KCNH2 regulates the growth and metastasis of pancreatic cancer

Jinghao Leia, Qiang Wangb, Tengfei Qua, Lichao Chaa, Hanxiang Zhana, Jianwei Xuc, Shanglong Liud, Lantian Tiane, Chuandong Sunf, Jingyu Caog, Fabo Qiuh, Weidong Guoi, Bin Zhouj, k

Abstract

Objective: Due to the characteristics of insidious onset and early metastasis of pancreatic cancer (PC), patients are often diagnosed at an advanced stage and often delayed in completing surgical resection timely, resulting in poor prognosis. Therefore, this study aims to explore the expression of potassium voltage-gated channel subfamily H member 2 (KCNH2) in PC and its relationship with clinicopathological parameters and the related mechanisms.

Methods: GEPIA database and immunohistochemical staining were used to analyze the difference in KCNH2 expression between PC and adjacent tissue in RNA and protein levels. Chi-squared test was used to evaluate the relationship between KCNH2 expression and clinicopathological features. The Cox regression model was used for multivariate analysis and univariate analysis. Histological diagnosis was performed according to World Health Organization (WHO) criteria to evaluate the relationship between KCNH2 expression and clinicopathological features.

Results: KCNH2 expression was upregulated in PC compared with normal pancreatic tissue. In addition, the knockdown of KCNH2 inhibits PC cell proliferation, migration, invasion, and epithelial-mesenchymal transformation and promotes their apoptosis. In addition, clinical data showed that the abnormal expression of KCNH2 in PC was related to the tumor stage. Patients with high expression of KCNH2 had a poor prognosis.

Conclusions: KCNH2 is expected to be a novel targeted molecule in treating PC.

Keywords: Epithelial-mesenchymal transition, Metastasis, Pancreatic cancer, Potassium voltage-gated channel subfamily H member 2 (KCNH2), Proliferation

Introduction

Pancreatic cancer (PC) is a lethal malignancy characterized by an insidious onset of symptoms, late diagnosis, and early metastasis.[1] Multiple factors have been identified as risk factors for PC, including smoking history, obesity, alcohol consumption, dietary intake, family history, intestinal flora, etc.[2] The prevalence of PC in China has been gradually increasing in recent years, and the number of diagnoses and deaths each year has exceeded those in the United States.[3] The prognosis of PC remains extremely unfavorable (5-year survival <10%) because patients are often diagnosed at an advanced stage, and it is difficult to remove the tumor by surgery completely. Surgical resection is the only treatment that provides a potential cure for patients with PC; however, the recurrence rate is inevitably high with poor long-term survival.[4] Chemotherapy agents, such as gemcitabine, have also been considered first-line drugs for PC. Still, the clinical outcomes remain unsatisfactory due to the acquisition of resistance within a few weeks after treatment.[4]

Thus, it is of great clinical significance to identify novel targeted molecules for the treatment of PC.

The human ether-a-go-go-related gene, also known as potassium voltage-gated channel subfamily H member 2 (KCNH2), is located on chromosome 7q36.1 and encodes the alpha unit of the Kv11.1 potassium voltage-gated channel.[5] The KCNH2 proteins form functional homo- or hetero-tetramers and regulate voltage-gated channels.[6,7] The channels can be found in 3 states: closed, open, and inactivated.[8] which mediate various physiological and pathological processes, such as angiogenesis, cell proliferation, migration, and apoptosis. KCNH2 is expressed in many tissues, including the heart and the brain. Previous evidence has demonstrated that KCNH2 plays an essential role in the repolarization of the heart.[9] Recent findings have also revealed that KCNH2 is overexpressed in ductal, lobular, and invasive breast carcinomas.[10]

Our previous studies have shown that KCNH2 is closely related to the metastasis of PC.[11] However, the regulatory mechanisms of KCNH2 in PC still need to be discovered. Therefore, in the present study, we investigated the effects of KCNH2 in both PC cell lines and mouse xenografts. Our results provided a scientific basis for further exploration of KCNH2 in the treatment of PC.

Materials and methods

Cell culture

Human PC cell lines Panc-1, BxPC-3, AsPC-1, and SW1900 were purchased from the Cell Bank of the Chinese Academy
of Sciences (Shanghai, China) and cultured in RPMI-1640 medium (GIBCO, New York, USA) containing 10% fetal bovine serum (FBS) and 100 U/mL penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA). All cells were maintained in a humidified atmosphere containing 5% CO₂ in air at 37°C.

