Major Article

Checklist and phenetics studies of nymphs of two species of triatomines: *Triatoma lenti* Sherlock & Serafim, 1967 and *Triatoma sherlocki* Papa, Jurberg, Carcavallo, Cerqueira, Barata, 2002 (Hemiptera: Reduviidae: Triatominae)

Leandro Augusto Rosseto[1], Vinícius Fernandes De Paiva[2], Tiago Belintani[2], Jader de Oliveira[3], Vagner José Mendonça[4] and João Aristeu Da Rosa[1]

[1]. Universidade Estadual de São Paulo, Faculdade de Ciências Farmacêuticas, Araraquara, SP, Brasil.
[2]. Universidade Estadual de Campinas, Instituto de Biologia, São Paulo, SP, Brasil.
[3]. Universidade de São Paulo, Departamento de Epidemiologia, São Paulo, SP, Brasil.
[4]. Universidade Federal do Piauí, Departamento de Parasitologia e Microbiologia, Teresina, PI, Brasil.

Abstract

Introduction: *Triatoma lenti* and *Triatoma sherlocki* are endemic species of the State of Bahia, located in northeastern Brazil, where they have records of domiciliation in the human environment. In view of the epidemiological aspect and taxonomic importance of these species for the systematics of the *Triatoma* genus, a study was carried out with nymphs of all five instars. **Methods:** An extensive review of studies on nymphs from the subfamily Triatominae is presented. Morphology was studied using a scanning electron microscope and morphometric analyses. **Results:** The morphological study allowed us to characterize and discriminate species by means of scanning electron microscope of the last abdominal segment. In addition, the results show morphometric variability, with the total size of the head that best discriminates the species. **Conclusions:** Studies on nymphs are fundamental to the ecosystem; however, the literature on the immature forms of certain groups is scarce, difficult to use, or nonexistent. Therefore, this study includes morphological and morphometric data of the nymphal instars of *T. lenti* and *T. sherlocki*, corroborating the specific taxonomy of these species.

Keywords: Chagas disease. Morphometric. Morphology of nymphal. Scanning electron microscope. Taxonomy. *Triatoma* immature instars.

INTRODUCTION

In the Americas, various species of triatomines are vectors of *Trypanosoma cruzi* (Chagas, 1909) (Kinetoplastida, Trypanosomatidae), the etiological agent of Chagas disease. The insects of the subfamily Triatinineae (Jeanneal, 1919) are hematophagous and feed primarily on vertebrate blood. Even though all species of triatomines are hematophagous, species that colonize residential places or are peridomestic have increased chances of transmitting *T. cruzi* to humans. After the successful *Triatoma infestans* (Klug, 1834) control program conducted by the Brazilian National Health Foundation, other triatomines previously considered predominately sylvatic have emerged as potential vectors in several areas of Brazil.

Presently, 157 species (including 3 fossils) within 18 genera are recognized as valid in this subfamily. The genus with the greatest number of species described is *Triatoma* Laporte, 1832, which includes members of the *Triatoma brasiliensis* subcomplex, *Triatoma brasiliensis* Neiva 1911, *Triatoma brasiliensis macromelasoma* Galvão 1956, *Triatoma melanica* Neiva & Lent, 1941, *Triatoma juazeirensis* Costa & Felix 2007, *Triatoma sherlocki* Papa, Jurberg, Carcavallo, Cerqueira, Barata, 2002, *Triatoma lenti* Sherlock & Serafim, 1967, *T. bahiensis* Sherlock & Serafim, 1967 and *Triatoma petrochiae* Pinto & Barreto 1925.

Sherlock and Serafim described *T. lenti*, *T. pessoai*, and *T. bahiensis*. The authors reported that *T. lenti* and *T. pessoai* were naturally infected by *T. cruzi* and were relatively easily maintained in the laboratory by feeding on pigeons. Currently, only *T. pessoai* is not considered a valid species.
Cerqueira et al.15 refer to the encounter of wild triatomine, naturally infected by \textit{T. cruzi} in the district of Santo Inácio, municipality of Gentio do Ouro, Bahia. Later in 1982, Cerqueira, in his doctoral dissertation, studied the biological cycle and evaluated the results of crosses of this wild triatomine with \textit{T. brasiliensis}; however, it was not considered a new species. Papa et al.14 resumed studies of the triatomines studied by Cerqueira in 1982 and based on consistent morphological characters, such as genital structures, shorter wings, red orange spots on the connexivum and legs, inability to fly, and longer legs, concluded that it is a new species named \textit{T. sherlocki}. \textit{Triatoma sherlocki} was related to \textit{T. lenti} by morphological characteristics, cytogenetics, molecular data, and experimental crosses, and was included as a member of the \textit{Triatoma brasiliensis} complex5,9,10,11,14,16,74.

Morphology and morphometry are tools that contribute to the knowledge of triatomines and generate useful information to establish more effective strategies for vector control17. In Triatominae, biometric studies are used to characterize new species, detect populations, and define structures18. For example, geometric morphometry allows the collection of information about the shape and size of organisms, which helps in systematic and phylogenetic studies10,19,20.

Several authors have used morphology and morphometry to characterize the species and correlate the known characteristics of the character, isoenzymatic and ecological, and contributed to both systematic analyses. Studies on immature instars of \textit{T. lenti} and \textit{T. sherlock} are scarce; therefore, we evaluated and characterized those species that make up the \textit{T. brasiliensis} subcomplex, a relevant group for the ecoepidemiology of Chagas disease in the northeastern region of Brazil17,21-25, by gathering all information from the literature on the study of immature forms in Triatominae.

\section*{METHODS}

\textbf{Insects}

We used specimens from a \textit{T. lenti} (Figure 1) colony collected on April 9, 2008, which were found in the county of Macaúbas (Mangabeiras and Cana Brava neighborhoods) in the state of Bahia. The specimens were collected at altitudes of 747, 755, 780, and 829 m in the peridomicile and intradomicile. On July 22, 2003, \textit{T. sherlocki} (Figure 1) was collected in Gentio do Outo, Santo Inácio, Bahia state, and later a colony was established in the laboratory. The specimens were kept and deposited at the Triatomine Insectario of the Faculty of Pharmaceutical Sciences, Universidade Estadual Paulista (https://www2.fcfar.unesp.br/#!/triatominae). Approved by the Ethics Committee on the Use of Animals - CEUA, CEUA/FCF/CAr: 15/2017).

\textbf{Morphological analyses}

The fifth instar nymphs from \textit{T. sherlocki} and \textit{T. lenti} (Figure 1) were cleaned using an ultrasound device. Next, the structures were dehydrated in alcohol, dried in an incubator at 45°C for 20 min, and fixed in small aluminum cylinders with transparent glass. Sputtering metallization was then performed on the samples for 2 min at 10 mA in an Edwards sputter coater. After metallization, the samples were studied and photographed using a Topcon SM-300 scanning electron microscope (SEM), according to Rosa et al.26. The images obtained were processed (background, contrast, brightness) using the GNU Image Manipulation Program v2.0.2 (GIMP) software free and open-source image editor, and the structures were described and compared.

