Deep Learning for Temporal Data Representation in Electronic Health Records: A Systematic Review of Challenges and Methodologies

Feng Xie1*, Han Yuan2*, Yilin Ning2, Marcus Eng Hock Ong1,2,3, Mengling Feng4, Wynne Hsu5,6, Bibhas Chakraborty1,2,7,8, Nan Liu1,2,6,9#

1 Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
2 Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
3 Department of Emergency Medicine, Singapore General Hospital, Singapore, Singapore
4 Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
5 School of Computing, National University of Singapore, Singapore, Singapore
6 Institute of Data Science, National University of Singapore, Singapore, Singapore
7 Department of Statistics and Data Science, National University of Singapore, Singapore, Singapore
8 Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
9 Health Services Research Centre, Singapore Health Services, Singapore, Singapore

* These authors contributed equally

Corresponding Author:
Nan Liu
Programme in Health Services and Systems Research
Duke-NUS Medical School
8 College Road
Singapore 169857
Singapore
Phone: +65 6601 6503
Email: liu.nan@duke-nus.edu.sg
Abstract:

Objective: Temporal electronic health records (EHRs) can be a wealth of information for secondary uses, such as clinical events prediction or chronic disease management. However, challenges exist for temporal data representation. We therefore sought to identify these challenges and evaluate novel methodologies for addressing them through a systematic examination of deep learning solutions.

Methods: We searched five databases (PubMed, EMBASE, the Institute of Electrical and Electronics Engineers [IEEE] Xplore Digital Library, the Association for Computing Machinery [ACM] digital library, and Web of Science) complemented with hand-searching in several prestigious computer science conference proceedings. We sought articles that reported deep learning methodologies on temporal data representation in structured EHR data from January 1, 2010, to August 30, 2020. We summarized and analyzed the selected articles from three perspectives: nature of time series, methodology, and model implementation.

Results: We included 98 articles related to temporal data representation using deep learning. Four major challenges were identified, including data irregularity, data heterogeneity, data sparsity, and model opacity. We then studied how deep learning techniques were applied to address these challenges. Finally, we discuss some open challenges arising from deep learning.

Conclusion: Temporal EHR data present several major challenges for clinical prediction modeling and data utilization. To some extent, current deep learning solutions can address these challenges. Future studies can consider designing comprehensive and integrated solutions. Moreover, researchers should incorporate additional clinical domain knowledge into study designs and enhance the interpretability of the model to facilitate its implementation in clinical practice.
1. Introduction

An electronic health record (EHR) [1] collects patients' health information in structured and unstructured digital formats. While the primary objective of an EHR is to improve the efficiency of healthcare systems, it also contains valuable information for secondary uses purposes [2]. EHR contains two types of data: structured data such as diagnoses, procedures, medication prescriptions, vital signs, lab tests, and unstructured data such as clinical notes, physiological signals, and medical images. Most structured EHR data are documented with timestamps by tracking repeated measurements of a patient's conditions over time. Compared to static data, temporal data provide longitudinal information on a patient's medical history, where hidden patterns (e.g., disease progression or changing variables over time) could be exploited. The growing amount of temporal EHR data presents an opportunity to develop more comprehensive and usable models for risk stratification, disease prognosis, or chronic disease management such as chronic kidney disease prediction [3] and adverse drug event detection [4].

Although researchers have demonstrated that incorporating temporal EHR data into predictive models can improve discriminative performance [3, 5, 6], such information is not often fully utilized due to its temporal nature [7]. Most conventional regression and machine learning methods are unable to efficiently extract the temporal pattern from data that contains multiple sets of repeated variables. Some traditional approaches rely on extracting a single value aggregated from the time series, such as mean, median, or other aggregated statistics [8]. It resulted in the loss of potentially valuable sequential information due to the inability to exploit the temporal dynamics of the data [9]. Therefore, how to better account for the temporality of time series clinical data becomes an important research question.

Temporal EHR data with complex structure and unevenly distributed clinical events present multiple technical challenges, including data irregularity, heterogeneity, sparsity, and model opacity, among others. In view of the limitations of standard learning algorithms in dealing with these challenges, the state-of-the-art deep learning-based methods, such as recurrent neural networks (RNNs) [10, 11], long short-term memory (LSTM) [12-14], and gated recurrent unit (GRU) [15], have been proposed for temporal EHR data representation. These sequential deep learning architectures present potential suitability for dealing with the temporal nature of the
EHR. With their ability of learning, flexibility, and generalizability by complex nonlinearity, deep learning algorithms have demonstrated superiority when modeling temporal EHR data in many applications [16-19].

Several recent reviews have summarized the use of deep learning for analyzing general EHR data [20-23]. Nevertheless, none of them provide a systematic and in-depth summary of the technical challenges and deep learning solutions for handling temporal EHR data. In this review, we sought to consolidate the recent development of novel deep learning methods for representing temporal data and evaluate selected studies from the perspective of primary challenges and the methodologies that address them. We systematically explored the primary issues involved in analyzing temporal EHR data and thoroughly investigated state-of-the-art deep learning solutions. Moreover, we identified that there are still open challenges such as usability and transferability, which suggest potential topics for further research.

2. Methods

2.1 Search strategy and data sources

We performed a systematic review of methodological studies on the use of deep learning techniques for temporally structured EHR representations. We conducted the literature search in five databases: PubMed, EMBASE, the Institute of Electrical and Electronics Engineers (IEEE) Xplore Digital Library, the Association for Computing Machinery (ACM) Digital Library, and Web of Science. We also searched relevant articles in several prestigious computer science conference proceedings (i.e., Conference on Neural Information Processing Systems [NeurIPS], International Joint Conference on Artificial Intelligence [IJCAI], and Association for the Advancement of Artificial Intelligence [AAAI] Conference) that are not included in the above databases. The searched terms on EHR were ('electronic health record' OR 'EHR' OR 'EHRs' OR 'electronic medical record' OR 'EMR' OR 'EMRs') [7]. We also added terms ('deep learning' OR 'neural network' OR 'deep' OR 'CNN' OR 'RNN' OR 'LSTM') to limit the search to deep learning-based studies, and ('embed' OR 'embedding' OR 'representation' OR 'time series' OR 'sparse' OR 'temporal' OR 'concept' OR 'sequential' OR 'attention') to include studies of temporal data representation. We further restricted our search to papers published between January 1, 2010, and August 30, 2020. We anticipated that only few relevant articles would be
published before 2010, since deep learning for EHR is a relatively new development in the last decade.

2.2 Inclusion and exclusion criteria
We followed the PRISMA [24] guidelines to report our systematic review. We included all methodological papers published in English, which employed deep learning for handling temporal EHR data. Review articles, duplicate records, and studies not relevant to EHR or deep learning were excluded. We further excluded pure application papers that did not propose novel methods to address challenges and papers that only dealt with static data (i.e., non-temporal data) or unstructured data (for example, free texts, physiological signals, and medical images). Two reviewers (FX and HY) independently screened all studies and, if ambiguous, discussed with NL to reach a consensus on paper selection.

2.3 Data extraction, synthesis, and analysis
First, we categorized included papers according to the technical challenges that they attempted to address. We identified four main categories of technical challenges in temporal EHR data analysis: data irregularity, data sparsity, data heterogeneity, and model opacity. Second, we evaluated these papers in detail from three aspects: nature of time series, methodology, and model implementation. With regard to the nature of time series, we extracted information including the time series components and the method of sparse code representation. In terms of methodology, we extracted the name of the method, the technical challenges it addressed, and the architecture of deep neural networks. For model implementation, we collected information on the clinical application, EHR datasets used (e.g., Medical Information Mart for Intensive Care [MIMIC] [25]), the main evaluation metrics (e.g., area under the receiver operating characteristic curve [AUROC]), and their main comparators. Finally, we consolidated all extracted information for subsequent analysis and investigation.

2.4 Definition of temporal EHR data
In this review, we present a unified definition of temporal EHR data, denoted as D_i,

$$D_i = [v_{i,1}, v_{i,2}, v_{i,3}, ..., v_{i,T_i-1}, v_{i,T_i}]$$

(1)

where i represents the i-th patient and T_i is the total number of time steps of the i-th patient. Different patients might have different numbers of time steps. For each time step t, $v_{i,t} = < c_{i,t}, d_{i,t} >$, where $c_{i,t}$ denotes the data type of sparse medical concepts
(e.g., medications, diagnoses, and procedure codes) and $d_{i,t}$ represents dense data such as lab test results and vital signs.

3. Results

3.1 Selection process and results overview

Our initial search yielded 1421 papers, of which 495 duplicates had been removed, while 926 records went through title and abstract screening. Then, 780 records were excluded as they were either not relevant to EHR (n=246), nor did they utilize deep learning methods (n=185), nor did they involve temporal data representation (n=61), just applications using existing methods (n=23), or review articles (n=22), or were based on unstructured data (n=243). As a result, we included 146 articles for full-text review. A total of 98 papers were eventually included, as shown in Table 1. Figure 1 illustrates the PRISMA diagram on literature selection.

