Determinacy in a synchronous π-calculus

Roberto Amadio

Université de Paris 7

Laboratoire Preuves, Programmes et Systèmes

Joint work with Mehdi Dogguy
Plan

• What is determinacy in interactive systems?
• The *synchronous* π-calculus.
• Results.
Towards a definition of determinacy

• If we run an ‘experiment’ twice we always get the same ‘result’.

• If P and P' are ‘equivalent’ then one is determinate if and only if the other is.

• If P is determinate and we run an experiment then the residual of P after the experiment should still be determinate.
• We place this preliminary discussion in the context of a simple model such as *CCS*.

• Take *equivalent* to mean *weak bisimilar*.

• Take *experiment* to be a finite sequence of observable actions.

Ref Milner 89, Groote-Sellink 96, Philippou-Walker 97
A formal definition of determinacy

• Let $s = \ell_1 \cdots \ell_n$ be a finite word of observable actions.

• Define

 \[
 P \xrightarrow{\xi} P' \quad \text{if} \quad P \xrightarrow{\tau} P'
 \]

 \[
 P \xrightarrow{\ell_1 \cdots \ell_n} P', \ n \geq 1 \quad \text{if} \quad P \xrightarrow{\ell_1} \cdots \xrightarrow{\ell_n} P'
 \]

• A process P is *determinate* if for any s,

\[
\frac{P \xrightarrow{s} P' \quad P \xrightarrow{s} P''}{P' \approx P''}
\]

NB This definition entails invariance under internal reductions.
Wish list

We want more:

1. Manageable method to prove determinacy. For instance, *confluence* and even better *local confluence*.

2. Compositional and effective method to build deterministic systems. For instance, a *typing system*.
Confluence and Local Confluence

• A process P is confluent if for every derivative Q of P we have:

\[
Q \xrightarrow{\alpha} Q_1 \quad Q \xrightarrow{\beta} Q_2 \quad \alpha \downarrow \beta
\]

\[
\exists Q'_1, Q'_2 \ (Q_1 \xrightarrow{\beta\backslash\alpha} Q'_1 \quad Q_2 \xrightarrow{\alpha\backslash\beta} Q'_2 \quad Q'_1 \approx Q'_2)
\]

• A process P is locally confluent if for every derivative Q of P we have:

\[
Q \xrightarrow{\alpha} Q_1 \quad Q \xrightarrow{\beta} Q_2 \quad \alpha \downarrow \beta
\]

\[
\exists Q'_1, Q'_2 \ (Q_1 \xrightarrow{\beta\backslash\alpha} Q'_1 \quad Q_2 \xrightarrow{\alpha\backslash\beta} Q'_2 \quad Q'_1 \approx Q'_2)
\]

NB $\alpha \downarrow \beta$ and $\alpha\backslash\beta$ stand for action compatibility and action residual, respectively.
Facts in CCS

Call a process *reactive* if the τ reductions of every derivative always terminate.

- A confluent process is deterministic (converse fails).
- A reactive and locally confluent process is confluent (a kind of Newman lemma).
Rudimentary typing (sample)

- Let Γ be a set of observable actions.
- We write $\Gamma \vdash P$ if all the observable actions a derivative of P may perform belong to Γ.
- A typing rule for parallel composition:

\[
\frac{\Gamma_1 \vdash P_1, \quad \Gamma_2 \vdash P_2, \quad \Gamma_1 \cap \Gamma_2 = \emptyset, \quad \Gamma_1 \cap \overline{\Gamma_2} \subseteq \{a_1, \ldots, a_n\}}{(\Gamma_1 \cup \Gamma_2) \setminus \{a_1, \ldots, a_n\} \vdash \nu a_1, \ldots, a_n (P \mid Q)}
\]

Fact in CCS A typable program is confluent.
The $S\pi$-calculus: a synchronous π-calculus

Assume $v_1 \neq v_2$ are two distinct values and

$$P = \nu \ s_1, s_2 \ (\overline{s_1}v_1 \mid \overline{s_1}v_2 \mid s_1(x). \ (s_1(y). \ (s_2(z). \ A(x, y) \ , B(!s_1)) \ , 0) \ , 0)$$

P is a π-calculus process if we forget about the else branches of the read instructions.

Ref Boussinot-De Simone 96, A. 05, A. 06
Spot the differences...

\[P = \nu \ s_1, s_2 \ (s_1 v_1 | s_1 v_2 | s_1(x). (s_1(y). (s_2(z). A(x, y), B(!s_1)), 0), 0) \]

- In \(\pi \), \(P \) reduces to

\[P_1 = \nu s_1, s_2 \ s_2(z). A(\sigma(x), \sigma(y)) \]

where \(\sigma(x), \sigma(y) \in \{v_1, v_2\} \) and \(\sigma(x) \neq \sigma(y) \).

