COVID-19 and Combined Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar Nonketotic Coma: Report of 11 Cases

Balraj Singh, MD1, Parminder Kaur, MD1, Nicole Majachani, MD1, Prem Patel, MD1, Ro-Jay Romor Reid, MD1, and Michael Maroules, MD1

Abstract
We report 11 cases of combined diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar nonketotic coma (HHNK) in coronavirus 2019 patients who presented to our institution in New Jersey, USA. The median age was 47 years (range 12-88 years). Out of the 11 patients, 7 were male and 4 were female. Out of 11 patients, 8 had type 2 diabetes mellitus (DM), 2 had undiagnosed DM, and 1 had type 1 DM. Presenting complaints included altered mental status, weakness, shortness of breath, cough, fever, vomiting, abdominal pain, chest pain, and foot pain. Out of 11 patients, pneumonia was diagnosed at presentation in 8 patients, while in 3 patients, chest X-ray was clear. Median value of initial glucose on presentation was 974 mg/dL (range 549-1556 mg/dL), and hemoglobin A1c on presentation was 13.8%. The median value of anion gap was 34 mEq/L. Out of the 11 patients, ketonemia was moderate in 6 patients, large in 3, and small in 2 patients. Acute kidney injury (AKI) occurred in 9 patients and 2 patients required renal replacement therapy. Out of the 11 patients, 6 required mechanical ventilation and 7 patients died. All the 6 patients requiring mechanical ventilation died. Our case series shows COVID-19 infection can precipitate acute metabolic complications in known DM patients or as first manifestation in undiagnosed DM patients. Patients can present with DKA/HHNK symptoms and/or respiratory symptoms. Mechanical ventilation is a poor prognostic factor. Further studies are needed to characterize prognostic factors associated with mortality in this vulnerable patient population.

Keywords
COVID-19, SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2, diabetes mellitus, diabetic ketoacidosis, DKA, hyperglycemic crisis, hyperglycemic hyperosmolar nonketotic coma

Introduction
The novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS COV-2) and was declared a pandemic by the World Health Organization on March 11, 2020. COVID-19 most commonly affects the respiratory system, although it can also result in several extrapulmonary manifestations. These include thromboembolic, cardiovascular, and neurological complications.

Methods
We report 11 cases of combined diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar nonketotic coma (HHNK) in COVID-19 patients who presented to our institution in New Jersey, USA. COVID-19 was diagnosed by real-time reverse-transcription polymerase chain reaction (PCR) assay. Diabetes mellitus (DM) was defined as glycated hemoglobin (HbA1c) ≥6.5% (48 mmol/mol) or already established diagnosis prior to the current admission. Criteria for combined DKA and HHNK on admission was pH <7.3, bicarbonate <18 mEq/L, glucose >250 mg/dL, anion gap >10 mEq/L, and ketonemia with effective serum osmolality >299 mOsm/kg. The electronic medical records of the 11 patients were reviewed and data on patients’ age, sex, ethnicity, medical history, body mass...
index, various laboratory values, HbA1c, oral antidiabetic agents, insulin, mechanical ventilation, treatment drugs for COVID-19, and clinical outcome were collected.

Results

Pertinent salient features are summarized in Table 1. The median age was 47 years (range 12-88 years). Out of the 11 patients, 7 were males and 4 were females. Ethnicity distribution in our patients was as follows: 6 were Hispanic, 2 African American, 2 White, and 1 Middle Eastern descent. Comorbidities of the patients were hypertension, dyslipidemia, asthma, anxiety, depression, coronary artery disease, and gout. Out of the 11 patients, 8 had type 2 DM, 2 had undiagnosed DM, and 1 had type 1 DM. Presenting complaints included altered mental status, weakness, SOB, cough, fever, vomiting, abdominal pain, chest pain, and foot pain. Out of the 11 patients, pneumonia was diagnosed at presentation in 8 patients, while in 3 patients, chest X-ray was clear. Only 2 patients had BMI in the obesity range (more than 30). Bicarbonate 10 mEq/L in all the patients except one (14 mEq/L). One patient was taking SGLT 2 inhibitor, which is known to increase the risk of ketoacidosis. Median value of initial glucose on presentation was 974 mg/dL (range 549-1556 mg/dL) and for HbA1c on presentation was 13.8%. The median value of anion gap was 34 mEq/L. Out of 11 patients, ketonemia was moderate in 6 patients, large in 3, and small in 2 patients. All the patients received standard treatment protocol for combined DKA and HHNK with intravenous insulin infusion and intravenous fluids. Inflammatory markers (erythrocyte sedimentation rate, C-reactive protein, and ferritin) elevated in all patients except one. D-dimer was elevated in all the 11 patients. Acute kidney injury occurred in 9 patients, and 2 patients required renal replacement therapy. Transaminases were elevated in 2 patients only. Out of the 11 patients, 6 required mechanical ventilation and 7 patients died. All the 6 patients requiring mechanical ventilation died.