Figure 2 summarizes the statistics for the included papers. Between 2010 and 2020, the volume of articles has increased significantly. Besides the publication date, we also identified the primary research journals and conferences. ACM Conference on Knowledge Discovery and Data Mining (n=9), IEEE International Conference on Bioinformatics and Biomedicine (n=6), IEEE International Conference on Healthcare Informatics (n=6), Journal of Biomedical Informatics (n=6) were the top four publication venues. Among the included articles, data irregularity (n=37) was the most frequently studied challenge, diagnosis (n=61) was the most commonly used temporal variable, and LSTM (n=35) was the most widely adopted deep learning architecture. Of the 98 studies, the majority (n=88) used encounters (e.g., episodes, visits, admissions) as the time step $v_{i,t}$, while others chose fixed time windows (e.g., one hour, day, or month) as the $v_{i,t}$ for composing time series.
Year	Paper	Challenge	Deep learning solution	Clinical Application			
2013	Lasko et al.[26]	✔ ✔	Autoencoder	Phenotyping			
2015	Esteban et al.[27]	✔	ANN	Clinical events prediction			
2015	Mehrabi et al.[28]	✔	RBM	Diagnosis association discovery			
2015	Tran et al.[29]	✔ ✔ ✔	eNRBM, RBM	Suicide risk stratification			
2016	Choi et al.[30]	✔	Doctor AI, RNN	Diagnosis and medication prediction			
2016	Miotto et al.[31]	✔	Deep Patient, Autoencoder	Multiple diseases prediction			
2016	Zhu et al.[32]	✔	CNN, Word2vec	Phenotyping			
2016	Choi et al.[33]	✔ ✔	RETAIN, RNN	Heart failure prediction			
2017	Baytas et al.[12]	✔	T-LSTM, LSTM, Autoencoder	Parkinson’s disease progression prediction			
2017	Che et al.[34]	✔	ehrGAN, CNN	Heart failure and diabetes classification and data generation			
2017	Che et al.[35]	✔	GRU-D, GRU	Multiple clinical tasks			
2017	Feng et al.[36]	✔ ✔	MG-CNN, CNN	Costs and length of stay prediction			
2017	Mei et al.[37]	✔ ✔	Deep Diabetologist, RNN	Personalized hypoglycemia medication prediction			
2017	Nguyen et al.[38]	✔ ✔	Deepr, CNN	Unplanned readmission prediction			
2017	Pham et al.[39]	✔	DeepCare, LSTM	Diagnoses prediction and intervention recommendation			
Year	Authors	Model(s)	Technique(s)	Method			
------	------------------	-----------------	-----------------------	----------------------------			
2017	Sha et al.[40]	✔	GRNN-HA	GRU	Mortality prediction		
2017	Stojanovic et al.[41]	✔	disease+procedure2vec	Skip-gram	Healthcare quality prediction		
2017	Suo et al.[42]	✔ ✔	GRU	Diagnosis prediction			
2017	Suo et al.[43]	✔ ✔	CNN	Multiple disease prediction			
2017	Zheng et al.[44]	✔	GRU	Severity scores prediction			
2017	Yang et al.[18]	✔ ✔	LSTM, GRU	Therapy decisions prediction			
2017	Yang et al.[45]	✔ ✔	TaGiTeD	Hospitalization and medical expense prediction			
2018	Bai et al.[46]	✔ ✔	Timeline	RNN	Disease progression prediction		
2018	Cheung et al.[47]	✔ ✔	AXCNN	CNN	Readmission prediction		
2018	Le et al.[48]	✔ ✔	DMNC	LSTM	Disease progression and drug prescription prediction		
2018	Lee et al.[49]	✔ ✔	MCA-RNN	RNN	Diagnosis prediction		
2018	Lei et al.[50]	✔ ✔	RNN-DAE	RNN, Autoencoder	Mortality prediction		
2018	Lin et al.[51]	✔ ✔	CNN, LSTM	Sepsis prediction			
2018	Ma et al.[52]	✔ ✔	KAME	GRU	Diagnosis prediction		
2018	Nguyen et al.	✔ ✔	Resset	RNN	Diabetic and mental health prediction		
2018	Park et al.[53]	✔ ✔	FA-Attn-LSTM	LSTM	Cardiovascular disease risk prediction		
2018	Park et al.[54]	✔ ✔	COAM	RNN	Medical code prediction		
2018	Rajkomar et al.[55]	✔ ✔	LSTM, TANN, ANN	Mortality, readmission, length of stay, diagnoses prediction			
2018	Suo et al.[56]	✔ ✔	CNN	Phenotyping			
2018	Suresh et	✔ ✔	LSTM, Autoencoder	Mortality prediction			
Year	Authors	Model	Encoder	Application			
------	---------	-------	---------	-------------			
2018	Wu et al.[58]	✔	LSTM	Asthma phenotyping			
2018	Xiao et al.[59]	✔	TopicRNN	GRU	Readmissions prediction		
2018	Yang et al.[60]	✔	TGBA-F	LSTM	Septic shock prediction		
2018	Zhang et al.[61]	✔	Patient2Vec	GRU	Hospitalizations prediction		
2018	Huang et al.[62]	✔	SDAE	Autoencoder	Acute coronary syndrome risk prediction		
2018	Choi et al.[63]	✔	MiME	GRU	Multiple disease prediction		
2019	An et al.[64]	✔	DeepRisk	LSTM	Cardiovascular diseases prediction		
2019	Ashfaq et al.[65]	✔	LSTM	GRU	Readmission prediction		
2019	Fiorini et al.[66]	✔	Tangle	LSTM	Diabetes therapy initiation prediction		
2019	Guo et al.[67]	✔	COAM	RNN	Multiple disease prediction		
2019	Jun et al.[68]	✔	Autoencoder	Mortality prediction			
2019	Kwon et al.[69]	✔	Retain-Vis	RNN	Risk prediction model visualization		
2019	Lee et al.[70]	✔	Recent context-aware LSTM	LSTM	Clinical events prediction		
2019	Li et al.[71]	✔	VS-GRU	GRU	Mortality and disease prediction		
2019	Lin et al.[72]	✔	LSTM	Unplanned ICU readmission prediction			
2019	Liu et al.[73]	✔	GRU	Mortality and ICU admission prediction			
2019	Liu et al.[74]	✔	LSTM	Sepsis prediction			
2019	Macias et al.[75]	✔	LSTM	Sepsis prediction			
Year	Authors	✓	Method	Technique	Applications		
------	------------------	---	---	--------------------	--		
2019	Peng et al.[75]		TeSAN	GRU	Mortality prediction		
2019	Ruan et al.[77]	✓	RNN-DAE	GRU	Mortality, comorbidity prediction and phenotyping		
2019	Wang et al.[78]	✓	✓	MCPL-based FT-LSTM	LSTM	Clinical events prediction	
2019	Wang et al.[79]	✓	CompNet	CNN, GCN	Medication prediction		
2019	Wang et al.[80]	✓	Patient2vec	RNN	Diagnosis prediction		
2019	Wang et al.[81]	✓	MRM	LSTM	Mortality and potassium ion concentration abnormality prediction		
2019	Xiang et al.[82]	✓	LSTNM		Concept similarity analysis and disease prediction		
2019	Xu et al.[83]		✓	RNN		Adverse cardiovascular events prediction	
2019	Yang et al.[84]	✓	✓	GcGAN	GAN	Data generation evaluated by treatment recommendation	
2019	Zhang et al.[85]	✓	LSTNM, Autoencoder		Missing data Imputation		
2019	Zhang et al.[86]	✓	✓	KNOWRISK	LSTM	Heart failure prediction	
2019	Zhang et al.[87]	✓	LSTM		Septic shock prediction		
2019	Zhang et al.[88]	✓	MetaPred	CNN, LSTM	MCI, Alzheimer, Parkinson's disease prediction		
2020	Afshar et al.[89]	✓	TASTE	Tensor Factorization	Heart failure phenotyping		
2020	An et al.[90]	✓	RAHM	LSTM	Medication stocking		
Year	Authors	✔️	✔️	✔️	Model	Application	
------	---------	----	----	----	-------	-------------	
2020	Barbieri et al.[91]	✔️			RNN	ICU readmission prediction	
2020	Chu et al.[92]	✔️			DAL-EP and MTL-EP	RNN	Heart failure prediction
2020	Duan et al.[93]	✔️			RNN	Clinical events prediction	
2020	Gao et al.[94]	✔️			COMPOSE	CNN	Patient-trial matching
2020	Gao et al.[95]	✔️			StageNet	LSTM	Mortality prediction
2020	Jin et al.[96]	✔️			CarePre	RNN	Diagnosis prediction
2020	Jun et al.[97]	✔️			RNN	Mortality prediction	
2020	Landi et al.[98]	✔️	✔️		ConvAE	CNN, Autoencoder	Disease prediction
2020	Lauritsen et al.[99]	✔️			GNDP	CNN	Diagnosis prediction
2020	Li et al.[100]	✔️			BEHRT	Transformer	Disease prediction
2020	Li et al.[101]	✔️	✔️		CCAE	RNN	Clinical endpoint prediction
2020	Liu et al.[103]	✔️	✔️		Medi-Care AI	RNN	Medication prediction
2020	Liu et al.[104]	✔️			RGNN	LSTM, GNN	Prescription prediction
2020	Luo et al.[105]	✔️	✔️		HiTANet	Transformer	Disease prediction
2020	Panigutti et al.[106]	✔️			DoctorXAI	RNN	Next visit prediction
2020	Qiao et al.[107]	✔️			MHM	GRU	Diagnosis prediction
2020	Rongali et al.[108]	✔️			CLOUT	LSTM	Mortality prediction
2020	Song et al.[109]	✔️			LGMNN	LSTM	Medication prediction
Year	Authors	Models	Techniques	Applications			
------	---------	--------	------------	--------------			
2020	Su et al.[110]	✔️	GATE, GRU	Medication prediction			
2020	Wang et al.[111]	✔️	FReaConv	Heart failure and mortality prediction			
2020	Xiang et al.[112]	✔️	TSANN	Asthma exacerbation prediction			
2020	Yin et al.[113]	✔️	TAME	Sepsis phenotyping			
2020	Yu et al.[114]	✔️	LSTM	Mortality prediction			
2020	Yu et al.[115]	✔️	LSTM, GRU	Mortality prediction			
2020	Zeng et al.[116]	✔️	✔️	MSAM	Encoder	Disease and medical cost prediction	
2020	Zhang et al.[117]	✔️	HAP	RNN	Procedure and diagnosis prediction		
2020	Zheng et al.[118]	✔️	Tracer	RNN	AKI and mortality prediction		
2020	Park et al.[16]	✔️	RNN, ANN	Bacteremia prediction			
2020	Thorsen-Meyer et al.[119]	✔️	LSTM	Mortality prediction			
3.2 Challenges and deep learning solutions
The following section will summarize the four major challenges (i.e., data irregularity, data sparsity, data heterogeneity, and model opacity) posed by the temporal EHR data and examine their corresponding deep learning solutions.

