Role of learning module in STEM approach to achieve competence of physics learning

M Selisne, Y S Sari and R Ramli*
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Jl. Prof Hamka, Padang 25131, Indonesia

*ramli@fmipa.unp.ac.id

Abstract. STEM (Science, Technology, Engineering, and Mathematics) the problem of education has received much attention in recent years. With STEM education, individuals can compete globally to deal with more complex changes or advancements. Learning with STEM approach is actually able to train students to be able to communicate, collaborate, critical thinking and problem solving, as well as creativity and innovation so that learners will be able to face global challenges. In this paper, we report on the study of literature studies by finding reference to theories relevant to the cases or problems found. This review is based on a number of empirical and conceptual journal articles on STEM published recently. The results of this review will be used as the theoretical reference to serving as the basic foundation and the main tool for the development of learning modules in accordance with the STEM approach in physics learning.

1. Introduction

Science and technology developed so rapidly in the 21st Century, causing the education process must prepare graduates able to compete in the field of technology. Human resources must have a high quality and have the ability to compare, innovative, competitive, and collaboratively so as to be able to face the challenges of the times.

Education is the most important thing in human life. This means that every human being deserves and hopes to always thrive in education. Education can help students have competence: attitude, knowledge, skills, and students are required to have the skills of thinking and problem-solving skills.

Physics is part of the natural sciences, so physics must also be based on scientific findings and going around. So, in the learning of physics must be instilled about the basic concept and development of skills. STEM is an established approach based on a combination of several disciplines, namely Science, Technology, Engineering, and Mathematics. Collaboration in the learning process, STEM can help students to collect and analyze and solve problems that occur and be able to understand the relationship between a problem and other problems [1,2,3]. Models with the STEM approach can form a human resource that is capable of reasoning and critical thinking, logical, and systematic, so that they will be able to face global challenges [4,5]. STEM is usually followed by active and problem-based learning. Problem-based Learning STEM can achieve problem-solving skills and assist students in acquiring enjoyable learning experiences [6,7].
Learning by using the STEM approach is very important, because it provides training to learners to be able to integrate each aspect at once. The learning process that involves the four aspects will shape the knowledge of the subject being studied more comprehensively. In physics learning, STEM helps learners to use technology and assemble an experiment that can prove a law or concept of science. This conclusion is supported by mathematically managed data [8].

At present, the teaching materials used in the 2013 curriculum are student package books compiled by the government but have not yet embraced the STEM approach [9,10]. According to observations made by Hapiziah [4], through textbooks as teaching materials used in Senior high school, obtained that 65.62% stated that the teaching materials used quite difficult for students to understand the concept of the question in the book 79.69%. Research about modules with the STEM approach in PBL is still rare. PBL integrated STEM can enhance students’ learning interest, learning becomes more meaningful, helping student’s problem solving in real life [11,12,13]. The module using the STEM approach is currently an alternative to science learning that can build a capable generation facing a challenging 21st century [14,15,16].

This paper will outline the physics module using the STEM approach to improve students' learning competencies.

2. Methods
Descriptive method of analysis of the theoretical references relevant to the case or problem found. This review journal is based on a number of articles empirical and conceptual on STEM. The results of this review will be used as a theoretical reference as the basic foundation and the main tool for the development of learning modules in accordance with the STEM approach in physics learning.

3. Results and Discussion
The term STEM was first used by the NSF in 1990 become an acronym of STEM [17]. The basic definition of each word is:

- Science: is a part of science that studies nature esta, facts, phenomena and order that is in it.
- Technology: made as innovation, change, modification of the natural environment gives satisfaction to human needs and desires. Technology aims to make modifications to the world to meet human needs
- Engineering: consists of determining the problem (ask), imagine (imagine), design (plan), create (create), and develop (improve). Engineering is a profession where scientific and mathematical knowledge is obtained through study, experimentation, and practice or applied to operate or design a procedure to solve a problem to meet the needs of human life
- Mathematics: a branch of a discipline that studies patterns or relation

STEM consists of four disciplines each have a field of study which are intertwined in it.

