ABSTRACT

Objective We aimed to describe the associations of age and sex with the risk of COVID-19 in different severity stages ranging from infection to death.

Design Systematic review and meta-analysis.

Data sources PubMed and Embase through 4 May 2020.

Study selection We considered cohort and case-control studies that evaluated differences in age and sex on the risk of COVID-19 infection, disease severity, intensive care unit (ICU) admission and death.

Data extraction and synthesis We screened and included studies using standardised electronic data extraction forms and we pooled data from published studies and data acquired by contacting authors using random effects meta-analysis. We assessed the risk of bias using the Newcastle-Ottawa Scale.

Results We screened 11,550 titles and included 59 studies comprising 36,470 patients in the analyses. The methodological quality of the included papers was high (8.2 out of 9). Men had a higher risk for infection with COVID-19 than women (relative risk (RR) 1.08, 95% CI 1.03 to 1.12). When infected, they also had a higher risk for severe COVID-19 disease (RR 1.18, 95% CI 1.10 to 1.27), a higher need for intensive care (RR 1.38, 95% CI 1.09 to 1.74) and a higher risk of death (RR 1.50, 95% CI 1.18 to 1.91). The analyses also showed that patients aged 70 years and above have a higher infection risk (RR 1.65, 95% CI 1.50 to 1.81), a higher risk for severe COVID-19 disease (RR 2.05, 95% CI 1.27 to 3.32), a higher need for intensive care (RR 2.70, 95% CI 1.59 to 4.60) and a higher risk of death once infected (RR 3.61, 95% CI 2.70 to 4.84) compared with patients younger than 70 years.

Conclusions Meta-analyses on 59 studies comprising 36,470 patients showed that men and patients aged 70 and above have a higher risk for COVID-19 infection, severe disease, ICU admission and death.

PROSPERO registration number CRD42020180085.

BACKGROUND

COVID-19 or the disease caused by the SARS-CoV-2 coronavirus has caused a pandemic that has affected patients in more than 188 countries and territories around the world. The number of patients diagnosed with COVID-19 has exceeded 27 million on 8 September 2020, and to date more than 890,000 patients have died.

Regarding demographics, respiratory tract infections are, in general, more severe in men and they tend to lead to higher mortality in men. Higher mortality for men was also observed during the severe acute respiratory syndrome (SARS) epidemic. In a mixed group of patients with COVID-19 and SARS, Jin et al. found that increased age and sex were associated with more severe disease and mortality. However, a systematic review on the association between demographic factors and different severity stages of COVID-19 is lacking.

Knowledge on the association between demographic factors and different severity stages of COVID-19 such as infection, severe disease, intensive care unit (ICU) admission and death may provide insight into the underlying pathophysiological mechanisms (immunity, coagulopathy and comorbidities). This knowledge may also guide clinical decision-making, especially when there is an impending shortage in healthcare resources such as ICU beds. Additionally, exploring demographic factors influencing COVID-19 outcomes may guide policymakers in, for instance, the prioritisation of non-pharmaceutical interventions
and screening. These demographic factors may also be important for the design and interpretation of clinical trials on the efficacy of treatments as they could potentially be strong confounders. Therefore, the aim of this living systematic review is to describe the association between demographic factors and COVID-19 in different stages of the disease.

METHODS

The reporting of this living systematic review and meta-analysis is in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and a protocol has been registered a priori at the PROSPERO registry (PROSPERO 2020). For this review, we focused on the early phase of the pandemic.

Demographic factors include: age, sex, social economic status (education level), pregnancy and ethnicity. As only a few studies so far reported on the latter three factors, the current version of this review focuses on age and sex. Age was categorised into old age, defined as 70 years and older, and young age, defined as younger than 70 years. Seventy years was chosen as a cut-off point for the main analyses because this was the most commonly used cut-off in the first studies included. We also collected data on other cut-off points (60 and 65 years) where possible. We considered four stages of disease severity: (1) infection, (2) severe clinical or radiological symptoms (according to WHO guidance), (3) ICU admission, and (4) death. This led to the following research questions:

What is the association between demographic factors and:

1. A confirmed COVID-19 infection among the general population?
2. Clinically/radiologically severe COVID-19 among hospitalised patients with a confirmed infection?
3. ICU admission among patients hospitalised for confirmed COVID-19 infection?
4. Death among patients hospitalised for confirmed COVID-19 infection?

Originally, we also planned to investigate ‘hospitalisation’ as a potential outcome. However, only one study reported on this, which did not warrant inclusion in this version of the review. Future versions of the review will re-evaluate ‘hospitalisation’ as an outcome. The cases and controls for each stage of the disease are defined in table 1.

Data sources and searches

The search strategy was devised with a specialised librarian (GHLF) and the following databases were searched from December 2019 up to 4 May 2020: Medline via PubMed and Embase. Additionally, EPPI Centre (COVID-19: a living systematic map of the evidence) was consulted up to 31 March 2020.

We designed the search strategy to be sensitive and reproducible. The term COVID-19 was elaborated in combinations of controlled vocabulary and free text terms. See online supplemental appendix 1 for the full search strategy. No language restrictions were applied during the search strategy. Studies reported in languages spoken by the research team were included: English, Dutch, German, French and Russian. Studies published in any other language were temporarily excluded and will be reconsidered in future updates of this living review.

Study selection

Initial screening on the basis of title and abstract of eligible studies was performed by one reviewer (RTD, AVJ or BGP). A second reviewer (RTD) redid the study selection procedure on a random sample of 500 studies. The between-reviewer agreement from these 500 studies was 98.4% with a kappa of 0.74, indicating substantial agreement. When the information in the abstract did not suffice or where there was any doubt, the studies remained potentially eligible. The full text of potentially eligible studies was independently evaluated in duplicate by two reviewers (from AR, SZ, AA, JIRD, SH). All records identified through the searches were collected in an electronic reference database and subjected to the following inclusion and exclusion criteria: the study had to focus on humans with COVID-19 or SARS-CoV-2 coronavirus infections providing, or potentially providing, sufficient information to calculate risk ratios for our prespecified associations (table 1). A study was excluded when no valid comparisons could be made. This was the case when less than five observations were reported in any cell of the contingency tables, when the study quality score (see next paragraph) was less than 5 out of 9 and when patients were admitted to hospital for different indications than for COVID-19 (eg, kidney transplant patients, patients with fractured bones).

Table 1 Study structure

Severity stage	Case	Control	Population
1. Infection	Test positive	Test negative	General population
2. Severe symptoms (clinically or radiologically)	Severe symptoms	Non-severe symptoms	Hospitalised COVID-19 cases
3. ICU admittance	Admitted to ICU	Not admitted to ICU	Hospitalised COVID-19 cases
4. Death	Death	Alive	Hospitalised COVID-19 cases

ICU, intensive care unit.
Data extraction and quality assessment
Observed frequencies of outcomes and controls per level of the determinants were extracted from text, tables or figures (ie, 2×2 tables leading to unadjusted risk ratios) for each included study. One reviewer (AR or SZ) extracted data from included studies regarding the severity stages of COVID-19, patient demographics and study characteristics in a predefined electronic data sheet that was designed during a pilot data extraction phase on the first eligible studies. A second reviewer (AA, JIRD or SH) double-checked the inclusion by the data extractors. Any disagreements were resolved by consensus or by consulting a referee (BGP or MPZ). We contacted the authors of papers with data presented in a way that did not allow summarisation in contingency tables by email. We sent a reminder email after 1 week. In total, we contacted 87 authors of whom 17 supplied additional data which could be used in the analyses for 12 papers. Risk of bias of the included studies was appraised independently by one reviewer (from AA, JIRD or SH) using the Newcastle-Ottawa Scale (NOS).10

Data synthesis and analysis
We used the relative risk (RR) to assess the association between each severity stage (ie, diagnosis, severe disease, ICU admission and death) and demographic factors. The data from the included studies underwent random effects meta-analysis to determine the pooled effect sizes with corresponding 95% CIs and (in case of heterogeneity) 95% prediction intervals.11 The amount of statistical heterogeneity was assessed through visual inspection of the forest plots and by calculating I² statistic.12 If data allowed, we explored potential sources of statistical heterogeneity when I² was above 40% (1) through subgroup analyses and (2) with random effects meta-regression analyses on predefined factors. These factors include: geographical region, study quality, study size, days into the pandemic, publication date, diagnostic modality (eg, PCR test, CT signs, clinical symptoms and their combinations that led to the diagnosis of COVID-19) and clinical setting (eg, nursing home, home, hospital, general practitioner cohort). We carried out leave-one-out analyses to determine the influence of possible outlier studies on the pooled effect size. The study setting and diagnostic modality were very consistent within the different outcomes, so a sensitivity on these factors was not meaningful.

