the classical expressions of dynamical integrals (2.4) and (2.6) and apply the coordinate representation. To specify the ordering prescription for the operators we first consider \(E^2 \). Since the scalar curvature of the unit sphere is equal to \(N(N - 1) \), prescription (1.7) provides the operator

\[E^2 = -\sqrt{1 - x^2} \delta_{mn} \frac{x_m x_n}{\sqrt{1 - x^2}} \partial_\theta + a N(N - 1) + \frac{M^2 R^2}{1 - x^2}. \]

(3.1)

We will fix the parameter \(a \) below. Since \(E^2 \) will turn out to be positive, its positive square root defines the energy operator \(E \).

The rotation generators in (2.4) have no ordering ambiguity and they take the standard form

\[J_{mn} = i(x_m \partial_n - x_n \partial_m). \]

(3.2)

For the ordering in the boost generators \(J_{00'} \) (2.6) we guess

\[J_{00'} = \sqrt{E} x_n \sqrt{E}, \]

(3.3)

and get the commutator

\[[E^2, J_{00'}] = \sqrt{E} (N x_n - 2V_n) \sqrt{E}. \]

(3.4)

\(^5\) As usual, the case AdS\(2 \) is special and has to be treated separately.
On the other hand the so(2, N) algebra requires
\[
[E^2, J_{\alpha\beta}] = 2i J_{\alpha\beta} E + J_{\alpha\beta}.
\] (3.5)

Comparing these two commutators we obtain
\[
J_{\alpha\beta} = i\sqrt{E} \left(V_\alpha - \frac{N-1}{2} x_\alpha \right) \frac{1}{\sqrt{E}}.
\] (3.6)

By (3.1), (3.3) and (3.6) we can verify the commutator similar to (3.5)
\[
[E^2, J_{\alpha\beta}] = -2i J_{\alpha\beta} E + J_{\alpha\beta}.
\] (3.7)

This condition is fulfilled if the constant term in \(E^2\) is equal to \(\frac{(N-1)^2}{4}\). That fixes the coefficient of the scalar curvature
\[
a = \frac{N-1}{4N}.
\] (3.8)

Having fixed the ordering ambiguities by requiring the preservation of part of the consequences of the so(2, N) algebra, we now discuss the issue of energy eigenfunctions and spectrum. Our Hilbert space is given by the wavefunctions \(\psi_1(x)\) with the scalar product
\[
\langle \psi_2 | \psi_1 \rangle = \int_{x^2 < 1} \frac{d^N x}{\sqrt{1 - x^2}} \psi_2^*(x) \psi_1(x).
\] (3.9)

The ground state has to be a SO(N) scalar function, which is annihilated by the lowering operators \(Z_n = J_{\alpha\beta} - i J_{\alpha\beta}\). These conditions are equivalent to the equations
\[
\left(x_n \left(E_0 - \frac{N-1}{2} \right) + V_n \right) \psi_{E_0}(x^2) = 0,
\] (3.10)

where \(E_0\) denotes the energy of the ground state. This yields the wavefunction
\[
\psi_{E_0} \sim (1 - x^2)^{\frac{E_0}{2} - \frac{N-1}{4}}.
\] (3.11)

Since (3.11) should be an eigenfunction of operator (3.1) with the eigenvalue \(E_0^2\), we can relate the mass to the lowest energy value by
\[
M^2 R^2 = \left(E_0 - \frac{N}{2} \right)^2 - \frac{1}{4}.
\] (3.12)

The finiteness of the norm of the vacuum wavefunction (3.11) reproduces the well known unitarity bound \(E_0 > \frac{N}{2} - 1\) [7]. From (3.12) then follows that the two values of \(E_0\),
\[
E_0^\pm = \frac{N}{2} \pm \sqrt{M^2 R^2 + \frac{1}{4}},
\] (3.13)
correspond to the same \(M^2\), if \(-\frac{1}{2} \leq M^2 R^2 < \frac{1}{4}\), and for \(M^2 R^2 \geq \frac{1}{4}\) only \(E_0^0\) is admissible.

