Discovery of Novel Sultone Fused Berberine Derivatives as Promising Tdp1 Inhibitors

Elizaveta D. Gladkova 1,2, Arina A. Chepanova 3, Ekaterina S. Iлина 3, Alexandra L. Zakharenko 3, Jóhannes Reynisson 4, Olga A. Luzina 1,*, Konstantin P. Volcho 3, Olga I. Lavrik 3 and Nariman F. Salakhutdinov 1,*

1 N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; liza95@nioch.nsc.ru (E.D.G.);
volcho@nioch.nsc.ru (K.P.V.)
2 Department of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
3 Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia;
arinachepanova@mail.ru (A.A.C.); katya.plekhanova@gmail.com (E.S.I.); sashaz@nioch.nsc.ru (A.L.Z.);
lavrik@nioch.nsc.ru (O.I.L.)
4 School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK;
j.reynisson@keele.ac.uk
* Correspondence: luzina@nioch.nsc.ru (O.A.L.); anv@nioch.nsc.ru (N.F.S.)

Abstract: A new type of berberine derivatives was obtained by the reaction of berberrubine with aliphatic sulfonyl chlorides. The new polycyclic compounds have a sultone ring condensed to C and D rings of a protoberberine core. The reaction conditions were developed to facilitate the formation of sultones with high yields without by-product formation. Thus, it was shown that the order of addition of reagents affects the composition of the reaction products: when sulfochlorides are added to berberrubine, their corresponding 9-O-sulfonates are predominantly formed; when berberrubine is added to pre-generated sulfenes, sultones are the only products. The reaction was shown to proceed stereo-selectively and the cycle configuration was confirmed by 2D NMR spectroscopy. The inhibitory activity of the synthesized sultones and their 12-brominated analogs against the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1), an important target for a potential anti-tumor therapy, was studied. All derivatives were active in the micromolar and submicromolar range, in contrast to the acyclic analogs and 9-O-sulfonates, which were inactive. The significance of the sultone cycle and bromine substituent in binding with the enzyme was confirmed using molecular modeling. The active inhibitors are mostly non-toxic to the HeLa cancer cell line, and several ligands show synergy with topotecan, a topoisomerase I poison in clinical use. Thus, novel berberine derivatives can be considered as candidates for adjuvant therapy against cancer.

Keywords: berberine; berberrubine; cancer; Tdp1 inhibitor; DNA repair enzyme; SAR; molecular modeling; sultone; sulfonate

1. Introduction

The isoquinoline alkaloid berberine 1 (Figure 1) is one of the most widespread members of the protoberberine alkaloids family, and is found in plants of the Rhoeadales, Ranunculaceae, Berberidaceae, Menispermaceae, Rutaceae and other families [1]. Berberine is primarily known for its hypoglycemic and hypocholesterolemic activity [2–4], and other indications are also known [5,6].
A common method to obtain improved biological activity involves chemical modifications of a hit or lead compound.

The addition of various functional groups on the berberine scaffold is widely used to create highly active agents with antibacterial, fungicidal, hypocholesterolemic, and anticancer effects [7–10]. The sulfonate moiety, which is common in, for example, cardiovascular and antiviral drugs, was used as pharmacophore to enhance hypolipidemic properties of berberine derivatives. The reaction of the demethylated analogue of berberine, berberrubine 2 (Figure 1), with sulphonylchlorides was previously used to obtain 9-O-sulfonates of berberine 3 (Figure 1), described as hypocholesterolemic [11] and anti-inflammatory [12] agents. We have shown that berberine aryl-9-O-sulfonates 3 inhibit DNA-repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1).

Tdp1 is a eukaryotic enzyme that removes the 3′ ends of DNA after aberrant topoisomerase activity, and can process blocked 3′ ends generated by DNA damaging agents and nucleoside analogs in addition to hydrolyzing 3′-phosphotyrosyl residues (reviewed in Reference [13]). The hypothesis that Tdp1 is responsible for drug resistance in some cancers is supported by a number of studies: Tdp1 deficiency in Tdp1 knockout mice and in human cell lines with a mutation, which reduces the activity of this enzyme, leads to hypersensitivity to camptothecin or its derivatives [14–16]. Suppression of Tdp1 expression with minocycline enhances the antimitastatic effect of irinotecan and increases the lifespan of the experimental animals [17]. Conversely, in cells with increased Tdp1 expression, Top1 poisons cause less DNA damage [18,19]. Furthermore, Tdp1 overexpression protects colorectal cancer cells from irinotecan mediated cell death [20]. Thus, Tdp1 is a promising therapeutic target, and its inhibitors are expected to significantly synergize the effects of current anti-tumor therapies, including topoisomerase poisons and other DNA damaging agents. Indeed, it was found that combined treatment of tumor cells with Tdp1 inhibitors and anticancer drugs camptothecin or topotecan greatly increased the activity of these pharmaceuticals in in vitro [21–28] and in vivo [29,30] experiments. Nevertheless, to the best of our knowledge, no Tdp1 inhibitors have reached human clinical trials. A few classes of Tdp1 inhibitors, including natural products derivatives, are known such as furamidines 4 [31,32], derivatives of bile acids 5 [33], of lichen metabolite usnic acid 6 [34], monoterpenoid derivatives 7 [22,35] and oxinitidine 8 [36] with inhibitory activity in the micro or submicromolar ranges (Figure 2).

Berberine is known to enhance cancer cell chemosensitivity to irinotecan, semisynthetic derivative of camptothecin. Additionally, the berberine anticancer effect could be enhanced via derivatization [37]. Berberine aryl-9-O-sulfonates 3 as Tdp1 inhibitors sensitize HeLa cells to the anticancer drug topotecan [38]. Such a mechanism of action suggests an enhancement of the effect of established chemotherapeutic drugs, making inhibitors of Tdp1 a promising new adjunctive anticancer therapy.
According to the results of the above-mentioned work by Gladkova et al. [38], it should be noted that berberrubrine in the reaction with aliphatic sulfochlorides gives the corresponding 9-O-sulfonates in low to moderate yields, without any information about other reaction products.

The crystal structure of Tdp1 has been available for molecular modelling studies to support the development of new inhibitors, e.g., for the binding predictions of newly synthesized derivatives [39,40], in guiding the synthetic work of new inhibitors [29,35] and finally in identifying new hit matter using structure-based virtual screening [21,33]. Recently, a crystal structure of Tdp1 was published with a co-crystallized ligand [41]; it was found by keeping three crystalline water molecules that the binding mode of the co-crystallized ligand reproduced verifying the robustness of the model [25]. It can therefore be stated that a reliable molecular model has emerged that correlates with activity results.

The primary aim of this study was to investigate the reactions of berberrubrine with aliphatic sulfochlorides, identification of their main reaction pathways, and isolation and characterization of the reaction products. Furthermore, we wished to assess the inhibitory activity against the Tdp1 of the products.

2. Results and Discussion

2.1. Chemistry

2.1.1. Reaction of Berberrubrine with Alkylsulphochlorides

The formation of sulphonates during the reaction of berberine and its derivatives with RSOCl is well-known [11,38]. We have shown earlier that the interaction of berberrubrine 2 with alkyl sulfochlorides 9a–d at standard conditions (methylene chloride as a solvent and triethylamine as a base) leads to the formation of sulphonates 3a–d in 7%-50% yields [38]. The target 3a–d sulphonates were isolated by filtration from the reaction mixture. While in some cases the yield of the target sulphonates was low, the composition of the mother liquor has not been studied in any of the works mentioned.

During additional investigations in the current work, we found, for the first time, that besides the expected sulphonates 3a–d, cyclic sulphonates and sultones 10a–d (Scheme 1), are formed and remained in the mother-liquor after filtration. To form 10a–d, sulphochlorides 9a–d need to react with the electrophilic and nucleophilic centers of berberine at positions 8 and 9, respectively, to form a new six-membered cycle condensed with C and D rings.
Scheme 1. Reaction of berberrubine 2 with alkylsulphochlorides 9a–d.

The ratio of products 3 and 10 in the reaction mixtures varied from 1:5, in the case of methanesulfonyl chloride 9a, to 3:1 in the reaction with butanesulfonyl chloride 9c according to NMR. In the series of alkylsulfonates 3a–d, we observed a decrease in solubility in methylene chloride with an increasing length of the alkyl moiety, which resulted in more sulfonates with longer alkyl substituents precipitating, and therefore, in higher yields (yield increased from 7\% for compound 3a to 50\% for compound 3d). In order to isolate pure sultones 10a–d, the mother liquor remaining after filtration of the precipitate was washed with water and then the product was purified by column chromatography on silica gel. New cyclic derivatives of berberine, sultones, were isolated in yields from 3\% to 40\%.

2.1.2. Investigation into the Reaction Mechanism

The observed formation of cyclic and noncyclic sulfonates can be explained by a two-step reaction mechanism (mechanism A, Scheme 2) with the addition of sulfochloride at the 9-O-position of the berberine backbone to form sulfonate 3 and the subsequent closure of the cycle at the 8th position to form a new C-C bond leading to the formation of the sultone 10. To check the possibility of sequential stages processing, the sulfonate 3b was stirred at room temperature in methylene chloride in the presence of triethylamine. In this case, a partial conversion of compound 3b to cyclic derivative 10b was observed (Scheme 2). However, even with prolonged stirring (for 48 h), the conversion did not exceed 50\%. Nevertheless, we have shown that sultone 10b can be formed by a stepwise mechanism. It is worth noting that incubation of individual sulfone 10b under the reaction conditions did not lead to the formation of sulfonate 3b, indicating the irreversibility of the second stage.

