A tight bound on the collection of edges in MSTs of induced subgraphs

Gregory B. Sorkin, Angelika Steger and Rico Zenklusen

February 5, 2008

Let $G = (V, E)$ be a complete n-vertex graph with distinct positive edge weights. We prove that for $k \in \{1, 2, \ldots, n-1\}$, the set consisting of the edges of all minimum spanning trees (MSTs) over induced subgraphs of G with $n - k + 1$ vertices has at most $nk - \binom{k+1}{2}$ elements. This proves a conjecture of Goemans and Vondrak [1]. We also show that the result is a generalization of Mader’s Theorem, which bounds the number of edges in any edge-minimal k-connected graph.

1 Introduction

Let $G = (V, E)$ be a complete n-vertex graph with distinct positive edge weights. For any set $X \subseteq V$, denote by $G[V \setminus X]$ the subgraph of G induced by $V \setminus X$. We will also sometimes write this graph as $(V \setminus X, E)$, ignoring edges in E incident on vertices in X. $\text{MST}(G[V \setminus X])$ denotes the set of edges in the graph’s minimum spanning tree. (The MST is unique due to the assumption that the edge weights are distinct.)

For $k \in \{1, 2, \ldots, n-1\}$, define

$$M_k(G) = \bigcup_{X \subseteq V, |X| = k-1} \text{MST}(G[V \setminus X]).$$

Note that for $k = 1$ we have $M_1(G) = \text{MST}(G)$. In [1], Goemans and Vondrak considered the problem of finding a sparse set of edges which, with high probability, contain the MST of a random subgraph of G. In this context they proved an upper bound on $M_k(G)$, namely that $|M_k(G)| < (1 + \frac{e}{2})kn$, and they conjectured that one should be able to improve the bound to $|M_k(G)| \leq nk - \binom{k+1}{2}$. In this paper we prove this conjecture.
Theorem 1

For any complete graph G on n vertices with distinct positive edge weights,

$$|M_k(G)| \leq nk - \binom{k+1}{2}. \quad (1)$$

As Goemans and Vondrak recognized, the bound is tight: for any n and k it is easy to produce edge weights giving equality in (1). One way is to fix an arbitrary set $V' \subseteq V$ with cardinality k, and partition the edges E into three sets E_0, E_1 and E_2 where, for $i \in \{0, 1, 2\}$, E_i contains all edges of E having exactly i endpoints in V'. Assign arbitrary distinct positive weights to the edges in E_0 such that all weights on E_2 are smaller than those on E_1, which in turn are smaller than those on E_0. It can easily be verified that $M_k(G) = E_2 \cup E_1$ and thus $|M_k(G)| = nk - \binom{k+1}{2}$.

Theorem 1’s assumption that G is complete is not meaningfully restrictive. If G is such that deletion of some $k - 1$ vertices leaves it disconnected, then the notion of $M_k(G)$ does not make sense; otherwise, it does not matter if other edges of G are simply very costly or are absent.

The bound of Theorem 1 applies equally if we consider the edgeset of MSTs of induced subgraphs of size at most $n - k + 1$ (rather than exactly that number). This is an immediate consequence of the following remark.

Remark 2

For any complete graph G on n vertices with distinct positive edge weights, and $k \in \{1, 2, \ldots, n - 2\}$, $M_{k+1}(G) \supseteq M_k(G)$.

Proof. We will show that any edge e in $M_k(G)$ is also in $M_{k+1}(G)$. By definition, $e \in M_k(G)$ means that there is some vertex set X of cardinality $|X| = k - 1$ for which $e \in \text{MST}(G_k)$, where $G_k = G[V \setminus X]$.

Consider any leaf vertex v of MST(G_k), with neighbor u. We claim that deleting v from G_k (call the resulting graph G_{k+1}) results in the same MST less the edge $\{u, v\}$, i.e., that $\text{MST}(G_{k+1}) = \text{MST}(G_k) \setminus \{u, v\}$. This follows from considering the progress of Kruskal’s algorithm on the two graphs. Before edge $\{u, v\}$ is added to MST(G_k), the two processes progress identically: every edge added to MST(G_k) is also a cheapest edge for the smaller graph G_{k+1}. The edge e, added to MST(G_k), of course has no parallel in G_{k+1}. As further edges are considered in order of increasing cost, again, every edge added to MST(G_k) will also be added to MST(G_{k+1}), using the fact that none of these edges is incident on v.

