FedSel: Federated SGD under Local Differential Privacy with Top-k Dimension Selection

Ruixuan Liu¹, Yang Cao², Masatoshi Yoshikawa², Hong Chen¹
¹Renmin University of China, ²Kyoto University
DASFAA, 2020
Federated Learning Overview

Sensitive information:
age, job, location, etc.
Federated Learning Overview

Sensitive information:
age, job, location, etc.
Federated Learning Overview

Sensitive information: age, job, location, etc.
Federated Learning Overview

Sensitive information: age, job, location, etc.
Federated Learning Overview

Sensitive information: age, job, location, etc.
Sensitive information:
age, job, location, etc.
Federated Learning Privacy Vulnerabilities

Sensitive information: age, job, location, etc.
Federated Learning Privacy Vulnerabilities

Sensitive information: age, job, location, etc.
Federated Learning Privacy Vulnerabilities

Sensitive information: age, job, location, etc.
Federated Learning Privacy Vulnerabilities

Possible privacy attacks...

- **Membership Inference**

 “Whether data of a target victim has been used to train a model?”

- **Reconstruction attack**

 Given a gender classifier, “What a male looks like?”

- **Unintended inference attack**

 Given a gender classifier, “What is the race of people in Bob’s photos?”
Differential Privacy for Federated Learning

Sensitive information: age, job, location, etc.
Differential Privacy for Federated Learning

Sensitive information: age, job, location, etc.

The server adds noises to aggregated updates.
Differential Privacy for Federated Learning

Sensitive information: age, job, location, etc.

Requires a trusted server 😞
Local Differential Privacy for Federated Learning

Sensitive information: age, job, location, etc.

No worry about untrusted server 😊
Local Differential Privacy for Federated Learning

Sensitive information: age, job, location, etc.

LDP is a natural privacy definition for FL
Local Differential Privacy for Federated Learning

$$w^t \leftarrow w^{t-1} + \frac{\alpha}{m} \sum$$

A randomized mechanism \mathcal{M} is ϵ-LDP iff. for any two possible inputs v, v' and output v^*:

$$\frac{Pr[\mathcal{M}(v) = v^*]}{Pr[\mathcal{M}(v') = v^*]} \leq e^\epsilon.$$
Challenges of LDP in Federated Learning

For a d-dimensional vector, the metric is:

- Given a local privacy budget ϵ for the vector,
- The error in the estimated mean of each dimension

If split local privacy budget to d dimensions$[1]$:

- The error is super-linear to d, and can be excessive when d is large

\[O\left(\frac{d\sqrt{\log d}}{\epsilon \sqrt{m}}\right) \]

[1] Wang N, Xiao X, Yang Y, et al. Collecting and analyzing multidimensional data with local differential privacy[C]//2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019: 638-649.
Challenges of LDP in Federated Learning

For a d-dimensional vector, the metric is:
• Given a local privacy budget ϵ for the vector,
• The error in the estimated mean of each dimension

If split local privacy budget to d dimensions[1]:
• The error is super-linear to d, and can be excessive when d is large

An asymptotically optimal conclusion[1]:
1. Random sample k dimensions
 • Increase the privacy budget for each dimension
 • Reduce the noise variance incurred
2. Perturb each sampled dimension with ϵ/k
3. Aggregate and scale up by the factor of $\frac{d}{k}$

[1] Wang N, Xiao X, Yang Y, et al. Collecting and analyzing multidimensional data with local differential privacy[C]//2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019: 638-649.
Challenges of LDP in Federated Learning

\[O\left(\frac{\sqrt{d \log d}}{\epsilon \sqrt{m}} \right) \]

Typical orders-of-magnitude

- d: 100-1,000,000s dimensions
- m: 100-1000s users per round

\(\epsilon \): smaller privacy budget = stronger privacy

The dimension curse!
Our Intuition

Common bottleneck of the dimension curse

- **Distributed learning**
 - Data are partitioned and distributed for accelerating the training process
 - Gradient vectors are transmitted among separate workers
 - Communication costs = \(d \times \) bits of representing one real value

- **Gradient sparsification**
 - Reduce communication costs by only transmitting important dimensions

- **Intuition**
 - Dimensions with larger absolute magnitudes are more important
 - \(\Rightarrow \) Efficient dimension reduction for LDP
Our Intuition

Common focus on selecting Top dimensions

- Communication resources vs. Utility / Learning performance
- Privacy budget vs. Utility / Learning performance
Our Intuition

Common focus on **selecting Top dimensions**
Two-stage Framework- FedSel

- **Top-k dimension selection is data-dependent**
 Local vector = Top-k information + value information

- **Two-stage framework**
 Private selection + Value Perturbation

- **Sequential Composition**
 - The Top-k selection is ϵ_1-LDP
 - The value perturbation is ϵ_2-LDP
 - \Rightarrow The mechanism is ϵ-LDP, $\epsilon = \epsilon_1 + \epsilon_2$
Two-stage Framework - FedSel

- **Top-k dimension selection is data-dependent**

 Local vector = Top-k information + value information

- **Two-stage framework**

 Private selection + Value Perturbation

- **Sequential Composition**

 • The Top-k selection is ϵ_1-LDP
 • The value perturbation is ϵ_2-LDP
 • \Rightarrow The mechanism is ϵ-LDP, $\epsilon = \epsilon_1 + \epsilon_2$
Methods-Exponential Mechanism (EXP)

