Research Article

Antibiotics Profile, Prevalence of Extended-Spectrum Beta-Lactamase (ESBL), and Multidrug-Resistant Enterobacteriaceae from Different Clinical Samples in Khartoum State, Sudan

Ehssan H. Moglad 1,2

1Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O.Box 173, Alkhurj 11942, Saudi Arabia
2Department of Microbiology, Medicinal and Aromatic Plants and Traditional Medicine Research Institute (MAPTMRI), P.O. Box 2404, National Center for Research, Khartoum, Sudan

Correspondence should be addressed to Ehssan H. Moglad; ehssanhasn@gmail.com

Received 14 May 2020; Revised 23 May 2020; Accepted 12 October 2020; Published 26 October 2020

Copyright © 2020 Ehssan H. Moglad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

One of the global requirements for controlling the occurrence of resistance to antimicrobial drugs is to understanding the resistivity profile of various clinical isolates. Therefore, this study aimed to deliver the indication of different resistant profiles of clinically isolated Enterobacteriaceae from different sources of samples from Khartoum state, Sudan, and to determine the prevalence rate of extended-spectrum beta-lactamase (ESBL), multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacteria. A total of 144 Gram-negative bacteria were collected from different sources (vaginal swab, urine, catheter tip, sputum, blood, tracheal aspirate, pus, stool, pleural fluid, and throat swab). Samples were subcultured and identified according to their cultural characteristics and biochemical tests. Antimicrobial susceptibility test was performed for twenty-four antibiotics from eleven categories against all isolated Enterobacteriaceae according to the recommendation of Clinical and Laboratory Standards Institute (CLSI). The result showed that out of 144 isolates, Escherichia coli and Klebsiella pneumoniae were predominant isolates with the percentage of 47.9 and 25%, respectively. The prevalence of ESBL was higher in K. pneumonia (38.9%) than E. coli (34.8%). All isolated E. coli were sensitive to nitrofurantoin and tigecycline. There was a high prevalence of MDR Enterobacteriaceae, and only one isolate was XDR, while PDR was zero for all isolated bacteria. Active antimicrobial-resistant (AMR) observation through constant data sharing and management of all stakeholders is crucial to recognize and control the AMR global burden. Also, effective antibiotic stewardship procedures would be applied to limit the unreasonable expenditure of antibiotics in Sudan.

1. Introduction

The prevalence of multidrug-resistant bacterial infection has been increasing globally, which is exacerbated due to the scarcity of innovative classes of antibiotics tested clinically during the past 40 years [1]. Bacteria have developed resistant to more powerful antimicrobial agents [2]. In general, bacteria acquired the multidrug resistance either by accumulating several genes each one expressing resistance to one drug in a cell or through the overexpression gene coding for multidrug efflux pumps, flinging a wide range of drugs [3]. Globally, the antimicrobial resistance (AMR) reported that Escherichia coli and Klebsiella spp. had touched frightening levels of resistance in various parts of the world including resistant to third-generation cephalosporins and carbapenems of up to 54% [4, 5].

Furthermore, information of the resident bacterial etiology and resistance profile is essential to observe any modification that may be happened within time. Therefore, optimum empirical therapy can be achieved by continuous
2. Methods

2.1. Study Population and Sample Size. This was a cross-sectional study conducted over 6 months from February to July 2018. A total of one hundred and forty-four isolated Gram-negative bacteria from different clinical sample sources (vaginal swab, urine, catheter tip, sputum, blood, tracheal aspirate, pus, stool, pleural fluid, and throat swab) were collected from two main tertiary care referral hospitals (Khartoum state (Omdurman and Bahri Teaching Hospitals). All Gram-negative isolated bacteria in the microbiology laboratory were included in this study. There are no exclusion criteria.

2.2. Identification of Bacterial Isolates. Isolated Gram-negative bacteria were subcultured on nutrient agar and incubated aerobically at 37°C for 24 hours and then identified according to the culture characteristics on Xylose Lysine Deoxycholate agar (XLD), MacConkey agar, and biochemical tests [11].

