An analytic description of the vector constrained KP hierarchy

G.F. Helminck J.W. van de Leur

Faculty of Applied Mathematics,
University of Twente,
P.O.Box 217, 7500 AE Enschede,
The Netherlands
fax: 31-53 489 4824
e-mail: helminck@math.utwente.nl
vdleur@math.utwente.nl

January 26, 2022

1991 MSC : 22E65, 22E70, 35Q53, 35Q58, 58B25
Keywords : KP hierarchy, Constrained KP, Grassmann manifold

Abstract

In this paper we give a geometric description in terms of the Grassmann manifold of Segal and Wilson, of the reduction of the KP hierarchy known as the vector \(k \)-constrained KP hierarchy. We also show in a geometric way that these hierarchies are equivalent to Krichever’s general rational reductions of the KP hierarchy.

1 Introduction

In recent years (vector) constrained KP hierarchies have attracted considerable attention both from the mathematical as the physical community [2]-[27], [29], [31], [32]. Many interesting integrable systems like the AKNS, Yajima–Oikawa and Melnikov hierarchies appear amongst these constrained families. In the physics literature they are studied in connection with multi-matrix models.

The (vector) constrained KP hierarchies were introduced as reductions of the KP hierarchy

\[
\frac{\partial L}{\partial t_n} = [(L^n)_+ , L], \quad n \geq 1,
\]

for the first order pseudodifferential operator \(L = \partial + \sum_{j<0} \ell_j \partial^j \). This reduction consists of assuming that

\[
(L^k)_- = \sum_{j=1}^{m} q_j \partial^{-1} r_j,
\]

*JvdL is financially supported by the Netherlands Organization for Scientific Research (NWO).
such that the following conditions on the functions q_j and r_j hold:

$$\frac{\partial q_j}{\partial t_n} = (L^n_W)_+(q_j) \quad \text{and} \quad \frac{\partial r_j}{\partial t_n} = -(L^n_W)_-(r_j) \quad \text{for all } n \geq 1.$$

In this way it generalizes the well-known Gelfand-Dickey hierarchies ($(L^k)_- = 0$).

Much is known about these constrained hierarchies and many well-known features are investigated, e.g. it was shown that they possess a bi-Hamiltonian structure [9], [20], [24], [29], [32], a bilinear representation [13], [21], [22], [32] and Bäcklund-Darboux and Miura transformations [2], [4], [5], [6], [7], [10], [23]. However, until recently, the geometry remained unclear. It is well-known that one can associates to a point in an infinite Grassmannian a solution L of the KP hierarchy [28], [30]. In this paper we consider the Segal-Wilson Grassmannian. Let H be the Hilbert space of all square integrable functions on the circle $S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}$, which decomposes in a natural way as the direct sum of two infinite dimensional orthogonal closed subspaces $H_+ = \{ \sum_{n \geq 0} a_n z^n \in H \}$ and $H_- = \{ \sum_{n < 0} a_n z^n \in H \}$. The Segal-Wilson Grassmannian $Gr(H)$ consists of all closed subspaces $W \subset H$ such that the orthogonal projection on H_- is a Hilbert-Schmidt operator. In this setting, the k-th Gelfand-Dickey hierarchy has the following simple geometrical interpretation. The KP operator L belongs to the k-th Gelfand-Dickey hierarchy if and only if the corresponding $W \in Gr(H)$ satisfies $z^k W \subset W$. One of the authors gave in [19] (see also [18]) a simple interpretation of the constrained KP hierarchy for the case of polynomial tau-functions, viz L belongs to the m-vector k-constrained KP hierarchy if and only if the corresponding $W \in Gr(H)$ has a subspace W' of codimension m such that $z^k(W') \subset W$. We show in this paper that the same interpretation also holds in the Segal-Wilson case. Using this geometrical interpretation, we prove in section 5 that the vector constrained KP hierarchy describes the same reduction of KP as the general rational reductions of Krichever [17] (see also [15]). Our geometrical interpretation is also useful to give solutions of these hierarchies (see e.g. [9]).

2 The KP hierarchy revisited

In this section we recall some results for the KP-hierarchy that we will need in this paper. The KP hierarchy starts with a commutative ring R and a privileged derivation ∂ of R. In order to be able to take roots of differential operators in ∂ with coefficients form R, one extends this ring $R[\partial]$ to the ring $R[\partial, \partial^{-1}]$ of pseudodifferential operators with coefficients in R. It consists of all expressions

$$\sum_{i=-\infty}^{N} a_i \partial^i, \quad a_i \in R \quad \text{for all } i,$$

that are added in an obvious way and multiplied according to

$$\partial^i \circ a \partial^j = \sum_{k=0}^{\infty} \binom{j}{k} \partial^k(a) \partial^{i+j-k}.$$

Each operator $P = \sum p_j \partial^j$ decomposes as $P = P_+ + P_-$ with $P_+ = \sum_{j \geq 0} p_j \partial^j$ its differential operator part and $P_- = \sum_{j < 0} p_j \partial^j$ its integral operator part. We denote by $Res_0 P = p_{-1}$ the
residue of P. On $R[\partial, \partial^{-1}]$ we have an anti-algebra morphism called taking the adjoint. The adjoint of $P = \sum p_i \partial^i$ is given by

$$P^* = \sum_i (-\partial)^i p_i.$$

Further one has a set of derivations $\{\partial_n \mid n \geq 1\}$ of R that commute with ∂. The equations of the hierarchy can be formulated in a compact way in a set of relations for a so-called Lax operator in $R[\partial, \partial^{-1}]$, i.e. an operator of the form

$$L = \partial + \sum_{j < 0} \ell_j \partial^j, \quad \ell_j \in R \quad \text{for all } j < 0. \tag{2.1}$$

These equations are

$$\partial_n(L) = \sum_{j < 0} \partial_n(\ell_j) \partial^j = [(L^n)_+, L], \quad n \geq 1. \tag{2.2}$$

Since this equations for $n = 1$ boils down to $\partial_1(\ell_j) = \partial(\ell_j)$ for all j, we assume from now on that $\partial = \partial_1$. Equation (2.2) has at least the trivial solution $L = \partial$ and can be seen as the compatibility equation of the linear system

$$L\psi = z\psi \quad \text{and} \quad \partial_n(\psi) = (L^n)_+(\psi) \tag{2.3}$$

