ABSTRACT

BACKGROUND/OBJECTIVES: Ginseng extract (GSE) and taurine (TR) are widely used antifatigue resources in functional foods. However, the mechanism underlying the antifatigue effects of GSE and TR are still unclear. Hence, we investigated whether GSE and TR have synergistic effects against fatigue in mice.

MATERIALS/METHODS: L6 cells were treated with different concentrations of TR and GSE, and cell viability was determined using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium. Oxidative stress was analyzed by immunocytochemistry using MitoTracker™ Red FM and an anti-8-oxoguanine antibody. Respiratory gas analysis was performed to investigate metabolism. Expression of an activated protein kinase was analyzed using immunohistochemistry. Gene expression of cluster of differentiation 36 and pyruvate dehydrogenase lipoamide kinase isozyme 4 was measured using reverse transcription–polymerase chain reaction. Mice were orally administered TR, GSE, or their combination for 30 days, and then fatigue-related parameters, including lactate, blood urea nitrogen, and glycogen, were measured after forced swimming.

RESULTS: TR and GSE reduced oxidative stress levels in hydrogen peroxide-stimulated L6 cells and enhanced the oxygen uptake and lipid metabolism in mice after acute exercise. After oral administration of TR or GSE for 30 days, the fatigue-related parameters did not change in mice. However, the mice administered GSE (400 mg/kg/day) alone for 30 days could swim longer than those from the other groups. Further, no synergistic effect was observed after the swimming exercise in mice treated with the TR and GSE combination for 30 days.

CONCLUSIONS: Taken together, our data suggest that TR and GSE may exert antifatigue effects in mice after acute exercise by enhancing oxygen uptake and lipid oxidation.

Keywords: Fatigue; ginseng; taurine; exercise; lipid metabolism
INTRODUCTION

Chronic fatigue, including central nervous system fatigue and peripheral fatigue, can cause serious health problems, and the lack of control over fatigue is emerging as an important issue in individuals living in a rapidly changing modern society [1,2]. Fatigue of the central nervous system is characterized by a decrease in skeletal muscle activity, and peripheral fatigue affects the neuromuscular junctions [3]. Physical fatigue is mainly responsible for the deterioration of exercise performance, which is difficult to initiate in a sustainable or random manner, leading to sleep and lethargy [4]. During exercise, physical fatigue can be induced in response to the accumulation of ammonia and lactic acid in tissues and blood [5]. However, no treatment has been identified to prevent fatigue. Some reports have been suggested that the combination of supplementation with essential nutrients and aerobic exercise is an effective approach to preventing fatigue [6]. Therefore, one of the strategies to suppress fatigue involves the elimination or inhibition of the production of fatigue-related metabolites during exercise.

Nutrients are required for the growth and development of an organism, and nutrition involves the ingestion of external substances and energy metabolism to sustain life [7]. Physical fatigue is tightly associated with the maintenance of the balance between nutrition and energy metabolism [8]. For example, cluster of differentiation 36 (CD36) is a protein transporter of fatty acids from the extracellular membrane and cytoplasm to mitochondria. According to recent research results, exercise increases the expression of CD36 and mobilizes fat as an energy source [9,10]. The pyruvate dehydrogenase kinase 4 (Pdk4) gene is associated with lipid metabolism in the skeletal muscle [11]. Pdk4 mediates the inactivation of pyruvate dehydrogenase complex (PDC) via phosphorylation. Inactivation of PDC inhibits the conversion of pyruvic acid to acetyl-CoA, thereby shifting the energy substrate utilization from carbohydrates to lipids [12].

Physical fatigue is responsible for an imbalance between ATP generation and utilization [13]. ATP is synthesized by the ATP-creatine phosphate system, the lactate system that uses glycerol, and the aerobic system that uses carbohydrates and fats. In particular, the process of converting and transporting energy using the lactate system leads to the overproduction of biological metabolites such as ammonia and lactic acid [14]. Therefore, mechanisms of fatigue prevention involve the facilitation of fat metabolism, rather than carbohydrate metabolism, under conditions of high oxygen uptake to produce ATP, which is used for muscle contraction [15]. Mitochondria, which produce ATP, contribute to the maintenance of biological function by repeated fission and fusion [16]. During energy metabolism, mitochondria inevitably produce reactive oxygen species (ROS) [17], and ROS generation is one of the main causes of physical fatigue during excessive physical activity [18].

