Tin(II)-functionalization of the archetypal \{P_8W_{48}\} polyoxotungstate†

N. V. Izarova,⁎a L. Klaß,a,b P. de Oliveira,c I.-M. Mbomekalle,c V. Peters,b F. Haarmannb and P. Köglerla,b

The synthesis of [K_{4.5} \{ClSn^{II}\}_8P_8W_{48}O_{234}^{17−}]⁵⁻, featuring Sn(ii) ions in trigonal-pyramidal SnO_2Cl environment coordinating to the two inner rims of the wheel-shaped (P_8W_{48})-type polyoxotungstate(u) archetype, showcases how high chloride ligand concentrations as well as the control of the polyanion solubility via electrolytes and evaporation rates are essential to prevent numerous competing reactions that can hamper the Sn(ii) functionalization of polyoxometalates.

Introduction

The reactivity of main group metals towards polyoxotungstates (POTs) has received relatively little attention to date in comparison with that of transition metals and lanthanides. Among such main group metals, tin is one of the most investigated elements due to interest in POM functionalization with organotin moieties with Sn in its formal +IV oxidation state.1 At the same time, examples of POTs incorporating SnII ions are still lacunary Keggin-type POTs.3

In the pioneering work in the late 1970s, Knoth explored the possibility to attach organometallic RMSnII moieties (RM = CpFe(CO)_2, (OC)₃Co, β-C₃H₅Pd, (C₇H₈)₂Rh, etc.) to monolacunary Keggin-type POTs.2b Several years later, Chorghade and Pope thoroughly characterized a series of α/β-[XW₁₁O₄₉Sn]⁻⁷ (X = Bi³⁻, Ga³⁺, Si⁴⁺, Ge⁴⁺, P⁵⁺) and α₂-[P₈W₁₇O₆₀Sn]⁻⁸ complexes where SnII centers coordinate with monovacant Keggin- and Wells–Dawson-type species.3b A related polyoxion with a postulated composition [PMo₂W₆O₃₉Sn]⁵⁻ was reported to catalyze the oxidation of various organic sulfides to sulfoxides by H₂O₂.3c

In the complexes of SnII with α-A-isomers of trilacunary Keggin-type POTs two trivacant polyoxometalate (POM) ligands typically sandwich several tin(ii) centers: three in [Sn₆(XW₉O₃₃)₂]⁻⁶ (X = Si⁴⁺, P⁵⁺, As³⁺),⁴ six in [Sn₈(XW₉O₃₃)₂]⁻¹² (X = SnII, Sb³⁺),⁵ or even nine in the polymeric [(H₂O)₉Na]⁺e [Cl₄Sn₈(XW₉O₃₃)₂]⁻ (X = Si⁴⁺, Ge⁴⁺).⁶b In [Sn₈Sn(XW₉O₃₃)₂]⁻²⁴– polyanions, which are catalytically active in hydrogen evolution from aqueous media, two [Sn₄(SnW₉O₃₄)₂]⁻ fragments are linked via two additional SnII centers into a dimer.⁵ In the β-B-type trilacunary POTs [Sn₁₅(WO₄)(OH)₉]⁻₁₃ [WO₃(XW₉O₃₃)₉]⁻¹₂ (X = Sb³⁺, Bi³⁺) the SnII ions occupy the outer positions in the inner belt of the sandwich-type structure.⁷ SnII ions in all the above mentioned species exhibit either trigonal or tetragonal pyramidal coordination environments and possess a lone electron pair, which, if sterically accessible, can be used for further functionalization of the SnII-containing POMs via coordination with organotinical moieties.

Besides acting as an external heterometal, SnII ions can also assume the role of internal heteroatoms composing POT structures as was observed in [H₂SnW₁₈O₆₀]⁻⁷ (ref. 7) and the Sn₈O₃₃⁻ subunit in the above-mentioned [Sn₈Sn(XW₉O₃₃)₂]⁻²⁴⁻,⁵a as well as act as a linker between the intact paratungstate-B structures leading to anionic chains [H₂SnW₁₂O₄₀]⁻⁸⁻.⁸

