Existence and convergence of a discontinuous Galerkin method for the incompressible three-phase flow problem in porous media

Giselle Sosa Jones* and Loïc Cappanera

Room 641, Philip Guthrie Hoffman Hall, Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204-3008, USA
*Corresponding author: ggsosajo@central.uh.edu

AND

Beatrice Riviere
Department of Computational and Applied Mathematics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA

[Received on 10 January 2022; revised on 13 May 2022]

This paper presents and analyzes a discontinuous Galerkin method for the incompressible three-phase flow problem in porous media. We use a first-order time extrapolation, which allows us to solve the equations implicitly and sequentially. We show that the discrete problem is well posed, and obtain a priori error estimates. Our numerical results validate the theoretical results, i.e., the algorithm converges with first order.

Keywords: discontinuous Galerkin; three-phase flow; porous media; a priori error estimates.

1. Introduction

Subsurface modeling is important in improving the efficiency of clean-up strategies of contaminated subsurface or the long-term storage of carbon dioxide in subsurface. Incompressible systems of liquid phase, aqueous phase and vapor phase are mathematically modeled by nonlinear coupled partial differential equations that are challenging to analyze. This work formulates a numerical scheme for solving for the liquid pressure, the aqueous saturation and the vapor saturation using discontinuous Galerkin methods in space. This choice of primary unknowns is inspired from previous work by Shank & Vestal (1989), Hajibeygi & Tchelepi (2014), Cappanera & Riviere (2019a). The time marching uses a sequential and implicit time stepping. It allows us to avoid the use of iterative methods such as the L-scheme or Picard methods considered in, for example, Radu et al. (2018). Existence and uniqueness of the solutions is proved, and convergence of the numerical method is obtained by deriving a priori error estimates. These theoretical results are obtained under certain regularity assumptions on the data, such as boundedness and Lipschitz continuity. We refer to the reader to Alizadeh & Piri (2014) for a complete discussion on the advantages and limitations of such hypotheses. While the literature on computational modeling of three-phase flows is vast, to our knowledge there are no papers on the theoretical analysis of the discretization of the three-phase flow problem.

Ideal numerical methods for modeling multiphase flow in porous media are to be locally mass conservative to accurately track the propagation of the phases through the media. Heterogeneities of the porous media include highly discontinuous permeability fields with possibly local geological features like pinch-out. This implies that the numerical methods should handle discontinuous coefficients and
unstructured grids. Discontinuous Galerkin (DG) methods are suitable methods thanks to their flexibility derived from the lack of a continuity constraint between approximations on neighboring cells. DG are known to be locally mass conservative, to handle highly varying permeability fields and to be accurate and robust on unstructured meshes. For these reasons, the literature on DG methods for porous media flows has exponentially increased over the past 20 years. The main drawback of these methods is their cost, which is higher than the cost of low-order finite difference methods and finite volume methods. DG has been applied to incompressible three-phase flow in Dong & Riviere (2016) and to compressible three-phase flow in Rankin & Riviere (2015), Cappanera & Riviere (2019b,c). In the absence of capillary pressure, DG is combined with the finite volume method in Natvig & Lie (2008), and with a mixed finite element method in Moortgat & Firoozabadi (2013, 2016). These papers show the convergence of the methods by performing numerical simulations on a sequence of uniformly refined meshes. The theoretical convergence of numerical methods for three-phase flows remains an open problem, and this paper provides the theoretical analysis of DG methods in the case of incompressible three-phase flows under certain conditions on the data. While the numerical analysis of three-phase flow is sparse, we note that the case of immiscible two-phase flows in porous media has been investigated in several papers. For instance for incompressible flows, finite difference methods have been analyzed in Douglas (1983), finite volume methods in Ohlberger (1997), Eymard et al. (2003), Michel (2003), DG methods in Epshetyn & Riviere (2009) and finite element methods in Chen & Ewing (2001), Girault et al. (2021a,b).

The paper is organized as follows. In Section 2 we present the problem considered and its mathematical formulation. Sections 3–4 describe the time and spatial discretization of our algorithm. Classical projection estimates and the hypothesis used for the numerical analysis of our method are detailed in Section 5. Then we show that the discrete problem is well posed in Section 6, and we establish a priori error estimates in Section 7. Eventually, we perform numerical investigations in Section 8 that recover the theoretical rate of convergence for various setups.

2. Problem description

Let \(p_j, s_j \) denote the pressure and the saturation, respectively, of the phase \(j \), where \(j = \ell, v, a \) (liquid, vapor and aqueous). The saturation for phase \(j \) at a point \(x \) in the domain \(\Omega \subset \mathbb{R}^d \), with \(d = 2, 3 \), is defined as the ratio of the volume of phase \(j \) to the total pore volume in a representative elementary volume centered around the point \(x \). Thus, the saturations satisfy

\[
 s_\ell + s_v + s_a = 1. \tag{2.1}
\]

Assuming that the phase densities and the porosity are constant, the mass conservation equation of each component is expressed as

\[
 \phi \partial_t s_j - \nabla \cdot \left(\kappa \lambda_j \left(\nabla p_j - \rho_j g \right) \right) = q_j, \quad j = \ell, a, v, \tag{2.2}
\]

where \(\kappa \) is the absolute permeability, \(\rho_j \) denotes the density of phase \(j \), \(\lambda_j \) denotes the mobility of phase \(j \) and \(\phi \) is the porosity of the medium. The mobility \(\lambda_j \) is defined as \(\lambda_j = k_{nj}/\mu_j \), where \(k_{nj} \) and \(\mu_j \) represent the relative permeability and viscosity of phase \(j \), respectively. Gravity is denoted by \(g \) and \(q_\ell, q_v \) and \(q_a \) are source/sink terms. The differences between phase pressures are capillary pressures \(p_{c,\ell} \)
and $p_{c,a}$ defined as

$$p_{c,v} = p_v - p_l, \quad p_{c,a} = p_l - p_a.$$ \hfill (2.3)

From the set of unknowns (saturations and pressures), we choose for primary unknowns the liquid pressure p_l, the aqueous saturation s_a and the vapor saturation s_v. For clarity, we explicitly write the dependence of the different quantities with respect to the primary unknowns:

$$p_{c,v}(s_v), \quad p_{c,a}(s_a), \quad \lambda_v(s_v), s_a, \quad \lambda_a(s_v), s_a), \quad \mu_v(s_v), s_a), \quad \mu_a(s_v), s_a).$$ \hfill (2.4)

Moreover, the capillary pressures are assumed to be differentiable, $\partial s_a p_{c,a}$ is a negative function and $\partial s_v p_{c,v}$ is a positive function.

2.1 Rewritten equations

Summing the three mass conservation equations (2.2) and using the definition of the capillary pressure (2.3) yields the liquid pressure equation

$$-\nabla \cdot \left(\lambda_t \kappa \nabla p_l \right) - \nabla \cdot \left(\lambda_v \kappa \nabla p_{c,v} \right) + \nabla \cdot \left(\lambda_a \kappa \nabla p_{c,a} \right) = q_l - \nabla \cdot \left(\kappa (\rho \lambda) g \right),$$ \hfill (2.6)

where

$$\left(\rho \lambda \right)_l = \rho_l \lambda_l + \rho_v \lambda_v + \rho_a \lambda_a, \quad \lambda_l = \lambda_v + \lambda_a, \quad q_l = q_l + q_v + q_a.$$ \hfill (2.7)

Using the capillary pressure $p_{c,a}$, the mass conservation (2.2) satisfied by the aqueous saturation can be rewritten

$$\phi \partial_t s_a + \nabla \cdot \left(\kappa \lambda_a \partial_p p_{c,a} \nabla s_a \right) - \nabla \cdot \left(\kappa \lambda_a \nabla p_l \right) = q_a - \nabla \cdot \left(\rho_a \kappa \lambda_a g \right).$$ \hfill (2.8)

Similarly, the vapor saturation s_v satisfies the following equation, derived from (2.2) with $j = v$:

$$\phi \partial_t s_v - \nabla \cdot \left(\kappa \lambda_v \partial_p p_{c,v} \nabla s_v \right) - \nabla \cdot \left(\kappa \lambda_v \nabla p_l \right) = q_v - \nabla \cdot \left(\rho_v \kappa \lambda_v g \right).$$ \hfill (2.9)

These equations are complemented with Dirichlet and Neumann boundary conditions. The boundary of the computational domain Ω is decomposed as

$$\partial \Omega = \Gamma_D^p \cup \Gamma_D^\ell \cup \Gamma_N^s = \Gamma_D^s \cup \Gamma_N^s = \Gamma_D^v \cup \Gamma_N^v,$$ \hfill (2.10)

with $|\Gamma_D^p| > 0, |\Gamma_D^s| > 0, |\Gamma_D^v| > 0$. The Dirichlet boundary conditions imposed on Γ_D^p, Γ_D^s and Γ_D^v are denoted by $p_{\text{bdy}}^\ell, s_{\text{bdy}}^s, s_{\text{bdy}}^v$. The Neumann boundary conditions imposed on Γ_N^p, Γ_N^s and Γ_N^v are given by

$$\left(\lambda_t \kappa \nabla p_l + \lambda_v \kappa \nabla p_{c,v} - \lambda_a \kappa \nabla p_{c,a} - \kappa (\rho \lambda) g \right) \cdot n = f_p^N.$$ \hfill (2.11a)
\[
\begin{align*}
&\left(-\kappa \lambda_a \partial_s a \nabla s_a + \kappa \lambda_a \nabla p_a - \rho_a \kappa \lambda_a g\right) \cdot n = j^N_s, \quad (2.11b) \\
&\left(\kappa \lambda_v \partial_s v \nabla s_v + \kappa \lambda_v \nabla p_v - \rho_v \kappa \lambda_v g\right) \cdot n = j^N_v, \quad (2.11c)
\end{align*}
\]

where \(n\) represents the outward unit normal vector to the boundary \(\partial \Omega\).

3. **Time discretization**

For the time discretization, we use a backward Euler method and partition the time interval \([0, T]\) using a time step \(\tau > 0\) such that \(N\tau = T\). In the rest of the paper, we define \(t_n = n\tau\) for any integer \(0 \leq n \leq N\), and for any time-dependent function \(f\), we define \(f^n = f|_{t=n}\).

3.1 **Liquid pressure**

The time discretization of the liquid pressure (2.6) reads

\[
- \nabla \cdot \left(\lambda^n \kappa^n \nabla p^n + \frac{1}{\ell^n} - \rho_a \kappa^n g\right) = q^n + \nabla \cdot \left(\kappa^n \lambda^n \nabla p^n + \frac{1}{\ell^n} - \rho_a \kappa^n g\right). \quad (3.1)
\]

3.2 **Aqueous saturation**

The time discretization of the aqueous saturation equation (2.8) is

\[
\phi \frac{s^{n+1}_a - s^n_a}{\tau} = \nabla \cdot \left(\lambda^n \kappa^n \nabla s^n_a + \frac{1}{\ell^n} - \rho_a \kappa^n g\right) + \nabla \cdot \left(\lambda^n \kappa^n \nabla p^n + \frac{1}{\ell^n} - \rho_a \kappa^n g\right). \quad (3.2)
\]

Note that \(\partial s_a p_c a\) is negative. Therefore, with \((\partial s_a p_c a)^{n+} = - (\partial s_a p_c a)^n\), we may write (3.2) as

\[
\phi \frac{s^{n+1}_a - s^n_a}{\tau} = \nabla \cdot \left(\lambda^n \kappa^n \nabla s^n_a + \frac{1}{\ell^n} - \rho_a \kappa^n g\right) = q^{n+1} + \nabla \cdot \left(\kappa^n \lambda^n \nabla p^n + \frac{1}{\ell^n} - \rho_a \kappa^n g\right). \quad (3.3)
\]

3.3 **Vapor saturation**

The time discretization of the vapor saturation equation (2.9) reads

\[
\phi \frac{s^{n+1}_v - s^n_v}{\tau} = \nabla \cdot \left(\lambda^n \kappa^n \nabla s^n_v + \frac{1}{\ell^n} - \rho_v \kappa^n g\right) = q^{n+1} + \nabla \cdot \left(\kappa^n \lambda^n \nabla p^n + \frac{1}{\ell^n} - \rho_v \kappa^n g\right). \quad (3.4)
\]

4. **Spatial discretization**

For the spatial discretization, we use an interior penalty discontinuous Galerkin method. The domain \(\Omega\) is discretized with a conforming, shape-regular mesh \(\mathcal{E}_h\) consisting of simplices or quadrilateral and hexaedral elements. We denote by \(h_e\) and \(h_K\) the size of an edge (or face for \(d = 3\)) \(e\) and an element \(K\), respectively. Moreover, we define the mesh size \(h = \max_{K \in \mathcal{E}_h} h_K\). For any quadrilateral element \(K\), we
define the two-dimensional local polynomial space $\mathbb{P}_{k_1,k_2}(K)$ as

$$
\mathbb{P}_{k_1,k_2}(K) = \left\{ p(x,y) \mid p(x,y) = \sum_{i \leq k_1, j \leq k_2} a_{ij} x^i y^j \right\}.
$$

(4.1)

The three-dimensional local polynomial space $\mathbb{P}_{k_1,k_2,k_3}(K)$ is defined similarly. Finally, we define $Q_k(K) = \mathbb{P}_{k,k}(K)$ for $d = 2$, and $Q_k(K) = \mathbb{P}_{k,k,k}(K)$ for $d = 3$. The space of discontinuous piecewise linear polynomials is denoted by X_h. If \mathcal{E}_h consists of quadrilateral or hexahedral elements, the space X_h is defined by

$$
X_h = \left\{ v \in L^2(\Omega) : v|_K \in Q_1(K) \forall K \in \mathcal{E}_h \right\}.
$$

(4.2)

The discrete liquid pressure, aqueous saturation and vapor saturation at time t_n are denoted by P^n_{h,s^m} and s^m_h respectively; they belong to the finite-dimensional spaces X_h. The Dirichlet boundary conditions are imposed strongly; thus, we assume that the data $p^{\text{bdy}}_{1,s^m}, s_{\text{bdy}}^m$ are traces of functions in X_h. This assumption is in agreement with realistic simulations where the Dirichlet data are simply constants on the Dirichlet boundaries. We will make use of the following finite-dimensional spaces for the test functions:

$$
X_{h,t}^{\text{pt}} = X_h \cap \{ v = 0 \text{ on } T^{\text{pt}}_D \}, \quad X_{h,t}^{\text{sa}} = X_h \cap \{ v = 0 \text{ on } T^{\text{sa}}_D \}, \quad X_{h,t}^{\text{sv}} = X_h \cap \{ v = 0 \text{ on } T^{\text{sv}}_D \}.
$$

