Large zero-free subsets of $\mathbb{Z}/p\mathbb{Z}$

Jean-Marc Deshouillers, Gyan Prakash

Abstract

A finite subset A of an abelian group G is said to be zero-free if the identity element of G cannot be written as a sum of distinct elements from A. In this article we study the structure of zero-free subsets of $\mathbb{Z}/p\mathbb{Z}$ the cardinality of which is close to largest possible. In particular, we determine the cardinality of the largest zero-free subset of $\mathbb{Z}/p\mathbb{Z}$, when p is a sufficiently large prime.

For a finite abelian group $(G, +)$ and a subset A of G, we set $A^\sharp = \{ \sum_{b \in B} b : B \subset A, B \neq \emptyset \}$. We say A is zero-free if $0 \not\in A^\sharp$; in other words A is zero-free if 0 can not be expressed as a sum of distinct elements of A.

In 1964, Erdős and Heilbronn [5] made the following conjecture, supported by examples showing that the upper bound they conjectured is, if correct, very close to being best possible.

Conjecture 1. Let A be a subset of $\mathbb{Z}/p\mathbb{Z}$. If A is zero-free, we have $\text{Card}(A) \leq \sqrt{2p}$.

Up to recently, the best result concerning zero-free subsets of $\mathbb{Z}/p\mathbb{Z}$ was that of Hamidoune and Zémor [3] who proved in 1996 that their cardinality is at most $\sqrt{2p} + 5 \ln p$, thus showing that the constant $\sqrt{2}$ in the above conjecture is sharp.

The study of this question has been revived more recently. Freiman and the first named author introduced a method based on trigonometrical sums which led to the description of large incomplete subsets [1] as well as that of large zero-free subsets [1] of $\mathbb{Z}/p\mathbb{Z}$. Recall that a subset A of G is said to be incomplete if $A^\sharp \cup \{0\}$ is not equal to G. Szemerédi and Van Vu [6], as a consequence of their result on long arithmetic progressions in sumsets, gave structure results for zero-free subsets leading to the optimal bound for the total number of such subsets of $\mathbb{Z}/p\mathbb{Z}$. As it was noticed independently by Nguyen, Szemerédi and Van Vu [4] on one side and us on the other one, both methods readily lead to a proof of the Erdős-Heilbronn conjecture for zero-free subset[5].

The aim of the present paper is to study the description of rather large zero-free subsets of $\mathbb{Z}/p\mathbb{Z}$. We start by reviewing the present knowledge on zero-free subsets of $\mathbb{Z}/p\mathbb{Z}$.

Notation 2. We denote by σ_p the canonical homomorphism from \mathbb{Z} onto $\mathbb{Z}/p\mathbb{Z}$; for an element a in $\mathbb{Z}/p\mathbb{Z}$, we denote by \bar{a} be the integer in $(-\frac{p}{2}, \frac{p}{2}]$ such that $a = \sigma_p(\bar{a})$ and let $|a|_p = |\bar{a}|$. Given a set $A \subset \mathbb{Z}/p\mathbb{Z}$, we denote by \bar{A} the set $\{ \bar{a} : a \in A \}$. For $d \in \mathbb{Z}/p\mathbb{Z}$, we write $d \cdot A := \{ da : a \in A \}$. Given any real numbers x, y with $x \leq y$, we write $[x, y]_p$\footnote{Van H. Vu and the first named author exchanged this information during a private conversation held in Spring 2006.}
to denote the set \(\sigma_p([x, y] \cap \mathbb{Z}) \). Given a set \(\mathcal{B} \subset \mathbb{Z} \) and non negative real numbers \(x, y \), we write \(\mathcal{B}(x, y) \) to denote the set \(\{ b \in \mathcal{B} : x \leq |b| \leq y \} \) and simply write \(\mathcal{B}(x) \) to denote the set \(\mathcal{B}(0, x) \).

It is evident that \(A \subset \mathbb{Z}/p\mathbb{Z} \) is zero-free if and only if the set \((\tilde{A})^2 \) does not contain any multiple of \(p \). This leads to the following examples of zero-free subsets of \(\mathbb{Z}/p\mathbb{Z} \).

Examples 3.

(i) Any subset \(A \) of \(\mathbb{Z}/p\mathbb{Z} \) which satisfy the properties that \(\tilde{A} \) is a subset of \([1, \frac{2}{p}] \) and \(\sum_{a \in A} |a| \leq p - 1 \) is a zero-free subset of \(\mathbb{Z}/p\mathbb{Z} \).

(ii) Given any integer \(k \) with \(k(k + 1)/2 \leq p + 1 \), the subset \(A \) of \(\mathbb{Z}/p\mathbb{Z} \) with \(A = \{-2, 1\}_p \cup [3, k]_p \) is a zero-free subset of \(\mathbb{Z}/p\mathbb{Z} \) which has cardinality equal to \(k \).

Moreover, one readily sees that if a subset \(A \) of \(\mathbb{Z}/p\mathbb{Z} \) is zero-free, then it is also the case for the set \(s \cdot A \), for any \(s \) coprime with \(p \).

Building on [2], the first named author proved in [1] the following result.

Theorem 4. Let \(c > 1 \), \(p \) a sufficiently large prime and \(A \) a zero-free subset of \(\mathbb{Z}/p\mathbb{Z} \) with cardinality larger than \(c\sqrt{p} \). Then, there exists \(d \) coprime with \(p \) such that

\[
\sum_{a \in A} |da|_p < p + O(p^{3/4} \ln p) \quad \text{and} \quad \sum_{a \in A, da < 0} |da|_p = O(p^{3/4} \ln p),
\]

where the constants implied in the \(O \) symbol depend upon \(c \),

and built examples showing moreover that none of the above error-terms can be replaced by \(o(p^{1/2}) \).

The error-terms in [1] were reduced to the best possible \(O(p^{1/2}) \) by Nguyen, Szemerédi and Van Vu in [4, Theorem 1.9].

The above mentioned paper of Szemerédi and Van Vu [6] implicitly contains the following result, formally stated in [4] as Theorem 2.1.

Theorem 5. Let \(A \) be a zero-free subset of \(\mathbb{Z}/p\mathbb{Z} \). Then for some non zero element \(d \in \mathbb{Z}/p\mathbb{Z} \) the set \(d \cdot A \) can be partitioned into two disjoint sets \(A' \) and \(A'' \), where

(i) \(A' \) has negligible cardinality: \(|A'| = O(p^{1/2}/\log^2 p) \).

(ii) We have \(A'' \subset [1, p/2]_p \) and \(\sum_{a'' \in A''} |a''|_p \leq p - 1 \).

We first consider the maximal zero-free subsets of \(\mathbb{Z}/p\mathbb{Z} \). The description given in the following theorem is a synthesis of the results established in Sections 1 and 2.

Theorem 6. Let \(p \) be a sufficiently large prime and \(A \) a zero-free subset of \(\mathbb{Z}/p\mathbb{Z} \) with maximal cardinality. Then

\[
\text{card}(A) \text{ is the largest integer } k \text{ such that } k(k + 1)/2 \leq p + 1,
\]

and one may thus write \(\text{card}(A) = \left\lfloor \sqrt{2p + 9/4} - 1/2 \right\rfloor = \left\lfloor \sqrt{2p} \right\rfloor - \delta(p), \) with \(\delta(p) \in \{0, 1\} \).

Furthermore, there exists a non-zero element \(d \) in \(\mathbb{Z}/p\mathbb{Z} \) such that the set \(d \cdot A \) is the union of two sets \(A' \) and \(A'' \), with
(i) \(A' \subset [-2(1 + \delta(p)), -1]_p \), \(A'' \subset [1, p/2]_p \), \(A'' \cap (-A') = \emptyset \) and \(\text{card}(A') \leq 1 + \delta(p) \).

(ii) \(\sum_{a' \in A'} |a'|_p \leq 2(1 + \delta(p)) \) and \(\sum_{a'' \in A''} |a''|_p \leq p - 1 + 3\delta(p) \).

The Reader will find a more detailed description of extremal zero-free sets in Section 2. In this Introduction, we limit ourselves to a few remarks and examples.

Writing \(\sqrt{2p + 9/4} - 1/2 = \sqrt{2p} + \alpha_p - 1/2 \), we have \(\alpha_p = O(1/\sqrt{p}) \). One readily sees that \(\delta(p) \) takes the values 1 or 0 according as the fractional part of \(\sqrt{2p} \) is smaller than \(1/2 - \alpha_p \) or larger. Thus the density of the primes \(p \) for which the maximal zero-free of \(\mathbb{Z}/p\mathbb{Z} \) subset has cardinality \(\lfloor \sqrt{2p} \rfloor \) is 1/2.

