Focusing on long-term complications of mid-urethral slings among women with stress urinary incontinence as a patient safety improvement measure

A protocol for systematic review and meta-analysis

Yi-Hao Lin, MDa,b, Cheng-Kai Lee, MDc, Shuenn-Dyh Chang, MDa,b, Pei-Chun Chien, NPc, Yu-Ying Hsu, NPc, Ling-Hong Tseng, MDc.*

Abstract

Background: There are 3 different types of mid-urethral sling, retropubic, transobturator and single incision performed for women with stress urinary incontinence. Prior studies comparing these three surgeries merely focused on the successful rate or efficacy. But nevertheless, what is more clinically important dwells upon investigating postoperative complications as a safety improvement measure.

Methods: A systematic review via PubMed, Ovid, and the Cochrane Database of Systematic Review and studies were applied based on the contents with clearly identified complications. Selected articles were reviewed in scrutiny by 2 individuals to ascertain whether they fulfilled the inclusion criteria: complications measures were clearly defined; data were extracted on study design, perioperative complications, postoperative lower urinary tract symptoms, postoperative pain, dyspareunia, and other specified late complications.

Results: A total of 55 studies were included in the systemic review. Perioperative complications encompassed bladder perforation, vaginal injury, hemorrhage, hematoma, urinary tract infection. There were postoperative lower urinary tract symptoms including urine retention and de novo urgency. Furthermore, postoperative pain, tape erosion/ extrusion, further stress urinary incontinence surgery, and rarely, deep vein thrombosis and injury of inferior epigastric vessels were also reported.

Conclusions: Complications of mid-urethral sling are higher than previously thought and it is important to follow up on their long-term outcomes; future research should not neglect to address this issue as a means to improve patient safety.

Abbreviations: LUTS = lower urinary tract symptoms, MUS = midurethral sling, OAB = overactive bladder, PISQ = Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire, RCT = randomized controlled trial, RP = retropubic approach, SI = single incision, SUI = stress urinary incontinence, TO = transobturator approach, TOT = transobturator tape using the out–in technique, TVT = tension-free vaginal tape using the retropubic technique, TVT-O = transobturator tape using the in–out technique, UTI = urinary tract infection.

Keywords: complications, female, mesh, midurethral sling, slings, urinary incontinence
1. Introduction

Stress urinary incontinence (SUI) is urinary incontinence caused by increasing intra-abdominal pressure increases, such as on effort or exertion, such as cough or sneezing. SUI affects many women, especially the aged and although it is not life-threatening, SUI can compromise social, economic functions and psychology of affected individuals. Treatment for SUI can begin with conservative means including lifestyle modification, physiotherapy (pelvic floor muscle training or using incontinence pessary), or injection of periurethral materials, whereas surgical treatment may be considered should conservative management fail.

Among all kinds of surgeries for SUI, open abdominal retropubic suspension, laparoscopic retropubic suspension, anterior vaginal repair, needle suspensions, and traditional suburethral sling were once preferred surgical interventions yet become less in use because of lower effectiveness and higher risk of postoperative complications. With the evolution of surgical methods, mid-urethral sling (MUS) is the current mainstay surgical treatment of SUI. There are 3 different types of MUS, retropubic (RP), transobturator (TO), and single incision (SI).

2. Materials and methods

2.1. Literature search

In September 2020, we applied the optimized literature search algorithm Etblast (http://etest.vbi.vt.edu/etblast3) to retrieve relevant studies on the topic of MUS procedures for women with SUI from the MEDLINE. We utilized both “MeSH” and “free text” protocols as complex search strategy. Specifically, we used the MeSH terms “urinary incontinence,” “midurethral slings,” and “complications” in combination. Multiple “free text” searches were performed by using the following terms singly and in combination: midurethral sling, retropubic, TVT, tension free tape, transobturator, transobturator tape, trans-obturator tape using the out–in technique (TOT), TVT-O, Monarc, suprapubic arc, and single incision sling, Needleless and Adjust. Additionally, references from retrieved publications were checked to find extra articles on the topic. Published articles from 2009 to September 2020 were selected for analysis.

2.2. Selection criteria

The collected searches were subject to the following limits: full text available, meta-analysis, randomized controlled trial (RCT), systematic review, review; female participants >18 years diagnosed with SUI; the outcomes should include postoperative complications of MUS and patients’ subjective cure rate and objective cure rate; 10 years, species (humans), sex (female), language (English). The “Find Expert” and “Find Journal” functions of the eTBLAST suggested published relevant studies to the query. References and reports cited in identified research articles were also examined.

2.3. Data extraction and quality assessment

Two authors (LYH and LCK) assessed the abstracts and full texts to select the articles relevant to the review topic by the following criteria (Fig. 1): they were studies (eg, meta-analysis, RCT, systematic review, review) of MUS for SUI; complications measures were clearly defined. All follow-up periods were available. Subsequently, we evaluated those articles and abstracted the following information: study design, type of intervention, number of patients, follow-up in months, perioperative complications (defined as vascular or bladder/vaginal injury, hematoma, infection), postoperative lower urinary tract symptoms (including storage and voiding), postoperative pain, dyspareunia, sexual dysfunction, and late complications such as

Studies were searched in Medline, Embase, Pubmed

(n = 378)

Studies irrelevant were excluded

(n = 297)

Studies underwent full-text reading (n = 81)

Studies failed to meet inclusion criteria

(n = 26)

Studies were included in the systemic review

(n = 55)

Figure 1. Flowchart of study selection in the systematic review.
tape erosion and/or extrusion. The study did not take in the TVT-Secur (ETHICON) and the MiniArc (ASTORA) which were withdrawn or recalled from the market. Since this study was a systematic review, it was exempted from human research review committee approval.

3. Results

Our search identified 378 published articles, of which 323 were excluded on the basis of title or abstract due to procedures other than MUS in retropubic, transobturator or single incision route, or lack of discussions about complications. Among the remaining 55 articles, 35 were RCTs, 12 were systematic review and meta-analysis, and 8 were reviews. Since no reported RCT focused on complications of MUS, effect estimate statistics are not suitable for meta-analysis so a meta-analysis cannot proceed.

The 55 articles were summarized chronologically in Table 1 with detailed information on study design, intervention and comparator, measurements of reported complications and follow-up duration that were listed by the following order: RCT, systematic review/meta-analysis and review.[111–65]

Perioperative complications were summarized in Table 2 for comprehensive comparing in percentages between the groups. All collected studies were listed in the reference section.

4. Discussion

The present study used the data of 55 studies which composed of 4188 participants to evaluate the complications of MUS for women with SUI.

