Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin (WEB), Jordan, using geospatial technologies

Mutawakil Obeidat1 | Muheeb Awawdeh2 | Farah Al-Hantouli3

1Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
2Laboratory of Applied Geoinformatics, Department of Earth and Environmental Sciences, Yarmouk University, Irbid, Jordan
3Department of Earth and Environmental Sciences, Yarmouk University, Irbid, Jordan

Correspondence
Mutawakil Obeidat, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan.
Email: mobeidat@just.edu.jo

Abstract
Morphometric analysis and sub-watersheds prioritisation were carried out for the Wadi Easal Basin, Jordan, which is characterised by a high topographic diversity. The total ranking method was applied to prioritise the sub-watersheds in terms of susceptibility to flash flood. Results of morphometric analysis revealed that the study area is a fifth order drainage system with a dendritic drainage pattern and elongated shape. Prioritisation results showed that about 71% (15 out of 21 sub-watersheds) of sub-watersheds have high-very high susceptibility to flooding, which forms about 64% of the total area of the basin. The main underlying morphometric parameters behind this are the high drainage density, stream frequency, high basin relief, basin slope, ruggedness number, and circulatory ratio, and the low value of basin shape. Overall, the basin has a rugged topography with steep slopes and high relief. Since the basin is ungauged, and no information about its past hydrological behaviour is present, the results of this study can be used as guidance for competent authorities to initialize flood mitigation or artificial groundwater recharge measures.

KEYWORDS
flash flood, geospatial technology, Jordan, morphometric analysis, prioritisation

1 | INTRODUCTION

Flash floods are among the most catastrophic and dangerous natural hazards, since they are sudden and unpredictable, and lead to destruction in infrastructure, threat to human life and property (Taha, Elbarbary, Naguib, & El-Shamy, 2017; Toduse et al., 2020). Flash floods were ranked as first in terms of damages, exceeding those caused by earthquakes, volcanoes and landslides (Ali et al., 2020; Bui et al., 2020; Costache, Hong, & Pham, 2019). The number of flash floods has increased where globally more than 78 million people have been affected (more than 5,000 deaths annually) and losses in properties of about US$ 56 billion have been estimated (Grabs, 2010; Guha-Sapir, Hoyois, Wallemacq, & Below, 2017; Karamouz & Fereshtehpour, 2019; Modrick & Georgakakos, 2015; WMO, 2016). Moreover, it is predicted that floods in conjunction with other hazards, could produce by 2030, annual losses up to US$415 billion at the global level (UNISDR, 2015). Due to their convective origin, flash floods occur locally in watersheds of areas less than 1,000 km² with a complex orography, and short response times of few hours or minutes, and thus there are minimum possibilities for prediction (Destro
et al., 2018; Marchi, Borgia, Preciso, & Gaume, 2010). Rainfall intensity and duration, rainfall characteristics, water evaporation and infiltration, drainage characteristics, environmental conditions, and anthropogenic processes are the most important factors that influence the severity of flooding (Azmeri & Vadiya, 2016; Jodar-Abellán, Valdes-Abellán, Pla, & Gomariz-Castillo, 2019; Youssef, Pradhan, & Hassan, 2011). Demarcating areas susceptible to flash floods is essential to save human life and his possessions (Ali et al., 2020; Borrelli et al., 2017). Watershed management aims at controlling damaging runoff and utilising it for beneficial uses, combating erosion, and enhancing groundwater storage (Ratna Reddy, Saharawat, & George, 2017; Sebastian, Jayaraman, & Chandrasekhar, 1995). Watershed management implies optimal climate change adaptation which involves water resources management under climate change scenarios (Worku, Teferi, Bantider, & Dile, 2020).

Development of land and water conservation measures necessitates morphometric analysis and prioritisation of sub-watersheds within a basin (Aher, Adinarayana, & Gorantiwar, 2014). Morphometric analysis has been extensively used for the purpose of prioritisation and assessment of watersheds susceptibility to natural hazards such as flash floods and erosion (Abuzied, Yuan, Ibrahim, Kaiser, & Saleem, 2016; Alam, Ahmed, & Sammonds, 2020; Ameri, Pourghasemi, & Cerda, 2018; Asfaw & Workineh, 2019; Charizopoulos, Mourtzios, Psilovikos, Psilovikos, & Karamotsou, 2019; Hussein, Abdelkareem, Hussein, & Askalany, 2019; Kannan, Venkateswaran, Vijay Prabhum, & Sankar, 2018; Shivhare et al., 2018; Taha et al., 2017). These studies have used the classic works of Horton (1945; 1932), Smith (1950), Strahler (1952), Miller (1953), and Schumm (1956) as a guidance. Morphometry is defined as the quantitative analysis of the earth’s surface, as well as the shape and dimensions of its landforms (Kaur, Singh, Verma, & Pateriya, 2014; Obi Reddy, Maji, & Gajbhiye, 2002; Vaidya, Kuniyal, & Chauhan, 2013). Morphometric parameters represent relatively simple approaches that can be utilised to investigate a hydrologic basin, and its geological and geomorphic history (Strahler, 1964). Morphometric characteristics of watersheds are a crucial factor that influences flash flood intensity; hence, investigation of the watershed morphometry provides useful insights regarding their hydrological response to rainfall (Borgia, Gaume, Creutin, & Marchi, 2008). Morphometric parameters involve linear aspects, areal aspects, and relief aspects, which can be employed in several investigations such as natural resources assessment and protection, and environmental hazards assessment (Arrous, Aboulela, & Green, 2011; Charizopoulos et al., 2019). They help predicting the response of watershed during periods of heavy rainfall (Kumar, Kumar, Lohani, Nema, & Singh, 2000). Worldwide, morphometric analysis was successfully used for flash flood susceptibility mapping (e.g., Adnan, Dewan, Zannat, & Abdallah, 2019; Alam et al., 2020; Arefin, Mohir, & Alam, 2020; Bhatt & Ahmed, 2014; Das, 2020; Gabriel, Yusuf, & Bwadi, 2020; Mahmood & Rahman, 2019; Ogarekpe, Obio, Tenebe, Emenike, & Nnaji, 2020; Pan et al., 2020; Rajasekhar, Sudarasana Raju, & Siddi Raju, 2020). Watershed prioritisation refers to ranking sub-watersheds of a watershed according to the order in which they must be considered for the purposes of treatment (Biswas, Sudhakar, & Desai, 1999; Puno & Puno, 2019). Morphometric analysis involves computation of basic parameters, linear parameters, relief parameters, and shape parameters of a watershed, and those gain insights about the watersheds characteristics (Melton, 1957; Strahler, 1964).

Recently, geospatial techniques (RS and GIS) have been applied efficiently with the goal of watershed management (Chatterjee, Krishna, & Sharma, 2013; Okumura & Araujo, 2014). The availability of free access high quality resolution digital elevation (DEM) has further enhanced the strength of the effective GIS tools that enabled many researchers to study drainage basins and to investigate with high accuracy the parameters of drainage basins. This development led to the possibility of applying and using morphometric analysis based on GIS tools in several topics of research; one of which is sub-watersheds prioritisation in terms of susceptibility to erosion and flash floods (Ratnam, Rao, & Amminedu, 2005).

