EFFECT OF PROSTAGLANDINS AND HORMONES ON CYCLIC AMP FORMATION IN RAT HEPATOMAS AND LIVER TISSUE

G. O. BRONSTAD, T. CHRISTOFFERSEN, E. J. JOHANSEN AND I. OYE

From the Institute of Pharmacology, University of Oslo, Blindern, Oslo, Norway

Received 12 May 1978 Accepted 31 August 1978

Summary.—The formation of cyclic AMP was studied in normal liver, subcutaneous hepatomas derived from MH1C1 cells, and premalignant liver and primary hepatomas induced by the carcinogens 2-acetylaminofluorene (AAF) and 4-dimethylamino-azobenzene (DAB). While only very slight effects of prostaglandins (PG) were seen in slices of normal liver, all the hepatomas responded strongly to PGE₁ and PGE₂. The hepatomas also had increased PGE₁-sensitive adenylate-cyclase activity. PGF₁₂ and PGF₂α did not increase the cAMP level significantly either in the liver or in the hepatomas. During AAF carcinogenesis the response to PGE₁ increased slightly during the carcinogen feeding, and was greatly elevated only in the fully developed hepatomas. This is in contrast to the increase in adrenalin response seen during carcinogenesis, which starts much earlier, and reaches a peak value within 8–10 weeks. It is concluded that various hepatomas have elevated responsiveness to PGE₁ and PGE₂ as well as to adrenalin, but the course of change in the tissues’ ability to respond to these agents during carcinogenesis is very different.

Cyclic AMP (cAMP) seems to be a regulator of cell growth, but its precise role is incompletely understood (Ryan & Heidrick, 1974; Pastan et al., 1975; Friedman, 1976). The metabolism of cAMP is altered in many cancers and malignant cell lines. In rat hepatomas the cAMP system is regulated differently from that of normal liver tissue. In most hepatomas adenylate cyclase is less responsive to glucagon than the liver enzyme (Allen et al., 1971; Emmelot & Bos, 1971; Christoffersen et al., 1972; Tomasi et al., 1973; Boyd et al., 1974; Hickie et al., 1975; Criss & Morris, 1976; Hickie et al., 1977). However, increased effects of adrenalin (Brown et al., 1970; Christoffersen et al., 1972; Boyd et al., 1974) and prostaglandin E₁ (PGE₁) (Chayoth et al., 1973) have also been described. Furthermore, during treatment of rats with chemical carcinogens, before tumour development, alterations in the response pattern of the adenylate cyclase have been observed, including increased responsiveness to adrenergic agents (Christoffersen et al., 1972, 1974; Christoffersen, 1975; Boyd et al., 1974, 1976) and to PGE₁ (Chayoth et al., 1973).

The present study was undertaken in order to get more information on how control of cAMP formation differs in hepatomas and livers. Particular interest has been devoted to the effect of prostaglandins, which have also been proposed as taking part in growth regulation (Sykes, 1976; Jimenez de Asua et al., 1975; Hial et al., 1976). Some primary and transplanted hepatomas were studied, to see whether the increased responsiveness to PGE₁ that has been reported for ethionine-induced hepatomas (Chayoth et al., 1973) is present also in other hepatomas, and also includes other prostaglandins. We also wanted to

Address for reprints: G. O. Bronstad, Inst. of Pharmacology, University of Oslo, P.O. Box 1057, Blindern, Oslo 3, Norway.
examine the time course of the changes in responsiveness of the liver tissue towards PGE₁ and hormones during chemical carcinogenesis.

MATERIALS AND METHODS

Materials.—2-Acetylaminofluorene (AAF) and 4-dimethylaminoazobenzene (DAB) were obtained from Koch–Light Laboratories, UK, adrenalin bitartrate from Rhone Poulenc Paris, glucagon from, Novo, Copenhagen, cyclic AMP, theophylline and pyruvate kinase from Sigma Chemical Co., St Louis, Mo., U.S.A., methylisobutylxanthine from Aldrich Chemicals, Milwaukee, Wis., U.S.A., cyclic [³H]AMP (24-1 Ci/mmol) from New England Nuclear, Boston, U.S.A., [³²P]ATP from The Radiochemical Centre, Amersham, and phosphoenol pyruvate from Boehringer, Mannheim Germany. The prostaglandins were kindly provided by Dr John Pike, The Upjohn Company, Kalamazoo, Mich., U.S.A.

