Introduction

An intricately and precisely wired neural network consisting of billions of neurons is essential for proper functioning of the nervous system. The process of establishing functional neural networks is called neuronal development. There are several phases of neuronal development, including neurogenesis, neuronal migration, neurite genesis and growth, and synaptogenesis. During development, neurons must undergo extensive morphological changes. For example, in the cerebral cortex, neurons just after birth, i.e., those generated by the asymmetric division of radial glial cells, take on a multipolar morphology, and subsequently, these cells convert into a bipolar morphology (with both leading and trailing processes) (Fig. 1). These neurons then start migration, for which the coordinated movement of both processes and the soma is required. After reaching the destination, the leading process differentiates into branched dendrites, and the trailing process develops into a long axon. To achieve such significant changes in cell shape, cytoskeletal dynamics must be appropriately regulated.

Eukaryotic cells contain three main types of cytoskeletal filaments. Of these, microfilaments (or actin filaments) and microtubules have been extensively studied in neuronal cells. Globular actin polymerizes to form actin filaments. This linear filament has structural polarity: the filament grows at the plus end (or barbed end) and shrinks at the minus end (or pointed end). Microtubules consist of α- and β-tubulin heterodimers and are also structurally polarized filaments: the growth rate is significantly more rapid at the plus end than the minus end. A tubulin polymer is easily disrupted at the minus end without minus end capping proteins such as the γ-tubulin ring complex. Actin filaments and microtubules function as "skeletons" for the cell, which establish and maintain cell shape. Furthermore, these cytoskeletons, in concert with associated proteins, play crucial roles in dynamic cellular events including cell division, cell motility, and organelle movement. Defects in genes encoding proteins required for the cytoskeleton can cause severe brain malformations such as lissencephaly and a double cortex, clearly demonstrating that cytoskeletal regulation is of great importance in neuronal development.

This review summarizes crucial roles of cytoskeletons and their associated proteins in each phase of neuronal development, including neurogenesis, neuronal migration, neurite genesis and growth, and synaptogenesis.

Neurogenesis

Neurons and macro glial cells in the central nervous system are derived from ectoderm, and more specifically, from neuroepithelial cells in the neural tube. At the onset of neurogenesis, neuroepithelial cells differentiate into radial glial cells in the cerebral cortex. Asymmetric division of radial glial cells produces two daughter cells, one of which retains the identity of the mother cell and the other develops into a neuron (Fig. 1).

Defects in proteins that regulate mitosis and cytokinesis...
result in brain disorders such as lissencephaly and microcephaly probably because of a decreased number of neuroepithelial cells and thus of neurons and glial cells\(^2,4\). Mutations in ASPM cause microcephaly, because ASPM is involved in microtubule organization during spindle formation and cytokinesis\(^8\). Other proteins regulating spindle formation are also implicated in microcephaly\(^24\). Abnormal spindle-like microcephaly-associated (ASPM) protein is enriched at the poles of mitotic spindles and localizes to the minus ends of central spindle microtubules\(^9\). Mutations in ASPM cause microcephaly, because ASPM is involved in microtubule organization during spindle formation and cytokinesis\(^8\). Other proteins regulating spindle formation are also implicated in microcephaly\(^24\).

Recently, we identified a novel mitotic spindle protein, radmis\(^9\). This novel protein contributes to mitotic spindle formation via regulating microtubule stability. Gain-of-function mutation of radmis results in shrinkage of the embryonic subventricular zone by inhibiting proliferation of neuronal precursor cells. This inhibition is because of hyperstabilization of microtubules that causes mitotic arrest. Conversely, loss-of-function mutation of radmis disturbs proliferation of neuronal precursor cells \textit{in vivo}, most likely by decreasing microtubule stability leading to abnormal multipolar spindles. These observations clearly demonstrate the necessity of a strictly regulated level of radmis in early neuronal development.

At the stage of cytokinesis, actin and myosin accumulate at the cell division plane called the cleavage furrow. The contraction force generated by actin and myosin is essential for splitting the membrane and thus for completing cell division. One example demonstrating the importance of myosin in neurogenesis comes from mice lacking citron kinase, a Rho-dependent kinase that regulates myosin activity\(^6,11\). Citron kinase knock out mice show ataxia and epilepsy. Their brain shows specific loss of neuronal populations including hippocampal and cerebellar granule cells\(^17\). Many other actin- and myosin-associating proteins including small GTPases are also implicated in cell division\(^25\), indicating the importance of proper regulation of actin filaments for neurogenesis.

Neuronal Migration

Neuroepithelial cells and radial glial cells exhibit polarity, with distinctive apical and basal processes. Most of the pyramidal neurons in the cerebral cortex are derived from intermediate progenitor cells generated by the asymmetric division of radial glial cells\(^13,14\). These intermediate progenitor cells have to delaminate from the ventricular zone for basal migration and differentiation. A recent study using a chicken and mouse neural tube as a model system showed that actomyosin-dependent contractility mediates apical abscission and delamination\(^15\), resulting in brain malformation if the intermediate progenitors fail to delaminate\(^16\). Differentiated neurons in the cerebral cortex first take on a multipolar morphology and then a bipolar morphology, with both leading and trailing processes. After establishing a bipolar morphology, neurons start their migration toward their destination either dependent or independent upon basal processes of the radial glial cells\(^17,18\).

Neuronal migration consists of several phases: neurons extend the leading process; cytoplasmic dilation (or swelling) is formed at the poles of mitotic spindles and localizes to the apex of the leading process; the nucleus migrates toward the cytoplasmic dilation; and finally the cell soma moves forward (Fig. 2A). Coordinated cytoskeletal reorganization is necessary in all phases. For example, filamin A, an actin cross-linking protein, and LIS1 are implicated in formation of the leading process\(^10,20\). DCX (XLIS) and p21\(^6\) are required for dilation formation\(^21\), indicative of its dependence upon both actin filaments and microtubules. In addition, nucleokinesis and soma movement rely on actin filaments and microtubules and their associated motors. The centrosome is often positioned ahead of the nucleus\(^22\). Microtubules expanded out from the centrosome direct their plus ends toward the cell rear encompassing the nucleus (Fig. 2B). This microtubule "cage" holds the nucleus and dynein motors are assumed to function as a force generator for nucleokinesis\(^22\). However, several studies have reported that the centrosome can position at the rear of the nucleus, suggesting a mixed orientation of microtubules surrounding the nucleus\(^23,24\). In this case, nucleokinesis should be powered by protein motors other than dynein, with the actomyosin system as the likely candidate. High myosin activity is observed at three different locations in...
migrating neurons: the distal and proximal parts of the leading process, and the trailing process26-28. While contraction centers at the leading process pulling the nucleus, the trailing process is assumed to push the nucleus. A recent study using traction force microscopy revealed a temporal correlation between these contraction activities and soma translocation29. This study also reported that myosin-dependent contractility needs microtubules, demonstrating the importance of the coordinated regulation of two cytoskeletal elements in neuronal migration.