At the same time the reactivity of SnIII towards multilacunar (i.e. more reactive) derivatives of Wells–Dawson-type POTs or POMs with more complex structures remains unstudied. Therefore we decided to investigate the reaction of SnIII chloride with the archetypical macrocyclic phosphotungstic state [P₈W₄₀O₁₈₄]⁻¹⁰⁻ (= [P₈W₄₈]), possessing a wheel-shaped structure composed of four identical hexalacunary [P₈W₄₀O₄₈] Wells–Dawson fragments connected to each other via oxo bridges. The large inner cavity of [P₈W₄₈] allows for the incorporation of a wide range of hetero-transition metal ions, as exemplified by [Cu₉O₃(XOH)]₂⁺H₂[PO₃]P₈W₄₀O₁₈₄⁻²⁵⁻ (X = Cl, Br, I),¹⁰,a,b [Cu₂ₓ(N₃)y(OH)]₁₈P₈W₄₀O₁₈₄⁻²⁴⁻,¹⁰,c [Cu₂ₓ(N₃)y(OH)]₁₈P₈W₄₀O₁₈₄⁻²⁴⁻ [V²⁺V⁴⁺O₁₂⁻]⁻⁹.¹¹,c
The polyanions 1 have been synthesized by the reaction of \([\text{H}_{2}\text{PW}_{12}\text{O}_{40}]^{3-}\) with SnCl2 in 4 M aqueous LiCl solution at 50 °C. Alternatively heating at 50 °C for 1 h, the reaction mixture could be stirred at room temperature for 4–5 h. The large bright-orange block-shaped crystals of KLi-1 form within several days by the evaporation of the obtained solutions under a hood. During the reaction the color of the reaction mixture changes from bright-orange to brown and then to dark-green indicating partial reduction of W VI centers of the reaction products of \([\text{H}_{7}\text{P}_{8}\text{W}_{48}\text{O}_{184}]^{33-}\). A relatively high Cl concentration is also important as it serves as a source of terminal chloride ligands on the SnII centers in 1.

The SnII center resides in a trigonal pyramidal SnO2Cl coordination environment with a terminal chloride ligand (Sn–Cl 2.515(6) Å) directed towards the center of the \({\text{P8W48}^{6-}}\). This trigonal-pyramidal coordination mode is reminiscent of several other anionic Sn(ii) complexes such as SnCl3 that are formed in aqueous solutions at higher halide concentrations, or SnCl4(H2O). The Sn–Cl bond lengths in 1 can be compared with those of 2.523 and 2.595 Å in Cs[SnCl4]13 and [SnCl4(H2O)2][H2O]13 respectively. The Sn–O bond distances in 1 also correlate rather well with the Sn–O bond lengths in [SnCl4(H2O)2][H2O] (2.169 Å)13b and other SnII-containing POTs.8 The O–Sn–O and O–Sn–Cl angles are in the usual range (see Table S1†).

Representative examples which we were able to structurally characterize are K46.73Li26.25[(HOSn11)]3[P4W48O184][HOSn12]3−, P4W48O184·nH2O (CSD-430081) and K41Li13[(HOSn12)xP4W48O184]3−, nH2O (CSD-430082), both of which exhibit correspondingly decreased crystallographic occupancy factors for the Sn positions.

Crystal structure analysis

Compound KLi-1 crystallizes in tetragonal symmetry in the space group 4/m. The polyanion 1 consists of a macrocyclic phosphotungstate \(\{\text{P8W48}\}^{6-}\) which is coordinated by eight SnII ions that are located in the inner cavity of \(\{\text{P8W48}\}\) at the eight vacant sites between neighboring \(\{\text{P4W18}\}\) subunits. Each Sn center binds to two terminal oxygen positions belonging to two adjacent \(\{\text{P4W18}\}\) groups (Sn–O 2.140(10)–2.152(11) Å; Fig. 1). Thus, the POM possesses an idealized D4h symmetry. The bond lengths and angles within the phosphotungstate framework are in the usual range (see Table S1†).

Each SnII center resides in a trigonal pyramidal SnO2Cl coordination environment with a terminal chloride ligand (Sn–Cl 2.515(6) Å) directed towards the center of the \(\{\text{P4W18}\}\) ring. This trigonal-pyramidal coordination mode is reminiscent of several other anionic Sn(ii) complexes such as SnCl3, that are formed in aqueous solutions at higher halide concentrations, or SnCl4(H2O). The Sn–Cl bond lengths in 1 can be compared with those of 2.523 and 2.595 Å in Cs[SnCl4]13 and [SnCl4(H2O)2][H2O]13 respectively. The Sn–O bond distances in 1 also correlate rather well with the Sn–O bond lengths in [SnCl4(H2O)2][H2O] (2.169 Å)13b and other SnII-containing POTs.8 The O–Sn–O and O–Sn–Cl angles are in the usual range (see Table S1†).

Fig. 1 Structure of 1 in combined polyhedral/ball-and-stick representation. Color legend: WO6, yellow octahedra; Sn, blue; K, light blue; Cl, lime green; O, red spheres. The P centers are not visible in this perspective.