Presently, the most popular surgical methods for SUI are minimally invasive techniques using retropubic, transobturator, and single incision approaches, their names indicating their distinct variation. The advantages of these techniques include short operation time, less hospital stay, and thus rapid recuperation, allowing patients earlier returning to their daily work activities. However, complication of these procedures is one of the most important factors affecting patients’ safety, which is less addressed or under reported.[66,67]

In our review, the RP-MUS was associated with a high incidence of perioperative complications; among them, bladder perforation (0.8%–11.4%), hemorrhage (1.6%), hematoma (0.7%–5.5%), urine retention (0.8%–11.4%), and de novo urgency (0%–29%), whereas deep vein thrombosis (2.5%) and injury of inferior epigastric vessels (2.2%) were rarely reported.

Bladder perforation was a common complication observed during the MUS procedures where the blind retropubic passage of trocars between the vagina and the abdomen is responsible for a high bladder perforation rate and sometimes bowel and major vascular injuries. In contrast, the TO and SI-MUS avoided the retropubic passage, thereby reducing the risk of bladder and bowel injury. Once bladder perforation was recognized, the trocar should be removed and replaced immediately. According to the size of the injury, one might consider draining the bladder for 24 to 48 hours with an indwelling catheter. Hematoma was caused by extravascular pooling of blood within tissue due to vascular injury and with the same reason for bladder perforation, the blind retropubic passage caused a higher incidence of vessel injury. In our department, we routinely performed suprapubic ultrasonography after continence taping procedures (the RP-MUS) (Fig. 2) for detecting any concealed hematoma. It is a procedure noninvasive, without any radiation hazard, and easy to apply. It is of paramount importance to detect subcutaneous or retropubic hematoma left unrecognized by the surgeon.[68]

Nevertheless, in spite of circumscribing the space of Retzius and thus reducing the risk of bladder injury, the TO and SI-MUS might potentially cause obturator neurovascular bundle injury and high hematoma. Luckily, conservative management would be sufficient in most cases.

Voiding dysfunction, which results in urinary retention and increased postvoid residual volume, might compromise a patient life quality. The incidence of voiding dysfunction was higher in the RP-MUS as a sling inserted in this manner has a propensity to cause more obstruction owing to a roughly vertical sling axis in relation to the urethral axis.[69] In contrast, the TO and SI-MUS create a more horizontal sling axis. Consequently, TO and SI-MUS cause less circumferential compression of the urethra, which is consistent with a sling that is less obstructive[66] and is a distinct advantage. Overall, overactive bladder (OAB) and obstruction make up the most complications and this information should be explained to patients, so they can pay attention to the need for a long-term follow-up.

Among MUS, TO-MUS was associated with the highest incidence in peri/post-operative complications, including vaginal injury (0.8%–15%), urinary tract infection (UTI) (1%–33%), lower urinary tract symptoms (LUTS) (1%–33%), post-op pain (1.5%–26.7%), tape erosion/ extrusion (1.9%–10%), and further SUI surgery (1.4%–19.6%). Vaginal injury (including bleeding and laceration) and post-op pain were encountered more often in the TO-MUS because the tape is passed beneath the pubic bone through the groin. During passage of trocars through the TO route, it may cause mechanical injury to tissues (muscles, tendons, and nerves) and results in adductor muscle injury, osteitis pubis, obturator/groin abscess, inflammation and edema or nerve entrapment of the anterior branch of the obturator nerve, and structural adhesions.[70] Regarding the persistent groin or thigh pain, we had some experiences in handling this kind of complications; if conservative treatments failed, we would usually perform a urethrolysis procedure or add a Martius flap interposition for relief of the tension.

UTI, in this review, included culture proven, empiric infection, and recurrent infection. Recurrent UTI was defined as at least 2 documented urinary tract infections in the first 3 months postoperatively.[71] Treatment of acute UTI is highly effective and the occurrence of acute cystitis was considered a minor postoperative complication. But management of recurrent episodes of UTI is, however, difficult and may require long-term antibiotics coverage or even reoperation.[72] Late complications such as tape extrusion and erosion, in our review, were more frequent in the TO-MUS. Extrusion may be associated with symptoms affecting daily life: discharge, discomfort, pain, or dyspareunia. Management of extrusion can range from observation to more aggressive surgical intervention. As to tape erosion into the urethra and even the bladder, open excision may be a preferred choice.

Postoperative LUTS are the common most among all the complications of MUS. LUTS include de novo overactive bladder and de novo urgency with/ without incontinence. The development of OAB symptoms after anti-incontinence surgery[71] has a severe impact on the quality of life (QOL).[73] It is also known that urgency and urgency urinary incontinence worsen quality of life more than SUI.[69] Women who develop post-surgical OAB and feel worse than their pre surgical status should be carefully evaluated.
Table 1
Summary of chronological reported studies.

