Measuring economic activity from space: a case study using flying airplanes and COVID-19

Maurício Pamplona Segundo, Member, IEEE, Allan Pinto, Member, IEEE, Rodrigo Minetto, Member, IEEE, Ricardo da Silva Torres, Member, IEEE, and Sudeep Sarkar, Fellow, IEEE

This work introduces a novel solution to measure economic activity through remote sensing for a wide range of spatial areas. We hypothesized that disturbances in human behavior caused by major life-changing events leave signatures in satellite imagery that allows devising relevant image-based indicators to estimate their impacts and support decision-makers. We present a case study for the COVID-19 coronavirus outbreak, which imposed severe mobility restrictions and caused worldwide disruptions, using flying airplane detection around the 30 busiest airports in Europe to quantify and analyze the lockdown’s effects and post-lockdown recovery. Our solution won the Rapid Action Coronavirus Earth observation (RACE) upscaling challenge, sponsored by the European Space Agency and the European Commission, and now integrates the RACE dashboard. This platform combines satellite data and artificial intelligence to promote a progressive and safe reopening of essential activities. Code and CNN models are available at https://github.com/maups/covid19-custom-script-contest.

Index Terms—Remote sensing, CNN-based object detection, human and economic activity assessment, COVID-19 pandemic.

1 INTRODUCTION

Our planet is experiencing an increase in disasters [1] and disease outbreaks [2] over the past decades. Therefore, developing methods and tools to provide meaningful information for assertive decision-making during emergencies, thus implementing safety and welfare measures, is of paramount importance. Such a demand has led the research community to focus on finding indicators to support the different phases of emergency management [3]–[7]. One of the main challenges in designing an indicator, especially when its coverage area is beyond the country level, is collecting data that helps analyze a phenomenon and improves our understanding of its causes and symptoms. Depending on the required information (e.g., data from cell phones [8], social media, press releases), different factors spoil this process, including access limitations, varying technologies, lack of infrastructure, sovereignty restrictions, and language mismatch, to list a few. We hypothesize that disruptions of this magnitude impact social behaviors and leave signatures in satellite imagery that can be automatically detected and quantified. And unlike other data sources, remote sensing stands out for its global coverage and versatility – it can integrate new indicators and new locations with little effort – while eliminating collection and format conversion complications. These characteristics are highly advantageous in fast response scenarios.

The most recent global crisis, yet to be resolved, is the COVID-19 coronavirus pandemic. As of April 2021, this outbreak reached an unprecedented scale, with more than three million deaths and more than 140 million confirmed cases [9]. According to the United Nations’ framework for the immediate socio-economic response to COVID-19 [10], this critical period is far more than a health hazard. The socio-economic impact is tremendous and will increase poverty and inequalities globally, jeopardizing lives and livelihoods, especially for vulnerable groups. Other issues include the lack of adequate social protection, losses in income and jobs, increased food insecurity, and a decline in global trades. These problems show the value of acting fast to mitigate adverse effects when a proper response is not timely possible and the recovery extension is unknown. To support such actions, we combine machine learning and satellite data to provide accessible COVID-19 information agilely.

Researchers explored different human signatures visible from space in the literature. Night-time lights disclose urbanization and population levels and can indicate wealthiness [11] and socio-economic dynamics [12]. The tropospheric nitrogen dioxide concentration, primarily affected by fossil fuel consumption, directly correlates with economic activity variations [13]. The food supply chain is evaluable through land use classification of agricultural sites [14], [15] or transportation infrastructure monitoring [16], [17]. Along this line, aircraft are of particular interest to unveil human and economic activities (e.g., travel, tourism, freight) and track disease spread due to in-flight transmission [18]–[20].
For those reasons, aircraft detection is present in the most advanced aerial scene recognition benchmarks \cite{21, 22}, and there is extensive literature addressing airport operation, the great majority devoted to stationary aircraft \cite{23–26}. However, the number of parked airplanes is not directly correlatable with airport traffic. For instance, Paris’ Charles de Gaule Airport and Rome’s Leonardo da Vinci–Fiumicino Airport have, on average, approximately the same number of airplanes on the ground every day \cite{27}, even though the former has about 50% more flights in the same period \cite{28}. Traffic estimation requires detecting flying aircraft, whose literature is not so developed. Zhao et al. \cite{29} designed ingenious heuristics to perform this task using the water vapor absorption channel from Landsat-8 thanks to the observation that reflectance increases for high-altitude surfaces and generates bright spots on aircraft locations. Despite the high accuracy in ideal conditions, this method is affected by weather conditions (e.g., high clouds) and low altitudes (e.g., aircraft during take-off and landing). Besides, Landsat-8’s repeat cycle of 16 days \cite{30} hinders the ability to use temporal data to cope with these difficulties. Heiselberg \cite{31} and Liu et al. \cite{32} utilized images captured by the Sentinel-2 satellites for the same job. These satellites’ multispectral instrument design makes them observe the earth’s surface at different times in each spectral band \cite{33}. As the ground serves as a reference to merging bands, the resulting multispectral images (from MSI sensor on-board Sentinel-2) present inter-band measurement displacements due to parallax for objects at high altitudes and high-speed movement for objects at any elevation. Figure 1 illustrates how these displacements create a colored pattern for flying airplanes in the three MSI bands of visible light. The works of Heiselberg \cite{31} and Liu et al. \cite{32} also relied on experts to handcraft heuristics for the airplane detection, which may prevent immediate analyses in outbreaks that require a fast response.