In the last 50 years, Jordan has been exposed to many incidents of flash flood, where 345 persons have lost their lives, and more than 24,321 people were adversely affected (Al-Qudah, 2011). In March 1966, the city of Mā'an (south of Jordan) was exposed to severe flash flood, where more than 200 were killed, hundreds were injured, and half of the city was destroyed. Between 2006 and 2012, more than 11 were killed, and losses of US$4 million were estimated due to flash flood in Aqaba city, south Jordan. Flash floods incidents have been documented to affect Amman, the capital city of Jordan. For example, in 2014, 2 people were killed, and losses of properties of US$4 million were estimated due to flash flood in Aqaba city, south Jordan. Flash floods incidents have been documented to affect Amman, the capital city of Jordan. For example, in 2014, 2 people were killed, and losses of properties of US$4 million were estimated. In November 2015, a severe flash flood has flooded 500 shops, and more than US$5 million losses of property has been estimated. In 2018, more than 25 were killed, most of them are school students due to flash floods in Wadi Zarqa Mā'in, which is a Dead Sea side Wadi. Wadi Easal, located south of the Zarqa Mā'in, demonstrates similar landscape and physical conditions. The overall objective of this study is sub-watersheds prioritisation of the Wadi Easal basin with respect to flash floods based on...
morphometric analysis and GIS as efficient and cost-effective tools. Specific objectives include delineating sub-watersheds within the drainage basin and computing the morphometric parameters at the micro-level and basin level. The study area is characterised by high diversity in topography, morphology, and climatic regime. The frequent and severe flash floods which took place over the last years in Jordan have triggered the authors to carry out this study. Moreover, the findings of the study can be a starting point for the purpose of flood management and surface runoff harvesting. Quantitative morphometric analysis is particularly important, since the study area is ungauged, and no information about its past hydrological behaviour is available. In this context, the Jordan Valley Authority has carried out a geological and geotechnical reconnaissance study of the wadi for the purpose of constructing a dam in attempt to reduce flash flood hazard and water utilisation in agricultural irrigation (MEECP, 2016). The results of this study can be considered to help official authorities to take measures in those areas that are prone to flash floods, or of good potential for runoff harvesting.

2 | STUDY AREA

The Wadi Easal Basin (WEB) is located approximately four kilometres west of Karak city and just east of the southern Dead Sea basin (Figure 1). It covers an area of approximately 63 km² with altitude varying from 235.5 m below sea level at the mouth of the basin in the northwest to more than 1,279 m above sea level in the southeast (Figure 2a). The climate is semi-arid to arid, where the high southeastern and central parts follow the
Mediterranean climate with hot and dry summers and slightly warm, rainy winters, whereas the western Ghor parts, are located in the dry climatic region and characterised by low precipitation throughout the year (Al-Nawaiseh, 2011). The rainfall increases from the northwest (<180 mm) to the southeast (300 mm), reaching an annual mean of more than 320 mm, while the mean annual temperature decreases from 25 to 16°C in the same direction.

The geology of the basin consists of the Upper Burj and Umm Ishrin formations of the Cambrian age that dominate the western and middle parts of the basin, whereas the upper northeastern section is mainly dominated by the presence of the Kurnub Group of the Lower Cretaceous (Figure 2b). The Burj Dolomite Formation (Rum Group) consists of sandstone, dolomite and shale. The Umm Ishrin Sandstone Formation consists mainly of medium to coarse-grained, subarkosic to quartzose sandstone. Ajlun group includes Na‘ur, Hummar, Shueib, and Wadi Es Sir Formations, and Belqa group includes Wadi Umm Ghudran and Amman Silicified Limestone Formations. The two groups are of Upper Cretaceous age. Na‘ur Limestone Formation consists of marly nodular limestone with intercalations of yellowish marl, chert, and dolomite. Fuheis, Hummar, and Shueib formations consist of sandy limestone and marl. Wadi Es Sir Formation consists of massive limestone and dolomitic limestone with intercalations of chert. The upper part of the formation consists of soft white chalk. Wadi Umm Ghudran Formation prevails in the eastern and middle parts of the basin and consists of chalk and chert. Amman Silicified Limestone Formation consists of hard chert and massive chalk (Abed, 2014; Bender, 1974; Powell, 1988).

3 DATA AND METHODS

Figure 3 illustrates a summary of the methods adopted in this research work. Twenty-two morphometric parameters were determined for the purpose of basin characterisation and prioritisation of the WEB sub-watersheds with respect to susceptibility to flash floods (Table 1). Basic parameters were measured directly from the DEM using GIS techniques, and include basin area, basin length, perimeter, number of streams, and lengths of streams for each stream order. The DEM resolution is 12.5 m (Radar Imagery 2001–2006), downloaded from Alaska Satellite Facility (2017). The DEM is a RADARSAT-1’s... synthetic aperture radar (SAR) that utilised a microwave energy pulse (C-band at 5.3 GHz frequency). The DEM was preprocessed to fill missing data. The WEB was subdivided into sub-watersheds based on the stream network and flow accumulation maps.

Other morphometric parameters including stream frequency, drainage density, elongation ratio, circularity ratio, relief ratio, basin relief, relative relief ratio, basin slope, hypsometric integral, bifurcation ratio, length of overland flow, and ruggedness number were calculated.
using the mathematical equations presented in Table 1. The Morphometric Ranking Method (Total Rank) was utilised for the purpose of sub-watersheds prioritisation (Patel, Dholakia, Naresh, & Srivastava, 2012).

Each morphometric parameter was classified into one of many rank groups where each category denotes a certain degree of the risk. For example, rank 1 refers to a very low degree of possibility for floods risk, and so on. Twelve parameters were selected to assess the sub-watersheds susceptibility for flooding: basin area, drainage density, length of overland flow, stream frequency, elongation ratio, circularity ratio, shape factor, relief ratio, relative relief ratio, basin slope, ruggedness number, hypsometric integral. Morphometric parameters are either directly- or inversely correlated with flash flood. Eight parameters have a direct relationship with the degree of possibility for floods risk, which means that the higher value of the parameter, the higher is the risk degree. These parameters include basin area, drainage density, stream frequency, circularity ratio, shape factor, relief ratio, relative relief ratio, basin slope, and ruggedness number.

On the other hand, 4 parameters have an inverse relationship to the degree of possibility for floods risk, which means that the higher value of the parameter, the lower is the risk degree. These parameters are length of overland flow, elongation ratio, shape factor, and hypsometric integral.

After morphometric ranking, values for each sub-watershed were summed to classify the sub-watersheds and determine their susceptibility to flash floods occurrence. Five classes were obtained by using a simple equation to determine the interval length, which is \((\text{Max} - \text{Min})/5\) (Farhan & Anaba, 2016). The values for each parameter were categorised into five intervals.

The summed morphometric parameters rank values were normalised from 0 for the lowest rank value and 1 for the highest rank value to obtain flash floods susceptibility index for each sub-watershed. Parameters having the same values were assigned similar rankings. Finally, the floods priority map was generated by classifying results into five categories of flooding susceptibility: very low, low, moderate, high, very high priority.

4 | RESULTS AND DISCUSSION

4.1 | Morphometric parameters

The Wadi Easal Basin (WEB) was divided into 21 sub-watersheds using the Hydrology toolbox of ArcGIS 10.3 (Figure 4). The results of the morphometric analysis of the whole basin are presented in Table 2, and those for the sub-watersheds are shown in Table S1. The dominating drainage pattern is dendritic (Figure 4), which is
TABLE 1 Methods used to compute morphometric parameters

