Original paper

Distribution of eleven markers in South Romanian (Walachia region) population

REMUS NICA¹, LAVINIA-MARIANA BERCA²*, CLAUDIA-ELENA MOSOIU²*, SILVIA NICA³

¹Surgery Clinic II, Central Military Emergency Clinical Hospital, Bucharest, Romania
²National Institute of Research and Development for Food Bioresources – IBA Bucharest, Bucharest, Romania
³Bucharest Emergency University Hospital, Bucharest, Romania

Abstract

The South Romanian population has not been well studied at the genetic level. This study aims to investigate the genetic distribution of di-allelic DNA polymorphisms associated with different diseases in the South Romanian population. We investigated eleven di-allelic DNA polymorphisms in blood samples from 648 healthy Caucasian subjects (age 18-66 years old) from Bucharest and eight South Romanian districts. All markers present no significant deviation from expected Hardy–Weinberg equilibrium even if subjects were stratified according to the birth place, gender or age group. The frequency of allelic variants and genotypes in South Romanian areas situates in the range of values found with other Caucasian populations. When testing the distribution between the tested districts only VDR Fok was found to present a different distribution in samples from Bucharest and in those from Calarasi, Dambovita or Teleorman (p < 0.00008). Excepting MTHFR and MTR no other difference was detected between the age grouped subjects. MTHFR 677T allele increases progressively from subjects of 59-66 years old to those with 18-26 years (21.7% vs. 41%, p = 0.003). The highest difference of heterozygosity was found between the subjects in Bucharest and Giurgiu or Olt.

Keywords
Di-allelic markers, heterozygosity, MTHFR 677T allele.

To cite this article: NICA R, BERCA L-M, MOSOIU C-E, NICA S. Distribution of eleven markers in South Romanian (Walachia region) population. Rom Biotechnol Lett. 2020; 25(2): 1424-1431. DOI: 10.25083/rbl/25.2/1424.1431

*Corresponding author: LAVINIA-MARIANA BERCA, CLAUDIA-ELENA MOSOIU, National Institute of Research & Development for Food Bioresources – IBA Bucharest, 5 Baneasa Ancuta Street, 020323, Telephone: +4031.6205833, Bucharest, Romania
E-mail: laviniamariana.berca@gmail.com, claudia.mosoiu@bioreurse.ro
Introduction

The large scale resequencing projects and improvement of the bioinformatics tools accelerate the characterization of human genome. Genomic similarities between individuals are helpful for defining a species whereas genetic differences (e.g. polymorphisms, mutations) are useful for different research areas. Autosomal markers have been used more frequent for biomedical diagnosis, forensics or testing the population structure whereas heterosomal and mitochondrial markers have been preferred for genealogical, evolutionary and phylogeography studies. Di-allelic markers (e.g. SNPs, InDels) provide a more reduced statistical power compared to multiallelic markers (e.g. microsatellites) but frequency and distribution throughout the entire genome turn them into useful tools for genetic studies.

Characterization of population at the genetic level remains a difficult problem, despite the theoretical and technological innovations in the last decades. So far, only some markers relevant for forensics or for estimation of gene flow have been tested in Romanian population. Thus, analysis of Y chromosome markers indicated the role of Carpathian Mountain on gene flow between East and West [1] whereas investigation of 15 STR loci suggested that the population in South Romania is genetically more similar to Slavic populations of Croatia and Serbia than to other surrounding populations [2]. In some studies the association between genetic markers and different diseases has been tested in our populations. However, the results obtained in these studies may be influenced by the selection criteria of subjects [3-7].

The aim of this study was to assess the distribution of eleven common di-allelic markers in healthy population living in South Romania. These markers are associated with some common human diseases in different human populations [8-10].

Materials and Methods

Investigated area and Subjects. A total of 648 clinically healthy subjects from Bucharest and Calarasi, Dambovita, Dolj, Giurgiu, Ialomita, Ilfov, Olt and Teleorman districts (formally known as Walachia region) were selected for this study. Both genders are equally represented in each district (36 males and 36 females) (Table 1).