In this work, we take advantage of the advances driven by deep learning algorithms \cite{34} – bio-inspired neural networks that learn representations with multiple abstraction levels and discover intricate patterns in massive data – to devise a dependable and adaptable detector. Our approach goes beyond the detection of flying airplanes as we use our airplane detector to built a time series of the number of landing or take-off airplanes in airports. We then process those time series to estimate structural breaks (caused by lockdown restriction at the beginning of the pandemic) and to compute the recovery rate for the monitored airports. The presented framework supports decision-making during the COVID-19 pandemic by measuring how fast the airports are recovering toward getting into their normal operation and if such recovery is in accordance with opening and lockdown policies, which should be defined considering the number of cases and deaths of COVID-19 pandemic. Furthermore, our approach was designed to require a small amount of labeled data for training the proposed flying airplane detector, without loss of generality. We validate our approach by monitoring the 30 busiest airports in countries with some integration to the European Union. The results show the effectiveness of our solution to measure such activities and the recovery rate of such airports.

In summary, this study presents several contributions in some subjects relevant to the research field in which this study inserts itself and to the society toward facing the negative aspect of the COVID-19 pandemic. First, this method is currently fully integrated into the Rapid Action Coronavirus Earth (RACE) observation dashboard \cite{35}, which is an open platform of the European Space Agency (ESA) that uses Earth observation satellite data and artificial intelligence to measure the impact of the COVID-19 lockdown and to monitor post-lockdown recovery. This study also shows how to design and train a shallow neural network to detect flying airplanes using remote sensing imagery and with a minimum amount of annotated images. Flying airplane detection task is still an open problem in the current literature, and this study contributes with the proposal of a new technique for this task that has been successfully used in a challenging and practical scenario related to combating the COVID-19 pandemic. The third contribution of this study relies on the construction of a new dataset, along with the ground-truth annotations of flying airplanes, to support future researches involving flying airplane detection through satellite images. The fourth contribution refers to the analysis of time series built with our flying airplanes detector to estimate breakouts and recovery rate, automatically, and to support decision-making to opening and closing airports taking into account the official numbers of COVID-19 cases and deaths. Finally, the source code of our solution, the trained models, and the annotated data are freely available to the scientific community, encouraging reproducibility of our results and the use of our solution in similar situations in the future.
2 PROPOSED APPROACH

This study introduces a new approach for measuring airport activities using satellite to support decision-making during the COVID-19 outbreak, as illustrated in Figure 2. More precisely, we proposed a new method for detecting flying airplanes on Sentinel-2 satellite that enables the monitoring of airport activity in wide areas (Figures 2(a) and 2(b)). We adopted the use of shallow fully convolutional networks (FCN) to devise a lightweight architecture (Figure 2(c)) containing few trainable parameters and thus requiring lower amounts of training data than other deep learning architectures available in the literature addressing the object detection problem [36]. We summarized the detected flying airplanes in a time series representation associated with the number of airplanes around each monitored airport over time (in days). Next, we performed a time series analysis to estimate breaking points associated with the first lockdown restriction related to the COVID-19 pandemic (Figure 2(d)). Then, we fitted a log-linear regression model to estimate the recovery rates for the airports considered in this study, which allowed us to correlate the estimated recovery rates with the cases and deaths of coronavirus disease in those locations (Figure 2(e)). Finally, we compiled this knowledge into an activity indicator (Figure 2(f)) to support the conception, planning, implementation, and evaluation of disease-containment actions. These stages are detailed in the following sections.

2.1 Data collection

The first stage of this study consisted of creating a dataset to analyze human travel behavior in the European Union. Our analysis relies on detecting flying airplanes from satellite images and measuring the volume of flights over time. To capture traffic dynamics through remote sensing, the satellite must have a high revisit rate, it must perceive high-speed objects, and imaging resolution must be sufficiently high so that airplanes are visible. The Copernicus Sentinel-2 constellation meets all of these requirements [33]. The Sentinel-2 mission includes two identical satellites in the same sun-synchronous polar orbit, 180° apart from each other, that revisit any Earth location every 2 to 5 days (higher frequency for areas close to the poles). They capture the visible bands of their multi-spectral images (Red, Green, and Blue (RGB)) with a ground sampling distance (GSD) of 10 meters and a time-lapse of approximately 0.5 seconds between consecutive bands (red-green and green-blue).

The proposed method operates on sequences of satellite images from Areas of Interest (AOI), which are rectangles with 1.05 longitude degrees in width and 0.7 latitude degrees in height, centered at the geographical coordinates of the 30 busiest airports (i.e., airports that had the highest number of passengers in 2019) in countries with some integration to the European Union. Thus, the AOs have an area of 6,000 km², on average, and the selected airports cover 26 different cities and 18 different countries. Figure 2(a) highlights their location, and the complete list of International Air Transport Association (IATA) airport codes is shown in Figure 3(a). The specified AOI provides an area of 6,000 km², on average, and the selected airports cover 26 different cities and 18 different countries. Figure 2(a) highlights their location, and the complete list of International Air Transport Association (IATA) airport codes is shown in Figure 3(a). The specified AOI provides an area of 6,000 km², on average, and the selected airports cover 26 different cities and 18 different countries.
grid and evaluated each grid cell’s viability considering the following criteria: (1) cells cannot have more than 30% of cloud coverage; and (2) cells cannot have more than 10% of missing data. The average number of viable cells per image is 15. Figure 3(a) shows the number of images and viable cells per airport, while Figure 3(b) shows the total number of images and viable cells over time. These images were captured by Sentinel-2 satellites between June 26th, 2015 and July 30th, 2020.

