Abstract. In this paper we introduce \(n\mathbb{Z} \)-abelian and \(n\mathbb{Z} \)-exact categories by axiomatising properties of \(n\mathbb{Z} \)-cluster tilting subcategories. We study this categories and show that every \(n\mathbb{Z} \)-cluster tilting subcategory of an abelian (resp., exact) category has a natural structure of an \(n\mathbb{Z} \)-abelian (resp., \(n\mathbb{Z} \)-exact) category. Also we show that every small \(n\mathbb{Z} \)-abelian category arise in this way, and discuss the problem for \(n\mathbb{Z} \)-exact categories.

1. Introduction

Higher Auslander-Reiten theory was introduced by Iyama in [9, 12]. It deals with \(n \)-cluster tilting subcategories of abelian and exact categories. Jasso in [14] introduced \(n \)-abelian and \(n \)-exact categories as a higher-dimensional analogue of abelian and exact categories, that are axiomatisation of \(n \)-cluster tilting subcategories. Jasso proved that each \(n \)-cluster tilting subcategory of an abelian (resp., exact) category is \(n \)-abelian (resp., \(n \)-exact). Also every \(n \)-abelian category has been shown to arise in this way [5, 17].

Special kind of \(n \)-cluster tilting subcategories, called \(n\mathbb{Z} \)-cluster tilting subcategories have nicer properties than general \(n \)-cluster tilting subcategories. An \(n \)-cluster tilting subcategory is said to be an \(n\mathbb{Z} \)-cluster tilting subcategory if satisfies the following additional condition.

- If \(\text{Ext}^k(M, M) \neq 0 \) then \(k \in n\mathbb{Z} \).

In this paper we give the following characterisation of \(n\mathbb{Z} \)-cluster tilting subcategories of exact categories. We refer the reader to Section 2 for the definitions of \(n \)-cluster tilting subcategory and \(n \)-exact sequence.

Theorem 1.1. Let \(M \) be an \(n \)-cluster tilting subcategory of an exact category \(\mathcal{E} \). The following conditions are equivalent.

1. \(M \) is an \(n\mathbb{Z} \)-cluster tilting subcategory.
2. For every \(X \in M \) and every \(n \)-exact sequence \(Y : Y^0 \to Y^1 \to \cdots Y^n \to Y^{n+1} \) the following induced sequence of abelian groups is exact.

\[
0 \to \text{Hom}_\mathcal{E}(X, Y^0) \to \text{Hom}_\mathcal{E}(X, Y^1) \to \cdots \to \text{Hom}_\mathcal{E}(X, Y^n) \to \text{Hom}_\mathcal{E}(X, Y^{n+1}) \\
\to \text{Ext}^n_\mathcal{E}(X, Y^0) \to \text{Ext}^n_\mathcal{E}(X, Y^1) \to \cdots \to \text{Ext}^n_\mathcal{E}(X, Y^n) \to \text{Ext}^n_\mathcal{E}(X, Y^{n+1}) \\
\to \text{Ext}^{2n}_\mathcal{E}(X, Y^0) \to \text{Ext}^{2n}_\mathcal{E}(X, Y^1) \to \cdots \to \text{Ext}^{2n}_\mathcal{E}(X, Y^n) \to \text{Ext}^{2n}_\mathcal{E}(X, Y^{n+1}) \\
\to \cdots.
\]
For every $Y \in \mathcal{M}$ and every n-exact sequence $X : X^0 \to X^1 \to \cdots X^n \to X^{n+1}$ the following induced sequence of abelian groups is exact.

$$0 \to \text{Hom}_\mathcal{E}(X^{n+1}, Y) \to \text{Hom}_\mathcal{E}(X^n, Y) \to \cdots \to \text{Hom}_\mathcal{E}(X^1, Y) \to \text{Hom}_\mathcal{E}(X^0, Y)$$

$$\to \text{Ext}^n_\mathcal{E}(X^{n+1}, Y) \to \text{Ext}^n_\mathcal{E}(X^n, Y) \to \cdots \to \text{Ext}^n_\mathcal{E}(X^1, Y) \to \text{Ext}^n_\mathcal{E}(X^0, Y)$$

$$\to \text{Ext}^{2n}_\mathcal{E}(X^{n+1}, Y) \to \text{Ext}^{2n}_\mathcal{E}(X^n, Y) \to \cdots \to \text{Ext}^{2n}_\mathcal{E}(X^1, Y) \to \text{Ext}^{2n}_\mathcal{E}(X^0, Y)$$

$$\to \cdots$$

Iyama and Jasso in [13, Definition-Proposition 2.15] proved the above theorem for an n-cluster tilting subcategory $\mathcal{M} \subseteq \text{mod}(\mathcal{A})$, where \mathcal{A} is a dualizing R-variety. They also showed that $\mathcal{M} \subseteq \text{mod}(\mathcal{A})$ is an $n\mathbb{Z}$-cluster tilting subcategory if and only if \mathcal{M} closed under nth syzygies if and only if \mathcal{M} closed under nth cosyzygies. The proof of Iyama and Jasso of this theorem in [13], heavily biased on the enough projectives and enough injectives properties of \mathcal{A}. But in Theorem [11] we don’t have such assumptions.

Iyama in [12] Appendix A showed that for an n-cluster tilting subcategory $\mathcal{M} \subseteq \text{mod} \Lambda$, where Λ is an Artin algebra and for every two objects $M, N \in \mathcal{M}$, every element in $\text{Ext}^n_\mathcal{A}(M, N)$ is Yoneda equivalent to a unique (up to homotopy) n-fold extension of M by N with terms in \mathcal{M}. In the following theorem we give the following more general version of this result for any n-cluster tilting subcategory of an exact category \mathcal{E}.

Theorem 1.2. Let \mathcal{M} be an n-cluster tilting subcategory of an exact category \mathcal{E} and

$$\xi : 0 \to X^0 \to E^1 \to E^2 \to \cdots \to E^n \to X^{n+1} \to 0,$$

with $X^0, X^{n+1} \in \mathcal{M}$ be an acyclic sequence in \mathcal{E}. Then there is a unique (up to homotopy) n-exact sequence

$$0 \to X^0 \to X^1 \to X^2 \to \cdots \to X^n \to X^{n+1} \to 0,$$

Yoneda equivalent to ξ.

If moreover \mathcal{M} be an $n\mathbb{Z}$-cluster tilting subcategory and

$$\xi : 0 \to X^0 \xrightarrow{f^0} E^1 \xrightarrow{f^1} \cdots \xrightarrow{f^{kn-2}} E^{kn-1} \xrightarrow{f^{kn-1}} E^k \xrightarrow{f^k} X^{kn+1} \to 0,$$

be a kn-fold extension with $X^0, X^{kn+1} \in \mathcal{M}$, then ξ is Yoneda equivalent to splicing of k, n-exact sequences.

Let \mathcal{M} be an n-exact category. For every two object $X, Y \in \mathcal{M}$ we can define $\text{nExt}^1(X, Y)$ as Yoneda equivalence classes of n-exact sequences starting from Y and ending with X. Also for a positive integer k, $\text{nExt}^k(X, Y)$ is defined as Yoneda equivalence classes of k-fold n-extensions. We refer the reader to Section 2 for the definition of n-exact category and to Section 5 for the definitions of $\text{nExt}^1(X, Y)$ and $\text{nExt}^k(X, Y)$. Motivated by Theorems [11] and [12] we define $n\mathbb{Z}$-exact (resp. $n\mathbb{Z}$-abelian) categories as axiomatisation of $n\mathbb{Z}$-cluster tilting subcategories of exact (resp. abelian) categories (See Definition [5.2]). Let \mathcal{M} be an n-exact (resp. n-abelian) category. We say that \mathcal{M} is an $n\mathbb{Z}$-exact (resp. $n\mathbb{Z}$-abelian) category if for every object $X \in \mathcal{M}$, $\text{nExt}^*(X, -)$ and $\text{nExt}^*(-, X)$ induce long exact sequences for all n-exact sequences.

We show that an n-cluster tilting subcategory of an abelian (resp. exact) category is an $n\mathbb{Z}$-exact (resp. $n\mathbb{Z}$-abelian) category if and only if it is an $n\mathbb{Z}$-cluster tilting subcategory
of an abelian (resp. exact) category. This shows that \(n\mathbb{Z}\)-exact (resp. \(n\mathbb{Z}\)-abelian) categories are good axiomatisation of \(n\mathbb{Z}\)-cluster tilting subcategories of exact (resp. abelian) categories.

The paper is organized as follows. In section 2 we recall the definitions of \(n\)-cluster tilting subcategories of abelian and exact categories, \(n\)-exact and \(n\)-abelian categories and some of their basic properties. In section 3 we recall the Gabriel-Quillen embedding for \(n\)-exact categories and prove that it has expected properties as the classical Gabriel-Quillen embedding. In section 4 we study \(n\mathbb{Z}\)-cluster tilting subcategories and prove Theorem 1.1 and Theorem 1.2. In section 5, motivated by the results of previous sections we introduce \(n\mathbb{Z}\)-abelian and \(n\mathbb{Z}\)-exact categories, and we prove that every small \(n\mathbb{Z}\)-abelian category is equivalent to an \(n\mathbb{Z}\)-cluster tilting subcategories of an abelian category. For small \(n\mathbb{Z}\)-exact categories we prove a similar result using the Gabriel-Quillen embedding.