Table 1. The main data of subjects selected from the area of interest situated in South Romania

District characteristics	Sample characteristics							
Name	Population*	Age (M±SD)	Fasting plasma glucose (mg/dl)	Total cholesterol (mg/dl)	Triglycerides (mg/dl)	Smokers (Current/ Former)	Drinkers (Current/ Former)	Education: college/faculty/other
Bucharest	1926334	44±8.7	91±8 (70-109)	163±18.1 (121-215)	107±16.2 (65-139)	18/12	15/14	57/7/8
Calarasi	324617	41±8.93	92±7.14 (72-107)	161±18.05 (120-196)	104±19.35 (53-145)	8/8	8/4	62/3/7
Dambovita	541763	42±9.93	89±9.37 (71-108)	171±22.32 (123-217)	111±17.01 (73-147)	7/7	3/3	59/4/9
Dolj	734231	43±10.42	91±7.93 (70-108)	164±20.36 (136-211)	108±16.5 (63-141)	11/10	5/3	56/5/11
Giurgiu	297859	51.7±9.1	92±5.91 (71-109)	160±18.06 (122-193)	108±17.34 (69-146)	8/10	8/7	58/4/10
Ialomita	796572	43±11.19	94±6.72 (76-109)	162±18.64 (123-197)	110±15.5 (69-150)	10/9	4/5	58/3/11
Ilfov	300123	42±10.26	93±6.96 (81-109)	161±20.38 (114-198)	95±16.1 (61-143)	17/14	7/7	57/6/9
Olt	489274	41±10.74	89±10.17 (72-108)	170±22.35 (115-228)	108±19.06 (68-145)	8/9	5/2	61/2/9
Teleorman	436025	42±11.3	93±7.72 (73-109)	162±21.71 (112-210)	106±16.26 (58-132)	9/9	7/4	64/2/6

*Data according to national census published in 2002

All subjects identified themselves as Romanian Caucasians and as dwellers of these districts for at least three generations. Other criteria for selection were: age between 18-66 years, normal blood pressure (≤ 130/90 mmHg after five minutes of rest in supination) and fasting glycaemia level (< 110 mg/dl). Smoking (more than five cigarettes per day, for at least one year) and drinking (at least 25 g of alcohol per day, for at least one year) habits and education levels were also recorded. Subjects with ages above 66 were not included in this study because the allele frequencies in elderly populations may be changed as a result of survival bias.

The design of the study was in accordance with internationally agreed ethical standards (Declaration of Helsinki, 1964). Ethics Committee approval and participants’ consent were obtained before commencement of the research.

DNA Analysis. DNA extracted with AxyPrep™ Blood Genomic DNA Miniprep Kit (Axygen Scientific, Inc., CA, USA) from 0.25 ml of blood samples.

The markers were selected based on three main criteria: they are di-allelic and have a minimum allele frequency (MAF) of 5% being located within or in tightly linkage with candidate genes for common disease. The selected...
polymorphisms were: MTHFR C677T (rs1801133) (1p36.3), HSPG BamH1 T/G (rs3767140) (Intron 6) (1p36-p34), LECAM P213S (rs2229569) (1q23-q25), MTR A2756G (rs1805087) (1q43), ATR1 A1166C (rs5186) (3q21-q25), eNOS ID 4a / 5b (No rs number) (7q36), Insulin +1127Pst (rs3842752) (11p15.5), IGF2 Apa (rs680) (11p15.5), VDR Fok T/C, (rs10735810 has merged into rs2228570) (12q13), ACE ID (rs4646994) (Intron 16), TGF-beta -509C/T (rs1800469) (19q13). Genotyping was performed using PCR or PCR-RFLP and the allele and genotype frequencies were estimated by direct counting. Ten percent of random selected samples have been re-genotyped by a second researcher to assure a quality control of genotyping process.

Table 2. Distribution of genotypes and allelic variants in South Romania

Marker	Genotype	Calarasi	Dambovita	Dolj	Giurgiu	Ialomita	Ilfov	Olt	Teleorman	Bucharest
MTHFR C677T		W	M	W	M	W	M	W	M	M
CC	19	20	17	19	16	21	14	20	13	19
CT	16	14	16	13	17	11	18	13	15	12
TT	1	2	3	4	4	3	8	5	6	3
MTR A2756G		W	M	W	M	W	M	M	M	W
AA	25	26	21	27	24	23	28	25	24	23
AG	11	10	13	9	10	13	12	7	11	11
GG	0	0	2	0	2	1	1	1	0	3
HSPG Bam		W	M	W	M	W	M	M	W	M
CC	15	20	23	14	21	20	15	18	17	23
CT	17	12	14	11	16	13	15	10	12	15
TT	4	4	1	8	4	0	8	3	4	3
LECAM P213S		W	M	W	M	W	M	M	W	M
CC	19	25	25	23	26	21	21	25	28	24
CT	14	9	12	9	14	12	10	7	13	13
TT	3	2	2	1	1	1	3	1	1	2
Insulin Pst		W	M	W	M	W	M	M	W	M
AA	27	22	23	27	28	22	25	22	21	22
AT	7	10	14	8	12	10	11	14	8	14
GG	2	0	3	2	0	2	1	3	1	2
IGF2 GA		W	M	W	M	W	M	M	W	M
AA	4	1	5	1	3	2	4	5	2	4
CC	18	18	12	12	13	17	13	15	15	14
CT	14	15	15	19	20	15	19	17	18	19
TT	4	3	1	5	4	3	4	4	3	4
VDR Fok		W	M	W	M	W	M	M	W	M
BB	24	24	23	23	25	22	25	21	24	21
AB	14	10	12	13	10	13	11	10	12	14
Aa	1	2	1	0	1	0	5	1	3	1
ACE ID		W	M	W	M	W	M	M	W	M
AA	25	26	21	24	26	19	26	18	23	20
AC	9	16	14	8	11	10	16	9	15	13
CC	2	4	1	2	1	0	1	1	3	2

