Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Engineering the supernatural: monoclonal antibodies for challenging infectious diseases
Patricia S Grace¹,², Bronwyn M Gunn³ and Lenette L Lu⁴,⁵,⁶

The COVID-19 pandemic demonstrated that monoclonal antibodies can be deployed faster than antimicrobials and vaccines. However, the majority of mAbs treat cancer and autoimmune diseases, whereas a minority treat infection. This is in part because targeting a single antigen by the antibody Fab domain is insufficient to stop the dynamic microbial life cycle. Thus, finding the ‘right’ antigens remains the focus of intense investigations. Equally important is the antibody-Fc domain that has the capacity to induce immune responses that enhance neutralization, and limit pathology and transmission. While Fc-effector functions have been less deeply studied, conceptual and technical advances reveal previously underappreciated antibody potential to combat diseases from microbes difficult to address with current diagnostics, therapeutics, and vaccines, including S. aureus, P. aeruginosa, P. falciparum, and M. tuberculosis. What is learned about engineering antibodies for these challenging organisms will enhance our approach to new and emerging infectious diseases.

Addresses
¹ Harvard T.H. Chan School of Public Health, Boston, MA, United States
² Ragon Institute of MGH, MIT and Harvard, Boston, MA, United States
³ Paul G. Allen School of Global Health, Washington State University, Pullman, WA, United States
⁴ Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
⁵ Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
⁶ Parkland Health & Hospital System, United States

Corresponding author: Lenette L Lu (lenette.lu@utsouthwestern.edu)

Current Opinion in Biotechnology 2022, 78:102818
This review comes from a themed issue on Tissue, Cell and Pathway Engineering
Edited by Laura Segatori and Jennifer A. Maynard
For complete overview of the section, please refer to the article collection, "Tissue, Cell and Pathway Engineering"
Available online 12th October 2022
https://doi.org/10.1016/j.copbio.2022.102818
0958–1669/© 2022 Published by Elsevier Ltd.

Introduction
Passive serum therapy was one of the main approaches to treat microbial infections. With the success of antibiotics and vaccines, use waned. Now, the rise of antibiotic-resistant organisms, and the time required for vaccine development have renewed interest in antibodies. With the success of monoclonal antibodies (mAbs) for cancer and autoimmune diseases, the potential for infectious diseases is promising. Rapid antigen discovery and engineering antibody-Fc-domain enhancement offer new opportunities to address microbial antigen diversity, pathological virulence factors, and transmission — all of which contribute to infectious disease morbidity and mortality. As much work has focused on viruses, particularly SARS-CoV-2, HIV, influenza, and Ebola, here we discuss strategies that target persistent and growing challenges for bacteria and parasites where antibodies are less well studied. We use Plasmodium falciparum, Staphylococcus aureus, Pseudomonas aeruginosa, and Mycobacterium tuberculosis — microbes that demonstrate the limitations of our current infectious disease armamentarium — to highlight the potential for antibodies to combat microbial diversity, pathogen evasion, and transmission.

Antibodies have the potential to directly neutralize and recruit immune responses to control infection via antibody-effector functions that target microbes specifically. Through the constant, crystallizable (Fc) domain, distinct isotypes (IgA1, IgA2, and IgM) and subclasses (IgG1, IgG2, IgG3, and IgG4) differentially engage Fc receptors (FcR) on monocytes, macrophages, neutrophils, dendritic cells (DCs), and natural killer (NK) cells to induce cellular cytotoxic and phagocytic responses (Figure 1). Thus, beyond direct neutralization or blocking initial infection, antibodies also enable immune cells to combat microbial pathogenesis and inhibit infection.

Capturing the microbe
Recent studies have demonstrated unique ways that mAbs can disrupt microbial infection: blocking entry, neutralizing microbes, and microbial effectors (i.e. toxins), disrupting biofilms, inducing innate immune-effector functions that kill microbes, and limiting vertical and horizontal transmission (Figure 2).

Blocking microbial antigens involved in entry and spread
Blocking entry into cells is a means to reduce infection and replication of a pathogen. One of the primary issues faced in developing effective mAb therapies is identifying pathogen-specific antigens critical for the life cycle within the host that are broadly applicable across
multiple strains. Rapid identification and development of affinity-matured antibodies targeting pathogen-specific antigens are now possible with advances in hybridoma screening [1], barcoded antigen-baited B-cell sequencing (LIBRA-seq) [2], human single-CDR scFV library generation [3], and yeast-display technology [4–6]. Such techniques were used to identify the novel mAbs, C1S43, and L9LS, from a human malaria vaccine [7,8]. Both target a unique ‘junctional’ epitope of the circumsporozoite protein, conserved across thousands of strains, to inhibit initial entry into hepatocytes. Passive transfer of C1S43 reduces liver burden in a mouse model [7], and phase-I clinical trial data show promise with prevention of malaria [9]. However, as prophylactic use is not broadly feasible in malaria-endemic areas, mAbs targeting the later red blood cell (RBC) stage of the Plasmodium life cycle could be more useful. Antibodies that block binding of the P. falciparum reticulocyte-binding protein homolog 5 to RBCs inhibit this subsequent and critical parasite-amplification stage [10,11]. Moreover, nonneutralizing antibodies that prevent RBC invasion collaborate with these neutralizing mAbs by extending the window of opportunity for antibody action [10], broadening the use of mAbs in malaria from prophylactic to therapeutic. A similar synergy between nonneutralizing and neutralizing protective antibodies has been observed in other viral infections [12,13], indicating that this combination strategy may be applied to additional pathogens. Therefore, mAbs for pathogens with multiple life-cycle stages, such as malaria, likely require more than one antigen target to effectively block infection and disease (Figure 2a).