\textbf{Morphometric analyses}

For the \textit{T. lenti} and \textit{T. sherlocki} measurements, 15 nymphs specimens in the first, second, third, fourth, and fifth instars were fixed on glass slides using a double-sided tape. Measurements were also taken to determine the thorax, abdomen, and head length, as well as interocular, ante-ocular, and postocular distance, eye diameter, and the three proboscis segments. These distances were defined by Dujardin et al.27. The measurements were taken using a Leica MZ APO stereomicroscope and analyzed using the Motic Advanced 3.2 image analysis software. Descriptive statistics analyses and Welch’s t-test were performed using GraphPad Prism v.5.03.

\textbf{Principal component analysis}

To visualize the general patterns of morphological variation in the multidimensional data obtained with the principal component analysis (PCA) of the references, a factorial map was generated using Past 3.228.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Fifth instar nymph of \textit{T. sherlocki} and \textit{T. lenti}. (A) Dorsal view of the fifth instar nymph of \textit{T. sherlocki}. (B) Dorsal view of the fifth instar nymph of \textit{T. lenti}. (C) Ventral view of the fifth instar nymph of \textit{T. sherlocki}, and (D) Ventral view of the fifth instar nymph of \textit{T. lenti}.}
\end{figure}
Checklist of studies on the immature instars of triatomines

The survey of publications that study the immature instars of development had as selection criteria publications with morphology and morphometry of nymphs regardless of the methodological approach. Publications were retrieved from databases such as: National Center for Biotechnology Information - NCBI (available at https://www.ncbi.nlm.nih.gov/), Bibliography of Triatomins - BibTri (available at: https://bibtri.cepave.edu.ar/webbibtri.php), Google Academic (https://scholar.google.com.br/?hl=pt) and Scielo (https://www.scielo.org/). The keywords used for the search were: Nymphs, Triatominae, Hemiptera, Reduviidae, Morphology, Morphometry, Description, Ontogenetic, Instar, Description of nymphs, key, eggs, 1st, 2nd, 3rd, 4th, 5th and instars.

RESULTS

Through an extensive literature survey on immature forms of triatomines, we recovered 115 studies that explored the morphological aspects of nymphs; therefore, we updated the list presented by Galvão 2014 (Table 1).

Morphological characteristics

The morphological characteristics of the two species are presented in Figure 2. According to the genital morphology of fifth instar nymphs, the ninth ventral abdominal segment is wider in T. lenti than in T. sherlocki, as well as the presence of a hole in the posterior portion of this segment in T. lenti and its absence in T. sherlocki. The ninth ventral abdominal segment of fifth instar nymphs shows parallel grooves in the posterior region, which are most evident in T. lenti, while their presence in T. sherlocki is poorly visible. The eighth segment was trapezoidal in T. sherlocki and oval in T. lenti. The laterals were irregular at the apex. It was found that the ninth segment had few sensilla, as well as segments 7, 8, and 10. The tenth segment was curved ventrally in the posterior portion. Sexual dimorphisms of the nymphs are characterized by the size of the ninth segment ventrally, in which females have a narrow (Figure 2 A, B) while males have a wide ninth segment (Figure 2 C, D).

Species	Approach	References
Alberprosenia goyavargasi	Description of nymphs by SEM*	Carcavallo et al.29
Alberprosenia malheiroi	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars (MO*, SEM)	Carcavallo et al.30
Belminus herreri	Description and geometric morphometry of nymphs	Rocha et al.31
Cavernicola pilosa	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars (MO)	Valderrama & Lizano35
Cavernicola lenti	Description of nymphs (MO), every aspect shown by SEM	Costa et al.33
Dipetalogaster maxima	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars (MO)	Jurberg et al.34
Eratyrus mucronatus	Morphological (MO and SEM) and key	Galíndez-Girón et al.35
Linshcosteus confumus	SEMs and description of eggs	Haridas46
Linshcosteus costalis	SEMs and description of eggs	Haridas56
Linshcosteus karupus	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars by SEM	Galvão et al.37
Triatoma longipennis	Morphological (MO and SEM) and key	Galíndez-Girón et al.35
Triatoma pallidipennis	Ontogenetic morphometrics (MO)	Rodríguez-Sánchez et al.38
Triatoma phyllosoma	Morphological (MO and SEM) and key	Galíndez-Girón et al.35
Mepraia spinolai	Morphological (MO and SEM) and key	Galíndez-Girón et al.35
Microtriatoma trinidadensis	Description of nymphs (MO)	Carcavallo et al.30
Nesotriatoma flavida	Morphometrics	Jiménez and Fuentes,41
Panstrongylus geniculatus	Morphological and key (MO and SEM)	Galíndez-Girón et al.35
Panstrongylus humeralis	Morphological and key (MO and SEM)	Galíndez-Girón et al.35

