The Bijectivity of Mirror Functors on Tori

Kazushi Kobayashi∗

Abstract

By the SYZ construction, a mirror pair (X, ˇX) of a complex torus X and a mirror partner ˇX of the complex torus X is described as the special Lagrangian torus fibrations X → B and ˇX → B on the same base space B. Then, by the SYZ transform, we can construct a simple projectively flat bundle on X from each affine Lagrangian multi section of ˇX → B with a unitary local system along it. However, there are non-unique choices of transition functions of it, and this fact actually causes difficulties when we try to construct a functor between the symplectic geometric category and the complex geometric category. In the present paper, by solving this problem, we prove that there exists a bijection between the set of the isomorphism classes of their objects.

Contents

1 Introduction 1
2 Preparations 3
3 Complex geometry side 5
 3.1 The definition of E(r,A,r′,U,p,q) 5
 3.2 The isomorphism classes of E(r,A,r′,U,p,q) 13
4 Symplectic geometry side 17
 4.1 The definition of L(r,A,p,q) 17
 4.2 The isomorphism classes of L(r,A,p,q) 19
5 Main result 22

1 Introduction

Let X be an n-dimensional complex torus, and we denote by ˇX a mirror partner of the complex torus X. For this mirror pair (X, ˇX), the homological mirror

∗Department of Mathematics and Informatics, Graduate School of Science, Chiba University, Yayoicho 1-33, Inage, Chiba, 263-8522 Japan. E-mail : afka9031@chiba-u.jp. 2010 Mathematics Subject Classification : 14J33, 14F05, 53D37. Keywords : torus, homological mirror symmetry, SYZ transform.
symmetry conjecture [11], which is proposed by Kontsevich in 1994, states that there exists an equivalence

$$D^b(Coh(X)) \cong Tr(Fuk(\hat{X}))$$

of triangulated categories. Here, $D^b(Coh(X))$ is the bounded derived category of coherent sheaves on X, and $Tr(Fuk(\hat{X}))$ is the derived category of the Fukaya category $Fuk(\hat{X})$ on \hat{X} [4] which is obtained by the Bondal-Kapranov-Kontsevich construction [3], [11]. Historically, first, this conjecture has been studied when (X, \hat{X}) is a pair of elliptic curves (see [18], [17], [1] etc.), and after that, the case of abelian varieties has been studied in [5] as a generalization of the case of elliptic curves to the higher dimensional case (see also [12]).

On the other hand, the SYZ construction [19], which is proposed by Strominger, Yau, and Zaslow in 1996, proposes a way of constructing mirror pairs geometrically. By this construction, the mirror pair (X, \hat{X}) is realized as the trivial special Lagrangian torus fibrations $\pi : X \to B$ and $\hat{\pi} : \hat{X} \to B$ on the same base space B which is homeomorphic to an n-dimensional real torus. Here, for each point $b \in B$, the special Lagrangian torus fibers $\pi^{-1}(b)$ and $\hat{\pi}^{-1}(b)$ are related by the T-duality. In particular, it is expected that the homological mirror symmetry on the mirror pair (X, \hat{X}) is realized by the SYZ transform (an analogue of the Fourier-Mukai transform) along the special Lagrangian torus fibers of $\pi : X \to B$ and $\hat{\pi} : \hat{X} \to B$.

Considering the above discussions, we explain the purpose of this paper. For a given mirror pair (X, \hat{X}), we regard it as the trivial special Lagrangian torus fibrations $\pi : X \to B$ and $\hat{\pi} : \hat{X} \to B$ in the sense of the SYZ construction. First, in the symplectic geometry side, we consider the Fukaya category $Fuk(\hat{X})$ consisting of affine Lagrangian multi sections of $\hat{\pi} : \hat{X} \to B$ with unitary local systems along them. Then, according to the discussions in [13] and [2], we can obtain a holomorphic vector bundle on X which admits a constant curvature connection from each object of $Fuk(\hat{X})$. This is called the SYZ transform. More precisely, the above constant curvature is expressed locally as

$$dz^t R d\bar{z} \cdot \text{id},$$

(1)

where $z = (z_1, \cdots, z_n)^t$ is the local complex coordinates of X, and R is a constant matrix of order n (actually, R is a Hermitian matrix of order n). On the other hand, for a holomorphic vector bundle on X with the Hermitian connection, if its curvature form is expressed locally as the form (1), such a holomorphic vector bundle admits a projectively flat structure (for example, see [10]). Therefore, we see that each object of $Fuk(\hat{X})$ is transformed to a projectively flat bundle on X, which in particular becomes simple. However, there are non-unique choices of transition functions of it. In this paper, we consider the DG-category DG_X consisting of such simple projectively flat bundles with any compatible transition functions. We expect that this DG_X generates $D^b(Coh(X))$ though we do not discuss it in this paper. At least, it is known that it split-generates $D^b(Coh(X))$ when X is an abelian variety (cf. [16], [1]). In this setting, when we fix a choice of transition functions of holomorphic vector
bundles in DG_X, we can obtain a map

$$\iota : \text{Ob}(\text{Fuk}(\check{X})) \rightarrow \text{Ob}(DG_X)$$

by the SYZ transform. Then, for example, it is shown in [5, Proposition 13.2] that the map ι induces an injection

$$\iota_{\text{isom}} : \text{Ob}_{\text{isom}}(\text{Fuk}(\check{X})) \rightarrow \text{Ob}_{\text{isom}}(DG_X),$$

where $\text{Ob}_{\text{isom}}(DG_X)$ and $\text{Ob}_{\text{isom}}(\text{Fuk}(\check{X}))$ denote the set of the isomorphism classes of holomorphic vector bundles in DG_X and the set of the isomorphism classes of objects of $\text{Fuk}(\check{X})$, respectively. Thus, in the present paper, we prove that the map ι_{isom} is actually a bijection by constructing a natural map

$$\text{Ob}(DG_X) \rightarrow \text{Ob}(\text{Fuk}(\check{X}))$$

whose direction is opposite to the direction of the map ι.

This paper is organized as follows. In section 2, we take a complex torus X, and explain the definition of a mirror partner \check{X} of the complex torus X. In section 3, we define a class of a certain kind of simple projectively flat bundles on X, and construct the DG-category DG_X consisting of those holomorphic vector bundles. We also study the isomorphism classes of them in section 3. In section 4, we consider the Fukaya category $\text{Fuk}(\check{X})$ consisting of affine Lagrangian multi sections of $\hat{\pi} : \check{X} \rightarrow B$ with unitary local systems along them, and study the isomorphism classes of objects of $\text{Fuk}(\check{X})$. In section 5, we explicitly construct a bijection $\text{Ob}_{\text{isom}}(DG_X) \rightarrow \text{Ob}_{\text{isom}}(\text{Fuk}(\check{X}))$. This result is given in Theorem 5.1.

2 Preparations

In this section, we define a complex torus $T_{j=T}^{2n}$ and a mirror partner $\check{T}_{j=T}^{2n}$ of the complex torus $T_{j=T}^{2n}$.

First, we define an n-dimensional complex torus $T_{j=T}^{2n}$ as follows. Let T be a complex matrix of order n such that $\text{Im}T$ is positive definite. We consider the lattice $2\pi(Z^n \oplus T\mathbb{Z}^n)$ in \mathbb{C}^n and define

$$T_{j=T}^{2n} := \mathbb{C}^n / 2\pi(Z^n \oplus T\mathbb{Z}^n).$$

Sometimes we regard the n-dimensional complex torus $T_{j=T}^{2n}$ as a $2n$-dimensional real torus $\mathbb{R}^{2n} / 2\pi\mathbb{Z}^{2n}$. In this paper, we further assume that T is a non-singular matrix. Actually, in our setting described below, it turns out that the mirror partner of the complex torus $T_{j=T}^{2n}$ does not exist if $\text{det}T = 0$. However, we can avoid this problem and discuss the homological mirror symmetry even if $\text{det}T = 0$ by modifying the definition of the mirror partner of the complex torus $T_{j=T}^{2n}$ and a class of holomorphic vector bundles which we treat. This fact will
be discussed in [9]. Here, we fix an \(\varepsilon > 0 \) small enough and let

\[
O_{m_1,\ldots,m_n}^{I_{1},\ldots,I_{n}} := \left\{ \begin{array}{l}
\left(\frac{x}{y} \right) \in T_{j=\tau}^{2n} | \frac{2}{3} \pi (l_j - 1) - \varepsilon < x_j < \frac{2}{3} \pi l_j + \varepsilon, \\
\frac{2}{3} \pi (m_k - 1) - \varepsilon < y_k < \frac{2}{3} \pi m_k + \varepsilon, \quad j, k = 1, \ldots, n
\end{array} \right. \}
\]

be a subset of \(T_{j=\tau}^{2n} \), where \(l_j, m_k = 1, 2, 3, \)

\[\begin{align*}
x := (x_1, \ldots, x_n)^t, \quad y := (y_1, \ldots, y_n)^t,
\end{align*}\]

and we identify \(x_i \sim x_i + 2\pi, \ y_i \sim y_i + 2\pi \) for each \(i = 1, \ldots, n \). Sometimes we denote \(O_{m_1=1,\ldots,m_n}^{I_{1},\ldots,I_{n}} \) instead of \(O_{m_1,\ldots,m_n}^{I_{1},\ldots,I_{n}} \) in order to specify the values \(l_j = l, \ m_k = m \). Then, \(\{O_{m_1=1,\ldots,m_n}^{I_{1},\ldots,I_{n}}\}_{l_j,m_k=1,2,3} \) is an open cover of \(T_{j=\tau}^{2n} \), and we define the local coordinates of \(O_{m_1=1,\ldots,m_n}^{I_{1},\ldots,I_{n}} \) by

\[\begin{align*}
(x_1, \ldots, x_n, y_1, \ldots, y_n)^t \in \mathbb{R}^{2n}.
\end{align*}\]

Furthermore, we locally express the complex coordinates \(z := (z_1, \ldots, z_n)^t \) of \(T_{j=\tau}^{2n} \) by \(z = x + Ty \).