The sum \(\sum_{a'' \in A''} |a''|_p \) can take the values \(p + 1 \) or \(p + 2 \) only in very special cases, namely when one of \(p + 2, p + 3, p + 4, p + 5, p + 6, \) or \(p + 7 \) is a value of the polynomial \(x(x + 1)/2 \) at some integral point \(x \). The number of such primes \(p \) up to \(P \) is \(O(\sqrt{P}) \); the existence of infinitely many such primes is not known and would result from the validity of some standard conjectures, like Schinzel’s hypothesis. The set \(A = \{-3, 1, 4, 5, 6, \cdots 14, 15\}_{113} \) is an example of a zero-free subset of \(\mathbb{Z}/113\mathbb{Z} \) which satisfies Theorem 6 with \(\text{card}(A) = \lfloor \sqrt{2p} \rfloor - 1 \), \(\sum_{a'' \in A''} |a''|_p = p + 2 \) and \(p + 7 = x(x + 1)/2 \).

We now turn our attention to very large zero-free subsets \(A \) of \(\mathbb{Z}/p\mathbb{Z} \), i.e. subsets such that \(\sqrt{2p} - \text{card}(A) = o(\sqrt{p}) \). From now on, we fix a function \(\psi \) from \([2, \infty) \) to \(\mathbb{R}^+ \) which tends to 0 at \(\infty \) and assume that
\[
\epsilon(A) := |\sqrt{2p} - \text{card}(A)| \leq \psi(p)\sqrt{p}
\]
the term sufficiently large implicitly referring to the function \(\psi \).

The following result gives the structure of large zero-free subsets of \(\mathbb{Z}/p\mathbb{Z} \). It shows that any given large zero-free subset \(A \) has a dilate, which is a union of sets \(A' \) and \(A'' \), where \(A'' \) is a set closely related to the one given in Example 3 (i) and the cardinality of \(A' \) is small.

Theorem 7. When \(p \) is sufficiently large, then given any zero-free subset \(A \) of \(\mathbb{Z}/p\mathbb{Z} \) with \(\epsilon(A) \) satisfying (3), there exists a non-zero element \(d \in \mathbb{Z}/p\mathbb{Z} \) such that \(d \cdot A \) can be partitioned into disjoint sets \(A' \) and \(A'' \) with the following properties

(i) The set \(A'' \) is included in \([1, \frac{\epsilon(A)}{2c}] \) and we have \(\sum_{a'' \in A''} |a''|_p \leq p - 1 \).

(ii) The set \(A' \) is included in \([-c\epsilon(A), c\epsilon(A)] \) for some absolute constant \(c \) and the cardinality of \(A' \) is \(O \left(\frac{\sqrt{\epsilon(A)} + 2 \ln(\epsilon(A) + 2)}{\sqrt{\epsilon(A)}} \right) \),

where \(\epsilon(A) \) is defined in (3).

To prove Theorems 6 and 7, we prove the following proposition.

Proposition 8. Let \(p \) be a prime and \(A \) a zero-free subset \(A \) of \(\mathbb{Z}/p\mathbb{Z} \) with \(\epsilon(A) \) satisfying (3). When \(p \) is sufficiently large, there exists a non-zero element \(d \in \mathbb{Z}/p\mathbb{Z} \) such that
\[
\sum_{a \in A} |da|_p \leq p + O \left(\epsilon(A)^{3/2} \ln(\epsilon(A) + 2) \right),
\]
\[
\sum_{a \in A, da < 0} |da|_p = O \left(\epsilon(A)^{3/2} \ln(\epsilon(A) + 2) \right)
\]
Remark 9. Noticing that for any zero-free subset A of $\mathbb{Z}/p\mathbb{Z}$, the corresponding set $\bar{A} \subset \mathbb{Z}$ can contain at most one element from the set $\{x, -x\}$ for any integer x we have $\sum_{\bar{a} \in \bar{A}}|\bar{a}| \geq \frac{|\bar{A}|(|\bar{A}|+1)}{2}$. Using this, Conjecture 1 is an immediate corollary of Proposition 8.

To prove Proposition 8 we use Theorem 4 and the following result from [2].

Theorem 10. ([2, Theorem 2]) Let $I > L > 100$ and $B > 2C\ln L$ be positive integers such that
\[C^2 > 500L(\ln L)^2 + 2000I\ln L. \]
Let B be a set of B integers included in $[-L, L]$. Then there exist $d > 0$ and a subset C of B with cardinality C such that
(i) all the elements of C are divisible by d,
(ii) C^* contains an arithmetic progression with I terms and common difference d,
(iii) at most $C\ln L$ elements of B are not divisible by d.

1 Proof of Proposition 8

Let p be a sufficiently large prime and $A \subset \mathbb{Z}/p\mathbb{Z}$ be as given in Proposition 8. From Theorem 4 there exists a non-zero element $d \in \mathbb{Z}/p\mathbb{Z}$ such that (1) holds. Without loss of generality, we may indeed assume that $d = 1$ or, equivalently, replace $d \cdot A$ by A. We then get
\[\sum_{\bar{a} \in \bar{A}}|\bar{a}| = \sum_{a \in A}|a|_p \leq p + O(p^{3/4}\ln p). \]
(6)
We prove Proposition 8 by showing that if $\bar{A} \subset [-\frac{p}{2}, \frac{p}{2}]$ is as above then we have
\[\sum_{\bar{a} \in \bar{A}}|\bar{a}| \leq p + O \left(e(A)^{3/2}\ln (e(A) + 2)\right). \]
(7)
We shall first show how one can deduce (7) from the following proposition.

Proposition 11. Let p be a sufficiently large prime and $K \subset \mathbb{Z}$ such that K^2 does not contain any multiple of p. We recall that ψ is a fixed function from $[2, \infty)$ to \mathbb{R}^+ which tends to 0 at ∞. Let us suppose that we have
\[e(K) := |\sqrt{2p-\text{card}(K)}| \leq \psi(p)\sqrt{2p} \quad \text{and} \quad \sum_{k \in K}|k| \leq p + s(K), \quad \text{with} \quad 0 \leq s(K) \leq p^{0.9}. \]
(8)
Then, we have in fact
\[\sum_{k \in K}|k| \leq p + O \left(\kappa^{3/2}\ln \kappa\right), \]
(9)
where $\kappa = s(K)/\sqrt{p} + e(K) + 2$. Moreover we have
\[\min\{\sum_{k \in K, k > 0}|k|, \sum_{k \in K, k < 0}|k|\} = O(\kappa^{3/2}\ln \kappa). \]
The fact that \(\mathcal{A} \) is zero-free and Relations (1) and (3) permit to apply Proposition (1) with \(\mathcal{K} = \mathcal{A} \). When \(e(\mathcal{K}) \geq p^{1/4} \), then (9) directly implies (7). But, when \(e(\mathcal{K}) \leq p^{1/4} \), we first obtain from (9) the following weaker inequality

\[
\sum_{a \in \mathcal{A}} |a| \leq p + O(p^{3/8} \ln p).
\]

As such, it is weaker than (7) in this case, we may use \(s(\mathcal{K}) = p^{3/8} \ln p \), so that \(\kappa = e(\mathcal{K}) + O(1) \), and a further application of Proposition (1) leads to Relation (7).

To prove Proposition (11) we need a few lemmas.

