Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Characteristics of community-acquired respiratory viruses infections except seasonal influenza in transplant recipients and non-transplant critically ill patients

Kyoung Hwa Lee a, Seul Gi Yoo a, Yonggeun Cho b, Da Eun Kwon a, Yeonju La a, Sang Hoon Han a,*, Myoung Soo Kim c, Jin Sub Choi c, Soon Il Kim c, Yu Seun Kim c, Yoo Hong Min d, June-Won Cheong d, Jin Seok Kim d, Yong Goo Song a

a Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
b Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
c Department of Transplantation Surgery and Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
d Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea

Received 11 July 2018; received in revised form 24 April 2019; accepted 17 May 2019
Available online

Abstract Background/Purpose: Transplant recipients are vulnerable to life-threatening community-acquired respiratory viruses (CA-RVs) infection (CA-RVI). Even if non-transplant critically ill patients in intensive care unit (ICU) have serious CA-RVI, comparison between these groups remains unclear. We aimed to evaluate clinical characteristics and mortality of CA-RVI except seasonal influenza A/B in transplant recipients and non-transplant critically ill patients in ICU.

Methods: We collected 37,777 CA-RVs multiplex real-time reverse transcription-polymerase chain reaction test results of individuals aged ≥18 years from November 2012 to November 2017. The CA-RVs tests included adenovirus, coronavirus 229E/NL63/OC43, human bocavirus, human metapneumovirus, parainfluenza virus 1/2/3, rhinovirus, and respiratory syncytial virus A/B.

Results: We found 286 CA-RVI cases, including 85 solid organ transplantation recipients (G1), 61 hematopoietic stem cell transplantation recipients (G2), and 140 non-transplant critically ill patients. Mortality

Keywords Community-acquired respiratory viruses; Solid organ transplantation; Hematopoietic stem cell transplantation; Critically ill patients; Mortality

* Corresponding author. Department of Internal Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea. Fax: +82 2 3463 3882.
E-mail address: shhan74@yuhs.ac (S.H. Han).

https://doi.org/10.1016/j.jmii.2019.05.007

1684-1182/© 2019, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: Lee KH et al., Characteristics of community-acquired respiratory viruses infections except seasonal influenza in transplant recipients and non-transplant critically ill patients, Journal of Microbiology, Immunology and Infection, https://doi.org/10.1016/j.jmii.2019.05.007
In the past few decades, there have been few reports of community-acquired respiratory viruses (CA-RVs) in non-transplant critically ill patients in ICU compared to transplant recipients, even though many reports have focused on the comparison of specific CA-RVs, particularly seasonal influenza virus, between SOT and HSCT recipients.19

The clinical information of CA-RV between these susceptible groups will be helpful to clinicians if they need to consider the different strategies or practices for treating CA-RV, especially in severe LRTI cases, among transplant recipients or non-transplant critically ill patients in ICU. This study aimed to evaluate the characteristics and outcome of symptomatic respiratory infection resulting from CA-RVs besides seasonal influenza A/B, between non-transplant critically ill patients admitted to the ICU and transplant recipients.

Methods

Study population and data collection

This was a retrospective cohort study. We retrieved all data regarding 41,489 tests including multiplex RT-PCR and culture for 12 CA-RVs of AdV, coronavirus (CoV) 229E/OC43/NL63, human bocavirus (hBoV), hMPV, PIV 1/2/3, rhinovirus, and RSV A/B, from SOT or HSCT recipients or non-transplant critically ill patients in ICU who were ≥18 years of age and were admitted between November 2012 and November 2017 at the Severance Hospital, a university-affiliated tertiary-care center in Seoul. We did not include seasonal influenza A/B, which could have been diagnosed using rapid antigen test beside RT-PCR or culture in this study. The CA-RVs tests were performed for patients with a suspicion of symptomatic CA-RV based on the respective clinician’s judgement. We excluded 3426 CA-RVs tests that were performed during the pretransplant period or in recipients who received both SOT and HSCT or re-transplantation. Thereafter, 10,616 and 3794 CA-RVs test results from SOT and HSCT recipients, respectively, were finally included. The non-transplant critically ill patients in ICU who were admitted between November 2012 and November 2017 at the Severance Hospital were considered as the same infection. Therefore, the cohort included 85 (29.7%) and 61 (21.3%) CA-RV cases in SOT and HSCT recipients, respectively, and 140 (49.0%) CA-RV cases in non-transplant critically ill patients admitted to the ICU.

