Constructing Premaximal Binary Cube-free Words of Any Level

Elena A. Petrova
Ural Federal University
Ekaterinburg, Russia
captain@akado-ural.ru

Arseny M. Shur
Ural Federal University
Ekaterinburg, Russia
arseny.shur@usu.ru

We study the structure of the language of binary cube-free words. Namely, we are interested in the cube-free words that cannot be infinitely extended preserving cube-freeness. We show the existence of such words with arbitrarily long finite extensions, both to one side and to both sides.

1 Introduction

The study of repetition-free words and languages remains quite popular in combinatorics of words: lots of interesting and challenging problems are still open. The most popular repetition-free binary languages are the cube-free language CF and the overlap-free language OF. The language CF is much bigger and has much more complicated structure. For example, the number of overlap-free binary words grows only polynomially with the length \cite{8}, while the language of cube-free words has exponential growth \cite{3}. The most accurate bounds for the growth of OF is given in \cite{6} and for the growth of CF in \cite{13}. Further, there is essentially unique nontrivial morphism preserving OF \cite{10}, while there are uniform morphisms of any length preserving CF \cite{5}. The sets of two-sided infinite overlap-free and cube-free binary words also have quite different structure, see \cite{12}.

Any repetition-free language can be viewed as a poset with respect to prefix, suffix, or factor order. In case of prefix [suffix] order, the diagram of such a poset is a tree; each node generates a subtree and is a common prefix [respectively, suffix] of its descendants. The following questions arise naturally. Does a given word generate finite or infinite subtree? Are the subtrees generated by two given words isomorphic? Can words generate arbitrarily large finite subtrees? For some power-free languages, the decidability of the first question was proved in \cite{4} as a corollary of interesting structural properties. The third question for ternary square-free words constitutes Problem 1.10.9 of \cite{1}. For all \(k \)th power-free languages, it was shown in \cite{2} that the subtree generated by any word has at least one leaf. Note that considering the factor order instead of the prefix or the suffix one, we get a more general acyclic graph instead of a tree, but still can ask the same questions about the structure of this graph. For the language OF, all these questions were answered in \cite{11,14}, but almost nothing is known about the same questions for CF.

In this paper, we answer the third question for the language CF in the affirmative. Namely, we construct cube-free words that generate subtrees of any prescribed depth and then extend this result for the subgraphs of the diagram of factor order.

2 Preliminaries

Let us recall necessary notation and definitions. We consider finite and infinite words over the binary alphabet \(\Sigma = \{a, b\} \). If \(x \) is a letter, then \(\bar{x} \) denotes the other letter. By default, “word” means a finite word.
Words are denoted by uppercase characters (to denote one-sided infinite words, we add the subscript \(\infty \) at the corresponding side). We write \(\lambda \) for the empty word, and \(|W| \) for the length of the word \(W \). The letters of nonempty finite and right-infinite words are numbered from 1; thus, \(W = W(1)W(2) \cdots W(|W|) \). The letters of left-infinite words are numbered by all nonnegative integers, starting from the right.

We use standard definitions of factors, prefixes, and suffixes of a word. The factor \(W(i) \cdots W(j) \) is written as \(W(i \ldots j) \). A positive integer \(p \leq |W| \) is a period of a word \(W \) if \(W(i) = W(i+p) \) for all \(i \in \{1, \ldots, |W|−p\} \). The minimal period of \(W \) is denoted by \(\text{per}(W) \). The exponent of a word is the ratio between its length and its minimal period: \(\exp(W) = |W|/\text{per}(W) \). Words of exponent 2 and 3 are called squares and cubes, respectively. The local exponent of a word is the number \(\exp(W) = \sup \{\exp(V) | V \text{ is a factor of } W\} \). Periodic words possess the interaction property expressed by the textbook Fine and Wilf theorem: if a word \(U \) has periods \(p \) and \(q \), and \(|U| \geq p + q - \gcd(p, q) \), then \(U \) has the period \(\gcd(p, q) \).

A word \(W \) is \(\beta \)-free \(\left[\beta^+ \text{-free} \right] \) if \(\exp(W) < \beta \) \left[\text{respectively, } \exp(W) \leq \beta \right] \). The 3-free words are called cube-free, and the \(2^+ \)-free words are overlap-free. The language of all cube-free \(\left[\text{overlap-free} \right] \) words over \(\Sigma \) is denoted by CF \(\left[\text{respectively, OF} \right] \). A morphism \(f : \Sigma^+ \rightarrow \Sigma^+ \) avoids an exponent \(\beta \) if the condition \(\exp(U) < \beta \) implies \(\exp(f(U)) < \beta \) for any word \(U \). The following theorem allows one to check cube-freeness of a morphism over the binary alphabet.

Theorem 1 \([9]\). A morphism \(f : \Sigma^+ \rightarrow \Sigma^+ \) is cube-free if and only if the word \(f(aabbababbababaababaabb) \) is cube-free.

