On uniformly recurrent subgroups of finitely generated groups

Gábor Elek

August 12, 2018

Abstract

We prove that if G is a finitely generated group and Z is a uniformly recurrent subgroup of G then there exists a minimal system (X, G) with Z as its stability system. This answers a query of Glasner and Weiss [7] in the case of finitely generated groups. Using the same method (introduced by Alon, Grytczuk, Haluszczak and Riordan [2]) we will prove that finitely generated sofic groups have free Bernoulli-subshifts admitting an invariant probability measure.

Keywords. uniformly recurrent subgroups, sofic groups

1 Introduction

Let Γ be a countable group and $\text{Sub}(\Gamma)$ be the compact space of all subgroups of Γ. The group Γ acts on $\text{Sub}(\Gamma)$ by conjugation. Uniformly recurrent subgroups (URS) were defined by Glasner and Weiss [7] as closed, invariant subsets $Z \subset \text{Sub}(\Gamma)$ such that the action of Γ on Z is minimal (every orbits are dense).

Now let (X, Γ, α) be a Γ-system (that is, X is a compact metric space and $\Gamma \rightarrow \text{Homeo}(X)$ is a homomorphism). For each point $x \in X$ one can define the topological stabilizer subgroup $\text{Stab}_\alpha^0(x)$ by

$$\text{Stab}_\alpha^0(x) = \{ \gamma \in \Gamma \mid \gamma \text{ fixes some neighborhood of } x \}.$$

Let us consider the Γ-invariant subset $X^0 \subset X$ such that $x \in X^0$ if and only if $\text{Stab}_\alpha(x) = \text{Stab}_\alpha^0(x)$. Then X^0 is a dense G_δ-set and we have a Γ-equivariant map $S_\alpha : X^0 \rightarrow \text{Sub}(\Gamma)$ such that if $y \in X^0$ then $S_\alpha(y) = \text{Stab}_\alpha(y)$. The closure of the invariant subset $S_\alpha(X^0) \subset \text{Sub}(\Gamma)$ is called the stability system of (X, Γ, α) (see also [12], [10]). If the action is minimal, then the stability system of (X, Γ, α) is an URS. Glasner and Weiss proved (Proposition 6.1, [7]) that for every URS $Z \subset \text{Sub}(G)$ there exists a topologically transitive (that is there is a dense orbit) system (X, Γ, α) with Z as its stability system. They asked (Problem

*AMS Subject Classification: 37B05, 20E99
whether for any URS Z there exists a minimal system (X, Γ, α) with Z as its stability system. Recently, Kawabe [12] gave an affirmative answer for this question in the case of amenable groups. We will prove the following result.

Theorem 1. If Γ is a finitely generated group and $Z \subset \text{Sub}(\Gamma)$ is an URS, then there exists a minimal system (X, Γ, α) with Z as its stability system.

In the proof we will use the Lovász Local Lemma technique of Alon, Grytczuk, Haluszcak and Riordan [2] to construct a minimal action on the space of rooted colored Γ-Schreier graphs. This approach has already been used to construct free Γ-Bernoulli subshifts by Aubrun, Barbieri and Thomassé [1]. The other result of the paper is about free Γ-Bernoulli-subshifts, that is closed Γ-invariant subsets M of K^Γ, where K is some finite alphabet and the action of Γ on M is free. For a long time all finitely generated groups that had been known to have free Bernoulli-subshifts were residually-finite. Then Dranishnikov and Schroeder [11] constructed a free Bernoulli-subshift for any torsion-free hyperbolic group. Somewhat later Gao, Jackson and Seward proved that for any countable group Γ there exists a free continuous action of Γ on a Cantor set admitting an invariant measure. It seems that so far all groups Γ for which free Bernoulli-shifts with an invariant probability measure proved to exist were either residually-finite (Toeplitz-shifts) or amenable (when the existence of invariant measure is obvious). Using the coloring technique of Alon, Grytczuk, Haluszcak and Riordan we prove a combination of these results for finitely generated sofic groups.

Theorem 2. Let Γ be a finitely generated sofic group. Then there exists a free Bernoulli-subshift for Γ.

2 The space of colored rooted Γ-Schreier graphs

Let Γ be a finitely generated group with a minimal symmetric generating system $Q = \{\gamma_i\}_{i=1}^n$. Let $H \in \text{Sub}(\Gamma)$. Then the Schreier graph of H, $S^Q_\Gamma(H)$ is constructed as follows.

