Conjugated Addition of Amines to Electron Deficient Alkenes: A Green Approach

A very simple approach has been developed for conjugate addition of a variety of aliphatic and aromatic amines to electron deficient alkenes in presence of a strong base or acid [8, 9]. Several methods are available in the literature by using different catalysts such as Yb(OTf)₃ [10], CeCl₃·7H₂O-NaI [11], InCl₃ [12], Cu(OTf)₂ [13, 14], CAN [15], KF/alumina [16,17], LiClO₄ [18], Bi(OTf)₃ [19], Bi(NO₃)₃ [20], SmI₂ [21], Cu(acac)₂/ionic liquid [22], ionic liquid/quaternary ammonium salt [23, 24], boric acid [25], borax [26], ZrOCl₂·8H₂O [27],...
Results and discussion

First of all, we prepared the required tea extract. In a typical experimental procedure, 2 g of tea leaves were dissolved in 20 mL of water and boiled it for 10–15 min. After filtration we got the extract which was used for the said reactions. It was observed that 2 mL of tea extract is sufficient to get the best result. Several structurally varied amines were coupled with the wide range of α, β-ethylenic compounds and the results are summarized in Table 1. A variety of aliphatic amines was examined to prove the general applicability of this present procedure and the corresponding Michael adducts were isolated in excellent yields within a short reaction time. The aliphatic primary amines such as benzylamine, butylamine and cyclohexylamine were treated with different Michael acceptors and corresponding monoadducts were isolated in good yields (Table 1, entries 1–5). The reaction of open chain bulky secondary amine like diisopropylamine proceeded very well (entries 6, 7). Cyclic secondary amines such as piperidine and morpholine underwent facile additions with acrylonitrile and acrylic esters respectively (Table 1, entries 6, 7). Aromatic amines are less reactive than aliphatic amines and took long reaction time. Both activated and weakly activated anilines were investigated. The reactions proceeded smoothly at room temperature and the products were isolated in excellent yields (Table 1, entries 6, 7).
obtained in excellent yields. Several substituted anilines such as methyl and methoxy anilines underwent efficient additions with acrylonitrile and methyl acrylate giving only monoadduct in high yields under present reaction conditions (Table 1, entries 10–14). Acid sensitive functional group in aniline such as 3,4-(methylenedioxy)aniline also reacted well to give the desired product in good

Entry	Amine	Alkene	Product	Time [min (h)]	Yield (%)b
1	PhCH₂NH₂	CN	PhCH₂NH₂CN	20	92
2	PhCH₂NH₂	COOMe	PhCH₂NH₂CO₂Me	40	90
3	NH₂	CN		20	96
4	NH₂	CN		20	96
5	NH₂	COOMe		50	90
6	NH₂	CN		15	95
7	NH₂	COOMe		20	94
8		CN		10	96
9		COOMe		20	90
10	PhNH₂	CN	PhNH₂CN	(18)	75
11	PhNH₂	CO₂Me	PhNH₂CO₂Me	(20)	85
12	4-(OMe)-C₆H₄NH₂	CN	4-(OMe)-C₆H₄NH₂CN	(24)	75
13	4-Me-C₆H₄NH₂	CN	4-Me-C₆H₄NH₂CN	(24)	80
14	O-PhNH₂	COOMe	O-PhNH₂COOMe	(12)	88

*aReaction conditions: 2 mmol of amine and 2 mmol of alkene were stirred in 2 mL of tea extract at room temperature; bIsolated yields.
yields keeping methylenedioxy group unaffected (Table 1, entry 14). With regard to Michael acceptors, a wide range of structurally diverse electron deficient alkenes was used such as α, β-unsaturated nitrile and carboxylic ester. In general, the reactions are very clean. Both aliphatic and aromatic amines give the products in equally fair yields. In particular, in the case of primary amines the method produces the corresponding β-amino derivatives without the problem of double-conjugate addition. We have not observed any by-products for all reaction combinations which are supported by high yields of the protocol. All of the known synthesized compounds have been characterized by spectral data and the new compounds by spectral and analytical data.

