Ribet’s construction of a suitable cusp eigenform

Anupam Saikia

Department of Mathematics, IIT Guwahati,
Guwahati 781039.
Email: a.saikia@iitg.ernet.in

Abstract: The aim of this article to give a self-contained exposition on Ribet’s construction of a cusp eigenform of weight 2 with certain congruence properties for its eigenvalues.

Acknowledgement: I am very grateful to Kevin Buzzard for pointing out errors in an earlier version.

1 Preliminaries

We begin by recalling some of the rudiments of modular forms. Other basic ingredients are included in the Appendix.

1.1 Modular forms

Let \(p \) be an odd prime. Let \(\mathfrak{h} \) denote the upper half complex plane, i.e.,

\[\mathfrak{h} = \{ z \in \mathbb{C} \mid \text{Im}(z) > 0 \}. \]

Let \(SL_2(\mathbb{Z}) \), \(\Gamma_0(p) \) and \(\Gamma_1(p) \) respectively denote the following groups:

\[
SL_2(\mathbb{Z}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{Z}, \ ad - bc = 1 \right\}
\]

\[
\Gamma_0(p) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) \mid c \equiv 0 \text{ modulo } p \right\},
\]

\[
\Gamma_1(p) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_0(p) \mid a \equiv 1 \text{ modulo } p, \ d \equiv 1 \text{ modulo } p \right\},
\]

Let \(GL_2(\mathbb{Q}) \) (\(GL_2(\mathbb{R}) \)) denote the 2×2 invertible matrices with rational (real) coefficients. It is easy to note all these matrix groups act on \(\mathfrak{h} \) by sending \(z \) to \(\frac{az + b}{cz + d} \). For a function \(f : \mathfrak{h} \to \mathbb{C} \) and any fixed integer \(k \geq 0 \), we can define a function \(f[\gamma]_k \) as

\[
f[\gamma]_k(z) = (cz + d)^{-k} f(\gamma(z)) \quad \forall \ \gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2(\mathbb{Q}).
\]
A function \(f : \mathfrak{h} \rightarrow \mathbb{C} \) is called \textit{weakly modular} of weight \(k \) with respect to \(\Gamma \) if \(f[\gamma]_k = f \) for all \(\gamma \in \Gamma \) where \(\Gamma \) can mean anyone of \(SL_2(\mathbb{Z}) \), \(\Gamma_0(p) \) or \(\Gamma_1(p) \). It is clear that \(\left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \in \Gamma \) and hence we must have \(f(z + 1) = f(z) \) for a weakly modular function. If \(f \) is holomorphic on \(\mathfrak{h} \), we can look at the Fourier expansion of \(f \) in terms of \(q = e^{2\pi iz} \), i.e., \(\sum_{n=-\infty}^{+\infty} a_n q^n \). We say \(f \) is holomorphic at \(\infty \) if its \(q \)-expansion does not involve negative powers of \(q \), i.e., \(a_n = 0 \) for \(n < 0 \). If \(a_n = 0 \) for \(n \leq 0 \), then we say that \(f \) vanishes at \(\infty \). Note that \(q = e^{2\pi iz} \rightarrow 0 \) as \(\text{Im}(z) \rightarrow \infty \), justifying the terminology.

We say that \(f \) is a modular form of weight \(k \) with respect to \(\Gamma \) if

(i) \(f \) is weakly modular of weight \(k \) with respect to \(\Gamma \).

(ii) \(f \) is holomorphic on \(\mathfrak{h} \).

(iii) \(f[\gamma]_k \) is holomorphic at \(\infty \) for all \(\gamma \in SL_2(\mathbb{Z}) \).

(iv) If, in addition, the \(q \)-expansion of \(f[\gamma]_k \) has \(a(0) = 0 \) for all \(\gamma \in \Gamma \), then \(f \) is said to be a cusp form.

Note that it is enough to check the last two conditions for a finite number of coset representatives \(\{\alpha_i\} \) of \(\Gamma \) in \(SL_2(\mathbb{Z}) \). The set \(\{\alpha_i(\infty)\} \) is known as the \textit{cusps} of \(\Gamma \). Let us denote the space of all modular forms (cusp forms) of weight \(k \) for \(\Gamma \) by \(M_k(\Gamma) \) (\(S_k(\Gamma) \) respectively). These turn out to be finite dimensional vector spaces. The quotient vector space of \(M_k(\Gamma) \) by \(S_k(\Gamma) \) is known as the Eisenstein space, denoted by \(E_k(\Gamma) \). It can be identified as the orthogonal complement of \(S_k(\Gamma) \) under Petersson inner product, and hence can be thought of as a subspace of \(M_k(\Gamma) \) (see section 6.6 of Appendix).

1.2 Semi-cusp forms

Definition 1.1 A \textit{semi-cusp form} \(f \) is a modular form whose leading Fourier coefficient is 0, though \(f[\gamma]_k \) need not have its leading Fourier coefficient 0 for all \(\gamma \in SL_2(\mathbb{Z}) \). In other words, a semi-cusp form vanishes at \(\infty \), but it need not vanish at the other ‘cusps’. We shall denote the space of semi-cusp forms of \(\Gamma \) by \(S'_k(\Gamma) \).

Consider the map

\[
\beta : \Gamma_0(p) \rightarrow (\mathbb{Z}/p\mathbb{Z})^\times, \quad \gamma = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \mapsto d \mod p.
\]

(Note that \((d, p) = 1 \) for \(\gamma \in \Gamma_0(p) \) as \(ad - bc = 1 \) and \(p|c \)). Clearly, \(\Gamma_1(p) \) is the kernel of \(\beta \), and the quotient is \((\mathbb{Z}/p\mathbb{Z})^\times \). For a character \(\epsilon \) of \((\mathbb{Z}/p\mathbb{Z})^\times \), we can define a subspace \(M_k(\Gamma_1(p), \epsilon) \) of \(M_k(\Gamma_1(p)) \), which consists of modular forms \(f \) such that \(f[\gamma]_k = \epsilon(d)f \).
for any \(\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_0(p) \). We can define \(S_k'((\Gamma_1(p), \epsilon)) \) and \(S_k((\Gamma_1(p), \epsilon)) \) analogously. Note that any character of \(\left(\mathbb{Z}/p\mathbb{Z} \right)^{\times} \) is of the form \(w^i, i = 0, 1, \ldots, (p-2) \) where \(w \) is the Teichmüller character (see section 6.5 Appendix).

1.3 Examples of modular forms

For a non-trivial even character \(\epsilon \) of \(\left(\mathbb{Z}/p\mathbb{Z} \right)^{\times} \), we have the following Eisenstein series of weight 2 and type \(\epsilon \) (cf chapter 4 of [Di-S]):

\[
G_{2,\epsilon} = \frac{L(-1, \epsilon)}{2} + \sum_{n \geq 1} \sum_{d|n} \epsilon(d) dq^n, \quad (1)
\]

\[
s_{2,\epsilon} = \sum_{n \geq 1} \sum_{d|n} \epsilon\left(\frac{n}{d}\right) dq^n. \quad (2)
\]

These two form a basis for the Eisenstein space \(E_2((\Gamma_1(p), \epsilon)) \) (cf theorem 4.6.2 [Di-S]). Note that \(s_{2,\epsilon} \) is a semi-cusp form. Moreover, both of these are eigenvectors for all Hecke operators \(T_l \) with \((l, p) = 1 \) (cf proposition 5.2.3 [Di-S]):

\[T_l s_{2,\epsilon} = (l + \epsilon(l)) s_{2,\epsilon}, \quad T_l G_{2,\epsilon} = (1 + \epsilon(l)l) G_{2,\epsilon}. \]

(See section 6.7 of the Appendix for Hecke operators.)