3.2.1 Data irregularity in temporal EHR
Irregular data is pervasive in temporal EHR [39, 120], where the time intervals between various encounters vary, resulting in challenges modeling the whole time series. These irregular time intervals may contain valuable hidden information. For example, shorter time intervals may imply more frequent examinations, indicating the worsening condition of a patient. To utilize the latent information, researchers usually extract a series of time intervals [3, 46], represented as follows for the i-th patient.

$$\varphi_{i,(a-1,a)} = |t_a - t_{a-1}|, a = 1, \ldots, T$$ \hspace{1cm} (2)

Deep learning could naturally capture this long-term sequential effect, and two groups of deep learning solutions have been proposed. One group of methods directly model time series, taking irregular time intervals as the input variables, where customized neural network architectures ingeniously fuse each irregular time point [31, 38, 78, 82]. Although the time lapse between successive elements in patients' records may vary from days to years, novel deep learning approaches can fit the unequally distributed data with their inherent temporal structure (e.g., gate architecture of the LSTM) based on the time distribution and its interval $\varphi_{i,(a-1,a)}$ directly, such as T-LSTM [78]. Moreover, a variety of integrated data processing systems have been proposed based on diverse deep learning structures. For example, Deep Patient [31] utilized a three-layer stack of denoising autoencoders to capture hierarchical regularities and dependency in the temporal coding data. REverse Time AttentIoN (RETAINT) [33] was developed based on a two-level neural attention model to detect influential past visits. Deepr [38] ingeniously transformed a record into a sequence of discrete elements separated by coded time gaps and hospital transfers. Xiang et al. [82] applied dynamic input windows to acquire time-sensitive coding information.

Another group of approaches attempts to transform irregular data into regular ones by determining a fixed interval and then treating the time points without data as missing [121]. While the irregular data could naturally be transformed into regular data with the same time intervals, this strategy may result in many missing values [60, 71, 122].
since there are many time intervals without measurements, necessitating imputation. In this situation, a masking vector \(u \in \{0, 1\} \) [10] is usually used to represent its missing status. The missing values would reduce statistical power and cause bias in estimating mass parameters in deep learning methods [123].

Most researchers used carry-forward imputation to address the missing value issue in temporal EHR [124], where the last observed values were used for all subsequent missing observation points. However, this solution is likely to introduce bias, as it assumes that the value remains unchanged from the last observation. Traditional imputation methods, such as median imputation and multiple imputation, may not capture hidden patterns in temporal data effectively, calling for deep learning approaches with temporal representations. Recently, Macias et al. [75] proposed a novel imputation method in an ICU setting by exploiting temporal dependencies through autoencoder-represented information. Zhang et al. [85] imputed missing values of multivariate time series by a denoising autoencoder. Based on GRU, Che and colleagues [35] designed GRU-D to utilize informative missingness with prior-based regularization. Furthermore, Jun and colleagues [68] developed a general framework to incorporate effective missing data imputation with a variational autoencoder.

3.2.2 Data sparsity in temporal EHR

There are a wide range of concepts in medicine, such as medical diagnosis, medication, and treatment information. We denote them as \((c_{i,t})\), which are the most commonly investigated temporal variables (used in 78 out of 98 included papers). Most medical concepts are mapped to a corresponding coding system, such as the International Classification of Diseases (ICD) [125], Current Procedural Terminology (CPT) [126], and Medication Reference Terminology (MED-RT) [127]. Their sparsity and high dimensionality, however, may hinder analysis. Traditionally, medical ontologies such as SNOMED [128], Charlson Comorbidity Index [129], RxNorm [130], and Logical Observation Identifiers Names and Codes (LOINC) [131] provide structured hierarchical approaches to convert the medical concepts into lower-dimensional representations. Despite this, they are unable to extract abundant relations inherent in the temporal data [36, 76, 132]. As a result, the growth in temporal EHR data raises an unmet need for effective representations of temporal data with structured medical codes.
One-hot encoding [133] is the most straightforward technique, converting these categorical variables into several binary columns, where ‘one’ indicates the presence of the medical code. Nevertheless, it is not an ideal method for encoding high-dimensional categorical variables. Moreover, one-hot encoding no longer holds the promise of preserving hidden relationships in sparse coding. As an example, pneumonia and bronchitis are highly concurrent, but such an internal relationship between their codes is not reflected in one-hot coding.

Therefore, medical concept embedding has become a mainstream method [32] for learning latent representations from high-dimensional sparse medical codes. We denote a set of medical codes as \(C = [c_1, c_2, c_3, \ldots, c_n] \) in an EHR dataset and \(n \) is the total number of codes within the data, which is usually a large number. A visit \(v_t \) comprising of several medical codes can be represented as:

\[
v_t \in \{0,1\}^n
\]

Then, the embedding function \(f_C \) can be represented as:

\[
f_C: C \rightarrow \mathbb{R}^m
\]

where \(m \) represents the dimensionality of the embedding vector and is often a much smaller number than \(n \).

Medical code embedding originated from Word2Vec [134], an unsupervised feature extraction method for natural language processing (NLP), which converts words to numerical embedding by mapping each word token into a high-dimensional vector space. The basic form of the one-layer embedding neural network is shown below in equation (5),

\[
u_t = ReLU(W_c v_t + b_c)
\]

where \(u_t \) is the low-dimensional vector for subsequent downstream tasks, and \(W_c \) denotes the embedding matrix. Recently, Choi et al. [135, 136] proposed to learn distributed representations of sparse medical codes (e.g., diagnoses, medications, and procedure codes) using Word2Vec and applied them to several clinical prediction tasks. Subsequently, Med2Vec [137] was proposed to extend the original Word2Vec with a multilayer perceptron for learning both succinct codes and visit-level representations.

Med2Vec was further extended to integrate embedding systems with different deep
learning architectures for sparse temporal EHR data. Lu and colleagues [138] proposed utilizing hyperbolic embeddings of medical concepts instead of traditional Euclidean space geometry. Moreover, the cross-field categorical attributes embedding (CCAE) [102] was developed to learn a vectorized representation for cancer patients at attribute-level by orders, where strong semantic coupling among categorical variables was exploited effectively. Esteban et al. [27] employed the Markov model to learn personalized Markov embeddings. MC2Vec [132] was then designed to capture the proximity relationships between medical concepts through a two-step optimization framework that recursively refines the embedding for superior output. Patient2vec [80] introduced the use of the RNN model to learn sequential context-aware features of visits and the correlations between physical symptoms and associated treatments. Zhang et al. [117] developed hierarchical attention propagation (HAP), a hierarchically propagating attention across the entire ontology structure, where a medical code adaptively learns its embedding from all other codes in the hierarchy instead of only its ancestors.

3.2.3 Data heterogeneity in temporal EHR

Heterogeneity is another challenge undermining the quality of data analyses, where EHRs generally consist of multiple data modalities and outcomes. In this review, we focused on two types of heterogeneity: patient phenotypes and clinical outcomes.

Patient phenotyping identifies patient sub-cohorts that satisfy complex criteria [139]. Conventionally, phenotypes are identified based on patient similarity, either through statistical distances like Euclidean distance [140] or by machine learning methods such as k-means [32]. However, when dealing with high-dimensional and multimodal longitudinal data, these traditional methods cannot identify complicated patient phenotypes and were unable to retain most long-term temporal information [32]. In contrast, a deep learning structure could capture these complex temporal dynamics in the longitudinal EHR for evaluating patient similarity. The typical deep neural network architectures include CNN [32, 43, 56], LSTM [58], and autoencoder [57, 62]. For instance, Yang et al. [18] utilized the RNN model to improve the phenotyping of asthma using ICU time sequence data.

Another form of heterogeneity is related to the diversity of clinical outcomes and disease conditions, including their complex interrelationships. In this context, a
single-task approach (e.g., binary logistic regression) is ineffective. Even though statistics methods, such as multinomial logistic regression, are capable of making a multi-label prediction, deep learning presents great promise for handling them since neurons in neural networks can used for more than one task, aiming to jointly learn multiple prediction tasks simultaneously. As reported in [42] [83] [115], several multitask frameworks were proposed based on RNN, which shared the same networks, but with a task-specific layer to monitor a particular disease or outcome. The advantages include sharing the same layers, saving computing resources, and extracting certain useful temporal information. In addition, Suresh et al. [57] improved the method through a two-step procedure, with the first step being unsupervised clustering through a sequence-to-sequence autoencoder, and the second step being the outcome prediction. Harutyunyan and colleagues [141] summarized the advantages of multitask learning over single-task learning, by proposing clinical prediction benchmarks using temporal EHR data obtained from the MIMIC-III database.

