COVID-19 infection, admission and death among people with rare autoimmune rheumatic disease in England: results from the RECORDER project

Megan Rutter, Peter C. Lanyon, Matthew J. Grainge, Richard Hubbard, Emily Peach, Mary Bythell, Peter Stilwell, Jeanette Aston, Sarah Stevens and Fiona A. Pearce

Abstract

Objectives. To calculate the rates of COVID-19 infection and COVID-19-related death among people with rare autoimmune rheumatic diseases (RAIRD) during the first wave of the COVID-19 pandemic in England compared with the general population.

Methods. We used Hospital Episode Statistics to identify all people alive on 1 March 2020 with ICD-10 codes for RAIRD from the whole population of England. We used linked national health records (demographic, death certificate, admissions and PCR testing data) to calculate rates of COVID-19 infection and death up to 31 July 2020. Our primary definition of COVID-19-related death was mention of COVID-19 on the death certificate. General population data from Public Health England and the Office for National Statistics were used for comparison. We also describe COVID-19-related hospital admissions and all-cause deaths.

Results. We identified a cohort of 168,680 people with RAIRD, of whom 1,874 (1.11%) had a positive COVID-19 PCR test. The age-standardized infection rate was 1.54 (95% CI: 1.50-1.59) times higher than in the general population. A total of 713 (0.42%) people with RAIRD died with COVID-19 on their death certificate and the age-sex-standardized mortality rate for COVID-19-related death was 2.41 (2.30-2.53) times higher than in the general population. There was no evidence of an increase in deaths from other causes in the RAIRD population.

Conclusions. During the first wave of COVID-19 in England, people with RAIRD had a 54% increased risk of COVID-19 infection and more than twice the risk of COVID-19-related death compared with the general population. These increases were seen despite shielding policies.

Key words: COVID-19, coronavirus, mortality, rare autoimmune rheumatic diseases, epidemiology, shielding, infection

Introduction

Our previous work has shown that people with rare autoimmune rheumatic diseases (RAIRD) were at increased risk of all-cause mortality during the first wave of the COVID-19 pandemic (March–April 2020), when compared with the general population in England [1]. However, this study did not examine whether the increased mortality was due to COVID-19 infection itself, or due to indirect effects of the pandemic.

This study uses linked national health records for the whole population of England to calculate the rates of laboratory confirmed COVID-19 infection and COVID-19-related death among people with RAIRD from 1 March to 31 July 2020, the first wave of the COVID-19 pandemic, and compares these rates to that in the general population. We describe COVID-19-related hospital and intensive care unit (ICU) admission, underlying
causes of death by category and COVID-19-related mortality stratified by RAIRD diagnosis.

Methods

Background

The Registration of Complex Rare Diseases Exemplars in Rheumatology (RECORDER) project is a collaboration between the University of Nottingham, Nottingham University Hospitals NHS Trust and the National Congenital Anomaly and Rare Disease Registration Service (NCARDRS). NCARDRS, based within Public Health England (PHE), registers people with rare conditions in order to support high quality clinical practice and research, provide epidemiology data and empower patients [2]. It has unique access to linked national datasets of electronic health records at patient-identifiable level for the whole population of England.

This study uses Hospital Episode Statistics (HES), which contains every episode of admitted patient care in NHS hospitals in England, COVID-19 polymerase chain reaction (PCR) test results and Office for National Statistics (ONS) death certificate data.

Data validation

Our previous work validating HES ICD-10 codes for RAIRD has shown high accuracy, with a positive predictive value of 84.7% [1]. Prevalence estimates based on our findings for ANCA-associated vasculitis, SLE and scleroderma are similar to reported population estimates [3–5].

Study cohort

People with a diagnostic code for RAIRD in HES from 2003 onwards, resident in England, and alive on 1 March 2020 were included in the study, using the same cohort as our preliminary all-cause mortality study [1]. A data flow diagram is shown in Supplementary Fig. S1, available at Rheumatology online. Vital status data from the NHS Personal Demographics Service were used to confirm whether people were alive, or to confirm date of death [6].

RAIRD diagnoses

Participants were grouped by RAIRD diagnosis, based on their most recent diagnostic code. Where the most recent code was non-specific, for example ‘Renal tubulo-interstitial disorder in systemic connective tissue disorder’, earlier, more specific diagnostic codes were used where available, following the algorithm in Supplementary Data S1, available at Rheumatology online.

Death certificate data

Death certificate and underlying cause of death data (free text and ICD-10 coded) provided by the ONS were utilized. Using internationally agreed rules, ONS assigns underlying cause of death, usually based on the lowest completed line of Part 1 of a death certificate [7]. Our data were examined for ICD-10 codes specific to COVID-19 (U07.1, U07.2). The free text was manually checked for keywords (‘cov’, ‘virus’ or ‘19’) which confirmed that no deaths related to COVID-19 (including misspellings) had been omitted. While COVID-19-specific ICD-10 codes were not introduced until 25 March 2020 [8], all deaths with a free text mention of COVID-19 occurring before that date had been captured retrospectively by the ONS coding system. We classified underlying all-cause death by category.

COVID-19 status

A population-level dataset of COVID-19 PCR test results, held in the Second Generation Surveillance System in PHE, was used. Positive tests among the RAIRD cohort were extracted, along with the date the laboratory reported the result. Demographics are described by pillar 1 (in-hospital) or pillar 2 (community) testing.