Targeting pathogens for immune-cell destruction
For bacteria that replicate in the extracellular space, enhancing uptake by neutrophils, monocytes, and macrophages via antibody-dependent cellular phagocytosis (ADCP) can limit bacterial replication and dissemination (Figure 2b). S. aureus employs several mechanisms to evade phagocytosis: lipoteichoic acid, SpA, and Sbi prevent antibody-mediated complement deposition and opsonophagocytic activity [14]. Antibodies targeting these evasion strategies, 3F6 and tefibazumab, have been engineered to prevent IgG binding to the SpA protein. As a result, improved opsonophagocytic activity and reduced bacterial burden in a mouse model of sepsis have been observed [15]. However, the protection seen from highly opsonophagocytic mAbs in animal models is often not recapitulated in humans [16–18], suggesting that microbial uptake alone is insufficient to improve infection outcomes. Indeed, studies with Legionella show that bacteria can persist inside a host cell, and only in the presence of FcR signaling is bacteria directed into lysosomal compartments for degradation [19]. These data demonstrate that antibody Fc is critical for driving bacterial destruction following phagocytosis, and engineering Fc domains (discussed below) could improve S. aureus mAb efficacy.

Inhibiting microbial effector proteins
Antibodies targeting toxins and secreted virulence factors of many pathogens have therapeutic and prophylactic potential (Figure 2c). Bezlotoxumab directly neutralizes Clostridium difficile enterotoxin B and reduces recurrent C. difficile infections [20,21]. For S. aureus, a
mAb cocktail targeting α-hemolysin and leukocidins, which lyse cells and destroy tissues, significantly decreased mortality in a model of necrotizing pneumonia compared with monotherapy [22], showing that inhibiting multiple effector proteins simultaneously could provide clinical benefit. As such, targeting microbial
effector proteins that inhibit antibiotics could be synergistic with current antimicrobial therapies. Antibiotic resistance is one of the top-10 threats to global health. Monoclonals developed to inhibit the penicillin-binding protein PBP2a of *S. aureus* demonstrate the potential for prophylactic and therapeutic use against penicillin resistance [23]. Gram-negative bacteria, including *P. aeruginosa*, have developed β-lactamases to resist destruction of their cell membranes by the β-lactam class of antibiotics. Some individuals infected with *P. aeruginosa* develop antibodies that target β-lactamases [24], and passive transfer of these antibodies to mice can protect against infection. Strategies that employ high-throughput B-cell sequencing and screening from infected individuals could be used to discover new targets to develop into novel mAbs that combat additional mechanisms of antibiotic resistance and microbial pathogenesis.

Disrupting biofilms

As some infections progress, bacteria generate biofilms that facilitate persistence within the host [25,26]. Biofilms are extracellular matrices containing DNA, proteins, and polysaccharides that serve as a scaffold niche for microbial growth, often found on implanted medical devices. These structures resist antibiotic therapies and require prolonged treatment to prevent recrudescence [27]. One antibody-based strategy to disrupt biofilms is to target bacterial components of the biofilm (Figure 2d). Targeting the highly conserved bacterial DNAIIIB with mAbs or vaccination disrupts biofilms for many Gram-negative and -positive bacteria such as *S. aureus* [28,29] and prevents recurrent ear infections from nontypeable *Haemophilus influenzae* in the preclinical chinchilla model [30]. One of these promising mAbs, TRL1068, is currently being evaluated in phase-I clinical trials for prosthetic joint infections to determine the synergistic efficacy with antibiotics against *S. aureus* biofilms [31]. If successful, these mAbs could then be used to shorten antibiotic treatments, potentially limiting the development of toxicities and resistance.

P. aeruginosa also forms biofilms but identifying effective antigen targets remains quite challenging. A mAb targeting alginate, a polysaccharide thought to be on the bacterial surface in the biofilm stage, failed to improve patient outcomes [32], despite promising preclinical animal data [33,34]. However, recent data show that neutrophil extracellular traps (an antibody-inducible effector function — Figures 1 and 2d) can disrupt *Pseudomonas* biofilm formation to prevent brain invasion in animal models [35]. Thus, further studies to identify additional antigen targets in the biofilm stage of the microbial life cycle together with the addition of Fc-effector functions may enhance the capacity of mAbs to disrupt biofilms.

