Expressiveness and Learnability: A Unifying View for Evaluating Self-Supervised Learning

Yuchen Lu
Mila, University of Montreal

Zhen Liu
Mila, University of Montreal

Aristide Baratin
SAIT AI Lab, Montreal

Romain Laroche
Microsoft Research Montreal

Aaron Courville
Mila, University of Montreal

Alessandro Sordoni
Microsoft Research Montreal

Abstract

We propose a unifying view to analyze the representation quality of self-supervised learning (SSL) models without access to supervised labels, while being agnostic to the architecture, learning algorithm or data manipulation used during training. We argue that representations can be evaluated through the lens of expressiveness and learnability. We propose to use the Intrinsic Dimension (ID) to assess expressiveness and introduce Cluster Learnability (CL) to assess learnability. CL is measured as the learning speed of a KNN classifier trained to predict labels obtained by clustering the representations with K-means. We thus combine CL and ID into a single predictor – CLID. Through a large-scale empirical study with a diverse family of SSL algorithms, we find that CLID better correlates with in-distribution model performance than other competing recent evaluation schemes. We also benchmark CLID on out-of-domain generalization, where CLID serves as a predictor of the transfer performance of SSL models on several classification tasks, yielding improvements with respect to the competing baselines.

1 Introduction

Despite impressive recent progress in self-supervised learning (SSL) [Chen et al., 2020a; Caron et al., 2020; Grill et al., 2020; Caron et al., 2020, 2018; He et al., 2020; Chen and He, 2021], the problem of properly evaluating the quality of the learned representations without using labelled data has not been fully explored. This is an important problem because solving it could give us a practical tool to choose which SSL model to use when downstream task labels are not accessible or when fine-tuning every SSL model to choose the best one is costly. Additionally, it can also shed light on how these methods function.

In this paper, we approach it by drawing an analogy between unsupervised learning and the evolution of human language. It has been suggested in the language evolution literature [see e.g., Smith et al., 2013] that linguistic structure results from competing pressures for expressiveness (to discriminate objects and concepts of the world) and learnability (to be transmitted across generations). Here, we take the view that a similar guiding principle may be applied to representations of natural images. Just as a language associates objects and scenes with utterances, SSL algorithms do it with continuous vectors to images. We hypothesize that a good representation should not only cover the diverse visual concepts in the datasets, but also compress them in a manner that could be efficiently learned. Our goal is to test this hypothesis by (i) proposing tractable metrics to assess expressiveness and learnability, (ii) designing performance predictors based on these, and (iii) testing these predictors through a large-scale empirical study of a diverse class of SSL methods.

Preprint. Under review.
Figure 1: We propose to use Cluster Learnability (CL) to measure learnability and Intrinsic Dimension (ID) for expressiveness. **Left:** Each circle is a SSL pre-trained checkpoint, and the color is used to show its KNN Top1 ImageNet accuracy. Red indicates high accuracy, while blue indicates low accuracy. Good self-supervised learning representations are learnable and expressive, distributed over the upper-right portion of the graph. Our predictors (**Right Column**) are highly correlated with ImageNet performance, even without access to gold labels and by staying agnostic to the model’s architecture or training algorithm.

The concepts of learnability and expressiveness, while not being explicitly mentioned, can be found in existing literature. For example, many SSL strategies emphasize maximizing the mutual information between inputs and representations [Vincent et al., 2008; Higgins et al., 2017; Oord et al., 2018; Bachman et al., 2019b]. These can be viewed as attempts to increase expressiveness, since high mutual information leads to correspondence between inputs and representations, and thus the visual concepts among the inputs are mapped to the representation space. Recent works also pay attention to the emerging properties of learnability in the cluster structure from SSL models through human studies [Laina et al., 2020]. The emphasis of learnability can be also found in the recent attempt to design a compression regularizer called Conditional Entropy Bottleneck [Lee et al., 2021]. Finally, the intuition of a trade-off between learnability and expressiveness underpins other representation analysis frameworks, such as alignment and uniformity [Wang and Isola, 2020] or Maximal Coding Rate Reduction [Yu et al., 2020], which are further explained in Section 2. In this paper, we aim at turning this intuition into a practical self-supervised evaluation tool, especially on predicting performances in out-of-distribution transfer tasks.

Concretely, we propose to quantify expressiveness via an estimator of the intrinsic dimension (ID) of the data representations [Ansuini et al., 2019]. To assess learnability, we take inspiration from [Laina et al., 2020] and propose a novel method called Cluster Learnability (CL). We compute it by measuring the learning speed of a KNN learner trained to predict labels induced by clustering held-out representations with K-Means. We show that a combination of CL and ID, dubbed CLID, is correlated with the model performance across different architectures (see Figure 1), better than with existing evaluation scheme baselines [Wang and Isola, 2020; Reed et al., 2021; Yu et al., 2020]. To further demonstrate the usefulness of our framework, we conduct out-of-domain generalization prediction experiments on seven downstream transfer tasks. We find that the proposed CLID predictor outperforms baseline concurrent methods at predicting transfer performance.
Our contributions are summarized below:

- We propose a unifying evaluation framework for self-supervised learning relying on expressiveness and learnability, yielding new insights into existing techniques in the literature.
- We propose tractable and generic metrics to estimate (i) expressiveness via the Intrinsic Dimension (ID) and (ii) learnability via our novel Cluster Learnability (CL) metric.
- We show that CLID predictors are well correlated with the ImageNet accuracies, and are robust with respect to the hyperparameters.
- We show that CLID predictors predict the transfer task performance of pretrained SSL models, especially when used jointly with in-domain accuracies.

2 Learnability and Expressiveness

In this section, we briefly discuss existing evaluation schemes of self-supervised learning methods, which will be used as baselines in our experiments. We then describe our own evaluation scheme, based on specific metrics to quantify learnability and expressiveness.

Notation

We consider the following setting: we assume we have a dataset \(\{x_i\}_{i=1}^N \) represented in \(\mathcal{X} \subset \mathbb{R}^d \), where \(x_i \sim P \) are sampled i.i.d. from some distribution \(P \) over \(\mathcal{X} \). We also consider representation maps \(F : \mathcal{X} \rightarrow \mathbb{R}^m \), typically pretrained neural networks, which represent any input as an \(m \)-dimensional vector. Any such map forms a representation dataset \(Z = \{z_i\}_{i=1}^N \) where \(z_i = F(x_i) \).

