Comparison of optical potential for nucleons and Δ resonances

In electron scattering from nuclear targets

Arie Bodek and Tejin Cai

Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171

Version 1.9 March 31, 2020

Abstract. Precise modeling of neutrino interactions on nuclear targets is essential for neutrino oscillations experiments. The modeling of the energy of final state particles in quasielastic (QE) scattering and resonance production on bound nucleons requires knowledge of both the removal energy of the initial state bound nucleon as well as the Coulomb and nuclear optical potentials for final state leptons and hadrons. We extract the values of the nuclear optical potential for final state nucleons (U_{opt}^{Δ}) from inclusive electron scattering data on nuclear targets in the QE region and compare to theoretical calculations by Cooper et.al. We also extract for the first time values of the nuclear optical potential for a $\Delta(1232)$ resonance in the final state ($U_{opt}^{\Delta(1232)}$). We find that $U_{opt}^{\Delta(1232)}$ is more negative than U_{opt}^{Δ}.

PACS. 13.60.Hb Total and inclusive cross sections (including deep-inelastic processes) – 13.15.+g Neutrino interactions – 13.60.-r Photon and charged-lepton interactions with hadrons

1 Introduction

Precise modeling of neutrino interactions on nuclear targets is essential for neutrino oscillations experiments. The modeling of the energy of final state particles in quasielastic (QE) scattering and resonance production on bound nucleons requires knowledge of both the removal energy of the initial state bound nucleon as well as the Coulomb and nuclear optical potentials for final state leptons and hadrons. In this communication we extract the values of the nuclear optical potential for final state nucleons (U_{opt}^{Δ}) from inclusive electron scattering data on nuclear targets in the QE region and compare to theoretical calculations by Cooper et.al. We also extract for the first time values of the nuclear optical potential for a $\Delta(1232)$ resonance in the final state ($U_{opt}^{\Delta(1232)}$). We find that $U_{opt}^{\Delta(1232)}$ is more negative than U_{opt}^{Δ}.

First we summarize some of the results of our previous publication on removal energies and the nuclear optical potential for final state nucleons extracted from inclusive quasielastic (QE) electron scattering on a variety of nuclei. The analysis was done within the framework of the impulse approximation.

The diagrams on the top two panels of Fig. 1 show the 1p1h process (one final state proton and one hole) for electron QE scattering from an off-shell bound proton (left) and neutron (right). The diagrams on the bottom two panels show antineutrino (\bar{\nu}) QE scattering from an off-shell bound proton producing a final state neutron (left), and neutrino (\nu) scattering from an off-shell bound neutron producing a final state proton (right). The electrons scatter from an off-shell nucleon of momentum $p_i = k$ bound in a nucleus of mass A. For electrons of incident energy E_0 and final state energy E', the energy transfer to the target is $\nu = E_0 - E'$. The square of the 4-momentum transfer (Q^2), and 3-momentum transfer (q_3) to a proton bound in the nucleus are:

\begin{equation}
Q^2 = 4(E_0 + |V_{eff}|)(E_0 - \nu + |V_{eff}|)\sin^2\frac{\theta}{2} \tag{1}
\end{equation}

\begin{equation}
q_3^2 = Q^2 + \nu^2
\end{equation}

We include the effects of the interaction of initial and final state electrons with the Coulomb field of the nucleus by using published values of the average Coulomb energy at the interaction vertex V_{eff} extracted from a comparison of electron and positron inclusive QE differential cross sections [2].

