Constrained fitting of disentangled binary star spectra: application to V615 Per in the open cluster h Persei

(Research Note)

E. Tamajo¹, K. Pavlovski¹,², and J. Southworth²

¹ Department of Physics, University of Zagreb, Bijenička 32, 10 000 Zagreb, Croatia
² Astrophysics Group, Keele University, Newcastle-under-Lyme, ST5 5BG, UK

Preprint online version: December 13, 2010

ABSTRACT

Context. Using the technique of spectral disentangling, it is possible to determine the individual spectra of the components of a multiple star system from composite spectra observed at a range of orbital phases. This method has several advantages: it is unaffected by line blending, does not use template spectra, and returns individual component spectra with very high signal-to-noise ratios.

Aims. The disentangled spectra of a binary star system are very well suited to spectroscopic analysis but for one problem: the absolute spectral line depths are unknown because this information is not contained in the original spectra (unless there is one taken in eclipse) without making assumptions about the spectral characteristics of the component stars. Here we present a method for obtaining the atmospheric parameters of the component stars by the constrained fitting of synthetic spectra to observed and disentangled spectra.

Methods. Disentangled spectra are fitted using synthetic spectra and a genetic algorithm in order to determine the effective temperatures, surface gravities and relative light contributions of the two stars in a binary system. The method is demonstrated on synthetic spectra and then applied to the eclipsing binary V615 Per, a member of the young open cluster NGC 869 (h Persei).

Results. The method works well for disentangled spectra with signal-to-noise ratios of 100 or more. For V615 Per we find a normal He abundance but an Mg abundance, which indicates bulk metallicity, a factor of two lower than typical for nearby OB stars.

Key words. stars: binaries – stars: abundances – stars: atmospheres – open clusters and associations

1. Introduction

The technique of spectral disentangling (spd) allows the isolation of the individual spectra of the component stars of a double-lined spectroscopic binary system from a set of composite spectra observed over a range of orbital phases. It was originally formulated in the wavelength domain by Simon & Sturmi (1994) and in the Fourier domain by Hadravi (1995). The technique simultaneously returns the best-fitting individual spectra and the orbital velocity amplitudes of the two stars. A detailed overview of spd can be found in Pavlovski & Hensberge (2009).

Compared to other methods of radial velocity measurement, spd has several advantages. Firstly, it is independent of template spectra so avoids any systematic errors due to spectral differences between the target and template stars. Secondly, it is not affected by the blending of spectral lines of the two stars (see Hensberge et al. 2000; Southworth & Clausen 2007). Thirdly, the resulting disentangled spectra contain the combined signal of the input spectra (Pavlovski & Southworth 2009) so have a much higher signal-to-noise (S/N) ratio.

There are two disadvantages of the spd approach. The first of these is that the continuum normalisation of the input spectra has to be very good in order to avoid low-frequency spurious patterns in the resulting disentangled spectra (Hensberge et al. 2008). The second is that relative continuum light contributions of the two stars cannot be found using spd as this information is itself not contained in the observed spectra, unless a spectrum has been obtained during an eclipse (Iljić et al. 2004).

spd is well suited to the spectral analysis of stars in binary systems. Each disentangled spectrum contains only features due to one star, so can be analysed using standard methods for single stars. The high S/N ratios of disentangled spectra are very helpful to this process, but the undetermined continuum light ratio between the component stars complicates the spectral analysis. In this work we present a method to fit synthetic spectra to disentangled spectra, where the atmospheric parameters of the stars are determined simultaneously with the relative light contributions of the stars. A genetic algorithm is used for the optimization in order to ensure that the best solution is found in a parameter space which suffers from strong degeneracies, in particular between effective temperature (T eff) and surface gravity (log g).

An important application of spd is the study of detached eclipsing binary star systems (dEBs). These represent the primary source of directly-measured masses and radii of stars, and as such are cornerstones of stellar physics (Andersen 1991; Torres et al. 2010). spd can be used to measure the velocity amplitudes of the stars, which are necessary for the mass and radius measurements, simultaneously with obtaining the individual stellar spectra for spectral analysis (Pavlovski & Hensberge 2005; Pavlovski et al. 2009; Pavlovski & Southworth 2009).

