Host-microbe interactions in reconstructed human gingiva in vitro

Shang, L.

Publication date
2020

Document Version
Other version

License
Other

Citation for published version (APA):
Shang, L. (2020). Host-microbe interactions in reconstructed human gingiva in vitro.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 5

Differential influence of *Streptococcus mitis* on host response to metals in reconstructed human skin and oral mucosa

Lin Shang
Dongmei Deng
Sanne Roffel
Susan Gibbs

Contact dermatitis, 2020 Jul 16.
Abstract

Skin and oral mucosa are continuously exposed to potential metal sensitizers whilst hosting abundant microbes which may influence the host response to sensitizers. This host response may also be influenced by the route of exposure i.e. skin or oral mucosa, due to their different immune properties. The aim of this study is to determine how commensal bacteria Streptococcus mitis, influences the host response to nickel sulfate (sensitizer) and titanium(IV)-bis(ammonium-lactato)dihydroxide (questionable sensitizer) in reconstructed human skin (RHS) and gingiva (RHG). RHS/RHG were exposed to nickel or titanium, in the presence or absence of S. mitis for 24 hours. Histology, cytokine secretion and TLR expression was assessed. We observed that S. mitis increased IL-6, CXCL8, CCL2, CCL5 and CCL20 secretion in RHS but not in RHG; co-application with nickel further increased cytokine secretion. In contrast, titanium suppressed S. mitis-induced cytokine secretion in RHS and had no influence on RHG. S. mitis and metals differentially regulated TLR1 and 4 in RHS, and predominantly TLR4 in RHG. In conclusion, co-exposure of S. mitis and nickel resulted in a more potent innate immune response in RHS than in RHG, while titanium remained inert. These results indicate the important influence of commensal microbes and the route of exposure on the host’s response to metals.
Introduction

The skin and oral mucosa form a defense barrier between the external environment and the human body. They are both capable of hosting abundant microbes, responding to environmental assault and maintaining immune homeostasis [1]. However when exposed to sensitizers, they show very different properties with the skin being immune stimulatory and the oral mucosa being tolerogenic. For example, first exposure to nickel – a common contact sensitizer, may cause sensitization in skin, which upon repeated exposure, will result in allergic contact dermatitis (ACD) [2]. In contrast, if the first exposure to nickel is via the oral mucosa (e.g. dental retaining wires), tolerance may occur to further nickel exposure on the skin or mucosa, thus preventing sensitization [3, 4]. The different responses of the skin and oral mucosa to sensitizers are reported to be influenced by various factors, including the tissue structure, innate immune properties and the infiltration and migration of immune cells [1, 5]. The central event in immune sensitization is the presentation of antigen by dendritic cells (DCs) to antigen-responsive T-cells in the local lymph node which results in T-cell priming (memory). The threshold for sensitization is now thought to be tightly regulated by the activation and maturation state of DCs and their cytokine and chemokine products, but also molecules secreted by local keratinocytes and fibroblasts [6, 7]. Surprisingly, little is known about the mechanisms by which local microbes influence sensitization, even though commensal microbes have been shown to play an important role in gut tolerance [8-10] and oral tolerance [11, 12], and dysbiotic microbiota has been found to be related to skin allergy [13, 14].

Nickel is classically regarded as a contact sensitizer as nickel allergy on the skin and oral mucosa is frequently reported [15]. However nickel is not always scored as a sensitizer in current assays and the reason is unknown. Nickel is identified as a moderate sensitizer in in vitro assays which include dendritic cells e.g. h-CLAT assay (human Cell Line Activation Test), LCSA assay (Loose-Fit Coculture-Based Sensitization Assay) [16, 17], reconstructed human skin (RHS) with integrated Langerhans Cells (LCs) [18], and skin explant with T cells and MoDCs [19]. However in keratinocyte-based assays without DCs, nickel scores as a non-sensitizer e.g. in KeratinoSens™ assay [20] and reconstructed human epidermis (RHE) using IL-18 as readout for sensitizer potency [21]. Local lymph node assay (LLNA) in mice indicated nickel as a non-sensitizer, but this score was considered to be under-predictive [22] due to the species-specific mechanisms for nickel allergy between humans and mice [23]. Furthermore, nickel allergy may also be tissue-
Chapter 5

specific. Our previous studies using RHS and RHG with integrated LCs showed different host tissue responses to nickel. LC migration from the epithelium into the hydrogel was observed in both RHS and RHG [24]. However, LC migration in RHS was CXCL12 dependent in line with the classical sensitization process whereas LC migration in RHG was CXCL12 independent, illustrating the significant difference in innate immune mechanisms between the two tissues [25].

Allergic manifestations to titanium-based implants after orthopedic or dental surgery are also being increasingly reported [26]. However, the current clinical tests used to diagnose titanium allergy are not always reliable: the result of the patch test can be influenced by the different solubility and penetration ability of the titanium salt used for the test, and the lymphocyte transformation test (LTT) and memory lymphocyte immunostimulation assay (MELISA) showed a low specificity regarding lymphocyte proliferation needing further optimization [27]. Further contradicting reports from in vitro assays describe titanium as being inert e.g. titanium scored as a very weak irritant and non-sensitizer in the reconstructed human epidermis assay with IL-18 release as readout [21]; whereas titanium was described to have sensitization and irritation potentials by triggering host innate immune responses in pulmonary macrophages (mice and human) and keratinocytes (human) [28, 29] as well as in intestine and liver (rat) [30]. Therefore, it is currently unclear whether the titanium related complaints observed in the clinic, which appear as edema, erosions, ulcers or lichenoid lesions on the oral mucosa or skin, are due to allergy to titanium or a localized inflammation caused by mechanical load and cytotoxic leachables from titanium or titanium alloys [7, 31, 32].

Since microbes trigger similar innate immune responses as metals, it can be expected that they will also influence sensitization to metals. Furthermore, emerging evidence suggests that microbes maintain a symbiotic relationship with the host and influence both physiological and pathological host events via a group of host receptors known as the toll-like receptors (TLRs). TLRs have been repeatedly shown to participate in a broad range of host events: nickel-induced allergy [2, 23, 33-35], titanium-related allergic responses [36], healthy-associated host-microbe interactions [37-39], and sensitization induced by the co-exposure of metal and the microbial lipopolysaccharides (LPS) [40, 41]. Previously, we used RHG as a representative for healthy gingiva and showed that the oral commensal bacteria had a beneficial effect on host barrier function and increased the release of protective cytokines via the activation of the TLR signaling pathway [38, 42].
Pathologically, a dysbiotic microbiome is recognized as a key determinant of immune dysregulation, and associated with a broad spectrum of intestinal allergic disorders [8-10]. Other allergy-related diseases such as asthma, eczema, and allergic rhinitis were found to coincide with the presence of a commensal/opportunistic pathogen, *Staphylococcus aureus* [43]. In addition, LPS were found to enhance the innate immune response of human monocyte-derived dendritic cells to dental cast alloys [44]. LPS-activated TLR4 expression and the subsequent innate immune responses were further suggested necessary for inducing nickel allergy on the ear (skin) of mice, even in T cell deficient mice [40, 45]. Considering the different immune properties between the native skin and mucosa under the influence of microbes [1], it is highly possible that the local microbes contribute to the immune response during metal exposure and in doing so modulate the sensitization-versus-tolerance balance properties of these two tissues. However, none of the *in vitro* studies that evaluate potential sensitizers have yet incorporated the influence of living microbes on sensitization.