Polarization

In general, a single long axon and several branched dendrites emerge from one neuron. These morphological differences may be because of microtubule organization; axonal microtubules are uniformly plus end distal, whereas those in dendrites exhibit a mixed orientation. Axons function as output devices sending information to the target cell. Dendrites receive and process the information, determining whether the neuron generates an action potential or not. Establishing these morphologically and functionally distinct neurites is called neuronal polarization. Till date, numerous studies have been conducted to understand the mechanisms of polarization, with many of those utilizing a dissociated hippocampal neuron culture as a model system. Morphogenesis of hippocampal neurons \textit{in vitro} is divided into five stages (Fig. 3): neurons form several thin filopodia (stage 1), neurons form several immature neurites, so-called minor processes (stage 2), one long neurite (future axon) and several minor processes (stage 3), rapid growth of axon and several dendrites (stage 4), neurons differentiate as a branched axon and dendrites with premature spines (stage 5). According to this classification, axon formation occurring at stage 3 is the initial event of polarization. Regulating cytoskeletal dynamics at the tip of the neurite seems to be important for axon specification. There is a highly motile structure called the growth cone at the tip of a developing neurite. The growth cone is subdivided into two domains, the central (C)- and peripheral (P)-domains, and the boundary is called the transition (T)-zone. The C-domain contains microtubules, and the P-domain is enriched in actin filaments that form both a meshwork in veil-like lamellipodia and bundles in finger-like filopodia (Fig. 4). In growth cones, cytoskeletal components, actin filaments and microtubules, are highly dynamic. Myosin motor-dependent actin retrograde flow in both filopodia and lamellipodia30 is continual, and supported by treadmill-ing, i.e., cycles of net assembly of actin filaments at the leading edge, followed by retrograde movement of actin filament networks and then disassembly of actin filaments proximally31. While many microtubules reside within the C-domain, some of them occasionally extend into the P-domain. Microtubules which advance into the P-domain are controlled by the balance of several different factors: polymerization, depolymerization, and motor proteins at the T-zone pushing microtubules antero- or retrogradely. Cytoplasmic dynein pushes microtubules toward the leading edge, supporting distal translocation32, whereas myosin motors push back microtubules toward the C-domain because microtubules associate with actin filaments33.

Studies utilizing drug-induced localized changes affecting the dynamics of actin filaments and microtubules in growth cones revealed that appropriate regulation of those cytoskeletons are of great importance in axon for-
Local application of cytochalasin D, an actin-depolymerizing drug, to the growth cone of a neurite causes the neurite to develop into an axon. Microtubule stabilization in a growth cone induced by uncaging of caged taxol is sufficient for axon formation. Rac1, Cdc42, and RhoA are well-studied members of the Rho family of small GTPases. Rac1 activation likely causes axon formation by facilitating actin remodeling in growth cones in a manner dependent on WAVE complex and Arp2/3. Hippocampal neurons from Cdc42 knock out mice can sprout neurites but exhibit severe defects in axon formation, whereas coflin, an actin-depolymerizing protein, is probably involved in Cdc42-dependent axon formation. Based on the following findings, a positive feedback loop between Rac1 and Cdc42 is proposed for axon specification: Rac1 can bind to and activate phosphatidylinositol 3-kinase (PI3K); PI3K activates Cdc42 via its product phosphatidylinositol-3,4,5-trisphosphate; whereas, Cdc42 activates Rac GEFs. Inhibition of Rho-kinase, a downstream effector of RhoA, results in the formation of multiple axons. Because expression of either constitutively active or dominant negative forms of these Rho GTPases causes defects in polarization, the balance of activity is essential.

Several lines of evidence indicate a crucial role of glycogen synthase kinase (GSK) 3β, a kinase regulating sev-
Neurite growth

Following migration, neurons extend axons and dendrites. To establish functional connections to target cells, axons not only elongate but also navigate toward the defined target, a process known as axon guidance. Also, dendrites must elongate and arborize to allow thousands of axon terminals to synapse onto dendrites of a single neuron.

Axon growth and guidance

Forward migration of the growth cone is essential for axon elongation, and a growth cone migration model has been proposed based on findings mainly from in vitro studies. The main engine for migration is the myosin motor: once adhesion molecules expressed on the plasma membrane associate with actin filaments via the molecular clutch, actin filament networks are coupled to the extracellular environment. This association transmits the myosin-generated retrograde force into a driving force for growth cone forward migration. For continuous migration, actin filament treadmilling, microtubule polymerization, the attach-and-detach cycle, and plasma membrane expansion by insertion of intracellular vesicles should be appropriately organized. There are several types of molecular clutch that specifically contribute to the association of actin filaments to certain types of adhesion molecules. In integrin-dependent adhesion, the molecular complex, called “focal contact” or “focal adhesion”, works as a clutch that is composed of many proteins including focal adhesion kinase, src kinase, paxillin, and vinculin. For L1 or N-cadherin, shotolin-I or catenin, respectively, are reported to be involved in the clutch in growth cones. Consistent with this model, perturbation of the above-mentioned molecules hinders axon growth. In addition, this model of growth cone migration leads to the hypothesis that spatially asymmetric changes in cytoskeletal and/or adhesion dynamics cause turning of the growth cone. In fact, pharmacological perturbation of actin filaments or microtubule dynamics on one side of the growth cone elicits its turning. An artificially-generated extracellular gradient of cytochalasin B, an inhibitor of actin filament polymerization, or of ML-7, a myosin motor inhibitor, elicits repulsive turning; whereas a gradient of taxol, an MT stabilizer, or of nocodazole, an MT destabilizer, induces attraction or repulsion, respectively. Furthermore, local disruption of focal complex makes the growth cone turn toward the opposite side. Taken collectively, these findings demonstrate that regulating the dynamics of cytoskeletal and cytoskeleton-extracellular environment coupling is of great importance in the navigation of a growth cone.