A major advantage of dEBs to this process is that the surface gravities of the stars can be obtained to within ±0.01 dex from the mass and radius measurements: these parameters can then be fixed in the spectral analysis and thus the degeneracy between T eff and log g avoided (Simon et al. 1994; Hensberge et al. 2009).

In this work we demonstrate the genetic algorithm approach to fitting disentangled spectra on the dEB V615 Persei, a member of the young open cluster h Persei, Southworth et al. 2004a.
Hereafter SMS04 obtained a series of high-resolution spectra of V615 Per and analysed them with published light curves (Krzemiński et al. 1999) to measure the masses (4.08 and 3.18 M⊙) to accuracies of 2% and the radii (2.29 and 1.90 R⊙) to 5%, resulting in surface gravities measured to within 0.05 dex. The T_\text{eff} values were found to be 15 000 ± 500 K and 11 000 ± 500 K. SMS04 found that stellar evolutionary models required a subsolar metal abundance (Z ≈ 0.01) to reproduce the measured masses and radii of V615 Per.

The Perseus Double Cluster comprises h Persei (NGC 869) and υ Persei (NGC 884). It has been extensively studied via deep CCD photometry (Keller et al. 2001; Marco & Berndes 2001; Slesnick et al. 2002; Capilla & Fabregat 2002; Currie et al. 2010), from which there is general agreement on its distance (2.3 to 2.4 kpc) and age (13–14 Myr). But these studies assumed a solar chemical composition, and their results may be systematically wrong if this assumption is incorrect.

Conflicting results on the chemical composition of the Perseus Double Cluster are present in the literature. Detailed abundance analyses based on high-resolution spectra of hot stars (Lennon et al. 1988; Dufton et al. 1990) have challenged previous findings of low helium abundances (Nissen 1976; Klochkova & Panchuk 1987; Wolff & Heasley 1985; Dufton et al. 1990) and Smartt & Rolleston (1997) found an approximately solar metal abundance from high-resolution spectra, but this was not supported by Vrancken et al. (2000). In this work we attempt to shed additional light on this subject by measuring the helium and metal abundances of the stars in the dEB V615 Per.

2. Constrained fitting of disentangled spectra using a genetic algorithm

A computer code has been constructed which fits synthetic spectra to disentangled spectra of a binary system in order to determine the atmospheric parameters T_\text{eff}, log g, projected rotational velocities v sin i, Doppler shifts, and the light factors. The light factors are an important part of the analysis, and are parameterised as LF, the fraction of the total system light produced by one star for the wavelength or wavelength interval under consideration. The LFs for the binary components should sum to unity. The determination of the atmospheric parameters represents a difficult optimization problem, for which we use a genetic algorithm to minimise the \chi^2 of the fit to the data (Holland 1975; Charbonneau 1995). Our implementation is called \textsc{genfitt} (genetic fitting) and in approach is similar to that of Mokiem et al. (2005). Error estimates come from the covariance matrix, which is constructed using the Levenberg-Marquardt method.

In order to save computing time we pre-calculate grids of synthetic spectra. \textsc{genfitt} linearly interpolates between these in T_\text{eff} and log g, and then convolves them with a rotational profile using the \textsc{rotin} code of I. Hubeny1. The LTE grid covers T_\text{eff} from 6000 to 15 000 K and the non-LTE grid covers T_\text{eff} from 14 000 to 35 000 K. Both grids contain log g values of 2.5 to 5.0 (cgs), and are stepped by 250 K in T_\text{eff} and 0.1 dex in log g.

There can be strong degeneracies between the fitted atmospheric parameters, most notably T_\text{eff} and log g for Balmer line profiles. This degeneracy between T_\text{eff} and log g can be avoided by analysing dEBs, because their surface gravities can be known to within 0.01 dex from measurements of their masses and radii. In many cases the light ratio of the stars in a dEB can be obtained from the light curve analysis (e.g. Southworth et al. 2004b), so the LFs can then be fixed to known values2.

