New cubic b-spline origination and procedure of Newton TAGE technique for reason of two-point BVP

Prem Singh

DOI: https://doi.org/10.22271/maths.2022.v7.i2a.792

Abstract
In this paper, we present a competent high-demand mathematical technique based on cubic spline gauge and Newton TAGE methodology for the defensive schemes of two-point non-straight limit respect difficulties on a non-uniform lattice, whose convincing limits are in important construction. When the internal organization incentives for plan length are peculiar, the proposed technique is critical. Essential differential conditions with singularities are also relevant to the suggested cubic spline approach. The methodology's utility is demonstrated by computational findings.

Keywords: BVP, TAGE method

1. Introduction
Despite the fact that splines can be of any degree, cubic splines have the most norms by a long shot. A cubic spline is one that is formed up of piecewise third-engineer polynomials and has a lot of control points. At the endpoints of every polynomial, the second subordinate is usually set to zero, as this provides a breaking point condition that completes the game plan of conditions. This results in a “natural” cubic spline with an acceptable tri-corner to corner structure that can be properly dealt with to obtain the polynomial coefficients. However, this option isn't the only one available and other breaking point criteria could be used as well. Rajashekhar et al. (2017) [5] studied the Efficient Numerical Solution for Seventh Order Differential Equation by Using Septic B-Spline Collocation Method with Non-Uniform Length. Busrya et al. (2021) [4] delivered a brand new cubic B-spline (CBS) approximation approach to resolve linear two-factor boundary cost problems (BVPs). This approach is primarily based totally on cubic B-spline foundation capabilities with a brand new approximation for the second-order derivative. The numerical outcomes had been as compared with the least squares approach, finite distinction approach, finite detail approach, finite extent approach, B-spline interpolation approach, prolonged cubic B-spline interpolation approach and the precise solution. Khalid et al. (2019) [2] suggested a computational model based on the cubic B-spline method for solving linear 6th order BVPs that arise in astronomy. The boundary problem is transformed into a system of linear equations using the approach specified. The technique we will build in this work is not only an approximation solution of the 6th order BVPs using cubic B-spline, but it also explains the estimated derivatives of the analytic solution from 1st order to 6th order. This unique technique is second order convergent and has a lower computational cost than many existing strategies. The findings are shown in error tables and graphs, and they are compared to previous research findings. Nazir et al. (2019) [2] Using the seventh-degree B-Spline function, we provide a numerical method for addressing the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem. The formulation is based on specific terms of the seventh-order boundary value problem's order. The Collocation B-spline approach is formulated as an approximation solution, and we gain Septic B-Spline formulation. We use the proposed method to solve a seventh-order boundary value problem, and the results indicate that approximate and exact solutions agree.
The numerical method given is helpful for solving high order boundary value issues since it produces low absolute errors. A broad conclusion has been included at the end. Manan et al. (2018) [8] An algorithm to solve 3rd order boundary value problem is focused in this paper which is 8-point approximating scheme. It includes the results with stability and convergence that is evaluated with the illustration of numerical example. This paper also contains the analysis of approximation properties for the mentioned collocation algorithm. Heilat and Hailat (2020) [1] prolonged cubic B-spline approach for fixing a gadget of nonlinear second-order boundary price problems. A quasi linearization method is used and the mistake estimate is acquired. The accuracy of the approach relies upon on loose parameters. We practice the approach on 4 examples and the outcomes which acquired the use of prolonged cubic B-spline suggest that the approach is green and accurate. Siraj-ul-Islam et al. (2006) [7] studied the Quadratic Non-Polynomial Spline Approach to the Solution of a System of Second-Order Boundary-Value Problems. Tahir et al. (2019) [3] proposed a new quantic B-spline approximation technique for solving the Boussinesq problem numerically. Two test examples are used to confirm the new scheme's performance and accuracy. The computational results are shown to be superior to current numerical techniques on the subject. Mustafa et al. (2017) [6] the solution of non-linear fourth order boundary value problems involving ordinary differential equations, this work provides an iterative collocation numerical technique based on interpolating subdivision schemes. The technique converges to a smooth approximate solution of the non-linear fourth order boundary value problem, according to numerical evidence. The approach's convergence is also examined. The main goal of this paper is to look into and find applications for subdivision systems in physics and engineering. Pervaiz et al. (2014) [10] developed a numerical technique for solving sixth order boundary value problems (BVPs). The sixth order BVPs were first reduced to a system of second order BVPs. The system of second order BVPs was then reduced to a system of linear algebraic equations with boundary conditions using non-polynomial cubic spline and finite difference approximations. The strategy was tested on three test issues with step sizes of h = 1/5 and h = 1/10 to see if it was useful. Tables and graphs have been used to demonstrate the method's accuracy in achieving the exact solution. Shahid S. Siddiq et al (2007) [11]. The numerical solution of the sixth-order linear, special case boundary value problem is done using the septic spline. The definition of a septic spline is given with end conditions that are consistent with the sixth-order boundary value problem. The solution and their higher-order derivatives are approximated using the algorithm proposed. It has also been demonstrated that the approach is second-order convergent. For numerical illustrations of the developed approach, three instances are studied. The approach described in this study is compared to that produced in [M. El-Gamel, J.R. Cannon, J. Latour, A.I. Zayed, Sinc-Galerkin method for solving linear sixth order boundary-value problems, Mathematics of Computation 73, 247 (2003) 1325–1343], and it is found to be superior.