Next, we define a mirror partner of \(T_{j=\tau}^{2n} \). We consider a \(2n \)-dimensional real torus \(T^{2n} = \mathbb{R}^{2n} / 2\pi \mathbb{Z}^{2n} \), and of course, for each point \((x^1, \ldots, x^n, y^1, \ldots, y^n)^t \in T^{2n} \), we identify \(x^i \sim x^i + 2\pi, \ y^i \sim y^i + 2\pi \), where \(i = 1, \ldots, n \). We also denote by \((x^1, \ldots, x^n, y^1, \ldots, y^n)^t \) the local coordinates in the neighborhood of an arbitrary point \((x^1, \ldots, x^n, y^1, \ldots, y^n)^t \in T^{2n} \). Furthermore, we use the same notation \((x^1, \ldots, x^n, y^1, \ldots, y^n)^t \) when we denote the coordinates of the covering space \(\mathbb{R}^{2n} \) of \(T^{2n} \). Here, for simplicity, we set

\[\begin{align*}
\tilde{x} := (x^1, \ldots, x^n)^t, \quad \tilde{y} := (y^1, \ldots, y^n)^t.
\end{align*}\]

We define a complexified symplectic form \(\tilde{\omega} \) on \(T^{2n} \) by

\[\begin{align*}
\tilde{\omega} := d\tilde{x}^t (-T^{-1})^t d\tilde{y}.
\end{align*}\]

where \(d\tilde{x} := (dx^1, \ldots, dx^n)^t \) and \(d\tilde{y} := (dy^1, \ldots, dy^n)^t \). We decompose \(\tilde{\omega} \) into

\[\begin{align*}
\tilde{\omega} = d\tilde{x}^t \text{Re}(-T^{-1})^t d\tilde{y} + i d\tilde{x}^t \text{Im}(-T^{-1})^t d\tilde{y},
\end{align*}\]

and define

\[\begin{align*}
\omega := \text{Im}(-T^{-1})^t, \quad B := \text{Re}(-T^{-1})^t.
\end{align*}\]

Here, \(i = \sqrt{-1} \). Sometimes we identify the matrices \(\omega \) and \(B \) with the 2-forms \(d\tilde{x}^t \omega d\tilde{y} \) and \(d\tilde{x}^t Bd\tilde{y} \), respectively. Then, \(\omega \) defines a symplectic form on \(T^{2n} \). The closed 2-form \(B \) is often called the B-field. This complexified symplectic torus \((T^{2n}, \tilde{\omega} = d\tilde{x}^t (-T^{-1})^td\tilde{y}) \) is a mirror partner of the complex torus \(T_{j=\tau}^{2n} \), so hereafter, for simplicity, we denote

\[\begin{align*}
T_{j=\tau}^{2n} := (T^{2n}, \tilde{\omega} = d\tilde{x}^t (-T^{-1})^t d\tilde{y}).
\end{align*}\]
3 Complex geometry side

The purpose of this section is to explain the complex geometry side in the homological mirror symmetry setting on \((T^2_{J=\mathbb{T}}, T^2_{\bar{J}=\mathbb{T}})}\). In subsection 3.1, we define a class of holomorphic vector bundles

\[E_{(r, A, r', \mathcal{U}, p, q)} \to T^2_{J=\mathbb{T}}, \]

and construct the DG-category

\[\text{DG}_{T^2_{J=\mathbb{T}}} \]

consisting of these holomorphic vector bundles \(E_{(r, A, r', \mathcal{U}, p, q)}\). In particular, we first construct \(E_{(r, A, r', \mathcal{U}, p, q)}\) as a complex vector bundle, and then discuss when it becomes a holomorphic vector bundle later in Proposition 3.1. In subsection 3.2, we study the isomorphism classes of holomorphic vector bundles \(E_{(r, A, r', \mathcal{U}, p, q)}\) by using the classification result of simple projectively flat bundles on complex tori by Matsushima [14] and Mukai [15].

3.1 The definition of \(E_{(r, A, r', \mathcal{U}, p, q)}\)

We assume \(r \in \mathbb{N}, A = (a_{ij}) \in M(n; \mathbb{Z})\), and \(p, q \in \mathbb{R}^n\). First, we define \(r' \in \mathbb{N}\) by using a given pair \((r, A) \in \mathbb{N} \times M(n; \mathbb{Z})\) as follows. By the theory of elementary divisors, there exist two matrices \(A, B \in GL(n; \mathbb{Z})\) such that

\[
AA^tB = \begin{pmatrix}
\tilde{a}_1 & \cdots & \tilde{a}_s & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & \tilde{a}_s \\
\end{pmatrix},
\]

(2)

where \(\tilde{a}_i \in \mathbb{N} (i = 1, \ldots, s, 1 \leq s \leq n)\) and \(\tilde{a}_i|a_{i+1} (i = 1, \ldots, s - 1)\). Then, we define \(r'_i \in \mathbb{N}\) and \(a'_i \in \mathbb{Z} (i = 1, \ldots, s)\) by

\[
\frac{\tilde{a}_i}{r} = \frac{a'_i}{r'_i}, \quad \gcd(r'_i, a'_i) = 1,
\]

where \(\gcd(m, n) > 0\) denotes the greatest common divisor of \(m, n \in \mathbb{Z}\). By using these, we set

\[
r' := r'_1 \cdots r'_s \in \mathbb{N}.
\]

(3)

This \(r' \in \mathbb{N}\) is uniquely defined by a given pair \((r, A) \in \mathbb{N} \times M(n; \mathbb{Z})\), and it is actually the rank of \(E_{(r, A, r', \mathcal{U}, p, q)}\). Now, we define the transition functions of \(E_{(r, A, r', \mathcal{U}, p, q)}\) as follows (although the following notations are complicated, roughly speaking, the transition functions of \(E_{(r, A, r', \mathcal{U}, p, q)}\) in the cases of \(x_j \mapsto \))
\(x_j + 2\pi, y_k \mapsto y_k + 2\pi \) are given by \(e^{\frac{\pm x_j}{y}V_j, U_k}, \) respectively, where \(j, k = 1, \ldots, n \). Let

\[
\psi_{m_1 \cdots m_n}^{l_1 \cdots l_n} : O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \to \mathbb{C}', \quad l_j, m_k = 1, 2, 3
\]

be a smooth section of \(E_{(r, A, r', U, p, q)} \). The transition functions of \(E_{(r, A, r', U, p, q)} \) are non-trivial on

\[
O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n}, \ldots, O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n},
\]

and otherwise are trivial. We define the transition function on \(O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \) by

\[
\psi_{m_1 \cdots m_n}^{l_1 \cdots l_n} \bigg| _{O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n}} = e^{\frac{a_j}{y}V_j - \frac{a_j}{y}V_j} \psi_{m_1 \cdots m_n}^{l_1 \cdots l_n} \bigg| _{O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n}}
\]

where \(a_j := (a_{j1}, \ldots, a_{jn}) \in \mathbb{Z}^n \) and \(V_j \in U(r') \). Similarly, we define the transition function on \(O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \) by

\[
\psi_{m_1 \cdots m_n}^{l_1 \cdots l_n} \bigg| _{O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n}} = U_k \psi_{m_1 \cdots m_n}^{l_1 \cdots l_n} \bigg| _{O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n}}
\]

where \(U_k \in U(r') \). In the definitions of these transition functions, actually, we only treat \(V_j, U_k \in U(r') \) which satisfy the cocycle condition, so we explain the cocycle condition below. When we define

\[
\psi_{m_1 \cdots m_n}^{l_1 \cdots l_n} \bigg| _{O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n}} = U_k \psi_{m_1 \cdots m_n}^{l_1 \cdots l_n} \bigg| _{O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n}} = \left(U_k \right) \cdot e^{\frac{a_j}{y}V_j} \psi_{m_1 \cdots m_n}^{l_1 \cdots l_n} \bigg| _{O^{l_1 \cdots l_n}_{m_1 \cdots m_n} \cap O^{l_1 \cdots l_n}_{m_1 \cdots m_n}}
\]

the cocycle condition is expressed as

\[
V_j V_k = V_k V_j, \quad U_j U_k = U_k U_j, \quad \zeta^{-a_j} U_k V_j = V_j U_k,
\]

where \(\zeta \) is the \(r \)-th root of 1 and \(j, k = 1, \ldots, n \). We define a set \(\mathcal{U} \) of unitary matrices by

\[
\mathcal{U} := \left\{ V_j, U_k \in U(r') \mid V_j V_k = V_k V_j, \quad U_j U_k = U_k U_j, \quad \zeta^{-a_j} U_k V_j = V_j U_k, \quad \right. \quad j, k = 1, \ldots, n \right\}.
\]
Of course, how to define the set \mathcal{U} relates closely to (in)decomposability of $E_{(r,A,r',\mathcal{U},p,q)}$. Here, we only treat the set \mathcal{U} such that $E_{(r,A,r',\mathcal{U},p,q)}$ is simple. Actually, we can take such a set $\mathcal{U} \neq \emptyset$ for any $(r,A,r') \in \mathbb{N} \times M(n;\mathbb{Z}) \times \mathbb{N}$, and this fact is discussed in Proposition 3.2. Furthermore, we define a connection $\nabla_{(r,A,r',\mathcal{U},p,q)}$ on $E_{(r,A,r',\mathcal{U},p,q)}$ locally as

$$\nabla_{(r,A,r',\mathcal{U},p,q)} := d - \frac{i}{2\pi} \left(\left(\frac{1}{r} p^t A^t + \frac{1}{r} q^t A^t \right) \right) dy \cdot I_{r'},$$

where $dy := (dy_1, \ldots, dy_n)^t$ and d denotes the exterior derivative. In fact, $\nabla_{(r,A,r',\mathcal{U},p,q)}$ is compatible with the transition functions and so defines a global connection. Then, its curvature form $\Omega_{(r,A,r',\mathcal{U},p,q)}$ is expressed locally as

$$\Omega_{(r,A,r',\mathcal{U},p,q)} = -\frac{i}{2\pi} dx^t A^t dy \cdot I_{r'}, \quad (4)$$

where $dx := (dx_1, \ldots, dx_n)^t$. In particular, this local expression (4) implies that holomorphic vector bundles $E_{(r,A,r',\mathcal{U},p,q)}$ are simple projectively flat bundles (for example, the definition of projectively flat bundles is written in [10]). Moreover, the interpretation of these simple projectively flat bundles $E_{(r,A,r',\mathcal{U},p,q)}$ by using the factors of automorphy is given in section 3 of [8]. Now, we consider the condition such that $E_{(r,A,r',\mathcal{U},p,q)}$ is holomorphic. We see that the following proposition holds.

Proposition 3.1. For a given quadruple $(r,A,p,q) \in \mathbb{N} \times M(n;\mathbb{Z}) \times \mathbb{R}^n \times \mathbb{R}^n$, the complex vector bundle $E_{(r,A,r',\mathcal{U},p,q)} \to T^{2n}_T$ is holomorphic if and only if $AT = (AT)^t$ holds.

Proof. In general, a complex vector bundle is holomorphic if and only if the $(0,2)$-part of its curvature form vanishes, so we calculate the $(0,2)$-part of $\Omega_{(r,A,\mu,\mathcal{U})}$. It turns out to be

$$\Omega^{(0,2)}_{(r,A,r',\mathcal{U},p,q)} = \frac{i}{2\pi} d\bar{z}^t \{ T(T - T)^{-1} \}^t A^t (T - T)^{-1} d\bar{z} \cdot I_{r'},$$

where $d\bar{z} := (d\bar{z}_1, \ldots, d\bar{z}_n)^t$. Thus, $\Omega^{(0,2)}_{(r,A,r',\mathcal{U},p,q)} = 0$ is equivalent to that $\{ T(T - T)^{-1} \}^t A^t (T - T)^{-1}$ is a symmetric matrix, i.e., $AT = (AT)^t$. \hfill \square

Considering the above discussions, here, we mention the simplicity of holomorphic vector bundles $E_{(r,A,r',\mathcal{U},p,q)}$. In general, the following proposition holds.

Proposition 3.2. For each quadruple $(r,A,p,q) \in \mathbb{N} \times M(n;\mathbb{Z}) \times \mathbb{R}^n \times \mathbb{R}^n$, we can take a set $\mathcal{U} \neq \emptyset$ such that $E_{(r,A,r',\mathcal{U},p,q)}$ is simple.