Carcinogen treatment.—Male albino Wistar rats, 12 weeks old at the beginning of the carcinogen treatment, were used. The animals were fed a basal diet (Christoffersen, 1975). This diet was supplemented with 0-025% AAF for the treated group. Paired control animals received the basal diet. Liver tissue designated as pre-malignant was taken from rats killed at various times of treatment, before development of tumours. After 8 months the carcinogen treatment was terminated, and the animals were given standard laboratory chow, until they were killed 5 months later. At that time, the majority of treated rats had liver tumours, often multiple nodules of varying diameter. Tumours of diameter 0-5–1-5 cm were used in the experiments described here. The tumours were examined histologically (courtesy of Dr S. B. Refsum, Rikshospitalet, Oslo), and were found to be hepatocarcinomas. We also studied a single tumour from a rat treated with 0-05% DAB for 7 months, followed by 9 months on carcinogen-free diet.

Inoculation of hepatoma cells.—Buffalo rats of either sex were used in these experiments. The clonal rat hepatoma cell line MH₁C₁ derived from Morris hepatoma 7795 (Richardson et al., 1969) was cultured as described by Gaudernack et al. (1973). When the rats were about 2 weeks old, suspensions of MH₁C₁ cells containing ~200 μg cell protein suspended in 0-5 ml growth medium (Dulbecco modified Eagle’s medium) were inoculated into each flank at the lower back region. After 2–5 months, when tumours of diameter 1–2 cm had developed, the animals were killed.

Cyclic AMP accumulation in slices.—The rats were anaesthetized with ether, and the livers and tumours were rapidly excised and transferred to ice-cold buffer. The hepatomas were trimmed of connective tissue and necrotic areas were removed. The tissues were cut into 0-4–0-5 mm-thick slices weighing 20–80 mg. The slices were transferred to 10-ml Erlenmeyer flasks, and preincubated 45–60 min at 37°C in 1·5 ml Krebs–Ringer bicarbonate buffer containing 119·2 mM NaCl, 3 mM KCl, 1·2 mM MgSO₄, 2·4 mM KH₂PO₄, 24·9 mM NaHCO₃, 20 mM CaCl₂ and 10 mM glucose, under continuous gassing with 95% O₂ and 5% CO₂. The incubation was initiated by the addition of the agents to be tested dissolved in 0·5 ml of the Krebs–Ringer bicarbonate buffer with 8 mM theophylline, to give a final volume of 2 ml, and concentrations as indicated in the figure legends. Stock solutions of prostaglandins were dissolved in 96% ethanol (2 mg/ml) and diluted in buffer immediately before addition. The incubation was terminated by rapidly transferring the slice to liquid N₂ after blotting on filter paper.

The frozen slices were homogenized in 5% trichloroacetic acid. Cyclic AMP was determined as described earlier (Christoffersen et al., 1973) using the protein-binding assay of Gilman (1970).

Assay of adenylate-cyclase activity.—Incubations were carried out at 30°C in 200 μl of a mixture containing: 1 mM [³²P]ATP (~10⁶ cts/min tube), 1 mM cAMP, 4 mM MgCl₂, 30 mM KCl, 50 mM Tris–HCl, pH 7·5, 1 mM methylisobutylxanthine, 1·5 i.u. pyruvate kinase, 2·5 mM phosphoenol pyruvate, and homogenate equivalent to about 500 μg protein. The reaction was terminated by the addition of 400 μl 150 mM ZnSO₄, 50 μl [³H]cAMP (~2500 cts/min) for recovery determination during the purification step and 400 μl 150 mM Na₂CO₃ were added to each tube. After centrifugation at 2000 g for 5 min, the labelled cAMP in the supernatants was purified by the Dowex-50/alumina double-column method described by Salomon et al. (1974), and counted by liquid scintillation.
Determination of protein.—The method of Lowry et al. (1951) was used.

RESULTS

Hormone and prostaglandin effects on cAMP levels in slices from liver and hepatomas

Table I shows the levels of cAMP in slices from various hepatomas after exposure to adrenalin, glucagon or PGE₁. In one series of experiments, MH₁C₁-derived tumours were compared with liver from tumour-bearing animals. In the liver slices neither adrenalin nor PGE₁ showed any effect, while glucagon increased the cAMP level about 5-fold in 2 min. In contrast, the slices prepared from subcutaneous MH₁C₁-derived hepatomas or mesenterial metastases from these tumours responded strongly to adrenalin (4–5-fold) and to PGE₁ (10-fold), but only slightly to glucagon (40% increase).

