Search for the CP-violating strong decays $\eta \to \pi^+\pi^-$ and $\eta'(958) \to \pi^+\pi^-$

The LHCb Collaboration

A R T I C L E I N F O

Article history:
Received 13 October 2016
Received in revised form 11 November 2016
Accepted 17 November 2016
Available online 23 November 2016

A B S T R A C T

A search for the CP-violating strong decays $\eta \to \pi^+\pi^-$ and $\eta'(958) \to \pi^+\pi^-$ has been performed using approximately 2.5×10^8 events of each of the decays $D^+ \to \pi^+\pi^+\pi^-$ and $D_s^+ \to \pi^+\pi^+\pi^-$, recorded by the LHCb experiment. The data set corresponds to an integrated luminosity of 3.0 fb$^{-1}$ of pp collision data recorded during LHC Run 1 and 0.3 fb$^{-1}$ recorded in Run 2. No evidence is seen for $D^+_{(s)} \to \pi^+\eta'$ with $\eta'(958)$ violating CP, and upper limits at 90% confidence level are set on the branching fractions, $B(\eta \to \pi^+\pi^-) < 1.6 \times 10^{-5}$ and $B(\eta' \to \pi^+\pi^-) < 1.8 \times 10^{-5}$. The limit for the η decay is comparable with the existing one, while that for the η' is a factor of three smaller than the previous limit.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The strength of CP violation in weak interactions in the quark sector is well below what would be required to serve as an explanation for the observed imbalance between the amounts of matter and antimatter in the universe. The QCD Lagrangian could contain a term, the θ term [1], that would give rise to CP violation in strong interactions; however, no strong CP violation has been observed. The experimental upper limit on the neutron electric dipole moment (nEDM) implies a limit $\theta \lesssim 10^{-10}$ [2]. The close relationship of the term to zero is seen as a fine-tuning problem, the so-called “strong CP problem”. Solutions to the strong CP problem may involve axions [3], extra space–time dimensions [4], massless up quarks [5], string theory [6] or quantum gravity [7].

The decay modes $\eta \to \pi^+\pi^- \eta'(958) \to \pi^+\pi^-$ would both violate CP symmetry. In the Standard Model (SM) these decays could happen via the CP-violating weak interaction, through mediation by a virtual K^0_S meson, with expected branching fractions $B(\eta \to \pi^+\pi^-) < 2 \times 10^{-27}$ and $B(\eta' \to \pi^+\pi^-) < 4 \times 10^{-29}$ [8]. Based on the limit from the nEDM measurements, strong decays mediated by the θ term would have branching fractions below about 3×10^{-17} [8]. Any observation of larger branching fractions would indicate a new source of CP violation in the strong interaction, which could help to solve the problem of the origin of the matter–antimatter asymmetry. The current limit for the $\eta \to \pi^+\pi^- \eta'(958) \to \pi^+\pi^- \eta$ decay $\phi(1020) \to \eta'\gamma$. The limit for η', $B(\eta' \to \pi^+\pi^-) < 5.5 \times 10^{-5}$ at 90% CL, is from the BESIII experiment [10], based on searches for $\eta' \to \pi^+\pi^- \gamma$ decays. The study presented here, a new method is introduced to search for the decays $\eta \to \pi^+\pi^- \eta' \to \pi^+\pi^-$.
a hadron, photon or electron with high transverse energy in the calorimeters.

A new scheme for the LHCb software trigger was introduced for LHC Run 2. Alignment and calibration are performed in near real-time [14] and updated constants are made available for the trigger. The same alignment and calibration information is propagated to the offline reconstruction, ensuring high-quality particle identification (PID) and consistent information between the trigger and offline software. The larger timing budget available in the trigger compared to that available in Run 1 also results in the convergence of the online and offline track reconstruction, such that offline performance is achieved in the trigger. The identical performance of the online and offline reconstruction offers the opportunity to perform physics analyses directly using candidates reconstructed in the trigger [15].

In the simulation, pp collisions are generated using PYTHIA [16] with a specific LHCb configuration [17]. Decays of hadronic particles are described by EvtGEN [18], in which final-state radiation is generated using PHOTOS [19]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [20] as described in Ref. [21].

