Body mass index and leptin are related to cognitive performance over 10 years in women with and without HIV infection

Francesca Macaluso, Kathleen M. Weber, Leah H. Rubin, Elaine Dellinger, Susan Holman, Howard Minkoff, Sheila Keating, Lisa R. Merlin, Deborah R. Gustafson.

1College of Medicine, State University of New York Health Sciences University, Brooklyn, NY; 2Cook County Health/Hektoen Institute of Medicine, Chicago IL; 3Departments of Neurology, Psychiatry, and Epidemiology, Johns Hopkins University, Baltimore, MD. 4Department of Medicine/STAR Program, State University of New York Health Sciences University, Brooklyn, NY; 5Department of Obstetrics and Gynecology, State University of New York Health Sciences University, Brooklyn, NY; 6Maimonides Hospital, Brooklyn, NY; 7GigaGen Medical Laboratory, San Francisco, CA; 8Department of Neurology, New York City Health and Hospitals/Kings County, Brooklyn, NY; 9Department of Neurology, State University of New York Health Sciences University, Brooklyn, NY.

Disclosure summary. The authors have nothing to disclose.

Corresponding authors and contacts for reprints:
Deborah R. Gustafson, MS, PhD
Professor, Department of Neurology
SUNY Downstate Health Sciences University, MSC 1213
450 Clarkson Ave.
Brooklyn, New York 11203
Phone: 718-270-1581
deborah.gustafson@downstate.edu

Francesca Macaluso
SUNY Downstate Health Sciences University, College of Medicine
450 Clarkson Ave.
Brooklyn, New York 11203, USA
francesca.macaluso@downstate.edu

© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract

Objective. To determine whether body mass index (BMI) and leptin were longitudinally associated over 10 years with neuropsychological performance (NP) among middle-aged women with HIV (WWH) versus without HIV.

Methods. Women’s Interagency HIV Study (WIHS) participants (301 WWH, 113 women without HIV from Brooklyn, New York City and Chicago had baseline and 10-year BMI (kg/m²) and fasting plasma leptin levels using commercial ELISA (ng/mL); and demographically-adjusted NP T-scores (attention/working memory, executive function (EF), processing speed, memory, learning, verbal fluency, motor function, global) at 10-year follow-up. Multivariable linear regression analyses, stratified by HIV-serostatus, examined associations between BMI, leptin, and NP.

Results. Over 10 years, women (baseline age 39.8+/−9.2 years, 73% Black, 73% WWH) transitioned from average overweight (29.1+/−7.9 kg/m²) to obese (30.5+/−7.9 kg/m²) BMI. Leptin increased 11.4+/−26.4 ng/mL (p<0.0001). Higher baseline BMI and leptin predicted poorer 10-year EF among all women (BMI B=−6.97, 95%CI(−11.5, −2.45) p=0.003; leptin B=−1.90, 95%CI(−3.03, −0.76), p=0.001); higher baseline BMI predicted better memory performance (B=6.35, 95%CI(1.96, 10.7), p=0.005). Greater 10-year leptin increase predicted poorer EF (p=0.004), speed (p=0.029), verbal (p=0.021) and global (p=0.005) performance among all women, and WWH. Greater 10-year BMI increase predicted slower processing speed (p=0.043) among all women; and among WWH, poorer EF (p=0.012) and global (p=0.035) performance.

Conclusions. In middle-aged WIHS participants, 10-year increases in BMI and leptin were associated with poorer performance across multiple NP domains among all and WWH. Trajectories of adiposity measures over time may provide insight into the role of adipose tissue in brain health with aging.

Key Words: Cognition; Leptin; HIV; Women; Overweight; Obesity; Body Mass Index
INTRODUCTION

Improved antiretroviral therapies (ART) transformed HIV infection into a treatable chronic condition, increasing life expectancy among people living with HIV (PLWH).\(^1,2\) Consequently, PLWH may experience concomitant physiological and neuropsychological consequences of aging. These include adverse vascular and metabolic co-morbidities, sometimes due to cumulative ART exposure, and overweight and obesity. In uninfected populations, overweight and obesity during middle-age increase risk for late-life neuropsychological impairment and Alzheimer’s Disease and Related Dementias (ADRD).\(^3,4\)

Leptin is an adipose tissue hormone, positively correlated with body mass index (BMI), and a proposed modulator of BMI and neuropsychological performance (NP) given peripheral and central nervous system (CNS) effects.\(^5-7\) Higher blood leptin levels are associated with lower AD risk within 10 years of clinical onset.\(^8-10\) The relationship between peripheral and brain-derived leptin is unknown. However, leptin promotes hippocampal synaptic plasticity\(^11\) affecting learning and memory,\(^11-14\) aids in satiety regulation, improves insulin sensitivity,\(^15,16\) and acts on the hypothalamus to regulate body weight. Leptin may be dysregulated in HIV-related lypodystrophies.\(^17\)

While several studies examined single BMI measurement associations or BMI trajectories in association with ADRD,\(^3,18\) there are fewer reports on adiposity-related metabolic changes. Given the vascular, metabolic, and lipodystrophic effects of both HIV infection and ART, and a relatively unknown HIV-specific aging process, particularly among Black women, we investigated whether baseline and/or 10-year change in BMI and blood leptin levels were associated with NP in middle-aged women with HIV (WWH) and without HIV infection who were participants in the Women’s Interagency HIV Study (WIHS) Brooklyn and Chicago sites.