2.2 Shallow FCN for detecting flying airplanes

Current state-of-the-art detectors either use region proposal or feature pyramid networks to estimate both bounding box coordinates and classes of objects in a scene [36], [38]. Such detectors take advantage of deep architectures [39] that contain hundreds of millions of trainable parameters and thus require large training data. With this in mind, we hypothesize the use of shallow architectures is more adequate for modeling our problem due to the absence of a large training data with annotated ground-truth. Shallow architectures have fewer trainable parameters, in comparison to deep architectures, and thus require a reduced amount of labeled data during the training stage. It is important to notice that labeling data is a costly and a time-consuming process, which may become prohibitive when a rapid response is necessary. Furthermore, as we are only interested in counting airplanes, information like bounding boxes and airplane size, in terms of pixels, is not relevant to us. With this in mind, we can reduce the complexity of our architecture by modeling the problem of counting airplanes as a classification problem devised to classify each pixel of the image as being or not the center of a flying airplane (green dot in Figures 1(e), 1(e)).

To validate our hypothesis, we designed a shallow FCN [40] to produce a probability value for each pixel of an input image, as illustrated in Figure 2(c). More precisely, the receptive field around each pixel was set to a region of 51×51 pixels, which perceives airplanes traveling up to 1,800 kilometers per hour, twice as much as the typical commercial cruise speed. This surplus handles the variability introduced by parallax and altitude changes. The proposed shallow FCN architecture consists of five consecutive 5×5 convolutional layers, each followed by a rectified linear unit activation [41], batch normalization [42], and a 5×5 max pooling. Then, we added an 11×11 convolutional layer with sigmoid activation to output values between 0 and 1. All layers use unit strides so that the output resolution is the same as the input. This architecture has a total of 277,745 learnable parameters, which correspond to a model size of only \sim1.1MB. Finally, non-maximum suppression [43] returns unique detections, and a threshold of 0.5 selects the ones that most likely represent an airplane.

Due to the global nature of the COVID-19 pandemic, the generalization is an important aspect to consider. More precisely, it is essential to detect flying airplanes in unknown areas without the need for retraining our model. To evaluate this competence, we used the airports with the first 15 IATA codes in alphabetical order for training (see Figure 3(a)), and remaining 15 airports were used for testing only. With this split we can measure our detector’s performance in airports that were not seen during training to validate its generalization capability. Besides, we only used images from January 1, 2020 to June 30, 2020 for training. Thus, we can also use images outside this time period to evaluate our detector’s behavior in unseen images from known areas (training airports).

We adopted a semi-automatic strategy to obtain enough annotations even when a rapid response is required. First, we manually annotate as many instances of the target object as possible in a small number of images (in this work, we annotated 190 flying airplanes in 18 images from the Charles de Gaulle Airport). Then, we gradually expand this set of annotations by alternating between training a model with the existing annotations and manually inspecting the detection results to update the annotation set. In our case, we trained an initial model using our 18 annotated images and used it to detect airplanes in all training images. We removed all false alarms from the set of detected airplanes through a visual inspection, and used the coordinates of the remaining detections as the new set of annotations. We repeated this process once more, but this time we also adjusted the detected coordinates to overlay the green dot of the flying airplane pattern (see Figures 1(c), 1(e)). We ended up with 1782 flying airplanes in our final annotation set, which was used to train our final detection model. Every training repetition was carried out by Algorithm 1 with $N = 1$ and $M = \infty$ for temporary models and $N = 10$ and $M = 50$ for the final detector. N is a patience parameter used to stop the training early if the model does not improve for N consecutive epochs, and M is the maximum number of epochs.

2.3 Time series generation

As shown in Figure 7, satellite images do not always cover the entire AOI due to cloud occlusions or to a misalignment between the satellite visible area and the AOI. Thus, estimating the airplane count within a day is not accurate enough for further calculations. We alleviate this problem by using
To estimate the airports' activity in normal and exceptional periods, including the COVID-19 outbreak, we proposed a temporal analysis of time series built from the number of airplanes flying around airports considered in this work.

2.4 Time series analysis

In some cases, satellite images may present some artifacts caused by the misalignment between color bands or sun-glint (see Figure 5). Although their occurrence is rare, these artifacts tend to produce several false positives close to each other. If ignored, this problem considerably affects individual cell averages and the final airplane count. To cope with these noisy regions, given that no grid cell in the training set has more than 4 annotated airplanes (considering the final annotation set used for training), we ignore cells that have more than 5 detected airplanes (set $c^k_{ij} = 0$ and $v^k_{ij} = 0$ if $c^k_{ij} > 5$).