Scheme 2. The proposed mechanism A of sultone formation.

We also cannot exclude a reaction pathway in which a nucleophilic attack at position 8 occurs initially, followed by closure of the sultone cycle (mechanism B) (Scheme 3).
Scheme 3. Proposed mechanism B of sultone formation.

An example of a reaction at position 8 is the addition of an acetone molecule to berberine in alkaline conditions, leading to the formation of compound 11 [42] (Scheme 4), which, however, does not proceed directly, but through the intermediate formation of berberinol 12. For berberrubine 2 derivatives, this type of reaction was not described in the literature.

Scheme 4. Addition of acetone molecule to berberine [42].

To investigate the possibility of primary alkylsulfochloride addition at position 8, we incubated berberine 1 under reaction conditions with sulfochlorides, including various bases (triethylamine, NaOH), but no sulfochloride addition products at position 8 (compound 13) were observed according to NMR. In addition, we have shown that incubation of berberrubine 2 in the presence of NaOH in acetone does not lead to the formation of the 8-OH derivative 14, the assumed intermediate in the reaction of the addition of alkyl substituents at position 8 (Scheme 5).

Scheme 5. Attempts to obtain product 13 of the interaction of berberine 2 with alkylsulphochloride 9a and berberrubinol 14.
The third possible reaction pathway is a synchronous process, a one-step cycloaddition reaction (mechanism C). This path implies the formation of sulfene 15b from sulfochloride 9b under the action of the base. The sulfene’s dipole attacks both the electrophilic and nucleophilic centers of the berberrubine backbone (Scheme 6).

![Scheme 6. Possible mechanism C of sultone formation.](image)

Since the synchronous process (mechanism C) involves sulfene 15b, and to determine the possibility of this reaction pathway, we carried out an experiment in which sulfene 15b was initially generated from sulfochloride 9b by adding an equimolar amount of triethylamine. When the resulting sulfene 15b was added to berberrubine 2, the reaction proceeded with a low conversion (~10% in 7 h). Changing the order of the reagent’s addition, by adding the berberrubine solution to the sulfene solution, led to a significant increase in the conversion of berberrubine 2, reaching 60% in 4 h. We found that reducing the concentration of sulfochloride 9b from 0.02 mmol/mL to 0.008 mmol/mL, and consequently the concentration of sulfene 15b, allows the reaction to proceed with a 100% conversion in the same 4 h. It may be related to the ability of sulfenes to form dimeric structures of type 11 in concentrated solutions [43] (Scheme 7).

![Scheme 7. Formation of dimers from sulphenes [43].](image)

Decrease of the sulfene 15b solution concentration and slow addition of a previously prepared mixture of berberrubine 2 and triethylamine in methylene chloride allowed us to perform the reaction with a complete conversion in 4 h and to only selectively obtain cyclic sulfonate 10b in high yields without sulfonate 3b impurities. This technique was extended to the reaction with other sulfochlorides, the target sulfonates 10a–b were isolated in yields of 64%–70% after column chromatography (Scheme 8).
Scheme 8. Design of the experiment leading to selective formation of sultone 10a–d from berberrubine 2 and alkysulphochlorides 9a–d.

Thus, the analysis of the data obtained in the described series of experiments strongly indicates the formation of sultones 10a–d by two mechanisms: sequentially, through the formation of sulfonates 3a–d and the subsequent closing of the sulfone cycle leading to sultones 10a–d, and by the synchronous addition of the sulfene intermediate. By changing the order of reagent addition, we can influence the reaction pathways and hence the composition of the reaction mixture. We found that, when sulfochlorides are added to berberrubine 2, 9-O-sulfonates of berberrubine are predominantly formed; when berberrubine 2 is added to pre-generated sulfenes, sultones are the only isolated products.

2.1.3. Structure Elucidation

The molecular structures of the sultones 10a–d were determined using NMR and HR-MS. In the 1H NMR spectrum of compound 10a, the characteristic signals of the sultone cycle are observed (Figure 3). The protons H-8, H-1′ and H-2′ represent the ABs system. The signals of H-1′ and H-2′ protons have the same multiplet (doublet of doublets). The signal of the H-8 proton has the form of a triplet.

Figure 3. Fragment of 1H NMR spectrum of compound 10a.
In the 1H NMR spectra of the cyclic sulfonates 10a–d, one set of signals is present. The H-8 proton signal in the spectra of compounds 10b–d is in the form of a doublet. The spin–spin interaction constants of H-8 and H-1′ protons vary from 4.81 to 5.07 Hz, suggesting the formation of isomers with cis-location of these protons (Figure 4). The molecular weights of the sultons 10a–d correspond to the calculated values.

![Structures of sultones 10b–d and dehidrosultone 16a.](image)

Figure 4. Structures of sultones 10b–d and dehidrosultone 16a.

The formation of a new C-C bond was also confirmed by 2D NMR. In the COSY spectrum of compound 10b, the characteristic cross peak of H-8 and H-1′ protons is present.

We have shown that, upon incubation in the NMR tube in DMSO-d$_6$, the cyclic sulfonate 10a partially transforms into compound 16a (Figure 4). Dehydro sulphonate 16a was isolated in small amounts by column chromatography and its structure was suggested based on 1H NMR and HR-MS spectra. In the 1H NMR spectrum of compound 16a, the disappearance of H-1′, H-2′ and H-8 protons signals was observed (Figure 5), but a new signal in the near-aromatic region (δ = 6.07 m.p.) relating to the H-1′ proton appeared. This strong shift into the weak field is due to the formed double bond, which is conjugated to the aromatic system of the berberine scaffold. In the mass spectrum of compound 16a, a peak of 397.0618 is observed, which corresponds to the product of dehydrogenation of compound 10a.

![1H NMR spectrum of compound 16a.](image)

Figure 5. 1H NMR spectrum of compound 16a.

Compound 16a appears to be an oxidation product of sultone 10a upon DMSO addition. We carried out a directed oxidation of compound 10a with chloranil as an oxidizing agent. It was shown that the use of the oxidizer allowed the same reaction to be carried
out within 1 h at room temperature (Scheme 9), compound 16a was isolated from the reaction mixture by precipitation with the addition of water with a yield of 80%.

![Scheme 9. Sulfone cycle oxidation with chloranil in DMSO.](image)

2.1.4. Synthesis of 12-Bromineberberrubine Derivatives

It is known that the introduction of substituents into the berberine backbone often results in the enhancement of certain biological activities. In particular, it is known that the introduction of bromine at the 12th position of the backbone increased the inhibitory activity of berberine sulfonates against Tdp1 [38]. In order to establish a structure-activity relationship, we synthesized cyclic sultone derivatives from 12-bromoberrubine.

We have shown that the reaction of sultones formation from 12-bromoberrubine proceeds similarly to that of berberrubine. 12-Bromoberrubine 17 was obtained from berberrubine 2 by the action of bromine in the presence of alkali in a mixture of dioxane with water according to the procedure described by Nechepurenko et al. [44]. Then, it reacted with sulfochlorides 9a–d by the method we developed for the synthesis of sultones 10a–d, namely, a suspension containing 12-Br-bererrubine 17 with triethylamine was added dropwise to sulfene solutions 15a–d, which led to the formation of sultones 18a–d in yields from 40% to 70% (Scheme 10). The reaction proceeds at room temperature (22 °C).

![Scheme 10. Synthesis of 12-Br-substituted sultones.](image)

In contrast to compounds 10a–d, their brominated analogues 18a–d precipitated during the reaction and were separated from the reaction mixture by filtration in pure form without chromatography. The structure of sultones 18a–d was confirmed by NMR and HR-MS spectroscopies. The dehydrogenation of these compounds occurred under MS conditions, and therefore, [M-2H]+ signals were observed in their spectra. In the 1H NMR spectra of compounds 18b–d, the proton signal H-8 has a doublet form, the spin–spin interaction constants of protons H-8 and H-1′ vary from 4.60 to 4.79 Hz, indicating a cis-location of protons (Figure 6), as in the case of unbrominated analogues 3b–d.
Thus, we have studied the demethylated reaction at 9-O-position berberine and 12-bromberberine derivatives with sulphochlorides and is shown that, in addition to the previously described sulphonates, cyclic sulphonates (sultones) are also formed in the reaction. The study of possible reaction pathways allowed for the selection of reaction conditions that selectively led to sultones in high yields.

2.2. Biological Assays

Previously, our group established the inhibitory activity of Tdp1, for 9-O-aryl-sulfonates of berberine (compounds 19) and enhancement of inhibitory activity after the introduction of bromine at position 12 of the skeleton (compounds 20). 9-O-Alkylsulphonates, both in charged (compounds 3a–d) and reduced form (compounds 21a–d, Figure 7), are not active, with IC₅₀ values >15 μM.

Figure 7. Previously synthesized berberine derivatives tested against Tdp1.

In this work, newly synthesized sultones were tested for their inhibition of Tdp1. Tdp1 activity was measured using a fluorescent biosensor as previously described [39]. The biosensor is an oligonucleotide with a fluorophore (FAM) at the 5′-end and a fluorescence quencher (BHQ1) at the 3′-end. Due to the activity of the enzyme, the quencher is removed, which leads to an increase in the fluorescence intensity. Inhibitors prevent the removal of the quencher, thus reducing the fluorescence intensity. The results are shown in Table 1.
Table 1. Tdp1 inhibiting activity (IC₅₀) of berberrubine sultones and their 12-brominated analogs.