2.3. Antibiotic Susceptibility Test. Various categories of antibiotics were used in this study included cephalosporins, fluoroquinolones, carbapenems, aminoglycosides, penicillins, monobactams, β-lactam/β-lactamase inhibitor complexes, folate metabolic pathway inhibitors, glycyclines, cephemycins, and nitrofurans as recommended for Gram-negative bacteria [7]. The antibiotics used, namely, cefazolin (30 μg), cefuroxime (30 μg), cefotaxime (30 μg), ceftazidime (30 μg), cefepime (30 μg), ciprofloxacin (5 μg), norfloxacin (10 μg), moxifloxacin (5 μg), levofloxacin (5 μg), imipenem (10 μg), meropenem (10 μg), ertapenem (10 μg), tobramycin (10 μg), gentamicin (10 μg), amikacin (30 μg), amoxicillin (10 μg), cefoxitin (30 μg), aztreonam (30 μg), amoxicillin-clavulanic acid (30 μg), amoxicillin-sulbactam (10/10 μg), trimethoprim/sulfamethoxazole (5/250 μg), piperacillin-tazobactam (100/10 μg), nitrofurantoin (300 μg), and tigecycline (15 μg) were used according to the standard procedures (CLSI). The results were interpreted according to the recommendation of the Clinical Laboratory Standards Institute [12].

2.4. Quality Control. For the reliability of study findings, quality control implements measures of performance checks during the entire procedure of the laboratory work. E. coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and K. pneumoniae ATCC BAA700603 were used.

2.5. Detection of ESBL, MDR, XDR, and PDR. The prevalence of extended-spectrum β-lactamase (ESBL) was recognized as the resistance rate against cefotaxime and ceftazidime. MDR, XDR, and PDR were calculated in this study for each isolated bacteria as described by Magiorakos et al. [7].

2.6. Statistical Analysis. Data were analyzed using Statistical Package for Social Sciences (SPSS), version 25 (IBM, SPSS Inc., Chicago, IL). Descriptive data were expressed as a percentage. A P value of ≤0.05 for the association bacteria and source of samples was considered significant.

3. Results

Out of 144 Gram-negative bacterial isolates, E. coli and K. pneumonia were predominant with percentages 69 (47.9%) and 36 (25%), respectively. However, Salmonella enterica was 5 (3.47%), Shigella spp. was 1 (0.69%), Citrobacter freundii was 1 (0.69%), Klebsiella oxytoca was 3 (2.08%), Enterobacter cloacae was 1 (0.69%), Proteus mirabilis was 3 (2.08%), and Enterobacter aerogenes was 2 (1.38%).

Most of the isolated Enterobacteriaceae were from urine with a frequency of 51 (35.4%) and 22 (15.37%) for E. coli and K. pneumonia, respectively. There was a significant association between isolated bacteria and sources of the sample, with P value = 0.001 (Table 1). Regarding the resistance rate of antibiotics, E. coli revealed the highest resistance rate to amoxicillin and aztreonam (66.7 and 40.6%, respectively), while antibiotics from the cephalosporins classes exhibited a high resistance rate among Enterobacteriaceae bacteria, with the resistance rate for E. coli towards ceftazidime (39.1%), and cefotaxime and cefuroxime (37.7%). However, among the drugs belonging to the fluoroquinolones classes, the highest percentage of the resistant
Table 1: Distribution and relationship between isolates and source of samples.