3.2.4 Opacity in modeling temporal EHR
While deep learning provides diversified solutions to deal with temporal EHR data, its black box nature presents another significant challenge. Due to the depth of neural network layers and the complexity of each module, understanding sophisticated deep learning models remains elusive, particularly when dealing with temporal data. Many researchers have attempted to explain deep learning models with post hoc explanations (e.g., Doctor XAI) [106, 142], while others advocate that the models themselves should be interpretable [143, 144].

Two groups of approaches have been proposed to interpret black box deep learning models: mimic learning and attention mechanisms. Mimic learning simulates deep learning models through an inherently transparent model such as logistic regression [145]. Gradient boosting trees (GBT) [35] was also used to imitate the process of GRU and achieved superior performance and good interpretability when extracting the importance of features.

The concept of attention mechanism [146], originally derived from NLP and used in machine translation to adjust weights of different words, has been popular in research on temporal EHR [147]. Researchers have used attention to determine which time
points in the patients' medical history are more predictive of outcomes [42, 54, 61, 83, 115, 118, 148]. Attention can also provide insight into the importance of different visits or variables for aiding medical decision making, where larger attention represents greater importance. An example from Shi et al. [148] is used here to illustrate the attention mechanism. Given the input data D_i and hidden layer H_i after RNN layers processing, as formulated by equation (6),

$$H_i = [h_{i,1}, h_{i,2}, h_{i,3}, ..., h_{i,T-1}, h_{i,T}]$$

the attention α_i is calculated through equation (7), where w^T is the parameter obtained from the model training.

$$\alpha_i = softmax(w^T \tanh(H_i))$$

Afterward, we obtain the attention tensor T_i for downstream tasks.

$$T_i = tan(H_i\alpha_i^T)$$

There are two major attention approaches, one of which treats all temporal variables at the same level, while the other takes data hierarchy into account. As shown in [47, 49, 149, 150], neural networks were proposed with the attention layer to calculate the weights in the absence of data hierarchy. Crossover attention model (COAM) [67] was designed through the crossover attention mechanism by leveraging the correlation between diagnosis and treatment information. Park et al. [151] further improved the attention mechanism by adding feature occurrence frequency to capture critical temporal variables that appeared infrequently. Bai et al. [46] enhanced the attention by learning time decay factors, making it possible to interpret the chronic disease progression and understand how the risks of future visits change over time.

Furthermore, some models incorporated heterogeneous data such as treatment, medication, procedures, and diagnoses. Specifically, DeepRisk [64] integrated multiple time-ordered clinical data as a whole by handling correlation among predictors via a single DNN and three attention-based LSTMs. KAME [52] was further developed as a knowledge-based attention mechanism, which used medical domain knowledge, and computed the attention based on a directed acyclic graph of various medical concepts.

Another major attention approach exploited the hierarchical structure of temporal data, such as the data from both admission and medical event levels [152]. During the course of admission, a number of events occur, which are usually recorded by medical codes like ICD-9. This hierarchical structure with multiple attention levels was
intended to integrate local and global time information and enhance model performance and interpretation. Several studies [33, 40, 105, 112, 116] have applied a two-level neural attention model within RNN, where the first level pertains to medical events, while the second level pertains to visits. A good example is RETAIN [33], which integrates two levels of attention to make use of time information in feature aggregation and explain the critical medical event in the input sequence. To improve the interpretability of RETAIN, Kwon et al. [69] developed RetainVis, an interactive visualization tool. Another attempt was to apply graph-level attention (based on knowledge graph) simultaneously with other attentions [86]. Overall, the hierarchical attention could not only digest the sequence information correctly in temporal EHR, but also provide an insightful interpretation of the importance of each variable or timepoint.

4. Discussion

This review summarized the challenges related to temporal EHR data and discussed how deep learning solutions could help to overcome them. While temporal EHR data is valuable for biomedical informatics research, its complex structure poses a challenge to standard learning algorithms. Deep learning models have shown the ability to present temporal data in a novel manner while retaining sequential information efficiently. This study aimed to address a knowledge gap on deep learning for temporal EHR by exploring current challenges and summarizing methodologies. Through a systematic literature review, we identified four major challenges, including data irregularity, sparsity, heterogeneity, and model opacity. During the last decade, nearly one hundred novel deep learning methods have been proposed, and this number continues to grow rapidly over time, demonstrating the importance and potential of deep learning in temporal EHR data analysis. While these deep learning techniques have shown promising results, several challenges remain, including the need for high-quality data and the issue regarding their applicability to clinical practice. Ideally, future studies could consider designing a comprehensive system that combines solutions to all challenges.

Despite various attempts to address data irregularity, heterogeneity and sparsity, there is still a great need for improvements to the data itself. For deep learning algorithms to be successful, large-scale EHR datasets are always required. The most commonly used dataset in our included papers was MIMIC (n=36/98) [25], a well-organized and
freely accessible critical care database developed at the Beth Israel Deaconess Medical Center. The majority of studies analyzed only one dataset, and only ten utilized two or more datasets, raising questions about the transferability and generalizability of the models. Therefore, we recommend the development of more large-scale EHR databases that are freely accessible worldwide, providing the opportunity for multicenter validation of current models. Aside from data size, the quality of a dataset is another important factor affecting model performance; improvements in data collection and processing, such as the correction of outliers due to mistyping or misalignment, may be considered.

Although the availability of large, labeled data is always desirable, situations with limited data are common in medical settings because of the costs of labeling and the sensitive nature of their sharing. Many approaches have been proposed to solve this issue, including data augmentation and optimal utilization of data. Generative Adversarial Networks (GANs) provide a compelling solution to amplify temporal data, and Che et al. [34] demonstrated that the newly generated data are of appropriate quality. Zhang et al. [88], on the other hand, managed to take advantage of limited data through the novel representation framework MetaPred based on longitudinal patient EHRs. Another potential solution would be transfer learning, which allows us to transfer knowledge between multiple hospitals or EHRs, and combine various sources to extract knowledge, referred to as multi-source transfer [153]. General transfer learning consists of a two-stage paradigm [154], where the leading deep learning network is generally trained on a large-scale, publicly available benchmark dataset. Next, the pre-trained network is further conditioned on the specific local data with limited samples. Transfer learning has the potential to relieve the data shortage in healthcare and improve the model's generalizability [155].

There has been considerable discussion of the opacity issue for temporal deep learning models, especially for medical applications where there are high-stakes decisions. Several attention mechanisms have been proposed to address these black box models [33, 40, 105, 112, 116]. Grad-CAM [156] is a widely adopted algorithm developed initially to provide visual explanations for CNN by highlighting the important regions, and was recently extended to the medical field [157]. However, these post-hoc interpretability approaches may lead to explanations resulting from certain artifacts learned by the model rather than actual knowledge derived from the
data [158]. This limitation raises concerns on model usability in actual healthcare settings. As a comparison, ante-hoc interpretable models are preferred by doctors and nurses in clinical practice because they can understand them naturally and inherently [143, 159, 160]. Recently, Ustun and Rudin developed the Risk-calibrated Supersparse Linear Integer Model (RiskSLIM) [161] and further improved it through the optimization of risk scores [162]. Apart from that, Xie et al. provided practical solutions, AutoScore [163] and its extensions [164, 165], by leveraging interpretable machine learning for clinical score generation. These intrinsically interpretable methods have considerable potential for integrating deep learning techniques to facilitate model validation in real-world settings.

In addition to CNN (n=9), RNN (n=18), and LSTM (n=35) as the most commonly used deep learning architectures, Transformer [166] and MLP-Mixer [167] have recently emerged as popular alternative frameworks. Transformer computes temporal representations entirely on the basis of self-attention without the use of sequence-based RNNs or convolution. It has shown great potential in temporal EHR representation [101, 105]. Furthermore, MLP-Mixer [167] was later developed with a simpler structure, not requiring any convolutions or attention. With one MLP for per-location features and another for spatial information, MLP-Mixer appears to be a conceptually and technically succinct alternative for processing temporal EHR data.

This study has several limitations. First, we sought to understand the current state of the literature from a methodological perspective. Still, we did not attempt to summarize all clinical applications and report the performance of deep learning solutions. Second, considering the heterogeneity of data pre-processing, parameter tuning approaches, and clinical tasks among the included studies, we were unable to recommend the overall best deep learning methods for temporal EHR data analysis. Third, this review focused exclusively on deep learning methods for analyzing structured temporal EHR data. It will be beneficial in the future to investigate techniques that deal with both structured and unstructured data (e.g., clinical notes, medical images, and physiological signals). Lastly, the exclusion of preprints in our analysis may have overlooked some new evidence but was able to ensure the inclusion of only peer-reviewed scientific results.

5. Conclusion
We comprehensively reviewed the primary issues in analyzing temporal EHR data and presented state-of-the-art deep learning solutions. Various significant challenges arising from the representation of EHR temporal data were addressed to some extent by current solutions. Future research may focus on model transferability, clinical domain knowledge incorporation into study design, and model interpretability enhancement to facilitate clinical implementation.