Thus, if v is not a vertex of e, then $e \in \text{MST}(G_{k+1})$. Since MST($G_k$) has at least two leaves, it has at least one leaf v not in e, unless MST(G_k) = e, which is impossible since G_k has at least 3 vertices. \qed
Outline of the paper

In Section 2 we define a “k-constructible” graph, and show that every graph $(V, M_k(G))$ is k-constructible, and every k-constructible graph is a subgraph of some graph $(V, M_k(G))$. This allows a simpler reformulation of Theorem 1 as Theorem 6, which also generalizes a theorem of Mader [3]. We prove Theorem 6 in Section 3.

2 k-constructible graphs

We begin by recalling Menger’s theorem for undirected graphs, which motivates our definition of k-constructible graphs. Two vertices in an undirected graph are called k-connected if there are k (internally) vertex-disjoint paths connecting them.

Theorem 3 (Menger’s theorem)
Let s, t be two vertices in an undirected graph $G = (V, E)$ such that $\{s, t\} \notin E$. Then s and t are k-connected in G if and only if after deleting any $k - 1$ vertices (distinct from s and t), s and t are still connected.

Definition 4 (k-constructible graph)
A graph $G = (V, E)$ is called k-constructible if there exists an ordering $O = \langle e_1, e_2, \ldots, e_m \rangle$ of the edges in E such that for all $i \in \{1, 2, \ldots, m\}$ the graph $(V, \{e_1, e_2, \ldots, e_{i-1}\})$ contains at most $k - 1$ vertex-disjoint paths between the two endpoints of e_i. We say that O is a k-construction order for the graph G.

Note that 1-constructible graphs are forests, and edge-maximal 1-constructible graphs are spanning trees. We therefore have in particular that graphs of the form $M_1(G)$ (i.e., MSTs, recalling the G is complete) are edge-maximal 1-constructible graphs. A slightly weaker statement is true for all k: every graph $M_k(G)$ is k-constructible (Theorem 5.i), and every k-constructible graph is a subgraph of some graph $M_k(G)$ (Theorem 5.ii).

Note that a stronger statement, that the graphs of the form $M_k(G)$ are exactly the edge-maximal k-constructible graphs, is not true. To see this consider a cycle C_4 of length four. Assign weights $1, \ldots, 4$ to these four edges (in arbitrary order) and weights 5, 6 to the remaining edges of the complete graph on four vertices. It is easily checked that $M_2(G) = C_4$. But $M_2(G)$ is not edge-maximal, as a diagonal to the cycle C_4 can be added without destroying 2-constructibility.

Theorem 5

i) For every complete graph $G = (V, E)$ with distinct positive edge weights, $(V, M_k(G))$ is k-constructible.

ii) Let $G = (V, E)$ be k-constructible. Then there exist distinct positive edge weights for the complete graph $\bar{G} = (V, \bar{E})$ such that $E \subseteq M_k(\bar{G})$.
Proof. Part (i): Let \(G = (V, E) \) be a complete graph on \(n \) vertices with distinct positive edge weights. Let \(\langle e_1, e_2, \ldots, e_\binom{n}{2} \rangle \) be the ordering of the edges in \(E \) by increasing edge weights and \(O = \langle e_{r_1}, e_{r_2}, \ldots, e_{r_{\binom{n}{2}}(G)} \rangle \) be the ordering of the edges in \(M_k(G) \) by increasing edge weights. We will now show that \(O \) is a \(k \)-construction order for \((V, M_k(G)) \). Let \(i \in \{1, 2, \ldots, |M_k(G)|\} \). As \(e_{r_i} \in M_k(G) \) there exists a set \(X \subseteq V \) with \(|X| = k - 1 \) and \(e_{r_i} \in \text{MST}(G \setminus X) \), implying that the two endpoints of \(e_{r_i} \) are not connected in the graph \((V \setminus X, \{e_1, e_2, \ldots, e_{r_i-1}\}) \). By Menger’s theorem, this implies that there are at most \(k - 1 \) vertex-disjoint paths between the two endpoints of \(e_{r_i} \) in \((V, \{e_1, e_2, \ldots, e_{r_i-1}\}) \). This statement remains thus true for the subgraph \((V, \{e_{r_1}, e_{r_2}, \ldots, e_{r_{i-1}}\}) \). The ordering \(O \) is thus a \(k \)-construction order for \((V, M_k(G)) \).