Algorithm 1: Pseudo-algorithm for training our FCN model.

| Input: Training images, Flying airplane annotations |
| Result: FCN model that detects flying airplanes on satellite images |
| 1 Randomly initialize the learnable parameters of the FCN model; |
| 2 Follow the strategy shown in Figure 4 to build an initial set of training samples by using airplane annotations to extract image patches with 51×51 pixels of positive and negative samples from the input images; extract additional negative patches from random locations that at least 25 pixels away from all annotations until a 1:2 ratio between the amount of positive and negative samples is reached; |
| 3 Set $score = 0$; |
| 4 repeat |
| 5 Run one training epoch (3,000 model update iterations) using: (1) mini-batches with 256 random samples, (2) random flips (horizontal and vertical) and 90-degree rotations over samples as data augmentation operations, and (3) the Adam algorithm with a learning rate of 10^{-4} to optimize the binary cross-entropy loss function; |
| 6 Run the current model over the training images and save the list of detected airplanes; |
| 7 Initially mark all detections as false alarms; |
| 8 foreach annotated airplane do |
| 9 Find the closest detection to the current annotation and mark this detection as a true positive if the distance between them is less than or equal to 25 pixels (half of the patch size); |
| end |
| 10 Compute the detection rate DR as the number of detections marked as true positives divided by the number of annotated airplanes; |
| 11 Compute the false discovery rate FDR as the number of detections marked as false alarms divided by the total number of detections; |
| 12 Set $score = DR(1 - FDR)$, and save the current model if $score$ increases; |
| 13 Update the set of training samples by randomly replacing up to half of the negative patches with 51×51 patches extracted from detections annotated as false alarms in this iteration; |
| 14 until $score$ does not increase for N epochs or the maximum number of epochs M is reached; |

Fig. 4. Sampling strategy for training: for each annotation (point shown in blue), we extract positive image patches centered on blue and green points. Green points are d^g pixels away from the blue one in one or both axes ($d^g = 3$). Negative image patches are centered on red points, which are d^r pixels away from the blue one in one or both axes ($d^r = 25$). This figure contains modified Sentinel-2 data processed by Euro Data Cube.

Fig. 5. RGB noise patterns in satellite images caused by (a) misalignment between color bands or sun-glint (see Figure 5). Although their occurrence is rare, these artifacts tend to produce several false positives close to each other. If ignored, this problem considerably affects individual cell averages and the final airplane count. To cope with these noisy regions, given that no grid cell in the training set has more than 4 annotated airplanes (considering the final annotation set used for training), we ignore cells that have more than 5 detected airplanes (set $c^k_{ij} = 0$ and $v^k_{ij} = 0$ if $c^k_{ij} > 5$).

In some cases, satellite images may present some artifacts caused by the misalignment between color bands or sun-glint (see Figure 5). Although their occurrence is rare, these artifacts tend to produce several false positives close to each other. If ignored, this problem considerably affects individual cell averages and the final airplane count. To cope with these noisy regions, given that no grid cell in the training set has more than 4 annotated airplanes (considering the final annotation set used for training), we ignore cells that have more than 5 detected airplanes (set $c^k_{ij} = 0$ and $v^k_{ij} = 0$ if $c^k_{ij} > 5$).
We adopted the use of the concept of the structural breaks, which has been applied in other remote sensing-related problems \cite{44, 45}. Thus, we characterize the breaks as a position in the time series in which an abrupt shift (or decrease) is observed \cite{44}.

To detect a breaking point in the time series, we adopted two approaches: the simple moving-average (SMA) crossover \cite{47} and Twitter’s Breakout Detection \cite{48}. The simple SMA crossover comprises two simple moving-averages to follow short-term and long-term tendencies. While the short-term moving average is more reactive to variations, the long-term moving average aggregate changes over a long time and thus produced a smoothed curve. When the curve resultant of these two moving average crosses, then we might have a change of tendency. In turn, the Twitter algorithm employs the E-Divisive with Medians (EDM) method \cite{49} to automatically detect breakouts in time series. The authors employed the E-statistics to locate changes in mean without any assumption regarding the data distribution. According to authors, this approach was designed to work in presence of anomalies. A more in-depth discussion regarding the mathematics and statistical theories regarding this method can be found in the literature \cite{48, 49}. We evaluate these two algorithms to detect a breaking point in our time series to find the instant \(t \) (in days) in which the airport starts recovering from a very low activity state.

After finding the breaking point in time series for each airport, the next stage of our analysis consists of computing the recovery rate of airports’ activity \cite{50}. First, we computed a baseline \(Y_B \), which is the average of the short-term moving average. Then, we define the recovery rate using the following exponential model \cite{51}, as follows:

\[
\frac{dy}{dt} = -\lambda(Y_B - Y_t)
\]

where \(Y_t \) is the observed trend in the instant \(t \) and \(\lambda \) is the recovery rate computed by fitting a linear regression of \(-ln(Y_B - Y_t)\) against time. Figures 2(d) and 2(e) illustrate the methodology used to compute the recovery rate. In Figure 2(d), for a given time series, the baseline \(Y_B \) is shown as a green line and the breaking point as a red line. Then, we compute the differences between the baseline and all \(Y \) values after the breaking point. These values are transformed into a logarithm scale and used to fit a linear regression (Figure 2(e)). Finally, the slope coefficient of the fitted line represents the recovery rate for that time series.