One needs a context in which the actions of (2.3) make sense and that allows you to derive (2.2) from (2.3). For the trivial solution (2.3) becomes

$$\partial\psi = z\psi \quad \text{and} \quad \partial_n\psi = z^n\psi \quad \text{for all } n \geq 1.$$

Hence if one takes $\partial_n = \frac{\partial}{\partial z^n}$ then the function $\gamma(z) = \exp(\sum_{i \geq 1} t_i z^i)$ is a solution. The space M of so-called oscillating functions for which we make sense of (2.3) can be seen as a collection of perturbations of this solution. It is defined as

$$M = \{(\sum_{i \leq N} a_i z^i) e^{\sum t_i z^i} \mid a_i \in R, \quad \text{for all } i\}.$$

The space M becomes a $R[\partial, \partial^{-1})$-module by the natural extension of the actions

$$b\{(\sum_j a_j z^j) e^{\sum t_i z^i}\} = (\sum_j b a_j z^j) e^{\sum t_i z^i},$$

$$\partial\{(\sum_j a_j z^j) e^{\sum t_i z^i}\} = (\sum_j \partial(a_j) z^j + \sum_j a_j z^{j+1}) e^{\sum t_i z^i}.$$

It is even a free $R[\partial, \partial^{-1})$-module, since we have

$$(\sum p_j \partial^j) e^{\sum t_i z^i} = (\sum p_j z^j) e^{\sum t_i z^i}.$$

An element ψ in M is called an oscillating function of type z^ℓ, if it has the form

$$\psi(z) = \{z^\ell + \sum_{j < \ell} \alpha_j z^j\} e^{\sum t_i z^i}.$$

The fact that M is a free $R[\partial, \partial^{-1})$-module, permits you to show that each oscillating function of type z^ℓ that satisfies (2.3) gives you a solution of (2.2). This function is then called a wavefunction of the KP-hierarchy.
Segal and Wilson give in [30] an analytic approach to construct wavefunctions of the KP-hierarchy. They considered the Hilbert space

\[H = \{ \sum_{n \in \mathbb{Z}} a_n z^n \mid a_n \in \mathbb{C}, \sum_{n \in \mathbb{Z}} |a_n|^2 < \infty \}, \]

with decomposition \(H = H_+ \oplus H_- \), where

\[H_+ = \{ \sum_{n \geq 0} a_n z^n \in H \} \quad \text{and} \quad H_- = \{ \sum_{n < 0} a_n z^n \in H \} \]

and inner product \(\langle \cdot | \cdot \rangle \) given by

\[\langle \sum_{n \in \mathbb{Z}} a_n z^n | \sum_{m \in \mathbb{Z}} b_m z^m \rangle = \sum_{n \in \mathbb{Z}} a_n b_n. \]

To this decomposition is associated the Grassmannian \(\text{Gr}(H) \) consisting of all closed subspaces \(W \) of \(H \) such that the orthogonal projection \(p_+ : W \rightarrow H_+ \) is Fredholm and the orthogonal projection \(p_- : W \rightarrow H_- \) is Hilbert-Schmidt. The connected components of \(\text{Gr}(H) \) are given by

\[\text{Gr}^{(\ell)}(H) = \left\{ W \in \text{Gr}(H) \mid p_+: z^{\ell} W \rightarrow H_+ \text{ has index zero} \right\}. \]

On each of these components we have a natural action by multiplication of the group of commuting flows

\[\Gamma_+ = \{ \exp(\sum_{i \geq 1} t_i z^i) \mid t_i \in \mathbb{C}, \sum |t_i| (1 + \epsilon)^i < \infty \text{ for some } \epsilon > 0 \}. \]

Now we take for \(R \) the ring of meromorphic functions on \(\Gamma_+ \) and for \(\partial_{t_n} \) the partial derivative w.r.t. \(t_n \). Then there exists for each \(W \) in \(\text{Gr}^{(-\ell)}(H) \) a wavefunction \(\psi_W \) of type \(z^\ell \) that is defined on a dense open subset of \(\Gamma_+ \) and that takes values in \(W \). Moreover, it is known that the range of \(\psi_W \) spans a dense subspace of \(W \). Hence, if we write \(\psi_W = P_W \cdot e^{\sum t_i z^i} \) with \(P_W \in R[\partial, \partial^{-1}] \), then \(L_W = P_W \partial P_W^{-1} \) is a solution of the KP-hierarchy. Each component of \(\text{Gr}(H) \) generates in this way the same set of solutions of the KP-hierarchy, so it would suffice, as is done in [30], to consider only \(\text{Gr}^{(0)}(H) \). However, it is more convenient here to consider all components.

A subsystem of the KP-hierarchy consists of all solutions \(L \) that are the \(k \)-th root of a differential operator. This gives you solutions of the KP-hierarchy that do not depend on the \(\{t_k n, \text{ with } n \geq 1\} \). Those operators satisfy the condition \(L^k = (L^k)_+ \). The set of equations corresponding to this condition is called the \(k \)-th Gelfand-Dickey hierarchy. Now it has been shown that, among the solutions coming from the Segal-Wilson Grassmannian, the ones that satisfy the \(k \)-th Gelfand-Dickey hierarchy are exactly characterized by \(z^k W \subset W \). In the next section we consider a generalization of this condition.

3 An extension of the condition \(z^k W \subset W \)

In this section we consider, for each \(k \) and \(m \) in \(\mathbb{N} = \{0, 1, 2, \ldots \} \), \(k \neq 0 \) subspaces \(W \) in \(\text{Gr}(H) \) that possess the \textbf{\(m \)-Vector \(k \)-Constrained (\(mVkC \))-condition}:

\[\text{There is a subspace } W' \text{ of } W \text{ of codimension } m \text{ such that } z^k(W') \subset W. \]
This is a natural generalization of the condition that describes inside $Gr(H)$ the solutions of the k-th Gelfand-Dickey hierarchy. We will show here in a geometric way how you can associate to each W, satisfying the $mVkC$-condition, $2m$ functions $\{q_j | 1 \leq j \leq m\}$ and $\{r_j | 1 \leq j \leq m\}$ for which the following equations hold:

$$\partial_n(q_j) = (L^k_n)_+(q_j) \quad \text{for all} \quad n \geq 1,$$ \hspace{1cm} (3.2)

$$\partial_n(r_j) = -(L^k_n)_+(r_j) \quad \text{for all} \quad n \geq 1. \hspace{1cm} (3.3)$$

Here A^* denotes the adjoint of A in $R[\partial, \partial^{-1}]$. Moreover L_W satisfies

$$L^k_W = (L^k_W)_+ + \sum_{j=1}^{m} q_j \partial^{-1} r_j. \hspace{1cm} (3.4)$$

At the same time we will give links with the paper of Zhang [31].

