Incorporating prognostic imaging biomarkers into clinical practice

W. Phillip Lawa,b, Kenneth A. Milesa,c

aDepartment of Medical Imaging, Princess Alexandra Hospital, Brisbane, Australia; bSchool of Medicine, University of Queensland, Southern Clinical School, Brisbane, Australia; cInstitute of Nuclear Medicine, University College London, UK

Corresponding address: Dr W. Phillip Law, Department of Medical Imaging, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, QLD 4102, Australia.

Email: phil.law@live.com.au, phillip_law@health.qld.gov.au

Abstract

A prognostic imaging biomarker can be defined as an imaging characteristic that is objectively measurable and provides information on the likely outcome of the cancer disease in an untreated individual. It is important to note the quantitative nature of imaging biomarkers, which places demands on imaging technologies that differ from those associated with the more familiar qualitative approaches that encompass much of clinical radiology. Prognostic biomarkers should be distinguished from predictive imaging biomarkers and imaging markers of response. Predictive imaging biomarkers are imaging characteristics that provide information on the likely benefit from treatment and are discussed in detail elsewhere in this journal1. Imaging biomarkers of response represent surrogate measures for the beneficial outcomes that are intended from treatment. These surrogates are useful either because they can be obtained at an earlier time point than the intended outcome or because they provide an alternative to assessment of pathologic response.

Clinical tumour staging can be considered as a prognostic biomarker. However, it is increasingly recognized that patients with identical tumour stage can follow divergent clinical courses. Prognostic imaging biomarkers aim to further stratify risk beyond clinical stage. As indicated above, prognostic imaging biomarkers should provide information of likely disease outcome without treatment, for example the probability of tumour recurrence. However, where the biomarker has been shown to be of prognostic value independent of treatment modality and/or tumour stage (stage often being the main determinant of treatment), a relationship between the biomarker and disease progression without treatment can be inferred.

A range of tumour characteristics of potential prognostic value measured using different imaging modalities have been identified (Table 1). However, none has currently been adopted into routine clinical practice. This article considers key examples of emerging prognostic imaging biomarkers and proposes an evaluation framework that aims to demonstrate clinical efficacy and so support their introduction into the clinical arena.
Table 1 Examples of imaging biomarkers with prognostic potential in specific human malignancies

Imaging technique	Example studies in specific tumours (hazard ratios in parentheses)
\(^{18}\text{F}\)FDG-PET	Head and neck cancer (1.8–2.7)\(^{[2–6]}\)
NSCLC (1.3–10.7)\(^{[7–11]}\)	
Oesophageal cancer (1.0–1.9)\(^{[12,14,15,17]}\)	
Colorectal metastases (1.17)\(^{[19]}\)	
Lymphoma (1.4–3.1)\(^{[23,24]}\)	
Lymphoma, FDG avidity after treatment (7.0–29.7)\(^{[20–22]}\)	
Prostate cancer (1.2)\(^{[40]}\)	
Recurrent high-grade glioma (10.1)\(^{[30–32]}\)	
Brain glioma\(^{[33–37]}\)	
Colorectal primary\(^{[18]}\)	
Breast cancer, with dynamic FDG-PET (1.7)\(^{[29]}\)	
Glioma\(^{[41]}\)	
Prostate cancer (20.8)\(^{[42]}\)	
Bladder cancer (6.3)\(^{[43]}\)	
Glioma (7.3)\(^{[50]}\)	
Breast cancer (1.0)\(^{[51]}\)	
Head and neck cancer\(^{[48]}\)	
Colorectal cancer\(^{[46]}\)	
NSCLC (56.0)\(^{[44]}\)	
Oesophageal cancer (4.5)\(^{[45]}\)	
Liver metastases in colorectal cancer\(^{[46]}\)	
Colorectal primary\(^{[47]}\)	
Occult liver metastases\(^{[54]}\)	
Melanoma\(^{[52]}\)	
Breast cancer (2.8)\(^{[53,55]}\)	
\(^{18}\text{F}\)FLT-PET	Recurrent high-grade glioma (10.1)\(^{[30–32]}\)
Brain glioma\(^{[33–37]}\)	
\(^{11}\text{C}\)Methionine-PET	
\(^{64}\text{Cu}\)ATSM-PET	
H\(^{15}\)O-PET	
Diffusion-weighted MRI	
Dynamic contrast-enhanced MRI	
Dynamic contrast-enhanced CT	
CTTA	
Doppler ultrasonography	
Dynamic contrast-enhanced ultrasonography	

Prognostic imaging biomarkers in specific cancers

Positron emission tomography

The glucose analogue \(^{18}\text{F}\)fluorodeoxyglucose (FDG) is by far the most common and important radiotracer in imaging by positron emission tomography (PET). For many malignancies, staging, assessing response to treatment, and monitoring of disease by FDG-PET has become the standard of care. However, to date, there are only limited prospective data for the correlation between tumour metabolism as measured by FDG-PET and improved overall survival.