In order to test the performance of \textsc{genfitt} we synthesized disentangled spectra covering the Hδ, Hγ and Hδ lines, using representative atmospheric parameters and with Gaussian noise added to produce S/N ratios ranging from 25 to infinity. We then used \textsc{genfitt} to fit all the atmospheric parameters to the synthesized spectra, with the only constraint that the two light factors sum to unity. The results are given in Table1 and show that for high S/N ratios (\textgtrsim100) the \textsc{genfitt} results reproduce the input T_\text{eff} and log g values satisfactorily. For lower S/N ratios the inherent degeneracy of these parameters causes them both to be underestimated by our method. By contrast, the LFs are reproduced to within the errorbars for all S/N ratios considered. An example fit is shown in Fig.1.

We obtained a second set of solutions in an ‘unconstrained mode’ where the LFs were not required to sum to unity. The results were, as expected, similar to but slightly poorer than the ‘constrained mode’. Finally, a third set of solutions were made with fixed log g values (Table2), as would often be the case when analysing a dEB. We find that the situation is similar to that for the first set of solutions. The main limitation on the quality of these results is the degeneracy between T_\text{eff} and log g: we find a correlation coefficient of 0.98 between these parameters for both components. The correlation with the LFs is much weaker, which is why the LF values are reliable even for low-S/N spectra.

3. Application to V615 Persei

\textsc{genfitt} has already been used for studying the dEBs V380 Cyg (Pavlovski et al. 2009) and V621 Per (Southworth et al. 2011, in prep.). In both of these cases spectra of a high S/N ratio were available and \textsc{genfitt} returned excellent results. Here we challenge it with spectra of a much lower S/N ratio.

25 spectra of the dEB V615 Per were obtained by SMS04, with a reciprocal dispersion of 0.11 Å pixel-1, a resolution of 0.2 Å and an average S/N of \textasciitilde50. They cover 4220–4500 Å so include Hγ, a number of helium lines, and the Hg II 4481 Å doublet and are well distributed through one orbital cycle. sprop was

1http://nova.astro.umd.edu/index.html

2The light ratio can be poorly determined in some dEBs, and in this case obtaining a spectroscopic light ratio is an important part of modeling the light curves. For an example see Southworth et al. (2007).
Table 1. Results of fitting synthesized disentangled spectra with genfitt for different S/N values. The output parameters and uncertainties are given, along with the difference compared to the input parameters and the reduced χ² (χ²ₚ).

S/N	Teff (K)	ΔTeff	log g₁	Δlog g₁	LF₁	ΔLF₁	Teff₂ (K)	ΔTeff₂	log g₂	Δlog g₂	LF₂	ΔLF₂	χ²ₚ
∞	17 991	−9	3.495	−0.005	0.775	−0.005	11 005	−5	3.995	−0.005	0.225	+0.005	−2
±56	17 896	−104	3.492	−0.008	0.771	−0.009	10 896	−103	3.992	−0.008	0.229	+0.009	1.054
±153	17 835	−165	3.497	−0.003	0.771	−0.009	10 837	−164	3.987	−0.013	0.229	+0.009	1.032
±198	17 753	−247	3.485	−0.015	0.769	−0.011	10 748	−252	3.986	−0.015	0.231	+0.011	0.841
±365	17 041	−959	3.421	−0.079	0.761	−0.019	10 030	−970	3.929	−0.071	0.239	+0.019	0.774
±441			0.081										

Notes. The input atmospheric parameters are: T_{eff} = 18 000 K, log g = 3.5, v sin i = 105 km s⁻¹, LF₁ = 0.78, T_{eff} = 11 000 K, log g₂ = 4.0, v sin i₂ = 95 km s⁻¹, LF₂ = 0.22

Table 2. Same as Table 1 but for fits with log g values for the two stars fixed.

S/N	Teff (K)	ΔTeff	LF₁	ΔLF₁	Teff₂ (K)	ΔTeff₂	LF₂	ΔLF₂	χ²ₚ
∞	17 921	−79	0.776	+0.001	10 921	−79	0.224	−0.001	−2
±109			0.010		±115	±0.014	±0.014	±0.014	±0.014
±160	17 897	−103	0.771	−0.004	10 909	−91	0.229	+0.009	1.065
±166	17 825	−175	0.769	−0.011	10 808	−192	0.231	+0.011	1.042
±236			0.018		±236	±0.018	±0.018	±0.018	±0.018
±352	17 750	−250	0.767	−0.013	10 738	−262	0.233	+0.013	0.848
±343			0.027		±343	±0.025	±0.025	±0.025	±0.025
±416	17 056	−944	0.756	−0.024	10 030	−970	0.244	+0.024	0.777
±422			0.082		±422	±0.085	±0.085	±0.085	±0.085

Table 4. Chemical abundances derived for the components of V615 Per.