Our recent findings proposed a novel interaction between microtubules and actin filaments (Akiyama and Kamiguchi, unpublished observation). We found that con-
tact of an extending microtubule with the leading edge of growth cones induces localized membrane protrusion at the site of microtubule contact, suggesting microtubule-dependent activation of a growing actin filament network. We further revealed that such contact-induced protrusion requires delivery of intracellular membranous vesicles that have been centrifugally transported along the microtubule. Therefore, these vesicles are assumed to contain molecules that promote actin filament growth, such as small GTPases. Because Rac1 and Cdc42 have prenylation sequences, they can associate with vesicles after being modified. Upon delivery of a vesicle to the leading edge, these GTPases can locally facilitate actin filament polymerization, which would result in membrane protrusion. Axon growth slows when delivery of intracellular vesicles is inhibited, supporting the importance of membrane trafficking in elongation. Moreover, asymmetric facilitation or inhibition of microtubule-induced lamellipodial protrusion across the growth cone is sufficient for inducing attractive or repulsive turning, respectively (Akiyama and Kamiguchi, unpublished observation).

Growth cones in vivo must sense and respond to environmental guidance cues to follow a correct path toward a particular destination. Numerous studies have demonstrated that guidance cues modulate cytoskeletal dynamics in growth cones, and aberrant regulation causes misguidance in many brain and spinal regions. For example, netrin-1, which attracts axons by activating its receptor deleted in colorectal cancer, requires several actin-regulating molecules including Rac1, Cdc42, and N-WASP. Also, the regulation of microtubule dynamics is involved in signaling pathway mediating growth cone attraction. Similar to attractive guidance cues, repulsive cues regulate cytoskeletal dynamics. Slit, involved in commissural axon guidance, decreases actin filaments in growth cones, likely in a cofilin-dependent manner, causing repulsion and collapse of the growth cone. Activation of plexin receptors by binding of Sema3A results in depolymerization of the actin filament and microtubule in a manner dependent on myosin motors, RhoA, and CRMP2. Collectively, these findings indicate the critical importance of cytoskeletal regulation in cue-induced growth cone navigation.

Dendrite growth and arborization

Dendrites extending from the soma must arborize to fill up the target field. Therefore, branching occurs not once, but several times. Dendrite branching occurs primarily by interstitial branching, whereby branches emerge from the side of existing dendrite shafts. Such side branches initially appear as filopodia, and then develop into growth cone-like structures which extend to develop into stable branches. Similar to axon elongation, small GTPases are implicated in dendrite development. Less-branched dendrites were observed in neurons expressing either inactive Rac or constitutively active Rho. Hyperactivation of Cdc42, because of a mutation in a GAP for Cdc42, shortened dendrites of cortical neurons. Knock down of Tiam1, a GEF for Rac1, resulted in aberrant dendritic arborization. These results demonstrate that the balanced activity of Rac1, Cdc42, and RhoA is essential for proper development of dendrites.

To develop into stable branches, actin-based protrusions are assumed to be supported by microtubules after formation. A result consistent with this idea is from a study using Drosophila: centrosomin suppresses dendritic arborization by inhibiting microtubule innervation into nascent branches. A knock out of microtubule-actin crosslinking factor 1 decreased dendritic branching, further supporting the notion that both actin filaments and microtubules are essential for stable branch formation. Microtubule motor functions are also implicated in dendrite development. Neurons derived from LIS1 mutant mice demonstrated less branched dendrites. Besides dynein, kinesin motors may also contribute to branch formation via the transportation of molecules mediating dendritic growth. Dependence on both plus- and minus-end directed motors may be explained by the mixed orientation of microtubules in dendrites.

As in the case of axon guidance, extracellular cues control the direction of dendrite elongation, although their effects on dendrites are not always the same as that on axons. Sema3A, a repellent for axons, attracts dendrites of cortical neurons, and also facilitates branch formation. Dendritic growth mediated by Sema3A is likely to include Rac1-dependent regulation of actin filaments. Abnormal orientation of dendrites in neurons lacking GSK3 suggests that microtubule-regulating proteins such as CRMP2 are also involved in dendrite development.

Dendrites stop growing upon contact with dendritic branches, which have emerged from the same neuron or from neighboring neurons, allowing dendrites to spread non-redundantly. This dendritic “tiling” is mediated through a contact-dependent inhibition mechanism, sometimes accompanying retraction of either branch. Contact-induced branch retraction requires protein kinase D activity, suggesting the involvement of actin-regulating molecules such as cofilin and cortactin.

Synaptogenesis

A typical chemical synapse consists of a presynaptic terminal, postsynaptic structure such as a dendritic spine, and an astrocyte process surrounding the synaptic cleft. Although numerous papers have demonstrated crucial roles of astrocytes in synaptic development and function, here, we only examine the neuronal structure. Filopodia emerging from axons develop into presynaptic boutons which contain particular synaptic proteins (Fig. 5). On the other hand, dendritic filopodia are precursors of postsynaptic spines. Upon contact with
Molecules that regulate these events are thus required for filopodia formation. Formins and Arp2/3 are responsible for nucleation, although the precise mechanisms by which these nucleators provide actin seeds for bundles supporting filopodia remain controversial111-113. Anti-capping proteins such as Ena/VASP promote filament elongation by shielding the polymerizing barbed ends from capping proteins; and Ena/VASP loss-of-function interferes with filopodia formation114-116. Eps8 is another class of protein that exhibits barbed end-binding ability. In primary hippocampal neurons, genetic removal of Eps8 increases the formation of axonal and dendritic filopodia117, as expected from its capping activity. The polymerized long actin filaments are stabilized by bundling proteins such as fascin, and thus able to support filopodia118. The axonal filopodia contain fascin, whereas the dendritic filopodia do not119, which might explain why more branched actin filaments are observed in dendritic filopodia. Drebrin is probably responsible for actin bundling in dendritic filopodia120, and thereby plays a crucial role in spine morphogenesis121. Although filopodia are indispensable structures for synaptogenesis, filopodial motility seems to inversely correlate with axo-dendritic contact formation106, suggesting the importance of balanced control of actin filament dynamics; indeed, higher stability would favor contact formation rather than filopodia initiation.