For electron scattering from protons, the Coulomb energies at the interaction vertex for the final state proton (in QE scattering), final state Δ^+1232 (in resonance production), and final state of mass W^+ (in inelastic scattering) are defined below.

\begin{equation}
|V_{eff}^p| = |V_{eff}^{\Delta^+1232}| = |V_{eff}^{W^+}| = \frac{Z-1}{Z}|V_{eff}|
\end{equation}

For electron scattering from a neutron target we set $|V_{eff}^n| = 0$. The values of $|V_{eff}|$ that we use for various nuclei are given in Table 1.
Electron scattering on proton

\[E = (E_0, p = E_0) \quad E' = (E_0 - \nu, p' = E') \]

\[p_{\text{cts}} = p + |V_{\text{eff}}| \]

\[E_{\text{cts}} = E_0 \]

\[q = (\nu, q_3) \]

\[E_i = (M_P - e^P, k) \]

\[E_{P}\] for proton

\[E_{N}\] for neutron

Unobserved Removal Energy

\[\epsilon = S^P + \langle E_{P}^N \rangle + \frac{k^2}{2M_A} \]

Electron scattering on neutron

\[E = (E_0, p = E_0) \quad E' = (E_0 - \nu, p' = E') \]

\[p_{\text{cts}} = p + |V_{\text{eff}}| \]

\[E_{\text{cts}} = E_0 \]

\[q = (\nu, q_3) \]

\[E_i = (M_N - e^N, k) \]

\[E_{P}\] for proton

\[E_{N}\] for neutron

Unobserved Removal Energy

\[\epsilon = S^N + \langle E_{P}^N \rangle + \frac{k^2}{2M_A} \]

Fig. 1. The diagrams on the top two panels show electron QE scattering from an off-shell bound proton (left) and neutron (right). The diagrams on the bottom two panels show \(\bar{\nu} \) QE scattering from an off-shell bound proton producing a final state neutron (left), and \(\nu \) scattering from an off-shell bound neutron producing a final state proton (right).

2 Removal energy of initial state nucleons in a nucleus

In our analysis we use the impulse approximation. The nucleon is moving in the mean field (MF) of all the other nucleons in the nucleus. The on-shell recoil excited \([A - 1]^*\) spectator nucleus has a momentum \(p_{(A-1)^*} = -k \) and a mean excitation energy \(\langle E_{P}^{P,N} \rangle \). The off-shell energy of the interacting nucleon is

\[E_i = M_A - \sqrt{(M_A - 1)^2 + k^2} \]

\[= M_A - \sqrt{(M_A - 1 + E_{P}^{P,N})^2 + k^2} \]

\[= M_{P,N} - \epsilon_{P,N} \]

\[\epsilon_{P,N} = S^P + \langle E_{P}^{P,N} \rangle + \frac{k^2}{2M_{A-1}} \]

Here, \(M_P = 0.938272 \) GeV is the mass of the proton, \(M_N = 0.939565 \) is the mass of the proton, and \(S^P \) the separation energy (obtained from mass differences of the initial and final state nuclei) needed to separate the nucleon from the nucleus. In Ref.\[1\] we extract the mean excitation energy \(\langle E_{P}^{P,N} \rangle \) (or equivalently the removal energy \(\epsilon_{P,N} \)) using exclusive ee'P spectral function measurements. Some of the neutrino MC generators (e.g. current version of GENIE) do not include the effect of the excitation of the spectator nucleus, nor do they include the effects of the interaction of the final state nucleons and hadrons with the Coulomb\[2\] and nuclear optical potential of the nucleus.

3 Nuclear optical potential for final state nucleons in QE scattering \(U_{\text{opt}}^{QE} \)

We model the effect of the interaction of final state nucleons with the nuclear optical potential of the nucleus with a parameter \(U_{\text{opt}}^{QE} (p_{f3}) \), where \(p_{f3} \) is the square of
Fig. 2. Examples of fits for three out of 33 12C QE differential cross sections. The solid black curve is the RFG fit with the best value of U_{opt}^{QE} for the final state nucleon. The blue dashed curve is the simple parabolic fit used to estimate the systematic error. The red dashed curve is the RFG model with $U_{opt}^{QE} = 0$ and $|V_p| = 0$.