Preventing transmission

Beyond treating the infected individual, preventing microbial transmission and spread is a public health concern. Intravenous and nebulized mAbs that rapidly distribute into the lungs can reduce viral burden, pathology, and production of infectious SARS-CoV-2 [36,37]. These pharmacodynamic characteristics could be leveraged for other pulmonary pathogens such as *Mycobacterium tuberculosis*, which produces sulfolipids that induce cough in an infected host [38] and could be used as an intriguing target for antibody blockade of transmission.

For vector-borne diseases such as malaria, parasites that cycle through the host must pass through the mosquito for horizontal transmission. A mAb targeting Pf230, a highly conserved malarial antigen, can induce complement activity against *P. falciparum* gametocytes [39]. By killing these gametocytes, this mAb inhibits a critical step of the life cycle: the transfer from an infected human through a mosquito to a new human host (Figure 2a).

Finally, antibodies may also be deployed to prevent vertical transmission. In a study of malarial transmission from mother to baby, the presence of phagocytic antibodies targeting VAR2CSA, a *P. falciparum* antigen expressed on infected erythrocytes and required for placentation, tracked with protection [40]. As IgG is the only isotype that crosses the placenta, strategies that capture these Fc functions could benefit the maternal–fetal dyad. Thus, many antibodies generated during natural infection can be leveraged to prevent not only microbial infection and virulence but also horizontal and vertical transmission (Figure 2e).

Engineering host immunity

The examples highlighted above point to mechanisms and functions that may be incorporated into clinical products for use against microbial diseases. Strategies that take advantage of the diversity of antibody functions conferred by isotype, subclass, and glycosylation observed after natural infection and vaccination together with antibody molecular engineering tools broaden the possibilities for antibody-based therapeutics (Figure 3).

Leveraging different antibody isotypes

The majority of licensed mAbs are human IgG1 [41], but many protective functions arise from intrinsic properties of other isotypes and subclasses (Figure 3). Thus, IgM, IgA, and IgG3 can employ mechanisms of microbial clearance distinct from IgG1.

For IgM, multivalent binding via pentamers and hexamers enhances avidity for microbial targets and is a potent activator of complement. In an intravenous
Diverse antibody-Fc-effector features and functions induced during natural infection have the potential to form the basis of engineering mAbs with ‘supernatural’ functions. (a) In humans, natural diversity in subclass and isotype drives distinct antibody-effector functional profiles. IgG is the predominant isotype detected at the highest level in the blood followed by IgA and IgM. All three isotypes are also detected in the lung after many different infections and vaccinations. Classical multimerization structures are shown through additional scaffolds have been described. Of the IgG subclasses, levels of IgG1 > IgG2 > IgG3 > IgG4 in the blood with the longest hinged IgG3 having the shortest half-life but highest affinity for FcγR and complement. Further variation is observed with IgG alleles where amino acid changes influence CH3–CH3 interactions that impact stability and FcR binding along with downstream immune-effector functions. (b) Through engineering amino acid and glycosylation modifications on Fc domains, mAbs with ‘supernatural’ Fc-effector functional profiles that enhance protection without pathology can be generated. The combinatorial diversity from 80 amino acid and up to 36 glycan variants possible with the selective addition and subtraction of specific sugars provides a breadth of possibilities of antibody-effector functions (bottom key) for each antigen recognized by a mAb.

Bacille Calmette-Guerin vaccine study to prevent *M. tuberculosis* infection in nonhuman primates (NHP), IgM targeting a surface glycopeptidolipid tracks with sterilizing immunity. The protective nature of this isotype is corroborated by data from in vitro *Mtb*-restriction assays using both NHP plasma and an IgM mAb [42]. In malaria, high-avidity IgM can block *Plasmodium* invasion of RBC [43]. In COVID-19, IgM can provide superior SARS-CoV-2-neutralizing activity compared with IgG [44]. For *P. aeruginosa*, IgM can synergize with standard antimicrobials to treat pneumonia [45,46]. Thus, although IgM is usually only transiently induced at the beginning of natural infection, extending its activities through mAbs could enhance our ability to combat some pathogens.

IgA is enriched at mucosal sites and present in circulation, engaging Fcα/μ receptors on macrophages and neutrophils (Figures 1 and 3a). IgA targeting the sporozoite cloned from malaria-resistant individuals reduces liver-parasite burden in mice [47]. Superior binding to sporozoites was observed for IgA compared with the IgG isotype [47]. Similarly, mAbs targeting the *Mtb* antigens Act/HspX [48,49], LAM and HBHA [50], are protective as IgA but not IgG. These studies suggest that the unique features of the IgA Fc domain permitting dimerization and other multimerization may contribute to better inhibitory functions.

While IgG1 is the dominant subclass, IgG3 has the highest binding affinity and is partial to FcγR3A (Figure 3a). The importance of this interaction and downstream effector functions is shown in studies highlighting correlates of protection in HIV [51], malaria [40,52,53], and TB [54,55]. Thus, though IgG3 has the shortest half-life of all the subclasses, augmenting these highly functional antibodies could have broad applications across microbes.

Issues with IgA, IgM, and IgG3 stability, post-translational glycosylation and pharmacokinetics limit translating these promising functions to effective therapeutics. However, modifications of antibodies on the amino acid level to prevent degradation and improve structural stability and development of large-scale cellular-production systems have addressed some of these challenges [56,57].