After contact formation between two filopodia from an axon and a dendrite, particular proteins should be transported toward and accumulated at the nascent contact so that the contact develops into a mature synapse. Because synaptic proteins are translated at the soma, microtubule-dependent long distance transport is necessary122,123. Mice lacking either KIF1A or KIF1B exhibit a reduced number of presynaptic terminals and a reduced density of synaptic vesicles at the terminals124,125. Transport of SNARE proteins, SNAP25 and syntaxin-1, which mediate exocytosis of synaptic vesicles, depends on KIF5 motors. SNAP25 can directly bind to KIF5, whereas syntaxin-1 needs an adaptor protein, syntabulin for its binding126,127. KIF5 also contributes to the transport of postsynaptic proteins. Overexpression of dominant negative KIF5, that lacks the motor domain, reduced the density of GluA2 at synapses, suggesting the necessity of KIF5 for AMPA receptor function128. Unlike KIF5, which is expressed in both axons and dendrites, KIF17 is relatively enriched in dendrites and regulates synaptic targeting of GluN2B, an NMDA receptor subunit129. Collectively, these findings demonstrate that microtubule-associated motors are indispensable for transport of both pre- and post-synaptic proteins, and thus for synapse maturation.

In addition, it has been reported that actin-based motors are also involved in synaptic cargo transport122,123. Actin depolymerizing drugs inhibit the accumulation of synaptic vesicles and other presynaptic components130. Consistent with this observation, myosin V was found to associate with synaptic vesicles, and co-immunoprecipitated with a presynaptic bouton, dendritic filopodia convert into spines105-106. This association critically relies on adhesive molecules. For example, heterophilic adhesion between neurexin at the presynapse and neuroligin at the postsynapse stimulates synapse formation107. In addition, homophilic adhesion through cadherins mediates spinogenesis in developmental and postnatal neurons108. Knock down of β-catenin prevents morphological changes of the spine, demonstrating the involvement of actin filaments in cadherin-dependent spinogenesis. Defects in these adhesive molecules result in neuropsychiatric disorders including autism and schizophrenia, most likely because of aberrant synapse formation109,110.

The first step of synaptogenesis is the formation of filopodia from both axons and dendrites. A filopodium is supported by bundled actin filaments with the rapidly polymerizing barbed ends pointed toward the tip of the filopodium. To form a filopodium, actin nucleation, filament elongation, and filament bundling are all necessary. Molecules that regulate these events are thus required for filopodia formation. Formins and Arp2/3 are responsible for nucleation, although the precise mechanisms by which these nucleators provide actin seeds for bundles supporting filopodia remain controversial111-113. Anti-capping proteins such as Ena/VASP promote filament elongation by shielding the polymerizing barbed ends from capping proteins; and Ena/VASP loss-of-function interferes with filopodia formation114-116. Eps8 is another class of protein that exhibits barbed end-binding ability. In primary hippocampal neurons, genetic removal of Eps8 increases the formation of axonal and dendritic filopodia117, as expected from its capping activity. The polymerized long actin filaments are stabilized by bundling proteins such as fascin, and thus able to support filopodia118. The axonal filopodia contain fascin, whereas the dendritic filopodia do not119, which might explain why more branched actin filaments are observed in dendritic filopodia. Drebrin is probably responsible for actin bundling in dendritic filopodia120, and thereby plays a crucial role in spine morphogenesis121. Although filopodia are indispensable structures for synaptogenesis, filopodial motility seems to inversely correlate with axo-dendritic contact formation106, suggesting the importance of balanced control of actin filament dynamics; indeed, higher stability would favor contact formation rather than filopodia initiation.

After contact formation between two filopodia from an axon and a dendrite, particular proteins should be transported toward and accumulated at the nascent contact so that the contact develops into a mature synapse. Because synaptic proteins are translated at the soma, microtubule-dependent long distance transport is necessary122,123. Mice lacking either KIF1A or KIF1B exhibit a reduced number of presynaptic terminals and a reduced density of synaptic vesicles at the terminals124,125. Transport of SNARE proteins, SNAP25 and syntaxin-1, which mediate exocytosis of synaptic vesicles, depends on KIF5 motors. SNAP25 can directly bind to KIF5, whereas syntaxin-1 needs an adaptor protein, syntabulin for its binding126,127. KIF5 also contributes to the transport of postsynaptic proteins. Overexpression of dominant negative KIF5, that lacks the motor domain, reduced the density of GluA2 at synapses, suggesting the necessity of KIF5 for AMPA receptor function128. Unlike KIF5, which is expressed in both axons and dendrites, KIF17 is relatively enriched in dendrites and regulates synaptic targeting of GluN2B, an NMDA receptor subunit129. Collectively, these findings demonstrate that microtubule-associated motors are indispensable for transport of both pre- and post-synaptic proteins, and thus for synapse maturation.

In addition, it has been reported that actin-based motors are also involved in synaptic cargo transport122,123. Actin depolymerizing drugs inhibit the accumulation of synaptic vesicles and other presynaptic components130. Consistent with this observation, myosin V was found to associate with synaptic vesicles, and co-immunoprecipitated with a presynaptic bouton, dendritic filopodia convert into spines105-106. This association critically relies on adhesive molecules. For example, heterophilic adhesion between neurexin at the presynapse and neuroligin at the postsynapse stimulates synapse formation107. In addition, homophilic adhesion through cadherins mediates spinogenesis in developmental and postnatal neurons108. Knock down of β-catenin prevents morphological changes of the spine, demonstrating the involvement of actin filaments in cadherin-dependent spinogenesis. Defects in these adhesive molecules result in neuropsychiatric disorders including autism and schizophrenia, most likely because of aberrant synapse formation109,110.

The first step of synaptogenesis is the formation of filopodia from both axons and dendrites. A filopodium is supported by bundled actin filaments with the rapidly polymerizing barbed ends pointed toward the tip of the filopodium. To form a filopodium, actin nucleation, filament elongation, and filament bundling are all necessary. Molecules that regulate these events are thus required for filopodia formation. Formins and Arp2/3 are responsible for nucleation, although the precise mechanisms by which these nucleators provide actin seeds for bundles supporting filopodia remain controversial111-113. Anti-capping proteins such as Ena/VASP promote filament elongation by shielding the polymerizing barbed ends from capping proteins; and Ena/VASP loss-of-function interferes with filopodia formation114-116. Eps8 is another class of protein that exhibits barbed end-binding ability. In primary hippocampal neurons, genetic removal of Eps8 increases the formation of axonal and dendritic filopodia117, as expected from its capping activity. The polymerized long actin filaments are stabilized by bundling proteins such as fascin, and thus able to support filopodia118. The axonal filopodia contain fascin, whereas the dendritic filopodia do not119, which might explain why more branched actin filaments are observed in dendritic filopodia. Drebrin is probably responsible for actin bundling in dendritic filopodia120, and thereby plays a crucial role in spine morphogenesis121. Although filopodia are indispensable structures for synaptogenesis, filopodial motility seems to inversely correlate with axo-dendritic contact formation106, suggesting the importance of balanced control of actin filament dynamics; indeed, higher stability would favor contact formation rather than filopodia initiation.

