Up-Regulation of Gene Related to Anergy in Lymphocytes Is Associated with Notch-Mediated Human T Cell Suppression

Alex M. Kostianovsky, Lisa M. Maier, Clare Baecher-Allan, Ana C. Anderson, and David E. Anderson

A growing body of literature indicates that the Notch pathway can influence the activation and differentiation of peripheral murine T cells, though comparatively little is known about the effects of Notch signaling in human T cells. In the present report we demonstrate that Jagged-1-induced Notch signaling (using immobilized Jagged-1 fusion protein) during stimulation of purified human CD4+ and CD8+ T cells potently inhibits T cell proliferation and effector function, including both Th1- and Th2-associated cytokines. Inhibition of T cell activation is not due to apoptosis or disruption of proximal TCR signaling, but is associated with up-regulation of GRAIL (gene related to anergy in lymphocytes) in CD4+ T cells, with modest effects on other E3 ubiquitin ligases such as c-Cbl and Itch. When evaluated for its effects on CD4+ T cell differentiation, Jagged-1-mediated signaling inhibits T cell cytokine secretion with no significant effect on proliferative responses. Collectively, these data demonstrate that Notch signaling in human T cells induced by Jagged-1 promotes a novel form of T cell hyporesponsiveness that differs from anergy, whereby primary T cell proliferation and cytokine secretion are potently inhibited, and effector function but not proliferative capacity are ameliorated upon secondary stimulation. The Journal of Immunology, 2007, 178: 6158–6163.

Notch signaling plays an essential role in developing tissues by influencing the specification of cell fates in diverse settings (1, 2). Mammals have genes encoding four Notch receptors (Notch 1–4) and five ligands, classified into two structurally related groups: Delta-like ligands (Dll-1, Dll-3, and Dll-4) and serrate-like ligands (Jagged-1 and Jagged-2). Notch receptors and ligands are widely expressed by both hematopoietic and nonhematopoietic cells, and a given cell can express multiple ligands and receptors. Notch signaling is initiated by receptor-ligand interaction, which leads to proteolytic cleavages that free the cytoplasmic portion of Notch (Notch-IC) from the membrane and allow it to enter the nucleus and bind to the transcription factor CSL (core binding factor-1, suppressor of hairless, Lag1). In turn, CSL displaces corepressors and induces expression of Hes (Hairy Enhancer of Split) and HERP (Hes-related proteins) gene family members. Notch signaling, however, is regulated by a wide variety of mechanisms that include regulation of Notch ligand surface expression, glycosylation of Notch receptors, targeting cytoplasmic or nuclear Notch-IC for ubiquitination and proteosomal destruction, and regulating CSL transcriptional activity (3). As signals are dose- and context-dependent (cell type), the consequences of Notch signaling cannot reliably be predicted, and can variably promote cell proliferation or cell cycle arrest, differentiation or self-renewal, survival or apoptosis (4).

The role of Notch signaling during lymphocyte maturation and differentiation is well documented (5). In addition, it is becoming increasingly clear that Notch signaling regulates peripheral T cell responses (5). There are several reports demonstrating that Notch signaling can inhibit T cell activation (6–8), influence Th cell differentiation (9, 10), or generate immunosuppressive regulatory T cell populations (11–13). The overwhelming majority of these data are derived from murine studies.

In the present study we evaluated the role of the Notch pathway in regulation of peripheral human T cell activation. Using immobilized recombinant Jagged-1 Fc protein to initiate Notch signaling, we demonstrate that Jagged-1-mediated Notch signaling inhibits the activation of naive and memory CD4+ and CD8+ T cells. Mechanistically, Jagged-1-mediated signaling does not induce apoptosis of T cells or disrupt proximal TCR signaling. Jagged-1-mediated signaling does, however, up-regulate expression of the gene related to anergy in lymphocytes (GRAIL), although small interfering RNA (siRNA) experiments suggest that GRAIL is not solely responsible for the Jagged-1-associated T cell suppression. Finally, secondary stimulation experiments indicate that Jagged-1-mediated Notch signaling in human CD4+ T cells induces a unique form of T cell suppression whereby T cells can proliferate normally upon secondary stimulation but secrete significantly reduced levels of cytokine.

