Characterizing gas flow from aerosol particle injectors

Daniel A. Horke,1,2 Nils Roth,1,3 Lena Worbs,1 and Jochen Küpper1,2,3

1 Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
2 The Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
3 Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

(Dated: September 29, 2016)

A novel methodology for measuring gas flow from small orifices or nozzles into vacuum is presented. It utilizes a high-intensity femtosecond laser pulse to create a plasma within the gas plume produced by the nozzle, which is imaged by a microscope. Calibration of the imaging system at known chamber pressures allows for the extraction of absolute number densities, and we show detection down to helium densities of 4×10^{16} cm$^{-3}$ with a spatial resolution of a few micrometers. The technique is used to characterize the gas flow from a convergent-nozzle aerosol injector as used in single-particle diffractive imaging experiments at free-electron laser sources. Based on the measured gas-density profile we estimate the scattering background signal under typical operating conditions of single-particle imaging experiments and estimate that fewer than 50 photons per shot can be expected on the typical detector of such an experiment.

I. INTRODUCTION

The advances of x-ray free-electron lasers (XFELs), which provide intense and short pulses of coherent x-rays, open up new possibilities for imaging of aerosolized particles, and even individual molecules, with atomic spatial resolution [1–4]. As experiments can be conducted completely in the gas-phase and do not require sample immobilization, e.g., cryogenic freezing, XFELs furthermore provide unprecedented capabilities for capturing ultrafast dynamics of isolated systems with femtosecond temporal and picometer spatial resolution [4–6]. This is enabled by the short and intense x-ray pulses available at these facilities, which typically provide pulses with \sim1 mJ pulse energy, \sim10 fs pulse duration, and \sim100 pm wavelength. This allows the imaging methodology to outrun radiation damage effects in the diffraction before destruction mechanism [7–10]. Combining many diffraction patterns from reproducible isolated aerosol targets imaged at random orientations should allow one to reconstruct the three-dimensional, atomically resolved structure [11–12]. In recent years full 3D reconstruction has been demonstrated and the achieved resolution continuously improved [13–16].

The advent of these new possibilities for imaging isolated systems in vacuo has prompted the development and improvement of techniques for injecting samples into the interaction region. Using gas-dynamic virtual nozzles (GDVNs) [17] for producing focussed liquid jets enabled the serial femtosecond crystallography (SFX) methodology [18–19], allowing the reconstruction of sub-nanometer-resolution structures from micrometer sized crystals [18–20]. Aerodynamic lenses [1, 21] and convergent-nozzle injectors [22] are widely used injection techniques to produce focused or collimated streams of nano- or micrometer sized particles. They fundamentally rely on a gas flow that interacts with the particles of interest and, through shear and drag forces, produces the desired stream of particles. Typically, helium is used for its relatively small x-ray scattering cross-section. However, since the helium gas density at the interaction point is still many orders of magnitude higher than the sample density, scattering from the focusing gas can make a significant contribution to the recorded background scattering [2, 23, 24]. In order to account for this background and to make quantitative predictions and background calibrations, therefore, requires knowledge of the gas density at the interaction point, typically located a few hundred micrometers below the injector tip [22].

Here, we present a methodology that allows the spatially resolved measurement of gas densities down to $\sim4 \times 10^{16}$ cm$^{-3}$ with high spatial and, potentially, temporal resolution. This is achieved by using a high-intensity femtosecond laser pulse to create a plasma within the gas-stream, which is then imaged by a microscope objective and camera. The observed intensity of the plasma depends on the local gas pressure in the laser focus. By calibrating the plasma formation and imaging system to known helium pressures, this method allows us to create spatial maps of the gas flow from an injector tip. Compared to previous methods, this approach provides a higher sensitivity, allowing the detection of one order of magnitude lower gas pressures, and it does not rely on interferometric measurements prone to mechanical instabilities [25–26]. In particular, we characterize a convergent nozzle injector [22] under typical operating conditions for XFEL single particle diffractive imaging experiments. Based on the measured gas-density distribution, the x-ray scattering signal expected from this helium background at typical operating parameters of currently available XFEL endstations is calculated.
II. EXPERIMENTAL METHOD

To assess the local gas density at the tip of an aerosol injector we crossed the gas stream with a focused femtosecond laser beam of sufficient intensity to produce a plasma inside the gas-stream. The bright visible glow of this plasma was recorded on a camera. The intensity depended on the laser intensity and the gas density in the interaction volume. By calibrating the imaging system at known gas densities, this allowed us to build up a high-resolution spatial map of local gas-densities produced by the injector tip.

