Evaluating the effect of grain size distribution on thermal conductivity of thermoelectric materials

Priyabrata Das, Sivaiah Bathula and Srikanth Gollapudi

School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Odisha 752050, India

E-mail: srikantg@iitbbs.ac.in

Keywords: thermoelectric, thermal conductivity, grain size distribution

Abstract
The influence of grain size \((d)\) on the thermal conductivity \((k)\) of thermoelectric \((TE)\) materials has been well established through experimental studies. However, the effect of grain size distribution, described by \(S_d\), on \(k\) has not been reported before. Since thermal conductivity is a key contributor to the figure of merit \((ZT)\) for thermoelectric materials, studying the effect of grain size distribution, an important microstructural descriptor, on \(k\) is necessary. In the current study we are evaluating the effect of \(S_d\) on the \(k\) of thermoelectric materials by using data reported in literature on bismuth telluride \((\text{Bi}_2\text{Te}_3)\) and lead telluride \((\text{PbTe})\). We first check for correlations between \(k\) and \(d\). In literature, mathematical correlations between lattice thermal conductivity \((k_l)\) and \(d\) have already been reported but the same is missing for electronic thermal conductivity \((k_e)\) and \(d\). By analysing literature data for bismuth telluride and lead telluride at 300 K, we identified a linear correlation between \(k_e\) and \(d\), wherein an increase in \(d\) leads to an increase in \(k_e\). This dependence of \(k_e\) on \(d\) was combined with the dependence of \(k_l\) on \(d\) to establish the overall dependence of \(k\) on \(d\). Subsequently, the grain size distribution effect was imposed by using a log normal distribution. The analysis revealed that for a given grain size, an increase in \(S_d\) leads to lowering of the thermal conductivity of the material. The analysis was also extended to bimodal grain size distributions wherein the microstructure was designed in a way to contain a mixture of both nanocrystalline and microcrystalline grains.

1. Introduction
Thermoelectric \((TE)\) materials are gaining more importance due to their ability to convert the available enormous amount of waste heat energy into useful electrical energy. This conversion of energy is due to the Seebeck effect. Solid state power generation, and optoelectronics are some of the sectors where TE materials can be used effectively [1]. The main challenge associated with a TE material is to increase the energy conversion efficiency which is quantified by figure-of-merit \((ZT)\). The \(ZT\) can be represented as

\[
ZT = \frac{s^2 \sigma T}{k},
\]

where, \(s\), \(\sigma\), \(T\), and \(k\) are the Seebeck coefficient, the electrical conductivity, absolute temperature and thermal conductivity respectively [2]. The total thermal conductivity of a system is the algebraic sum of its electronic and lattice thermal conductivities i.e. \(k = k_e + k_l\), where \(k_e\) is electronic thermal conductivity and \(k_l\) is lattice thermal conductivity. The \(k_e\) mainly depends on the electrical conductivity and Lorentz number of the materials and it can be described as \(k_e = L \sigma T\), where \(L\) is Lorentz number = \([1.5 + \exp\left(-\frac{151}{T}\right)] \times 10^{-8} \text{W} \Omega \text{K}^{-2}\), \(s\) is experimentally measured in \(\mu \text{V} \text{K}^{-1}\), \(T\) is the absolute temperature; albeit some studies have revealed a grain size dependence of \(k_e\) [3, 4]. The \(k_l\) depends upon the lattice vibrations of the material and the creation of short-range order in the lattice to sufficiently scatter the phonons to reduce the lattice thermal conductivity. Nanostructuring methodology [5, 6] enables the introduction of different length scale microstructural features which can effectively scatter most of these three wavelength regimes of phonons i.e. short, mid and long
wavelengths to reduce the lattice thermal conductivity \((k_l)\) of the materials \([7, 8]\). There are other approaches to increase \(ZT\) such as using dopants \([9–11]\) and varying the level of doping \([12–14]\). However, decreasing the grain size is an effective way to enhance the \(ZT\) \([15–17]\), because dense grain boundary area significantly enhances the phonon scattering and thus result in lower thermal conductivity. This can be seen from the work of Rowe et al \([18]\). Their study compared the conversion efficiency (calculated from \(ZT\)) of n-type Si-Ge polycrystalline materials having grain size 10 \(\mu\)m and 0.1 \(\mu\)m respectively at 1000 K. The sample having 10 \(\mu\)m grain size and 0.1 \(\mu\)m grain size showed an improvement of 14% and 30% over the Si-Ge single crystal. The dependence of Seebeck coefficient on grain size was addressed by Gao et al \([19]\). In their study, the Boltzmann transport equation was used with the grain boundary scattering effect as the boundary condition for electron transport in grain. The validation of the proposed model was done by comparing the values of Seebeck coefficient for CoSb\(_3\) bulk samples with the values obtained from model-based calculation. The Seebeck coefficient for CoSb\(_3\) bulk samples having average grain size varying from 2 nm to 5 \(\mu\)m was calculated, showing an exponential decrease with an increase in grain size, and found to match with the experimental data \([20]\). However, tuning \(s, \sigma, \) and \(k\) independently is difficult. The Seebeck coefficient decreases with an increase in charge carrier concentration, whereas electrical conductivity and thermal conductivity increase with carrier concentration \([21]\). Increasing the charge carrier concentration to improve the electrical conductivity, \(\sigma\), leads to a concomitant increase in \(k\), the electronic thermal conductivity and thus an increase in \(k_l\). Although Synder et al \([22]\) optimized the carrier concentration to maximize \(s\sigma\) value for Bismuth Telluride \((\text{Bi}_2\text{Te}_3)\) and Pichanuskorn et al \([23]\) optimized the value of Seebeck coefficient to maximize the power factor in TE materials, the associated problem of increase in \(k\) cannot be ruled out. Hence to maximize \(ZT\), the only option is to decrease \(k\) without reducing \(\sigma\) and this can be achieved through grain size refinement, where the short-range order created by the introduction of grain boundaries effectively scatters the phonons and reduces the total thermal conductivity \([1, 22]\). Towards this end, many studies have focused on reducing \(k\) through nanostructuring of the TE material. By reducing the grain size from 30 \(\mu\)m to 10 \(\mu\)m for \(\text{Bi}_2\text{Te}_3\), the \(k\) value was decreased from 1.6 to 0.61 W mK\(^{-1}\) \([24–26]\).

