Estimating the quality of stereoscopic endoscopic systems

A A Naumov1,2, A V Gorevoy1,2,3, A S Machikhin1,3, V I Batshev1,2, and V E Pozhar1,2

1Scientific Technological Center of Unique Instrumentation, Russian Academy of Science, Moscow, 15 Butlerova, Russia
2Department of Laser and Opto-Electronic Systems, Bauman Moscow State Technical University, 5/1 Baumanskaya 2-ya, Moscow, Russia
3Department of Electrical Engineering and Introscopy, National Research University "Moscow Power Engineering Institute", 14 Krasnokazarmennaya, Moscow, Russia

Abstract. Stereoscopic video endoscopic systems are widely used for the control of hard-to-reach objects at the stages of production, assembly and testing of various devices. Using a stereoscopic endoscope as a measuring tool requires its geometrical calibration. The effectiveness of such systems is largely determined by the quality of an image, based on modulation transfer function (MTF) of the optical system. In this paper, we describe and test an algorithm for automatic calculating the MTF for images of a plane test object with chessboard pattern. Experimental data was obtained using two self-developed prism-based endoscopic stereoscopic systems. Coincidence of computer simulation results and results of applying the proposed algorithm shows its effectiveness for estimating the image quality provided by stereoscopic endoscopic systems.

1. Introduction

Currently, stereoscopic video endoscopic systems are a key tool for non-destructive testing of hard-to-reach elements in complex technical systems, such as aircraft engines, steam generators, etc. Due to small diameter of the endoscopic probe, stereo images in such devices are usually formed by the prism, which creates two images of the inspected surface on the camera sensor [1].

To use a stereoscopic endoscope as a measuring tool, it is necessary to calibrate it as a stereo system [2]. Known methods require a plane test object with chessboard pattern, located in several positions inside the working volume of the system [3, 4]. Additionally, it is necessary to estimate the quality of the image obtained by the system, because it affects the accuracy of 3D surface reconstruction. The image quality depends on the noise generated by the sensor and the electronic circuits as well as on the distortions introduced by an optical system. According to the standard [5], the slanted-edge method of MTF measurement is used to estimate the performance of the optical system.

We propose to use the same plane test object with chessboard pattern to perform calibration and assess image quality for the stereo endoscope. Such an object contains both areas of inclined boundaries required for measuring the MTF and areas of constant intensity suitable for estimating noise parameters. It will significantly reduce the required time and cost of auxiliary equipment.
because estimations of MTF, distortion and noise, as well as calibration can be performed simultaneously.

In this paper, we experimentally demonstrate MTF measurements for two self-developed endoscopic stereoscopic probes using the images of chessboard patterns, like for calibration procedure. We compare the results obtained using these systems at three working distances and theoretical dependencies calculated for these optical systems in optical design software Zemax.

2. Instruments and methods

We carried out MTFs estimation for two self-developed prism-based stereo endoscopic systems, which technical characteristics are presented in table 1. We further denote these systems as OS1 and OS2.

Feature	OS1	OS2
Matrix diagonal	1/9”	1/6”
Matrix resolution	1280 × 720	1920 × 1080
Pixel size	1.4 × 1.4 µm²	1.4 × 1.4 µm²
Image format	24 bit, RGB	8 bit, Grayscale
Field of view per channel	35° × 40°	40° × 45°
Aperture	F/8	F/11
Effective focal length	1.8 mm	2.36 mm

The optical layouts of these systems are similar (figure 1). More information about the design of prism-based stereoscopic endoscopes may be found in [6] and [7].

![Stereoscopic optical system](image)

Figure 1. Scheme of MTF measurements for prism-based stereoscopic endoscopes.

The prism introduces significant aberrations, which can not be completely corrected by the lens system. These aberrations vary significantly across the field of view, so 9 field points in each channel were used for MTF assessment. The exact coordinates of these points are presented in table 2. MTF calculation for each image point was carried out in Zemax for three object distances (7, 15 and 40 mm from the protective glass, as shown in figure 1). The distances correspond to the boundaries and the middle of the working distance range of the system. The obtained data was exported from Zemax and then was processed in MATLAB.
Table 2. Points coordinates for MTF estimating.