Fig. 3. Extracted values of U_{opt}^{QE} for the final state nucleon in QE scattering (small black markers) for 33 12C and four 16O inclusive electron scattering spectra. Also shown are theory prediction for U_{opt}^{QE} calculated by Artur. M. Ankowski[27,28] and Jose Manuel Udias[29] using the theoretical formalisms of Cooper 1993[30], and Cooper 2009[31]. The dashed grey lines are linear fits to the QE data. In addition, the larger markers are the values of U_{opt}^{Δ} for the final state Δ(1232) (large markers) extracted from a subset of the data (15 12C spectra) for which the measurements extend to higher invariant mass. Here, the solid grey lines are linear fits to the U_{opt}^{Δ} values. The top and bottom panels show the measurements versus $p_{f3}^2 = (k + q_3)^2$, and versus hadron kinetic energy T, respectively.
the 3-momentum of the final state nucleon at the vertex. Alternatively, we also extract \(U_{opt}^{QE}(P^F) \) where \(T \) is the kinetic energy of the final state nucleon. In the analysis we make the assumption that \(U_{opt}^{QE} \) for the proton and neutron are the same.

The energy of the final state nucleon in QE electron scattering is given by the final expressions:

\[\nu + (M_{P,N} - E_{P,N}^{opt}) = E_{f}^{P,N} \]
\[p_{f3} = (k + q_{3}) \]
\[E_{f}^{P,N} = \sqrt{p_{f3}^2 + M_{P,N}^2} + U_{opt}^{QE}(p_{f3}^2) + |V_{eff}| \]
\[T_{P,N} = E_{P,N} - M_{P,N} \]

We extract \(U_{opt}^{QE}(p_{f3}^2) \) and \(U_{opt}^{QE}(T) \) from a comparison of the relativistic Fermi gas (RFG) model to measurements of inclusive QE e-A differential cross sections [3].

The data samples (see references [4]-[21]) include the following elements which are of interest to current neutrino experiments: 33 \(^{12}\)C spectra, five \(^{16}\)O spectra, seven \(^{29}\)\(^{40}\)Ca spectra, and two \(^{32}\)\(^{18}\)Ar spectra. In addition, the data sample includes four \(^{27}\)Al spectra, 30 \(^{56}\)Fe and \(^{23}\)\(^{29}\)\(^{88}\)Ar spectra, and one \(^{79}\)\(^{197}\)Au spectrum. Most of the QE differential cross sections are available on the QE electron scattering archive [3].

Figure 2 shows examples of three of the 33 fits to QE differential cross sections for \(^{12}\)C. The solid black curve is the RFG fit with the best value of \(U_{opt}^{QE} \) for the final state nucleon. The blue dashed curve is a simple parabolic fit used to estimate the systematic error. The red dashed curve is the RFG model with \(U_{opt}^{QE} \) and \(V_{eff} \) set to zero.

In the extraction of the nuclear optical potential for final state nucleons in QE scattering we only fit to the data in the top 1/3 of the QE distribution and extract the best value of \(U_{opt}^{QE}(p_{f3}^2) \) and \(U_{opt}^{QE}(T) \). Here \(p_{f3} \) is evaluated at the peak of the QE distribution. In the fit we let the normalization of the QE cross section float to agree with the measurements of inclusive QE e-A differential cross sections. The energy of the final state nucleon in QE electron scattering is given by the final expressions:

\[\nu + (M_{P,N} - E_{P,N}^{opt}) = E_{f}^{P,N} \]
\[p_{f3} = (k + q_{3}) \]
\[E_{f}^{P,N} = \sqrt{p_{f3}^2 + M_{P,N}^2} + U_{opt}^{QE}(p_{f3}^2) + |V_{eff}| \]
\[T_{P,N} = E_{P,N} - M_{P,N} \]

The measurements of \(U_{opt}^{QE} \) for \(^{32}\)Fe and \(^{92}\)Mo are in good agreement with the Cooper 1993 and Cooper 2009 calculations. The measurements are more negative than the theory calculations for \(^{6}\)^{13}C/\(^{16}\)O, \(^{27}\)Al, and \(^{29}\)\(^{88}\)Ar, and the measurements are less negative than the theory calculations for \(^{239}\)\(^{208}\)Pb/\(^{197}\)Au. For the \(^{12}\)C nucleus, although both theory calculations of \(U_{opt}^{QE} \) are above the data, the Cooper 1993 calculations are closer to the data than the Cooper 2009 calculations.