The Thue–Morse morphism \(\theta \) is defined over \(\Sigma^+ \) by the rules \(\theta(a) = ab \), \(\theta(b) = ba \). The words

\[
T_n^a = \theta^n(a), \quad T_n^b = \theta^n(b) \quad (n \geq 0)
\]

are called Thue–Morse blocks or simply \(n \)-blocks. From the definition it follows that \(T_{n+1}^a = T_n^aT_n^b \). Hence, the sequences \(\{T_n^a\} \) and \(\{T_n^b\} \) have “limits”, which are right-infinite Thue–Morse words \(T_n^a \) and \(T_n^b \), respectively. We also consider the reversal \(\overline{aT} \) of \(T_n^a \). The factors of Thue–Morse words are Thue–Morse factors; the set of all these factors is denoted by TM. Note that any word in TM can be written as \(W = xQ_1 \cdots Q_n y \), where \(x, y \in \Sigma \cup \{\lambda\}, Q_1, \ldots, Q_n \in \{ba, ab\} \). It is known since Thue \([15]\) that TM \(\subset \) OF.

Let \(L \subset \Sigma^* \) and \(W \in L \). Any word \(U \in \Sigma^* \) such that \(UW \in L \) is called a left context of \(W \) in \(L \). The word \(W \) is left maximal \(\left[\text{left premaximal} \right] \) if it has no nonempty left contexts \(\left[\text{respectively, finitely many left contexts} \right] \). The level of the left premaximal word \(W \) is the length of its longest left context; thus, left maximal words are of level 0. The right counterparts of the above notions are defined in a symmetric way. We say that a word is maximal \(\left[\text{premaximal} \right] \) if it is both left and right maximal \(\left[\text{respectively, premaximal} \right] \). The level of a premaximal word \(W \) is the pair \((n, k) \in \mathbb{N} \) such that \(n \) and \(k \) are the length of the longest left context of \(W \) and the length of its longest right context, respectively.

In particular, a word \(W \in \text{CF} \) is maximal if by adding any of the two letters on the left or on the right we obtain a cube. The word \(aabaabaa \) is an example of such a word.

The aim of this paper is to prove the following theorems:

Theorem 2. In CF, there exist left premaximal words of any level \(n \in \mathbb{N}_0 \).

Theorem 3. In CF, there exist premaximal words of any level \((n, k) \in \mathbb{N}_0^2 \).

3 Construction of premaximal words

Theorem 2 is proved by exhibiting a series of left premaximal words, containing words of any level. The series is constructed in two steps:
1. building an auxiliary series \(\{W_n\}_0^\infty \) such that each word \(W_n \) has, up to one easily handled exception, a unique left context of any length \(\leq n \);

2. completing the word \(W_n \) to a left premaximal word \(W_n^\prime \).

If a word \(W \in \text{CF} \) has a unique left context of length \(n \), say \(U \), and two left contexts of length \(n+1 \), then we say that \(U \) is the fixed left context of \(W \) (see the picture below).

\[
\begin{array}{c}
\vdots \\
\vdots \\
U \\
W
\end{array}
\]

Example 1. Let \(W = aabaaba \). Since \(aW = aaaa \ldots \), \(abW = (aba)^3 \), but \(aabbW, babbW \in \text{CF} \), we see that the fixed left context of the word \(W \) equals \(abb \).

Now let us explain step 1. We build the series \(\{W_n\}_0^\infty \) inductively, one word per iteration, in a way that the fixed left context \(X_n \) of the word \(W_n \) is of length \(\geq n \) (we will discuss the mentioned exception at the moment of its appearance). We put \(W_0 = aabaaba \) and note that the left-infinite word \(a\infty Tabaaba = \ldots abbabaabbaababbW_0 \) is cube-free. So, we require that each word \(W_n \) satisfies the following properties:

(W1) \(W_n \) starts with \(W_0 \);
(W2) any word \(a\infty T(k \ldots 1) \) is a left context of \(W_n \);
(W3) some word \(a\infty T(k \ldots 1) \) with \(k \geq n \) is the fixed left context of \(W_n \), denoted by \(X_n \);
(W4) if \(|X_n| > n \), then \(W_{n+1} = W_n \) (trivial iterations).

The basic idea for obtaining \(W_{n+1} \) from \(W_n \) at nontrivial iterations is to let

\[
W_{n+1} = \underbrace{W_n_{x}X_nW_n_{x}X_nW_n}_{(1)}
\]

where \(x \) is the letter “prohibited” at the \((n+1)\)th iteration, i.e. \(xX_n \) certainly is not a left context of \(W_{n+1} \). Thus, the fixed left context of \(W_{n+1} \) is longer than the one of \(W_n \) by definition.

Remark 1. An attempt to build the series \(\{W_n\}_0^\infty \) directly by \((1) \) fails because cubes will occur at the border of some words \(W_n \) and \(xX_n \). For instance, let us construct the word \(W_4 \). We have \(W_3 = W_0 \) in view of (W4) and Example \(7 \). \(X_3 = abb \), and the context \(aabb \) should be forbidden in view of (W2), because \(a\infty T(4 \ldots 1) = babb \). So, \(x = a \) and the word \(W_3xX_3 \) has the factor \(aaaa \).