System type	OS1		OS2					
Point number	Image coordinate (px)	Zemax image coordinate (mm)	Image coordinate (px)	Zemax image coordinate (mm)				
1	80	80	-0.784	-0.392	80	80	-1.232	-0.644
2	80	360	-0.784	0	80	540	-1.232	0
3	80	640	-0.784	0.392	80	1000	-1.232	0.644
4	320	80	-0.448	-0.392	480	80	-0.672	-0.644
5	320	360	-0.448	0	480	540	-0.672	0
6	320	640	-0.448	0.392	480	1000	-0.672	0.644
7	560	80	-0.112	-0.392	880	80	-0.112	-0.644
8	560	360	-0.112	0	880	540	-0.112	0
9	560	640	-0.112	0.392	880	1000	-0.112	0.644
10	720	80	0.112	-0.392	1040	80	0.112	-0.644
11	720	360	0.112	0	1040	540	0.112	0
12	720	640	0.112	0.392	1040	1000	0.112	0.644
13	960	80	0.448	-0.392	1440	80	0.672	-0.644
14	960	360	0.448	0	1440	540	0.672	0
15	960	640	0.448	0.392	1440	1000	0.672	0.644
16	1200	80	0.784	-0.392	1840	80	1.232	-0.644
17	1200	360	0.784	0	1840	540	1.232	0
18	1200	640	0.784	0.392	1840	1000	1.232	0.644

The setup shown in figure 2 was used to obtain experimental data. The glass plate with chrome-etched chessboard pattern (2 mm chessboard cell size) was combined with white diffusing glass and illuminated from behind by a white-light source.
Figure 2. Setup for measuring MTF of stereoscopic optical systems.

Images of the test object were acquired at three distances of 7, 15 and 40 mm from the protective glass of the optical system for both endoscopes. MTF estimation was carried out in areas containing slanted high-contrast edges. The regions of estimation were chosen closely to the points used for MTF calculation in Zemax. Image processing and calculation of the MTF were performed according to the standard technique [5, 8]. For each region, a subpixel profile of the brightness difference on the boundary was constructed, then the Fourier transform of the derivative of the subpixel profile was calculated and normalized on the maximum value. An example of an image with highlighted points for MTF calculation in Zemax (green points) and areas for MTF estimation using image processing (red rectangles) is shown in figure 3 (here, we show the areas for measuring MTF in the vertical direction).

Figure 3. The image of the test object with highlighted points for MTF calculation in Zemax (green points) and areas for MTF estimation using image processing (red rectangles).
3. Results

We compared 2 calculated (in horizontal and vertical directions) and 2 experimental MTF curves as well as the values of spatial frequencies, at which the contrast values of 0.1 and 0.5 were achieved. The results are given in figures 5-7 and tables 4-6 for OS1 at three working distances. The results for OS2 are presented in figures 8-10 and tables 7-9.

The values in the tables are divided into the following subgroups:
- Left and Right channel - the channel of the stereo image in which the MTF is estimated.
- Level 0.5 and Level 0.1 - MTF levels necessary to define the key values of spatial frequencies.
- “Hor.” and “Ver.” - are horizontal and vertical directions respectively, used for MTF estimation.

Figure 4 presents the legends used for figures 5-10.

Description	Denotation
Estimated modulus of MTF in horizontal direction	-
Zemax modulus of MTF in horizontal direction	- -
Estimated modulus of MTF in vertical direction	- -
Zemax modulus of MTF in vertical direction	- -
0.5 and 0.1 levels of MTF modulus	--

Figure 4. Legends for figures 5-10.

Figure 5. Estimated MTF at 18 points for OS1. Distance to the test object is 7 mm.
Table 3. The spatial frequencies at 0.5 and 0.1 levels of MTF for OS1 (in mm\(^{-1}\)). Distance to the test object is 7 mm.

Point’s number	1	2	3	4	5	6	7	8	9	
Left channel										
Level 0.5	Zemax	41	39.2	38.2	38.2	39.2	41	37.2	33.3	32.5
	Estimated	33.3	31	33.1	38.1	29.7	34	30.3	31.4	29
Level 0.1	Zemax	67.8	49.4	39.3	39.3	49.4	67.8	72.4	47.7	39
	Estimated	32.2	34.6	32.9	31.5	34.9	45.6	32	34.5	31.7
Right channel										
Level 0.5	Zemax	104.5	102	96.4	96.4	102	104.5	95.5	76.1	72.9
	Estimated	80.9	73	70.4	88.1	71.9	76.2	97.5	73.8	78.8
Level 0.1	Zemax	158.5	109.3	70.8	70.8	109.3	158.5	164.4	108.1	71.2
	Estimated	75.5	79.5	64.5	67.6	80.8	99.1	72.4	75.6	69.2