To assess publication bias we constructed funnel plots for visual inspection and statistically tested potential asymmetry using the Egger and Harbord test.13,14 In case of asymmetry, a trim-and-fill method and cumulative meta-analyses were used to explore the magnitude and direction of publication bias.

Patient and public involvement
This systematic review and meta-analysis is part of the WHO Evidence Collaborative on COVID-19 answering their rapid review priority questions on risk factors for infection and disease severity. Patients were not involved.

RESULTS
Study selection
The literature search yielded 11 550 unique hits of which 300 studies were eligible after screening titles and abstracts. From these eligible studies, we excluded 241: 13 were reviews; 17 were written in a language not spoken by the review team; 118 did not report or evaluate demographic factors; and 93 had no valid comparisons between cases and controls. This left 59 studies in the current meta-analysis, covering a total of 36 470 patients.15-73 Details of the study selection are given in figure 1 (PRISMA flow chart).

Study characteristics
We included studies on the effect of age (70 years or more vs less than 70 years) and sex (men vs women). There were either no studies or not enough studies on social economic status, pregnancy or ethnicity to allow any meaningful analyses. Regarding age and sex, there were not enough studies on the outcome ‘hospitalization’ to allow any meaningful analyses. The current meta-analysis therefore presents results on age and sex regarding risk of infection, disease severity, ICU admission and death.

From the included studies, 50 were from China, 3 from the USA, 1 from Germany, 1 from Iran, 1 from Italy, 1 from Singapore, 1 from South Korea and 1 from the UK. The included studies were published between 2 January 2020 and 15 April 2020. The mean age of the patients in the included studies ranged from 7 to 73 years. The percentage of males in the included papers ranged from 35% to 81%. The follow-up ranged from 12 to 73 days. For details of individual studies, organised by exposure and outcome, see online supplemental appendix 2.

Risk of bias
The methodological quality of the included papers was high with an average of 8.2 out of 9, as measured with the NOS. Case definition and case representativeness were acceptable in 55 out of 59 and 55 out of 59 studies, respectively. Control selection and control definition were acceptable in 59 out of 59 and 55 out of 59 studies, respectively. Exposure ascertainment and comparable ascertainment were acceptable in 57 out of 59 and 58 out of 59 studies, respectively. Non-response rate was not applicable for our study questions. Details of NOS items for individual studies, organised by exposure and outcome, are available in online supplemental appendix 2.

Synthesis of results
Meta-analyses of the primary outcomes for the risk factors sex and age revealed differences among men and women and among patients 70 years of age or older (70+) and below 70 years (70–). An overview of the pooled results
from random effects meta-analyses for each demographic factor separately can be found in table 2.

Demographic factor: sex

There was an unambiguous association between each stage of disease severity and sex with men having a higher risk of infection, disease severity, ICU admission and death than women. Men have a statistically significant 8% higher risk of being diagnosed with COVID-19 than women (RR: 1.08, 95% CI 1.03 to 1.12; 8 studies) (see figure 2). When diagnosed, men also experienced more severe disease than women (RR 1.18, 95% CI 1.10 to 1.27; 35 studies), implying that the risk of severe COVID-19 disease for men is 18% higher than that for women (see figure 3). Moreover, the rate of admission to ICU in patients with COVID-19 was higher among men as compared with women. The aggregated random effect was 1.38 (95% CI 1.09 to 1.74; 11 studies) (see figure 4). Finally, we observed that men were at higher risk of death

Exposure	Outcome	Studies (n)	Patients (n)	Pooled estimate (RR)	95% CI	95% PI	Heterogeneity (I²)
Sex (male vs female)	Infection	8	16 286	1.08	1.03 to 1.12	NA	0%
	Severe disease	35	7832	1.18	1.10 to 1.27	NA	15%
	ICU	11	1493	1.38	1.09 to 1.74	NA	32%
	Death	14	12 792	1.50	1.18 to 1.91	0.73 to 3.10	62%
Age (70+ vs 70−)	Infection	4	12 996	1.65	1.50 to 1.81	NA	35%
	Severe disease	7	1102	2.05	1.27 to 3.32	0.42 to 9.93	87%
	ICU	5	688	2.70	1.59 to 4.60	0.47 to 15.7	69%
	Death	5	9222	3.61	2.70 to 4.84	1.51 to 8.67	60%

ICU, intensive care unit; NA, not applicable; PI, prediction interval; RR, risk ratio.
from COVID-19 as compared with women (RR 1.50, 95% CI 1.18 to 1.91; 14 studies) (see figure 5). These increased risks for men across all severity stages were statistically significant, with little heterogeneity (see table 2).

Demographic factor: age

This meta-analysis also showed a clear-cut distinction between patients aged 70 years or older (70+) and 70 years or younger (70−) with respect to each stage of disease severity for COVID-19 (see figures 6–9). Patients aged 70+ appear to have a 65% higher risk for infection of COVID-19 (RR 1.65, 95% CI 1.50 to 1.81; 4 studies). When infected, they also appear to have a higher risk for severe COVID-19 disease, need for intensive care and death (RR 2.05, 95% CI 1.27 to 3.32; 7 studies, RR 2.70, 95% CI 1.59 to 4.60; 5 studies, and RR 3.61, 95% CI 2.70 to 4.84; 5 studies, respectively). These increased risks for older patients across all severity stages were statistically significant and very consistent, though there was some observed heterogeneity in the magnitude of this effect but not in the direction of the effect.

Sensitivity analyses

Funnel plots showed some asymmetry for the relation between sex and the outcomes of severe disease, ICU admission and death (all p values above 0.063; Harbord test). Although the subsequent trim-and-fill
analysis revealed some reduction in the effect sizes, all conclusions remained the same. More specifically, the RR for severity changed from 1.18 to 1.16, for ICU from 1.38 to 1.20 and for death from 1.50 to 1.20. We also redid the meta-analysis by excluding studies with possible overlap in patients, to make sure each patient was only included once. We assumed this to be the case when studies were similar in terms of region, recruitment period and hospital; in a group of studies with a possible overlap, only the largest study was included in the analysis. The results remained almost identical (see table 3). We also performed exhaustive sensitivity analyses consisting of subgroup analyses and meta-regression (see online supplemental appendix 3). The conclusions of our study did not change in subgroups, nor were any factors identified as significant sources of heterogeneity in meta-regression analyses. The main reason for this is the low level between study variance. For sex, however, little heterogeneity was observed. For age, there was some heterogeneity in the magnitude of this effect but not in the direction of the effect.

DISCUSSION

Summary of evidence

In this systematic review we described the association between demographic factors and COVID-19 infection, severity, ICU admission and death. There were not enough data to report on pregnancy, socioeconomic status or ethnicity. Our results showed that men were more often severely affected by COVID-19 than women on all stages of the disease. Men more often had a higher risk for COVID-19 infection. When hospitalised with COVID-19, men more often developed severe COVID-19 disease and more often required intensive care admission, ultimately
resulting in death more often. We also found that patients aged 70 years and above affected by COVID-19 were more often observed to have confirmed COVID infection, severe disease, ICU admission and dying compared with patients younger than 70 years.

A living systematic review design was chosen because during the COVID-19 pandemic there is an urgent need for the most up-to-date evidence while maintaining scientific rigour and quality. Additionally, studies relevant for these research questions will likely be continuously published in the foreseeable future. Moreover, traditional systematic reviews risk becoming rapidly outdated when new evidence is published almost on a daily basis, and it is not an option to wait until the pandemic is over to publish a systematic review on the full body of evidence.