Part (ii): Conversely let \(G = (V, E) \) be a \(k \)-constructible graph with \(k \)-construction order \(O = \langle e_1, e_2, \ldots, e_{|E|} \rangle \). Let \((V, \tilde{E}) \) be the complete graph on \(V \). We assign the following edge weights \(\tilde{w} \) to the edges in \(\tilde{E} \). We assign the weight 1 to \(e_1 \), 2 to \(e_2 \) and so on. The remaining edges \(\tilde{E} \setminus E \) get arbitrary distinct weights greater than \(|E| \). In order to show that the graph \(\tilde{G} = (V, \tilde{E}, \tilde{w}) \) satisfies \(E \subseteq M_k(G) \) consider an arbitrary edge \(e_i \in E \) and let \(C \subseteq V \) with \(|C| = k - 1 \) be a vertex set separating the two endpoints of \(e_i \) in the graph \(G_{i-1} = (V, \{e_1, e_2, \ldots, e_{i-1}\}) \). Applying Kruskal’s algorithm to \(\tilde{G}[V \setminus C] \), the set of all edges considered before \(e_i \) is contained in \(E(G_{i-1}) \), leaving the endpoints of \(e_i \) separated, so \(e_i \) will be accepted: \(e_i \in \text{MST}(\tilde{G}[V \setminus C]) \subseteq M_k(G) \).

We remark that the first part of the foregoing proof shows an efficient construction of \(M_k(G) \): follow a generalization of Kruskal’s algorithm, considering edges in order of increasing weight, adding an edge if (prior to addition) its endpoints are at most \((k-1) \)-connected. Connectivity can be tested as a flow condition, so that the algorithm runs in polynomial time — far more efficient than the naive \(\Omega \left(\binom{n}{2} \right) \) protocol suggested by the definition of \(M_k(G) \). This again was already observed in [1].

By Theorem 5 the following theorem is equivalent to Theorem 1.

Theorem 6

For \(k \geq 1 \), every \(k \)-constructible graph \(G = (V, E) \) with \(n \geq k + 1 \) vertices satisfies

\[
|E| \leq nk - \binom{k+1}{2}.
\]

(2)

Theorem 6 generalizes a result of Mader [3], based on results in [2], concerning “\(k \)-minimal” graphs (edge-minimal \(k \)-connected graphs). Every \(k \)-minimal graph is \(k \)-constructible, since every order of its edges is a \(k \)-construction order. The following theorem is thus a corollary of Theorem 6.

Theorem 7 (Mader’s theorem)

Every \(k \)-minimal graph with \(n \) vertices has at most \(nk - \binom{k+1}{2} \) edges.

Note that Mader’s theorem (Theorem 7) is weaker than Theorem 6 because while every \(k \)-minimal graph is \(k \)-constructible, the converse is false: not every \(k \)-constructible graph
is \(k \)-minimal. An example with \(k = 2 \) is a cycle \(C_4 \) with length four with an additional diagonal \(e \). The vertex set remains 2-connected even upon deletion of the edge \(e \), so the graph is not 2-minimal, but it is 2-constructible (by any order where \(e \) is not last).

3 Proof of the main theorem

In this section we prove Theorem 3. We fix \(k \) and prove the theorem by induction on \(n \). The theorem is trivially true for \(n = k+1 \), so assume that \(n \geq k+2 \) and that the theorem is true for all smaller values of \(n \). We prove (2) for a \(k \)-constructible graph \(G = (V, E) \) on \(n \) vertices and \(m \) edges which, without loss of generality, we may assume is edge-maximal (no edges may be added to \(G \) leaving it \(k \)-constructible). Fix a \(k \)-construction order

\[
O = \langle e_1, e_2, \ldots, e_m \rangle
\]