Point’s number	10	11	12	13	14	15	16	17	18	
Left channel										
Level 0.5	Zemax	32.5	33.3	37.2	41	39.2	38.2	38.2	39.2	41
	Estimated	30.1	36.4	35.6	30.1	26.4	27.3	28.1	29.1	33.9
Level 0.1	Zemax	39	47.7	72.4	67.8	49.4	39.3	39.3	49.4	67.8
	Estimated	33.2	39.1	48.4	33.3	32.9	34.7	32.6	39.5	50.5
Right channel										
Level 0.5	Zemax	72.9	76.1	95.5	104.5	102	96.4	96.4	102	104.5
	Estimated	74.2	89.3	77	70.2	71	67.3	64.8	76.8	82.3
Level 0.1	Zemax	71.2	108.1	164.4	158.5	109.3	70.8	70.8	109.3	158.5
	Estimated	67.5	88.3	116.4	71.2	66.9	64.6	65.7	89.5	111.7

Figure 6. Estimated MTF at 18 points for OS1. Distance to the test object is 15 mm.
Table 4. The spatial frequencies at 0.5 and 0.1 levels of MTF for OS1 (in \text{mm}^{-1}). Distance to the test object is 15 mm.

Point’s number									
	1	2	3	4	5	6	7	8	9
Left channel									
Level 0.5									
Zemax Hor.	68.7	69.8	69.5	69.5	69.8	68.7	81.7	80.8	80.6
Estimated	41	42.9	42.8	43.1	38.2	37.4	56.8	56.6	55.4
Zemax Ver.	79.2	58.1	38.6	38.6	58.1	79.2	80.3	58.8	39.1
Estimated	49.8	43.8	35.2	38.8	44.2	54.5	50.6	45.4	34.5
Level 0.1									
Zemax Hor.	148.4	149.6	149.1	149.1	149.6	148.4	170.8	170.4	170.4
Estimated	90.7	109.2	99.4	99.9	83.3	75	137.7	125	133.1
Zemax Ver.	169	115.2	117.8	117.8	115.2	169	170.8	116.6	119.9
Estimated	107.6	91.9	62.5	76.4	97.5	132.6	117	98.1	63.7
Right channel									
Level 0.5									
Zemax Hor.	80.6	80.8	81.7	68.7	69.8	69.5	69.5	69.8	68.7
Estimated	48.4	50.9	46.9	51.4	46	52	44.1	45.7	51.4
Zemax Ver.	39.1	58.8	80.3	79.2	58.1	38.6	38.6	58.1	79.2
Estimated	36.3	49.3	59.9	53.2	42.9	34.5	39.6	49.3	62
Level 0.1									
Zemax Hor.	170.4	170.4	170.8	148.4	149.6	149.1	149.1	149.6	148.4
Estimated	118.4	123.4	108.5	111.8	106.9	126.5	107.9	116.6	113.8
Zemax Ver.	119.9	116.6	170.8	169	115.2	117.8	117.8	115.2	169
Estimated	73.8	109.4	118.5	166.3	82.3	66.4	79.2	109.7	157.4

Figure 7. Estimated MTF at 18 points for OS1. Distance to the test object is 40 mm.
Table 5. The spatial frequencies at 0.5 and 0.1 levels of MTF for OS1 (in mm⁻¹). Distance to the test object is 40 mm.

Point’s number	1	2	3	4	5	6	7	8	9
Left channel									
Level 0.5									
Hor. Zemax	59.7	55.4	54.9	54.9	55.4	59.7	70.6	67.9	68
Estimated	43.2	39.7	38.8	39.5	38.8	39.4	59.7	56.7	53.5
Ver. Zemax	62	46	33.6	33.6	46	62	58.9	46.2	33.9
Estimated	58.6	41.3	30.7	32.8	48.4	55.6	63	43.7	33.3
Level 0.1									
Hor. Zemax	139.9	133.3	133.4	133.4	133.3	139.9	171.2	170.4	170.4
Estimated	85.6	103.7	79.3	86.9	91.4	83.7	146.1	139.5	121
Ver. Zemax	165.2	99.6	61.6	61.6	99.6	165.2	164.3	100.4	61.9
Estimated	127.9	84.7	64.4	66.2	117.4	122.1	149.4	83.6	63.1
Right channel									
Level 0.5									
Hor. Zemax	68	67.9	70.6	59.7	55.4	54.9	54.9	55.4	59.7
Estimated	55	55.8	57.2	50.3	52	56.3	53.7	56	65.3
Ver. Zemax	33.9	46.2	58.9	62	46	33.6	33.6	46	62
Estimated	35.8	49.8	62.1	60.9	44.7	32.6	38.8	54.4	59
Level 0.1									
Hor. Zemax	170.4	170.4	171.2	139.9	133.3	133.4	133.4	133.4	139.9
Estimated	134.7	122	133.7	111.6	136.8	136.8	140.1	133.9	135.5
Ver. Zemax	61.9	100.4	164.3	165.2	99.6	61.6	61.6	99.6	165.2
Estimated	70.8	118.2	165	131.8	85.9	64.6	69.4	127.5	143.8

Figure 8. Estimated MTF at 18 points for OS2. Distance to the test object is 7 mm.
Table 6. The spatial frequencies at 0.5 and 0.1 levels of MTF for OS2 (in mm\(^{-1}\)). Distance to the test object is 7 mm.