Engineering ‘supernatural’ antibodies

A parallel approach to developing IgA-, IgM-, and IgG3-based therapeutics is to adapt the human IgG1 Fc domain, crafting ‘supernatural’ mAbs that encompass many properties of natural antibodies in a single molecule. Amino acid [58] and post-translational glycosylation [59] modifications on the Fc domain alter Fc functions (Figure 3b). These Fc variants, such as LS for the malaria C1S43 and L9LS mAbs, increase half-life through binding to FcRn [8,9,60,61]. Additional changes drive specific Fc-mediated immune-cell functions via altered FcR affinity.

Amino acid modifications

Studies identifying amino acids within the Fc domain that mediate binding to FeRs, specifically FcγR2A and/or FcγR3A, have demonstrated its critical nature in protection [62–66]. However, the specific immune-cell functions required for protection remain unclear and are likely unique for each different pathogen. A higher-throughput engineering platform for amino acid modification, Rationally Engineered and Functionally Optimized Recombinant Monoclonal antibodies (REFORM), generates up to 80 different Fc variants for a given Fab carrying a range of functions to precisely define mechanisms of protection [67] (Figure 3b). Modification of an Ebola-specific antibody using the REFORM platform identified two Fc variants with enhanced complement activation and phagocytosis able to completely protect against death and disease in a mouse model of infection [67]. When applied to TB, REFORM of α-glucan-specific mAb found that IgG2 mediated restriction of *Mtb* in a whole-blood assay through neutrophils [68]. Because the Fab domain impactsFc binding, the use of REFORM early in mAb-discovery pipeline for each antigen specificity could help identify unexpected Fc functions that control infection. Though these antibody functions may not naturally occur in the context of infection, through mAbs, they can be leveraged against the pathogen.

Glycans

Beyond amino acid composition, engineered cell lines and enzymes have been used to modify antibody glycans that enhance effector functions [69–71] (Figure 3b). In particular, afucosylated IgG (i.e. those lacking fucose) have significantly increased affinity for FcγR3A/B and its
effectors, including antibody-dependent cellular cytotoxicity (ADCC). Afucosylated mAbs have increased protective efficacy against the highly pathogenic Ebola virus [72]. In addition, galactosylated but not sialylated S. aureus-specific mAb 3F6 conferred in vivo protection against sepsis via CIq recruitment [73]. Recent studies suggest that galactosylation increases hexamerization and subsequent complement activation [74]. Thus, enhancement of 3F6 via galactosylation could be due to enhancement of Fc-effector functions as opposed to binding to antigen. In polyclonal antibodies, sialic acid has been shown to enhance vaccine responses [75], potentially through complement activation [76]. Sialic acid may also have an anti-inflammatory effect on intravenous immunoglobulin, a polyclonal IgG pooled from thousands of human donors to treat rheumatologic disorders [77,78]. As such, hypersialylated polyclonal IgG M254 is currently in clinical trials for the autoimmune disorder immune thrombocytopenic purpura. Thus, glycan structures on the Fc domain will be important in the design of future mAbs for the treatment of infectious disease.

Potential for antibody-mediated enhancement of disease

Functions that enhance protection without pathology are critical for effective and safe therapies. Antibody-dependent enhancement (ADE) occurs in Dengue virus infection where afucosylated antibodies are linked to more severe hemorrhagic fever [79,80]. Similarly, ADE may explain increased disease associated with a 1960s formalin-inactivated respiratory syncytial virus vaccine [81] and is hypothesized to be the reason why increased mortality was observed to be associated with S. aureus V710 vaccination [82]. ADE has been a concern for COVID-19 based on observations that afucosylated IgG increases with severe disease [79,83] and transfer of polyclonal IgG from patients into human FeR transgenic mice leads to pathology [66]. Strikingly, there have been no reports of clinically relevant mAb-induced ADE, despite its prolific use. mAbs that mediate ADE in vitro paradoxically correlated with decreased microbial burden and increased protection in vivo [12]. Moreover, Fc engineering of potently neutralizing SARS-COV-2-specific mAbs to enhance binding to hamster and human FcRs improved therapeutic efficacy in hamster and human FeR transgenic mice [66]. As these data show the complexity of ADE, further understanding its mechanisms will aid in building supernatural mAbs to confer protection without pathology.

Where we can go

Tailoring each approach to the unique microbial lifecycle and critical steps of clinically relevant disease pathology is key to harnessing the potential of antibodies. Emerging concepts and technologies are enabling us to capture these nuances and even redesign mAbs previously thought to be ineffective into more functional therapies. In addition, capturing antibody functions that are associated with lifelong protection from childhood infection or vaccination against measles, mumps, chicken pox, yellow fever, and polio may offer mechanisms of protection that could be leveraged in mAbs. Further, immune mechanisms by which subsets of individuals are phenotypically protected from disease such as HIV-elite controllers, highly HIV-exposed seronegative, or TB resisters, could be harnessed to benefit a greater population [84–87].