Proof. For a given pair $(r,A) \in \mathbb{N} \times M(n;\mathbb{Z})$, we can take two matrices A, $B \in GL(n;\mathbb{Z})$ which satisfy the relation (2). Then, note that $r' := r'_1 \cdots r'_s \in \mathbb{N}$ is uniquely defined in the sense of the relation (3). We fix such matrices A, $B \in GL(n;\mathbb{Z})$, and set

$$T' := B^{-1} T A^t.$$
By using this T', we can consider the complex torus $T_{j=T}^{2n} = \mathbb{C}^n / 2\pi (\mathbb{Z}^n \oplus T' \mathbb{Z}^n)$, and we locally express the complex coordinates $Z := (Z_1, \cdots, Z_n)^t$ of $T_{j=T}^{2n}$ by $Z = X + TY$, where $X := (X_1, \cdots, X_n)^t$, $Y := (Y_1, \cdots, Y_n)^t$. In particular, the complex torus $T_{j=T}^{2n}$ is biholomorphic to the complex torus $T_{j=T}^{2n}$, and the biholomorphic map
\[\varphi : T_{j=T}^{2n} \rightarrow T_{j=T}^{2n} \]
is actually given by
\[\varphi(z) = B^{-1}z. \]
Furthermore, when we regard the complex manifolds $T_{j=T}^{2n}$ and $T_{j=T}^{2n}$ as the real differentiable manifolds $\mathbb{R}^{2n} / 2\pi \mathbb{Z}^{2n}$, the biholomorphic map φ is regarded as the diffeomorphism
\[\varphi \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{cc} B^{-1} & O \\ O & (A^{-1})^t \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right). \]
Now, we define a set $U' \neq \emptyset$ as follows. First, we set
\[V_i := \left(\begin{array}{ccc} 0 & 1 & \cdots \\ \cdots & \cdots & \cdots \\ 1 & 0 & \cdots \end{array} \right) \in U'(r'_i), \quad U_i := \left(\begin{array}{ccc} 1 & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{array} \right) \in U'(r'_i), \]
where $\zeta_i := e^{\frac{2\pi i}{r'_i}}$, $i = 1, \cdots, s$. By using these matrices V_i, U_i, we define
\[V'_i := e^{\frac{2\pi i}{r'_i} Y_i} V_i \otimes I_{r'_i} \otimes \cdots \otimes I_{r'_i} \in U'(r'_i), \]
\[V'_2 := I_{r'_1} \otimes e^{\frac{2\pi i}{r'_2} Y_2} V_i \otimes \cdots \otimes I_{r'_i} \in U'(r'_i), \]
\[\vdots \]
\[V'_s := e^{\frac{2\pi i}{r'_s} Y_s} V_i \otimes \cdots \otimes I_{r'_s} \in U'(r'_i), \]
\[V'_{s+1} := I_{r'_1} \otimes \cdots \otimes I_{r'_s} \in U'(r'_i), \]
\[\vdots \]
\[V'_{s+1} := \cdots U_i \in U'(r'_i), \]
\[U'_1 := \bar{U}_1^{-a'_1} I_{r'_1} \otimes \cdots \otimes I_{r'_s} \in U'(r'_i), \]
\[U'_2 := I_{r'_1} \otimes \bar{U}_2^{-a'_2} I_{r'_1} \otimes \cdots \otimes I_{r'_s} \in U'(r'_i), \]
\[\vdots \]
\[U'_{s+1} := \cdots U_i \in U'(r'_i), \]
\[\vdots \]
\[U'_{s+1} := I_{r'_1} \otimes \cdots \otimes I_{r'_s} \in U'(r'_i), \]
\[\vdots \]

8
and set
\[U' := \{ V'_1, V'_2, \ldots, V'_s, V'_{s+1}, \ldots, V'_n, U'_1, U'_2, \ldots, U'_s, U'_{s+1}, \ldots, U'_n \in U(r') \} \neq \emptyset. \]

Then, we can construct the holomorphic vector bundle
\[E_{(r, A^{AB}, r', U', A^{P}, B^{q})} \rightarrow T^{2n}_{J=T'}; \]
and in particular, \(V'_j \) and \(U'_k \) are used in the definition of the transition functions of \(E_{(r, A^{AB}, r', U', A^{P}, B^{q})} \) in the \(X_j \) and \(Y_k \) directions, respectively \((j, k = 1, \ldots, n)\). For this holomorphic vector bundle \(E_{(r, A^{AB}, r', U', A^{P}, B^{q})} \), we can consider the pullback bundle \(\varphi^* E_{(r, A^{AB}, r', U', A^{P}, B^{q})} \) by the biholomorphic map \(\varphi \), and we can regard the pullback bundle \(\varphi^* E_{(r, A^{AB}, r', U', A^{P}, B^{q})} \) as the holomorphic vector bundle
\[E_{(r, A, r', U, p, q)} \rightarrow T^{2n}_{J=T} \]
by using a suitable set \(U \) which is defined by employing the data \((U', A, B)\). In particular, since we can check \(U \neq \emptyset \) easily, in order to prove the statement of this proposition, it is enough to prove that \(E_{(r, A^{AB}, r', U', A^{P}, B^{q})} \) is simple.

Let
\[\varphi^{r_1 \cdots r'_s} \]
be an element in \(\text{End}(E_{(r, A^{AB}, r', U', A^{P}, B^{q})}) \). Since the rank of \(E_{(r, A^{AB}, r', U', A^{P}, B^{q})} \) is \(r' = r'_1 \cdots r'_s \), we can treat \(\varphi^{r_1 \cdots r'_s} \) as a matrix of order \(r' \). Then, we can divide \(\varphi^{r_1 \cdots r'_s} \) as follows.

\[
\varphi^{r_1 \cdots r'_s} = \begin{pmatrix}
\varphi_{11}^{r_1} & \cdots & \varphi_{1r'_1}^{r_1} \\
\vdots & \ddots & \vdots \\
\varphi_{r'_1}^{r_1} & \cdots & \varphi_{r'_1 r'_1}^{r_1}
\end{pmatrix} = \left(\varphi_{k_1 l_1}^{r_1} \right)_{1 \leq k_1, l_1 \leq r'_1}.
\]

Here, each \(\varphi_{k_1 l_1}^{r_1} \) is a matrix of order \(r'_2 \cdots r'_s \). Similarly, we can divide each \(\varphi_{k_1 l_1}^{r_1} \) as follows.

\[
\varphi_{k_1 l_1}^{r_1} = \begin{pmatrix}
\varphi_{k_1 l_1}^{r_1} & \cdots & \varphi_{k_1 l_1}^{r_1} \\
\vdots & \ddots & \vdots \\
\varphi_{k_2 l_2}^{r_1} & \cdots & \varphi_{k_2 l_2}^{r_1}
\end{pmatrix} = \left(\varphi_{k_2 l_2}^{r_1} \right)_{1 \leq k_2, l_2 \leq r'_2}.
\]

Here, each \(\varphi_{k_2 l_2}^{r_1} \) is a matrix of order \(r'_3 \cdots r'_s \). By repeating the above steps, as a result, we can express \(\varphi^{r_1 \cdots r'_s} \) as
\[
\left(\left(\left(\cdots \left(\varphi_{k_{s-1} l_{s-1}}^{r_1} \right)_{k_{s-1} l_{s-1}} \right)_{k_{s-2} l_{s-2}} \right)_{k_{s-3} l_{s-3}} \cdots \right)_{k_1 l_1}^{r_s}.
\]
where $1 \leq k_i, l_i \leq r'_i \ (i = 1, \cdots, s)$. Hereafter, we consider the local expression of each component

$$\left(\cdots \left(\frac{\phi_{k_{1,l_1}}^{r'_1 \cdots r'_s}}{k_{2,l_2}} \right) \cdots \right)^{r'_s}_{k_{s-1,l_{s-1}}}_{k,l_s}$$

(5)

of $\phi^{r'_1 \cdots r'_s}$. First, for each $k = 1, \cdots, n$, by considering the transition functions of $E_{(r, AAB, r', \partial U', A, B, q)}$ in the Y_k direction, we see that the morphism $\phi^{r'_1 \cdots r'_s}$ must satisfy

$$U'_k \cdot \phi^{r'_1 \cdots r'_s}(X_1, \cdots, X_n, Y_1, \cdots, Y_n) = \phi^{r'_1 \cdots r'_s}(X_1, \cdots, X_n, Y_1, \cdots, Y_k + 2\pi, \cdots, Y_n) \cdot U'_k.$$

(6)

Furthermore, the morphism $\phi^{r'_1 \cdots r'_s}$ need to satisfy not only the relation (6) but also the Cauchy-Riemann equation

$$\bar{\partial}(\phi^{r'_1 \cdots r'_s}) = 0.$$

(7)

Therefore, by the relations (6) and (7), we can give a local expression of the component (5) of $\phi^{r'_1 \cdots r'_s}$ as follows.

$$\sum_{l_{k_1 l_1}, \cdots, l_{k_s l_s}, I_{s+1}, \cdots, I^n} \lambda^{l_{k_1 l_1}, \cdots, l_{k_s l_s}, I_{s+1}, \cdots, I^n}_{k_{1,l_1}, \cdots, k_{s,l_s}} \cdot i^{\frac{\pi}{2\pi}(l_k - k)} T^{-1}(X + TY).$$

Here,

$$\lambda^{l_{k_1 l_1}, \cdots, l_{k_s l_s}, I_{s+1}, \cdots, I^n}_{k_{1,l_1}, \cdots, k_{s,l_s}} \in \mathbb{C}$$

is an arbitrary constant. Finally, for each $j = 1, \cdots, n$, we consider the conditions on the transition functions of $E_{(r, AAB, r', \partial U', A, B, q)}$ in the X_j direction. By a direct calculation, if $j = 1, \cdots, s$, we obtain

$$\left(\cdots \left(\frac{\phi_{k_{1,l_1}}^{r'_1 \cdots r'_s}}{k_{j,l_j}} \right) \cdots \right)^{r'_j + 1 \cdots r'_s}_{k_{j+1,l_{j+1}}} (X_1, \cdots, X_j + 2\pi, \cdots, X_n, Y_1, \cdots, Y_n)$$

= $$\left(\cdots \left(\frac{\phi_{k_{1,l_1}}^{r'_1 \cdots r'_s}}{k_{j,l_j}} \right) \cdots \right)^{r'_j + 1 \cdots r'_s}_{(k_j+1)(l_j+1)} (X_1, \cdots, X_n, Y_1, \cdots, Y_n),$$

(8)

and if $j = s + 1, \cdots, n$, we obtain

$$\left(\cdots \left(\frac{\phi_{k_{1,l_1}}^{r'_1 \cdots r'_s}}{k_{s,l_s}} \right) \cdots \right)_{k_{s+1,l_{s+1}}} (X_1, \cdots, X_j + 2\pi, \cdots, X_n, Y_1, \cdots, Y_n)$$

= $$\left(\cdots \left(\frac{\phi_{k_{1,l_1}}^{r'_1 \cdots r'_s}}{k_{s+1,l_{s+1}}}} \right) \cdots \right)_{k_{s+1,l_{s+1}}} (X_1, \cdots, X_n, Y_1, \cdots, Y_n).$$

(9)

In particular, the relation (8) implies

$$\left(\cdots \left(\frac{\phi_{k_{1,l_1}}^{r'_1 \cdots r'_s}}{k_{s,l_s}} \right) \cdots \right)_{k_{s+1,l_{s+1}}} (X_1, \cdots, X_j + 2\pi r'_j, \cdots, X_n, Y_1, \cdots, Y_n)$$

= $$\left(\cdots \left(\frac{\phi_{k_{1,l_1}}^{r'_1 \cdots r'_s}}{k_{s+1,l_{s+1}}}} \right) \cdots \right)_{k_{s+1,l_{s+1}}} (X_1, \cdots, X_n, Y_1, \cdots, Y_n),$$

(10)
and by using the relations (9) and (10), we have the condition
\[
\left(\frac{a'_l}{r'_1} (l_1 - k_1) + I^1_{k_1 t_1}, \ldots, \frac{a'_s}{r'_{s}} (l_s - k_s) + I^s_{k_s t_s}, I^{s+1}, \ldots, I^n \right) T^{l-1}
\in \mathbb{Z} / r'_1 \times \cdots \times \mathbb{Z} / r'_{s} \times \mathbb{Z} \times \cdots \mathbb{Z} \subset \mathbb{R}^n.
\] (11)