The action of the raising operators \(Z_n^+\) on the vacuum state creates higher level eigenfunctions. However, already on the second level the states \(Z_n^+ Z_m^+ \psi_{E_0}\) with \(m \neq n\) are not orthogonal to each other. Lower dimensional cases are exceptional and they are presented in the appendix. To find orthogonal eigenfunctions in higher dimensional cases we use the Casimir operator of the rotation generators \(L_2^2 = \frac{1}{2} J_{mn} J_{mn}\) and rewrite operator (3.1) with (3.8) and (3.12) as
\[
E^2 = -4z(1-z) \partial_z^2 + 2((N+1)z - N) \partial_z + \frac{1}{z} L^2 + \frac{(N-1)^2}{4} + \frac{(E_0 - \frac{N}{2})^2 - \frac{1}{4}}{1 - z},
\] (3.14)
with \(z = x^2 \). We look for the eigenfunctions of this operator in the form \(\Psi = F(z) Y_L(\Omega) \), where \(Y_L(\Omega) \) is a spherical harmonic, which is an eigenfunction of the operator \(L^2 \) with the eigenvalue \(L(L + N - 2) \). Then, the eigenvalue problem

\[
E^2\Psi_n = \omega^2\Psi_n
\]

(3.15)
is solved by

\[
F(z) = z^{\frac{k}{2}} (1 - z)^{\frac{k-1}{2}} F_1(a, b, c; z),
\]

(3.16)

where \(F_1(a, b, c; z) \) is the hypergeometric function with the parameters

\[
a = \frac{1}{2}(E_0 + L - \omega), \quad b = \frac{1}{2}(E_0 + L + \omega), \quad c = \frac{N}{2} + L.
\]

(3.17)
The regularity condition at \(z = 1 \) requires \(a = -n \) and one gets the energy spectrum (in agreement with \([2, 3, 7]\))

\[
\omega_{n,L} = E_0 + L + 2n.
\]

(3.18)

It coincides with the spectrum of the \(N \)-dimensional normal ordered and shifted (by \(E_0 \)) harmonic oscillator \(\hat{H} = a_n^* a_n + E_0 \) [8].

It remains to check the full set of commutation relations between the symmetry generators. Nontrivial are only the commutators corresponding to \((2.8)\). First note that from \((3.5)\) and \((3.7)\) follows the commutator \([E^2, Z_n^*] = Z_n^* (1 + 2E)\), which is equivalent to the statement: if \(\Psi_\omega \) is an eigenstate of \(E^2 \) with the eigenvalue \(\omega^2 \), then \(Z_n^*\Psi_\omega \) is also an eigenstate of \(E^2 \) with the eigenvalue \((\omega + 1)^2\). This implies \([E, Z_n^*] = Z_n^*\). Now, only the commutation relations between the boost operators need discussion.

Calculating the commutator \([J_m^0, J_n^0]\), we rewrite it in the form

\[
[J_m^0, J_n^0] = \sqrt{E}(x_m E x_n E - x_n E x_m E) \frac{1}{\sqrt{E}},
\]

(3.19)

and use the relation

\[
E x_n E - x_n E^2 = \frac{N - 1}{2} x_n - V_n,
\]

(3.20)

which easily follows from the commutator \([E, J_m^0] = iJ_m^0\). With the help of \((3.20)\), we find that the operator in the parentheses in \((3.19)\) is \(J_m^0 \). Since \([E, J_m^0] = 0\), we can neglect the operators \(\sqrt{E} \) in \((3.19)\) and obtain \([J_m^0, J_n^0] = iJ_m^0 \). The other commutation relations of the boost generators are derived in a similar way. In particular, from \([E, J_m^0] = -iJ_m^0\) follows

\[
E V_n E - V_n E^2 = \left(\frac{(N - 1)^2}{4} - E^2 \right) x_n = \frac{N - 1}{2} V_n,
\]

(3.21)

which together with \((3.20)\) is helpful to check the commutator \([J_m^0, J_n^0] = i\delta_{mn} E\).