Western blot

After being washed with phosphate-buffered saline (PBS), PC cells were lysed on ice with RIPA buffer containing 1 mM phenylmethylsulfonyl fluoride (PMSF) (PMSF:RIPA = 1:100) for 15 minutes. After centrifugation, the supernatant was collected. The bicinchoninic acid (BCA) kit was used to measure the total protein concentration. Equal amounts of protein samples were separated by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to the polyvinylidene fluoride membrane. After being blocked with 5% skimmed milk in Tris-buffered saline Tween-20 at room temperature for 2 hours, the membrane was incubated with the following primary antibodies (dilution 1:1000; Santa Cruz Biotechnology, Shanghai, China) overnight at 4°C: anti-MAPK, anti-p-MAPK, anti-p53, anti-cyclin D1, anti-cyclin-dependent kinase 2 (CDK2), anti-HSP70, anti KCNH2, anti-E-cadherin, anti-Vimentin, anti-MMP9, anti-RhoA, anti-GAPDH, anti-β-actin. After washed with PBS, the membrane was incubated with horseradish peroxidase-linked secondary antibody (dilution: 1:5000) at room temperature for 2 hours. The signal was detected using the ECL detection reagent (Beyotime, Haimen, China).

RNA extraction and real-time quantitative PCR

Total RNA was extracted from cells with Trizol reagent (Invitrogen, Shanghai, China) and converted into cDNA using the MMLV Reverse Transcriptase Kit (Promega, Shanghai, China). The cDNA aliquots were then analyzed by qRT-PCR using the Step One Plus Real-Time PCR System (Applied Biosystems, Shanghai, China). The mRNA level was normalized to the level of GAPDH or β-actin. The primers used in this experiment were KCNH2 (157 bp), forward: 5′-CCTCTGGCCAC-GGTCACTC-3′; reverse: 5′-TCTGGTTGCTGTAGCCAAAC-3′; GAPDH (121 bp), forward: 5′-TGACTTCAACAGCGACAC-C CA-3′; reverse: 5′-CACCCCTGTTGCTGTAGC CAA-3′; β-actin forward: 5′-CCATATCTAGGGTATGC CG-3′ and reverse: 5′-TTATAGTGCCAGGATTTCC-3′. The 2-ΔΔCt method was used to analyze the data.

Construction of lentiviral vectors

To construct lentiviral vectors expressing short hairpin RNA (shRNA) targeting KCNH2, the RNA interference (RNAi) sequence of human KCNH2 (CTC CCA ATA TCC ACT TGC T) was designed using the RNAi Designer Program (GeneChem, Shanghai, China). The negative control vector (control RNAi) was constructed using a scrambled sequence (TTC TCC GAA CGT GTC ACG T) with no homology to the human genome. The DNA oligonucleotide containing the target sequence was synthesized and inserted into the vector by double digestion with Age I and EcoR I, and subsequent ligation with T4 DNA ligase. The constructed plasmids were then transformed into Escherichia coli DH5α cells. DNA sequencing analysis was performed using restriction endonucleases. The sequence was cloned then cloned into the lentiviral vector pGCSIL-Green fluorescent protein (GFP; GeneChem) to generate a lentiviral vector expressing short hairpin RNA (shRNA) targeting KCNH2 (pGCSIL-KCNH2-shRNA-LV) or a control vector (pGCSIL-neg-shRNA-LV). The vectors were then transfected into 293 T cells using Lipofectamine 2000. After 48 hours, the supernatant containing the lentiviral vectors was harvested. After purified by ultracentrifugation, the titers of the lentiviral vector was determined.

Cell transfection

PC cells in the logarithmic growth phase were seeded in a 96-well plate (5 × 10⁴/well) and cultured overnight. The lentiviral vectors were diluted in 0.2 mL complete culture medium containing 10 µg/mL of polybrene and incubated at 37°C for 12 hours. Next, vector-containing medium was replaced with fresh culture medium. A fluorescence microscope (TE2000; Nikon, Tokyo, Japan) was used to detect the percentage of GFP-positive cells, which indicated transfection efficiency. Five days after infection, the expression of KCNH2, proliferation, migration, and invasion of transfected cells was analyzed.

