Comparison of postprocedural new-onset atrial fibrillation between transcatheter and surgical aortic valve replacement
A systematic review and meta-analysis based on 16 randomized controlled trials

Yongmin Ding, BDa, Minmin Wan, BDp, Hemei Zhang, BDq,*, Chunyu Wang, BDa, Zhuoyu Dai, BDa

Abstract

Background: Presently, transcatheter aortic valve replacement (TAVR) as an effective and convenient intervention has been adopted extensively for patients with severe aortic disease. However, after surgical aortic valve replacement (SAVR) and TAVR, the incidence of new-onset atrial fibrillation (NOAF) is prevalently found. This meta-analysis was designed to comprehensively compare the incidence of NOAF at different times after TAVR and SAVR for patients with severe aortic disease.

Methods: A systematic search of PubMed, Embase, Cochrane Library, and Web of Science up to October 1, 2020 was conducted for relevant studies that comparing TAVR and SAVR in the treatment of severe aortic disease. The primary outcomes were the incidence of NOAF with early, midterm and long term follow-up. The secondary outcomes included permanent pacemaker (PM) implantation, myocardial infarction (MI), cardiogenic shock, as well as mortality and other complications. Two reviewers assessed trial quality and extracted the data independently. All statistical analyses were performed using the standard statistical procedures provided in Review Manager 5.2.

Results: A total of 16 studies including 13,310 patients were identified. The pooled results indicated that, compared with SAVR, TAVR experienced a significantly lower incidence of 30-day/in-hospital, 1-year, 2-year, and 5-year NOAF, with pooled risk ratios (RRs) of 0.31 (95% confidence interval [CI] 0.23–0.41; 5725 pts), 0.30 (95% CI 0.24–0.39; 6321 pts), 0.48 (95% CI 0.38–0.61; 3441 pts), and 0.45 (95% CI 0.37–0.55; 2268 pts) respectively. In addition, TAVR showed lower incidence of MI (RR 0.62; 95% CI 0.40–0.97) and cardiogenic shock (RR 0.34; 95% CI 0.19–0.58), but higher incidence of permanent PM (RR 3.16; 95% CI 1.61–6.21) and major vascular complications (RR 2.22; 95% CI 1.14–4.32) at 30-day/in-hospital. At 1- and 2-year after procedure, compared with SAVR, TAVR experienced a significantly higher incidence of neurological events, transient ischemic attacks (TIA), permanent PM, and major vascular complications, respectively. At 5-year after procedure, compared with SAVR, TAVR experienced a significantly higher incidence of TIA and re-intervention respectively. There was no difference in 30-day, 1-year, 2-year, and 5-year all-cause or cardiovascular mortality as well as stroke between TAVR and SAVR.

Conclusions: Our analysis showed that TAVR was superior to SAVR in decreasing the both short and long term postprocedural NOAF. TAVR was equal to SAVR in early, midterm and long term mortality. In addition, TAVR showed lower incidence of 30-day/in-hospital MI and cardiogenic shock after procedure. However, pooled results showed that TAVR was inferior to SAVR in reducing permanent pacemaker implantation, neurological events, TIA, major vascular complications, and re-intervention.
1. Introduction

At present, degenerative aortic valve disease, as one of the most frequent valvular heart disease with a severity ranging from aortic sclerosis slowly progressing to symptomatic severe aortic stenosis (AS), usually requires aortic valve replacement. In patients older than 75 years, AS is present in 12.4% of the population, with severe forms in 3.4% of the elderly. Currently, though surgical aortic valve replacement (SAVR) was a traditional effective method for patients with symptomatic severe AS, transcatheter aortic valve implantation (TAVR) as an effective and convenient intervention has been adopted extensively.

According to the European and American guidelines, symptomatic severe AS requires SAVR or TAVR, with a mean survival of 2 to 3 years in the absence of these procedures. TAVR is increasingly used in high and more recently in intermediate-risk population, studies evaluating now the indication even in low-risk population. The 2017 American Heart Association Valvular Guidelines have given TAVR a Class I recommendation (level of evidence A) for these patients at high or prohibitive surgical risk. For those at intermediate risk, TAVR is considered a reasonable alternative to SAVR, with a Class IIA recommendation in the American Heart Association guidelines. These decisions should involve a multidisciplinary heart valve team.

However, after SAVR and TAVR, the incidence of new-onset atrial fibrillation (NOAF) is 31% to 64% and 4% to 32%, respectively. NOAF is independently associated with adverse events such as stroke, death, and increased length of hospital stay. Increasing the knowledge of predisposing factors, optimal postprocedural monitoring, and prophylactic antithrombotic therapy may reduce the risk of complications secondary to NOAF.

However, at present, the incidence of NOAF after SAVR and TAVR has not yet been well studied. Therefore, this meta-analysis was designed to comprehensively compare the incidence of NOAF at different times after TAVR and SAVR for patients with severe aortic disease.