The calculation of the Casimir operator can be done also with the help of \((3.20)\) and it yields \(E_0(E_0 - N) \). Note that the relation of the Casimir to the lowest energy value has been renormalized relative to the classical expression \(E_0^2 \).

Finally, we discuss the massless case. According to \((3.12)\) it corresponds to

\[
E_0^\pm = \frac{N \pm 1}{2},
\]

(3.22)

with the ground state wavefunctions \(\Psi_{E_0^-} \sim 1, \Psi_{E_0^+} \sim \sqrt{1 - x^2} \).

To construct the generators of conformal transformations we use functions \((2.14)\) and first introduce the operator \(C_{0'} \) similarly to the boost generators \((3.3)\). Then, \(C_0 \) and \(C_n \) can be
defined by the commutators of C_0 with E^2 and J_{00}, respectively. As a result we find

$$C_0 = -\sqrt{E} \sqrt{1 - x^2} \sqrt{E}, \quad C_0 = i \sqrt{E} \sqrt{1 - x^2} \left(D + \frac{N - 1}{2} \right) \frac{1}{\sqrt{E}}.$$ (3.23)

These operators together with the isometry generators realize the commutation relations of the conformal group $\text{SO}(2, N + 1)$. Like for the isometry generators, the check goes as follows: one first realizes the $\text{sl}(2)$ algebra with E, C_0, C_0 and then derives operator identities similar to (3.20) and (3.21), which becomes helpful to verify the other commutation relations.

Introducing the lowering and raising operators

$$Z = C_0 - i C_0 \quad \text{and} \quad Z^* = C_0 + i C_0,$$

we find

$$Z \Phi_{E_0^+} \sim \Phi_{E_0^-}, \quad Z^* \Phi_{E_0^-} \sim \Phi_{E_0^+}.$$ (3.24)

Therefore, the conformal symmetry is realized on the states constructed by the action of the creation operators (Z^*, Z) on both ground states $\Phi_{E_0^+}$ and $\Phi_{E_0^-}$ [6].

For AdS$_2$ note that $E_{0}^+ = 0$ and the operator $1/\sqrt{E}$ becomes singular. That also makes the discussion of the conformal symmetry in AdS$_2$ special.

4. Covariant quantization in AdS

Covariant quantization of the particle dynamics in AdS$_{N+1}$ is based on the analysis of the Klein–Gordon-type equation

$$(\Box - M^2) \Phi = 0,$$ (4.1)

where \Box is the covariant d’Alembertian in AdS$_{N+1}$. Equation (4.1) is a quantum analog of the mass shell condition $g^{\mu \nu} p_\mu p_\nu + M^2 = 0$ and, in general, one has to make the replacement

$$g^{\mu \nu} p_\mu p_\nu \mapsto - \Box - \tilde{a} R_g,$$ (4.2)

where R_g is the spacetime scalar curvature and \tilde{a} is a constant. Since R_g is constant for AdS$_{N+1}$ and equal to $- \frac{N(N+1)}{R^2}$, this ambiguity has been included in M^2

$$M^2 = M^2 - \tilde{a} \frac{N(N+1)}{R^2}.$$ (4.3)

Our task is now to fix the ambiguity of the value of M^2 by requiring exact correspondence to the previous treatment in coordinate representation.