3. Data samples and outline of analysis method

In the analysis, the decays \(D^+ \rightarrow \pi^+ \pi^+ \pi^- \) and \(D_{sJ}^+ \rightarrow \pi^+ \pi^+ \pi^- \) are used to look for the presence of \(\eta \) and \(\eta' \) resonances in the \(\pi^+ \pi^- \) mass spectra, which could come from the known decays \(B^+ \rightarrow \pi^+ \eta^{(J)} \) (inclusion of charge-conjugate modes is implied throughout). The data samples comprise about 25 million each of \(D^+ \rightarrow \pi^+ \pi^+ \pi^- \) and \(D_{sJ}^+ \rightarrow \pi^+ \pi^+ \pi^- \) decays, from integrated luminosities of 3.0 fb\(^{-1}\) of pp collision data recorded by LHCb in LHC Run 1 and 0.3 fb\(^{-1}\) recorded in 2015 during Run 2.

For \(N(\eta^{(J)}) \) observed \(\eta^{(J)} \) signal decays in the \(\pi^+ \pi^- \) mass spectrum from a total of \(N(D_{sJ}^{+}) \) mesons reconstructed in the \(\pi^+ \pi^+ \pi^- \) final state, the measured branching fraction would be

\[
B\left(\eta^{(J)} \rightarrow \pi^+ \pi^- \right) = \frac{N(\eta^{(J)})}{N(D_{sJ}^{+})} \times \frac{B(D_{sJ}^{+} \rightarrow \pi^+ \pi^+ \pi^-)}{B(D_{sJ}^{+} \rightarrow \pi^+ \eta^{(J)})} \times \frac{1}{\epsilon(\eta^{(J)})},
\]

where \(\epsilon(\eta^{(J)}) \) accounts for any variation of efficiency with \(\pi^+ \pi^- \) mass, as discussed in Sec. 5.2. The values of \(N(D_{sJ}^{+}) \) and \(N(\eta^{(J)}) \) and their uncertainties are obtained from fits to the \(\pi^+ \pi^+ \pi^- \) and \(\pi^+ \pi^- \) mass spectra of the selected \(D_{sJ}^{+} \rightarrow \pi^+ \pi^+ \pi^- \) candidates; the branching fractions \(B(D_{sJ}^{+} \rightarrow \pi^+ \pi^+ \pi^-) \) and \(B(D_{sJ}^{+} \rightarrow \pi^+ \eta^{(J)}) \) and their uncertainties are taken from Ref. [22]; and the relative efficiency factors, \(\epsilon \), are obtained from simulations. Since the analysis starts from a given number of selected \(D_{sJ}^{+} \rightarrow \pi^+ \pi^+ \pi^- \) decays, there are no normalisation channels. All selections are finalised and expected sensitivities are evaluated before the \(\eta \) and \(\eta' \) signal regions in the \(\pi^+ \pi^- \) mass spectra are examined.

4. Event selection

The event selection comprises an initial stage in which relatively loose criteria are applied to select samples of candidate \(D_{sJ}^{+} \rightarrow \pi^+ \pi^+ \pi^- \) decays. A boosted decision tree (BDT) [23] is then used to further suppress backgrounds.

Candidate \(D_{sJ}^{+} \rightarrow \pi^+ \pi^+ \pi^- \) decays are required to have three good quality tracks, each with \(p_T \) greater than 250 MeV/c, consistent with coming from a vertex that is displaced from any PV in the event. Loose particle identification criteria are applied, requiring the tracks to be consistent with the pion hypothesis. The three-track system is required to have total charge \(\pm, \) its invariant mass must be in the range 1820–2020 MeV/c\(^2\), and its combined momentum vector must be consistent with the direction from a PV to the decay vertex. The invariant mass of opposite-sign candidate pion pairs is required to be in the range 300–1650 MeV/c\(^2\); this removes backgrounds where a random pion is associated with a vertex from either a \(\gamma \rightarrow e^+e^- \) conversion, in which both electrons are misidentified as pions, or from a \(D^0 \rightarrow K^-\pi^+ \) decay, where the kaon is misidentified as a pion.

