Calvarial involvement in disseminated rhinosporidiosis – A case report and literature review

Dewangan B, Naik R, Membally R, Dewangan M

ABSTRACT

Rhinosporidiosis is a chronic granulomatous infection caused by *Rhinosporidium seeberi* and mainly involves nasal and ocular mucosa. Bony involvement in rhinosporidiosis is very rare. A young male, previously operated for nasal rhinosporidiosis, presented with two bony swellings on the forehead and multiple subcutaneous lesions on the right lower limb. The diagnosis of disseminated cutaneous rhinosporidiosis with frontal bone involvement was made with the help of fine needle aspiration cytology (FNAC), histopathology, and computed tomography (CT) scan head. Wide excision of the bony lesion was performed. To the best of our knowledge, this is the first radiologically proven case of frontal bone involvement in disseminated rhinosporidiosis. Early diagnosis can be established with a good clinicopathological and radiological correlation. It also emphasizes the importance of CT scan for the evaluation of any subcutaneous skull lesion.

KEY WORDS: Calvarial rhinosporidiosis, disseminated cutaneous rhinosporidiosis, frontal bone rhinosporidiosis, osseous rhinosporidiosis

Introduction

Rhinosporidiosis is caused by *Rhinosporidium seeberi*, an aquatic protistan parasite of the *Mesomycetozoea* class. It usually involves nasal mucosa and conjunctiva, but mucous membranes at other sites may also be affected. Osseous involvement is a very rare occurrence in this disease. Calvarial involvement in disseminated rhinosporidiosis is not described in the literature. We present here the first radiologically as well as histopathologically proven case of frontal bone involvement in disseminated rhinosporidiosis.

Case Report

A 27-year-old man from Chhattisgarh presented with painless swelling over the right side of the forehead since 6 months and multiple swellings on the right leg since 2 months. He had undergone excision of a nasal mass 5 years back in a private hospital and histopathology from the excised lesion was not done. He was a farmer and a regular user of the village pond for bathing which was also shared by cattle.

Physical examination revealed two well-defined hard, nontender subcutaneous swellings over the right side of forehead just above the eyebrow varying from 5 × 5 to 2 × 2 cm in size [Figure 1a]. There was central crackling sensation on one of the swellings. There were three lesions on the right leg. The two were well-defined subcutaneous nodules − 3 × 4 and 2 × 3 cm on the medial aspect and one was diffuse cystic swelling on the lateral aspect [Figure 1b]. History of shared pond bathing and surgery for nasal mass excision in the past raised the suspicion of disseminated rhinosporidiosis. Fine needle aspiration of all the swellings was suggestive of rhinosporidiosis [Figure 2a]. Roentgenography of the skull and lower limbs appeared normal. Computed tomography (CT) scan of the head showed erosion of the frontal bone at two corresponding sites [Figure 3a-f].
The final diagnosis of disseminated cutaneous rhinosporidiosis with frontal bone involvement was made. Tablet dapsone 100 mg daily was started, but there was no change after 2 months of therapy. In fact, the size of his forehead lesion has gradually increased to cover the upper half of the orbit and eye opening was restricted. Surgical management was planned. The two subcutaneous nodules of leg were subjected to excisional biopsy along with electrocoagulation of the margins. Aspiration of the diffuse swelling on the lateral aspect of right leg yielded serosanguinous fluid and was left after decompression for further observation.

On exploration of the forehead lesion, there was fragile granulation tissue with serosanguinous fluid over the eroded area of the frontal bone. Fluid was drained and the granulation tissue was curetted out. The content was sent for histopathological examination which confirmed rhinosporidiosis. Both outer and inner table of the frontal bone was deficient in the bigger lesion whereas inner table was intact in the smaller one [Figure 4]. Dura was not breached in either cases. One centimeter margin of the bone was excised all around and subjected for histopathological examination. Histology confirmed the involvement of bone with the presence of sporangia in the marrow space [Figure 2b]. Postoperative recovery was uneventful and he was discharged on tablet dapsone 100 mg once daily. After 1 year of follow-up, there are no signs of recurrence [Figure 1c].

Discussion

Rhinosporidiosis has been reported from all over the world but it is more common in tropics. The disease prevalence is high in some parts of India and Sri Lanka.\(^1\) In India, the disease is mainly confined to the coastal states of south India where prevalence is as high as 4.7% and Chhattisgarh region with a prevalence rate of 1%.\(^2\)

Four forms of the rhinosporidiosis are recognized as per the anatomical localization – nasopharyngeal (70%–90%), ocular (15%), cutaneous, and disseminated.\(^3\) Cutaneous and systemic dissemination is quite rare.\(^3\) Occasionally lips, palate, uvula, maxillary antrum, epiglottis, pharynx, larynx, trachea, bronchus, ears, vulva, vagina, urethra, penis, rectum, scalp, and skin are involved.\(^3,4\) Bony involvement is extremely rare. Only 18 cases have been reported so far in the literature till date, but frontal bone involvement has been reported once only [Table 1].\(^4,20\)

Bone involvement in rhinosporidiosis can occur in three different clinical settings: 1) Local invasion of the skull bone by nasal rhinosporidiosis. 2) Bone involvement is a part of disseminated rhinosporidiosis as seen in our case. 3) Bone involvement is primary without any evidence of lesions elsewhere.\(^4\) Hematogenous spread could be the possible mode of spread to the distant sites.\(^21\) Frontal bone, as in our case could have been reached by this route only.