2. Cube Spline Formulation

We discretize arrangement locale [0, 1] with non-uniform work so such an extent that 0 = x_0 < x_1 < x_{N+1} = 1. Our method includes three matrix focuses x_{k-1}, x_k, x_{k+1} and x_{k-2} wherex_k - x_{k-1} = h_k and x_{k+1} - x_k = h_{k+1}. Matrix focuses are given by x_i = x_0 + \sum_{k=1}^{i} h_k, i = 1(1)N + 1and the work extent is \sigma_k = (h_{k+1}/h_k) > 0. Right when \sigma_k = 1, at that point it decreases to constant mesh case. Let the right estimations of u(x) at matrix point x_k be implied by U_k = u(x_k)and u_k be the rough estimations of U_k. At the matrix point x_k, let us show

\begin{align*}
P_k &= \sigma_k^2 + \sigma_k - 1 \\
Q_k &= (\sigma_k + 1)(\sigma_k^2 + 3\sigma_k - 1) \\
R_k &= \sigma_k(1 + \sigma_k - \sigma_k^2) \\
S_k &= \sigma_k(\sigma_k + 1)
\end{align*}

All through our trade, we consider that our answer contains odd number of inside grid points, for instance N as odd. We initially build up a numerical method for evaluating integral\(\int_0^x G(x)\,dx\).

For this we consider

\begin{align*}
\int_{x_{k-1}}^{x_{k+1}} G(x)\,dx &= b_{-1}G_{k-1} + b_0G_k + b_1G_{k+1}
\int_0^x G(x)\,dx
\end{align*}

Where b_{-1}, b_0, b_1 are boundaries to be chose and at point x_k, we show G_k = G(x_k) Further, we may compose utilizing Taylor’s expansion

\begin{align*}
G_{k-1} &= G_k - h_kG_k' + \frac{h_k^2}{2} G_k'' - \frac{h_k^3}{6} G_k''' + \cdots \\
G_{k+1} &= G_k + h_kG_k' + \frac{h_k^2}{2} G_k'' + \frac{h_k^3}{6} G_k''' + \cdots \\
\int_{x_{k-1}}^{x_{k+1}} G(x)\,dx &= \int_{x_{k-1}}^{x_{k+1}} G(x_k + x - x_k)\,dx
\end{align*}

\begin{align*}
= (1 + \sigma_k)h_kG_k + (\sigma_k^2 - 1) \frac{h_k^2}{2} G_k' + (1 + \sigma_k^2) \frac{h_k^3}{6} G_k'' + (\sigma_k^4 - 1) \frac{h_k^4}{2} G_k''' + \cdots
\end{align*}

Likewise right hand side of (1), utilizing (2), (3) as
Using (4)-(5), comparing both sides of (1), we get

\[b_0 + b_1 + b_{-1} = (1 + \sigma_k)h_k \]

(6)

\[(b_1 \sigma_k - b_{-1})h_k = (\sigma_k^2 - 1) \frac{h_k^2}{2} \]