2. Methods

2.1. Search strategy and study selection

A systematic search of PubMed, Embase, Cochrane Library and Web of Science up to October 1, 2020 was conducted for relevant studies using a search strategy developed by a medical information specialist that involved controlled vocabulary and keywords related to our research question (eg, “aortic stenosis,” “valvular heart disease,” “aortic valve disease”; “transcatheter aortic valve replacement,” “transcatheter aortic valve implantation,” “surgical aortic valve replacement,” “surgical aortic valve implantation,” “TAVR,” “SAVR,” “SAPI,” “atrial fibrillation,” “arrhythmia,” and “complication”). The search strategy was limited to English language articles. Two assessors independently screened the titles and abstracts of each study. When a relevant study was identified, its full text was obtained for further evaluation. The full text of related references was also obtained for review.

2.2. Criteria for considering studies

We included studies if they met the following criteria: RCTs that compared TAVR with SAVR; studies in which the relevant outcomes of both TAVR and SAVR groups were assessed; and patients who were diagnosed with severe aortic disease.

Studies were excluded if they met the following criteria: experimental trial on animals or a non-human study, non-RCTs, or observational studies; study population included patients with other diseases that would affect outcomes; study reported in the form of an abstract, letter, editorial, expert opinion, review, or case report; or lack of sufficient data or failure to meet the inclusion criteria.

2.3. Quality assessment and data extraction

Two reviewers assessed the quality of each RCT using the previously validated 5-point Jadad scale. Studies with scores of 0 to 1 were considered low quality; scores of 2 to 3 were considered moderate quality; scores of ≥4 were considered high quality. In addition, the risk of bias for each studies and the risk of bias across all studies were evaluated and shown with figures generated by RevMan 5.2 software.

Baseline characteristics and outcomes from the included studies were extracted using a standardized extraction form. Key study characteristics including study year, sample size, sex, mean age, intervention, follow-up time, and outcomes, were extracted. Data were extracted by one reviewer and then examined for accuracy and completeness by a second reviewer.

2.4. Outcome measures

The primary outcomes were the incidence of NOAF with early, midterm and long term follow-up. NOAF was defined as detection of atrial fibrillation (AF) in a patient with no previous known AF.

The secondary outcomes included permanent pacemaker (PM) implantation, myocardial infarction (MI), cardiogenic shock, as well as mortality and other complications.

2.5. Data synthesis and statistical methods

The data of comparable outcomes between TAVR and SAVR were combined-analyzed, using the standard statistical procedures provided in RevMan 5.2. Dichotomous data were measured with risk ratio (RR) and continuous variable data were measured with mean difference (MD). The heterogeneity between
studies was evaluated by the χ^2-based Q statistical test, with P_q value and I^2 statistic, ranging from 0% to 100%, to quantify the effect of heterogeneity. $P_\text{q} \leq 0.10$ was deemed to represent significant heterogeneity, and pooled estimates were estimated using a random-effect model (the DerSimonian and Laird method). On the contrary, if statistical study heterogeneity was not observed ($P_\text{q} > 0.10$), a fixed-effects model (the Mantel–Haenszel method) was used. The effects of outcome measures were considered to be statistically significant if pooled RRs with 95% confidence interval (CI) did not overlap with 1 or pooled MDs with 95% CI did not overlap with 0.

This work has been reported in line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Assessing the methodological quality of systematic reviews Guidelines. The present study was approved by the Ethics Committee of Lanzhou University First Affiliated Hospital.

3. Results

3.1. Included studies, study characteristics, and quality assessment

At the beginning of the search, a total of 561 records of citations were obtained; 372 of records were reviewed further after duplicates were removed. Via screening the titles and abstracts, 129 studies were excluded preliminarily and then 88 studies were chosen to get full texts for further evaluation. After reading the full texts, 72 studies were excluded further (23 studies for review articles, 15 for non-RCTs, 12 for lack of controls, and 22 for erroneous aims). Eventually, 16 RCTs (N=13,310 participants) were included in this systematic review and meta-analysis. Of these studies, except two studies, the others were about multicenter studies. The detailed search process and summary of studies are shown in the study flow diagram (Fig. 1). The other characteristics of each study are shown in Table 1.

Figure 1. Flow diagram of literature search and selection of included studies for meta-analysis.
According to our definitions, there were no low-quality studies included in this analysis. Except Motloch et al. (2012)\(^28\) evaluated as moderate quality, the other studies were rated as high quality (93.7%). Additionally, risk-of-bias graphs were generated to further identify the risk of bias of the including studies. The risk of bias for each RCT was presented as percentages across all included studies, and the risk-of-bias item for each included study was displayed (Figs. 2 and 3). The risk-of-bias graphs indicated generally low risk of selection, detection, reporting, and other bias. All studies experienced low risk of bias in “Random sequence generation” item and other bias. A high risk of bias was mainly observed in reporting bias in one study.\(^{26}\) An unclear risk of bias was mainly observed in performance and attrition bias.

Table 1

The characteristics of included RCTs for meta-analysis.

