Brucellar, pyogenic and tubercular infections of spine: comparative study of haematological, radiological features and treatment outcome

Dr. Rohith Reddy Kasam, Dr. Vemula Sandeep, Dr. K Tarun Rao and Dr. Dodda Prasad Reddy

DOI: https://doi.org/10.22271/ortho.2021.v7.iid.2480

Abstract

Spinal infections can also be described as pyogenic, granulomatous (tuberculous, brucella, fungal) and parasitic. Tubercular spondyloodiscitis is the commonest. Although a wide range of organisms have been associated with spondyloodiscitis, it remains primarily a monomicrobial bacterial infection. A detailed evaluation of clinical features- fever, back pain (Visual Analogue score), discharging sinus, swelling, deformity, neurological status (graded as per charting by Kumar and Tuli; ASIA scale (American Spinal Injury Association). In 7.6% of NTS and 9.1% of TS, the tissue specimen was obtained by closed vertebral biopsy and in 80.7% of NTS and 90.9% of TS by open biopsy at the time of surgery. The yield of culture of the biopsy specimen was 100% in PS and 21% In BS. AFB stain was positive in 32.1%–41.6% of TB and 8.6% of BS. PCR was positive in 82.8% of TS. 119 (83.3%) patients were treated by anterior decompression, biopsy and vertebrectomy. In 80.7% of NTS and 90.9% of TS by open biopsy at the time of surgery. The yield of culture of the biopsy specimen was 100% in PS and 21% In BS. AFB stain was positive in 32.1%–41.6% of TB and 8.6% of BS. PCR was positive in 82.8% of TS. 119 (83.3%) patients were treated by anterior decompression, biopsy and vertebrectomy. Treatment outcomes were evaluated at a follow-up of 3 years. Among 120 patients who were followed up, 114 patients had a satisfactory follow-up of 3 years. The reasons for the poor follow-up were patient’s non-compliance, loss to follow-up and death. Among the patients who died, the commonest cause was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure. Among the patients who were followed, the commonest cause of death was respiratory failure.
Methodology

Study population: One hundred and seventy three patients (173) who presented to this centre and had a diagnosis of spondylodiscitis.

Study design: Retrospective study

Exclusion criteria:

- Patients who did not have a confirmed etiology
- Histopathologically proven malignant lesions
- Patients with incomplete radiographic data
- Follow-up less than 2years were excluded from this study
- Of 173 patients, 15 patients with incomplete follow-up, incomplete radiographic data and 7 patients with inconclusive etiological diagnosis were also excluded.
- The remaining 151 patients formed the basis of the study.
- A detailed evaluation of clinical features-fever, back pain (Visual Analogue score), discharging sinus, swelling, deformity, neurological status (graded as per charting by Kumar and Tuli; ASIA scale (American Spinal Injury Association).
- A detailed history of TB or TB contact, cattle stocking, previous surgeries (within 3 years), and associated co-morbidities was taken
- Local spine, Systemic and per abdominal examination was done to rule out other focus and cold abscess.

All the patients were followed up for minimum two years. Postoperatively patients were immobilized in a polyethylene moulded body jacket with recumbency for 3 months. They were followed up at regular interval of 3 months, 6 months, 1 year 1/2years, 2 years and then at yearly intervals. At each follow up, the patients were evaluated as follows:

1. Clinical examination in terms of symptomatic improvement, general well-being and neurological status.
2. Hematological investigations involving liver function test and erythrocyte sedimentation rate.
3. Radiographs to determine the healing of the lesion (Sclerosis, bony fusion), deformity progression, implant failure if any and other complications. At 3 months follow up, the patients were mobilized.

Results

The mean (SD) number of involved vertebrae was 2.1 (0.8), significantly higher in TS (2.6 (1.2)) than in PS (2.1(0.8)) or BS (1.9 (0.5)) (p<0.05). Multilevel/multifocal involvement were involved in 16.1% patients of TS as compared to 5.7% of NTS.

Paravertebral signal abnormality was seen in 85.7/66.6/35.7% of TS /PS /BS respectively Epidural masses seen in 78.6/70.8/32.1% in TS /PS /BS respectively Psoas abscess was reported 25.2/23.5/10.7 of TS /PS /BS respectively, in our study Psoas abscess was seen in 25.2% of TS versus 19.2% of NTS (p>0.05) Lumbar spine was most commonly involved level seen in 6.6% patients Overall in 19.86%, evidence of disc involvement was present in one or more imaging. Significantly greater disc involvement was seen in NTS (34.6%) than TS (12.1%) Pedro Pons' sign, known as anterior superior end plate erosion, osteophyte formation (Parrot's peak appearance) is a characteristic radiologic finding of BS was seen in 6/28 (21.42%) of BS in our study, Biopsy (open or closed) was performed in all the patients in this study and definitive histopathological diagnosis was obtained.