Study	Design	Intervention	Comparison	Follow-up duration	Complications
Palos et al.[11] 2018	RCT	TOT 47	RP-MUS 45	12 mo	Bladder perforation: RP 2.5%, TO 2.4%
					Urinary infection: RP 29.3%, TO 30%
					Deep vein thrombosis: RP 2.5%, TO 0%
					Tape extrusion: RP 0%, TO 2.4%
					Urinary retention: RP 7.5%, TO 2.4%
					De novo urgency: RP 0%, TO 2.4%
					Dyspareunia: RP 2.5%, TO 0%
					Complications: Bladder perforation: RP 2.5%, TO 2.4%
					Urinary infection: RP 29.3%, TO 30%
					Deep vein thrombosis: RP 2.5%, TO 0%
					Tape extrusion: RP 0%, TO 2.4%
					Urinary retention: RP 7.5%, TO 2.4%
					De novo urgency: RP 0%, TO 2.4%
					Dyspareunia: RP 2.5%, TO 0%
Tammaa et al.[12] 2018	RCT	TVT-O 170	TVT 161	60 mo	Complications: TVT 3%, TVT-O 3%
					Urinary infection: TVT 21.2%, TVT-O 18.2%
					LUTS: TVT 2.8%, TVT-O 7.9%
					Tape-related pain: TVT 1.4%, TVT-O 2.7%
					Detrusor overactivity: TVT 6.4%, TVT-O 6.4%
Dogan et al.[13] 2018	RCT	Si-MUS 84	TVT-O 41	18 mo	Palpable mesh fiber on anterior vaginal wall in Si group (2.4%), else not mentioned
Pascom et al.[14] 2018	RCT	Si-MUS 69	TOT 61	36 mo	Complications: Further SUI surgery: Si 17%, TOT 4.9%
					Tape exposure: Si 4.9%, TOT 4.9%
					De novo urgency: Si 12.2%, TOT 4.9%
Schellart et al.[15] 2018	RCT	TOT 75		36 mo	Reintervention: 5.2%
					Unintentional perforation: 5.2%
					Post voiding residual: 1%
					Dyspareunia: 0%
Tieu et al.[16] 2017	RCT	TOT 42		12 mo	De novo urgency: 0.7%
					Repeat SUI surgery: 12%
					Vaginal mesh exposure: 6.1%
Fernandez et al.[17] 2017	RCT	Si-MUS 87	TOT 96	12 mo	De novo urgency: Si 10.1%, TOT 12.5%
					Persistent urgency: Si 20.2%, TOT 11.5%
					Difficulty urinating: Si 0%, TOT 2%
					Mesh extrusion: Si 4.5%, TOT 7.3%
					UTI: Si 2.2%, TOT 1%
Zhang et al.[18] 2016	RCT	TVT 58	TVT-O 62	95 mo	Complications: Postoperative urinary difficulty: TVT 10%, TVT-O 2.9%
					De novo voiding symptoms: TVT 20.7%, TVT-O 11.3%
					De novo storage symptoms: TVT 12.1%, TVT-O 9.7%
					Recurrent UTI: TVT 8.6%, TVT-O 4.8%
					De novo dyspareunia: TVT 5.2%, TVT-O 8.1%
					Tape exposure: TVT 3.5%, TVT-O 8.1%
					De novo storage symptoms: TVT 5%, TOT 14.9%
					De novo voiding symptoms: TVT 12.5%, TOT 14.9%
					Mesh complication: TVT 5%, TOT 14.9%
					Urine retention requiring intervention: TVT 2%, TOT 7%
					Vaginal mesh exposure: TVT 6%, TOT 4%
					Vaginal tape erosion: TVT 6%, TOT 4%
					De novo urgency: TVT 20.7%, TVT-O 11.3%
					De novo dyspareunia: TVT 8.6%, TVT-O 4.8%
					Reoperation for SUI: TVT 5.2%, TVT-O 8.1%
					Mesh complication: TVT 5%, TOT 14.9%
					Urine retention requiring intervention: TVT 2%, TOT 7%
					Vaginal mesh exposure: TVT 6%, TOT 4%
Schellart et al.[19] 2016	RCT	TOT 72		24 mo	Substantial pain: TVT 21%, TOT 10%
					Haemorrhage right groin: 2%
					Exposure requiring re-operation: 4%
					Failure needing re-operation: 4%
					UTI: 33%
					Overactive bladder symptoms: 13%
					Pain limiting normal mobility: 17%
					De novo urgency: TVT-O 8.5%, TOT 10.2%
					De novo dyspareunia: TVT-O 0%, TOT 6.3%
					Reoperation for SUI: TVT-O 1%, TOT 0%
					Tape erosion: TVT-O 0%, TOT 0%
					Major postoperative complications: TVT-O 0%, TOT 0%
					Vaginal tape erosion: TVT-O 0%, TOT 0%
					De novo urge incontinence at 1 month: Si 7.1%–11.6%, TVT-O 5.7%
					De novo voiding difficulty at 1 month: Si 4.3%–8.7%, TVT-O 2.9%
					De novo urgency: Si 8.4%, TVT-O 12.9%

(continued)
Study	Design	Intervention	Comparison	Follow-up duration	Complications
Lee et al. [26] 2015	RCT	TOT 103	TVT-O 62	12 mo	Difficulty urinating: SI 0.7%, TVT-O 0.9%
					Mesh extrusion: SI 2.3%, TVT-O 1.9%
					Recurrent UTI: SI 0.7%, TVT-O 0.9%
					Repeat surgery: 1.8%
					Groin pain: 6.2%
					Urinary tract infection (UTI): 19.6%
					De novo urgency: 4.3%
					Postoperative anti-incontinence surgery: 19.6%
Tommaselli et al. [27] 2015	RCT	TVT-O 62	TOT 103	60 mo	De novo urgency incontinence: TVT 3.1%, TVT-O 2.4%
					Urinary tract infection (UTI): TVT 20.6%, TVT-O 22.1%
					No woman had any sign of tissue reaction, erosion, or tape protrusion.
					No de novo urgency incontinence
					Pelvic pain: 6.2%
Laurikainen et al. [28] 2014	RCT	TVT-O 123	TOT 131	60 mo	De novo urgency incontinence: TVT 3.1%, TVT-O 2.4%
					Urinary tract infection (UTI): TVT 20.6%, TVT-O 22.1%
					No woman had any sign of tissue reaction, erosion, or tape protrusion.
					No de novo urgency incontinence
					Pelvic pain: 6.2%
Nyssönen et al. [29] 2014	RCT	TVT 50	TOT 50	46 mo	De novo urgency incontinence: TVT 3.1%, TVT-O 2.4%
					Urinary tract infection (UTI): TVT 20.6%, TVT-O 22.1%
					No woman had any sign of tissue reaction, erosion, or tape protrusion.
Scheiner et al. [30] 2014	RCT	TVT 50	TOT 28/TVT-O 34	12 mo	Pelvic pain: 6.2%
					Pelvic pain: 6.2%
Abel et al. [31] 2014	RCT	TVT-O 126	TOT 112	36 mo	Pelvic pain: 6.2%
					Pelvic pain: 6.2%
Bianchi et al. [32] 2014	RCT	TVT-O 54	TOT 54	24 mo	Pelvic pain: 6.2%
					Pelvic pain: 6.2%
Ross et al. [33] 2014	RCT	TVT 30	TOT 56	12 mo	Pelvic pain: 6.2%
Djehdian et al. [34] 2014	RCT	SI-MUS 64	TVT 36	12 mo	Pelvic pain: 6.2%
Schellart et al. [35] 2014	RCT	TOT 87	SI-MUS 84	12 mo	Pelvic pain: 6.2%
Wade et al. [36] 2013	RCT	TVT 36	TOT 35	24 mo	Pelvic pain: 6.2%
Basu et al. [37] 2013	RCT	TVT 33	SI-MUS 69	36 mo	Pelvic pain: 6.2%
Mostafa et al. [38] 2013	RCT	TVT-O 62	SI-MUS 69	12 mo	Pelvic pain: 6.2%
Grigoriadis et al. [39] 2013	RCT	TVT-O 86	SI-MUS 85	22.3 mo	Pelvic pain: 6.2%
Schierlitz et al. [40] 2012	RCT	TVT 72	TOT 75	36 mo	Pelvic pain: 6.2%
Barber et al. [41] 2012	RCT	TVT 127	SI-MUS 69	36 mo	Pelvic pain: 6.2%