Study	Year	TAVR	SAVR	Age, y (mean ± SD)	STS score (mean ± SD, %)	Location	Follow-up time	Primary outcomes	Jadad score
Jørgensen et al\(^7\)	2016	1011	1021	81.5 ± 6.7	5.8 ± 2.1	Multicenter	24 mo	Death from any cause or disabling stroke at 2 y	5
Leon et al\(^7\)	2016	348	351	81.0 ± 6.6	11.6 ± 3.3	Multicenter	60 mo	All-cause mortality in the ITT population at 1 and 5 y.	4
Mack et al\(^8\)	2019	986	454	73.6 ± 5.8	1.9 ± 0.7	Multicenter	12 mo	Composite of all-cause death, stroke, or rehospitalization at 1 y	4
Makkar et al\(^9\)	2020	994	991	81.5 ± 6.7	5.8 ± 2.1	Multicenter	60 mo	Non hierarchical composite of death from any cause or disabling stroke at 2 y in the ITT population	4
Miller et al\(^10\)	2012	344	313	83.6 ± 6.8	11.9 ± 3.3	NR	24 mo	All-cause mortality in the ITT population at 1 and 5 y	4
Jørgensen et al\(^11\)	2016	1011	1021	81.5 ± 6.7	5.8 ± 2.1	Multicenter	24 mo	Death from any cause or disabling stroke at 2 y	5
Leon et al\(^11\)	2016	348	351	81.0 ± 6.6	11.6 ± 3.3	Multicenter	60 mo	All-cause mortality in the ITT population at 1 and 5 y.	4
Mack et al\(^12\)	2019	986	454	73.6 ± 5.8	1.9 ± 0.7	Multicenter	12 mo	Composite of all-cause death, stroke, or rehospitalization at 1 y	4
Makkar et al\(^13\)	2020	994	991	81.5 ± 6.7	5.8 ± 2.1	Multicenter	60 mo	Non hierarchical composite of death from any cause or disabling stroke at 2 y in the ITT population	4
Miller et al\(^14\)	2012	344	313	83.6 ± 6.8	11.9 ± 3.3	NR	24 mo	All-cause mortality in the ITT population at 1 and 5 y	4

IT = intention-to-treat, **MI** = myocardial infarction, **NOAF** = new-onset atrial fibrillation, **RF** = renal failure, **SAVR** = surgical aortic valve replacement, **SD** = standard deviation, **STS score** = the Society of Thoracic Surgeons score, **TAVR** = transcatheter aortic valve replacement.

Figure 2. Risk of bias graph: review authors’ judgements about each risk of bias item presented as percentages across all included studies.
3.2. Comparison between TAVR and SAVR regarding to baseline characteristics

We compared the baseline characteristics of both TAVR and SAVR groups with a total of 16 studies (N = 13,310 participants). As Table 2 showing, there was no difference between TAVR and SAVR groups in age (MD −0.06; 95% CI −0.30 to 0.18; 10,423 pts), left ventricular ejection fraction (LVEF) (%) (MD −0.39; 95% CI −0.94 to 0.15; 3986 pts), aortic valve area (cm²) (MD 0.02; 95% CI −0.04 to 0.07; 3080 pts), and aortic-valve peak gradient (mmHg) (MD 0.64; 95% CI −1.11 to 2.38; 3080 pts), respectively. In addition, there was also no difference between TAVR and SAVR groups in the proportion of diabetes mellitus, serum creatinine >2 mg/dL, previous stroke, previous transient ischemic attacks (TIA), peripheral vascular disease, previous pacemaker implantation, previous coronary-artery bypass grafting, previous percutaneous coronary intervention, previous myocardial infarction (MI), history of arrhythmia, AF, NYHA Class III/IV, cerebral vascular disease, chronic obstructive pulmonary disease, pulmonary hypertension, and hypertension, respectively. However, significant difference between TAVR and SAVR groups was observed in the proportion of coronary artery disease (CAD) (RR 0.96; 95% CI 0.92–1.0; 5671 pts) and congestive heart failure (MD 0.98; 95% CI 0.97–1.00; 3320 pts).

3.3. NOAF between TAVR and SAVR

Seven studies compared 30-day/in-hospital NOAF between TAVR and SAVR groups. The incidence of 30-day/in-hospital NOAF was 10.4% (304/2910 patients) in TAVR group and 35.5% (1000/2815 patients) in SAVR group. As shown in Figure 4, pooled results showed significant reduction of 30-day/in-hospital NOAF in TAVR than SAVR groups, and the incidence of 30-day/in-hospital NOAF in TAVR was only one-third of SAVR, with a pooled RR of 0.31 (95% CI 0.23–0.41; P < .00001; 5725 pts).

The incidence of 1-year NOAF was 11.8% (381/3238 patients) in TAVR group and 36.4% (1123/3083 patients) in SAVR group. The pooled results also showed significant reduction of 1-year NOAF in TAVR than SAVR groups, and the incidence of 1-year NOAF in TAVR was only one-third of SAVR, with a pooled RR of 0.30 (95% CI 0.24–0.39; P < .00001; 6321 pts) (Fig. 4). For the incidence of 2-year NOAF, we found similar significance between TAVR and SAVR. The incidence of 2-year NOAF was 14.9% (260/1746 patients) in TAVR group and 31.7% (537/1695 patients) in SAVR group. The pooled results showed a significant reduction of 2-year NOAF in TAVR than SAVR groups, and the incidence of 2-year NOAF in TAVR was only half of SAVR, with a pooled RR of 0.48 (95% CI 0.38–0.61; P < .00001; 3441 pts). Similarly, compared with SAVR, TAVR also showed priority in decreasing 5-year NOAF, with a pooled RR of 0.45 (95% CI 0.37–0.55; P < .00001; 2268 pts) (Fig. 4).