A way out from this situation is the following idea: we insert a special “buffer” word after each of three occurrences of \(W_n \) in \((1) \). This insertion allows us to avoid local cubes at the border. Below we use the following notation:

- \(P_n' = xX_n \), \(P_n = \bar{x}X_n \), where \(x \) is the letter, prohibited at the \((n+1)\)th iteration; thus, \(P_n \in \text{TM} \);
- \(S_n \) is the word inserted after \(W_n \) at the \((n+1)\)th iteration;
- \(S_n' = S_0S_1 \ldots S_n \) is the factor of \(W_{n+1} \) between \(W_0 \) and the nearest occurrence of \(P_n' \);
- \(W_n' = P_n'W_nS_n \).
In these terms, we have the following expressions for W_{n+1} for any nontrivial iteration:

$$W_{n+1} = W_n S_n x X_n W_n S_n x X_n W_n S_n$$ \hspace{1cm} (2a)

$$W_{n+1} = W_n S_n P_n W_n S_n P_n W_n S_n$$ \hspace{1cm} (2b)

The structure of the word W_{n+1} imposes the following restrictions on the words S_n and S_{n+1}:

1. Since the word $X_{n+1} W_{n+1} S_{n+1}$ is a factor of W_{n+2}, X_{n+1} ends with X_n, and $X_n W_{n+1} x = (X_n W_n x)^3$ by (2a), the word S_{n+1} must start with \bar{x}, which is the first letter of P_n;

2. Since the word $x X_n$ is a factor of W_{n+1}, if X_n starts with $x [\bar{x} x]$ then S_n ends with \bar{x} [respectively, x]. (Recall that $X_n \in \mathcal{T}$ is an overlap-free word, whence any other prefix of X_n does not restrict the last letter of S_n.)

Thus, our first goal is to find the words S_n satisfying (S1) and (S2) such that all words S_n' are cube-free. In other words, we have to construct a cube-free right-infinite word $S_n' = S_0 S_1 \cdots S_n \cdots$. The following lemma is easy.

Lemma 1. The letters $\bar{a} T(n)$ and $\bar{a} T(n-1)$ coincide if and only if $n = m \cdot 2^k$ for some odd integers m and k.

Remark 2. If the only left context of length n of the word W_n begins with xx, then $|X_n| > n$, because the letter before xx is also fixed. Thus, by (W4) we have $W_{n+1} = W_n$ (and then $S_n = \lambda$) for all values of n mentioned in Lemma 1. For all other values of $n (n > 3)$, the iterations will be nontrivial.

While constructing the word S_n' we follow the next four rules:

1. For all nontrivial iterations, $S_n \in \{T_1^x, T_2^x T_2^x, T_3^x, T_2^x T_1^x T_1^x, T_1^x T_2^x | x \in \Sigma \}$; hence, $S_n \in \mathcal{T}$.

2. Whenever possible, we choose S_n to be a 2-block or a product of 2-blocks.

3. Otherwise, if S_n ends with the block T_1^x, we put $S_{n+1} = T_1^x$ or $S_{n+1} = T_1^x T_2^x$ (or the same possibilities for S_{n+2} if $S_{n+1} = \lambda$).

4. If $S_n \neq \lambda$ and there is no restriction (S2) on the last letter of S_n, we add this restriction artificially.

 Namely, we fix the last letter of S_n to be \bar{x} if S_{n-1} ends with x (or if S_{n-2} ends with x while $S_{n-1} = \lambda$).

Taking rules 1–4 into account, we can prove, by case examination, the following lemma about the first and the last letters of the words S_n.

Lemma 2.

1. If S_n ends with x, then either S_{n+1} ends with \bar{x}, or $S_{n+1} = \lambda$ and S_{n+2} ends with \bar{x}.

2. The first letter of a nonempty word S_n coincides with the last one for all n, except for the cases when $P_n = \bar{x} \bar{x} \cdots$ or $P_n = \bar{x} \bar{x} \bar{x} \cdots$.

The construction of the word S_n', the correctness of which we will prove, is given by Table 1. According to this table, rule 3 applies to S_n if and only if P_n starts with $\bar{x} \bar{x} \bar{x}$. Hence if the word P_n has such a prefix, then P_{n-1} (or P_{n-2} if the $(n-1)$th iteration is trivial) has no such prefix; as a result, the word S_{n-1} (respectively, S_{n-2}) ends with a 2-block.

Now consider the case $P_n = \bar{x} \bar{x} \bar{x} \cdots$ in more details. Without loss of generality, let P_n start with b. Then $P_n = babaab \cdots$. Since $P_n' = aabaab \cdots$, the word S_n cannot end with a or with $baab$; thus, it cannot end with a 2-block and we should use rule 3.
Table 1: the suffixes S_n for 32 successive iterations starting from some number k divisible by 32. The righthand [lethand] part of the table applies if the current letter of T^b_n is equal [resp., not equal] to the previous one. Trivial iterations are omitted.