The Hilbert space of the covariant quantization is formed by the positive frequency solutions of equation (4.1)

$$\Phi_\omega(\theta, x) = e^{-i \omega \tilde{a} \Phi_\omega(x), \quad \omega > 0},$$ (4.4)

with the standard scalar product

$$\langle \Phi_2 | \Phi_1 \rangle = \frac{i}{2} \int_{\theta=\tau} d^N x \sqrt{-g} \delta^{00} \partial_\theta \Phi_2^* \Phi_1 - \Phi_2^* \partial_\theta \Phi_1).$$ (4.5)

Using again the coordinates $x^\mu = (\theta, x_n)$, by (2.2) we find

$$g = - \frac{R^{2N+2}}{(1 - x^2)^{N+2}}, \quad g^{mn} = \frac{1 - x^2}{R^2} (\delta_{mn} - x_m x_n),$$ (4.6)

and the equation for $\Phi_\omega(x)$ obtained from (4.1) and (4.4) takes the form of an eigenvalue problem

$$-(1 - x^2)^{N/2} \partial_m \delta_{mn} x_m x_n \partial_\theta \Phi_\omega(x) + \frac{M^2 R^2}{1 - x^2} \Phi_\omega(x) = \omega^2 \Phi_\omega(x).$$ (4.7)
If we multiply this equation by \((1 - x^2)^{\frac{1}{2}}\) and make the replacements
\[
\mathcal{M}^2 R^2 \mapsto E_0(E_0 - N), \quad \phi_{\omega}(x) \mapsto (1 - x^2)^{\frac{1}{2}} \Psi_\omega(x),
\]
we get just the eigenvalue problem (3.15) for operator (3.14).

To justify these replacements and find the exact correspondence between the two quantization methods we compare the corresponding scalar products and the symmetry generators.

When two wavefunctions (4.4) have equal \(\omega\), the scalar product (4.5) reduces to
\[
\langle \Phi_2 | \Phi_1 \rangle = R^{N - 1} \int \frac{d^N x}{(1 - x^2)^{N/2}} \phi_{\omega, \omega}^*(x) \phi_{\omega, \omega}(x).
\]
The local integration measure here differs from \(\sqrt{k(x)}\) just by the factor compensated in rescaling (4.8). The exact correspondence between the wavefunctions then takes the form
\[
\Phi_\omega(\theta, x) = e^{-i \omega \theta} \sqrt{R^{N - 1}} \omega (1 - x^2)^{\frac{1}{2}} \Psi_\omega(x),
\]
where \(\omega\) is an eigenvalue of the operator \(E\). For generic superpositions of energy eigenfunctions correspondence (4.10) implies
\[
\phi(x) = \int_{y^2 < 1} d^N y \frac{K(x, y)}{\sqrt{1 - y^2}} \Psi_\omega(y),
\]
with \(l\) a collective (angular momentum) index counting the degeneracy of the energy levels (3.18). The function \(K(x, y)\) is the AdS analog of the Newton–Wigner function \([10]\) in Minkowski space and \(\phi(x) = \Phi(0, x)\).

The wavefunctions \(\Phi(\theta, x)\) are scalar fields under the isometry transformations. This implies that the symmetry generators of the covariant quantization are given by
\[
J_{AB} = -i V_{AB},
\]
where \(V_{AB}\) are the vector fields of the isometry transformations (2.3). The relation between the Casimir operator of generators (4.12) and the covariant d’Alembertian
\[
\frac{1}{2} J_{AB} J^{AB} = R^2 \Box,
\]
justifies the replacement \(\mathcal{M}^2 R^2 \mapsto E_0(E_0 - N)\) in (4.7).

Note that this expression for \(\mathcal{M}^2\) together with (3.12) and (4.3) fixes also \(\tilde{a} = \frac{N - 1}{4R^2}\). The bound \(M^2 R^2 \geq -\frac{1}{4}\) stated after equation (3.13) then corresponds to the Breitenlohner–Freedman bound \(M^2 R^2 \geq -\frac{N - 1}{4R^2}\) [7].

