Complete description of polarization effects in e^+e^- pair production by a photon in the field of a strong laser wave

D.Yu. Ivanov1,a, G.L. Kotkin2,b, and V.G. Serbo2,c

1 Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
2 Novosibirsk State University, Novosibirsk, 630090 Russia

Received: November 20, 2004

Abstract. We consider production of a e^+e^- pair by a high-energy photon in the field of a strong laser wave. A probability of this process for circularly or linearly polarized laser photons and for arbitrary polarization of all other particles is calculated. We obtain the complete set of functions which describe such a probability in a compact invariant form. Besides, we discuss in some detail the polarization effects in the kinematics relevant to the problem of $e \rightarrow \gamma$ conversion at $\gamma\gamma$ and γe colliders.

1 Introduction

The e^+e^- pair production by two photons,

$$\gamma(k_1) + \gamma(k_2) \rightarrow e^+(p_+) + e^-(p_-),$$

was calculated by Breit and Wheeler in 1934 (see, for example, the text-book [1], §88). The polarization properties of this process were considered in [2,3,4].

With the growth of the laser field intensity, a high-energy photon starts to interact coherently with n laser photons,

$$\gamma(k_1) + n \gamma_L(k_2) \rightarrow e^+(p_+) + e^-(q_-),$$

thus the Breit-Wheeler process becomes non-linear. Such a process with absorption of $n = 4/5$ linearly polarized laser photons was observed in the recent experiment at SLAC [5].

The polarization properties of the process (2) are especially important for future $\gamma\gamma$ and γe colliders where this process can be a significant background for the laser conversion of $e \rightarrow \gamma$ in the conversion region (see [6, 7] and the literature therein). In this case the non-linear Breit-Wheeler process must be taken into account in simulations of the processes in a conversion region. For comprehensive simulation, including processes of pair production and multiple electron scattering, one has to know not only the differential cross section of the process (2) with a given number of the absorbed laser photons n, but energy, angles and polarization of final positrons and electrons as well. Some particular polarization effects for this process were considered in [8,9,10,11,12,13] and have already been included in the existing simulation codes [12,14].

In the present paper we give the complete description of the non-linear Breit-Wheeler process for the case of circularly or linearly polarized laser photons and arbitrary polarization of all other particles. For this purpose we exploit intensively the results of our recent paper [15] devoted to the cross-channel process — the non-linear Compton scattering:

$$e(q) + n \gamma_L(k) \rightarrow e(q') + \gamma(k').$$

Let e (e') be the polarization 4-vector of the initial (final) photon and v_p ($\bar{v}_{p'}$) be the bispinor of the initial (final) electron in the scattering amplitude of the process (3) while e_1 (e_2) be the polarization 4-vector of the initial high-energy (laser) photon and v_{p_+} (\bar{v}_{p_-}) be the bispinor of the final positron (electron) in the scattering amplitude of the process (2). Then, basically, the results for the discussed process can be obtained from the corresponding results for the non-linear Compton scattering [14] by replacements

$$q \rightarrow -q_+, \quad k \rightarrow k_2, \quad q' \rightarrow q_-, \quad k' \rightarrow -k_1, \quad p \rightarrow -p_+, \quad p' \rightarrow p_-,$$

for the 4-momenta of particles involved and

$$e(k) \rightarrow e_2(k_2), \quad e'(k') \rightarrow e_1(k_1), \quad v_p \rightarrow v_{p_+}, \quad \bar{v}_{p'} \rightarrow \bar{v}_{p_-}$$

for the amplitudes of their wave functions.

In the next section we describe in detail the kinematics of the process (2). The effective differential cross section

a e-mail: d-ivanov@math.nsc.ru
b e-mail: kotkin@math.nsc.ru
c e-mail: serbo@math.nsc.ru

1 Below we shall quote formulae from this paper by a double numbering, for example, Eq. (1.21) means Eq. (21) from Ref. [15].
is obtained in Sect. 3 in the compact invariant form, including the polarization of all particles. In Sect. 4 we consider the process (2) in the reference frame relevant for the conversion region at the $\gamma\gamma$ and γe colliders. The limiting cases are discussed in Sect. 5. In Sect. 6 we present some numerical results obtained for the range of parameters close to those in the existing TESLA project \cite{16}. In the last section we summarize our results and compare them with those known in the literature. In Appendix we consider the limit of weak laser field and present in a compact form cross section of the process \cite{11} with all four particles polarized.

We use the system of units in which the velocity of light $c = 1$ and the Plank constant $\hbar = 1$. In what follows, we will often consider the non-Breit-Wheeler process in the frame of reference in which a high-energy photon performs a head-on collision with laser photons, i.e. in which $k_1 \parallel (-k_2)$. We call this the “collider system”. In this frame of reference we choose the z-axis along the high-energy photon momentum k_1. All azimuthal angles are defined with respect to one fixed x-axis: φ_\pm of the final leptons, β_\pm of its polarization vectors $\vec{\xi}_\pm$ and $\gamma_1 (\gamma_2)$ of the direction of the high-energy photon (laser photon) linear polarization.

2 Kinematics

2.1 Invariant variables

The invariant parameter describing the intensity of the laser field (the parameter of non-linearity) is defined via the mean value of squared 4-potential $A_\mu(x)$:

$$\xi^2 = -\frac{e^2}{m^2} \langle A_\mu(x) A^\mu(x) \rangle,$$

where e and m are the electron charge and the mass. We use this definition of ξ^2 both for the circularly and linearly polarized laser photons. Another useful expressions for this parameter are given by equations (1.4)–(1.5). When describing the non-linear process \cite{12}, one has to take into account that in a laser wave 4-momenta p_\pm of the free e^\pm are replaced by the 4-qua-momenta q_\pm:

$$q_\pm = p_\pm + \xi^2 \frac{m^2}{2k_2 p_\pm} k_2,$$

$$q^2_\pm = (1 + \xi^2) m^2 \equiv m^2_*.$$

In particular, the energy of the free positron or electron E_\pm is replaced by the qua-energy

$$(q_\pm)_0 = E_\pm + \xi^2 \frac{m^2}{2k_2 p_\pm} \omega_2.$$

As a result, we deal with the reaction \cite{12} for which the conservation law reads

$$k_1 + n k_2 = q_+ + q_-.$$

Note, that $k_2 q_\pm = k_2 p_\pm$. It is convenient to use the following invariant variables:

$$x = \frac{2k_1 k_2}{m^2}, \quad y_\pm = \frac{k_2 p_\pm}{k_1 k_2}, \quad y_+ + y_- = 1.$$

The threshold x_n of the process \cite{12} is determined from the equality

$$(k_1 + n k_2)^2 = m^2 n (2m_*)^2, \quad x_n = \frac{4(1 + \xi^2)}{n},$$ \hspace{1cm} (11)

therefore, when $x < x_1 = 4(1 + \xi^2)$, the process is possible only if the number of the absorbed laser photon n is larger then the threshold value

$$n_{th} = \frac{4(1 + \xi^2)}{x}.$$ \hspace{1cm} (12)

Further, we introduce the auxiliary combinations

$$s_n = 2\sqrt{r_n(1 - r_n)}, \quad c_n = 1 - 2r_n, \quad s^2_n + c^2_n = 1,$$ \hspace{1cm} (13)

where

$$r_n = \frac{1 + \xi^2}{n x y_+ y_-}.$$ \hspace{1cm} (14)

It is useful to note that these invariants have a simple notion in the collider frame of reference, namely

$$r_n = \frac{m^2_1}{m^2_\perp}, \quad s_n = \frac{2m_* p_\perp}{m^2_\perp}, \quad c_n = \frac{p^2_\perp - m^2_\perp}{m^2_\perp},$$ \hspace{1cm} (15)

where

$$m^2_\perp = m^2_* + p^2_\perp = \frac{2(k_1 q_+) (k_1 q_-)}{n (k_1 k_2)}.$$ \hspace{1cm} (16)

and p_\perp is the transverse momentum of the positron in this system:

$$p_\perp \equiv (p_+)\perp = - (p_-)\perp.$$ \hspace{1cm} (17)

Therefore,

$$0 \leq s_n < 1; \quad 0 < r_n \leq 1; \quad -1 \leq c_n < 1.$$ \hspace{1cm} (18)

The minimum and maximum values of the variable y_\pm for the reaction \cite{12} are

$$\max\{y_\pm\} = y_n = \frac{1}{2} (1 + v_n), \quad v_n = \sqrt{1 - \frac{4(1 + \xi^2)}{n x}}$$

$$\min\{y_\pm\} = 1 - y_n = \frac{1}{2} (1 - v_n)$$ \hspace{1cm} (19)

(here v_n is the quasi-velocity of e^\pm in the center-of-mass system). The value of y_n is close to 1 for large n, but for a given n it decreases with the growth of the non-linearity parameter ξ^2. With this notation one can rewrite r_n and s_n in the form

$$r_n = \frac{y_n(1 - y_n)}{y_+ y_-},$$

$$s_n = 2 \sqrt{y_n(1 - y_n)} \sqrt{(y_n - y_+)(y_n - y_-)}.$$ \hspace{1cm} (20)
from which it follows that
\[s_n \to 0 \quad \text{at} \quad y_{\pm} \to y_n \quad \text{or} \quad y_{\pm} \to 1 - y_n. \quad (21) \]

It is useful to note that the invariants \(x, \ y \) defined in (1.9) are connected with the corresponding invariants introduced in the present paper \((10)\) by the replacements \((11)\) under which we have
\[x \to -xy+, \ y \to \frac{1}{y_+}. \quad (22) \]