Continuie...
Species	Approach	References
Panstrongylus lignarius	Morphological and key (MO and SEM)	Galíndez-Girón et al.
Panstrongylus megistus	Morphology of spiracles 5th instar nymphs	Rosa et al.
Panstrongylus megistus	Sexual distinction between 5th instar nymphs by SEM	Rosa et al.
Panstrongylus megistus	Morphology of 5th instar nymphs by SEM	Rosa et al.
Panstrongylus megistus	Abdominal structures of 5th instar nymphs	Rosa et al.
Panstrongylus megistus	Morphology of antennae of 1st, 2nd, 3rd, 4th, and 5th instars (SEM)	Rosa et al.
Paratriatoma hirsuta hirsuta	Morphology of 5th instar nymphs (MO)	Ryckman et al.
Paratriatoma hirsuta kamienstis	Morphological study (MO and SEM)	Galíndez-Girón et al.
Paratriatoma hirsuta papagoensis	Morphology of 5th instar nymphs (MO)	Ryckman et al.
Paratriatoma hirsuta pimae	Morphology of 5th instar nymphs (MO)	Ryckman et al.
Paratriatoma hirsuta yumanensis	Morphology of 5th instar nymphs (MO)	Ryckman et al.
Paratriatoma lecitharia	Description of nymphs (MO) and visualization of structures using SEM.	Rocha et al.
Psamolestes arthuri	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars (MO)	Carcavallo et al.
Psamolestes coreodes	Morphological (MO and SEM) and key	Galíndez-Girón et al.
Rhodnius brethesi	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars	Mascarenhas et al.
Rhodnius dalessandroi	Morphological and key (MO and SEM)	Galíndez-Girón et al.
Rhodnius ecuadoriensis	Morphological and key (MO and SEM)	Galíndez-Girón et al.
Rhodnius neglectus	Morphology of spiracles 5th instar nymphs	Rosa et al.
Rhodnius neglectus	Sexual distinction between 5th instar nymphs by SEM	Rosa et al.
Rhodnius neglectus	Morphology of 5th instar nymphs by SEM	Rosa et al.
Rhodnius neglectus	Abdominal structures of 5th instar nymphs	Rosa et al.
Rhodnius neglectus	Morphometry of 1st, 2nd, 3rd, 4th, and 5th instars (MO)	Rosa et al.
Rhodnius neglectus	Morphology of antennae of 1st, 2nd, 3rd, 4th, and 5th instars (SEM)	Rosa et al.
Rhodnius neglectus	Description of nymphs (MO) and visualization of structures using SEM.	Mascarenhas et al.
Rhodnius neglectus	Morphological and key (MO and SEM)	Galíndez-Girón et al.
Rhodnius neivai	Morphological and key (MO and SEM)	Galíndez-Girón et al.
Rhodnius pallescens	Morphological and key (MO and SEM)	Galíndez-Girón et al.
Rhodnius pallescens	Morphometric of 1st, 2nd, 3rd, 4th, and 5th instars (MO)	Marconato et al.
Rhodnius prolixus	Morphology of spiracles 5th instar nymphs	Rosa et al.
Rhodnius prolixus	Sexual distinction between 5th instar nymphs by SEM	Rosa et al.
Rhodnius prolixus	Abdominal structures of 5th instar nymphs	Rosa et al.
Rhodnius prolixus	Morphology of antennae of 1st, 2nd, 3rd, 4th, and 5th instars (SEM)	Rosa et al.
Rhodnius prolixus	Morphology and key (MO and SEM)	Galíndez-Girón et al.
Rhodnius pictipes	Description of nymphs by MO	Lent & Valderrama
Triatoma arthurneivai	Nymphal instars by SEM	Rosato et al.
Triatoma arthurneivai	Description of nymphs (MO) and visualization of structures using SEM	Rocha et al.
Triatoma arthurneivai	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars (MO, SEM)	Carcavallo et al.
Triatoma arthurneivai	Description of nymphs (MO) and visualization of structures using SEM	Jurberg et al.
Triatoma breyeri	Description and keys for all instars.	Rosa & Barata, et al.
Triatoma breyeri	Morphological and key (MO and SEM)	Galíndez-Girón et al.
Triatoma caracvallo	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars (MO)	Jurberg et al.
Continuie...		
Species	Approach	References
------------------------------	--	-------------------------------------
Triatoma circummaculata	Morphology of the head of 1st and 5th instar nymphs and visualization of some structures by SEM	Rosa et al. [55,56]
Triatoma costalimai	Description and ontogenetic morphometrics of instars	Raigorodschi et al. [57]
Triatoma deaneorum	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars (MO)	Galvão & Fuentes [59]
Triatoma delpontei	Morphological and key (MO and SEM)	Galindez-Girón et al. [25,26]
Triatoma dimidiata	Morphological study of nymphs (MO and SEM)	Mello et al. [62]
Triatoma dispar	Morphological and key (MO and SEM)	Galindez-Girón et al. [25,26]
Triatoma eratyrusiformis	Morphological and key (MO and SEM)	Galindez-Girón et al. [25,26]
Triatoma gerstaeckeri	Morphological study of nymphs (MO and SEM)	Galindez-Girón et al. [25,26]
Triatoma guasayana	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars (MO)	Brewer & Garay [63]
Triatoma guazu	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars (MO and SEM)	Silva et al. [64]
Triatoma infestans	Comparative study of striatalium sulcus, buccula and rostrum	Galindez-Girón et al. [25,26]
Triatoma jurbergi	Sexual distinction between 5th instar nymphs by SEM	Rosa et al. [65]
Triatoma klugi	Abdominal structures of 5th stage nymphs	Rosa et al. [66]
Triatoma lenti	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars (MO, MEV)	Jurberg et al. [67]
Triatoma maculata	Comparative study of striatalium sulcus, buccula and rostrum	Silva et al. [68]
Triatoma matogrossensis	Description of nymphs (MO) and visualization of structures using SEM.	Jurberg et al. [69,70]
Triatoma melanocephala	Morphological and key (MO and SEM)	Galindez-Girón et al. [35]
Triatoma melasoma	Morphometric characterization of the nymphal instars	Oliveira et al. [71]
Triatoma nitida	Morphological study of nymphs (MO and SEM)	Galindez-Girón et al. [35]
Triatoma pintodiasi	Abdominal structures of 5th instar nymphs	Rosa et al. [72]
Triatoma platensis	Sexual distinction between 5th instar nymphs by SEM	Rosa et al. [73]
Triatoma protacta	Morphology and key of 5th instar nymphs of species and subspecies	Ryckman [74]
Triatoma pseudomaculata	Morphometric of 1st, 2nd, 3rd, 4th, and 5th instars (MO and SEM)	Gonçalves et al. [75]
Triatoma ryckmani	Description of all immature instars based on MO and SEM	Rocha et al. [76]
Triatoma rubrofasciata	SEM	Haridass [77]
Triatoma rubrovaria	Morphology of the head of 1st and 5th instar nymphs	Rosa et al. [78]
	Antenna morphometry	Rosa et al. [78]
	Morphological and key (MO and SEM)	Galindez-Girón et al. [25,26]

Continuie...
TABLE 1: Continuation.

Species	Approach	References
Triatoma sordida	Morphometry of 1st, 2nd, 3rd, 4th, and 5th instars	Brewer et al. 92
	Description of nymphs of 1st, 2nd, 3rd, 4th, and 5th instars (MO)	Brewer et al. 61
	and keys for all instars	Brewer & Garay 53
	Morphology and key (MO and MEV)	Galíndez-Girón et al. 36
Triatoma tibiamaculata	Abdominal structures of 5-instar nymphs	Rosa & Barata 46
Triatoma vandae	Description of nymphs (MO) and visualization of structures using SEM.	Silva et al. 72
	Comparative study of the stridulatorium sulcus, buccula and rostrum of nymphs	Silva et al. 57
Triatoma vitticeps	Antenna morphometry and morphology	Rosa et al. 45
	Morphology compared to other Reduviidae	Weirauch 73
Triatoma williami	Description of nymphs (MO) and visualization of structures using SEM.	Silva et al. 72
	Comparative study of the stridulatorium sulcus, buccula and rostrum of nymphs	Silva et al. 57
	Morphology and key (MO and SEM)	Galíndez-Girón et al. 36
Diverse species	Some structures and key for Triatominae (MO and SEM)	Galíndez-Girón et al. 35

MO: optical microscope, SEM: Scanning electron microscope.

FIGURE 2: Ventral view of the terminal segments of the male and female fifth instar nymph of *T. sherlock* and *T. lenti*. (A) Female of *T. sherlock*, (B) Female of *T. lenti*, (C) Male of *T. sherlock*, (D) Male of *T. lenti*. X, IX, VIII: tenth, ninth, eighth ventral abdominal segment.
Morphometric characteristics

Morphometric characteristics of the two species are presented in Table 2. The averages of the total length of heads in *T. sherlocki* and *T. lenti* were 1.34 and 1.42 mm, 1.84 and 1.83 mm, 2.65 and 2.93 mm, 3.61 and 3.86 mm, and 4.56 and 4.53 mm in the first, second, third, fourth, and fifth instar, respectively.

The averages of the total length of thoraxes in *T. sherlocki* and *T. lenti* were 0.98 and 0.99 mm, 1.43 and 1.43 mm, 2.08 and 2.02 mm, 2.93 and 3.26 mm, and 4.68 and 5.29 mm in the first, second, third, fourth, and fifth instar, respectively.

The averages of the total length of abdomens in *T. sherlocki* and *T. lenti* were 1.75 and 1.57 mm, 3.17 and 3.04 mm, 5.24 and 5.60 mm, 6.68 and 6.63 mm, and 11.29 and 11.14 mm in the first, second, third, fourth, and fifth instar, respectively. The mean lengths of the abdomen were larger than those of the head, which were larger than those of the thorax in the first stage nymphs in both *T. lenti* and *T. sherlocki*. As in the first stage nymphs, the average abdominal length in second instar nymphs was longer than those of the head and the thorax nymphs for both species.

