SHORT COMMUNICATION

A new triterpenoid glycoside from the leaves and stems of *Duranta repens*

Chisato Furusawa\(^a\), Shin Yasuda\(^a\), Hiroshi Tsuji\(^a\), Show Ito\(^a\), Hiroyuki Miyashita\(^b\), Hitoshi Yoshimitsu\(^b\), Toshihiro Nohara\(^b\) and Masateru Ono\(^a\)*

\(^a\)School of Agriculture, Tokai University, Minamiaso 5435, Aso, Kumamoto 869-1404, Japan; \(^b\)Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan

(Received 8 March 2015; final version received 22 April 2015)

A new triterpenoid glycoside (I) was isolated from the methanol extract of the leaves and stems of *Duranta repens* L. (Verbenaceae) along with 14 known compounds consisting of eight triterpenoids, four iridoids, one phenylethanoid glycoside and one flavonoid. The chemical structure of I was determined to be bayogenin 3-\(O-\beta-D\)-glucopyranoside]-28-\(O\)-\(\alpha-L\)-rhamnopyranosyl-(1→5)-\(O\)-\(\beta-D\)-apiofuranosyl-(1→4)-\(O\)-\(\alpha-L\)-rhamnopyranosyl-(1→2)-\(O\)-\(\alpha-L\)-arabinopyranosyl] ester, based on spectroscopic data. In addition, the inhibitory effects of the isolates on lipoxygenase activity were examined. Among them, acteoside and apigenin resulted in 94\(^\pm\)3.6\% and 82\(^\pm\)4.7\% inhibition, respectively, at 0.5 mM.

Keywords: *Duranta repens*; Vabenaceae; triterpenoid glycoside; lipoxygenase inhibitory effect

Introduction

Duranta repens L. is a Verbenaceae plant native to South America, and is primarily cultivated as an ornamental plant in Japan. The fruits and leaves of this plant were used for the treatment of malaria and abscess, respectively, in China (Takeda et al. 1995). With regard to the chemical constituents of this plant, iridoids (Kuo et al. 1996; Shahat et al. 2005), diterpenoids (Anis et al. 2001; Ahmad et al. 2009), phenylethanoid glycosides (Kuo et al. 1996; Shahat et al. 2005; Ahmad et al. 2009), flavonoids (Anis et al. 2001, Anis et al., 2002; Iqbal et al. 2004; Ahmad et al. 2009), triterpenoids (Kuo et al. 1996; Shahat et al. 2005; Hiradate et al 1999; Castro et al 1997; Ahmed et al. 2009), isoprenylated acetophenone derivative (Anis et al. 2002) and coumarinolignoids (Ahmad et al. 2009) were isolated. In the course of our studies on the constituents and biological activities of Verbenaceae plants (Ono, Furusawa,
et al. 2013a), we examined the methanol (MeOH) extract of the leaves and stems of *D. repens* ‘Takarazuka’. This report deals with the isolation and structural characterisation of a new triterpenoid glycoside along with 14 known compounds consisting of eight triterpenoids, four iridoids, one phenylethanoid glycosides and one flavonoid from the extract. In addition, the lipoxigenase inhibitory effects of the MeOH extract and isolates are also described herein as an inflammation model.

Results and discussion

The leaves and stems of *D. repens* were extracted with MeOH. This extract was partitioned between 90% MeOH and hexane. The former fraction was successively subjected to silica gel, Chromatorex ODS and Sephadex LH-20 column chromatography, as well as HPLC on ODS to yield 1–15.

Compounds 2–15 were identified as taccasoside C (2) (Castro et al. 1997), taccasoside B1 (3) (Castro et al. 1997), durantain I (4) (Hiradate et al. 1999), durantain III (5) (Hiradate et al. 1999), durantain II (6) (Hiradate et al. 1999), mi-saponin B (7) (Kitagawa et al. 1975; Verotta et al. 1996), ursolic acid (8) (Ono et al. 2004), oleanolic acid (9) (Mahato & Kundu 1994), lamiide (10) (Junior 1985; Ono et al. 2006), durantoside I (11) (Sasaki et al. 1989), duranterecitoside B (12) (Takeda et al. 1995), duranterecitoside A (13) (Takeda et al. 1995), acteosie (14) (Sasaki et al. 1989; Ono, Furusawa, et al. 2013a), and apigenin (15) (Ono et al. 2008), respectively, based on their physical and spectral data (Figure 1).