Take any W in $Gr^{(-\ell)}$ that satisfies the $mVkC$-condition. It is no restriction to assume that the m occurring in (3.1) is optimal, i.e. there is an orthonormal basis $\{u_1, \ldots, u_m\}$ of the orthocomplement of W' in W such that

$$(\Span\{z^k u_1, \ldots, z^k u_m\}) \cap W = \{0\}.$$

Since multiplication with z is unitary, the vectors $\{z^k(u_1), \ldots, z^k(u_m)\}$ are an orthonormal basis of the orthocomplement of W in $z^k W + W$. To the space W we associate the subspaces $W_j = W \oplus \mathbb{C} z^k u_j, 1 \leq j \leq m$.

Clearly the W_j all belong to $Gr^{(-\ell+1)}$ and hence, they have wavefunctions ψ_{W_j} of type $z^{\ell-1}$ i.e.

$$\psi_{W_j} = \psi_{W_j}(t, z) = \{z^{\ell-1} + \sum_{s \geq 1} a_{js}(t) z^{\ell-1-s} \} e^{\sum_{i} t_i z^i}. \hspace{1cm} (3.5)$$

Recall that $\psi_{W_j}(t, z)$ is well-defined for all t belonging to the open dense subset

$$\Gamma_{W_j}^+ = \{\gamma(z) = \exp(\sum_{i} t_i z^i) \in \Gamma_+ | \gamma^{-1} W_j \text{ is transverse to } z^{\ell-1} H_+\}.$$

On $\Gamma_{W_j}^+$ we consider the function

$$s_j(t) = < \psi_{W_j}(t, z) | z^k u_j >. \hspace{1cm} (3.6)$$

Since the vectors $\{\psi_{W_j}(t, z) | t \in \Gamma_{W_j}^+\}$ are lying dense in W_j and m was assumed to be optimal, the functions $\{s_j\}$ do not vanish. Hence, on a dense open subset of Γ_+, there is defined the function

$$\varphi_j = \frac{1}{s_j} \psi_{W_j} := r_j \psi_{W_j}. \hspace{1cm} (3.7)$$

It takes values in W_j and has moreover the following useful property

$$\varphi_j(t) - z^k u_j \in W, \hspace{1cm} (3.8)$$
Recall that \(j \), we have that for all \(W \)

By construction, there holds

This equation is part of the system of differential equations for the \(W \). In [31], similar functions \(\{ \varphi_j \} \) are introduced, only not using the geometry, but as solutions of a certain system of differential equations. In particular, we can dispose of the condition (a) in the Proposition of [31]. Thus we have obtained \(m \) functions \(\{ r_j \} \).

To define the \(\{ q_j \} \) we consider

\[
 z^k \psi_W - (L^k_W)_+(\psi_W) = (L^k_W)_-(\psi_W) = \{ \sum_{s \geq 0} b_s(t) z^{\ell-1-s} \} e^\sum t_i z^i. \tag{3.9}
\]

For each \(j, 1 \leq j \leq m \), we have a function \(q_j \) on \(\Gamma^W_+ \).

\[
 q_j(t) = \langle z^k \psi_W(t, z) - (L^k_W)_+ \psi_W(t, z) \mid z^k u_j \rangle \\
 = \langle z^k \psi_W(t, z) \mid z^k u_j \rangle \\
 = \langle \psi_W(t, z) \mid u_j \rangle.
\]

Because \(m \) is optimal, the functions \(\{ q_j \} \) are non-zero on an open dense subset of \(\Gamma_+ \). Since \(u_j \) does not depend on \(t \) and since \(\frac{\partial}{\partial n} \psi_W = (L^k_W)_+(\psi_W) \), we get directly for \(q_j \)

\[
 \frac{\partial q_j}{\partial n} = \sum_{n} \langle \psi_W \mid u_j \rangle = \langle (L^k_W)_+(\psi_W) \mid u_j \rangle = (L^k_W)_+(\psi_W) - (L^k_W)_+ q_j. \tag{3.10}
\]

Thus the equations (3.2) for the derivatives of the \(\{ q_j \} \) are clear. Those for the \(\{ r_j \} \) require more work.

First we derive an expression for \((L^k_W)_-(\psi_W) \). Thereo we consider

\[
 \Phi(t) = z^k \psi_W - (L^k_W)_+(\psi_W) - \sum_{j=1}^m q_j \varphi_j. \tag{3.11}
\]

Since \(\varphi_j \) takes values in \(W \), the function \((L^k_W)_+(\psi_W) \) does so in the space \(W \) and \(z^k \psi_W \) in \(z^k W \). Hence we have that \(\Phi(t) \) belongs to \(W + z^k W \) for all relevant \(t \). By construction we have that for all \(j, 1 \leq j \leq m, \Phi(t) \) is orthogonal to \(z^k u_j \), hence \(\Phi(t) \) even belongs to \(W \). From the form of the \(\varphi_j \), we see that on an open dense set of \(\Gamma_+ \) one has

\[
 \Phi(t) = \{ \sum_{s \geq 0} c_s z^{\ell-1-s} \} e^\sum t_i z^i.
\]

By construction, there holds

\[
 W \cap (z^\ell H_+)^\bot \gamma(z) = \{ 0 \},
\]

so that we arrive at

\[
 z^k \psi_W - (L^k_W)_+(\psi_W) = \sum_{j=1}^m q_j \varphi_j. \tag{3.12}
\]

This equation is part of the system of differential equations for the \(\varphi_j \) as used in [Z].