References

1. Häyrinen K, Saranto K, Nykänen P: Definition, structure, content, use and impacts of electronic health records: A review of the research literature. International Journal of Medical Informatics 2008, 77(5):291-304.
2. Critical Data M: Secondary analysis of electronic health records: Springer Nature; 2016.
3. Singh A, Nadkarni G, Gottesman O, Ellis SB, Bottinger EP, Guttag JV: Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration. J Biomed Inform 2015, 53:220-228.
4. Zhao J, Henriksson A, Kvist M, Asker L, Bostrom H: Handling Temporality of Clinical Events for Drug Safety Surveillance. AMIA Annu Symp Proc 2015, 2015:1371-1380.
5. Zhao J: Learning predictive models from electronic health records. Department of Computer and Systems Sciences, Stockholm University; 2017.
6. Gupta A, Liu T, Crick C: Utilizing time series data embedded in electronic health records to develop continuous mortality risk prediction models using hidden Markov models: A sepsis case study. Stat Methods Med Res 2020, 29(11):3409-3423.
7. Goldstein BA, Navar AM, Pencina MJ, Ioannidis JP: Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc 2017, 24(1):198-208.
8. Xie F, Chakraborty B, Ong MEH, Goldstein BA, Liu N: AutoScore: A Machine Learning-Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records. JMIR Med Inform 2020, 8(10):e21798.
9. Zhao J, Papapetrou P, Asker L, Bostrom H: Learning from heterogeneous temporal data in electronic health records. J Biomed Inform 2017, 65:105-119.
10. Che Z, Purushotham S, Cho K, Sontag D, Liu Y: Recurrent Neural Networks for Multivariate Time Series with Missing Values. Sci Rep 2018, 8(1):6085.
11. Hewamalage H, Bergmeir C, Bandara K: Recurrent Neural Networks for Time Series Forecasting: Current status and future directions. International Journal of Forecasting 2021, 37(1):388-427.
12. Baytas IM, Xiao C, Zhang X, Wang F, Jain AK, Zhou J: Patient Subtyping via Time-Aware LSTM Networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, NS, Canada: Association for Computing Machinery; 2017: 65–74.
13. Maragatham G, Devi S: **LSTM Model for Prediction of Heart Failure in Big Data. J Med Syst** 2019, 43(5):111.
14. Lu W, Ma L, Chen H, Jiang X, Gong M: **A Clinical Prediction Model in Health Time Series Data Based on Long Short-Term Memory Network Optimized by Fruit Fly Optimization Algorithm. IEEE Access** 2020, 8:136014-136023.
15. Khoshnevisan F, Ivy J, Capan M, Arnold R, Huddleston J, Chi M: **Recent Temporal Pattern Mining for Septic Shock Early Prediction.** In: 2018 IEEE International Conference on Healthcare Informatics (ICHI): 4-7 June 2018 2018; 2018: 229-240.
16. Park HJ, Jung DY, Ji W, Choi CM: **Detection of Bacteremia in Surgical In-Patients Using Recurrent Neural Network Based on Time Series Records: Development and Validation Study. J Med Internet Res** 2020, 22(8):e19512.
17. Reddy BK, Delen D: **Predicting hospital readmission for lupus patients: An RNN-LSTM-based deep-learning methodology. Comput Biol Med** 2018, 101:199-209.
18. Yang Y, Fasching PA, Tresp V: **Predictive Modeling of Therapy Decisions in Metastatic Breast Cancer with Recurrent Neural Network Encoder and Multinomial Hierarchical Regression Decoder.** In: 2017 IEEE International Conference on Healthcare Informatics (ICHI): 23-26 Aug. 2017 2017; 2017: 46-55.
19. Hung C, Chen W, Lai P, Lin C, Lee C: **Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database.** In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): 11-15 July 2017 2017; 2017: 3110-3113.
20. Xiao C, Choi E, Sun J: **Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J Am Med Inform Assoc** 2018, 25(10):1419-1428.
21. Shickel B, Tighe PJ, Bihorac A, Rashidi P: **Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J Biomed Health Inform** 2018, 22(5):1589-1604.
22. Ayala Solares JR, Diletta Raimondi FE, Zhu Y, Rahimian F, Canoy D, Tran J, Pinho Gomes AC, Payberah AH, Zottoli M, Nazarzadeh M et al: **Deep learning for electronic health records: A comparative review of multiple deep neural architectures. J Biomed Inform** 2020, 101:103337.
23. Si Y, Du J, Li Z, Jiang X, Miller T, Wang F, Jim Zheng W, Roberts K: **Deep representation learning of patient data from Electronic Health Records (EHR): A systematic review. J Biomed Inform** 2020:103671.
24. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D: **The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ** 2009, 339:b2700.
25. Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghiasi M, Moody B, Szolovits P, Celi LA, Mark RG: **MIMIC-III, a freely accessible critical care database. Sci Data** 2016, 3:160035.
26. Lasko TA, Denny JC, Levy MA: **Computational Phenotype Discovery Using Unsupervised Feature Learning over Noisy, Sparse, and Irregular Clinical Data.**
27. Esteban C, Schmidt D, Krompaß D, Tresp V: Predicting Sequences of Clinical Events by Using a Personalized Temporal Latent Embedding Model. In: 2015 International Conference on Healthcare Informatics: 21-23 Oct. 2015 2015: 130-139.

28. Mehrabi S, Sohn S, Li D, Pankratz JJ, Therneau T, Sauver JLS, Liu H, Palakal M: Temporal Pattern and Association Discovery of Diagnosis Codes Using Deep Learning. In: 2015 International Conference on Healthcare Informatics: 21-23 Oct. 2015 2015: 408-416.

29. Tran T, Nguyen TD, Phung D, Venkatesh S: Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM). J Biomed Inform 2015, 54:96-105.

30. Choi E, Bahadori MT, Schuetz A, Stewart WF, Sun J: Doctor AI: Predicting Clinical Events via Recurrent Neural Networks. JMLR Workshop Conf Proc 2016, 56:301-318.

31. Miotto R, Li L, Kidd BA, Dudley JT: Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep 2016, 6:26094.

32. Zhu Z, Yin C, Qian B, Cheng Y, Wei J, Wang F: Measuring Patient Similarities via a Deep Architecture with Medical Concept Embedding. In: 2016 IEEE 16th International Conference on Data Mining (ICDM): 12-15 Dec. 2016 2016: 749-758.

33. Choi E, Bahadori MT, Sun J, Kulas J, Schuetz A, Stewart W: Retain: An interpretable predictive model for healthcare using reverse time attention mechanism. In: Advances in Neural Information Processing Systems: 2016; 2016: 3504-3512.

34. Che Z, Cheng Y, Zhai S, Sun Z, Liu Y: Boosting Deep Learning Risk Prediction with Generative Adversarial Networks for Electronic Health Records. In: 2017 IEEE International Conference on Data Mining (ICDM): 18-21 Nov. 2017 2017: 787-792.

35. Che Z, Liu Y: Deep Learning Solutions to Computational Phenotyping in Health Care. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW): 18-21 Nov. 2017 2017: 1100-1109.

36. Feng Y, Min X, Chen N, Chen H, Xie X, Wang H, Chen T: Patient outcome prediction via convolutional neural networks based on multi-granularity medical concept embedding. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM): 13-16 Nov. 2017 2017: 770-777.

37. Mei J, Zhao S, Jin F, Zhang L, Liu H, Li X, Xie G, Li X, Xu M: Deep Diabetologist: Learning to Prescribe Hypoglycemic Medications with Recurrent Neural Networks. Stud Health Technol Inform 2017, 245:1277.

38. Nguyen P, Tran T, Wickramasinghe N, Venkatesh S: Deeper: A Convolutional Net for Medical Records. Ieee Journal of Biomedical and Health Informatics 2017, 21(1):22-30.

39. Pham T, Tran T, Phung D, Venkatesh S: Predicting healthcare trajectories from medical records: A deep learning approach. J Biomed Inform 2017, 69:218-229.
40. Sha Y, Wang MD: Interpretable Predictions of Clinical Outcomes with An Attention-based Recurrent Neural Network. *Acm bcb* 2017, 2017:233-240.
41. Stojanovic J, Gligorijevic D, Radosavljevic V, Djurie N, Grbovic M, Obradovic Z: Modeling Healthcare Quality via Compact Representations of Electronic Health Records. *IEEE/ACM Trans Comput Biol Bioinformatics* 2017, 14(3):545–554.
42. Suo Q, Ma F, Canino G, Gao J, Zhang A, Veltri P, Agostino G: A Multi-Task Framework for Monitoring Health Conditions via Attention-based Recurrent Neural Networks. *AMIA Annu Symp Proc* 2017, 2017:1665-1674.
43. Suo Q, Ma F, Yuan Y, Huai M, Zhong W, Zhang A, Gao J: Personalized disease prediction using a CNN-based similarity learning method. In: 2017 *IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*: 13-16 Nov. 2017 2017; 2017: 811-816.
44. Zheng K, Wang W, Gao J, Ngiam KY, Ooi BC, Yip WLJ: Capturing Feature-Level Irregularity in Disease Progression Modeling. In: *Proceedings of the 2017 ACM on Conference on Information and Knowledge Management*. Singapore, Singapore: Association for Computing Machinery; 2017: 1579–1588.
45. Yang K, Li X, Liu H, Mei J, Xie G, Zhao J, Xie B, Wang F: TaGiTeD: Predictive task guided tensor decomposition for representation learning from electronic health records. In: *Proceedings of the AAAI Conference on Artificial Intelligence*: 2017; 2017.
46. Bai T, Egleston BL, Zhang S, Vucetic S: Interpretable Representation Learning for Healthcare via Capturing Disease Progression through Time. *Kdd* 2018, 2018:43-51.
47. Cheung BLP, Dahl D: Deep learning from electronic medical records using attention-based cross-modal convolutional neural networks. In: *2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)*: 4-7 March 2018 2018; 2018: 222-225.
48. Le H, Tran T, Venkatesh S: Dual Memory Neural Computer for Asynchronous Two-view Sequential Learning. In: *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. London, United Kingdom: Association for Computing Machinery; 2018: 1637–1645.
49. Lee W, Park S, Joo W, Moon I: Diagnosis Prediction via Medical Context Attention Networks Using Deep Generative Modeling. In: *2018 IEEE International Conference on Data Mining (ICDM)*: 17-20 Nov. 2018 2018; 2018: 1104-1109.
50. Lei L, Zhou Y, Zhai J, Zhang L, Fang Z, He P, Gao J: An Effective Patient Representation Learning for Time-series Prediction Tasks Based on EHRs. In: *2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*: 3-6 Dec. 2018 2018; 2018: 885-892.
51. Lin C, Zhang Y, Ivy J, Capan M, Arnold R, Huddleston JM, Chi M: Early Diagnosis and Prediction of Sepsis Shock by Combining Static and Dynamic Information Using Convolutional-LSTM. In: *2018 IEEE International Conference on Healthcare Informatics (ICHI)*: 4-7 June 2018 2018; 2018: 219-228.
52. Ma F, You Q, Xiao H, Chitta R, Zhou J, Gao J: KAME: Knowledge-based Attention Model for Diagnosis Prediction in Healthcare. In: *Proceedings of the 27th ACM International Conference on Information and Knowledge Management*. Torino, Italy:
Association for Computing Machinery; 2018: 743–752.