Possible explanations

This study looked at unadjusted risk ratios for the demographic factors age and sex for several COVID outcomes. Although some studies have reported adjusted risk ratios, this indicates a different goal. Adjustment is only relevant when attempting to look at causal effects, in which case the causal effect will be validly estimated after full adjustment for all confounders, while simultaneously avoiding adjustment for colliders and mediating factors. Given that the optimal adjustment factors are not yet known and also differ across various research questions, settings and, most importantly, across time and place, we consider this undesirable. For the purpose of the current study, unadjusted risk ratios were considered most appropriate.

This observation of higher risk of severe disease and higher risk of dying for men compared with women when affected by COVID-19 is in line with the fact that, in general, respiratory tract infectious diseases are more severe in men and subsequently tend to lead to higher mortality in men. Moreover, during the SARS epidemic of 2003, mortality was also higher in men. Thus, this increased severity of respiratory tract disease, including COVID-19, and increased mortality for men may point to an underlying biological mechanism. Aside from anatomical, lifestyle, behavioural, comorbidities and socio-economic differences between men and women it has been suggested that differences in the immune system between men and women may, at least, partially explain the observed sex differences in the incidence and severity of respiratory tract infections. Indeed, several groups have found sex differences in the immune response, including the innate immune response. Regarding COVID-19, there are indications that immune response (inflammation) markers such as interleukin-6 (IL-6) are associated with severity and mortality. In a broader perspective, immune response markers, such as IL-6, have also been associated with worse outcome and higher mortality in trauma patients. Thus, in addition to differences in health and comorbidities between men and women, differences in the way the immune system responds to the COVID-19 infection may also play a role in the pathogenesis and the outcome of the disease.

Similar to sex differences in immune response, the immune system also changes with age. Ageing is, among others, characterised by a chronic proinflammatory status of the immune system with persistent low-grade immune activation that may increase tissue damage caused by infections in the elderly. Ageing is also associated with a high prevalence of comorbidities and decreased reserve capacity of vital organs which may lead to increased frailty, and together with an aged immune system this may put elderly individuals at risk of a poor outcome and higher risk of mortality when infected with COVID-19.

Implications for clinicians, policymakers and researchers

Regardless of the underlying mechanism, the observed demographic differences in COVID-19 severity may contribute by informing clinical and policy guidelines in the prioritisation of non-pharmaceutical interventions and screening for COVID-19 in groups at risk of worse outcome. The observation that men and patients aged 70

Table 3 Exclusion of possible overlaps

Exposure	Outcome	All studies	Excluding possible overlap		
		Studies (n)	Pooled estimate (RR)	Studies (n)	Pooled estimate (RR)
Sex (male vs female)	Infection	8	1.08	6	1.09
	Severe disease	35	1.18	28	1.20
	ICU	11	1.38	11	1.38
	Death	14	1.50	11	1.34
Age (70+ vs 70−)	Infection	4	1.65	4	1.65
	Severe disease	7	2.05	7	2.05
	ICU	5	2.70	5	2.70
	Death	5	3.61	4	3.62

Studies with possible overlap of patients were excluded from the analysis, results presented in bold. Possible overlap was assumed when studies were from the same region, recruitment period and hospital. In a group of studies with possible overlap only the largest study was included in the analysis. The results remained almost identical.
years and above have a higher risk of severe disease, ICU admission and death when infected with COVID-19 may guide individual clinical decision-making. For instance, men and patients aged 70 and above may be advised to seek out medical consultation at an earlier stage of the disease, and when admission in hospital is required clinicians should be made aware of the higher risk of severe disease and mortality in these groups. For clinical trials and other human studies on COVID-19, in particular those evaluating possible treatments for COVID-19, it is especially important to control for age and sex as they are strong confounders.

Limitations and strengths
We should also consider some limitations. Most included studies, n=50, were still from China involving Chinese patients with COVID-19 compared with n=9 studies from outside China, potentially limiting the generalisability of the findings. Additional studies outside of China are expected and will be included in future updates of this living review. Additionally, the data extraction and quality assessment were performed by one reviewer. In future updates of this review, a second reviewer will (at least partially) reperform the data extraction.

Methodological limitations include the fact that disease severity was in most papers defined according to the clinical stages of COVID-19 issued by China and WHO interim guidance, but this was not always reported. Additionally, in some papers it was unclear whether severity was assessed on hospitalisation or during follow-up. This is additionally complicated by the fact that referral policy to dedicated hospitals in China obscures the severity on initial admission. Therefore, it was not always clear whether an RR or OR was the most appropriate risk measure. RRs were used to obtain conservative estimates.

Due to the observational design of the included studies, there may be confounding by differences in, for example, prehospitalisation health status and comorbidities. However, the observed differences in outcome for sex and age are consistent with other respiratory tract infections and there is a pathophysiological basis (eg, differences in immunity systems and response) that could explain the differences in outcome for sex and age that we observed.

Our review has the following strengths. Our search strategy was thorough and complete: we screened 11,550 individual records. After contacting corresponding authors, we were able to include additional data from 12 studies. The methodological quality as reflected by the NOS score was high and a thorough sensitivity analysis could not refute the conclusions. The possible influence of publication bias on our results was considered to be small: the time the included studies were published spans less than 4 months, almost all studies have a different research question than our questions and we were able to include extra (unpublished) data from 12 authors. This small influence of publication bias is confirmed by the small changes in effect size after the trim-and-fill analyses.

During the study selection phase we came across a number of studies that had to be excluded because of very short follow-up (days). As a consequence, the majority of included study subjects did not report on endpoints like recovery, discharge from hospital or mortality. Furthermore, information on the subjects without an endpoint was missing, so there was a high risk of non-differential misclassification that could lead to bias. For instance, in a particular study 20% had either recovered or deceased while 80% was still admitted in the hospital, and there was no information on the distribution of demographic factors for this 80%. When confronted with these studies we contacted the authors and, in some cases, received information that allowed the study to be included.

CONCLUSION
We systematically reviewed the literature to describe the relation between age and sex and COVID-19 infection, disease severity, ICU admission and death. Meta-analyses on 59 studies comprising 36,470 patients showed that infection, severe disease, ICU admission and death are more likely to occur among men and patients aged 70 and above.

Systematic review registration
PROSPERO 2020: CRD42020180085 and online supplemental appendix 4. Please note that we have prospectively reported when phases of the review started. However, these changes have not yet been made to the online protocol. This delay in updates on the research protocol is probably due to the high workload at Prospero.

Author affiliations
1 Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
2 Department of Methodology and Statistics, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
3 Department of Educational Research and Development, School of Health Professions Education, Maastricht University, Maastricht, The Netherlands
4 Department of General Practice, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
5 Amsterdam University Medical Center, location VUMc, Amsterdam, The Netherlands
6 Maastricht University Library, Maastricht University, Maastricht, The Netherlands
7 School of Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
8 Department of Research and Development, The Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands
9 De Onderzoekerij, Leiden, The Netherlands
10 UCB Pharma B.V, Breda, The Netherlands
11 NUTRIM School of Translational Research in Metabolism, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands

Contributors MPZ conceived the study. All authors were involved in the study design during weekly meetings. GHLF designed and performed the search strategy. AVJ, RTD and BGP screened the titles and abstracts for eligibility. AR and SZ extracted the data (quantitative data) and AA, SH and JRD reviewed the study quality (qualitative data). SJ analysed the data. BGP and SJ wrote the first draft. All authors revised this draft for critical content. All authors approved the final manuscript. MPZ, BGP and SJ are the guarantors. All persons listed as authors have contributed to preparing the manuscript. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.
Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial, or not-for-profit sectors.

Dissemination declaration This review will be disseminated via WHO, direct communication with national centres for disease control, international library organisation and via Google Search engine optimisation provided by Maastricht University.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval For this systematic review and meta-analysis, approval by the ethics committee was not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplemental information. The study protocol is available online at the PROSPERO website: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=180085.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, provided the original work is acknowledged and the derivative work is distributed in the same license.