If \(\epsilon \) is an odd character of \(\left(\mathbb{Z}/p\mathbb{Z} \right)^{\times} \), we have an Eisenstein series of weight 1 and type \(\epsilon \) given by (cf section 4.8 in [Di-S])

\[G_{1,\epsilon} = \frac{L(0, \epsilon)}{2} + \sum_{n \geq 1} \sum_{d|n} \epsilon(d) q^n. \]

The above three forms have coefficients defined over \(\mathbb{Q}(\mu_{p-1}) \), where \(\mu_{p-1} \) denotes the \((p-1)^{th}\) roots of 1. Let \(\wp \) denote any of the unramified primes of \(\mathbb{Q}(\mu_{p-1}) \) lying above \(p \). Clearly, all the Eisenstein forms given above have \(\wp \) integral coefficients (except possibly for the constant terms, but see lemma 3.1 later).

For the trivial character \(\epsilon = 1 \), we have the following Eisenstein series (cf Theorem 4.6.2 in [Di-S]) in \(M_k(\Gamma_0(p)) = M_k(\Gamma_1(p), 1) \):

\[
G_k = -\frac{B_k}{2k} + \sum_{n \geq 1} \sum_{d|n} d^{k-1} q^n \quad \text{for } k \geq 4, \quad (3)
\]

\[
G_2 = E_2(z) - p E_2(pz), \quad \text{where } E_2(z) = -\frac{B_2}{4} + \sum_{n \geq 1} \sum_{d|n} dq^n, \quad (4)
\]
2 Key steps in the construction of the unramified \(p \)-extension

For Ribet’s construction of an unramified extension of \(\mathbb{Q}(\mu_p) \), one requires a Galois representation on which the Frobenius elements act in a suitable way (see [D]). We can use the representation associated with a cusp eigenform (cf chapter 9 of [Di-S]). But we need to show that there indeed exists a cusp eigenform whose eigenvalues have certain congruence properties.

The Eisenstein series \(G_{2,\epsilon} \) is a simultaneous eigenform for the Hecke operators \(T_l \) where \(l \) is a prime other than \(p \), with corresponding eigenvalues \(1 + \epsilon(l)l \equiv 1 + l^{k-1} \) modulo \(\varphi \). Here, \(\varphi \) denotes a prime of \(\mathbb{Q}(\mu_{p-1}) \) lying above \(p \). It turns out that we need precisely these congruence properties for the Hecke eigenvalues of a cusp form. Ribet’s idea is to subtract off the constant term of the Eisenstein series \(G_{2,\epsilon} \) in a way that preserves the congruence properties of the coefficients and leaves us with a semi-cusp form \(f \) which is an eigenvector modulo \(\varphi \) for all Hecke operators \(T_l \) with \((l, p) = 1 \). Then one can invoke a result of Deligne and Serre and obtain a semi-cusp form \(f' \) which is also an eigenvector for the \(T_l \)’s with eigenvalues congruent to those of \(f \) modulo \(\varphi \). The congruence properties of \(f' \) then ensures that \(f' \) is actually a cusp form. Any cusp form in \(S_2(\Gamma_1(p)) \) is bound to be a newform. Thus, one can invoke the theory of newforms to conclude that \(f' \) is in fact a cusp eigenform, that is, an eigenvector for all Hecke operators including \(T_n \)'s with \(p|n \).

To remove the constant term of the Eisenstein series \(G_{2,\epsilon} \) without affecting the congruence properties of its coefficients modulo \(\varphi \), it suffices to produce another Eisenstein series whose constant term is a \(\varphi \)-unit. This will be done in the next section.

3 Construction of an Eisenstein series with \(\varphi \)-unit constant term

As before, we will denote by \(\varphi \) a prime of \(\mathbb{Q}(\mu_{p-1}) \) lying above \(p \). Note that \(\varphi \) is unramified. We continue to denote the Teichmuller character by \(w \).

Lemma 3.1 Let \(k \) be even and \(2 \leq k \leq p - 3 \). Then the \(q \)-expansions of the modular forms \(G_{2,w^{k-2}} \) and \(G_{1,w^{k-1}} \) have \(\varphi \)-integral coefficients in \(\mathbb{Q}(\mu_{p-1}) \) and are congruent modulo \(\varphi \) to the \(q \)-expansion

\[
-\frac{B_k}{2k} + \sum_{n \geq 1} \sum_{d|n} d^{k-1} q^n.
\]
Proof: Since \(w(d) \equiv d \mod \varphi, \) \(w^{k-2}(d)d \equiv d^{k-1} \mod \varphi \) and \(w^{k-1}(d) \equiv d^{k-1} \mod p. \) Hence it suffices to investigate the constant terms only. We know that (see (6) and (7) of Appendix)

\[
L(0, \epsilon) = \frac{-1}{p} \sum_{n=1}^{p-1} \epsilon(n) \left(n - \frac{p}{2} \right),
\]

\[
L(-1, \epsilon) = \frac{-1}{2p} \sum_{n=1}^{p-1} \epsilon(n) \left(n^2 - pn - \frac{p^2}{6} \right).
\]

Since we know that \(w(n) \equiv n^p \mod (\varphi^2) \) (cf section 6.5 of Appendix), we find that

\[
pL(0, wk^1) \equiv -\sum_{n=1}^{p-1} n^{1+p(k-1)} \mod \varphi^2,
\]

\[
pL(-1, w^{k-2}) \equiv -\frac{1}{2} \sum_{n=1}^{p-1} n^{2+p(k-2)} \mod \varphi^2.
\]

Note that \(\sum_{n=1}^{p-1} \epsilon(n)n \equiv 0 \mod \varphi \) when \(\epsilon \) is an even character. Moreover, we know that (see proposition 6.6 of Appendix)

\[
pB_t \equiv \sum_{n=1}^{p-1} n^t \mod p^2.
\]

Therefore, we have

\[
L(0, w^{k-1}) \equiv -\frac{1}{2} B_{1+p(k-1)} \equiv -\frac{1}{2} (1 + p(k - 1)) \frac{B_k}{k} \equiv -\frac{B_k}{k} \mod \varphi,
\]

\[
L(-1, w^{k-2}) \equiv -\frac{1}{2} B_{2+p(k-2)} \equiv -\frac{1}{2} (2 + p(k - 2)) \frac{B_k}{k} \equiv -\frac{B_k}{k} \mod \varphi.
\]

For the second equivalence of each statement above, we use Kummer congruence as explained in proposition 6.4 in the Appendix. Note that

\[
1 + p(k - 1) = k + (p - 1)(k - 1) \equiv k \mod (p - 1),
\]

\[
2 + p(k - 2) = k + (p - 1)(k - 2) \equiv k \mod (p - 1). \quad \square
\]

The following corollary is now obvious.