53. Nguyen P, Tran T, Venkatesh S: Resset: A Recurrent Model for Sequence of Sets with Applications to Electronic Medical Records. In: 2018 International Joint Conference on Neural Networks (IJCNN); 8-13 July 2018 2018; 2018: 1-9.

54. Park S, Kim YJ, Kim JW, Park JJ, Ryu B, Ha J: [Regular Paper] Interpretable Prediction of Vascular Diseases from Electronic Health Records via Deep Attention Networks. In: 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE); 29-31 Oct. 2018 2018; 2018: 110-117.

55. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, Liu PJ, Liu X, Marcus J, Sun M et al: Scalable and accurate deep learning with electronic health records. NPJ Digit Med 2018, 1:18.

56. Suo Q, Ma F, Yuan Y, Huai M, Zhong W, Gao J, Zhang A: Deep Patient Similarity Learning for Personalized Healthcare. IEEE Trans Nanobioscience 2018, 17(3):219-227.

57. Suresh H, Gong JJ, Guttag JV: Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, United Kingdom: Association for Computing Machinery; 2018: 802–810.

58. Wu S, Liu S, Sohn S, Moon S, Wi CI, Juhn Y, Liu H: Modeling asynchronous event sequences with RNNs. J Biomed Inform 2018, 83:167-177.

59. Xiao C, Ma T, Dieng AB, Blei DM, Wang F: Readmission prediction via deep contextual embedding of clinical concepts. PLoS One 2018, 13(4):e0195024.

60. Yang X, Zhang Y, Chi M: Time-aware Subgroup Matrix Decomposition: ImputingMissing Data Using Forecasting Events. In: 2018 IEEE International Conference on Big Data (Big Data); 10-13 Dec. 2018 2018; 2018: 1524-1533.

61. Zhang J, Kowsari K, Harrison JH, Lobo JM, Barnes LE: Patient2Vec: A Personalized Interpretable Deep Representation of the Longitudinal Electronic Health Record. IEEE Access 2018, 6:65333-65346.

62. Huang Z, Dong W, Duan H, Liu J: A Regularized Deep Learning Approach for Clinical Risk Prediction of Acute Coronary Syndrome Using Electronic Health Records. IEEE Trans Biomed Eng 2018, 65(5):956-968.

63. Choi E, Xiao C, Stewart WF, Sun J: Mime: Multilevel medical embedding of electronic health records for predictive healthcare. arXiv preprint arXiv:181009593 2018.

64. An Y, Huang N, Chen X, Wu F, Wang J: High-risk Prediction of Cardiovascular Diseases via Attention-based Deep Neural Networks. IEEE/ACM Trans Comput Biol Bioinform 2019.

65. Ashfaq A, Sant'Anna A, Lingman M, Nowaczyk S: Readmission prediction using deep learning on electronic health records. J Biomed Inform 2019, 97:103256.

66. Fiorini S, Hajati F, Barla A, Girosi F: Predicting diabetes second-line therapy initiation in the Australian population via time span-guided neural attention network. PLoS One 2019, 14(10):e0211844.

67. Guo W, Ge W, Cui L, Li H, Kong L: An Interpretable Disease Onset Predictive Model Using Crossover Attention Mechanism From Electronic Health Records.
27

IEEE Access 2019, 7:134236-134244.

68. Jun E, Mulyadi AW, Suk H: Stochastic Imputation and Uncertainty-Aware Attention to EHR for Mortality Prediction. In: 2019 International Joint Conference on Neural Networks (IJCNN): 14-19 July 2019 2019; 1:7.

69. Kwon BC, Choi M, Kim JT, Choi E, Kim YB, Kwon S, Sun J, Choo J: RetainVis: Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records. IEEE Transactions on Visualization and Computer Graphics 2019, 25(1):299-309.

70. Lee JM, Hauskrecht M: Recent Context-aware LSTM for Clinical Event Time-series Prediction. Artif Intell Med Conf Artif Intell Med (2005-) 2019, 11526:13-23.

71. Li QT, Xu Y: VS-GRU: A Variable Sensitive Gated Recurrent Neural Network for Multivariate Time Series with Massive Missing Values. Applied Sciences-Basel 2019, 9(15).

72. Lin YW, Zhou YQ, Faghri F, Shawl MJ, Campbell RH: Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory. PloS One 2019, 14(7).

73. Liu L, Li H, Hu Z, Shi H, Wang Z, Tang J, Zhang M: Learning Hierarchical Representations of Electronic Health Records for Clinical Outcome Prediction. AMIA Annu Symp Proc 2019, 2019:597-606.

74. Liu L, Wu H, Wang Z, Liu Z, Zhang M: Early Prediction of Sepsis From Clinical Data via Heterogeneous Event Aggregation. In: 2019 Computing in Cardiology (CinC): 8-11 Sept. 2019 2019; Page 1-Page 4.

75. Macias E, Boquet G, Serrano J, Vicario J, Ibeas J, Morel A: Novel Imputing Method and Deep Learning Techniques for Early Prediction of Sepsis in Intensive Care Units. In: 2019 Computing in Cardiology (CinC): 8-11 Sept. 2019 2019; 1:1-4.

76. Peng X, Long G, Shen T, Wang S, Jiang J, Blumenstein M: Temporal Self-Attention Network for Medical Concept Embedding. In: 2019 IEEE International Conference on Data Mining (ICDM): 8-11 Nov. 2019 2019; 498-507.

77. Ruan T, Lei L, Zhou Y, Zhai J, Zhang L, He P, Gao J: Representation learning for clinical time series prediction tasks in electronic health records. BMC Med Inform Decis Mak 2019, 19(Suppl 8):259.

78. Wang L, Wang H, Song Y, Wang Q: MCPL-Based FT-LSTM: Medical Representation Learning-Based Clinical Prediction Model for Time Series Events. IEEE Access 2019, 7:70253-70264.

79. Wang S, Ren P, Chen Z, Ren Z, Ma J, Rijke Md: Order-free Medicine Combination Prediction with Graph Convolutional Reinforcement Learning. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing, China: Association for Computing Machinery; 2019: 1623–1632.

80. Wang W, Guo C, Xu J, Liu A: Bi-Dimensional Representation of Patients for Diagnosis Prediction. In: 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC): 15-19 Jul 2019 2019; 374-379.

81. Wang Z, Li H, Liu L, Wu H, Zhang M: Predictive Multi-level Patient Representations from Electronic Health Records. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM): 18-21 Nov. 2019 2019; 1:7.
82. Xiang Y, Xu J, Si Y, Li Z, Rasmy L, Zhou Y, Tiryaki F, Li F, Zhang Y, Wu Y et al: Time-sensitive clinical concept embeddings learned from large electronic health records. *BMC Med Inform Decis Mak* 2019, 19(Suppl 2):58.

83. Xu E, Zhao S, Mei J, Xia E, Yu Y, Huang S: Multiple MACE Risk Prediction using Multi-Task Recurrent Neural Network with Attention. In: 2019 IEEE International Conference on Healthcare Informatics (ICHI): 10-13 June 2019 2019; 2019: 1-2.

84. Yang F, Yu Z, Liang Y, Gan X, Lin K, Zou Q, Zeng Y: Grouped Correlational Generative Adversarial Networks for Discrete Electronic Health Records. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM): 18-21 Nov. 2019 2019; 2019: 906-913.

85. Zhang J, Yin P: Multivariate Time Series Missing Data Imputation Using Recurrent Denoising Autoencoder. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM): 18-21 Nov. 2019 2019; 2019: 760-764.

86. Zhang X, Qian B, Li Y, Yin C, Wang X, Zheng Q: KnowRisk: An Interpretable Knowledge-Guided Model for Disease Risk Prediction. In: 2019 IEEE International Conference on Data Mining (ICDM): 8-11 Nov. 2019 2019; 2019: 1492-1497.

87. Zhang Y, Yang X, Ivy J, Chi M: Time-aware Adversarial Networks for Adapting Disease Progression Modeling. In: 2019 IEEE International Conference on Healthcare Informatics (ICHI): 10-13 June 2019 2019; 2019: 1-11.

88. Zhang XS, Tang F, Dodge HH, Zhou J, Wang F: MetaPred: Meta-Learning for Clinical Risk Prediction with Limited Patient Electronic Health Records. In: *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. Anchorage, AK, USA: Association for Computing Machinery; 2019: 2487–2495.