(4.3)

We also define the Raviart–Thomas space \mathbb{RT}_0:

$$
\mathbb{RT}_0 = \left\{ u \in H(\text{div}, \Omega) : u|_K \in \mathbb{RT}_0(K) \forall K \in \mathcal{E}_h \right\},
$$

(4.4)

where

$$
\mathbb{RT}_0(K) = \begin{cases}
\mathbb{P}_{1,0}(K) \times \mathbb{P}_{0,1}(K), & d = 2, \\
\mathbb{P}_{1,0,0}(K) \times \mathbb{P}_{0,1,0}(K) \times \mathbb{P}_{0,0,1}(K), & d = 3.
\end{cases}
$$

(4.5)

We note that the above spaces can be defined similarly if one uses simplex elements. The set of interior faces is denoted by F_i. For any interior face e, we fix a unit normal vector n_e, and we denote by K_1 and K_2 the elements that share the face e such that n_e points from K_1 into K_2. For any function $f \in X_h$, we define the jump operator $[\cdot]$ on interior faces as $[f]_e = f_1 - f_2$, where $f_1 = f|_{K_1}$. Moreover, we define the weighted average operator $\{\cdot\}$ on interior faces as $\{A \nabla f \cdot n_e\} = \omega_1 A_1 \nabla f_1 \cdot n_e + \omega_2 A_2 \nabla f_2 \cdot n_e$, where $\omega_1 = A_2(A_1 + A_2)^{-1}$ and $\omega_2 = A_1(A_1 + A_2)^{-1}$. Note that the standard average operator with weights $\omega_1 = \omega_2 = 1/2$ is denoted by $\{\cdot\}_e$. On boundary faces, the jump and weighted average operators are defined as $[f] = (f)_e = f$. In the following, the L^2 inner product over Ω is denoted by (\cdot, \cdot). The parameters $\theta_{p^m}, \theta_{s^m}, \theta_{v^m}$ take values $-1, 0, 1$, which respectively correspond to symmetric, incomplete and nonsymmetric interior penalty discontinuous Galerkin.
4.1 Liquid pressure

The discrete problem for the liquid pressure reads as follows: find \(P^{n+1}_h \in X_h \) such that \(P^{n+1}_h = P^{\text{bdy}}_h \) on \(\Gamma_D^{n+1} \) and the following relation is satisfied for all \(w_h \in X_h, \Gamma_D^{n+1} \):

\[
b^0_p(P^{n+1}_h, w_h) = f^0_p(w_h),
\]

where \(b^0_p(P^{n+1}_h, w_h) = b_p(P^{n+1}_h, w_h; \bar{P}^n_h, \bar{S}^n_h, \bar{S}^n_v) \), \(f^0_p(w_h) = f_p(w_h; \bar{P}^n_h, \bar{S}^n_a, \bar{S}^n_v) \), with \(b_p \) and \(f_p \) defined as

\[
b_p(v_h; w_h; \bar{P}_h^n, \bar{S}_a^n, \bar{S}_v^n) = \sum_{K \in E_h} \int_K \lambda^H_{\alpha} \nabla v_h \cdot \nabla w_h + \sum_{e \in T_h} \alpha_{pe} e^{-1} \int_e \eta^H_{pe} [v_h][w_h] - \sum_{e \in T_h} \int_e \lambda^H_{\alpha} \nabla v_h \cdot n_e [w_h] + \theta_p \sum_{e \in T_h} \int_e \lambda^H_{\alpha} \nabla w_h \cdot n_e [v_h]
\]

and

\[
f_p(w_h; \bar{P}_h^n, \bar{S}_a^n, \bar{S}_v^n) = (d^{n+1}_l, w_h) + \sum_{e \in T_h} \int_e \eta^N_e [w_h] - \sum_{K \in E_h} \int_K \lambda^H_{\alpha} \nabla p_{c,a}^n - \lambda^H_{\alpha} \nabla p_{c,a}^n - \kappa (\rho \lambda)^n_l g \cdot \nabla w_h + \sum_{e \in T_h} \int_e \lambda^H_{\alpha} \nabla p_{c,a}^n \cdot n_e [w_h] - \sum_{e \in T_h} \int_e \lambda^H_{\alpha} \nabla p_{c,a}^n \cdot n_e [w_h] - \sum_{e \in T_h} \int_e \kappa (\rho \lambda)^n_l g \cdot n_e [w_h].
\]

We recall that \(\lambda^n_i, (\rho \lambda)^n_i, \lambda^n_i \) for \(i = v, \ell, a \) are the functions \(\lambda_i, (\rho \lambda)_i, \lambda_i \) evaluated at the discrete solutions (discrete pressures and saturations) at time \(t_n \). The penalty parameter \(\alpha_{pe} \) is a positive constant such that \(0 < \alpha_{pe} \leq \alpha_{pe}^* \), and the penalty parameter \(\eta^N_{pe} \) depends on the absolute permeability and mobilities in the following way:

\[
\eta^N_{pe} = \mathcal{H}((\kappa \lambda^H_i)|_{K_1}, (\kappa \lambda^H_i)|_{K_2}) \quad \forall e = \partial K_1 \cap \partial K_2,
\]

where \(\mathcal{H} \) is the harmonic average function:

\[
\mathcal{H}(x_1, x_2) = \frac{2x_1x_2}{x_1 + x_2}.
\]
4.2 \textit{Aqueous saturation}

The discrete problem for the aqueous saturation reads as follows: find \(S_n^{n+1} \in X_h \) such that \(S_{a_h}^{n+1} = s_a^{\text{bdy}} \) on \(\Gamma_D \) and such that the following relation is satisfied for all \(\omega_h \in X_h, \Gamma_D^{*a} :

\begin{equation}
\frac{1}{\tau}(\phi S_a^{n+1}, \omega_h) + b_a^n(S_a^{n+1}, \omega_h) = \frac{1}{\tau}(\phi S_a^n, \omega_h) + f_a^n(\omega_h),
\end{equation}

where \(b_a^n(S_a^{n+1}, \omega_h) = b_a^n(S_a^{n+1}, \omega_h; P_h^{n+1}, S_a^n, S_h^n) \), \(f_a^n(\omega_h) = f_a(\omega_h; P_h^{n+1}, S_a^n, S_h^n) \), with \(b_a \) and \(f_a \) defined as

\begin{equation}
b_a(v_h, w_h; P_h^{n+1}, S_a^n, S_h^n) = \sum_{K \in \Omega_h} \kappa \lambda_a^n(\partial_s p_{c,a}^n)^+ \Delta v_h \cdot \nabla w_h
\end{equation}

\begin{equation}
\phantom{b_a(v_h, w_h; P_h^{n+1}, S_a^n, S_h^n)} - \sum_{e \in \Gamma_h} \int_K \kappa \lambda_a^n(\partial_s p_{c,a}^n)^+ \Delta v_h \cdot n_e \left[w_h \right] + \sum_{e \in \Gamma_h} \alpha_{sa,e} h_e^{-1} \int_e \eta_{sa,e} \left[v_h \right] \left[w_h \right]
\end{equation}

\begin{equation}
\phantom{b_a(v_h, w_h; P_h^{n+1}, S_a^n, S_h^n)} + \theta_s \sum_{e \in \Gamma_h} \int_e \kappa \lambda_a^n(\partial_s p_{c,a}^n)^+ \Delta w_h \cdot n_e \left[v_h \right] \left[w_h \right]
\end{equation}

and

\begin{equation}
f_a(\omega_h; P_h^{n+1}, S_a^n, S_h^n) = (q_a^{n+1}, \omega_h) + \sum_{K \in \Omega_h} \int_K \left(\lambda_a^n u_h^{n+1} + \kappa \rho_a \lambda_a^n g \right) \cdot \nabla w_h + \sum_{e \in \Gamma_h} \int_e j_{sa}^N w_h
\end{equation}

\begin{equation}
\phantom{f_a(\omega_h; P_h^{n+1}, S_a^n, S_h^n)} - \sum_{e \in \Gamma_h} \int_e \left(\lambda_a^n \right)^+ u_h^{n+1} \cdot n_e \left[w_h \right] - \sum_{e \in \Gamma_h} \int_e \rho_a \kappa \lambda_a^n g \cdot n_e \left[w_h \right]
\end{equation}

In (4.13), the vector \(u_h^{n+1} \) is the projection of the approximation of the Darcy velocity onto the Raviart–Thomas space \(\mathbb{RT}_0 \) (see the exact definition of operator \(\Pi_{\mathbb{RT}} \) in Section 4.5):

\[u_h^{n+1} = \Pi_{\mathbb{RT}}(-\kappa \nabla P_h^{n+1}). \]

The upwind operator \(\left(\cdot \right)^+ \) is defined as follows. For readability, let \(D = \lambda_a^n \) and \(D^g = \rho_a \kappa \lambda_a^n \). For an interior edge \(e \) shared by two elements \(K_1 \) and \(K_2 \), we have

\begin{equation}
(D)^+ \left|_{sa} \right| = \begin{cases}
D_{|K_1} & \text{if } \{Du_h^{n+1} + D^g g \}_e^+ \cdot n_e \geq 0, \\
D_{|K_2} & \text{otherwise.}
\end{cases}
\end{equation}

The penalty parameter \(\alpha_{sa,e} \) is a positive constant such that \(0 < \alpha_{sa,e} \leq \alpha_{sa,e} \leq \alpha_{sa}^* \), and the parameter \(\eta_{sa,e} \) is defined on the interior faces by

\begin{equation}
\eta_{sa,e} = \mathcal{M} \left(\kappa (\partial_s p_{c,a})^{+ \lambda_a^n} |_{K_1}, \kappa (\partial_s p_{c,a})^{+ \lambda_a^n} |_{K_2} \right) \forall e \in \partial K_1 \cap \partial K_2.
\end{equation}
4.3 Vapor saturation

The discrete problem for the vapor saturation reads as follows: find $S_{v_{h}}^{n+1} \in X_{h}$ such that $S_{v_{h}}^{n+1} = S_{v}^{\text{bdy}}$ on $\Gamma_{D_{v}}^{\text{bdy}}$ and such that the following relation is satisfied for all $w_{h} \in X_{h,F_{D_{v}}}$:

$$
\frac{1}{\tau} (\phi S_{v_{h}}^{n+1}, w_{h}) + b_{v}(S_{v_{h}}^{n+1}, w_{h}) = \frac{1}{\tau} (\phi S_{v_{h}}^{n}, w_{h}) + f_{v}(w_{h}),
$$

(4.16)

where $b_{v}(S_{v_{h}}^{n+1}, w_{h}) = b_{v}(S_{v_{h}}^{n+1}, w_{h}; P_{h}^{n+1}, S_{ah}^{n+1}, S_{v_{h}}^{n})$, $f_{v}(w_{h}) = f_{v}(w_{h}; P_{h}^{n+1}, S_{ah}^{n+1}, S_{v_{h}}^{n})$, with b_{v} and f_{v} defined as

$$
b_{v}(v_{h}, w_{h}; P_{h}^{n+1}, S_{ah}^{n+1}, S_{v_{h}}^{n}) = \sum_{K \in \mathcal{E}_{h}} \int_{K} \kappa \lambda_{v}^{n} \partial_{s_{v}} P_{c,v}^{n} \nabla v_{h} \cdot \nabla w_{h}
$$

$$
- \sum_{e \in \mathcal{I}_{h}} \int_{e} \left[\kappa \lambda_{v}^{n} \partial_{s_{v}} P_{c,v}^{n} \nabla v_{h} \cdot n_{e} \right] |w_{h}| + \sum_{e \in \mathcal{I}_{h}} \alpha_{s_{v},e} h_{e}^{-1} \int_{e} n_{s_{v},e} \left[v_{h} \right] |w_{h}|
$$

$$
+ \theta_{s_{v}} \sum_{e \in \mathcal{I}_{h}} \int_{e} \left[\kappa \lambda_{v}^{n} \partial_{s_{v}} P_{c,v}^{n} \nabla w_{h} \cdot n_{e} \right] |v_{h}|
$$

(4.17)

and

$$
f_{v}(w_{h}; P_{h}^{n+1}, S_{ah}^{n+1}, S_{v_{h}}^{n}) = (q_{v}^{n+1}, w_{h}) + \sum_{K \in \mathcal{E}_{h}} \int_{K} \left(\kappa \lambda_{v}^{n} u_{h}^{n+1} + \kappa \rho_{e} \lambda_{v}^{n} g \right) \cdot \nabla w_{h}
$$

$$
+ \sum_{e \in \mathcal{I}_{h}} \int_{e} \left(\lambda_{v}^{n} \right)_{s_{v}} \kappa \lambda_{v}^{n} u_{h}^{n+1} \cdot n_{e} |w_{h}| - \sum_{e \in \mathcal{I}_{h}} \int_{e} \left[\rho_{e} \kappa \lambda_{v}^{n} g \cdot n_{e} \right] |w_{h}|,
$$

(4.18)

where $(\cdot)^{\uparrow}_{s_{v}}$ denotes the upwind average operator that is defined similarly to $(\cdot)^{\uparrow}$, but with $D = \lambda_{v}^{n}$ and $D^{\uparrow} = \rho_{e} \kappa \lambda_{v}^{n}$. The penalty parameter $\alpha_{s_{v},e}$ is a positive constant such that $0 < \alpha_{s_{v},e} < \alpha_{s_{v},e} \leq \alpha_{s_{v},e}$, and $n_{s_{v},e}$ is defined by

$$
n_{s_{v},e} = \mathcal{H} \left(\kappa (\partial_{s_{v},p_{c,v}}^{n} \lambda_{v}^{n}) |_{K_{1}}, \kappa (\partial_{s_{v},p_{c,v}}^{n} \lambda_{v}^{n}) |_{K_{1}} \right).
$$

(4.19)

4.4 Starting the algorithm

To start the algorithms, we choose the L^{2} projections of the unknowns at time t_{0}. Let Π_{h} be the L^{2} projection onto X_{h}:

$$
P_{h}^{0} = \Pi_{h} p_{\ell}^{0}, \quad S_{ah}^{0} = \Pi_{h} s_{\ell}^{0}, \quad S_{v_{h}}^{0} = \Pi_{h} s_{v_{h}}^{0},
$$

(4.20)

where $p_{\ell}^{0}, s_{\ell}^{0}, s_{v_{h}}^{0}$ are the exact solutions at time t_{0}.
DG METHOD FOR INCOMPRESSIBLE THREE-PHASE FLOW IN POROUS MEDIA

4.5 Raviart–Thomas projection

The Raviart–Thomas projection, \(u^{n+1}_h = \Pi_{RT}(-\kappa \nabla P^{n+1}_h) \), is defined by the following equations:

\[
\int_e u^{n+1}_h \cdot n_e q_h = - \int_e \{ \kappa \nabla P^{n+1}_h \cdot n_e \} q_h + \alpha_{p_e} h^{-1}_e \int_e n_{p_e}^{n+1} \cdot [P^{n+1}_h] q_h \quad \forall q_h \in \mathbb{Q}_0(e), \forall e \in \Gamma_h, \\
\int_e u^{n+1}_h \cdot n_e q_h = - \int_e \kappa \nabla P^{n+1}_h \cdot n_e q_h \quad \forall q_h \in \mathbb{Q}_0(e), \forall e \in \partial \Omega. \tag{4.21a}
\]

This projection was introduced for elliptic partial differential equations in Ern et al. (2007) for spaces of the same order; we apply it here to Raviart–Thomas spaces with a degree less than the DG spaces.