It implies \[b_1 \sigma_k - b_{-1} = (\sigma_k^2 - 1) \frac{h_k}{2} \]

(7)

\[b_1 \sigma_k^2 - b_{-1} = (\sigma_k^3 - 1) \frac{h_k}{3} \]

(8)

Solving (6)-(8), we get

\[b_0 = \frac{(1 + \sigma_k)^3}{6\sigma_k^3} - h_k^3, b_1 = \frac{(1 + \sigma_k)(2\sigma_k - 1)}{6\sigma_k^3} - h_k^3, b_{-1} = \frac{(1 + \sigma_k)(2 - \sigma_k)}{6} - h_k^3 \]

Accordingly one might be compose third request integral formula (2) in variable mesh frame as

\[\int_{x_{k-1}}^{x_k} G(x)dx = \frac{(1 + \sigma_k)h_k}{6\sigma_k^3} \left[(2 - \sigma_k)G_k + (1 + \sigma_k)^2G_k + (2\sigma_k - 1)G_{k+1}\right], k = 1(1)/N \]

(9)

Note that coefficients related with right hand side of (9) are sure, assuming likewise, for example, \[2 - \sigma_k > 0 \& 2\sigma_k - 1 > 0 \ i.e \ 1/2 < \sigma_k < 2 \]

Regardless, for constant work case, integral formulas (9) diminish to Simpson’s 1/3rd Rule. By then the estimation of integral

\[\int_a^b G(x)dx = \int_{x_0}^{x_2} G(x)dx + \int_{x_2}^{x_4} G(x)dx + \ldots + \int_{x_{N-1}}^{x_N} G(x)dx \]

(10)

Can be found by the reiterated use of formula (2), when N is odd. Directly we analyzed the variable work cubic spline strategy for differential con. (3). Cubic spline interjecting polynomial of degree three then \[[x_{k-1}, x_k] \]

can be made as

\[S(x) = \frac{(x_k - x)^3}{6h_k^3} M_{k-1} + \frac{(-x_{k+1} - x)^3}{6h_k^3} M_k + \frac{6}{6} \left(u_{k-1} - \frac{h_k^2}{6} M_{k-1} \right) \frac{(x_k - x)}{h_k} + \left(u_k - \frac{h_k^2}{6} M_k \right) \frac{(-x_{k+1} - x)}{h_k}, x_{k-1} \leq x \leq x_k, k = 1(1)N + 1 \]

(11)

Which satisfies the accompanying with conditions in each subinterval\[[x_{k-1}, x_k], k = 1(1)N + 1, S(x), \] coincides with a polynomial of degree three,

\[S(x) \in C^3[0,1] \text{ and } S(x_k) = u_k, k = 0(1)N + 1 \]

Where \[M_k = u'(x_k) = \psi(x_k, u(x_k), u'(x_k)) \equiv say \]
And \[m_k = u'(x_k), k = 0N + 1 \]

Now,

\[u(x) \equiv S(x) = \frac{(x_{k+1} - x)^3}{6h_{k+1}^3} M_k + \frac{(-x_k + x)^3}{6h_k^3} M_{k+1} + \left(u_k - \frac{h_k^2}{6} M_k \right) \frac{(x_{k+1} - x)}{h_{k+1}}, x_{k-1} \leq x \leq x_{k+1}, k = 1(1)N + 1 \]

\[\hat{S}(x) = - \frac{(x_{k+1} - x)^2}{2h_{k+1}} M_k + \frac{(-x_k + x)^2}{2h_k} M_{k+1} - \frac{u_{k+1} - u_k}{h_{k+1}} + \frac{h_{k+1}}{6} \left[M_{k+1} - M_k \right], x \in [x_k, x_{k+1}] \]

From continuity con. \[\hat{S}(x_{k-1}) = \hat{S}(x_{k+1}) \]

i.e \[\lim_{\epsilon \to 0} S'(x_k - \epsilon) = \lim_{\epsilon \to 0} S'(x_k + \epsilon) \] one obtain

\[\frac{h_k}{3} M_{k-1} + \frac{h_{k+1} + h_k}{3} M_k + \frac{h_{k+1}}{3} M_{k+1} \]

\[\frac{u_{k+1} - u_k}{h_{k+1}} = \frac{u_{k+1} - u_k}{h_k}, k = 1(1)N \]

