Original Article

Iran J Med Microbiol. 2020; 14(3): 183-197

Iranian Journal of Medical Microbiology | ISSN:2345-4342

Optimization of Chitosan Production from Iranian Medicinal Fungus Trametes- Versicolor by Taguchi Method and Evaluation of Antibacterial Properties

Negin Yasrebi1, Ashrafal Sadat Hatamian Zarmi2*, Mohaddeseh Larypoor3

1. Department of Biology, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
2. Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
3. Department of Biology, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran

10.30699/ijmm.14.3.1

ABSTRACT

Background: Chitosan is a natural polymer with special properties that are prepared and purified in the industry of crustaceans. In this study, Trametes versicolor fungus, which was obtained from the forests of northern Iran, was used due to its medicinal properties, and the extracted chitosan of this fungus was optimized and its antimicrobial properties were investigated.

Materials & Methods: To increase chitosan, four influential NaOH parameters, time, temperature, and biomass to NaOH ratio were performed by the Taguchi method. Fourier Transformed Infrared Spectrometry (FTIR) was identified, and the antibacterial properties of the disc release method were investigated against Escherichia coli and Staphylococcus aureus bacteria and the bacterial non-growth halo by millimeters.

Results: The optimal conditions of the variables were: 5.94 Molar, 4 hours, and 40 minutes, 65.6 degrees Celsius, and 1:25 ratio, respectively. Under these conditions, the amount of chitosan produced was equal to 0.261 g/L and the degree of deacetylation 78% was obtained. The antibacterial properties against E. coli gram-negative bacteria and S. aureus gram-positive bacteria were found to be 12±1 and 18±2, respectively.

Conclusion: Evidence has shown that four parameters had a positive effect on more chitosan production and the S. aureus is more sensitive to the resulting chitosan.

Keywords: Trametes versicolor, Optimization, Chitosan, Taguchi, Disc diffusion

Received: 2020/01/19; Accepted: 2020/06/08; Published Online: 2020/06/18

Corresponding Information: Ashrafal Sadat Hatamian Zarmi, Assistant Professor, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran. Email: hatamian_a@ut.ac.ir

Copyright © 2020, This is an original open-access article distributed under the terms of the Creative Commons Attribution-noncommercial 4.0 International license which permits copy and redistribution of the material just in noncommercial usages with proper citation.

Download citation: BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks

Send citation to: Mendeley | Zotero | RefWorks

Iranian Journal of Medical Microbiology

Year 14, Issue 3 (May & June 2020)
Introduction

Fungi are especially popular with researchers and the scientific community because of their unique properties. Species of wild mushrooms are also grown commercially in some communities. A distinctive feature of mushrooms is that they are an important source of biologically active compounds with medicinal value that have attracted the attention of many researchers around the world (1). These physiological medicinal properties include increased levels of immunity, regulation of heart rate, improving life-threatening diseases such as cancer, stroke and heart disease. They are also a valuable source of anti-inflammatory, antioxidant, anti-cancer, probiotic, antimicrobial and anti-diabetic compounds (2). *Trametes versicolor*, also known as *Coriolus versicolor* or *Polypuras versicolor* in East Asian countries, has been used in traditional medicine for medicinal purposes since ancient times and is currently used in modern medicine. The fungus is found all over the world, especially in the northern hemisphere. The fungus has various bioactive components, including polysaccharide peptide, krestin polysaccharide, which have been shown to have anti-tumor and anti-cancer properties. They also protect the animal liver from aflatoxins (3). Chitin is a polysaccharide derived from the fungus *Trametes versicolor*, which is considered as a commercial raw material for the production of chitosan and glucosamine. Chitosan becomes a flexible and soluble polymer through the deacetylation of chitin. Chitosan is a fiber-like and homopolymeric material, first introduced as a natural cationic flocculant for wastewater treatment in 1975 and it was used industrially (4). Chitosan is also found in some fungi and has gained much attention recently due to its special properties such as different chemical structure, non-toxicity, bio-compatibility with many organs and processing in various forms such as fibers, powders, membranes, gels, sponges and fiber (5,6). These unique properties have led to its high potential to produce applied materials (7). In 2018, Mokhtari *et al.* Extracted and optimized chitin and chitosan of the Iranian fungus *Ganoderma leucidum*, for biopolymer production (9). Currently commercial chitosan is produced from marine resources, including crustaceans, but due to problems such as environmental pollution during the process of detoxification and the high cost of extraction from these resources as well as the contamination of waters with heavy metals due to the entry of petroleum products. Damage to vessels containing petroleum and ultimately contamination of hard-skinned creatures that are the main source of chitosan production have encouraged researchers with benefits such as lower costs for extraction, elimination of heavy metal contamination and mass production at the commercial level to extract this bioactive substance from Sources of fungi.

Therefore, in the present study, the production of chitin and chitosan from the native Iranian fungus *Trametes Versicolor*, isolated from the northern forests of Iran, was performed to extract chitosan from in vitro and extract chitin from biomass. Also, by studying the conditions of chitosan extraction, factors affecting the production of chitosan from this fungus were selected and optimized by the Taguchi method. Then chitosan FTIR analysis was performed and the chitosan deacetylation rate was calculated. Finally, the amount of chitosan antibacterial activity was calculated by disk diffusion method.

