Cobordism classes of maps and covers for spheres

Oleg R. Musin* and Jie Wu†

Abstract

In this paper we show that for \(m > n \) the set of cobordism classes of maps from \(m \)-sphere to \(n \)-sphere is trivial. The determination of the cobordism homotopy groups of spheres admits applications to the covers for spheres.

Keywords: cobordism, homotopy group, covers

1 Introduction

Let \(M_1 \) and \(M_2 \) be compact oriented manifolds of dimension \(m \). Two continuous maps \(f_1 : M_1 \to X \) and \(f_2 : M_2 \to X \) are called cobordant if there are a compact oriented manifold \(W \) with \(\partial W = M_1 \sqcup M_2 \) and a continuous map \(F : W \to X \) such that \(F|_{M_i} = f_i \) for \(i = 1, 2 \).

Note that the set of cobordism classes \(f : S^m \to X \) form a group \(\pi^C_m(X) \) that is a quotient of \(\pi_m(X) \).

In Section 2 we consider assumptions for \(X \) such that \(\pi^C_m(X) = 0 \) (Theorem 2.1). In particular, Corollary 2.2 states that \(\pi^C_n(S^n) = \pi_n(S^n) = \mathbb{Z} \) and if \(m > n \) then

\[
\pi^C_m(S^n) = 0.
\]

In Section 3 we show that for manifolds the homotopy and cobordism classes of covers are equivalent to the homotopy and cobordism classes of their associated maps. Then we can apply results of Sections 2 for covers, in particular, see Corollary 3.6.

2 Cobordism classes of maps for spheres

Consider a group of oriented cobordism classes of maps \(\Omega_{*}^{SO}(X) \) [3, Chapter 1]. Let \(M_i, i = 1, 2 \), be compact oriented manifolds without boundary of dimension \(m \). Let \(f_i : M_i \to X, i = 1, 2 \), be continuous maps to a space \(X \). Then \([f_1]_C = [f_2]_C \) in \(\Omega_{m}^{SO}(X) \), i.e. maps \(f_i \) are

*The first author is partially supported by the NSF grant DMS-1400876 and the RFBR grant 15-01-99563.
†The second author is partially supported by the Singapore Ministry of Education research grant (AcRF Tier 1 WBS No. R-146-000-222-112) and a grant (No. 11329101) of NSFC of China.
cobordant if there are a compact oriented manifold \(W\) with \(\partial W = M_1 \sqcup M_2\) and a continuous map \(F: W \to X\) such that \(F|_{M_i} = f_i\) for \(i = 1, 2\).

If \(M_2 = \emptyset\), then \([f_1]_C = 0\). In this case \(f_1\) is called **null-cobordant**.

Let \(M\) be a compact oriented manifold without boundary. We denote the set of cobordism classes of \(f: M \to X\) by \([M, X]_C\).

Theorem 2.1. Let \(X\) be a finite CW-complex whose integral homology \(H_*(X, \mathbb{Z})\) has only 2-torsion. Let \(f: S^m \to X\) be a map that induces zero homomorphism of \(m\)-dimensional cohomology with coefficients in \(\mathbb{Z}\) and \(\mathbb{Z}_2\). Then \(f\) is null-cobordant. in \(\Omega_{SO}^m(X)\) the image of \(f\) is 0. In particular, \([S^m, X]_C = 0\) if \(\dim X < m\).

Proof. By [3, Theorem 17.6], the cobordism class of \(f: S^m \to X\) is determined by the Pontrjagin numbers and the Stiefel-Whitney numbers of the map \(f\). From the definition, the Pontrjagin numbers and the Stiefel-Whitney numbers of the map \(f\) are determined by its induced homomorphisms on cohomology with coefficients in \(\mathbb{Z}\) and \(\mathbb{Z}_2\), respectively. The hypothesis in the statement guarantees that \(f\) and the constant map induce the same homomorphism on cohomology with coefficients in \(\mathbb{Z}\) and \(\mathbb{Z}_2\), and hence the result.

Let \(M\) be an \(m\)-dimensional sphere \(S^m\). In this case denote \([M, S^n]_C\) by \(\pi^C_m(S^n)\). It is easy to prove that the cobordism classes \(\pi^C_m(S^n)\) form a group. Moreover, there is a subgroup \(N\) in \(\pi_m(S^n)\) such that

\[
\pi^C_m(S^n) = \pi_m(S^n)/N.
\]

Corollary 2.2. If \(m \neq n\), then \(\pi^C_m(S^n) = 0\), otherwise \(\pi^C_n(S^m) = \mathbb{Z}\).

