SATAR: A Self-supervised Approach to Twitter Account Representation Learning and its Application in Bot Detection

Shangbin Feng, Herun Wan, Ningnan Wang, Jundong Li, Minnan Luo

Introduction

- Twitter bots are often operated to achieve malicious goals.
- Existing measures fail to:
 - generalize
 - adapt

Model Performance

	Lee et al. [25]	Yang et al. [40]	Kudugunta et al. [23]	Wei et al. [38]	Miller et al. [30]	Cresci et al. [4]	Botometer [10]	Alhosseini et al. [1]	SATAR_{FC}	SATAR_{FT}
TwiBot-20										
Acc	0.7456	0.8191	0.8174	0.7126	0.4801	0.4793	0.5584	0.6813	0.7838	0.8412
F1	0.7823	0.8546	0.7517	0.7533	0.6266	0.1072	0.4892	0.7318	0.8084	0.8642
MCC	0.4879	0.6643	0.6710	0.4193	-0.1372	0.0839	0.1558	0.3543	0.5637	0.6863
Cresci-17										
Acc	0.9750	0.9847	0.9799	0.9670	0.5204	0.4029	0.9597	/	0.9622	0.9871
F1	0.9826	0.9893	0.9641	0.9768	0.4737	0.2923	0.9731	/	0.9737	0.9910
MCC	0.9387	0.9625	0.9501	0.9200	0.1573	0.2255	0.8926	/	0.9069	0.9685
PAN-19										
Acc	/	/	0.9464	/	0.8797	/	0.8728	0.9509		
F1	/	/	0.9448	/	0.8701	/	0.8729	0.9510		
MCC	/	/	0.8948	/	0.7685	/	0.7456	0.9018		

- SATAR consistently outperforms all state-of-the-art baselines on three Twitter bot detection data sets.
- SATAR_{FT} outperforms SATAR_{FC}, which demonstrates the efficacy of the pre-training and fine-tuning approach.
- SATAR is further proved to generalize to diversified real-world scenarios and adapt to the bot evolution.

SATAR Overview

- Generalize semantic, property, neighborhood
- Adapt self-supervised representation learning

Generalization Study

- SATAR could conduct cross-domain bot detection and successfully identifies different types of bots.

Adaptation Study

- SATAR maintains steady detection accuracy for different generations of bots registered from 2007 to 2020.