Lemma 12. Let \(m \in \mathbb{Z}, \ell \in \mathbb{N} \) and let \(B \) be a subset of \([-\ell, \ell] \cap \mathbb{Z} \). We have

\[
\left(\{m, \ldots, m + \ell - 1\} \cup B^* \right) \cap \mathbb{Z} = \left(\left[m - \sum_{b \in B, b < 0} |b|, m + \ell - 1 + \sum_{b \in B, b > 0} |b| \right] \right) \cap \mathbb{Z}.
\]

Proof. We write \(k = |B| \) and \(B = \{b_1 < b_2 < \ldots < b_h < 0 \leq b_{h+1} < \ldots < b_k\} \), where \(h = 0 \) if all the elements of \(B \) are nonnegative. For \(0 \leq u \leq k \), we define

\[
\beta_u = \begin{cases}
\sum_{i=1}^{h-u} b_i & \text{if } 0 \leq u \leq h - 1, \\
0 & \text{if } u = h, \\
\sum_{j=h+1}^{u} b_j & \text{if } h + 1 \leq u \leq k.
\end{cases}
\]

Simply notice that \(\beta_0 = \min \{s : s \in B^*\} \), \(\beta_k = \max \{s : s \in B^*\} \) and that \(\{\beta_0 < \ldots < \beta_k\} \) is a subset of \(B^* \) such that the difference between two consecutive elements of which is at most \(\ell \). \(\square \)

Lemma 13. Let \(B \subset \mathbb{Z}, c \in \mathbb{Z}, x \in \mathbb{N}, \ell \geq x + 1 \) be such that \(B(x)^2 \) contains \([c, c + \ell] \cap \mathbb{Z}\). Then, if there exists an integer \(y \) in \([x + 1, \infty)\) such that \(B(y)^2 \) does not contain \([\{c - \sum_{b \in B(x+1,y), b < 0} |b|, c + \ell - 1 + \sum_{b \in B(x+1,y), b > 0} |b|\}] \cap \mathbb{Z}, and z is the least such integer, then we have

\[
z \geq \ell + \sum_{b \in B(x+1,z-1)} |b| + 1.
\]

Proof. We notice that \(B(z)^2 \supseteq B(x)^2 + B(x + 1, z)^* \). Lemma (12) implies if \(z \) has the required property, then \(z \geq x + 2 \). Since \(z \geq x + 2 \), the minimal property of \(z \) implies that the set \(B(z - 1)^2 \) does contain

\[
I = ([c - \sum_{b \in B(x+1,z-1), b < 0} |b|, c + \ell - 1 + \sum_{b \in B(x+1,z-1), b > 0} |b|]) \cap \mathbb{Z}.
\]

By our assumption, the set \(I \cup \bigcup_{b \in B, |b| = z} (I + b) \) is not an interval. This implies (special case of Lemma 12) that \(z \geq \ell + \sum_{b \in B(x+1,z-1)} |b| + 1 \). \(\square \)

Lemma 14. Let \(\mathcal{K} \) be as given in Proposition (11). Then for any \(k \in \mathcal{K} \), the element \(-k\) does not belong to \(\mathcal{K} \).

Proof. If claim is not true, then evidently \(0 \in \mathcal{K}^2 \) which is contrary to the assumption. \(\square \)

Lemma 15. We keep the notation of Proposition (11). For \(x \leq 0.9 \sqrt{2p} \), the cardinality of \(\mathcal{K}(x) \) is \(x + O(e(\mathcal{K}) + s(\mathcal{K})/\sqrt{p}) \).
Proof. Lemma 14 immediately implies that the cardinality of \(K(x) \) is at most \(x \). Let us suppose that the cardinality of \(K(x) \) is \(x - \lambda(x) \). Then using Lemma 14 we get

\[
\sum_{k \in K} |k| \geq \sum_{i=1}^{x-\lambda(x)} i + \sum_{i=x+1}^{\text{card}(K) + \lambda(x)} i
\]

Writing each summand in the second sum on the right hand side of the above inequality as \((i - \lambda(x)) + \lambda(x)\) and then noticing that the number of terms in the second sum is \(\text{card}(K) - x \), we get the following inequality

\[
\sum_{k \in K} |k| \geq \sum_{i=1}^{\text{card}(K)} i + \lambda(x)(\text{card}(K) - x).
\] (10)

Since \(x \leq 0.9\sqrt{2p} \) and \(\text{card}(K) \geq \sqrt{2p} - e(K) \geq \sqrt{2p} - \psi(p)\sqrt{p} \), the second term in the right hand side of the above inequality is larger than \(0.05\sqrt{2p}\lambda(x) \), whereas the first term is \(p - O(e(K)\sqrt{2p}) \). Now comparing the above inequality with (8) we obtain

\[
\lambda(x) \leq c(e(K) + s(K)/\sqrt{p}),
\]

for some absolute constant \(c \). The lemma readily follows from this fact. \qed

Lemma 16. We keep the notation of Proposition 11. The largest integer \(y_0 \) belonging to \(K \cup -K \) satisfies \(y_0 = O(e(K)\sqrt{2p} + s(K)) \).

Proof. Using Lemma 14 we obtain

\[
\sum_{k \in K} |k| \geq \sum_{i=1}^{\text{card}(K) - 1} i + y_0.
\] (11)

Now the first term on the right hand side of the above inequality is \(p - O(e(K)\sqrt{2p}) \). Therefore comparing the above inequality with (8), the assertion follows. \qed

Lemma 17. We keep the notation of Proposition 11 and let \(x \) be a sufficiently large integer. Suppose that the cardinality of \(K(x) \) is at least \(0.99x \). Then there exists a subset \(C \) of \(A(x) \) with \(|C| = O(\sqrt{x} \ln x) \) such that \(C^x \) contains an arithmetic progression of length \(x \) and common difference \(d \), with \(d \in \{1, 2\} \).

Proof. Applying Theorem 10 with \(B = K(x) \), \(L = x, I = x + 1 \), \(C = |100\sqrt{x} \ln x| \), we get that there exists a subset \(C \) of \(K(x) \) with \(|C| = O(\sqrt{x} \ln x) \) such that \(C^x \) contains an arithmetic progression of length \(x \) and common difference \(d \) dividing at least \(0.8x \) elements of \(K(x) \). Since \(K(x) \) is contained in an interval of length \(2x \), we obtain that \(d \in \{1, 2\} \). \qed

Lemma 18. Let \(x \) and \(C \) be as in Lemma 17. Then there exists \(k \in K(x) \setminus C \) such that the element \(k + 1 \) also belongs to \(K(x) \setminus C \).

Proof. Let \(L \) be the set consisting of those elements \(l \in [1, x] \) such that one of the elements \(l \) or \(-l\) belongs to the set \(K(x) \setminus C \). Then \(L \) is a set of cardinality at least \(0.9x \) contained in an interval of length \(x \). Therefore there exists \(l \in L \) such that \(\{l, l+1, l+2, l+3, l+4\} \subset L \). Now by the definition of \(L \), for any \(0 \leq i \leq 4 \), either \(l+i \in K(x) \setminus C \) or \(-l+i \in K(x) \setminus C \). The lemma follows evidently by showing that there exists \(i \) with \(0 \leq i \leq 3 \) for which one
of the following two sets, \{l+i, l+i+1\} and \{-(l+i), -(l+i+1)\} is included in \(K(x) \setminus C\). If not, then replacing \(K\) by \(-K\) if necessary we have that \{-l, l+1, l+3, -(l-4) \subset K(x) \setminus C\}. This would contradict the assumption that \(0\) does not belong to \(K^\sharp\). Hence the lemma follows.

We are now in a position to prove Proposition 11.

Proof of Proposition 11 From Lemma 15 there is an integer \(x\) which satisfies the assumption of Lemma 17 and at the same time \(x = O(e(K) + s(K) \sqrt{p})\). For this choice of \(x\), let \(C\) be a subset of \(K(x)\), as provided by Lemma 17. From Lemma 18 we obtain a subset \(\{k, k + 1\}\) of \(K(x) \setminus C\). Then the set \(C_1 = C \cup \{k, k + 1\}\) is a subset of \(K(x)\) with \(\text{card}(C_1) = O(\sqrt{x} \ln x)\) and \((C_1)^{\sharp}\) contains an interval \([y, y + x]\) of length \(x\). With this interval \(I\) applying Lemma 12 with \(B = K(x) \setminus C_1\), we obtain that \(K(x)^{\sharp}\) contains the interval \([y - \sum_{k \in K(x) \setminus C_1} |k|, y + x + \sum_{k \in K(x) \setminus C_1} |k|]\) of length \(x + \sum_{k \in K(x) \setminus C_1} |k|\). Then using Lemmas 13 and 15 after an elementary calculation, it follows that for some positive absolute constant \(c_0\), the set \(K(p/c_0)\) contains the interval \([y - \sum_{k \in K(p/c_0) \setminus C_1} |k|, y + x + \sum_{k \in K(p/c_0) \setminus C_1} |k|]\) of length \(x + \sum_{k \in K(p/c_0) \setminus C_1} |k|\). Replacing \(K\) by \(-K\) we may assume that \(y > 0\). Then since \(K^\sharp\) does not contain any multiple of \(p\) we obtain the following inequalities

\[
\sum_{k \in K(p/c_0) \setminus C_1} |k| \leq p - 1
\]

and

\[
\sum_{k \in K(p/c_0) \setminus C_1} |k| \leq \sum_{c_1 \in C_1} |c_1| + \sum_{k \in K(p/c_0) \setminus C_1, k < 0} |k| \leq \sum_{c_1 \in C_1} |c_1| + y.
\]

From Lemma 16 we have that \(K(p/c_0) = K\). Moreover it is also evident from the construction of \(C_1\) that \(\sum_{c_1 \in C_1} |c_1| = O(x^{3/2} \ln x)\). Since \(y \in C_1^\sharp\) we have \(y \leq \sum_{c_1 \in C_1} |c_1|\). Therefore the assertion follows.

