Review Article

Phytochemical and Pharmacological Studies on the Genus *Psoralea*: A Mini Review

Cong-Cong Li,1 Teng-Long Wang,1 Zhong-Qun Zhang,1 Wen-Qiang Yang,2 Yue-Fei Wang,1 Xin Chai,1 Chun-Hua Wang,1,3 and Zheng Li3

1Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
2College of Pharmacy, Linyi University, Linyi 276000, China
3College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China

Correspondence should be addressed to Xin Chai; chaixinphd@aliyun.com and Chun-Hua Wang; Pharmwch@126.com

Received 9 September 2016; Revised 9 October 2016; Accepted 17 October 2016

Academic Editor: Wenyi Kang

Copyright © 2016 Cong-Cong Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The genus *Psoralea*, which belongs to the family Fabaceae, comprises ca. 130 species distributed all over the world, and some of the plants are used as folk medicine to treat various diseases. *Psoralea corylifolia* is a typical example, whose seeds have been widely used in many traditional Chinese medicine formulas for the treatment of various diseases such as leucoderma and other skin diseases, cardiovascular diseases, nephritis, osteoporosis, and cancer. So, the chemical and pharmacological studies on this genus were performed in the past decades. Here, we give a mini review on this genus about its phytochemical and pharmacological studies from 1910 to 2015.

1. Introduction

The genus *Psoralea*, which belongs to the family Fabaceae, comprises *ca.* 130 species mainly distributed in South Africa, North and South America, and Australia, a few of which are native to Asia and temperate Europe [1]. Among them, several species have been widely used as herbal medicine in China, India, and other countries. Modern pharmacological researches show that the plants in *Psoralea* genus have antimicrobial, antipregnancy, estrogenic, antitumor, antioxidant, and many other pharmacological activities [1, 2]. For example, *P. corylifolia* is the sole species of the genus distributing in China, and its seeds are used as a famous traditional Chinese medicine (TCM), having the effects of kidney impotence and warming spleen and stopping diarrhea and included by *Pharmacopoeia of People’s Republic of China* [3]. Here, we review the progress achieved in phytochemical studies on the genus *Psoralea*, list the compounds isolated from this genus over the past decades, and introduce the biological activities of these ingredients.

2. Phytochemistry

To the best of our knowledge, the first phytochemical investigation on the genus *Psoralea* can be traced back to 1910 [4]. In 1933, Jois and his coworkers obtained the first pure compound called psoralen (51) from *P. corylifolia* [4]. Up to 2015, the total number of identified secondary metabolites from the genus *Psoralea* amounts to 129, including flavonoids, coumarins, phenols, benzofurans, benzopyrans, quinines, sesquiterpenoids, triterpenoids, steroids, and some other components. The structures of these compounds are shown in Figure 1. Their names and the corresponding plant sources are compiled in Table 1.

2.1. Flavonoids. Previous chemical investigations have indicated that flavonoids were the most frequently occurring constituents of the genus *Psoralea*. Fifty flavonoids, 1–50, have been isolated and elucidated from the genus *Psoralea*, most of which were isolated from *P. corylifolia*, while isovitexin (2) was got from *P. plicata* [5]. Various types of...
Figure 1: Continued.
flavonoids, including flavones (1–5), flavonols (6–7), flavanones (8–11), isoflavones (12–31), and chalcones (32–45), have been isolated and identified. According to Harborne’s “The Flavonoids Advances in Research Since 1980” [6], psorachromene (46), psoralachones A (47), 4′-O-methyl bavachalcone (48), 4,2′-dihydroxy-2″-(1″-methyl ethyl)-2″-3″-dihydro-(4″,5″,3′,A′)furanochalcone (49), and 7,5″-dihydroxy-6″,6″′-dimethyl-dihydropyrano-(2″,3″,A′,A′)isoflavone (50) have the basic skeleton type of “C₆-C₃-C₆” of flavonoids. So in this review, this kind of compounds is classified as flavonoid.

2.2. Coumarins. Coumarin is another major type of compounds in the genus Psoralea. So far, sixteen coumarins, 51–66, have been found from the genus Psoralea. Psoralen (51), bakuchin cin (54), and plicadin (61) exist both in P. corylifolia and in P. plicata [5, 7–14], and the others were obtained from P. corylifolia. In 1933, Jois got psoralen (51) from P. corylifolia for the first time, then Spath identified the structure and synthesized it [4]. Psoralin (65) is a special coumarin containing N element [10].

2.3. Phenols. To date, thirty-two phenols, 67–98, have been identified from the genus Psoralea. Five phenols, named as 3-hydroxy bakuchiol (70), 12,13-dihydro-12,13-epoxy bakuchiol (74), 12-hydroxyisobakuchiol (81), and cyclobakuchiol A and B (84 and 85, resp.), were isolated from P. glandulosa [49, 58, 59]. Among them, 12-hydroxyisobakuchiol (81) was also found in P. corylifolia [53]. Two compounds, drupanin (72) and drupanol (75), were isolated from P. drupacea [50–52]. Drupanin (72) was isolated and identified from P. juncea as well [51]. Five compounds (73, 78–79, 97, and 98) exist in P. plicata [5]. The other phenol derivatives were detected from P. corylifolia.

2.4. Benzofurans and Benzopyrans. Phytochemical studies have afforded ten benzofurans and benzopyrans (99–108) from the genus Psoralea. Among them, Z-Werneria chromenes and E-Werneria chromenes (100 and 101, resp.) are benzopyrans and the others are benzofurans. In 1992, one new benzofuran, named isocorylifonol (99), was found from P. corylifolia [4, 18]. The other two compounds, psoralenose (102) and isosoralenose (106), were isolated from P. corylifolia in 2006 [63]. Another two compounds, 107–108, were obtained from P. plicata [71].

2.5. Quinones. Two quinones, named α-tocoopherol quinone methyl ether and α-tocoopherol quinone (109 and 110, resp.), have been isolated from the aerial part of P. plicata [1, 64, 65].

2.6. Sesquiterpenoids, Triterpenes, and Steroids. Two known sesquiterpenoids, named β-caryophyllene (111) and β-caryophyllene oxide (112), were found in P. plicata by Arafa in 1997 [5, 18]. In 1989, Rasool and Nazli isolated a triterpene from P. plicata and named it as psoracrinol (113) [1]. In addition, two steroids, named stigmasterol (114) and daucosterol (115), were isolated from P. corylifolia. What is more, stigmasterol (114) was identified in P. plicata as well [1].

2.7. Others. About 14 other compounds have been isolated from the genus Psoralea. Only lupeol (123) was isolated from P. plicata [1]. Drupacine (129) was detected from P. drupacea. Compounds 116–122 and 124–128 were isolated from P. corylifolia.

3. Pharmacological Activities

Many investigations have been conducted on the pharmacological properties of the Psoralea plants such as antimicrobial activity, antipregnancy and estrogenic activity, antitumor
Table 1: Chemical constituents isolated and identified from the genus *Psoralea*.