Dietary antioxidants reduce physical fatigue by preventing ROS-induced oxidative stress during exercise and scavenging free radicals [19]. Ginseng (GS) contains various physiologically active substances exhibiting antioxidant, anticancer, and antifatigue effects [20]. Especially, GS restores energy in the body and acts as a nutrient and tonic. However, the rates of absorption of GS components in the body show individual differences. Therefore, it is necessary to search for nutrients that can increase the absorption rates of GS components in the body to effectively utilize GS. Taurine (TR) is an in vivo metabolite that acts as an antioxidant and antifatigue agent [21]. In addition to metabolic pathway-mediated TR synthesis and elimination, excessive exercise can reduce the amount of TR in the body. In
humans, TR in a free state is abundant in major organs, such as the heart, brain, and liver, and is the second most abundant amino acid, after glutamic acid, in the muscles [22]. However, there are no studies regarding a potential synergy in antifatigue effects of ginseng extract (GSE) and TR. In the present study, we analyzed the exercise ability and fatigue-causing factors in mice to determine whether there is a synergy between the antifatigue effects of TR and GSE.

MATERIALS AND METHODS

Materials
The reagents for cell culture experiments were purchased from Thermo Fisher Scientific (Waltham, MA, USA). GSE was purchased from the Geumsan Ginseng Wholesale Center (Geumsan, Korea). TR was obtained from Hubei Grand Life Science (Hubei, China). L6 rat skeletal muscle cells were obtained from the Korean Cell Line Bank (Seoul, Korea). MitoTracker™ Red FM, the blood urea nitrogen (BUN) colorimetric detection kit, and the lactate assay kit, TRizol reagent and 4′,6-diamidino-2-phenylindole (DAPI) were purchased from Thermo Fisher Scientific. An anti-8-oxoguanine (8-oxoG) antibody was purchased from Merck (Darmstadt, Germany). The glycogen assay kit and all other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Cell viability assay
L6 cells were cultured as previously described [23] in high-glucose Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum and 1% penicillin–streptomycin at 37 ± 2°C and 5% CO₂. Cells were seeded into 96-well plates (1 × 10⁴ cells/well) and treated with TR, GSE, or mixtures of TR and GSE for 24 h, followed by incubation with the 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium reagent for 2 h at 37 ± 2°C. Cell viability was quantified using an iMARK microplate reader (Bio-Rad, Hercules, CA, USA) at 450 nm. Cell morphology was examined using light microscopy (Nikon, Tokyo, Japan) at a magnification of 200×.

In vitro immunocytochemistry
L6 cells (5 × 10³ cells/mL) were cultured in a 35-mm confocal dish for 24 h and then incubated with or without hydrogen peroxide (H₂O₂), TR, or GSE for 24 h. The cells were fixed with 4% formalin for 10 min, then permeabilized with 0.1% Triton X-100 for 10 min, incubated with 5% bovine serum albumin (BSA) for 1 h, and probed with the 8-oxoG antibody (1:1,000). The cells were then incubated with an Alexa Fluor 488-conjugated secondary antibody for 1 h. The nuclei were stained with DAPI. To detect mitochondria, the cells were incubated with MitoTracker™ Red FM at 37 ± 2°C for 30 min. Images were obtained at a magnification of 200× using fluorescence microscopy (K1-Fluo; Nanoscope System, Daejeon, Korea) installed at Korea Basic Science Institute (Seoul, Korea). The lengths of mitochondria were measured using the ImageJ software.

Animal care
Five-week-old male Kunming mice (Mus musculus) (Charles River Beijing, Beijing, China) were used for experiments after acclimation for 1 week. All experiments and animal care were performed in accordance with the institutional guidelines (SEMCARE 20-09-03). The experimental animals were housed in standard cages in a breeding room maintained at a constant temperature of 25 ± 2°C, humidity 55 ± 5%, and a 12-h light/dark cycle.
In vivo energy metabolism test
To measure energy metabolism during exercise, 24 mice were assigned to 4 groups (n = 6) and treated as follows: an untreated group (normal saline vehicle); G400 group (400 mg/kg GSE); T300 group (300 mg/kg TR); and G400 + T300 group (400 mg/kg GSE and 300 mg/kg TR). All treatments were orally administered 30 min before a running exercise. Energy metabolism was measured using the exercise conditions described in a previous study: 18 m/min, slope of 8°, 65% of maximal oxygen consumption (maximum VO\textsubscript{2}) for 1 h [24]. The mice were placed in exercise metabolism chambers for adaptation 1 h before the experiment. Respiratory gas was measured using an open-circuit apparatus in accordance with the methods proposed in previous studies [25,26].