Transwell migration and invasion assay

The migration and invasion assay was performed using a Boyden chamber composed of Transwell membrane filters (#3422, Corning Costar, Cambridge, United Kingdom). PC cells (5 × 10⁴/well) were plated to 24-well Transwell plates (pore size 8 µm) for migration assay or Matrigel-coated plates for invasion assay. Plates were filled with a complete culture medium containing 10% FBS. The periods of migration and invasion assay were 24 and 48 hours, respectively. At the end of the experiment, cells that had not penetrated the filter membrane were wiped off. Cells on the lower surface of the filter membrane were stained with 0.4% crystal violet. The number of migrating or invading cells in a single chamber was counted from 5 fields under an optical microscope. This experiment was performed in triplicate and the average values were shown as mean ± standard error.

Methyl thiazolyl tetrazolium assay

Methyl thiazolyl tetrazolium (MTT) assay was performed to detect the proliferation rate of cells in the Scrambled, shKCNH2_6, and shKCNH2_7 groups, each in triplicate. Cells were seeded in 96-well plates (1 × 10⁴ cells/well). At 1, 2, and 3 days of culture, cells were incubated with 2 µL of MTT reagent (5 mg/mL; Sigma, St. Louis, USA) for 4 hours. Then, the original medium was aspirated and 150 mL of DMSO was added to cells. Finally, the absorbance of each sample was measured at 492 nm by a microplate spectrophotometer (Thermo, Spectronic, Madison, USA).

Colony formation assay

The colony formation assay was performed to investigate the effect of KCNH2 silencing on the colony formation ability of PANC-1 cells. In this assay, 8 × 10² cells were seeded in a 6-cm Petri dish and cultured in RPMI-1640 medium supplemented with 10% FBS. Cells were maintained in an atmosphere of 5% CO₂, 95% humidity, and 37°C for 2 weeks. Then, cell colonies were washed twice with PBS and fixed with 4% paraformaldehyde for 15 minutes. The fixed colonies were subsequently stained with Giemsa for 20 minutes and washed twice with ddH₂O. The colonies consisting of ≥50 cells were counted.

Flow cytometry

PC cells were transfected with designated sequences for 48 hours. Then, cells were harvested, centrifuged, and resuspended with 500 µL of 1× binding buffer (BD Biosciences, Franklin Lakes, NJ). After incubation with 5 µL APC-Annexin and 5 µL propidium iodide (BD Biosciences) for 5 minutes at room temperature in the dark, the apoptosis rate was analyzed by flow cytometry using a Cytoomics FC 500 flow cytometer system (Beckman Coulter, Brea, CA) as previously described.¹¹²
PC tumor growth and metastasis in vivo

Six-week-old male BALB/c nude mice were purchased from the Shanghai Institute of Biological Sciences (Shanghai, China). Mice were anesthetized by inhaling a 1:1 mixture of isoflurane gas and oxygen. shKCNH2-PANC-1 cells were injected into the tail of the pancreas of nude mice as previously described. Eight weeks after inoculation, mice were sacrificed, the pancreatic tumors were removed and weighed, and metastatic liver nodules were counted. All animal experiments complied with the Guidelines of the Institutional Animal Care and Use Committee at the Affiliated Hospital of Qingdao University. This study was reported in accordance with ARRIVE guidelines.

Patients’ samples and immunohistochemistry

The use of clinical samples was approved by the Ethics Committee of the Affiliated Hospital of Qingdao University. All patients provided written informed consent. Tissue samples were obtained from 83 patients who were diagnosed with PC between November 2015 and December 2017 in our hospital. Samples were fixed with 4% formalin, embedded with paraffin, sectioned, and stained with hematoxylin and eosin. The 5-µm-thick tissue sections were incubated with 3% H2O2 in methanol for 20 minutes. After incubation with blocking buffer, the sections were then stained with primary anti-KCNH2 antibody (Abcam, Shanghai, China) for 4 nights, followed by incubation with a secondary antibody (Santa Cruz Biotechnology) for 30 minutes at room temperature and then with the DAB (DAB) kit (Gene Tech, Shanghai, China). Tissue sections were washed 3 times with tris buffered saline (TBS) for more than 10 minutes after each incubation. The staining results were evaluated according to the following criteria: (1) Percentage of positively-stained tumor cells: 0 (0%–10%), 1 (11%–25%), 2 (26%–50%), 3 (51%–75%), 4 (76%–100%); (2) Signal intensity: 0 (no signal), 1 (weak), 2 (medium), 3 (strong). The immunoreactivity score (range 0–12) was calculated by multiplying the score of positive cells by the intensity score. The final score was as follows: – (0 point), + (1–4 points), ++ (5–8 points), +++ (9–12 points). In this study, – and + were considered as low expression, while ++ and +++ were high expression.