Number	Name	Source	Ref.
1	Flavonoids		
1	Corylifol C	*P. corylifolia*	[15]
2	Isovitectin	*P. plicata*	[5]
3	4’-Methoxyflavone	*P. corylifolia*	[1, 16]
4	Coryfilolin=bavachin	*P. corylifolia*	[17]
5	Bavachinin	*P. corylifolia*	[18]
6	Flavonoids		
1	Flavonoids		
2	Isovitexin	*P. plicata*	[5]
3	4’-Methoxyflavone	*P. corylifolia*	[1, 16]
4	Coryfilolin=bavachin	*P. corylifolia*	[17]
5	Bavachinin	*P. corylifolia*	[18]
6	3,5,3’,4’-Tetrahydroxy-7-methoxyflavone-3’-O-α-L-xylpyranosyl(1→3)	*P. corylifolia*	[17]
7	3,5,3’,4’-Tetrahydroxy-7-methoxyflavone-3’-O-α-L-arabinopyranosyl(1→4)	*P. corylifolia*	[17]
8	-O-β-D-galactopyranoside		
9	Astragalin	*P. corylifolia*	[8]
10	7,8-Dihydro-8-(4-hydroxyphenyl)-2,2-dimethyl-2H,6H-benzo[1,2-h,5,4-b’]dipyran-6-one	*P. corylifolia*	[15]
11	Furan(2’’,3’’,7,6)-4’-hydroxy flavanone	*P. corylifolia*	[19]
12	Isobavachin	*P. corylifolia*	[20, 21]
13	6-Prenylaraboygenin	*P. corylifolia*	[22]
14	Erythrinin A	*P. corylifolia*	[15]
15	Genistein	*P. corylifolia*	[19, 23]
16	Neobavaisoflavone	*P. corylifolia*	[1, 9, 15, 24, 25]
17	Neobavaisoflavone	*P. corylifolia*	[1, 9, 15, 24, 25]
18	Bavadin	*P. corylifolia*	[28]
19	8-Prenylaraboygenin	*P. corylifolia*	[12]
20	Neobava isoflavone-7-O-methyl-ether	*P. corylifolia*	[27]
21	Daidztein	*P. corylifolia*	[9]
22	Neobavaisoflavone	*P. corylifolia*	[24]
23	Corylin	*P. corylifolia*	[1, 11, 15, 29]
24	Corylin	*P. corylifolia*	[1, 11, 15, 29]
25	BVa-7,4’-dihydroxy-3’-E-3,7-dimethyl-2,6-octadienyl] isoflavone	*P. corylifolia*	[15]
26	Isovitectin	*P. plicata*	[5]
27	Psoralenol	*P. corylifolia*	[27]
28	Psoralenol methyl ether	*P. corylifolia*	[27]
29	Psoralenol methyl ether	*P. corylifolia*	[27]
30	Psoralenol methyl ether monoacetate	*P. corylifolia*	[27]
31	Psoralenol diacetate	*P. corylifolia*	[27]
32	Neobavachalcone =5’-formyl-2’,4’-dihydroxy-4’-methoxy chalcone	*P. corylifolia*	[31, 32]
33	Isobavachalcone	*P. corylifolia*	[33]
34	Isobavachalcone=Acorilolin	*P. corylifolia*	[20, 21]
35	Bavachalcone	*P. corylifolia*	[21, 34]
36	Coryfilol B	*P. corylifolia*	[35]
37	4,2’-Dihydroxy-4’-methoxy-5’-(3’m, 3’’-dimethylallyl)chalcone	*P. corylifolia*	[36]
38	Bakuchalcone	*P. corylifolia*	[37]
39	Bakuchalcone	*P. corylifolia*	[37]
40	Brosimacutin G	*P. corylifolia*	[15]
41	Bavachromonomon	*P. corylifolia*	[1, 38]
Number	Name	Source	Ref.
--------	--	-----------------	--------------------------------
42	1-[2,4-Dihydroxy-3-(2-hydroxy-3-methyl-3-butenyl)phenyl]-3-(4-hydroxyphenyl)-2-propen-1-one	*P. corylifolia*	[1]
43	Psorachalcones B	*P. corylifolia*	[16]
44	Bavachromene	*P. corylifolia*	[1, 33]
45	Isobavachromene	*P. corylifolia*	[15, 39]
46	Psorachromene	*P. corylifolia*	[40]
47	Psorachalcones A	*P. corylifolia*	[1, 15]
48	4′-O-Methyl bavachalcone	*P. corylifolia*	[41]
49	4,2′-Dihydroxy-2′-(1′′-methyl ethyl) 2″-3″-dihydro-(4″,5″,3″,4″)-furanochalcone	*P. corylifolia*	[36]
50	7,5″-Dihydroxy-6″,6″-dimethyl-dihydropyrano-(2″,3″,4″,3″)-isoflavone	*P. corylifolia*	[24]

Coumarins

Number	Name	Source	Ref.
51	Psoralen	*P. corylifolia*	[5, 8, 9, 11, 12, 14, 42]
52	Bergapten=5-methoxy psoralen	*P. corylifolia*	[43]
53	Xanthotoxin=8-methoxy psoralen	*P. corylifolia*	[43]
54	Bakuchincin	*P. corylifolia*	[5, 9, 10]
55	Isopsoralen=angelicin	*P. corylifolia*	[1, 10–12, 14]
56	Neopsoralen	*P. corylifolia*	[16]
57	Bavacoumestan B	*P. corylifolia*	[44]
58	Psoralidin	*P. corylifolia*	[5, 29, 45–47]
59	Psoralidin-2′,3′-oxide diacetate	*P. corylifolia*	[33]
60	Isopsoralidin	*P. corylifolia*	[4]
61	Plicadin	*P. plicata*	[7, 13]
62	Corylidin	*P. corylifolia*	[1, 30]
63	Sophoracoumestan A	*P. corylifolia*	[12]
64	Bavacoumestan A	*P. corylifolia*	[44]
65	Psoralin	*P. corylifolia*	[10]
66	C-Phenylcoumarin	*P. corylifolia*	[33]

Phenols

Number	Name	Source	Ref.
67	p-Hydroxybenzyl alcohol	*P. corylifolia*	[48]
68	p-Hydroxybenzaldehyde	*P. corylifolia*	[48]
69	p-Hydroxybenzyl acid	*P. corylifolia*	[8]
70	3-Hydroxy bakuchiol	*P. glandulosa*	[49]
71	Corylifolin	*P. corylifolia*	[9, 11]
72	Drupanin	*P. drupacea*	[50, 51]
73	Plication B	*P. plicata*	[32]
74	12,13-Dihydro-12,13-epoxy bakuchiol	*P. glandulosa*	[49]
75	Drupanol	*P. drupacea*	[52]
76	Bakuchiol	*P. corylifolia*	[11, 20, 46, 49, 53–56]
77	12,13-Dihydro-12,13-dihydroxy bakuchiol	*P. corylifolia*	[54]
78	Plicatin-A	*P. plicata*	[5, 57]
79	Psoralea =3-(3-methyl-2-3-epoxybutyl-)p-coumaric acid methyl ester	*P. plicata*	[5]
Table 1: Continued.