In *T. lenti* and *T. sherlocki*, the highest measurement observed was the total length of the abdomen that was longer than the head as well as the thorax. The average lengths of the abdomen were higher than those of the head as well as those of the thorax for *T. lenti* and *T. sherlocki*. Abdomen and eye diameter measurements showed no significant difference between *T. lenti* and *T. sherlocki* (Table 2: p<0.001). Analyzing the fifth instar nymphs of the two species, we found that the abdomen was the largest segment, and unlike the other nymphal instars, the thorax was larger than the head in the fifth stage nymphs of both species.

The PO, IE, and AO followed an ascending order: first instar > second instar > third instar > fourth instar > fifth instar, for both species (Table 2). Among these parameters, the largest length was

Parameters	Triatoma sherlocki	Triatoma lenti								
	1st	2nd	3rd	4th	5th	1st	2nd	3rd	4th	5th
Total length of head (mm)	1.34 ± 0.03	1.84 ± 0.05	2.65 ± 0.06	3.61 ± 0.17	4.56 ± 0.14	1.42 ± 0.08	1.83 ± 0.05	2.93 ± 0.06	3.86 ± 0.12	4.39 ± 0.16
Outer distance between the eyes (OE) (mm)	0.25 ± 0.01	0.39 ± 0.03	0.53 ± 0.03	0.69 ± 0.04	0.94 ± 0.04	0.24 ± 0.01	0.36 ± 0.03	0.53 ± 0.04	0.70 ± 0.03	0.93 ± 0.03
Inner distance between the eyes (IE) (mm)	0.51 ± 0.01	0.66 ± 0.02	0.92 ± 0.03	1.23 ± 0.07	1.54 ± 0.05	0.55 ± 0.02	0.68 ± 0.02	1.01 ± 0.03	1.29 ± 0.03	1.69 ± 0.07
Postocular distance (PO) (mm)	0.24 ± 0.02	0.31 ± 0.03	0.41 ± 0.02	0.53 ± 0.04	0.60 ± 0.04	0.28 ± 0.03	0.30 ± 0.02	0.48 ± 0.03	0.60 ± 0.04	0.88 ± 0.04
Ante-Ocular distance (AO) (mm)	0.83 ± 0.02	1.20 ± 0.04	1.81 ± 0.04	2.50 ± 0.01	3.21 ± 0.12	0.89 ± 0.04	1.22 ± 0.04	1.95 ± 0.05	2.66 ± 0.07	3.65 ± 0.15
Total thorax length (mm)	0.98 ± 0.03	1.43 ± 0.05	2.08 ± 0.06	2.93 ± 0.15	4.68 ± 0.18	0.99 ± 0.05	1.43 ± 0.05	2.02 ± 0.05	3.26 ± 0.11	5.29 ± 0.15
Total abdomen length (mm)	1.75 ± 0.11	3.17 ± 0.24	5.24 ± 0.23	6.68 ± 0.42	11.29 ± 0.39	1.57 ± 0.10	3.04 ± 0.13	5.60 ± 0.22	6.33 ± 0.33	11.14 ± 0.75
Proboscis 1st segment (1S) (mm)	0.29 ± 0.03	0.43 ± 0.02	0.58 ± 0.04	0.84 ± 0.04	1.18 ± 0.07	0.29 ± 0.03	0.40 ± 0.02	0.6 ± 0.04	0.85 ± 0.03	1.19 ± 0.06
Proboscis 2nd segment (2S) (mm)	0.65 ± 0.02	1.0 ± 0.04	1.35 ± 0.04	1.85 ± 0.07	2.50 ± 0.08	0.64 ± 0.02	0.98 ± 0.03	1.48 ± 0.03	1.94 ± 0.06	2.58 ± 0.09
Proboscis 3rd segment (3S) (mm)	0.35 ± 0.02	0.54 ± 0.01	0.69 ± 0.02	0.93 ± 0.03	1.26 ± 0.05	0.36 ± 0.02	0.52 ± 0.02	0.72 ± 0.02	0.97 ± 0.02	1.22 ± 0.06
the distance before the eye, and the smallest was the diameter of
the eyes and the distance between both *T. lenti* and *T. sherlocki*.

The first, second, and third proboscis segment lengths were
in the following order: first segment > third segment > second
(*Table 2*). In fifth stage nymphs, the second and third segments
showed significant differences in their length for both species. In
both cases, it was observed that the second segment was larger
than the third and this was larger than the first for all nymphal
instars (*Table 2*). After measuring and performing statistical analysis
on the three segments of the proboscis in first stage nymphs, it
was observed that only the second segment showed a significant
difference, while the first and third segments did not show
significant differences between *T. lenti* and *T. sherlocki* (*Table 3*).

Comparisons between proboscis segments and head and
abdomen lengths of the two species are presented in *Table 3*. In the
second instar nymphs, the three segments of the proboscis revealed
measurements that showed significant differences, according to the
statistical analysis, for the two species. In the third and fourth instar
nymphs, measurements of the second and third proboscis segments
showed a significant difference between *T. lenti* and *T. sherlocki* (*Table 3*).

In the first instar nymphs, statistical analyses revealed significant
differences in total head and abdominal length measurements. Thorax
measurements were not different between the two species. Regarding
the measurements of head parameters of the first stage nymphs,
the distance between the anterior, postocular, interocular, and eye
diameters were significantly different when comparing *T. lenti* and
T. sherlocki. Statistical analysis showed significant differences only
for interocular distance and eye diameter in second instar nymphs.

Measurements of the thorax, abdomen, ante-ocular distance,
postocular distance, and total head length revealed no significant
differences between the two species (*Table 3*). For the third instar
nymphs, all measurements except for the eye diameter and first
proboscis segment measurements, showed significant differences
between both species, (*Table 3*). For the fourth instar nymphs, all
parameters showed statistically significant differences, except for
the eye diameter and first segment of the proboscis, as was also
observed for the third instar nymphs (*Table 3*). The measurements
total head length, ante-ocular distance, postocular distance,
and interocular and thorax distance of fifth instar nymphs were
significantly different between the two species.

Principal component analysis

The main components (PCA1 and PCA2) are presented through
biplot graphics showing the morphometric variability between *T.
lenti* and *T. sherlocki*. The total size of the head was responsible
for greater discrimination between the studied specimens.
Alternatively, PC1 and PC2 were 99.569% and 0.431% for the
first stage nymphs (*Supp. Figure 1*), 99.966% and 0.034% for the
second stage (*Supp. Figure 2*), 99.937% and 0.062% for the
third stage (*Supp. Figure 3*), 99.791% and 0.208% for the fourth
(*Supp. Figure 4*), and 99.84 and 0.15% for the fifth (*Supp. Figure 5*).