Head and neck cancer

In several studies of head and neck squamous cell carcinoma (SCC), metabolic tumour volume (MTV) measured by FDG-PET has been shown on multivariate analysis to be an independent prognostic factor for survival\(^{[2–5]}\). Tumour volume expressed as a metabolic index combining MTV and standardized uptake value (SUV) on FDG-PET has also been shown to be valuable for predicting long-term survival in nasopharyngeal carcinoma\(^{[6]}\).

Non-small cell lung cancer

MTV has also been studied in patients with non-small cell lung cancer (NSCLC) who subsequently underwent surgical resection of the primary tumour\(^{[7]}\). Preoperative MTV parameters were found to have limited prognostic value for predicting disease-free survival. However, in the same study and several others, multivariate analysis showed that SUV\(_{\text{max}}\) was an independent predictor of overall survival\(^{[7–9]}\). The European Lung Cancer Working Party also concluded that primary tumour SUV\(_{\text{max}}\) was of prognostic value for predicting survival in NSCLC\(^{[10]}\) in its systematic review and meta-analysis of 1474 patients in 13 studies comparing the hazard ratio for NSCLC patients with a low SUV and those with a high SUV on FDG-PET. A related parameter, the total lesion glycolysis (TLG), which represents the product of MTV and mean SUV, has been shown to predict progression-free survival in NSCLC and has promise as a tool for stratifying patients for risk-adapted therapies\(^{[11]}\).

Oesophageal cancer

In a study of oesophageal SCCs by Wieder et al.\(^{[12]}\), an association was found between tumour metabolic response and overall survival, whereas Malik et al.\(^{[13]}\) concluded that FDG-PET performed during neoadjuvant chemoradiation therapy in oesophageal adenocarcinomas failed to predict survival benefit. A systematic review and meta-analysis conducted by Pan et al.\(^{[14]}\) determined that higher SUVs indicated both worse survival prognosis and higher risk of recurrence in patients with oesophageal cancer. Guo et al.\(^{[15]}\) also found that SUV and disease
status on PET/CT were significant independent predictors for overall survival in oesophageal SCC, whereas Gillies et al.\cite{16} more recently observed that the very presence of FDG-avid lymph nodes, rather than SUV$_{max}$ or FDG-avid tumour length, correlated negatively with disease-free survival. MTV has been shown to be a better predictor of survival than primary tumour SUV$_{max}$ in patients with oesophageal carcinoma\cite{17}.

Colorectal cancer

Dietz et al.\cite{18} reported a pilot study using 64Cu-methylthioseminocarbazon (ATSM) in patients with rectal cancer undergoing neoadjuvant chemoradiotherapy, where higher primary tumour tissue uptake correlated with worse overall and progression-free survival. SUV in colorectal cancer metastases has also been shown to be a significant predictor for overall survival, independent of the subsequent treatment\cite{19}.

Lymphoma

In Hodgkin disease and diffuse large B-cell lymphoma, a positive FDG-PET after treatment completion has been shown to be a poor prognostic factor\cite{20-22}. More recently, FDG-PET has also been shown to be an independent outcome predictor in primary central nervous system lymphoma\cite{23}. TLG in FDG-PET was recently found to be a better predictor of survival outcome than the International Prognostic Index for patients with diffuse large B-cell lymphoma\cite{24}.

There is early interest in the potential of new PET tracers such as radiolabelled monoclonal antibodies for the management of indolent lymphomas, especially follicular lymphoma, in which the use of FDG-PET/CT is currently not standard practice\cite{25}. However, a positive FDG-PET after induction treatment has been shown to predict a shorter progression-free survival in several studies of patients with follicular lymphoma\cite{26,27}.

Melanoma

Melanoma typically demonstrates avid uptake of FDG, making FDG-PET an excellent tool for the detection of primary and metastatic melanoma and quantification of FDG uptake by SUV. In a multivariate analysis of 80 patients with melanoma, mean tumour SUV, along with the number of positive nodes, extranodal growth and gender, were each shown to be independently associated with disease-free survival\cite{28}.

Breast cancer

PET tumour blood flow assessment using H$_2$O combined with dynamic 18FDG-PET evaluation (where FDG metabolic and transport rates were quantified) allowed prediction of survival outcome in patients with locally advanced breast cancer in a study published by Dunnwald et al.\cite{29}.