ORCID iDs Bart G Pijs http://orcid.org/0000-0001-5351-5057
Anke Richters http://orcid.org/0000-0002-1580-1543

REFERENCES

1. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020;20:533–4.
2. Falagas ME, Poulaki V, Vardakas KZ. Sex differences in the incidence and severity of respiratory tract infections. Respir Med 2009;103:1845–63.
3. Leung GM, Hedley AJ, Ho L-M, et al. The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients. Ann Intern Med 2004;141:662–73.
4. Jin J-M, Bai P, He W, et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health 2020;8:152.
5. Ferguson NM, Nedjati-Gilani G, Imai N. Report 9: impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and 392 healthcare demand. Imperial College COVID-19 Response Team 2020;10:77482.
6. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.
7. World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance, 28 January 2020. Geneva: World Health Organization, 2020.
8. NIHPR Policy Research Programme Reviews Facility. COVID-19: a living systematic map of the evidence, 2020. Available: http://epi.ioe.ac.uk/COVID19_MAP/covid_map_v5.html
9. Shey BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017;358:j3408.
10. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88.
11. Higgins JP, Thomas J, Chandler J, Cochrane Handbook for systematic reviews of interventions version 6.0 (updated July 2019). Cochrane; 2019.
12. Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
13. hardwood RM, Egger M, Sterne JAC. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 2006;25:3443–57.
14. Al T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 2020;296:E22–40.
15. Cao J, Hu X, Cheng W, et al. Clinical features and short-term outcomes of 18 patients with coronavirus disease 2019 in intensive care unit. Intensive Care Med 2020;46:851–3.
16. Chen G, Wu D, Gue W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020;130:2620–9.
17. Chen Q, Zheng Z, Zhang C. Clinical characteristics of 145 patients with coronavirus disease 2019 (COVID-19) in Taizhou, Zhejiang, China. Infection 2020;1:9 (published Online First: 2020/04/29).
18. Chen R, Liang W, Jiang M, et al. Risk Factors of Fatal Outcome in Hospitalized Subjects With Coronavirus Disease 2019 From a Nationwide Analysis in China. Chest 2020;158:97–105.
19. Chen T, Dai Z, Mo P, et al. Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID-19) in Wuhan, China: a Single-Centered retrospective study. J Gerontol A Biol Sci Med Sci 2020;75:1788–95.
20. Chu J, Yang N, Wei Y, et al. Clinical characteristics of 54 medical staff with COVID-19: a retrospective study in a single center in Wuhan, China. J Med Virol 2020;92:807–13.
21. Colaneri M, Sacchi P, Zuccaro V, et al. Clinical characteristics of coronavirus disease (COVID-19) early findings from a teaching hospital in Pavia, North Italy, 21 to 28 February 2020. Euro Surveill 2020;25:200460.
22. Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 among children in China. Pediatrics 2020;145:e20200702.
23. Du R-H, Liang L-R, Yang C-G, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J 2020;55:2000524.
24. Fan BE, Chong VCL, Chan SSW, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol 2020;95:E131–4.
25. Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol 2020;92:791–6.
26. Guan W-jie, Ni Z-yi, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med Overseas Ed 2020;382:1708–20.
27. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020;395:497–506.
28. Kalligeros M, Shehadeh F, Mylonas EK, et al. Association of obesity with disease severity among patients with coronavirus disease 2019. Obesity 2020;28:1200–4.
29. Li K, Wu J, Wu F, et al. The clinical and chest CT features associated with severe and critical COVID-19 pneumonia. Invest Radiol 2020;55:327–31.
30. Liu R, Han H, Liu F, et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clinica Chimica Acta 2020;505:172–5.
31. Liu R, Ma Q, Han H, et al. The value of urine biochemical parameters in the prediction of the severity of coronavirus disease 2019. Clin Chem Lab Med 2020;58:1121–4.
32. Liu Y, Mao B, Liang S, et al. Association between age and clinical characteristics and outcomes of COVID-19. Eur Respir J 2020;55:2001112.
33. Long C, Xu H, Shen Q, et al. Diagnosis of the coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol 2020;126:108961.
34. Long L, Zeng X, Zhang X, et al. Short-term outcomes of COVID-19 and risk factors for progression. Eur Respir J 2020;55:doi:10.1183/13993003.00990-2020. [Epub ahead of print: 27 05 2020].
35. Liu P, Liu X, Zhang R, et al. The performance of chest CT in evaluating the clinical severity of COVID-19 pneumonia: identifying critical cases based on CT characteristics. Invest Radiol 2020;55:412–21.
Xu B, Fan C, et al. Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China. Journal of Infection 2020;81:e51–60.

Yan Y, Yang Y, Wang F, et al. Clinical characteristics and outcomes of patients with severe COVID-19 with diabetes. BMJ Open Diab Res Care 2020;8:e001343.

Yang R, Gui X, Zhang Y, et al. The role of essential organ-based comorbidities in the prognosis of COVID-19 infection patients. Expert Rev Respir Med 2020;14:1–4.

Yu X, Sun S, Shi Y, et al. SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression. Crit Care 2020;24:170.

Zhang G, Hu C, Luo L, et al. Clinical features and short-term outcomes of 116 consecutive patients with COVID-19 in Wuhan, China. J Clin Virol 2020;127:104364.

Zhang G, Zhang J, Wang B, et al. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respir Med 2020;21:74.

Zhang J, Wang X, Jia X, et al. Risk factors for disease severity, improvement, and mortality in COVID-19 patients in Wuhan, China. Microbiol Infect 2020;26:767–72.

Zhang J-J, Dong X, Cao Y-Y, et al. Clinical characteristics of 140 patients infected with the SARS-CoV-2 virus in Wuhan, China. Allergy 2020;75:1730–41.

Zhang R, Ouyang H, Fu L, et al. Ct features of SARS-CoV-2 pneumonia according to clinical presentation: a retrospective analysis of 120 consecutive patients from Wuhan City. Eur Radiol 2020;30:4471–26.

Zhao X-Y, Xu X-Y, Yin H-S, et al. Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study. BMC Infect Dis 2020;20:311.

Zhang F, Tang W, Li H, et al. Clinical characteristics of 161 cases of corona virus disease 2019 (COVID-19) in Changsha. Rev Med Pharmacol Sci 2020:24:4304–10.

Zheng S, Fan J, Yu F. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Wuhan, China, January-June 2020: a retrospective cohort study. BMJ 2020;m443.

Zhu W, Xie K, Lu H, et al. Initial clinical features of suspected coronavirus disease 2019 in two emergency departments outside of Wuhan, China. J Med Virol 2020;92:1525–32.

Zhu Z, Cai T, Fan L, et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis 2020;95:332–9.

Ø E, Brurberg KG, Nybøen K. Rapid methods including network meta-analysis to produce evidence in clinical decision support: an empirical analysis. Syst Rev 2018;7:168.

Wynants L, Van Calster B, Collins GS. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ 2020;369:m1328.

Elliott JH, Turner T, Clavisi O, et al. Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap. PLoS Med 2014;11:e1001603.

Vandvik PO, Brignardello-Petersen R, Guyatt GH. Living cumulative network meta-analysis to reduce waste in research: a paradigmatic shift for systematic reviews? BMC Med 2016;14:59.

Beenakker KGM, de Craen AJM, et al. Men have a stronger monocyte-derived cytokine production response upon stimulation with the gram-negative stimulus lipopolysaccharide than women: a pooled analysis including 15 study populations. J Innate Immun 2020;12:142–52.

Klein SJ, Flanagin KL. Sex differences in immune responses. Nat Rev Immunol 2016;16:626–38.

Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severity of COVID-19: a meta-analysis. J Med Virol 2020;92:2283–5.

Jamilouix Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Anti-inflammatory and anti-virus interventions. Autimmune Rev 2020:19;102567.

Mörs K, Braun O, Wagner N, et al. Influence of gender on systemic IL-6 levels, complication rates and outcome after major trauma. Immunobiology 2016;221:901–10.

Qiao Z, Wang W, Yin L, et al. Using IL-6 concentrations in the first 24 h following trauma to predict immunological complications and mortality in trauma patients: a meta-analysis. Eur J Trauma Emerg Surg 2018;44:679–87.

Shaw AC, Joshi S, Greenwood H, et al. Aging of the innate immune system. Curr Opin Immunol 2010;22:507–13.