The aim of this study is to determine how commensal bacteria influence the response of skin and oral mucosa to potential metal sensitizers *in vitro*. We exposed RHS and RHG, consisting of a stratified differentiated epithelium on a fibroblast populated dermis/laminal propria (collagen hydrogel), to a mixture of metal and bacteria: Nickel (II) sulfate hexahydrate or Titanium (IV) bis(ammonium lactato)dihydroxide was co-applied with *Streptococcus mitis*, which is a facultative commensal bacteria found on skin and on oral mucosa [46, 47]. Thereafter, we investigated the host response by means of tissue morphology, viability, cytokine secretion and TLR expression.

Results

Co-exposure of *S. mitis* with metal does not influence RHS or RHG viability

Exposure conditions have no detrimental effect on RHS or RHG histology. Both the RHS and RHG featured a stratified, differentiated epithelium on a fibroblast populated collagen hydrogel (Figure 1A). Similar as the *in vivo* tissues, RHS had a characteristic stratum corneum representative of the orthokeratinized skin whereas RHG had a characteristic parakeratinized epithelium with nuclei being observed in the most differentiated outermost cell layers. Furthermore RHG epithelium was thicker than RHS epithelium again in line with the native tissues [48].
Chapter 5

Ki67 positive proliferating keratinocytes were observed in the basal layer of both RHS and RHG (Figure 1A).

Fluorescence in situ hybridization staining (FISH) showed the *S. mitis* rRNA (in red) present in the form of biofilms on top of both RHS and RHG and also sparingly within the epithelium (DAPI stained keratinocyte nuclei and *S. mitis* DNA in blue). As examples, RHS exposed to *S. mitis* (Figure 1B), RHS exposed to *S. mitis* and nickel and RHG exposed to *S. mitis* and titanium are shown (Figure 1C). After 24 h exposure, no significant difference was found in the amounts of viable *S. mitis* retrieved from RHS or RHG in the presence or absence of metals (Figure 2A). No significant change in RHS or RHG viability or epithelial proliferation was observed when cultures were exposed to *S. mitis*, nickel or titanium alone (Figure 2A), or when co-exposed to *S. mitis* and nickel or titanium (Figure 2B).

S. mitis increases basal cytokine secretion in RHS but not RHG

To investigate the influence of *S. mitis* on RHS and RHG, pro-inflammatory and antimicrobial cytokine secretion was determined (Figure 3). After *S. mitis* exposure, IL-6, CXCL8, CCL2, CCL5 and CCL20 secretion increased from RHS but not from RHG. IL-18 and CXCL12 were not regulated by *S. mitis* exposure in either RHS or RHG. In line with our previous findings, IL-18, a keratinocyte-derived chemokine which is related to contact sensitizer potency in reconstructed human skin epidermis [21], and CXCL12, a chemoattractant which is pivotal in mediating Langerhans cells migration during skin sensitization [49], were found to be higher in RHS than in RHG regardless of the presence of *S. mitis*.

Figure 1 (Page 109). Co-exposure of *S. mitis* and metals onto RHS and RHG.

(A) Histology (H&E) and keratinocyte proliferation (Ki67 positive nuclei, red) of RHS (left panel) and RHG (right panel) after exposure to *S. mitis* and metal. (B) Representative FISH staining on 5 µm paraffin sections shows presence of *S. mitis* bacterial rRNA on top of, and within the epithelium of RHS, (FISH in red and DAPI in blue, see arrows). (C) The presence of *S. mitis* when co-applied with nickel (left panel) or titanium (right panel).
Differential influence of *S. mitis* on RHS/RHG response to metals
Figure 2. Viability of RHS, RHG and S. mitis after 24 h exposure.

(A) Viability of S. mitis and S. mitis co-applied with metals are shown by the S. mitis viable CFU counts (left y-axis; bars on graph). RHS or RHG viability compared to the vehicle (HBSS) exposed culture is shown by the readings of MTT assay (right y-axis; triangle symbols on graph). (B) The percentage of Ki67-positive cells in the epithelial basal cell layer of RHS and RHG (metal alone: white bar, metal co-application with S. mitis: black bar). All data represent the mean ± SEM of 3 independent experiments, each performed in duplicate. Each experiment consisted of a different skin or mucosa donor (not patient patched) and a different S. mitis inoculum. Statistics: multiple t-test with correction. Differences were considered significant when \(P < .05 \).
Differential influence of *S. mitis* on RHS/RHG response to metals

Figure 3. Influence of *S. mitis* on cytokine release in RHS and RHG.

After 24 h *S. mitis* exposure, cytokine and chemokine release from RHS and RHG were determined by ELISA. IL-10 release was below detection limit of ELISA (12.5 pg/mL; data not shown). Data represent the mean ± SEM of 3 independent experiments in duplicate. Each experiment used a different skin or mucosa donor.
and a different \textit{S. mitis} inoculum. White bar = unexposed RHS/RHG; black bar = \textit{S. mitis} exposed RHS/RHG. ND = not detectable. \textit{Statistics}: multiple \(t\)-tests with correction. Differences were considered significant when \(P < .05\). * = \(P < .05\); ** = \(P < .01\); *** = \(P < .001\).

Nickel mediated cytokine secretion is enhanced by \textit{S. mitis} in RHS but not in RHG, while titanium suppresses cytokines induced by \textit{S. mitis} in RHS

Next it was determined whether co-application of \textit{S. mitis} together with nickel or titanium further influenced cytokine secretion (Figure 4). Exposure to nickel alone resulted in a dose dependent increase in IL-6, CXCL8, CCL5 and CCL20 secretion from RHS (RHG: trend observed for IL-6, CXCL8 and CCL5 secretion). Notably, \textit{S. mitis} further increased this nickel dependent increase in cytokine secretion from RHS, particularly in the case of CXCL8 and CCL20 secretion. No such further increase was observed for RHG. IL-18, CXCL12 and CCL2 secretion from RHS or RHG was not influenced by nickel in the presence or absence of \textit{S. mitis}.

In contrast to nickel, exposure of titanium to RHS or RHG did not result in a dose dependent increase in cytokine secretion. Notably, titanium even suppressed the \textit{S. mitis} mediated cytokine secretion (IL-6, CXCL8, CCL20) from RHS. Titanium, in the presence or absence of \textit{S. mitis}, did not influence cytokine secretion from RHG. IL-1\(\alpha\), IL-1\(\beta\), IL-10 and CCL28 levels were below the detection limit of the ELISA in both RHS and RHG in all experimental conditions (data not shown).

