Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials

Yingying Jian¹, Wenwen Hu², Zhenhuan Zhao¹, Pengfei Cheng², Hossam Haick¹,³ *, Mingshui Yao⁴ *, Weiwei Wu¹ *

Yingying Jian and Wenwen Hu contributed equally to this review.

Hossam Haick, hhossam@technion.ac.il; Mingshui Yao, mingshuiyao@gmail.com; Weiwei Wu, wwwu@xidian.edu.cn

¹ School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710071, People’s Republic of China
² School of Aerospace Science and Technology, Xidian University, Xi’an 710071, People’s Republic of China
³ Department of Chemical Engineering, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
⁴ Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan

HIGHLIGHTS

- This review gives a thinking based on the generic mechanisms rather than simply dividing them as different types of combination of materials, which is unique and valuable for understanding and developing the novel hybrid materials in the future.

- The hybrid materials, their sensing mechanism, and their applications are systematically reviewed. Critical thinking and ideas regarding the orientation of the development of hybrid material-based gas sensor in the future are also discussed.

ABSTRACT Chemi-resistive sensors based on hybrid functional materials are promising candidates for gas sensing with high responsivity, good selectivity, fast response/recovery, great stability/repeatability, room-working temperature, low cost, and easy-to-fabricate, for versatile applications. This progress report reviews the advantages and advances of these sensing structures compared with the single constituent, according to five main sensing forms: manipulating/constructing heterojunctions, catalytic reaction, charge transfer, charge carrier transport, molecular binding/sieving, and their combinations. Promises and challenges of the advances of each form are presented and discussed. Critical thinking and ideas regarding the orientation of the development of hybrid material-based gas sensor in the future are discussed.

KEYWORDS Gas sensor; Hybrid; Chemi-resistor; Functional nanomaterials
1 Introduction

Monitoring and recording chemical stimulus or variations in the environment are increasingly important in future production and daily life of human health [1]. Achieving this goal relies on the availability of high-performance sensor units that are capable of detecting gas analytes, such as volatile/semi-volatile organic compounds (VOCs/SVOCs) highly rich regarding critical information for the detection, monitoring and closed-loop control in many fields, including medicine, food industry, environmental monitoring, public security, and agricultural production [2, 3].

An ideal gas sensor requires high responsivity, good selectivity, fast response/recovery, great stability/repeatability, room-working temperature, low cost, and easy-to-fabricate for practical applications [4–6]. To meet those requirements, many types of gas sensors with different transduction forms, e.g., chemi-resistor, field-effect transistor (FET), solid-state electrochemical sensor (SSES), quartz-crystal microbalance (QCM), gas capacitor, surface acoustic wave (SAW), have been well studied and developed. Among them, since the 1960s [7], a chemi-resistor that contains an active sensing layer bridging a pair of electrodes became a promising candidate due to its advantages [4–6, 8–12] including easy-to-fabricate, use of very small quantity (milligram level) active materials, wide adoption of sensitive materials, and simple sensing data, which ensure its success in certain commercialization opportunities [13–15]. However, it is rare to find chemi-resistors that can meet these specific requirements.

An emerging approach in chemi-resistors to meet these needs relies on hybrid materials, viz. materials that integrate 2+ single constituents at the nanometer or molecular level [16–36], to achieve new and/or enhanced sensing properties. In this progress report, we review the advances of the hybrid material-based gas sensors concisely and comprehensively. The hybrid materials-based chemi-resistive gas sensors are distinguished, understood, and introduced based on the generic mechanisms rather than simply dividing them as different types of combination of materials. Then, the report, in detail, focuses on the research and development (R&D) aspects of hybrid gas sensors, while presenting and discussing the sensing performances of different types of hybrid materials, and associated enhanced sensing mechanisms. Promises and challenges toward the future development of each elements are deeply thought and discussed. Critical thinking and ideas regarding the orientation of the development of hybrid material-based gas sensor in the future are also discussed.

2 The Need for Hybrid Functional Nanomaterials for Sensing Applications

Chemi-resistors for gas sensing include three main processes: diffusion/molecule capture unit, surface reaction unit (including charge transfer), and charge carrier transport unit (Fig. 1a) [37]. To date, most of these sensors and/or sensor arrays utilize sensing elements that are based on single material or transduction mechanism, of which intrinsic sensing activity or additional thermal/photonic energy are usually employed as the driving force to stimulate the sensing effects of target gases (Fig. 1b). The hindrances are unavoidable at several levels: (i) not satisfying long-term stability and sensitivity of organic chemi-resistors due to the high affinity of conductive polymers (CP), such as polyaniline (PANI), polypyrrole (PPy), and polythiophene (PTh), toward volatile organic compounds (VOCs) and humidity existed in the atmosphere; (ii) high operating temperatures (usually > 200 °C), baseline drift, limited selectivity, and oxidation/decomposition of VOCs in the case of inorganic materials (especially metal oxide materials, e.g., ZnO, SnO, TiO2, SnO2)-based chemi-resistor. A reliable solution for these drawbacks is the design and utilization of new gas sensitive materials based on hybrid inorganic–inorganic [8], organic–organic [12], and inorganic–organic materials [8, 9, 12, 16–36].

Using hybrid materials as sensitive transducer offers several obvious advantages, compared with the single constituent. First, the inexhaustible abundance of hybrid materials (in both the complex constituents and novel nanostructures) makes it possible to involve an almost infinite continuum of variable factors (surface-dependent factor, interface-dependent factor, and structure-dependent factor) to generate new sensing behaviors (Fig. 1c) [38–49]. Second, with hybrid material, more chemical/physical processes with different enhanced mechanisms could be introduced to precisely design, regulate, and enhance the sensing performance mainly through catalytic reaction with analyte [50–58], charge transfer [59–63], charge carrier transport [64–66] manipulation/construction of heterojunctions [39,
molecular binding/sieving [68–73], and their combinations [74–77].

3 Hybrid Chemi-Resistive Gas Sensors

Hybrid materials can perform improved sensing characteristics via one or a combination from five typical hybridizing forms which are categorized into three sensing-dependent factors (Fig. 2a). The first combination relies on catalysis reactions (normally noble metal catalysts, e.g., Pt [78], Pd [79], Au [50], and Ag [51]) between analyte gas and decorated catalysts on host semi-conductive materials (categorized as surface-dependent factor). The second relies on a fast charge transfer process, viz carrier withdrawal or donation, electron acceptor or acceptor between guest additives and the host material (e.g., carbon nanotubes (CNTs)), reduced graphene oxide (rGO) (categorized as interface-dependent factor) [63]. The third relies on regulating the charge carrier transport in a conductive/semi-conductive materials (e.g., single-wall carbon nanotube (SWCNT)-metallo-supramolecular polymer (MSP), gold nanoparticles (GNPs)-thiols, N,N’-diphenyl perylene tetracarboxylic diimide (PTCDI-Ph)/para-sexiphenyl (p-6P)) upon exposure to gas analytes (categorized as interface- and structure-dependent factor) [66, 80, 81]. The fourth relies on manipulation/construction of the heterojunctions such as n–n, p–n, p–p, p–n–p heterogeneous semi-conductive materials (categorized as interface-dependent factor) [39]. The last one relies on semiconductors coated by gas molecular sieving/ binding layers or ligands/complexes for selective gas detection (categorized as surface- and structure-dependent factor) [72, 76, 82]. In the following section, we provide more details on each of these combinations. It should be noted that, according to the understanding of authors on chemiresistors (1. measuring the resistors directly; 2. measuring the current when the device is applied a constant bias voltage; 3. measuring the partial voltage on the device in parallel
with a constant resistance when the resistance and device is applied a constant bias voltage), we will review here only resistive-change sensing devices in which the contact of sensitive materials and electrodes is ohmic (good linearity of I–V curves under DC bias, Fig. 2b); therefore, we exclude devices in which the I–V curves under DC bias are nonlinear despite that they exhibit similar resistance changes (e.g., chemical diodes, proton/ions types).

3.1 Hybrid Gas Sensors Based on Catalytic Effects

Catalytic effects of hybrid functional nanomaterials contribute to high response, fast speed, and low operating temperature via chemical/electronic sensitization, which is usually accompanied by synergistic effects, complementary behavior, and porous structures [50, 52, 83–86]. In addition, the exposed facets (morphologies) of matrix nanograins (facet-dependent chemical activity) and catalytic additives can greatly enhance the sensing properties of hybrid nanomaterials [87, 88]. For example, introduction of Cr dopants to WO$_3$ polyhedra can not only control the specific exposed facets and activation energy, but bring catalytic effects to the matrix [50]. The combining effects led to improved sensitivity and reduced operating temperature. Further hybridization with catalytic Au nanocrystals—to form Au/Cr–WO$_3$ hybrids—contributed to high sensitivity, fast speed, and reduced working temperature to acetone and benzene due to Au/Cr co-catalysts-enhanced surface reaction (Fig. 3a, b). The advantages of co-catalysts can improve even further the hybrid materials. A recent example of this approach is Pd/Sb nanocrystals modification of SnO$_2$ that Sb and Pd functioned as anti-humidity and catalytic sites, respectively, which remarkably reduced humidity interference and improved responses toward H$_2$ (Fig. 3c) [89, 90].

The catalytic effects of loaded catalysts on host-sensitive materials are associated with the contact between catalyst and gas. A gas diffusion-favoured structure can provide additional exposed surface areas and fast speed via a combination of surface- and structure-dependent factors. The introduction of catalytic Ag NCs via e-beam evaporation and calcination into quasi-1D heterostructures significantly enhances the response and selectivity to ethanol (Fig. 3d) [51, 91]. For even further performance, quasi-1D nanostructures with
both porosity and sensitive nanobuilding blocks, namely mesoporous 1D nanofibers/tubes (meso-NF/NTs), have been reported \[41, 92–94\]. By introducing sacrificial polymeric colloids and protein-templated catalysts to the solutions, meso- and macro-porous Pt-decorated \(\text{SnO}_2\) NTs have been fabricated by electrospinning and sintering in sequence (Fig. 3e, f) \[52\]. The combined effects of porous nanostructures, fully depleted sensing areas and uniformly distributed Pt nanocatalysts on \(\text{SnO}_2\) NTs allow a highly selective detection of acetone (R5ppm = 192). Similarly, bimetallic PtM
(M = Pd, Rh, and Ni) catalysts can be introduced to meso-WO$_3$ NFs that are then highly selective detectors of acetone and H$_2$S gas [53]. Sensors array combined with pattern recognition methods (so-called e-nose) based on three different PtM-decorated meso-WO$_3$ NFs can accurately detect and discriminate the breath of a simulated biomarker through principal component analysis (PCA, Fig. 3g).

On the basis of intensive works on porous 2D ZnO nanostructures [37, 95, 96], Pd NCs have been deposited on porous 2D ZnO nanoplates (host materials) transformed by Zn$_5$(CO$_3$)$_2$(OH)$_6$ nanoplates to form 2D Pd/ZnO hybrid nanoplates (Fig. 3h); these acquire enhanced sensing properties [54]. Similarly, catalytic Pt can be used to decorate the surface of BP, which enables RT detection of H$_2$ by Pt/BP at RT (Fig. 3i) [55]. When the structure of the host materials is further upgraded to 3D hierarchical porous (hp) nanostructures, a good gas diffusion platform is obtained with a large loading area of catalysts. By taking the advantage of the opals/polymeric beads or mesoporous silica/carbon/polymer templating method, hp-MOX thin films (3D hp nanostructures) with certain additives (catalysts) have been developed [97–102]. In this simple approach, hp-SnO$_2$-inverted opal thin films loaded with mono-dispersed Pt catalyst (of uniform size of ~5 nm) were prepared (Fig. 4a) [103]. The improved sensing responses of Pt-doped SnO$_2$-inverted opal thin films were achieved due to increased porosity, electronic sensitization, and synergism (Fig. 4b). Similarly, hp–Pt–WO$_3$ or hp–Cr–WO$_3$-inverted opal thin films have been successfully

Fig. 4 a Schema of the one-step preparation of Pt-doped SnO$_2$-inverted opal films, and b responses comparison of different sensors as a function of CO concentration at 350 °C (insets are the corresponding HRTEM micrographs). Reproduced with permission [103]. Copyright 2010, American Chemical Society. c Responses comparison of different sensors as a function of working temperature to 74 ppm NH$_3$ gas (the inset is the corresponding HRTEM micrograph of Pt-WO$_3$-inverted opal films). Reproduced with permission [104]. Copyright 2011, American Chemical Society. d Synthesis of ordered mesoporous WO$_3$/Pt hybrids. e Gas response of WO$_3$/Pt-0.5 and WO$_3$/Pt-0 to different gases (hydrogen, CO, methane, ethanol, ammonia, acetone, benzene, and toluene) at 100 ppm and 125 °C in 55–60% RH (the inset is an FESEM image of the crystalline WO$_3$/Pt-0.5 viewed from the top surface). Reproduce with permission [56]. Copyright 2018, Wiley–VCH
prepared (Fig. 4c) [104]. Due to the catalytic activation of N–H bond dissociation and effective gas diffusion within the macro-porous structures, excellent NH3 responses were obtained for the hp–Pt–WO3 sensor. As another example, well-controlled self-assembly of block copolymers such as poly(ethylene oxide)-block-polystyrene (PEO–b–PS) could generate a perfect template with a highly ordered structure. Mesoporous WO3/Pt with a highly ordered and porous structure (inset of Fig. 4e) could be obtained by using this template and a 2-step pyrolysis process (Fig. 4d, including first treated in inert atmosphere and finally calcinated in air) [56]. Contributed to high surface areas (112–128 m2 g−1), large pore size (13 nm), and well-dispersed catalytic Pt NCs (~4 nm), the WO3/Pt-0.5 sensor had the highest response and fastest response-recovery speeds (Fig. 4e). Another category of nanostructures of host materials is multi-shell, yolk–shell, and multi-yolk–shell with hollow nanochamber [83–86]. With the hollow host nanochamber (SnO2) loading catalytic Pd through spray pyrolysis (Fig. 5a) [57], and showing the formation of double-shelled Pd–SnO2@Pd–SnO2@Pd–SnO2 yolk–shell spheres (Fig. 5b) [57], both sensitivity and selectivity were enhanced due to the unique hierarchical porous structure and uniformly exposed Pd catalysts. The representative works are summarized in Table 1.

As aforementioned, greatly improved sensitivity and speed have been realized by well design on the dispersion of catalysts/co-catalysts and gas diffusion-favored structures of hybrid gas sensors based on catalytic effects. The remaining problems of operating temperature and selectivity might be resolved by further combination with charge

Fig. 5 a Gas responses of dense SnO2 spheres, SnO2 yolk–shell spheres, and Pd-loaded SnO2 yolk–shell spheres to various analytical gases at 350–450 °C (B: benzene, H: H2, E: C2H5OH, F: HCHO, X: o-xylene, T: toluene). **b** Scheme showing the formation of double-shelled Pd–SnO2@Pd–SnO2 yolk–shell spheres. Reproduced with permission [57]. Copyright 2014, The Royal Society of Chemistry
transfer (Sect. 3.2) and molecule sieving layers (Sect. 3.5), respectively. Moreover, the newly developed single atomic metal and/or metal cluster-based catalysts with better catalytic effect might bring new understandings and chance in such areas [105–108].

3.2 Hybrid Gas Sensors Based on Charge Transfer Effects

Charge transfer happens between decorations and the host materials (good conductivity), which could vary the conductivity of the hybrid materials. This process improves sensitivity to the analysts at low temperature or even at room temperature (RT), accompanying fast response and recovery properties [4]. Discrete and uniform SnO$_2$ NCS-decorated multi-walled CNTs (MWCNTs) (Fig. 6a) [59] gave high performances (response of ~180% to 100 ppm of NO$_2$) at RT due to the abundance of active sites and easy electron transfer under the assistance of the well-matched work functions of SnO$_2$ and MWCNTs. Liu et al. [109] used rGO instead of the carbon nanotubes. This researcher successfully synthesized SnO$_2$ QDs/rGO hybrids by a one-step solvent thermal reaction at 180 °C (oleic acid and oleylamine as capping agents) (Fig. 6b) [109]. Due to co-effects of excellent gas adsorption of QDs, effective charge transfer between SnO$_2$–rGO interfaces and the superb transport capability of rGO, the sensor responses in 2 s with fully recovery properties upon exposure to 33 to 50 ppm of H$_2$S at RT (Fig. 6c).

Meanwhile, the SnO$_2$/rGO-based sensor showed an obvious enhanced response compared with the responses of pure SnO$_2$- or rGO-based sensors toward H$_2$S at 22 °C, in which the rGO acted as a host transducer material. By combining both advantages, 2D MoS$_2$ sheets were hybridized with 2D graphene to form rGO/MoS$_2$ aerogel with large surface areas, porous structure, and high electrical conductivity (Fig. 6d) [61]. Efficient and rapid charge transfer across the interface ensured enhancement and fast detection of NO$_2$ than bare rGO or MoS$_2$ (Fig. 6e). Ascribing to the high specific surface area of porous Cu$_2$O nanowires networks and improved conductivity via effective charge transfer, rGO–Cu$_2$O mesocrystals had much higher sensitivity to NO$_2$ at RT, surpassing the performance of stand-alone systems of Cu$_2$O and rGO sheets (Fig. 6f) [62].

CPs could also be applied in charge transfer hybrids by replacing the inorganic components. For instance, graphene was combined with PANI to form a hybrid thin film that had improved, reversible, and stable NH$_3$ sensing (Fig. 6g, h). The fast electron transfer between hybrids and NH$_3$, assisted by π–π interactions of PANI and rGO with low electron transfer energy barrier, led to more electrons transfer from PANI to rGO; this effectively improved the responsivity and response time (Fig. 6i) [63]. Up to date, the detecting gases are limited to strong reducing/oxidizing molecules such as NO$_2$, NH$_3$, and H$_2$S, which hinders the widely application of such hybrid gas sensors. The critical points to overcome this shortcoming may be depicted as: (1) the chemical/electronic modification of the reported charge transfer based hybrids to improve the sensitivity and expand the types of detectable gases (i.e., Pt–SnO$_2$/rGO, details in Sect. 3.6); (2) the development on the new candidate of chemi–resistive decorations with desired absorption–desorption process and well-tailored energy level/energy band gap structure, which always shows low thermal activation energy (< 0.5 eV, i.e., electronic conductive metal–organic frameworks (EC-MOFs), for details see Sect. 3.5). The representative works are summarized in Table 2.

3.3 Hybrid Gas Sensors Based on Regulation of Charge Transport

Different from charge transfer that simply uses high charge transport capability of the highly conductive component, hybrid gas sensors based on regulation of charge carrier...
transport can manipulate the sensing properties by changing carrier concentrations, transportation mode, and/or pathways of charge transport.