We displayed the incidence of NOAF between TAVR and SAVR over the following time (Table S1, http://links.lww.com/MD/G243). We could observe that the incidence of NOAF in TAVR showed a slight increasing tendency from 30-day/in-hospital to 5-year follow up time. However, SAVR showed a stable incidence of NOAF over the following time.

3.4. The 30-day outcomes between TAVR and SAVR

Six studies compared 30-day mortality of patients with severe AS between TAVR and SAVR groups. Pooled results showed no significant difference in the incidence of 30-day all-cause and CV mortality between TAVR and SAVR groups, with pooled RRs of 0.87 (95% CI 0.65–1.16; P = .34; 6098 pts) and 1.04 (95% CI 0.71–1.51; P = .85; 4038 pts), respectively. Similarly, compared with SAVR, TAVR showed noninferiority in the following 30-day outcomes: stroke, TIA, life-threatening bleeding, neurological events, endocarditis, CAD, re-intervention, and re-hospitalization (Table 3). In addition, one study also showed noninferiority between TAVR and SAVR in 30-day leakage, cardiac perforation, and LVEF. However, compared with SAVR, TAVR experienced a
3.6. The 2-year outcomes between TAVR and SAVR

Six studies compared the 2-year mortality between TAVR and SAVR groups. Our pooled results also showed non-inferiority in the incidence of 2-year all-cause and CV mortality of TAVR when compared to SAVR, with pooled RRs of 0.92 (95% CI 0.78–1.03; P = 0.16; 5758 pts) and 0.87 (95% CI 0.74–1.02; P = 0.09; 5101 pts), respectively. Similarly, compared with SAVR, TAVR showed noninferiority in the following 2-year outcomes: stroke, MI, life-threatening bleeding, and all stage AKI (Table 5). In addition, one study also showed noninferiority between TAVR and SAVR in 2-year endocarditis and CAD. However, compared with SAVR, TAVR experienced a significantly higher incidence of neurological events (RR 1.26; 95% CI 1.02–1.57; 2965 pts), TIA (RR 1.58; 95% CI 1.14–2.17; 5375 pts), permanent pacemaker implantation (RR 2.61; 95% CI 1.36–5.00; 3441 pts), rehospitalization (RR 1.25; 95% CI 1.06–1.46; 3692 pts), major vascular complications (RR 2.38; 95% CI 1.26–4.49; 3165 pts) and reintervention (RR 3.22; 95% CI 1.64–6.29; 3692 pts), respectively (Table 5).

3.7. The 5-year outcomes between TAVR and SAVR

Five studies compared the 5-year mortality between TAVR and SAVR groups. Our pooled results indicated non-inferiority in the 5-year all-cause and CV mortality of TAVR when compared to SAVR, with pooled RRs of 0.99 (95% CI 0.93–1.05; P = 0.32; 3049 pts) and 0.93 (95% CI 0.85–1.02; P = 0.25; 3692 pts), respectively. Similarly, when compared with SAVR, TAVR showed noninferiority in the following 5-year outcomes: stroke, rehospitalization, MI, endocarditis and permanent pacemaker implantation (RR 2.24; 95% CI 1.21–4.14; 3692 pts), respectively (Table 4).
implantation (Table 6). In addition, one study also showed noninferiority between TAVR and SAVR in 5-year neurological events and renal failure. However, compared with SAVR, TAVR experienced a significantly higher incidence of TIA (RR 1.50; 95% CI 1.04–2.17; 2967 pts) and re-intervention (RR 3.40; 95% CI 1.47–7.85; 2268 pts), respectively (Table 6).

4. Discussion and conclusions

Aortic stenosis is one of the most common valvular problems associated with significant morbidity and mortality in the United States.[37,38] Before TAVR therapy, SAVR was considered the gold standard to improve the prognosis.[39] At present, TAVR has become a valuable therapeutic standard for patients with

![Figure 4. Forest plot of comparison between TAVR and SAVR for severe AS regarding to 30-day/in-hospital, 1-year, 2-year, and 5-year NOAF. AS = aortic stenosis, NOAF = new-onset atrial fibrillation, TAVR = transcatheter aortic valve replacement.](image-url)
symptomatic severe aortic stenosis,[40] that was traditionally envisioned to be a treatment option in high-risk surgical candidates.[41] In addition, the encouraging results derived from numerous randomized trials and observational registries corroborate TAVR as a reliable alternative to conventional SAVR in high-risk and intermediate-risk patients and demonstrates a future potential even to moderate to mild risk patients.

At present, several meta-analyses explored the efficacy of TAVR for patients with symptomatic severe aortic stenosis[4,2,49] and found no difference in all-cause mortality or stroke between TAVR and SAVR. However, SAVR and TAVI are associated with a number of different complications including bleeding, vascular injury, and thromboembolism—particularly stroke and arrhythmia. Arrhythmias associated with these interventions are primarily NOAF and conduction disturbances, which may require antiarrhythmic medication, anticoagulant therapy, and/or a need for permanent pacemaker, as well as increasing the length of hospital stay. Thus, the present meta-analysis was designed to comprehensively compare the incidence of NOAF at different times after TAVR and SAVR for patients with severe aortic disease.

