The Torus-Equivariant Cohomology of Nilpotent Orbits

Peter Crooks

November 5, 2013

Abstract

We consider aspects of the geometry and topology of nilpotent orbits in finite-dimensional complex simple Lie algebras. In particular, we give the equivariant cohomologies of the regular and minimal nilpotent orbits with respect to the action of a maximal compact torus of the overall group in question.

1 Introduction

1.1 Generalities

Throughout, we let \(G \) be a connected, simply-connected complex simple linear algebraic group. Let \(K \subseteq G \) be a maximal compact subgroup, and fix a maximal torus \(T \subseteq K \). Set \(H := T_C \), a maximal torus of \(G \). Denote by \(g, k, t, \) and \(h \) the Lie algebras of \(G, K, T, \) and \(H \), respectively. Let \(\text{Ad} : G \to \text{GL}(g) \) and \(\text{ad} : g \to \text{gl}(g) \) denote the adjoint representations of \(G \) and \(g \), respectively. Let \(\Delta \subseteq \text{Hom}(T, U(1)) = \text{Hom}(H, \mathbb{C}^*) \) denote the resulting collection of roots of \(g \) with respect to the adjoint representation of \(T \). By fixing a Borel subgroup \(B \subseteq G \) containing \(H \), we specify collections \(\Delta^+, \Delta^- \subseteq \Delta \) of positive and negative roots, respectively. Let \(\Pi \subseteq \Delta^+ \) denote the resulting collection of simple roots.

Recall that a point \(\xi \in g \) is called nilpotent if the vector space endomorphism \(\text{ad}_\xi : g \to g \) is nilpotent. Recall also that the nilpotent cone is the closed subvariety \(N \) of \(g \) consisting of the nilpotent elements. We call an adjoint \(G \)-orbit a nilpotent orbit if it is contained in \(N \). As an orbit of an algebraic \(G \)-action, any nilpotent orbit is a smooth locally closed subvariety of \(g \).

It is well-known that there exist only finitely many nilpotent orbits of \(G \). Indeed, if \(G = \text{SL}_n(\mathbb{C}) \), then one can use Jordan canonical forms to give an explicit indexing of the nilpotent orbits by the partitions of \(n \).

Furthermore, the nilpotent orbits constitute an algebraic stratification of \(N \) (see [6]). In other words, we have the partial order on the set of nilpotent orbits given by \(\Theta_1 \leq \Theta_2 \) if and only if \(\Theta_1 \subseteq \overline{\Theta_2} \) (the Zariski-closure of \(\Theta_2 \) in \(N \)). Hence,

\[
\overline{\Theta} = \bigcup_{\Omega \leq \Theta} \Omega
\]

*Department of Mathematics. University of Toronto. Toronto, ON, Canada.
peter.crooks@utoronto.ca
The author was supported by an NSERC CGS-D3 research grant.
for all nilpotent orbits Θ.

It turns out that the set of nilpotent orbits has a unique maximal element, Θ_{reg}, and a unique minimal non-zero element, Θ_{min}. These distinguished orbits are called the regular and minimal nilpotent orbits, respectively. The former consists precisely of the regular nilpotent elements of g, while the latter is the orbit of a root vector for a long root.

1.2 Context

The study of nilpotent orbits lies at the interface of algebraic geometry, representation theory, and symplectic geometry. Indeed, one has the famous Springer resolution

$$\mu : T^*(G/B) \to N$$

of the singular nilpotent cone (see [6]). The fibres of μ over a given nilpotent orbit Θ are isomorphic as complex varieties, and this isomorphism class is called the Springer fibre of Θ. The Springer correspondence then gives a realization of the irreducible complex W-representations on the Borel-Moore homology groups of the Springer fibres (see [6]).

From the symplectic standpoint, we note that coadjoint G-orbits are canonically complex symplectic manifolds. Since the Killing form on g provides an isomorphism between the adjoint and coadjoint representations of G, it follows that adjoint G-orbits (and in particular, nilpotent G-orbits) are naturally complex symplectic manifolds.

Some attention has also been given to the matter of computing topological invariants of nilpotent orbits. In [7], Collingwood and McGovern compute the fundamental group of each nilpotent orbit in the classical Lie algebras. Also, Juteau’s paper [11] gives the integral cohomology groups of the minimal nilpotent orbit in each of the finite-dimensional complex simple Lie algebras. Additionally, Biswas and Chatterjee compute \(H^2(\Theta; \mathbb{R})\) for Θ any nilpotent orbit in a finite-dimensional complex simple Lie algebra (see their paper [2]).

Our contribution is a computation of the \(T\)-equivariant cohomology algebras of the G-orbits Θ_{reg} and Θ_{min}. (To this end, \(H^*_T(X)\) shall always denote the \(T\)-equivariant cohomology over \(\mathbb{Q}\) of a \(T\)-manifold X.) We state our result below.

Theorem 1.

(i) \(H^*_T(\Theta_{\text{reg}}) \cong H^*(G/B; \mathbb{Q})\)

(ii) Let \(\alpha \in \Delta_+\) be the highest root, and let \(\Xi := \{\beta \in \Pi : (\alpha, \beta) = 0\}\). Let \(W_\Xi\) be the subgroup of \(W\) generated by the reflections \(s_\beta, \beta \in \Xi\). Then, \(H^*_T(\Theta_{\text{min}})\) is isomorphic to the quotient of

\[
\{f \in \text{Map}(W/W_\Xi, H^*_T(pt)) : (w \cdot \beta)((f([w]) - f([ws_\beta])) \\
\forall w \in W, \beta \in \Delta_-, (\alpha, \beta) \neq 0\}
\]

by the ideal generated by the map \(W/W_\Xi \to H^*_T(pt), [w] \mapsto w \cdot \alpha\).

1.3 Structure of the Article

Section 2 is devoted to an examination of the regular nilpotent orbit. Specifically, we establish a few facts concerning the structure of the \(G\)-stabilizer \(C_G(\eta)\) of a point
$\eta \in \Theta_{\text{reg}}$. We then give a new description of $\Theta_{\text{reg}} \cong G/C_G(\eta)$ as a T-manifold (see Theorem 3). This description is suitable for purposes of computing $H^*_T(\Theta_{\text{reg}})$.

Section 3 treats the case of the minimal nilpotent orbit, but the approach differs considerably from that adopted when studying Θ_{reg}. We begin by introducing a natural \mathbb{C}^*-action on nilpotent orbits. Via this action, we define $\mathbb{P}(\Theta_{\text{min}})$, a smooth closed subvariety of $\mathbb{P}(\mathfrak{g})$. This variety has interesting properties beyond those materially relevant to computing $H^*_T(\Theta_{\text{min}})$. In particular, $\mathbb{P}(\Theta_{\text{min}})$ is naturally a symplectic manifold, and the T-action on Θ_{min} descends to a Hamiltonian action on $\mathbb{P}(\Theta_{\text{min}})$. Accordingly, we give an explicit description of $\mathbb{P}(\Theta_{\text{min}})$ (see 3.2) and use it to find the moment polytope of $\mathbb{P}(\Theta_{\text{min}})$ (see 3.3).

In 3.4, we use GKM Theory to provide a description of $H^*_T(G/P)$, where $P \subseteq G$ is a parabolic subgroup containing T. This is done in recognition of the fact (which we prove in 3.5) that $\mathbb{P}(\Theta_{\text{min}})$ is G-equivariantly isomorphic to G/P_Ξ, where P_Ξ is the parabolic determined by Ξ.