2 Proof of Theorem 6

Let \(p\) be a sufficiently large prime and \(A\) a zero-free subset of \(\mathbb{Z}/p\mathbb{Z}\) of the largest cardinality. From Proposition 8 and Remark 9 we have that \(\text{card}(A) \leq \sqrt{|2p|}\). Moreover, since for any prime \(p\) the set \([1, [\sqrt{2p}] - 1]_p\) is an example of a zero-free subset of \(\mathbb{Z}/p\mathbb{Z}\), it follows that \(\text{card}(A) = [\sqrt{2p}] - \delta(p)\) with \(\delta(p) \in \{0, 1\}\). We set

\[
s(\sqrt{2p}) = \sum_{i=1}^{[\sqrt{2p}]} i = \frac{[\sqrt{2p}] [\sqrt{2p} + 1]}{2}.
\]

From Example 3(ii), it follows that when \(s(\sqrt{2p}) \leq p + 1\), then \(\delta(p) = 0\). In this section we shall show that \(\delta_p = 0\), only when \(s(\sqrt{2p}) \leq p + 1\).

Using Proposition 8 there exists a \(d \in (\mathbb{Z}/p\mathbb{Z})^*\) such that replacing \(A\) by \(dA\), we have

\[
\sum_{a \in A} |a|_p \leq p + O(1).
\]

Using (11) with \(K = A\) and (12), the following lemma is immediate.

Lemma 19. The largest integer \(y\) in \(A \cup -A\) is \(O(\sqrt{2p})\).
Let $G(A)$ be the collection of all natural numbers g which satisfy the property that none of the integers g and $-g$ belong to the set A, where \bar{A} is the subset of integers as defined earlier. For the brevity of notation we shall write G to denote the set $G(A)$. Let $G = \{g_0 < g_1 < g_2 < \ldots \}$.

From Lemma [15] we obtain that the cardinality of $G(x)$ is $O(1)$ for any $x \leq 0.9\sqrt{2p}$. The arguments identical to those used in the proof of Lemma [15] in fact leads to the following lemma.

Lemma 20. The set $\bar{A} \cup (-\bar{A})$ contains all the integers in $[1, \sqrt{2p}/5]$ with at most $\delta(p)$ exception.

Proof. The lemma is equivalent to showing that in case $\text{card}(A) = \lfloor \sqrt{2p} \rfloor$, then $g_0 > \sqrt{2p}/5$, whereas in case $\text{card}(A) = \lfloor \sqrt{2p} \rfloor - 1$, then $g_1 > \sqrt{2p}/5$. Suppose that this is not true. Then if $\delta(p) = 0$, we have

$$\sum_{a \in A} |a|_p = \sum_{\bar{a} \in A} \bar{a}^g \geq \sum_{i=1}^{g_0-1} i + \sum_{i=g_0+1}^{Card(A)+1} i \geq \frac{\sqrt{2p} + 1}{2} \frac{\sqrt{2p} + 2}{2} - \sqrt{2p}/5,$$

whereas in case $\delta(p) = 1$, we have

$$\sum_{a \in A} |a|_p \geq \sum_{i=1}^{g_0-1} i + \sum_{i=g_0+1}^{g_1-1} i + \sum_{i=g_1+1}^{Card(A)+2} i \geq \frac{\sqrt{2p} + 1}{2} \frac{\sqrt{2p} + 2}{2} - 2\sqrt{2p}/5.$$

Using the facts that $\lfloor \sqrt{2p} \rfloor \geq \sqrt{2p} - 1$ and for any integer i, we have $\lfloor \sqrt{2p} + i \rfloor = \lfloor \sqrt{2p} \rfloor + i$, it follows that either of these inequalities are contrary to [12]. Hence the lemma follows. \qed

Now we determine all the possible structure of $\bar{A}(\sqrt{2p}/5)$, first under the assumption that $g_0 \geq 5$.

Lemma 21. When $g_0 \geq 5$, then replacing A by $-A$, if necessary, the set \bar{A} contains the whole interval $[\sqrt{2p}/5, \sqrt{2p}/5]$ with at most $\delta(p)$ exception and $\bar{A}(4)$ is equal to one of the three sets described in the the first three rows of the second column of Table 1.

Proof. Since we have assumed that $g_0 \geq 5$, replacing A by $-A$, if necessary, we may assume that $3 \in \bar{A}$. Then the set $\bar{A}(3)$ is equal to one of the following four sets, \{1,2,3\}, \{-1,2,3\}, \{1, -2, 3\}, \{-1, -2, 3\}. Since A is zero-free, among these four possibilities, the last one cannot occur. We verify that in all the other three possible cases the following always hold

$$\{1,2,3,4\} \subseteq \bar{A}(3)^5.$$

This implies that the set $\bar{A}(4)$ is equal to one of the three sets described in the second column of the first three rows of Table 1; that is, the set $\bar{A}(4)$ is equal to one of the following three sets \{1,2,3,4\}, \{-1,2,3,4\}, \{1, -2, 3, 4\}. We claim that there does not exist any integer $z \in [\sqrt{2p}/5, \sqrt{2p}/5]$ with $-z \in \bar{A}$. The lemma follows immediately using this claim and Lemma 20. To verify the claim, suppose that the claim is not true and z_0 is the least integer which violates the claim. Then since \{1,2,3,4,5,6\} is always a subset of $\bar{A}(4)^5$, we have that z_0 is at least 6. Now if $z_0 \neq g_0 + 1$, then we have $z_0 - 1 \in \bar{A}$ and thus $z_0 \in \bar{A}(3)^5 \cup z_0 - 1 \subseteq \bar{A}(z_0 - 1)^5$. Since A is zero-free, this implies that $-z_0$ can not belong to the set \bar{A} which contradicts the assumption that z_0 is the least integer violating the claim. Thus if the claim is not true then $z_0 = g_0 + 1$. But in this case $z_0 - 2 \in \bar{A}$ and thus $z_0 \in \bar{A}(3)^5 \cup z_0 - 2 \subseteq \bar{A}(z_0 - 2)^5$. This implies that $-z_0$ cannot belong to \bar{A}. Hence the claim and thus the lemma hold. \qed
Structure of A when $|A| = \lfloor\sqrt{2p}\rfloor - \delta_p$, with $\delta_p \in \{0,1\}$

Here $s'' = s''(A) = \sum_{\bar{a} \in \bar{A}, \bar{a} > 0} \bar{a}$.

| # | $\{a \in A/|a| \leq 4\}$ | δ_p | g_0 | $(A)^{\bar{a}}$ |
|---|-------------------|------|------|----------------|
| 1 | $\{1,2,3,4\}$ | ≥ 5 | $\{1, s''\}$ |
| 2 | $\{-1,2,3,4\}$ | ≥ 5 | $\{-1\} \cup [1, s'']$ |
| 3 | $\{1,-2,3,4\}$ | ≥ 5 | $\{-2,-1\} \cup [1, s'']$ |
| 4 | $\{1,2,3\}$ | 1 | 4 | $[1, s'']$ |
| 5 | $\{-1,2,3\}$ | 1 | 4 | $\{-1\} \cup [1, s'']$ |
| 6 | $\{1,-2,3\}$ | 1 | 4 | $\{-1,-2\} \cup [1, s'']$ |
| 7 | $\{-1,2,-3\}$ | 1 | 4 | $[-4,-1] \cup [1, s'']$ |
| 8 | $\{1,2,4\}$ | 1 | 3 | $[1, s'']$ |
| 9 | $\{-1,2,4\}$ | 1 | 3 | $\{-1\} \cup [1, s'']$ |
| 10| $\{1,-2,4\}$ | 1 | 3 | $\{-2,-1\} \cup [1, s'']$ |
| 11| $\{1,2,-4\}$ | 1 | 3 | $[-4,-1] \cup [1, s'']$ |
| 12| $\{-1,-2,4\}$ | 1 | 3 | $[-3,-1] \cup [1, s'']$ |
| 13| $\{1,3,4\}$ | 1 | 2 | $[1, s''] \setminus \{2, s'' - 2\}$ |
| 14| $\{-1,3,4\}$ | 1 | 2 | $\{-1\} \cup [1, s''] \setminus \{1, s'' - 2\}$ |
| 15| $\{1,-3,4\}$ | 1 | 2 | $\{-3,-2\} \cup [1, s''] \setminus \{s'' - 2\}$ |
| 16| $\{2,3,4\}$ | 1 | 1 | $[2, s''] \setminus \{s'' - 1\}$ |
| 17| $\{-2,3,4\}$ | 1 | 1 | $\{-2,-1\} \cup [1, s''] \setminus \{s'' - 1\}$ |
| 18| $\{2,-3,4\}$ | 1 | 1 | $\{-3,-1\} \cup [1, s''] \setminus \{s'' - 1\}$ |
| 19| $\{2,3,-4\}$ | 1 | 1 | $\{-4,-2,-1\} \cup [1, s''] \setminus \{s'' - 1\}$ |