Taken together, these results indicate that nickel induces innate cytokine release which is further enhanced by \textit{S. mitis} in RHS but not in RHG. In contrast, titanium is inert and even suppresses \textit{S. mitis} mediated cytokine release from RHS.
Differential influence of *S. mitis* on RHS/RHG response to metals

Nickel (II) sulfate hexahydrate

Titanium (IV) bis dihydroxide

IL-6

IL-18

CXCL8

CXCL12

CCL2
Figure 4. Influence of S. mitis and metal exposure on cytokine secretion.

RHS and RHG were exposed to nickel (II) sulfate hexahydrate (left panel, 3 mg/mL and 15 mg/mL) or titanium (IV) bis dihydroxide (right panel, 20 mg/mL and 40 mg/mL) in the presence or absence of S. mitis for 24 hours (metal alone: white bar, metal co-applied with S. mitis: black bar). ND = not detectable. The cytokine secretion in culture supernatants was determined by ELISA. Data represent the mean ± SEM of 3 independent experiments in duplicate; each experiment being with a different skin or mucosa donor (not patient patched) and each experiment with a different S. mitis inoculum. S. mitis exposed and unexposed results were compared by multiple t-tests with correction. The dose dependent effect of nickel or titanium was determined using one-way ANOVA followed by Bonferroni’s multiple comparisons test. Differences were considered significant when $P < .05$. * = $P < .05$; ** = $P < .01$; *** = $P < .001$.

Influence of S. mitis and metal co-exposure on TLR expression

Since TLR1, 2, 4, 5, 6 are well-known host receptors recognizing bacterial ligands, TLR 3 is also reported to be involved in skin sensitization [50] as well as metal-induced skin and mucosa irritation reactivity [51, 52], and all these TLRs may play a role in allergic reactions e.g. in asthma [53], we next determined the mRNA expression of TLR1-6 in order to gain more mechanistic understanding of the
Differential influence of *S. mitis* on RHS/RHG response to metals

differences observed between RHS and RHG upon *S. mitis* and metal exposure. The mRNA expression of TLRs 2, 4, 6 was undetectable in all conditions (Data not shown). In RHS, TLRs 1, 3, 5 mRNA was not regulated (neither increased nor decreased) under any of the experimental conditions investigated (Figure 5).

Exposure of RHG to *S. mitis* (in contrast to RHS) resulted in increased TLR1 mRNA expression (Figure 5A). When *S. mitis* was co-applied with nickel to RHG, a further increase in TLR1 mRNA expression was observed at the low concentration of nickel (3 mg/mL) followed by a decrease at the higher concentration (15 mg/mL) (Figure 5B). In contrast to TLR1, TLR5 mRNA levels were greatly decreased when RHG were exposed to *S. mitis* or the low concentration of nickel alone. When co-applied, *S. mitis* and nickel resulted in a dose dependent increase in TLR5 mRNA. In contrast to nickel, titanium did result in a trend for increased TLR3 mRNA levels both in the presence and absence of *S. mitis*. Lack of significance was most probably due to donor variation in the primary RHG cultures and low number of replicates (n=3) in the complex organotypic model. TLR2, 4 and 6 mRNA levels were not regulated in RHG under any of the experimental conditions studied (data not shown).

Since mRNA levels only give an indication of gene activity and mRNA stability for a particular protein at a particular time point, we next determined TLR protein levels by Western blot. Only TLR1 and TLR4 proteins were detectable and then only under certain experimental conditions (Figure 6); TLR2, 3, 5 and 6 proteins were undetectable in both RHS and RHG (data not shown). TLR1 protein was strongly detectable in unexposed RHS (Figure 6A). *S. mitis* alone did not influence this TLR1 expression whereas nickel greatly reduced TLR1 expression. When co-exposed with *S. mitis*, high nickel concentrations also reduced TLR1 expression. Titanium, either alone or co-exposure with *S. mitis* resulted in pronounced clear decrease in TLR1 expression. In contrast, TLR4 expression was suppressed in RHS after *S. mitis* exposure, as well as metal exposure (concentration dependent). However, co-exposure of *S. mitis* with nickel or titanium resulted in TLR4 protein being detectable again. Taken together, we show that for RHS, TLR1 and TLR4 protein was decreased or unaltered by *S. mitis* and/or metal exposure compared to unexposed RHS (Figure 6A).

In contrast to RHS, TLR1 protein levels were negligible in RHG with only a slight band being visible when RHG were exposed to nickel (Figure 6B). However, TLR4 protein was clearly expressed in RHG. *S. mitis* exposure did not influence TLR4 expression but both nickel and titanium exposure resulted in a moderate increase
in protein. Notably, co-exposure of \textit{S. mitis} and nickel suppressed TLR4 protein levels, whereas co-exposure with titanium (low concentration) increased TLR4 expression.

Taken together, these results indicate that \textit{S. mitis} and metal exposure are able to differentially regulate TLR1 and 4 expression in RHS and RHG, with TLR1 and 4 being involved in RHS, and predominantly TLR4 being involved in RHG.

\textbf{Figure 5 (Page 117). TLR transcription in RHS and RHG.} (A) Relative TLR mRNA expression in RHS and RHG after \textit{S. mitis} exposure and (B) after co-exposure with nickel or titanium was determined by qRT-PCR. The mRNA expression of TLRs 2, 4 and 6 were below detectable level (data not shown). Data are all expressed as relative to the vehicle exposed (HBSS) RHS or RHG, and represent the mean ± SEM of 3 individual experiments in duplicate. RHS and RHG exposed to \textit{S. mitis} were compared by multiple t-tests with correction. The dose dependent effect of nickel or titanium was compared using one-way ANOVA followed by Bonferroni’s multiple comparisons test. Differences were considered significant when $P < .05$. $* = P < .05$; $** = P < .01$; $*** = P < .001$.

116
Differential influence of *S. mitis* on RHS/RHG response to metals

A

![Graphs showing fold-change in TLR1, TLR2, TLR3, TLR4, TLR5, TLR6 for RHS and RHG](image)

B

Nickel (II) sulfate hexahydrate

- TLR1
- TLR3
- TLR5

Titanium (IV) bis dihydroxide

- TLR1
- TLR3
- TLR5
Figure 6. TLR protein expression in RHS and RHG.
TLR1 and 4 proteins are shown together with reference Tubulin expression. TLR2, 3, 5 and 6 were under the detectable level (data now shown). Data are representative of 3 independent experiments.
Figure 7. Schematic overview of the differential influence of *S. mitis* and metals on the host response in RHS and RHG.

The response of RHS and RHG exposed to *S. mitis*, nickel and titanium is illustrated. The schematic overview summarizes data obtained from cytokine secretion (ELISA) and protein expression of TLR1 and TLR4 (Western Blot). The arrows show relative regulations compared to the corresponding vehicle exposed (HBSS) culture. The overlapping areas in the middle represent the hosts response to co-exposure of *S. mitis* and nickel or titanium.