Compounds 2–15 were identified as taccasoside C (2) (Castro et al. 1997), taccasoside B1 (3) (Castro et al. 1997), durantain I (4) (Hiradate et al. 1999), durantain III (5) (Hiradate et al. 1999), durantain II (6) (Hiradate et al. 1999), mi-saponin B (7) (Kitagawa et al. 1975; Verotta et al. 1996), ursolic acid (8) (Ono et al. 2004), oleanolic acid (9) (Mahato & Kundu 1994), lamiide (10) (Junior 1985; Ono et al. 2006), durantoside I (11) (Sasaki et al. 1989), duranterecitoside B (12) (Takeda et al. 1995), duranterecitoside A (13) (Takeda et al. 1995), acteosie (14) (Sasaki et al. 1989; Ono, Furusawa, et al. 2013a), and apigenin (15) (Ono et al. 2008), respectively, based on their physical and spectral data (Figure 1).

Compound 1 was obtained as an amorphous powder, and its molecular formula was analysed as C$_{58}$H$_{94}$O$_{26}$ by a combined analysis of its negative and positive HR-ESI-MS spectra, which showed an [M–H]$^-$ ion peak at *m/z* 1205.59455 (Calcd for C$_{58}$H$_{93}$O$_{26}$: 1205.59403) and an [M + Na]$^+$ ion peak at *m/z* 1229.59403 (Calcd for C$_{58}$H$_{94}$O$_{26}$Na: 1229.59310), respectively (Figures S1 and S2). On acidic hydrolysis, 1 afforded D-apiose, L-arabinose, L-rhamnose and D-glucose. Identification of the monosaccharides, including their absolute configurations, was performed on direct HPLC analysis of the hydrolysate using an optical rotation detector. The 1H NMR spectrum of 1, which was similar to that of 4, exhibited signals due to six tertiary methyl groups, two secondary methyl groups assignable to H$_{3}$-6 of 6-deoxyhexosyl units and five anomeric protons. The 13C NMR data, glycosylation shifts (Kasai et al. 1977; Ishii et al. 1981; Ono, Ochiai, et al. 2013b) and coupling constants of signals due to anomeric and methine protons and the chemical shifts of 13C NMR data, glycosylation shifts (Kasai et al. 1977; Tori et al. 1977; Fujioka et al. 1989; Ono et al. 2007, 2011) were observed at C-2 of Ara, C-4 of Rha, C-5 of Api and C-3 of Agl. Further, key HMBC correlations were observed between H-1 of Glc and C-3 of Agl, H-1 of Ara and C-28 of Agl, H-1 of Rha and C-2 of Ara, H-1 of Api and C-4 of Rha, and H-1 of Rha and C-5 of Api (Figure S9). In addition, positive FAB-MS exhibited a fragment ion peak at *m/z* 673 [1303–146 (deoxyhexosyl unit) × 2–132 (pentosyl unit)]$^+$ (Figure S10). Finally, the assigned NMR data of the aglycone moiety and the sugar moiety were considerably similar to those of 3 and 4, respectively. Consequently, 1 was determined to be bayogenin 3-O-[β-D-glucofuranosyl]-28-O-[α-L-
In a pilot study, the MeOH extract from this plant demonstrated apparent lipoxygenase inhibition with 26 μg/mL of IC\textsubscript{50} value. To gain insight, the active constituents 1–15 herein were assayed. Among them, 14 and 15 demonstrated 94.0 ± 3.6% and 82.2 ± 4.7% inhibition, respectively, at a concentration of 0.5 mM. However, the effects of the other compounds were less than 25% (Table S4). In a parallel experiment, a positive control [nordihydroguairetic acid (NDGA)] showed 96.2 ± 3.1% of the inhibitory effect.

