HbA₁c Performance in African Descent Populations in the United States With Normal Glucose Tolerance, Prediabetes, or Diabetes: A Scoping Review

Lakshay Khosla, BA¹,²; Sonali Bhat, BA¹,²; Lee Ann Fullington, MPhil, MSLIS³; Margrethe F. Horlyck-Romanovsky, DrPH¹,⁴

Accessible Version: www.cdc.gov/pcd/issues/2021/20_0365.htm

Suggested citation for this article: Khosla L, Bhat S, Fullington LA, Horlyck-Romanovsky MF. HbA₁c Performance in African Descent Populations in the United States With Normal Glucose Tolerance, Prediabetes, or Diabetes: A Scoping Review. Prev Chronic Dis 2021;18:200365. DOI: https://doi.org/10.5888/pcd18.200365.

Abstract

Introduction
African descent populations in the United States have high rates of type 2 diabetes and are incorrectly represented as a single group. Current glycated hemoglobin A₁c (HbA₁c) cutoffs (5.7% to <6.5% for prediabetes; ≥6.5% for type 2 diabetes) may perform suboptimally in evaluating glycemic status among African descent groups. We conducted a scoping review of US-based evidence documenting HbA₁c performance to assess glycemic status among African American, Afro-Caribbean, and African people.

Methods
A PubMed, Scopus, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) search (January 2020) yielded 3,238 articles published from January 2000 through January 2020. After review of titles, abstracts, and full texts, 12 met our criteria. HbA₁c results were compared with other ethnic groups or validated against the oral glucose tolerance test (OGTT), fasting plasma glucose (FPG), or previous diagnosis. We classified study results by the risk of false positives and risk of false negatives in assessing glycemic status.

Results
In 5 studies of African American people, the HbA₁c test increased risk of false positives compared with White populations, regardless of glycemic status. Three studies of African Americans found that HbA₁c of 5.7% to less than 6.5% or HbA₁c of 6.5% or higher generally increased risk of overdiagnosis compared with OGTT or previous diagnosis. In one study of Afro-Caribbean people, HbA₁c of 6.5% or higher detected fewer type 2 diabetes cases because of a greater risk of false negatives. Compared with OGTT, HbA₁c tests in 4 studies of Africans found that HbA₁c of 5.7% to less than 6.5% or HbA₁c of 6.5% or higher leads to underdiagnosis.

Conclusion
HbA₁c criteria inadequately characterizes glycemic status among heterogeneous African descent populations. Research is needed to determine optimal HbA₁c cutoffs or other test strategies that account for risk profiles unique to African American, Afro-Caribbean, and African people living in the United States.

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors’ affiliated institutions.
Introduction

People of African descent in the United States have a disproportionate burden of type 2 diabetes; prevalence is higher in African descent populations, 14%, compared with White populations of European descent (White populations), 9% (1). Additionally, African descent populations are represented as a single group, despite being comprised of African American (91%), Afro-Caribbean (4.7%), and African (3.7%) people (2,3). Limited evidence examines how intraethnic differences in cardiometabolic risk criteria, social determinants of health, and genetic admixture affect diabetes risk in these 3 populations (4,5). Current glycated hemoglobin A1c (HbA1c) cutoffs (HbA1c 5.7% to less than 6.5% for prediabetes; HbA1c of 6.5% or higher for type 2 diabetes), determined from predominantly White population cohorts (4–8), may perform suboptimally in evaluating glycemic status in this diverse population of African American, Afro-Caribbean, and African populations (9–12). African American people may have higher HbA1c values across the glycemic spectrum (9,13), and African immigrants may have lower HbA1c values compared with White people (14). To ensure accurate detection of type 2 diabetes, there is a need to understand the ability of HbA1c to correctly classify type 2 diabetes status and to evaluate intraethnic variation among African American, Afro-Caribbean, and African people (15–17).

Compared with random glucose, fasting plasma glucose (FPG), and the 2-hour oral glucose tolerance test (OGTT), HbA1c has multiple benefits. It does not require fasting, tracks plasma glucose over the preceding 2 to 3 months, and better predicts complications such as cardiovascular disease (4,18). The HbA1c test is stable, unaffected by external variables (eg, exercise, recent meals, and environmental stressors), and easily added to blood tests (19,20). However, interpretation of HbA1c results is affected by the reduced lifespan of red blood cells in patients with type 2 diabetes, anemia, and hemoglobinopathies, conditions which disproportionately affect African descent populations (21–25).

The goal of our study was to conduct a scoping review of US-based peer-reviewed evidence documenting HbA1c performance in African American, Afro-Caribbean, and African populations in the United States with the objectives of 1) summarizing evidence on HbA1c performance in each subethnic group; 2) demonstrating variations in HbA1c performance by each subethnic group; and 3) identifying potential future areas of research.

Methods

Data sources

In early January 2020, we searched PubMed, Scopus, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) for peer-reviewed studies published between January 1, 2000, and January 1, 2020, by using complex search strings that were tested and developed in partnership with our institution’s health sciences librarian (L.A.F.). The search string included medical subject headings (MeSH) terms and key words such as “African continental ancestry group,” “African Americans,” “Caribbean,” and “West Indian” to describe population groups and “Glycated Hemoglobin A,” “hemoglobin A1c,” and “hba1c” to describe the testing indicator of interest for type 2 diabetes (Appendix).

Study selection

Throughout the review process, we screened articles for studies meeting the following inclusion criteria:

1. Articles were original studies published between January 2000 and January 2020, that evaluated HbA1c performance in African descent groups.
2. Study populations included African Americans, Afro-Caribbeans, or Africans.
3. Study participants were living in the United States.
4. Study was a database analysis, epidemiologic study, or clinical study.
5. HbA1c performance was reported specifically in one or more of the African descent groups.
6. HbA1c performance was assessed in healthy populations or for screening or diagnosis of prediabetes or type 2 diabetes.
7. HbA1c performance was assessed by statistical methods (eg, sensitivity, specificity, and positive predictive value), compared with other tests in the same population, or compared African descent populations to other racial groups.

During the study selection process, we included studies that compared various diabetes screening tests against HbA1c, including the OGTT, FPG, and glycated protein tests, to avoid excluding major findings. Although the OGTT is considered optimal for comparison, it is far more costly, resource intensive, and time consuming than the FPG and glycated protein tests (6–8); additionally, research supports the use of other tests along with OGTT or in place of OGTT to enhance detection of diabetes (7,18–22). Because African descent populations are less likely to be adequately represented in clinical research and simultaneously experience health care inequities (4,19), we wanted to be inclusive of all the data, in comparison to HbA1c, that were available for the populations.