Component	Species	Wavelength (Å)	Abundance
Star A	He I	4388	0.090 ± 0.005
Star A	He I	4471	0.092 ± 0.005
Star A	Mg II	4481	7.26 ± 0.03
Star B	Mg II	4481	7.16 ± 0.06

Notes. The chemical abundances were obtained from the analysis of the spectra using the Atlas9 code, with solar C, N, O, Ne (Kurucz 1975), and non-LTE theoretical line profiles. The components of V615 Per have a subsolar Mg abundance and resemble halo B stars more than nearby examples.
It also returns reliable results.

If the two stars are eclipsing, their surface gravity values may not be found, because this information is not present in the observed spectra of the eclipsing system V615 Per, a member of the h Persei open cluster. The metal abundance of this cluster is controversial (see Sect. I) but important in measuring its distance by the isochrone method. The spectra were disentangled and fed into genfitt, and an abundance analysis was performed on the resulting renormalised spectra. The atmospheric parameters returned by genfitt are in good agreement with previous work (SMS04) but are more precise. We find a normal solar helium abundance for V615 Per A (star B is cooler and has only weak helium lines). The magnesium abundances for both stars are lower than those found for nearby OB stars, indicating that h Persei has a subsolar metallicity. This is in agreement with the results of SMS04, based on the complimentary method of comparing the masses and radii of the stars to the predictions of theoretical stellar evolutionary models.

Fig. 2. Comparison between disentangled and renormalised spectra of star A (upper panel) and star B (bottom panel) with synthetic spectra calculated for the He and Mg abundances given in Table 4 (blue lines). Only the Mg II lines and the He I line for star A are fitted here. Other lines are shown but not used in our results.

This implies that the h Persei open cluster has a subsolar metal abundance.

4. Summary

Spectral disentangling is a method for obtaining the individual spectra of the components of a binary star system from composite spectra obtained at a range of orbital phases. A disadvantage of this method is that the continuum light ratios of the stars are not found, but this information is not present in the observed spectra without making assumptions about the spectral characteristics of the stars. We present the genfitt program, which uses a genetic algorithm to fit synthetic spectra to the disentangled spectra of both components of a binary system simultaneously. It returns the best-fitting atmospheric parameters (T_{eff} and $\log g$) and the light contributions of the two stars. From tests with synthesized spectra we find that genfitt performs extremely well in determining the light ratio. It also returns reliable T_{eff} and $\log g$ values in those cases where S/N of the input disentangled spectra is ≥ 100, which is the usual situation for observational studies.

The light contributions of the two stars will normally sum to unity, which provides a useful constraint for genfitt. Contaminating light from a third star can in principle be found, in cases when the light contributions of the two stars in the binary sum to less than unity. Once the light contributions of the stars have been found, their disentangled spectra can be renormalised to the correct continuum levels. The resulting spectra can then be analysed using standard methods for single stars. If the two stars are eclipsing, their surface gravity values may be found to high precision and accuracy from analysis of the orbital velocity amplitudes found by spectral disentangling and light curves covering the eclipses.

As a demonstration of the method we applied genfitt to spectra of the eclipsing system V615 Per, a member of the h Persei open cluster. The metal abundance of this cluster is controversial (see Sect. I) but important in measuring its distance by the isochrone method. The spectra were disentangled and fed into genfitt, and an abundance analysis was performed on the resulting renormalised spectra. The atmospheric parameters returned by genfitt are in good agreement with previous work (SMS04) but are more precise. We find a normal solar helium abundance for V615 Per A (star B is cooler and has only weak helium lines). The magnesium abundances for both stars are lower than those found for nearby OB stars, indicating that h Persei has a subsolar metallicity. This is in agreement with the results of SMS04, based on the complimentary method of comparing the masses and radii of the stars to the predictions of theoretical stellar evolutionary models.