Number	Name	Source	Ref.
80	13-Hydroxyisobakuchiol	P. corylifolia	[53]
81	12-Hydroxyisobakuchiol	P. corylifolia	[49, 53]
82	12,13-Dihydro-12,13-epoxy bakuchiol	P. corylifolia	[9, 54]
83	Cyclobakuchiol C	P. corylifolia	[53]
84	Cyclobakuchiols A	P. glandulosa	[58–60]
85	Cyclobakuchiols B	P. glandulosa	[58–60]
86	Corylifonol	P. corylifolia	[8]
87	Isocorylifonol	P. corylifolia	[8]
88	Psoracorylifols A	P. corylifolia	[34]
89	Psoracorylifols B	P. corylifolia	[34]
90	Psoracorylifols C	P. corylifolia	[34]
91	Psoracorylifols D	P. corylifolia	[34]
92	Psoracorylifols E	P. corylifolia	[34]
93	α-Diplicatin B	P. plicata	[5, 61]
94	Bisbakuchiols A	P. corylifolia	[54]
95	Bisbakuchiols B	P. corylifolia	[54, 62]
96	Bisbakuchiols C	P. corylifolia	[54, 62]
97	α-Tocopherol	P. plicata	[5, 61]
98	Rososide A	P. plicata	[5, 61]
99	Isocorylifonol	P. corylifolia	[4, 18]
100	Z-Werneria chromenes	P. plicata	[5, 61]
101	E-Werneria chromenes	P. plicata	[5, 61]
102	Psoralenoside	P. corylifolia	[63]
103	Isopsoralic acid-O-glucopyranosyl	P. plicata	[5, 61]
104	1→6-O-β-D-Glucopyranoside isopsoralic acid	P. plicata	[61]
105	1→6-O-β-D-Glucopyranoside corylifonol	P. plicata	[61]
106	Isopsoralenoside	P. corylifolia	[63]
107	1→4-O-β-D-Glucopyranoside angelic acid	P. plicata	[61]
108	1→4-O-β-D-Glucopyranoside isocorylifonol	P. plicata	[61]
109	α-Tocopherol quinone methyl ether	P. plicata	[1, 7, 64]
110	α-Tocopherol quinone	P. plicata	[1, 7, 65]
111	β-Caryophyllene	P. corylifolia	[18]
112	β-Caryophyllene oxide	P. plicata	[5]
113	Psoracinal	P. plicata	[1]
114	Stigmasterol	P. plicata	[4, 24, 66]
115	Daucoesterol=β-sitosterol-D-glucoside	P. corylifolia	[1, 67]
116	Triglyceride	P. corylifolia	[1, 4]
117	Triacotante	P. corylifolia	[1, 4]
118	Linolenic acid	P. corylifolia	[68]
119	Linoleic acid	P. corylifolia	[68]
120	O-Methyl bakuchiol	P. corylifolia	[54]
121	O-Ethyl bakuchiol	P. corylifolia	[54]

Benzofurans and benzopyrans

Number	Name	Source	Ref.
99	Isocorylifonol	P. corylifolia	[4, 18]
100	Z-Werneria chromenes	P. plicata	[5, 61]
101	E-Werneria chromenes	P. plicata	[5, 61]
102	Psoralenoside	P. corylifolia	[63]

Quinones

Number	Name	Source	Ref.
109	α-Tocopherol quinone methyl ether	P. plicata	[1, 7, 64]
110	α-Tocopherol quinone	P. plicata	[1, 7, 65]

Sesquiterpenoids, triterpenes, and steroids

Number	Name	Source	Ref.
111	β-Caryophyllene	P. corylifolia	[18]
112	β-Caryophyllene oxide	P. plicata	[5]
113	Psoracinal	P. plicata	[1]
114	Stigmasterol	P. plicata	[4, 24, 66]
115	Daucoesterol=β-sitosterol-D-glucoside	P. corylifolia	[1, 67]

Others

Number	Name	Source	Ref.
116	Triglyceride	P. corylifolia	[1, 4]
117	Triacotante	P. corylifolia	[1, 4]
118	Linolenic acid	P. corylifolia	[68]
119	Linoleic acid	P. corylifolia	[68]
120	O-Methyl bakuchiol	P. corylifolia	[54]
121	O-Ethyl bakuchiol	P. corylifolia	[54]
activity, antioxidant activity, immunomodulatory activity, and anti-inflammatory activity.

3.1. Antimicrobial Activity. Studies have shown that the plants of genus Psoralea have significant antimicrobial activity. Yin and his colleagues tested the compounds isolated from *P. corylifolia* for antibacterial activity against two pathogenic Gram (+) bacteria *Staphylococcus aureus* ATCC 25923 and *S. epidermidis* ATCC 12228 *in vitro*. Among them, bavachinin (5), 7,8-dihydro-8-(4-hydroxyphenyl)-2,2-dimethyl-2H,6H-benzo[1,2-b;5,4-b']dipyran-6-one (8), erythrinin A (12), neobavaisoflavone (14), isoneobavaisoflavone (27), isobavachalcone (34), bavachalcone (35), and corylifols B (36) exhibited remarkable anti-*S. aureus* and anti-*S. epidermidis* activities at the level of MICs 0.009–0.073 mM [15].

From a literature published in 2004, bakuchinin (54), psoralidin (58), and the mixture (1:1) of angelicin (55) and psoralin (65), isolated from the seeds of *P. corylifolia*, exhibited significant antibacterial activity against Gram (+) and Gram (−) bacteria as well. Particularly, angelicin (55) and psoralen (65) showed stronger activity against Gram (+) *S. aureus*, and psoralidin (58) inhibited Gram (−) *Shigella sonnei* and *S. flexneri* effectively [10]. In addition, psoracorylifols A–E (88–92), identified from the seeds of *P. corylifolia*, were reported having the inhibitory activity against *Helicobacter pylori* at the level of MICs of 12.5–25 μg/mL [34]. *P. corylifolia* seeds and the resinous exudate and meroterpenoids isolated from *P. glandulosus* had some degree of antifungal activity [72, 73]. *P. glandulosus* was also reported significantly inhibiting the growth of *Botrytis cinerea* and *Phytophthora cambivora* [74].