Brain glioma

FDG-PET has limited value in the assessment of brain malignancies due to the high intrinsic background uptake and utilization of glucose by the brain. $^{[18]F}$Fluorothymidine (FLT) has been shown to predict survival in patients with recurrent high-grade glioma\cite{30-32}. $^{[11]}$C-Methionine uptake has been correlated with histologic grade in gliomas, and several studies have also found it to be a useful prognostic imaging biomarker for predicting survival in patients with glioma\cite{33-37}, whereas its prognostic value has not been demonstrated in other studies\cite{38,39}.

Skeletal scintigraphy

Recently, the Bone Scan Index, which has been developed as a quantitative tool for expressing the tumour burden in the bone as a percentage of total skeletal mass, has been shown to be associated with survival in patients with prostate cancer\cite{40}. The authors of this study demonstrated that quantifying the extent of skeletal metastatic disease on 99mTc bone scan at the time of diagnosis can be of value in patient management when deciding on treatment.

MR diffusion imaging

Diffusion-weighted MRI produces information about tissue cellularity and the integrity of cellular membranes by probing the movement of water molecules in biological tissues. Tissue characterization is made possible by comparing differences in the apparent diffusion between tissues (e.g. free water movement within a neoplasm would be more restricted than in a simple cyst).

A recent meta-analysis of survival data in malignant astrocytomas has also demonstrated that survival rates in high-grade (3 and 4) tumours had a significant correlation with apparent diffusion coefficient (ADC) values, independent of tumour grade\cite{41}, suggesting an important prognostic role in the imaging of gliomas. In prostate cancer, multivariate analysis showed that tumour ADC predicted the likelihood of biochemical recurrence in prostate cancer better than all other variables (including Gleason score, serum prostate-specific antigen and tumour volume)\cite{42}. Similarly, in patients with superficial bladder cancer, pretreatment ADC values at MRI have been shown to be a significant independent predictor of tumour recurrence after transurethral resection\cite{43}.

CT texture analysis

Texture analysis involves postprocessing of CT data using software that quantifies disuniformity of tumours at a range of spatial scales. CT texture analysis (CTTA) has shown promise as an independent predictor of survival in patients with advanced NSCLC and oesophageal cancer and could contribute to disease risk stratification for these patients\cite{44,45}. In colorectal cancer, Miles et al.\cite{46}...
reported that CTTA of the liver was a better predictor of survival postoperatively than CT perfusion. Recent data from a study conducted by Ng et al.[47] found that contrast-enhanced CTTA of whole primary tumour can predict 5-year overall survival in patients with colorectal cancer.

Perfusion imaging

CT and MR perfusion using iodinated contrast and gadolinium, respectively, provide the ability to non-invasively quantify microvascular blood flow of tissue. Perfusion imaging has given rise to several important quantitative parameters chief among which are blood flow (BF), blood volume (BV), time to peak flow, capillary permeability and the related concept of permeability surface area product (PS), which may have prognostic usefulness in assessing neoplasms.

Bisdas et al.[48] found that high BF and PS on CT perfusion were not only predictive of longer tumour control than patients with hypoperfused upper aerodigestive tract SCC, but that BF-BV mismatch also predicted longer overall survival after chemoradiation. Koh et al.[49] also recently published promising results for the use of kinetic modelling of dynamic contrast-enhanced CT data to predict 5-year overall survival in patients with primary colorectal cancer.

Tumour microvascular permeability and contrast enhancement on MR perfusion imaging have been shown to predict worse short-term (2 years) progression-free survival in low-grade gliomas[50]. In patients with breast cancer, dynamic contrast-enhanced MR parameters, such as maximal tumour enhancement within the first minute of contrast injection and maximal rate of enhancement, have been observed to be superior to traditional prognostic parameters (such as tumour size and nodal metastasis) in the prediction of disease-free and overall survival[51].

Doppler ultrasonography

Tumour angiogenesis evaluated with Doppler sonography has been used to identify early breast cancers and melanomas with higher metastatic potential[52,53]. Neoangiogenesis was additionally found to be an independent predictor of overall survival in early breast cancer[52].

Leen et al.[54] successfully used the Doppler perfusion index (DPI), defined as the ratio of hepatic arterial to total liver BF, to detect subtle changes in hepatic haemodynamics indicating the possibility of occult liver metastases from colorectal cancer in patients who have had apparently curative surgery. The authors found that DPI was a better prognostic factor for predicting early death (within 2 years of diagnosis) than the recognized gold standard of Dukes pathologic classification.