of \(G \) and (for any \(i \leq m \)) let \(G_i = (V, \{e_1, e_2, \ldots, e_i\}) \). Also fix a set \(C \subseteq V \) of size \(|C| = k - 1 \) such that the two endpoints of \(e_m \) lie in two different components \(Q^1, Q^2 \subseteq V \) of \(G_{m-1}[V \setminus C] \) (the set \(C \) exists by \(k \)-constructibility of \(G \) and Menger’s theorem). The edge maximality of \(G \) implies that \(Q^1, Q^2, C \) form a partition of \(V \). Let \(V^1 = Q^1 \cup C \) and \(V^2 = Q^2 \cup C \). (If there was a third component \(Q^3 \) then, even after adding \(e_m \), any \(v_1 \in Q^1 \) and \(v_3 \in Q^3 \) are at most \((k-1)\)-connected and so the edge \(\{v_1, v_3\} \) could be added, contradicting maximality.)

Our goal is to define two graphs \(G^1 = (V^1, E^1) \) and \(G^2 = (V^2, E^2) \) that satisfy the following property.

Property 8

- \(G^1 \) and \(G^2 \) are both \(k \)-constructible.
- \(E^1 \) contains all edges of \(G[V^1] \).
- \(E^2 \) contains all edges of \(G[V^2] \).
- For every pair of vertices \(c_1, c_2 \in C \) not connected by an edge in \(G \), there is an edge \(\{c_1, c_2\} \) in either \(E^1 \) or in \(E^2 \) (but not both).

If we can find graphs \(G^1 \) and \(G^2 \) satisfying Property 8 then the proof can be finished as follows. Note that we have the following equality:

\[
|E^1| + |E^2| = (m - 1) + |G[C]| + \left(\binom{k-1}{2} - |G[C]|\right).
\]

The term \(m - 1 \) comes from the fact that \(E^1 \cup E^2 \) covers all edges of \(G \) except \(e_m \), the term \(|G[C]| \) represents the double counting of edges contained in \(C \), and the last term counts the edges which are covered by \(E^1 \) and \(E^2 \) but not in \(G \).

We therefore have

\[
m = 1 + |E^1| + |E^2| - \binom{k-1}{2}.
\]
Applying the inductive hypothesis on \(G^1\) and \(G^2\) (which by Property \(\mathbb{S}\) are \(k\)-constructible) we get the desired result:

\[
m \leq 1 + \left(|V^1|k - \binom{k+1}{2}\right) + \left(|V^2|k - \binom{k+1}{2}\right) - \binom{k-1}{2}
\leq 1 + (n + k - 1)k - 2\binom{k+1}{2} - \binom{k-1}{2}
= nk - \binom{k+1}{2},
\]

where in the second inequality we have used \(|V_1| + |V_2| = n + |C| = n + k - 1\).

We will finally concentrate on finding \(G^1 = (V^1, E^1)\) and \(G^2 = (V^2, E^2)\) satisfying Property \(\mathbb{S}\).

Let \(B = \left(\binom{C}{2}\right) \setminus E\) be the set of all anti-edges in \(G[C]\). (\(\binom{C}{2}\) denotes the set of unordered pairs of elements of \(C\).) For \(\{c_1, c_2\} \in B\), let \(\ell(c_1, c_2)\) be the smallest value of \(i\) such that \(c_1\) and \(c_2\) are \(k\)-connected in \(G_i\). (Considering \(k\) vertex-disjoint paths between \(c_1\) and \(c_2\) in \(G_i\), and noting that deletion of the single edge \(e_i\) leaves them at least \(k - 1\) connected, it follows that \(c_1\) and \(c_2\) are precisely \((k - 1)\)-connected in \(G_{i-1}\).) Define \(B_i = \{\{c_1, c_2\} : \ell(c_1, c_2) = i\}\). Since by edge maximality of \(G\) every pair \(\{c_1, c_2\}\) is \(k\)-connected in \(G_m\), it follows that \(B_1, B_2, \ldots, B_m\) form a partition of \(B\).

