Screening of chilli pepper genotypes against anthracnose (*Colletotrichum brevisporum*)

Leonor Cristina Silva Souza*, Luiz Alberto Guimarães Assis, Aricléia de Moraes Catarino, Rogério Eiji Hanada

Instituto Nacional de Pesquisas da Amazônia – INPA, Programa de Pós-Graduação em Agricultura no Trópico Úmido, Cx.Postal 2223, CEP 69.011-670, Manaus, AM, Brasil

*Corresponding author: Leonor Cristina Silva Souza, Instituto Nacional de Pesquisas da Amazônia – INPA, Programa de Pós-Graduação em Agricultura no Trópico Úmido, Cx.Postal 2223, CEP 69.011-670, Manaus, AM, Brasil. E-mail: leonorcss@gmail.com

Received: 14 March 2019; Accepted: 01 November 2019

ABSTRACT

Anthracnose is the most important disease of chili pepper *pimenta-de-cheiro* (*Capsicum chinense* Jacq.). This species is widely cultivated in dryland areas in the Amazon, presenting high genetic diversity. Therefore, it presents a high potential for use in breeding. The objective of this study was to select pepper genotypes with potential resistance to anthracnose (*Colletotrichum brevisporum*). For this purpose, ripe fruits of pepper were acquired from the producing farms in the municipalities of Iranduba, Manacapuru, Rio Preto da Eva and Presidente Figueiredo. The experiments were conducted in seedlings (Phase I) and in mature and immature fruits (Phase II). The evaluation of the disease severity was performed using a scale of scores. The morphoagronomic characterization of the genotypes considered the fruits in the immature and mature stages and plant growth habit. The injured areas in the immature fruits ranged from 0.3 to 9.7 cm² and in the mature areas, it ranged from 0.2 to 9.9 cm². The genotypes RPE41 and MPU29 indicated resistance to anthracnose in both stages. The morphoagronomic characterization of the fruits revealed variability for mass (5.58 to 13.74 g), length [C] (4.08 to 8.16 cm), diameter [D] (1.74 to 2.54 cm), L/D ratio (1.88 to 4.70) and color of the fruit.

Keywords: *Capsicum chinense*; Morphoagronomic characterization; Severity

INTRODUCTION

Species of the genus *Capsicum*, family Solanaceae, are among the most cultivated annual herbaceous vegetables (Mishra et al., 2017). The Amazon is an important center of diversity of this genus, especially for the species *Capsicum chinense* Jacq. (Fonseca et al., 2008). In Brazil, family farmers in the state of Amazonas obtain their income from the sale of chili pepper *pimenta-de-cheiro* fruits (*C. chinense* Jacq.), either as mono or polyculture. However, their productivity is limited by fruit losses due to anthracnose disease. Ali et al. (2016) state that high losses in *Capsicum* spp. are caused by several microorganisms, in which anthracnose is one of the main problems associated with the commercialization of high-quality fruits in many production areas.

It is known in the literature that chilies (*Capsicum* spp.) are susceptible to a *Colletotrichum* species complex. At least fifteen species have been cited for causing damage to pepper crops in the world (Diao et al., 2017). More recently, in the State of Amazonas, *C. brevisporum* was reported as aJB causal agent of anthracnose in pepper. Until then, this species had not been reported in this crop in the state of Amazonas (Almeida et al., 2017).

The first records of anthracnose caused by *C. brevisporum* were in bromeliads of the genus *Neoregalia* sp. and *Pandanus pygmaeus* Thouars, in Thailand (Noireung et al., 2012), in the endophytic form in *Lycium chinense* Miller, Korea (Paul et al., 2014), in papaya, *Carica papaya* L. (Vieira et al., 2013) and chayote, *Sechium edule* Jacq. (Bezerra et al., 2016), both in Brazil. Regarding chili, anthracnose had been described by Liu et al. (2016) and Silva et al. (2017) in bell peppers ‘pimentões’, *Capsicum annuum* L.

The use of synthetic chemicals is one of the most common practices for the control of anthracnose in peppers. However, it may be harmful to human health if used in post-harvest management, in addition to accumulating potential resistance in pathogens to fungicides (Ali et al., 2016).
Resistance was found in semiripe mature *Capsicum annuum* fruits against *Colletotrichum capsici* (Gupta et al., 2018); *Colletotrichum truncatum* and *Colletotrichum gloeosporioides* (Mishra et al., 2019); *Colletotrichum acutatum* (ChunYing et al., 2015) and in fruits of other species of *Capsicum* (Capsicum spp.) against to anthracnose caused by *Colletotrichum* spp. (Parey et al., 2013; Begum et al., 2015; Arunakumara and Satyanarayana, 2016; Bento et al., 2017; Maracahipes et al., 2017).

The selection of plants with resistance genes is an important tool to solve phytosanitary problems caused by anthracnose in chili pepper ‘pimenta-de-cheiro’ plantations. For Lee et al. (2010), resistance introgression may be the best way to control anthracnose due to the possibility of selecting genotypes with characteristics of commercial importance.

In this context, the objective of this study was to screen genotypes of chili peppers *pimenta-de-cheiro* with potential resistance to anthracnose (*Colletotrichum brevisporum*) through the evaluation of severity in fruits and seedlings.

MATERIALS AND METHODS

Collection of chili pepper genotypes

In July and August 2016, samples of ripe fruits from presumably resistant and productive plants were collected from farmer’s reference and visual evaluation (mass selection), in 37 producing farms of chilli pepper *pimenta-de-cheiro* in the municipalities of Iranduba, Manacapuru, Rio Preto da Eva and Presidente Figueiredo, being eight of them from the municipality of Iranduba (IRA); seven from Manacapuru (MPU); thirteen from Presidente Figueiredo (PF) and nine from Rio Preto da Eva (RPE).

Three to five fruits with peduncle were removed from each plant, stored in paper bags, labeled and transported to the Phytopathology Laboratory of the National Institute of Amazonian Research - INPA. Seeds were removed from fruits and submitted to asepsis according to Baraka et al. (2011). Then were stored in hermetically closed plastic bottles and identified according to their origin.