- In \(S\pi \), signals persist within the instant and \(P \) reduces to

\[P_2 = \nu s_1, s_2 \ (s_1 v_1 | s_1 v_2 | (s_2(z). A(\sigma(x), \sigma(y)), B(!s_1))) \]

where \(\sigma(x), \sigma(y) \in \{v_1, v_2\} \).
• In π, P_1 is now \textit{deadlocked}.

• In $S\pi$, the \textit{current instant ends} and we move to the following one

$$P_2 \xrightarrow{N} P'_2 = \nu s_1, s_2 \ B(\ell)$$

where $\ell \in \{[v_1; v_2], [v_2; v_1]\}$ and N is the \textit{next action}.

• Thus at the end of the instant, $!s_1$ becomes \textit{a list of (distinct) values} emitted on s_1 during the instant.

• For this reason, $S\pi$ includes \textit{lists has a primitive data structure}.
Deterministic programs: a cellular automaton

\[
\text{Cell}(q, s, \ell) = \text{Send}(q, s, \ell, \ell)
\]
\[
\text{Send}(q, s, \ell, \ell') = [\ell' \geq \text{cons}(s', \ell'')] (s'q \mid \text{Send}(q, s, \ell, \ell'')),
\]
\[
\text{pause. Cell}(\text{next}(q, !s), s, \ell)
\]

Deterministic, assuming \textit{next} is invariant under permutations of the list of states.
Deterministic programs: synchronous data flow

\[\begin{array}{c}
s_1 \rightarrow A \rightarrow C \rightarrow A \rightarrow B \rightarrow C \rightarrow \\

\nu s_2, s_3, s_4, s_5 \left(A(s_1, s_2, s_3, s_4) \mid B(s_4, s_5) \mid C(s_2, s_3, s_5, s_6) \right) \\
\end{array} \]

\[A(s_1, s_2, s_3, s_4) = s_1(x). (s_2 f(x) \mid s_3(y). (s_4 g(y) \mid \text{pause}. A(s_1, s_2, s_3, s_4)), 0), 0 \]
\[B(s_4, s_5) = s_4(x). (s_5 h(x) \mid \text{pause}. B(s_4, s_5)), 0 \]
\[C(s_2, s_3, s_5, s_6) = s_2(x). (s_3 i(x) \mid s_5(y). (s_6 l(y)) \mid \text{pause}. C(s_2, s_3, s_5, s_6)), 0), 0 \]

Deterministic, assuming at every instant at most one value is emitted on signal \(s_1 \).
Deterministic programs: client server

Server(s) = \text{pause}.\text{Handle}(s, !s)

Handle(s, ℓ) = [ℓ ≥ \text{cons}(\text{req}(s′, x), ℓ′)](s′f(x) | \text{Handle}(s, ℓ′)), Server(s)

Client(x, s, t) = νs′ (\text{sreq}(s′, x) | \text{pause}.s′(x).\bar{t}x, 0)

Deterministic, assuming ??

Ref Mandel-Pouzet 05, Saraswat et al. 06, Edwards-Tardieu 07.
Results (informal)

We manage to follow the ‘CCS approach’ above. Some highlights:

- We find a modified labelled transition system that allows for a standard definition of bisimulation.

- In $S\pi$, determinacy = confluence and we have simple local confluence conditions that coupled with reactivity imply confluence.

- We design a typing system for analysing signal usage.
Modified lts and standard bisimulation

For diagram chasing, it is nice to have a standard bisimulation.

\[P \not\mathcal{R} Q, \quad P \xrightarrow{\alpha} P', \quad bn(\alpha) \cap fn(Q) = \emptyset \]

\[\exists Q' \ (Q \not\mathcal{R} Q', \quad P' \mathcal{R} Q') \]

This is possible with a modified lts. The input rule is replaced by two:

\[s(x).P, K \xrightarrow{s?v} [v/x]P \quad P \xrightarrow{sv} (P \mid \overline{sv}) \]

- The action \(s?v \) is not observable. It is an auxiliary action needed to compute the internal synchronisation.

- The observable action is \(sv \). Note that this action is always enabled.

Ref Honda-Yoshida 95, A.-Castellani-Sangiorgi 98
A simple condition for determinacy

• In the modified lts, (observable) inputs commute because they are always enabled and outputs commute because they are persistent.

• Then one just needs to check that τ-actions commute and N-actions commute.