Parameter no.	Morphometric parameter	Formula/definition	Reference
1. Basic	Basin area (A)	Plan area of the watershed (km²)	Horton (1945)
2. Basic	Basin perimeter (P)	Perimeter of the watershed (km)	Horton (1945)
3. Basic	Basin length (Lb)	Length of the basin (km)	Horton (1945)
4. Basic	Stream order (U)	Hierarchical rank	Strahler (1952), Farhan, Anbar, Enaba, and Al-Shaikh (2015)
5. Linear	Total number of streams (Nu)	Total no. of streams of all orders	Strahler (1952)
6. Linear	Stream length (Lu)	Length of the stream (km)	Horton (1945)
7. Linear	Mean stream length (Lum)	\(\frac{L_u}{N_u} \) (km), where \(N_u \) = total no. of stream segments of order “u”	Horton (1945)
8. Linear	Stream length ratio (Rl)	\(R_l = \frac{L_u}{L_{u-1}} \), where \(L_{u-1} \) = the total stream length of its next lower order	Horton (1945)
9. Linear	Bifurcation ratio (Rb)	\(R_b = \frac{N_u}{N_u + 1} \), where \(N_u + 1 \) = no. of segments of the next higher order	Strahler (1957)
10. Linear	Mean bifurcation ratio (Rbm)	\(R_{bm} = \) average of the bifurcation ratio of all orders	Strahler (1957)
11. Linear	Drainage density (Dd)	\(D_d = \frac{L_u}{A} \), where \(A = \) area of the watershed (km²)	Horton (1945)
12. Linear	Length of overland flow (Lc)	\(L_c = \frac{1}{2D_d} \), where \(D_d = \) drainage density	Horton (1945)
13. Linear	Stream frequency (Fs)	\(F_s = \frac{N_u}{A} \), where \(N_u = \) total no. of streams of all orders	Horton (1945)
14. Shape	Elongation ratio (Re)	\(R_e = 1.128^\frac{(A^{0.5})}{Lb} \), where \(A = \) area of the basin (km²) \(Lb = \) basin length (km)	Strahler (1957)
15. Shape	Circularity ratio (Rc)	\(R_c = 4 \times \pi \times \frac{A}{P^2} \), where \(\pi = 3.14 \) \(A = \) area of the basin (km²) \(P = \) perimeter (km)	Schumm (1956)
16. Shape	Shape factor (Bs)	\(Bs = \frac{Lb^2}{A} \), where \(Lb = \) basin length (km) \(A = \) area of the basin (km²)	Miller (1953)
17. Relief	Basin relief (H)	\(H = h - h_1 \), where \(h = \) maximum height (m) \(h_1 = \) minimum height (m)	Horton (1945)
18. Relief	Relief ratio (Rr)	\(R_r = \frac{H}{Lb} \), where \(H = \) total relief (km) \(Lb = \) basin length (km)	Malik et al. (2011)
19. Relief	Relative relief ratio (Rr)	\(\frac{H}{P} \), where \(H = \) total relief (km) \(P = \) perimeter of the basin (km)	Schumm (1956)
20. Relief	Basin slope (Sw)	\(H/(Lb \times 60) \), where \(H = \) total relief (km) \(Lb = \) basin length (km)	Melton (1957)
typical for homogeneous impermeable, non-porous rock types, and steep slopes, with no structural control, developing on a land surface where the underlying rock is of uniform resistance to erosion (Gizachew & Berhan, 2018). The study area is characterised by high relief reaching 1,515 m. Moreover, it is dominated by rocks of uniform resistance to erosion that is, carbonate rocks of the Upper Cretaceous and sandstones of Lower
Cretaceous and Cambrian ages. The WEB is a fifth-order basin with a total area of about 63 km², a length of 14.41 km, and a perimeter of 40 km. The total number of streams is 643, where first-order streams account for 51%. The mean bifurcation ratio is 2.05 indicating a structurally less-disturbed watershed, or no clear distortion of drainage patterns (Soni, 2017).

4.1.1 | Basic parameters

Basin area (A) and basin perimeter (P)
The spatial distribution of the morphometric parameters is depicted in Figure S1. Clear variations in the basic parameters of the sub-watersheds (area, perimeter, basin length) can be observed. Basin area is a very significant hydrological feature as it determines water quantity that could result from rainfall. It ranges from 0.87 km² for SW 19 to 7.16 km² for SW 21 (Table S1), which is located in the part with highest precipitation that is, greatest runoff. Perimeter can be used as an indicator of the sub-watershed shape and size. A strong correlation ($r = .85$) was found between the sub-watershed area and the perimeter (Figure 5a). The maximum value of perimeter was found for SW 16 and the minimum value was reported for SW 14.

Table 2: Morphometric parameters of the WEB

Par. No.	Morphometric parameter					
	Basic					
1.	Basin area (A) (km²)	62.718				
2.	Basin perimeter (P) (km)	40.041				
3.	Basin length (L_b) (km)	14.405				
4.	Stream order (U)	5				
5.	Total number of streams (N_u)	643				
6.	Stream length (L_u) (km)	200				
7.	Mean stream length (L_{um}) (km)	0.31				
8.	Stream length ratio (R_{L})					
		II/I	II/II	III/II	IV/III	V/IV
		0.61	0.48	0.21	1.61	
		I/II	II/III	III/IV	IV/V	
9.	Bifurcation ratio (R_b)	2.05				
		I/II	II/III	III/IV	IV/V	
		2.0	2.01	3.73	0.48	
		II/III	III/IV	IV/V		
10.	Mean bifurcation ratio (R_{bm})	2.051				
11.	Drainage density (D_d) (km/km²)	3.19				
12.	Length of overland flow (L_o) (km)	0.157				
13.	Drainage texture (D_t)	16.059				
14.	Stream frequency (F_s)	10.252				
	Linear					
	Shape					
15.	Elongation ratio (R_e)	0.620				
16.	Circularity ratio (R_c)	0.491				
17.	Shape factor (B_s)	3.308				
18.	Compactness coefficient (C_c)	1.422				
	Relief					
19.	Basin relief (H) (m)	1,514.5				
20.	Relief ratio (R_r)	105.137				
21.	Relative relief ratio (R_n)	0.038				
22.	Basin slope (S_w)	6.308				
23.	Ruggedness number (R_m)	4.831				
	Hypsometric					
24.	Hypsometric integral (HI)	0.6416				

Basin length (L_u)
Basin length is an indicator of surface runoff characteristic, where longer streams indicate flatter gradients (Christopher, Idowu, & Olugbenga, 2010; Taha et al., 2017). This relation is depicted in Figure 5b, where a strong negative correlation ($r = -.69$) between stream length and basin slope was found. L_u for the 21 sub-watersheds is in the range of 1.76 km for SW 14 and 5.47 km for SW 16. SW 14 represents the shortest stream.
(i.e., highest runoff), whereas SW 16 represents the longest one with relatively flat gradient. The relationship between basin length and stream length is depicted in Figure 5c, where a strong correlation \((r = .73)\) was found.

Stream order \((U)\), total number of streams \((N_u)\), and stream length \((L_u)\)

The 21 sub-watersheds of the WEB vary from second-order to fourth-order. Stream number is the count of streams of different orders in a given drainage basin (Strahler, 1964). Watersheds with high stream number have high runoff and rapid peak flow compared with watersheds having low stream number (Bhat, Alam, Ahmad, Farooq, & Ahmad, 2019). The total number of streams for the 21 sub-watersheds is 643, and the first order accounts for 51% of the total number of streams in all sub-watersheds having 328 streams. The details of the stream characteristics are confirmed by the first law of Horton (1945), which states that the number of streams of different orders in a given drainage basin tends to closely approximate an inverse geometric ratio. This inverse geometric relationship for 21 sub-watersheds is shown graphically in the form of a straight line when log values of \(N_u\) are plotted on an ordinary graph (Figure 5d). Among the 21 sub-watersheds, SW 21 has the largest \(L_u\), whereas SW 14 has the lowest \(L_u\). The first order streams have the maximum value of total length of stream segments of 97 km, accounting for 49% of the total stream length. A strong negative correlation \((r = −.99)\) was found between stream order and length of stream (Figure 6a). Additionally, a strong correlation \((r = .95)\) was found between stream length and basin area (Figure 6b). Stream length ratio \((R_L)\) is the ratio of the mean length of the one order to the next lower order of the stream segments (Horton, 1945). There is a noticeable variation in \(R_L\) values between the streams of different orders. The variation in \(R_L\) can be attributed to changes in slope and relief (Magesh et al., 2011).

4.1.2 Linear parameters

Drainage density \((D_d)\)

Slope gradient and relative relief are the main controlling factors on drainage density (Magesh et al., 2011). Low \(D_d\)
values prevail in watersheds having low relief, and vice versa (Strahler, 1964). Low drainage density is an indicator of highly permeable subsoil material under dense vegetation, low relief, and low runoff, whereas high drainage density implies high runoff, and low infiltration rate (Harlin & Wijeyawickrema, 1985; Kelson & Wells, 1989). A well-drained basin has a drainage density of 0.73, whereas a poorly drained one has a drainage density of 2.74 (Horton, 1945). The WEB has a D_d value of 3.19, where the lowest value of D_d was found for SW 6, and the highest value was found for SW 9. Generally, the D_d values are relatively high, implying the presence of highly dissected topography, steep slopes, and impermeable subsurface materials, and thus high potentiality for flooding.