3.2. Antipregnancy and Estrogenic Activity. Some articles have reported that angelicin (55) and bakuchiol (76) have significant anti-implantation activity on mice [1, 18]. And psoralidin (58), a coumestan analogue, has been considered to have a novel biological activity as an agonist for both estrogen receptor alpha (ERα) and ERβ and activate the classical ER-signaling pathway in both ER-positive human breast and endometrial cell lines as well as non-human cultured cells transiently expressing ERα or ERβ [45].

3.3. Antitumor Activity. Many researchers have investigated that the solvent extraction obtained from the plants of *Psoralea* has anticancer activity, especially *P. corylifolia* [1, 62, 75–84]. In Lee et al’s research, psoralidin (58), isolated from the acetate-soluble fraction of the methanolic extract, could induce the activity of Quinone Reductase in Hepa-1Lc7 murine hepatoma cell line [82]. In addition, psoralidin (58) was proved to possess cytotoxicity with the IC50 values of 0.3, 0.4, 53, and 203 μg/mL against HT-29 (colon) human cancer cell line, MCF-7 (breast) human cancer cell line, SNU-1 carcinoma cell line, and SNU-16 carcinoma cell line [85, 86]. Another study showed that isobavachalcone/eorylifolin (34) could induce apoptotic cell death in neuroblastoma via the mitochondrial pathway and has no cytotoxicity against normal cells, which indicated isobavachalcone/eorylifolin (34) may be applicable as an efficacious and safe drug [87]. O-Methyl-bakuchiolis (120) and O-ethyl-bakuchiolis (121) were proved to inhibit HIF-1 (IC50 values: 8.7 and 26.3 μM, resp.) and NF-κB (IC50 values: 5.7 and 12.2 μM, resp.) activation without significantly decreasing the viability of the human gastric cancer cell and human cervical adenocarcinoma cell, respectively [54]. The ethanolic extract of *P. corylifolia* was found to be cytotoxic against L929-cells in cell culture. Bakuchiol (76) was responsible for the activity [88–90].

3.4. Antioxidant Activity. There is considerable interest in more potent antioxidant compounds to treat diseases involving oxidative stress [18]. When examined for the antioxidant activity using the 2,2′-azinobis[3-ethylbenzothiazoline-6-sulfonate] (ABTS) assay, *P. corylifolia* seed’s solvent extract showed higher antioxidant activity [91]. In Jiangning et al’s research, the powder and extracts of *P. corylifolia* were investigated in lard at 100°C by using Oxidative Stability Instrument (OSI) and were proved to have strong antioxidant activity. When the compounds isolated from *P. corylifolia* are tested individually and compared with butylated hydroxytoluene (BHT) and α-tocopherol by the OSI at 100°C, corylin (24), psoralidin (58), and bakuchiol (76) showed strong antioxidant activity, and especially psoralidin (58) (stronger antioxidant property than BHT). The specific antioxidant effect of the compounds decreases in the following order: psoralidin (58) > BHT > α-tocopherol > bakuchiol (76) > corylifolin (71) > corylin (24) > isopсорalen/angelicin (55) ~ psoralen (51) [11]. Isobavachinin (10) and isobavachalcone/eorylifolin (34) were proved to have broad antioxidative activities in rat liver microsomes and mitochondria [91]. In addition, the relationship between isoflavones and their antioxidant

Table 1: Continued.

Number	Name	Source	Ref.
122	Acetyl bakuchiol	*P. corylifolia*	[54]
123	Lupeol	*P. plicata*	[66, 69]
124	Psoralester	*P. corylifolia*	[40]
125	Glucose	*P. corylifolia*	[4]
126	Pinitol	*P. corylifolia*	[16]
127	Raffinose	*P. corylifolia*	[4]
128	Uracil	*P. corylifolia*	[12]
129	Drupacine=2,α-dimethyl-3,α′-dihydropyran-5′,6′,3,4-trans-cinnamic acid	*P. drupacea*	[70]
activities in *P. corylifolia* was studied and the research determined the antioxidant activity of extracts using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and phosphomolybdenum assays; as a result, the antioxidant activities were correlated with the content of total phenolics in the extracts [8]. In another study, some antioxidant components were isolated from *P. corylifolia* by a combinatorial method using high-speed countercurrent chromatography (HSCCC) and thin layer chromatography (TLC) as an antioxidant autographic assay [92].

3.5. Immunomodulatory Activity. Polysaccharide was reported to enhance the immunity of mice. Wang et al.'s experiments have shown that *P. corylifolia* could effectively increase the proliferation rate of diploid fibroblasts and increase the ability of nonspecific immunity [93]. The flavonoids isolated from *P. corylifolia* have also been shown to have immunological function [94]. In another study, the seeds extracts of *P. corylifolia* obtained in alcohol have been found to stimulate the immune system in mice by increasing cell mediated and humoral immune responses [77].

3.6. Anti-Inflammatory Activity. The petroleum ether extract, dichloromethane extract, and methanol extract of the aerial part of *P. glandulosa* had significant anti-inflammatory activity [95]. Another study has reported that bakuchiol (76) from *Psoralea corylifolia* could inhibit the expression of inducible nitric oxide synthase (iNOS) gene via the inactivation of nuclear transcription factor-κB in RAW 264.7 macrophages [96].

3.7. Antimutagenic Activity. Several flavonoids isolated from *P. corylifolia* have the antimutagenic activity [97, 98].

3.8. Antiviral Activity. The volatiles isolated from *P. drupacea*’s leaves and stem barks have antiviral activity [1].

3.9. Hepatoprotective Activity. *P. corylifolia* has significant hepatoprotective activity [99, 100]. Bakuchiol (76), bakuchin (54), and psoralen (51) have been proved to be hepatoprotective with EC50 values of 1.0, 470, and 50.0 μg/mL, respectively, on tacrine-induced cytotoxicity in human liver-derived Hep G2 cells using silymarin as a positive control with EC50 value of 5.0 μg/mL [101].

3.10. Photosensitization. Ethanol extract of *P. corylifolia* has an effect on tyrosinase and increases the volume and speed of melanin by improving the activity of tyrosinase [102, 103]. Isopsoralen/angelicin (55) has been known as photosensitivit activity [4]. Psoralen (51) is a photosensitive compound, and its photosensitivity is much better than isopsoralen (55). It plays a key role in treating vitiligo. In addition, psoralen (51) has good effect on treating psoriasis and alopecia areata [4, 104].

3.11. Antiasthma Activity. Experiments have shown that coumarins isolated from *P. corylifolia* had antiasthma activity [105, 106]. In another study, a Chinese herbal decoction, which contains 6 herbs, along with 15 g seeds of *P. corylifolia*, could prompt treatment for asthma in the convalescent stage to prevent emphysema [107].

3.12. Antifilarial Activity. Qamaruddin et al. reported that the aqueous and alcohol extracts of the leaves and seeds of *P. corylifolia* possessed significant antifilarial activity against *Setaria cervi* [108]. The extracts caused the inhibition of spontaneous movements of the whole worm and the nerve muscle preparation of *S. cervi* [108].