The BDT has six input variables for each of the tracks, together with three variables related to the quality of the decay vertex and the association of the \(D_{sJ}^{+} \) candidate with the PV. The track variables are related to track fit quality, particle identification probabilities and the quality of the track association to the decay vertex. The BDT is trained using a sample of 820 000 simulated \(D_{sJ}^{+} \rightarrow \pi^+ \pi^+ \pi^- \) events for the signal, generated uniformly in phase space, and about 10\(^7\) background candidates obtained from sidebands of width 20 MeV/c\(^2\) on each side of the \(D_{sJ}^{+} \rightarrow \pi^+ \pi^+ \pi^- \) mass peak in the data.

The selection criteria for the BDT output value and \(\pi^+ \pi^+ \pi^- \) signal mass windows are simultaneously optimised to maximise the statistical significance of the \(D_{sJ}^{+} \) signals, \(N_{\text{sig}}/\sqrt{N_{\text{sig}}+N_{\text{bkg}}} \), where \(N_{\text{sig}} \) is the number of \(D_{sJ}^{+} \) signal decays and \(N_{\text{bkg}} \) is the number of background events within the signal mass windows. The BDT selection gives signal efficiencies of 90% while rejecting about 60% of the backgrounds. The optimum mass selection ranges are \(\pm 20 \) MeV/c\(^2\) for both the \(D^+ \) and \(D_{sJ}^{+} \) peaks in Run 1 and \(\pm 21 \) MeV/c\(^2\) for both peaks in Run 2.

Fig. 1 shows the \(\pi^+ \pi^+ \pi^- \) mass spectra for Runs 1 and 2, after the BDT selection. The discontinuity in the Run 2 spectrum comes from the fact that the trigger has two separate output streams and there are different BDT cuts for \(D^+ \) and \(D_{sJ}^{+} \).
yield per fb$^{-1}$ is larger in Run 2 than in Run 1 by a factor 3.3, arising from the larger cross-section [24], and from a higher trigger efficiency for charm. The curves in Fig. 1 show the results of fits to the spectra in which each peak is parameterised by the sum of a double-sided Crystal Ball function [25] and a Gaussian function, while a fourth-order polynomial is used for the combinatorial background. All shape and yield parameters are allowed to vary in the fits. The fits also include components for contributions from $D^+_s \to K^+\pi^+\pi^-$ decays, where the kaon is misidentified as a pion, and from $D^+_s \to \pi^+\pi^+\pi^-\pi^0$ and $D^+_s \to \pi^+\eta^{(0)}$ with $\eta^{(0)} \to \pi^+\pi^-\gamma$. The yields for these last components, the shapes for which are obtained from simulation, are found to be small. The total $D^+_s \to \pi^+\pi^-\pi^-$ signal yields in the optimised mass windows, summed over Run 1 and Run 2 data, are 2.49×10^4 for D^+ and 2.37×10^7 for D^+_s, with backgrounds of 1.38×10^7 and 1.08×10^7, respectively, within the same mass windows. Uncertainties of $\pm 2\%$ are assigned to total yield to account for imperfections in the fits to the mass spectra. To improve the $\pi^+\pi^-\pi^-$ mass resolution, a kinematic fit [26] is performed on the selected D^+_s candidates, with the three tracks constrained to a common vertex, the $\pi^+\pi^-\pi^-$ mass constrained to the known $D^{(*)}_s$ mass, and the D^+_s constrained candidate to come from the PV.

5. Limits on the $\eta^{(0)} \to \pi^+\pi^-\pi^-$ branching fractions

5.1. Mass spectra for $\pi^+\pi^-\pi^-$

For each of the η and η' resonances there are four separate $\pi^+\pi^-\pi^-$ mass spectra, for the D^+ and the D^+_s for each of Runs 1 and 2. Figs. 2 and 3 show the sums of the four $\pi^+\pi^-\pi^-$ mass spectra for the η and η' mass fitting regions, which are chosen to avoid the peaks from the K^{*0}_S, $\rho(770)^0$ and $f_0(980)$ mesons. The fitting windows are 515–630 MeV/c^2 for the η and 920–964 MeV/c^2 for the η'. The vertical dashed lines indicate the signal region, which cover the intervals 544–552 MeV/c^2 for the η and 952–964 MeV/c^2 for the η', in each case approximately ± 2 times the $\pi^+\pi^-\pi^-$ mass resolution. Simulation studies of the decays $\eta^{(0)} \to \pi^+\pi^-\gamma$, using the matrix element given in Ref. [27], show that the contributions from these channels are small and do not peak in the fitting windows. They are therefore considered as part of the background, which is parameterised by a polynomial function (see Sect. 5.3).