• For instance, under reactivity, the following suffices to guarantee confluence: for all derivatives Q,

\[
Q \xrightarrow{\alpha} Q_1, \quad Q \xrightarrow{\alpha} Q_2, \quad \alpha \in \{\tau, N\}
\]

\[
\exists Q_3, Q_4 \left(Q_1 \xrightarrow{\tau} Q_3, \quad Q_2 \xrightarrow{\tau} Q_4, \quad Q_3 \approx Q_4 \right)
\]
Signal usage

A signal type, $Sig_u(\sigma)$, carries an information u on the signal usage.

- Start with $L = \{0, 1, \infty\}$ where $0 < 1 < \infty$.
- Refine into $x \in L^3$ for output, input, and input at the end of the instant.
- Further refine, into $u \in (L^3)^\omega$ for usage at instant $0, 1, 2, \ldots$.

Ref Kobayashi-Pierce-Turner 99, Kobayashi 02,...
Two main usages

For the time being we have focused on just two main usages.

\(e^\omega, e = (\infty, 0, \infty) \) We can receive only at the end of the instant.

Moreover, the processing of the list recovered at the end of the instant must be order independent. We use set types to enforce this.

\(o_1^\omega, o_1 = (1, \infty, \infty) \) At every instant, at most one emission is performed on the signal. To reason on this, we also rely on \(o_1o_0^\omega, o_0o_1^\omega, \) and \(o_0^\omega \), where \(o_0 = (0, \infty, \infty) \).
Typing for the cellular automaton

\[Cell(q, s, \ell) = Send(q, s, \ell, \ell) \]
\[Send(q, s, \ell, \ell') = [\ell' \geq \text{cons}(s', \ell'')] (s'q | Send(q, s, \ell, \ell'')) \]
\[
\text{pause}. Cell(next(q, !s), s, \ell)
\]

Assume an inductive type \(State \) to represent the state of a cell and let \(S_1 = \text{Sig}_{\omega}(State) \) and \(L_1 = \text{List}(S_1) \). Then the program is typable, assuming:

\[
Cell : (State, S_1, L_1), \quad Send : (State, S_1, L_1, L_1),
\]
\[
next : (State, \text{Set}(State)) \rightarrow State
\]
Typing for the data flow

\[\nu s_2, s_3, s_4, s_5(\ A(s_1, s_2, s_3, s_4) \ | \ B(s_4, s_5) \ | \ C(s_2, s_3, s_5, s_6) \) \]

\[A(s_1, s_2, s_3, s_4) = s_1(x).(s_2 f(x) \ | \ s_3(y).(s_4 g(y) \ | \ \text{pause.} A(s_1, s_2, s_3, s_4)), 0), 0 \]
\[B(s_4, s_5) = s_4(x).(s_5 h(x) \ | \ \text{pause.} B(s_4, s_5)), 0 \]
\[C(s_2, s_3, s_5, s_6) = s_2(x).(s_3 i(x) \ | \ s_5(y).(s_6 l(y)) \ | \ \text{pause.} C(s_2, s_3, s_5, s_6)), 0), 0 \]

Assume an inductive type \(D \) of data and let \(I = \text{Sig}_{\omega_0}(D) \) and \(O = \text{Sig}_{\omega_1}(D) \). Then the program is typable assuming:

\[A : (I, O, I, O), \quad B : (I, O), \quad C : (I, O, I, O) \]
(Problems with) Typing the client-server

\[\text{Server}(s) = \text{pause.Handle}(s, !s) \]
\[\text{Handle}(s, \ell) = [l \geq \text{cons}(\text{req}(s', x), \ell')](\overline{s'}f(x) | \text{Handle}(s, \ell')), \text{Server}(s) \]
\[\text{Client}(x, s, t) = \nu s' (\overline{s}\text{req}(s', x) | \text{pause.s}'(x).\overline{tx}, 0) \]

- Assume an inductive type \(D \) of data and let

\[S_1 = \text{Sig}_u(D), \quad \text{req} : (\text{Sig}_u(D), D) \rightarrow \text{Req}, \quad S_2 = \text{Sig}_{e\omega}(\text{Req}) \]

- Since there are many clients, we are forced to take \(u = e^\omega \).

Then the server is typable as follows:

\[\text{Server} : (S_2), \quad \text{Handle} : (S_2, \text{Set}(\text{Req})) \]
• However the usage $u = e^\omega$ is incompatible with the programming of the client, as it can receive \textit{during} the instant.

• It seems one needs more \textit{usages} to type this.

• The client will get at most one reply on the return signal assuming that its request is \textit{received at most once} and it is handled in a \textit{linear way}.

• Thus, we need \textit{many-to-one} usage and \textit{linear inductive types}.