Conclusions

In conclusion, we have developed a tea extract-mediated a highly efficient methodology for the synthesis of β-amino derivatives under milder reaction conditions at room temperature. General applicability, operational simplicity, aqueous media, mild reaction conditions, environment friendly, high yields, and applications of inexpensive and easily available catalyst are the advantages of the present procedure. We believe this aza-Michael reactions are of significant importance in both synthetic chemistry and industrial processes for the synthesis of β-amino derivatives.

Experimental

General: 1H NMR (300 MHz) and 13C NMR (75 MHz) spectra were run in CDCl$_3$ solutions. IR spectra were taken as KBr plates. Elemental analyses were done by Perkin-Elmer autoanalyzer. Column chromatography was performed on silica gel (60–120 mesh, SRL, India). MnCl$_2$4H$_2$O was purchased from NICE Chemicals, India. Tea leaves were purchased from market. Amines and alkenes are all commercial materials. All liquid reagents were distilled before use.

Preparation of tea extract: 2 g of tea leaves (any marketed) were dissolved in 20 mL of water and boiled it for 10–15 min. After filtration we got the extract which was used for the reactions.

General procedure for the synthesis of β-amino derivatives: A mixture of amine (2 mmol) and alkene (2 mmol) was stirred in 2 mL of tea extract at room temperature as required for completion (TLC). After completion of the reaction the reaction mixture was extracted with ethyl acetate (40 mL). The extract was washed with water (2 × 10 mL) and brine solution (1 × 10 mL) and dried over anhydrous sodium sulphate. Evaporation of solvent followed by short column chromatography of the crude product over silica gel (hexane/ethyl acetate) furnished the analytically pure product. The known compounds have been identified by comparison of spectra data (IR and NMR). The spectral and analytical data of the compounds which are not readily found provided below.

3-(Cyclohexylamino)propanenitrile (Table 1, entry 4): Colorless oil; IR2928, 2246, 1722, 1666, 1558, 1455 cm$^{-1}$; 1H NMR δ 2.85 (t, $J = 5.1$ Hz, 2H), 2.45 (t, $J = 5.1$ Hz, 2H), 2.43 (m, 1H) 1.80–1.63 (m, 5H), 1.25–1.16 (m, 6H). Calculated for
C\textsubscript{9}H\textsubscript{16}N\textsubscript{2}; C, 71.01; H, 10.59; N, 18.40 %. Found: C, 60.82; H, 10.35; N, 18.13 %.

3-(4-Methoxy-phenylamino)-propenenitrile (Table 1, entry 12): Colorless liquid; IR3377, 2244, 1842, 1617, 1514, 1289 cm-1; 1H NMR δ 6.80 (d, J = 5.1 Hz, 2H), 6.61 (d, J = 5.1 Hz, 2H), 3.75 (s, 3H), 3.47 (t, J = 4.8 Hz, 2H), 2.61 (t, J = 4.8 Hz, 2H), (N-H) not identified; 13C NMR δ 152.9, 140.3, 118.5, 115.1 (2C), 114.8 (2C), 55.8, 40.8, 18.2. Calculated for C\textsubscript{10}H\textsubscript{12}N\textsubscript{2}O: C, 68.16; H, 6.86; N, 15.90 %. Found: C, 67.98; H, 6.53; N, 15.62 %.

3-(4-Methyl-phenylamino)-propenenitrile (Table 1, entry 13): Colorless liquid; IR3559, 2253, 1615, 1522, 1404 cm-1; 1H NMR δ 7.00 (d, J = 6.0 Hz, 2H), 6.53 (d, J = 6.0 Hz, 2H), 3.47 (d, J = 5.1 Hz, 2H), 2.60 (d, J = 5.1 Hz, 2H), 2.24 (s, 3H). (N-H) not identified; 13C NMR δ 143.9, 130.2 (2C), 127.7, 118.5, 113.2 (2C), 40.0, 20.4, 18.0. Calculated for C\textsubscript{10}H\textsubscript{12}N\textsubscript{2}: C, 74.97; H, 7.55; N, 17.48 %. Found: C, 74.63; H, 7.38; N, 17.16 %.