Contrast-enhanced ultrasonography

Microbubble contrast agents administered intravenously into the systemic circulation allow the bloodstream’s echo to be enhanced on ultrasonographic imaging, thus allowing blood to be distinguished from surrounding tissues and the evaluation of tumour vascularity and angiogenic activity. Intratumoural BF measured by vessel positive total area on contrast-enhanced ultrasonography has been shown to inversely correlate with overall and tumour-free survival in patients with node-negative breast cancer[55].

Evaluative framework for prognostic imaging biomarkers

The clinical adoption of diagnostic applications of imaging is supported by an established framework that comprises a hierarchical evaluation of evidence that sequentially assesses technical performance, diagnostic performance, diagnostic impact, therapeutic impact and health impact[56]. Although a system for the qualification of imaging biomarkers in oncologic drug development has been proposed[57], there is currently no equivalent framework for the evaluation of imaging biomarkers for clinical use. However, the approach used by MacKenzie and Dixon[56] for diagnostic applications of MRI can be adapted for prognostic imaging biomarkers, correspondingly considering biological/technical performance, prognostic performance, prognostic impact, therapeutic impact and health impact (Fig. 1).

Biological/technical performance

Without a clear biological correlate, interpretation of imaging biomarkers can be problematic. Biological correlates for imaging biomarkers are frequently identified as a result of correlative studies against a range of pathologic features. When the pathologic feature is known to be of prognostic significance, this correlative approach can accelerate imaging biomarker development[58]. Many pathologically based biomarkers reflect expression of particular genes or molecules, whereas imaging biomarkers typically reflect phenotypic characteristics. Therefore, direct one-to-one correlation between pathologic and imaging biomarkers is unlikely and imaging biomarkers may have several pathologic correlates, each of which has some relationship to the phenotypic feature measured by imaging. Table 2 summarizes likely biological correlates for the imaging biomarkers described above.

The technical performance refers to how well an imaging biomarker measurement made in one patient compares with measurements made on another occasion or on a different device in another institution. These sources of variability can be quantified as intra- and interobserver variation. Measurement consistency is increased by the adoption of standardized image acquisition and
Recommended procedures have been published for a range of imaging biomarkers\cite{61,65,66}.

Prognostic performance

The imaging community is familiar with parameters for evaluation of diagnostic performance such as sensitivity and specificity. The equivalent parameters that encapsulate prognostic performance are hazard ratio and biomarker prevalence. Hazard ratio reflects the risk of mortality or recurrence in patients identified by the biomarker to have a poor prognosis relative to patients classified as having a good prognosis. The biomarker prevalence indicates the proportions of patients defined by the...
biomarker as having a good or poor prognosis. Multivariate analysis is required to demonstrate that the prognostic performance of the biomarker is independent of other known factors associated with survival such as age, tumour stage, and other imaging biomarkers.

Prognostic imaging biomarkers entail a defined threshold value against which measurements obtained in individual patients are compared. Values falling above or below the threshold determine whether the patient is classified as having a poor or good prognosis. Many studies reporting an association between a quantifiable imaging characteristic and prognosis have established this threshold in a single cohort of patients and then used this threshold to determine prognostic performance in the same cohort. This approach results in a biased overestimation of prognostic performance. A range of cross-validation approaches can be used to avoid this bias, as summarized in Fig. 2. The most straightforward approach is to establish the threshold value in one cohort and apply this threshold to a separate cohort (Fig. 2A). A cross-validation approach (Fig. 2B) randomly divides a cohort into two, usually matched to ensure similar rates for mortality or recurrence. The threshold value established in one cohort is then used to classify patients in the other cohort and vice versa. The resulting poor and good prognosis groups are then combined to calculate the hazard ratio and biomarker prevalence. A leave-one-out approach (Fig. 2C) divides a single cohort into several groups (or even individual patients). Patients in the left-out group are classified based on a threshold established from the remaining groups combined. The process is repeated until all patients have been classified. Good and poor prognosis groups are then combined to determine overall prognostic performance.

Prognostic impact

Prognostic impact refers to the change in prognosis that results from deployment of the imaging biomarker. The potential prognostic impact of imaging biomarkers can be demonstrated using currently available clinical decision tools that allow for incorporation of prognostic biomarkers. An example decision tool is Adjuvant! Online, which aims to assist with decisions concerning adjuvant chemotherapy for lung, colon and breast cancer by estimating the cancer-related mortality without systemic adjuvant therapy, the reduction in mortality afforded by therapy, and the risks of side effects of the therapy\(^{[67]}\). The hazard ratio and biomarker prevalence values for a prognostic imaging biomarker can be entered into the decision software for a range of clinical scenarios, as recently demonstrated for CTTA\(^{[68]}\). For example, Adjuvant! Online indicates that the 5-year survival rates for a 60-year-old male patient with at T2N0M0 NSCLC and average comorbidities with and without platinum-based chemotherapy would be 58.4% and 64.2%, respectively. Table 3 shows the impact on prognostic estimates resulting from use of an imaging biomarker with a hazard ratio of 2.00 and biomarker prevalence of 50%. The 5-year survival rates with or without chemotherapy have both increased in the good prognostic group but the increase in survival gained by chemotherapy has fallen. On the other hand, the patients with a poor prognosis show decreases in 5-year survival but an increase in the benefit gained from chemotherapy compared with that predicted for patients without biomarker stratification.