Reactivation and obtaining inoculum

The INPA 2787 strain, previously identified as *Colletotrichum brevisporum* and with proven pathogenicity in chili pepper *pimenta-de-cheiro* (Almeida, 2015) was reactivated. This strain was preserved by the Castellani method (Castellani, 1967) and deposited in the fungus collection at the Laboratory of Plant Pathology of INPA.

The reactivation occurred by transferring the fungus to Petri dishes containing potato-dextrose-agar (PDA) culture medium maintained at 27°C for 10 days for conidia production. Preparation of the inoculum was performed according to Coutinho et al. (2011) with adaptations, being the concentration adjusted for 10⁶ conidia/mL.

Anthracnose severity in seedlings

The experiment was carried out in a greenhouse at the National Institute of Amazonian Research - INPA, Campus III. A completely randomized design was used, with 102 treatments (genotypes) and 4 replicates for each treatment, one plant per experimental plot. Two of these genotypes were used as controls. The positive control, a genotype collected with symptoms of anthracnose, therefore considered as susceptible, was inoculated with the pathogen. The negative control, a genotype collected without anthracnose symptoms, was inoculated only with sterile distilled water.

Sowing was performed in 128-cell trays with Plantmax® organomineral substrate and then transplanted into plastic cups with capacity for 300 ml containing sifted latosol. After reaching 15 cm in height and with six to eight leaves, the seedlings were inoculated with the suspension of the inoculum, with the aid of a spray near the point of flowing through the leaves. The seedlings were kept for 24 h in a humid chamber in a greenhouse with controlled irrigation.

Anthracnose symptoms on leaf were evaluated at 7, 14 and 21 days after inoculation (DAI) using the scale of scores as described by Mahasuk et al. (2009a), with some changes, where grade 1 = absence of symptoms; grade 2 = localized cell death, lesions (> 1 mm) with defined margin, hypersensitivity reaction; grade 3 = Small isolated necrotic lesions, covering about 1% of the leaf area; grade 4 = Discrete increase in necrotic lesions, covering about 5% of the leaf area; grade 5 = Lesions covering approximately 10% of the leaf area and with the presence of the acervulum; grade 6 = Lesions covering approximately 25% of the leaf area and with abundant presence of acervuli.

Anthracnose severity in fruits

From the seedling inoculation results, 28 genotypes were selected, which were transplanted to the field at the Experimental Station of Hortaliças Dr. Alejo Von der Pahlen located at Km 14, BR174, Rodovia AM 010, at the National Institute of Amazonian Research - INPA, Manaus, AM.

The transplanting was performed in soil fertilized with chicken manure (2 kg per pit) following the spacing and fertilization recommendations according to Filgueira (2013). The topdressing fertilization was performed with 30 g of NPK (4-14-8). Foliar fertilization was performed every 15 days using 6 g per liter of Plantafol (Valagro®).
(NPK-20-20-20). Flowering began at 65 days after sowing and fruit were harvested at approximately 85 days.

The experiments were conducted in a completely randomized design with 28 treatments (genotypes), 3 replicates per treatment (one plant as an experimental unit), in which the fruits were the sub-replicates. Five fruits from each plant were collected, making 15 fruits per treatment, for each maturity stage [mature and immature]. The fruits were taken to Phytopathology Laboratory of INPA, where the fruits severity to anthracnose was evaluated in two periods (7 and 14 days).

The fruits were soaked in sodium hypochlorite solution 1% NaClO (v/v) for one minute and washed in distilled water. The dry fruits were stored under previously sterilized towel paper in gerbox boxes containing cotton soaked with sterile water to maintain 100% relative humidity (RH). The inoculation in the fruit was performed according to Lin et al. (2002).

Resistance of the chili pepper fruits to the anthracnose was evaluated according to the following considerations:
(i) Area of the lesion measured by means of images of the fruits photographed at 7 DAI and 14 DAI, in immature and mature stages, with the help of Autocad 2016 software tools; so, it became possible to classify the genotypes into the following groups: resistant with <10% of the injured area (R), moderately resistant with 11-20% (MR), susceptible with 21-40% (S) and highly susceptible > 41% (HS) (Park et al., 2009).
(ii) Number of days for the emergence of the first symptoms of the pathogen, incubation period.
(iii) Counting of conidia on 14 DAI with the help of the Neubauer chamber. The fruit was washed with 1 mL of sterilized distilled water on a Petri dish with the aid of a number zero brush to help detach the conidia from the conidiophores. Afterwards, a sample was removed from the suspension for the quantification of conidia (Alfenas and Mafía, 2007). The results were calculated to obtain the number of conidia per cm² of the lesion.

Morphoagronomic characterization of chili pepper genotypes

The characterization of the genotypes and evaluations from a sample of 150 fruits per genotype considered the fruits in the immature stage, green coloration, mature stage, the appearance of ripe fruit color (senescence phase) and plant growth habit according to IPGRI (1995).

Statistical analyzes

Seedling severity scores were tabulated, and the data were compared by analysis of variance (ANOVA) using the Scott and Knott (1974) test (P≤0.05) using the Sisvar software, version 5.6 (Ferreira, 2014).

Fruit severity and morphoagronomic characterization data were submitted to analysis of variance (ANOVA) and to the Scott and Knott (1974) test (P≤0.05) using Genes software (Cruz, 2001).

RESULTS

Anthracnose severity in seedlings

The evaluations indicated a progressive increase in the levels of the disease severity, with averages of 2.70 to 4.41. After 21 days, there was colonization of the pathogen in 100% of the genotypes, but with different levels of severity. The negative control genotype, inoculated with water, did not show any symptoms due to anthracnose, whereas the positive control genotype showed symptoms due to anthracnose after 7 DAI (Table 1).