Let us now consider the relation between the symmetry generators (4.12) and their counterparts in the coordinate representation. From correspondence (4.10) we find that operators (4.12) are mapped just to the operators constructed in the previous section. The rule for this map is the following: one has to replace the operator \(i \partial_\theta\) by \(E\), then set \(\theta = 0\) in (4.12) and (2.3) and then multiply the obtained operators by \(\sqrt{E} (1 - x^2)^{\frac{1}{2}}\) from left and by \((1 - x^2)^{\frac{1}{2}} / \sqrt{E}\) from right.

A last comment concerns the massless case. In the covariant approach it is described by the equation
\[
\left(\Box + \frac{N^2 - 1}{4R^2}\right) \Phi = 0,
\]
where
corresponding to \(E_0^\pm = \frac{N \pm 1}{2} \). This equation is invariant under conformal transformations of the wavefunction \(\Phi \) that infinitesimally can be written as [11] (see (2.12))

\[
\Phi \rightarrow \Phi + \epsilon A \left(V_A + \frac{N - 1}{2R} X_A \right) \Phi,
\]

where \(X_A \) are the embedding coordinates and \(V_A \) are the vector fields of the conformal transformations (2.13). One can check that the above described correspondence between the operators of the covariant quantization and the coordinate representation matches the generators of the conformal transformations as well.

5. Particle in a static spacetime

At the end we return to the general case started with operator (1.7). Its eigenvalue problem is equivalent to the equation

\[
\Delta_h \psi_\omega(x) + (\omega^2 - a R_{\hat{g}}(x) - \tilde{M}^2 e^{f(x)}) \psi_\omega(x) = 0.
\]

(5.1)

According to (1.5) \(h_{mn} \) is a rescaling of \(\hat{g}_{mn} \), the spatial part of the metric tensor. Therefore, the scalar curvature here can be written as

\[
R_h = e^f \left(R_{\hat{g}} + (N - 1) \Delta_{\hat{g}} f - \frac{(N - 1)(N - 2)}{4} g^{mn} \partial_m f \partial_n f \right).
\]

(5.2)

The Laplace operators of the rescaled metrics are related by

\[
\Delta_h = e^f \left(\Delta_{\hat{g}} - \frac{N - 1}{2} g^{mn} \partial_m f \partial_n f \right).
\]

(5.3)

Now we consider the covariant quantization of the same system, based on the Klein–Gordon-type equation with the replacement rule (4.2)

\[
(\Box - \tilde{a} R_g - \tilde{M}^2) \Phi = 0.
\]

(5.4)

The positive frequency solutions of these equation \(\Phi = e^{-i \omega x^0} \phi_\omega(x) \) form a Hilbert space with the scalar product (4.5) and the wavefunction \(\phi_\omega(x) \) satisfies the equation

\[
\sqrt{\frac{e^f}{\hat{g}}} \partial_m \sqrt{\frac{e^f}{\hat{g}}} g^{mn} \partial_n \phi_\omega(x) + (\omega^2 - \tilde{a} e^f R_g - \tilde{M}^2 e^f) \phi_\omega(x) = 0,
\]

(5.5)

that can also be treated as an eigenvalue problem. To relate it with (5.1), we introduce the map between the eigenfunctions

\[
\phi_\omega(x) = \frac{e^{\frac{i}{2} f(x)}}{\sqrt{\omega}} \psi_\omega(x),
\]

(5.6)

compatible with the scalar products (1.6), (4.5) and (4.9).

Using the relation between the scalar curvatures \(R_g \) and \(R_{\hat{g}} \)

\[
R_g = R_{\hat{g}} - \Delta_{\hat{g}} f - \frac{1}{2} g^{mn} \partial_m f \partial_n f,
\]

(5.7)

and equations (5.2)–(5.3), we find that (5.1) and (5.5) are equivalent to each other for

\[
\tilde{M} = M, \quad \tilde{a} = a = \frac{N - 1}{4N}.
\]

(5.8)

This value of the coefficient \(\tilde{a} \) corresponds to the Weyl invariance for \(M = 0 \) (see e.g. [11]).
6. Conclusions

We discussed the quantization of a particle in \((N + 1)\)-dimensional static spacetimes after Hamiltonian reduction within a coordinate representation. The key point of this analysis is the observation, that the expression for the squared energy looks like the Hamiltonian for a non-relativistic particle in a curved \(N\)-dimensional space. This fact has been used in the literature at several places, see e.g. [12–14]. However, the use of this observation for fixing some ordering ambiguities and for a complete realization of symmetry algebras in terms of operators acting on position space wavefunctions is a new facet of this issue. The description of a quantum particle in terms of position-dependent wavefunctions seems to be very natural.