4 Nuclear optical potential for a \(\Delta \) resonance in the final state \(U_{opt}^{\Delta} \)

For electron scattering from a bound nucleon the optical potentials for QE electron scattering and \(\Delta \) resonance production, are given below.

\[\nu + (M_{P,N} - E_{P,N}^{opt}) = E_{f}^{P,N} \]
\[p_{f3} = (k + q_{3}) \]
\[E_{f}^{P} = \sqrt{p_{f3}^2 + M_{P,N}^2} + U_{opt}^{QE}(p_{f3}^2) + |V_{eff}| \]
\[E_{f}^{N} = \sqrt{(k + q_{3})^2 + M_{N}^2} + U_{opt}^{QE} \]
\[E_{f}^{\Delta} = \sqrt{(k + q_{3})^2 + M_{\Delta} + U_{opt}^{\Delta}} \]

where, \(M_{\Delta} = 1.232 \) GeV is the mass of the \(\Delta \) resonance and \(|V_{eff}| = |V_{eff}|^{2} \). In order to extract the nuclear optical potential for a \(\Delta \) resonance we need to model the cross section between the QE peak and the \(\Delta \) resonance. We use the effective spectral function [23] (which includes a 2p2h contribution) to model the region of the QE peak. In the calculation of the inelastic cross section for the production resonances and the continuum we use Jiab fits [23] to the structure functions for protons and neutrons in the resonance region and continuum. These structure functions were extracted from inclusive electron scattering cross sections on hydrogen and deuterium. The proton and neutron structure functions are combined with the relativistic Fermi gas (RFG) to model the resonance production from nuclei.
Electron scattering on proton

\[
E = (E_0, p = E_0) \quad E' = (E_0 - \nu, p' = E')
\]

\[
electron
\begin{align*}
\nu_{\text{ct}} &= p + |V_{\text{eff}}| \\
E_{\text{ct}} &= E_0 \\
q &= (\nu, q_0)
\end{align*}
\]

\[
P_A
\]

Unobserved energy \(\epsilon_{P,N} = \langle E_P \rangle + \frac{k^2}{2M^*} \)

Proton

\[
E_i = (M_P - \epsilon_P, \mathbf{k})
\]

\[
E_{\text{vtx}} = E_i = T_i^\Delta + M_\Delta,
\]

\[
E'_{\text{vtx}} = E_i = T_i^\Delta + M_\Delta,
\]

\[
E' = (E_0 - \nu, p' = E')
\]

Electron scattering on neutron

\[
E = (E_0, p = E_0) \quad E' = (E_0 - \nu, p' = E')
\]

\[
electron
\begin{align*}
\nu_{\text{ct}} &= p + |V_{\text{eff}}| \\
E_{\text{ct}} &= E_0 \\
q &= (\nu, q_0)
\end{align*}
\]

\[
P_A
\]

Unobserved energy \(\epsilon_{P,N} = \langle E_P \rangle + \frac{k^2}{2M^*} \)

Neutron

\[
E_i = (M_N - \epsilon_P, \mathbf{k})
\]

\[
E_{\text{vtx}} = E_i = T_i^\Delta + M_\Delta,
\]

\[
E'_{\text{vtx}} = E_i = T_i^\Delta + M_\Delta,
\]

\[
E' = (E_0 - \nu, p' = E')
\]