Hospital and intensive care unit admissions

HES admitted patient care (APC) data on hospital and ICU admissions with an ICD-10 diagnostic code for COVID-19 were extracted. Duration and number of admissions, and basic and advanced respiratory support days on ICU are described.

Mortality rate calculation

We report two measures of COVID-19-related deaths. Our primary definition is death with any mention of COVID-19 on the death certificate as used by the ONS [9]. This was chosen due to the limited availability of COVID-19 PCR testing in the community during the first wave. Our secondary definition is death within 28 days of a positive COVID-19 PCR test, as used by PHE [10].

The crude all-cause mortality rate from 1 March to 31 July 2020 was calculated, with the cohort of patients identified as having RAIRD used as the denominator population, along with the crude mortality rates for the two measures of COVID-19-related death.

Age-sex-standardized mortality rates per 100 000 in the population were calculated, standardized to the 2019 mid-year estimate for the England population using 5-year age bands. Age-standardized mortality rates (ASMRs) standardized to the 2013 European Standard Population (ESP) were also calculated. As the ESP is not disaggregated by sex and assumes equal numbers of males and females, and identical age distributions within sexes, this population was not used to calculate age-sex standardized rates.

The ONS provided data for all-cause deaths, and deaths with any mention of COVID-19 on the death certificate, over the same time period in England, split by sex and age band [11, 12]. PHE provided comparable data for deaths within 28 days of a positive COVID-19
test (available to the public on request). These data were used to calculate the crude, age-standardized and age-specific mortality rates as a comparator. Publicly available data from the government Coronavirus dashboard [13] were used to compare infection rates in the general population. The 2019 mid-year estimate for the population of England was used as the denominator.

COVID-19 infection rate calculation
Laboratory confirmed COVID-19 infection rate from 1 March to 31 July 2020 was calculated, with the cohort of patients identified as having RAIRD used as the denominator population. Infection rate was age-standardized to the mid-year 2019 England population.

Stratification by disease
Poisson regression methods were used to analyse rates of COVID-19-related death, adjusted for age, sex and RAIRD diagnosis. Incidence rate ratios for each diagnosis, with 95% CIs, were displayed as a forest plot.

Ethics
This study was approved by the Camden and Kings Cross Research Ethics Committee, study reference 20/HRA/2076, on 18 June 2020.

For quality assurance, the data extraction and analysis were re-conducted by an independent analyst from the National Disease Registration Service.

Patient and public involvement
This work has been developed with input from people with RAIRD. Following our findings of increased mortality in this population [1], we consulted with patients and patient charities to confirm priorities for future research and inform the communication and dissemination of our results. This will continue as an iterative process as results become available. A plain English summary of this study is available in the Supplementary Material, available at Rheumatology online.

Data analysis
Cleaning, linkage and analysis of the data was performed in R version 3.6.3 (packages tidyverse [14], janitor [15], survival [16], mfx [17], survminer [18], meta [19]).

Results
Demographic data
A total of 168 691 people were included in the RAIRD cohort in our all-cause mortality study [1]. Updates to personal demographic data revealed that 11 people had died prior to 1 March 2020, leaving 168 680 people included in this study. Descriptive demographic data, including RAIRD diagnoses, are shown in Table 1. The median age of the population was 61.7 years (IQR 41.5–75.4) and 118 374 (70.2%) were female.

COVID-19 infection
Between 1 March and 31 July 2020, 1874 (1.11%) of the RAIRD population had a positive COVID-19 PCR test, compared with 261 348 (0.46%) of the general population. Age-standardized to the England population, the infection rate per 100 000 person-years was 1720.3 (1670.0–1770.6), compared with 1114.3 (1111.5–1117.0) per 100 000 person-years in the general population [rate ratio 1.54 (1.50–1.59), Table 2].

Characteristics of those with a positive COVID-19 PCR test are shown in Table 2. People with RAIRD with a positive PCR test were more likely to have had a pillar 1 test (86.87% of positive tests) than people with a positive PCR test in the general population (62.31% of positive tests).

All-cause mortality
Between 1 March and 31 July, 3401 (2.02%) people in the RAIRD cohort died of any cause, compared with 257 547 out of 56 286 961 (0.46%) among the general population.

COVID-19 related mortality
Of the 3401 people who died, death certificate data were available for 3332 (97.97%). In total, 713 (0.42%) RAIRD population had COVID-19 mentioned on their death certificate, in any position. This compares to 49 166 (0.09%) of all those who died in the general population.

Of those with a positive COVID-19 PCR test, 574/1874 (30.6%) died within 28 days of a positive test, compared with 36 658/261 348 (14.03%) of the general population.

The combined total of people with RAIRD dying with either COVID-19 mentioned on their death certificate, or within 28 days of a positive COVID-19 test, is reported in Supplementary Data S1, available at Rheumatology online.