Now, since \(\text{Im} T^{l-1}\) is positive definite, the condition (11) turns out to be
\[
\left(\frac{a'_l}{r'_1} (l_1 - k_1) + I^1_{k_1 t_1}, \ldots, \frac{a'_s}{r'_{s}} (l_s - k_s) + I^s_{k_s t_s}, I^{s+1}, \ldots, I^n \right) = 0. \] (12)

Here, recall the relation (8). By the relation (8), it is enough to consider the condition (12) in the case \(k_1 = \cdots = k_s = 1\). We focus on the first component in the condition (12), i.e.,
\[
\frac{a'_l}{r'_1} (l_1 - 1) + I^1_{t_1} = 0. \] (13)

In the case \(l_1 = 1\), the condition (13) turns out to be \(I^1_{t_1} = 0\), so by the relation (8), we see
\[
\varphi_{11}^{r_2^{r_2} \cdots r'_s} = \varphi_{22}^{r_3^{r_3} \cdots r'_s} = \cdots = \varphi_{r'_1 t'_1}^{r'_2 \cdots r'_s} \in M(r_2^{r_2} \cdots r'_s; \mathbb{C}).
\]

We consider the cases \(l_1 = 2, \cdots, r'_1\). Note that \(\gcd(r'_1, a'_1) = 1\) holds by the assumption. Therefore, we have
\[
l_1 - 1 \in r'_1 \mathbb{Z}
\]
by the condition (13). However, this fact contradicts the assumption \(l_1 = 2, \cdots, r'_1\). Thus, for each \(l_1 = 2, \cdots, r'_1\), we obtain
\[
\varphi_{r'_1 t'_1}^{r'_2 \cdots r'_s} = O,
\]
and by using the relation (8) again, we also obtain
\[
\varphi_{2(1+1)}^{r'_2 \cdots r'_s} = \varphi_{3(1+2)}^{r'_3 \cdots r'_s} = \cdots = \varphi_{r'_1 t'_1(1-l)}^{r'_2 \cdots r'_s} = O.
\]

Similarly, by focusing on the second component in the condition (12), we see
\[
\left(\varphi_{11}^{r'_2 \cdots r'_s} \right)_{11}^{r'_3 \cdots r'_s} = \left(\varphi_{11}^{r'_2 \cdots r'_s} \right)_{22}^{r'_3 \cdots r'_s} = \cdots = \left(\varphi_{11}^{r'_2 \cdots r'_s} \right)_{r'_2 r'_2}^{r'_3 \cdots r'_s} \in M(r_3, \cdots, r'_s; \mathbb{C}),
\]
and the other components \(\varphi_{11}^{r'_2 \cdots r'_s} k_{2 l_2}^{r'_3 \cdots r'_s}\) of the matrix \(\varphi_{11}^{r'_2 \cdots r'_s}\) vanish. By repeating the above discussions, as a result, we have
\[
\varphi^{r'_1 \cdots r'_s} = \left(\cdots \left(\left(\varphi_{11}^{r'_1 \cdots r'_s} \right)_{11}^{r'_3 \cdots r'_s} \right)_{11} \cdots \right)_{11} \cdot I'_{r'},
\]
We decompose \(\text{DG} \) together with the wedge product for the anti-holomorphic differential forms. We can check that this linear map is a differential. Furthermore, the product part is denoted \(\nabla \). In particular, the degree \(r \) where the grading is defined as the degree of the anti-holomorphic differential forms is the space of homomorphisms from \(E_\rho \) where \(\Omega \) is the space of anti-holomorphic differential forms, and \(\text{End}(E_{(r,A,B',U',Ap,B')}) \cong \mathbb{C} \).

We define the DG-category \(\text{DG}_{T^2_{j=T}} \) consisting of holomorphic vector bundles \((E_{(r,A,B',U',Ap,B')}, \nabla_{(r,A,B',U',Ap,B')}) \). This definition is an extension of the case of \((T^2_{j=T}, T^2_{j=T}) \) to the higher dimensional case in [7] (see section 3), and it is also written in section 2 of [8]. The objects of \(\text{DG}_{T^2_{j=T}} \) are holomorphic vector bundles \(E_{(r,A,B',U',Ap,B')} \) with \(U(r') \)-connections \(\nabla_{(r,A,B',U',Ap,B')} \). Of course, we assume \(AT = (AT)^\ell \). Sometimes we simply denote \((E_{(r,A,B',U',Ap,B')}, \nabla_{(r,A,B',U',Ap,B')}) \) by \(E_{(r,A,B',U',Ap,B')} \).

For any two objects
\[
\begin{align*}
E_{(s,B,s',V,u,v)} &= (E_{(r,A,r',U,p,q)}, \nabla_{(r,A,r',U,p,q)}), \\
E_{(s,B,s',V,u,v)} &= (E_{(s,B,s',V,u,v)}, \nabla_{(s,B,s',V,u,v)}),
\end{align*}
\]
the space of morphisms is defined by
\[
\begin{align*}
\text{Hom}_{\text{DG}_{T^2_{j=T}}}(E_{(r,A,r',U,p,q)}, E_{(s,B,s',V,u,v)}) := \Gamma(E_{(r,A,r',U,p,q)}, E_{(s,B,s',V,u,v)}) \otimes \Omega^{0,\ast}(T^2_{j=T}),
\end{align*}
\]
where \(\Omega^{0,\ast}(T^2_{j=T}) \) is the space of anti-holomorphic differential forms, and
\[
\Gamma(E_{(r,A,r',U,p,q)}, E_{(s,B,s',V,u,v)})
\]
is the space of homomorphisms from \(E_{(r,A,r',U,p,q)} \) to \(E_{(s,B,s',V,u,v)} \). The space of morphisms \(\text{Hom}_{\text{DG}_{T^2_{j=T}}}(E_{(r,A,r',U,p,q)}, E_{(s,B,s',V,u,v)}) \) is a \(\mathbb{Z} \)-graded vector space, where the grading is defined as the degree of the anti-holomorphic differential forms. In particular, the degree \(r \) part is denoted
\[
\text{Hom}_{\text{DG}_{T^2_{j=T}}}(E_{(r,A,r',U,p,q)}, E_{(s,B,s',V,u,v)}).
\]

We decompose \(\nabla_{(r,A,r',U,p,q)} \) into its holomorphic part and anti-holomorphic part \(\nabla_{(r,A,r',U,p,q)} = \nabla^{(1,0)}_{(r,A,r',U,p,q)} + \nabla^{(0,1)}_{(r,A,r',U,p,q)} \), and define a linear map
\[
\begin{align*}
\text{Hom}_{r}^{+1}(E_{(r,A,r',U,p,q)}, E_{(s,B,s',V,u,v)}) \to \text{Hom}_{r+1}^{+1}(E_{(r,A,r',U,p,q)}, E_{(s,B,s',V,u,v)})
\end{align*}
\]
by
\[
\psi \mapsto (2\nabla^{(0,1)}_{(s,B,s',V,u,v)}(\psi) - (-1)^{r}\nabla^{(0,1)}_{(r,A,r',U,p,q)}(\psi)).
\]
We can check that this linear map is a differential. Furthermore, the product structure is defined by the composition of homomorphisms of vector bundles together with the wedge product for the anti-holomorphic differential forms. Then, these differential and product structure satisfy the Leibniz rule. Thus, \(\text{DG}_{T^2_{j=T}} \) forms a DG-category.
3.2 The isomorphism classes of \(E_{(r,A,r',t,p,q)} \)

In this subsection, we fix \(r \in \mathbb{N}, A \in M(n; \mathbb{Z}) \), and consider the condition such that \(E_{(r,A,r',t,p,q)} \cong E_{(r,A,r',t',p',q')} \) holds. Here,

\[
p, q, p', q' \in \mathbb{R}^n
\]

and

\[
\mathcal{U} := \left\{ V_j, U_k \in U(r') \mid V_j V_k = V_k V_j, \quad U_j U_k = U_k U_j, \quad \zeta^{-a_{ij}} U_j V_j = V_j U_k, \right\}
\]

\[
\mathcal{U}' := \left\{ V'_j, U'_k \in U(r') \mid V'_j V'_k = V'_k V'_j, \quad U'_j U'_k = U'_k U'_j, \quad \zeta^{-a_{ij}} U'_j V'_j = V'_j U'_k, \right\}
\]

Furthermore, for each \(j = 1, \ldots, n \), we define \(\xi_j, \theta_j, \xi'_j, \theta'_j \in \mathbb{R} \) by

\[
e^{i\xi_j} = \det V_j, \quad e^{i\theta_j} = \det U_j, \quad e^{i\xi'_j} = \det V'_j, \quad e^{i\theta'_j} = \det U'_j,
\]

and set

\[
\xi := (\xi_1, \ldots, \xi_n)^t, \quad \theta := (\theta_1, \ldots, \theta_n)^t, \quad \xi' := (\xi'_1, \ldots, \xi'_n)^t, \quad \theta' := (\theta'_1, \ldots, \theta'_n)^t \in \mathbb{R}^n.
\]

(14)

Now, in order to consider the condition such that \(E_{(r,A,r',t,p,q)} \cong E_{(r,A,r',t',p',q')} \) holds, we recall the following classification result of simple projectively flat bundles on complex tori by Matsushima and Mukai (see [14, Theorem 6.1], [15, Proposition 6.17 (1)], and note that the notion of semi-homogeneous vector bundles in [15] is equivalent to the notion of projectively flat bundles).

Theorem 3.3 (Matsushima [14], Mukai [15]). For two simple projectively flat bundles \(E, E' \) over a complex torus \(\mathbb{C}^n/\Gamma \) (\(\Gamma \subset \mathbb{C}^n \) is a lattice) which satisfy \((\text{rank} E, c_1(E)) = (\text{rank} E', c_1(E'))\), there exists a line bundle \(L \in \text{Pic}^0(\mathbb{C}^n/\Gamma) \) such that

\[
E' \cong E \otimes L.
\]

Furthermore, since we are going to use in the proof of Theorem 3.4 (this theorem gives the condition such that \(E_{(r,A,r',t,p,q)} \cong E_{(r,A,r',t',p',q')} \) holds), we again take the biholomorphic map

\[
\varphi : T^{2n}_{\mathbb{Z}} \cong T^{2n}_{\mathbb{Z}}
\]

in the proof of Proposition 3.2. Of course, we can also regard this biholomorphic map \(\varphi \) as the diffeomorphism \(\mathbb{R}^{2n}/2\pi \mathbb{Z}^{2n} \cong \mathbb{R}^{2n}/2\pi \mathbb{Z}^{2n} \) which is expressed locally as

\[
\varphi \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{cc} B^{-1} & O \\ O & (A^{-1})^t \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right).
\]

Then, the following theorem holds.
Theorem 3.4. Two holomorphic vector bundles $E_{(r, A, r', \mathcal{U}, p, q)}$, $E_{(r, A, r', \mathcal{U}', p', q')}$ are isomorphic to each other, $E_{(r, A, r', \mathcal{U}, p, q)} \cong E_{(r, A, r', \mathcal{U}', p', q')}$, if and only if

$$(p + T^t q) - (p' + T^t q') \equiv \frac{r}{r'} (\theta - \theta') + T^t \frac{p}{r'} (\xi' - \xi) \equiv 0 \pmod{2\pi r (A^{-1} \begin{pmatrix} \frac{Z}{r} \\ \vdots \\ \frac{Z}{r} \end{pmatrix} \otimes T^t (B^{-1})^t \begin{pmatrix} \frac{Z}{r} \\ \vdots \\ \frac{Z}{r} \end{pmatrix})}$$

holds.

