Pervasive transcription: detecting functional RNAs in bacteria

Meghan Lybecker1,*,1, Ivana Bilusic1, and Rahul Raghavan2
1Department of Biochemistry and Cell Biology; Max F Perutz Laboratories; University of Vienna; Vienna, Austria; 2Department of Biology and Center for Life in Extreme Environments; Portland State University; Portland, OR USA

Keywords: antisense transcription, asRNA, double-stranded RNA, Hfq, pervasive transcription, promoter, RNA, RNase III, spurious transcription, sigma factor, transcriptome

Abbreviations: asRNA, antisense RNA; dsRNA, double-stranded RNA; intraRNA, intragenic RNA; ncRNA, non-coding RNA

*Correspondence to: Meghan Lybecker; Email: mlybecke@uccs.edu
Submitted: 05/23/2014
Revised: 06/24/2014
Accepted: 06/24/2014

© Meghan Lybecker, Ivana Bilusic, and Rahul Raghavan

Evidence for Spurious Antisense Transcription

One could argue that most asRNAs are functional and contribute to bacterial fitness...
because producing RNA is costly. Alternatively, genome-wide asRNA expression might represent non-adaptive transcriptional noise. Examining the degree of conservation among homologous sequences is an effective method to differentiate functional sequences from non-functional sequences. Using this approach, Raghavan et al.8 recently compared asRNAs originating within protein-coding genes in *Escherichia coli* and *Salmonella enterica* Typhimurium, grown under similar conditions (exponential phase, LB medium). Although around 1200 genes contained asRNAs in each bacterium, only 343 genes had asRNAs in both species, and only eight genes had highly expressed asRNAs in both. These data show that the vast majority of asRNAs are not conserved between *E. coli* and *Salmonella*. However, more than 70% of asRNAs in both bacteria were associated with an identifiable −10 promoter element, indicating that most asRNAs were expressed under the control of σ70, the primary sigma factor during exponential phase growth.

Even if the observed lack of overlap between *E. coli* and *Salmonella* asRNA repertoires was due to experimental variations, one would expect asRNA promoter sequences to be conserved in both bacteria if they are functional. Sequences of functional importance experience purifying selection; that is to say, most new mutations are deleterious and are therefore eliminated from the population. As a result, functional sequences show lower rates of sequence evolution than non-functional sequences. Promoters for mRNAs exhibited reduced nucleotide divergence between *E. coli* and *Salmonella*, especially around the −35 and −10 elements; however, there was no evidence of purifying selection on asRNA promoter regions in *E. coli* and *Salmonella*. Furthermore, similar results were obtained when comparing *E. coli* with *Escherichia fergusonii*, and, at the intraspecific level, by analyzing 41 strains of *E. coli* and *Shigella*. The lack of conservation in asRNAs between *E. coli* and *Salmonella* might indicate that asRNAs function largely in a species-specific manner. However, because there is no evidence of conservation or functional constraint acting within the genus *Escherichia* or even among different strains of *E. coli*, the alternative interpretation is that the majority of asRNAs in bacterial genomes is non-functional. A recent examination of the *Bacillus subtilis* transcriptome also came to a similar conclusion because many asRNAs were found to originate from evolutionarily less conserved promoter sequences.9

Promoter-like sequences can arise spontaneously by point mutations in any locus of a bacterial genome.10 However, promoter-like sequences are underrepresented within coding regions compared to other genomic regions, indicating that selection acts to purge spurious promoters.11,12 Nevertheless, the average intensity of selection against such elements is weak, and, consequently, many spurious promoter-like sequences persist within populations.13 Because uncontrolled transcription from genome-wide promoter-like sequences are potentially dangerous, bacteria have several systems in place to control the generation of spurious transcripts: (i) The histone-like nucleoid structuring protein (H-NS) suppresses transcription initiation from intragenic promoters,14 (ii) the termination factor Rho and its cofactor NusG function in the termination of asRNA transcription,15,16 and (iii) multiple RNases degrade aberrant RNAs.17