Proof. We obviously have the case \(m < n\). Theorem 2.1 yields the most complicated case.

Let \(m = n\). The Hopf degree theorem (see [6, Sect. 7]) states that two continuous maps \(f_1, f_2: S^n \to S^n\) are homotopic, i.e. \([f_1] = [f_2]\) in \(\pi_n(S^n)\), if and only if \(\deg f_1 = \deg f_2\). It is clear that \([f_1] = [f_2]\) implies \([f_1]_C = [f_2]_C\). Now we show that from \([f_1]_C = [f_2]_C\) follows \(\deg f_1 = \deg f_2\). Indeed, then we have \(F: W \to S^n\) with \(F|_{M_i} = f_i\). Note that \(Z := F^{-1}(x)\) for a regular \(x \in S^n\), is a manifold of dimension one. It is easy to see that a cobordism \((Z, Z_1, Z_2)\), where \(Z_i := f_i^{-1}(x)\), implies \(\deg f_1 = \deg f_2\). Thus, \(\pi^C_n(S^n) = \pi_n(S^n) = \mathbb{Z}\).

Corollary 2.2 states that \(f: S^m \to S^n\) is null-cobordant for \(m > n\). Therefore, we have the following result.

Corollary 2.3. Let \(m > n\). Then for any continuous map \(f: S^m \to S^n\) there are a compact oriented manifold \(W\) with \(\partial W = S^m\) and a continuous map \(F: W \to S^n\) such that \(F\) on the boundary coincides with \(f\).

Remark. In the earlier version of this paper, we had a proof that \(\pi^C_m(S^n) = 0\), where \(m > n\) only for particular cases. We formulated this statement as a conjecture and sent the preprint to several topologists. Soon, Diarmuid Crowley sent us a sketch of the proof of this conjecture. Later, Alexey Volovikov pointed out to us that Theorem 2.1 follows easily from [3, Theorem 17.6].
3 Homotopy and cobordism classes of covers

For open (or closed) covers \mathcal{U} of a normal space T we considered certain homotopy classes $[f_\mathcal{U}]$ in $[T, S^n]$ defined in [8]. In this section we define a homotopy equivalence for covers and prove that two covers \mathcal{U}_1 and \mathcal{U}_2 are homotopy equivalent if and only if $[f_\mathcal{U}_1] = [f_\mathcal{U}_2]$ in $[T, S^n]$ (Theorem 3.2). We also prove that two covers on manifolds of the same dimension are cobordant if and only if the corresponding cobordism classes $[f_\mathcal{U}]_C$ in $\Omega_*(S^n)$ are equal (Theorem 3.4).

The homotopy invariants $[f_\mathcal{U}]$ can be considered as obstructions for extending covers of a subspace $A \subset X$ to a cover of all of X. (Note that the classical obstruction theory (see [4, 10]) considers homotopy invariants that equal zero if a map can be extended from the k–skeleton of X to the $(k+1)$–skeleton and are non-zero otherwise.) In our papers [8, 9] using these obstructions we obtain generalizations of the classic KKM (Knaster–Kuratowski–Mazurkiewicz) and Sperner lemmas [5, 11].

Let X be any compact oriented manifold of dimension $(m+1)$ and $A = \partial X$ be its boundary. Let $\mathcal{U} = \{U_0, \ldots, U_{n+1}\}$ be a cover of A such that the intersection of all subsets U_i is empty. Then $[\mathcal{U}] \in [A, S^n]$, where the homotopy class $[\mathcal{U}]$ is defined in [8]. In the case $m = n$ we have $[A, S^n] = \mathbb{Z}$ and, if $[\mathcal{U}] \neq 0$, then for any extension of this cover to a cover $\mathcal{V} = \{V_0, \ldots, V_{n+1}\}$ of X the intersection

$$\bigcap_{i=0}^{n+1} V_i \neq \emptyset \quad (4.1)$$

This fact is a generalization of the Sperner–KKM lemma [8 Theorem 2.6].

Another generalization of the KKM lemma is the following (see [8 Corollary 3.1]): Let X is an $(m+1)$–disc and $A = S^m$. If $[\mathcal{U}] \neq 0$ in $\pi_m(S^n)$, then we have property (4.1).

