Ethnobotanical uses of wild taxa as galactagogues in Sicily (Italy)

Anna Geraci1*, Vincenza Polizzano2, Rosario Schicchi3

1 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, via Archirafi 38, 90123 Palermo, Italy
2 Museo Naturalistico Francesco Minà Palumbo, Piazza San Francesco 3, 90013 Castelbuono-Palermo, Italy
3 Department of Agricultural, Food and Forest Sciences, Viale delle Scienze Ed. 4, 90128 Palermo, Italy

* Corresponding author. Email: anna.geraci@unipa.it

Abstract
Breastfeeding furnishes optimal nutrition, immune support, and a multitude of health benefits to mothers and newborns. Since ancient times plants have been employed as galactagogues in the folk medicine of many human cultures. In Sicily, a region with great floristic diversity in the Mediterranean area, where a conspicuous pool of species is traditionally used for food and aromatic, cosmetic, handicraft, agricultural, forestry, and medicinal purposes, some people recognize the galactagogue properties of some spontaneous plants.

The goal of this study was to identify wild plants with galactagogue properties and vegetable-food remedies traditionally used by women during breastfeeding to increase milk production. It was conducted in the Madonie territory (province of Palermo) by interviewing a sample of 105 people that was divided into three age groups. Ethnobotanical investigations revealed a total of 34 species, belonging to 11 families and 25 genera, used as galactagogues. For each taxon, the parts used, the methods of preparation, and the phytochemical profiles according to the literature were reported. The most represented family was Asteraceae, with 12 genera and 17 species, the majority of which contained latex.

The most frequently used parts of the galactagogue plants were leaves (69%) that were mainly eaten as cooked vegetables, raw in salads, or utilized as an infusion tea. The species cited in this study are mainly wild traditional vegetables with high nutritional profiles that could improve the quality and the quantity of the milk produced.

The study found that older people represent a precious source of information to help younger people preserve the cultural identity of the territory.

Keywords
breastfeeding; galactagogue plants; phytoestrogens; ethnobotanical investigations; Madonie territory

Introduction
Plants are rich natural sources of phytochemicals and essential nutrients that can both serve as appropriate chemical weapons against diseases, as well as cure disturbances in the normal physiological functions of the body [1]. In particular, phytoestrogens are a group of plant-derived compounds whose chemical structure is similar to animal and human estrogens [2–10]. They include a wide variety of secondary metabolites, i.e., hydroxybenzoic acid, hydroxycinnamic acids, anthocyanins, proanthocyanidins, flavonols, flavones, flavonones, isoflavones, stilbenes, and lignins, which are involved in protecting plants against ultraviolet radiation, aggression by pathogens, or stress-related responses. It has been reported that some terpenoids and saponins possess similar phytoestrogen effects [3–5,7,11–27]. Several hundreds of these molecules are
found in edible parts of plants, such as seeds, roots, stems, leaves, and fruit. They are common micronutrients in the human diet and have potential female health benefits because of their potent free radical scavenging properties and antioxidant activities [7,21,22,26]. Galactagogues are a group of substances or medicines either proven or believed to aid lactation during initiation and maintenance periods, increasing the human breast milk supply [28–31]. Since the earliest times of mankind, the delicate task of ensuring the survival of the human species has been related to women's fertility and their ability to raise children.

Essentially, breast milk is the most complete source of nutrition for infants; the milk, in addition to the appropriate amounts of carbohydrates, proteins, fats, vitamins, and minerals, includes hormones, digestive enzymes, and antibodies that assist the infant in regulating metabolic functions, properly digesting food, and strengthening the immune system [32]. Breast milk reduces the incidence of sudden infant death syndrome (SIDS), allergic/hypersensitivity diseases, and development of type 1 and type 2 diabetes mellitus [29,33–35]. Moreover, breast milk flow improves maternal health by reducing postpartum bleeding, excess weight gain, uterine involution, postpartum depression, and lactational amenorrhea [1,36]. Some studies have even shown that breastfeeding reduces the risk of osteoporosis for women, as well as the incidence of breast and ovarian cancers [35,37,38]. However, the number of women with insufficient milk production is increasing worldwide [1,29,39] and several factors could be responsible for the low milk supply, such as insufficient mammary tissue, medications, retained placenta, diseases, metabolic conditions (e.g., obesity), previous breast surgeries, caesarean section, and hormonal disorders. Other causes are related to environmental pollution, chemicals, pesticides, and medications that may interfere with female sex hormones, including those that affect breast development and milk production [1,39].

Lactation refers to the process of the production and secretion of milk from the mammary glands. This complex physiologic process involves physical and emotional components, and the interaction of multiple hormonal factors, such as estrogen, prolactin, and progesterone [40]. The process of milk protein synthesis also requires the availability of amino acids and a large supply of energy [1,41–43]. This suggests that nutrition plays an essential role in increasing milk protein synthesis.

There are some medications referred to as galactagogues, which assist in the initiation, maintenance, or augmentation of maternal milk production [44]. Most of these drugs (metoclopramide, domperidone, sulpride, and chlorpromazine) exert their mechanism of action through antagonism of dopamine D2 receptors, resulting in increased prolactin secretion. However, they are associated with unwanted side effects, such as sedation, restlessness, drowsiness, depression, weight gain, gastrointestinal disturbances, headache, nausea, and dry mouth [1,45–48]. Thus, these facts encourage the search for safer and more natural sources of treatment. Since the earliest of times, a multitude of galactagogue plants has been used in the folk medicine of all human cultures. Galactagogue herbs exist, in various dosages, forms, and preparations, including crude seeds, capsules containing dried seed powder, extract tincture, decoctions and infusion tea, pressed sap of fresh plants, and admixtures to food.

In several cultures, some galactagogue plants are widely utilized, such as Trigonella foenum-graecum L. (fenugreek), Asparagus racemosus L. (wild asparagus), Galega officinalis L. (goat's rue), Silphium marianum L. (milk thistle), Medicago sativa L. (alfalfa), and Foeniculum vulgare Mill. subsp. vulgare (fennel) [1,23,49]. Other traditional plants employed to enhance milk production are: Pimpinella anisum L., Cnicus benedictus L., Borago officinalis L., Carum carvi L., Vitex agnus-castus L., Taraxacum officinale Weber, Anethum graveolens L., Althaea officinalis L., Urtica dioica L., Avena sativa L., Trifolium pretense L., Rubus idaeus L., Verbena officinalis L., Allium sativum L., Humulus lupulus L., Hibiscus sabdariffa L., Moringa oleifera Lam, and Gunnera perpensa L. [1,49–51]. There are also some plants that seem to reduce milk production when consumed in large amount: Salvia officinalis L. (sage), Vaccinium myrtillus L. (bilberry), Petroselinum crispum (Mill.) Fuss (parsley), and Mentha x piperita L. (peppermint) [23,39,52].

In Sicily, a West-Mediterranean island, many spontaneous plants are traditionally eaten as vegetable-food or are utilized for their medicinal properties [53–57]. Especially people living in rural villages recognize traditionally galactagogue properties of some spontaneous plants and use them for that purpose. As reported by Pitré [58], during the postnatal puerperium period (of childbirth and breastfeeding), there are good dishes

{© The Author(s) 2018 Published by Polish Botanical Society Acta Soc Bot Pol 87(2):3580 2 of 18}
that improve poor milk secretion, e.g., cooked lettuce, watercress and wild fennel, boiled
nettle tops, pasta with endive, and sesame in bread [58]. In Sicily, no specific studies on
galactagogue plants have been carried out to date. Some information can be gathered
from general works on the use of spontaneous edible plants, such as *Silybum marianum*
[56], *Nigella damascena* seeds in Madonie Park [55], *Allium cepa*, *Foeniculum vulgare*
subsp. *vulgare*, and *Borago officinalis* in Etna Park [59].

