Practical Blind Membership Inference Attack via Differential Comparisons

Bo Hui¹*, Yuchen Yang¹*, Haolin Yuan¹*, Philippe Burlina², Neil Zhenqiang Gong³, Yinzhi Cao¹

¹The Johns Hopkins University ²The Johns Hopkins University Applied Physics Laboratory ³Duke University

*Equal contribution
Introduction
Privacy In Machine Learning

- Model
- Data
 - Membership Inference

Does this data record belong to the training set?
Membership Inference Attack (State-of-the-art)

Shokri, Reza, et al. "Membership inference attacks against machine learning models." 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017.
What if the shadow model is not like the target model?
The attack F-1 score decreases.

Dataset	Target Model	Shadow Model	Attack F1-Score
CIFAR-100	ResNet50	ResNet50	0.9384
		VGG16	0.7217
		CNN	0.8861
CUB	ResNet101	ResNet101	0.9675
		VGG19	0.8486
		DensNet121	0.6389
How we deal with this problem?

Give up the shadow models!
Our Attack: BlindMI

Query data

Train

Test

Nonmember

Target Dataset

Roughly select

Adding noise

Nonmember’s probability vectors

Target Model

Level 0

Level 1

Level 2

Level 3

Level 4

Similar?

Level 0

Level 1

Level 2

Level 3

Level 4

No Shadow Models!

Nonmember!

Member!

Transform

Yes

No
Variations

- **BlindMI-1Class**:
 - Train a one-class SVM model on the nonmember set

- **BlindMI-Diff**:
 - A novel approach: differential comparison
Main results
Dataset description

Dataset	# of classes	Description	Resolution	Training set size
Adult	2	census income records	N/A	16,280
EyePACS	5	retina images with diabetic retinopathy	150×150	10,000
CH-MNIST	8	histological images of colorectal cancer	64×64	2,500
Location	30	mobile users’ location check-in records	N/A	2,505
Purchase-50	50	shoppers’ purchase histories	N/A	10,000
Texas	100	inpatients stays in health facilities	N/A	10,000
CIFAR-100	100	object recognition dataset	32×32	10,000
Birds-200	200	photos of birds species	150×150	5,894
Effectiveness: the distance *does* increase

Fig. 8. Distance vs. # of iterations per batch for BLINDMI-DIFF-w/o.

Fig. 7. Distance vs. # of iterations per batch for BLINDMI-DIFF-w/.
State-of-the-art attacks description

- **NN**: train a NN model from all features. [1]
- **Top3-NN**: train a NN model from top three features. [3]
- **Top1-Threshold**: compare the top feature with a threshold. [3]
- **Loss-Threshold**: compute a cross-entropy loss and compare. [2]
- **Label Only**: classify a sample as a member if the predicted class is correct. [2]
- **Top2+True**: our improved version of Top3-NN with the ground-truth label.

[1] Shokri, Reza, et al. "Membership inference attacks against machine learning models." 2017 IEEE Symposium on Security and Privacy (SP).

[2] S. Yeom, I. Giacomelli, M. Fredrikson and S. Jha, "Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting" 2018 IEEE 31st Computer Security Foundations Symposium (CSF)

[3] A. Salem, Y. Zhang, M. Humbert, M. Fritz, and M. Backes, “ML-leaks: Model and data independent membership inference attacks and defense son machine learning models.” 2019 Network and Distributed Systems Security Symposium (NDSS).
Comparison with State-of-the-art Attacks