Iteration no. (n)	Prohibitions	Start	End S_{n-1}	Iteration no. (n)	Prohibitions	Start	End S_{n-1}
k	\overline{x}	\overline{x}	T^x_2	k	x	x	T^x_2
$k+1$				$k+1$			
$k+2$	x	x	$T^x_2T^x_2$	$k+2$	xx	x	T^x_2
$k+4$	\overline{x}	\overline{x}	T^x_2	$k+4$	$xx\overline{x}$	\overline{x}	T^x_2
$k+5$	\overline{x}, T^x_2	$T^x_2T^x_2T^x_1$	$k+5$	\overline{x}	x	T^x_1	
$k+6$	x	\overline{x}	T^x_1	$k+6$	$xx\overline{x}$	\overline{x}	T^x_1
$k+8$	x	x	T^x_2	$k+8$	xxx	x	T^x_2
$k+10$	\overline{x}	\overline{x}	$T^x_2T^x_2$	$k+10$	\overline{x}	\overline{x}	T^x_2
$k+12$		x	T^x_2	$k+12$		x	T^x_2
$k+13$	x	\overline{x}, T^x_2	$T^x_2T^x_2T^x_1T^x_2$	$k+13$	\overline{x}, T^x_2	$T^x_2T^x_2T^x_1T^x_2$	T^x_2
$k+14$	\overline{x}	x	T^x_1	$k+14$	\overline{x}	x	T^x_1
$k+16$	\overline{x}	\overline{x}	T^x_2	$k+16$	\overline{x}	\overline{x}	T^x_2
$k+17$	\overline{x}	x	T^x_1	$k+17$	\overline{x}	x	T^x_1
$k+18$	$xx\overline{x}$	\overline{x}	T^x_1	$k+18$	$xx\overline{x}$	\overline{x}	T^x_1
$k+20$	$xx\overline{x}$	x	T^x_2	$k+20$	xxx	x	T^x_2
$k+21$	x	\overline{x}	T^x_1	$k+21$	x	\overline{x}	T^x_1
$k+22$	$xx\overline{x}$	x	T^x_2	$k+22$	xxx	x	T^x_2
$k+24$	$xx\overline{x}$	\overline{x}	T^x_2	$k+24$	$xx\overline{x}$	\overline{x}	T^x_2
$k+26$	x	x	T^x_2	$k+26$	x	x	T^x_2
$k+28$	\overline{x}	\overline{x}	T^x_2	$k+28$	\overline{x}	\overline{x}	T^x_2
$k+29$	\overline{x}, T^x_2	$T^x_2T^x_2T^x_1T^x_2$	$k+29$	\overline{x}	x, T^x_2	$T^x_2T^x_2T^x_1T^x_2$	T^x_2
$k+30$	x	\overline{x}	$T^x_1(T^x_1T^x_2)$	$k+30$	x	\overline{x}	T^x_1

Since P_n is a factor of $a^\infty T$ while $a^\infty T$ is an infinite product of the blocks $T^a_2 = abba$ and $T^b_2 = baab$, one of the blocks T^a_2 ends in the second position of P_n. First consider the following occurrence of P_n in $a^\infty T$:

\[
a^\infty T = \cdots \overbrace{abbaabba}^{T^a_2} \overbrace{baabbaab}^{T^b_2} \cdots P_n
\] (3)

Since $P'_n = baab\cdots$, the word S_{n-1} ends with $abba$. Therefore, we cannot put $S_n = ab$ (otherwise S_n will have the suffix $baab$). Further, P_{n-1} starts with $abaab$, whence the first letter of S_n is a by (S1). Hence, according to rule 1, the only possibility for S_n is $T^a_2T^b_2T^a_1 = ababaabab$. It is easy to see that $S_{n+1} = ba$ satisfies both (S1) and (S2).
Remark 3. The above trick leads to one local violation of the general rule on X exactly of the two last letters of the ψ-image. This allows us to choose $S_{n+4} = ba, S_{n+5} = ab$. Note that the words $P_{n+3} = babbaba\cdots$ has three left contexts of length 3: aab, baa, and bba. We will prohibit bba on the $(n+5)\text{th}$ iteration and aab on the $(n+6)\text{th}$ one. To do this, we deliberately put $P'_{n+4} = bbabababaab\cdots, P'_{n+5} = aababababaab\cdots$. This allows us to choose $S_{n+4} = ba, S_{n+5} = ab$.

Remark 3. The above trick leads to one local violation of the general rule on X_n. Namely, $|X_{n+5}| = n+4$ (this word coincides with X_{n+4}). The situation is corrected on the next iteration, when we get $|X_{n+6}| = n+7$ (and the $(n+7)\text{th}$ iteration is trivial).

Remark 4. The word $T_2^aT_3^aT_2^aT_3^aT_2^b = \Theta^2(aabaa)$ is not a factor of T. Hence, the factor $T_2^bT_2^aT_3^aT_2^b$ occurs in T inside the factor $T_2^bT_2^aT_3^aT_2^b$ or $T_2^bT_2^aT_3^aT_2^b$. Each such factor requires two uses of the above trick with 3-letter contexts.