Materials and Methods

Standard Protocol Approvals, Registrations, and Patient Consents

WIHS was the largest prospective study of HIV infection in women in the United States.\(^19\) WIHS began in 1994 and initially enrolled 2054 WWH and 1712 women without HIV who were ‘at risk’ demographically-similar women across six sites in San Francisco, Los Angeles, Chicago, Washington DC, Brooklyn and the Bronx, New York City, with two additional enrollment waves in 2001-2002 and 2011-2014. Semiannual WIHS core visits included sociodemographic, behavioral, and clinical
measures including body weight and height. A standardized comprehensive NP battery was administered every two years starting in 2009. A subset of Brooklyn and Chicago WIHS participants (N=414; 301 WWH, 113 women without HIV) had batch testing of fasting plasma leptin levels in 2004-06 (designated as baseline) and 10 years later in 2014-16. Concurrent NP assessments occurred in 2014-16. Those with repeated leptin measures comprise this analytic subsample. The institutional review boards of the Brooklyn and Chicago Cook County Health clinical research sites approved the WIHS research protocol and all participants provided written informed consent.

Sociodemographic and behavioral measures

All sociodemographic measures were self-reported and included: date of birth, race (White, Hispanic any race, African-American, or ‘other’, i.e., Native American/Alaskan, Asian/Pacific Islander or other); and highest educational level. Participants were asked about their use of marijuana since last visit.

Clinical measures

Body weight and height measures were conducted according to the U.S. National Health and Nutrition Examination Survey (NHANES) III protocol and included body weight (pounds) and body height (inches). Anthropometric measurements were conducted with participants wearing undergarments. Those who conducted the measurements were recertified every two years. Body weight was recorded to the nearest 1.0 pound, and body height was measured to the nearest 1.00 inch. After software conversion of body weight and height to metric units, BMI was calculated as kilograms per meter squared (kg/m²). Categories of BMI included: underweight, <18.5 kg/m²; ‘normal’ or healthy weight, 18.5–24.9 kg/m²; overweight, 25.0–29.9 kg/m²; and obese, ≥30 kg/m².

Systolic (SBP) and diastolic blood pressures (DBP) were obtained and recorded using a standardized protocol with the mean of multiple resting measurements used for analysis. Hypertension was defined as either average measured SBP >140 mm Hg, or DBP >90 mm Hg, or self-reported hypertension with use of prescribed antihypertensive medications. Diabetes mellitus (DM) was determined by fasting glucose ≥126 mg/dl, HbA1C ≥6.5% or self-reported use of anti-diabetic medication.

Menopause status was self-reported and defined according to the Stages of Reproductive Aging Workshop (STRAW)+10 criteria. There are four menopausal status categories: premenopause, early perimenopause, late perimenopause, and postmenopause (natural or surgical).
Leptin measures
Baseline and 10-year leptin levels were measured in batch from stored plasma samples. The latter were collected within two visits (12 months before or after) of NP assessment. Paired longitudinal Brooklyn and Chicago samples were run together. Standards and controls were tested in duplicate using commercial ELISAs (Millipore, Billerica, MA). The intra-assay coefficient of variation (CV%) was 2% and inter-assay CV% was 10%. Undiluted samples were tested and plates were prepared according to protocol. The 7-point standard curve ranged from 0.5–100 ng/mL, the lower and upper limits of detection of the assay, which was appropriate for all samples. Plates were read using a Molecular Devices Plate reader and Softmax Pro data analysis software (Molecular Devices, Sunnyvale, CA). A 4-point logistic (PL) curve fit was used.

HIV-related variables
Laboratory-confirmed HIV status, AIDS diagnosis, CD4 count, HIV viral load, and ART duration and CNS penetration effectiveness (CPE) were considered in analyses of WWH only. CPE scoring for each ART was based on published data regarding the differential abilities of ART to cross the blood-brain barrier. CPE was defined on a 1-4 point scale using the 2010 CPE ranking system, where 4 indicates the highest CNS penetration. The baseline ART regimen CPE sum was subsequently ranked as high (>9), medium (8-9) or low (<8).

Neuropsychological performance
The NP performance battery included the Letter-Number Sequencing (LNS), Trail Making Test Part B (Trails B), Stroop Test (color word, word reading), Hopkins Verbal Learning Test-Revised (HVLT-R), Symbol Digit Modalities Test (SDMT), Controlled Oral Word Association Test (COWAT), Category Fluency Test (Animals), and Grooved Pegboard (GPEG). Performance on these assessments was used to assess seven NP domains: 1) attention/working memory (outcomes: total correct on LNS control and experimental conditions); 2) executive function (outcomes: time to completion on Trails B and Stroop color-word [interference] trial); 3) processing speed (outcomes: total correct on SDMT, time to completion on Stroop word-reading trial); 4) memory (outcome: HVLT-R delayed recall); 5) learning (outcome: total learning across HVLT-R trials); 6) verbal fluency (outcomes: total correct on COWAT and Animals); and 7) fine motor skills (outcomes: total time to completion for each hand on the GPEG).
All timed outcomes were natural log (ln)-transformed to normalize distributions and reverse scored so higher scores represented better performance. Demographically-adjusted T-scores were derived for each outcome based on HIV-seronegative women. These demographic factors include age, education, Wide Range Achievement Test reading subtest (WRAT-3) score, race (African American vs not), and ethnicity (Hispanic vs not). T-scores were used to create domain-specific scores and a global NP score as done in previous WIHS and Multicenter AIDS Cohort Study (MACS) analyses. Global NP performance score was the calculated average of the 7 NP domains.