Discussion

Analysis of 5700 patients hospitalized with COVID-19 in the New York City area, the most common comorbidities noted were hypertension, obesity, and diabetes.1 In a meta-analysis, DM has been associated with severe COVID-19, disease progression, acute respiratory distress syndrome development, and mortality in patients with COVID-19.2 Pal et al report a mortality rate approaching 50% in the setting of DKA with COVID-19.3 COVID-19 can precipitate severe manifestations of DM, including DKA and HHNK.4 Limited literature is available regarding COVID-19 and combined DKA/HHNK. A recent systematic review of literature reported only 19 patients and emphasized differentiating isolated DKA from combined DKA and HHNK as latter tends to have higher mortality than DKA alone.5 Goldman et al report a prevalence of 1.8% of patients admitted for COVID-19 presented with DKA.5

Higher levels of inflammation-related biomarkers in DM patients compared with non-DM patients has been noted.6 In the Zhu et al study of 952 COVID-19 patients with preexisting type 2 diabetes, poor glycemic control was associated with increased need for medical interventions, multi-organ injuries, and higher mortality as compared with well-controlled glycemic control patients.7 A significant increase in DKA at diabetes diagnosis has been noted during the COVID-19 period in 2020 as compared with the 2 previous years (44.7% in 2020 vs 24.5% in 2019 vs 24.1% in 2018).8 A New York study reported mortality of 50% in COVID-19 patients with DKA on admission or developed during their hospital course.9 Health care providers should target optimal glycemic control in patients with DM especially during the COVID-19 pandemic; however, Palermo et al note the unique concerns and complications of DKA with COVID-19 given the need to prevent transmission, reducing health care worker exposure, and preserving protective personal equipment and offer suggestions on using subcutaneous insulin for management.10

The pathological mechanisms precipitating acute metabolic complications (DKA/HHNK) in DM patients with COVID-19 is not fully understood at present. Angiotensin-converting enzyme 2 (ACE2) serves as a functional receptor for SARS-CoV-2 and is expressed in multiple tissues (alveolar cells, myocardial cells, endocrine tissues of the pancreas, proximal tubule cells of the kidney, esophagus, ileum epithelial cells, and bladder urothelial cells).11,12 SARS-CoV-2 could cause direct damage to the pancreatic tissue leading to acute hyperglycemia. Suwanwongse et al reported 3 cases of newly diagnosed diabetes and DKA in patient with COVID-19 and propose that COVID-19 unmasked existing diabetes by aggravating its metabolic complications.13

Conclusion

Our case series shows that COVID-19 infection can precipitate acute metabolic complications in known DM patients or as first manifestation in undiagnosed DM patients and is associated with substantial mortality. Patients can present with DKS/HHNK symptoms and/or respiratory symptoms. Effective communication with a health care provider and proper patient and family members education during the illness can prevent the acute metabolic complications of DM. Further studies are needed to characterize prognostic factors associated with mortality in this vulnerable patient population. Health care providers should be aware of this life-threatening complication of COVID-19 so that appropriate interventions can be done.
Table 1. Showing pertinent clinical characteristics and laboratory values.

Variable	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10	Case 11
Age/sex	47/Male	79/Female	45/Male	51/Male	52/Male	35/Female	45/Male	19/Male	12/Male	79/Female	79/Female
Ethnicity	African American	Hispanic	Hispanic	White	Hispanic	None	Hispanic	White	DH	Asian	Middle Eastern
Type I DM or type 2 DM or undiagnosed	Type 2 DM	Type 2 DM	Type 2 DM	Undiagnosed	Type 2 DM	Type 2 DM	Type 2 DM	Undiagnosed	Type 2 DM	Type 1 DM	Type 2 DM
Duration of DM	NR	NR	NR	Diagnosed within 3 months	NR						
Hx of prior DKA/HHNK	NR	NR	NR	Multi episodes	NR						
Presenting sign and symptoms	Altered mental status	SOB, altered mental status	Altered mental status	SOB, cough, weakness	Altered mental status, SOB, cough, weight loss	Altered mental status	SOB, vomiting	Altered mental status	SOB, vomiting	Ventilation, abdominal pain, SOB	SOB
BMI	36.54	25.28	22.04	25.71	25.71	24.38	27.5	29.3	23.43	13.07	26.5
HbA1c (%)	8.4	18.3	13.3	18.3	18.3	14.4	14.4	14.4	8.4	8.4	8.4
pH	7.1	7.4	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1
Sodium (mEq/L)	131	145	157	157	157	157	157	157	157	157	157
Potassium (mEq/L)	5.1	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Chloride (mEq/L)	84	104	119	119	119	119	119	119	119	119	119
Phosphorus (mg/dL)	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4
BUN (mg/dL)	92	70	69	69	69	69	69	69	69	69	69
Creatinine (mg/dL)	12.2	20.5	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0
White cell count (K/mm³)	147	134	158	158	163	163	163	163	163	163	163
Hemoglobin A1c (%)	358	358	358	358	358	358	358	358	358	358	358
Hemoglobin (g/dL)	92	70	69	69	69	69	69	69	69	69	69
Platelets (K/mm³)	125	223	353	353	353	353	353	353	353	353	353
LDH (U/L)	84	104	119	119	119	119	119	119	119	119	119
Ferritin (ng/mL)	7500	2231	2266	2266	2266	2266	2266	2266	2266	2266	2266
CRP (mg/L)	12.8	101	NR								