Discussion

The aim of this study was to determine how commensal bacteria, *Streptococcus mitis*, influences the host response to metals in reconstructed human skin (RHS) and gingiva (RHG). Nickel and titanium were chosen for out study since nickel is a well-characterized contact sensitizer [2, 15], whereas the sensitizing potential of titanium is still questionable [32]. The RHS and RHG models were compared throughout our study since clinical experience indicates that skin exposure leads to sensitization whereas oral mucosa exposure leads to tolerance [3, 4], with the reasons for this still being unknown. Indeed, our results showed that co-exposure
of *S. mitis* and nickel resulted in a more potent innate immune response in RHS than in RHG. In comparison, titanium remained inert (see schematic overview, Figure 7). These results indicate the important roles of commensal microbes and route of exposure in the host response to metals.

S. mitis is a commensal bacteria common to both skin and gingiva [46, 47]. Therefore it was important in our study to show no detrimental effects to either bacteria or host during our experiments. We ensured that exposure conditions were non-cytotoxic for the RHS and RHG whilst at the same time taking care that *S. mitis* remained viable for the duration of the study. Only very few studies have previously exposed RHG (but not RHS) to commensal microbes, and none have shown such well-preserved tissue integrity after 24 h co-culture. For example, a recent study described gene regulation in RHG after *Streptococcus oralis* biofilm exposure via a titanium implant inserted into the RHG for 24 h, however no data on tissue viability and limited data on tissue integrity was shown [54]. Another study described biofilm formation and invasion into the epithelial layers when exposed to *Streptococci* and *Candida albicans* for 24 h. However, this study also showed an increased number of Caspase-3 positive cells, strongly suggested a significant decrease in tissue viability [55].

Previously we have described intrinsic differences between skin and gingiva with regards to innate immunology, wound healing and the response to contact sensitizers [49, 56-58]. In current study, under unexposed conditions, we show that RHS secretes higher baseline levels of cytokines involved in Langerhans cell migration (IL-18 and CXCL12) than RHG which is in line with our previous study [25, 49], and we also show that *S. mitis* increased the cytokine release of IL-6, CXCL8, CCL5 and CCL20 in RHS but not in RHG. Such relative inertness of RHG to *S. mitis* is supported by findings of others describing the regulatory role of *S. mitis* as an oral commensal on the immune balance, where it inhibits CD4+ T cell proliferation, promotes Th17 responses and induces the secretion of IL-10 in human monocytes [12, 59]. To our knowledge, no reports describe how *S. mitis* affects the skin. Taken together, our results and those of others support the characteristic of oral mucosa in balancing a potential over-activated immune response induced by commensals. This is necessary for maintaining oral health since the oral cavity is continuously exposed to food antigens, sensitizers and abundant microorganisms e.g. virus and fungi [11, 60] in addition to commensals bacteria. The undetectable levels of IL-10 in our study could be due to the absence of immune cells in the RHS and RHG, since
Differential influence of S. mitis on RHS/RHG response to metals

it has been reported that commensal bacteria do induce IL-10 in murine dendritic cells [61] and that human monocytes and lymphocytes produce IL-10.

This manuscript describes in detail results obtained from foreskin keratinocytes. Our previous study using adult abdominal skin showed secreted protein concentrations falling within the ranges observed for the foreskin donors in all cases [49]. This indicates that as far as the secreted proteins described in this manuscript are concerned there are no difference between donor age or between child foreskin and adult abdominal skin. This is further supported by our previous finding that RHS can be constructed reproducibly from donors aged 4 yrs. to 90 yrs. in a 3 week culture period and show no variation in proliferation or migration [62]. This is particularly surprising since in the literature, studies describe clear differences between neonate and adult skin but with regards to melanocytes [63], epidermal Langerhans cells [64, 65], innate immune cells e.g. neutrophils and monocytes [66] and T cell [67], which are all absent in our model which only contains keratinocytes and fibroblasts.

Notably, our results showed that the commensal S. mitis strongly enhanced the innate immune response to nickel in RHS, especially the release of CXCL8. In contrast, the S. mitis and nickel mediated cytokine response in RHG was considerably lower than in RHS, in line with a more tolerogenic environment (Figure 7). These current findings are in line with our previous findings and those of others who showed that CXCL8 was induced when dendritic cells, macrophages and keratinocytes were exposed to nickel [34, 51, 68]. S. mitis was previously found to induce CXCL8 in oral epithelial cells [69], however no further studies have shown its influence on RHG, nor on skin. Nickel ions are sensitizers that are known to be able to penetrate the body barriers and activate innate immunity. At a cellular level, this leads to the upregulation of signaling pathways (NF-κB and MAPK) and the NLRP3 inflammasome in for example keratinocytes and Langerhans cells, which ultimately results in the release of cytokines and chemokines of various functions [2, 15, 70]. This innate immune response is crucial for triggering the T cell mediated adaptive immune response which is a key event in the sensitization process, especially where weak or moderate sensitizers are concerned, since the innate response contributes to the threshold of activation level in the host [71]. Upregulation of the inflammasome and the resulting cytokine/chemokine cascade is able to promote sensitization by i) recruiting immune cells (e.g. CXCL8, CCL2 secreted by keratinocytes [68, 72]); ii) inducing leukocyte adhesion to endothelial cells (VCAM1, ICAM1, E-selection secreted by keratinocytes and endothelial cells
Chapter 5

[15]); and iii) activating other signaling molecules that regulate the immune response during contact hypersensitivity (e.g. IL-12 in mice [73]). The threshold for sensitization is currently thought to be not only tightly regulated by the activation and maturation state of DCs but also by the amount of cytokines secreted by local DCs, keratinocytes and fibroblasts [6, 7] which are influenced by the local commensal microbes at the same time. Our observation that co-exposure of S. mitis and nickel further increases cytokine release would suggest that such a co-exposure would increase an individual’s chance of sensitization. Furthermore, introducing co-exposure methodology, would be expected to increase the sensitivity of in vitro assays.

In contrast to nickel, titanium suppressed S. mitis induced cytokine secretion in RHS and had no influence on RHG, strongly indicating that titanium is inert (Figure 7). Indeed titanium implants have been reported to cause allergic manifestations in clinic [26], but these findings are still questionable due to the limited in vivo studies and inconclusive results from in vitro studies [21, 26, 32]. In general, titanium is suggested to be harmless and a non-sensitizer on skin: TiO$_2$ cannot penetrate the skin stratum corneum [32]; TiO$_2$ nanoparticles (TiO$_2$NPs) may [74] or may not [32] penetrate skin epidermis. TiO$_2$NP is also inert for THP-1 macrophages since it does not influence genes involved in modulating macrophage maturation, inflammatory responses, chemotaxis and leucocyte migration [75]. Also, TiO$_2$ cannot induce skin sensitization in LLNA assay in mice [76]. However TiO$_2$NPs were found to act as an adjuvant when co-applied with the bacterial fragments LPS and peptidoglycan [77]; or co-applied with ovalbumin (OVA) [28] or toluene-2,4-diisocyanate (TDI) [78], which significantly induced pulmonary sensitization in mice. This is in line with the fact that co-application of an irritant with a sensitizer will increase the sensitization potential of the sensitizer [79]. Our findings in this study, together with our previous studies with reconstructed human epidermis [21], further support titanium as being an inert, non-sensitizing metal which may have weak irritant properties under certain conditions.