A moderate positive correlation ($r = .53$) was found between the drainage density and basin relief (Figure 6c). D_d is directly correlated with flash flood; therefore, SW 9 was given the highest rank (5), and SW 6 was given the lowest rank (1).

Length of overland flow (L_{o})

L_{o} is the length of water flow over the land surface before it becomes concentrated into defined stream channels (Horton, 1945). The main influential factors that affect L_{o} include rock and soil properties, climatological conditions, vegetative cover, and relief (Youssef, Pradhan, Gaber, & Buchroithner, 2009). L_{o} for the WEB is 0.16. It varies from 0.14 for SW 9 (high susceptibility to flood) to 0.24 for SW 6 (low susceptibility to flood). The highest L_{o} values were found for sub-watersheds 4, 6, 11, 12, 14, 16, and 21. L_{o} has an inverse relation with floods; therefore, sub-watersheds 1, 2, 5, 7, 8, 9, 10, 17 and 18 were given the highest rank (5). A moderate negative correlation ($r = -.5$) was found between the length of overland flow and the basin relief, indicating that the higher the relief the less is the length of the overland flow, and thus the more susceptibility to flooding.

Stream frequency (F_s)

F_s is the ratio between the total number of streams and area (Horton, 1932). The lower are the stream frequency and the drainage density, the slower is the surface runoff (Taha et al., 2017), and consequently the less susceptible is the basin to flooding (Carlston, 1963). Low values of stream frequency (1.0–3.5) indicate that the stream is controlled by fractures, and high stream frequency (4–10) signifies low impermeability and more surface runoff (Melton, 1957).

The WEB has a stream frequency of 10.3, whereas it varies from 5.3 for SW 10 to 13.3 for SW 14. These values denote high surface runoff and low infiltration of the surface water. It confirms that the study area is generally not influenced by the tectonics in the Dead Sea region. SW 14 is the most susceptible sub-watershed for flooding.
with low infiltration capacity. Variation in F_s may be attributed to differences in lithology, and initial resistance of rocks to erosion. Most of the sub-watersheds have stream frequency values in the range of 5.3–10.09. Stream frequency has a direct relationship with the susceptibility to flooding; therefore, sub-watershed 14 was given the highest rank (5), whereas sub-watersheds 10 and 15 were given the lowest rank (1).

Bifurcation ratio (R_b) and mean bifurcation ratio (R_{bm})

Bifurcation ratio (R_b) is defined as the ratio of the number of stream segments of given order to the number of segments of the next higher order (Schumm, 1956). Low values of R_b dominate structurally less disturbed watersheds, or watersheds without any distortion of drainage pattern (Strahler, 1964). High R_b indicates high runoff producing potential of a watershed and short lag time (Howard, 1990). The mean bifurcation ratio (R_{bm}) is a measure of the degree of distribution of the stream network (Mesa, 2006). Maturely dissected basins have (R_{bm}) values in the range of 3–5, which indicates a geological control (Vittala, Govindaiah, & Honne, 2004).

The WEB has R_{bm} value of 2.05, and it varies from 1.33 for SW 6 to 4.14 for SW 18. The susceptibility of the WEB sub-watersheds to flooding was assessed using El-Shamy (1992). The method is based on the relationship between bifurcation ratio (R_b) and drainage density (D_d), and the relationship between bifurcation ratio (R_b) and stream frequency (F_s). The two relationships are presented graphically, where each plot contains two curves, dividing the area into three fields or classes:

- **Class A**, where R_b is high, and D_d and F_s are low. Sub-watersheds falling in this file have high groundwater recharge potential but low flash flood possibility.
- **Class B**, where R_b is low, and D_d and F_s are high. Sub-watersheds falling in this field have low groundwater recharge potential, but high possibility of flash flood.
- **Class C**, where R_b, D_d, and F_s are moderate. Sub-watersheds falling in this field have moderate potentiality of both groundwater recharge and flooding.

The relationship between the R_b and F_s for all sub-watersheds within the WEB reveals that all the sub-watersheds have high flood potential (Figure 7a). In the case of the relationship between R_b and D_d, it can be seen that 20 sub-watersheds out of 21 are falling in the high flood potential field (Figure 7b).

4.1.3 | Shape parameters

Elongation ratio (R_e)

R_e is a measurement of the basin shape (Horton, 1932). The values of R_e can be divided into three groups (Magesh et al., 2011): circular with R_e values greater than 0.9, oval with R_e in the range of 0.9–0.8, and less elongated with R_e less than 0.7. If R_e value approaches 1, the shape of the basin approaches a circle (Abdel-Lattif & Sherief, 2012), and circular basins are more efficient in runoff than elongated ones (Singh & Singh, 1997). R_e reflects basin relief where values close to 1 are characteristic of basins having very low relief, and values in the range of 0.6 to 0.8 are characteristic of basins having high relief and steep slopes (Dar, Chandra, & Romshoo, 2013).

The WEB has R_e value of 0.62, and can be described as an elongated basin with high relief and steep slopes. SW 20 has the lowest sensitivity to flooding ($R_e = 0.66$), whereas SW 6 has the lowest R_e (0.41) indicating more susceptibility to flooding. Generally speaking, the SWs can be described as elongated, with high relief, and steep slopes. R_e has an inverse correlation with flooding; therefore, sub-watersheds 6, 15, and 19 with R_e in the range of 0.41–0.46 were given the highest rank (5), whereas sub-watersheds 1, 5, 11, 13, 14, and 20 with R_e in the range of 0.61–0.66 were given the lowest rank (1).

FIGURE 7 Bifurcation ratio versus stream frequency (a) and bifurcation ration versus drainage density (b)
Circularity ratio (R_c)
The circulatory ratio is defined as the proportion of the basin area to the area of circle having the same perimeter of the basin (Miller, 1953). R_c is influenced by the length and frequency of streams, geological structures, climate, roughness, and slope (Bisht, Chaudhry, Sharma, & Soni, 2018). Elongated basins have R_c close to 0, whereas circular basins have R_c close to 1 (Bisht et al., 2018). The basin shape is strongly elongated and has high infiltration rate if the circularity ratio is in the range of 0.4–0.5 (Ali et al., 2018; Aparna, Nigee, Shimna, & Drissia, 2015). R_c is directly correlated with flash floods that is, higher values of R_c indicating less availability of time for surface runoff to infiltrate and thus flooding. The WEB has R_c value of 0.49, indicating that the basin is at an early stage of topographical maturity. Based on R_c values, all sub-watersheds in the WEB can be described as strongly elongated. The lowest R_c was found for SW 15, and the highest R_c was found for SW 20, and thus high potential for flooding. The highest R_c values were found for sub-watersheds 1, 5, 11, 13, 14, 20 and 21; therefore, sub-watersheds were given the highest rank (5), whereas the lowest values were found for sub-watersheds 2, 3, 6, 15, 16, and 19, which were given the lowest rank (1).

Shape factor (B_s)
The shape of the basin as well as basin length and relief determine the rate of sediment and water yield (Farhan, Anbar, Al-Shaikh, & Mousa, 2017). Low B_s values indicate high relief and steep slopes, which enhances flooding. The WEB has B_s value of 3.31, where it varies from 2.92 for SW 20 to 7.61 for SW 6. These values indicate that the elongated shape is the characteristic feature of the sub-watersheds as found in the circulatory ratio above. Shape factor has an inverse relationship with flooding; therefore, sub-watersheds 1, 5, 11, 12, 13, 14, 20, and 21 with low B_s values were given the highest rank (5), and sub-watersheds 6, 15, and 19 with high B_s values were given the lowest rank (1).