Let us consider the 108-uniform morphism $\psi : \Sigma^* \to \Sigma^*$, defined by the rules

$$\psi(a) = T_2^aT_2^aT_3^aT_3^aT_2^bT_2^bT_3^aT_3^aT_2^bT_2^aT_2^aT_3^aT_3^aT_2^bT_2^bT_3^aT_3^aT_2^bT_2^aT_3^aT_3^aT_2^bT_2^aT_3^aT_3^aT_2^bT_2^aT_3^aT_3^aT_2^b,$$

$$\psi(b) = T_2^bT_2^bT_2^bT_2^bT_2^aT_2^bT_2^bT_2^aT_2^bT_2^aT_2^bT_2^aT_2^bT_2^aT_2^bT_2^aT_2^bT_2^aT_2^bT_2^aT_2^bT_2^aT_2^bT_2^aT_2^b.$$ (4a) (4b)

Note that the words $\psi(b)$ and $\psi(a)$ coincide up to renaming the letters. A computer check shows that the word $\psi(aababaababaababaababaab)$ is cube-free. Hence by Theorem 1, ψ is a cube-free morphism and the word $\psi(T^a)$ is cube-free. So we put $S_{3n} = \psi(T^a)$. The ψ-image of one letter equals the product $S_{n-1}S_{n} \cdots S_{n+30}$ for some number n divisible by 32, see Table 1. The only exception is described below. Thus, such a ψ-image corresponds to 32 successive iterations, during which a 5-block is added to the fixed left context X_{n-1} to get X_{n+31}.

There are two different factorizations of the ψ-image of a letter, depending on the positions of the factors $T_2^bT_2^aT_2^bT_2^a$ and $T_2^aT_2^bT_2^aT_2^b$ inside and on the borders of the current 5-block of $\omega \cdot T$. These factorizations are presented in the two parts of Table 1. The mentioned factors occur in the middle of $(2k+1)$-blocks for each $k \geq 2$. Thus, these factors occur in the middle of each 5-block, and also at the border of two equal 5-blocks. For the latter case, the factorization of the ψ-image of the second of two equal letters is given in the right hand part of Table 1. In the left hand part of Table 1 there are two possibilities for S_{n+29}: the longer [shorter] one should be used if the next 5-block is equal [respectively, not equal] to the current one. In the first case, S_{n+29} consists of the last two letters of the ψ-image of the current letter and first four letters of the ψ-image of the next letter. In the second case, S_{n+29} consists exactly of the two last letters of the ψ-image.

The first several iterations are special. Namely, for the regularity of general scheme, we artificially put $W_3 = W_0S_{-1}S_1$ (the 1st and the 3rd iterations are trivial by the general condition).

Thus, we defined the words S_n and then the words W_n for all positive integers n. The correctness of the construction is based on the following lemma.
Lemma 3. The word X_nW_n is cube-free for all $n \in \mathbb{N}_0$.

Proof. We prove by induction that all the words $V_n = (X_nW_nS_nx_n)^3$, where x_n is the letter forbidden on $(n+1)$th iteration, have no proper factors that are cubes. This fact immediately implies the statement of the lemma. The inductive base $n \leq 4$ can be easily checked by hand or by computer. Let us prove the inductive step. The structure of the word V_n is illustrated by the following picture.

X_n	W_n	S'_n	P'_n	W_n	...	X_n	W_n	S_n	x_n	X_n	W_n	S_n	x_n

$V_n = \cdots W_0 W_0 S'_n P'_n W_0 \cdots$

Assume to the contrary that the word V_n, $n \geq 5$, contains some cube U^3. Of course, it is enough to consider the case when the $(n+1)$th iteration is nontrivial. The factor U^3 of V_n has periods $q = |U|$ and $p_n = \frac{|V_n|}{3}$, but obviously does not satisfy the interaction property. Hence, $|U^3| = 3q \leq q + p_n - 2$ by the Fine and Wilf theorem, yielding $q \leq p_n/2 - 1$. On the other hand, by definition of W_n, the longest proper suffix of the word X_nW_n coincides with the longest proper prefix of V_{n-1}. If U^3 contains this prefix, then the latter has periods q and $p_{n-1} = \frac{|V_{n-1}|}{3}$. Applying the Fine and Wilf theorem again, we get $p_{n-1} \leq q/2 - 1$. Excluding q from the two obtained inequalities, we get $p_n \geq 4p_{n-1} + 3$. But $p_n = |V_{n-1}| + |S_n| + 1 \leq 3p_{n-1} + 17$. Thus, $p_{n-1} \leq 14$. For $n \geq 5$, this is not the case. So, we conclude that U^3 does not contain the word X_nW_n.

Claim 1. The word S'_n occurs in V_n only three times.

Proof. Recall that S'_n is a product of 2-blocks (possibly except the last “odd” 1-block), and if $n \geq 5$, then S'_n begins with a 4-block. Hence, S'_n has no factor W_0 and, moreover, cannot begin inside W_0. Furthermore, it can be checked by hand or by computer that S'_n has no Thue-Morse factors of length ≥ 48. Now looking at the structure of S'_n and of V_n one can conclude that any “irregular” occurrence of S'_n in V_n should be a prefix of some word $S'_nP'_kW_0$, where $k < n$. The word S'_n is a proper prefix of S'_n.

The word P'_k is obtained from a Thue-Morse factor by changing the first letter, and hence never begins with a 2-block. Hence, the only possibility is $k = n - 1$, and S_n should be the 1-block coinciding with the prefix of P'_k. By Table 1 in all cases when S_n is a 1-block, P'_{n-1} begins with the square of letter, so this possibility cannot take place. □

Claim 2. The word $X_nW_nS_nx_n$ is cube-free.