Expected signal $\pi^+\pi^-\pi^-$ mass line shapes for $\eta \to \pi^+\pi^-\pi^-$ and $\eta' \to \pi^+\pi^-\pi^-$ are obtained from simulations. In both cases a double Gaussian shape is found to describe the signal well, with mass resolutions of 2.3 MeV/c^2 for the η mass region and 3.2 MeV/c^2 for the η' region. These results are calibrated by comparing the η mass resolution from the simulation with that for reconstructed $K^{*0}_S \to \pi^+\pi^-\pi^-$ decays from background $D^+_s \to K^{*0}_S \pi^+$ events in the data, before the kinematic fits to the $D^{(*)}_s$ candidates. The differences, which are 5% in Run 1 and 10% in Run 2, are taken as the systematic uncertainties on the $\pi^+\pi^-\pi^-$ mass resolution for both the η and η' mass ranges.

5.2. Relative efficiency as a function of $\pi^+\pi^-\pi^-$ mass

The relative efficiency factors in Eq. (1) are obtained from simulation. Fully simulated $\pi^+\pi^-\pi^-$ mass spectra from $D^+ \to \pi^+\pi^-\pi^-$ decays for Run 1 are divided by the generated spectra to give the relative efficiency as a function of the $\pi^+\pi^-\pi^-$ mass. The efficiency is highest at large $\pi^+\pi^-\pi^-$ masses, mainly due to the effects of the hardware and software triggers. The relative efficiencies in Run 1 data are found to be $\epsilon(\eta) = 0.85 \pm 0.01$ and $\epsilon(\eta') = 1.01 \pm 0.01$, where the uncertainties come from the simulation sample size. The relative efficiencies for Run 2 are found to be statistically compatible with those for Run 1, through a comparison of the $\pi^+\pi^-\pi^-$ mass spectra from the D^+ and D^+_s signal candidates in the data. An additional systematic uncertainty of 2% is assigned to the Run 2 relative efficiencies, corresponding to the maximum difference between the mass spectra.

5.3. Sensitivity studies

In order to measure the sensitivity of the analysis, each $\pi^+\pi^-\pi^-$ mass spectrum is fitted with a fourth-order polynomial, initially with the signal regions excluded. The signal regions are then populated with pseudo data, generated according to the fitted polynomial functions, with Gaussian fluctuations. Each spectrum is then fitted again with the sum of a fourth-order polynomial plus the $\eta^{(0)}$ signal function, and Eq. (1) is then used to obtain branching fractions measured with the pseudo data. As expected, these branching fractions are consistent with zero. Expected upper limits on the branching fractions are obtained using the CLs method [28]. In each case, CLs values are obtained using the products of the likelihood functions for the four individual spectra. Systematic uncertainties are included, but have no effect on the results, which are shown in Fig. 4 for the η and in Fig. 5 for the η'. Expected limits at 90% CL are $\mathcal{B}(\eta \to \pi^+\pi^-\pi^-) < 2.0 \times 10^{-5}$ and $\mathcal{B}(\eta' \to \pi^+\pi^-\pi^-) < 1.8 \times 10^{-5}$.

Fig. 2. The $\pi^+\pi^-\pi^-$ invariant mass distribution in the η mass fitting region from the sum of the four samples, showing also the sum of the fitted curves and the pulls. The vertical dashed lines indicate the η signal region.

Fig. 3. The $\pi^+\pi^-\pi^-$ invariant mass distribution in the η' mass fitting region from the sum of the four samples, showing also the sum of the fitted curves and the pulls. The vertical dashed lines indicate the η' signal region.
as more data are collected at the LHC. With the LHC Run 1 data and data from the first year of Run 2, the limit obtained on the branching fraction for the decay $\eta \rightarrow \pi^+\pi^-$ is comparable to the existing limit, while that for $\eta' \rightarrow \pi^+\pi^-$ is a factor three better than the previous limit.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and PASO (Russia); MineCo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCCK and Yandex LLC (Russia); CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), FBRR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme Trust (United Kingdom).