Point’s number	1	2	3	4	5	6	7	8	9
Left channel									
Level 0.5									
Zemax	29.1	33.7	33.6	33.6	33.7	29.1	28.9	28.2	29.8
Estimated	16.7	17.7	20.9	17.2	17.1	13.5	17.3	16.2	15.8
Level 0.1									
Zemax	48.1	35.8	20.6	20.6	35.8	48.1	57.7	35.9	21.5
Estimated	24.6	21.3	20	22	21.2	15.3	21.2	22.6	23.7
Right channel									
Level 0.5									
Zemax	66.5	75.3	72.4	72.4	75.3	66.5	83.1	77.9	87.6
Estimated	49.7	36.7	46.1	35.3	47.6	29.2	55.4	43.3	33.2
Level 0.1									
Zemax	111.6	65.8	109	109	65.8	111.6	120.8	66.9	119.7
Estimated	66.4	61.3	60.4	56.5	48.9	38.7	46.2	51	46.1

Figure 9. Estimated MTF at 18 points for OS2. Distance to the test object is 15 mm.
Table 7. The spatial frequencies at 0.5 and 0.1 levels of MTF for OS2 (in mm\(^{-1}\)). Distance to the test object is 15 mm.

Point’s number	1	2	3	4	5	6	7	8	9
Left channel									
Level 0.5									
Hor. Zemax	39	39.2	37.9	37.9	39.2	39	58.9	60.8	61.2
Hor. Estimated	24.4	21.4	27.3	27.3	21.1	22.8	25.4	24.5	24
Ver. Zemax	57.2	32.4	18.9	18.9	32.4	57.2	54.8	32.8	19.3
Ver. Estimated	27.8	26.7	25.4	26.6	28	19.2	29	35	22.9
Level 0.1									
Hor. Zemax	76.1	75.9	74.9	74.9	75.9	76.1	123.1	124.3	124.7
Hor. Estimated	51.1	51.7	68.7	65.7	49.3	56.5	74	63.7	57
Ver. Zemax	120.9	60.9	66.7	66.7	60.9	120.9	122.2	61.9	70.1
Ver. Estimated	53.4	76.7	47.9	50.8	62.1	54.9	58.4	80.9	72
Right channel									
Level 0.5									
Hor. Zemax	61.2	60.8	58.9	39	39.2	37.9	37.9	39.2	39
Hor. Estimated	24.3	22.5	22.1	23.8	26.3	24.5	25.5	23.8	21.8
Ver. Zemax	19.3	32.8	54.8	57.2	32.4	18.9	18.9	32.4	57.2
Ver. Estimated	26.7	31.5	23.5	27.7	30.9	23	23.2	26.6	21.9
Level 0.1									
Hor. Zemax	124.7	124.3	123.1	76.1	75.9	74.9	74.9	75.9	76.1
Hor. Estimated	59	59.1	59.6	45.3	79.3	70.2	64.7	71	74
Ver. Zemax	70.1	61.9	122.2	120.9	60.9	66.7	66.7	60.9	120.9
Ver. Estimated	89.7	70.6	66.4	101.9	71.7	71	51.3	60.9	75.4

Figure 10. Estimated MTF at 18 points for OS2. Distance to the test object is 40 mm.
Table 8. The spatial frequencies at 0.5 and 0.1 levels of MTF for OS2 (in mm\(^{-1}\)). Distance to the test object is 40 mm.