Statistical analysis. Data are presented as mean ±SD. PowerMarker v3.25 was used to calculate summary statistics, deviation from Hardy Weinberg Equilibrium and significance of marker distribution between groups [11]. The p values ≤ 0.05 or Bonferroni corrected for adequate number of tests were considered significant.

Results and Discussion.

A total of 22 allelic variants were observed at the 11 polymorphisms in samples from each South Romanian district (Table 2).
The minor allele frequency (MAF) were estimated to be within 18.9% for the MTR A2756G and 44.98% for ACE ID (Table 3). For eNOS polymorphism we identified only two allelic variants which are specific for Caucasian populations; the allelic variants with two, three and six repeats found in African-American populations were not identified [12].

Table 3. Summary statistics and Classic F statistics for markers in the entire lots (n = 648 subjects) (PowerMarker v3.25)

Marker	MAF	Gene Diversity	Heterozygosity	PIC	Theta	F	f
MTHFR	0.3148	0.4314	0.4074	0.3384	0.0005	0.056	0.056
MTR	0.1890	0.3066	0.3164	0.2596	-0.0008	-0.031	-0.01
HSPG	0.3210	0.4359	0.4043	0.3409	0.0003	0.073	0.073
TGFb	0.3125	0.4297	0.4090	0.3374	0.0034	0.049	0.046
LECAM	0.1998	0.3198	0.3133	0.2687	-0.0025	0.021	0.023
Insulina	0.1991	0.3189	0.3148	0.2680	-0.0029	0.014	0.016
IGF2	0.2994	0.4195	0.4228	0.3315	0.0054	-0.007	-0.012
VDR	0.3650	0.4635	0.4985	0.3561	0.0171	-0.072	-0.091
eNOS	0.2029	0.3235	0.3287	0.2712	-0.0002	-0.015	-0.015
ACE	0.4498	0.4950	0.4892	0.3725	0.0001	0.012	0.012
ATR1	0.2238	0.3474	0.3611	0.2870	0.0078	-0.038	-0.046
Mean	0.2797	0.3901	0.3878	0.3119	0.003	0.007	0.004

The next step was to identify the distribution of genetic markers between districts. After correction of significance level for multiple tests only VDR Fok presented statistically significant differences between Bucharest and Calarasi, Dambovita or Teleorman (e.g. p < 0.00008) although other markers are no similarly represented in investigated districts (p < 0.05).

Multifactorial diseases associated with the investigated polymorphisms shows a different sex distribution. Starting from this observation we tested the distribution of polymorphisms correlated with the gender of subjects. The chi-square test was used to compare the distribution of genotypes (allelic variants) between man and women from the same district or age group (PowerMarker v3.25).

The marginal significant difference between men and women from the same district was found in Dambovita (TGFb: p = 0.003, VDR: p = 0.032), Teleorman (ATR1: p = 0.022), Calarasi (ATR1: p = 0.035), Olt (MTHFR: p = 0.045), Giurgiu (HSPG: p = 0.048) district. These differences did not remain statistically significant after Bonferroni correction was applied.

The distribution of genetic markers with subjects stratified by age group has been performed. A progressively increase of MTHFR 677T allele with the middle age to the youngest subjects (18-26 vs. 43-66 years old, p value: 0.03-0.003) was detected. In sublots of subjects grouped according to the age, MTR was differently represented between 51-58 and 59-66 years old subjects (Table 4).