Corollary 3.2 Let \(k \) be even and \(2 \leq k \leq p - 3. \) Let \(n, m \) be even integers such that \(n + m \equiv k \mod (p - 1) \) and \(2 \leq n, m \leq p - 3. \) The product \(G_{1,w^{n-1}}G_{1,w^{m-1}} \) is a modular form of weight 2 and type \(w^{k-2} \) whose \(q \)-expansion coefficients are \(\varphi \)-integral in \(\mathbb{Q} \left(\mu_{p-1} \right) \). Its constant term is a \(\varphi \)-adic unit if neither \(B_n \) nor \(B_m \) is divisible by \(p. \)
The next theorem guarantees the existence of the Eisenstein series we are looking for.

Theorem 3.3 Let k be an even integer $2 \leq k \leq p - 3$. Then there exists a modular form g of weight 2 and type w^{k-2} whose q-expansion coefficients are φ-integers in $\mathbb{Q}(\mu_{p-1})$ and whose constant term is a φ-unit.

Proof:

Case (i) If $p \nmid B_k$, we can take $G_{2,w^{k-2}}$ by lemma 3.1.

Case (ii) If we have a pair of even integers m, n such that $n + m \equiv k \pmod{(p - 1)}$, $2 \leq n, m \leq p - 3$ and $p \nmid B_mB_n$, then we can take $G_{1,w^{n-1}}G_{1,w^{m-1}}$ by corollary 3.2.

Case (iii) Suppose neither of the above two cases are true. W e will show that consequently too many Bernoulli numbers will be p-divisible, which will lead to violation of an upper bound for the p-part h_p^\ast of the relative class number of $\mathbb{Q}(\mu_p)$. Let t be the number of even integers n, $2 \leq n \leq p - 3$ such that p divides B_n. It is easy to see that $t \geq \frac{p-1}{4}$ if the cases (i) and (ii) do not arise. But then, p^t must divide h_p^\ast (see section 6.2 of Appendix). However, that contradicts a result of Carlitz, which says that $h_p^\ast < p^{\left(\frac{p-1}{4}\right)}$. Hence we must be in either in case (i) or case (ii). \(\square\)

4 Existence of a semi-cusp form with suitable eigenvalues

In this section, we will first construct a semi-cusp form f which is a simultaneous eigenvector modulo φ for all Hecke operators T_l with $(p, l) = 1$. Then we will lift f to a semi-cusp form f' which is an eigenvector for all such T_l's.

Fix an even integer k, $2 \leq k \leq p - 3$ and assume that $p|B_k$. Consider $\epsilon = w^{k-2}$. Since $B_2 = \frac{1}{6}$, k is at least 4, and hence ϵ is a non-trivial even character. We will only be interested in modular forms of weight 2 and type ϵ.

Proposition 4.1 There exists a semi-cusp form $f = \sum_{n \geq 1} a_n q^n$ such that a_n are φ-integers in $\mathbb{Q}(\mu_{p-1})$ and such that $f \equiv G_{2,\epsilon} \equiv G_k \mod \varphi$.

Proof: Consider $f = G_{2,\epsilon} - c.g$, where c is the constant term of $G_{2,\epsilon}$. Then f is a semi-cusp form. Now, $c \in \varphi$ as $p|B_k$. Hence, $f \equiv G_{2,\epsilon} \equiv G_k \mod \varphi$. \(\square\)

Observe further that f is a mod φ-eigenform for all Hecke operators T_l with $(l, p) = 1$, as the Eisenstein series $G_{2,\epsilon}$ is an eigenform for all such T_l with eigenvalue $(1 + \epsilon(l))$. Therefore,

$$T_l(f) \equiv T_l(G_{2,\epsilon}) \equiv (1 + \epsilon(l))G_{2,\epsilon} \equiv (1 + \epsilon(l))f \mod \varphi. \quad (5)$$
4.1 Deligne-Serre lifting lemma

The following result of Deligne and Serre [D-S] ensures that there exists a semi-cusp form \(f' \) which is an eigenvector for the \(T_i \)'s ((\(l, p \) = 1) with eigenvalues congruent modulo \(\varphi \) to those of the mod-\(\varphi \) eigenvector \(f \) obtained previously.

Lemma 4.2 Let \(M \) be a free module of finite rank over a discrete valuation ring \(R \) with residue field \(k \), fraction field \(K \) and maximal ideal \(m \). Let \(S \) be a (possibly infinite) set of commuting \(R \)-endomorphisms of \(M \). Let \(0 \neq f \in M \) be an eigenvector modulo \(mm \) for all operators in \(S \), i.e., \(Tf = a_T f \mod mm \forall T \in S \) (\(a_T \in R \)). Then there exists a DVR \(R' \) containing \(R \) with maximal ideal \(m' \) containing \(m \), whose field of fractions \(K' \) is a finite extension of \(K \) and a non-zero vector \(f' \in R' \otimes_R M \) such that \(Tf' = a'_T f' \) for all \(T \in S \) with eigenvalues \(a'_T \) satisfying \(a'_T \equiv a_T \mod m' \).

Proof: Let \(\mathbb{T} \) be the algebra generated by \(S \) over \(R \). Clearly \(\mathbb{T} \in \text{End}_R(M) \). As \(M \) is a free \(R \)-module of finite rank, so is \(\text{End}_R(M) \). Therefore, \(\mathbb{T} \) is also free module of finite rank over \(R \), generated by \(T_1, \ldots, T_r \in S \). Let \(h_i \) denote the minimal polynomial of \(T_i \) acting on \(K \otimes_R M \). If we adjoin the roots of all such minimal polynomials to \(K \), we get a finite extension \(K' \) of \(K \). The integral closure of \(R \) in \(K' \) gives us a DVR \(R' \) with maximal ideal \(m' \) lying over \(m \), and with residue field \(k' \) containing \(k \). By replacing \(M \) with \(R' \otimes M \) and \(\mathbb{T} \) with \(R' \otimes_R \mathbb{T} \), we will continue to write \(R, m, k, K \) in stead of \(R', m', k' \) etc.

Consider the ring homomorphism \(\lambda : \mathbb{T} \to k \) given by \(T \mapsto a_T \mod m \) for all \(T \) in \(S \). Clearly, ker(\(\lambda \)) is a maximal ideal of \(\mathbb{T} \). Choose a minimal prime \(\varphi \) in ker(\(\lambda \)). Then, \(\varphi \) is contained in the set of zero-divisors of \(\mathbb{T} \) (see proposition 6.9 of Appendix). As \(\mathbb{T} \) is a free \(R \)-module, \(R \) contains no zero-divisors of \(\mathbb{T} \) and hence, \(p \cap R = \{0\} \). Thus, \(\mathbb{T}/p \) is a finite integral extension of \(R \). Let \(L \) denote the field of fractions of the integral domain \(\mathbb{T}/p \). Let \(R_L \) be the integral closure of \(R \) in \(L \), then \(R_L \) is a DVR with maximal ideal \(m_L \) containing \(m \) and residue field \(l \) containing \(k \).