Therapeutic impact

Therapeutic impact refers to the ability of a health technology to change the clinical management of patients. Of the publications proposing prognostic imaging biomarkers to date, few have clearly identified clinical situations in which deployment of the biomarker could potentially result in change in therapy. This lack of identifiable potential clinical applications represents a barrier to imaging biomarker development.

A therapeutic impact may exist when the change in prognostic confidence is sufficient to change management. Considering the illustration above for a patient with NSCLC, a previous study reported that most oncologists believe at least a 5% increase in 5-year survival is required to justify platinum-based adjuvant chemotherapy for this tumour\(^{[69]}\). The predicted improvement in 5-year survival of 4.2% for the patients with good prognosis may therefore not be considered sufficient to warrant chemotherapy, suggesting a change in management from that indicated by the 5.8% improvement in survival for patients before stratification with the imaging biomarker.

The potential therapeutic impact can be further quantified by plotting the pretest improvement in 5-year

Figure 2 Evaluation frameworks for diagnostic (A) and prognostic (B) applications of imaging in clinical practice.
survival from chemotherapy against the post-test improvement in 5-year survival (Fig. 3). Assuming an improvement of 5% justifies chemotherapy, the red-shaded region represents patients with a good prognosis similar to that illustrated above for whom stratification moves the anticipated 5-year survival benefit from treatment to less than 5%. The blue-shaded region represents patients whose prognosis would not have been considered sufficiently poor to warrant chemotherapy before stratification but might be considered to benefit after stratification. The combined area of the shaded regions indicates the ability of the biomarker to affect therapeutic decisions.

Health impact

Health impact refers to improvements in ultimate health outcomes, most commonly survival, that would result from deployment of the imaging biomarker. These health effects can then be compared with the cost implications of biomarker deployment to assess cost-effectiveness. One approach to demonstrating health impact comprises a randomized trial in which health outcomes are compared between two patient cohorts, with the imaging biomarker deployed in one cohort. However, it can be anticipated that the same difficulties recognized to arise from application of this approach to diagnostic uses of imaging will apply equally to prognostic applications. Specifically, the outcomes are primarily determined by the treatment rather than imaging, and statistical variability in the treatment effect tends to mask the effects of imaging such that trials to demonstrate the impact of imaging need to be large, expensive and prolonged. Because of these difficulties, an alternative approach for diagnostic applications has comprised a robust assessment of diagnostic performance followed by decision modelling to assess health impact. A similar approach can be used to demonstrate the health impact of prognostic imaging biomarkers as has been undertaken for the use of CTTA for modifying postoperative surveillance strategies in colorectal cancer. The prognostic performance characteristics required for modelling are the hazard ratio and biomarker prevalence. Modelling also allows these parameters to be varied between their 95% confidence limits to allow for uncertainties in the prognostic performance characteristics.

Table 3 Illustrative prognostic impact of an imaging biomarker with a hazard ratio of 2 and biomarker prevalence of 50% on the projected 5-year survival rates with and without chemotherapy for a 60-year-old man with NSCLC and average comorbidities (derived using Adjuvant! Online[67])

	All patients (%)	Good prognostic group (%)	Poor prognostic group (%)
5-year survival			
without chemotherapy	58.4	67.7	49.1
with chemotherapy	64.2	72.1	56.0
Survival benefit	5.8	4.4	6.9

Figure 3 Estimating the potential therapeutic impact of an imaging biomarker with hazard ratio of 2 and 50% prevalence. The hatched areas represent patients for whom therapy might be altered by the imaging biomarker assuming a 5% improvement in 5-year survival warrants treatment.

Future directions

Collaboration

Collaboration among the broad group of stakeholders across health care (public and private clinical providers, government, enterprises in the biopharmaceutical and software vendor industries, researchers and academics) is vital if prognostic imaging biomarkers are to become an integral part of medical practice. The Quantitative Imaging Biomarkers Alliance (QIBA) initiative of the Radiological Society of North America (RSNA) can play an important role in uniting stakeholders in the advancement of quantitative imaging and the use of imaging biomarkers in clinical practice. The establishment of QIBA highlights the increasing importance of quantitative imaging but radiological training is yet to include quantitative imaging on an equal footing with traditional qualitative approaches.