A simple and effective way of enhancing responsivity relies on controlling the charge transport by tuning carrier concentrations. For example, a PTCDI-Ph/p-6P ultrathin film was fabricated with a thickness of only 6 nm, of which 5 nm was attributed to (p-6p/p type) asymmetric thickness and 1 nm to (PTCDI-Ph/n type) [64]. Electrons in the PTCDI-Ph were deprived by NO₂, which simultaneously released the restricted hole in p-6P, and thus influenced the transportation of p-6P; this generated a NO₂ sensing signal at RT (Fig. 7b). Chi et al. [64] thermal-deposited a high-quality crystalline terrace-like TIPS-pentacene film on p-6P that can easily be positively charged (Fig. 7c). The efficient charge transport ability and low original carrier concentration gave superb NO₂ sensing in terms of both response/recovery speed (Fig. 7d) and responsivity/sensitivity (Fig. 7e) [64]. Impressively, when the transport direction of charge carriers changes from horizontal to vertical in a vertical diode
(containing top/down electrodes and VOPc/F16CuPc layers, Fig. 8a), the sensor responded remarkably well to 0.5–5 ppm NO2 at RT (Fig. 8c), with an acceptable sensing stability (Fig. 8b) and wide linear working region [65]. More interestingly, when the voltage bias is raised from 0.2 to 1.5 V, the sensing ability weakened dramatically (Fig. 8d), being ascribed to the transportation change from ohmic to space charge limited current (SCLC) mode (Fig. 8e) [65], which may give guidance as to how to choose the bias to control the charge transportation for gas sensors to get them to work under the best conditions.

Another strategy to manipulate the properties of sensors based on charge transport is by regulating the conductive pathways of conductive-insulate hybrid materials via physical cracks, chemical bindings, or the phase of the component. More specifically, this approach relies indeed on regulating the electron hopping barrier, the interspace between conductive materials, phase-change or their combination. Insulating polymers can be combined with sensitive

Table 2 Representative works based on charge transfer effects

Materials	Gas detection	Detection range	Work temperature	Refs.
CuxO/multilayer graphene	NOx	97 ppb–97 ppm	RT	[229]
rGO/NiO	NO2	0.25–60 ppm	RT	[230]
ZnO QDs/graphene	HCHO	25–100 ppm	RT	[231]
SnO2/rGO	H2S	10–100 ppm	RT	[109]
Graphite/polyaniline	NH3	50–1600 ppm	RT	[232]
SnO2/graphene	CH4	1000–10,000 ppm	150 °C	[233]
SnO2 CQD/MWCNT	H2S	3.3–100 ppm	70 °C	[234]
rGO/TiO2–Nb	CO	100–1000 ppm	380 °C	[235]
Fe3O4@RGO	NO2	50 ppb–50 ppm	RT	[236]

Fig. 7 a Sensor device configuration and molecular structures of the materials. b The relative response of 1 nm PTCDI-Ph/5 nm p-6P film to NO2 pulses. The relative response curve is plotted as a function of time as the devices become exposed to different NO2 concentrations. Reproduced with permission [66]. Copyright 2013, Wiley–VCH. c Sensor device configuration and molecular structures of the materials. d The t90,res, t10,rec and relative recovery after 10-min N2 pulse of the responses to different gases. e Responsivity (R) and sensitivity (S) to different gases. Reproduced with permission [64]. Copyright 2017, Wiley–VCH
inorganic materials to fabricate highly sensitive and selective chemi-resistors (Fig. 9a). Hybrid thin films as sandwiched PMMA/Pd/PMMA (PMMA = poly(methyl methacrylate)) were prepared on a flexible substrate using sputtering and spin coating in sequence (Fig. 9a) [110]. Hybrid thin films with nanogaps formed by 25% mechanical stretching have very selectivity and sensitivity in detecting H₂ against O₂, ascribed to the selective penetration of H₂ in PMMA membranes and the density reduction of the cracks formed in the trilayer of the hybrid thin films (Fig. 9b). Adoption of similar principles, but with higher effects, relies on films of GNPs coated with monolayers of thiols [111]. These structures were a good solution for VOCs sensing due to the swelling and shrinkage of molecular chains interacting with
VOCs (Fig. 10a) [81]. Assembly of the GNP-based chemiresistors with a wide variety of functional groups creates sensor arrays with different resistances that can be further varied after interacting with VOCs [81]. The transport of electrons, expressed in electrical resistance, can be dually regulated by controlling the interspaces between GNPs after applying strain to the GNPs-based film, which further influence sensitivities (Fig. 10b) [112]. CNTs are also used as the host with the surface coverage of molecular (MSPs) (inset of Fig. 10c) [80]. Such MSPs could create sensory devices with a dosimetric (time- and concentration-integrated) increase in electrical conductivity triggered by electrophilic chemical substances (Fig. 10c).

In summary, for cases where the resistance decreased upon exposure to target gas, the depression of the off current via carrier concentrations reduction, transportation mode changes and/or physical cracks might be the most effective way to realize high sensitivity. Simultaneously, as presented above, the component used for the controlling charge transport of host materials can further contribute to improved speed, long-term stability, and excellent selectivity. The representative works are summarized in Table 3.

3.4 Hybrid Gas Sensors Based on Heterojunctions

Heterojunction is defined as the interface between two dissimilar semiconductors (one is the host, and the other one is the guest) that form a junction (n–n, p–p, p–n) linked with energy band structure due to the alignment of their fermi level. Notably, although the broad definition of
heterojunctions covers all types of composites forming a junction in the interface, it is not clear enough for the well understanding of the complicated sensing mechanisms of composites sensing materials. Therefore, in this work, the narrow definition of manipulating/constructing heterojunctions is used, which excludes cases of catalytic effects, charge transfer, and charge carrier transport. According to the definition, the junction changes the interface potential energy barriers and regulates the transfer and/or injection of electrons and holes in a precise manner when it interacts with gas analytes. For example, n–n heterojunctions made of In$_2$O$_3$ hollow spheres (acetone-sensitive host) coated with CeO$_2$ nanoparticles (humidity-sensitive guest) were synthesized and characterized as a chemi-resistive film. Exposing the layer to various gas analytes has shown selective detection of acetone in the presence of water, taking advantage of the chemical interaction between CeO$_2$, In$_2$O$_3$, and water vapor, which greatly reduces the interfering effects of humidity (Fig. 11a) [113]. By modulating interface potential energy barrier between n–n junctions, as in the case of Fe$_2$O$_3$/TiO$_2$ tube-like quasi-1D nanostructures synthesized through a multi-step hydrolysis (Ostwald ripening & thermal reduction), the corresponding sensing performance could be greatly improved (Fig. 11b) [114]. Combining modulation of electron transfer over the energy barrier at the perfect SnO$_2$/ZnO heterojunction—fabricated by atomic layer deposition—and UV light generated electron–hole pairs, the sensitivity to NO$_2$ could be improved using the SnO$_2$/ZnO core-sheath nanowires (Fig. 11c) [115]. By introducing narrow band gap into the junction, such as in the case of In$_2$O$_3$ NCs to ZnO, a good response at visible-light conditions to gas analytes (e.g., formaldehyde) at RT (R100 ppm = 419%) [54] was attainable.

The unique morphology (good compatibility with the devices), nanoscale thickness, and high surface area of 2D nanostructures make them promising as the host materials for chemi-resistive gas sensors. Hybrids of SnO$_2$ NCs-decorated MoS$_2$ nanosheet (MoS$_2$/SnO$_2$) were synthesized via hydrolysis-pyrolysis processes (Fig. 11d) with air stability [116]. The SnO$_2$ NCs not only enhanced the stability of MoS$_2$ nanosheets in dry air, but served as strong dopants for MoS$_2$, leading to the changes of conduction channels in the MoS$_2$ nanosheets (Fig. 11e). For further improvements in the sensing performance, introduction of porosity, such as in the case of WO$_3$ lamella-based films loaded with mono-dispersed SnO$_2$ QDs (~ 4 nm) (Fig. 11f), could reach high levels [117]. Experimental results show that the porous lamellar-structured WO$_3$–SnO$_2$ hybrid films could achieve high response to NO$_2$ gas, ascribing the effective insertion of QDs into lamella stacks as a strong electronic sensitization.

Compared with n–n heterojunctions, p–n heterojunctions provide a stronger manipulation on interface potential energy barriers, build-in electric field and additional catalytic effects in some unique cases. For example, exposing p–CuO nanoparticles loaded on CuO–SnO$_2$ p–n nanowires to H$_2$S transformed it to highly conductive CuS (Fig. 12a) [67], resulting in depleted region change (the p–n junction breakup) and second-order effects (the oxidation of H$_2$S by absorbed oxygen) after p-CuO was reversely generated and removed on the SnO$_2$ surface. Without generating

Table 3 Representative works based on regulation of charge transport

Materials	Gas detection	Detection range	Work temperature	Refs.
TIPS-pentacene	NO$_2$	0.2–20 ppm	RT	[64]
PMMA/Pd/PMMA	H$_2$	600–6000 ppm	RT	[110]
PANI/SWCNT	NH$_3$	1–100 ppm	RT	[237]
Oleylamine/Pt	Organic contamination	<0.3 ppm	RT	[238]
Ionic liquids/CNT	Heptanal	200 ppm	RT	[239]
	Toluene	1000 ppm		
	Ethanol	1000 ppm		
CNTs/hexa-peri-hexabenzocoronene bilayers	Decane	~ 10 ppb	RT	[240]
	Octane	~ 15 ppb		
	Hexane	~ 10 ppb		
	Ethanol	~ 10 ppb		
GNP	Nonanal, styrene, ethanol, propionitrile	50–1000 ppb	RT	[112]
new chemical compounds, simply tuning the thickness of in situ oxidation layer, rich Te–Te or TeO$_2$/TeO$_2$ bridging point contacts and additional p–n heterojunctions (Te/SnO$_2$) contributed to further excellent sensing performances (to CO and NO$_2$) of the brush-like heterostructures (Fig. 12b) [118]. The nanorods of p-type coating layer can be replaced by continuous layer to form core-sheath hybrids processing radial modulation of potential energy barriers, for instance, both n-ZnO/p-CoPc (cobalt phthalocyanines, Fig. 12c) [119] and n-SnO$_2$/p-Cu$_2$O (Fig. 12d) [120]. Core-sheath NRs have better sensitivity of the target gases.

Conductive polymers (CPs, e.g., PPy, poly(3,4-ethylenedioxythiophene) (PEDOT), PANI) that are p-type components of diverse types of p–n heterojunctions can work at RT or low operating temperature with different working principles. First, PPy-ZnSnO$_4$, p–n hybrid nanoparticles, can enhance the NH$_3$ sensing performance (3–4 times higher) compared with pure PPy and ZnSnO$_4$ (Fig. 13a) [121]. The concentration of NH$_3$ can be quantitatively detected (Fig. 13b) with shorter time of response (26 s) and recovery (24 s) (Fig. 13c). The overall improved performance has been ascribed to the p–n heterojunction, in which the holes at high concentration in PPy and the electrons in Zn$_2$SnO$_4$ diffuse into each other to form a built-in electric field of a depletion layer (Fig. 13d). Interaction between Zn$_2$SnO$_4$–PPy and NH$_3$ broadens the depletion layer, which determines the response, and the speed of response/recovery. When the p–n junction was reinforced as dual p–n junctions (p–n–p) in the hybrids of the hollow In$_2$O$_3$ nanofibers (NFs) and PANI (Fig. 13e), the performances were further enhanced (Fig. 13f) [122]. For CP-based chemi-resistive heterojunctions, unsatisfied sensitivity (response) and long-term stability will be two challenging issues for researchers.
Obvious advantages of heterojunction-type chemi-resistant hybrids-based gas sensor can be summarized as: (1) higher sensitivity due to manipulations of the potential energy barrier formed by band bending of different components (e.g., Fe$_2$O$_3$/TiO$_2$ tube-like quasi-1D nanostructures (n–n) [114], n-ZnO/p-CoPc [119], and n-SnO$_2$/p-Cu$_2$O [120] core-sheath NRs); (2) improved selectivity to some gases (e.g., CuO–SnO$_2$ p–n nanowires to H$_2$S [67]); (3) promising, although limited so far, to anti-interference gas (e.g., CeO$_2$–In$_2$O$_3$ hollow spheres with anti-humidity properties [113]); (4) avoiding UV-introduced ozone and performance degradation (for example, when narrow-band guest material hybrids with semi-conductive host materials, e.g., CdS-ZnO [123, 124], ZnO-CdS [125], CdSe-ZnO [126], the room operation temperature can be achieved by the visible-light-driven gas sensing). The representative works are summarized in Table 4.

In summary, the critical points to achieve better performance in heterojunction-based gas sensor are depicted as: (1) maximum effective contact areas of the interfaces via surface and structure design; (2) matched band structure to facilitate the manipulation of potential energy barrier; (3) additional capability of catalysis of guest additives to host materials; (4) visible-light-driven photocatalytic abilities and good charge carriers separations for light-driven n–n or n–p hybrids; (5) selectivity-improvement-purposed heterojunction design based on specific interaction (e.g., Pd–H$_2$, CuO–H$_2$S, PPy–NH$_3$) or n–p response-type reversion (Co$_3$O$_4$–SnO$_2$ p–n junctions for H$_2$) [127].

3.5 Hybrid Gas Sensors Enhanced by Molecular Probing and Sieving Effect

Functionalization, coating or doping in/on the sensing materials, i.e., introduction of the sensing probe, was demonstrated as an effective way of improving the selectivity and specificity through a one-lock one-key binding or structure similarity-based combination. Both the inorganic and organic probes have been well developed. The sieving of interferon, especially the humidity in the environment, is an alternative way of improving specificity.
Fig. 13 a NH$_3$ response to PPy-Zn$_2$SnO$_4$, PPy, and Zn$_2$SnO$_4$. b Curve of concentration versus response. c Curve of a single response and recovery to NH$_3$. d Schema of sensing mechanism. Reproduced with permission [121]. Copyright 2018, Elsevier. e Schema of sensing mechanism. f Gas response of PANI, solid In$_2$O$_3$/PANI and hollow In$_2$O$_3$/PANI. Reproduced with permission [122]. Copyright 2016, Springer

Table 4 Representative works based on heterojunctions

Materials	Gas detection	Detection range	Work temperature	Refs.
α-Fe$_2$O$_3$/SnO$_2$	Acetone	10–2000 ppm	250 °C	[241]
ZnO/SnO$_2$	NO$_2$	200–2000 ppb	RT	[242]
SnO$_2$/SnS$_2$	NO$_2$	1–8 ppm	80 °C	[243]
SnO$_2$/α-Fe$_2$O$_3$	Ethanol	20–100 ppm	225 °C	[244]
ZnO/ZnFe$_2$O$_4$	Acetone	5–700 ppm	250 °C	[245]
α-Fe$_2$O$_3$/NiO	Toluene	5–100 ppm	300 °C	[246]
SnO$_2$/SnS$_2$	NH$_3$	10–500 ppm	RT	[247]
TiO$_2$ QDs/NiO	NO$_2$	5–60 ppm	RT	[248]
ZnO/MoS$_2$	Acetone	10–500 ppb	350 °C	[249]
ZnO/ZnCo$_2$O$_4$	Acetone	50–300 ppm	175 °C	[250]
Si/SnO$_2$	H$_2$S	10–50 ppm	100 °C	[251]
SnO$_2$@PANI	NH$_3$	10 ppb–100 ppm	RT	[252]
NiO@SnO$_2$	H$_2$S	0.1–50 ppm	250 °C	[253]
SnS$_2$/SnS	NO$_2$	0.125–8 ppm	RT	[254]
SnO$_2$/SnO$_4$	NO$_2$	20 ppb–50 ppm	150 °C	[255]
ZnO/ZnCo$_2$O$_4$	Acetone	10–100 ppm	275 °C	[256]
In$_2$O$_3$/ZnO	HCHO	5–100 ppm	RT	[257]
A 3D sulfonated rGO hydrogel (S-RGOH)-based gas sensor combining chemical functionalization and porous structures was synthesized in a one-step hydrothermal reaction (Fig. 14a) [68]. Addition of a NaHSO₃ probe dramatically enhanced the response (Fig. 14c) of NO₂ with fast recovery (Fig. 14b), assisted by the porous structures of the graphene host. Self-assembled monolayers (SAMs) with suitable alignment of the gas–SAM frontier molecular orbitals (Fig. 14e) with respect to the SAM–NW Fermi level (Fig. 14f); this led to high selectivity and sensitivity to analyte gas [70]. SnO₂ NWs were modified with amine-terminated SAM and applied as light-driven chemi-resistors working at RT, achieving good NO₂ sensing performance, the schematic mechanism of which can be found in Fig. 14d. This concept was extended to porous MOX nanostructures for further enhancements of their sensing properties. APTES-modified porous WO₃ nanotubes (P-WO₃ NTs (10%)@APTES) performed the best sensitivity and selectivity (Fig. 14a), which can be ascribed to the large surface area and high gas diffusion rate provided by P-WO₃, and selective reaction between NO₂ and surface SAM with APTES (Fig. 15b, c). The existence of SAM on the surface of inorganic materials (except 2D nanomaterials) limits the working temperature, which greatly weakens the sensing performance, although it could be resolved by UV irradiation. Using conductive polymer as the host material with surface SAM functionalization by the “1-stone 2 birds” strategy was promising and novel (Fig. 15d, e) [72]. Superb sensing performances were achieved by combining RT sensitivity of CP and good selectivity of SAM (Fig. 15f) [72].