Then remains to relate the graded algebras $H^*_T(G/P_\Xi)$ and $H^*_T(\Theta_{\text{min}})$. This is achieved via the Thom-Gysin sequence in T-equivariant cohomology, which allows us to exhibit $H^*_T(\Theta_{\text{min}})$ as a quotient of $H^*_T(G/P_\Xi)$. Indeed, we take the quotient of $H^*_T(G/P_\Xi)$ by the ideal generated by the T-equivariant Euler class of the associated line bundle $G \times_{P_\Xi} \mathfrak{g}_\alpha \to G/P_\Xi$.

Acknowledgements

I would like to begin by thanking my doctoral thesis supervisor, Lisa Jeffrey. I have benefitted considerably from her time, attention, and support. I am also grateful to Faisal Al-Faisal, Jonathan Fisher, Allen Knutson, Eckhard Meinrenken, Robert Milson, and Daniel Rowe for fruitful conversations. Finally, I am grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support I have received during the doctoral programme.

2 The Regular Nilpotent Orbit

Throughout this section, we may actually take G to be semisimple. Now, recall that an element $\xi \in \mathfrak{g}$ is called regular if the dimension of the Lie algebra centralizer $C_\mathfrak{g}(\xi) = \{X \in \mathfrak{g} : [X, \xi] = 0\}$ coincides with the rank of \mathfrak{g}. The regular nilpotent elements of \mathfrak{g} actually constitute Θ_{reg}.

Let us construct a reasonably standard representative of Θ_{reg}. Indeed, for each $\beta \in \Pi$, choose a root vector $e_\beta \in \mathfrak{g}_\beta \setminus \{0\}$. Consider the nilpotent element

$$\eta := \sum_{\beta \in \Pi} e_\beta.$$

In [12], Kostant proved that $\eta \in \Theta_{\text{reg}}$. Furthermore, one can easily prove that $C_\mathfrak{g}(\eta)$ belongs to the positive nilpotent subalgebra $\mathfrak{n}_+ := \bigoplus_{\beta \in \Delta^+} \mathfrak{g}_\beta$.

Let $C_\mathfrak{g}(\eta) = \{g \in G : \text{Ad}_g(\eta) = \eta\}$ be the G-stabilizer of η. This gives an isomorphism $\Theta_{\text{reg}} \cong G/C_\mathfrak{g}(\eta)$ of complex G-varieties, where the action of $C_\mathfrak{g}(\eta)$ on G is given by $x : g \mapsto gx^{-1}$, $x \in C_\mathfrak{g}(\eta)$, $g \in G$.

3
Having realized Θ_{reg} in this way, we turn our attention to $C_G(\eta)$. To this end, we recall that the inner automorphism group (or adjoint group) of \mathfrak{g} is the subgroup $\text{Int}(\mathfrak{g})$ of $\text{GL}(\mathfrak{g})$ generated by all automorphisms of the form $e^{ad \xi}$, $\xi \in \mathfrak{g}$. Since $\text{Ad}_{\exp(\xi)} = e^{ad \xi}$ for all $\xi \in \mathfrak{g}$, it follows that $\text{Int}(\mathfrak{g})$ is precisely the image of the adjoint representation $\text{Ad}: G \rightarrow \text{GL}(\mathfrak{g})$. Hence, $\text{Int}(\mathfrak{g})$ is a connected Zariski-closed subgroup of $\text{GL}(\mathfrak{g})$.

We shall require the below theorem concerning the structure of the $\text{Int}(\mathfrak{g})$-stabilizer $C_{\text{Int}(\mathfrak{g})}(\eta)$ of η.

Theorem 2. The centralizer $C_{\text{Int}(\mathfrak{g})}(\eta)$ is a connected abelian unipotent subgroup of $\text{Int}(\mathfrak{g})$.

This is Theorem 2.6 in [13].

We note that a connected unipotent complex linear algebraic group is isomorphic to affine space as a variety. For our purposes, the relevant observation is that $C_{\text{Int}(\mathfrak{g})}(\eta)$ is isomorphic as a complex manifold to \mathbb{C}^n for some n.

Proposition 1. The inclusion of the centre $Z(G) \hookrightarrow C_G(\eta)$ is a homotopy-equivalence.

Proof. Note that $\phi: C_G(\eta) \rightarrow C_{\text{Int}(\mathfrak{g})}(\eta)$, $g \mapsto \text{Ad}_g$, is a surjective Lie group morphism. Since G is connected, $Z(G)$ is the kernel of the adjoint representation, and hence is also the kernel of ϕ. This yields a fibre bundle

$$Z(G) \rightarrow C_G(\eta) \xrightarrow{\phi} C_{\text{Int}(\mathfrak{g})}(\eta).$$

Since the base space $C_{\text{Int}(\mathfrak{g})}(\eta)$ is contractible, our bundle is trivial. Noting that the inclusion of a fibre in a trivial bundle over $C_{\text{Int}(\mathfrak{g})}(\eta)$ is a homotopy-equivalence, the inclusion $Z(G) \hookrightarrow C_G(\eta)$ is also a homotopy-equivalence. \qed

An immediate corollary of Proposition 1 is the existence of an isomorphism of graded \mathbb{Z}-algebras between the G-equivariant cohomology $H^*_G(\Theta_{\text{reg}}; \mathbb{Z})$ of the regular nilpotent orbit and the group cohomology $H^*_{\text{gp}}(Z(G); \mathbb{Z})$ of the finite group $Z(G)$.

Corollary 1. $H^*_G(\Theta_{\text{reg}}; \mathbb{Z}) \cong H^*_{\text{gp}}(Z(G); \mathbb{Z})$

Proof. Recall that

$$H^*_G(\Theta_{\text{reg}}; \mathbb{Z}) \cong H^*_G(G/C_G(\eta); \mathbb{Z}) = H^*((G/C_G(\eta))/G; \mathbb{Z}),$$

where $(G/C_G(\eta))/G$ is the quotient of $EG \times (G/C_G(\eta))$ by the diagonal action of G. This quotient is homeomorphic to $EG/C_G(\eta)$, and hence

$$H^*_G(\Theta_{\text{reg}}; \mathbb{Z}) \cong H^*(EG/C_G(\eta); \mathbb{Z}).$$

By Proposition 1, $EG/Z(G) \rightarrow EG/C_G(\eta)$ is a fibre bundle with contractible fibre $C_G(\eta)/Z(G)$. Hence,

$$H^*(EG/C_G(\eta); \mathbb{Z}) \cong H^*(EG/Z(G); \mathbb{Z}).$$

However, we may take $EG/Z(G)$ to be the classifying space $BZ(G)$, whose singular cohomology coincides with the group cohomology $H^*_{\text{gp}}(Z(G); \mathbb{Z})$. This completes the proof. \qed
Corollary 2. (i) There is a natural complex Lie group isomorphism $C_G(\eta)_0 \cong C_{\text{Int}(\mathfrak{g})}(\eta)$, where $C_G(\eta)_0$ is the identity component of $C_G(\eta)$.

(ii) There is a natural central extension

$$1 \to Z(G) \to C_G(\eta) \to C_G(\eta)_0 \to 1,$$

and the inclusion $C_G(\eta)_0 \to C_G(\eta)$ is a splitting. In particular, $C_G(\eta)$ is the internal direct product $Z(G) \times C_G(\eta)_0$.