A lack of asRNA conservation among closely related bacteria might not necessarily indicate lack of function because, as shown recently in *Drosophila*, functional genes can arise rapidly in a lineage-specific manner.18 Additionally, ncRNAs evolve rapidly in eukaryotes, with the rate of evolutionary turnover similar to other regulatory sequences.19 Even if most asRNAs do not have a clear function, there are undoubtedly functional asRNAs in bacteria. Previous studies have described functional asRNAs in both *E. coli* and *Salmonella*20 and an analysis of the transcriptomes of a number of Gram-positive bacteria suggests a role for asRNAs in genome-wide mRNA processing.20 The promoter conservation analysis by Raghavan et al.8 identified 17 putatively functional asRNAs in *E. coli*, and, in concordance, 7 of them were detected by a recent study that described the double-stranded transcriptome of *E. coli*.21 In addition, Lybecker et al.21 detected 13 of the 80 non-conserved asRNAs, suggesting a cellular role for some of the species-specific asRNAs.

Evidence for Functional asRNAs

There are several recent reports demonstrating that many asRNAs in various bacteria are likely functional. Different features have been used to characterize asRNAs as functional including: regulated expression, binding to regulatory proteins, binding to target RNA, and regulating expression of the corresponding sense gene. In both *Listeria monocytogenes* and *Staphylococcus aureus* a subset of asRNAs are dependent on the alternative sigma factor SigB, suggesting these transcripts are regulated and functional.20,22 In a recent report, 67 *bona fide* asRNAs were co-immunoprecipitated with the RNA chaperone Hfq in *E. coli*.7 Hfq is often required for the function of trans-encoded sRNAs in Gram-negative bacteria, but its role in gene regulation via cis-encoded asRNAs was not previously reported. The association of these asRNAs with Hfq *in vivo* suggests they are functional. In addition, a new model of antisense-mediated gene regulation, termed the excludon, was characterized in *L. monocytogenes*.22,23 Excludon regulation occurs at divergently transcribed genes, with a long asRNA contributing to the transcription of one gene, while inhibiting the other through an antisense mechanism. RNase III, a well-conserved double-stranded RNA specific endoribonuclease, has been shown to be an important player in asRNA-dependent gene regulation.20,21,24 Lasa et al.20 demonstrated that *S. aureus* has an RNase III-dependent genome-wide gene regulation via asRNAs. Moreover, an RNase III co-immunoprecipitation assay in *S. aureus* identified asRNAs and overlapping transcripts bound to RNase III.24 Recently, a set of functional asRNAs was identified in *E. coli* by isolating and deep sequencing asRNAs found duplexed with their sense counterparts.21 The majority of dsRNAs identified in this study were RNase III-dependent, further demonstrating the important role of RNase III in antisense-mediated gene regulation in bacteria. The dsRNAs identified were only a small subset of the potential dsRNA-forming
regions in *E. coli* because not all overlapping transcripts form dsRNA. In contrast, Lasa et al.\(^20\) report that most (75%) of the mRNAs expressed in *S. aureus* have overlapping transcripts associated with them and these potential dsRNA regions have processing products generated by RNase III, suggesting that dsRNA formation and subsequent RNase III digestion is occurring at nearly all sites of overlapping transcription. The identification of asRNAs in the absence of an RNA degradation factor, such as RNase III, is reminiscent of what was observed in yeast: novel non-coding transcripts (originally categorized as CUTs, SUTs and XUTs) were found as a consequence of depleting several components of RNA degradation pathways.\(^25\)

All known mechanisms of asRNA-mediated regulation, except transcription interference, require that an asRNA interacts with the complementary sense RNA (forming double-stranded RNA). Most asRNA-mediated gene regulation mechanisms requiring an RNA/RNA interaction affect the stability and/or translation efficiency or attenuate transcription of the mRNA. RNase III can cleave dsRNA resulting in either the destabilization or stabilization of one or both transcripts. In this mechanism, RNase III plays a direct role in the regulation of gene expression via dsRNAs, as proposed for several Gram-positive bacteria.\(^20,24\) Alternatively, the formation of the dsRNA itself may regulate gene expression and the dsRNA (subsequently degraded by RNase III) would be a byproduct of the regulation. In this mechanism, gene regulation is independent of RNase III, but the resulting dsRNA levels are RNase III-dependent (Fig. 1). Specifically, an asRNA that overlaps the ribosome-binding site (RBS) of its cognate mRNA could prevent the ribosome from binding and inhibit translation; subsequently the dsRNA would be degraded by RNase III, but the translational regulation would not be dependent on RNase III.\(^20\) The dsRNA-mediated translation stimulation could also be stimulated by dsRNA formation by releasing the RBS for ribosome binding. dsRNA formation could cause transcriptional attenuation and termination, also resulting in a dsRNA byproduct, which would be degraded by RNase III.