Recall that \(\varphi_j \) has the form

\[
 \varphi_j = \{ r_j z^{\ell-1} + \text{ lower order terms in } z \} e^\sum t_i z^i.
\]
Hence,
\[\frac{\partial \varphi_j}{\partial x} = \frac{\partial \varphi_j}{\partial t_1} = \{r_j z^\ell + \text{lower order terms}\} e^{\sum t_i z^i}. \]

On the other hand we know that \(\varphi_j(t) - z^k u_j \) belongs to \(W \) for all \(t \). Thus also \(\frac{\partial \varphi_j}{\partial x}(t) \) belongs to \(W \). In \(W \) we have that
\[\frac{\partial \varphi_j}{\partial x} - r_j \psi_W = \{\sum_{s \geq 0} \alpha_s z^{\ell-1-s} e^{\sum t_i z^i} \in (z^\ell H_+)^{1-\gamma} \}
\]
and this has to be zero. By definition we have \(\varphi_j = r_j \psi_W \) and differentiation w.r.t. \(x \) gives
\[\psi_W = \frac{1}{r_j} \partial(r_j \psi_W) = (r_j^{-1} \partial r_j)(\psi_W). \quad (3.13) \]

Consequently, we have for \(\phi_j \)
\[\varphi_j = r_j \psi_W = r_j(r_j^{-1} \partial r_j) \psi_W = \partial^{-1} r_j \psi_W. \]

Now we substitute this in equation (3.12) and obtain
\[(L^k_W)(\psi_W) = \{\sum_{j=1}^m q_j \partial^{-1} r_j\} \psi_W. \quad (3.14) \]

Since the pseudodifferential operators act freely on wavefunctions, we see that \(L_W \) and the functions \(\{q_j\} \) and \(\{r_j\} \) are exactly connected by equation (3.14)
\[(L^k_W) = \sum_{j=1}^m q_j \partial^{-1} r_j. \]

What remains to be shown, is the differential equation (3.3) for the \(r_j \). As \(\varphi_j(t) - z^k u_j \) belongs to \(W \), it follows that for all \(n \geq 1 \), \(\frac{\partial \varphi_j}{\partial t_n}(t) \) lies in \(W \). Recall that
\[\varphi_j = \{r_j z^{\ell-1} + \text{lower order terms in } z\} e^{\sum t_i z^i}. \]

Then we have
\[\frac{\partial \varphi_j}{\partial t_n} = \{r_j z^{n+\ell-1} + \text{lower order terms}\} e^{\sum t_i z^i} = \{r_j \partial^{n-1} \psi_W + \{\sum_{s \geq 0} \alpha_s z^{n+\ell-1-s} \} e^{\sum t_i z^i} = A_{nj}(\psi_W) + \{\sum_{s \geq 0} \beta_s z^{\ell-1-s} \} e^{\sum t_i z^i}, \]

with \(A_{nj} \) a uniquely determined differential operator in \(\partial \) of order \(n - 1 \) and with leading coefficient \(r_j \). Since both \(\frac{\partial \varphi_j}{\partial t_n} \) as \(A_{nj}(\psi_W) \) are lying in \(W \), we get
\[\frac{\partial \varphi_j}{\partial t_n} - A_{nj}(\psi_W) = 0 = W \cap (z^\ell H_+)^{1-\gamma}(z). \]

On the other hand we know that \(\varphi_j = \partial^{-1} r_j \psi_W \) and this leads to
\[A_{nj}(\psi_W) = \partial^{-1} \frac{\partial r_j}{\partial t_n} \psi_W + \partial^{-1} r_j(L^n_W)(\psi_W). \quad (3.15) \]
This gives you an expression for A_{nj} in L_W and r_j

$$A_{nj} = \partial^{-1}(\frac{\partial r_j}{\partial t_n} + r_j(L^n_W)^+).$$

By taking the residue in ∂ of the operators in this equation, we see that

$$\text{Res}_\partial(A_{nj}) = 0 = \frac{\partial r_j}{\partial t_n} + \text{Res}_\partial(\partial^{-1}r_j(L^n_W)^+) = \frac{\partial r_j}{\partial t_n} + (L^n_W)^+(r_j).$$

The last equality is a direct consequence of the following property of residues of pseudodifferential operators.

Lemma 3.1 In the ring $R(\partial, \partial^{-1})$ of pseudodifferential operators with coefficients in R, we have for each f in R and $P = \sum_{j \leq N} p_j \partial^j$ in $R(\partial, \partial^{-1})$

$$\text{Res}_\partial(\partial^{-1}fP) = (P^*)_+(f),$$

where $(P^*)_+ = \sum_{0 \leq j \leq N} (-\partial)^j p_j$ is the differential operator part of the adjoint of P.

Proof. First we recall that Res_∂ behaves as follows w.r.t. to taking the adjoint $P^* = \sum_{j \leq N} (-\partial)^j p_j$ of P

$$\text{Res}_\partial(P^*) = -\text{Res}_\partial P.$$

This is easily reduced to operators of the form $a\partial^n, n \in \mathbb{Z}$. Next one notices that it suffices to prove the equality in the lemma for differential operators. The left hand side for such a P transforms as

$$\text{Res}_\partial(\partial^{-1}fP) = -\text{Res}_\partial(P^*f(-\partial)^{-1}) = \text{Res}_\partial(P^*f\partial^{-1}).$$

As P^*f is a differential operator with constant term $P^*(f)$, this gives the proof of the lemma. \(\square\)

So we have shown that each r_j satisfies the equation (3.3):

$$\frac{\partial r_j}{\partial t_n} = -(L^n_W)^+(r_j).$$

and we can conclude that L_W, the $\{q_j\}$ and the $\{r_j\}$ form a solution of the m vector k-constrained KP-hierarchy.