Figure 16a shows the low cross-sensitivity to humidity and other interferon gases by refreshing the regenerative surface involving the interaction between facile redox fair (Tb³⁺/Tb⁴⁺) and surface OH group (or water vapor) on SnO₂. This 5 Tb–SnO₂-based chemi-resistor achieved high response to acetone exposure [128]. The oleic acid SAM also was effective in screening the effect of humidity (<350 ppm) when it was layered on PANI surface (Fig. 16b, c) [82]. Although it is not enough for practical application, this demonstration is still valuable in pointing to a promising way to eliminate the interferon of humidity.
Recently, MOF materials are great opportunity in generating sub-nanometer or nanometer pores with high uniformity. Neat MOFs chemi-resistors were prepared based on hydrophobic MOF (ZIF-67), which showed selective response to VOCs, with slightly interfering effects of humidity (Fig. 17a) [129, 130]. ZnO@ZIF-8 core-sheath NRs powders were synthesized by hydrothermal reaction using a self-template strategy (Fig. 17b) [131]. The chemiresistive gas sensor based on the thick film of ZnO@ZIF-8 hybrids had satisfactory sensitivity and response time to 100 ppm formaldehyde, even under interfering humidity (Fig. 17c). Mixing the CP with molecularly imprinted polymer (MIP) molecular (Fig. 17d) was another effective approach to improve not only the responsivity, but selectivity (Fig. 17e) [132]. Responses of interferon (2,4,6-TNT) and analyte (2,4-DNT) were suppressed and enhanced, respectively, although they are of very similar molecular structure and functional group [132]. However, the speed of response and recovery showed no obvious change (Fig. 17e) [132]. Instead of using functional MOFs as filter film coating on sensing materials to provide additional selectivity and/or sensitization, EC-MOFs are novel emerging materials with regular porosity and conductivity, which are promising for chemi-resistors with high sensitivity and selectivity [76, 133–158]. Unlike MOX and MOX-MOFs, which still need additional thermal or photonic energy as the trigger source to activate the sensing reaction, EC-MOFs can be directly used as sensitive materials based on their regular micro-porosity, selective frameworks, high electronic conductivity, and RT activity [139, 144–146, 159–166]. Therefore, EC-MOFs are promising components for hybrid gas sensors and will be powerful competitors for the new generation of gas sensors.

As mentioned above, the introduction of molecular probing and sieving effect can effectively overcome the poor selectivity problem of chemi-resistors. Up to date, only a few organic/inorganic probe or porous materials with molecule sieving effects have been applied to chemi-resistors to realize simple guest–matrix interaction (e.g., -NH2 group with NO2, –NO2 group with NH3, NaHSO3 with NO2) or molecular rejection (e.g., anti-humidity, gas molecules with large kinetic diameter). Such cases are ultra-small fraction of the state-of-art gas molecule adsorption and separation areas. More guest–matrix interactions (e.g., van der Waals interactions, hydrogen bond, π–π interactions, weak acid–base interactions) and gas separation design (e.g., channel traffic...
effects, framework flexibility), that have been well studied on rGO, polymers (e.g., metal-induced ordered microporous polymers (MMPs), covalent-organic frameworks (COFs), conjugated mesoporous/microporous polymers (CMPs)), MOFs, can be introduced to chemi-resistors for advanced sensing performances. The representative works are summarized in Table 5.

3.6 Hybrid Gas Sensors Based on Combined Mechanisms

In many cases, multi-forms working on the hybrid materials can simultaneously and dramatically improve sensitivity and responsivity. When the heterojunction barrier (the SnO$_2$/rGO heterostructure interface) was combined
with catalytic Pt, sensitivity of the SnO$_2$/rGO hybrids to H$_2$ was greatly enhanced (Fig. 18a–e) [74]. Hydrogen ranging from 0.5 to 3% in air could be quantitatively detected at near RT with response and recovery times of 3–7 and 2–6 s, respectively. Furthermore, when the catalytic effect was co-working with the p-n heterojunctions and porous structure (Fig. 19a), Co$_3$O$_4$–PdO loaded on n-SnO$_2$ hybrid hollow nanocubes (Fig. 19b) reached superior to those MOF-derived metal oxide sensing layers previously reported. Accordingly, the sensor arrays (Co$_3$O$_4$-loaded n-SnO$_2$ HNCs and Co$_3$O$_4$–PdO-loaded n-SnO$_2$ HNCs) can clearly distinguish 1 ppm humid acetone molecules among the seven interfering analytes (Fig. 19c). The reason is electron migration from n-SnO$_2$ to PdO or p-Co$_3$O$_4$ in the multi-junctions significantly influencing the electron depletion regions, which leads to the superb sensitivity (Fig. 19d, e).

Table 5 Representative works based on molecular probing and sieving effect

Materials	Gas detection	Detection range	Work temperature	Refs.
ZnO@ZIF-71	Benzene	10–200 ppm	250 °C	[258]
ZnO@ZIF-CoZn	Acetone	0.25–100 ppm	260 °C	[259]
ZnO@ZIF-8	H$_2$	5–50 ppm	250 °C	[260]
ZnO@ZIF-8	Propene	250 ppm	RT	[261]
Polyoxometalate @ZIF-8@ZnO	HCHO	25–200 ppm	RT	[262]
ZnO@ZIF-8	HCHO	10–200 ppm	300 °C	[263]
ZnO@ZIF-8	H$_2$	10–50 ppm	300 °C	[264]

```markdown
Fig. 17  a Effect of environmental humidity on sensitivity of ZIF-67 sensor (inset is the SOD-type structure of ZIF-67). Reproduce with permission [129]. Copyright 2014, American Chemical Society. b Schematic diagram of the ZnO@ZIF-8 NRs synthesized with ZnO NRs as a template; and c gas response and response time for 100 ppm formaldehyde as a function of the relative humidity. Reproduced with permission [131]. Copyright 2016, American Chemical Society. d Schema of the interaction of 2,4-DNT with the hybrid ingredients (PVA, PPy, and MIP). e Response of a fabricated chemi-resistor sensor coated with PVA/PPy/MIP hybrids with respect to the 2,4-DNT explosive vapor. f Column curves of PVA/PPy/MIP hybrids to different organic compounds. Reproduced with permission [132]. Copyright 2018, Wiley–VCH
```
When the catalytic effect co-worked with the molecular sieving effect, improved selectivity (anti-interferon) with enhanced sensitivity can be achieved by coating a layer of hydrophobic and thermally catalytic bimetallic ZIF-CoZn thin film on ZnO to form core-sheath MOX@MOFs nanowire arrays (NWAs) (Fig. 20a) [76]. The bimetallic ZIF-CoZn MOF sheathes gave good thermal stability (ZIF-8(Zn)) and excellent thermal catalytic ability on ZnO (ZIF-67(Co)), as well as hydrophobic channels. By combining their advantages, the ZnO@ZIF-CoZn preparation showed greatly enhanced performance on selectivity (good anti-humidity, Fig. 20b) and also on its response, response and recovery behavior and working temperature (Fig. 20c). More complicated hybrid nanostructures containing MOX, plasmonic/catalytic NMs, and hydrophobic MOFs, i.e., the dual-functional Au@ZnO@ZIF-8 Janus structure (Fig. 20d, e), have been fabricated [77]. Au@ZnO@ZIF-8 hybrids had enhanced selective adsorption, detection and oxidation of HCHO and prevented interference from gases such as H2O and toluene (Fig. 20f), where Au NRs helped to generate charge carriers on a ZnO surface under visible-light irradiation. The representative works are summarized in Table 6.

4 Summary and Perspective

4.1 Summary of Hybrid Gas-Sensitive Materials

The current progress report reviews advances and the advantages of the chemi-resistive hybrid nanomaterials compared with the single constituent, according to five main sensing mechanisms: manipulating/constructing heterojunctions, catalytic reaction, charge transfer, charge transport, molecular binding/sieving, and their combinations. Table 7 lists typical chemi-resistive materials for hybrid gas sensors categorized by types of materials and conductivity.

4.2 Applications of Chemi-Resistive Sensor-Based e-nose

As the first commercial gas sensor, metal oxide-based chemi-resistors still occupy a leading role in both fundamental researches and commercial devices. Various commercial chemi-resistive gas sensors based on single or hybrid materials have been developed for the detection toward target gases (toxic, flammable, VOCs, explosive, H2, etc.) ranging from sub-ppm to saturated vapor, which are widely used in fields including environment monitoring, medical care,
food industry, agriculture production, and public security. The versatile commercial chemi-resistive gas sensors are introduced but not limited as follows.

Some e-nose systems comprised of chemi-resistive sensor arrays have succeeded in the application of medical care. Commercial e-nose PEN3 (Airsense Analytics GmbH, Schwerin, Germany) made up of a gas sampling unit and a sensor array (10 different metal oxide thick film sensors (MOS)) can screen colorectal cancer (CRC) and polyps [167]. Another 14 commercial gas sensor-integrated e-nose system could generate characteristic “breath fingerprints” by exhalation components and could diagnose the lung disease through pattern recognition of a “breath fingerprint.” Those sensors categorized as MOS, hot wire gas, catalytic combustion gas, and electrochemical gas sensors are produced by the manufacturers, Hanwei (Fig. 21a), Figaro (Fig. 21b) [168], Winsen, Nemoto and Alphasense [169]. Aeonose in (Fig. 21c) [170] is a CE-certified, handheld, and battery-powered e-nose device designed by a Zutphen Company in Netherlands. The aeonose comprises three micro-hotplate metal oxide sensors and a pump to detect gastric cancer from exhaled breath [171]. Sunshine Haick Ltd. have successfully designed the sensor arrays to diagnose lung and gastric cancer via pattern analysis of exhaled VOCs, which has made great and has a perfect perspective. Other representative commercial e-nose in clinical diagnosis of complex regional pain, diabetics, head and neck cancer, dyskinesia, and prostate cancer are summarized in Table 8.

Commercial e-nose has acted as an indispensable instrument for the rapid, accurate, and overall-process assessments of food health and quality aim at adulterated counterpart, contamination and spoilage [172]. An PEN-2 e-nose (WMA...
Airsense Analysentechnik GmbH, Schwerin, Germany) composed of 10 different metal oxide sensors was utilized to monitor the adulteration of milk with water or reconstituted milk powder [173]. Also, the PEN-2 is used to monitoring the change in volatile production of mandarin during different picking-date [174]. Meanwhile, PEN-2 is used to characterize espresso coffees brewed with different thermal profiles [13]. MOS sensors manufactured by Figaro (Figaro

Table 6 Representative works based on combined mechanisms

Materials	Gas detection	Detection range	Work temperature	Refs.
Co3O4/PEI-CNTs	CO	5–1000 ppm	RT	[265]
HC(NH2)2SnI3/SnO2/Pt	HCHO	5–100 ppm	80 °C	[266]
PdO/SnO2/CuO	CO	100–2000 ppm	200 °C	[267]
Pd/ZnO/In2O3	H2	50–172 ppb	350 °C	[268]
rGO/ZnO/Pd	CH4	25–500 ppm	RT	[269]
Pt/ZnO/g-C3N4	Ethanol	0.5–50 ppm	250 °C	[270]
Au@Cu2O/ZnO	NO2	0.5–15 ppm	150 °C	[271]
Ag/SnO2/rGO	Ethanol	100–2000 ppm	280 °C	[272]
TiO2/In2O3	NH3	10–1000 ppm	250 °C	[273]
Pd–SnO2/rGO	CH4	800–1200 ppm	RT	[274]
Au@In2O3@PANI	NH3	0.5–100 ppm	RT	[275]
Au–ZnO@ZIF-DMBIM	Acetone	0.0001–1000 ppm	RT	[203]
SnO2/α-Fe2O3/Pt	Styrene	0.25–1.25 ppm	206 °C	[276]

Fig. 20 a Schematic illustration of ZnO@ZIF-CoZn core-sheath NWAs sensor; b Response-recovery curves to acetone at different concentrations in dry air and in 10 ppm acetone with different relative humidity and at 260 °C; and c temperature-dependent responses of ZnO@5 nm ZIF-CoZn. Reproduced with permission [76]. Copyright 2016, Wiley–VCH. d Plots of Au@ZnO and Au@ZnO@ZIF-8 size versus time; insets are the representative TEM images of the products at specific times. e Kinetics of HCHO adsorption (solid symbols). f Proposed mechanism of oxidation of HCHO into HCOOH. Reproduced with permission [77]. Copyright 2018, Springer.
Table 7 Typical chemi-resistive materials for hybrid gas sensors

Types of chemi-resistive materials	Types of conductivity
Inorganic compounds	NiO, CoO, TeO2, CuS, Cr2O3, Te2O3, Cu2O, Cu2O, MnO2, CeO2, PdO, Ag2O, Bi2O3, CoPc, WS2, MoS2, Fe2O3
ZnO, SnO2, TiO2, MoO3, WO3, In2O3, V2O5, Ta2O5, Nb2O5, RuO2, MoS2, ZnSnO3	Fe2O3
Organic compounds	PTCDI-Ph
MOFs	PPy, PEDOT, PANI, p-6P, Ti3C2Tx [278] PADS [279] Polyphenylene [280]
Others	CuHHTP
	Cu-HHTP, NiHHTP, NH2-Uio-66 [281], Cu-HHTP-THQ [204]
	CNTs, BP, rGO

Fig. 21 Schematic of the different commercial e-nose. a Photographic image of Hanwei e-nose. Reproduced with permission [212]. Copyright 2017, Springer. b E-nose system “N.O.S.E” produced by Figaro Engineering Inc. [168]. Copyright 2018, IEEE. c Aeonose to diagnosis prostate cancer. Reproduced with permission [170]. Copyright 2018, European Association of Urology. d E-nose produced by institute of Physics Technology and Information, Spanish Council for Scientific Research. Reproduce with permission [213]. Copyright 2018, Elsevier Ltd. e The picture of Cyranose 320. Reproduce with permission [214]. From Chang and Heinemann, Copyright 2018, ASABE. f The sensors manufactured by Hanwei Sensors. Reproduced with permission [215]. Copyright 2019, Elsevier Ltd. g E-nose produced by Figaro Engineering, Inc., Hanwei company and FIS Inc. Reproduced with permission [216]. Copyright 2018, Elsevier Ltd. h E-nose based on MOS TGS and FIS sensors. Reproduced with permission [217]. Copyright 2018, sensors. i Fox 3000 electronic nose system. Reproduced with permission [218]. Copyright 2017, Elsevier Ltd. j MQ-7 (TORO) sensor model [219]
Inc., Japan) were used to recognize odors emitted from different stages in a waste water treatment plant [175]. Tagushi gas sensor based on metal oxide semiconductor from Figaro Engineering Inc. is used to classify the tea aroma [176]. Cyranose 320 in Fig. 21e that consists of an array of 32 thin-film carbon-black conducting polymer sensors was used to identify odor emitted from dairy operations. The portable e-nose based on thin-film semiconductor (SnO2) sensors (Hanwei Sensors) in Fig. 21f can perform early detection of wine spoilage thresholds in routine tasks of wine quality control. An e-nose system (Fig. 21g) was used to detect detergent powder in raw milk. Representative applications are summarized in Table 9.

The application of commercial e-nose to monitor volatile compounds in the environment both indoor and outdoor provides a reliable solution. Single semiconductor gas sensor GGS 10331 (produced by Umwelt Sensor Technik) was made with a semiconductor sensing layer on Al2O3 substrate to predict the concentration of ammonia under humidity interference [177]. Tagushi (TGS) gas sensor (Figaro Engineering Inc.) was applied to detect NH3, CO, H2, C3H8O, C4H10, C3H6, CH4, alcohol, and solvent vapors and the accuracy was 100% [178]. MQ-7 (Fig. 21j) is a commercial electronic nose for monitoring CO. Portable electronic noses in Fig. 21d were used to classify pollutants in water. Similarly, the commercial e-nose is widely used to identify the toxic wastes, soil/water pollution, indoor volatile organic compounds, etc. Table 10 summarizes the recent applications of e-nose for monitoring environment.

E-nose is widely used in agricultural to analyze growth, classify seeds, detect the maturity, monitor quality, which promoted agricultural modernization and saved labor [2]. Eight MOS sensors produced by FIS (Osaka, Japan), MQ (Hanwei, China), and TGS (Figaro Engineering Inc.) were applied for classifying cumin, caraway, and other seeds [179]. Similarly, e-nose based on MOS TGS and FIS sensors (Fig. 21h) were distinguished Iranian Rosa damascena essential oils. An e-nose FOX 4000 (Alpha MOS, Toulouse, France) was chosen to analyze ginseng at different stages [180]. An e-nose FOX 3000 (Fig. 21i) was applied

Diseases	Objective	E-nose configuration	Sensor type	Sensor arrays	Multivariate data analysis	Refs.
Armpit body odor	Detection and classification of human body odor	Tagushi (TGS) gas sensor from Figaro Engineering Inc.	MOS	5	PCA	[282]
Bile acid diarrhea (BAD)	Identify BAD in volatile organic compounds	The FOX 4000 e-nose from Alpha MOS, Toulouse, France	MOS	18	LDA	[283]
Lung cancer	Diagnosing lung cancer in exhaled breath	Cyranose 320 from Smiths Detection Inc., Edgewood, MD, USA	CP	32	LDA, KNN, PNN, NB, and SVM	[284]
Head/neck and lung carcinomas	Discriminating head and neck carcinoma from lung carcinoma	Aeonose from Zutphen, the Netherlands	MOS	3	PARAFAC and TUCKER	[285]
Prostate Cancer	The detection of prostate cancer from exhaled breath	Aeonose from Zutphen, the Netherlands	MOS	3	ANN	[170]
Complex Regional Pain	Diagnosing complex regional pain syndrome	Aeonose from Zutphen, the Netherlands	MOS	3	ANN	[286]
Mycobacterium tuberculosis	The detection of mycobacterium tuberculosis	ModelBH114-Bloodhound sensors from Leeds, UK	CP	14	PCA	[287]
Patients breath	The VOCs from breath	E-nose from Sunshine Haick medical Co.	GPNs capped with thiols	8–20	PCA, LDA	[112, 288]

MOS metal oxide semiconductor, CP conducting polymer, GPNs gold nanoparticles
Product	Objective	E-nose configuration	Sensor type	Sensor arrays	Multivariate data analysis	Refs.
Black tea	Monitoring of black tea fermentation process	Tagushi (TGS) gas sensor from Figaro Engineering Inc.	MOS	8	PCA, 2NM MDM	[289]
Pork	Measurement of total volatile basic nitrogen (TVB-N) in pork meat	Tagushi (TGS) gas sensor from Figaro Engineering Inc.	MOS	11	PCA and BP-ANN	[290]
Green tea	Identification of coumarin-enriched Japanese green teas and their particular flavor	E-nose device (FF-2A Fragrance & Flavor Analyzer, Shimadzu, Japan)	OSS	10	PCA, CA	[14]
Milk	Aroma profiling of milk adulteration	A PEN-2 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	PCA, LDA and 4ANN	[291]
Meat	Analysis adulteration of minced mutton with pork	A PEN-2 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	CDA, BDA, PLS, MLR, BPNN	[292]
Ham	Differentiation of hams marked	A PEN-2 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	PCA	[293]
Cherry tomato	Classification with overripe tomato juice	A PEN-2 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	PCA	[294]
Tea	Characterizing the degree of invasion of tea trees	A PEN-2 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	PCA and MLP	[295]
Sausage	Evaluation of lipid oxidation of Chinese-style sausage	A PEN-3 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	SVM, ANN, PLSDA, MLR	[296]
Mango	Quality rapid determination of mango	E-nose from HANWEI Electronics Co.	MOS	8	PCA and SR	[297]
Chicken fat	Rapid measuring of oxidized chicken fat	The FOX 4000 e-nose from Alpha MOS, Toulouse, France	MOS	18	APLSR and ANOVA	[298]
Honey	Identify the botanical origin of honeys	The FOX 3000 e-nose from Alpha MOS, Toulouse, France	MOS	18	PCA, DFA, LS-SVM and PLS	[299]
Orange juice	Classification of Valencia orange juices	The FOX 3000 e-nose from Alpha MOS, Toulouse, France	MOS	12	PCA, FDA	[300]
Wine	Geographical origin confirmation	The FOX 3000 e-nose from Alpha MOS, Toulouse, France	MOS	12	LDA	[301]
Coffee	Study the aromatic profile of espresso coffee as a function of the grinding grade and extraction time	αFOX from Alpha MOS, Toulouse, France	MOS	6	PCA	[302]
Cheese	Authenticity of cheese marked with Picorino	EOS 507 from Sacmi Imola S.C., Imola, Bologna, Italy	MOS	6	PCA, ANN	[303]
to characterize and classify seven Chinese robusta coffee cultivars. Commercially available chemical sensors intended for agriculture are summarized in Table 11.