89. Afshar A, Perros I, Park H, deFilippi C, Yan X, Stewart W, Ho J, Sun J: TASTE: temporal and static tensor factorization for phenotyping electronic health records. In: *Proceedings of the ACM Conference on Health, Inference, and Learning*. Toronto, Ontario, Canada: Association for Computing Machinery; 2020: 193–203.

90. An Y, Mao Y, Zhang L, Jin B, Xiao K, Wei X, Yan J: RAHM: Relation augmented hierarchical multi-task learning framework for reasonable medication stocking. *J Biomed Inform* 2020, 108:103502.

91. Barbieri S, Kemp J, Perez-Concha O, Kotwal S, Gallagher M, Ritchie A, Jorm L: Benchmarking Deep Learning Architectures for Predicting Readmission to the ICU and Describing Patients-at-Risk. *Sci Rep* 2020, 10(1):1111.

92. Chu J, Dong W, Huang Z: Endpoint prediction of heart failure using electronic health records. *J Biomed Inform* 2020, 109:103518.

93. Duan H, Sun Z, Dong W, He K, Huang Z: On Clinical Event Prediction in Patient Treatment Trajectory Using Longitudinal Electronic Health Records. *IEEE J Biomed Health Inform* 2020, 24(7):2053-2063.

94. Gao J, Xiao C, Glass LM, Sun J: COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching. In: *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. Virtual Event, CA, USA: Association for Computing Machinery; 2020: 803–812.
95. Gao J, Xiao C, Wang Y, Tang W, Glass LM, Sun J: **StageNet: Stage-Aware Neural Networks for Health Risk Prediction.** In: Proceedings of The Web Conference 2020. Taipei, Taiwan: Association for Computing Machinery; 2020: 530–540.

96. Jin Z, Cui S, Guo S, Gotz D, Sun J, Cao N: **CarePre: An Intelligent Clinical Decision Assistance System.** ACM Trans Comput Healthcare 2020, 1(1):Article 6.

97. Jun E, Mulyadi AW, Choi J, Suk HI: **Uncertainty-Gated Stochastic Sequential Model for EHR Mortality Prediction.** IEEE Trans Neural Netw Learn Syst 2020, Pp.

98. Landi I, Glicksberg BS, Lee HC, Cherng S, Landi G, Danieleto M, Dudley JT, Furlanello C, Miotto R: **Deep representation learning of electronic health records to unlock patient stratification at scale.** NPJ Digit Med 2020, 3:96.

99. Lauritsen SM, Kalør ME, Kongsgaard EL, Lauritsen KM, Jørgensen MJ, Lange J, Thiesson B: **Early detection of sepsis utilizing deep learning on electronic health record event sequences.** Artif Intell Med 2020, 104:101820.

100. Li Y, Qian B, Zhang X, Liu H: **Graph Neural Network-Based Diagnosis Prediction.** Big Data 2020.

101. Panigutti C, Perotti A, Pedreschi D: **Doctor XAI: an ontology-based approach to black-box sequential data classification explanations.** In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. Barcelona, Spain: Association for Computing Machinery; 2020: 629–639.

102. Qiao Z, Zhang Z, Wu X, Ge S, Fan W: **MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction.** In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Virtual Event, China: Association for Computing Machinery; 2020: 1841–1844.

103. Rongali S, Rose AJ, McManus DD, Bajracharya AS, Kapoor A, Granillo E, Yu H: **Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation.** J Med Internet Res 2020, 22(3):e16374.

104. Song J, Wang Y, Tang S, Zhang Y, Chen Z, Zhang Z, Zhang T, Wu F: **Local-Global
Memory Neural Network for Medication Prediction. *IEEE Trans Neural Netw Learn Syst* 2020, Pp.

110. Su C, Gao S, Li S: GATE: Graph-Attention Augmented Temporal Neural Network for Medication Recommendation. *IEEE Access* 2020, 8:125447-125458.

111. Wang Z, Zhu Y, Li D, Yin Y, Zhang J: Feature rearrangement based deep learning system for predicting heart failure mortality. *Comput Methods Programs Biomed* 2020, 191:105383.

112. Xiang Y, Ji H, Zhou Y, Li F, Du J, Rasmy L, Wu S, Zheng WJ, Xu H, Zhi D et al: Asthma Exacerbation Prediction and Risk Factor Analysis Based on a Time-Sensitive, Attentive Neural Network: Retrospective Cohort Study. *J Med Internet Res* 2020, 22(7):e16981.

113. Yin C, Liu R, Zhang D, Zhang P: Identifying Sepsis Subphenotypes via Time-Aware Multi-Modal Auto-Encoder. In: *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. Virtual Event, CA, USA: Association for Computing Machinery; 2020: 862–872.

114. Yu K, Zhang M, Cui T, Hauskrecht M: Monitoring ICU Mortality Risk with A Long Short-Term Memory Recurrent Neural Network. *Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing* 2020, 25:103-114.

115. Yu R, Zheng Y, Zhang R, Jiang Y, Poon CCY: Using a Multi-Task Recurrent Neural Network With Attention Mechanisms to Predict Hospital Mortality of Patients. *IEEE J Biomed Health Inform* 2020, 24(2):486-492.

116. Zeng X, Feng Y, Moosavinasab S, Lin D, Lin S, Liu C: Multilevel Self-Attention Model and its Use on Medical Risk Prediction. *Pac Symp Biocomput* 2020, 25:115-126.

117. Zhang M, King CR, Avidan M, Chen Y: Hierarchical Attention Propagation for Healthcare Representation Learning. In: *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. Virtual Event, CA, USA: Association for Computing Machinery; 2020: 249–256.

118. Zheng K, Cai S, Chua HR, Wang W, Ngiam KY, Ooi BC: TRACER: A Framework for Facilitating Accurate and Interpretable Analytics for High Stakes Applications. In: *Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data*. Portland, OR, USA: Association for Computing Machinery; 2020: 1747–1763.

119. Thorsen-Meyer HC, Nielsen AB, Nielsen AP, Kaas-Hansen BS, Toft P, Schierbeck J, Strom T, Chmura PJ, Heimann M, Dybdahl L et al: Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. *Lancet Digital Health* 2020, 2(4):E179-E191.

120. Jane NY, Nehemiah KH, Arputharaj K: A Temporal Mining Framework for Classifying Un-Evenly Spaced Clinical Data: An Approach for Building Effective Clinical Decision-Making System. *Appl Clin Inform* 2016, 7(1):1-21.

121. Sarafrazi S, Choudhari RS, Mehta C, Mehta HK, Japalaghi OK, Han J, Mehta KA, Han H, Francis-Lyon PA: Cracking the “Sepsis” Code: Assessing Time Series Nature of EHR Data, and Using Deep Learning for Early Sepsis Prediction. In: *2019 Computing in Cardiology (CinC): 8-11 Sept. 2019 2019*; 2019: Page 1-Page 4.
122. Strauman AS, Bianchi FM, Mikalsen KØ, Kampffmeyer M, Soguero-Ruiz C, Jenssen R: Classification of postoperative surgical site infections from blood measurements with missing data using recurrent neural networks. In: 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI): 4-7 March 2018 2018; 2018: 307-310.

123. Köse T, Özgür S, Cosgun E, Keskinöglu A, Keskinöglu P: Effect of Missing Data Imputation on Deep Learning Prediction Performance for Vesicoureteral Reflux and Recurrent Urinary Tract Infection Clinical Study. BioMed Research International 2020, 2020:1895076.

124. Shao J, Jordan DC, Pritchett YL: Baseline observation carry forward: reasoning, properties, and practical issues. J Biopharm Stat 2009, 19(4):672-684.

125. Krawczyk P, Swiecicki L: ICD-11 vs. ICD-10 - a review of updates and novelties introduced in the latest version of the WHO International Classification of Diseases. Psychiatr Pol 2020, 54(1):7-20.

126. Current procedural terminology (CPT). JAMA 1970, 212(5):873-874.

127. Carter JS, Brown SH, Erlbaum MS, Gregg W, Elkin PL, Speroff T, Tuttle MS: Initializing the VA medication reference terminology using UMLS metathesaurus co-occurrences. Proc AMIA Symp 2002:116-120.

128. Lee D, Cornet R, Lau F, de Keizer N: A survey of SNOMED CT implementations. J Biomed Inform 2013, 46(1):87-96.

129. Charlson M, Szatrowski TP, Peterson J, Gold J: Validation of a combined comorbidity index. J Clin Epidemiol 1994, 47(11):1245-1251.

130. Liu S, Ma W, Moore R, Ganesan V, Nelson S: RxNorm: prescription for electronic drug information exchange. IT professional 2005, 7(5):17-23.

131. Huff SM, Rocha RA, McDonald CJ, De Moor GJ, Fiers T, Bidgood WD, Jr., Forrey AW, Francis WG, Tracy WR, Leavelle D et al: Development of the Logical Observation Identifier Names and Codes (LOINC) vocabulary. J Am Med Inform Assoc 1998, 5(3):276-292.

132. Peng X, Long G, Pan S, Jiang J, Niu Z: Attentive Dual Embedding for Understanding Medical Concepts in Electronic Health Records. In: 2019 International Joint Conference on Neural Networks (IJCNN): 14-19 July 2019 2019; 2019: 1-8.

133. Uriarte-Arcia AV, Lopez-Yanez I, Yanez-Marquez C: One-hot vector hybrid associative classifier for medical data classification. PLoS One 2014, 9(4):e95715.

134. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. Lake Tahoe, Nevada: Curran Associates Inc.; 2013: 3111–3119.

135. Choi E, Schuetz A, Stewart WF, Sun J: Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assoc 2017, 24(2):361-370.