The dsRNA-mediated gene regulation mechanism is supported by the observation in *E. coli* that the regions of RNAs that are double-stranded are the most stable fragments.\(^21\) There are many factors that may influence the pairing of 2 transcripts, including transcript abundance, RNA structure, and the presence of ribosomes or proteins on the transcripts. An RNA chaperone likely aids in the restructuring and annealing of the complementary RNAs. One candidate is the RNA chaperone Hfq. Notably, forty-eight of the transcripts found in dsRNA duplexes were also co-immunoprecipitated with Hfq.\(^7,21\) These data suggest that Hfq may play a role in the annealing of antisense and sense RNAs in the cell.

HN-S, Rho and NusG have been implicated in controlling the transcription initiation or termination of pervasive transcription in bacteria (as discussed above). Specifically, HN-S binds DNA within protein-coding genes and inhibits transcription from promoter-like elements found in genes.\(^10\) However, HN-S also binds promoter regions and represses many mRNAs, acting as a transcriptional repressor. Taking into account the role of

Figure 1. Mechanisms of dsRNA-mediated gene regulation. (A) dsRNA-mediated translation inhibition. An asRNA that overlaps the RBS of its cognate mRNA could prevent the ribosome from binding the RBS and inhibit translation; the dsRNA would then be degraded by RNase III, but the translational regulation would not be dependent on RNase III. (B) dsRNA-mediated translation stimulation. Translation could also be stimulated by dsRNA formation by releasing the RBS for ribosome binding. (C) dsRNA-mediated transcription attenuation. dsRNA formation could cause transcriptional attenuation and termination, also resulting in a dsRNA byproduct, which would be degraded by RNase III.
H-NS in regulation of canonical transcripts, the repression of intragenic transcripts indicates that intraRNAs are indeed regulated, and should not be considered non-functional simply because they are not characterized. Interestingly, in E. coli 25 intranRNAs were co-immunoprecipitated with Hfq.7 These Hfq-binding intranRNAs may have their own promoters within the mRNA or be stable processing products. Similarly, Rho and NusG have been implicated in terminating pervasive transcription. However, over 50% of the overlapping transcripts that are identified are formed from 3′-overlapping UTRs of mRNAs,16 suggesting that Rho is involved in the termination of these mRNAs and that non-functional overlapping transcripts are likely produced in the absence of functional Rho. Notably, only a few dsRNA regions were identified at overlapping 3′ UTRs,21 suggesting these Rho-dependent overlapping transcripts are not functional and are artifacts of read-through transcription.

Conclusions and Future Directions

In addition to the already discussed mechanisms of asRNA-mediated gene regulation, we hypothesize that pervasive transcripts may function as RNA scaffolds for nucleoid structure, similar to what is observed in eukaryotes. RNAs in eukaryotes specifically interact with protein effectors to mediate long-range chromatin interactions and architecture.25 Pettijohn and Hecht in 1974 first suggested that RNA plays a role in maintaining the nucleoid structure in E. coli.26 Recently, Macvanin et al.27 reported that 2 novel non-coding RNAs bind to the architectural DNA-binding protein HU and affect the nucleoid structure, implying that RNA molecules play an important role in genome organization. Moreover, we expect that some of the asRNAs and intranRNAs may code for small peptides, further increasing the protein-coding potential of genomes. Pervasive transcripts in bacteria could also function as sponges for proteins or other ncRNAs. Long non-coding RNAs and circular RNAs in eukaryotes have been shown to regulate gene expression by binding regulatory RNAs or proteins and sequestering them from their regulatory targets.28,29