In vivo antifatigue experimental design
Antifatigue experiments, including forced swimming, lactate, BUN, and glycogen tests, were performed as described in previous studies [27,28]. To test the antifatigue effects of the treatments, the 60 mice were randomly divided into 6 groups (n = 10) and treated for 30 days as follows: an untreated group (saline); G100 group (100 mg/kg/day GSE); G200 group (200 mg/kg/day GSE); G400 group (400 mg/kg/day GSE); G200 + T150 group (200 mg/kg/day GSE and 150 mg/kg/day TR); and G400 + T300 group (400 mg/kg/day GSE and 300 mg/kg/day TR).

Forced swimming test
On day 30, the mice were treated with GSE or TR before a resting period of 30 min. The swimming test was performed as described previously by Xu et al. [28]. Briefly, the mice were placed in a swimming tank (50 x 50 x 40 cm), which was filled with water to a depth of 30 cm and maintained at 25 ± 1°C. The tail of each mouse was loaded with a bundle of lead pieces, which weighed 5% of the body weight. Exhaustion was determined by observing the loss of coordinated movements and a failure to return to the surface within 10 s. The swimming time was recorded immediately.

In vivo measurement of biochemical parameters
To detect the antifatigue effects of GSE and TR, blood and liver samples of the mice were collected, and biochemical parameters, such as lactate, BUN, and glycogen levels, were measured. To measure the lactate content, the blood of mice that swam (water temperature, 30 ± 1°C) for 10 min was collected at 3 time points, i.e., before swimming, immediately after swimming, and 20 min after swimming. The lactate content in the blood samples was measured using the lactate assay kit according to the manufacturer’s instructions. To measure the BUN levels, blood samples were collected 60 min after swimming from mice that swam for 90 min at 30 ± 1°C. The measurement of BUN levels using the BUN kit was outsourced to Genia (Seongnam, Korea). The measurement of the glycogen content in the liver samples collected on day 30 was also outsourced to Genia.

Analysis of mRNA expression
Total RNA was isolated from the gastrocnemius of euthanized mice after exercise experiments and from L6 cells using the TRizol reagent according to the manufacturer’s instructions. cDNA was synthesized from 1 µg of total RNA using the Superscript III first-strand synthesis kit.
The mRNA expression of mitofusin-2 (Mfn2) in L6 cells was measured using quantitative real-time polymerase chain reaction (PCR) with a SYBR Green PCR mix (Thermo Fisher Scientific). The primer sequences for Mfn2 were 5′-AGCCTGAGTGTGATGCTG-3′ (forward) and 5′-CTCCGTTGACATCGATCC-3′ (reverse), and those for β-actin were 5′-CACGGCATTTGCACCAACTG (forward) and 5′-AACACAGGCTTGACTAC-3′ (reverse). The cycling conditions were as follows: initial denaturation at 95°C for 10 min, followed by 40 cycles of denaturation at 95°C for 10 s, annealing at 60°C for 30 s, and extension at 72°C for 30 s. Relative mRNA levels were calculated using the 2−ΔΔCt method and normalized to those of β-actin.

The mRNA expression of CD36 and Pdk4 in muscle tissue was measured using an RT-PCR premix (Bioneer, Daejeon, Korea) installed at Korea Basic Science Institute (Seoul Center, Korea). The primer sequences were as follows: for CD36, 5′-GGCCAAGCTATTGCGACAT-3′ (forward) and 5′-CAGATCCGAACACAGCGTAGA-3′ (reverse); for Pdk4, 5′-GCGCTGGCAATATCTCTGAA-3′ (forward) and 5′-GCCCTGAGCCATTGTAGGGA-3′ (reverse); and for β-actin, 5′-CAGCTGAGGGAATCGTG-3′ (forward) and 5′-CGTGCCAATAGTGATGACC-3′ (reverse). The cycling conditions were as follows: initial denaturation at 95°C for 10 min, followed by 30 cycles of denaturation at 94°C for 10 s, annealing at 58°C for 30 s, and extension at 72°C for 30 s. The PCR products were separated on a 1% agarose gel.