3.13. Antiplatelet Activity. The methanolic extract of seeds of *P. corylifolia* was identified to inhibit the aggregation of rabbit platelets induced by arachidonic acid, collagen, and platelet activating factor [109].

3.14. Osteoblastic Activity. *P. corylifolia* has significant inhibition effect on osteoclast [110, 111]. Corylin (24) and bavachin/coryfilolin (4) were reported to promote the proliferation of osteoblasts and inhibit bone resorption [112]. Solvent extract, especially bakuchiol (76), had preventive effect on osteoporosis which is caused by estrogen deficiency [113, 114].

3.15. Hemostatic Activity. There have been some reports on whether isopsoralen/angelicin (55) possessed significant hemostatic activity [4].

3.16. Antipyretic Activity. The petroleum ether extract, dichloromethane extract, and methanol extract of the aerial part of *P. glandulosa* have antipyretic activity [95].

3.17. Antidepressant Activity. The coumarins, isolated from *P. corylifolia*, could exert antidepressant effect by regulating monoamine oxidase activity, hypothalamic-pituitary-adrenal axis function, and oxidative stress [115–117]. Psoralen (51), a major furocoumarin isolated from *P. corylifolia*, could significantly reduce immobility and increase swimming without altering climbing in the mouse forced swimming test (FST). Psoralen remarkably reversed FST-induced alterations in serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in frontal cortex and hippocampus in mice. Furthermore, psoralen attenuated FST-induced elevations in serum corticotropin-releasing factor (CRF) and corticosterone concentrations to normalize the HPA axis activity [118].

3.18. Others. Psoralen (51) can enhance the synthesis of prostaglandin and give priority to increasing PGF2α [119]. It can also treat Alzheimer’s disease [120]. In addition, *P. corylifolia* has antiangiogenic activity [121], pesticidal activity [122], antidiabetic activity [123], antihypercholesterolemic activity [124], antilulcer activity, and so on [110].

4. Conclusion

Although the genus *Psoralea* contains more than 130 species in the world, only several plants were chemically and pharmacologically reported in the past literatures. Up to 2015, 129 compounds have been isolated from this genus. Among them, flavonoids (50 compounds) are the characteristic constituents, and coumarins, phenols, benzofurans and benzo-furans glycosides, quinines, meroterpenes phenols, sesquiterpenoids, and triterpenes are also found in the genus.
The pharmacological activities, for example, antimicrobial, antitumor, antioxidant, immunomodulatory, anti-inflammatory, hepatoprotective, photosensitization, and antiasthma activities, have been often reported in the past few decades. In this review, we compiled the pharmacological activities of the extracts and the compounds from the plants of genus *Psoralea*. We believe there will be more researches on this genus in the future, and the bioactive constituents from this genus await further investigation.

Competing Interests

The authors declare no conflict of interests.

Authors’ Contributions

Cong-Cong Li and Teng-Long Wang contributed equally to this work.

Acknowledgments

This work was supported financially by the National Natural Science Foundation (nos. 81403059 and 81403060), Tianjin Science and Technology Commissioner Project (no. 16JCQJD49000), and the National Science and Technology Major Projects for “Major New Drugs Innovation and Development” (2014ZX09304307-001-005).

References

[1] Y. J. Bai, Y. J. Han, J. D. Fan, and Y. Y. Zhao, “Studies on the chemical constituents and pharmacological activities of genus *Psoralea*,” in National Medicine Plants and Traditional, pp. 42–49, Chinese Medicine Academic Forum, Dalian, China, 2010.

[2] L. M. Perry and J. Metzger, “Medicinal plants of east and southeast Asia: attributed properties and uses,” *Brittonia*, vol. 33, no. 2, pp. 447–493, 1981.

[3] Chinese Pharmacopoeia Commission, *Pharmacopoeia of People’s Republic of China*, vol. 1, China Medical Science Press, Beijing, China, 2005.

[4] L. Ji and Z. Xu, “Review of constituents in fruits of *Psoralea corylifolia* L.,” *Chinese Journal of Chinese Materia Medica*, vol. 20, no. 2, pp. 120–128, 1995.

[5] A. I. Hamed, I. Springuel, N. A. El-Emary, H. Mitome, and Y. Yamada, “A phenolic cinnamate dimer from *Psoralea plicata*,” *Phytochemistry*, vol. 45, no. 6, pp. 1257–1261, 1997.

[6] C. F. Timmerlake, “The flavonoids-advances in research since 1980: edited by J. B. Harborne. Chapman & Hall, London and New York, xi+621 pp. £95,” *Phytochemistry*, vol. 28, no. 3, p. 966, 1989.

[7] N. Rasool, A. Q. Khan, V. U. Ahmad, and A. Malik, “A benzoxquinone and a coumaran from *Psoralea plicata*,” *Phytochemistry*, vol. 30, no. 8, pp. 2800–2803, 1991.

[8] Y.-L. Lin and Y.-H. Kuo, “Two new benzofuran derivatives, coryfilinol and isocoryfilinol from the seeds of *Psoralea corylifolia*,” *Heterocycles*, vol. 34, no. 8, pp. 1555–1564, 1992.

[9] N. J. Sun, S. H. Woo, J. M. Cassady, and R. M. Snapka, “DNA polymerase and topoisomerase II inhibitors from *Psoralea corylifolia*,” *Journal of Natural Products*, vol. 61, no. 3, pp. 362–366, 1998.

[10] N. A. Khatune, M. E. Islam, M. E. Haque, P. Khondkar, and M. M. Rahman, “Antibacterial compounds from the seeds of *Psoralea corylifolia*,” *Fitoterapia*, vol. 75, no. 2, pp. 228–230, 2004.

[11] G. Jiangning, W. Xinchu, W. Hou, L. Qinghua, and B. Kaishun, “Antioxidants from a Chinese medicinal herb-*Psoralea corylifolia* L.”, *Food Chemistry*, vol. 91, no. 2, pp. 287–292, 2005.

[12] B. Ruan, L.-Y. Kong, Y. Takaya, and M. Niwa, “Studies on the chemical constituents of *Psoralea corylifolia* L.”, *Journal of Asian Natural Products Research*, vol. 9, no. 1, pp. 41–44, 2007.

[13] S.-M. Wei, Z.-Z. Yan, and J. Zhou, “*Psoralea corylifolia* protects against testicular torsion/detorsion-induced ischemia/reperfusion injury,” *Journal of Ethnopharmacology*, vol. 137, no. 1, pp. 568–574, 2011.

[14] R. Liu, A. Li, A. Sun, and L. Kong, “Preparative isolation and purification of psoralen and isopsoralen from *Psoralea corylifolia* by high-speed counter-current chromatography,” *Journal of Chromatography A*, vol. 1057, no. 1-2, pp. 225–228, 2004.