Liastra G, Candelier G, Lio D, et al. Innate immunity and inflammation in ageing: a key for understanding age-related diseases. Immn Ageing 2005;2:8.
Appendix I: Search strategy;

PubMed

("COVID-19"[Supplementary Concept] OR "severe acute respiratory syndrome coronavirus 2"[Supplementary Concept] OR ("Coronavirus"[MeSH Terms] OR "Coronavirus Infections"[Mesh:NoExp] OR pneumonia virus*[tiab] OR cov*[tiab]) AND (outbreak[tiab] OR wuhan[tiab] OR novel[all] OR 19[tiab] OR 2019[tiab] OR epidemic*[tiab] OR epidemic[all] OR covid19[tiab] OR "covid 19"[tiab] OR "sars cov 2"[tiab] OR sars2[tiab] OR "ncov 2019"[tiab] OR "sars coronavirus 2"[tiab] OR "severe acute respiratory syndrome cov 2"[tiab] OR "severe acute respiratory syndrome cov2"[tiab] OR severe acute respiratory syndrome cov*[tiab] OR cov2[tiab]) AND ("2019/12"[Date - Entrez] : "3000"[Date - Entrez]))

Embase Ovid

1 exp Coronavirus/

2 exp Coronavirus Infections/

3 (coronavirus* or coronavirus* or OC43 or NL63 or 229E or HKU1 or HCoV* or ncov* or covid* or sars-cov* or sarscov* or Sars-coronavirus* or Severe Acute Respiratory Syndrome Coronavirus*).mp.

4 (or/1-3) and 20190101:20301231.(dc). [this set is the sensitive/broad part of the search]

5 4 not (SARS or SARS-CoV or MERS or MERS-CoV or Middle East respiratory syndrome or camel* or dromedar* or equine or coronary or coronal or coxidence* or covidien or influenza virus or HIV or bovine or calves or TGEV or feline or porcine or BCoV or PED or PEDV or PDCoV or FIPV or FCoV or SADS-CoV or canine or CCov or zoonotic or avian influenza or H1N1 or H5N1 or H5N6 or IBV or murine corona*).mp. [line 5 removes noise in the search results]

6 ((pneumonia or covid* or coronavirus* or coronavirus* or ncov* or 2019-ncov or sars*).mp. or exp pneumonia/) and Wuhan.mp.

7 (coronavirus disease 2019 or 2019-ncov or ncv19 or ncov-19 or 2019-novel CoV or severe acute respiratory syndrome coronavirus 2 or sars-cov2 or sars-cov-2 or sarscov2 or sars-cov-2 or Sars-coronavirus2 or Sars-coronavirus-2 or SARS-like coronavirus* or coronavirus-19 or covid19 or covid-19 or ((novel or new or nouveau) adj2 (CoV or nCoV or covid or coronavir* or coronavirus virus or Pandemi*2)) or ((covid or covid19 or covid-19) and pandemic*2) or (coronavirus* and pneumonia)).mp.

8 (coronavirus disease 2019 or severe acute respiratory syndrome coronavirus 2).sh,dj.

9 (630575119 OR 630830186 OR 630941329 OR 631043694 OR 631260659 OR 631272428 OR 631272880 OR 631286076 OR 631290163 OR 631308782 OR 631324397 OR 631352500 OR 631416440 OR 631431802 OR 631452886 OR 631456079 OR 631457551 OR 631462438 OR 631462876 OR 631465538 OR 631465685 OR 631469310 OR 2004499662 OR 2004505338 OR 2005280837 OR 2005387675 OR 2005408544 OR 2005484987 OR 2005549151).an. [Articles not captured by this search when created in April 2020, pending further indexing by NLM/Elsevier]
10 (or/6-9) and 20191201:20301231.(dc). [Lines 5 to 8 are specific to Covid-19]

11 5 or 10
Author	RR	country	region	City	n	Start	End	recruitment window	F U	study design	clinical setting	Diagnostic modality	
Zhu W	0,95	China	Anhui		116	10-mrt	24-jan	20-feb	27	cohort	Hospital	PCR	
Liu R a	1,1	China	Hubei	Wuhan	4880	7-mrt	22-jan	14-feb	23	cohort	Hospital	PCR	
Ai T	1,05	China	Hubei	Wuhan	1014	26-feb	6-jan	6-feb	31	cohort	Hospital	PCR	
Dong Y	1,03	China	multiple regions		2135	1-apr	8-feb			cohort	General population	PCR	
Chu J	0,86	China	Hubei	Wuhan	54	29-mrt	7-jan	11-feb	35	3	cohort	Hospital	PCR
Shen N	1,09	China	Hubei	Wuhan	5630	30-apr	22-jan	18-feb	27	2	cohort	Hospital	PCR
KDC Resp Team	1,95	South Korea			2370					4	cohort	General population	
Long C	1,11	China	Hubei	Yichang	87	11-mrt	20-jan	8-feb	19	cohort	Hospital	laboratory tests, CT findings	
Guan W J a	0,99	China	Multiple regions		1096	28-feb	11-dec	29-jan	49	5	cohort	Hospital	PCR
Gao Y	0,98	China	Anhui	Fuyang	43	13-mrt	23-jan	2-feb	10	cohort	Hospital	PCR	
Li K	1,33	China	Chongqing and Jinxian		83	29-feb	1-jan	29-feb	29	cohort	Hospital	PCR	
Wan S	0,94	China	Northeast Chongqing		135	22-apr	23-jan	8-feb	16	1	cohort	Hospital	PCR
Wu J	1,01	China	Jiangsu, Anhui		280	27-mrt	20-jan	19-feb	30	3	cohort	Hospital	PCR
Shi Y	2,44	China	Zhejiang		487	18-mrt	17-feb						
Qin C	1,09	China	Hubei	Wuhan	452	12-mrt	10-jan	12-feb	33		cohort	Hospital	PCR
Tian S	1,38	China	Beijing		262	27-feb	20-jan	10-feb	21	2	cohort	Hospital	PCR
Zhang J a	1,28	China	Hubei	Wuhan	140	18-feb	16-jan	3-feb	18		cohort	Hospital	PCR
Qian GQ	1,82	China	Zhejiang		91	17-mrt	20-jan	11-feb	22	2	cohort	Hospital	PCR
Zhang G a	1,51	China	Hubei	Wuhan	95	26-mrt	16-jan	25-feb	40	4	cohort	Hospital	PCR

