Hepatic TRAF2 Regulates Glucose Metabolism Through Enhancing Glucagon Responses
Zheng Chen,1 Liang Sheng,1 Hong Shen,1 Yujun Zhao,2 Shaomeng Wang,2 Robert Brink,3 and Liangyou Rui1

Obesity is associated with intrahepatic inflammation that promotes insulin resistance and type 2 diabetes. Tumor necrosis factor receptor–associated factor (TRAF)2 is a key adaptor molecule that is known to mediate proinflammatory cytokine signaling in immune cells; however, its metabolic function remains unclear. We examined the role of hepatic TRAF2 in the regulation of insulin sensitivity and glucose metabolism. TRAF2 was deleted specifically in hepatocytes using the Cre/loxP system. The mutant mice were fed a high-fat diet (HFD) to induce insulin resistance and hyperglycemia. Hepatic glucose production (HGP) was examined using pyruvate tolerance tests, 2H nuclear magnetic resonance spectroscopy, and in vitro HGP assays. The expression of gluconeogenic genes was measured by quantitative real-time PCR. Insulin sensitivity was analyzed using insulin tolerance tests and insulin-stimulated phosphorylation of insulin receptors and Akt. Glucagon action was examined using glucagon tolerance tests and glucagon-stimulated HGP, cAMP-responsive element–binding (CREB) phosphorylation, and expression of gluconeogenic genes in the liver and primary hepatocytes. Hepatocyte-specific TRAF2 knockout (HKO) mice exhibited normal body weight, blood glucose levels, and insulin sensitivity. Under HFD conditions, blood glucose levels were significantly lower (by >30%) in HKO than in control mice. Both insulin signaling and the hyperglycemic response to insulin were similar between HKO and control mice. In contrast, glucagon signaling and the hyperglycemic response to glucagon were severely impaired in HKO mice. In addition, TRAF2 overexpression significantly increased the ability of glucagon or a cAMP analog to stimulate CREB phosphorylation, gluconeogenic gene expression, and HGP in primary hepatocytes. These results suggest that the hepatic TRAF2 cell autonomously promotes hepatic gluconeogenesis by enhancing the hyperglycemic response to glucagon and other factors that increase cAMP levels, thus contributing to hyperglycemia in obesity.

Diabetes 61:566–573, 2012

ORIGINAL ARTICLE

RESEARCH DESIGN AND METHODS

TRAF2lox/lox mice were provided by R.B. Albumin-Cre mice were from The Jackson Laboratory (Bar Harbor, ME). Hepatocyte-specific TRAF2 knockout (HKO) mice were generated by crossing TRAF2lox/lox mice with albumin-Cre mice in C57BL/6 genetic background. Mice were housed on a 12-h light/dark cycle in the Unit for Laboratory Animal Medicine at the University of Michigan. Mice were fed either a normal chow (9% fat; Laboratory Diet) or a high-fat diet.
diabetes.diabetesjournals.org DIABETES, VOL. 61, MARCH 2012 567

RESULTS

Hepatocyte-specific deletion of TRAF2 is not sufficient to alter insulin sensitivity and glucose metabolism. TRAF2 mRNA abundance increased in mice with either genetic or dietary obesity (Fig. 1A). To determine the metabolic function of liver TRAF2, HKO mice were generated using the Cre/loxP system. TRAF2fllox/fllox mice were generated and characterized previously (21). HKO mice were generated by crossing TRAF2fllox/fllox mice with albumin-Cre transgenic mice, and both TRAF2fllox/fllox and albumin-Cre mice were used as control. As expected, TRAF2 was deleted specifically in hepatocytes but not other types of liver cells, hepatocytes and Kupffer cells were purified and subjected to genotyping and qPCR analysis. The TRAF2 gene was deleted in the hepatocytes but not Kupffer cells of HKO mice (Fig. 1C). TRAF2 mRNA levels were markedly reduced in hepatocytes but not Kupffer cells (Fig. 1D). The residual TRAF2 mRNA in the hepatocytes of HKO mice may result from a contamination of other cell types.

To examine the metabolic function of hepatic TRAF2, we measured blood glucose, insulin and performed GTTs and ITTs in mice fed a normal chow (Fig. 1E) and fasted overnight (Fig. 1F). These results suggest that TRAF2 deficiency in hepatocytes alone is not sufficient to alter glucose metabolism.