Analysis of protein expression in vivo
The gastrocnemius muscles of mice were fixed with 4% formalin for 24 h, then embedded in paraffin, and cut to a thickness of 5 µm. After the specimens were deparaffinized and dehydrated, they were incubated with 3% H2O2 for 10 min and blocked with 3% BSA for 30 min. Afterward, the tissues were incubated with an anti-phosphorylated AMP-activated protein kinase (p-AMPK) primary antibody for 24 h at 4°C and stained with an Alexa Fluor 488-conjugated secondary antibody for 1 h at room temperature, followed by staining with 300 µM DAPI for 10 min at room temperature. The levels of p-AMPK were determined using confocal microscopy (LSM 780; Zeiss, Oberkochen, Germany) installed at Korea Basic Science Institute (Seoul, Korea).

Statistical analysis
Data are expressed as the mean ± SD. Significance was analyzed using the Student’s t-test and Tukey’s multiple range test for each pairwise comparison with the Prism 4.0 software (GraphPad Software, La Jolla, CA, USA). P < 0.05 was considered significant.

RESULTS
Effects of TR and GSE on the viability of L6 cells
To explore the effects of TR and GSE on the viability of L6 cells, we performed a cell viability assay and observed cell morphology. Cytotoxicity was not observed up to 400 µg/mL GSE and up to 600 µg/mL TR (Fig. 1A and B, respectively). Furthermore, cell viability was not affected by cotreatment with 400 µg/mL GSE and 300 µg/mL TR (Fig. 1C and D). Therefore, subminimum concentrations of TR (150 µg/mL) and GSE (200 µg/mL) were used in subsequent experiments.
Effects of TR and GSE against exogenous H$_2$O$_2$-induced oxidative stress in L6 cells

To investigate the antioxidant effects of TR and GSE in H$_2$O$_2$-stimulated L6 cells, 8-oxoG expression and mitochondrial shape changes were observed under a fluorescence microscope. The cells were treated with TR (150 µg/mL) or GSE (200 µg/mL), with or without H$_2$O$_2$ (300 µM) for 24 h. As shown in Fig. 2A, the cell morphology remained the same with all treatments. H$_2$O$_2$ significantly increased the expression of 8-oxoG in the nuclei, whereas the patterns of 8-oxoG expression in the TR and GSE groups were similar to that in the untreated group (Fig. 2B). As shown in Fig. 2C and D, treatment with H$_2$O$_2$ significantly increased the fission form of mitochondria in the L6 cells. The mitochondrial length was 5.5 ± 0.63 µm in the untreated group, 0.54 ± 0.18 µm in the H$_2$O$_2$ group, 2.54 ± 0.55 µm in the H$_2$O$_2$ + G200 group, 2.82 ± 0.45 µm in the H$_2$O$_2$ + T300 group, and 4.56 ± 0.58 µm in the H$_2$O$_2$ + G200 + T300 group. As shown in Fig. 2E, H$_2$O$_2$ significantly decreased the expression of Mfn2 mRNA, while the presence of TR attenuated the downregulation of Mfn2 by H$_2$O$_2$.

Effects of TR and GSE on mouse metabolism during acute exercise

Antifatigue effects are closely related to an increased oxygen uptake and the use of fat sources [29]. Mice were divided into 4 groups, namely, untreated, G400, T300, and G400 + T300. The mice were orally pretreated with GSE or TR and then allowed to rest for 30 min, followed by an exercise on a treadmill for 1 h. First, respiratory gas analysis was performed to explore whether TR or GSE contributed to the regulation of oxygen uptake and fat metabolism during
acute exercise. As shown in Fig. 3A, the oxygen uptake significantly increased in the G400 + T300 group compared with that in the untreated group. Fat oxidation was found to occur at higher levels in the G400 + T300 group compared with those in the other groups (Fig. 3B). To confirm the synergistic effect of TR and GSE on energy metabolism during acute exercise, we analyzed the CD36 and Pdk4 mRNA expression and p-AMPK levels in mouse tissue specimens. As shown in Fig. 3C, the mRNA expression of CD36 and Pdk4 was higher in the T300 and G400 + T300 groups than in the other groups. Moreover, the p-AMPK level was higher in the G400 + T300 group than in the other groups (Fig. 3D).