Statistical analysis

BMI and leptin were ln-transformed to meet normality assumptions before consideration as continuous variables. Paired sample t-tests estimated the differences between baseline and follow-up BMI and leptin measures for all women, and separately for WWH and women without HIV. Multivariable linear regression analyses were performed to examine baseline continuous BMI and leptin in association with NP T-scores at 10-year follow-up. Models were run including all participants, and separately for WWH and women without HIV. Multivariable linear regression analyses were again performed to examine 10-year change in BMI and leptin in association with follow-up NP T-scores.

Potential covariates included cholesterol level, prevalent diabetes, prevalent hypertension as well as use of hypertensive medication, diabetic medication, menopause status, cocaine, alcohol, marijuana, smoking and/or heroin. Of these, prevalent diabetes, prevalent hypertension, and marijuana use were included since they were deemed statistically relevant (p<0.05) in previous univariate analyses of the relationship between adiposity measures - BMI and leptin- and NP in this group of women. Race, ethnicity, WRAT score, education and age were not included as covariates since they were already included in the demographically-adjusted NP T-scores. Analyses including all women were also adjusted for HIV serostatus (WWH versus women without HIV). In analyses of WWH only, we additionally adjusted for baseline CD4 count, HIV viral load and CPE rank (high >9, medium 8-9, low <8). CD4 count and HIV viral load were analyzed as continuous variables. BMI and leptin were not run in the same regression models, since understanding independent contributions of BMI and leptin is difficult due to their high collinearity. Data analyses were conducted using [SAS/STAT] software, Version [9.4] of the SAS System for [SUNY]. Copyright © [2016] SAS Institute Inc. Cary, NC, USA. Results were considered significant at p<0.05.
Results

Baseline demographic, BMI, HIV, and NP characteristics of participants are presented in Table 1. Women were on average 39.8 years old. WWH were approximately 3.1 years older than women without HIV (40.6 years vs 37.5 years, respectively; p=0.005), however educational attainment, a key influencer of NP, did not differ between WWH and women without HIV (Fishers exact test, p=0.85). Most women (74%) self-described as Black (Caribbean Black or African American), 21% had hypertension, and 14% had diabetes. There were no differences by HIV serostatus. More than half of the women (58%) were pre-menopausal, and menopausal status did not differ by HIV-serostatus (Fishers exact test, p=0.12). Most (62%) women were overweight or obese (≥25.0 kg/m²); <5% had a BMI <18.5 kg/m². WWH had, on average, a lower BMI (28.8 +/- 7.5 kg/m²) compared to women without HIV (30.0 +/- 8.9 kg/m²), but this was not significant (p=0.14). Compared to women without HIV, WWH performed poorer on verbal fluency (p=0.02), attention (p=0.002), processing speed (p=0.005), and global (0.003) measures of NP. The anthropometric adiposity measure, BMI, was positively correlated with the metabolic adiposity measure, leptin, in the expected direction and strength (Table 2) among both WWH and women without HIV, and in line with previous reports in non-HIV population samples.3

Over the 10-year period, from mean ages of 40.6 to 50.6 years among WWH and 37.5 to 47.5 years among women without HIV, all women transitioned, on average, from an overweight (29.1 +/- 7.9 kg/m²) to obese (30.5 +/- 7.9 kg/m²) BMI (t=6.00, p<0.0001). Among WWH, average BMI increased from 28.8 +/- 7.5 kg/m² to 30.1 +/- 7.9 kg/m² (t=4.84, p<0.001). Among women without HIV, BMI increased from 30.0 +/- 8.8 kg/m² to 31.5 +/- 8.1 kg/m² (t=3.55, p=0.0006). Correspondingly, average 10-year leptin change from baseline to follow-up was significant in the entire sample (11.4 +/- 26.4 ng/ml, t=8.76 (df=413), p<0.0001); and by HIV status (WWH 12.07 +/- 27.05 ng/ml, t=7.70 (df=297) p<0.0001; women without HIV 9.36 +/- 24.89 ng/ml, t=4.00 (df=112) p=0.0001).

Poorer NP was indicated by a negative (-) unstandardized, adjusted beta (B) coefficient; a positive B coefficient indicated better NP. Higher baseline BMI and leptin predicted poorer executive function (EF) performance 10 years later for all women in multivariable analysis (Table 3) and by HIV status. In contrast, higher baseline BMI was associated with better memory performance at follow-up for all women (B= +6.60, 95%CI (2.32, 10.88) p=0.003) and by HIV status. Change in leptin over 10 years predominated the associations with NP. Among all women, a greater 10-year increase in leptin was associated with poorer EF, processing speed and global NP at 10-year follow-up (Table 4). With stratification by HIV serostatus, these associations were observed among WWH but not women without HIV. WWH additionally showed poorer verbal fluency performance with increasing 10-year leptin. For
all women, a greater 10-year increase in BMI was associated with slower processing speed at follow-up (Table 4). Among WWH only, 10-year increase in BMI was associated with poorer executive function and global performances at follow-up (Table 4). Baseline or change in BMI or leptin measures did not predict any other NP domains (Tables 3 and 4). Changes in BMI or leptin over 10 years were not associated with NP in women without HIV.