Acknowledgements

A. Majee acknowledges financial support from the DST-RSF Major Research Project (Ref. No. INT/RU/S/RSF/P-08). G. V. Zyryanov acknowledges the Russian Science Foundation – Russia (Ref. № 16–43–02020) for funding. We are thankful to the DST-FIST and UGC-SAP programmes.

References

1. Permutter P. Conjugated Addition Reactions in Organic Synthesis. Oxford: Pergamon Press; 1992. 373 p.
2. Bartoli G, Cimarelli C, Marcantoni E, Palmieri G, Petrini M. Chemo- and diastereoselective reduction of β-enamino esters: A convenient synthesis of both cis- and trans-γ-amino alcohols and β-amino esters. J Org Chem. 1994;59(18):5328–35. DOI:10.1021/jo00097a039.
3. Elango S, Yan TH. A short synthesis of (+)-narciclasine via a strategy derived from stereocontrolled epoxide formation and SnCl\textsubscript{4}-catalyzed arene-epoxide coupling. J Org Chem. 2002;67(20):6954–9. DOI:10.1021/jo020155k.
4. Elango S, Yan TH. A short synthesis of (+)-lycoricidine. Tetrahedron. 2002;58(36):7335–8. DOI:10.1016/S0040-4020(02)00736-6.
5. Banik BK, Becker FF, Banik I. Synthesis of anticancer β-lactams: Mechanism of action. Bioorg Med Chem. 2004;12(10):2523–8. DOI:10.1016/j.bmc.2004.03.033.
6. Graul A, Castaner J. Atorvastatin calcium. Hypolipidemic HMG-CoA reductase inhibitor. Drugs Future. 1997;22(9):956. PMID:9399600.
7. Ishitani H, Ueno M, Kobayashi S. Enantioselective manniunm-type reactions using a novel chiral zirconium catalyst for the synthesis of optically active β-amino acid derivatives. J Am Chem Soc. 2000;122(34):8180–6. DOI:10.1021/ja001642p.
8. Jenner G. Catalytic high pressure synthesis of hindered β-aminoesters. Tetrahedron Lett. 1995;36(2):233–6. DOI:10.1016/0040-4020(94)02215-W.
9. D’Angelo J, Maddaluno J. Enantioselective Synthesis of B-Amino Esters through High-Pressure-Induced Addition of Amines to A, B-Ethylene Esters. J Am Chem Soc. 1986;108(25):8112–4. DOI:10.1021/ja00285a051.
10. Matsubara S, Yoshiyoka M, Utimoto K. Lanthanoid Triflate Catalyzed Conjugate Addition of Amines to α, β-Unsaturated Esters. A Facile Route to Optically Active β-Lactam. Chem Lett. 1994;23(5):827–30. DOI:10.1246/cl.1994.827.

11. Bartoli G, Bartolacci M, Giuliani A, Marcantoni E, Massimo M, Torregiani E. Improved heteroatom nucleophilic addition to electron-poor alkenes promoted by CeCl₃·7H₂O/NaI system supported on alumina in solvent-free conditions. J Org Chem. 2005;70(1):169–74. DOI:10.1021/jo048329g.

12. Loh TP, Wei LL. Indium trichloride-catalyzed conjugate addition of amines to α, β-ethylenic compounds in water. Synlett. 1998;9:975–6. DOI:10.1016/j.tetlet.2005.03.112.

13. Wabnitz TC, Spencer JB. Convenient synthesis of Cbz-protected β-amino ketones by a copper-catalysed conjugate addition reaction. Tetrahedron Lett. 2002;43(21):3891–4. DOI:10.1016/S0040–4020(02)00654–8.

14. Xu LW, Li JW, Xia CG, Zhou SL, Hu XX. Efficient Copper-Catalyzed Chemo Selective Conjugate Addition of Aliphatic Amines to α, β-Unsaturated Compounds in Water. Synlett. 2003;25:2425–7. DOI:10.1055/s-2003–42125.

