Beneficial effect of omarigliptin on diabetic patients with non-alcoholic fatty liver disease/non-alcoholic steatohepatitis

Sachiko Hattori¹*, Kazuomi Nomoto², Tomohiko Suzuki³ and Seishu Hayashi³

Abstract

Background: Dipeptidyl peptidase 4 (DPP4) is a serine exopeptidase able to inactivate various oligopeptides, and also a hepatokine. Hepatocyte-specific overexpression of DPP4 is associated with hepatic insulin resistance and liver steatosis.

Method: We examined whether weekly DPP4 inhibitor omarigliptin (OMG) can improve liver function as well as levels of inflammation and insulin resistance in type 2 diabetic patients with non-alcoholic fatty liver disease (NAFLD). Further, we investigated the effects of OMG in a diabetic patient with biopsy-confirmed nonalcoholic steatohepatitis (NASH).

Results: In NAFLD patients, OMG significantly decreased levels of aminotransferase, aspartate aminotransferase, gamma-glutamyl transpeptidase, homeostatic model assessment of insulin resistance (HOMA-IR), and high-sensitivity C-reactive protein (hsCRP), while no significant change was seen in hemoglobin A1c or body mass index. In the NASH patient, liver function improved markedly, and levels of the hepatic fibrosis marker FIB-4 decreased in parallel with HOMA-IR and hsCRP. Slight but clear improvements in intrahepatic fat deposition and fibrosis appeared to be seen on diagnostic ultrasonography.

Conclusion: Weekly administration of the DPP4 inhibitor OMG in ameliorating hepatic insulin resistance may cause beneficial effects in liver with NAFLD/NASH.

Keywords: NAFLD/NASH, Omarigliptin, Dipeptidyl peptidase 4
allows weekly dosing, decreased inflammation and insulin resistance without affecting hemoglobin A1c (HbA1c) or body mass index (BMI) in patients with type 2 diabetes, but daily DPP4 inhibitors such as sitagliptin did not change levels of inflammation and insulin resistance [5].

Since hepatic expression of DPP4 is associated with NAFLD [6], we examined whether OMG improves liver function as well as levels of inflammation and insulin resistance in type 2 diabetic patients with NAFLD. Furthermore, we administered OMG to a diabetic patient with biopsy-confirmed nonalcoholic steatohepatitis (NASH) and examined the effects.

Method

Study design

Study for NAFLD: This was a post hoc investigation of a previously reported study (UMIN Clinical Registry (UMIN000029288))[5], which included a total of 84 patients with HbA1c > 6.0% regardless of diet, exercise, and medical treatment with the DPP4 inhibitors sitagliptin (50 mg/day) or linagliptin (5 mg/day) for ≥ 12 months in this clinic: Patients were allocated in a 1:2 ratio using numbered containers to continue with the same daily dosing. In these NAFLD patients, changes from baseline to 1 year for HbA1c, BMI, homeostatic model assessment of insulin resistance (HOMA-IR), high-sensitivity C-reactive protein (hsCRP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transpeptidase (γGTP) were evaluated.

Study for NASH: We further investigated OMG in a patient with biopsy-confirmed NASH. This patient was a 73-year-old man who had been found to have fatty liver on abdominal ultrasonography at about 35 years old. Type 2 diabetes and dyslipidemia were then found at about 40 years old, and he started therapy at about 44 years old for worsened liver function and poor glycemic control. The results of physical examination at the initial consultation were as follows: height, 182 cm; weight, 74.1 kg; BMI, 22.37 kg/m²; blood pressure, 128/80 mmHg; heart rate, 78 beats/min and regular; no anemia or jaundice; electrocardiography and chest X-ray, no findings of note; abdominal examination, no subjective symptoms; bilateral patellar and Achilles tendon reflexes, normal; diabetic retinopathy and neuropathy, absent; and diabetic nephropathy stage I (albumin/creatinine ratio, 5.6 mg/g creatinine). After the initial treatment with glimepiride 2 mg/day for worsened liver function and poor glycemic control. The results of physical examination at the initial consultation were as follows: height, 182 cm; weight, 74.1 kg; BMI, 22.37 kg/m²; blood pressure, 128/80 mmHg; heart rate, 78 beats/min and regular; no anemia or jaundice; electrocardiography and chest X-ray, no findings of note; abdominal examination, no subjective symptoms; bilateral patellar and Achilles tendon reflexes, normal; diabetic retinopathy and neuropathy, absent; and diabetic nephropathy stage I (albumin/creatinine ratio, 5.6 mg/g creatinine).