Crystallographic Data	Reference
Space group	4/m
Unit cell dimensions	
a (Å)	
b (Å)	
c (Å)	
α (°)	
β (°)	
γ (°)	

This journal is © The Royal Society of Chemistry 2015
range and constitute 91.5(4)% and 85.8(3)–86.3(3)%, respectively. The lone electron pair on each SnII center is oriented towards the center of the polyon and thus is sterically inaccessible. The closest Sn···Sn distances are 3.956(1) Å between the SnII centers situated on the opposite side of \{P_6W_{18}\} and 7.248(1) Å between the SnII centers located on the same side of the wheel.

The inner cavity of 1 is occupied by four K+ counterions each forming weak electrostatic interactions with four oxygen atoms of two phosphate groups of one of the \{P_6W_{18}\} units (K–O: 2.815(11)–2.828(11) Å) and four chloride ligands on the adjacent SnII centers (K–Cl: 3.278(8)–3.301(8) Å). In addition, half of the polyon ions in the solid-state structure of KLi-1 incorporate a central K+ cation, which coordinates eight Cl⁻ ligands of eight SnII ions (K–Cl: 3.155(5) Å).

According to bond valence sum calculations, all tungsten centers in 1 are in the oxidation state +VI and all oxygen atoms of \{P_6W_{18}\} are unprotonated (see Table S2†). Thus, the partial reduction of WVI centers in the \{P_6W_{18}\} precursor due to the reaction with SnII might explain the relatively low yield of 1, the final formula of which was determined from crystal structural data, BVS calculations and elemental analysis.

To the best of our knowledge 1 is the first example of a \{P_8W_{48}\}–type polyon with a main group metal, as only transition metal and lanthanide-functionalized \{P_8W_{48}\} derivatives have been reported to date. The main difference in SnII (vs. transition metal/lanthanide) complexation with \{P_8W_{48}\} is the relatively small coordination number (3) of SnII. This feature, however, limits the long-term solution stability of 1 (vide infra). On the other hand, it leaves rather a significant space inside the \{Sn_8P_8W_{48}\} macrocycles that can potentially be used to incorporate other ligands/metals.

In the solid-state structure of KLi-1 the polyon ions 1 are interlinked via K+ counterions into a 3D framework with pseudolayers of 1 packed in an ⋯ABAB⋯ pattern (Fig. S1 and S2†) along the crystallographic c axis. A network of channels along the a and b axes with 5 × 9 Å diameter are filled by crystal water molecules.

FT-IR spectrum

The FT-IR spectrum of KLi-1 (Fig. S3†) exhibits a set of bands in the range of 1135–400 cm⁻¹ typical of the \{P_8W_{48}\} framework. Thus, the positions of the bands characteristic of vibrations of P–O bonds in \{P_8W_{48}\} (1134, 1084 and 1022 cm⁻¹) are almost the same as those attributed to P–O vibrations of a tin-free K/Li salt, KLi-P_8W_{48} (1138, 1085 and 1017 cm⁻¹), despite a small shoulder at 1120 cm⁻¹ for KLi-1. The intense band at 926 cm⁻¹ belongs to the stretching vibrations of the terminal W=O bonds. The main differences between KLi-1 and KLi-P_8W_{48} in the 850–400 cm⁻¹ range concern W–O–W, W–O–P and W–O–Sn vibrations (716, 569, 530, 465 and 401 cm⁻¹ for KLi-1 and 807, 686, 573, 527 and 472 cm⁻¹ for KLi-P_8W_{48}) and, especially in the 850–550 cm⁻¹ region, reflect the SnII coordination to \{P_8W_{48}\}.

Characterization in aqueous solution

KLi-1 is soluble in water, and its solubility is significantly enhanced in the presence of Li⁺ ions. The addition of K⁺ salts to solutions of KLi-1 leads to immediate precipitation of the complex. The stability of the polyon 1 in various Li⁺-based media has been investigated by ³¹P NMR and UV-Vis spectroscopy.