Table 4. The MAF distribution according to the age group. (2-tailed Z score) \(^a^p < 0.05; \(^b^p < 0.003; \(^c^p < 0.002\)

Subjects number	18-26	27-34	35-42	43-50	51-58	59-66
MTHFR	0.4100	0.3857	0.3492	0.2682\(^c\)	0.2536\(^b\)	0.2170\(^b\)
MTR	0.2000	0.2000	0.2039	0.1875	0.0870	0.2453\(^a\)
HSPG	0.2600	0.2714	0.3296	0.3229	0.3696	0.3774
TGFb	0.3200	0.3143	0.3296	0.2891	0.3043	0.3396
LECAM	0.2200	0.1905	0.1983	0.2161	0.2101	0.1321
Insulin	0.2800	0.2381	0.1704	0.1953	0.1812	0.1792
IGF2	0.2900	0.3286	0.2877	0.2917	0.2826	0.3396
VDR	0.3700	0.4048	0.3464	0.3672	0.3116	0.4057
eNOS	0.2300	0.2095	0.1704	0.1849	0.2971	0.2170
ACE	0.4800	0.4238	0.4860	0.4583	0.3551	0.4434
ATR1	0.2100	0.1857	0.2514	0.2161	0.2319	0.2358
Hardy–Weinberg equilibrium tests demonstrated no significant deviation from expected values (after Bonferroni correction) for all of the 11 markers in each lot, or in subjects stratified according to the gender or age groups.

The observed heterozygosity was found to be in the range 0.31 (for LECAM) and 0.49 (for VDR) and differ between Bucharest and Giurgiu or Olt (p = 0.001) (Table 5).

Table 5. The heterozygosity values for Bucharest and Ilfov differ from the other districts (p values for “t Student” test). *p < 0.05 and b p (corrected for 36 tests) < 0.0013

Districts	Bucuresti	Calarasi	Dambovita	Dolj	Giurgiu	Ialomita	Ilfov	Olt	Teleorman
Bucuresti	-	0.0018 a	0.0029 a	0.0097 a	0.0008 b	0.0026 a	0.5204	0.0010 b	0.0018 a
Calarasi	-	0.7476	0.8759	0.5810	0.8953 b	0.0076 a	0.6501	0.6733	
Dambovita	-	-	0.6803	0.8761	0.8510	0.0101 a	0.9385	0.9417	
Dolj	-	-	0.5463	0.7980	0.0313 a	0.6009	0.6190		
Giurgiu	-	-	0.7043	-	0.0030 a	0.9304	0.9350		
Ialomita	-	-	-	0.0098 a	0.7705	0.7841			
Ilfov	-	-	-	-	0.0041 a	0.0064 a			
Olt	-	-	-	-	-	1.0000			
Teleorman	-	-	-	-	-	-			

The analysed polymorphisms did not statistically significantly associate (after Bonferroni correction) with blood pressure and BMI values regardless of gender.

The overall theta calculated for tested population was 0.003 and the highest theta value for the investigated markers corresponds to VDR (0.017). The polymorphism information content (PIC) values ranged from 0.2596 for MTR A2756G polymorphism to 0.3725 for ACE ID with an average PIC of 0.31. The entire dataset of observed heterozygosity (heterogeneity chi square p = 0.99), gene diversity or PIC (“t Student” test p values > 0.06) did not differ significantly between districts.

Delineation of a population for a genetic study based on physical characters, historic, geographical, linguistic, ethnic affiliation may be subjective and it may not reflect the natural assignment in genetic terms. Although understanding the genetic structure of population is crucial for improving the efficiency of studies on a global or regional scale, there are some ethical and economic limitations in using a large panel of genetic markers.

In the present study we investigated the distribution of eleven di-allelic markers in the Caucasian population from Bucharest and eight districts located between the Carpathian Mountains and the Danube River (previously known as Walachia region). These districts cover 15.8% of the country area and are inhabited by 24.7% of the Romanian population. The population in this region is considered to be homogenous from ethnic, linguistic and socio-cultural point of view (96.5% of the dwellers are Romanians). The samples from Bucharest city were investigated because selected subjects self-identified as dwellers of the city for at least three generations (this covers a period of time when the city was closed for registering new dwellers).

Two of the strategies used for estimating the existing genetic diversity within or between populations are testing Hardy–Weinberg equilibrium and F-statistics. The deviation from Hardy–Weinberg equilibrium represents a strong evidence for population substructure, especially if the genotyping errors are excluded. In order to check for genotyping errors, 10% of samples were blindly rescored by an independent researcher. Because no difference in genotype allocated to these samples was detected we proceed to perform statistical tests.