2.1 Existing SSL Evaluation

Alignment and Uniformity \cite{Wang2020} By decomposing contrastive learning loss, \cite{Wang2020} proposes to understand SSL with alignment and uniformity. Formally, they introduce two metrics,

\[
L_{align} := \mathbb{E}_{x \sim P, x' \sim P_{aug}(|x|)} \| F(x) - F(x') \|_2^2, \quad \alpha > 0
\]

\[
L_{unif} := \log \mathbb{E}_{x_1, x_2 \sim P} \left[e^{-t\|F(x_1) - F(x_2)\|_2^2} \right], \quad t > 0
\]

where \(P_{aug} \) is the conditional distribution defined by the data augmentation procedure, \(\hat{F}(x) := F(x)/\|F(x)\| \) are the normalized features and \(t, \alpha \) are tunable parameters. These two metrics respectively correspond to the intuition of learnability and expressiveness. By making the feature of positive pairs to be similar, \(L_{align} \) would induce a learnable representations since one can generalize from one positive example to another. The other component \(L_{unif} \) ensures the features (normalized) distributed over a hyper-sphere, so that the representations can cover more concepts and achieve high expressiveness.

Maximal Coding Rate Reduction (MCR2) \cite{Yu2020} MCR2 measures the reduction between the coding rate of a representation before and after a category structure \(\Pi \) is observed,

\[
\Delta R := R(Z, \epsilon) - R^c(Z, \epsilon|\Pi)
\]

where \(\Pi \) is a given dataset partition. More details on the definition of coding rate \(R \) and \(R^c \) can be found in the paper. The goal of this approach is to learn representations that is maximally diverse (large \(R(Z, \epsilon) \)) as well as between-class discriminative (small \(R^c(Z, \epsilon|\Pi) \)). Since the second term can be also interpreted as the coding rate of the representations under the category structure \(R^c \), then MCR2 corresponds to the intuition of learning a diverse and yet compressible (w.r.t. the partition \(\Pi \)) representations.

Mutual Information (MI) and Pretext Tasks Maximizing mutual information between inputs and representations \cite{Oord2018, Bachman2019a} can be viewed as increasing the expressiveness of the representations. High mutual information implies the highly correspondence between inputs and representation, suggesting each concept in the inputs is covered in the representation space. However, as pointed out by \cite{Tschannen2020}, MI is not a good predictor of the model
performance. Arguably, this is because MI alone does not cover the measurement of the learnability of the representations. Similar arguments can be applied to pretext tasks evaluation scheme like rotation prediction and solving jigsaw puzzles [Reed et al. 2021].

2.2 Our Proposal

Here we describe our evaluation scheme under the view of learnability and expressiveness. Our proposal can be efficiently computed on the validation set of the dataset.

Intrinsic Dimension (ID) We propose to use the notion of intrinsic dimensionality (ID) of the data in the representation space [Pettis et al. 1979a] to measure expressiveness. Our intuition is that, as more and more fine-grained categories emerging in the representation space, we expect the manifold complexity to go up, which can be characterized as the number of parameters needed to describe the representation manifold without losing information.

Inferring the intrinsic dimension of a highly nonlinear manifold is a challenging problem [e.g., Levina and Bickel 2005] to estimate ID. This estimator (TwoNN) is shown to be reliable with respect to representation dimensions and scalable to real-world datasets with deep neural networks [Ansuni et al. 2019]. The concept of intrinsic dimension is also connected to the entropy estimation, which has been widely used to quantify the amount of information contained (See Appendix B for a detailed discussion).

Formally, given \(z_i \in \mathbb{Z} \) and an integer \(k \geq 1 \), we denote by \(r_{ik} = D(z_i, NN(z_i, k)) \) the distance \(k \)-th nearest neighbor of \(z_i \) to its \(k \)-th nearest neighbor \(NN(z_i, k) \). We also introduce the ratio of distances \(\mu_i = r_{ij}/r_{i1} \) for each data point \(z_i \), \(1 \leq i \leq N \). Assuming that the points are sampled on a manifold with intrinsic dimension \(d \), it can be shown that, under the assumption of local uniformity, \(\mu_i \) follows a Pareto distribution with parameter \(d + 1 \) on \([1, \infty)\), i.e., \(\mu_i \sim P(\mu|d) := d\mu^{-(d+1)} \). While \(d \) can be computed by maximizing the likelihood, we follow a much simpler method proposed by [Facco et al. 2017] based on the cumulative distribution \(F(\mu) = 1 - \mu^{-d} \) associated with \(P(\mu|d) \). The idea is to estimate \(d \) with a linear regression on the empirical cumulative of the distribution. Specifically, assuming we sort \(\mu_i \) ascendingly, that is \(\mu_1 \leq \mu_2 \leq \ldots \leq \mu_N \), we estimate the cumulative distribution as \(F_i^{\text{emp}} = i/N \) and fit a straight line on the datasets \(\{(\log \mu_i, -\log(1 - F_i^{\text{emp}}))\}_{i=1}^N \) in the two dimensional plane. The slope is the estimated ID.

Cluster Learnability (CL) We take a similar stand as MCR2, which is that learnability and compression happen when there is a category structure. In order to measure the learnability of the emerging visual concepts in the representation space, we take inspiration from Laina et al. [2020]. The authors show that the classes obtained by clustering the representations of pretrained self-supervised models can be easily learned by humans. We propose a cluster learnability (CL) metric as a way to automate such procedure.