Our basic strategy to define the graphs \(G^1\) and \(G^2\) (and appropriate orderings of their edges which prove that they are \(k\)-constructible) is as follows. In a particular way, we will partition each \(B_i\) as \(B^1_i \cup B^2_i\), and determine orders \(O^1_i\) and \(O^2_i\) on their respective edges. Let \(G^1\) be the graph constructed by the order

\[
O^1 = \langle e_1, O^1_1, e_2, O^1_2, \ldots, e_m, O^1_m \rangle, \tag{3}
\]

where (recalling that \(G^1\) has vertex set \(V^1\)) we ignore any edge \(e_i \notin \binom{V^1}{2}\). (There is no issue with edges from \(O^1_i\), as these belong to \(\binom{C}{2} \subseteq \binom{V^1}{2}\).) Define \(G^2\) symmetrically.

We need to show that the graphs \(G^1\) and \(G^2\) satisfy Property \(\mathbb{S}\) the central point will be to ensure that \(O^1\) is a \(k\)-construction order for \(G^1\), and \(O^2\) for \(G^2\). (By definition of the edges \(B_i\), note that every edge \(e \in O^1_i\) when added after \(e_i\) in the order \(O\) violates \(k\)-constructibility, but in the following we show how \(O^1_i, O^2_i\) can be chosen such that it will not violate \(k\)-constructibility in \(G^1\); likewise for edges \(e \in O^2_i\) and \(G^2\).)

To show that \(O^1\) and \(O^2\) are \(k\)-construction orders we need to check that, just before an edge is added, its endpoints are at most \((k - 1)\)-connected. To prove this, we distinguish between edges \(e_i \in E\) and edges \(e \in B\). We first dispense with the easier case of an edge \(e_i \in E\). Proposition \(\mathbb{S}\) shows that (for any orders \(O_i\) of \(B_i\)) in the edge sequence \(\langle e_1, O_1, \ldots, e_m, O_m \rangle\), every edge \(e_i\) has endpoints which are at most \((k - 1)\)-connected upon its addition to the graph \((V, \{e_1, O_1, \ldots, e_{i-1}, O_{i-1}\})\). It follows that the endpoints are also at most \((k - 1)\)-connected upon the edge’s addition to \(G^1\) (respectively, \(G^2\)), i.e., in the graph \((V^1, \{e_1, O^1_1, \ldots, e_{i-1}, O^1_{i-1}\})\), where as usual we disregard edges not in \(\binom{V}{2}\).
Proposition 9

Let \(i \in \{1, 2, \ldots, m\} \) and \(v_1, v_2 \in V \) such that \(\{v_1, v_2\} \) is not an edge in \(G_{i-1} \). If the maximum number of vertex-disjoint paths between \(v_1 \) and \(v_2 \) in \(G_{i-1} \) is \(r \leq k - 1 \), then the maximum number of vertex-disjoint paths between \(v_1 \) and \(v_2 \) in the graph \((V, \{e_1, e_2, \ldots, e_{i-1}\} \cup \bigcup_{l=1}^{i-1} B_l)\) is \(r \), too.

Proof. For any \(i, v_1, v_2 \) as above, let \(S \subseteq V, |S| = r \), be a set separating \(v_1 \) and \(v_2 \) in \(G_{i-1} \). As \(|S| = r < k \), \(S \) cannot separate two \(k \)-connected vertices in \(G_{i-1} \). This implies that any two vertices in \(V \setminus S \) that are \(k \)-connected in \(G_{i-1} \) lie in the same connected component of \(G_{i-1}[V \setminus S] \). As every edge in \(\bigcup_{l=1}^{i-1} B_l \) connects two vertices that are \(k \)-connected in \(G_{i-1} \), adding the edges \(\bigcup_{l=1}^{i-1} B_l \) to \(G_{i-1}[V \setminus S] \) does not change the component structure of \(G_{i-1}[V \setminus S] \). The set \(S \) thus remains a separating set for \(v_1 \) and \(v_2 \) in the graph \((V, \{e_1, e_2, \ldots, e_{i-1}\} \cup \bigcup_{l=1}^{i-1} B_l)\), proving that \(v_1 \) and \(v_2 \) are at most \(r \)-connected in this graph.

\(\square \) Proposition 9

With Proposition 9 addressing edges \(e_i \in E \), to ensure \(k \)-constructibility of \(O_1 \) and \(O_2 \), it suffices to choose for \(j \in \{1, 2\} \) and \(i \in \{1, 2, \ldots, m\} \) the orders \(O_{ij} \) in such a way that successively adding any edge \(e \in O_{ij} \) to the graph \(G_i[V] \) connects two vertices which were at most \((k-1)\)-connected.