Gram-negative bacteria	Vaginal swab	Urine	Catheter tip	Sputum	Blood	Tracheal aspirate	Pus	Stool	Pleural fluid	Thorax swab	Total N (%)
E. coli	11	51	0	0	0	4	3	0	0	0	69 (47.9)
K. pneumonia	5	22	1	4	1	1	2	0	0	0	36 (25)
P. aeruginosa	0	3	0	0	1	10	0	0	0	1	15 (10.4)
S. enterica	0	0	0	0	1	0	0	4	0	0	5 (3.5)
Shigella spp.	0	0	0	0	0	0	0	1	0	0	1 (0.69)
P. fluorescence	0	0	0	0	1	0	0	0	0	0	1 (0.69)
C. freundii	0	1	0	0	0	0	0	0	0	0	1 (0.69)
Acinetobacter lwoffii	0	0	0	0	1	0	0	0	0	0	1 (0.69)
K. oxytoca	0	3	0	0	0	0	0	0	0	0	3 (2.1)
E. cloacae	0	0	0	0	1	0	0	0	0	0	1 (0.69)
P. mirabilis	0	2	0	0	0	0	1	0	0	0	3 (2.1)
Providencia stuartii	0	1	0	0	0	0	0	0	0	0	1 (0.69)
G. vaginalis	0	0	0	0	0	0	0	1	0	0	1 (0.69)
E. aerogenes	0	1	0	0	0	0	0	0	0	0	1 (0.69)
A. baumannii	0	1	0	0	0	0	0	0	0	0	1 (0.69)
M. morganii	0	3	0	0	0	0	0	0	0	0	3 (2.1)
H. influenzae	0	0	0	0	0	0	0	0	0	0	1 (0.69)
S. maltophilia	0	1	0	0	0	0	0	0	0	0	1 (0.69)

N = 144 (100)

*P value = 0.001

Note: *Escherichia coli*, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica, Shigella spp., Pseudomonas fluorescens, Citrobacter freundii, Acinetobacter lwoffii, Klebsiella oxytoca, Enterobacter cloacae, Proteus mirabilis, Providencia stuartii, Gardnerella vaginalis, Enterobacter aerogenes, Acinetobacter baumannii, Morganella morganii, Haemophilus influenzae group 11, and Stenotrophomonas maltophilia. The relationship between the isolates and sources of samples was significant, *P* value < 0.05.

Table 2: Percentage of antimicrobial resistance patterns of *Enterobacteriaceae* isolated from different clinical samples.

Name	N	CIP	NOR	LVX	MXF	CTX	CZ	FEP	CXM	CAZ	IPM	MEM	ETP	TM	GM	AN
E. coli	69	18.8	10.1	17.4	7.2	37.7	34.8	36.2	37.7	39.1	1.4	1.4	2.9	15.9	15.9	1.4
K. pneumonia	36	8.3	5.6	5.6	11.1	47.2	38.9	41.7	50.0	47.2	5.6	8.3	11.1	16.7	5.6	8.3
S. enterica	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Shigella spp.	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C. freundii	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K. oxytoca	3	33.3	33.3	33.3	0	66.7	33.3	66.7	66.7	33.3	0	33.3	66.7	33.3	33.3	33.3
E. cloacae	1	100	100	0	100	100	100	100	100	100	100	100	100	100	100	100
P. mirabilis	3	0	0	0	0	0	0	0	0	33.3	0	33.3	0	33.3	33.3	0
E. aerogenes	2	0	0	0	0	50	NT	0	100	0	0	0	0	0	0	0

Note: N = total number of tested bacteria, CIP = ciprofloxacin, NOR = norfloxacin, LVX = levofloxacin, MXF = moxifloxacin, CTX = cefotaxime, CZ = ceftazolin, FEP = cephepe, CXM = cefuroxime, CAZ = ceftazidime, IPM = imipenem, MEM = meropenem, ETP = ertapenem, TM = tobramycin, GM = gentamicin, AN = amikacin, AMC = amoxicillin-clavulanate, SAM = ampicillin-sulbactam, TZP = piperacillin-tazobactam, FOX = cefoxitin, AM = ampicillin, FT = nitrofurantoin, TGC = tigecycline, SXT = trimethoprim-sulfamethoxazole, ATM = aztreonam, NT = not tested.
rate was obtained by *E. coli* for ciprofloxacin (18.8%) and levofloxacin (17.4%). The lowest resistant rate was obtained for carbapenem drugs with the *E. coli* resistant percentage of 1.4% for imipenem and meropenem. Moreover, all isolated *E. coli* were sensitive towards nitrofurantoin and tigecycline; the resistant rate was zero (Table 2).