Our results showed that S. mitis and metals differentially regulate TLR1 and 4 in RHS, and predominantly TLR4 in RHG (Figure 7). Certain exposure conditions resulted in TLR4 no longer being visible. This absence of TLR4 is most probably due to it becoming internalized into the endosome, which allows further activation of the intracellular TRAM-TRIF pathway [80] and finally results in generating the innate immune signal (cytokine release e.g. CXCL8) that leads to functional innate immune responses [38, 81]. TLR4 is a versatile and complex host receptor which is
involved in both host-sensitizer and host-microbe interactions, keeping the skin alert and oral mucosa tolerant. Whereas it helps to enforce the tolerogenic properties of oral Langerhans cell against the LPS derivative MPL (monophosphoryl lipid A) [15, 82], it notably plays a crucial role in nickel allergy [23, 83]. Nickel ions can bind directly to the conserved histidines of TLR4, resulting in TLR4 dimerization and the initiation of the cytokine release cascade [84]. The minimum amount of nickel to induce skin sensitization in transgenic mice expressing human TLR4 was reduced when nickel was co-applied with LPS, and both the sensitization and elicitation steps during nickel allergy coincided with activation of TLR2 and TLR4, suggesting a potential role of bacteria exposure as well as nickel in inducing skin sensitization [15, 35, 40, 45, 85]. However, in vitro studies showed that only TLR4 and not TLR2 was activated when human keratinocyte cultures were co-exposed to nickel and LPS [34], while another suggested that TLR2 could participate in nickel activating innate immunity in lung fibroblasts [33]. This discrepancy may be explained by species-specific differences in TLR4 between human and mouse [23], and might also be dependent on the site of exposure as no such co-application has been studied on human skin or on human oral mucosa. Previously we have exposed RHG to multi-species commensal oral biofilm derived from saliva and found in line with this study the presence of TLR4 protein and absence of TLR1 and TLR3 protein [38]. However, in contrast to this study the commensal biofilm resulted in a large increase in cytokine secretion from RHG and TLR2 was strongly expressed [86]. The differences in these two studies can most likely be attributed to bacteria, other than *S. mitis*, which are present in the multi-species oral biofilm.

Interestingly, although TLR1 protein was not detectable in RHG exposed to any conditions, *S. mitis* alone or in combination with nickel resulted in an increase in mRNA levels indicating that exposure resulted immediately in increased transcription and may increase protein levels at time intervals longer than the 24 hour exposure period of our study. Notably, upon exposing to titanium, the expression of TLR1 mRNA was not upregulated and the TLR1 protein was undetectable in both RHS and RHG, which is in line with a previous study showing that titanium particles exposure was associated with low TLR1 protein expression in mice bone and periosteal cells [36]. Similarly, TLR5 mRNA was present in RHG, although the protein was not (yet) detectable. Taken together, our results for TLR1 and TLR4 visualize the balance between surface expressed TLR, ligand bound internalized TLR and transcription/translation of TLR mRNA.
Limitations of our study should also be considered. Immune cells (e.g. Langerhans cell) have important roles in sensitization and in host-microbe interactions, however they are absent in the present study. Furthermore, we only used a single bacteria species for the exposure, while in vivo, a broad variety of other microbial species (including potential pathogens) are also in contact with the skin and the oral mucosa. The influence from these on host tissues, especially the pathogens, may provide more information to interpret conflicting results from in vitro and in vivo studies. Also, sensitization occurs on host tissues which are already influenced and primed by local commensal microbes, whereas in this study *S. mitis* and metals were co-exposed to sterile RHS and RHG. However, this first study does show that microbes may promote the innate immune response to nickel in skin considerably more than in oral mucosa thus shedding light on the mechanism between skin sensitization and oral tolerance to nickel. Furthermore, our study continues to support titanium as being a non-sensitizing metal.

Methods

Reconstructed human skin (RHS) and gingiva (RHG)

Human neonatal foreskin was obtained after informed consent from patients undergoing routine surgical procedures. Human non-inflamed gingival tissue was obtained from healthy donors undergoing dental implant surgery or wisdom tooth extraction. Skin and gingiva were used anonymously and in accordance with the “Code for Proper Use of Human Tissue” as formulated by the Dutch Federation of Medical Scientific Organizations. Procedures are approved by the local medical research ethics committee of the Amsterdam UMC.

RHS and RHG were constructed exactly as previously described [25, 49]. Keratinocytes (0.5 × 10⁶ cells) were seeded onto fibroblast-populated collagen hydrogels in a 24 mm diameter transwell (pore size 0.4 µm, Corning, New York) and cultured submerged for 3 days. To induce epithelial differentiation, the cultures were then lifted to air-liquid interface and cultured for a further 10 days. 24 h before exposure and also at the time of exposure, the cultures were refreshed with medium without penicillin-streptomycin or hydrocortisone. Cultures were incubated at 37 °C, 7.5% CO₂ and culture medium was refreshed twice a week.
S. mitis growth condition

Streptococcus mitis LMG 14557 was cultured anaerobically at 37°C in a semi-defined medium (SDMY, pH 7.0) prepared exactly as previously described, in the presence of 1% glucose [87].

Three days before exposure, *S. mitis* was cultured overnight for 24 h, then the pre-culture was diluted into 1:1000 for another 16 h growth until within the exponential phase (OD₆₀₀ around 0.5). OD₆₀₀ value was measured using SpectraMax Plus 384 (Molecular Devices, California). The number of colony forming units (CFUs) of *S. mitis* at the time of exposure was determined by viable bacterial cell counting (CFU/mL): a sample was taken from the prepared *S. mitis* exposure, serial dilutions were made and plated on the brain hart infusion (BHI) agar plates, colonies were counted after 96 h anaerobic incubation at 37°C.

Chemicals and *S. mitis* exposure

Titanium (IV) bis (ammonium lactato) dihydroxide solution (TiALH, CAS# 65104-06-5, Sigma-Aldrich, St. Louis, Missouri) and Nickel (II) sulfate hexahydrate (NiSO₄, CAS# 10101-97-0) were used at the following concentrations: Titanium: 20 mg/mL (68 mM) and 40 mg/mL (136 mM), Nickel: 3 mg/mL (20 mM) and 15 mg/mL (97 mM). These concentrations were selected since they showed no more than 5% decrease in metabolic activity (by MTT assay) in reconstructed human epidermis, compared to unexposed cultures [21].

Exposure to chemicals and *S. mitis* was performed as follows: sterile gauze filters (03-150/38, 12 mm diameter, Sefar Nitex, Heiden, Switzerland) were placed on top of the RHS or RHG cultures. Then 25 μL of prepared mixture of the following four combinations were applied onto the center of the filters: (1) Hank’s Balanced Salt Solution (HBSS, Sigma-Aldrich) as control; (2) 10⁹ CFU/mL of *S. mitis* in HBSS; (3) Nickel or titanium at two different concentrations as indicated above; (4) 10⁹ CFU/mL of *S. mitis* mixed with nickel or titanium at two concentrations. The impregnated filters were kept on the cultures for 24 h at 37°C, 7.5% CO₂ and 95% humidity. To control the amount of *S. mitis* in the mixtures, CFU counting was performed as described above (section: *S. mitis* growth condition).