Consider the map \(\lambda' : \mathbb{T} \to \mathbb{T}/p(\to R_L) \) given by reduction modulo \(p \). Let \(\lambda'(T) = a'_T \) for all \(T \in S \). Clearly, \(\lambda' \) maps the maximal ideal ker(\(\lambda \)) of \(\mathbb{T} \) into the maximal ideal \(m_L \) of \(R_L \). But \((T - a_T) \in \text{ker}(\lambda) \), hence \(\lambda'(T - a_T) \in m_L \) i.e., \(a'_T \equiv a_T \mod m_L \).

Now consider the ring \(K \otimes_R \mathbb{T} \). It is an Artinian ring, hence it has finitely many maximal ideals with residue fields all isomorphic to \(K \). Let \(P \) be the prime ideal in \(K \otimes \mathbb{T} \) generated by \(p \). It will suffice to show that \(P \) is an associated prime of \(K \otimes M \). Note that \(\varphi \subseteq \text{ker}(\lambda) \) implies \(\varphi \) annihilates \(f \) in \(M/m \). Now let \(x \in \text{Ann}_{\mathbb{T}/m}(f) \), say \(x = g(T_1, \ldots, T_n) \). Then, \(x = \bar{g}(a'_T, \ldots, a'_T) \mod (T_1 - a'_T, \ldots, T_n - a'_T) \). Thus,
Construction of cusp eigenform coefficients in L. Then, we will finally show that the cusp form Kₘ by applying the lifting lemma 4.2, we can conclude that there is a finite extension and (5) that there exists f semi-cusp forms generated by B Kₘ of the ring of integers of K coefficients are defined over a finite extension ℘ integral where B Proof: There is a basis that all its coefficients are defined over a finite extension of L. Theorem 4.3 There is a semi-cusp form associated prime of M/ₘ for all Hecke operators (i) Now, it follows that Annₘ(M/ₘ) ⊂ φ. (ii) Now, it follows that Annₘ(M/ₘ) ⊂ φ. hence P ∈ Suppₘ(K ⊗ M) and therefore P is in Assocₘ(K ⊗ M).

Now, P is the annihilator of some 0 ≠ f'' ∈ K ⊗ M, hence P annihilates some f' ∈ M. As T - aₖ' ∈ p, we have T - aₖ' ∈ P and (T - aₖ')(f') = 0. Thus, Tf' = aₖ'f' where aₖ' ≡ aₖ modulo mₗ, which concludes our proof. □

4.2 Lifting the semi-cusp form to an eigenvector for Tₙ for (n, p) = 1

The following theorem ensures that we have a semi-cusp form which is an eigenvector for all Hecke operators Tₙ with p ∤ n.

Theorem 4.3 There is a semi-cusp form f' = ∑ₘ₌₁ᵃₙqⁿ of weight 2 and type ε such that all its coefficients are defined over a finite extension of L of Q(µ₋₁) and are φₗ-integral where φₗ is a prime above p. Further, Tᵢf' ≡ (1 + ε(l)l)f' modulo φₗ.

Proof: There is a basis B of S₂ₘ(Γₙ(p), ε) consisting of semi-cusp forms all of whose coefficients are defined over a finite extension K of Q(µ₋₁). Let R be the localization of the ring of integers of K at a prime φₖ above φ. Let M be the free R-module of semi-cusp forms generated by B. Let S = {Tₙ(p, n) = 1}. We know by proposition 4.1 and [5] that there exists f ∈ M such that

Tᵢ(f) ≡ (1 + ε(l)l)f modulo φ.

By applying the lifting lemma 4.2, we can conclude that there is a finite extension L of K with a prime φₗ over φₖ such that there exists a semi-cusp form f', with φₗ-integral coefficients in L such that Tᵢ(f') = cᵢf' and cᵢ ≡ 1 + ε(l)l modulo φₗ. □

5 Construction of cusp eigenform

We will first show that the semi-cusp form f' obtained in the previous section is in fact a cusp form. Then, we will finally show that the cusp form f' must be an eigenvector
for all Hecke operators T_n including those n which are not co-prime to p.

5.1 Existence of a suitable cusp form

Proposition 5.1 There exists a non-zero cusp form f' of type ϵ, which is an eigenform for all Hecke operators T_n with $(n,p) = 1$, and which has the property that for any prime $l \neq p$, the eigenvalue λ_l of T_l acting on f' satisfies

$$\lambda_l \equiv 1 + l^{k-1} \equiv 1 + \epsilon(l)l \mod \wp_L,$$

where \wp_L is a certain prime (independent of l) lying over \wp in the field $L = \mathbb{Q}(\mu_{p-1}, \lambda_n)$ generated by the eigenvalues over $\mathbb{Q}(\mu_{p-1})$.

Proof: We already established the existence of a semi-cusp form f' which is an eigenform for all Hecke operators T_n with $(n,p) = 1$ whose eigenvalues have the required congruence properties. It suffices to assert that f' is in fact a cusp form. As $M_2(\Gamma_0(p), \epsilon)$ is spanned by the cusp forms, the semi-cusp form S_2,ϵ and the Eisenstein series G_2,ϵ, we must have

$$S'_2(\Gamma_1(p), \epsilon) = S_2(\Gamma_1(p), \epsilon) \oplus \mathbb{C}s_2,\epsilon,$$

where orthogonality of the Eisenstein space and the space of cusp forms under Petersson inner product \langle , \rangle is the reason behind the above sum being a direct one (see section 6.6 of Appendix). Suppose $f' = h + as_{2,\epsilon}$ ($a \neq 0$). Then, $f' - as_{2,\epsilon} \in S_2(\Gamma_1(p), \epsilon)$. But, $f' - as_{2,\epsilon} \in E_2(\Gamma_1(p), \epsilon)$ as well, where $E_2(\Gamma_1(p), \epsilon)$ denotes the subspace consisting of Eisenstein series in $M_2(\Gamma_1(p), \epsilon)$. As the orthogonal subspaces $E_2(\Gamma_1(p), \epsilon)$ and $S_2(\Gamma_1(p), \epsilon)$ have trivial intersection, $f' - as_{2,\epsilon} = 0$, i.e., $f' = as_{2,\epsilon}$. Applying T_l to both sides, ($l \neq p$), we see that we must have $1 + \epsilon(l)l \equiv 1 + \epsilon(l) \mod \wp_L$, which forces $\epsilon(l) = 1$.

But ϵ is a non-trivial character and $l \neq p$ is arbitrary, hence f' must be a cusp form. □

5.2 Operators T_n for $(n,p) \neq 1$

So far, we know that we have a cusp form f for $\Gamma_1(p)$ of weight 2 and type ϵ which is an eigenform for all Hecke operators T_l ($l,p) = 1$. In this section we will assert that f is in fact a common eigenform for all Hecke operators, including T_n $(n,p) \neq 1$.

Proposition 5.2 Any form f' as above is an eigenform for all Hecke operators (including those for which $p|n$). Hence, after replacing f' by a suitable multiple of f', we have

$$f' = \sum_{n=1}^{\infty} \lambda_n q^n,$$

where $T_n(f') = \lambda_n f'$.