Materials and Methods

Cell purification/isolation

In compliance with appropriate institutional review board protocols, PBMC were isolated from leukopaks by density gradient centrifugation. Total CD4+, total CD8+, and naive (CD45RA−) and memory (CD45RO+) CD4+ T cells were isolated from PBMCs by negative selection using immunomagnetic beads and the MACS system (Miltenyi Biotec). Unless specified otherwise, cells were resuspended in serum-free Ex Vivo 15 medium (Cambrex/BioWhittaker).

1 Abbreviations used in this paper: GRAIL, gene related to anergy in lymphocyte; siRNA, small interfering RNA; CT, cycle threshold.

Copyright © 2007 by The American Association of Immunologists, Inc. 0022-1767/07/$2.00

www.jimmunol.org
Recombinant rat Jagged-1Fc chimera (R&D Systems) was used to deliver signals through Notch, with purified human IgG1 used as an Fc control (The Binding Site). The homology between the extracellular domains of rat and human Jagged-1 is 98%. Purified T cells (2.5 × 10^5/well) were stimulated in triplicate with plate-bound anti-CD3 (OKT3) and anti-CD28 (3D10) mAbs (both at 1 µg/ml) with graded doses of plate-bound Jagged-1Fc or control Fc. After 48 h at 37°C, assay supernatants were collected for cytokine analysis, and cells were pulsed with 1 µCi/ml of [3H]thymidine for the last 24 h. Cells were harvested and [3H]thymidine uptake was determined by liquid scintillation counting. Data were normalized to expression of GAPDH and experiments were run in triplicate.

mRNA expression analysis

Tosyl-activated beads (Dynal Biotech) were coated with Jagged-1Fc or control Fc as well as with anti-CD3/CD28 mAbs (both at 1 µg/ml; BD Biosciences) plus Jagged-1Fc or control Fc (each at 5 µg/ml). Comparable amounts of mAbs and Jagged-1Fc or human IgG were confirmed by flow cytometry (data not shown). CD4⁺ T cells (1 × 10⁵) were incubated at 37°C in 96-well optical reaction plates (Applied Biosystems) with either immobilized Jagged-1 Fc, or anti-CD3/CD28 control Fc beads at a 4:1 bead to T cell ratio. mRNA from CD4⁺ T cells was obtained using RNeasy Mini columns (Qiagen), following the manufacturer’s instructions. Samples were analyzed by quantitative RT-PCR (TaqMan) for HERP-1, Hes-1, HERO-2, GRAIL, ebl-b, and Itch (primer and probes from Applied Biosystems). mRNA levels reported are relative to GAPDH, normalized using the equation 2^(-ΔΔCt). Optimal induction of HERP-1, Hes-1, and HERO-2 was observed at 4 h, whereas for GRAIL optimal induction was at 8 h.

Assessment of T cell apoptosis

CD4⁺ T cells (10⁶ cells/ml/tube) were incubated at 37°C for 4 or 20 h in 5-ml polystyrene round-bottom tubes (BD Biosciences) that were coated either with nothing (unstimulated condition) or with anti-CD3/CD28 mAbs (both at 1 µg/ml) plus Jagged-1Fc or control Fc (each at 5 µg/ml). Cells were stained with annexin V-FITC in conjunction with propidium iodide, using an Apoptosis Detection kit (BD Biosciences). Data was collected on a FACScalibur flow cytometer (BD Biosciences) and analyzed with FlowJo software (Tree Star).

Influence of Jagged-1-mediated signaling on proximal TCR signaling

Phosphorylation-state analysis was performed on human whole blood using BD PhosFlow technology, according to the manufacturer’s instructions (BD Biosciences). Each 1 or 2 ml of whole blood was stimulated with soluble anti-CD3 (UCHT1) mAb plus Jagged-1Fc or control Fc in 50-ml polystyrene Falcon conical tubes. After induction of phosphorylation at 37°C, cells were fixed using 1 ml of BD Pharm Flow Lyse/Fix buffer and permeabilized with 1 ml of BD Perm buffer III (both from BD Biosciences). For four-color cell surface and intracellular staining, 2.5 × 10⁵ cells were stained with CD4-PerCP, CD3-allophycocyanin, and two phosphorylated site-specific mAbs conjugated with Alexa Fluor 488 or PE (all from BD Biosciences): PE mouse anti-CD3 (CD247, pY142), PE mouse anti-LAT (pY171), Alexa Fluor 488 mouse anti-Lck (pY505), PE mouse anti-Zap70 (pY292), and Alexa Fluor 488 mouse anti-SLP-76 (pY128). Data was analyzed using FlowJo software.