Various models were employed to describe the change in \(k\) including \(k_l\) & \(k\), with grain size. Kinemuchi et al \([27]\) focused on improving the figure of merit \((ZT)\) through boundary scattering in In\(_2\)O\(_3\). They employed Debye-Callaway model to determine the phonon thermal conductivity and Wiedemann–Franz equation to evaluate the electronic thermal conductivity of samples having different average grain size ranging from 20 nm to 2 \(\mu\)m. Both the \(k_l\) and \(k\) values showed a decrease with the reduction in average grain size and increase in temperature. The calculated ZT value for 30 nm grain size sample at 300 K was reported to be 0.06 which is very close to the experimentally determined ZT for the same sample \((0.07)\). The validation of Debye-Callaway model was also done by Kinemuchi et al in a previous work on Ga doped ZnO \([28]\). The study showed a good agreement between the experimental data and the model predictions for thermal conductivity for samples having grain sizes in the micro and nano scale. Similarly, Popescu et al \([29]\) calculated the \(k_l\) of Bi doped PbTe system utilising the Holland–Callaway model and showed its agreement with the experimental data.

There are some studies where the variation of \(k\) with grain size was calculated directly instead of calculating both \(k_l\) & \(k\). Cao et al \([30]\) studied the variation in thermal conductivity of hot pressed PbTe bulk samples having grain sizes varying from 200 to 400 nm. In this study, the thermal conductivity for different average grain sizes was calculated using the formula given by Nan et al \([31]\) which showed a good agreement with the experimental data. Another model named crowding factor model was employed by Rajasekar et al \([32]\) to evaluate the effective thermal conductivity of Si/Al doped \(\beta\)-Fe\(_2\)S\(_3\) composite as a function of average particle size. Here the model-based calculated \(k\) values for different average particle size were compared against the experimentally determined \(k\) values for corresponding particle size. With increase in the average particle size from 106 nm to 186 nm, the calculated \(k\) value increased from 11.7 W mK\(^{-1}\) to 13.1 W mK\(^{-1}\) while the experimental value shifts from 11.3 ± 0.6 W mK\(^{-1}\) to 13.4 ± 0.5 W mK\(^{-1}\). From the above result, it was evident that the predicted \(k\) values are in reasonable agreement with the experimental results. Although many studies have attempted to significantly increase the \(ZT\) value by grain refinement \([3, 25, 33]\), there is scope for further improvement by controlling or understanding the issues related to impurity concentration \([34]\), grain size distribution, and grain growth \([35]\) during fabrication by sintering etc.

In general, for structural property correlations, the microstructures are described by a single parameter such as an average grain size or average interlamellar spacing etc. For example, increase in hardness or strength due to grain size refinement is understood by plotting the strength against the inverse of the square root of the average grain size of the microstructure. Although this approach has found success in describing structure–property correlations, the distribution of the microstructural parameter cannot be completely overlooked. Ghosh et al \([36]\) demonstrated the effect of grain size distribution on the steady state creep behavior of superplastic aluminum and titanium alloys. Phaniraj et al \([37]\) invoked grain size distribution as an important microstructural parameter to explain the plastic flow and failure behavior of nanocrystalline materials. Similarly, Gollapudi \([38]\) investigated the effect of grain size distribution on corrosion behavior of magnesium in
both passivating and non-passivating medium. The study [38] revealed that for same average grain size, a microstructure with a broader grain size distribution is less corrosion resistant compared to that bearing a narrow grain size distribution in a passivating environment and vice versa for an active electrolyte. In a recent study, Gollapudi and Soni [39] have predicted that the concentration of the solute element segregating at the grain boundaries of a nanocrystalline microstructure is also a function of the grain size distribution. The above-mentioned studies have demonstrated that grain size distribution can be an important design parameter for the development of materials with superior properties.