However, for $m > n$ not all pairs (X, A) satisfy property (4.1). For instance, $X = \mathbb{C}P^2 \setminus \text{Int}(D^4)$ and $A := \partial X = S^3$. Then the Hopf map $f : S^3 \to S^2$ can be extended to a continuous map $F : X \to S^2$. It implies that a corresonding cover $\mathcal{U} = \{U_0, U_1, U_2, U_3\}$ can be extened to X such that the intersection of all U_i is empty.

Let $\mathcal{U} = \{U_0, \ldots, U_{n+1}\}$ be a collection of open sets whose union contains a normal space T. In other words, \mathcal{U} is a cover of T. Let $\Phi = \{\varphi_0, \ldots, \varphi_{n+1}\}$ be a partition of unity subordinate to \mathcal{U}. Let

$$f_{\mathcal{U}, \Phi}(x) := \sum_{i=0}^{n+1} \varphi_i(x)v_i,$$

where v_0, \ldots, v_{n+1} are vertices of an $(n+1)$–simplex Δ^{n+1} in \mathbb{R}^{n+1}.

Suppose the intersection of all U_i is empty. Then $f_{\mathcal{U}, \Phi}$ is a continuous map from T to S^n. In [8] Lemmas 2.1 and 2.2 we proved that a homotopy class $[f_{\mathcal{U}, \Phi}]$ in $[T, S^n]$ does not depend on Φ. We denote it by $[f_\mathcal{U}]$.

In fact, see [8 Lemma 2.4], the homotopy classes $[f_\mathcal{U}]$ of covers are also well defined for closed sets. We call a family of sets $\mathcal{S} = \{S_0, \ldots, S_{n+1}\}$ a cover of a space T if \mathcal{S} is either an open or closed cover of T.

Homotopy invariants of covers we defined through homotopy invariants of maps. Let us define them directly for covers.

Definition 3.1. Let $S_i = \{S_{i0}^i, \ldots, S_{in}^i\}$, $i = 1, 2$, be covers of a normal space T such that for $i = 1, 2$ the intersection of all subsets in S_i is empty. We say that S_1 is homotopic to S_2 and write $[S_1] = [S_2]$ if $T \times [0, 1]$ can be covered by $Q = \{Q_0, \ldots, Q_{n+1}\}$ such that Q is an extension of $S_1 \cup S_2$ of $T \times \{0, 1\}$ and the intersection of all Q_k is empty.

The following theorem extends Theorem 2.2 in [8].

Theorem 3.2. Let $S_i = \{S_{i0}^i, \ldots, S_{in}^i\}$, $i = 1, 2$, be covers of a normal space T. Suppose the intersection of all the S_{ij}^i in S_i is empty. Then $[S_1] = [S_2]$ if and only if $[f_{S_1}] = [f_{S_2}]$ in $[T, S^n]$.

Proof. From [8] Lemma 1.11 it suffices to prove the theorem for open covers. It is clear that if $[S_1] = [S_2]$ then $[f_{S_1}] = [f_{S_2}]$. Now we prove the converse statement.

Suppose $[f_{S_1}] = [f_{S_2}]$. Let $\Phi_i, i = 1, 2$, be any partitions of unity subordinate to S_i. Then there is a homotopy $F_\Phi : T \times [0, 1] \rightarrow S^n$ between f_{S_1, Φ_1} and f_{S_2, Φ_2}, where $\Phi := (\Phi_1, \Phi_2)$.

Consider S^n as the boundary of Δ^{n+1}. Let B_i be the open star of a vertex v_i of Δ^{n+1}. Let

$$U_\ell(\Phi) := F_\Phi^{-1}(B_\ell), \quad U(\Phi) := \{U_0(\Phi), \ldots, U_{n+1}(\Phi)\}.$$ Then $U(\Phi)$ is a cover of $T \times \{0, 1\}$.

Denote by Π the set of all pairs $\Phi := (\Phi_1, \Phi_2)$, where Φ_i is a partition of unity subordinate to S_i. Let

$$Q_\ell := \bigcup_{\Phi \in \Pi} U_\ell(\Phi), \quad Q := \{Q_0, \ldots, Q_{n+1}\}.$$ Then Q is a cover of $T \times [0, 1]$ and

$$Q|_{T \times \{0\}} = S_1, \quad Q|_{T \times \{1\}} = S_2.$$ This yields $[S_1] = [S_2]$. □

Definition 3.3. Let $M_i, i = 1, 2$, be compact oriented manifolds without boundary with $\dim M_1 = \dim M_2$. Let $S_i = \{S_{i0}^i, \ldots, S_{in}^i\}$, $i = 1, 2$, be covers of M_i such that for $i = 1, 2$ the intersection of all subsets in S_i is empty. We say that S_1 is cobordant to S_2 and write $[S_1]_C = [S_2]_C$ if there are a compact oriented manifold W with $\partial W = M_1 \sqcup M_2$ and its cover $Q = \{Q_1, \ldots, Q_n\}$ such that $Q|_{M_i} = S_i$, $i = 1, 2$, and the intersection of all Q_k is empty. If $M_2 = \emptyset$, then we say that S_1 is null–cobordant and write $[S_1]_C = 0$.

