A Fermi Fluid Description of the Half-Filled Landau Level

Tapash Chakraborty*
Max-Planck Institut für Physik Komplexer Systeme, Nöthnitzer Straße 38, D-01187 Dresden, Germany
(March 24, 2022)

We present a many-body approach to calculate the ground state properties of a system of electrons in a half-filled Landau level. Our starting point is a simplified version of the recently proposed trial wave function where one includes the antisymmetrization operator to the bosonic Laughlin state. Using the classical plasma analogy, we calculate the pair-correlation function, the static structure function and the ground state energy in the thermodynamic limit. These results are in good agreement with the expected behavior at \(\nu = \frac{1}{2} \).

The fractional quantum Hall effect (FQHE) \[1\] which is understood to be due to condensation of electrons to unique incompressible states as a result of electron correlations \[2,3\], fails to explain the odd behavior of even-denominator filling fractions which lie right in the middle of all the observed FQHE filling factors. It has been experimentally established that at \(\nu = \frac{1}{2} \) the system is metallic. (Here \(\nu = \phi_0 n_e / B \), where \(\phi_0 = h c / e \) is the mean electron density, and \(B \) is externally applied magnetic field.) The seemingly metallic behavior observed in transport measurements \[3\] was confirmed in subsequent surface acoustic wave experiments where it was found that contrary to the case of odd-denominator filling factors where the conductivity is reduced, at the half-filled Landau level the conductivity is in fact, enhanced \[5\]. Earlier theoretical attempts to understand the nature of the \(\nu = \frac{1}{2} \) state, largely pioneered by Halperin \[6\] and later by others \[7,8\] remained mostly inconclusive. While it was known from those theoretical works that the \(\frac{1}{2} \)-state is compressible, the exact nature of the state remained unclear. For example, working with upto ten electrons in a periodic rectangular geometry and the exact diagonalization of the few-electron Hamiltonian in the lowest Landau level, Haldane \[9\] found that the excitation spectrum is particle number dependent, the ground state energy was never at the particle total momentum (contrary to what one expects in a uniform-density liquid), and no clear physical picture could be extracted from those numerical results. The ground state energy (in fact, the lowest energy) was also dependent on the electron number and extrapolation of the energies to an infinite system led to \(E_0 \approx -0.465 e^2 / \ell_0 \) \[3\] (here \(\ell_0 = (hc/eB)^{\frac{1}{2}} \) is the magnetic length). The Laughlin wave function \[3\] is understood to be due to condensation of electrons to unique incompressible states as a result of electron correlations \[2,3\].

\[\Psi = \mathcal{P}_{LLL} \det M \prod_{i<j} (z_i - z_j)^2 \exp \left\{ -\sum_k |z_k|^2 / 4\epsilon_0^2 \right\} . \]

(2)

Here \(\mathcal{P}_{LLL} \) is the lowest Landau level projection operator. The matrix \(M \) has elements that are plane waves, \(M_{ij} = e^{i k \cdot \mathbf{r}_j} \) for \(|k| < k_F \). For \(\nu = \frac{1}{2} \), the Fermi wave vector is \(k_F = (4 \pi n_e / s)^{\frac{1}{2}} = 1 / (\sqrt{\epsilon_0} \ell_0) \) where \(s \) is the spin degeneracy. For a fully spin-polarized system \(s = 1 \). Because of the projection operator, \(z_i \rightarrow 2 \frac{\partial}{\partial z_i} \), and therefore the plane wave factors act as operators on the Jastrow factor where, as a result, the zeros of \(\psi_L \) are displaced \[13,14\]. The wave function (2) is supposed to have the right statistics and right correlations to describe the Fermi liquid properties at \(\nu = \frac{1}{2} \) and is found to provide a good description of a small size system at \(\nu = \frac{1}{2} \) \[14\]. However, in
those numerical studies of the few-electron systems the “Fermi” pair-correlation function on a sphere was found to have distinct long-range type oscillations unlike the dominant short-range order present in a fluid and also not present in the Laughlin (“Boson”) state. Further, it is reasonable to question the reliability of a few-electron system result when we are to describe a gapless Fermi liquid. The pair-correlation function and the structure function for the state (2) are the most essential building blocks for any further development in the theory of a compressible fluid. The nature of the correlation functions in the thermodynamic limit, the effective mass, and collective excitations, which are related to those correlation functions, therefore need careful attention [13].