The antibody functions described here are among the most well-explored. Noncanonical and newly discovered receptors that bind to the Fc domain (TRIM21, DC-SIGN, pIGR, transferrin, FcRL, etc.), report of FcR expression on immune cells not previously appreciated, such as T cells and links to additional immune activities (autophagy, inflammasome activation, and trogocytosis) expand the breadth of antibody functions beyond the scope of this review. Moreover, we are just beginning to understand how Fab antigen and Fc–FcR interact together through multiplexing to provide microbial-specific antibody-effector functions. Finally, antibodies and antibody-like proteins from chickens, camels, lamprays, and sharks amplify the capacity to bind antigen, penetrate tissue, and maintain stability. Across all species, antibodies continue to surprise us with each new discovery bringing opportunities to build effective and safe tools against current and new pathogens alike.

Author contributions

Patricia Grace: Conceptualization, Visualization, Writing – original draft, Writing – review & editing.

Bronwyn Gunn: Conceptualization, Visualization, Writing – original draft, Writing – review & editing.

Lenette Lu: Supervision, Conceptualization, Visualization, Writing – original draft, Writing – review & editing.

Conflict of interest statement
The authors declare no conflicts of interests.

Data Availability
No data were used for the research described in the article.

Acknowledgements
This work is supported by Harvard School of Public Health Yerby Research Fellowship (to P.S.G), NIH/NCI U54CA260881 (to B.M.G), NIH/NIAID U19AI142777 (to B.M.G), NIH/NIAID 1U01AI151378 (to B.M.G), and NIH/NIAID 5R01AI158585-02 (to L.L.L.). We are forever grateful to Todd J. Suscovich for his influence on our scientific development at the intersection of antibodies and infectious disease.
References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:
• of special interest
•• of outstanding interest.

1. Smith SA, Crowe JE Jr.: Use of human hybridoma technology to isolate human monoclonal antibodies. Microbiol Spectr 2015, 3:A00-0072-2014.

2. Shiakolas AR, Kramer KJ, Johnson NW, Wall SC, Suryadevara N, Wrapp D, Periasamy S, Pilewski KA, Raju N, Nargi R, et al.: Efficient discovery of SARS-CoV-2-neutralizing antibodies via B cell receptor sequencing and ligand blocking. Nat Biotechnol 2022,1270-1275.

Here, target-ligand blocking is combined with B-cell receptor sequencing (linking B-cell receptor to antigen specificity through sequencing LIBRA-seq) to enable the high-throughput discovery of new neutralizing antibodies that prevent the binding of the SARS-CoV-2 spike protein to the dipeptidyl-peptidase-4 converting enzyme receptor.

3. Ferrara F, Erasmus MF, D’Angelo S, Leal-Lopes C, Teixeira AA, Choudhary A, Honnen W, Calianese D, Huang D, Peng L, et al.: Author correction: a pandemic-enabled comparison of discovery platforms demonstrates a naive antibody library can match the best immune-sourced antibodies. Nat Commun 2022, 13:2097.

4. Tiller T, Meffe E, Yurasov S, Tsuji M, Nussenzevug MC, Wardemann H: Efficient generation of monovalent antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods 2008, 329:112-124.

5. Bornholdt ZA, Turner HL, Murin CD, Li W, Sok D, Souders CA, Piper AE, Goff A, Shamblin JD, Wollen SE, Chakraborty P, Bajeli S, Kaushal D, Radotra BD, Kumar A: Amino acid engineering to block antibody-Fc binding to the Fc receptor. J Immunol Methods 2021, 53:2879-2886.

SARS-CoV-2 replication in nonhuman primates and mice. These observations are consistent with the absence of clinically relevant findings of ADE of disease in patients treated with mAbs.

6. Sause WE, Buckley PT, Strohl WR, Lynch AS, Torres VJ: Antibody-based biologics and their promise to combat Staphylococcus aureus infections. Trends Pharmacol Sci 2016, 37:231-241.

7. Weisman LE, Thackray HM, Garcia-Prats JA, Nesin M, Schneider JH, Fretz J, Kokai-Kun JF, Mond JJ, Kramer WG, Fischer GW: Phase 1/2 double-blind, placebo-controlled, dose escalation, safety, and pharmacokinetic study of pagibaximab (BSYX-A110), an antistaphylococcal monovalent antibody for the prevention of staphylococcal bloodstream infections, in very-low-weight neonates. Antimicrob Agents Chemother 2009, 53:2879-2886.

8. Weisman LE, Thackray HM, Steinhorn RH, Walsh WF, Lassiter HA, Dhanireddy R, Brozanski BS, Palmer KG, Trautman MS, Escobedo M, et al.: A randomized study of a monoclonal antibody (pagibaximab) to prevent staphylococcal sepsis. Pediatrics 2011, 128:271-279.

9. Joller N, Weber SS, Muller AJ, Sporri R, Selchow P, Sander P, Hilbi H, Oxenius A: Antibodies protect against intracellular bacteria by Fc receptor-mediated lysosomal targeting. Proc Natl Acad Sci USA 2010, 107:20441-20446.