Age- and age-sex-standardized mortality rates
The age-sex-standardized mortality rate for all-cause death in RAIRD, standardized to the 2019 mid-year population of England, was 2325.2 (2274.8–2375.7), compared with 1098.1 (95% CI: 1095.4, 1100.9) in the general population [rate ratio 2.12 (2.07–2.16)]. For
TABLE 1 Characteristics of the cohort of people with RAIRD alive 1 March 2020 (n = 168 680)

Characteristic	Value
Sex[*]	
Female	118 374 (70.2%)
Male	50 305 (29.8%)
Median age (IQR)	
Total cohort	61.7 (41.5–75.4; 33.9)
Female	61.8 (43.0–75.7; 32.6)
Male	61.3 (36.6–74.9; 38.3)
Most recent diagnosis (n, %)	
SLE	41 261 (24.5%)
GCA	38 014 (22.5%)
Juvenile inflammatory arthritis	21 202 (12.6%)
Arteritis, unspecified	17 632 (10.5%)
Polymyositis	17 447 (10.3%)
Scleroderma	11 578 (6.9%)
Granulomatosis with polyangitis	6164 (3.7%)
Behçet’s disease	4880 (2.9%)
DM	2594 (1.5%)
Eosinophilic granulomatosis with polyangitis	2351 (1.4%)
Polyarteritis nodosa	1597 (0.9%)
Microscopic polyangiitis	1339 (0.8%)
Connective tissue disorder with specific organ involvement	1218 (0.7%)
Takayasu arteritis	614 (0.3%)
Juvenile myositis	488 (0.3%)

ICD-10 codes used: SLE = M321, M328, M329; GCA = M315, M316; juvenile inflammatory arthritis = M080, M082, M083, M084, M089; arteritis, unspecified = I776; polymyositis = G724, M332, M608, M609; scleroderma = M340, M341, M348, M349; granulomatosis with polyangitis = M313; Behçet’s disease = M352; DM = M331, M339; eosinophilic granulomatosis with polyangitis = M301; polyarteritis nodosa = M300, M308; microscopic polyangiitis = M17; connective tissue disorder with specific organ involvement = J991, N085, N164; Takayasu arteritis = M314; juvenile myositis = M330. [*]One person did not have sex recorded.

TABLE 2 PCR-proven COVID-19 infections in the RAIRD population compared with the whole population of England

Infection rate (n, %)	RAIRD (n = 168 680)	England (n = 56 286 961)	Rate ratio
Death certificate mention of COVID (n, %)	713 (0.42%)	56 196 (0.10%)	
Death within 28 days of COVID test (n, %)	574 (0.34%)	36 658 (0.07%)	
Age-standardized COVID-19 infection rate (per 100 000 person-years)	1720.3 (1670.0–1770.6)	1114.3 (1111.5–1117.0)	1.54 (1.50–1.59)
Positive COVID-19 PCR tests by pillar [n (% total tests)]RAIRD (n = 168 680)	1628 (86.87%)	England (n = 56 286 961)	
Pillar 1	246 (13.13%)	99 583 (37.69%)	
Age of those in RAIRD cohort with a positive PCR test	Mean age	Median age	Interquartile range
--------------------------	-----------	------------	------------------
Pillar 1	71.14	75.10	60.89–84.14 (23.25)
Pillar 2	62.42	65.31	42.19–84.72 (42.53)
Deaths in RAIRD cohort within 28 days of a positive PCR test, by pillar [n (% deaths)]	560 (97.6%)	14 (2.4%)	
Pillar 1	77.03	79.21	71.26–85.94 (14.68)
Pillar 2	88.13	89.47	84.84–92.55 (7.71)

Note: Pillar 1 denotes in-hospital testing and Pillar 2 denotes community testing.
deaths mentioning COVID-19 on the death certificate, the age-sex-standardized mortality rate was 505.5 (481.5–529.4), compared with 209.6 (208.4–210.8) in the general population [rate ratio 2.41 (2.30–2.53)]. For deaths within 28 days of a positive COVID-19 PCR test, the age-sex-standardized mortality rate in RAIRD was 422.0 (399.7–444.3), compared with 156.3 (155.3–157.3) in the general population [rate ratio 2.70 (2.56–2.84)]. These data are summarized in Table 3. The ASMR for all-cause death in RAIRD, adjusted to the 2013 European Standard Population is available in Supplementary Table S1, available at Rheumatology online.

COVID-19 related deaths over time

All-cause deaths in 2019 and 2020, deaths with any mention of COVID-19 on the death certificate and deaths within 28 days of a positive COVID-19 PCR test were plotted over time and are shown in Supplementary Fig. S2, available at Rheumatology online.

Admissions

Demographic data for those who were admitted to hospital and/or to ICU with a diagnostic code for COVID-19 are shown in Table 4. The median age of those with a hospital admission was 75.07 years (IQR 62.13–83.64), and for an ICU admission 60.65 years (IQR 48.71–69.79). For hospital admissions, the median length of stay was 8 days (mean 13.8, range 0–269) and the median number of admissions was 2 (mean 2.3, range 1–20). For ICU admissions, the median length of stay was 6 days (mean 12.1, range 0–101) and the median number of admissions was 1 (mean 1.2, range 1–3). The median number of basic respiratory support days while on ICU was 2 (mean 3.6, range 0–30) and the median number of advanced respiratory support days was 1 (mean 7.9, range 0–93) (Table 4).