[15] S. Yin, C. X. Fan, Y. Wang, L. Dong, and J. M. Yue, “Antibacterial prenylfлавone derivatives from *Psoralea corylifolia*, and their structure-activity relationship study,” *Bioorganic & Medicinal Chemistry*, vol. 12, no. 16, pp. 4387–4392, 2004.

[16] L. L. Yu, Studies onChemical Constituents of*Psoralea corylifolia* L. *Aristolochia Contorta* and Valerianin *jatamasis* Jones, Yunnan Normal University, 2004.

[17] R. N. Yadava and V. Verma, “A new biologically active flavonol glycoside from *Psoralea corylifolia* (Linn.),” *Journal of Asian Natural Products Research*, vol. 7, no. 4, pp. 671–675, 2005.

[18] B. Chopra, A. K. Dinghra, and K. L. Dhar, “*Psoralea corylifolia* L. (Buguchi)—folklore to modern evidence: review,” *Fitoterapia*, vol. 90, pp. 44–56, 2013.

[19] H. Liu, Y.-J. Bai, Y.-Y. Chen, and Y.-Y. Zhao, “Studies on chemical constituents from seed of *Psoralea corylifolia*,” *China Journal of Chinese Materia Medica*, vol. 33, no. 12, pp. 1410–1412, 2008.

[20] H. Haraguchi, J. Inoue, Y. Tamura, and K. Mizutani, “Antioxidative components of *Psoralea corylifolia* (Leguminosae),” *Phytotherapy Research*, vol. 16, no. 6, pp. 539–544, 2002.

[21] V. K. Bhalla, U. R. Nayak, and S. Dev, “Some new flavonoids from *Psoralea corylifolia*,” *Tetrahedron Letters*, vol. 24, no. 20, pp. 2401–2406, 1966.

[22] Y. J. Kim, H. Lee, E. Park, and S. H. Shim, “Inhibition of human 20S proteasome by compounds from seeds of *Psoralea corylifolia*,” *Bulletin of the Korean Chemical Society*, vol. 30, no. 8, pp. 1867–1869, 2009.

[23] W. L. Ji, M. J. Qin, and Z. T. Wang, “Studies on the chemical constituents of *Belamcanda chinensis* (L),” *Journal of China Pharmaceutical University*, vol. 32, no. 3, pp. 197–199, 2001.

[24] G. K. Gupta, K. L. Dhar, and C. K. Atal, “Corylinal: a new isoflavone from the seeds of *Psoralea corylifolia*,” *Phytochemistry*, vol. 17, no. 1, p. 164, 1978.

[25] B. S. Bajwa, P. L. Khanna, and T. R. Seshadri, “New chromeno-chalcone baevachromene from the seeds of *Psoralea corylifolia*,” *Current Science*, vol. 41, no. 22, pp. 814–815, 1972.

[26] Y.-T. Hsu, C.-J. Wu, J.-M. Chen, Y.-C. Yang, and S.-Y. Wang, “The presence of three isoflavonoid compounds in *Psoralea corylifolia*,” *Journal of Chromatographic Science*, vol. 39, no. 10, pp. 441–444, 2001.

[27] J. L. Suri, G. K. Gupta, K. L. Dhar, and C. K. Atal, “Psoralenol: a new isoflavone from the seeds of *Psoralea corylifolia*,” *Phytochemistry*, vol. 17, no. 11, p. 2046, 1978.

[28] T.-T. Yang and M.-J. Qin, “Isolation and structure identification of a new isoflavone from *Psoralea corylifolia*,” *Yao Xue Xue Bao*, vol. 41, no. 1, pp. 76–79, 2006.
[29] L. H. Zhao, C. Y. Huang, Z. Shan, B. R. Xiang, and L. H. Mei, "Fingerprint analysis of Psoralea corylifolia L. by HPLC and LC-MS," Journal of Chromatography B: Analytical Technologies in Biomedical & Life Sciences, vol. 821, no. 1, pp. 67–74, 2005.

[30] G. K. Gupta, K. L. Dhar, and C. K. Atal, "Isolation and constitution of corylind: a new coumestan from the fruits of Psoralea corylifolia," Phytochemistry, vol. 16, no. 3, pp. 403–404, 1977.

[31] S. R. Gupta, T. R. Seshadri, and G. R. Sood, "New formylated chalcone, 5',4-dihydroxy-4'-methoxychalcone, from the seeds of Psoralea corylifolia," Indian Journal of Chemistry, vol. 13, no. 6, p. 632, 1975.

[32] S. R. Gupta, T. R. Seshadri, and G. R. Sood, "The structure and synthesis of neobavachalcone, a new component of Psoralea corylifolia," Phytochemistry, vol. 16, no. 12, pp. 1995–1997, 1977.

[33] B. K. Gupta, G. K. Gupta, K. L. Dhar, and C. K. Atal, "A C-formylated chalcone from Psoralea corylifolia," Phytochemistry, vol. 19, no. 9, pp. 2034–2035, 1980.

[34] S. Yin, C.-Q. Fan, L. Dong, and J.-M. Yue, "Psoracrylifolios A-E, five novel compounds with activity against Helicobacter pylori from seeds of Psoralea corylifolia," Tetrahedron, vol. 62, no. 11, pp. 2569–2575, 2006.

[35] L. L. Yu, Y. G. Chen, Y. P. Lu, and S. H. Gui, "Chalcones from the seeds of Psoralea corylifolia," ChemInform, vol. 36, no. 48, pp. 1173–1177, 2005.

[36] D. Agarwal, S. P. Garg, and P. Sah, "Isolation of chalcones from the seeds of Psoralea corylifolia Linn," Indian Journal of Chemistry-Section B Organic and Medicinal Chemistry, vol. 45, no. 11, pp. 2574–2579, 2006.

[37] G. K. Gupta, J. L. Suri, B. K. Gupta, and K. L. Dhar, "Bakuchalcone, a dihydrofuranochalcone from the seeds of Psoralea corylifolia," Phytochemistry, vol. 21, no. 8, pp. 2149–2151, 1982.

[38] J. L. Suri, G. K. Gupta, K. L. Dhar, and C. K. Atal, "Bavachromanol: a new chalcone from the seeds of Psoralea corylifolia," Phytochemistry, vol. 19, no. 2, pp. 336–337, 1980.

[39] M. H. Lee, J. Y. Kim, and J.-H. Ryu, "Prenylflavones from Psoralea corylifolia inhibit nitric oxide synthase expression through the inhibition of I-kB-alpha degradation in activated microglial cells," Biological & Pharmaceutical Bulletin, vol. 28, no. 12, pp. 2253–2257, 2005.

[40] A. Tewari and R. S. Bhakuni, "New constituents from Psoralea corylifolia," Indian Journal of Chemistry-Section B Organic and Medicinal Chemistry, vol. 49, no. 2, pp. 256–259, 2010.