15. Duan Z, Xuan X, Li T, Yang C, Wu Y. Cerium(IV) ammonium nitrate (CAN) catalyzedaza-Michael addition of amines to α, β-unsaturated electrophiles. Tetrahedron Lett. 2006;47(31):5433–6. DOI:10.1016/j.tetlet.2006.05.182.

16. Yang L, Xu LW, Xia CG. Highly efficient KF/Al₂O₃-catalyzed versatile hetero-Michael addition of nitrogen, oxygen, and sulfur nucleophiles to α, β-ethylenic compounds. Tetrahedron Lett. 2005;46(19):3279–82. DOI:10.1016/j.tetlet.2005.03.112.

17. Shaikh NS, Deshpande VH, Bedekar AV. Clay catalyzed chemoselective Michael type addition of aliphatic amines to α, β-ethylenic compounds. Tetrahedron. 2001;57(43):9045–8. DOI:10.1016/S0040–4020(01)00911–5.

18. Azizi N, Saidi MR. LiClO₄ accelerated Michael addition of amines to α, β-unsaturated olefins under solvent-free conditions. Tetrahedron. 2004;60(2):383–7. DOI:10.1016/j.tet.2003.11.012.

19. Varala R, Alam MM, Adapa SR. Chemoselective Michael type addition of aliphatic amines to α, β-ethylenic compounds using bismuth triflate catalyst. Synlett. 2003;5:720–2. DOI:10.1055/s-2003–38345.

20. Srivastava N, Banik BK. Bismuth nitrate-catalyzed versatile Michael reactions. J Org Chem. 2003;68(6):2109–14. DOI:10.1021/jo026550s.

21. Reboule I, Gil R, Collin J. Aza-Michael reactions catalyzed by samarium diiodide. Tetrahedron Lett. 2005;46(45):7761–4. DOI:10.1016/j.tetlet.2005.09.039.

22. Kantam ML, Neeraja V, Kavita B, Neelima B, Chaudhuri MK, Hussain S. Cu(acac)₂ immobilized in ionic liquids: A recoverable and reusable catalytic system for aza-Michael reactions. Adv Synth Catal. 2005;347(6):763–6. DOI:10.1002/adsc.200404361.

23. Xu LW, Li JW, Zhou SL, Xia CG. A green, ionic liquid and quaternary ammonium salt-catalyzed aza-Michael reaction of α, β-ethylenic compounds with amines in water. New J Chem. 2004;28(2):183–4. DOI:10.1039/b312047c.