Introduction

The use of effective immunosuppressant (IS) is explored to prevent graft rejection and graft-versus-host disease (GVHD) after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT). However, immunocompromised conditions induced by IS exacerbate the risk of opportunistic infections.1-3 Community-acquired respiratory viruses (CA-RVs), as well as multidrug-resistant bacteria and molds, have increasingly become of great importance, comprising a large burden on posttransplant infection.2,4 CA-RVs can cause lower respiratory tract infection (LRTI), resulting in mortality and life-threatening morbidities in transplant recipients.5-8 SOT and HSCT recipients face different hurdles, such as susceptibility to CA-RV infection (CA-RVI) within posttransplant timeframe.1-4,9 HSCT recipients are mainly susceptible to severe CA-RVI in the early posttransplant period, including pre-engraftment with prolonged neutropenia. SOT recipients could be at risk of CA-RVI from the community at any time during the posttransplant period.1,5,10

Non-transplant critically ill patients in the intensive care unit (ICU) are another group vulnerable to invasive CA-RVI.11-15 Among patients with severe rhinovirus pneumonia diagnosed using reverse-transcription polymerase chain reaction (RT-PCR), transplantation did not comprise the majority of underlying conditions (To et al., 78%; Choi et al., 95.4%).14,15 Most patients with acute respiratory failure by respiratory syncytial virus (RSV) were also non-transplant recipients.16

Respiratory infections caused by CA-RVs apart from seasonal influenza A/B may have been under-diagnosed before the introduction of multiplex RT-PCR methods.17,18 As the diagnosis of the precise species of CA-RV became possible, CA-RVs have had great clinical significance in severely immunocompromised patients.19 The epidemiology and clinical outcome of adenovirus (AdV), human metapneumovirus (hMPV), parainfluenza (PIV), and RSV in SOT and HSCT recipients have been reported during the past few decades.5,19 However, there are few reports of unique features and impact on outcome or mortality of CA-RVI in non-transplant critically ill patients in ICU compared to transplant recipients, even though many reports have
transplant critically ill patients in ICU (Fig. 1 and Table 1). This study was approved by Gangnam Severance Hospital Institutional Review Board, and the need for informed consent was waived due to the retrospective nature of the study.

Detection methods of respiratory viruses

The AdvanSure™ RV multiplex real-time RT-PCR kit with Taqman® probe (AdvanSure; LG Life Sciences, Seoul, South Korea) was used to detect respiratory viruses. The kit includes primers and probes for adenovirus, coronavirus, hMPV, human metapneumovirus, parainfluenza virus 1/2/3, rhinovirus and respiratory syncytial virus A/B. The kit was used to detect respiratory viruses in transplant recipients and non-transplant critically ill patients in ICU.

Table 1 Frequency of community-acquired respiratory virus infection cases except seasonal influenza A/B between SOT recipients, HSCT recipients and non-transplant critically ill patients in ICU.

CA-RVs	Total (n = 286)	Transplant recipients	Non-transplant critically ill patients in ICU (n = 140)	p-value
	SOT (n = 85)	HSCT (n = 61)		
Adenovirus	40 (14.0)	10 (11.8)*	14 (23.0)*†	0.039
Bocavirus	5 (1.7)	2 (2.4)	3 (4.9)*	0.027
Coronavirus	47 (16.4)	16 (18.8)	6 (9.8)	0.299
229E	11 (3.8)	6 (7.1)	1 (1.6)	0.219
NL63	12 (4.2)	4 (4.7)	3 (4.9)	0.797
OC43	24 (8.4)	6 (7.1)	2 (3.3)	0.145
hMPV	26 (9.1)	4 (4.7)	4 (6.6)	0.090
PIV	50 (17.5)	13 (15.3)	11 (18.0)	0.842
PIV1	10 (3.5)	3 (3.5)	1 (1.6)	0.775
PIV2	3 (1.0)	0 (0)	1 (1.6)	0.597
PIV3	37 (12.9)	10 (11.8)	9 (14.8)	0.848
Rhinovirus	85 (29.7)	32 (37.6)*	12 (19.7)*†	0.042
RSV	33 (11.5)	8 (9.4)	11 (18.0)	0.214
RSV A	9 (3.1)	4 (4.7)	2 (3.3)	0.552
RSV B	24 (8.4)	4 (4.7)	9 (14.8)	0.089

