Evaluation of CD39, CD73, HIF-1α, and their related miRNAs expression in decidua of preeclampsia cases compared to healthy pregnant women

Yousef Yousefzadeh1,2,3 · Mohammad Sadegh Soltani-Zangbar2,3 · Ladan Kalafi4 · Ali Tarbiať5 · Sima Shahmohammadi Farid5 · Leili Aghebati-Maleki6 · Forough Parhizkar7 · Shahla Danaii7 · Simin Taghavi8 · Farhad Jadidi-Niaragh3 · Hossein Samadi Kafir9 · Ata Mahmoodpoor10 · Javad Ahmadian Heris11 · Mohammad Hojjat-Farsangi12 · Mehdi Yousefi1,3 ©

Received: 27 May 2022 / Accepted: 18 August 2022 / Published online: 1 September 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Background The Preeclampsia (PE) molecular mechanisms are not fully revealed and different biological processes are involved in the pathogenesis of PE. We aimed to evaluate adenosine and hypoxia-related signaling molecules in PE patients in the current study.

Methods Decidua tissue and peripheral blood samples were taken from 25 healthy pregnant and 25 PE women at delivery time. CD39, CD73, and Hypoxia-inducible factor-alpha (HIF-α) were evaluated in mRNA and protein level using real-time PCR and western blotting techniques, respectively. Also, miR-30a, miR-206, and miR-18a expression were evaluated by real-time PCR. At last, secretion levels of IGF and TGF-β in the taken serum of blood samples were measured by ELISA.

Results Our results revealed that Expression of CD39 is decreased in PE cases versus healthy controls at mRNA and protein levels (p = 0.0003 for both). CD73 and HIF-α showed an increased level of expression in PE patients at RNA and protein status (p = 0.0157 and p < 0.0001 for protein evaluation of CD73 and HIF-α, respectively). The miRNA-30a (p = 0.0037) and miR-206 (p = 0.0113) showed elevated expression in the decidua of the PE group. The concentration of secreted IGF-1 (p = 0.0002) and TGF-β (p = 0.0101) in serum samples of PE cases compared to the healthy group were decreased.

Conclusion In conclusion, our results showed that aberrant expression of molecules that are involved in ATP catabolism and the hypoxic conditions is observed in PE cases and involved in their hypertension and inflammation could be served as PE prognosis by more confirming in comprehensive future studies.

Graphical abstract
miR-206 and miR-30a play a role by regulating CD39 and CD73 as molecules that are involved in ATP catabolism as well as regulating the production of IGF-1 in the process of hypertension, which is the main feature in patients with preeclampsia.

Yousef Yousefzadeh and Mohammad Sadegh Soltani-Zangbar contributed equally to this work.

Extended author information available on the last page of the article
On the other hand, decreased level of miR-18a lead to upregulation of HIF-1α, and the consequence condition of hypoxia increases hypertension and inflammation in these patients.

Keywords Preeclampsia · CD39 · CD73 · HIF-α · miRNA

Abbreviations

- **PE** Pre-eclampsia
- **ELISA** Enzyme-linked immunosorbent assay
- **HIF-1α** Hypoxia inducible factor-alpha
- **CD39** Actonucleoside triphosphate diphosphohydrolase 1
- **CD73** Actonucleotidase
- **miRNAs** MicroRNAs
- **SMAD-2** SMAD family member 2
- **TGF-β** Tumor growth factor beta
- **GPI** Glycosyl-phosphatidylinositol
- **sENG** Soluble endoglin
- **sFlt-1** Soluble fms-like tyrosine kinase-1
- **ET-1** Endothelin-1
- **hPMECs** Human placental micro-vascular endothelial cells
- **dsRBP** Double-strand RNA binding protein
- **ds-miRNA** Double-strand miRNA
- **IGF-1** Insulin-like growth factor 1
- **TLRs** Toll-like receptors
- **cDNA** Complementary DNA
- **PVDF** Polyvinylidene fluoride
- **BSA** Bovine serum albumin
- **ECL** Electrochemiluminescence
- **BMI** Body mass index
- **SBP** Systolic blood pressure
- **DBP** Diastolic blood pressure
- **HDL** High-density lipoprotein
- **FBS** Fasting blood sugar
- **TG** Triglyceride
- **LDL** Low-density protein