4 The main theorem

In this subsection we will prove the converse of the result from the foregoing subsection and thus come to the main theorem. So we start with a W in $G_{r^r(-\ell)}$ and functions $\{q_j\}$ and $\{r_j\}$, all defined on a dense open subset of Γ_+, such that the equations (3.2), (3.3) and (3.4) are satisfied. We will show that such a W fulfills the $mVkC$-condition from section 3. Recall that there is a unique pseudodifferential operator P_W such that $\psi_W = P_W(e^{\sum t_i z^i})$. It has the form

$$P_W = \partial^\ell + \sum_{j < \ell} p_j \partial^j = \{1 + \sum_{s<0} p_{s+s} \partial^s\} \partial^\ell.$$ \hspace{0.5cm} (4.1)
It is not difficult to see that the fact that ψ_W is a wavefunction is equivalent to P_W satisfying the Sato-Wilson equations
\begin{equation}
\frac{\partial P_W}{\partial r_n} P_W^{-1} = -(P_W \partial^n P_W^{-1})_-, \tag{4.2}
\end{equation}
where P_- denotes the integral operator part $\sum_{i < 0} p_i \partial^i$ of the element $P = \sum p_j \partial^i$ in $R[\partial, \partial^{-1}]$. Next we consider for each $j, 1 \leq j \leq m$, the operators Q_j and R_j defined by
\begin{equation}
Q_j := q_j \partial q_j^{-1} P_W \quad \text{and} \quad R_j = r_j^{-1} \partial^{-1} r_j P_W. \tag{4.3}
\end{equation}
We want to show that the Q_j and the R_j also satisfy the Sato-Wilson equations. To do so, we need some properties of the ring $R[\partial, \partial^{-1}]$ of pseudodifferential operators with coefficients from R. We resume them in a lemma

Lemma 4.1 If f belongs to R and Q to $R[\partial, \partial^{-1}]$, then the following identities hold
\begin{enumerate}[(a)]
\item $(Qf)_- = Q_- f$,
\item $(fQ)_- = fQ_- $,
\item $\text{Res}_\partial(Qf) = \text{Res}_\partial(fQ) = f \text{Res}_\partial(Q)$,
\item $(\partial Q)_- = \partial Q_- - \text{Res}_\partial(Q)$,
\item $(Q\partial)_- = Q_- \partial - \text{Res}_\partial(Q)$,
\item $(Q^{-1})_- = Q_- \partial^{-1} + \text{Res}_\partial(Q\partial^{-1}) \partial^{-1}$,
\item $(\partial^{-1} Q)_- = \partial^{-1} Q_- + \partial^{-1} \text{Res}_\partial(Q^* \partial^{-1})$.
\end{enumerate}

Since the proof of this lemma consists of straightforward calculations, we leave this to the reader. Now we can show

Proposition 4.1 The operators Q_j and $R_j, 1 \leq j \leq m$, satisfy the Sato-Wilson equations.

Proof. If we denote $\frac{\partial}{\partial r_n}$ by ∂_n, then we get for $Q_j = q_j \partial q_j^{-1} P_W$ that
\begin{align*}
\partial_n(Q_j) Q_j^{-1} &= \partial_n(q_j \partial q_j^{-1}) q_j^{-1} P_W^{-1} q_j \partial q_j^{-1} + q_j \partial q_j^{-1} \partial_n(P_W) P_W^{-1} q_j \partial q_j^{-1} q_j^{-1} \\
&= -q_j \partial q_j^{-1}(L^n_W) q_j \partial q_j^{-1} q_j^{-1} + \partial_n(q_j \partial q_j^{-1}) q_j \partial q_j^{-1} q_j^{-1}.
\end{align*}

Now we apply successively the identities from Lemma 4.1 to the first operator of the right-hand side
\begin{align*}
q_j \partial q_j^{-1}(L^n_W) q_j \partial q_j^{-1} q_j^{-1} &= q_j \partial q_j^{-1}(L^n_W q_j) \partial q_j^{-1} q_j^{-1} = \\
q_j \partial q_j^{-1} L^n_W q_j \partial q_j^{-1} q_j^{-1} &= q_j \partial \text{Res}_\partial(q_j^{-1} L^n_W q_j \partial q_j^{-1}) \partial q_j^{-1} q_j^{-1} = \\
q_j \partial \text{Res}_\partial(q_j^{-1} L^n_W q_j \partial q_j^{-1}) \partial q_j^{-1} q_j^{-1} &= (q_j \partial q_j^{-1} L^n_W q_j \partial q_j^{-1}) q_j^{-1} = \\
q_j^{-1} \text{Res}_\partial(L^n_W q_j \partial q_j^{-1}) q_j^{-1} &= q_j^{-1} \text{Res}_\partial(L^n_W q_j \partial q_j^{-1}) q_j^{-1} = \\
(q_j \partial q_j^{-1} L^n_W q_j \partial q_j^{-1}) q_j^{-1} &= q_j \partial q_j^{-1} \text{Res}_\partial(L^n_W q_j \partial q_j^{-1}) q_j^{-1}.
\end{align*}

By applying Lemma 3.1 to these last two residues we get
\begin{equation}
(q_j \partial q_j^{-1} L^n_W q_j \partial q_j^{-1})_+ + (L^m_W)_+(q_j) q_j^{-1} - q_j \partial q_j^{-1}(L^n_W)_+(q_j) \partial q_j^{-1} q_j^{-1}.
\end{equation}
On the other hand
\[\partial_n(q_j \partial q_j^{-1}) q_j \partial^{-1} q_j^{-1} = \partial_n(q_j) q_j^{-1} - q_j \partial q_j^{-2} \partial_n(q_j) q_j \partial^{-1} q_j^{-1}. \]

Thus we see that, if \(\partial_n(q_j) = (L^n_W)_+ (q_j) \), the operator \(Q_j \) satisfies the Sato-Wilson equation
\[\partial_n(Q_j) Q_j^{-1} = -(Q_j \partial^n Q_j^{-1})_. \] (4.4)

For \(R_j \), we proceed in a similar fashion
\[\partial_n(R_j) R_j^{-1} = -r_j^{-1} \partial^{-1} r_j (L^n_W)_- r_j \partial r_j + \partial_n(r_j^{-1} \partial^{-1} r_j) r_j^{-1} \partial r_j \]
\[= -r_j^{-1} \partial^{-1} (r_j L^n_W r_j^{-1})_\partial r_j + \partial_n(r_j) r_j^{-1} + r_j^{-1} \partial^{-1} (\partial_n(r_j) r_j^{-1})_\partial r_j. \]