5. Preliminaries

In this section we establish some notation and recall some well-known results from finite element analysis that will be used in the rest of the paper. Finally, we list the hypotheses assumed in this work.

5.1 Notation and useful results

The \(L^2 \) norm over a set \(D \) is denoted by \(\| \cdot \|_{L^2(D)} \). When \(D = \Omega \), the subscript will be omitted. Let us define the space \(X_h = X_h + H^2(\Omega) \). For functions \(w \in X(h) \), we define the broken gradient \(\nabla_h w \) by \((\nabla_h w)|_K = \nabla(w|_K) \). The space \(X(h) \) is endowed with the coercivity norm for all \(w \in X(h) \):

\[
\| w \| := \left(\| \nabla_h w \|^2 + |w|^2 \right)^{1/2}, \quad |w|_J = \left(\sum_{e \in \Gamma_h} h^{-1}_e \| w \|^2_{L^2(e)} \right)^{1/2}. \tag{5.1}
\]

Additionally, we introduce the following norm on \(X(h) \):

\[
\| w \|_* := \left(\| w \|^2 + \sum_{K \in \mathcal{E}_h} h^2_k \| \nabla w|_K \cdot n_K \|^2_{L^2(\partial K)} \right)^{1/2}. \tag{5.2}
\]

The following classical finite element results will be used in the analysis carried out in Sections 6 and 7.

Lemma 5.1 (Trace inequality). Let \(\mathcal{E}_h \) be a shape-regular mesh with parameter \(C_{\text{shape}} \). Then, for all \(w_h \in X_h \), all \(K \in \mathcal{E}_h \) and all \(e \in \partial K \), we have

\[
\| w_h \|_{L^2(e)} \leq C_{\text{tr}} h^{-1/2}_K \| w_h \|_{L^2(K)}, \tag{5.3}
\]

where \(C_{\text{tr}} > 0 \) depends only on \(C_{\text{shape}} \).

Lemma 5.2 (Discrete Poincaré inequality; Brenner, 2003). For all \(w \) in the broken Sobolev space \(H^1(\mathcal{E}_h) \), there exists a constant \(C_p > 0 \) independent of \(h \) such that

\[
\| w \| \leq C_p \| |w| \|. \tag{5.4}
\]
We denote by $\pi_{h,\Gamma}$ the L^2-orthogonal projection onto $X_{\Gamma,\Gamma}$ for $\Gamma \in \{\Gamma_D^{p \ell}, \Gamma_D^{s a}, \Gamma_D^{s v}\}$. The following lemma recalls approximation estimates that are later used in the analysis of the numerical scheme introduced in Section 4.

Lemma 5.3 (L^2-orthogonal projection approximation bounds). For any element $K \in \mathcal{E}_h$, for all $s \in \{0, 1, 2\}$ and all $w \in H^s(K)$, there holds

$$|w - \pi_{h,\Gamma}w|_{H^m(K)} \leq C_h^{s-m} |w|_{H^s(K)} \quad \forall m \in \{0, \ldots, s\},$$

(5.5)

where C is independent of both K and h_K. Moreover, if $s \geq 1$, then for all $K \in \mathcal{E}_h$ and all $e \in \partial K$, there holds

$$\|w - \pi_{h,\Gamma}w\|_{L^2(e)} \leq C_h^{s-1/2} |w|_{H^s(K)}.$$

(5.6)

and if $s \geq 2$,

$$\|\nabla(w - \pi_{h,\Gamma}w)\|_{L^2(e)} \leq C_h^{s-3/2} |w|_{H^s(K)}.$$

(5.7)

Note that these results imply that

$$\|w - \pi_{h,\Gamma}w\|_* \leq C_h^{s-1} |w|_{H^s(\Omega)}.$$

(5.8)

The projected velocity u_{h}^{n+1} defined by (4.21a)–(4.21b) satisfies the following approximation bound.

Lemma 5.4 Assume p^{ℓ}_t belongs to $L^2(0, T; H^2(\Omega))$. There is a positive constant independent of h and τ such that

$$\|u_{h}^{n+1} + \kappa \nabla h P_{h}^{n+1}\| \leq C\|P_{h}^{n+1} - p_{h}^{n+1}\| + C h.$$

(5.9)

Proof. The proof of this bound follows an argument in Bastian & Rivière (2003) and we present its main points. Let us denote

$$\chi = u_{h}^{n+1} + \kappa \nabla h P_{h}^{n+1}.$$

Then, from (4.21a)–(4.21b), we have for any $K, K' \in \mathcal{E}_h$, and any $e \subset \partial K$,

$$\int_e \chi |_{K} \cdot n_e q_h = \frac{1}{2} \int_e (\nabla h P_{h}^{n+1}|_{K} - \nabla h P_{h}^{n+1}|_{K'}) \cdot n_e q_h + \alpha_{p_t, e} h_e^{-1} \int_e \eta_{p_t, e}[P_{h}^{n+1}] q_h, \quad e = \partial K \cap \partial K',$$

$$\int_e \chi |_{K} \cdot n_e q_h = 0, \quad e \subset \partial \Omega.$$

Let us take $q_h = \chi \cdot n_e$ in the above; this is allowed because P_{h}^{n+1} is piecewise linear and κ is assumed to be piecewise constant (see H.5). For edges on the boundary, we have

$$\|\chi |_{K} \cdot n_e\|_{L^2(e)} = 0.$$
For interior edges, we apply Cauchy–Schwarz’s inequality:
\[
\|\mathbf{x} \cdot n_e\|_{L^2(e)} \leq C\|\nabla P_h^{p+1}\|_{L^2(e)} + Ch_e^{-1}\|P_h^{p+1}\|_{L^2(e)}.
\]

We now bound \(\|\mathbf{x}\|_{L^2(K)}\) by passing to the reference element, by using the fact that \(\|\cdot\|_{L^2(\partial\hat{K})}\) is a norm for the Raviart–Thomas space restricted to \(\hat{K}\) and by going back to the physical element:
\[
\|\mathbf{x}\|_{L^2(K)} \leq Ch\|\mathbf{x}\|_{L^2(\partial\hat{K})} \leq Ch\|\mathbf{x}\|_{L^2(\partial K)} \leq Ch^{1/2}\|\mathbf{x}\|_{L^2(\partial K)}.
\]

We apply the bounds above:
\[
\|\mathbf{x}\|_{L^2(K)} \leq Ch^{1/2} \sum_{e \in \partial\Omega} \|\nabla P_h^{p+1}\|_{L^2(e)} + \sum_{e \in \partial\Omega} h^{-1/2}\|P_h^{p+1}\|_{L^2(e)}.
\]

Taking the square and summing over all the elements,
\[
\|\mathbf{x}\|^2 \leq Ch \sum_{K \in \mathcal{T}_h} \left(\sum_{e \in \partial K \setminus \partial\Omega} \|\nabla P_h^{p+1}\|_{L^2(e)}^2 + \sum_{e \in \partial K \setminus \partial\Omega} h^{-1/2}\|P_h^{p+1}\|_{L^2(e)}^2 \right).
\]

The last term is bounded above by \(\|P_h^{p+1} - P_p^{p+1}\|^2\) since \(|p_p| = 0\). For the first term, we write for \(e = \partial K \cap \partial K'\),
\[
\|\nabla P_h^{p+1}\|_{L^2(e)} \leq \|\nabla (P_h^{p+1} - P_p^{p+1})\|_{L^2(e)}.
\]

Clearly, we have
\[
\|\nabla (P_h^{p+1} - P_p^{p+1})\|_{L^2(e)} \leq C\|\nabla (P_h^{p+1} - P_p^{p+1})|_K\|_{L^2(e)} + \|\nabla (P_h^{p+1} - P_p^{p+1})|_{K'}\|_{L^2(e)}.
\]

We add and subtract the \(L^2\) projection of \(P_p^{p+1}\) onto \(X_h\):
\[
\|\nabla (P_h^{p+1} - P_p^{p+1})|_K\|_{L^2(e)} \leq \|\nabla (P_h^{p+1} - \pi_h\tau_D p_p^{p+1})|_K\|_{L^2(e)} + \|\nabla (\pi_h\tau_D p_p^{p+1} - P_p^{p+1})|_K\|_{L^2(e)} \leq Ch^{-1/2}\|\nabla (P_h^{p+1} - \pi_h\tau_D p_p^{p+1})\|_{L^2(K)} + Ch^{1/2}\|P_p^{p+1}\|_{H^2(K)}.
\]

So
\[
\sum_{K \in \mathcal{T}_h} \left(\sum_{e \in \partial K \setminus \partial\Omega} \|\nabla (P_h^{p+1} - P_p^{p+1})\|_{L^2(e)}^2 \right) \leq C \sum_{K \in \mathcal{T}_h} \|\nabla (P_h^{p+1} - \pi_h\tau_D p_p^{p+1})\|_{L^2(K)}^2 + Ch^2\|P_p^{p+1}\|_{H^2(\Omega)}^2,
\]
or
\[
\leq C\|P_h^{p+1} - P_p^{p+1}\|^2 + Ch^2\|P_p^{p+1}\|_{H^2(\Omega)}^2.
\]
Combining all the bounds we have
\[\| \chi \| \leq C \| P_{n+1}^{\ell} - p_{n+1}^{\ell} \| + Ch. \]

5.2 Hypotheses

In the remainder of the paper, the following assumptions are made on the input data.

H.1 The nonlinear functions \(\lambda_i \), for \(i = v, \ell, a \), are \(C^2 \) functions with respect to time. Moreover, we have the following bounds:
\[
\begin{align*}
0 < C_{(\rho \lambda)} = \left((\rho \lambda) \right) & \leq \overline{C}(\rho \lambda), \\
0 < C_{\lambda_i} = \lambda_i & \leq \overline{C}_{\lambda_i}, \\
0 < \kappa_* & \leq \kappa, \\
0 < C_{p_{c,a}} = \left(\partial_{s_{a}} p_{c,a} \right) & \leq \overline{C}_{p_{c,a}}, \\
0 \leq C_{p_{c,v}} = \partial_{s_{v}} p_{c,v} & \leq \overline{C}_{p_{c,v}}.
\end{align*}
\]

Remark 5.5 We note that the above bounds also hold when these functions are evaluated with discrete solutions by using cutoff in the definition of the above functions.

H.2 The following functions are Lipschitz continuous, so that we have
\[
\begin{align*}
|\lambda_i(s_{a_1}, s_{v_1}) - \lambda_i(s_{a_2}, s_{v_2})| & \leq L \left(|s_{a_1} - s_{a_2}| + |s_{v_1} - s_{v_2}| \right), \\
|\partial_{s_{a}} p_{c,a}(s_{v_1}) - \partial_{s_{a}} p_{c,a}(s_{v_2})| & \leq L |s_{v_1} - s_{v_2}|, \\
|\partial_{s_{v}} p_{c,a}(s_{a_1}) - \partial_{s_{v}} p_{c,a}(s_{a_2})| & \leq L |s_{a_1} - s_{a_2}|.
\end{align*}
\]

H.3 The functions \(\nabla p_{c,a} \) and \(\nabla p_{c,v} \) are bounded, so that we have
\[
\begin{align*}
0 \leq C_{\nabla p_{c,a}} = \| \nabla p_{c,a} \|_{L^\infty(\Omega)} & \leq \overline{C}_{\nabla p_{c,a}}, \\
0 \leq C_{\nabla p_{c,v}} = \| \nabla p_{c,v} \|_{L^\infty(\Omega)} & \leq \overline{C}_{\nabla p_{c,v}},
\end{align*}
\]
and they satisfy the growth conditions
\[
\begin{align*}
\| \nabla p_{c,a}(s_{a_1}) - \nabla p_{c,a}(s_{a_2}) \| & \leq L \| s_{a_1} - s_{a_2} \|, \\
\| \nabla p_{c,v}(s_{v_1}) - \nabla p_{c,v}(s_{v_2}) \| & \leq L \| s_{v_1} - s_{v_2} \|.
\end{align*}
\]

We remark that, even though this hypothesis might be somewhat restrictive, it has been used before in e.g., Chen & Ewing (2001), Radu et al. (2018). For instance, in Chen & Ewing (2001), assumptions (A5) and (A7) state that the functions \(\gamma_1 \) and \(\gamma_2 \), which contain the gradient of the capillary pressure, are bounded and Lipschitz continuous with respect to the primary unknown \(\theta \).

H.4 The source terms \(q_i \) are smooth enough: \(q_i \in L^\infty(0, T; L^\infty(\Omega)) \), for \(i = \ell, v, a \).

