Selection of herbal therapeutics against deltatoxin mediated Clostridial infections

Sinosh Skariyachan¹*, Arpitha Badarinath Mahajanakkatı², Narasimha Sharma¹, Murugan Sevanan²

¹R & D Center, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore-560 078, Karnataka, India; ²Department of Biotechnology, Karunya University, Coimbatore- 641 114, Tamilnadu, India; Sinosh Skariyachan - Email: sinoshskariya@gmail.com; Phone: +91 9739654015, +91 8042161748 (Off); Fax: 080-42161747; *Corresponding author

Received July 25, 2011; Accepted July 29, 2011; Published August 02, 2011

Abstract:
Clostridium perfringens (a versatile pathogenic bacterium) secretes enterotoxins (the deltatoxin, virulent factor) and causes food borne gastroenteritis and gas gangrene. The organism was isolated and characterized from improperly cooked meat and poultry samples. The isolated organism showed multiple drug resistance indicating that the treatment is challenging. Hence, there is need for improved therapeutic agents. The rational design of improved therapeutics requires the crystal structure for the toxin. However, the structure for the toxin is not yet available in its native form. Thus, we modeled the toxin structure using α-hemolysin of Staphylococcus aureus (PDB: 3M4D chain A) as template. The docking of the toxin with the herbal extract curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) showed a binding energy of -8.6 Kcal/mol, in comparison to the known antibiotic Linezolid with binding energy of -6.1 Kcal/mol. This data finds application in the design and development of novel compounds against the deltatoxin from Clostridium perfringens.

Keywords: Clostridium perfringens, multidrug resistance, deltatoxin, molecular docking, design, curcumin

Background:
Clostridium perfringens is a gram-positive, anaerobic, spore forming and pathogenic bacterium. The bacterium belongs to major intestinal flora of human and animal. The pathogenesis of the organism includes gas gangrene, necrotizing fasciitis, diarrhea brain abscesses in pigs, calves, chickens, and other animals. The rapid generation time and heat resistance ability makes the organism a major food-borne pathogen [1]. The outbreak of Clostridium perfringens is regarded as the second most bacterial food poisoning in USA and UK, where cases occurring annually are 250,000 and 85,000 respectively [2]. Economic losses due to medical care and productivity loss from single food poisoning amount to several hundred million dollars per year [3]. The major virulent factors involved in gastroenteritis and other infections are extracellular toxins produced by the bacteria. C. perfringens is classified into five serotypes (A, B, C, D and E) based on the type of enterotoxins. Type A and C strains are the most dangerous pathogens as it is implicated in human diseases. Type A strains cause the most destructive disease called gas gangrene which is characterized by rapid destruction of tissue with the production of gas. Type B, C, D and E are mainly responsible for veterinary infections [4].

Deltatoxin is one of the five hemolysins released by most of the Clostridium perfringens which plays most important role in the gas gangrene and gastroenteritis. The organism is developing resistance to most conventional classes of known antibiotics and has emerged as “superbugs”. So there is an emergency to address the problem by finding better therapeutic substances which could replace the antibiotics. The active substances present in many medicinal plants could be used as therapeutic alternatives against Clostridial infections [5]. The native structure of the deltatoxin was not reported in the structural databases. Homology modeling is a computer aided approach to generate all possible folds and conserved motifs responsible for the actual function of proteins. It has proven to be the method of choice to generate a reliable 3D model of a protein from its amino acid sequence (target) by identifying a homologous protein with a known structure (template). The comparative modeling of hypothetical protein consists of target selection, template identification, fold assignment, structural alignment, model building and model evaluation [6]. Prediction of receptor-ligand interaction is the fundamental concept of drug designing. Structure prediction enables to explain the mechanisms of interaction between G-protein coupled receptors and variety of ligands, enzymes, ion channels and current drugs. 3D model prediction and target identification have profound scope in the field of new generation drug development process [7]. The prediction of putative protein–ligand binding conformations by computational docking has pronounced impact for discovering new generation lead molecules.