In this work, we have attempted to fill in for some of those open questions by appealing to the ingenuity of the original Laughlin approach where one is able to map the electrons onto a classical plasma and make use of the established formalism to calculate various physical quantities. To develop such a many-body scheme to map the electrons onto a classical plasma and make use of the original Laughlin approach where one is able to collect quantities. To develop such a many-body scheme to map the electrons onto a classical plasma and make use of the original Laughlin approach where one is able to collect quantities. To develop such a many-body scheme to map the electrons onto a classical plasma and make use of the original Laughlin approach where one is able to collect quantities.

Our justification for that somewhat radical step is that, in our choice of the trial wave function Ψ_F the only job of the Slater determinant Φ is to make Ψ_F antisymmetric. When $\Phi = 1$, the wave function describes the boson (Laughlin) fluid and when $\psi_L = 1$ the wave function describes the non-interacting Fermi system. Although we have no longer any explicit projection to the lowest Landau level, the Laughlin wave function in particular the analytic part of the wave function already describes the correlations in the lowest Landau level. Also, since we are interested primarily in the correlation functions, structure functions etc., it should perhaps still be an acceptable step to drop the projection operator, especially since the form of $|\Phi|^2$ is chosen to be of the same form as $|\psi_L|^2$ (see below). We wish to add here that for a Fermi liquid in the absence of a magnetic field, a division of labor as for the two functions in (3) is entirely justified.

Once the choice of the wave function (3) is made the next question is, how do we deal with Φ. We have already stated that we are mostly interested in the pair-correlation functions where information about $|\Phi|^2$ is all that need to be known, or more specifically, we need to constrain $|\Phi|^2$ to be positive definite. One available choice in the literature [13] which is quite successful in describing the correlated electron systems in the absence of an external magnetic field is to write

$$
\sum_{\sigma} |\Phi(r_1, \ldots, r_N)|^2 \approx \prod_{i<j} \phi^2(r_{ij})
$$

$$
\phi(r) = e^{-\frac{1}{2}u(r)}
$$

where the set of spin coordinates is denoted by σ. This means that we expand $|\Phi|^2$ and retain only the two-body term which is then approximated by a Jastrow-type function. This allows us to write the square of the total wave function as

$$
|\Psi(r_1, \cdots, r_N)|^2 = \prod_{i<j} e^{-u(r_{ij}) + u_f(r_{ij})}
$$

$$
= \prod_{i<j} e^{-u(r_{ij})}.
$$

and the corresponding pair-correlation function

$$
g(r_{12}) = N(N-1)n_e^2 \int d^2 r_3 \cdots d^2 r_N \times \exp \left(-\sum_{i<j} u(r_{ij}) \right) / \int d^2 r \exp \left(-\sum_{i<j} u(r_{ij}) \right)
$$

where N is the particle number.

FIG. 1: The pair-correlation function $g(x)$ as a function of $x = r/R, R = \sqrt{2m\Phi}$ for the non-interacting system $|\phi_f(x)|$ [Eq. (7)], the Laughlin state (1) for a Bose system $g_L(x)$, and the “Fermi” state (3) $g_F(x)$. A blowup of the region around unity is given as inset.

The advantage of our choice of (5) is that one can now use established methods like the celebrated mapping of Laughlin’s wave function (1) to a one-component classical plasma [3,14] which determines the $u(r)$ or equivalently the pair-correlation function $g(r)$. In order to perform
similar calculations for \(u_t(r) = u(r) + u_I(r) \), we first have to determine \(u_I(r) \) and then follow the plasma analogy to solve for \(u_t(r) \). In a completely degenerate ideal (non-interacting) two-body radial distribution function \(g_I(r) \) can be calculated to be

\[
g_I(r) = 1 - \left[2J_1(k_F r)/k_F r \right]^2,
\]

where \(J_1(k_F r) \) is the Bessel function of the first kind of order one. Since we are considering a fully spin polarized system, \(g_I(r) \) vanishes at the origin due to the Pauli exclusion principle (Fig. 1). The corresponding ideal gas static structure function obtained from the two-dimensional Fourier transform of (7) is \[17]\]

\[
S_I(\kappa) = \begin{cases}
\frac{2}{\pi} \left[\sin^{-1} \kappa + \kappa \left(1 - \kappa^2 \right)^{\frac{1}{2}} \right], & \kappa < 1 \\
\kappa > 1
\end{cases}
\]

where \(\kappa = k/2k_F \). For small \(\kappa \), \(S_I(\kappa) \) increases linearly with \(\kappa \) (Fig. 2).