Hepatocyte-specific deletion of TRAF2 attenuates diet-induced hyperglycemia. Because inflammation promotes insulin resistance in obesity (13,40), we examined the role of hepatic TRAF2 in obesity-associated metabolic disorders. HKO and control mice were fed an HFD, and

Primary hepatocyte cultures were maintained in DMEM containing 10% fetal bovine serum (FBS) and 100 U/mL penicillin and 100 μg/mL streptomycin. Cells were maintained in a humidiﬁed incubator in 95% air and 5% CO2 at 37°C. Primary hepatocyte cultures were used at 4–7 passages.

The expression of protein was measured using an antibody against rat insulin-like growth factor I (IBA, Dietrick and Sons, Birmingham, AL) and PEPCK (Molecular Probes, Eugene, OR) and normalized to the expression of tubulin (IBA) or albumin (Molecular Probes) as described previously (30). The expression of individual genes was normalized to the expression of β-actin (Promega) or glyceraldehyde-3-phosphate dehydrogenase (Promega) as described previously (30). The expression of individual genes was normalized to the expression of β-actin (Promega) or glyceraldehyde-3-phosphate dehydrogenase (Promega) as described previously (30).

RESULTS

Hepatocyte-specific deletion of TRAF2 is not sufficient to alter insulin sensitivity and glucose metabolism. TRAF2 mRNA abundance increased in mice with either genetic or dietary obesity (Fig. 1A). To determine the metabolic function of liver TRAF2, HKO mice were generated using the Cre/loxP system. TRAF2fllox/fllox mice were generated and characterized previously (21). HKO mice were generated by crossing TRAF2fllox/fllox mice with albumin-Cre transgenic mice, and both TRAF2fllox/fllox and albumin-Cre mice were used as control. As expected, TRAF2 was deleted specifically in hepatocytes but not other types of liver cells, hepatocytes and Kupffer cells were purified and subjected to genotyping and qPCR analysis. The TRAF2 gene was deleted in the hepatocytes but not Kupffer cells of HKO mice (Fig. 1C). TRAF2 mRNA levels were markedly reduced in hepatocytes but not Kupffer cells (Fig. 1D). The residual TRAF2 mRNA in the hepatocytes of HKO mice may result from a contamination of other cell types.

To examine the metabolic function of hepatic TRAF2, we measured blood glucose, insulin and performed GTTs and ITTs in mice fed a normal chow (Fig. 1E) and fasted overnight (Fig. 1F). These results suggest that TRAF2 deficiency in hepatocytes alone is not sufficient to alter glucose metabolism.

Hepatocyte-specific deletion of TRAF2 attenuates diet-induced hyperglycemia. Because inflammation promotes insulin resistance in obesity (13,40), we examined the role of hepatic TRAF2 in obesity-associated metabolic disorders. HKO and control mice were fed an HFD, and

RESULTS

Hepatocyte-specific deletion of TRAF2 is not sufficient to alter insulin sensitivity and glucose metabolism. TRAF2 mRNA abundance increased in mice with either genetic or dietary obesity (Fig. 1A). To determine the metabolic function of liver TRAF2, HKO mice were generated using the Cre/loxP system. TRAF2fllox/fllox mice were generated and characterized previously (21). HKO mice were generated by crossing TRAF2fllox/fllox mice with albumin-Cre transgenic mice, and both TRAF2fllox/fllox and albumin-Cre mice were used as control. As expected, TRAF2 was deleted specifically in hepatocytes but not other types of liver cells, hepatocytes and Kupffer cells were purified and subjected to genotyping and qPCR analysis. The TRAF2 gene was deleted in the hepatocytes but not Kupffer cells of HKO mice (Fig. 1C). TRAF2 mRNA levels were markedly reduced in hepatocytes but not Kupffer cells (Fig. 1D). The residual TRAF2 mRNA in the hepatocytes of HKO mice may result from a contamination of other cell types.

To examine the metabolic function of hepatic TRAF2, we measured blood glucose, insulin and performed GTTs and ITTs in mice fed a normal chow (Fig. 1E) and fasted overnight (Fig. 1F). These results suggest that TRAF2 deficiency in hepatocytes alone is not sufficient to alter glucose metabolism.