Materials and Methods

The materials used in this study include the *Trametes Versicolor* fungus isolated from the forests of Mazandaran in collaboration with Sari University of Agriculture. The identification of this fungus has been confirmed by mycologists based on morphology, kept at 4°C. Medium molecular weight commercial chitosan, Potato dextrose agar culture, Potato dextrose broth medium of Merck Germany, sodium hydroxide, Merck Germany. Distilled water were used.

Mushroom Cultivation and Extraction of Chitin and Chitosan

Fungi were cultured in PDA (Potato dextrose agar) in vitro and kept in an incubator at 28 °C for 7 days. Chitin and then chitosan were extracted from the biomass obtained (10). For chitin production, dried mycelium powder with 1:20 W / V ratio was mixed with NaOH 4 M and placed in a water bath at 90°C for 3 hours. The remaining sediment is the same chitin by freeze-drying, dehydration and weight were measured (11). For extraction of chitosan, chitin was exposed to 45% concentrated sodium hydroxide for 4 hours at 90 °C with a 1: 15 W / V ratio. The remaining sediment was washed to neutral. Finally, chitosan was dehydrated by freeze drying method and weight was measured (12).

Optimization of Environmental Variables Affecting the Process of Chitosan Separation and Production from *Trametes versicolor*

According to the commonly used methods for designing experiments at different levels, the Taguchi method was chosen. To find the optimum conditions for further production of chitosan, some of the effective parameters in chitosan extraction such as temperature, process time, biomass to NaOH ratio and NaOH concentration were investigated. In this study, experiments were evaluated with 4 factors at three levels. The L9 array was used for this purpose.

Factors and levels are listed in Table 1. Table 2 also shows the Taguchi L9 array.
Characterization of Chitosan by Fourier Transform Infrared Spectrometry Analysis

Using FTIR to investigate chemical bonds and functional groups, the chitosan powder produced was prepared for FTIR test and the following equation was used to determine the degree of deacetylation of the samples (13).

\[(\text{DD})=\left(\frac{A_{1655}}{A_{3450}}\right)\times115\]

In this formula, A1655 is the first type of Amide absorption peak at 1655 cm\(^{-1}\) as the amount of N-acetyl groups and A3450 is the Hydroxyl group (OH) absorption peak at 3450 cm\(^{-1}\) (14).

Evaluation of Antibacterial Properties of Chitosan

Disk diffusion method was used to evaluate the antibacterial activity of chitosan produced and two bacteria *E. coli* and *S. aureus* were studied (15).

Statistical Analysis

According to the data obtained from ANOVA in Table 4 and the results obtained from the experiments, a very high degree of similarity and agreement was observed (p<0.05). Therefore, the variables listed in Table 4 are important and effective in producing more chitosan.

Results

Chitosan Extracted from the Native *Trametes versicolor* Fungus of Iran

After 10 days of cultivation of *Trametes versicolor* in PDB medium, the biomass (dry weight) was 2.25 g/L. The obtained biomass of 0.18 gr of chitin and the obtained chitin of 0.09 gr were finally extracted. Table 3 shows the amount of chitosan produced in each experiment. The purpose of the design of the experiment was to achieve the maximum chitosan content.

Optimization of Parameters Affecting the Production of Chitosan from the Medicinal Fungus *Trametes versicolor*

Four factors of NaOH, time, temperature and biomass / NaOH ratios were selected to investigate the factors affecting chitosan growth. After selecting the factors, the experiments were designed and implemented using the Taguchi method in three levels with four factors. Chitosan production was then expressed in g/L.

According to the data obtained from ANOVA, a high degree of similarity and agreement is observed. Contour (C) shows a comparison chart of the results obtained from the amount of chitosan from the fungus in each experiment with data predicted by the software. As shown in Figure 1, the results of the experiments are highly consistent with the data predicted by the software, with R2 producing chitosan 0.9993 and R2 adjusted 0.9971, all of which indicate high accuracy of the experiments. Factors affecting p-value are less than 0.05. The final equation for chitosan production is:

\[(\text{chitosan})=+0.27\times -0.050\times\text{NaOH} - 0.0656\times\text{Time} + 0.000878\times\text{Temperature} + 0.0197\times\text{NaOH}\times\text{Time}\]
Table 3. Data obtained from Taguchi method of chitosan production test

Run	NaOH (M)	Time (h)	Temperature °C	NaOH/Biomass	Actual chitosan (g/l)	Predicted chitosan (g/l)
1	1	3	3	3	0.12	0.1207
2	2	2	3	1	0.135	0.1337
3	2	1	2	3	0.137	0.1377
4	3	3	2	1	0.23	0.237
5	1	2	2	2	0.156	0.1547
6	3	2	1	3	0.157	0.1557
7	2	3	1	2	0.172	0.1727
8	1	1	1	1	0.115	0.1157
9	3	1	3	2	0.11	0.1107

Table 4. ANOVA data for the variables used in the experiment

Respond	Level	Degree of release	F-value	P-value	R^2	Obtained	Predicted
Chitosan	A-NaOH	1	468.17	0.00211	0/999	0/9971	0/809
	B-Time	1	1066.17	0.00091			
	C-Temp	1	260.04	0.00381			
	D-Biomass/NaOH	2	198.05	0.0050			
	AB	1	780.12	0.0013			
	model	6	460.17	0.0022			

According to Cantor Figure 1: A) 2D and B) 3D chart shows the amount of chitosan production due to the interaction of the test factors, which increased with increasing NaOH concentration and the time of production of chitosan. The optimum test conditions for NaOH concentration, time, temperature and biomass to NaOH ratio were 5.94 M, 4 h and 40 min, 65.6°C and 1: 25 w / v ratio (Table 5).