References

[1] H.-Y. Cheng, The strong CP problem revisited, Phys. Rep. 158 (1988) 1.
[2] J. Kucke, et al., Strong CP violation and the neutron electric dipole form factor, Phys. At. Nucl. 70 (2007) 349, arXiv:hep-ph/0510116.
[3] R.D. Pececi, The strong CP problem and axions, Lect. Notes Phys. 741 (2008) 3, arXiv:hep-ph/0607268.
[4] S.Yu. Khlebnikov, M.E. Shaposhnikov, Extra space–time dimensions: towards a solution to the strong CP problem, Phys. Lett. B 203 (1988) 121.
[5] D.R. Nelson, G.T. Fleming, C.M. Kikup, Up quark mass in lattice QCD with three light dynamical quarks and implications for strong CP invariance, Phys. Rev. Lett. 90 (2003) 021601, arXiv:hep-lat/0112029.
[6] R.G. Leigh, The strong CP problem, string theory and the Nelson–Bar mechansim, in: J.L. Lopez, D.V. Nanopolos (Eds.), Recent Advances in the Superworld, World Scientific, 1994, arXiv:hep-th/0307214.
[7] Z.G. Berezhiani, R.N. Mohapatra, G. Senjanovic, Planck-scale physics and solutions to the strong CP problem without the axion, Phys. Rev. D 47 (1993) 5565, arXiv:hep-ph/9212318.
[8] C. Jarlskog, E. Shahalim, How large are the rates of the CP violating $\eta, \eta' \rightarrow \pi\pi$ decays?, Phys. Rev. D 52 (1995) 248.
[9] KLOE collaboration, F. Ambrosio, et al., Upper limit on the $\eta \rightarrow \pi^+\pi^-\pi^0$ branching ratio with the KLOE detector, Phys. Lett. B 606 (2005) 276, arXiv:hep-ex/0411030.
[10] BESIII collaboration, M. Ahlekim, et al., Search for CP and P violating pseudoscalar decays into $\pi\pi$, Phys. Rev. D 84 (2011) 032006, arXiv:1106.5118.
[11] LHCb collaboration, A.A. Alves Jr., et al., The LHCb detector at the LHC, J. Instrum. 3 (2008) S08005.
[12] LHCb collaboration, R. Aaij, et al., LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022, arXiv:1412.6352.
[13] R. Aaij, et al., The LHCb trigger and its performance in 2011, J. Instrum. 8 (2013) P04022, arXiv:1211.3055.
[14] G. Dujany, B. Storaci, Real-time alignment and calibration of the LHCb detector in Run II, J. Phys. Conf. Ser. 664 (2015) 082010.
[15] S. Benson, V. Gligorov, M.A. Vesterinen, J.M. Williams, The LHCb turbo stream, J. Phys. Conf. Ser. 664 (2015) 082004.
[16] T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026, arXiv:hep-ph/0603175.
[17] T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820.
The LHCb Collaboration