Hepatocyte-specific deletion of TRAF2 attenuates diet-induced hyperglycemia. Because inflammation promotes insulin resistance in obesity (13,40), we examined the role of hepatic TRAF2 in obesity-associated metabolic disorders. HKO and control mice were fed an HFD, and

RESULTS

Hepatocyte-specific deletion of TRAF2 is not sufficient to alter insulin sensitivity and glucose metabolism. TRAF2 mRNA abundance increased in mice with either genetic or dietary obesity (Fig. 1A). To determine the metabolic function of liver TRAF2, HKO mice were generated using the Cre/loxP system. TRAF2fllox/fllox mice were generated and characterized previously (21). HKO mice were generated by crossing TRAF2fllox/fllox mice with albumin-Cre transgenic mice, and both TRAF2fllox/fllox and albumin-Cre mice were used as control. As expected, TRAF2 was deleted specifically in hepatocytes but not other types of liver cells, hepatocytes and Kupffer cells were purified and subjected to genotyping and qPCR analysis. The TRAF2 gene was deleted in the hepatocytes but not Kupffer cells of HKO mice (Fig. 1C). TRAF2 mRNA levels were markedly reduced in hepatocytes but not Kupffer cells (Fig. 1D). The residual TRAF2 mRNA in the hepatocytes of HKO mice may result from a contamination of other cell types.

To examine the metabolic function of hepatic TRAF2, we measured blood glucose, insulin and performed GTTs and ITTs in mice fed a normal chow (Fig. 1E) and fasted overnight (Fig. 1F). These results suggest that TRAF2 deficiency in hepatocytes alone is not sufficient to alter glucose metabolism.

Hepatocyte-specific deletion of TRAF2 attenuates diet-induced hyperglycemia. Because inflammation promotes insulin resistance in obesity (13,40), we examined the role of hepatic TRAF2 in obesity-associated metabolic disorders. HKO and control mice were fed an HFD, and
blood glucose and plasma insulin were measured. Body weight was similar between HKO and control mice (Fig. 2A). Control mice developed hyperglycemia progressively under HFD conditions; in contrast, blood glucose levels were maintained at relatively normal levels in HFD-fed HKO mice (Fig. 2B). Fasting blood glucose was 30% lower in HKO than in control mice fed an HFD for 15 weeks (HKO: 76.6 ± 7.0 mg/dL, n = 13; Control: 110.5 ± 9.8 mg/dL, n = 13; P = 0.01). Blood glucose also was reduced (by 22%) in HKO mice under fed conditions (HKO: 111.2 ± 4.6 mg/dL, n = 10; Control: 141.1 ± 5.7 mg/dL, n = 16; P = 0.001). Fasting plasma insulin levels also significantly decreased in HKO mice (Fig. 2C). A reduction in plasma insulin may be secondary to decreased blood glucose in HKO mice. These data indicate that hepatic TRAF2 contributes to diet-induced hyperglycemia and hyperinsulinemia in mice.

To further analyze insulin sensitivity and glucose metabolism, we performed GTTs and ITTs. It is surprising that glucose excursion rates were similar between HKO and control mice (Fig. 2D), and exogenous insulin similarly reduced blood glucose between these two groups (Fig. 2E). These results suggest that hepatic TRAF2 contributes to diet-induced hyperglycemia independently of insulin resistance. Hepatocyte-specific deletion of TRAF2 decreases hepatic gluconeogenesis. We analyzed HGP using pyruvate tolerance tests. Mice were fed an HFD for 17 weeks and injected with pyruvate, a gluconeogenic substrate. Blood glucose increased in both HKO and control mice after pyruvate injection; however, glucose levels were significantly lower in HKO than in control mice 0, 15, 30, and 120 min after injection, and the area under the curve (AUC) decreased by ~24% in HKO mice (Fig. 3A). To measure relative contributions of glycogenolysis and gluconeogenesis to HGP, mice were fasted for 24 h and
intraperitoneally injected with deuterium water. Blood samples were collected 30 min after injection and subjected to 2H NMR analysis to estimate the contributions of glycolysis and gluconeogenesis to HGP as described previously (31–35). 2H NMR spectra were different between control and HKO mice (Fig. 3B). The fraction of glucose derived from PEP-stimulated gluconeogenesis was markedly reduced in HKO mice (Control: 64.7 ± 7.1%, n = 9; HKO: 26.8 ± 8.9%, n = 9; P = 0.029). In contrast, the fraction of glycogenolysis-derived glucose increased in HKO mice (Control: 10.8 ± 3.2%, n = 9; HKO: 29.3 ± 3.4%, n = 9; P = 0.017). Increased glycogenolysis may be an adaptation to decreased gluconeogenesis in HKO mice.