In principle, the grain size distribution is expected to have an effect on thermal conductivity in all those materials which demonstrate a grain size dependence of thermal conductivity [40–42]. Experimental evidence for effect of grain size distribution on thermal conductivity has been provided by Gendelman et al [43]. Gendelman et al conducted some studies to establish the correlation between the width of the distribution and k of copper and found that a broadening of the distribution leads to increase of k. However, there are very few systematic studies correlating the grain size distribution to thermal conductivity [43].

In this study, our objective is to check the effect of grain size distribution on the thermal conductivity of thermoelectric materials, which in turn can highlight its effect on the figure of merit ZT of thermoelectric materials. In the following sections, we describe the approach taken and the results obtained from the exercise.

2. Problem formulation

We use the log normal distribution to describe the microstructure of the thermoelectric material. This is in line with the approach undertaken by Phaniraj et al [37] and Gollapudi [38]. The log normal distribution is given by the following equation:

$$f(d) = \frac{1}{\sqrt{2\pi}dS_n} \exp \left[-\frac{1}{2} \left(\frac{\ln(d/d_M)}{S_n} \right)^2 \right]$$ \hspace{1cm} (2)

Where d is the grain size, S_n is the standard deviation in a number weighted grain size distribution and d_M is the median grain size. The d_M is further related to the average grain size, d_{avg} as per the following equation [44].

$$d_M = \frac{d_{avg}}{(0.5S_n^2)}$$ \hspace{1cm} (3)

In order to check the effect of grain size distribution on thermal conductivity, we first need to establish the effect of grain size on thermal conductivity. As mentioned earlier, the thermal conductivity (k) of a material consists of two parts a. lattice thermal conductivity (k_l) and b. electronic thermal conductivity (k_e). The dependence of k_l on d is described by Takashiri et al [26] in their work on nanocrystalline n-type Bi$_2$Te$_3$ thin films. Takashiri et al [26] described the k_l as a function of grain size using the theory of phonon scattering at grain boundaries [45, 46]. As per this theory, an increase in the number of grain boundaries leads to more phonon scattering which reduces the k_l value. For a grain size too larger than the phonon mean free path, the dependence of k_l on d is given by

$$k_l = k_{iso} - \frac{2}{3}k_0 \sqrt{l_1 \frac{d}{3d}}$$ \hspace{1cm} (4)

Where k_{iso} is the lattice conductivity of the material for negligible boundary scattering, k_0 is the lattice conductivity in the absence of alloy scattering and l_1 is the phonon mean free path. On the other hand, for a grain size comparable or smaller than phonon mean free path, the dependence of k_l on d is described by

$$k_l = \left(\frac{2k_0}{3} \right) \left[\left(\frac{3d}{l_1} \right) \left(\frac{k_{iso}}{2k_0} \right) \right]^{3/4}$$ \hspace{1cm} (5)

In the above equations (4) and (5), the values of k_{iso}, l_1, and k_0 are observed to be different for different thermoelectric material. For Bi$_2$Te$_3$, these constants bear different values in the basal plane and along c-axis as its crystal structure is trigonal. Consequently, the k_l is found to exhibit similar values in the a-axis and b-axis of the basal plane and but different values along the c-axis. The value of k_l along the a-axis and b-axis, which are part of the basal plane, is similar while the k_l along the c-axis is different to that of the a and b-axis. Takashiri et al also demonstrated that the value of k_l along a-axis and b-axis is the upper bound and the value of k_l along c-axis is the lower bound for a given material. As a result, all the k_l values estimated for Bi$_2$Te$_3$ from experiments falls within the theoretically calculated upper and lower bounds [24–26]. Similarly, dependence of k_l with grain size for n type PbTe can also be calculated using equations (4) and (5). In the case of PbTe, due to its cubic structure, the same values of the parameters k_{iso}, l_1, and k_0 can be used for a-axis, b-axis and c-axis.
In order to understand the grain size dependence of k, it is important to know the grain size dependence of both k_l and k_e on d. The grain size dependence of k_l is given by equations (4) and (5). However, the grain size dependence of k_e has not been described in literature. In order to establish the same, the k_e vs d values reported for n type Bi$_2$Te$_3$ and n type PbTe are taken from literature [24, 26, 47, 48]. A linear fit was found to describe the dependence of k_e on d, with an increase in d leading to increase in value of k_e. By combining the k_e and k_l dependence on d, the dependence of k on d is determined. This correlation is then used for determining the effect of grain size distribution on k. Since in a distribution, there will be different grain sizes with each grain size having a certain frequency of occurrence, the contribution of each grain size to the thermal conductivity of the distribution is found using the weighted average method. The frequency of occurrence $f(d)$ is a function of S_w through equation (2) and by varying the S_w, the $f(d)$ is varied which in turn changes the weighted contributions of the different grain sizes to the total k. In this way the effect of S_w on k is determined.