DISCUSSION

Studies on immature forms of triatomines are relevant to
taxonomy and provide important information for the understanding
of several biological aspects of these vectors. In this study, a list of
works with immature forms were presented and a morphological
characterization of five nymphal instars of *T. lenti* and *T. sherlocki*,
species that are closely related phylogenetically, were described.
Triatoma lenti and T. sherlocki have reproductive compatibility with other members of the species T. brasiliensis subcomplex, which are frequently found in dwellings and infected with T. cruzi; therefore, they are potential vectors of Chagas disease. Costa et al. conducted a comparative morphological analysis of the external genital structures and eggs of T. brasiliensis to differentiate chromatic forms. Gonçalves et al. used classic and geometric morphometry as a tool to distinguish T. jatari from other species. Mendonça et al. used morphological, morphometric, molecular, and cytogenetic approaches as well as experimental crosses to revalidate the specific status of T. bahiensis and differentiate it from T. lenti. Combining morphometric and molecular approaches has provided important clues about the T. brasiliensis complex, which includes the species and subspecies T. lenti, T. petrocchiae, T. b. brasiliensis, T. b. macromelasoma, T. juazeirensis, T. sherlocki, T. melanica, and T. bahiensis.

In the present study, using SEM images, morphological differences were observed in the ninth ventral abdominal segment of female and male nymphs of the fifth instar. Comparing the morphology of the ninth ventral abdominal segment of male and female nymphs in the fifth instar of the species T. melanocephala Neiva & Pinto, 1923, T. brasiliensis, T. infestans, T. matogrossensis Leite and Barbosa, 1953, T. tibiamiculata (Pinto, 1926), T. lenti, and T. sherlocki, it can be seen that seven of these species differ by this character. This indicates that the shape and size of the ninth abdominal segment in fifth instar nymphs may be taxonomically valid.

The measurements of the head, thorax, and abdomen served to better characterize and distinguish T. lenti and T. sherlocki across their evolutionary instars, as well as in the comparative analysis of nymphal instars of other species of the Triatoma genus. The combination of morphometric and morphological approaches provides important clues about the delimitation of the complex. Oliveira et al. morphometrically analyzed the species of the T. brasiliensis complex and showed that the variations in the shape of the head were statistically significant. The wings showed sexual dimorphism in shape, while the heads were not dimorphic as expected.

In this study, as in all other nymphal instars, we found that the largest measurement among the head measurements was the anocular distance and the smallest was the postocular distance. In the morphometry, all parameters in the first instar, except the average eye diameter and the first and third proboscis segments, were significantly different between T. lenti and T. sherlocki. Measurements of interocular distance, eye diameter, and the three segments of the proboscis revealed significant differences between the second instar nymphs of T. lenti and T. sherlocki. The third and fourth instar nymphs showed significant differences in the measurements of the abdomen, head, thorax, ante-ocular, interocular, postocular, and second and third proboscis segments. In the fifth instar, measurements of thorax length, head length, ante-ocular, interocular, postocular, and second and third proboscis segments showed significant differences in taxonomic differentiation between T. lenti and T. sherlocki. In all nymphal instars, the total length measurement ratio were in the following order: abdomen > head > thorax. In Triatoma melanocephala Neiva & Pinto, 1923, the nymphal instars presented the following length pattern: in the first instar, thorax > abdomen > head; in the second instar, abdomen > head > thorax; and in the third, fourth, and fifth instars, abdomen > thorax > head.

In all nymphal instars of T. lenti and T. sherlocki, it was observed that the second segment of the proboscis was larger than the third which was larger than the first segment. In T. melanocephala nymphs, it was found that specimens in the first three nymphs presented the same length order (2 > 3 > 1), while those in the fourth and fifth instars, along with the adults, possessed mouthpart segments of the same order (2 > 1 > 3). The main components (PC1 and PC2) illustrated the differences between the studied parameters and showed that the total size of the head is or that it discriminates against T. lenti and T. sherlocki.

Studies on nymphs are crucial for the systematic development of certain groups. However, the literature on immature forms of certain groups is scarce, difficult to use, or nonexistent. Epidemiological studies and control measures require precise taxonomic determination of T. brasiliensis subcomplex. Therefore, this study provides morphological and morphometric data on the nymphal instars of T. lenti and T. sherlocki, corroborating the specific taxonomy of these species.

ACKNOWLEDGMENTS

The authors are thanks to Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). Thanks to the São Paulo State University (Unesp), Faculty of Pharmaceutical Sciences. The authors also thank the researchers and students of the Parasitology Laboratory at the same institution. We thank the members of the Institute of Biology at the State University of Campinas (Unicamp).

FINANCIAL SUPPORT

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, process numbers 2008/55000-7). Coordenação de Pessoal de Nível Superior (Capes) - Finance Code 001. Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq, PQ-2, process 307 398/2018-8.

AUTHORS’ CONTRIBUTION

JAR: Conception, design study and data acquisition. VFP: Writing, Formal analysis and investigation, review, and editing. TB: Writing, Methodology, review, editing, Formal analysis, and investigation. JO: Writing, data acquisition, review, and editing. VJM: Review, data acquisition and editing. LAR: Supervision, Conception, and design study.

ORCID

Leandro Augusto Rosseto: 0000-0003-2085-2000 Viniçius Fernandes De Paiva: 0000-0002-0895-1543 Tiago Belintani: 0000-0001-9485-1145 Jader de Oliveira: 0000-0002-2588-1911 Vagner José Mendonça: 0000-0003-0838-6764 João Aristeu Da Rosa: 0000-0001-6318-3025

Rev Soc Bras Med Trop | on line | Vol.: 54 | (e0394-2021) | 2021
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