9
Proof: f' must be a newform. For, if it were an old form it will have to originate from a non-zero modular form in $M_2(SL_2(\mathbb{Z}))$, but that space is trivial. Now for a new form f', if it is an eigenform for $T_n \ (\gcd(n, p) = 1)$ it has to be an eigenform for all T_n by the theory of newforms (see Theorem 5.8.2 of [Di-S]). Now we can take a suitable multiple of f' to get a normalized cusp eigenform as prescribed in the theorem. □

Remark: The cusp eigenform obtained above can be associated to a Galois representation which finally gives an unramified p-extension of $\mathbb{Q}(\mu_p)$, where μ_p denotes the p-power roots of unity for an odd prime p. This exposition can be found in [D].

6 Appendix

Here we provide a brief discussion of the various ingredients used in the previous sections.

6.1 Dirichlet L-functions

A Dirichlet character is a homomorphism $\chi : (\mathbb{Z}/N\mathbb{Z})^\times \longrightarrow \mathbb{C}^\times$, where N is any positive integer, and A^\times denote the multiplicative group of units in a ring A. N is called the conductor of χ if χ does not factor through $(\mathbb{Z}/M\mathbb{Z})^\times$ for any $M < N$. We denote the conductor of χ by f_χ. We can easily extend the definition of χ to \mathbb{Z} by setting $\chi(n) = \chi(n \mod N)$ if $(n, N) = 1$ and $\chi(n) = 0$ otherwise. The Dirichlet L-series of χ is defined as

$$L(s, \chi) = \sum_{n=1}^{\infty} \chi(n)n^{-s},$$

where s is a complex number with $\text{Re}(s) > 1$. It is well-known that $L(s, \chi)$ can be analytically continued to the whole complex plane except a simple pole of residue 1 at $s = 1$ when χ is the trivial character (in which case the function is just the Riemann-zeta function). Further, $L(s, \chi)$ satisfies a functional equation relating its values at $s = 1$ to values $1 - s$. It also has a Euler product, i.e.,

$$L(s, \chi) = \prod_{l}(1 - \chi(l)l^{-s})^{-1}, \quad \text{Re}(s) > 1$$

where l runs over the rational primes. The Dirichlet L-functions are related to the Dedekind zeta function of an abelian number field, as explained below.

Recall that for a number field K, the Dedekind zeta function is defined as

$$\zeta_K(s) = \sum_a (Na)^{-s}, \quad \text{Re}(s) > 1,$$
where α runs over the ideals of the ring \mathcal{O}_K of integers in K. It is well-known that $\zeta_K(s)$ can be analytically continued to the whole complex plane except for a simple pole at $s = 1$. Further, $\zeta_K(s)$ satisfies a functional equation, relating the values at s to values at $1 - s$.

We can view χ as a Galois character

$$
\chi : \text{Gal}(\mathbb{Q}(\mu_N)/\mathbb{Q}) \simeq (\mathbb{Z}/N\mathbb{Z})^\times \longrightarrow \mathbb{C}^\times,
$$

and this gives a correspondence $\chi \rightarrow$ fixed subfield of $\ker(\chi)$ in $\mathbb{Q}(\mu_N)$, which is an abelian extension of \mathbb{Q}. This leads to a one-to-one correspondence between groups of Dirichlet characters and abelian extensions of \mathbb{Q}. If K is an abelian extension of \mathbb{Q}, it is contained in some $\mathbb{Q}(\mu_N)$ and there will be a corresponding group X of Dirichlet characters of conductor dividing N.

If K is an abelian number field and X is the corresponding group of Dirichlet characters, then one can show that (see theorem 4.3 in [Wa])

$$
\zeta_K(s) = \prod_{\chi \in X} L(s, \chi).
$$

6.2 The relative class number and Dirichlet L-values

The analytic class number formula is given by

$$
\lim_{s \to 1} \zeta_K(s) = \frac{2^r (2\pi)^t h_K R_K}{w_K \sqrt{|d_K|}},
$$

where r_K and t_K denote respectively the number of real and complex pairs of embedding of K, w_K the number of roots of unity in K, R_K the regulator of K, d_K the discriminant of K and h_K the class number of K.

Now consider $K = \mathbb{Q}(\zeta_p)$, then $r_K = 0$, $t_K = \frac{p-1}{2}$. Let K^+ be the maximal real subfield of K, for which $r_{K^+} = \frac{p-1}{2}$ and $t_{K^+} = 0$. It is easy to establish that h_{K^+} divides h_K. The relative class number of K is defined as $h_K^- = \frac{h_K}{h_{K^+}}$. The purpose of this section is to investigate the p-part h_K^-, and relate it to the values of Dirichlet L-functions.

Proposition 6.1

$$
h_K^- = \alpha p \prod_{i=0}^{p-2} L(0, w^i),
$$

where α is a certain power of 2.
Proof: Dividing the analytic class number formulas for \(K\) and \(K^+\), and then shifting the limit to \(s \to 0\) via the functional equations, one can cancel out the extraneous factors and deduce that (see [Gr])

\[
h_K = \frac{w_K}{2^e w_K^+} \lim_{s \to 0} \frac{\zeta_K(s)}{\zeta_{K^+}(s)},
\]

where \(\frac{R_K}{R_{K^+}} = 2^e\). But

\[
\zeta_K(s) = \prod_{i=0}^{\frac{p-2}{2}} L(0, w^i), \quad \zeta_{K^+}(s) = \prod_{i \text{ even}}^{\frac{p-2}{2}} L(0, w^i).
\]

Now observing that \(w_K = 2p\) and \(w_K^+ = 2\), we obtain the desired result. \(\square\)

6.3 Dirichlet L-values and Bernoulli numbers

Recall that Bernoulli numbers \(B_n\) are given by

\[
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.
\]

Eg, \(B_0 = 1\), \(B_1 = -\frac{1}{2}\), \(B_2 = \frac{1}{6}\) etc.

The \(n\)-th Bernoulli polynomial \(B_n(X)\) is defined by

\[
\frac{te^{Xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(X) \frac{t^n}{n!}.
\]

It is easy to see that

\[
B_n(X) = \sum_{i=0}^{n} \binom{n}{i} B_i X^{n-i}.
\]

Eg, \(B_1(X) = X - \frac{1}{2}\), \(B_2(X) = X^2 - X + \frac{1}{6}\), etc.

Now, for a Dirichlet character \(\chi\) of conductor \(f\), we define the generalized Bernoulli numbers \(B_{n,\chi}\) by

\[
\sum_{a=1}^{f} \frac{\chi(a)te^{at}}{e^{ft} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!}.
\]

The following well-known proposition allows us to express generalized Bernoulli numbers in terms of Bernoulli polynomials (cf [Wa]).