1.1. **Notation.** Throughout this paper, unless otherwise stated, \(n\) always denotes a fixed positive integer. All categories we consider are assumed to be additive and by subcategory we mean full subcategory which is closed under isomorphisms.

2. **PRELIMINARIES**

In this section we recall the definitions of \(n\)-exact category, \(n\)-abelian category and \(n\)-cluster tilting subcategory. Also we recall some basic results that we need in the rest of the paper. For further information the readers are referred to [9, 10, 12, 14].

2.1. **\(n\)-exact categories.** Let \(\mathcal{M}\) be an additive category and \(f : A \to B\) a morphism in \(\mathcal{M}\). A weak cokernel of \(f\) is a morphism \(g : B \to C\) such that for all \(C' \in \mathcal{M}\) the sequence of abelian groups

\[
\text{Hom}(C, C') \xrightarrow{(g \circ C')} \text{Hom}(B, C') \xrightarrow{(f \circ C')} \text{Hom}(A, C')
\]

is exact. The concept of weak kernel is defined dually. Let \(d^0 : X^0 \to X^1\) be a morphism in \(\mathcal{M}\). An \(n\)-cokernel of \(d^0\) is a sequence

\[(d^1, \ldots, d^n) : X^1 \xrightarrow{d^1} X^2 \xrightarrow{d^2} \cdots \xrightarrow{d^{n-1}} X^n \xrightarrow{d^n} X^{n+1}\]

of objects and morphisms in \(\mathcal{M}\) such that for each \(Y \in \mathcal{M}\) the induced sequence of abelian groups

\[0 \to \text{Hom}(X^{n+1}, Y) \to \text{Hom}(X^n, Y) \to \cdots \to \text{Hom}(X^1, Y) \to \text{Hom}(X^0, Y)\]

is exact. Equivalently, the sequence \((d^1, \ldots, d^n)\) is an \(n\)-cokernel of \(d^0\) if for all \(1 \leq k \leq n - 1\) the morphism \(d^k\) is a weak cokernel of \(d^{k-1}\), and \(d^n\) is moreover a cokernel of \(d^{n-1}\) [14, Definition 2.2]. The concept of \(n\)-kernel of a morphism is defined dually.

Definition 2.1. [18, Definition 2.4] Let \(\mathcal{M}\) be an additive category. A left \(n\)-exact sequence in \(\mathcal{M}\) is a complex

\[X^0 \xrightarrow{d^0} X^1 \xrightarrow{d^1} \cdots \xrightarrow{d^{n-1}} X^n \xrightarrow{d^n} X^{n+1}\]

such that \((d^0, \ldots, d^{n-1})\) is an \(n\)-kernel of \(d^n\). The concept of right \(n\)-exact sequence is defined dually. An \(n\)-exact sequence is a sequence which is both a right \(n\)-exact sequence and a left \(n\)-exact sequence.
Definition 2.2. ([14, Definition 3.1]) An \textit{n-abelian} category is an additive category \(\mathcal{M} \) which satisfies the following axioms.

(i) The category \(\mathcal{M} \) is idempotent complete.
(ii) Every morphism in \(\mathcal{M} \) has an \(n \)-kernel and an \(n \)-cokernel.
(iii) For every monomorphism \(d^0 : X^0 \to X^1 \) in \(\mathcal{M} \) and for every \(n \)-cokernel \((d^1, \ldots, d^n)\) of \(d^0 \), the following sequence is \(n \)-exact:
\[
X^0 \xrightarrow{d^0} X^1 \xrightarrow{d^1} \cdots \xrightarrow{d^{n-1}} X^n \xrightarrow{d^n} X^{n+1}.
\]
(iv) For every epimorphism \(d^n : X^n \to X^{n+1} \) in \(\mathcal{M} \) and for every \(n \)-kernel \((d^0, \ldots, d^{n-1})\) of \(d^n \), the following sequence is \(n \)-exact:
\[
X^0 \xrightarrow{d^0} X^1 \xrightarrow{d^1} \cdots \xrightarrow{d^{n-1}} X^n \xrightarrow{d^n} X^{n+1}.
\]

Let \(X \) and \(Y \) be two \(n \)-exact sequences. We remained that a morphism \(f : X \to Y \) of \(n \)-exact sequences is a morphism of complexes. A morphism \(f : X \to Y \) of \(n \)-exact sequences is called \textit{a weak isomorphism} if \(f^k \) and \(f^{k+1} \) are isomorphisms for some \(k \in \{0, 1, \cdots, n+1\} \) with \(n + 2 := 0 \) [14, Definition 4.1].

Let
\[
\begin{array}{ccccccc}
X & \xrightarrow{f^0} & X^0 & \xrightarrow{d^0_X} & X^1 & \xrightarrow{d^1_X} & \cdots & \xrightarrow{d^{n-2}_X} & X^{n-1} & \xrightarrow{d^{n-1}_X} & X^n \\
\downarrow{f} & & \downarrow{f^0} & & \downarrow{f^1} & & \cdots & & \downarrow{f^{n-1}} & & \downarrow{f^n} \\
Y & \xrightarrow{d^0_Y} & Y^0 & \xrightarrow{d^1_Y} & \cdots & \xrightarrow{d^{n-2}_Y} & Y^{n-1} & \xrightarrow{d^{n-1}_Y} & Y^n \\
\end{array}
\]

be a morphism of complexes in an additive category. Recall that the \textit{mapping cone} \(C = C(f) \) of \(f \) is the complex

\[
X^0 \xrightarrow{d^0_C} X^1 \oplus Y^0 \xrightarrow{d^1_C} \cdots \xrightarrow{d^{n-2}_C} X^n \oplus Y^{n-1} \xrightarrow{d^{n-1}_C} Y^n,
\]

where
\[
d^k_C := \begin{pmatrix}
-d^{k+1}_X & 0 \\
 f^{k+1} & d^k_Y
\end{pmatrix} : X^{k+1} \oplus Y^k \to X^{k+2} \oplus Y^{k+1}
\]

for each \(k \in \{-1, 0, \ldots, n - 1\} \). In particular \(d^{-1}_C = \begin{pmatrix}
-d^n_X \\
 f^0_Y
\end{pmatrix} \) and \(d^{-1}_C = \begin{pmatrix}
f^n & d^{n-1}_Y
\end{pmatrix} \).

- The above diagram is called an \textit{n-pullback} of \(Y \) along \(f^n \) if the complex (2.1) is a \emph{left} \(n \)-exact sequence.
- The above diagram is an \textit{n-pushout} of \(X \) along \(f^0 \) if the complex (2.1) is a \emph{right} \(n \)-exact sequence [14, Definition 2.11].

Definition 2.3. ([14, Definition 4.2]) Let \(\mathcal{M} \) be an additive category. An \textit{n-exact structure} on \(\mathcal{M} \) is a class \(\mathcal{X} \) of \(n \)-exact sequences in \(\mathcal{M} \), closed under weak isomorphisms of \(n \)-exact sequences, and which satisfies the following axioms:

(E0) The sequence \(0 \to 0 \to \cdots \to 0 \to 0 \) is an \(\mathcal{X} \)-admissible \(n \)-exact sequence.
(E1) The class of \mathcal{X}-admissible monomorphisms is closed under composition.

(E1') The class of \mathcal{X}-admissible epimorphisms is closed under composition.

(E2) For each \mathcal{X}-admissible n-exact sequence X and each morphism $f : X^0 \to Y^0$, there exists an n-pushout diagram of $(d_0^X, \cdots, d_{n-1}^X)$ along f such that d_0^X is an \mathcal{X}-admissible monomorphism. The situation is illustrated in the following commutative diagram:

\[
\begin{array}{cccccc}
X^0 & \xrightarrow{d_0^X} & X^1 & \xrightarrow{d_1^X} & \cdots & \xrightarrow{d_{n-1}^X} & X^n & \xrightarrow{d_n^X} & X^{n+1} \\
\downarrow{f} & & \downarrow{d_1^X} & & & & \downarrow{d_{n-1}^X} & & \\
Y^0 & \xrightarrow{d_0^Y} & Y^1 & \xrightarrow{d_1^Y} & \cdots & \xrightarrow{d_{n-1}^Y} & Y^n & \xrightarrow{d_n^Y} & Y^{n+1}
\end{array}
\]

(E2') For each \mathcal{X}-admissible n-exact sequence Y and each morphism $g : X^{n+1} \to Y^{n+1}$, there exists an n-pullback diagram of (d_1^Y, \cdots, d_n^Y) along g such that d_n^Y is an \mathcal{X}-admissible epimorphism. The situation is illustrated in the following commutative diagram:

\[
\begin{array}{cccccc}
X^1 & \xrightarrow{d_1^X} & \cdots & \xrightarrow{d_{n-1}^X} & \xrightarrow{d_n^X} & X^{n+1} \\
\downarrow{d_0^Y} & & & & & \downarrow{d_n^Y} \\
Y^0 & \xrightarrow{d_0^Y} & Y^1 & \xrightarrow{d_1^Y} & \cdots & \xrightarrow{d_{n-1}^Y} & Y^n & \xrightarrow{d_n^Y} & Y^{n+1}
\end{array}
\]

An n-exact category is a pair $(\mathcal{M}, \mathcal{X})$ where \mathcal{M} is an additive category and \mathcal{X} is an n-exact structure on \mathcal{M}. If the class \mathcal{X} is clear from the context, we identify \mathcal{M} with the pair $(\mathcal{M}, \mathcal{X})$. The members of \mathcal{X} are called \mathcal{X}-admissible n-exact sequences, or simply admissible n-exact sequences when \mathcal{X} is clear from the context. Furthermore, if $X^0 \xrightarrow{d^0} X^1 \xrightarrow{d^1} \cdots \xrightarrow{d^{n-1}} X^n \xrightarrow{d^n} X^{n+1}$ is an admissible n-exact sequence, d^0 is called admissible monomorphism and d^n is called admissible epimorphism.