In the present study we investigated the distribution of eleven di-allelic markers in the Caucasian population from Bucharest and eight districts located between the Carpathian Mountains and the Danube River (previously known as Walachia region). These districts cover 15.8% of the country area and are inhabited by 24.7% of the Romanian population. The population in this region is considered to be homogenous from ethnic, linguistic and socio-cultural point of view (96.5% of the dwellers are Romanians). The samples from Bucharest city were investigated because selected subjects self-identified as dwellers of the city for at least three generations (this covers a period of time when the city was closed for registering new dwellers).

The condition of Hardy–Weinberg equilibrium was accomplished in the investigated lots, even if the subjects from each district are stratified according to gender. A deviation from the equilibrium condition was observed in subjects grouped according to the age: in the subjects between 18-26 (e.g. HSPG, LECAM, Insulin), 35-42 (e.g. eNOS, VDR) and 51-58 (e.g. TGFβ), these differences being not significant after Bonferroni correction was applied (at p < 0.0045).

Data regarding distribution of disease associated markers frequently come from case control studies, in which tested subjects are not necessarily representative for the population and may need correction for population stratification. Selective pressure can determine population specific allele frequency and population specific disease risk. For di-allelic markers a reasonable estimation of allele frequency in a population can be realized by genotyping at least 100-150 samples [13]. We consider that the selection criteria and the number of tested samples reduced the possibility of significant errors on estimated allele frequencies, although our multigenerational samples may contain any kin groups (e.g. cousins, half and full sibs). Allele frequencies in Romanian samples were compared to previous population studies on healthy and unrelated
individuals. Broadly, the allele frequencies were comparable with a number of studies on Caucasian populations.

From the eleven investigate markers only the VDR Fok is differently represented in Bucharest vs. Calarasi, Dâmbovita or Teleorman (p < 0.00008).

Some markers from INS-IGF2 [14-16], ACE [17-21], VDR [22-24], TGFβ [25], MTR [26], MTHFR genes change the distribution according to the age and they seem to be associated with some selective advantage [27, 28], early mortality [29-30] or longevity whereas a substantial number of studies found no such effects. For example, the MTHFR 677T allele tends to become a common allele (50.5%) in newborns from Italy [31].

When distribution of markers was investigated in age grouped subjects a progressively increase of the MTHFR 677T allele in subjects between 59-66 years old to those between 18-26 (21.7% vs 41%, p = 0.0033) was detected. These observations concur with previous reports in Spain [32-34], Italy (women from Sicily) [35], Swiss [36], Ashkenazi women [37] and Japan [38] which report the increase in the frequency of the MTHFR 677 TT genotype or of T allele in younger generations. These findings are in apparent contrast to results obtained in French [39] and *Swedish* [40] where only a trend towards a lower frequency of the mutation in elderly was described. MTHFR 677C/T is not an important determinant of life span in Jordanian [41] population.

During the period when subjects selected for this study were born, early folate treatment for the pregnant women in Romania was not a generalized practice. To clarify the relation between MTHFR C677T and age, our data must be reconfirmed in studies involving subjects born, early folate treatment, multivitamins and biomarkers of folate status are required.

The polymorphism insulin-mediated mRNAs is similar distributed among subpopulations overall theta (0.003), and the values for theta, PIC (p > 0.25) in investigated districts. The distributions of genotypes and allelic variants and the values for theta, PIC and gene diversity indicate no significant differentiation of population in investigated area.

Conclusion

The distribution of markers in our districts is similar to those published for other Caucasian populations. VDR Fok presents a different distribution in Bucharest and Calarasi, Dâmbovita or Teleorman. The frequency of MTHFR 677T allele progressively increases from the middle age subjects to the youngest ones. The relevance of the result may be evaluated in an extended context to decipher its potential adaptive significance.

Acknowledgements

The authors wish to thanks PhD Cimponeriu Danut for assistance in study design and sample genotyping.

References

1. ȘTEFAN M, ȘTEFĂNESCU G, GAVRILĂ L, TERRENATO L, JOBLING MA, MALASPINA P, NOVELLETTO A. Y chromosome analysis reveals a sharp genetic boundary in the Carpathian region. *Eur J Hum Genet*, 9(1):27-33 (2001).

2. STANCIU F, STOIAN IM, POPESCU OR. Population data for 15 short tandem repeat loci from Wallachia Region, South Romania. *Croat Med J*, 50(3):321-325 (2009).