Table 1: Radiological evaluation

Level	BS (%)	PS (%)	NTS (%)	TS (%)	P-Value		
Lesion type (padadiscal)	Lumbar (48)	Lumbar (41.6)	Lumbar (44.3)	Thoracic (41.4)	<0.05		
Extent	26(92.8)	16(66.6)	42(80.76)	SINGLE	10(10.1)	MULT(1.1)	<0.05
Paravertebral abscess	10(35.71)	16(66.6)	26(50)	83(85.7)	<0.05		
Prevertebral abscess	10(35.71)	17(70.8)	27(51.9)	84(83)	<0.05		
Epidural abscess	9(32.14)	17(70.8)	22(42.3)	76(78.6)	<0.05		
Psoas abscess	3(10.7)	7(23.5)	10(19.2)	25(25.2)	>0.05		
Abnormal disc signal	2(7.1)	16(66.6)	18(34.6)	12(12.1)	<0.05		

In 7.6% of NTS and 9.1% of TS, the tissue specimen was obtained by closed vertebral biopsy and in 80.7% of NTS and 90.9% of TS by open biopsy at the time of surgery.

The yield of culture of the biopsy specimen was 100% in PS and 21% In BS. AFB stain was positive in 32.1% and PCR was positive in 82.8% of TS.

119 (83.3%) patients were treated by anterior decompression, biopsy posterior spinal instrumentation and global fusion. 13(8.6%) patients were treated by debridement, abscess drainage +/-antibiotic bead application.

13.4% of NTS and 6.06% of TS were managed non-operatively. In patients who did not consent for surgery, in patients who were not surgically fit and those who did not have an indication for surgery were managed non-operatively.

Table 2: Diagnosis and Management

Diagnosis	BS (%)	PS (%)	NTS (%)	TS (%)
Blood Culture (Yeild)	9(32)	7(29.16)	16(30.7)	7(7.1)
Biopsy Culture/AFB For TS	6(21)	24(100)	30(57.6)	32(32.1)
Serology (Per, Bat)	28(100)	2(8.3)	30(57.6)	82(82.8)
Closed Vertebral Biopsy	3(12.5)	1(4.15)	4(7.6)	9(9.1)
Management				
Decompression, Stabilisation & Fusion	16(50)	19(70.6)	35(67.3)	84(84.9)
Debridement/Abscess Drainage	2(7.1)	5(29.4)	7(34.4)	12(12.1)
Non-Op Management	7(40)	2(8.3)	9(17.3)	7(7.1)
Patients of TS (91%) needed surgery more frequently than those with other etiologies.

Healing of the disease was assessed by clinical, hematological and radiological parameters at regular follow up.

Visual Analogue Scale (VAS) used to assess the pain relief at regular intervals showed good pain relief in 80.7% of NTS and 54.5% of TS patients at 3 months follow up.

Mean ESR was 55.24 at presentation, which was reduced to 45.53 with about 18% decline with 3 months of intensive drug therapy.

Though mean initial ESR was higher in NTS(61) group than TS (45.4), we have noted a rapid fall in mean ESR at 3 months in NTS(31.2) than in TS(34.5) (25% decline in NTS verses 18% decline in TS). Radiographs were evaluated at regular follow up.

The gold standard evidence for healing of the disease is sclerosis and bony fusion” of affected vertebral bodies. In our study sclerosis was noted around 3 months and interbody fusion was peaked in 82.69% of NTS and 59.9% of TS at around 9 months.
Table 3: Follow up clinical, laboratory and radiological parameters

Follow UP	NTS (%)	TS (%)	p-value
Clinical (VAS Score) 3 months	42/52 (80.70%)	54/99 (54.5%)	<0.05
Laboratory (ESR) 3 months	38/52 (73.07%)	47/99 (47.4%)	<0.05
Radiological (Interbody fusion) 9 months	43/52 (82.69%)	59/99 (59.59%)	<0.05

Also radiological healing lagged behind clinical and laboratory healing (ESR) in our study.

Discussion

The mean (SD) number of involved vertebrae was 2.1 (0.8), significantly higher in TS (2.6 (1.2)) than in PS (2.1 (0.8)) or BS (1.9 (0.5)) (p<0.05). The presence of paravertebral, epidural, psoas abscess was significantly more in TS than NTS. Incidence of multilevel noncontiguous vertebral tuberculosis is generally reported to be between 1.1-16% which is found to 10.1% of TS in our study.

Abscess formation has been reported in 7.1% patients with BS in the study by Gulnur Taşçi [3], much higher frequency of 35.7% was seen in our study. Psoas abscess was reported in 5.7%-9% of cases of BS in various series, seen in 10.7% patients of our study. We noted that, though lumbar spine involvement was seen more in NTS, presence of psoas abscess was frequently seen with TS, probably owing to its more destructive nature.