All-cause death by category

Where death certificate data were available, underlying cause of death by category was extracted and are shown in Supplementary Table S2, available at Rheumatology online. Deaths due to cardiovascular disease were recorded in 703 (21.1%), COVID-19 652 (19.6%), malignancy 581 (17.4%), respiratory 404 (12.1%), dementia 280 (8.4%), underlying RAIRD 113 (3.4%) and non-COVID-19 infection 19 (0.6%), with the remaining 580 (17.4%) ascribed to other causes. For comparison, data were extracted on all-cause death in people with a diagnostic code for RAIRD occurring during March–July 2016–2020 and categorized by underlying cause (Fig. 1). There was no evidence of an increase in death from non-COVID-19-related causes during the pandemic.

Age at death

There was no significant change in median age at death between 2016 and 2020 (median age ranged from 79.92–81.50), and this was similar to age at death related to COVID-19 (median 81.31, IQR 72.98–87.34; Supplementary Table S3, available at Rheumatology online).

Age at death in people with RAIRD was compared between 2020 and 2019, categorized by underlying cause of death (Supplementary Fig. S3, available at Rheumatology online). There was no evidence of earlier age of death occurring in 2020 in certain cause of death categories, e.g. in deaths from cardiovascular disease.

Stratification by disease

Incidence rate ratios for COVID-19-related death stratified by RAIRD diagnosis are displayed in Fig. 2. The comparable ratios and overlapping CIs suggest a similar risk across the RAIRD cohort, regardless of diagnosis. People with GCA were at slightly reduced risk (RR 0.66, 95% CI: 0.60, 0.74), which may reflect that GCA is often a self-limiting disease not requiring lifelong immunosuppression. The wide CIs reflect the relatively small number of events in the first wave.

Discussion

Main findings

In the first wave of the COVID-19 pandemic, COVID-19-related death rates among people with RAIRD were more than twice that of the general population. This was contributed to by both higher COVID-19 infection rates, and higher mortality after COVID-19 infection. The age-sex-standardized COVID-19 infection rate was 1.54 (1.50–1.59) times higher among people with RAIRD compared with the general population, despite shielding policies (protection of the clinically extremely vulnerable [20]) in place in England.

Strengths

A major strength is that the denominator population is known, allowing us to describe for the first time both rates of COVID-19 infection and of COVID-19-related death. Previous mortality COVID-19 studies in RAIRD have either included a much smaller group of people, or relied on case series and physician-reported cases [21] and allowed only internal comparisons within cohorts of people with rheumatic diseases, and not comparison with the general population.

This work uses novel linkages of HES, COVID-19 PCR testing data and death certificate data for people with rare diseases, through collaboration with NCARDRS. While our RAIRD cohort contains a heterogeneous group of diseases, our sub-analysis by disease show they have comparable risks of death due to COVID-19. Pooled analysis of these diseases increases statistical power to detect outcomes and is clinically justified by their common underlying disease mechanisms and treatments.
Limitations

The measures of COVID-19 mortality described were selected to allow comparison with available statistics for the general population. Our primary definition, any mention of COVID-19 on the death certificate (used by the ONS), infers that COVID-19 infection contributed to death, even if it was not the main cause and even in the absence of a positive PCR test. This has the theoretical potential to over-estimate deaths due to COVID-19 infection but has been found to be the best measure to explain the excess deaths seen in the national data. In our RAIRD cohort, of the 713 people with a mention of COVID-19 on the death certificate, 661 (93%) had COVID-19 in part 1, meaning that it directly lead to death [22]. Conversely, we may have underestimated COVID-19-related deaths as death certificate data were unavailable for 2% of our cohort. This proportion is not unexpected and registration delays are common [23], although they may disproportionately reflect certain groups such as deaths in hospital, or due to occupational exposure to disease (including COVID-19 [24]).

Our secondary definition was death within 28 days of a positive COVID-19 PCR test, as used by PHE. This measure overlooks deaths where the person never has a positive PCR test, or where the death occurred >28 days after diagnosis: important given the prolonged clinical course of COVID-19. In our RAIRD cohort, the median time between a positive test and death was 6 days, and only 22 (4%) of those who had COVID-19 on their death certificate, and had a positive PCR test, had that test >28 days prior to death.

We identified our cohort from diagnoses in HES admitted patient care (APC) data and our methodology may not have identified patients with RAIRD who have never had an in-patient or daycase admission for any reason, and who have been treated entirely on an outpatient basis. Due to the nature of RAIRD, we believe this to be the minority of cases, which is supported by disease prevalence in our cohort being similar to previous studies [3, 5, 25]. However, the potential impact is to skew our cohort towards those with more severe disease.

This work describes outcomes in the first wave only. Further work is needed to describe the outcomes in the second wave, and assess the influence of immunosuppression, shielding policies and the vaccination programme.

