The Citrus Flavonoid, Nobiletin, Inhibits Peritoneal Dissemination of Human Gastric Carcinoma in SCID Mice

Akiko Minagawa,1 Yoshihide Otani,1,6 Tetsuro Kubota,1 Norihito Wada,1 Toshiharu Furukawa,2 Koichiro Kumai,1 Kaori Kameyama,2 Yasunori Okada,2 Masato Fujii,3 Masamichi Yano,4 Takashi Sato,5 Akira Ito5 and Masaki Kitajima1

1Department of Surgery, 2Department of Pathology, 3Department of Otorhinolaryngology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, 4Department of Citriculture, National Institute of Fruit Tree Science, 485-6 Okitsucho, Shizuoka-shi, Shizuoka 424-0292 and 5Department of Biochemistry and Molecular Biology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392

The flavonoid nobiletin (5,6,7,8,3′,4′′′′-hexamethoxyflavone), found in Citrus depressa Rutaceae, a popular citrus fruit in Okinawa, Japan, reportedly inhibits the production of pro-matrix metalloproteinase (proMMP)-1, 3, and 9 in rabbit synovial fibroblasts in vitro. In the present study, we demonstrated the inhibitory effects of nobiletin on the proliferation of the cancer cell line, TMK-1, and its production of MMPs. In the SCID mouse model, we found that nobiletin inhibited the formation of peritoneal dissemination nodules from TMK-1. The enzymatic activity of MMP-9 expressed in culture medium obtained from a co-culture of TMK-1 and mouse fibroblastic cells was inhibited by nobiletin in a concentration-dependent manner. In the SCID mouse model, total weight of dissemination nodules was significantly lower in the treated group compared with the vehicle control group (0.07 g vs. 0.78 g, \(P=0.0059\)). The total number of dissemination nodules was also significantly lower than in the vehicle control group (7.5 vs. 69.3/body, \(P=0.0001\)). These results suggest that nobiletin may be a candidate anti-metastatic drug for prevention of peritoneal dissemination of gastric cancer.

Key words: Flavonoid — Nobiletin — Gastric cancer — Peritoneal dissemination — Matrix metalloproteinase

In spite of the general decline in gastric cancer rates, this cancer remains one of the most important causes of death among Japanese people. In particular, peritoneal dissemination at the final stage of gastric cancer remains untreatable. Although several trials have attempted to control peritoneal dissemination of gastric cancer by chemotherapy and hyperthermia, no significant prolongation of survival was found. Peritoneal dissemination involves several steps, including tumor cell attachment, invasion, and growth in the peritoneum. We investigated the role of matrix metalloproteinases (MMPs) in the invasion and metastasis of gastric cancer, and found a close relationship between MMPs expression and malignant potential of gastric cancer.\(^1\)\(^,\)\(^2\) We postulated that an appropriate inhibitor of MMP could prevent peritoneal dissemination by controlling the initial steps, and demonstrated a preventive effect of the MMP inhibitor R-94138 in a peritoneal dissemination model using the human gastric cancer cell line TMK-1 in nude mice.\(^3\)

The intake of citrus fruits is considered beneficial for health, and in a recent literature review of citrus flavonoids, a broad spectrum of biological activities including anti-carcinogenic and antitumor activities was discussed. It is commonly accepted that cancer formation can be prevented by the ingestion of certain foods,\(^4\) and flavonoids in citrus fruits and juices are among the most prominent cancer-preventing agents. Epidemiological studies have indicated that flavonoid ingestion is associated with a reduced risk of certain forms of cancer.\(^5\) Nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone) is a polymethoxyflavonoid extracted from Citrus depressa Hayata (Rutaceae), a popular citrus fruit in Okinawa, Japan. Nobiletin is known to inhibit proliferation of human cancer cells\(^6\) and production of MMPs\(^7\),\(^8\) in vitro. Recently, nobiletin was shown to suppress PGE\(_2\) production and COX-2 protein expression in vitro.\(^9\) These observations encouraged us to examine the effects of nobiletin on peritoneal dissemination of gastric cancer in vivo. In the present study, we describe the inhibitory effects of nobiletin on the proliferation of the cancer cell line, TMK-1, and its production of MMPs. We also demonstrate a preventive effect of nobiletin on peritoneal dissemination of TMK-1 in the SCID mouse model.