4.1.4 Relief parameters
Basin relief (H), relief ratio (R_r), relative relief ratio (R_v)
Basin relief is the difference in elevation between the highest and lowest points in the basin. It has an important role in landforms development, drainage development, surface and subsurface water flow, permeability, and erosional properties of the terrain (Magesh et al., 2011). The total basin relief (H) of the WEB is 1,514.5 m. This high value indicates low infiltration and high surface runoff conditions. The lowest H value was found for SW 7 (444 m), whereas the highest value was found for SW 7 (1,030 m), indicating that the latter has a high potentiality to produce surface runoff.

Relief ratio (R_r) is the horizontal distance along the longest dimension of the basin parallel to the principal drainage line (Magesh et al., 2011). High R_r values signify short lag time, sudden peak discharge, and thus high potentiality of flash flood occurrence (Abuzied et al., 2016; Ameri et al., 2018). The WEB has relief ratio of 105.1, which means high potential of flash flood occurrence. SW 12 ($R_r = 0.32$) is the most sensitive sub-watershed to flooding, whereas SW 21 ($R_r = 0.09$) is least sensitive one. The highest values of R_r were found within those sub-watersheds located in the northwest part of the WEB where the land surface slope is low.

Relative relief ratio (R_v) can be utilised to present a basin relief dimensions without taking into consideration the sea level (Bisht et al., 2018). The WEB has R_v value of 0.04. R_v value varies between 0.03 (SW 21) and 0.1 (SW 7). These values indicate low to high sensitivity to flooding, respectively. R_v has a direct relationship with flooding (Macka, 2001); therefore; sub-watersheds 7 and 10 with the highest R_v values were given the highest rank (5), and sub-watersheds 4 and 21 with low R_v values were given the lowest rank (1).

Basin slope (S_w)
Basin slope is a significant morphometric parameter that affects the hydrological processes, especially surface runoff amount and speed, and the time needed for runoff to enter a stream channel (Meraj, Yousuf, & Romshoo, 2013). Higher slopes lead to rapid runoff and less groundwater recharge potentiality (Bisht et al., 2018). Watersheds with high reliefs and steep slopes are susceptible to flash floods. The WEB has S_w value of 6.31, which is considered high that implies high potential of flash floods. Based on S_w values, SW 12 with a slope of 19.1 is the most prone sub-watershed to flooding, whereas SW 21 is the least sensitive one. The slope values are expressed here in degrees. Slope has a direct relation with flooding; therefore, sub-watersheds 2, 7, and 12 with the highest S_w values were given the highest rank (5), whereas sub-watershed 21 with the lowest S_w values was given the lowest rank (1).

Ruggedness number (R_n)
Ruggedness refers to the level of smoothness and roughness of the basin terrain or surface unevenness (Selvan, Ahmad, & Rashid, 2011). High ruggedness number indicates steep slopes, and thus resulting in flash floods and erosion (Patton & Baker, 1976). Ruggedness number becomes higher if the drainage density and relief are extremely higher, causing not only steep slopes but also long slopes (Strahler, 1957).
The WEB has R_n of 4.83, and can be described as a basin of badland topography that has high potential for floods and erosion. R_n varies between 0.99 for SW 14 with low sensitivity for flooding, and 3.6 for SW with high sensitivity. A strong positive correlation ($r = .80$) was found between drainage density and the ruggedness number, and strong positive correlation ($r = .92$) was found between the basin relief and ruggedness number (Figure 6d). R_n is directly correlated with flooding; therefore, sub-watersheds 1, 2, 7 and 10 with the highest R_n values were given the highest rank, and sub-watersheds 4, 14, and 21 with the lowest R_n values were given the lowest rank (1).

Surface characteristics of the basin like relief, relief ratio, slope, relative relief ratio, and ruggedness are important parameters that determine a basin hydrological behaviour and runoff accumulation (Schumm, 1956). High values of relief ratio and slope lead to fast runoff, short lag time, and high peaks, and consequently lead to high susceptibility to flooding (Abuzied et al., 2016). In the study area, the highest values of these parameters are found in general in the middle and northwest parts of the study area, making sub-watersheds in these parts more susceptible to flooding.

4.1.5 Hypsometric parameters

Hypsometric integral (HI)

Hypsometric Integral (HI) is a function of dissection of the topography, and it provides an efficient tool to assess interactions existing between tectonic uplift, climate, lithology, and erosion (Pavano, Catalano, Romagnoli, & Tortorici, 2018). The WEB has HI value of 0.64, where it varies from 0.46 for SW 14 to 0.77 for SW 6. The lowest values of HI (0.46–0.59) are found for sub-watersheds located in the middle and northwest parts of the study area, making these sub-watersheds more susceptible to flooding. Sub-watersheds 4, 9, 11, 12, and 14 with the lowest HI values (0.46–0.53) were given the highest rank (5). The variation in the HI reflects the steps of erosional development in different sub-watersheds. Watersheds at equilibrium or on maturity have HI values in the range of 0.35–0.6 (Kumar & Joshi, 2015).

4.2 Flash floods prioritisation of the WEB

Watersheds characteristics determine the way these watersheds behave. Therefore, critical sub-watersheds should be demarcated for the purpose of proper and concentrated management and planning. The above discussed morphometric parameters were used for the purpose of prioritisation of the sub-watersheds in the WEB regarding its susceptibility for flooding. Basin area, drainage density, stream frequency, circularity ratio, relief ratio, relative relief ration, basin slope, and ruggedness number have a direct relationship with runoff. In other words, the higher the values of these parameters, the higher is the opportunity for flooding to occur, and sub-watersheds having the highest value was given the highest rank (5). On the contrary, length of overland flow, elongation ratio, shape factor, and the hypsometric integral have an inverse relationship with runoff. It means that the lower values of these parameters, the higher is the opportunity for flooding to take place. Accordingly, the lowest value of these parameters was given the highest rank (5).

The total rank was determined for each sub-watershed based on the computed morphometric parameters, which is then normalised and classified into 5 categories of flash flood susceptibility (Table 3). These categories are very high (0.8–1), high (0.6–0.8), moderate (0.4–0.6), low (0.2–0.4), and very low (0–0.2) priorities. The final susceptibility to flash flood map is illustrated in Figure 8.

It was found that 7 sub-watersheds (SW 1, 2, 5, 7, 9, 10, 13), which constitute about 33.8% of the total area are in the very high priority class, indicating that these sub-watersheds are very highly-susceptible to flash flood. Eight sub-watersheds (SW 3, 8, 11, 12, 14, 17, 18, 20) forming 30.2% of the total area are in the high priority class, and thus having a high susceptibility to flash flood. The moderate class involves only 3 sub-watersheds (SW 15, 19, 21) forming about 15.5% of the total area of the basin. The low category priority covers two sub-watersheds (SW 4, 16), and the very low priority consists of only one sub-watershed (SW 6).

The average values of the morphometric parameters of the priority classes are depicted in Figure S2. The average drainage density of the high-very high, moderate, and low-very low priorities is 3.18, 2.88, and 2.28, respectively. Stream frequency (F_s) is directly correlated with flash flood susceptibility; the high-very high priority class has the highest average F_s of 9.65, followed by the low-very low priority which has an average F_s of 8.81. The moderate class has the lowest average F_s of 7.89. Shape factor (B_s) is inversely correlated with the sub-watershed susceptibility to flash flood. The average B_s value of three classes (high-very-high, moderate, low-very low) is 4.3, 5.8, and 5.7. Basin relief (H) which affects many other morphometric parameters is highest for the high-very high priority class (795m). The moderate class has the lowest average basin relief value of 597 m, and the low-very low class has an intermediate average basin relief.
value of 718 m. Basin slope (S_w) has a prominent effect on the potentiality of surface runoff and flooding, where sub-watersheds with steep slopes have high potentiality of flash floods. The highest average S_w was found for the very high-high class (14.7%), whereas the lowest average value was found for low-very low class (9%). The moderate class has an intermediate average value of 10.9%. Ruggedness number (R_n) is another important morphometric parameter that affects watershed vulnerability to flash floods. The average R_n for the high-very high class was the highest reaching 2.6, followed by the moderate class which shows an average R_n value of 1.7. The R_n of the low-very low priority class is slightly lower than that of the moderate class and approaches 1.6. Circularity ratio (R_c) is another shape parameter that strongly affects a watershed vulnerability to flooding. The high-very high class has the highest average R_c reaching 0.29, followed by the intermediate class (0.27). The low-very low class has the lowest R_c value of 0.23.