Similarly, primary hepatomas, induced by AAF or DAB feeding, responded very strongly to adrenalin or PGE₁, compared to the slight effects of these agents on the cAMP content in slices from the adjacent uninvolved liver tissue. These primary hepatomas differed from the MH₁C₁-derived tumours in that most of them were markedly responsive to glucagon.

Dose–response curves for various prostaglandins on cAMP levels in slices from liver and MH₁C₁-derived tumours are given in Fig. 1. The figure shows the striking difference between the liver and the hepatoma in responsiveness to PGE₁ and PGE₂. PGF₁α and PGF₂α had no significant effect on any of the tissues.

The cAMP content of the tumour slices did not reach a plateau in the range of prostaglandin concentrations used.

Evidence for increased activity of PGE₁-sensitive adenylate cyclase in the hepatomas

The adenylyl cyclase in homogenates of hepatomas responded more strongly to PGE₁ than did the enzyme from liver (Table II). The effect of PGE₁ was greater in the hepatoma homogenates (113% increase over basal activity, vs 63% in liver homogenates), but this effect was much less pronounced than on the slices from the same tumours (Table I). We have no explanation for this discrepancy, which was seen also for the adrenalin

Table I.—Effect of prostaglandins and hormones on levels of cyclic AMP in slices of rat liver and hepatomas

Tissue	No. of animals	PGE₁ (28μM)	Adrenalin (50μM)	Glucagon (1-4μM)	
		No addition	(28μM)	(50μM)	(1-4μM)
Buffalor rats:					
Liver	8	0.22±0.04	0.32±0.08	0.28±0.10	1.22±0.28
MH₁C₁ hepatoma	10	0.31±0.08	3.00±0.29	1.35±0.20	0.44±0.09
Metastatic tumours	6	0.24±0.09	3.11±0.67	1.77±0.38	0.30±0.15
Wistar rats:					
Liver	3	0.25±0.12	0.33±0.10	0.48±0.10	1.92±0.53
AAF hepatoma	5	0.64±0.06	2.93±0.87	1.85±0.25	1.41±0.22
DAB hepatoma	1	0.52	1.13	2.00	3.62

a. From tumour-bearing animal.
b. Growing subcutaneously from inocula of MH₁C₁ cells.
c. Abdominal metastasis from s.c. MH₁C₁ hepatomas.
d. Primaries induced by 2-AAF feeding.
e. Primary induced by DAB feeding.
f. This value represents only 4 livers.
g. The significance levels of the comparison of percentage stimulation over basal in the tumour slices and the corresponding stimulation in the liver slices, calculated by the Wilcoxon’s two-sample test for the unpaired case.
TABLE II.—Adenylate-cyclase activity in homogenates from liver and \(MH_1C_1\)-derived hepatoma tissue

	pmol cAMP/mg protein/min ± s.e.					
	No. samples	No addition	PGE\(_1\) (28\(\mu\)M)	Adrenalin (50\(\mu\)M)	Glucagon (14\(\mu\)M)	NaF (10mM)
Liver\(^a\)	6	4.1 ± 0.4	6.7 ± 0.9	5.1 ± 0.5	10.6 ± 1.1	27.6 ± 3.3
Hepatoma\(^b\)	6	3.9 ± 0.7	8.3 ± 1.0	8.1 ± 1.4	4.8 ± 0.8	42.3 ± 2.9

\(^a\) From tumour-bearing Buffalo rats.
\(^b\) s.c. hepatomas developed from inocula of \(MH_1C_1\) cells.
\(^c\) The significance levels calculated as for Table I.

response (Table I vs Table II; cf. also Christoffersen et al., 1974). It is a well-known phenomenon that a large part of the adenylate-cyclase response towards hormones may be lost on tissue homogenization (Achar et al., 1977), possibly owing to membrane derangement or non-optimal composition of the incubation mixture in broken-cell preparations.

In the present case, additional evidence that the very strong effect of PGE\(_1\) on cAMP accumulation in the hepatoma tissue is actually due to adenylate-cyclase activation, was obtained in experiments (Table III) showing that the increase in cAMP content in slices after PGE\(_1\) could be amplified by theophylline, and even more so by the more potent phosphodiesterase inhibitor, methylisobutylxanthine.