Data are expressed as number (percentage). All cases of community-acquired respiratory virus infection were diagnosed by multiplex RT-PCR. *† Indicate statistically significant difference between two groups using Bonferroni corrected chi-square or Fisher’s exact post-hoc tests based on adjusted standardized residuals to control for type I error inflation (adjusted p < 0.05). Abbreviations: CA-RV, community-acquired respiratory virus; HSCT, hematopoietic stem cell transplantation; hMPV, human metapneumovirus; ICU, intensive care unit; PIV, parainfluenza virus; RSV, respiratory syncytial virus; RT-PCR, reverse transcription-polymerase chain reaction; SOT, solid organ transplantation.

Figure 1. Flow chart of data or case selection for community-acquired respiratory viruses infection except seasonal influenza A/B. a The CA-RVs tests included the multiplex RT-PCR or culture, but not antigen or serology tests. b The 12 CA-RVs includes adenovirus, coronavirus 229E/NL63/OC43, human bocavirus, human metapneumovirus, parainfluenza virus 1/2/3, rhinovirus and respiratory syncytial virus A/B. c SOT, HSCT recipients and non-transplant critically ill patients in ICU. d All recipients had received SOT after HSCT (1 liver and 10 lung transplantations). e In 286 tests, 5 (1.7%) positive results were 1 of coronavirus OC43, 3 of parainfluenza virus and 1 of rhinovirus. f The repeated identical CA-RV isolation in one patient within 30 days were considered as same infection case. All RV cultures were negative, and positive results of CA-RVs were confirmed by multiplex RT-PCR. Abbreviations: CA-RV, community-acquired respiratory virus; CA-RVI, community-acquired respiratory virus infection; HSCT, hematopoietic stem cell transplantation; ICU, intensive care unit; RT-PCR, reverse transcription-polymerase chain reaction; SOT, solid organ transplantation.

Please cite this article as: Lee KH et al., Characteristics of community-acquired respiratory viruses infections except seasonal influenza in transplant recipients and non-transplant critically ill patients, Journal of Microbiology, Immunology and Infection, https://doi.org/10.1016/j.jmii.2019.05.007
Definition

The CA-RVs tests have been performed when respiratory infection symptoms such as fever, cough, and sputum were noted, or when the patient was clinically suspected of having a CA-RVI. In some cases, one CA-RV was repeatedly detected at different time points and ≥ two CA-RVs were simultaneously detected in one patient. We considered several isolations caused by the same CA-RV within 30 days in one patient as one CA-RVI case. Abnormal findings on chest radiography and/or chest computed tomography (CT) scan was defined as the presence of newly developed lung parenchymal infiltration, as determined by the radiologist. We categorized seasonal variation based on spring (March–May), summer (June–August), autumn (September–November), and winter (December–February).

Statistical analysis

Data were expressed as number (percent) or mean ± standard deviation or median (interquartile range [IQR]) according to whether they followed the normal distribution or not. Categorical variables were compared using Chi-square test or Fisher’s exact test, and post-hoc analysis via Bonferroni correction based on adjusted standardized residuals was used to control for type I error inflation (adjusted \(p\)). We used the parametric independent T-test or analysis of variance (ANOVA) test to compare the continuous variables with normal distribution between two or three groups, respectively. Continuous variables without normal distribution between two or three groups were compared using non-parametric Mann–Whitney U test or Kruskal–Wallis test, respectively. The post-hoc tests for continuous variables were performed using Bonferroni correction as a parametric test or Mann-Whitney U test as a non-parametric test (\(p < 0.05/3 = 0.0167\)). The Kaplan-Meier survival analyses with log-rank test were used to compare all-causes in-hospital mortality. We performed the Cox proportional hazard regression analysis with variables showing statistical significance in univariate analyses to reveal the independent factors in relation to all-causes in-hospital mortality. All two-tailed \(p\)-values or adjusted \(p\)-values of \(<0.05\) except post-hoc test using Mann-Whitney U test were considered statistically significant. All statistical analyses and images were performed using SPSS V23 software (IBM Corp., Armonk, NY, USA) and GraphPad Prism V6 (version 6; GraphPad Software, Inc. La Jolla, CA, USA).