After contact formation between two filopodia from an axon and a dendrite, particular proteins should be transported toward and accumulated at the nascent contact so that the contact develops into a mature synapse. Because synaptic proteins are translated at the soma, microtubule-dependent long distance transport is necessary122,123. Mice lacking either KIF1A or KIF1B exhibit a reduced number of presynaptic terminals and a reduced density of synaptic vesicles at the terminals124,125. Transport of SNARE proteins, SNAP25 and syntaxin-1, which mediate exocytosis of synaptic vesicles, depends on KIF5 motors. SNAP25 can directly bind to KIF5, whereas syntaxin-1 needs an adaptor protein, syntabulin for its binding126,127. KIF5 also contributes to the transport of postsynaptic proteins. Overexpression of dominant negative KIF5, that lacks the motor domain, reduced the density of GluA2 at synapses, suggesting the necessity of KIF5 for AMPA receptor function128. Unlike KIF5, which is expressed in both axons and dendrites, KIF17 is relatively enriched in dendrites and regulates synaptic targeting of GluN2B, an NMDA receptor subunit129. Collectively, these findings demonstrate that microtubule-associated motors are indispensable for transport of both pre- and post-synaptic proteins, and thus for synapse maturation.

In addition, it has been reported that actin-based motors are also involved in synaptic cargo transport122,123. Actin depolymerizing drugs inhibit the accumulation of synaptic vesicles and other presynaptic components130. Consistent with this observation, myosin V was found to associate with synaptic vesicles, and co-immunoprecipitated with a presynaptic bouton, dendritic filopodia convert into spines105-106. This association critically relies on adhesive molecules. For example, heterophilic adhesion between neurexin at the presynapse and neuroligin at the postsynapse stimulates synapse formation107. In addition, homophilic adhesion through cadherins mediates spinogenesis in developmental and postnatal neurons108. Knock down of β-catenin prevents morphological changes of the spine, demonstrating the involvement of actin filaments in cadherin-dependent spinogenesis. Defects in these adhesive molecules result in neuropsychiatric disorders including autism and schizophrenia, most likely because of aberrant synapse formation109,110.

The first step of synaptogenesis is the formation of filopodia from both axons and dendrites. A filopodium is supported by bundled actin filaments with the rapidly polymerizing barbed ends pointed toward the tip of the filopodium. To form a filopodium, actin nucleation, filament elongation, and filament bundling are all necessary.
the synaptic vesicle proteins synaptobrevin-2 and synaptophysin. Furthermore, the inhibition of myosin ATPase activity reduced neurotransmitter release\(^{131,132}\). More direct evidence indicating the involvement of myosin motors in synaptic cargo trafficking comes from a study conducted on hippocampal neurons in culture\(^{133}\). Overexpression of motor-domain lacking myosin Va significantly impairs the movement of large dense core vesicles in both dendrites and axons of cultured hippocampal neurons. Myosin V is also implicated in the post-synaptic trafficking of receptors for neurotransmitters, which may have a role in the maintenance and plastic changes of functional synapses\(^{122}\). Because myosin V can directly interact with a kinesin motor to form a hetero-motor complex\(^{134}\), the dual motor complex may facilitate the coordination of long-range transport along microtubules and short-range movement on actin filaments.

Concluding remarks

A large number of studies have revealed crucial roles of cytoskeletons and their associated proteins in all phases of neuronal development. Cytoskeletal reorganization is essential for both the morphological changes of developing neurons and for accurately coordinating motility among subregions in a single neuron that is required for migration, polarization, and subsequent neurite growth. Furthermore, cytoskeletons act as tracks, supporting appropriate delivery of particular molecules to defined sites. Defects in any of these functions can result in brain malformations and neuropsychiatric diseases. Although numerous molecules have been shown to be involved in signaling cascades that mediate neuronal development, much of this knowledge is provided by studies in vitro or ex vivo. Recent advances in live cell imaging techniques have allowed us to measure molecular activities of cells in vivo. Findings from studies employing these new techniques will provide a more complete picture of neuronal development, thus contributing to a better understanding of pathogenesis of brain diseases and also the development of new therapeutic approaches.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Acknowledgments

Authors’ works were supported by Grant-in-Aid for Young Scientists (B) 23700456 and 26830053 (H.A.), Scientific Research (C) 17590173 and 20590196 (S.S.), and Waseda University Grant for Special Research Projects (H.A. and S.S.). Also, the authors would like to thank Enago (www.enago.jp) for the English language review.