Let \mathcal{A} be an additive category and \mathcal{B} be a full subcategory of \mathcal{A}. \mathcal{B} is called covariantly finite in \mathcal{A} if for every $A \in \mathcal{A}$ there exists an object $B \in \mathcal{B}$ and a morphism $f : A \to B$ such that, for all $B' \in \mathcal{B}$, the sequence of abelian groups $\text{Hom}_\mathcal{A}(B, B') \to \text{Hom}_\mathcal{A}(A, B') \to 0$ is exact. Such a morphism f is called a left \mathcal{B}-approximation of A. The notions of contravariantly finite subcategory of \mathcal{A} and right \mathcal{B}-approximation are defined dually. A functorially finite subcategory of \mathcal{A} is a subcategory which is both covariantly and contravariantly finite in \mathcal{A} [I, Page 113].

Definition 2.4. ([I, Definition 4.13]) Let $(\mathcal{E}, \mathcal{X})$ be an exact category and \mathcal{M} a subcategory of \mathcal{E}. \mathcal{M} is called an n-cluster tilting subcategory of $(\mathcal{E}, \mathcal{X})$ if the following conditions are satisfied.

(i) Every object $E \in \mathcal{E}$ has a left \mathcal{M}-approximation by an \mathcal{X}-admissible monomorphism $E \cong M$.

\[
\begin{array}{cccccc}
X^0 & \xrightarrow{d^0} & X^1 & \xrightarrow{d^1} & \cdots & \xrightarrow{d^{n-1}} & X^n & \xrightarrow{d^n} & X^{n+1} \\
\downarrow{f} & & \downarrow{g} & & & & \downarrow{h} & & \\
Y^0 & \xrightarrow{d^0} & Y^1 & \xrightarrow{d^1} & \cdots & \xrightarrow{d^{n-1}} & Y^n & \xrightarrow{d^n} & Y^{n+1}
\end{array}
\]
(ii) Every object $E \in \mathcal{E}$ has a right \mathcal{M}-approximation by an \mathcal{X}-admissible epimorphism $M' \to E$.

(iii) We have

$$\mathcal{M} = \{ E \in \mathcal{E} \mid \forall i \in \{1, \ldots, n-1\}, \text{Ext}^i_\mathcal{E}(E, \mathcal{M}) = 0 \}$$

$$= \{ E \in \mathcal{E} \mid \forall i \in \{1, \ldots, n-1\}, \text{Ext}^i_\mathcal{E}(\mathcal{M}, E) = 0 \}.$$

We call \mathcal{M} an $n\mathbb{Z}$-cluster tilting subcategory of $(\mathcal{E}, \mathcal{X})$ if the following additional condition is satisfied:

(iv) If $\text{Ext}^k_\mathcal{E}(\mathcal{M}, \mathcal{M}) \neq 0$ then $k \in n\mathbb{Z}$.

An n-cluster tilting subcategory of abelian category \mathcal{E} is n-cluster tilting subcategory of the exact category \mathcal{E} with the exact structure of all short exact sequences.

Note that \mathcal{E} itself is the unique 1-cluster tilting subcategory of \mathcal{E}.

A full subcategory \mathcal{M} of an exact or abelian category \mathcal{E} is called n-rigid, if for every two objects $M, N \in \mathcal{M}$ and for every $k \in \{1, \cdots, n-1\}$, we have $\text{Ext}^k_\mathcal{E}(\mathcal{M}, \mathcal{M}) = 0$. Any n-cluster tilting subcategory \mathcal{M} of an exact category \mathcal{E} is n-rigid.

The following theorem gives the main source of n-exact categories.

Theorem 2.5. ([14, Theorem 4.14]) Every n-cluster tilting subcategory of an abelian (resp. exact) category inherit natural structure of an n-abelian (resp. n-exact) category.

Theorem 2.6. ([5, 17]) Every small n-abelian category is equivalent to an n-cluster tilting subcategory \mathcal{M} of an abelian category.

The first author in [3] showed that there are n-exact categories which are not n-cluster tilting subcategories. However there is a nice embedding of small n-exact categories in abelian categories that we recall it in the next section.

3. **Gabriel-Quillen embedding for n-exact categories**

Let \mathcal{M} be a small n-exact category. In this section we first recall the Gabriel-Quillen embedding theorem [3, Theorem]. Then we show that it detects n-exact sequences and its essential image is closed under n-extensions, up to Yoneda equivalence. This allows us to compute the group of n-extensions introduced in [19] in a Grothendieck category.

Let \mathcal{M} be a small n-exact category. Recall that Mod(\mathcal{M}) is the category of all additive contravariant functors from \mathcal{M} to the category of all abelian groups. It is an abelian category with all limits and colimits, which are defined point-wise. Also by Yoneda’s lemma, representable functors are projective and the direct sum of all representable functors $\Sigma_{X \in \mathcal{M}} \text{Hom}(-, X)$, is a generator for Mod(\mathcal{M}). Thus Mod(\mathcal{M}) is a Grothendieck category [6, Proposition 5.21].

A functor $F \in \text{Mod}(\mathcal{M})$ is called weakly effaceable, if for each object $X \in \mathcal{M}$ and $x \in F(X)$ there exists an admissible epimorphism $f : Y \to X$ such that $F(f)(x) = 0$. We denote by Eff(\mathcal{M}) the full subcategory of all weakly effaceable functors. For each $k \in \{1, \cdots, n\}$ we denote by $L_k(\mathcal{M})$ the full subcategory of Mod(\mathcal{M}) consist of all functors like F such that for every n-exact sequence

$$X^0 \to X^1 \to \cdots \to X^n \to X^{n+1}$$
the sequence of abelian groups
\[0 \to F(X^{n+1}) \to F(X^n) \to \cdots \to F(X^{n-k}) \]
is exact. Also for a Serre subcategory C of an abelian category A we set $C^{\perp k} = \{ A \in A | \text{Ext}_{A}^{k}(C, A) = 0 \}$. In particular $C^{\perp 1} = C^\perp$ is the subcategory of C-closed objects [16, Page 39]. In the following proposition we collect the basic properties of the Gabriel-Quillen embedding theorem.

Proposition 3.1. ([3 Section 3])

(i) $\text{Eff}(\mathcal{M})$ is a localising subcategory of $\text{Mod}(\mathcal{M})$.

(ii) $\text{Eff}(\mathcal{M})^{\perp} = \mathcal{L}_1(\mathcal{M})$.

(iii) For every $k \in \{1, \cdots, n\}$, $\text{Eff}(\mathcal{M})^{\perp k} = \mathcal{L}_k(\mathcal{M})$.

Denote by $H : \mathcal{M} \to \mathcal{L}_1(\mathcal{M})$ the composition of the Yoneda functor $\mathcal{M} \to \text{Mod}(\mathcal{M})$ with the localization functor $\text{Mod}(\mathcal{M}) \to \text{Mod}(\mathcal{M})_{\text{Eff}(\mathcal{M})} \simeq \text{Eff}(\mathcal{M})^{\perp} = \mathcal{L}_1(\mathcal{M})$. Thus $H(X) = (-, X) : \mathcal{M}^{\text{op}} \to \text{Ab}$. For simplicity we denote $(-, X)$ by H_X. Then

(i) For every n-exact sequence $X^0 \to X^1 \to \cdots \to X^n \to X^{n+1}$ in \mathcal{M},
\[0 \to H_{X^0} \to H_{X^1} \to \cdots \to H_{X^n} \to H_{X^{n+1}} \to 0 \]
is exact in $\mathcal{L}_1(\mathcal{M})$.

(ii) The essential image of $H : \mathcal{M} \to \mathcal{L}_1(\mathcal{M})$ is n-rigid.

In the following proposition we prove that the canonical functor $H : \mathcal{M} \to \mathcal{L}_1(\mathcal{M})$ detects n-exact sequences.

Proposition 3.2. Let $Y : Y^0 \to Y^1 \to \cdots \to Y^n \to Y^{n+1}$ be a complex of objects in \mathcal{M} such that
\[0 \to H_{Y^0} \to H_{Y^1} \to \cdots \to H_{Y^n} \to H_{Y^{n+1}} \to 0 \]
is exact in $\mathcal{L}_1(\mathcal{M})$. Then Y is an admissible n-exact sequence in \mathcal{M}.