siRNA-mediated reduction of GRAIL

siRNA gene silencing was performed using a nucleofector kit for unstimulated human T cells (Amx Biosystems) following the manufacturer’s instructions. A total of six constructs were used for nucleofection: four different GRAIL siRNA constructs (Qiagen), one GFP-positive control vector (Amx Biosystems), and one silencer-negative control siRNA (Ambion), all at 2 µg per reaction. Use of the GFP control vector demonstrated a 70% transfection efficiency. After nucleofection, cells were incubated overnight at 37°C, and then used for functional assays.

Results

Jagged-1-mediated signaling inhibits human T cell activation

To evaluate the effect of Notch signaling during human T cell activation, we stimulated purified ex vivo human CD4⁺ and CD8⁺ T cells with immobilized Abs against CD3 and CD28 in the presence of immobilized Jagged-1Fc fusion protein or control Fc. We first confirmed that use of immobilized Jagged-1Fc would induce Notch signaling. Indeed, 4 h of stimulation of CD4⁺ T cells with beads coated with anti-CD3/CD28 mAbs and Jagged-1Fc up-regulated expression of Notch target genes Hes-1 (6-fold), HERP-1 (30-fold), and HERO-2 (4-fold), confirming that Jagged-1Fc delivered an activating signal through a Notch receptor (Fig. 1).

Using plate-bound anti-CD3/CD28 mAbs and graded doses of immobilized Jagged-1Fc, we then evaluated the effect of Jagged-1-mediated Notch signaling on human T cell activation. Total CD4⁺ and CD8⁺ T cell proliferation was potently inhibited in a dose-dependent fashion after anti-CD3/CD28 stimulation in the presence of Jagged-1Fc (Fig. 2, A and B). We further evaluated the effects of Jagged-1 engagement of naive (CD45RA⁺) and memory (CD45RO⁺) CD4⁺ T cells (Fig. 2, C and D). As for total CD4⁺ and CD8⁺ T cells, Jagged-1 engagement suppressed proliferation of both naive and memory Th cells, with a more pronounced effect on naive T cells. T cell effector function was also inhibited after stimulation in the presence of Jagged-1, as evidenced by suppression of both Th1 (IFN-γ) and Th2 (IL-13) cytokines; there was no evidence for induction of the immunosuppressive cytokine IL-10 (Fig. 2E). Addition of a γ-secretase inhibitor to cultures did not

Statistics

SD for experimental values was calculated using Prism 4.0 software (GraphPad).
reverse suppression associated with Jagged-1 Fc stimulation, indicating that γ-secretase-mediated cleavage of Notch is not required for Jagged-1-mediated suppression of peripheral human T cells (data not shown). Other recent reports have similarly observed that Notch-mediated inhibition of peripheral CD4⁺ T-cell function can occur independently of γ-secretase (8, 15).

Jagged-1-mediated signaling does not induce apoptosis in T cells

Several mechanisms could explain the ability of Jagged-1 signaling to suppress T cell proliferation and cytokine secretion. We first examined whether Jagged-1 signaling might induce apoptosis in T cells. To do so, we determined the frequency of apoptotic cells after anti-CD3/CD28 stimulation of CD4⁺ T cells in the presence of Jagged-1 Fc or control Fc; unstimulated T cells served as a negative control. A certain proportion of T cells undergo apoptosis after stimulation (activation-induced cell death), evidenced by the increased frequency of annexin V-positive (early apoptotic) and annexin V-positive propidium iodide-positive (late apoptotic) cells in stimulated vs unstimulated cells. However, we failed to observe an increase in the frequency of apoptotic T cells that received Jagged-1 signaling during activation, relative to stimulated cells (Fig. 3A). On the contrary, Jagged-1 signaling appeared to inhibit activation-induced cell death because the frequency of viable (nonapoptotic or necrotic T cells) in T cells stimulated in the presence of Jagged-1 Fc was comparable to unstimulated T cells. The effects of Jagged-1 signaling on the frequency of apoptotic cells were apparent at early and later time points examined (4 and 20 h). Thus, apoptosis does not explain the reduction in T cell activation in the presence of Jagged-1 signaling.