Introduction

Pre-eclampsia (PE) is a usual pregnancy-related complaint characterized by hypertension with abnormal elevated serum creatinine or proteinuria, high systolic and diastolic blood pressure, damaged liver function with elevated transaminase, cerebral difficulty, thrombocytopenia, and pulmonary edema [1]. This pregnancy related severe disease affects more than 5% of all pregnancies and 10–20% of nulliparous women worldwide. There are more than 50,000 deaths reports of women every year due to this complication [2, 3]. On the other hand, there is a possibility of injuries in the fetus of preeclampsia women, such as fetal growth restriction, which is one of the most important causes of neonatal mortality [4]. Despite advances in the management of this disease in recent years, the exact cause of this disease, methods of early diagnosis and prevention have not been determined. In these cases, induction of preterm labor is recommended to reduce mortality [5]. Withdrawal of the fetus and placenta from the mother's body eliminates the symptoms of the disease, but nevertheless the complications of the disease are problematic for mother and child for the rest of their lives. These complications can increase the mother's risk of cardiovascular problems and metabolic disorders [6]. In addition, infants born from pre-eclamptic pregnancies suffer from higher-than-normal systolic and diastolic blood pressure at an early age and adolescence, and are more likely to develop metabolic diseases, epilepsy, stroke, and cardiovascular disease more than normal individuals [7].

Several hypotheses have been proposed regarding the causes of preeclampsia syndrome, including the effect of genetic and immunological factors, coagulation disorders, nutritional factors, and increased production of oxygen free radicals on the placenta and fetal cells.
microRNAs (miRNAs) are small non-coding RNAs that play an important role in regulating the progression of biological processes by interacting with cellular messenger RNAs [21]. Inflammatory responses affect miRNA expression and affect their biogenesis by altering transcription and processing of precursor transcripts or affecting the stabilization of adult miRNAs. In recent years, the number of miRNAs involved in the development and biological functions, especially of the immune system, has increased dramatically, and there has been widespread debate about their potential use as a treatment for immunological diseases. Indeed, abnormal expression of miRNAs often occurs in human diseases, including blood disorders and autoimmunity [21]. Numerous studies have been performed on the role of regulatory and stimulatory miRNAs in the immune system in preeclampsia [22]. Although the role of miRNAs involved in regulating CD39, CD73, and HIF-1α expression in cancers and autoimmune diseases, has been studied, performed studies on the role of these molecules and their regulatory miRNAs in infertility diseases especially preeclampsia has been limited. Results of these studies have shown that miR-206 regulates CD39 and IGF-1, and miR-30a regulates CD73 and IGF-1 expression, while miR-18a regulates HIF-1α and SMAD-2 expression, which is one of the downstream molecules in the TGF-β signaling pathway [23–25].

According to the description, this study was aimed to investigate the expression of CD39, CD73, and HIF-1α molecules and their regulatory miRNAs in the decidua of preeclampsia patients compared to healthy pregnant women.

Material and methods

Study design

25 healthy pregnant women without any previous problems and 25 preeclamptic women which are characteristic by hypertension, edema, and proteinuria were included in this study. Characterization of preeclampsia was done according to the International Pregnancy Hypertension Society (ISSHP) criteria (Table 1) [26, 27]. Patients who had historical disorders like active thromboembolic problem, fetus or mother infection like abortion, Hyper and Hypothyroidism etc. were excluded from the study. Participants have also received no immunosuppressive medication such as steroids or etc. For the control group, 25 healthy age-matched pregnant women delivery time with no sign and history or disease were contributed for current study. Written informed consent was obtained from all participants after receiving an explanation of the study. This study was performed in line with the principles of the declaration of Helsinki and the ethics code of the present study is IR.TBZMED.REC.1399.142 which is approved by the ethics committee of Tabriz University of Medical Sciences.

Sample collection

Decidua and blood samples of participants were collected during cesarean operation. Obtained decidua was stored for gene and protein expression analysis. Blood serums were isolated using centrifugation at 3000 rpm for 8 min, and then stored at -80 °C for future assays.