- The vertex set of $S^Q_\Gamma(H)$, $V(S^Q_\Gamma(H)) = \Gamma/H$ (that is Γ acts on the vertex set of $S^Q_\Gamma(H)$ on the left).
- The vertices corresponding to the cosets aH and bH are connected by a directed edge labeled by the generator γ_i if $\gamma_i aH = bH$.

The coset class of H is called the root of the graph $S^Q_\Gamma(H)$. We will consider the usual shortest path distance on $S^Q_\Gamma(H)$ and denote the ball of radius r around the root H by $B_r(S^Q_\Gamma(H), H)$. Note that $B_r(S^Q_\Gamma(H), H)$ is a rooted edge-labeled graph. The space of all Schreier graphs S^Q_Γ is a compact metric space, where $d_{S^Q_\Gamma}(S^Q_\Gamma(H_1), S^Q_\Gamma(H_2)) = 2^{-r}$.

if \(r \) is the largest integer for which the \(r \)-balls \(B_r(S^Q_t(H_1), H_1) \) and \(B_r(S^Q_t(H_2), H_2) \) are rooted-labeled isomorphic. Clearly, \(s : \text{Sub}(\Gamma) \to S^Q_t \), \(s(H) = S^Q_t(H) \) is a homeomorphism commuting with the \(\Gamma \)-actions. Note that if \(\gamma \in \Gamma \) and \(H \in \text{Sub}(\Gamma) \), then

\[
\gamma(S^Q_t(H)) = S^Q_t(\gamma H \gamma^{-1}),
\]

where the underlying labeled graphs of \(S^Q_t(H) \) and \(S^Q_t(\gamma H \gamma^{-1}) \) are isomorphic. The graph \(S^Q_t(\gamma H \gamma^{-1}) \) can be regarded as the same graph as \(S^Q_t(H) \) with the new root \(\gamma(\text{root}(S^Q_t(H))) \). We will use the root-change picture of the \(\Gamma \)-action on \(S^Q_t \) later in the paper.

Now let \(K \) be a finite alphabet. A rooted \(K \)-colored Schreier graph is a rooted Schreier graph \(S^Q_H \) equipped with a vertex-coloring \(c : \Gamma/H \to K \). Let \(S^K,Q_t \) be the set of all rooted \(K \)-colored Schreier-graphs. Again, we have a compact, metric topology on \(S^K,Q_t \):

\[
d_{S^K,Q_t}(S, T) = 2^{-r},
\]

if \(r \) is the largest integer such that the \(r \)-balls around the roots of the graphs \(S \) and \(T \) are rooted-colored-labeled isomorphic. We define \(d_{S^K,Q_t}(S, T) = 2 \) if the 1-balls around the roots are nonisomorphic and even the colors of the roots are different. Again, \(\Gamma \) acts on the compact space \(S^K,Q_t \) by the root-changing map. Hence, we have a natural color-forgetting map \(F : S^K,Q_t \to S^Q_t \) that commutes with the \(\Gamma \)-actions. Notice that if a sequence \(\{S_n\}_{n=1}^{\infty} \subset S^K,Q_t \) converges to \(S \in S^K,Q_t \), then for any \(r \geq 1 \) there exists some integer \(N_r \geq 1 \) such that if \(n \geq N_r \) then the \(r \)-balls around the roots of the graph \(S_n \) and the graph \(S \) are rooted-colored-labeled isomorphic. Let \(H \in \text{Sub}(\Gamma) \) and \(c : \Gamma/H \to K \) be a vertex coloring that defines the element \(S_{H,c} \in S^K,Q_t \). Then of course, \(\gamma(S_{H,c}) = S_{H,c} \) if \(\gamma \in H \). On the other hand, if \(\gamma(S_{H,c}) = S_{H,c} \) and \(\gamma \notin H \) then we have the following lemma that is immediately follows from the definitions of the \(\Gamma \)-actions.

Lemma 2.1. Let \(\gamma \notin H \) and \(\gamma(S_{H,c}) = S_{H,c} \). Then there exists a colored-labeled graph-automorphism of the \(K \)-colored labeled graph \(S_{H,c} \) moving the vertex representing \(H \) to the vertex representing \(\gamma(H) \neq H \).