Where \[M_k = u_k x_k, M_{k+1} = u_k x_{k+1} M_{k-1} = u_k x_{k-1}, \]
Here one have equations in questions \[N + 2 \] unknowns \[M_0, M_1, M_2, \ldots M_N, M_{N+1} \]

If \[M_0 = u_k x_0 \text{ and } M_{N+1} = u_k x_{N+1} \] are use then one can calculate \[M_1, M_2, \ldots M_N. \]
\[\begin{align*}
\bar{M}_k &= \psi(x_k, U_k, \bar{m}_k), \\
\bar{M}_{k+1} &= \psi(x_{k+1}, U_{k+1}, \bar{m}_{k+1}) \\
\bar{M}_{k-1} &= \psi(x_{k-1}, U_{k-1}, \bar{m}_{k-1}) \\
S(x_{k+1}) &= U_{k+1}
\end{align*} \]

And

\[\begin{align*}
S'(x_{k+1}) &\equiv m_{k+1} = \frac{U_{k+1} - U_k}{h_{k+1}} + \frac{h_{k+1}}{6} [M_K + 2M_{K+1}] \\
S'(x_{k-1}) &\equiv m_{k-1} = \frac{U_k - U_{k-1}}{h_k} + \frac{h_k}{6} [M_{K-1} + M_K]
\end{align*} \]

Define \(G = \frac{\partial \psi}{\partial u}, G' = \frac{dG}{dx} \) etc.

We require accompanying approximations

\[\begin{align*}
M_k &\approx \bar{M}_k = \psi(x_k, U_k, \bar{m}_k) = \psi_k + \frac{1}{6} \sigma_k h_k^2 U_k' G_k + O(h_k^3) \\
M_{k+1} &\approx \bar{M}_{k+1} = \psi(x_{k+1}, U_{k+1}, \bar{m}_{k+1}) = \psi_{k+1} - \frac{1}{6} \sigma_k (\sigma_k + 1) h_k^2 U_k' G_k + O(h_k^3) \\
M_{k-1} &\approx \bar{M}_{k-1} = \psi(x_{k-1}, U_{k-1}, \bar{m}_{k-1}) = \psi_{k-1} - \frac{1}{6} \sigma_k (\sigma_k + 1) h_k^2 U_k' G_k + O(h_k^3)
\end{align*} \]

One need \(O(h_k^3) \) approximation for \(U_k \) and \(U_{k+1} \) and \(U_{k-1} \), where “\(a_k \)” is a parameter to be considered.

\[m_k + \frac{1}{6} \sigma_k + a_k (\sigma_k + 1) h_k^2 U_k' + O(h_k^3) \]

The approximation (15) to be of, coefficient of must be zero;

\[a_k = -\frac{\sigma_k}{6(1 + \sigma_k)} \]

Hence one obtain

\[\bar{U}_k' = \bar{m}_k' - \frac{\sigma_k}{6(1 + \sigma_k)} h_k [\bar{M}_{k+1} - \bar{M}_{k-1}] = m_k + O(h_k^3) \] (16)

Similarly,

\[\begin{align*}
\bar{U}_{k+1} &= \frac{U_{k+1} - U_k}{\sigma_k h_k} + \frac{\sigma_k h_k}{6} [\bar{M}_k + 2\bar{M}_{k+1}] = m_{k+1} + O(h_k^3) \\
\bar{U}_{k-1} &= \frac{U_k - U_{k-1}}{h_k} - \frac{h_k}{6} [\bar{M}_k + 2\bar{M}_{k-1}] = m_{k-1} + O(h_k^3)
\end{align*} \] (17) (18)

Finally, by assistance of (16) - (18), one can assess

\[\begin{align*}
\bar{\psi}_{k+1} &= \psi(x_{k+1}, U_{k+1}, \bar{U}_k') = \psi_{k+1} + O(h_k^3) \\
\bar{\psi}_{k-1} &= \psi(x_{k-1}, U_{k-1}, \bar{U}_k') = \psi_{k-1} + O(h_k^3) \\
\bar{\psi}_k &= \psi(x_k, U_k, \bar{U}_k') = \psi_k + O(h_k^3)
\end{align*} \]