Now we successively apply Lemma [4.3] (g) and (e) and (4.2) to the first term of the right hand side of this equation
\[-r_j^{-1} \partial^{-1} (r_j L^n_W r_j^{-1})_\partial r_j = -r_j^{-1} \{ (\partial^{-1} r_j L^n_W r_j^{-1})_- - \partial^{-1} \text{Res}(r_j^{-1} (L^n_W)^* r_j \partial^{-1}) \} \partial r_j \]
\[= -r_j^{-1} (\partial^{-1} r_j L^n_W r_j^{-1})_\partial r_j + r_j^{-1} \partial^{-1} r_j L^n_W r_j^{-1} \partial r_j \]
\[= -r_j^{-1} (\partial^{-1} r_j L^n_W r_j^{-1})_\partial r_j - r_j^{-1} (L^n_W)^* (r_j) + r_j^{-1} \partial^{-1} r_j L^n_W r_j^{-1} \partial r_j. \]

Since \(\partial_n(t_j) = - (L^n_W)^* (r_j) \), we see that the last two terms cancel \(\partial_n(r_j^{-1} \partial r_j) r_j^{-1} \partial r_j \) and thus we have obtained the Sato-Wilson equation for \(R_j \)
\[\partial_n(R_j) R_j = -(R_j \partial^n R_j^{-1})_. \] (4.5)

This concludes the proof of proposition [4.4].

This proposition has some important consequences. Since the \(\{r_j\} \) and the \(\{q_j\} \) are non-zero on a dense open subset of \(\Gamma_+ \), we define on such a subset of \(\Gamma_+ \) oscillating functions \(\psi Q_j \) and \(\psi R_j \) of type \(z^{\ell+1} \) resp. \(z^{\ell-1} \) by
\[\psi Q_j = q_j \partial q_j^{-1} \cdot \psi_W \quad \text{and} \quad \psi R_j = r_j^{-1} \partial^{-1} r_j \cdot \psi_W. \] (4.6)

Consider the following subspaces in \(Gr (H) \)
\[W_{Q_j} = \text{Span} \{ \psi Q_j(t,z) \} \quad \text{and} \quad W_{R_j} = \text{Span} \{ \psi R_j(t,z) \}. \]

Then we can conclude from proposition [4.3]

Corollary 4.1 The functions \(\psi Q_j \) and \(\psi R_j \) are the wavefunctions of the planes \(W_{Q_j} \) and \(W_{R_j} \). Moreover we have the following codimension 1 inclusions:
\[W_{Q_j} \subset W \quad \text{and} \quad W \subset W_{R_j}. \]

Proof. From the Sato-Wilson equations one deduces directly that for all \(n \geq 1 \),
\[\partial_n \psi Q_j = (Q_j \partial^n Q_j^{-1})_+ \psi Q_j \quad \text{and} \quad \partial_n \psi R_j = (R_j \partial^n R_j^{-1})_+ \psi R_j. \]

This shows the first part of the claim. The inclusions between the different spaces follows from the relations
\[\psi Q_j = (q_j \partial q_j^{-1}) (\psi_W) \quad \text{and} \quad \psi W = (r_j \partial r_j^{-1}) \psi R_j. \]
the fact that the values of a wavefunction corresponding to an element of $\text{Gr}(H)$ are lying dense in that space. Since for a suitable γ in Γ_+ the orthogonal projections of $\gamma^{-1}W_{R_j}$ on $z^\ell H_+$ resp. $\gamma^{-1}W$ on $z^{\ell+1}H_+$ have a one dimensional kernel, one obtains the codimension one result. This concludes the proof of the corollary.

Now we can formulate the main results of this paper.

Theorem 4.1 Let W be a plane in $\text{Gr}(H)$ and let L_W be the corresponding solution of the KP-hierarchy. Then for $m, k \in \mathbb{N}$, $k \neq 0$, the following 2 conditions are equivalent

(a) The space W satisfies the $mVkC$-condition.

(b) There exist functions $\{q_j | 1 \leq j \leq m\}$ and $\{r_j | 1 \leq j \leq m\}$ defined on an open dense subset of Γ_+ such that the following conditions are fulfilled:

(i) $\partial_n(q_j) = (L^\ell_W)_{+}(q_j)$ for all $n \geq 1$,

(ii) $\partial_n(r_j) = -(L^\ell_W)_{+}(r_j)$ for all $n \geq 1$,

(iii) $L^k_W = (L^k_W)_{+} + \sum_{j=1}^{m} q_j \partial^{-1}r_j$.

Proof. In section 2 it has been shown that (a) implies (b). So we assume from now on (b). The relation (b) (iii) leads to

\[
L^k_W(\psi_W) = z^k\psi_W = (L^k_W)_{+}(\psi_W) + \sum_{j=1}^{m} q_j \partial^{-1}r_j \psi_W = (L^k_W)_{+}(\psi_W) + \sum_{j=1}^{m} q_j r_j \partial^{-1}r_j \psi_W = (L^k_W)_{+}(\psi_W) + \sum_{j \neq 0}^{m} q_j r_j \psi_{R_j}.
\]

Thus we see with the usual density argument that

\[
z^kW \subset W + \sum_j W_{R_j} = \sum_j W_{R_j} = \tilde{W}.
\]

Since each W has codimension one in W_{R_j}, we see that the codimension of W in \tilde{W} is $\leq m$. Let W_1 be the orthocomplement of W in \tilde{W} and $p_1 : H \to W_1$ the orthogonal projection on W_1. Inside W we consider

\[W^1 = \{w \in W | p_1(z^k w) = 0\}.
\]

Since $\dim(W_1) \leq m$, we see that W^1 is a subspace of W of codimension $\leq m$ and by construction $z^kW^1 \subset W$. This completes the proof of the theorem.