Let \(\{z_i, \tilde{y}_i\}_{i=1}^N \) be the labelled dataset obtained by clustering the representation (e.g., with \(K \)-means). We define the learnability of the representation as the learning speed of a KNN classifier with this labelled dataset. To formalize this, we use a prequential approach [Dawid 1984]. Let \(\tilde{y}_i = KNN(z_i; \{z_k<\tilde{y}_k<i\}) \) denote the prediction of the \(i \)-th label after seeing the pairs \((z_k, \tilde{y}_k) \) for \(k < i \). Learnability is defined as the online learning accuracy of our KNN classifier:

\[
CL = \frac{1}{N} \sum_{i=1}^N [\tilde{y}_i == y_i]
\]

In order to scale to large datasets, we choose to chunk our dataset and average the chunk accuracies. This metric can be connected to the prequential codelength of the cluster assignment dataset where the conditional model is a formed by a KNN classifier. We elaborate on this connection in Appendix C.

1. We also experiment with computing on the train set but there is no difference in the results.
2. We experiment with the ID estimator based on the maximum likelihood estimation [Levina and Bickel 2004, Ma et al. 2018], without noticing a difference in performance.
3. While we generally consider nearest neighbors w.r.t Euclidean distance, in practice we will also use the cosine distance function, \(D(z_1, z_2) = 2 - 2 \cos(z_1, z_2) \). Both produce similar results in our experiments.
4. While the original derivation [Facco et al. 2017] assumes global uniformity, but post-hoc analysis shows that it only needs local uniformity up to the second neighbor.
CLID Predictor We propose two versions of the CLID predictor as follows:

\[
\text{CLID} : \quad CL + ID \\
\text{W-CLID} : \quad w^T [CL; ID; 1]
\]

where \(w\) is a weight that can be learned by linear regression if in-domain performance of the models considered is available.

3 Empirical Study

3.1 Setup

We select in total 28 self-supervised learning checkpoints trained on ImageNet over different algorithms, architecture, and training epochs. A complete list can be found in Table 4 in the appendix. We use the KNN evaluation on the validation data using the ground-truth labels to measure the performance of the model, which has been shown to be well correlated with the linear evaluation but computationally less expensive \cite{Caron2021}.

For the computation of cluster learnability, we choose the square root of the dataset size as the number of clusters in Kmeans. We report results with 1 neighbor for our KNN learner. We also show that our results are robust to other choices of hyper-parameters. We normalize the features and use cosine distance for the K-means clustering and KNN learner. Other configurations of cluster numbers and neighbor numbers are also explored in section 3.4. All our experiments are computed on a single V100 GPU.

3.2 Baselines

\cite{Wang2020} also proposes to predict the ImageNet performance of pre-trained SSL checkpoints as an evaluation scheme. Therefore, in our experiments, we follow the official implementation with \(a = 2\) and \(t = 2\) as default values for the tunable parameters in Eqn 1. We additionally define \(-L_{\text{contrast}} = -L_{\text{align}} - L_{\text{unif}}\) to compute the predictor for \cite{Wang2020}'s method, which reduces to the negative contrastive loss. We add a negative sign, since we require a predictor to be in proportional to the model performance.

The original MCR2 requires the partition \(\Pi\) to be pre-specified. In order to adapt it into an unsupervised evaluation scheme, we use a \(K\)-means clustering as the dataset partition. We follow the default settings where \(\epsilon^2 = 0.5\) from Eqn 2, and we normalize the features. We also experiment with using the ground-truth label as the dataset partition, but we found no improvements. For MCR2, as a predictor, we simply use \(\Delta R\) as is defined above.

For the Mutual Information baseline, we use the MINE estimator \cite{Belghazi2018} with a fixed student ResNet18 network \cite{He2016} to estimate the MI \(I(X, Z)\). We use a batch size 128, learning rate 0.0005 and weight decay 0.001. The network is trained for 50000 steps on the training images, and we report the MINE estimation on the validation data. We find that training longer is computationally intensive, and the results are similar.

For the pretext task, we experiment with rotation prediction by constructing a 4-way classification. We randomly rotate the training images by 0, 90, 180, 270 degrees, train a KNN classifier on the training images to predict a 4-way classification, and then report the rotation prediction accuracy on the validation images. This is shown to be an effective evaluation in both self-supervised learning \cite{Reed2021} and architecture search \cite{Liu2020}.

3.3 Is CLID scheme correlated with ImageNet performance?

We first focus on whether the proposed evaluation scheme is useful for in-domain (ImageNet) generalization. We perform both qualitative and quantitative examination and the results are in Figure 1. On the left, we find that the self-supervised learning checkpoints with higher ImageNet
Table 1: Correlation results between ImageNet performances and different predictors. We compute both Pearson ρ and Kendall τ. Our CLID predictors achieve the highest correlation.

Predictors	Pearson ρ	Kendall τ
CL	0.74	0.44
ID	0.12	0.09
CLID	0.92	**0.75**
W-CLID	**0.94**	0.73
$-\mathcal{L}_{\text{align}}$	0.42	0.26
$-\mathcal{L}_{\text{unif}}$	-0.05	0.03
$\mathcal{L}_{\text{contrast}}$	0.37	0.24
$R(Z)$	-0.62	-0.33
$R^c(Z, \Pi)$	-0.58	-0.34
ΔR	-0.62	-0.33
MI	0.13	0.08
Pretext	0.61	0.27

accuracies tend to be more learnable as well as expressive (e.g., in the upper-right corner of the graph). In the meantime, we find that methods favouring only one quantity like PCLv1 and PIRL also have poor ImageNet accuracies. In Figure [1] middle and right, we compute the correlation of our CLID and W-CLID predictors with respect to the ImageNet accuracy of the model considered and show that we achieve a Pearson ρ of 0.92 for CLID and 0.94 for W-CLID.

In Table [1] we compare our results with respect to the baselines. The regression plots for the baselines can be found in Figure [3]. Our proposed predictors achieve the highest correlation both in terms of Pearson ρ and Kendall τ coefficient. We find that $\mathcal{L}_{\text{contrast}}$ achieves a relatively low correlation $\rho = 0.37$, which apparently contradicts the observation made in [Wang and Isola, 2020]. We hypothesize that this is due to the fact that their analysis is restricted to SSL checkpoints trained with contrastive learning, and therefore $\mathcal{L}_{\text{contrast}}$ might not be general enough to characterize representations obtained by alternative approaches. Additionally, the results in [Wang and Isola, 2020] are computed on the representations used to compute the noise-contrastive objective, which are usually transformed by a final projection layer that is not always present in other SSL methods. This limits its generality. Interestingly, we find that MCR2 (ΔR) gives negative correlation which warrants further investigation.