³¹P NMR spectroscopy. The room temperature liquid-state ³¹P NMR spectrum of 1 in a 2 M Li₂SO₄/H₂SO₄ buffer with pH 3.0 (Fig. 2) recorded within 1 h exhibits a single signal at ~8.0 ppm which is in full agreement with the D₄h symmetry of 1 in the crystal lattice of KLi-1. It corresponds rather well to the signal at ~7.6 ppm observed in the ³¹P MAS NMR solid-state spectrum of KLi-1 recorded at 67 kHz rotation frequency (Fig. S6†). Furthermore, it documents the single phase character of the material. The symmetric line shape of the ³¹P NMR spectrum measured without sample spinning indicates the absence of a significant chemical shift anisotropy confirming the tetrahedral coordination of the phosphorus atoms. The small difference in the chemical shift can be attributed to the heating of the sample during its fast rotation in the solid-state measurements. This can also be compared with a singlet at ~6.5 ppm characteristic of non-coordinated KLi-P_8W_{48} measured in the same medium (Fig. S7†). This result indicates short-term stability of the title compound in 2 M Li₂SO₄/H₂SO₄ buffer (pH 3.0). At the same time, after several hours other signals start to appear in the spectrum evident of slow decomposition of 1 in aqueous solution via the gradual release of SnII ions. Thus, the spectrum of the same solution measured for 1 day (Fig. S8†) shows a set of additional, weaker signals at ~8.1 ppm (13.6% of the total intensity of all the signals), ~8.3 ppm (6.1%), ~8.4 ppm (2.7%), ~8.7 ppm (2.3%), ~8.8 ppm (1.4%) and ~10.7 ppm (6.4%) along with the original one at ~8.0 ppm (67.5%). The decomposition of the polyion in 4 M LiCl seems to be even faster, already after one hour the spectrum of KLi-1 redissolved in this medium exhibits a set of badly resolved signals in the range of ~6.3 to

![Fig. 2 Room temperature liquid-state ³¹P NMR spectrum of 1 in 2 M Li₂SO₄/H₂SO₄ buffer solution (pH 3.0) after 1 h.](image-url)
reduction of the WVI centers takes place at far less negative potentials compared to those of the Sn centers (ΔV = 160 mV). (III) There is a new redox wave assigned to the reduction of the WVI centers. This wave, with a shape characteristic of adsorption/desorption processes taking place on the surface of the working electrode, is assigned to the reduction of the SnII centers to Sn0 and to the formation of a metallic tin film on the surface of the GC electrode. Upon scan reversal, there is the re-dissolution wave of tin concomitant with its electrochemical re-oxidation: Sn0 = SnII + 2e-. When lower scan rates are employed and the potential is restricted to a range excluding this third wave (E > −0.58 V vs. SCE), it is clear that just the WVI centers are reduced, and the SnII centers are not affected (Fig. S16†).

In order to prove unambiguously that the potential scan restricted to a range not going below −0.58 V vs. SCE concerns just the W centers, we carried out a study of the dependence of the reduction and oxidation peak currents, Ipc and Ipwa, on the scan rate. It revealed that Ipc depends on the square root of the scan rate, despite the fact that a relatively narrow set of scan rates was used (10 to 50 mV s⁻¹), this confirms that the mass transport phenomena coupled to the electron transfer are diffusion controlled, excluding the possible involvement of the Sn centers (Fig. S17†).

Electrochemical quartz crystal microbalance (EQCM) characterization. In order to confirm undoubtedly that there is a metal tin film forming on the surface of the working electrode during the cyclic voltammetry experiment when the potential range goes beyond the W centers’ redox waves, meaning that a wave assignable to the SnII⁻⁰ redox couple is reached, a quartz crystal microbalance was coupled to the electrochemistry setup. A potential scan was carried out at a low rate (2 mV s⁻¹) in order to favor the deposit of the Sn0 film. In addition, when two consecutive scans are recorded, the GC electrode surface is perfectly regenerated upon the reverse scan. The quartz crystal vibration frequency variation indicates that the Sn0 film starts depositing at a potential of −0.6 V vs. SCE and continues even after the potential scan is reversed. This potential of −0.6 V vs. SCE seems to be the threshold value both for the onset of the SnII⁻⁰ reduction and for the onset of the re-oxidation of Sn0 (Fig. 4). It is possible to estimate the amount of accumulated tin after each cycle, but we did not find it crucial in the context of the present study.

Experimental section

General methods and materials

The reagents were used as purchased without further purification. K28Li5[H2P8W48O184]·92H2O (KLi-P8W48) was obtained according to the reported procedure and its identity and purity were confirmed by IR and 31P NMR spectroscopy.
Elemental analysis results (ICP-OES) were obtained from Central Institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich GmbH (D-52425 Jülich, Germany). TGA/DTA measurements were carried out with a Mettler Toledo TGA/SDTA 851 in dry N2 (60 ml min\(^{-1}\)) at a heating rate of 5 K min\(^{-1}\). Vibrational spectra were recorded on a Bruker Vertex 70 FT-IR spectrometer coupled with a RAM II FT-Raman module (1064 nm Nd:YAG laser) on KBr disks for the FT-IR and the solid material for the Raman measurements. UV-Vis spectra were recorded using 10 mm quartz cuvettes on an Analytik Jena Specord S600 spectrophotometer. Solution \(^{31}\)P NMR spectra were recorded at room temperature in 5 mm tubes using a Bruker Avance 600 MHz spectrometer equipped with a probehead, operating at 242.95 MHz for \(^{31}\)P. Chemical shifts are reported with respect to 85% H\(_3\)PO\(_4\); all chemical shifts downfield of the reference are reported as positive values. The solid-state \(^{31}\)P NMR measurements were performed at ambient temperature using a Bruker Avance III spectrometer with a 9.4 T magnetic field. The spectrometer was equipped with a Bruker triple resonance probe for rotors of 1.3 mm diameter. The ground sample powder was filled into a ZrO\(_2\) rotor for the experiments with and without sample spinning. A rotation frequency of 67 kHz was applied during MAS. An eight-fold cyclisation of the pulse sequences with a cycle delay of 10 s was used. The signal shift is referred to H\(_3\)PO\(_4\).