Some commercial e-noses are attempted to detect explosives with ultra-low saturated concentration (parts-per-billion or below) [181]. Figaro Engineering Inc. produce an e-nose comprised of eight MOS sensors to discriminate and quantify different chemical warfare agents mimics [182]. More expectations in applications are also possible in the future.
4.3 Challenges and Perspectives

Although excellent advances in both e-nose system and chemi-resistive sensory unit have been reached in the field during the last few years, there is still room for improvements. Below is a summary of the main rules for improving the performance of hybrid material-based gas sensors (details see the summary paragraph of each section):

Table 11 Applications of electronic nose in agriculture

Product	Objective	E-nose configuration	Sensor type	Sensor arrays	Multivariate data analysis	Refs.
Sesame oil	Detection adulteration in sesame oil	A PEN-2 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	PCA, FLT, Step-LDA, SFW, PNN, BPNN, GRNN	[313]
Olive oils	The detection of olive oils	A PEN-2 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	PCA	[314]
Red raspberries	The aromatic characteristics of red raspberries	A PEN-2 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	PCA	[315]
Compost maturity	The monitoring of composting process produces	A PEN-3 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	PCA	[316]
Hyssopus officinalis	Discriminate the accessions	A PEN-3 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	PCA and HCA	[317]
Rice	Estimation of the age and amount of brown rice plant	A PEN-3 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	PCA, LDA, PNN, and BPNN	[318]
Jujubes	Characterization of different varieties of Chinese jujubes	A PEN-3.5 e-nose from Win Muster Airsense Analytics Inc., Schwerin, Germany	MOS	10	PCA and LDA	[319]
Virgin olive oil	Adulteration with hazelnut oil	The FOX 4000 e-nose from Alpha MOS, Toulouse, France	MOS	18	PCA and PLS	[320]
Ginseng	Discrimination of American ginseng and Asian ginseng	The FOX 4000 e-nose from Alpha MOS, Toulouse, France	MOS	18	PCA and PLS	[321]
Flax seed oil	Differently processed oils for fraud detection	The FOX 3000 e-nose from Alpha MOS, Toulouse, France	MOS	18	PCA	[322]
Lonicera japonica	Quality control of Lonicera Japonica stored for different period of time	The FOX 3000 e-nose from Alpha MOS, Toulouse, France	MOS	12	LDA, PCA, and RBF-ANN	[323]
Tomato	Comparison of different stages of tomato	The FOX 4000 e-nose from Alpha MOS, Toulouse, France	MOS	18	PCA and ANOVA	[324]
White pepper	The chemical and flavor qualities of white pepper	α-Gemini from Alpha M.O.S. SA, Toulouse, France	MOS	6	PCA	[325]
Virgin olive oil	Confirmation of geographical origin and authentication	Model 3320 applied sensor lab emission analyzer from applied Sensor Co., Linkoping, Sweden	MOSFET	10	PCA, CP-ANN	[326]
Asphalt odor	Asphalt odor patterns in hot mix asphalt production	Cyranose 320 from Intelligent Optical Systems Inc., CA, USA	CP	32	Polar plots, PCA	[327]
Plant Pest and Disease	The discrimination of plant pest and disease	Model ST214 from Scensive Technologies Ltd., Norman ton, UK	OCP	13	PCA, DFA, CA	[328]
Odors emissions	Monitoring of odors from a composting plan	EOS from Sacmi Group, Imola, Italy	MOS	6	kNN	[329]

OCP organic conducting polymer
For sensors based on heterojunctions (potential energy barrier manipulation), the more uniform and the larger the contact area of heterojunctions and charge transfer hybrids, the higher the response, resulting in faster speed/ lower operating temperature, e.g., Fe2O3/TiO2 tube-like quasi-1D nanostructures (n–n) [114], n-ZnO/p-CoPc [119]. CeO2–In2O3 hollow spheres with anti-humidity properties [113], and CdS–ZnO [123, 124].

For sensors based on catalytic effect assistance, the higher the potential energy barrier tuning, the higher the response, e.g., Pd/Sb–SnO2 [89, 90].

For sensors based on charge transfer, the more dispersion uniformity and the smaller size of catalysts on host-sensing materials, the higher the response, giving faster speed and lower operating temperatures, e.g., SnO2 QDs/rGO hybrids [109], rGO/MoS2 aerogel [61], and PANI/rGO [63].

For sensors based on regulation of charge carrier transport, the thinner and the more defect-rich of the hybrid film (e.g., suppression of original gas-off current in current-increased gas sensor), the higher and faster the responses obtained, e.g., PTCDI-Ph/p-6P ultrathin film [64], sandwiched PMMA/Pd/PMMA [110], and MSP-covered CNTs [80].

For sensors based on molecular binding/sieving, the more selective and uniform dispersion of molecular binding/sieving guests, the higher the selectivity, e.g., APTES-modified porous WO3 nanotubes [72], the oleic acid SAM-modified PANI [82], the ZnO@ZIF-CoZn NWAs [76] P-O3 NTs (10%)@APTES [71].

Improving the performance requires better understanding of the mechanism. Recently, most sensing mechanism represented in the research articles is “possible mechanism” based on the results of comparative tests instead of direct observations. Exactly, the latter one is more trustable and solid results to support the mechanism study, e.g., in situ FTIR [183, 184], in situ Kelvin probe [185], in situ STM [186, 187], in situ TEM [188, 189]). In addition, Theoretically studies (such as DFT simulation) [190], are also helpful for researchers to understand the interaction between the gas analyte and sensitive materials, the succedent electronic structure changes, or band gap regulation in heterojunction, or charge transfer, etc., which can guide the orientation of materials design [70, 190–195]. Otherwise, learning theoretical studies toward hybrid catalyst designs can inspire the further researches on hybrid gas sensing due to the similar surface physical/chemical science, band gap theories, and charge transfer process [196–201].

Controlling the fluidic behavior of gas [202], enhancing the anti-interferon ability by loading novel porous sieving materials (e.g., MOF, COF) [203–206], screening the cross-talk (such as deformation [207, 208]) by special micro-/nanostructures, deeply mining the features of sensing signal [209] (e.g., response, area of peak, and speed), and enhancing catalysis effect using small NPs, clusters, or even single-atom catalyst [108] are the long-term challenges of hybrid gas-sensing materials to adapt the applications under real-world conditions [210, 211]. The advances in knowledge in all our endeavors can be a foundation and useful experience for sensing technology, surface science, catalysis, fluidic mechanics, and microelectronics.

Acknowledgements This research was funded by the Phase-II Grand Challenges Explorations award from the Bill, Melinda Gates Foundation (Grant ID: OPP1109493), International Research Fellow of the Japan Society of the Promotion of Science (JSPS, Post-doctoral Fellowships for Research in Japan (Standard), P18334), the National Natural Science Foundation of China (21801243), and the Natural Science Foundation of Shaanxi province (2018JM6045, 2018JM1046). Research funding was received from Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration (SHUES2019A02).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
1. H.D. Kotha, V.M. Gupta, IoT application: a survey. Int. J. Eng. Technol. 7(2.7), 891–896 (2018). https://doi.org/10.14419/ijet.v7i2.7.11089
2. W. Hu, L. Wan, Y. Jian, C. Ren, K. Jin et al., Electronic noses: from advanced materials to sensors aided with data processing. Adv. Mater. Technol. 4(2), 1800488 (2018). https://doi.org/10.1002/admt.201800488
3. T.T. Dung, Y. Oh, S.-J. Choi, I.-D. Kim, M.-K. Oh, M. Kim, Applications and advances in bioelectronic noses for odour
9. A. Kaushik, R. Kumar, S.K. Arya, M. Nair, B.D. Malhotra, S. Buratti, S. Benedetti, G. Giovanelli, Application of electronic senses to characterize espresso coffees brewed with different thermal profiles. Eur. Food Res. Technol. (3), 154–156 (2017). https://doi.org/10.1007/s00217-016-2769-y

10. I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf, R. Ameloot, An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46(11), 3185–3241 (2017). https://doi.org/10.1039/C7CS0122C

11. Y. Li, A.-S. Xiao, B. Zou, H.-X. Zhang, K.-L. Yan, Y. Lin, Advances of metal–organic frameworks for gas sensing. Polyhedron 154, 83–97 (2018). https://doi.org/10.1016/j.poly.2018.07.028

12. R.S. Andre, R.C. Sanfelice, A. Pavinatto, L.H.C. Mattoso, D.S. Correa, Hybrid nanomaterials designed for volatile organic compounds sensors; a review. Mater. Des. 156, 154–166 (2018). https://doi.org/10.1016/j.matdes.2018.06.041

13. S. Buratti, S. Benedetti, G. Giovanelli, Application of electronic senses to characterize espresso coffees brewed with different thermal profiles. Eur. Food Res. Technol. 243(3), 511–520 (2017). https://doi.org/10.1007/s00217-016-2769-y

14. Z. Yang, F. Dong, K. Shimizu, T. Kinoshita, M. Kanamori, A. Morita, N. Watanabe, Identification of coumarin-enriched Japanese green teas and their particular flavor using electronic nose. J. Food Eng. 92(3), 312–316 (2009). https://doi.org/10.1016/j.jfoodeng.2008.11.014

15. R. Dutta, E.L. Hines, J.W. Gardner, K.R. Kashwan, M. Bhuyan, Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach. Sens. Actuat. B: Chem. 244, 244–253 (2017). https://doi.org/10.1016/j.snb.2016.12.117

16. G.J.A.A. Soler-Illia, O. Azzaroni, Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem. Soc. Rev. 40(2), 1107–1150 (2011). https://doi.org/10.1039/C0CS00208A

17. J.C. Tan, A.K. Cheetham, Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chem. Soc. Rev. 40(2), 1059–1080 (2011). https://doi.org/10.1039/C0CS00159G

18. C. Laberty-Robert, K. Vallé, F. Pereira, C. Sanchez, Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem. Soc. Rev. 40(2), 907–925 (2011). https://doi.org/10.1039/C0CS00659K

19. K. Kanamori, K. Nakanishi, Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chem. Soc. Rev. 40(2), 754–770 (2011). https://doi.org/10.1039/C0CS00687J

20. C. Sanchez, P. Belleville, M. Popall, L. Nicole, Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem. Soc. Rev. 40(2), 696–753 (2011). https://doi.org/10.1039/C0CS0136H

21. L.-C. Hu, K.J. Shea, Organo–silica hybrid functional nanomaterials: how do organic bridging groups and silsesquioxane moieties work hand-in-hand? Chem. Soc. Rev. 40(2), 688–695 (2011). https://doi.org/10.1039/C0CS00219D

22. R. Pardo, M. Zayat, D. Levy, Photochromic organic–inorganic hybrid materials. Chem. Soc. Rev. 40(2), 672–687 (2011). https://doi.org/10.1039/C0CS00656E

23. J. Yuan, Y. Xu, A.H.E. Müller, One-dimensional magnetic inorganic–organic hybrid nanomaterials. Chem. Soc. Rev. 40(2), 640–655 (2011). https://doi.org/10.1039/C0CS0087F

24. T.-H. Tran-Thi, R. Dagnelie, S. Crunaire, L. Nicole, Optical chemical sensors based on hybrid organic–inorganic solgel nanoreactors. Chem. Soc. Rev. 40(2), 621–639 (2011). https://doi.org/10.1039/C0CS0021C

25. F. Hoffmann, M. Fröba, Vitalising porous inorganic silica networks with organic functions: PMOs and related hybrid materials. Chem. Soc. Rev. 40(2), 608–620 (2011). https://doi.org/10.1039/C0CS0076K

26. M. Vallet-Regí, M. Colilla, B. González, Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chem. Soc. Rev. 40(2), 596–607 (2011). https://doi.org/10.1039/C0CS0025F
31. J.-M. Oh, D.-H. Park, J.-H. Choy, Integrated bio-inorganic hybrid systems for nano-forensics. Chem. Soc. Rev. 40(2), 583–595 (2011). https://doi.org/10.1039/C0CS00051E
32. U. Schubert, Cluster-based inorganic–organic hybrid materials. Chem. Soc. Rev. 40(2), 575–582 (2011). https://doi.org/10.1039/C0CS000099D
33. A. Mehdi, C. Reye, R. Corriu, From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem. Soc. Rev. 40(2), 563–574 (2011). https://doi.org/10.1039/B920516K
34. L.D. Carlos, R.A.S. Ferreira, V. de Zea Bermudez, B. Julián-López, P. Escribano, Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem. Soc. Rev. 40(2), 536–549 (2011). https://doi.org/10.1039/C0CS00691H
35. M. Clemente-León, E. Coronado, C. Martí-Gastaldo, F.M. Romero, Multifunctionality in hybrid magnetic materials based on bimetallic oxalate complexes. Chem. Soc. Rev. 40(2), 473–497 (2011). https://doi.org/10.1039/C0CS00111B
36. C. Sanchez, K.J. Shea, S. Kitagawa, Recent progress in hybrid materials science. Chem. Soc. Rev. 40(2), 471–472 (2011). https://doi.org/10.1039/C1CS00001C
37. M. Yao, P. Hu, Y. Cao, W. Xiang, X. Zhang, F. Yuan, Y. Chen, Morphology-controlled ZnO spherical nanobelt-flower arrays and their sensing properties. Sens. Actuat. B: Chem. 117, 562–569 (2013). https://doi.org/10.1016/j.snb.2012.11.088
38. N. Yamazoe, K. Shimanoe, New perspectives of gas sensor technology. Sens. Actuat. B: Chem. 138(1), 100–107 (2009). https://doi.org/10.1016/j.snb.2009.01.023
39. D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuat. B: Chem. 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074
40. H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuat. B: Chem. 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005
41. T. Li, W. Zeng, Z. Wang, Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: a review. Sens. Actuat. B: Chem. 221, 1570–1585 (2015). https://doi.org/10.1016/j.snb.2015.08.003
42. Z. Zhao, J. Tian, Y. Sang, A. Cabot, H. Liu, Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 27(16), 2557–2582 (2015). https://doi.org/10.1002/adma.201405589
43. T. Wagner, S. Hafer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors. Chem. Soc. Rev. 42(9), 4036–4053 (2013). https://doi.org/10.1039/C2CS35379B
44. J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28(5), 795–831 (2016). https://doi.org/10.1002/adma.201503825
45. S.-J. Choi, I.-D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14(3), 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
46. L. Senesac, T.G. Thundat, Nanosensors for trace explosive detection. Mater. Today 11(3), 28–36 (2008). https://doi.org/10.1016/s1369-7021(08)70017-8
47. C.N. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain-size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuat. B: Chem. 3(2), 147–155 (1991). https://doi.org/10.1016/0925-4005(91)80207-z
48. J.Q. Xu, Q.Y. Pan, Y.A. Shun, Z.Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuat. B: Chem. 66(1–3), 277–279 (2000). https://doi.org/10.1016/s0925-4005(00)00381-6
49. N. Hongsith, E. Wongrat, T. Kerdcharoen, S. Choopun, Sensor response formula for sensor based on ZnO nanostructures. Sens. Actuat. B: Chem. 144(1), 67–72 (2010). https://doi.org/10.1016/am5081277
50. M. Yao, Q. Li, G. Hou, C. Lu, B. Cheng et al., Dopant-controlled morphology evolution of WO3 polyhedra synthesized by RF thermal plasma and their sensing properties. ACS Appl. Mater. Interfaces. 7(4), 2856–2866 (2015). https://doi.org/10.1021/acsami.5b06966
51. I.-S. Hwang, J.-K. Choi, H.-S. Woo, S.-J. Kim, S.-Y. Jung, T.Y. Seong, I.-D. Kim, J.-H. Lee, Flexible control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl. Mater. Interfaces. 3(8), 3140–3145 (2011). https://doi.org/10.1021/am200647f
52. J.-S. Jang, S.-J. Choi, S.-J. Kim, M. Hakim, I.-D. Kim, Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Adv. Funct. Mater. 26(26), 4740–4748 (2016). https://doi.org/10.1002/adfm.201600797
53. S.-J. Kim, S.-J. Choi, J.-S. Jang, H.-J. Cho, W.-T. Koo, H.L. Tuller, I.-D. Kim, Exceptional high-performance of Pt-based bimetallic catalysts for exclusive detection of exhaled biomarkers. Adv. Mater. 29(36), 1700737 (2017). https://doi.org/10.1002/adma.201700737
54. Y. Xiao, L. Lu, A. Zhang, Y. Zhang, L. Sun, L. Huo, F. Li, Highly enhanced acetonitrile sensing performances of porous and single crystalline ZnO nanosheets: high percentage of exposed (100) facets working together with surface modification with Pd nanoparticles. ACS Appl. Mater. Interfaces. 4(8), 3797–3804 (2012). https://doi.org/10.1021/am3010303
55. S.-Y. Cho, H.-J. Koh, H.-W. Yoo, H.-T. Jung, Tunable chemical sensing performance of black phosphorus by controlled functionalization with noble metals. Chem. Mater. 29(17), 7197–7205 (2017). https://doi.org/10.1021/acs.chemmater.7b01353
56. J. Ma, Y. Ren, X. Zhou, L. Liu, Y. Zhu et al., Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv. Funct. Mater. 28(6), 1705268 (2018). https://doi.org/10.1002/adfm.201705268
57. Y.J. Hong, J.-W. Yoon, J.-H. Lee, Y.C. Kang, One-pot synthesis of Pd-loaded SnO2 yolk-shell nanostructures for ultrasensitive methyl benzene sensors. Chem. Eur. J. 20(10), 2737–2741 (2014). https://doi.org/10.1002/chem.201304502
58. X. Chen, Z. Guo, W.-H. Xu, H.-B. Yao, M.-Q. Li et al., Templating synthesis of SnO2 nanotubes loaded with Ag2O nanoparticles and their enhanced gas sensing properties. Adv. Funct. Mater. 21(11), 2049–2056 (2011). https://doi.org/10.1002/adfm.201002701