Mechanistic and functional studies of asRNA and intra-RNAs remain scarce due to the technical difficulty in studying these transcripts. A traditional loss-of-function assay is challenging to perform without disturbing the corresponding coding region. Precise characterization and mutation of asRNA and intraRNA promoters will be necessary to begin elucidating their functions. As- and intra-RNAs can be overexpressed in trans on plasmids, but as an asRNA, if acting in cis, will not be transcribed in its endogenous context in close proximity to the sense RNA, expression of which might influence the activity of asRNA. In addition, the presence of a non-physiologically abundant RNA is likely to yield artifactual results. An over-expressed asRNA or intra-RNA may bind to Hfq or another regulator and sequester it away from its normal substrates, creating a phenotype that is not specific to the studied RNA. High-throughput transcriptome analyses examine a bacterial population rather than a single bacterium, producing a composite genome-wide transcription picture, so the number of antisense and intragenic transcripts detected by these approaches that are produced in each bacterial cell is not known. Advances in single-cell transcriptomic technologies are needed to understand the scale of pervasive transcription at the cellular level. Each bacterium may only produce a few spurious non-functional transcripts, and RNases, HN-S, Rho and NusG may be capable of neutralizing their potential negative consequence. In addition, these non-functional transcripts might not only be “junk,” but may also serve as a reservoir for evolutionary innovation.

Recent work aimed at distinguishing likely functional RNAs from non-functional transcription, by identifying RNAs that either display functionally specific features (such as forming a duplex with its sense counterpart or binding a major mediator of ncRNA-regulation) or are conserved in related species, have identified almost 400 putative functional RNAs in E. coli. Extending these studies to different bacteria and environmental conditions should identify more novel transcripts and reveal the regulatory potential of pervasive transcription. Detailed and careful analyses of specific asRNAs need to be performed to further address the question of the function of pervasive asRNA transcription in bacteria.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Scott Samuels, Renée Schroeder and the Schroeder laboratory for thoughtful and critical readings of the manuscript.

Funding

ML and IB are supported by the Austrian Science Fund (Grants FWF I538-B12 and F4301) and the University of Vienna. Research in Raghavan lab is supported by Portland State University, and by grants from Collins Medical Trust and American Heart Association.