But in order to respect the relativistic principles, the generators for transformations involving time (energy, boosts) become non-local.

The ordering ambiguities concern the value of a factor in front of the scalar curvature which has been fixed to \(a = \frac{N-1}{4N}\). Applying in different situations other principles or normalization conditions, one generates other values for \(a\), compare e.g. the value appearing in the setting of [5, 15, 16]. For the isometry algebra of AdS\(_{N+1}\) we found a new representation in terms of operators acting on functions depending on \(N\)-dimensional space coordinates. To get this representation, we had to solve further ordering problems for all the other generators besides the squared energy.

Usually one notes \textit{a posteriori} that the Klein–Gordon equation for \(M^2 = M^2_\omega = -\frac{N^2-1}{4R^2}\) exhibits conformal invariance [9, 17] and therefore \(M^2 = \mathcal{M}^2 - M^2_\omega\) should be called the squared mass. Our analysis sheds some different light on the interpretation of the mass parameter \(M^2\) in the AdS\(_{N+1}\) Klein–Gordon equation. We use no field theoretical arguments. On the basis of pure particle quantum mechanics our \(M^2\) is \textit{a priori} the squared mass, and the shift to \(\mathcal{M}^2\) is generated by the quantum mechanical ordering effect.

As a byproduct we constructed the AdS analog of the Minkowski space Newton–Wigner wavefunctions [10]. It would be interesting to perform the sum explicitly and to compare its analytic properties to the Minkowski case and recent discussion in de Sitter space [18]. Note that a generalization of our quantization scheme to non-static spacetimes with a global time coordinate is straightforward.

Furthermore, one could try to apply the techniques of our paper to the quantization of strings in AdS using a gauge in which the energy density along the string is constant.

Acknowledgments

This work was supported in part by Deutsche Forschungsgemeinschaft via SFB 647 and by VolkswagenStiftung. GJ was also supported by GNSF.

Appendix. Low-dimensional cases

\textit{Eigenfunctions in AdS}_2

In AdS\(_2\) the scalar curvature term in (3.1) vanishes and operator (3.1) becomes

\begin{equation}
E^2 = -(1 - x^2)\partial_x^2 + x\partial_x + \frac{E_0(E_0 - 1)}{1 - x^2},
\end{equation}

with \(x = x_1 \in (-1, 1)\). The ground state

\begin{equation}
\Psi_{E_0}(x) \sim (1 - x^2)^{E_0/2},
\end{equation}

10
which is annihilated by the lowering operator $Z = J_{10} - iJ_{01}$, is an eigenfunction of operator (A.1) with the eigenvalue E_0^2. The action of the raising operator $Z^* = J_{10} + iJ_{01}$ on the ground state creates the first exited state $\Psi_{E_1}(x) \sim x(1 - x^2)^{\frac{d}{2}}$, which is an eigenfunction of operator (A.1) with the eigenvalue $(E_0 + 1)^2$. Continuing this process step by step, with the notation $\psi_k = \Psi_{E_1}$ and $\alpha = E_0$, one finds
\[\psi_{k+1}(x) \sim [(\alpha + k)x - (1 - x^2)\partial_x]\psi_k(x), \] (A.3)
and therefore the eigenfunctions can be written in the form
\[\psi_k(x) = c_{k,\alpha}(1 - x^2)^{\frac{d}{2}}C_k^{\alpha}(x), \] (A.4)
where $C_k^{\alpha}(x)$ is a polynomial of order k and $c_{k,\alpha}$ denotes a normalization constant. According to (A.3), the functions $C_k^{\alpha}(x)$ satisfy the recursive relations
\[C_{k+1}^{\alpha}(x) = (2\alpha + k)x C_k^{\alpha}(x) - (1 - x^2) \frac{d}{dx} C_k^{\alpha}(x), \] (A.5)
of the Gegenbauer Polynomials. These functions are orthogonal to each other under the scalar product with the weight $(1 - x^2)^{\frac{d-1}{2}}$ and the normalization coefficients are given by
\[c_{k,\alpha} = 2^{\alpha} \Gamma(\alpha) \left[\frac{(k + \alpha)k!}{2\pi \Gamma(2\alpha + k)} \right]^{\frac{1}{2}}. \] (A.6)