The sole previous report by Madhavan et al. described isolated frontal bone involvement in 1978, but the radiological evidence was lacking and the diagnosis of osseous involvement was made postoperatively after histopathological examination.\(^6\) Our case is unique because the frontal bone affliction was the part of disseminated rhinosporidiosis and was radiologically evident. Furthermore, the frontal bone erosion was not depicted by the routine X-ray. It was revealed only on CT scan. Hence, we recommend CT scan for the evaluation of any skull lesion in disseminated cutaneous rhinosporidiosis to detect underlying bony involvement.

CT imaging features of surrounding bony involvement in rhinosporidiosis has been described as irregularity, rarefaction, complete, or partial erosion.\(^22\) The sunburst or spiculated pattern of periosteal reaction as seen in our case has not been described in the literature previously. These CT imaging features can easily be confused with bony tumors such as osteosarcoma, multiple myeloma, and metastasis from unknown primary. Therefore, a good clinicopathological and radiological correlation is necessary to diagnose calvarial rhinosporidiosis preoperatively.

Treatment of choice is excision and electrocoagulation of the base of subcutaneous lesion and wide excision of the bony
Table 1: Description of all the cases of osseous involvement in rhinosporidiosis described in literature with respect to involved bone, associated lesions and treatment

Serial no	Author	Bones involved	Associated lesions	Treatment of bony lesion
1	Chatterjee et al., 1977[5]	1. Proximal phalynx of the left ring finger 2. Second metatarsal, proximal and middle phalynx of second right toe	Mass in the nose, nodules in the face, left axilla, left chest wall and calf	Not described
2	Madhvan M et al., 1978[6]	Right frontal bone	Nil	Curettage
3	Sudarshan et al., 1979[7]	First metatarsal of left foot	Nodule in nasopharynx	Curettage
4	Aravindan et al., 1989[8]	Scapula	Nil	Excision
5	Mitra and Maity et al. 1996[9]	Right calcaneum	Nil	Not described
6	Pai S.A. et al. 1996[10]	Fifth metacarpal, proximal phalynx of the right ring finger	Nil	Not described
7	Adiga B K, et al. 1997[11]	Tibia	Nil	Wide excision
8	Gokhale S. et al. 1997[12]	Proximal phalynx of fourth and base of fourth and fifth Metacarpal	Nodule in scalp, mass over third toe	Partial amputation of hand
9	Kavishwar VS et al. 1998[13]	Fourth and fifth metacarpals	Nasal polyp	Not described
10	Makannavar JH et al. 2001[14]	Tibial condyle	Nasal polyp	Not described
11	Dash et al. 2005[15]	Femur	Not available	Not described
12	Sudarshan V et al. 2007[16]	Not described	Not described	Not described
13	Amritanand R et al. 2008[17]	Talus, calcaneum, tarsals and bases of first and second metatarsals	Warts on face	Below knee amputation
14	Suryavanshi P V et al. 2011[18]	Clavicle	Nil	Wide excision
15	Mondal et al. 2013[19]	Left distal end radius and ulna, all carpals and base of metacarpals	Nil	Below elbow amputation left side
16	Kundu AK, et al. 2013[20]	Fifth metacarpal Right side	Poly in nose and lachrymal gland	Ray amputation
17	Pal D K et al. 2013[21]	Lower end of radius and carpal bones	Nil	Wide excision
18	Acharya S et al. 2014[22]	Calcaneum	Nasal mass, nodule over right forearm	Not described

Figure 3: Transaxial enhanced computed tomography images of the brain. (a) Right supraorbital homogenous enhancing soft tissue swelling in subcutaneous plane (arrow). (b) Bone window showing adjacent irregular osseous destruction (arrow) extending up to inner table and lateral wall of right frontal sinus. (c) Enhancing soft tissue swelling extending to right frontal extracalvarial region (arrow). (d) Bone window shows mild osseous erosion of the outer table with thick solid spiculated periosteal reaction (sunburst appearance) (arrow). (e) Small focal enhancing lobular soft tissue in midline high frontal subcutaneous plane (arrow). (f) Bone window showing adjacent punched out osteolytic destruction (arrow).
To conclude, almost all the bones are within the reach of *R. seeberi*, probably through the hematogenous route. It produces osteolytic lesions mimicking various bony lesions including tumors. High index of suspicion will pick up the lesions early, especially in areas with high prevalence. Diagnosis can easily be confirmed by FNAC and histopathology. Excision of the lesion as wide as possible is the treatment of choice. Tablet dapsone is recommended to prevent recurrence.

