Divisor cordial labeling for some cycle and wheel related graphs

C. M. Barasara\(^1\)\(^*\) and Y. B. Thakkar\(^2\)

Abstract
Divisor cordial labeling is a variant of cordial labeling. We investigate divisor cordial labeling for Armed Crown, Closed Helm, Web graph and one point union of Cycles.

Keywords
Graph labeling, Cordial labeling, Divisor cordial labeling.

AMS Subject Classification
05C78.

1. Introduction

We begin with simple, finite, connected and undirected graph \(G = (V(G), E(G)) \). For all standard terminology and notation we follow Clark and Holton [9]. We will give brief summary of definitions which are useful for the present investigations.

Definition 1.1. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain condition(s). If the domain of the mapping is the set of vertices (or edges) then the labeling is called a vertex labeling (or edge labeling).

Labeled graph have applications in many diversified field such as X-Ray crystallography, network design, missile guidance codes etc. A detailed study on verity of applications of graph labeling is reported in Bloom and Golomb [4].

For an extensive survey on graph labeling and bibliographic references we refer to Gallian [8].

In 1987, Cahit [7] introduced cordial labeling as a weaker version of graceful labeling and harmonious labeling. Many variants of cordial labeling are also introduced with variation in cordial condition. These labeling are known as equitable labeling.

Definition 1.2. For a graph \(G = (V(G), E(G)) \), the vertex labeling function is defined as \(f : V(G) \to \{0, 1\} \) and induced edge labeling function \(f^* : E(G) \to \{0, 1\} \) such that for each edge \(uv \), \(f^*(uv) = |f(u) - f(v)| \). \(f \) is called cordial labeling of graph \(G \) if the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1, and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. The graph that admits a Cordial Labeling is called a Cordial Graph.

In 2011, R. Varatharajan et al. [18] have introduced divisor cordial labeling as follows.

Definition 1.3. For a graph \(G = (V(G), E(G)) \), the vertex labeling function is defined as a bijection \(f : V(G) \to \{1, 2, \ldots, |V(G)|\} \) such that an edge \(uv \) is assigned the label 1 if one \(f(u) \) or \(f(v) \) divides the other and 0 otherwise. \(f \) is called Divisor cordial labeling of graph \(G \) if the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. The graph that admits a Divisor cordial labeling is called a Divisor cordial graph. Denote the number of edges labeled with 0 and 1 by \(E_f(0) \) and \(E_f(1) \) respectively.

Varatharajan et al. [18, 19] have derived many results related to divisor cordial graphs for standard graph families. Vaidya and Shah [20, 21] have investigated divisor cordial labeling for some star related graphs.
Bosamia and Kanani [12, 13] discussed divisor cordial labeling in the context of some graph operations. Raj and Manoharan [14, 15] have discussed divisor cordial labeling for some disconnected graphs while Raj and Valli [16] as well as Maya and Nicholas [17] have obtained divisor cordial labeling for some new graph families. Ghodasara and Adalja [5, 6] have obtained divisor cordial labeling in the context of some graph operations.

Murugan and Devakiruba [3] as well as Rokad and Ghodasara [1] have obtained divisor cordial labeling for some cycle related graphs. Divisor cordial labeling for duplication of graph elements is studied by Thirusangul and Madhu[11]. Devaraj et al.[10] as well as Muthaiyan and Pugalenthith[2] obtained results related to divisor cordial labeling.

Definition 1.4. A crown graph is cycle with a pendent edge attached at each vertex.

Definition 1.5. The armed crown is a graph in which path P_2 is attached at each vertex of cycle C_n by an edge. It is denoted by AC_n where n is the number of vertices of cycle C_n.

Definition 1.6. The helm graph H_n is the graph obtained from a wheel W_n by attaching a pendent edge at each vertex of the cycle.

Definition 1.7. A closed helm is the graph obtained from a helm by joining each pendent vertex to form a cycle. It is denoted by CH_n.

Definition 1.8. A web graph Wb_n is the graph obtained by joining the pendent vertices of a helm to form a cycle and then adding a single pendent edge to each vertex of this outer cycle.