Statistical analysis

The IBM SPSS Statistics 20.0 and GraphPad Prism 8.0.1 were used for statistical analysis and graphing. Pearson’s Chi-squared test was used to evaluate the relationship between KCNH2 expression and clinicopathological characteristics. Survival analysis and multivariate regression analysis were used to evaluate the effect of KCNH2 expression on the prognosis of patients. The Student t-test and 1-way analysis of variance (ANOVA) were used to determine the difference of KCNH2 expression among different subgroups. A 2-sided P value of less than .05 was considered statistically significant.

Results

Differential expression of KCNH2 in PC tissues versus normal tissues

The GEPIA database (http://gepia.cancer-pku.cn/index.html) is an analysis tool for interactive analysis of gene expression profiles. In this study, we used the “single gene analysis” module in GEPIA to perform differential expression analysis of PC tissues and normal tissues (Fig. 1A, B). The significance threshold was set as P = .05, 2-fold change, gene ranking top 10%. The results showed that KCNH2 was significantly upregulated in PC tissues (log2 fold change = 1.389, adjusted P = 1.35e-18) (Fig. 1A, B). The above finding suggests KCNH2 is differentially expressed in PC tissues compared with normal pancreatic tissues.

The expression KCNH2 in PC tissues and PC cell lines

We further performed immunohistochemical analysis to detect the expression of KCNH2 in tumor tissues collected from PC patients (Fig. 2A–H). The representative images of tissue sections with no staining (negative; Fig. 2A, B), weak staining (Fig. 2C, D), medium staining (Fig. 2E, F), and strong staining (Fig. 2G, H). According to the immunoreactivity scores, samples were divided into high- and low-expression groups. There were 34 cases (41%) with low KCNH2 expression (− and +) and 49 cases (59%) with high expression (++ and +++). The clinicopathological characteristics and KCNH2 expression of these patients are shown in Table 1. Of the 83 patients, 34 (20 males and 14 females) were in the low-expression group, and 49 (24 males and 23 females) were in the high-expression group. No significant difference was observed (P = .377). Also, there was no significant difference in age (P = .741), tumor location (P = .184), pM stage (P = .1000), and pathology tumor-node-metastasis (pTNM) grade (P = .085). The degree of tissue differentiation of patients with low and high KCNH2 expression was significantly different (P = .008). Of the 34 patients in the low KCNH2 expression group, 12 (35.30%), 11 (32.35%), and 11 (32.35%) were poorly, moderately, and highly differentiated, respectively. The distribution was relatively even. There were 49 patients in the high KCNH2 expression group. Among them, 4 (8.16%), 20 (40.82%), and 25 (51.02%) patients were highly, moderately, and poorly differentiated, respectively, indicating that more patients with high KCNH2 expression had low and moderately differentiated tumor tissues. The p1 staging (P = .016); low-expression group: 40.96%, high-expression group: 59.04%, pN staging (P = .303); low-expression group: 40.96%, high-expression group: 59.04%). The overall survival (OS) of PC patients with low and high expression of KCNH2 was analyzed using the Kaplan-Meier method following the log-rank test (Fig. 2I). The results showed that high KCNH2 expression was associated with worse OS (P < .01). Then, a Cox survival model, including gender, age, tumor location, histology, T status, N status, M status, and KCNH2 expression, was established. Subsequently, a multivariate survival analysis of all significant parameters in the univariate analysis was performed. The results revealed that KCNH2 was an important prognostic predictor of PC (hazard ratio [HR] = 2.632, 95% confidence interval [CI] = 1.442–4.803, P < .01, Tables 2 and 3). High expression of KCNH2 often predicts low survival. Taken together, it could be concluded that high KCNH2 expression often predicts low survival of PC patients. The above findings suggest that high KCNH2 expression is associated with low tissue differentiation, high malignancy, and poor prognosis, but not with gender, age, tumor location, or metastasis.

Next, we detected the mRNA expression of KCNH2 in four human PC cell lines, PANC-1, BXPC-3, ASPC-1, and SW1990, using qRT-PCR (Fig. 2J). The results showed that KCNH2 was highly expressed in PANC-1 and ASPC-1 cells, lowly expressed in SW1990 cells, and barely expressed in BXPC-3 cells. Then, RNAi transfection technology was used to establish PANC-1 cell line that stably expresses shRNAs targeting KCNH2 at different sites. The transfection efficiency was evaluated by Western blot (Fig. 2K, L). The most robust knockdown effect was observed in the shKCNH2_6 and shKCNH2_7 cell lines, and they were used for subsequent experiments.