Table 5. Optimized results of software Taguchi analysis

The optimal value of run conditions	NaOH (M)	Time (h)	Temperature (°C)	NaOH/Biomass	Chitosan (g/l)
	5.94	4 h and 40 min	65.6	1: 25 w / v	0/261

Figure 1. (A) two-dimensional diagram and (B) three-dimensional diagram of chitosan production with respect to the interaction of two time parameters and NaOH, (C) Comparison diagram of the amount of chitosan produced and predicted.
FTIR Spectrum

For a closer look, the FTIR spectrum was taken from the commercial chitosan sample and compared with the chitosan sample produced from the fungus. Figure 2, shows the FTIR spectra of chitin and fungal chitosan. In the process of deacetylation of the chitin, the bonds of the 1655-cm\(^{-1}\) region are gradually reduced while the band-area of 1558-cm\(^{-1}\) is increased due to the presence of -NH\(_2\) groups. The band of 1558 cm\(^{-1}\) shows higher adsorption than 1655 cm\(^{-1}\), indicating an effective deacetylation of chitin. To determine the degree of deacetylation the first type amide bands in the 1655 cm\(^{-1}\) region and the -OH tensile bands in the 3450 cm\(^{-1}\) regions are crucial. The peak in the 1250 cm\(^{-1}\) region corresponds to the amino groups present in the chitosan structure.

![Figure 2. FTIR spectrum of chitin and extracted chitosan with commercial chitosan](image)

Determination of the Degree of Chitosan Deacetylation Extracted

Based on the infrared curves obtained, equation 1 degree of commercial chitosan deacetylation, 76% was obtained, and the degree of produced chitosan deacetylation was 78%.

Evaluation of the Antibacterial Activity of Chitosan Produced from Native Trametes versicolor

Antibacterial disk test was performed against Gram-positive Staphylococcus aureus and Gram-negative bacteria Escherichia coli after chitosan production from Trametes versicolor. To do this, chitosan extracted from the fungus was compressed into a tablet of the specified size. The aura created on the margin of the chitosan tablet indicates its antibacterial activity. Chloramphenicol antibiotics were used to control the test. All steps were performed with three replications. The antibacterial activity against S. aureus is higher than that of E. coli, indicating a higher chitosan efficacy than Gram-positive bacteria. The results of bacterial immunity in the disk diffusion test are presented in Table 6. Compared with chloramphenicol, S. aureus showed a greater inactivation in the application of chitosan synthesized from fungi than in E. coli.

Table 6. Bacterial non-growth rate in mm in disk diffusion test

Samples	Escherichia coli	Staphylococcus aureus
Fungal chitosan	1(mm)±12	2(mm)±18
Chloramphenicol	2(mm)±23	3(mm)±21

Discussion

In this study, the chitosan of the medicinal fungus Trametes versicolor was optimized by the Taguchi method. The optimum conditions for NaOH concentration, time, temperature and biomass to NaOH ratio were 5.94 M, 4 h and 40 min, 65.6°C and ratio of 1 to 25 w/v, respectively. After chitin deacetylation by
concentrated sodium hydroxide at 90°C, FTIR spectroscopy shows that this method had more effect on N-H, O-H, and C-H peaks. These changes in absorption indicate that alkaline and heat have eliminated the acetyl group from the chitin sample and the production of chitosan. Chitin is composed of OH, NHCOCH$_3$, and NH$_2$ groups and is eliminated by deacetylation so chitosan is obtained with OH and NH$_2$ functional groups (16). Increasing the amount of alkali to 5.9 M concentration at 65°C increased protein degradation and more effective interactions on mycelium and chitin and ultimately more chitosan production.

Based on some researchers in optimizing chitin and chitosan production and comparing with the results of the present study, most of the work done on PDB medium has been used to grow fungi. In 2008, Wang et al. investigated the physical properties of chitosan fungi on Absidia coerulea, Mucor rouxii, Rhizopus oryzae, with chitosan acetylation rates of these fungi above 80% (17). This difference in the degree of deacetylation can be explained by the structure of the extracted chitosan, the degree of purity and the molecular weight of the chitosan which can be varied in other fungi. The results of bacterial inhibition in the disk diffusion assay show that in general the gram-negative bacteria have more sequence in the membrane itself than the cell membrane layers and consequently have thicker membrane than the Gram-positive bacteria. Increased membrane strength of Gram-negative bacteria and consequently increased resistance to antibacterial agents. In 2001, Kim WJ and colleagues extracted and optimized Chitosan from the fungus Absidia coerulea, with an optimum value of 2.3 g/L (18). Also in 2009, Andipan et al. from Mucor rouxii increased chitosan production by adding molasses salt from 14.7% to 36.4% chitosan levels with deacetylation degree: 12.8% and molecular weight: 2.48×104 (19). In 2017, Abdel-Gawad and his colleagues obtained Aspergillus niger chitosan with an acetylation degree of 83.64% (14).

In 2018, Ahamed MIN and et al., investigated the production of chitosan from crab bark using sonicate waves to antibacterial activity in the resulting chitosan disc diffusion test, the growth zone diameter for S. aureus and E. coli, respectively, 12 mm and 14 mm were obtained (24). In 2019, Kulawik et al., in a review article on the role of chitosan on seafood found that higher deacetyllyte chitosan showed the best adsorption on Gram-negative and Gram-positive bacteria and lower pH of chitosan by bacterial cells were improved (25).