136. Edward C, Mohammad Taha B, Andy S, Walter FS, Jimeng S: Doctor AI: Predicting Clinical Events via Recurrent Neural Networks. In.: PMLR; 2016: 301-318.

137. Choi E, Bahadori MT, Searles E, Coffey C, Thompson M, Bost J, Tejedor-Sojo J, Sun J: Multi-layer representation learning for medical concepts. In: Proceedings of the
138. Lu Q, Silva Nd, Kafle S, Cao J, Dou D, Nguyen TH, Sen P, Hailpern B, Reinwald B, Li Y: Learning Electronic Health Records through Hyperbolic Embedding of Medical Ontologies. In: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Niagara Falls, NY, USA: Association for Computing Machinery; 2019: 338–346.
139. Shivade C, Raghavan P, Fosler-Lussier E, Embi PJ, Elhadad N, Johnson SB, Lai AM: A review of approaches to identifying patient phenotype cohorts using electronic health records. Journal of the American Medical Informatics Association 2014, 21(2):221-230.
140. Suo QL, Ma FL, Yuan Y, Huai MD, Zhong WD, Gao J, Zhang AD: Deep Patient Similarity Learning for Personalized Healthcare. Ieee Transactions on Nanobioscience 2018, 17(3):219-227.
141. Harutyunyan H, Khachatrian H, Kale DC, Ver Steeg G, Galstyan A: Multitask learning and benchmarking with clinical time series data. Sci Data 2019, 6(1):96.
142. Amarasinghe K, Kenney K, Manic M: Toward Explainable Deep Neural Network Based Anomaly Detection. In: 2018 11th International Conference on Human System Interaction (HSI): 4-6 July 2018 2018; 2018: 311-317.
143. Rudin C: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence 2019, 1(5):206-215.
144. Lipton ZC: The mythos of model interpretability. Queue 2018, 16(3):31-57.
145. Ba J, Caruana R: Do deep nets really need to be deep? In: Advances in neural information processing systems: 2014; 2014: 2654-2662.
146. Bahdanau D, Cho K, Bengio Y: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:14090473 2014.
147. Luong M-T, Pham H, Manning CD: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:150804025 2015.
148. Shi PY, Hou F, Zheng XW, Yuan F: Analysis of electronic health records based on long short-term memory. Concurrency and Computation-Practice & Experience 2020, 32(14).
149. Chen P, Dong W, Wang J, Lu X, Kaymak U, Huang Z: Interpretable clinical prediction via attention-based neural network. BMC Med Inform Decis Mak 2020, 20(Suppl 3):131.
150. Kaji DA, Zech JR, Kim JS, Cho SK, Dangayach NS, Costa AB, Oermann EK: An attention based deep learning model of clinical events in the intensive care unit. PLoS One 2019, 14(2):e0211057.
151. Park HD, Han Y, Choi JH: Frequency-Aware Attention based LSTM Networks for Cardiovascular Disease. In: 2018 International Conference on Information and Communication Technology Convergence (ICTC): 17-19 Oct. 2018 2018; 2018: 1503-1505.
152. Organization WH: INTERNATIONAL CLASSIFICATION OF DISEASES—NINTH REVISION (ICD-9). Weekly Epidemiological Record= Relevé
Christodoulidis S, Anthimopoulos M, Ebner L, Christe A, Mougiakakou S: Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis. IEEE J Biomed Health Inform 2017, 21(1):76-84.

Parisi GI, Kemker R, Part JL, Kanan C, Wermter S: Continual lifelong learning with neural networks: A review. Neural Netw 2019, 113:54-71.

De Bois M, El Yacoubi MA, Ammi M: Adversarial multi-source transfer learning in healthcare: Application to glucose prediction for diabetic people. Comput Methods Programs Biomed 2021, 199:105874.

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision: 2017; 2017: 618-626.

He T, Guo J, Chen N, Xu X, Wang Z, Fu K, Liu L, Yi Z: MediMLP: Using Grad-CAM to Extract Crucial Variables for Lung Cancer Postoperative Complication Prediction. IEEE J Biomed Health Inform 2020, 24(6):1762-1771.

Laugel T, Lesot M-J, Marsala C, Renard X, Detyniecki M: The dangers of post-hoc interpretability: Unjustified counterfactual explanations. arXiv preprint arXiv:190709294 2019.

Rudin C, Chen C, Chen Z, Huang H, Semenova L, Zhong C: Interpretable machine learning: Fundamental principles and 10 grand challenges. arXiv preprint arXiv:210311251 2021.

Ahmad MA, Eckert C, Teredesai A: Interpretable machine learning in healthcare. In: Proceedings of the 2018 ACM international conference on bioinformatics, computational biology, and health informatics: 2018; 2018: 559-560.

Ustun B, Rudin C: Supersparse linear integer models for optimized medical scoring systems. Machine Learning 2016, 102(3):349-391.

Xie F, Chakraborty B, Ong MEH, Goldstein BA, Liu N: AutoScore: A Machine Learning-Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records. JMIR medical informatics 2020, 8(10):e21798-e21798.

Xie F, Ning Y, Yuan H, Goldstein BA, Ong MEH, Liu N, Chakraborty B: AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data. arXiv preprint arXiv:210606957 2021.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I: Attention is all you need. arXiv preprint arXiv:170603762 2017.

Tolstikhin I, Houlsby N, Kolesnikov A, Beyer L, Zhai X, Unterthiner T, Yung J, Keyser S, Uszkoreit J, Lucic M: Mlp-mixer: An all-mlp architecture for vision. arXiv preprint arXiv:210501601 2021.
Figure 1: Literature selection flow of deep learning models in temporal EHR data

Figure 2: Summarized statistics for all included papers
Abbreviation:

ANN Artificial Neural Network
AUC Area Under Curve
Bi-LSTM Bi-directional Long Short-Term Memory
Bi-RNN Bi-directional Recurrent Neural Network
BOW Bag of Words
BPR Bayesian Personalized Ranking
CEL Cross-entropy Loss
cFSGL Least Convex Fused Group Lasso
CNN Convolutional Neural Network
DAE Denoising Autoencoder
DDI Drug-Drug Interaction
DPCA Binary Coding with Dimensionality Reduction
DT Decision Tree
EM Expectation Maximization
F1 F1 score
F2 F2 score
FFL Feed-Forward Layer
FNR False Negative Rate
FPR False Positive Rate
GAN Generative Adversarial Network
GBDT Gradient Boosting Decision Tree
GBM Gradient Boosting Machine
GBRT Gradient Boosting Regression Tree
GCN Graph Convolutional Network
GMM Gaussian Mixture Model
GNN Graph Neural Network
GRAM Graph-based Attention Model
GRU Gated Recurrent Unit
HP Hawkes Process
KNN K-nearest neighbors method
LDA Latent Dirichlet Allocation
LM Linear Model
LR Logistic Regression
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MCC Matthews Correlation Coefficient
MEWS Modified Early Warning Score
MF MissForest
MLP Multi-Layer Perceptron
Mod Modularity
MSE Mean Squared Error
NBN Naive Bayesian Network
nFSGL Least Non-Convex Fused Group Lasso
NMI Normalized Mutual Information
PCA Principal Component Analysis
PPV Positive Predictive Value
PRC Precision Recall curve
RBM Restricted Boltzmann Machine
RF Random Forest
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic Curve
SDAE-SM SDAE appending a softmax layer
Sensitivity = Recall
SIRS systemic inflammatory response syndrome
SOFA Sequential Organ Failure Assessment
Spec Spectral Clustering
SVM Support Vector Machine
TANN Time-aware neural network
TCN Temporal Convolutional Network
TNR True Negative Rate
TPR True Positive Rate
Appendix

eTextbox: Search strategy for each database

PubMed
('deep learning' OR 'neural network' OR 'deep' OR 'CNN' OR 'RNN' OR 'LSTM')
AND ('embed' OR 'embedding' OR 'representation' OR 'time series' OR 'sparse' OR 'temporal' OR 'concept' OR 'sequential' OR 'attention') AND ('electronic health record' OR 'EHR' OR 'EHRs' OR 'electronic medical record' OR 'EMR' OR 'EMRs')

IEEE Xplore
('deep learning' OR 'neural network' OR 'deep' OR 'CNN' OR 'RNN' OR 'LSTM')
AND ('embed*' OR 'representation' OR 'time series' OR 'sparse' OR 'temporal' OR 'concept' OR 'sequential' OR 'attention') AND ('electronic health record*' OR 'EHR*' OR 'EHRs' OR 'electronic medical record*' OR 'EMR*')

ACM Digital Library
("deep learning" OR "neural network" OR "deep" OR "CNN" OR "RNN" OR "LSTM") AND ("embed" OR "representation" OR "time series" OR "sparse" OR "temporal" OR "concept" OR "sequential" OR "attention") AND ("electronic health record" OR "EHR" OR "EHRs" OR "electronic medical record" OR "EMR")

Web of Science
((TS = (deep learning OR neural network OR deep OR CNN OR RNN OR LSTM))
AND (TS = (embed* OR representation OR time series OR sparse OR temporal OR concept OR sequential OR attention)) ANd (TS = (electronic health record OR EHR OR electronic medical record OR EMR)))

Embase
("deep learning" OR "neural network" OR "deep" OR "CNN" OR "RNN" OR "LSTM") AND ("embed" OR "representation" OR "time series" OR "sparse" OR "temporal" OR "concept" OR "sequential" OR "attention") AND ("electronic health record" OR "EHR" OR "EHRs" OR "electronic medical record" OR "EMR")