The distribution of genotypes in evaluation were the following: 38.61% lower and 61.39% greater than the average of 2.70 on the first week, 32.67% lower and 54.46% greater than the average of 3.50 on the second week and 40.59% lower and 59.41% greater than the average of 4.41 on the third week. MPU10, IRA03, and RPE33 genotypes stood out as they presented an injured area of less than 1 mm up to 14 DAI (Table 1).

Anthracnose severity in fruits

In the fruits with more advanced anthracnose symptoms, at 14 DAI, circular lesions and tissue deepening were observed. The lesions formed concentric rings that evolved until the involvement of the entire fruit, characteristic of anthracnose. Another characteristic observed was the production of conidial masses of orange color, sometimes white or grayish, that made the surface of the fruit wet (Fig. 1a-e).

The amplitude of injured areas in immature fruits at 7 DAI ranged from 0.3 and 3.2 cm². According to the anthracnose severity assessment, in these fruits, at 7 DAI, the genotypes that presented averages of injured areas with amplitude ranging from 0.3 to 0.8 cm² were considered resistant, those that had averages of injured areas between 0.9 and 1.8 cm² were considered moderately resistant and those with an average between 1.9 and 3.2 cm² were susceptible (table 2).

Following the reactions classification in the fruits at 7 DAI, the results showed that resistant (R), moderately resistant (MR) and susceptible (S) genotypes at the stage of immature fruit comprised 17.86%, 32.14% and 50%, respectively (Table 2). The resistant genotypes were: RPE02, MPU29, IRA03, RPE33, and RPE41. In contrast, susceptible
Table 1: Anthracnose severity on *capsicum chinense* seedlings inoculated with *colletotrichum brevisporum* (inpa 2787 strain)

Genotype	Anthracnose severity^a	7 DAI	14 DAI	21 DAI^b
NC⁴	1.0 b	1.0 a	1.0 a	
MPU10	1.25 a	1.25 a	3.25 a	
IRA03	1.25 a	1.75 a	2.75 a	
RPE33	1.50 a	1.50 a	3.50 a	
MPU05	1.25 a	2.50 a	3.50 a	
MPU04	1.75 a	2.25 a	3.50 a	
MPU16	1.75 a	2.25 a	3.50 a	
MPU03	1.75 a	2.25 a	3.75 a	
RPE16	1.75 a	2.50 a	2.75 a	
MPU06	1.75 a	2.50 a	3.25 a	
IRA24	1.75 a	2.50 a	3.50 a	
MPU08	2.00 a	2.50 a	3.50 a	
MPU29	2.00 a	3.00 a	4.00 a	
MPU31	2.00 a	3.00 a	4.00 a	
RPE02	2.50 a	2.50 a	3.50 a	
MPU09	1.50 a	2.50 a	4.25 a	
MPU12	1.50 a	3.00 a	4.50 a	
IRA02	1.75 a	2.75 a	4.50 a	
MPU01	2.00 a	2.50 a	4.25 a	
IRA20	2.25 a	2.75 a	4.75 a	
IRA9	2.25 a	3.00 a	4.25 a	
IRA25	2.75 b	2.75 b	4.00 b	
IRA01	3.00 b	3.00 b	4.00 b	
IRA28	2.75 b	2.75 b	4.75 b	
MPU13	2.00 a	3.25 a	4.00 a	
IRA04	2.00 a	3.50 a	4.00 a	
RPE07	2.00 a	3.75 a	4.00 a	
RPE37	2.50 a	3.25 a	3.50 a	
PF18	1.75 a	3.25 a	4.25 a	
IRA1b	1.75 a	3.75 a	4.50 a	
IRA21	2.00 a	3.50 a	4.25 a	
MPU31b	2.00 a	3.50 a	4.50 a	
MPU23	2.00 a	3.75 a	5.00 a	
PF09	2.25 a	4.00 a	5.00 a	
PC⁴	2.25 a	4.25 a	4.50 a	
MPU33	2.50 a	3.25 a	4.50 a	
IRA05	2.50 a	3.50 a	4.50 a	
MPU34	2.50 a	3.75 a	4.50 a	
PF4a	2.50 a	3.75 a	4.75 a	
RPE20	2.50 a	3.75 a	4.75 a	
IRA19	2.50 a	4.00 a	4.25 a	
RPE15	2.50 a	4.00 a	4.50 a	
MPU24	2.50 a	4.50 a	5.00 a	
IRA06	2.75 b	3.25 a	4.00 a	
PF29	2.75 b	4.00 a	4.00 a	
IRA23	3.00 b	3.25 a	3.50 a	
PF25	3.50 b	3.50 a	4.00 a	
RPE4a	3.50 b	3.50 a	4.00 a	
RPE18	2.75 b	3.25 a	4.25 a	
RPE30	2.75 b	3.25 a	5.00 a	
MPU25	2.75 b	3.75 a	4.25 a	
RPE17	2.75 b	3.75 a	4.25 a	
MPU02	2.75 b	3.75 a	4.75 a	
MPU26	2.75 b	4.00 a	4.75 a	

Significant at the 5% probability level

^aScore scale: 1—no symptoms; 2—lesion<1 mm; 3—lesion 1 % of leaf area; 4—lesion 5 % of leaf area; 5—lesion 10 % of foliar area; 6—lesion 25 % of foliar area

^bAverages of four replicates. Columns with the same letter do not differ statistically from each other by the Scott and Knott (1974) test at the 5% probability level

^cNC-negative control (inoculated with water) and PC-positive control (inoculated with the INPA 2787 strain)

(Contd...)
genotypes were the following: MPU02, IRA18, IRA21, IRA01, MPU06, IRA24, MPU08 and IRA05 (Table 2).

At 14 DAI, the amplitude of injured areas in immature fruits was between 2.1 and 9.7 cm². In this case, highly susceptible genotypes were observed, with areas between 4.2 and 9.7 cm² according to Table 2.

The amplitude of injured areas in mature fruits, at 7 DAI, was between 0.2 and 3.8 cm². The genotypes that presented injured areas between 0.2 and 1.0 cm² were considered resistant; between 1.1 and 1.8 cm² considered moderately resistant and between 2.2 and 3.8 cm², susceptible genotypes (Table 3). The results showed that resistant (R), moderately resistant (MR), susceptible (S) genotypes in the mature fruit stage constituted 17.86%, 50%, and 32.14% respectively (Table 3).