Code	IC₅₀, μM	CC₅₀, μM HeLa	Code	IC₅₀, μM	CC₅₀, μM HeLa
R = H	10a	1.53 ± 0.18	>100	18a	0.92 ± 0.05
R = Me	10b	2.13 ± 0.16	>100	18b	1.13 ± 0.20
R = Et	10c	5.50 ± 0.10	>100	18c	0.56 ± 0.02
R = Pr	10d	1.12 ± 0.18	>100	18d	0.78 ± 0.03

All new compounds with the cyclic sulfone fragment show inhibitory activity in the micromole or submicromolar range. Introduction of bromine atom in a molecule led to an increase in activity. As for the substituent in the sultone ring, there is no strict correlation between the carbon chain length and inhibitory activity. Inhibitory activity, comparable to that of sultone 10a, was found for its dehydrogenated analog compound 16a (IC₅₀ 2.50 ± 0.40 μM).

All compounds have no intrinsic toxicity in the concentration range up to 100 μM (Figure 8) in HeLa cells, with the exception of 16a and berberine, which are toxic at concentrations above 20 μM. 16a is slightly toxic (CC₅₀ ~ 100 μM) and differs from non-toxic 10a in the presence of a double bond in the sultone cycle. The original berberine 1 is toxic to HeLa cells with a cytotoxic concentration (CC₅₀) of 20 μM, which is consistent with the literature data [45].

Figure 8. The cytotoxicity of the sultones against HeLa cells, as measured by theEZ4U test.

As already mentioned, we have previously shown that various Tdp1 inhibitors enhanced the cytotoxic and antitumor effects of topotecan [21–30]. In this work, we also tested the ability of the berberrubine sultones to sensitize cells to the action of topotecan. For this, we chose a non-toxic concentration of Tdp1 inhibitors at 20 μM and varied the concentrations of topotecan. As shown in Figure 9, only compound 18c exhibited the most pronounced and statistically significant (Mann–Whitney U-test, p = 0.05) sensitizing effect.
Effective inhibition of Tdp1 and low toxicity make the berberrubine sultones promising candidates for the further development of tumor cell sensitizers to anticancer drugs.

2.3. Molecular Modelling

Berberine derivatives were docked into the binding site of the Tdp1 structure (PDB ID: 6DIE, resolution 1.78 Å) [41], with three water molecules retained (HOH 814, 821 and 1078). It has been shown that keeping these crystalline water molecules improves the prediction quality of the docking scaffold (see the Methodology section for further information) [25]. The binding predictions of the four scoring functions used are given in Table S1; all the ligands show reasonable scores. When the predicted configurations were analyzed, two main binding modes emerged, depending on the scoring function used and the type of derivative. Both configurations involve hydrogen bonding via the 1,4-butanesultone ring. In order to check which conformation is more stable, 10 ps molecular dynamics (MD) runs at 1000 K were conducted with derivative 18a. It is predicted to be bound to the protein in both conformations depending on the scoring function. The results indicate that both conformations are stable for the 10 ps run, e.g., the hydrogen bonding networks between the ligand and Tdp1 were not broken. Thus, it can be concluded that both conformations are viable, and they are shown in Figure 10.
Figure 10. The docked configuration of 18a in the binding site of Tdp1 as predicted by the GoldScore (ball and stick) and ChemPLP (stick) scoring functions. (A) The docked overlaid conformations for the GoldScore and ChemPLP predictions. The hydrogen bonding sulfonate moiety is circled in green. (B) The protein surface is rendered; blue depicts regions with a partial positive charge on the surface; red depicts regions with a partial negative charge and grey shows neutral areas. The ligand occupies the binding pocket, blocking access to it in both predicted configurations. (C, D) Hydrogen bonds are shown as green lines between the ligand (C), as predicted by GoldScore with amino acids Asn283, Ser399, His493 and Lys495; (D) was predicted by ChemPLP with amino acids Ser399, Lys495 and Asn516.

In both predicted poses for 18a, the sulfonate ring moiety plays a major role in the hydrogen bonding to the Tdp1 enzyme. Both form hydrogen bonds to Ser399 and Lys495 via the sulfonyl moiety. His493 is predicted to bind to the ring forming oxygen for GoldScore, but to Asn516 for ChemPLP. In both scenarios, the methoxy group is involved in hydrogen bonding to the enzyme, but according to the MD runs, it is not very stable and often breaks. In general, both predicted conformations are plausible, with a good fit into the binding site, blocking access to His493, one of the crucial amino acid residues for catalytic activity. Interestingly, the binding mode of the berberine derivatives presented in this study differs from previously reported berberine derivatives for Tdp1 inhibition [38]. This can be explained by the lack of the 1,4-butanesultone ring in these berberine ligands, which is clearly the main hydrogen bonding motive in the derivatives presented here. The driving force of the previously reported ligands is most likely a lone pair—π stacking with a fluorinatated phenyl moiety absent in the ligands in this study. Additionally, derivatives
21a and 21b, which do not have the 1,4-butanesultone ring scaffold and are inactive at >15 µM, are not predicted to have a specific binding mode, each scoring function offers a different solution, further strengthening the argument for the importance of this ring motif (see Figure 7). Finally, the bromine moiety in the previously reported ligands is predicted to form weak hydrogen bonds with His493 [38]; this is not seen for the berberine series presented here, where the bromine is pointing towards the aqueous phase and its effect on increased binding can be explained in terms of solvent entropic effects (see the Chemical Space Section).

The co-crystallized ligand benzene-1,2,4-tricarboxylic acid forms hydrogen bonds with the side chains of Ser399, His493 and Lys495 [41], i.e., the same amino acid residues as 18a. In general, His263 [35,46], His493 [38,47] or both [33,48] are usually predicted to have direct hydrogen bonding to the active ligands, as well as Lys495 [25,30], irrespective of the ligand molecular type used. This is easily understood since these three amino acid residues act as the catalytic scaffold for disengaging DNA from Top1.

2.4. Chemical Space

The calculated molecular descriptors MW (molecular weight), log P (water-octanol partition coefficient), HD (hydrogen bond donors), HA (hydrogen bond acceptors), PSA (polar surface area) and RB (rotatable bonds) are given in Table S2. The MW of the ligands lie in the range of 399.4 and 520.4 g mol⁻¹, falling into drug-like chemical space and for two derivatives in Known Drug Space (KDS). Obviously, the brominated derivatives have higher MW. The Log P values are very modest, lying between 2.0 and 3.6; in the lead-like and drug-like chemical spaces like the other four descriptors (for the definition of lead-like, drug-like and Known Drug Space regions see Reference [49] and Table S3). When the activity of the ligands is plotted against the molecular descriptors strong correlation is seen with both MW and log P, as shown in Figure 11. Derivative 10c is an outlier and is omitted, as well as derivatives 21a and 21b, which are practically inactive.

\[
\begin{align*}
f(x) & = -0.0121x + 6.8434 \\
R^2 & = 0.735 \\
n & = 7
\end{align*}
\]
Figure 11. The correlation of the IC$_{50}$ values of the ligands with MW (A) and log P (B). A very good correlation is seen for both molecular descriptors. Derivative 10c is an outlier and not included. Additionally, derivatives 21a and 21b are omitted since they are inactive.

As can be seen in Figure 11, a strong correlation is seen with both MW and log P with higher numbers favoring better IC$_{50}$ values. The HD and HA do not correlate with the activity, but PSA (R2=0.257) and RB (R2=0.324) do to some extent. It is therefore clear from these results that increased MW and log P favor improved binding to Tdp1. The same trend is seen for deoxycholic acid steroid derivatives, which are also excellent Tdp1 inhibitors [48].

The Known Drug Indexes (KDI) for the ligands were calculated to gauge the balance of the molecular descriptors (MW, log P, HD, HA, PSA and RB). This method is based on the analysis of drugs in clinical use, i.e., the statistical distribution of each descriptor is fitted to a Gaussian function and normalized to 1, resulting in a weighted index. Both the summation of the indexes (KDI$_{sa}$) and multiplication (KDI$_{sb}$) methods were used [50], as shown for KDI$_{sa}$ in Equation (1) and for KDI$_{sb}$ in Equation (2); the numerical results are given in Table S2 in the Supplementary section.

$$\text{KDI}_{sa} = \text{IMW} + \text{ILogP} + \text{IHD} + \text{IHA} + \text{IRB} + \text{IPSA} \quad (1)$$

$$\text{KDI}_{sb} = \text{IMW} \times \text{ILogP} \times \text{IHD} \times \text{IHA} \times \text{IRB} \times \text{IPSA} \quad (2)$$

The KDI$_{sa}$ values for the ligands range from 5.16 to 5.57 with a theoretical maximum of 6 and the average of 4.08 (±1.27) for known drugs. These values are very good, since most of the descriptors lie within the lead and drug-like boundaries of chemical space. KDI$_{sb}$ range from 0.39 to 0.62, with a theoretical maximum of 1 and with a KDI average of 0.18 (±0.20). Again, very good values are obtained for the ligands even though the KDI$_{sb}$ index is more sensitive than KDI$_{sa}$ to outliers, since multiplication of small numbers leads to smaller numbers. KDI indexes were plotted against the IC$_{50}$ values with the same ligands as for MW and log P and the results are shown in Figure 12.
Figure 12. The correlations between KDI$_{2a}$ (A) and KDI$_{2b}$ (B) with their corresponding IC$_{50}$ values. Smaller KDI values favor increased activity.

For both KDI indexes, lower values result in better activity; more lipophilic and larger compounds are pushed into the catalytic cite by solvent entropic effects. The same trend is seen for deoxycholic acid steroid derivatives [48]. Therefore, the addition of bromine to the ligands does not contribute to more bonding between the ligands and Tdp1 (see modelling section), rather it increases the entropic push of the ligand into the binding pocket.