References

1. Kuijpers M and Hoogenraad CC. 2011. Centrosomes, microtubules and neuronal development. *Mol Cell Neurosci* 48: 349-358.
2. Paridaen JT and Huttner WB. 2014. Neurogenesis during development of the vertebrate central nervous system. *EMBO Rep* 15: 351-364.
3. Reiner O and Sapir T. 2013. LIS1 functions in normal development and disease. *Curr Opin Neurobiol* 23: 951-956.
4. Gilmore EC and Walsh CA. 2013. Genetic causes of microcephaly and lessons for neuronal development. *Wiley Interdiscip Rev Dev Biol* 2: 461-478.
5. Yingling J, Youn YH, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S and Wynshaw-Boris A. 2008. Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. *Cell* 132: 474-486.
6. Xie Y, Juschke C, Esk C, Hirotsune S and Knoblich JA. 2013. The phosphatase PP4c controls spindle orientation to maintain proliferative symmetric divisions in the developing neocortex. *Neuron* 79: 254-265.
7. Wakefield JG, Bonaccorsi S and Gatti M. 2001. The drosophila protein asp is involved in microtubule organization during spindle formation and cytokinesis. *J Cell Biol* 153: 637-648.
8. Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, Springell K, Mahadevan M, Crow YJ, Markham AF, Walsh CA and Woods CG. 2002. ASPM is a major determinant of cerebral cortical size. *Nat Genet* 32: 316-320.
9. Yumoto T, Nakadate K, Nakamura Y, Sugitani Y, Sugitani-Yoshida R, Ueda S and Sakakibara S. 2013. Radmis, a novel mitotic spindle protein that functions in cell division of neural progenitors. *PLoS One* 8: e79895.
10. Yamashiro S, Totsukawa G, Yamakita Y, Sasaki Y, Madule P, Ishizaki T, Narumiya S and Matsumura F. 2003. Citron kinase, a Rho-dependent kinase, induces di-phosphorylation of regulatory light chain of myosin II. *Mol Cell Biol* 14: 1745-1756.
11. Di Cunto F, Ibarrios S, Hirsch E, Broccoli V, Bufone A, Migheli A, Atzori C, Turco E, Triolo R, Dotto GP, Silengo L and Altamura F. 2000. Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. *Neuron* 28: 115-127.
12. Mierzwia B and Gerlich DW. 2014. Cytokinetic abscission: molecular mechanisms and temporal control. *Dev Cell* 31: 525-538.
13. Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T and Ogawa M. 2004. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. *Development* 131: 3133-3145.
14. Noctor SC, Flint AC, Weissman TA, Dammerman RS and Kriegstein AR. 2001. Neurons derived from radial glial cells establish radial units in neocortex. *Nature* 409: 714-720.
15. Das RM and Storey KG. 2014. Apical abscission alters cell polarity and dismantles the primary cilium during neurogenesis. *Science* 343: 200-204.
16. Sun T and Hevner RF. 2014. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. *Nat Rev Neurosci* 15: 217-232.
17. Nadarajah B. 2003. Radial glia and somal translocation of radial neurons in the developing cerebral cortex. *Glia* 43: 33-36.
18) Kawauchi T. 2015. Cellular insights into cerebral cortical development: focusing on the locomotion mode of neuronal migration. *Front Cell Neurosci* 9: 394.

19) Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD, Ledbetter DH, Mc Bain CJ and Wynshaw-Boris A. 1998. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. *Nat Genet* 19: 333-339.

20) Nagano T, Morikubo S and Sato M. 2004. Filamin A and GLI2 determine the site of axonogenesis in migrating neurons. *Proc Natl Acad Sci USA* 101: 3769-3774.

21) Nishimura YV, Shikanai M, Hoshino M, Ohshima T, Nabe shima Y, Mizutani K, Nagata G, Nakajima K and Kawauchi T. 2014. Cdk5 and its substrates, Dcx and p27kip1, regulate cytoplasmic dilation formation and nuclear elongation in migrating neurons. *Development* 141: 3540-3550.

22) Tsai LH and Gleeson JG. 2005. Nucleokinesis in neuronal migration. *Neuron* 46: 383-388.

23) Umeshima H, Hirano T and Kangaku M. 2007. Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. *Proc Natl Acad Sci USA* 104: 16182-16187.

24) Distel M, Hocking JC, Volkmann K and Koster RW. 2010. The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. *J Cell Biol* 191: 875-890.

25) Sakakibara A, Sato T, Ando R, Noguchi N, Masaoka M and Miyata T. 2014. Dynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization. *Cereb Cortex* 24: 1301-1310.

26) Solecki DJ, Trivedi N, Govek EE, Kerekes RA, Gleason SS and Hatten ME. 2009. Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. *Neuron* 63: 63-80.

27) He M, Zhang ZH, Guan CB, Xia D and Yuan XB. 2010. Leading tip drives soma translocation via forward F-actin flow during neuronal migration. *J Neurosci* 30: 10885-10898.

28) Martini FJ and Valdeolmillos M. 2010. Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons. *J Neurosci* 30: 8660-8670.

29) Jiang J, Zhang ZH, Yuan XB and Poo MM. 2015. Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons. *J Cell Biol* 209: 759-774.

30) Lin CH and Forscher P. 1995. Growth cone advance is inversely proportional to retrograde F-actin flow. *Neuron* 14: 763-771.

31) Forscher P and Smith SJ. 1988. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. *J Cell Biol* 107: 1505-1516.

32) Myers KA, Tint I, Nadar CV, He Y, Black MM and Baas PW. 2006. Antagonistic forces generated by cytoplasmic dynamin and myosin-II during growth cone turning and axonal retraction. *Traffic* 7: 1333-1351.

33) Schaefer AW, Kabir N and Forscher P. 2002. Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. *J Cell Biol* 158: 139-152.

34) Bradke F and Dotti CG. 1999. The role of local actin instability in axon formation. *Science* 283: 1931-1934.

35) Witte H, Neukirchen D and Bradke F. 2008. Microtubule stabilization specifies initial neuronal polarization. *J Cell Biol* 180: 619-632.

36) Tahirovic S, Hellal F, Neukirchen D, Hindges R, Garvalov BK, Flynn KC, Stradal TE, Chrostek-Grashoff A, Brakebusch C and Bradke F. 2010. Rac1 regulates neuronal polarization through the WAVE complex. *J Neurosci* 30: 6930-6943.

37) Garvalov BK, Flynn KC, Neukirchen D, Meyn L, Teusch N, Wu X, Brakebusch C, Bamburg JR and Bradke F. 2007. Cdc42 regulates cofilin during the establishment of neuronal polarity. *J Neurosci* 27: 13117-13129.

38) Tolias KF, Cantley LC and Carpenter CL. 1995. Rho family GTPases bind to phosphoinositide kinases. *J Biol Chem* 270: 17656-17659.

39) Keely PJ, Westwick JK, Whitehead IP, Der CJ and Parise LV. 1997. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. *Nature* 390: 632-636.

40) Schwamborn JC and Puschel AW. 2004. The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. *Nat Neurosci* 7: 923-929.

41) Nishimura T, Yamaguchi T, Kato K, Yoshizawa M, Nabe shima Y, Ohno S, Hoshino M and Kaibuchi K. 2005. PAR-6 and PAR-3 mediate Cdc42-induced Rac activation through the Rac GEFs Tiam1. *Nat Cell Biol* 7: 270-277.

42) Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W and Dotti CG. 2003. RhoA/ROCK regulation of neurogenesis via profilin IIa-mediated control of actin stability. *J Cell Biol* 162: 1267-1279.