5 General rational reductions of the KP hierarchy

We are now going to connect the vector constrained KP hierarchy to reductions of the KP hierarchy introduced by Krichever [17]. For that purpose we assume that W is a plane in $\text{Gr}(H)$ that satisfies the $mVkC$-condition, where we choose m to be as minimal as possible for that plane. Let $L_W = P_W \partial P^{-1}_W$, with P_W of the form (4.1), be the corresponding
solution of the KP hierarchy and let $W^1 \subset W$ be the subspace of codimension M such that $W_1 = z^k W^1 \subset W$. Notice first that W_1 is a subspace of W and $z^k W$ of codimension $k + m$ and m, respectively. Hence there exist differential operators L_1 and L_2 of order $k + m$ and m, respectively, such that

$$L_1 \psi_W = \psi_{W_1}, \quad L_2 z^k \psi_W = \psi_{W_1}$$

(5.1)

and that ψ_{W_1} is again a wavefunction. From (5.1) one immediately deduces that

$$L_2^k = L_2^{-1} L_1.$$

(5.2)

We first prove the following lemma.

Lemma 5.1 Let $L = P \partial^k P^{-1}$ be a pseudodifferential operator of order k and let L_1 and L_2 be differential operators of order $k + m$ and m, respectively, such that $L = L_2^{-1} L_1$. Then one has the following identities:

$$L_1(L_2^{-1} L_1)^{i/k} = (L_1 L_2^{-1})^{i/k} L_1, \quad L_2(L_2^{-1} L_1)^{i/k} = (L_1 L_2^{-1})^{i/k} L_2.$$

Proof. Since $L_1 P = L_2 P \partial^k$, one can find a pseudodifferential operator Q of the same order as P such that $L_1 = Q \partial^{k+m} P^{-1}$, $L_2 = Q \partial^m P^{-1}$ and thus $L_1 L_2^{-1} = Q \partial^k Q^{-1}$. Since also $L_2^{-1} L_1 = P \partial^k P^{-1}$, one finds that their k-th roots satisfy

$$(L_2^{-1} L_1)^{1/k} = P \partial P^{-1}, \quad (L_1 L_2^{-1})^{1/k} = Q \partial Q^{-1}. $$

Using this, one easily verifies the identities of the Lemma. \qed

Since both ψ_W and ψ_{W_1} are wavefunctions that are connected by equations (5.1), we find, using (5.2) and Lemma 5.1, that

$$L_W = (L_2^{-1} L_1)^{1/k} \quad \text{and} \quad L_{W_1} = L_1 (L_2^{-1} L_1)^{1/k} L_1^{-1} = (L_1 L_2^{-1})^{1/k}. $$

(5.3)

Hence

$$\partial_i \psi_{W_1} = ((L_1 L_2^{-1})^{i/k})_+ \psi_{W_1} = ((L_1 L_2^{-1})^{i/k})_+ L_1 \psi_W$$

and on the other hand is also equal to

$$\partial_i (L_1 \psi_W) = \partial_i (L_1) \psi_W + L_1 ((L_2^{-1} L_1)^{i/k})_+ \psi_W.$$

From which one deduces that

$$\partial_i L_1 = ((L_1 L_2^{-1})^{i/k})_+ L_1 - L_1 ((L_2^{-1} L_1)^{i/k})_+. $$

(5.4)

In a similar way one obtains from the other identity of (5.1) that

$$\partial_i L_2 = ((L_1 L_2^{-1})^{i/k})_+ L_2 - L_2 ((L_2^{-1} L_1)^{i/k})_+. $$

(5.5)

Notice that in this way we have exactly obtained Krichever’s general rational reductions of the KP hierarchy [17]. Krichever considers KP pseudodifferential operators L of the form (2.4), such that $L^k = L_2^{-1} L_1$, where L_1 and L_2 are coprime differential operators of order $k + m$ and m, respectively. It can be shown that the equations (5.4) and (5.5) for L_1 and L_2 are equivalent to the KP Lax equations for L. It is not difficult to see that our operators must be coprime, since we have chosen our m to be minimal. We will now prove that the converse also holds, i.e., that the following theorem holds.
Theorem 5.1 Let \(W \) be a plane in \(Gr(H) \) and let \(L_W \) be the corresponding solution of the KP-hierarchy. Then for \(m, k \in \mathbb{N}, k \neq 0 \), the following 2 conditions are equivalent

(a) The space \(W \) satisfies the \(mVkC \)-condition, with \(m \) as minimal as possible.

(b) There exist coprime differential operators \(L_1 \) and \(L_2 \) of order \(k + m \) and \(m \), respectively, such that the following conditions are fulfilled:

\begin{align*}
(i) & \quad L_W^k = L_2^{-1}L_1 \\
(ii) & \quad \partial_i L_1 = ((L_1L_2^{-1})^{i/k})_+ L_1 - L_1((L_2^{-1}L_1)^{i/k})_+ \\
(iii) & \quad \partial_i L_2 = ((L_1L_2^{-1})^{i/k})_+ L_2 - L_2((L_2^{-1}L_1)^{i/k})_+.
\end{align*}

Proof. We have already shown that (a) implies (b). So we assume from now on (b). Let \(\psi_1 \) be the oscillating function \(L_1\psi_W \), then by using Lemma 5.1:

\[
(L_1L_2^{-1})^{1/k}\psi_1 = (L_1L_2^{-1})^{1/k}L_1\psi_W = L_1(L_2^{-1}L_1)^{1/k}\psi_W = zL_1\psi_W = z\psi_1.
\]

Now consider

\[
\partial_i \psi_1 = \partial_i(L_1)\psi_W + L_1\partial_i\psi_W = (((L_1L_2^{-1})^{i/k})_+ L_1 - L_1((L_2^{-1}L_1)^{i/k})_+)\psi_W = ((L_1L_2^{-1})^{i/k})_+ L_1\psi_W = ((L_1L_2^{-1})^{i/k})_+ \psi_1.
\]

Hence \(\psi_1 \) is again a wavefunction of the KP hierarchy. If we let \(W_1 \) be the closure of the span of the \(\psi_1(t, z) \) then \(\psi_W = \psi_1 \). Since \(z^k\psi_W \) is also a wavefunction,

\[
L_2z^k\psi_W = \psi_W.
\]

Thus we see with the usual density argument that

\[
\begin{align*}
W_1 & \subset z^kW \text{ of codimension } m \\
W_1 & \subset W \text{ of codimension } k + m
\end{align*}
\]

\[\tag{5.6}\]

Hence \(W_1 = z^{-k}W_1 \) is a subset of \(W \) of codimension \(m \) such that \(z^kW_1 \subset W \). Since our differential operators are coprime, one cannot find lower order operators \(M_1 \) and \(M_2 \) such that \(L_W = M_2^{-1}M_1 \). Hence there is no smaller subspace \(W_1 \) and no smaller \(m \) such that (5.6) is satisfied. \(\square \)

As a consequence of this, we obtain that in the Segal-Wilson setting, the vector constrained KP hierarchy and Krichever’s general rational reduction define the same reduction of the KP hierarchy.