On the basis of the title and abstract review, we excluded articles that did not match the set inclusion criteria above (Figure). Two authors (L.K. and S.B.) conducted independent title and abstract reviews. In the full-text review, we excluded articles with insufficient data (eg, case studies), narrative reviews, and articles that fell under a previously set exclusion criterion not detected during the title and abstract review. Full-text articles for potential studies...
were reviewed by 2 authors (L.K. and S.B.) independently. When multiple exclusion criteria were met, we categorized the article by the exclusion criterion that appeared first in title, abstract, or full text review. A third author (M.H.R.) verified that the exclusion criteria were relevant throughout the article.

Data extraction

We created a data extraction sheet to record the study author and name, populations (sample size, male/female breakdown, race/ethnicity distribution, age, and study location), HbA1c laboratory methods, study design, HbA1c evaluation methods, findings, and HbA1c performance. We successfully retrieved any missing information by 1) searching through cited articles from which the studies retrieved data; 2) identifying parent studies and protocol descriptions given in prior publications; and 3) emailing corresponding authors. HbA1c performance was classified using 2 labels: 1) greater risk of false positive (GRFP) label indicated that the HbA1c test may result in overdetection of glycemic status (eg, type 2 diabetes) that the study is measuring or 2) greater risk of false negatives (GRFN) label indicated that the HbA1c test may result in underdetection of glycemic status. This classification system (GRFP or GRFN) was based on text analysis of the language used by the authors of each study in the way they interpreted their results (eg, lower sensitivity, lower specificity, more misdiagnoses). This allowed for standardization of labeling findings from different study designs. GRFP was assigned if studies reported 1) higher HbA1c values in African descent participants compared with other ethnic groups (eg, White participants) at the same glycemic level; 2) lower sensitivity because of less true positives; or 3) lower specificity because of more false positives. GRFN was assigned if studies reported 1) lower HbA1c values in participants compared with other ethnic groups at same glycemic level; 2) lower sensitivity because of more false negatives; or 3) lower specificity because of less true negatives. Discrepancies in the review process and data extraction were resolved with input from a third author (M.H.R.).

Included studies were grouped based on study population (African American, Afro-Caribbean, and African) and then organized in alphabetical order by the first author’s last name. Studies were labeled numerically as 1 through 12 based on this ordering.

Results

Of the 12 articles that met the inclusion criteria, studies numbered 1 through 7 analyzed HbA1c performance among African American people (26-32), study number 8 analyzed HbA1c performance among Afro-Caribbean people (33), and studies numbered 9 through 12 analyzed HbA1c performance among African people
In the Afro-Caribbean population, HbA1c testing at the 6.5% or higher cutoff has a GRFN (33). Using FPG as a standard for diagnosis of type 2 diabetes, study 8 showed that more participants were correctly diagnosed as having type 2 diabetes if the cutoff was lowered to 6.26% or higher, suggesting that HbA1c values are generally lower in Afro-Caribbean people (Table 2).

The Africans in America studies 9 through 12 all showed that HbA1c has a GRFN in African people at the HbA1c cutoff of 5.7% to less than 6.5% for prediabetes and HbA1c cutoff of 6.5% or higher for type 2 diabetes (34–37). Using OGTT as a diagnostic standard for glycemic status, studies 9 through 12 demonstrated that using an HbA1c cutoff of 5.7% to less than 6.5% will lead to underdiagnosis of prediabetes in Africans. Additionally, study 9 showed that using an HbA1c cutoff of 6.5% or higher will lead to an underdiagnosis of type 2 diabetes in Africans (34) (Table 2).

Discussion

We assessed 12 studies that evaluated the ability of HbA1c to correctly identify African American, Afro-Caribbean, and African people with prediabetes or type 2 diabetes. Studies among African American people found that HbA1c of 5.7% to less than 6.5% or HbA1c of 6.5% or higher led to underdiagnosis. In one study of Afro-Caribbean people, HbA1c of 6.5% or higher had a greater risk of false negatives (GRFN). Among African people, HbA1c of 5.7% to less than 6.5% or HbA1c of 6.5% or higher led to greater risk of underdiagnosis.

Overdiagnosis of diabetes was likely among African American people in 3 ways. African American people had consistently higher HbA1c levels than White people regardless of glycemic status (26,27,29,30,32). Furthermore, half of normoglycemic African American people had HbA1c values greater than 5.7% (28); and lastly, African American people were more likely to be diagnosed with type 2 diabetes by HbA1c of 6.5% or higher alone but not by OGTT (29,31). Although study 6 did suggest a GRFN at HbA1c less than 5.7%, by misdiagnosing some participants as having normal glycemic status if their HbA1c was less than 5.7% (31), the finding is limited by the smaller sample size of 83 participants when compared with the other studies. This finding must be investigated further.

In Afro-Caribbean people, the HbA1c cutoff of 6.5% is likely to result in underdiagnosis of type 2 diabetes because study 8 showed that more participants were correctly diagnosed as having type 2 diabetes if the cutoff was lowered to 6.26% (33). However, this finding may not be generalizable to other Afro-Caribbean populations because of the smaller sample size and limitation of the study population to Haitian American people. Additionally, because only 1 study provided this conclusion, generalizability is further limited. For African people, underdiagnosis of prediabetes and...
type 2 diabetes is also likely at the standard HbA$_{1c}$ cutoffs because diagnosis was missed by HbA$_{1c}$ despite being detected by OGTT (34–37). The findings among African people hold true regardless of hemoglobin variant or obesity status (35,36).