Let \(C_i \subseteq V \) with \(|C_i| = k - 1 \) a set separating the endpoints of \(e_i \) in the graph \(G_{i-1} \). Let \(U, W \subseteq V \) be the two components of \(G_{i-1}[V \setminus C_i] \) containing the two endpoints of the edge \(e_i \). We define \(C^U = C \cap U, C^W = C \cap W \). Figure 1 illustrates these sets.

![Figure 1](image)

Figure 1: Sets defined to prove Propositions 10-12

The following proposition shows that the edges \(B_i \) form a bipartite graph.

Proposition 10

\[B_i \subseteq C^U \times C^W \]
Proof. Suppose by way of contradiction that \(\exists e \in B_i \setminus (C^U \times C^W) \). Let
\[
O' = \langle e_1, \ldots, e_{i-1}, e, e_i, \ldots, e_m \rangle,
\]
the edge order obtained by inserting \(e \) immediately before \(e_i \) in the original order \(O = \langle e_1, e_2, \ldots, e_m \rangle \). We will show that \(O' \) is a \(k \)-construction order, thus contradicting the edge maximality of \(G \). For edges up to \(e_{i-1} \) this is immediate from the fact that \(O \) is a \(k \)-construction order. Proposition \([\text{II}] \) shows that edges \(e_{i+1} \) and later do not violate \(k \)-constructibility. (Literally, Proposition \([\text{II}] \) applies to the order \(\langle e_1, \ldots, e_i, e, e_{i+1}, \ldots, e_m \rangle \) rather than to \(O' \), but for edges \(e_{i+1} \) and later the swap of \(e_i \) and \(e \) is irrelevant.) The edge \(e \) itself does not violate \(k \)-constructibility, since by the definition of \(B_i \) its two endpoints are at most \(k-1 \) connected in \(G_{i-1} \). This leaves only edge \(e_i \) to check, but since \(e \notin U \times W \), \(C_i \) remains a separating set with cardinality \(k-1 \) for the two endpoints of \(e_i \) in the graph \((V, \{e_1, e_2, \ldots, e_{i-1}, e\}) \). Thus \(O' \) is a \(k \)-construction order, giving the desired contradiction. \(\square \)

We will now describe a method for constructing the orders \(O^1_i, O^2_i \). Our approach is to define an order \(L = \langle v_1, v_2, \ldots, v_p \rangle \) on (a subset of) the vertices of \(C^U \cup C^W \) and to assign to every vertex \(v \in C^U \cup C^W \) a label \(\alpha(v) \in \{1, 2\} \). The two orders \(O^1_i, O^2_i \) are then defined as follows. We begin with \(O^1_i, O^2_i = \emptyset \) and add all edges in \(B_i \) which are incident to \(v_1 \) at the end of \(O^\alpha(v_1) \) in any order. In the next step all edges of \(B_i \) which are incident to \(v_2 \) and not already assigned to one of the orders \(O^1_i, O^2_i \) are added at the end of \(O^\alpha(v_2) \) in any order. This is repeated until all edges are assigned.

In what follows we show how to choose a vertex order \(L \) and labels \(\alpha \) so that \(O^1 \) and \(O^2 \) are \(k \)-construction orders. Just as \(O^1 \) and \(O^2 \) are built iteratively, so is \(L \), starting with \(L = \emptyset \).

For any \(X \subseteq C^U \cup C^W \), we define \(B_i(X) \) to be the set of edges in \(B_i \) incident on vertices in \(X \), i.e., \(B_i(X) = \{e \in B_i \mid e \cap X \neq \emptyset \} \).

Proposition 11

Let \(j \in \{1, 2\} \) and \(X \subseteq C^U \cup C^W \). We then have that \(\forall e \in B_i \setminus B_i(X) \) there are at most \(|C_i \cap V^j| + |X| \) vertex-disjoint paths between the two endpoints of \(e \) in the graph \((V, \{e_1, e_2, \ldots, e_i \} \cup B_i(X))[V^j] \).