Acknowledgements. We would like to thank Igor Krichever, for sending us an early preprint version of his paper [17], and especially Henrik Aratyn, for sending us [1]. In this communication he presents his proof, that the vector constrained KP and Krichever’s general rational reduction’s of KP describe the same hierarchies. His proof is based on kernels of differential operators and properties of Wronskians and is quite different from the proof given in this paper.
REFERENCES

References

[1] H. Aratyn, private communication.

[2] H. Aratyn, Integrable Lax hierarchies, their symmetry reductions and multi-matrix models, [hep-th 9503211].

[3] H. Aratyn, L. Ferreira, J.F. Gomes, A.H. Zimerman, Constrained KP models as integrable matrix hierarchies, Journ. Math. Phys. (1997) (hep-th 9509096).

[4] H. Aratyn, J.F. Gomes, A.H. Zimerman, Affine Lie algebraic origin of constrained KP hierarchies, Journ. Math. Phys 36 (1995) 3419– (hep-th 9408104).

[5] H. Aratyn, E. Nissimov and S. Pacheva, Virasoro symmetry of constrained KP hierarchies, [hep-th 9602068].

[6] H. Aratyn, E. Nissimov and S. Pacheva, Constrained KP hierarchies: Additional symmetries, Darboux-Bäcklund solutions and relations to multi-matrix models, [hep-th 9607233].

[7] H. Aratyn, E. Nissimov and S. Pacheva, Method of squared eigenfunction potentials in integrable hierarchies of KP type, [solv-int 9701017].

[8] H. Aratyn, E. Nissimov, S. Pacheva and A.H. Zimerman, Two-matrix string model as constrained (2+1)-dimensional integrable system, Int.J. Mod Phys. A10 (1995) 2537– (hep-th 9407017).

[9] Yi Cheng, Constraints of the Kadomtsev-Petviashvili hierarchy, Journ. Math.Phys. 33 (1992) p. 3747–3782.

[10] Yi Cheng, Modifying the KP, the n^{th} constrained KP hierarchies and their Hamiltonian structures, Commun. Math. Phys. 171 (1995) p. 661–682.

[11] Yi Cheng, Walter Strampp and You-Jin Zhang, bilinear Bäcklund transformations for the KP and k-constrained KP hierarchy, preprint.

[12] Yi Cheng, Walter Strampp and Bin Zhang, Constraints of the KP hierarchy and multilinear forms, Commun. Math. Phys. 168 (1995) p. 117–135.

[13] Yi Cheng, You-Jin Zhang, Bilinear equations for the constrained KP hierarchy, Inverse Problems 10 (1994) p. L11–L17.

[14] L.A. Dickey, On the constrained KP, preprint.

[15] L.A. Dickey, On the constrained KP hierarchy II, preprint. On the constrained KP hierarchy II. An additional remark, preprint.

[16] L. Dickey, W. Strampp, On new identities for KP Baker functions and their application to constrained hierarchies, preprint.

[17] I. Krichever General rational reductions of the KP hierarchy and their symmetries, Funct. Anal. Appl. 29 (1995), p. 75–80.

[18] J. van de Leur, A geometrical interpretation of the constrained KP hierarchy, preprint.
REFERENCES

[19] J. van de Leur, The vector constrained KP hierarchy and Sato’s Grassmannian, preprint to appear in Journal of Geometry and Physics (q-alg 9609001).

[20] Q.P. Liu, Bi-hamiltonian structures of coupled AKNS hierarchy and coupled Yajima-Oikawa hierarchy, Journ. Math. Phys. (1996) p. 2307–2314.

[21] Ignace Loris, Ralph Willox, Bilinear form and solutions of the k–constrained Kadomtsev–Petviashvili hierarchy, preprint.

[22] Ignace Loris, Ralph Willox, On solutions of constrained KP equations, Journ. Math. Phys. (1997) p.283–291.

[23] Javier Mas, Eduardo Ramos, The constrained KP hierarchy and the generalised Miura transformation, q-alg 9501009.

[24] W. Oevel, W. Strampp, Constrained KP hierarchies and bi–hamiltonian structures, Commun. Math. Phys. 157 (1993) p. 51–81.

[25] W. Oevel, W. Strampp, Wronskian solutions of the constrained Kadomtsev-Petviashvili hierarchy, Journ. Math. Phys. 37 (1996) p. 6213–6219.

[26] A.Yu. Orlov, Symmetries for unifying different soliton systems into a single integrable hierarchy, preprint IINS/Oce04/03

[27] A.Yu. Orlov, Volterra operator algebra Zero curvature representation. Universality of KP, in: Nonlinear Processes in physics, proceeding of the III Potsdam-V Kiev Workshop at Clarkson Univ., Potsdam , N.Y., USA, eds. A.S. Fokas, D.J. Kaup, A.C. Newell and V.E. Zakharov, Springer series in Nonlinear Dynamics, Springer Verlag, Berlin (1991) p.126–131.

[28] M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Res. Inst. Math. Sci. Kokyuroku 439 (1981) p. 30–46.

[29] J. Sidorenko and W. Strampp, Multicomponent integrable reductions in the Kadomtsev–Petviashvilli hierarchy, Journ. Math Phys. 34 (1993) p. 1429–1446.

[30] G. Segal and G. Wilson, Loop groups and equations of KdV type, Publ. Math IHES 63 (1985), p. 1–64.

[31] Y.-J. Zhang, On Segal-Wilson’s construction for the τ-functions of the constrained KP hierarchies, Letters in Math. Physics 36 (1996), p.1–15.

[32] You–jin Zhang and Yi Cheng, Solutions for the vector k–constrained KP hierarchy, J. Math Phys. 35 (1994) p. 5869–5884.