Proof. Because the essential image of $H : \mathcal{M} \to \mathcal{L}_1(\mathcal{M})$ is n-rigid, by the similar argument as in the proof of [15 Proposition 2.2] for each object $Z \in \mathcal{M}$ we have the following exact sequence of abelian groups.
\[0 \to \text{Hom}(H_Z, H_{Y^0}) \to \text{Hom}(H_Z, H_{Y^1}) \to \cdots \to \text{Hom}(H_Z, H_{Y^n}) \to \text{Hom}(H_Z, H_{Y^{n+1}}). \]

Thus by Yoneda’s lemma Y is a left n-exact sequence. Dually it is a right n-exact sequence. We need to show that Y is an admissible n-exact sequence. The cokernel of $H_{Y^n} \to H_{Y^{n+1}}$, denoted by C, is weakly effaceable. In particular, there exist $X^n \in \mathcal{M}$ and an admissible epimorphism $X^n \to Y^{n+1}$ in \mathcal{M}, such that $C(Y^{n+1}) \to C(X^n)$ carries the image of $1_{Y^{n+1}}$ to 0. This means that there is a commutative diagram with exact rows in $\mathcal{L}_1(\mathcal{M})$ of the following form for an admissible n-exact sequence $X : X^0 \to X^1 \to \cdots \to X^n \to Y^{n+1}$ in \mathcal{M}.
\[
\begin{array}{cccccccc}
0 & \to & H_{X^0} & \to & H_{X^1} & \to & \cdots & \to & H_{X^n} & \to & H_{Y^{n+1}} & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \ddots & & \ddots & & \downarrow & & \downarrow \\
0 & \to & H_{Y^0} & \to & H_{Y^1} & \to & \cdots & \to & H_{Y^n} & \to & H_{Y^{n+1}} & \to & 0,
\end{array}
\]
where the dotted arrows are induced by the factorization property of n-kernel. Because the top row is induced by an admissible n-exact sequence, by the dual of obscure axiom ([14, Proposition 4.11]) and Yoneda’s lemma the bottom row is also induced by an admissible n-exact sequence. □

In the classical case, the Gabriel-Quillen embedding $\mathcal{E} \hookrightarrow \text{Lex}(\mathcal{E})$ identifies \mathcal{E} with an extension closed subcategory of the abelian category $\text{Lex}(\mathcal{E})$. We prove a similar result for n-exact categories. First let recall some facts about Yoneda extension groups in exact categories.

Let \mathcal{E} be an exact category, k a positive integer and $A, C \in \mathcal{E}$. An exact sequence

$$A \rightarrow X_{k-1} \rightarrow \cdots \rightarrow X_0 \rightarrow C$$

in \mathcal{E} is called a k-fold extension of C by A. Two k-fold extensions of C by A, $\xi : A \rightarrow B_{k-1} \rightarrow \cdots \rightarrow B_0 \rightarrow C$ and $\xi' : A \rightarrow B'_{k-1} \rightarrow \cdots \rightarrow B'_0 \rightarrow C$

are said to be Yoneda equivalent if there is a chain of k-fold extensions of C by A

$$\xi = \xi_0, \xi_1, \ldots, \xi_{l-1}, \xi_l = \xi'$$

such that for every $i \in \{0, \cdots, l-1\}$, we have either a chain map $\xi_i \rightarrow \xi_{i+1}$ starting with 1_A and ending with 1_C, or a chain map $\xi_{i+1} \rightarrow \xi_i$ starting with 1_A and ending with 1_C. $\text{Ext}^k_\mathcal{E}(C, A)$ is defined as the set of Yoneda equivalence classes of k-fold extensions of C by A [20, 21].

Remark 3.3. Let \mathcal{E} be an exact category and $X \rightarrow Y \rightarrow Z$ be a conflation in \mathcal{E}. The for every object $A \in \mathcal{E}$, in the long exact sequence

$$0 \rightarrow \text{Hom}_\mathcal{E}(A, X) \rightarrow \text{Hom}_\mathcal{E}(A, Y) \rightarrow \text{Hom}_\mathcal{E}(A, Z) \rightarrow \text{Ext}^1_\mathcal{E}(A, X) \rightarrow \text{Ext}^1_\mathcal{E}(A, Y) \rightarrow \text{Ext}^1_\mathcal{E}(A, Z) \rightarrow \cdots$$

for every $i \geq 1$, the connecting morphism $\text{Ext}^i_\mathcal{E}(A, Z) \rightarrow \text{Ext}^{i+1}_\mathcal{E}(A, X)$ is given by splicing an i-fold extension

$$Z \rightarrow E^1 \rightarrow E^2 \rightarrow \cdots \rightarrow E^i \rightarrow A$$

with the short exact sequence $X \rightarrow Y \rightarrow Z$ and obtaining the following $(i+1)$-fold extension.

$$X \rightarrow Y \rightarrow E^1 \rightarrow E^2 \rightarrow \cdots \rightarrow E^i \rightarrow A.$$

Remark 3.4. Let $K \rightarrow B_0 \rightarrow C$ and $A \rightarrow B'_1 \rightarrow K'$ be two conflation in an exact category \mathcal{E} and $\sigma : K \rightarrow K'$ be a morphism. Then by taking pullback and pushout along σ, we have the following commutative diagram with exact rows.
These two rows are Yoneda equivalent in $\text{Ext}^2_{\mathcal{E}}(C, A)$. Now consider the following commutative diagram with exact rows

\[
\begin{array}{c}
A \rightarrow W_1 \rightarrow B_0 \rightarrow C \\
| \downarrow K | \\
A \rightarrow B'_1 \rightarrow W_0 \rightarrow C \\
| \downarrow K' |
\end{array}
\]

By taking a pullback

\[
\begin{array}{c}
Y^1 \rightarrow \text{Ker}(f^2) \\
\downarrow \\
Y^1 \rightarrow \text{Ker}(g^2)
\end{array}
\]

we obtain the following commutative diagram with exact rows, where the bottom row is Yoneda equivalent to ξ.

\[
\begin{array}{c}
X^0 \rightarrow X^1 \rightarrow X^2 \rightarrow X^3 \\
\downarrow \\
Y^0 \rightarrow Y^1 \rightarrow X^2 \rightarrow X^3
\end{array}
\]

In the proof of the following proposition we use this argument several times.

Theorem 3.5. Let \mathcal{M} be a small n-exact category. The embedding $\mathcal{M} \hookrightarrow \mathcal{L}_1(\mathcal{M})$ is closed under n-extensions, up to Yoneda equivalence.

Proof. Let $k \in \{1, \ldots, n-1\}$, $E^0, E^{n+1} \in \mathcal{L}_1(\mathcal{M})$ and

\[
\xi : 0 \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots \rightarrow E^n \rightarrow E^{n+1} \rightarrow 0
\]

be a k-fold extension of E^{n+1} by E^0 in $\mathcal{L}_1(\mathcal{M})$. There exist $Y, X^{n+1} \in \mathcal{M}$ such that $H(Y) = E^0$ and $H(X^{n+1}) = E^{n+1}$. Then the cokernel of $E^n \rightarrow H(X^{n+1})$, denoted by C, is effaceable. In particular, there exist $X^n \in \mathcal{M}$ and an admissible epimorphism $X^n \rightarrow X^{n+1}$ in \mathcal{M}, such that $C(X^{n+1}) \rightarrow C(X^n)$ carries the image of $1_{X^{n+1}}$ to 0. This means that there is a commutative diagram with exact rows in $\mathcal{L}_1(\mathcal{M})$ of the following form for an admissible n-exact sequence $X : X^0 \hookrightarrow X^1 \rightarrow \cdots \rightarrow X^n \rightarrow X^{n+1}$ in \mathcal{M}.
By repeating this argument we obtain the following commutative diagram with exact rows, such that the bottom row is Yoneda equivalent to ξ.

$$0 \rightarrow H(X^0) \xrightarrow{f^0} H(X^1) \xrightarrow{f^1} \cdots \xrightarrow{f^{n-1}} H(X^n) \xrightarrow{f^n} H(X^{n+1}) \rightarrow 0$$

$$0 \rightarrow H(Y) \xrightarrow{g^0} E^1 \xrightarrow{g^1} \cdots \xrightarrow{g^{n-1}} E^n \xrightarrow{g^n} H(X^{n+1}) \rightarrow 0.$$

By taking pullback along $\operatorname{Ker}(f^n) \rightarrow \operatorname{Ker}(g^n)$ and by Remark 3.4, we obtain the following commutative diagram with exact rows, such that the bottom row is Yoneda equivalent to ξ.

$$0 \rightarrow H(X^0) \rightarrow H(X^1) \rightarrow \cdots \rightarrow H(X^{n-2}) \rightarrow H(X^{n-1}) \rightarrow H(X^n) \rightarrow H(X^{n+1}) \rightarrow 0$$

$$0 \rightarrow H(Y) \rightarrow E^1 \rightarrow \cdots \rightarrow E^{n-2} \rightarrow E_{pb}^{n-1} \rightarrow H(X^n) \rightarrow H(X^{n+1}) \rightarrow 0.$$

Now for $j \in \{1, \ldots, n-1\}$ we set $C^j := \operatorname{Im}(H(X^j) \rightarrow H(X^{j+1}))$ in $L_1(M)$. By applying the functor $\operatorname{Hom}_{L_1(M)}(-, H(Y))$ to the short exact sequence

$$\eta_{n-1} : 0 \rightarrow C^{n-2} \rightarrow H(X^{n-1}) \rightarrow C^{n-1} \rightarrow 0$$

we obtain the following exact sequence.