Proof. Observe that the set \((C_i \cap V^j) \cup X \) separates the two endpoints of the edge \(e \) in the graph \((V, \{e_1, e_2, \ldots, e_i \} \cup B_i(X))[V^j] \). As this set has cardinality \(|C_i \cap V^j| + |X| \) the result follows by Menger’s theorem. \(\square \)

Let \(X^1 \) be the set of vertices labeled 1 contained in the partially constructed \(L \), and \(X^2 \) those labeled 2. If we can find a vertex \(v \in (C^U \cup C^W) \setminus (X^1 \cup X^2) \) where the number of “new” edges incident on \(v \) satisfies
\[
|B_i(v) \setminus (B_i(X^1 \cup X^2))| \leq k - 1 - \min\{|C_i \cap V^1| + |X^1|, |C_i \cap V^2| + |X^2|\} \tag{4}
\]
then by Proposition 11, adding v at the end of the current order L and labeling it $\arg \min_{j \in \{1, 2\}} \{|C_i \cap V^j| + |X^j|\}$ does not violate k-constructibility of the orders O^1 and O^2.

The following proposition shows that, until the process is complete (until $B_i(X^1 \cup X^2) = B_i$), such a vertex v can always be found.

Proposition 12

Let $X^1, X^2 \subseteq C^U \cup C^W$ be two disjoint sets. If $B_i(X^1 \cup X^2) \subsetneq B_i$, then there exists a vertex $v \in (C^U \cup C^W) \setminus (X^1 \cup X^2)$ that satisfies (7).

Proof. Note that C^U, C^W, and $C \cap C_i$ are disjoint and contained in C, so

$$|C^U| + |C^W| + |C \cap C_i| \leq |C| = k - 1,$$

where $|C| = k - 1$ by definition. Also,

$$|V^1 \cap C_i| + |V^2 \cap C_i| - |C \cap C_i| = |C_i| = k - 1.$$

From the fact that the right side of (5) is equal to $2(k - 1)$ minus that of (6), we get

$$|C^U| + |C^W| \leq (k - 1 - |V^1 \cap C_i|) + (k - 1 - |V^2 \cap C_i|).$$

By disjointness of C^U and C^W,

$$|C^U \setminus (X^1 \cup X^2)| + |C^W \setminus (X^1 \cup X^2)|$$

$$= |C^U| + |C^W| - |X^1| - |X^2|$$

$$\leq (k - 1 - |V^1 \cap C_i| - |X^1|) + (k - 1 - |V^2 \cap C_i| - |X^2|),$$

using (7) in the last inequality. Thus, the smaller summand in (8) is at most the larger summand in (9), and without loss of generality we suppose that

$$|C^U \setminus (X^1 \cup X^2)| \leq k - 1 - |V^1 \cap C_i| - |X^1|.$$

By the hypothesis $B_i(X^1 \cup X^2) \subsetneq B_i$, there is an edge $e \in B_i \setminus B_i(X^1 \cup X^2)$; by Proposition 10, $e = \{u, w\}$ with $u \in C^U$ and $w \in C^W$; and by definition of $B_i(X^1 \cup X^2)$, $u, w \notin X^1 \cup X^2$, i.e., $u \in C^U \setminus (X^1 \cup X^2)$ and $w \in C^W \setminus (X^1 \cup X^2)$. Then $v = w$ satisfies (4) because the new edges on w must go to so-far-unused vertices in C^U:

$$|B_i(w) \setminus B_i(X^1 \cup X^2)| \leq |C^U \setminus (X^1 \cup X^2)|,$$

whence (10) closes the argument.

Therefore there always exist two k-construction orders O^1, O^2 as desired, which completes the proof of Theorem 6.

9
Acknowledgment

The authors are grateful to Michel Goemans for bringing the problem to their attention.

References

[1] Michel X. Goemans and Jan Vondrák. Covering minimum spanning trees of random subgraphs. *Random Structures and Algorithms*, 29(3):257–276, 2005.

[2] R. Halin. A theorem on n-connected graphs. *Journal on Combinatorial Theory*, 7:150–154, 1969.

[3] W. Mader. Minimale n-fach zusammenhängende Graphen. *Journal für die Reine und Angewandte Mathematik*, 249:201–207, 1971.