Jagged-1-mediated suppression does not abrogate proximal TCR signaling events

During the course of performing the described assays, we consistently observed under light microscopy that T cells stimulated in the presence of Jagged-1 Fc looked morphologically like unstimulated T cells (small and round) rather than T cells stimulated with
This was confirmed by analyzing FSC/SSC properties of stimulated cells in the presence or absence of Jagged-1 Fc (Fig. 3B). This observation, in addition to the data described, led us to hypothesize that Jagged-1 signaling might abrogate TCR-mediated signaling events such that the T cells behaved as though they had received no signal through the TCR. Indeed, this hypothesis is bolstered by reports that Notch receptors colocalize with TCRs during T cell activation and that coligation of TCR, CD28, and Notch-1 inhibits AKT phosphorylation and activation of several TCR-induced transcription factors (6, 8, 16). To directly test this hypothesis, we used flow cytometry and phospho-specific Abs to a variety of molecules to determine whether Jagged-1 Fc signaling during T cell stimulation could abrogate or reduce proximal TCR signaling events. In contrast to our hypothesis, we found no evidence for a reduction in the activation (phosphorylation status) of any of the molecules examined, even when we used suboptimal doses of anti-CD3/CD28 mAbs stimulation and a 10-fold excess of Jagged-1 Fc protein (Fig. 4A). This was true regardless of the time point examined or the amount of anti-CD3 mAb used to activate T cells. Control experiments confirmed that Jagged-1 Fc stimulation alone did not induce phosphorylation of molecules associated with early TCR signaling events (Fig. 4B). Although we were unable to observe any direct evidence for a role of Jagged-1 Fc engagement in abrogation of proximal events associated with TCR signaling, we have observed that Jagged-1 Fc-mediated suppression occurs only when delivered simultaneously with TCR stimulation (data not shown).

FIGURE 4. Jagged-mediated Notch signaling does not alter anti-CD3-induced TCR signaling in CD3^+CD4^+ T cells and does not induce TCR signaling by itself. A, Fresh human whole blood was stimulated with anti-CD3 mAb (at 1 μg/ml) plus Jagged-1 Fc or control Fc (each at 5 μg/ml) for 3 min at 37°C. Comparable results were obtained in independent repeat experiments studying anti-CD3 concentrations ranging from 0.1 to 10 μg/ml whole blood, times of stimulation for 3 and 5 min at 37°C, and Jagged-1 Fc or control Fc concentrations of 5 or 50 μg/ml. Abs used were directed against phosphorylated (activated) forms of signaling molecules. B, There was no evidence of CD33 phosphorylation when cells were stimulated with Jagged-1 Fc or control Fc in the absence of anti-CD3 stimulation.

We reasoned that Jagged-1-mediated signaling might induce genes responsible for the suppressive effects on T cell activation. To elucidate which genes were associated with Jagged-1-mediated T cell suppression, we stimulated total CD4^+ T cells with beads coated with anti-CD3/CD28 mAbs and Jagged-1 Fc or control Fc, or with Jagged-1 Fc or control Fc alone. Messenger RNA was extracted for expression analysis by quantitative PCR. We consistently observed that Jagged-1-mediated signaling induced GRAIL expression in CD4^+ T cells (Fig. 5A). Among E3 ubiquitin ligases, up-regulation of GRAIL was unique, as Jagged-1-mediated signaling did not modulate cbl-b or Itch. Stimulation of CD4^+ T cells with Jagged-1 Fc alone failed to induce GRAIL, although addition of soluble anti-CD3/CD28 mAbs to T cells stimulated with Jagged-1 Fc beads did induce GRAIL (Fig. 5B). Thus, to observe Jagged-1-mediated GRAIL induction, simultaneous TCR signals must also be delivered.