\[
F(k) = 2\pi \int_0^\infty r dr F(r) J_0(kr)
\]

\[
F(r) = \frac{1}{2\pi} \int_0^\infty kdk F(k) J_0(kr),
\]

where \(J_0(kr) \) is the Bessel function of the first kind of order zero.

The implication of Eqs. (7)-(9) is that in the two-body level, \(\phi(r) \) in Eq. (4) can be chosen such that we reproduce the exact two-body radial distribution function and the static structure factor corresponding to the full determinant. We note that \(u_t(r) \) is a numerically strictly decreasing function, but it is a long-ranged function (because for small \(q \), \(\tilde{u}_I(q) \equiv \mathcal{F}[u_I(r)] \sim q^{-1} \)). Therefore one needs to take special care about the long- and short-range behavior of \(u_t(r) \) \[18\] while solving the HNC equations for the one-component plasma. In our numerical calculations we have used the dimensionless variables \(x = r/R \) and \(q = kR \) where \(R = \sqrt{2m_0} \) is the ion-disk radius \[3\]. The method of deriving the HNC equations for \(g_I(x) \) is similar to that for \(u(x) \) and with proper choice of the long- and short-range functions \[14\] a numerically rapidly convergent set of equations are obtained which lead to \(g(x) \) and its Fourier transform, \(S(q) \). In the case of \(u_I(x) = 0 \), the pair-correlation function \(g_I(x) \) for the Laughlin state is plotted in Fig. 1. The ground state energy corresponding to that state is \(E_L = -0.480e^2/\epsilon\ell_0 \). The pair-correlation function corresponding to state (3) is denoted by \(g_F(x) \) in Fig. 1. Clearly, the “Fermi hole” is not much affected by the introduction of the Laughlin correlation function, but marked deviations of \(g_F(x) \) from \(g_I(x) \) occur near the maximum of \(g_L(x) \).

The static structure functions \(S(q) \) vs \(q \) for the various cases are shown in Fig. 2. As with the pair-correlation functions, \(S_I(q) \) corresponds to the ideal system result, \(S_F(q) \) is the present result for the Fermi-fluid state (3) at \(\nu = \frac{1}{2} \) and \(S_L(q) \) is the structure function for the Laughlin state (1). For small \(q \), it has been predicted that \(S(q) \propto q^2 \) in the Fermi fluid at \(\nu = \frac{1}{2} \) \[13\]. Similar behavior is observed here for \(S_F(q) \). The difference between the present results and the Laughlin results, \(g_{\text{eff}} = g_F(x) - g_L(x) \) and \(S_{\text{eff}} = S_F(q) - S_L(q) \), are plotted in Fig. 3. These are oscillatory functions with a rapidly decreasing amplitude. In finite-size system calculations \[14\], a sinusoidal oscillation in \(g_{\text{eff}}(x) \) was taken as an indication of a Fermi fluid behavior. We note that the correlation functions for the non-ideal system show much less oscillations around unity in accordance with the properties of a uniform density fluid (inset of Fig. 1) and therefore the difference in correlation functions is also rapidly damped. Interestingly, \(S_{\text{eff}}(k) \) develops a positive peak slightly below \(k \sim 2k_F \) and a negative peak beyond that \(k \). Finally, we find the ground state energy for the state (3) and for the Coulomb potential to be \(E_F = -0.448e^2/\epsilon\ell_0 \), which is very different from

![FIG. 2: The static structure factor \(S(q) \) as a function of \(q = kR \), for the non-interacting system \[S_I(q)\] [Eq. (8)], the Laughlin state (1) for a Bose system \([S_L(q)]\), and the “Fermi” state (3) \(S_F(q) \). A blowup of the region around unity is given as inset.](image)
the energy of the Laughlin state E_L but very close to the energy value E_0, extrapolated for an infinite system from the finite-size system results mentioned in the introduction. This agreement between the energy of the state (3) and the estimate E_0 is a strong indication that our Fermi-liquid description has the right correlations and correct statistics needed to describe a Fermi liquid behavior at $\nu = \frac{1}{2}$.