59. G. Lu, L.E. Ocola, J. Chen, Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes. Adv. Mater. 21(24), 2487–2491 (2009). https://doi.org/10.1002/adma.200803536

60. L. Guan, S. Wang, W. Gu, J. Zhuang, H. Jin, W. Zhang, T. Zhang. J. Wang, Ultrasonic-size room-temperature detection of NO2 with tellurium nanotube based chemiresistive sensor. Sens. Actuat. B: Chem. 196, 321–327 (2014). https://doi.org/10.1016/j.snb.2014.02.014

61. H. Long, A. Harley-Trochimczyk, T. Pham, Z. Tang, T. Shi, A. Zettl, C. Carraro, M.A. Worsley, R. Maboudian, High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26(28), 5158–5165 (2016). https://doi.org/10.1002/adfm.201601652

62. S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134(10), 4905–4917 (2012). https://doi.org/10.1021/ja211683m

63. Y. Guo, T. Wang, F. Chen, X. Sun, X. Li, Z. Yu, P. Wan, X. Chen, Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale 8(23), 12073–12080 (2016). https://doi.org/10.1039/C6NR02540D

64. Z. Wang, L. Huang, X. Zhu, X. Zhou, L. Chi, An ultrasensitive organic semiconductor NO2 sensor based on crystalline TIPS-pentacene films. Adv. Mater. 29(38), 1703192 (2017). https://doi.org/10.1002/adma.201703192

65. A.R. Jalil, H. Chang, V.K. Bandari, P. Robaschik, J. Zhang et al., Fully integrated organic nanocrystal diode as high performance room temperature NO2 sensor. Adv. Mater. 28(15), 2971–2977 (2016). https://doi.org/10.1002/adma.201506293

66. S. Ji, H. Wang, T. Wang, D. Yan, A high-performance room-temperature NO2 sensor based on an ultrathin heterojunction film. Adv. Mater. 25(12), 1755–1760 (2013). https://doi.org/10.1002/adma.201204134

67. F. Shao, M.W.G. Hoffmann, J.D. Prades, R. Zamani, J. Arbiol et al., Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sens. Actuat. B: Chem. 181, 130–135 (2013). https://doi.org/10.1016/j.snb.2013.01.067

68. J. Wu, K. Tao, Y. Guo, Z. Li, X. Wang et al., A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Adv. Sci. 4(3), 1600319 (2017). https://doi.org/10.1002/advs.201600319

69. H. Jin, T.-P. Huynh, H. Haick, Self-healable sensors based on nanoparticles for detecting physiological markers via skin and breath: toward disease prevention via wearable devices. Nano Lett. 16(7), 4194–4202 (2016). https://doi.org/10.1021/acsnanolett.6b01066

70. M.W.G. Hoffmann, J. Daniel Prades, L. Mayrhofer, F. Hernandez-Ramirez, T.T. Jaervi, M. Moseler, A. Waag, H. Shen, Highly selective SAM-nanowire hybrid NO2 sensor: insight into charge transfer dynamics and alignment of frontier molecular orbitals. Adv. Funct. Mater. 24(5), 595–602 (2014). https://doi.org/10.1002/adfm.201301478

71. W. Liu, L. Xu, K. Sheng, C. Chen, X. Zhou et al., APTF-functionalized thin-walled porous WO3 nanotubes for highly selective sensing of NO2 in a polluted environment. J. Mater. Chem. A 6(23), 10976–10989 (2018). https://doi.org/10.1039/c8ta02452a

72. Y. Jiang, N. Tang, C. Zhou, Z. Han, H. Qu, X. Duan, A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography. Nanoscale 10(44), 20578–20586 (2018). https://doi.org/10.1039/C8NR04198A

73. B. Esser, J.M. Schnorr, T.M. Swager, Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. Angew. Chem. Int. Ed. 51(23), 5752–5756 (2012). https://doi.org/10.1002/anie.201201042

74. P.A. Russo, N. Donato, S.G. Leonardi, S. Baek, D.E. Conte, G. Neri, N. Pinna, Room-temperature hydrogen sensing with heterostructures based on reduced graphene oxide and tin oxide. Angew. Chem. Int. Ed. 51(44), 11053–11057 (2012). https://doi.org/10.1002/anie.201204373

75. J.-S. Jang, W.-T. Koo, S.-J. Choi, I.-D. Kim, Metal organic framework-templated chemiresistor: sensing type transition from p-to-n using hollow metal oxide polyhedron via galvanic replacement. J. Am. Chem. Soc. 139(34), 11868–11876 (2017). https://doi.org/10.1021/jacs.7b05246

76. M.S. Yao, W.X. Tang, G.E. Wang, B. Nath, G. Xu, MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv. Mater. 28, 5229–5234 (2016). https://doi.org/10.1002/adma.201506457

77. D. Wang, Z. Li, J. Zhou, H. Fang, X. He, P. Jena, J.-B. Zeng, W.-N. Wang, Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanoparticles. Nano-Micro Lett. 10(1), 4 (2018). https://doi.org/10.1007/s40820-017-0158-0

78. J. Fu, C. Zhao, J. Zhang, Y. Peng, E. Xie, Enhanced gas sensing performance of electrosyn Pt-functionalized NiO nanotubes with chemical and electronic sensitization. ACS Appl. Mater. Interfaces. 5(15), 7410–7416 (2013). https://doi.org/10.1021/am4017347

79. L. Xiao, S. Xu, G. Yu, S. Liu, Efficient hierarchical mixed Pd/SnO2 porous architecture deposited microheater for low power ethanol gas sensor. Sens. Actuat. B: Chem. 255, 2002–2010 (2018). https://doi.org/10.1016/j.snb.2017.08.216

80. S. Ishihara, J.M. Azzarelli, M. Krikorian, T.M. Swager, Ultratrace detection of toxic chemicals: triggered disassembly of supramolecular nanotube wrappers. J. Am. Chem. Soc. 138(26), 8221–8227 (2016). https://doi.org/10.1021/jacs.6b03869

81. M.K. Nakhlé, H. Amal, H. Awad, A.L. Gharrna, N. Abu-Saleh, R. Jeries, H. Haick, Z. Abassi, Sensor arrays based on...
nanoparticles for early detection of kidney injury by breath samples. Nanomed. Nanotechnol. 10(8), 1767–1776 (2014). https://doi.org/10.1016/j.nano.2014.06.007

82. Y. Deng, J. Sun, H. Jin, M. Khatib, X. Li et al., Chemically modified polyaniline for the detection of volatile biomarkers of minimal sensitivity to humidity and bending. Adv. Healthc. Mater. 7(15), 1800232 (2018). https://doi.org/10.1002/adhm.201800232

83. X.M. Sun, Y.D. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 43(5), 597–601 (2004). https://doi.org/10.1002/anie.200352386

84. L. Wang, Z. Lou, T. Fei, T. Zhang, Zinc oxide core-shell hollow microspheres with multi-shell architecture for gas sensor applications. J. Mater. Chem. 21(48), 19331–19336 (2011). https://doi.org/10.1039/C1JM13354C

85. P. Rai, J.-W. Yoon, H.-M. Jeong, S.-J. Hwang, C.-H. Kwak, J.-H. Lee, Design of highly selective and sensitive Au@NiO yolk-shell nanoreactors for gas sensor applications. Nanoscale 6(14), 8292–8299 (2014). https://doi.org/10.1039/c4nr01906g

86. P. Rai, J.-W. Yoon, C.-H. Kwak, J.-H. Lee, Role of Pd nanoparticles in gas sensing behaviour of Pd@In2O3 yolk-shell nanoreactors. J. Mater. Chem. A 4(1), 264–269 (2016). https://doi.org/10.1039/c5ta08873a

87. X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang, Y. Jiang, Z. Xie, L. Zheng, Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed. 48(48), 9180–9183 (2009). https://doi.org/10.1002/anie.200903926

88. X.-G. Han, H.-Z. He, Q. Kuang, X. Zhou, X.-H. Zhang, T. Xu, Z.-X. Xie, L.-S. Zheng, Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C 113(2), 584–589 (2009). https://doi.org/10.1021/jp080233e

89. K. Suematsu, M. Sasaki, N. Ma, M. Yuasa, K. Shimanoe, Antimonpy-doped tin dioxide gas sensors exhibiting high stability in the sensitivity to humidity changes. ACS Sensor 1(7), 913–920 (2016). https://doi.org/10.1021/acssensors.6b00323

90. N. Ma, K. Suematsu, M. Yuasa, K. Shimanoe, Pd size effect on the gas sensing properties of Pd-loaded SnO2 in humid atmosphere. ACS Appl. Mater. Interfaces. 7(28), 15618–15625 (2015). https://doi.org/10.1021/acsami.5b04380

91. Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang, X. Xue, Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoray nanogenerator driven by human finger movement. Nanoscale 6(9), 4604–4610 (2014). https://doi.org/10.1039/c3nr06809a

92. L. Guo, F. Chen, N. Xie, X. Kou, C. Wang et al., Ultrasensitive sensing platform based on Pt–ZnO–In2O3 nanofibers for detection of acetone. Sens. Actuat. B: Chem. 272, 185–194 (2018). https://doi.org/10.1016/j.snb.2018.05.161

93. Z. Wang, Z. Li, T. Jiang, X. Xu, C. Wang, Ultrasensitive hydrogen sensor based on Pd4-loaded SnO2 electrospun nanofibers at room temperature. ACS Appl. Mater. Interfaces. 5(6), 2013–2021 (2013). https://doi.org/10.1021/am3028553

94. S.-J. Choi, W.-T. Koo, S.-J. Kim, J.-S. Jang, H.L. Muller, I.-D. Kim, Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138(40), 13431–13437 (2016). https://doi.org/10.1021/jacs.6b09167

95. M. Yao, P. Hu, N. Han, F. Ding, C. Yin, F. Yuan, J. Yang, Y. Chen, ZnO micro-windbreak for enhanced gas diffusion. Sens. Actuat. B: Chem. 186, 614–621 (2013). https://doi.org/10.1016/j.snb.2013.06.057

96. Z. Jing, J. Zhan, Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 20(23), 4547–4551 (2008). https://doi.org/10.1002/adma.200800243

97. X. Lai, J. Li, B.A. Korgel, Z. Dong, Z. Li, F. Su, J. Du, D. Wang, General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 50(12), 2738–2741 (2011). https://doi.org/10.1002/anie.201004900

98. Y. Shimizu, T. Hyodo, M. Egashira, Meso-to macro-porous oxides as semiconductor gas sensors. Catal. Surv. Asia 8(2), 127–135 (2004). https://doi.org/10.1021/b300027014.79515.87

99. F. Sun, W. Cai, Y. Li, L. Jia, F. Lu, Direct growth of mono- and multilayer nanostructured porous films on curved surfaces and their application as gas sensors. Adv. Mater. 17(23), 2872–2877 (2005). https://doi.org/10.1002/adma.200500936

100. F. Song, H. Su, J. Han, W.M. Lau, W.-J. Moon, D. Zhang, Bioinspired hierarchical tin oxide scaffolds for enhanced gas sensing properties. J. Phys. Chem. C 116(18), 10274–10281 (2012). https://doi.org/10.1021/jp2118136

101. T. Waizt, T. Wagner, T. Sauerwald, C.-D. Kohl, M. Tiemann, Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv. Funct. Mater. 19(4), 653–661 (2009). https://doi.org/10.1002/adfm.200801458

102. E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernandez-Ramirez et al., Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications. Adv. Funct. Mater. 17(11), 1801–1806 (2007). https://doi.org/10.1002/adfm.200600722

103. M. D’Arienzo, L. Armelao, A. Cacciame, C.M. Mari, S. Polizzi et al., One-step preparation of SnO2 and Pt-doped SnO2 as inverse opal thin films for gas sensing. Chem. Mater. 22(13), 4083–4089 (2010). https://doi.org/10.1021/cm100866g

104. M. D’Arienzo, L. Armelao, C.M. Mari, S. Polizzi, R. Ruffo, R. Scotti, F. Morazzoni, Macroporous WO3 thin films active in NH3 sensing: role of the hosted Cr isolated centers and Pt nanoclusters. J. Am. Chem. Soc. 133(14), 5296–5304 (2011). https://doi.org/10.1021/ja109511a

105. J. Jones, H. Xiong, A.T. DeLaRiva, E.J. Peterson, H. Pham et al., Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353(6295), 150–154 (2016). https://doi.org/10.1126/science.aaf8800
106. P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352(6287), 797–800 (2016). https://doi.org/10.1126/science.aaf5251

107. A.J. Therrien, A.J. Hensley, M.D. Marcinkowski, R. Zhang, F.R. Lucchi et al., An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1(3), 192 (2018). https://doi.org/10.1038/s41929-018-0028-2

108. A. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018). https://doi.org/10.1038/s41570-018-0010-1

109. Z. Song, Z. Wei, B. Wang, Z. Luo, S. Xu et al., Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem. Mater. 28(4), 1205–1212 (2016). https://doi.org/10.1021/acs.chemmater.5b04850

110. B. Jang, K.Y. Lee, J.-S. Noh, W. Lee, Nanogap-based electrical hydrogen sensors fabricated from Pd-PMMMA hybrid thin films. Sens. Actuator. B: Chem. 193, 530–535 (2014). https://doi.org/10.1016/j.snb.2013.11.080

111. G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada et al., Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4, 669 (2009). https://doi.org/10.1038/nnano.2009.235

112. N. Kahn, O. Lavie, M. Paz, Y. Segev, H. Haick, Dynamic nanoparticle-based flexible sensors: diagnosis of ovarian carcinoma from exhaled breath. Nano Lett. 15(10), 7023–7028 (2015). https://doi.org/10.1021/nl503937w

113. J.-W. Yoon, J.-S. Kim, T.-H. Kim, Y.J. Hong, Y.C. Kang, J.-H. Lee, A new strategy for humidity independent oxide chemiresistors: dynamic self-refreshing of In2O3 sensing surface assisted by layer-by-layer coated CeO2 nanoclusters. Small 12(31), 4229–4240 (2016). https://doi.org/10.1002/smll.201601507

114. C.-L. Zhu, H.-L. Yu, Y. Zhang, T.-S. Wang, Q.-Y. Ouyang et al., Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. ACS Appl. Mater. Interfaces. 4(2), 665–671 (2012). https://doi.org/10.1021/am101689x

115. S. Park, S. An, Y. Mun, C. Lee, UV-enhanced NO2 gas sensing properties of SnO2-Core/ZnO-shell nanowires at room temperature. ACS Appl. Mater. Interfaces. 5(10), 4285–4292 (2013). https://doi.org/10.1021/am400500a

116. S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 11(19), 2305–2313 (2015). https://doi.org/10.1002/smll.201402923

117. T. Kida, A. Nishiyama, Z. Hua, K. Suematsu, M. Yuasa, K. Shimanoe, WO3 nanowire lamella gas sensor: porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 30(9), 2571–2579 (2014). https://doi.org/10.1021/la4049105

118. Y.-C. Her, B.-Y. Yeh, S.-L. Huang, Vapor-solid growth of p-Te/n-SnO2 hierarchical heterostructures and their enhanced room-temperature gas sensing properties. ACS Appl. Mater. Interfaces. 6(12), 9150–9159 (2014). https://doi.org/10.1021/ami5012518

119. A. Kumar, S. Samanta, A. Singh, M. Roy, S. Singh et al., Fast response and high sensitivity of ZnO nanowires—cobalt phthalocyanine heterojunction based H2S sensor. ACS Appl. Mater. Interfaces. 7(32), 17713–17724 (2015). https://doi.org/10.1021/acsami.5b03652

120. J.H. Kim, A. Katoch, S.H. Kim, S.K. Sang, Chemiresistive sensing behavior of SnO2 (n)–Cu2O (p) core-shell nanowires. ACS Appl. Mater. Interfaces. 7(28), 15351–15358 (2015). https://doi.org/10.1021/acsami.5b03224

121. D. Zhang, Z. Wu, X. Zong, Y. Zhang, Fabrication of polypyrrole/ZnSnO3 nanofiber for ultra-highly sensitive ammonia sensing application. Sens. Actuat. B: Chem. 274, 575–586 (2018). https://doi.org/10.1016/j.snb.2018.08.001

122. Z. Pang, Q. Nie, A. Wei, J. Yang, F. Huang, Q. Wei, Effect of In2O3 nanofiber structure on the ammonia sensing performances of In2O3/PANI composite nanofibers. J. Mater. Sci. 52(2), 686–695 (2017). https://doi.org/10.1007/s10853-016-0362-1

123. M. Villani, D. Calestani, L. Lazzarini, L. Zanotti, R. Mosca, A. Zappettini, Extended functionality of ZnO nanotetrapods by solution-based coupling with CdS nanoparticles. J. Mater. Chem. 22(12), 5694–5699 (2012). https://doi.org/10.1039/C2JM16164H

124. J. Zhai, D. Wang, L. Peng, Y. Lin, X. Li, T. Xie, Visible-light-induced photovoltaic gas sensing to formaldehyde based on CdS nanoparticles/ZnO heterostructures. Sens. Actuat. B: Chem. 147(1), 234–240 (2010). https://doi.org/10.1016/j.snb.2010.03.003

125. J. Zhai, L. Wang, D. Wang, H. Li, Y. Zhang, D.Q. He, T. Xie, Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation. ACS Appl. Mater. Interfaces. 3(7), 2253–2258 (2011). https://doi.org/10.1021/am200089y

126. A. Chizhov, M. Rumyanseva, R. Vasilev, D. Filatova, K. Drozdov, I. Krylov, A. Abakumov, A. Gaskov, Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots. Sens. Actuat. B: Chem. 205, 305–312 (2014). https://doi.org/10.1016/j.snb.2014.08.091

127. L. Luo, X. Yang, Z. Liu, X. Tian, T. Qi, X. Wang, K. Yu, J. Sun, M. Fan, Modulation of potential barrier heights in Co3O4/SnO2 heterojunctions for highly H2-selective sensors. Sens. Actuat. B: Chem. 244, 694–700 (2017). https://doi.org/10.1016/j.snb.2017.01.061

128. C.-H. Kwak, T.-H. Kim, S.-Y. Jeong, J.-W. Yoon, J.-S. Kim, J.-H. Lee, Humidity-independent oxide semiconductor chemiresitors using terbium-doped SnO2 yolk-shell spheres for real-time breath analysis. ACS Appl. Mater. Interfaces. 10(22), 18886–18894 (2018). https://doi.org/10.1021/acsami.8b04245