Using siRNA technology, we suppressed the expression of GRAIL in CD4^+ T cells to determine whether expression of GRAIL was responsible for the unresponsive phenotype of Jagged-1-stimulated CD4^+ T cells. After confirming the efficiency of GRAIL silencing (Fig. 5C), we stimulated these CD4^+ T cells with anti-CD3/CD28 mAbs in the presence of Jagged-1 Fc or control Fc. We found that suppression of GRAIL expression did not rescue Jagged-1-treated T cells from their inability to proliferate (Fig. 5D). Thus, although GRAIL induction is associated with Jagged-1-mediated T cell suppression, it alone is not responsible for the suppression.

Jagged-1-mediated signaling alters T cell differentiation

Although Jagged-1 Fc stimulation potently inhibited T cell activation, it did not kill the T cells (Fig. 3). These data, in light of reports that Notch signaling can influence Th cell differentiation, prompted us to evaluate the consequences of Jagged-1-mediated signaling during primary naive T cell activation. Accordingly, purified naive (CD45RA^+) CD4^+ T cells were stimulated with immobilized anti-CD3/CD28 mAbs in the presence of Jagged-1 Fc or control Fc and were expanded over the course of 14 days. After 14 days, cells were harvested and washed, and an equivalent number of T cells from each condition were restimulated with immobilized anti-CD3/CD28 mAbs. Stimulation of naive CD4^+ T cells with anti-CD3 mAb in the absence of a costimulatory signal was performed as a comparison for an anergic phenotype present in human CD4^+ T cells. As expected, naive CD4^+ T cells that were primarily stimulated with anti-CD3/CD28 mAbs in the presence of control Fc extensively proliferated after secondary stimulation (Fig. 6A) and secreted large amounts of IFN-γ (Fig. 6B). Naïve CD4^+ T cells stimulated with anti-CD3/CD28 mAbs in the presence of Jagged-1 Fc in the primary stimulation proliferated to an extent nearly comparable to that of cells primarily stimulated with anti-CD3/CD28 mAbs in the presence of control Fc, but secreted significantly lower amounts of IFN-γ. In repeat experiments we observed no consistent, statistically significant reduction in the proliferative response of T cells stimulated initially in the presence of Jagged-1 Fc, but did consistently observe an ~5-fold reduction in the amount of secreted IFN-γ. There was no evidence for Th2 deviation or increased secretion of IL-10 or TGF-β in repeated experiments.
As classically defined, anergic T cells are not killed or rendered apoptotic, rather, they are functionally unable to respond to optimal stimulation in secondary responses (17) and often proliferate less during the initial/inductive phase. Thus, we compared the function of cells stimulated in the presence of Jagged-1 Fc to naive CD4+ T cells that were only stimulated with anti-CD3 mAb (in the absence of a costimulatory signal). There was little proliferation or IFN-γ secretion after secondary stimulation among naive CD4+ T cells that were primed only with anti-CD3 mAb. Thus, stimulation of naive CD4+ T cells in the presence of Jagged-1 Fc affected subsequent T cell function in a manner distinct from that of anergic cells, primarily influencing T cell effector function (cytokine secretion) but not proliferative capacity.

Discussion

Given that the effects of Notch pathway signaling vary so much depending on the responding cell type and the Notch ligand used to activate Notch receptors, in addition to the experimental approach used to study the effects of Notch signaling (18), we used a reductionist approach to study the effects of Notch signaling during human T cell activation. Rather than using transduced APCs, we used a chimera protein that fuses the extracellular region of Jagged-1 with the constant region of human IgG1 to deliver signals through Notch receptors. Thus, we are able to ascribe our results to direct effects of Jagged-1-mediated signaling. Of the four Notch receptors, Jagged-1-mediated signals in our assays were likely directed through either Notch-2 or Notch-1, as the ex vivo CD4+ T cells used in our studies expressed Notch-2 at highest levels followed by Notch-1, with little or no expression of Notch-3 or Notch-4 receptors (data not shown). Our observation that Jagged-1-mediated suppression of T cell function was independent of Notch cleavage mediated by γ-secretase is consistent with other reports in both murine and human T cells (8, 15).