10. Orth P, Xiao L, Hernandez LD, Reichert P, Sheth PR, Beaumont M, Yang X, Murgolo N, Ermakov G, Dinunzio E, et al.: Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography. J Biol Chem 2014, 289:18008-18021.

11. Wilcox MH, Gerdin DN, Poxton IR, Kelly C, Nathan R, Birch T, Cornely OA, Rahav G, Bouza E, Lee C, et al.: Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med 2017, 376:305-317.

12. Vu TT, Nguyen NTQ, Tran VG, Gras E, Mao Y, Jung DH, Tkaczyk C, Selman BR, Diep BA: Protective efficacy of monoclonal antibodies neutralizing alpha-hemolysin and bicomponent leukocidins in a rabbit model of Staphylococcus aureus necrotizing pneumonia. Antimicrob Agents Chemother 2020, 64:e02220-19.

13. Sarafia FB, de Araujo ACC, de Araujo AEV, Senna JPM: Monoclonal antibody anti-PBP2A protects mice against MRSA (methicillin-resistant Staphylococcus aureus) infections. PLoS One 2019, 14:e0225752.

14. Ciofu O, Bagge N, Hoiby N: Antibodies against beta-lactamase can improve cephalosporin treatment of lung infection with beta-lactam-resistant Pseudomonas aeruginosa in a rat model of chronic lung infection. APMIS 2002, 110:861-891.

15. Johansen MD, Hermann JL, Kremer L: Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol 2020, 18:392-407.

16. Chakraborty P, Bajeli S, Kaushal D, Radotra BD, Kumar A: Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis. Nat Commun 2021, 12:1606.

17. Hall CW, Mah TF: Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2017, 41:276-301.
28. Estelles A, Woischning AK, Liu K, Stephenson R, Lamongido E, Nguyen D, Zhang J, Heidecker M, Yang Y, Simon RJ, et al.: A high-affinity native monoclonal antibody potentiates antibody efficacy in a mouse implantation model. *Antimicrob Agents Chemother* 2016, 60:2292-2301.

29. Xiong YQ, Estelles A, Liu K, Stephenson R, Lomongsod E, Novotny LA, Goodman SD, Bakaletz LO: *A human biofilm-disrupting monoclonal antibody potentiates antibody efficacy in rodent models of both Staphylococcus aureus and Acinetobacter baumanii infections*. *Antimicrob Agents Chemother* (2010) 2017, 61:e00904-17.

30. Novotny LA, Goodman SD, Bakalez LO: Targeting a bacterial DNABII protein with a chimeric peptide immunogen or humanised monoclonal antibody to prevent or treat recalcitrant biofilm-mediated infections. *EBioMedicine* 2020, 59:102867.

31. Ryser S, Tenorio E, Estelles A, Kauvar LM: Developing a multivariate prediction model of antibody features associated with protection of malaria-infected pregnant women from placental malaria. *Elife* 2021, 10:e65776. A systems serology approach was used to define immune correlates of protection against placental malaria infection in a cohort of women in a malaria-endemic area, Papua New Guinea. Multivariate analyses found that plasmoerythrocytic activity and IgG3 levels against VAP2CSA predicted protection against placental infection, highlighting that functional antibodies may play a critical role at the maternal–fetal interface.

32. Kaplan H, Chenoweth A, Crescioli S, Reichert JM: *Antibodies to watch in 2022*. *Mabs* 2022, 14:2014296.

33. Irvine EB, O’Neil A, Darrah PA, Shin S, Choudhary A, Li W, Honnen W, Mehra S, Kaushal D, Gideon HP, et al.: Robust IgM responses following intravenous vaccination with Bacille Calmette-Guerin associate with prevention of *Mycobacterium tuberculosis* infection in macaques. *Nat Immunol* 2021, 22:1515-1523.

34. Thouvenel CD, Fontana MF, Netland J, Krishnamurty AT, Takehara KK, Chen Y, Singh S, Miura K, Ketajy GJ, Lynch EM, et al.: Multimeric antibodies to Plasmodium falciparum coat antigen memory B cells restrict Plasmodium parasites. *J Exp Med* (2021) 2021, 218:e20200942.

35. Ku Z, Xie X, Hinton PR, Liu D, Ye X, Murato AE, Ng DC, Biswas S, Zou J, Liu Y, et al.: Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. *Nature* 2021, 591:718-723.

36. Secher T, Fas S, Fauconnier L, Mathieu M, Rutsch C, Ryffel B, Rudolf M: The anti-Pseudomonas aeruginosa antibody panobacumab is efficacious on acute pneumonia in neutrophilic mice and has additive effects with meropenem. *PLoS One* 2013, 8:e73396.

37. Que YA, Lazar H, Wolff M, Francois B, Laterre PF, Mercier E, Garbinio J, Pagani JL, Revell JP, Mus E, et al.: Assessment of panobacumab as adjunctive immunotherapy for the treatment of nosocomial *Pseudomonas aeruginosa* pneumonia. *Eur J Clin Microbiol Infect Dis* 2014, 33:1861-1867.