The goal of this study was to: (i) identify the wild galactagogue plants and vege-
table-food remedies traditionally used by women living in the Madonie area during
breastfeeding to increase milk production, and (ii) determine the used parts and their
mode of preparation.

Material and methods

The area of study

The Madonie mountains are located in the northern part of Sicily. The territory is
located between Pollina River to the east and Imera River to the west. The central part
of the area is characterized by carbonatic substrates, which give rise to variation in
relief that at higher altitudes constitutes the second group of mountains of Sicily (Pizzo
Carbonara, 1,979 m). In the Madonie mountains, there are various geological forma-
tions dating from the Upper Triassic to the Lower Miocene age [60,61]. The landscape
is characterized by calcarenitic and dolomitic rocks with peaks and cliffs, whereas
some areas consist of quartzarenitic and silico-clastic rocks (Flysch Numidico). The
climate is characterized by cold winters with snowfall and xerothermic summers. The
various orographic areas exhibit complex ecological characteristics that result in a wide
variety of environments, with numerous habitats giving rise to singular biological and
biocenotic expressions. The territory is considered a biodiversity hotspot because of the
numerous species and the high level of endemism. In a surface area equal to 1.55% of
the entire island, there are 1,700 vascular plant taxa (approximately 55% of the Sicilian
flora), among which 170 are endemic. From a biogeographical point of view, the flora
is expressed in several groups, including the eastern and southern ones, as well as the
Mediterranean element in the Steno and Eurimediterranean expressions [60,61]. The
main population centers, which have played an important role in the anthropization and
exploitation of the area, are Petralia Sottana, Polizzi Generosa, Geraci Siculo, Isnello,
Castelbuono, Collesano, and Petralia Sopranza. Other very close centers are Gratteri,
Campofelice di Roccella, Cefalù, and Pollina in the north and San Mauro Castelverde,
Scillato, Caltavuturo, Sclafani Bagni, Gangi, Blufi, and Castellana Sicula in the south (Fig. 1). The first
traces of human presence in the Madonie go back
to the Greek expansion in Sicily, whereas the main
economic activities started in the Middle Ages.
The urban structures and the subdivision of the
territories (latifundium) are typical of the feudal
age [60,61]. The economy has always been based
on agriculture, forest exploitation, and grazing, but
because of the ever-increasing anthropization, exces-
sive grazing, deforestation, and summer residence
buildings, many ecosystems have been destroyed. To
protect these territories, in 1989 the natural regional
“Park of Madonie” was established, which covers
more than 40,000 hectares of the area [60,61].

Field study methods

The field work was carried out in the years 2010–
2015 by gathering ethnobotanical information from
the inhabitants of 18 rural Sicilian communities,
belonging to the Madonie mountain territory in the province of Palermo. Data were obtained by means of a structured questionnaire, which included general questions (name, surname, sex, age, level of education, work experience) and specific ones on wild taxa and some plants that have been cultivated for a long time in Sicily and are traditionally utilized as galactagogues. The questions were concerned with the vernacular names of the vegetables, the parts used, and methods of use. The interviews, frequently conducted in both the Italian and Sicilian dialect, were performed (after prior informed consent) with a stratified, randomly selected sample of 105 local people, divided into three age groups: 60–80, 40–59, and 20–39 years. For each age-group consisting of 35 people, we selected 25 women (18 housewives, five farmers, two teachers) and 10 men (four shepherds, four farmers, two specialists in ethnic traditions) because the topic concerns women, although men are usually the experts concerning folk plants. The identification of the most common taxa was carried out in the field. Plant samples were usually collected together with the interviewees, during or after the interview, and we confirmed the correct identification of the plants. Alternatively, specimens were collected and identified in the laboratory according to Flora d’Italia and more recent taxonomic revisions [62]. Voucher specimens of the plants were collected and deposited in the Herbarium of Francesco Minà Palumbo Museum (Castelbuono-Palermo, Sicily).

Nomenclature follows the Sicilian checklists [63,64] and the standards set by The Plant List database [65]. The biological forms and chorological data of the investigated taxa were also reported [64]. The study was carried out following The Code of Ethics of the International Society of Ethnobiology [66].

Data analysis

We compared the data gathered during the field study to other ethnobotanical investigations dealing with this subject, and to national and international ethnobotanical literature sources and popular references that considered the traditional uses of wild plants in local cuisines for galactagogue purposes [1,12,23,28–32,39,49–52]. The data obtained (frequency of mention, usage of the parts of the plants, and methods of preparation) were evaluated using the cross-table analysis tool in Microsoft Excel software.

Results

Ethnobotanical investigation revealed a total of 34 species, belonging to 11 families and 25 genera, used by local people for galactagogue purposes. The reported taxa are listed in Tab. 1 including their scientific and Sicilian vernacular names, information concerning their life forms, their geographical distribution areas (chorotype), their parts used, their methods of preparation, and their relative phytochemical profiles according to the literature. The most represented family was Asteraceae, with 12 genera and 17 species, whereas the Urticaceae family included only one genus with four species (i.e., U. dioica, U. membranacea, U. urens, and U. pilulifera), which are sometimes collected indifferently. Most of the listed species are spontaneous, but some traditionally cultivated species were also reported, including Cichorium endivia, Lactuca sativa, Avena sativa, Medicago sativa, Trifolium pratense, and Trigonella foenum-graecum. Concerning the biological spectrum (Fig. 2), the majority of galactagogue species belonged to the hemicryptophytes (53%), followed by terophytes (44%). The analysis of the chorological spectrum (Fig. 3) showed that the Eurimediterranean and Stenomediterranean elements were the most represented (18% and 15%, respectively).