After 24 h exposure, the viability of the applied *S. mitis* (by CFU counting) and RHS/RHG (by MTT assay) was determined. *S. mitis* samples were taken from the surface of the RHS or RHG using a sterile microbrush. Together with the filter, the brushed samples were sonicated and plated out on BHI agar plates for CFU counting as described above. The viability of RHS and RHG was measured by MTT
assay as previously described [88]. In short, a 3 mm diameter biopsy was taken from each culture and incubated with MTT (Sigma, 2mg/mL dissolved in PBS) overnight, and the absorbance was measured at 570 nm using a spectrophotometer (Mithras LB 940, Berthold Technologies, Germany).

(Immmuno)histochemistry and Fluorescence in situ hybridization
RHS and RHG samples were fixed in 4% paraformaldehyde and embedded in paraffin. As previously described [49, 89], sections (5 μm) were cut and stained with haematoxylin and eosin (H&E) and Ki67. The Ki67 proliferation index (expressed as percentage) was determined by counting the number of Ki67 positive cells from 100 cells at four random locations in epithelial basal cell layer. Fluorescence in situ hybridization (FISH) was performed on paraffin sections (5 μm) according to the kit instructions (10MEH000, Ribo Technologies, Groningen, The Netherlands). The sections were further counterstained and sealed using fluoroshield mounting medium with DAPI (ab104139, Abcam, United Kingdom). Images were taken using a fluorescence microscope (Nikon Eclipse 80i microscope with Nikon Plan Fluor 20x/0.50 and 40x/0.75 objectives).

ELISA
Culture supernatants were collected at the time of harvesting and secretion of proteins determined by commercially available sandwich enzyme-linked immunosorbent assays (ELISAs). For IL-6, IL-10, CCL2, CCL5 and CCL20, antibodies and recombinant proteins were purchased from R&D Systems, Inc. (Minneapolis, Minnesota. For CXCL8, CXCL12 and IL-18, ELISA kits were used (CXCL8: Sanquin, Amsterdam, The Netherlands; CXCL12: R&D Systems; IL-18: MBL, Nagoya, Japan).

RNA and protein isolation
RHS or RHG epithelium were carefully removed from the fibroblast-populated collagen hydrogel and washed with PBS. Next, total RNA and protein were isolated from the epithelium using an AllPrep RNA/Protein Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. Isolated protein was further precipitated using methanol and resuspended in complete lysis-M buffer (Sigma-Aldrich, Missouri). Thereafter, the amount of protein was measured using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Massachusetts), and RNA was measured using Nanodrop ND-1000 Spectrophotometer (Thermo Fisher Scientific). The RNA and protein samples were stored at -80 °C before further process.
Quantitative reverse transcriptase PCR
Genomic DNA elimination and cDNA synthesis were performed using RT² First Strand Kit (Qiagen). Quantitative Reverse Transcriptase PCR (qRT-PCR) reactions were performed on a ViiA 7 Real-Time PCR System (Applied Biosystems, New York) using Fast SYBR Green Master Mix (Applied Biosystems) and paired-primers (human TLRs 1-6: HP206812, HP206813, HP206814, HP226301, HP206816, HP209082, GAPDH: HP205798, OriGene Technologies, Rockville). Individual gene expression levels were normalized to GAPDH expression levels, and shown in fold change compared to the RHS or RHG control.

Western Blotting
As previously described, the isolated proteins were prepared and separated on 4-12% Bis-Tris Plus Gel (Invitrogen) and transferred to a PVDF membrane (iBlot® 2 Transfer Stacks, Invitrogen). The membranes were blocked with 2% BSA PBST for 1 h and incubated with antibodies against TLR1, 2, 3, 5, 6 (1:1000, Novus Biologicals, Colorado), TLR4 (1:200, Santa Cruz Biotechnology, Texas) and Tubulin (1:1000, Abcam, Cambridge, United Kingdom) overnight at 4 °C. Thereafter, membranes were washed three times in PBST and further incubated with Infrared Dye-conjugated secondary antibodies against mouse (1:7500 for TLR3, 4 or 5) or against rabbit (1:7500 for TLR1, 2, 6 or Tubulin). After washing, the blots were visualized using Sapphire Biomolecular Imager (Azure biosystems, California) according to the manufacturer’s instruction.

Statistics
Differences between S. mitis unexposed and exposed RHS and RHG were compared using unpaired t-tests. For the dose dependent effect of nickel or titanium, differences were compared using one-way ANOVA followed by Bonferroni’s multiple comparisons test. Statistics were performed using GraphPad Prism version 7.0. Data represent the mean ± SEM of 3 independent experiments, each performed in duplicate, and consisted of a different skin or mucosa donor (not patient patched) and a different S. mitis inoculum. Differences were considered significant when P-value < .05. * = P < .05; ** = P < .01; *** = P < .001. Data are represented as mean ± SEM.
Chapter 5

Reference

1. Glim, J.E., et al., Detrimental dermal wound healing: what can we learn from the oral mucosa? Wound Repair Regen, 2013. 21(5): p. 648-60.
2. Saito, M., et al., Molecular Mechanisms of Nickel Allergy. Int J Mol Sci, 2016. 17(2).
3. Van Hoogstraten, I.M., et al., Reduced frequency of nickel allergy upon oral nickel contact at an early age. Clin Exp Immunol, 1991. 85(3): p. 441-5.
4. Mortz, C.G., et al., Nickel sensitization in adolescents and association with ear piercing, use of dental braces and hand eczema. The Odense Adolescence Cohort Study on Atopic Diseases and Dermatitis (TOACS). Acta Derm Venereol, 2002. 82(5): p. 359-64.
5. Kosten, I.J., et al., Comparative phenotypic and functional analysis of migratory dendritic cell subsets from human oral mucosa and skin. PLoS One, 2017. 12(7): p. e0180333.
6. Martin, S.F., The role of the innate immune system in allergic contact dermatitis. Allergol Select, 2017. 1(1): p. 39-43.
7. Feller, L., et al., Review: allergic contact stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol, 2017. 123(5): p. 559-565.
8. Hormannsperger, G., T. Clavel, and D. Haller, Gut matters: microbe-host interactions in allergic diseases. J Allergy Clin Immunol, 2012. 129(6): p. 1452-9.
9. Berni Canani, R., J.A. Gilbert, and C.R. Nagler, The role of the commensal microbiota in the regulation of tolerance to dietary allergens. Curr Opin Allergy Clin Immunol, 2015. 15(3): p. 243-9.
10. Fujimura, K.E. and S.V. Lynch, Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe, 2015. 17(5): p. 592-602.
11. Faria, A.M. and H.L. Weiner, Oral tolerance. Immunol Rev, 2005. 206: p. 232-59.
12. Engen, S.A., et al., The Regulatory Role of the Oral Commensal Streptococcus mitis on Human Monocytes. Scand J Immunol, 2018. 87(2): p. 80-87.
13. Lynde, C.W., et al., The Skin Microbiome in Atopic Dermatitis and Its Relationship to Emollients. J Cutan Med Surg, 2016. 20(1): p. 21-8.
14. Nakamura, Y., et al., Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature, 2013. 503(7476): p. 397-401.
15. Schmidt, M. and M. Goeberler, Nickel allergies: paying the Toll for innate immunity. J Mol Med (Berl), 2011. 89(10): p. 961-70.
16. Wong, C.L., et al., In vitro methods for hazard assessment of industrial chemicals - opportunities and challenges. Front Pharmacol, 2015. 6: p. 94.
17. Schreiner, M., et al., A new dendritic cell type suitable as sentinel of contact allergens. Toxicology, 2008. 249(2-3): p. 146-52.
18. Ouwehand, K., et al., Technical advance: Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration. J Leukoc Biol, 2011. 90(5): p. 1027-33.
19. Ahmed, S.S., et al., An in vitro human skin test for assessing sensitization potential. J Appl Toxicol, 2016. 36(5): p. 669-84.
20. Urbisch, D., et al., Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul Toxicol Pharmacol, 2015. 71(2): p. 337-51.