Our pooled analysis of 13,310 patients showed that, compared with SAVR, TAVR experienced a significantly lower incidence of 30-day/in-hospital, 1-year, 2-year, and 5-year NOAF, respectively. In addition, TAVR showed lower incidence of MI and cardiogenic shock, but higher incidence of permanent PM and major vascular complications at 30-day/in-hospital. At 1- and 2-year after procedure, compared with SAVR, TAVR experienced a

Table 3

The pooled results of comparison between TAVR and SAVR for severe AS regarding to the 30-day outcomes.

Subgroups	No. of study/pts	RR	95% CI	P	Heterogeneity	Analytical effect model	
Myocardial infarction	5/5441	0.62	0.40–0.97	.04	0%	.79	Fixed-effects model
Cardiogenic shock	2/1236	0.34	0.19–0.59	.0002	90%	.0001 Random-effect model	
AKI >2	4/5371	0.37	0.25–0.54	<.0001	0%	.64	Fixed-effects model
Permanent PM	5/5441	3.16	1.61–6.21	.0008	90%	<.0001 Random-effect model	
Major vascular complications	4/5371	2.22	1.14–4.32	.02	77%	.004 Random-effect model	
All-cause mortality	6/6098	0.87	0.65–1.16	.34	8%	.36 Fixed-effects model	
CV mortality	4/4038	1.04	0.71–1.51	.85	0%	.75 Fixed-effects model	
Stroke	5/5441	0.82	0.64–1.04	.10	0%	.42 Fixed-effects model	
TIA	5/5441	1.50	0.85–2.66	.16	0%	.66 Fixed-effects model	
Bleeding	5/5441	0.51	0.20–1.28	.15	96%	<.0001 Random-effect model	
Neurological events	2/2308	0.99	0.72–1.37	.96	0%	.94 Fixed-effects model	
Endocarditis	3/7113	1.57	0.21–11.80	.66	0%	.61 Fixed-effects model	
CAD	3/5095	1.37	0.60–3.16	.45	13%	.32 Fixed-effects model	
Reintervention	3/5095	2.66	1.01–7.00	.05	20%	.29 Fixed-effects model	
Rehospitalization	3/5095	0.85	0.66–1.11	.24	46%	.16 Fixed-effects model	

AKI = acute kidney injury, AS = aortic stenosis, CAD = coronary artery disease, CI = confidence interval, CV = cardiovascular, LVEF = left ventricular ejection fraction, MI = myocardial infarction, NOAF = new-onset atrial fibrillation, PM = pacemaker, RF = renal failure, RR = risk ratio, SAVR = surgical aortic valve replacement, TAVR = transcatheter aortic valve replacement, TIA = transient ischemic attacks.

Table 4

The pooled results of comparison between TAVR and SAVR for severe AS regarding to the 1-year outcomes.

Subgroups	No. of study/pts	RR	95% CI	P	Heterogeneity	Analytical effect model
Bleeding	5/6744	0.41	0.24–0.68	.0007	93%	<.0001 Random-effect model
All AKI	3/6462	0.44	0.25–0.77	.004	68%	.05 Random-effect model
AKI > stage 2	4/6045	0.56	0.40–0.77	.0004	49%	.12 Fixed-effects model
Cardiogenic shock	1/6604	0.32	0.16–0.65	.002	0%	.88 Fixed-effects model
Neurological events	4/6755	3.01	1.72–5.27	.0001	0%	.46 Fixed-effects model
TIA	7/8680	1.44	1.07–1.95	.02	0%	.88 Fixed-effects model
Major vascular complications	4/5794	2.23	1.19–4.18	.01	83%	.0006 Random-effect model
Permanent PM	6/6020	2.32	1.36–3.95	.002	91%	<.0001 Random-effect model
All-cause mortality	10/9790	0.94	0.84–1.06	.33	0%	.65 Fixed-effects model
CV mortality	6/277	0.91	0.76–1.09	.30	0%	.52 Fixed-effects model
Stroke	7/8680	0.89	0.75–1.06	.18	38%	.14 Fixed-effects model
Reintervention	3/3968	0.96	0.78–1.18	.67	0%	.42 Fixed-effects model
MI	7/8680	0.91	0.67–1.23	.53	0%	.64 Fixed-effects model
Endocarditis	5/6070	0.82	0.42–1.58	.55	0%	.55 Fixed-effects model
Rehospitalization	6/8404	0.94	0.75–1.18	.60	0%	.82 Random-effects model
Aortic regurgitation	2/1852	1.72	0.88–3.34	.11	0%	.65 Fixed-effects model
CAD	2/3435	1.19	0.49–2.88	.70	36%	.21 Fixed-effects model