Besides, the combinations of these invariants \(s_n, \ c_n, \ r_n \) defined in \((1.10)-(1.11)\) are replaced by the corresponding combinations \((12)\) by the rules:
\[s_n \to s_n, \ c_n \to c_n, \ r_n \to r_n. \quad (23) \]

2.2 Invariant polarization parameters

The invariant description of the polarization properties of both the high-energy and laser photons can be performed in the same way as in paper \([15]\). We define a pair of unit 4-vectors\(^2\)
\[e^{(1)} = \frac{N}{\sqrt{-N^2}}, \quad e^{(2)} = \frac{P}{\sqrt{-P^2}}, \quad (24) \]
where
\[N^\mu = e^{\mu\alpha\beta\gamma} P_\alpha (k_1 - n k_2) n K_\gamma, \quad e^{0123} = +1, \]
\[P_\alpha = (q_+ - q_+ \alpha) K\alpha, \]
\[K_\alpha = (n k_2 - k_1) \alpha, \]
\[\sqrt{-N^2} = m^2 x n \sqrt{-P^2}, \quad \sqrt{-P^2} = m \frac{s_n}{r_n} \frac{1}{\sqrt{1 + \xi^2}}. \]

The 4-vectors \(e^{(1)} \) and \(e^{(2)} \) are orthogonal to each other and to the 4-vectors \(k_1 \) and \(k_2 \):
\[e^{(i)}(e^{(j)}) = -\delta_{ij}, \quad e^{(i)} k_1 = e^{(i)} k_2 = 0; \quad i, j = 1, 2 \quad (25) \]

In the collider system they have only transverse component:
\[e^{(1)} = \frac{p_\perp \times k_1}{|p_\perp \times k_1|}, \quad e^{(2)} = -\frac{p_\perp}{|p_\perp|}, \]
\[e^{(0)} = e^{(2)} = 0. \quad (26) \]

Therefore, the vector \(e^{(2)} \) is in the plane of \(k_1 \) and \(p_\perp \) (the plane of scattering) and \(e^{(1)} \) is perpendicular to that plane. Note that the vectors \(e^{(1)}, e^{(2)} \) and \(k_2 \) form a right-handed set as well as the vectors \(e^{(1)}, (-e^{(2)}) \) and \(k_1 \).

Let \(\xi_j \) be the Stokes parameters for the high-energy photon which are defined with respect to the 4-vectors \(e^{(1)} \)
and \((-e^{(2)})\) and \(\tilde{\xi}_j \) be the Stokes parameters for the laser photon which are defined with respect to the 4-vectors \(e^{(1)} \) and \(e^{(2)} \).

These parameters are related to the Stokes parameters which were used in the description of the non-linear Compton scattering \([15]\). At the replacements \((16)\) the Stokes parameters \(\xi_j \) and \(\xi'_j \) for the laser and final photon in the non-linear Compton scattering are replaced by the Stokes parameters for the process \((2)\) according to the rules:
\[\xi_j \to \tilde{\xi}_j, \quad \xi_{1, 3} \to \xi_{1, 3}, \quad \xi_2 \to -\xi_2. \quad (27) \]

The sign minus in the last rule, \(\xi'_2 \to -\xi_2 \), is due to the fact that the polarization matrix of the final photon in the Compton scattering \(\rho_{\mu\nu} \) is replaced at the replacements \((16)\) by the matrix of the initial high-energy photon \(\rho_{\mu\nu}^{(P)} \).

As for the polarization of the final positron and electron, it is necessary to distinguish the polarization vector \(\zeta_\pm^{(j)} \) of the final \(e^\pm \) as resulting from the scattering process itself from the detected polarization \(\zeta_\pm \) which enters the effective cross section and which essentially represents the properties of the detector as selecting one or other polarization of the final lepton (for detail see \([11], \S 65\)). The vector \(\zeta_\pm \) also determines the lepton-spin 4-vector
\[a_\pm = \left(\frac{\zeta_\pm P^+}{m}, \zeta_\pm + \frac{\delta_\pm (\zeta_\pm P^\pm)}{m(E_\pm + m)} \right) \quad (28) \]
and the mean helicity of the final leptons
\[\langle \lambda_\pm \rangle = \frac{\zeta_\pm P^+}{2|P^\pm|}. \quad (29) \]

Now we have to define invariants which describe the polarization properties of the final positrons and electrons. Similar to the approach in \([15]\), we define the two sets of units 4-vectors:
\[e^{(1)} = \mp e^{(1)}, \quad e^{(2)} = \pm e^{(2)} = \frac{\sqrt{-P^2}}{m^2 xy} k_2, \]
\[e^{(3)} = \frac{1}{m} \left(p_\pm - \frac{2}{xy} k_2 \right). \quad (30) \]

These vectors satisfy the conditions:
\[e^{(i)} e^{(j)} = -\delta_{ij}, \quad e^{(i)} p_\pm = 0 \]
\[e^{(i)} e^{(j)} = -\delta_{ij}, \quad e^{(i)} p_\pm = 0, \quad (31) \]
besides, \(e^{(j)} \leftrightarrow e^{(j)} \) under the exchange electron \(\leftrightarrow \) positron.

It allows us to represent the 4-vectors \(a_\pm \) in the following covariant form
\[a_\pm = \sum_{j=1}^{3} \zeta_\pm e^{(j)}, \quad (32) \]
where
\[\zeta_\pm = -a_\pm e^{(j)}. \quad (33) \]

The invariants \(\zeta_\pm \) describe completely the detected polarization properties of the final \(e^\pm \). It is not difficult to find
that ζ_1^\perp is the polarization perpendicular to the scattering plane. Besides, in the frame of reference, in which the lepton momentum p_\pm is anti-parallel to the laser photon momentum k_2, the invariant $\zeta_2^\perp = 2(\lambda_\pm)$. Furthermore, we will show that for the practically important case, relevant for the $e \to \gamma$ conversion, this frame of reference almost coincides with the collider system.

Note, that the invariants ζ_j^\pm are connected with the invariants ζ_j and ζ'_j for the initial and final electron in the non-linear Compton scattering. The corresponding rules are:

$$\zeta_j \to -\zeta_j^+, \quad \zeta_j' \to \zeta_j^-.$$ \hfill (34)

The sign minus in the first rule, $\zeta_j \to -\zeta_j^+$, is due to the fact that at the replacements (5) the unit 4-vectors for the initial electron in the Compton scattering e_j is replaced by the unit 4-vectors of the final positron e_j^+ with an additional minus sign, $e_j \to -e_j^+$. To clarify the meaning of invariants ζ_j^\pm, it is useful to note that

$$\zeta_j^\pm = \zeta_j n_j^\pm,$$ \hfill (35)

where the corresponding 3-vectors are

$$n_j^\pm = e_j^\pm - \frac{p_\pm}{E_\pm + m} e_j^\pm$$ \hfill (36)

with e_j being a time component of the 4-vector e_j^\pm defined in (39). Using the properties (31) of the 4-vectors e_j^\pm, one can check that

$$n_j^+ n_j^- = \delta_{ij} \quad \text{and} \quad n_j^- n_j^- = \delta_{ij}.$$ \hfill (37)

As a result, the polarization vector ζ_j^\pm has the form

$$\zeta_j^\pm = \sum_{j=1}^3 \xi_j^\pm n_j^\pm.$$ \hfill (38)

3 Cross section in the invariant form

3.1 General relations

The usual notion of the cross section is not applicable for the reaction (2) and usually its description is given in terms of the probability of the process per second $W(n)$. However, for the procedure of simulation in the conversion region as well as for the simple comparison with the linear process (1), it is useful to introduce the “effective cross section” given by the definition

$$d\sigma(n) = \frac{dW(n)}{j},$$ \hfill (39)

where

$$j = \frac{k_1 k_2}{m^2} m l = \frac{2m^2}{2\omega_1\omega_2} n_L$$ \hfill (40)

is the flux density of colliding particles (and n_L is the density of photons in the laser wave). Contrary to the usual cross section, this effective cross section does depend on the laser beam intensity, i.e. on the parameter ξ^\perp. The total effective cross section is defined as the sum over harmonics, corresponding to the reaction (2) with a given number n of the absorbed laser photons3:

$$d\sigma = \sum_n d\sigma(n).$$ \hfill (41)

The effective differential cross section with arbitrary polarization of all particles can be presented in the following invariant form:

$$d\sigma(\xi, \hat{\xi}, \zeta_\pm) = \frac{r_e^2}{4x} \sum_n \tilde{F}^{(n)} d\Gamma_n,$$ \hfill (42)

$$d\Gamma_n = \delta(k_1 + n k_2 - q_+ - q_-) \frac{d^3q_+}{(q_+)_0} \frac{d^3q_-}{(q_-)_0},$$

where $r_e = \alpha/m$ is the classical electron radius, and \tilde{F} can be obtained from the corresponding function F for the non-linear Compton scattering (1.32) by relation4

$$\tilde{F}^{(n)} = - F^{(n)},$$ \hfill (43)

and in the function $F^{(n)}$, defined by equations (1.33), (1.46)–(1.52), (1.71)–(1.76), the following replacements, discussed in the previous section, have to be done:

$$x \to -xy_+, \quad y \to \frac{1}{y_+},$$

$$r_n \to r_n, \quad s_n \to s_n, \quad c_n \to c_n,$$ \hfill (44)

$$\xi_j \to \tilde{\xi}_j, \quad \xi'_{j,3} \to \tilde{\xi}_{j,3}, \quad \xi'_2 \to -\xi_2, \quad \zeta_j \to -\zeta_j^+, \quad \zeta'_j \to \zeta_j^-.$$ \hfill (45)

We present the function $\tilde{F}^{(n)}$ in the form:

$$\tilde{F}^{(n)} = \tilde{F}_0^{(n)} + \sum_{j=1}^3 \left(G_j^{(n)+} \xi_j^+ + G_j^{(n)-} \xi_j^- \right)$$

$$+ \sum_{i,j=1}^3 \tilde{H}_{ij}^{(n)} \xi_i^+ \xi_j^-.$$ \hfill (45)

Here the function $\tilde{F}_0^{(n)}$ describes the total cross section for a given harmonic n, summed over spin states of the final particles:

$$\sigma^{(n)}(\xi, \hat{\xi}) = \frac{r_e^2}{x} \int \tilde{F}_0^{(n)} d\Gamma_n.$$ \hfill (46)

The terms $G_j^{(n)+}$ and $G_j^{(n)-}$ in (46) describe the polarization of the final positrons and the final electrons,

3 In this formula and below the sum is over those n which satisfy the condition $y < y_0$, i.e. this sum runs from some minimal value n_{min} up to $n = \infty$, where n_{min} is determined by the equation $y_{n_{\text{min}}} < y < y_{n_{\text{min}}}$.