Note that if $[S_1]_C = [S_2]_C$, then $[f_{S_1}]_C = [f_{S_2}]_C$ in $\Omega_S^E(S^n)$, where for a continuous $f : M \rightarrow S^n$ by $[f]_C$ we denote the correspondent cobordism class.

Theorem 3.4. Let M_1 and M_2 be compact oriented homotopy equivalent manifolds without boundary. Let $S_i, i = 1, 2$, be covers of M_i such that the intersection of all covers in S_i is empty. Then $[S_1]_C = [S_2]_C$ if and only if $[f_{S_1}]_C = [f_{S_2}]_C$.

4
Proof. By definition if \([f_{S_i, \Phi_i}]_C = [f_{S_2, \Phi_2}]_C\), then there is a map \(F_\Phi : W \to S^n\) such that \(F|_M = f_{S_i, \Phi_i}\). Actually, the theorem can be proved by the same arguments as Theorem 3.2 if we substitute \(T \times [0, 1]\) by a cobordism \(W\).

From this theorem it is easy to prove the following corollary.

Corollary 3.5. Let \(S\) be a cover of a compact oriented manifold \(M\) such that the intersection of all subsets in \(S\) is empty. Suppose \([S]_C = 0\). Then there is a compact oriented manifold \(W\) with \(\partial W = M\) such that \(S\) can be extended to a cover \(Q\) of \(W\) (i.e. \(Q|_M = S\)) with the empty intersection of all subsets \(Q_k\).

Theorem 3.4 and Corollary 2.2 yield

Corollary 3.6. Let \(m > n\). Then for any cover \(U = \{U_0, \ldots, U_{n+1}\}\) of \(S^m\) with the empty intersection of all subsets in \(U\) there are a compact oriented manifold \(W\) with \(\partial W = S^m\) and a cover \(Q\) of \(W\) such that \(Q\) is an extension of \(U\) with the empty intersection of all subsets in \(Q\).

Acknowledgement. We wish to thank Diarmuid Crowley, Alexander Dranishnikov, Roman Karasev, Arkadiy Skopenkov and Alexey Volovikov for helpful discussions and comments.

References

[1] D. W. Anderson, E. H. Brown, Jr., F. P. Peterson, SU-cobordism, KO-characteristic numbers, and the Kervaire invariant, *Ann. of Math.* 83 (1966), 54–67.

[2] G. Brumfiel, On the homotopy groups of BPL and PL/O. *Ann. of Math. (2)* 88 (1968), 291–311.

[3] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Springer-Verlag, 1964.

[4] S.–T. Hu, Homotopy theory, Acad. Press, 1959.

[5] B. Knaster, C. Kuratowski, S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für \(n\)-dimensionale Simplexe, *Fundamenta Mathematicae* 14 (1929): 132–137.

[6] J. W. Milnor, Topology from the differentiable viewpoint, The University Press of Virginia, Charlottesville, Virginia, 1969.

[7] J. W. Milnor, Remarks concerning spin manifolds. 1965 *Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse)* pp. 55–62 Princeton Univ. Press, Princeton, N.J.

[8] O. R. Musin, Homotopy invariants of covers and KKM type lemmas, *Algebr. Geom. Topol.*, 16 (2016), 1799–1812.
[9] O. R. Musin, KKM type theorems with boundary conditions, \textit{J. Fixed Point Theory Appl.}, \textbf{19} (2017), 2037–2049.

[10] E. H. Spanier, Algebraic topology, McGraw-Hill, 1966.

[11] E. Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes, Abh. Math. Sem. Univ. Hamburg \textbf{6} (1928), 265-272.

Oleg Musin
School of Mathematical and Statistical Sciences
University of Texas Rio Grande Valley
One West University Boulevard, Brownsville, TX, 78520, USA
\textit{E-mail address:} oleg.musin@utrgv.edu

Jie Wu
Department of Mathematics
National University of Singapore
S17-06-02, 10 Lower Kent Ridge Road
Singapore 119076
\textit{Email address:} matwuj@nus.edu.sg