Conclusion

In this study, the Iranian fungus *Trametes versicolor* was used and the Taguchi method was used to optimize chitosan from this fungus, which is a reason for its innovation. The results showed a high percentage of similarity of chitosan produced by fungi and commercial specimens purchased and samples in research papers. Bacterial immunity against *E. coli* and *S. aureus* in millimeters were 12±1 and 18±2, respectively, indicating a greater efficacy on Gram-positive bacteria. Chitosan extraction from fungi, optimum test conditions for NaOH concentration, time, temperature and biomass to NaOH ratio were 5.94 M, 4 h and 40 min, 65.6°C and 1:25 ratio, respectively. The chitosan concentration in this condition was 0.261 g/L.

Acknowledgment

The results obtained from a Master thesis with identification code 15730560962049 at Islamic Azad University North Tehran Branch.

Conflict of Interest

Authors declared no conflict of interests.
به هنگام تولید کیتوسان از قارچ دارویی ترامیتیس ورسیکالر، بومی ایران به روش تاکوچی و بررسی خاصیت ضد باکتریایی

نکته‌های برجسته:

1. کارشناسی ارشد پیوکتونزی میکروبی، گروه علوم زیستی، دانشکده علوم و فنون دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران
2. استاد اختراعگر، گروه علوم زیستی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

اطلاعات مقاله

تاریخچه مقاله

دریافت: 29/10/1398
پذیرش: 19/3/1399
انتشار آنلاین: 29/12/1399

موضوع: پیوکتونزی میکروبی

نوبیسته مسئول:

نام: مهتاب حاتمیان زارمی، دانشجوی مهندسی علوم زیستی دانشکده علوم و فنینگ دانشگاه تهران، ایران
ایمیل: hatamian_a@ut.ac.ir

چکیده

زمینه و هدف: کیتوسان یکی از مواد موثر در بهبود افزایش دلیل درمان بیماری، خاصاً در بیماری‌های روزمره و بهبود افزایش دلیل درمان بیماری‌های خاص، ایران

مواد و روش کلی: برای افزایش کیتوسان، چهار پارامتر اصلی از جمله: بهبود، کیتوسان تولید و توزین، نشان دهنده و نیمه کرونا است

نتایج: بررسی تأثیر نسبت زیست توده به درجه سلسیوس و نسبت درجه سلسیوس بر روی درجه سلسیوس

کلمات وژه‌ای: ترامیتیس، بیماری، کیتوسان، ناکوچی

کیپایی: گروه پیوکتونزی ایران، ترس داده آزاد 2016 برای توزین و نشر استفاده غیرتجاری با ذکر منبع آزاد است.

مقدمه

قارچ‌ها به دلیل ویژگی‌های منحصر به فرد خود در بین محکفان و جوانع علمی مورد توجه است. همین‌طور گونه‌های قارچ‌های جهانی در بین بیماری‌ها و بیماری‌های صورت تجاری کشت داده می‌شود. از ویژگی‌های ابتکاری قارچ‌ها می‌توان به عنوان منبع مهم از ترکیبات قارچی بازیابی شده از این تحقیقات و تجویز کارشناسی، کیتوسان، پیوکتونزی، تاکوچی، بیماری‌های خاص، ایران

مراجع

1. ازجمله این خاصیت فیبرولاژیکی می‌توان افزایش نسبت بینی، تجزیه، پرورش قارچ، درمان و بیشتری از بیماری‌های خاص، ایران

مجله میکروبی‌شناسی پزشکی ایران Majalah-i mikrob/i shinast-i pizishk-i Iran.

1/19
تشم و شده، از محیط کشت در شیکر انکوباتور قرار داده شد. سپس برای آماده کردن درجه سلسیوس و دور لیتری اضافه شد. درجه سلسیوس نگهداری شد. برای کیتوسان تجاری با وزن مولکولی متوسط، ترامیتیس به درجه سلسیوس و دور برای نگهداری در شرایط ثمر کشور آلمان، هیدروکسید سدیم مرک آلمان، آب مقطر مورد درجه سلسیوس های مازندران با همکاری دست آمده. آنالیز مربوط به بررسی شرایط استخراج جداسازی است. همچنین این قارچه‌ای که می‌تواند در شمال ایران (تولید شده در شرکت دست به مدت 7 پوتیتودکستروز از این قارچ برای وُلی اولیه، ابتدا یک قطعه کشت داده شد و به مدت 13950 پوتیتودکستروز از کشت داده شد و به مدت 19000 دقیقه، رسوپ حاصل در مربیه با مقدار نسبی شستشو داده شد و با روش انجام شکنی خشک و توزین شد. از زیست‌توها به دست آمده کیتبین و سپس کیتوسان استخراج گردید. (10).
برای تولید کیتین، پودر مسیلیوم خشک شده با NaOH نسبت W/V 1:20 مخلوط و به مدت 3 ساعت در دمای 900 درجه سانتی‌گراد در حمام آب قرار داده شد. بعد از 3 ساعت مخلوط با دور rpm 3000 و به مدت 2 دقیقه سانتریفیوژ شد و قسمت رویی دور ریخته و رسوب باقی مانده دو بار توسط آب مقطر شخص گرفته و سانتریفیوژ شد. رسوب باقی مانده که همان کیتین است با روش انجام خشک، آبگیری و وزن آن اندازه گیری شد. برای استخراج کیتوسان، کیتین به مدت 4 ساعت در دمای 90 درجه سانتی‌گراد تحت تأثیر سدیم هیدروکسید غلیظ 45% با نسبت W/V 1:15 قرار داده شد. پس از سانتریفیوژ با دور rpm 15000 و به مدت 15 دقیقه، محلول رویی دور ریخته شد و ماده تهیه‌شده دو مرتبه توسط آب مقطر شسته و سانتریفیوژ شد تا حالتی خنثی پیدا کند. در نهایت برای بررسی تولید کیتین با روش انجام خشک، برای تولید کیتین با روش تولید برساند.