3. Materials and Methods

3.1. Chemistry

General information. Reagents (berberine chloride, alkyl sulfochlorides, triethylamine, sodium borohydride, chloranil) were purchased from commercial suppliers (Sigma-Aldrich, Acros, TCI) and used as received. Berberrubine hydrobromide and 12-bromoberberrubine were synthesized according to previously reported methods [44,51]. Solvents (dichloromethane, DMSO) were used after distillation. 1H and 13C NMR were recorded at Bruker DRX-500 apparatus at 125.76 MHz (1H), Bruker AV-300 apparatus at 300.13 MHz (1H) and 75.47 MHz (13C), Bruker AV-400 apparatus at 400.13 MHz (1H) and 100.61 (13C),
Bruker Avance—III 600 apparatus at 600.30 MHz (1H) and 150.95 MHz (13C), J{H,NMR} spectrum and structure determination by analyzing the 1H NMR spectra, including 1H–1H double resonance spectra and 1H–1H 2D homonuclear correlation, J-modulated 13C NMR spectra (JMOD), and 13C–1H 2D heteronuclear correlation with one-bond (C–H COSY, J{C,H} = 160 Hz, H{1H,1H} = 145 Hz) and long-range spin–spin coupling constants (COLOC, J{1H,2H} = 10 Hz, HMBC, J{1H,2H} = 7 Hz). HR-MS: DFS Thermo Scientific spectrometer in a full scan mode (15–500 m/z, 70 eV electron impact ionization, direct sample administration).

Spectral and analytical investigations were carried out at the Multi-Access Chemical Research Center of Siberian Branch of Russian Academy of Sciences. All product yields are given for pure compounds.

3.1.1. General Procedure for the Synthesis of Sultones 10a–d

The stirred solution of sulfoxide (1.5 mmol) with triethylamine (1.5 mmol) in 25 mL of dichloromethane suspension of berberrubine hydrobromide (1 mmol) with triethylamine (2.5 mmol) in 3 mL of dichloromethane was added dropwise at room temperature (22–24 °C). After completion, the reaction (monitored by TLC) mixture was washed with water, organic layer dried with MgSO4. After purification by column chromatography (eluent—dichloromethane: methanol, sorbent-silica gel), the products 10a–d were obtained.

19-Methoxy-8,10,21-triosta-22λ⁶-thia-2-azahexacyclo[14.7.1.0²,¹ 4.0²,³ 9.0²,¹ 13.0²,¹ 11.0²,¹ 24.0²]tetracosa-5,7(11),12,14,16,18,20(24)-heptaene-22,22-dione (10a). Yield: 70%. HR-MS, m/z: found 399.0768. Calculated for (C31H30O4N2S2): 399.0771. NMR 1H (400 MHz, DMSO-d6, δ ppm): 2.73 (3H, m, H-3, H-4), 3.28–3.32 (1H, m, H-3), 3.80 (3H, s, OCH3), 4.11 (1H, t, J = 6.54 Hz, J = 11.89 Hz, H-23), 4.69 (1H, d, J = 5.64 Hz, J = 13.03 Hz, H-23), 6.01 (2H, d, d, J = 9.60 Hz, J = 0.88 Hz, H-9), 6.37 (1H, s, H-6), 6.78 (1H, s, H-12), 6.90 (1H, d, J = 8.40 Hz, H-17), 7.07 (1H, d, J = 8.40 Hz, H-18), 7.35 (1H, s, H-15). NMR 13C (100 MHz, CDCl3, δ ppm): 29.37 (C-4), 44.47 (C-3, 48.46 (C-23), 55.78, 56.29 (C-1, OCH3), 98.32 (C-15), 101.00 (C-9), 103.67 (C-12), 107.36 (C-16), 113.08 (C-18), 119.34 (C-17), 123.66 (C-13), 128.27 (C-5), 137.67 (C-14), 141.72 (C-20), 146.10 (C-7), 146.80 (C-11), 147.62 (C-19).

19-Methoxy-23-methyl-8,10,21-triosta-22λ⁶-thia-2-azahexacyclo[14.7.1.0²,¹ 4.0²,³ 9.0²,¹ 13.0²,¹ 11.0²,¹ 24.0²]tetracosa-5,7(11),12,14,16,18,20(24)-heptaene-22,22-dione (10b). Yield: 65%. HR-MS, m/z: found 413.0924. Calculated for (C31H30O4N2S2): 413.0928. NMR 1H (600 MHz, DMSO-d6, δ ppm, J/Hz): 1.37 (3H, d, J = 6.69 Hz, H-1), 2.69–2.84 (3H, m, H-3, H-4), 3.23–3.29 (1H, m, H-3), 3.80 (3H, s, OCH3), 4.71 (1H, m, H-23), 4.90 (1H, d, J = 4.56 Hz, H-1), 4.99 (1H, s, J = 4.74 Hz, H-1′), 6.01 (2H, d, d, J = 9.12 Hz, J = 1.00 Hz, H-9), 6.29 (1H, s, H-12), 6.76 (1H, s, H-6), 6.87 (1H, d, J = 8.44 Hz, H-17), 7.05 (1H, d, J = 8.40 Hz, H-18), 7.37 (1H, s, H-15). NMR 13C (100 MHz, CDCl3, δ ppm): 9.73 (C-1′), 28.84 (C-4), 43.93 (C-3), 50.93, 56.03, 59.24 (OCH3, C-1, C-23), 96.88 (C-15), 101.13 (C-9), 103.83 (C-12), 107.69 (C-6), 110.92 (C-24), 113.37 (C-18), 119.96 (C-17), 123.52 (C-13), 127.48 (C-16), 129.02 (C-5), 136.67 (C-14), 141.19 (C-20), 145.39 (C-7), 146.60 (C-11), 147.34 (C-19).

23-Ethyl-19-methoxy-8,10,21-triosta-22λ⁶-thia-2-azahexacyclo[14.7.1.0²,¹ 4.0²,³ 9.0²,¹ 13.0²,¹ 11.0²,¹ 24.0²]tetracosa-5,7(11),12,14,16,18,20(24)-heptaene-22,22-dione (10c). Yield: 68%. HR-MS, m/z: found 427.1068. Calculated for (C32H32O4N2S2): 427.1084. NMR 1H (400 MHz, DMSO-d6, δ ppm): 1.17 (3H, t, J = 7.58 Hz, H-2′), 1.57–1.66 (1H, m, H-1′), 2.02–2.09 (1H, m, H-1′), 2.76–2.83 (3H, m, H-3, H-4), 3.16–3.20 (1H, m, H-3), 3.79 (3H, s, OCH3), 4.48–4.53 (1H, m, H-23), 4.97 (1H, d, J = 4.69 Hz, H-1′), 6.02 (2H, d, d, J = 6.09 Hz, H-9), 6.23 (1H, s, H-6), 6.77 (1H, s, H-12), 6.86 (1H, d, J = 8.57 Hz, H-17), 7.04 (1H, d, J = 8.57 Hz, H-18), 7.36 (1H, s, H-15). NMR 13C (100 MHz, DMSO-d6, δ ppm): 12.04 (C-2′), 18.15 (C-1′), 28.72 (C-4), 44.19 (C-3), 56.04 (OCH3), 57.72, 59.70 (C-1, C-23), 96.04 (C-15), 101.11 (C-9), 103.86 (C-12), 107.69 (C-6), 112.00, 123.55, 127.17, 128.90 (C-5, C-24, C-16, C-13), 113.43 (C-18), 119.98 (C-17), 136.58 (C-14), 140.77 (C-20), 145.42 (C-7), 146.58 (C-11), 147.34 (C-19).
Molecules 2021, 18, 24, 146.57

Product cosa (399 (1H, C20H18O6N179Br132S1)+: was 7.03 6.06 mg, -1H 64%. 45%.

1H, 11), C23), 6.22 (1H, s, H-6). 6.77 (1H, s, H-12). 6.86 (1H, d, J = 8.42 Hz, H-17). 7.04 (1H, d, J = 8.42 Hz, H-18). 7.36 (1H, s, H-15). NMR 13C (100 MHz, DMSO-d6, δ, ppm): 13.89 (C-3′), 20.24 (C-2′), 26.76 (C-1′), 28.70 (C-4′), 44.19 (C-3′), 56.00, 56.04, 59.70 (OCH3, C-1, C-23), 95.93 (C-15), 101.11 (C-9), 103.83 (C-12), 107.69 (C-6), 111.84, 123.52, 127.09, 128.87 (C-5, C-24, C-16, C-13), 113.37 (C-18), 119.97 (C-17), 136.57 (C-14), 140.68 (C-20), 145.39 (C-7), 146.57 (C-11), 147.33 (C-19).

19-Methoxy-8,10,21-trioxo-22λ6-thia-2-azahexacyclo[14.7.1.04,14.0,13.0,11.0](23),5,7(11),12,14,16,18,20(24)-heptaene-22,22-dione (16a). The suspension of compound 10a (399 mg, 1 mmol) in dimethyl sulfoxide (10 mL) and 246 mg (1 mmol) of chloranil was added in one portion. The reaction mixture was stirred at room temperature for 1 h. After that cold water was added and we observed the greenish-yellow precipitate formation. The precipitate was filtered, washed with cold water and air-dried. 316 mg of product 16a was obtained. Yield: 80%. HRMS, m/z: found 397.0618. Calculated for (C39H29O21N7Br2S1): 397.0615. NMR 1H (400 MHz, DMSO-d6, δ, ppm): 2.94 (2H, t, J = 6.23 Hz, H-4), 3.68 (2H, t, J = 6.23 Hz, H-3), 3.91 (3H, s, OCH3), 6.07 (1H, s, H-23), 6.08 (2H, s, H-9), 6.95 (1H, s, H-15 *), 7.03 (1H, s, H-12 *), 7.36 (1H, d, J = 7.80 Hz, H-18), 7.42 (1H, s, H-6 *), 7.52 (1H, d, J = 8.70 Hz, H-17). NMR 13C (100 MHz, DMSO-d6, δ, ppm): 26.96 (C-4), 43.23 (C-3), 56.58 (OCH3), 83.79 (C-23), 101.40 (C-9), 101.45 (C-15), 104.89 (C-12), 107.60 (C-6), 111.88 (C-24), 118.26 (C-18), 121.76 (C-17), 122.48, 126.14, 128.98, 135.25 (C-5, C-16, C-14), 134.00 (C-1), 145.66, 145.83, 146.96 (C-7, C-11, C-20), 148.29 (C-19). Signals marked with * can be swapped.