Genetics are often thought to be responsible for the differences of HbA$_{1c}$ performance in African descent populations (24,40–43). In fact, genetic analysis in study 5 shows that the HbA$_{1c}$ difference was primarily because of the genomic principal component analysis (PCA) factor in African American people when compared with White people (30). The study demonstrated that the PCA factor was associated with increased HbA$_{1c}$ values in African American people. However, genetics do not fully explain HbA$_{1c}$ differences among African American people (44), because increases in HbA$_{1c}$ may be mediated by social determinants of health (eg, chronic financial strain as seen in study 3) or chronic inflammation (sIL-6R) (28,45). Additionally, G6PD variant or deficiency is often correlated with lower HbA$_{1c}$ values in various populations (40), especially in African American people and African people because of its higher prevalence in these groups (14,46,47). Similarly, the sickle cell trait is associated with lower HbA$_{1c}$ values in African descent populations (21,25). However, study 1 showed that the sickle cell trait may not actually correlate to changes in HbA$_{1c}$ values for African American people (26). Findings regarding associations of genetics with HbA$_{1c}$ are still being researched in this population. Research accounting for genetically linked HbA$_{1c}$ differences in Afro-Caribbean people is also lacking. Genetic polymorphisms between African American people and Haitian people have been researched and show that differences in the PPARGC1A gene will correlate to risk of type 2 diabetes in African American people as opposed to protective associations with type 2 diabetes in Haitian people, suggesting that other genetic associations may explain differences in diabetes for Haitian people (48). Although little research explains the role of genetics in HbA$_{1c}$ differences for Haitian people, one likely contributor to lower HbA$_{1c}$ values may be the G6PD variant because of its higher prevalence in populations of African descent (47). Nevertheless, opposing findings regarding the role of genetics in influencing HbA$_{1c}$ values (eg, PCA factor is associated with higher HbA$_{1c}$ whereas the sickle cell trait is associated with lower HbA$_{1c}$) make it difficult to ascertain the overall impact genetics has in causing the differences in HbA$_{1c}$ that were found for the African descent populations and therefore require further evaluation.

Socioeconomic factors and health behaviors such as diet, smoking, and exercise may explain some differences in glycemic control and HbA$_{1c}$ values among the 3 groups. Higher income and educational attainment appear to decrease the odds of diabetes among African immigrants, whereas only higher education lowers the odds for African American people (5). Neither education nor income appear to affect diabetes risk among Afro-Caribbean people (5,49). Additionally, study 3 found that financial stress and chronic inflammation were associated with higher HbA$_{1c}$. Chronic inflammation resulting from social and environmental stressors, including experiences of racism, correlate to higher HbA$_{1c}$ in non-diabetic adults (50). In terms of health behaviors, compared with African American people, African and Afro-Caribbean people are less likely to smoke. As African and Afro-Caribbean immigrants settle in the United States, they are affected by dietary acculturation often characterized by increased caloric intake and diets higher in refined carbohydrates, animal protein, fat, and sodium (5). Although diet may affect glycemic control, it is unlikely that diet explains the differences in HbA$_{1c}$ performance illustrated in this study. These socioeconomic factors highlight the diversity of experience within African descent groups, which is often overshadowed by perceived homogeneity of the “Black” experience in the United States. Since immigration to the United States presents unique socioeconomic circumstances that can affect factors like HbA$_{1c}$ (4), impacts of these circumstances are important to analyze distinctly from global concerns.

With these factors affecting HbA$_{1c}$ performance, results must be interpreted with caution. Some alternative diagnostic tests are suggested to aid or replace HbA$_{1c}$ for classification of glycemic status. For example, FPG in combination with HbA$_{1c}$ increases the sensitivity for type 2 diabetes diagnosis in African people (study 10) (35). A stronger relationship between HbA$_{1c}$ and FPG at higher FPG levels in most ethnic groups has been suggested as well (51). Study 8 suggests that FPG may be a better measure of glycemic status than HbA$_{1c}$ in Afro-Caribbean people (33). At the same time, studies 3, 6, and 9 through 12 suggest that OGTT more accurately measures glycemic status than HbA$_{1c}$ in both African American and African people (28,31,34–37). Comparisons between HbA$_{1c}$ and OGTT in Afro-Caribbean people are lacking and should be studied further.

Convenient nonfasting alternatives for type 2 diabetes testing are other glycated proteins (eg, glycated albumin, fructosamine, and other advanced glycation end products) either in combination with or in place of HbA$_{1c}$ (36,37,52–55). Although this approach is supported in multiethnic studies, these glycated proteins should be evaluated specifically in African descent groups.

Several limitations exist for the findings of our review. Despite constructing a comprehensive search, articles published in peer-reviewed journals that were not indexed in PubMed, Scopus, and CINAHL may have been missed. The search contained nouns and adjectives as identification for African descent countries and regions of origin and HbA$_{1c}$ testing. However, study participant groups may be based on self or researcher categorization rather than actual region, country, or ethnic group of the participant.
Findings must be interpreted with caution because of this subjective labeling within studies. Additionally, we did not use a specific protocol to evaluate the quality of the included studies, as this is not a part of scoping review methodologies and can increase risk of bias (56,57). Another limitation that must be considered is that time may pass between HbA1c testing and alternate testing in some studies and glycemic status of individuals can change in that time; this limitation will usually exist in this nature of clinical research methodology and therefore must be recognized when evaluating the conclusions from those studies.

According to our review process, there is only 1 study protocol in the United States that examines performance of diabetes screening tests among African immigrants to the United States (34–37). However, studies 9 through 12 demonstrate distinct comparisons within this cohort that illustrate significant conclusions about HbA1c performance. This is because the protocol is ongoing, and the number of participants increased over time. In turn, this also lends strength to the findings, because the similarity in protocol is balanced by the increasing diversity of the sample for each study design.

Finally, the lack of existing studies for Afro-Caribbean people in the United States presents a substantial limitation; our findings for this group must be interpreted cautiously. Further research is needed to understand the performance of HbA1c and evaluate alternate tests in place of the HbA1c in specific African descent populations, especially Afro-Caribbean people. Unique settings like New York City, where 32% of the African descent population is Afro-Caribbean and 4% is African (58), may serve as key locations for public health researchers to investigate type 2 diabetes screening and diagnostics.

Our review also has several strengths. In partnership with our institution’s research librarian, we tested several search constructions and selected the searches that provided the broadest selection within the scope of our topic. Additionally, we searched 3 databases without limiting article type or study designs on title and abstract review and had 2 reviewers independently screen the articles. This improved the selection of articles available for review and reduced selection bias. Finally, we were able to provide clear findings by constructing a label categorization scheme (GRFP/GRFN) that allowed for grouping of studies that used different comparative analytic and statistical methods to analyze HbA1c.