Definition 1.9. A One Point Union of Cycles is consists of t copies of cycle C_n sharing a common vertex. It is denoted by C_n^t.

In the present paper we have investigated divisor cordial labeling for armed crown, closed helm, web graph and one point union of cycles.

2. Main Results

Theorem 2.1. The armed crown AC_n is a divisor cordial graph.

Proof. Consider the graph AC_n with the vertex set $V(AC_n)$ and an edge set $E(AC_n)$ then $|V(AC_n)| = 3n$ and $|E(AC_n)| = 3n$.

We define the divisor cordial labeling $f : V(AC_n) \rightarrow \{1, 2, \ldots, 3n\}$ as follows:

\[
f(v_{3n-2}) = 1, \]

\[
f(v_i) = 2^i; \]

for $1 \leq i \leq p_1$ such that $2^i \leq 3n$,

Let $p_1 = 3k_1 + r_1; 0 \leq r_1 \leq 2$;

\[
f(v_{i+3(k_1+[r_1/2])}) = 3 \times 2^{i-1}; \]

for $1 \leq i \leq p_2$ such that $3 \times 2^{i-1} \leq 3n$.

Let $p_2 = 3k_2 + r_2; 0 \leq r_2 \leq 2$;

\[
f(v_{i+3(k_1+[r_1/2])+3(k_2+[r_2/2])}) = 5 \times 2^{i-1}; \]

for $1 \leq i \leq p_3$ such that $5 \times 2^{i-1} \leq 3n$.

Let $p_3 = 3k_3 + r_3; 0 \leq r_3 \leq 2$;

\[
f(v_{i+3(k_1+[r_1/2])+3(k_2+[r_2/2])+3(k_3+[r_3/2])}) = 7 \times 2^{i-1}; \]

for $1 \leq i \leq p_4$ such that $7 \times 2^{i-1} \leq 3n$.

Continuing in this way till we get $3n/2$ edges with label 1. Now for remaining vertices label them in such a way that it does not divide the label of adjacent vertices.

In view of above defined labeling pattern we have $E_f(0) = \lfloor 3n/2 \rfloor$, $E_f(1) = \lceil 3n/2 \rceil$. Thus $|E_f(0) - E_f(1)| \leq 1$.

Hence the graph armed crown AC_n is a divisor cordial graph.

Example 2.2. The armed crown AC_5 and its divisor cordial labeling is shown in Figure 1.

![Armed Crown AC_5 and its divisor cordial labeling](image)

Figure 1: Armed Crown AC_5 and its divisor cordial labeling.

Theorem 2.3. The Closed Helm CH_n is a divisor cordial graph.

Proof. Consider the graph CH_n with the vertex set $V(CH_n)$ and an edge set $E(CH_n)$ then $|V(CH_n)| = 2n + 1$ and $|E(CH_n)| = 4n$.

We define the divisor cordial labeling $f : V(CH_n) \rightarrow \{1, 2, \ldots, 2n + 1\}$ in following two cases.

Case 1: For $n < 8$.
Case 2: For \(n \geq 8 \).

\[f(v_{2n+1}) = 1, \]

\[f(v_i) = 2^i; \]

for \(1 \leq i \leq p_1 \) such that \(2^i \leq 2n+1 \),

Let \(p_1 = 2k_1 + r_1; 0 \leq r_1 \leq 1; \)

\[f(v_{i+2(k_1+r_1)}) = 3 \times 2^{i-1}; \]

for \(1 \leq i \leq p_2 \) such that \(3 \times 2^{i-1} \leq 2n+1 \),

Let \(p_2 = 2k_2 + r_2; 0 \leq r_2 \leq 1; \)

\[f(v_{i+2(k_2+r_2)}) = 5 \times 2^{i-1}; \]

for \(1 \leq i \leq p_3 \) such that \(5 \times 2^{i-1} \leq 2n+1 \),

Let \(p_3 = 2k_3 + r_3; 0 \leq r_3 \leq 1; \)
Proof. The Closed Helm \(CH_n \) graph.

For \(n \geq 4 \), the divisor cordial labeling is shown in Figure 7.