3.1.2. General Procedure for the Synthesis of Sultones 18a–d

The suspension of 0.22 mmol 12-bromoberberrubine in 3 mL of dichloromethane 0.091 mmol trimethylamine was added dropwise under stirring at room temperature (24 °C). The resulting solution (solution 1) was left to stir for 5 min. The solution of 0.34 mmol of sulfochloride in 25 mL of methylene chloride was added 0.34 mmol of triethylamine (solution 2). Solution 1 was added to solution 2 dropwise. After 3 h, the resulting yellow precipitate was filtered off, washed with 10 mL cold methylene chloride and the pure product 18a–d was isolated.

17-Bromo-19-methoxy-8,10,21-trioxo-22λ6-thia-2-azahexacyclo[14.7.1.04,14.0,13.0,11.0](23),5,7(11),12,14,16,18,20(24)-heptaene-22,22-dione (18a). Yield: 40%. HRMS, m/z: found for (C39H29O21N7Br2S1-H2): 474.9723. Calculated for (C39H29O21N7Br2S1): 476.9876. NMR 1H (400 MHz, DMSO-d6, δ, ppm): 2.64–2.73 (1H, m, H-4), 2.78–2.86 (2H, m, H-3, H-4), 3.28 (1H, m, H-3), 3.84 (3H, s, OCH3), 4.24 (1H, t, J = 12.37 Hz, H-1), 4.56 (1H, d, d, J1 = 5.50 Hz, J2 = 11.50 Hz, H-23), 4.69 (1H, d, d, J1 = 5.50 Hz, J2 = 12.69 Hz, H-23), 6.02 (1H, s, H-9), 6.06 (1H, s, H-9), 6.25 (1H, s, H-6), 6.82 (1H, s, H-2), 7.32 (1H, s, J = 8.40 Hz, H-18), 7.36 (1H, s, H-15). NMR 13C (100 MHz, DMSO-d6, δ, d.d.): 29.24 (C-4), 44.13 (C-3), 47.44 (C-23), 56.19, 57.23 (C-1), (OCH3), 96.42 (C-15), 101.85 (C-9), 104.44 (C-12), 108.29 (C-6), 113.59 (C-17), 115.03 (C-18), 117.53 (C-24), 123.83 (C-13), 126.59 (C-5), 130.05 (C-16), 137.37 (C-14), 144.88 (C-20), 146.30 (C-7), 147.34 (C-11), 148.45 (C-19).

17-Bromo-19-methoxy-8,10,21-trioxo-22λ6-thia-2-azahexacyclo[14.7.1.04,14.0,13.0,11.0](23),5,7(11),12,14,16,18,20(24)-heptaene-22,22-dione (18b). Yield: 45%. HRMS, m/z: found for (C39H29O21N7Br2S1-2H): 488.9878. Calculated for (C39H29O21N7Br2S1): 491.0033. NMR 1H (400 MHz, DMSO-d6, δ, ppm): 1.38 (3H, d, J = 6.75
Molecules, 17 (OCH₃), 9

ried NaCl, DMSO). clo[14.7.1.0²,¹

TECH, were

out (C

H‐6), 6.82 (1H, s, H-12), 7.29 (1H, s, H-18), 7.34 (1H, s, H-15). NMR ¹³C (100 MHz, DMSO-d₆, δ, ppm): 9.65 (C-1’), 29.13 (C-4), 43.86 (C-3), 52.56 (C-23), 56.14, 59.71 (C-1), (OCH₃), 95.09 (C-15), 100.91 (C-9), 103.98 (C-12), 107.19 (C-6), 113.05, 114.17 (C-17), (C-24), 116.68 (C-18), 123.34 (C-13), 126.14 (C-5), 128.42 (C-16), 136.29 (C-14), 142.34 (C-20), 145.83 (C-7), 146.70 (C-11), 147.80 (C-19).

17-Bromo-23-ethyl-19-methoxy-8,10,21-trioca-22λ₆-thia-2-azaheaxacyclo[14.7.1.0²,¹⁰,⁴,⁰,¹³,⁰,⁺,¹⁰⁺,²⁴]tetraoca-5,7(11),12,14,16,18,20(24)-heptaene-22,22-dione (18c).

Yield: 70%. HR-MS, m/z: found for (C₃₇H₃₅N₇Br₆S₁₂): 503.033. Calculated for (C₃₇H₃₅N₇Br₆S₁₂): 503.0189. NMR ¹H (400 MHz, DMSO-d₆, δ, ppm): 1.15 (3H, t, J = 7.39 Hz, H-2’), 1.54–1.66 (1H, m, H-1’), 1.96–2.06 (1H, m, H-4, H-3), 3.14–3.20 (1H, m, H-3), 3.82 (3H, s, OCH₃), 4.50–4.56 (1H, m, H-23), 5.17 (1H, d, J = 4.60 Hz, H-1), 6.02 (1H, d, H-1), 6.03 (1H, s, H-9), 6.05 (1H, s, H-6), 6.82 (1H, s, H-12), 7.30 (1H, s, H-18), 7.33 (1H, s, H-15). NMR ¹³C (100 MHz, DMSO-d₆, δ, ppm): 12.33 (C-2’), 18.69 (C-1’), 28.89 (C-4), 44.16 (C-3), 56.80, 59.02, 59.95 (C-1), (C-23), (OCH₃), 93.23 (C-15), 101.62 (C-9), 104.15 (C-12), 108.13 (C-6), 113.82, 114.47 (C-17), (C-24), 117.35 (C-18), 123.39 (C-13), 126.11 (C-5), 129.98 (C-16), 136.19 (C-14), 143.19 (C-20), 145.98 (C-7), 146.99 (C-11), 148.22 (C-19).

17-Bromo-19-methoxy-23-propyl-8,10,21-trioca-22λ₆-thia-2-azaheaxacyclo[14.7.1.0²,¹⁰,⁴,⁰,¹³,⁰,⁺,¹⁰⁺,²⁴]tetraoca-5,7(11),12,14,16,18,20(24)-heptaene-22,22-dione (18d).

Yield: 55%. HR-MS, m/z: found for (C₃₇H₃₄N₇Br₆S₁₂): 517.0189. Calculated for (C₃₇H₃₄N₇Br₆S₁₂): 519.0346. NMR ¹H (400 MHz, DMSO-d₆, δ, ppm): 0.89 (3H, t, J = 7.12 Hz, H-3’), 1.51–1.69 (2H, m, H-2’), 1.64–1.73 (1H, m, H-1’), 1.87–1.95 (1H, m, H-1’), 2.78–2.92 (3H, m, H-4, H-3), 3.14–3.21 (1H, m, H-3), 3.82 (3H, s, OCH₃), 4.57–4.62 (1H, m, H-23), 5.19 (1H, d, J = 4.69 Hz, H-1), 6.01 (1H, s, H-9), 6.03 (1H, s, H-9), 6.05 (1H, s, H-6), 6.82 (1H, s, H-12), 7.26 (1H, s, H-18), 7.31 (1H, s, H-15). NMR ¹³C (100 MHz, DMSO-d₆, δ, ppm): 13.87 (C-3’), 20.30 (C-2’), 26.99 (C-1’), 28.60 (C-4), 43.93 (C-3), 56.66, 57.08, 59.67 (C-1), (C-23), (OCH₃), 92.97 (C-15), 101.40 (C-9), 103.86 (C-12), 107.87 (C-6), 113.68, 114.13 (C-17), (C-24), 117.18 (C-18), 123.19 (C-13), 125.87 (C-5), 129.70 (C-16), 136.01 (C-14), 142.86 (C-20), 145.78 (C-7), 146.72 (C-11), 147.95 (C-19).

3.2. Biology

3.2.1. Detection of Tdp1 Activity

Tdp1 activity was detected, as described in the work in Reference [39], and consists of fluorescence intensity measurement in a reaction of quencher removal from a fluorophore quencher–coupled DNA oligonucleotide catalyzed by Tdp1. The reaction was carried out at different concentrations of inhibitors (the control samples contained 1% of DMSO). The reaction mixtures contained Tdp1 buffer (50 mM Tris-HCl pH 8.0, 50 mM NaCl, and 7 mM β-mercaptoethanol), 50 nM biosensor, and an inhibitor being tested. Purified Tdp1 (1.5 nM) triggered the reaction. The biosensor (5’-FAM AAC GTC AGGGTC TTC C [BHQ]-3’) was synthesized in the Laboratory of Biomedical Chemistry at the Institute of Chemical Biology and Fundamental Medicine (Novosibirsk, Russia).