Standardization and multicentre trials

To date, studies investigating the use of imaging biomarkers in survival prediction have mostly been single-centre...
Prognostic imaging biomarkers

Research design and reporting

Prognostic imaging biomarkers have a number of potential advantages over histological assays. Imaging is non-invasive and can assess multiple tumour sites, which is an important consideration given the known heterogeneity of expression of many histological markers. By reflecting the tumour phenotype, imaging biomarkers may potentially be more closely related to tumour behaviour than genetic markers. Approaches in which gene expression and imaging of phenotypic tumour behaviour are assessed collaboratively can be envisaged. However, imaging biomarker research needs to parallel the research designs used in tissue biomarker development. For example, study design should include cross-validation of imaging biomarker thresholds and final reports should state the hazard ratio and biomarker prevalence with 95% confidence intervals to allow subsequent modelling of health and economic impacts.

Conclusion

With appropriate validation within an established evaluation framework, prognostic imaging biomarkers have the potential to contribute to individualized cancer care, in some cases reducing the financial burden of expensive cancer treatments by facilitating their more rational use.

Conflict of interest

K.A. Miles is a director and shareholder of TexRAD Ltd, a supplier of texture analysis software for medical images.

References

[1] Kyle S, Law P, Miles KA. Predicting disease response. Cancer Imaging 2013; 13(3): in press.
[2] Lee SJ, Choi JY, Lee HJ, et al. Prognostic value of volume-based (18)F-fluorodeoxyglucose PET/CT parameters in patients with clinically node-negative oral tongue squamous cell carcinoma. Korean J Radiol 2012; 13: 752–759.
[3] Lim R, Eaton A, Lee NY, et al. (18)F-FDG PET/CT metabolic tumor volume and total lesion glycolysis predict outcome in ophthalmic squamous cell carcinoma. J Nucl Med 2012; 53: 1506–1513. PMid:22895812.
[4] Chu KP, Murphy JD, La TH, et al. Prognostic value of metabolic tumor volume and velocity in predicting head-and-neck cancer outcomes. Int J Radiat Oncol Biol Phys 2012; 83: 1521–1527. PMid:22270168.
[5] Murphy JD, La TH, Chu K, et al. Postradiation metabolic tumor volume predicts outcome in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2011; 80: 514–521. PMid:20646870.
[6] Xie P, Yue JB, Zhao HX, et al. Prognostic value of (18)F-FDG PET/CT metabolic index for nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2010; 136: 883–889. PMid:19937688.
[7] Lin Y, Lin WY, Kao CH, Yen KY, Chen SW, Yeh JJ. Prognostic value of preoperative metabolic tumor volumes on PET-CT in predicting disease-free survival of patients with stage I non-small cell lung cancer. Anticancer Res 2012; 32: 5087–5091. PMid:23155285.
[8] Lee P, Bazan JG, Lavori PW, et al. Metabolic tumor volume is an independent prognostic factor in patients treated definitively for non-small-cell lung cancer. Clin Lung Cancer 2012; 13: 52–58. PMid:21703935.
[9] Liao S, Penney BC, Zhang H, Suzuki K, Pu Y. Prognostic value of the quantitative volumetric measurement on (18)F-FDG PET/CT in Stage IV nonsurgical small-cell lung cancer. Acad Radiol 2012; 19: 69–77. PMid:22142679.
[10] Berghmans T, Dusart M, Paesmans M, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol 2008; 3: 6–12. PMid:18166834.
[11] Chen HH, Chiu NT, Su WC, Guo HR, Lee BF. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology 2012; 264: 559–566. PMid:22620234.
[12] Wieder HA, Brucher BL, Zimmermann F, et al. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol 2004; 22: 900–908. PMid:14990646.
[13] Malik V, Lucey JA, Duffy GJ, et al. Early repeated (18)F-FDG PET scans during neoadjuvant chemoradiation fail to predict histopathologic response or survival benefit in adenocarcinoma of the esophagus. J Nucl Med 2010; 51: 1863–1869. PMid:21078796.
[14] Pan L, Gu P, Huang G, Xue H, Wu S. Prognostic significance of SUV on PET/CT in patients with esophageal cancer: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2009; 21: 1008–1015. PMid:19352191.
[15] Guo H, Zhu H, Xi Y, et al. Diagnostic and prognostic value of (18)F-FDG PET/CT for patients with suspected recurrence from squamous cell carcinoma of the esophagus. J Nucl Med 2007; 48: 1251–1258. PMid:17631554.
[16] Gillies RS, Middleton MR, Han C, et al. Role of positron emission tomography-computed tomography in predicting survival after neoadjuvant chemotherapy and surgery for oesophageal adenocarcinoma. Br J Surg 2012; 99: 239–245. PMid:22329010.
[17] Hyun SH, Choi JY, Shim YM, et al. Prognostic value of metabolic tumor volume measured by (18)F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol 2010; 17: 115–122. PMid:19826877.
[18] Dietz DW, Dehdashti F, Grigsby PW, et al. Tumor hypoxia detected by positron emission tomography with Cu-60-ATSM as a predictor of response and survival in patients undergoing neoadjuvant chemoradiotherapy for rectal carcinoma: a pilot study. Dis Colon Rectum 2008; 51: 1641–1648. PMid:18682881.
[19] de Geus-Oei LF, Wiering B, Krabbe PF, Ruers TJ, Punt CJ, Oyen WJ. FDG-PET for prediction of survival of patients with metastatic colorectal carcinoma. Ann Oncol 2006; 17: 1650–1655. PMid:16936185.
[20] Terasawa T, Nihashi T, Hotta N, Nagai H. (18)F-FDG PET for post therapy assessment of Hodgkin’s disease and aggressive
non-Hodgkin’s lymphoma: a systematic review. J Nucl Med 2008; 49: 13–21. PMid:18075727.