Criteria for NAFLD diagnosis

NAFLD was diagnosed by ultrasonography according to the presence of one of the following criteria: (i) bright homogeneous echoes in the liver parenchyma; (ii) hepatorenal echogenicity contrast (+); (iii) hepatosplenic echogenicity contrast (+); (iv) echoes with deep attenuation in the liver parenchyma; or (v) impaired visualization of the peripheral portal and hepatic veins. Exclusion criteria were a history of hepatic diseases, such as hepatitis C, hepatitis B, or primary biliary cirrhosis, or a past history of alcohol consumption > 20 g/day.

Statistical analysis

Paired t-tests were used to compare parameters before treatment and at 12 months after treatment. Differences were considered statistically significant at the level of p < 0.05.

Results

Effect of OMG in diabetic patients with NAFLD

No significant differences were seen in any parameters in the control group. In the OMG group, significant differences were observed in ALT, AST, γGTP, HOMA-IR, and hsCRP, while no significant differences were seen in HbA1c or BMI (Table 1).

Effect of OMG in a diabetic patient with NASH

This patient was referred to our department at 64 years old for worsened liver function and poor glycemic control. The results of physical examination at the initial consultation were as follows: height, 182 cm; weight, 74.1 kg; BMI, 22.37 kg/m²; blood pressure, 128/80 mmHg; heart rate, 78 beats/min and regular; no anemia or jaundice; electrocardiography and chest X-ray, no findings of note; abdominal examination, no subjective symptoms; bilateral patellar and Achilles tendon reflexes, normal; diabetic retinopathy and neuropathy, absent; and diabetic nephropathy stage I (albumin/creatinine ratio, 5.6 mg/g creatinine).

| Table 1 Parameters in control and omargliptin group with NAFLD at baseline and 12 months |
|------------------|------------------|------------------|
| Time (month) | Control (n=12) | Omargliptin (n=21) |
| | 0 | 12 | 0 | 12 |
| HbA1c | 6.83±0.69 | 6.80±0.63 | 6.91±0.73 | 6.80±0.71 |
| BMI | 26.5±2.4 | 26.7±2.1 | 26.6±2.7 | 26.5±2.7 |
| ALT | 30.8±19.5 | 32.4±28.4 | 30.1±20.5 | 25.2±14.4 * |
| AST | 35.1±8.4 | 37.5±10.0 | 34.8±11.6 | 30.0±8.6 * |
| γGTP | 38.5±6.6 | 39.0±5.5 | 43.8±29.6 | 32.7±19.8 * |
| hsCRP | 0.130±0.04 | 0.151±0.06 | 0.105±0.05 | 0.042±0.02 ** |
| HOMA-IR | 2.83±0.79 | 2.72±0.82 | 2.75±1.28 | 1.85±0.88 ** |