Proposition 6.2 If \(g\) is any multiple of \(f\), then

\[
B_{n,\chi} = g^{n-1} \sum_{a=1}^{g} \chi(a) B_{n,\chi} \frac{a}{g}.
\]

12
Proof:
\[\sum_{n=0}^{\infty} g^{n-1} \sum_{a=1}^{g} \chi(a) B_n \left(\frac{a}{g}\right) \frac{t^n}{n!} = \sum_{a=1}^{g} \chi(a) \frac{1}{g} \frac{(gt)^{(a/g)t}}{e^{gt} - 1} \]
\[= \sum_{b=1}^{f} \sum_{c=0}^{h-1} \chi(b + cf) \frac{t e^{(b+cf)t}}{e^{hf t} - 1} \text{ where } g = hf, \ a = b + cf \]
\[= \sum_{b=1}^{f} \chi(b) t e^{ht} \frac{1}{e^{ht} - 1} \]
\[= \sum_{n=0}^{\infty} B_n \chi \frac{t^n}{n!}. \quad \square \]

For example,
\[B_{1,\chi} = \sum_{a=1}^{f} \chi(a) \left(\frac{a}{f} - \frac{1}{2}\right) = \frac{1}{f} \sum_{a=1}^{f} \chi(a) \left(a - \frac{1}{2} f\right). \]
\[B_{2,\chi} = f \sum_{a=1}^{f} \chi(a) \left(\frac{a}{f}^2 - \frac{1}{2} \frac{a}{f} + \frac{1}{6}\right) = \frac{1}{f} \sum_{a=1}^{f} \chi(a) \left(a^2 - fa + \frac{f^2}{6}\right). \]

The generalized Bernoulli numbers can be relate to the values of Dirichlet \(L\)-values as follows:

Proposition 6.3 \(L(1-n, \chi) = -\frac{B_{n,\chi}}{n}, \ n \geq 1.\)

For example, if \(\chi\) is a Dirichlet character modulo \(p\), we have
\[L(0, \chi) = -B_{1,\chi} = -\frac{1}{p} \sum_{n=1}^{p} \chi(n) \left(n - \frac{1}{2} p\right). \quad (6)\]
\[L(-1, \chi) = -B_{2,\chi} = -\frac{1}{2p} \sum_{n=1}^{p} \chi(a) \left(n^2 - pn + \frac{p^2}{6}\right). \quad (7)\]

6.4 Some congruences involving Bernoulli numbers

We require the following congruences involving Bernoulli numbers.

Proposition 6.4 *(Kummer Congruence)* \(\frac{B_{m,\chi}}{m} \equiv \frac{B_m}{m} \text{ if } m \equiv n \not\equiv 0 \mod (p - 1).\)

Kummer’s congruence can be proved in the following manner (cf [B-S]):

let \(g\) be a primitive root mod \(p\). Consider
\[F(t) = \frac{gt}{e^{gt} - 1} - \frac{t}{e^{t} - 1} = \sum_{m=1}^{\infty} (g^m - 1) B_m \frac{t^m}{m!}. \quad (8)\]
Letting $e^t - 1 = u$, we can write

$$F(t) = \frac{gt}{(1+u)^g - 1} - \frac{t}{u} = tG(u), \text{ where } G(u) = \frac{g}{(1+u)^g - 1} - \frac{1}{u} = \sum_{k=1}^{\infty} c_k u^k, \ c_k \in \mathbb{Z}.$$

Now,

$$G(u) = G(e^t - 1) = \sum_{k=0}^{\infty} c_k (e^t - 1)^k = \sum_{m=1}^{\infty} \frac{A_m t^m}{m!}. \quad (9)$$

But A_m are p-integral as they are integral linear combinations of c_k's. Further, they have period $(p-1)$ modulo p, as the coefficients r^n of $\frac{t^n}{n!}$ in e^t ($r \geq 0$) have that periodicity by Fermat’s little theorem $r^{n+p-1} \equiv r^n \mod p$. Comparing coefficients in (8) and (9), we obtain

$$\frac{g^m - 1}{m!} B_m = \frac{A_{m-1}}{(m-1)!} \Rightarrow \frac{B_m}{m} (g^m - 1) = A_{m-1}.$$

If $p-1 \nmid m$, then $g^m - 1 \not\equiv 0 \mod p$ as g is a primitive root mod p. Clearly, $g^m - 1$ has period $p-1 \mod p$. Therefore, $\frac{B_m}{m}$ also has period $p-1 \mod p$ and is p-integral. \qed

Proposition 6.5 pB_m is p-integral, and B_m is p-integral if $(p-1) \nmid m$.

Proposition 6.6 For an even integer m, $pB_m \equiv \sum_{a=1}^{p-1} a^m \mod p^2$ if $p \geq 5$.

We can easily prove the above two propositions using the following lemma.

Lemma 6.7 $(m+1)S_m(n) = \sum_{k=0}^{m} \binom{m+1}{k} B_k n^{m+1-k}$, where $S_m(n) = 1^n + 2^n + \ldots + m^n$.

Proof:

$$\sum_{m=0}^{\infty} S_m(n) \frac{t^m}{m!} = \sum_{a=0}^{n-1} e^a t - 1 = e^a e^t - 1 = \sum_{l=1}^{\infty} t^{l-1} \sum_{k=0}^{\infty} B_k \frac{t^k}{k!}$$

$$\Rightarrow S_m(n) \frac{t^m}{m!} = \sum_{k=0}^{m+1} \frac{B_k}{(m+1-k)!} n^{m+1-k}$$

$$\Rightarrow (m+1)! S_m(n) \frac{t^m}{m!} = \sum_{k=0}^{m+1} \binom{m+1}{k} B_k n^{m+1-k} \quad \Box$$

In order to prove proposition 6.5, it is enough to show that $pB_m \equiv S_m(p)$ modulo p. It is clear that $S_m(p) \equiv 0 \mod p$ if $(p-1) \nmid m$ and $S_m(p) \equiv p - 1 \mod p$ if $(p-1)|m$. By our lemma, we have

$$S_m(p) = pB_m + \binom{m}{1} B_{m-1} \frac{p^2}{2} + \binom{m}{2} B_{m-2} \frac{p^3}{3} + \ldots + \binom{m}{m} B_0 \frac{p^{k+1}}{k+1}, \quad (10)$$
To prove proposition 6.6, it suffices to establish that \(\text{ord}_p \text{prime} f \) is \(p \)-integral for \(k \geq 2 \), and \(\frac{p^{k+1}}{k+1} \) is \(p \)-integral even for \(k = 1 \). Applying induction, let \(pB_j \) be \(p \)-integral for \(j < m \). Then, \(pB_m \) is \(p \)-integral as well, and we also obtain \(S_m(n) \equiv pB_m \mod p \) from (10). Note that though we need the result only for odd prime \(p \), not that the above proof works for \(p = 2 \) as well, as \(B_n \) vanishes for odd \(n \geq 3 \). □

To prove proposition 6.6, it suffices to establish that \(\text{ord}_p (\binom{m}{k}) B_{m-k} p^{k+1} \geq 2 \) in view of (10). Since \(pB_{m-k} \) is \(p \)-integral, we need only \(k - \text{ord}_p (k+1) \geq 2 \). For \(p \geq 5 \) and \(k \geq 2 \), it is obvious. For \(k = 1 \), note that \(B_{m-1} = 0 \) unless \(m = 2 \), which again follows trivially. □

6.5 A refined congruence for the Teichmuller character

Let \(w : (\mathbb{Z}/p\mathbb{Z})^\times \to \mu_{p-1} \) be the character given by \(w(n) \equiv n \mod \varphi \) where \(\varphi \) is any prime ideal above \(p \) in \(Q(\mu_{p-1}) \). The character \(w \) is known as the Teichmuller character. We have used the following congruence for the Teichmuller character.

Proposition 6.8 For \((n, p) = 1 \), we have \(w(n) \equiv n^p \mod \varphi^2 \) where \(\varphi \) is a fixed prime above \(p \) in \(K = Q(\mu_{p-1}) \).