Methodology:
Microbial characterization and study of multidrug resistance:
Clostridium perfringens is a hyperthermophilic bacteria and it survives in any kind of food items cooked improperly. A total of 32 fried samples of meat (10 samples), chicken and poultry (12 samples each) were collected from different regions of Coimbatore, India. The presumptive detection of Clostridium perfringens was carried out by pour plate method on selective Tryptose Sulphate Cycloserine (TSC) agar. The confirmed and completed tests were performed by standard microbiological and biochemical tests. There are reports that many bacteria developed multiple drug resistance towards conventionally used antibiotics and emerged as “superbugs”. The antibiotics sensitivity testing with the isolated organisms is a critical step to understand the drug resistance.
and new drug discovery mechanisms. Hence, the isolated organism is tested for antibiotic sensitivity patterns by Kirby-Bauer disc diffusion method.

Computer aided drug discovery:

Since the isolated organism showed resistance to many antibiotics, the drug of choice against the infection became limited. Thus, a novel approach to be developed to design new therapeutic substances; one such method is called computer aided screening. Deltatoxin is the major virulent factor and probable drug target. So the structural studies and fold recognition of deltaxxin is critical step to develop new lead molecules. But the crystal structure of deltaxxin is not present in its native form. The 3D structure of toxin could be modelled by comparative modeling using its amino acid sequence.

Sequence retrieval and template selection:
The amino acid sequence of deltaxxin was retrieved from GenBank (GI: 194719328) [8]. Since the quality of the model depends on the availability of good template, it is important to identify the best template structure. The best homologous protein was selected by PSI-BLAST [9] based on the percentage of identity and similarity. A multiple sequence alignment has been performed by T-COFFEE [10] to analyze the evolutionary conservation among the sequences. The phylogenetic characterization was carried out using NJ PLOT [11]. All these steps are essential factors for the selection of best template.

Model building and validation:
The crystal structure of drug target (Deltaxxin) is not available in its native form. Thus, the protein was modeled using MODELLER 9v9. It is based on satisfaction of spatial restraints derived from the alignment and Probability Density Functions (PDFs) [7]. The X-ray crystal structure of α-hemolysin [12] of Staphylococcus aureus (PDB ID: 3M4D, Chain A) was identified as the best template. The initial model building and structural alignment was performed and the modeled protein was visualized using UCSF CHIMERA [13]. Energy minimization of the generated model was done through CHARMM [14], Quasi-Newton Mechanics [15] and GBSA Surface Potential [16]. Parameters like covalent bond distances and angles; stereo-chemical validation and atom nomenclature were validated using PROCHECK [17] and overall quality factor of non-bonded interactions between different atoms types were calculated by ERRAT program [18]. DaliliTe [19] is used to calculate Root Mean Square Deviation (RMSD) between the set of targets and template protein to see how much modeled protein deviates from the template protein structure. The hypothetical model was then deposited to Protein Model Data Base.

Discussion:
The improper cooking of food items, especially meat and meat products, results in the survival of hyperthermophilic Clostridia which may cause gastroenteritis and other health hazards. We have isolated and characterized Clostridium perfringens from fried samples of meat products (Table 1 See supplementary material). We have noticed that the food samples were consumed by lots of people without any hygienic practices that may result in sudden outbreak of food poisoning. The isolated organism from the collected samples is illustrated in Figure 1A; the organism produces black colored colonies on the selective TSC medium. The virulent factors of the organism are enterotoxins, mainly delta, which is characterized by lecithinase activity, a zone of inhibition around the colonies due to toxin production, is illustrated in Figure 1B. The major problem pointed in this study is the necessity to develop other therapeutic substances, because the isolated organism is resistant to many antibiotics and treatment with conventional drug becomes challenging in future. We have tested the antibiotic sensitivity patterns of isolated bacteria, illustrated in Figure 1C. The antibiogram clearly showed that the organism is resistant to Streptomycin, Polymyxin-B and Amphotericin-B and moderately sensitive to Bacitracin, Erythromycin and Vancomycin which are all currently used drugs against the infection.