4 The sign minus in this equation is due to the fact that the polarization matrix of the initial electron in the Compton scattering $(\hat{p} + m)(1 - \gamma^\perp \hat{a})/2$ is replaced at the transition (43) to the matrix $(\hat{p} + m)(1 - \gamma^\perp \hat{a}^\perp)/2$, which is the polarization matrix of the final positron times (-1).

respectively. The last terms \(\tilde{H}^{(n)}_{ij} \zeta^+_i \zeta^-_j \) stand for the correlation of the final particles’ polarizations.

From (15) one can deduce the polarization of the final positron \(\zeta_{j}^{(f)+} \) and electron \(\zeta_{j}^{(f)-} \) resulting from the scattering process itself. According to the usual rules (see [1], §65), we obtain the following expression for the polarization of the final positron (electron) (summed over polarization states of the final electron (positron)):

\[
\zeta_{j}^{(f)\pm} = \frac{G_{j}^{\pm}}{F_{0}}, \quad F_{0} = \sum_{n} F_{0}^{(n)}, \quad \zeta_{j}^{(f)\pm} = \sum_{n} G_{j}^{(n)\pm};
\]

\[
j = 1, 2, 3,
\]

therefore, its polarization vector is

\[
\zeta_{j}^{(f)\pm} = \sum_{j=1}^{3} \frac{G_{j}^{\pm}}{F_{0}} \mathbf{n}_{j}^{\pm}.
\]

In the similar way, the polarization properties for a given harmonic \(n \) are described by

\[
\zeta_{j}^{(n)(f)\pm} = \frac{G_{j}^{(n)\pm}}{F_{0}^{(n)}}.
\]

3.2 The results for the circularly polarized laser photons

In this subsection we consider the case of 100% circularly polarized laser beam with the Stokes parameters

\[
\xi_{1} = \xi_{3} = 0, \quad \xi_{2} = P_{e} = \pm 1.
\]

In the considered case almost all dependence on the non-linearity parameter \(\xi^{2} \) accumulates in three functions:

\[
f_{n} \equiv f_{n}(z_{n}) = J_{n-1}^{2}(z_{n}) + J_{n+1}^{2}(z_{n}) - 2J_{n}^{2}(z_{n}),
\]

\[
g_{n} \equiv g_{n}(z_{n}) = \frac{4n^{2}J_{n}^{2}(z_{n})}{z_{n}^{2}},
\]

\[
h_{n} \equiv h_{n}(z_{n}) = J_{n-1}^{2}(z_{n}) - J_{n+1}^{2}(z_{n}),
\]

where \(J_{n}(z) \) is the Bessel function. The functions (31) depend on \(x, y^{\pm} \) and \(\xi^{2} \) via the single argument

\[
z_{n} = \frac{\xi}{\sqrt{1 + \xi^{2}}} n s_{n}.
\]

For the small argument of this function one has

\[
f_{n} = g_{n} = h_{n} = \left(z_{n}/2 \right)^{2(n-1)} [(n-1)!]^{2} \text{ at } z_{n} \rightarrow 0,
\]

in particular,

\[
f_{1} = g_{1} = h_{1} = 1 \text{ at } z_{1} = 0.
\]

It is useful to note that this argument is small for small \(\xi^{2} \), as well as for the minimum or maximum values of \(y^{\pm} \):

\[
z_{n} \rightarrow 0 \text{ either at } \xi^{2} \rightarrow 0,
\]

or at \(y^{\pm} \rightarrow 1 - y_{n} \), or at \(y^{\pm} \rightarrow y_{n} \).

The results of our calculations are the following. The function \(F_{0}^{(n)} \), related to the total cross section (46), reads

\[
F_{0}^{(n)} = (u - 2) f_{n} + \frac{s_{n}^{2}}{1 + \xi^{2}} g_{n} - (u - 2) c_{n} h_{n} P_{e} \xi_{2}
\]

\[- \left[2(f_{n} - g_{n}) + s_{n}^{2}(1 + \Delta) g_{n} \right] \xi_{3}.
\]

Here and below we use the notations:

\[
u = \frac{1}{y^{+} y^{-}}, \quad \Delta = \frac{\xi^{2}}{1 + \xi^{2}}.
\]

The polarization of the final positrons \(\zeta_{j}^{(f)+} \) is given by (47)–(49) with

\[
G_{1}^{(n)+} = - \frac{s_{n}}{y^{+} \sqrt{1 + \xi^{2}}} h_{n} P_{e} \xi_{1},
\]

\[
G_{2}^{(n)+} = \frac{s_{n}}{y^{+} \sqrt{1 + \xi^{2}}} (c_{n} g_{n} \xi_{2} - h_{n} P_{e})
\]

\[- \frac{1}{y^{+} \sqrt{1 + \xi^{2}}} h_{n} P_{e} \xi_{3},
\]

\[
G_{3}^{(n)+} = - (y^{+} - y^{-}) u c_{n} h_{n} P_{e}
\]

\[+ \nu \left[(y^{+} - y^{-}) f_{n} + \frac{s_{n}^{2} y^{+}}{1 + \xi^{2}} g_{n} \right] \xi_{2}.
\]

The polarization of the final electrons \(\zeta_{j}^{(f)-} \) is given by (47)–(49) with

\[
G_{1}^{(n)-} = - \frac{s_{n}}{y^{+} \sqrt{1 + \xi^{2}}} h_{n} P_{e} \xi_{1},
\]

\[
G_{2}^{(n)-} = \frac{s_{n}}{y^{+} \sqrt{1 + \xi^{2}}} (c_{n} g_{n} \xi_{2} - h_{n} P_{e})
\]

\[- \frac{1}{y^{+} \sqrt{1 + \xi^{2}}} h_{n} P_{e} \xi_{3},
\]

\[
G_{3}^{(n)-} = - (y^{+} - y^{-}) u c_{n} h_{n} P_{e}
\]

\[- \nu \left[(y^{+} - y^{-}) f_{n} - \frac{s_{n}^{2} y^{+}}{1 + \xi^{2}} g_{n} \right] \xi_{2}.
\]

Correlations of the electron and positron polarizations are given by the functions

\[
\bar{H}^{(n)}_{11} = 2 f_{n} - \frac{s_{n}^{2}}{1 + \xi^{2}} g_{n} - 2 c_{n} h_{n} P_{e} \xi_{2}
\]

\[- \left((u - 2)(f_{n} - g_{n}) - 1 - (u - 1) \Delta \right) s_{n}^{2} g_{n} \right] \xi_{3},
\]

\[
\bar{H}^{(n)}_{12} = u \left[(y^{+} - y^{-})(f_{n} - g_{n}) + (y^{+} - y^{-} \Delta) g_{n} \right] \xi_{1},
\]

\[
\bar{H}^{(n)}_{13} = - \frac{c_{n} s_{n}}{y^{+} \sqrt{1 + \xi^{2}}} g_{n} \xi_{1},
\]

\[
\bar{H}^{(n)}_{21} = - u \left[(y^{+} - y^{-})(f_{n} - g_{n}) - (y^{+} - y^{-} \Delta) s_{n}^{2} g_{n} \right] \xi_{1},
\]

\[
\bar{H}^{(n)}_{22} = 2 f_{n} - \frac{s_{n}^{2}}{1 + \xi^{2}} g_{n} - 2 c_{n} h_{n} P_{e} \xi_{2}
\]

\[- \left((u - 2)(f_{n} - g_{n}) + (u - 1 - \Delta) s_{n}^{2} g_{n} \right] \xi_{3},
\]

\[
\bar{H}^{(n)}_{23} = \frac{s_{n}}{y^{+} \sqrt{1 + \xi^{2}}} \left(c_{n} g_{n} - h_{n} P_{e} \xi_{2} \right)
\]
scribed by the 4-potential
9n(ξ),

\[H_{31}^{(n)} = -\frac{c_n s_n}{y - \sqrt{1 + \xi^2}} g_n ξ_1, \]

\[H_{32}^{(n)} = \frac{s_n}{y - \sqrt{1 + \xi^2}} (c_n g_n - h_n P_c ξ_2)
+ \frac{c_n s_n}{y + \sqrt{1 + \xi^2}} g_n ξ_3, \]

\[H_{33}^{(n)} = -(u - 2) f_n + (u - 1) \frac{s_n^2}{1 + \xi^2} g_n
+ (u - 2) c_n h_n P_c ξ_2
+ [2(f_n - g_n) + (1 + \Delta) s_n^2 g_n] ξ_3. \]