A simple sketch of the vacuum and imaging system is shown in Figure 1. The vacuum system consisted of two differentially pumped chambers, connected only through the injector tip. The upper chamber (i.e., upstream of the injector) contained a capacitive pressure gauge (Pfeiffer Vacuum CMR361) with an absolute accuracy of 0.2% independent of gas type, a high-precision leak valve connected to a high-purity helium supply and a connection to a roughing pump, with the pumping speed controllable through a needle valve. This setup allowed us to maintain a constant pressure during operation of the injector by matching the helium flow into the upper chamber to the gas transmission through the injector aperture. This chamber mimicked the typical nebulization chamber in single-particle imaging experiments. At the bottom of this upper chamber and mounted on a 6 mm outer diameter stainless steel tube was the injector tip (30° convergence angle, orifice 111 µm) located within the main vacuum chamber as shown in Figure 1. This chamber was evacuated by a turbomolecular pump (Pfeiffer Vacuum HiPace 80) and the pressure was monitored through a full-range pressure gauge (Pfeiffer Vacuum PKR361).

The laser-matter interaction was imaged through a standard vacuum viewport with a 10× long working-distance microscope objective (Edmund Optics) that produced an image on a high-sensitivity CMOS camera (Thorlabs DCC3240M, 10 bit monochrome). Residual stray infrared light from the femtosecond laser was blocked using two shortpass filters (Thorlabs FESH0700, OD > 5 for λ > 700 nm) mounted between the objective and the camera and stray light was reduced by mechanically enclosing the optical path. The entire imaging system (objective, filters, camera) was mounted on a three-dimensional translation stage.

The laser passed through the interaction chamber perpendicular to both, the gas-stream and the imaging axis, as indicated by the red cross in Figure 1. It consisted of pulses from an amplified Ti:Sapphire laser system (Spectra Physics Spitfire ACE) centered around 800 nm, running at 1 kHz repetition rate, and producing 40 fs pulses with 0.7 mJ per pulse used in the current experiment. The laser was focused into the interaction region with a \(f = 300 \) mm plano-convex lens, producing a focal spot size of 50 µm (4σ) with a nominal Rayleigh range of ~2.5 mm and a peak intensity of \(8 \times 10^{14} \) W/cm². The focusing lens was placed on a 3D translation stage to allow translation of the laser focus in space to ensure overlap with the gas stream within the Rayleigh range and to allow probing of the local gas densities at different distances from the injector nozzle.

The imaging system was calibrated by recording the plasma-glow intensity when flooding the chamber to a known helium pressure; details are given in the supplementary information. To collect data from the injector produced plasma, the injector tip was installed in the center of the chamber and the upper chamber was pressurized with helium as discussed above. The horizontal laser-injector overlap, i.e., along the imaging axis, was optimized to produce the brightest plasma. Then the vertical position of the laser was adjusted by translating the focusing lens, such that it passed just below the injector tip. The laser focus was translated downwards in steps of 12.5 µm and at every point 20 frames were collected on the camera. The exposure time was adjusted such that the plasma was clearly visible but no saturation occurs. During the subsequent data analysis the images collected
at the same position were averaged and scaled by exposure time. Then all images from a single upstream pressure were combined, keeping for every pixel the maximum intensity that occurs in one of the images. This “max intensity stack” approach was chosen because the produced plasma continues to glow for an appreciable time even after the laser pulse has past through the sample. As the gas is moving rapidly away from the nozzle – due to choked flow conditions the speed is probably close 1000 m/s – this led to intensity on the camera below the interaction point with the laser, as can clearly be seen on the photograph in Figure 1 b. Averaging collected images from different positions, therefore, would have overexposed the lower part of the image. The pressure for every pixel was retrieved by comparison with the calibration measurements.