Proof. Since $Z(G) \to C_G(\eta)$ is a homotopy equivalence, it induces a group isomorphism

$$\pi_0(Z(G)) \xrightarrow{\cong} \pi_0(C_G(\eta)) \cong C_G(\eta)/C_G(\eta)_0.$$

Hence, if $\omega \in C_G(\eta)/Z(G)$ is a coset, then there exists a unique $g \in C_G(\eta)_0$ for which $[g] = \omega$. Now, recall that $C_G(\eta)/Z(G) \to C_{\text{Int}(\mathfrak{g})}(\eta), [g] \mapsto \text{Ad}_g$, is an isomorphism. Hence, if $f \in C_{\text{Int}(\mathfrak{g})}(\eta)$, then there exists a unique $g \in C_G(\eta)_0$ for which $\text{Ad}_g = f$. Accordingly, $\varphi : C_{\text{Int}(\mathfrak{g})}(\eta) \to C_G(\eta)_0$, $\text{Ad}_g \mapsto g, g \in C_G(\eta)_0$, is a well-defined complex Lie group isomorphism.

For the second part, note that one always has the central extension

$$1 \to Z(G) \to C_G(\eta) \xrightarrow{\pi} C_{\text{Int}(\mathfrak{g})}(\eta) \to 1,$$

where $\pi : C_G(\eta) \to C_{\text{Int}(\mathfrak{g})}(\eta)$ is the projection map. By replacing $C_{\text{Int}(\mathfrak{g})}(\eta)$ with the isomorphic copy $C_G(\eta)_0$ and setting $\psi := \varphi \circ \pi : C_G(\eta) \to C_G(\eta)_0$, we obtain the central extension

$$1 \to Z(G) \to C_G(\eta) \xrightarrow{\psi} C_G(\eta)_0 \to 1.$$

Note that the inclusion $C_G(\eta)_0 \to C_G(\eta)$ splits this sequence. \hfill \square

Theorem 3. The regular nilpotent orbit Θ_{reg} is T-equivariantly diffeomorphic to a product $K/Z(G) \times V$, where V is a finite-dimensional real vector space on which T acts trivially.

Proof. Earlier, we noted that the centralizer $C_G(\eta)$ belonged to the nilpotent subalgebra \mathfrak{n}_+. Letting N denote the connected closed subgroup of G with Lie algebra \mathfrak{n}_+, this fact implies the inclusion $C_G(\eta)_0 \subseteq N$.

Letting A denote the connected closed subgroup of G with (real) Lie algebra $\mathfrak{a} \subseteq \mathfrak{g}$, the Iwasawa decomposition gives a diffeomorphism $\Phi : K \times A \times N \xrightarrow{\cong} G,$

$$(k, a, n) \mapsto \text{kan}.$$

Now, let $Z(G) \times C_G(\eta)_0$ act on G via the $C_G(\eta)$-action on G and the isomorphism $Z(G) \times C_G(\eta)_0 \to C_G(\eta)$. Explicitly, this action is given by

$$(z, h) : g \mapsto g(z h)^{-1},$$

$$(z, h) \in Z(G) \times C_G(\eta)_0, g \in G.$$ We enlarge this to a $T \times (Z(G) \times C_G(\eta)_0)$-action with T acting on G by left-multiplication. Note that Φ is then a $T \times (Z(G) \times C_G(\eta)_0)$-manifold isomorphism for the action of $T \times (Z(G) \times C_G(\eta)_0)$ on $K \times A \times N$ defined by

$$(t, z, h) : (k, a, n) \mapsto (tkz^{-1}, a, nh^{-1}),$$

$$(t, z, h) \in T \times (Z(G) \times C_G(\eta)_0), (k, a, n) \in K \times A \times N.$$
\[(t, z, h) \in T \times (Z(G) \times C_G(\eta)_{0}), (k, a, n) \in K \times A \times N.\] It follows that
\[\Theta_{\text{reg}} \cong G/C_G(\eta) = G/((Z(G) \times C_G(\eta)_{0})\]
is \(T\)-equivariantly diffeomorphic to the quotient
\[(K \times A \times N)/(Z(G) \times C_G(\eta)_{0}),\]
endowed with its residual \(T\)-action. The latter is clearly \(T\)-equivariantly diffeomorphic to
\[K/Z(G) \times A \times N/C_G(\eta)_{0},\]
where \(T\) acts by left-multiplication on the factor \(K/Z(G)\) and trivially on the factors \(A\) and \(N/C_G(\eta)_{0}\). Since \(A\) is diffeomorphic to its Lie algebra, it remains only to establish that \(N/C_G(\eta)_{0}\) is diffeomorphic to a real vector space. However, this follows from the fact that a quotient of a nilpotent connected simply-connected Lie group by a connected closed subgroup is diffeomorphic to a real vector space (see [13]).

Corollary 3. There is an isomorphism \(H^*_T(\Theta_{\text{reg}}) \cong H^*(G/B; \mathbb{Q})\).

Proof. By Theorem 3 \(H^*_T(\Theta_{\text{reg}}) \cong H^*_T(K/Z(G))\). Since \(Z(G)\) is a finite group, the action of \(T\) on \(K/Z(G)\) is locally free, and
\[H^*_T(K/Z(G)) \cong H^*(T\backslash K/Z(G); \mathbb{Q}) \cong H^*(T\backslash K; \mathbb{Q}) \cong H^*(G/B; \mathbb{Q}).\]

\[3\] The Minimal Nilpotent Orbit

3.1 A \(C^*\)-Action on Nilpotent Orbits

Fix a non-zero nilpotent orbit \(\Theta \subseteq \mathfrak{g}\) and a point \(\xi \in \Theta\). By the Jacobson-Morozov Theorem, there exist a semisimple element \(h \in \mathfrak{g}\) and a nilpotent element \(f \in \mathfrak{g}\) for which \((\xi, h, f)\) is an \(\mathfrak{sl}_2(\mathbb{C})\)-triple with nil-positive element \(\xi\). We note that for all \(\lambda \in \mathbb{C}\),
\[
\text{Ad}_{\exp(\lambda h)}(\xi) = e^{\text{ad}_{\lambda h}}(\xi) = e^{2\lambda} \xi.
\]
From this calculation, it follows that \(\Theta\) is invariant under the scaling action of \(C^*\) on \(\mathfrak{g}\). Accordingly, we introduce
\[\mathbb{P}(\Theta) := \Theta/C^*,\]
a smooth quasi-projective subvariety of \(\mathbb{P}(\mathfrak{g})\). Since the actions of \(G\) and \(C^*\) on \(\mathfrak{g}\) commute, the \(G\)-action descends to the quotients \(\mathbb{P}(\Theta)\) and \(\mathbb{P}(\mathfrak{g})\).

We remark that \(\mathbb{P}(\Theta)\) has a rich geometric structure. To see this, choose a \(K\)-invariant Hermitian inner product \(\langle , \rangle : \mathfrak{g} \otimes_{\mathbb{R}} \mathfrak{g} \to \mathbb{C}\). This yields a \(K\)-invariant Kähler structure on \(\mathbb{P}(\mathfrak{g})\). Since the usual action of \(U(n + 1)\) on \(\mathbb{P}^n\) is Hamiltonian, so too is the action of \(K\) on \(\mathbb{P}(\mathfrak{g})\). Furthermore, one has the moment map \(\Phi : \mathbb{P}(\mathfrak{g}) \to \mathfrak{t}^*\) defined by
\[
\Phi([\xi])(X) = \frac{\text{Im}(\langle [X, \xi], \xi \rangle)}{\langle \xi, \xi \rangle},
\]
where \(X \in \mathfrak{g} \setminus \{0\} \) and \(\eta \in \mathfrak{k} \) (see [8] for a derivation of \(\Phi \)). Note that the Kähler structure on \(\mathbb{P}(\mathfrak{g}) \) restricts to a \(K \)-invariant Kähler structure on the smooth subvariety \(\mathbb{P}(\Theta) \), and the action of \(K \) on \(\mathbb{P}(\Theta) \) is Hamiltonian.