Lactuca sativa and L. serriola were the most cited taxa (100% frequency), mentioned by all three age categories of interviewed people (Fig. 4 and Tab. 1), whereas Cichorium endivia, Foeniculum vulgare Mill. subsp. vulgare, and Sonchus spp. (S. asper, S. oleraceus, and S. tenerrimus) were known as galactagogue species by 100% of the informants from the 60–80 age group. Silybum marianum, Cichorium intybus, Borago officinalis, Urtica spp., Nasturtium officinale, and Taraxacum officinale were largely known as galactagogues among the oldest interviewed people (Fig. 4 and Tab. 1). Nasturtium officinale was the only semiaquatic wild plant cited as a galactagogue by all three age
Family/species	Vernacular name	Life forms	Chorotype	Parts used	Methods of preparation	Phytochemical profile	Age group 60–80; % (n)	Age group 40–59; % (n)	Age group 20–39; % (n)
Apiaceae									
Foeniculum vulgare	Finucchieddru sarvaggi	H scap.	S-Euromedit.	Seeds, fresh leaves	Infusion, boiled vegetables, flavoring	Essential oils (anethole, estragole, fenchone, α-pinene, limonene, camphene phellandrene), flavonoids, phenols, oxalic acid, high content of ascorbic acid and vitamin C, high amount of K, ω-3 fatty acids [5]	100 (35)	100 (35)	91 (32)
Centaurea calcitrapa	Apròcchiri picucara, sciaccabisci	H bienn.	Eurimedit.	Fresh leaves	Boiled vegetables	β-caryophyllene, 6,10,14-trimethyl-2-pentadecanone, n(Z)-β-farnesene, heptanal [5]	31 (11)	23 (8)	21 (7)
Cichorium endivia	Nirvia	T scap.	Cultiv.	Fresh leaves	Boiled vegetables or raw in salad	Flavonoid conjugates: kaempferol 3-O-glucuronide, kaempferol 3-O-(6-O-malonyl)-glucoside, kaempferol 3-O-glucoside and kaempferol 3-O-rhamnoside [18] amino acids, ascorbic acid, folacin, riboflavin, vitamin B6, vitamin B1 and PP, minerals (Ca, Cu, Fe, Mg, Mn, Mb, P, Na), α-linoleic acid, oleic acid, palmitic acid, panthenic acid, stearic acid, β-carotene, fat, fiber, carbohydrates, phenolics [17]	100 (35)	97 (34)	94 (33)
Cichorium intybus	Cicòria, cicòra	H scap.	Paleotemp.	Fresh leaves dried root	Boiled vegetables or raw in salad	Bitter compounds lactuclin and lactuciprin (latex); α-linolenic acid, apigenin, astragalin, β-carotene, betain, caffeic acid, tannins, chlorogenic acid, bitter glycoside cichorin, coumarin, ferulic acid, inulin, kaempferol, PUFA, quercetin, rutin, taraxasterol, vanillic acid, flavonoids, carotenoids phenolics, mucilages, essential oil, cichoresic acid esculetol-7-glucoside; lactucin-likeguaianolides, phenols, stigmasters, γ-sitosterol [5]	91 (32)	86 (30)	86 (30)
Crepis vesicatoria	Cicoria missinisa, cicoria amara	T scap.	Euro-Medit.-Subatl.	Fresh leaves	Boiled vegetables	Sesquiterpene lactones luteolin, luteolin-7-glucoside phenols [5]	31 (11)	20 (7)	9 (3)
Hyoseris radiata	Attalebbra, erba duci	T ros.	Stenomedit.	Fresh leaves	Boiled vegetables	Phenols [5]	29 (10)	23 (8)	11 (4)
Family/species	Vernacular name	Life forms	Chorotype	Parts used	Methods of preparation	Phytochemical profile	Age group 60–80; % (n)	Age group 40–59; % (n)	Age group 20–39; % (n)
-------------------------	-----------------	------------	---------------	------------	------------------------	--	-------------------------	-------------------------	-------------------------
Hypochaeris achyrophi	Costa rivecchia, cicoria lingua di jatta	T scap.	Stenomedit.	Fresh leaves	Boiled vegetables or raw in salad	Isoetin derivates: isoetin 7β-D-glucopyranoside-2β-D-xylpyranoside, isoetin 7β-D-glucopyranoside-2β-D-(4″-acetylxylpyranoside) luteolin 7-Diglucoside [20]	23 (17)	20 (11)	9 (4)
Hypochaeris radicata	Cicoria furfuciata, gärrë	H ros.	Europ-Caucas.	Fresh leaves	Boiled vegetables	Guaiane derivates, germacranolides, endemane derivatives, isoeitin (leaves), phenolics, flavonoids [5]	49 (17)	31 (11)	11 (4)
Lactuca sativa L.	Lattüca	H bienn.	Cultiv.	Fresh leaves	Boiled vegetables or raw in salad	Glycosides, steroids, phenolics, tannins, resin, lactucaarium, oxalic, malic and citric acid, quercetin conjugates, luteolin-7-O-glucuronide and cyanidin conjugates in the red-leaved varieties [18], ascorbic acid; minerals (Na, K, Mg, Fe, Cu, Cl, Z, P); vitamins (A, B1, B2, C, E, K, G, nicotinic acid, folic acid); seeds: lactucaarium, hyoscyamine, fatty acids (palmitic, stearic, arachidic, oleic, linoleic and caproic acid); leaves: starch, sugar, gum, cellulose, lignose, fat, Ca, P, I, borine, vit.: B1, B2, PP, and carotene; root: glycosides (lactoside A, lactoside C, macro-cloriside A) [3]	100 (35)	100 (35)	100 (35)
Lactuca serriola L.	Lattuca arbagia, lattuca spinosa	H bienn.	S-Europ.-Southsib.	Fresh leaves	Boiled vegetables	Latex with lactucon, lactucin, lactucic acids [5]	100 (35)	100 (35)	100 (35)
Reichardia picroides (L.) Roth.	Caciliaepri, ciricita	H scap.	Stenomedit.	Fresh leaves	Boiled vegetables	Flavonoids, cinnamic derivatives, polyphenols, isoeitin (leaves) [5]	89 (31)	77 (27)	57 (20)
Silybum marianum (L.) Gaertner	Carduggiu, cardu marianu	H bienn.	Euro-Medit-Turan.	Fresh or dried leaves inflorescence	Boiled vegetables, infusion	Apigenin, β-carotene, fumaric acid, kaempferol, naringenin, quercetin, silandrin, silymarin comprising silybin, silychristin, silydianin; silymonin, taxifolin, tyramine, histamine minerals (Ca), oxalic acid [5]	94 (33)	83 (29)	77 (27)
Family/species	Vernacular name	Life forms	Chorotype	Parts used	Methods of preparation	Phytochemical profile	Age group 60–80; % (n)	Age group 40–59; % (n)	Age group 20–39; % (n)
--------------------------------	-----------------	------------	-------------	------------------	------------------------	--	-------------------------	-------------------------	-------------------------
Sonchus asper (L.) Hill subsp. asper	Cardedda spinusa, cardedda di scecchi	T scap.	Eurasiat.	Fresh leaves	Boiled vegetables	Sesquiterpene lactones, taraxasterol, lacticino-similar compounds, guaianolide; *Sonchus oleraceus* : phenols, flavonoids, campesterol, stigmasterol, γ-sitosterol, phenols; *Sonchus* spp.: ω-3 fatty acids, vitamin C, carotenoids, flavonols, phenolics, proantho-cyanidins; soluble oxalate; minerals (Ca), isoeitin [5]	100 (35)	86 (30)	86 (30)
Sonchus oleraceus L.	Cardedda bianca, cardedda fimminina	T scap.	Eurasiat.	Fresh leaves	Boiled vegetables		100 (35)	86 (30)	86 (30)
Sonchus tenerinus L.	Cardedda di muru, cardedda scucvola	T scap.	Stenomedit.	Fresh leaves	Boiled vegetables		100 (35)	86 (30)	86 (30)
Taraxacum officinale Weber	Tarassacu, denti di liuni	H ros.	Circumbor.	Dried or fresh whole plant (root, leaves, flowers)	Boiled vegetables, infusion	Bitter compound lattupicrin, tannins, inulin, resin, taraxerol, taraxasterol, pseudotaraxasterol, β-amirin (latex of the stem and root), flavonoids, tetradrorivident B, taraxicolody-β-O-glycoside, taraxicoside, taraxasterol, sitosterol, stigmasterol, β-amirin; fibers, linolenic acid, β-carotene, β-sitosterol, caffeic acid, cryptoxanthin, lutein, p-coumaric acid, saponin, stigmasterol, high content of K, carotenoids, vitamins, proteins, choline, inulin, pectin, taraxacerin [5]	71 (25)	51 (18)	31 (11)
Tragopogon portulifolius L. subsp. portulifolius	Latti d’aceddi, barbabecchi	H bienn.	Eurimedit.	Fresh leaves	Boiled vegetables, infusion	Flavonoids, phenolic compounds [5]	31 (11)	23 (8)	9 (3)
Urospermum dalechampii (L.) F. W. Schmidt	Cicoria sarvaggia, cuosti i porci	H scap.	Eurimedit.	Fresh leaves	Boiled vegetables	Germacranolides, dihydroflavonol-3-O-methyl-taxifolin, quercetin aglycone, melampolide, guaianolide zaluzanin, mucilage, phenolic compounds, oils [5]	20 (7)	11 (4)	0