(continued)
Study	Design	Intervention	Comparison	Follow-up duration	Complications	
Masata et al. [42] 2012	RCT	TVT-O 68		24 mo	De novo urgency	19.1%
					Tape cut	2.9%
					Tape erosion	1.5%
					UTI	2.9%
Teo et al. [43] 2011	RCT	TVT 66	TVT-O 61	12 mo	Hemorrhage	TVT-O 1.5%, TVT 1.6%
					Intermittent self-catheterization	TVT-O 1.6%, TVT 4.5%
					Vaginal injury	TVT-O 4.9%, TVT 0%
					Leg pain	TVT-O 26.4%, TVT 1.7%
					De novo/worsening overactive bladder	TVT-O 11.3%, TVT 5.1%
					Vaginal tape erosion	TVT-O 2%, TVT 2.7%
					De novo urgency	TVT 5.7%, TVT-O 2.7%
					Urinary retention	TVT 0%, TVT-O 0%
					Chronic pelvic pain	TVT 0%, TVT-O 2.7%
					Pain during intercourse	TVT 2.9%, TVT-O 0.27%
					Incontinence during intercourse	TVT 5.7%, TVT-O 5.4%
Angiolli et al. [44] 2010	RCT	TVT 35	TVT-O 37	60 mo	Vaginal erosions	TVT-O 5.7%, TVT 2.7%
					Bladder injury	TVT 5%, TVT-O 2%
					Urinary retention	TVT 0%
					Chronic pelvic pain	TVT 0%
					Bladder injury	TVT 0%
					Vaginal erosions	TVT-O 5.7%, TVT 2.7%
					De novo urgency	TVT 5.7%, TVT-O 2.7%
					Urinary retention	TVT 0%
					Chronic pelvic pain	TVT 0%
					Bladder injury	TVT 0%
					Vaginal erosions	TVT-O 5.7%, TVT 2.7%
Deflieux et al. [45] 2010	RCT	TVT 75	TVT-O 74	24 mo	Bladder injury	TVT-O 10%, TVT-O 5%
					Urethral injury	TVT-O 2.1%–7.2%
					Vaginal erosion	TVT-O 1%–4.3%
					Vaginal tape erosion	TVT-O 1.5%–4.3%
					Repeated surgery	TVT-O 1%–4.3%
					De novo urgency and/or worsening of preexisting surgery	TVT-O 1%–4.3%
					Bladder injury	TVT-O 1%–4.3%
					Vaginal erosions	TVT-O 1%–4.3%
					Urinary retention	TVT-O 1%–4.3%
					Bladder perforation	TVT-O 1%–4.3%
					De novo urgency	TVT-O 1%–4.3%
					Urethral injury	TVT-O 1%–4.3%
					Vaginal mesh erosion	TVT-O 1%–4.3%
					Sexual function	TVT-O 1%–4.3%
Kim et al. [46]	Meta-analysis	Oct. 2017	29 included RCTs		Standard midurethral slings (SMUS) vs SI-MUS	
					Sexual function: No significant difference	
					Postoperative pain scores: No significant difference	
					Bladder injury, UTI, urinary retention, de novo urgency, mesh extrusion, groin pain, vaginal erosion, tape release, urgency, and re-operation: No significant difference	
					Voiding dysfunction was less observed in SI-MUS	
Bai et al. [47]	Meta-analysis	Dec. 2016	8 studies		Adjustable SI-MUS (Ajust) vs other slings (TOT, TVT-O)	
					Groin pain	SI 2%, TOT/TVT-O 5.8%
					Repeated continence surgery	SI 2.1%–7.2%
					Postoperative voiding difficulties	SI 2.2%–4.3%
					Vaginal tape erosion	SI 1.5%–4.3%
					De novo urgency and/or worsening of preexisting surgery	SI 7%–25%
Jiao et al. [48]	Meta-analysis	Nov. 2017	12 studies		Single-incision mini-slings (MiniArc) vs transobturator mid-urethral slings	
					Postoperative groin pain	TO 3.6%–57.6%
					Urinary retention	TO 1.9%–51%
					Repeat stress incontinence surgery	TO 1%–6.7%
					Bladder perforation	TO 1.8%–5.2%
					De novo urgency	TO 4.4%–19.5%
					UTI	TO 4.4%–19.5%
					Vaginal mesh erosion	TO 1.4%–1.8%
					Sexual function	TO 0%
Fusco et al. [49]	Meta-analysis	Nov. 2016	28 studies		The comparative data on colposuspensions, pubovaginal slings, and midurethral tapes	
					Bladder/vaginal perforation	RP-TVT 0.8%–11.4%, TVT-O 0.8%–10%
					Pelvic haematomata	RP-TVT 0.7%–5.5%, TVT-O 1.4%–2.4%
					Vaginal erosions	RP-TVT 1.2%–5.9%, TVT-O 0.8%–7%
					UTI	RP-TVT 3.5%–20.6%, TVT-O 0.7%–21.9%
					Storage lower urinary tract symptoms	RP-TVT 2.2%–35.3%, TVT-O 1.2%–28.6%
Study	Design	Intervention	Comparison	Follow-up duration	Complications
Ford et al[53]	Meta-analysis	Jun. 2014	81 studies		Voiding lower urinary tract symptoms RP-TVT 2.6%–21.4%, TVT-O 0.8%–15.7%
					CIC RP-TVT 0.7%–13.9%, TVT-O 1.5%–17%
					Reoperation rate RP-TVT 1.5%–17.6%, TVT-O 0.4%–17%
					Mid-urethral sling Bladder or urethral perforation RP 4.9%, TO 0.6%
					Voiding dysfunction De novo urgency or urgency incontinence RP 7.2%, TO 3.8%
					Groin pain RP 1.4%, TO 6.6%
					Suprapubic pain RP 2.9%, TO 0.8%
					Vaginal tape erosion RP 2%, TO 2.2%
					Repeat incontinence surgery RP 1.1%, TO 10%
Nambiar et al[54]	Meta-analysis	Feb. 2013	31 studies		Single incision sling Major vascular or visceral injury Si 1.6%
					Vaginal wall perforation Si 1.6%, RP 1.6%
					Bladder or urethral perforation Si 0.7%–2.9%, RP 2.9%–4.7%
					Urinary retention Si 1.5%–10%, RP 2.4%–9.3%
					Infection Si 10%, RP 5%
					Vaginal mesh exposure Si 5.4%, RP 0.7%
					Mesh extrusion into the bladder or urethra Si 3.3%, RP 6.9%
					Dyspareunia Si 10%, RP 3.4%
					De novo urgency Si 13.3%–35.3%, RP 6.5%–15.6%
					New-onset detrusor overactivity Si 5.4%, RP 6%
					Repeat stress incontinence surgery Si 1.5%–24.3%, RP 3.1%
Pergialiotis et al[52]	Meta-analysis	2016	32 studies		De novo overactive bladder following midurethral sling procedures
					De novo OAB Si 7.4%–10.2%, TO 2.4%–8.5%, RP 3%
Leone et al[53]	Meta-analysis	Oct. 2016	16 studies		Long-term outcomes of TOT and TVT procedures
					De novo OAB TOT 3.9%–9.7%, TVT 1.4%–10.1%
					Voiding dysfunction TOT 0.8%–11.3%, TVT 0.6%–20.6%
					Vaginal tape erosion TOT 0.8%–14.9%, TVT 1.6%–6.4%
					Bladder tape erosion TOT 2.6%, TVT 0.6%
					Groin pain TOT 3.9%–33.9%, TVT 1.7%–6.7%
					Recurrent UTI TOT 4.3%–4.8%, TVT 7.5%–8.6%
Tommaselli et al[54]	Meta-analysis	Jun. 2014	11 studies		Midurethral slings
					Pain RP 1.8%, TO 5.7%
					Urinary retention RP 5.4%, TO 4%
					Infection RP 2.7%, TO 3.8%
					Hematoma/bleeding RP 3.7%, TO 3.9%
					Vaginal injury RP 0.4%, TO 3.3%
					Bladder/urethral injury RP 2.5%, TO 0.4%
					UTI RP 9.3%, TO 3%
					De novo urgency RP 10%, TO 10.2%
					Tape erosion RP 2.1%, TO 2.7%
Sun et al[55]	Meta-analysis	2011	18 studies		Comparison between the retropubic and transobturator approaches
					Bladder perforation TO 0.2%–0.7%, RP 0.3%–0.5%
					Hematoma TO 1.4%, RP 1.9%–2.9%
					Thigh/groin pain TO 8%–8.4%, RP 2.9%–4.6%
					Voiding dysfunction TO 0.5%–2.4%, RP 3.3%–4.4%
					De novo urgency TO 5.9%–6.5%, RP 5.6%–8.6%
					Tape erosion TO 1.5%–1.9%, RP 0.7%–1.8%
Seklehner et al[56]	Meta-analysis	Jan. 2014	21 studies		The performance of retropubic mid urethral slings vs transobturator mid urethral slings
					Mesh erosion/exposure TO 0.8%–5.4%, RP 0.9%–5.7%
					Urinary retention TO 0.6%–17%, RP 2.7%–15.8%
Study	Design	Intervention	Comparison	Follow-up duration	Complications
-------	--------	--------------	------------	--------------------	---------------
Jha et al[57]	Meta-analysis	2009	21 studies		Impact of incontinence surgery on sexual function
					A significant reduction in coital incontinence
					Synthetic midurethral slings
					Bladder perforation 1%–34%; More common with RP passage
					Vascular injury RP 0.7%–8%, TO 0–2%
					Bowel injury RP 0.03%–0.07%
					Postoperative pain, groin pain TO > RP
					1.3% persistent urinary urgency (which was present preoperatively)
					De novo urinary urgency, and/or bladder outlet obstruction RP 3% TO 0%
					Urinary retention 21.8%
					Vaginal mesh exposure 1.5% to 2%
Gomes et al[58]	Review	2017			Update on complications of synthetic suburethral slings
					Bleeding RP 0.7%–8%, TO 0–2%
					Bladder injury RP 0.7%–24%, TO 0–16%
					Urethral injury RP 0.1%–0.2%, TO 0.1%–2.5%
					Urethral erosion RP 0.03%–0.8%, TO 0.03%–0.8%
					Intestinal injury RP 0.03%–0.7%, TO 0%
					Vaginal erosion RP 0–1.5%, TO 0%–10.9%
					UTI RP 7.4%–13%, TO 7.4%–13%
					Pain RP 4%, TO 9.4%
					Urgency “de novo” RP 0.2%–25%, TO 0–15.6%
					Bladder outlet obstruction RP 6%–18.3%, TO 3.0%–11%
					Urinary retention RP 4.1%–19.5%, TO 2.7%–11%
Alwaal et al[60]	Review	2016			Female sexual function following mid-urethral slings
					PISQ-12 Improvements
					Sexual Function and Quality of Life: TOT vs SI-MUS
					Improved in all the six Female Sexual Function Index domains
					Safety considerations for synthetic sling surgery
					Urethral obstruction/voiding dysfunction 5.5%
					Urethral obstruction requiring surgery 3.2%
					Urinary infections 4.5%
					De novo OAB 10.2%
					Pelvic organ perforation 3.3%
					Mesh exposure/erosion/extrusion 2.7%
					Refractory pain 3.5%
					Neurologic symptoms 2.0%
					Fistulas 0.3%
Pastore et al[61]	Review	2016			Indications, contraindications, and complications of mesh in the surgical treatment of urinary incontinence
					Failure to correct incontinence 27%–18%
					Voiding dysfunction RP 2.7%, TO 2.7%
					Postoperative urge symptoms RP 6%–25%, TO 6%
					De novo urgency incontinence RP 0%, TO 0.3%
					Persistent postoperative urgency incontinence RP 12%, TO 10%
					UTI RP 12.8%, TO 17.7%
Blaivas et al[62]	Review	2015			Bladder and urethral perforation RP 3.5%, TO 6.6%
					Vaginal perforation RP 2%, TO 4%
Kirby et al[63]	Review	2013			Pelvic hematomas 1.4%