It should be noted that \(\mathbb{P}(\Theta) \) is generally not projective. However, \(\mathbb{P}(\Theta_{\min}) \) is the \(G \)-orbit in \(\mathbb{P}(\mathcal{N}) \) of minimal dimension, meaning that it is a closed (hence projective) subvariety of \(\mathbb{P}(\mathfrak{g}) \). This will be crucial to our study of \(\mathbb{P}(\Theta_{\min}) \), and subsequently to our description of \(\Theta_{\min} \) itself.

3.2 Description of the \(T \)-Fixed Points

Let us take a moment to examine the Hamiltonian action of \(T \) on \(\mathbb{P}(\Theta) \), where \(\Theta \subseteq \mathfrak{g} \) is a non-zero nilpotent orbit. We have

\[
\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\beta \in \Delta} \mathfrak{g}_\beta,
\]

the weight space decomposition of the representation \(\text{Ad}|_T \). Note that a point in \(\mathbb{P}(\mathfrak{g}) \) is fixed by \(T \) if and only if it is a class of vectors in \(\mathfrak{g} \setminus \{0\} \) with the property that \(T \) acts by scaling each vector. In other words,

\[
\mathbb{P}(\mathfrak{g})^T = \mathbb{P}(\mathfrak{h}) \cup \{ \mathfrak{g}_\beta : \beta \in \Delta \}.
\]

With this description, we may determine \(\mathbb{P}(\Theta)^T \). Indeed, since \(\mathfrak{h} \) consists of semisimple elements of \(\mathfrak{g} \) while \(\Theta \) consists of non-zero nilpotent elements, we find that \(\mathfrak{h} \cap \Theta = \emptyset \). Hence,

\[
\mathbb{P}(\Theta)^T = \{ \mathfrak{g}_\beta : \beta \in \Delta, \mathfrak{g}_\beta \cap \Theta \neq \emptyset \},
\]

a finite set. In particular, \(\mathbb{P}(\Theta)^T \) is non-empty if and only if \(\Theta \) is the orbit of a root vector.

Let us take a moment to provide a more refined description of \(\mathbb{P}(\Theta)^T \). To this end, we will require the below lemma.

Lemma 1. Let \(\beta, \gamma \in \Delta \) be roots. The root spaces \(\mathfrak{g}_\beta \) and \(\mathfrak{g}_\gamma \) are \(G \)-conjugate if and only if \(\beta \) and \(\gamma \) are conjugate under \(W \).

Proof. Suppose that \(w \in W \) and that \(\beta = w \cdot \gamma \). Choosing a representative \(g \in N_G(H) \) of \(w \), this means precisely that \(\beta = \gamma \circ \varphi_{g^{-1}}|_H \), where \(\varphi_{g^{-1}} : G \to G \) is conjugation by \(g^{-1} \). Given \(h \in H \) and \(\xi \in \mathfrak{g}_\beta \), note that

\[
\text{Ad}_h(\text{Ad}_g(\xi)) = \text{Ad}_g(\text{Ad}_{g^{-1}hg}(\xi))
\]

\[
= \text{Ad}_g(\beta(g^{-1}hg)\xi)
\]

\[
= \text{Ad}_g(\gamma(h)\xi)
\]

\[
= \gamma(h)(\text{Ad}_g(\xi)).
\]

It follows that \(\mathfrak{g}_\gamma = \text{Ad}_g(\mathfrak{g}_\beta) \).

Conversely, suppose that \(g \in G \) and that \(\mathfrak{g}_\gamma = \text{Ad}_g(\mathfrak{g}_\beta) \). Consider the Zariski-closed subgroup

\[
L := \{ x \in G : \text{Ad}_x(\mathfrak{g}_\gamma) = \mathfrak{g}_\gamma \},
\]
noting that $H, gHg^{-1} \subseteq L$. Since H and gHg^{-1} are maximal tori of L, there exists $x \in L$ for which $xHx^{-1} = gHg^{-1}$. Hence, $x^{-1}g \in N_G(H)$ and $\text{Ad}_{x^{-1}g}(g_{\beta}) = g_{\gamma}$. We may therefore assume that $g \in N_G(H)$. Now, let $w \in W$ denote the class of g. Given $h \in H$ and $\xi \in g_{\beta}$, we find that

$$\langle w \cdot \beta(h) \xi, \xi \rangle = \beta(g^{-1}hg)\xi$$

$$= \text{Ad}_{g^{-1}hg}(\xi)$$

$$= \text{Ad}_{g^{-1}}(\gamma(h) \text{Ad}_g(\xi))$$

$$= \gamma(h)\xi.$$

It follows that $\gamma = w \cdot \beta$.

Since g is a simple Lie algebra, the root system associated with the pair (g, h) is irreducible. Hence, there are at most two distinct root lengths (namely, those of the long and short roots), and the roots of a given length constitute an orbit of W in Δ. By Lemma 1, there are at most two nilpotent G-orbits Θ for which $\mathbb{P}(\Theta)^T$ is non-empty, the orbits of root vectors for the short and long roots. Furthermore, if Θ is the orbit of a root vector $e_{\beta} \in g_{\beta} \setminus \{0\}$, $\beta \in \Delta$, then $\mathbb{P}(\Theta)^T$ is the union of the points g_{γ} for all $\gamma \in \Delta$ with length equal to that of β. Since Θ_{\min} is the orbit of a long root vector, $\mathbb{P}(\Theta_{\min})^T = \{g_{\gamma} : \gamma \in \Delta_{\text{long}}\}$, where $\Delta_{\text{long}} \subseteq \Delta$ is the set of long roots.

3.3 The Moment Polytope of $\mathbb{P}(\Theta_{\min})$

Note that the moment map $\Phi : \mathbb{P}(g) \to \mathfrak{k}^*$ considered in 3.1 can be modified to obtain a moment map for the Hamiltonian action of T on $\mathbb{P}(\Theta_{\min})$. Indeed, we denote by $\mu : \mathbb{P}(\Theta_{\min}) \to \mathfrak{t}^*$ the moment map given by the composition

$$\mathbb{P}(\Theta_{\min}) \hookrightarrow \mathbb{P}(g) \overset{\Phi}{\to} \mathfrak{k}^* \to \mathfrak{t}^*.$$

Recall that

$$\mathbb{P}(\Theta_{\min})^T = \{g_{\beta} : \beta \in \Delta_{\text{long}}\}.$$

Given $\beta \in \Delta_{\text{long}}$, choose a point $e_{\beta} \in g_{\beta} \setminus \{0\}$. Note that for $X \in \mathfrak{t}$,

$$\mu(g_{\beta})(X) = \frac{\text{Im}((\langle X, e_{\beta} \rangle, e_{\beta}))}{\langle e_{\beta}, e_{\beta} \rangle} = \frac{\text{Im}(d_{e_{\beta}}(X)(e_{\beta}, e_{\beta}))}{\langle e_{\beta}, e_{\beta} \rangle} = \text{Im}(d_{e_{\beta}}(X)),$$

where $d_{e_{\beta}} : \mathfrak{t} \to i\mathbb{R}$ is the morphism of real Lie algebras induced by $\beta : T \to U(1)$. If one regards the weight lattice $\text{Hom}(T, U(1))$ as included into \mathfrak{t}^* in the usual way, then our above calculation takes the form

$$\mu(g_{\beta}) = \beta.$$

The moment polytope $\mu(\mathbb{P}(\Theta_{\min}))$ is then the convex hull of Δ_{long} in \mathfrak{t}^*.