RNA extraction and real-time polymerase chain reaction (PCR)

After slicing decidua in 10 μm sections using microtome, sliced pieces were transferred to RNX-PLUS Solution.
RNA extraction was done based on the manufacturer’s instructions (Sina Clon, Iran). 1.8–1.98 ratio of A260/280 absorption was observed in all extracted RNA samples. Then, Complementary DNA (cDNA) was synthesized using revert aid reverse transcriptase kit (Thermofisher, USA). Evaluation of CD73, CD39, HIF-1α, miR-18a, miR-30a, and miR-206 genes were done using SYBR-Green master mix (Thermofisher, USA) technique in CFX Connect Real-Time PCR Detection System (Bio-Rad, USA). The real-time PCR results were measured via the 2−ΔΔCT method. Sequences of used primers are presented in Table 1S.

Enzyme-linked immunosorbent assay (ELISA)

The secretion levels of TGF-β and IGF-1 were assessed in serum via ELISA kit in duplicates based on manufacturer’s guidance (MyBioSource, San Diego, CA, USA). 450 nm wave length were selected to read the absorbance of samples in an 800™ TS absorbance reader system (BioTek, USA). Standard curve was used to evaluate concentration of these factors.

Western blotting

The western blotting technique was used to evaluate CD73, CD39, HIF-1α, and SMAD-2 products at protein status. First, RIPA buffer (Santa Cruz, USA) was utilized to extract decidua proteins. SDS-PAGE electrophoresis and blotting procedure were applied in order to transfer protein bands on the PVDF paper [28]. After blotting step, the PVDF paper was incubated in blocking buffer (TBS-Tween-20 with BSA 3%) for 2 h at room temperature, which is followed by incubation of the paper in primary antibodies (1:5000 diluted) overnight at 4 °C and secondary HRP-conjugated antibody (1:3000 diluted) for 2 h at 25 °C, respectively. Enhanced Chemiluminescence (ECL) kit was used to visualize targeted proteins using western blot imaging system (SabzCo, Iran). Between the all of steps, PVDF paper was washed 5 times (3 min for each time) by TBS-Tween-20 buffer. All antibodies and ECL kit were purchased from Santa Cruz Biotech (Santa Cruz, USA).

Data analysis

Version 25 of SPSS software was used to analysis the study results. Normal distributions of the data were evaluated using Kolmogorov–Smirnov test and unpaired student T-test was applied to analyze different variables between PE and control groups. Pearson r test was used to investigate any correlation between obtained data in PE cases. Variables data were showed as mean ± SD and p-value < 0.05 was considered as statistically significant. Graphical figures were illustrated using Graphpad Prism ver.9.00 (GraphPad, USA).

Results

Study population clinical and demographic parameters

A total of 50 pregnant women (25 healthy pregnant women as control group and 25 PE women as case) with matched age were contributed in this study. PE patients had positive proteinuria (5.69 ± 4.88) which is this parameter was negative for control group. Case group had elevated systolic blood pressure (p<0.0001), diastolic blood pressure

Characteristics	Control (Mean ± SD)	PE (Mean ± SD)	p value
Maternal age (years)	27.94 ± 3.52	28.62 ± 4.11	NS
Time of blood collection GA (week)	34.52 ± 1.23	34.1 ± 1.33	NS
GA at delivery (week)	39.05 ± 2.15	37.7 ± 3.22	NS
Birth weight of fetus (g)	3354 ± 381.5	2862 ± 832.7	NS
BMI (kg/m²)	27.12 ± 4.77	27.92 ± 4.39	NS
Systolic blood pressure (mmHg)	108.8 ± 8.31	152.5 ± 19.4	<0.0001
Diastolic blood pressure (mmHg)	72.6 ± 12.8	91.7 ± 10.2	0.0086
Proteinuria	Negative	5.69 ± 4.88	–
Fasting Blood Sugar (mg/dl)	84.91 ± 12.11	86.46 ± 10.53	NS
Triglyceride (mg/dl)	100.85 ± 14.36	111.5 ± 21.48	NS
Cholesterol (mg/dl)	169.9 ± 34.1	210.6 ± 55.73	NS
HDL-Cholesterol (mg/dl)	55.04 ± 4.42	49.98 ± 5.64	NS
LDL-Cholesterol (mg/dl)	64.1 ± 8.14	79.92 ± 11.28	0.0012
Uric acid (mg/dl)	4.31 ± 0.98	5.73 ± 1.18	0.0237

BMI Body mass index, HDL High density lipoprotein, LDL Low density lipoprotein
(p = 0.0086), LDL-Cholesterol (p = 0.0012), and uric acid (p = 0.0237) level compared to healthy controls. Whereas other parameters didn’t show significant differences between two groups. Demographic details of studied population were shown in Table 1.