Boraginaceae									
Borago officinalis L.	Vurrania, burraina	T scap.	Eurimedit.	Whole plant	Boiled vegetables	Mucilage, allantoin, potassium nitrate, resins, tannins, several sterols, pyrrolizidine alkaloids, procyanidin, phenolic acids, flavonoids, minerals (P) [5]	89 (31)	86 (30)	66 (23)
Family/species	Vernacular name	Life forms	Chorotype	Parts used	Methods of preparation	Phytochemical profile	Age group 60–80	Age group 40–59	Age group 20–39
---------------	----------------	------------	-----------	------------	------------------------	--	-----------------	-----------------	-----------------
Brassicaceae									
Nasturtium officinale R. Br.	Crisciuni, scavini	H scap.	Cosmop.	Whole plant (leaves and thin stems)	Boiled vegetables	Glucosinolates (converted in isothiocyanates, particularly glyconasturtosides from which derives phenethyl isothiocyanate), β-carotene, tryptophan, tyrosine myristicin, α-terpinolene, flavonoids, gluconasturtiiin (the precursor of 2-phenylethyl isothiocyanate), caffeic acid, quer cetin and quercetin derivates (quercetin-3-O-rutinoside isorhamnetin), cataric acid and derivates, coumaric acid and derivates, vitamins (A, C, B1, and niacin), and mineral salts (Fe, Ca, Na, K, P) [5,25]	74 (26)	63 (22)	49 (17)
Fabaceae									
Medicago sativa L. subsp. *sativa*	Erva merica	H scap.	Eurasiat.	Fresh leaves shoots	Raw in salad	Alkaloids (stachydrine, 1-homostachydrine), coumesterol, flavonoids, isoflavonoids, carotenoids, phenolic acids, minerals (Fe, Ca, K, P and Zn) [23]	20 (7)	11 (4)	5 (2)
Trifolium pratense L. subsp. *pratense*	Trifuogghiu	H scap.	Eurosib.	Aerial parts of the flowering plant	Infusion	Isoflavones (biochanin A, daidzein, formononetin, genistein, pratensein, trifoside), flavonoids (pectolinarin, trifolin, isoquercitrin), clovamides, l-dopa–caffeic acid conjugates, coumarins (coumestrol, medicagol, coumarin), galactomannan, resins, minerals and vitamins, and phytoalexins [23]	51 (18)	40 (14)	43 (15)
Trigonella foenum-graecum L.	Fenu grecu, triunieddra	T scap.	SW Asia	Seeds	Infusion	Elemene, seline, furanone, dihydrobenzofuran, maurodene, dihydroactinidiolide, alkaloids (trigonelline, gentianine, carpaine), saponins (diosgenin, yamogenin, gitogenin, tigogenin), flavonoids (vitexin, isovitexin, orientin, vicenins, quercetin, luteolin), and galactomannan [23]	40 (14)	20 (7)	31 (11)
Family/species	Vernacular name	Life forms	Chorotype	Parts used	Methods of preparation	Phytochemical profile			
----------------	----------------	------------	-----------	------------	------------------------	-----------------------			
Malvaceae									
Althaea hirsuta L.	Marvavisca, vastuni di San Giuseppe	T scap.	Eurimedit.	Root	Decoction	*Althaea* spp.: isoquercitrin, glycosides (roots and stem) [17].			
Althaea officinalis L.	Erva piscia-voi, marvavisca	H scap.	SE-Europ.	Root	Decoction	α-Glucan, diosmetin glucosides, flavonoids (kaempferol, quercetin), polyphenolic acids (syringic, caffeic, salicylic, vanillic), pectin, asparagus and tannins [23]			
Poaceae									
Avena sativa L.	Avena, jina	T scap.	Cultiv.	Seeds	Boiled or crushed seeds	Minerals (Ca, Na, Mg, Fe, Cl, P, K, Cu, Mn), vitamin B1, B2, B5, B6, K1, E, and P, carotene, essential amino acids, lipids, saponins (avenacosides A-B), sterols, flavonoids, flavolignans, triterpenoid, β-glucan, proteins (gluten), alkaloids (gramine and avenine) [3,9]			
Ranunculaceae									
Nigella damascena L.	Vaccareddi, lampiuneddi	T scap.	Eurimedit.	Seeds	Infusion	Phenols (thymol, thymoquinol, thymoquinone, gentisic acid), alkaloids (damascenine, nigel-lamine, magnollorine), flavonoids (kaempferol, quercetin), saponins (hedaragenin) [19]; fatty acids (palmitic, stearic, oleic acid, linoleic and α-linoleic acid, eicosanoic and eicosadienoic acid), tocopherols (α-T, γ-T, β-T, and δ-tocotrienol), sterols (campesterol, stigmasterol, β-sitosterol, 5-avenasterol, 7-avenasterol) [8]			
Rosaceae									
Rubus idaeus L.	Amureddu di San Franciscu	H scap.	Stenomedit.	Fresh or dried leaves, fruits	Leaves as infusion, fresh fruit	Polypeptides, flavonoids, glycosides of kaempferol and quercetin, tannins, pectin, fructose, volatile oil, citric acid, malic acid, vitamin (A, B complex, C, E), and minerals (Fe, Ca, K, P, N, Mg, S, B, Cu, Mn, Zn); fruit: anthocyanins, carotenoids, β-carotene, and lycopene [14,23]			
Family/species	Vernacular name	Life forms	Chorotype	Parts used	Methods of preparation	Phytochemical profile			
----------------	----------------	------------	-----------	------------	------------------------	----------------------			
Urticaceae									
Urtica dioica L.	Ardìcula fimminedda, lardìca sarvaggia	H scap.	Subcosmop.	Fresh leaves	Boiled vegetables, sauces	Quercetin, kaempferol, isorhamnetin-3-O-glycoside, lignans, flavonoids, polysaccharides, lectins, steroids mineral salts; β-carotene, betaine; acetic, caffeic and ferulic acids; lecithin, lycopepe, p-coumaric acid, scopoletin, caffeic acid derivative compounds, ceramides, minerals, phytosterols, glycosides, phytosterols, saponins, flavonoids, tannins, amino acids, vitamin K and folate (primarily 5-methyltetrahydrofolate) rutin; kaempferol and resveratrol in some nettle samples, serotonin, histamine, acetylcholin, 5-idrossitryptamin, saliclic acid, minerals, nitrates (leaves) [5]			
Urtica membranacea Poir.	Addricula, ziciulièdda	T scap.	S-Steno-medit.	Fresh leaves	Boiled vegetables, sauces	Monoterpenes: limonene, linaool, cineol; polyphenols: (hydroxycinnamic acid) [4]; flavonoids (i.e., leucoanthocyanins), tannins (gallic acid), sterols [4]			
Urtica pilidifera L.	Ardicula masculina	T scap.	S-Steno-medit.	Fresh leaves	Boiled vegetables, sauces	Alcohols (cedrol and lauryl alcohol), aldehydes (octadecanal and citral), ketones (allyl ionone and α-ionone), esters (benzyl n-valerate), amide (octadecenamide), terpenes (4-terpeniol and Caryophyllene); fatty acids: linoleic, oleic, palmitic and stearic acid; steryl glycosides: β-sitosterol-3-O-β-glucoside, stigmasterol-3-O-β-D-glucoside, stigmasterol-3-O-galactoside [24]			
Urtica urens L.	Ardiculèdda fimminedda, ddicula	T scap.	Subcosmop.	Fresh leaves	Boiled vegetables, sauces	Minerals (Na, Ca, P, Mg, Mn, N, P Fe, Cu, Zn), crude lipids, crude proteins, and crude fiber, phytate, saponins, flavonoids (leucoanthocyanins, quercetin, proanthocyanidins), ascorbic acid, tannins (gallic acid), sterols, triterpenes, mucilage [4,6]; stinging hairs: histamine, formic acid, acetylcholine, acetic acid, butyric acid, leukotrienes, 5-hydroxytryptamine [6]			
Age group	Methods of preparation	Parts used	Phytochemical profile	Chorotype	Cited species	Age groups cited species			
-----------	------------------------	------------	-----------------------	-----------	---------------	------------------------			
20–39	Infusion	Infusion or fresh fruit	Fresh or dried leaves	Verbenaceae	Verbena officinalis L.	43 (13)			
40–59	Infusion	Infusion or fresh fruit	Fresh or dried leaves	Asteraceae	Cichorium intybus, Foeniculum vulgare, A. hirsuta	54 (19)			
60–80	Infusion	Infusion or fresh fruit	Fresh or dried leaves	Verbenaceae	Liguicimum agnus-castus	23 (8)			
60–80	Infusion	Infusion or fresh fruit	Fresh or dried leaves	Verbenaceae	Urtica dioica, U. membranacea L., U. pilulifera Poir., U. urens L.	31 (11)			