8
3.4 Partial Flag Varieties as GKM Manifolds

Let us consider the matter of computing $H^*_T(P(\Theta_{\text{min}}))$. To this end, choose a long root $\alpha \in \Delta_{\text{long}}$, so that $g_\alpha \in P(\Theta_{\text{min}})^T$. Let Q denote the G-stabilizer of g_α. Since $G/Q \cong P(\Theta_{\text{min}})$ is projective, Q is a parabolic subgroup of G. Accordingly, we will address the more general issue of computing the T-equivariant cohomology of the partial flag variety G/P, where $P \subseteq G$ is a parabolic subgroup containing T. Indeed, we will establish that G/P is a GKM (Goresky-Kottwitz-MacPherson) manifold, allowing us to subsequently deploy some well-known machinery to compute its T-equivariant cohomology (see [5] and [9]).

Let us recall the definition of a GKM manifold.

Definition 1. A compact T-manifold X is called a GKM manifold if

(i) X^T is finite, and

(ii) for every codimension-one subtorus $S \subseteq T$, $\dim(X^S) \leq 2$.

Let us briefly address the significance of this notion in the context of computing T-equivariant cohomology. Suppose that X is a GKM manifold as in Definition 1. If $S \subseteq T$ is a subtorus of codimension one and Y is a connected component of X^S, then $Y \cap X^T \neq \emptyset$. In particular, Y is T-invariant. Furthermore, $Y = \{e\}$ or Y is isomorphic as a T-manifold to S^2 on which T acts via some non-trivial character $\alpha_Y \in \text{Hom}(T,U(1))$. In the latter case, Y^T consists of two points, x_Y^+ and x_Y^-. Let $\{Y_j\}_{j=1}^n$ be the collection of those two-spheres in X arising as connected components of fixed point submanifolds of codimension-one subtori (henceforth called distinguished two-spheres). The inclusion $X^T \hookrightarrow X$ induces an injective graded algebra morphism $H^*_T(X) \hookrightarrow H^*_T(X^T) = \text{Map}(X^T, H^*_T(\text{pt}))$ with image

$$\{ f \in \text{Map}(X^T, H^*_T(\text{pt})) : \forall j \in \{1, \ldots, n\}, \alpha_{Y_j}|(f(x_Y^+)-f(x_Y^-)) \} \cong H^*_T(X).$$

Note that Definition 1 is precisely the definition of GKM manifold given in [10], where the authors exhibited certain homogeneous spaces of a compact connected simply-connected semisimple Lie group as GKM manifolds. Below is a statement of their result.

Theorem 4. Let M be a compact connected simply-connected semisimple Lie group. Let $R \subseteq M$ be a maximal torus, and let U be a closed subgroup of M containing R. Assume that M/U is oriented. Then, the left-multiplicative action of R renders M/U a GKM manifold.

For the duration of this section, let us fix a parabolic subgroup $P \subseteq G$ satisfying $B \subseteq P$. Note that P is then the standard parabolic subgroup P_{Λ} generated by B and the root subgroups $\{U^-_{-\beta} := \exp(\mathfrak{g}_{-\beta}) : \beta \in \Lambda\}$ for some unique subset Λ of Π.

Corollary 4. The partial flag variety G/P is a GKM manifold for the left-multiplicative action of T.

Proof. The Iwasawa decomposition of G tells us that $G = KB$. In particular, K acts transitively on G/P. Since the K-stabilizer of the identity coset $[e] \in G/P$ is $K \cap P$, we have a K-manifold isomorphism $K/(K \cap P) \cong G/P$. It will therefore suffice to establish
that $K/(K \cap P)$ is a GKM manifold for the left-multiplicative action of T. For this, we will invoke Theorem 4. We need only note that K is connected, simply-connected, and semisimple (since G is), that $T \subseteq K \cap P$, and that $K/(K \cap P)$ is oriented (as G/P is).

It thus remains to determine the fixed points $(G/P)^T$ and the distinguished two-spheres. Accordingly, we will require the below analogue of Theorem 2.2 of [10].

Lemma 2. Let $S \subseteq T$ be a subtorus. The image of $(G/B)^S$ under the fibration $G/B \xrightarrow{\varphi} G/P$ is $(G/P)^S$.

Proof. Consider the fibration $\psi : K/T \to K/(K \cap P)$. By Theorem 2.2 of [10], $\psi((K/T)^S) = (K/(K \cap P))^S$. Since each of the maps in the commutative diagram

$$
\begin{array}{ccc}
K/T & \xrightarrow{\psi} & K/(K \cap P) \\
\approx & & \approx \\
G/B & \xrightarrow{\varphi} & G/P
\end{array}
$$

is T-equivariant, the desired result follows. \qed

We immediately obtain a description of $(G/P)^T$. Indeed, note that $(G/B)^T = \{[k] : k \in N_K(T)\}$. Hence, $(G/P)^T$ is identified with $N_K(T)/(N_K(T) \cap P) \cong W/W_P$, where W_P is the subgroup of W generated by the simple reflections $\{s_\beta : \beta \in \Delta\}$ (see [2]). Let us now determine the distinguished two-spheres in G/P.

Lemma 3. A submanifold $X \subseteq G/P$ is a distinguished two-sphere if and only if it is related by the action of $N_K(T)$ to a distinguished two-sphere containing the identity coset $[e]$.

Proof. Suppose that X is a two-sphere arising as a component of $(G/P)^S$ for some codimension-one subtorus $S \subseteq T$. Note that $X^T = \{[k_1], [k_2]\}$ for some $k_1, k_2 \in N_K(T)$. Furthermore, $R := k_1^{-1}S k_1$ is a codimension-one subtorus of T and $k_1^{-1}X \cong S^2$ is a component of $(G/P)^R$ containing $[e]$. The proof of the converse is then a simple reversal of this argument. \qed

Accordingly, we will temporarily restrict our attention to the distinguished two-spheres in G/P containing $[e]$. Let $X \subseteq G/P$ denote one such two-sphere. Note that

$$T_{[e]}(G/P) \cong g/p \cong \bigoplus_{\beta \in \Delta \setminus \Delta_P} g_\beta$$

as complex T-modules, where Δ_P is the set of roots whose root spaces belong to p. Since $T_{[e]}X$ is a complex one-dimensional T-invariant subspace of $T_{[e]}(G/P)$, $T_{[e]}X \cong g_\beta$ for some $\beta \in \Delta \setminus \Delta_P$. In [10], it is then concluded that $X^T = \{[e], [s_\beta]\} \subseteq W/W_P$.\[10\]
Lemma 4. Let $X \subseteq G/P$ be a distinguished two-sphere containing $[e]$, so that $Y := kX$ is a distinguished two-sphere containing $[w]$. If $\beta \in \Delta$ is the weight with which T acts on $T[e]X$, then $w \cdot \beta$ is the weight with which T acts on $T[w]Y$.

Proof. Consider the automorphism $\phi : G/P \to G/P$, $[g] \mapsto [kg]$, noting that $(d[e]\phi)[T[e]X : T[e]X \to T[w]Y$ is a complex vector space isomorphism. Furthermore, $\phi(t[g]) = (ktk^{-1})\phi([g])$ for all $t \in T$ and $g \in G$, so that $d[e]\phi((k^{-1}tk)v) = td[e]\phi(v)$ for all $v \in T[e](G/P)$. Hence, if $u \in T[w]Y$, then $u = d[e]\phi(v)$ for some $v \in T[e]X$ and

$$tu = td[e]\phi(v) = d[e]\phi((k^{-1}tk)v) = d[e]\phi(\beta(k^{-1}tk)v) = \beta(k^{-1}tk)d[e]\phi(v) = (w \cdot \beta)(t)u$$

for all $t \in T$. \hfill \Box

Let us summarize our findings.