AKI = acute kidney injury, AS = aortic stenosis, CAD = coronary artery disease, CI = confidence interval, CV = cardiovascular, LVEF = left ventricular ejection fraction, MI = myocardial infarction, NOAF = new-onset atrial fibrillation, PM = pacemaker, RF = renal failure, RR = risk ratio, SAVR = surgical aortic valve replacement, TAVR = transcatheter aortic valve replacement, TIA = transient ischemic attacks.
significantly higher incidence of neurological events, TIA, permanent PM, and major vascular complications, respectively. At 5 years after procedure, compared with SAVR, TAVR experienced a significantly higher incidence of TIA and re-intervention respectively. There was no difference in 30-day, 1-year, 2-year, and 5-year all-cause or cardiovascular mortality as well as stroke between TAVR and SAVR. In addition, we could observe that the incidence of NOAF in TAVR showed a slight increasing tendency from 30-day/in-hospital to 5-year follow up time. However, SAVR showed a stable incidence of NOAF over the following time. Conversely, the incidence of permanent PM in SAVR showed an increasing tendency from 30-day/in-hospital to 5-year follow-up time. However, TAVR showed a stable incidence of permanent PM over the following time (see Table S1, supplemental digital content, which illustrates the outcomes of TAVR and SAVR over time, http://links.lww.com/MD/G243).

In the PARTNER trial by Smith et al., patients were randomized to either TAVR with the ESV or SAVR. Not excluding patients with a baseline history of AF, they found a significant difference in the development of NOAF after TAVR and SAVR (9% vs 16% of patients, respectively). Adams et al. reported that NOAF or worsening preprocedural AF were significantly more common after SAVR when compared with MCV-TAVI (31% vs 12% of randomized patients, respectively). Unfortunately, there are currently no randomized studies comparing the MCV with the ESV that report the incidence of NOAF.

The incidence of NOAF after SAVR is generally found to be higher than that after TAVR. Many possible factors may result in this discrepancy in the incidence of NOAF between TAVR and SAVR. More serious inflammatory response after SAVR may be one main factor. Inflammation has previously been reported to increase the AF burden and predispose to NOAF after coronary bypass surgery. A similar inflammatory response after the surgical trauma of SAVR might temporarily induce NOAF. Furthermore, diuretics have been associated with an increased risk of NOAF in patients with hypertension potentially because of hypokalemia; perhaps, the high doses of diuretics used during the immediate postoperative days after extracorporeal circulation could play a role in the initial high rate of NOAF after SAVR.

There existed several limitations in our work. First, the NOAF detection may exist inconsistency in each included studies which may impact the incidence of NOAF. NOAF detection is often done by continuous monitoring with varying duration ranging

Subgroups	No. of study/pts	RR	95% CI	P	f	P_r	Analytical effect model
Permanent PM	4/3441	2.61	1.36–5.00	.004	90%	<.00001	Random-effect model
Rehospitalization	2/3692	1.26	1.06–1.46	.007	0%	.41	Fixed effects model
Major vascular complications	3/3165	2.38	1.26–4.49	.007	58%	.09	Random-effect model
Neurological events	3/2965	1.26	1.02–1.57	.04	0%	.47	Fixed effects model
TIA	5/3725	1.58	1.14–2.17	.006	0%	.97	Fixed effects model
Reintervention	2/3692	3.22	1.64–6.29	.006	0%	.62	Fixed effects model
All-cause mortality	6/750	0.92	0.83–1.03	.16	34%	.18	Fixed effects model
CV mortality	5/101	0.87	0.74–1.02	.09	14%	.33	Fixed effects model
Stroke	5/101	0.85	0.71–1.02	.09	0%	.85	Fixed effects model
MI	4/718	0.98	0.71–1.36	.90	0%	.85	Fixed effects model
Bleeding	3/3165	0.56	0.31–1.00	.05	96%	<.00001	Random-effect model
All AKI	3/3165	0.63	0.31–1.30	.21	70%	.04	Random-effect model

AKI = acute kidney injury, AS = aortic stenosis, CAD = coronary artery disease, CI = confidence intervals, CV = cardiovascular, NOAF = new-onset atrial fibrillation, RR = risk ratio, SAVR = surgical aortic valve replacement, TAVR = transcatheter aortic valve replacement, TIA = transient ischemic attacks.
between the first 3 to 7 days after the procedure or limited to the length of hospital stay, with NOAF defined as a recorded AF episode lasting >30 seconds or 10 minutes. Furthermore, there is the risk of overestimating the incidence of NOAF. The exclusion of patients with preprocedural AF is often based on a history of previous known AF or short preprocedural screening. As the prevalence of preprocedural AF is high in patients undergoing SAVR and TAVI and AF can be asymptomatic, there is a risk that detected NOAF in some patients is actually the unmasking of preprocedurally unknown AF. Third, the appearance of AF always changes over time. Amat-Santos et al reported that 41% of NOAF occurred within 24 hours, 22% between 24 and 48 hours, 18% between 48 and 72 hours, and 18% occurred >72 hours after TAVI with the ESV. NOAF was reported from the first postprocedural day after SAVR and with the highest incidence after 3 days; however, the study was limited by a postprocedural monitoring period of only 3 days.[32] Finally, the sensitivity of AF detection significantly influenced the incidence of NOAF in each study which failed to unify this and may lead to any bias. Charitos et al reported that the sensitivity of AF detection with intermittent rhythm monitoring was lower when compared to continuous monitoring.[33] Continuous long-term monitoring with implantable loop recorders could be a new helpful clinical tool in detecting and describing NOAF and assessing therapeutic response to NOAF treatment.[54,55]

TAVR and SAVR are the only definitive treatments for severe AS; both interventions improve prognosis and symptoms.[56] TAVR, and to a greater degree SAVR, carries a risk of developing NOAF.[57,58] This arrhythmia has significant health, economic, and clinical implications, because the length of hospital stay and the risk of stroke and mortality are increased.[59] Future studies identifying predictive factors for postprocedural NOAF will help in selecting high-risk patients who might benefit from prophylactic antiarrhythmic therapy or surgery.