Conclusion

In this study, we isolated and elucidated the structures of 15 compounds from the MeOH extract of the leaves and stems of *D. repens* ‘Takarazuka’. Among them, one compound was a new triterpenoid glycoside. In addition, the MeOH extract and two aromatic compounds

Figure 1. Structures of 1–15.
demonstrated lipoxygenase inhibitory effect. This result may indicate usefulness of *D. repens* in treatment of inflammation.

Supplementary material

Supplementary material relating to this article is available online, alongside Tables S1–S6, Figure S9, and NMR spectra and MS (Figures S1–S8, S10) of 1 at http://dx.doi.org/10.1080/14786419.2015.1046870.

Acknowledgments

We express our appreciation to Mr K. Takeda and Mr T. Iriguchi of Kumamoto University for their measurement of the MS and NMR spectra.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Ahmad N, Zeb F, Ahmad I, Wang F. 2009. Repenins A–D, four new antioxidative coumarinolignoids from *Duranta repens* Linn. Bioorg Med Chem Lett. 19:3521–3524, doi:10.1016/j.bmcl.2009.05.006.

Ahmed WS, Mohamed MA, EI-Dib RA, Hamed M. 2009. New triterpene saponins from *Duranta repens* Linn. and their cytotoxic activity. Molecules. 14:1952–1965.

Anis I, Ahmed S, Mustafa G, Malik A, Amtul Z, Atta-ur-rahman. 2001. Thrombin inhibitory constituents from *Duranta repens*. Helv Chim Acta. 84:649–655, doi:10.1002/hlca.20010721184.3.CO;2-5.

Anis I, Ahmed S, Malik A, Yasin A, Choudary MI. 2002. Enzyme inhibitory constituents from *Duranta repens*. Chem Pharm Bull. 50:515–518, 10.1248/cpb.50.515.

Castro VH, Ramirez E, Mora GA, Iwase Y, Nagao T, Okabe H, Matsunaga H, Katano M, Mori M. 1997. Structures and antiproliferative activity of saponins from *Sechium pittieri* and *S. talamancense*. Chem Pharm Bull. 45:349–358, doi:10.1248/cpb.45.349.

Fujioka T, Iwamoto M, Iwase Y, Hachiyama S, Okabe H, Yamauchi T, Mihashi K. 1989. Studies on the constituents of *Actinostemma lobatum* MAXIM. V. Structure of lobatosides B, E, F and G, the dicrotalic acid esters of bayogenin bisdesmosides isolated from the herb. Chem Pharm Bull. 37:2325–2360.

Hiradate S, Yada H, Ishii T, Nakajima N, Ohnishi-kameyama M, Sugie H, Zungsontiporn S, Fujii Y. 1999. Three plant growth inhibiting saponins from *Duranta repens*. Phytochemistry. 52:1223–1228, doi:10.1016/S0031-9422(99)00408-2.

Iqbal K, Malik A, Mukhtar N, Anis I, Khan SN, Choudhary MI. 2004. α-Glucosidase inhibitory constituents from *Duranta repens*. Chem Pharm Bull. 52:785–789, 10.1248/cpb.52.785.

Ishii H, Kitagawa I, Matsushita K, Shirakawa K, Tori K, Tozyo T, Yoshikawa M, Yoshimura Y. 1981. The configuration and conformation of the arabinose moiety in platycodins, saponins isolated from *Platycodon grandiflorum*, and mi-saponins from *Madhuca logifolia* based on Carbon-13 and hydrogen-1 NMR spectroscopic evidence: the total structures of saponins. Tetrahedron Lett. 22:1529–1532, doi:10.1016/S0040-4039(01)90369-7.

Junior P. 1985. Weitere iridoidglucoside Aus *Penstemon strictus*. Planta Med. 51:229–232, doi:10.1055/s-2007-969465.

Kasai R, Suzuo M, Asakawa J, Tanaka O. 1977. Carbon-13 chemical shifts of isoprenoid-β-d-glucopyranosides and -β-d-mannopyranosides. Stereochimical influences of aglycone alcohols. Tetrahedron Lett. 18:175–178, doi:10.1016/S0040-4039(01)92581-X.

Kuo YH, Chen ZS, Lin YL. 1996. Chemical components of the leaves of *Duranta repens* Linn.. Chem Pharm Bull. 44:429–436, doi:10.1248/cpb.44.429.