Data were expressed as mean±standard deviation, (*p<0.05, **p<0.01)
and sitagliptin 100 mg/day, laboratory results were: AST, 69 IU/L; ALT, 83 IU/L; fibrosis-4 (FIB-4) index [7], 2.78; Mac-2-binding protein glycosylation isomer (M2BPGi), 1.12; HbA1c, 7.8%; HOMA-IR, 2.61; and hsCRP, 0.054 mg/dL. Pioglitazone was then prescribed at 15 mg/day, with the dose subsequently increased to 30 mg/day. Moreover, after switching from sitagliptin to linagliptin, laboratory results improved as follows: AST, 45 IU/L; ALT, 52 IU/L; HbA1c, 7.2%; and HOMA-IR, 2.1. At 68 years old, laboratory results again worsened: AST, 61 IU/L; ALT, 79 IU/L; FIB-4 index, 2.29; M2BPGi, 1.14; HbA1c, 7.4%; HOMA-IR, 2.19; and hsCRP, 0.048 mg/dL. In response, pioglitazone was switched to metformin 1000 mg/day, which led to an improving trend, with HbA1c at 6.9%, but no changes in liver function or hepatic fibrosis markers. Liver biopsy was then performed, and NASH (Brunt criteria: grade 1, stage 3) was diagnosed, indicating better control of diabetes mellitus as a critical issue. Therapy was switched from linagliptin to OMG, which has wide organ distribution including the liver, is present stably in the body without accumulation, and is safe to use [8]. Twenty-four months later, liver function had improved markedly: AST, 20 IU/L; ALT, 19 IU/L; FIB-4, 1.47; M2BPGi, 0.58; HbA1c, 6.4%; HOMA-IR, 1.26; and hsCRP, 0.028 mg/dL (Table 2). The hepatic fibrosis marker FIB-4 changed in parallel with HOMA-IR and hsCRP (Fig. 1). Thereafter, slight but clear improvements in intrahepatic fat deposition and fibrosis were seen on diagnostic ultrasound imaging systems.

Table 2 Time course of clinical parameters in a patient with NASH

Date	2012	2013	2014	2015	2016	2017	2018	2019	2019	2020	2020
BMI	22.3	22.4	22.3	22.1	22.1	22.2	22.3	22.4	22.4	22.3	22.3
AST (U/L)	69	45	45	48	61	54	67	52	79	55	23
ALT (U/L)	83	60	52	60	79	55	55	33	25	25	26
Pt(10^9/L)	198	212	227	223	204	214	227	218	228	233	243
FIB-4	2.78	1.79	1.79	1.99	2.29	2.31	1.93	1.58	1.4	1.4	1.47
M2BPGi	1.12	0.93	0.99	1.01	1.14	1.03	1.09	0.83	0.72	0.68	0.58
Type4Collagen (ng/ml)	209	191	211	186	179	174	165				
hscRP (mg/dl)	0.054	0.039	0.042	0.038	0.048	0.039	0.04	0.04	0.023	0.028	0.009
FB (mg/dl)	158	148	149	163	178	160	156	128	134	114	124
HbA1c (%)	78	68	72	76	74	69	66	65	65	64	65
IRI (IU/ml)	6.7	6.6	5.7	6.2	5	6.1	5.9	4.4	4.6	4.5	3.8
HOMA-IR	2.61	2.41	2.1	2.5	2.19	2.41	2.27	1.39	1.52	1.26	1.16
TG (mg/dl)	116	155	133	116	132	150	153	73	75	126	89
Total-C (mg/dl)	175	173	193	175	179	151	157	152	141	171	158
HDL-C (mg/dl)	37	34	43	37	41	36	358	41	41	45	43
LDL-C (mg/dl)	115	108	120	115	110	85	88	96	85	101	98
rosuvastatin (mg/day)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
glimepirid (mg/day)	2	2	2	2	2	2	2	2	2	2	2
sitagliptin (mg/day)	100										
linagliptin (mg/day)	5	5	5	5	5	5	5	5	5	5	5
omarigliptin (mg/week)	25	25	25	25	25						
pioglitazone (mg/day)	15	30	30	30							
metformin (mg/day)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000

↑ Liver Biopsy

FIB-4 = age (yr) x AST (U/L) / (PLT (10^9/L) x (ALT (U/L))/(1/2))

M2BPGi: Mac-2 binding protein glycosylation isomer
Discussion
NAFLD is primarily characterized by the accumulation of intrahepatic triglycerides (TGs) and is present in 75–90% of subjects with type 2 diabetes [9, 10]. NAFLD may progress to the more severe condition of NASH, characterized by advanced histological remodeling including fibrosis, lobular inflammation, hepatocellular ballooning, and risk of liver cancer. Since numerous pathways including insulin resistance, lipotoxicity, oxidative stress, immunology, the cytokine system, mitochondrial damage, and apoptosis are involved in the pathophysiology of NASH, various pharmacotherapies are being developed. Although no presently available drugs can be recommended for evidence-based treatment of NASH, antidiabetic drugs may prove useful in patients with comorbid diabetes mellitus.