Results

Frequency of community-acquired respiratory viruses infections in laboratory tests and infection cases

Any CA-RVs that were not isolated in culture had been tested in a minority of patients (0.9%). We described the positive rates of all kinds of CA-RVs in multiplex RT-PCR tests that were performed based on clinical suspicion of symptomatic CA-RVI in three different groups (Supplementary Table 1). The positivity of rhinovirus was higher in both SOT and HSCT recipients than in non-transplant critically ill patients in the ICU (3.9% vs. 2.2%, \(p = 0.044\)). In HSCT recipients, the positive rate of AdV (4.2%) was the most prominent. The positive rates of each CA-RV showed significant differences between three groups for AdV \((p < 0.001)\), hBoV \((p < 0.001)\), PIV3 \((p = 0.005)\), rhinovirus \((p = 0.044)\), and RSV A/B \((p = 0.037)\). Overall CA-RVs positive rates were the highest in HSCT recipients \((0.9% of SOT recipients, 1.7% of HSCT recipients and 0.6% of non-transplant critically ill patients in ICU, \(p = 0.034)\) (Supplementary Table 1). In the analyses of the total 286 CA-RVI cases, AdV, hBoV, and rhinovirus had significantly different proportions between three groups \((p = 0.039, 0.027, and 0.042, respectively)\), with the highest frequency in HSCT recipients for AdV and hBoV or in SOT recipients for rhinovirus. The percentage of AdV infection in HSCT recipients (23.0%) was significantly higher compared to that in SOT recipients (11.8%) or in non-transplant critically ill patients in ICU (11.4%). The HSCT recipients (19.7%) had significantly lower percentages of rhinovirus infection than SOT recipients (37.6%) (Table 1).

Characteristics and outcome of CA-RV infections in three different groups

We analyzed the characteristics of CA-RVI in three groups, and the impact of CA-RVI on the outcome of all-causes in-hospital mortality (Table 2). The most common allograft in CA-RVs-infected SOT recipients was kidney (48.3%), followed by lung (25.3%) and liver (21.8%). In total, 62.3% and 91.8% of CA-RVs-infected HSCT recipients received transplantation from allogeneic donor and stem cell source of peripheral blood, respectively.

The age, male sex, and total duration of hospital stay at the time of CA-RVI were significantly different among the three groups \((p < 0.001, 0.044 and 0.002, respectively)\). The non-transplant critically ill patients in ICU were the oldest \((68 ± 14 year-old)\) and had stayed in hospital during the longest period, with median of 25 days (IQR, 11–45 days). Total duration of ICU stay was not significantly different between non-transplant critically ill patients in ICU and transplant recipients who had ever received ICU (29.4% of SOT and 29.5% of HSCT recipients). The time interval between transplantation and CA-RVI was significantly longer in SOT recipients than in HSCT recipients (30 [10–107] vs. 20 [11–39] months, \(p = 0.035)\ (Table 2 and Fig. 2). The season of CA-RVI incidence was not different between three groups \((p = 0.206)\). The SOT recipients had the significantly lowest all-cause in-hospital mortality (28.2%) among the three groups \((p = 0.002)\ (Table 2 and Fig. 3).
Table 2 Comparisons of clinical characteristics and outcome of community-acquired respiratory virusesa infection cases except seasonal influenza A/B in SOT recipients, HSCT recipients and non-transplant critically ill patients in ICU.