The reactions were incubated on a POLARstar OPTIMA fluorimeter (BMG LAB-TECH, GmbH, Ortenberg, Germany) to measure fluorescence every 55 s (ex. 485/em. 520 nm) during the linear phase (here, data from minute 0 to minute 8). The values of IC₅₀ were determined using a six-point concentration response curve in a minimum of three independent experiments and were calculated using MARS Data Analysis 2.0 (BMG LAB-TECH, Ortenberg, Germany).
3.2.2. Cytotoxicity Assays

Cytotoxicity of the compounds to HeLa (human cervical cancer) cell line was examined using the EZ4U Cell Proliferation and Cytotoxicity Assay (Biomedica, Vienna, Austria), according to the manufacturer’s protocols. The cells were grown in Isco’s modified Dulbecco’s medium (IMDM) with 40 μg/mL gentamicin, 50 IU/mL penicillin, 50 μg/mL streptomycin (MP Biomedicals, Waltham, MA, USA), and 10% of fetal bovine serum (Biolog, Saint Petersburg, Russia) in a 5% CO2 atmosphere. After the formation of a 30–50% monolayer, the tested compounds were added to the medium. The volume of the added reagents was 1/100 of the total volume of the culture medium, and the amount of DMSO was 1% of the final volume. Control cells were grown in the presence of 1% DMSO. The cell culture was monitored for 3 days.

3.3. Molecular Modeling and Screening

The compounds were docked against the crystal structure of Tdp1 (PDB ID: 6DIE, resolution 1.78 Å) [41], which was obtained from the Protein Data Bank (PDB) [52,53]. The Scigress version FJ 2.6 program [54] was used to prepare the crystal structure for docking, i.e., the hydrogen atoms were added, the co-crystallized ligand benzene-1,2,4-tricarboxylic acid was removed as well as crystallographic water molecules, except HOH 814, 821 and 1078. The waters were set on toggle-bound or displaced by the ligand during docking, and spin-automated optimization of the orientation of the hydrogen atoms. The Scigress software suite was also used to build the inhibitors and the MM2 [55] force field was applied to identify the global minimum using the CONFLEX method [56], followed by structural optimization, as well as running the 10 ps molecular dynamics (MD) run at 1000 K. The docking center was defined as the position of a carbon on the ring of the co-crystallized benzene-1,2,4-tricarboxylic acid (x = −6.052, y = −14.428, z = 33.998) with 10 Å radius. Fifty docking runs were allowed for each ligand with default search efficiency (100%). The basic amino acids lysine and arginine were defined as protonated. Furthermore, aspartic and glutamic acids were assumed to be deprotonated. The GoldScore (GS) [57] and ChemScore (CS) [58,59] ChemPLP (Piecewise Linear Potential) [60] and ASP (Astex Statistical Potential) [61] scoring functions were implemented to predict the binding modes and relative energies of the ligands using the GOLD v5.4.1 software suite.

The QikProp 6.2 [62] software package was used to calculate the molecular descriptors of the molecules. The reliability of it is QikProp, which is established for the calculated descriptors [63]. The Known Drug Indexes (KDI) were calculated from the molecular descriptors as described by Eurtivong and Reynisson [50]. For application in Excel, columns for each property were created and the following equations used to derive the KDI numbers for each descriptor: KDI MW: = EXP(−((MW - 371.76)^2)/(2×112.76)^2)), KDI Log P: = EXP(−((LogP - 2.82)^2)/(2×2.21)^2)), KDI HD: = EXP(−((HD - 1.88)^2)/(2×1.7)^2)), KDI HA: = EXP(−((HA - 5.72)^2)/(2×2.86)^2)), KDI RB = EXP(−((RB - 4.44)^2)/(2×3.55)^2)), and KDI PSA: =EXP(−((PSA - 79.4)^2)/(2×54.16)^2)). These equations could simply be copied into Excel and the descriptor name (e.g., MW) substituted with the value in the relevant column. In order to derive KDI2a, this equation was used: = (KDI MW + KDI LogP + KDI HD + KDI HA + KDI RB + KDI PSA) and for KDI2b = (KDI MW × KDI LogP × KDI HD × KDI HA × KDI RB × KDI PSA).

4. Conclusions

A new type of berberine derivatives with a fused sultone ring has been discovered. Compounds were obtained in the reaction of berberrubine with sulphochlorides, as well as with classical sulphonates. Investigation of the reaction mechanisms suggests pathways for the formation of sultones, including both a stepwise and synchronous addition of sulphochloride with the latter in the main pathway. Based on this observation, conditions for the selective formation of sultones in good yields were developed. We showed that
brominated analogues of berberrubine reacted with sulphochlorides similarly to berberrubine with the formation of 12-Br-sultones. All the synthesized compounds were tested for their inhibitory activity against Tdp1, a promising target for antitumor therapy. It was shown that these compounds, unlike their non-cyclic counterparts (not exhibiting activity against Tdp1) are active against Tdp1 at micromolar and submicromolar concentrations, and the introduction of Br to the 12 position contributes to an increase in the targeting activity. Compound 18c can be considered to be the lead compound, since it most effectively inhibits Tdp1, is non-toxic, and enhances the cytotoxic effect of topotecan on HeLa cells. The modelling revealed two main binding modes of the ligands, both involving the 1,4-butanesultone ring system. The bromine substituent is not predicted to form direct bonds with Tdp1, rather it is pointing into the water environment and contributes to the binding by aiding the entropic push of the brominated ligands into the binding pocket.

Supplementary Materials: The following are available online at www.mdpi.com/1420-3049/26/7/1945/s1, NMR 1H and 13C spectra of the compounds 10a – 10d, 16a, 18a – 18d, 2D NMR (COSY and HSQC) spectra of the compound 10b, Table S1: The binding affinities as predicted by the scoring functions used, Table S2: The molecular descriptors and their corresponding Known Drug Indexes 2a and 2b (KDI2a/2b), Table S3: Definition of lead-like, drug-like and Known Drug Space (KDS) in terms of molecular descriptors. The values given are the maxima for each descriptor for the volumes of chemical space used.

Author Contributions: Data curation, A.L.Z. and O.A.L.; Investigation, E.D.G., A.A.C., E.S.I. and J.R.; Methodology, O.I.L. and N.F.S.; Project administration, K.P.V.; Supervision, O.A.L. and K.P.V.; Writing—original draft, E.D.G., A.L.Z. and O.A.L.; Writing—review & editing, J.R., O.A.L. and K.P.V. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the Russian Science Foundation (Moscow, Russia) grant № 19-13-00040.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: Authors would like to acknowledge the Multi-Access Chemical Research Center SB RAS for spectral and analytical measurements.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Abbreviations

Abbreviation	Description
Tdp1	Tyrosyl-DNA phosphodiesterase 1
DMSO	Dimethyl sulfoxide

References

1. Grycová, L.; Dostá, J.; Marek, R. Quaternary protoberberine alkaloids. *Phytochemistry* 2007, 68, 150–175, doi:10.1016/j.phytochem.2006.10.004.
2. Wang, Y.; Zidichouski, J.A. Update on the Benefits and Mechanisms of Action of the Bioactive Vegetal Alkaloid Berberine on Lipid Metabolism and Homeostasis. *Cholesterol* 2018, 7, 173920:1–173920:17, doi:10.1155/2018/7173920.
3. Li, D.-D.; Yu, P.; Xiao, W.; Wang, Z.-Z.; Zhao, L.-G. Berberine: A Promising Natural Isoquinoline Alkaloid for Development of Hypolipidemic Drug. *Curr. Top. Med. Chem.* 2020, 20, 1–14, doi:10.2174/1568026620666200908165913.
4. Cicero, A.F.G.; Tartagni, E. Antidiabetic Properties of Berberine: From Cellular Pharmacology to Clinical Effects. *Hosp. Pract.* 2012, 40, 56–63, doi:10.3810/hp.2012.04.970.
5. Vuddanda, P.R.; Chakraborthy, S.; Singh, S. Berberine: A potential phytochemical with multispectrum therapeutic activities. *Expert Opin. Investig. Drugs* 2010, 19, 1297–1307, doi:10.1517/13543784.2010.517745.
6. Singh, I.P.; Mahajan, S. Berberine and its derivatives: A patent review (2009–2012). *Expert Opin. Ther. Pat.* 2013, 23, 215–231, doi:10.1517/13543776.2013.746314.
7. Yao, L.; Wu, L.-L.; Li, Q.; Hu, Q.-M.; Zhang, S.-Y.; Liu, K.; Jiang, J.-Q. Novel berberine derivatives: Design, synthesis, antimicrobial effects, and molecular docking studies. *Chin. J. Nat. Med.* **2018**, *16*, 0774–0781, doi:10.1016/S1875-5364(18)30117-1.

8. Park, K.D.; Lee, J.H.; Kim, S.H.; Kang, T.H.; Moon, J.S.; Kim, S.U. Synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antiungal agents. *Biorganic Med. Chem. Lett.* **2006**, *16*, 3913–3916, doi:10.1016/j.bmcl.2006.05.033.

9. Nechepurenko, I.V.; Boyarskikh, U.A.; Khvostov, M.V.; Baev, D.S.; Komarova, N.I.; Filipenko, M.L.; Tolstikova, T.G.; Salakhutdinov, N.F. Hypolipidemic Berberine Derivatives with a Reduced Aromatic Ring *Chem. Nat. Compd.* **2015**, *51*, 916–922, doi:10.1007/s10600-015-1447-9.

10. Zhang, C.; Sheng, J.; Li, G.; Zhao, L.; Wang, Y.; Yang, W.; Yao, X.; Sun, L.; Zhang, Z.; Cui, R. Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology Review. *Front. Pharm.* **2019**, *10*, 1461–1470, doi:10.3389/fphar.2019.01461.