3.3 The results for the linearly polarized laser photons

Here we consider the case of 100% linearly polarized laser beam. In this case, the electromagnetic laser field is described by the 4-potential

\[A^\mu(x) = A^\mu \cos(kx), \quad A^\mu = \sqrt{\frac{2m}{e}} \xi e^\mu_L, \]

\[e_L e_L = -1, \]

where \(e^\mu_L \) is the unit 4-vector describing the polarization of the laser photons, which can be expressed in the covariant form via the unit 4-vectors \(e^{(1,2)} \) given in (22) as follows:

\[e_L = e^{(1)} \sin \varphi - e^{(2)} \cos \varphi. \]

The Stokes parameters \(\tilde{ξ}_i \) of the laser photon are defined with respect to the 4-vectors \(e^{(1)} \) and \(e^{(2)} \) and are equal to

\[\tilde{ξ}_1 = -\sin 2\varphi, \quad \tilde{ξ}_2 = 0, \quad \tilde{ξ}_3 = -\cos 2\varphi. \]

The invariants

\[\sin \varphi = -e_L e^{(1)}, \quad \cos \varphi = e_L e^{(2)} \]

have a simple notion in the collider system in which the vectors \(e^{(1,2)} \) are given by (22). For the problem discussed it is convenient to choose the x-axis of this frame of reference along the direction of the laser linear polarization, i.e. along the vector \(e_x \). With such a choice, the quantity \(\varphi \) is the azimuthal angle of the final positron \(\varphi_+ \) in the collider system (analogously, the azimuthal angle \(\beta_\pm \) of the \(e^\pm \) polarization \(\xi_\pm \) is also defined with respect to this x-axis).

When calculating the effective cross section, we found that almost all dependence on the non-linearity parameter \(\xi^2 \) accumulates in three functions:

\[\tilde{f}_n = 4 \left[A_1(n, a, b) \right]^2 - 4A_0(n, a, b)A_2(n, a, b), \]

\[\tilde{g}_n = \frac{4n^2}{\pi^2} \left[A_0(n, a, b) \right]^2, \]

\[\tilde{h}_n = \frac{4n}{a} A_0(n, a, b) A_1(n, a, b), \]

where

\[A_k(n, a, b) = \int_{-\pi}^{\pi} d\psi \cos^k \psi \exp\left[i(n\psi - a \sin \psi + b \sin 2\psi) \right] \frac{d\psi}{2\pi}. \]

The arguments of these functions are

\[a = -z_n \sqrt{2} \cos \varphi, \quad b = \frac{\xi^2}{2xy + y-}. \]

where \(z_n \) is defined in (29). To find the positron spectrum, one needs also the functions \(\tilde{f}_n, \tilde{g}_n, \tilde{h}_n \) averaged over the azimuthal angle \(\varphi \):

\[\langle \tilde{f}_n \rangle = \int_0^{2\pi} \tilde{f}_n \frac{d\varphi}{2\pi}, \quad \langle \tilde{g}_n \rangle = \int_0^{2\pi} \tilde{g}_n \frac{d\varphi}{2\pi}. \]

For small values of \(\xi^2 \to 0 \) one has

\[\tilde{f}_n, \tilde{g}_n, \tilde{h}_n \propto (\xi^2)^{-n-1}, \]

in particular, at \(\xi^2 = 0 \)

\[\tilde{f}_1 = \langle \tilde{f}_1 \rangle = \langle \tilde{g}_1 \rangle = \tilde{h}_1 = 1, \quad \tilde{g}_1 = 1 + \cos 2\varphi. \]

The results of our calculations are the following. First, we define the auxiliary functions

\[X_n = \tilde{f}_n - (1 + c_n) \left[(1 - \Delta r_n) \tilde{g}_n - \tilde{h}_n \cos 2\varphi \right], \]

\[Y_n = (1 + c_n) \tilde{g}_n - 2\tilde{h}_n \cos^2 \varphi, \]

\[V_n = \tilde{f}_n \cos 2\varphi + 2(1 + c_n) \left[(1 - \Delta r_n) \tilde{g}_n - 2\tilde{h}_n \cos^2 \varphi \right] \sin^2 \varphi, \]

where \(c_n, r_n \) and \(\Delta \) are defined in (13), (14) and (57), respectively.

The function \(\tilde{F}_0^{(n)} \), related to the total cross section (40), reads

\[\tilde{F}_0^{(n)} = (u - 2) \tilde{f}_n + \frac{s_n^2}{1 + \xi^2} \tilde{g}_n - 2X_n \xi_1 \sin 2\varphi
+ \left(2V_n - \frac{s_n^2}{1 + \xi^2} \tilde{g}_n \right) \xi_3. \]
The polarization of the final positrons $\zeta^{(f)+}$ is given by (47)–(49) with

$$G_1^{(n)+} = - \frac{s_n}{y_n + \sqrt{1 + \xi^2}} \tilde{h}_n \xi_2 \sin 2\varphi, \quad (75)$$

$$G_2^{(n)+} = \frac{s_n}{y_n + \sqrt{1 + \xi^2}} Y_n \xi_2,$n

$$G_3^{(n)+} = u \left[(y_+ - y_-) \tilde{f}_n + \frac{s_n^2 y_-}{1 + \xi^2} \tilde{g}_n \right] \xi_2.$n

The polarization of the final electrons $\zeta^{(f)-}$ is given by (47)–(49) with

$$G_1^{(n)-} = - \frac{s_n}{y_n + \sqrt{1 + \xi^2}} \tilde{h}_n \xi_2 \sin 2\varphi, \quad (76)$$

$$G_2^{(n)-} = \frac{s_n}{y_n + \sqrt{1 + \xi^2}} Y_n \xi_2,$n

$$G_3^{(n)-} = - u \left[(y_+ - y_-) \tilde{f}_n - \frac{s_n^2 y_+}{1 + \xi^2} \tilde{g}_n \right] \xi_2.$n

Correlations of the electron and positron polarizations are given by the functions

$$\tilde{H}_{11}^{(n)} = \left[2 \tilde{f}_n - \frac{s_n^2}{1 + \xi^2} \tilde{g}_n \right] - (u - 2) X_n \xi_1 \sin 2\varphi$$

$$+ \left[(u - 2) V_n + \frac{s_n^2}{1 + \xi^2} \tilde{g}_n \right] \xi_3,$n

$$\tilde{H}_{12}^{(n)} = - u \left[(y_+ - y_-) V_n - \frac{s_n^2 y_+}{1 + \xi^2} \tilde{g}_n \right] \xi_1$$

$$- u (y_+ - y_-) X_n \xi_3 \sin 2\varphi,$n

$$\tilde{H}_{13}^{(n)} = - \frac{s_n}{y_n + \sqrt{1 + \xi^2}} \tilde{h}_n \sin 2\varphi$$

$$- \frac{s_n}{y_n + \sqrt{1 + \xi^2}} \left(Y_n \xi_1 - \tilde{h}_n \xi_3 \sin 2\varphi \right), \quad (77)$$

$$\tilde{H}_{21}^{(n)} = u \left[(y_+ - y_-) V_n + \frac{s_n^2 y_-}{1 + \xi^2} \tilde{g}_n \right] \xi_1$$

$$+ u (y_+ - y_-) X_n \xi_3 \sin 2\varphi,$n

$$\tilde{H}_{22}^{(n)} = \left[2 \tilde{f}_n - \frac{s_n^2}{1 + \xi^2} \tilde{g}_n \right] - (u - 2) X_n \xi_1 \sin 2\varphi$$

$$+ \left[(u - 2) V_n - (u - 1) \frac{s_n^2}{1 + \xi^2} \tilde{g}_n \right] \xi_3,$n

$$\tilde{H}_{23}^{(n)} = \frac{s_n}{y_n + \sqrt{1 + \xi^2}} Y_n$$

$$+ \frac{s_n}{y_n + \sqrt{1 + \xi^2}} \left(\tilde{h}_n \xi_1 \sin 2\varphi + Y_n \xi_3 \right),$$

$$\tilde{H}_{31}^{(n)} = - \frac{s_n}{y_n - \sqrt{1 + \xi^2}} \tilde{h}_n \sin 2\varphi$$

$$- \frac{s_n}{y_n - \sqrt{1 + \xi^2}} \left(Y_n \xi_1 - \tilde{h}_n \xi_3 \sin 2\varphi \right),$$

$$\tilde{H}_{32}^{(n)} = \frac{s_n}{y_n - \sqrt{1 + \xi^2}} Y_n$$

$$+ \frac{s_n}{y_n - \sqrt{1 + \xi^2}} \left(\tilde{h}_n \xi_1 \sin 2\varphi + Y_n \xi_3 \right).$$

$$\tilde{H}_{33}^{(n)} = - \left[(u - 2) \tilde{f}_n - (u - 1) \frac{s_n^2}{1 + \xi^2} \tilde{g}_n \right] + 2 X_n \xi_1 \sin 2\varphi$$

$$- \left(2 V_n - \frac{s_n^2}{1 + \xi^2} \tilde{g}_n \right) \xi_3.$n

The presented functions obey the same relations (22), connected with the symmetry (11) under the exchange electron ↔ positron, as for the case of the circularly polarized laser photons.