Conclusion

Among WWH or women without HIV infection, who transitioned from being overweight to obese over a decade, associations between baseline BMI and leptin and NP 10-years later, did not differ by HIV status. Higher baseline BMI and leptin levels were associated with poorer EF at follow-up, but higher baseline BMI was associated with better memory performance. In contrast, increasing BMI and leptin levels over 10 years were associated with poorer NP at follow-up across several neuropsychological domains among all women, and among WWH, specifically poorer EF, processing speed, verbal fluency and global performance. Changes in leptin predominated these associations; changes in BMI were associated with fewer neuropsychological domains. NP assessments are useful in the detection, differential etiologic diagnosis, and management of ADRD syndromes. Neuropsychological deficits associated with AD can be differentiated from age-associated NP decline by quantitative and qualitative differences in episodic memory, semantic knowledge, and some aspects of executive functions. Of note, the WIHS NP battery was created to assess the seven domains (EF, memory, attention, processing speed, verbal fluency, motor, and learning) most influenced by HIV infection, as well as aging.

There are few published repeated anthropometric and metabolic adiposity data among WWH or other at-risk populations to compare our results. A previous Brooklyn WIHS cross-sectional study using a different NP battery at the year 2006 baseline described here, reported that higher leptin levels were associated with poorer EF performance, whereas cross-sectional analyses of anthropometric measures across all WIHS sites, showed that higher BMI was associated with better NP across multiple domains, and lower BMI (<18.5 kg/m²) with worse NP. Studies among middle-aged, predominantly White men with HIV have shown no association between cognition and leptin. Our sample is comprised of primarily Black women. Among uninfected individuals, leptin differences have been observed by race and sex, with serum leptin being higher in women and Blacks. Studies of older adults with Vascular Cognitive Impairment, have reported inverse associations of BMI, but not leptin, with executive function and verbal memory.
Since its discovery in 1994, leptin has been explored in relation to its neuroprotective influence on the brain. Leptin was initially described for its role in feeding, and the homeostatic regulation of energy metabolism. Leptin acts on the arcuate nucleus, a key aggregate of hypothalamic neurons often affected in ADRD. Other mechanisms have been described for the association between leptin and NP but most are cross-sectional and observed in uninfected adults >65 years. Observations in older adults compared to middle age life are mixed. Longitudinally, the Framingham Heart Study reported that leptin was neuroprotective when measured within 8 years of late-onset dementia among adults age >65 years. However, over a 24 year follow-up, a single measure of leptin at mid-life (age 38–60 years) was not associated with late-onset dementia among Swedish elderly. The Framingham Heart Study Third Generation Cohort comprised of over 2200 adults, average age, 40 years, reported a cross-sectional neuroprotective effect of leptin among cognitively intact, non-overweight or obese participants (BMI 18.5-24.9 kg/m²), suggesting that BMI is an effect modifier. Conversely, studies also report inverse cross-sectional associations between leptin and cognition among non-obese adults >65 years. These observations may reflect variations in age, sex, adiposity measures and levels, severity and/or domain of cognitive performance, the presence of preclinical or overt dementia, as well as the temporality of association being explored. There are also differential associations of adiposity measures with brain imaging outcomes, which are correlates of NP. Among adults with cerebral small vessel disease (without dementia), associations vary by study design (cross-sectional versus longitudinal), anthropometric versus metabolic adiposity measures, and neurodegenerative versus vascular brain outcome.

Observed increases in leptin and/or BMI over time in association with worse NP among WWH may be influenced by ART, the chronic HIV aging process, or a combination of both. Adjustment for ART CPE did not alter our findings. While increases in adiposity during the middle age transition may not be positive for brain health, higher adiposity may still be protective for the brain among surviving WWH to later life. It will be interesting to observe whether these associations change as WWH age.

This is a sizable study of longitudinal, repeated BMI and leptin measures in association with NP in WWH and women without HIV infection. Strengths include the underrepresented, predominantly Black (African American and Caribbean) sample; use of a clinical, easily obtained anthropometric measure (BMI) that is commonly used to estimate total body adiposity; longitudinal, repeated measures of both anthropometric (BMI) and metabolic (leptin) measures of adiposity; information on menopause status; and a comprehensive NP assessment battery. Limitations include no imaging-based brain or whole body composition measures; lack of other leptin measures (e.g., cerebrospinal fluid leptin levels, leptin...
receptors, leptin resistance); one fasting leptin measure that does not allow consideration of diurnal variation in blood leptin levels; not including both leptin and BMI in the same statistical models due to high collinearity; and lack of comparable baseline NP assessments. Due to multiple comparisons, one must also consider risk for false discoveries. Our analyses were not adjusted for multiple comparisons due to their exploratory nature, however, p-values were <0.005 for some linear regression analysis results. A potential bias is that this was a healthier longitudinal cohort of WWH and at-risk women without HIV. These WWH were highly adherent to their HIV medications, and had low HIV viral loads and high CD4 counts. As with all longitudinal cohort studies, routine follow-up over time may limit the generalizability our results to those who are not enrolled in these rigorous protocols. Finally, our global NP score is study specific, and we do not know how this score relates to clinical ADRD since there are no cohorts today who can address this question given the younger average age of people surviving with HIV infection.

We report promising longitudinal associations of anthropometric and metabolic adiposity measures in association with NP in women with or at risk for HIV infection. These data suggest the need for continued clinical follow-up of these women to determine transitional mid- to late-life metabolic and other effects of adipose tissue on NP and eventually ADRD in HIV. Interventions to reduce body weight and BMI may be particularly relevant in mid-life for maintaining aging brain health.
Acknowledgments

Data in this manuscript were collected by the Women’s Interagency HIV Study (WIHS) Collaborative Study Group with centers (Principal Investigators) at Brooklyn, NY (Howard Minkoff, Deborah Gustafson); Chicago Consortium (Mardge Cohen); and the Data Coordinating Center (Stephen Gange). The WIHS was funded by the National Institute of Allergy and Infectious Diseases (UO1-AI-35004, UO1-AI-31834, UO1-AI-34994, UO1-AI-34989, UO1-AI-34993, and UO1-AI-42590) and by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (UO1-HD-32632). The study was co-funded by the National Cancer Institute, the National Institute on Drug Abuse, and the National Institute on Deafness and Other Communication Disorders. Funding was also provided by the National Center for Research Resources (UCSF-CTSI, Grant Number UL1 RR024131). In addition, Dr. Gustafson received support from NIH/NIAID ARRA Supplement No. 54492, Swedish Research Council Diarienummer: 523-2005-8460, and the SUNY Research Foundation.