\(f(v_i + 2(k_1 + r_1) + 2(k_2 + r_2) + 2(k_3 + r_3)) = 7 \times 2^{i-1} \);
for \(1 \leq i \leq p_4 \) such that \(7 \times 2^{i-1} \leq 2n + 1 \).

Continuing in this way till we get \(2n \) edges with label 1.
Now for remaining vertices label them in such a way that it does not divide the label of adjacent vertices.

In the view of above defined labeling pattern we have \(E_f(0) = 2n, \ E_f(1) = 2n \).
Thus \(|E_f(0) - E_f(1)| \leq 1 \).

Hence, the graph closed helm \(CH_n \) is a divisor cordial graph.

Example 2.4. The Closed Helm \(CH_8 \) and its divisor cordial labeling is shown in Figure 7.

Theorem 2.5. The Web graph \(W_{b_n} \) is a divisor cordial graph.

Proof. Consider the graph \(W_{b_n} \) with the vertex set \(V(W_{b_n}) \)
and an edge set \(E(W_{b_n}) \) then \(|V(W_{b_n})| = 3n + 1 \) and \(|E(W_{b_n})| = 5n \).

We define the divisor cordial labeling \(f : V(W_{b_n}) \to \{1, 2, \ldots, 3n + 1\} \) in following two cases.

Case 1: For \(n = 4, 6, 8, 10 \).

Case 2: For \(n \neq 4, 6, 8, 10 \).

\(f(v_1) = 2^i; \)
for \(1 \leq i \leq p_1 \) such that \(2^i \leq 3n + 1 \).

Let \(p_1 = 3k_1 + r_1; 0 \leq r_1 \leq 2; \)
\(f(v_{i+3(k_1+r_1)/2}) = 3 \times 2^{i-1}; \)
for \(1 \leq i \leq p_2 \) such that \(3 \times 2^{i-1} \leq 3n + 1 \).

Let \(p_2 = 3k_2 + r_2; 0 \leq r_2 \leq 2; \)
The graph C_{2^n} is shown in Figure 13.

E does not divide the label of adjacent vertices.

Example 2.6. The Web Graph W_{b_5} and its divisor cordial labeling is shown in Figure 12.

Figure 12: Web graph W_{b_5} and its divisor cordial labeling.

Theorem 2.7. The graph $C_{3}^{(t)}$ is a divisor cordial graph.

Proof. Consider the graph $C_{3}^{(t)}$ with the vertex set $V(C_{3}^{(t)})$ and an edge set $E(C_{3}^{(t)})$ then $|V(C_{3}^{(t)})| = 2t + 1$ and $|E(C_{3}^{(t)})| = 3t$.

We define the divisor cordial labeling $f : V(C_{3}^{(t)}) \rightarrow \{1, 2, \ldots, 2t + 1\}$ as follows:

\[
\begin{align*}
 f(v_1) &= 1, \\
 f(v_{2t+1}) &= 2, \\
 f(v_{2i}) &= 2i; \text{ for } 2 \leq i \leq t, \\
 f(v_{2i+1}) &= 2i + 1; \text{ for } i \geq 1 \text{ such that } 2i + 1 \leq 2t + 1.
\end{align*}
\]

Continuing in this way till we get $\lfloor 3t/2 \rfloor$ edges with label 1. Now for remaining vertices label them in such a way that it does not divide the label of adjacent vertices.

In the view of above defined labeling pattern we have $E_f(0) = \lfloor 3t/2 \rfloor$, $E_f(1) = \lfloor 3t/2 \rfloor$. Thus $|E_f(0) - E_f(1)| \leq 1$.

Hence, The graph $C_{3}^{(t)}$ is a divisor cordial graph.

Example 2.8. The graph $C_{3}^{(5)}$ and its divisor cordial labeling is shown in Figure 13.

Figure 13: The graph $C_{3}^{(5)}$ and its divisor cordial labeling.

Theorem 2.9. The graph $C_{4}^{(t)}$ is a divisor cordial graph.

Proof. Consider the graph $C_{4}^{(t)}$ with the vertex set $V(C_{4}^{(t)})$ and an edge set $E(C_{4}^{(t)})$ then $|V(C_{4}^{(t)})| = 3t + 1$ and $|E(C_{4}^{(t)})| = 4t$.