4 Going to the collider system

4.1 Exact relations

As an example of the application of the above formulae, let us consider the non-linear Breit-Wheeler process in the collider system defined in Sect. 1. In such a frame of reference the invariants (10) and a phase volume element in (22) are equal to

$$x = \frac{4 \omega_1 \omega_2}{m^2}, \quad y_{\pm} = \frac{E_{\pm} + (p_{\pm})^2}{2 \omega_1}, \quad d\Gamma_n = dy_+ d\varphi_+, \quad (78)$$

and the differential cross section, summed over spin states of the final particles, is

$$\frac{d\sigma^{(n)}(\xi, \tilde{\xi})}{dy_+ d\varphi_+} = \frac{r^2}{x} \tilde{F}_0^{(n)}. \quad (79)$$

Integrating this expression over φ_+ and then over y_+, we obtain

$$\sigma^{(n)}(\xi, \tilde{\xi}) = \frac{2 \pi r^2}{x} \int_{-y_n}^{y_n} \langle \tilde{F}_0^{(n)} \rangle dy_+. \quad (80)$$

To find $\langle \tilde{F}_0^{(n)} \rangle$ we have to know the azimuthal dependence of the Stokes parameters ξ_i for the high-energy photon. These parameters are defined with respect to the polarization vectors $e_{\perp}^{(1)}$ and $(-e_{\perp}^{(2)})$ given by (23), i.e. they are defined with respect to the $x'y'z'$-axes which are fixed to the scattering plane. The x'-axis is along $e_{\perp}^{(1)}$ and perpendicular to the scattering plane. The y'-axis is directed along $(-e_{\perp}^{(2)})$ and, therefore, it is in that plane. Let ξ_i be the Stokes parameters for the high-energy photons, fixed to the xyz-axes of the collider system. These Stokes parameters are connected with ξ_i by the following relations:

$$\xi_1 = -\tilde{\xi}_1 \cos 2\varphi_+ + \tilde{\xi}_3 \sin 2\varphi_+, \quad \xi_2 = \tilde{\xi}_2,$$

$$\xi_3 = -\tilde{\xi}_3 \cos 2\varphi_+ - \tilde{\xi}_1 \sin 2\varphi_+. \quad (81)$$

Inserting these relations into the effective cross section, we find

$$\langle \tilde{F}_0^{(n)} \rangle = (u - 2) f_n + \frac{s_n^2}{1 + \xi^2} \tilde{g}_n$$

$$- (u - 2) c_n \tilde{h}_n \xi_2 F_c \quad (82)$$
for the case of the circularly polarized laser photons and
\[
\langle \bar{F}_0^{(n)} \rangle = (u-2) \langle \bar{f}_n \rangle + \frac{s^2}{1 + \xi^2} \langle \bar{g}_n \rangle - \left[2 \langle \bar{f}_n \rangle - \left(2m - s^2 \Delta \right) \langle \bar{g}_n \rangle \right] + (1 + cm) \left(\langle \bar{g}_n \cos 2\varphi \rangle \right) \xi \xi_3^{(83)}
\]
for the case of the linearly polarized laser photons.\(^5\) This means that for the circularly polarized laser photons the differential \(d\sigma^{(n)}(\xi, \xi)/d\varphi\) and the total \(\sigma^{(n)}(\xi, \xi)\) cross sections for a given harmonic \(n\) do not depend on the degree of the linear polarization of the high-energy photon while for the linearly polarized laser photons these cross sections do not depend on the degree of the circular polarization of the high-energy photon.

The polarization vector of the final \(e^\pm\) is determined by \(^{17}\) but, unfortunately, the unit vectors \(n_{j\pm}\) in this equation have no simple form. Therefore, we have to find the characteristics that are usually used for description of the positron (electron) polarization — the mean helicity \((\lambda_{\pm})\) and its transverse (to the vector \(p_{\pm}\)) polarization \(\mathbf{\xi}_3^{\pm}\) in the considered collider system. For this purpose we introduce unit vectors \(\mathbf{\nu}_j^{\pm}\), one of them is directed along the momentum of the final lepton \(p_{\pm}\) and two others are in the plane transverse to this direction:
\[
\begin{align*}
\mathbf{\nu}_1^{\pm} &= \frac{k_1 \times p_{\pm}}{|k_1 \times p_{\pm}|}, \\
\mathbf{\nu}_2^{\pm} &= \frac{p_{\pm} \times \mathbf{\nu}_1^{\pm}}{|p_{\pm} \times \mathbf{\nu}_1^{\pm}|}, \\
\mathbf{\nu}_3^{\pm} &= \frac{p_{\pm}}{|p_{\pm}|}; \\
\mathbf{\nu}_1^{\mp} &= \mathbf{\nu}_1^{\pm}, \\
\mathbf{\nu}_2^{\mp} &= \mathbf{\nu}_2^{\pm}, \\
\mathbf{\nu}_3^{\mp} &= \mathbf{\nu}_3^{\pm}
\end{align*}
\]
Therefore, \(\mathbf{\xi}_3^{\pm}\) is the transverse polarization of the final \(e^\pm\) perpendicular to the scattering plane, \(\lambda_{\pm}\) is the transverse polarization in that plane and \(\mathbf{\xi}_3^{\pm}\) is the doubled mean helicity of the final electron:
\[
\mathbf{\xi}_3^{\pm} = 2(\lambda_{\pm}).
\]

Let us discuss the relation between the scalar products \(\zeta_{\pm} \mathbf{\nu}_j^{\pm}\), defined above, and the invariants \(c_{ij}\), defined in \(^{33}\), \(^{35}\). In the collider system the vectors \(\mathbf{\nu}_1^{\pm}\) and \(n_{1\pm}\) coincide
\[
\mathbf{\nu}_1^{\pm} = n_{1\pm},
\]
therefore,
\[
\zeta_{\pm} \mathbf{\nu}_1^{\pm} = \zeta_{1\pm}^{\pm}.
\]

Two other unit vectors \(n_{2\pm}\) and \(n_{3\pm}\) are in the scattering plane and they can be obtained from the vectors \(\mathbf{\nu}_2^{\pm}\) and \(\mathbf{\nu}_3^{\pm}\) by the rotation around the axis \(\mathbf{\nu}_1^{\pm}\) on the angle \((-\Delta \theta_{\pm})\):
\[
\begin{align*}
\zeta_{\pm} \mathbf{\nu}_2^{\pm} &= \zeta_{2\pm} \cos \Delta \theta_{\pm} + \zeta_{1\pm} \sin \Delta \theta_{\pm}, \\
\zeta_{\pm} \mathbf{\nu}_3^{\pm} &= \zeta_{3\pm} \cos \Delta \theta_{\pm} - \zeta_{2\pm} \sin \Delta \theta_{\pm},
\end{align*}
\]
where
\[
\cos \Delta \theta_{\pm} = \mathbf{\nu}_3^{\pm} \times n_{3\pm}^{\pm}, \quad \sin \Delta \theta_{\pm} = -\mathbf{\nu}_3^{\pm} \times n_{2\pm}^{\pm}.
\]

As a result, the polarization vector of the final positron (electron) \(^{35}\) is expressed as follows:
\[
\zeta_{\pm}^{(\pm)} = \frac{\mathbf{\nu}_1^{\pm}}{F_0} + \frac{\mathbf{\nu}_2^{\pm}}{F_0} \left(\frac{G_2^\pm}{F_0} \cos \Delta \theta_{\pm} + \frac{G_3^\pm}{F_0} \sin \Delta \theta_{\pm} \right) + \frac{\mathbf{\nu}_3^{\pm}}{F_0} \left(\frac{G_3^\pm}{F_0} \cos \Delta \theta_{\pm} - \frac{G_2^\pm}{F_0} \sin \Delta \theta_{\pm} \right).
\]

4.2 Approximate formulae

All the above formulae are exact. In this subsection we give some approximate formulae useful for application to the important case of high-energy \(\gamma\gamma\) and \(\gamma e\) colliders. It is expected (see, for example, the TESLA project \(^{10}\)) that in the conversion region of these colliders, an electron with the energy 250 GeV performs collisions with laser photons having the energy \(\approx 1\) eV per a single photon. The produced high-energy photons with the energy \(\omega_1 \leq 200\) GeV can further collide with the laser photon of energy \(\omega_2 \approx 1\) eV, therefore, the invariant \(x = 4\omega_1\omega_2/m^2 \leq 4\) corresponds to the case when the \(e^+e^-\) pair can be produced only at \(n \geq 2\). Therefore, the most interesting region of parameter \(x\) is around the value \(x \approx 4\). The final electrons and positrons are ultra-relativistic and they are produced at a small angles \(\theta_{\pm}\) with respect to the \(z\)-axis (chosen along the momentum \(k_1\) of the high-energy photon):
\[
\omega_1 \gg m, \quad E_\pm \gg m, \quad \theta_{\pm} \ll 1.
\]

In this approximation we have
\[
y_{\pm} \approx \frac{E_+}{\omega_1},
\]
therefore, \(^{35}\) gives us the distribution of the final positrons over their energy and the azimuthal angle. Besides, the lepton polar angle for the reaction \(^2\) is
\[
\theta_{\pm} \approx \frac{m \sqrt{ny_{\pm}}}{\omega_1} \sqrt{(y_n - y_{\pm})(y_{\pm} - 1 + y_n)}
\]
and \(\theta_{\pm} \to 0\) at \(y_{\pm} \to y_n\) or at \(y_{\pm} \to 1 - y_n\). The maximal value of this angle is small
\[
\max \{\theta_{\pm}\} \approx \frac{2m \omega_2}{m_*} \sqrt{1 - \frac{4(1 + \xi^2)}{nx}} \text{ at } y_{\pm} = \frac{2(1 + \xi^2)}{nx}.
\]