Computer aided screening is an ideal platform to develop novel compounds against many diseases. As mentioned deltaxxin is the major virulent factor for the infections caused by Clostridium perfringens. The 3D structure of deltaxxin is not available but it is very essential for rational drug discovery. We have identified all the possible folds and generated a 3D model of deltaxxin from its protein sequence (GenBank; GI: 194719328) by comparative modeling. The protein has 318 amino acids and encodes transposase genes (957 bps) which act as major functional element of the toxin.
The best template for homology modeling, selected based on the similarity search and phylogenetic characterization is shown in Figure 2 A & 2C. Out of six homologous sequences, the crystal structure of M113N mutant of α-hemolysin of Staphylococcus aureus (PDBID: 3M4D, chain A) was identified as best template with 33% identity and 53% similarity. The resolution of template structure was 1.9 Å and R value was 0.24. The molecular weight is 35,520 kDa and it consists of 293 amino acids. The secondary structure prediction revealed that 56.29% of random coil, 31.13% of extended strands, 7.86% of alpha helices and 4.72% of beta turns. The toxin consists of a hydrophobic transmembrane helix between the amino acids 40 and 57. The generated 3D model is illustrated in Figure 2B. The model has same structural conformation as the template which is very essential for receptor – ligand interaction. The 3D model is refined using energy minimization by molecular dynamic methods such as CHARMM, Quasi-Newton Mechanics and GBSA surface potential, given the stable conformation of the model. The Ramachandran plot (generated by PROCHECK) validated the quality of homology model, 87.9% residues are in most favored region implies the quality of the model is good. The overall quality factor of non-bonded interactions between different atoms identified by ERRAT was 58.3%. The backbone RMSD estimated from superimposition of the template and target was found to be 1.2 Å also reveals the quality of the model is good. The model was deposited to Protein Model Database, a repository of storing manually built 3D models of proteins, and it can be downloaded by PMID 076541.

Figure 3: Docked structures of Curcumin (A) and Linezoid (B) with deltatoxin. Turmeric compound Curcumin showed better binding affinity to deltatoxin than Linezoid explains the therapeutic value of plant compounds over antibiotics. The ligand – receptor interaction in the case of Curcumin is stabilized by two H bonds (represented as green colored stick, length-1.815 Å and 2.245 Å) and the amino acid residues interacting are LYS140, THR142, THR148, ASN186, THR 187, LEU246 and SER252 making the interaction stronger and stable (A). The binding energy of docked complex was found to be -8.6 kcal/mol implies more stable docking. The interaction of Linezoid and deltatoxin is stabilized by only one H bond (green colored stick, length-1.815 Å) and the amino acid residues interacting are LYS140, THR142, THR148, ASN186, THR 187, LEU246 and SER252 making the interaction more stronger and stable (B). The calculated logP value should be less than 5 and the molecular weight should be less than 500 g/mol. All compounds satisfied the rule and the molecules were subjected to docking studies (Table 2 See supplementary material). Out of 70 molecules tested, Curcumin, Eugenol, Palmitame, Eucalyptol and Chrysin showed best interactions with deltatoxin whose binding energies are -8.60 kcal/mol, -6.18 kcal/mol, -5.72 kcal/mol, -5.69 kcal/mol and 5.42 kcal/mol respectively. Curcumin, a curcuminoid, isolated from Indian spice turmeric (Curcuma longa) was the best inhibitor than the antibiotic Linezoid. The docked complex is stabilized by two hydrogen bonds and the interacting amino acids are LYS140, THR142, THR148, ASN186, THR 187, LEU246 and SER252 which are illustrated in Figure 3 A. The interactions between Linezolid and deltatoxin were ASP184, THR185, THR187, THR201, SER 244, SER 245, LEU246 and it is stabilized by one hydrogen bond illustrated in Figure 3B. The interactions with the antibiotics were not stable enough to produce good docked conformations compared to plant derived molecules. The docking studies clearly explains Curcumin is interacting more efficiently with deltatoxin than antibiotic Linezoid and it could be a new lead molecule against the deltatoxin mediated clostridial infection. Similarly the other plant molecules tested in the study can also be used as therapeutic alternatives because it is more effectively interacting with deltatoxin than antibiotics.

Conclusion: The study concluded that computer aided drug discovery is an emerging and effective alternative for identification of novel therapeutic substances. Several naturally available herbal compounds are identified and their effectiveness against Clostridial infection is tested by molecular docking. Curcumin, Eugenol and similar kinds of herbal based compounds were identified to be effective inhibitors against deltatoxin. The binding energies of herbal based compounds are less than that of antibiotics hence, herbal medicines could solve all problems of multiple drug resistance by many bacteria. The study also helpful for pharmaceutical sectors as computer aided screening would reduce the complexities involved in the discovery and development of new lead molecules.