Adenosine and hypoxia related genes and miRNAs showed different expression patterns in PE cases

CD73, CD39, HIF-1α, and their related miRNAs including miR-30a, miR-206, and miR-18a expression were evaluated transcription level between preeclampsia and normal pregnant women decidua tissue using quantitative real-time PCR technique. CD73 (p = 0.0231) and CD39 (p = 0.0003) genes showed upper and lower expression in PE patients compared to healthy group (Fig. 1A). CD73 and CD39 related regulatory miRNAs (miR-30a and miR-206, respectively) had increased expression in PE cases (p = 0.0037 for miR-30a and p = 0.0113 for miR-206) (Fig. 1B). HIF-1α (p = 0.0011) showed up regulated gene expression in PE patients and its related miRNA (miR-18a) had down regulated expression in these patients (p = 0.0034) (Fig. 1A and B). Details of the studied genes expression level were shown in Table 2S.

Western blotting analysis of CD73, CD39, and HIF-1α

In order to evaluate post transcriptional expression and validation of CD73, CD39, and HIF-1α real-time PCR results, we aimed to investigate these markers expression at protein level using western blotting assay. Western blotting of these markers showed similar results in line with real-time PCR outcomes. A considerable increase and decrease had seen in CD73 (p = 0.0157) and CD39 (p = 0.0003) expression, respectively at protein status in PE cases in comparison with control group (Fig. 2A and Table 2S). While, HIF-1α (p < 0.0001) showed significantly increased expression at this level in PE women (Fig. 2B). SMAD-2 as a signal transducer molecule which is positively regulated by miR-18a, showed decreased (p = 0.0406) expression in PE patients compared to control women (Fig. 2B). Details of the targeted proteins genes expression status were shown in Table 2S.

Evaluation of IGF-1 and TGF-β secretion level

Investigation of IGF-1 and TGF-β secretion level in serum of PE and healthy pregnant women was done by enzyme-linked immunosorbent assay (ELISA). Results of ELISA showed lower levels of both serum IGF-1 (p = 0.0002) and TGF-β (p = 0.0101) in PE women compared to healthy controls (Fig. 3). Detailed information of IGF-1 and TGF-β results are presented in Table 2S.

Correlation of miRNAs with their related molecules

Our investigations showed that expression of miR-206 has negative correlation with CD39 expression (p = 0.0036) and

Fig. 1 A Expression of CD39, CD73, and HIF-1α as ATP catabolism and hypoxia related factors at mRNA level. The expression of CD39 was down-regulated and CD73 and HIF-1α was up-regulated in PE cases compared to healthy pregnant women. B miR-18a, miR-30a, and miR-206 analysis in PE cases. The miR-18a had decreased expression and miR-30a and miR-206 had increased expression level in decidua of PE group versus healthy group. p < 0.05 was considered as statistically significant (Healthy pregnant group, n = 25, PE women, n = 25)
IGF-1 level (p = 0.0239). Also, there was positive correlation between miR-30a expression and CD73 expression (p = 0.0192), whereas a negative correlation was obtained between miR-30a and IGF-1 level (p = 0.0165). There was a negative correlation between miR-18a and HIF-1α (p = 0.0258). Our results didn’t show any correlation between miR-18a and TGF-β (Fig. 4).

Discussion

In this study, the expression of all three major molecules involved in ATP catabolism and hypoxia including CD39, CD73, HIF-1α, and their regulatory miRNAs in the decidua of PE patients was investigated. These molecules can influence placenta environment by altering ATP, adenosine and cellular oxygen status which is observed in pregnancy related complications like recurrent pregnancy loss (RPL) and PE.

The PE molecular mechanisms are not fully revealed and different biological processes are involved in the pathogenesis of PE. Improper trophoblasts invasion and proliferation are two critical factors PE development and spreading. Therefore, it is necessary to examine the basis of these defects to identify reputable and effective targets for the treatment of PE [11]. High levels of ATP are one of the danger signals, which are now found in PE. Disrupted balance of adenosine and ATP with a low ratio of adenosine/ATP is found in PE, which may be resulting in the activation of endothelial cells, systemic inflammation, and hypertension [14].

