Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
CoV-2 infection during the same period 4.3% (95%CI; 3.6-5.2) p<0.001. Among 653 patients receiving active cancer therapy during this period, 24 (3.7%) developed COVID-19 and required admission, 4.2% of whom were receiving chemotherapy, 9.5% immunotherapy and 2.1% targeted therapies. Lung and breast cancer were the most frequent (26.1%), followed by colorectal (19.6%) and breast cancer. No significant differences due to the cancer treatment received were observed. Mortality in lung cancer patients was the highest (25%). The univariate analysis (between p who developed serious event vs. those who did not), showed that higher Brescia, CURB-65 scale, lactate dehydrogenase (LDH) or C-reactive protein (CRP) levels at admission, the greater risk of developing severe complications (p<0.05).

Conclusions: Patients with cancer, especially lung cancer, and SARS-CoV2 infection have a worse overall prognosis than the general population. Objective parameters such as LDH, CRP at admission, Brescia index or CURB-65 should alert us to a more serious evolution and suggest early an early intensive care unit (ICU) admission.

Legal entity responsible for the study: The authors.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.1797

Table: 1734P Univariate analysis of risk factors for mortality in COVID-19

Variable	Alive	Dead	p-value
Age (years)			
South Asian ethnicity *	16 / 8	20 / 17	0.03
Cardiovascular disease *	41 / 20	36 / 31	0.04
Cerebrovascular disease	23 / 11	26 / 22	0.02
Chronic kidney disease *	17 / 8	21 / 18	0.02
Hypertension *	92 / 46	68 / 58	<0.05

* shown as n / %, ^ shown as median (IQR)

Conclusions: Along with known risk factors, cancer confers an independent risk for mortality in COVID-19. Taken together, our findings support the need to continue ‘shielding’ patients with cancer from exposure to COVID-19 infection. Increasing age and co-morbidity should be taken into account when assessing risk for severe COVID-19 infection in cancer patients.

Legal entity responsible for the study: University College London Hospitals NHS Foundation Trust.

Funding: Has not received any funding.

Disclosure: H.M. Shaw: Advisory/Consultancy, Speaker Bureau/Expert testimony: Novartis, BMS, MSD; Advisory/Consultancy: Immunocore, Idera, Iovance, Gennmab, Sanofi Genzyme/Ragenoron, Macrogenics, Roche; Speaker Bureau/Expert testimony: Sanofi Genzyme. All other authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.1798

1735P SARS-CoV-2 infection induces EMT-like molecular changes, including ZEB1-mediated repression of the viral receptor ACE2, in lung cancer models

C.A. Stewart1, C. Gay1, K. Ramkumar1, K.R. Cargill1, R. Cardnell1, M. Nilsson1, S. Heek2, E.M. Park1, S. Kundu1, L. Diao2, Q. Wang3, L. Shen1, Y. Xi1, C.M. Della Corte1, K. Kundu1, D.L. Gibbons1, J. Wang3, J.V. Heymach1, L.A. Byers1

1Thoracic Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA; 2Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA; 3Department of Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA; 4Oncology, University of Campania “Luigi Vanvitelli”, Naples, Italy

Background: SARS-CoV-2 infection is the cause of the respiratory illness COVID-19, which presents most frequently with respiratory symptoms. SARS-CoV-2 cell entry requires interactions with ACE2 and TMPRSS2 on the surface of the host cell. Cancer patients and, specifically, those with thoracic malignancies seem to experience poorer clinical outcomes.

Methods: We utilized bulk and single-cell transcriptional data from a combination of normal and malignant tissues and cells from aerodigestive and respiratory tracts to explore mechanisms governing the expression of ACE2 and TMPRSS2. Additionally, we determined the effect of EMT induction, ZEB1 modulation, and SARS-CoV-2 infection on ACE2 expression.

Results: Our bulk data suggests that aerodigestive and lung cancer models express a broad range of ACE2 and TMPRSS2, particularly in epithelial cells, and would serve as good models for studying SARS-CoV-2 infection. We assessed the relationship between ACE2 and epithelial differentiations in numerous datasets, and found consistent positive correlations with transcriptional and microRNA signatures of epithelial differentiation. The miR-200 family — zinc finger E-box-binding homeobox 1 (ZEB1) pathway, which is an established regulator of EMT, also directly regulates ACE2 expression, likely via putative ZEB1 repressor sites located in the ACE2 promoter. Furthermore, SARS-CoV-2 infection reduces ACE2 expression and shifts cells to a more mesenchymal phenotype with loss of EPCAM and upregulation of ZEB1 and other EMT-associated genes.

Conclusions: ACE2-positive cells are almost exclusively epithelial and unexpectedly rare, considering the devastating impact of this infection. Following viral entry, SARS-CoV-2 infection induces molecular changes within the cells that are reminiscent of EMT, including increased ZEB1. ZEB1, in turn, appears to directly repress the expression of ACE2. This SARS-CoV-2-induced ACE2 deficiency, compounded by the downregulation of genes, including claudins, which play a critical role in restricting epithelial and endothelial permeability, exposes respiratory cells to increased risk of edema and acute respiratory distress syndrome (ARDS).

Legal entity responsible for the study: The authors.

Funding: NIH/NCI R01-CA207295 (L.A.B.), NIH/NCI U01-CA213273 (L.A.B., J.V.H.), CCSG P30-C01667 (L.A.B.), University of Texas SPORE in Lung Cancer P5-CA070907 (L.A.B., D.L.G., J.V.H., C.M.G.), the Department of Defense (LC170171; L.A.B.), Khalifa Bin Zayed Al Nahyan Foundation (C.M.G.), RP170067 (EMP), through generous philanthropic contributions to The University of Texas MD Anderson Lung Cancer Moon Shot Program and Andrew Sabin Family Fellowship, and The Rexanna Foundation for Fighting Lung Cancer.

Disclosure: C. Gay: Research grant/Funding (self): Astra Zeneca, J.V. Heymach: Advisory/Consultancy: AstraZeneca. R. Cardnell: Advisory/Consultancy, Research grant/Funding (self): AstraZeneca, Advisory/Consultancy, Research grant/Funding (self): GenMab, Advisory/Consultancy: Genentech, Advisory/Consultancy: Pfizer, Research grant/Funding (self): Toleron Pharmaceuticals. All other authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2020.08.1799

1736P Elevated AXL expression following SARS-CoV-2 infection in non-small cell lung cancer

K. Ramkumar1, C.A. Stewart2, C. Gay1, R. Cardnell1, L. Diao2, Q. Wang3, L. Shen1, Y. Xi1, S. Kundu1, C. Della Corte1, D. Gibbons1, J. Wang3, J.V. Heymach1, L.A. Byers1

1Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 3Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy

Background: Patients with thoracic cancers affected by the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), tend to have poor clinical outcomes. AXL, a TAM (Tyro3, AXL, Mer) family receptor tyrosine kinase, is a known mediator of epithelial to mesenchymal transition (EMT) and therapeutic resistance in non-small cell lung cancer (NSCLC) and other cancers. Additionally, AXL plays a role in efficient Ebola and Zika viral entry and...