H.5 The absolute permeability \(\kappa \) is piecewise constant.
6. Existence and uniqueness

In the following we denote by p_t, s_a and s_v the exact solutions to (2.6), (2.8) and (2.9). We assume that the exact solutions are smooth enough, more precisely $p_t, s_v, s_a \in C^2(0, T; L^2(\Omega)) \cap C^0(0, T; H^2(\Omega)) \cap L^\infty(0, T; W^{1,\infty}(\Omega))$.

For readability, we denote by $\tilde{\lambda}_t, \tilde{p}_{c,a}, \tilde{p}_{c,v}, \tilde{\lambda}_i$ for $i = v, a, \ell$ the functions $\lambda_t, P_{c,a}, P_{c,v}, \lambda_i$ evaluated at the exact solutions (pressures and saturations) at time t. If the time is t_n, then the functions are denoted by $\tilde{\lambda}_n, \tilde{p}_{c,a}, \tilde{p}_{c,v}, \tilde{\lambda}_n$. For instance, we will write

$$\tilde{\lambda}_n = \lambda_a(s^n_a, s^n_v), \quad \lambda^n_a = \lambda_a(s^n_a, s^n_v).$$

Existence and uniqueness of $p_{n+1}^n, s_{a,n+1}, s_{v,n+1}$ follow from the linearity of (4.6), (4.11), (4.16) with respect to their unknowns and from the coercivity and continuity of the forms b_p, b_a and b_v.

6.1 Liquid pressure

Lemma 6.1 (Consistency of b_p). We have for any $n \geq 0$ and any $w_h \in X_{h,D_p^e}$,

$$\tilde{b}_p^{n+1}(p^{n+1}_t, w_h) = \tilde{f}_p^{n+1}(w_h), \quad (6.1)$$

where

$$\tilde{b}_p^{n+1}(p_t, w_h) = b_p(p_t, w_h; p^{n+1}_t, s_{a,n+1}^n, s_{v,n+1}^n) \quad \text{and} \quad \tilde{f}_p^{n+1}(w_h) = f_p(w_h; p^{n+1}_t, s_{a,n+1}^n, s_{v,n+1}^n). \quad (6.2)$$

Proof. First, note that

$$\tilde{b}_p^{n+1}(p_t, w_h) = \sum_{K \in \mathcal{E}_h} \int_K \tilde{\lambda}_t^{n+1} \partial K \nabla p_t \cdot \nabla w_h - \sum_{e \in \mathcal{I}_h} \int_e \tilde{\lambda}_e^{n+1} \partial K \nabla p_t \cdot n_e \left[w_h \right]. \quad (6.3)$$

In the rest of the proof, we drop the superscript $(n + 1)$ for readability, but it is understood that all functions are evaluated at time t_{n+1}. Applying integration by parts on the first term, we obtain

$$\tilde{b}_p(p_t, w_h) = - \sum_{K \in \mathcal{E}_h} \int_K \nabla \cdot \left(\tilde{\lambda}_t \nabla p_t \right) w_h + \sum_{K \in \mathcal{E}_h} \int_{\partial K} \tilde{\lambda}_t \nabla p_t \cdot n_K w_h - \sum_{e \in \mathcal{I}_h} \int_e \tilde{\lambda}_e \nabla p_t \cdot n_e \left[w_h \right]. \quad (6.4)$$

Using the fact that $[\tilde{\lambda}_e \nabla p_t \cdot n_e] = 0$ on interior faces, we obtain

$$\tilde{b}_p(p_t, w_h) = - \sum_{K \in \mathcal{E}_h} \int_K \nabla \cdot \left(\tilde{\lambda}_t \nabla p_t \right) w_h + \sum_{e \in \mathcal{I}_N} \int_e \tilde{\lambda}_e \nabla p_t \cdot n_e w_h. \quad (6.5)$$
On the other hand, after integration by parts on the volume term of (4.8), we have

\[
\tilde{f}_p(w_h) = (q_h,w_h) + \sum_{K \in \mathcal{D}_h} \int_K \nabla \cdot \left(\tilde{\lambda}_v^v \nabla \tilde{p}_{c,v} - \tilde{\lambda}_a^a \nabla \tilde{p}_{c,a} - \kappa (\rho \tilde{\lambda}) g \right) w_h \\
- \sum_{K \in \mathcal{D}_h} \int_{\partial K} \left(\tilde{\lambda}_v^v \nabla \tilde{p}_{c,v} - \tilde{\lambda}_a^a \nabla \tilde{p}_{c,a} - \kappa (\rho \tilde{\lambda}) g \right) \cdot n_K w_h \\
+ \sum_{e \in \mathcal{I}^D_N} \int_e \hat{J}_p w_h + \sum_{e \in \mathcal{I}_h} \int_e \left(\tilde{\lambda}_v^v \nabla \tilde{p}_{c,v} \cdot n_e \right) w_h - \sum_{e \in \mathcal{I}_h} \int_e \left(\tilde{\lambda}_a^a \nabla \tilde{p}_{c,a} \cdot n_e \right) w_h
\]

(6.6)

Using that \((\tilde{\lambda}_v^v \nabla \tilde{p}_{c,v} - \tilde{\lambda}_a^a \nabla \tilde{p}_{c,a} - \kappa (\rho \tilde{\lambda}) g \cdot n) = 0\) on interior faces, we obtain

\[
\tilde{f}_p(w_h) = (q_h,w_h) + \sum_{K \in \mathcal{D}_h} \int_K \nabla \cdot \left(\tilde{\lambda}_v^v \nabla \tilde{p}_{c,v} - \tilde{\lambda}_a^a \nabla \tilde{p}_{c,a} - \kappa (\rho \tilde{\lambda}) g \right) w_h \\
- \sum_{e \in \mathcal{I}^D_N} \int_e \hat{J}_p w_h + \sum_{e \in \mathcal{I}_h} \int_e \left(\tilde{\lambda}_a^a \nabla \tilde{p}_{c,a} \cdot n_e \right) w_h
\]

(6.7)

Recalling that \(p_\ell\) solves (2.6) and satisfies the boundary condition (2.11a), the result (6.1) follows.

Lemma 6.2 For all \((v_h,w_h) \in X_h \times X_h\), the following relation is satisfied for all \(n \geq 0\):

\[
\left| \sum_{e \in \mathcal{I}_h} \int_e \left(\tilde{\lambda}_v^v \nabla v_h \cdot n_e \right) \left[w_h \right] \right| \leq C_{\lambda_v^v}h^2 \left(\sum_{K \in \mathcal{D}_h} \sum_{e \in \partial K} h_e \| \nabla v_h |_{K} \cdot n_e \|_{L^2(e)}^2 \right)^{1/2} \| w_h \|_J.
\]

(6.8)

Proof. Let us consider a face \(e \in \mathcal{T}_h\) that is shared between two elements \(K_1\) and \(K_2\), i.e., \(e = \partial K_1 \cap \partial K_2\). With H.1 and Cauchy–Schwarz’s inequality, we have

\[
\int_e \left(\tilde{\lambda}_v^v \nabla v_h \cdot n_e \right) \left[w_h \right] \leq C_{\lambda_v^v}h^{1/2} \left(\| \nabla v_h |_{K_1} \cdot n_e \|_{L^2(e)} + \| \nabla v_h |_{K_2} \cdot n_e \|_{L^2(e)} \right) h_e^{-1/2} \| w_h \|_{L^2(e)}.
\]

(6.9)

Summing over all faces, applying Cauchy–Schwarz’s inequality and writing the sum in terms of the face contributions for each element, we obtain the result.

Next we show that \(b_p\) is coercive on \(X_{h,I_0}^D\).
Lemma 6.3 (Coercivity of b_p). Assume that $\alpha_{p\ell,*}$ satisfies

$$\alpha_{p\ell,*} > 0.25 \left(1 - \theta_{p\ell} \right)^2 \left(C_{\lambda_1} k^* \right)^3 \left(C_{\lambda_2} k^* \right)^3 C_{tr}^2,$$

(6.10)

where C_{tr} results from the trace inequality (5.3). Then the bilinear form b_p^p defined by (4.7) is coercive on X_h with respect to the norm $\| \cdot \|$ defined by (5.1), i.e., for all $w_h \in X_h, I_{D_i}^\ell$ and for all $n \geq 0$, the following relation is satisfied:

$$b_p^p(w_h, w_h) \geq C_{\alpha, p\ell} \| w_h \|^2,$$

(6.11)

with

$$C_{\alpha, p\ell} = \frac{\alpha_{p\ell,*} C_{\lambda_1} k^* \left(C_{\lambda_2} k^* \right)^{-1} - 0.25 \left(1 - \theta_{p\ell} \right)^2 \left(C_{\lambda_1} k^* \right)^2 \left(C_{\lambda_2} k^* \right)^{-2} C_{tr}^2}{1 + \alpha_{p\ell,*} C_{\lambda_1} k^* \left(C_{\lambda_2} k^* \right)^{-1}}.$$

(6.12)

Proof. Using (4.7) we have

$$b_p^p(w_h, w_h) = \sum_{K \in \mathcal{E}_h} \int_K \lambda_i^p \nabla w_h \nabla w_h + \sum_{e \in I_h} \alpha_{p\ell,e} h_e^{-1} \int_e \eta_{p\ell,e}^n [w_h]^2 + (\theta_{p\ell} - 1) \sum_{e \in I_h} \int_e \left\{ \lambda_i^p \nabla w_h \cdot n_e \right\} [w_h]$$

$$\geq C_{\lambda_1} k^* \| \nabla w_h \|^2 + \alpha_{p\ell,*} \frac{C_{\lambda_1} k^*}{C_{\lambda_2} k^*} |w_h|^2 + (\theta_{p\ell} - 1) \sum_{e \in I_h} \int_e \left\{ \lambda_i^p \nabla w_h \cdot n_e \right\} [w_h].$$

(6.13)

Using (6.8), the trace inequality (5.3) and the fact that for all $K \in \mathcal{E}_h$ and all $e \in \partial K$, $h_e \leq h_K$, we have

$$\left| \sum_{e \in I_h} \int_e \left\{ \lambda_i^p \nabla w_h \cdot n_e \right\} [w_h] \right| \leq C_{\lambda_1} k^* \left(\sum_{K \in \mathcal{E}_h} \sum_{e \in \partial K} h_e \| \nabla w_h |_K \cdot n_e \|_{L^2(e)}^2 \right)^{1/2} |w_h|_J$$

$$\leq C_{\lambda_1} k^* C_{tr} \| \nabla w_h \| |w_h|_J.$$

(6.14)

Thus, since $\theta_{p\ell} - 1 \leq 0$, we have

$$\left(\theta_{p\ell} - 1 \right) \sum_{e \in I_h} \int_e \left\{ \lambda_i^p \nabla w_h \cdot n_e \right\} [w_h] \geq \left(\theta_{p\ell} - 1 \right) C_{\lambda_1} k^* C_{tr} \| \nabla w_h \| |w_h|_J.$$

(6.15)

Using this in (6.13) and noting that $\theta_{p\ell} - 1$ is equal to either $-2, -1$ or 0, we have

$$b_p^p(w_h, w_h) \geq C_{\lambda_1} k^* \| \nabla w_h \|^2 + \alpha_{p\ell,*} \frac{C_{\lambda_1} k^*}{C_{\lambda_2} k^*} |w_h|^2 - 2 \frac{1 - \theta_{p\ell}}{2} C_{\lambda_1} k^* C_{tr} \| \nabla w_h \| |w_h|_J.$$

(6.16)
Next we use the following inequality: let β be a non-negative real number and assume that $c > \beta^2$; then, for all $x, y \in \mathbb{R}$,

$$x^2 - 2\beta xy + cy^2 \geq \frac{c - \beta^2}{1 + c} (x^2 + y^2). \quad (6.17)$$

Using this in (6.16) with $c = \alpha_{p^*, l} C_{\lambda, \kappa} (C_{\lambda, \kappa})^{-1}$, $\beta = 0.5 (1 - \theta_{p^*}) C_u C_{\lambda, \kappa} (C_{\lambda, \kappa})^{-1}$, $x = (C_{\lambda, \kappa})^{1/2} \|\nabla v_h\|$ and $y = (C_{\lambda, \kappa})^{1/2} |w_h|$, we conclude the proof.

Now we prove that b_p is bounded.

Lemma 6.4 (Boundedness of b_p). There exists a constant $C_{B, p^*, \ell} > 0$ independent of h such that, for all $v_h \in X_{h, I_D^{p^*}}$ and $w_h \in X_{h, I_D^{p^*}}$, the following relation is satisfied,

$$b_p^n(v_h, w_h) \leq C_{B, p^*, \ell} \|v_h\| \|w_h\|. \quad (6.18)$$

In addition, there exists a constant $C_{B, *, \ell} > 0$ independent of h and τ such that for any $v \in H^2(\Omega) + X_{h, I_D^{p^*}}$ and any $w_h \in X_{h, I_D^{p^*}}$, the following bound holds:

$$|b_p^n(v, w_h)| \leq C_{B, *, \ell} \|v\|_a \|w_h\|. \quad (6.19)$$

Proof. Let $v_h \in X_{h, I_D^{p^*}}$ and $w_h \in X_{h, I_D^{p^*}}$. We have

$$|b_p^n(v_h, w_h)| \leq \sum_{K \in \mathcal{T}_h} \int_K \eta_p^n\kappa \nabla v_h \cdot \nabla w_h + \sum_{e \in \mathcal{I}_h} \alpha_{p^*, e} h_e^{1/2} \int_e \eta_p^n \left[v_h \right] \left[w_h \right] + \sum_{e \in \mathcal{I}_h} \int_e \left\{ \lambda_p^n \kappa \nabla v_h \cdot n_e \right\} \left[w_h \right] + \sum_{e \in \mathcal{I}_h} \theta_{p^*} \int_e \left\{ \lambda_p^n \kappa \nabla w_h \cdot n_e \right\} \left[v_h \right]$$

$$= T_1 + T_2 + T_3 + T_4. \quad (6.20)$$

Using Cauchy–Schwarz’s inequality, we see that

$$T_1 \leq C_{\lambda, \kappa} \|\nabla v_h\| \|\nabla w_h\| \leq C_{\lambda, \kappa} \|v_h\| \|w_h\|. \quad (6.21)$$

Similarly,

$$T_2 \leq \alpha_{p^*} \left(\frac{C_{\lambda, \kappa}}{C_{\lambda, \kappa}} \right)^2 |v_h| \|w_h\| \leq \alpha_{p^*} \left(\frac{C_{\lambda, \kappa}}{C_{\lambda, \kappa}} \right)^2 \|v_h\| \|w_h\|. \quad (6.22)$$
Using (6.8), recalling that \(h_e \leq h_K \) and using the trace inequality (5.3), we bound \(T_3 \) as

\[
T_3 \leq \overline{C}_{\lambda_e} k^* \| v_h \| \| w_h \|. \tag{6.23}
\]

Finally, \(T_4 \) can be bounded in a similar way as \(T_3 \) to obtain

\[
T_4 \leq |\theta_{pe}| \overline{C}_{\lambda_e} k^* \| v_h \| \| w_h \|. \tag{6.24}
\]

Taking \(C_{B,P\ell} = 4\overline{C}_{\lambda_e} \sqrt{k^*} \max \left(\frac{\alpha_{s,a}^* \overline{C}_{\gamma_{pa}} k^*}{\theta_{pe}}, |\theta_{pe}| \right) \) gives the result. The proof of (6.19) is similar; one needs to change the bound for the term \(T_3 \). \[\square\]

Corollary 6.5 There exists a unique solution to problem (4.6).

