Thermal behaviors of light unflavored tensor mesons in the framework of QCD sum rule

K. Azizi1, A. Türkan2, H. Sundu3, E. Veli Veliev4, E. Yazıcı5

1Physics Division, Faculty of Arts and Sciences, Doğuş University
Açıbadem-Kadıköy, 34722 Istanbul, Turkey
2Department of Physics, Kocaeli University, 41380 İzmit, Turkey
E-mail: kazizi@dogus.edu.tr

Abstract. In this paper, we investigated the sensitivity of the masses and decay constants of $f_2(1270)$ and $a_2(1320)$ tensor mesons to the temperature using QCD sum rule approach. In our calculations, we take into account new additional operators appearing in operator product expansion (OPE). At the end of numerical analyses we show that at deconfinement temperature the decay constants and masses decreased by 6\% and 96\% of their vacuum values, respectively. Our results on the masses and decay constants at zero temperature of the tensor mesons are consistent with the experimental data as well as the vacuum sum rules predictions.

1. Introduction
Recent years, in order to understand properties of matter at high energies heavy-ion collision experiments are performed [1-6]. These experiments have a critical role on investigating hadron structures. Up to now, there were not enough experimental results on quark-gluon plasma (QGP), but with increasing energies on heavy-ion colliders, theoretical studies on the strong interaction at finite temperature have become more important. According to thermal QCD, around critical temperature, $T_c = 175\,\text{MeV}$, a transition occurs from hadronic matter to QGP phase which probably exists in early universe and neutron stars. Hence, theoretical efforts on thermal QCD calculations are important to understand the phase diagram and other properties of strong interactions [7-24].

In order to investigate Chiral symmetry at high temperatures one needs to modify hadronic parameters for medium. There are many works on the medium corrections of hadron parameters by using different approaches such as chiral model [17,19], coupled channel [19] and sum rules [20-23] approaches. But still the thermal behaviors of tensor mesons are not known well. In this study, we use the thermal QCD sum rule method which is one of the most efficient tools [12,13] to calculate hadronic parameters of light unflavored tensor mesons. According to this method, hadron parameters are evaluated by using interpolating currents and operator product expansion approach (OPE). To extend the QCD sum rule method to finite temperatures, we assume that the Wilson expansion and the quark-hadron duality approximation are valid, but the quark and gluon condensates are changed with thermal expectation expressions [13]. In thermal QCD sum rule, the Lorentz invariance is broken and in the Wilson expansion appear extra operators which are expressed in terms of 4-vector velocity of the media and the energy-momentum tensor.
[14-16]. Taking into account these new additional operators at finite temperature sum rule is obtained.

2. QCD sum rule for unflavored light mesons

In this section our aim is to obtain spectral density and non-perturbative part of correlation function to show how the physical quantities changes with the temperature. To calculate the spectral density we need to compute two point correlation function which is given as

\[\Pi_{\mu \nu, \alpha \beta}(q, T) = i \int d^4 x e^{iq(x-y)} \langle T [J_{\mu \nu}(x), J_{\alpha \beta}(y)] \rangle \big|_{y=0}, \tag{1} \]

where \(J_{\mu \nu} \) is the interpolating current of the tensor mesons as the following form:

\[J_{\mu \nu}^{f_2(a_2)}(x) = \frac{i}{2\sqrt{2}} \left[\bar{u}(x)\gamma_{\mu}D_{\nu}(x)u(x) + \bar{u}(x)\gamma_{\nu}D_{\mu}(x)u(x) \right] + \bar{d}(x)\gamma_{\mu}D_{\nu}(x)d(x) \pm \bar{d}(x)\gamma_{\nu}D_{\mu}(x)d(x). \tag{2} \]

Here terms have positive sign for the \(f_2 \) meson and terms have negative sign for the \(a_2 \) meson in our calculations. Also \(D_{\mu}(x) \) contain four-derivatives, acting on the left and right, simultaneously, with respect to the space-time. After applying derivatives we will put \(y = 0 \).

Using the free quark propagator for light quarks we obtained the spectral density in the following form:

\[\rho_{f_2(a_2)}(s) = \frac{(m_u^2 + m_d^2) s}{32\pi^2} + \frac{3s^2}{160\pi^2}. \tag{3} \]

Using the non-perturbative parts of quark propagator as follows

\[S_q^{ij}(x-y) = \frac{-\langle \bar{q}q \rangle}{12} \delta_{ij} - \frac{(x-y)^2}{192} m_q^2 \langle \bar{q}q \rangle \left[1 - i \frac{m_q}{6} (x-y) \right] \delta_{ij} \]

\[+ \frac{i}{3} \left[(x-y) \left(\frac{m_q}{16} \langle \bar{q}q \rangle - \frac{1}{12} \langle uu \rangle \right) + \frac{1}{3} (u \cdot (x-y) \eta \langle uu \rangle) \right] \delta_{ij}, \tag{4} \]

we obtain the non-perturbative contributions which contain additional operators arising at finite temperature. \(\Theta_{\mu \nu}^{F} \) is the fermionic part of the energy momentum tensor and \(u_{\mu} \) is the four-velocity of the heat bath in Eq. (4). After matching the hadronic and OPE representations of correlator thermal sum rules for the decay constants obtained as:

\[\frac{f_{f_2(a_2)}^2(T) m_{f_2(a_2)}^6(T)}{m_{f_2(a_2)}^2 - q^2} = \int_{m_u + m_d}^{m_u(T)} ds \frac{\rho_{f_2(a_2)}(s)}{s - q^2} + \Pi_{f_2(a_2)}^{non-pert}, \tag{5} \]

where non-perturbative contributions can be written as

\[\Pi_{f_2(a_2)}^{non-pert} = \frac{m_d m_q^2}{144q^2} \langle \bar{d}d \rangle + \frac{m_u m_q^2}{144q^2} \langle \bar{u}u \rangle - \frac{2 \langle uu \rangle \langle q \cdot u \rangle^2}{9q^2}. \tag{6} \]