Hormone and PGE\(_1\) responsiveness during AAF-carcinogenesis

The development of the hormone and
Table III.—Effect of theophylline and methylisobutylxanthine on PGE1-stimulated cAMP accumulation in hepatoma slices prepared from s.c. growing hepatomas developed from inoculates of MH1C1 cells as in Materials and Methods

Addition	pmol cAMP/mg wet wt. (Mean ± s.e. from 3 tumours)
None	0.23 ± 0.04
Theophylline (2 mM)	0.31 ± 0.04
Methylisobutylxanthine	0.41 ± 0.08
(0.5 mM)	
PGE1 (28 μM)	1.70 ± 0.66
+ theophylline (2 mM)	2.78 ± 0.29
+ methylisobutylxanthine	6.87 ± 0.62
(0.5 mM)	

* P > 0.1 vs basal level (no addition).
* P < 0.05 vs basal level.
* P < 0.05 vs slices exposed to PGE1 alone.

Statistical evaluation based on Wilcoxon’s two-sample test for the unpaired case.

PGE1 responsiveness in slices during AAF-carcinogenesis is shown in Fig. 2. As shown previously (Christoffersen et al., 1974), the adrenalin response increased rapidly during the first weeks, reaching a maximum at about 8 weeks. It then declined, as has also been found during 3'-methyl-DAB carcinogenesis (Boyd et al., 1974, 1976), but in the final hepatoma the response to adrenalin was still greater than in normal liver tissue (Fig. 2).

The PGE1 response increased slowly during the carcinogen treatment, but was greatly increased in the hepatomas. This is in accordance with the observations of Chayoth et al. (1973), who found increased response to PGE1 during ethionine carcinogenesis, before and after hepatoma development. However, in the present work we show that the changes in adrenalin and PGE1 response take completely different courses during the carcinogen treatment (Fig. 2).

![Graph](image-url)
treatment, PGE1 added alone increased the cAMP content 170%, and glucagon gave about a 10-fold increase. The cAMP content in slices exposed to a combination of the two agents, however, was lower than in slices exposed to glucagon alone. Inhibition by PGE1 of the effect of glucagon on cAMP has previously been demonstrated by De-Rubertis et al. (1974) in liver in vivo. We have seen that PGE1 also inhibits the effect of adrenalin on cAMP in hepatocytes (Brønstad & Christoffersen, unpublished).

DISCUSSION

The present results show that 3 different kinds of hepatomas, and several metastases from one of them, have greatly increased capacity to accumulate cAMP in response to E-prostaglandins, apparently due to the increased effect of these prostaglandins on adenylate cyclase. Increased effect of PGE1 on cAMP levels or adenylate cyclase has also been observed in primary hepatomas and liver from ethionine-treated animals (Chayoth et al., 1973). In our experiments we found that PGE2 was also strongly stimulatory, while PGF1α and PGF2α had no significant effect on the cAMP level.

The data presented here also show that the responsiveness to adrenalin and PGE1 develops very differently during the carcinogenic process. It has previously been shown that during liver carcinogenesis the adrenalin responsiveness increases during the first weeks of carcinogen treatment (Christoffersen et al., 1972, 1974; Boyd et al., 1974, 1976). After 7–12 weeks the responsiveness decreases (Boyd et al., 1974, 1976), but in the final hepatomas the adrenalin responsiveness is still greater than in normal liver. This pattern was confirmed in the present study (Fig. 2). In contrast, the increased PGE1 effect appeared much later and was not maximal until hepatomas had developed (Fig. 2). We do not know exactly at which stage the increased
of the playness (Leffert Feher negative been initiation of liver (Sykes, in conditions, (Short et McManus Cyclic glandin responsiveness of during hepatoma cAMP localization to experiments interpretation of these also PGE1 type in ever, was the cAMP on 4ever, was the hepatoma shown...inhibited the fact that PGE1 inhibited the glucagon effect on cAMP accumulation, as has previously also been seen in normal rat liver in vivo (DeRubertis et al., 1974). Therefore, these experiments did not give a final answer to the important question of the cellular localization of the increase in prostaglandin responsiveness in liver tissue during hepatoma development. The role of a prostaglandin-mediated increase of cAMP in hepatoma cells is also unclear. Cyclic AMP levels are high in various hepatomas (Thomas et al., 1973; Chayoth et al., 1972) as well as in liver tissue under conditions of rapid proliferation, such as in the neonatal period (Christoffersen et al., 1973) and during regeneration (McManus et al., 1972). Under appropriate conditions, cAMP administration leads to initiation of liver DNA synthesis in vivo (Short et al., 1975). Prostaglandins have been proposed as positive as well as negative regulators of cell proliferation (Sykes, 1976; Jimenez de Asua et al., 1975; Fehér & Gridali, 1974; Thomas et al., 1973). In foetal hepatocyte cultures, PGE1 has been shown to enhance incorporation of 3H-thymidine into DNA (Leffert et al., 1976). Increased responsiveness to prostaglandins could therefore play a role in the phenotypic expression of the malignant state of some cancers.