Proof. The coercivity Lemma 6.3 and boundedness Lemma 6.4 of \(b_P \), together with the fact that \(\psi_{\ell} \) is strictly positive, imply, using the Lax–Milgram theorem, that problem (4.6) is well posed. \[\square\]

6.2 Aqueous saturation

Lemma 6.6 (Consistency of \(b_a \)).

\[
(\phi(\partial s_a^n, w_h) + b^n_a(s_a^n, w_h) = \tilde{f}_a^n(w_h) \quad \forall w_h \in X_h, r_D^{o}, \quad \forall n \geq 0, \tag{6.25}
\]

where \(\tilde{f}_a^n(s_a, w_h) = b_a(s_a, w_h; p^{n+1}_e, s_a^{n+1}, s_v^{n+1}) \) and \(\tilde{f}_a^n(w_h) = f_a(w_h; p^{n+1}_e, s_a^{n+1}, s_v^{n+1}) \).

Proof. The proof of this lemma is skipped because it is analogous to the proof of Lemma 6.1. \[\square\]

Lemma 6.7 For all \((v_h, w_h) \in X_h \times X_h\), the following relation is satisfied:

\[
\left| \sum_{e \in \Gamma_h} \int_e \kappa^h a(\partial s_a^n, P_c,a)^{+n} \nabla v_h \cdot n_e \right| \leq \overline{C}_{\lambda_e} k^* \overline{C}_{p,c,a} \left(\sum_{K \in \mathcal{E}_h} \sum_{e \in \partial K} h_e \| \nabla v_h | K \cdot n_e \|_{L^2(e)}^2 \right)^{1/2} \| w_h \|. \tag{6.26}
\]

Proof. The proof of this lemma is analogous to the proof of (6.8). \[\square\]

Now we can show that \(b_a \) is coercive on \(X_h, r_D^{o} \).

Lemma 6.8 (Coercivity of \(b_a \)). Assume that \(\alpha_{s,a}^* \) satisfies

\[
\alpha_{s,a}^* > 0.25 \left(1 - \theta_{s,a}^* \right)^2 \left(\overline{C}_{\lambda_e} \overline{C}_{p,c,a} k^* \right)^3 \left(C_{\gamma_{pa}} C_{p,c,a} k^* \right)^{-3} C_{tr}^2, \tag{6.27}
\]

where \(C_{tr} \) results from the trace inequality (5.3). Then the bilinear form \(b^n_a \) defined by (4.12) is coercive on \(X_h, r_D^{o} \) with respect to the norm \(||| \cdot ||| \) defined by (5.1), i.e., for all \(w_h \in X_h, r_D^{o} \), the following relation
Lemma 6.9 (Boundedness of b_a). There exists a constant $C_{B_s,a} > 0$ independent of h such that, for all $n \geq 0$, $v_h \in X_{h,r_D^{a}}$ and $w_h \in X_{h,r_D^{a}}$, the following relation is satisfied:

$$|b_a^\eta(v_h, w_h)| \leq C_{B_s,a} \|v_h\| \|w_h\|.$$

(6.31)

In addition, there exists a constant $C_{B_s,a} > 0$ independent of h and τ such that for any $v \in H^2(\Omega) + X_{h,r_D^{a}}$ and any $w_h \in X_{h,r_D^{a}}$, the following bound holds:

$$|b_a^\eta(v, w_h)| \leq C_{B_s,a} \|v\|_s \|w_h\|.$$

(6.32)

Proof. The proof of this lemma is analogous to that of Lemma 6.4 and therefore is omitted.

Corollary 6.10 There exists a unique solution to problem (4.11).

Proof. The coercivity Lemma 6.7 and boundedness Lemma 6.8 of a_s, together with the fact that ϕ and ρ_a are strictly positive, imply, using the Lax–Milgram theorem, that problem (4.11) is well posed.
6.3 Vapor saturation

Lemma 6.11 (Consistency of b_v).

\((\phi(\partial_s v^{n+1}, w_h) + \tilde{b}_v^{n+1}(v^{n+1}, w_h) = \tilde{f}_v^{n+1}(w_h), \quad \forall w_h \in X_h, \quad \forall n \geq 0)\)

(6.33)

where $\tilde{b}_v^{n+1}(v, w_h) = b_v(v, w_h; p^{n+1}_a, s^{n+1}_v, s^{n+1}_v)$ and $\tilde{f}_v^{n+1}(w_h) = f_v(w_h; p^{n+1}_a, s^{n+1}_v, s^{n+1}_v)$.

Proof. The proof is similar to the other consistency lemma and therefore not shown here. □

Lemma 6.12 For all $(v_h, w_h) \in X_h \times X_h$ and any $n \geq 0$, the following relation is satisfied:

\[\left| \sum_{e \in F_h} \int_e \left(\kappa^2 \left(\partial_s v \right)^n \nabla v_h \cdot n_e \right) \left[w_h \right] \right| \leq C_\lambda \kappa^* C_{p, v} \left(\sum_{K \in E_h} \sum_{e \in \partial K} h_e \left\| \nabla v_h \right\|_K \cdot n_e \right)^{1/2} \left| w_h \right|_j.\]

(6.34)

Proof. The proof of this lemma is completely analogous to the proof of (6.8). □

Now we can show that b_v is coercive on X_h.

Lemma 6.13 (Coercivity of b_v). Assume that $\alpha_{sv,*}$ satisfies

\[\alpha_{sv,*} > 0.25 \left(1 - \theta_{sv} \right)^2 \left(C_{\lambda,v} C_{p,sv} \kappa^* \right)^3 \left(C_{\lambda,v} C_{p,sv} \kappa^* \right)^{-3} C_{tr}^2,\]

(6.35)

where C_{tr} results from the trace inequality (5.3). Then the bilinear form b_v^n defined by (4.17) is coercive on $X_h, I_{D,v}$ with respect to the norm $\left\| \cdot \right\|_j$ defined by (5.1), i.e., for all $w_h \in X_h, I_{D,v}$, the following relation is satisfied:

\[b_v^n(w_h, w_h) \geq C_{\alpha,sv} \left\| w_h \right\|_j,\]

(6.36)

with

\[C_{\alpha,sv} = \frac{\alpha_{sv,*} C_{p,sv} C_{\lambda,v} \kappa^* \left(C_{p,sv} C_{\lambda,v} \kappa^* \right)^{-1} - 0.25 \left(1 - \theta_{sv} \right)^2 \left(C_{p,sv} C_{p,sv} \kappa^* \right)^2 \left(C_{p,sv} C_{\lambda,v} \kappa^* \right)^{-2} C_{tr}^2}{1 + \alpha_{sv,*} C_{p,sv} C_{\lambda,v} \kappa^* \left(C_{p,sv} C_{\lambda,v} \kappa^* \right)^{-1}}.\]

(6.37)

Proof. The proof is analogous to that of (6.28) and therefore not shown here. □

Now we prove that b_v is bounded.
Lemma 6.14 (Boundedness of b_v). There exists a constant $C_{B,s_v} > 0$ independent of h such that, for all $n \geq 0$, $v_h \in X_h, r^n \cap D$ and $w_h \in X_h, r^n \cap D$, the following relation is satisfied:

$$|b^n_v(v_h, w_h)| \leq C_{B,s_v} ||v_h|| ||w_h||.$$ \hspace{1cm} (6.38)

In addition, there exists a constant $C_{B,s_v} > 0$ independent of h and τ such that for any $v \in H^2(\Omega) + X_h, r^n \cap D$ and any $w_h \in X_h, r^n \cap D$, the following bound holds:

$$|b^n_v(v, w_h)| \leq C_{B,s_v} ||v||_a ||w_h||.$$ \hspace{1cm} (6.39)

Proof. The proof of this lemma follows that of Lemma 6.4 and therefore is not shown here. \hfill \Box

Corollary 6.15 There exists a unique solution to the discrete problem (4.16).

Proof. The coercivity Lemma 6.11 and boundedness Lemma 6.12 of a_{s_v}, together with the fact that ϕ and ρ_v are strictly positive, imply, using the Lax–Milgram theorem, that problem (4.16) is well posed. \hfill \Box

7. A priori error estimates

In this section we derive a priori error estimates. To do so, we introduce the following quantities:

$$e^n_{p_h} = P^n_h - \pi_{h,r^n \cap D} p^n, \quad e^n_{p_a} = p^n - \pi_{h,r^n \cap D} p^n,$$ \hspace{1cm} (7.1a)

$$e^n_{a_h} = S^n_a - \pi_{h,r^n \cap D} s^n_a, \quad e^n_{a_v} = s^n_a - \pi_{h,r^n \cap D} s^n_a,$$ \hspace{1cm} (7.1b)

$$e^n_{v_h} = S^n_v - \pi_{h,r^n \cap D} s^n_v, \quad e^n_{v_a} = s^n_v - \pi_{h,r^n \cap D} s^n_v.$$ \hspace{1cm} (7.1c)

We can then decompose the errors as

$$p^n_\ell - P^n_h = e^n_{p_\ell} - e^n_{p_h},$$ \hspace{1cm} (7.2a)

$$s^n_a - S^n_a = e^n_{p_a} - e^n_{p_h},$$ \hspace{1cm} (7.2b)

$$s^n_a - S^n_a = e^n_{p_a} - e^n_{p_h}.$$ \hspace{1cm} (7.2c)

We note that, thanks to the definition of the L^2-orthogonal projection, the errors above satisfy

$$(e^n_{p_x}, w_h) = (e^n_{a_x}, w_h) = (e^n_{v_x}, w_h) = 0 \quad \forall w_h \in X_h.$$ \hspace{1cm} (7.3)

We will make use of the following two auxiliary lemmas.

Lemma 7.1 For any $0 \leq n \leq N - 1$, and any $w_h \in X_h$, we have the following bounds:

$$|\tilde{b}^{n+1}_p (p^{n+1}_\ell, w_h) - \tilde{b}^{n}_p (p^{n+1}_\ell, w_h)| \leq C \tau ||w_h||,$$ \hspace{1cm} (7.4a)
Lemma 7.2 For any $0 \leq n \leq N$, and any $w_h \in X_h$, we have the bounds

\[
\left| \tilde{b}_a^n(s_a^{n+1}, w_h) - \tilde{b}_a^n(s_a^n, w_h) \right| \leq C \| \tau \| w_h \|, \quad (7.4a)
\]

\[
\left| \tilde{b}_v^n(s_v^{n+1}, w_h) - \tilde{b}_v^n(s_v^n, w_h) \right| \leq C \| \tau \| w_h \|, \quad (7.4b)
\]

Moreover,

\[
\left| \tilde{f}_p^n(w_h) - \tilde{f}_p^n(w_h) \right| \leq C \| \tau \| w_h \|, \quad (7.5a)
\]

\[
\left| \tilde{f}_a^n(w_h) - \tilde{f}_a^n(w_h) \right| \leq C \| \tau \| w_h \|, \quad (7.5b)
\]

\[
\left| \tilde{f}_v^n(w_h) - \tilde{f}_v^n(w_h) \right| \leq C \| \tau \| w_h \|, \quad (7.5c)
\]

Proof. The results can be obtained using the Lipschitz continuity of all the coefficients and the smoothness of p_ℓ, s_a, s_v. \hfill \Box

Lemma 7.2 For any $0 \leq n \leq N$, and any $w_h \in X_h$, we have the bounds

\[
\left| \tilde{b}_a^n(p_\ell^{n+1}, w_h) - \tilde{b}_a^n(p_\ell^n, w_h) \right| \leq C \left(h^2 + \| S_{ah}^n - s_a^n \| + \| S_{vh}^n - s_v^n \| \right) \| w_h \|, \quad (7.6a)
\]

\[
\left| \tilde{b}_v^n(s_a^{n+1}, w_h) - \tilde{b}_v^n(s_a^n, w_h) \right| \leq C \left(h^2 + \| S_{ah}^n - s_a^n \| + \| S_{vh}^n - s_v^n \| \right) \| w_h \|, \quad (7.6b)
\]

\[
\left| \tilde{b}_v^n(s_v^{n+1}, w_h) - \tilde{b}_v^n(s_v^n, w_h) \right| \leq C \left(h^2 + \| S_{ah}^n - s_a^n \| + \| S_{vh}^n - s_v^n \| \right) \| w_h \|, \quad (7.6c)
\]

Moreover,

\[
\left| \tilde{f}_p^n(w_h) - \tilde{f}_p^n(w_h) \right| \leq C \left(h + \| S_{ah}^n - s_a^n \| + \| S_{vh}^n - s_v^n \| \right) \| w_h \|, \quad (7.7a)
\]

\[
\left| \tilde{f}_a^n(w_h) - \tilde{f}_a^n(w_h) \right| \leq C \left(h + \| e_{p_h}^{n+1} \| + \| S_{ah}^n - s_a^n \| + \| S_{vh}^n - s_v^n \| \right) \| w_h \|, \quad (7.7b)
\]

\[
\left| \tilde{f}_v^n(w_h) - \tilde{f}_v^n(w_h) \right| \leq C \left(h + \| e_{p_h}^{n+1} \| + \| S_{ah}^n - s_a^n \| + \| S_{vh}^n - s_v^n \| \right) \| w_h \|, \quad (7.7c)
\]

Proof. We start by showing (7.6a). Note that using the definition of b_p (4.7), we obtain

\[
\left| \tilde{b}_p^n(p_\ell^{n+1}, w_h) - b_p^n(p_\ell^n, w_h) \right| \leq \sum_{K \in \mathcal{S}_h} \int_K \left(\tilde{\lambda}_i^n - \lambda_i^n \right) \kappa \nabla p_\ell^{n+1} \cdot \nabla w_h
\]

\[
+ \sum_{e \in I_{\ell}^h} \int_e \left[\left(\tilde{\lambda}_i^n - \lambda_i^n \right) \kappa \nabla p_\ell^{n+1} \cdot n_e \right] [w_h]. \quad (7.8)
\]

With the Lipschitz continuity assumptions H.2, we can write

\[
\left| \tilde{\lambda}_i^n - \lambda_i^n \right| \leq C \left(| S_{vh}^n - s_v^n | + | S_{ah}^n - s_a^n | \right).
\]
The first term on the right-hand side of (7.8) is bounded by
\[
\sum_{K \in \mathcal{K}_h} \int_K \left(\tilde{\lambda}^n_t - \lambda^0_t \right) \kappa \nabla p_{\ell}^{n+1} \cdot \nabla w_h \leq C \left(\| S_{a_h}^n - s_{a}^n \| + \| S_{v_h}^n - s_{v}^n \| \right) \| w_h \|,
\]
where we have used the Cauchy–Schwarz inequality, the boundedness of \(\kappa \) and the smoothness of \(p_{\ell} \).