129. E.-X. Chen, H. Yang, J. Zhang, Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 53(11), 5411–5413 (2014). https://doi.org/10.1021/ic500474j
130. E.-X. Chen, H.-R. Fu, R. Lin, Y.-X. Tan, J. Zhang, Highly selective and sensitive trimethylamine gas sensor based on cobalt imidazolate framework material. ACS Appl. Mater. Interfaces. 6(24), 22871–22875 (2014). https://doi.org/10.1021/amt5071317

131. H. Tian, H. Fan, M. Li, L. Ma, Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sensor 1(3), 243–250 (2016). https://doi.org/10.1021/acssensors.5b00236

132. M.F. Koudehi, S.M. Pourmortazavi, Polyvinyl alcohol/poly pyrrole molecularly imprinted polymer nanocomposite as highly selective chemiresistor sensor for 2,4-DNT vapor recognition. Electroanalysis 30(10), 2302–2310 (2018). https://doi.org/10.1002/elan.201700751

133. K. Tan, S. Zuluaga, E. Fuentes, E.C. Mattson, J.F. Veyan, H. Wang, J. Li, T. Thonhauser, Y.J. Chabal, Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer. Nat. Commun. 7, 13871 (2016). https://doi.org/10.1038/ncomms13871

134. H. Li, M.M. Sadiq, K. Suzuki, R. Ricco, C. Doblin et al., Magnetic metal-organic frameworks for efficient carbon dioxide capture and remote trigger release. Adv. Mater. 28(9), 1839–1844 (2016). https://doi.org/10.1002/adma.201505320

135. P.-Q. Liao, N.-Y. Huang, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, Controlling guest conformation for efficient purification of butadiene. Science 356(6343), 1193–1196 (2017). https://doi.org/10.1126/science.aam7232

136. F. Vermoortele, M. Maes, P.Z. Moghadam, M.J. Lennox, F. Ragon et al., p-Xylene-selective metal-organic frameworks: a case of topology-directed selectivity. J. Am. Chem. Soc. 133(46), 18526–18529 (2011). https://doi.org/10.1021/ja207287h

137. L. Zhang, P. Cui, H. Yang, J. Chen, F. Xiao et al., Metal–organic frameworks as promising photosensitizers for photoelectrochemical water splitting. Adv. Sci. 3(1), 1500243 (2016). https://doi.org/10.1002/advs.201500243

138. M. Zhao, K. Yuan, W. Yun, G. Li, J. Guo, G. Lin, W. Hu, H. Zhao, Z. Tang, Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539(7627), 76 (2016). https://doi.org/10.1038/nature19763

139. M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dincă, Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 127(14), 4423–4426 (2015). https://doi.org/10.1002/anie.201411854

140. D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16(2), 220–224 (2017). https://doi.org/10.1038/nmat4766

141. T. Yamada, M. Sadakyo, H. Kitagawa, High proton conductivity of one-dimensional ferrous oxalate dihydrate. J. Am. Chem. Soc. 131(9), 3144–3145 (2009). https://doi.org/10.1021/ja080861m

142. G. Xu, K. Otsubo, T. Yamada, S. Sakaida, H. Kitagawa, Superprotonic conductivity in a highly oriented crystalline metal–organic framework nanofilm. J. Am. Chem. Soc. 135(20), 7438–7441 (2013). https://doi.org/10.1021/ja402727d

143. L. Sun, M.G. Campbell, M. Dincă, Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55(11), 3566–3579 (2016). https://doi.org/10.1002/anie.201506219

144. G. Xu, G.C. Guo, M.S. Yao, Z.H. Fu, G.E. Wang, The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications: 14, vol. 1 (Wiley, Weinheim, 2016), pp. 421–462. https://doi.org/10.1002/978327693078.ch1

145. M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan et al., New porous crystals of extended metal–catecholates. Chem. Mater. 24(18), 3511–3513 (2012). https://doi.org/10.1021/cm301194a

146. A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila et al., Tunable electrical conductivity in metal–organic framework thin-film devices. Science 343(6166), 66–69 (2014). https://doi.org/10.1126/science.1246738

147. X. Huang, P. Sheng, Z.Y. Tu, F.J. Zhang, J.H. Wang et al., A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015). https://doi.org/10.1038/ncomms8408

148. S. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita et al., Electroconductive porous coordination polymer Cu(Cu(pdt)2)3 composed of donor and acceptor building units. Inorg. Chem. 48(19), 9048–9050 (2009). https://doi.org/10.1021/ic802117q

149. T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi et al., π-Conjugated nickel bis(dithiole) complex nanosheet. J. Am. Chem. Soc. 135, 2462–2465 (2013). https://doi.org/10.1021/ja312380b

150. S. Takaishi, M. Hosoda, T. Kajiwara, H. Miyasaka, M. Yamashita et al., Electroconductive porous coordination polymer CuCu(pdt)23 composed of donor and acceptor building units. Inorg. Chem. 48(19), 9048–9050 (2008). https://doi.org/10.1021/ic082117q

151. X. Ribas, J.C. Dias, J. Morgado, K. Wurst, I.C. Santos et al., Alkaline side-coordination strategy for the design of nickel (II) and nickel (III) bis (1, 2-diselenolene) complex based materials. Inorg. Chem. 43(12), 3631–3641 (2004). https://doi.org/10.1021/ic049860x

152. K.J. Erickson, F. Leonard, V. Stavila, M.D. Spataru et al., Thin film thermoelectric metal-organic framework with high Seebeck coefficient and low thermal conductivity. Adv. Mater. 27(22), 3453–3459 (2015). https://doi.org/10.1002/adma.201501078

153. S.S. Park, E.R. Hontz, L. Sun, C.H. Hendon, A. Walsh, T. Van Voorhis, M. Dinca, Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal–organic frameworks. J. Am. Chem. Soc. 137(5), 1774–1777 (2015). https://doi.org/10.1021/ic4049860x
154. J. Cui, Z. Xu, An electroactive porous network from covalent metal-dithiolene links. Chem. Commun. 50(30), 3986–3988 (2014). https://doi.org/10.1039/c4cc00408f

155. T. Panda, R. Banerjee, High Charge Carrier Mobility in two dimensional indium (III) isophthalic acid based frameworks. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 84(2), 331–336 (2014). https://doi.org/10.1007/s40010-014-0152-6

156. D. Chen, H. Xing, Z. Su, C. Wang, Electrical conductivity and electroluminescence of a new anthracene-based metal-organic framework with π-conjugated zigzag chains. Chem. Commun. 52(10), 2019–2022 (2016). https://doi.org/10.1039/C5CC09065B

157. L.E. Darago, M.L. Aubrey, C.J. Yu, M.I. Gonzalez, J.R. Long, Electronic conductivity, ferrimagnetic ordering, and reductive insertion mediated by organic mixed-valence in a ferric semiquinoid metal-organic framework. J. Am. Chem. Soc. 137(50), 15703–15711 (2015). https://doi.org/10.1021/jacs.5b10385

158. L. Sun, C.H. Hendon, M.A. Minier, A. Walsh, M. Dinca, Million-fold electrical conductivity enhancement in Fe4(DBEDC) vs Mn4(DBEDC) (E = S, O). J. Am. Chem. Soc. 137(19), 6164–6167 (2015). https://doi.org/10.1021/jacs.5b02897

159. D. Sheberla, L. Sun, M.A. Blood-Forsythe, S.L. Er, C.R. Wade, C.K. Brozek, A.N. Aspuru-Guzik, M. Dinca, High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic polymer chains. Nat. Commun. 4, 1614–1615 (2013). https://doi.org/10.1038/ncomms2696

160. T. Kambé, R. Sakamoto, T. Kusamoto, T. Pal, N. Fukui et al., Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 136, 14357–14360 (2014). https://doi.org/10.1021/ja507619d

161. C. Hermosa, J.V. Alvarez, M.R. Azani, C.J. Gomez-Garcia, M. Fritz et al., Intrinsic electrical conductivity of nanostructured metal-organic polymer chains. Nat. Commun. 4, 1709 (2013). https://doi.org/10.1038/ncomms2696

162. S. Takaishi, Y. Tobu, H. Kitagawa, A. Goto, T. Shimizu, T. Okubo, T. Mitani, R. Ikeda, The NOR observation of Spin-Peierls transition in an antiferromagnetic MX-chain complex NiBr(chxn) (2) Br-2. J. Am. Chem. Soc. 126(6), 1614–1615 (2004). https://doi.org/10.1021/ja039857x

163. R.A. Heintz, H. Zhao, X. Ouyang, G. Grandinetti, J. Cowen, K.R. Dunbar, New insight into the nature of Cu (TCNQ): solution routes to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior. Inorg. Chem. 38(1), 144–156 (1999). https://doi.org/10.1021/ic9812095

164. M.G. Campbell, S.F. Liu, T.M. Swager, M. Dinca, Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 137(43), 13780–13783 (2015). https://doi.org/10.1021/jacs.5b09600

165. M.K. Smith, K.E. Jensen, P.A. Pivak, K.A. Mirica, Direct self-assembly of conductive nanorods of metal–organic frameworks into chemiresistive devices on shrinkable polymer films. Chem. Mater. 28(15), 5264–5268 (2016). https://doi.org/10.1021/acs.chemmater.6b02528

166. M.K. Smith, K.A. Mirica, Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 139(46), 16759–16767 (2017). https://doi.org/10.1021/jacs.7b08840

167. D.F. Altomare, F. Porcelli, A. Picciariello, M. Di Lena et al., The use of the PEN3 e-nose in the screening of colorectal cancer and polyps. Tech. Coloproctol. 20(6), 405–409 (2016). https://doi.org/10.1007/s10151-016-1457-z

168. T.W. Zhang, T. Liu, M. Zhang, Y. Zhang, H. Li et al., NOSE: a new fast response electronic nose health monitoring system, in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2018, pp. 4977–4980 (2018). http://doi.org/10.1109/EMBC.2018.8513416

169. W. Li, H. Liu, D. Xie, Z. He, X. Pi, Lung cancer screening based on type-different sensor arrays. Sci. Rep. 7(1), 1969 (2017). https://doi.org/10.1038/s41598-017-02154-9

170. C.G. Waltman, T.A.T. Marcelissen, J.G.H. van Roermund, Exhaled-breath testing for prostate cancer based on volatile organic compound profiling using an electronic nose device (aeonose): a preliminary report. Eur. Urol. Focus (2018). https://doi.org/10.1016/j.euf.2018.11.006

171. V.N.E. Schuermans, Z. Li, A. Jongen, Z. Wu, J. Shi, J. Ji, N.D. Bouvy, Pilot study: detection of gastric cancer from exhaled air analyzed with an electronic nose in Chinese patients. Surg. Innov. 25(5), 429–434 (2018). https://doi.org/10.1177/1553350618781267

172. A. Sanaeifar, H. ZakiDizaji, A. Jafari, M.D.L. Guardia, Early detection of contamination and defect in foodstuffs by electronic nose: A review. TrAC Trend. Anal. Chem. 97, 257–271 (2017). https://doi.org/10.1016/j.trac.2017.09.014

173. H. Yu, J. Wang, Y. Xu, Identification of adulterated milk using electronic nose. Sens. Mater. 19, 275–285 (2007). https://doi.org/10.1007/978-0-387-71720-3_15

174. A.H. Gómez, J. Wang, G. Hu, A.G. Pereira, Electronic nose technique potential monitoring mandarin maturity. Sens. Actuat. B: Chem. 113(1), 347–353 (2006). https://doi.org/10.1016/j.snb.2005.03.090

175. A. Blanco-Rodriguez, V.F. Camara, F. Campo, L. Becheran, A. Duran et al., Development of an electronic nose to characterize odours emitted from different stages in a wastewater treatment plant. Water Res. 134, 92–100 (2018). https://doi.org/10.1016/j.watres.2018.01.067

176. S. Borah, E.L. Hines, M.S. Leeson, D.D. Iliescu, M. Bhuyan, J.W. Gardner, Neural network based electronic nose for classification of tea aroma. Sens. Instrum. Food Qual. Saf. 2(1), 7–14 (2007). https://doi.org/10.1007/s11694-007-9028-7

177. L. Woźniak, P. Kalinowski, G. Jasinski, P. Jasinski, FFT analysis of temperature modulated semiconductor gas sensor response for the prediction of ammonia concentration under
humidity interference. Microelectron. Reliab. 84, 163–169 (2018). https://doi.org/10.1016/j.microrel.2018.03.034

178. A.A.S. Ali, A. Farhat, S. Mohamad, A. Amira, F. Bensala, M. Benammar, A. Bermak, Embedded platform for gas applications using hardware/software co-design and RFID. IEEE Sens. J. 18(11), 4633–4642 (2018). https://doi.org/10.1109/jsen.2018.2822711

179. M. Ghasemi-Varnamkhasti, Z.S. Amir, M. Tohidi, M. Dowlati, S.S. Mohrastei, A.C. Silva, D.D.S. Fernandes, M.C.U. Araujo, Differentiation of cumin seeds using a metal-oxide based gas sensor array in tandem with chemometric tools. Talanta 176, 221–226 (2018). https://doi.org/10.1016/j.talanta.2017.08.024

180. S. Cui, J. Wang, L. Yang, J. Wu, X. Wang, Qualitative and quantitative analysis on aroma characteristics of gingseh at different ages using E-nose and GC-MS combined with chemometrics. J. Pharm. Biomed. Anal. 102, 64–77 (2015). https://doi.org/10.1016/j.jpba.2014.08.030

181. J. Gardner, J. Yinon, Electronic Noses and Sensors for the Detection of Explosives (Springer, Netherlands, 2004). https://doi.org/10.1007/978-1-4020-4231-97

182. C. Olguín, N. Laguarda-Miró, L. Pascual, E. García-Breijo, R. Martínez-Mañez, J. Soto, An electronic nose for the detection of Sarin, Soman and Tabun mimics and interfering agents. Sens. Actuat. B: Chem. 202, 31–37 (2014). https://doi.org/10.1016/j.snb.2014.05.060

183. M. Yoosefian, H. Raissi, A. Mola, The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: a DFT study. Sens. Actuat. B: Chem. 212, 55–62 (2015). https://doi.org/10.1016/j.snb.2015.02.004

184. M. Omidvar, M. Anafcheh, N.L. Hadipour, Computational studies on carbon nanotube-graphene nanoribbon hybrids by density functional theory calculations. Sci. Iran. 20(3), 1014–1017 (2013). https://doi.org/10.1016/j.sci.2013.05.018

185. V.V. Dobrokhotov, D.N. McClroy, M.G. Norton, C.A. Berven, Transport properties of hybrid nanoparticle-nanowire systems and their application to gas sensing. Nanotechnology 17(16), 4135–4142 (2006). https://doi.org/10.1088/0957-4484/17/16/024

186. H. Feng, S. Tan, H. Tang, Q. Zheng, Y. Shi et al., Temperature- and coverage-dependent kinetics of photocatalytic reaction of methanol on TiO2 (110) – (1 x 1) surface. J. Phys. Chem. C 117(8), 4158–4167 (2013). https://doi.org/10.1021/jp312532u

187. R.G. Pavelko, H. Daly, M. Hübner, M. Hübner, C. Hardacre, E. Llobet, Time-resolved DRIFTS, MS, and resistance study of SnO2 materials: the role of surface hydroxyl groups in formation of donor states. J. Phys. Chem. C 117(8), 4158–4167 (2013). https://doi.org/10.1021/jp312532u

188. K.R. Phillips, S.C. Jensen, M. Baron, S.-C. Li, C.M. Friend, Sequential photo-oxidation of methanol to methyl formate on TiO2(110). J. Am. Chem. Soc. 135(2), 574–577 (2013). https://doi.org/10.1021/ja3106797

189. K. Kishita, T. Kamino, A. Watabe, K. Kuroda, H. Saka, In situ TEM observation of solid-gas reactions. J. Phys. Conf. Ser. 126(1), 012085 (2008). https://doi.org/10.1088/1742-6596/126/1/012085

190. M. Yoosefian, M. Raissi, A. Mola, The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: a DFT study. Sens. Actuat. B: Chem. 212, 55–62 (2015). https://doi.org/10.1016/j.snb.2015.02.004

191. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 43(20), 5391–5411 (2014). https://doi.org/10.1039/c4cs00180j

192. R.G. Pavelko, H. Daly, M. Hübner, M. Hübner, C. Hardacre, E. Llobet, Time-resolved DRIFTS, MS, and resistance study of SnO2 materials: the role of surface hydroxyl groups in formation of donor states. J. Phys. Chem. C 117(8), 4158–4167 (2013). https://doi.org/10.1021/jp312532u

193. A. Omidvar, M. Anafcheh, N.L. Hadipour, Computational studies on carbon nanotube-graphene nanoribbon hybrids by density functional theory calculations. Sci. Iran. 20(3), 1014–1017 (2013). https://doi.org/10.1016/j.sci.2013.05.018

194. Z. Guo, N. Liao, M. Zhang, W. Xue, Theoretical approach to evaluate graphene/PANI composite as highly selective ammonia sensor. Appl. Surf. Sci. 453, 336–340 (2018). https://doi.org/10.1016/j.apsusc.2018.05.108

195. H. Fu, X. Yang, X. An, W. Fan, X. Jiang, A. Yu, Experimental and theoretical studies of V2O5@TiO2 core-shell hybrid composites with high gas sensing performance towards ammonia. Sens. Actuat. B: Chem. 252, 103–115 (2017). https://doi.org/10.1016/j.snb.2017.05.027

196. B. Wang, T.-P. Huynh, W. Wu, N. Hayek, T.T. Do et al., A highly sensitive diketopyrrolopyrrole-based ambipolar transistor for selective detection and discrimination of xylene isomers. Adv. Mater. 28(21), 4012–4018 (2016). https://doi.org/10.1002/adma.201505641

197. T. Deng, In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 28(44), 9686–9712 (2016). https://doi.org/10.1002/adma.201602519

198. J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev. 43(20), 6920–6937 (2014). https://doi.org/10.1039/c4cs00180j

199. R. Martínez-Mañez, J. Soto, An electronic nose for the detection of Sarin, Soman and Tabun mimics and interfering agents. Sens. Actuat. B: Chem. 202, 31–37 (2014). https://doi.org/10.1016/j.snb.2014.05.060

200. C. Gao, J. Wang, H. Xu, Y. Xiong, Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 46(10), 2799–2823 (2017). https://doi.org/10.1039/c6cs00727a

201. K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol., C 9(4), 171–192 (2008). https://doi.org/10.1016/j.jphotchem.2008.09.001