Synthesis of K\(_{12}\)Li\(_{17.5}\)[K\(_{4.5}\)Cl(Sn\(_8\))\(_2\)P\(_8\)W\(_{48}\)O\(_{184}\)]·50H\(_2\)O (KLi-1)

K\(_{28}\)Li\(_{2}[H\(_7\)P\(_8\)W\(_{48}\)O\(_{184}\)]·92H\(_2\)O (0.10 g; 6.75 \(\mu\)mol) and SnCl\(_2\)-2H\(_2\)O (0.013 g; 57.6 \(\mu\)mol) were dissolved in 3 mL of 4 M aqueous solution of LiCl in a 20 mL vial which was then closed with a screw cap. The reaction mixture was stirred at 50 °C for 1 h. During the heating the color of the solution was gradually changing from bright orange (obtained directly after the reagent dissolution) to brown and then to dark-green (originating from partial W\(^{VI}\) reduction). After that the reaction mixture was cooled down to room temperature and filtered. The obtained dark-green solution was then evaporated under a hood resulting in large block-shaped orange crystals of the product within 2 to 6 days. Yield: 0.025 g (25% based on \([P\(_8\)W\(_{48}\)]\)).

Elemental analysis: calculated for H\(_{290}\)Cl\(_7\)K\(_{14.5}\)Li\(_{17.5}\)O\(_{234}\)P\(_8\)W\(_{48}\): Cl, 1.91 (1.96); K, 3.82 (3.75); Li, 0.82 (0.83); P, 1.67 (1.45); Sn, 6.4 (6.1); W, 59.5 (61)%.

IR spectrum (KBr pellets), \(\text{cm}^{-1}\): 3411 (s, br); 1690 (s); 1620 (m); 1134 (m); 1120 (m); 1084 (m); 1022 (w); 926 (s); 716 (s); 569 (m); 530 (m); 465 (w); 401 (w).

Raman (solid sample, \(\lambda_0 = 1064\) nm), \(\text{cm}^{-1}\): 1084 (w); 964 (s); 870 (w); 852 (w); 783 (m); 658 (m); 542 (w); 534 (w); 482 (w); 415 (w); 390 (w); 324 (w); 287 (w); 260 (m); 228 (m); 206 (m); 154 (m); 112 (m); 64 (s); 59 (s).

\(^{31}\)P NMR (H\(_2\)O/D\(_2\)O): -7.6 ppm (singlet). \(^{31}\)P MAS NMR (67 kHz): -7.6 ppm (singlet).

UV-Vis (2 M Li\(_2\)SO\(_4\) buffer solution, pH 3.0): \(\lambda = 216\) nm, \(\varepsilon = 168 400\) M\(^{-1}\) cm\(^{-1}\); \(\lambda = 275\) nm, \(\varepsilon = 97 800\) M\(^{-1}\) cm\(^{-1}\); \(\lambda = 385\) nm, \(\varepsilon = 9789\) M\(^{-1}\) cm\(^{-1}\).

UV-Vis (0.5 M Li\(_2\)SO\(_4\) buffer solution, pH 2.0): \(\lambda = 219\) nm, \(\varepsilon = 214 600\) M\(^{-1}\) cm\(^{-1}\); \(\lambda = 274.5\) nm, \(\varepsilon = 134 800\) M\(^{-1}\) cm\(^{-1}\); \(\lambda = 385\) nm, \(\varepsilon = 8330\) M\(^{-1}\) cm\(^{-1}\).