By then the cubic spline approximation of precision of \(O(h_k^3) \) for given integral differential conditions (1) may be created as

\[U_k + (1 + \sigma_k) U_k + \sigma_k U_{k-1} = \frac{h_k^2}{12} [P_k \bar{Q}_{k+1} + Q_k \bar{P}_k + R_k \bar{P}_{k-1}] + \bar{T}_k, \quad k = 1(1)N \]

Where \(\bar{T}_k = O(h_k^3) \)
For convergence of the distinction method, coefficients on right hand side of conditions (19) must be sure, i.e., one has the condition \(\frac{\sqrt{5} - 1}{2} < \sigma_k < \frac{\sqrt{5} + 1}{2} \) forced on our choice of mesh proportion parameter.

Note that the limit esteems are given by \(u_0 = U_0 = a_0 \) & \(u_{N+1} = U_{N+1} = a_1 \). Joining the limit esteems in numerical approximation (19), we can procure a tri-diagonal framework of equations. If the differential equation is linear, one can comprehend the framework by AGE iterative strategy and for nonlinear case, one can compared the framework by Newton-AGE iterative method.

3. Application of Newton TAGE Method

Next we talk about the utilization of Newton-TAGE iterative strategy for nonlinear difference conditions (19). Dismissing the mistake term, one may re-compose nonlinear difference equation (19) as

\[
\phi_k(u_{k-1}, u_k, u_{k+1}) = -U_{k+1} + (1 + \sigma_k)u_k - \sigma_k u_{k-1} = \frac{h^2}{12} [P_k \phi_{k+1} + Q_k \phi_k + R_k \phi_{k-1}], k = 1(1)N, \sigma_k \neq 1
\]

(20)

Let us denote,

\[
\emptyset(u) = \begin{bmatrix}
\phi_1(u) \\
\phi_2(u) \\
\vdots \\
\phi_N(u)
\end{bmatrix}
\]

\(N \times 1 \)

And,

\[
a_k(u) = \frac{\partial \phi_k}{\partial u_{k-1}} \quad k = 2(1)N,
\]

\[
a_{2k}(u) = \frac{\partial \phi_k}{\partial u_k} \quad k = 1(1)N
\]

\[
c_k(u) = \frac{\partial \phi_k}{\partial u_{k+1}} \quad k = 1(1)N - 1
\]

The Jacobian of \(\emptyset(u) \) may be spoken as

\[
(T_1 + T_2) \frac{\partial \emptyset(u)}{\partial u} = \begin{bmatrix}
2b_1(u) & c_1(u) & 0 \\
2b_2(u) & c_2(u) & 0 \\
0 & a_{N-1}(u) & 2b_{N-1}(u) \\
0 & a_N(u) & 2b_N(u)
\end{bmatrix}
\]

\(W \times N \)

Newton method is given by

\[
(T_1 + T_2) \Delta u^{(s)} = \Delta \left(u^{(s)} \right), s = 0,1,2 \ldots
\]

(21)

Where \(T_1 \) & \(T_2 \) are of indistinct casing from \(A_1, A_2, \) & \(u^{(0)} \) is hidden estimation for \(u \) & \(\Delta u^{(s)} \) is any halfway vector. We characterize

\[
u^{(s+1)} = u^{(s)} + \Delta u^{(s)}, s = 0,1,2 \ldots
\]

(22)

By then a two-advance explicit Newton-TAGE strategy may be formed as

\[
(T_1 + \rho_1 I) \Delta v = -\emptyset(u^{(s)}) - \left(T_2 + \rho_1 I \right) \Delta v^{(s)}, s \geq 0
\]

(23)

\[
(T_2 + \rho_2 I) \Delta v^{(s+1)} = -\emptyset(u^{(s)}) - \left(T_1 + \rho_2 I \right) \Delta v^{(s)}, s \geq 0
\]

(24)

Where \(\Delta v \) is any moderate vector. Since the matrices \((T_1 + \rho_1 I) \) & \((T_2 + \rho_2 I) \) comprise of \(2 \times 2 \) sub-matrices, hereafter they are successfully invertible and from (23) & (24), we get

\[
\Delta v = (T_1 + \rho_1 I)^{-1}[-\emptyset(u^{(s)}) - -(T_2 + \rho_1 I) \Delta v^{(s)}], s \geq 0
\]