While the MI baseline only achieves $\rho = 0.13$, the Pretext baseline is still surprisingly good with a $\rho = 0.61$, suggesting that the rotation prediction task remains a simple but effective baseline.

3.4 Is CLID sensitive to its hyper-parameters?

In this section, we check the sensitivity of CLID to its hyperparameters. Since ID does not have any hyper-parameters, we mainly examine the following hyper-parameters for CL: the number of clusters and the number of neighbors used in the KNN Learner.

The results can be found in Figure [2]. The resulting predictors can still produce a higher correlation than the rotation prediction for a wide range of the configurations we tried. We observe that decreasing the number of neighbors leads to a better predictor. Given our result, we recommend setting number of neighbors to be 1.

We observe that there is an optimal cluster number so that the choice of neighbor numbers can be more flexible. If the cluster number is too low, the results become worse. Recall that for different checkpoints, the clusters are produced with the same K-means algorithm, so the separability among clusters might be roughly controlled. As a result, we hypothesize that the number of clusters might control the underlying difficulty of the classification problem faced by the KNN learner. In the extreme case, we either have 1 cluster or as many clusters as data points. In the former, KNN accuracy would always be 100% and in the latter always be close to 0%.

As a result, neither of them would be suitable enough to distinguish the collected checkpoints. As a rule of thumb, we recommend using a reasonably large number of clusters, e.g., the square root of the dataset size.

To be specific it’s $1/N$, where N is the dataset size. It’s close to 0% when N is large.
Table 2: Kendall Ranking Coefficient results on Out-of-Domain Tasks when ImageNet labels are not available. The CLID predictor has the best predictive performance for transfer tasks. Full results in Table 5.

Domain	CLID	W-CLID	$-\mathcal{L}_{\text{contrast}}$	ΔR	MI	Pretext
foods	0.75	0.72	0.17	-0.35	0.01	0.51
flowers	0.81	0.73	0.25	-0.35	0.14	0.46
pets	0.71	0.70	0.23	-0.25	-0.08	0.54
caltech101	0.56	0.52	0.11	-0.18	-0.05	0.67
stl10	0.56	0.64	0.02	-0.34	-0.21	0.41
aircraft	0.67	0.57	0.21	-0.27	0.16	0.57
cars	0.81	0.72	0.32	-0.28	0.16	0.48
Avg	0.70	0.66	0.19	-0.29	0.02	0.52

3.5 Can CLID be used to predict transfer performance?

As is pointed out by Vedantam et al. [2021], ImageNet accuracies are not completely correlated with other downstream classification tasks. As a result, we want to see if the proposed CLID predictor can help improve it. We collect 7 out-of-domain downstream classification tasks. For each domain, we compare the obtained ranking and compare it with the actual ranking on that domain. We report the Kendall τ correlation score, which is consistent with the existing benchmarks on out-of-domain generalization [Vedantam et al., 2021].

First, we investigate the scenario where the ImageNet labels are not accessible (Table 2). This is an extension of our previous scenario, and it is also a realistic assumption especially when the models are pretrained on web-scale data without clear annotations. We find that our CLID predictor is the best, even beating the W-CLID predictor. One reason is because the linear coefficients \mathbf{w} are obtained from regressing in the ImageNet domain, which might increase overfitting and hurt transfer. We also find that $-\mathcal{L}_{\text{contrast}}$ is not a good predictor, and a simple pretext task like rotation prediction already has reasonable performance even in transfer settings.

In the second setting, we assume to have access to ImageNet labels (Table 3) and explore whether transfer performance prediction can be improved using this additional information. We find that the ImageNet accuracies have pretty high correlation with the downstream tasks, with an average Kendall coefficients of 0.71. This is consistent with Vedantam et al. [2021] as in-domain accuracy is a good predictor for out-of-domain performance. To integrate ImageNet performance information to each our competing predictors, we proceed as follows. Let r^i_{pred} be the ranking of i-th checkpoint from the predictor, and r^i_{img} be that from the ImageNet accuracy. We compute a joint ranking by
Table 3: Kendall Ranking Coefficient results on Out-of-Domain Tasks when ImageNet labels are obtained. The results are computed with the joint rank product between the predictors and the ImageNet accuracy. While the ImageNet accuracy can predict the transfer accuracy reasonably, the proposed CLID predictor could further enhance the result. Full results in Table 6. Blue cells indicate the joint ranking outperform using ImageNet accuracy alone.

	Imagenet	CLID	W-CLID	Source Ent	Target Ent	L_{contrast}	Pretext
foods	0.86	0.84	0.81	**0.88**	0.84	0.56	0.75
flowers	0.70	0.79	0.74	0.74	0.71	0.58	0.64
pets	0.75	0.77	0.78	0.66	0.72	0.55	0.76
caltech101	0.62	0.59	0.58	0.60	0.66	0.41	**0.77**
stl10	0.76	0.71	0.71	0.61	0.71	0.36	0.64
aircraft	0.60	0.66	0.61	**0.68**	0.64	0.50	0.62
cars	0.68	0.79	0.74	0.72	0.74	0.64	0.66
Avg	0.71	**0.74**	0.71	0.70	0.72	0.52	0.69

computing the rank product, which is the geometric mean of these two ranks:

$$r_{\text{joint}} = \sqrt{r_{\text{pred}}r_{\text{img}}}$$

In addition to comparing with previously presented baselines, we also add the strongest baselines from [Vedantam et al., 2021]: we train a linear classifier and measure the negative label entropy $-H(Y|X)$. Since the entropy can be measured on either source domain or target domain, we denote each variant as “Source Ent” and “Target Ent”. The intuition behind is that if the model has more confidence in the prediction (lower entropy), it should generalize better.

We find that the proposed CLID predictor could further enhance the ImageNet accuracies predictions, with an average Kendall coefficients of 0.74 for the joint ranking. We find that “Target Ent.” and “Source Ent.” both have a reasonable performance, which is consistent with observation in [Vedantam et al., 2021], but they underperform our predictor. Note that computing “Target Ent.” and “Source Ent.” requires training an extra linear layer, which increases their computational requirements.