In African descent populations in the United States, the utility of HbA1c is limited in screening for glycemic status, determining care methods, assessing risk of type 2 diabetes complications, or analyzing health disparities. Current HbA1c cutoffs for prediabetes and type 2 diabetes may overestimate glycemic status in African American people and underestimate glycemic status in Afro-Caribbean and African people. Reasons for variations in HbA1c have been attributed to genetic, biochemical, and socioeconomic factors. Alternate testing such as OGTT, FPG, and other glycated blood proteins in place of or in combination with HbA1c may better assess glycemic status in African descent populations. Intraethnic HbA1c heterogeneity within the African descent groups must be recognized, and identification of more reliable type 2 diabetes screening and diagnostic tests is urgent.

Acknowledgments

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector. The authors have no conflict of interest to report. No copyrighted materials, surveys, instruments, or tools were used in our study.

Institution where work was completed: Brooklyn College, City University of New York.

Author Information

Corresponding Author: Margrethe F. Horlyck-Romanovsky, DrPH, City University of New York, Brooklyn College, 2900 Bedford Ave, Brooklyn, NY 11210. Telephone: 718-951-2753. Email: MargretheHR@brooklyn.cuny.edu.

Author Affiliations: 1Department of Health and Nutrition Sciences, Brooklyn College, City University of New York. 2College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York. 3Library Department, Brooklyn College, City University of New York, Brooklyn, New York. 4Center for Systems and Community Design, Graduate School of Public Health and Health Policy, City University of New York, New York, New York.

References

1. Mendola ND, Chen TC, Gu Q, Eberhardt MS, Saydah S. Prevalence of total, diagnosed, and undiagnosed diabetes among adults: United States, 2013–2016. NCHS Data Brief 2018;(319):1–8.
2. Anderson M. Rising share of the U.S. Black population is foreign born. Pew Research Center; 2015. https://www.pewsocialtrends.org/2015/04/09/a-rising-share-of-the-u-s-black-population-is-foreign-born/. Accessed July 20, 2020.
3. Anderson M, López G. Key facts about Black immigrants in the U.S. Pew Research Center; 2018. https://www.pewresearch.org/fact-tank/2018/01/24/key-facts-about-black-immigrants-in-the-u-s/. Accessed July 20, 2020.
1. Chung ST, Sumner AE. Diabetes: T2DM risk prediction in populations of African descent. Nat Rev Endocrinol 2016;12(3):131–2.
2. Commodore-Mensah Y, Matthie N, Wells J, B Dunbar S, Himmelfarb CD, Cooper LA, et al. African Americans, African immigrants, and Afro-Caribbeans differ in social determinants of hypertension and diabetes: evidence from the National Health Interview Survey. J Racial Etnh Health Disparities 2018;5(5):995–1002.
3. International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009;32(7):1327–34.
4. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010;33(Suppl 1):S62–9.
5. Edelman D, Olsen MK, Dudley TK, Harris AC, Oddone EZ. Utility of hemoglobin A1c in predicting diabetes risk. J Gen Intern Med 2004;19(12):1175–80.
6. Cavagnolli G, Pimentel AL, Freitas PA, Gross JL, Camargo JL. Effect of ethnicity on Hba1c levels in individuals without diabetes: systematic review and meta-analysis. PLoS One 2017;12(2):e0173135.
7. Bergenstal RM, Gal RL, Connor CG, Gubitosi-Klug R, Kruger D, Olson BA, et al. Racial differences in the relationship of glucose concentrations and hemoglobin A1c levels. Ann Intern Med 2017;167(2):95–102.
8. Bloomgarden Z. Beyond HbA1c . J Diabetes 2017;9(12):1052–3.
9. Spanakis EK, Golden SH. Race/ethnic difference in diabetes and diabetic complications. Curr Diab Rep 2013;13(6):814–23.
10. Ziemer DC, Kolm P, Weintraub WS, Vaccarino V, Rhee MK, Twombly JG, et al. Glucose-independent, black–white differences in hemoglobin A1c levels: a cross-sectional analysis of 2 studies. Ann Intern Med 2010;152(12):770–7.
11. Paterson AD. HbA1c for type 2 diabetes diagnosis in Africans and African Americans: personalized medicine NOW! PLoS Med 2017;14(9):e1002384.
12. Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 2015;314(10):1021–9.
13. Chung ST, Sumner AE. Diabetes: T2DM risk prediction in populations of African descent. Nat Rev Endocrinol 2016;12(3):131–2.
14. Mugeni R, Aduwo JY, Brier SM, Hormenu T, Sumner AE, Horlyck-Romanovsky MF. A review of diabetes prediction equations in African descent populations. Front Endocrinol (Lausanne) 2019;10:663.
15. Cox ME, Edelman D. Tests for screening and diagnosis of type 2 diabetes. Clin Diabetes 2009;27(4):132–8.
16. Leal S, Soto-Rowen M. Usefulness of point-of-care testing in the treatment of diabetes in an underserved population. J Diabetes Sci Technol 2009;3(4):672–6.
17. Bode BW, Irvin BR, Pierce JA, Allen M, Clark AL. Advances in hemoglobin A1c point of care technology. J Diabetes Sci Technol 2007;1(3):405–11.
18. Cavagnolli G, Comerlato J, Comerlato C, Renz PB, Gross JL, Camargo JL. HbA1c measurement for the diagnosis of diabetes: is it enough? Diabet Med 2011;28(1):31–5.
19. Kramer CK, Araneta MR, Barrett-Connor E. A1C and diabetes diagnosis: the Rancho Bernardo Study. Diabetes Care 2010;33(1):101–3.
20. Huang Z, Liu Y, Mao Y, Chen W, Xiao Z, Yu Y. Relationship between glycated haemoglobin concentration and erythrocyte survival in type 2 diabetes mellitus determined by a modified carbon monoxide breath test. J Breath Res 2018;12(2):026004.
21. Lacy ME, Wellenius GA, Sumner AE, Correa A, Carnethon MR, Liem RI, et al. Association of sickle cell trait with hemoglobin A1c in African Americans. JAMA 2017;317(5):507–15.
22. Little RR, Roberts WL. A review of variant hemoglobins interfering with hemoglobin A1c measurement. J Diabetes Sci Technol 2009;3(3):446–51.
23. Bleyer AJ, Vidy S, Sujata L, Russell GB, Akinnifesi D, Hire D, et al. The impact of sickle cell trait on glycated haemoglobin in diabetes mellitus. Diabet Med 2010;27(9):1012–6.
24. Carson AP, Muntner P, Selvin E, Carnethon MR, Li X, Gross MD, et al. Do glycemic marker levels vary by race? Differing results from a cross-sectional analysis of individuals with and without diagnosed diabetes. BMJ Open Diabetes Res Care 2016;4(1):e000213.
25. Cutrona CE, Abraham WT, Russell DW, Beach SRH, Gibbons FX, Gerrard M, et al. Financial strain, inflammatory factors, and haemoglobin A1c levels in African American women. Br J Health Psychol 2015;20(3):662–79.
26. Getaneh A, Andres R, Brillon DJ, Findley SE. Hemoglobin A1C criterion for diabetes diagnosis among Hispanic and non-Hispanic populations. Endocr Pract 2011;17(2):210–7.
27. Hivert MF, Christophi CA, Jablonski KA, Edelstein SL, Kahn SE, Golden SH, et al. Genetic ancestry markers and difference in A1c between African American and White in the Diabetes Prevention Program. J Clin Endocrinol Metab 2019;104(2):328–36.
28. Homko CJ, Zamora LC, Kerper MM, Mozzoli M, Kresge K, Boden G. A single A1C >= 6.5% accurately identifies type 2 diabetes/impaired glucose tolerance in African Americans. J Prim Care Community Health 2012;3(4):235–8.
32. Meigs JB, Grant RW, Piccolo R, López L, Florez JC, Porneala B, et al. Association of African genetic ancestry with fasting glucose and HbA1c levels in non-diabetic individuals: the Boston Area Community Health (BACH) Prediabetes Study. Diabetologia 2014;57(9):1850–8.