We found that change from daily DPP4 inhibitors to OMG appears to offer benefits for NAFLD patients along with decreased insulin resistance and inflammation. Based on this experience, we tried OMG by changing from linagliptin on a NASH patient in whom glycemic control, liver function, and hepatic fibrosis markers improved markedly, along with decreased HOMA-IR and hsCRP, and slight but clear improvements in intrahepatic fat deposition and fibrosis were seen on diagnostic ultrasound imaging systems.

DPP4 is proposed to represent a novel adipokine that may impair insulin sensitivity in autocrine and paracrine fashions [13]. DPP4 release strongly correlates with adipocyte size, potentially representing an important source of DPP4 [13]. The greater the fat content in the liver, the greater the expression/secretion of hepatokine DPP4, which might lead to NAFLD, and then DPP4 improves insulin sensitivity and reduces lipid accumulation in cultured hepatocytes [11]. Other studies have pointed toward DPP4 acting as a hepatokine, linking the liver and adipose tissue with the development of insulin resistance, and glucose intolerance. In mice, obesity and the associated visceral adipose tissue inflammation result in insulin resistance, a process that appears to be mediated via increased synthesis and release of hepatic DPP4, since eliminating hepatocyte DPP4 expression suppresses inflammation and improves insulin sensitivity [4, 12]. The mechanism seems independent of the catalytic activity of DPP4, since these effects were not mimicked by systemic daily DPP4 inhibition [4, 12]. On the other hand, inhibition of the catalytic activity of DPP4 using DPP4 inhibitors was suggested to be, at least partially, involved since insulin signaling was improved following inclusion of DPP4 inhibitors in adipocytes in culture, but the mechanism remained unidentified [13, 14]. Although the mechanisms how changing from daily DPP4 inhibitors to weekly OMG causes beneficial effect in liver with NAFLD/NASH are unclear, decreasing effect of OMG on inflammation and insulin resistance probably in liver might be involved.

DPP4 is proposed to represent a novel adipokine that may impair insulin sensitivity in autocrine and paracrine fashions [13]. DPP4 release strongly correlates with adipocyte size, potentially representing an important source of DPP4 [13]. The greater the fat content in the liver, the greater the expression/secretion of hepatokine DPP4, which might lead to NAFLD, and then
to NASH in autocrine and paracrine fashions. OMG might thus block the activity of DPP4 highly secreted from the liver under conditions of NAFLD/NASH, probably averting the promotion of adipose inflammation and insulin resistance in liver.

Accordingly, excess DPP4 derived from adipocytes and/or hepatocytes may act as a local mediator of inflammation and adipose/hepatic tissue insulin resistance, thereby forming a link between obesity and the pathogenesis of type 2 diabetes and metabolic disease. Sodium-glucose transporter 2 inhibitors and glucagon-like peptide 1 receptor agonists have recently shown potential efficacy for the treatment of NAFLD/NASH with diabetes [1, 15, 16], but are expected to be more effective for NAFLD/NASH in obese diabetic patients. The possible effects of OMG in decreasing intrahepatic fat accumulation and improving intrahepatic adipose inflammation may be helpful for the treatment of NAFLD/NASH, particularly in non-obese, insulin-resistant, diabetic patients like a NASH case described here.

The principal limitation of the present study was the relatively small number of participants. Since this is a novel possible therapeutic for NAFLD/NASH in patients complicated with diabetes, long-term assessments in a larger number of patients are necessary.

Conclusion

Hepatocyte-specific overexpression of DPP4 is associated with hepatic insulin resistance and liver steatosis. Weekly administration of the DPP4 inhibitor OMG in ameliorating hepatic insulin resistance may cause beneficial effects in liver with NAFLD/NASH.

Acknowledgements

The authors wish to thank the members of the Tohto Clinic for their help in implementing this work plan.

Authors’ contributions

All authors have contributed significantly to this work. SH and KN made substantial contributions to conception and design, and acquisition of the data. TS and SH contributed to acquisition of the data in terms of liver status. All authors read and approved the final manuscript.