The results and analyses obtained in the present study have multiple fields for practical application and future development. Two main types of applied studies can be derived from the morphometric analysis of small river basins such as Wadi Easal in arid climate: First, locating sub-basins with high flash flood hazard, so responsible authorities take appropriate measures of reducing such hazards by devising prevention, protection and mitigation plans. In view of the variables controlling flash flood hazard and their spatial distribution, the potential hazard can be predicted in other basins with a similar hydrographic configuration as the proposed methodology provides quick, useful information for flood susceptibility.
and, eventually, vulnerability assessment. Although this methodology is perhaps one of the main potential strengths of this research and can be extended to other areas of study, validation was not possible due to lack historical records for the study area.

Second, determination of priority areas for future risk management plans. The local authorities must be aware of potential flash floods in the area. In view of agriculture as the major production sector, special emphasis will be placed on this sector in future to reverse the situation of flash flood risk. Additionally, special attention should be paid to people living down the basin outlet with specific plans and programs to adjust their flash flood risk perception. These actions must include meetings for showing the flood hazard map of the basin and evidence (e.g., photographs and reports) of the results of past flood events in the neighbouring basins. A potential dam site may be proposed to mitigate flash floods. The best location could be in the lower reaches of sub-basin no.1 as it is characterised by very high priority for flash flood management and receives huge amount of water from the sub-basins in the upper part of the basin that are also classified as very high and high priority zones for flash flood. However, this should be supported and integrated by carrying out detailed hydrological and geotechnical studies.

5 | CONCLUSIONS

Since there are not enough historical climatic and hydrological records that are required for hydrological
modelling, morphometric analysis has been efficiently used to assess sub-watershed susceptibility to flooding. Morphometric analysis of the Wadi Easal Basin has shown that the basin is a fifth-order drainage system having high-very high sensitivity to flash floods (64% of the total area). Relative relief ratio, stream frequency, relief ratio, circulatory ratio, basin slope, drainage density, and ruggedness number are the main influential parameters on the hydrological response to flooding in the WEB. Moreover, the study showed that protection of the area from flash floods should be a top priority for competent authorities to protect human lives and agricultural farms and eventually avoid tragic such as the Wadi Zarqa Ma’in incident occurred in 2018. Development of water resources by construction of a dam downstream of the basin is highly recommended which has threefold services including lowering the potential of flash floods, wise utilisation of surface water for irrigation and recharging the groundwater aquifers. The findings reached by the study indicated that flood susceptibility maps could assist disaster planners and decision makers to deal with high and very high susceptible areas to flash floods by adapting mitigating/preventive measures of flash flood, such as planting vegetation, terracing hillsides, and floodways, dams, and retention ponds construction. Furthermore, the study proved that integration of morphometric analysis with GIS can provide a significant tool to understand sub-watersheds properties related to flooding management.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Mutawakil Obeidat https://orcid.org/0000-0001-7486-4205

REFERENCES
Abdel-Latif, A., & Sherief, Y. (2012). Morphometric analysis and flash floods of Wadi Sudr and Wadi Wardan, Gulf of Suez, Egypt: Using digital elevation model. Arabian Journal of Geosciences, 5, 181–195.
Abed, M. (2014). Wadi ISAL, an alternative to Wadi Numayra for the selection of dam site. Unpublished report. Amman, Jordan: Jordan Valley Authority.
Abuzzied, S., Yuan, M., Ibrahim, S., Kaiser, M., & Saleem, T. (2016). Geospatial risk assessment of flash floods in Nuweiba area, Egypt. Journal of Arid Environments, 133, 54–72.
Adnan, M. S. G., Dewan, A., Zannat, K., & Abdallah, A. Y. M. (2019). The use of watershed geomorphic data in flash flood susceptibility zoning: A case study of the Karnaphuli and Sangu river basins of Bangladesh. Natural Hazards, 99, 425–448.
Aher, P. D., Adinarayana, J., & Gorantiwar, S. D. (2014). Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. Journal of Hydrology, 511, 850–860.
Alam, A., Ahmed, B., & Sammonds, P. (2020). Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quaternary International. https://doi.org/10.1016/j.quaint.2020.04.047
Ali, S. A., Parvin, F., Pham, Q. B., Vojtek, M., Vojtekova, J., Costache, R., ... Ghorbani, M. A. (2020). GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, nave Bayes tree, bivariate statistics and logistic regression: A case study of Topla's basin, Slovakia. Ecological Indicators, 117, 106620. https://doi.org/10.1016/j.ecolind.2020.106620
Ali, U., Ali, S. A., Ikbal, J., Bashir, M., Fadhil, M., Ahmad, M., ... Ali, S. (2018). Soil erosion risk and flood behavior assessment of Sukhnag catchment Kashmir Basin: Using GIS and remote sensing. Journal of Remote Sensing and GIS, 7, 1. https://doi.org/10.4172/2469-4134.1000230
Al-Nawaiseh, S. (2011). Landslide susceptibility assessment using geomorphologic information and GIS in Wadi Assal Basin, southern Jordan. Abhath Al Yarmouk, 19(3), 765–790.
Al-Qudah, K. (2011). Floods as water resource and as a hazard in arid regions: A case study in southern Jordan. Jordan Journal of Civil Engineering, 5, 148–161.
Ameri, A. A., Pourghasemi, H. R., & Cerda, A. (2018). Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models. Science of the Total Environment, 613–614, 1385–1400.
Aparna, P., Nigee, K., Shimna, P., & Drissia, T. K. (2015). Quantitative analysis of geomorphology and flow pattern analysis of Muvattupuzha River Basin using geographic information system. Journal Aquatic Procedia, 4, 609–616.
Arefin, R., Mohir, M. M. I., & Alam, J. (2020). Watershed prioritization for soil and water conservation aspect using GIS and remote sensing: PCA-based approach at northern elevated tract Bangladesh. Applied Water Science, 10, 91. https://doi.org/10.1007/s13201-020-1176-5
Arnous, M., Aboulela, H., & Green, D. (2011). Geo-environmental hazards assessment of the North Western Gulf of Suez, Egypt. Journal of Coastal Conservation, 15, 37–50.
Asfaw, D., & Workineh, G. (2019). Quantitative analysis of morphometry on Ribb and Gumara watersheds: Implications for soil and water conservation. International Soil and Water Conservation Research, 7, 150–157.
Azmeri, H. I. K., & Vadiya, R. (2016). Identification of flash flood hazard zones in mountainous small watershed of Acheh Besar Regency, Acheh Province, Indonesia. The Egyptian Journal of Remote Sensing and Space Sciences, 19, 143–160.
Bender, F. (1974). Geology of Jordan (p. 196). Berlin, Stuttgart: Gebruder Borntraeger.
Bhat, M. S., Alam, A., Ahmad, S., Farooq, H., & Ahmad, B. (2019). Flood hazard assessment of upper Jhelum basin using morphometric parameters. Environmental Earth Sciences, 78, 54. https://doi.org/10.1007/s12665-019-8046-1
Bhatt, S., & Ahmed, S. A. (2014). Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto International, 29(8), 878–894.
Bisht, S., Chaudhry, S., Sharma, S., & Soni, S. (2018). Assessment of flash flood vulnerability zonation through geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India. *Remote Sensing Applications: Society and Environment, 12*, 35–47.

Biswas, S., Sudhakar, S., & Desai, R. (1999). Prioritization of sub watersheds based on morphometric analysis of drainage basin – A remote sensing and GIS approach. *Journal of the Indian Society of Remote Sensing, 27*(3), 155–166.

Borga, M., Gaume, E., Creutin, J. D., & Marchi, L. (2008). Surveying flash floods: Gauging the ungauged extremes. *Hydrological Processes, 22*, 3883–3885.