In mature fruits, the resistant genotypes were: MPU29, PF09, IRA02, IRA01, and RPE41. Only the RPE02 genotype was considered susceptible at this stage and the MPU29 genotype showed the lowest mean of injured area (0.2 cm²) (Table 3).

The amplitude of injured areas at 14 DAI was between 4.2 and 9.9 cm². Highly susceptible genotypes were found with damaged areas of 4.3 and 9.9 cm² (Table 3). The incubation period ranged from 2 to 6 DAI for both mature and immature fruits (Table 2 and 3).

In laboratory conditions, maximum production of 19.57×10^6 conidia/cm² and a minimum production of 3.27×10^6 conidia/cm² was detected after 14 DAI (Table S1).

By comparing the results of sporulation of *C. brevisporum* with the lesion reaction in mature fruits (Table 3), it is observed that there is some correspondence of the data, however, this parameter can be a reference, but not determinant. The genotypes RPE02, MPU13 and RPE07

Table 2: Anthracnose severity in immature fruits of *capsicum chinense* inoculated with *colletotrichum brevisporum* (inpa 2787 strain)

Genotype	7 DAI¹²	Reaction³	14 DAI³	Reaction	Incubation (days)
MPU02	3.2ᵃ	S	7.0ᵇ	AS	6
IRA18	3.0ᵃ	S	9.0ᵇ	AS	2
IRA21	2.9ᵃ	S	8.3ᵇ	AS	2
IRA01	2.9ᵃ	S	8.0ᵇ	AS	3
MPU06	2.9ᵃ	S	8.0ᵇ	AS	3
IRA24	2.8ᵃ	S	9.7ᵇ	AS	3
MPU08	2.6ᵃ	S	7.6ᵇ	AS	4
IRA05	2.6ᵃ	S	6.6ᵇ	AS	5
IRA04	2.1ᵇ	S	8.4ᵇ	AS	2
IRA25	2.1ᵇ	S	5.3ᵇ	AS	4
IRA06	2.0ᵇ	S	7.3ᵇ	AS	3
RPE07	2.0ᵇ	S	7.0ᵇ	AS	3
IRA02	1.9ᵇ	S	7.2ᵇ	AS	2
MPU03	1.9ᵇ	S	4.9ᵇ	AS	3
IRA23	1.8ᵇ	MR	8.5ᵇ	AS	3
MPU13	1.8ᵇ	MR	7.2ᵇ	AS	3
IRA15	1.7ᵇ	MR	7.2ᵇ	AS	5
RPE03	1.6ᵇ	MR	3.6ᵇ	S	3
MPU31	1.5ᵇ	MR	6.4ᵇ	AS	6
MPU25	1.5ᵇ	MR	4.9ᵇ	AS	6
RPE04	1.3ᵇ	MR	6.2ᵇ	AS	4
PF09	1.2ᵇ	MR	5.8ᵇ	AS	3
PF25	1.1ᵇ	MR	2.6ᵇ	S	2
RPE41	0.8ᵇ	R	5.8ᵇ	AS	5
RPE33	0.7ᵇ	R	5.2ᵇ	AS	4
IRA03	0.7ᵇ	R	5.4ᵇ	AS	3
MPU29	0.6ᵇ	R	4.6ᵇ	AS	2
RPE02	0.3ᵇ	R	2.1ᵇ	S	3
Pr>F	7.8**		14.0**		
CV	27.2		13.5		

Significant at the 5% probability level

¹Means followed by distinct letters in the same column do not differ by the Scotti and Knott (1974) test at the 5% probability significant level

²Media of injured area of 15 fruits per genotype

³Reaction: R-resistant; MR-moderately resistant; S-susceptible; AS-highly susceptible

Fig 1. [a-e] Anthracnose symptoms of (*Colletotrichum brevisporum*) in two chili peppers genotypes, at 14 DAI.
were classified as highly susceptible (HS) and presented conidia concentrations of 19.57 x 10^3, 16.57 x 10^3 and 12.36 x 10^3 per cm^2 of the lesion, respectively (Table S1). The genotype MPU29, classified as resistant (R), presented concentration of conidia/cm^2 of the lesion of 4.61 x 10^3 (Table S1). However, this behavior cannot be considered the standard, because the RPE41 genotype, classified as resistant (R), despite low sporulation (0.51 x 10^3), showed large lesion area and conidia production of 12.55 x 10^3 conidia/cm^2 (Table S1).

Morphoagronomic characterization of chili pepper genotypes

The fruit mass values varied between 5.58 g (MPU03) and 13.74 g (IRA18), the fruit length values ranged from 4.08 cm (MPU02) to 8.16 cm (IRA21), the diameter values varied between 1.61 (IRA04) and 2.55 (IRA03 and PF25), the length/diameter ratio ranged from 1.88 (MPU02) to 4.70 (IRA21) (Table 4).

The genotypes classified as resistant presented average lengths of 4.68 (RPE33), 5.49 (IRA01), 5.59 (RPE02), 6.33 (MPU29), 6.41 (RPE41), 6.47 (IRA03), 7.03 (IRA) and 7.51 (PF09). The genotypes IRA25, MPU25, IRA24, PF25, IRA21 indicated tolerance to anthracnose, since they had normal development and good productivity, with averages of mass/fruit ranging from 10.43 (PF09) to 12.59 (IRA25) (Table 4).