References:

1. Miyamoto K et al. PLOS One. 2011 6: e20376 [PMID: 21655254]
2. Lindström M et al. Food Microbiol. 2011 28: 192 [PMID: 21351973]
3. Li J & McClane BA. PLoS Pathog. 2008 4: e1000056 [PMID: 18451983]
4. Sengupta N et al. Infect Immun. 2010 78: 3957 [PMID: 20605988]
5. Woodford N & Livermore DM. J Infect. 2009 59 Suppl 1: S4 [PMID: 19766888]
6. Kelm S et al. Bioinformatics 2010 26: 2833 [PMID: 20926421]
7. Hopkins AL & Groom CR. Nat Rev Drug Discov. 2002 1: 727 [PMID: 12209152]
8. Manich M et al. PLOS One. 2008 3: e3746 [PMID: 19018299]
9. Johnson M et al. Nucleic Acids Res. 2008 36: W5 [PMID: 18440982]
10. Notredame C & Gouy M. Biochimie. 1996 78: 364 [PMID: 8905155]
11. Banesrjea A et al. Proc Natl Acad Sci U S A. 2010 107: 8165 [PMID: 20406691]
12. Pettersen EF et al. J Comput Chem. 2004 25: 1605 [PMID: 15264254]
13. Brooks BR et al. J Comput Chem. 2009 30: 1545 [PMID: 19444816]
14. Ulrich P et al. Proteins. 1997 27: 367 [PMID: 9694739]
15. Onufriev A et al. J Comput Chem. 2002 23: 1297 [PMID: 12213412]
16. Laskowski RA J Appl Cryst. 1993 26: 283
17. Colovos C & Yeates TO. Protein Sci. 1993 2: 1511 [PMID: 8401235]
18. Holm L & Park J. Bioinformatics 2000 16: 566 [PMID: 10980157]
19. Morris GM et al. J Comput Aided Mol Des. 1996 10: 293 [PMID: 8877701]

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.
Supplementary material:

Table 1: The biochemical characterization of isolated organism. Black colored colonies on TSC plate, β-hemolytic colony characterized by double zone of inhibition, growth at strict anaerobic condition, stormy fermentation and lecithinase activity are confirmed that the isolated organisms from various fried food samples were *Clostridium perfringens*.

Name of the test	Observed results
Growth conditions	Strict anaerobic at 37°C
Growth in selective TSC agar	Black colour colonies
Gram staining	Gram positive, large rods
Motility	Non motile
Spore staining	Presence of spores
Capsule staining	Presence of capsule
Blood agar	β-hemolytic, double zone of haemolysis
Iron milk test	Presence of stormy fermentation
Nitrate reduction	Reduced nitrate to nitrite
Lactose gelatin medium	Lactose fermentation and acid production
Gelatin liquefaction	Liquefied gelatin after 48 hrs.
Indole	Negative
Methyl red	Positive
Vogus Proskauer	Negative
Hydrogen Sulphide	Positive
Carbohydrate Formation	Ferment glucose, sucrose, lactose, maltose produced acid and gas
Egg-yolk milk agar	Lecithinase activity is observed
Toxin production	Positive

Table 2: The binding energies (kcal/mol) of various plant derived compounds with deltatoxin after molecular docking. All molecules satisfy the drug likeness properties evaluated by Lipinski rule of 5 showing zero violation. Curcumin, Eugenol, Palmitine, Eucalyptol, Chrysin etc. have high ability to interact with the target protein than antibiotics (not shown in the table, the binding energies of five antibiotics used in the study are Linezolid-6.08, Clindamycin-5.49, Penicillin-5.01, Chloramphenicol-4.17 and Metronidazole-3.67 kcal/mol). Our study concluded that plant derived compounds have better efficiency to bind the toxin than antibiotics; Curcumin is best plant extract than the antibiotic Linezolid.