Mahato SB, Kundu AP. 1994. 13C NMR spectra of pentacyclic triterpenoids-a compilation and some salient features. Phytochemistry. 37:1517–1575, doi:10.1016/0031-9422(95)00024-2.
Ono M, Koto M, Komatsu H, Igoshi K, Kobayashi H, Ito Y, Nohara T. 2004. Cytotoxic triterpenes and sterol from the fruit of rabbiteye blueberry (*Vaccinium ashei*). Food Sci Technol Res. 10:56–59, doi:10.3136/fstr.10.56.

Ono M, Oishi K, Abe H, Masuoka C, Okawa M, Ikeda T, Nohara T. 2006. New iridoid glucosides from the aerial parts of *Verbena brasiliensis*. Chem Pharm Bull. 54:1421–1424, doi:10.1248/cpb.54.1421.

Ono M, Sugita F, Shigematsu S, Takamura C, Yoshimitsu H, Miyashita H, Ikeda T, Nohara T. 2007. Three new steroid glycosides from the underground parts of *Trillium kamtschaticum*. Chem Pharm Bull. 55:1093–1096, doi:10.1248/cpb.55.1093.

Ono M, Oda E, Tanaka T, Iida Y, Yamasaki T, Masuoka C, Ikeda T, Nohara T. 2008. DPPH radical-scavenging effect on some constituents from the aerial parts of *Lippia triphylla*. J Nat Med. 62:101–106, doi:10.1007/s11418-007-0197-9.

Ono M, Toyohisa D, Morishita T, Horita H, Yasuda S, Nishida Y, Tanaka T, Okawa M, Kinjo J, Yoshimitsu H, Nohara T. 2011. Three new nortriterpene glycosides and two new triterpene glycosides from the bulbs of *Scilla scilloides*. Chem Pharm Bull. 59:1348–1354, doi:10.1248/cpb.59.1348.

Ono M, Furusawa C, Matsumura K, Noguchi S, Yasuda S, Okawa M, Kinjo J, Eto M, Yamaguchi K, Yoshimitsu H, Nohara T. 2013a. A new diterpenoid from the leaves of *Clerodendron trichotomum*. J Nat Med. 67:404–409, doi:10.1007/s11418-012-0690-7.

Ono M, Ochiai T, Yasuda S, Nishida Y, Tanaka T, Okawa M, Kinjo J, Yoshimitsu H, Nohara T. 2013b. Five new nortriterpenoid glycosides from the bulbs of *Scilla scilloides*. Chem Pharm Bull. 61:592–598, doi:10.1248/cpb.c13-00116.

Sasaki H, Nishimura H, Chin (chen zhengxiong) M, Mitsuhashi H. 1989. Hydroxycinnamic acid esters of phenethylalcohol glycosides from *Rehmannia glutinosa var. Purpurea*. Phytochemistry. 28:875–879, doi:10.1016/0031-9422(89)80134-7.

Seo S, Tomita Y, Tori K, Yoshimura Y. 1978. Determination of the absolute configuration of a secondary hydroxy group in a chiral secondary alcohol using glycosidation shifts in Carbon-13 nuclear magnetic resonance spectroscopy. J Am Chem Soc. 100:3331–3339, doi:10.1021/ja00479a014.

Shahat AA, Nazif NM, Abousetta LM, Ibrahim NA, Cos P, Miert SV, Pieters L, Vlietinck AJ. 2005. Phytochemical investigation and antioxidant activity of *Duranta repens*. Phytother Res. 19:1071–1073, doi:10.1002/ptr.1766.

Tori K, Seo S, Yoshimura Y, Arita H, Tomita Y. 1977. Carbon-13 chemical shifts of isoprenoid-β-D-glucopyranosides and -β-D-mannopyranosides. Tetrahedron Lett. 18:179–182, doi:10.1016/S0040-4039(01)92582-1.

Verotta L, Caldiroli S, Gariboldi P, Tató M. 1996. 600 MHz 1H and 13C NMR full assignments of two saponins from *Nothapodytes foetida*. Phytochem Anal. 7:245–252, doi:10.1002/(SICI)1099-1565(199609)7:5<245:AID-PCA312>3.0.CO;2-L.