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Name	Score	Country	City	PCR Test Dates	PCR Dates	Phase	Status	Hospital	PCR Completions
Wu C	1.43	China	Wuhan	201	13-mrt 25-dec 26-jan	32	5 0	cohort Hospital PCR	
Chen Q	0.96	China	Zhejiang	145	28-apr 1-jan 11-mrt	70	7 0	cohort Hospital PCR	
Liu Y	1.05	China	Shanghai	221	28-mei 7-apr 1-jan	40	6 0	cohort Hospital PCR	
Chen J b	1.21	China	Hubei Wuhan	203	7-apr 1-jan 10-feb	7	1 2	cohort Hospital PCR	
Colaneri M	1.86	Italy	North Italy	44	23-apr 21-feb 28-feb	35		cohort Hospital PCR	
Chu J	1.15	China	Wuhan	54	29-mrt 7-jan 11-feb	5	1 5	cohort Hospital PCR	
Wang X	1.52	China	Wuhan Fangcang	1012	27-mrt 7-feb 12-feb	28	2 8	cohort Hospital PCR	
Zhao X Y	0.75	China	Jingzhou	91	29-apr 16-jan 10-feb	25	2 5	cohort Hospital PCR	
Wang L b	1.01	China	Hubei Wuhan	116	31-mrt 14-jan 13-feb	30	3 0	cohort Hospital PCR	
Zhu Z	0.71	China	Zhejiang Ningbo	127	17-apr 23-jan 20-feb	28	2 8	cohort Hospital PCR	
Zheng F	0.89	China	Changsha	161	17-jan 7-feb 21	2	1 1	cohort Hospital PCR	
Zhang G b	1.83	China	Hubei	221	5-apr 2-jan 10-feb	39	4 4	cohort Hospital PCR	
Chen G	2.35	China	Hubei Wuhan	21	27-mrt 20-dec 27-jan	38	3 8	cohort Hospital PCR	
Wang R	1.35	China	Anhui Fuyang	125	24-mrt 20-jan 8-feb	19	2 9	cohort Hospital PCR	
Zhang J c	1.07	China	Hubei Wuhan	663	15-apr 11-jan 6-feb	26		cohort Hospital PCR	
Chen X	2.38	China	Hubei Wuhan	48	17-apr 1-feb 19-feb	18	1 8	cohort Hospital PCR	
Zhang R	0.97	China	Hubei Wuhan	120	1-apr 10-jan 10-feb	31	3 1	cohort Hospital PCR	
Wei J F	1.28	China	Sichuan	103	6-apr 16-jan 10-mrt	54		cohort Hospital PCR	
Liu R b	0.99	China	Hubei	119	31-mrt 31-jan 26-feb	26	2 6	cohort Hospital PCR	
Lyu P	0.98	China	Sichuan	119	31-mrt 31-jan 26-feb	26	2 6	cohort Hospital PCR	
Pei G	1.29	China	Hubei Wuhan	333	12-apr 28-jan 9-feb	12	2 6	cohort Hospital PCR	
Yu X b	2.02	China	Zhejiang	92	23-apr 19-jan 19-mrt	60	5 6	cohort Hospital PCR	
Zheng S	1.28	China	Zhejiang	96	6-apr 19-jan 15-feb	27	2 7	cohort Hospital PCR	
Name	1	Country	Province	City	Date	cohort	Hospital	Test	
-----------------------	------	---------	----------	---------------	--------	--------	----------	------	
Long L	1.75	China	Hubei	Jingzhou city	20-apr	4	Hospital	PCR	
Huang C	2.02	China	Hubei	Wuhan	20-jan	5	Hospital	PCR	
Wang D a	1.32	China	Hubei	Wuhan	28-jan	5	PCR		
Bingwen E F	1.62	Singapore			28-jan	5	PCR		
Zhang G a	1.41	China	Hubei	Wuhan	28-jan	5	PCR		
Kalligeros M	1.23	US	Rhode Island		31-mrt	5	PCR		
Wei J F	1.38	China	Sichuan		31-mrt	5	PCR		
Myers L C	1.48	US	California		31-mrt	5	PCR		
Lyu P	0.55	China	Henan	Zhengzhou	28-feb	5	PCR		
Rieg S	2.12	Germany	Freiburg		31-mrt	5	PCR		
Cao J	1.85	China	Hubei	Wuhan	31-mrt	5	PCR		
Long L	2.24	China	Hubei	Jingzhou city	31-mrt	5	PCR		
death									
Tang N	2.78	China	Hubei	Wuhan	31-mrt	5	PCR		
Tian S	2.13	China	Beijing		31-mrt	5	PCR		
Wu C	1.1	China	Hubei	Wuhan	31-mrt	5	PCR		
Chen T b	4.84	China	Hubei	Wuhan	31-mrt	5	PCR		
Meng Y	1.56	China	Hubei	Wuhan	31-mrt	5	PCR		
Nikpouraghdami	1.2	Iran	Teheran		31-mrt	5	PCR		
Richardson	1.03	US	New York		31-mrt	5	PCR		
Yan, Y	1.65	China	Hubei	Wuhan	31-mrt	5	PCR		

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
Author	% males	mean age	% BMI > 25	Case definition	Case representativeness	Control selection	control definition	exposure ascertainment	comparable ascertainment	non response rate	Overall quality		
Zhu W	56	40	23	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	9		
Liu R a	46			Acceptable	Acceptable	Acceptable	Not acceptable	Acceptable	Acceptable	Acceptable	NA		
Ai T	46	51		Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	9		
Dong Y	57	7		Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	8		
Chu J	67	54		Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	9		
Shen N	47	49		Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	9		
KDC Resp Team	45			Not acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA		
Long C	53			Acceptable	Not acceptable	Acceptable	Not acceptable	Acceptable	Acceptable	NA	6		
Severe													
Guan W J a	24	58	47	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	9		
Gao Y	61	43		Unknown	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA		
Li X	38	53	45	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA		
Wan S	32	53	47	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA		
Wu J	54	43		Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA		
Shi Y	53	46		Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	5		
Qin C	44	51	58	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	9		
Tian S	49	48		Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	9		
Zhang J a	64	51	57	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	8		
Qian GQ	41	50		Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	9		
Zhang G a	56	49		Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	9		
Wu C	33	64	51	Acceptable	NA	9							
Chen Q	55	48	Acceptable	NA	9								
Liu Y	52		Not acceptable	NA	8								
Chen T b	42	53	Acceptable	NA	9								
Colaneri M	64	64	60	Acceptable	NA	8							
Chu J	67	54	Acceptable	NA	9								
Wang X	21	52	51	Acceptable	NA	9							
Zhao X Y	73	54	46	Acceptable	NA	7							
Wang L b	44	58	54	Acceptable	unknown	8							
Zhu Z	41	35	51	Acceptable	NA	9							
Zheng F	21	50	45	Acceptable	NA	9							
Zheng G b	35	49	54	Acceptable	NA	8							
Chen G	33	81	61	Acceptable	NA	7							
Wang R	27	57	37	Acceptable	unknown	9							
Zhang J c	37	48	56	Acceptable	NA	9							
Chen X	77	65	Acceptable	NA	7								
Zhang R	73	43	61	Acceptable	NA	8							
Wei J F	54	49	Acceptable	NA	9								
Liu R b	52		Acceptable	NA	6								
Lyu P	33	56	54	Acceptable	NA	6							
Pei G	35	55	56	Acceptable	Not acceptable	NA	8						
Yu X b	62	55	Not acceptable	NA	5								
Zheng S	60	55	Acceptable	NA	9								
Long L	50	50	Acceptable	NA	9								
ICU													
Huang C	32	73	49	Acceptable	NA	9							
Wang D a	46	54	57	Acceptable	NA	9							
Bingwen E F	55	42	Acceptable	NA	9								
Zhang G a	56	49	Acceptable	NA	9								
Kalligeros M	61	60	81.6	Acceptable	NA	8							
Wei J F	54	49	Acceptable	NA	9								
Myers L C	56	61	Acceptable	9									
Lyu P	33	57	54	Acceptable	NA	6							
Rieg S	63	56	Acceptable	NA	8								
Cao J	46	52	53	Acceptable	NA	9							
Long L	50	50	Acceptable	NA	9								
Death			Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	8			
-----------	----	---	------------	------------	------------	------------	------------	------------	----	---			
Tang N	41	54	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	8			
Tian S	49	48	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	9			
Wu C	33	64	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	9			
Chen T b	42	53	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	9			
Meng Y	34	51	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	8			
Nikpouragh dam	11	66	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	9			
Richardson	94	60	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	9			
Yan, Y	49	59	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	8			
Xu B	55	61	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	9			
Zhang J c	37	48	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	9			
Du R H	54	58	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	9			
Yang R	42	51	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	7			
Chen R	57		Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	na	7			
Tomlins J	63	73	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	8			
Author	RR	country	region	city	n	publication date	Star t	End recruitment window	FU	study desing	clinical setting	Diagnostic modality	
-----------------	----	---------	--------	------------	----	-----------------	--------	------------------------	----	-------------	-------------------	---------------------	
70 and above versus less than 70													
Infections													
Zhu W	1,1	China	Anhui		116	10-mrt	24-jan	20-f eb	27	cohort	Hospital	PCR	
Liu R a	1,75	China	Hubei	Wuhan	4,880	7-mrt	22-jan	14-f eb	23	cohort	Hospital	PCR	
Shen N	1,56	China	Hubei	Wuhan	5,630	30-apr	22-jan	18-f eb	27	cohort	Hospital	PCR	
KDC Resp Team	1,36	South Korea			2,370								
Severe													
Zhang J a	2,01	China	Hubei	Wuhan	140	18-f eb	16-jan	3-f eb	18	cohort	Hospital	PCR	
Qian GQ	11,3	China	Zhejiang		91	17-mrt	20-jan	11-f eb	22	cohort	Hospital	PCR	
Zhang G a	1,31	China	Hubei	Wuhan	95	26-mrt	16-jan	25-f eb	40	cohort	Hospital	PCR	
Liu Y	2,35	China		Shanghai	221	28-mei					Hospital	PCR	
Chen F b	1,06	China	Hubei	Wuhan	203	7-apr	1-jan	10-f eb	40	cohort	Hospital	PCR	
Lyu P	1,06	China	Henan	Zhengzhou	51	17-apr	15-jan	24-f eb	40	cohort	Hospital	PCR	
Long L	2,97	China	Hubei	Jingzhou city and Xiangyang city	301	20-apr	16-jan	24-f eb	39	cohort	Hospital	PCR	
ICU													
Wang D a	2,11	China		Wuhan	138	7-f eb	1-jan	28-jan	27	cohort	Hospital	PCR	
Zhang G a	1,87	China	Hubei	Wuhan	95	26-mrt	16-jan	25-f eb	40	cohort	Hospital	PCR	
Wei J F	4,37	China	Sichuan		103	6-apr	16-jan	10-mrt	54	cohort	Hospital	PCR	
Author	Age (mean)	% Male	% BMI > 25	Case Definition	Case Representativeness	Control Selection	Control Definition	Exposure Ascertainment	Comparable Ascertainment	Non Response Rate	Overall Quality
70 and above versus less than 70											
Infection											
Zhu W	51	51	34	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	9
Liu R a	50	57		Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	7
Shen N	47	47	57	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	9
KDC Resp Team	45	45	45	Not acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	NA	7
severe											
Zhang J a	64	51	51	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	acceptable	8
Qian GQ	41	50	49	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	9
Zhang G a	56	57	53	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	9
Liu Y	52	57	52	Not acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	8
Chen T b	42	53	55	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	9
Long L	33	54	51	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	9