Plant Extracts & Source of the Medicinal Plant	Common Name & Accession Number of ligand (Chemspider Database)	Docking Binding Energy (kcal/mol)
Curcumin Curcuma longa 0 839564 8.59		
Eugenol Commiphora myrrha 0 13876103 6.18		
Palmitine Phellodendron amurense 0 17947 5.72		
Eucalyptol Eucalyptus globulus 0 21111689 5.69		
Chrysin Passiflora coerulea 0 4444926 5.42		
Thujone Citrus reticulata var. madurensis 0 229574 5.33		
Violaxanthin Curcubita pepo 0 395237 5.23		
Warfarin Anthoxanthum odoratum 0 10442445 5.22		
Lutein Curcubita pepo 0 4444655 5.20		
Borneol Cymbopogon nardus 0 5026296 5.16		
Artemisia Artemisia annua 0 58542 5.14		
Bergapten Citrus aurantium 0 2265 5.09		
Bergyl Alcohol Hupanes sasianensis 0 6919 5.07		
Pinene Aniba rosaedora 0 6402 5.06		
Cadinane Commiphora myrrha 0 7827631 5.01		
Ficus Ficus septica 0 5964 5.01		
Ledol Eucalyptus polybractea 0 91904 4.98		
Cedrol Cupressus sempervirens 0 59018 4.92		
Phellandrene Eucalyptus polybractea 0 7180 4.89		
Limonene Citrus reticulata var. madurensis 0 20939 4.79		
Osthole Citrus aurantium 0 9811 4.66		
Carvophyllene Cymbopogon martini 0 4444848 4.57		
Harmane Passiflora coerulea 0 4444755 4.57		
Asarone Coriandrum sativum 0 52532 4.49		
Neocnidilide Apium graveolens 0 2341004 4.42		
Theophylline Camellia sinensis 0 2068 4.35		
Carvacrol Origanum vulgare 0 21105867 4.31		
Coumaric acid Leptospernum polygalloflium 0 553146 4.3		
Theobromine Theo broma cocoa 0 5236 4.28		
Chemical Name	Plant Name	Plant Family
--------------------	-----------------------------	-----------------------
Pinocarvone	Eucalyptus polybractea	Eucalyptus
3,4-Dihydroxy-2-cinnamic Acid	Melissa officinalis	Lemon balm
Senkyunolide	Apium graveolens	Garden celery
Carveol	Eucalyptus polybractea	Eucalyptus
Cuminaldehyde	Commiphora myrrha	Gum myrrh
Methylisoeugenol	Daucus carota	Carrot
Terpinenol	Artemisia princeps	Japanese mugwort
Linalool	Cupressus sempervirens	Italian cypress
Anisic acid	Pimpinella anisum	Flowering plant
Carvone	Eucalyptus polybractea	Eucalyptus
Apiol	Apium graveolens	Garden celery
Capsaicin	Capsicum species	Capsicum
Cryptone	Angelica archangelica	Angelica
Caffeic Acid	Melissa officinalis	Lemon balm
Ocimene	Apium graveolens	Celery
Methyleugenol	Daucus carota	Carrot
Niacin	Vitis vinifera	Grape
Geranyl Acetate	Cymbopogon nardus	Lemon grass
Verbene	Eucalyptus polybractea	Eucalyptus
Thymol	Thymus vulgaris	Thyme
Camphene	Angelica archangelica	Angelica
Carene	Angelica archangelica	Angelica
Estragole	Artemisia dracunculus	Dragon’s-wort
Cinnamaldehyde	Cinnamomum species	Cinnamon
Neryl Acetate	Citrus aurantifolia	Citrus fruits
Terpinolene	Citrus reticulata var.	Variety of the Mandarin orange
Cymene	Angelica archangelica	Angelica
Catechol	Monososa catechu	Black cutch
Methyl Benzoate	Antirrhium majus	Snapdragon
Methylanisole	Amorphophallus albophaspathus	Bagana (grown in Ethiopia)
Sabenene	Apium graveolens	Garden celery
Citral	Cymbopogon nardus	Lemon grass
Cinnamyl alcohol	Cinnamomum species	Cinnamon
Methylypyrrolidine	Solanaceae families	Flowering plants
Cresol	Commiphora myrrha	Gum myrrh
Citronellol	Cymbopogon nardus	Lemon grass
Berberine Sulfate	Berberis vulgaris	Barberry
Geraniol	Cymbopogon nardus	Lemon grass
Myrcene	Citrus paradisi	Grape fruit
Decenol	Brassica oleracea	Cabbage
Berberine Iodide	Mahonia aquifolium	Oregon-grape