Declaration of patient consent
The authors certify that appropriate patient consent was obtained.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References

1. Lupi O, Tyring SK McGinnis MR. Tropical dermatology: Fungal tropical diseases. J Am Acad Dermatol 2005;53:391-51.
2. Billore OP. Epidemiology Rhinosporidiosis. 1st ed. Delhi: AITBS Publishers and distributors; 1996. p. 24-6.
3. Acharya S, Prusty N, Naik LK. Disseminated rhinosporidiosis– A rare case presentation. Asian J Pharm Health Sci 2014;4:895.
4. Suryawanshi PV, Rekhi B, Desai S, Desai SM, Juveaukar SL, Jambhekar NA. Rhinosporidiosis isolated to the distal clavicle: A rare presentation clinicoradiologically mimicking a bone tumor. Skeletal Radiol 2011;40:225-8.
5. Chatterjee PK, Khatua CR, Chatterjee SN, Dastidar N. Recurrent multiple rhinosporidiosis with osteolytic lesions in hand and foot: A case report. J Laryngol Otol 1977;91:729-34.
6. Madhavan M, Ratnakar C, Mehdiratta KS. Rhinosporidial infection of the forehead (report of a case). J Postgrad Med 1978;24:235-6.
7. Sudarsan K, Saify AA, Siddique D, Sudarsan V, Agrawal S. Rhinosporidiosis of first metatarsal - A case report. Indian J Orthop 1979;13:172-75.
8. Aravindan KP, Viswanathan MK, Jose L. Rhinosporidium of bone: A case report. Indian J Pathol Microbiol 1989;32:312-3.
9. Mitra K, Maity PK. Cutaneous rhinosporidiosis. J Indian Med Assoc 1996;94:84.
10. Pai SA, Naresh KN, Shindhe SR, Borges AM. Rhinosporidiosis of bone: Diagnosis by fine needle aspiration. Acta Cytol 1996;40:845-6.
11. Adiga BK, Singh N, Arora VK, Bhatia A, Jain AK. Rhinosporidiosis. Report of a case with an unusual presentation with bony involvement. Acta Cytol 1997;41:889-91.
12. Gokhale S, Ohri VC, Subramanya H, Reddy PS, Sharma SC. Subcutaneous and osteolytic rhinosporidiosis. Indian J Pathol Microbiol 1997;40:95-8.
13. Kavishwar VS, Naik LP, Vora IM. Fine needle aspiration diagnosis of subcutaneous and osteolytic rhinosporidiosis. Cytopathology 1996;9:215-7.
14. Makannavar JH, Chavan SS. Rhinosporidiosis: A clinicopathological study of 34 cases. Indian J Pathol Microbiol 2001;44:17-21.
15. Dash A, Satpathy S, Devi K, Das BP, Dash K. Cytological diagnosis of rhinosporidiosis with skeletal involvement: A case report. Indian J Pathol Microbiol 2005;48:215-7.
16. Sudarshan V, Goel NK, Gahine R, Krishnani C. Rhinosporidiosis in Raipur, Chhattisgarh: A report of 462 cases. Indian J Pathol Microbiol 2007;50:718-21.
17. Amritanand R, Nithyananth M, Cherian VM, Venkatesh K, Shah A. Disseminated rhinosporidiosis destroying the talus: A case report. J Orthop Surg (Hong Kong) 2008;16:99-101.
18. Mondal S, Chowdhury A. Rhinosporidiosis of the left wrist joint: A case report. J Orthop Surg (Hong Kong) 2013;21:245-8.
19. Kundu AK, Phuljhele S, Jain M, Srivastava RK. Osseous involvement in rhinosporidiosis. Indian J Orthop 2013;47:523-5.
20. Pal DK, Mallick AA, Bandyopadhayray R. Rhinosporidiosis of distal radius: A case report with review of literature. Ann Trop Med Public Health 2013;6:321-3.
21. Rajam RV, Viswamathnum GC, Rao AR, Rangain PN, Anguli VC. Rhinosporidiosis, a study with report of a fatal case of systemic dissemination. Ind J Surg 1955;17:269-98.
22. Prabh SM, Irodi A, Khiantge HL, Rupa V, Naina P. Imaging features of rhinosporidiosis on contrast CT. Indian J Radiol Imaging 2013;23:212-8.
23. Job A, Venkateswaran S, Mathan M, Krisnaswami H, Raman R. Medical therapy of rhinosporidiosis with dapsone. J Laryngol Otol 1993;107:809-12.