Regarding the shape of the fruits (Table 5 and Fig. S1), genotypes were distinguished in four types: elongated, triangular, campanulate and block. Regarding fruit color, three red color variations were observed, light-red, red and dark-red, as well as lemon-yellow. Regarding the habit of

Table 3: Anthracnose severity in mature fruits of Capsicum chinense inoculated with Colletotrichum brevisporum (INPA 2787 strain)

Genotype	Injured area (cm²)	Reaction	Incubation (days)		
MPU02	3.8a	S	9.2a	AS	3
RPE07	3.1a	S	8.9a	AS	3
MPU13	3.0a	S	5.8a	AS	2
MPU02	2.7a	S	5.8a	AS	5
IRA04	2.6a	S	9.7a	AS	2
IRA18	2.3a	S	6.8a	AS	2
RPE03	2.2a	S	9.0a	AS	2
MPU06	2.2a	S	7.4a	AS	5
IRA23	2.2a	S	9.9a	AS	3
PF25	1.8a	MR	8.0a	AS	4
MPU25	1.7a	MR	7.5a	AS	5
MPU27	1.6a	MR	9.2a	AS	2
IRA05	1.6a	MR	6.5a	AS	3
IRA24	1.6a	MR	9.4a	AS	3
IRA03	1.5a	MR	8.5a	AS	4
RPE04	1.5a	MR	5.8a	AS	3
MPU03	1.5a	MR	5.8a	AS	2
MPU08	1.4a	MR	7.2a	AS	4
IRA06	1.4a	MR	4.3a	AS	2
RPE33	1.4a	MR	4.2a	AS	4
MPU31	1.3a	MR	4.8a	AS	6
IRA15	1.1a	MR	6.7a	AS	5
IRA25	1.1a	MR	5.7a	AS	3
RPE41	1.0a	R	6.4a	AS	3
IRA01	1.0a	R	5.9a	AS	3
IRA02	0.6a	R	6.2a	AS	2
PF09	0.5a	R	5.5a	AS	4
MPU29	0.2a	R	5.9a	AS	2
Pr-F	10.7**		9.3**		
CV	25.2		13.7		

Table 4: Morphoagronomic characterization of 28 chili pepper (Capsicum chinense) genotypes

Genotype	Mass/ Fruit (g)¹	Fruit length (cm)	Fruit diameter (cm)	Length/Diameter
MPU03	5.6a	4.10a	2.14b	1.90a
IRA01	6.1a	5.49a	1.74a	3.25b
MPU02	7.3a	4.08a	2.18b	1.88a
IRA04	7.3a	7.11a	1.61a	4.44a
MPU08	7.5a	4.88a	1.95a	2.44a
IRA06	7.9a	6.66a	1.85a	3.64a
RPE41	7.9a	6.41a	2.09a	3.08a
RPE04	8.1a	5.50a	2.10a	2.61a
MPU13	8.4a	5.60a	2.19a	2.57a
IRA05	8.7a	9.39	1.81a	3.88a
MPU06	9.2a	5.27a	2.38a	2.23a
RPE07	9.4a	6.81a	1.92a	3.55a
IRA15	9.4a	7.27a	1.80a	4.08a
MPU29	9.9a	6.33a	2.38a	2.73a
MPU31	9.9a	5.78a	2.24a	2.58a
RPE02	10.2a	5.59a	2.27a	2.46b
IRA02	10.4a	7.03a	2.07a	3.44a
PF09	10.4a	7.51a	1.99a	3.93a
RPE03	10.7a	5.90a	2.35a	2.51a
IRA21	10.7a	8.16a	1.76a	4.70a
IRA23	11.0a	7.20a	2.19a	3.30a
MPU25	11.1a	6.67a	2.24a	2.98a
RPE33	11.2a	4.68a	2.48a	1.93a
IRA24	11.3a	7.66a	2.03a	3.81a
PF25	11.7a	5.39a	2.54a	2.16a
IRA25	12.6a	7.79a	2.04a	3.79a
IRA03	13.6a	6.47a	2.54a	2.55a
IRA18	13.7a	7.33a	2.42a	3.08a
Pr-F	2.09**	4.98**	2.66**	6.91**
CV	24.5	13.67	12.75	16.91

Significant at the 5% probability level

¹Average mass of 150 fruits per genotype
²Means followed by distinct letters in the same column do not differ by the Scottk and Knott (1974) test at the 5% probability significant level
³Reaction: R-resistant; MR-moderately resistant; S-susceptible; AS-highly susceptible

plant growth, genotypes differed in the following: erect, compact and prostrate.

DISCUSSION

Anthracnose symptoms in peppers occur mainly in fruits. In leaves, the symptoms are not severe, besides being restricted, which may be advantageous for the selection of resistance at the early stage of development (Mahasuk et al., 2009b). In similar experiments, anthracnose resistance sources have been found in *Capsicum chinense* in the seedling phase (Mahasuk et al., 2009a; Silva et al., 2014). This indicates that breeding of this species can be performed by selection or by genetic crosses.

On the other hand, it is verified that the selection based only on the reaction of seedlings to anthracnose is not enough. Mahasuk et al. (2009b) verified the independence of the *Co3* gene in relation to the *Co1* and *Co2* genes, suggesting that there was no correlation between seedling resistance and fruits resistance of *Capsicum* spp., thus, the selection process for anthracnose resistance still needs to be carried out in fruits.

In the present study, genotypes with early resistance to anthracnose were considered those that showed a lack of symptoms of the disease or with isolated necrotic lesions covering leaf area up to 1% or hypersensitivity reaction. According to Mukhtar et al. (2016), plants detect molecular components of the invading pathogens and frequently respond with successful immune responses. Dickman and Fluhr (2013) mention that practically all cells have an intrinsic program for genetically encoded cell suicide. Cell deaths are genetically programmed, sometimes requiring the induction of specific genes to stimulate cell death machinery.

Only the MPU29 and RPE41 genotypes were classified as resistant at both maturation stages. The differential reactions in fruits may be the result of the activity of enzymes related to the pathogenesis. Prasath and Ponnuswami (2008) demonstrated that the total content orthodihydroxy phenols were significantly higher in resistant and moderately resistant genotypes to anthracnose caused by *C. capsici*. The activity of the enzymes peroxidase, polyphenol oxidase, and phenyl ammonia lyase was also higher in the resistant genotype followed by moderately resistant hybrids. In addition, the lowest enzymatic activity was recorded in the susceptible genotype.