III. RESULTS AND DISCUSSION

The measured pressure distribution from a convergent nozzle tip operated with 800 mbar of upstream helium is shown in Figure 2. Similar measurements for upstream pressures of 300 mbar and 500 mbar are shown in the supplementary materials. During the measurement the pressure in the main chamber was maintained below 2×10^{-2} mbar, ensuring choked-flow-conditions through the orifice. The topmost measurement was taken around 80 µm below the tip; moving the laser further up leads to clipping of the beam, and potentially damage, on the ceramic tip. At distances $\gtrsim 600$ µm below the tip the pressure had fallen such that no plasma was observed. The gas pressure was found to decrease dramatically with increasing distance from the injector tip, as expected. Due to the acceleration of gas inside the orifice, initially some propensity for the helium to continue along the axial direction is observed, rather than radially isotropic diffusion, resulting in the non-spherical pressure distribution measured. Under typical operating conditions for single-particle diffractive imaging experiments, the interaction region, that is, the crossing point of the x-ray beam with the particle stream, is located ~ 300 µm below the injector tip. At this position the pressure has already dropped considerably and, for the measurements of 800 mbar upstream pressure (Figure 2) is on the order of 3 mbar.

To quantify the spatial resolution in the produced images we differentiate between the resolution within the imaging plane, i.e., within the plane of laser illumination, and the resolution parallel to the camera surface. The latter is limited only by the imaging system employed. For the current setup a single pixel corresponds to 0.86 µm, however due to aberrations and mechanical instabilities we estimate the resolution in this plane to be on the order of 2 µm. In the direction perpendicular to the imaging plane, the resolution is not only limited by the depth of focus of the imaging system, but also by the focal spot size of the illuminating laser, which is around 50 µm (4σ) for the data shown. This is, however, still significantly smaller than the orifice size of the injector, allowing us to image essentially the central slice through the (radially symmetric) pressure distribution.

Helium pressure profiles along both the axial and radial directions are shown in Figure 3, where the measured pressure has been converted into an absolute number density assuming ideal gas behavior. Figure 3 a) shows the axial density distribution along the center line of the injector as a function of distance from the tip, for different upstream pressures. The pressure decreases rapidly with distance from the injector, and exhibits approximately a $1/r^3$ dependence, which is shown by the dashed lines in Figure 3 a, as would be expected for an isotropic radial diffusion in 3D. For the production of focused nanoparticle beams the pressure upstream of the injector is typically in the range of 200–500 mbar, while the particle focus – and hence interaction point – is located a few hundred micrometer downstream the nozzle [22]. Therefore, the corresponding number densities at the interaction point are typically on the order of 5×10^{16} cm$^{-3}$. Radial profiles of the helium number density are shown in Figure 3 b), measured at various distances below the injector tip for an upstream pressure of 800 mbar; profiles for further upstream pressures are shown in the supplementary information. These clearly show that the initially narrow gas plume spreads out radially, leading to a rapid decrease in the absolute density along the center line.

To assess the total scattering signal that can be expected from helium in XFEL based diffraction experiments, one has to take into account not only the interaction point itself, but due to the large Rayleigh length of the XFEL beam, typically several millimeters, one should take into account the full extent of the helium “cloud” along the x-ray beam, the extend of which is visible from the radial profiles in Figure 3 b). From our spatially resolved measurements we can assess the average helium density encountered by the XFEL pulse as it travels through the helium cloud, and for 500 mbar upstream pressure this is $\sim 3.6 \times 10^{15}$ cm$^{-3}$, corresponding to the average helium density 300 µm below the injector tip as measured within
We present a robust and sensitive approach for measuring the spatial distribution of gas flows from nozzles into vacuum. Calibration at known pressures allows the determination of absolute pressures and number densities with high spatial resolution. With the current setup the minimum detectable density is on the order of 10^{16} cm$^{-3}$, around one order of magnitude smaller than with interferometric approaches [25] [20]. The spatial resolution within the imaging plane is around 2 μm, perpendicular to the imaging plane it is limited by the laser spot size of 50 μm (4σ). We also note that this methodology can be further extended to measurements in the time domain, due to the inherently pulsed nature of the laser illumination.