In summary, our simplified choice (3) of the ground state wave function for the Fermi fluid state at $\nu = \frac{1}{2}$ has led to a microscopic approach where we can calculate the physical quantities in the thermodynamic limit. The pair-correlation function, the structure function, and the ground state energy are in good agreement with the expected behavior at $\nu = \frac{1}{2}$. This approach can also be suitably modified to calculate the one-body density matrix and the nature of the off-diagonal long-range order (ODLRO) [18], which will provide more information about the Fermi nature of the proposed state. In defense of our choice of (3), we should mention that the wave function which would result from the operation of P_{LLL} will be a wave function in the lowest Landau level, and therefore be similar to the Laughlin-like wave function (but with correct statistics). Hence our choice of (5), which is formally similar to the Laughlin approach should be a suitable approximation for the full wave function (2). This is supported by our numerical results presented here.

I would like to thank Pekka Pietiläinen for helpful discussions. I also thank Peter Fulde for kind hospitality.

*On leave from: Institute of Mathematical Sciences, Taramani, Madras 600 113, India

[1] D.C. Tsui, H.L. Störmer, and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982); H.L. Störmer, Physica B 177, 401 (1992).
[2] R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[3] T. Chakraborty and P. Pietiläinen, The Quantum Hall Effects (Springer, New York, 1995), second edition; T. Chakraborty, in Handbook on Semiconductors, vol. 1, ed. P.T. Landsberg (North-Holland, Amsterdam, 1992), Ch. 17.
[4] H.W. Jiang et al., Phys. Rev. B 40, 12 013 (1989).
[5] R.L. Willett, M.A. Paalanen, R.R. Ruel, K.W. West, L.N. Pfeiffer, and D.J. Bishop, Phys. Rev. Lett. 65, 112 (1990); R.L. Willett, Semicond. Sci. Technol. 12, 495 (1997); Adv. Phys. 46, 447 (1997).
[6] B.I. Halperin, Helv. Phys. Acta 56, 75 (1983).
[7] F.D.M. Haldane, Phys. Rev. Lett. 55, 2095 (1985).
[8] G. Fano, F. Ortolani, and E. Tosatti, Nuovo Cimento 9D, 1337 (1987).
[9] T. Chakraborty and P. Pietiläinen, Phys. Rev. B 38, 10 097 (1988).
[10] B.I. Halperin, in Perspectives in Quantum Hall Effects, edited by S. Das Sarma and A. Pinczuk (Wiley, 1997), ch. 6; B.I. Halperin, P.A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993).
[11] R.L. Willett et al., Phys. Rev. Lett. 71, 3846 (1993); ibid. 75, 2988 (1995); W. Kang, H.L. Stormer, L.N. Pfeiffer, K.W. Baldwin, and K.W. West, ibid. 71, 3850 (1993).
[12] A. Stern and B.I. Halperin, Phys. Rev. B 52, 5890 (1995); Surf. Sci. 361/362, 42 (1996).
[13] N. Read, Surf. Sci. 361/362, 7 (1996); A. Raghav Chari and F.D.M. Haldane, unpublished [cond-mat/9709082]; Dung-Hai Lee, unpublished [cond-mat/9709233].
[14] E. Rezayi and N. Read, Phys. Rev. Lett. 72, 900 (1994).
[15] F.A. Stevens, Jr. and M.A. Pokrant, Phys. Rev. A 8, 990 (1973).
[16] J.F. Springer, M.A. Pokrant, and F.A. Stevens, J. Chem. Phys. 58, 4863 (1973); K.-C. Ng, ibid. 61, 2680 (1974).
[17] T. Chakraborty and C.E. Campbell, Phys. Rev. B 29, 6640 (1984); A. Czachor, et al., ibid 25, 2144 (1982); S.M. Bose, ibid, 13, 4192 (1976); M. Jonson, J. Phys. C 9, 3055 (1976).
[18] T. Chakraborty, Phys. Rev. B 39, 869 (1989); T. Chakraborty and W. von der Linden, ibid, 41, 7872 (1990).