CD39 is an ectonucleotidase cell surface enzyme with a high variety of cell distribution, which is most dominantly expressed in human trophoblasts and vessels and regulates the function of trophoblasts in an ATP-dependent manner [29]. CD73 is a glycosyl-phosphatidylinositol (GPI)-linked cellular surface enzyme with 70 kDa molecular weight found in various tissues and act as an ecto-5′-nucleotidase. CD73s first function was described as a lymphocyte differentiating antigen by participating in T lymphocytes signaling as ligand which also can acts as adhesion molecule via binding to endothelium. A long variety of biological processes like precondition of ischemia, platelet function, vascular leac, tissue injury, hypoxia, and transportation of ion and fluid in epithelial are done by CD73 involvement. CD73 functions are outcome of the regulated hydrolytic activity on extracellular nucleotides [30]. Conversion of ATP and ADP to AMP
and consequence changing of AMP to adenosine via CD39 and CD73 activities notify critical role of these enzymes in calibrating duration, magnitude, and particularity of purinergic signals. It is necessary to note that CD39 acts as rate-controlling enzyme in ATP/CD39/CD73/adenosine cascade [31].

There are several studies on CD39 and CD73 expression and their role in pregnancy disorders especially in PE based on CD39-CD73 roles in different inflammatory and hypoxic condition and their expression pattern. Our results showed decreased and increased expression of CD39 and CD73 in decidua tissue of PE patients compared to healthy pregnant women at both mRNA and protein level. In line with our results, Zhu et al. [32] showed that decreased expression of ZDHHC14 and CD39 by hypomethylation is related to late-occurred PE cases via the these genes regulatory effects on trophoblast cell lines. They concluded that ZDHHC14 and CD39 may consider as potential targets and markers in PE clinical diagnosis and treatment [32]. In another study was done on mouse model of PE by McRae et al. [29], they concluded that inducing gestational hypertension in mice could be done by transferring TH1-polarized lymphocytes which are isolated from maternal blood and CD39 overexpression has protective effects in this model. In supporting our outcomes for CD73 expression in PE cases, elevated expression of CD73 as key regulatory enzyme which cause increase of adenosine in placenta was observed by Iriyama and coworkers in their study [33]. Huang et al. [34] observed reduction of adenosine in placenta and attenuated preeclampsia features and hypomethylation of placental DNA in preeclampsia mouse model which is induced by autoantibody.

Hypoxia-inductive Factor-1α (HIF-1α) is a critical transcription factor that alters response of the cell to hypoxia in pathological situations [35]. HIF-1 has a basic and heterodimeric helix-loop-helix structure and is composed of two alpha and beta subunits. It found that the determination of HIF-1 activity is measured by HIF-1a. There is a close correlation between CD73 and HIF-1a activity, which is confirmed by Lu et al. [36] in a study was done on human gastric carcinoma. Adenosine receptors comprise ADORA2A in promoter section of placenta tissue, which is respond to hypoxia. HIF-1α and HIF-2α controls ADORA2A, and ADORA2B, respectively. It is expected that the chronic hypoxic state of PE patient’s placenta is result of elevated expression of placental ADORA2A and ADORA2B [19]. Also, increased transcription of soluble endoglin (sEng), soluble fms-like tyrosine kinase-1

Fig. 3 Serum concentration of IGF-1 and TGF-β in PE women. IGF-1 and TGF-β had lower concentration in serum of PE women compared to healthy pregnant women. *p < 0.05* was considered as statistically significant (Healthy pregnant group, n = 25, PE women, n = 25)
Fig. 4 Correlation of miR-206, miR-30a, and miR-18a expression and their targeted molecules in PE women. CD39 and IGF-1 had negative correlation with miR-206 expression. Whereas, a positive and negative correlation with miR-30a expression observed for CD73 and IGF-1, respectively. miR-18a and HIF-1α had a negative correlation too.
HIF-1α known as one of main molecules involved in hypoxia condition which is observed in preeclamptic placenta. We observed significant increase in expression of HIF-1α mRNA and protein in PE patients. In supporting our data, up-regulation of HIF-1α in placenta of PE patients was confirmed in several studies [35, 37–39]. Persistent enhancement of placental adenosine and bilateral up-regulation of HIF-1α promotes PE pathogenesis which is observed by Iriyama et al. [35] in a mouse model study. Zhao confirmed a significantly increased expression of HIF-1α and TLR4 in placental tissues from severe PE cases (late-onset and early-onset) compared to healthy control. In addition, he suggested that HIF-1α could promote human placental micro-vascular endothelial cells (hPMECs) apoptosis by upregulation of TLR4 expression during PE pathogenesis [37].