$$\operatorname{Ext}^{n-2}_{L_1(M)}(H(X^{n-1}), H(Y)) \rightarrow \operatorname{Ext}^{n-2}_{L_1(M)}(C^{n-2}, H(Y)) \xrightarrow{\alpha} \operatorname{Ext}^{n-1}_{L_1(M)}(C^{n-1}, H(Y))$$

$$\rightarrow \operatorname{Ext}^{n-1}_{L_1(M)}(H(X^{n-1}), H(Y)) = 0.$$

Therefore α is a surjective map, and so by Remark 3.3 there is an exact sequence

$$\epsilon : 0 \rightarrow H(Y) \rightarrow F^1 \rightarrow F^2 \rightarrow \cdots \rightarrow F^{n-2} \rightarrow C^{n-2} \rightarrow 0$$

such that $\epsilon \eta_{n-1}$ is Yoneda equivalent to

$$0 \rightarrow H(Y) \rightarrow E^1 \rightarrow E^2 \rightarrow \cdots \rightarrow E^{n-2} \rightarrow E_{pb}^{n-1} \rightarrow C^{n-1} \rightarrow 0.$$

Thus we have the following diagram, where the bottom row is still Yoneda equivalent to ξ.

$$0 \rightarrow H(X^0) \rightarrow H(X^1) \rightarrow \cdots \rightarrow H(X^{n-2}) \rightarrow H(X^{n-1}) \rightarrow H(X^n) \rightarrow H(X^{n+1}) \rightarrow 0$$

$$0 \rightarrow H(Y) \rightarrow F^1 \rightarrow \cdots \rightarrow F^{n-2} \rightarrow H(X^{n-1}) \rightarrow H(X^n) \rightarrow H(X^{n+1}) \rightarrow 0.$$

By repeating this argument we obtain the following commutative diagram where the bottom row is Yoneda equivalent to ξ.

$$0 \rightarrow H(X^0) \rightarrow H(X^1) \rightarrow H(X^2) \rightarrow \cdots \rightarrow H(X^{n-1}) \rightarrow H(X^n) \rightarrow H(X^{n+1}) \rightarrow 0$$

$$0 \rightarrow H(Y) \rightarrow G^1 \rightarrow H(X^2) \rightarrow \cdots \rightarrow H(X^{n-1}) \rightarrow H(X^n) \rightarrow H(X^{n+1}) \rightarrow 0.$$
Now by applying $\text{Hom}_{\mathcal{L}_1(\mathcal{M})}(H(X^1), -)$ to the short exact sequence $0 \to H(Y) \to G^1 \to C^1 \to 0$ we have the following exact sequence of abelian groups.

$$\text{Hom}_{\mathcal{L}_1(\mathcal{M})}(H(X^1), G^1) \to \text{Hom}_{\mathcal{L}_1(\mathcal{M})}(H(X^1), C^1) \to \text{Ext}_{\mathcal{L}_1(\mathcal{M})}^1(H(X^1), H(Y)) = 0.$$

So there is a morphism $h^1 : H(X^1) \to G^1$ that make the following diagram commutative. By the universal property of kernel there is also a morphism $h^0 : H(X^0) \to H(Y)$ that make the following diagram commutative.

$$
\begin{array}{c}
0 \to H(X^0) \to H(X^1) \to H(X^2) \to \cdots \to H(X^{n-1}) \to H(X^n) \to H(X^{n+1}) \to 0 \\
\downarrow h^0 \quad \downarrow h^1 \\
0 \to H(Y) \to G^1 \to H(X^2) \to \cdots \to H(X^{n-1}) \to H(X^n) \to H(X^{n+1}) \to 0.
\end{array}
$$

Let

$$
X^0 \to X^1 \to X^2 \to \cdots \to X^{n-1} \to X^n \to X^{n+1} \\
\downarrow h \\
Y \to Y^1 \to Y^2 \to \cdots \to Y^{n-1} \to Y^n \to X^{n+1}
$$

be the n–pushout diagram along h, where $H(h) = h^0$. Then applying the functor H, by \cite[Proposition 5.1]{20} we see that ξ is Yoneda equivalent to

$$
0 \to H(Y) \to H(Y^1) \to \cdots \to H(Y^n) \to H(Y^{n+1}) \to 0.
$$

\hfill \box

Proposition 3.6. Let \mathcal{M} be a small n-exact category. If two n-fold extension

$$\xi : 0 \to H_{X^0} \to H_{X^1} \to \cdots \to H_{X^n} \to H_{X^{n+1}} \to 0$$

and

$$\eta : 0 \to H_{X^0} \to H_{Y^1} \to \cdots \to H_{Y^n} \to H_{X^{n+1}} \to 0$$

be Yoneda equivalent in $\mathcal{L}_1(\mathcal{M})$, then $X : X^0 \to X^1 \to \cdots \to X^n \to X^{n+1}$ and $Y : X^0 \to Y^1 \to \cdots \to Y^n \to X^{n+1}$ are homotopy equivalent n-exact sequences in \mathcal{M}.

Proof. By Proposition \ref{3.2} X and Y are n-exact sequences. The rest of proof is similar to the proof of \cite[Proposition A.1]{12}. Since $H : \mathcal{M} \to \mathcal{L}_1(\mathcal{M})$ is full and faithful, we identify \mathcal{M} with the essential image of H. Because \mathcal{M} is an n-rigid subcategory of $\mathcal{L}_1(\mathcal{M})$ by \cite[Proposition 2.2]{15} we have the exact sequences

$$
0 \to (-, X^0) \to (-, X^1) \to \cdots \to (-, X^n) \to (-, X^{n+1}) \overset{\alpha}{\to} \text{Ext}_{\mathcal{L}_1(\mathcal{M})}^n(-, X^0)
$$

and

$$
0 \to (-, X^0) \to (-, Y^1) \to \cdots \to (-, Y^n) \to (-, X^{n+1}) \overset{\beta}{\to} \text{Ext}_{\mathcal{L}_1(\mathcal{M})}^n(-, X^0).
$$

Since X and Y are Yoneda equivalent, the image of two functor α and β are the same. So we have the following commutative diagram, where dotted arrows are induced by the factorization property of n-kernel.
Let \mathcal{M} be an n-cluster tilting subcategory of an exact category \mathcal{E}. Using the result of previous section we show that every n-fold extension between two object in \mathcal{M} is Yoneda equivalent to a unique (up to homotopy) n-exact sequence in \mathcal{M}. This is a generalization of a result by Iyama ([12, Proposition A.1]). We also show a similar result for $n\mathbb{Z}$-cluster tilting subcategories.

Proposition 4.1. ([4, Proposition 3.9]) Let \mathcal{M} be an n-cluster tilting subcategory of an exact category \mathcal{E}. The restriction functor $\mathbb{R} : \text{Mod}(\mathcal{E}) \to \text{Mod}(\mathcal{M})$ induces an equivalence $\dfrac{\text{Mod}(\mathcal{E})}{\text{Eff}(\mathcal{E})} \cong \dfrac{\text{Mod}(\mathcal{M})}{\text{Eff}(\mathcal{M})}$ making the following diagram commutative.
Theorem 4.2. Let \mathcal{M} be an n-cluster tilting subcategory of an exact category \mathcal{E} and
\[\xi : 0 \rightarrow X^0 \rightarrow E^1 \rightarrow E^2 \rightarrow \cdots \rightarrow E^n \rightarrow X^{n+1} \rightarrow 0 \]
be an acyclic sequence in \mathcal{E} with $X^0, X^{n+1} \in \mathcal{M}$. Then there is a unique (up to homotopy) n-exact sequence
\[0 \rightarrow X^0 \rightarrow X^1 \rightarrow X^2 \rightarrow \cdots \rightarrow X^n \rightarrow X^{n+1} \rightarrow 0 \]
that is Yoneda equivalent to ξ.

Proof. By the above proposition we have the following commutative diagram of functors.

\[
\begin{array}{ccc}
\text{Mod}(\mathcal{E}) & \xrightarrow{\mathbb{R}} & \text{Mod}(\mathcal{M}) \\
\downarrow \text{Q}_\mathcal{E} & & \downarrow \text{Q}_\mathcal{M} \\
\text{Eff}(\mathcal{E}) & \xrightarrow{\mathbb{R}} & \text{Eff}(\mathcal{M})
\end{array}
\]

where i is an inclusion functor. Then the result follows from Theorem 3.5 and Proposition 3.6.

In the following theorem we show that for $n\mathbb{Z}$-cluster tilting subcategories, every kn-fold extension is Yoneda equivalence to splicing of k, n-exact sequences.

Theorem 4.3. Let \mathcal{M} be an $n\mathbb{Z}$-cluster tilting subcategory of an exact category \mathcal{E} and
\[\xi : 0 \rightarrow X^0 \xrightarrow{f^0} E^1 \xrightarrow{f^1} \cdots \xrightarrow{f^{kn-2}} E^{kn-1} \xrightarrow{f^{kn-1}} E^{kn} \xrightarrow{f^k} X^{kn+1} \rightarrow 0 \]
be a kn-fold extension with $X^0, X^{kn+1} \in \mathcal{M}$. Then ξ is Yoneda equivalent to splicing of k, n-exact sequences.