Fig. 2. Effects of TR and GSE on H2O2-stimulated L6 cells. (A) The images represent the cell morphology observed using light microscopy (200×). (B) Immunocytochemistry staining for 8-oxoG (green color). The nuclei were stained with DAPI (blue color). (C) Fluorescence microscopy detection of mitochondria stained with Mito Tracker™ Red FM for 30 min. (D) The lengths of mitochondria measured in the panel (C) photographs. (E) Mfn2 mRNA expression. Data are expressed as the mean ± SD.

TR, taurine; GSE, ginseng extract; 8-oxoG, 8-oxoguanine; DAPI, 4′,6-diamidino-2-phenylindole; Mfn2, mitofusin-2; G200, 200 µg/mL GSE; T150, 150 µg/mL TR; DIC, differential interference contrast; H2O2, hydrogen peroxide.

*†‡ Denote significant differences (P < 0.05; Tukey’s multiple range test).
Effects of TR and GSE on tissue glycogen content in mice

Carbohydrates consumed in food are stored in the liver as glycogen, and depletion of glycogen causes fatigue [30]. Next, we measured the body weight and tissue glycogen content in mice treated orally with GS extract or TR for 30 days (Fig. 4A). As shown in Fig. 4B, the weight of mice increased daily, but there were no differences among the groups. The
treatments with TR and GSE for 30 days did not result in any differences in the amount of glycogen compared with that in the liver of the control mice (Fig. 4C).

Effects of TR and GSE on fatigue-related parameters in mice after swimming

Fatigue-related parameters, including the blood lactate (Fig. 5A), BUN (Fig. 5C) and forced swimming time (Fig. 5E) were measured to investigate whether administration of TG and GSE for 30 days could improve fatigue. As shown in Fig. 5B and D, treatment with TG and/or GSE (G400, T300, and G400 + T300) for 30 days did not change the BUN and blood lactate levels in mice after swimming compared with those in the untreated group. However, the duration of forced swimming was longer in the G400 group than in the G400 + T300 group (Fig. 5F).

DISCUSSION

In the present study, we hypothesized that GSE could react with substances such as TR in the body to produce an antifatigue effect. Some studies have reported that TR may help relieve fatigue. However, as the amount of TR is regulated in vivo, its antifatigue effects remain controversial. Therefore, we explored the possibility of synergistic effects of TR and GSE on energy metabolism in vitro and in vivo.

Physical fatigue is a condition wherein physical activity is no longer spontaneous as a result of excessive training or high-intensity exercise, which can also increase ROS generation, contributing to fatigue [31]. Overproduction of ROS during generation and consumption of energy from nutrients can induce oxidative stress, resulting in the production of fatigue-inducing substances. To the best of our knowledge, studies on synergistic effects of GSE and TR on fatigue are lacking. In the present study, we found that GSE and TR effectively protected L6 cells stimulated with exogenous ROS, and ROS generation was...
significantly reduced in all experimental groups. Treatment with TR and GSE regulated mitochondrial fission and expression of 8-oxoG in H$_2$O$_2$-stimulated L6 cells. Therefore, we suggest that the combination of TR and GSE regulates ROS scavenging.

Elevated metabolism of fat as an energy resource is associated with antifatigue effects [32]. Compared with anaerobic systems that use only glycogen, aerobic systems can indefinitely use both glycogen and fat to produce ATP [33]. The cellular pathway of fat metabolism initiates the activation of CD36, which is involved in fat transportation to mitochondria [34]. In the present study, we observed a synergistic effect of the intake of TR and GSE on energy metabolism in response to acute exercise. Our results indicated that oxygen consumption in response to acute exercise was significantly induced upon treatment with TR and GSE, implying their synergistic effects on fat metabolism and the activation of the aerobic system. Furthermore, treatment with TR and GSE led to an increase in CD36 expression in the skeletal muscle during acute exercise. Interestingly, similar to previous studies, our study also showed an increase in Pdk4 expression. According to recent studies, the expression of

https://e-nrp.org https://doi.org/10.4162/nrp.2022.16.1.33
skeletal muscle Pdk4 is increased by treatment with TR alone [35] and red GSE alone [36]. Our study confirmed that the expression of Pdk4 was significantly higher in each treatment group, including the combination treatment than in the untreated group. These results suggest that TR and GSE may exert their antifatigue effects by increasing fat metabolism and activating the aerobic system.