The age-group columns include the data of the youngest interviewed people (Table 1). Low frequency of mention was also found for Althaea officinalis, Medicago sativa because they do not occur very frequently; in particular, Medicago sativa is uncommonly cultivated in Sicily because of inadequate water resources.

Overall, the mean value for the percentage of taxa mentioned by women ranged between 45.4% (20–39 age group) and 62.6% (60–80 age group), whereas for men it ranged between 52.1% and 79.6% (20–39 and 60–80 age group, respectively).

The most used parts of galactagogue plants were the leaves (69%), mainly eaten as cooked vegetables or raw in salads. The seeds of Trigonella foenum-graecum, Foeniculum vulgare, and Avena sativa were employed as a decoction or infusion, as well as the dried roots of Althaea officinalis, A. hirsuta, Cichorium intybus, and Taraxacum officinale. The fresh fruits of Vitex agnus-castus and Rubus idaeus were utilized. For some species, more than one part or the entire plant was used, i.e., Foeniculum vulgare, subsp. vulgare, Cichorium intybus, Silybum marianum, Taraxacum officinale, Borago officinalis, Nasturtium officinale, Rubus idaeus, and Vitex agnus-castus (Fig. 5A and Tab. 1).

Discussion

As reported by numerous studies [1,23,49–51, 56,59], several wild spontaneous plants contain a wide variety of phytochemical substances with potential galactogenic properties (Tab. 1). These plants, consequently, can be used as food remedies to augment milk production in breastfeeding women.

The prevalent mention of the taxa belonging to the Asteraceae family (Fig. 4 and Tab. 1) as being utilized to increase milk production during breastfeeding, as well as for food and a source of vegetable remedies, was because the taxa of this family are rich in secondary metabolites and are the most abundant in the Mediterranean flora, and therefore are easily available to local people. These plants have been gathered and employed for many generations in Sicily for their diversified phytochemical profiles, which enrich the human diet with biologically active molecules [54,67,68]. According to the Checklist of the vascular flora of

Table 1 Continued

Family/species	Vernacular name	Life forms	Chorotype	Parts used	Methods of preparation	Phytochemical profile	Chorotype:	Life forms:	
Verbenaceae	Verbena officinalis L.	H scap.	Paleotemp.	Fresh or dried leaves	Infusion	Iridoids (verbenin, verbenalin, bastadastoside), tannin, volatile oils (citral, geraniol, limonene, verbenone), saponins, mucilage and alkaloids	H bienn. – biennial hemicryptophytes; P caesp. – caespitose phanerophytes; H ros. – rosette hemicryptophytes; T ros. – rosette therophytes; H scap. – scapose hemicryptophytes; T scap. – scapose therophytes.	Circumbor. – circumboreal; Cosmop. – cosmopolitan; Cultiv. – cultivated; Eurimedit. – Eurimediterranean; Euri-Medit.-Subatl. – Euro-Mediterranean-Subatlantic; Euromedit.-Turan. – Euro-Mediterranean-Turanian; Eurasiat. – Eurasiatic; Europ.-Caucas. – Euro-Caucasian; Eurosib. – Eurosiberian; Paleotemp. – paleotemperate; Stenomedit. – Stenomediterranean; SE-Europ. – South-East-European; S-Euro-Medit. – South-Euro-Mediterranean; S-Europ.-Southsib. – South-European-South-Siberian; S-Stenomedit. – South-Stenomediterranean; SW-Asia – Southwest Asia; Subcosmop. – subcosmopolitan.	Verbenaceae
Asteraceae	Cichorium intybus	H bienn.	Cosmop.	Fresh or dried leaves	Infusion	Iridoids (agnoside, aucubin), flavonoids (catsicin, kampferol, quercetin, vitexin), progestosterone, hydroxy-progesterone, testosterone, epi-testosterone, androstenedione, alkaloids	H bienn. – biennial hemicryptophytes; P caesp. – caespitose phanerophytes; H ros. – rosette hemicryptophytes; T ros. – rosette therophytes; H scap. – scapose hemicryptophytes; T scap. – scapose therophytes.	Circumbor. – circumboreal; Cosmop. – cosmopolitan; Cultiv. – cultivated; Eurimedit. – Eurimediterranean; Euri-Medit.-Subatl. – Euro-Mediterranean-Subatlantic; Euromedit.-Turan. – Euro-Mediterranean-Turanian; Eurasiat. – Eurasiatic; Europ.-Caucas. – Euro-Caucasian; Eurosib. – Eurosiberian; Paleotemp. – paleotemperate; Stenomedit. – Stenomediterranean; SE-Europ. – South-East-European; S-Euro-Medit. – South-Euro-Mediterranean; S-Europ.-Southsib. – South-European-South-Siberian; S-Stenomedit. – South-Stenomediterranean; SW-Asia – Southwest Asia; Subcosmop. – subcosmopolitan.	Asteraceae
Verbenaceae	Urtica dioica	H scap.	Paleotemp.	Fresh or dried leaves	Infusion	Iridoids (agnoside, aucubin), flavonoids (catsicin, kampferol, quercetin, vitexin), progestosterone, hydroxy-progesterone, testosterone, epi-testosterone, androstenedione, alkaloids	H bienn. – biennial hemicryptophytes; P caesp. – caespitose phanerophytes; H ros. – rosette hemicryptophytes; T ros. – rosette therophytes; H scap. – scapose hemicryptophytes; T scap. – scapose therophytes.	Circumbor. – circumboreal; Cosmop. – cosmopolitan; Cultiv. – cultivated; Eurimedit. – Eurimediterranean; Euri-Medit.-Subatl. – Euro-Mediterranean-Subatlantic; Euromedit.-Turan. – Euro-Mediterranean-Turanian; Eurasiat. – Eurasiatic; Europ.-Caucas. – Euro-Caucasian; Eurosib. – Eurosiberian; Paleotemp. – paleotemperate; Stenomedit. – Stenomediterranean; SE-Europ. – South-East-European; S-Euro-Medit. – South-Euro-Mediterranean; S-Europ.-Southsib. – South-European-South-Siberian; S-Stenomedit. – South-Stenomediterranean; SW-Asia – Southwest Asia; Subcosmop. – subcosmopolitan.	Verbenaceae
Verbenaceae	Urtica dioica	H scap.	Paleotemp.	Fresh or dried leaves	Infusion	Iridoids (agnoside, aucubin), flavonoids (catsicin, kampferol, quercetin, vitexin), progestosterone, hydroxy-progesterone, testosterone, epi-testosterone, androstenedione, alkaloids	H bienn. – biennial hemicryptophytes; P caesp. – caespitose phanerophytes; H ros. – rosette hemicryptophytes; T ros. – rosette therophytes; H scap. – scapose hemicryptophytes; T scap. – scapose therophytes.	Circumbor. – circumboreal; Cosmop. – cosmopolitan; Cultiv. – cultivated; Eurimedit. – Eurimediterranean; Euri-Medit.-Subatl. – Euro-Mediterranean-Subatlantic; Euromedit.-Turan. – Euro-Mediterranean-Turanian; Eurasiat. – Eurasiatic; Europ.-Caucas. – Euro-Caucasian; Eurosib. – Eurosiberian; Paleotemp. – paleotemperate; Stenomedit. – Stenomediterranean; SE-Europ. – South-East-European; S-Euro-Medit. – South-Euro-Mediterranean; S-Europ.-Southsib. – South-European-South-Siberian; S-Stenomedit. – South-Stenomediterranean; SW-Asia – Southwest Asia; Subcosmop. – subcosmopolitan.	Verbenaceae
Verbenaceae	Urtica dioica	H scap.	Paleotemp.	Fresh or dried leaves	Infusion	Iridoids (agnoside, aucubin), flavonoids (catsicin, kampferol, quercetin, vitexin), progestosterone, hydroxy-progesterone, testosterone, epi-testosterone, androstenedione, alkaloids	H bienn. – biennial hemicryptophytes; P caesp. – caespitose phanerophytes; H ros. – rosette hemicryptophytes; T ros. – rosette therophytes; H scap. – scapose hemicryptophytes; T scap. – scapose therophytes.	Circumbor. – circumboreal; Cosmop. – cosmopolitan; Cultiv. – cultivated; Eurimedit. – Eurimediterranean; Euri-Medit.-Subatl. – Euro-Mediterranean-Subatlantic; Euromedit.-Turan. – Euro-Mediterranean-Turanian; Eurasiat. – Eurasiatic; Europ.-Caucas. – Euro-Caucasian; Eurosib. – Eurosiberian; Paleotemp. – paleotemperate; Stenomedit. – Stenomediterranean; SE-Europ. – South-East-European; S-Euro-Medit. – South-Euro-Mediterranean; S-Europ.-Southsib. – South-European-South-Siberian; S-Stenomedit. – South-Stenomediterranean; SW-Asia – Southwest Asia; Subcosmop. – subcosmopolitan.	Verbenaceae
Sicily, the Asteraceae family occurs in Sicilian flora with 103 genera and 371 specific and infraspecific taxa [64].