In addition to determining the variation of k with S_w, we attempt to understand the effect of a bimodal grain size distribution on k value by using the Bi$_2$Te$_3$ as a case study. This is necessitated by the observations of Zhao et al [49]. In order to optimize the value of ZT, Zhao et al [49] synthesized a bimodal microstructure which had a mixture of both coarse and fine grains. The material with the bimodal microstructure was created by mixing powders of different grain sizes and processed into bulk forms by spark plasma sintering method. The material under discussion, consisted of 100 nm and 1 μm sized Bi$_2$Te$_3$ grains and the highest value of ZT was obtained for a microstructure bearing 60% by weight of fine particles. This work by Zhao et al highlights the importance of a bimodal microstructure and as part of this study, we investigate the effect of S_w on k for a bimodal microstructure.

3. Results and discussions

In line with the approach described earlier, we first plot the variation of k_l with d using equations (4) and (5) for both n type Bi$_2$Te$_3$ and n type PbTe at 300 K. As mentioned before, the values of the parameters required in equations (4) and (5) for n type Bi$_2$Te$_3$ are taken from Sharp et al [50] and these values are also reported in table 1. Using these, the upper and lower bounds of k_l for different values of d is plotted in figure 1(a). Similar to the observations of Takashiri et al [25], figure 1(a) reveals an initial steep rise in the value of k_l with d. However, it
seems to taper off at grain sizes greater than 1 \(\mu m \). This behavior is replicated by both the lower and upper bounds of \(k_l \). Similarly, the values of the parameters for n type PbTe are reported in table 2 with appropriate references. The variation in \(k_l \) value with grain size for PbTe can be seen from figure 1(b). In both the cases, stabilization of \(k_l \) values at higher grain size can be seen. The stabilization of \(k_l \) at higher \(d \) values can be understood from the fact that with increase in grain size, the grain boundary fraction of the material reduces significantly. The dependence of grain boundary fraction, \(f_{gb} \), on grain size, \(d \), is given by equation (6)

\[
f_{gb} = 1 - \left(\frac{d - t}{d} \right)^3
\]

Where \(t \) is the grain boundary thickness which is generally assumed as 0.5 nm [51]. Figure 2 shows the variation of grain boundary fraction of a microstructure as a function of grain size and reveals that at grain sizes larger than 1 \(\mu m \), the grain boundary fraction is very small and invariant of the grain size of the material. As grain boundaries with their inherent disorder are known to reduce thermal conductivity, a constancy of grain boundary fraction at large grain sizes indicates that the dependence of lattice thermal conductivity on grain size would reduce at larger grain sizes which is what is suggested by figure 1.

By gathering data from literature, we estimated the variation of \(k_s \) with grain size for both Bi\(_2\)Te\(_3\) & PbTe and the same is shown in figures 3(a) and (b) respectively. A linear fit is found to describe the variation of \(k_s \) with \(d \) with increase in grain size leading to increase in \(k_s \) values. Since we could not find information on \(k_s \) at very high grain sizes such as 10 \(\mu m \) and more, it is not clear if \(k_s \) will continue to increase with grain size or if it would become independent of \(d \) for coarse grain sizes. Based on the available data gathered from literature, we find that \(k_s \) increases linearly with \(d \) up to a grain size of 4 \(\mu m \), beyond which it might stay constant or increase at a lower rate considering that \(f_{gb} \) becomes very low for grain sizes greater than 1 \(\mu m \) and more.

Since the thermal conductivity \(k \) is a sum of \(k_l \) and \(k_s \), the dependence of \(k \) on \(d \) can be obtained by summing the individual dependencies of \(k_l \) and \(k_s \) on \(d \). The dependence of \(k \) on \(d \) for Bi\(_2\)Te\(_3\) & PbTe are shown in figures 4 and 5. It is interesting to note that the rate of increase of \(k \) with \(d \) is initially low for both the cases. This behavior is observed up to a grain size of 100 nm. However, after 100 nm, the value of \(k \) starts increasing rapidly with \(d \). This behavior of \(k \) can be understood from the fact that unlike \(k_l \) which increases rapidly with grain size even at \(d < 100 \) nm, \(k_s \) does not undergo a significant change with \(d \) up to 100 nm. Consequently, \(k \) undergoes a slow change with \(d \) in the nanocrystalline regime.

Table 2. Parameters used for calculation of lattice thermal conductivity of n type PbTe.

Parameters	Value	References
\(k_0 \) (W mK\(^{-1}\))	2.98	[52]
\(k_s \) (W mK\(^{-1}\))	2.05	[53]
\(l_t \) (m)	\(3.4 \times 10^{-8} \)	[5]