TABLE 3

Number of deaths	Number of people	Person-years	Crude mortality rate per 100 000 person years	RAIRD age-sex-standardized mortality rate	England age-sex-standardized mortality rate	Risk ratio for mortality rates	
All-cause mortality	3401	168 680	70 283	4839.0 (4734.0–4944.0)	2325.2 (2274.8–2375.7)	1098.1 (1095.4–1100.9)	2.12 (2.07–2.16)
Female	2179	118 374	49 323	4417.9 (4298.1–4537.6)	2131.7 (2073.9–2189.4)	1069.5 (1065.7–1073.3)	1.99 (1.94–2.05)
Male	1222	50 305	20 960	5830.0 (5619.0–6041.0)	2518.8 (2427.7–2610.0)	1127.5 (1123.5–1131.4)	2.23 (2.15–2.31)

Death with any mention of COVID-19 on the death certificate

All	713	168 680	70 283	1014.4 (966.4–1062.6)	505.5 (481.5–529.4)	209.6 (208.4–210.8)	2.41 (2.30–2.53)
Female	427	118 374	49 323	865.7 (812.7–918.7)	417.4 (391.9–443.0)	186.2 (184.6–187.8)	2.24 (2.10–2.38)
Male	286	50 305	20 960	1164.5 (1262.4–1466.6)	595.5 (551.0–640.1)	233.6 (231.8–235.4)	2.55 (2.39–2.74)

Death within 28 days of a positive COVID-19 test

All	574	168 680	70 283	816.7 (776.3–859.8)	422.0 (399.7–444.3)	156.3 (155.3–157.3)	2.70 (2.56–2.84)
Female	332	118 374	49 323	673.1 (626.3–719.9)	327.2 (304.5–349.9)	131.1 (129.8–132.5)	2.50 (2.32–2.67)
Male	242	50 305	20 960	1154.6 (1060.7–1248.5)	519.0 (476.8–561.2)	182.1 (180.5–183.6)	2.85 (2.62–3.08)

Deaths, crude mortality rates, age-sex-standardized mortality rates and sex-specific age-standardized mortality rates during March to July 2020 for the RAIRD cohort compared with the mid-year 2019 population of England. aSex-specific rates are age-standardized only.

The measures of COVID-19 mortality described were selected to allow comparison with available statistics for the general population. Our primary definition, any mention of COVID-19 on the death certificate (used by the ONS), infers that COVID-19 infection contributed to death, even if it was not the main cause and even in the absence of a positive PCR test. This has the theoretical potential to over-estimate deaths due to COVID-19 infection but has been found to be the best measure to explain the excess deaths seen in the national data. In our RAIRD cohort, of the 713 people with a mention of COVID-19 on the death certificate, 661 (93%) had COVID-19 in part 1, meaning that it directly lead to death. Conversely, we may have underestimated COVID-19-related deaths as death certificate data were unavailable for 2% of our cohort. This proportion is not unexpected and registration delays are common, although they may disproportionately reflect certain groups such as deaths in hospital, or due to occupational exposure to disease (including COVID-19).
other immunosuppressants, such as rituximab, may impair the antiviral immune response and antibody production, with potentially more severe clinical outcomes [31, 34]. This may also impact vaccine effectiveness and recently published data has demonstrated attenuated antibody responses in people with AAV on rituximab [35].

Comparison to the published literature
The small numbers of people affected by each RAIRD makes it difficult for studies to have enough statistical power to assess outcomes. Most research has therefore included more common rheumatic diseases such as RA. The COVID-19 Global Rheumatology Alliance describes COVID-19-related mortality in RAIRD and reports an association between immunosuppressive medications and mortality [31]. However, this relied on physician-reported cases and could not report rates of COVID-19 infection or deaths. A study looking at the French RMD COVID-19 cohort, a mixture of physician-reported RA and RAIRD patients, found an increased risk of severe COVID-19 in those treated with rituximab [36]. There was no increase in mortality in the rituximab group once other risk factors were adjusted for. Data from the same cohort also demonstrated an association between severe infection and treatment with corticosteroids or MMF [37].

A multicentre prospective cohort study from Brazil, with a mixed study population of inflammatory arthritis and RAIRD, showed an increased risk of severe COVID-19 in those treated with rituximab [36]. There was no increase in mortality in the rituximab group once other risk factors were adjusted for. Data from the same cohort also demonstrated an association between severe infection and treatment with corticosteroids or MMF [37].

OpenSAFELY and QCOVID, both of which looked at risk factors for severe COVID-19 outcomes in England, studied smaller populations. At the time of the last published analysis, OpenSAFELY included 24 million patients [39] and QCOVID 8.26 million [21]. Our research uses the whole England population of 56 million, which has afforded us the statistical power to calculate more precise results. The use of whole population data, with a known denominator population, also allows calculation of rates and comparison to the general population.

In addition, of the RAIRD, only SLE was included in the QCOVID and OpenSAFELY studies, in both cases combined with RA. Both found a modest increase in the risk of death [HR 1.32 (1.06–1.65) and 1.20 (1.12–1.28), respectively [39, 40].

Whole population data from Denmark [41] on COVID-19 hospital admissions, including 10 749 people with

Table 4
Summary of hospital and intensive care unit (ICU) admissions, including demographics and characteristics of stay

Demographics	n	Mean age	Median age	IQR
Any admission with COVID code	1672^a	71.43	75.07	62.13–83.64 (21.51)
Death certificate mention of COVID-19	546^b	76.68	79.04	71.15–85.66 (14.51)
Death within 28 days of test	504	76.73	78.95	71.26–85.65 (14.39)
ICU admission with COVID code	137	59.79	60.65	48.71–69.79 (21.08)
Death certificate mention of COVID-19	64	62.72	61.59	51.47–74.97 (23.51)
Death within 28 days of test	59	64.30	65.51	53.83–75.91 (22.07)
COVID positive, not admitted, all	595	65.30	70.72	48.83–84.71 (35.88)
Death from all causes	81	81.91	84.88	76.05–90.15 (14.10)
Death certificate mention of COVID-19	64	81.92	84.86	77.81–89.69 (11.89)
Death within 28 days of test	70^c	81.46	84.82	74.70–89.84 (15.14)
Mention of COVID-19 on death certificate, without admission or positive PCR	103	82.53	84.78	77.44–88.40 (11.96)