(continued)
As mentioned before, only 6 of 35 (17.1%) RCTs in our review took into account sexual dysfunction. Palos et al[11] reported a total of 92 complications from patients of MUS and they found the RP-MUS had a proportionately higher number of dyspareunia (2.5% vs 0%) compared to the TO-MUS. Schellart et al[15] reported a total of 75 patients with complications of TOT and they found none of them complaining of dyspareunia. Zhang et al[18] discovered a total of 110 patients with complications of MUS and they found the TVT-O group had more cases of dyspareunia (8.1% vs 5.2%) compared to the TVT group. Masata et al[22] reported a total of 96 patients with complications of MUS where the SI-MUS had more de novo dyspareunia (6.3% vs 0%) in comparison with the TVT-O group. Scheiner et al[30] reported a total of 112 patients with complications and among them the TVT-O group had a higher number of patients with sexual dysfunction (17.2%, 1.9%, 0%) than the TVT/TOT group. In addition, Angioli et al[44] found a total of 72 patients with complications of MUS with the TVT group showing slightly more patients with pain during intercourse (2.9% vs 2.7%) than the TVT-O group. We thought the reasons might be related to the formation of paraurethral bands (anterior vaginal wall banding in the paraurethral folds immediately adjacent to the midurethral placement of the sling) or the localization of the MUS resulting in vaginal narrowing due to more vaginal tissue (perineal membrane) incorporated. Sexual dysfunction has a severe impact on patients’ postoperative life, both physically and mentally; it should be clearly documented as a patient safety issue.