Proof. The word X_nW_n is a factor of V_{n-1} and hence is cube-free by the inductive assumption. Using again the fact that S'_n is “almost” a product of 2-blocks, we conclude that S'_nW_n is also cube-free. So, a cube in $X_nW_nS_nx_n$, if any, contains inside the suffix S'_{n-1} of the word W_n. This suffix is preceded by $W_0 = aabaaba$; the latter word breaks all periods of S'_{n-1} and does not produce a cube. Hence, the cube should contain more than one occurrence of the factor S'_{n-1}. Applying Claim 1 to the words S'_{n-1} and V_{n-1}, we see that the cube has the period $p_{n-1} = (|X_nW_n|+1)/3$. But this is impossible by condition (S1). The claim is proved. □

Combining Claim 2 with the fact that U^3 has no factor X_nW_n, we get that U^3 is contained inside the word $X_nW_nS_nx_nX_nW_n$. Furthermore, if S'_n is a factor of U^3, then the middle occurrence of U is inside S'_n (otherwise, U^3 contains one more occurrence of S'_n, contradicting Claim 1). In this case, the positions of all factors aa and bb in U have the same parity. But the rightmost occurrence of U in U^3 contains a suffix
of S'_n followed by a prefix of the word $x_nX_n = P'_n$. The letter x_n breaks this parity of positions, which is impossible. The cases in which all the positions of aa and bb in the rightmost occurrence of U are on the same side of the letter x_n, can be easily checked by hand. Thus, we obtain that S'_n is not a factor of U^3. Thus, U^3 begins inside the factor S'_nx_n.

Where the word U^3 ends? It is easy to see that the word

$$X_nW_n = \bar{x}_{n-1}x_{n-1}W_{n-1}S_{n-1}x_{n-1}X_{n-1}W_{n-1}S_{n-1}x_{n-1}X_{n-1}W_{n-1}S_{n-1}$$

has the same three occurrences of the factor S'_n as V_{n-1}. So, if U^3 contains S'_n, then the middle occurrence of U is inside S'_n. But this is impossible because S'_n is a rather short suffix of W_{n-1} and the whole word X_nW_n is cube-free. Therefore, U^3 should end inside the premaximal word $\bar{x}_{n-1}x_{n-1}W_{n-1}S_{n-1}$ of X_nW_n, like in the following picture.

Using the same parity argument as above, we conclude that the word $S'_nx_nX_n = S'_nP'_n$ is cube-free and, moreover, U^3 should contain the prefix $aabaa$ of the word W_{n-1}. Two cases are to be considered: either $aabaa$ is a factor of U or $aabaa$ occurs in U^3 only twice, on the borders of consecutive U’s. The second case is impossible, because two closest occurrences of $aabaa$ in W_{n-1} are separated by the factor $babaabbaabbabaababb$ which does not contain P_n as a suffix. For the first case, we get that some (not the leftmost) occurrence of $aabaa$ in U^3 is preceded by the concatenation of some suffix of S'_n and the word P'_n. If this occurrence of $aabaa$ is a prefix of some W_0, then it is preceded by some P'_k, $k < n$. But P'_k is not a suffix of P'_n, a contradiction. The remaining position for this occurrence of $aabaa$ is the border of some words S'_k and P'_k. But then S'_k contains the factor which is on the border between S'_n and P'_n, and the parity argument shows that S'_k cannot be partitioned into 2-blocks. This final contradiction shows that U^3 cannot be a factor of V_n. The lemma is proved.

By construction, the word X_n is the fixed left extension of W_n. Now we consider the second step, that is, the completion of such “almost uniquely” extendable word W_n to a premaximal word. The main idea is the same as at the first step. In order to obtain a premaximal word of level n, we build the word W_{n+1} in $n+1$ iterations by scheme (24) and then prohibit the extension of W_{n+1} by the first letter of the word P_n. We denote the obtained premaximal word of level n by \bar{W}_n. Then

$$\bar{W}_n = W_{n+1}\bar{S}_nP_nW_{n+1}\bar{S}_nP_nW_{n+1}\bar{S}_n,$$ \hspace{1cm} (5)

where \bar{S}_n is a “buffer” inserted similarly to S_n in order to avoid cubes at the border of the occurrences of W_{n+1} and P_n. In contrast to the first step, we do not need to build a cube-free right-infinite word, because the construction (5) is used only once. The form of the word \bar{S}_n depends on the last iteration according to Table I; this dependence is described in Table II. We choose \bar{S}_n to be the left extension of the word P_n within ωT (recall that $P_n = \omega T(n+1 \ldots 1)$).

The above idea works without additional gadgets in all cases when $|X_n| = n$. Due to the following obvious remark, it is enough to construct left premaximal words of level n for all n such that $|X_n| = n$; hence, we do not consider constructing the words \bar{W}_n for other values of n.

Table 2: the “final” suffixes \overline{S}_n for the corresponding iterations from Table 1. The first column contains the number of the last iteration.