[21] Zlijstra JM, Lindau-Van Der Werf G, Hoekstra OS, Hooft L, Riphagen II, Huijgens PC. 11F-fluoro-deoxyglucose positron emission tomography for post-treatment evaluation of malignant lymphoma: a systematic review. Haematologica 2006; 91: 522–529. PMid:16585017.

[22] Juweid ME, Wiseman GA, Vose JM, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluoro-deoxyglucose positron emission tomography. J Clin Oncol 2005; 23: 4652–4661. PMid:15837965.

[23] Kasenda B, Haug V, Schorb E, et al. 18F-FDG PET is an independent outcome predictor in primary central nervous system lymphoma. J Nucl Med 2013; 54: 184–191. PMid:23249539.

[24] Kim TM, Paeng JC, Chun IK, et al. Total lesion glycolysis in positron emission tomography is a better predictor of outcome than the International Prognostic Index for patients with diffuse large B-cell lymphoma. Cancer 2013; 119: 1195–1202. PMid:23212736.

[25] Bode-Milian C, Eugene T, Gastinne T, Frampas E, Le Guillou S, Kraeler-Bodere F. FDG-PET in follicular lymphoma management. J Oncol 2012; 370272; doi:10.1155/2012/370272.

[26] Lopci E, Zanoni L, Chiti A, et al. FDG PET/CT predictive role in follicular lymphoma. Eur J Nucl Med Mol Imaging 2012; 39: 864–871. PMid:22354449.

[27] Trotman J, Fournier M, Lamy T, et al. Positron emission tomography-computed tomography (PET-CT) after induction therapy is highly predictive of patient outcome in follicular lymphoma: analysis of PET-CT in a subset of PRIMA trial participants. J Clin Oncol 2011; 39: 3194–3200. PMid:21747087.

[28] Bastiaannet E, Hoekstra OS, de Jong JR, Brouwers AH, Trotman J, Fournier M, Lamy T, et al. Prognostic value of the standardized uptake value for (18)F-fluorodeoxyglucose in patients with stage IIIB melanoma. Eur J Nucl Med Mol Imaging 2012; 39: 1592–1598.

[29] Dunwald LR, Gralow JR, Ellis GK, et al. Tumor metabolism and blood flow changes by positron emission tomography: relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 2008; 26: 4449–4457. PMid:18626006.

[30] Idema AJS, Hofmann AL, Boogaarts HD, et al. 3-Deoxy-3-[18F]fluorothymidine PET-derived proliferative profiles overall survival in high-grade glioma patients. J Nucl Med 2012; 53: 1904–1910. PMid:23077112.

[31] Schwarzenberg J, Czernin J, Cloughesy TF, et al. 3-Deoxy-3-[18F]fluorothymidine PET and MRI for early survival predictions in patients with recurrent malignant glioma treated with bevacizumab. J Nucl Med 2012; 53: 29–36. PMid:22159180.

[32] Wardak M, Schiepers C, Dahlbom M, et al. Discriminant analysis of 18F-fluorothyminde kinetic parameters to predict survival in patients with recurrent high-grade glioma. Clin Cancer Res 2011; 17: 6553–6562. PMid:21867865.

[33] De Witte O, Goldberg I, Wilker D, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 2001; 95: 746–750. PMid:11702862.

[34] Ribom D, Eriksson A, Hartman M, et al. Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 2001; 92: 1541–1549. PMid:11745233.