MATERIALS AND METHODS

Drugs Nobiletin, a polymethoxyflavonoid, was isolated from the juice of Citrus depressa Hayata (Rutaceae) as described previously\(^7\) (Fig. 1). We used a 128 mM dimeth-
Antimetastatic Effect of Nobiletin

Fig. 1. Chemical structure of nobiletin.

in 150 μl of DMSO (Nacalai Tesque, Inc., Kyoto) and the quantity of reduced product was measured by an enzyme-linked immunosorbent assay (ELISA) using an NJ-2300 microplate spectrophotometer at 540 and 630 nm (Immuno Reader, Nalge Nunc International, NY). The absorbance is linearly related to the number of viable cells. The cell survival was calculated by using the equation: (mean absorbance of drug wells/mean absorbance of control wells) × 100%. Mean absorbance of blank wells was used to adjust the absorbance of both control and tested wells. LC50, the concentration of drug that was lethal to 50% of the cells, was used as a measure of in vitro drug cytotoxicity in each sample.

Conditioned culture media To examine the production of MMPs, TMK-1 cells and mouse fibroblast cells were co-cultured (1×106 cells each) for 24 h in RPMI-1640 supplemented with 10% fetal bovine serum (JRH Biosciences, Lenexa, KS) and antibiotic-antimycotic (GIBCO BRL, NY). After 24 h culture, the culture medium was changed to RPMI-1640 without the serum, and nobiletin was added to a final concentration of 16–64 μM. DMSO (0.05%) was added to the control culture medium. Cell cultures were incubated for 48 h at 37°C in a humidified atmosphere of 5% CO2. After 48 h, the culture medium was harvested and centrifuged at 1000 rpm for 10 min, and the resulting supernatant was subjected to gelatin zymography.

Gelatin zymography The culture media were electrophoretically separated on an 11% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel impregnated with gelatin (1 mg/ml). After incubation, the gels were rinsed twice in 2.5% Triton X-100, and twice in the destaining solution. The gels were stained with 0.25% Coomassie Brilliant Blue R-250 and destained in 10% acetic acid and 5% isopropanol in H2O. Gelatinolytic enzymes were detected as transparent bands on the background of the Coomassie Blue-stained gel. Relative enzyme activity was quantified by computer-assisted image analysis of the negatively stained bands according to the method described by Davies et al.13 ProMMP-2 (Mr 72 000), activeMMP-2 (Mr 62 000), proMMP-9 (Mr 92 000) and activeMMP-9 (Mr 86 000) were identified by comparing them with known gelatinolytic activities from conditioned media of HT-1080 cells.14

Animals Severe combined immuno-deficient (SCID) mice were kindly supplied by the Central Institute for Experimental Animals (Kanagawa). The animals were maintained under specific pathogen-free conditions using an isorack at our experimental animal center and given sterile food and water ad libitum. Five-week-old male mice weighing 19–21 g were used for the experiment.
Peritoneal dissemination model In this experiment, cultured TMK-1 cells \((1 \times 10^6 \text{ cells/body})\) were injected intraperitoneally (i.p.) into 10 SCID mice, and the mice were randomized into control and treated groups, one week after tumor inoculation. The treated group was administered nobiletin at 21 mg/kg/day for two weeks using subcutaneously implanted mini-osmotic pumps (ALZA Co., Palo Alto, CA). The control group was administered an equivalent amount of vehicle, 50% DMSO, using the same technique. These mice were sacrificed three weeks after tumor inoculation. Total weight and total number of peritoneal dissemination nodules were measured (Fig. 2). This experiment was conducted according to the Guideline for the Care and Use of Laboratory Animals of Keio University School of Medicine.