Characteristics	Transplant recipients	Non-transplant critically ill patients in ICU (n = 140)	p-value	
	SOT (n = 85)	HSCT (n = 61)		
Age at CA-RVI, years	56.3 ± 12.1	47.1 ± 15.0	<0.001a	
Sex, male	62 (72.9)d	34 (55.7)c	81 (57.9)d	0.044
Total hospital stay, days	15 (8–33)	12 (6–36)c	25 (11–45)c	0.002
ICU care	Yes	25 (29.4)	—	>0.999
Duration, days	20 (5-31)c	9 (3–35)c	8 (4-23)	0.233
Time interval between Tx and CA-RVI, months	30 (10–107)	20 (11–39)	—	0.035
Season	Spring (n = 97, 34%)	24 (28.2)	23 (37.7)	0.420
	Summer (n = 55, 19%)	23 (27.1)	9 (14.8)	0.084
	Autumn (n = 47, 16%)	15 (17.6)	8 (13.1)	0.729
	Winter (n = 87, 31%)	23 (27.1)	21 (34.4)	0.632
Abnormal CXR or chest CT	71 (83.5)	47 (77.0)	115 (82.1)	0.571
Rejectiond or GVHDe	20 (23.5)	19 (31.1)	—	0.346
IVIG therapy	6 (7.1)c	13 (21.3)c	12 (8.6)	0.012
Mechanical ventilation	23 (27.1)c	15 (24.6)c	112 (80.0)c	<0.001
All-cause in-hospital death	24 (28.2)c	24 (39.3)	72 (51.4)	0.002

a Include adenovirus, coronavirus 229E/NL63/OC43, human bocavirus, human metapneumovirus, parainfluenza virus 1/2/3, rhinovirus and respiratory syncytial virus A/B.

b Post-hoc p-values were all significant between two groups.

c Data from transplant recipients who had ever received ICU care.

d Include all types (acute/chronic or antibody/cell-mediated) of rejection which were pathologically diagnosed in SOT recipients.

e Include acute or chronic GVHD in HSCT recipients. Abbreviations: CA-RV, community-acquired respiratory virus; CA-RVI, community-acquired respiratory virus infection; CT, computed tomography; CXR, chest x-ray; GVHD, graft-versus-host disease; HSCT, hematopoietic stem cell transplantation; ICU, intensive care unit; IVIG, intravenous immunoglobulin; SOT, solid organ transplantation; Tx, transplantation.

Data are expressed as number (percentage) or mean ± standard deviation or median (interquartile range). *Indicate statistically significant difference between two groups by post-hoc tests using Bonferroni correction in parametric test (p < 0.05) or Mann–Whitney U test in non-parametric test (p < 0.05/3 [0.0167]) for continuous variables or by chi-square or Fisher’s exact post-hoc tests based on adjusted standardized residuals (adjusted p < 0.05) for categorical variables.

Comparison of characteristics between patients who died or not after CA-RV infections

The patients who died in hospital due to any cause of death after CA-RVI were significantly older (62 ± 15 vs. 58 ± 17-year-old, p = 0.023) and had significantly higher percentages of administration of intravenous immunoglobulin (20.8% vs. 3.6%, p < 0.001) and mechanical ventilation (MV) (78.3% vs. 33.7%, p < 0.001) than those who were alive (Table 3). Each CA-RV-infected patient had similar rates for all-cause in-hospital death (AdV, 42.5%; hBoV, 40.0%; CoV, 44.7%; hMPV, 42.3%; PIV 1/2/3, 40.0%; rhinovirus, 38.8%, and RSV A/B, 48.5%).

Independent clinical factors associated with all-causes in-hospital mortality in CA-RVs-infected transplant recipients and non-transplant critically ill patients in the ICU

In the analyses for relation of each CA-RV to all-cause in-hospital mortality, three groups infected by any CA-RV did not show significantly different mortality rate

(Supplementary Table 2). In Cox proportional hazard regression model, MV was independent risk factor associated with higher all-cause in-hospital mortality (HR 3.37, 95% CI 2.04–5.56, p < 0.001). The transplantation was not independently related to mortality (Table 4).

Discussion

The frequency of each CA-RV except seasonal influenza A/B among the three high-risk groups was heterogeneous despite significant differences in overall frequency, with overall frequency being the highest in HSCT recipients. This study revealed that the proportion of CA-RV species, vulnerable age, and all-cause mortalities in symptomatic CA-RVI were different between SOT and HSCT recipients and non-transplant critically ill patients in ICU group that are populations typically at risk of invasive viral infections. One of our major findings was that AdV caused significantly higher rates of respiratory infection in adult HSCT recipients, as compared to other non-immunocompetent groups. Several studies reported the incidence of, and mortality due to AdV infection in HSCT recipients of
2.7–47% and 4.3–75%, respectively, which were typically higher than SOT recipients, similar to our findings.4–6,19,23–27 These relatively wide ranges could be due to the characteristics of the study population, including potent conditioning chemotherapy and underlying hematological malignancies, type or repetition of HSCT, era, and occurrence of GVHD.23,25

Table 3 Comparison of characteristics between community-acquired respiratory viruses^a-infected patients^b who died or not regardless of cause of death.