KCNH2 regulates PC cell proliferation and apoptosis

To explore the regulatory effect of KCNH2 on the proliferation and invasion of PC cells, lentiviral vector-mediated shRNA was used to reduce the expression of KCNH2 in PC cells. The results showed that knockdown of KCNH2 significantly decreased the growth rate (Fig. 3A) of PC cells. Subsequently, we evaluated the colony-forming ability of PC cells lines (PANC-1)
with KCNH2 knockdown (Fig. 3B–E). The results showed that KCNH2 knockdown inhibited the proliferation of tumor cells. Consistently, KCNH2 knockdown promoted the apoptosis of PC cells (Fig. 3F–L). The analysis of the MAPK pathway showed that knockdown of KCNH2 decreased the expression levels of MAPK and pMAPK also reduced (Fig. 3M, N), implying that KCNH2 might be involved in MAPK-related pathways to regulate the development and metastasis of PC. The protein expressions of p53, Cyclin D1, and CDK2 did not significantly change among groups (Fig. 3M, N), probably suggesting that KCNH2 did not regulate PC cell proliferation via affecting the G1/S phase of the cell cycle. These data implied that knockdown of KCNH2 inhibited the proliferation and promoted the apoptosis of PC cells.

KCNH2 regulates the migration and invasion of PC cells

Transwell assay showed that KCNH2 knockdown by shKCNH2_6 or shKCNH2_7 inhibited the migration of PC cells (P = 2.92 × 10^-10, P = 1.67 × 10^-12, Fig. 4A, B) and the invasion of PC cells (P = 1.93 × 10^-10, P = 1.89 × 10^-13, Fig. 4B). Subsequently, we investigated the effect of KCNH2 knockdown on the migration and invasion of PC cells. To explore whether KCNH2 can affect the epithelial-mesenchymal transition (EMT) process, we measured the expressions of E-cadherin, Vimentin, and MMP9 by Western blot in PC cells. The results showed that as KCNH2 knockdown increased the expressions of E-cadherin and downregulated MMP9, it did not significantly affect the expression of Vimentin and RhoA (Fig. 4C, D), suggesting that knockdown of KCNH2 affected the EMT process, thereby inhibiting the tumor cell metastasis.

KCNH2 regulates the metastasis of pancreatic tumors in vivo

To further understand the impact of KCNH2 on the progression and metastasis of PC, we established a mouse xenograft model by inoculating mice with PC cells transfected with scrambled sequences or shKCNH2_6. The tumor size was observed (Fig. 5A). We also injected shKCNH2_6 cells into the spleen of nude mice to establish a PC model of liver metastasis. The number of liver nodules
Figure 2. Immunohistochemistry staining of KCNH2 in PC tissue. (A, B) PC tissues with negative KCNH2 staining (−). (C, D) PC tissues with weak KCNH2 staining (+). (E, F) PC tissues with moderate KCNH2 staining (++). (G, H) PC tissues with strong KCNH2 staining (+++). (A, C, E, G) 40× magnification. (B, D, F, H) 200× magnification. (I) The OS of PC patients with high or low KCNH2 expression. (J) The mRNA expression of KCNH2 in different human PC cell lines. (K, L) The expression of KCNH2 in PC cells with KCNH2 knockdown at different sites. GAPDH expression was used as an internal control. *P < .05, **P < .01, ***P < .001, ****P < .0001. KCNH2 = potassium voltage-gated channel subfamily H member 2, PC = pancreatic cancer; OS = overall survival.

Table 1

Baseline characteristics of patients with pancreatic cancer (n = 83) and correlations with KCNH2 expression (p)

Characteristic	Case	KCNH2		
	No	− to +	++ to +++	P
Total	83	34	49	.377
Gender				
Male	44	20	24	
Female	39	14	25	
Age (y)				.741
<65	53	21	32	
≥65	30	13	17	
Tumor location				.184
Head	49	23	26	
Body	34	11	23	
Histology*				.008
Poorly differentiated	36	11	25	
Moderately differentiated	31	11	20	
Well differentiated	16	12	4	
pT status*				.016
T1	2	2	0	
T2	12	8	4	
T3	59	22	37	
T4	10	2	8	
pN status*				.030
N0	37	20	17	
N1	46	14	32	
pM stage				1.000
M0	73	30	43	
M1	10	4	6	
pTNM stage				.085
1	12	8	4	
2	47	20	27	
3	12	2	10	
4	12	4	8	

This study uses AJCC version 8 TNM staging. KCNH2 = potassium voltage-gated channel subfamily H member 2; pTNM = pathology tumor-node-metastasis.*Statistical significant P < .05.
The results showed that the knockdown of KCNH2 significantly reduced the size of pancreatic tumors (P = .0012) and decreased the number of liver nodules (P = .0039) in mice. These results indicate that KCNH2 knockdown inhibits the progression and metastasis of PC in vivo.