Statistical analysis Statistical analysis was performed using Student’s \(t\) test and \(P<0.05\) was taken as the criterion of statistical significance.

RESULTS

Inhibition of cell proliferation The direct cytotoxicity of nobiletin was assessed by MTT assay of human gastric cancer cell lines, TMK-1, St-4 and MKN-45. The results are shown in Fig. 3. Nobiletin showed direct cytotoxicity on TMK-1 in a concentration-dependent manner, with an LC\(_{50}\) of 156 \(\mu M\). In contrast, nobiletin had no significant direct cytotoxicity on MKN-45 and St-4, showing LC\(_{50}\) values of 494 and 655 \(\mu M\), respectively.

Inhibition of MMP activity A gelatin zymogram illustrating the inhibition of proMMP-9 production by nobiletin is shown in Fig. 4. The positive control showed strong proMMP-9 (92 kDa), activeMMP-9 (86 kDa), proMMP-2 (72 kDa), and activeMMP-2 (62 kDa) activity. ProMMP-9, proMMP-2, and activeMMP-2 activities were also observed in the culture medium obtained from the co-culture of TMK-1 and BALB/cA mouse fibroblastic cells, although no activeMMP-9 was expressed in that medium. ProMMP-9 activity was completely inhibited by the addition of nobiletin, to 57% of the control activity at 16 \(\mu M\) nobiletin, 51% at 32 \(\mu M\), and 32% at 64 \(\mu M\) (Fig. 4, A and B). No significant reduction was observed in proMMP-2 or activeMMP-2 after nobiletin treatment.

Inhibition of tumor nodule formation Three weeks after tumor inoculation of SCID mice, multiple peritoneal dissemination nodules were measured (Fig. 2). This experiment was conducted according to the Guideline for the Care and Use of Laboratory Animals of Keio University School of Medicine.
semination nodules of TMK-1 were observed in the visceral peritoneum of the mice, although no metastasis was observed in the parietal peritoneum (Fig. 5). From each control and treatment group, we excluded two mice that showed no peritoneal dissemination nodules. We determined the total weight and total number of peritoneal dissemination nodules macroscopically. The vehicle control group had 0.78±0.21 g peritoneal dissemination nodules per body (n=4). The weight of the peritoneal dissemination nodules was significantly lower (0.07±0.05 g per body) in the group treated with nobiletin (n=4, P=0.0059, Figs. 5, 6). The total number of dissemination nodules in the vehicle control group was 69.3±6.1 nodules per body, whereas in the group treated with nobiletin the total was significantly lower (7.5±9.0 nodules per body; P=0.0001, data not shown). We examined total body weight and the weights of the principal organs (liver, spleen, kidney, and stomach) in control and treated mice (Table I). Total body and liver weight differed significantly between the control and the treatment groups, but we observed no ascites, lymph nodes metastasis or liver metastasis. No significant differences were observed in other organs between the control and the treatment groups.

DISCUSSION

The present study demonstrated for the first time that the citrus flavonoid, nobiletin, extracted from C. depressa Rutaceae, effectively prevented peritoneal dissemination...
of human gastric cancer cells in SCID mice. Recently, it was reported that citrus flavonoids exert an anti-inflammatory effect and cytotoxic effects on some types of cancer cells.\(^6, 13\) Accordingly, *C. depressa* Rutaceae has attracted attention in Japan. Although *C. depressa* Rutaceae contains six polymethoxylavonoids, nobiletin was selected for the present study because of its effective suppression of MMP-9 production.\(^7\) In addition, nobiletin was previously shown to have antiproliferative effects on a human gastric cancer cell line.\(^6\) Peritoneal dissemination of gastric carcinoma is considered a complex process involving tumor cell attachment to extracellular matrix, its degradation and locomotion,\(^16\) and we have previously revealed an important role of MMP in the progression of gastric cancer.\(^15\) In addition, we previously demonstrated the preventive effect of a synthetic MMP inhibitor, R-94138, in a peritoneal dissemination model using TMK-1 in nude mice.\(^3\) These results suggested that in the present study, the inhibition of dissemination nodule formation from TMK-1 by nobiletin occurs at least partially through the inhibition of MMP-9 and other MMPs.