References

1. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagaerde J, Lin W, Schlesinger F, et al. Landscape of transcription in human cells. Nature 2012; 489:101-8; PMID:22955620; http://dx.doi.org/10.1038/nature11233
2. Georg J, Hess WR. cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 2011; 75:286-300; PMID:21664430; http://dx.doi.org/10.1128/MMBR.00032-10
3. Brandl S, Wagner EG. Antisense RNA-mediated transcriptional attenuation occurs faster than stable antisense/target RNA pairing: an in vitro study of plasmid pIP51. EMBO J 1994; 13:599-687; PMID:7520390
4. Wagner EG, Simons RW. Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 1994; 48:713-42; PMID:7826024; http://dx.doi.org/10.1146/annurev.mi.48.100194.003433
5. Thomason MK, Storz G. Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 2010; 44:167-88; PMID:20707673; http://dx.doi.org/10.1146/annurev.genet.102009-163523
6. Chao Y, Papenfort K, Reinhardt R, Sharma CM, Vogel J. An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J 2012; 31:4005-19; PMID:22922465; http://dx.doi.org/10.1038/emboj.2012.229
7. Bilasic I, Poppitsch N, Rescheneder P, Schroeder R, Lybecke M. Revisiting the coding potential of the E. coli genome through Hfq co-immunoprecipitation. RNA Biol 2014; 11:500156-12; PMID:24923252; http://dx.doi.org/10.4161/rna.29299
8. Raghavan R, Sloan DB, Ochman H. Antisense transcription is pervasive but rarely conserved in enteric
9. Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, et al. Condition-dependent transcriptional pro-
motes represses high-level regulatory architecture in Bacillus subtilis. Science 2012; 335:1103-6;
PMID: 22383849; http://dx.doi.org/10.1126/science.1206848
10. Stone JR, Wray GA. Rapid evolution of cis-regulatory sequences via local point mutations. Mol
Biol Evol 2001; 18:1764-70; PMID:11504856; http://dx.doi.org/10.1093/molbev.msf093
11. Froula JL, Francino MP. Selection against spurious transcription factor binding
sites. Mol Biol Evol 2003; 20:901-6; PMID:12716998; http://dx.doi.org/10.1093/molbev/msg096
12. Zhao L, Saulo P, Jones CD, Begun DJ. Origin and spread of de novo genes in Drosophila
melanogaster populations. Science 2014; 343:769-72; PMID:24457212; http://dx.doi.org/10.1126/
sci.1248286
13. Arriiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V,
Reis FP, Saramago M, et al. The critical role of RNA processing and degradation in the control of
gene expression. FEMS Microbiol Rev 2010; 34:889-925; PMID:20659169
14. Stone JR, Wray GA. Rapid evolution of cis-regulatory
sites. Mol Biol Evol 2001; 18:1764-70; PMID:11504856; http://dx.doi.org/10.1093/molbev.msf093
15. Leela JK, Syeda AH, Anupama K, Gowrishankar J. Rho-dependent transcription termination is
esential to prevent excessive genome-wide R-loops in Escheri-
chia coli. Proc Natl Acad Sci U S A 2013; 110:258-63;
PMID:23251031; http://dx.doi.org/10.1073/
pnas.1213123110
16. Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F,
Landick R. Rho and NusG suppress pervasive anti-
sense transcription in Escherichia coli. Genes Dev
2012; 26:2621-33; PMID:23207917; http://dx.doi.
org/10.1101/gad.196741.112
17. Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F,
Landick R. Rho and NusG suppress pervasive anti-
sense transcription in Escherichia coli. Genes Dev
2012; 26:2621-33; PMID:23207917; http://dx.doi.
org/10.1101/gad.196741.112
18. Arriiano CM, Andrade JM, Domingues S, Guinote
IB, Malecki M, Matos RG, Moreira RN, Pobre V,
Reis FP, Saramago M, et al. The critical role of RNA
processing and degradation in the control of gene
expression. FEMS Microbiol Rev 2010; 34:889-925;
PMID:20659169
19. Kutter C, Watt S, Steffkova K, Wilson MD, Gon-
calves A, Ponting CP, Odom DT, Marques AC.
Rapid turnover of long noncoding RNAs and the evo-
lution of gene expression. PLoS Genet 2012; 8:
e1002841; PMID:22864254; http://dx.doi.org/
10.1371/journal.pgen.1002841
20. Arraiano CM, Andrade JM, Domingues S, Guinote
IB, Malecki M, Matos RG, Moreira RN, Pobre V,
Reis FP, Saramago M, et al. The critical role of RNA
processing and degradation in the control of gene
expression. FEMS Microbiol Rev 2010; 34:889-925;
PMID:20659169
21. Lybecker M, Zimmermann B, Bilusic I, Tukhtubaeva
N, Schroeder R. The double-stranded transcriptome
provides an integrated view of the transcriptional pro-
hileceoma reveals high-level regulatory architecture in
pathogenic bacteria. MBio 2012; 3; PMID:22872780; http://dx.doi.
org/10.1128/mBio.00156-12
22. Wurtzel O, Sesto N, Mellin JR, Karunker I, Edelheit
S. Proc Natl Acad Sci U S A 2013; 110:258-63;
PMID:23251031; http://dx.doi.org/10.1073/
pnas.1213123110
23. Sexto N, Wurtzel O, Archambaud C, Sorek R, Cos-
25. Jensen TH, Jacquier A, Libri D. Dealing with perva-
sive transcription. Mol Cell 2013; 52:473-84;
PMID:24267449; http://dx.doi.org/10.1016/j.
molcel.2013.10.032
26. Petrijohn DE, Hecht R. RNA molecules bound to the
folded bacterial genome stabilize DNA folds and seg-
regate domains of supercoiling. Cold Spring Harp
Symp Quant Biol 1974; 38:31-41; PMID:4598638;
http://dx.doi.org/10.1101/SQB.1974.038.01.006
27. Macvanin M, Edgar R, Cui F, Trostel A, Zhurkin V,
Adhya S. Noncoding RNAs binding to the nucleoid
protein HU in Escherichia coli. J Bacteriol 2012;
194:6046-55; PMID:22942248; http://dx.doi.
org/10.1128/JB.00961-12
28. Jeck WR, Sharpless NE. Deterrence and characteriz-
ing circular RNAs. Nat Biotechnol 2014; 32:453-61;
PMID:24811520; http://dx.doi.org/10.1038/nbt.
2890
29. Pelechano V, Steimer LM. Gene regulation by anti-
sense transcription. Nat Rev Genet 2013; 14:880-93;
PMID:24217335; http://dx.doi.org/10.1038/nrg3594