Proof. First, we consider the condition such that

$$(\varphi^{-1})^* E_{(r, A, r', \mathcal{U}, p, q)} \cong (\varphi^{-1})^* E_{(r, A, r', \mathcal{U}', p', q')},$$

holds. Now, by using the suitable sets \tilde{U} and \tilde{U}' (the definitions of \tilde{U} and \tilde{U}' depend on the data (\mathcal{U}, A, B) and (\mathcal{U}', A, B), respectively), we can regard $(\varphi^{-1})^* E_{(r, A, r', \mathcal{U}, p, q)}$ and $(\varphi^{-1})^* E_{(r, A, r', \mathcal{U}', p', q')}$ as $E_{(r, \tilde{A}, r', \tilde{U}, \tilde{\beta}, \tilde{q})}$ and $E_{(r, \tilde{A}, r', \tilde{U}', \tilde{\beta}', \tilde{q}')}$, respectively, where

$$\tilde{A} := AAB = \begin{pmatrix} \tilde{a}_1 \\ \vdots \\ \tilde{a}_s \\ 0 \\ \vdots \\ \tilde{a}_s \\ 0 \end{pmatrix}, \quad \tilde{p} := Ap, \quad \tilde{q} := B^t q, \quad \tilde{p}' := Ap', \quad \tilde{q}' := B^t q'.$$

Then, constant vectors $\xi, \theta, \xi', \theta' \in \mathbb{R}^n$ are also transformed to constant vectors

$$\tilde{\xi} := B^t \xi, \quad \tilde{\theta} := A\theta, \quad \tilde{\xi}' := B^t \xi', \quad \tilde{\theta}' := A\theta' \in \mathbb{R}^n,$$

respectively. For these holomorphic vector bundles $E_{(r, \tilde{A}, r', \tilde{U}, \tilde{\beta}, \tilde{q})}$ and $E_{(r, \tilde{A}, r', \tilde{U}', \tilde{\beta}', \tilde{q}')}$, by Theorem 3.3, we see that there exists a holomorphic line bundle $E_{(1, O, 1, V, u, v)}$ such that

$$E_{(r, \tilde{A}, r', \tilde{U}', \tilde{\beta}', \tilde{q}') \cong E_{(r, \tilde{A}, r', \tilde{U}, \tilde{\beta}, \tilde{q})} \otimes E_{(1, O, 1, V, u, v)}.$$

Here,

$$\mathcal{V} := \left\{ e^{i\tau_1}, \ldots, e^{i\tau_n}, e^{i\sigma_1}, \ldots, e^{i\sigma_n} \in U(1) \right\}, \quad u, v \in \mathbb{R}^n,$$

and for simplicity, we set

$$\tau := (\tau_1, \ldots, \tau_n)^t, \quad \sigma := (\sigma_1, \ldots, \sigma_n)^t \in \mathbb{R}^n.$$
In particular, for each $j = 1, \cdots, n$, we assume that $e^{i\tau_j}$ and $e^{i\sigma_j}$ are the transition function of $E_{(1,0,1,\nu',u,v)}$ in the x_j direction and the transition function of $E_{(1,0,1,\nu,u,v)}$ in the y_j direction, respectively. Therefore, since

$$E_{(r,A,r',\tilde{U},\tilde{p},\tilde{q})} \cong E_{(r,A,r',\tilde{U},\tilde{p},\tilde{q})}$$

(15)

holds if and only if

$$E_{(r,A,r',\tilde{U},\tilde{p},\tilde{q})} \cong E_{(r,A,r',\tilde{U},\tilde{p},\tilde{q})} \otimes E_{(1,0,1,\nu,u,v)}$$

(16)

holds, our first goal is to find the relation on the parameters u, v, τ, $\sigma \in \mathbb{R}^n$ such that the relation (16) holds. By using Theorem 3.3 again, we see that there exists a holomorphic line bundle $E_{(1,0,1,\nu',u',v')}$ such that

$$E_{(r,A,r',\tilde{U},\tilde{p},\tilde{q})} \cong E_{(r,A,r',\tilde{U},\tilde{p},\tilde{q})} \otimes E_{(1,0,1,\nu',u',v')},$$

where

$$\tilde{U}_0 := \left\{ V_1', \cdots, V_n', U_1', \cdots, U_n' \in U(r') \right\}, \quad p_0, q_0 \in \mathbb{R}^n.$$

Here, note that the definitions of $V_1', \cdots, V_n', U_1', \cdots, U_n' \in U(r')$ are given in the proof of Proposition 3.2. Thus, since we can rewrite the relation (16) to

$$E_{(r,A,r',\tilde{U}_0,p_0,q_0)} \otimes E_{(1,0,1,\nu',u',v')} \cong \left(E_{(r,A,r',\tilde{U}_0,p_0,q_0)} \otimes E_{(1,0,1,\nu',u',v')} \right) \otimes E_{(1,0,1,\nu,u,v)},$$

as a result, it is enough to consider the condition such that

$$E_{(r,A,r',\tilde{U}_0,p_0,q_0)} \cong E_{(r,A,r',\tilde{U}_0,p_0,q_0)} \otimes E_{(1,0,1,\nu,u,v)}$$

holds. By a direct calculation, we can actually check that

$$E_{(r,A,r',\tilde{U}_0,p_0,q_0)} \cong E_{(r,A,r',\tilde{U}_0,p_0,q_0)} \otimes E_{(1,0,1,\nu,u,v)}$$

holds if and only if

$$u + T'^{u}v \equiv \sigma - T'^{u} \tau \text{ (mod 2}\pi(\begin{pmatrix} \frac{z}{r_1} \\ \vdots \\ \frac{z}{r_n} \end{pmatrix} \oplus T'^{u} (\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix})) \right) \right)$$

(17)

holds, and in particular, we can regard the relation (17) as

$$(\bar{p} + T'^{u} \tilde{q}) - \{ (\bar{p} + T'^{u} \tilde{q}) + r(u + T'^{u}v) \} \equiv \frac{r}{r'} \{ \bar{\theta} - (\bar{\theta} + r'\sigma) \} + T'^{u} \frac{r}{r'} \{(\bar{\xi} + r'\tau) - \bar{\xi} \}$$

$$\left(\begin{pmatrix} \frac{z}{r_1} \\ \vdots \\ \frac{z}{r_n} \end{pmatrix} \oplus T'^{u} (\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}) \right).$$

(18)
we can give the condition such that the relation (15) holds as follows.

\[(\tilde{p} + T^u \tilde{q}) - \{(\tilde{p} + T^u \tilde{q}) + r(u + T^u v)\} \equiv \frac{r}{\nu'}\{\tilde{\theta} - (\tilde{\theta} + r' \sigma)\} + T^u \frac{r}{\nu'}\{\tilde{\xi} + r' \tau - \tilde{\xi}\} \pmod{\frac{r}{\nu'} 2\pi(Z^n + T^u Z^n)} \]

Hence, we see that the relation (16) holds if and only if the relation (18) holds. Here, note that there exists an isomorphism

\[\det E_{(r, A, r', \tilde{A}, \tilde{p}, \tilde{q})} \cong \det (E_{(r, A, r', \tilde{A}, \tilde{p}, \tilde{q})} \otimes E_{(1, O, 1, V, u, v)}) \]

with

\[(\tilde{p} + T^u \tilde{q}) - \{(\tilde{p} + T^u \tilde{q}) + r(u + T^u v)\} \equiv \frac{r}{\nu'}\{\tilde{\theta} - (\tilde{\theta} + r' \sigma)\} + T^u \frac{r}{\nu'}\{\tilde{\xi} + r' \tau - \tilde{\xi}\} \pmod{\frac{r}{\nu'} 2\pi(Z^n + T^u Z^n)} \]

Now, we consider the condition such that the relation (15) holds. As a necessary condition for the relation (15),

\[\det E_{(r, A, r', \tilde{A}, \tilde{p}, \tilde{q})} \cong \det E_{(r, A, r', \tilde{A}, \tilde{p}, \tilde{q}')} \]

need to hold, and by a direct calculation, we can rewrite the relation (19) to the following.

\[(\tilde{p} + T^u \tilde{q}) - (\tilde{p}' + T^u \tilde{q}') \equiv \frac{r}{\nu'}\{\tilde{\theta} - \tilde{\theta}'\} + T^u \frac{r}{\nu'}\{\tilde{\xi}' - \tilde{\xi}\} \pmod{\frac{r}{\nu'} 2\pi(Z^n + T^u Z^n)} \]

Therefore, since the definition of \(E_{(1, O, 1, V, u, v)} \) is given by

\[E_{(r, A, r', \tilde{A}, \tilde{p}, \tilde{q})} \cong E_{(r, A, r', \tilde{A}, \tilde{p}, \tilde{q}')} \otimes E_{(1, O, 1, V, u, v)}, \]

and the relations (16) and (18) are equivalent, by considering the relation (20), we can give the condition such that the relation (15) holds as follows.

\[\begin{pmatrix} \frac{Z}{\nu'} & \frac{Z}{\nu'} \\ \vdots & \vdots \\ \frac{Z}{\nu'} & \frac{Z}{\nu'} \end{pmatrix} \oplus T^u \begin{pmatrix} \frac{Z}{\nu'} & \frac{Z}{\nu'} \\ \vdots & \vdots \\ \frac{Z}{\nu'} & \frac{Z}{\nu'} \end{pmatrix} \pmod{2\pi r A^{-1} (B^{-1})^t} \]

Thus, by considering the pullback bundles \(\varphi^* E_{(r, A, r', \tilde{A}, \tilde{p}, \tilde{q})} \) and \(\varphi^* E_{(r, A, r', \tilde{A}, \tilde{p}', \tilde{q}')} \), we can conclude that

\[E_{(r, A, r', \tilde{A}, \tilde{p}, \tilde{q})} \cong E_{(r, A, r', \tilde{A}, \tilde{p}', \tilde{q}')} \]

holds if and only if

\[\begin{pmatrix} \frac{Z}{\nu'} & \frac{Z}{\nu'} \\ \vdots & \vdots \\ \frac{Z}{\nu'} & \frac{Z}{\nu'} \end{pmatrix} \oplus T^u (B^{-1})^t \begin{pmatrix} \frac{Z}{\nu'} & \frac{Z}{\nu'} \\ \vdots & \vdots \\ \frac{Z}{\nu'} & \frac{Z}{\nu'} \end{pmatrix} \pmod{2\pi r A^{-1} (B^{-1})^t} \]

holds. \(\square \)
Remark 3.5. When we work over a pair $(T_{j=\tau}^2, \check{T}_{j=\tau}^2)$ of elliptic curves, Theorem 3.4 implies that there exists a one-to-one correspondence between the set of the isomorphism classes of holomorphic vector bundles $E_{(r, A, r', s, p, q)}$ and the set of the isomorphism classes of holomorphic line bundles $\det E_{(r, A, r', s, p, q)}$.

4 Symplectic geometry side

In this section, we define the objects of the Fukaya category $\text{Fuk}(\check{T}_{j=\tau}^2)$ corresponding to holomorphic vector bundles $E_{(r, A, r', s, p, q)} \rightarrow T_{j=\tau}^2$, and study the isomorphism classes of them. The discussions in this section are based on the SYZ construction [19] (see also [13], [2]). Note that objects of the Fukaya category are pairs of Lagrangian submanifolds and unitary local systems on them.