Proof. We use the induction on k. The case $k = 1$ was proved in Theorem 4.2. Now let $k \geq 2$ and assume that the result follows for any m, $m < k$. Let $X^{kn} \rightarrow E^{kn}$ be a deflation with $X^{kn} \in \mathcal{M}$. So the composition $X^{kn} \rightarrow E^{kn} \rightarrow X^{kn+1}$ is a deflation. Thus we have the following commutative diagram where the top row is an n-exact sequence.

\[
\begin{array}{cccccccc}
0 & \rightarrow & X^{(k-1)n} & \rightarrow & \cdots & \rightarrow & X^{kn} & \rightarrow & X^{kn+1} & \rightarrow & 0 \\
& & \downarrow & & & & \downarrow & & & & \\
0 & \rightarrow & E^0 & \rightarrow & E^1 & \rightarrow & \cdots & \rightarrow & E^{(k-1)n} & \rightarrow & \cdots & \rightarrow & X^{kn} & \rightarrow & X^{kn+1} & \rightarrow & 0
\end{array}
\]
The proof of Theorem 3.5 carries over to show that ξ is Yoneda equivalent to a kn-fold extension of the following form.

$$0 \rightarrow \tilde{X}^0 \rightarrow \tilde{E}^1 \rightarrow \cdots \rightarrow \tilde{E}^{(k-1)n} \rightarrow X^{(k-1)n+1} \rightarrow \cdots \rightarrow X^{kn} \rightarrow X^{kn+1} \rightarrow 0$$

Then the result follows from induction hypothesis.

\begin{proof}

The result follows from induction hypothesis.
\end{proof}

Remark 4.4. Let \mathcal{M} be a small n-exact category. Viewing \mathcal{M} as an n-rigid subcategory of $\mathcal{L}_1(\mathcal{M})$, by a similar argument as in the proof of Theorem 4.3 we can see that the following conditions are equivalent.

1. For every $i \in \{1, \cdots, kn - 1\} \setminus n\mathbb{Z}$ we have $\text{Ext}^i_{\mathcal{L}_1(\mathcal{M})}(\mathcal{M}, \mathcal{M}) = 0$.
2. Every kn-fold extension of two objects in \mathcal{M} is Yoneda equivalence to splicing of k, n-exact sequences.

For the proof of Theorem 1.1 we need the following lemma.

Lemma 4.5. Let \mathcal{M} be an n-cluster tilting subcategory of an exact category \mathcal{E} and $Y : 0 \rightarrow Y^0 \rightarrow Y^1 \rightarrow \cdots \rightarrow Y^n \rightarrow Y^{n+1} \rightarrow 0$ be an n-exact sequence in \mathcal{M}. For $j \in \{1, \cdots, n-1\}$ set $C^j := \text{Im}(X^j \rightarrow X^{j+1})$ in \mathcal{E}. Indeed, split Y into short exact sequences as follows.

$$0 \rightarrow Y^0 \rightarrow Y^1 \rightarrow \cdots \rightarrow Y^{n-1} \rightarrow Y^n \rightarrow Y^{n+1} \rightarrow 0$$

Diagram 4.1

1. Let $k \in \{1, \cdots, n-1\}$ such that $\text{Ext}^k_{\mathcal{E}}(\mathcal{M}, C^j) \neq 0$, then $k = n - j$.
2. Assume that $\text{Ext}^i_{\mathcal{E}}(\mathcal{M}, \mathcal{M}) = 0$ for every $i \in \{n + 1, \cdots, 2n - 1\}$. Let $k \in \{n + 1, \cdots, 2n - 1\}$ such that $\text{Ext}^k_{\mathcal{E}}(\mathcal{M}, C^j) \neq 0$, then $k = 2n - j$.
3. More generally let \mathcal{M} be an $n\mathbb{Z}$-cluster tilting subcategory. If $\text{Ext}^k_{\mathcal{E}}(\mathcal{M}, C^j) \neq 0$, then $k \in n\mathbb{Z}$ or $k \in n\mathbb{Z} \setminus \{j\}$.

Proof. For $j \in \{1, \cdots, n-2\}$ by applying the functor $\text{Hom}_{\mathcal{E}}(X, -)$ to the short exact sequence

$$0 \rightarrow C^j \rightarrow Y^{j+1} \rightarrow C^{j+1} \rightarrow 0,$$

we have the exact sequence

$$\text{Hom}_{\mathcal{E}}(X, Y^{j+1}) \rightarrow \text{Hom}_{\mathcal{E}}(X, C^{j+1}) \rightarrow \text{Ext}^1_{\mathcal{E}}(X, C^j) \rightarrow \text{Ext}^k_{\mathcal{E}}(X, Y^{j+1}) = 0.$$

Since $Y^{j+1} \rightarrow C^{j+1}$ is a right \mathcal{M}-approximation, the first map is epimorphism. Thus $\text{Ext}^1_{\mathcal{E}}(X, C^j) = 0$ for $j \in \{1, \cdots, n-2\}$. The rest of proof is straightforward and we leave it to the reader.

\end{proof}

Now we are ready to prove Theorem 1.1, which gives a characterization of $n\mathbb{Z}$-cluster tilting subcategories.
Proof of Theorem 1.1. We first show that (1) \Rightarrow (2). By [15, Proposition 2.2] we have the following exact sequence

$$0 \rightarrow \text{Hom}_E(X, Y^0) \rightarrow \text{Hom}_E(X, Y^1) \rightarrow \cdots \rightarrow \text{Hom}_E(X, Y^n) \rightarrow \text{Hom}_E(X, Y^{n+1})$$

$$\rightarrow \text{Ext}_E^n(X, Y^0) \rightarrow \text{Ext}_E^n(X, Y^1).$$

Also, using the argument in the proof of [15, Proposition 2.2], it is not hard to see that for every positive integer k we have the following exact sequence.

$$\text{Ext}^{(k-1)n}_E(X, Y^n) \rightarrow \text{Ext}^{(k-1)n}_E(X, Y^{n+1}) \rightarrow \text{Ext}^k_E(X, Y^0) \rightarrow \text{Ext}^k_E(X, Y^1).$$

Now by looking at Diagram 4.1 and using Lemma 4.5 we have the following exact sequences

$$\text{Ext}^n_E(X, Y^0) \rightarrow \text{Ext}^n_E(X, Y^1) \rightarrow \text{Ext}^n_E(X, C^1) \rightarrow \text{Ext}^{n+1}_E(X, Y^0) = 0,$n -exact sequence, we obtain the following commutative diagram.

Using the dual of Remark 3.4, we can obtain the following diagram where the top row is Yoneda equivalent to ξ.

Note that in this diagram E_2 is differ from E_2 in the previous diagram, but for simplicity we use the same notation. By the minimality of t it is easy to see that the sequence

$$0 \rightarrow \text{Hom}_E(X, Y^0) \rightarrow \text{Hom}_E(X, Y^1) \rightarrow \cdots \rightarrow \text{Hom}_E(X, Y^n) \rightarrow \text{Hom}_E(X, Y^{n+1})$$

$$\rightarrow \cdots$$

$$\rightarrow \text{Ext}^k_E(X, Y^0) \rightarrow \cdots \rightarrow \text{Ext}^k_E(X, Y^{i-1}) \rightarrow \text{Ext}^k_E(X, Y^i),$$
is exact. Now consider the Diagram 4.1 for \(Y \). By using the minimality of \(t \) we have
\[
\text{Ext}^r_E(X, C^1) = 0, \quad r \in \{kn + 1, \ldots, kn + i - 2\}
\]
\[
\text{Ext}^r_E(X, C^2) = 0, \quad r \in \{kn + 1, \ldots, kn + i - 3\}
\]
\[
\vdots
\]
\[
\text{Ext}^r_E(X, C^{i-2}) = 0, \quad r \in \{kn + 1\}.
\]
Using this equations and by the dual argument of the proof of Theorem 3.5 we obtain the following commutative diagram with exact rows.

\[
\begin{array}{c}
0 \to Y \to \cdots \to Y^{i-1} \to Y^i \to E^{i+1} \to \cdots \to E^{n+1} \to \cdots \to E^t \to X \to 0 \\
0 \to Y \to \cdots \to Y^{i-1} \to Y^i \to Y^{i+1} \to \cdots \to Y^{n+1} \to 0
\end{array}
\]

For simplicity we set \(f^i : Y^i \to Y^{i+1} \) as composition \(g^i : Y^i \to C^i \) with \(h^i : C^i \to Y^{i+1} \). We claim that the induced sequence
\[
\text{Ext}^{kn}_E(X, Y^{i-1}) \to \text{Ext}^{kn}_E(X, Y^i) \to \text{Ext}^{kn}_E(X, Y^{i+1}),
\]
is not exact. First by applying \(\text{Hom}_E(X, -) \) to the short exact sequence \(C^{i-1} \to Y^i \to C^i \) we have the following exact sequence of abelian groups.
\[
\text{Ext}^{kn}_E(X, Y^i) \to \text{Ext}^{kn}_E(X, C^i) \to \text{Ext}^{kn+1}_E(X, C^{i-1}) \to \text{Ext}^{kn+1}_E(X, Y^{i-1}).
\]
Now consider the nonzero element
\[
\xi : 0 \to C^i \to E^{i+1} \to \cdots \to E^t \to X \to 0,
\]
in \(\text{Ext}^{kn}_E(X, C^i) \). By Remark 3.3
\[
\eta := \theta(\xi) = [0 \to C^{i-1} \to Y^i \to C^i \to 0] \xi.
\]
Obviously \(\text{Ext}^{kn+1}_E(X, h^{i-1})(\eta) = 0 \). Thus \(\text{Ext}^{kn}_E(X, g^i) \) is not an epimorphism. But by applying \(\text{Hom}_E(X, -) \) to the short exact sequence \(C^i \to Y^{i+1} \to C^{i+1} \) we can see that
\[
\text{Ext}^{kn}_E(X, C^i) = \ker \left(\text{Ext}^{kn}_E(X, g^{i+1}) \right) \subseteq \ker \left(\text{Ext}^{kn}_E(X, f^{i+1}) \right).
\]
So we have
\[
\text{Im} \left(\text{Ext}^{kn}_E(X, f^i) \right) \neq \ker \left(\text{Ext}^{kn}_E(X, f^{i+1}) \right),
\]
which gives a contradiction and the result follows. \(\square \)

Remark 4.6. Let \(\mathcal{M} \) be an \(n \)-rigid subcategory of an exact category \(\mathcal{E} \). By the proof of Theorem 3.4 the following conditions are equivalent.