REFERENCES
1. Chagas C. Nova tripanozomize humana: estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiologico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz. 1909;12(4):159-218. Available from: http://dx.doi.org/10.1590/S0074-0276190900000200008.
2. Monteiro FA, Weirach C, Felix M, Lazosz C, Abad-Franch F. Chapter Five - Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. Adv Parasitol. 2018;99:265-344. Available from: https://doi.org/10.1016/bs.apar.2017.12.002.
3. Almeida CE, Folly-Ramos E, Peterson AT, Lima-Neiva V, Gumieli M, Duarte R, et al. Could the bug Triatoma sherlocki be vectoring Chagas disease in small mining communities in Bahia, Brazil? Med Vet Entomol. 2009;22(4):410-7. Available from: https://doi.org/10.1111/j.1365-2915.2009.00822.x.
4. Costa J, Lorenzo M. Biology, diversity and strategies for monitoring and control of triatomines the Chagas disease vectors. Mem Inst Oswaldo Cruz. 2009;104(Suppl 1):46-61. Available from: http://dx.doi.org/10.1590/S0074-02762009000900008.
5. Correia N, Almeida CE, Lima-Neiva V, Gumieli M, Dornak LL, Lima MM, et al. Cross-experimenting mates detect reproductive compatibility between Triatoma sherlocki and other members of the Triatoma brasiliensis species complex. Acta Trop. 2013;128(1):162-7. Available from: http://dx.doi.org/10.1016/j.actatropica.2013.06.019.
6. Galvão C, org. Vetores da doença de chagas no Brasil [online]. Curitiba: Sociedade Brasileira de Zoologia, 2014, 289 p. Zoologia: guias e manuais de identificação série. ISBN 978-85-98203-09-6.
7. Alevi KCC, Oliveira J, Garcia ACC, Cristal DC, Delgado LMG, Freitas Bittinelli I, et al. Triatoma rosai sp. nov. (Hemiptera, Triatominae): A new Species of Argentinian Chagas Disease vector described based on Integrative Taxonomy. Insects. 2020;11,830.
8. Dale C, Justi SA, Galvão C. Belminus santosmalletae (Hemiptera: Heteroptera: Reduviidae): new species from Panama, with an updated key for Belminus Stål, 1859. Species Insects. 2021, 12.8: 868.
9. Dale C, Almeida CE, Mendonca VJ, Oliveira J, Rosa JA, Galvao C, Costa J. An updated and illustrated dichotomous key for the Chagas disease vectors of Triatoma brasiliensis species complex and their epidemiologic importance. ZooKeys. 2018; 805:33-43.
10. Oliveira J, Marcet PI, Takuya DM, Mendonça VJ, Oliveira J, Rosa JA, Galvao C, Costa J. An updated and illustrated dichotomous key for the Triatoma species complex and the Brazilins subcomplex. Acta Trop. 2017;170,140-148. Available from: https://doi.org/10.1016/j.actatropica.2017.02.020.
11. Alevi KCC, Bittinelli IF, Delgado LMG, Madeira FF, Oliveira J, Lilioso M, et al. Combined phylogenetic and morphometric information to delimit and unify the Triatoma brasiliensis species complex and the Brasilins subcomplex. Acta Trop. 2020; 201:105225.
12. Sherlock IA, Serafim EM. Triatoma lentii sp.n., Triatoma pessoii sp.n e Triatoma bahiensis sp. n do Estado da Bahia, Brasil (Hemiptera, Reduviidae). Gaz Méd da Bahia. 1967;67;75-92.
13. Lent H, Wygodzinsky P. Revision of the Triatominae (Hemiptera, Reduviidae) and their significance as vectors of Chagas’ disease. Bull Am Mus Nat Hist. 1979; 163:123-520.
14. Mendoça VJ, Alevi KC, Pinotti H, Gurgel-Goçalves R, Pita S., Guerra AL, et al. Revalidation of Triatoma bahiensis Sherlock & Serafim, 1967 (Hemiptera: Reduviidae) and phylogeny of the T. brasiliensis species complex. Zootaxa. 2016;4107(2), 239-54. Available from http://dx.doi.org/10.11646/zootaxa.4107.2.6.
15. Cerqueira RL, Castanho MLS, Kawarabayashi M, Hyakutake S. Inquérito sorológico epidemiológico da doença de Chagas no Distrito de Santo Inácio, Município de Gentio do Ouro, Bahia, Brasil. São Paulo Med J. 1976; 87, 138-139.
16. Papa AR, Jurberg J, Carcavallo RU, Cerqueira RL, Barata JMS. Triatoma sherlocki sp. n. collected in Bahia, Brazil (Hemiptera, Reduviidae, Triatominae). Entomol. vectors. 2002; 9(1),133-46.
17. Dujardin JP. Morphometric applied to medical entomology. Infect Genet Evol.2008;Dec;8(6):875-90. doi: 10.1016/j.meegid.2008.07.011.
18. Galindo-Girón I, Torres E. Morfometría en la sistémática y ecología dos triatominae. In Carcavallo RU, Galindes Girón I, Jurberg J, Lent H, editors. Atlas dos vetores da Doença de Chagas nas Américas. Rio de Janeiro: Fiocruz, 1999;1115-60.
19. Jaramillo ON, Castillo D, Wolff EM. Geometric morphometric differences between Panstrongylus geniculatus from field and laboratory. Mem Inst Oswaldo Cruz. 2002;97(5),667-673. Available from http://dx.doi.org/10.1590/S0074-02762002000500015.
20. Belintani T, Oliveira J, Pinotti H, Silva LA, Chiboli KAC, et al. Phylogenetic and phenotypic relationships of the Triatoma sordida subcomplex (Hemiptera: Reduviidae: Triatominae). Acta Trop. 2020;2012, 105679.
21. Costa J, Freitas-Silajev MGR, Marchon-Silva V, Pires MQ, Pacheco RS. Isoenzymes detect variation in populations of Triatoma brasiliensis (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz. 1997;92,459-464. Available from http://dx.doi.org/10.1590/S0074-02761997000400002.
22. Borges EC, Dujardin JP, Schofield CJ, Romanha AJ, Diotaiauí L. Dynamics between sylvatic, peridomestic and domestic populations of Triatoma brasiliensis (Hemiptera: Reduviidae) in Ceará State, Northeastern Brazil. Acta Trop. 2002;93(1), 119-126. Available from: https://doi.org/10.1016/j.actatropica.2004.10.002.
23. Batista VSP, Fernandes FA, Cordeiro-Estraela P, Sarquis O, Lima MM. Ecotope effect in Triatoma brasiliensis (Hemiptera: Reduviidae) suggests phenotypic plasticity rather than adaptation. Med Vet Entomol. 2013;27(3),247-254. Available from: https://doi.org/10.1111/j.1365-2915.2012.01043.x.
24. Schofield CJ, Galvão C. Classification, evolution, and species groups within the Triatominae. Acta Trop. 2009;110(2-3),88-100.
25. Souza RDM, Campolina-Silva, GH, Bezerra CM, Diotaiauí L, Gorla DE. Does Triatoma brasiliensis occupy the same environmental niche space as Triatoma melanocephala? Parasit Vectors. 2015;8(1), 361. Available from https://doi.org/10.1186/s13071-015-0973-4.
26. Rosa JA, Barata JMS, Barelli N. Spiracles of 5th instar nymphs in six species of Triatominae (Hemiptera, Reduviidae) using scanning electron microscopy. Mem Inst Oswaldo Cruz, 1992;87:301-302.
27. Dujardin J, Steinden M, Chavez T, Machane M, Schofield C. Changes in the sexual dimorphism of triatominae in the transition from natural to artificial habitats. Mem Inst Oswaldo Cruz. 1999;94,565-569. Available from http://dx.doi.org/10.1590/S0074-02761999000400002.
28. Øyvind H, Harper DAT, Ryan PD. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeo. 2002; ELECT v4, issue 1, art. 4: 9pp., 178kb. Available from: http://palaeo-electonica.org/2003_1/past/issue1_01.htm.
29. Carcavallo RU, Justo NS, Martínez AM. Descripción de las ninfa de II, II y IV estadio de Alberprosenia gayovargasi Martínez & Carcavallo, 1977 (Hemiptera, Reduviidae, Triatominae). Observaciones com microscopía electronica de barrido. Bol Dir. Malaria San Amb. 1978;18(2):132-131.
30. Carcavallo RU, Barata JMS, Costa AP, Serra OP, Alberprosenia Mataheiro Serra, Atzingen & Serra, 1987 (Hemiptera, Reduviidae). Redescr. e Binomia. Rev Saude Publica. 1995;29(6):488-495.
31. Rocha DS, Patterson JM, Sandoval CM, Juberg J, Angulo VM, Esteban I, Galvão C. Description and Ontogenetic Morphometrics of Nymphs of Belminus herrei Lent & Wygodzinsky (Hemiptera: Reduviidae, Triatininae). Neotrop Entomol. 2005; 34(3): 491-497. Available from https://doi.org/10.1590/S1515-556X2005000300019.

32. Valderrama A, Lizano E. Fases ninfais de Cavernicola pilosa Barber, 1937 halladas en las cercanias de Caracas Venezuela (Hemiptera, reduviídeas, triatininae). Rev Bras Biol. 1976; 937-960.