4.1 The definition of $L_{(r, A, p, q)}$

In this subsection, we define a class of pairs of affine Lagrangian submanifolds

$$L_{(r, A, p)}$$

in $\check{T}_{j=\tau}^2$ and unitary local systems

$$L_{(r, A, p, q)} \rightarrow L_{(r, A, p)}.$$

First, let us consider the following n-dimensional submanifold $\check{L}_{(r, A, p)}$ in \mathbb{R}^{2n}.

$$\check{L}_{(r, A, p)} := \left\{ \left(\check{x}, \check{y} \right) \in \mathbb{R}^{2n} \mid \check{y} = \frac{1}{r} A \check{x} + \frac{1}{r} p \right\}.$$

We see that this n-dimensional submanifold $\check{L}_{(r, A, p)}$ becomes a Lagrangian submanifold in \mathbb{R}^{2n} if and only if $\omega A = (\omega A)^t$ holds. Then, for the covering map $\check{\pi} : \check{T}_{j=\tau}^2 \rightarrow \mathbb{R}^n/2\pi \mathbb{Z}^n$, $L_{(r, A, p)} := \check{\pi}(\check{L}_{(r, A, p)})$ defines a Lagrangian submanifold in $\check{T}_{j=\tau}^2$. On the other hand, we can also regard the complexified symplectic torus $\check{T}_{j=\tau}^2$ as the trivial special Lagrangian torus fibration $\check{\pi} : \check{T}_{j=\tau}^2 \rightarrow \mathbb{R}^n/2\pi \mathbb{Z}^n$, where \check{x} is the local coordinates of the base space $\mathbb{R}^n/2\pi \mathbb{Z}^n$ and \check{y} is the local coordinates of the fiber of $\check{\pi} : \check{T}_{j=\tau}^2 \rightarrow \mathbb{R}^n/2\pi \mathbb{Z}^n$. Then, we can regard each affine Lagrangian submanifold $L_{(r, A, p)}$ in $\check{T}_{j=\tau}^2$ as the affine Lagrangian multi section

$$s(\check{x}) = \frac{1}{r} A \check{x} + \frac{1}{r} p$$

of $\check{\pi} : \check{T}_{j=\tau}^2 \rightarrow \mathbb{R}^n/2\pi \mathbb{Z}^n$.

17
Remark 4.1. As explained in section 3, although \(r' := r'_1 \cdots r'_s \in \mathbb{N} \) is the rank of \(E_{(r,A',r'',p,q)} \to T^{2n}_{\mathbb{Z}^n} \) (see the relations (2) and (3)), in the symplectic geometry side, this \(r' \in \mathbb{N} \) is interpreted as follows. For the affine Lagrangian submanifold \(L_{(r,A,p)} \) in \(T^{2n}_{\mathbb{Z}^n} \), which is defined by a given data \((r, A, p) \in \mathbb{N} \times M(n; \mathbb{Z}) \times \mathbb{R}^n \), we regard it as the affine Lagrangian multi section \(s(\tilde{x}) = \frac{1}{r} A\tilde{x} + \frac{1}{r} p \) of \(\tilde{\pi} : \tilde{T}^{2n}_{\mathbb{Z}^n} \to \mathbb{R}^n/2\pi \mathbb{Z}^n \). Then, for each point \(\tilde{x} \in \mathbb{R}^n/2\pi \mathbb{Z}^n \), we see

\[
\begin{align*}
 s(\tilde{x}) &= \left\{ \left(\frac{1}{r} A\tilde{x} + \frac{1}{r} p + \frac{2\pi}{r} ABM_s \right) \in \tilde{\pi}^{-1}(\tilde{x}) \approx \mathbb{R}^n/2\pi \mathbb{Z}^n \right\},
 M_s = (m_1, \cdots, m_s, 0, \cdots, 0)^t \in \mathbb{Z}^n, \ 0 \leq m_i \leq r'_i - 1, \ i = 1, \cdots, s
\end{align*}
\]

and this fact indicates that \(s(\tilde{x}) \) consists of \(r' \) points. Thus, we can regard \(r' \in \mathbb{N} \) as the multiplicity of \(s(\tilde{x}) = \frac{1}{r} A\tilde{x} + \frac{1}{r} p \).

Furthermore, we consider the trivial complex line bundle

\[
\mathcal{L}_{(r,A,p,q)} \to L_{(r,A,p)}
\]

with the flat connection

\[
\nabla_{\mathcal{L}_{(r,A,p,q)}} := d - \frac{1}{2\pi r} q^t d\tilde{x}.
\]

Note that \(q \in \mathbb{R}^n \) is the holonomy of \(\mathcal{L}_{(r,A,p,q)} \) along \(L_{(r,A,p)} \approx T^n \). By the definition of the Fukaya category, the relation

\[
\Omega_{\mathcal{L}_{(r,A,p,q)}} = d\tilde{x}^t B d\tilde{y}_{|L_{(r,A,p)}}
\]

need to hold, where \(\Omega_{\mathcal{L}_{(r,A,p,q)}} \) is the curvature form of the flat connection \(\nabla_{\mathcal{L}_{(r,A,p,q)}} \), i.e., \(\Omega_{\mathcal{L}_{(r,A,p,q)}} = 0 \). Hence, we see

\[
d\tilde{x}^t B d\tilde{y}_{|L_{(r,A,p)}} = \frac{1}{r} d\tilde{x}^t BAd\tilde{x} = 0,
\]

so one has \(BA = (BA)^t \). Note that \(\omega A = (\omega A)^t \) and \(BA = (BA)^t \) hold if and only if \(AT = (AT)^t \) holds. Hereafter, for simplicity, we set

\[
\mathcal{L}_{(r,A,p,q)} := (L_{(r,A,p)}, \mathcal{L}_{(r,A,p,q)}).
\]

By summarizing the above discussions, we obtain the following proposition.

Proposition 4.2. For a given quadruple \((r,A,p,q) \in \mathbb{N} \times M(n; \mathbb{Z}) \times \mathbb{R}^n \times \mathbb{R}^n\), \(\mathcal{L}_{(r,A,p,q)} \) is an object of the Fukaya category \(\text{Fuk}(T^{2n}_{\mathbb{Z}^n}) \) if and only if \(AT = (AT)^t \) holds.

Here, note that the condition \(AT = (AT)^t \) in Proposition 4.2 is also the condition such that a complex vector bundle \(E_{(r,A',r'',p,q)} \to T^{2n}_{\mathbb{Z}^n} \) becomes a holomorphic vector bundle in Proposition 3.1.
4.2 The isomorphism classes of $\mathcal{L}_{(r,A,p,q)}$

The discussions in this subsection correspond to the discussions in subsection 3.2, so throughout this subsection, we fix $r \in \mathbb{N}$, $A \in M(n; \mathbb{Z})$, and consider the condition such that $\mathcal{L}_{(r,A,p,q)} \cong \mathcal{L}_{(r,A,p',q')}$. holds, where

$$p, q, p', q' \in \mathbb{R}^n.$$

Here, we explain the definition of the equivalency of objects of the Fukaya categories. Let (M, ω) be a symplectic manifold. We consider two objects $\mathcal{L} := (L, L), \mathcal{L}' := (L', L')$ of the Fukaya category $\text{Fuk}(M, \omega)$, where L, L' are Lagrangian submanifolds in (M, ω), and $L \to L, L' \to L'$ are unitary local systems. Then, if there exists a symplectic automorphism $\Phi : (M, \omega) \sim \to \mathcal{L}'$ such that

$$\Phi^{-1}(L') = L,$$

$$\Phi^* \mathcal{L}' \cong \mathcal{L},$$

we say that \mathcal{L} is isomorphic to \mathcal{L}', and write $\mathcal{L} \cong \mathcal{L}'$.

Since we considered the complex torus T^{2n}_{2n}, which is biholomorphic to the complex torus T^{2n}_{2n} in subsection 3.2, first, we take a mirror partner of the complex torus T^{2n}_{2n}. Here, we consider the complexified symplectic torus $\tilde{T}^{2n}_{2n} := T^{2n}_{2n}$ as a mirror partner of the complex torus T^{2n}_{2n}. We denote the local coordinates of \tilde{T}^{2n}_{2n} by $(X^1, \cdots, X^n, Y^1, \cdots, Y^n)^t$, and set

$$\tilde{X} := (X^1, \cdots, X^n)^t, \tilde{Y} := (Y^1, \cdots, Y^n)^t.$$

Let us consider a diffeomorphism $\phi : \tilde{T}^{2n}_{2n} \sim \to \tilde{T}^{2n}_{2n}$ which is expressed locally as

$$\phi \left(\begin{array}{c} \tilde{x} \\ \tilde{y} \end{array} \right) = \left(\begin{array}{cc} B^{-1} & O \\ O & A \end{array} \right) \left(\begin{array}{c} \tilde{x} \\ \tilde{y} \end{array} \right).$$

By a direct calculation, we see

$$\phi^*(d\tilde{X}^t(-T^{-1})^td\tilde{Y}) = d\tilde{x}^t(-T^{-1})^td\tilde{y},$$

where $d\tilde{X} := (dX^1, \cdots, dX^n)^t$, $d\tilde{Y} := (dY^1, \cdots, dY^n)^t$, so this diffeomorphism ϕ is a symplectomorphism.

Now, we consider the isomorphism classes of $\mathcal{L}_{(r,A,p,q)}$, namely, we consider the condition such that $\mathcal{L}_{(r,A,p,q)} \cong \mathcal{L}_{(r,A,p',q')}$ holds as an analogue of Theorem 3.4. Actually, the following theorem holds.

Theorem 4.3. Two objects $\mathcal{L}_{(r,A,p,q)}, \mathcal{L}_{(r,A,p',q')}$ are isomorphic to each other,

$$\mathcal{L}_{(r,A,p,q)} \cong \mathcal{L}_{(r,A,p',q')}.$$
if and only if

\[p \equiv p' \pmod{2\pi rA^{-1}} \quad \left(\begin{array}{c} \frac{Z}{r_1} \\ \vdots \\ \frac{Z}{r_n} \end{array} \right), \quad q \equiv q' \pmod{2\pi r(B^{-1})^t} \quad \left(\begin{array}{c} \frac{Z}{r_1} \\ \vdots \\ \frac{Z}{r_n} \end{array} \right) \]

hold.