Many galactagogues are obtained from plants containing latex, the majority of which belong to the Asteraceae family, such as *Lactuca sativa*, *Cichorium intybus*, *Reichardia picroides*, *Sonchus* spp., *Crepis vesicaria*, *Hypochoeris radicata*, *Taraxacum officinale*, and *Hypochoeris radiata* (Tab. 1). This fact recalls the medieval “doctrine of signatures” by Paracelsus, according to which plants possess signs indicating their usage. Though this doctrine cannot be scientifically validated, there are indeed several latex-producing plant species that are stated to be quite efficient in promoting lactation [12].

Some taxa, such as *Lactuca sativa*, *Cichorium endivia*, *Cichorium intybus*, and *Hypochoeris achenophora*, are eaten after being boiled, or consumed raw in salads seasoned with oil, salt, and lemon or vinegar or in mixed vegetable soups [54,56]. The leaves of
Urtica spp. and *Foeniculum vulgare* subsp. *vulgare* are also employed to prepare sauces to flavor local dishes [56]. Alternatively, fresh or dry leaves can be utilized for infusions to increase milk production (Tab. 1 and Fig. 5B).

The seeds are generally employed to prepare tea infusions. The seeds of *Foeniculum vulgare* subsp. *vulgare*, containing anethole and estragole phytoestrogens, are also an ingredient for seasoning many traditional Sicilian dishes [47]. Moreover, these seeds, beyond their galactagogue properties, are used in Sicily to prepare infusions for soothing colic in infants through breastfeeding [49].

Traditionally in Sicily, *Silybum marianum* is utilized as food and a galactagogue remedy (Tab. 1 and Fig. 5): leaves, young shoots, inflorescences, and stems are eaten raw in salads or boiled, or powdered dried leaves are consumed as an infusion [54,68]. Previous studies conducted on humans and animals suggested that this species has positive effects on milk secretion because it contains a mixture of flavonolignans. Silybin, the major constituent of silymarin, binds to cytosolic estrogen receptors determining phytoestrogenic activity [48,69,70].

Rubus idaeus and *Vitex agnus-castus* are the only two species cited by local people regarding the consumption of fresh fruits to increase milk production (Fig. 5). The active principles of làganu (*Vitex agnus-castus*) consist in a combination of iridoids (aucubin and agnusid), flavonoids (casticin, kamperol, quercetagenit, vitexin), and volatile oils (Tab. 1). *Rubus idaeus* (amureddu di San Franciscu) produces sweet and flavorful red fruits, which contain high levels of bioactive compounds (Tab. 1), such as anthocyanins, vitamins, carotenoids, phenols, and minerals. However, in both cases, there are not scientific studies confirming their direct effects on breastfeeding [12], but their use may have positive implications for women’s and newborns’ overall health.

Nasturtium officinale (crisciuni) is a perennial leafy plant that grows in rivulets, ditches, and pond margins. Its leaves have a spicy but pleasing taste and they can be eaten as a fresh salad vegetable [54,56], but it is recommended that women during breastfeeding consume them boiled to avoid the risk of *Fasciola hepatica* infection. The nutraceutical use of their leaves is caused by the significant content of glucosinolates and breakdown products (isothiocyanates, nitriles, and thiocyanates), pigments (carotenoids and chlorophylls), phenolics compounds (coumaric acid, caftaric acid, and quercetin, among others), vitamins (A, B1, niacin, and C), and mineral salts (Fe, Ca, P, Na, and K). The presence of various phytochemicals and their nutritional benefits give *Nasturtium officinale* the capacity of maintaining and improving immunity and health of the body [71]. Despite the lack of scientific evidence confirming its galactogenic characteristics, the consumption of watercress by women during breastfeeding can be an alternative source of nutrients (in particular mineral salts and vitamins) useful to the improvement of milk secretion.

Elderly men and women (age group 60–80) resulted the best connoisseurs of traditional plant uses. Among men, in particular, shepherds possessed the widest knowledge of galactagogue plants because of their indirect experience through animals; moreover, young shepherds maintain the oral knowledge handed down by family members. It is...
noteworthy that men in Sicily usually pay particular attention to their wives during the breastfeeding period, and they know and collect the useful plants to help them provide a good source of milk for their newborns.

Among women, housewives and farmers knew the plants used to increase milk production during breastfeeding either directly or on the basis of the tradition. Nevertheless, this information declines as generations pass (as appreciable in Tab. 1). Women having the highest education level often indirectly knew the uses of plants through the experience of their mothers and grandmothers.

Conclusions

This work represents a first contribution to the knowledge of the plants traditionally used in the Madonie area to increase milk production in women and to improve their and their newborns’ wellbeing. A balanced diet, rich in nutritional benefits, together with a healthy lifestyle is the main factor for good production of breast milk. The galactagogue plants can provide valuable support, although it is crucial to know that some of their active constituents may cause side effects in both mothers and their infants. This fact argues for increased public awareness and for available information on the safety implications of using herbal medicines to be provided at least among breastfeeding women [38]. The species cited in this study are mainly vegetables commonly utilized by local populations with high nutritional profiles, which can improve the quality and quantity of milk produced by mothers. Their use has been supported by centuries of experience, but it is not confirmed by scientific evidence that would definitely show their action and effectiveness. Lactation represents a particularly delicate phase in women’s lives, because it rests on hormonal, neural, and psychological factors. According to Jelliffe and Jelliffe [72], differences in benefits suggest that in some cases, the effectiveness of the employment of wild vegetable galactagogues may derive from the consolidate belief that they will work well. This enables the mother to relax and facilitates the stimulation of the milk-let-down reflex [72].