R. Aaij 40, B. Avea 39, M. Adinolfi 48, Z. Ajaltouni 3, S. Akar 6, J. Albrecht 10, F. Alessio 40, M. Alexander 53, S. Ali 43, G. Alkhazov 31, P. Alvarez Cartelle 55, A.A. Alves Jr 59, S. Amato 2, S. Amerio 23, Y. Amhis 7, L. An 41, L. Anderlini 18, G. Andreassi 41, M. Andreotti 17 8, J.E. Andrews 60, R.B. Appleby 46, F. Archilli 43, P. d’Argent 12, J. Arnau Romeu 6, A. Artamonov 37, M. Artuso 51, E. Aslaniadis 35, G. Auriemma 12, M. Baalouch 5, I. Babuschkin 38, S. Bachmann 12, J.J. Back 50, A. Badalov 38, C. Baesso 62, S. Baker 55, W. Baldini 17, R.J. Barlow 56, C. Barschei 40, S. Barsuk 7, W. Barter 40, M. Basczyszyn 27, V. Batozskaya 29, B. Batsuki 61, V. Battola 41, A. Berezhnoy 33, A. Comerma-Montells 12, A. Bizzeti 18, J. Benton 48, V. Bellee 41, N. Belloli 21 8, T.J.V. Bowcock 54, J. Blouw 11, M. Bonacorsi 56, E. Boudoul 40, S. Bourquin 56, R. Calabrese 17, M. Fernández-Alba 62, M. Ferrero 38, A. Falabella 15, N. Farley 47, M. Fiorini 17, F. Ferrari 15, N. Belloli 21, T. Blake 50, C. Barschel 40, S. Bashir 56, A. Bizzeti 18, J. Benton 48, A. Berezhnoy 33, A. Comerma-Montells 12, A. Bizzeti 18, J. Benton 48, A. Berezhnov 33, R. Bernet 42, A. Bertolini 7, G. Betancourt 42, F. Betti 15, M.-O. Bettler 40, M. van Beuzekom 43, Ia. Bezshyiko 42, S. Bifani 47, P. Billoir 8, T. Bird 56, A. Birnkraut 10, A. Bitadze 56, A. Bizzeti 18, T. Blake 50, M. Blouw 41, J. Blouw 11, S. Blusk 61, V. Bocci 26, T. Boettcher 58, A. Bondar 36, W., N. Bondar 31, 40, W. Bonivento 16, I. Bordyuzhin 32, A. Borgheresi 21, S. Borghi 56, M. Borisayk 35, M. Borsato 9, F. Bossu 7, M. Boubdir 9, T.J. Bowcock 54, E. Bowen 42, C. Bozzi 17, 40, S. Braun 12, M. Britsch 12, T. Britton 61, J. Brodzicka 56, E. Buchanan 48, C. Burr 56, A. Bursche 2, J. Buytaert 40, S. Cadeddu 16, R. Calabrese 17, G. Calvi 21, M. Calvo Gomez 38, M., A. Camboni 38, P. Campana 19, D.H. Campora Perez 40, L. Capriotti 56, A. Carbone 15, G. Carboni 25, J., R. Cardinale 20, h, A. Cardini 16, P. Carniti 21, L. Carson 52, K. Carvalho Akiba 2, G. Casse 54, L. Cassina 21, J. Castillo Garcia 41, M. Cattaneo 40, Ch. Cauet 10, G. Cavallero 20, R. Cencini 24, D. Chamont 7, M. Charles 8, Ph. Charpentier 40, G. Chatzikokonstantinidis 47, M. Chefdeville 4, S. Chen 56, S.-F. Cheung 57, V. Chobanova 39, M. Chraszcz 12, 27, X. Cic Vidal 39, G. Ciezarek 43, P. E.L. Clarke 52, M. Clemencic 40, H.V. Cliff 49, J. Cloisier 40, V. Coco 59, J. Cogan 6, V. Cogoni 16, 40, L. Cojocariu 30, G. Collazuoli 23, 0, P. Collins 40, A. Comerma-Montells 12, A. Contu 40, A. Cook 48, G. Coombs 40, S. Coquerelle 38, G. Corti 40, M. Corvo 17, 40, G.M. Costa Sobral 50, B. Couturier 40, G.A. Cowan 52, D.C. Craik 52, A. Crocombe 50, M. Cruz Torres 62, S. Cunliffe 35, R. Currie 55, C. D’Ambrosio 40, F. Da Cunha Marinho 2, E. Dell’Oco 43, J. Dalseno 48, P.N.Y. David 43, A. Davis 59, O. De Aguiar Francisci 2, K. De Bruyn 6, S. De Capua 56, M. De Cian 12, J.M. De Miranda 1, L. De Paula 2, M. De Serio 14, 4, P. De Simone 19, C.-T. Dean 53, D. Decamp 4, M. Deckenhoff 10, L. Del Buono 8, M. Demmer 10, A. Dendek 28, D. Derkach 35, O. Deschamps 5, F. Dettori 40, B. Dey 22, A. Di Canto 40, H. Dijkstra 40, F. Dordei 40, M. Dorigo 40, A. Dosil Suárez 49, A. Dovbnya 45, K. Dreimanis 54, L. Dufour 43, G. Dujany 56, K. Dungs 40, P. Durante 40, R. Dzhelyadin 37, A. Dzirou 40, A. Dzyuba 31, N. Déléage 4, S. Easo 51, M. Ebert 52, U. Egede 55, V. Egorychev 42, S. Eidelman 36, W., S. Eisenhardt 52, U. Eitschberger 10, R. Ekelhof 10, L. Eklund 53, S. Ely 61, S. Esen 12, H.M. Evans 49, T. Evans 57, A. Falabella 15, N. Farley 47, S. Farry 54, R. Fay 54, D. Fazzini 21, I., D. Ferguson 52, A. Fernandez-Prieto 39, F. Ferrari 15, 40, F. Ferreirinha Rodrigues 2, M. Ferro-Luzzi 40, S. Filipov 34, R.A. Fini 14, M. Fiore 17, 40, M. Fiorini 17, 40, M. Firlej 28, C. Fitzpatrick 41, T. Fiutowski 28, F. Fleuret 7, K. Fohl 40, M. Fontana 16, 40, F. Fontanelli 20, h, D.C. Forshaw 61, R. Forty 40, V. Franco Lima 54, M. Frank 40, C. Frei 40, J. Fu 22, q, E. Furaro 25, J, C. Färber 40, A. Gallas Torreira 39, D. Galli 15, 8, S. Gallorini 23, S. Gambetta 52, M. Gandolfini 2, P. Gandini 57, Y. Gao 2, L.M. Garcia Martin 68, J. García Pardiñas 49, J. Garra Tico 49, L. Garrido 38, P.J. Garsed 49, D. Gascon 38, C. Gaspar 40, L. Gavardi 10, G. Gazzoni 3, D. Gerick 12, E. Gersabeck 12, M. Gersabeck 56, T. Gershon 50, Ph. Ghez 4, S. Giannini 41, V. Gibson 49,
European Organization for Nuclear Research (CERN), Geneva, Switzerland