3. Conclusions and Discussions

Last step is to determine the working region of two parameters: Borel mass parameter \(M^2 \) and the hadronic threshold at zero temperature \(s_0(T = 0) \). Determination of these parameters is important due to sum rules results should be stable under their small variations. In this work, we have chosen the intervals \(s_0 = (2.2 - 2.5)GeV^2 \) and \(s_0 = (2.4 - 2.7)GeV^2 \) for the continuum.
thresholds in f_2 and a_2 cases, respectively. Also we have chosen the working region of Borel mass as $1.4GeV^2 < M^2 < 3GeV^2$.

Taking into account the temperature dependencies of hadronic threshold, energy density and quark condensates, we obtained that masses and decay constants are well described by the following fit functions:

$$m_{f_2} = -1.0549 \times 10^{-5}e^{72.6744T} + 1.26519,$$

$$f_{f_2} = -4.28022 \times 10^{-6}e^{42.8082T} + 0.04258,$$

and

$$m_{a_2} = -1.25459 \times 10^{-5}e^{71.8390T} + 1.3221,$$

$$f_{a_2} = -4.06115 \times 10^{-6}e^{42.6621T} + 0.04232.$$

These parameterizations are valid only in the interval $0 \leq T \leq 0.16GeV$.

Our investigations show that the values of masses and decay constants are stable until temperature 0.1 GeV but after this point they start to decrease with altering the temperature. Also at deconfinement temperature, the decay constants and masses decreased by 6% and 96% of their vacuum values, respectively.

Our results show that at zero temperature the masses and decay constants are $m_{f_2} = 1.28 \pm 0.08 GeV$, $f_{f_2} = 0.041 \pm 0.002$, $m_{a_2} = 1.33 \pm 0.10 GeV$ and $f_{a_2} = 0.042 \pm 0.002$. Our results for masses are compatible with the vacuum sum rules predictions. Our predictions on the temperature behaviors of decay constants and masses can be verified in the future experiments.

This work has been supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK) under the research projects 110T284 and 114F018.

References
[1] Apel W D et al. (Serpukhov-CERN Collaboration) 1975 Phys. Lett. B 57 398
[2] Longacre R S et al. 1986 Phys. Lett. B 177 223
[3] Doser M et al. (ASTERIX Collaboration) 1988 Phys. Lett. B 215 792
[4] Kubota Y et al. (CLEO Collaboration) 1994 Phys. Rev. Lett. 72 1972
[5] Ablikim M et al. (BES Collaboration) 2005 Phys. Lett. B 607 243
[6] Aaij R et al. (LHCb Collaboration) 2011 Phys. Lett. B 698 14
[7] Aliev T M and Shifman M A 1982 Phys. Lett. B 112 401
[8] Ebert D, Faustov R N and Galkin V O 2009 Phys. Rev. D 79 114029
[9] Aliev T M, Aziz K and Bashiry V 2010 J. Phys. G 37 025001
[10] Aliev T M, Azizi K, Savci M Phys.Lett. B 690 164
[11] Sundu H and Azizi K 2012 Eur. Phys. J. A 48 81
[12] Shifman M A, Vainshtein A I and Zakharov V I 1979 Nucl. Phys. B 147 385; 1979 Nucl. Phys. B 147 448
[13] Bochkarev A I and Shaposhnikov M E 1986 Nucl. Phys. B 268 220
[14] Hatsuda T, Koike Y and Lee S H 1993 Nucl. Phys. B 394 221
[15] Mallik S 1998 Phys. Lett. B 416 373
[16] Shuryak E V 1993 Rev. Mod. Phys. 65 1
[17] Mallik S and Sarkar S 2002 Eur. Phys. J. C 25 445
[18] Mishra A, Bratkovskaya E L, Schaffner-Bielich J, Schramm S and Stocker H 2004 Phys. Rev. C 69 015202; 2004 Phys. Rev. C 70 044904; Kumar A and Mishra A 2010 Phys. Rev. C 81 065204
[19] Waas T, Kaiser N, Weise W 1996 Phys. Lett. B 365 12
[20] Veliev E V 2008 J. Phys. G 35 035004; Veliev E V and Aliev T M 2008 J. Phys. G 35 125002
[21] Veliev E V, Azizi K, Sundu H and Aksit N 2012 J. Phys. G 39 015002; Veliev E V and Kaya G 2009 Eur. Phys. J. C 63 87
[22] Dominguez C A, Loewe M, Rojas J C and Zhang Y 2010 Phys. Rev. D 81 014007; Dominguez C A, Loewe M and Rojas J C 2007 JHEP 08 040
[23] Morita K and Lee S H 2008 Phys. Rev. C 77 064904; 2010 Phys. Rev. D 82 054008
[24] Veliev E V, Azizi K, Sundu H, Kaya G and T¨ urkan A 2011 Eur. Phys. J. A 47 110