SHORT COMMUNICATION

Isocartormin, a novel quinonechalcone C-glycoside from Carthamus tinctorius

Feng Li a, b, Zhisheng He a, Yang Ye a, *

 a State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
 b Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA

Received 14 February 2017; received in revised form 14 March 2017; accepted 17 March 2017

KEY WORDS
Carthamus tinctorius; Compositae; Semi-quinone chalcone; Cartormin; Isocartormin

Abstract A new semi-quinonechalcone C-glycoside isocartormin along with cartormin and safllomin C were isolated from the water extract of Carthamus tinctorius L. The structure of isocartormin was determined by extensive analysis of HR-MS, 1D- and 2D NMR data, and by comparison with those of cartormin reported previously by our group. Isocartormin was identified as a diastereoisomer of cartormin with a reverse configuration at C-18.

© 2017 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The florets of *Carthamus tinctorius* L. (Compositae) are widely used for the treatment of stroke, coronary heart disease through promoting blood circulation by removal of blood stasis. Phytochemical and pharmacological studies suggested that water-soluble components of *C. tinctorius*, especially quinochalcone C-glycosides, should contribute to its therapeutic effects. In China, the water extract has been extensively used in hospitals for cardiovascular diseases as an intravenous injection. To date, more than 200 compounds from *C. tinctorius* have been identified, including flavonoids, alkaloids, lignans, riboflavin, steroids, and quinochalcone C-glycosides. Among these ingredients, quinochalcone C-glycosides are unique components in this species, which are regarded as the characteristic and active components in its water extract. So far, 20 quinochalcone C-glycosides have been isolated from the title plant, including one semi-quinone chalcone sharing a pyrrole ring C-glycoside, cartormin, reported by our group. Recently, Jin et al. characterized a novel semi-quinone chalcone was characterized (Fig. 1). The structure was elucidated on the basis of HR-MS, MS/MS, 1D- and 2D-NMR data, as well as by comparison with those of its diastereoisomer cartormin. In this study, we describe the isolation and structural elucidation of the new compound isocartormin.

2. Results and discussion

Isocartormin was obtained as yellow crystals. The positive ESI-MS ion peaks at *m/z* 576 [M+H]+ and 414 [M–Glc+H]+ and the negative one at *m/z* 574 [M–H]− suggest a molecular weight of 575. The corresponding molecular formula was established as C27H29NO13 by HR-ESI-MS measurement. The IR spectrum showed the presence of a keto-enol carboxyl system (1600–1640 cm−1) and hydroxyl groups belonging to sugar moieties (3376, 1062 br cm−1). The C=CN absorption was also observed at 1276 cm−1. In the UV spectrum, the strong absorption band at 405 nm and a small absorption peak at 221 nm suggested that a semi-quinone chalcone moiety is present in this structure. In the 1H NMR spectrum, four aromatic protons at δH 6.72 (2H, d, J=8.6 Hz, H-12, H-14), 7.43 (2H, d, J=8.6 Hz, H-11, H-15) and two E-olefinic protons at δH 7.43 (1H, d, J=15.8 Hz) and 7.67 (1H, d, J=15.8 Hz) revealed the existence of a p-hydroxycinnamic acid group (Fig. 1). Additionally, two anemic-proton peaks for C-glycoside at δH 4.82 (1H, d, J=5.1 Hz, H-18) and 3.31 (1H, d, J=9.5 Hz, H-22), along with two anomeric carbons at δC 78.5 (C-18) and 86.1 (C-22), confirmed that two sugar moieties were attached to the structure (ring A: erythrosyl; ring E: glucosyl).

Position	δH (J Hz)	δC	HMBC (C→H)	
1	198.4	H-22		
2	79.6			
3	142.2	H-16, H-22		
4	117.5	H-16		
5	188.2	H-16		
6	110.4			
7	183.0	H-8, H-9		
8	7.43	15.8	H-9	
9	7.67	15.8	H-9, H-11, H-15	
10	128.7	H-8, H-9, H-11, H-12	H-14, H-15	
11	7.43	8.6	H-9, H-15, H-12	
12	6.72	8.6	H-14, H-11, H-14,	
13	161.6	H-11, H-12, H-14,		
14	6.72	8.6	H-12, H-15	
15	7.43	8.6	H-9, H-11, H-14	
16	6.42		H-18	
17	134.3		H-16	
18	4.82	5.1	H-19, H-20, H-21	
19	4.18	4.8	H-21	
20	4.33		H-18, H-21	
21	3.87	9.1	H-19, H-20	
22	3.78	9.1	H-19, H-20	
23	3.31	9.5	H-23, H-24	
24	3.47		H-22	
25	4.19		H-22, H-26, H-23,	H-25
26	2.95		H-22, H-27	
27	3.62	12.1	H-22, H-27	
28	3.55	11.9	H-25	

Data was measured at 400 MHz for 1H NMR and at 100 MHz for 13C NMR.