[35] Singhal T, Narayanan TK, Jacobs MP, Bal C, Mantil JC. 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med 2012; 53: 1709–1715. PMid:23055534.

[36] Svortssova T, Brodskaja ZL, Gurchin AF, Gaidaenko KP. Prognostic value of PET using 11C-methionine in patients with untreated cerebral gliomas. Zh Vopr Nerokhir Im N N Burdenko 2011; 75: 10–16.

[37] Snits A, Westerberg E, Ribom D. Adding 11C-methionine PET to the EORTC prognostic factors in grade 2 gliomas. Eur J Nucl Med Mol Imaging 2008; 35: 65–71. PMid:17710394.

[38] Ceyssens S, Van Laere K, De Meulenaer T, et al. Prognostic value of DCE-MRI parameters in predicting patient survival in high-grade gliomas. J Neurooncol 2011; 105: 259–266. PMid:21640951.

[39] Ribom D, van den Houten A, Engler H, Smits A. Evaluation of 11C-methionine PET as a surrogate endpoint after treatment of grade 2 gliomas. J Neurooncol 2010; 97: 69–76. PMid:20339355.
Doppler ultrasound as a prognostic factor of survival. Oncol Rep 2004; 11: 905–910. PMid:15010893.

[54] Leen E, Angerson WG, Cooke TG, McArdle CS. Prognostic power of Doppler perfusion index in colorectal cancer. Ann Surg 1996; 223: 199–203. PMid:8597515.

[55] Li YJ, Zhang XL, Wen G. The prognostic value of angiogenic activity evaluation with contrast enhanced power Doppler imaging in axillary-node-negative breast carcinoma. Zhonghua Wai Ke Za Zhi 2007; 45: 877–880.

[56] Mackenzie R, Dixon AK. Measuring the effects of imaging: an evaluative framework. Clin Radiol 1995; 50: 513–518. PMid:7656516.

[57] Waterton JC, Pylvänen I. Qualification of imaging biomarkers for oncology drug development. Eur J Cancer 2012; 48: 409–415.

[58] Gevaert O, Xu J, Hoang CD, et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data—methods and preliminary results. Radiology 2012; 264: 387–396. PMid:22723499.

[59] Padhani AR, Liu G, Mu-Koh D, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11: 102–125. PMid:19186405.

[60] Miles KA, Hayball MP, Ganeshan B. CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging 2013; 13(3): in press.

[61] Miles KA, Lee TY, Goh V, et al. Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol 2012; 22: 1430–1441. PMid:22367468.

[62] Bali MA, Metens T, Denoloin V, et al. Tumoral and nontumoral pancreas: correlation between quantitative dynamic contrast-enhanced MR imaging and histopathologic parameters. Radiology 2011; 261: 456–466. PMid:21852570.

[63] Du J, Li FH, Fang H, Xia JG, Zhu CX. Correlation of real-time gray scale contrast-enhanced ultrasonography with microvessel density and vascular endothelial growth factor expression for assessment of angiogenesis in breast lesions. J Ultrasound Med 2008; 27: 821–831. PMid:18499842.

[64] Cuena C, Leconte I, Siauve N, et al. Early changes in liver perfusion caused by occult metastases in rats: detection with quantitative CT. Radiology 2001; 218: 556–561. PMid:11161178.

[65] Shankar LK, Hoffmann JM, Bacharach S, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 2006; 47: 1059–1066. PMid:17441317.

[66] Boellaard R, Oyen WJ, Hoekstra CJ, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multicentre trials. Eur J Nucl Med Mol Imaging 2008; 35: 2320–2333. PMid:18704407.

[67] Adjuvant! Online. Decision making tools for health care professionals. www.adjuvantonline.com [accessed 09/05/2013].

[68] Ganeshan B, Win T, Groves A, Miles K. Could prognostic imaging biomarkers contribute to decisions concerning adjuvant chemotherapy? Illustrations using CT texture analysis (CTTA) Essential Imaging, UKRC, Liverpool, June 10–12, 2013.

[69] Blinman P, McLachlan SA, Nowak AK, et al. Lung cancer clinicians’ preferences for adjuvant chemotherapy in non-small-cell lung cancer: what makes it worthwhile? Lung Cancer 2011; 72: 213–218. PMid:20817340.

[70] Miles KA. Cancer imaging – is it cost-effective? Cancer Imaging 2004; 4: 97–103. doi:10.1102/1470-7330.2004.0017.

[71] Miles KA, Ganeshan B. Potential for texture analysis of hepatic CT to cost-effectively modify post-operative surveillance of patients with colorectal cancer. European Society of Radiology 2011, Vienna, Austria.