33. Costa J, Juberg J, Barth OM. Estudos morfológicos de Cavernicola lenti Barrett & Arias, 1985 (Hemiptera, Reduviidae, Triatininae). Mem Inst Oswaldo Cruz. 1991; 86:247-263.

34. Juberg J, Fagundes LM, Barth OM. Estudo morfológico de ovos e ninfas de Dipetalogaster maxima (Uhler, 1894) (Hemiptera: Reduviidae: Triatininae). Rev Bras Biol. 1993;53:269-283.

35. Galindo-Girón I, Rocha DS, Lent H, Carcavallo RU, Juberg J, Galvão C, Barbosa HS, et al. Nymphal stages. In: Carcavallo RU, Galíndez Girón I, Rocha DS, Lent H, Carcavallo RU, Jurberg J, Galvão C, Costa J, Jurberg J, Barth OM. Estudos morfológicos de ovos e ninfas de Triatoma carcavalloi. (Stål, 1872) (Hemiptera: Reduviidae: Triatininae). Zootaxa. 2011;3062(1),13-24.

36. Haridass ET.Ultrastructure of the eggs of Reduviidae: III. Eggs of Triatomininae and Ectrichodininae (Insecta- Heteroptera). Proc Indian Natl Sci Acad B Biol Sci. 1986;52(6),861-872.

37. Galvão C, McAlonan FM, Rocha DS, Schaefer CW, Patterson J, Juberg J. Description of eggs and nymphs of Linschosteus karupus (Hemiptera: Reduviidae: Triatininae). Ann Entomol Soc Am. 2005;98(6),861-872.

38. Rodríguez-Sánchez M, Alejandro-Aguilar R, Noguera-Torres B. Development of Genital Plates in Nymphs of Triatoma pallidipennis (B. Galvão & Col., 1967). Rev Goiana Zool. 1987;3(5-6): 125-135.

39. Carcavallo RU, Barreto P, Martínez A, Tonn RJ. The genus Triatoma (Hemiptera, Reduviidae). Mem Inst Oswaldo Cruz. 1992;87(2),8.

40. Lent, H, Valderrama A. Observações em laboratório, sobre o ciclo evolutivo de R. prolixus Stal, 1859, R. pictipes Stal, 1872 e R. neivai Lent, 1953. Rev Bras Biol. 1977;37:325-344.

41. Rocha DS, Juberg J, Rosa JA, Schaefer CW, Galvão C. Description of eggs and nymphal instars of Triatoma baratai Carcavallo & Juberg, 2000 based on optical and scanning electron microscopy (Hemiptera: Reduviidae: Triatininae). Zootaxa. 2009; 2064:1-20.

42. Jurberg J, Gonçalves TCM, Costa JM, Souza W. Contribuição ao estudo morfológico de ovos e ninfas de Triatoma brasiliensis Neiva, 1911 (Hemiptera, Reduviidae, Triatininae). Mem Inst Oswaldo Cruz. 1968;81:111-20.

43. Jurberg J, Galvão C, Santos, CM, Rangel MBA. Comentários ao estudo de ovos e ninfas de Triatoma circummaculata e Triatoma rubrovaria (Hemiptera, Reduviidae). Rev Saude Publica. 2000; 34:358-362.

44. Raigorodski RS, Rocha DS, Jurberg J, Galvão C. Description and ontogenetic morphometrics of eggs of nymphs and instars of Triatoma costalimai Verano & Galvão, 1959 (Hemiptera: Reduviidae: Triatininae). Zootaxa. 2011;3602(1),13-24.

45. Galvão AB, Fuentes FB (1971) Descrição das ninhas de Triatoma williami (B. Galvão & Col., 1965) e T. deanei (B. Galvão & Col., 1967). Rev Goiana Med. 1971;17:141-145.

46. Brewer M, Garay M, Gorla D, Favor R. Caracterização dos estádios ninfais do género Triatoma Laporte, 1833. II. Triatoma platensis Neiva, 1913, Triatoma delponte Romay e Abalos, 1947, Triatoma sordida (Stål) 1859 (Hemiptera: Reduviidae). Rev Soc Entomol Argent. 1983, 42: 219-241.

47. Brewer M, Goray D, Garay M. Caracterización de los estados ninfales del género Triatoma Laporte, 1833. Análisis biometrico descriptivo de Triatoma infestans Klug, 1834; Triatoma platensis Neiva, 1913; Triatoma delponte Romay e Abalos, 1947, Bibliografia 268 Voltar ao Sumário

48. Carcavallo RU, Otero MA, Toon RJ, Ortega R. Notas sobre la biología, ecología y distribucion geografica del Psammolestes arthuri (Pinto), 1926 (Hemiptera, Reduviidae). Descripción de los estádios preimaginales. Bol Dir Malaria San Amb. 1975; 15(5):231-239.

49. Ponsoni EJ, Marconato E, Rosa JA. Estudo biológico e morfométrico dos estádios ninfais de Rhodnius neglectus Lent, 1954 (Hemiptera, Reduviidae) Rev Cienc Farm, Araraquara, 2004;25(2):125-128.

50. Mascearenhas BM. Descrição dos estádios imaturas de Rhodnius brethesi Matta, 1919 (Hemiptera, Reduviidae). Bol Mus Par Emilio Goeldi, ser. Zool. 1987;3(5-6): 125-135.

51. Marconato E, Ponsoni EJ, Barata JMS, Rosa JA. Estudo biológico e biométrico dos estádios ninfais de Triatoma prolixus Stål,1859 (Hemiptera, Reduviidae) sob condições laboratoriais. Rev Ciênc Farm Basica Ap. 2006;27(2):157-161.

52.校正
Rosseto LA et al. - Phenetics of nymphs of two species Triatoma

IV. Especies peridomiciliadas en la provincia de Cordoba Argentina. Rev Soc Entomol Argent. 1989;45:279-297.

64. Silva MBA, Barbosa HS, Carvalho RU, Galvão C, Jurberg J. Placas apicais do lábio das ninhas de 1 estádio de Triatoma guazu Lent & Wygodzinsky, 1979 e Triatoma jurbergi Carvalho, Galvão & Lent, 1998 (Hemiptera, Reduviidae), vetores da doença de Chagas. Entomol Vect. 1999;6:663-668.

65. Silva MBA, Barbosa HS, Jurberg J, Galvão C, Carvalho RU. Comparative ultrastructural analysis of the antennae of Triatoma guazu and Triatoma jurbergi (Hemiptera: Reduviidae) during the nymphal stage development. J. Med. Entomol. 2002; 39:705-715.

66. Jurberg J, Silva MBA, Galvão C, Rocha DS, Barbosa H, Carvalho RU. Descrição dos ovos e dos estádios ninfares de Triatoma jurbergi Carvalho, Galvão & Lent, 1998 vistos através de microscopia óptica e eletrônica de varredura (Hemiptera, Reduviidae). Mem Inst Oswaldo Cruz. 2002;97:209-216. Available from https://doi.org/10.1590/S0074-02762002000200013.

67. Silva MBA, Jurberg J, Galvão C, Barbosa HS. Comparative study of the stridulatorium sulcus, buccula and rostrum of nymphs of Triatoma klugi Carvalho et al., Triatoma vandae Carvalho et al. and Triatoma williami Galvão et al. (Hemiptera:Reduviidae). Neotrop Entomol. 2010;39: 35-45.