In addition, we investigated whether TR and GSE could be effective as antifatigue agents after long-term administration. BUN and blood lactic acid levels are biochemical indicators related to mitochondrial function, and oxidative stress is related to energy production [37]. In this study, there were no changes in the BUN and lactic acid levels in the experimental groups. However, the antifatigue effect of long-term administration of GSE alone was greater than that observed upon coadministration of TR and GSE. Our results were consistent with those of a previous study, which examined the effect of a 2-week GSE intake and exercise-boosting fat metabolism [38,39]. Apparently, there is no synergistic effect between TR and GSE upon long-term coadministration in mice. We speculate that excessive intake of substances such as TR cannot be expected to produce antifatigue effects because these supplements are quickly exerted to maintain homeostasis. Therefore, we suggest that TR and GSE are consumed for a short period of time to achieve an antifatigue effect.

In conclusion, our findings demonstrated that TR and GSE ameliorated mitochondrial dysfunction and oxidative stress in H2O2-stimulated L6 cells. TR and GSE also upregulated CD36 and Pdk4 expression to induce fat metabolism during an acute treadmill exercise in mice. Additionally, in swimming experiments, the effect of long-term treatment with GSE was greater than that of cotreatment with TR and GSE. These results suggest that TR and GSE may have beneficial effects against physical fatigue during acute exercise. However, we suggest that the biological response of the human body to long-term intake of TR or GSE is considered in future studies.

REFERENCES

1. Son CG. Review of the prevalence of chronic fatigue worldwide. J Korean Orient Med 2012;33:25-33.
2. Lim EJ, Ahn YC, Jang ES, Lee SW, Lee SH, Son CG. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J Transl Med 2020;18:100.
3. Wan JJ, Qin Z, Wang PY, Sun Y, Liu X. Muscle fatigue: general understanding and treatment. Exp Mol Med 2017;49:e384.
4. Norheim KB, Jonsson G, Omdal R. Biological mechanisms of chronic fatigue. Rheumatology (Oxford) 2011;50:1009-18.
5. Liu J, Du C, Wang Y, Yu Z. Anti-fatigue activities of polysaccharides extracted from Hericium erinaceus. Exp Ther Med 2015;9:483-7.
6. Aoi W, Naito Y, Yoshikawa T. Exercise and functional foods. Nutr J 2006;5:15.
7. Chen Y, Michalak M, Agellon LB. Importance of nutrients and nutrient metabolism on human health. Yale J Biol Med 2018;91:95-103.
8. Batatinha HA, da Costa CE, de França E, Dias IR, Ladeira AP, Rodrigues B, de Lira FS, Correia SC, Caperuto EC. Carbohydrate use and reduction in number of balance beam falls: implications for mental and physical fatigue. J Int Soc Sports Nutr 2013;10:32.
9. Kim J, Lim K. Relationship between FAT/CD36 protein in skeletal muscle and whole-body fat oxidation in endurance-trained mice. J Exerc Nutrition Biochem 2016;20:48-52.

10. Schenk S, Horowitz JE. Coimmunoprecipitation of FAT/CD36 and CPT I in skeletal muscle increases proportionally with fat oxidation after endurance exercise training. Am J Physiol Endocrinol Metab 2006;291:E254-60.

11. Pilegaard H, Keller C, Stensberg A, Helge JW, Pedersen BK, Saltin B, Neuffer PD. Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes. J Physiol 2002;541:261-71.

12. Kamo T, Kurose S, Ohno H, Murata M, Saito T, Kimura Y. Association of epigenetics of the PDK4 gene in skeletal muscle and peripheral blood with exercise therapy following artificial knee arthroplasty. J Physiol Anthropol 2020;39:7.

13. Rathmacher JA, Fuller JC Jr, Baier SM, Abumrad NN, Angus HF, Sharp RL. Adenosine-5′-triphosphate (ATP) supplementation improves low peak muscle torque and torque fatigue during repeated high intensity exercise sets. J Int Soc Sports Nutr 2012;9:48.

14. Matsui T, Omuro H, Liu YF, Soya M, Shima T, McEwen BS, Soya H. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc Natl Acad Sci U S A 2017;114:6358-63.