جدول 1. با بهره‌برداری از روش‌های تولید کیتوسان از ترموسیس و رزیگ‌سازی

فاکتور	سطح
NaOH	0
زمان	1
دما	2
NaOH/زمان	3

جدول 2. چیدمان آرایه L9 تاگوچی برای تولید کیتوسان

شرایط آزمایش	NaOH	زمان	NaOH/زمان
1	1	1	1
2	1	2	2
3	1	3	3
4	2	1	1
5	2	2	2
6	2	3	3
7	3	1	1
8	3	2	2
9	3	3	3

مشخصه‌بای‌ی کیتوسان با آتالیز طیف‌سنجی مادون قرمز

طیف‌سنجی مادون قرمز (FTIR) روشی رایج برای بررسی مطالعات بیولوژیک است. به منظور بررسی بیولوژی شیمیایی و گروه‌های عامل، پودر کیتوسان تولیدشده به همراه نمونه تجاری خریداری شده برای آزمون FTIR آماده شد. در نهایت یک هیاه موجود در محدوده 4000-400 cm⁻¹ بررسی شدند. (13).
سه سطح با چهار فاکتور طراحی و اجرا شد. سپس میزان های صورت گرفته درباره عوامل تأثیرگذار بر افزایش جداً سازی و براساس روش توده هر آزمایش دست آمد. سازی پارامترهای موثر بر تولید کیتوسان از قارچ ترامیتیس ورسیکار

کیتوسان استخراج شده از قارچ ترامیتیس ورسیکار

بومی ایران

در محدوده فرکانسی 0.4-0.6000 cm⁻¹ 400 برداشت شد. از معادله زیر برای تعیین درجه استحکام نمونه استفاده شد.

$$DD = \left(\frac{A_{1655} + A_{3450}}{115} \right)$$

در این فرمول پیک جذبی آمید نوع اول در 1655 cm⁻¹ به عنوان مقدار گروهی A1655 پیک جذبی گروه هیدروکسیل (OH) در طول موج 3450 cm⁻¹ می‌باشد (14).

بررسی خواص ضدباکتریایی کیتوسان

جهت بررسی خصوصیات ضدباکتریایی کیتوسان تولیدشده از روش انتشار دیسی استفاده شد و دو باکتری اشترکایکی و استافیلوکوکوس اورتوس به‌عنوان نماینده باکتری‌های گرم منفی و گرم مست حاصل پرسیده و روش تولید کیتوسان استخراج شد. روش تولید کیتوسان استخراج شد. سپس 20 برَنگ کیتوسان تولیدشده در هر آزمایش 1 روز پس از کشت قارچ به محیط میزان تولید کیتوسان به دست آمد. از نیم مقدار سونوت (وزن خشک) برابر با 1/25 گرم بر لیتر به‌دست آمد. زیست‌توده حاصل 180 گرم کیتوسین از کیتوسین بسته‌امد در نهایت مقدار 9/0 گرم کیتوسین استخراج شد. زیست‌توده هر آزمایش در روز هفتم از محیط کشت گرفته و توسط میزان نسبت زیست شامل کیتوسین و کیتوسین استخراج شد. جدول 2 میزان کیتوسین تولیدشده در هر آزمایش را نشان می‌دهد. هدف از طریق آزمایش‌های رپیدین به بیشترین میزان کیتوسین بوده است.

پیشنهارتی پارامترهای موثر بر تولید کیتوسان از قارچ

داروی ترامیتیس ورسیکار

با بررسی‌های صورت گرفته درباره عامل تأثیرگذار بر افزایش کیتوسین چهار فاکتور NaOH، زمان، نسبت و روش استخراج کیتوسین با استفاده از روش تاکوچی در سه سطح با چهار فاکتور طراحی و اجرا شد. سپس میزان تولید کیتوسین بر حسب L/g به‌دست آمد.

جدول 2. داده‌های حاصل از انجم‌آمیزی کیتوسین با روش تاکوچی

آزمایش	شرایط آزمایش	پایش	کیتوسین پیشین (g/L)	کیتوسین واقعی (g/L)
1	1	3	3	12
2	2	3	3	13
3	1	3	3	14
4	2	3	3	15
5	1	3	3	16
6	2	3	3	17
7	1	3	3	18
8	2	3	3	19

تجزیه و تحلیل آماری

با توجه به داده‌های حاصل در جدول 4، نتایج ANOVA در جدول 4 نتایج ANOVA با توجه به داده‌های حاصل از آزمایش‌ها میزان‌های شتاب و تطابق برای بالایی مشاهده نشده است.
کانتور (C) نمودار مقایسه نتایج بدست‌آمده از میزان کیتوسان به‌سوی آمده از قرار در هر آزمایش را با داده‌های پیش‌بینی‌شده توسط نرم‌افزار نشان می‌دهد. همان طور که در شکل 1 نشان داده شده است نتایج حاصل از آزمایش‌ها با داده‌های پیش‌بینی‌شده توسط نرم‌افزار بسیار به یکدیگر مطابقت دارند.