Table 1: Subset sum of a largest zero-free set
Lemma 22. Let A be as in Lemma 21. $A' = A \cap [-\frac{p}{2}, -1]_p$ and $A'' = A \cap [1, \frac{p}{2}]_p$. Then we have $A' \subset [-2, -1]_p$. Moreover the set $(A')^2$ contains the interval $[1, s'']_p$ with $s'' = \sum_{a'' \in A''} |a''|_p$ and is equal to one of the sets described in the fifth column of the first three rows of Table 1, the three possibilities corresponding to three possible structures for $\bar{A}(4)$. We have

$$s'' \leq p - 1.$$

Proof. For any integer z we set

$$s''(z) = \sum_{a'' \in A''(z)} a''.$$

We claim that there is an absolute constant c such that for any integer z with $5 \leq z \leq \frac{p}{c}$, the set $(\bar{A}(z))^2$ contains the interval $[1, s''(z)]$. The claim is easily verified with $z = 5$. Suppose the claim is not true and z_0 is the least integer violating the claim. Since using the previous lemma we always have $s''(5) \geq 5 + 1 = 6$, we apply Lemma 13 with $x = 5$ and obtain the following inequality.

$$z_0 \geq s''(z_0 - 1) + 1.$$

(13)

Using the previous lemma, for any integer y with $y \in [6, \sqrt{2p}/5]$, we have

$$s''(y) = \frac{y(y + 1)}{2} - \sum_{a' \in A(4)} |a'| - \epsilon,$$

where $\epsilon = 0$ if $y \leq g_0$ and $\epsilon = g_0$ if $y > g_0$. Using this it follows that (13) cannot hold with $z_0 \leq \sqrt{2p}/5$. Therefore we have

$$z_0 \geq s''(\sqrt{2p}/5) \geq \frac{p}{c},$$

where c is an absolute constant. Hence the claim follows. Using the claim and Lemma 19 it follows that the set $(A)^2$ contains the interval $[1, s'']_p$. Since A is zero-free, it follows that

$$s'' \leq p - 1.$$

Since $(\bar{A}(\sqrt{2p}/5))^2$ contains the interval $[1, s''(\sqrt{2p}/5)]$, it follows that there is no integer $y \in \left[-\frac{p}{c}, -\sqrt{2p}/5 \right]$ with $y \in \bar{A}'$. Using the previous lemma and Lemma 19 it follows that $\bar{A}' = \bar{A} \cap [-4, -1] \subset [-2, -1]$. Using this it may be easily verified that the set $(A)^2$ is equal to one of the sets described in the fifth column of the first three rows of Table 1. Hence the lemma follows.

Theorem 23. Let p be a sufficiently large prime and A a zero-free subset of $\mathbb{Z}/p\mathbb{Z}$ of the largest cardinality. Then $\text{card}(A) = \left(\sqrt{2p} - \delta(p) \right)$, where $\delta(p) = 0$ if $s(\sqrt{2p}) \leq p + 1$ and is equal to 1 otherwise. In other words, $\text{card}(A)$ is the largest integer k with the property that $\frac{k(k + 1)}{2} \leq p + 1$; that is $\text{card}(A) = \left(\sqrt{2p} + 9/4 - 1/2 \right)$.

Proof. From the remarks made in the beginning of this section, it follows that $\text{card}(A) = \lfloor \sqrt{2p} \rfloor - \delta(p) \in \{0, 1\}$. If $s(\sqrt{2p}) \leq p + 1$, then the set $\{-2, -1\}_p \cup [3, \sqrt{2p}]_p$ is an example of a zero-free subset of $\mathbb{Z}/p\mathbb{Z}$ and since A is a largest zero-free subset, we have $\delta(p) = 0$, in this case. Now in case $\delta(p) = 0$, then from the remarks made in the beginning of this section there is a $d \in (\mathbb{Z}/p\mathbb{Z})^*$, such that replacing A by dA, the
inequality (12) holds with $d = 1$. Using Lemma 20 it also follows that $g_0 \geq \sqrt{2p}/5 \geq 5$. Therefore it follows that replacing A by $-A$, if necessary, the set A is as in Lemma 22.

Since $\delta(p) = 0$, we also have that

$$s(\sqrt{2p}) \leq s'' + \sum_{a' \in A'} |a'| \leq s'' + 2,$$

where s'' is as in the Lemma 22 and is at most $p - 1$. Thus $s(\sqrt{2p}) \leq p + 1$. Hence the theorem follows.

Lemma 24. Let A be a largest zero-free subset of $\mathbb{Z}/p\mathbb{Z}$ which satisfy (12). When $g_0 \leq 4$, then, replacing A by $-A$ if necessary, the set A contains the whole interval $[5, \sqrt{2p}/5]$.

Proof. Since $g_0 \leq 4$, then using Lemma 20 for any integer $z \geq 5$ either z or $-z$ belongs to A. Replacing A by $-A$, if necessary, we may assume that the integer 5 belongs to the set A. If the statement of the lemma is not true then there is an integer $z \in [6, \sqrt{2p}/5]$ with $-z \notin A$. Let z_0 be the least among such integers. Then since $-z_0$ belongs to A and A is zero-free, it follows that $z_0 - 5$ does not belong to the set A. From the definition of z_0 it follows that $z_0 - 5 \leq 4$ and thus $z_0 \leq 9$. In other words, $z_0 \in \{6, 7, 8, 9\}$. On the other hand we shall show that z_0 cannot be equal to any of this four possible integers.

Case 1: If $z_0 = 9$. In this case we have $\{5, 6, 7, 8, -9\} \subset A$. Since $2 + 7 - 9 = 6 + 5 - 9 - 2 = 3 + 6 - 9 = 7 + 5 - 3 - 9 = 0$, it follows that none of the integers in the set $\{2, 3, -2, -3\}$ belongs to the set A. This is in contradiction to Lemma 20. Thus z_0 cannot be equal to 9.

Case 2: If $z_0 = 8$. In this case we have that $\{5, 6, 7, -8\} \subset A$. Since we have $3 + 5 - 8 = -3 + 6 + 5 - 8 = 1 + 7 - 8 = -4 + 7 + 5 - 8 = 0$, none of the integers from the set $\{1, 2, 3, -3, -4\}$ belongs to A. From Lemma 20 it follows that $\{-1, -2, 4, 5, 6, 7, -8\} \subset A$. Since $-1 + 5 + 4 - 8 = 0$, this is in contradiction to the fact that A is zero-free. Therefore z_0 cannot be equal to 8.

Case 3: If $z_0 = 7$. In this case we have $\{5, 6, -7\} \subset A$. Since $-4 + 5 + 6 - 7 = 2 + 5 - 7 = 1 + 6 - 7 = 0$, it follows that none of the integers from the set $\{1, 2, -4\}$ belongs to A. Now if $4 \notin A$, in other words if $\{4, 5, 6, -7\} \subset A$, then since we have $-2 + 5 + 4 - 7 = -3 + 4 + 6 - 7 = 0$, it follows that there is no integer in $\{2, -2, -3\}$ which belongs to A. Therefore we have $g_0 = 2$ and using Lemma 20 the set $\{-1, 3, 4, 5, 6, -7\}$ is included in A. Since $-1 + 3 + 5 - 7 = 0$, this is in contradiction to the fact that A is zero-free. Therefore it follows that neither the integer 4 nor -4 can belong to A. Therefore using Lemma 20 we have $\{-1, -2, 5, 6, -7\} \subset A$. Since $3 - 1 - 2 = -3 - 1 - 2 + 6 = 0$, this implies that neither the integer 3 nor -3 can belong to A. In other words none of the integers from the set $\{-3, 3, -4, 4\}$ can belong to A. This is in contradiction to Lemma 20. Hence z_0 cannot be equal to 7.