Figure 2. Variation of grain boundary fraction, \(f_{gb} \), with grain size, \(d \).
Figures 4 and 5 provides the variation of k with d for different values of S_n for Bi$_2$Te$_3$ and PbTe respectively. It is apparent from figures 4(a) and 5(a) that an increase in S_n leads to a reduction in the k value and this effect is more so at intermediate grain size values. At lower grain sizes such as 20 nm, the k values are not changed significantly by a change in S_n and the same is observed for grain sizes greater than 1 μm. Figures 4(b) and 5(b) provides a magnified view of the k values at intermediate grain size values and it is clear that an increase in S_n causes a greater reduction in k compared to the reduction observed for very fine or very coarse grains. This dependence is better illustrated by figures 6 and 7 wherein we have plotted the reduction in k for Bi$_2$Te$_3$ and PbTe respectively, Δk as a function of S_n for different grain sizes. The Δk corresponds to a reduction in k when evaluated with respect to the k value at $S_n = 0$. Figure 6(a) describes this change for the upper bound of k and figure 6(b) describes this change for the lower bound of k for Bi$_2$Te$_3$. Similarly, figure 7 depicts this change in k for PbTe. It is interesting to note that Δk increases with S_n irrespective of the grain size. However, this increase in Δk with S_n is higher for microstructures with average grain sizes in the range of 100 nm and 1 μm and lower for the very fine ($d < 100$ nm) and coarse grained ($d > 1$ μm) microstructures. The values of Δk for Bi$_2$Te$_3$ for the upper and lower bounds of k are shown in tables 3(a) and (b) respectively. These values were used for making the figures 6(a) and (b). The values of Δk for PbTe are shown in table 4 and used for constructing figure 7.
The key takeaways from this analysis is that

1. An increase in grain size, \(d \), leads to an increase in \(k \). This is understood from the fact that with an increase in \(d \), there is a reduction in the number of grain boundaries which are essential for phonon scattering. Consequently, this leads to an increase in the thermal conductivity.

2. An increase in the distribution width, \(S_n \), can lead to a reduction in \(k \) for all microstructures. Except for the work by Gendelman et al [43], there have been no works correlating grain size distribution to \(k \). Our observations on the correlation between \(S_n \) and \(k \) are contrary to the observations of Gendelman et al. One possible reason for this difference is that in addition to number of grain boundaries, the nature/type of the grain boundaries such as tilt boundaries, twist boundaries, coincident site lattice (CSL) boundaries will also affect the thermal conductivity. Gendelman et al [43] did not conduct a thorough characterization of the grain boundary character and hence a direct comparison with their work is not proper.

3. This reduction in \(k \), \(\Delta k \), was observed to be higher for the intermediate grain sizes instead of the fine (\(d < 100 \text{ nm} \)) or coarse grained (\(d > 1 \mu \text{m} \)) microstructures. This can be understood from figures 1(a) and (b). The change in \(k_\theta \) with \(d \) occurs at a higher rate in the intermediate grain size (100 nm < \(d < 1 \mu \text{m} \)) region compared to the finer and coarser grained regions. As a result, effect of \(S_n \) on \(k \) is more pronounced in
the intermediate grain size regions. On the other hand, the change in k with d occurs with a constant slope irrespective of the grain size in this range. Thus, a combination of k_e and k_l experiences the effect of S_n only in the intermediate grain size region.

Table 3. (a): Decrease in thermal conductivity (Upper bound) for Bi$_2$Te$_3$; (b): Decrease in thermal conductivity (Lower bound) for Bi$_2$Te$_3$.

d	$S_n = 0$	$S_n = 0.2$	$S_n = 0.5$	$S_n = 0.75$	$S_n = 1$
(a)					
20 nm	0	0.88	8	19.5	36.6
100 nm	0	2.02	20.49	48.12	79.6
400 nm	0	3.05	20.77	47.66	84.75
600 nm	0	9.17	32.68	66.94	110.93
1 μm	0	4.26	26.5	53.2	98.3
3 μm	0	1.8	16.7	32.4	37.6

Table 4. Decrease in thermal conductivity for PbTe.

d	$S_n = 0$	$S_n = 0.2$	$S_n = 0.5$	$S_n = 0.75$	$S_n = 1$
20 nm	0	3.5	21.6	50.9	94
100 nm	0	5.2	52.3	123	203.4
400 nm	0	5	31.5	83.4	158.3
600 nm	0	4.1	26.4	65	126.6
1 μm	0	3.2	21.6	53.7	104
3 μm	0	1.4	12.8	24.7	30

Figure 7. Reduction in k for PbTe as a function of standard deviation S_n and grain size d.
Although grain sizes of the order of 10–20 nm provide very low \(k \) values, retaining of these grain sizes may be challenging while making bulk thermoelectric parts using the powder processing route. The grains of the mechanically milled powder would typically grow to larger sizes during conventional sintering or advanced sintering techniques such as spark plasma sintering. In such cases, the increase in \(k \) brought about by an increase in \(d \) can be circumvented if the microstructure bears a high \(S_n \). For example, in figure 5(b), it can be observed that a microstructure with an average grain size of 100 nm and a \(S_n \) of 0.2 bears the same \(k \) value as that of a microstructure with an average grain size of 200 nm and a \(S_n \) value of 1. This implies that it is not mandatory to have very fine grain sizes to achieve a low value of \(k \) as long as the grain size distribution is kept broad.