![Figure 1](image-url) Structures of isocartornin, cartornin and safflomin C.
Isocartormin, a novel quinochalcone C-glycoside from *Carthamus tinctorius* 529

The HMBC spectrum (Table 1) showed the correlations from H-18 to C-16, which suggested ring A was linked to the ring B via the C17–C18 bond, and the correlation from H-22 to C-1, suggesting that ring E was attached to C-2 of ring C via C22–C2. The signals generated from H-9 to C-7 and C-11 further implied the existence of a p-hydroxyl cinnamoyl moiety. In the NOESY spectrum, the cross-peaks of H-18/H-19, H-18/H-21, and H-19/H-20 provided the solid evidence for H-18, H-19 and H-20 being in the same face of ring A, namely, these three protons being in *cis* form (Fig. 2). Although the IR, 1H NMR and 13C NMR spectroscopic data of isocartormin showed high similarities to those of cartormin, the anomic proton of isocartormin at δ α 4.82 (H-18) and its coupling constant (J = 5.1 Hz) was different from those of cartormin (δ α 4.50, J = 7.7 Hz). As shown in Table 1, the chemical shifts of C-19, 20, 21 in the ring A (δ C 74.5, 73.5 and 73.1) also have obvious changes when compared with those in cartormin (δ C 77.8, 72.6 and 74.6). As a matter of fact, isocartormin and cartormin have different retention time in the UPLC–QTOF-MS analysis (Supplementary Fig. S1). We confirmed the difference between these two compounds by employing alternative mobile phases and detector (UV) (Supplementary Fig. S2). MS/MS of cartormin and isocartormin also displayed the similar fragmental pattern (Fig. 3), in which the fragmental ions are interpreted in the inlaid structural diagram. Based on the above evidences and comparison with the NMR data of cartormin, the novel isocartormin was identified as isocartormin, a diastereoisomer of cartormin. The recent research on *C. tinctorius* likewise observed the existence of the isomer of cartormin. The authors predicted the possible formation of cartormin isomer results from various linking position of the erythrosyl moiety to the pyrrole ring14. Unfortunately, no information concerning the isomer is available in the previous study. In this study, we isolated and characterized the isomer of cartormin for the first time.

3. Conclusions

Although the chemical components of *C. tinctorius* L. have been extensively investigated, we successfully isolated and characterized isocartormin, a diastereoisomer of cartormin guided by UPLC–QTOF-MS. Our study further confirmed the existence of the cartormin isomer predicted in the previous study by the isolation and characterization of isocartormin. In addition, it is well known that a compound and its stereoisomer may exhibit different bioactivities. This study allows us to test the bioactivities of cartormin and its isomer in future study.

4. Experimental

4.1. General experimental procedures

The melting points (uncorr.) were determined on a Bucli 510 melting point apparatus. The optical rotation values were obtained on a DIP-181 digital polarimeter. The UV spectra were taken on a Varian Cary 300 Bio spectrophotometer. The IR spectra were recorded on a Nicolet 750 instrument. The NMR spectra were collected on a Bruker AM-400 spectrometer, with tetramethylsilane (TMS) as internal standard in CD$_3$OD. The HR-ESI-MS and MS/MS were obtained on UPLC–QTOF-MS (Waters, Milford, MA, USA). The mixture of isocartormin and cartormin was monitored by UPLC–QTOF-MS. In brief, a 100 mm × 2.1 mm (Acquity 1.7 μm) BEH C18 column (Waters, Milford, MA, USA) was used for their separation. The flow rate of the mobile phase was set as 0.3 mL/min. The gradient ranged from 2% to 98% acetonitrile containing 0.1% formic acid in a 10-min run. QTOF-MS was operated in a positive mode with electrospray ionization. The source and desolvation temperature were set at 120 and 350 °C, respectively. Nitrogen was applied as the cone gas (10 L/h) and desolvation gas (700 L/h). Argon was applied as the collision gas. QTOF-MS was calibrated with sodium formate and monitored by the intermittent injection of lock mass leucine enkephalin in real time, generating a reference ion at m/z 556.2771. The capillary voltage and the cone voltage were set at 3.5 kV and 35 V, respectively. Tandem mass spectrometry fragmentation was conducted with collision energy ramp ranging from 10 to 40 V.