33. Exebio JC, Zarini GG, Vaccaro JA, Exebio C, Huffman FG. Use of hemoglobin A1C to detect Haitian-Americans with undiagnosed type 2 diabetes. Arq Bras Endocrinol Metabol 2012;56(7):449–55.

34. Briker SM, Aduwo JY, Mugeni R, Horlyck-Romanovsky MF, DuBose CW, Mabundo LS, et al. A1C underperforms as a diagnostic test in Africans even in the absence of nutritional deficiencies, anemia and hemoglobinopathies: insight from the Africans in America Study. Front Endocrinol (Lausanne) 2019;10:533.

35. Sumner AE, Thoreson CK, O’Connor MY, Ricks M, Chung ST, Tulloch-Reid MK, et al. Detection of abnormal glucose tolerance in Africans is improved by combining A1C with fasting glucose: the Africans in America Study. Diabetes Care 2015;38(2):213–9.

36. Sumner AE, Duong MT, Bingham BA, Aldana PC, Ricks M, Mabundo LS, et al. Glycated albumin identifies prediabetes not detected by hemoglobin A1C: the Africans in America Study. Clin Chem 2016;62(11):1524–32.

37. Sumner AE, Duong MT, Aldana PC, Ricks M, Tulloch-Reid MK, Lozier JN, et al. A1C combined with glycated albumin improves detection of prediabetes in Africans: the Africans in America Study. Diabetes Care 2016;39(2):271–7.

38. Plan and operation of the Third National Health and Nutrition Examination Survey, 1988–94. Series 1: programs and collection procedures. Vital Health Stat 1 1994;(32):1–407.

39. The Diabetes Prevention Program Research Group. The Diabetes Prevention Program. Design and methods for a clinical trial in the prevention of type 2 diabetes. Diabetes Care 1999;22(4):623–34.

40. Wheeler E, Leong A, Liu CT, Hivert MF, Strawbridge RJ, Podmore C, et al. Impact of common genetic determinants of hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med 2017;14(9):e1002383.

41. Franklin CS, Aulchenko YS, Huffman JE, Vitart V, Hayward C, Polašek O, et al. The TCF7L2 diabetes risk variant is associated with HbA1c levels: a genome-wide association meta-analysis. Ann Hum Genet 2010;74(6):471–8.

42. Paré G, Chasman DI, Parker AN, Nathan DM, Miletich JP, Zee RY, et al. Novel association of HK1 with glycated hemoglobin in a non-diabetic population: a genome-wide evaluation of 14,618 participants in the Women’s Genome Health Study. PLoS Genet 2008;4(12):e1000312.

43. Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, et al. Common variants at 10 genomic loci influence hemoglobin A1c levels via glycemic and nonglycemic pathways. Diabetes 2010;59(12):3229–39. Erratum in: Diabetes 2011;60(3):1050–1.

44. Cohen RM, Franco RS, Smith EP, Higgins JM. When HbA1c and blood glucose do not match: how much is determined by race, by genetics, by differences in mean red blood cell age? J Clin Endocrinol Metab 2019;104(3):707–10.

45. Maruthur NM, Kao WHL, Clark JM, Brancati FL, Cheng CY, Pankow JS, et al. Does genetic ancestry explain higher values of glycated hemoglobin in African Americans? Diabetes 2011;60(9):2434–8.

46. Sarnowski C, Hivert MF. Impact of genetic determinants of HbA1c on type 2 diabetes risk and diagnosis. Curr Diab Rep 2018;18(8):52.

47. Sarnowski C, Leong A, Raffield LM, Wu P, de Vries PS, DiCorpo D, et al. Impact of rare and common genetic variants on diabetes diagnosis by hemoglobin A1c in multi-ancestry cohorts: the Trans-Omics for Precision Medicine Program. Am J Hum Genet 2019;105(4):706–18.

48. Cheema AK, Li T, Liuzzi JP, Zarini GG, Dorak MT, Huffman FG. Genetic associations of PPARGC1A with type 2 diabetes: differences among populations with African origins. J Diabetes Res 2015;2015:921274.

49. Bidulescu A, Ferguson TS, Hambleton I, Younger-Coleman N, Francis D, Bennett N, et al. Educational health disparities in hypertension and diabetes mellitus among African descent populations in the Caribbean and the USA: a comparative analysis from the Spanish town cohort (Jamaica) and the Jackson heart study (USA). Int J Equity Health 2017;16(1):33–9.

50. Liu S, Hempe JM, McCarter RJ, Li S, Fonseca VA. Association between inflammation and biological variation in hemoglobin A1c in U.S. nondiabetic adults. J Clin Endocrinol Metab 2015;100(6):2364–71.

51. Guan X, Zheng L, Sun G, Guo X, Li Y, Song H, et al. The changing relationship between HbA1c and FPG according to different FPG ranges. J Endocrinol Invest 2016;39(5):523–8.