3 RESULTS

3.1 FCN-based detection results

To assess the effectiveness of our approach to detect flying airplanes, we designed two experiments in order to measure detection errors in practical scenarios: (1) visual inspections around each detection to determine the proportion of false alarms and (2) comparison to existing publicly available flight records to quantify the occurrence of false negatives.

In the context of this work, false alarms occur when our method classifies background patches as a flying airplane, while false negatives occur when the method classifies flying airplane patches as background.

3.1.1 Visual inspection to quantify false alarms

We conducted an error analysis to determine the number of false alarms of our method in detecting flying airplanes by visually inspecting the detection results in images that were not seen during training. To this end, we first extracted patches around each detection in images captured between June 2015 and December 2019 from the 15 training AOIs. After manually classifying each patch as a true positive \((TP)\) or a false alarm \((FA)\), we compute the false discovery rate \((FDR = \frac{FA}{TP + FA})\) for unseen data from AOIs seen during training. We adopted this strategy because it allows accurately estimating FDR in the absence of ground truth annotations. From the total number of 25,747 detections, 410 were false alarms, which corresponds to a 1.59\% FDR. This results in 7.6 false alarms per month, i.e., less than one false alarm per airport each month. Knowing that each AOI has an average of 10 images per month and each image has up to 20 million airplane candidates, the incidence of false alarms in areas observed during training is minimal.

To evaluate the generalization capability of our detector operating in unknown areas, we repeated the previous analysis using the images captured between June 2015 and June 2020 from the AOIs not seen during training. There were 616 false alarms in the midst of 30,958 detections, a 1.99\% FDR. The average number of false alarms per month was 10.1, which again resulted in less than one false alarm per airport each month. These values are similar to the ones reported for training AOIs and show that our detector is equally applicable to AOIs that were not seen during training but have a similar setup.

We show several examples of regions depicting correct detections and false alarms in Figure 6. These examples show the robustness of our detector to a wide range of variations and illustrate the most common causes of misdetection.

3.1.2 Analysis of publicly available of flight records to quantify false negatives

Given the vast amount of data collected in this work, a comprehensive annotation of flying airplanes that allows a precise estimation of the number of false negatives is unfeasible. Thus, to quantitatively measure the detection accuracy, we used publicly available flight track records from the OpenSky Network \cite{52} as a reference. To do so, we retrieved all records whose portrayed airplanes are inside one AOI at the same moment that the area is imaged by a Sentinel-2 satellite from January 2020 to June 2020 (older records were not available at OpenSky).

As shown in Figure 7 these records not necessarily include all airplanes that appear in one image, either due to the absence of tracks for some flights or to the registering of incomplete tracks. Also, not all airplanes whose tracks are available within a certain AOI can be detected by our approach. In most cases, this occurs because these airplanes appear over non-viable cells. In other cases, small airplanes are not visible in the satellite image.

For this analysis, we created two time series with monthly estimates of the number of flights for each AOI, one using our detection results and the other using the OpenSky records. The time series for training and testing AOIs...
are presented in Figures 8(a) and 8(b), respectively. When comparing the two series of the same AOI, we obtained a Root Mean Squared Error (RMSE) of 2.9 and a Mean Signed Deviation (MSD) of 0.8 on average for training AOIs, and a 2.7 RMSE and a −1.4 MSD on average for testing AOIs. Once again, the results for known and unknown AOIs are close and reinforce our detector’s generalization power. The RMSE values show that, when looking into individual AOIs, our results are comparable to OpenSky records, exhibiting similar volume of flights and trends in airport activity. The MSD values reveal that our estimates are consistently lower than their respective OpenSky values. This negative bias approximates the average number of false negatives per image. These false negatives, however, can either be caused by detection failure (Figure 7(a)) or data absence (Figure 7(b)).

If we consider the average time series from several AOIs (thick black lines in Figures 8(a) and 8(b), the RMSE is reduced by two thirds for known airports (from 2.9 to 1.0) and by half for unknown airports (from 2.7 to 1.4). By averaging multiple AOIs from different countries, we not only obtain stabler series but also integrate airport activity at continental level. To illustrate how accurate these measurements can be, we recreate the real number of flights per month from 42 European countries (data from March to September of 2019 and 2020 made available by Eurocontrol [28]) using the monthly average of the 30 AOIs considered in this work (data from August to September of 2020 generated by the live version of our approach at the RACE dashboard [35]). As both series are in different scales, we normalized them by their maximum values in the considered period, and the outcome is presented in Figure 8(c). This result shows that our monthly estimates are directly proportional to the real number of flights. Thus, despite noisy, our time series for individual AOIs fluctuate around their expected values and allow us to conduct AOI-specific analyses.

3.2 Time series analysis results

This section presents the time series analysis applied in this study to discover outbreaks in airports’ activities caused by the COVID-19 pandemic and to estimate their recovery rate. In both analyses, we use the proposed flying airplane detection algorithm to build a time series associated with the number of flying airplanes in each AOI considered in this study.

3.2.1 Structural break detection

We assess the effectiveness of both SMA crossover [47] and Twitter’s Breakout Detection [48] by analyzing their...
parameter space and then selected the best technique for our problem considering their best configuration. To measure the effectiveness of such methods to detect structural breaks, we considered the date May 1st as being the observed breaking point, which reflects the period in which the airports presented a significantly reduction in their operations. We measure the ability of both techniques in detecting these breaking points by computing the Mean Absolute Error (MAE) and the RMSE between the observed and predicted breaking points.