4.2. Plant material

The florets of *C. tinctorius* were collected in Sichuan province, China, and authenticated by Prof. Lan Xu. A voucher specimen (No. 77) has been deposited at Shanghai Institute of Materia Medica, Chinese Academy of Sciences.

4.3. Extraction and isolation

The air-dried florets (10 kg) were extracted with water, and then with EtOAc, followed by n-BuOH. The n-BuOH fraction (1.0 kg) was chromatographed on macro resin (DA 201) using gradient elution with EtOH–H$_2$O (0%, 30%, 70% EtOH, v/v). The 30% fraction was subjected to a polyamide column with H$_2$O, H$_2$O–CH$_3$OH (1:1, v/v) and CH$_3$OH successively. The fraction (H$_2$O–CH$_3$OH) was chromatographed on a silica gel column eluted with CHCl$_3$–MeOH–H$_2$O (3:1:0.1, v/v) to afford isocartormin (18 mg), and cartormin (150 mg). Safflonin C (15 mg) was isolated by preparative TLC using CHCl$_3$–MeOH–H$_2$O (2:5:1:0.02, v/v/v/v) as a developing solution.

4.3.1. Isocartormin

Yellow needle crystals, mp 240 °C (dec.); [α]$_D^{23}$ = −196 (c 0.21, MeOH); UV (MeOH) λ_{max} (logε): 405 (4.59), 221 (4.34) nm; IR (KBr) ν_{max} (film): 3376, 1604, 1488, 1394, 1168, 1276, 1062 and 827 cm$^{-1}$; 1H NMR and 13C NMR (Table 1): ESI-MS (positive): m/z 598 [M+Na]$^+$ (100), 576 [M+H]$^+$ (50), 414 [M–Glc+H]$^+$ (69); ESI-MS (negative): m/z 574.2 [M–H]$^-$ (100); HR-ESI-MS m/z 576.1722 [M]$^+$ (Calcld. for C$_{27}$H$_{26}$NO$_{13}$ 576.1717).

4.3.2. Cartormin

Yellow crystals, mp 230 °C (dec.); [α]$_D^{25}$ = −155 (c 0.20, MeOH); IR (KBr) ν_{max} (film): 3400, 1600, 1490, 1388, 1269, 1170, 1078 and 831 cm$^{-1}$; ESI-MS (negative): m/z 574 [M–H]$^-$; 1H NMR (CD$_3$OD, 400 MHz) δ α: 7.60 (1H, d, J = 15.8 Hz), 7.38 (2H, d, J = 8.8 Hz), 7.33 (1H, d, J = 15.8 Hz), 6.52 (2H, d, J = 8.8 Hz), 6.34 (1H, s), 4.51 (1H, d, J = 7.7 Hz), 3.23 (1H, d, J = 9.5 Hz); 13C NMR (CD$_3$OD, 100 MHz) δ C: 198.5 (s), 188.3 (s), 182.6 (s), 178.6 (s), 173.8 (s), 158.9 (s), 147.3 (s), 143.3 (s), 135.1 (s), 134.5 (s), 131.7 (s), 120.9 (s), 116.7 (s), 110.9 (s), 107.7 (s), 102.3 (s), 100.1 (s), 91.8 (s), 87.8 (s), 87.3 (s), 82.5 (s), 77.8 (s), 75.6 (s), 74.5 (s), 73.5 (s), 73.1 (s), 71.3 (s), 68.3 (s), 64.7 (s), 63.5 (s), 59.0 (s), 57.3 (s), 52.3 (s), 48.8 (s), 42.5 (s), 31.9 (s), 28.3 (s), 18.1 (s).
Figure 3 Comparison of MS/MS patterns between isocartormin and cartormin.
161.7 (s), 144.2 (d), 142.8 (s), 136.0 (s), 132.1 (d), 128.7 (s), 119.8 (d), 117.8 (s), 117.2 (d), 110.5 (s), 104.7 (d), 86.2 (d), 81.4 (d), 80.3 (d), 79.7 (s), 78.6 (d), 77.8 (d), 74.6 (t), 72.6 (d), 71.2 (d), 70.9 (d), 62.6 (t).