Point’s number	1	2	3	4	5	6	7	8	9
Left channel									
Level 0.5									
Zemax	37.1	30.3	28.9	28.9	30.3	37.1	49.2	40.3	38.4
Estimated	22.8	33.5	31.1	29.1	29.3	26.9	34	43.6	45.6
Level 0.1									
Zemax	52.3	26.5	17.6	17.6	26.5	52.3	42	26	17.7
Estimated	31.5	39.8	24.1	24.4	36.6	22.9	40.2	42.4	23.8
Right channel									
Level 0.5									
Zemax	72.7	64.7	63.4	63.4	64.7	72.7	122	116.6	114.3
Estimated	52.1	71.7	59.6	58.7	65.7	58.7	88.1	113.5	100.8
Level 0.1									
Zemax	121	53.3	31.1	31.1	53.3	121	117	52.8	31.2
Estimated	84.8	82.3	60.8	51.6	83.6	50.4	111.1	83.3	53
Point’s number	10	11	12	13	14	15	16	17	18
Right channel									
Level 0.5									
Zemax	38.4	40.3	49.2	37.1	30.3	28.9	28.9	30.3	37.1
Estimated	40.7	42.5	28.6	27.3	34	36.8	28.4	30.8	23.4
Level 0.1									
Zemax	17.7	26	42	52.3	26.5	17.6	17.6	26.5	52.3
Estimated	26.8	37.3	27.7	31.8	33.9	23.8	22.8	28.3	23
Level 0.1									
Zemax	114.3	116.6	122	72.7	64.7	63.4	63.4	64.7	72.7
Estimated	94	107.5	78.3	68.4	86.1	71.8	55.5	71.2	55.2
Estimated	31.2	52.8	117	121	53.3	31.1	31.1	53.3	121

In order to draw conclusions about the summary quality of the optical system, it is sufficient to compare the figures for OS1 and OS2 at one of the working distances, for example, at 15 mm (figures 6 and 9 for OS1 and OS2, respectively). Figure 9 shows that the experimentally measured MTF differs from the Zemax calculated one by 2-4 times at levels of 0.5 and 0.1. It indicates that OS2 has serious assembly faults. Figure 6 shows the estimated MTF for different areas of the image obtained using OS1. It indicates that the ratio of spatial frequencies for estimated MTFs to spatial frequencies for calculated MTFs at levels of 0.5 and 0.1 is less than 1.5 times. The main reason of that is possible noise distortions, which are not taken into account when estimating the MTF. Therefore this value is acceptable for our solution.

4. Conclusion

In this article, the possibility of using the slanted edge algorithm of MTF measurement for a stereoscopic endoscopic system was considered. It is shown that three images of plane test object with chessboard pattern on different working distances and 9 points of calculation per channel is enough for MTF estimation. A comparison of the estimated MTF with the Zemax calculated ones made it possible to identify assembly faults for the two self-developed prism-based stereoscopic endoscopy systems.

Further work will be directed towards automating the process of the MTF estimation from an image of chessboard pattern and developing user-friendly software for simultaneous spatial calibration and estimation of image quality. Usage of the detection algorithm of nodal points, the description of which can be found in [9], makes possible to select suitable areas for MTF measurements automatically. It allows us to build a map of the MTF values over the entire field of view. Capturing several images at the same position of the test object allows:

1. to evaluate the noise characteristics of the system and their impact on MTF measurements;
2. to reduce MTF measurement error by obtaining an average image over several frames.

Solution of the MTF estimating task allows us to create a universal user-friendly software that allows geometric calibration, measurement of distortion, MTF and noise characteristics. It will provide an opportunity to assess the quality of the operating system not only during assembly and adjustment, but also during the appraisal and working time of the device. Moreover, these procedures will make calibration and quality check available for users of the system without specialized personnel.

Acknowledgments
This research is supported by Russian Foundation for Basic Research (project 17-29-03469).

References
[1] Geng J and Xie J 2014 Review of 3-D endoscopic surface imaging techniques IEEE Sensors Journal 14 945-60
[2] Bendall C A, Lia R, Salvati R and Chilek T A 2009 Stereo-measurement borescope with 3-D viewing, Patent US 7 564 626 B2
[3] Zhengyou Z, Flexible camera calibration by viewing a plane from unknown orientations, Proc. of the Seventh IEEE Int. Con. on Com. Vis. 666-73
[4] Gorevoy A V and Machikhin A S 2017 Optimal calibration of a prism-based videoendoscopic system for precise 3D measurements, Computer Optics 41 536-45
[5] Photography–Electronic Still Picture Cameras–Resolution Measurements, ISO Standard 12233: 2000
[6] Batshev V, Machikhin A and Kachurin Y 2017 Stereoscopic tip for a video endoscope: problems in design Proc. SPIE 104664D (2017)004
[7] Machikhin A S, Batshev V I, Gorevoy A V, Khokhlov D D, Naumov A A and Kuznetsov A O 2019 Compact stereoscopic prism-based optical system with an improved accuracy of 3-D geometrical measurements Optik 185 1172-81
[8] Kenichiro M, Takayuki Y, Yukihiro N and Masayuki S 2014 Modified slanted-edge method and multidirectional modulation transfer function estimation, Optics Express 22 6040-46
[9] Yunsu B, Hyowon H and In So K 2016 Automated checkerboard detection and indexing using circular boundaries, Pattern Recognition Letters 71 66-72