Discussion

Currently, there is no effective screening method for PC, and the primary treatment approach is still surgical resection.\(^{[3]}\) As PC is
often diagnosed at late stages and cannot be entirely removed by surgery, the prognosis of PC remains poor. The early metastasis and late diagnosis of PC urge the development of new therapeutic approaches. With an increasing number of studies of the pathogenic mechanisms of PC in recent years, targeted therapy has become a promising clinical tool for PC treatment.

KCNH2, a potassium voltage-gated channel subfamily H member, has been widely studied in heart and brain diseases. KCNH2 not only regulates the excitation of myocardial cells and neurons, but also mediates the secretion of vascular endothelial growth factor and other cytokines from tumor cells. Our previous study of functionally mutated genes related to the metastasis of pancreatic ductal adenocarcinoma identified 12 candidate genes, including KCNH2, using exon sequencing and PCR analysis. Our preliminary results showed that KCNH2 is a functionally mutated gene related to the proliferation and metastasis of PC. In this study, the GEPIA online databases analysis confirmed that KCNH2 was differentially expressed in PC tissues compared with normal pancreatic tissues, suggesting that aberrant expression of KCNH2 may promote the malignant progression of PC. We further analyzed the correlation of KCNH2 with the clinical prognosis of PC patients and found that high KCNH2 expression was closely related to low OS.

The abnormal expression of KCNH2 was also observed in other malignant diseases, such as rectal cancer, small cell lung cancer, gastric cancer, acute myeloid leukemia, breast cancer, ovarian cancer, and endometrial cancer. KCNH2 is also aberrantly expressed in Barrett esophagus, melanoma, and neuroblastoma and promotes the malignant progression of these diseases. In different types of cancers, the proliferation, migration, and invasion of tumor cells may be regulated by different pathways. For example, the blocker cis-apride induced apoptosis and inhibited the proliferation of gastric cancer cells by regulating cell cycle progression. KCNH2 forms a complex with β1 integrin to regulate the proliferation, migration, and invasion of acute myeloid leukemia cells and melanoma cells. In addition, the activation of the KCNH2 channel induced the G1/S progression of acute myeloid leukemia cells, thereby regulating cell proliferation through mitosis. In ovarian cancer and neuroblastoma, KCNH2 inhibitors exerted an anti-proliferative effect on tumor cells by affecting the S phase and (or) G2/M phase and G0/G1 phase, respectively. Consistent with previous findings, our results showed that knockdown of KCNH2 inhibited the proliferation and invasion of PC cells. It has also been found that inhibition of KCNH2 induced the apoptosis of gastric cancer cells. Regarding the impact of KCNH2 on the OS of patients, abnormal expression of KCNH2 often indicates low survival of acute myeloid leukemia, which was consistent with our results. A previous study has also reported that KCNH2 maintains the depolarization of PC cells.
tumor cells, thereby accelerating cell cycle progression, which provided another potential mechanism of KCNH2 on the regulation of proliferation. Another study found that KCNH2 stimulated tumor cell angiogenesis by promoting the secretion of cytokines, such as vascular endothelial growth factor, in glioblastoma multiforme. KCNH2 has also been reported to regulate the size of breast cancer cells. Intriguingly, the outflow of potassium resulted in a decrease in the level of intracellular potassium, thereby inhibiting cell depolarization and activating the caspase-dependent apoptotic pathway. The concentration of intracellular potassium directly affects the osmotic pressure of cells and thus changes the cell size. These findings further support the regulation of KCNH2 on tumor cells. The KCNH2 gene has been identified as a biomarker for colorectal cancer. In endometrial cancer, KCNH2 may be used as a biomarker to distinguish cancerous endometrial tissues from normal tissues. Also, KCNH2 is closely related to the proliferation, migration, and invasion of colon cancer cells, and may be used as a new predictor for the invasion and metastasis of colon cancer.