Theorem 5. (i) There is a natural bijection $W/W_P \cong (G/P)^T$.

(ii) Fix $[w] \in W/W_P \cong (G/P)^T$. Given $\beta \in \Delta \setminus \Delta_P$, there exists a unique distinguished two-sphere $X \subseteq G/P$ with $X^T = \{[w],[w\beta]\}$, and with the property that $w \cdot \beta$ is the weight of $T[w]X$. Every distinguished two-sphere containing $[w]$ arises in this way.

(iii) We have a graded algebra isomorphism

$$H^*_T(G/P) \cong \{f \in \text{Map}(W/W_P \to H^*_T(pt)) : (w \cdot \beta)(f([w]) - f([w\beta])) \quad \forall w \in W, \beta \in \Delta \setminus \Delta_P\}$$

3.5 A Description of Θ_{min} and $\mathbb{P}(\Theta_{\text{min}})$

We devote this section to explicit descriptions of Θ_{min} and $\mathbb{P}(\Theta_{\text{min}})$ as homogeneous G-varieties. As noted earlier, the latter space is G-equivariantly isomorphic to a partial flag variety G/P. Accordingly, we shall begin by finding a parabolic subgroup $P \subseteq G$ with this property. In order to proceed, however, we will require the below result.

Theorem 6. Let Φ be an irreducible root system with collection of simple roots $\Sigma \subseteq \Phi$.

(i) There exists a unique maximal root \(\beta \in \Phi \) (called the highest root).

(ii) This root is long.

(iii) We have \(\langle \beta, \gamma \rangle \geq 0 \) for all \(\gamma \in \Sigma \).

For a proof, the reader might refer to Propositions 19 and 23 in [14].

Denote by \(\alpha \in \Delta_+ \) the highest root, and choose a root vector \(e_\alpha \in g_\alpha \setminus \{0\} \). Note that \([e_\alpha] = g_\alpha \in \mathbb{P}(\Theta_{\text{min}})^T \). Let \(C_g(e_\alpha) \) denote the centralizer of \(e_\alpha \) with respect to the adjoint representation of \(g \).

Lemma 5. \(C_g(e_\alpha) \) is a \(t \)-submodule of \(g \).

Proof. This is a straightforward application of the Jacobi identity. Indeed, suppose that \(X \in t \) and \(Y \in C_g(e_\alpha) \). Note that

\[
[[X, Y], e_\alpha] = [X, [Y, e_\alpha]] - [Y, [X, e_\alpha]] = -d e\langle X \rangle [Y, e_\alpha] = 0.
\]

In other words, \(C_g(e_\alpha) \) is a sum of \(t \)-submodules of the \(t \)-weight spaces occurring in the adjoint representation of \(t \) on \(g \). The summand coming from the trivial weight space \(\mathfrak{h} \) is just \(\ker(d e\langle \alpha \rangle) \), where we regard \(d e\langle \alpha \rangle \) as belonging to \(\mathfrak{h}^* \) instead of \(\mathfrak{t}^* \). Furthermore, if \(\beta \in \Delta \), then \(g_\beta \subseteq C_g(e_\alpha) \) if and only if \([g_\alpha, g_\beta] = \{0\} \). Hence, we have established that

\[
C_g(e_\alpha) = \ker(d e\langle \alpha \rangle) \oplus \bigoplus_{\{\beta \in \Delta : [g_\alpha, g_\beta] = \{0\}\}} g_\beta.
\]

Now, let \(C_G(e_\alpha) \) and \(Q := C_G([e_\alpha]) \) be the \(G \)-stabilizers of \(e_\alpha \in \Theta_{\text{min}} \) and \([e_\alpha] \in \mathbb{P}(\Theta_{\text{min}}) \), respectively. The inclusion \(C_G(e_\alpha) \subseteq Q \) yields an inclusion of Lie algebras \(C_g(e_\alpha) \subseteq q := \text{Lie}(Q) \). Since \(\dim \mathbb{C} q = \dim \mathbb{C} C_q(e_\alpha) + 1 \) (a consequence of comparing the dimensions of \(\Theta_{\text{min}} \) and \(\mathbb{P}(\Theta_{\text{min}}) \)), and since \(\mathfrak{h} \subseteq q \) (as \(H \) stabilizes \([e_\alpha] \)), we must have

\[
q = \mathfrak{h} \oplus \bigoplus_{\{\beta \in \Delta : [g_\alpha, g_\beta] = \{0\}\}} g_\beta.
\]

In light of our having chosen \(\alpha \) to be the highest root, \([g_\alpha, g_\beta] = \{0\} \) for all \(\beta \in \Delta_+ \). It thus remains to determine those negative roots whose root spaces appear as summands of \(q \).

Lemma 6. If \(\beta \in \Delta_- \), then \([g_\alpha, g_\beta] = \{0\} \) if and only if \(\langle \alpha, \beta \rangle = 0 \).

Proof. Suppose that \([g_\alpha, g_\beta] = \{0\} \). Choose \(h_\beta \in [g_\beta, g_-] \) such that \(d e\langle h_\beta \rangle = \langle \alpha, \beta \rangle \). Also, select \(e_\beta \in g_\beta \) and \(f_\beta \in g_- \) such that \(h_\beta = [e_\beta, f_\beta] \). By assumption, \([e_\beta, e_\alpha] = 0 \). Since \(\alpha \) is the highest root, we also have \([f_\beta, e_\alpha] = 0 \). Hence,

\[
0 = [e_\beta, [f_\beta, e_\alpha]] - [f_\beta, [e_\beta, e_\alpha]] = ([e_\beta, f_\beta], e_\alpha)
\]
\[\langle \alpha, \beta \rangle = 0. \]

Conversely, suppose that \(\langle \alpha, \beta \rangle = 0 \). It will suffice to prove that \(\alpha + \beta \) is not a weight of the adjoint representation. Since these weights are \(W \)-invariant, it will actually suffice to prove that \(s_\beta(\alpha + \beta) \) is not a weight of \(g \). However, the orthogonality assumption implies that \(s_\beta(\alpha + \beta) = \alpha - \beta \). Also, \(\alpha - \beta > \alpha \), meaning that \(\alpha - \beta \) cannot be a weight of \(g \).

Now, suppose that

\[\beta = \sum_{\gamma \in \Pi} a_\gamma \gamma, \]

\(a_\gamma \in \mathbb{Z}_{\leq 0} \), is the expression of \(\beta \) as a linear combination of simple roots. Since \(\langle \alpha, \gamma \rangle \geq 0 \) for all \(\gamma \in \Pi \), we see that \(\langle \alpha, \beta \rangle = 0 \) if and only if \(\langle \alpha, \gamma \rangle = 0 \) whenever \(a_\gamma \neq 0 \). In other words, \(\langle \alpha, \beta \rangle = 0 \) if and only if \(\beta \) is a linear combination of those simple roots orthogonal to \(\alpha \).

Accordingly, let us set

\[\Xi := \{ \beta \in \Pi : \langle \alpha, \beta \rangle = 0 \}. \]

We have shown that \(Q = P_\Xi \), the parabolic subgroup of \(G \) determined by the simple roots in \(\Xi \).

We thus have the below result concerning the \(G \)-variety structure of \(\mathbb{P}(\Theta_{\min}) \).

Theorem 7. There is a \(G \)-variety isomorphism \(\mathbb{P}(\Theta_{\min}) \cong G/P_\Xi \).