This work was supported by grants from the Norwegian Council for Science and the Humanities (G.B.), and from the Norwegian Cancer Society (to T.C.). We thank Drs H. E. Rugstad and F. Haffner for valuable discussions.

REFERENCES

ACHAB, S. B. STRADA, S. J., SANDERS, R. B., PLEDGER, W. J., THOMPSON, W. J. & ROBINSON, G. A., (1977) Sonication as a tool for the study of adenyl cyclase activity. J. Cycl. Nucl. Res., 3, 189.

ALLEN, D. O., MUNSHOWER, J., MORRIS, H. P. & WEBER, G. (1971) Regulation of adenyl cyclase in hepatomas of different growth rates. Cancer Res., 31, 557.

BOYD, H., LOUIS, C. J. & MARTIN, T. J. (1974) Activity and hormone responsiveness of adenyl cyclase during induction of tumors in rat liver with 3'-methyl-4-dimethylamino-azobenzene. Cancer Res., 34, 1720.

BOYD, H. & MARTIN, T. J. (1976) Changes in catecholamine and glucagon-responsive adenyl cyclase activity in preneoplastic rat liver. Molec. Pharmacol., 12, 195.

BROWN, H. D., CHATTOPADHYAY, S. K., MORRIS, H. P. & PENNINGTON, S. N. (1970) Adenyl cyclase activity in Morris hepatomas 7777, 7794A, and 9618A. Cancer Res., 30, 123.

CHAYOTH, R., EPESTEIN, S. M. & FIELD, J. B. (1972) Increased cyclic AMP levels in malignant hepatic nodules of ethionine-treated rats. Biochem. Biophys. Res. Commun., 49, 1663.

CHAYOTH, R., EPESTEIN, S. M. & FIELD, J. B. (1973) Glucagon and prostaglandin E1 stimulation of cyclic adenosine 3',5'-monophosphate levels and adenylate cyclase activity in benign hyperplastic nodules and malignant hepatomas of ethionine-treated rats. Cancer Res., 33, 1970.

CHRISTOFFERSEN, T., MÖRLAND, J., OSNES, J.-B. & ELOSO, K. (1972) Hepatic adenyl cyclase: alterations in hormone response during treatment with a chemical carcinogen. Biochim. Biophys. Acta, 279, 363.

CHRISTOFFERSEN, T., MÖRLAND, J., OSNES, J.-B. & ØYE, I. (1973) Development of cyclic AMP metabolism in rat liver: a correlative study of tissue levels of cyclic AMP, accumulation of cyclic AMP in slices, adenylate cyclase activity and cyclic nucleotide phosphodiesterase activity. Biochim. Biophys. Acta, 313, 338.

CHRISTOFFERSEN, T., BRONSTAD, G. O., WALSTAD, P. & ØYE, I. (1974) Cyclic AMP metabolism in rat liver during 2-acetamido fluorene carcinogenesis. Biochim. Biophys. Acta, 372, 291.

CHRISTOFFERSEN, T. (1975) Effect of treatment of rats with some chemical carcinogens on the stimulatory effect of adrenaline on cyclic AMP accumulation in liver slices. Acta Pharmacol. Toxicol. (Kbh.), 37, 233.

CRISS, W. E. & MORRIS, H. P. (1976) Regulation of the adenylate cyclase system in transplantable hepatomas. Cancer Res., 36, 1740.