68. Oliveira J, Mendonça VJ, Araújo RF, Nascimento EG, Rosa JA. Biological, morphological and morphometric studies of Triatoma melanosoma Neiva & Pinto, 1923 (Hemiptera: Reduviidae: Triatominae). Zootaxa. 2015;4012(3),514-524. Available from http://dx.doi.org/10.11646/zootaxa.4012.3.6.

69. Jurberg J, Galvão C, Barth OM. Estudo morfológico de ovos e ninhas de Triatoma nitida Usinger, 1939 (Hemiptera, Reduviidae, Triatominae). Rev Bras Biol. 1991;5:365-372.

70. Motta FS, Moreira FFF. Description of the nymphs of Triatoma pintodiasi Jurberg, Cunha & Rocha, 2013 (Hemiptera: Reduviidae: Triatominae). Zootaxa. 2015; 3947(1):139-145. Available from http://dx.doi.org/10.11646/zootaxa.3947.1.10.

71. Gonçalves TCM, Jurberg J, Costa JM, Souza W. Estudo morfológico comparativo de ovos e ninhas de Triatoma maculata (Erichson, 1848) e Triatoma pseudomaculata Corrêa & Espinola, 1964 (Hemiptera, Reduviidae, Triatominae). Mem Inst Oswaldo Cruz. 1985;80(3),263-276. Available from https://doi.org/10.1590/S0074-02761985000300002.

72. Silva MBA, Jurberg J, Barbosa HS, Rocha DS, Carvalho RU, Galvão. Comparative morphology of eggs and nymphs of Triatoma vandae Carvalho, Jurberg, Rocha, Galvão, Noireau & Lent, 2002 and Triatoma williami Galvão, Souza & Lima, 1965 (Hemiptera, Reduviidae, Triatominae). Mem Inst Oswaldo cruz. 2005;100:549-561.

73. Weirachia C. Anatomy of Disguise: Camouflaging Structures in Nymphs of Some Reduviidae (Heteroptera). Am Mus Novit. 2006; (3542):1-18.

74. Mendonça VJ, Alevi KCC, Oliveira Medeiros LM, Nascimento JD, Vieira de Azeredo-Oliveira MT, et al. Cytogenetic and morphologic approaches of hybrids from experimental crosses between Triatoma lentii Sherlock & Serafin, 1967 and T. sherlocki Papa et al., 2002 (Hemiptera: Reduviidae). Infect Genet Evol. 2014;26,123-131. Available from https://doi.org/10.1016/j.meegid.2014.05.015.

75. Lima-Neiva V, Gonçalves TC, Bastos LS, Gurniel M, Correia NC, Silva CC, et al. Biology of Triatoma sherlocki (Hemiptera: Reduviidae) under laboratory conditions: biological cycle and resistance to starvation. J Med Entomol. 2017;54(4), 831-836. Available from https://doi.org/10.1093/jme/tjw249.

76. Costa J, Barth OM., Marchon-Silva V, Almeida CEDA, Freitas-Sibajev MGR, Panzer F. Morphological studies on the Triatoma brasiliensis Neiva, 1911 (Hemiptera, Reduviidae, Triatominae) genital structures and eggs of different chromatic forms. Mem Inst Oswaldo Cruz. 1997;92,493-498. Available from http://dx.doi.org/10.1590/S0074-02761997000400009.

77. Gonçalves TC, Teves-Neves SC, Santos-Mallet JR, Carabajal-de-la-Fuente AL, Lopes CM. Triatoma zayei sp. nov. in the state of Tocantins, Brazil (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz. 2013;108,429-437. Available from http://dx.doi.org/10.1590/S0074-0276108040213006.

78. Oliveira J, Ayala JM, Justi AS, Rosa JA, Galvão C. Description of a new species of Nesotriatoma Usinger, 1944 from Cuba and revalidation of synonymy between Nesotriatoma brunerii (Usinger, 1944) and N. flavida (Neiva, 1911) (Hemiptera: Reduviidae, Triatominae). J Vector Ecol. 2018;43,148-157. Available from https://doi.org/10.1111/jvec.12294.

79. Costa J, Peterson AT, Dujardin JP. Morphological, evidence suggests homoploid hybridization as a possible mode of speciation in the Triatominae (Hemiptera, Heteroptera, Reduviidae). Infect Genet Evol. 2009,9,263-270.

80. Vendrami DP, Ceretti-Junior W, Obara MT, Marrelli MT. Mitochondrial PCR-RFLP assay to distinguish Triatoma brasiliensis macromelasoma from Triatoma brasiliensis brasiliensis subspecies (Hemiptera: Reduviidae). J Trop Med. 2013;7.

81. Costa J, Argolo AM, Felix M. Redescription of Triatoma melanica Neiva & Lent, 1941, new status (Hemiptera: Reduviidae: Triatominae). Zootaxa. 2006;1385(1),47-52.

82. Ryckman R. Biosystematics and hosts of the Triatoma protracta complex in north america (hemiptera: reudviidae) (rodentia: cricetidae). Univ California Publ Entomol. Berkeley and Los Angeles. 1962;27,93-240.

83. Silva MBA, Barbos HS, Jurberg J, Galvão C, Carvalho RU. Comparative ultrastructural analysis of the antennae of Triatoma guazu and Triatoma jurbergi (Hemiptera: Reduviidae) during the nymphal stage development. J Med Entomol. 2002; 39:705-715.

84. Jurberg J, Lima MG, Rocha RS, Carvalho RU, Galvão C. Descrição dos ovos e ninhas de Triatoma melanosoma Martínez, Olmedo & Carvalho, 1987 (Hemiptera, Reduviidae). Entomol Vet.1998,5:67-84.

85. Jurberg J, Barbosa HS, Galvão C, Rocha DS, Silva M. Descrição de ovos e ninhas de Triatoma klugi (Hemiptera: Reduviidae, Triatominae). Iheringia, Sér. Zool. 2010; 100(1), 43-54. Available from https://doi.org/10.1590/ S0073-47212010000100006.

86. Belintani T, Oliveira J, Pinotti H, Alevi KCC, Nascimento JD, Sasso-Cerri E, et al. Characterization of Female External Genitalia and Eggs of Four South American Species of the Triatoma Laporte, 1832 Genus (Hemiptera: Reduviidae: Triatominae). Insects. 2021;12(6):537. Available from https://doi.org/10.3390/insects12060537.

87. Rosa JA, Medeiros MP, Cilense M, Barata JMS. Morphological study of the thorax of the five nymphal instars of Triatoma arthurneivai Lent & Martins (Hemiptera, Reduviidae, Triatominae). Rev Bra Entomol. 2005, 49(3), 289-293.

88. Rocha DDS, Dale C, Rosa JA, Galvão C. Description of nymphs and ontogenetic morphometry of Triatoma ryckmani Zeledon & Ponce, 1972 (Hemiptera: Heteroptera: Reduviidae: Triatominae). EntomBrasilis. 2020, e899. Available from https://doi.org/10.12741/ebrasilis.v13.e899.

89. Alevi KCC, de Oliveira J, de Azeredo-Oliveira MTV, da Rosa JA. Triatoma vitticeps complex (Hemiptera, Reduviidae, Triatominae): a new grouping of Chagas disease vectors from South America. Parasit Vectors. 2017, 10(1), 1-4.