For the second term on the right-hand side of (7.8), we have
\[
\sum_{e \in \mathcal{F}_h} \int_e \left| \left(\tilde{\lambda}^n_t - \lambda^0_t \right) \kappa \nabla p_{\ell}^{n+1} \cdot n_e \right| |w_h| \leq C \sum_{e \in \mathcal{F}_h} \int_e \left| \| e_{v_h}^n \| + \| e_{a_h}^n \| \right| |w_h| + C \sum_{e \in \mathcal{F}_h} \int_e \left| \| e_{v_a}^n \| + \| e_{a_a}^n \| \right| |w_h|
\]
\[
\leq C \sum_{e \in \mathcal{F}_h} h_e^{1/2} \left(\| e_{v_h}^n \|_{L^2(e)} + \| e_{a_h}^n \|_{L^2(e)} \right) h_e^{-1/2} \| w_h \|_{L^2(e)}
\]
\[
+ C \sum_{e \in \mathcal{F}_h} h_e^{1/2} \left(\| e_{v_a}^n \|_{L^2(e)} + \| e_{a_a}^n \|_{L^2(e)} \right) h_e^{-1/2} \| w_h \|_{L^2(e)}.
\]

Using the trace inequality (5.3) and the projection estimates (5.6), we have
\[
\sum_{e \in \mathcal{F}_h} \int_e \left| \left(\tilde{\lambda}^n_t - \lambda^0_t \right) \kappa \nabla p_{\ell}^{n+1} \cdot n_e \right| |w_h| \leq C \left(\| e_{v_h}^n \| + \| e_{a_h}^n \| \right) \| w_h \| + Ch^2 \| w_h \|.
\]

Combining these bounds we obtain
\[
\left| \tilde{p}_p^n (p_{\ell}^{n+1}, w_h) - b_p^n (p_{\ell}^{n+1}, w_h) \right| \leq C \left(h^2 + \| S_{a_h}^n - s_{a}^n \| + \| S_{v_h}^n - s_{v}^n \| \right) \| w_h \|.
\]

The proofs for (7.6b) and (7.6c) are analogous to that of (7.6a) and therefore not shown here.

Next we show (7.7a). Using the definition of \(f_p \), see (4.8), we obtain
\[
\left| f_p^n (w_h) - \tilde{f}_p^n (w_h) \right| = \left| f_p (w_h; P_h^n, S_{a_h}^n, S_{v_h}^n) - f_p (w_h; p_{\ell}^n, S_{a}^n, S_{v}^n) \right| \leq |T_1| + |T_2| + |T_3|,
\]
with
\[
T_1 = - \sum_{K \in \mathcal{K}_h} \int_K \left(\tilde{\lambda}^n_t \kappa \nabla p_{c,v}^n - \lambda^0_t \kappa \nabla p_{c,a}^n - \kappa \left(\rho \lambda \right)_t^n \right) \cdot \nabla w_h
\]
\[
+ \sum_{K \in \mathcal{K}_h} \int_K \left(\tilde{\lambda}^n_t \kappa \nabla \tilde{p}_{c,v}^n - \lambda^0_t \kappa \nabla \tilde{p}_{c,a}^n - \kappa \left(\rho \tilde{\lambda} \right)_t^n \right) \cdot \nabla w_h,
\]
(7.9)
\[
T_2 = \sum_{e \in I_h} \int_e \left\{ \lambda_n^a \nabla p_{C,v}^n \cdot \mathbf{n}_e - \tilde{\lambda}_n^a \nabla \tilde{p}_{C,v}^n \cdot \mathbf{n}_e \right\} [w_h]
- \sum_{e \in I_h} \int_e \left\{ \lambda_n^a \nabla p_{C,a}^n \cdot \mathbf{n}_e - \tilde{\lambda}_n^a \nabla \tilde{p}_{C,a}^n \cdot \mathbf{n}_e \right\} [w_h], \]
\[
T_3 = - \sum_{e \in I_h} \int_e \left\{ \kappa \tilde{\lambda}_n^a \mathbf{g} \cdot \mathbf{n}_e \right\} [w_h] + \sum_{e \in I_h} \int_e \left\{ \kappa \tilde{\lambda}_n^a \mathbf{g} \cdot \mathbf{n}_e \right\} [w_h]. \tag{7.10}
\]

Using the boundedness and growth conditions of \(\nabla p_{C,a}, \nabla p_{C,v}\) (see H.3), the boundedness of the rest of the coefficients and H.2, the volume terms \(T_1\) are bounded as
\[
|T_1| \leq C \left(\|S_{a,n}^n - s_a^n\| + \|S_{v,n}^n - s_v^n\| \right) \|w_h\|.
\]

With the same assumptions, for the face terms \(T_2\) we have
\[
|T_2| \leq C \sum_{e \in I_h} \int_e \left(\|S_{a,n}^n - s_a^n\| + \|S_{v,n}^n - s_v^n\| \right) [w_h] = C \sum_{e \in I_h} \int_e h_e^{1/2} \left(|e_{a,n}^n| + |e_{v,n}^n| \right) h_e^{-1/2} [w_h]
+ C \sum_{e \in I_h} \int_e h_e^{1/2} \left(|e_{a,n}^n| + |e_{v,n}^n| \right) h_e^{-1/2} [w_h] \leq C \left(\|S_{a,n}^n - s_a^n\| + \|S_{v,n}^n - s_v^n\| \right) \|w_h\| + C h^2 \|w_h\|, \tag{7.11}
\]

where we have used the trace inequality (5.3), (7.2) and the projection estimates (5.6). Similarly, the terms in \(T_3\) are bounded by
\[
|T_3| \leq C \left(h^2 + \|S_{a,n}^n - s_a^n\| + \|S_{v,n}^n - s_v^n\| \right) \|w_h\|,
\]
which concludes the proof.

To prove (7.7b), note that
\[
\left| f_a^n(w_h) - \tilde{f}_a^n(w_h) \right| = \left| f_a(w_h; p_{h,n}^{n+1}, S_{a,n}^n, S_{v,n}^n) - f_a(w_h; p_{h}^{n+1}, S_{a}^n, S_{v}^n) \right| \leq |T_1| + |T_2| + |T_3|,
\]
with
\[
T_1 = \sum_{K \in \mathcal{H}_h} \int_K \left(\lambda_n^a u_{h,n+1}^n + \rho_n^a \lambda_n^a \mathbf{g} \right) \cdot \nabla w_h - \sum_{K \in \mathcal{H}_h} \int_K \left(\tilde{\lambda}_n^a u_{h,n+1}^n + \rho_n^a \tilde{\lambda}_n^a \mathbf{g} \right) \cdot \nabla w_h,
T_2 = - \sum_{e \in I_h} \int_e \left(\lambda_n^a \right) \tilde{\lambda}_n^a u_{h,n+1}^n \cdot \mathbf{n}_e [w_h] + \sum_{e \in I_h} \int_e \tilde{\lambda}_n^a u_{h,n+1}^n \cdot \mathbf{n}_e [w_h],
T_3 = - \sum_{e \in I_h} \int_e \left(\rho_n^a \lambda_n^a \mathbf{g} \cdot \mathbf{n}_e \right) [w_h] + \sum_{e \in I_h} \int_e \left(\rho_n^a \tilde{\lambda}_n^a \mathbf{g} \cdot \mathbf{n}_e \right) [w_h].
\]
where we recall that \(u_h^{n+1} = \Pi_{RT}(-\kappa \nabla p_h^{n+1}) \) and we denote \(u^{n+1} = -\kappa \nabla p_{\ell}^{n+1} \). Note that we have

\[
|T_1| \leq \sum_{K \in \delta_h} \int_K \left(\lambda_a^n u_h^{n+1} - \tilde{\lambda}_a^n u^{n+1} \right) \cdot \nabla w_h + \sum_{K \in \delta_h} \int_K \left(\rho_a^n \lambda_a^n g - \rho_a \tilde{\lambda}_a^n g \right) \cdot \nabla w_h.
\]

The second term is bounded by

\[
\sum_{K \in \delta_h} \int_K \left(\rho_a^n \lambda_a^n g - \rho_a \tilde{\lambda}_a^n g \right) \cdot \nabla w_h \leq C \left(\| S_{ab}^n - s_a^n \| + \| S_{av}^n - s_v^n \| \right) \| w_h \|.
\]

For the first term in \(T_1 \) we have

\[
\sum_{K \in \delta_h} \int_K \lambda_a^n \left(u_h^{n+1} - u^{n+1} \right) \cdot \nabla w_h + \sum_{K \in \delta_h} \int_K \left(\lambda_a^{n+1} - \tilde{\lambda}_a^n \right) u^{n+1} \cdot \nabla w_h. \tag{7.12}
\]

We write

\[
\sum_{K \in \delta_h} \int_K \lambda_a^n \left(u_h^{n+1} - u^{n+1} \right) \cdot \nabla w_h \leq C \| u_h^{n+1} - u^{n+1} \| \| w_h \|.
\]

Using the triangle inequality, (5.5) and (5.9) we have

\[
\| u_h^{n+1} - u^{n+1} \| \leq \| u_h^{n+1} + \kappa \nabla p_h^{n+1} \| + \| \kappa \nabla (p_h^{n+1} - p_{\ell}^{n+1}) \| \leq C \| e_{\ell p}^{n+1} \| + Ch.
\]

For the second term in (7.12) we have

\[
\sum_{K \in \delta_h} \int_K \left(\lambda_a^n - \tilde{\lambda}_a^n \right) \kappa \nabla p_{\ell}^{n+1} \cdot \nabla w_h \leq C \left(\| S_{ab}^n - s_a^n \| + \| S_{av}^n - s_v^n \| \right) \| w_h \|,
\]

where we have used that \(p_{\ell} \in C^0(0, T; H^3(\Omega)) \). So combining the bounds above, we obtain

\[
|T_1| \leq C \left(h + \| e_{\ell p}^{n+1} \| + \| S_{ab}^n - s_a^n \| + \| S_{av}^n - s_v^n \| \right) \| w_h \|.
\]

The term \(T_2 \) can be written as

\[
|T_2| \leq \sum_{e \in \Gamma_h} \int_e \left(\lambda_a^n \right)_{s_a} \left(u_h^{n+1} - u^{n+1} \right) \cdot n_e \| w_h \| + \sum_{e \in \Gamma_h} \int_e \left(\lambda_a^n \right)_{s_a} \left(u_h^{n+1} - u^{n+1} \right) \cdot n_e \| w_h \|. \tag{7.13}
\]

The first term in (7.13) is bounded by

\[
\sum_{e \in \Gamma_h} \int_e \left(\lambda_a^n \right)_{s_a} \left(u_h^{n+1} - u^{n+1} \right) \cdot n_e \| w_h \| \leq C \| w_h \| \left(\sum_{e \in \Gamma_h} h_e \| u_h^{n+1} - u^{n+1} \|^2_{L^2(e)} \right)^{1/2}.
\]
We fix a face e and we choose one neighboring element K_e such that $e \subset \partial K_e$:

$$\|u^{n+1}_h - u^{n+1}\|_{L^2(e)} \leq \|u^{n+1}_h + \kappa \nabla P^{n+1}_h|_{K_e}\|_{L^2(e)} + \|\kappa \nabla (P^{n+1}_h|_{K_e} - P^{n+1}_\ell)|_{L^2(e)}.$$

Using the trace inequality (5.3) and the Raviart–Thomas projection estimate (5.9), we have

$$\left(\sum_{e \in \Gamma_h} h_e^2 \|u^{n+1}_h + \kappa \nabla P^{n+1}_h|_{K_e}\|_{L^2(e)}^2 \right)^{1/2} \leq \|u^{n+1}_h + \kappa \nabla P^{n+1}_h\| \leq C\|e^{n+1}_{ph}\| + Ch.$$

Adding and subtracting $\pi^p_{h,\Gamma_D} P^{n+1}_\ell$ and using (5.7) and the trace inequality (5.3) yields

$$\left(\sum_{e \in \Gamma_h} h_e \|\nabla (P^{n+1}_h|_{K_e} - P^{n+1}_\ell)|_{L^2(e)}\|_{L^2(e)}^2 \right)^{1/2} \leq C\|e^{n+1}_{ph}\| + Ch.$$

Therefore, the first term in (7.13) is bounded as

$$\sum_{e \in \Gamma_h} \int_e \left| (\lambda^{n+1}_a)_{sa} (u^{n+1}_h - u^{n+1}) \cdot n_e[w_h] \right| \leq C(h + \|e^{n+1}_{ph}\|) \|w_h\|.$$

The second term in (7.13) can be bounded as

$$\sum_{e \in \Gamma_h} \int_e \left| (\lambda^{n+1}_a)_{2,sa} (u^{n+1} - s^{n+1}_a) \cdot n_e[w_h] \right| \leq C \left(h^2 + \|S^{n}_{ah} - s^{n}_a\| + \|S^{n}_{vh} - s^{n}_v\| \right) \|w_h\|.$$

Therefore, combining the bounds above and using that $h \leq 1$ so that $h^2 \leq h$, we have

$$|T_2| \leq C \left(h + \|e^{n+1}_{ph}\| + \|S^{n}_{ah} - s^{n}_a\| + \|S^{n}_{vh} - s^{n}_v\| \right) \|w_h\|.$$

Finally, the term T_3 is bounded by

$$|T_3| \leq C \left(h^2 + \|S^{n}_{ah} - s^{n}_a\| + \|S^{n}_{vh} - s^{n}_v\| \right) \|w_h\|.$$

Combining all the bounds above gives the result.