There was a high prevalence of MDR bacteria and extended-spectrum β-lactamase producer ESBL among *E. coli* and *K. pneumonia* (Table 3). XDR was present only in *E. cloacae* (100%) which was sensitive only to amikacin and piperacillin-tazobactam, while PDR was zero for all isolated bacteria.

4. Discussion

This study reported the prevalence of Gram-negative *Enterobacteriaceae* as a causative agent for infections, as well as resistant rate towards various antibiotics belonging to different categories, and the frequency of ESBL, MDR, XDR and PDR were determined.

In the current study, *E. coli* and *K. pneumonia* were the major isolated bacteria from urine samples which mean the leading causative agent for urinary tract infection (UTI). These results entirely agreed with other studies which found that these bacteria were also predominantly causing UTI [13–15]. The study finding stated that *E. coli* and *K. pneumonia* which exhibited a high resistant rate (34.8 and 38.9%, respectively) to cefotaxime and ceftazidime were classified as extended-spectrum β-lactamase (ESBL) phenotypes. This ESBL prevalence rate was near to the rate reported in the previous studies from Sudan for *E. coli* and *K. pneumonia* (28.9% and 34.8%) [16], and in agreement with other studies reported the growing prevalence of extended-spectrum beta-lactamase (ESBL) producing isolates from Saudi Arabia ranges from 6% up to 38.5% [17–21].

In general, the increase in the resistance of isolated organisms to penicillin, fluoroquinolones, macrolide, and cephalosporins in this study might be due to the increase in the usage of these antibiotic’s classes in the hospital. Also, our study presented the high MDR bacteria, which showed resistance to more than three groups of tested antibiotics. This MDR rate entirely agrees with other studies in Sudan which reported a high prevalence of MDR bacteria [22, 23]. This MDR phenomenon may be due to acquiring of many resistant genes through R plasmid [3]. Furthermore, throughout the latest several decades, the incidence of MDR organisms in hospitals and health centers has increased gradually. So, this study reported the developments of multidrug resistance among *Enterobacteriaceae* and represents an alarming threat of appearance of multidrug-resistant pathogens.

The current study delivers the confirmation of high occurrence of antibiotic-resistant bacteria in urine, tracheal aspirate, and vaginal swab samples. Also, there is a presence of high drug resistance to various antibiotics in *E. coli* and *K. pneumonia* isolates from different samples sources. Some other correlated reports pointed out carelessness from the patient’s part, tentative treatment plans, self-prescription, antibiotics misuse, misprescription, and limited information around multidrug-resistant isolates and antimicrobial resistance among clinicians. Nevertheless, the study was conducted in only one state; however, this study will update the records of resistant rates of clinical isolates. Also, it will capture the responsiveness of all hospitals’ controlling team in making proper assessments and research to manage the progress of the resistant strain and also help to decrease the alarmingly increasing risk of drug resistance.

Table 3: The prevalence of MDR and ESBL among *Enterobacteriaceae*.

Number and percentage of isolated	MDR Yes	MDR No	ESBL Yes	ESBL No	
E. coli	N 69	34	35	24	45
% 100	49.3	50.7	34.8	65.2	
K. pneumonia	N 36	21	15	14	22
% 100	58.3	41.7	38.9	61.1	
S. enterica	N 5	1	4	0	5
% 100	20	80	0	100	
Shigella spp.	N 1	1	0	0	1
% 100	100	0	100	100	
K. oxytoca	N 3	3	0	1	2
% 100	100	0.0	33.3	66.7	
P. mirabilis	N 3	1	2	0	3
% 100	33.3	66.7	0.0	100	
E. aerogenes	N 2	2	0	0	2
% 100	100	0.0	100	0	
E. cloacae	N 1	1	0	1	0
% 100	100	0	100	0	