Several groups have recently evaluated the effects of different Notch ligands on murine Th cell differentiation, with Jagged-1...
signaling promoting Th2 differentiation and Delta-1 signaling promoting Th1 differentiation (7, 9, 10). We have evaluated the effects of Jagged-1 signaling on both primary human T cell activation and naive human CD4+ T cell differentiation. Consistent with our data, one group has observed that although low doses of Delta-1 (signaling through Notch-3) could promote Th1 differentiation in murine T cells, higher doses completely inhibited T cell activation (7).

A recent study on the effects of Notch signaling during murine T cell activation is largely consistent with our data using human T cells. Coligation of CD3/CD28 molecules and Notch-1 inhibited T cell activation, and both Delta-1 and Jagged-1 ligands similarly inhibited TCR-mediated T cell activation (6). Immobilized Delta-1 and Jagged-1, but not Delta-4, have also recently been shown to inhibit murine T cell activation (8).

Comparatively little is known about the effects of Notch signaling in human T cells. One study has reported that after transduction of a human B lymphoblastoid cell line with an adenoviral vector expressing Jagged-1, coculture with human T cells inhibited proliferation and cytotoxicity that was concomitant with elevated secretion of IL-10 (12). A murine study similarly observed that injection of mice with APCs transfected with Delta-1 promoted CD8+ T cell secretion of IL-10 in vivo (13). We did not observe any modulation of IL-10 after Jagged-1-mediated stimulation of CD4+ T cells. One explanation for the discrepancy in data may be that transduction of APCs with Notch ligands alters APC function, given that APCs undoubtedly express Notch receptors.

Our data extend the study of Notch signaling to human T cells. We report that human T cell activation is inhibited when T cells are stimulated in the presence of Jagged-1-mediated Notch signaling; T cell proliferation, as well as Th1 and Th2 cytokine production, is abrogated. There was no evidence for modulation of IL-10 or any other cytokine by Jagged-1-mediated signaling. Our data demonstrate that neither apoptosis nor abrogation of proximal TCR signaling is responsible for the inability of Jagged-1-stimulated T cells to proliferate.

We postulated that Notch signaling might induce genes associated with T cell nonresponsiveness. Indeed, we have found that Jagged-1-mediated signaling up-regulates expression of GRAIL in human CD4+ T cells. GRAIL is a member of the E3 ubiquitin ligase family, and its expression, induced in anergic T cells, limits the transcription of both IL-2 and IL-4 genes (19). The 428-aa GRAIL molecule is a transmembrane protein associated with recycling endosomal compartments (18). Cbl-b and Itch, also members of the E3 ubiquitin ligases family, have also been linked to anergy (20, 21). However, Jagged-1-mediated signaling did not modulate their expression levels. Despite its up-regulation after Jagged-1-mediated signaling, GRAIL is not solely responsible for the observed T cell unresponsiveness, as this phenotype was not reversed after suppressing GRAIL expression induced during concomitant Jagged-1-signaling and T cell activation. It remains possible that GRAIL cooperates with other molecules uniquely induced by simultaneous Notch- and TCR-mediated signaling events to suppress peripheral human T cell activation.

In summary, our data indicates that Jagged-1-mediated Notch signaling induces an unresponsive phenotype in human T cells, a condition associated with GRAIL up-regulation. As human T cells stimulated in the presence of Jagged-1-mediated Notch signaling are not anergic, our data suggest that up-regulation of GRAIL in T cells is associated with lack of T cell proliferation and not exclusively with T cell anergy. There is a report demonstrating that Notch-1 signaling induces anergy in murine T cells (6); this difference may be related to differences between human and murine T cells, or to the Notch receptor that initiates the signaling cascade.

Nevertheless, although human T cells stimulated in the presence of Jagged-1Fc are not rendered anergic in a classical sense, they do have a lasting deficit in their ability to secrete IFN-γ. Given that Jagged-1, in addition to other Notch receptors, is constitutively expressed by both T cells and APCs, such as dendritic cells, it will be important in future studies to determine in what physiological context altered or heightened Notch signaling modulates murine and human T cell function.

Acknowledgments

We thank David A. Hafler, Adi Dembinski, Francisco Quintana, and Nadia Cohen for their helpful comments on this manuscript.

