Supporting Information

Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization

Anna S. Kamenik †, Uta Lessel ‡, Julian E. Fuchs $, Thomas Fox ‡*, Klaus R. Liedl †*

† Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria

‡ Medicinal Chemistry, Boehringer-Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany

§ Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co KG 1120 Vienna, Austria

Email: klaus.liedl@uibk.ac.at, thomas.fox@boehringer-ingelheim.com
Figure S1 Conformational space of cyclo-(Pro-Ser-leu-Asp-Val) captured in 1µs cMD simulation. (A) The cMD ensemble is color-coded according to the free energies and depicted as projection onto the first two eigenvectors of the aMD dihedral PCA. (B) Occupied $\omega_{\text{Val-5}}$ torsional angles, the simulation is started in the cis state and does not exhibit any snapshots in the trans state.

	cyclo-(Pro-Ser-leu-Asp-Val)	cilengitide	cyclo-(Arg-Arg-Trp-Trp-Arg-Phe)
E_{dihed}	100.0	74.0	110.0
α_{dihed}	1.0	4.0	2.4
E_{tot}	-12400.0	-16208.0	-18182.0
α_{tot}	600.0	857.0	914.0
Figure S2 Cartesian PCA of cyclo-(Pro-Ser-leu-Asp-Val). The aMD ensemble is color-coded according to the reweighted free energies and depicted as projection onto the first two PCA eigenvectors.

Figure S3 Eccentricity of cyclo-(Pro-Ser-leu-Asp-Val). A value of ε near 1 describes an aspherical compound and 0 indicates perfect globularity. The aMD snapshots are color-coded according to the conformational state indicated by ω_{Val-5}. Structures with $|\omega_{Val-5}| \leq 90^\circ$ were considered as cis- (blue) and the remaining structures with $|\omega_{Val-5}| > 90^\circ$ as trans-state (red).
Figure S4 Reweighted distribution of ω_{Val-5} in cyclo-(Pro-Ser-leu-Asp-Val). Reweighting all snapshots of the aMD ensemble results in a trans (red) to cis (blue) state ratio of 25/75.

Figure S5 Comparison to bioactive conformation of cilengitide. The starting structure (red) and cluster representative c16 (orange) (see Figure 5) are superposed with the target-bound conformation of cilengitide. The RMSD to the bioactive conformation are 1.0 Å for the starting structure and 0.6 Å for the cluster representative from the aMD simulation.
Table S2 Dihedral angles of cyclo-(Pro-Ser-leu-Asp-Val) cluster representatives depicted in Figure 4

Cluster-ID	$\phi_{\text{Pro-1}}$	$\psi_{\text{Pro-1}}$	$\omega_{\text{Pro-1}}$	$\phi_{\text{Ser-2}}$	$\psi_{\text{Ser-2}}$	$\omega_{\text{Ser-2}}$
c5	-53	144	-36	-52	131	-167
c19	-53	-52	170	-75	147	-166
c23	-85	-68	174	-44	73	175

Cluster-ID	$\phi_{\text{leu-3}}$	$\psi_{\text{leu-3}}$	$\omega_{\text{leu-3}}$	$\phi_{\text{Asp-4}}$	$\psi_{\text{Asp-4}}$	$\omega_{\text{Asp-4}}$
c5	92	-133	-172	-88	-30	123
c19	55	-92	171	-78	-69	-167
c23	102	-96	148	-62	124	-177

Cluster-ID	$\phi_{\text{Val-5}}$	$\psi_{\text{Val-5}}$	$\omega_{\text{Val-5}}$
c5	-87	142	174
c19	-139	131	-47
c23	-25	123	-5

All values given in °

Table S3 Dihedral angles of cilengitide selected cluster representatives and the bioactive conformation of cilengitide, as depicted in Figure 8.

Cluster-ID	$\phi_{\text{Arg-1}}$	$\psi_{\text{Arg-1}}$	$\omega_{\text{Arg-1}}$	$\phi_{\text{Gly-2}}$	$\psi_{\text{Gly-2}}$	$\omega_{\text{Gly-2}}$
c2	73	-36	161	-102	-143	174
c7	-155	-30	172	-172	-61	134
c16	-63	120	173	52	-122	170
X-ray	-114	130	-178	84	-136	179

Cluster-ID	$\phi_{\text{Asp-3}}$	$\psi_{\text{Asp-3}}$	$\omega_{\text{Asp-3}}$	$\phi_{\text{phe-4}}$	$\psi_{\text{phe-4}}$	$\omega_{\text{phe-4}}$
c2	-77	94	-156	112	-124	169
c7	-89	176	-172	53	-123	169
c16	-66	117	-151	89	-126	-177
X-ray	-87	61	-178	172	-123	-180

Cluster-ID	$\phi_{\text{Val-5}}$	$\psi_{\text{Val-5}}$	$\omega_{\text{Val-5}}$
c2	-87	127	168
c7	-125	62	-180
c16	-97	-64	147
X-ray	-77	-54	175

All values given in °
Figure S6 Conformational space of cyclo-(Arg-Arg-Trp-Trp-Arg-Phe). The aMD ensemble is color-coded according to the reweighted free energies and depicted as projection onto the first two PCA eigenvectors.
Table S4 Sum of dihedral entropies. The entropy is calculated for each backbone dihedral and summed up to quantify and compare the global flexibility of the studied peptidic macrocycles. Error estimations derive from block averaging using a block size of 50,000 frames.

Peptide Structure	$S_{\text{sum}} \text{/J/(mol\cdot K)}$
cyclo-(Pro-Ser-leu-Asp-Val)	504.8 ± 41.5
cyclo-(Arg-Gly-Asp-phe-(N-Me)Val))	523.2 ± 43.1
cyclo-(Arg-Arg-Trp-Trp-Arg-Phe)	637.1 ± 9.0

Table S5 Dihedral angles of the cyclo-(Arg-Arg-Trp-Trp-Arg-Phe) cluster representatives as depicted in Figure 11.

Cluster-ID	$\phi_{\text{Arg-1}}$	$\psi_{\text{Arg-1}}$	$\phi_{\text{Pro-1}}$	$\psi_{\text{Arg-2}}$	$\phi_{\text{Arg-2}}$	$\psi_{\text{Arg-2}}$
c1	-111	16	-167	70	-78	178
c11	-162	175	170	-52	112	177
c13	-98	170	-171	-50	-37	-171

Figure S7 Interproton distances of selected cluster representatives. The white area indicates distances that fulfill the NMR derived restraints. Interproton distances calculated from the selected cluster representatives are depicted in color. Individual structures of the ensemble show varying violation patterns, only the representative structure of cluster c11 fulfills all experimental distance boundaries.
Figure S8 Θ dihedral distributions of the cis and trans states of cyclo-(ProSer-leu-Asp-Val). (Θ = |ϕ-60°| for L- and Θ = |ϕ+60°| for D-amino acids). The aMD ensemble captures the overall trends as implicated by $^3J_{\alpha NH}$ coupling constants. Θ(Val-5) and Θ(Leu-3) of the cis component is shifting towards smaller angles compared to the trans state. While the sampled Θ(Asp-4) are larger in the cis state than in the trans state. The distribution of Θ(Ser-2) is broader in the cis state and slightly shifted towards higher angles. The difference in $^3J_{\alpha NH}$ is small (0.5 Hz) but implies a tendency for larger angles in the trans state, which we do not observe.