X-ray crystallography

Single-crystal X-ray diffraction data for KLi-1 were collected on a SuperNova (Agilent Technologies) diffractometer with Mo K\(\alpha\) radiation (\(\lambda = 0.71073\) Å) at 120 K. A crystal was mounted on a Hampton cryoloop with Paratone-N oil to prevent water loss. Absorption corrections were applied numerically based on a multifaceted crystal model using CrysAlis software.\(^{17}\) The SHELXTL software package\(^{18}\) was used to solve and refine the structure. The structure was solved by the direct methods and refined by the full-matrix least-squares method against |\(F^2\)| with anisotropic thermal parameters for all POM skeleton atoms (Sn, Cl, P, W, O) and potassium countercations and in isotropic approximation for the O atoms of co-crystallized solvent molecules. The Li\(^+\) countercations and hydrogen atoms of the crystal water molecules were not located. The relative site occupancy factors for the disordered potassium countercations and solvent oxygens were first refined in an isotropic approximation with \(U_{iso} = 0.05\) and then fixed at the
obtained values and refined without the thermal parameter restrictions.

The number of crystal water molecules found by XRD was smaller than that determined by elemental analysis and TGA (41 vs. 50 and 102, respectively) reflecting the high degree of solvent disorder in the solid-state structure of KLi-1. This is also consistent with large solvent-accessible volume remaining in the structure. On the other hand, the sample used for X-ray diffraction of the material of KLi-1 was dried to less than that taken for elemental analysis in the structure. On the other hand, the sample used for X-ray diffraction

Table 1 Crystal data and structure refinement of KLi-1

Property	Value
Empirical formula	H$_{2}$O$_{2}$Cl$_{4}$K$_{4.5}$Li$_{17.5}$O$_{234}$P$_{8}$Sn$_{8}$W$_{48}$
Formula weight, g mol$^{-1}$	14 838.88
Crystal system	Tetragonal
Space group	I4/m
a, Å	25.4151(3)
c, Å	21.7748(4)
Volume, Å3	14 065.0(3)
Z	2
D$_{calc}$, g cm$^{-3}$	3.504
Absorption coefficient, mm$^{-1}$	20.666
f(000)	13 016
Crystal size, mm	0.19 × 0.28 × 0.35
Theta range for data collection	4.09° – 26.02°
Completeness to θ$_{max}$	99.4%
Index ranges	−31 ≤ h ≤ 30, −31 ≤ k ≤ 30, −22 ≤ l ≤ 26
Reflections collected	35 937
Independent reflections	7076
R$_{int}$	0.1192
Observed (I > 2σ(I))	5862
Absorption correction	Empirical using spherical harmonics
T$_{max}$/T$_{min}$	0.0562/0.1109
Data/restraints/parameters	7076/36/379
Goodness-of-fit on F2	1.092
R$_1$, wR$_2$ (I > 2σ(I))	R$_1$ = 0.0583, wR$_2$ = 0.1563
R$_1$, wR$_2$ (all data)	R$_1$ = 0.0709, wR$_2$ = 0.1691
Largest diff. peak and hole, e Å$^{-3}$	6.755 and −3.837

Cyclic voltammograms of 1 were recorded in comparison with the heterometal-free [P$_8$W$_{48}$] salt KLi-P$_8$W$_{48}$ at room temperature in three different media: (1) on a 0.55 mM solution of KLi-1 in 1 M LiCl/HCl buffer (pH 2.0), (2) 0.57 mM solution of KLi-1 in 0.5 M Li$_2$SO$_4$/H$_2$SO$_4$ buffer (pH 2.0) and (3) 0.52 mM non-buffered KLi-1 solution in 2 M LiCl. The corresponding concentrations of KLi-P$_8$W$_{48}$ were 0.51 mM, 0.56 mM and 0.53 mM, respectively. Electrochemical data were obtained using an EG&G 273A potentiostat controlled by M270 software. A conventional one-compartment three-electrode electrochemical cell included a glassy carbon working electrode (GC, Mersen, France) with a diameter of 3 mm, a platinum gauze counter electrode with a large surface area and a saturated calomel reference electrode. The source, mounting, and polishing of the glassy carbon electrode has been previously described. The reference and counter electrodes were separated from the studied solutions via fritted compartments filled with the same electrolyte. Prior to the experiments the solutions were thoroughly deaerated with pure argon for at least 30 min and then kept under a positive argon pressure during the measurements. The midpoint redox potentials were determined from the average values of the anodic and cathodic peak potentials and are reported vs. the saturated calomel reference electrode (SCE).

The electrochemical quartz crystal microbalance (EQCM) measurements were carried out using a QCA 922 (Seiko/EG&G) system with 9 MHz AT-cut crystals. New crystals equipped with carbon electrodes possessing a true surface area of 0.3 cm2 were provided by Seiko. Frequency variations were recorded and used for discussion in this work.

