Racial Differences in Urinary F2-Isoprostane Levels and the Cross-Sectional Association With BMI

Dora Il’yasova1, Frances Wang1, Ivan Spasojevic1, Karel Base1, Ralph B. D’AgostinoJr2 and Lynne E. Wagenknecht2

Levels of four urinary F2-isoprostanes (F2-IsoPs) were examined in a large sample of the Insulin Resistance Atherosclerosis Study (IRAS) multiethnic cohort: 237 African Americans (AAs), 342 non-Hispanic whites (NHWs), and 275 Hispanic whites (HWs). F2-IsoP isomers – iPF2a-III, 2,3-dinor-iPF2a-III, iPF2a-VI, and 8,12-iso-iPF2a-VI – were measured in 854 urine samples using liquid chromatography with tandem mass spectrometry detection. In AAs, levels of all four F2-IsoPs were lower compared with NHWs and HWs (P values <0.05). When stratified by BMI, this gap was not observed among participants with normal BMI but appeared among overweight participants and increased among obese participants. Examining the slopes of the associations between BMI and F2-IsoPs showed no association between these variables among AAs (P values >0.2), and positive associations among whites (P values <0.05).

Taking into account that positive cross-sectional associations between systemic F2-IsoP levels and BMI have been consistently demonstrated in many study populations, the lack of such an association among AAs reveals a new facet of racial/ethnic differences in obesity-related risk profiles.

Obesity (2012) 20, 2147–2150. doi:10.1038/oby.2012.170

INTRODUCTION

F2-isoprostanes (F2-IsoPs) present stable products of nonenzymatic oxidation of arachidonic acid by different types of free radicals, including reactive oxygen species (1). As such, these biomarkers reflect an individual’s inner oxidative environment (i.e., oxidative status) (1). Elevated F2-IsoP levels have been associated with multiple chronic conditions cross-sectionally, which commonly has been interpreted as an etiological link between oxidative stress and the disease in question (1). Specifically, type 2 diabetes (1) and its risk factors, such as obesity (2), impaired glucose tolerance (2), and insulin resistance (3), have been associated with increased F2-IsoP levels cross-sectionally.

In contrast, prospective associations between urinary F2-IsoPs and the risks of type 2 diabetes (4) and weight gain (5,6) are inverse. We have explained these prospective findings by proposing that levels of urinary F2-IsoPs reflect a beneficial physiological trait that is related to some compensatory mechanism. This would account for the positive cross-sectional and inverse prospective associations with type 2 diabetes and obesity. One possible candidate for such a physiological trait is the intensity of oxidative metabolism (7), a major endogenous source of reactive oxygen species in aerobic organisms (8). We have hypothesized that the positive association between F2-IsoPs and obesity (as assessed by BMI and waist circumference) (2) reflects long-term metabolic adaptation to higher levels of adiposity via intensification of metabolism, predominantly fat oxidation (9,10). Slow fat oxidation promotes further weight gain and obesity-related deterioration of glucose homeostasis toward frank diabetes (9,10). As an indicator of intensity of fat oxidation, low F2-IsoP levels would be expected to be inversely associated with type 2 diabetes and weight gain, as demonstrated by prospective studies (5,6).