MicroRNAs are small molecules with a large impact on the cellular and physiological function of the body and play an undeniable role in the pathogenesis of disorders like PE. In biogenesis of miRNA, pri-miRNA converts to single-hairpin precursor by a nuclear protein complex which has a binding site for double-strand RNA (dsRBP). After that, pri-miRNA delivers to the cytoplasm by exportin-5. Dicer is an RNase-III family cytoplasmic enzyme and modifies long dsRNA to 19–25 nucleotides named double-strand miRNA (ds-miRNA). The function of the human Dicer is consonant with dsRBP. At the end of miRNA biogenesis, produced ds-miRNA is hand-over to the Argonaute in an RNA-induced silencing complex process, and finally, one strand discard and the other was chosen to become mature miRNA [22].

We evaluated expression level of miR-30a, miR-206, and miR-18a in PE cases decidua in the current study. Our results showed decreased expression level of miR-18a in PE cases. MiR-18a regulates HIF-1α and SMAD-2 in positive and negative manner, respectively [25, 40]. In confirmation of our results, decreased levels of miR-18a in PE cases have been reported in several studies [40–42]. As result of miR-18a immune system related positive target, our group observed decreased levels of SMAD-2 and TGF-β in PE patients. SMAD-2 is a signal transduction molecule which is involved in TGF-β signaling pathway [40]. In a study was done Xu and coworkers [40], they found a reduction of miR-18a contributes to PE by down-regulating Smad-2 and reducing TGF-β Signaling. Zhu was found that promotion of apoptosis in human trophoblast cells and inhibited invasion of trophoblast occurs by targeting the ESRα gene via miR-18a suppression [41]. We reported increased expression of miR-30a and miR-206 in the decidua of preeclamptic cases. Also, our study showed decreased levels of serum IGF-1 as a common target of miR-30a and miR-206 in blood samples of PE patients. Several studies revealed decreased increased expression of miR-30a and miR-206 in PE and their regulatory effect on IGF-1 levels in these patients [43–45]. In a study which is done by Akehurst et al. [45], up and down-regulation of miR-206 and IGF-1 was seen in PE cases maternal circulations and placental tissue. They reported that mir-206 can be introduced a novel PE factor which is up-regulated during pregnancy of these patients. One of the weaknesses of our study is the small sample population, which returns to the difficulty of sampling decidua tissue. Another weakness of this study was the lack of blood sampling at different times of the pregnancy process in PE patients, which could identify the changes in the blood variables we studied during pregnancy.

In conclusion, PE is a multifactorial pregnancy disorder with physiological, environmental, immunological, genetic, and anatomical aspects. It's difficult to know the exact etiology of PE because of such a variety of signs. We examined molecules that are involved in ATP catabolism and hypoxia as the main elements of hypertension which is the most dominant sign of PE. Our results showed that differential expressions of miR-18a, miR-30, miR-206, and their target genes could be considered as PE factors. These molecules are a few from a large scale of targets which is need to survey in future studies to find PE exact etiology.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11033-022-07887-z.

Acknowledgements The current study is a part of the Ph.D. thesis for Mr. Yousef Yousefzadeh. Financial support of this thesis has been done by the Stem Cell Research Center of Tabriz University of Medical Sciences, Tabriz, Iran [Grant No: 65106].

Author contribution YY: Manuscript writing; Laboratory assays; Data collection or management. MSSZ: Data collection or management; Laboratory assays; Data analysis. LK: Data collection. AT: Data collection. SSF: Protocol/project development. LAM: Laboratory assays. FP: Laboratory assays. SD: Sample collection. ST: Sample collection. FJN: Manuscript editing. HSK: Data analysis. AM: Data management. JAH: Data management. MHF: Manuscript editing. MY: Supervisor; Protocol/project development.

Funding This work is financially supported by Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran [Grant NO. 65106].