202. Y. Qu, X. Duan, Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42(7), 2568–2580 (2013). https://doi.org/10.1039/c2cs35355e

203. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). https://doi.org/10.1039/b800489g
202. Y.Y. Broza, X. Zhou, M. Yuan, D. Qu, Y. Zheng et al., Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 119(22), 11761–11817 (2019). https://doi.org/10.1021/acs.chemrev.9b00437

203. M.-S. Yao, L.-A. Cao, Y.-X. Tang, G.-E. Wang, R.-H. Liu et al., Gas transport regulation in a MO/MOF interface for enhanced selective gas detection. J. Mater. Chem. A 7(31), 18397–18403 (2019). https://doi.org/10.1039/C9TA05226G

204. M. Yao, J.-J. Zheng, A.-Q. Wu, G. Xu, S.S. Nagarkar, G. Zhang, M. Tsujimoto, S. Sakaki, S. Horike, K.-I. Otake, Dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angew. Chem. Int. Ed. 59(1), 172–176 (2020). https://doi.org/10.1002/anie.201909096

205. M.S. Yao, J.W. Xiu, Q.Q. Huang, W.-H. Li, W.W. Wu et al., Van der Waals heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angew. Chem. Int. Ed. 58(42), 14915–14919 (2019). https://doi.org/10.1002/anie.201907772

206. X. Fang, B. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10(4), 64 (2018). https://doi.org/10.1007/s40820-018-0218-0

207. W. Wu, B. Wang, M. Segev-Bar, W. Dou, F. Niu et al., Free-standing and eco-friendly polyaniline thin films for multifunctional sensing of physical and chemical stimuli. Adv. Funct. Mater. 27(40), 1703147 (2017). https://doi.org/10.1002/adfm.201703147

208. O.S. Kwon, S.J. Park, J.S. Lee, E. Park, T. Kim et al., Multi-dimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. Nano Lett. 12(6), 2797–2802 (2012). https://doi.org/10.1021/nl204587v

209. K. Yan, D. Zhang, Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuat. B: Chem. 212, 353–363 (2015). https://doi.org/10.1016/j.snb.2015.02.025

210. S. Cui, S. Mao, G. Lu, J. Chen, Graphene coupled with nanocrystals: opportunities and challenges for energy and sensing applications. J. Phys. Chem. Lett. 4(15), 2441–2454 (2013). https://doi.org/10.1021/jz400976a31d

211. S. Mao, G. Lu, J. Chen, Nanocarbon-based gas sensors: progress and challenges. J. Mater. Chem. A 2(16), 5573–5579 (2014). https://doi.org/10.1039/c3ta13823b

212. H.R. Estakhroyeh, E. Rashedi, M. Mehran, Design and construction of electronic nose for multi-purpose applications by sensor array arrangement using IBGSA. J. Intell. Robot. Syst. 92(2), 205–221 (2017). https://doi.org/10.1007/s10846-017-0759-3

213. J.L. Herrero, J. Lozano, J.P. Santos, J.I. Suarez, On-line classification of pollutants in water using wireless portable electronic noses. Chemosphere 152, 107–116 (2016). https://doi.org/10.1016/j.chemosphere.2016.02.106

214. F. Chang, P. Heinemann, Prediction of human responses to dairy odor using an electronic nose and neural networks. Trans. ASABE 61(2), 399–409 (2018). https://doi.org/10.13031/trans.12177

215. J.C. Rodriguez Gamboa, E.S. Albarracin E.A.J. da Silva, L.L. de Andrade-Lima, T.A.E. Ferreira, Wine quality rapid detection using a compact electronic nose system: application focused on spoilage thresholds by acetic acid. Lwt 108, 377–384 (2019). https://doi.org/10.1016/j.lwt.2019.03.074

216. M. Tohidi, M. Ghasemi-Varnamkhasti, V. Ghafarinia, S. Saeid Mohtasibi, M. Bonyadian, Identification of trace amounts of detergent powder in raw milk using a customized low-cost artificial olfactory system: a novel method. Measurement 124, 120–129 (2018). https://doi.org/10.1016/j.measurement.2018.04.006

217. A. Gorji-Chakespari, A.M. Nikbakht, F. Sefidkon, M. Ghasemi-Varnamkhasti, J. Brezmes, E. Llobet, Performance comparison of fuzzy ARTMAP and LDA in qualitative classification of iranian rosa damascena essential oils by an electronic nose. Sensors (Basel) 16(5), 636 (2016). https://doi.org/10.3390/s16050636

218. W. Dong, J. Zhao, R. Hu, Y. Dong, L. Tan, Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics. Food Chem. 229, 743–751 (2017). https://doi.org/10.1016/j.foodchem.2017.02.149

219. A. Shahid, J.H. Choi, A. Rana, H.S. Kim, Least squares neural network-based wireless E-Nose system using an SnO2 sensor array. Sensors (Basel) 18(5), 1446 (2018). https://doi.org/10.3390/s18051446

220. L. Yao, K. Kan, Y. Lin, J. Song, J. Wang, J. Gao, P. Shen, L. Li, K. Shi, Si doped highly crystalline mesoporous In2O3 nanowires: synthesis, characterization and ultra-high response to NOx at room temperature. RSC Adv. 5(20), 15515–15523 (2015). https://doi.org/10.1039/c4ra14354j

221. K. He, Z. Jin, X. Chu, W. Bi, W. Wang, C. Zhang, S. Liu, Fast response–recovery time toward acetone by a sensor prepared with Pd doped WO3 nanosheets. RSC Adv. 9(49), 28439–28450 (2019). https://doi.org/10.1039/c9ra04429a

222. L. Lv, Y. Wang, P. Cheng, B. Zhang, F. Dang, L. Xu, Ultrasonic spray pyrolysis synthesis of three-dimensional ZnFe2O4-based macroporous spheres for excellent sensitive acetone gas sensor. Sens. Actuat. B: Chem. 297, 126755 (2019). https://doi.org/10.1016/j.snb.2019.126755

223. K. Shingange, H. Swart, G.H. Mhlongo, Ultrafast detection of low acetone concentration displayed by Au-loaded LaFeO3 nanobelts owing to synergetic effects of porous 1D morphology and catalytic activity of Au nanoparticles. ACS Omega 4(21), 19018–19029 (2019). https://doi.org/10.1021/acsomega.9b01989

224. C.-L. Hsu, B.-Y. Jiang, C. Kao, T.-J. Hsieh, UV-illumination and Au-nanoparticles enhanced gas sensing of p-type Na-doped ZnO nanowires operating at room temperature. Sens. Actuat. B: Chem. 274, 565–574 (2018). https://doi.org/10.1016/j.snb.2018.08.016

225. Y. Zhang, L. Zhou, Y. Liu, D. Liu, F. Liu et al., Gas sensor based on samarium oxide loaded mulberry-shaped tin oxide for highly selective and sub ppm-level acetone detection.
J. Colloid Interface Sci. 531, 74–82 (2018). https://doi.org/10.1016/j.jcis.2018.07.052

226. Y. Lu, J. Li, J. Han, H.T. Ng, C. Binder, C. Partridge, M. Meyyappan, Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 391(4-6), 344–348 (2004). https://doi.org/10.1016/j.cplett.2004.05.029

227. H. Li, J. Xu, Y. Zhu, X. Chen, Q. Xiang, Enhanced gas sensing by assembling Pd nanoparticles onto the surface of SnO2 nanowires. Talanta 82(2), 458–463 (2010). https://doi.org/10.1016/j.talanta.2010.04.053

228. J.-Y. Kim, J.-H. Lee, J.-H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Realization of H2S sensing by Pd-functionalized networked CuO nanowires in self-heating mode. Sens. Actuat. B: Chem. 299, 126965 (2019). https://doi.org/10.1016/j.snb.2019.126965

229. Y. Yang, C. Tian, J. Wang, L. Sun, K. Shi, W. Zhou, H. Fu, Facile synthesis of novel 3D nanoflower-like Cu(x)O/multi-layer graphene composites for room temperature NO(x) gas sensor application. Nanoscale 6(13), 7369–7378 (2014). https://doi.org/10.1039/c4nr0196f

230. J. Zhang, D. Zeng, S. Zhao, J. Wu, K. Xu, Q. Zhu, G. Zhang, C. Xie, Room temperature NO2 sensing: what advantage does the rGO-NiO nanocomposite have over pristine NiO? Phys. Chem. Chem. Phys. 17(22), 14903–14911 (2015). https://doi.org/10.1039/c5cp01987g

231. Q. Huang, D. Zeng, H. Li, C. Xie, Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale 4(18), 5651–5658 (2012). https://doi.org/10.1039/c2nr31131c

232. H. Wang, S. Nie, H. Li, R. Ali, J. Fu et al., 3D hollow quasigraphite capsules/polyaniline hybrid with a high performance for room-temperature ammonia gas sensors. ACS Sens. 4(9), 2343–2350 (2019). https://doi.org/10.1021/acssensors.9b00882

233. M. Kooti, S. Keshtkar, M. Askarieh, A. Rashidi, Progress toward a novel methane gas sensor based on SnO2 nanorods-nanoporous graphene hybrid. Sens. Actuator. B: Chem. 281, 96–106 (2019). https://doi.org/10.1016/j.snb.2018.10.032

234. H. Liu, W. Zhang, H. Yu, L. Gao, Z. Song et al., Solution-processed gas sensors employing SnO2 quantum dot/MWCNT nanocomposites. ACS Appl. Mater. Interfaces. 8(1), 840–846 (2016). https://doi.org/10.1021/acsami.5b10188

235. F. Liang, S. Chen, W. Xie, C. Zou, The decoration of Nb-doped TiO2 microspheres by reduced graphene oxide for enhanced CO gas sensing. J. Phys. Chem. Solids 114, 195–200 (2018). https://doi.org/10.1016/j.jpcs.2017.11.001

236. C. Zou, J. Hu, Y. Su, F. Shao, Z. Tao et al., Three-dimensional Fe3O4@reduced graphene oxide heterojunctions for high-performance room-temperature NO2 sensors. Front. Mater. 6, 00195 (2019). https://doi.org/10.3389/fmats.2019.00195

237. T. Jiang, P. Wan, Z. Ren, S. Yan, Anisotropic polyaniline/SWCNT composite films prepared by in situ electropolymerization on highly oriented polyethylene for high-efficiency ammonia sensor. ACS Appl. Mater. Interfaces. 11(41), 38169–38176 (2019). https://doi.org/10.1021/acsami.9b13336

238. G.K. Ekaterina Dovgolevsky, U. Tisch, H. Haick, Monolayer-capped cubic platinum nanoparticles for sensing nonpolar analytes in highly humid atmospheres. Am. Chem. Soc. 114(33), 14042–14049 (2010). https://doi.org/10.1021/jp101881w

239. C.H. Park, V. Schroeder, B.J. Kim, T.M. Swager, Ionic liquid-carbon nanotube sensor arrays for human breath related volatile organic compounds. ACS Sens. 3(11), 2432–2437 (2018). https://doi.org/10.1021/acssensors.8b00987

240. Y. Zilberman, U. Tisch, G. Shuster, W. Pisula, X. Feng, K. Mullen, H. Haick, Carbon nanotube/hexa-peri-hexabenzocoronene bilayers for discrimination between nonpolar volatile organic compounds of cancer and humid atmospheres. Adv. Mater. 22(38), 4317–4320 (2010). https://doi.org/10.1002/adma.201001275

241. P. Sun, Y. Cai, S. Du, X. Xu, L. You et al., Hierarchical α-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens. Actuat. B: Chem. 182, 336–343 (2013). https://doi.org/10.1016/j.snb.2013.03.019

242. G. Lu, J. Xu, J. Sun, Y. Yu, Y. Zhang, F. Liu, UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sens. Actuat. B: Chem. 162(1), 82–88 (2012). https://doi.org/10.1016/j.snb.2011.12.039

243. D. Gu, X. Li, Y. Zhao, J. Wang, Enhanced NO2 sensing of SnO2/Sn2O3 heterojunction based sensor. Sens. Actuat. B: Chem. 244, 67–76 (2017). https://doi.org/10.1016/j.snb.2016.12.125

244. C.W. Peng Sun, J. Liu, X. Zhou, X. Li, X. Hu, G. Lu, Hierarchical assembly of α-Fe2O3 nanosheets on SnO2 hollow nanospheres with enhanced ethanol sensing properties. ACS Appl. Mater. Interfaces. 7(34), 19119–19125 (2015). https://doi.org/10.1021/acsami.5b04751

245. X. Li, C. Wang, H. Guo, P. Sun, F. Liu, X. Liang, G. Lu, Double-shell architectures of ZnFe2O4 nanosheets on ZnO hollow spheres for high-performance gas sensors. ACS Appl. Mater. Interfaces. 7(32), 17811–17818 (2015). https://doi.org/10.1021/acsami.5b04118

246. C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl. Mater. Interfaces. 6(15), 12031–12307 (2014). https://doi.org/10.1021/am501063z

247. K. Xu, N. Li, D. Zeng, S. Tian, S. Zhang, D. Hu, C. Xie, Interface bonds determined gas-sensing of SnO2–SnS2 hybrids to ammonia at room temperature. ACS Appl. Mater. Interfaces. 7(21), 11359–12368 (2015). https://doi.org/10.1021/acsami.5b01856

248. C. Wu, J. Zhang, X. Wang, C. Xie, S. Shi, D. Zeng, Effect of heterointerface on NO2 sensing properties of in situ formed TiO2 QDs-decorated NiO nanosheets. Nanomaterials 9(11), 1628 (2019). https://doi.org/10.3390/nano9111628

249. X. Chang, X. Li, X. Qiao, K. Li, Y. Xiong, X. Li, T. Guo, L. Zhu, Q. Xue, Metal-organic frameworks derived ZnO@MoS
nanosheets core/shell heterojunctions for ppb-level acetone detection: ultra-fast response and recovery. Sens. Actuat. B: Chem. 304, 127430 (2020). https://doi.org/10.1016/j.snb.2019.127430

250. K.T. Alali, J. Liu, Q. Liu, R. Li, H. Zhang, K. Aljabawi, P. Liu, J. Wang, Enhanced acetone gas sensing response of ZnO/ZnCo2O4 nanotubes synthesized by single capillary electro-spinning technology. Sens. Actuat. B: Chem. 252, 511–522 (2017). https://doi.org/10.1016/j.snb.2017.06.034

251. J.H. Bang, M.S. Choi, A. Mirzaei, W. Oum, S. Han, S.S. Kim, H.W. Kim, Porous Si/SnO2 nanowires heterostructures for H2S gas sensing. Ceram. Int. 46(1), 604–611 (2020). https://doi.org/10.1016/j.ceramint.2019.09.010

252. L. Liu, A. Liu, Z. Yang, J. He, J. Wang et al., Room temperature gas sensor based on tin dioxide@polyaniline nanocomposite assembled on flexible substrate: ppb-level detection of NH3. Sens. Actuat. B: Chem. 299, 126970 (2019). https://doi.org/10.1016/j.snb.2019.126970

253. L. Liu, Y. Wang, Y. Dai, G. Li, S. Wang, T. Li, T. Zhang, S. Qin, In situ growth of NiO@SnO2 hierarchical nanoarchitectures for high performance H2S sensing. ACS Appl. Mater. Interfaces. 11(47), 44829–44836 (2019). https://doi.org/10.1021/acsami.9b13001

254. Q. Sun, J. Wang, J. Hao, S. Zheng, P. Wan, T. Wang, H. Fang, Y. Wang, SnS2/SnS p–n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection. Nanoscale 11(29), 13741–13749 (2019). https://doi.org/10.1039/c9nr02780g

255. W. Zeng, Y. Liu, J. Mei, C. Tang, K. Luo, S. Li, H. Zhan, Z. He, Hierarchical SnO2–Sn3O4 heterostructural gas sensor with high sensitivity and selectivity to NO2. Sens. Actuat. B: Chem. 301, 127010 (2019). https://doi.org/10.1016/j.snb.2019.127010

256. X. Zhou, W. Feng, C. Wang, X. Hu, X. Li, P. Sun, K. Shimanoe, N. Yamazoe, G. Lu, Porous ZnO/ZnCo2O4 hollow spheres: synthesis, characterization, and applications in gas sensing. J. Mater. Chem. A 2(41), 17683–17690 (2014). https://doi.org/10.1039/c4ta04386c

257. L. Han, D. Wang, J. Cui, L. Chen, T. Jiang, Y. Lin, Study on formaldehyde gas-sensing of In2O3-sensitized ZnO nanoflowers under visible light irradiation at room temperature. J. Mater. Chem. 22(25), 12915–12920 (2012). https://doi.org/10.1039/c2jm16105b

258. T. Zhou, Y. Sang, X. Wang, C. Wu, D. Zeng, C. Xie, Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays. Sens. Actuat. B: Chem. 258, 1099–1106 (2018). https://doi.org/10.1016/j.snb.2017.12.024

259. M.S. Yao, W.X. Tang, G.E. Wang, B. Nath, G. Xu, MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv. Mater. 28(26), 5229–5234 (2016). https://doi.org/10.1002/adma.201506457

260. X. Wu, S. Xiong, Z. Mao, S. Hu, X. Long, A designed ZnO@ZIF-8 core-shell nanorod film as a gas sensor with excellent selectivity for H2 over CO. Chemistry 23(33), 7969–7975 (2017). https://doi.org/10.1002/chem.201700320

261. S.S. Nair, N. Illyaskutty, B. Tam, A.O. Yazaydin, K. Emmerich et al., ZnO@ZIF-8: Gas sensitive core-shell hetero-structures show reduced cross-sensitivity to humidity. Sens. Actuat. B: Chem. 304, 127184 (2020). https://doi.org/10.1016/j.snb.2019.127184

262. P. Wang, X. Zou, H. Tan, S. Wu, L. Jiang, G. Zhu, Ultrathin ZIF-8 film containing polyoxometalate as an enhancer for selective formaldehyde sensing. J. Mater. Chem. C 6(20), 5412–5419 (2018). https://doi.org/10.1039/c8tc00987b

263. H. Tian, H. Fan, M. Li, L. Ma, Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sensor 1(3), 243–250 (2015). https://doi.org/10.1021/acssensors.5b00236

264. M. Drobek, J.H. Kim, M. Bechelany, C. Vaiicicari, A. Julbe, S.S. Kim, MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Appl. Mater. Interfaces. 8(13), 8323–8328 (2016). https://doi.org/10.1021/acsami.5b12062

265. L. Dang, G. Zhang, K. Kan, Y. Lin, F. Bai, L. Jing, P. Shen, L. Li, K. Shi, Heterostructured Co3O4/PEI-CNTs composite: fabrication, characterization and CO gas sensors at room temperature. J. Mater. Chem. A 2(13), 4558–4565 (2014). https://doi.org/10.1039/c3ta15019d