It is not difficult to check that, for the considered case, the angle \(\Delta \theta_{\pm}\) between vector \(\mathbf{\nu}_3^{\pm}\) and \(n_{3\pm}\) is very small:
\[
\Delta \theta_{\pm} \approx \frac{|\mathbf{\nu}_3^{\pm} \times n_{3\pm}|}{2E_{\pm}} \approx \frac{mm_\omega_2}{m_* E_{\pm}} \sqrt{1 - \frac{4(1 + \xi^2)}{nx}}.
\]
This means that the invariants ζ_\perp in (88), (89) almost coincide with the projections ζ_\perp on the vectors ν^\perp_j, defined in (83),

$$
\zeta_\perp^\perp \approx -\zeta_\perp \sin (\varphi_\perp - \beta_\perp), \quad \zeta^\perp_\perp \approx -\zeta_\perp \cos (\varphi_\perp - \beta_\perp),
$$

where β_\perp is the azimuthal angle of the vector ζ_\perp and ζ_\perp^\perp stands for the transverse components of the vectors ζ_\perp with respect to the vector p_\perp. Moreover, it means that the exact equation (90) for the polarization of the final positron and electron can be replaced with a high accuracy by the approximate equation

$$
\zeta^{(f)}_\perp \approx \frac{3}{\sum_{j=1}^n} \frac{G_\perp^\perp}{F_0} \nu^\perp_j. \quad (97)
$$

Up to now we deal with the head-on collisions of the laser photon and the high-energy photon, when the collision angle α_0 between the vectors k_1 and $(-k_2)$ was equal zero. The detailed consideration of the case $\alpha_0 \neq 0$ is given in Appendix B of paper [15]. We present here the summary of such a consideration. If $\alpha_0 \neq 0$, the longitudinal component of the vector k_2 becomes $(k_2)_z = -\omega_2 \cos \alpha_0$ and it appeared to be the transverse (to the momentum k_1) component $(k_2)_\perp$. However this transverse component is small, $| (k_2)_\perp | \ll \omega_2 \ll m$, therefore the transverse momenta of the final particles are almost compensate each other, $(p_+)_\perp = (k_2 - p_\perp)_\perp \approx - (p_\perp)_\perp$. The invariants x and y_\perp become (compare with (78), (82))

$$
x \approx \frac{4 \omega_2 m^2}{m^2} \cos^2 \frac{\alpha_0}{2}, \quad y_\perp \approx \frac{E_\perp}{\omega_1}. \quad (98)
$$

The polarization parameters of the initial photons and final electrons (positrons) conserve their forms (50), (53) and (51), (74). Therefore, the whole dependence on α_0 enters the effective cross section and the polarizations only via the quantity x (88).

5 Limiting cases

In this section we consider several limiting cases in which description of the non-linear Breit-Wheeler process is essentially simplified.

(i) The case of $\xi^2 \rightarrow 0$. At small ξ^2 all harmonics with $n > 1$ disappear due to the properties (53), (55), (71), and we have

$$
\frac{d\sigma^{(n)}_j (\xi, \bar{\xi}, \zeta^\perp) \propto \xi^{2(n-1)} \quad \text{at} \quad \xi^2 \rightarrow 0. \quad (99)
$$

The corresponding expression for $d\sigma^{(1)}_j$ is given in Appendix.

(ii) The case of $y_\perp \rightarrow y_n$ for the circularly polarized laser photons. In this limit $y_\perp \rightarrow 1 - y_n$ and

$$
p_\perp \rightarrow 0, \quad s_n \rightarrow 0, \quad c_n \rightarrow -1. \quad (100)
$$

In the collider system with $\omega_1 \gg \omega_2$ both leptons fly along the momentum of the high-energy photon k_1 with $(q_\perp)_z \approx (p_\perp)_z > 0$. It means that

$$
n_\perp^\pm = n_3^\pm = \nu^\perp_3, \quad n_{1,2}^\pm = -n_{1,2}^\perp = \nu_{1,2}^\perp,
$$

therefore, ζ^\perp_3 coincides with the doubled mean e^\pm helicity,

$$
\zeta^\perp_3 = 2 (\lambda_\perp), \quad \zeta_\perp^\alpha_3 + 2 \zeta_\perp^\beta_3 = - (\zeta_\perp^\alpha_3, \zeta_\perp^\beta_3). \quad (101)
$$

All harmonics with $n > 1$ disappear\(^6\) and only the leptons of the first harmonic can be produced strictly along the direction of the high-energy photon momentum:

$$
\frac{d\sigma^{(n)}_j (\xi, \bar{\xi}, \zeta^\perp) \propto \xi \propto y_n \propto (y_n - y_+)^{n-1} \quad \text{at} \quad y_\perp \rightarrow y_n, \quad (102)
$$

with

$$
\frac{d\sigma^{(n)}_j (\xi, \bar{\xi}, \zeta^\perp) \propto (1 + \xi^2 P_c) \propto y_n \propto (y_n - y_+)^{n-1} \quad \text{at} \quad y_\perp \rightarrow y_n, \quad (103)
$$

(iii) The case of large $x \gg 1 + \xi^2$ for the circularly polarized laser photons. In this case $1 - y_n \approx (1 + \xi^2)/(nx) \ll 1$. The spectrum of the fist harmonic is symmetric under replacement $y_+ \leftrightarrow 1 - y_+$ and has peaks at maximum or minimum value of y_+. The form of these peaks at not too small transverse momentum of leptons, at $m^2_e \ll p^2_\perp \ll m^2 x$, is

$$
\frac{d\sigma^{(1)}_j (\xi, \bar{\xi}, \zeta^\perp) \propto \frac{2 \pi r^2}{x} (1 - \xi^2 P_c) \left[\frac{1}{y_+(1 - y_+)} - 2 \right]. \quad (105)
$$

The magnitude of these peaks increases with growth of x. Therefore, the regions near this peaks give the dominant

\(^6\) The vanishing of all harmonics with $n \geq 3$ is due to the conservation of z component of the total angular momentum J_z in this limit: the initial value of $J_z = \lambda_1 - n \lambda_2$ can not be equal for $n \geq 3$ to the final value of $J_z = \lambda_1 + \lambda_2$ (here λ_1 and λ_2 is the helicity of the high-energy (laser) photon and λ_2 is the helicity of the positron (electron)). For $n = 2$ this argument does not help, since $J_z = \pm 1$ can be realized for the initial and final states. The vanishing of the second harmonics for $y_\perp \rightarrow y_n$ is a specific feature of the process, related to the facts that the polarization vectors $\epsilon^{(\lambda_1)}_1$ and $\epsilon^{(\lambda_2)}_2$ are orthogonal not only to the 4-vectors k_1, k_2 but to the 4-vectors $\pm \epsilon$ as well and that $\epsilon^{(\lambda_1)}_1 \epsilon^{(\lambda_2)}_2 = 0$.

contribution to the cross section for the first harmonic. On the other hand, all other harmonics vanishes in this regions. As a result, the cross section for the first harmonic $\sigma^{(1)}$ approximate well the total cross section σ summed over all harmonics. Thus, we consider the regions

$$ m_s^2 \ll p_f^2 \ll m^2 x , \quad (106) $$

in which y_{\pm} is close to y_1 or to $1 - y_1$ while y_1 is close to unit:

$$ 1 - y_1 \approx \frac{1 + \xi^2}{x} \ll 1 , \quad |s_n| \ll 1 , \quad c_n \approx +1 . \quad (107) $$

In this regions the function $\tilde{F}^{(1)}$ becomes large

$$ \tilde{F}^{(1)} \approx \frac{1}{(1 - y_+)(1 - y_-)} \left[(1 - \xi_2 P_c)(1 - \zeta_3^+ \zeta_3^-) \right.
+ \left. \pm (\xi_2 - P_c)(\zeta_3^+ - \zeta_3^-) \right] \quad (108) $$

(for y_{\pm} near y_1). Therefore, integrating the effective cross section for the first harmonic, $d\sigma^{(1)} \propto 1/[(1 - y_+)(1 - y_-)]$, near its two maximums, i.e. in the regions

$$ 1 + \xi^2 \ll 1 - y_{\pm} \ll 1 , \quad (109) $$

we find (with logarithmic accuracy) the total cross section

$$ \sigma(\xi, \xi, \zeta_{\pm}) = \frac{\pi r_e^2}{x} (1 - \xi_2 P_c)(1 - \zeta_3^+ \zeta_3^-) \ln \frac{x}{1 + \xi^2} . \quad (110) $$

The total cross section, summed over spin states of the final particles, has the form

$$ \sigma(\xi, \xi, \zeta_{\pm}) = \frac{4\pi r_e^2}{x} (1 - \xi_2 P_c) \ln \frac{x}{1 + \xi^2} . \quad (111) $$