11. Liu, H.; Li, G.; Wang, J.; Liu, J. Compounds and Compositions for Modulating Lipid Levels and Methods of Preparing Same. U.S. Patent Application No. 2011/009628 A1, 13 January 2011.

12. Wang, Y.-X.; Liu, L.; Zeng, Q.-X.; Fan, T.-Y.; Jiang, J.-D.; Deng, H.-B.; Song, D.-Q. Synthesis and Identification of Novel Berberine Derivatives as Potent Inhibitors against TNF-α-Induced NF-κB Activation. *Molecules* **2017**, *22*, 1257–1270, doi:10.3390/molecules22081257.

13. Kawale, A.S.; Povirk, L.F. Tyrosyl-DNA phosphodiesterases: Rescuing the genome from the risks of relaxation. *Nucleic Acids Res.* **2016**, *44*, 520–537, doi:10.1093/nar/gkw1219.

14. Cuya, S.M.; Comeaux, E.Q.; Wannez, K., Yoon, K., van Waardenburg, R.C. Dysregulated human Tyrosol-DNA phosphodiesterase I acts as cellular toxin. *Oncotarget* **2016**, *7*, 86660–86674, doi:10.18632/oncotarget.13528.

15. Katyal, S.; El-Khamisy, S.F.; Russell, H.R.; Li, Y.; Ju, L.; Caldecott, K.W.; McMinn, P.J. Tdp1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. *EMBO J.* **2007**, *26*, 4720–4731, doi:10.1038/sj.emboj.7601869.

16. Alagöz, M.; Wells, O.S.; El-Khamisy, S.F. Tdp1 deficiency sensitizes human cells to base damage via distinct topoisomerase I and PARP mechanisms with potential for cancer therapy. *Nucleic Acids Res.* **2014**, *42*, 3089–3103, doi:10.1093/nar/gkt1260.

17. Huang, H.C.; Liu, J.; Baglo, Y.; Rizvi, I.; Anbil, S.; Pigula, M.; Hasan, T. Mechanism-informed Repurposing of Minocycline Overcomes Resistance to Topoisomerase Inhibition for Peritoneal Carcinomatosis. *Mol. Cancer* **2018**, *17*, 508–520, doi:10.1185/1535-7163.MCT-17-0568.

18. Nivens, M.C.; Felder, T.; Galloway, A.H.; Pena, M.M.; Pouliot, J.J.; Spencer, H.T. Engineered resistance to campthothecin and antifolates by retroviral overexpression of tyrosyl-dna phosphodiesterase-I and thymidylate synthase. *Cancer Chemother. Pharm.* **2004**, *53*, 107–115, doi:10.1007/s00280-003-0717-6.

19. Barthelmes, H.U.; Habermeier, M.; Christensen, M.O.; Mielke, C.; Interthal, H.; Pouliot, J.J.; Boege, F.; Marko, D. Tdp1 overexpression in human cells counteracts DNA damage mediated by topoisomerase I and II. *J. Biol. Chem.* **2004**, *279*, 55618–55625, doi:10.1074/jbc.M405042200.

20. Meisenberg, C.; Gilbert, D.C.; Chalmers, A.; Haley, V.; Gollins, S.; Ward, S.E.; El-Khamisy, S.F. Clinical and cellular roles for Tdp1 and Top1 in modulating colorectal cancer response to irinotecan. *Mol. Cancer* **2015**, *14*, 575–585, doi:10.1185/1535-7163.MCT-14-0762.

21. Khomenko, T.; Zakharenko, A.; Odarchenko, T.; Arabshahi, H.J.; Sannikova, V.; Zakharova, O.; Korchagina, D.; Reynisson, J.; Volcho, K.; Salakhutdinov, N.; et al. New Inhibitors of Tyrosyl-DNA Phosphodiesterase I (Tdp1) Combining 7-Hydroxycoumarin and Monoterpenoid Moieties. *Bioorganic Med. Chem.* **2014**, *24*, 5573–5581, doi:10.1016/j.bmc.2016.09.016.

22. Ponomarev, K.Y.; Suslov, E.V.; Zakharenko, A.L.; Zakharova, O.D.; Rogachev, A.D.; Korchagina, D.V.; Zafrar, A.; Reynisson, J.; Nefedov, A.A.; Volcho, K.P.; et al. Aminoadamantanes Containing Monoterpen derivative Fragments as Potent Tyrosyl-DNA Phosphodiesterase I Inhibitors. *Bioorganic Chem. 2018*, *76*, 392–399, doi:10.1016/j.bioorg.2017.12.005.

23. Zakharova, O.; Luzina, O.; Zakharenko, A.; Sokolov, D.; Filimonov, A.; Dyrrheeva, N.; Chepanova, A.; Ilina, E.; Ilyina, A.; Klenenkova, K.; et al. Synthesis and evaluation of aryliden- and hetarylidenfuranone derivatives of usnic acid as highly potent Tdp1 inhibitors. *Bioorganic Med. Chem. 2018*, *26*, 4470–4480, doi:10.1016/j.bmc.2018.07.039.

24. Mozhatiysva, G.S.; Zakharenko, A.L.; Suslov, E.V.; Korchagina, D.V.; Zakharova, O.D.; Vasil’eva, I.A.; Chepanova, A.A.; Black, E.; Patel, J.; Chand, R.; et al. Novel Inhibitors of DNA Repair Enzyme Tdp1 Combining Monoterpenoid and Adamantane Fragments. *Anti Cancer Agents Med. Chem.* **2019**, *19*, 463–472, doi:10.2174/1871526016966182107094243.

25. Filimonov, A.S.; Chepanova, A.A.; Luzina, O.; Zakharenko, A.L.; Zakharova, O.D.; Ilina, E.S.; Dyrrheeva, N.S.; Kuprashkin, M.S.; Kolotaea, A.V.; Khachatryan, D.S.; et al. New Hydrazinothiazole Derivatives of Usnic Acid as Potent Tdp1 Inhibitors. *Molecules* **2019**, *24*, 3711–3744, doi:10.3390/molecules24203711.

26. Il’ina, I.V.; Dyrrheeva, N.S.; Zakharenko, A.L.; Sidorenko, A.Y.; Li-Zhulanov, N.S.; Korchagina, D.V.; Chand, R.; Ayine-Tora, D.M.; Chepanova, A.A.; Zakharova, O.D.; et al. Design, Synthesis, and Biological Investigation of Novel Classes of 3-Carene-Derived Potent Inhibitors of Tdp1. *Molecules* **2020**, *25*, 3496–3517, doi:10.3390/molecules25153496.

27. Luzina, O.; Filimonov, A.; Zakharenko, A.; Chepanova, A.; Zakharova, O.; Ilina, E.; Dyrrheeva, N.; Likhatskaya, G.; Salakhutdinov, N.; Lavrik, O. Usnic Acid Conjugates with Monoterpenoids as Potent Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. *J. Nat. Prod.* **2020**, *83*, 2320–2329, doi:10.1021/acs.jnatprod.9b01089.

28. Zakharenko, A.L.; Luzina, O.A.; Sokolov, D.N.; Zakharova, O.D.; Rakhmanova, M.E.; Chepanova, A.A.; Dyrrheeva, N.S.; Lavrik, O.I.; Salakhutdinov N.F. Usnic Acid Derivatives Are Effective Inhibitors of Tyrosyl-DNA Phosphodiesterase 1. *Russ. J. Bioorg. Chem.* **2017**, *43*, 97–104, doi:10.1134/S1060353517010125.
29. Zakharevich, A.L.; Luzina, O.A.; Sokolov, D.N.; Kaledin, V.I.; Nikolin, V.P.; Popova, N.A.; Patel, J.; Zakharova, O.D.; Chepanova, A.A.; Zafar, A.; et al. Novel tyrosyl-DNA phosphodiesterase 1-inhibitors enhance the therapeutic impact of topotecan on in vivo tumor models. Eur. J. Med. Chem. 2019, 161, 581–593, doi:10.1016/j.ejmech.2018.10.055.

30. Khomenko, T.M.; Zakharevich, A.L.; Chepanova, A.A.; Ilina, E.S.; Zakharova, O.D.; Kaledin, V.I.; Nikolin, V.P.; Popova, N.A.; Korchagina, D.V.; Reynisson, J.; et al. New Promising Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 (Tdp1) Combining 4-Arylcoumarin and Monoterpenoid Moieties as Components of Complex Antitumor Therapy. Int. J. Mol. Sci. 2020, 21, 126–146, doi:10.3390/ijms21010126.

31. Laev, S.S.; Salakhutdinov, N.F.; Lavrik, O.I. Tyrosyl-DNA phosphodiesterase inhibitors: Progress and potential. Bioorg. Med. Chem. 2016, 24, 5017–5027, doi:10.1016/j.bmc.2016.09.045.

32. Huang, S.N.; Pommier, Y.; Marchand, C. Tyrosyl-DNA Phosphodiesterase 1 (Tdp1) inhibitors. Expert Opin. Ther. Pat. 2011, 21, 1285–1292, doi:10.1517/13543776.2011.604314.

33. Salomatina, O.V.; Popadyuk, I.I.; Zakharevich, A.L.; Zakharova, O.D.; Fadeev, D.S.; Komarova, N.I.; Reynisson, J.; Arabshahi, H.I.; Chand, R.; Volcho, K.P.; et al. Novel Semisynthetic Derivatives of Bile Acids as Effective Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. Molecules 2018, 23, 679, doi:10.3390/molecules23030679.

34. Zakharevich, A.; Luzina, O.; Koval, O.; Nilov, D.; Gushchina, I.; Dyrkheeva, N.; Švedas, V.; Salakhutdinov, N.; Lavrik, O. Tyrosyl-DNA Phosphodiesterase Inhibitors: Usnic Acid Enamines Enhance the Cytotoxic Effect of Camptothecin. J. Nat. Prod. 2016, 79, 2961–2967, doi:10.1021/acs.jnatprod.6b00979.