128
21. Gibbs, S., et al., Assessment of metal sensitizer potency with the reconstructed human epidermis IL-18 assay. Toxicology, 2018. 393: p. 62-72.
22. Strickland, J., et al., Integrated decision strategies for skin sensitization hazard. J Appl Toxicol, 2016. 36(9): p. 1150-62.
23. Schmidt, M., et al., Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol, 2010. 11(9): p. 814-9.
24. Kosten, I.J., et al., MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicol Appl Pharmacol, 2015. 287(1): p. 35-42.
25. Kosten, I.J., et al., MUTZ-3 Langerhans cell maturation and CXCL12 independent migration in reconstructed human gingiva. ALTEX, 2016. 33(4): p. 423-434.
26. Wood, M.M. and E.M. Warshaw, Hypersensitivity reactions to titanium: diagnosis and management. Dermatitis, 2015. 26(1): p. 7-25.
27. de Graaf, N.P.J., et al., A retrospective study on titanium sensitivity: Patch test materials and manifestations. Contact Dermatitis, 2018.
28. Larsen, S.T., et al., Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol, 2010. 106(2): p. 114-7.
29. Yazdi, A.S., et al., Nanoparticles activate the NLR pyrin domain containing 3 (Nlpr3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci U S A, 2010. 107(45): p. 19449-54.
30. Abbasi-Oshaghi, E., F. Mirzaei, and M. Pourjafar, NLRP3 inflammasome, oxidative stress, and apoptosis induced in the intestine and liver of rats treated with titanium dioxide nanoparticles: in vivo and in vitro study. Int J Nanomedicine, 2019. 14: p. 1919-1936.
31. Cifuentes, M., P. Davari, and R.S. Rogers, 3rd, Contact stomatitis. Clin Dermatol, 2017. 35(5): p. 435-440.
32. Fage, S.W., et al., Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis, 2016. 74(6): p. 323-45.
33. Brant, K.A. and J.P. Fabisiak, Nickel alterations of TLR2-dependent chemokine profiles in lung fibroblasts are mediated by COX-2. Am J Respir Cell Mol Biol, 2008. 38(5): p. 591-9.
34. Rachmawati, D., et al., Transition metal sensing by Toll-like receptor-4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermatitis, 2013. 68(6): p. 331-8.
35. Vennegaard, M.T., et al., Epicutaneous exposure to nickel induces nickel allergy in mice via a MyD88-dependent and interleukin-1-dependent pathway. Contact Dermatitis, 2014. 71(4): p. 224-32.
36. Pajari, J., et al., Titanium particles modulate expression of Toll-like receptor proteins. J Biomed Mater Res A, 2010. 92(4): p. 1528-37.
37. Song, C., et al., Effects of Pseudomonas aeruginosa and Streptococcus mitis mixed infection on TLR4-mediated immune response in acute pneumonia mouse model. BMC Microbiol, 2017. 17(1): p. 82.
38. Shang, L., et al., Commensal and Pathogenic Biofilms Alter Toll-Like Receptor Signaling in Reconstructed Human Gingiva. Front Cell Infect Microbiol, 2019. 9: p. 282.
Chapter 5

39. Karlsson, H., C. Hessle, and A. Rudin, *Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora*. Infect Immun, 2002. 70(12): p. 6688-96.

40. Sato, N., et al., *Lipopolysaccharide promotes and augments metal allergies in mice, dependent on innate immunity and histidine decarboxylase*. Clin Exp Allergy, 2007. 37(5): p. 743-51.

41. Makihira, S., et al., *Titanium ion induces necrosis and sensitivity to lipopolysaccharide in gingival epithelial-like cells*. Toxicol In Vitro, 2010. 24(7): p. 1905-10.

42. Shang, L., et al., *Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function*. Sci Rep, 2018. 8(1): p. 16061.

43. Sorensen, M., et al., *Allergic disease and Staphylococcus aureus carriage in adolescents in the Arctic region of Norway*. Pediatr Allergy Immunol, 2016. 27(7): p. 728-735.

44. Rachmawati, D., et al., *Immunostimulatory capacity of dental casting alloys on endotoxin responsiveness*. J Prosthett Dent, 2017. 117(5): p. 677-684.

45. Huang, L., et al., *The elicitation step of nickel allergy is promoted in mice by microbe-related substances, including some from oral bacteria*. Int Immunopharmacol, 2011. 11(11): p. 1916-24.

46. Cogen, A.L., V. Nizet, and R.L. Gallo, *Skin microbiota: a source of disease or defence?* Br J Dermatol, 2008. 158(3): p. 442-55.

47. Engen, S.A., et al., *The oral commensal Streptococcus mitis activates the aryl hydrocarbon receptor in human oral epithelial cells*. Int J Oral Sci, 2017. 9(3): p. 145-150.

48. Gibbs, S., et al., *Biology of soft tissue repair: gingival epithelium in wound healing and attachment to the tooth and abutment surface*. Eur Cell Mater, 2019. 38: p. 63-78.

49. Kosten, I.J., et al., *Gingiva Equivalents Secrete Negligible Amounts of Key Chemokines Involved in Langerhans Cell Migration Compared to Skin Equivalents*. J Immunol Res, 2015. 2015: p. 627125.

50. Nakamura, N., et al., *Toll-like receptor 3 increases allergic and irritant contact dermatitis*. J Invest Dermatol, 2015. 135(2): p. 411-417.

51. Rachmawati, D., et al., *Dental metal-induced innate reactivity in keratinocytes*. Toxicol In Vitro, 2015. 30(1 Pt B): p. 325-30.

52. Rachmawati, D., et al., *Metal ions potentiate microglia responsiveness to endotoxin*. J Neuroimmunol, 2016. 291: p. 89-95.

53. Zakeri, A. and M. Russo, *Dual Role of Toll-like Receptors in Human and Experimental Asthma Models*. Front Immunol, 2018. 9: p. 1027.