ICU
Name	Age	Weight	Score	Status 1	Status 2	Status 3	Status 4	NA	Grade
Wang D a	46	54	57	Acceptable	Acceptable	Acceptable	Acceptable	NA	9
Zhang G a	56	49		Acceptable	Acceptable	Acceptable	Acceptable	NA	9
Wei J F	54	49		Acceptable	Acceptable	Acceptable	Acceptable	NA	9
Lyu P	33	57	54	Acceptable	Acceptable	Acceptable	Acceptable	NA	6
Long L	50	50		Acceptable	Acceptable	Acceptable	Acceptable	NA	9
Death									
Tang N	41	54	54	Acceptable	Acceptable	Acceptable	Acceptable	NA	8
Chen T b	42	53	55	Acceptable	Acceptable	Acceptable	Acceptable	NA	9
Meng Y	34	51	57	Acceptable	Acceptable	Acceptable	Acceptable	NA	8
Nikpouraghda m M	11	66	56	Acceptable	Acceptable	Acceptable	Acceptable	NA	9
Richardson S	94	60	63	Acceptable	Acceptable	Acceptable	Acceptable	NA	9
Appendix III: Sensitivity analysis

In order to investigate potential sources of observed heterogeneity in primary outcomes, we performed several subgroup and meta-regression analyses provided enough information was available.

For sex outcome severe disease, the first subgroup analysis included studies with quality scores 7 or above. This allows having only high-quality studies in the meta-analysis. Although the I^2 statistics dropped to below 1% (form 15.2%), the effect size remained unaffected (RR 1.15, 95%CI 1.09 to 1.22), see Figure A1. As an additional analysis, we partitioned studies based on whether critical condition of severity was upon hospitalization or developed during follow-up. The former showed a slight increase (RR 1.27, 95%CI 1.12 to 1.44 – Figure A2) while the latter a slight decrease (RR 1.11, 95%CI 1.04 to 1.19 – Figure A3). However, both were fairly close to that of base analysis (RR 1.18, 95%CI 1.10 to 1.27). Finally, we performed meta-regression on study size, total quality score, study duration and study start date, but none were significant.

Figure A1
For sex outcome ICU admission, we conducted a subgroup analysis based on geographical location (Asia versus outside Asia), but the overall conclusion remained the same (RR 1.33, 95%CI 0.93 to 1.91 and RR 1.47, 95%CI 1.14 to 1.90 for Asia and outside Asia, respectively), see Figure A4. There was also no evidence for the effect of study size, total quality score, study duration and study start date from meta-regression.
For sex outcome death, we also conducted a subgroup analysis based on geographical location (east Asia versus outside east Asia). In the group of east Asia, the effect size was substantially increased (RR 1.8, 95%CI: 1.32 to 2.46), while it largely dropped to RR 1.06, 95%CI: 0.93 to 1.22 in the group of outside east Asia, which consists of only 3 studies (see, Figure A5). The results from meta-regression on study start date revealed that this factor can explain about 40% of heterogeneity, see Table 1.

Figure A4

Figure A5
Table 1

\[\text{. metareg logitS startdate, wavelogitS! eform tau} \]

Meta-regression	Number of obs	tau2	I-squared(%)	Proportion of between-study variance explained
KML estimate of between-study variance	tau2	0	49.95%	100.00%
a residual variation due to heterogeneity	I-squared(res)	49.95%	100.00%	

With Knodel-variance modification

| logitS | exp(b) | Std. Err. | t | P>|t| | 95% Conf. Interval |
|--------|--------|-----------|---|-----|-------------------|
| startdate | 0.937059 | 0.020568 | -2.43 | 0.013 | 0.885621 - 0.993152 |
| cons | 1.23e-09 | 8.67e-10 | 2.43 | 0.013 | 0.413994 - 4.13e+15 |

Test for residual between-study variance (of tau2=0) E_res (113 df) = 20.64
Prob > E_res = 0.0079

Likelihood-ratio test of tau2=0: ch2(161) = 1.806
Prob > ch2(161) = 0.1.806

For age outcomes severe disease, ICU admission, and death, insufficient number of studies were available preventing obtaining meaningful results from sensitivity analysis.
Demographic factors and COVID-19: a rapid and living systematic review and meta-analysis

Anique Atherley, Raissa Derckx, Janna Dijkstra, Gregor Franssen, Shahab Jolani, Bart Pijls, Anke Richters, Annemarie Venemans, Saurabh Zalpuri, Maurice Zeegers

Citation
Anique Atherley, Raissa Derckx, Janna Dijkstra, Gregor Franssen, Shahab Jolani, Bart Pijls, Anke Richters, Annemarie Venemans, Saurabh Zalpuri, Maurice Zeegers. Demographic factors and COVID-19: a rapid and living systematic review and meta-analysis. PROSPERO 2020 CRD42020180085 Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020180085

Review question
What is the association between demographic factors* and COVID-19 in:
1) patients diagnosed with COVID-19 compared to patients not diagnosed with COVID-19?
2) COVID-19 patients admitted to hospital compared to COVID-19 patients not admitted to hospital?
3) Patients with severe COVID-19 (clinical / radiological) compared to patients with non-severe COVID-19?
4) COVID-19 patients admitted to ICU compared to COVID-19 patients not admitted to ICU?
5) COVID-19 patients who died compared to COVID-19 patients who survived?
*demographic factors include: age, sex, social economic status (education level), pregnancy and ethnicity.

Rationale for the rapid and living systematic review design: in the midst of a pandemic there is an urgent need for the most up-to-date evidence while maintaining scientific rigor and quality. Additionally, studies relevant for these research questions will likely be continuously published in the foreseeable future. Moreover, traditional systematic reviews risk becoming rapidly outdated when new evidence is published almost on a daily basis and it is not an option to wait until the pandemic is over to publish a systematic review on the full body of evidence. Hence a rapid systematic review that is continuously updated (aka living) is necessary.

Searches
The search strategy will be devised with an information specialist and the following databases will be searched from 2019-12 onwards: PubMed, EMBASE and Web of Science. Additionally, EPPI Centre (COVID-19: a living systematic map of the evidence) will be consulted. We will also search preprint repositories medRxiv and bioRxiv from 2019-12 onwards. No language restrictions will be applied during the search strategy. Studies reported in languages spoken by the research team will be included. These are at least English, Dutch, German, French and Russian. Studies published in any other language will be excluded and listed separately in the appendix.