Proof: Let us recall Hensel’s lemma:

Let \(R \) be a ring which is complete with respect to an ideal \(I \) and let \(f(x) \in R[x] \). If \(f(a) \equiv 0 \mod (f'(a)^2 I) \) then there exists \(b \in R \) with \(b \equiv a \mod (f'(a)I) \) such that \(f(b) = 0 \). Further, \(b \) is unique if \(f'(a) \) is a non-zero divisor in \(R \).

Now, let \(K_p \) be the completion of \(K \) at \(\varphi \). Let \(R = \mathcal{O}_p \) be the completion of the ring of integers \(\mathcal{O} \) of \(K \) with respect to \(\varphi \). Let \(I = \varphi^2 \), then we can also think of \(R \) as the completion of \(\mathcal{O} \) with respect to \(I \). Consider \(f(x) = x^{p-1} - 1 \) and let \(a = n^p \), where \((n, p) = 1 \). Then,

\[
f(a) = (n^p)^{p-1} - 1 \equiv 0 \mod \varphi^2, \quad \text{as } \# \left(\frac{\mathcal{O}_p}{\varphi^2} \right)^\times = \# \left(\frac{\mathcal{O}}{\varphi^2} \right)^\times = N \varphi^2 - N \varphi = p(p - 1).
\]

Moreover \(f'(a) = (p - 1)ap^{p-2} \) is not a zero-divisor in \(R \). Therefore by Hensel’s lemma there exists a unique \(b_n \) in \(R \) such that \(b_n^{p-1} - 1 = 0 \) and \(b_n \equiv n^p \mod \varphi^2 \). Now, if we define \(w(n) = b_n \), we obtain the Teichmuller character \(w : \left(\frac{\mathbb{Z}}{p\mathbb{Z}} \right)^\times \to \mu_{p-1} \) with the more refined congruence \(w(n) \equiv n^p \mod \varphi^2 \). □

6.6 Petersson inner product

There is a measure on the upper half complex plane \(\mathfrak{h} \) given by \(d\mu(\tau) = \frac{dx\,dy}{y^2} \) where \(\tau = x + iy \in \mathfrak{h} \). It is easy to show that \(d\mu(\tau) \) is invariant under \(GL_2(\mathbb{R})^+ \subset \text{Aut}(\mathfrak{h}) \),
i.e., \(d\mu(\alpha \tau) = d\mu(\tau) \). In particular, the measure is \(SL_2(\mathbb{Z}) \)-invariant. As \(\mathbb{Q} \cup \{ \infty \} \) is a countable set of measure 0, \(d\mu \) suffices for integration over the extended upper half plane \(\mathfrak{h}^* = \mathfrak{h} \cup \mathbb{Q} \cup \{ \infty \} \). Let \(D^* \) be the fundamental domain for \(SL_2(\mathbb{Z}) \), i.e.,

\[
D^* = \mathfrak{h}^*/SL_2(\mathbb{Z}) = \{ \tau \in \mathfrak{h} \mid \text{Re}(\tau) \leq \frac{1}{2}, |\tau| \geq 1 \} \cup \{ \infty \}.
\]

For a congruence subgroup \(\Gamma \) of \(SL_2(\mathbb{Z}) \), we have \((\pm I)\Gamma SL_2(\mathbb{Z}) = \bigcup_j (\pm 1)\alpha_j \) where \(j \) runs over a finite set. Then, the fundamental domain for \(\Gamma \) is given by

\[
X(\Gamma) = \mathfrak{h}^*/\Gamma = \bigcup \alpha_j(D^*).
\]

This allows us to integrate function of \(\mathfrak{h}^* \) invariant under \(\Gamma \) by setting

\[
\int_{X(\Gamma)} \phi(\tau)d\mu(\tau) = \int_{\bigcup \alpha_j(D^*)} \phi(\tau)d\mu(\tau) = \sum_j \int_{D^*} \phi(\alpha_j(\tau))d\mu(\tau).
\]

By letting \(V_\Gamma = \int_{X(\Gamma)} d\mu(\tau) \), we can define an inner product

\[
<, >_{\Gamma} : S_k(\Gamma) \times M_k(\Gamma) \rightarrow \mathbb{C}.
\]

given by

\[
< f, g >_{\Gamma} = \frac{1}{V_\Gamma} \int_{X(\Gamma)} f(\tau) \overline{g(\tau)(Im(\tau))^k}d\mu(\tau).
\]

Note that the integrand is invariant under \(\Gamma \). For the integral to converge, we need one of \(f \) or \(g \) to be a cusp form (see section 5.4 in [Di-S]). Clearly this inner product is Hermitian and positive definite. When we take a modular form \(f \in M_k(\Gamma) - S_k(\Gamma) \), we can show that \(f \) is orthogonal under \(<, >_{\Gamma} \) to all of \(S_k(\Gamma) \). Thus, we can think of the quotient space \(\mathcal{E}_k(\Gamma) = M_k(\Gamma)/S_k(\Gamma) \) as the complementary subspace linearly disjoint from \(S_k(\Gamma) \). This allows us to write

\[
S_k(\Gamma) = S_k(\Gamma) \oplus \mathcal{E}_k(\Gamma).
\]

6.7 Hecke operators

For any \(\alpha \in GL_2(\mathbb{Q}) \), one can write the double coset \(\Gamma\alpha\Gamma = \bigcup_i \Gamma\alpha_i \) where \(\alpha_i \) runs over a finite set. We can define an action of the double coset on \(M_k(\Gamma) \) by setting

\[
f|\Gamma\alpha\Gamma = \sum f|[^i]\alpha_i.
\]

It is easy to verify that these operators preserve \(M_k(\Gamma), S_k(\Gamma) \) and \(\mathcal{E}_k(\Gamma) \).
We need to consider only the case $\Gamma = \Gamma_1(p)$. For any integer d such that $(d, p) = 1$, we can define an operator $< d >$ as follows: we have $ad - bp = 1$ for some $a, b \in \mathbb{Z}$.

Taking $\alpha = \begin{bmatrix} a & b \\ p & d \end{bmatrix} \in \Gamma_0(p)$, we obtain

$$< d > : M_k(\Gamma_1(p)) \rightarrow M_k(\Gamma_1(p)),$$

$$< d > f := f|_{\Gamma_1(p)\alpha\Gamma_1(p)} = f|_{[\alpha]},$$

noting that $\Gamma_1(p)\alpha\Gamma_1(p) = \Gamma_1(p)\alpha$ as $\Gamma_1(p)$ is a normal subgroup of $\Gamma_0(p)$. The operators $< d >$ are called diamond operators.

By taking $\alpha_l = \begin{bmatrix} 1 & 0 \\ 0 & l \end{bmatrix}$ for any prime l, we get an operator $T_l = f|_{\Gamma\alpha_l\Gamma}$ for any prime l. We extend the definition of Hecke operators to all natural numbers inductively by setting

$$T_{l^{r+1}} = T_lT_{l^r} - l^{k-1} < l > T_l^{r-1} \text{ for } r \geq 1,$$

$$T_{mn} = T_mT_n \text{ when } gcd(m, n) = 1.$$

All these Hecke operators defined above are self adjoint with respect to the Petersson inner product. For more details, see chapter 5 of [Di-S]. A modular form is called an eigenform if it is a simultaneous eigenform for all Hecke operators T_n and $< d >$, $(d, p) = 1$.