Proof. We define

\[(\phi^{-1})^*L_{(r,A,p,q)} := ((\phi^{-1})^{-1}(L_{(r,A,p)}), (\phi^{-1})^*L_{(r,A,p,q)}), \]

\[(\phi^{-1})^*L_{(r,A,p',q')} := ((\phi^{-1})^{-1}(L_{(r,A,p')}), (\phi^{-1})^*L_{(r,A,p',q')}). \]

First, we consider the condition such that

\[(\phi^{-1})^*L_{(r,A,p,q)} \cong (\phi^{-1})^*L_{(r,A,p',q')} \]

holds, namely, our first goal is to consider when it is possible to construct a symplectic automorphism \(\Phi : \tilde{T}_{2n}^{2n} \to \tilde{T}_{2n}^{2n} \) such that

\[\Phi^{-1}((\phi^{-1})^{-1}(L_{(r,A,p')})) = (\phi^{-1})^{-1}(L_{(r,A,p)}), \quad (21) \]

\[\Phi^*(\phi^{-1})^*L_{(r,A,p',q')} \cong (\phi^{-1})^*L_{(r,A,p,q)}. \]

Now, we consider the condition (21). Since \(r \in \mathbb{N}, A \in M(n;\mathbb{Z}) \) are fixed, in the case \((\phi^{-1})^{-1}(L_{(r,A,p)} = (\phi^{-1})^{-1}(L_{(r,A,p')}) \) only, we can take the map

\[\Phi = \text{id}_{\tilde{T}_{2n}^{2n}} \]

as a symplectic automorphism \(\Phi : \tilde{T}_{2n}^{2n} \to \tilde{T}_{2n}^{2n} \) which satisfies the condition (21), and

\[(\phi^{-1})^{-1}(L_{(r,A,p)}) = (\phi^{-1})^{-1}(L_{(r,A,p')}) \]

holds if and only if

\[\mathcal{A}p \equiv \mathcal{A}p' \pmod{2\pi r} \quad \left(\begin{array}{c} \frac{Z}{r_1} \\ \vdots \\ \frac{Z}{r_n} \end{array} \right) \]

holds. Then, the condition (22) simply becomes

\[(\phi^{-1})^*L_{(r,A,p,q)} \cong (\phi^{-1})^*L_{(r,A,p',q')}, \]

20
so hereafter, we consider when \((\phi^{-1})^*L_{(r,A,p,q)} \cong (\phi^{-1})^*L_{(r,A,p',q')}\) holds on \((\phi^{-1})^{-1}(L_{(r,A,p)}) = (\phi^{-1})^{-1}(L_{(r,A,p')})\) by computing an isomorphism

\[\psi : (\phi^{-1})^*L_{(r,A,p,q)} \cong (\phi^{-1})^*L_{(r,A,p',q')} \]

explicitly. The morphism \(\psi\) need to satisfy the differential equation

\[\nabla_{(\phi^{-1})^*L_{(r,A,p',q')}}\psi = \psi \nabla_{(\phi^{-1})^*L_{(r,A,p,q)}}, \tag{24} \]

In particular, since the differential equation (24) turns out to be

\[
\left(\frac{\partial \psi}{\partial X^1}, \cdots, \frac{\partial \psi}{\partial X^n} \right) - \frac{i}{2\pi \tau} ((q'^1B)_1 - (q'B)_1, \cdots, (q'^nB)_n - (q'B)_n) \psi = 0, \tag{25}
\]

by solving the differential equation (25), we obtain a solution

\[\psi(\tilde{X}) = \lambda e^{\frac{i}{\pi \tau}(q'-q)'B\tilde{X}}, \tag{26} \]

where \(\lambda \in \mathbb{C}\) is an arbitrary constant. Furthermore, since \((\phi^{-1})^*L_{(r,A,p,q)}\) and \((\phi^{-1})^*L_{(r,A,p',q')}\) are trivial, this morphism \(\psi\) must satisfy

\[\psi(X_1, \cdots, X^i + 2\pi r'_i, \cdots, X^n) = \psi(X_1, \cdots, X^i, \cdots, X^n) \quad (i = 1, \cdots, s), \]
\[\psi(X_1, \cdots, X^i + 2\pi, \cdots, X^n) = \psi(X_1, \cdots, X^i, \cdots, X^n) \quad (i = s + 1, \cdots, n). \]

By a direct calculation, we see that

\[\psi(X_1, \cdots, X^i + 2\pi r'_i, \cdots, X^n) = e^{\frac{i}{\pi \tau}(q'-q)'B_i}\psi(X_1, \cdots, X^i, \cdots, X^n) \quad (i = 1, \cdots, s), \]
\[\psi(X_1, \cdots, X^i + 2\pi, \cdots, X^n) = e^{\frac{i}{\pi \tau}(q'-q)'B_i}\psi(X_1, \cdots, X^i, \cdots, X^n) \quad (i = s + 1, \cdots, n) \]

hold, where \(B_i := (B_{i1}, \cdots, B_{in})^t\), so we obtain

\[e^{\frac{i}{\pi \tau}(q'-q)'B_i} = 1 \quad (i = 1, \cdots, s), \]
\[e^{\frac{i}{\pi \tau}(q'-q)'B_i} = 1 \quad (i = s + 1, \cdots, n). \]

Clearly, these relations are equivalent to

\[B_i(q' - q) = 2\pi \tau N_{r'}, \]

where

\[N_{r'} := \left(\frac{N_1}{r'_1}, \cdots, \frac{N_s}{r'_s}, N_{s+1}, \cdots, N_n \right)^t, \quad (N_1, \cdots, N_s, N_{s+1}, \cdots, N_n) \in \mathbb{Z}^n, \]

and then, by the formula (26), the isomorphism \(\psi\) is expressed locally as

\[\psi(\tilde{X}) = \lambda e^{IN_{r'}\tilde{X}} \]
with \(\lambda \neq 0 \in \mathbb{C} \). Hence,
\[
(\phi^{-1})^* \mathcal{L}_{(r,A,p,q)} \cong (\phi^{-1})^* \mathcal{L}_{(r,A,p',q')}
\]
holds on \((\phi^{-1})^{-1}(L_{(r,A,p)}) = (\phi^{-1})^{-1}(L_{(r,A,p')})\) if and only if
\[
B'tq \equiv B'tq' \pmod{2\pi r^{-1}}
\]
holds. Thus, by the relations (23) and (27), we can conclude that
\[
\mathcal{L}_{(r,A,p,q)} \cong \mathcal{L}_{(r,A,p',q')}
\]
holds if and only if
\[
p \equiv p' \pmod{2\pi rA^{-1}}, \quad q \equiv q' \pmod{2\pi r(B^{-1})t'}
\]
hold.

Hence, by comparing Theorem 3.4 with Theorem 4.3, we can expect that the isomorphism classes of holomorphic vector bundles \(E_{(r,A,r',U,p,q)} \rightarrow T_{J=\bar{T}}^{2n} \) correspond to the isomorphism classes of objects \(\mathcal{L}_{(r,A,p,q)} \) of the Fukaya category \(\text{Fuk}(T_{J=\bar{T}}^{2n}) \). Actually, by a direct calculation, we can check that this correspondence is correct. We discuss this fact in section 5.

5 Main result

In this section, we prove that there exists a bijection between the set of the isomorphism classes of holomorphic vector bundles \(E_{(r,A,r',U,p,q)} \rightarrow T_{J=\bar{T}}^{2n} \) and the set of the isomorphism classes of objects \(\mathcal{L}_{(r,A,p,q)} \) of the Fukaya category \(\text{Fuk}(T_{J=\bar{T}}^{2n}) \).

First, we prepare two notations. We denote the set of the isomorphism classes of objects of the DG-category \(\text{DG}_{T_{J=\bar{T}}^{2n}} \) (i.e., the set of the isomorphism classes of holomorphic vector bundles \(E_{(r,A,r',U,p,q)} \)) by
\[
\text{Ob}^{\text{isom}}(\text{DG}_{T_{J=\bar{T}}^{2n}}).
\]
Similarly, we denote the set of the isomorphism classes of objects \(\mathcal{L}_{(r,A,p,q)} \) of the Fukaya category \(\text{Fuk}(T_{j=T}^{2n}) \) by

\[
\text{Ob}^{\text{isom}}(\text{Fuk}(\tilde{T}_{j=T}^{2n})).
\]

Now, in order to state the main theorem, we define a map \(F : \text{Ob}(DG_{T_{j=T}^{2n}}) \rightarrow \text{Ob}(\text{Fuk}(\tilde{T}_{j=T}^{2n})) \) as follows. Clearly, we need four parameters \(r, A, p, q \) when we define objects \(\mathcal{L}_{(r,A,p,q)} \) of \(\text{Fuk}(\tilde{T}_{j=T}^{2n}) \). On the other hand, we need five parameters \(r, A, p, q, \mathcal{U} \) when we define objects \(E_{(r,A,r',\mathcal{U},p,q)} \) of \(DG_{T_{j=T}^{2n}} \). Hence, when we define a map \(\text{Ob}(DG_{T_{j=T}^{2n}}) \rightarrow \text{Ob}(\text{Fuk}(\tilde{T}_{j=T}^{2n})) \), we must transform not only the information about four parameters \(r, A, p, q \) but also the information about \(\mathcal{U} \). For example, let us consider a map \(\text{Ob}(DG_{T_{j=T}^{2n}}) \rightarrow \text{Ob}(\text{Fuk}(\tilde{T}_{j=T}^{2n})) \) which is simply defined by

\[
E_{(r,A,r',\mathcal{U},p,q)} \mapsto \mathcal{L}_{(r,A,p,q)}.
\]

For a quadruple \((r, A, p, q) \in \mathbb{N} \times M(n; \mathbb{Z}) \times \mathbb{R}^n \times \mathbb{R}^n \) with mutually distinct \(\mathcal{U} \) and \(\mathcal{U}' \), \(E_{(r,A,r',\mathcal{U},p,q)} \) and \(E_{(r,A,r',\mathcal{U}'},p,q) \) are not isomorphic to each other in general. However, the above map sends both \(E_{(r,A,r',\mathcal{U},p,q)} \) and \(E_{(r,A,r',\mathcal{U}',p,q)} \) to the same object \(\mathcal{L}_{(r,A,p,q)} \) unfortunately. Thus, by considering these facts, here, we define a map

\[
F : \text{Ob}(DG_{T_{j=T}^{2n}}) \rightarrow \text{Ob}(\text{Fuk}(\tilde{T}_{j=T}^{2n}))
\]

by

\[
F(E_{(r,A,r',\mathcal{U},p,q)}) = \mathcal{L}_{(r,A,p,r' \varphi + q \xi)},
\]

where \(\xi, \theta \in \mathbb{R}^n \) denote the vectors associated to \(\mathcal{U} \) in the sense of the definition (14).

In the above setting, we present the following theorem which is the main theorem in this paper.

Theorem 5.1. The map \(F \) induces a bijection between \(\text{Ob}^{\text{isom}}(DG_{T_{j=T}^{2n}}) \) and \(\text{Ob}^{\text{isom}}(\text{Fuk}(\tilde{T}_{j=T}^{2n})) \).

Proof. In this proof, for a given object \(E_{(r,A,r',\mathcal{U},p,q)} \in \text{Ob}(DG_{T_{j=T}^{2n}}) \), we denote by \(\xi, \theta \in \mathbb{R}^n \) the vectors associated to \(\mathcal{U} \) in the sense of the definition (14). Similarly, for a given object \(E_{(s,B,s',\mathcal{V},u,v)} \in \text{Ob}(DG_{T_{j=T}^{2n}}) \), we denote by \(\tau, \sigma \in \mathbb{R}^n \) the vectors associated to \(\mathcal{V} \) in the sense of the definition (14). We denote the induced map from the map \(F \) by

\[
F^{\text{isom}} : \text{Ob}^{\text{isom}}(DG_{T_{j=T}^{2n}}) \rightarrow \text{Ob}^{\text{isom}}(\text{Fuk}(\tilde{T}_{j=T}^{2n})).
\]