The regulatory mechanism of KCNH2 in the progression of cancer remains elusive. The involvement of KCNH2 in the MAPK/c-fos signaling pathway has been reported in melanoma. Our results showed that KCNH2 knockdown decreased the expressions of MAPK and pMAPK in PC cells, suggesting that KCNH2 may be involved in the MAPK signaling pathway in PC. Further analysis revealed that KCNH2 did not regulate the expression of cell cycle–related proteins. CDK2 is a member of the serine/threonine protein kinase family that acts as a key regulator of G1/S phase transition and is closely related to the MAPK pathway. Additionally, under hypoxic conditions, p53 mediated cell apoptosis in a dose-dependent manner. In this study, we measured the expressions of CDK2 and p53 and other related proteins. The results showed that KCNH2 did not mediate apoptosis through the p53 pathway. The effect of KCNH2 on EMT-related proteins was also explored. We found that KCNH2 knockdown increased the expressions of E-cadherin and MMP9, indicating that KCNH2 may promote the metastasis of PC by regulating the EMT process.

In conclusion, this study showed that KCNH2 was upregulated in PC tissues and regulated the growth and metastasis of pancreatic tumors. Further investigations are needed to develop novel and personalized therapeutic strategies targeting the key molecules and signaling pathways related to the progression of PC and achieve precise treatment and personalized treatment. This study highlighted the potential of KCNH2 as a new target for the treatment of PC.

However, this study showed that KCNH2 was upregulated in PC tissues and regulated the growth and metastasis of pancreatic tumors. Though the present study has evidently highlighted the potential of KCNH2 as a new target for the treatment of PC,

Figure 5. Effect of KCNH2 knockdown on the progression and metastasis of PC in vivo. The xenograft model was established by in situ inoculation of PC cells. The liver metastasis model was established by injection of PC cells into the spleen. The results showed that knockdown of KCNH2 (A) reduced the volume of pancreatic tumors and (B) decreased the number of liver metastatic nodules. *P < .05, **P < .01, ***P < .001, ****P < .0001. KCNH2 = potassium voltage-gated channel subfamily H member 2, PC = pancreatic cancer.
certain limitations still exist. First, it is difficult to collect all the information of patients. Second, the number of cases collected is limited and not multicenter. Therefore, the results need to be further confirmed in the future.

Acknowledgments
We thank all the patients and clinical investigators who were involved in this study.

Author contributions
BZ and WG conceived and designed the experiments. BZ, JL, and QW performed the experiments; TQ and LC are responsible for data collection and analysis; HZ, JX, SL, and LT are responsible for data analysis; CS, JC, and FQ provided helpful discussion; the revision of critically important intellectual content. All authors participate in manuscript writing and final approval of manuscript.

Financial support
This work was supported by the China Postdoctoral Science Foundation Funded Project (Project No.: 2019M662304).

Conflicts of interest
The authors declare no conflicts of interests.

Ethics approval
Written informed consent was obtained from all patients whose tissues were used in this study. The study was approved by the Institutional Review Board of the Affiliated Hospital of Qingdao University, Qingdao, China (approval no. QYFY WZLL 27039). We confirmed that the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional or regional) and with the Declaration of Helsinki. For research that reports on experiments involving animals, we followed the institutional and/or national guide for the care and use of laboratory animals.