The proof for (7.7c) is analogous to that of (7.7b).

7.1 Liquid pressure

The following lemma gives an equation for the error e^{n}_{ph}.
Lemma 7.3 (Error equation for the liquid pressure). We have that, for all \(w_h \in X_h, T^{p\ell}_D \) and all \(0 \leq n \leq N - 1 \), there exists a constant \(C > 0 \) independent of \(h \) and \(\tau \) such that

\[
b^n_p(e^{n+1}_{p_h}, w_h) \leq b^n_p(e^{n+1}_{p_{\ell}}, w_h) + C \left(\tau + h^2 + ||S^n_{a_h} - s^n_a|| + ||S^n_{v_h} - s^n_v|| \right) ||w_h||. \tag{7.14}
\]

Proof. Subtracting the consistency of the scheme (6.1) from the discretization (4.6), we have

\[
b^n_p(P^{n+1}_h, w_h) - \tilde{b}^n_p(P^{n+1}_{\ell}, w_h) = f^n_p(w_h) - f^n_{\ell}(w_h). \tag{7.15}
\]

This is equivalent to

\[
b^n_p(P^{n+1}_h, w_h) - \tilde{b}^n_p(P^{n+1}_{\ell}, w_h) = f^n_p(w_h) - f^n_{\ell}(w_h) + \tilde{f}^n_p(w_h) - \tilde{f}^n_{\ell}(w_h) + \tilde{b}^n_p(P^{n+1}_{\ell}, w_h) - \tilde{b}^n_p(P^{n+1}_h, w_h). \tag{7.16}
\]

Thanks to (7.4a) and (7.5a) we have

\[
b^n_p(P^{n+1}_h, w_h) - \tilde{b}^n_p(P^{n+1}_{\ell}, w_h) = f^n_p(w_h) - f^n_{\ell}(w_h) + C \tau ||w_h||. \tag{7.17}
\]

This is also equivalent to

\[
b^n_p(P^{n+1}_h, w_h) - b^n_p(P^{n+1}_{\ell}, w_h) = f^n_p(w_h) - f^n_{\ell}(w_h) + C \tau ||w_h|| + \tilde{b}^n_p(P^{n+1}_{\ell}, w_h) - b^n_p(P^{n+1}_h, w_h). \tag{7.18}
\]

Owing to (7.6a), (7.7a), this is equivalent to

\[
b^n_p(P^{n+1}_h - P^{n+1}_{\ell}, w_h) \leq C \left(\tau + h^2 + ||S^n_{a_h} - s^n_a|| + ||S^n_{v_h} - s^n_v|| \right) ||w_h||. \tag{7.19}
\]

The result is obtained by using (7.2a).

Lemma 7.4 (Error estimates for the liquid pressure). We have that, for all \(0 \leq n \leq N - 1 \),

\[
\tilde{C} \tau ||e^{n+1}_{p_h}||^2 \leq C \tau (\tau^2 + h^2) + C \tau \left(||S^n_{a_h} - s^n_a||^2 + ||S^n_{v_h} - s^n_v||^2 \right), \tag{7.20}
\]

where \(C, \tilde{C} > 0 \) are independent of \(h \) and \(\tau \).

Proof. Letting \(w_h = \tau e^{n+1}_{p_h} \) in (7.14), it reads

\[
\tau b^n_p(e^{n+1}_{p_h}, e^{n+1}_{p_h}) \leq \tau b^n_p(e^{n+1}_{p_{\ell}}, e^{n+1}_{p_{\ell}}) + C \tau \left(\tau + h^2 + ||S^n_{a_h} - s^n_a|| + ||S^n_{v_h} - s^n_v|| \right) ||e^{n+1}_{p_h}||. \tag{7.21}
\]

Applying coercivity (6.11) and boundedness (6.19) of \(b^n_p \), we obtain

\[
C_{\alpha_{p\ell}} \tau ||e^{n+1}_{p_h}||^2 \leq C_{B_{p\ell}} \tau ||e^{n+1}_{p_{\ell}}||_{\ast} ||e^{n+1}_{p_h}|| + C \tau \left(\tau + h^2 + ||S^n_{a_h} - s^n_a|| + ||S^n_{v_h} - s^n_v|| \right) ||e^{n+1}_{p_h}||. \tag{7.22}
\]
Using Young's inequality on the right-hand side, we have

\[C \tau \| e_{ph}^{n+1} \|^2 \leq C \tau \| e_{ph}^{n+1} \|^2 + C \tau \left(\tau^2 + h^4 + \| S_{ah} - s_a^n \|^2 + \| S_{hv} - s_v^n \|^2 \right). \]

(7.23)

The result is obtained after using the L^2-orthogonal projection estimates (5.8) and recalling that $h^4 \leq h^2$. \hfill \Box

7.2 Aqueous saturation

The following lemma gives an equation for the error e_{ah}^n.

Lemma 7.5 (Error equation for the aqueous saturation). We have that, for all $w_h \in X_h, t_n$, and all $0 \leq n \leq N - 1$, there exists a constant $C > 0$ independent of h and τ such that

\[\frac{1}{\tau} (\phi (S_{ah}^{n+1} - s_a^{n+1}), w_h) + b_{ah}^n (e_{ah}^{n+1}, w_h) = \frac{1}{\tau} (\phi (S_{ah}^n - s_a^n), w_h) + b_{ah}^n (e_{ah}^{n+1}, w_h) \]

\[+ C \left(\tau + h + \| e_{ph}^{n+1} \| + \| S_{ah}^n - s_a^n \| + \| S_{hv}^n - s_v^n \| \right) \| w_h \| + \sigma_a (w_h), \]

(7.24)

where

\[\sigma_a (w_h) = \frac{1}{\tau} \left(\beta_{ah}^{n+1}, w_h \right), \quad \beta_{ah}^{n+1} = \phi \int_{t_n}^{t_{n+1}} (t - t_n) \partial_n s_a \, dt. \]

(7.25)

Proof. Using a Taylor series expansion we have

\[s_a^n = s_a^{n+1} - \tau \left(\partial_t s_a \right)^{n+1} + \int_{t_n}^{t_{n+1}} (t - t_n) \partial_n s_a \, dt. \]

(7.26)

Rearranging the terms, multiplying by ϕ and a test function $w_h \in X_h$ and integrating over Ω yields

\[\frac{1}{\tau} (\phi s_a^{n+1}, w_h) = \frac{1}{\tau} (\phi s_a^n, w_h) + (\phi (\partial_t s_a)^{n+1}, w_h) - \sigma_a (w_h). \]

(7.27)

where $\sigma_a (w_h)$ is defined in (7.25). Using the consistency of scheme (6.25) on the second term on the right-hand side, rearranging terms and subtracting the result from (4.11) reads

\[\frac{1}{\tau} (\phi (S_{ah}^{n+1} - s_a^{n+1}), w_h) + b_{ah}^n (S_{ah}^{n+1}, w_h) - \tilde{b}_{ah}^{n+1} (S_{ah}^{n+1}, w_h) = \frac{1}{\tau} (\phi (S_{ah}^n - s_a^n), w_h) \]

\[+ f_a^n (w_h) - \tilde{f}_a^{n+1} (w_h) + \sigma_a (w_h). \]

(7.28)
Owing to (7.6b) and (7.7b), this is equivalent to

\[\frac{1}{\tau} (\phi(S_{a_h}^{n+1} - s_{a}^{n+1}), w_h) + b_a^n(S_{a_h}^{n+1} - s_{a}^{n+1}, w_h) = \frac{1}{\tau} (\phi(S_{a_h}^n - s_{a}^n), w_h) + C \left(\tau + h + \|e_{p_h}^{n+1}\| + \|S_{ah}^n - s_{a}^n\| + \|S_{ah}^n - s_{a}^n\| \right) \|w_h\| + \sigma_a(w_h). \quad (7.29) \]

Using (7.2) gives the result. \hfill \Box

Lemma 7.6 (Error estimates for the aqueous saturation). We have that, for all \(0 < n < N - 1\),

\[\|S_{a_h}^{n+1} - s_{a}^{n+1}\|^2 + \tilde{C}\tau \|e_{a_h}^{n+1}\|^2 \leq (1 + C\tau)\|S_{a_h}^n - s_{a}^n\|^2 + C\tau\|S_{a_h}^n - s_{a}^n\|^2 + C\tau(\tau^2 + h^2), \quad (7.30) \]

where \(C, \tilde{C} > 0\) are independent of \(h\) and \(\tau\).

Proof. Let \(w_h = \tau e_{a_h}^{n+1}\) in (7.24):

\[\phi(S_{a_h}^{n+1} - s_{a}^{n+1}, e_{a_h}^{n+1}) + \tau b_a^n(e_{a_h}^{n+1}, e_{a_h}^{n+1}) = \phi(S_{a_h}^n - s_{a}^n, e_{a_h}^n + \tau b_a^n(e_{a_h}^n, e_{a_h}^n)) + C\tau \left(\tau + h + \|e_{p_h}^{n+1}\| + \|S_{a_h}^n - s_{a}^n\| \right) \|e_{a_h}^{n+1}\| + \sigma_a(e_{a_h}^{n+1}). \quad (7.31) \]

Using the coercivity of \(b_a^n\) (6.28) on the second term of the left-hand side, and the boundedness of \(b_a^n\) (6.32) on the first term of the right-hand side, we obtain

\[\phi(S_{a_h}^{n+1} - s_{a}^{n+1}, e_{a_h}^{n+1}) + C_{a,s_a}\tau \|e_{a_h}^{n+1}\|^2 \leq \phi(S_{a_h}^n - s_{a}^n, e_{a_h}^n) + C_{B,s_a}\tau \|e_{a_h}^{n+1}\| \|e_{a_h}^{n+1}\| + C\tau \left(\tau + h + \|e_{p_h}^{n+1}\| + \|S_{a_h}^n - s_{a}^n\| \right) \|e_{a_h}^{n+1}\| + \sigma_a(e_{a_h}^{n+1}). \quad (7.32) \]

Note that \((S_{a_h}^n - s_{a}^{n+1}, e_{a_h}^{n+1}) = \|S_{a_h}^n - s_{a}^{n+1}\|^2 + (S_{a_h}^n - s_{a}^n, e_{a_h}^{n+1})\) and \((S_{a_h}^n - s_{a}^{n+1}, e_{a_h}^{n+1}) = (S_{a_h}^n - s_{a}^n, s_{a_h}^{n+1} - s_{a}^{n+1}) + (S_{a_h}^n - s_{a}^n, e_{a_h}^{n+1})\). Moreover,

\[(S_{a_h}^n - s_{a}^{n+1}, s_{a_h}^{n+1} - s_{a}^{n+1}) = \frac{1}{2} \|S_{a_h}^n - s_{a}^{n+1}\|^2 + \frac{1}{2} \|S_{a_h}^n - s_{a}^{n+1}\|^2 + \frac{1}{2} \|S_{a_h}^n - s_{a}^{n+1}\|^2 + \frac{1}{2} \|S_{a_h}^n - s_{a}^{n+1}\|^2, \]

where we have used that \(ab = \frac{1}{2}a^2 + \frac{1}{2}b^2 - \frac{1}{2}(a - b)^2\). Thus,

\[\frac{\phi}{2} \|S_{a_h}^n - s_{a}^{n+1}\|^2 + C_{a,s_a}\tau \|e_{a_h}^{n+1}\|^2 \leq \frac{\phi}{2} \|S_{a_h}^n - s_{a}^n\|^2 + \phi(S_{a_h}^n - s_{a}^n, e_{a_h}^{n+1}) + \phi(s_{a}^{n+1} - s_{a}^n, e_{a_h}^{n+1}) + C\tau \left(\tau + h + \|e_{p_h}^{n+1}\| + \|S_{a_h}^n - s_{a}^n\| \right) \|e_{a_h}^{n+1}\| + \sigma_a(e_{a_h}^{n+1}). \quad (7.33) \]
The second term on the right-hand side is zero due to (7.3). Moreover, the third term on the right-hand side is bounded above by $C \tau \| e^{n+1}_{a_h} \| \leq C \tau h^2$. Thus,

$$\frac{\phi}{2} \| S^{n+1}_{a_h} - s^n_a \|^2 + C_{a,h} \tau \| e^{n+1}_{a_h} \|^2 \leq \frac{\phi}{2} \| S^n_{a_h} - s^n_a \|^2 + C_{R,s,a} \tau \| e^{n+1}_{a_x} \| \| e^{n+1}_{a_h} \| + C \tau \left(\tau + h + \| e^{n+1}_{p_h} \| + \| S^n_{a_h} - s^n_a \| \right) \| e^{n+1}_{a_h} \| + \tau \sigma_a(e^{n+1}_{a_h}) + C \tau h^2. \quad (7.34)$$