We used this approach to assess the gas flow from a convergent nozzle injector [22] typically used for single-particle diffractive imaging experiments. We found that at typical operating conditions the gas density in the interaction region is on the order 5×10^{16} cm$^{-3}$. By evaluating the average gas density encountered by an x-ray pulse as it travels through the gas plume we estimate that fewer than 500 photons will be scattered by the helium. This number could be further reduced by increasing the distance between the injector tip and the interaction region, which could be facilitated through the use of shallower convergence angles within the injector [22]. Further approaches to reduce the incoherent scattering from helium could incorporate inhomogeneous electric fields to deflect particles of interest out of the helium plume [28], as has been demonstrated for single molecule scattering experiments at LCLS utilizing supersonic molecular beams [2].

ACKNOWLEDGMENTS

We gratefully acknowledge support by Salah Awel with the aerosol injector tips and Christian Kruse in an early stage of the experiment.

In addition to DESY, this work has been supported by the excellence cluster “The Hamburg Center for Ultrafast Imaging – Structure, Dynamics and Control of Matter at the Atomic Scale” of the Deutsche Forschungsgemeinschaft (CUI, DFG-EXC1074) and by the European Research Council through the Consolidator Grant COMOTION (ERC-614507).

[1] Michael J Bogan, W Henry Benner, Sebastien Boutet, Urs Rohner, Matthias Frank, Anton Barty, M. Marvin Seibert, Filipe Maia, Stefano Marchesini, Saša Bajt, Bruce Woods, Vincent Riot, Stefan P Han-Riegel, Martin Svenda, Erik Marklund, Eberhard Spiller, Janos Hajdu, and Henry N Chapman, “Single particle x-ray diffractive imaging,” Nano Letters 8, 310–316 (2008).

[2] Jochen Küpper, Stephan Stern, Lotte Holmegaard, Frank Filsinger, Arnaud Rouzée, Artem Rudenko, Per Johnsson, Andrew V. Martin, Marcus Adolph, Andrew Aquila, Saša
[5] Bajt, Anton Barty, Christoph Bostedt, John Bozek, Carl Caleman, Ryan Coffee, Nicola Copolla, Tjark Delmas, Sascha Epp, Benjamin Erk, Lutz Foucar, Tais Gorkhover, Lars Gumprecht, Andreas Hartmann, Robert Hartmann, Günter Hauser, Peter Holl, Andre Hönke, Nils Kimmel, Fatou Krasniqi, Kai-Uwe Kühnel, Jochen Maurer, Marc Messerschmidt, Robert Moshammer, Christian Reich, Benedikt Rudek, Robin Santra, Ilme Schlichting, Carlo Schmidt, Sebastian Schor, Joachim Schulz, Heike Soltau, John C. H. Spence, Dmitri Starodub, Lothar Strüder, Jan Thogersen, Marc J. Vrakking, Georg Weidenspointner, Thomas A. White, Cornelia Wunderer, Gerhard Meijer, Joachim Ulrich, Henrik Stapelfeldt, Daniel Rolles, and Henry N. Chapman, “X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser,” Phys. Rev. Lett. 112, 083002 (2014).

[3] John C H Spence and Henry N Chapman, “The birth of a new field,” Phil. Trans. R. Soc. B 369, 20130309–20130309 (2014).

[4] Anton Barty, Jochen Küpper, and Henry N Chapman, “Molecular imaging using x-ray free-electron lasers,” Annu. Rev. Phys. Chem. 64, 415–435 (2013).