The cuticular layer of the fruits is another factor that may play an important role in the prevention of infection and colonization of the fungus. Ranathunge et al. (2012) described the mechanisms of colonization and infection of *C. truncatum* and observed dissolution of the cell walls on the 6th DAI, causing the appearance of sunken on the surface of the fruit and only on the 7th-9th DAI, the epidermis then breaks and reveals the presence of setae and conidia.

In contrast, Ridzuan et al. (2018) state that the manifestation of resistance or susceptibility of the host to a pathogen is restricted to the pathogen genotype and to its degree of virulence in the host genotype. The corresponding gene pairs regulate the result of some particular genotype-genotype interaction. The authors also state that the host genotype, the pathogen genotype, time and environment may be responsible for the anthracnose development. For Mongkolporn et al. (2010) different genes with distinct expression mechanisms differentially react to *Colletotrichum* species.

In this study, no difference was found in severity between immature and mature fruits at 7 DAI, but the difference was found on 14 DAI. Mahasuk et al. (2009b) found similar behavior regarding susceptibility to anthracnose in plants F1 and F2, regardless of the stage of the fruits (green and red).
Nevertheless, Silva et al. (2014) suggest the existence of distinct genes responsible for resistance in different stages of the fruit in development. The authors also verified the influence of environmental conditions on the severity of the disease in some of the evaluated accesses.

Oh et al. (1998) observed a successful invasion and colonization of *C. gloeosporioides* occurring in green fruits, but not in red fruits. Although the severity did not present a significant difference on the 7th DAI, numerically speaking, the green fruits presented a larger average of injured area in relation to the mature fruits.

According to Adikaram, Brown and Swinburne (1983), the infection may start by spore germination and formation of spores and appressoria on green fruits, which may remain quiescent and continue the infection process and colonization of the host only after maturation of the fruits.

Nevertheless, in observations made on the anthracnose severity in *Capsicum annuum* L. at 130 and 145 days after transplantation, Begum et al. (2015) noted that all genotypes/varieties reacted differentially and significantly to this disease.

The incubation period (time elapsed between inoculation to the emergence of symptoms) and the latency period (time elapsed between inoculation to the emergence of the first fungal structures) are indices that can infer if the pathogen is more or less aggressive to a certain genotype. In nature, a polycyclic system such as anthracnose can generate a high variability (Amorim, 1995). In this experiment, it was not possible to relate the incubation period to the resistance classification since the genotypes classified as resistant did not indicate a pattern, the symptoms manifested early, with two days or late, with 6 days.

The fungus sporulation potential is an index that allows to determine the capacity of fungal species proliferation in nature with greater efficiency and thus, to guarantee a greater number of generations of the pathogen per cycle of the host. After deposition on the host surface, the conidia emit the germ tube and penetration begins. However, higher conidial production does not necessarily indicate a susceptibility reaction.

In Amazonas, farmers show preferences for green fruits, which are most sought after for fresh consumption in local cuisine, and mature fruits are reserved for seed withdrawal (self-observation).

Genotypes classified as resistant with good agronomic performance were observed in this study. Oliveira et al. (2011) characterized genotypes from the States of Amazonas, Pará, and Rondônia and obtained fruits that showed variation in fruit length from 3.2 cm to 7.5 cm and fruit diameter from 1.9 cm to 3.2 cm. Domenico et al. (2012) characterized accessions of *C. chinense* from the pepper germplasm bank of Campinas, SP, and obtained *C. chinense* fruits with mean values ranging from 2.3 to 7.7 cm and for width, the mean values varied from 1.1 to 2.5 cm. Fonseca et al. (2008) characterized 38 accessions from the Alto Rio Negro region, state of Amazonas and categorized the different lengths into five classes, whose measures ranged from 1 to 12 cm, while for the width, there were three classes, ranging from 1.0 to 2.5 cm. These variations of length and width were also observed in this study.

CONCLUSIONS

Screening of resistant chilli pepper genotypes to anthracnose caused by *Colletotrichum brevisporum* should be performed based on seedlings and fruits. The use of the anthracnose severity scale for seedlings and fruits contributes to the screening of resistant genotypes. Genotypes from the municipalities of Iranduba, Manacapuru, Rio Preto da Eva and Presidente Figueiredo are still in the process of genetic segregation for anthracnose resistance. Sporulation can be used as a reference for the study of fruit severity, but not as a response pattern for resistance or susceptibility. Resistant genotypes can be used in breeding programs because they have good agronomic performance.

ACKNOWLEDGMENTS

The author would like to express his thanks to the staff of Vegetable Experimental Station and to the Laboratory of Phytopathology of the INPA, Manaus, AM where the experiment was carried out.

Authors’ contributions

Leonor C. S. Souza conducted the whole experiment and wrote the first draft of the manuscript; Luiz A. G. Assis collaborated in conducting the experiment; Aricléia de M. Catarino contributed for the preparation and organization of the manuscript and Rogério E. Hanada idealized the work, guided the first author and contributed greatly for the preparation of the manuscript.

REFERENCES

Adikaram, N. K. B., E. B. Averil and T. R. Swinburne. 1983. Observations on infection of *Capsicum annuum* fruit by *Glomerella cingulata* and *Colletotrichum capsici*. Trans. Br. Mycol. Soc. 80: 395-401.

Alfenas, A. C. and R. G. Mafia. 2007. *Métodos em Fitopatologia*. UFV, Viçosa, MG.
Ali, A., P. K. Bordoh, A. Singh, Y. Siddiqui and S. Droby. 2016. Post-harvest development of anthracnose in pepper (Capsicum spp.): Etiology and management strategies. Crop. Prot. 90: 132-141.

Almeida, L. B. 2015. Diversidade e Identificação Molecular de Isolados de Colletotrichum Associados ao Gênero Capsicum no Amazonas. Ph.D. Dissertation, Instituto Nacional de Pesquisas da Amazônia, Manaus.