All hospital admissions^a (n = 1672)

Duration of admission (days)	Median	Mean	Range
8.0	13.8	0–269	

Number of admissions per individual 2.0 2.3 1–20

ICU admissions^b (n = 137)

Duration of admission (days)	Median	Mean	Range
Basic respiratory support days	2.0	3.6	0–30
Advanced respiratory support days	1.0	7.9	0–93
Duration of admission (days)	6.0	12.1	0–101
Number of ICU admissions per individual	1.0	1.2	1–3

^aOf whom 1279/1672 had a positive COVID-19 PCR test. ^bOf whom 502/546 had a positive COVID-19 PCR test. ^cOf whom 61/70 had mention of COVID-19 on their death certificate. Where an individual had more than one admission, totals are summed.
RAIRD, supports our findings of increased risk in connective tissue disease and vasculitis [age-sex adjusted HR 1.63 (0.78–3.43) and 2.03 (1.02–4.08), respectively]. The wide CIs reflect the small number of events, as well as their smaller population of 4.54 million. They do not report on COVID-19 infection rates, nor on mortality in RAIRD specifically.

Whole population data from South Korea [42], including 1896 people with RAIRD, also found an increased risk of COVID-19 infection and hospitalization [HR 1.33 (1.02–1.74) and 1.71 (1.06–2.71), respectively]. There was also a suggestion of increased COVID-19 mortality but the small number of events (seven deaths) gave wide CIs, which were not statistically significant [HR 1.87 (0.71–4.85)].
Infection rate

There was an increased age-standardized infection rate in the RAIRD cohort, despite the intent of shielding policy to reduce infection exposure. There are several potential reasons for this. They may be more susceptible to symptomatic COVID-19 infection due to their underlying disease and immunosuppression. During the first wave, where testing was predominantly in hospital, their increased contact with healthcare services may have led to increased testing and ascertainment bias. People with RAIRD may have a worse state of health than the general population, leading to increased hospital admissions, necessitating COVID-19 admission screening tests and the risk of nosocomial infection. Requirements for hospital attendances may also have increased the risk of acquiring infection.

Clinical and policy implications and future research

Our findings provide clear evidence that during the first wave of the pandemic people with RAIRD were both at higher risk of COVID-19 infection and of COVID-19-related death than people of the same age and sex in the general population. These findings have important implications for people living with RAIRD, their clinicians and for public health policy.

They confirm at whole population-level that the assumptions at the start of the pandemic, that many people with RAIRD would be clinically extremely vulnerable to the effect of COVID-19 [43], were correct. Many people with RAIRD require lifelong immunosuppression, conferring ongoing risk. Protecting the health of people with RAIRD needs specific public health prioritization, to reduce both their risk of acquiring COVID-19 infection and mortality.

Within the UK, certain people were classified as ‘clinically extremely vulnerable’ to COVID-19 infection and asked to ‘shield’ [20]. While a RAIRD diagnosis alone did not lead to inclusion on the Shielded Patient List (SPL), risk stratification guidance advised that many patients on immunosuppressive therapies, including moderate- to high-dose corticosteroids, and/or with relevant co-morbidities, should shield [44]. Given the nature of RAIRD, this included many people living with these conditions [45, 46]. Our findings suggest that despite this, COVID-19 infection and mortality rates were greater for people with RAIRD than for the general population. This is observational data, and the shielding status of this cohort is not yet known, so it is not possible to determine what the outcomes would have been without shielding policies in place. In addition, shielding policies were instituted on 23 March 2020 and some of our findings may reflect earlier transmission. Further research in this cohort during later waves of the pandemic, including assessment of the impact of shielding, is ongoing.

We did not find an excess of non-COVID-19-related deaths during this period. This may reflect efforts to prioritize access to urgent care. However, any detrimental effect of the pandemic may have a delayed impact on mortality.

Our results highlight the urgent need for analysis of the real-world effectiveness of vaccination among people with RAIRD, given the evidence that they may respond less well to vaccination [35, 47]. This will have crucial implications for their ongoing health protection needs, including deciding the optimal vaccination schedule to maximize protection.

Acknowledgements

We would like to thank Chetan Mukhtyar, Reem Al-Jayyousi, Bridget Griffiths, Richard Watts, Mithun Chakravorty, Cattleya Godsave, Julie Battista, Robin Glover, Matthew Bell and Kay Randall for their help confirming diagnoses in hospital medical notes.

We would also like to thank Charlotte Eversfield for the thorough quality assurance of the data included in this study.

This work uses data that has been provided by patients, the NHS and other healthcare organisations as part of patient care and support. The data is collated, maintained and quality assured by the National Congenital Anomaly and Rare Disease Registration Service, which is part of Public Health England (PHE).

F.A.P. is funded by an NIHR Advanced Fellowship.

This project is a HDR-UK Better Care theme project.

F.A.P. and P.C.L. are recipients of a grant from Vifor pharma. Vifor pharma had no influence on the design, conduct or interpretation of this study.