52. Yazdanpanah S, Rabiee M, Tahiri M, Abdolrahim M, Rajab A, Jazayeri HE, et al. Evaluation of glycated albumin (GA) and GA/HbA1c ratio for diagnosis of diabetes and glycemic control: a comprehensive review. Crit Rev Clin Lab Sci 2017;54(4):219–32.

53. Welsh KJ, Kirkman MS, Sacks DB. Role of glycated proteins in the diagnosis and management of diabetes: research gaps and future directions. Diabetes Care 2016;39(8):1299–306.

54. George JA, Erasmus RT. Haemoglobin A1c or glycated albumin for diagnosis and monitoring diabetes: an African perspective. Indian J Clin Biochem 2018;33(3):255–61.
55. Loomis SJ, Li M, Maruthur NM, Baldridge AS, North KE, Mei H, et al. Genome-wide association study of serum fructosamine and glycated albumin in adults without diagnosed diabetes: results from the Atherosclerosis Risk in Communities Study. Diabetes 2018;67(8):1684–96.

56. Tricco AC, Lillie E, Zarin W, O’Brien K, Colquhoun H, Kastner M, et al. A scoping review on the conduct and reporting of scoping reviews. BMC Med Res Methodol 2016; 16(1):15.

57. Levac D, Colquhoun H, O’Brian KK. Scoping studies: advancing the methodology. Implement Sci 2010;5(1):69.

58. Lobo A, Salvo J, Alvarez J, Hurley D, Levin W, Sears W, et al. The newest New Yorkers: characteristics of the city’s foreign-born population. New York (NY): NYC Office of Immigrant Affairs; 2013. https://www1.nyc.gov/assets/planning/download/pdf/data-maps/nyc-population/nny2013/nny_2013.pdf. Accessed July 20, 2020.
Table 1. Study Characteristics for Articles Reporting on Glycated Hemoglobin A1c (HbA1c) Performance Among African Descent Populations Living in the United States, 2010–2019

Study	First Author (Year); Study	N; Sex	Race/Ethnicity\(^a\) (%)	Age, y	Location	Study Design	HbA1c Laboratory Analysis Method
African American							
1	Bleyer (2010) (26)	N = 885; 43.2% male and 56.8% female	43.5% African American; 56.5% White	≥18	Winston-Salem, North Carolina	Clinical; retrospective study	Cation-exchange column chromatography on an automated HPLC instrument (Variant II Turbo, Bio-Rad Laboratories).
2	Carson (2016); CARDIA study (27)	N = 2,692; 45.5% male and 54.5% female	44% African American; 56% White	Mean (SD): 45.3 (3.6)	Minneapolis, Minnesota; Chicago, Illinois; Birmingham, Alabama; Oakland, California	Database analysis	Whole blood aliquot by ion-exchange HPLC using a Tosoh G7 (Tosoh Bioscience).
3	Cutrona (2015); FACHS (28)	N = 312; 100% female	100% African American	26–92; Mean (SD): 47 (7)	Ames, Iowa; Athens, Georgia	Database analysis	Whole blood aliquot by turbidimetric immunoinhibition (University of Iowa Clinical Pathology Laboratories).
4	Getaneh (2011); NHANES III and DIAMOND Study (29)	N = 16,056; 48.1% male and 51.9% female	4.3% Dominican; 28.9% Hispanic; 26.9% African American; 39.9% White	Range of mean ages: 38.2–63.3	NHANES III: United States. DIAMOND: New York, New York	Database analysis	Diamat HPLC from Bio-Rad Laboratories.\(^c\)
5	Hivert (2019); DPP (30)	N = 2,658; 33% male and 67% female	55.5% White; 20.2% African American; 17.0% Hispanic; 4.4% Asian; 2.9% American Indian	≥25; Mean (SD): 50.7 (10.7)	27 US clinical centers\(^d\)	Clinical	Ion-exchange HPLC instrument (Variant; Bio-Rad Laboratories).
6	Homko (2012) (31)	N = 83; 7.2% male and 92.8% female	100% African American	Mean (SD): 53 (10.4)	Philadelphia, Pennsylvania	Clinical	CDC-approved automated point-of-care analyzer (DCA 2000, Bayer Corporation): monoclonal antibody recognizes glycated N terminus of β chain of hemoglobin.
7	Meigs (2014); BACH Prediabetes Study (32)	N = 1,387; 37.4% male and 62.6% female	27.3% African American; 29.6% Hispanic; 43.0% White	34–87	Boston, Massachusetts	Clinical	Tina-Quant HbA1c generation 2 assay with analytic measurement range of 3.4%–18% (Quest Diagnostics).
Afro-Caribbean							
8	Exebio (2012) (33)	N = 128\(^e\)	100% Haitian American	≥35	Miami, Florida	Clinical	Whole blood with close tube sampling, in duplicate

Abbreviations: AIA, Africans in America; BACH, Boston Area Community Health; CARDIA, Coronary Artery Risk Development in Young Adults; CDC, Centers for Disease Control and Prevention; DIAMOND, Diabetes Among Dominicans and Other Minorities in Northern Manhattan; DPP, Diabetes Prevention Program; FACHS, Family and Community Health Study; HPLC, high performance liquid chromatography; NHANES III, the third National Health and Nutrition Examination Survey; NIH, National Institutes of Health; NGSP, National Glycohemoglobin Standardization Program.

\(^a\) For all studies, White refers to Caucasian, Non-Hispanic White, and/or European White.

\(^b\) Participant data extracted from Table 1, “Sociodemographic Characteristics of Dominicans and the Third National Health and Nutrition Examination Survey Populations, Stratified by Hemoglobin A1c-Based Diabetes Diagnosis” (29).

\(^c\) Laboratory analysis data extracted from “Plan and Operation of the Third National Health and Nutrition Examination Survey, 1988–94. Series 1: Programs and Collection Procedures” (38).

\(^d\) Location data extracted from “The Diabetes Prevention Program. Design and methods for a clinical trial in the prevention of type 2 diabetes” (39).

\(^e\) Breakdown for sex/gender not available.