[41] L. N. Shan, S. M. Yang, G. Zhang et al., "Comparison of the inhibitory potential of bavachalcone and corylin against UDP-glucuronosyltransferases," Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 958937, 6 pages, 2014.

[42] Y.-H. Kuo and Y.-L. Lin, "Two new benzofuran derivatives, corylifolin and isocorylifolin from the seeds of Psoralea corylifolia," Heterocycles, vol. 34, no. 8, pp. 1555–1564, 1992.

[43] M. A. Pathak, T. B. Fitzpatrick, and T. B. Fitzpatrick, "The presently known distribution of furocoumarins (psoralesens) in plants," Journal of Investigative Dermatology, vol. 39, no. 3, pp. 225–239, 1963.

[44] S. Gupta, B. N. Jha, G. K. Gupta, B. K. Gupta, and K. L. Dhar, "Coumestans from seeds of Psoralea corylifolia," Phytochemistry, vol. 29, no. 7, pp. 2371–2373, 1990.

[45] X. Y. Liu, J.-W. Nam, Y. S. Song et al., "Psoralidin, a coumestan analogue, as a novel potent estrogen receptor signaling molecule isolated from Psoralea corylifolia," Bioorganic and Medicinal Chemistry Letters, vol. 24, no. 5, pp. 1403–1406, 2014.

[46] S. M. Newton, C. Lau, S. S. Gurcha, G. S. Besra, and C. W. Wright, "The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis," Journal of Ethnopharmacology, vol. 79, no. 1, pp. 57–67, 2002.

[47] H. N. Khastgir, P. C. Duttagupta, and P. Sengupta, "The structure of psoralidin," Tetrahedron, vol. 14, no. 3–4, pp. 275–283, 1961.

[48] G. P. Peng, P. H. Wu, H. Y. Li, and Y. T. Yuan, "Chemical studies on Psoralea corylifolia," Journal of Chinese Medicine Materia, vol. 25, no. 11, pp. 563–565, 1996.

[49] C. Labbe, F. Faini, J. Coll, and J. D. Connolly, "Bakuchiol derivative from the leaves of Psoralea juncea," Phytochemistry, vol. 30, no. 5, pp. 3569–3570, 1991.

[50] A. Schmitt, H. Telikepalli, and L. A. Mitscher, "Plicatin B, the antimicrobial principle of Psoralea juncea," Phytochemistry, vol. 58, no. 1, pp. 7–9, 1997.

[51] S. Yin, C.-Q. Fan, and J.-M. Yue, "Cyclobakuchiol C, a new bakuchiol derivative from Psoralea corylifolia," Journal of Asian Natural Products Research, vol. 9, no. 1, pp. 29–33, 2007.

[52] C.-Z. Wu, S. S. Hong, X. F. Cai et al., "Hyposia-inducible factor-1 and nuclear factor-xB inhibitory meroterpenes analogues of bakuchiol, a constituent of the seeds of Psoralea corylifolia," Bioorganic & Medicinal Chemistry Letters, vol. 18, no. 8, pp. 2619–2623, 2008.

[53] G. Mehta, U. R. Nayak, and S. Dev, "Meroterpenoids—I: Psoralea corylifolia Linn.—I. bakuchiol, a novel monoterpenoid phenol," Tetrahedron, vol. 29, no. 8, pp. 1119–1125, 1973.

[54] R. K. Chaudhuri and K. Bojanowski, "Bakuchiol: a retinol-like functional compound revealed by gene expression profiling and clinically proven to have anti-aging effects," International Journal of Cosmetic Science, vol. 36, no. 3, pp. 221–230, 2014.

[55] N. Rashou, A. Q. Khan, and A. Malik, "Plicatin A and B, two phenolic cinnamates from Psoralea plicata," Phytochemistry, vol. 29, no. 12, pp. 3979–3981, 1990.

[56] A. N. Shinde, N. Malpathak, and D. P. Fulzele, "Determination of isolavone content and antioxidant activity in Psoralea corylifolia L. callus cultures," Food Chemistry, vol. 118, no. 1, pp. 128–132, 2010.

[57] C. N. Backhouse, C. L. Delpoorte, R. E. Negreto et al., "Cyclobakuchiol A and B from Psoralea glandulosa," Phytochemistry, vol. 40, no. 1, pp. 325–327, 1995.

[58] C. N. Backhouse, C. L. Delpoorte, R. E. Negreto et al., "Cyclobakuchiol A and B from Psoralea glandulosa," Phytochemistry, vol. 40, no. 1, pp. 325–327, 1995.

[59] A. I. Hamed, I. V. Springuel, and N. A. El-Emary, "Benzofuran glycosides from the seeds of Psoralea plicata Del," Studies in Plant Science, vol. 6, pp. 323–329, 1999.

[60] C.-F. Qiao, Q.-B. Han, S.-F. Mo et al., "Psoralenoside and isopsoralenoside, two new benzofuran glycosides from Psoralea corylifolia," Chemical & Pharmaceutical Bulletin, vol. 54, no. 5, pp. 714–716, 2006.
rats with *Pneumocystis carinii pneumonia*," Chinese Journal of Parasitology and Parasitic Diseases, vol. 24, no. 1, pp. 59–62, 2006.

[95] C. N. Backhouse, C. L. Delporte, R. E. Negrete et al., "Active constituents isolated from *Psoralea glandulosa* L. with antiinflammatory and antipyretic activities," Journal of Ethnopharmacology, vol. 78, no. 1, pp. 27–31, 2001.

[96] H.-O. Pae, H. Cho, G.-S. Oh et al., "Bakuchiol from *Psoralea corylifolia* inhibits the expression of inducible nitric oxide synthase gene via the inactivation of nuclear transcription factor-κB in RAW 264.7 macrophages," *International Immunopharmacology*, vol. 1, no. 9–10, pp. 1849–1855, 2001.

[97] M. E. Wall, M. C. Wani, G. Manikumar et al., "Plant antimutagenic agents, 2. Flavonoids," *Journal of Natural Products*, vol. 51, no. 6, pp. 1084–1091, 1988.

[98] J. S. Ye, L. Y. Shen, Z. G. Li, and S. R. Cai, "Antioxidative protection of water extract of *Psoralea* fruit and bakuchiol on primary rat hepatocytes," *Nutrition Science Journal, vol. 22*, no. 5, pp. 303–324, 1997.

[99] S. M. Ye, W. P. Ou, and X. Hong, "Pharmacokinetics of fructus *Psoraleae* in bile elimination," *Traditional Chinese Drug Research & Clinical Pharmacology*, vol. 10, no. 3, pp. 162–164, 1999.

[100] Z. Dai, C. Zhao, K. Zhou, C. Q. Qu, and L. M. Hu, "Effect of fructus *Psoraleeae* on rats’ bile secretion and contractile activity of guinea-pigs’ gallbladder smooth muscle," *Strait Pharmaceutical Journal*, vol. 22, no. 4, pp. 37–38, 2009.