DE RUBERTIS, F. R., ZENNER, T. V. & CURNOW, R. T. (1974) Inhibition of glucagon-mediated increases in hepatic cyclic adenosine 3',5'-monophosphate by prostaglandin E1 and E2. Endocrinology, 95, 93.

EMMELOT, P. & BOS, C. J. (1971) Studies on plasma
membranes: XIV. Adenyl cyclase in plasma membranes isolated from rat and mouse livers and hepatomas, and its hormone sensitivity. Biochim. Biophys. Acta, 249, 285.

Feher, I. & Gridal, J. (1974) Prostaglandin E2 as stimulator of haemopoietic stem cell proliferation. Nature, 247, 550.

Friedman, D. L. (1976) Role of cyclic nucleotides in cell growth and differentiation. Physiol. Rev., 56, 652.

Gaudernack, G., Rugstad, H. E., Hegna, I. & Prydz, H. (1973) Synthesis of serum proteins by a clonal strain of rat hepatoma cells. Exp. Cell Res., 77, 25.

Gilman, A. G. (1970) A protein binding assay for adenosine 3', 5'-cyclic monophosphate. Proc. Natl Acad. Sci. USA, 67, 205.

Hial, V., Horakova, Z., Shaff, R. E. & Beaven, M. A. (1976) Alteration of tumor growth by aspirin and indomethacin: studies with two transplantable tumors in mouse. Eur. J. Pharmacol., 37, 367.

Hickie, R. A., Jan, S. H. & Datta, A. (1975) Comparative adenylate cyclase activities in homogenate and plasma membrane fractions of Morris hepatoma 5123 (h). Cancer Res., 35, 596.

Hickie, R. A., Thompson, W. J., Strada, S. J., Couture-Murillo, B., Morris, H. P. & Robison, G. A. (1977) Comparison of cyclic adenosine 3', 5'-monophosphate and cyclic guanosine 3', 5'-monophosphate levels, cyclases, and phosphodiesterases in Morris hepatomas and liver. Cancer Res., 37, 3599.

Jimenez de Asua, L., Clingan, D. & Rudland, P. S. (1975) Initiation of cell proliferation in cultured mouse fibroblasts by prostaglandin E2. Proc. Natl Acad. Sci. USA., 72, 2724.

Leffert, H. L., Koch, K. S. & Rubacalva, B. (1976) Present paradoxes in the environmental control of hepatic proliferation. Cancer Res., 36, 4250.

Lowry, O. H., Rosebrough, H. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265.

McManus, J. P., Franks, D. J., Youdale, T. & Braceland, B. M. (1972) Increases in rat liver cyclic AMP concentrations prior to the initiation of DNA synthesis following partial hepatectomy or hormone infusion. Biochem. Biophys. Res. Commun., 49, 1201.

Pastan, I. H., Johnson, G. S. & Anderson, W. B. (1975) Role of cyclic nucleotides in growth control. Annu. Rev. Biochem., 44, 491.

Richardson, U. L., Tashiajan, A. H. & Levine, L. (1969) Establishment of a clonal strain of hepatoma cells which secretealbumin. J. Cell Biol., 40, 236.

Ryan, W. L. & Heidrick, M. L. (1974) Role of cyclic nucleotides in cancer. In Advances in Cyclic Nucleotide Research, Vol. 4, Eds. P. Green-gard & G. A. Robison. New York: Raven Press, p. 81.

Salomon, Y., Londos, C. & Rodbell, M. (1974) A highly sensitive adenylate cyclase assay. Anal. Biochem., 58, 541.

Short, J., Tsukada, K., Rudert, W. A. & Lieberman, I. (1975) Cyclic adenosine 3', 5'-monophosphate and the induction of deoxyribonucleic acid synthesis in liver. J. Biol. Chem., 250, 3602.

Sykes, J. A. (1976) Significance of prostaglandins in tumor growth. In Chemotherapy, Vol. 7, Eds. K. Hellman and T. Connors. New York: Plenum Press, p. 83.

Thomas, E. W., Murad, F., Looney, W. B. & Morris, H. P. (1973) Adenosine 3', 5'-monophosphate and guanosine 3', 5'-monophosphate: concentrations in Morris hepatomas of different growth rates. Biochem. Biophys. Acta, 297, 564.

Tomasi, V., Rethy, A. & Trevisani, A. (1973) Soluble and membrane-bound adenylate cyclase activity in Yoshida ascites hepatoma. Life Sci., 12, Part II, 145.