Explicitly, it is defined by

\[
F^{\text{isom}}([E_{(r,A,r',\mathcal{U},p,q)}]) = [F(E_{(r,A,r',\mathcal{U},p,q)})],
\]

where, of course, \([E_{(r,A,r',\mathcal{U},p,q)}] \) and \([F(E_{(r,A,r',\mathcal{U},p,q)}]) \) denote the isomorphism class of \(E_{(r,A,r',\mathcal{U},p,q)} \) and the isomorphism class of \(F(E_{(r,A,r',\mathcal{U},p,q)}) \), respectively.
First, we check the well-definedness of the map \(F_{\text{isom}} \). We take two arbitrary objects \(E_{(r,A,r',\mathcal{U},p,q)} \), \(E_{(s,B,s',\mathcal{V},u,v)} \) ∈ \(\text{Ob}(DG_{T_{2g}^2}) \) and assume
\[
E_{(r,A,r',\mathcal{U},p,q)} \cong E_{(s,B,s',\mathcal{V},u,v)}.
\]
By considering the \(i \)-th Chern characters \(\chi_i(E_{(r,A,r',\mathcal{U},p,q)}) \), \(\chi_i(E_{(s,B,s',\mathcal{V},u,v)}) \) of the holomorphic vector bundles \(E_{(r,A,r',\mathcal{U},p,q)} \), \(E_{(s,B,s',\mathcal{V},u,v)} \) for each \(i \in \mathbb{N} \), we see
\[
\chi_i(E_{(r,A,r',\mathcal{U},p,q)}) = \chi_i(E_{(s,B,s',\mathcal{V},u,v)}).
\]
(28)
We consider the equality (28) in the cases \(i = 0, 1 \). Then, we obtain
\[
r' = s',
\]
\[
\frac{r'}{r}A = \frac{s'}{s}B,
\]
so one has
\[
\frac{1}{r}A = \frac{1}{s}B.
\]
Hence, we see that there exists a \(k \in \mathbb{N} \) such that
\[
s = kr, \tag{29}
\]
\[
B = kA. \tag{30}
\]
Therefore, since we can regard \(E_{(s,B,s',\mathcal{V},u,v)} \) as \(E_{(kr,kA,r',\mathcal{V},u,v)} = E_{(r,A,r',\mathcal{V},\frac{r}{r'}u,\frac{r}{r'}v)}, \)
by Theorem 3.4, we see
\[
p - \frac{r}{r'}\theta \equiv \frac{1}{k} \left(u - \frac{s}{s'} \sigma \right) \pmod{2\pi r A^{-1}} \begin{pmatrix} \frac{r}{r'} \mathbb{Z} \\ \vdots \\ \mathbb{Z} \end{pmatrix}, \tag{31}
\]
\[
q + \frac{r}{r'}\xi \equiv \frac{1}{k} \left(v + \frac{s}{s'} \tau \right) \pmod{2\pi r (B^{-1})^t} \begin{pmatrix} \frac{r}{r'} \mathbb{Z} \\ \vdots \\ \mathbb{Z} \end{pmatrix}. \tag{32}
\]
Thus, by Theorem 4.3 and the relations (29), (30), (31), (32), we can conclude
\[
\mathcal{L}(r,A, p - \frac{r}{r'}\theta, q + \frac{r}{r'}\xi) \cong \mathcal{L}(s,B, u - \frac{s}{s'} \sigma, v + \frac{s}{s'} \tau),
\]
namely,
\[
F(E_{(r,A,r',\mathcal{U},p,q)}) \cong F(E_{(s,B,s',\mathcal{V},u,v)}).
\]
Next, we prove that F_{isom} is injective. We take two arbitrary objects $E_{(r,A,r',U,p,q)}, E_{(s,B,s',V,u,v)} \in \text{Ob}(DG_{T_{J=\tau}^{\mathbb{Z}}})$ and assume

$$F(E_{(r,A,r',U,p,q)}) \cong F(E_{(s,B,s',V,u,v)}),$$

namely,

$$\mathcal{L}_{(r,A,\frac{r-p}{\tau},\frac{s-q}{\tau}+\xi)} \cong \mathcal{L}_{(s,B,\frac{u-s}{\tau},\frac{v-u}{\tau}+\tau)}.$$

Then, we see that there exists a $k \in \mathbb{N}$ which satisfies the relations (29) and (30). Here, we take two matrices $A, B \in GL(n; \mathbb{Z})$ such that

$$AAB = \begin{pmatrix}
\tilde{a}_1 & & \\
& \ddots & \\
& & \tilde{a}_t
\end{pmatrix}, \quad \tilde{a}_t \neq 0 \quad (33)$$

where $\tilde{a}_i \in \mathbb{N}$ ($i = 1, \cdots, t, 1 \leq t \leq n$) and $\tilde{a}_i|a_{i+1}$ ($i = 1, \cdots, t-1$). Therefore, since the relation (30) holds, we obtain

$$ABB = A(kA)B = \begin{pmatrix}
k\tilde{a}_1 & & \\
& \ddots & \\
& & k\tilde{a}_t
\end{pmatrix} \quad (34)$$

In particular, the relations (29), (30), (33), (34) imply

$$r' = s'. \quad (35)$$

Hence, by Theorem 4.3, the relations (31) and (32) hold. Now, note that we can regard $E_{(s,B,s',V,u,v)}$ as $E_{(kr,kA,r',V,u,v)} = E_{(r,A,r',V,\frac{1}{k}u,\frac{1}{k}v)}$ by the relations (29), (30), (35). Thus, by Theorem 3.4 and the relations (31) and (32), we see that

$$E_{(r,A,r',U,p,q)} \cong E_{(r,A,r',V,\frac{1}{k}u,\frac{1}{k}v)}$$

holds, and this relation indicates

$$E_{(r,A,r',U,p,q)} \cong E_{(s,B,s',V,u,v)}.$$

Finally, we prove that F_{isom} is surjective. We take an arbitrary quadruple $(r, A, p, q) \in \mathbb{N} \times M(n; \mathbb{Z}) \times \mathbb{R}^n \times \mathbb{R}^n$, and consider the element

$$[\mathcal{L}_{(r,A,p,q)}] \in \text{Ob}_{\text{isom}}(Fuk(T_{J=\tau}^{\mathbb{Z}})).$$
In particular, a representative of \([L_{(r,A,p,q)}]\) is expressed as

\[L_{(r,A,p+2\pi rA^{-1}M,q+2\pi r(B^{-1})^tN)}\]

by using a pair

\[
(M, N) \in \left(\begin{array}{c}
\frac{Z}{r_1} \\
\vdots \\
\frac{Z}{r_2} \\
\frac{Z}{Z}
\end{array}\right) \times \left(\begin{array}{c}
\frac{Z}{r_1} \\
\vdots \\
\frac{Z}{r_2} \\
\frac{Z}{Z}
\end{array}\right)
\]

(see Theorem 4.3). For the element \([L_{(r,A,p,q)}]\), we consider the element

\[E_{(r,A,r',M',p+\frac{\pi}{r}q-\frac{\pi}{r}\xi)} \in \text{Ob}_\text{isom}(DG_{T_{3k}T}),\]

where \(\xi, \theta \in \mathbb{R}^n\) are the vectors associated to \(U\) in the sense of the definition (14). Here, note that how to choose a set \(U\) is not unique even if we fix a quadruple \((r, A, p, q) \in \mathbb{N} \times M(n; \mathbb{Z}) \times \mathbb{R}^n \times \mathbb{R}^n\). Therefore, a representative of \([E_{(r,A,r',M',p+\frac{\pi}{r}q-\frac{\pi}{r}\xi)}]\) is expressed as

\[E_{(r,A,r',M',p+\frac{\pi}{r}q+2\pi rA^{-1}M,q-\frac{\pi}{r}\xi+2\pi r(B^{-1})^tN)}\]

by using a set \(U'\) with the associated vectors \(\xi', \theta' \in \mathbb{R}^n\) and a pair

\[
(M, N) \in \left(\begin{array}{c}
\frac{Z}{r_1} \\
\vdots \\
\frac{Z}{r_2} \\
\frac{Z}{Z}
\end{array}\right) \times \left(\begin{array}{c}
\frac{Z}{r_1} \\
\vdots \\
\frac{Z}{r_2} \\
\frac{Z}{Z}
\end{array}\right)
\]

(see Theorem 3.4). Then, by a direct calculation, we see

\[
F_{\text{isom}}([E_{(r,A,r',M',p+\frac{\pi}{r}q+\frac{\pi}{r}\xi)}])
= F_{\text{isom}}([E_{(r,A,r',M',p+\frac{\pi}{r}q+2\pi rA^{-1}M,q-\frac{\pi}{r}\xi+2\pi r(B^{-1})^tN)}])
= [F(E_{(r,A,r',M',p+\frac{\pi}{r}q+2\pi rA^{-1}M,q-\frac{\pi}{r}\xi+2\pi r(B^{-1})^tN))]
= [L_{(r,A,(p+\frac{\pi}{r}q+2\pi rA^{-1}M)-\frac{\pi}{r}q,(q-\frac{\pi}{r}\xi+2\pi r(B^{-1})^tN))}
= [L_{(r,A,p+2\pi rA^{-1}M,q+2\pi r(B^{-1})^tN)}]
= [L_{(r,A,p,q)}].
\]

This completes the proof.
Acknowledgment

I would like to thank Hiroshige Kajiura for various advices in writing this paper. I am also grateful to Masahiro Futaki and Atsushi Takahashi for helpful comments. This work is supported by Grant-in-Aid for JSPS Research Fellow 18J10909.

References

[1] M. Abouzaid, I. Smith, Homological mirror symmetry for the four-torus, Duke Mathematical Journal, 152.3 (2010), 373-440.

[2] D. Arinkin, A. Polishchuk, Fukaya category and Fourier transform, AMS IP STUDIES IN ADVANCED MATHEMATICS, 2001, 23 : 261-274.

[3] A. Bondal and M. Kapranov, Enhanced triangulated categories, Math. USSR Sbornik 70:93-107, 1991.

[4] K. Fukaya, Morse homotopy, A^∞-category, and Floer homologies, In: Proceedings of GARC Workshop on Geometry and Topology '93 (Seoul, 1993). Lecture Notes in Series, vol. 18, pp. 1-102. Seoul Nat. Univ., Seoul (1993).

[5] K. Fukaya, Mirror symmetry of abelian varieties and multi theta functions, J. Algebr. Geom. 11, 393-512 (2002).

[6] H. Kajiura, On some deformation of fukaya categories. Symplectic, Poisson, and Noncommutative Geometry, 93-130, MSRI Publ. 62, Cambridge Univ. Press, New York, 2014.

[7] K. Kobayashi, On exact triangles consisting of stable vector bundles on tori, Differential Geometry and its Applications 53 (2017) 268-292, arXiv : mathDG/1610.02821.

[8] K. Kobayashi, Geometric structure of exact triangles consisting of projectively flat bundles on higher dimensional complex tori, arXiv : mathDG/1705.04007.

[9] K. Kobayashi, Some remarks on the homological mirror symmetry for tori, In preparation.

[10] S. Kobayashi, Differential Geometry of Complex Vector Bundles, Princeton University Press, 1987.

[11] M. Kontsevich, Homological algebra of mirror symmetry, In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, 1995, pages 120-139, arXiv : math.AG/9411018.

[12] M. Kontsevich, Y. Soibelman, Homological mirror symmetry and torus fibrations. In Symplectic geometry and mirror symmetry (Seoul, 2000), pages 203-263. World Sci.Publishing, River Edge, NJ, 2001. math.SG/0011041.
[13] N. C. Leung, S.-T. Yau, E. Zaslow, From special Lagrangian to Hermitian-Yang-Mills via Fourier-Mukai transform, Adv. Theor. Math. Phys. 4:1319-1341, 2000.

[14] Y. Matsushima, Heisenberg groups and holomorphic vector bundles over a complex torus, Nagoya Math. J. Vol. 61 (1976), 161-195.

[15] S. Mukai, Semi-homogeneous vector bundles on an abelian variety, J. Math. Kyoto Univ. 18 (1978), no. 2, 239-272.

[16] D. O. Orlov, Remarks on generators and dimensions of triangulated categories, Moscow Mathematical Journal 9.1 (2009) : 143-149, arXiv : math.AG/0804.1163.

[17] A. Polishchuk, A_{∞}-structures on an elliptic curve, Comm. Math. Phys. 247, 527 (2004), arXiv : math.AG/0001048.

[18] A. Polishchuk, E. Zaslow, Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys. 2, 443-470 (1998), arXiv : math.AG/9801119.

[19] A. Strominger, S.-T. Yau, and E. Zaslow, Mirror Symmetry is T-duality, Nucl. Phys. B, 479:243-259, 1996.