Generally, the beneficial effects of grain size distribution are demonstrated by materials bearing bimodal microstructures. Wang et al\[54\], demonstrated a good combination of high strength and ductility in copper bearing a mixture of nanocrystalline and coarse grains. Similarly in thermoelectric materials, Zhao et al\[49\] demonstrated that it is possible to tailor the \(ZT \) by developing a bimodal microstructure. Other studies such as\[55–58\] also investigated the \(k \) in bimodal microstructure. In the current study, we have made an attempt to describe the effect of \(S_n \) in a bimodal microstructure using Bi\(_2\)Te\(_3\) as a case study. The bimodal microstructure simulated for our study is shown in figure 8. It has two major components. One component bears an average grain size of 20 nm and the other component bears an average grain size of 1 \(\mu \)m. It is possible to modify the volume fraction of the fine and coarse grain sizes and study the effect of both volume fraction and \(S_n \) on \(k \). This study as mentioned earlier is essential as Zhao et al\[49\] already reported the benefits of using a bimodal microstructure on \(k \) and \(ZT \). With this in mind, the thermal conductivity values are being calculated by treating each grain size distribution independently and then adding their contributions using the rule of mixtures. In this way, the total thermal conductivity becomes a function of \(S_n \) of the distribution and the volume weighted fraction of constituent parts.

Figure 9 shows the effect of both volume fraction and \(S_n \) on the value of \(k \). The figure reveals that there is an enhancement in the value of \(k \) as the volume fraction of the coarse grains is increased. This is easily understood from the fact that an increase in volume fraction of the coarse grains leads to a reduction in the number of grain boundaries and consequently a reduction in the number of barriers to thermal conductivity. The figure also allows us to understand the effect of \(S_n \) of the two components of the bimodal microstructure on its thermal conductivity. We study three different cases. In first case, the standard deviation of both the major components is kept same at 0.2. Here standard deviation of the fine grain component is addressed as \(S_{n1} \) and the standard deviation of the coarse grain component is addressed as \(S_{n2} \).

- First case, \(S_{n1} = S_{n2} = 0.2 \).
- Second case, \(S_{n1} = 0.2 \) and \(S_{n2} = 1 \)
- Third case, \(S_{n1} = 1 \) and \(S_{n2} = 0.2 \)

It can be seen from figure 9 that for low volume fraction (0.2 or lower) of coarse grains, the microstructure has the same \(k \) value irrespective of the \(S_n \) values of the finer and coarse grain fractions. At large volume fractions (0.4 and higher) of the coarse grains, the value of \(k \) for case 2 is found to be lower than that of case 1 and case 3.
This behavior is observed for both the upper bound and lower bound of k values. This exercise reveals that in a bimodal microstructure, the effect of S_n is not significant if the volume fraction of the coarse grains is small such as 0.2 or lower.

The key takeaway of the analysis on bimodal microstructure is that the effect of S_n becomes significant only when the volume fraction of coarse grains is high and a lower value of S_{n1} and a higher value of S_{n2} will be more beneficial for the thermoelectric material. A small value of S_{n1} will imply that the fine grain component would have a narrow distribution of grain size and since k is small for fine grains, a small S_{n1} ensures that the k value is not increased. On the other hand, a large value of S_{n2} will ensure that there will an increase in the number of fine grains contributing to the distribution. Since finer grains reduce k, an increase in their number brought about by an increase in S_{n2} will lead to an overall lowering of k which in turn will be beneficial for the ZT. Thus, a tailoring of S_n can aid in the lowering of the k value even for a bimodal microstructure.

4. Conclusion

1. The effect of grain size distribution, described by S_n on the thermal conductivity k was studied for thermoelectric materials. The thermoelectric systems Bi$_2$Te$_3$ and PbTe were chosen as there is a lot of data available in literature for this system.

2. In order to establish the effect of S_n, it was first necessary to identify the effect of grain size d on the thermal conductivity. By using literature data, we developed a correlation for electronic thermal conductivity k_e against d and found a linear dependence with an increase in d leading to an increase in k_e. This dependence of k_e on d was combined with the dependence of k_l on d, already existing in literature, to obtain the dependence of k on d.

3. It was found that thermal conductivity, k, increases with d. However, for the same average grain size, an increase in S_n leads to a reduction of k. The reduction in k, Δk, with increase in S_n is higher for microstructures with average grain size in the range of 100 nm and 1 μm.

4. The effect of S_n on the thermal conductivity of bimodal microstructures was also studied by using data from Bi$_2$Te$_3$. It was observed that an increase in volume fraction of coarse grains increases the value of k. On the other hand, for a given volume fraction of coarse grains, a decrease in k can be achieved if the S_n of the coarse grains is high and the S_n of the fine grains making up the bimodal microstructure is low.

Data availability statement

The data that supports the findings of this study are available from the corresponding author upon reasonable request.
ORCID iDs

Priyabrata Das @ https://orcid.org/0000-0003-3720-8182
Sivaiah Bathula @ https://orcid.org/0000-0001-6093-6351
Srikant Gollapudi @ https://orcid.org/0000-0002-0424-6759