Attack	Adult	EyePACS	CH-MNIST	Location	Purchase-50	Texas	CIFAR-100	Birds-200
Blind								
NN	40.6 ± 7.32	69.1 ± 0.02	71.7 ± 3.53	78.4 ± 3.23	59.4 ± 11.9	76.7 ± 2.20	83.1 ± 3.53	58.3 ± 27.4
Top3-NN	26.7 ± 7.25	69.5 ± 1.04	70.9 ± 4.03	78.1 ± 3.39	59.6 ± 12.1	76.8 ± 2.07	81.7 ± 6.66	68.6 ± 21.3
Top1-Threshold	1.01 ± 0.44	71.1 ± 0.42	52.8 ± 17.6	22.7 ± 3.87	53.5 ± 7.26	0.67 ± 0.38	92.8 ± 1.72	71.4 ± 0.65
BlindMI	64.2 ± 1.59	77.7 ± 0.80	75.1 ± 1.49	86.2 ± 0.90	78.0 ± 0.31	85.5 ± 0.80	93.9 ± 0.63	96.8 ± 0.09
Blackbox								
Top2+True	52.1 ± 6.27	73.4 ± 0.41	75.4 ± 1.84	83.3 ± 2.24	62.9 ± 10.7	83.4 ± 1.29	80.9 ± 7.85	69.5 ± 25.6
Loss-Threshold	56.2 ± 0.77	73.8 ± 0.57	71.8 ± 4.01	47.7 ± 19.7	48.1 ± 18.6	69.6 ± 9.60	85.6 ± 5.09	71.2 ± 13.7
Label-Only	56.2 ± 5.28	72.8 ± 0.09	70.9 ± 1.54	75.3 ± 0.12	72.1 ± 0.07	79.7 ± 0.50	85.5 ± 0.47	86.4 ± 0.81
BlindMI	66.0 ± 0.28	80.6 ± 1.90	77.2 ± 1.83	87.3 ± 0.70	79.9 ± 0.57	86.7 ± 0.37	94.8 ± 0.14	97.2 ± 0.03
Gray-Blind								
Top2+True	54.3 ± 5.50	72.3 ± 0.08	73.5 ± 1.99	85.6 ± 0.71	77.0 ± 0.36	83.4 ± 0.83	93.2 ± 0.46	96.8 ± 0.28
Loss-Threshold	56.4 ± 9.27	74.8 ± 0.37	73.6 ± 1.80	85.7 ± 0.69	77.2 ± 0.34	83.4 ± 0.90	93.2 ± 0.80	93.2 ± 0.03
Label-Only	1.01 ± 0.44	71.1 ± 0.42	52.8 ± 17.6	22.7 ± 3.87	53.5 ± 7.26	0.67 ± 0.38	92.8 ± 1.72	71.4 ± 0.65
BlindMI	64.2 ± 1.59	77.7 ± 0.80	75.1 ± 1.49	86.2 ± 0.90	78.0 ± 0.31	85.5 ± 0.80	93.9 ± 0.63	96.8 ± 0.09

- No more shadows
- Add more stability

△ 0
△ 28.2
△ 17.6
△ 38.5
Different nonmember generations:
• Transformation is the best.

Different kernel functions:
• Gaussian is the best.

TABLE XI. MMD STATISTICAL TESTS OF **BlindMI-diff** with nonmember datasets generated via different methods (each value is the MMD with standard error of the mean between corresponding samples and real-world non-members in the test dataset.)

Sample trans	Random perp	Random generation	Cross domain	Training set
0.194 ± 0.009	0.438 ± 0.039	3.024 ± 1.024	0.225 ± 0.015	1.864 ± 0.022

TABLE XII. F1-SCORE (%) with standard error of mean for different kernel functions of **BlindMI-diff**

DIFF-W	**Gaussian (default)**	**Laplacian**	**Linear**	**Sigmoid**	**Polynomial**
Adult	**64.2±1.59**	60.3±0.38	40.7±0.20	51.1±0.41	58.4±1.02
EyePACS	**77.7±0.80**	67.3±0.31	71.8±0.93	72.8±0.87	73.9±0.88
CH-MNIST	**75.1±1.49**	73.1±0.92	72.4±0.53	71.3±0.71	72.7±1.20
Location	**86.2±0.90**	85.1±2.42	83.4±0.98	79.8±1.52	76.7±0.17
Purchase-50	**78.0±0.31**	68.9±0.50	75.8±0.61	71.1±1.05	66.0±0.99
Texas	**85.5±0.80**	83.6±0.47	81.2±0.29	80.9±0.49	81.9±1.72
CIFAR-100	**93.9±0.63**	93.3±0.79	87.9±1.09	86.9±1.02	90.1±0.83
Birds-200	**96.8±0.09**	91.9±1.32	95.7±1.06	94.4±1.31	93.9±0.96
Evaluation against State-of-the-art Defenses

MemGuard:
Add carefully crafted perturbation to the target model’s output and turns it into an adversarial example to fool the attacker’s classifier.

MMD+Mixup:
Adopt Maximum Mean Discrepancy to reduce the gap between the softmax distributions of the training and validation sets during training.

DP-Adam:
Add perturbations to the training process such that no single training sample has a significant impact on the learned target model.

Adversarial Regularization:
Model MI attacks as a regularization term to be used in regularizing the training of the target model.

Outperform 5% to 75%

Outperform 8% to 59%

(a) MemGuard on CH-MNIST
(b) DP-Adam on CH-MNIST
(c) MMD+Mixup on CIFAR-100
(d) Adversarial Regularization on CIFAR-100

Outperform 5% to 75%
Outperform 10% to 60%
F1-Score vs. Nonmember-to-Member Ratio

- Ratio \uparrow Attack \downarrow
- BlindMI outperform 35%

Fig. 4. F1-Score of Various Attacks vs. Nonmember-to-Member Ratio on CIFAR-100.
F1-score vs. # of Classes

- Class ↑ Attack ↑
- BlindMI outperform 5%-30%

Fig. 5. F1-Score of Various Attacks vs. # of classes on CIFAR.
Conclusion

• We design a membership inference attack BlindMI using a novel technique, called differential comparison.

• Our evaluation shows that BlindMI outperforms state-of-the-art MI attacks under different settings.

• Our implementation is open-source at this repository:

 • https://github.com/hyhmia/BlindMI