Characteristics	All-cause in-hospital death	p-value	
Age at CA-RVI, years	62.5 ± 14.7	58.2 ± 16.9	0.023
Sex, male	74 (61.7)	103 (62.0)	>0.999
Species of CA-RV			
Adenovirus	17 (14.2)	23 (13.9)	>0.999
Bocavirus	2 (1.7)	3 (1.8)	>0.999
CoV 229E/NL63/OC43	21 (17.5)	26 (15.7)	0.747
hMPV	11 (9.2)	15 (9.0)	>0.999
Rhinovirus	20 (16.7)	30 (18.1)	0.875
PIV 1/2/3	16 (13.3)	17 (10.2)	0.456
RSV A/B	25 (20.8)	6 (3.6)	<0.001
IVIG therapy	94 (78.3)	56 (33.7)	<0.001

^a Include adenovirus, bocavirus, coronavirus 229E/NL63/OC43, human bocavirus, human metapneumovirus, parainfluenza virus 1/2/3, rhinovirus and respiratory syncytial virus A/B. The middle long and upper/lower bars indicate median and upper/lower interquartile values, respectively. Abbreviations: CA-RV, community-acquired respiratory virus infection; HSCT, hematopoietic stem cell transplantation; SOT, solid organ transplantation.

In this study, a large proportion of CA-RVs except seasonal influenza resulted in symptomatic respiratory infection at a late posttransplant period, with median of 20 months in HSCT and 30 months in SOT recipients. Like as previous reports,1,2,4,9,10,28 our data also showed that the posttransplant period in which CA-RVI occurred in SOT recipients was significantly longer than that in HSCT recipients. This finding suggests that physicians need to suspect and diagnosis CA-RVI in transplant recipients with respiratory symptoms regardless of posttransplant period.

Another important finding of this study was that non-transplant critically ill patients in ICU group had high mortality rates after CA-RVI rather than transplant recipients. Our analyses for mortalities showed the MV as traditional risk factor indicating severity of LRTI was independent risk factors for all-causes in-hospital mortality in three immunosuppressive groups with CA-RVI. The species of CA-RV itself independently did not lead to increase mortality. Even though SOT recipients with all kinds of CA-RVI had the lowest mortality rate in the three high-risk groups, we did not find the independent effect of SOT on all-cause mortality in Cox proportional hazard regression model.

Our data showed that hBoV, a recently emerging CA-RV in transplantation,29 occurred in only five transplant recipients. Although it has been reported that hBoV can cause severe disseminated infections in infants and children recipients,30,31 the incidence, attributable mortality, and
effect of hBoV on graft in adult recipients remains unclear. A future multicenter observational study will be helpful to verify the role of hBoV in severely immunocompromised patients. Even though the CA-RV tests showed the lowest positive rate in non-transplant critically ill patients in ICU group, the frequencies of hMPV and RSV A/B infection associated with detrimental outcomes and treated with specific antiviral agent, in this group were not different compared to transplant recipients. Of 432 non-transplant patients with suspected sepsis in the previous study, 12 (2.8%) had RSV A/B and 23 (5.3%) had hMPV. Grèве et al. reported 7 (0.5%) with hMPV and 21 (1.5%) with RSV among 1407 non-transplant patients admitted to the ICU on MV therapy in a prospective multicenter study in 2018. Recent reports support our findings and indicate that hMPV and RSV should not be regarded as negligible pathogens and could be under-diagnosed in non-transplant critically ill patients, in particular on ventilated and ICU care. However, we do not have any consensus that these CA-RVs are directly related to poor outcome and attributable mortality in this population.

In conclusions, non-transplant critically ill patients in ICU group with CA-RVI except seasonal influenza A/B had higher all-cause mortality rate than in transplant recipients. CA-RVI except influenza in transplant recipients could occur in the late posttransplant period of several years. Especially, AdV infection was the most prominent in HSCT recipients. This study suggests the importance of suspicion and diagnosis of CA-RVI in transplant recipients even in the late posttransplant period, and non-transplant critically ill patients in ICU with older age, particularly those with MV.