Table 1. Related STEM Lessons [18]
STEM
Science
Technology
Engineering
Mathematics

STEM has been implemented in a number of developed countries such as USA, Japan, Finland, Australia and Singapore. STEM is an initiative of the National Science Foundation. The goal of
applying STEM in the USA is to make these four fields (science, technology, engineering, and mathematics) a major career choice for learners [19,20].

STEM is needed in learning. STEM literacy refers to: a). Knowledge, attitudes, and skills of an individual to overcome the problems in real life, explains a natural and design world, and describes the conclusions of different facts on the subject of STEM [21,22]. b). An individual's understanding of the characteristics of the STEM discipline as a form of knowledge, and inquiry. c). An individual's sensitivity about how STEM shapes material, intellectual and environmental cultures. d). The desire of an individual to be tied to the STEM issue and tied to the ideas of STEM as a constructive, caring and reflective citizen [23,24].

STEM learning is possible in collaboration with problem-based learning. Thus, all learning achievements accommodated by the Physics subject can be realized through the implementation of PBL-STEM [25,26]. The achievement of learning is cut with the literacy of the environment and creativity. Thus, can be said that the design PBL-STEM-based learning is strongly believed to enhance these two abilities [27,28,29].

From the results of previous research STEM has been widely applied in learning. This situation is shown by the results of research that revealed that the application of STEM can improve academic and non-academic achievement of learners [30,31,32]. Therefore, the application of STEM which initially only aims to increase students' interest in the field of STEM becomes wider [33,34,35]. This situation arises because after applied in learning, STEM able to increase the mastery of knowledge [36,37,38], apply knowledge to solve problems, and encourage learners to create something new. Application of the module using STEM approach to high school students can have a positive effect [39,40,41], as follows: (a) support the development of students thinking and awareness skills [42,43] (b) assist in the development of critical thinking skills (c) increase students' interest in science and mathematics, and interest in matters relating to STEM [44,45] (d) develop the nature of curiosity, and the ability to problems solve and (e) provide students with extensive experience of the world around them.[46,47,48].

Based on the results of previous research has been found that modules using the STEM approach can improve attitude competence, knowledge competence, and skill competence of students and increase students' interest in science and math, as well as support student success later in the field of work related to STEM [49,50].

4. Conclusions
The physics learning using modules with the STEM approach effectively improves students' learning competencies includes knowledge, attitudes, and skills. These results indicate that STEM approach is very important to be used physics learning in high senior school.

References
[1] Handayani F 2014 Pengembangan Lembar Kerja Siswa (LKS) Berbasis Science, Technology, Engineering, and Mathematics (STEM) pada Materi Hidrolisis Garam. Skripsi: Univeristas Syiah Kuala
[2] Nesa W, Hartono Y, Hiltrimartin C 2017 Pengembangan Buku Siswa Materi Jarak Pada Ruang Dimensi Tiga Berbasis Science, Technology, Engineering, And Mathematics (STEM) Problem-Based Learning Di Kelas X Jurnal Elemen 3(1) 1-14
[3] Verma A 2011 Engaging Students in STEM Careers with Project-Based Learning—MarineTech Project. Technology and Engineering Teacher 30 3
[4] Hapiziah S 2015 Pengembangan bahan ajar kimia materi laju reaksi berbasis STEM Problem-Based Learning kelas XI SMA N 1 Indralaya Utara. Skripsi. Indralaya: FKIP Unstri
[5] Stohlmann M, Moore, T.J, Roehrig, G.H 2012 Considerations for teaching integrated STEM education Journal of Pre-College Engineering Education Research, 2 (1) 28-34
[6] Han S, Capraro RM, Capraro MM 2015 How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers
differently: The Impact of student factors on achievement. *International Journal of Science and Mathematics Education* 13(5) 1089–1113

[7] Capraro RM, Capraro MM, Morgan JR 2013 *STEM Project Based Learning: An Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach*. Sense Publisher, Rotterdam

[8] Pernamasari A 2016 STEM Education: Inovasi dalam Pembelajaran Sains, *Seminar Nasional Pendidikan Sains* (Surakarta, 22 Oktober 2016) pp 23–34