Iteration no. (n)	Prohibitions (Start)	\overline{S}_{n-1}	Iteration no. (n)	Prohibitions (Start)	\overline{S}_{n-1}
k	λ	$\lambda\lambda$	k	λ	$\lambda\lambda$
$k + 1$	λ	$\lambda\lambda$	$k + 1$	λ	$\lambda\lambda$
$k + 3$	λ	$\lambda\lambda$	$k + 3$	$\lambda\lambda\lambda$	$\lambda\lambda\lambda$
$k + 4$	λ	$\lambda\lambda$	$k + 4$	λ	$\lambda\lambda$
$k + 5$	$\lambda\lambda\lambda$	$\lambda\lambda\lambda$	$k + 5$	$\lambda\lambda\lambda$	$\lambda\lambda\lambda$
$k + 7$	$\lambda\lambda\lambda$	$\lambda\lambda\lambda$	$k + 7$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 9$	$\lambda\lambda\lambda$	$\lambda\lambda\lambda$	$k + 9$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 11$	$\lambda\lambda\lambda$	$\lambda\lambda\lambda$	$k + 11$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 12$	$\lambda\lambda\lambda$	$\lambda\lambda\lambda$	$k + 12$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 13$	$\lambda\lambda\lambda$	$\lambda\lambda\lambda$	$k + 13$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 15$	$\lambda\lambda\lambda$	$\lambda\lambda\lambda$	$k + 15$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 16$	$\lambda\lambda\lambda$	$\lambda\lambda\lambda$	$k + 16$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 18$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$	$k + 18$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 19$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$	$k + 19$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 20$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$	$k + 20$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 23$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$	$k + 23$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 25$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$	$k + 25$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 27$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$	$k + 27$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 28$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$	$k + 28$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 29$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$	$k + 29$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$
$k + 31$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$	$k + 31$	$\lambda\lambda\lambda\lambda$	$\lambda\lambda\lambda\lambda$

Remark 5. In order to prove the Theorem 2 it is sufficient to show the existence of left premaximal words of level n for infinitely many different values of n. Indeed, if a word W is left premaximal of level n and $a_1 \cdots a_n W$ is a left maximal word, then the word $a_n W$ is left premaximal of level $n - 1$.

Using the facts that $W_{n+1} \in \mathcal{CF}, S_n P_n \in \mathcal{TM}$, and the suffix S'_n of W_{n+1} has no long Thue-Morse factors (this is the property of any ψ-image), we prove the following lemma. The proof resembles the one of Lemma 3.

Lemma 4. The word $X_n \overline{W}_n$ is cube-free for all $n \in \mathbb{N}_0$.

Since the word $P_n \overline{W}_n$ is a cube by (5) and at the same time $P_n = X_{n+1}$ is the fixed left context of W_{n+1}, we conclude that X_n is the longest left context of the word \overline{W}_n. Theorem 2 is proved.

Remark 6. For any n, the word $\text{rev}(\overline{W}_n) = \overline{W}_n(|\overline{W}_n|) \cdots \overline{W}_n(1)$ is right premaximal of level n.

Remark 7. Our construction provides an upper bound for the length of the shortest left premaximal word of any given level n. The results of [4] suggest that this length is exponential in n. Let $l(n) = |W_n|$. For nontrivial iterations, we have $l(n) = 3l(n-1) + O(n)$. It is well known that two successive letters in the Thue-Morse word are equal with probability $1/3$. Thus, to obtain W_n, we make approximately $2n/3$ nontrivial iterations. So, $l(n)$ is exponential at base $3^{2/3} \approx 2.08$. The same property holds for $|\overline{W}_n| = 3l(n+1) + O(n)$. It is interesting whether this asymptotics is the best possible.

Sketch of the proof of Theorem [2] Similar to Remark [5] it is enough to build premaximal words of level (n_i, n_i) for some infinite sequence $n_1 < n_2 < \ldots < n_i < \ldots$ of positive integers. We take $n_i = 32i + 3$ (Table 2 indicates that $\Sigma_{n_i} = \lambda$, which makes the construction easier). The natural idea is to concatenate left premaximal and right premaximal words through some “buffer” word. But we cannot use the words \tilde{W}_n for this purpose, because all words $X_n \tilde{W}_n$ appear to be right maximal.

So, we modify the last step in constructing left premaximal words as follows. The proof of Lemma 3 implies that the word $X_nW_nS_n \cdots S_{n+1}$ is cube-free for any l. So, we put

$$\tilde{W}_n = \overbrace{W_{n+1}S_{n+1}S_{n+2}P_{n+1}W_{n+1}S_{n+2}P_{n+1}W_{n+1}S_{n+2}P_{n+1}W_{n+1}S_{n+2}}^{P_{n+1}W_{n+1}S_{n+2}P_{n+1}W_{n+1}S_{n+2}}.$$

By Table 1, $S_{n+3} = \lambda$ and $S_{n+4}(1) \neq S_{n+1}(1) = x$. The proof of the fact that $X_n \tilde{W}_n \in \text{CF}$ reproduces the proof of Lemma 4. Recall that $S_{n+1}(1) = P_{n+1}(1)$ by (S1), yielding that this letter breaks the period of W_{n+1} (see (2b)). On the other hand, the letter x breaks the global period of the word \tilde{W}_n. Hence, the condition $X_nW_nS_{n+1} \cdots S_{n+l} \in \text{CF}$ implies $X_n \tilde{W}_nS_{n+3} \cdots S_{n+l} \in \text{CF}$ for any l. Thus, \tilde{W}_n is infinitely extendable to the right, left premaximal word of level n_i.