Borreli, P., Robinson, D. A., Fleischer, L. R., Lugatom, E., Ballabio, C., Alewell, C., ... Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. *Nature Communications, 8*, 2013. https://doi.org/10.1038/s41467-017-02142-7

Bui, D. T., Hoang, N. D., Martínez-Álvarez, F., Ngo, P. T. T., Hoa, P. V., Pham, T. D., ... Costache, R. (2020). A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. *Science of the Total Environment, 701*, 134413. https://doi.org/10.1016/j.scitotenv.2019.134413

Carlston, C. W. (1963). *Drainage density and streamflow*. Washington: U.S Geological Survey Professional Paper 422-C, United States Government Printing Office.

Charizopoulos, N., Mourtzios, P., Psilakis, T., Psilakis, A., & Karamotso, L. (2019). Morphometric analysis of the drainage network of Samos Island (northern Aegean Sea): Insights into tectonic control and flood hazards. *Comptes Rendus-Geoscience*, 351, 375–383.

Chatterjee, S., Krishna, A. P., & Sharma, P. (2013). Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin. *Environmental Earth Sciences, 71*(1), 357–374.

Christopher, O., Idowu, A., & Olugbenga, A. (2010). Hydrological analysis of Onitsha North East drainage Basin using Geoinformatic techniques. *World Applied Sciences Journal, 11* (10), 1297–1302.

Costache, R., Hong, H., & Pham, Q. B. (2019). Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. *Science of the Total Environment, 711*, 134514. https://doi.org/10.1016/j.scitotenv.2019.134514

Dar, R.A., Chandra, R. & Romshoo, S.A. (2013). Morphotectonic and lithostratigraphic analysis of intermontane Karewa Basin of Kashmir Himalayas, India. *Journal of Mountains Science, 10* (1), 1–15.

Das, S. (2020). Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). *Remote Sensing Applications: Society and Environment, 20*, 100379. https://doi.org/10.1016/j.rsase.2020.100379

Destro, E., Amponsah, W., Nikolopoulos, E. I., Marchi, L., Marra, F., Zoccatelli, D., & Borga, M. (2018). Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event. *Journal of Hydrology, 558*, 225–237.

El-Shamy, I. (1992). Recent recharge and flash flooding opportunities in the Eastern Desert, Egypt. *Annuals of Geological Survey of Egypt, 18*, 323–334.

Farhan, Y., & Anaiba, O. (2016). Flash flood risk estimation of Wadi Yutum (southern Jordan) watershed using GIS based: Morphometric analysis and remote sensing techniques. *Open Journal of Modern Hydrology, 6*, 79–100.

Farhan, Y., Anbar, A., Al-Shaikh, N., & Mousa, R. (2017). Prioritization of semi-arid agricultural watershed using morphometric and principal component analysis, remote sensing, and GIS techniques, the Zerqa River Watershed, Northern Jordan. *Agricultural Sciences, 8*, 113–148.

Farhan, Y., Anbar, A., Enaba, O., & Al-Shaikh, N. (2015). Quantitative analysis of geomorphometric parameters of Wadi Kerak, Jordan, using remote sensing and GIS. *Journal of Water Resource and Protection, 7*, 456–475.

Gabriel, A. T., Yusuf, M. B., & Bwadi, B. E. (2020). Morphometric analysis and flash flood assessment of River Taraba Basin in Taraba State, Nigeria. *European Scientific Journal, 16*(20), 158–175.

Gizachew, K., & Berhan, G. (2018). Hydro-geomorphological characterization of Dhdhessa River Basin, Ethiopia. *International Soil and Water Conservation Research, 6*, 175–183.

Grabs, W. E. (2010). Regional flash flood guidance and early warning system. *Associated Programme on flood management. Switzerland: WMO*

Guha-Sapir, D., Hoyois, P., Wallmeacq, P., & Below, R. (2017). *Annual disaster statistical review 2016: The numbers and trends* (p. 2016). Brussels: CRED.

Harlin, J. M., & Wijeyawickrema, C. (1985). Irrigation and groundwater depletion in Caddo County, Oklahoma. *Journal of the American Water Resources Association, 21*(1), 15–22.

Horton, R. (1932). Drainage basin characteristics. *Transactions, American Geophysical Union, 13*, 350–361.

Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. *Bulletin of the Geological Society of America, 56*, 275–370.

Howard, A. D. (1990). Role of hypsometry and planform in basin hydrologic response. *Hydrological Processes, 4*(4), 373–385.

Hussein, S., Abdelkareem, M., Hussein, R., & Askalan, M. (2019). Using remote sensing data for predicting potential areas to flash flood hazards and water resources. *Remote Sensing Applications: Society and Environment, 16*, 100254. https://doi.org/10.1016/j.rsase.2019.100254

Jodar-Abellan, A., Valdes-Abellan, J., Pla, C., & Gomariz-Castillo, F. (2019). Impact of land use changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain). *Science of the Total Environment, 657*, 1578–1591.

Kannan, R., Venkateswaran, S., Vijay Prabhum, M., & Sankar, K. (2018). Drainage morphometric analysis of the Nagavathi watershed, Cauvery river basin in Dharmapuri district, Tamil Nadu, India using SRTM data and GIS. *Data in Brief, 19*, 2420–2426.

Karamouz, M., & Fereshtehpour, M. (2019). Modeling DEM errors in coastal flood inundation and damages: A spatial non-stationary approach. *Water Resources Research, 55*(8), 6606–6624.
Kaur, M., Singh, S., Verma, V. K., & Pateriya, B. (2014). Quantitative geomorphological analysis and land use/land cover change detection of two sub-watersheds in NE region of Punjab, India. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8*, 2014 ISPRS Technical Commission VIII Symposium, 09–12 December 2014, Hyderabad, India.

Kelson, K. I., & Wells, S. G. (1989). Geologic influences on fluvial hydrology and bed load transport in small mountainous watersheds, northern New Mexico, USA. *Earth Surface Processes and Landforms*, 14, 671–690.

Kumar, P., & Joshi, V. (2015). Characterization of hydrogeological behavior of the upper watershed of River Subarnarekha through morphometric analysis using remote sensing and GIS approach. *International Journal of Environmental Sciences*, 6(4), 429–447. https://doi.org/10.6088/ijes.6049

Kumar, R., Kumar, S., Lohani, A. K., Nema, R. K., & Singh, R. D. (2000). Evaluation of geomorphological characteristics of a catchment using GIS. *GIS India*, 9(3), 13–17.

Macka, Z. (2001). Determination of texture of topography from large scale contour maps. *Geografski Vestnik*, 73(2), 53–62.

Magd, N. S., Chaprasekhar, N., & Soundanagayam, J. P. (2011). Morphometric evaluation of Papanasam and Manimuthar watersheds, part of Western Ghats. Tirunelveli District, Tamil Nadu, India: A GIS approach. *Environmental Earth Sciences*, 64, 374–381.

Mahmood, S., & Rahman, A.-U. (2019). Flash flood susceptibility modeling using geo-morphometric and hydrological approaches in Panjkora Basin, Eastern Hindu Kush, Pakistan. *Environmental Earth Sciences*, 78, 43. https://doi.org/10.1007/s12665-018-8041-y

Malik, M. I., Bhat, M. S., & Kuchay, N. A. (2011). Watershed based drainage morphometric analysis of Lidder catchment in Kashmir valley using Geographical Information System. *Recent Research in Science and Technology*, 3(4), 118–126.

Marchi, L., Borgia, M., Preciso, E., & Gaume, E. (2010). Characterisation of selected extreme flash floods in Europe and implications for flood risk management. *Journal of Hydrology*, 394 (1–2), 118–133.

MEECP (Mostaqlal Engineering and Environmental Consultants, and Pakistan Engineering Services). (2016). *Consultancy engineering service for Wadi Easal-Recognition Report. Unpublished Report*. Amman, Jordan: Ministry of Water and Irrigation and Jordan Water Authority.

Melton, M. A. (1957). Correlations structure of morphometric properties of drainage systems and their controlling agents. *Journal Geology*, 66, 442–460.