Funding

This work has not received any funding.

Availability of data and materials

The datasets analyzed during the current study are not publicly available due to some relevant ongoing studies, but may be available from the corresponding author of this article on reasonable request.

Declarations

Ethics approval and consent to participate

The case study was approved by the ethics committee at Tohto Clinic, and written informed consent was obtained from the patient in this study.

Consent for publication

All authors participated in drafting this article and gave final approval of the version to be submitted.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Endocrinology and Metabolism, Tohto Clinic, 4-1 Kio-cho, Chiyoda-ku, Tokyo 102-0094, Japan.
2. Department of Gastroenterology, Ohkubo Hospital, Tokyo, Japan.
3. Department of Internal Medicine, Tohto Clinic, Tokyo, Japan.
4. Department of Gastroenterology, Ohkubo Hospital, Tokyo, Japan.

Received: 8 December 2020 Accepted: 24 February 2021

Published online: 10 March 2021

References

1. Godoy-Matos AF, Silva Júnior WS, Valério CM. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr. 2020;12:60. https://doi.org/10.1186/s13098-020-00570-y (eCollection 2020).
2. Silva Júnior WS, Souza MDGC, Kraemer-Aguiar LG. Dipeptidyl peptidase 4 (DPP4), adipose inflammation, and insulin resistance: is it time to look to the hepatocyte? Hepatobiliary Surg Nutr. 2018;7(6):499–500.
3. Silva Júnior WS, Souza MDGC, Nogueira Neto JF, et al. Dipeptidyl peptidase 4 activity is related to body composition, measures of adiposity, and insulin resistance in subjects with excessive adiposity and different degrees of glucose tolerance. J Diabetes Res. 2019;2019:5238013.
4. Ghorpade DS, Ozcan L, Zheng Z, et al. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature. 2018;555:673–7.
5. Hattori S. Omariogliptin decreases inflammation and insulin resistance in a pleiotropic manner in patients with type 2 diabetes. Diabetol Metab Syndr. 2020;12:24. https://doi.org/10.1186/s13098-020-00533-3.
6. Baumeier C, Schlüter L, Saussenthaler S, et al. Elevated hepatic DPP4 activity promotes insulin resistance and non-alcoholic fatty liver disease. Mol Metab. 2017;6:1254–63. https://doi.org/10.1016/j.molme t.2017.07.016.
7. Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43:1317–25.
8. Omariogliptin Pharmaceutical interview form 2016; 4th edition.
9. Kötting N, Fasshauer M, Dietrich A, et al. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab. 2010;299:E506–15.
10. Younoszi MM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.
11. Rufnatscha K, Radlinger B, Dobner J, et al. Dipeptidyl peptidase-4 impairs insulin signaling and promotes lipid accumulation in hepatocytes. Biochem Biophys Res Commun. 2017;485:366–71. https://doi.org/10.1016/j.bbrc.2017.02.071.
12. Vain E, Mulvihill EE, Beaudry JL, et al. Circulating levels of soluble dipeptidyl peptidase-4 are dissociated from inflammation and induced by enzymatic DPP4 inhibition. Cell Metab. 2018;29:320–34. https://doi.org/10.1016/j.cmet.2018.10.001.
13. Lamers D, Famulla S, Wronkowitz N, et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes. 2011;60:1917–25.
14. Röhrborn D, Brückner J, Sell H, Eckel J. Redund DPP4 activity improves insulin signaling in primary human adipocytes. Biochem Biophys Res Commun. 2016;471(3):348–54.
15. Akuta N, Watanabe C, Kawamura Y, et al. Effect of sodium-glucose cotransporter 2 inhibitor in nonalcoholic fatty liver disease complicated by diabetes mellitus: preliminary prospective study based on serial liver biopsies. Hepatol Commun. 2017;27:46–52.
16. Dong Y, Lv Q, Li S, et al. Efficacy and safety of glucagon-like peptide-1 receptor agonists in non-alcoholic fatty liver disease: a systemic review and meta-analysis. Clin Res Hepatol Gastroenterol. 2017;41:284–95.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.