54. Ingendoh-Tsakmakidis, A., et al., *Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model*. Cell Microbiol, 2019. 21(10): p. e13078.

55. Diaz, P.I., et al., *Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model*. Infect Immun, 2012. 80(2): p. 620-32.
Differential influence of *S. mitis* on RHS/RHG response to metals

56. Spiekstra, S.W., et al., *Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes.* Wound Repair Regen, 2007. 15(5): p. 708-17.

57. Boink, M.A., et al., *Saliva-Derived Host Defense Peptides Histatin1 and LL-37 Increase Secretion of Antimicrobial Skin and Oral Mucosa Chemokine CCL20 in an IL-1alpha-Independent Manner.* J Immunol Res, 2017. 2017: p. 3078194.

58. Rodrigues Neves, C., et al., *Human saliva stimulates skin and oral wound healing in vitro.* J Tissue Eng Regen Med, 2019. 13(6): p. 1079-1092.

59. Engen, S.A., et al., *The oral commensal Streptococcus mitis shows a mixed memory Th cell signature that is similar to and cross-reactive with Streptococcus pneumoniae.* PLoS One, 2014. 9(8): p. e104306.

60. Lamont, R.J., H. Koo, and G. Hajishengallis, *The oral microbiota: dynamic communities and host interactions.* Nat Rev Microbiol, 2018. 16(12): p. 745-759.

61. Fung, T.C., et al., *Lymphoid-Tissue-Resident Commensal Bacteria Promote Members of the IL-10 Cytokine Family to Establish Mutualism.* Immunity, 2016. 44(3): p. 634-646.

62. Gibbs, S., et al., *Autologous full-thickness skin substitute for healing chronic wounds.* Br J Dermatol, 2006. 155(2): p. 267-74.

63. Noonan, F.P., et al., *Neonatal sunburn and melanoma in mice.* Nature, 2001. 413(6853): p. 271-2.

64. McGee, H., D.K. Scott, and G.M. Woods, *Neonatal exposure to UV-B radiation leads to a large reduction in Langerhans cell density, but by maturity, there is an enhanced ability of dendritic cells to stimulate T cells.* Immunol Cell Biol, 2006. 84(3): p. 259-66.

65. McLoone, P., G.M. Woods, and M. Norval, *Decrease in langerhans cells and increase in lymph node dendritic cells following chronic exposure of mice to suberythemal doses of solar simulated radiation.* Photochem Photobiol, 2005. 81(5): p. 1168-73.

66. Yu, J.C., et al., *Innate Immunity of Neonates and Infants.* Front Immunol, 2018. 9: p. 1759.

67. Marchant, A. and M. Goldman, *T cell-mediated immune responses in human newborns: ready to learn?* Clin Exp Immunol, 2005. 141(1): p. 10-8.

68. Spiekstra, S.W., et al., *Induction of cytokine (interleukin-1alpha and tumor necrosis factor-alpha) and chemokine (CCL20, CCL27, and CXCL8) alarm signals after allergen and irritant exposure.* Exp Dermatol, 2005. 14(2): p. 109-16.

69. Rukke, H.V., et al., *Capsule expression in Streptococcus mitis modulates interaction with oral keratinocytes and alters susceptibility to human antimicrobial peptides.* Mol Oral Microbiol, 2016. 31(4): p. 302-13.

70. Moloudizargari, M., et al., *NLRP inflammasome as a key role player in the pathogenesis of environmental toxicants.* Life Sci, 2019. 231: p. 116585.

71. Martin, S.F., et al., *Mechanisms of chemical-induced innate immunity in allergic contact dermatitis.* Allergy, 2011. 66(9): p. 1152-63.

72. Goebeler, M., et al., *Differential and sequential expression of multiple chemokines during elicitation of allergic contact hypersensitivity.* Am J Pathol, 2001. 158(2): p. 431-40.
Chapter 5

73. Martin, S.F., et al., *Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity.* J Exp Med, 2008. **205**(9): p. 2151-62.

74. Crosera, M., et al., *Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells.* Int J Environ Res Public Health, 2015. **12**(8): p. 9282-97.

75. Poon, W.L., et al., *Nano-sized zinc oxide and silver, but not titanium dioxide, induce innate and adaptive immunity and antiviral response in differentiated THP-1 cells.* Nanotoxicology, 2017. **11**(7): p. 936-951.

76. Park, Y.H., et al., *Analysis for the potential of polystyrene and TiO2 nanoparticles to induce skin irritation, phototoxicity, and sensitization.* Toxicol In Vitro, 2011. **25**(8): p. 1863-9.

77. Riedle, S., et al., *Pro-inflammatory adjuvant properties of pigment-grade titanium dioxide particles are augmented by a genotype that potentiates interleukin 1beta processing.* Part Fibre Toxicol, 2017. **14**(1): p. 51.

78. Hussain, S., et al., *Lung exposure to nanoparticles modulates an asthmatic response in a mouse model.* Eur Respir J, 2011. **37**(2): p. 299-309.

79. McFadden, J.P. and D.A. Basketter, *Contact allergy, irritancy and 'danger'.* Contact Dermatitis, 2000. **42**(3): p. 123-7.

80. Kagan, J.C., et al., *TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta.* Nat Immunol, 2008. **9**(4): p. 361-8.

81. Tan, Y., et al., *Mechanisms of Toll-like Receptor 4 Endocytosis Reveal a Common Immune-Evasion Strategy Used by Pathogenic and Commensal Bacteria.* Immunity, 2015. **43**(5): p. 909-22.

82. Allam, J.P., et al., *Toll-like receptor 4 ligation enforces tolerogenic properties of oral mucosal Langerhans cells.* J Allergy Clin Immunol, 2008. **121**(2): p. 368-374 e1.

83. Tsou, T.C., et al., *Crucial role of Toll-like receptors in the zinc/nickel-induced inflammatory response in vascular endothelial cells.* Toxicol Appl Pharmacol, 2013. **273**(3): p. 492-9.

84. Martin, S.F., *New concepts in cutaneous allergy.* Contact Dermatitis, 2015. **72**(1): p. 2-10.

85. Kinbara, M., et al., *Allergy-inducing nickel concentration is lowered by lipopolysaccharide at both the sensitization and elicitation steps in a murine model.* Br J Dermatol, 2011. **164**(2): p. 356-62.

86. Buskermolen, J.K., et al., *Saliva-Derived Commensal and Pathogenic Biofilms in a Human Gingiva Model.* J Dent Res, 2018. **97**(2): p. 201-208.

87. Bao, X., et al., *Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions.* PLoS One, 2015. **10**(6): p. e0130962.

88. Bil, W., et al., *Comparison of the skin sensitization potential of 3 red and 2 black tattoo inks using interleukin-18 as a biomarker in a reconstructed human skin model.* Contact Dermatitis, 2018. **79**(6): p. 336-345.

89. Limandjaja, G.C., et al., *Increased epidermal thickness and abnormal epidermal differentiation in keloid scars.* Br J Dermatol, 2017. **176**(1): p. 116-126.