Table I. Total Body and Principal Organ Weights of SCID Mice

	Control (n=4)	Nobiletin (n=4)	P value
Total body (g)	26.5±1.24	29.9±1.78	0.0234
Liver (g)	1.42±0.08	1.30±0.04	0.0419
Spleen (g)	0.060±0.005	0.065±0.010	0.2446
Kidney (right) (g)	0.20±0.022	0.18±0.010	0.1272
	0.20±0.027	0.19±0.010	0.5232
Stomach (g)	0.21±0.052	0.23±0.060	0.7005

Our previous study suggested that nobiletin inhibits MMPs transcription or transcription factors because it down-regulates the production of proMMP-9.\(^7\) In the present study, nobiletin was previously shown to have antiproliferative effects on a human squamous cell carcinoma in *vitro*.\(^6\) In the present study, although nobiletin inhibited the proliferation of TMK-1 (human gastric cancer cells), no significant effect was observed on MKN-45 and St-4, suggesting that nobiletin shows preferential inhibitory effects on proliferation of human gastric cancer cells. We speculate that the difference of inhibitory effect may be due to the difference of permeability of the cell membrane in each gastric cancer cell line.

Nobiletin inhibited the formation of peritoneal dissemination nodules in TMK-1 at the dose of 21 mg/kg/day, the maximum concentration of nobiletin that could be obtained in 50% DMSO solution. We observed no side effects such as body weight loss or death in either treated or control mice. In addition, in treated mice, weight loss was only observed in the liver, but not in any other organs, suggesting that administration of nobiletin has no severe adverse effects. Although we did not examine the inhibition of MMP-9 activity by nobiletin in the dissemination nodules of TMK-1 cells, the activity of MMP-9 in the culture medium obtained from the co-culture of TMK-1 and mouse fibroblast cells was inhibited by the addition of nobiletin. In addition, we confirmed the increased activity of MMP-9 in the dissemination nodules of TMK-1 cells. A previous *in vitro* study indicated that nobiletin down-regulated the production of proMMP-1, 3, 9 in both synovial cells and chondrocytes.\(^7\) Peritoneal dissemination of gastric carcinoma is considered a complex process involving tumor cell attachment to extracellular matrix, its degradation and locomotion,\(^16\) and we have previously revealed an important role of MMP in the progression of gastric cancer.\(^15\) In addition, we previously demonstrated the preventive effect of a synthetic MMP inhibitor, R-94138, in a peritoneal dissemination model using TMK-1 in nude mice.\(^3\) These results suggested that in the present study, the inhibition of dissemination nodule formation from TMK-1 by nobiletin occurs at least partially through the inhibition of MMP-9 and other MMPs.

Nobiletin has been shown to exert an anti-ulcer effect,\(^20\) an anti-invasive effect,\(^6, 21\) and an anti-inflammatory effect,\(^9\) and to inhibit cAMP-phosphodiesterase *in vitro*.\(^22, 23\) In addition, nobiletin suppresses the production of PGE\(_2\), and the expression of COX-2 protein.\(^9\) Recently, COX-2 was reported to be frequently overexpressed in colorectal neoplasms.\(^24, 25\) This protein also plays a role in colorectal tumorigenesis and tumor progression,\(^26–29\) and modulates the production of angiogenic factors by colon cancer cells.\(^30\) Furthermore, COX-2 expression has been reported to be up-regulated not only in colorectal neoplasms, but also in gastric, breast, esophageal, pancreatic,
and lung carcinoma.31–35 COX-2 overexpression enhances lymphatic invasion and metastasis of human gastric carcinoma.36 Thus, nobiletin may exhibit its antitumor activity through both MMP and COX-2 inhibition.