(ساختار ۲)

جدول ۴ داده‌های حاصل از ANOVA برای متغیرهای مورد استفاده در آزمایش

پاسخ	سطح	درجه آزادی	F-value	P-value	R²	به دست آمده R²	R² پیش‌بینی آمده
NaOH-A	1	۵/۴۷/۱۷	۴/۱۱۱	۰/۰۱۱	۹/۹۹	۰/۹۷۹۷	۰/۹۹۱۹
زمان-B	1	۵/۰۴/۱۷	۴/۰۹۱	۰/۰۹۱	۹/۹۹	۰/۹۷۹۷	۰/۹۹۱۹
-C دما	1	۵/۰۴/۴۵	۴/۰۱۷	۰/۰۱۷	۹/۹۹	۰/۹۷۹۷	۰/۹۹۱۹
NaOH / زیست‌توده-D	۳	۵/۰۴/۱۷	۴/۰۹۱	۰/۰۹۱	۹/۹۹	۰/۹۷۹۷	۰/۹۹۱۹
AB	۱	۵/۰۴/۱۷	۴/۰۹۱	۰/۰۹۱	۹/۹۹	۰/۹۷۹۷	۰/۹۹۱۹
model	۶	۵/۰۴/۱۷	۴/۰۹۱	۰/۰۹۱	۹/۹۹	۰/۹۷۹۷	۰/۹۹۱۹

پهپاد نیازی انجام شده شرایط آزمایش به‌هنه برای غلظت NaOH به ترتیب ۰/۵۶، ۰/۶۵ و ۰/۷۵ میلی‌مولار (۴ مول/لیتر) و زمان‌های ۵۰۰، ۵۴۰ و ۶۰۰ ساعت به دست آمده (جدول ۵). نمودار دو بعدی و (B) نمودار سه بعدی NaOH به ترتیب

(شکل ۴)

جدول نتایج به‌هنه شرایط حاصل از تحلیل ناکوچی توسط نرم‌افزار

NaOH (M)	زمان (h)	دما (C)	زیست‌توده / NaOH (g/l)	کیتوسان (g/l)
۰/۵۴M	۴۲۰	۶۵/۶	۱/۵۴	۱/۵۴

(شکل ۵)

نوع داده بیشتر بیشترین میزان کیتوسان (C) با NaOH به ترتیب (A) نمودار دو بعدی و (B) نمودار سه بعدی NaOH به ترتیب

193
طیف FTIR

برای بررسی پیوندهای شیمیایی و گروه‌های عاملی کیتوسان FTIR به‌دست آمده از قارچ ترامیتیس ورسیکالر بومی ایران از طیف استفاده شد. برای بررسی دقیق تر از نمونه تجاری کیتوسان گرفته شد و با نمونه کیتوسان تولیدشده از قارچ FTIR مقایسه گردید.

شکل ۲ طیف مربوط به کیتون و کیتوسان قارچی را نشان می‌دهد. در محدوده ۱۴۵۰ cm⁻¹ مربوط به لرزش OH -NH، افزایش می‌یابد که به دلیل وجود گروه‌های C=O و C–H در طول موج ۲۸۸۵ cm⁻¹ دیده می‌شود. پیوندهای مشخص کششی گروه کربنیل (C=O) در ۱۶۵۵ cm⁻¹ دیده می‌شوند که به آمید Ι نسبت می‌دهند. یک پیک تیز در ۱۴۲۷ cm⁻¹ دیده می‌شود که با تغییر شکل‌های متقارن ۳CH مطابقت دارد و طول موج ۱۵۵۸ cm⁻¹ با تغییر شکل‌های –NH مربوط به آمید ΙΙ مطابقت دارد.

باندهای لرزشی در ۱۰۷۲ cm⁻¹ نشان‌دهنده لرزش‌های داخلی حلقه کیتونی است که مربوط به C–O–C در طول موج ۱۶۵۵ cm⁻¹ به دست می‌آید. همچنین پیک ۱۴۲۷ cm⁻¹ مربوط به تغییر شکل‌های أمید III است.

در فرآیند استیل‌سازی از کیتون و پیوندهای ناحیه ۱۵۵۸ cm⁻¹ به‌دست آمده از قارچ به دلیل وجود گروه‌های C–O–C و C–H می‌پیوندد و ناحیه ۱۶۵۵ cm⁻¹ از جمله بالاتری نسبت به ناحیه ۱۶۵۵ cm⁻¹ دیده می‌شود. به‌طور کلی، این نتایج نشان‌دهنده تغییرات شیمیایی در فرآیند استیل‌سازی کیتوسان است و می‌تواند به‌عنوان یک ابزار مؤثر در تعیین درجه استیل‌سازی کیتوسان استفاده شود.