For the SMA crossover method, we analyzed the short-term parameters considering values ranging from 7 to 49 days and the long-term parameters taking values ranging from 14 to 98 days. From these experiments, we could observe that SMA crossover method presented a better performance using a 14-day window size for the short-term parameter and a 49-day window size for the long-term. For the Twitter algorithm, we analyzed its two main parameters, msize and beta parameter. For the msize, we consider eight values ranging from 64 to 128 days, and for the beta parameter (penalization parameter), we consider ten values ranging from 0.1 to 1.0. Before applying the twitter algorithm for detecting breaking points, we first use a smoothing technique to remove random variations and thus reveals underlying trends clearly. From these experiments, we could observe a better performance considering a msize and beta parameter values of 64 and 0.2, respectively. As a result, we observed a 19.7 MAE and a 23.4 RMSE for the SMA crossover method, and a 19.9 MAE and a 26.5 RMSE for the Twitter algorithm. Both metrics indicate the prediction quality, with errors ranging from 0 to infinity and lower values being better.

Once the algorithms returned quantitative values, we adopted the use of the Wilcoxon Signed-rank (WSR) test statistic to verify if both algorithms are statistically different. The WSR test is a non-parametric test used to assess the null hypothesis that two related paired samples come from the same distribution \([53]\). More precisely, we computed the breaking points using both algorithms for the 30 airports considered in this study. Then, we converted the detected breaking point dates into the Julian format, and then we applied the WSR test to check if both algorithms are statistically different. The obtained p-value confirmed that the differences between the two algorithms’ results are statistically significant, considering a confidence level of 95%. Thus, from hereon we use the best configuration of the SMA crossover since this method presented a better performance.

3.2.2 Recovery rate and COVID-19 analysis

To compute the recovery rate, we fitted a log-linear regression model considering a linear regression algorithm with a mean squared error (MSE) as a cost function. In short, we estimated the structural break for each time series and their respective baseline, which corresponds to the average number of flying airplanes. Then, we computed the log of the difference between the daily estimations of counted airplanes and the baseline value. The estimation of log-linear regression models considers such differences (in log scale) as a dependent variable and the data timestamp as an independent variable.

To measure the goodness of fit of regression models to estimate the recovery rate for the airports, we adopted the R-squared metric, also known as coefficient of determination, which ranges from 0.0 to 1.0 and measures the proportion of variance in the independent variable explained by dependent variables (Equation \(3\)):

$$R^2 = 1 - \frac{\sum_{t=1}^{n} (y_t - \hat{y})^2}{\sum_{t=1}^{n} (y_t - \bar{y})^2}, \quad \bar{y} = \frac{1}{n} \sum_{t=1}^{n} y_t$$

where \(y_t\) and \(\hat{y}\) are the observed and predicted values for the time \(t\). In this context, an R-squared of 0.0 means that the fitted model does not explain any variation in the independent variable around its mean, while an R-squared of 1.0 means that the fitted model explains all variations in the independent variable around its mean, i.e., the obtained regression model fitted all data points \([53]\).

Figure 9(a) shows the performance of the fitted models in terms of R-squared, from which we could observe values higher than 0.8 for several airports. Also, Figures 9(b) and (c) illustrate airports with positive (first two
columns) and negative recovery rate (last column) and their respective time series from Jan 1st, 2020 to July 30th, 2020. Only two airports presented a negative recovery rate in the considered period (MAN and WAW), meaning that their activities was still decreasing after the breaking point.

![Regression analysis (R-squared explanation) for each airport](image)

(a)

![Time series graphs](image)

(b)

(c)

Fig. 9. The top figure shows (a) the performance results (in terms of R-squared) obtained after fitting a log-linear model to each airport data. The second row (b) shows examples in which we could fit a perfect log-linear regression model and thus compute the recovery rate (LGW and CDG), and an example in which we could not fit a log-linear regression model (WAW), which suggests that this airport does not present a clear recovery pattern. Finally, the third row (c) shows the time series for these three examples as well as the baseline and detected breaking point.

Finally, we present an analysis of the COVID-19 situation and the public’s politics for border opening by correlating the recovery rates and the 14-day moving average of the daily number of new cases and deaths, as illustrated in Figure 10. This study considered the official number of cases and deaths caused by the COVID-19 disease. When we correlated the recovery rate and the daily number of new cases and deaths reported until July 30th, 2020 [54], [55], we observed a strong positive correlation between both variables for VIE, PMI and ZRH. This suggests that these airports restarted their activities while the number of new cases was still increasing. Conversely, we observed a strong negative correlation between the recovery rate and the daily new cases of COVID-19 for several airports such as MUC and DUS airports from German, and the SNT, LGW, LHR, and LTN airports from Great Britain.

Of course, the positive correlations found in our analysis do not imply the causation of the rise in the total number of cases and deaths. However, we can surely state that the indicator of activity presented in this work can reveal which airports and countries demand more attention from the authorities. This because airports that are expanding their activities while the total number of cases and deaths caused by the COVID-19 disease is increasing can negatively impact the pandemic’s trajectory.