4 Related Work

Representation Evaluation Several recent works address the question of representation evaluation in self-supervised learning. [Whitney et al., 2021] propose to use the learning dynamics of the downstream classifiers to measure the representation complexity. However their method still depends on extra human labels. Pretext tasks like jigsaw or rotation prediction are shown to be well correlated with the self-supervised evaluation [Reed et al., 2021; Deng and Zheng, 2021] and architecture search [Liu et al., 2020]. However, they also rely on crafting ad-hoc data augmentations. Previous work also investigate the intuition of learnability and expressiveness, but with their own terms. Maximal Coding Rate Reduction (MCR2) [Yu et al., 2020] is one of them; however, this approach requires the ground-truth labels, so it is not directly applicable as an SSL evaluation framework. [Wang and Isola, 2020] studies contrastive loss, by decomposing it into an alignment loss and a uniformity loss. However, their method requires access to the projection head output, which limits its applicability to general architectures. Furthermore, we find that by focusing only on contrastive loss, this evaluation scheme provides limited predictive power when applying to a more diverse family of SSL models (section 3.3). [Ericsson et al., 2021] argues that it is important to look at the transfer performance of the SSL models in order to judge its quality. We agree with this statement and therefore also test our method for out-of-domain generalization settings (section 3.5).

Learnability, Ease-of-Transmission and Compression Learnability has been argued to be a hallmark of the human language in order to be effortlessly transmitted through generations [Kirby et al., 2014] [Rafferty et al., 2011] [Beckner et al., 2017] [Zhou and Yurovsky, 2021] [Kampen, 2004], and it is also true for visual concepts like color [Xu et al., 2010], categories [Griffiths et al., 2006], shapes [Portelance et al., 2021] etc. In deep learning, it has been explored in the context of emergent communication [Ren et al., 2020] [Guo et al., 2019] [Li and Bowling, 2019], language drift [Lu et al., 2021].
and neural module networks [Vani et al., 2021], but it is less explored for vision representation learning, except for a human study on just two SSL methods [Laina et al., 2020]. While Lee et al. [2021] also investigates a regularizer for compressive self-supervised learning, it is unclear whether such notion is useful as a representation evaluation framework. Learnability has a tight connection to compression [Chaitin, 2007] and prequential code length [Dawid, 1984], which quantifies the compression levels with the online learning error. Existing work [Blier and Ollivier, 2018] has uses it to support the generalization ability of the learner (e.g., deep neural nets) on the dataset (e.g., labeled images). Here, we use this concept to quantify the learnability of the representation, in the sense that if the emerged Kmeans clustering is more learnable, then the same KNN learner could achieve a lower compression bound via prequential coding.

Manifold Intrinsic Dimension

Intrinsic dimension can be thought of as the smallest number of variable needed to approximate the representation manifold. Applying local neighborhood information to estimate the intrinsic dimension is not a new idea, and it was shown to be more efficient than the global eigenvalue approach [Pettis et al., 1979b]. Ansuini et al. [2019] apply the TwoNN estimator [Facco et al., 2017] to the non-linear representation manifold of modern deep neural nets. They find that the intrinsic dimension is inversely correlated to the classification accuracy. Their work is further extended to confirm that natural images lies in a low-dimension manifold [Pope et al., 2021], and that lower ID datasets leads to better generalization. Recanatesi et al. [2019] further highlights the connections between intrinsic dimension and the generalization properties, by comparing the models before and after supervised training. Intrinsic dimension can also be estimated locally with a Maximum Likelihood Estimator [Levina and Bickel, 2004], which Ma et al. [2018] propose to use as a regularizer against overfitting noisy labels. While the above work mainly focus on ID with supervised learning models, our work on SSL models presents a more nuanced view about ID. It is indeed the case that lower intrinsic dimension can lead to better accuracy, especially among supervised checkpoints (see “sup_RN18”, “sup_RN34”, “sup_RN50” in Figure 1). However, we hypothesize that when learning representation from scratch without labels, e.g., self-supervised learning, the representation manifold still need a certain amount of complexity in order to include enough information from the dataset.

5 Limitation and Potential Negative Societal Impacts

Limitations

While our proposed evaluation scheme is designed to be general, a potential limitation is that it might be only suitable to the classification tasks, since we put emphasis on the emergence of learnable cluster structure. As a result, the proposed predictor might not be as useful for other downstream tasks like object detection or segmentation. While our results is true for a population of models, there are also some outliers. E.g., in Figure 1 “deepclusterv1” seems to have higher CL and ID than “simclrv2”, but its accuracy is lower.

Societal impact

This paper follows a line of work aiming at a better understanding of deep learning algorithms. Even though it does not directly contribute to any specific application, it promotes the development and dissemination of the deep learning technology, which, as any technology, can be used for harmful purposes. Moreover, we acknowledge that deep learning has been proved in the past to potentially reduce or amplify bias.

6 Conclusion & Discussion

We propose a unifying view to evaluate self-supervised representation learning through expressiveness and learnability. We propose to estimate expressiveness with intrinsic dimension (ID), and learnability with the acquisition speed of a KNN learner on the K-means clustering of the representation. We show that the proposed CLID evaluation scheme better predicts the ImageNet accuracy than other evaluation schemes. We further demonstrate that our CLID can also predict the transfer task performance.

Our work is a solid step towards understanding the current SSL algorithms and opens up interesting research directions. Future works could further explore the expressiveness-learnability in a more theoretical context, extend this framework to other field like pretrained language models, as well as devise new SSL algorithms that directly maximize intrinsic dimension or cluster learnability.
References

Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of data representations in deep neural networks. Advances in Neural Information Processing Systems, 32:6111–6122, 2019.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing mutual information across views. Advances in Neural Information Processing Systems, 32:15535–15545, 2019a.

Philip Bachman, R. Devon Hjelm, and William Buchwalter. Learning representations by maximizing mutual information across views. In NeurIPS, pages 15509–15519, 2019b.