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Physik-Institut, Universität Zürich, Zürich, Switzerland

Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands

Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands

NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine

Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine

University of Birmingham, Birmingham, United Kingdom

H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, University of Warwick, Coventry, United Kingdom

STFC Rutherford Appleton Laboratory, Didcot, United Kingdom

School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Imperial College London, London, United Kingdom

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

Department of Physics, University of Oxford, Oxford, United Kingdom

Massachusetts Institute of Technology, Cambridge, MA, United States

University of Cincinnati, Cincinnati, OH, United States

University of Maryland, College Park, MD, United States

Syracuse University, Syracuse, NY, United States

Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil

University of Chinese Academy of Sciences, Beijing, China

Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China

Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia

Institut für Physik, Universität Rostock, Rostock, Germany

National Research Centre Kurchatov Institute, Moscow, Russia

Instituto de Física Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain

Van Swinderen Institute, University of Groningen, Groningen, The Netherlands

* Corresponding author.
* E-mail address: lorenzo.capriotti@postgrad.manchester.ac.uk (L. Capriotti).
* Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
* Laboratoire Leprince-Ringuet, Palaiseau, France.
* P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
* Università di Bari, Bari, Italy.
* Università di Bologna, Bologna, Italy.
* Università di Cagliari, Cagliari, Italy.
* Università di Ferrara, Ferrara, Italy.
* Università di Genova, Genova, Italy.
* Università di Milano Bicocca, Milano, Italy.
* Università di Roma Tor Vergata, Roma, Italy.
* Università di Roma La Sapienza, Roma, Italy.
* AGH – University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
* LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
* Hanoi University of Science, Hanoi, Viet Nam.
* Università di Padova, Padova, Italy.
* Università di Pisa, Pisa, Italy.
* Università degli Studi di Milano, Milano, Italy.
* Università di Urbino, Urbino, Italy.
* Università della Basilicata, Potenza, Italy.
* Scuola Normale Superiore, Pisa, Italy.
* Università di Modena e Reggio Emilia, Modena, Italy.
* Iligan Institute of Technology (IIT), Iligan, Philippines.
* Novosibirsk State University, Novosibirsk, Russia.
* Associated to Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
* Associated to Center for High Energy Physics, Tsinghua University, Beijing, China.
* Associated to LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France.
* Associated to Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.
* Associated to Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia.
* Associated to ICCUB, Universitat de Barcelona, Barcelona, Spain.
* Associated to Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands.
* Deceased.