It has been reported in the literature that BS can be diagnosed without resorting to invasive diagnostic methods [6]. The sensitivity of blood culture in the diagnosis of brucellosis ranges between 17% - 85% and it decreases as the disease prolongs. In our study it was only 32%, which can be attributed to the fact that there were cases of chronic brucellosis and few patients received prior antibiotic therapy before presentation. Serological tests (BAT), may be negative in 1%–2% cases of brucellosis, however serology (SAT) was positive in all cases of BS in our study.

Yield of blood culture in PS was 29.16%, with Staphylococcus aureus being the most common causative organism of PS in our study which is consistent with all other studies. Spondylodiscitis is usually monomicrobial, but in our study it was polymicrobial in 8.1% of cases of PS.

Nestled PCR for Mycobacterium used in this study has a high sensitivity of 88.5%. AFB staining was positive in 21% patients and PCR in 82% in our study where as it was 12% and 98% respectively in study done by Jain et al. Since osteoarticular tb is paucibacillary, it is difficult to isolate the organism.

The etiology of spondylodiscitis is difficult to determine, and vertebral specimens obtained through percutaneous biopsy or a surgical procedure have been reported to help in determining the causative agent in 30-70% of the patients. All the patients had a histopathological evidence in our study. Tissue was obtained by closed vertebral biopsy in 11 patients, and rest open biopsy at the time of surgery [7].

Unsuspected malignancy in proven or presumed cases of spondylodiscitis and vice versa is not uncommon. This emphasizes the need for both histological and microbiological analyses of biopsy samples.

Surgical management was done in 11% of patients in study by Nisha Jose et al. [8]. In our study surgery was required in 84% of patients. As ours being a tertiary care centre, most patients referred here were with high grade spondylodiscitis and complications. TS needed surgery more frequently than those with other etiologies. An only conservative treatment was an option for a low-grade spondylodiscitis and in patients who did not consent for surgery and who were not surgically fit.

No significant differences in the treatment outcomes and function sequelae or relapses were seen between TS and NTS.
Complications like pleural tear, worsening of neurological deficits, secondary infections, implant loosening, drug induced complications, relapse, etc. were seen overall 16.55% with no significant difference between TS and NTS patients. Immediate post-op period was relatively uneventful in TS. The Gold standard evidence for healing of the disease is sclerosis and "bony fusion" of affected vertebral bodies. We noted that Radiological signs of healing lag behind clinical improvement, and abnormalities can persist post successful completion of treatment. Spondylodiscitis associated with an in-hospital mortality rate of about 5% in literature, and none reported in our study.

Lerner et al.[^9] found that the rate of recurrence has been reported as lying between 0% and 7%. We did not find any significant differences in the treatment outcomes and function sequelae or relapse rates between TS and NTS, though patients of NTS had faster recovery, shorter disease course and fewer complications[^10].

Conclusion

Immediate post-op period was uneventful in TS when compared to NTS. In patients hailing from Brucella endemic areas, Brucella spondylodiscitis must be proactively looked for, as it has a favorable prognosis.

References

1. Theodore Gouliouris, Sani H Aliyu, Nicholas M. Brown. Spondylodiscitis: update on diagnosis and management. J Antimicrob Chemother 2010;65(3):iii11-24
2. Tuli Sm. Tuberculosis of the Skeletal System (Bones, Joints, Spine, and Bursal Sheaths). Jaypee brother's medical publishers (p) ltd. 2010, 4th ed
3. Kulowski J. Pyogenic osteomyelitis of the spine: an analysis and discussion of 102 cases. J Bone Joint Surg Am 1936;18:343-64.
4. Colmenero JD, Jimenez-Mejias ME, Sanchez-Lora FJ et al. Pyogenic, tuberculous, and brucellar vertebral osteomyelitis: a descriptive and comparative study of 219 cases. Ann Rheum Dis 1997;56:709-15
5. Garron E, Viehweger E, Launay F et al. Nontuberculous spondylodiscitis in children. J Pediatr Orthop 2002;22:321-8.
6. Mylona E, Samarkos M, Kakalou E et al. Pyogenic vertebral osteomyelitis: a systematic review of clinical characteristics. Semin Arthritis Rheum 2009;39:10-7
7. Hadjipavlou AG, Mader JT, Necessary JT et al. Haematogenous pyogenic spinal infections and their surgical management. Spine (Phila Pa 1976) 2000;25:1668-79.
8. Nisha Jose, Ravikar Ralph et al. Infective spondylodiscitis –an Indian perspective. IJAR 2016;6:8.
9. Thomas Lerner et al. Anterior column reconstruction using titanium ring cages in severe vertebral osteomyelitis. European journal of Trauma June 2006;32(3):227-237.
10. Frangen TM et al. Surgical management of spondylodiscitis. An analysis of 78 cases. Unfallchirurg. 2006;109(9):743-53.