(continued on next page)
Table 1. Study Characteristics for Articles Reporting on Glycated Hemoglobin A_{1c} (HbA_{1c}) Performance Among African Descent Populations Living in the United States, 2010–2019

Study	First Author (Year); Study	N; Sex	Race/Ethnicity^a (%)	Age, y	Location	Study Design	HbA_{1c} Laboratory Analysis Method
African							(coefficient of variation <1.7%), with Roche Tina Quant Second Generation A1c immunoassay method of Laboratory Corporation of America.
9	Brier (2019); The AIA Study (34)	N = 430; 65% male and 35% female	100% African immigrants in the United States	Mean (SD): 38 (10)	Bethesda, Maryland	Clinical	NGSP-certified instruments: BioRad Laboratories Classic Variant (n = 32), Bio-Rad Laboratories Variant II (n = 158), and BioRad Laboratories D10 (n = 240) used sequentially by the NIH Clinical Center for HPLC.
10	Sumner 1 (2015); The AIA Study (35)	N = 216; 68% male and 32% female	100% African immigrants in the United States	20–64; mean (SD): 37 (10)	Bethesda, Maryland	Clinical	NGSP-certified instruments: Classic Variant, Variant II, and D10 for HPLC (Bio-Rad Laboratories); Whole blood samples in 90 participants analyzed by boronate affinity chromatography method on NGSP-certified Premier Hb9210 analyzer (Trinity Biotech).
11	Sumner 2 (2016); The AIA Study (36)	N = 236; 69% male and 31% female	100% African immigrants in the United States	20–64; Mean (SD): 39 (10)	Bethesda, Maryland	Clinical	NGSP-certified instruments: Variant II and D10 for HPLC (Bio-Rad Laboratories).
12	Sumner 3 (2016); The AIA Study (37)	N = 217; 69% male and 31% female	100% African immigrants in the United States	20–64; Mean (SD): 39 (10)	Bethesda, Maryland	Clinical	NGSP-certified instruments: Variant II and D10 for HPLC (Bio-Rad Laboratories).

Abbreviations: AIA, Africans in America; BACH, Boston Area Community Health; CARDIA, Coronary Artery Risk Development in Young Adults; CDC, Centers for Disease Control and Prevention; DIAMOND, Diabetes Among Dominicans and Other Minorities in Northern Manhattan; DPP, Diabetes Prevention Program; FACHS, Family and Community Health Study; HPLC, high performance liquid chromatography; NHANES III, the third National Health and Nutrition Examination Survey; NIH, National Institutes of Health; NGSP, National Glycohemoglobin Standardization Program.

For all studies, White refers to Caucasian, Non-Hispanic White, and/or European White.

Participant data extracted from Table 1, “Sociodemographic Characteristics of Dominicans and the Third National Health and Nutrition Examination Survey Populations, Stratified by Hemoglobin A_{1c}-Based Diabetes Diagnosis” (29).

Laboratory analysis data extracted from “Plan and Operation of the Third National Health and Nutrition Examination Survey, 1988–94. Series 1: Programs and Collection Procedures” (38).

Location data extracted from “The Diabetes Prevention Program. Design and methods for a clinical trial in the prevention of type 2 diabetes” (39).

Breakdown for sex/gender not available.
Table 2. Evaluation of Glycated Hemoglobin A1c (HbA1c) Performance: Greater Risk of False Positives Versus Greater Risk of False Negatives Among African Descent Populations Living in the United States, 2010–2019

Study	HbA1c Evaluation Method	Findings	Performance
1	Compared with other ethnic groups (ie, White people)	Main finding: Higher HbA1c values for African American than for White people at all fasting glucose levels (26). Additional findings: • Relationship between HbA1c and simultaneous serum glucose did not differ between African American people with and without the SCT. • SCT does not impact relationship between HbA1c and serum glucose concentration, and does not account for differences between African American and White people.	Greater risk of false positives
2	Compared with other ethnic groups (ie, White people)	Main finding: African American people without previous diagnosis of type 2 diabetes by OGTT had higher mean values of HbA1c than White people ($\beta = 0.19$ points; 95% CI = 0.14–0.24) (27). Additional finding: HbA1c values were compared for participants free of type 2 diabetes based on the OGTT.	Greater risk of false positives
3	Compared with other measures (ie, previous diagnosis)^a	Main finding: Chronic financial strain increased sIL-6R, an inflammatory marker, and HbA1c (28). Additional finding: Although African American women had no previous prediabetes or type 2 diabetes diagnosis, 54% had HbA1c $>$5.7%.	Greater risk of false positives
4	Compared with other ethnic groups (ie, White people); Compared with other measures (ie, FPG and OGTT)	Main findings: • For African American people (N = 408) classified as having normal glucose tolerance by either FPG or OGTT, HbA1c misclassified 3.5% of them as having type 2 diabetes (29). • HbA1c diagnosed type 2 diabetes in 67% of African American people and 37.9% of White people.	Greater risk of false positives
5	Compared with other ethnic groups (ie, White people)	Main finding: HbA1c was higher in African American (mean [SD], 6.2% [0.6]) than in White people (mean [SD], 5.8% [0.4]) (30). Additional findings: • Genomic analysis showed that 3 genetic factors contributed to the differences in HbA1c: PCA factor, SCT, and GRS. • 60% of HbA1c differences between African American and White people are explained by first genomic PCA factor (degree of African ancestry). • SCT explained 16% of the difference and GRS explained 14% of difference in HbA1c between African American and White people.	Greater risk of false positives
6	Compared with other measures (ie, OGTT)	Main findings: • For patients with type 2 diabetes diagnosis by HbA1c, OGTT classified 48.3% with type 2 diabetes, 38.7% with IGT, and 12.9% with normal glucose tolerance.	Greater risk of false positives at HbA1c \geq6.5% and greater risk of false negatives at HbA1c \leq5.6%

Abbreviations: OGTT, 2-hour oral glucose tolerance test; FPG, fasting plasma glucose; IGT, impaired glucose tolerance; PCA, principal component analysis; GRS, genetic risk score; SCT, sickle cell trait; ROC, receiver operating characteristic.