Our previous analyses (5) revealed that in the multiethnic Insulin Resistance Atherosclerosis Study (IRAS) cohort, unadjusted urinary F2-IsoP levels were lower among African-American (AA) participants compared with whites (that is, non-Hispanic whites (NHWs) and Hispanic whites (HWs)). This finding is of interest, because AAs have greater rates of type 2 diabetes as compared with whites (11) as well as a different obesity phenotype (12) and different obesity-related risk profiles (13,14). To follow-up on this initial observation, we therefore conducted more detailed analysis of the racial differences in urinary F2-IsoP levels. We chose four F2-IsoP isomers.
Two F$_2$-IsoPs were selected from the III-series: iPF$_2$α-III was selected because it is the first isomer proposed as an index of lipid peroxidation in vivo and, therefore, is the most frequently measured isomer (1); and 2,3-dinor-iPF$_2$α-III was selected as a β-oxidation metabolite of iPF$_2$α-III, addressing a theoretical concern that renal tissues may contribute disproportionately to the total production of iPF$_2$α-III. In addition, we selected two F$_2$-IsoPs from the VI-series, iPF$_2$α-VI and 8,12-iso-iPF$_2$α-VI, because they are most abundant in human urine (15). Because of their abundance, the VI-series F$_2$-IsoPs may be more sensitive biomarkers than the III-series. Here, we particularly focus on 2,3-dinor-iPF$_2$α-III, the F$_2$-IsoP isomer that, as our earlier analyses revealed, showed stronger inverse association with the risk of weight gain and type 2 diabetes (4,5). The results for the other three F$_2$-IsoP isomers (iPF$_2$α-III, iPF$_2$α-VI, and 8,12-iso-iPF$_2$α-VI) are similar and therefore, are presented in the text but not in the table or figure.

**METHODS AND PROCEDURES**

**Study population**

The IRAS is a multicenter cohort study that recruited a total of 1,625 men and women, 40–69 years of age, from four US communities from 1992 to 1994. The study recruited approximately equal numbers of persons with normal glucose tolerance, impaired glucose tolerance, and type 2 diabetes, as well as equal numbers of NHWs, HWs, and AAs. This study included participants free from diabetes. Glucose tolerance was measured precisely at the baseline and 5-year follow-up examinations using an oral glucose tolerance test and World Health Organization criteria (16). A 75-g glucose load (Orange-dex; Custom Laboratories, Baltimore, MD) was administered over a period of <10 min. Blood was collected at 0 and 2 h. Normal glucose tolerance was defined as fasting glucose and 2-h glucose <140 mg/dl. Impaired glucose tolerance was defined as fasting glucose <140 mg/dl and 2-h glucose 140 and <200 mg/dl.

The IRAS protocol was approved by local institutional review committees, and all subjects gave informed consent. The analytical cohort included a subset of the IRAS cohort (n = 854) with normal or impaired glucose tolerance at baseline and for whom baseline urine samples were available for measurement of F$_2$-IsoP levels.

** Urinary F$_2$-IsoPs**

We specifically chose to use urine for F$_2$-IsoP analysis, although plasma samples were available for the IRAS participants. Our choice was based on our and others’ findings that urinary levels of F$_2$-IsoP are stable in urine even at room temperature and their levels are not sensitive to freeze/thaw cycles (17–19).

Morning spot urine samples were collected from participants at the baseline examination and stored at −70°C. F$_2$-IsoPs were quantified by liquid chromatography with tandem mass spectrometry detection (LC-MS/MS) on Shimadzu 20A series LC (Shimadzu Scientific Instruments, Columbia, MD) and Applied Biosystems API-4000 QTrap MS/MS instruments (Applied Biosystems, Foster City, CA) as described earlier (20). Four quantified F$_2$-IsoP isomers included iPF$_2$α-III, 2,3-dinor-iPF$_2$α-III, iPF$_2$α-VI, and 8,12-iso-iPF$_2$α-VI. Urinary F$_2$-IsoP levels were corrected for creatinine excretion to adjust for urine diluteness. Creatinine was assayed by a fast electrospray ionization–tandem mass spectrometry method (20).

**Demographic and anthropometric characteristics**

Age, race, and ethnicity were self-reported. Height and waist circumference were measured to the nearest 0.5 cm. Weight was measured to the nearest 0.1 kg. All measures were obtained in duplicate following a standardized protocol, and averages were used in the analysis. BMI was calculated as weight/height$^2$ (kg/m$^2$).

**Statistical analysis**

Student’s t-tests and χ$^2$ tests were used to assess differences in the distribution of demographic and baseline variables by race/ethnicity. Full analysis by three racial/ethnic groups was conducted for 2,3-dinor-iPF$_2$α-III as the most sensitive isomer to detect associations with weight changes and type 2 diabetes risk. General linear models were used to calculate mean levels of F$_2$-IsoPs and slopes for the correlation between F$_2$-IsoPs and BMI, adjusted for age (years, continuous) and gender (female/male, indicator variable). Adjustment for age and gender was critical to offset possible confounding, because creatinine levels differ by age and gender (21).