24. Karodia N, Liu X, Ludley P, Pletsas D, Stevenson G. The ionic liquid ethyltritr-n-butyphosphonium tosylate as solvent for the acid-catalysed hetero-Michael reaction. Tetrahedron. 2006;62(48):11039–43. DOI:10.1016/j.tet.2006.09.052.
25. Chaudhuri MK, Hussain S, Kantam ML, Neelima B. Boric acid: A novel and safe catalyst for aza-Michael reactions in water. *Tetrahedron Lett.* 2005;46(48):8329–31. DOI:10.1016/j.tetlet.2005.09.167.
26. Hussain S, Bharadwaj SK, Chaudhuri MK, Kalita H. Borax as an efficient metal-free catalyst for hetero-Michael reactions in an aqueous medium. *Eur J Org Chem.* 2007;2:374–8. DOI:10.1002/ejoc.200600691.
27. Hashemi MM, Eftekhar-Sis B, Abdollahifar A, Khalili B. ZrOCl$_2$·8H2O on montmorillonite K10 accelerated conjugate addition of amines to α, β-unsaturated alkenes under solvent-free conditions. *Tetrahedron.* 2006;62(4):672–7. DOI:10.1016/j.tet.2005.10.006.
28. Surendra K, Krishnaveni NS, Sridhar R, Rao KR. β-Cyclodextrin promoted aza-Michael addition of amines to conjugated alkenes in water. *Tetrahedron Lett.* 2006;47(13):2125–7. DOI:10.1016/j.tetlet.2006.01.124.
29. Khan AT, Parvin T, Gazi S, Choudhury LH. Bromomethylsulfonyl bromide mediated Michael addition of amines to electron deficient alkenes. *Tetrahedron Lett.* 2007;48(22):3805–8. DOI:10.1016/j.tetlet.2007.03.163.
30. Fetterly BM, Jana NK, Verkade JG. [HP(HNCH$_2$CH$_2$)$_3$N]NO$_3$: An efficient homogeneous and solid-supported promoter for aza and thia-Michael reactions and for Strecker reactions. *Tetrahedron.* 2006;62(2–3):440–56. DOI:10.1016/j.tet.2005.09.117.
31. Roy A, Kundu D, Kundu SK, Majee A, Hajra A. Manganese (II) chloride-catalyzed conjugated addition of amines to electron deficient alkenes in methanol-water medium. *The Open Catalysis Journal.* 2010;3(1):34–9. DOI:10.2174/1876214X01003010034.
32. Ranu BC, Dey SS, Hajra A. Solvent-free, catalyst-free Michael-type addition of amines to electron-deficient alkenes. *ARKIVOC.* 2002;7:76–81. DOI:10.3998/ark.5550190.0003.709.
33. Ranu BC, Banerjee S. Significant rate acceleration of the aza-Michael reaction in water. *Tetrahedron Lett.* 2007;48(1):141–3. DOI:10.1016/j.tetlet.2006.10.142.
34. Kobayashi S, Manabe K. Development of novel Lewis acid catalysts for selective organic reactions in aqueous media. *Acc Chem Res.* 2002;35(2):209–17. DOI:10.1021/ar000145a.
35. Kobayashi S, Sugiura M, Kitagawa H, Lam WWL. Rare-earth metal triflates in organic synthesis. *Chem Rev.* 2002;102(6):2227–302. DOI:10.1021/cr010289i.
36. Mallikarjuna NN, Varma RS. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. *Green Chem.* 2008;10(8):859–62. DOI:10.1039/b804703k.
37. Vuong QV, Golding JB, Stathopoulos CE, Roach PD. Effects of aqueous brewing solution pH on the extraction of the major green tea constituents. *Food Res Int.* 2013;53(2):713–9. DOI:10.1016/j.foodres.2012.09.017.
38. Ghosal NC, Santra S, Das S, Hajra A, Zyryanov GV, Majee A. Organocatalysis by an aprotic imidazolium zwitterion: Regioselective ring-opening of aziridines and applicable to gram scale synthesis. *Green Chem.* 2016;18(2):565–74. DOI:10.1039/c5gc01323b.
39. Santra S, Kopchuk DS, Kovalev IS, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON. Solvent-free synthesis of pillar[6]arenes. *Green Chem.* 2016;18(2):423–6. DOI:10.1039/c5gc01505g.

40. Mahato S, Santra S, Chatterjee R, Zyryanov GV, Hajra A, Majee A. Brønsted acidic ionic liquid-catalyzed tandem reaction: an efficient approach towards regioselective synthesis of pyrano[3,2-\(c\)]coumarins under solvent-free conditions bearing lower E-factors. *Green Chem.* Forthcoming 2017. DOI:10.1039/c7gc01158j.

41. Santra S, Rahman M, Roy A, Majee A, Hajra A. Nano-indium oxide: An efficient catalyst for one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones with a greener prospect. *Catal Commun.* 2014;49:52–7. DOI:10.1016/j.catcom.2014.01.032.

Cite this article as (Как цитировать эту статью)

Mukherjeel A, Chatterjeel R, De A, Samantal S, Mahatol S, Ghosal NC, Zyryanov GV, Majee A. Conjugated Addition of Amines to Electron Deficient Alkenes: A Green Approach. *Chimica Techno Acta.* 2017:4(2);140–147. DOI: 10.15826/chimtech.2017.4.2.029.