Neutrino Scattering on Neutron

\[
E = (E_0, p = E_0) \quad E^\mu = (E_0 - \nu_\mu, p^\mu = E^\mu)
\]

\[
\begin{align*}
\nu_{\text{ct}} &= p + |V_{\text{eff}}| \\
E_{\text{ct}} &= E_0 \\
q &= (\nu_\mu, q_0)
\end{align*}
\]

\[
P_A
\]

Unobserved Removal Energy \(\epsilon^N = \langle E^N \rangle + \frac{k^2}{2M^*} \)

Neutron

\[
E_i = (M_N - \epsilon^N, \mathbf{k})
\]

\[
E^\Delta_{\text{vtx}} = E_i = T_i^\Delta + M_\Delta,
\]

\[
E^\Delta_{\text{vtx}} = E_i = T_i^\Delta + M_\Delta,
\]

\[
E^\mu = (E_0 - q_0, p^\mu = E^\mu)
\]

Antineutrino Scattering on Neutron

\[
E = (E_0, p = E_0) \quad E^\nu = (E_0 - \bar{\nu}_\mu, p^\nu = E^\nu)
\]

\[
\begin{align*}
\bar{\nu}_{\text{ct}} &= p + |V_{\text{eff}}| \\
E_{\text{ct}} &= E_0 \\
q &= (\bar{\nu}_\mu, q_0)
\end{align*}
\]

\[
P_A
\]

Unobserved Removal Energy \(\epsilon^N = \langle E^N \rangle + \frac{k^2}{2M^*} \)

Neutron

\[
E_i = (M_N - \epsilon^N, \mathbf{k})
\]

\[
E^\Delta_{\text{vtx}} = E_i = T_i^\Delta + M_\Delta,
\]

\[
E^\Delta_{\text{vtx}} = E_i = T_i^\Delta + M_\Delta,
\]

\[
E^\nu = (E_0 - q_0, p^\nu = E^\nu)
\]

\[\text{Fig. 4.}\] The top two panels show diagrams for electron scattering from an off-shell bound proton producing a \(\Delta^+ \) (left), and scattering from an off shell bound neutron producing a \(\Delta^0 \) (right). The bottom two panels show neutrino scattering from a bound neutron producing a \(\Delta^+ \) (left) and antineutrino scattering on a bound neutron producing a \(\Delta^- \) (right).

\[\text{Fig. 5.}\] Examples of fits for three out of 15 \^12C (1232) production differential cross sections. Here the QE peak is modeled with an effective spectral function (including 2p2h), and \(\Delta \) production is modeled by using RFG to smear fits to \(\Delta \) production structure functions on free nucleons. The solid black curve is the fit with the best value of \(U_{\text{opt}}^\Delta \). The dashed red curve is the prediction with \(U_{\text{opt}}^\Delta = V_{\text{eff}}^\Delta = 0 \).
Table 1. The second column shows values of $|V_{eff}|$ (MeV) for various nuclei. The third column shows the removal energies for protons and neutrons (MeV). The fourth and fifth columns show the intercepts (GeV) at $p^2 f_3 = 0$ and slopes (GeV/GeV2) of linear fits to U_{opt}^{QE} and U_{opt}^Δ versus $p^2 f_3$. The sixth and seventh columns show the results of a similar analysis versus the final state kinetic energy T. The overall systematic error on U_{opt}^{QE} is estimated at ±0.005 GeV. We show the slopes and intercepts for U_{opt}^{QE} and U_{opt}^Δ on alternate rows. (*The removal energies are (24.1, 27.0) for $^{16}_8 O$ and (30.9, 32.3) for $^{40}_20 Ca$.)
We use a subset of the measured electron scattering cross sections on nuclei that includes measurements of both QE and resonance production. To extract values of the nuclear optical potential for a Δ (1232) resonance in the final state (U_{Δ}^{opt}) we compare the data to predictions of the sum of QE and resonance production cross sections. In the fits the normalizations of the QE cross section, resonance cross sections and U_{Δ}^{opt} are varied to fit the data. Examples of fits for three out of 15 Δ (1232) production differential cross sections on 12C are shown in Fig. 5. The solid black curve is the fit with the best value of U_{Δ}^{opt}. The dashed red curve is the same fit with U_{Δ}^{opt} and $|V_{\text{eff}}|$ set to zero. The extracted values of U_{Δ}^{opt} versus p_f^2 from 12C are shown in the top panel of Figure 3. The same values as a function of the Δ kinetic energy T_Δ are shown on the bottom panel. The extracted values of $U_{\Delta}^{\text{opt}}(p_f^2)$ versus p_f^2 (and T_Δ) from 40Ca spectra and one 40Ar spectrum are shown in the top and bottom panels of Fig. 6.