References
[1] Hidalgo M, Cascini S, Kleeff J, et al. Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology. 2015;15:38–18.
[2] McGuigan A, Kelly P, Turkington RC, et al. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018;24:4846–4861.
[3] Lin QJ, Yang F, Jin C, et al. Current status and progress of pancreatic cancer in China. World J Gastroenterol. 2015;21:7988–8003.
[4] Adamska A, Domenichini A, Falasca M. Pancreatic ductal adenocarcinoma: current and evolving therapies. Int J Mol Sci. 2017;18:1338.
[5] He S, Moutaoufik MT, Islam S, et al. HERG channel and cancer: a mechanistic review of carcinogenic processes and therapeutic potential. Biochim Biophys Acta Rev Cancer. 2020;1873:188355.
[6] Wulf H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009;8:982–1001.
[7] Sanguinetti MC. HERG channelopathies. Pflugers Arch. 2010;460:265–276.
[8] Bellon E, Gebauer F, Tachezy M, et al. Pancreatic cancer and liver metastases: state of the art. Updates Surg. 2016;68:247–251.
[9] De Zio R, Gerbino A, Forleo C, et al. Functional study of a KCNH2 mutant: novel insights on the pathogenesis of the LQT2 syndrome. J Cell Mol Med. 2019;23:631–6342.
[10] Fukushiro-Lopes DF, Hegel AD, Rao V, et al. Preclinical study of a Kv11.1 potassium channel activator as antineoplastic approach for breast cancer. Oncotarget. 2018;9:3321–3337.
[11] Zhou B, Iwamoto A, Guo YM, et al. Exome sequencing and digital PCR analyses reveal novel mutated genes related to the metastasis of pancreatic ductal adenocarcinoma. Cancer Biol Ther. 2012;13:871–879.
[12] Zhou B, Zhang J, Chen G, et al. Therapy of Smac mimetic SM-164 in combination with gemcitabine for pancreatic cancer. Cancer Lett. 2013;329:118–124.
[13] Zhou B, Wu Q, Chen G, et al. NOP14 promotes proliferation and metastasis of pancreatic cancer cells. Cancer Lett. 2012;322:195–203.
[14] Zhou B, Zhan H, Lin L, et al. TUF1 regulates metastasis of pancreatic cancer through HIF1-Sm nuclear pathway induced epithelial-mesenchymal transition. Cancer Lett. 2016;382:11–20.
[15] Lindquist CM, Miller FH, Hammond NA, et al. Pancreatic cancer screening. Abdom Radiol (NY). 2018;43:264–272.
[16] Pillozzi S, Brizzi MF, Bernabei PA, et al. VEGFR-1 (FLT-1), beta1 integrin, and hERG K+ channel for a macromolecular signaling complex in acute myeloid leukemia: role in cell migration and clinical outcome. Blood. 2007;110:1238–1250.
[17] Lastraiole I, Guasti L, Crociani O, et al. her1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res. 2004;64:606–611.
[18] Glassmeier G, Hempel K, Wulfsen I, et al. Inhibition of HERG1 K+ channel protein expression decreases cell proliferation of human small cell lung cancer cells. Pflugers Arch. 2012;463:365–376.
[19] Shao XD, Wu KC, Hao ZM, et al. The potent inhibitory effects of cisapride, a specific blocker for human ether-a-go-go-related gene (HERG) channel, on gastric cancer cells. Cancer Biol Ther. 2005;4:295–301.
[20] Pillozzi S, Brizzi MF, Balzi M, et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hematopoietic progenitors. Leukemia. 2002;16:1791–1798.
[21] Wang S, Melkoumian Z, Woodfork KA, et al. Evidence for an early G1 iononic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line. J Cell Physiol. 1998;176:456–464.
[22] Asher V, Warren A, Shaw R, et al. The role of Eeg and HERG channels in cell proliferation and apoptotic cell death in SK-OV-3 ovarian cancer cell line. Cancer Cell Int. 2011;11:6.
[23] Cherubini A, Teddei GL, Crociani O, et al. HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium. Br J Cancer. 2000;83:1722–1729.
[24] Lastraiole I, Teddei A, Messerini L, et al. HERG1 channels in human endometrium: evidence for their aberrant expression in the malignant progression of Barrett’s esophagus. J Cell Physiol. 2006;209:398–404.
[25] Afrasiabi E, Hietamaki M, Viitanen T, et al. Expression and significance of HERG (KCNH2) potassium channels in the regulation of MDA-MB-435s melanoma cell proliferation and migration. Cell Signal. 2010;22:57–64.
[26] Wei X, Sun H, Yan H, et al. ZC88, a novel 4-amino pipieridine analog, inhibits the growth of neuroblastoma cells through blocking hERG potassium channel. Cancer Biol Ther. 2013;14:450–457.
[27] Masi A, Becchetti A, Restano-Cassulini R, et al. HERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines. Br J Cancer. 2005;93:771–792.
[28] Dolderer JH, Schulze H, Bockhorn H, et al. HERG1 gene expression as a specific tumor marker in colorectal tissues. Eur J Surg Oncol. 2010;36:72–77.
[29] Rana NK, Singh P, Koch B. CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol Res. 2019;52:12.

How to cite this article: Lei J, Wang Q, Qui T, Cha L, Zhan H, Xu J, Liu S, Tian L, Sun C, Cao J, Qui F, Guo W, Zhou B. KCNH2 regulates the growth and metastasis of pancreatic cancer. J Pancreatol 2023;6:101–109. doi: 10.1097/JP9.0000000000000123