Plasma lactate levels were similar between control and HKO mice fed an HFD for 18 weeks (HKO: 4.23 ± 0.40 mmol/L, n = 16; Control: 5.07 ± 0.56 mmol/L, n = 16; P = 0.22). These data suggest that the supply of gluconeogenic substrate may not be the determinant factor for reduced gluconeogenesis in HKO mice. To determine whether

FIG. 3. Hepatocyte-specific deletion of TRAF2 suppresses the hepatic gluconeogenic program under HFD conditions. **A:** HKO and control (TRAF2$^{fl/fl}$: n = 13; albumin-Cre: n = 3) male mice were fed an HFD for 17 weeks. Mice were fasted for 16 h and intraperitoneally injected with sodium pyruvate (2 g/kg body wt). Blood glucose was monitored after injection, and AUCs were calculated. AU, arbitrary unit. **B:** Mice (7–8 weeks) were fed an HFD for 10–12 weeks and subjected to 2H NMR analysis. 2H NMR spectra of a MAG derived from plasma glucose (pooled from three animals per group) were presented. **C:** HKO and control males were fed an HFD for 18 weeks. Total liver RNAs were extracted and used to measure the mRNA abundance of the indicated genes by qPCR. The expression of these genes was normalized to the expression of 36B4. Data are mean ± SEM. *P < 0.05. Con, control.

FIG. 4. Hepatocyte-specific deletion of TRAF2 does not ameliorate liver inflammation levels under HFD conditions. HKO and control (Con) males (7–8 weeks) were fed an HFD for 18 weeks. **A:** Liver frozen sections were stained with anti-F4/80 antibody and DAPI. **B:** F4/80-positive cells were accounted and normalized to total cell numbers. AU, arbitrary unit. **C:** Total liver RNAs were extracted and used to measure the mRNA abundance of the indicated genes by qPCR. The expression of these genes was normalized to the expression of 36B4. Data are mean ± SEM. (A high-quality digital representation of this figure is available in the online issue.)
hepatic TRAF2 regulates the hepatic gluconeogenic program, mice were fed an HFD for 18 weeks and fasted for ~20 h. Liver mRNA was extracted and used to measure the mRNA abundance of key gluconeogenic genes by qPCR. The expression of PGC-1α, PEPCK, and G6Pase decreased by 47, 31, and 33% in HKO mice, respectively (Fig. 3C). Consistently, liver G6Pase activity was reduced by 39% in HKO mice (Fig. 3D). Furthermore, liver weights, glycogen contents, and triacylglycerol levels were also similar between HKO and control mice (Fig. 3E). Taken together, these results suggest that under HFD conditions, hepatic TRAF2 directly promotes hepatic gluconeogenesis, thereby contributing to hyperglycemia.

Hepatocyte-specific deletion of TRAF2 does not alter liver inflammation and insulin signaling under HFD conditions. To determine whether hepatocyte-specific deletion of TRAF2 ameliorates HFD-induced liver inflammation, mice were fed an HFD for 18 weeks and liver sections were immunostained with antibodies against F4/80, a Kupffer cell marker. Kupffer cell number was similar between control and HKO mice (Fig. 4A and B). To further analyze liver inflammation, we measured the expression of proinflammatory cytokines in these mice using qPCR. The expression of liver TNF-α, IL-1, and IL-6 was similar between HKO and control mice (Fig. 4C). In addition, plasma levels of alanine aminotransferase, a marker of liver injury, were also similar between HKO and control mice (Control: 93.3 ± 19.1 units/L, n = 5; HKO: 80.8 ± 16.8 units/L, n = 4; P = 0.65). These data indicate that hepatocyte-specific deletion of TRAF2 does not alter the severity of liver inflammation under HFD conditions.

