Data on the Draft Genome Sequence of *Bacillus* sp. Strain AN2 Isolated from Agricultural Soil in Brazil

Andressa Sbano¹,², Juliana B. Succar¹, João Victor R. Ferreira¹,², Lidiane C. Berbert¹, Vinicius R. Flores¹,², Janaina J. V. Cavalcante², Rodolpho M. Albano³, Ida Carolina N. Direito¹ and Alexander M. Cardoso¹,²*

¹Laboratory of Environmental Biotechnology, Western Rio Janeiro State University - UEZO, Rio de Janeiro, Brazil.
²Division of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology - INMETRO, Rio de Janeiro, Brazil.
³Department of Biochemistry, Institute of Biology Roberto Alcântara Gomes, State University of Rio de Janeiro - UERJ, Rio de Janeiro, Brazil.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors ICND and AMC designed the study and wrote the first draft of the manuscript. Authors AS, JBS, JVRF, LCB, VRF, JJVC and RMA managed the analyses of the study. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJB2T/2020/v6i130071

Editor(s):
(1) Prof. Marilia Danyelle Nunes Rodrigues, Animal Genetics, Rural Federal University of Amazonia, Brazil.
(2) Dr. Zafar S. Khan, Department of Botany, Maharashtra College of Arts, Science and Commerce, 246-A Jehangir Boman Behram Road, Mumbai, India.

Reviewer(s):
(1) Imran Hammami, Tunis El Manar University, Tunisia.
(2) Clabe Simiyu Wekesa, University of Jena, Germany.

Complete Peer review History: http://www.sdiarticle4.com/review-history/53946

Received 01 January 2020
Accepted 04 February 2020
Published 12 February 2020

ABSTRACT

Aims: This research aims to report the genome sequence of the *Bacillus* sp. strain AN2, isolated from agricultural soil from Rio de Janeiro, Brazil.

Place and Duration of Study: Laboratory of Environmental Biotechnology, Western Rio Janeiro State University in Brazil, between January 2019 and December 2019.

Methodology: High-quality genomic DNA was extracted using a GenElute Bacterial Genomic DNA kit. The Nextera XT DNA Library Prep Kit was used for genomic library construction. Paired-end sequence reads were generated by an Illumina MiSeq instrument with the 600 cycles MiSeq...
Reagent Kit v3. Sequence data were assembled with A5-MiSeq pipeline software and the contigs were annotated by Rapid Annotation using Subsystems Technology (RAST).

Results: The obtained genome sequence of *Bacillus* AN2 included 21 contigs with a calculated size of 3,681,081 bp in length. The G + C content for the draft genome is 41.4%. A total of 3824 coding sequences (CDS) were predicted and encoded at least 88 tRNAs.

Keywords: Biofertilizers; biotechnology; inoculants; soil microbiota.

1. **DATA DESCRIPTION**

To reveal novel genes from *Bacillus* species, some bacterial strains were isolated by mixing 1 g of soil with 9 ml of NaCl 0.8% and incubating at 30°C for 1 h. The solution was decanted, and 1 ml of the supernatant was spread on MEMB agar plates [1,2] and incubated at 30°C for 4 days under aerobic conditions. One of the colonies recovered was named AN2, and its genome was sequenced. The genomic DNA was purified using a GenElute Bacterial Genomic DNA kit (Sigma-Aldrich, USA), and the library was constructed using a Nextera XT kit (Illumina). Paired-end sequence reads were generated by an Illumina MiSeq instrument with the 600 cycles MiSeq Reagent Kit v3. Reads were filtered for a Phred quality score of at least 20 and were assembled with A5-MiSeq pipeline software [3]. The contigs were annotated using the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP) and Rapid Annotation using Subsystems Technology (RAST) [4,5]. *Bacillus* species identification was achieved by using the JSpeciesWS server online with average nucleotide identity (ANIb) and MUMmer average nucleotide identity (ANIm) analysis [6,2]. The AN2 strain was identified as a member of the *Bacillus* group. The draft genome of *Bacillus* sp. AN2 consists of 3,681,081 bp distributed in 21 contigs, with an average GC content of 41.4%. The draft genome comprises 88 tRNAs. The bioinformatic analyses indicate that this strain carries many antimicrobial resistance genes and also most of the key genes associated with deconstructing plant cell walls [7,8] to improve the efficiency of processing biomass from agriculture residues by enzymatic hydrolysates such as cellulases, xylanases, and amylases. Many genes responsible for the bacterial strain resistance to several antibiotics and various toxic compounds were also identified. From this study, it can be deduced that the novel strain has a high capacity for biocontrol against soilborne pathogens and bioconversion of agro-industrial residues.

2. **CONCLUSION**

The strain AN2 possesses numerous genes involved in deconstructing plant cell walls to improve the efficiency of processing biomass from agriculture residues by enzymatic hydrolysates such as cellulases, xylanases, and amylases. Many genes responsible for the bacterial strain resistance to several antibiotics and various toxic compounds were also identified. From this study, it can be deduced that the novel strain has a high capacity for biocontrol against soilborne pathogens and bioconversion of agro-industrial residues.

3. **LIMITATIONS**

Current data is based on the draft level genome such that the exact length of the genome, and the number of rRNA genes and repetitive elements, cannot be determined.

AVAILABILITY OF DATA

The data described in this Data Article can be freely and openly accessed on DDBJ/ENA/GenBank under the accession WUQP00000000. The version described in this paper is version WUQP01000000. It is important to share this data with other scientists as the data represent the first characterization of genome sequence data of a newly isolated *Bacillus* strain and it may hold a great promise to improve crop yield and biofuel industry. Link: https://www.ncbi.nlm.nih.gov/nuccore/WUQP00000000

ACKNOWLEDGEMENTS

We acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for financial support and the staff of UEZO and ICGEB for insightful discussions and comments. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

COMPETING INTERESTS

Authors have declared that no competing interests exist.
REFERENCES

1. Chong NM. Development of a tool for measuring the degradation capacity of microorganisms for a xenobiotic. Enzyme and Microbial Technology. 2005;37:467-471.

2. Strahsburger E, Zapata F, Pedroso I, Fuentes D, Tapia P, Ponce R, Valdes J. Draft Genome Sequence of Bacillus safensis RP10, Isolated from Soil in the Atacama Desert, Chile. Microbiology Resource Announcements. 2019;8(44).

3. Coil D, Josipin G, Darling AE. A5-miseq: An updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics. 2015;31:587-589.

4. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetverin V, O'Neil K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH, Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY, Marchler-Bauer A, Pruitt KD. RefSeq: An update on prokaryotic genome annotation and curation. Nucleic Acids Res. 2018;46:851-860. DOI: 10.1093/nar/gkx1068.

5. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wille A, Zagnitko O. The RAST server: Rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.

6. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. J Species WS: A Web prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–931. DOI: 10.1093/bioinformatics/btv681

7. Moreira V, Cardoso AM. As Superbactérias Resistentes a Antibióticos Estão Chegando?. Acta Scientiae et Technicae. 2016;4:144-147. DOI: 10.17648/uezo-ast-v4i2.144

8. Cardoso AM, Cavalcante JJV, Cantão ME, Thompson CE, Flatschart RB, Glogauer A, Scapin SMN, Sade YB, Beltrão PJMSI, Gerber AL, Martins OB, Garcia ES, Souza W, Vasconcelos ATR. Metagenomic Analysis of the microbiota from the crop of an invasive snail reveals a rich reservoir of novel genes. PLoS ONE. 2012;7:e48505. DOI: 10.1371/journal.pone.0048505

© 2020 Sbano et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/53946