We define the divisor cordial labeling $f : V(C_{4}^{(t)}) \rightarrow \{1, 2, \ldots, 3t + 1\}$ as follows:

\[
\begin{align*}
 f(v_{3t+1}) &= 1 \\
 f(v_k) &= 1, \text{ for } 1 \leq k \leq 3t.
\end{align*}
\]

In this way we get $2t$ edges with label 1. Now for remaining vertices label them in such a way that it does not divide the label of adjacent vertices.

In view of above define labeling pattern we have $E_f(0) = 2t$, $E_f(1) = 2t$. Thus $|E_f(0) - E_f(1)| \leq 1$.

Hence, The graph $C_{4}^{(t)}$ is a divisor cordial graph.

Example 2.10. The graph $C_{4}^{(4)}$ and its divisor cordial labeling is shown in Figure 14.

Figure 14: The graph $C_{4}^{(4)}$ and its divisor cordial labeling.

Theorem 2.11. The graph $C_{n}^{(t)}$ is a divisor cordial graph for $n \geq 5$.
Proof. Consider the graph $C_{n}^{(t)}$ with the vertex set $V(C_{n}^{(t)})$ and an edge set $E(C_{n}^{(t)})$ then $|V(C_{n}^{(t)})|(n-1)t+1$ and $|E(C_{n}^{(t)})| = nt$.

We define the divisor cordial labeling $f : V(C_{n}^{(t)}) \rightarrow \{1, 2, \ldots, (n-1)t+1\}$ in following two cases:

Case 1: For $5 \leq n \leq 9$

- $f(v_{(n-1)t+1}) = 1$
- $f(v_{i}) = 2^{i}$
 for $1 \leq i \leq p_{1}$ such that $2^{i} \leq (n-1)t+1$,

- Let $p_{1} = (n-1)k_{1} + r_{1}; 0 \leq r_{1} \leq (n-2)$;
 $f(v_{i+(n-1)(k_{1}+[r_{1}]/(n-2))}) = 3 \times 2^{i-1}$;
 for $1 \leq i \leq p_{2}$ such that $3 \times 2^{i-1} \leq (n-1)t+1$,

- Let $p_{2} = (n-1)k_{2} + r_{2}; 0 \leq r_{2} \leq (n-2)$;
 $f(v_{(n-1)(k_{2}+[r_{2}]/(n-2))}) = 5 \times 2^{i-1}$;
 for $1 \leq i \leq p_{3}$ such that $5 \times 2^{i-1} \leq (n-1)t+1$,

Continuing in this way till we get $(nt/2)$ edges with label 1.

Case 2: For $n \geq 10$

- $f(v_{i}) = 2^{i-1}$;
 for $1 \leq i \leq p_{1}$ such that $2^{i-1} \leq (n-1)t+1$,

- $f(v_{i+p_{1}}) = 3 \times 2^{i-1}$;
 for $1 \leq i \leq p_{2}$ such that $3 \times 2^{i-1} \leq (n-1)t+1$,

- $f(v_{i+p_{1}+p_{2}}) = 5 \times 2^{i-1}$;
 for $1 \leq i \leq p_{3}$ such that $5 \times 2^{i-1} \leq (n-1)t+1$,

- $f(v_{i+p_{1}+p_{2}+p_{3}}) = 7 \times 2^{i-1}$;
 for $1 \leq i \leq p_{4}$ such that $7 \times 2^{i-1} \leq (n-1)t+1$,

Continuing in this way till we get $(nt/2)$ edges with label 1.

Now for remaining vertices label them in such a way that it does not divide the label of adjacent vertices.

In view of above defined labeling pattern we have $E_{f}(0) = [nt/2]$; $E_{f}(1) = [nt/2]$. Thus $|E_{f}(0) - E_{f}(1)| = 1$.

Hence, The graph $C_{n}^{(t)}$ is a divisor cordial graph. □

Example 2.12. The graph $C_{7}^{(3)}$ and its divisor cordial labeling is shown in Figure 15.