To determine whether hepatic TRAF2 modulates insulin signaling, HKO and control mice were fed a normal chow diet or an HFD for 18 weeks, fasted for 20–24 h, and treated with insulin. Livers were isolated 5 min after insulin treatments to examine insulin signaling pathways. In control mice fed a normal chow diet, insulin rapidly stimulated phosphorylation of Akt (pSer473 and pThr308); as expected, insulin-stimulated Akt phosphorylation was reduced by ~53% (pSer473) and ~36% (pThr308) in mice fed an HFD (Fig. 5A). Under HFD conditions, insulin similarly stimulated Tyr phosphorylation of IRSs and phosphorylation of Akt (pSer473 and pThr308) in both control and HKO mice (Fig. 5B). Therefore, hepatocyte TRAF2 is unlikely to directly regulate insulin signaling. These data raise the possibility that hepatic TRAF2 may regulate HGP through counterregulatory hormones.

Hepatocyte-specific deletion of TRAF2 results in glucagon resistance. Glucagon is a main counterregulatory hormone that stimulates HGP during fasting (6). Plasma glucagon levels increased by 32% in HFD-fed HKO mice (Fig. 6A). Hyperglucagonemia is likely to adaptively overcome glucagon resistance in HKO mice. In GTTs, glucagon levels became similar between control and HKO mice 30 min after glucose injection (Control: 89.74 ± 4.16 pg/mL, n = 12; HKO: 103.15 ± 15.02 pg/mL, n = 7; P = 0.3). To examine the hyperglycemic response to glucagon, mice were fed an HFD for 17 weeks and injected with glucagon. Glucagon injection increased plasma glucagon levels by ~10-fold in both control and HKO mice (Control: 1432.34 ± 182.94 pg/mL, n = 3; HKO: 1694.88 ± 556.84 pg/mL, n = 4; P = 0.71). Glucagon markedly increased blood glucose levels in control mice; however, the ability of glucagon to increase blood glucose was severely impaired in HKO mice, and AUC decreased by 25%.
Glucagon, via its G protein–coupled receptors, stimulates cAMP-mediated activation of protein kinase A (6). Protein kinase A phosphorylates cAMP-responsive element–binding (CREB) on Ser133, thereby stimulating CREB transcriptional activity (5,6). CREB in turn activates the transcription of PGC-1α, PEPCK, and G6Pase, key gluconeogenic genes (5,6). To determine whether hepatic TRAF2 modulates glucagon-stimulated CREB phosphorylation, HKO and control mice were fed an HFD for 18 weeks and injected with glucagon. Liver nuclear extracts were prepared 5 min after glucagon injection and immunoblotted with phospho-CREB (pSer133) antibody. Glucagon robustly stimulated CREB phosphorylation in control mice; however, CREB phosphorylation decreased by 35% in HKO mice (Fig. 6C and D). Total CREB levels were similar between HKO and control mice (Fig. 6E). These data suggest that hepatic TRAF2 promotes HGP at least in part by enhancing the hyperglycemic response to glucagon.

TRAF2 directly promotes glucagon action in primary hepatocytes. To determine whether TRAF2 directly promotes HGP, primary hepatocyte cultures were prepared from C57BL/6 mice and infected with TRAF2 or green fluorescent protein (GFP) adenoviruses. Recombinant TRAF2 protein was detected in TRAF2 but not GFP adenovirus–infected cells (Fig. 7A). Infected cells were treated with glucagon and subjected to HGP assays. Glucagon dose-dependently stimulated HGP in GFP adenovirus–infected cells; TRAF2 overexpression significantly increased the ability of glucagon (at 50 and 100 nmol/L) to stimulate HGP (Fig. 7B). TRAF2 overexpression also increased the ability of DB-cAMP (a cAMP analog) to stimulate HGP by 62% (GFP: 128.24 ± 5.34 mg/g/h, n = 5; TRAF2: 208.11 ± 19.92 mg/g/h, n = 5; P = 0.005). To determine whether TRAF2 directly promotes the hepatic gluconeogenic program, primary hepatocytes were infected with TRAF2 or GFP adenoviruses and treated with glucagon, and the expression of PEPCK and G6Pase was measured by qPCR. Glucagon stimulated G6Pase expression by 343% at 10 nmol/L, 647% at 50 nmol/L, and 907% at 100 nmol/L in GFP adenovirus–infected cells; TRAF2 overexpression further increased glucagon-stimulated G6Pase expression by 11-fold (10 nmol/L glucagon stimulation), 24-fold (50 nmol/L glucagon), and 22-fold (100 nmol/L glucagon) in TRAF2 adenovirus–infected cells (Fig. 7C). TRAF2 overexpression similarly enhanced the ability of glucagon to stimulate PEPCK expression in primary hepatocytes (Fig. 7C). DB-cAMP also stimulated the expression of PEPCK and G6Pase, and TRAF2 overexpression further increased DB-cAMP–stimulated expression of PEPCK and G6Pase (Fig. 7D). To determine whether TRAF2 directly modulates CREB activation, primary hepatocytes were infected with CREB and GFP or TRAF2 adenoviruses and treated with glucagon. Glucagon stimulated CREB phosphorylation in a dose-dependent manner, and TRAF2 overexpression further increased glucagon-stimulated CREB phosphorylation (Fig. 7E). DB-cAMP also dose-dependently stimulated CREB phosphorylation, and TRAF2 overexpression further increased DB-cAMP–stimulated phosphorylation of CREB (Fig. 7F).