Using the recursive relation of the Gegenbauer polynomials, one can calculate the matrix elements of the symmetry generators in basis (A.4) and find
\[\langle \psi_l | Z | \psi_k \rangle = \sqrt{k(k - 1 + 2\alpha)} \delta_{l,k-1}, \quad \langle \psi_l | Z^* | \psi_k \rangle = \sqrt{(k + 1)(k + 2\alpha)} \delta_{l,k+1}. \] (A.7)
These matrix elements and the spectrum $E_k = \alpha + k$ correspond to the well-known unitary irreducible representation of the $\mathfrak{so}(2, 1)$ algebra with the Casimir invariant $C = \alpha(\alpha - 1)$. Note that the parameterization $x = -\cos \sigma$, $\sigma \in (0, \pi)$, gives to (A.1) the form of the Schrödinger operator with the Pöschl–Teller potential [19]
\[E^2 = -\partial_x^2 + \frac{\alpha(\alpha - 1)}{\sin^2 \sigma}. \] (A.8)

Eigenfunctions in AdS$_3$

The symmetry generators in AdS$_3$ realize the decomposition $\mathfrak{so}(2, 2) = \mathfrak{so}(2, 1) \oplus \mathfrak{so}(2, 1)$ in terms of the left- and right-hand side operators
\[E_L = E - J_{12}, \quad Z_L = Z_1 - iZ_2; \quad E_R = E + J_{12}, \quad Z_R = Z_1 + iZ_2. \] (A.9)
This means that the triplets (E_L, Z_L, Z_L^*) and (E_R, Z_R, Z_R^*) both form a copy of the $\mathfrak{so}(2, 1)$ algebra and the left operators commute with the right ones. Therefore, the states $\Psi_{lr} = (Z_L^l)^j (Z_R^r)^j \Psi_{E_0}$ with different pairs (l, r) are orthogonal to each other.

In the complex coordinates on the disk $\zeta = x_1 + ix_2$, $\tilde{\zeta} = x_1 - ix_2$ operator (3.1) becomes
\[E^2 = \zeta^2 \partial_{\zeta}^2 + \tilde{\zeta}^2 \partial_{\tilde{\zeta}}^2 - (4 - 2\zeta \tilde{\zeta}) \partial_{\zeta}^2 + 2(\zeta \partial_{\zeta} + \tilde{\zeta} \partial_{\tilde{\zeta}}) + \frac{1}{4} \frac{(E_0 - 1)^2 - \frac{1}{4}}{1 - \zeta \tilde{\zeta}}. \] (A.10)
and the corresponding vacuum wavefunction (3.11) is
\[\Psi_{E_0} (\zeta, \tilde{\zeta}) \sim (1 - \zeta \tilde{\zeta})^{\frac{d}{2} - \frac{1}{2}}. \] (A.11)
The creation operator Z_L^* can be written as
\[Z_L^* = \sqrt{E} (\zeta (E + 1/2 + \zeta \partial_{\zeta} + \tilde{\zeta} \partial_{\tilde{\zeta}}) - 2\partial_{\zeta}) \frac{1}{\sqrt{E}}, \] (A.12)
and Z^*_R is obtained by complex conjugation of (A.12). Calculating the action of these raising operators on the eigenfunctions of energy, one can neglect the \sqrt{E} factors in (A.12), since they become numbers. This remark simplifies the recursive relations between the wavefunctions and one finds