Meraj, G., Yousuf, A. R., & Romshoo, S. A. (2013). *Impacts of the geo-environmental setting on the flood vulnerability at watershed scale in the Jhelum basin*. M Phil dissertation. India: University of Kashmir. http://dspaces.uok.edu.in/jspui/handle/1/1362

Mesa, L. M. (2006). Morphometric analysis of subtropical Andean basin (Tucuman, Argentina). *Environmental Geology*, 50, 1235–1242.

Miller, V. C. (1953). *A quantitative geomorphic study of drainage basin characteristics on the Clinch Mountain area, Virginia and Tennessee*. Proj. NR 389–402, Tech Rep 3. New York: Columbia University, Department of Geology, ONR.

Modrick, T. M., & Georgakakos, K. P. (2015). The character and causes of flash flood occurrence changes in mountainous small basins of Southern California under projected climatic change. *Journal of Hydrology: Regional Studies*, 3, 312–336.

Obi Reddy, G. E., Maji, A. K., & Gajbhiye, K. S. (2002). GIS for morphometric analysis of drainage basins. *GIS India*, 4(11), 9–14.

Ogarek, N. M., Ohio, E. A., Tenebe, I. T., Emenike, P. C., & Nnaji, C. C. (2020). Flood vulnerability assessment of the upper Cross River basin using morphometric analysis. *Geometrics, Natural Hazards and Risk*, 11(1), 1378–1403.

Okumura, M., & Araujo, A. G. (2014). Long-term cultural stability in hunter–gatherers: A case study using traditional and geometric morphometric analysis of lithic stemmed bifacial points from Southern Brazil. *Journal of Archaeological Science*, 45, 59–71.

Pan, N., Dubey, R. K., Bhatt, A., Rai, S. P., Semwal, P., & Mishram, S. (2020). Soil erosion and flood hazard zonation using morphometric and morphotectonic parameters in Upper Alaknanda river basin. *Natural Hazards*, 103, 3263–3301.

Patel, D., Dholakia, M., Naresh, N., & Srivastava, P. (2012). Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the Lower Tapi Basin. *Journal of the Indian Society of Remote Sensing*, 40, 299–312.

Patton, P. C., & Baker, V. R. (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. *Water Resources Research*, 12, 941–952.

Pavano, F., Catalano, S., Romagnoli, G., & Tortorici, G. (2018). Hypsometry and relief analysis of the southern termination of the Calabrian arc, NE Sicily (southern Italy). *Geomorphology*, 304, 74–88.

Powell, J. (1988). The geology of the Karak area. Map Sheet No. 3152-III, Nat. Res. Auth., Geol. Dir., Geol. Map. Div., Bulletin 8, Amman, 172 p.

Puno, G. R., & Puno, R. C. C. (2019). Watershed conservation prioritization using geomorphometric and land use/land cover parameters. *Global Journal of Environmental Science and Management*, 5(30), 279–294.

Rajasekhar, M., Sudarasa Raju, G., & Siddi Raju, R. (2020). Morphometric analysis of the Jilledubanderu River Basin, Anantapur District, Andhra Pradesh, India, using geospatial technologies. *Groundwater for Sustainable Development*, 11, 100434. https://doi.org/10.1016/j.gsd.2020.100434

Ratna Reddy, V., Saharawat, Y. S., & George, B. (2017). Watershed management in South Asia: A synoptic review. *Journal of Hydrology*, 551, 4–13.

Ratnam, K. N., Rao, V. V., & Amminedu, E. (2005). Check dam management in South Asia: A synoptic review. *Journal of Hydrology*, 315, 133–155.

Ratnam, K. N., Rao, V. V., & Amminedu, E. (2005). Check dam model and morphometric analysis. *Remote Sensing and GIS Perspective*, 33(1), 25–38.

Schumm, S. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. *Geological Society of America Bulletin*, 67, 597–646.

Sebastian, M., Jayaraman, V., & Chandrasekhar, M. G. (1995). *Space technology applications for sustainable development of watersheds. Technical report*. Bangalore: Indian Space Research Organization.

Selvan, M. T., Ahmad, S., & Rashid, S. M. (2011). Analysis of the geomorphometric parameters in high altitude glacierised terrain using SRTM DEM data in central Himalaya, India. *ARPN Journal of Science and Technology*, 1(1), 22–27.
Shivhare, N., Rahul, A. K., Omar, P. J., Chauhan, M. S., Gaur, S., Dikshit, P. K. S., & Dwivedi, S. B. (2018). Identification of critical soil erosion prone areas and prioritization of micro-watersheds using geoinformatics techniques. *Ecological Engineering, 121*, 26–34.

Singh, S., & Singh, M. C. (1997). Morphometric analysis of Kanhar River Basin. *National Geographical Journal of India, 43*, 31–43.

Smith, K. (1950). Standards for grading texture of erosional topography. *American Journal of Science, 248*(9), 655–668.

Soni, S. (2017). Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. *Applied Water Science, 7*, 2089–2102.

Strahler, A. (1952). Hypsometric (area-altitude) analysis of erosional topography. *Geological Society of America Bulletin, 63*, 1117–1142.

Strahler, A. (1957). Quantitative analysis of watershed geomorphology. *Transactions, American Geophysical Union, 38*, 913–920.

Strahler, A. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. Chow (Ed.), *Handbook of applied hydrology* (pp. 439–476). New York: McGraw Hill.

Taha, M. M. N., Elbarbary, S. M., Naguib, D. M., & El-Shamy, I. Z. (2017). Flash flood hazard zonation based on basin morphometry using remote sensing and GIS techniques: A case study of Wadi Qena basin, Eastern Desert, Egypt. *Remote Sensing Applications: Society and Environment, 8*, 157–167.

Toduse, N. C., Ungurean, C., Davidescu, S., Clinciu, I., Marin, M., Nita, M. D., … Davidescu, A. (2020). Torrential flood risk assessment and environmentally friendly solutions for small catchments located in the Romania Natura 2000 sites Ciucas, Postavaru and Mare. *Science of the Total Environment, 698*, 134271. https://doi.org/10.1016/j.scitotenv.2019.134271

UNISDR (2015). Making development sustainable: The future of disaster risk management. In *Global assessment report on disaster risk reduction*. Geneva, Switzerland: United Nations Office for Disaster Risk Reduction (UNISDR).

Vaidya, N., Kuniyal, J. C., & Chauhan, R. (2013). Morphometric analysis using geographic information system (GIS) for sustainable development of hydropower projects in the lower Satluj river catchment in Himachal Pradesh, India. *International Journal of Geomatics and Geosciences, 3*(3), 464–473.

Vittala, S., Govindaiah, S., & Honne, G. H. (2004). Morphometric analysis of sub-watersheds in the Pavagada area of Tumkur district, South India using remote sensing and GIS techniques. *Journal of the Indian Society of Remote Sensing, 32*(4), 351–362.

WMO. (2016). World Meteorological Organization: Flash Flood Guidance System (FFGS) with global coverage Brochure.

Worku, G., Teferi, E., Bantider, A., & Dile, Y. T. (2020). Prioritization of watershed management scenarios under climate change in the Jemma sub-basin of the Upper Blue Nile Basin, Ethiopia. *Journal Hydrology: Regional Studies, 31*, 100714. https://doi.org/10.1016/j.jhr.2020.100714

Youssef, A. M., Pradhan, B., Gaber, A. F. D., & Buchroithner, M. F. (2009). Geomorphological hazards analysis along the Egyptian Red Sea Coast between Safaga and Quseir. *Natural Hazards and Earth System Sciences, 9*, 751–766.

Youssef, A. M., Pradhan, B., & Hassan, A. M. (2011). Flash flood risk estimation along the St. Katherine Road, Southern Sinai, Egypt using GIS based morphometry and satellite imagery. *Environmental Earth Sciences, 62*, 611–623.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Obeidat M, Awawdeh M, Al-Hantouli F. Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin (WEB), Jordan, using geospatial technologies. *J Flood Risk Management*. 2021;14:e12711. https://doi.org/10.1111/jfr3.12711