Choose an even m such that $|X_n \tilde{W}_n| < 2^{m-2}$ and consider the word $\tilde{W}_{n,n} \tilde{W}_n = \tilde{W}_n T_{m}^{\tilde{S}} \text{rev}(\tilde{W}_n)$:

$$\tilde{W}_{n,n} = \begin{array}{c|c|c}
W_n & S_{n+2}^T & \text{rev}(S_{n+2}) \\
\hline
\text{rev}(W_n) & & \\
\end{array}$$

It remains to prove that the word $X_n \tilde{W}_{n,n} \text{rev}(X_n)$ is cube-free. By the choice of m and overlap-freeness of $T_{m}^{\tilde{S}}$, no cube can contain the factor $T_{m}^{\tilde{S}}$. So, by symmetry, it is enough to check that the word $U = X_nW_nT_{m}^{\tilde{S}}$ is cube-free. Assume to the contrary that it contains a cube YYY. Recall that the word $X_n \tilde{W}_n$ is cube-free. Since the first letter of $T_{m}^{\tilde{S}}$ breaks the period of $X_n \tilde{W}_n$, one has $|Y| < \text{per}(\tilde{W}_n)$. Consider the rightmost factor $aaba\bar{a}$ in U; it is inside the factor W_0 immediately before the suffix S_{n+2}. If this factor belongs to YYY, then $|Y|$ symbols to the left we have another $aaba\bar{a}$, followed by S_{n+2}. Then $|Y| = \text{per}(\tilde{W}_n)$, a contradiction. Hence, YYY has no factors $aaba\bar{a}$, i.e., is a factor of $aba\bar{a}abS_{n+2}^{T_{m}^{\tilde{S}}}$. One can check that the word S_{n+2} contains no Thue-Morse factors of length > 48. The shorter factors can be checked by brute force.

Thus, the word $\tilde{W}_{n,n}$ is premaximal of level (n_i, n_i). The theorem is proved.

References

[1] J.-P. Allouche, J. Shallit (2003): *Automatic Sequences: Theory, Applications, Generalizations*, Cambridge Univ. Press, doi:10.1017/CBO9780511546563

[2] D. R. Bean, A. Ehrenfeucht, G. McNulty (1979): *Avoidable patterns in strings of symbols*, Pacific J. Math. 85, 261–294.

[3] F.-J. Brandenburg (1983): *Uniformly growing k-th power free homomorphisms*, Theor. Comput. Sci. 23, 69–82, doi:10.1016/0304-3975(88)90009-6

[4] J. D. Currie (1995): *On the structure and extendability of k-power free words*, European J. Comb. 16, 111–124, doi:10.1016/0195-6698(95)90051-9

[5] J. D. Currie, N. Rampersad (2009): *There are k-uniform cube-free binary morphisms for all k ≥ 0*, Discrete Appl. Math. 157, 2548–2551, doi:10.1016/j.dam.2009.02.010 Available at http://arxiv.org/abs/0812.4470v1.

[6] R. M. Jungers, V. Y. Protasov, V. D. Blondel (2009): *Overlap-free words and spectra of matrices*, Theor. Comput. Sci. 410, 3670–3684, doi:10.1016/j.tcs.2009.04.022 Available at http://arxiv.org/abs/0709.1794.
[7] M. Lothaire (1983): *Combinatorics on words*, Addison-Wesley, Reading. doi:10.1017/CBO9780511566097
[8] A. Restivo, S. Salemi (2002): *Words and Patterns*, Proc. 5th Int. Conf. Developments in Language Theory. Springer, Heidelberg, 117–129. (LNCS Vol. 2295), doi:10.1007/3-540-46011-X_9
[9] G. Richomme, F. Wlazinski (2000): *About cube-free morphisms*, Proc. STACS’2000. Springer, Berlin, 99–109. (LNCS Vol. 1770), doi:10.1007/3-540-46541-3_8
[10] P. Sédébold (1984): *Overlap-free sequences*, Automata on Infinite Words. Ecole de Printemps d’Informatique Théorique, Le Mont Dore. Springer, Heidelberg, 207–215. (LNCS Vol. 192).
[11] A. M. Shur (1998): *Syntactic semigroups of avoidable languages*, Siberian Math. J. 39 (1998), 594–610.
[12] A. M. Shur (2000): *The structure of the set of cube-free Z-words over a two-letter alphabet*, Izv. Math. 64(4), 847–871, doi:10.1070/IM2000v064n04ABEH000301
[13] A. M. Shur (2009): *Two-sided bounds for the growth rates of power-free languages*, Proc. 13th Int. Conf. on Developments in Language Theory. Springer, Berlin, 466–477. (LNCS Vol. 5583), doi:10.1007/978-3-642-02737-6_38
[14] A. M. Shur (2011): *Deciding context equivalence of binary overlap-free words in linear time*, Semigroup Forum. (Submitted)
[15] A. Thue (1912): *Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen*, Norske Vid. Selsk. Skr. I, Mat. Nat. Kl. 1. Christiana, 1–67.