Types of study to be included
Studies that provide information on the 5 research questions mentioned above.
Inclusion criteria:
1) Human study on COVID-19 or SARS-CoV-2 coronavirus
2) Comparison of patients diagnosed with COVID-19 with patients not diagnosed with COVID-19 regarding age, sex, social economic status, pregnancy or ethnicity
3) Comparison of COVID-19 patients admitted to hospital to COVID-19 patients not admitted to hospital regarding age, sex, social economic status, pregnancy or ethnicity
4) Comparison of patients with severe COVID-19 (clinically / radiologically) to patients with non-severe COVID-19 regarding age, sex, social economic status, pregnancy or ethnicity
5) Comparison of COVID-19 patients admitted to ICU to COVID-19 patients not admitted to ICU regarding age, sex, social economic status, pregnancy or ethnicity
6) Comparison of COVID-19 patients who died to COVID-19 patients who survived, regarding age, sex, social economic status, pregnancy or ethnicity
Exclusion criteria:
1) No reporting/evaluation of demographic factors (age, sex, social economic status, pregnancy or ethnicity)
2) No comparison of diagnosis-positive versus diagnosis-negative, admitted to hospital versus not admitted to hospital, severe COVID-19 versus not severe COVID-19, admitted to ICU versus not admitted to ICU, deaths versus alive

Condition or domain being studied
COVID-19 or the disease caused by SARS-CoV-2 coronavirus.

Participants/population
Patients or individuals subjected to diagnosis of COVID-19.

Intervention(s), exposure(s)
The exposure is COVID-19 or the disease caused by the SARS-CoV-2 coronavirus. As cases we consider:
1) patients diagnosed with COVID-19
2) COVID-19 patients admitted to hospital
3) COVID-19 patients with severe COVID-19 (clinically / radiologically)
4) COVID-19 patients admitted to the ICU
5) COVID-19 patients who died
demographic factors for the analysis include age, sex, social economic status (education level), pregnancy and ethnicity.

Comparator(s)/control
As the controls we consider:
1) patients not diagnosed with COVID-19
2) COVID-19 patients not admitted to hospital
3) COVID-19 patients with non-severe COVID-19 (clinically / radiologically)
4) COVID-19 patients not admitted to ICU
5 COVID-19 patients who survived

Main outcome(s)
1) COVID-19 diagnosis
2) hospital admittance due to COVID-19
3) severity of COVID-19 (clinically / radiologically)
4) ICU admittance due to COVID-19
5) mortality as a result of COVID-19

* Measures of effect
These outcomes are expressed as the number of patients or individuals for each outcome or the ratio of the probabilities of the 5 outcomes between the exposed and unexposed groups regarding demographic factors, mentioned above, expressed as Relative Risk, Odds Ratio, Hazard Ratio or Risk Difference.

Additional outcome(s)
None.

* Measures of effect
Not applicable.

Data extraction (selection and coding)
For this rapid and living systematic review design we consider two phases which may alternate periodically when new evidence becomes available: rapid phase and quality assurance phase.
During the rapid phase emphasis is put on timely availability of up-to-date analyses, so one reviewer (from a pool of reviewers) will perform study selection and data extraction. During the quality assurance phase, a
second reviewer (from a pool of reviewers) will re-do the full study selection procedure. Both reviewers will record their findings in an electronic database. Any disagreements will be resolved by either consensus or by consulting a referee.

During the rapid phase one reviewer (from a pool of reviewers) will extract data from included studies regarding the outcomes, patient demographics, and study characteristics. During the quality assurance phase, a second reviewer (from a pool of reviewers) will re-do the data extraction for at least 20 studies (randomly selected). Both reviewers will record their findings in an electronic database. Any disagreements will be resolved by either consensus or by consulting a referee. In case the data extraction from the second reviewer leads to more than 10% change in the results from the meta-analysis, the second reviewer will re-do the whole data extraction.

Risk of bias (quality) assessment
The risk of bias of the included studies will be appraised by one reviewer (from a pool of reviewers) during the rapid phase using the Newcastle Ottawa Scale (NOS) http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. During the quality assurance phase, a second reviewer (from a pool of reviewers) will re-do the risk of bias assessment for at least 20 studies (randomly selected). Both reviewers will record their findings in an electronic database. Any disagreements will be resolved by either consensus or by consulting a referee. In case the risk of bias assessment from the second reviewer leads to a different quality score in more than 10% of the studies, the second reviewer will re-do the whole risk of bias assessment.

Strategy for data synthesis
The data from the included studies will be pooled in a meta-analysis with the random effects model according to DerSimonian and Laird to determine the pooled effect sizes with corresponding 95% confidence intervals and (in case of heterogeneity) corresponding 95% prediction intervals. The amount of statistical heterogeneity will be assessed through visual inspection of the Forest plots and by calculating the χ^2 statistics and I^2 statistics. In case of statistical heterogeneity and if data allow, potential sources of statistical heterogeneity will be explored through subgroup analyses (e.g. geographical region/countries and items from NOS) and with random effects meta-regression (e.g. study size, inclusion period or publication data).

To assess for publication bias we will construct a funnel plot. In case of asymmetry in the funnel plot, a trim-and-fill method and cumulative meta-analyses will be used to explore the magnitude and direction of publication bias.

Analysis of subgroups or subsets
See also strategy for data synthesis. Subgroup analyses will be performed, if data permit, on pre-defined factors:
* geographical region/country
* items from NOS (separately, not total score)
* study size
* start inclusion period
* publication date
* diagnostic modality (e.g. PCR test, CT signs, clinical symptoms and their combinations that led to the diagnosis of COVID-19)
* clinical setting (e.g. nursing home, home, hospital, GP cohort)

If considered appropriate sensitivity analyses will explore the effect of other non pre-defined items/factors. These will be labelled as "non pre-defined" in the results.

Contact details for further information
Dr. Bart G Pijls
b.g.c.w.pijls@lumc.nl

Organisational affiliation of the review
Maastricht University, the Netherlands

Review team members and their organisational affiliations
Dr Anique Atherley. School of Health Professions Education, Dept of Educational Research and...
Development, Maastricht University
Ms Raissa Derckx. Care and Public Health Research Institute (CAPHRI), Dept of General Practice, Maastricht University
Ms Janna Dijkstra. Amsterdam University Medical Centers, location VUmc
Mr Gregor Franssen. Maastricht University Library
Ms Stevie Hendriks. School of Mental Health and Neuroscience (MNeNS), Maastricht University
Dr Shahab Jolani. Maastricht University, Dept of Methodology and Statistics
Dr Bart Pijls. Leiden University Medical Center, Dept of Orthopaedics
Dr Anke Richters. The Netherlands Comprehensive Cancer Organisation, Dept of Research and Development
Dr Annemarie Venemans. De Onderzoekerij
Dr Saurabh Zalpuri. Real World Evidence, UCB Pharmaceutical BV
Dr Maurice Zeegers. Care and Public Health Research Institute (CAPHRI), Maastricht University

Type and method of review
Epidemiologic, Meta-analysis, Systematic review

Anticipated or actual start date
13 April 2020

Anticipated completion date
01 June 2021

Funding sources/sponsors
None

Grant number(s)
State the funder, grant or award number and the date of award

Conflicts of interest

Language
English

Country
Netherlands

Stage of review
Review Ongoing

Subject index terms status
Subject indexing assigned by CRD

Subject index terms
COVID-19; Demography; Humans; severe acute respiratory syndrome coronavirus 2

Date of registration in PROSPERO
20 April 2020

Date of first submission
16 April 2020

Stage of review at time of this submission

Page: 4 / 5
Stage	Started	Completed
Preliminary searches	Yes	No
Piloting of the study selection process	Yes	No
Formal screening of search results	No	No
against eligibility criteria		
Data extraction	No	No
Risk of bias (quality) assessment	No	No
Data analysis	No	No

The record owner confirms that the information they have supplied for this submission is accurate and complete and they understand that deliberate provision of inaccurate information or omission of data may be construed as scientific misconduct.

The record owner confirms that they will update the status of the review when it is completed and will add publication details in due course.

Versions

20 April 2020

This information has been provided by the named contact for this review. CRD has accepted this information in good faith and registered the review in PROSPERO. The registrant confirms that the information supplied for this submission is accurate and complete. CRD bears no responsibility or liability for the content of this registration record, any associated files or external websites.