Case 4: If $z_0 = 6$. In this case we have $\{5, -6\} \subset A$. Since $1 + 5 - 6 = 0$, it follows that the integer 1 cannot belong to A. We have two subcases to discuss in this case, the first one when $g_0 \neq 1$ and the second one when $g_0 = 1$.

In case $g_0 \neq 1$, then we have $-1 \notin A$; that is $\{-1, 5, -6\} \subset A$. Since $-1 - 6 + 7 = 0$, this implies that $-7 \notin A$. This in turn implies that $-8 \notin A$. Thus we have $\{-1, 5, -6, -7, -8\} \subset A$. Since $4 + 5 - 8 - 1 = -4 - 1 + 5 = 0$, it follows that none the
integers 4 nor −4 belongs to \(\mathcal{A} \) and hence \(g_0 = 4 \). Since \(3 + 5 - 8 = 2 + 5 - 7 = 0 \), it follows that none of the integers from the set \(\{2, 3\} \) belongs to \(\mathcal{A} \). Hence using Lemma 20 we have \(\{-2, -3, 5\} \subset \mathcal{A} \). Since \(\mathcal{A} \) is zero-free, this is not possible. Hence if \(z_0 = 6 \), then \(g_0 = 1 \).

In case \(g_0 = 1 \), then either 3 or −3 belongs to \(\mathcal{A} \).

If 3 belongs to \(\mathcal{A} \); that is \(\{3, 5, -6\} \subset \mathcal{A} \), then since \(-2 + 3 + 5 - 6 = 0 \), it follows that \(2 \in \mathcal{A} \). Thus we have \(\{2, 3, 5, -6\} \subset \mathcal{A} \). Since \(4 + 2 - 6 = -4 + 2 + 3 + 5 - 6 = 0 \), it follows that none of the integers from the set \(\{1, -1, 4, -4\} \) belongs to \(\mathcal{A} \). This is in contradiction to Lemma 20.

In case \(-3 \in \mathcal{A} \), in other words \(\{-3, 5, -6\} \subset \mathcal{A} \). Since \(4 + 5 - 3 - 6 = 0 \), it follows that \(-4 \in \mathcal{A} \), that is \(\{-3, -4, 5, -6\} \subset \mathcal{A} \). Since \(-2 - 3 + 5 = 2 - 3 - 4 + 5 = 0 \), it follows that none of the integers from the set \(\{1, -1, 2, -2\} \) can belong to \(\mathcal{A} \). This is in contradiction to Lemma 20.

Hence we have shown that \(z_0 \notin \{6, \sqrt{2p}/5\} \) and thus the lemma follows.

\(\square \)

Lemma 25. Let \(\mathcal{A} \) be as in the previous lemma. Then the set \(\mathcal{A}(4) \) is equal to one of the sets described in the second column of the last sixteen rows of Table 1.

Proof. Let \(N \) be the set of integers \(n_i \) which belongs to \([1, 4]\) with \(-n_i \in \mathcal{A} \). Then it follows using the previous lemma that

\[
\sum_{n_i \in N} n_i \leq 4. \tag{14}
\]

This implies that the cardinality of \(N \) is at most 2.

When \(\text{card}(N) = 2 \). It follows from (13) that \(N \) is either equal to \(\{1, 2\} \) or is equal to \(\{1, 3\} \); that is, in this case either \(\{-1, -2\} \) or \(\{-1, -3\} \) is a subset of \(\mathcal{A} \). In case \(\{-1, -2\} \) is a subset of \(\mathcal{A} \), then since \(3 - 1 - 2 = 0 \), it follows that \(g_0 = 3 \) and \(\mathcal{A}(4) \) is equal to \(\{-1, -2, 4\} \). In case \(\{-1, -3\} \) is a subset of \(\mathcal{A} \), then since \(4 - 1 - 3 = 0 \), it follows that \(g_0 = 4 \) and \(\mathcal{A}(4) \) is equal to \(\{-1, -3, 2\} \).

When \(\text{card}(N) = 1 \). We have the following four sub-cases to discuss.

- **When** \(N = \{1\} \). In this case \(\mathcal{A}(4) \) can be equal to any of the following three sets, namely, \(\{-1, 2, 3\}, \{-1, 2, 4\}, \{-1, 3, 4\} \).

- **When** \(N = \{2\} \). In this case \(\mathcal{A}(4) \) can be equal to any of the following three sets, namely, \(\{-2, 1, 3\}, \{-2, 1, 4\}, \{-2, 3, 4\} \).

- **When** \(N = \{3\} \). Since \(1 + 2 - 3 = 0 \), in this case either \(g_0 \) is equal to 1 or is equal to 2. Moreover the set \(\mathcal{A}(4) \) is equal to one of the following two sets, namely, \(\{-3, 1, 4\}, \{-3, 2, 4\} \).

- **When** \(N = \{4\} \). Since \(1 + 3 - 4 = 0 \), it follows that either \(g_0 \) is equal to 1 or is equal to 3. In this case \(\mathcal{A}(4) \) is equal to one of the following two sets, namely \(\{-4, 1, 2\}, \{-4, 2, 3\} \).

When \(\text{card}(N) = 0 \). In this case \(\mathcal{A}(4) \) is equal to any one of the following four sets, namely, \(\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\} \).

\(\square \)

Lemma 26. Let \(\mathcal{A} \) be as in Lemma 24. \(\mathcal{A}' = \mathcal{A} \cap \left[\frac{-p}{2}, -1 \right]_p \) and \(\mathcal{A}'' = \mathcal{A} \cap \left[1, \frac{p}{2} \right]_p \). Then we have

\[
\mathcal{A}' \subset \left[-4, -1 \right]_p, \quad \left[5, \sqrt{2p} - 9 \right]_p \subset \mathcal{A}'' \subset \left[1, \sqrt{2p} + 8 \right]_p.
\]
Moreover, the set A'' contains $[3, s'' - 3]_p$ with $s'' = \sum_{a' \in A'} |a'|$ and is equal to one of the set described in the fifth column of the last sixteen rows of Table 1; the sixteen possibilities correspond to sixteen possibilities for $A(4)$ as given by Lemma 25. We also have $s'' \leq p + 2$.

Proof. For any positive integer z we set

$$s''(z) = \sum_{a'' \in A''(z)} |a''|.$$

We claim that there is an absolute constant c such that for any integer z with $6 \leq z \leq \frac{p}{c}$, the set $(A(z))^2$ contains the interval $[3, s''(z) - 3]$. Suppose the claim is not true and let z_0 be the least integer in $[6, \frac{p}{c}]$ such that $(A(z_0))^2$ does not contains the interval $[3, s''(z_0) - 3]$. Since the claim is easily verified when $z = 6$, it follows that $z_0 \geq 7$. Moreover we also verify that the length of the interval $[3, s''(6) - 3]$ is at least 7. Therefore using Lemma 13 with $x = 6$, it follows that

$$z_0 \geq s''(z_0 - 1) - 4 + 1.$$

Using Lemmas 24 and 25 it follows that the above inequality does not hold for any z_0 with $z_0 \in [6, \sqrt{2p}/5]$. Therefore we have

$$z_0 \geq s''(\sqrt{2p}/5 - 1) - 3 \geq \frac{p}{c},$$

where c is an absolute constant. Hence the claim follows. Using Lemma 19 it follows that $(A)^2$ contains the interval $[3, s'' - 3]$. Since A is zero-free, it follows that $s'' \leq p + 2$. Since $(A(\sqrt{2p}/5))^2$ contains the interval $[3, \frac{2}{5}]$ it follows there is no $y \in [-p/c, -\sqrt{2p}/5]$ with $y \in A'$. Then using Lemma 24 it follows that $A' = A \cap [-4, -1] \subset [-4, -1]$. Using this, it is easy to verify that the set $(A)^2$ is equal to one of the sets described in the fifth column of the last sixteen rows of Table 1. We shall now show that

$$[5, \sqrt{2p} - 9] \subset A''.$$

Since $A' \subset [-4, -1]$, this follows by showing that

$$g_1 \geq \lfloor \sqrt{2p} \rfloor - 8.$$

For proving this we may assume that $g_1 \leq \sqrt{2p}$. Then we observe that the following inequality holds

$$\sum_{a \in A} |a| \geq s(\sqrt{2p}) + \left\lfloor \sqrt{2p} \right\rfloor + 1 - g_0 - g_1.$$