1. Sorting and the ranking is denoted with \(\{z_1, \ldots, z_d\} \in \{1, \ldots, d\}^d \)
2. Sample unevenly with the probability \(\frac{\exp\left(\frac{\epsilon z_j}{d-1}\right)}{\sum_{i=1}^{d} \exp\left(\frac{\epsilon z_i}{d-1}\right)} \)
Methods - Exponential Mechanism (EXP)

1. Sorting and the ranking is denoted with \(\{z_1, ..., z_d\} \in \{1, ..., d\}^d \)
2. Sample unevenly with the probability
 \[
 \frac{\exp\left(\frac{\epsilon z_j}{d-1}\right)}{\sum_{i=1}^{d} \exp\left(\frac{\epsilon z_i}{d-1}\right)}
 \]
Methods-Perturbed Encoding Mechanism (PE)

1. Sorting and the ranking is denoted the Top-k status with \(\{z_1, \ldots, z_d\} \in \{0,1\}^d \)

2. For each dimension, to retain status \(z_j \) with a larger probability \(p \)
 to flip \(z_j \) has a smaller probability \(1 - p \)

3. Sample from dimension set \(S = \{j | z_j^* = 1\} \)

 \[p = \frac{e^{\epsilon_1}}{e^{\epsilon_1} + 1} \]

 \[\{z_1, \ldots, z_d\} = \{0, 1, 1, 0, 0, 0\} \]
1. Sorting and the ranking is denoted the Top-k status with \(\{z_1, ..., z_d\} \in \{0,1\}^d \)
2. For each dimension, to retain status \(z_j \) with a larger probability \(p \) to flip \(z_j \) has a smaller probability \(1 - p \)
3. Sample from dimension set \(S = \{j | z_j^* = 1\} \)

\[
p = \frac{e^{e_1}}{e^{e_1} + 1}
\]

\(\{z_1, \cdots, z_d\} = \{0, 1, 1, 0, 0, 0\} \)
\(\{\hat{z}_1, \cdots, \hat{z}_d\} = \{0, 0, 1, 0, 1, 0\} \)
Methods - Perturbed Encoding Mechanism (PE)

1. Sorting and the ranking is denoted the Top-k status with \(\{z_1, \ldots, z_d\} \in \{0,1\}^d \)
2. For each dimension, to retain status \(z_j \) with a larger probability \(p \)
 to flip \(z_j \) has a smaller probability \(1 - p \)
3. Sample from dimension set \(S = \{j | z_j^* = 1\} \)

\[
p = \frac{e^{\epsilon_1}}{e^{\epsilon_1} + 1}
\]

\[
\{z_1, \ldots, z_d\} = \{0, 1, 1, 0, 0, 0\} \\
\{\dot{z}_1, \ldots, \dot{z}_d\} = \{0, 0, 1, 0, 1, 0\} \\
S = \{3, 5\}
\]
1. Sorting and the ranking is denoted the Top-k status with \(\{z_1, \ldots, z_d\} \in \{0,1\}^d \)
2. Sample a dimension from:
 - Top-k dimension set, with a larger probability \(p \)
 - Non-top dimension set, with a smaller probability \(1 - p \)

\[
p = \frac{d^e \cdot k}{d - k + e^p \cdot k}
\]

\(\{z_1, \ldots, z_d\} = \{0, 1, 1, 0, 0, 0\} \)

Top-k set \(\{2, 3\} \)
Non-top set \(\{1, 4, 5, 6\} \)
Empirical results

- Even a small budget in dimension selection helps to increase the learning accuracy.
- Private Top-k selection helps to improve the learning utility independent of the mechanism for perturbing one dimension.
Empirical results

dataset	model	EXP-gain	EXP-loss	PE-gain	PE-loss	PS-gain	PS-loss
syn-L-0.01-0.9	logistic	8.6074	0.3517	5.410	1.192	5.975	0.4970
syn-L-0.01-0.9	SVM	7.1950	2.1593	3.7704	0.8533	5.065	2.0816
BANK	logistic	2.4197	-0.157	3.2338	0.0464	2.5525	0.1463
BANK	SVM	4.3823	0.4436	3.4369	0.2530	4.0244	0.0164
KDD	logistic	2.0471	0.5091	2.5148	0.2322	2.0171	0.3428
KDD	SVM	1.85629	-0.1625	2.2168	0.2288	1.8291	0.4465
ADULT	logistic	5.5745	0.2935	5.6445	1.3096	6.0535	0.8091
ADULT	SVM	5.5361	0.1949	5.6057	0.9550	5.1442	0.3852

\[
\text{gain} = \text{acc} (\text{EXP/PE/PS-PM-C}) - \text{acc} (\text{PM}),
\]
\[
\text{loss} = \text{acc} (\text{EXP/PE/PS-PM-C}) - \text{acc} (\text{EXP/PE/PS-PM}).
\]

What we gain is much larger than what we lose from private and efficient Top-k selection.
Summary

Conclusion
• We propose a two-stage framework for locally differential private federated SGD
• We propose 3 private selection mechanisms for efficient dimension reduction under LDP

Takeaway
• Private mechanism can be specialized for sparse vector
• Private Top-k dimension selection can improve learning utility under a given privacy level

Future work
• Optimal hyper-parameter tuning
Thanks