References

[1] Tritt TM and Subramanian MA 2006 Thermoelectric materials, phenomena, and applications: a bird’s eye view MRS Bull. 31 188–98
[2] Snyder GJ and Snyder AH 2017 Figure of merit ZT of a thermoelectric device defined from materials properties Energy Environ. Sci. 10 2280–3
[3] Toprak M S et al 2004 The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3 Adv. Funct. Mater. 14 1189–96
[4] Lee KH et al 2019 Synergetic effect of grain size reduction on electronic and thermal transport properties by selectively-suppressed minority carrier mobility and enhanced boundary scattering in Bi0.5Sb0.5Te3 alloys Scr. Mater. 160 15–9
[5] Qiu B, Bao H, Xuan X, Zhang G and Wu Y 2012 Molecular dynamics simulations of lattice thermal conductivity and spectral phonon mean free path of PbTe: Bulk and nanostructures ASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012 1, pp 659–70
[6] Yu JK, Mitrovic S, Tham D, Varghese J and Heath JR 2010 Reduction of thermal conductivity in phononic nanomesh structures Nat. Nanotechnol. 5 718–21
[7] Kim W et al 2006 Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors Phys. Rev. Lett. 96 045901
[8] Hu M and Poulikakos D 2012 Si/Ge superlattice nanowires with ultralow thermal conductivity Nano Lett. 12 5487–94
[9] Nicholls JR, Lawson KJ, Johnstone A and Rickerby DS 2002 Methods to reduce the thermal conductivity of EB-PVD TBCs Surf. Coatings Technol. 151–152 383–91
[10] Chang CH, Chen CL, Chiu WT and Chen YJ 2017 Enhanced thermoelectric properties of Cu3Sb2Te5 by germanium doping Mater. Lett. 186 227–30
[11] Du BJ, Li JH, Xu J, Tang X and Uher C 2010 Enhanced figure-of-merit in Se-doped p-type AgSbTe2 thermoelectric compound Chem. Mater. 22 5521–7
[12] Falkenbach O, Hartung D, Klar PJ, Koch G and Schlecht S 2014 Thermoelectric properties of nanostructured bismuth-doped lead telluride Bi4(AsTe2)5 prepared by co-ball-milling J. Electron. Mater. 43 1674–80
[13] McConnell AD, Uma S and Goodson KE 2001 Thermal conductivity of doped polysilicon layers J. Microelectromechanical Syst. 10 360–9
[14] Shinde SS, Shinde PS, Oh YW, Hanarith DB, Bhosale CH and Rajpure KY 2012 Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films Appl. Surf. Sci. 258 9969–76
[15] Cao YQ, Zhu TJ, Zhao XB, Zhang XB and Tu JP 2008 Nanostructuring and improved performance of ternary Bi-Sb-Te thermoelectric materials Appl. Phys. A Mater. Sci. Process 92 321–4
[16] Basu R et al 2014 Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys J. Mater. Chem. A 2 6922–30
[17] Xu J, Li H, Du B, Tang X, Zhang Q and Uher C 2010 High thermoelectric figure of merit and nanostructuring in bulk AgSbTe2 J. Mater. Chem. 20 6138–43
[18] Rowe DM and Bhandari CM 1980 Effect of grain size on the thermoelectric conversion efficiency of semiconductor alloys at high temperature Appl. Energy 9 347–51
[19] Gao YW, He YZ and Zhu JL 2010 Impact of grain size on the Seebeck coefficient of bulk polycrystalline thermoelectric materials Chinese Sci. Bull. 55 16–21
[20] Yu BL, Qi Q, Tang XF and Zhang QJ 2005 Effect of grain size on thermoelectric properties of CoSb3 compound Wuli Xuebao/Acta Phys. Sin. 54 5763–8
[21] Terasaki 2011 Thermal conductivity and thermoelectric power of semiconductors Comprehensive Semiconductor Science and Technology (Amsterdam: Elsevier Inc.) 326–58 9780444531337
[22] Snyder GJ and Toberer ES 2008 Complex thermoelectric materials Appl. Phys. Lett. 94 223108
[23] Kim D-H and Mitani T 2005 Thermoelectric properties of ne-grained Bi2Te3 alloys Thermoelectric materials Appl. Phys. A Mater. Sci. Process 92 321–4
[24] Takashiki M, Miyazaki K, Tanaka S, Kurosaki J, Nagai D and Tsukamoto H 2008 Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride-based thin films J. Appl. Phys. 104 083402
[25] Takashiki M, Takishita M, Tanaka S, Miyazaki K and Tsukamoto H 2007 Thermoelectric properties of n-type nanocrystalline bismuth-telluride-based thin films deposited by flash evaporation J. Appl. Phys. 101 074301
[26] Kinemuchi Y, Guimeux E, Lebedev OI and Maaignan A 2011 Tuning of dimensionless figure of merit via boundary scattering in In5O3-x J. Appl. Phys. 110 124304
[27] Kinemuchi Y, Nakano H, Mikami M, Kobayashi K, Watari K and Hotta Y 2010 Enhanced boundary-scattering of electrons and phonons in nanograined zinc oxide J. Appl. Phys. 108 053721
[28] Popescu A, Datta A, Nolas GS and Woods LM 2011 Thermoelectric properties of Bi-doped PbTe composites J. Appl. Phys. 109 103709
[29] Cao YQ, Zhu TJ and Zhao XB 2009 Low thermal conductivity and improved figure of merit in fine-grained binary PbTe thermoelectric alloys J. Phys. D: Appl. Phys. 42 045106