The left hand side of the above inequality is equal to $s'' = \sum_{a' \in A'} |a'|$ and is thus at most $p + 6$. Moreover using Lemma 20 and Theorem 23 we have $s(\sqrt{2p}) \geq p + 2$. Using this and rearranging the terms of (16), we obtain that $g_1 \geq \sqrt{2p} - 8$. We shall now show that

$$A'' \subset \left[1, \lfloor \sqrt{2p} \rfloor + 8 \right].$$

This is equivalent to showing that the largest integer $y \in A$ is at most $\lfloor \sqrt{2p} \rfloor + 8$. Now we have the following inequality

$$\sum_{a \in A} |a| \geq s(\sqrt{2p}) - g_0 - \lfloor \sqrt{2p} \rfloor + y.$$

Rearranging the terms of the above inequality we obtain the desired upper bound for y. Hence the lemma follows. \Box
Theorem 27. Let p be a sufficiently large prime and A be a zero-free subset of $\mathbb{Z}/p\mathbb{Z}$ of the largest cardinality. We write $\delta(p)$ to denote the integer $\lfloor \sqrt{2p} \rfloor - \text{card}(A)$, as in Theorem 23. Then there exists $d \in (\mathbb{Z}/p\mathbb{Z})^*$ such that the set dA is union of sets A' and A'' satisfying the following properties:

(i) $A' \subset \{-2(1 + \delta(p)), -1\}_p$, $A'' \subset [1, p/2]_p$, $A'' \cap (-A') = \emptyset$ and $\text{card}(A') \leq 1 + \delta(p)$,

(ii) the set A'' contains the whole interval $[5, \sqrt{2p}/5]_p$ with at most $\delta(p)$ exception,

(iii) the set $(-A') \cup A''$ contains the whole interval $[1, 4]_p$, with at most $\delta(p)$ exception,

(iv) the set $(dA)^2$ contains the whole interval $[3, s'']_p$ with at most $\delta(p)$ exception, where $s'' = \sum_{a'' \in A''} |a''|_p$,

(v) $\sum_{a' \in A'} |a'|_p \leq 2(1 + \delta(p))$ and $\sum_{a'' \in A''} |a''|_p \leq p - 1 + 3\delta(p)$.

Further, if $s'' = \sum_{a'' \in A''} |a''|_p > p - 1$, then we have $s(\sqrt{2p}) = \lfloor \sqrt{2p} + 1/p \rfloor \in [p + 2, p + 7]$.

Proof. It is sufficient to show that there exists $d \in (\mathbb{Z}/p\mathbb{Z})^*$ such that replacing A by dA, the conclusion of the theorem holds with $d = 1$. From Proposition 8 there exists $d \in (\mathbb{Z}/p\mathbb{Z})^*$ such that replacing A by dA, the inequality (12) holds. Let g_0 be the least positive integer which does not belong to $A \cup -A$. When $g_0 \geq 5$, replacing A by $-A$ if necessary, let A be as in Lemma 21. When $g_0 \leq 4$, then replacing A by $-A$ if necessary, let A be as in Lemma 21. For such A, let $A' = A \cap [-2, -1]_p$ and $A'' = A \cap [1, 2]_p$. Then claims (i)-(v) follow from Lemmas 20, 21 and 22 in case $g_0 \geq 5$ and from Lemmas 24, 25 and 26 in case $g_0 \leq 4$.

To prove the theorem, we need to show that if $s'' > p - 1$, then $s(\sqrt{2p}) \in [p + 2, p + 7]$. From claim (v) and Lemma 21 it follows that when $s'' > p - 1$, then we have $\delta(p) = 1$. From Theorem 23 it follows that

$$s(\sqrt{2p}) \geq p + 2.$$ \hfill (17)

Moreover from Lemmas 22 and 26 it follows that the set $[3, s'']_p$ is contained in $(A)^2$ in case $g_0 \notin \{1, 2\}$. Therefore it follows that if $s'' > p - 1$, then we have

$$g_0 \in \{1, 2\}.$$ \hfill (18)

When $g_0 \in \{1, 2\}$, then we have

$$s(\sqrt{2p}) - g_0 \leq \sum_{a \in A} |a|_p = \sum_{a' \in A'} |a'|_p + s''$$ \hfill (19)

and from Lemma 26 it follows that either $s'' \leq p - 1$ or we have $s'' = p + g_0$. We also know all the possibilities of A' from Lemma 25 and claim (i). Using this and rearranging the terms in (18), we obtain that when $s'' > p - 1$, then we have

$$s(\sqrt{2p}) \leq p + 7.$$ \hfill (19)

Therefore if $s'' \geq p - 1$ then from (17) and (19), we have $s(\sqrt{2p}) \in [p + 2, p + 7]$. Hence the theorem follows.

The Theorem readily follows from Theorems 23 and 27.
3 Proof of Theorem 7

Let \(\mathcal{A} \) be as in Theorem 7. From the assumptions we have

\[
e(\mathcal{A}) := |\sqrt{2p} - \text{card}(\mathcal{A})| \leq \psi(p)\sqrt{p} \quad \text{and} \quad p \text{ is sufficiently large,}
\]

where \(\psi \) is a function from \([2, \infty)\) to \(\mathbb{R}^+\) which tends to 0 at \(\infty\). In what follows \(\psi \) will denote this function.

From Proposition 8, replacing \(\mathcal{A} \) by \(d.\mathcal{A} \) for some non-zero element \(d \in \mathbb{Z}/p\mathbb{Z} \) we have

\[
\sum_{a \in \mathcal{A}} |a|_p \leq p + O \left((e(\mathcal{A})^{3/2}\ln(e(\mathcal{A}) + 2) \right) \quad \text{(21)}
\]

and

\[
\sum_{a \in \mathcal{A}, a < 0} |a|_p = O \left(e(\mathcal{A})^{3/2}\ln(e(\mathcal{A}) + 2) \right). \quad \text{(22)}
\]

As before we find it more convenient to work with \(\tilde{\mathcal{A}} \) than \(\mathcal{A} \). We partition the set of natural numbers into the three disjoint sets \(P, N \) and \(G \) which are defined as follows.

\[
P = \{ k \in \mathbb{N} : k \in \tilde{\mathcal{A}} \}, \quad N = \{ k : k \in -\tilde{\mathcal{A}} \}, \quad G = \{ k : k \notin \tilde{\mathcal{A}} \cup -\tilde{\mathcal{A}} \}.
\]

An immediate corollary of (22) is that the cardinality of \(N \) is \(O \left(e(\mathcal{A})^{3/4}\ln(e(\mathcal{A})) \right) \). We shall prove the following result.

Proposition 28. The cardinality of \(N \) is \(O(\sqrt{e(\mathcal{A})}) \). Moreover there exists an absolute constant \(c \) such that \(N \subset [1, ce(\mathcal{A})] \).

We first deduce Theorem 7 from Proposition 28.

Proof of Theorem 7. From Proposition 8 there exists a \(d \in (\mathbb{Z}/p\mathbb{Z})^* \) such that replacing \(\mathcal{A} \) by \(d.\mathcal{A} \), the inequalities (21) and (22) hold. Let \(\mathcal{K} = \tilde{\mathcal{A}} \setminus (-N) \). Then we have

\[
e(\mathcal{K}) := |\sqrt{2p} - \text{card}(\mathcal{K})| \leq e(\mathcal{A}) + \text{card}(N) = O \left(\psi(p)\sqrt{p} \right), \text{ the last equality follows using Proposition 28.}
\]

Moreover we have

\[
\sum_{k \in \mathcal{K}} |k| \leq \sum_{a \in \mathcal{A}} |\bar{a}| \leq p + O(e(\mathcal{A})^{3/4}\ln(e(\mathcal{A}) + 2)).
\]