Clay Beckner, Janet B Pierrehumbert, and Jennifer Hay. The emergence of linguistic structure in an online iterated learning task. Journal of Language Evolution, 2(2):160–176, 2017.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, and Devon Hjelm. Mutual information neural estimation. In International Conference on Machine Learning, pages 531–540. PMLR, 2018.

Léonard Blier and Yann Ollivier. The description length of deep learning models. arXiv preprint arXiv:1802.07044, 2018.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pages 132–149, 2018.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. arXiv preprint arXiv:2104.14294, 2021.

Gregory J Chaitin. Thinking About Godel And Turing: Essays On Complexity, 1970–2007. World scientific, 2007.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big self-supervised models are strong semi-supervised learners. Advances in Neural Information Processing Systems, 33:22243–22255, 2020b.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750–15758, 2021.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020c.

A Philip Dawid. Present position and potential developments: Some personal views statistical theory the prequential approach. Journal of the Royal Statistical Society: Series A (General), 147(2):278–290, 1984.

Weijian Deng and Liang Zheng. Are labels always necessary for classifier accuracy evaluation? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15069–15078, 2021.

Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do self-supervised models transfer? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5414–5423, 2021.
Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimension of datasets by a minimal neighborhood information. *Scientific reports*, 7(1):1–8, 2017.

Thomas L. Griffiths, Brian R Christian, and Michael L. Kalish. Revealing priors on category structures through iterated learning. In *Proceedings of the 28th annual conference of the Cognitive Science Society*, volume 199, 2006.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent—a new approach to self-supervised learning. *Advances in Neural Information Processing Systems*, 33, 2020.

Shangmin Guo, Yi Ren, Serhii Havrylov, Stella Frank, Ivan Titov, and Kenny Smith. The emergence of compositional languages for numeric concepts through iterated learning in neural agents. *arXiv preprint arXiv:1910.05291*, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9729–9738, 2020.

Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework. In *ICLR*, 2017.

Jacqueline van Kampen. The learnability of syntactic categories. *LOT Occasional Series*, 3:245–256, 2004.

Simon Kirby, Tom Griffiths, and Kenny Smith. Iterated learning and the evolution of language. *Current opinion in neurobiology*, 28:108–114, 2014.

Iro Laina, Ruth Fong, and Andrea Vedaldi. Quantifying learnability and describability of visual concepts emerging in representation learning. *Advances in Neural Information Processing Systems*, 33, 2020.

Kuang-Huei Lee, Anurag Arnab, Sergio Guadarrama, John Canny, and Ian Fischer. Compressive visual representations. *Advances in Neural Information Processing Systems*, 34, 2021.

Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. *Advances in neural information processing systems*, 17, 2004.

Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. In L. Saul, Y. Weiss, and L. Bottou, editors, *Advances in Neural Information Processing Systems*, volume 17. MIT Press, 2005. URL https://proceedings.neurips.cc/paper/2004/file/74934548253bcab8490ebe77f4731-Paper.pdf.

Fushan Li and Michael Bowling. Ease-of-teaching and language structure from emergent communication. In *Advances in Neural Information Processing Systems*, pages 15825–15835, 2019.

Junnan Li, Pan Zhou, Caiming Xiong, and Steven Hoi. Prototypical contrastive learning of unsupervised representations. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=KmykpuSrjcQ.

Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan Yuille, and Saining Xie. Are labels necessary for neural architecture search? In *European Conference on Computer Vision*, pages 798–813. Springer, 2020.

Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, and Aaron Courville. Countering language drift with seeded iterated learning. *arXiv preprint arXiv:2003.12694*, 2020.
Xingjun Ma, Yisen Wang, Michael E Houle, Shuo Zhou, Sarah Erfani, Shutao Xia, Sudanthi Wijewardene, and James Bailey. Dimensionality-driven learning with noisy labels. In *International Conference on Machine Learning*, pages 3355–3364. PMLR, 2018.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6707–6717, 2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. 2018. URL: http://arxiv.org/abs/1807.03748.

Karl W. Pettis, Thomas A. Bailey, Anil K. Jain, and Richard C. Dubes. An intrinsic dimensionality estimator from near-neighbor information. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-1(1):25–37, 1979a. doi: 10.1109/TPAMI.1979.4766873.

Karl W. Pettis, Thomas A. Bailey, Anil K. Jain, and Richard C. Dubes. An intrinsic dimensionality estimator from near-neighbor information. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-1(1):25–37, 1979b. doi: 10.1109/TPAMI.1979.4766873.

Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic dimension of images and its impact on learning. In *International Conference on Learning Representations*, 2021. URL: https://openreview.net/forum?id=XJk19XzGq2J.

Eva Portelance, Michael C Frank, Dan Jurafsky, Alessandro Sordoni, and Romain Laroche. The emergence of the shape bias results from communicative efficiency. *arXiv e-prints*, pages arXiv–2109, 2021.

Anna N Rafferty, Thomas L Griffiths, and Marc Ettinger. Exploring the relationship between learnability and linguistic universals. In *Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguistics*, pages 49–57, 2011.

Stefano Recanatesi, Matthew Farrell, Madhu Advani, Timothy Moore, Guillaume Lajoie, and Eric Shea-Brown. Dimensionality compression and expansion in deep neural networks. *arXiv preprint arXiv:1906.00443*, 2019.

Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. Selfaugment: Automatic augmentation policies for self-supervised learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2674–2683, 2021.

Yi Ren, Shangmin Guo, Matthieu Labeau, Shay B Cohen, and Simon Kirby. Compositional languages emerge in a neural iterated learning model. *arXiv preprint arXiv:2002.01365*, 2020.

Kenny Smith, Monica Tamariz, and Simon Kirby. Linguistic structure is an evolutionary trade-off between simplicity and expressivity. In *Proceedings of the annual meeting of the cognitive science society*, volume 35, 2013.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What makes for good views for contrastive learning? *arXiv preprint arXiv:2005.10243*, 2020.

Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, and Mario Lucic. On mutual information maximization for representation learning. In *International Conference on Learning Representations*, 2020. URL: https://openreview.net/forum?id=rkxoh24FPH.