(25)

\[
\Delta v^{(s+1)} = (T_2 + \rho_2 I)^{-1}[-\emptyset(u^{(s)}) - -(T_1 + \rho_2 I) \Delta v^{(s)}], s \geq 0
\]

(26)
Finally, by the assistance of (25)–(26), from (23) one can secure numerical solution at \((s + 1)\) th iteration. For intermingling, it is required that one pick \(u^{(0)}\) “close” to solution \(u\).

4. Results and Conclusions

In this section, we dealt with the following with two benchmark issues on both uniform and non-uniform work whose correct arrangement is known to us, and we differentiated the outcomes and the corresponding successive over relaxation and Newton-SOR approach. For uniform work, one take \(\sigma_k = \sigma = 1\) for non-uniform mesh, one take \(\sigma_k = \sigma = a\) constant \(1,k = 1(1)N + 1\). By then estimation of first mesh isolating on left is given by

\[h_1 = \frac{(1-\sigma)}{(1-\sigma h_1)}, \sigma \neq 1 \]

(27)

Thusly, for non-uniform mesh, given the assessment of \(N\), we can figure initial step length \(h_1\) from above associated and rest of the work is likewise controlled by \(h_{k+1} = \sigma h_k, k = 1(1)N\). Such a constringent isn’t relevant to uniform work case. By taking \(\sigma_k = \sigma = 1\), one can apply the strategies clearly to uniform mesh. All calculations were finished utilizing MATLAB. In all cases, one has considered \(u^{(0)} = 0\) and the iterations were stopped when the preeminent blunder \(|u^{(s+1)} - u^{(s)}| \leq 10^{-10}\) resistance was refined. Relationships of plots of right and mathematical answers for picked boundaries for all of the issues analyzed in points of reference are given

Example 4.1: (Linear Singular Problem).

\[u'' + \frac{a}{x} u' = 12x^2 + 4 \left[ax^2 + 4x^6 - \frac{a}{x^2} \right] e^{x^4} + 48 \int_0^1 \left[x^3 x^6 e^{x^4} \right] ds, \]

\[0 < x < 1, 0 < s < 1 \]

(28)

The limit esteems are given by \((0) = 1, u(1) = e\). The right arrangement of problem is given by \((x) = e^{x^4}\). The root mean square (RMS) mistakes, optimal estimations \((\rho_{opt}, \rho_{1opt}, \rho_{2opt})\) of relaxation parameters and number of iterations both for TAGE & SOR methods for non-uniform & uniform mesh case are ordered in Table 1 for \((a, \sigma)\).

Example 4.2: (Nonlinear Singular Problem)

\[u'' + \frac{a}{x} u' - \frac{a}{x^2} u = uu' + (2 + a + x^2) \cosh x - x^3 (x \sinh a + 2 \cosh x) \cosh x + (4 + a) \int_0^1 x^2 \cosh (xs) \ ds, 0 < x < 1, 0 < s < 1. \]

(29)

The boundary estimations are given by \(u(0) = 0, u(1) = \cosh(1)\).

The solution of problem is given by \((x) = x^2 \cosh x\). The RMS errors, optimal values \((\rho_{opt}, \rho_{1opt}, \rho_{2opt})\) of relaxation parameters & number of iterations both for Newton- TAGE & Newton-SOR methods for non-uniform and uniform mesh case are tabulated in Table 2(A) for \((a, \sigma) = (0, 0.8)\).