At the time of her contribution to this study, E.P. was employed by the University of Nottingham. She has gone on to work for Astra Zeneca, who had no influence on the design, conduct or interpretation of this study.

Funding: M.R. is funded by Vasculitis UK (patient charity) and the British Society for Rheumatology and would like to thank them for their help and support.

Disclosure statement: F.A.P. and P.C.L. are recipients of a grant from Vifor pharma. Vifor pharma had no influence on the design, conduct or interpretation of this study.

Data availability statement

Due to legal and ethical considerations, supporting data cannot be made openly available. However, NCARDRS data are available to all who have a legal basis to access them. Further details about the data and conditions for access are available by application to the National Disease Registration Service (https://www.gov.uk/guidance/the-national-congenital-anomaly-and-rare-disease-registration-service-ncardrs). Information on how to access this data can also be
obtained from the University of Nottingham data repository: DOI: 10.17639/nott.7131.

Supplementary data
Supplementary data are available at Rheumatology online.

References
1 Peach E, Rutter M, Lanyon P et al. Risk of death among people with rare autoimmune diseases compared with the general population in England during the 2020 COVID-19 pandemic. Rheumatology 202;60:1902–9.
2 Public Health England, London. National congenital anomaly and rare disease registration service. 2015. https://www.gov.uk/guidance/the-national-congenital-anomaly-and-rare-disease-registration-service-ncards (23 July 2021, date last accessed).
3 Royle JG, Lanyon PC, Grainge MJ, Abhishek A, Pearce FA. The incidence, prevalence, and survival of systemic sclerosis in the UK Clinical Practice Research Datalink. Clin Rheumatol 2018;37:2103–11.
4 Rees F, Doherty M, Grainge M et al. The incidence and prevalence of systemic lupus erythematosus in the UK, 1999–2012. Ann Rheum Dis 2016;75:136–41.
5 Watts RA, Mooney J, Scott DG, eds. The epidemiology of vasculitis in the UK. Rheumatology. Oxford: Oxford University Press, 2014.
6 NHS Digital, London. Personal demographics service. https://digital.nhs.uk/services/demographics/personal-demographics-service-fair-processing (23 July 2021, date last accessed).
7 Office for National Statistics, London. User guide to mortality statistics. 2020. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017#toc (23 July 2021, date last accessed).
8 World Health Organisation. COVID-19 coding in ICD-10. 2020. https://www.who.int/classifications/icd/COVID-19-coding-icd10.pdf (23 July 2021, date last accessed).
9 Office for National Statistics, London. Coronavirus (COVID-19) related deaths by ethnic group, England and Wales methodology. 2020. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/coronavscovid19relateddeathbyethnicgroupinglandandwalesmethodology (23 July 2021, date last accessed).
10 Public Health England, London. Technical summary: Public Health England data series on deaths in people with COVID-19. 2020. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/916035/RA_Technical_Summary_-_PHE_Data_Series_COVID_19_Deaths_20200812.pdf (23 July 2021, date last accessed).
11 Office for National Statistics, London. Deaths registered weekly in England and Wales, provisional. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/weeklyprovisional if igu resonde athsere gistere dineng landandwales (23 July 2021, date last accessed).
12 Office for National Statistics, London. Deaths registered weekly in England, up to week ending. 2020, provisional. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/adhoc/12724deathsregisteredweeklyenlanduptoweekending25december2020provisional (23 July 2021, date last accessed).
13 UK Government, London. Coronavirus dashboard. https://coronavirus.data.gov.uk/ (23 July 2021, date last accessed).
14 Wickham H, Averick M, Bryan J et al. Welcome to the tidyverse. J Open Sour Softw 2019;4:1686.
15 Firke S, janitor: Simple tools for examining and cleaning dirty data. R package version 2.1.0. 2021. https://CRAN.R-project.org/package=janitor.
16 Therneau TM. A Package for Survival Analysis in R. R package version 3.2–10. 2021. https://CRAN.R-project.org/package=survival.
17 Fernihough A. mfx: marginal effects, odds ratios and incidence rate ratios for GLMs. R package version 1.2–2. 2019. https://CRAN.R-project.org/package=mfx.
18 Kassambara A, Kosinski M, Biecek P, Fabian S. survminer: Drawing Survival Curves using ‘ggplot2’. R package version 0.4.9. 2021. https://CRAN.R-project.org/package=survminer.
19 Balduzzi S, Rücke G, Schwarz R. How to perform a meta-analysis with R: a practical tutorial. Evid Based Mental Health 2019;22:153–60.
20 UK Government, London. Guidance on protecting people who are clinically extremely vulnerable from COVID-19. 2020. https://www.gov.uk/government/publications/guidance-on-shielding-and-protecting-extremely-vulnerable-persons-from-covid-19 (23 July 2021, date last accessed).
21 Strangfeld A, Schäfer M, Gianfrancesco MA et al. Factors associated with COVID-19-related death in people with rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis 2021;80:930–42.
22 Office for National Statistics, London. Guidance for doctors completing Medical Certificates of Cause of Death in England and Wales. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/877302/guidance-for-doctors-completing-medical-certificates-of-cause-of-death-covid-19.pdf (23 July 2021, date last accessed).
23 Office for National Statistics, London. Impact of registration delays on mortality statistics in England and Wales. 2019. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/impactofregistrationdelaysonmortalitystatisticsinenglandandwales/2019 (23 July 2021, date last accessed).
24 Chief Coroner. Chief Coroner’s Guidance No. 37 COVID-19 deaths and possible exposure in the workplace: Chief Coroner. 2020. https://www.judiciary.uk/wp-content/uploads/2020/04/Chief-Coroners-Guidance-No-37-28.04.20.pdf (23 July 2021, date last accessed).
25 Rees F, Doherty M, Grainge MJ, Lanyon P, Zhang W. The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies. Rheumatology 2017;56:1945-61.