Acknowledgements. KP acknowledges receipt of the Leverhulme Trust Visiting Professorship which enabled him to perform this work at Keele University, UK. JS acknowledges funding from STFC in the form of an Advanced Fellowship.

References

Andersen, J., 1991, A&A&Arts, 3, 91
Butler, K., 1984, PhD thesis, University College London
Capilla, G. & Fabregat, J. 2002, A&A, 394, 479
Charbonneau, P. 1995, ApJS, 101, 309
Currie, T., Hernandez, J., Irwin, J., et al. 2010, ApJS, 186, 191
Dufort, S, Cunha, K., & Butler, K. 2004, ApJ, 606, 514
Dufort, S., Cunha, K., Smith, V. V., & Butler, K. 2003, A&A, 399, 525
Dufort, P. L., Brown, P. J. F., Fitzsimmons, A., & Lennon, D. J. 1990, A&A, 232, 431
Giddings, J. 1981, PhD thesis, University College London
Hadrava, P. 1995, A&AS, 114, 393
Hensberge, H., Ilijić, S., & Torres, K. B. V. 2008, A&A, 482, 1031
Hensberge, H., Pavlovski, K., & Verschueren, W. 2000, A&A, 358, 553
Holland, J. H. 1975, Adaptation in natural and artificial systems. an introductory analysis with applications to biology, control and artificial intelligence, ed. Holland, J. H.
Ilijić, S., Hensberge, H., Pavlovski, K., & Freyhammer, L. M. 2004, in Astronomical Society of the Pacific Conference Series, Vol. 318, Spectroskopically and Spatially Resolving the Components of the Close Binary Stars, ed. R. W. Hilditch, H. Hensberge, & K. Pavlovski, 111–113
Keller, S. C., Grebel, E. K., Miller, G. J., & Yoss, K. M. 2001, AJ, 122, 248
Klochkova, V. G. & Panchuk, V. E. 1987, Soviet Astronomy Letters, 13, 23
Krizeski, J., Pigulski, A., & Kołaczkowski, Z. 1999, A&A, 345, 505
Kurucz, R. L. 1979, ApJS, 40, 1
Lennon, D. J., Brown, P. J. F., & Dufort, P. L. 1988, A&A, 195, 208
Lyubimkov, L. S., Rostochin, S. L., Rachkovskaya, T. M., Prikol, D. B., & Lambert, D. L. 2005, MNRAS, 358, 193
Marco, A. & Bernabei, G. 2001, A&A, 372, 477
Moeck, M. R., de Koter, A., Puls, J., et al. 2005, A&A, 441, 711
Nissen, P. E. 1976, A&A, 50, 343
Pavlovski, K. & Hensberge, 2005, A&A, 439, 309
Pavlovski, K. & Hensberge, H. 2000, ASP Conf. in press, arXiv:0909.3246
Pavlovski, K. & Southworth, J. 2009, MNRAS, 394, 1519
Pavlovski, K., Tamajo, E., Koubkay, P., et al. 2009, MNRAS, 400, 791
Simon, K. P. & Sturm, E. 1994, A&A, 281, 296
Simon, K. P., Sturm, E., & Friedler, A. 1994, A&A, 292, 507
Slesnick, C. L., Hillenbrand, L. A., & Massey, P. 2002, ApJ, 576, 880
E. Tamajo, K. Pavlovski & J. Southworth: Genetic fitting of disentangled spectra (RN)

Smartt, S. J. & Rolleston, W. R. J. 1997, ApJ, 481, L47
Southworth, J., Bruntt, H., & Buzasi, D. L. 2007, A&A, 467, 1215
Southworth, J. & Clausen, J. V. 2007, A&A, 461, 1077
Southworth, J., Maxted, P. F. L., & Smalley, B. 2004a, MNRAS, 349, 547
Southworth, J., Maxted, P. F. L., & Smalley, B. 2004b, MNRAS, 351, 1277
Torres, G., Andersen, J., & Giménez, A. 2010, A&ARv, 18, 67
Trundle, C., Dufton, P. L., Hunter, I., et al. 2007, A&A, 471, 625
Vrancken, M., Lennon, D. J., Dufton, P. L., & Lambert, D. L. 2000, A&A, 358, 639
Wolff, S. C. & Heasley, J. N. 1985, ApJ, 292, 589