تعیین درجه استیل‌سازی کیتوسان استخراج شده

برای تعیین درجه استیل‌سازی کیتوسان تولیدی از طیف کیتوسان استخراج، ناحیه ۱۶۵۵ cm⁻¹ ذکر شد. ناحیه ۱۶۵۵ cm⁻¹ به دست آمده از قارچ ترابیتیس ورسیکالر بومی ایران در محدوده ۷۸% ناحیه ۱۶۵۵ cm⁻¹ به دست آمده از قارچ ترابیتیس ورسیکالر انجام شد. برای این کار کیتوسان استخراج شده از قارچ به صورت فردی به‌دست آمده است. مشخصات فشرده سازی شده به‌عنوان مؤثر در تعیین درجه استیل‌سازی کیتوسان تولیدی ۷۸% به دست آمد.
نتایج میزان عدم رشد باکتری در آزمون انتشار درجات قارچ و کلرامفنیکل میانگین درصدی در میان گروه‌های مختلف بیاکتیوکوکوس و سال نشان دهنده فعالیت ضدباکتریایی آن است. برای کنترل مثبت این آزمایش نیز از قارچ‌های انتی‌بیوتیکی کارامناک استفاده شد.

بیانیات نشان داد که در جدول ۳، درصد میزان عدم رشد باکتری در آزمون انتشار دیسکی در گروه‌های مثبت کارامناک جایگزین قارچ‌های انتی‌بیوتیکی در بررسی فعالیت ضدباکتریایی در برابر باکتری استاکسیوکوکوس اوروروس با باکتری‌های انتی‌بیوتیکی اطمینان می‌دهند.

استاکسیوکوکوس اوروروس	کلرامفنیکل	کیتوسان سننی قارچی
۲۵/۹۸	۲۴/۳۳	۱۴/۱۲

در این پژوهش از قارچ دارویی ارگانیتیک و رسیکار بر اساس یک درآمدهای آزمایشگر، بهبود نیازسازیان نوشته شد. این میزان بهبود نسبت به گروه‌های کنترل مثبت این درصد مثبت ماکولازتیا و ارگانیتیک استفاده شد.

در سال ۲۰۱۰، اکثریت باکتری‌های میکروبی توسط کیتوسان کاهش یافت. در سال ۲۰۱۹، Mokhtari همکاران نیز کلرامفنیکل را مورد بررسی قرار دادند. در سال ۲۰۲۰، اکثریت باکتری‌های میکروبی و همکاران نیز کلرامفنیکل را مورد بررسی قرار دادند.

در سال ۲۰۱۵، Muñoz و همکاران نیز کلرامفنیکل را مورد بررسی قرار دادند. در سال ۲۰۱۶، Mokhtari همکاران نیز کلرامفنیکل را مورد بررسی قرار دادند. در سال ۲۰۱۷، Mokhtari همکاران نیز کلرامفنیکل را مورد بررسی قرار دادند. در سال ۲۰۱۸، Mokhtari همکاران نیز کلرامفنیکل را مورد بررسی قرار دادند. در سال ۲۰۱۹، Mokhtari همکاران نیز کلرامفنیکل را مورد بررسی قرار دادند. در سال ۲۰۲۰، Mokhtari همکاران نیز کلرامفنیکل را مورد بررسی قرار دادند.
در این پژوهش از فarging داروی ترامیتنس ورسیکالر باکتری پاتوژنیک استافیلوکوکوس اورئوس که بینهایت در درصد عدم رشد درون برخوردار بود میزان عدم رشد درون برخوردار بود که دلیل دیگر این شرایط می‌باشد. در هر حال، کیتوسان به منظور آزمایش گروه عاملی افزایش

در سال 2016 در سال 2016، Prabha همکاری کیتوپاتیک استافیلوکوکوس اورئوس نمونه‌های استافیلوکوکوس اورئوس از قارچ، شرایط آزمایش بهبود خواستان، و بهبود قارچ، شرایط آزمایش بهبود تولیدشده از پوسته رشد در برکت گرم منفی داشتند. در سال 2016. در سال 2016، Ho CY, Lau CBS, Kim CF, Leung KN, Fung KP, Tse TF,

نظر در منافع

1. Ribeiro B, Guedes de Pinho P, Andrade PB, Baptista P, Valentão P. Fatty acid composition of wild edible mushrooms species: A comparative study. Microchem J. 2009 Sep;88(1):29-35. [DOI:10.1016/j.microc.2009.04.005]

2. Synytsia A, Mičková K, Synytsya A, Jablonský I, Spěváček J, Erban V, et al. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr Polym. 2009;76(4):548-56. [DOI:10.1016/j.carbpol.2008.11.021]

3. Ho CY, Lau CBS, Kim CF, Leung KN, Fung KP, Tse TF, et al. Differential effect of Coriolus versicolor (Yunzhi) extract on cytokine production by murine lymphocytes in vitro. Int Immunopharmacol. 2004;4(12):1549-57. [DOI:10.1016/j.intimp.2004.07.021] [PMID]

4. Mengelizadeh N, HJ, et al. Characterization of Biopolymer Chitosan Extracted from Shrimp Shells. 19422511592. Harish Prashanth KV, Tharanathan RN. Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends Food Sci Technol. 2007 Mar;18(3):117-31. [DOI:10.1016/j.tifs.2006.10.022]
6. Ravi Kumar MN. A review of chitin and chitosan applications. React Funct Polym. 2000 Nov 1;46(1):1-27. [DOI:10.1016/S1381-5148(00)00038-9]