26 Chen HL, Shen LJ, Hsu PN et al. Cumulative burden of glucocorticoid-related adverse events in patients with systemic lupus erythematosus: findings from a 12-year longitudinal study. J Rheumatol 2018;45:83-9.

27 Dixon W, Suiissa S, Hudson M. The association between systemic glucocorticoid therapy and the risk of infection in patients with rheumatoid arthritis. Arthritis Res Ther 2011;13:R139.

28 Youssef J, Novosad SA, Winthrop KL. Infection risk and safety of corticosteroid use. Rheum Dis Clin North Am 2016;42:157.

29 Horby P, Mafham M, Linsell L, et al. Effect of hydroxychloroquine in hospitalized patients with COVID-19: preliminary results from a multi-centre, randomized, controlled trial. medRxiv 2020; 10.1101/2020.07.15.2015185.

30 van Paassen J, Vos JS, Hoekstra EM et al. Corticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomes. Crit Care 2020;24:696.

31 Gianfrancesco M, Hyrich KL, Al-Adely S et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis 2020;79:859-66.

32 Rutherford MA, Scott J, Karabayas M, Antonelou M et al. Risk factors for severe outcomes in patients with systemic vasculitis & COVID-19: a bi-national registry-based cohort study. Arthritis Rheumatol 2021;73:1713-9.

33 Abani O, Abbas A, Abbas F et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2021;397:1637–45.

34 Mehta P, Porter JC, Chambers RC, Isenberg DA, Reddy V. B-cell depletion with rituximab in the COVID-19 pandemic: where do we stand? Lancet Rheumatol 2020;2:e589–e90.

35 Kearns P, Siebert S, Gaskell C et al. Examining the immunological effects of COVID-19 vaccination in patients with conditions potentially leading to diminished immune response capacity—The OCTAVE Trial. 2021. Available at SSRN: https://ssrn.com/abstract=3910058 or http://dx.doi.org/10.2139/ssrn.3910058.

36 Avouac J, Drumez E, Hachulla E et al. COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases treated with rituximab: a cohort study. Lancet Rheumatol 2021;3:e419–e26.

37 FAI2R/SFR/SNF5I/SOFREMPI/CRI/IMIDIATE consortium and contributors. Severity of COVID-19 and survival in patients with rheumatic and inflammatory diseases: data from the French RMD COVID-19 cohort of 694 patients. Ann Rheum Dis 2020;80:527–38.

38 Marques CDL, Kakehasi AM, Pinheiro MM et al. High levels of immunosuppression are related to unfavourable outcomes in hospitalised patients with rheumatic diseases and COVID-19: first results of ReumaCoV Brasil registry. RMD Open 2021;7:e001461.

39 Williamson EJ, Walker AJ, Bhaskaran K et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020;584:430–6.

40 Clift AK, Coupland CAC, Keogh RH et al. Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study. BMJ 2020;371:m3731.

41 Cordtz R, Lindhardsen J, Soussi BG et al. Incidence and severeness of COVID-19 hospitalization in patients with inflammatory rheumatic disease: a nationwide cohort study from Denmark. Rheumatology 2021;60:SI59–SI67.

42 Shin YH, Shin Ji, Moon SY et al. Autoimmune inflammatory rheumatic diseases and COVID-19 outcomes in South Korea: a nationwide cohort study. Lancet Rheumatol 2021;3:e698–e706.

43 NHS Digital, London. COVID-19 – high risk shielded patient list identification methodology London. 2020. https://digital.nhs.uk/coronavirus/shielded-patient-list/methodology (23 July 2021, date last accessed).

44 Price E, MacPhie E, Kay L et al. Identifying rheumatic disease patients at high risk and requiring shielding during the COVID-19 pandemic. Clin Med 2020;20:256–61.

45 Rutter M, Lanyon PC, Sandhu R et al. Estimation of the burden of shielding among a cross section of patients attending rheumatology clinics with SLE – data from the BSR audit of systemic lupus erythematosus. Rheumatology 2020;60:1474–9.

46 RAIRDA. Chronic Crisis: The impact of COVID-19 on people with rare autoimmune rheumatic diseases. 2020. https://rairda.org/files.wordpress.com/2020/08/chronic-crisis-report-june-2020-1.pdf (23 July 2021, date last accessed).

47 Whitaker HJ, Tsang RS, Byford R et al. Pfizer-BioNTech and Oxford AstraZeneca COVID-19 vaccine effectiveness and immune response among individuals in clinical risk groups. 2021. https://khub.net/documents/135939561/430986542/RCCP+VE-riskgroups+paper.pdf/a6b54cd9-419d-9b63-e2bf-5dc796f5a91f, preprint: not peer reviewed.