Ankit Vani, Max Schwarzer, Yuchen Lu, Eeshan Dhekane, and Aaron Courville. Iterated learning for emergent systematicity in [vqa]. In *International Conference on Learning Representations*, 2021. URL: https://openreview.net/forum?id=D_oMxH81lf.

Ramakrishna Vedantam, David Lopez-Paz, and David J Schwab. An empirical investigation of domain generalization with empirical risk minimizers. *Advances in Neural Information Processing Systems*, 34, 2021.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In *International Conference on Machine Learning proceedings*. 2008.
Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In *International Conference on Machine Learning*, pages 9929–9939. PMLR, 2020.

William F Whitney, Min Jae Song, David Brandfonbrener, Jaan Altosaar, and Kyunghyun Cho. Evaluating representations by the complexity of learning low-loss predictors. In *Neural Compression: From Information Theory to Applications – Workshop@ ICLR 2021*, 2021.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-parametric instance discrimination. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3733–3742, 2018.

Jing Xu, Thomas Griffiths, and Mike Dowman. Replicating color term universals through human iterated learning. In *Proceedings of the Annual Meeting of the Cognitive Science Society*, volume 32, 2010.

Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. Learning diverse and discriminative representations via the principle of maximal coding rate reduction. *Advances in Neural Information Processing Systems*, 33:9422–9434, 2020.

Yuchen Zhou and Dan Yurovsky. A common framework for quantifying the learnability of nouns and verbs. In *Proceedings of the Annual Meeting of the Cognitive Science Society*, volume 43, 2021.

Checklist

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [Yes]
 (c) Did you discuss any potential negative societal impacts of your work? [Yes]
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [N/A]
 (b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes]
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes]
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [N/A]
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [N/A] Since it’s an evaluation paper, there is not much training to be done.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes]
 (b) Did you mention the license of the assets? [No] The datasets used a public datasets.
 (c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]
Appendix

A Further Discussion on Current SSL Practice

We further discuss the motivation behind our framework, and how can approach some of the SSL practice through the lens of expressiveness and learnability.

Contrastive Learning With our new view on representation quality by expressiveness-learnability, we can try to analyze some of the practice in the contrastive learning and see why it works and fails. Contrastive learning is a typical example of such a trade-off, and it has the following objective:

$$\mathbb{E}_{x,x^+} \log \left(\frac{e^{F(x)^T F(x^+)}}{e^{F(x)^T F(x^+)} + e^{F(x)^T F(x^-)}} \right)$$

It aims to output distinguishable feature vectors between positive and negative examples which turns out to increase the expressiveness. Meanwhile, it aims to make the output vectors among positive examples to be similar by which a higher value of learnability is ensured, since ideally the another learner only need to see one example to generalize to other positive examples. As a result, the degree of learnability here can be controlled by the definition of positive examples. A more diverse selection of the positive examples should make the F leaning toward the learnability side, since each example could represent a larger fraction of the inputs. It is well acknowledged in the self-supervised community that a diverse data augmentation is an essential part of the contrastive learning, and under this framework, it is a source of the learnability pressure.

Clustering-based Learning Perhaps our expressiveness-learnability framework is more obvious in the clustering-based algorithm like DeepCluster [Caron et al., 2018] and SwAV [Caron et al., 2020]. In these algorithms, you learn not only F but also a bank of cluster centroids C as well as assignments $\hat{y} = C^T F(x)$. As a result, we can also view these algorithms as finding $\hat{y} = G(x)$, where G is composed of F and C.

In these methods, the expressiveness is achieved by using a large number of clusters as well as some uniformity constraint, and this can ensure each data has a distinctive cluster assignment. SwAV achieves it with the SinkHorn iterations, while the DeepCluster, at least in the early version, would balance the sampling ratio of images to make the cluster uniform as well as resolving the empty cluster issues.

The learnability requirements are implicitly enforced as well. Since the space of \hat{y} is usually less than x, there are usually multiple data being assigned to the same cluster. This already ensure that a new learner should able to see a few examples to generalize within the cluster. In addition, these algorithms also leverage the data augmentation, so that $G(x)$ and $G(x^+)$ should have the same \hat{y}, which further improves the learnability.

B Intrinsic Dimension and Entropy Estimation

In this section, we briefly discuss how Intrinsic Dimension can be connected to Entropy Estimation for highly non-linear manifolds under the MLE principle.

Suppose we have i.i.d. dataset $X = \{X_1, X_2, ..., X_n\}$. Let $S(x, R)$ be a sphere around x and radius R. We assume when R is small, the local density is constant (local uniformity). That is we assume there is a constant $f(x)$ inside $S(x, R)$. Then we denote $N(r, x)$ as the number of data that appears inside the sphere $S(x, r)$, out of n data. When r goes from 0 to R, we assume the stochastic process $\{N(r, x)\}$ can be described as a homogeneous Poisson Process inside $S(x, R)$. Then the rate of such process w.r.t. r is

$$\lambda(r) = f(x)V(D)D^{D-1}$$

where D is the intrinsic dimension, and $V(D) = \pi^{D/2}[\Gamma(D/2 + 1)]^{-1}$ is the volume of unit sphere in R^D.

Let’s say D and $\theta = \log f(x)$ is our parameters for this model. Then the likelihood is the conditional probability of the observation $\{N(r, x)\}$. That is

$$L(D, \theta) = \int_0^R \log \lambda(r) dN(r, x) - \int_0^R \lambda(r) dr$$
This is derived in the other paper that I do not fully understand now. But let’s say this is true, we can estimate both parameter with MLE
\[
\frac{\partial L}{\partial D} = 0, \frac{\partial L}{\partial \theta} = 0
\]
This gives us the estimation of \(D \) w.r.t. the choice of sphere \(S(x, R) \) as
\[
\hat{D}(x, R) = \left[\frac{1}{N(R, x)} \sum_{j=1}^{N(R, x)} \log \frac{R}{T_j(x)} \right]^{-1}
\]
where \(T_j(x) \) is the distance of \(j \)-th neighbor to \(x \). If we control \(R \) by the predefined the number of neighbor \(k \), then
\[
\hat{D}(x, k) = \left[\frac{1}{k-1} \sum_{j=1}^{k-1} \log \frac{T_k(x)}{T_j(x)} \right]^{-1}
\]
which is the expected log distance ratio between \(k \)-th neighbor and other neighbors.