$$\Psi_{l\nu}(\zeta, \bar{\zeta}) \sim \Psi_{E_0}(\zeta, \bar{\zeta}) \sum_{j} (-1)^j \frac{\Gamma(E_0 + l + r - j)}{j!(l - j)!(r - j)!} \zeta^{l-j} \bar{\zeta}^{r-j},$$

which is an eigenfunction of operator (A.10) with the eigenvalue $(E_0 + l + r)^2$.

References

[1] Birrell N D and Davies P C W 1982 *Quantum Fields in Curved Space* (Cambridge: Cambridge University Press) 340 pp
[2] Fronsdal C 1974 Elementary particles in a curved space: II *Phys. Rev. D* 10 589
[3] Aharony O, Gulser S S, Maldacena J M, Ooguri H and Oz Y 2000 Large N field theories, string theory and gravity *Phys. Rep.* 323 183 (arXiv:hep-th/9905111)
[4] DeWitt B S 1952 Point transformations in quantum mechanics *Phys. Rev.* 85 653
[5] Bastianelli F 2005 Path integrals in curved space and the worldline formalism arXiv:hep-th/0508205
[6] Dorn H and Jorjadze G 2006 Massless scalar particle on AdS spacetime: Hamiltonian reduction and quantization *J. High Energy Phys.* JHEP05(2006)062 (arXiv:hep-th/0508072)
[7] Breitenlohner F and Freedman D Z 1982 Stability in gauged extended supergravity *Ann. Phys.* 144 249
[8] Dorn H and Jorjadze G 2005 Oscillator quantization of the massive scalar particle dynamics on AdS spacetime *Phys. Lett. B* 625 117 (arXiv:hep-th/0507031)
[9] Avis S J, Isham C J and Storey D 1978 Quantum field theory in anti-de Sitter space-time *Phys. Rev. D* 18 3565
[10] Newton T D and Wigner E P 1949 Localized states for elementary systems *Rev. Mod. Phys.* 21 400
[11] Jackiw R 2006 Weyl symmetry and the Liouville theory *Theor. Math. Phys.* 148 941 (arXiv:hep-th/0511065)
[12] Castagnino M and Ferraro R 1989 Hamiltonian diagonalization in foliable space-times: a method to find the modes *Phys. Rev. D* 40 4188
[13] Vachaspati T, Stojkovic D and Krauss L M 2007 Observation of incipient black holes and the information loss problem *Phys. Rev. D* 76 024005 (arXiv:gr-qc/0609024)
[14] Wang J E, Greenwood E and Stojkovic D 2009 Schrödinger formalism, black hole horizons and singularity behavior *Phys. Rev. D* 80 124027 (arXiv:0906.3250[hep-th])
[15] Greenwood E, Halstead E and Hao P 2010 Classical and quantum equations of motion for a BTZ black string in AdS space *J. High Energy Phys.* JHEP02(2010)044 (arXiv:0912.1860[gr-qc])
[16] Gervais J L and Jevicki A 1976 Point canonical transformations in path integral *Nucl. Phys. B* 110 93
[17] DeWitt B S 2003 The global approach to quantum field theory: 1 *Int. Ser. Monogr. Phys.* 114 1–528
[18] Fronsdal C 1975 Elementary particles in a curved space: 4 Massless particles *Phys. Rev. D* 12 3819
[19] Yokomizo N and Barata J C A 2010 Localizability in de Sitter space arXiv:1011.0901[hep-th]
[20] Pöschl G and Teller E 1933 Bemerkungen zur Quantenmechanik des anharmonischen Oszillators *Z. Phys.* 83 143