(iv) The case of $y_{\pm} \to y_n$ for the linearly polarized laser photons. In this limit, the argument a of the functions $\tilde{F}^{(n)}$ tends to zero, while the argument b tends to the nonzero constant, $b \to n\xi^2/[2(1 + \xi^2)]$; the function

$$ \tilde{f}_n = \left[J_{(n-1)/2}(b) - J_{(n+1)/2}(b) \right]^2 \quad (112) $$

for odd n and

$$ \tilde{f}_n = \frac{2}{\xi^2} \left[J_{n/2}(b) \right]^2 \quad (113) $$

for even n. The spectra and the polarizations are determined by the function $\tilde{F}^{(n)}$ given for odd harmonics by the expression

$$ \frac{\tilde{F}^{(n)}}{\tilde{f}_n} = (u_n - 2 - 2\xi_3)(1 - \zeta_3^+ \zeta_3^-) - [2 - (u_n - 2)\xi_3] (\zeta_+ \zeta_-) \pm (2y_n - 1)u_n (\xi_3^+ \zeta_3^- + \zeta_3^+(\xi_3^+ \zeta_3^- - \xi_3^+(\zeta_3^- \xi_3^-) \quad (114) $$

and for even harmonics by the expression

$$ \tilde{F}^{(n)} = u_n \tilde{f}_n \left[1 + \xi_3^+(\zeta_3^- + \xi_3(\xi_3^+ \xi_3^- - \xi_3^+(\zeta_3^- \xi_3^-) \right. + \xi_3^+(\xi_3^+ \zeta_3^- + \xi_3^+(\xi_3^- \xi_3^-) \quad (115) $$

with $u_n = 1/[y_n(1 - y_n)].$

(v) The behavior of the cross section near the threshold

$$ x \to x_n = \frac{4(1 + \xi^2)}{n} . \quad (116) $$

In this limit

$$ y \to 1/2, \quad p_\perp \to 0, \quad s_n \to 0, \quad c_n \to -1 \quad (117) $$

and the main results can be obtain from the case $y_+ \to y_n$ just by substitution $y_n = 1/2$ in Eqs. (109) and (115). In particular, for the first harmonic with the circularly polarized laser photons we have

$$ \tilde{F}^{(1)} = 2(1 + \xi_2 P_c)(1 - \zeta_3 \zeta_-) . \quad (118) $$

It is interesting to compare the behavior of the first harmonic near the threshold and far from the threshold. Let us consider the pure quantum states for the photons (their helicities $|\lambda_{1,2}| = 1$) and e^\pm (their helicities $|\lambda_e| = 1/2$) in the collider system with $\omega_1 \gg \omega_2$. It follows from (108) that near the threshold the photons have the same helicities while the leptons have the opposite helicities:

$$ \lambda_1 = \lambda_2 , \quad \lambda_+ = -\lambda_-, \quad \lambda_+ = 1/2 \quad (119) $$

If $x \gg x_1$, we have to distinguish two regions. In the region $\lambda_1 = 1/2$ of very small transverse momentums of leptons $p_\perp \to 0$, we have the same relations [119] [see (103)], but in the region $\lambda_1 = 1/2$ of relatively large transverse momentums of leptons the photons have the opposite helicities as well as the leptons [see (108)]:

$$ \lambda_1 = -\lambda_2 , \quad \lambda_+ = -\lambda_-, \quad \lambda_+ = 1/2 \quad (120) $$

at $x \gg x_1$.

6 Numerical results related to $\gamma\gamma$ and γe colliders

In this section we present some examples which illustrate the formulae obtained in the previous sections. In figures below we use notation

$$ \sigma_0 = \pi r_e^2 \approx 2.5 \cdot 10^{-25} \text{ cm}^2 . $$

The total cross section for the most interesting case of the circularly polarized laser photons is shown in Figs. 1 and 2 in dependence on the parameter $x = 4\omega_1\omega_2/m^2$ for three values of the non-linearity parameter ξ^2 (defined in (6)): for $\xi^2 = 0$ (the linear Breit-Wheeler process (11)), for $\xi^2 = 0.3$ (as in the TESLA project) and larger by one order of magnitude, $\xi^2 = 3$. The linear Breit-Wheeler process has a clear threshold: a pair production is possible only at $x > x_1 = 4$. At nonzero value of ξ^2, the electron pair production becomes possible for any $x \geq 0$ due to excitation of the higher harmonics. Note that, with the increase of ξ^2 the total effective cross section decreases.

It is seen from [30] and [32] that all these cross sections depend on the polarization of the initial photons only.
via the factor $\xi_2 P_c$. When helicities of the initial photons are the same ($\xi_2 P_c = 1$, see Fig. 1), these cross sections dominate in the region of not too large x (approximately at $x < 15$), at larger x the cross sections with the opposite helicities of the initial photons ($\xi_2 P_c = -1$, see Fig. 2) become dominant.

The following figures illustrate a dependence of the differential cross sections $d\sigma^{(n)}(\xi, \tilde{\xi})/dy_+$ and the positron polarizations $\zeta_j^{(n)}(f)$ on the relative positron energy $y_+ \approx E_+ / \omega_1$. The non-linearity parameter is chosen the same as in the TESLA project, $\xi^2 = 0.3$, therefore, the threshold value of x for the first harmonic is $x_1 = 4(1 + \xi^2) = 5.2$. We chose the value of parameter $x = 6.2$, which is a one unit above the threshold x_1.

The case of the circularly polarized laser photons (Figs. 3, 4).

The spectra of the few first harmonics are shown in Figs. 3 and 4. When helicities of the initial photons are the same ($\xi_2 P_c = 1$, see Fig. 3), the main contribution (for the chosen $\xi^2 = 0.3$) is given by the first harmonic, the probabilities for generation of the higher harmonics are smaller. When helicities of the initial photons are opposite ($\xi_2 P_c = -1$, see Fig. 4), the first and the second harmonics give approximately equal contributions. The changes in the spectra for the transition from $\xi_2 = 0$ to $\xi_2 = 0.3$ are more pronounced for the case $\xi_2 P_c = -1$ than for $\xi_2 P_c = 1$.

Fig. 1. The total effective cross section of the non-linear Breit-Wheeler process in dependence on $x = 4\omega_1 \omega_2 / m^2$. The laser and high-energy photons have the same helicity, $P_c = \xi_2 = 1$. The dotted curve corresponds to $\xi^2 = 0$, the solid curve — to $\xi^2 = 0.3$ and the dashed curve — to $\xi^2 = 3$.

Fig. 2. The same as in Fig. 1, but for $P_c = -\xi_2 = 1$.

Fig. 3. Energy spectra of positrons for different harmonics n at $x = 6.2$ and $\xi^2 = 0.3$. The laser and high-energy photons have the same helicities, $P_c = \xi_2 = 1$. The dashed curves correspond to $\xi^2 = 0$.

Fig. 4. The same as in Fig. 3, but for $P_c = -\xi_2 = 1$.
The polarization of positrons for these two cases are shown in Fig. 5 and 6, respectively. It is seen that in the high-energy part of the spectrum the longitudinal polarization of positrons $\zeta_3^{(n)(f)+}$ is large for all harmonics and that its sign coincides with the sign of the high-energy photon helicity ξ_2.

The case of the linearly polarized laser photons (Figs. 7, 8).

The spectra of the first few harmonics for this case are shown in Fig. 7. They differ considerably from those for the case of the circularly polarized laser photons shown in Fig. 3. First of all, in the considered case the spectra depend on the polarization of the high-energy photon only via the factor ξ_3 defined in (31). The maximum of the first harmonic at $y = y_1$ now is about two times smaller than that on Fig. 3. Besides, the harmonics with $n > 1$ do not vanish at $y = y_n$ contrary to such harmonics on Fig. 3.

The polarization of positrons is not equal zero only if the high-energy photon is circularly polarized. In this case the longitudinal polarization $\langle \zeta_3^{(n)(f)+} \rangle = \langle G_3^{(n)+} / F_0^{(n)+} \rangle$ of positrons for different harmonics n at $x = 6.2$ and $\xi^2 = 0.3$, averaged over the azimuthal angle φ_+. The laser photons are linearly polarized, the high-energy photon is circularly polarized $\xi_2 = 1$. The averaged transverse electron polarizations $\langle \zeta_2^{(n)(f)+} \rangle = 0$ in this case.

The polarization of positrons for different harmonics n at $x = 6.2$ and $\xi^2 = 0.3$. The laser and high-energy photons have the same helicity, $P_c = \xi_2 = 1$. The solid curves correspond to $\zeta_3^{(n)(f)+} \approx 2(\lambda_+)$, the dashed curves correspond to $\zeta_2^{(n)(f)+}$ which is the transverse electron polarization in the scattering plane; the transverse electron polarization perpendicular to the scattering plane $\zeta_1^{(n)(f)+} = 0$ in this case.

The same as in Fig. 5, but for $P_c = -\xi_2 = 1$.

The same as in Fig. 5, but for $P_c = -\xi_2 = 1$. The polarization of positrons for these two cases are shown in Fig. 5 and 6, respectively. It is seen that in the high-energy part of the spectrum the longitudinal polarization of positrons $\zeta_3^{(n)(f)+}$ is large for all harmonics and that its sign coincides with the sign of the high-energy photon helicity ξ_2.

The case of the linearly polarized laser photons (Figs. 7, 8).

The spectra of the first few harmonics for this case are shown in Fig. 7. They differ considerably from those for the case of the circularly polarized laser photons shown in Fig. 3. First of all, in the considered case the spectra depend on the polarization of the high-energy photon only via the factor ξ_3 defined in (31). The maximum of the first harmonic at $y = y_1$ now is about two times smaller than that on Fig. 3. Besides, the harmonics with $n > 1$ do not vanish at $y = y_n$ contrary to such harmonics on Fig. 3.

The polarization of positrons is not equal zero only if the high-energy photon is circularly polarized. In this case the longitudinal polarization of positrons is large in the high-energy part of their spectrum (see Fig. 8), while the
transverse positron polarization, averaged over positrons azimuthal angle φ_+, equals zero.