[30] Nan CW and Birringer R 1998 Determining the Kapitza resistance and the thermal conductivity of polycrystals: a simple model Phys. Rev. B: Condens. Matter Mater. Phys. 57 826–8
[31] Parasararam K, Wu Y, Orodene-Miranda J, Volz S and Umarji AM 2018 Particle size effect on the thermal conductivity reduction of silicon based thermoelectric composites Sustain. Energy Fuels 2 1764–71
33] Wanarattikan P, Littammapirorn P, Sakdanasuphab R and Sakulkalavek A 2019 Effect of grain size and film thickness on the thermoelectric properties of flexible SnSe thin films Advances in Materials Science and Engineering 2019 695 4918
34] Takashiri M, Shira kawa T, Miyazaki K and Tsukamoto H 2006 Fabrication of n-type bismuth-telluride thin films by flash evaporation method Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions Japan Soc. Mech. Eng. Part A 72 1793–8
35] Joffe A, Stilbans L, Jordanishvili A, Stavitskaya T, Gelbtuch A and Vineyard G 1999 Semiconductor Thermoelements and Thermoelectric Cooling Physics Today 12 42
36] Ghosh A K and Raj R 1981 Grain size distribution effects in superplasticity Acta Metall. 29 607–16
37] Paniraj M P, Prasad M J N V and Chokshi A H 2007 Grain-size distribution effects in plastic flow and failure Mater. Sci. Eng. A 463 231–7
38] Gollapudi S 2012 Grain size distribution effects on the corrosion behaviour of materials Corros. Sci. 62 90–4
39] Gollapudi S and Soni A K 2020 Understanding the effect of grain size distribution on the stability of nanocrystalline materials: an analytical approach Mater. Sci. Eng. A 9 100579
40] Fayette S, Smith D S, Smith A and Martin C 2000 Influence of grain size on the thermal conductivity of tin oxide ceramics J. Eur. Ceram. Soc. 20 297–302
41] Dong H, Wen B and Mehrik R 2014 Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials Sci. Rep. 4 7037
42] Wang Z, Alani J E, Jang W, Garay J E and Dames C 2011 Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths Nano Lett. 11 2206–13
43] Gendelman O V, Shapiro M, Estrin Y, Hellmig R J and Lekhtmaker S 2006 Grain size distribution and heat conductivity of copper processed by equal channel angular pressing Mater. Sci. Eng. A 434 88–94
44] Zhu B, Asaro R J, Krysel P and Bailey R 2005 Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals Acta Mater. 53 4823–38
45] Rowe D M 1995 CRC handbook of thermoelectrics ed D M Rowe (Boca Raton, FL: CRC-Press)
46] Goldsmid H J and Perin A W 1968 Boundary scattering of phonons in solid solutions Phys. Lett. A 27 523–4
47] Kishimoto K and Koyanagi T 2002 Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties J. Appl. Phys. 92 2544–9
48] Kishimoto K, Yamamoto K and Koyanagi T 2003 Influences of potential barrier scattering on the thermoelectric properties of sintered n-type PbTe with a small grain size Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 42 501–8
49] Zhao L D, Zhang B P, Liu W S and Li J F 2009 Effect of mixed grain sizes on thermoelectric performance of Bi$_2$Te$_3$ compound J. Appl. Phys. 105 025704
50] Sharp J W and Goldsmid H J 1999 Boundary scattering of charge carriers and phonons Int. Conf. on Thermoelectrics, ICT, Proc. pp 709–12
51] Murdoch H A and Schuh C A 2013 Stability of binary nanocrystalline alloys against grain growth and phase separation Acta Mater. 61 2121–32
52] Orihashi M, Noda Y, Chen L and Hirai T 2000 Carrier concentration dependence of thermal conductivity of iodine-doped n-type PbTe Mater. Trans., JIM 41 1282–6
53] Yone da S, Ohta E, Kaibe H T, Ohsugi I J, Shiota I and Nishida I A 2001 Grain size effect on thermoelectric properties of PbTe prepared by spark plasma sintering Mater. Trans. 42 329–35
54] Wang Y, Chen M, Zhou F and Ma E 2002 High tensile ductility in a nanostructured metal Nature 419 912–5
55] Katsuyama S, Maezawa F and Tanaka T 2012 Synthesis and thermoelectric properties of sintered skutterudite CoSb$_3$ with a bimodal distribution of crystal grains J. Phys. Conf. Ser. 379 012004
56] Yoon S et al 2013 The effect of grain size and density on the thermoelectric properties of Bi$_2$Te$_3$–PbTe compounds J. Electron. Mater. 42 3390–6
57] Chang M C, Agne M T, Michi R A, Dunand D C and Snyder G J 2018 Compressive creep behavior of hot-pressed GeTe based TAGS-85 and effect of creep on thermoelectric properties Acta Mater. 158 239–46
58] Al Malik M M, Qiu Q, Zhu T, Snyder G J and Dunand D C 2019 Creep behavior and postcreep thermoelectric performance of the n-type half-Heusler alloy Hf$_{0.3}$Zr$_{0.7}$Ni$_{0.98}$Sb$_{0.02}$ Mater. Today Phys. 9 100134