Note that we have a continuous \(\Gamma \)-equivariant map \(\pi : S^K,Q_t \to \text{Sub}(\Gamma) \), where \(\pi(t) = s^{-1} \circ F(t) \). Let \(Z \) be an URS of \(\Gamma \). Let \(H \in Z \) and let \(t \in S^K,Q_t \) be corresponding to a vertex coloring of the Schreier graph \(S^Q_t(H) \). We say that the element \(t \in S^K,Q_t \) is \(Z \)-proper if \(\text{Stab}_o(t) = H \), where \(o \) is the right action of \(\Gamma \) on \(S^K,Q_t \). Note that if \(H \in Z \) and \(t \) is representing the Schreier graph \(S^Q_t \), then by Lemma 2.1, \(t \) is \(Z \)-proper if and only if there is no non-trivial colored-labeled automorphism of \(t \).
Proposition 2.1. Let $Y \subset S^K_{\Gamma} \Gamma$ be a closed Γ-invariant subset consisting of Z-proper elements. Let $(M, \Gamma, \alpha) \subset (Y, G, \alpha)$ be a minimal Γ-subsystem. Then for any $m \in M$, $\operatorname{Stab}_\alpha^0(m) = \operatorname{Stab}_\alpha(m) \in Z$. Also, $\pi(M) = Z$.

Proof. Let $h \in \operatorname{Stab}_\alpha(m)$. Then $h \in Z$, that is, h fixes the root of m. Therefore, h fixes the root of m' provided that $d_{S^K_{\Gamma}, \alpha}(m, m')$ is small enough. Thus, $h \in \operatorname{Stab}_\alpha^0(m)$. Since π is a Γ-equivariant continuous map and M is a closed Γ-invariant subset, $\pi(M) = Z$.

3 The proof of Theorem 1

Let Z be an URS of Γ. By Proposition 2.1 it is enough to construct a closed Γ-invariant subset $Y \subset S^K_{\Gamma} \Gamma$ for some alphabet K such that all the elements of Y are Z-proper. Let $H \in Z$ and consider the Schreier graph $S = S^K_{\Gamma}(H)$. Following [1] and [2] we call a coloring $c : \Gamma \to K$ nonrepetitive if for any path (x_1, x_2, \ldots, x_n) in S there exists some $1 \leq i \leq n$ such that $c(x_i) \neq c(x_{n+i})$. We call all the other colorings repetitive.

Theorem 3. [Theorem 1 [2]] For any $d \geq 1$ there exists a constant $C(d) > 0$ such that any graph G (finite or infinite) with vertex degree bound d has a nonrepetitive coloring with an alphabet K, provided that $|K| \geq C(d)$.

Proof. Since the proof in [2] is about edge-colorings and the proof in [1] is in slightly different setting, for completeness we give a proof using Lovász’s Local Lemma, that closely follows the proof in [2]. Now, let us state the Local Lemma.

Theorem 4 (The Local Lemma). Let X be a finite set and \Pr be a probability distribution on the subsets of X. For $1 \leq i \leq r$ let A_i be a set of events, where an “event” is just a subset of X. Suppose that for all $A \in A_i$, $\Pr(A_i) = p_i$. Let $\mathcal{A} = \bigcup_{i=1}^r A_i$. Suppose that there are real numbers $0 \leq a_1, a_2, \ldots, a_r < 1$ and $\Delta_{ij} \geq 0$, $i, j = 1, 2, \ldots, r$ such that the following conditions hold:

- for any event $A \in A_i$ there exists a set $D_A \subset \mathcal{A}$ with $|D_A \cap A_i| \leq \Delta_{ij}$ for all $1 \leq j \leq r$ such that A is independent of $\mathcal{A} \setminus (D_A \cup \{A_i\})$,
- $p_i \leq a_i \prod_{j=1}^r (1 - a_j)^{\Delta_{ij}}$ for all $1 \leq i \leq r$.

Then $\Pr(\cap_{A \in \mathcal{A}} A) > 0$.

Let G be a finite graph with maximum degree d. It is enough to prove our theorem for finite graphs. Indeed, if G' is a connected infinite graph with vertex degree bound d, then for each ball around a given vertex p we have a nonrepetitive coloring. Picking a pointwise convergent subsequence of the colorings we obtain a nonrepetitive coloring of our infinite graph G'.