BMI was used as a continuous variable in calculations of the slopes and was categorized (normal <25; 25 ≤ overweight < 30; and obese ≥30) in calculations of adjusted mean F$_2$-IsoP levels. Race/ethnicity was categorized as AAs, NHWs, and HWs for calculating mean F$_2$-IsoP levels and slopes. Taking into account that NHWs and HWs showed similar trends in the relationship between F$_2$-IsoPs and BMI, the test for interaction categorized racial groups as whites (this group included NHWs and HWs) and AAs. Further analysis for three other isomers (iPF$_2$α-III, iPF$_2$α-VI, and 8,12-iso-iPF$_2$α-VI) was condensed to two racial groups. All effects were fixed. Statistical analysis was performed using the SAS software package (version 9.2; SAS Institute, Cary, NC).

**RESULTS**

Overall, demographic characteristics were similar in AAs and whites, although NHWs were slightly older (Table 1). Unadjusted levels of 2,3-dinor-iPF$_2$α-III were lower in AAs compared with NHWs and HWs (Table 1). AAs had similar BMIs compared with HWs but greater BMIs as compared with NHWs (Table 1). Prevalence of impaired glucose tolerance was similar in AAs and HWs and lower in NHWs, whereas rates of conversion to diabetes during the 5-year follow-up were similar for all three groups, ~16%. The lowest levels of 2,3-dinor-iPF$_2$α-III were observed among AA participants (P values for comparisons with NHWs and HWs were <0.05). These racial differences in 2,3-dinor-iPF$_2$α-III levels persisted after adjustment for age and gender, becoming
increasingly apparent at higher levels of BMI (Figure 1). As seen in Figure 1, 2,3-dinor-iPF2α-III levels were similar in AAs, NHWs, and HWs among the participants with normal BMI, but among the overweight and obese participants, AAs had lower levels of 2,3-dinor-iPF2α-III. The slopes presented in Figure 1b show that 2,3-dinor-iPF2α-III levels increase with BMI among NHWs and HWs but stay at the same level among AAs. Formal testing for the race-BMI interaction confirmed racial differences in the association between 2,3-dinor-iPF2α-III and BMI (Figure 1b).

The statistical analysis for the other three F₂-IsoP isomers – iPF2α-III, iPF2α-VI, and 8,12-iso-iPF2α-VI – in two racial groups showed similar results. Their urinary levels were lower among AAs as compared to whites (all P values were <0.05). No correlation between BMI and these three F₂-IsoP isomers was observed among AAs: estimates of slope were −0.0023 (P = 0.2), 0.0233 (P = 0.5), and −0.0091 (P = 0.7) for iPF2α-III, iPF2α-VI, and 8,12-iso-iPF2α-VI, respectively. In contrast, among whites BMI correlated with the three F₂-IsoP isomers: estimated slopes were 0.0031 (P = 0.02), 0.0879 (P = 0.003), and 0.1155 (P < 0.0001) for iPF2α-III, iPF2α-VI, and 8,12-iso-iPF2α-VI, respectively. Formal test for the race-BMI interaction showed statistically significant interactions for iPF2α-III (P = 0.02) and 8,12-iso-iPF2α-VI (P = 0.001) and a border-line significant interaction for iPF2α-VI (P = 0.1).

**Figures**

**Figure 1** Association between 2,3-dinor-iPF2α-III and BMI by race/ethnicity adjusted for age and gender. (a) Age- and gender-adjusted mean (s.e.) of urinary 2,3-dinor-iPF(2a)-III levels by BMI categories among African Americans (AAs) (50/115/71), non-Hispanic whites (110/143/88), and Hispanic whites (64/127/84); mean values are compared with AAs within each BMI category. *Significant difference compared with AAs. (b) Slopes for the regression of age- and gender-adjusted BMI against 2,3-dinor-iPF(2a)-III; P value is presented for the interaction term between race and BMI. *BMI is adjusted for age and gender.