GFP or TRAF2 adenoviruses. Sixteen hours after infection, the cells were treated with glucagon or DB-cAMP for 30 min. Cell extracts were immunoblotted with anti-phospho-CREB (pSer133) or anti-CREB antibodies. Data are mean ± SEM. *P < 0.05. AU, arbitrary unit.
of CREB (Fig. 7E). These results suggest that hepatic TRAF2 promotes HGP at least in part by increasing glucagon’s ability to stimulate phosphorylation of CREB that in turn activates gluconeogenic genes, including PEPCK and G6Pase.

DISCUSSION

The contribution of inflammation to insulin resistance, hyperglycemia, and glucose intolerance has been extensively examined; however, the intracellular signaling pathways that mediate proinflammatory cytokine-induced insulin resistance and hyperglycemia remain largely unclear. We examined the metabolic function of TRAF2 pathways in hepatocytes. TRAF2 binds to TNF receptor family members as well as Toll-like receptor family members and is believed to mediate the activation of both the canonical inhibitor of κB kinase-β/nuclear factor-κB1 pathway and the JNK pathway (17–19,28,41–44). TRAF2 also mediates endoplasmic reticulum (ER) stress–induced activation of JNK (45,46). ER stress is believed to contribute to insulin resistance and type 2 diabetes progression (40,46–50). It is surprising that deletion of TRAF2 in hepatocytes did not alter insulin signaling in the livers of HKO mice fed either a normal chow diet or an HFD. Exogenous insulin reduced blood glucose to a similar degree in both HKO and control mice, suggesting that hepatic TRAF2 deficiency does not alter systemic insulin sensitivity. A simple explanation of these observations is that hepatocyte TRAF2 pathways do not mediate insulin resistance under inflammation and ER stress conditions. Alternatively, other TRAF family members may have redundant function and compensate for TRAF2 deficiency in hepatocytes.

HKO mice were protected against HFD-induced hyperglycemia. Plasma insulin levels were also lower in HKO than in control mice. Hypoinsulinemia may be secondary to hypoglycemia in HKO mice. Hepatic glucose production, gluconeogenesis, and the expression of key gluconeogenic genes (e.g., PGC-1α, PEPCK, and G6Pase) were significantly decreased in HKO mice fed an HFD. These observations suggest that under HFD conditions, hepatic TRAF2 promotes hepatic gluconeogenesis, thus contributing to hyperglycemia. Moreover, hepatocyte-specific deletion of TRAF2 did not alter the severity of liver inflammation in HFD-fed HKO mice, suggesting that hepatocyte TRAF2 pathways do not mediate HFD-induced liver inflammation. These data also suggest that TRAF2 is able to separately regulate immune responses (by immune cell TRAF2) and metabolic responses (by hepatocyte TRAF2) through mutually independent pathways.

The hepatic gluconeogenic program is controlled by insulin and counterregulatory hormones (5,6). Hepatic TRAF2 appears to regulate gluconeogenesis through glucagon rather than insulin. Hepatocyte-specific deletion of TRAF2 severely impaired the ability of glucagon to increase blood glucose and inhibited glucagon to stimulate CREB phosphorylation in the liver. Furthermore, TRAF2 overexpression directly increased glucagon’s ability to stimulate glucose production in primary hepatocytes. TRAF2 overexpression also increased the ability of a cAMP analog to stimulate CREB phosphorylation, the expression of PEPCK and G6Pase, and glucose production in primary hepatocytes. These results suggest that the hepatic TRAF2 cell autonomously increases the ability of glucagon and other CAMP-dependent factors to stimulate the hepatic gluconeogenic program and hepatic glucose production. These observations raise the possibility that hepatic TRAF2 may act downstream of inflammation and/or ER stress to promote the hyperglycemic response to counterregulatory hormones, thereby contributing to hyperglycemia in type 2 diabetes.