Let C be a large enough number, its exact value will be given later. Let X be the set of all random $\{1, 2, \ldots, C\}$-colorings of G. Let $r = \operatorname{diam}(G)$ and for
1 \leq i \leq r \) and for any path \(P \) of length \(2i - 1 \) let \(A(P) \) be the event that \(P \) is repetitive. Set

\[A_i = \{ A(P) : P \text{ is a path of length } 2i - 1 \text{ in } G \}. \]

Then \(p_i = C^{-i} \). The number of paths of length \(2j - 1 \) that intersects a given path of length \(2i - 1 \) is less or equal than \(4ijd^2j \). So, we can set \(\Delta_{ij} = 4ij\Delta d^2j \). Let \(a_i = \frac{1}{2d^2} \). Since \(a_i \leq \frac{1}{2} \), we have that \((1 - a_i) \geq \exp(-2a_i) \). In order to be able to apply the Local Lemma, we need that for any \(1 \leq i \leq r \)

\[p_i \leq a_i \prod_{j=1}^{r} \exp(-2a_j\Delta_{ij}). \]

That is

\[C^{-i} \leq a^{-i} \prod \exp(-8ija^{-j}d^{2j}), \]

or equivalently

\[C \geq a \exp\left(8 \sum_{j=1}^{r} \frac{j}{2d^2}\right). \]

Since the infinite series \(\sum_{j=1}^{\infty} \frac{j}{d^2} \) converges to 2, we obtain that for large enough \(C \), the conditions of the Local Lemma are satisfied independently on the size of our finite graph \(G \). This ends the proof of Theorem 3.

Let \(|K| = C(|Q|) \) and let \(c: \Gamma/H \to K \) be a nonrepetitive \(K \)-coloring that gives rise to an element \(y \in S_{K,Q}^{\Gamma} \). The following proposition finishes the proof of Theorem 1.

Proposition 3.1. All elements of the orbit closure \(Y \) of \(y \) in \(S_{K,Q}^{\Gamma} \) are \(Z \)-proper.

Proof. Let \(x \in Y \) with underlying Schreier graph \(H' \) and coloring \(c': \Gamma/H \to K \). Since \(Z \) is an URS, \(H' \in Z \). Indeed, \(\pi^{-1}(Z) \) is a closed \(\Gamma \)-invariant set and \(y \in \pi^{-1}(Z) \). Clearly, \(\alpha(y)(x) = x \) if \(\gamma \in H' \). Now suppose that \(\alpha(y)(x) = x \) and \(\gamma \notin H' \) (that is \(x \) is not \(Z \)-proper). By Lemma 2, there exists a colored-labeled automorphism \(\theta \) of the graph \(x \) moving \(\text{root}(x) \) to \(\gamma(\text{root}(x)) \neq \text{root}(x) \).

Now we proceed similarly as in the proof of Lemma 2 or in the proof of Theorem 2. Let \(a \in V(x) \) be a vertex such that there is no \(b \in X \) such that \(\text{dist}_x(b, \theta(b)) < \text{dist}_x(a, \theta(a)) \). Let \(a = a_1, a_2, \ldots, a_{n+1} = \theta(a) \) be a shortest path between \(a \) and \(\theta(a) \). For \(1 \leq i \leq n \), let \(\gamma_k(a_i) = a_{i+1} \). Then let \(a_{n+2} = \gamma_k(a_{n+1}), a_{n+3} = \gamma_k(a_{n+2}), \ldots, a_{2n} = \gamma_k(a_{2n-1}) \). Since \(\theta \) is a colored-labeled automorphism, for any \(1 \leq i \leq n \)

\[c(a_i) = c(a_{i+n}). \] (1)

Lemma 3.1. The walk \((a_1, a_2, \ldots, a_{2n}) \) is a path.
Proof. Suppose that the walk above crosses itself, that is for some \(i, j, a_j = a_{n+i} \). If \((n+1) - j \geq (n+i) - (n+1) = i - 1, \) then \(\text{dist}(a_2, \theta(a_2)) = \text{dist}(a_2, a_{n+2}) < \text{dist}(a, \theta(a)) \). On the other hand, if \((n+1) - j \leq (n+i) - (n+1) = i - 1, \) then
\[
\text{dist}(a_n, \theta(a_n)) = \text{dist}(a_n, a_{2n-1}) < \text{dist}(a, \theta(a)).
\]
Therefore, \((a_1, a_2, \ldots, a_{2n})\) is a path. \(\square \)