[5] Kanupriya Pande, Christopher D. M. Hutchison, Gerrit John C H Spence, Dmitri Starodub, Lothar Strüder, Jan Thogersen, Marc J. Vrakking, Georg Weidenspointner, Thomas A. White, Cornelia Wunderer, Gerhard Meijer, Joachim Ulrich, Henrik Stapelfeldt, Daniel Rolles, and Henry N. Chapman, “X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser,” Phys. Rev. Lett. 112, 083002 (2014).

[3] John C H Spence and Henry N Chapman, “The birth of a new field,” Phil. Trans. R. Soc. B 369, 20130309–20130309 (2014).

[4] Anton Barty, Jochen Küpper, and Henry N Chapman, “Molecular imaging using x-ray free-electron lasers,” Annu. Rev. Phys. Chem. 64, 415–435 (2013).

[5] Kanupriya Pande, Christopher D. M. Hutchison, Gerrit John C H Spence, Dmitri Starodub, Lothar Strüder, Jan Thogersen, Marc J. Vrakking, Georg Weidenspointner, Thomas A. White, Cornelia Wunderer, Gerhard Meijer, Joachim Ulrich, Henrik Stapelfeldt, Daniel Rolles, and Henry N. Chapman, “X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser,” Phys. Rev. Lett. 112, 083002 (2014).

[3] John C H Spence and Henry N Chapman, “The birth of a new field,” Phil. Trans. R. Soc. B 369, 20130309–20130309 (2014).

[4] Anton Barty, Jochen Küpper, and Henry N Chapman, “Molecular imaging using x-ray free-electron lasers,” Annu. Rev. Phys. Chem. 64, 415–435 (2013).

[5] Kanupriya Pande, Christopher D. M. Hutchison, Gerrit John C H Spence, Dmitri Starodub, Lothar Strüder, Jan Thogersen, Marc J. Vrakking, Georg Weidenspointner, Thomas A. White, Cornelia Wunderer, Gerhard Meijer, Joachim Ulrich, Henrik Stapelfeldt, Daniel Rolles, and Henry N. Chapman, “X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser,” Phys. Rev. Lett. 112, 083002 (2014).

[3] John C H Spence and Henry N Chapman, “The birth of a new field,” Phil. Trans. R. Soc. B 369, 20130309–20130309 (2014).

[4] Anton Barty, Jochen Küpper, and Henry N Chapman, “Molecular imaging using x-ray free-electron lasers,” Annu. Rev. Phys. Chem. 64, 415–435 (2013).

[5] Kanupriya Pande, Christopher D. M. Hutchison, Gerrit John C H Spence, Dmitri Starodub, Lothar Strüder, Jan Thogersen, Marc J. Vrakking, Georg Weidenspointner, Thomas A. White, Cornelia Wunderer, Gerhard Meijer, Joachim Ulrich, Henrik Stapelfeldt, Daniel Rolles, and Henry N. Chapman, “X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser,” Phys. Rev. Lett. 112, 083002 (2014).
dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses,” Nat. Commun. 5, 4061 (2014).

[15] Max F. Hanke, Dirk Hasse, Maia Filipe R. N. C., Tomas Ekeberg, Katja John, Martin Svenda, N. Duane Loh, Andrew V. Martin, Nicusor Timneanu, Larsson Daniel S. D, van der Schot, Gijs van, Gunilla H. Carlsson, Margareta Ingelman, Jakob Andreasson, Daniel Westphal, Mengning Liang, Francesco Stellato, Daniel P. DePonte, Robert Hartmann, Nils Kimmel, Richard A. Kirian, M. Marvin Seibert, Kerstin Mühlig, Sebastian Schorb, Ken Ferguson, Christoph Bostedt, Sebastian Carron, John D. Bozek, Daniel Rolles, Artem Rudenko, Sascha Epp, Henry N. Chapman, Anton Barty, Janos Hajdu, and Inger Andersson, “High-throughput imaging of heterogeneous cell organelles with an x-ray laser,” Nat. Photon. 8, 943–949 (2014).