The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.

We thank the women participating in WIHS for their time, cooperation, and support.

Data Availability

Some or all datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.
References

1. Kirk JB, Goetz MB. Human immunodeficiency virus in an aging population, a complication of success. J Am Geriatr Soc 2009;57:2129-2138.

2. Vance DE, McGuinness T, Musgrove K, Oref NA, Fazeli PL. Successful aging and the epidemiology of HIV. Clin Interv Aging 2011;6:181-192.

3. Emmerzaal TL, Kiliaan AJ, Gustafson DR. 2003-2013: a decade of body mass index, Alzheimer's disease, and dementia. J Alzheimers Dis 2015;43:739-755.

4. Gustafson D. A life course of adiposity and dementia. Eur J Pharmacol 2008;585:163-175.

5. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998;395:763-770.

6. Lissner L, Karlsson C, Lindroos AK, et al. Birth weight, adulthood BMI, and subsequent weight gain in relation to leptin levels in Swedish women. Obes Res 1999;7:150-154.

7. Gustafson DR, Luchsinger JA. High adiposity: risk factor for dementia and Alzheimer's disease? Alzheimers Res Ther 2013;5:57.

8. Gilbert T, Roche S, Blond E, et al. Association between Peripheral Leptin and Adiponectin Levels and Cognitive Decline in Patients with Neurocognitive Disorders >/=65 Years. J Alzheimers Dis 2018;66:1255-1264.

9. Lieb W, Beiser AS, Vasan RS, et al. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 2009;302:2565-2572.

10. Zeki Al Hazzouri A, Stone KL, Haan MN, Yaffe K. Leptin, mild cognitive impairment, and dementia among elderly women. J Gerontol A Biol Sci Med Sci 2013;68:175-180.

11. Oomura Y, Aou S, Fukunaga K. Prandial increase of leptin in the brain activates spatial learning and memory. Pathophysiology 2010;17:119-127.

12. Harvey J, Shanley LJ, O'Malley D, Irving AJ. Leptin: a potential cognitive enhancer? Biochem Soc Trans 2005;33:1029-1032.

13. Davidson TL, Kanoski SE, Walls EK, Jarrard LE. Memory inhibition and energy regulation. Physiol Behav 2005;86:731-746.

14. Fewlass DC, Noboa K, Pi-Sunyer FX, Johnston JM, Yan SD, Tezapsidis N. Obesity-related leptin regulates Alzheimer's Abeta. FASEB J 2004;18:1870-1878.

15. Bluher S, Mantzoros CS. Leptin in humans: lessons from translational research. Am J Clin Nutr 2009;89:991S-997S.

16. Abizaid A, Horvath TL. Brain circuits regulating energy homeostasis. Regul Pept 2008;149:3-10.

17. Sweeney LL, Brennan AM, Mantzoros CS. The role of adipokines in relation to HIV lipodystrophy. AIDS 2007;21:895-904.

18. Kiliaan AJ, Arnoldussen IA, Gustafson DR. Adipokines: a link between obesity and dementia? Lancet Neurol 2014;13:913-923.

19. Bacon MC, von Wyl V, Alden C, et al. The Women's Interagency HIV Study: an observational cohort brings clinical sciences to the bench. Clin Diagn Lab Immunol 2005;12:1013-1019.

20. Barkan SE, Melnick SL, Preston-Martin S, et al. The Women's Interagency HIV Study. WIHS Collaborative Study Group. Epidemiology 1998;9:117-125.

21. Justman JE, Hoover DR, Shi Q, et al. Longitudinal anthropometric patterns among HIV-infected and HIV-uninfected women. J Acquir Immune Defic Syndr 2008;47:312-319.

22. Diet and Health: Implications for Reducing Chronic Disease Risk. Washington (DC)1989.

23. Mansoor A, Althoff K, Gange S, et al. Elevated NT-pro-BNP levels are associated with comorbidities among HIV-infected women. AIDS Res Hum Retroviruses 2009;25:997-1004.

24. Galaviz KI, Schneider MF, Tien PC, et al. Predicting diabetes risk among HIV-positive and HIV-negative women. AIDS 2018;32:2767-2775.
25. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, Sherman S, Sluss PM, de Villiers TJ; STRAW+10 Collaborative Group. Executive summary of the Stages of Reproductive Aging Workshop +10: addressing the unfinished agenda of staging reproductive aging. Climacteric. 2012 Apr;15(2):105-14.

26. Sinha MK, Songer T, Xiao Q, et al. Analytical validation and biological evaluation of a high molecular-weight adiponectin ELISA. Clin Chem 2007;53:2144-2151.

27. Garcia-Jimenez S, Bernal Fernandez G, Martinez Salazar MF, et al. Serum leptin is associated with metabolic syndrome in obese Mexican subjects. J Clin Lab Anal 2015;29:5-9.

28. Kaplan RC, Kingsley LA, Gange SJ, et al. Low CD4+ T-cell count as a major atherosclerosis risk factor in HIV-infected women and men. AIDS 2008;22:1615-1624.

29. Letendre S. Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Top Antivir Med 2011;19:137-142.

30. Caniglia EC, Cain LE, Justice A, et al. Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions. Neurology 2014;83:134-141.

31. Rubin LH, Maki PM, Springer G, et al. Cognitive trajectories over 4 years among HIV-infected women with optimal viral suppression. Neurology 2017;89:1594-1603.

32. Maki PM, Rubin LH, Valcour V, et al. Cognitive function in women with HIV: findings from the Women’s Interagency HIV Study. Neurology 2015;84:231-240.

33. Rubin LH, Radlke KK, Eum S, et al. Cognitive burden of common non-antiretroviral medications in HIV-infected women. J Acquir Immune Defic Syndr 2018.

34. Sacktor N, Skolasky RL, Seaberg E, et al. Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology 2016;86:334-340.

35. Gustafson DR, Mielke MM, Keating SA, Holman S, Minkoff H, Crystal HA. Leptin, Adiponectin and Cognition in Middle-aged HIV-infected and Uninfected Women. The Brooklyn Women’s Interagency HIV Study. J Gerontol Geriatr Res 2015;4.

36. Gustafson DR, Backman K, Liessner L, et al. Leptin and dementia over 32 years-The Prospective Population Study of Women, Alzheimers Dement 2012;8:272-277.

37. Salmon DP, Bondi MW. Neuropsychological assessment of dementia. Annu Rev Psychol. 2009;60:257-82. doi: 10.1146/annurev.psych.57.102904.190024.

38. Gustafson DR, Mielke MM, Tien PC, et al. Anthropometric measures and cognition in middle-aged HIV-infected and uninfected women. The Women’s Interagency HIV Study. J Neurovirol 2013;19:574-585.

39. McCutchan JA, Marquie-Beck JA, Fitzsimons CA, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology 2012;78:485-492.

40. Ruhl CE, Everhart JE, Ding J, et al. Serum leptin concentrations and body adipose measures in older black and white adults. Am J Clin Nutr 2004;80:576-583.

41. Lake JE, Vo QT, Jacobson LP, et al. Adiponectin and interleukin-6, but not adipose tissue, are associated with worse neurocognitive function in HIV-infected men. Antivir Ther 2015;20:235-244.

42. Smith PJ, Mabe S, Sherwood A, et al. Association Between Insulin Resistance, Plasma Leptin, and Neurocognition in Vascular Cognitive Impairment. J Alzheimers Dis 2019;71:921-929.

43. Horie NC, Serrao VT, Simon SS, et al. Cognitive Effects of Intentional Weight Loss in Elderly Obese Individuals With Mild Cognitive Impairment. J Clin Endocrinol Metab 2016;101:1104-1112.

44. Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269:543-546.

45. Gustafson DR. Adiposity indices and dementia. Lancet Neurology 2006;5:713-720.

46. Holden KF, Lindquist K, Tylavsky FA, et al. Serum leptin level and cognition in the elderly: Findings from the Health ABC Study. Neurobiol Aging 2009;30:1483-1489.

47. Sanborn V, Preis SR, Ang A, et al. Association Between Leptin, Cognition, and Structural Brain Measures Among "Early" Middle-Aged Adults: Results from the Framingham Heart Study Third Generation Cohort. J Alzheimers Dis 2020;77:1279-1289.
48. Feinkohl I, Janke J, Slooter AJC, Winterer G, Spies C, Pischon T. Plasma leptin, but not adiponectin, is associated with cognitive impairment in older adults. Psychoneuroendocrinology 2020;120:104783.
49. Arnoldussen IAC, Gustafson DR, Leijsen EMC, de Leeuw FE, Kiliaan AJ. Adiposity is related to cerebrovascular and brain volumetry outcomes in the RUN DMC study. Neurology 2019;93:e864-e878.
50. Carro EM. Therapeutic approaches of leptin in Alzheimer’s disease. Recent Pat CNS Drug Discov 2009;4:200-208.
51. Beyer F, Kharabian Masouleh S, Kratzsch J, et al. A Metabolic Obesity Profile Is Associated With Decreased Gray Matter Volume in Cognitively Healthy Older Adults. Front Aging Neurosci 2019;11:202.
Table 1. Baseline demographic, adiposity, and neuropsychological performance characteristics for all women and by HIV-serostatus (n=414)

Variable	ALL Women Mean (SD) or N (%)	HIV+ Mean (SD) or N (%)	HIV- Mean (SD) or N (%)	P
Age, years, Mean (SD)	39.8 (9.2)	40.6 (8.5)	37.5 (10.4)	0.005
Race/Ethnicity N (%)				0.236
Black/ African American	306 (74)	216 (72)	88 (78)	
Hispanic/ Latinx, any race	36 (8)	31 (10)	10 (9)	
White	26 (6)	20 (7)	6 (5)	
Marijuana Use N (%)	89 (21)	59 (20)	30 (27)	0.262
Prevalent Hypertension N (%)	83 (20)	64 (21)	19 (17)	0.314
Prevalent Diabetes N (%)	61 (14)	45 (15)	16 (14)	0.834
Baseline BMI, kg/m², Mean (SD)	29.1 (7.9)	28.8 (7.5)	30.0 (8.9)	0.142
BMI ≥ 30 kg/ m²	145 (35)	101 (34)	44 (39)	
BMI 25 – 29.9 kg/m²	113 (27)	84 (28)	29 (26)	
BMI 18.5 – 24.9 kg/m²	139 (34)	101 (33)	38 (33)	
BMI <18.5 kg/m²	17 (4)	15 (5)	2 (2)	
Leptin, ng/mL, Mean (SD)	28.4 (26.0)	27.5 (26.6)	30.8 (24.3)	0.250
Menopausal Status N (%)				0.108
Premenopause	242 (59)	165 (40)	77 (19)	
Early perimenopause	51 (12)	40 (10)	11 (3)	
Late perimenopause	22 (5)	17 (4)	5 (1)	
Postmenopause	99 (24)	79 (19)	20 (5)	
HIV Variables

HIV Variables	Mean (SD)	--
CD4 Count, cells/mL, Mean (SD)	542.1 (302.4)	--
HIV RNA viral load, copies/mL	--	--
Viral load undetectable <80 copies/mL	147 (49)	--
Viral load median (IQR), detectable, copies/mL	5500.0 (20500.0)	--
CPE Score N (%)	--	
Low <8	90 (47)	--
Medium 8-9	67 (35)	--
High >9	33 (17)	--

NP Assessments, T-score, Mean (SD)

| NP Assessments, T-score, Mean (SD) | Executive 48.8 (10.7) | Memory 47.5 (10.6) | Verbal Fluency 48.7 (9.8) | Learning 47.4 (10.6) | Attention 47.0 (9.9) | Processing Speed 48.8 (9.6) | Motor 48.3 (10.8) | Global 48.1 (6.6) | 50.1 (9.6) | 46.9 (10.3) | 48.0 (9.9) | 46.7 (10.8) | 45.9 (9.8) | 48.0 (9.9) | 47.7 (10.9) | 47.3 (6.9) | 49.7 (6.5) | 0.167 | 0.146 | 0.023 | 0.082 | 0.002 | 0.005 | 0.095 | 0.003 |
|--|---------------------|-------------------|--------------------------|----------------------|---------------------|--------------------------|-------------------|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|

Variables reported as N (%) were analyzed with Chi-Square tests. Variables reported as Mean (SD) were analyzed using independent sample t-tests.

CPE, CNS Penetration Effectiveness; T-scores are demographically adjusted for age, education, Wide Range Achievement Test reading subtest (WRAT-3) score, race (African American vs not), and ethnicity (Hispanic vs not).
Table 2. Pearson correlation coefficients between baseline adiposity and HIV measures in all women and by HIV status. The Women’s Interagency HIV Study Brooklyn and Chicago Clinical Research Sites

	ALL WOMEN n = 414	HIV + n=301	HIV- n=114
	r (p-value)	r (p-value)	r (p-value)
Body weight x leptin	0.53 (<0.0001)	0.52 (<0.0001)	0.59(<0.0001)
Body height x leptin	0.08 (0.10)	0.10 (0.09)	0.03 (0.75)
BMI x leptin	0.77 (<0.0001)	0.77 (<0.0001)	0.78(<0.0001)
HIV Viral load x leptin	-0.01 (0.9)	--	--
HIV Viral load x ln leptin	-0.02 (0.80)	--	--
CD4 x leptin	-0.05 (0.40)	--	--
CD4 x ln leptin	-0.06 (0.31)	--	--

* adiposity measures are natural log transformed
Table 3. Linear regression models associating baseline (2006) plasma leptin and BMI measures with neuropsychological performance by domain 10-years later in all women and stratified by HIV status. The Women’s Interagency HIV Study Brooklyn and Chicago Clinical Research Sites.

Model	ALL		WWH		Women Without HIV							
	N Beta (95%CI)	p	N Beta (95%CI)	p	N Beta (95%CI)	p						
Executive Function												
Baseline leptin	358 -1.90 (-3.03, -0.76)	0.001	258 -1.63 (-3.01, -0.76)	0.020	100 -2.92 (-5.02, -0.81)	0.007						
Baseline BMI	355 -6.97 (-11.50, -2.45)	0.003	255 -5.71 (-11.3, -0.26)	0.045	99 -10.6 (-18.20, -2.87)	0.008						
Memory												
Baseline leptin	360 0.49 (-0.64, 1.62)	0.393	257 0.48 (-0.78, 1.74)	0.451	101 0.74 (-1.80, 3.28)	0.564						
Baseline BMI	356 6.35 (1.96, 10.70)	0.005	254 5.17 (0.16, 10.20)	0.043	100 9.29 (0.29, 18.30)	0.043						
Learning												
Baseline leptin	362 0.21 (-0.92, 1.34)	0.720	258 0.48 (-0.84, 1.80)	0.477	102 -0.24 (-2.54, 2.05)	0.837						
Baseline BMI	358 3.49 (-0.93, 7.90)	0.121	255 2.92 (-2.36, 8.20)	0.277	101 5.12 (-3.12, 13.40)	0.220						
Attention												
Baseline leptin	340 -0.74 (-1.80, 0.33)	0.175	244 -0.94 (-2.18, 0.30)	0.135	95 -0.23 (-2.46, 1.88)	0.794						
Baseline BMI	336 0.10 (-4.17, 4.37)	0.963	241 -1.81 (-6.90, 3.23)	0.484	94 5.28 (-2.52, 13.10)	0.182						
Processing Speed												
Baseline leptin	365 -0.48 (-1.49, 0.53)	0.350	261 -0.36 (-1.58, 0.87)	0.564	102 -0.99 (-2.83, 0.85)	0.290						
Baseline BMI	361 0.09 (-3.90, 4.08)	0.964	258 0.71 (-4.22, 5.65)	0.776	101 -1.44 (-8.17, 5.30)	0.673						
Verbal Fluency												
Baseline leptin	361 0.01 (-1.01, 1.04)	0.978	259 0.26 (-0.96, 1.49)	0.670	100 -0.84 (-2.83, 1.15)	0.404						
	Baseline BMI											
------------------	--------------	------	------	------	------	------	------	------	------	------		
	357	0.81	(3.24, 4.86)	0.881	256	0.93	(3.99, 5.87)	0.708	99	-0.47	(-6.69, 7.63)	0.897
Motor												
Baseline leptin	361	0.10	(-1.23, 1.04)	0.868	258	0.60	(-0.73, 1.93)	0.375	102	-2.04	(-4.34, 0.25)	0.080
Baseline BMI	357	-0.003	(-4.47, 4.46)	0.999	255	2.30	(-3.04, 7.65)	0.397	101	-5.49	(-13.8, 2.85)	0.194
Global												
Baseline leptin	366	-0.33	(-1.05, 0.39)	0.363	261	-0.13	(-0.98, 0.72)	0.764	103	-0.92	(-2.36, 0.51)	0.203
Baseline BMI	362	0.633	(-2.22, 3.49)	0.662	258	0.75	(-2.69, 4.20)	0.667	102	0.43	(-4.77, 5.62)	0.870

Note. All models are adjusted for prevalent diabetes, prevalent hypertension, marijuana use and HIV status at baseline visit. Beta represents an adjusted, unstandardized coefficient. NP assessments are reverse scored and a higher beta indicates better NP. WWH models are additionally adjusted for baseline CD4 count, viral load and CPE rank (High, medium, low). * = all adiposity measures are ln transformed.
Table 4. Linear regression models associating 10-year changes in plasma leptin and BMI measures with neuropsychological performance by domain at 10-year follow-up in all women and by HIV infection status. The Women's Interagency HIV Study Brooklyn and Chicago Clinical Research Sites.

Model	ALL	WWH	Women Without HIV						
	N	Beta (95% CI)	p	N	Beta (95% CI)	p	N	Beta (95% CI)	p
Executive Function									
10y Leptin Change	359	-0.05 (-0.09, -0.01)	0.018	258	-0.08 (-0.13, -0.02)	0.004	100	0.01 (-0.07, 0.09)	0.811
10y BMI Change	332	-0.17 (-0.43, 0.09)	0.198	236	-0.42 (-0.75, -0.09)	0.012	95	-0.41 (-0.04, 0.87)	0.074
Memory									
10y Leptin Change	360	0.02 (-0.07, 0.02)	0.254	257	-0.03 (-0.08, 0.02)	0.237	101	-0.01 (-0.10, 0.08)	0.826
10y BMI Change	333	-0.09 (-0.34, 0.16)	0.493	235	-0.15 (-0.44, 0.14)	0.318	96	-0.07 (-0.60, 0.45)	0.782
Learning									
10y Leptin Change	362	-0.02 (-0.07, 0.02)	0.252	258	-0.03 (-0.08, 0.02)	0.238	102	-0.005 (-0.09, 0.08)	0.913
10y BMI Change	335	-0.07 (-0.32, 0.18)	0.592	235	-0.19 (-0.50, 0.12)	0.226	97	0.02 (-0.46, 0.50)	0.932
Attention									
10y Leptin Change	340	-0.03 (-0.07, 0.01)	0.101	244	-0.04 (-0.08, 0.01)	0.123	95	-0.02 (-0.10, 0.05)	0.520
10y BMI Change	315	-0.10 (-0.35, 0.15)	0.417	224	-0.20 (-0.50, 0.10)	0.196	90	0.07 (-0.43, 0.56)	0.785
Processing Speed									
10y Leptin Change	365	-0.04 (-0.08, -0.01)	0.025	261	-0.05 (-0.10, -0.010)	0.029	102	-0.04 (-0.10, 0.03)	0.295
10y BMI Change	338	-0.23 (-0.47, -0.01)	0.043	239	-0.25 (-0.55, 0.04)	0.087	97	-0.25 (-0.64, 0.13)	0.196
Verbal Fluency									
10y Leptin Change	361	-0.04 (-0.07, 0.001)	0.053	259	-0.05 (-0.10, -0.01)	0.021	100	-0.02 (-0.09, 0.05)	0.598
10y BMI Change	334	-0.12 (-0.36, 0.11)	0.305	237	-0.12 (-0.42, 0.16)	0.401	95	-0.25 (-0.67, 0.17)	0.244
Motor									
10y Leptin Change	361	-0.03 (-0.07, 0.01)	0.138	258	-0.04 (-0.09, 0.01)	0.109	102	-0.01 (-0.09, 0.07)	0.791
	10y BMI Change	10y Leptin Change	10y BMI Change						
----------------------	----------------	-------------------	----------------						
n	335	366	339						
BMI Change	-0.13 (-0.38, 0.13)	-0.03 (-0.06, -0.01)	-0.12 (-0.29, 0.04)						
Global									
n	237	261	239						
BMI Change	-0.24 (-0.56, 0.07)	-0.05 (-0.08, -0.01)	-0.22 (-0.42, -0.02)						
BMI	0.335	0.011	0.149						
Change	0.129	0.005	0.035						
Note. All models are adjusted for prevalent diabetes, prevalent hypertension, marijuana use and HIV status. Beta represents an adjusted, unstandardized coefficient. NP assessments are reverse scored and a higher beta indicates better NP. WWH models are additionally adjusted for CD4 count, viral load and CPE rank (High, medium, low).									
* = all adiposity measures are ln transformed									