7. Muñoz G, Valencia C, Valderruten N, Ruiz-Duránte E, Zuluaga F. Extraction of chitosan from Aspergillus niger mycelium and synthesis of hydrogels for controlled release of betahistine. React Funct Polym. 2015 Jun 1;91-92:1-10. [DOI:10.1016/j.reactfunctpolym.2015.03.008]

8. Sathiaseelan A, Shahajan A, Kalaichelvan PT, Kaviyarasan V, Fungal chitosan based nanocomposites sponges-An alternative medicine for wound dressing. Int J Biol Macromol. 2017 Nov 1;104:1905-15. [DOI:10.1016/j.ijbiomac.2017.03.188] [PMID]

9. Mokhtari-Hosseini Z-B, Hatamian-Zarni A, Mohammadnejad J, Ebrahimi-Hosseinzadeh B. Chitin and chitosan biopolymer production from the Iranian medicinal fungus Ganoderma lucidum: Optimization and characterization. Prep Biochem Biotechnol. 2018 Aug 9;48(7):662-70. [DOI:10.1080/10826068.2018.1487847] [PMID]

10. Mesa Ospina N, Ospina Alvarez SP, Escobar Sierra DM, Rojas Vahos DF, Zapata Ocampo PA, Ossa Orozco CP. Isolation of chitosan from Ganoderma lucidum mushroom for biomedical applications. J Mater Sci Mater Med. 2015;26(3):1-9. [DOI:10.1007/s10856-015-4561-z] [PMID]

11. Ospina Alv‡rez SP, Ramírez Cadavid DA, Escobar Sierra DM, Ossa Orozco CP, Rojas Vahos DF, Zapata Ocampo P, et al. Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. Biomed Res Int. 2014 Jan 15;2014:169071. [DOI:10.1155/2014/169071] [PMID] [PMCID]

12. Nitschke J, Altenbach H-J, Maleolęsky T, Mölleken H. A new method for the quantification of chitin and chitosan in edible mushrooms. Carbohydr Res. 2011 Aug 16;346(11):1307-10. [DOI:10.1016/j.carres.2011.03.040] [PMID]

13. El-Hefian EA, Nasef MM, Yahaya AH. Preparation and Characterization of Chitosan/Poly(Vinyl Alcohol) Blended Films: Mechanical, Thermal and Surface Investigations. E-Journal Chem. 2011;8(1):91-6. [DOI:10.1155/2011/969062]

14. Abdel-Gawad KM, Hifney AF, Fawzy MA, Gomaa M. Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocoll. 2017 Feb 1;63:593-601. [DOI:10.1016/j.foodhyd.2016.10.001]

15. Tajdini F, Amini MA, Nafissi-Varcheh N, Faramarzi MA. Production, physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucoeum racemosum. Int J Biol Macromol. 2010 Aug 1;47(2):180-3. [DOI:10.1016/j.ijbiomac.2010.05.002] [PMID]

16. Kumar HMPN, Prabhakar MN, Prasad CV, Rao KM, Kumar TVA, Rao KC, et al. Compatibility studies of chitosan / PVA blend in 2 % aqueous acetic acid solution at 30 o C. Carbohydr Polym. 2010;82(2):251-5. [DOI:10.1016/j.carbpol.2010.04.021]

17. Wang W-P, Du Y-M, Wang X-Y. Physical properties of fungal chitosan. World J Microbiol Biotechnol. 2008 Nov 17;24(11):2717-20. [DOI:10.1007/s11274-008-9755-x]

18. Kim WJ, Lee WG, Theodore K, Chang HN. Optimization of culture conditions and continuous production of chitosan by the fungi, Absidia coerulea. Biotechnol Bioprocess Eng. 2001 Feb;6(1):6-10. [DOI:10.1016/BF02942243]

19. Andipan, Chatterjee S, Chatterjee BP, Guha AK. Influence of plant growth hormones on the growth of Mucor rouxii and chitosan production. Microbiol Res. 2009 Jan 1;164(3):347-51 [DOI:10.1016/j.micres.2007.05.003] [PMID]

20. Tayel AA, Moussa S, Opwis K, Knittel D, Schollmeyer E, Nickisch-Hartfriel A. Inhibition of microbial pathogens by fungal chitosan. Int J Biol Macromol. 2010 Jul;47(1):10-4. [DOI:10.1016/j.ijbiomac.2010.04.005] [PMID]

21. JadHAV AB, Diwan AD. Studies on antimicrobial activity and physicochemical properties of the chitin and chitosan isolated from shrimp shell waste. Indian J Geo-Marine Sci. 2018;47(3):674-80.

22. Prabha AR, Sivakumar K. Antimicrobial Activity of Chitosan Extracted from Prawn Shell. Indian J Appl Microbiol. 2017;20(1):1-7.

23. Rakkhumkaew N, Pangsuk C. Chitosan and chitooligosaccharides from shrimp shell waste: characterization, antimicrobial and shelf life extension in bread. Food Sci Biotechnol. 2018;27(4):1201-6. [DOI:10.1007/s10068-018-0332] [PMID] [PMCID]

24. Alhamed MN, Gosathi N, Ragul V, Priya M, Priya R, Rumaan RS, et al. Novel Preparation of Chitosan from Crab Shell using Probe Sonicator and its Antibacterial activity. 2018;6(8):133-6.

25. Kulawik P, Jamróz E, Özogul F. Chitosan role for shelf-life extension of seafood. Environ Chem Lett. 2019;(0123456789). [DOI:10.1007/s10311-019-00935-4]