Similarly values extracted of U_{Δ}^{opt} versus p_f^2 and T_Δ from two 6Li spectra, and three 27Al spectra are shown in the top two (and bottom two) panels of Fig. 7. As seen in the figures, the values of U_{Δ}^{opt} are more negative than the values of $U_{\text{QE}}^{\text{opt}}$. The Values of U_{Δ}^{opt} versus p_f^2 and T_Δ shown in Fig. 3 are fit to linear functions which are shown as as solid grey lines. The intercepts at $p_f^2 = 0$ and the slopes of the fits to U_{Δ}^{opt} versus p_f^2 as well as the intercepts and slopes of the fits to $U_{\text{QE}}^{\text{opt}}$ as a function of T_Δ are also given in Table 1.
Arie Bodek and Tejin Cai: Comparison of optical potential for nucleons and Δ resonances

56Fe Fit for U^Δ_{opt}

208Pb Fit for U^Δ_{opt}

Fig. 8. Same as Fig. 3 for 56Fe (top two panels) and 208Pb/197Au (bottom two panels).

5 Conclusion

We report on the extraction (from electron scattering data) of the nuclear optical potential for both nucleons and Δ (1232) resonances in the final state. This is the first measurement of the optical potential for the Δ (1232) resonance. The result indicate that:

1. The measurements of U_{opt}^{QE} for 3Li and 56Fe are in good agreement with the Cooper 1993[30] and Cooper 2009[31] calculations. The measurements are more negative than the theory calculations for 12C/16O, 27Al, and 40Ca/40Ar, and the measurements are less negative than the theory calculations for 208Pb/197Au. For the 12C nucleus, both theory calculations of U_{opt}^{QE} are above the data, the Cooper 1993[30] calculations are closer to the data than the Cooper 2009[31] calculations.

2. We find that the optical potential for a Δ resonance in the final state U^Δ_{opt} is more negative than the optical potential for a final state nucleon U^{QE}_{opt}. There are no theory predictions available for U^Δ_{opt}.

3. Using the measurements of these four parameters $\epsilon^{P,N}$, U_{opt}^{QE}, U^Δ_{opt}, and V_{eff}, we can model the energy of electrons, nucleons and Δ (1232) resonance in the final state. For neutrino oscillations experiments these measurements can reduce the systematic uncertainty in the reconstruction of the neutrino energy (originating from uncertainties in the removal energy and nuclear optical potentials) from ± 20 MeV[32] to ± 5 MeV.

References

1. Arie Bodek and Tejin Cai, "Removal Energies and Final State Interaction in Lepton Nucleus Scattering" Eur. Phys. J. C79 (2019) 293. arXiv:1801.07975 [nucl-th] 2018.

2. P. Gueye et al. "Coulomb distortion measurements by comparing electron and positron quasielastic scattering off 12C and 208Pb", Phys. Rev. C60, 044308 (1999).

3. Quasielastic Electron Nucleus Scattering Archive, O. Benhar, D. Day and T. Sick, Rev. Mod. Phys. 80, 189-224, 2008.

4. F.H. Heimlich et al, Nuclear Physics A 231, 509 (1979) (Li6 Heimlich:1973); F.H. Heimlich et al. Nucl. Phys. A231 (1974) 509 (Li6 Heimlich:1974rk).