Conclusions

In summary, we have prepared the first complex of macrocyclic phosphotungstic acid with the main group metal ions, [K$_{4.5}$Cl(CSn)$_{8}$P$_{8}$W$_{48}$O$_{184}$]$^{17.5-}$ (1), which also represents a rather rare example of SnII-containing POMs. In 1 the SnII centers occupy the eight vacant sites of the polyanion resulting in the P21/c symmetry. Polyanions 1 have been isolated in the solid state as the hydrated mixed potassium/lithium salt KLi-1 and characterized by single-crystal X-ray diffraction, FT-IR/Raman and 31P MAS NMR spectroscopy as well as by elemental and thermogravimetric analyses. Solution studies by 31P NMR, UV-Vis and electrochemistry showed that the complex is stable in aqueous medium for several hours and then slowly decomposes, releasing SnII. In contrast with transition metal and lanthanide-functionalized POMs, the SnII ions in 1 display a small coordination number of 3 and coordinate only one terminal Cl$^{-}$ ligand each, thus retaining a relatively large void in the inner cavity of the macrocyclic complex. Currently we are investigating the possibility of further functionalization of [Sn$_{8}$P$_{8}$W$_{48}$]$_{n}$ via incorporation of various heterometals in this inner core volume.

Acknowledgements

We gratefully acknowledge financial support by Forschungszentrum Jülich and the EU ERC Starting Grant MOLSPIN-TRON, no. 308051 (P.K.) as well as by the Université Paris-Sud and the CNRS (I.M.M and P.d.O.) and by an STSM action...
attributed by the COST CM1203 “Polyoxometallate Chemistry for Molecular Nanoscience (PoCheMoN)”.

Notes and references

1 See for example: (a) P. Gouzerh and A. Proust, Chem. Rev., 1998, 98, 77–111; (b) A. Proust, R. Thouvenot and P. Gouzerh, Chem. Commun., 2008, 1837–1852; (c) A. Dolbecq, E. Dumas, C. R. Mayer and P. Mialane, Chem. Rev., 2010, 110, 6009–6048; (d) D.-P. Santoni, G. S. Hanan and B. Hasenkopf, Coord. Chem. Rev., 2014, 281, 64–85, and references therein.

2 See for example: (a) S. Duval, M.-A. Pilette, J. Marrot, C. Simonnet-Jégat, M. N. Sokolov and E. Cadot, Chem. – Eur. J., 2008, 14, 3457–3466; (b) Y. Zhang, L. Li, T. Sun, B. Liu, H. Hu and G. Xue, Inorg. Chem., 2011, 50, 2613–2618; (c) C. Ritchie, M. Speldrich, R. W. Gable, L. Sorace, P. Kögerler and C. Boskovic, Inorg. Chem., 2011, 50, 7004–7014; (d) S. Duval, J. Marrot, C. Simonnet-Jégat, I. M. Mbomekalle, M. N. Sokolov and E. Cadot, Dalton Trans., 2012, 41, 3174–3184.

3 (a) W. H. Knoth, J. Am. Chem. Soc., 1979, 101, 2211–2213; (b) G. S. Chorghade and M. T. Pope, J. Am. Chem. Soc., 1987, 109, 5134–5138; (c) E. Rafiee, I. M. Baltork, S. Tangestaninejad, A. Azad and S. Moinee, Z. Naturforsch., B: Chem. Sci., 2006, 61, 601–606.

4 (a) F. Xin and M. T. Pope, J. Am. Chem. Soc., 1996, 118, 7731–7736; (b) A. Botar, B. Botar, P. Gili, A. Müller, J. Meyer, H. Bögge and M. Schmidtmann, Z. Anorg. Allg. Chem., 1996, 622, 1435–1440; (c) R. Khoshnavazi and L. Bahrami, J. Coord. Chem., 2009, 62, 2067–2075.

5 (a) M. N. Sokolov, N. V. Izarova, A. V. Ivirovets, V. P. Fedin, Z. A. Starikova and M. Yu. Antipin, Dalton Trans., 2003, 4389–4390; (b) C. Zhao, E. N. Glass, B. Chica, D. G. Musaev, J. M. Sumliner, R. B. Dyer, T. Lian and C. L. Hill, J. Am. Chem. Soc., 2014, 136, 12085–12091.

6 Z. Zhang, Q. Lin, S.-T. Zheng, X. Bu and P. Feng, Chem. Commun., 2011, 47, 3918–3920.

7 B. Krebs, E. Droste, M. Piepenbrink and G. Vollmer, C. R. Acad. Sci., Ser. IIc: Chim., 2000, 3, 205–210.

8 M. N. Sokolov, I. V. Kalinina, E. V. Peresypkina, N. K. Moroz, D. Yu. Naumov and V. P. Fedin, Eur. J. Inorg. Chem., 2013, 1772–1779.