[9] Asmuniv 2015 *Pendekatan Terpadu Pendidikan STEM Upaya Mempersiapkan Sumber Daya Manusia Indonesia Yang Memiliki Pengetahuan Interdisipliner Dalam Menyosong Kebutuhan Bidang Karir Pekerjaan Masyarakat Ekonomi ASEAN (MEA)* http://www.vedcmalang.com/pppptkboemlg/index.php/menuutama/listrikelectro/1507-asv9), accessed 21 June 2017

[10] Adeli A 2018 *Increasing Persistence of College Students in Science Technology Engineering and Mathematics (STEM) Jurnal Curricula* 3 (1) 23-29

[11] Indri S 2017 Pengembangan Stem-A (Science, Technology, Engineering, Mathematic And Animation) Berbasis Kearifan Lokal Dalam Pembelajaran Fisika *Jurnal Ilmiah Pendidikan Fisika* 6 (1) 67-73

[12] Bligh A 2015 *Towards a 10-year plan for science, technology, engineering and mathematics (STEM) education and skills in Queensland*. Queensland: Department of Education, Training and the Arts

[13] Gonzalez H 2012 *Science, Technology, Engineering, and Mathematics (STEM) Education: A Primer*. Congressional Research Service. di akses 5-2-2014 p4

[14] Hannover 2017 Successful K-12 STEM Education: *Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics*. National Academies Press

[15] White D 2017 *What Is STEM Education and Why Is It Important?. Florida Association of Teacher Educators Journal* 1(14) 1-9

[16] Becker K 2011 *Effects of integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students’ learning: A preliminary meta-analysis*. Journal of STEM Education. 12 23

[17] Rahmiza M, Syarifah 2015 *Pengembangan LKS STEM (Science, Technology, Engineering, And Mathematics)* dalam meningkatkan motivasi dan aktivitas belajar siswa SMA negeri 1 Beutong pada materi induksi elektromagnetik *Jurnal Pendidikan Sains Indonesia* 3(1) 239-250.

[18] Adelia Alfama Zamista 2018 *Increasing Persistence of Collage Students in Science Technology Engineering and Mathematical (STEM) Jurnal Curricula* 3(1) 22-29

[19] Elizabeth, A. Ring 2017 *Roehrig The Evolution of Teacher Conceptions of STEM Education Throughout an Intensive Professional Development Experience Journal of Science Teacher Education* 28(5) 444-467

[20] Pathways 2007 *Science, Technology, Engineering, and Mathematics (STEM) Pathways: High School Science and Math Coursework and Postsecondary Degree Attainment Journal of Education for Students Placed at Risk* 12 (3) 243-270

[21] Runco M 2010 Torrance tests of creative thinking as predictors of personal and public achievement: A fifty-year follow-up *Creativity Research Journal* 22 (4) 1-10

[22] Ratna Farwati1 2017 *Integrasi Problem Based Learning dalam STEM Education Berorientasi pada Aktualisasi Literasi Lingkungan dan Kreativitas*. Prosiding Seminar Nasional: UPI

[23] Heather B. Gonzalez and Jeffrey J. Kuenzi 2012 *Science, Technology, Engineering, and Mathematics (STEM) Education: A Primer Congressional Research Service*

[24] Scott R. Bartholomew 2017 Integrated STEM through Tumblewing Gliders *journal of STEM Education* 3(1) 157-166