Abbreviations: DM, diabetes mellitus; undiagnosed, first time diagnosed with diabetes; HTN, hypertension; CAD, coronary artery disease; DLD, dyslipidemia; NR, not reported; DKA, diabetic ketoacidosis; HHNK, hyperosmolar nonketotic coma; SOB, shortness of breath; NA, not applicable; SGLT2, sodium glucose cotransporter 2 inhibitor; BMI, body mass index; HbA1c, hemoglobin A1c; ND, not done; BUN, blood urea nitrogen; AST, aspartate transaminase; ALT, alanine transaminase; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; LDH, lactate dehydrogenase; IV, intravenous; SC, subcutaneous; HD, hemodialysis; HCQ, hydroxychloroquine.

*Reference ranges: hemoglobin A1c 4% to 6%, pH 7.36 to 7.44, bicarbonate 21 to 31 mEq/L, glucose 70 to 110 mg/dL, anion gap 3 to 10 mEq/L, effective osmolality 283 to 299 mOsm/kg, leucocytes 4.5 to 11 K/mm³, hemoglobin 12 to 16 g/dL, platelets 140 to 400 K/mm³, troponin less than 0.03 ng/mL, sodium 135 to 145 mEq/L, potassium 3.5 to 5 mEq/L, chloride 98 to 107 mEq/L, phosphorus 2.5 to 5 mg/dL, BUN 7 to 23 mg/dL, creatinine 0.6 to 1.30 mg/dL, AST 13 to 39 U/L, ALT 7 to 52 U/L, ESR 0 to 10 mm/h, CRP <10 mg/L, ferritin 12 to 300 ng/mL, LDH 140 to 271 U/L, D-dimer <0.5 µg/mL, fibrinogen 183 to 503 mg/dL.
Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Ethics Approval
Ethical approval to report this case series was obtained from Saint Joseph’s University Medical Center Review Board EX#2020-29.

Informed consent
Verbal informed consent was obtained from the patients or legally authorized representatives (case by case) for their anonymized information to be published in this article.

ORCID iD
Balraj Singh https://orcid.org/0000-0001-7986-6031

References
1. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323:2052-2059.
2. Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia—a systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020;14:395-403.
3. Pal R, Banerjee M, Yadav U, Bhattarcharjee S. Clinical profile and outcomes in COVID-19 patients with diabetic ketoacidosis: a systematic review of literature. Diabetes Metab Syndr. 2020;14:1563-1569.
4. Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A. COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab. 2020;22:1935-1941.
5. Goldman N, Fink D, Cai J, Lee YN, Davies Z. High prevalence of COVID-19-associated diabetic ketoacidosis in UK secondary care. Diabetes Res Clin Pract. 2020;166:108291.
6. Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020;36:e3319.
7. Zhu L, She ZG, Cheng X, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31:1068-1077.e3.
8. Kamrath C, Mönkemöller K, Biester T, et al. Ketoacidosis in children and adolescents with newly diagnosed type 1 diabetes during the COVID-19 pandemic in Germany. JAMA. 2020;324:801-804.
9. Chamorro-Pareja N, Parthasarathy S, Annam J, Hoffman J, Coyle C, Kishore P. Letter to the editor: unexpected high mortality in COVID-19 and diabetic ketoacidosis. Metabolism. 2020;110:154301.
10. Palermo NE, Sadhu AR, McDonnell ME. Diabetic ketoacidosis in COVID-19: unique concerns and considerations. J Clin Endocrinol Metab. 2020;105:dgaa360.
11. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14:185-192.
12. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47:193-199.
13. Suwanwongse K, Shabarek N. Newly diagnosed diabetes mellitus, DKA, and COVID-19: causality or coincidence? A report of three cases. J Med Virol. 2021;93:1150-1153.