7 Summary and comparison with other papers

Our main results are given by (84)–(88) for the circularly polarized and by (74)–(77) for the linearly polarized laser beam. They are expressed in terms of 16 functions F_0, G_j^\pm and H_{ij} with $i, j = 1 \div 3$, which describe completely the polarization properties of the non-linear Breit-Wheeler process in a compact invariant form. The function F_0 enters the total cross section (10), (84) and the differential cross sections (76), (80). The polarization of the final positrons (electrons) is described by functions G_j^\pm, which enter the polarization vector $\zeta^{(f)}_j$ given by the exact equations (15), (60) and the approximate equations (97).

We considered the kinematics and the approximate formulae relevant for the problem of $e \rightarrow \gamma$ conversion at the $\gamma\gamma$ and γe colliders. Besides, we discuss the spectra and the polarization of the final particles in the limit of small and large energies (Sect. 5). For the circularly polarized laser photons and for large values of the parameter $x \gg 1 + \xi^2$, we obtain (with logarithmic accuracy) the simple analytical expression for the total cross section, (110), (111). In Sect. 6 we present the numerical results and discuss several interesting features, which may be useful for the analysis of the background and the luminosity of γe and $\gamma \gamma$ colliders.

Let us compare our results with those obtained earlier.

Circular polarization of laser photons. In the literature we found the results which can be compared with our functions F_0 and G_j^\pm, namely, in [10] (the function F_0), in [11,12,13] (the functions F_0 and G_j^\pm only at $\xi_1 = \xi_2 = \xi_3 = 0$).

The function $F^{(n)}_0$ (84) can be presented in the form

$$
F^{(n)}_0 = \langle F_0^{(n)} \rangle - C^{(n)} \xi_3,
$$

(121)

where $\langle F_0^{(n)} \rangle$ is given by (84) or (using (81)) in the form

$$
\langle F_0^{(n)} \rangle = \langle F_0^{(0)} \rangle + C^{(n)} \xi_3 \cos 2\varphi_+ + C^{(n)} \xi_1 \sin 2\varphi_+.
$$

(122)

Our function $\langle F_0^{(n)} \rangle$ coincide with those obtained in [8,10], [11,12,13], but our expression for $C^{(n)}$, (123)

$$
C^{(n)} = \frac{4}{\xi^2} \bar{J}_n^2(z_n) + 4 \left[- \frac{n^2}{z_n} - 1 \right] J_n^2(z_n) + (J'_n(z_n))^2
$$

(123)

does not coincide with that given by equations (60)–(63) on page 66 in [10]. However, our expression has a proper limit: $C^{(1)} = s_1^2$ at $\xi^2 \rightarrow 0$, while the expression (124) has a wrong limit $C^{(1)} = 2 + s_1^2$ at $\xi^2 \rightarrow 0$. The difference is due to misprint in the paper [10]; the second term in (124) should have the sign “minus”.

For polarization of the final electron, our results differ slightly from those in [12]. Namely, function G_j^- in this paper coincide with our one. However, the polarization vector $\zeta^{(f)}_j$ in the collider system is obtained in paper [12] not in the exact form (60), but only in the approximate form equivalent to our approximate equation (97).

Linear polarization of laser photons. In the literature we found the results which can be compared with our function F_0 only. Our expression for $\tilde{F}^{(n)}_0$ (14) is in agreement with that obtained in [10].

The correlation of the final particles’ polarizations are described by functions H_{ij} given in (60) for the circular, and in (77) for the linear laser polarization. To the best of our knowledge there are no any results in the literature to compare with (60) and (77).

Acknowledgments

We are grateful to I. Ginzburg, M. Galynskii and V. Tel-

nov for useful discussions. This work is partly supported by RFBR (code 03-02-17734) and by INTAS; D.Yu.I. is

supported by grant DFG 436.

Appendix: Limit of the weak laser field

Let us consider the limit of $\xi^2 \rightarrow 0$, i.e. the process (1). The cross section of this process can be obtained from the cross section (124) at $\xi^2 \rightarrow 0$ and has the form

$$
\frac{d\sigma(\xi, \xi, \xi_\pm)}{4\pi} \approx \tilde{F} \, d\Gamma,
$$

(125)

$$
\frac{d\Gamma}{\delta(k_1 + k_2 - p_+ - p_-)} \approx \frac{d^3p_+ \, d^3p_-}{E_+ \, E_-},
$$

where

$$
\tilde{F} = \bar{F}_0 + \sum_{j=1}^3 \left(G_j^{+\, \xi_+} - G_j^{-\, \xi_-} \right)
+ \sum_{i,j=1}^3 \bar{H}_{ij}^{+\, \xi_+^{\, i} \xi_+^{\, j}}.
$$

(126)

To obtain \tilde{F} from $F^{(1)}_0$ (14), we should take into account that the Stokes parameters of the laser photon have the values (60) for the circular polarization and the values (63) for the linear polarization. Besides, our invariants c_1, s_1, r_1 and the auxiliary functions (73) transform at $\xi^2 \rightarrow 0$ to

$$
c_1 \rightarrow c = 1 - 2r, \quad s_1 \rightarrow s = 2\sqrt{r(1 - r)},
$$

(127)

$$
r_1 \rightarrow r = \frac{u}{x}, \quad u = \frac{1}{y + y^-}.
$$

(127)

$$
X_1 \rightarrow -c, \quad Y_1 \rightarrow c(1 - \xi_3), \quad V_1 \rightarrow -\xi_3.
$$

(127)
As a result, we obtain

\[\tilde{F}_0 = (u - 2)(1 - c\xi_2\hat{\xi}_2) + s^2(1 - \xi_3)(1 - \hat{\xi}_3) \]
\[-2(c\xi_1\hat{\xi}_1 + \xi_3\hat{\xi}_3); \quad (128) \]

\[G_1^+ = -s \frac{\xi_1\hat{\xi}_2 + s \xi_2\hat{\xi}_1}{y_+}, \]
\[G_2^+ = \frac{s}{y_+} \left[c(1 - \hat{\xi}_3)\xi_2 - \tilde{\xi}_2 \right] + s \frac{\xi_3\tilde{\xi}_2}{y_+}, \quad (129) \]
\[G_3^+ = (y_+ - y_-)u(\xi_2 - c\tilde{\xi}_2) + s^2 \xi_2(1 - \hat{\xi}_3); \]

\[\tilde{H}_{11} = 2(1 - c\xi_2\hat{\xi}_2) - (u - 2)(c\xi_1\hat{\xi}_1 + \xi_3\hat{\xi}_3) \]
\[-s^2(1 - \xi_3)(1 - \hat{\xi}_3), \]
\[\tilde{H}_{22} = 2(1 - c\xi_2\hat{\xi}_2) - (u - 2)(c\xi_1\hat{\xi}_1 + \xi_3\hat{\xi}_3) \]
\[-s^2(1 - \xi_3)[1 + (u - 1)\xi_3], \]
\[\tilde{H}_{33} = -(u - 2)(1 - c\xi_2\hat{\xi}_2) + 2(c\xi_1\hat{\xi}_1 + \xi_3\hat{\xi}_3) \]
\[+s^2(1 - \hat{\xi}_3)[u + (1 - \xi_3)] + \xi_3\tilde{\xi}_3, \quad (130) \]
\[\tilde{H}_{12} = \frac{s^2}{y_+} \xi_1(1 - \hat{\xi}_3) + u(y_+ - y_-)(\xi_1\xi_3 - c\xi_3\hat{\xi}_3), \]
\[\tilde{H}_{13} = \frac{s}{y_+} \tilde{\xi}_1 - \frac{s}{y_-} \left[\xi_3\tilde{\xi}_1 + c\xi_1(1 - \hat{\xi}_3) \right], \]
\[\tilde{H}_{23} = \frac{s}{y_+} [c\xi_3(1 - \hat{\xi}_3) - \xi_3\tilde{\xi}_1] + \frac{s}{y_-} [c(1 - \hat{\xi}_3) - \xi_3\tilde{\xi}_2]. \]

The rest of the functions, \(G^- \), \(\tilde{H}_{21}, \tilde{H}_{31} \) and \(\tilde{H}_{32} \), can be obtained from the above equations using the symmetry relations [12]:

\[G_j^-(y_+, y_-) = G_j^+(y_-, y_+), \]
\[\tilde{H}_{ij}(y_+, y_-) = \tilde{H}_{ji}(y_-, y_+). \quad (131) \]

References

1. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum electrodynamics (Nauka, Moscow 1989).
2. W.H. McMaster, Rev. Mod. Phys. 33, 8 (1961).
3. K.A. Ispiryan, I.A. Nogorskaya, A.G. Oganesyan, V.A. Khoze, Sov. J. Nucl. Phys. 11, 1278 (1970) (in Russian).
4. V.N. Baier, A.G. Grozin, ArXive [hep-ph/0209361]
5. D.L. Burke, R.C. Field, G. Horton-Smith et al., Phys. Rev. Lett., 79, 1626 (1997).
6. I.F. Ginzburg, G.L. Kotkin, V.G. Serbo, V.I. Telnov, Nucl. Instr. Meth. 205, 47 (1983).
7. I.F. Ginzburg, G.L. Kotkin, S.I. Polityko, Sov. J. Nucl. Phys. 37, 368 (1983).
8. A.I. Nikishov, V.I. Ritus, Zh. Exp. Teor. Fiz. 46, 776 (1964).
9. N.B. Narozhny, A.I. Nikishov, V.I. Ritus, Zh. Exp. Teor. Fiz. 47, 931 (1964).
10. V.I. Ritus, Trudy FIAN 111, 5–151 (1979) (Proc. Lebedev Physical Institute, Moscow, in Russian).
11. Yu.S. Tsai, Phys. Rev. D 48, 96 (1993).