43) Jiang H, Guo W, Liang X and Rao Y. 2005. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. *Cell* 120: 123-135.

44) Shi SH, Cheng T, Jan LY and Jan YN. 2004. APC and GSK-3beta are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. *Curr Biol* 14: 2025-2032.

45) Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A and Kaibuchi K. 2005. GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. *Cell* 120: 137-149.

46) Fukaya T, Itoh TJ, Kimura T, Menager C, Nishimura T, Shi romizu T, Watanabe H, Inagaki N, Iwamatsu A, Hotani H and Kaibuchi K. 2002. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. *Nat Cell Biol* 4: 583-591.

47) Inagaki N, Chihana K, Arimura N, Menager C, Kawano Y, Matsuo N, Nishimura T, Amano M and Kaibuchi K. 2001. CRMP-2 induces axons in cultured hippocampal neurons. *Nat Neurosci* 4: 781-782.

48) Zambrunn J, Kinoshita K, Hyman AA and Nathke IS. 2001. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. *Curr Biol* 11: 44-49.

49) Rusan NM, Akong K and Peifer M. 2008. Putting the model to the test: are APC proteins essential for neuronal polarity, axon outgrowth, and axon targeting? *J Cell Biol* 183: 203-212.

50) Caceres A and Kosik KS. 1990. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. *Nature* 343: 461-463.
axon elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol 150: 989-1000.

53) Namba T, Funahashi Y, Nakamuta S, Xu C, Takano T and Kaibuchi K. 2015. Extracellular and Intracellular Signaling for Neuronal Polarity. Physiol Rev 95: 995-1024.

54) Randlett O, Norden C and Harris WA. 2011. The vertebrate retina: a model for neuronal polarization in vivo. Dev Neurobiol 71: 567-583.

55) Zolesi FR, Poggi L, Wilkinson CJ, Chien CB and Harris WA. 2006. Polarization and orientation of retinal ganglion cells in vivo. Neural Dev 1: 2.

56) Namba T, Kibe Y, Funahashi Y, Nakamuta S, Takano T, Ueno T, Shimada A, Kozawa S, Okamoto M, Shimoda Y, Oda K, Wada Y, Masuda T, Sakakibara A, Igarashi M, Miyata T, Fairve-Sarrailh C, Takeuchi K and Kaibuchi K. 2014. Pioneering axons regulate neuronal polarization in the developing cerebral cortex. Neuron 81: 814-829.

57) Konno D, Yoshimura S, Hori K, Maruoka H and Sobue K. 2015. Involvement of the phosphatidylinositol 3-kinase/rac1 and cdc42 pathways in radial migration of cortical neurons. J Biol Chem 280: 5082-5088.

58) Ip JP, Fu AK and Ip NY. 2014. CRMP2: functional roles in neural development and therapeutic potential in neurological diseases. Neuroscientist 20: 589-598.

59) Geiger B, Bershadsky A, Pankov R and Yamada KM. 2001. Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2: 793-805.

60) Bard L, Boscher C, Lambert M, Mege RM, Choquet D and Thoumine O. 2008. A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. J Neurosci 28: 5878-5890.

61) Shimada T, Toriyama M, Uemura K, Kamiguchi H, Sugiura T, Watanabe N and Inagaki N. 2008. Shootin1 interacts with actin retrograde flow and L1-CAM to promote axon outgrowth. J Cell Biol 181: 817-829.

62) Zhou FQ, Waterman-Storer CM and Cohan CS. 2002. Focal adhesion dynamics control neuronal polarization during semaphorin-3A-induced axon retraction. J Cell Biol 159: 1191-202.

63) Yalgin C, Ebrahimi S, Delandre C, Yoong LF, Akimoto S, Suares G, Mervis RF, Wynshaw-Boris A and McBain CJ. 2015. Deleted in colorectal cancer binds netrin-1 mediates cell substrate adhesion and recruits Cdc42, Rac1, Pak1, and N-WASP into an intracellular signaling complex that promotes growth cone expansion. J Neurosci 25: 3132-3141.

64) Yuan XB, Jin M, Xu X, Song YQ, Wu CP, Poo MM and Duan YM, Ando R, Iwama M, Takahashi R, Negishi M and Itohara S. 2007. Rac-GAP alpha-chimerin regulates motor-circuit signaling. Cell 130: 742-753.

65) Dent EW, Gupton SL and Gertler FB. 2011. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 3.

66) Shakerabari M, Moore SW, Trisch NX, Morris SJ, Bouchard JF and Kennedy TE. 2005. Deleted in colorectal cancer binding netrin-1 mediates cell substrate adhesion and recruits Cdc42, Rac1, Pak1, and N-WASP into an intracellular signaling complex that promotes growth cone expansion. J Neurosci 25: 3132-3141.

67) Akiyama H, Matsu-ura T, Mikoshiba K and Kamiguchi H. 2009. Control of neuronal growth cone navigation by asymmetric inositol 1,4,5-trisphosphate signals. Sci Signal 2: ra34.

68) Akiyama H and Kamiguchi H. 2010. Phosphatidylinositol 3-kinase facilitates microtubule-dependent membrane transport for neuronal growth cone guidance. J Biol Chem 285: 41740-41748.

69) Piper M, Anderson R, Dwivedy A, Weinel C, van Horck F, Leung KM, Cogill E and Holt C. 2006. Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 49: 215-228.

70) Goshima Y, Nakamura F, Strittmatter P and Strittmatter SM. 1995. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376: 509-514.

71) Gallo G. 2006. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. J Cell Sci 119: 3413-3423.

72) Dailey ME and Smith SJ. 1996. The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 16: 2983-2994.

73) nakayama AY, Harms MB and Luo L. 2000. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20: 5329-5338.

74) Sugiura T, Toriyama M, Uemura K, Kamiguchi H, Sugiura T, Watanabe N and Inagaki N. 2008. Shootin1 interacts with actin retrograde flow and L1-CAM to promote axon outgrowth. J Cell Biol 181: 817-829.

75) Zhou FQ, Waterman-Storer CM and Cohan CS. 2002. Focal loss of actin bundles causes microtubule redistribution and growth cone turning. J Cell Biol 157: 839-849.

76) Yuan XB, Jin M, Xu X, Song YQ, Wu CP, Poo MM and Duan YM, Ando R, Iwama M, Takahashi R, Negishi M and Itohara S. 2003. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat Cell Biol 5: 38-45.