P value 0.001 0.001

Note: MDR = multidrug-resistant bacteria, ESBL = extended-spectrum β-lactamase producer.
5. Conclusion

In conclusion, this study highlighted the antibiotics profile and prevalence of ESBL, MDR, XDR, and PDR among Enterobacteriaceae from different clinical samples from Khartoum state, Sudan. Therefore, the result of this study may be proof of the urgent need for controlling and managing the development of MDR strain. Moreover, antibiotic stewardship procedures should be applied to limit the illogical use of antibiotics in Sudan.

5.1. Limitations. Our perspective cross-sectional study has some limitations that should be recognized, which it was conducted in one state (Sudan consists of 18 states), which could not reflect the epidemiology of different states or different geographical areas.

Abbreviations

ESBL: Extended-spectrum beta-lactamase
MDR: Multidrug-resistant
XRD: Extensively drug-resistant
PDR: Pandrug-resistant
CLSI: Clinical and Laboratory Standards Institute
AMR: Antimicrobial-resistant
XLD: Xylose Lysine Deoxycholate Agar
ATCC: American Type Culture Collection.

Data Availability

All data generated or analyzed during this study are included within this article.

Conflicts of Interest

The author declares no conflicts of interest.

Acknowledgments

The author would also like to extend his appreciation to the Microbiology department of the laboratory at Omdurman and Bahri Teaching Hospitals, for their help and support during this study. This work was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University, Alkharij, Saudi Arabia.