We also included systematic review/meta-analysis and review in our studies in order to find out any other situations that might

Study	Design	Intervention	Comparison	Follow-up duration	Complications
Cerruto et al[64]	Review	2011			Vaginal mesh exposure RP 4.4%, TO 2.7%
					Transobturant versus retropubic synthetic slings
					Postoperative pain RP 1.7%, TO 12%
					Voiding dysfunction RP 7%, TO 4%
					Bladder perforations RP 5.5%, TO 0.3%
					Adverse events over 2 y after retropubic or transobturator midurethral sling surgery
					Bladder perforation RP 4.4%, TO 0%
					Urethral perforation RP 0.4%, TO 0%
					Mesh erosion RP 0.4%, TO 0.5%
					Mesh exposure RP 4%, TO 2.3%
					Recurrent UTI RP 21%, TO 13%
					Surgical site infection RP 0.9%, TO 0%
					Neurologic symptoms RP 5.8%, TO 8.1%
					Voiding dysfunction RP 1.8%, TO 2.7%
					De novo urge incontinence RP 0%, TO 0.5%
					Persistent urge incontinence RP 15%, TO 14.9%

Brubaker et al[65]	Review	2011			Bladder perforation RP 4.4%, TO 0%
					Urethral perforation RP 12%, TO 4%
					Mesh erosion RP 0.3%, TO 0.3%
					Mesh exposure RP 0.4%, TO 0%
					Recurrent UTI RP 0.2%, TO 0%
					Surgical site infection RP 1%, TO 0%
					Neurologic symptoms RP 0.2%, TO 0%
					Voiding dysfunction RP 0.1%, TO 0.1%
					De novo urge incontinence RP 0.1%, TO 0%
					Persistent urge incontinence RP 0.1%, TO 0%

LUTS = lower urinary tract symptoms, MUS = midurethral sling, OAB = overactive bladder, PISQ = Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire, RCT = randomized controlled trial, RP = retropubic approach, SI = single incision, SUI = stress urinary incontinence, TO = transobturator approach, TVT = tension-free vaginal tape using the retropubic technique, TVT-O = transobturator tape using the in-out technique, UTI = urinary tract infection.

As mentioned before, only 6 of 35 (17.1%) RCTs in our review took into account sexual dysfunction. Palos et al[11] reported a total of 92 complications from patients of MUS and they found the RP-MUS had a proportionately higher number of dyspareunia (2.5% vs 0%) compared to the TO-MUS. Schellart et al[15] reported a total of 75 patients with complications of TOT and they found none of them complaining of dyspareunia. Zhang et al[18] discovered a total of 110 patients with complications of MUS and they found the TVT-O group had more cases of dyspareunia (8.1% vs 5.2%) compared to the TVT group. Masata et al[22] reported a total of 96 patients with complications of MUS where the SI-MUS had more de novo dyspareunia (6.3% vs 0%) in comparison with the TVT-O group. Scheiner et al[30] reported a total of 112 patients with complications and among them the TVT-O group had a higher number of patients with sexual dysfunction (17.2%, 1.9%, 0%) than the TVT/TOT group. In addition, Angioli et al[44] found a total of 72 patients with complications of MUS with the TVT group showing slightly more patients with pain during intercourse (2.9% vs 2.7%) than the TVT-O group. We thought the reasons might be related to the formation of paraurethral bands (anterior vaginal wall banding in the paraurethral folds immediately adjacent to the midurethral placement of the sling) or the localization of the MUS resulting in vaginal narrowing due to more vaginal tissue (perineal membrane) incorporated. Sexual dysfunction has a severe impact on patients’ postoperative life, both physically and mentally; it should be clearly documented as a patient safety issue.

We also included systematic review/meta-analysis and review in our studies in order to find out any other situations that might

Complications	RP-MUS	TO-MUS	SI-MUS
Bladder perforation	0.8%–11.4%	0.8%–10%	0.7%–2.9%
Vaginal injury	0.8%–11.4%	0.8%–15%	1.6%
Hemorrhage	1.6%	1.5%	
Hematoma	0.7%–5.5%	1.4%–2.4%	
UTI	0.9%–29.3%	4.8%–33%	0.7%–28.1%
LUTS	0%–15%	2.4%–29%	4.3%–10.2%
Urine retention	0.8%–11.4%	0.6%–10%	0.7%–2.9%
De novo urgency	0%–29%	0.7%–29%	4.3%–12.2%
Post-op pain	1.4%–21.1%	1.5%–26.7%	0%–3.5%
Tape erosion/extrusion	0%–5.7%	1.9%–10%	1.4%–4.5%
Further SUI surgery	0%–2.7%	1.4%–19.6%	0%–17%
Deep vein thrombosis	2.5%	0%	
Injury of inferior epigastric vessels	2.2%		
Sexual dysfunction	0%–5.2%	TOT 1.9%; TVT-O 0%–17.2%	6.3%

LUTS = lower urinary tract symptoms, MUS = midurethral sling, OAB = overactive bladder, PISQ = Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire, RCT = randomized controlled trial, RP = retropubic approach, SI = single incision, SUI = stress urinary incontinence, TO = transobturator approach, TVT = tension-free vaginal tape using the retropubic technique, TVT-O = transobturator tape using the in-out technique, UTI = urinary tract infection.
not appear in RCTs. In Kim et al’s study which included 29 RCTs, they found there were no significant differences in sexual function, postoperative pain scores and other domains (bladder injury, UTI, urinary retention, de novo urgency, mesh extrusion, groin pain, vaginal erosion, tape release, urgency, and re-operation rate) among women undergoing MUS or SI-MUS. They did find voiding dysfunction was less frequently observed in SI-MUS group. Nambiar et al reported a total of 31 studies regarding SI-MUS procedures indicating that a major vascular or visceral injury was 1.6%. Pergialiotis et al reported a total of 32 studies specifically focusing on de novo OAB following MUS procedures and they found the SI-MUS was associated with a more elevated rate of OAB than the TO and RP-MUS (7.4%–10.2%, 2.4%–8.8%, 3%). In Seklehner et al’s study collecting 21 researches, they discovered patients in TO-MUS group had a higher incidence of neurologic symptoms than the RP-MUS group (2.7%–23% vs 1.3%–8.2%). In Blaivas et al’s review on the safety considerations for synthetic sling surgery, he pointed out some crucial points: at least 15% of women with MUS experienced a serious adverse outcome and/or recurrent sphincteric incontinence; A subset of women sustain refractory, lifestyle-altering complications that are unique to women with a MUS; MUS-associated complications are under-reported.

From our review, we can see that most studies did not discuss complications or report clearly defined complication measures. Patient safety should be the first priority to keep in mind all the time by surgeon throughout the pre and post-operative period. Besides, the World Health Organization also calls patient safety an endemic concern. Patient safety is a discipline that emphasizes safety in health care through prevention, reduction, reporting, and analysis of medical error that often leads to adverse events.

Despite that many series have documented complications with synthetic MUS, there is compelling evidence showing that these complications remain under-reported in the literature. Deng et al reviewed the MAUDE (Manufacturer and User Facility Device Experience) database and identified 161 major complications included 39 vascular injuries, 38 bowel injuries, and 10 deaths due to surgical complications of synthetic sling placement. They think the under-reporting of major complications of sling procedures is likely due to surgeon awareness, referral patterns and failure to diagnose. In the same study, the ratio of major to total complications in the MAUDE database as compared to literature review suggested significant under-reporting of major complications resulting from synthetic sling placement. They also indicate that surgeons need to proceed with caution as serious complications do occur and be aware of the nature and symptoms of tape related complications for prompt diagnosis and appropriate postoperative management.