77) Buck KB and Zheng JQ. 2002. Growth cone turning induced by direct local modification of microtubule dynamics. J Neurosci 22: 9358-9367.

78) Alagesh P, Kiremidjian A, Kuroiwa H and Goldstein LS. 2005. S1bdependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension. J Neurosci 25: 7669-7681.

79) Murrali A and Rajalingam K. 2014. Small Rho GTPases in the control of cell shape and mobility. Cell Mol Life Sci 71: 1703-1721.

80) Martinez-Arca S, Alberts P, Zahraoui A, Louvard D and Galli T. 2000. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J Cell Biol 149: 889-900.

81) Iwasato T, Katoh H, Nishimaru H, Ishikawa Y, Inoue H, Saito YM, Ando R, Iwama M, Takahashi R, Negishi M and Itohara S. 2007. Rac-GAP alpha-chimerin regulates motor-circuit formation as a key mediator of EphrinB3/EphA4 forward signaling. Cell 130: 742-753.

82) Vaamonde P, Hikosaka O and Hattori Y. 2015. Contact guidance promotes the assembly of a cilium-like morphogenetic signaling complex at growth cone branch tips. J Neurosci 35: 1354-1364.

83) Vaamonde P, Hikosaka O and Hattori Y. 2015. Contact guidance promotes the assembly of a cilium-like morphogenetic signaling complex at growth cone branch tips. J Neurosci 35: 1354-1364.

84) Vaamonde P, Hikosaka O and Hattori Y. 2015. Contact guidance promotes the assembly of a cilium-like morphogenetic signaling complex at growth cone branch tips. J Neurosci 35: 1354-1364.
86) Lipka J, Kapitein LC, Jaworski J and Hoogenraad CC. 2005. GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nat Neurosci 8: 906-915.

87) Polleux F, Morrow T and Ghosh A. 2000. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404: 567-573.

88) Morita A, Yamashita N, Sasaki Y, Uchida Y, Nakajima O, Kim S and Chiba A. 2004. Dendritic guidance. Trends Neurosci 27: 194-202.

89) Fujishima K, Horie R, Mochizuki A and Kengaku M. 2012. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. EMBO J 35: 302-318.

90) Gundersen V, Storm-Mathisen J and Bergersen LH. 2015. Microtubule-binding protein doublecortin-like kinase 1 (BDNF). Cytoskeleton in neuronal development. JPFSM 95: 695-726.

91) Morgan-Smith M, Wu Y, Zhu X, Pringle J and Snider WD. 2011. Protein kinase D regulates cofilin activity through p21-activated kinase 4. J Biol Chem 286: 34254-34261.

92) Elisabeth T, Hausser A, De Kimpe L, Van Lint J and Pfizenmaier K. 2010. Protein kinase D controls actin polymerization by regulating EphB receptor trafficking. Nat Neurosci 8: 906-915.

93) Ziv NE and Smith SJ. 1996. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17: 91-102.

94) Kayser MS, Nolt MJ and Dalva MB. 2008. EphB receptors couple dendritic filopodia motility to synapse formation. Neuron 59: 56-69.

95) Heiman MG and Shaham S. 2010. Twigs into branches: how a filopodium becomes a dendrite. Curr Opin Neurobiol 20: 86-91.

96) Morgan-Smith M, Wu Y, Zhu X, Pringle J and Snider WD. 2011. Protein kinase D regulates cofilin activity through p21-activated kinase 4. J Biol Chem 286: 34254-34261.

97) Fields RD, Buchan J and Smith SJ. 2000. Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat Neurosci 3: 231-237.

98) Fields RD, Buchan J and Smith SJ. 2000. Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat Neurosci 3: 231-237.

99) Matteoli M, Coco S, Schenk U and Verderio C. 2004. Vesicle signaling. Nat Rev Neurosci 8: 906-915.

100) Portera-Cailliau C, Pan DT and Yuste R. 2003. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci 23: 7129-7142.

101) Yuste R and Bonhoeffer T. 2004. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5: 24-34.

102) Yuste R and Bonhoeffer T. 2004. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5: 24-34.
121) Sekino Y, Kojima N and Shirao T. 2007. Role of actin cytoskeleton in dendritic spine morphogenesis. *Neurochem Int* 51: 92-104.

122) Cai Q and Sheng ZH. 2009. Molecular motors and synaptic assembly. *Neuroscientist* 15: 78-89.

123) van den Berg R and Hoogenraad CC. 2012. Molecular motors in cargo trafficking and synapse assembly. *Adv Exp Med Biol* 970: 173-196.

124) Yonekawa Y, Harada A, Okada Y, Funakoshi T, Kanai Y, Takei Y, Terada S, Noda T and Hirokawa N. 1998. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. *J Cell Biol* 141: 431-441.

125) Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T, Takeda S, Yang HW, Terada S, Nakata T, Takei Y, Saito M, Tsuji S, Hayashi Y and Hirokawa N. 2001. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. *Cell* 105: 587-597.

126) Diefenbach RJ, Diefenbach E, Douglas MW and Cunningham AL. 2002. The heavy chain of conventional kinesin interacts with the SNARE proteins SNAP25 and SNAP23. *Biochemistry* 41: 14906-14915.

127) Su Q, Cai Q, Gerwin C, Smith CL and Sheng ZH. 2004. Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. *Nat Cell Biol* 6: 941-953.

128) Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, Kawagishi M and Hirokawa N. 2002. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. *Nature* 417: 83-87.

129) Guillaud L, Setou M and Hirokawa N. 2003. KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons. *J Neurosci* 23: 131-140.

130) Zhang W and Benson DL. 2001. Stages of synapse development defined by dependence on F-actin. *J Neurosci* 21: 5169-5181.

131) Miller KE and Sheetz MP. 2000. Characterization of myosin V binding to brain vesicles. *J Biol Chem* 275: 2598-2606.

132) Bridgman PC. 1999. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. *J Cell Biol* 146: 1045-1060.

133) Bittins CM, Eichler TW, Hammer JA 3rd and Gerdes HH. 2010. Dominant-negative myosin Va impairs retrograde but not anterograde axonal transport of large dense core vesicles. *Cell Mol Neurobiol* 30: 369-379.

134) Naisbitt S, Valtscchanoff J, Allison DW, Sala C, Kim E, Craig AM, Weinberg RJ and Sheng M. 2000. Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. *J Neurosci* 20: 4524-4534.