Let us now address the \(G \)-variety structure of \(\Theta_{\min} \). To this end, we denote by \(L \overset{\pi}{\to} \mathbb{P}(g) \) the tautological line bundle over \(\mathbb{P}(g) \). Recall that for \(\xi \in g \setminus \{0\} \), we have \(\pi^{-1}(\{\xi\}) = \text{span}_\mathbb{C}\{\xi\} \). Furthermore, the tautological bundle is \(G \)-equivariant, with the \(G \)-action on the total space \(L \) given by

\[g : ([\xi], v) \mapsto ([\text{Ad}_g(\xi)], \text{Ad}_g(v)), \]

\(g \in G, \xi \in g \setminus \{0\}, v \in \text{span}_\mathbb{C}\{\xi\} \).

Let \(E \overset{\varphi}{\to} \mathbb{P}(\Theta_{\min}) \) denote the pullback of \(L \) along the inclusion \(\mathbb{P}(\Theta_{\min}) \hookrightarrow \mathbb{P}(g) \). Note that \(E \) inherits from \(L \) the structure of a \(G \)-equivariant line bundle over \(\mathbb{P}(\Theta_{\min}) \). Furthermore, \(\Theta_{\min} \) \(G \)-equivariantly (and also \(\mathbb{C}^* \)-equivariantly) includes into \(E \) as a smooth open subvariety, namely the complement \(E^* \) of the zero-section. Accordingly, we will describe \(\Theta_{\min} \) by more closely examining \(E \).

Since \(\mathbb{P}(\Theta_{\min}) \) is the homogeneous \(G \)-variety \(G/P_\Xi \), we may exhibit \(E \) as an associated bundle for the one-dimensional \(P_\Xi \)-representation \(\varphi^{-1}([e_\alpha]) = g_\alpha \). More precisely, let \(G \times_{P_\Xi} g_\alpha \) denote the quotient of \(G \times g_\alpha \) by the equivalence relation

\[(gp, v) \sim (g, \text{Ad}_p(v)), \]

\(p \in P_\Xi, g \in G, v \in g_\alpha \). Consider the map \(G \times_{P_\Xi} g_\alpha \to G/P_\Xi \) given by projection from the first component, whose fibres are then naturally complex vector spaces. The bundle
$G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha \to G/P_\mathbb{Z}$ is G-equivariant by virtue of the left-multiplicative G-action on the first component of $G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha$.

We have an isomorphism $\mathcal{E} \cong G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha$ of G-equivariant holomorphic line bundles over $G/P_\mathbb{Z}$, where we are regarding \mathcal{E} as a line bundle over $G/P_\mathbb{Z}$. We therefore have the below description of Θ_{min}.

Theorem 8. There is an isomorphism of G-equivariant holomorphic principal \mathbb{C}^*-bundles over $G/P_\mathbb{Z}$ between Θ_{min} and $(G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha)^*$.

3.6 The T-Equivariant Cohomology of Θ_{min}

Let us use the description of Θ_{min} provided in §3.5 to compute $H_T^*(\Theta_{\text{min}})$. To this end, we have the equivariant Thom-Gysin sequence

$$\cdots \to H^2_T(G/P_\mathbb{Z}) \to H^1_T(G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha) \to H^0_T((G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha)^*) \to \cdots$$

associated with the zero-section $G/P_\mathbb{Z}$ in $G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha$ and its complement $(G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha)^*$. We can say considerably more about this sequence in our context, but it will require a brief computation of the T-equivariant Euler class $\text{Eul}_T(N) \in H^2_T(G/P_\mathbb{Z})$ of the normal bundle $N \cong G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha$ of the zero-section in $G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha$. Indeed, we will give the restriction $\text{Eul}_T(G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha)[w] \in H^2_T(\text{pt}) \cong \text{Sym}^1(\text{Hom}(T, U(1)) \otimes_{\mathbb{Z}} \mathbb{Q})$ to each fixed point $[w] \in W/W_{P_\mathbb{Z}} \cong (G/P_\mathbb{Z})^T$.

Lemma 7. If $w \in W$, then $\text{Eul}_T(G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha)[w] = w \cdot \alpha$.

Proof. Let $i_{[w]} : \{[w]\} \hookrightarrow G/P_\mathbb{Z}$ be the inclusion, and let $i_{[w]}^* : H^*_T(G/P_\mathbb{Z}) \to H^*_T(\text{pt})$ be the associated map on equivariant cohomology. Note that

$$\text{Eul}_T(G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha)[w] = i_{[w]}^*(\text{Eul}_T(G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha))$$

$$= \text{Eul}_T((i_{[w]})^*(G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha))$$

$$= \text{Eul}_T((G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha)[w]),$$

where $(G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha)[w]$ is the fibre over $[w]$. Now, choose a representative $k \in N_K(T)$ of w, noting that any element of this fibre is of the form $[(k, \xi)]$, $\xi \in \mathfrak{g}_\alpha$. Note that for $t \in T$,

$$t \cdot [(k, \xi)] = [(tk, \xi)] = [(k(k^{-1}tk), \xi)]$$

$$= [(k, (k^{-1}tk) \cdot \xi)]$$

$$= [(k, \alpha(k^{-1}tk)\xi)]$$

$$= (w \cdot \alpha)(t)[(k, \xi)].$$

Hence, $w \cdot \alpha = \text{Eul}_T((G \times_{P_\mathbb{Z}} \times \mathfrak{g}_\alpha)[w]) = \text{Eul}_T(G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha)[w]$. \qed

In particular, the image of $\text{Eul}_T(G \times_{P_\mathbb{Z}} \mathfrak{g}_\alpha)$ in $H^*_T((G/P_\mathbb{Z})^T)$ is non-zero. Since restriction gives an inclusion of $H^*_T(G/P_\mathbb{Z})$ into $H^*_T((G/P_\mathbb{Z})^T)$ as a subalgebra, and since $H^*_T((G/P_\mathbb{Z})^T)$ (a direct sum of polynomial rings) has no zero-divisors, we conclude that
Eul$_T(G \times_{P_\mathbb{Z}} g_\alpha)$ is not a zero-divisor in $H^*_T(G/P_\mathbb{Z})$. It follows that our Thom-Gysin sequence splits into the short-exact sequences
\[
0 \to H^{i-2}_T(G/P_\mathbb{Z}) \to H^i_T(G \times_{P_\mathbb{Z}} g_\alpha) \to H^i_T((G \times_{P_\mathbb{Z}} g_\alpha)^*) \to 0.
\]
(For a proof, see [1].)

For a second useful refinement of our Thom-Gysin sequence, we note that restriction to the zero-section gives a T-equivariant homotopy equivalence between $G \times_{P_\mathbb{Z}} g_\alpha$ and $G/P_\mathbb{Z}$. It follows that the associated restriction map $H^*_T(G \times_{P_\mathbb{Z}} g_\alpha) \to H^*_T(G/P_\mathbb{Z})$ is an isomorphism. Using this isomorphism, we shall replace $H^*_T(G \times_{P_\mathbb{Z}} g_\alpha)$ in our short-exact sequences to obtain
\[
0 \to H^{i-2}_T(G/P_\mathbb{Z}) \to H^i_T(G \times_{P_\mathbb{Z}} g_\alpha) \to H^i_T((G \times_{P_\mathbb{Z}} g_\alpha)^*) \to 0.
\]

The map $H^{i-2}_T(G/P_\mathbb{Z}) \to H^i_T(G/P_\mathbb{Z})$ is multiplication by $\text{Eul}_T(G \times_{P_\mathbb{Z}} g_\alpha)$ (see [4], for instance). Furthermore, the map $H^*_T(G/P_\mathbb{Z}) \to H^*_T((G \times_{P_\mathbb{Z}} g_\alpha)^*)$ is the map ψ^* on equivariant cohomology induced by the projection $\psi : (G \times_{P_\mathbb{Z}} g_\alpha)^* \to G/P_\mathbb{Z}$. (This follows from the fact that the bundle projection $G \times_{P_\mathbb{Z}} g_\alpha \to G/P_\mathbb{Z}$ and zero-section $G/P_\mathbb{Z} \to G \times_{P_\mathbb{Z}} g_\alpha$ give inverse maps on equivariant cohomology.)