3. CRISTESCU C, RUSU E, CRISTESCU V, BERCA LM, NICULAEN OM, CIMPONERIU D, SPANDOLE S, TOMA E, CRACIUN AM, SERAFINEANU C. The associations between common polymorphisms in INSULIN, IGF2, NAIIP and SELL, genes and the risk for TIDM. *Rom Biol Letters*, D. CIMPONERIU, P APOL, I. RADU, A.M. CRACIUN, C. SERAFINEANU, M. TOMA, C. PANAITE, D. CHETA. The polymorphism insulin -23Hph increase the risk for type 1 diabetes mellitus in Romanian population. *Genet Mol Biol*, 33(4):610-614 (2010).

4. TOMA M, STAVARACHI M, POPA E, SERAFINEANU C, SPANDOLE S., CIMPONERIU D, RADU I, BERCA LM, ION DA. Insulin-like growth factor genetic variation, colorectal cancer and diabetes. *Rom Biol Letters*, 18(4):8475-8480 (2013).

5. BURCOS T, TOMA M, STAVARACHI M, CIMPONERIU D, APOSTOL P, AZELENCEA C, STĂNILSCU S, POPA I, RADU I, SERAFINEANU C, PANDURU N, BELESIUC A, GAVRILA L. MTRR polymorphism and the risk for colorectal and breast cancer in Romanian patients – a preliminary study. *Chirurgia*, 105(3):379-382 (2010).

6. STAVARACHI M, APOSTOL P, CIMPONERIU D, TOMA M, BUTOIANU N, GAVRILA L. Possible
association between L-selectin gene P213S polymorphism and respiratory complications of childhood spinal muscular atrophy patients. Rom Biol Letters, 14(1):4119-4122 (2009).

8. CIMPONERIU D, CRĂCIUN CAM, APOSTOL P, RADU I, GUJA C, CHEŢA D. Cap 4. The genetic background of diabetes chronic complications. In Genetics of Diabetes. The Truth Unveiled. Cheţa D (editor), Editura Academiei Române, Bucureşti & Editura Karger, Basel, pp. 193-334 (2010).

9. CIMPONERIU D, APOSTOL P, RADU I, CHEŢA D, PANAITE C, BALAS B. Cap VI. Genetic bases of vascular complications in diabetes mellitus. In Vascular Involvement in Diabetes: Clinical, Experimental and Beyond, Cheţa D (editor), Editura Academiei Române, Bucureşti & Editura Karger, Basel, pp. 81-119 (2005).

10. BERCA LM, NICA RI, ADASCALULUI M, RADU I, CIMPONERIU GD. Factori de risc în apariția cancerului de sân. Editura Universitară, 100-126 (2016).

11. LIU K, MUSE SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9):2128-2129 (2005).

12. HOOPER WC, LALLY C, AUSTIN H, BENSON J, DILLEY A, WENGER NK, WHITSETT C, RAWLINS P, EVATT BL. The relationship between polymorphisms in the endothelial cell nitric oxide synthase gene and the platelet GPIIia gene with myocardial infarction and venous thromboembolism in African Americans. Chest 116(4):880-886 (1999).

13. CHAKRABORTY R. Sample size requirements for addressing the population genetic issues of forensic use of DNA typing. Hum Biol, 64(2):141-159 (1992).

14. DE LUCA M, ROSE G, BONAFÈ M, GARASTO S, GRECO V, WEIR BS, FRANCESCHI C, DE BENEDICTIS G. Sex-specific longevity associations defined by Tyrosine Hydroxylase-Insulin-Insulin Growth Factor 2 haplotypes on the 11p15.5 chromosomal region. Exp Gerontol, 36(10):1663-1671 (2001).

15. LESCAI F, BLANCHÉ H., NEBEL A, BEEKMAN M, SAHBATOU M, FLACHSBART F, SLAGBOOM E, SCHREIBER S, SORBİ S, PASSARINO G, FRANCESCHI C. Human longevity and 1p15.5: a study in 1321 centenarians. Eur J Hum Genet 17(11):1515-1519 (2009).

16. PAWLIKOWSKA L, HU D, HUNTSMAN S, SUNG A, CHU C, CHEN J, JOYNER AH, SCHORK NJ, HSUEH WC, REINER AP, PSATY BM, ATZMUN G, BARZILAI N, CUMMINGS SR, BROWNER WS, KWOK PY, ZIV E. Study of Osteoporotic Fractures. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8(4):460-472 (2009).