Example-1: The RMS Errors (Non uniform mesh case)

| \(\rho_{opt}\) & \(\rho_{1opt}\) & \(\rho_{2opt}\) & \(\rho_{opt}\) & \(\rho_{1opt}\) & \(\rho_{2opt}\) & \(\rho_{opt}\) & \(\rho_{1opt}\) & \(\rho_{2opt}\) |
|---|---|---|---|---|---|---|---|---|
| iter & cputime & iter & cputime & iter & cputime & iter & cputime & iter & cputime |
11	1.406	39	0.004082 s	0.566	0.569	29	0.003195 s	0.1503(0-03)
21	1.666	65	0.006457 s	0.336	0.340	48	0.004028 s	0.3964(0-04)
31	1.740	81	0.008218 s	0.261	0.264	61	0.006792 s	0.2694(0-04)
41	1.766	91	0.011755 s	0.201	0.206	71	0.008318 s	0.2175(0-04)
51	1.787	110	0.014496 s	0.170	0.174	78	0.009766 s	0.1895(0-04)
61	1.794	128	0.019992 s	0.164	0.168	86	0.010686 s	0.1715(0-04)
71	1.805	132	0.022071 s	0.154	0.158	88	0.011101 s	0.1583(0-04)
81	1.828	149	0.032575 s	0.134	0.139	92	0.014352 s	0.1479(0-04)
Example-2: The RMS Errors (uniform mesh case)

Table 2: Uniform mesh case
SOR
ρ_{opt}
11
15
21
25
31
41
51
63
71
81

5. Conclusion
Another three-point variable work approach based on cubic spline surmise for the game plan of second request nonlinear two-point limit respect issue with absolutely healthy driving cutoff points has been demonstrated. All things considered, the recommended system for $\sigma_K=1$ is monitored to see whether it reduces to an anticipated work approach for precision of request four. When the number of internal framework explanations behind the course of action space is unusual, the recommended technique is applicable. Both immediate and nonlinear difficulties with lone coefficients, as well as driving cutoff points in critical packaging are well-suited to the approach. The application of TAGE and Newton-TAGE techniques demonstrates the power of differentiating SOR and Newton-SOR procedures in terms of cycle count. The offered solutions could be applied to multi-dimensional situations.

6. References
1. Ahmed Salem Heilat, Reyadh Sallem Hailat. Extended cubic B-spline method for solving a system of nonlinear second-order boundary value problems. J Math. Comput. Sci. 2020;21:231.
2. Khalid A, Naeem MN, Agarwal P et al. Numerical approximation for the solution of linear sixth order boundary value problems by cubic B-spline. Adv Differ Equ. 2019, 492. https://doi.org/10.1186/s13662-019-2385-9.
3. Tahir Nazir, Muhammad Abbas, Muhammad Kashif Iqbal. A new quintic B-spline approximation for numerical treatment of Boussinesq equation. J Math. Comput. Sci. 2019;20:30-42.
4. Basyra Latif, Samsul Ariffin Abdul Karim, Ishak Hashim. New Cubic B-Spline Approximation for Solving Linear Two-Point Boundary-Value Problems. Mathematics, 2021, 1-13.
5. Rajashekar Reddy Y. Efficient Numerical Solution for Seventh Order Differential Equation by Using Septic B-Spline Collocation Method with Non-Uniform Length. Global Journal of Pure and Applied Mathematics. 2017;13:3543-3548.
6. Nazir T, Abbas M, Iqbal MK. A New Quintic B-Spline Approximation for Numerical Treatment of Business q Equation. Journal of Mathematics and Computer Science. 2019;20:30-42. https://doi.org/10.22436/jmcs.020.01.04
7. Siraj-ul-Islam MA, Noor Tirmizi IA, Khan MA. “Quadratic Non-Polynomial Spline Approach to the Solution of a System of Second-Order Boundary-Value Problems,” Applied Mathematics and Computation. 2006 August;179(1):153-160. Doi:10.1016/j.amc.2005.11.091.
8. Manan SA, Ghaffar A, Rizwan M, Rahman G, Kanwal G. A subdivision approach to the approximate solution of 3rd order boundary value problem. Commun. Math. Appl. 2018;9(4):499–512.
9. Mustafa G, Abbas M, Ejaz ST, Ismail AIM, Khan F. A numerical approach based on subdivision schemes for solving non-linear fourth order boundary value problems. J. Comput. Anal. Appl. 2017;23(4):607-623.
10. Pervaiz A, Ahmad A, Zafar Z, Ahmad M. Numerical solution of sixth order BVPs by applying non-polynomial spline method. Pak. J Sci. 2014;66(2):110-116.
11. Siddiqi SS, Akram G. Septic spline solutions of sixth-order boundary value problems. J Comput. Appl. Math. 2008;215(1):288-301.