The above analysis yields two immediate corollaries. Firstly, the T-equivariant Betti numbers $b^i_T(\Theta_{\min})$ of Θ_{\min} are given by
\[
b^i_T(\Theta_{\min}) = b^i_T(G/P_\mathbb{Z}) - b^{i-2}_T(G/P_\mathbb{Z}).
\]

Secondly, $\psi^* : H^*_T(G/P_\mathbb{Z}) \to H^*_T(\Theta_{\min})$ is a surjective graded algebra morphism. Its kernel is $\langle \text{Eul}_T(G \times_{P_\mathbb{Z}} g_\alpha) \rangle$, the ideal of $H^*_T(G/P_\mathbb{Z})$ generated by the equivariant Euler class $\text{Eul}_T(G \times_{P_\mathbb{Z}} g_\alpha) \in H^2_T(G/P_\mathbb{Z})$. In particular, there is a graded algebra isomorphism
\[
H^*_T(\Theta_{\min}) \cong H^*_T(G/P_\mathbb{Z})/\langle \text{Eul}_T(G \times_{P_\mathbb{Z}} g_\alpha) \rangle.
\]

Using Lemma [7] and Theorem [5] and noting that $W_{P_\mathbb{Z}} = W_\mathbb{Z}$ is the subgroup of W generated by the reflections $\{s_\beta\}_{\beta \in \mathbb{Z}}$, we obtain the below more explicit description of $H^*_T(\Theta_{\min})$.

Theorem 9. $H^*_T(\Theta_{\min})$ is isomorphic to the quotient of
\[
\{ f \in \text{Map}(W/W_\mathbb{Z}, H^*_T(pt)) : (w \cdot \beta)(f([w]) - f([ws_\beta])) = 0 \}
\]
by the ideal generated by the map $W/W_\mathbb{Z} \to H^*_T(pt)$, $[w] \mapsto w \cdot \alpha$.

3.7 An Example

Let us compute the equivariant cohomology of the minimal nilpotent orbit of $G = \text{SL}_2(\mathbb{C})$. To this end, let $T \subseteq G$ be the compact real form of the standard maximal torus of G. Note that $\Delta = \{-2, 2\} \subseteq \mathbb{Z} \cong \text{Hom}(T, U(1))$ is the resulting collection of roots. Letting $B \subseteq G$ be the Borel subgroup of upper-triangular matrices, we find that $\alpha = 2$ is the highest root. It is not orthogonal to any of the simple roots, so that $\Xi = \emptyset$. Hence, $P_\mathbb{Z} = B$ and $\Delta_{P_\mathbb{Z}} = \{2\}$. The Weyl group W is $\mathbb{Z}/2\mathbb{Z}$, and the generator acts
by negation on the weight lattice. The subgroup W_Ξ is trivial. In particular, G/P_Ξ has two T-fixed points.

Since α is identified with $2x \in \mathbb{Q}[x] \cong H^*_T(\text{pt})$, Theorem 5 implies that $H^*_T(G/P_\Xi)$ includes into $H^*_T(\text{pt}) \oplus \mathbb{Q}[x]^{\oplus 2}$ as the subalgebra

$$H^*_T(G/P_\Xi) \cong \{(f_1(x), f_2(x)) \in \mathbb{Q}[x]^{\oplus 2} : x|(f_1(x) - f_2(x))\}$$

$$= \{(f_1(x), f_2(x)) \in \mathbb{Q}[x]^{\oplus 2} : f_1(0) = f_2(0)\}.$$

Indeed, we have recovered the $U(1)$-equivariant cohomology of the two-sphere with the rotation action of $U(1)$.

Lemma 7 tells us that $\text{Eul}_T(N) = (2x, -2x)$ when included into $\mathbb{Q}[x]^{\oplus 2}$. Hence,

$$H^*_T(\Theta_{\min}) \cong \{(f_1(x), f_2(x)) \in \mathbb{Q}[x]^{\oplus 2} : f_1(0) = f_2(0)\}/\langle(x, -x)\rangle.$$

Note that this is generated as a \mathbb{Q}-algebra by $y := [(x, 0)]$. The relation is $y^2 = 0$, so that

$$H^*_T(\Theta_{\min}) \cong \mathbb{Q}[y]/\langle y^2 \rangle,$$

with y an element of grading degree two.

We remark that this is consistent with Corollary 8. Indeed, if $G = \text{SL}_2(\mathbb{C})$, then $\Theta_{\min} = \Theta_{\text{reg}}$. Hence, $H^*_T(\Theta_{\min}) = H^*_T(\Theta_{\text{reg}})$. Corollary 8 tells us that the latter is isomorphic to the ordinary cohomology of $G/B \cong \mathbb{P}^1$.

References

[1] Atiyah, M.F. and Bott, R. The Yang-Mills Equations over Riemann Surfaces. Philosophical Transactions of the Royal Society of London. Vol 308. No. 1505. pp. 523-615. 1983.

[2] Biswas, Indranil and Chatterjee, Pralay. On the Exactness of Kostant-Kirillov Form and the Second Cohomology of Nilpotent Orbits. International Journal of Mathematics. Vol. 23. No. 8. 25 pages. 2012.

[3] Bernstein, I.N., Gel’fand, I.M., and Gel’fand, S.I. Schubert Cells and Cohomology of the Spaces G/P. Russian Mathematical Surveys. Vol. 28. No. 3. pp. 1-26. 1973.

[4] Bifet, Emili. Cohomology, Symmetry, and Perfection. Publicacions Matemàtiques. Vol. 36. pp. 407-420. 1992.

[5] Brion, Michel. Equivariant Cohomology and Equivariant Intersection Theory. Representation Theories and Algebraic Geometry. Kluwer Academic Publishers. pp. 1-38. 1998.

[6] Chriss, Neil and Ginzburg, Victor. Representation Theory and Complex Geometry. Birkhauser. 1997.

[7] Collingwood, David H. and McGovern, William M. Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold. 1993.
[8] Daszkiewicz, Andrzej and Przebinda, Tomasz. *On the Moment Map of a Multiplicity Free Action*. Colloquium Mathematicum. Vol. 71. No. 1. pp. 107-110. 1996.

[9] Goresky, Mark, Kottwitz, Robert, and MacPherson, Robert. *Equivariant Cohomology, Koszul Duality, and the Localization Theorem*. Inventiones Mathematicae. Vol. 131. No. 1. pp. 25-83. 1998.

[10] Guillemin, V., Holm, T., and Zara, C. *A GKM Description of the Equivariant Cohomology Ring of a Homogeneous Space*. Journal of Algebraic Combinatorics. Vol. 23. No. 1. pp. 21-41. 2006.

[11] Juteau, Daniel. *Cohomology of the Minimal Nilpotent Orbit*. Transformation Groups. Vol. 13. No. 2. pp. 355-387. 2008.

[12] Kostant, Bertram. *The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group*. American Journal of Mathematics. Vol. 81. No. 4. pp. 973-1032. 1959.

[13] Onishchik, A.L. and Vinberg, E.B. *Lie Groups and Lie Algebras III*. Springer. 1994.

[14] Sternberg, Shlomo. *Lie Algebras*. http://www.math.harvard.edu/~shlomo/docs/lie_algebras.pdf 2004.