17. DA CRUZ IB, OLIVEIRA G, TAUFER M, LEAL NF, SCHWANKE CH, GLOCK L, MORIGUCHI Y, MORIGUCHI EH. Angiotensin I-converting enzyme gene polymorphism in two ethnic groups living in Brazil’s southern region: association with age. J Gerontol A Biol Sci Med Sci, 58(9):M851-M856 (2003).

18. PANZA F, SOLFRIZZI V, D’INTRONO A, COLACICCO AM, CAPURSO C, KEHOE PG, CAPURSO A. Angiotensin I converting enzyme (ACE) gene polymorphism in centenarians: different allele frequencies between the North and South of Europe. Exp Gerontol, 38:1015-1020 (2003).

19. SAYED-TABATABAEI FA, OOSTRA BA, ISAACS A, VAN DUINU CM, WITTEMAN JC. ACE polymorphisms. Circ Res, 98(9):1123-1133 (2006).

20. FORERO DA, PINZÓN J, ARBOLEDA GH, YUNIS JJ, ALVAREZ C, CATANO N, ARBOLEDA H. Analysis of common polymorphisms in angiotensin-converting enzyme and apolipoprotein e genes and human longevity in Colombia. Arch Med Res, 37(7):890-894 (2006).

21. NACMIAS B, BAGNOLI S, TETDE A, CELLINI E, BESSI V, GUARNIERI B, ORTENSI L, PIACENTINI S, BRACCO L, SORBİ S. Angiotensin converting enzyme insertion/deletion polymorphism in sporadic and familial Alzheimer’s disease and longevity. Arch Gerontol Geriatr, 45(2):201-6 (2007).

22. KUNINGAS M, MOOJAAART SP, JOLLES J, SLAGBOOM PE, WESTENDORP RG, VAN HEEMST D. VDR gene variants associate with cognitive function and depressive symptoms in old age. Neurobiol Aging, 30(3):466-473 (2009).

23. LAPLANA M, SÁNCHEZ-DE-LA-TORRE M, AGUILÓ A, CASADO I, FLORES M, SÁNCHEZ-PELLICER R, FIBLA J. Tagging long-lived individuals through vitamin-D receptor (VDR) haplotypes. Biogerontology 11(4):437-446 (2010).

24. DE JONGH RT, LIPS P, RIJS KJ, VAN SCHOOOR NM, KRAMER MH, VANDENBROUCKE JP, DEKKERS OM. Associations between vitamin D receptor genotypes and mortality in a cohort of older Dutch individuals. Eur J Endocrinol, 164(1):75-82 (2011).

25. CARRIERI G, MARZI E, OLIVIERI F, MARCHEGIANI F, CAVALLONE L, CARDELLI M, GIOVAGNETTI S, STECCONI R, MOLENDINI C, TRAPASSI C, DE BENEDICTIS G, KLETSAS D, FRANCESCHI C. The G/C915 polymorphism of transforming growth factor betal is associated with human longevity: a study in Italian centenarians. Aging Cell, 3(6):443-448 (2004).

26. LINNEBERG M, FLIESSBACH K, KOL SCH H, RIETSCHEL M, WULLNER U. The methionine synthase polymorphism c.2756A→G is associated with disease-free longevity. Int J Mol Med, 16(4):759-761 (2005).

27. ROSENBERG N, MURATA M, IKEDA Y, OPARES SEM O, ZIVELIN A, GEFFEN E, SELIGSOHN U. The frequent 5,10-methylenetetrahydrofolate reductase
C677T polymorphism is associated with a common haplotype in whites, Japanese, and Africans. *Am J Hum Genet*, 70(3):758-762 (2002).

28. CALLEJÓN G, MAYOR-OLEA A, JIMÉNEZ AJ, GAITÁN MJ, PALOMARES AR, MARTÍNEZ F, RUIZ M, REYES-ENGEL A. Genotypes of the C677T and A1298C polymorphisms of the MTHFR gene as a cause of human spontaneous embryo loss. *Hum Reprod*, 22(12):3293-3294 (2007).

29. FREDERIKSEN H, GAIST D, BATHUM L, ANDERSEN K, MCGUE M, VAUPEL JW, CHRISTENSEN K. Angiotensin I-converting enzyme (ACE) gene polymorphism in relation to physical performance, cognition and survival – a follow-up study of elderly Danish twins. *Ann Epidemiol*, 13(1): 57-65 (2003).

30. ARIAS-VÁSQUEZ A, SAYED-TABATABAEI FA, SCHUT AF, HOFMAN A, BERTOLLI-AVELLA AM, VERGEER JM, AULCHENKO YS, WITTEMAN JC, VAN DUIJN CM. Genetic selection and folate intake during pregnancy. *Eur J Clin Invest*, 35(7): 444-449 (2005).