![Fig. 10. Correlation analysis between the recovery rates and the total number of cases and deaths caused by the COVID-19 disease.](image)

4 FINAL REMARKS

The measurements of human activity are nowadays an essential task for planning actions to fight against huge outbreaks that impact human daily activities as the COVID-19 pandemic. In this context, the proposed approach for measuring airport activities can serve society as a valuable and independent indicator of human activity without any political biases. Our solution now integrates the Rapid Action Coronavirus Earth (RACE) observation dashboard [33], a platform from the European Space Agency (ESA) that uses Earth observation satellite data and artificial intelligence to measure the impact of the coronavirus lockdown and to monitor post-lockdown recovery, as illustrated in Figure 11.

![Fig. 11. RACE observation dashboard.](image)

Our detector was able to locate most airplanes appearing on satellite images with minimal false detections. On average, we get less than one false detection per month in each airport. Furthermore, our time series analysis can
be used to identify abnormal behaviors in air traffic and correlate changes in the number of airplanes with COVID-19 statistics. Decision-makers can use this information to substantiate border control and lockdown measures.

Thanks to our semi-automatic annotation strategy, this approach can be straightforwardly adapted to detect other objects, such as ships [31] and transportation trucks [56], and use this outcome to devise other informative indicators.

Acknowledgments

Part of the equipment used in this project are supported by a grant (CNS-1513126) from the USA National Science Foundation. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. Funding from the University of South Florida for the Institute for Artificial Intelligence (AI+X) is also acknowledged. The authors would like to thank also the research Brazilian agencies CNPq, CAPES and FAPESP.

References

[1] United Nations Office for Disaster Risk Reduction, “The human cost of disasters: an overview of the last 20 years (2000-2019),” United Nations, Tech. Rep., 2020.

[2] K. F. Smith, M. Goldberg, S. Rosenthal, L. Carlson, J. Chen, C. Chen, and S. Ramachandran, “Global rise in human infectious disease outbreaks,” J. R. Soc. Interface, vol. 11, no. 101, 2014.

[3] F. Liu, F. Page, A. Vaccari, M. Stuecheli, A. Bohane, G. Falorni, and J. Morgan, Transportation Infrastructure Monitoring Using Satellite Remote Sensing. John Wiley & Sons, Ltd, 2016, ch. 14, pp. 185–198.

[4] M. Tello, C. López-Martínez, and J. J. Mallorqui, “Automatic vessel monitoring with single and multidimensional sar images in the wavelet domain,” P&RS, vol. 61, no. 3, pp. 260–278, 2006.

[5] N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and S. Ermon, “Worldometer – Coronavirus,” https://www.worldometers.info/

[6] A. Pavli, P. Smeti, S. Hadjianastasiou, K. Theodoridou, A. Spilioti, K. Papadima, A. Andreopoulos, K. Gkolfinopoulos, S. Sapounas, N. Spanakis, A. Tsakiris, and H. C. Maltezou, “In-flight transmission of covid-19 on flights to greece: An epidemiological analysis,” Travel Medicine and Infectious Disease, vol. 38, p. 101882, 2020.

[7] D. Lam, R. Kuzma, K. McGee, S. Dooley, M. Laielli, M. Klaric, Y. Bulatov, and B. McCord, “xView: Objects in Context in Overhead Imagery,” arXiv, vol. 1802.07566, 2018.

[8] T. Simon, A. Goldberg, and B. Adini, “Socializing in emergencies – a review of the use of social media in emergency situations,” IJIM, vol. 35, no. 5, pp. 609–619, 2015.

[9] C. Betsch, V. Colizza, S. del Valle, C. Ihekweazu, and C. Troncoso, “A vision for actionable science in a pandemic,” Nature Communications, vol. 11, no. 1, p. 1629, Apr 2020.

[10] T. Simon, A. Goldberg, and B. Adini, “Socializing in emergencies – a review of the use of social media in emergency situations,” IJIM, vol. 35, no. 5, pp. 609–619, 2015.

[11] C. Raymond, R. M. Horton, J. Zscheischler, O. Martius, A. AghaKouchak, J. Balch, S. G. Bowen, S. J. Camargo, J. Hess, K. Kornhuber, M. Pelillo, and L. Zhang, “DOTA: A Large-Scale Dataset for Object Detection in Aerial Images,” in CVPR, 2018.

[12] E. Choi, D. K. Chu, P. K. Cheng, D. N. Tsang, M. Peiris, D. Bausch, E. L. Poon, and D. Watson-Jones, “In-flight transmission of sars-cov-2,” Emerging Infectious Disease, vol. 26, no. 11, pp. 2713–2716, 2020.

[13] F. Zhang, B. Du, L. Zhang, and M. Xu, “Weakly supervised learning based on coupled convolutional neural networks for aircraft detection,” TGRS, vol. 54, no. 9, pp. 5533–5563, 2016.

[14] D. Grosgeorge, M. Arbelot, A. Goupilleau, T. Ceillier, and R. Alioux, “Congruent segmentation and object detection cnns for aircraft detection and identification in satellite images,” in IGARSS, 2020.

[15] T. D. Quang, T.-T. Nguyen, F. Vogt, and D. D. Anh, “Transmission of sars-cov-2 during long-haul flight,” Emerging Infectious Disease, vol. 26, no. 11, pp. 2617–2624, 2020.