**REFERENCES**

1. Basu S. F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. *Antioxid Redox Signal* 2008;10:1405–1434.
2. Keaney JF Jr, Larson MG, Vasan RS et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. *Arterioscler Thromb Vasc Biol* 2003;23:434–439.
3. Meigs JB, Larson MG, Fox CS et al. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: the Framingham Offspring Study. *Diabetes Care* 2007;30:2529–2535.
4. Il'yasova D, Spasojevic I, Base K et al. Urinary F2-isoprostanes as a biomarker of reduced risk of type 2 diabetes. Diabetes Care 2012;35:173–174.

5. Il'yasova D, Wang F, Spasojevic I, et al. Urinary F2-Isoprostanes, obesity, and weight gain in the IRAS cohort. Obesity 2011; (doi:10.1038/oby.2011.292).

6. Kanaya AM, Wassel CL, Stoddard PJ et al. F2-isoprostanes and adiposity in older adults. Obesity (Silver Spring) 2011;19:861–867.

7. Il'yasova D, Morrow JD, Wagenknecht LE. Urinary F2-isoprostanes are not associated with increased risk of type 2 diabetes. Obes Res 2005;13:1638–1644.

8. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47–95.

9. Kaiyala KJ, Schwartz MW. Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 2011;60:17–23.

10. Weyer C, Pratley RE, Salbe AD et al. Energy expenditure, fat oxidation, and body weight regulation: a study of metabolic adaptation to long-term weight change. J Clin Endocrinol Metab 2000;85:1087–1094.

11. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, Georgia, 2011.

12. Tanaka S, Horimai C, Katsukawa F. Ethnic differences in abdominal visceral fat accumulation between Japanese, African-Americans, and Caucasians: a meta-analysis. Acta Diabetol 2003;40 (Suppl 1): S302–S304.

13. Goran MI. Ethnic-specific pathways to obesity-related disease: the Hispanic vs. African-American paradox. Obesity (Silver Spring) 2008;16:2561–2565.

14. Lutsey PL, Pereira MA, Bertoni AG, Kandula NR, Jacobs DR Jr. Interactions between race/ethnicity and anthropometry in risk of incident diabetes: the multi-ethnic study of atherosclerosis. Am J Epidemiol 2010;172:197–204.

15. Yan W, Byrd GD, Ogden MW. Quantitation of isoprostane isomers in human urine from smokers and nonsmokers by LC-MS/MS. J Lipid Res 2007;48:1607–1617.

16. WHO. Diabetes mellitus. Report of a WHO Study Group. World Health Organ Tech Rep Ser 1985;727:1–113.

17. Praticò D, Barry OP, Lawson JA et al. IPF2alpha-I: an index of lipid peroxidation in humans. Proc Natl Acad Sci USA 1998;95:3449–3454.

18. Roberts LJ, Morrow JD. Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 2000;28:506–513.

19. Zhang H, Il’yasova D, Sztaray J et al. Quantification of the oxidative damage biomarker 2,3-dinor-8-isoprostaglandin-F(2alpha) in human urine using liquid chromatography-tandem mass spectrometry. Anal Biochem 2010;399:302–304.

20. Il’yasova D, Spasojevic I, Wang F et al. Urinary biomarkers of oxidative status in a clinical model of oxidative assault. Cancer Epidemiol Biomarkers Prev 2010;19:1506–1510.

21. Barr DB, Wilder LC, Caudill SP et al. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 2005;113:192–200.

22. Dorjgochoo T, Gao YT, Chow WH et al. Obesity, age, and oxidative stress in middle-aged and older women. Antioxid Redox Signal 2011;14:2453–2460.

23. Urakawa H, Katsuki A, Sumida Y et al. Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 2003;88:4673–4676.

24. Weyer C, Sntenker S, Bogardus C, Ravussin E. Energy metabolism in African Americans: potential risk factors for obesity. Am J Clin Nutr 1999;70:13–20.