35. Chepanova, A.A.; Li-Zhulanov, N.S.; Sukkhis, A.S.; Zafar, A.; Reynisson, J.; Zakharevich, A.L.; Zakharova, O.D.; Korchagina, D.V.; Volcho, K.P.; Salakhutdinov, N.F.; et al. Effective Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 Based on Monoterpenoids as Potential Agents for Antitumor Therapy. Russ. J. Bioorg. Chem. 2019, 45, 647–655, doi:10.1134/S1068162x19060104.

36. Zhang, X.-R.; Wang, H.-W.; Tang, W.-L.; Zhang, Y.; Yang, H.; Hu, D.-X.; Ravji, A.; Marchand, C.; Kiselev, E.; Ofori-Atta, K.; et al. Discovery, Synthesis, and Evaluation of Oxynitidine Derivatives as Dual Inhibitors of DNA Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1), and Potential Antitumor Agents. J. Med. Chem. 2018, 61, 9908–9930, doi:10.1021/acs.jmedchem.8b00639.

37. Habtemariam, S. Recent Advances in Berberine Inspired Anticancer Approaches: From Drug Combination to Novel Formulation Technology and Derivatization. Molecules 2020, 25, 1426–1456, doi:10.3390/molecules25061426.

38. Gladkova, E.D.; Neechepurenko, I.V.; Bredikhin, R.A.; Chepanova, A.A.; Zakharevich, A.L.; Luzina, O.A.; Ilina, E.S.; Dyrkheeva, N.S.; Mamontova, E.M.; Anarbaev, R.O.; et al. First Berberine-Based Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), an Important DNA Repair Enzyme. Int. J. Mol. Sci. 2020, 21, 7162–7177, doi:10.3390/ijms21197162.

39. Zakharevich, A.L.; Khomenko, T.M.; Zhukova, S.V.; Koval, O.A.; Zakharova, O.D.; Anarbaev, R.O.; Lebedeva, N.A.; Korchagina, D.V.; Komarova, N.I.; Vasiliev, V.G.; et al. Synthesis and biological evaluation of novel tyrosyl-DNA phosphodiesterase 1 inhibitors with a benzopenathiphene moiety. Bioorganic Med. Chem. 2015, 23, 2044–2052, doi:10.1016/j.bmc.2015.03.020.

40. Chepanova, A.A.; Mozhatiitsev, E.S.; Munkuev, A.A.; Suslov, E.V.; Korchagina, D.V.; Zakharova, O.D.; Zakharevich, A.L.; Patel, J.; Ayine-Tora, D.M.; Reynisson, J.; et al. The Development of Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. Combination of Monoterpenes and Adamantine Moieties via Amide or Thiouamide Bridges. Appl. Sci. 2019, 9, 2767–2784, doi:10.3390/app9122767.

41. Loutos, G.T.; Zhao, X.Z.; Kiselev, E.; Tropea, J.E.; Needle, D.; Pommier, Y.; Burke, T.R.; Waugh, D.S. Identification of a Ligand Binding Hot Spot and Structural Motifs Replicating Aspects of Tyrosyl-DNA Phosphodiesterase 1 (Tdp1) Phosphoryl Recognition by Crystallographic Fragment Cocktail Screening. Nucleic Acids Res. 2019, 47, 10134–10150, doi:10.1093/nar/gkz515.

42. Lee, G.E.; Lee, H.-S.; Lee, S.D.; Kim, J.-H.; Kim, W.-K.; Kim, Y.-C. Synthesis and structure–activity relationships of novel, substituted 5,6-dihydrobenzo[a]gquinolizinium 2P7 antagonists. Bioorganic Med. Chem. Lett. 2009, 19, 954–958, doi:10.1016/j.bmcl.2008.11.088.

43. Opitz, G.; Mohl, H.R. Disulfene. Angew. Chem. Intern. Ed. 1969, 8, 73, doi:10.1002/anie.196900731.

44. Neechepurenko, I.V.; Shiromova, E.D.; Khvostov, M.V.; Frolova, T.S.; Sinitsyna, O.I.; Maksimov, A.M.; Bredikhin, R.A.; Komarova, N.I.; Fadeev, D.S.; Luzina, O.A.; et al. Synthesis, hypolipidemic and antifungal activity of tetrahydroberberrubrine sulfonates. Russ. Chem. Bull. 2019, 68, 1052–1060, doi:10.1007/s11172-019-2519-y.

45. Raghav, D.; Ashraf, S.M.; Mohan, L.; Rathinasamy, K. Berberine Induces Toxicity in HeLa Cells through Perturbation of Microtubule Polymerization by Binding to Tubulin at a Unique Site. Biochemistry 2017, 56, 2594–2611, doi:10.1021/acs.biochem.7b00110.

46. Li-Zhulanov, N.S.; Zakharevich, A.L.; Chepanova, A.A.; Patel, J.; Zafar, A.; Volcho, K.P.; Salakhutdinov, N.F.; Reynisson, J.; Leung, I.K.H.; Lavrik, O.I. A Novel Class of Tyrosyl-DNA Phosphodiesterase 1 Inhibitors That Contains the Octahydro-2H-chromen-4-ol Scaffold. Molecules 2018, 23, 2468–2481, doi:10.3390/molecules23102468.

47. Mozhatiitsev, E.; Suslov, E.; Demidova, Y.; Korchagina, D.; Volcho, K.; Zakharevich, A.; Vasil’eva, I.; Kupryushkin, M.; Chepanova, A.; Ayine-Tora, D.M.; et al. The Development of Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors Based on the Amines Combining Aromatic/Heteroaromatic and Monoterpenoid Moieties. Lett. Drug Des. Discov. 2019, 16, 597–605, doi:10.2174/157018081666181220121042.

48. Salomatina, O.V.; Popadyuk, I.I.; Zakharevich, A.L.; Zakharova, O.D.; Chepanova, A.A.; Dyrkheeva, N.S.; Komarova, N.I.; Reynisson, J.; Anarbaev, R.O.; Salakhutdinov, N.F.; et al. Deoxycholic acid as a molecular scaffold for tyrosyl-DNA phosphodiesterase 1 inhibition: A synthesis, structure–activity relationship and molecular modeling study. Steroids 2021, 165, 108771:1–108771:13, doi:10.1016/j.steroids.2020.108771.
49. Zhu, F.; Logan, G.; Reynisson, J. Wine Compounds as a Source for HTS Screening Collections. A Feasibility Study. *Mol. Inf.* 2012, 31, 847–855, doi:10.1002/minf.201200103.

50. Eurtivong, C.; Reynisson, J. The Development of a Weighted Index to Optimise Compound Libraries for High Throughput Screening. *Mol. Inf.* 2018, 37, 1800068:1–1800068:11, doi:10.1002/minf.201800068.

51. Necheplurenko, I.V.; Komarova, N.I.; Vasiliev, V.G.; Salakhutdinov, N.F. Synthesis of berberine bromide analogs containing tertiary amides of acetic acid in the 9-O-position. *Chem. Nat. Compd.* 2012, 48, 1047–1053, doi:10.1007/s10600-013-0461-z.

52. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. *Nucleic Acids Res.* 2000, 28, 235–242, doi:10.1093/nar/28.1.235.

53. Berman, H.; Henrick, K.; Nakamura, H. Announcing the Worldwide Protein Data Bank. *Nat. Struct. Biol.* 2003, 10, 980, doi:10.1038/nsb1203-980.

54. *Scigress Ultra V. FJ 2.6. (EU 3.1.7)*; Fujitsu Limited: 2008–2016.

55. Allinger, N.L. Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms. *J. Am. Chem. Soc.* 1977, 99, 8127–8134, doi:10.1021/ja00467a001.

56. Gotô, H.; Ôsawa, E. An Efficient Algorithm for Searching Low-Energy Conformers of Cyclic and Acyclic Molecules. *Perkin 2 Int. J. Phys. Org. Chem.* 1993, 35, 187–198, doi:10.1039/P29930000187.

57. Jones, G.; Willet, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking, *J. Mol. Biol.* 1997, 267, 727–748, doi:10.1006/jmbi.1996.0897.

58. Eldridge, M.D.; Murray, C.; Auton, T.R.; Paolini, G.V.; Mee, P.M. Empirical Scoring Functions: I. the Development of a Fast Empirical Scoring Function to Estimate the Binding Affinity of Ligands in Receptor Complexes. *J. Comp. Aid. Mol. Des.* 1997, 11, 425–445, doi:10.1023/A:1007996124545.

59. Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved Protein-Ligand docking using GOLD. *Proteins* 2003, 52, 609–623, doi:10.1002/prot.10465.

60. Korb, O.; Stützle, T.; Exner, T.E. Empirical Scoring Functions for Advanced Protein–Ligand Docking with PLANTS. *J. Chem. Inf. Model.* 2009, 49, 84–96, doi:10.1021/ci800298.

61. Mooij, W.T.M.; Verdonk, M.L. General and Targeted Statistical Potentials for Protein–ligand Interactions. *Proteins* 2005, 61, 272–287, doi:10.1002/prot.20588.

62. QikProp: Version 6.2; Schrödinger: New York, NY, USA, 2009.

63. Ioakimidis, L.; Thoukydidis, L.; Naem, S.; Mirza, A.; Reynisson, J. Benchmarking the Reliability of QikProp. Correlation between Experimental and Predicted Values. *QSAR Comb. Sci.* 2008, 27, 445–456, doi:10.1002/qsar.200730051.