^a Exact temporality between the previous diagnosis and HbA1c testing was not provided within the study, with an estimate of less than 12 months extrapolated from the study design. Findings from this study may represent new onset diabetes. This provides a limitation in the conclusive findings for HbA1c performance in this study.
Table 2. Evaluation of Glycated Hemoglobin A \(_{1c}\) (HbA\(_{1c}\)) Performance: Greater Risk of False Positives Versus Greater Risk of False Negatives Among African Descent Populations Living in the United States, 2010–2019

Study	HbA\(_{1c}\) Evaluation Method	Findings	Performance	
		• HbA\(_{1c}\) ≤5.6% does not exclude type 2 diabetes or IGT. Among 33.7% of patients with HbA\(_{1c}\) ≤5.6%, 64.3% had IGT or type 2 diabetes (31).	Greater risk of false positives	<
Table 2. Evaluation of Glycated Hemoglobin A\textsubscript{1c} (HbA\textsubscript{1c}) Performance: Greater Risk of False Positives Versus Greater Risk of False Negatives Among African Descent Populations Living in the United States, 2010–2019

Study	HbA\textsubscript{1c} Evaluation Method	Findings	Performance
	and glycated albumin)	Among subjects with prediabetes by OGTT, HbA\textsubscript{1c} of 5.7% to less than 6.5% had 37% sensitivity in nonobese African immigrants and 64% sensitivity in obese African immigrants (36). Additional finding: For HbA\textsubscript{1c} of 5.7% to less than 6.5% combined with glycated albumin \geq13.77%, sensitivity increased to 72% for nonobese African immigrants.	Greater risk of false negatives
12	Compared with other measures (ie, OGTT and glycated albumin)	Main findings: • When type 2 diabetes was detected by glycated plasma proteins (albumin or fructosamine; $n = 24$), average HbA\textsubscript{1c} was mean (SD) 5.2% (0.4). • OGTT detected prediabetes in 74 individuals (13 of 74 had low HbA\textsubscript{1c}) (37). Additional findings: • HbA\textsubscript{1c} detected \leq50% of African immigrants with prediabetes. • HbA\textsubscript{1c} combined with the glycated albumin test increases sensitivity to 80% for diagnosing prediabetes.	Greater risk of false negatives

Abbreviations: OGTT, 2-hour oral glucose tolerance test; FPG, fasting plasma glucose; IGT, impaired glucose tolerance; PCA, principal component analysis; GRS, genetic risk score; SCT, sickle cell trait; ROC, receiver operating characteristic.

a Exact temporality between the previous diagnosis and HbA\textsubscript{1c} testing was not provided within the study, with an estimate of less than 12 months extrapolated from the study design. Findings from this study may represent new onset diabetes. This provides a limitation in the conclusive findings for HbA\textsubscript{1c} performance in this study.
Appendix. Search Strings Used in a Scoping Review of HbA1c Performance in African Descent Populations in the United States With Normal Glucose Tolerance, Prediabetes, and Diabetes

Database	Search String
PubMed	(africa[tiab] OR african[tiab] OR americans[tiab] OR afro[tiab] OR block[tiab] OR "african ancestry group"[MeSH Terms] OR "african americans"[MeSH Terms] OR Angola[tiab] OR Angolan[tiab] OR Benin[tiab] OR Beninese[tiab] OR Botswana[tiab] OR Botswana[tiab] OR Burundi[tiab] OR Burundi[tiab] OR Cape Verde[tiab] OR "Central African Republic"[tiab] OR "Central African"[tiab] OR Chad[tiab] OR Chadanian[tiab] OR Comoros[tiab] OR Comorian[tiab] OR Congo[tiab] OR Congolese[tiab] OR "Equatorial Guinean"[tiab] OR Equainguinean[tiab] OR Eritrea[tiab] OR Eritrean[tiab] OR Ethiopia[tiab] OR Ethiopian[tiab] OR Gabon[tiab] OR Gabonese[tiab] OR Gambian[tiab] OR Gambian[tiab] OR Ghana[tiab] OR Ghanaian[tiab] OR Guinea[tiab] OR Guinean[tiab] OR "Guinea-Bissau"[tiab] OR "Bissau-Guinean"[tiab] OR "Ivory Coast"[tiab] OR Ivorian[tiab] OR Kenya[tiab] OR Kenyan[tiab] OR Lesotho[tiab] OR Mosotho[tiab] OR Basotho[tiab] OR "South Africa"[tiab] OR "South African"[tiab] OR "South Sudan"[tiab] OR "South Sudanese"[tiab] OR Sudan[tiab] OR Sudanese[tiab] OR Swaziland[tiab] OR Swazi[tiab] OR Tanzania[tiab] OR Tanzanian[tiab] OR US Virgin Islands[tiab] OR "Virgin Islands"[tiab] OR "West Indies"[tiab] OR "West Indian"[tiab] OR AND ("Glycated Hemoglobin A"[mesh] OR "hemoglobin A1c"[tiab] OR "hba1c"[tiab] OR "A1c"[tiab]) AND (+"0000/01/01[PDAT]: "2020/01/01[PDAT])
Database	Search String
---------------------------------	---------------
Malawi OR Malawian OR Mali OR Malian OR Mauritanian OR Mauritius OR Mauritian OR Mozambique OR Mozambican OR Namibia OR Namibian OR Niger OR Nigerian OR Nigeria OR Nigerian OR Rwanda OR Rwandan OR “Sao Tome and Principe” OR Senegal OR Senegalese OR Seychelles OR Seychellois OR “Sierra Leone” OR “Sierra Leonian” OR Somalia OR Somalian OR “South Africa” OR “South African” OR “South Sudan” OR “South Sudanese” OR Sudan OR Sudanese OR Swaziland OR Swazi OR Tanzania OR Tanzanian OR Togo OR Uganda OR Ugandan OR Zambia OR Zambian OR Zimbabwe OR Zimbabwean OR anguilla OR anguillian OR “Antigua and Barbuda” OR antiguan OR barbudan OR aruba OR aruban OR bahamas OR bahamian OR barbados OR barbadian OR belize OR belizean OR bermuda OR bermudian OR “British Virgin Islands” OR caribbean OR “Cayman Islands” OR “Costa Rica” OR “Costa Rican” OR cuba OR cuban OR curacao OR curacaos OR dominica OR “Dominican Republic” OR dominican OR grenada OR grenadine OR guadeloupe OR guadeloupian OR guyana OR guyanese OR haiti OR haitian OR honduras OR honduran OR jamaica OR jamaican OR martinique OR martiniquais OR montserrat ORMontserrat OR nevis OR nicaragua OR nicaraguan OR panama OR panamanian OR “Puerto Rico” OR “Puerto Rican” OR “St. Barts” OR “St. Christopher” OR “St. Croix” OR “St. Johns” OR “St. Kitts and Nevis” OR “St. Lucia” OR “St. Martin” OR “St. Thomas” OR “St. Vincent” OR vincentian OR suriname OR surinamese OR “Trinidad and Tobago” OR trinidadian OR trini OR tobagonian OR “US Virgin Islands” OR venezuela OR venezuelan OR “Virgin Islands” OR “West Indies” OR “West Indian”)	