3. Conclusion

In this paper we have investigated divisor cordial labeling of Armed Crown, Closed Helm, Web Graph and One Point Union of Cycle. To investigate analogous results for different graphs as well as in the context of various graph labeling problems is an open area of research.

References

[1] A. H. Rakad and G. V. Ghodasara, Divisor Cordial Labeling of Cycle Related Graphs, *Int. J. for Research in Appl. Sci. and Eng. Tech.*, 3(X)(2015), 341-346.

[2] A. Muthaiyan and P. Pugalenthi, Some New Divisor Cordial Graphs, *Int. J. Math. Trends Tech.*, 12(2)(2014), 81-88.

[3] A. N. Murugan and G. Devakiruba, Cycle Related Divisor Cordial Graphs, *Int. J. Math. Trends Tech.*, 12(1)(2014), 34-43.

[4] G. S. Bloom and S. W. Golomb, Applications of numbered undirected graphs, *Proceedings of IEEE*, 65(4)(1977), 562-570.

[5] G. V. Ghodasara and D. G. Adalja, Divisor Cordial Labeling for Vertex Switching and Duplication of Special Graphs, *Int. J. Math. and its Appl.*, 4(3-B)(2016), 73-80.

[6] G. V. Ghodasara and D. G. Adalja, Divisor Cordial Labeling in Context of Ring Sum of Graphs, *Int. J. Math. Soft Comput.*, 7(1)(2017), 23-31.

[7] I. Cahit, Cordial Graphs: A weaker version of graceful and harmonious Graphs, *Ars Combinatoria*, 23(1987), 201-207.

[8] J. A. Gallian, A Dynamic Survey of Graph Labeling, *The Electronic Journal of Combinatorics*, 22, 2019, #DS6.

[9] J. Clark and D. A. Holton, *A First Look at Graph Theory*, World Scientific Publishing Co. Pvt. Ltd., 1969.

[10] J. Devaraj, C. Sunitha and S. P. Reshma, On Divisor Cordial Graph, *Bulletin of Pure and Appl. Sci.*, 37E(Math. & Stat.)(2), 2018, 290-302.
[11] K. Thirusangu and M. Madhu, Divisor Cordial Labeling in Extended duplicate Graph of Star, Bistar and Double Star, *J. Appl. Sci. and Compu.*, VI(I)(2019), 583-594.

[12] M. I. Bosmia and K. K. Kanani, Divisor cordial labeling in context of corona product, *9th National Level Science Symposium*, February 14, 2016, Organized by Christ College, Rajkot, Sponsored by GUJCOST, Gandhinagar, Mathematics and Statistics, 3(2016), 178-182.

[13] M. I. Bosmia and K. K. Kanani, Divisor cordial labeling in context of graph operations on bistar, *Global J. Pure and Appl. Math.*, 12(3)(2016), 2605-2618.

[14] P. L. R. Raj and R. L. J. Manoharan, Some results on divisor cordial labeling of graphs, *Int. J. Innov. Sci., Eng., Tech.*, 1(10)(2014), 226-231.

[15] P. L. R. Raj and R. L. J. Manoharan, Divisor cordial labeling of some disconnected graphs, *Int. J. Math. Trends Tech.*, 15(1)(2014), 49-63.

[16] P. L. R. Raj and R. Valli, Some new families of divisor cordial graphs, *Int. J. Math. Trends Tech.*, 7(2)(2014), 94-102.

[17] P. Maya and T. Nicholas, Some New Families of Divisor Cordial Graph, *Annals Pure Appl. Math.*, 5(2)(2014), 125-134.

[18] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, Divisor Cordial Graphs, *International Journal of Mathematics and Combinatorics*, 4(2011), 15 - 25.

[19] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, Special Classes of Divisor Cordial Graphs, *Int. Mathematical Forum*, 7(35)(2012), 1737-1749.

[20] S. K. Vaidya and N. H. Shah, Some star and bistar related divisor cordial graphs, *Annals pure Appl. Math.*, 3(1)(2013), 67-77.

[21] S. K. Vaidya and N. H. Shah, Further results on divisor cordial labeling, *Annals pure Appl. Math.*, 4(2)(2013), 150-159.