1. For every \(j \in \{1, \ldots, kn+i-1\} \setminus \mathbb{Z} \) where \(1 \leq i \leq n-1 \) we have \(\text{Ext}^j_E(\mathcal{M}, \mathcal{M}) = 0 \).
(2) For every $X \in \mathcal{M}$ and every n-exact sequence $Y : Y^0 \to Y^1 \to \cdots Y^n \to Y^{n+1}$ the following induced sequence of abelian groups is exact.

$$0 \to \text{Hom}_\mathcal{E}(X, Y^0) \to \text{Hom}_\mathcal{E}(X, Y^1) \to \cdots \to \text{Hom}_\mathcal{E}(X, Y^n) \to \text{Hom}_\mathcal{E}(X, Y^{n+1})$$

$$\to \cdots$$

$$\to \text{Ext}^k_{\text{E}}(X, Y^0) \to \cdots \to \text{Ext}^k_{\text{E}}(X, Y^{i-1}) \to \text{Ext}^k_{\text{E}}(X, Y^i).$$

5. $n\mathbb{Z}$-ABELIAN AND $n\mathbb{Z}$-EXACT CATEGORIES

In this section, inspired by the results of the previous section, we define $n\mathbb{Z}$-abelian and $n\mathbb{Z}$-exact categories and show that they are axiomatisation of $n\mathbb{Z}$-cluster tilting subcategories of abelian and exact categories, respectively.

Let M be an n-exact category. For an object $M \in \mathcal{M}$ we denote the diagonal and codiagonal map by

$$\Delta_M = \left(\begin{array}{c} 1 \\ 1 \end{array} \right) : M \to M \oplus M$$

and

$$\nabla_M = \left(\begin{array}{c} 1 \\ 1 \end{array} \right) : M \oplus M \to M,$$

respectively. We write Δ and ∇ when M is clear from the context. Now let $L, N \in \mathcal{M}$. An n-exact sequence

$$\xi : 0 \to L \to M^1 \to M^2 \to \cdots \to M^n \to N \to 0$$

is called an n-extension of N by L. Let $f : L \to L'$ be an arbitrary morphism. By taking n-pushout along f we obtain the following morphism between n-exact sequences.

$$0 \to L \to M^1 \to \cdots \to M^n \to N \to 0$$

$$\downarrow f \quad \downarrow \quad \downarrow \quad \downarrow$$

$$0 \to L' \to W^1 \to \cdots \to W^n \to N \to 0.$$

The bottom row is denoted by $f\xi$. For a morphism $g : N' \to N$, ξg is defined dually by taking n-pullback along g.

For another n-extension of N by L like

$$\xi' : 0 \to L \to M'^1 \to M'^2 \to \cdots \to M'^n \to N \to 0$$

their Baer sum is defined as $\nabla(\xi \oplus \xi')\Delta$. Two n-extensions of N by L are said to be Yoneda equivalent if there is a morphism of n-exact sequences with identity end terms, from one to another. By [14, Proposition 4.10] this is an equivalence relation and we denote by $n\text{Ext}^1_{\mathcal{M}}(M, L)$ the set of Yoneda equivalence classes of n-extension of N by L. This is an abelian group (ignoring set theoretical difficulties) by the Baer sum operation. Also for a positive integer k, k-fold n-extension is defined similarly. Indeed a k-fold n-extension is splicing of k, n-extensions. The Yoneda equivalence classes of k-fold n-extension of N by L is denoted by $n\text{Ext}^k_{\mathcal{M}}(M, L)$ and it is an abelian group with Baer sum operation (for more details see [19, Section 5.2]).

Now let \mathcal{M} be an n-exact category and

$$(5.1) \quad 0 \to L \to M^1 \to M^2 \to \cdots \to M^n \to N \to 0$$
be an n-exact sequence in \mathcal{M}. For every object $X \in \mathcal{M}$ there is the following induced sequence of abelian groups.

$$ 0 \to \text{Hom}_\mathcal{M}(X, L) \to \text{Hom}_\mathcal{M}(X, M^1) \to \cdots \to \text{Hom}_\mathcal{M}(X, M^n) \to \text{Hom}_\mathcal{M}(X, N) $$
$$ \to \text{nExt}^1_\mathcal{M}(X, L) \to \text{nExt}^1_\mathcal{M}(X, M^1) \to \cdots \to \text{nExt}^1_\mathcal{M}(X, M^n) \to \text{nExt}^1_\mathcal{M}(X, N) $$
$$ \to \text{nExt}^2_\mathcal{M}(X, L) \to \text{nExt}^2_\mathcal{M}(X, M^1) \to \cdots \to \text{nExt}^2_\mathcal{M}(X, M^n) \to \text{nExt}^2_\mathcal{M}(X, N) $$
$$ \to \cdots $$

(5.2)

Dually, we have the following induced sequence of abelian groups.

$$ 0 \to \text{Hom}_\mathcal{M}(N, X) \to \text{Hom}_\mathcal{M}(M^n, X) \to \cdots \to \text{Hom}_\mathcal{M}(M^1, X) \to \text{Hom}_\mathcal{M}(L, X) $$
$$ \to \text{nExt}^1_\mathcal{M}(N, X) \to \text{nExt}^1_\mathcal{M}(M^n, X) \to \cdots \to \text{nExt}^1_\mathcal{M}(M^1, X) \to \text{nExt}^1_\mathcal{M}(L, X) $$
$$ \to \text{nExt}^2_\mathcal{M}(N, X) \to \text{nExt}^2_\mathcal{M}(M^n, X) \to \cdots \to \text{nExt}^2_\mathcal{M}(M^1, X) \to \text{nExt}^2_\mathcal{M}(L, X) $$

(5.3)

It is natural to ask about the exactness of these sequences. The following theorem gives the answer.

Theorem 5.1. Let \mathcal{M} be an n-exact category realized as an n-cluster tilting subcategory of an exact category \mathcal{E}. Then the following conditions are equivalent.

1. \mathcal{M} is an $n\mathbb{Z}$-cluster tilting subcategory of \mathcal{E}.
2. For every n-exact sequence like (5.1) and every $X \in \mathcal{M}$ the induced sequence of abelian groups (5.2) is exact.
3. For every n-exact sequence like (5.1) and every $X \in \mathcal{M}$ the induced sequence of abelian groups (5.3) is exact.

Proof. We only prove that (1) and (2) are equivalent. The equivalence of (1) and (3) is dual.

Because \mathcal{M} is an $n\mathbb{Z}$-cluster tilting subcategory, by Theorem 4.3 we have $\text{Ext}^k_X(Y, X) \cong \text{Ext}^k_\mathcal{M}(X, Y)$. Thus (1) \Rightarrow (2) follows from Theorem 4.1.

(2) \Rightarrow (1). By Theorem 4.2 $\text{Ext}^k_Y(X, Y) \cong \text{Ext}^k_\mathcal{M}(X, Y)$ and hence we have the following exact sequence of abelian groups.

$$ 0 \to \text{Hom}_\mathcal{E}(X, L) \to \text{Hom}_\mathcal{E}(X, M^1) \to \cdots \to \text{Hom}_\mathcal{E}(X, M^n) \to \text{Hom}_\mathcal{E}(X, M^{n+1}) $$
$$ \to \text{Ext}^k_\mathcal{E}(X, L) \to \text{Ext}^k_\mathcal{E}(X, M^1) \to \cdots \to \text{Ext}^k_\mathcal{E}(X, M^n) \to \text{Ext}^k_\mathcal{E}(X, M^{n+1}) $$

Therefor by Remark 4.6 for every $k \in \{n+1, \ldots , 2n-1\}$ we have $\text{Ext}^k_\mathcal{E}(\mathcal{M}, \mathcal{M}) = 0$. But this implies that $\text{Ext}^k_\mathcal{E}(X, Y) \cong \text{nExt}^k_\mathcal{M}(X, Y)$ by Remark 4.4. So we have the following exact sequence

$$ 0 \to \text{Hom}_\mathcal{E}(X, L) \to \text{Hom}_\mathcal{E}(X, M^1) \to \cdots \to \text{Hom}_\mathcal{E}(X, M^n) \to \text{Hom}_\mathcal{E}(X, M^{n+1}) $$
$$ \to \text{Ext}^k_\mathcal{E}(X, L) \to \text{Ext}^k_\mathcal{E}(X, M^1) \to \cdots \to \text{Ext}^k_\mathcal{E}(X, M^n) \to \text{Ext}^k_\mathcal{E}(X, M^{n+1}) $$
$$ \to \text{Ext}^k_\mathcal{E}(X, L) \to \text{Ext}^k_\mathcal{E}(X, M^1) \to \cdots \to \text{Ext}^k_\mathcal{E}(X, M^n) \to \text{Ext}^k_\mathcal{E}(X, M^{n+1}) $$

The result follows by repeating this argument. \(\square \)

Motivated by Theorem 5.1 we give the following definition as axiomatisation of $n\mathbb{Z}$-cluster tilting subcategories.
Definition 5.2. Let \mathcal{M} be an n-exact (resp. n-abelian) category. We say that \mathcal{M} is an $n\mathbb{Z}$-exact (resp. $n\mathbb{Z}$-abelian) category if it satisfies the following two conditions.