Almeida, L. B., K. S. Matos, L. A. G. Assis and R. E. Hanada. 2017. First report of anthracnose of Capsicum chinense in Brasil caused by Colletotrichum brevisporum. Plant Dis. 101: 1035.

Amorim, L. 1995. Colonização e reprodução. In: A. B. Filho, H. Kimati and L. Amorim (Eds.). Manual de Fitopatologia: Princípios e Conceitos. Editora Agronômica Ceres, São Paulo, pp. 308-309.

Arunakumara, K. T., C. Satyanarayana. 2016. Screening of chili genotypes against Colletotrichum capsici causing anthracnose and its management. Bioscan. 11: 2877-2882.

Baraka, M. A., F. M. Radwan, K. H. Afrat. 2011. Survey and identification of major fungi causing root rot on date palm and their relative importance in Egypt. J. Biol. Chem. Environ. Sci. 6: 319-337.

Bento, C. S., A. G. de Souza, C. P. Sudré, S. Pimenta, R. Rodrigues. 2017. Multiple genetic resistances in Capsicum spp. Genet. Mol. Res. 16: gmr16039789.

Begum, S., M. Narjinary, Y. R. Anand and P. S. Nath. 2015. Screening of chilli genotypes against anthracnose under field condition. Environ. Ecol. 33: 1858-1862.

Bezerra, J. P., P. V. Pereira, L. F. Barbosa, R. Ramos-Sobrinho, D. B. Pinho, A. Reis, D. B. Pinho, A. Reis, I. P. Assunção and G. S. A. Lima. 2016. First report of anthracnose on chayote fruits (Sechium edule) caused by Colletotrichum brevisporum. Plant Dis. 100: 217.

Castellani, A. A. 1967. Maintenance and cultivation of the common pathogenic fungi of man in sterile distilled water: Further researches. J. Trop. Med. Hyg. 70: 181-184.

ChunYing, S., M. S. Li, Z. Z. Hai, P. Alain, W. L. Hao, Z. B. Xi. 2015. Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Sci. Hortic. 181: 81-88.

Coutinho, W. M., D. D. Andrade, P. B. A. Almeida, E. P. Medeiros, G. M. G. Rocha, C. M. Queiroz, T. M. F. Suassuna. 2011. Development of a powder formulation of Aspergillus parasiticus for dry inoculation of peanut kernels. Trop. Plant Pathol. 36: 414-418.

Cruz, C. D. 2001. Programa GENES Aplicativo Computacional em Genética e Estatística. UFW, Viçosa, MG.

Diao, Y. Z., C. Zhang, F. Liu, W. Z. Wang, L. Liu, L. Cai and X. L. Liu. 2017. Colletotrichum species causing anthracnose disease of chili in China. Persoonia. 38: 20-237.

Dickman, M. B. and R. Fluhr. 2013. Centrality of host cell death in plant-microbe interactions. Ann. Rev. Phytopathol. 51: 543-70.

Domenico, C. I., J. P. Coutinho, H. T. Godoy and A. M. T. Melo. 2012. Caracterização agronômica e pungência em pimenta de cheiro. Hortic. Bras. 30: 466-472.

Ferreira, D. F. 2014. Sisvar: A Guide for its Bootstrap procedures in multiple comparisons. Cienc. Agrotec. 38: 109-112.

Filgueira, F. A. R. 2013. Novo Manual de Olericultura: Agrotecnologia Moderna na Produção e Comercialização de Hortaliças. UFW, Viçosa, MG.

Fonseca, R. M., R. Lopes, W. S. Barros, M. T. G. Lopes and F. M. Ferreira. 2008. Morphologic characterization and genetic diversity of Capsicum chinense Jacq. accession salong the upper Rio Negro Amazonas. Crop Breed. Appl. Biotechnol. 8: 187-194.

Gupta, V., A. Kaur, A. Singh, H. Shekhar, R. Singh, A. Bobde. 2018. Screening of different chilli genotypes against anthracnose disease (Colletotrichum capsici) under controlled condition. Int. J. Curr. Microbiol. App. Sci. 7: 2328-2334.

IPGRI, AVRDC, CATIE. 1995. Descriptor for Capsicum (Capsicum spp.). International Plant Genetic Resource Institute, Rome, IT, The Asian Vegetable Research and Development Center, Taipei, TW, the Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, CRC.

Lee, J., J. H. Hong, J. W. Do and J. B. Yoon. 2010. Identification of QTLs for resistance to anthracnose to two Colletotrichum species in pepper. J. Crop. Sci. Biotechnol. 13: 227-233.

Liu, F., G. Tang, X. Zheng, Y. Li, X. Sun, X. Qi, Y. Zhou, J. Xu, H. Chen, X. Chang, S. Zhang and G. Gong. 2016. Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease in peppers from Sichuan Province, China. Sci. Rep. 6: 1-17.

Lin, Q. U. C. Kanchana, T. Jaunet and O. Mongkolporn. 2002. Genetic analysis of resistance to pepper anthracnose caused by Colletotrichum capsici. Thai. J. Agric. Sci. 35: 259-264.

Mahasuk, P., P. W. T. Taylor and O. Mongkolporn. 2009a. Identification of two new genes conferring resistance to Colletotrichum acutatum in Capsicum baccatum. Phytopathology, 99: 1100-1104.

Mahasuk, P., N. Khumpeng, S. Wasee, P. W. T. J. Taylor and O. Mongkolporn. 2009b. Inheritance of resistance to anthracnose (Colletotrichum capsici) at seedling and fruiting stages in chili pepper (Capsicum spp.). Plant Breed. 128: 701-706.

Mishra R., E. Rout, R. K. Joshi. 2019. Identification of resistant sources against anthracnose disease caused by Colletotrichum truncatum and Colletotrichum gloeosporioides in Capsicum annum L. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 89: 517.

Maracahipes, A. C., J. W. S. Correa, P. E. Teodoro, K. L. Araujo, M. A. A. Barelli, L. G. Neves. 2017. Correlation study of resistance components in the selection of Capsicum genotypes resistant to the fungus Colletotrichum gloeosporioides. Genet. Mol. Res. 16: gmr16039720.