15. Kim J, Hwang H, Park J, Yun HY, Suh H, Lim K. Silk peptide treatment can improve the exercise performance of mice. J Int Soc Sports Nutr 2014;11:35.

16. Midzak AS, Chen H, Aon MA, Papadopoulos V, Zirkin BR. ATP synthesis, mitochondrial function, and steroid biosynthesis in rodent primary and tumor Leydig cells. Biol Reprod 2011;84:976-85.

17. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417:1-13.

18. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 2008;88:287-332.

19. Mach I, Midgley AW, Dank S, Grant RS, Bentley DJ. The effect of antioxidant supplementation on fatigue during exercise: potential role for NAD+(H). Nutrients 2010;2:319-29.

20. Kim HG, Cho JH, Yoo SR, Lee JS, Han JM, Lee NH, Ahn YC, Son CG. Antifatigue effects of Panax ginseng C.A. Meyer: a randomised, double-blind, placebo-controlled trial. PLoS One 2013;8:e61271.

21. Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther (Seoul) 2018;26:225-41.

22. Rips H, Shen W. Review: taurine: a “very essential” amino acid. Mol Vis 2012;18:2673-86.

23. Kim J, Lee KP, Beak S, Kang HR, Kim YK, Lim K. Effect of black chokeberry on skeletal muscle damage and neuronal cell death. J Exerc Nutrition Biochem 2019;23:26-31.

24. Kim J, Park J, Kim N, Park HY, Lim K. Inhibition of androgen receptor can decrease fat metabolism by decreasing carnitine palmitoyltransferase I levels in skeletal muscles of trained mice. Nutr Metab (Lond) 2019;16:82.

25. Chung N, Lim K. Influence of high fat and different types of carbohydrate diet on energy metabolism in growing mice. J Exerc Nutrition Biochem 2019;23:1-12.

26. Kim J, Park J, Kim B, Lee CH, Lim K, Suh H. Effects of silk peptides administration on fat utilization over a whole day in mice. J Exerc Nutrition Biochem 2016;20:53-9.
27. Liu Y, Liu C. Antifatigue and increasing exercise performance of Actinidia arguta crude alkaloids in mice. J Food Drug Anal 2016;24:738-45.

28. Xu M, Liang R, Li Y, Wang J. Anti-fatigue effects of dietary nucleotides in mice. Food Nutr Res 2017;61:1334485.

29. Wan JJ, Qin Z, Wang PY, Sun Y, Liu X. Muscle fatigue: general understanding and treatment. Exp Mol Med 2017;49:e384.

30. Costill DL, Hargreaves M. Carbohydrate nutrition and fatigue. Sports Med 1992;13:86-92.

31. Hawley JA. The fuels for exercise. Aust J Nutr Diet 2001;58:S19-22.

32. Ferreira LF, Reid MB. Muscle-derived ROS and thiol regulation in muscle fatigue. J Appl Physiol (1985) 2008;104:853-60.

33. Teng YS, Wu D. Anti-fatigue effect of green tea polyphenols (-)-epigallocatechin-3-gallate (EGCG). Pharmacogn Mag 2017;13:326-31.

34. Askew EW. Role of fat metabolism in exercise. Clin Sports Med 1984;3:605-21.

35. Campbell SE, Tandon NN, Woldegiorgis G, Luiken JJ, Glatz JF, Bonen A. A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria. J Biol Chem 2004;279:36235-41.

36. Takahashi Y, Tamura Y, Matsunaga Y, Kitaoka Y, Terada S, Hatta H. Effects of taurine administration on carbohydrate metabolism in skeletal muscle during the post-exercise phase. J Nutr Sci Vitaminol (Tokyo) 2016;62:257-64.

37. Song YB, An YR, Kim SJ, Park HW, Jung JW, Kyung JS, Hwang SY, Kim YS. Lipid metabolic effect of Korean red ginseng extract in mice fed on a high-fat diet. J Sci Food Agric 2012;92:388-96.

38. Shi DY, Xie FZ, Zhai C, Stern JS, Liu Y, Liu SL. The role of cellular oxidative stress in regulating glycolysis energy metabolism in hepatoma cells. Mol Cancer 2009;8:32.

39. Hwang H, Kim J, Lim K. The effect of a 2-week red ginseng supplementation on food efficiency and energy metabolism in mice. Nutrients 2020;12:1726.