Therefore it follows that \(\mathcal{K} \) satisfies the assumption of Proposition 11 with \(s(\mathcal{K}) = O(e(\mathcal{A})^{3/4}\ln(e(\mathcal{A}) + 2)) \). Let \(\mathcal{C}_1 \) be a subset of \(\mathcal{K} \) as in the proof of Proposition 11. Then we have \(\mathcal{C}_1 \subset [1, ce(\mathcal{A})] \), \(\text{card}(\mathcal{C}_1) = O(\sqrt{e(\mathcal{A})}\ln(e(\mathcal{A})) \) and \(\sum_{k \in \mathcal{K} \setminus \mathcal{C}_1} |k| \leq p - 1 \). Let \(\mathcal{A}' = \sigma_p(N \cup \mathcal{C}_1) \) and \(\mathcal{A}'' = \mathcal{A} \setminus \mathcal{A}' \). Then using Proposition 28 and the properties of \(\mathcal{C}_1 \) just stated, we have that \(\mathcal{A}' \subset [-ce(\mathcal{A}), ce(\mathcal{A})]_p \) for some absolute positive constant \(c \) and \(\text{card}(\mathcal{A}') = \text{card}(\mathcal{C}_1) + \text{card}(N) = O(\sqrt{e(\mathcal{A})}\ln(e(\mathcal{A}) + 2)) \). From the definition of \(N \) and \(\mathcal{A}'' \), we have that \(\mathcal{A}'' \subset [1, \frac{p}{2}]_p \). Moreover we have

\[
\sum_{a'' \in \mathcal{A}''} |a''| = \sum_{k \in \mathcal{K} \setminus \mathcal{C}_1} |k| \leq p - 1.
\]

Hence Theorem 7 follows. \(\square \)
3.1 Proof of Proposition 28

Lemma 29. The cardinality of $P(0.9\sqrt{2p})$ is equal to $0.9\sqrt{2p} - O(e(A))$.

Proof. Applying Lemma [15] with $K = \bar{A}$ and $e(p) = e(A)^{3/2} \ln e(A)$ we obtain that
$$\text{card}(P(0.9\sqrt{2p})) + \text{card}(N(0.9\sqrt{2p})) = 0.9\sqrt{2p} - O(e(A))$$
and using [22] it also follows that the cardinality of N is $O(e(A)^{3/4} \ln e(A))$. Hence the lemma follows. \hfill \Box

Lemma 30. Let q be a sufficiently large positive integer and $B \subset [1, q]$ with $\text{card}(B) \geq \frac{7}{8}q$. Then the interval $[q + 1, \frac{13}{8}q]$ is contained in 2^*B.

Proof. For any $n \in [q+1, \frac{13}{8}q]$ there are $q - \left\lceil \frac{n}{q} \right\rceil - 1$ pairs of elements (a_i, b_i) with $n = a_i + b_i$, $a_i < b_i$ and both $a_i, b_i \in [1, q]$. Among these pairs if there is a pair (a_i, b_i) with both $a_i, b_i \in B$ then the assertion follows. If not then $\text{card}(B) \leq q - (q - \left\lceil \frac{n}{q} \right\rceil - 1) = \left\lceil \frac{n}{q} \right\rceil + 1$ which is strictly less than $\frac{7}{8}q$, since $n \leq \frac{13}{8}q$. This is contrary to the assumption. Hence the lemma follows. \hfill \Box

Lemma 31. Let q be a sufficiently large positive integer and $B \subset [1, q]$ with $\text{card}(B) = q - O(\psi(q)q)$. Then the interval $[q + 1, \psi(q)^{1/2}q^2]$ is contained in the set B^2.

Proof. For any $n \in [q+1, \frac{13}{8}q]$ it follows from the previous lemma that $n \in B^2$. Let $B(0.2q, 0.4q) = B \cap [0.2q, 0.4q] = \{b_1 > b_2 > > b_I\}$. Then from the assumptions of the lemma we have $\text{card}(B(0.2q, 0.4q)) \geq 0.2q - O(\psi(q)q)$. Let C be the sequence $\{c_i\}_{i=1}$ with $c_i = \sum_{i=1}^i b_i$. Then the following properties of c_i are evident.

(i) $c_i \geq 0.2qi,$

(ii) $c_{i+1} - c_i \leq 0.4q.$

Now for every $n \in [\frac{13}{8}q, \psi(q)^{1/2}q^2]$, let n_i be the least integer with $1 \leq n_i \leq I$ such that $n - c_{n_i}$ belongs to the interval $[1.01q, \frac{13}{8}q]$. From the properties of c_i it follows that such a n_i exists and $n_i \leq \psi(q)^{1/2}q$. Moreover we also have $c_i \in B_{n_i}$, where $B_{n_i} = \{b_1, b_2, ..., b_{n_i}\} \subset B$ and is of cardinality n_i. Now $\text{card}(B \setminus B_{n_i}) \geq q - O(\psi(q)^{1/2}q)$. Therefore using Lemma 30, the element $n - c_{n_i}$ can be written as a sum of distinct elements of the set $B \setminus B_{n_i}$. Hence $n \in B^2$. Hence the lemma follows. \hfill \Box

Lemma 32. The set P^2 contains the interval $[0.9\sqrt{2p} + 1, \psi(p)^{1/2}p]$.

Proof. From Lemma 29 the cardinality of $P(0.9\sqrt{2p})$ is $0.9\sqrt{2p} - O(e(A)) \geq 0.9\sqrt{2p} - O(\psi(p)\sqrt{p})$. Therefore the assertion follows from Lemma 31. \hfill \Box

Lemma 33. The cardinality of N is $O(\sqrt{e(A)})$.

Proof. From Lemma 16 the largest integer y_0 belonging to $P \cup N$ is $O(e(A)^{1/2}p)$. Since \bar{A} does not contain any multiple of p and hence does not contain zero, the sets P^2 and N are disjoint. Therefore using Lemma 32 it follows that $N \subset [1, 0.9\sqrt{2p}]$. Since the cardinality of N is $O(e(A)^{3/4} \ln e(A))$, it follows that $N^2 \subset [1, c_0 e(A)^{3/4} \ln e(A)^{1/2}]$. Since $e(A) \leq \psi(p)^{1/2}p$, using Lemma 32 it follows that $N^2 \subset [1, 0.9\sqrt{2p}]$. Now using Lemma 29 and the fact that P and N^2 are disjoint sets, it follows that the cardinality of N^2 is $O(e(A))$. Since we also have that the cardinality of N^2 is at least $\frac{(\text{card}(N))^2}{2}$, the assertion follows. \hfill \Box
Lemma 34. There exists a positive absolute constant c_0 such that $N \subset [1, c_0 e(A)]$.

Proof. Let x be a sufficiently large integer such that $\text{card}(P(x)) \geq \frac{7}{8} x$, then using Lemma 31 the set N does not contain any element from the interval $[x + 1, \frac{13}{8} x]$. From Lemma 29 there exists an integer x_0 such that $x_0 = O(e(A))$ and for any integer x with $x_0 \leq x \leq 0.9 \sqrt{2p}$, we have $\text{card}(P(x)) \geq \frac{5}{8} x$. Therefore the set N does not contain any integer in the interval $[x_0, 0.9 \sqrt{2p}]$. As it was observed during the proof of Lemma 33 we have $N \subset [1, 0.9 \sqrt{2p}]$, it follows that $N \subset [1, x_0]$. Hence the lemma follows. \qed

From Lemmas 33 and 34, Proposition 28 follows.

References

[1] Jean-Marc Deshouillers. Quand seule la sous-somme vide est nulle modulo p. Journal de Theorie des Nombres de Bordeaux, 19:71–79, 2007.

[2] Jean-Marc Deshouillers and Gregory A. Freiman. When subsets-sums do not cover all the residues modulo p. Journal of Number Theory, 104:255–262, 2004.

[3] Yahya Ould Hamidoune and Gilles Zémor. On zero-free subset sums. Acta Arith., 78(2):143–152, 1996.

[4] Hoi H. Nguyen, Endre Szemerédi, and Van H. Vu. Subset sums modulo \mathbb{Z}_p. Acta Arith., 131(4):303–316, 2008.

[5] P. Erdős and H. A. Heilbronn. On the addition of residue classes modulo p. Acta Arith., 9:149–159, 1964.

[6] Endre Szemerédi and Van H. Vu. Long arithmetic progressions in sumsets and the number of x-free sets. Proc. London Math. Soc., 90:273–296, 2005.

Jean-Marc Deshouillers
Institut Mathématique de Bordeaux,
Université de Bordeaux et CNRS
F-33405 TALENCE Cedex,
France.
E-mail: jean-marc.deshouillers@math.u-bordeaux1.fr

Gyan Prakash
Institut Mathématique de Bordeaux,
Université de Bordeaux 1,
F-33405 TALENCE Cedex,
France.
E-mail: gyan.prakash@math.u-bordeaux1.fr
gyan.jp@gmail.com