6.8 Ingredients from commutative algebra

The results proved below are required for the lifting lemma of Deligne and Serre in section 4.1.

6.8.1 Minimal primes

Let A be a commutative ring with 1. A prime ideal \mathfrak{p} of A is called a minimal prime if it the smallest prime ideal (containing 0) in A. Such a prime exists by Zorn’s lemma on the (non-empty as 1 $\in A$) set S of primes ideals of A with the partial order $I \leq J$ when $J \subset I$, noting that any descending chain in S has its intersection as an upper bound in S.

Proposition 6.9 A minimal prime \mathfrak{p} of A is contained in the set Z of zero-divisors of A.

17
Proof: Note that \(x, y \in D = A - Z \Rightarrow xy \in D \). Thus \(D \) is a multiplicative set. On the other hand, \(S = A - \wp \) is a maximal multiplicative closed set (as \(\wp \) is a minimal prime). If \(D \not\subseteq S \), then \(SD \) would be a multiplicative set strictly larger than \(S \). Therefore, \(D \subseteq S \) and \(\wp \subseteq Z \). \(\square \)

6.8.2 Associated primes and support primes

Let \(A \) be a commutative ring and \(M \) be an \(A \)-module. The annihilator of a submodule \(N \) of \(M \) is defined as

\[
\text{Ann}_A(N) = \{ a \in A | an = 0 \ \forall n \in N \}.
\]

Clearly, \(\text{Ann}_A(N) \) is an ideal of \(A \). For an element \(m \in M \), we can define its annihilator as \(\text{Ann}_A(m) = \{ a \in A | am = 0 \} \).

Definition 6.10 A prime ideal \(\wp \) of \(A \) is called an **associated prime** if \(\wp \) is the annihilator of some element of \(M \). The set of associated primes of \(M \) in \(A \) is denoted by \(\text{Assoc}_A(M) \).

Proposition 6.11 If \(M \) is non-zero and \(A \) is Noetherian, then \(\text{Assoc}_A(M) \) is non-empty.

Proof: Consider the set \(S \) of ideals \((\neq A) \) of \(A \) which are annihilators of some element of \(M \). As \(A \) is Noetherian, \(S \) has a maximal element, say \(\wp \), which is necessarily the annihilator of some element \(m \) in \(M \). Let \(x, y \in A \) such that \(xy \in \wp \) but \(y \not\in \wp \). Then \(ym \neq 0 \), but \(\wp \subseteq (\wp, x) \subseteq \text{Ann}_A(ym) \in S \). It follows that \(\text{Ann}_A(ym) = (\wp, x) = \wp \) by maximality of \(\wp \). Therefore \(x \in \wp \), and hence \(\wp \) is an associated prime. \(\square \)

Definition 6.12 A prime ideal \(\wp \) of \(A \) is called a **support prime** of \(M \) if \(M_\wp \neq 0 \).

The set of support primes of \(M \) in \(A \) is denoted by \(\text{Supp}_A(M) \).

Proposition 6.13 Let \(A \) be Noetherian and \(M \) be a finitely generated \(A \)-module. Then \(\wp \in \text{Supp}_A(M) \Leftrightarrow \text{Ann}_A(M) \subseteq \wp \)

Proof: Let \(\text{Ann}_A(M) \not\subseteq \wp \). Then there exists \(s \in A - \wp \) such that \(sM = 0 \), hence \(M_\wp = 0 \). Contra-positively, \(\wp \in \text{Supp}_A(M) \) implies \(\text{Ann}_A(M) \subseteq \wp \).

For the converse, let \(m_1, \ldots, m_r \) generate \(M \) as an \(A \)-module. If \(M_\wp = 0 \), then we can find \(s_i \in A - \wp \) such that \(s_im_i = 0 \). Now \(s = s_1 \ldots s_r \in A - \wp \) annihilates \(M \), hence \(\text{Ann}_A(M) \not\subseteq \wp \). \(\square \)
Proposition 6.14 \(\text{Assoc}_A(M) \subset \text{Supp}_A(M) \).

Proof: Let \(\wp \) be an associated prime of \(M \), say \(\wp = \text{Ann}_A(m) \) for some \(m \in M \). If \(M_\wp = 0 \) then there exists \(s \in A - \wp \) such that \(sm = 0 \). But it would mean \(s \in \text{Ann}_A(m) = \wp \), which is a contradiction. Thus, \(M_\wp \neq 0 \) and \(\wp \) must be a support prime of \(M \). \(\square \)

Proposition 6.15 \(A \) be a Noetherian ring and \(\wp \) be a support prime. Then \(\wp \) contains an associated prime \(q \) of \(M \).

Proof: If \(\wp \) is a support prime, \(M_\wp \neq 0 \). Then there must exist some \(x \in M \) such that \((Ax)_\wp \neq 0 \). Thus, there exists an associated prime \(q \) of the \(A \)-module \((Ax)_\wp \). Hence there is an element \(0 \neq \frac{y}{s} \) of \((Ax)_\wp \) with \(y \in Ax \) and \(s \notin \wp \) such that \(q \) is the annihilator of \(\frac{y}{s} \).
Now, if there exists \(b \in q - \wp \), then \(b \frac{y}{s} = 0 \) would imply \(\frac{y}{s} = 0 \), which is a contradiction.

Now we still have to show that \(q \) is an associated prime of \(M \) as well. Let \(b_1, \ldots, b_n \) be a set of generators of \(q \). Then, there exists \(t_i \in A - \wp \) such that \(b_it_\wp y = 0 \). Let \(t = t_1 \ldots t_n \). Then, \(q \) is the annihilator of \(ty \in M \). \(\square \)

Corollary 6.16 If \(\wp \) is a minimal prime in the support of \(M \), then \(\wp \) is also an associated prime when \(A \) is Noetherian.

Proof: As \(\wp \) must contain an associated prime, we get our result by minimality of \(\wp \). \(\square \)

References

[BS] Borevich, Z. I., Shafarevich, I. R.; Number Theory, Academic Press, 1966.

[C] Carlitz, L.; A generalization of Maillet’s determinant and a bound for the first factor of the class number, Proc. A.M.S. 12, 256–261, 1961.

[C-O] Carlitz, L. Olson F.R.; Maillet’s determinant, Proc. A.M.S. 6, 265–269, 1955.

[D] Dalawat, C.S.; Ribet’s modular construction of unramified \(p \)-extensions of \(\mathbb{Q}(\mu_p) \) (to appear)

[D-S] Deligne P., Serre, J-P.; Formes modulaires de poids 1, Ann. Scient. Ec. Norm. Sup., 4e serie, 7, 507–530, 1974.

[Di-S] Diamond, F., Shurman S.; A First Course on Modular Forms, Springer, 2005.

[Gr] Greenberg, R.; A generalization of Kummer’s criterion, Inventiones Math. 21, 247–254, 1973.
[La] Lang, S.; Algebra, Springer-Verlag, 2002.

[R] Ribet, K.; A modular construction of unramified p-extensions of $\mathbb{Q}(\mu_p)$, Inventiones Math. 34, 151–162, 1976.

[Wa] Washington, L.; Introduction to Cyclotomic Fields, Springer-Verlag, 1997.