By (1) and the previous lemma, the \(K \)-colored Schreier-graph \(x \) contains a repetitive path. Since \(x \) is in the orbit closure of \(y \), this implies that \(y \) contains a repetitive path as well, in contradiction with our assumption. \(\square \)

4 Sofic groups and invariant measures

First, let us recall the notion of a finitely generated sofic group. Let \(\Gamma \) be a finitely generated infinite group with a minimal, symmetric generating system \(Q = \{ \gamma_i \}_{i=1}^\infty \) and a surjective homomorphism \(\kappa : F_n \to \Gamma \) from the free group \(F_n \) with generating system \(\overline{Q} = \{ r_i \}_{i=1}^n \) mapping \(r_i \) to \(\gamma_i \). Let Cay\(_\Gamma ^Q \) be the Cayley graph of \(\Gamma \) with respect to the generating system \(Q \), that is the Schreier graph corresponding to the subgroup \(H = \{ 1 \} \). Let \(\{ G_k \}_{k=1}^\infty \) be a sequence of finite \(F_n \)-Schreier graphs. We call a vertex \(p \in V(G_k) \) a \((\Gamma, r)\)-vertex if there exists a rooted isomorphism
\[
\Psi : B_r(G_k, p) \to B_r(\text{Cay}_\Gamma ^Q, 1_\Gamma)
\]
such that if \(e \) is a directed edge in the ball \(B_r(G_k, p) \) labeled by \(r_i \), then the edge \(\Phi(e) \) is labeled by \(\gamma_i \). We say that \(\{ G_k \}_{k=1}^\infty \) is a sofic approximation of Cay\(_\Gamma ^Q \), if for any \(r \geq 1 \) and a real number \(\varepsilon > 0 \) there exists \(N_{r,\varepsilon} \geq 1 \) such that if \(k \geq N_{r,\varepsilon} \) then there exists a subset \(V_k \subset V(G_k) \) consisting of \((\Gamma, r)\)-vertices such that \(|V_k| \geq (1-\varepsilon)|V(G_k)| \). A finitely generated group \(\Gamma \) is called sofic if the Cayley-graphs of \(\Gamma \) admit sofic approximations. Sofic groups were introduced by Gromov in [8] under the name of initially subamenable groups, the word “sofic” was coined by Weiss in [13]. It is important to note that all the amenable, residually-finite and residually amenable groups are sofic, but there exist finitely generated sofic groups that are not residually amenable (see the book of Capraro and Lupini [4] on sofic groups). It is still an open question whether all groups are sofic. Now let \(\Gamma \) be a finitely generated sofic group with generating system \(Q = \{ \gamma_i \}_{i=1}^n \) and a sofic approximation \(\{ G_k \}_{k=1}^\infty \). Using Theorem [8] for each \(k \geq 1 \) let us choose a nonrepetitive coloring \(c_k : V(G_k) \to K \), where \(|K| \geq C(|Q|) \). We can associate a probability measure \(\mu_k \) on the space of \(K \)-colored \(F_n \)-Schreier graphs \(S_{F_n}^{G_k} \). Note that the origin of this construction can be traced back to the paper of Benjamini and Schramm [3]. For a vertex \(p \in V(G_k) \) we consider the rooted \(K \)-colored Schreier graph \((G_k^{c_k}, p) \). The measure \(\mu_k \) is defined as
\[
\mu_k = \frac{1}{|V(G_k)|} \sum_{p \in V(G_k)} \delta(G_k^{c_k}, p),
\]
where $\delta(G^c_k, p)$ is the Dirac-measure on $S_{\mathbb{F}_n}^{K^c}$ concentrated on the rooted K-colored Schreier graph (G^c_k, p). Clearly, μ_k is invariant under the action of \mathbb{F}_n. Since the space of \mathbb{F}_n-invariant probability measures on the compact space $S_{\mathbb{F}_n}^{K^c}$ is compact with respect to the weak-topology, we have a convergent subsequence $\{\mu_{n_k}\}_{k=1}^{\infty}$ converging weakly to some probability measure μ. Let $C_d^{\mathbb{F}_n}(N)$ be the Schreier graph corresponding to the normal subgroup $N = \text{Ker}(\kappa)$. This means that we have a natural graph isomorphism from $C_d^{\mathbb{F}_n}(N)$ to Cay_Q^G that changes the labels r_i to γ_i.