Funding
None.

Conflicts of interest
None of the authors declares conflicts of interest associated with this manuscript.

Acknowledgements
We extend our gratitude to the clinical staff of the solid organ and hematopoietic stem cell transplantation team in Severance Hospital, Seoul, Republic of Korea.

References
1. Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med 2007;357:2601–14.
2. Fishman JA, Issa NC. Infection in organ transplantation: risk factors and evolving patterns of infection. Infect Dis Clin N Am 2010;24:273–83.
3. Wingard JR, Hsu J, Hiemenz JW. Hematopoietic stem cell transplantation: an overview of infection risks and epidemiology. Infect Dis Clin N Am 2010;24:257–72.
4. Paulsen GC, Danizer-Isakov L. Respiratory viral infections in solid organ and hematopoietic stem cell transplantation. Clin Chest Med 2017;38:707–26.
5. Abbas S, Rayould JE, Sastry S, de la Cruz O. Respiratory viruses in transplant recipients: more than just a cold. Clinical syndromes and infection prevention principles. Int J Infect Dis 2017;62:86–93.
6. Peghin M, Hirsch HH, Len O, Codina G, Berastegui C, Saez B, et al. Epidemiology and immediate indirect effects of respiratory viruses in lung transplant recipients: a 5-year prospective study. Am J Transplant 2017;17:1304–12.
7. Lo MS, Lee GM, Gunawardane H, Burchett SK, Lachenauer CS, Lehmann LE. The impact of RSV, adenovirus, influenza, and
parainfluenza infection in pediatric patients receiving stem cell transplant, solid organ transplant, or cancer chemotherapy. Pediatr Transplant 2013;17:133–43.

8. Nichols WG, Guthrie KA, Corey L, Boeckh M. Influenza infections after hematopoietic stem cell transplantation: risk factors, mortality, and the effect of antiviral therapy. Clin Infect Dis 2004;39:1300–6.

9. Hutspardol S, Essa M, Richardson S, Schechter T, Ali M, Krueger J, et al. Significant transplantation-related mortality from respiratory virus infections within the first one hundred days in children after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2015;21:1802–7.

10. Green M. Introduction: infections in solid organ transplantation. Am J Transplant 2013;13(Suppl. 4):3–8.

11. van Someren Greve F, Juffermans NP, Bos LDJ, Binnekade JM, Krueger J, et al. Significant transplantation-related mortality from respiratory virus infections in hematopoietic transplantation recipients and non-transplant critically ill patients. J Clin Virol 2017;89:341–52.

12. Shah RD, Wunderink RG. Viral pneumonia and acute respiratory distress syndrome. Clin Chest Med 2017;38:113–25.

13. van Someren Greve F, Ong DS, Cremer OL, Bonte MJ, Bos LD, de Jong MD, et al. Clinical practice of respiratory virus diagnostics in critically ill patients with a suspected pneumonia: a prospective observational study. J Clin Virol 2016;83:37–42.

14. To KK, Lau SK, Chan KH, Mok KY, Luk HK, Yip CC, et al. Pulmonary and extrapulmonary complications of human rhinovirus infection in critically ill patients. J Clin Virol 2016;77:85–91.

15. Choi SH, Huh JW, Hong SB, Lee JY, Kim SH, Sung H, et al. Clinical characteristics and outcomes of severe rhinovirus-associated pneumonia identified by bronchoscopy bronchoalveolar lavage in adults: comparison with severe influenza virus-associated pneumonia. J Clin Virol 2015;62:41–7.

16. Ong DS, Faber TE, Klein Klouwenberg PM, Cremer OL, Chris- tiaan Boerma E, Sieteses M, et al. Respiratory syncytial virus in critically ill adult patients with community-acquired respiratory failure: a prospective observational study. Clin Microbiol Infect 2014;20:0505–7.

17. Huang HS, Tsai CL, Chang J, Hsu TC, Lin S, Lee CC. Multiplex PCR system for the rapid diagnosis of respiratory virus infection: systematic review and meta-analysis. Clin Microbiol Infect 2017. https://doi.org/10.1016/j.cmi.2017.11.018.