5. R. Sealock et al. Phys, Rev. C9, 2230 (1974) (Li6,C12,Ca40,Pb208 Whitney:1974hr).

6. P. Barreau et al. Nucl. Phys. 402A (1983) 515 (C12 Barreau:1983ht).

7. R. Sealock et al, Phys. Rev. Lett., 62, 1350-1353,1989 (C12, Fe56 Sealock:1989nx).
8. D. Baran et al., Phys. Rev. Lett., 61, 1988 400-403 (C12, Fe56 Baran:1988tw).
9. Bagdasaryan, D. S. and others, YERPHI-1077-40-88 (C12, Fe56 Bagdasaryan:1988hp).
10. Diethelm Zeller, DESY Internal Report F23-73-2/2 (1973); F.H. Heimlich et al. DESY Report 74/20 (1974) (C12 Zeller:1973ge).
11. J. Arrington et al., Phys. Rev C 53 (1996) 2248 (C12, Fe56 Arrington:1996hs).
12. Fomin, N. et al. Phys.Rev.Lett. 105 (2010) 212502 (C12 Fomin:2010oi).
13. M. Anghinolfi et al. Nucl. Phys. A602 (1996) 405 (O16 Anghinolfi:1996vm).
14. J.S. O’Connell et al. Phys. Rev. C 35 (1987) 1243 (C12, O16 O’Connell:1987ag).
15. H. Dai et al. [arXiv:1810.10575 [nucl-ex]] (Ar40 E12-14-012).
16. M. Anghinolfi et al., J. Phys. G: Nucl. Pan. Phys. 21 (1995) L9-L15. (Ar40 Anghinolfi:1995).
17. P.Y. Bosted et al., Phys. Rev. C 46, (1992) 2505 (Al27 Bosted:1992fy), Steve Rock, private comm. (Al27 Rock-pec).
18. C.F. Williamson et al. Phys. Rev. C. 56 (1997) 3152M and T.C. Yates et al. Phys. Lett. B 312 (1993) 382 (Ca40 Williamson:1997).
19. A. Hotta et al. Phys. Rev. C 30 (1984) 87(Fe Hotta:1994).
20. Z.E. Meziani et al. Phys. Rev. Lett. 52 (1984) 2130 (Ca40 Fe56 Meziani:1984is).
21. J. Arrington et al., Phys. Rev. Lett. 82, 20562059 (1999) (Fe56 Arrington:1999ps).
22. J. P. Chen et al. Phys. Rev. Lett. 66, 1283 (1991) (Fe56 Chen:1990kq).
23. D. B. Day, Phys. Rev. C48, 1849 (1993) (Fe56 Day:1993md).
24. A. Zghiche et al., Nucl. Phys. A 572 (1994) 513. (Pb208 Zghiche:1993sg).
25. A. Bodek, M. E. Christy, B. Coopersmith, "Effective Spectral Function for Quasielastic Scattering on Nuclei, Eur. Phys. J. C74 (2014) 3091 [arXiv:1405.0583 [hep-ph]]
26. M. E. Christy, private communication.
27. Artur M. Ankowski, private communication.
28. Artur M. Ankowski, Omar Benhar, and Makoto Sakuda, "Improving the accuracy of neutrino energy reconstruction in charged-current quasielastic scattering off nuclear targets" [Phys. Rev. D 91, 033005 (2015) [arXiv:1404.5687
29. Jose Manuel Udias, private communication.
30. E. D. Cooper, S. Hama, B. C. Clark, and R.L.M. Mercer, Phys. Rev. C47, 297 (1993).
31. E. D. Cooper, S. Hama, and B. C. Clark, Phys. Rev. C80, 034605 (2009).
32. Simon Bienstock (2018). Studying the impact of neutrino cross-section mismodelling on the T2K oscillation analysis, in proceeding of NEUTRINO 2018 [poster session 35 contribution 173]