Disclosures

The authors have no financial conflict of interest.

References

1. Radtke, F., and K. Raj. 2003. The role of Notch in tumorigenesis: oncogene or tumor suppressor? Notch News 10: 1–4.
2. Weng, A. P., and J. C. Aster. 2004. Multiple niches for Notch in cancer: context is everything. Curr. Opin. Genet. Dev. 14: 48–54.
3. Harper, J. A., J. S. Yuan, J. B. Tan, I. Visan, and C. J. Guidos. 2003. Notch signaling in development and disease. Clin. Genet. 64: 461–472.
4. Artavanis-Tsakonas, S., M. D. Rand, and R. J. Lake. 1999. Notch signaling: cell fate control and signal integration in development. Science 284: 770–776.
5. Maillard, I., T. Fang, and W. S. Pear. 2005. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu. Rev. Immunol. 23: 945–974.
6. Eagar, T. N., N. Q. Tang, M. Wolfe, Y. He, W. S. Pear, and J. A. Bluestone. 2004. Notch 1 signaling regulates peripheral T cell activation. Immunity 20: 407–415.
7. Maekawa, Y., S. Tsukumo, S. Chaba, H. Hirai, Y. Hayashi, H. Okada, K. Kishihara, and K. Yasutomo. 2003. Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity 19: 549–559.
8. Rutz, S., B. Mordmuller, S. Sakano, and A. Scheffold. 2005. Notch ligands Delta-like1, Delta-like4 and Jagged1 differentially regulate activation of peripheral T help cells. Eur. J. Immunol. 35: 2443–2453.
9. Amsen, D., J. M. Blander, G. R. Lee, K. Tanigaki, T. Honjo, and R. A. Flavell. 2004. Instruction of distinct CD4 T helper cell fates by different Notch ligands on antigen-presenting cells. Cell 117: 513–526.
10. Tanigaki, K., M. Tsuji, N. Yamamoto, H. Han, J. Tsukada, H. Inoue, M. Kubo, K. Kishihara, and K. Yasutomo. 2003. Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity 19: 549–559.
11. Anastasi, E., A. F. Campese, D. Bellavita, A. Bulotta, A. Balestri, M. Pascucci, S. Chaciquedo, R. Grado, M. C. Bendinelli, J. R. Hodes, et al. 2003. Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes. J. Immunol. 171: 4504–4511.
12. Vigouroux, S., E. Yvon, H. J. Wagner, E. Biagi, G. Dotti, U. Sili, C. Lira, C. M. Rooney, and M. K. Brenner. 2003. Induction of antigen-specific regulatory T cells following overexpression of a Notch ligand by human B lymphocytes. J. Virol. 77: 10872–10880.
13. Woolf, K. K., M. J. Carpenter, L. L. Young, S. J. Walker, G. McKenzie, A. J. Rast, G. Ward, L. Packwood, K. Wahl, L. Delviriere, et al. 2003. Notch ligation by Delta1 inhibits peripheral immune response and converts T cells into memory-like cells. Amer. J. Trans. 117: 1741–1750.
14. Anderson, D. E., K. D. Bieganowska, A. Bar-Oz, E. M. Oliveira, B. Carreno, M. Collins, and D. A. Hafler. 2000. Paradoxical inhibition of T-cell function in response to CTLA4 blockade; heterogeneity within the human T-cell population. J. Immunol. 174: 890–895.
15. Smallwood, Y., E. Brend, K. M. Ray, G. A. Ward, B. J. Smith, E. Nye, B. R. Champion, and G. J. McKenzie. 2006. Small interfering RNA-mediated knockdown of Notch ligands in primary CD4+ T cells and dendritic cells enhances cytokine production. J. Immunol. 177: 885–895.
16. Anderson, A. C., E. A. Kirchens, S. W. Chan, C. St Hill, Y. N. Jan, W. Zhong, and E. A. Robey. 2003. Notch regulates Numb links the Notch and TCR signaling pathways. J. Immunol. 174: 890–897.
17. Jenkins, M. K., D. M. Pardoll, J. Mizuguchi, H. Quill, and R. H. Schwartz. 1987. A recent study on the effects of Notch signaling during murine T cell function.

The Journal of Immunology

6163