1. For every n-exact sequence like (5.1) and every $X \in \mathcal{M}$ the induced sequence of abelian groups (5.2) is exact.
2. For every n-exact sequence like (5.1) and every $X \in \mathcal{M}$ the induced sequence of abelian groups (5.3) is exact.

Let \mathcal{M} be a small n-abelian category. A functor $F \in \text{Mod}(\mathcal{M})$ is called finitely presented or coherent, if there exists an exact sequence of the form

\[\text{Hom}_{\mathcal{M}}(-, X) \xrightarrow{\text{Hom}_{\mathcal{M}}(-, f)} \text{Hom}_{\mathcal{M}}(-, Y) \rightarrow F \rightarrow 0. \]

We denote by $\text{mod}(\mathcal{M})$ the full subcategory of $\text{Mod}(\mathcal{M})$ consist of all finitely presented functors. Since every morphism in \mathcal{M} has a weak kernel, $\text{mod}(\mathcal{M})$ is an abelian category \[7\], Theorem 1.4).

A functor $F \in \text{mod}(\mathcal{M})$ is called effaceable, if there is an exact sequence

\[\text{Hom}_{\mathcal{M}}(-, X) \xrightarrow{\text{Hom}_{\mathcal{M}}(-, f)} \text{Hom}_{\mathcal{M}}(-, Y) \rightarrow F \rightarrow 0, \]

for some epimorphism $f : X \rightarrow Y$. The full subcategory of effaceable functors is denoted by $\text{eff}(\mathcal{M})$.

Corollary 5.3. Let \mathcal{M} be a small n-abelian category. Then the following statements are equivalent.

1. \mathcal{M} is equivalent to an $n\mathbb{Z}$-cluster tilting subcategory of $\frac{\text{mod}(\mathcal{M})}{\text{eff}(\mathcal{M})}$.
2. \mathcal{M} is an $n\mathbb{Z}$-abelian category.

Proof. By \[4\] \[17\] \mathcal{M} is equivalent to an n-cluster tilting subcategory of $\frac{\text{mod}(\mathcal{M})}{\text{eff}(\mathcal{M})}$. Thus the result follows from Theorem 5.1. \qed

By Theorem \[1\] for n-cluster tilting subcategories the conditions (1) and (2) of Definition 5.2 are equivalent. So it is natural to ask about the equivalence of these conditions for all n-exact categories. By the following proposition for any small n-exact categories these conditions are equivalent.

Proposition 5.4. Let \mathcal{M} be a small n-exact category. If we take \mathcal{M} as a subcategory of $\mathcal{L}_1(\mathcal{M})$ (by Gabriel-Quillen embedding), then the following statements are equivalent.

1. \mathcal{M} is an $n\mathbb{Z}$-exact category.
2. For every $X \in \mathcal{M}$ and every exact sequence $Y^0 \rightarrow Y^1 \rightarrow \cdots \rightarrow Y^n \rightarrow Y^{n+1}$ in $\mathcal{L}_1(\mathcal{M})$ with terms in \mathcal{M} the the following induced sequence of abelian groups is exact.

\[0 \rightarrow \text{Hom}_{\mathcal{L}_1(\mathcal{M})}(X, Y^0) \rightarrow \text{Hom}_{\mathcal{L}_1(\mathcal{M})}(X, Y^1) \rightarrow \cdots \rightarrow \text{Hom}_{\mathcal{L}_1(\mathcal{M})}(X, Y^n) \rightarrow \text{Hom}_{\mathcal{L}_1(\mathcal{M})}(X, Y^{n+1}) \]
\[\rightarrow \text{Ext}_{\mathcal{L}_1(\mathcal{M})}^n(X, Y^0) \rightarrow \text{Ext}_{\mathcal{L}_1(\mathcal{M})}^n(X, Y^1) \rightarrow \cdots \rightarrow \text{Ext}_{\mathcal{L}_1(\mathcal{M})}^n(X, Y^n) \rightarrow \text{Ext}_{\mathcal{L}_1(\mathcal{M})}^n(X, Y^{n+1}) \]
\[\rightarrow \cdots \]
(3) For every $X \in \mathcal{M}$ and every exact sequence $Y^0 \to Y^1 \to \cdots Y^n \to Y^{n+1}$ in $\mathcal{L}_1(\mathcal{M})$ with terms in \mathcal{M} the following induced sequence of abelian groups is exact.

$$0 \to \text{Hom}_{\mathcal{L}_1(\mathcal{M})}(Y^{n+1}, X) \to \text{Hom}_{\mathcal{L}_1(\mathcal{M})}(Y^n, X) \to \cdots \to \text{Hom}_{\mathcal{L}_1(\mathcal{M})}(Y^1, X) \to \text{Hom}_{\mathcal{L}_1(\mathcal{M})}(Y^0, X)$$

$$\to \text{Ext}_{\mathcal{L}_1(\mathcal{M})}^1(Y^{n+1}, X) \to \text{Ext}_{\mathcal{L}_1(\mathcal{M})}^1(Y^n, X) \to \cdots \to \text{Ext}_{\mathcal{L}_1(\mathcal{M})}^1(Y^1, X) \to \text{Ext}_{\mathcal{L}_1(\mathcal{M})}^1(Y^0, X)$$

$$\to \cdots$$

Proof. The proof is similar to the proof of Theorem 5.1 and is left to the reader. □

ACKNOWLEDGEMENTS

The research of first author was in part supported by a grant from IPM. The research of the second author was in part supported by a grant from IPM (No. 1400170417).

REFERENCES

[1] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math., 86(1) (1991), 111–152.
[2] T. Bühler, Exact categories, Expo. Math., 28(1) (2010), 1–69.
[3] R. Ebrahimi, Gabriel-Quillen embedding for n-exact categories, Comm. Algebra, 49(12) (2021), 5171–5180.
[4] R. Ebrahimi, A. Nasr-Isfahani, Higher Auslander correspondence for exact categories, (2021), preprint, arXiv:2108.13645v1.
[5] R. Ebrahimi, A. Nasr-Isfahani, Higher Auslander’s formula, Int. Math. Res. Not. (2020), https://doi.org/10.1093/imrn/rnab219, arXiv:2006.06472v2, in press.
[6] P. Freyd, Abelian categories, Harper and Row, New York, 1964.
[7] P. Freyd, Representations in abelian categories, In Proceedings Conference Categorical Algebra, La Jolla, CA, 1965, Springer, New York, 1966, pp. 95–120.
[8] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), 323–448.
[9] O. Iyama, Auslander correspondence, Adv. Math., 210(1) (2007), 51–82.
[10] O. Iyama, Auslander-Reiten theory revisited, In Trends in Representation Theory of Algebras and Related Topics, (2008), 349–398.
[11] O. Iyama, Cluster tilting for higher Auslander algebras, Adv. Math., 226 (2011), 1–61.
[12] O. Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math., 210(1) (2007), 22–50.
[13] O. Iyama and G. Jasso, Higher Auslander Correspondence for Dualizing R-Varieties, Algebr. Represent. Theory, 20(2) (2016), 1–20.
[14] G. Jasso, n-Abelian and n-exact categories, Math. Z., (2016), 1–57.
[15] G. Jasso, S. Kvamme, An introduction to higher Auslander-Reiten theory, Bull. Lond. Math. Soc., 51(1) (2019), 1–24.
[16] H. Krause, Homological Theory of Representations, Cambridge studies in advanced mathematics 195, Cambridge University Press, 2021.
[17] S. Kvamme, Axiomatizing subcategories of abelian categories, J. Pure Appl. Algebra, 226(4) (2022), 106862.
[18] Z. Lin, Right n-angulated categories arising from covariantly finite subcategories, Comm. Algebra, 45 (2017), 828–840.
[19] D. Luo, Homological algebra in n-abelian categories, Proc. Indian Acad. Sci. Math. Sci., 127(4) (2017), 625–656.
[20] S. Maclane, Homology, Springer-Verlag, New York, 1975.
[21] B. Mitchell, Theory of categories, Academic Press, New York, 1965.
[22] C. A. Weibel, An Introduction to Homological Algebra, Cambridge studies in advanced mathematics 38, Cambridge University Press, Cambridge, 1994.

Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, P.O. Box: 81746-73441, Isfahan, Iran, and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran

Email address: ramin69@sci.ui.ac.ir / r.ebrahimi@ipm.ir

Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, P.O. Box: 81746-73441, Isfahan, Iran, and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran

Email address: nasr_a@sci.ui.ac.ir / nasr@ipm.ir