266. X. Zhang, Y. Sun, Y. Fan, Z. Liu, Z. Zeng, H. Zhao, X. Wang, J. Xu, Effects of organotin halide perovskite and Pt nanoparticles in SnO2-based sensing materials on the detection of formaldehyde. J. Mater. Sci.-Mater. Electron. 30(23), 20624–20637 (2019). https://doi.org/10.1007/s10854-019-02428-0

267. S. Javanmardi, S. Nasresfahani, M.H. Sheikhii, Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature. Mater. Res. Bull. 118, 110496 (2019). https://doi.org/10.1016/j.materresbull.2019.110496

268. J.H. Lee, J.H. Kim, J.Y. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, ppb-Level selective hydrogen gas detection of Pd-functionalized In2O3-loaded ZnO nanofiber gas sensors. Sensors (Basel) 19(19), 4276 (2019). https://doi.org/10.3390/s19194276

269. Y. Xia, J. Wang, L. Xu, X. Li, S. Huang, A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis. Sens. Actuat. B: Chem. 304, 127334 (2020). https://doi.org/10.1016/j.snb.2019.127334

270. H. Tian, H. Fan, J. Ma, Z. Liu, L. Ma, S. Lei, J. Fang, C. Long, Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J. Hazard. Mater. 341, 102–111 (2018). https://doi.org/10.1016/j.jhazmat.2017.07.056

271. W.-C. Lu, S.S. Kumar, Y.-C. Chen, C.-M. Hsu, H.-N. Lin, Au/Cu2O/ZnO ternary nanocomposite for low concentration NO2 gas sensing at room temperature. Mater. Lett. 256, 126657 (2019). https://doi.org/10.1016/j.matlet.2019.126657

272. Y. Wei, G. Yi, Y. Xu, L. Zhou, X. Wang et al., Synthesis, characterization, and gas-sensing properties of Ag/SnO2/rGO composite by a hydrothermal method. J. Mater.
273. Y. Zhou, Q. Ding, J. Li, Q. Yang, T. Wu et al., \(\text{TiO}_2/\text{InVO}_4 \) n–n heterojunctions for efficient ammonia gas detection and their sensing mechanisms. J. Mater. Sci. 54(21), 13660–13673 (2019). https://doi.org/10.1007/s10853-019-03868-z

274. S. Nasresfahani, M.H. Sheikh, M. Tohidi, A. Zarifkar, Methane gas sensing properties of Pd-doped SnO\(_2\)/reduced graphene oxide synthesized by a facile hydrothermal route. Mater. Res. Bull. 89, 161–169 (2017). https://doi.org/10.1016/j.materresbull.2017.01.032

275. S. Li, Y. Diao, Z. Yang, J. He, J. Wang et al., Enhanced room temperature gas sensor based on Au-loaded mesoporous In\(_2\)O\(_3\) nanospheres@polyaniline core–shell nanohybrid assembled on flexible PET substrate for NH\(_3\) detection. Sens. Actuator. B: Chem. 276, 526–533 (2018). https://doi.org/10.1016/j.snb.2018.08.120

276. B. Liu, Y. Li, L. Gao, F. Zhou, G. Duan, Ultrafine Pt NPs-decorated SnO\(_2\)/α-Fe\(_2\)O\(_3\) hollow nanospheres with highly enhanced sensing performances for styrene. J. Hazard. Mater. 358, 355–365 (2018). https://doi.org/10.1016/j.jhazmat.2018.07.021

277. M. Chen, H. Wang, J. Hu, Y. Zhang, K. Li et al., Near-room-temperature ethanol gas sensor based on mesoporous Ag/ZN–LaFeO\(_3\) nanocomposite. Adv. Mater. Interfaces 6(1), 1801453 (2018). https://doi.org/10.1002/admi.201801453

278. E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.-J. Kim, Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces. 9(42), 37184–37190 (2017). https://doi.org/10.1021/acsami.7b1055

279. J. Zhou, H. Lin, X.-F. Cheng, J. Shu, J.-H. He et al., Ultrase-sensitive and robust organic gas sensors through dual hydrogen bonding. Mater. Horiz. 6, 554–562 (2019). https://doi.org/10.1039/C8MH01098F

280. T. Vossmeyer, B. Guse, I. Besnard, R.E. Bauer, K. MÜLLEN, A. Yasuda, Gold nanoparticle/polyphenylene dendrimer composite films: preparation and vapor-sensing properties. Adv. Mater. 14(3), 238–242 (2002). https://doi.org/10.1002/1521-4095(20020205)14:3%3C238:AID-ADMA238%3E3.0.CO;2-%23

281. M.E. DMello, N.G. Sundaram, A. Singh, A.K. Singh, S.B. Kalidindi, An amine functionalized zirconium metal–organic framework as an effective chemiresistive sensor for acidic gases. Chem. Commun. 55(3), 349–352 (2019). https://doi.org/10.1039/C8CC06875E

282. C. Wongchoosuk, M. Lutz, T. Kerdcharoen, Detection and classification of human body odor using an electronic nose. Sensors (Basel) 9(9), 7234–7249 (2009). https://doi.org/10.3390/s090907234

283. J.A. Covington, E.W. Westenbrink, N. Ouaret, R. Harbord, C. Bailey et al., Application of a novel tool for diagnosing bile acid diarrhea. Sensors (Basel) 13(9), 11899–11912 (2013). https://doi.org/10.3390/s130911899

284. R. Thriumani, A. Zakaria, Y.Z.H. Hashim, A.I. Jeffree, K.M. Helmy et al., A study on volatile organic compounds emitted by in vitro lung cancer cultured cells using gas sensor array and SPME-GCMS. BMC Cancer 18(1), 362 (2018). https://doi.org/10.1186/s12885-018-4235-7

285. M.R. van Hooren, N. Leunis, D.S. Brandsma, A.C. Dingemans, B. Kremer, K.W. Kross, Differentiating head and neck carcinoma from lung carcinoma with an electronic nose: a proof of concept study. Eur. Arch. Otorhinolaryngol. 273(11), 3897–3903 (2016). https://doi.org/10.1007/s00404-016-4038-x

286. E.I. Bijl, J.G. Groeneweg, D.W. Wessels, D.L. Stronks, F. Huygen, Diagnosing complex regional pain syndrome using an electronic nose, a pilot study. J. Breath Res. 13(3), 036004 (2019). https://doi.org/10.1088/1752-7163/aaf9c1

287. A.K. Pavlou, N. Magan, J.M. Jones, J. Brown, P. Klats, A.P. Turner, Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens. Bioelectron. 20(3), 538–544 (2004). https://doi.org/10.1016/j.bios.2004.03.002

288. H. Amal, M. Leja, K. Funka, R. Skapars, A. Sivins et al., Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut 65(3), 400–407 (2016). https://doi.org/10.1136/gutjnl-2014-308536

289. N. Bhattacharyya, S. Seth, B. Tudu, P. Tamuly, A. Jana, D. Ghosh, R. Bandyopadhyay, M. Bhuyan, Monitoring of black tea fermentation process using electronic nose. J. Food Eng. 80(4), 1146–1156 (2007). https://doi.org/10.1016/j.jfoodeng.2006.09.006

290. L. Huang, J. Zhao, Q. Chen, Y. Zhang, Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques. Food Chem. 145, 228–236 (2014). https://doi.org/10.1016/j.foodchem.2013.06.073

291. M. Tohidi, M. Ghasemi-Varnamkhasti, V. Ghafarinia, M. Bonyadian, S.S. Mohtasebi, Development of a metal oxide semiconductor-based artificial nose as a fast, reliable and non-expensive analytical technique for aroma profiling of milk adulteration. Int. Dairy J. 77, 38–46 (2018). https://doi.org/10.1016/j.idairyj.2017.09.003

292. X. Tian, J. Wang, S. Cui, Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors. J. Food Eng. 119(4), 744–749 (2013). https://doi.org/10.1016/j.jfoodeng.2013.07.004

293. M. Laureati, S. Buratti, G. Giovaneli, M. Corazzin, D.P. Lo Fiego, E. Pagliarini, Characterization and differentiation of Italian Parma, San Daniele and Toscano dry-cured hams: Discussion of different data standardization and fusion approaches based on electronic nose and tongue. Food Res. Int. 60, 173–179 (2014). https://doi.org/10.1016/j.foodres.2013.10.039

294. Y. Sun, J. Wang, S. Cheng, Discrimination among tea plants either with different invasive severities or different invasive times using MOS electronic nose combined with
a new feature extraction method. Comput. Electron. Agric. 143, 293–301 (2017). https://doi.org/10.1016/j.compeca.2017.11.007

296. X. Gu, Y. Sun, K. Tu, L. Pan, Evaluation of lipid oxidation of Chinese-style sausage during processing and storage based on electronic nose. Meat Sci. 133, 1–9 (2017). https://doi.org/10.1016/j.meatsci.2017.05.017

297. L. Shao, L. Wei, X. Zhang, G. Hui, Z. Zhao, Fabrication of electronic nose system and exploration on its applications in mango fruit (M-indica cv. Datainong) quality rapid determination. J. Food Meas. Charact. 11(4), 1969–1977 (2017). https://doi.org/10.1007/s11694-017-9579-1

298. S. Song, L. Yuan, X. Zhang, K. Hayat, H. Chen, F. Liu, Z. Xiao, Y. Niu, Rapid measuring and modelling flavour quality changes of oxidised chicken fat by electronic nose profiles through the partial least squares regression analysis. Food Chem. 141(4), 4278–4288 (2013). https://doi.org/10.1016/j.foodchem.2013.07.009

299. L. Huang, H. Liu, B. Zhang, D. Wu, Application of electronic nose with multivariate analysis and sensor selection for botanical origin identification and quality determination of honey. Food Bioprocess Tech. 8(2), 359–370 (2014). https://doi.org/10.1007/s11947-014-1407-6

300. C. Steine, F. Beaucousin, C. Siv, G. Pfeiffer, Potential of semiconductor sensor arrays for the origin authentication of pure Valencia orange juices. J. Agr. Food Chem. 49(7), 3151–3160 (2001). https://doi.org/10.1021/jf0014664

301. A.Z. Berna, S. Trowell, D. Clifford, W. Cynkar, D. Cozzolino, Geographical origin of Sauvignon Blanc wines predicted by mass spectrometry and metal oxide based electronic nose. Anal. Chim. Acta 648(2), 146–152 (2009). https://doi.org/10.1016/j.aca.2009.06.056

302. C. Severini, I. Ricci, M. Marone, A. Derossi, T. De Pili, Changes in the aromatic profile of espresso coffee as a function of the grinding grade and extraction time: a study by the electronic nose system. J. Agric. Food Chem. 63(8), 2321–2327 (2015). https://doi.org/10.1021/jf505691u

303. C. Cevoli, L. Cerretani, A. Gori, M.F. Caboni, T. Gallina Toschi, A. Fabbrì, Classification of Pecorino cheeses using electronic nose combined with artificial neural network and comparison with GC-MS analysis of volatile compounds. Food Chem. 129(3), 1315–1319 (2011). https://doi.org/10.1016/j.foodchem.2011.05.126

304. Z. Kovács, I. Dalmadi, L. Lukács, L. Sipos, K. Szántai-Kőhegyi, Z. Kőkai, A. Fekete, Geographical origin identification of pure Śri Lanka tea infusions with electronic nose, electronic tongue and sensory profile analysis. J. Chemomet. 24(3–4), 121–130 (2010). https://doi.org/10.1002/cem.1280

305. A. Zakaria, A.Y. Shakaff, M.J. Masnan, M.N. Ahmad, A.H. Adom et al., A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration. Sensors (Basel) 11(8), 7799–7822 (2011). https://doi.org/10.3390/s11087799

306. V.H. Bennetts, E. Schafernicht, V.P. Sese, A.J. Lilienthal, M. Trincavelli, A novel approach for gas discrimination in natural environments with open sampling systems, in IEEE Sensors 2014 Proceedings (2014). http://doi.org/10.1109/icsens.2014.6985437

307. E.J. Wolfrum, R.M. Meglen, D. Peterson, J. Sluitier, Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels. Sens. Actuat. B: Chem. 115(1), 322–329 (2006). https://doi.org/10.1016/j.snb.2005.09.026

308. X. Zhou, Y. Wang, Z. Wang, L. Yang, X. Wu, N. Han, Y. Chen, Synergetic p+n field-effect transistor circuits for ppb-level xylene detection. IEEE Sens. J. 18(9), 3875–3882 (2018). https://doi.org/10.1109/jfsen.2018.2818710

309. B. Szulczyński, J. Gębicki, J. Namieśnik, Monitoring and efficiency assessment of biofilter air deodorization using electronic nose prototype. Chem. Pap. 72(3), 527–532 (2017).

310. B. Mumyakmaz, K. Karabacak, An E-Nose-based indoor air quality monitoring system: prediction of combustible and toxic gas concentrations. Turk. J. Electr. Eng. Comput. Sci. 23, 729–740 (2015). https://doi.org/10.3906/elk-1304-210

311. S. De Vito, E. Massera, G. Di Francia, C. Ambrosino, P. Di Palma, V. Magliulo, Sensors and Microsystems, Chapter 59, 373–377 (2011). http://doi.org/10.1007/978-94-007-1324-6_59

312. B. Urasinska-Wojcik, T.A. Vincent, M.F. Chowdhury, J.W. Gardner, Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment. Sens. Actuat. B: Chem. 239, 1051–1059 (2017). https://doi.org/10.1016/j.snb.2016.08.080

313. Z. Hai, J. Wang, Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sens. Actuat. B: Chem. 119(2), 449–455 (2006). https://doi.org/10.1016/j.snb.2006.01.001

314. O.S. Jolayemi, F. Tokatli, S. Buratti, C. Alamprese, Discriminative capacities of infrared spectroscopy and e-nose on Turkish olive oils. Eur. Food Res. Technol. 243(11), 2035–2042 (2017). https://doi.org/10.1007/s00217-017-2909-z

315. G. Giovanelli, S. Limbo, S. Buratti, Effects of new packaging solutions on physico-chemical, nutritional and aromatic characteristics of red raspberries (Rubus idaeus L.) in postharvest storage. Postharvest Biol. Technol. 98, 72–81 (2014). https://doi.org/10.1016/j.postharvbio.2014.07.002

316. R. Lopez, I. Giraldez, A. Palma, M. Jesus Diaz, Assessment of compost maturity by using an electronic nose. Waste Manag 48, 174–180 (2016). https://doi.org/10.1016/j.wasman.2015.09.039

317. A. Hajdari, A. Giorgi, G. Beretta, F. Gelmini, A. Lopaci, A. Falci et al., Phytochemical and sensorial characterization of Hyssopus officinalis subsp aristatus (godr.) Nyman (Lamiaceae) by GC-MS, HPLC-UV-DAD, spectrophotometric assays and e-nose with aid of chemometric techniques. Eur. Food Res. Technol. 244(7), 1313–1327 (2018). https://doi.org/10.1007/s00217-018-3046-z

318. S. Xu, Z. Zhou, H. Lu, X. Luo, Y. Lan, Y. Zhang, Y. Li, Estimation of the age and amount of brown rice plant hoppers based on bionic electronic nose use. Sensors 14(10), 18114–81130 (2014). https://doi.org/10.3390/s141018114
319. Q. Chen, J. Song, J. Bi, X. Meng, X. Wu, Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC-MS coupled with E-nose. Food Res. Int. 105, 605–615 (2018). https://doi.org/10.1016/j.foodres.2017.11.054

320. S. Mildner-Szkudlarz, H.H. Jeleń, The potential of different techniques for volatile compounds analysis coupled with PCA for the detection of the adulteration of olive oil with hazelnut oil. Food Chem. 110(3), 751–761 (2008). https://doi.org/10.1016/j.foodchem.2008.02.053

321. S. Cui, J. Wu, J. Wang, X. Wang, Discrimination of American ginseng and Asian ginseng using electronic nose and gas chromatography-mass spectrometry coupled with chemometrics. J. Ginseng Res. 41(1), 85–95 (2017). https://doi.org/10.1016/j.jgr.2016.01.002

322. C.Q. Wei, W.Y. Liu, W.P. Xi, D. Cao, H.J. Zhang et al., Comparison of volatile compounds of hot-pressed, cold-pressed and solvent-extracted flaxseed oils analyzed by SPME-GC/MS combined with electronic nose: major volatiles can be used as markers to distinguish differently processed oils. Eur. J. Lipid Sci. Technol. 117(3), 320–330 (2015). https://doi.org/10.1002/ejlt.201400244

323. Y. Xiong, X. Xiao, X. Yang, D. Yan, C. Zhang et al., Quality control of Lonicera japonica stored for different months by electronic nose. J. Pharm. Biomed. Anal. 91, 68–72 (2014). https://doi.org/10.1016/j.jpba.2013.12.016

324. T. Liu, W. Zhu, J. Huang, H. Chen, R. Nie, C.-M. Li, Comparison of the nutritional as well as the volatile composition of in-season and off-season Hezuo 903 tomato at red stage. Eur. Food Res. Technol. 243(2), 203–214 (2016). https://doi.org/10.1007/s00217-016-2736-7

325. H. Liu, F.K. Zeng, Q.H. Wang, H.S. Wu, L.H. Tan, Studies on the chemical and flavor qualities of white pepper (Piper nigrum L.) derived from five new genotypes. Eur. Food Res. Technol. 237(2), 245–251 (2013). https://doi.org/10.1007/s00217-013-1986-x

326. M.S. Cosio, D. Ballabio, S. Benedetti, C. Gigliotti,Geographical origin and authentication of extra virgin olive oils by an electronic nose in combination with artificial neural networks. Anal. Chim. Acta 567(2), 202–210 (2006). https://doi.org/10.1016/j.aca.2006.03.035

327. F. Autelitano, F. Giuliani, Analytical assessment of asphalt odor patterns in hot mix asphalt production. J. Clean. Prod. 172, 1212–1223 (2018). https://doi.org/10.1016/j.jclepro.2017.10.248

328. J. Laothawornkitkul, J.P. Moore, J.E. Taylor, M. Possell, T.D. Gibson, C.N. Hewitt, N.D. Paul, Discrimination of plant volatile signatures by an electronic nose: a potential technology for plant pest and disease monitoring. Environ. Sci. Technol. 42(22), 8433–8439 (2008). https://doi.org/10.1021/es801738s

329. L. Capelli, S. Sironi, IEEE, Monitoring odour emissions from an oil & gas plant: electronic nose performance testing in the field. in 2017 ISOCIS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). http://doi.org/10.1109/ISOEN.2017.7968862