[25] Kelley, T 2010 *Staking the claim for the ‘T’in STEM Journal of Technological Studies* 31(1) 2-1
[26] Rodger W. Bybee (2010) *What Is STEM Education?* Science Vol. 329 (5995) 996
[27] Micah Stohlmann Tamara J and Moore Gillian H 2012 Considerations for Teaching Integrated STEM Education *Journal of Pre-College Engineering Education Research* 2(1) 29-33
[28] Policy Jeffrey J. Kuenzi 2012 *Science, Technology, Engineering, and Mathematics (STEM) Education; A Primer* Heather B. Gonzalez Specialist in Science and Technology Specialist diakses 1 August 2012
[29] Jennifer W. Yu 2015 High School Math and Science Preparation and Postsecondary STEM Participation for Students With an Autism Spectrum Disorder *Sage Journal* 32 (2)
[30] Anna Permanasari 2016 *STEM Education: Inovasi dalam Pembelajaran Sains.* Seminar Nasional Pendidikan Sains: UPI
[31] Pamela W Garner 2017 *Innovations in science education: infusing social emotional principles into early STEM learning* 18 August 2016/Accepted: 23 June 2017
[32] Bachman, Jennifer 2011 *STEM Learning Activity among Home-Educat ing Families.* thesis.
[33] Bachman, Jennifer and Lynn Dierking. 2011 *Co-Creating Playful Environments That Support Children's Science and Mathematics Learning as Cultural Activity: Insights from Home-Educat ing Families* Children Youth and Environments 21 (2) 294–311
[34] Daniel R. Herbe 2015 *Project-Based Curriculum for Teaching Analytical Design to Freshman Engineering Students* via Reconfigurable Trebuchets Published: 25 February 2016
[35] Courtney Gann 2017 STEM educational activities and the role of the parent in the home education of high school students *Educational Review* 70(69)
[36] Fikroturrofiah Suwandi Patria 2017 The Development of Performance Assessment of StemBased Critical Thinking Skill in the High School Physics Lessons *International Journal Of Environmental & Science Education* 12 (5) 1269-1281
[37] Kristy M Meyrick 2011*How STEM Education Improves Student Learning* *Meridian K-12 School Computer Technologies Journal* 14(1)
[38] Asghar, A 2012 Supporting STEM education in secondary science contexts *Interdisciplinary Journal of Problem-based Learning* 6 (2) 85–125
[39] Jaka, Afrisna 2016 Penerapan Project Based Learning Terintegrasi STEM untuk Meningkatkan Literasi Sains Siswa Ditinjau dari Gender Jurnal Inovasi Pendidikan IPA 2 (2) 1-9
[40] Leonardo, Colletti (2018) Teaching The Nature Of Physics Through Art: A New Art Of Teaching Journal Physics Education 53 (1) 6
[41] Joi Merritt 2017 Problem-Based Learning in K–8 Mathematics and Science Education: A Literature Review *The Interdisciplinary Journal of Problem-based Learning* 1 11-10
[42] Philip M Sadler 2012 Stability and Volatility of STEM Career Interest in High School: A Gender Study *Journal Of Science Education* 96 411–427
[43] Aimée L deChambeau 2017 STEM High School Teachers’ Views of Implementing PBL: An Investigation Using Anecdote Circles *Journal of Problem-based Learning* 11 1-10
[44] Cook, N. D & Weaver, G 2015 Teachers’ Implementation Of Project-Based Learning: Lessons From The Research Goes To School Program *Electronic Journal of Science Education* 19 (6)
[45] Heri Retnawati 2018 Teachers’ Difficulties And Strategies In Physics Teaching And Learning That Applying Mathematic *Journal of Baltic Science Education* 17 (1)
[46] Louis S Nadelson 2013 Teacher STEM Perception and Preparation: InquiryBased STEM Professional Development for Elementary Teachers *The Journal of Educational Research* 106 (2)157-168
[47] Julie Edmunds 2017 The Relationship Between Project-Based Learning and Rigor in STEMFocused High Schools *Interdisciplinary Journal of Problem-Based Learning* 11 2-10
[48] Adnan M 2016 Memperkasa Pembangunan Modal Insan Malaysia diperingkat Kanakkanak: Kajian Keboleh Laksanaan dan Kebolehintegrasian Pendidikan STEM dalam Kurikulum Permata Negara *Malaysian Journal of Society and Space* 12 (1) 29-36
[49] Graham, M.J, et all 2013 Increasing Persistence of Collage Student in STEM *Journal of Science* 341 1455-1456.

[50] Redkar S 2012 Teaching Advanced Vehicle Dynamics Using A Project Based Learning (PBL) Approach *Journal of STEM Education* 13 (3) 17-29