The interviews carried out in this study in the Madonie area showed that older people are a precious source of information for the younger generations. Therefore, they represent a significant resource to enhance the cultural identity of the territory with the valorization and rediscovery of the wild-vegetable heritage before the traditions disappear permanently. It would be desirable to perform new research on characterization, quantification, and the mechanism of action of the active principles contained in these galactagogue wild plants to link their traditional uses to future applications.

References

1. Elemo O, Oreaigba I, Akinwunmi A, Elemo G, Nicholas-Okpara V. Lactation failure and potential of traditional herbs as galactogogues. Int J Health Sci. 2016;4(1):427–434.
2. Adlercreutz H, Bannwart C, Wähälä K, Mäkelä T, Brunow G, Hase T, et al. Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J Steroid Biochem Mol Biol. 1993;44(2):147–153. https://doi.org/10.1016/0960-0760(93)90022-O
3. Constituents and phytochemicals of oat straw [Internet]. 2016 [cited 2017 Apr 2]. Available from: https://www.mdidea.com/products/new/new03203.html
4. Daoudi A, Sabiri M, Bammou M, Zair T, Ibibijen J, Nassiri L. Valorisation des extraits de trois espèces du genre Urtica: Urtica urens L., Urtica membranacea Poiret et Urtica pilulifera L. J Appl Biosci. 2015;87:8094–8104. https://doi.org/10.4314/jab.v87i1.9
5. Guarerra PM, Savo V. Wild food plants used in traditional vegetable mixtures in Italy. J Ethnopharmacol. 2016;185:202–234. https://doi.org/10.1016/j.jep.2016.02.050
6. Jimoh F, Adedapo A, Aliero A, Afolayan A. Polyphenolic and biological activities of leaves extracts of Argemone subfusiformis (Papaveraceae) and Urtica urens (Urticaceae). Rev Biol Trop. 2010;58(4):1517–1531. https://doi.org/10.15517/rtb.v58i4.5428
7. Lephart ED. Modulation of aromatase by phytoestrogens. Enzyme Res. 2015;2015:594656. https://doi.org/10.1155/2015/594656

8. Matthaus B, Özcan MM. Fatty acids, tocopherol and sterol contents of some *Nigella* species seed oil. Czech J Food Sci. 2011;29:145–150. https://doi.org/10.17221/206/2008-CJFS

9. Singh R, De S, Belkheir A. *Avena sativa* (oat), a potential nutriceutical and therapeutic agent: an overview. Food Sci Nutr. 2013;53:126–144. https://doi.org/10.1080/10408398.2010.526725

10. Taxvig C, Elleby A, Sonne-Hansen K, Bonefeld-Jørgensen EC, Vinggaard AM, Lykkesfeldt AE, et al. Effects of nutrition relevant mixtures of phytoestrogens on steroidogenesis, aromatase, estrogen, and androgen activity. Nutr Cancer. 2010;62(1):122–131. https://doi.org/10.1080/01635580903191577

11. Ali W, Hamiduddin, Ahmad A, Aslam M, Nasir A. *Tukh-e-karhu* (*Lactuca sativa* Linn.): pharmacological and phytochemical profile and uses in unani medicine. Journal of Pharmaceutical and Scientific Innovation. 2016;5(1):1–4. https://doi.org/10.7897/2277-4572.0511

12. Brückner C. A survey on herbal galactagogues used in Europe. In: Schröder E, Balansard G, Cabalion P, Fleurentin J, Mazars G, editors. Proceedings of the 2nd European Symposium on Ethnopharmacology and the 11th International Conference on Ethnomedicine "Medicines and foods: ethnopharmacological approach"; 1993 Mar 24–27; Heidelberg, Germany. Paris: ORSTOM; 1993. p. 140–145.

13. Carvalho ARA. *Urtica* spp. bioactividade e cultivo [Master thesis]. Coimbra: Departamento de Ciências da Vida, Faculdade De Ciências e Tecnologia, Universidade De Coimbra; 2014.

14. Castilho Maro LA, Pio MR, Santos Guedes MN, Patto de abreu CM, Nogueira Curi P. Bioactive compounds, antioxidant activity and mineral composition of fruits of raspberry cultivars grown in subtropical areas in Brazil. Fruits. 2012;68(3):209–217. https://doi.org/10.1051/fruits/2013068

15. Cheruyiot EK, Numera LM, Ngétich WK, Hassanali A, Wachira F. Polyphenols as potential indicators for drought tolerance in tea (*Camellia sinensis* L.). Biosci Biotechnol Biochem. 2007;71(9):2190–2197. https://doi.org/10.1271/bbb.70156

16. Cos P, de Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck AJ. Phytoestrogens: recent developments. Planta Med. 2003;69(7):589–599. https://doi.org/10.1055/s-2003-41122

17. Dr. Duke's phytochemical and ethnobotanical databases [Internet]. 2014 [cited 2017 May 31]. Available from: http://phytochem.nal.usda.gov/phytochem/search/list

18. DuPont MS, Mondin Z, Williamson G, Price KR. Effect of variety, processing and storage on the flavonoid-glycoside content and composition of lettuce and endive. J Agric Food Chem. 2000;48(9):3957–3964. https://doi.org/10.1021/jf0002387

19. Farag MA, Gad HA, Heiss AG, Wessjohann LA. Metabolomics driven analysis of six *Nigella* species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics. Food Chem. 2013;151:333–342. https://doi.org/10.1016/j.foodchem.2013.11.032

20. Gluchoff-Fiasson K, Favre-Bovin J, Fiasson JL. Glycosides and acylated glycosides of isoretin from European species of *Hypocharis*. Phytochemistry. 1991;30(5):1673–1675. https://doi.org/10.1016/0031-9422(91)84231-g

21. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–747. https://doi.org/10.1093/ajcn/79.5.727

22. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioeficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1):230S–242S.

23. Mohanty I, Senapati MR, Jena D, Behera PC. Ethnoveterinary importance of herbal galactagogues. A review. Vet World. 2014;7(5):325–330. https://doi.org/10.14202/vetworld.2014.325-330

24. Motawe HM, Wahba HE, Ebrahim AY, El-Nakkady AN. Steryl glycosides, lipoidal matter and volatile constituents of *Urtica pilulifera*. Global Journal of Pharmacology. 2013;7(4):377–382.

25. PfAf Database [Internet]. 2006 [cited 2017 May 19]. Available from: http://www.pfaf.org/user/Plant.aspx?LatinName=Nasturtium-officinale
26. Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, C. Rice-Evans C. Polyphenolic flavonols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys. 1995;322(2):339–346. https://doi.org/10.1006/abbi.1995.1473

27. Semwal DK, Bamola A, Rawat U. Chemical constituents of some anti-diabetic plants. Universities Journal of Phyto-chemistry and Ayurvedic Heights. 2007;2:40–48.

28. Betzold CM. Galactagogues. J Midwifery Womens Health. 2004;49:151–154. https://doi.org/10.1016/s1526-9523(03)00536-1

29. Semwal DK, Bamola A, Rawat U. Chemical constituents of some anti-diabetic plants. Universities Journal of Phyto-chemistry and Ayurvedic Heights. 2007;2:40–48.

30. Betzold CM. Galactagogues. J Midwifery Womens Health. 2004;49:151–154. https://doi.org/10.1016/s1526-9523(03)00536-1

31. Zuppa AA, Sindico P, Orchi C, Carducci C, Cardiello V, C. Romagnoli C. Safety and efficacy of galactagogues: substances that induce, maintain and increase breast milk production. J Pharm Sci. 2010;13(2):162–174. https://doi.org/10.18433/j3ds3r

32. Lawrence RA, Lawrence RM. Breastfeeding in modern medicine. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 1–34.