38. Tan J, Cho H, Pholcharee T, Pereira LS, Doumbo S, Doumtabe D, Tran AC, Diogo GR, Paul MJ, Copland A, Hart P, Mehta N, Irvine KB001-A, a novel anti-inflammatory, found to be safe and well-tolerated in healthy, young, and older individuals. *Eur J Immunol* 2021, 51:2292-2301.

39. Tran AC, Diogo GR, Paul MJ, Copland A, Hart P, Mehta N, Irvine BS, Musa D, Drake PM, Panobacumab as adjunctive immunotherapy for the treatment of nosocomial *Pseudomonas aeruginosa* pneumonia. *Eur J Clin Microbiol Infect Dis* 2014, 33:1861-1867.

40. Balu S, Reljic R, Lewis MJ, Pleass RJ, McIntosh R, van Kooten C, Mira S, Dugast AS, Schoen MK, Rolland M, Suscovich TJ, et al.: Polyfunctional Fc-effector profiles mediated by IgG subclass-specific human IgM memory B cells restrict Plasmodium parasites. *J Exp Med* (2021) 2021, 218:e20200942.

41. Grace, Gunn and Lu
54. Roy Chowdhury R, Vallania F, Yang Q, Lopez Angel CJ, Darboe F, Penn-Nicholson A, Rozot V, Nemes E, Malterbe ST, Ronacher K, et al.: A multi-cohort study of the immune factors associated with \textit{M. tuberculosis} infection outcomes. Nature 2018, 560:644-648.

55. Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH, Grace PS, Schoen MK, Tafesse F, Martin C, Leung V, et al.: A functional role for antibodies in tuberculosis. \textit{Cell} 2016, 167:433-443 e414.

56. Saito S, Namisaki H, Hiraishi K, Takahashi N, Iida S: A stable engineered human IgG3 antibody with decreased aggregation during antibody expression and low pH stress. \textit{Protein Sci} 2019, 28:900-909.

57. de Sousa-Pereira P, Wood JM: IgA: structure, function, and developability. \textit{Antibodies} (4) 2019, 8:57.

58. Wang X, Mathieu M, Brezski RJ: IgG Fc engineering to modulate antibody effector functions. \textit{Protein Cell} 2018, 9:63-73.

59. Jefferis R: Glycosylation as a strategy to improve antibody-based therapeutics. \textit{Nat Rev Drug Discov} 2009, 8:226-234.

60. Zalevsky J, Chamberlain AK, Horton HM, Kariki S, Leung IW, Saprople TJ, Lazar GA, Roopenian DC, Desjarlais JR: Enhanced antibody half-life improves in vivo activity. \textit{Nat Biotechnol} 2010, 28:157-159.

61. Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S, Starovasnik MA, Lowman HB: Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. \textit{J Immunol} 2009, 182:7663-7671.

62. Bourzanos S, Klein F, Pietzsch J, Seaman MS, Nussenzweig MC, Ravetch JV: Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. \textit{Cell} 2014, 158:1243-1253.

63. DiLillo DJ, Ravetch JV: Differential Fc-receptor engagement drives an anti-tumor vaccine effect. \textit{Cell} 2015, 161:1035-1045.

64. DiLillo DJ, Tan GS, Palese P, Ravetch JV: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcgammaR interactions for protection against influenza virus in vivo. \textit{Nat Med} 2014, 20:143-151.

65. Bourzanos S, DiLillo DJ, Goff AJ, Glass PJ, Ravetch JV: Differential requirements for FcgammaR engagement by protective antibodies against \textit{Ebola} virus. \textit{Proc Natl Acad Sci USA} 2019, 116:20054-20062.

66. Yamin R, Jones AT, Hoffmann HH, Schafer A, Kao KS, Francis RL, Sheahan TP, Baric RS, Rice CM, Ravetch JV, et al.: Fc-engineered antibodies with improved anti-SARS-CoV-2 efficacy. Nature 2021, 599:465-470.

Amino acid modification that enhances the function of SARS-CoV-2 monoclonals currently in clinical use do not cause ADE of disease. These findings suggest that Fc amino acid modifications can further increase efficacy of current therapies.

67. Gunn BM, Lu R, Stein MD, Ilinykh PA, Huang K, Atyeo C, Schendel SL, Kim J, Cain C, Roy V, et al.: A Fc engineering approach to define functional humoral correlates of immunity against \textit{Ebola} virus. \textit{Sci Adv} 2021, 5:ea5-828 ea518.

A high-throughput platform to generate a library of Fc modified antibodies with identical Fab domains. The platform was used to test the role of specific Fc-effector functions in post-exposure protection against the \textit{Ebola} virus. The authors find that antibodies with complement and phagocytic activity provided complete protection against disease and death in a lethal mouse model of infection.

68. Irvine EB, Peters JM, Lu R, Grace PS, Sixsmith J, Wallace A, Schneider M, Shin S, Karpinski W, Hsiao JC, et al.: Fc-engineered antibodies leverage neutrophils to drive control of \textit{Mycobacterium tuberculosis}. \textit{bioRxiv} 2022, https://doi.org/10.1101/2022.05.01.490220

69. Arnold JN, Wormald MR, Sim RB, Ruddy PM, Dwek RA: The impact of glycosylation on the biological function and structure of human immunoglobulins. \textit{Ann Rev Immunol} 2007, 25:21-50.