In conclusion, our analysis showed that TAVR was superior to SAVR in decreasing the both short and long term postprocedural NOAF. TAVR was equal to SAVR in early, midterm and long term mortality. In addition, TAVR showed lower incidence of 30-day/ in-hospital MI and cardiogenic shock after procedure. However, pooled results showed that TAVR was inferior to SAVR in reducing permanent pacemaker implantation, neurological events, TIA, major vascular complications, and re-intervention.

Author contributions

The authors on this paper all participated in study design. All authors read, critiqued and approved the manuscript revisions as well as the final version of the manuscript. Also, all authors participated in a session to discuss the results and consider strategies for analysis and interpretation of the data before the final data analysis was performed and the manuscript written. All authors have the appropriate permissions and rights to the reported data.

Conceptualization: Yongmin Ding, Hemei Zhang.

Formal analysis: Zhuoyu Dai, Hemei Zhang.

Methodology: Minmin Wan, Hemei Zhang.

Software: Minmin Wan, Chunyu Wang, Hemei Zhang.

Writing – original draft: Minmin Wan, Chunyu Wang, Zhuoyu Dai, Hemei Zhang.

Writing – review & editing: Yongmin Ding, Chunyu Wang, Zhuoyu Dai.

References

[1] Coffey S, Cairns BJ, Jung B. The modern epidemiology of heart valve disease. Heart 2016;102:75–85.
[2] Osnabrugge RL, Mylotte D, Head SJ, et al. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J Am Coll Cardiol 2013;62:1002–12.
[3] Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 2017;38:2739–91.
[4] Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014;63:57–185.
[5] Gleason TG, Reardon MJ, Popma JJ, et al. 5-Year outcomes of self-expanding transcatheter versus surgical aortic valve replacement in high-risk patients. J Am Coll Cardiol 2018;72:2687–96.
[6] Kolte D, Vlahakes JJ, Palacios IF, et al. Transcatheter versus surgical aortic valve replacement in low-risk patients. J Am Coll Cardiol 2019;74:1532–40.
[7] Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic valve replacement in intermediate-risk patients. N Engl J Med 2016;374:1609–20.
[8] Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 2019;380:2239–2250.
[9] Nishimura RA, Otto CM, Bonow RO, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation 2017;135:e1139–95.
[10] Sacks D, Baxter B, Campbell BCV, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 2018;13:612–32.
[11] Reardon MJ, Van Mieghem NM, Popma JJ, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med 2017;376:1321–31.
[12] Tarantini G, Mojoji M, Urena M, Vahanian A. Atrial fibrillation in patients undergoing transcatheter aortic valve implantation: epidemiology, timing, predictors, and outcome. Eur Heart J 2017;38:1285–93.
[13] Vavuranakis M, Kolokathis AM, Vrachatis DA, et al. Atrial fibrillation during or after TAVI: incidence, implications and therapeutic considerations. Curr Pharm Des 2016;22:1896–903.
[14] Jørgensen TH, Thygesen JB, Thyregod HG, et al. 2019 ESC guideline for the management of patients with valvular heart disease: a report of the European Association for Cardiovascular Disease. Eur Heart J 2019;40:3169–243.
[15] Jørgensen TH, Thyregod HGH, Tarp JB, et al. 2019 ESC guidelines for the management of patients with valvular heart disease: a report of the European Association for Cardiovascular Disease. Eur Heart J 2019;40:3179–243.
[16] Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews of healthcare interventions, or both. BMJ 2017;358:j4008.
[17] University of York Centre for Reviews and Dissemination. Systematic Reviews: CRD’s Guidance for Undertaking Reviews in Health Care. York: CRD, University of York, 2009.
[18] Jørgensen TH, Thyregod HG, Thynge KB, et al. 2012 ESC guidelines on the management of valvular heart disease: the Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur Heart J 2012;33:2451–59.
[19] Jørgensen TH, Thyregod HG, Tarp JB, et al. 2012 ESC guidelines on the management of valvular heart disease: the Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur Heart J 2012;33:2451–59.
[20] University of York Centre for Reviews and Dissemination. Systematic Reviews: CRD’s Guidance for Undertaking Reviews in Health Care. York: CRD, University of York, 2009.
[21] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.
[22] Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017;358:j4008.
[23] Popma JJ, Deeb GM, Yakubov SJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med 2019;380:1706–15.
[24] Jørgensen TH, Thyreged HGH, Tarp JB, et al. Temporal changes of new-onset atrial fibrillation in patients randomized to surgical or transcatheter aortic valve replacement. Int J Cardiol 2017;234:16–21.
Al-Abdouh A, Upadhrasta S, Fashanu O, et al. Transcatheter aortic valve replacement in operable elderly patients with aortic stenosis: the STACCATO trial. EuroIntervention 2012;8:383–9.