31. ZÁPPACOSTA B, ROMANO L, PERSICHILLI S, CUTRONE LA, GRAZIANO M, VITRANI A, DI CASTELNUOVO A, GIARDINA B, MUSUMECI S. Genotype Prevalence and Allele Frequencies of 5,10-Methylenetetrahydrofolate Reductase (MTHFR) C677T and A1298C Polymorphisms in Italian Newborns. *Labmedicine*, 40(12):732-736 (2009).

32. MUÑOZ-MORAN E, DIEGUEZ-LUCENA JL, FERNANDEZ-ARCAS N, PERAN-MESA S, REYES-ENGEL A. Genetic selection and folate intake during pregnancy. *Lancet*, 352(9134):1120-1121 (1998).

33. REYES-ENGEL A, MUÑOZ E, GAITAN MJ, FABRE E, GALLO M, DIEGUEZ JL, RUIZ M, MORELL M. Implications on human fertility of the 677C>T and 1298A>C polymorphisms of the MTHFR gene: consequences of a possible genetic selection. *Mol Hum Reprod*, 8(10):952-957 (2002).

34. MAYOR-OLEA A, CALLEJÓN G, PALOMARES AR, JIMÉNEZ AJ, GAITÁN MJ, RODRÍGUEZ A, RUIZ M., REYES-ENGEL A. Human genetic selection on the MTHFR 677G>T polymorphism. *BMC Med Genet*, 9:104 (2008).

35. AGODI A, BARCHITTA M, VALENTI G, MARZAGALLI R, FRONTINI V, MARCHESE AE. Increase in the prevalence of the MTHFR 677 TT polymorphism in women born since 1959: potential implications for folate requirements. *Eur J Clin Nutr*, 65(12):1302-1308 (2011).

36. TODESCO L, ANGST C, LITYNSKI P, LOEHRER F, FOWLER B, HAEFELI WE. Methylenetetrahydrofolate reductase polymorphism, plasma homocysteine and age. *Eur J Clin Invest*, 29(12):1003-1009 (2001).

37. STESSMAN J, MAAARAVI Y, HAMMERMAN-ROZENBERG R, COHEN A, NEMANOV L, GRITSENKO I, GRUBERMAN N, EBSTEIN RP. Candidate genes associated with ageing and life expectancy in the Jerusalem longitudinal study. *Mech Ageing Dev*, 126(2):333-339 (2005).

38. MATSUSHITA S, MURAMATSU T, ARAI H, MATSUI T, HIGUCHI S. The frequency of the methylenetetrahydrofolate reductase-gene mutation varies with age in the normal population. *Am J Hum Genet*, 61(6):1459-1460 (1997).

39. FAURE-DELANEF L, QUÉRÉ I, CHASSÉ JF, GUERASSIMENKO O, LESAULNIER M, BELLET H, ZITTOUN J, KAMOUN P, COHEN D. Methylenetetrahydrofolate reductase thermolabile variant and human longevity. *Am J Hum Genet*, 60(4):999-1001 (1997).

40. BRATTSTRÖM L, ZHANG Y, HURTIG M, REFSUM H, OLTENSSON S, FRANSSON L, JONÉS K, LANDGREN F, BRUDIN L, UELAND PM. A common methylenetetrahydrofolate reductase gene mutation and longevity. *Atherosclerosis*, 141(2): 315-319 (1998).

41. KHABOUR OF, ABDELHALIM ES, ABU-WARDEH A. Association between SOD2 T-9C and MTHFR C677T polymorphisms and longevity: a study in Jordanian population. *BMC Geriatr*, 9:57 (2009).

42. LEWONTIN C. The genetic implications of age: a test of the theory of the selective neutrality of polymorphisms. *Genetics*, 74(1):175-195 (1973).

43. AKIYAMA F, ZHANG G, ZHANG K, JIN L, SHRIVER MD. Interrogating a high-density SNP map for signatures of natural selection. *Genome Res*. 12(12): 1805-1814 (2002).

44. WEIR BS, CARDON LR, ANDERSON AD, NIELSEN DM, HILL WG. Measures of human population structure show homogeneity among genomic regions. *Genome Res*. 15(11):1468-1476 (2005).

45. DUAN S, ZHANG W, COX NJ, DOLAN ME, FstSNP-HapMap3: a database of SNPs with high population differentiation for HapMap3. *Bioinformation*, 3(3):139-141 (2008).