18. Puppe W, Weigl JA, Aron G, Grondahl B, Schmitt HJ, Niesters HG, et al. Evaluation of a multiplex reverse transcriptase PCR ELISA for the detection of nine respiratory tract pathogens. J Clin Virol 2004;30:165–74.

19. Kim YJ, Boeckh M, Englund JA. Community respiratory virus infections in immunocompromised patients: hematopoietic stem cell and solid organ transplant recipients, and individuals with human immunodeficiency virus infection. Semin Respir Crit Care Med 2007;28:222–42.

20. Puppe W, Weigl JA, Aron G, Grondahl B, Schmitt HJ, Niesters HG, et al. Evaluation of a multiplex reverse transcriptase PCR ELISA for the detection of nine respiratory tract pathogens. J Clin Virol 2004;30:165–74.

21. Huh HJ, Kim JY, Kwon HJ, Yun SA, Lee MK, Lee NY, et al. Performance evaluation of allplex respiratory panels 1, 2, and 3 for detection of respiratory viruses and influenza a virus subtypes. J Clin Microbiol 2017;55:479–84.

22. Cho CH, Lee CK, Nam MH, Yoon SY, Lim CS, Cho Y, et al. Evaluation of the AdvanSure real-time RT-PCR compared with culture and Seeplex RV15 for simultaneous detection of respiratory viruses. Diagn Microbiol Infect Dis 2014;79:14–8.

23. Bruno B, Gooley T, Hackman RC, Davis C, Corey L, Boeckh M. Adenovirus infection in hematopoietic stem cell transplantation: effect of ganciclovir and impact on survival. Biol Blood Marrow Transplant 2003;9:341–52.

24. Bridaveux PO, Aubert JD, Soccal PM, Massa-Stalder J, Berutti C, Rochat T, et al. Incidence and outcomes of respiratory viral infections in lung transplant recipients: a prospective study. Thorax 2014;69:32–8.

25. Kumar D, Husain S, Chen MH, Moussa G, Himsworth D, Manuel O, et al. A prospective molecular surveillance study evaluating the clinical impact of community-acquired respiratory viruses in lung transplant recipients. Transplantation 2010;89:1028–33.

26. Martino R, Porras RP, Rebella N, Williams JV, Ramila E, Margal N, et al. Prospective study of the incidence, clinical features, and outcome of symptomatic upper and lower respiratory tract infections by respiratory viruses in adult recipients of hematopoietic stem cell transplants for hematologic malignancies. Biol Blood Marrow Transplant 2005;11:781–96.

27. Lee YJ, Prockop SE, Papanicolaou GA. Approach to adenovirus infections in the setting of hematopoietic cell transplantation. Curr Opin Infect Dis 2017;30:377–87.

28. Waghmare A, Englund JA, Boeckh M. How I treat respiratory viral infections in the setting of intensive chemotherapy or hematopoietic cell transplantation. Blood 2016;127:2682–92.

29. Kumar D. Emerging viruses in transplantation. Curr Opin Infect Dis 2010;23:374–8.

30. Tan MY, Tan LN, Aw MM, Quak SH, Karthik SV. Bocavirus infection following paediatric liver transplantation. Pediatr Transplant 2014;18:142–5.

31. Rahiala J, Koskenvuo M, Norja P, Meriluoto M, Toppinen M, Lahtinen A, et al. Human parvoviruses B19, PARV4 and bocavirus in pediatric patients with allogeneic hematopoietic SCT. Bone Marrow Transplant 2013;48:1308–12.

32. Grim SA, Reid GE, Clark NM. Update in the treatment of non-influenza respiratory virus infection in solid organ transplant recipients. Expert Opin Pharmacother 2017;18:767–79.

33. Ljungström LR, Jacobsson G, Claesson BEB, Andersson R, Enroth H. Respiratory viral infections are underdiagnosed in patients with suspected sepsis. Eur J Clin Microbiol Infect Dis 2017;36:1767–76.

34. Nguyen C, Kaku S, Tutera D, Kuschner WG, Barr J. Viral respiratory infections of adults in the intensive care unit. J Intensive Care Med 2016;31:427–41.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jmii.2019.05.007.