33. Kimura S, Morimoto K, Okamoto H, Ueda H, Kobayashi D, Kobayashi J, et al. Development of a human mammary epithelial cell culture model for evaluation of drug transfer into milk. Arch Pharm Res. 2006;29(5):424–429. https://doi.org/10.1007/bf02968594

34. Lawrence RM. Host-resistance factors and immunologic significance of human milk. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 159–195.

35. Lawrence RA, Lawrence RM. Making an informed decision about breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 217–231.

36. Lawrence RA, Lawrence RM. Making an informed decision about breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 217–231.

37. Lawrence RA, Lawrence RM. Making an informed decision about breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 217–231.

38. Lawrence RA, Lawrence RM. Making an informed decision about breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 217–231.

39. Lawrence RA, Lawrence RM. Making an informed decision about breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 217–231.

40. Lawrence RA, Lawrence RM. Making an informed decision about breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 217–231.

41. Lawrence RA, Lawrence RM. Making an informed decision about breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 217–231.

42. Lawrence RA, Lawrence RM. Making an informed decision about breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 217–231.

43. Lawrence RA, Lawrence RM. Making an informed decision about breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 217–231.

44. Lawrence RA, Lawrence RM. Making an informed decision about breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 217–231.

45. Lawrence RA, Lawrence RM. Making an informed decision about breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 217–231.

46. Lawrence RA, Lawrence RM. Making an informed decision about breastfeeding. In: Lawrence RA, Lawrence RM, editors. Breastfeeding; a guide for the medical profession. St Louis, MO: Mosby Press; 1999. p. 217–231.
lactation, does it work? A randomized trial. The Journal of Maternal-Fetal and Neonatal Medicine. 2011;24(11):1317–1320. https://doi.org/10.3109/14767058.2010.549255

47. Parkman H, Mishra A, Jacobs M, Pathikonda M, Sachdeva P, Gaughan J, et al. Clinical response and side effects of metoclopramide: associations with clinical, demographic and pharmacogenetics parameters. J Clin Gastroenterol. 2012;46(6):494–503. https://doi.org/10.1097/mcg.0b013e3182522624

48. Penagos Tabares F, Bedoya Jaramillo JV, Ruiz-Cortés ZT. Pharmacological overview of galactagogues. Vet Med Int. 2014;2014:602894. https://doi.org/10.1155/2014/602894

49. Abascal K, Yarnell E. Botanical galactagogues. Altern Complement Ther. 2008;14(6):288–294. https://doi.org/10.1089/act.2008.14602

50. Bazzano AN, Hofer R, Thibeau S, Gillispie V, Jacobs M, Theall KP. A review of herbal and pharmaceutical galactagogues for breast-feeding. Ochsner J. 2016;16:511–524.

51. Nice FJ. Common herbs and foods used as galactagogues. ICAN: Infant, Child, and Adolescent Nutrition. 2011;3(3):129–132. https://doi.org/10.1177/1941406411406118

52. Zapantis A, Steinberg JG, Schilit L. Use of herbals as galactagogues. J Pharm Pract. 2012;25(2):222–231. https://doi.org/10.1177/0897190011431636

53. Lentini F, Raimondo FM. Indagini etnobotaniche in Sicilia. IV. L'uso tradizionale delle piante nel territorio di Mistretta (Messina). Quaderni di Botanica Ambientale e Applicata. 1990;1:103–117.

54. Lentini F, Venza F. Wild food plants of popular use in Sicily. J Ethnobiol Ethnomed. 2007;3:15. https://doi.org/10.1186/1746-4269-3-15

55. Leto C, Tuttolomondo T, Bella S, Licata M. Ethnobotanical study in the Madonie Regional Park (Central Sicily, Italy). Medicinal use of wild shrub and herbaceous plant species. J Ethnopharmacol. 2013;146(1):90–112. https://doi.org/10.1016/j.jep.2012.11.042

56. Pasta S, Garfi G, La Bella F, Rühl J, Carimi F. An overview on the human exploitation of Sicilian native edible plants. In: Davis ER, editor. Wild plants: identification, uses and conservation. Hauppauge, NY: Nova Science Publishers Press; 2011. p. 1–74.

57. Schicchi R, Geraci A. Verdure spontanee di Sicilia. Guida al riconoscimento, alla raccolta e alla preparazione. Palermo: Idimed; 2015.

58. Pitrè G. Usi e costumi, credenze e pregiudizi del popolo siciliano: raccolti e descritti da Giuseppe Pitré. Palermo: L. P. Lauriel di C. Clausen, Palermo; 1889.

59. Tuttolomondo T, Licata M, Leto C, Garçano ML, Venturella G. Plant genetic resources and traditional knowledge on medicinal use of wild shrub and herbaceous plant species in the Etna Regional Park (Eastern Sicily, Italy). J Ethnopharmacol. 2014;155:1362–1381. https://doi.org/10.1016/j.jep.2014.07.043

60. Raimondo FM. On the natural history of the Madonie mountains. Webbia. 1984;38(1):29–52. https://doi.org/10.1080/00837792.1984.10670294

61. Raimondo FM, Schicchi R, Surano N. Carta del paesaggio e della biodiversità vegetale del Parco delle Madonie (Sicilia). Naturalista Siciliano. 2004;28(1):71–137.

62. Pignatti S. Flora d’Italia. Bologna: Edagricole; 1982.

63. Giardina G, Raimondo FM, Spadaro V. A catalogue of the plants growing in Sicily. Bocconea. 2007;20:5–582.

64. Raimondo FM, Domina G, Spadaro V. Checklist of the vascular flora of Sicily. Quad Bot Amb Appl. 2010;21:189–252.

65. The Plant List – Version 1.1. [Internet]. 2013 [cited 2017 May 30]. Available from: http://www.theplantlist.org

66. International Society of Ethnobiology Code of Ethics, with 2008 additions [Internet]. 2006 [cited 2017 May 31]. Available from: http://ethnobiology.net/code-of-ethics

67. Leonti M, Nebel S, Rivera D, Heinrich M. Wild gathered food plants in the European Mediterranean: a comparative analysis. Econ Bot. 2006;60(2):130–142. https://doi.org/10.1663/0013-0001(2006)60[130:WGFPIT]2.0.CO;2

68. Licata M, Tuttolomondo T, Leto C, Virga G, Bonsangue, G, Cammalleri I, et al. A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four regional parks. J Ethnobiol Ethnomed. 2016;12(1):12. https://doi.org/10.1186/s13002-015-0074-7

69. Kummer V, Mašková J, Chanler J, Zralý Z, Neča J, Machala M. Estrogenic effects of silymarin in ovariectomized rats. Vet Med. 2001;46(1):17–23. https://doi.org/10.17221/7846-VETMED
70. Seidlová-Wuttke D, Becker T, Christoffel V, Jarry H, Wuttke W. Silymarin is a selective estrogen receptor β (ERβ) agonist and has estrogenic effects in the metaphysis of the femur but no or antiestrogenic effects in the uterus of ovariectomized (ovx) rats. J Steroid Biochem Mol Biol. 2003;86(2):179–188. https://doi.org/10.1016/s0960-0760(03)00270-x

71. Zeb A. Phenolic profile and antioxidant potential of wild watercress (Nasturtium officinale L.). Springerplus. 2015;4:714. https://doi.org/10.1186/s40064-015-1514-5

72. Jelliffe DB, Jelliffe EFP. Human milk in the modern word. Oxford: Oxford University Press; 1978.