In summary, we show that hepatocyte-specific deletion of TRAF2 decreases the hyperglycemic response to glucagon and protects against hyperglycemia and hyperinsulinemia in HKO mice fed an HFD; conversely, TRAF2 overexpression directly increases the ability of glucagon and a CAMP analog to stimulate the expression of gluconeogenic genes and glucose production in primary hepatocytes. TRAF2 deficiency in hepatocytes does not alter insulin signaling in the liver. Thus, hepatic TRAF2 is a previously unknown positive regulator of glucagon action and hepatic gluconeogenesis in overnutrition states.

ACKNOWLEDGMENTS

This study was supported by grants DK-065122 and DK-073601 from the National Institutes of Health (NIH) and by Research Award 1-09-RA-156 from the American Diabetes Association. This work used the cores supported by the Michigan Diabetes Research and Training Center (funded by NIH 5P60-DK-20572), the University of Michigan Cancer Center (funded by NIH 5P30-CA-45602), the University of Michigan Nathan Shock Center (funded by NIH P30-AG-013283), and the University of Michigan Gut Peptide Research Center (funded by NIH DK-34933). No potential conflicts of interest relevant to this article were reported.

Z.C. and L.R. researched data and wrote, reviewed, and edited the manuscript. L.S., H.S., Y.Z., S.W., and R.B. researched data, contributed to discussion, and reviewed and edited the manuscript. L.R. is the guarantor of this article.

The authors thank Dr. Eugenio Alvarado (Department of Chemistry, University of Michigan) for his assistance in NMR experiments and Drs. Haoran Su, Lin Jiang, and Kae Won Cho (Department of Molecular and Integrative Physiology, University of Michigan Medical School) for their assistance and discussion.

REFERENCES

1. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997;389:610–614
2. Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005;11:183–190
3. Arkan MC, Heveren AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005;11:191–198
4. Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikbeta. Science 2001;293:1673–1677
5. Ali S, Drucker DJ. Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am J Physiol Endocrinol Metab 2009;296: E415–E421
6. Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab 2003;284:E671–E678
7. Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 1989;59:675–680
8. Herzog S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001;413:179–183
9. Koo SH, Pochner L, Qi L, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005;437:1109–1111
10. Postic C, Dentin R, Girard J. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab 2004;30:398–408
11. Zhou XY, Shibusawa N, Naik K, et al. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med 2004;10:633–637
12. Biddinger SB, Kahn CR. From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 2006;68:123–158

13. Shoelson SE, Goldfine AB. Getting away from glucose: fanning the flames of obesity-induced inflammation. Nat Med 2009;15:373–374

14. Baron AD, Schaeffer L, Shragg P, Kolterman OG. Role of hyperglycaemia in maintenance of increased rates of hepatic glucose output in type II diabetes. Diabetes 1987;36:274–283

15. Basu A, Shah P, Nielsen M, Basu R, Rizza RA. Effects of type 2 diabetes on the regulation of hepatic glucacon metabolism. J Investig Med 2004;52:366–374

16. Dinneen S, Alzaid A, Turk D, Rizza R. Failure of glucagon suppression contributes to postprandial hyperglycaemia in IDDM. Diabetologia 1995;38:337–343

17. Napolitano G, Karin M. Sphingolipids: the oil on the TRAFire that promotes inflammation. Sci Signal 2010;3:pe34

18. Xia ZP, Chen ZJ. TRAF2: a double-edged sword? Sci STKE 2005;2005:pe7

19. Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 2000;12:419–429

20. Gardam S, Sierra F, Basten A, Mackay F, Brink R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 2008;28:391–401

21. Grech AP, Amesbury M, Chan T, Gardam S, Basten A, Brink R. TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 2004;21:629–642

22. He L, Grammer AC, Wu X, Lipsky PE. TRAF3 forms heterotrimer with TRAF2 and modulates its ability to mediate NF-kappaB activation. J Biol Chem 2004;279:55855–55865

23. Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996;84:299–308

24. Valiappanapu S, Matsuzawa A, Zhang W, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2008;9:1364–1370

25. Zarnegar BJ, Wang Y, Vera L, Fischer WH, Montminy M. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 2009;460:534–537