References

[1] R. J. Worthington and C. Melander, “Combination approaches to combat multidrug-resistant bacteria,” Trends in Biotechnology, vol. 31, no. 3, pp. 177–184, 2013.
[2] Y. Mamuye, “Antibiotic resistance patterns of common gram-negative uropathogens in St. Paul’s hospital millennium medical college,” Ethiopian Journal of Health Sciences, vol. 26, no. 2, pp. 93–100, 2016.
[3] H. Nikaido, “Multidrug resistance in bacteria,” Annual Review of Biochemistry, vol. 78, no. 1, pp. 119–146, 2009.
[4] L. Ampaire, “A review of antimicrobial resistance in East Africa,” African Journal of Laboratory Medicine, vol. 5, no. 1, p. 432, 2016.
[5] M. M. M. Mouiche, F. Moffo, J.-F. Tatah et al., “Antimicrobial resistance from a one health perspective in Cameroon: a systematic review and meta-analysis,” BMC Public Health, vol. 19, no. 1, p. 1135, 2019.
[6] T. M. Leegaard, D. A. Caugant, L. O. Frøholm, and E. A. Haiby, “Apparent differences in antimicrobial susceptibility as a consequence of national guidelines,” Clinical Microbiology and Infection, vol. 6, no. 6, pp. 290–293, 2000.
[7] A.-P. Magiorakos, A. Srinivasan, R. B. Carey et al., “Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance,” Clinical Microbiology and Infection, vol. 18, no. 3, pp. 268–281, 2012.
[8] Y. Doi, S. Husain, B. A. Potoski, K. R. McCurry, and D. L. Paterson, “Extensively drug-resistant acinetobacter baumannii,” Emerging Infectious Diseases, vol. 15, no. 6, pp. 980–982, 2009.
[9] A. L. Cohen, D. Calfee, S. K. Fridkin et al., “Recommendations for metrics for multidrug-resistant organisms in healthcare settings: SHEA/HICPAC Position paper,” Infection Control & Hospital Epidemiology, vol. 29, no. 10, pp. 901–913, 2008.
[10] Y. Carmeli, M. Akova, G. Cornaglia et al., “Controlling the spread of carbapenemase-producing gram-negatives: therapeutic approach and infection control,” Clinical Microbiology and Infection, vol. 16, no. 2, pp. 102–111, 2010.
[11] M. Cheesborough, Medical Laboratory Manual for Tropical Countries, Butterworth-Heinemann Ltd., Oxford, UK, 2nd edition, 2006.
[12] CLSI, Performance Standards for Antimicrobial Susceptibility Testing, Vol. 100, Clinical and Laboratory Standards Institute, Wayne, PA, USA, 30th edition, 2020.
[13] K. Panta, P. Ghimire, K. Panta et al., “Antibiogram typing of gram negative isolates in different clinical samples of a tertiary hospital,” Asian Journal of Pharmaceutical and Clinical Research, vol. 3, no. 1, pp. 153–156, 2013.
[14] T. Zemedu, “Bacterial pathogens implicated in causing urinary tract infection (UTI) and their antimicrobial susceptibility pattern in Ethiopia,” Revista CENIC. Ciencias Biológicas, vol. 41, 2010.
[15] S. P. Meeta Sharma and P. Srivastava, “Prevalence and antibiogram of extended spectrum beta-lactamase (ESBL) producing gram negative bacilli and further molecular characterization of ESBL producing Escherichia coli and Klebsiella spp,” Journal of Clinical and Diagnostic Research, vol. 7, no. 10, pp. 2173–2177, 2013.
[16] O. M. Hamid, S. A. Gumaa, and A. A. Ibrahim, “Extended spectrum beta-lactamase producing Enterobacteriaceae: hospital-acquired urinary tract infections, Khartoum-Sudan,” Annals of Microbiology, vol. 3, no. 1, p. 7, 2019.
[17] S. Yezi, A. M. Shibi, and Z. A. Memish, “The molecular basis of β-lactamase production in gram-negative bacteria from Saudi Arabia,” Journal of Medical Microbiology, vol. 64, no. 2, pp. 127–136, 2015.
[18] H. M. Zowawi, H. H. Balkhy, T. R. Walsh, and D. L. Paterson, “β-lactamase production in key gram-negative pathogen isolates from the arabian peninsula,” Clinical Microbiology Reviews, vol. 26, no. 3, pp. 361–380, 2013.
[19] N. S. A. Azim, M. Y. Nofal, M. A. AlHarbi, M. I. Al-Zaban, and A. M. Somily, “Molecular-diversity, prevalence and antibiotic susceptibility of pathogenic Klebsiella pneumoniae under Saudi condition,” Pakistan Journal of Biological Sciences, vol. 22, no. 4, pp. 174–179, 2019.
[20] T. Uz Zaman, M. Aldrees, S. M. Al Johani, M. Alrodaiyyan, F. A. Aldughashem, and H. H. Balkhy, “Multi-drug
carbapenem-resistant *Klebsiella pneumoniae* infection carrying the OXA-48 gene and showing variations in outer membrane protein 36 causing an outbreak in a tertiary care hospital in Riyadh, Saudi Arabia,” *International Journal of Infectious Diseases*, vol. 28, pp. 186–192, 2014.

[21] H. H. Balkhy, A. El-Saed, M. M. Alshamrani et al., “Ten-year resistance trends in pathogens causing healthcare-associated infections; reflection of infection control interventions at a multi-hospital healthcare system in Saudi Arabia, 2007–2016,” *Antimicrob Resist Infect Control*, vol. 9, no. 1, p. 21, 2020.

[22] M. E. Ibrahim, N. E. Bilal, M. E. Hamid et al., “Increased multi-drug resistant *Escherichia coli* from hospitals in Khartoum state, Sudan,” *African Health Sciences*, vol. 12, no. 3, pp. 368–375, 2012.

[23] I. A. Malik, K. M. Elhag, and K. Gustaw, “Characterisation of extended-spectrum β-lactamases among multidrug resistant Enterobacteriaceae from Sudan,” *Journal of Pure and Applied Microbiology*. vol. 13, no. 1, p. 8, 2019.