Proposition 4.1. The probability measure μ is concentrated on the \mathbb{F}_n-invariant closed set Ω of nonrepetitive K-colorings on $C_d^{\mathbb{F}_n}(N)$.

Proof. Let $U_r \subset S_{\mathbb{F}_n}^{K^c}$ be the clopen set of K-colored Schreier graphs G such that the ball $B_r(G, \text{root}(G))$ is not rooted-labeled isomorphic to $B_r(C_d^{\mathbb{F}_n}(N), 1\Gamma)$. By our assumptions on the sofic approximations, $\lim_{k \to \infty} \mu_k(U_r) = 0$, hence $\mu(U_r) = 0$. Now let $V_r \subset S_{\mathbb{F}_n}^{K^c}$ be the clopen set of K-colored Schreier graphs G such that the ball $B_r(G, \text{root}(G))$ contains a repetitive path. By our assumptions on the colorings c_k, $\mu_k(V_r) = 0$ for any $k \geq 1$. Hence $\mu(V_r) = 0$. Therefore μ is concentrated on Ω.

Now we prove Theorem 2. Observe that we have an \mathbb{F}_n-equivariant continuous map $\Sigma : \Omega \to K^\Gamma$, where \mathbb{F}_n acts on the Bernoulli space K^Γ on the right by $\rho(f)(\gamma) = f(\gamma \kappa(\rho))$ for $\rho \in \mathbb{F}_n, \gamma \in \Gamma$. Then the image of F is a closed Γ-invariant subset in K^Γ, that is a Bernoulli subshift consisting of elements that are given by nonrepetitive K-colorings. The pushforward of μ under Σ is a Γ-invariant probability measure concentrated on Y. By Proposition 3.1, Γ acts freely on Y, hence Theorem 2 follows.

References

[1] N. Aubrun, S. Barbieri and S. Thomassé, Realization of aperiodic subshifts and uniform densities in groups. (preprint, https://arxiv.org/pdf/1507.03369.pdf).

[2] N. Alon, J. Grytczuk, M. Haluszczak and O. Riordan, Nonrepetitive colorings of graphs. Random Structures and Algorithms 21 (2002), no.3-4, 336–346.

[3] I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 (2001), no. 23, (electronic).

[4] V. Capraro and M. Lupini, Introduction to sofic and hyperlinear groups and Connes’ Embedding Conjecture. Lecture Notes in Mathematics, 2136. Springer.
[5] S. Gao, S. Jackson and B. Seward, A coloring property for countable groups. *Math. Proc. Cambridge Philos. Soc.* **147** (2009), no. 3, 579–592.

[6] S. Gao, S. Jackson and B. Seward, Group colorings and Bernoulli subflows. *Mem. Amer. Math. Soc.* **241** (2016), no. 1141.

[7] E. Glasner and B. Weiss, Uniformly recurrent subgroups. *Recent trends in ergodic theory and dynamical systems* Contemp. Math., **631**, Amer. Math. Soc., Providence, RI, 2015. 63–75.

[8] M. Gromov, Endomorphisms of symbolic algebraic varieties, *Journal of the European Mathematical Society* (1999), **1**, no. 2, 109–197.

[9] G. Hjorth and M. Molberg, Free continuous actions on zero-dimensional spaces. *Topology Appl.* **153** (2006), no. 7, 1116–1131.

[10] A Le Boudec and N. M. Bon, Subgroup dynamics and C^*-simplicity of groups of homeomorphisms (preprint, https://arxiv.org/pdf/1605.01651v3.pdf)

[11] A. Dranishnikov and V. Schroeder, Aperiodic colorings and tilings of Coxeter groups. Groups. Geom. Dyn, **1** (2007) no. 3, 311–328.

[12] T. Kawabe, Uniformly recurrent subgroups and the ideal structure of reduced crossed products (preprint, https://arxiv.org/pdf/1701.03413.pdf)

[13] B. Weiss, Sofic groups and dynamical systems, *Sankhya: The Indian Journal in Statistics* (2000), **62**, 350–359.

Gábor Elek
Lancaster University
g.elek@lancs.ac.uk