70. Dekkers G, Plomr R, Koelman CA, Visser R, van Horsten HH, Sandig V, Rispens T, Wurher M, Vidarsson G: Multi-level glyco-engineering techniques to generate IgG with defined Fc-glycans. \textit{Sci Rep} 2016, 6:36964.

71. Thomann M, Reckermann K, Reusch D, Prasser J, Tejada ML: Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies. \textit{Mol Immunol} 2016, 73:69-75.

72. Bornholdt ZA, Herbert AS, Mire CE, He S, Cross RW, Wee AZ, Abelion DM, Geisbert JB, James RM, Rahim MN, et al.: A two-antibody pan-Ebolavirus cocktail confers broad therapeutic protection in ferrets and nonhuman primates. \textit{Cell Host Microbe} 2019, 25:49-58 e45.

73. Chen X, Shi M, Tong X, Kim HK, Wang LX, Schneewind O, Misasiakas D: Glycosylation-dependent opsonophagocytic activity of staphylococcal protein A antibodies. \textit{Proc Natl Acad Sci USA} 2020, 117:22992-23002.

The authors use enzymes to modify antibody-Fc-glycans and demonstrate that the protection mediated by the \textit{S. aureus}-specific mAb 3F6 is not dependent on sialic acid, but the presence of galactose.

74. van Osch TLJ, Nota J, Derksen NIL, van Mierlo G, van der Schoot CE, Wurher M, Rispens T, Vidarsson G: Fc galactosylation promotes hexamerization of human IgG1, leading to enhanced classical complement activation. \textit{J Immunol} 2021, 207:1545-1554.

75. Wang TT, Maarmy J, Tan GS, Bournazos S, Davis CW, Krammer F, Schlesinger SJ, Palese P, Ahmed R, Ravetch JV: Anti-HA glycoforms drive B cell affinity selection and determine influenza vaccine efficacy. Cell 2015, 162:160-169.

76. Lofano G, Porrino JS, Yu WH, Fox JM, Dugast AS, Ackerman ME, Suscovich TJ, Weiner J, Barouch D, et al.: Antibody-dependent enhancement, a possible mechanism in dengue virus infections after cardiothoracic surgery: a randomized trial. \textit{JAMA} 2013, 310:117-126.

77. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV: Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. \textit{Science} 2008, 320:373-376.

78. Kaneko Y, Nimmerjahn F, Ravetch JV: Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. \textit{Proc Natl Acad Sci USA} 2019, 116:20054-20062.

79. Bourzanos S, Vo HTM, Duong V, Auerswald H, Ly S, Sakuntabhai A, Dussart P, Cantart T, Ravetch JV: Antibody fucosylation predicts disease severity in secondary dengue infection. \textit{Science} 2021, 372:1102-1105.

80. Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, Bhaumik SK, Pinsky BA, Chokephaibulkit K, Onlamoon N, Mittman P, Pattanapanyasat K, et al.: IgG antibodies to dengue enhanced for FcgammaRIIA binding determine disease severity. \textit{Science} 2017, 355:395-398.

81. Ponnuraj EM, Springer J, Hayward AR, Wilson H, Simes OA: Antibody-dependent enhancement, a possible mechanism in augmented pulmonary disease of respiratory syncytial virus in the Bonnet monkey model. \textit{J Infect Dis} 2003, 187:1257-1263.

82. Fowler VG, Allen KB, Moreira ED, Moustafa M, Isogro F, Boucher HW, Corey GR, Carmeli Y, Betts R, Hartzel JS, et al.: Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. \textit{JAMA} 2013, 309:1368-1378.

83. Larsen MD, de Graaf EL, Sonneveld ME, Plomp HR, Nota J, Hoepel W, Chen HJ, Linty F, Visser R, Brinkhaus M, et al.: Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. \textit{Science} 2021, 371:eabc8378.

84. Lu LL, Smith MT, Yu KQ, Luedemann C, Suscovich TJ, Grace PS, Cain A, Yu WH, McKitrick TR, Lauffenburger D, et al.: IFN-gamma-independent markers of Mycobacterium tuberculosis exposure. \textit{Nat Med} 2019, 25:977-987.
85. Freund NT, Wang H, Scharf L, Nogueira L, Horwitz JA, Bar-On Y, Golijanin J, Sievers SA, Sok D, Cai H, et al.: Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci Transl Med (373) 2017, 9:eaal2144.

86. Ackerman ME, Crispin M, Yu X, Baruah K, Boesch AW, Harvey DJ, Dugast AS, Heizen EL, Ercan A, Choi I, et al.: Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J Clin Investig 2013, 123:2183-2192.

87. Gluchowski M, Yu X, Abrenica B, Yao S, Kimani J, Douville RN, Ball TB, Su RC: Transient increases in inflammation and proapoptotic potential are associated with the HESN phenotype observed in a subgroup of Kenyan female sex workers. Viruses (3) 2022, 14:471.