[16] Tomas Ekeberg, Martin Svenda, Chantal Abergel, Filip R. N. C. Maia, Virginie Seltzer, Jean-Michel Claverie, Max Hanke, Olof Jönsson, Carl Nettelblad, Gijs van der Schot, Mengning Liang, Daniel P. Deponte, Anton Barty, M. Marvin Seibert, Biana Iwan, Inger Andersson, N. Duane Loh, Andrew V. Martin, Henry Chapman, Christoph Bostedt, John D. Bozek, Ken R. Ferguson, Jacek Krzywinski, Sascha W. Epp, Daniel Rolles, Artem Rudenko, Robert Hartmann, Nils Kimmel, and Janos Hajdu, “Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser,” Phys. Rev. Lett. 114, 098102 (2015).

[17] D. P DePonte, U. Weierstall, K. Schmidt, J. Warner, D. Starodub, J. C. H. Spence, and R. B. Doak, “Gas dynamic virtual nozzle for generation of microscopic droplet streams,” Phys. D Appl. Phys. 41, 195505 (2008).

[18] Henry N. Chapman, Petra Fromme, Anton Barty, Thomas A. White, Richard A. Kirian, Andrew Aquila, Mark S. Hunter, Joachim Schulz, Daniel P. Deponte, Uwe Weierstall, R. Bruce Doak, Filipe R. N. C. Maia, Andrew V. Martin, Ilme Schlichting, Lukas Somb, Nicola Coppola, Robert L. Shoeman, Sascha W. Epp, Robert Hartmann, Daniel Rolles, Artem Rudenko, Lutz Foucar, Nils Kimmel, Georg Weidenspointner, Peter Holl, Mengning Liang, Miriam Barthelmess, Michael J. Bogan, Jacek Krzywinski, Christoph Bostedt, Saia Bajt, Lars Gumprecht, Benedikt Rudek, Benjamin Erk, Carlo Schmidt, Andre Hönke, Christian Reich, Daniel Pietschner, Florian Schopper, Heike Soltau, Kai-Uwe Kühnel, Marc Messerschmidt, John D. Bozek, Stefan P. Hau-Riege, Matthias Frank, Christina Y. Hampton, Raymond G. Sierra, Dmitri Starodub, Jarth G. Williams, Janos Hajdu, Nicusor Timneanu, M. Marvin Seibert, Jakob Andreasson, Andrea Rocker, Olufon Ricson, Martin Svenda, Stephan Stern, Karol Nasi, Robert Andritschke, Claus-Dieter Schröter, Faton Krisnagi, Mario Bort, Kevin E. Schmidt, Xiaoyu Wang, Ingo Grotjohann, James M. Holton, Thomas R. M. Barends, Richard Neutze, Stefano Marchesini, Raimund Fromme, Sebastian Schorb, Daniela Rupp, Marcus Adolph, Tais Gorkovev, Inge Andersson, Helmut Hirsemann, Guillaume Potdevin, Heinz Graafsma, Björn Nilsson, and John C. H. Spence, “Femtosecond x-ray protein nanocrystallography,” Nature 470, 73 (2011).

[19] Ilme Schlichting, “Serial femtosecond crystallography: the first five years,” IUCrJ 2, 246–255 (2015).
Olaf Haelker, Norbert Meidinger, Nils Kimmel, Robert Andritschke, Florian Schopper, Georg Weidenspointner, Alexander Ziegler, Daniel Pietschner, Sven Herrmann, Ullrich Pietsch, Albert Walenta, Wolfram Leitenberger, Christoph Bostedt, Thomas Moeller, Daniela Rupp, Marcus Adolph, Heinz Graafsma, Helmut Hirsemann, Klaus Gaertner, Rainer Richter, Lutz Foucar, Robert L. Shoeman, Ilme Schlichting, and Joachim Ullrich, “Large-format, high-speed, x-ray pnccds combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources,” Nucl. Instrum. Meth. A 614, 483–496 (2010).

[28] Yuan-Pin Chang, Daniel A. Horke, Sebastian Trippel, and Jochen Küpper, “Spatially-controlled complex molecules and their applications,” Int. Rev. Phys. Chem. 34, 557–590 (2015). arXiv:1505.05632 [physics].