Data availability The data cannot be shared in public because of ethics and individual privacy restrictions but are limitedly available by contacting the corresponding author of this study, privately.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.
Ethical approval This study was performed in line with the principles of the declaration of Helsinki and the ethics code of the present study is IR.TBZMED.REC.1399.142 which is approved by the ethics committee of Tabriz University of Medical Sciences. Written informed consent was obtained from all participants after receiving an explanation of the study.

Consent for publication All authors read and approved the final manuscript for publication.

References

1. Gathiram P, Moodley J (2016) Pre-eclampsia: its pathogenesis and pathophysiology: review articles. Cardiovasc J Afr 27(2):71–78
2. Armary Z et al (2018) Preeclampsia: novel mechanisms and potential therapeutic approaches. Front Physiol 9:973
3. Soltani-Zangbar MS et al (2018) Angiotensin type 2 receptor gene polymorphisms and susceptibility to preeclampsia. J Reprod Infert 19(2):95
4. Sibai BM, Stella CL (2009) Diagnosis and management of atypical preeclampsia-eclampsia. Am J Obstet Gynecol 200(5):4811–4817
5. Vigil-De Gracia P et al (2015) Incidence of eclampsia with HELLP syndrome and associated mortality in Latin America. Int J Gynecol Obstet 129(3):219–222
6. Hermes W, Van Kesteren F, De Groot C (2012) Preeclampsia and cardiovascular risk. Minerva Ginecol 64(4):281–292
7. Ferreira I, Peeters LL, Stehouwer CD (2009) Preeclampsia and cardiovascular disease. J Hypertens 27(10):1955–1959
8. Rana S et al (2019) Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res 124(7):1094–1112
9. Yousefzadeh Y et al (2021) Fetomaternal immune tolerance: crucial mechanisms of tolerance for successful pregnancy in humans. Immunol Invest 51:1108–1125
10. Anvari F, et al (2015) Investigating the association of IL-17A and IL-17F with susceptibility to preeclampsia in Iranian women
11. Zolfaghari MA et al (2021) A new approach to the preeclampsia puzzle; MicroRNA-326 in CD4+ lymphocytes might be a potential suspect. J Reprod Immunol 145:103317
12. Kamrani A et al (2021) TIGIT and CD155 as immune-modulator receptor and ligand on CD4+ T cells in preeclampsia patients. Immunol Invest 51:1023–1038
13. Shomali N et al (2020) Exosomes: Emerging biomarkers and targets in folliculogenesis and endometriosis. J Reprod Immunol 142:103181
14. Spaans F et al (2014) Danger signals from ATP and adenosine in pregnancy and preeclampsia. Hypertension 63(6):1154–1160
15. Bours M et al (2006) Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112(2):358–404
16. Mortaz E et al (2010) ATP and the pathogenesis of COPD. Eur J Pharmacol 638(1–3):1–4
17. Killeen ME et al (2013) Signaling through purinergic receptors for ATP induces human cutaneous innate and adaptive Th17 responses: implications in the pathogenesis of psoriasis. J Immunol 190(8):4324–4336
18. Kusu T et al (2013) Ecto-nucleoside triphosphate diphosphohydrolase 7 controls Th17 cell responses through regulation of luminal ATP in the small intestine. J Immunol 190(2):774–783
19. Iriyama T, Xia Y (2018) Placental adenosine signaling in the pathophysiology of preeclampsia. Preeclampsia. Springer, pp 99–112
20. Antonioli L et al (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19(6):355–367
21. Mehta A, Baltimore D (2016) MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 16(5):279–294
22. Hemmatzadeh M et al (2020) MicroRNAs: small molecules with a large impact on pre-eclampsia. J Cell Physiol 235(4):3235–3248
23. Zhang K et al (2021) Epithelial microRNA-206 targets CD39/ extracellular ATP to upregulate airway IL-25 and TSLP in type 2-high asthma. JCI Insight. https://doi.org/10.1172/jci.insight.141803
24. Xie M et al (2017) MicroRNA-30a regulates cell proliferation and tumor growth of colorectal cancer by targeting CD73. BMC Cancer 17(1):1–9
25. Nand S et al (2020) Mitochondrial injury in cardiomyopathy of neurogenic hypertension: role of MiR-18a-5p/HIF-1α axis. Circulation 142(3):A15288–A15288