5. Conclusions
In summary, any common surgery might carry potential risk and result in long term complications. Physician should always keep in mind that patient safety is the first major concern instead of merely concentrating on the successful rate or efficacy of the surgery. It is indispensable for physician to counsel patient with regard to long-term complications of MUS before surgery, offer all relevant information possible, and have what is in the best interest of patients in mind.

Author contributions
Ling-Hong Tseng and Cheng-Kai Lee wrote the article; Shuenn-Dyh Chang developed analytical tools and analyzed data; Pei-Chun Chien and Yu-Ying Hsu validated the results; Ling-Hong Tseng supervised the project.
Data curation: Ling-Hong Tseng, Yi-Hao Lin, Cheng-Kai Lee, Shuenn-Dyh Chang, Pei-Chun Chien, Yu-Ying Hsu.

Formal analysis: Cheng-Kai Lee, Shuenn-Dyh Chang, Pei-Chun Chien, Yu-Ying Hsu.

Investigation: Ling-Hong Tseng, Yi-Hao Lin.

Methodology: Ling-Hong Tseng, Cheng-Kai Lee, Shuenn-Dyh Chang.

Project administration: Ling-Hong Tseng.

Software: Yu-Ying Hsu.

Supervision: Ling-Hong Tseng.

Validation: Yi-Hao Lin, Cheng-Kai Lee, Shuenn-Dyh Chang, Pei-Chun Chien, Yu-Ying Hsu.

Writing – original draft: Yi-Hao Lin, Cheng-Kai Lee, Pei-Chun Chien.

Writing – review & editing: Shuenn-Dyh Chang.

References

[1] Abrams P, Cardozo L, Fall M, et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Subcommittee of the International Continence Society. Neurourol Urodyn 2002;21:167.

[2] Hunskaar S, Burgio K, Clark A, Abrams P, Cardozo L, Khoury S, Wein A, et al. Epidemiology of urinary and faecal incontinence and pelvic organ prolapse. Incontinence, 3rd International Consultation on Incontinence Plymouth, United Kingdom: Health Publications; 2003; p. 253-312.

[3] Ogah J, Cody JD, Rogerson L. Minimally invasive synthetic suburethral sling operations for stress urinary incontinence in women. Cochrane Database Syst Rev 2009;CD006375.

[4] Ulmsten U, Henriksson L, Johnson P, et al. An ambulatory surgical procedure under local anesthesia for treatment of female urinary incontinence. Int Urogynecol J 1996;7:81-6.

[5] Hodroff MA, Sutherland SE, Kesha JB, et al. Treatment of stress incontinence with the SPARC sling: intraoperative and early complications of 445 patients. Urology 2005;66:760-2.

[6] de Leval J. Novel surgical technique for the treatment of female stress urinary incontinence: transobturator vaginal tape inside-out. Eur Urol 2003;44:724-30.

[7] Delorme E. Transobturator urethral suspension: minim invasive procedure in the treatment of stress urinary incontinence in women. Prog Urol 2001;11:1306-13.

[8] Amat I, Tardiu L, Martínez Franco E, et al. Contasure-Needleless compared with transobturator-TVT for the treatment of stress urinary incontinence. Int Urogynecol J 2011;22:827-33.

[9] Meschia M, Barbaric P, Baccichet R, et al. Short-term outcomes with the Adjust system: a new single incision sling for the treatment of stress urinary incontinence. Int Urogynecol J 2011;22:177-82.

[10] Lewis J, Osowski S, Hicks J, et al. Text similarity: an alternative way to measure MEDLINE. Bioinformatics 2006;22:2298-304.

[11] Palos CC, Maturana AP, Gershel FR, et al. Prospective and randomized clinical trial comparing transobturator versus retropubic sling in terms of efficacy and safety. Int Urogynecol J 2018;29:29-35.

[12] Tammia A, Aignmüller T, Hanzel E, et al. Retropubic versus transobturator tension-free vaginal tape (TVT vs TVT-O): Five-year results of the Austrian randomized trial. Austrian Urogynecology Working Group. Neurourol Urodyn 2018;37:331-8.

[13] Dogan O, Kaya AE, Pulatoglu C, et al. A randomized comparison of a single-incision needleless (Contasure-needleless®) mini-sling versus an inside-out transobturator (Contasure-KIM®) mid-urethral sling in women with stress urinary incontinence: 24-month follow-up results. Int Urogynecol J 2018;29:1387-95.

[14] Pascom ALG, Djehdian LM, Bortolini MAT, et al. Randomized controlled trial comparing single-incision mini-sling and transobturator midurethral sling for the treatment of stress urinary incontinence: 3-year follow-up results. Neurourol Urodyn 2018;37:2184-90.

[15] Schellart RP, Zwolsman SE, Lucot JP, et al. A randomized, nonblinded extension study of single-incision versus transobturator midurethral sling in women with stress urinary incontinence. Int Urogynecol J 2018; 29:37-44.

[16] Tsu AL, Hegde A, Castillo PA, et al. Transobturator versus single incision slings: 1-year results of a randomized controlled trial. Int Urogynecol J 2017;28:461-7.

[17] Fernandez-Gonzalez S, Martinez Franco E, Lin Miao X, et al. Contasure-needleless® compared with Monarc® for the treatment of stress urinary incontinence. Int Urogynecol J 2017;28:1077-84.

[18] Zhang Z, Zhu L, Xu T, et al. Retropubic tension-free vaginal tape and inside-out transobturator tape: a long-term randomized trial. Int Urogynecol J 2016;27:103-11.

[19] Costantini E, Kocićanec E, Lazzari M, et al. Long-term efficacy of the trans-obturator and retropubic mid-urethral slings for stress urinary incontinence: update from a randomized clinical trial. World J Urol 2016;34:585-93.

[20] Ross S, Tang S, Eliauwis M, et al. Transobturator tape versus retropectineal tension-free vaginal tape for stress urinary incontinence: 5-year safety and effectiveness outcomes following a randomised trial. Int Urogynecol J 2016;27:879-86.

[21] Schellart RP, Oude Rengenink K, Van der Aa F, et al. A randomised comparison of single-incision versus traditional transobturator midurethral sling in women with stress urinary incontinence: results of a 24-month follow-up. Int Urogynecol J 2016;27:871-7.

[22] Masata J, Svakic K, Zvara K, et al. Comparison of the efficacy of tension-free vaginal tape obturator (TVT-O) and single-incision tension-free vaginal tape (Ajust™) in the treatment of female stress urinary incontinence: a 1-year follow-up randomized trial. Int Urogynecol J 2016;27:1497-505.

[23] Jurakova M, Huser M, Belkov I, et al. Prospective randomized comparison of the transobturator mid-urethral sling with the single-incision sling among women with stress urinary incontinence: 1-year follow-up study. Int Urogynecol J 2016;27:791-6.

[24] Gaber ME, Borg T, Samour H, et al. Two new mini-slings compared with transobturator tension-free vaginal tape for treatment of stress urinary incontinence: a 1-year follow-up randomized controlled trial. J Obstet Gynaecol Res 2016;42:1773-81.