Note that, using the Cauchy–Schwarz inequality, we have $\tau \sigma_a(e^{n+1}_{a_h}) \leq \| e^{n+1}_{a_h} \| \| e^{n+1}_{a_h} \|$. Moreover,

$$\| e^{n+1}_{a_h} \|^2 = \int_{\Omega} \left(\phi \int_{t_n}^{t_{n+1}} (t - t_n) \partial_t s_a \, dt \right)^2 \leq C \int_{\Omega} \left(\int_{t_n}^{t_{n+1}} (t - t_n) \partial_t s_a \, dt \right)^2 \leq C \tau^3 \int_{\Omega} \int_{t_n}^{t_{n+1}} (\partial_t s_a)^2 \, dt \leq C \tau^4 \max_{t \in [t_n,t_{n+1}]} \int_{\Omega} (\partial_t s_a)^2 \, dt = C \tau^4 \max_{t \in [t_n,t_{n+1}]} \| \partial_t s_a \|^2 \leq C \tau^4,$$

where we have used that $s_a \in C^2(0,T;L^2(\Omega))$. Using this, Young’s inequality on the right-hand side and estimates (5.8), we obtain

$$\frac{\phi}{2} \| S^{n+1}_{a_h} - s^n_a \|^2 + C \tau \| e^{n+1}_{a_h} \|^2 \leq \frac{\phi}{2} \| S^n_{a_h} - s^n_a \|^2 + C \tau \left(\tau^2 + h^2 + \| e^{n+1}_{p_h} \|^2 + \| S^n_{a_h} - s^n_a \|^2 \right). \quad (7.35)$$

Using the liquid pressure error estimates (7.20) gives the result. □

7.3 Vapor saturation

The following two lemmas state error estimates for the error $e^n_{v_h}$. Proofs are similar to those of Lemmas 7.5 and 7.6 and thus are skipped for brevity.
Lemma 7.7 (Error equation for the vapor saturation). We have that, for all \(w_h \in X_h \), and all \(0 \leq n \leq N - 1 \), there exists a constant \(C > 0 \) independent of \(h \) and \(\tau \) such that

\[
\frac{1}{\tau} (\phi(S_{vh}^{n+1} - s_v^{n+1}, w_h) + b^n_v(e_v^{n+1}, w_h) = \frac{1}{\tau} (\phi(S_v^n - s_v^n, w_h) + b^n_v(e_v^n, w_h) + C \left(\tau + h + ||e_{\rho h}^{n+1}|| + ||S_{ah}^n - s_a^n|| + ||S_{vh}^n - s_v^n|| \right) ||w_h|| + \sigma_v(w_h),
\]

where

\[
\sigma_v(w_h) = \frac{1}{\tau} (\beta_v^{n+1}, w_h), \quad \beta_v^{n+1} = \phi \int_{t_n}^{t_{n+1}} (t - t_n) \partial_t \tau_s(t) dt.
\]

Lemma 7.8 (Error estimates for the vapor saturation). We have that, for all \(0 \leq n \leq N - 1 \),

\[
||S_{v}^{n+1} - s_v^{n+1}||^2 + \bar{C} \tau ||e_{v}^{n+1}||^2 \leq (1 + C \tau) ||S_{v}^{n} - s_v^n||^2 + C \tau ||S_{ah}^n - s_a^n||^2 + C \tau (\tau^2 + h^2),
\]

where \(C, \bar{C} > 0 \) are independent of \(h \) and \(\tau \).

7.4 Final estimates

In this section we combine the error estimates (7.20), (7.30) and (7.38), and use induction to give the final error bounds. We first denote the errors made with the starting values by \(\mathcal{E}(t_0) \):

\[
\mathcal{E}(t_0) = ||S_{ah}^0 - s_a^0||^2 + ||S_{vh}^0 - s_v^0||^2.
\]

Theorem 7.1 There exists a constant \(C \) independent of \(h \) and \(\tau \) such that the following error estimates hold:

\[
||S_{ah}^N - s_a^N||^2 + ||S_{vh}^N - s_v^N||^2 + C \tau (||e_{\rho h}^N||^2 + ||e_{ah}^N||^2 + ||e_{vh}^N||^2) \leq e^{CT} \left(\mathcal{E}(t_0) + C(\tau^2 + h^2) \right).
\]

Proof. Let \(A_{n+1} = ||S_{ah}^{n+1} - s_a^{n+1}||^2 + ||S_{vh}^{n+1} - s_v^{n+1}||^2, B_{n+1} = C \tau (||e_{\rho h}^{n+1}||^2 + ||e_{ah}^{n+1}||^2 + ||e_{vh}^{n+1}||^2) \) and \(D = C \tau (\tau^2 + h^2) \). Then, adding up all three estimates (7.20), (7.30) and (7.38), we obtain

\[
A_{n+1} + B_{n+1} \leq (1 + C \tau)A_n + D.
\]

Applying induction, we have that, for any \(1 \leq n \leq N \),

\[
A_n + B_n \leq (1 + C \tau)^n A_0 + D \sum_{k=0}^{n-1} (1 + C \tau)^k.
\]
We apply this with \(n = N \). Since

\[
(1 + C\tau)^k \leq (1 + C\tau)^N \leq e^{CN\tau} = e^{CT}
\]

we have

\[
A_N + B_N \leq e^{CT}A_0 + D \sum_{k=0}^{n-1} e^{CT}A_0 + (N - 1)De^{CT} \leq e^{CT}(A_0 + C(\tau^2 + h^2)),
\]

which concludes the proof.

Corollary 7.1 Assume that the initial solutions \(S_{ah}^0, S_{vh}^0 \) satisfy (4.20). Then we have

\[
\|S_{ah}^N - s_{ah}^N\|^2 + \|S_{vh}^N - s_{vh}^N\|^2 + C\tau \left(\|e_{ph}^N\|^2 + \|e_{ah}^N\|^2 + \|e_{vh}^N\|^2 \right) \leq Ce^{CT} \left(\tau^2 + h^2 \right).
\]

Proof. This follows from (7.39).

Remark 7.1 Note that, as expected, the convergence rates in space are suboptimal. As we show in Section 8, by setting \(\tau = h^2 \), we can recover second-order convergence. In order to obtain optimal rates of convergence in space, a duality argument is needed.

8. Numerical results

For the numerical results, we consider manufactured solutions under different scenarios. The solution of the problem is given by

\[
\begin{align*}
p(t,x,y) &= 2 + xy^2 + x^2 \sin(t+y), \\
s_a(t,x,y) &= \frac{1 + 2x^2y^2 + \cos(t+x)}{8}, \\
s_v(t,x,y) &= \frac{3 - \cos(t+x)}{8}.
\end{align*}
\]

The computational domain is taken as \(\Omega = [0, 1] \times [0, 1] \), and the final time of the problem is \(T = 1 \). The porosity \(\phi \) is taken to be constant equal to 0.2, while the absolute permeability \(\kappa \) is taken to be constant equal to 1. The phase viscosities are set as

\[
\mu_\ell = 0.75, \quad \mu_v = 0.25, \quad \mu_a = 0.5.
\]

The phase relative permeabilities and the capillary pressures are defined as (Bentsen & Anli, 1976; Chen et al., 2006)

\[
\begin{align*}
k_{r\ell} &= s_\ell(s_\ell + s_a)(1-s_a), & k_{rv} &= s_v^2, & k_{ra} &= s_a^2, \\
p_{c,v} &= \frac{3.9}{\ln(0.01)} \ln(1.01 - s_v), & p_{c,a} &= \frac{6.3}{\ln(0.01)} \ln(s_a + 0.01).
\end{align*}
\]

We consider Dirichlet boundary conditions on all the boundaries of the domain. The source terms \(q_\ell, q_v \) and \(q_a \) are computed according to the manufactured solutions and other parameters of the problem.
First, we consider the case in which the phase densities are constant and taken as
\[\rho_\ell = 3, \quad \rho_v = 1, \quad \rho_a = 5. \] (8.4)

For this test case, gravity is not considered. We take \(\theta_{\ell} = \theta_v = \theta_a = 1 \) and \(\alpha_{\ell, e} = \alpha_v, e = \alpha_a, e = 1 \) on all the edges of the mesh. The simulation is performed on six uniform meshes with an initial mesh size of \(h = 0.5 \). We compute the \(L^2 \)-errors at the final time. In Tables 1 and 2, we show the results with the time step \(\tau \) taken equal to \(h \) and to \(h^2 \), respectively. We observe that, as expected from the results in Section 7, when \(\tau = h^2 \), the scheme is first order. Moreover, we can recover second order when taking \(\tau = h^2 \).

Finally, we consider the effect of gravity. We take \(g = [0 \ 0.1]^T \), and the phase densities as taken as in (8.4). The simulation is performed on six uniform meshes with an initial mesh size of \(h = 0.5 \).
Table 4 Rates of convergence for test case in Section 8.2, with $\tau = h^2$

h	DOFs	$L^2(\Omega)$-error p_ℓ Rate	$L^2(\Omega)$-error s_d Rate	$L^2(\Omega)$-error s_v Rate			
0.5	16	1.36e−1	—	—			
0.25	64	3.43e−2	1.99	1.56e−3	2.07	3.72e−3	3.89
0.125	256	8.47e−3	2.02	3.79e−4	2.04	6.55−4	2.51
0.0625	1,024	2.13e−3	1.99	9.51e−5	1.99	1.81e−4	1.86
0.03125	4,096	5.35e−4	1.99	2.37e−5	2.00	5.03e−5	1.85

We compute the L^2-errors at the final time. In Tables 3 and 4, we show the results with the time step τ taken equal to h and to h^2, respectively. We observe that, as expected from the results in Section 7, when $\tau = h$, the scheme is first order. Moreover, we can recover second order when taking $\tau = h^2$.

9. Conclusions

We presented and analyzed a first-order discontinuous Galerkin method for the incompressible three-phase flow problem in porous media. Our method does not require a subiteration scheme, which makes it computationally cheaper. We obtained a priori error estimates by assuming Lipschitz continuity of the coefficients. The numerical test cases show, under different scenarios, that our scheme is first-order convergent. For future work, we would like to extend the numerical analysis to variable density flow and to a second-order scheme by using a BDF2 time stepping. Moreover, we plan to extend this scheme to the black oil problem where mass transfer can occur between the liquid and vapor phases and study the performance of such methods on setups that include wells or viscous fingering effects (Bangerth et al., 2006; Li & Rivière, 2016).

REFERENCES

Alizadeh, A. & Piri, M. (2014) Three-phase flow in porous media: a review of experimental studies on relative permeability. Rev. Geophys., 52, 468–521.

Bangerth, W., Klé, H., Wheeler, M., Stoffa, P. & Sen, M. (2006) On optimization algorithms for the reservoir oil well placement problem. Comput. Geosci., 10, 303–319.

Bastian, P. & Rivière, B. (2003) Superconvergence and $H(div)$ projection for discontinuous Galerkin methods. Internat. J. Numer. Methods Fluids, 42, 1043–1057.

Bentsen, R. G. & Anli, J. (1976) A new displacement capillary pressure model. J. Can. Pet. Technol., 15, 761–789.

Brenner, S. (2003) Poincaré–Friedrichs inequalities for piecewise H^1 functions. SIAM J. Numer. Anal., 41, 306–324.

Cappanera, L. & Rivière, B. (2019c) A numerical method for solving the three-phase three-component problem. Numer. Methods Partial Differential Equations, 35, 761–789.

Cappanera, L. & Rivière, B. (2019a) Discontinuous Galerkin method for solving the black-oil problem in porous media. Numer. Methods Partial Differential Equations, 35, 761–789.

Cappanera, L. & Rivière, B. (2019b) Flexible discretizations of the three-component three-phase flow problem. SPE Reservoir Symposium, number SPE-193906-MS. Galveston, Texas, USA: Society for Petroleum Engineers.

Chen, Z. & Ewing, R. (2001) Degenerate two-phase incompressible flow III. Sharp error estimates. Numer. Math., 90, 215–240.

Chen, Z., Huan, G. & Ma, Y. (2006) Computational Methods for Multiphase Flows in Porous Media. SIAM.
Dong, J. & Riviere, B. (2016) A semi-implicit method for incompressible three-phase flow in porous media. *Comput. Geosci.*, **20**, 1169–1184.

Douglas Jr., J. (1983) Finite difference methods for two-phase incompressible flow in porous media. *SIAM J. Numer. Anal.*, **20**, 681–696.

Epshteyn, Y. & Riviere, B. (2009) Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow. *J. Comput. Appl. Math.*, **225**, 487–509.

Ern, A., Nicaise, S. & Vohralík, M. (2007) An accurate $H(\text{div})$ flux reconstruction for discontinuous Galerkin approximations of elliptic problems. *Comp. Rend. Math.*, **345**, 709–712.

Eymard, R., Herbin, R. & Michel, A. (2003) Mathematical study of a petroleum-engineering scheme. *ESAIM Math. Model. Numer. Anal.*, **37**, 937–972.

Girault, V., Riviere, B. & Cappanera, L. (2021a) A finite element method for degenerate two-phase flow in porous media. Part I: well-posedness. *J. Numer. Math.*, **29**, 81–101.

Girault, V., Riviere, B. & Cappanera, L. (2021b) A finite element method for degenerate two-phase flow in porous media. Part II: convergence. *J. Numer. Math.*, **29**, 81–101.

Hajibeygi, H. & Tchelepi, H. A. (2014) Compositional multiscale finite-volume formulation. *SPE J.*, **19**, 316–326.

Li, J. & Rivière, B. (2016) Numerical modeling of miscible viscous fingering instabilities by high-order methods. *Transp. Porous Media*, **113**, 607–628.

Michel, A. (2003) A finite volume scheme for two-phase incompressible flow in porous media. *SIAM J. Numer. Anal.*, **41**, 1301–1317.

Moortgat, J. & Firoozabadi, A. (2013) Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium. *J. Comput. Phys.*, **250**, 425–445.

Moortgat, J. & Firoozabadi, A. (2016) Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids. *J. Comput. Phys.*, **315**, 476–500.

Natvig, J. & Lie, K. (2008) Fast computation of multiphase flow in porous media by implicit discontinuous Galerkin schemes with optimal ordering of elements. *J. Comput. Phys.*, **227**, 10108–10124.

Ohlberger, M. (1997) Convergence of a mixed finite element: finite volume method for the two phase flow in porous media. *East West J. Numer. Math.*, **5**, 183–210.

Radu, F. A., Kumar, K., Nordbotten, J. M. & Pop, I. S. (2018) A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities. *IMA J. Numer. Anal.*, **38**, 884–920.

Rankin, R. & Riviere, B. (2015) A high order method for solving the black-oil problem in porous media. *Adv. Water Resour.*, **78**, 126–144.

Shank, G. & Vestal, C. (1989) Practical techniques in two-pseudocomponent black-oil simulation. *SPE Reserv. Eng.*, **4**, 244–252.