Mongkolporn, O., P. Montri, T. Supakaew and P. W. J. Taylor. 2010. Differential reactions on mature green and red pepper fruit infected by three Colletotrichum spp. Plant Dis. 94: 306-310.

Mukhtar, M. S. M., E. McCormack, C. T. Argueso and K. M. Pajerowska-Mukhtar. 2016. Pathogen tactics to manipulate plant cell death. Curr. Biol. 26: 608-619.

Noireung, P., S. Phoulivong, F. Lii, L. Cai, H. C. E. Mckenzie, E. Chukettrote, E. B. G. Jones, A. H. Bahkali and K. D. Hyde. 2012. Novel species of Colletotrichum revealed by morphology and molecular analysis. Cryptogamie Mycol. 33: 347-362.

Oh, B. J., K. D. Kim and Y. S. Kim. 1998. A microscopic characterization of the injection of green and red pepper fruits by an isolate of Colletotrichum gloeosporioides. J. Phytopathol. 146: 301-303.

Oliveira, L. S., S. E. M. Alves, R. Lopes, L. V. Costa and M. Q. Rocha. 2011. Produtividade e qualidade de genótipos de pimenta de cheiro em Manaus. Ph.D. Dissertation, Instituto Nacional de Pesquisas da Amazônia, Manaus.

Park, H. K., B. S. Kim, H. G. Park and J. B. Yoon. 2009. Capsicum germplasm resistant to pepper anthracnose differentially interact with Colletotrichum isolates. Hortic. Environ. Biotechnol. 50: 17-23.
Paul, N. C., H. B. Lee, J. H. Lee, K. S. Shin, T. H. Rye, H. R. Kwon, Y. K. Kim, N. Y. Young and H. Y. Seung. 2014. Endophytic fungi from Lycium chinense Mill and characterization of two new Korean records of Colletotrichum. Int. J. Mol. Sci. 15: 15272-15286.

Prasath, D. and V. Ponnuswami. 2008. Screening of chilli (Capsicum annuum L.) genotypes against Colletotrichum capsici and analysis of biochemical and enzymatic activities in inducing resistance. Indian J. Genet. Plant Breed. 68: 344-346.

Ranathunge, N. P., O. Mongkolporn, R. Ford and P. W. J. Taylor. 2012. Colletotrichum truncatum pathosystem on Capsicum spp: Infection, colonization and defence mechanisms. Australas. Plant Pathol. 41: 463-473.

Ridzuan, R., M. Y. Rafii, S. I. Ismail, M. M. Yusoff, G. Miah and M. Usman. 2018. Breeding for anthracnose disease resistance in chili: Progress and prospects. Int. J. Mol. Sci. 19: 1-21.

Silva, A. S. M., R. Rodrigues, L. S. A. Gonçalves, C. P. Sudré, C. S. Bento, M. G. F. Carmo and A. M. Medeiros. 2014. Resistance in Capsicum spp. to anthracnose affected by different stages of fruit development during pre and postharvest. Trop. Plant Pathol. 39: 335-341.

Silva, J. R. A., T. P. Chaves, A. R. G. Silva, L. F. Barbosa, J. F. O. Costa, R. S. Ramos-Sobrinho, R. R. O. Teixeira, S. J. C. Silva, G. S. A. Lima and I. P. Assunção. 2017. Molecular and morpho-cultural characterization of Colletotrichum spp. associated with antracnose on Capsicum spp. in Northeastern Brasil. Trop. Plant Pathol. 42: 315-319.

Scott, A. J. and M. Knott. 1974. A cluster analysis method for grouping means in the analysis of variance. Biometrics. 507: 512.

Vieira, W. A. S., R. J. Nascimento and S. J. Michereff. 2013. First report of papaya fruit anthracnose caused by Colletotrichum brevisporum in Brazil. Plant Dis. 97: 1659.

SUPPLEMENTARY

Fig S1. [a-j] Morphological characterization of chili peppers genotypes
Table S1: *Colletotrichum brevisporum* (INPA 2787 strain) sporulation 14 DAI under chili pepper fruits (*Capsicum chinense*)

Genotype	Final area¹	Sporulation²	Conidia.10⁶ per cm² of lesion³
MPU03	5.8	0.35ᵃ	16.57
MPU13	5.8	0.35ᵃ	16.57
RPE02	9.2	0.47ᵃ	19.57
MPU25	7.5	0.50ᵃ	15.00
IRA03	8.5	0.50ᵃ	17.00
RPE41	6.4	0.51ᵃ	12.55
IRA05	6.5	0.52ᵃ	12.50
IRA02	6.2	0.61ᵃ	10.16
RPE33	4.2	0.64ᵃ	6.56
RPE07	8.9	0.72ᵃ	12.36
MPU31	4.8	0.73ᵃ	6.58
PF25	8.0	0.78ᵃ	10.26
IRA01	5.9	0.95ᵃ	6.21
IRA25	5.7	0.95ᵃ	6.00
IRA21	9.2	1.02ᵃ	9.02
PF09	5.5	1.05ᵃ	5.24
MPU02	5.8	1.09ᵃ	5.32
RPE03	9.0	1.16ᵇ	7.76
IRA06	4.3	1.27ᵇ	3.39
MPU29	5.9	1.28ᵇ	4.61
IRA18	6.8	1.31ᵇ	5.19
IRA04	9.7	1.42ᵇ	6.83
IRA24	9.4	1.49ᵇ	6.31
IRA15	6.7	1.51ᵇ	4.44
IRA23	9.9	1.53ᵇ	6.47
RPE04	5.8	1.72ᵇ	3.37
MPU08	7.2	1.86ᵇ	3.87
MPU06	7.4	2.26ᵇ	3.27
Pr>F	3.11**		

¹Final injured area average of the mature fruit after 14 days; ²concentration of conidia in 1 mL; ³ratio of injured area/amount of conidia. Means followed by distinct letters in the same column differ by the Scotti & Knott test at the 5% probability level. **significant at the 5% probability level.