9 (a) S. S. Mal and U. Kortz, Angew. Chem., Int. Ed., 2005, 44, 3777–3780; (b) S. S. Mal, B. S. Bassil, M. Ibrahim, S. Nellutta, J. van Tol, N. S. Dalal, J. A. Fernández, X. López, J. M. Poblet, R. Ngo BIBM, B. Keita and U. Kortz, Inorg. Chem., 2009, 48, 11636–11645; (c) C. Pichon, P. Mialane, A. Dolbecq, J. Marrot, E. Rivière, B. Keita, L. Nadjo and F. Sérèchesse, Inorg. Chem., 2007, 46, 5292–5301.

10 (a) A. Müller, M. T. Pope, A. M. Todea, H. Bögge, J. van Slageren, M. Dressel, P. Gouzerh, R. Thouvenot, B. Tsukerblat and A. Bell, Angew. Chem., Int. Ed., 2007, 46, 4477–4480; (b) S. S. Mal, M. H. Dickman, U. Kortz, A. M. Todea, A. Merca, H. Bögge, T. Glaser, A. Müller, S. Nellutta, N. Kaur, J. van Tol, N. S. Dalal, B. Keita and L. Nadjo, Chem. – Eur. J., 2008, 14, 1186–1195; (c) F. L. Sousa, H. Bögge, A. Merca, P. Gouzerh, R. Thouvenot and A. Müller, Chem. Commun., 2009, 7491–7493.

11 (a) M. Zimmermann, N. Belai, R. J. Butcher, M. T. Pope, E. V. Chubarova, M. H. Dickman and U. Kortz, Inorg. Chem., 2007, 46, 1737–1740; (b) S. S. Mal, N. H. Nsouli, M. H. Dickman and U. Kortz, Dalton Trans., 2007, 2627–2630; (c) S. G. Mitchell, D. Gabb, C. Ritchie, N. Hazel, D.-L. Long and L. Cronin, CrystEngComm, 2009, 11, 36–39; (d) B. S. Bassil, M. Ibrahim, S. S. Mal, A. Suchopar, R. Ngo BIBM, B. Keita, L. Nadjo, S. Nellutta, J. van Tol, N. S. Dalal and U. Kortz, Inorg. Chem., 2010, 49, 4949–4959; (e) S. G. Mitchell, T. Boyd, H. N. Miras, D.-L. Long and L. Cronin, Inorg. Chem., 2011, 50, 136–143; (f) X. Fang, P. Kögerler, Y. Furukawa, M. Speldrich and M. Luban, Angew. Chem., Int. Ed., 2011, 50, 5212–5216; (g) S.-W. Chen, K. Boubekre, P. Gouzerh and A. Proust, J. Mol. Struct., 2011, 994, 104–108; (h) V. S. Korenev, S. Floquet, J. Marrot, M. Haouas, I.-M. Mbomekallé, F. Taulelle, M. N. Sokolov, V. P. Fedin and E. Cadot, Inorg. Chem., 2012, 51, 2349–2358; (i) Z.-J. Liu, Z.-M. Zhang, H. Fu, Y.-G. Li, W.-L. Chen, H.-H. Wu and E.-B. Wang, Dalton Trans., 2012, 41, 11700–11705; (j) L. Huang, L. Cheng, W.-H. Fang, S.-S. Wang and G.-Y. Yang, Eur. J. Inorg. Chem., 2013, 1693–1698; (k) Y.-Q. Jiao, C. Qin, X.-L. Wang, C.-G. Wang, C.-Y. Sun, H.-N. Wang, K.-Z. Shao and Z.-M. Su, Chem. – Asian J., 2014, 9, 470–478.

12 S. G. Mitchell, C. Streb, H. N. Miras, T. Boyd, D. L. Long and L. Cronin, Nat. Chem., 2010, 2, 308–312.

13 (a) F. R. Poulsen and S. E. Rasmussen, Acta Chem., Scand., 1970, 24, 150–156; (b) B. Kamenar and D. Gredin, J. Chem. Soc., 1961, 3954–3958.

14 (a) I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B: Struct. Sci., 1985, 41, 244–247; (b) K. Knížek, Kalvados – Software for crystal structure and powder diffraction; see http://www.fzu.cz/~knizek/kalvados/index.html.

15 R. Contant and A. Tézé, Inorg. Chem., 1985, 24, 4610–4614.

16 B. Keita, Y. W. Lu, L. Nadjo and R. Contant, Electrochem. Commun., 2000, 2, 720–726.

17 CrysAlisPro, Version 1.171.36.21 (release 14-08-2012 CrysAlisPro.NET), Agilent Technologies.

18 G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 64, 112–122.

19 N. Vila, P. A. Aparicio, F. Sécheresse, J. M. Poblet, X. Lopez and I. M. Mbomekallé, Inorg. Chem., 2012, 51, 6129–6138.