26. Brown MA et al (2001) The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy 20(1):ix–xiv
27. Tranquillini A et al (2014) The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP. Hypertension 63(4):97–104
28. Zhang M-SS et al (2016) Antisperm protein targets in azoospermia men. J Hum Reprod Sci 9(1):47
29. McRae JL et al (2013) Overexpression of CD39 protects in a mouse model of preeclampsia. Nephrolithiasis 18(5):351–355
30. Ghahamfarsa G et al (2019) CD73 as a potential opportunity for cancer immunotherapy. Expert Opin Ther Targets 23(2):127–142
31. Zhao H et al (2017) What else can CD39 tell us? Front Immunol 8:727
32. Zhu L et al (2018) Reduced methylation downregulates CD39/ENTPD1 and ZDHHC14 to suppress trophoblast cell proliferation and invasion: implications in preeclampsia. Pregnancy hypertens 4(2):97–104
33. Iriyama T et al (2015) Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia. Circulation 131(8):730–741
34. Huang A et al (2017) Elevated adenosine induces placental DNA hypomethylation independent of A2B receptor signaling in preeclampsia. Hypertension 70(1):209–218
35. Iriyama T et al (2020) Reciprocal upregulation of hypoxia-inducible factor-1α and persistently enhanced placental adenosine signaling contribute to the pathogenesis of preeclampsia. FASEB J 34(3):4041–4054
36. Lu X et al (2013) Expression and clinical significance of CD73 and hypoxia-inducible factor-1α in gastric carcinoma. World J Gastroenterol 19(12):1912
37. Zhao L et al (2019) Inhibition of HIF-1α-mediated TLR4 activation decreases apoptosis and promotes angiogenesis of placental microvascular endothelial cells during severe preeclampsia pathogenesis. Placenta 83:8–16
38. Sun S-G et al (2006) Expression of hypoxia-inducible factor-1alpha, vascular endothelial growth factor and sFlt-1 in preeclampsia placenta. Zhonghua Fu Chan Ke Za Zhi 41(7):440–444
39. Zhao H et al (2020) Dysregulation of hypoxia-inducible factor-1α (Hif1α) expression in the Hmox1-deficient placenta. Placenta 99:108–116
40. Xu P et al (2020) miR-18a contributes to preeclampsia by downregulating Smad2 (full length) and reducing TGF-β signaling. Mol Therapy Nucleic Acids 22:542–556
41. Zhu X et al (2015) Suppression of microRNA-18a expression inhibits invasion and promotes apoptosis of human trophoblast cells by targeting the estrogen receptor α gene. Mol Med Rep 12(2):2701–2706
42. Betoni JS et al (2013) MicroRNA analysis in placentas from patients with preeclampsia: comparison of new and published results. Hypertens Pregnancy 32(4):321–339
43. Niu Z-R et al (2018) MicroRNA-30a-3p is overexpressed in the placentas of patients with preeclampsia and affects trophoblast invasion and apoptosis by its effects on IGF-1. Am J Obstetr Gynecol 218(2):e1-249-e12-249
44. Wu H-Y et al (2020) LncRNA MALAT1 regulates trophoblast cells migration and invasion via miR-206/IGF-1 axis. Cell Cycle 19(1):39–52
45. Akehurst C et al (2015) Differential expression of microRNA-206 and its target genes in preeclampsia. J Hypertens 33(10):2068

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Yousef Yousefzadeh1,2,3 · Mohammad Sadegh Soltani-Zangbar2,3 · Ladan Kalaﬁ4 · Ali Tarbiat5 · Sima Shahmohammadi Farid3 · Leili Aghebati-Maleki6 · Forough Parhizkar1 · Shahla Danaii7 · Simin Taghavi8 · Farhad Jadidi-Niaragh3 · Hossein Samadi Kafı9 · Ata Mahmoodpoor10 · Javad Ahmadian Heris11 · Mohammad Hojjat-Farsangi12 · Mehdi Yousefi1,3

✉ Mehdi Yousefi
Yousefime@tbzmed.ac.ir
1 Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2 Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
3 Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
4 Gynecology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
5 Department of Cardiology, Medical Faculty, Urmia University of Medical Sciences, Urmia, Iran
6 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
7 Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
8 Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
9 Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
10 Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
11 Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
12 Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden