Self-Similar Blowup Solutions to the

2-Component Camassa-Holm Equations

MANWAI YUEN

Department of Applied Mathematics, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong

Revised 28-Sept-2010

Abstract

In this article, we study the self-similar solutions of the 2-component Camassa-Holm equations

$$\begin{aligned}
\rho_t + u\rho_x + \rho u_x &= 0 \\
m_t + 2u_x m + um_x + \sigma \rho \rho_x &= 0
\end{aligned}$$

with

$$m = u - \alpha^2 u_{xx}.$$

By the separation method, we can obtain a class of blowup or global solutions for $\sigma = 1$ or -1. In particular, for the integrable system with $\sigma = 1$, we have the global solutions:

$$\begin{aligned}
\rho(t, x) &= \begin{cases}
\frac{f(\eta)}{a(3t)^{1/3}}, & \text{for } \eta^2 < \frac{\alpha^2}{4} \\
0, & \text{for } \eta^2 \geq \frac{\alpha^2}{4}
\end{cases}, \\
u(t, x) &= \frac{a(3t)^{1/3}}{a_0}, \\
\dot{a}(s) - \frac{\xi}{3a(s)^{1/3}} &= 0, \ a(0) = a_0 > 0, \ \dot{a}(0) = a_1, \\
f(\eta) &= \xi \sqrt{-\frac{1}{4} \eta^2 + \left(\frac{\alpha}{4}\right)^2}
\end{aligned}$$

where $\eta = \frac{s}{a(s)^{1/3}}$ with $s = 3t$; $\xi > 0$ and $\alpha \geq 0$ are arbitrary constants.

Our analytical solutions could provide concrete examples for testing the validation and stabilities of numerical methods for the systems.

*E-mail address: nevetsayuen@hotmail.com
1 Introduction

The 2-component Camassa-Holm equations can be expressed in the following form

\[
\begin{cases}
\rho_t + u\rho_x + \rho u_x = 0 \\
m_t + 2u_x m + um_x + \sigma \rho \rho_x = 0
\end{cases}
\]

(4)

with

\[
m = u - \alpha^2 u_{xx},
\]

(5)

\[x \in \mathbb{R}\] and \[u = u(x, t) \in \mathbb{R}\] is the velocity of fluid and \[\rho = \rho(t, x) \geq 0\] is the density of fluid. The constant \(\sigma\) is equal to 1 or \(-1\). If \(\sigma = -1\), the gravity acceleration points upwards [2], [3], [13], [16] and [15]. If \(\sigma = 1\), there exist some papers regarding the corresponding models [9], [12], [16] and [13]. When \(\rho \equiv 0\), the system returns to the Camassa-Holm equation [1]. The searching of a model equation which can capture breaking waves and peaked traveling waves is a long-standing open problem [24]. Here, the Camassa-Holm equation satisfies the above conditions as a model equation. The searching of peaked traveling waves is motivated by the wish to discover waves replicating a characteristic for the wave of great height (waves of largest amplitude), that are exact traveling solutions of the shallow water equations, whether periodic or solitary [5], [23] and [8]. The breaking waves can be understood by solutions which remain bounded but the slope at some point becomes unbounded in a finite time [6]. Meanwhile, there is an alternative derivation of the Camassa-Holm equation in [18] and [10].

With \(\sigma = 1\), the system (4) is integrable [17] and [1]. It can be expressed as a compatibility condition of two linear systems (Lax pair):

\[
\psi_{xx} = (\zeta^2 \rho^2 + \zeta m + \frac{1}{4})\psi
\]

(6)
and

$$\psi_t = \left(\frac{1}{2\zeta} - u \right) \psi_x + \frac{1}{2} u_x \psi$$ \hspace{1cm} (7)$$

with a spectral parameter ζ.

It is bi-Hamiltonian, the first Poisson bracket

$$\{ F_1, F_2 \} = -\int \left[\frac{\delta F_1}{\delta m} (m \partial + \partial m) \frac{\delta F_2}{\delta m} + \frac{\delta F_1}{\delta \rho} \frac{\delta F_2}{\delta \rho} \partial m \right] dx $$ \hspace{1cm} (8)

with the Hamiltonian

$$H = \frac{1}{2} \int (mu + \rho^2) \, dx$$ \hspace{1cm} (9)

and the second Poisson bracket

$$\{ F_1, F_2 \} = -\int \left[\frac{\delta F_1}{\delta m} (\partial - \partial^3) \frac{\delta F_2}{\delta m} + \frac{\delta F_1}{\delta \rho} \frac{\delta F_2}{\delta \rho} \partial \rho \right] dx $$ \hspace{1cm} (10)

with the Hamiltonian

$$H = \frac{1}{2} \int (u \rho^2 + u^3 + uu_x^2) \, dx.$$ \hspace{1cm} (11)

There are two Casimirs:

$$Mass = \int \rho \, dx$$ \hspace{1cm} (12)

and

$$\int m \, dx.$$ \hspace{1cm} (13)

In this article, we adopt an alternative approach (method of separation) to study some self-similar solutions of 2-component Camassa-Holm equations [14]. Indeed, we observe that the isentropic Euler, Euler-Poisson, Navier-Stokes and Navier-Stokes-Poisson systems are written by:

$$\begin{cases}
\rho_t + \nabla \cdot (\rho \vec{u}) = 0 \\
\rho[\vec{u}_t + (\vec{u} \cdot \nabla) \vec{u}] + \nabla P = -\rho \nabla \Phi + \text{vis}(\rho, \vec{u}) \\
\Delta \Phi(t, x) = \alpha(N) \rho
\end{cases}$$ \hspace{1cm} (14)

where $\alpha(N)$ is a constant related to the unit ball in R^N: $\alpha(1) = 2; \alpha(2) = 2\pi$ and for $N \geq 3$,

$$\alpha(N) = N(N - 2)Vol(N) = N(N - 2) \frac{\pi^{N/2}}{\Gamma(N/2 + 1)}$$ \hspace{1cm} (15)
where $Vol(N)$ is the volume of the unit ball in \mathbb{R}^N and Γ is a Gamma function. And as usual, $\rho = \rho(t, \vec{x})$ and $\vec{u} = \vec{u}(t, \vec{x}) \in \mathbb{R}^N$ are the density and velocity respectively. $P = P(\rho) = K \rho^{\gamma}$ is the pressure, the constant $K \geq 0$ and $\gamma \geq 1$. And $vis(\rho, \vec{u})$ is the viscosity function.

We may seek the radial solutions

$$\rho(t, \vec{x}) = \rho(t, r), \quad \vec{u} = \frac{x}{r} V(t, r) =: \frac{x}{r} V,$$

with $r = \left(\sum_{i=1}^{N} x_i^2\right)^{1/2}$.

By the standard computation, the Euler equations in radial symmetry can be written in the following form:

$$\begin{align*}
\rho_t + V \rho_r + \rho V_r + \frac{N-1}{r} \rho V &= 0 \\
\rho (V_t + V V_r) + K \frac{\partial}{\partial r} \rho^{\gamma} &= 0.
\end{align*}$$

(17)

For the mass equation in radial symmetry, (17), we well know the solutions’ structure (Lemma 3, [27]):

$$\rho(t, r) = f\left(\frac{r}{a(t)}\right) a(t)^N, \quad u(t, r) = \frac{\dot{a}(r)}{a(r)} r.$$ (18)

As the 2-component Camassa-Holm equations, (4), are very similar to the Euler system (17), in some senses, we can apply the separation method ([14], [21], [20], [25], [27]) to the systems (4). In fact, we can deduce the nonlinear partial differential equations into much simpler ordinary differential equations. In this way, we can contribute a new class of self-similar solutions in the following theorem:

Theorem 1 We define the function $a(s)$ is the solution of the Emden equation:

$$\begin{align*}
\ddot{a}(s) - \frac{\xi}{3a(s)^{1/3}} \dot{a}(s) &= 0 \quad (19) \\
a(0) = a_0 \neq 0, \quad \dot{a}(0) = a_1
\end{align*}$$

and

$$f(\eta) = \frac{\xi}{\sigma} \sqrt{\frac{\sigma \eta^2 + \left(\frac{\sigma \alpha}{\xi}\right)^2}{\eta^2}}$$

(20)

where $\eta = \frac{x}{a(s)^{1/3}}$ with $s = 3t$; $\alpha \geq 0$, $\xi \neq 0$, a_0 and a_1 are arbitrary constants.

For the 2-component Camassa-Holm equations [4], there exists a family of solutions:

(1) for $\sigma = -1$,
(1a) with $\xi < 0$ and $a_0 > 0$,

$$\rho(t, x) = \begin{cases} f(\eta) / a(3t)^{1/3}, & 0 \\ 0 & \end{cases}, \quad u(t, x) = \frac{\dot{a}(3t)}{a(3t)} x. \tag{21}$$

The solution (21) blows up in a finite time T.

(1b) with $\xi > 0$ and $a_0 < 0$,

$$\rho(t, x) = \frac{f(\eta)}{a(3t)^{1/3}}, \quad u(t, x) = \frac{\dot{a}(3t)}{a(3t)} x. \tag{22}$$

The solution (22) exists globally.

(2) for $\sigma = 1$,

(2a) with $\xi > 0$ and $a_0 > 0$,

$$\rho(t, x) = \max \begin{cases} f(\eta) / a(3t)^{1/3}, & 0 \\ 0 & \end{cases}, \quad u(t, x) = \frac{\dot{a}(3t)}{a(3t)} x. \tag{23}$$

The solution (23) exists globally.

(2b) with $\xi < 0$ and $a_0 < 0$,

$$\rho(t, x) = \frac{f(\eta)}{a(3t)^{1/3}}, \quad u(t, x) = \frac{\dot{a}(3t)}{a(3t)} x. \tag{24}$$

The solution (24) blows up in a finite time T.

2 Separation Method

First, we can design a nice functional structure for the mass equation:

Lemma 2 For the 1-dimensional equation of mass \[4\, 1\]:

$$\rho_t + u \rho_x + \rho u_x = 0, \tag{25}$$

there exist solutions,

$$\rho(t, x) = \frac{f(\eta)}{a(3t)^{1/3}}, \quad u(t, x) = \frac{\dot{a}(3t)}{a(3t)} x. \tag{26}$$

with the form $f(\eta) \geq 0 \in C^1$ with $\eta = \frac{x}{a(3t)^{1/3}}$, and $a(3t) > 0 \in C^1$.
Proof. We just plug (26) into (25) to check:

\[
\rho_t + u\rho_x + \rho u_x = \partial_t \left(\frac{f \left(\frac{x}{a(3t)^{1/3}} \right)}{a(3t)^{1/3}} \right) + \frac{\dot{a}(3t)}{a(3t)} \frac{\partial}{\partial x} \left(\frac{f \left(\frac{x}{a(3t)^{1/3}} \right)}{a(3t)^{1/3}} \right) + \frac{f \left(\frac{x}{a(3t)^{1/3}} \right)}{a(3t)^{1/3}} \partial_x \left(\frac{\dot{a}(3t)}{a(3t)^{1/3}} x \right)
\]

\[
= \frac{1}{a(3t)^{1/3+1}} \left(-\frac{1}{3} \right) \cdot \dot{a}(3t) \cdot 3 \cdot f \left(\frac{x}{a(3t)^{1/3}} \right) + \frac{1}{a(3t)^{1/3}} f \left(\frac{x}{a(3t)^{1/3}} \right) \partial_t \left(\frac{x}{a(3t)^{1/3}} \right)
\]

\[
+ \frac{\dot{a}(3t)}{a(3t)} f \left(\frac{x}{a(3t)^{1/3}} \right) \frac{\partial}{\partial x} \left(\frac{x}{a(3t)^{1/3}} \right) + \frac{f \left(\frac{x}{a(3t)^{1/3}} \right)}{a(3t)^{1/3}} \dot{a}(3t)
\]

\[
= -\frac{\dot{a}(3t)}{a(3t)^{1/3+1}} f \left(\frac{x}{a(3t)^{1/3}} \right) + \frac{1}{a(3t)^{1/3}} f \left(\frac{x}{a(3t)^{1/3}} \right) \frac{x}{a(3t)^{1/3+1}} \frac{1}{3} \dot{a}(3t) 3
\]

\[
+ \frac{\dot{a}(3t)}{a(3t)} f \left(\frac{x}{a(3t)^{1/3}} \right) \frac{1}{a(3t)^{1/3}} f \left(\frac{x}{a(3t)^{1/3}} \right) \frac{x}{a(3t)^{1/3+1}} \frac{1}{3} \dot{a}(3t)
\]

\[
= 0.
\]

The proof is completed. ■

In [11] and [26], the qualitative properties of the Emden equation

\[
\begin{align*}
\ddot{a}(s) - \frac{\xi}{a(s)^{1/3}} &= 0 \\
\dot{a}(s) &= a_0 > 0, \quad \dot{a}(0) = a_1,
\end{align*}
\]

where \(N \geq 2, \)

were studied. Therefore, the similar local existence of the Emden equation [19],

\[
\begin{align*}
\ddot{a}(s) - \frac{\xi}{a(s)^{1/3}} &= 0 \\
\dot{a}(s) &= a_0 \neq 0, \quad \dot{a}(0) = a_1,
\end{align*}
\]

can be proved by the standard fixed point theorem [11] and [26]. To additionally show the blowup property of the time function \(a(s), \) the following lemmas are needed.

Lemma 3 For the Emden equation [19],

\[
\begin{align*}
\ddot{a}(s) - \frac{\xi}{a(s)^{1/3}} &= 0 \\
\dot{a}(s) &= a_0 > 0, \quad \dot{a}(0) = a_1.
\end{align*}
\]
(1) If $\xi < 0$, there exists a finite time S, such that $\lim_{s \to S^-} a(s) = 0$.

(2) If $\xi > 0$, the solution $a(s)$ globally exists, such that

$$\lim_{s \to +\infty} a(s) = +\infty.$$ \hspace{1cm} (37)

Proof. (1) For the Emden equation (36), we can multiply $\dot{a}(s)$ and then integrate it, as follows:

$$\frac{\dot{a}(s)^2}{2} - \frac{3}{2} \xi a(s)^{2/3} = \theta,$$ \hspace{1cm} (38)

with the constant

$$\theta = \frac{a_1^2}{2} - \frac{3}{2} \xi a_0^{2/3} > 0,$$ \hspace{1cm} (39)

for $\xi < 0$.

The equation (38) becomes

$$\dot{a}(s) = \pm \sqrt{2\theta + 3\xi a(s)^{2/3}}.$$ \hspace{1cm} (40)

We can define the kinetic energy thus:

$$F_{\text{kin}} := \frac{\dot{a}(s)^2}{2},$$ \hspace{1cm} (41)

and the potential energy thus:

$$F_{\text{pot}} = -\frac{3}{2} \xi a(s)^{2/3}.$$ \hspace{1cm} (42)

The total energy is conserved thus:

$$\frac{d}{ds} (F_{\text{kin}} + F_{\text{pot}}) = 0.$$ \hspace{1cm} (43)

By the classical energy method for conservative systems (in Section 4.3 of [19]), the solution has a trajectory. The time for traveling the orbit $[0, a_{\text{sup}}]$ can be estimated:

$$S = \int_0^S ds \leq 2 \int_{a_{\text{inf}}}^{a_{\text{sup}}} \frac{da(s)}{\sqrt{2(\theta + \frac{3\xi a(s)^{2/3}}{2})}} = 2 \int_0^{\left(\frac{2\xi}{3\theta}\right)^{3/2}} \frac{da(s)}{\sqrt{2(\theta + \frac{3\xi a(s)^{2/3}}{2})}}.$$ \hspace{1cm} (44)

Then we let $G(s) := \sqrt{\frac{3\xi}{2}} a(s)^{1/3}$, have

$$dG(s) = \frac{\sqrt{6}}{\sqrt{a(s)^{2/3}}}.$$ \hspace{1cm} (45)
and

\[da(s) = \sqrt{\frac{-6}{\xi}} a(s)^{2/3} dG(s) = \frac{2}{-3\xi} \sqrt{\frac{-6}{\xi}} G(s)^2 dG(s). \tag{46} \]

Then, the equation (44) becomes:

\[2 \int_0^{(\frac{3a}{\xi})^{3/2}} da(s) = \frac{2\sqrt{2}}{-3\xi} \int_0^{\sqrt{\theta}} G(s)^2 dG(s) \sqrt{\theta - G(s)^2}. \tag{47} \]

The integral is solvable exactly by the integration formula 17.11.3 on page 82 of [22]:

\[\int_0^{\sqrt{\theta}} \frac{x^2 dx}{\sqrt{\theta - x^2}} = \left[-x \sqrt{\theta - x^2} + \frac{\theta}{2} \sin^{-1} \left(\frac{x}{\sqrt{\theta}} \right) \right]_{x=0}^{x=\sqrt{\theta}} = \frac{\theta \pi}{4}. \tag{48} \]

Therefore, we showed that there exists a finite time \(S \), such that \(\lim_{s \to S^-} a(s) = 0 \).

(2) for the case of \(\xi > 0 \), the potential function is

\[F_{\text{pot}} = -\frac{3}{2} \xi a(s)^{2/3}. \tag{49} \]

As the infimum of \(a(s) \) is:

\[a_{\text{inf}} = \left(\frac{-2\theta}{3\xi} \right)^{2} > 0, \tag{50} \]

the solution \(a(s) \) is uniformly bounded below. The time for achieving the infimum is finite if \(a_1 < 0 \):

\[S_1 = \int_0^{a_1} ds = \int_0^{a_0} \frac{da(s)}{\left(\frac{-2\theta}{3\xi} \right)^{3/2} \sqrt{2(\theta + \frac{3\xi a(s)^{2/3}}{2})}} < +\infty. \tag{51} \]

Therefore, for any constant \(a_1 \), the solution \(a(s) \) must increase, after some finite time. And the time for traveling the interval \([\inf a(s), +\infty]\) or \([a_1, +\infty)\), is infinite:

\[S_2 = \int_{a_1}^{+\infty} \frac{da(s)}{\left(\frac{-2\theta}{3\xi} \right)^{3/2} \sqrt{2(\theta + \frac{3\xi a(s)^{2/3}}{2})}} = +\infty. \tag{52} \]

Therefore, we showed that the solution \(a(s) \) globally exists, such that

\[\lim_{s \to +\infty} a(s) = +\infty. \tag{53} \]

The proof is completed. \(\blacksquare \)

We may let \(b(t) = -a(t) \), in the Emden equation (19), for \(a_0 < 0 \):

\[
\begin{align*}
\ddot{a}(s) - \frac{\xi}{3a(s)^{2/3}} &= 0 \\
da(0) &= a_0 < 0, \ a'(0) = a_1,
\end{align*}
\tag{54}
\]
have
\[
\begin{cases}
\ddot{b}(s) - \frac{\xi}{3b(s)^{1/3}} = 0 \\
b(0) = -a_0 > 0, \dot{b}(0) = -a_1.
\end{cases}
\] (55)

Alternatively, the ordinary differential equation can be rewritten as the dynamical system:
\[
\begin{cases}
\frac{dx(s)}{ds} = y(s) \\
\frac{dy(s)}{ds} = \frac{\xi}{3x(s)^{1/3}} \\
x(0) = a_0 \neq 0, y(0) = a_1.
\end{cases}
\] (56)

It is symmetric about the origin \((0, 0)\). Therefore, we can use the above lemma to drive the corresponding lemma for \(a_0 < 0\):

Lemma 4 *For the Emden equation (12),*
\[
\begin{cases}
\ddot{a}(s) - \frac{\xi}{a(s)^{1/3}} = 0 \\
a(0) = a_0 < 0, \dot{a}(0) = a_1,
\end{cases}
\] (57)

(1) if \(\xi < 0\), there exists a finite time \(S\), such that \(\lim_{s \to S^-} a(s) = 0\).

(2) if \(\xi > 0\), the solution \(a(t)\) globally exists, such that \(\lim_{s \to +\infty} a(s) = -\infty\). (58)

After obtaining the nice structure of solutions (26), we simply use the techniques of separation of variables ([14], [21], [20], [25] and [27]), to prove the theorem:

Proof of Theorem *From Lemma 2 it is clear to see our functions (21), (22), (23) and (24) fit well into the mass equation, (4)_1, except for two boundary points. The second equation of 2-component Camassa-Holm equations (4)_2, becomes:
\[
m_t + 2u_x m + um_x + \sigma \rho p_x \\
= (u - u_{xx})_t + 2u_x(u - u_{xx}) + u(u - u_{xx})_x + \sigma \rho p_x.
\] (59) (60)

As our velocity \(u\), in the solutions (21), (22), (23) and (24), is a linear flow:
\[
u = \frac{\dot{a}(3t)}{a(3t)} x,
\] (61)
we have

\[u_{xx} = 0. \]

(62)

The equation (60) becomes:

\[
= u_t + 3u_x u + \sigma \rho_x \\
= \frac{\partial}{\partial t} \left(\frac{\dot{a}(3t)}{a(3t)} \right) x + 3 \left(\frac{\dot{a}(3t)}{a(3t)} \right) x \frac{\dot{a}(3t)}{a(3t)} + \sigma \frac{f(\frac{x}{a(3t)^{1/3}})}{a(3t)^{1/3}} \left(\frac{\ddot{f}(\frac{x}{a(3t)^{1/3}})}{a(3t)^{1/3}} + \frac{\dot{f}(\frac{x}{a(3t)^{1/3}})}{a(3t)^{1/3}} \right)
\]

(63)

\[
= \left(3 \frac{\ddot{a}(3t)}{a(3t)} - 3 \frac{\dot{a}(3t)^2}{a(3t)^2} \right) x + 3 \left(\frac{\dot{a}(3t)}{a(3t)} \right) x \frac{\dot{a}(3t)}{a(3t)} + \sigma \frac{f(\frac{x}{a(3t)^{1/3}})}{a(3t)^{1/3}} \left(\frac{\ddot{f}(\frac{x}{a(3t)^{1/3}})}{a(3t)^{1/3}} + \frac{\dot{f}(\frac{x}{a(3t)^{1/3}})}{a(3t)^{1/3}} \right) - 1
\]

(64)

\[
= 3 \frac{\ddot{a}(3t)}{a(3t)} x + \frac{\sigma f(\frac{x}{a(3t)^{1/3}})}{a(3t)} \frac{\ddot{f}(\frac{x}{a(3t)^{1/3}})}{a(3t)}
\]

(65)

\[
= \frac{\sigma}{a(3t)} \left(\frac{\xi}{\sigma} \eta + f(\eta) \dot{f}(\eta) \right),
\]

(66)

with the Emden equation:

\[
\begin{cases}
\ddot{a}(s) - \frac{\xi}{3a(s)^{1/3}} = 0 \\
a(0) = a_0 \neq 0, \quad \dot{a}(0) = a_1,
\end{cases}
\]

(67)

by defining the variables \(s := 3t \) and \(\eta := x/a(s)^{1/3} \).

Now, we can separate the partial differential equations into two ordinary differential equations.

Then, we only need to solve for \(\frac{\xi}{\sigma} < 0 \),

\[
\begin{cases}
\frac{\xi}{\sigma} \eta + f(\eta) \dot{f}(\eta) = 0 \\
f(0) = -\alpha \leq 0;
\end{cases}
\]

(68)

or for \(\frac{\xi}{\sigma} > 0 \),

\[
\begin{cases}
\frac{\xi}{\sigma} \eta + f(\eta) \dot{f}(\eta) = 0 \\
f(0) = \alpha \geq 0;
\end{cases}
\]

(69)

(70)

The ordinary differential equations (69) or (70) can be solved exactly as

\[
f(\eta) = \frac{\xi}{\sigma} \sqrt{-\frac{\sigma}{\xi} \eta^2 + \left(\frac{\sigma \alpha}{\xi} \right)^2}.
\]

(71)

In fact, we have the self-similar solutions in details:

(1) for \(\sigma = -1 \),
(1a) with $\xi < 0$ and $a_0 > 0$:

\[
\rho(t, x) = \begin{cases}
\frac{f(\eta)}{a(3t)^{1/3}}, & \text{for } \eta^2 < -\frac{\alpha^2}{\xi} \\
0, & \text{for } \eta^2 \geq -\frac{\alpha^2}{\xi}
\end{cases}, \quad u(t, x) = \frac{a(3t)}{a(3t)} x
\]

\[
\ddot{a}(s) - \frac{s}{3a(s)^{4/3}} = 0, \quad a(0) = a_0 > 0, \quad \dot{a}(0) = a_1
\]

\[
f(\eta) = -\xi \sqrt{\frac{1}{8} \eta^2 + \left(\frac{1}{4} \alpha\right)^2}.
\]

(1b) with $\xi > 0$ and $a_0 < 0$:

\[
\rho(t, x) = \frac{f(\eta)}{a(3t)^{1/3}}, \quad u(t, x) = \frac{a(3t)}{a(3t)} x
\]

\[
\ddot{a}(s) - \frac{s}{3a(s)^{4/3}} = 0, \quad a(0) = a_0 < 0, \quad \dot{a}(0) = a_1
\]

\[
f(\eta) = -\xi \sqrt{\frac{1}{8} \eta^2 + \left(\frac{1}{4} \alpha\right)^2}.
\]

(2) for $\sigma = 1$,

(2a) with $\xi > 0$ and $a_0 > 0$:

\[
\rho(t, x) = \begin{cases}
\frac{f(\eta)}{a(3t)^{1/3}}, & \text{for } \eta^2 < -\frac{\alpha^2}{\xi} \\
0, & \text{for } \eta^2 \geq -\frac{\alpha^2}{\xi}
\end{cases}, \quad u(t, x) = \frac{a(3t)}{a(3t)} x
\]

\[
\ddot{a}(s) - \frac{s}{3a(s)^{4/3}} = 0, \quad a(0) = a_0 > 0, \quad \dot{a}(0) = a_1
\]

\[
f(\eta) = \xi \sqrt{-\frac{1}{8} \eta^2 + \left(\frac{1}{4} \alpha\right)^2}.
\]

(2b) with $\xi < 0$ and $a_0 < 0$:

\[
\rho(t, x) = \frac{f(\eta)}{a(3t)^{1/3}}, \quad u(t, x) = \frac{a(3t)}{a(3t)} x
\]

\[
\ddot{a}(s) - \frac{s}{3a(s)^{4/3}} = 0, \quad a(0) = a_0 < 0, \quad \dot{a}(0) = a_1
\]

\[
f(\eta) = \xi \sqrt{-\frac{1}{8} \eta^2 + \left(\frac{1}{4} \alpha\right)^2}.
\]

With the assistance of Lemmas 3 and 4, the blowup or global existence of the solutions can be determined under the prescribed conditions in the theorem.

The proof is completed. ■

Remark 5 For $\xi < 0$, the blowup solutions (21) and (24) collapse at the origin

\[
\lim_{t \to T^-} \rho(t, 0) = +\infty,
\]

with a finite time T;

For $\xi > 0$, the global behavior of the solutions (22) and (25) at the origin is:

\[
\lim_{t \to +\infty} \rho(t, 0) = 0.
\]
Remark 6 The solutions (21) and (23) are only C^0 functions, as the function $f(\eta)$ is discontinuous at the two boundary points, for $\alpha > 0$:

$$\lim_{\eta^2 \to \frac{1}{\alpha^2}} \dot{f}(\eta) \neq 0. \quad (78)$$

Remark 7 Our analytical solutions could provide concrete examples for testing the validation and stabilities of numerical methods for the systems. Additionally, our special solutions can shed some light on understanding of evolutionary pattern of the systems.

Remark 8 For the integrable system with $\sigma = 1$, we may calculate the mass of

(1) the blowup solution (24) (or (75)), $\xi < 0$ and $a_0 < 0$:

$$\text{Mass} = \int_{-\infty}^{+\infty} \rho(0, x) dx = \frac{\xi}{a_0^{1/3}} \int_{-\infty}^{+\infty} \sqrt{-\frac{1}{\xi} \left(\frac{x}{a_0^{1/3}} \right)^2 + \left(\frac{1}{\xi} \right)^2} dx = +\infty; \quad (79)$$

(2) the global solution (23) (or (74)), $\xi > 0$ and $a_0 > 0$:

$$\text{Mass} = \int_{-\infty}^{+\infty} \rho(0, x) dx \quad (80)$$

$$= 2 \int_0^{a_0^{1/3}} \alpha \sqrt{\frac{1}{\xi}} \left(\frac{x}{a_0^{1/3}} \right) \left(\frac{\alpha}{\xi} \right)^2 dx \quad (81)$$

$$= \frac{2\xi}{a_0^{1/3}} \int_0^{a_0^{1/3}} \sqrt{\frac{1}{\xi} \left(\frac{x}{a_0^{1/3}} \right)^2 + \left(\frac{\alpha}{\xi} \right)^2} dx \quad (82)$$

$$= 2\xi \int_0^{\alpha^{1/3}} \sqrt{\frac{1}{\xi} \left(\frac{x}{a_0^{1/3}} \right)^2 + \left(\frac{\alpha}{\xi} \right)^2} dx \quad (83)$$

$$= \frac{2\xi}{\sqrt{\xi}} \int_0^{\alpha^{1/3}} \sqrt{\frac{\alpha^2}{\xi} - s^2} ds \quad (84)$$

$$= \frac{\alpha^2 \pi}{2\sqrt{\xi}} \quad (85)$$

3 Blowup Rates

We are interested in how fast the blowup solutions tend to the infinite as the time tends to the critical time T. The blowup rate of the constructed solutions (21) and (24) at the origin, is estimated in the following theorem:
Theorem 9 The blowup rate of the solutions (21) and (24) for \(\alpha > 0 \), is

\[
\lim_{s \to S^-} \rho(s, 0)(S - s)^{1/3} \geq O(1). \tag{86}
\]

Proof. We only need to study the blowup rate of the Emden equation (19),

\[
\begin{aligned}
\ddot{a}(s) - \frac{\xi}{a(s)^{1/3}} &= 0 \\
a(0) = a_0 > 0, \quad \dot{a}(0) = a_1
\end{aligned}
\tag{87}
\]

with \(\xi < 0 \).

For the total energy \(\theta > 0 \), with the assistance of the equation (40),

\[
S = s + \int_s^a d\eta = s + \int_0^a \frac{d\eta}{a(\eta)} = s - \int_0^a \frac{1}{\sqrt{2\theta + 3\xi a(\eta)^2/3}} d\eta \geq s + \int_0^{a(s)} \frac{da(\eta)}{\sqrt{2\theta}}. \tag{88}
\]

That is

\[
(S - s)^{1/3} \geq O(1)a(s)^{1/3}. \tag{89}
\]

Therefore, we may estimate the blowup rates at the origin of the density function \(\rho(s, x) \):

\[
\lim_{s \to S^-} \rho(s, 0)(S - s)^{1/3} = \lim_{s \to S^-} \frac{\alpha}{a(s)^{1/3}}(S - s)^{1/3} \geq O(1). \tag{90}
\]

The proof is completed.

We notice that our blowup rate in the above theorem is different from the results of the Constantin and Escher’s papers [7] and [4].

4 Acknowledgement

The author thanks the reviewers for their helpful comments to improve the readability of this article.

References

[1] R. Camassa and D. D. Holm, Intergrable Shallow Water Equation with Peaked Solitons, Phys. Rev. Lett. 71 (1993), 1661–1664.
[2] M. Chen, S.-Q. Liu, Y. Zhang, *A 2-component Generalization of the Camassa–Holm Equation and Its Solutions*, Lett. Math. Phys. **75** (2006), 1–15.

[3] A. Constantin, *On the Blow-up Solutions of a Periodic Shallow Water Equation*, J. Nonlinear Sci. **10** (2000), 391–399.

[4] A. Constantin, *Existence of Permanent and Breaking Waves for a Shallow Water Equation: a Geometric Approach*, Ann. Inst. Fourier (Grenoble) **50** (2000), 321–362.

[5] A. Constantin, *The Trajectories of Particles in Stokes Waves*, Invent. Math. **166** (2006), 523–535.

[6] A. Constantin and J. Escher, *Wave Breaking for Nonlinear Nonlocal Shallow Water Equations*, Acta Math. **181** (1998), 229–243.

[7] A. Constantin and J. Escher, *On the Blow-up Rate and the Blow-up Set of Breaking Waves for a Shallow Water Equation*, Math. Z. **233** (2000), 75–91.

[8] A. Constantin and J. Escher, *Particle Trajectories in Solitary Water Waves*, Bull. Amer. Math. Soc. (N.S.) **44** (2007), 423–431.

[9] A. Constantin and R. Ivanov, *On an Integrable Two-component Camassa–Holm Shallow Water System*, Phys. Lett. A **372** (2008), 7129–7132.

[10] A. Constantin and D. Lannes, *The Hydrodynamical Relevance of the Camassa-Holm and Degasperis-Procesi Equations*, Arch. Ration. Mech. Anal. **192** (2009), 165–186.

[11] Y.B. Deng, J.L. Xiang and T. Yang, *Blowup Phenomena of Solutions to Euler-Poisson Equations*, J. Math. Anal. Appl. **286** (2003), 295–306.

[12] J. Escher, O. Lechtenfeld and Z. Yin, *Well-posedness and Blow-up Phenomena for the 2-component Camassa–Holm equation*, Discrete Contin. Dyn. Syst. Ser. A **19** (2007), 493–513.

[13] C.X. Guan and Z.Y. Yin, *Global Existence and Blow-up Phenomena for an Integrable Two-component Camassa–Holm Shallow Water System*, J. Differential Equations **248** (2010), 2003–2014.
[14] P. Goldreich and S. Weber, *Homologously Collapsing Stellar Cores*, Astrophys. J. **238** (1980), 991–997.

[15] Z.G. Guo, Blow-up and Global Solutions to a New Integrable Model with Two Components, J. Math. Anal. Appl. **372** (2010), 316–327.

[16] Z.G. Guo and Y. Zhou, On Solutions to a Two-component Generalized Camassa–Holm System, Stud. Appl. Math. **124** (2010), 307–322.

[17] R.I. Ivanov, *Extended Camassa–Holm Hierarchy and Conserved Quantities*, Z. Naturforsch. A **61** (2006), 133–138.

[18] R. S. Johnson, *Camassa-Holm, Korteweg-de Vries and Related Models for Water Waves*, J. Fluid Mech. **455** (2002), 63–82.

[19] W.D. Lakin and D. A. Sanchez, Topics in Ordinary Differential Equations, Dover Pub. Inc., New York, 1982.

[20] T.H. Li, *Some Special Solutions of the Multidimensional Euler Equations in R^N*, Comm. Pure Appl. Anal. **4** (2005), 757–762.

[21] T. Makino, *Blowing up Solutions of the Euler-Poission Equation for the Evolution of the Gaseous Stars*, Transport Theory and Statistical Physics **21** (1992), 615-624.

[22] M.R. Spiegel, S. Lipschutz and J. Liu, Mathematical Handbook of Formulas and Tables, 3nd ed. New York: McGraw-Hill, 2008.

[23] J. F. Toland, *Stokes Waves*, Topol. Methods Nonlinear Anal. **7** (1996), 1–48.

[24] G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics. Wiley-Interscience, New York-London-Sydney, 1974.

[25] M. W. Yuen, *Blowup Solutions for a Class of Fluid Dynamical Equations in R^N*, J. Math. Anal. Appl. **329** (2007), 1064–1079.
[26] M.W. Yuen, *Analytical Blowup Solutions to the 2-dimensional Isothermal Euler-Poisson Equations of Gaseous Stars*, J. Math. Anal. Appl. **341** (2008), 445–456.

[27] M.W. Yuen, *Analytical Solutions to the Navier-Stokes Equations*, J. Math. Phys. **49** (2008), 113102, 10pp.