4.3.3. Safflomin C

Yellow powder, mp 300 °C (dec.); IR (KBr) ν_{max} (film): 3400, 1700, 1613, 1595, 1510, 1400, 1230, 1162, 1068, 920 and 825 cm\(^{-1}\); ESI-MS (negative): \(m/z\) 613 [M–H]\(^-\) (100); \(^1\)H NMR and \(^{13}\)C NMR were consistent with those in literature\(^{19}\).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.apsb.2017.04.005.

References

1. Jiangsu New Medica Institute. The Dictionary of Chinese Medicine. Shanghai: Shanghai Science and Technology Press; 1985.
2. Fan L, Zhao HY, Xu M, Zhou L, Guo H, Han J, et al. Qualitative evaluation and quantitative determination of 10 major active components in Carthamus tinctorius L. by high-performance liquid chromatography coupled with diode array detector. J Chromatogr A 2009;1216:2063–70.
3. Kim MN, Scao-Bogaert FL, Paris M. Flavonoids from Carthamus tinctorius flowers. Planta Med 1992;58:285–6.
4. Li F, He ZS, Ye Y. Flavonoids from Carthamus tinctorius. Chin J Chem 2002;20:699–702.
5. Yin HB, He ZS, Ye Y. Cartorimine, a new cycloheptenone oxide derivative from Carthamus tinctorius. J Nat Prod 2000;63:1164–5.
6. Roh JS, Han JY, Kim JH, Hwang JK. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol Pharm Bull 2004;27:1976–8.
7. Nagatsu A, Zhang HL, Watanabe T, Taniguchi N, Hatano K, Mizukami H, et al. New steroid and matairesinol glycosides from safflower (Carthamus tinctorius L.) oil cake. Chem Pharm Bull 1998;46:1044–7.
8. Nishibe S, Sakushima A, Hisada S, Inagaki I. Tracheloside from the seeds of Carthamus tinctorius. Phytochemistry 1972;11:2629.
9. Palter R, Lundin RE, Haddon WF. A cathartic lignan glycoside isolated from Carthamus tinctorius. Phytochemistry 1972;11:2871–4.
10. Akihisa T, Nozaki A, Inoue Y, Yasakawa K, Kasahara Y, Motohashi S, et al. Alkane diols from flower petals of Carthamus tinctorius. Phytochemistry 1997;45:725–8.
11. Akihisa T, Onuma H, Tamura T, Kasahara Y, Kumaki K, Yasakawa K, et al. Erythro-hentriacontane-6,8-diol and 11 other alkane-6,8-diols from Carthamus tinctorius. Phytochemistry 1994;36:105–8.
12. Li F, He ZS, Ye Y. Riboflavirin and its degradation product from Carthamus tinctorius. Chin Trad Herbal Drugs 2004;35:3.
13. Jiang JS, He J, Feng ZM, Zhang PC. Two new quinochalcones from the florets of Carthamus tinctorius. Org Lett 2010;12:1196–9.
14. Jin Y, Zhang XL, Shi H, Xiao YS, Ke YY, Xue XY, et al. Characterization of C-glycosyl quinochalcones in Carthamus tinctorius L. by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2008;22:1275–87.
15. Kazuma K, Takahashi T, Sato K, Takeuchi H, Matsumoto T, Okano T. Quinochalcones and flavonoids from fresh florets in different cultivars of Carthamus tinctorius L. Biosci Biotechnol Biochem 2000;64:1588–99.
16. Yin HB, He ZS. A novel semi-quione chalcone sharing a pyrrole ring C-glycoside from Carthamus tinctorius. Tetrahedron Lett 2000;41:1955–8.
17. Yue S, Tang Y, Li S, Duan JA. Chemical and biological properties of quinochalcone C-glycosides from the florets of Carthamus tinctorius. Molecules 2013;18:15220–54.
18. Yue S, Tang Y, Xu C, Li S, Zhu Y, Duan JA. Two new quinochalcone C-glycosides from the florets of Carthamus tinctorius. Int J Mol Sci 2014;15:16760–71.
19. Onodera J, Obara H, Hirose R, Matsuba S, Sato N, Sato S, Suzuki M. The structure of safflomin C, a constituent of safflower. Chem Lett 1989;18:1571–4.