[101] H. Cho, J.-Y. Jun, E.-K. Song et al., "Bakuchiol: a hepatoprotective compound of *Psoralea corylifolia* on tacrine-induced cytotoxicity in hep G2 cells," *Planta Medica*, vol. 67, no. 8, pp. 748–749, 2001.

[102] J. G. Xu and J. Shang, "The activation of *Psoralea corylifolia* on tryosinase," *Chinese Traditional and Herbal Drugs*, vol. 4, pp. 168–169, 1991.

[103] Z. L. Liu, Y. F. Xu, C. X. Tu, and K. K. Wu, "Studies on the effect of extracts of 56 traditional Chinese drugs on the activity of tyrosinase," *Journal of Dalian Medical University*, vol. 22, no. 1, pp. 7–10, 2000.

[104] X. Y. Wang and J. X. Wang, "Synergistic effect of psoralen cooperated with substrates on tyrosinase activation," *Natural Product Research and Development*, vol. 19, no. 1, pp. 77–80, 2007.

[105] S. G. Deng, A. Q. Li, R. M. Ou, and Y. Q. Qu, "The anti-asthma effect of total-coumarins of fructus *Psoraleae*," *Chinese Journal of Modern Applied Pharmacy*, vol. 18, no. 6, pp. 439–440, 2001.

[106] W. X. Yu, W. Y. Li, H. Y. Li, L. Han, W. L. Chen, and S. G. Deng, "Effects of total coumarin on cGMP/cGMP of astmatic rats," *Research and Practice on Chinese Medicines*, vol. 20, no. 5, pp. 27–29, 2006.

[107] J. X. Fu, "Measurement of MEFV in 66 cases of asthma in the convalescent stage and after treatment with Chinese herbs," *Zhong Xi Yi Jie He Za Zhi*, vol. 9, no. 11, pp. 658–659, 1989.

[108] A. Qamaruddin, N. Parveen, N. U. Khan, and K. C. Singhal, "Potential antifilarial activity of the leaves and seeds extracts of *Psoralea corylifolia* on cattle filarial parasite *Setaria cervi*," *Journal of Ethnopharmacology*, vol. 82, no. 1, pp. 23–28, 2002.

[109] W.-J. Tsai, W.-C. Hsin, and C.-C. Chen, "Antiplatelet flavonoids from seeds of *Psoralea corylifolia*," *Journal of Natural Products*, vol. 59, no. 7, pp. 671–672, 1996.

[110] R. F. Yang, Q. Y. Shou, and B. H. Wang, "Effect of *Psoralea corylifolia* L on the proliferation and differentiation of osteoblast isolated from neonatal rat calvarium in vitro," *China Practical Medical*, vol. 2, no. 1, pp. 32–34, 2007.

[111] R. Q. Zhang, F. Q. Shi, S. Z. Pang, and S. F. Yu, "The effect of *Psoralea corylifolia* on isolated osteoclasts," *Journal of Modern Stomatology*, vol. 3, pp. 136–138, 1995.

[112] D. Wang, F. Li, and Z. Jiang, "Osteoblastic proliferation stimulating activity of *Psoralea corylifolia* extracts and two of its flavonoids," *Planta Medica*, vol. 67, no. 8, pp. 748–749, 2001.

[113] S.-H. Lim, T.-Y. Ha, S.-R. Kim, J. Ahn, H. J. Park, and S. Kim, "Ethanol extract of *Psoralea corylifolia* L. and its main constituent, bakuchiol, reduce bone loss in ovariectomized Sprague-Dawley rats," *British Journal of Nutrition*, vol. 101, no. 7, pp. 1031–1039, 2009.

[114] M.-H. Tsai, S. G. Huang, Y.-C. Hung, L. Bin, L.-T. Liao, and L.-W. Lin, "*Psoralea corylifolia* extract ameliorates experimental osteoporosis in ovariectomized rats," *The American Journal of Chinese Medicine*, vol. 35, no. 4, pp. 669–680, 2007.

[115] Y. Chen, L.-D. Kong, X. Xia, H.-F. Kung, and L. Zhang, "Behavioral and biochemical studies of total furocoumarins from seeds of *Psoralea corylifolia* in the forced swimming test in mice," *Journal of Ethnopharmacology*, vol. 96, no. 3, pp. 451–459, 2005.

[116] Y. Chen, H.-D. Wang, X. Xia, H.-F. Kung, Y. Pan, and L.-D. Kong, "Behavioral and biochemical studies of total furocoumarins from seeds of *Psoralea corylifolia* in the chronic mild stress model of depression in mice," *Phytotherapy*, vol. 14, no. 7-8, pp. 523–529, 2007.

[117] Y. C. Chen, Y.-T. Cheung, L.-D. Kong et al., "Transcriptional regulation of corticotrophin releasing factor gene by furocoumarins isolated from seeds of *Psoralea corylifolia*," *Life Sciences*, vol. 82, no. 21-22, pp. 1117–1121, 2008.

[118] Q. Xu, Y. Pan, L.-T. Yi et al., "Antidepressant-like effects of psoralen isolated from the seeds of *Psoralea corylifolia* in the mouse forced swimming test," *Biological & Pharmaceutical Bulletin*, vol. 31, no. 6, pp. 1109–1114, 2008.

[119] Y. B. Ji, *Pharmacological Action and Application of Anticancer Traditional Chinese Medicine*, Heilongjiang Science and Technology Press, 1990.

[120] Y. H. Choi, C. H. Yon, K. S. Hong et al., "In vitro BACE-1 inhibitory phenolic components from the seeds of *Psoralea corylifolia*," *Planta Medica*, vol. 74, no. 1, pp. 1045–1048, 2008.

[121] W. Q. Zhou, W. G. Zhang, and K. Y. Chen, "Advances in integrative medicine geriatrics," *Journal of Shandong University of Traditional Chinese Medicine*, vol. 7, no. 3, pp. 45–49, 1983.

[122] G. Z. Chai, G. H. Li, and Y. X. Guo, "The effect of *Psoralea corylifolia*, *Agrimonia pijosa* on cysticercosis in vitro," *Acta Chinese Medicie and Pharmacological*, vol. 1991, no. 3, pp. 52–53, 1991.

[123] Y.-C. Kim, H. Oh, B. S. Kim et al., "In vitro protein tyrosine phosphatase 1B inhibitory phenols from the seeds of *Psoralea corylifolia*," *Planta Medica*, vol. 71, no. 1, pp. 87–89, 2005.

[124] J. H. Choi, M.-C. Rho, S. W. Lee et al., "Bavachin and iso-bavachalcone, acyl-coenzyme A: cholesterol acyltransferase inhibitors from *Psoralea corylifolia*," *Archives of Pharmacal Research*, vol. 31, no. 11, pp. 1419–1423, 2008.