Also from above, we have
\[
\frac{N(R, x)}{R^D} = e^\theta V(D)
\]
to be true for all \(x \). Therefore
\[
\log f(x) = \theta = \log \frac{N(R)}{R^D V(D)} = \log N(R) - D \log R - \log V(D)
\]
which suggest that given the local intrinsic dimension, we have an estimation of the local density \(f(x) \). If we also use number of neighbors \(k \) to represent \(R \), and use our local intrinsic dimension estimate \(\hat{D}(x, k) \), we have estimated local density
\[
\log \hat{f}(x) = \log(k - 1) - \hat{D}(x, k) \log T_k(x) - \log V(\hat{D}(x, k))
\]
Then our estimate of entropy based on dataset can be
\[
\hat{H}(X, k) = -\frac{1}{n} \sum_{i} \log \hat{f}(X_i)
\]
\[
= \frac{1}{n} \sum_{i} \left(\hat{D}(X_i, k) \log T_k(X_i) + \log V(\hat{D}(X_i, k)) \right) - \log(k - 1)
\]

\(C \) Cluster Learnability and Prequential Codelength

Note that Eqn. [3] can be connected to the compression lower bound of the emerged cluster assignments datasets \(\{z_i, \tilde{y}_i\}_{i=1}^N \) via prequential coding [Dawid, 1984]. The prequential codelength is defined as
\[
L_{prev}\ = \ - \sum_{i} \log p(\tilde{y}_i|(z_{k \leq i}, \tilde{y}_{k < i}))
\]
where \(p(\tilde{y}_i|(z_{k \leq i}, \tilde{y}_{k < i})) \) is a conditional model, which can be computed from our KNN classifier probabilities. If Eqn. [3] is the online learning accuracy, then Eqn. [6] is online learning cross-entropy loss. Higher CL lead to lower prequential compression bounds on the emerged clusters.
Name	Method	Architecture
infomin	Unsupervised	ResNet
insdis	Unsupervised	ResNet
pcl_v1	Unsupervised	ResNet
pcl_v2	Unsupervised	ResNet
pirl	Unsupervised	ResNet
byol	Unsupervised	ResNet
deepcluster_v2_400ep_2x224	Unsupervised	ResNet
deepcluster_v2_400ep	Unsupervised	ResNet
deepcluster_v2_800ep	Unsupervised	ResNet
dino_deitsmall18	Unsupervised	ViT
dino_deitsmall16	Unsupervised	ViT
dino_vitbase8	Unsupervised	ViT
dino_vitbase16	Unsupervised	ViT
dino_xcit_small_12_p16	Unsupervised	XCiT
moco_v1_200ep	Unsupervised	ResNet
noco_v2_200ep	Unsupervised	ResNet
moco_v2_800ep	Unsupervised	ResNet
resnet18	Supervised	ResNet
resnet34	Supervised	ResNet
resnet50	Supervised	ResNet
selav2_400ep_2x224	Unsupervised	ResNet
selav2_400ep	Unsupervised	ResNet
simclr_v2_r501xsk0	Unsupervised	ResNet
simclr_v2_r501xsk1	Unsupervised	ResNet
simclr_v1_resnet50_1x	Unsupervised	ResNet
swav_100ep	Unsupervised	ResNet
swav_200ep	Unsupervised	ResNet
swav_800ep	Unsupervised	ResNet

Table 4: Full list of the pretrained checkpoints collected. The list of SSL methods are: MoCo-v1 [He et al., 2020], MoCo-v2 [Chen et al., 2020c], SeLA-v2 [Caron et al., 2020], DeepCluster-v2 [Caron et al., 2020], SwAV [Caron et al., 2020], DINO [Caron et al., 2021], SimCLR v2 [Chen et al., 2020b], SimCLR-v1 [Chen et al., 2020a], PCL-v1 [Li et al., 2021], PCL-v2 [Li et al., 2021], PIRL [Misra and Maaten, 2020], BYOL [Grill et al., 2020], InfoMin [Tian et al., 2020], InsDis [Wu et al., 2018].
Downstream	CL	ID	CLID	W-CLID	$-\mathcal{L}_{\text{align}}$	$-\mathcal{L}_{\text{unif}}$	$-\mathcal{L}_{\text{contrast}}$	$R(Z)$	$-R_c(Z,\Pi)$	ΔR	MI	Rotate
foods	0.37	0.12	0.75	0.72	0.27	-0.04	0.17	-0.36	-0.22	-0.35	0.01	0.51
flowers	0.22	0.30	0.81	0.73	0.21	0.07	0.25	-0.36	-0.14	-0.35	0.14	0.46
pets	0.40	0.07	0.71	0.70	0.33	-0.09	0.23	-0.25	-0.31	-0.25	-0.08	0.54
caltech101	0.36	-0.01	0.56	0.52	0.32	-0.17	0.11	-0.19	-0.26	-0.18	-0.05	0.67
stl10	0.68	-0.20	0.56	0.64	0.30	-0.22	0.02	-0.35	-0.46	-0.34	-0.21	0.41
aircraft	0.14	0.30	0.67	0.57	0.17	0.02	0.21	-0.28	-0.14	-0.27	0.16	0.57
cars	0.20	0.31	0.81	0.72	0.18	0.12	0.32	-0.28	-0.11	-0.28	0.16	0.48
Avg	0.34	0.13	0.70	0.66	0.25	-0.04	0.19	-0.29	-0.24	-0.29	0.02	0.52

Table 5: Full Kendall Ranking Coefficient results on Out-of-Domain Tasks when ImageNet labels are not acquired. The CLID predictor has the best predictive performance for transfer tasks.
Table 6: Full Kendall Ranking Coefficient results on Out-of-Domain Tasks when ImageNet labels are obtained. The results are computed with the joint rank product between the predictors and the ImageNet accuracy. While the ImageNet accuracy can predict the transfer accuracy reasonably, the proposed CLID predictor could further enhance the result.
Figure 3: Regression results for baselines w.r.t ImageNet accuracies.