[16] D. Lamsal, C. Li, N. A. Krotkov, H. Eskes, R. van der A, T. D. Quang, T.-T. Nguyen, F. Vogt, and D. D. Anh, “Transmission of sars-cov-2 during long-haul flight,” Emerging Infectious Disease, vol. 26, no. 11, pp. 2617–2624, 2020.

[17] F. Zhang, B. Du, L. Zhang, and M. Xu, “Weakly supervised learning based on coupled convolutional neural networks for aircraft detection,” TGRS, vol. 54, no. 9, pp. 5533–5563, 2016.

[18] T. Simon, A. Goldberg, and B. Adini, “Socializing in emergencies – a review of the use of social media in emergency situations,” IJIM, vol. 35, no. 5, pp. 609–619, 2015.

[19] C. Raymond, R. M. Horton, J. Zscheischler, O. Martius, A. AghaKouchak, J. Balch, S. G. Bowen, S. J. Camargo, J. Hess, K. Kornhuber, M. Pelillo, and L. Zhang, “DOTA: A Large-Scale Dataset for Object Detection in Aerial Images,” in CVPR, 2018.

[20] E. Choi, D. K. Chu, P. K. Cheng, D. N. Tsang, M. Peiris, D. Bausch, E. L. Poon, and D. Watson-Jones, “In-flight transmission of sars-cov-2,” Emerging Infectious Disease, vol. 26, no. 11, pp. 2713–2716, 2020.

[21] E. Choi, D. K. Chu, P. K. Cheng, D. N. Tsang, M. Peiris, D. Bausch, E. L. Poon, and D. Watson-Jones, “In-flight transmission of sars-cov-2,” Emerging Infectious Disease, vol. 26, no. 11, pp. 2713–2716, 2020.

[22] E. Choi, D. K. Chu, P. K. Cheng, D. N. Tsang, M. Peiris, D. Bausch, E. L. Poon, and D. Watson-Jones, “In-flight transmission of sars-cov-2,” Emerging Infectious Disease, vol. 26, no. 11, pp. 2713–2716, 2020.
[43] A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in *ICPR*, vol. 3, 2006, pp. 850–855.

[44] N. Menini, A. E. Almeida, R. Lamparelli, G. Le Maire, R. S. Oliveira, J. Verbesselt, M. H rotor, and R. da S. Torres, “Tucuma: A toolbox for spatiotemporal remote sensing image analysis [software and data sets],” *GRSM*, vol. 7, no. 3, pp. 110–122, 2019.

[45] D. P. Roy, H. Huang, L. Boschetti, L. Giglio, L. Yan, H. H. Zhang, and Z. Li, “Landsat-8 and sentinel-2 burned area mapping - a combined sensor multi-temporal change detection approach,” *RSE*, vol. 231, p. 111254, 2019.

[46] E. L. Bullock, C. E. Woodcock, and C. E. Holden, “Improved change monitoring using an ensemble of time series algorithms,” *RSE*, vol. 238, p. 111165, 2020.

[47] A. C. Szakmary, Q. Shen, and S. C. Sharma, “Trend-following trading strategies in commodity futures: A re-examination,” *JBF*, vol. 34, no. 2, pp. 409–426, 2010.

[48] N. A. James, A. Kejariwal, and D. S. Matteson, “Leveraging cloud data to mitigate user experience from ‘breaking bad’,” in *BigData*, 2016, pp. 3499–3508.

[49] G. J. Székely and M. L. Rizzo, “Energy statistics: A class of statistics based on distances,” *J. Stat. Plan. Inference*, vol. 143, no. 8, pp. 1249–1272, 2013.

[50] E. H. Van Nes and M. Scheffer, “Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift,” *The American Naturalist*, vol. 169, no. 6, pp. 738–747, 2007.

[51] A. J. Veraart, E. J. Faassen, V. Dakos, E. H. van Nes, M. Läörling, and M. Scheffer, “Recovery rates reflect distance to a tipping point in a living system,” *Nature*, vol. 481, no. 7381, pp. 357–359, 2012.

[52] “OpenSky Network,” https://opensky-network.org/, accessed: 2021-01-21.

[53] J. Devore, *Probability and Statistics for Engineering and the Sciences*. Brooks/Cole Publishing Company, 1987.

[54] J. Hasell, E. Mathieu, D. Beltekian, B. Macdonald, C. Giattino, E. Ortiz-Ospina, M. Roser, and H. Ritchie, “A cross-country database of covid-19 testing,” *Scientific Data*, vol. 7, no. 1, p. 345, Oct 2020.

[55] B. Xu, M. U. G. Kraemer, B. Xu, B. Gutierrez, S. Mekaru, K. Sewalk, A. Loskill, L. Wang, E. Cohn, S. Hill, A. Zarebski, S. Li, C.-H. Wu, E. Hulland, J. Morgan, S. Scarpino, J. Brownstein, O. Pybus, D. Pigott, and M. Kraemer, “Open access epidemiological data from the covid-19 outbreak,” *The Lancet Infectious Diseases*, vol. 20, no. 5, p. 534, 2020.

[56] “Rapid Action on Coronavirus and EO – Number of Trucks,” https://race.esa.int/?indicator=E12c accessed: 2021-01-21.