Miller DC, Blackstone EH, Mack MJ, et al. Transcatheter (TAVR) versus surgical (AVR) aortic valve replacement: occurrence, hazard, risk factors, and consequences of neurologic events in the PARTNER trial. J Thorac Cardiovasc Surg 2012;143:832–43. e13.

Motloch LJ, Reda S, Rottlaender D, et al. Postprocedural atrial fibrillation after transcatheter aortic valve implantation versus surgical aortic valve replacement. Ann Thorac Surg 2012;93:124–31.

Mack MJ, Leon MB, Smith CR, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 2015;385:2477–84.

Serruys PW, Modolo R, Reardon M, et al. One-year outcomes of patients with severe aortic stenosis and an STS PROM of less than three percent in the SURTAVI trial. EuroIntervention 2018;14:877–83.

Sondergaard I, Steinbruchel DA, Ihlom N, et al. Two-year outcomes in patients with severe aortic valve stenosis randomized to transcatheter versus surgical aortic valve replacement: the all-comers Nordic Aortic Valve Intervention randomized clinical trial. Circ Cardiovasc Inter 2016;9:6.

Reardon MJ, Adams DH, Kleiman NS, et al. 2-Year outcomes in patients undergoing surgical or self-expanding transcatheter aortic valve replacement. J Am Coll Cardiol 2015;66:113–21.

Makkar RR, Charitos EL, Charitos EI, et al. Five-year outcomes of transcatheter or surgical aortic valve-replacement. N Engl J Med 2020;382:799–809.

Reardon MJ, Leon MB, Smith CR, et al. Outcomes in the randomized corevalve US pivotal high risk trial in patients with a society of thoracic surgeons risk score of 7% or less. JAMA Cardiol 2016;1:945–9.

Thyregod HGH, Ihlemann N, Jorgensen TH, et al. Five-year clinical and outcomes of transcatheter aortic valve replacement in low-risk surgical patients: a systematic review and meta-analysis. J Thorac Cardiovasc Surg 2012;143:832–43. e13.

Nielsen HH, Charitos EL, Charitos EI, et al. A prospective, randomised trial of transapical transcatheter aortic valve implantation vs. surgical aortic valve replacement in operable elderly patients with aortic stenosis: the STACCATO trial. EuroIntervention 2012;8:383–9.

Bevan GH, Zidar DA, Josephson RA, Al-Kindi SG. Mortality due to aortic stenosis in low- to intermediate-risk patients? Can J Cardiol 2010;3:141

Garg A, Rao SV, Viveswaran G, et al. Transcatheter aortic valve replacement versus surgical valve replacement in low-intermediate surgical risk patients: a systematic review and meta-analysis. J Invasive Cardiol 2017;29:209–16.

Khan SU, Lone AN, Saleem MA, Kaluski E. Transcatheter vs surgical aortic-valve replacement in low- to intermediate-surgical-risk candidates: A meta-analysis and systematic review. Clin Cardiol 2017;40:974–81.

Kheir B, Osman M, Abubakar H, et al. Transcatheter versus surgical aortic valve replacement in low-risk surgical patients: A meta-analysis of randomized clinical trials. Cardiovasc Revasc Med 2019;20:838–42.

Polimeni A, Sorrentino S, De Rosa S, et al. Transcatheter versus surgical aortic valve replacement in low-risk patients for the treatment of severe aortic stenosis. J Clin Med 2020;9:2.

Sardar P, Kundu A, Chatterjee S, et al. Transcatheter vs surgical aortic valve replacement in intermediate-risk patients: Evidence from a meta-analysis. Catheter Cardiovasc Interv 2017;90:504–15.

Wang Y, Zhou Y, Zhang L, Zhu J. Midterm outcome of transcatheter versus surgical aortic valve replacement in low to intermediate risk patients: A meta-analysis of randomized controlled trials. J Cardiol 2018;71:534–9.

Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 2011;364:2187–98.

Adams DH, Popma JJ, Reardon MJ, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med 2014;370:1790–8.

Engelmann M, Svensden JH. Inflammation in the genesis and perpetuation of atrial fibrillation. Eur Heart J 2005;26:2083–92.

Jong GP, Chen HY, Li SY, Liu YS. Long-term effect of antihypertensive drugs on the risk of new-onset atrial fibrillation: a longitudinal cohort study. Hypertens Res 2014;37:950–3.

Amat-Santos IJ, Rodes-Cabau J, Urena M, et al. Incidence, predictive factors, and prognostic value of new-onset atrial fibrillation following transcatheter aortic valve implantation. J Am Coll Cardiol 2012;59:178–88.

Charitos EL, Sterile U, Ziegler PD, et al. A comprehensive evaluation of rhythm monitoring strategies for the detection of atrial fibrillation recurrence: insights from 647 continuously monitored patients and implications for monitoring after therapeutic interventions. Circulation 2012;126:806–14.

Hindricks G, Pokushalov E, Urban L, et al. Performance of a new leadless implantable cardiac monitor in detecting and quantifying atrial fibrillation: Results of the XPECT trial. Circ Arrhythm Electrophysiol 2014;7:809–16.

Winter MP, Bartko R, Hofer F, et al. Evolution of outcome and complications in TAVR: a meta-analysis of observational and randomized studies. Sci Rep 2020;10:15568.