[25] Martínez Franco E, Amat Tardiu L. Contasure-Needleless® single incision compared with transobturator TVT-O® for the treatment of stress urinary incontinence: long-term results. Int Urogynecol J 2015;26:213-8.

[26] Lee JK, Rosamilia A, Dwyer PL, et al. Randomized trial of a single incision versus an outside-in transobturator midurethral sling in women with stress urinary incontinence: 12 month results. Am J Obstet Gynecol 2015;213:35.e1-9.

[27] Tommaselli GA, D’Afero A, Di Carlo C, et al. Tension-free vaginal tape obturator and tension-free vaginal tape-Secur for the treatment of stress urinary incontinence: a 5-year follow-up randomized study. Eur J Obstet Gynecol Reprod Biol 2015;185:151-5.

[28] Laurikainen E, Valpas A, Aukee P, et al. Five-year results of a randomized trial comparing retropubic and transobturator midurethral slings for stress incontinence. Eur Urol 2014;65:1109-14.

[29] Nyysönen V, Talvensaari-Mattila A, Santala M. A prospective randomized trial comparing tension-free vaginal tape versus transobturator tape in patients with stress or mixed urinary incontinence: subjective cure rate and satisfaction in median follow-up of 46 months. Scand J Urol 2014;48:309-15.

[30] Scheiner DA, Betschart C, Wiederkircher S, et al. Twelve months effect on voiding function of retropubic procedure with outside-in and inside-out transobturator midurethral slings. Int Urogynecol J 2012;23:197-206.

[31] Abdel-Fattah M, Mostafa A, Famulusi A, et al. Prospective randomised controlled trial of transobturator tapes in management of urodynamic stress incontinence in women: 3-year outcomes from the Evaluation of Transobturator Tapes study. Eurl Urol 2012;62:843-51.

[32] Bionchi-Ferraro AM, Patri Timari, Di Bella ZI, de Aquino Castro R, et al. Randomized controlled trial comparing tension-free vaginal tape (TVP) versus Corvaris (BioVasc®) for the treatment of stress urinary incontinence: 2-year results. Int Urogynecol J 2014;25:1343-8.

[33] Ross S, Tang S, Schulz J, et al. Single incision device (TVT Secur) versus retropectineal tension-free vaginal tape device (TVP) for the management of stress urinary incontinence in women: a randomized clinical trial. BMC Res Notes 2014;7:941.

[34] Djehdian LM, Araujo MP, Tanaka CC, et al. Transobturator sling compared with single-incision mini-sling for the treatment of stress urinary incontinence: a 1-year randomized controlled trial. Obstet Gynecol 2014;123:553-61.

[35] Schellart RP, Oude Rengenink K, Van der Aa F, et al. A randomized comparison of a single-incision midurethral slings and a transobturator
midurethral sling in women with stress urinary incontinence: results of 12-mo follow-up. Eur Urol 2014;66:1179–85.

[36] Wadie BS, El-Hefnawy AS. TVT versus TOT, 2-year prospective randomized study. World J Urol 2013;31:645–9.

[37] Basu M, Duckett J. Three-year results from a randomised trial of a retropubic mid-urethral sling versus the Minarc single incision sling for stress urinary incontinence. Int Urogynecol J 2013;24:2059–64.

[38] Mostafa A, Agur W, Abdel-All M, et al. Multicenter prospective randomized study of single-incision mini-sling vs tension-free vaginal fossa-tape-otoburator in management of female stress urinary incontinence: a minimum of 1-year follow-up. Urology 2013;82:532–9.

[39] Grigoriadis C, Bakas P, Derpapas A, et al. Tension-free vaginal tape otoburator vs Asut adjustable single incision sling procedure in women with urodynamic stress urinary incontinence. Eur J Obstet Gynecol Reprod Biol 2013;170:563–6.

[40] Schierlitz L, Dwyer PL, Rosamilia A, et al. Three-year follow-up of tension-free vaginal tape compared with transobturator tape in women with stress urinary incontinence and intrinsic sphincter deficiency. Obstet Gynecol 2012;119(2 pt 1):321–7.

[41] Barber MD, Weidner AC, Sokol AI, et al. Single-incision mini-sling compared with tension-free vaginal tape for the treatment of stress urinary incontinence: a randomized controlled trial. Foundation for Female Health Awareness Research Network. Obstet Gynecol 2012;119(2 pt 1):328–37.

[42] Masata J, Svabik K, Zvara K, et al. Randomized trial of a comparison of the efficacy of TVT-O and single-incision TVT SECUR in systems in the treatment of stress urinary incontinence women–2-year follow-up. Int Urogynecol J 2012;23:1403–12.

[43] Teo R, Moran P, Mayne C, et al. Randomized trial of tension-free vaginal tape and tension-free vaginal tape-otoburator for urodynamic stress incontinence in women. J Urol 2011;185:1350–5.

[44] Angoli R, Flotti F, Muzzi L, et al. Tension-free vaginal tape versus transobturator suburethral tape: five-year follow-up results of a prospective, randomised trial. Eur Urol 2010;58:671–7.

[45] Defieux X, Daher N, Mansoor A, et al. Transobturator TVT-O versus retropubic TVT: results of a multicenter randomized controlled trial at 24-months follow-up. Int Urogynecol J 2010;21:1337–45.

[46] Kim A, Kim MS, Park YJ, et al. Clinical outcome of single-incision slings, excluding TVT-Secur, vs standard slings in the surgical management of stress incontinence: an updated systematic review and meta-analysis. BJU Int 2019;123:566–84.

[47] Bai F, Chen J, Zhang Z, et al. Adjustable single-incision mini-slings (Asut) vs other slings in surgical management of female stress urinary incontinence: a meta-analysis of effectiveness and complications. BMC Urol 2018;18:44.

[48] Jiao B, Lai S, Xu X, et al. A systematic review and meta-analysis of the comparative data on colposuspensions, and meta-analysis of single-urethral slings, and midurethral tapes in the surgical treatment of stress urinary incontinence in women. Cochrane Database Syst Rev 2017;12:CD008709.

[49] Pergialiotis V, Mudiaga Z, Perrea DN, et al. De novo overactive bladder following midurethral sling procedures: a systematic review of the literature and meta-analysis. Int Urogynecol J 2017;28:1631–8.

[50] Leone Roberti Maggiore U, Finazzi Agro E, Soligo M, et al. Long-term outcomes of TOT and TVT procedures for the treatment of female stress urinary incontinence: a systematic review and meta-analysis. Int Urogynecol J 2017;28:1115–20.

[51] Tommaselli GA, Di Carlo C, Formisano C, et al. Medium-term and long-term outcomes following placement of midurethral slings for stress urinary incontinence: a systematic review and metaanalysis. Int Urogynecol J 2015;26:1253–68.