The present study suggests that nobiletin may be a candidate anti-metastatic drug for the prevention of peritoneal dissemination of gastric cancer and it may increase the survival of gastric cancer patients as compared with patients treated with conventional cytotoxic therapy alone.

(Received March 21, 2001/Revised September 4, 2001/Accepted September 19, 2001)

REFERENCES

1) Otani, Y., Okazaki, I., Arai, M., Kameyama, K., Wada, N., Maruyama, K., Yoshino, K., Kitajima, M., Hosoda, Y. and Tsuchiya, M. Gene expression of interstitial collagenase (MMP-1) in gastrointestinal tract cancers. \textit{J. Gastroenterol.}, 29, 391–397 (1994).

2) Sakurai, Y., Otani, Y., Kameyama, K., Hosoda, H., Okazaki, I., Kubota, T., Kumai, K. and Kitajima, M. Expression of interstitial collagenase (matrix metalloproteinase-1) in gastric cancers. \textit{Jpn. J. Cancer Res.}, 88, 401–406 (1997).

3) Igarashi, N., Kubota, T., Otani, Y., Matsuizaki, W., Watanabe, M., Teramoto, T., Kumai, K., Tamaki, K., Tanzawa, K., Kobayashi, T. and Kitajima, M. Preventive effect of matrix metalloproteinase inhibitor, R-94138, in combination with mitomycin C or cisplatin on peritoneal dissemination of human gastric cancer cell line TMK-1 in nude mice. \textit{Jpn. J. Cancer Res.}, 90, 116–121 (1999).

4) Stavric, B. Antimitagens and anticarcinogens in foods. \textit{Food Chem. Toxicol.}, 32, 79–90 (1994).

5) Wattenberg, L. W. Chemoprevention of cancer. \textit{Cancer Res.}, 45, 1–8 (1985).

6) Kandaswami, C., Perkins, E., Soloniuk, D. S., Drzewiecki, G. and Middleton, E., Jr. Antiproliferative effects of citrus flavonoids on a human squamous cell carcinoma \textit{in vitro}. \textit{Cancer Lett.}, 56, 147–152 (1991).

7) Ishiwa, J., Sato, T., Mimaki, Y., Sashida, Y., Yano, M. and Ito, A. A citrus flavonoid, nobiletin, suppresses the production and gene expression of matrix metalloproteinase 9/ gelatinase B in rabbit synovial fibroblasts. \textit{J. Rheumatol.}, 27, 20–25 (2000).

8) Bracke, M., Vyncke, B., Opdenakker, G., Foidart, J. M., De Pesel, G. and Mareel, M. Effect of catechins and citrus flavonoids. \textit{Planta Med.}, 257, 1164–1168 (1997).

9) Murakami, A., Nakamura, Y., Torigai, K., Tanaka, T., Koshiha, T., Koshimizu, K., Kuwahara, S., Takahashi, Y., Ogawa, K., Yano, M., Tokuda, H., Nishino, H., Mimaki, Y., Sashida, Y., Kitanaka, S. and Ohigashi, H. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. \textit{Cancer Res.}, 60, 5059–5066 (2000).

10) Tokuda, Y., Nagura, H., Maruo, K., Uemura, Y., Yoshimura, S., Tamaoki, K., Kondo, Y., Ogoshi, Y. and Mitomi, T. An immunohistochemical study of human gastric carcinoma in nude mice and athymic rats with special reference to secretory component production. \textit{Ipn. J. Cancer Clin.}, 27, 1605–1612 (1981) (in Japanese with English abstract).

11) Ochiai, A., Yasui, W. and Tahara, E. Growth-promoting effect of gastrin on human gastric carcinoma cell line TMC-1. \textit{Jpn. J. Cancer Res.} (Gann), 76, 1064–1071 (1985).

12) Kubota, T., Shimosato, Y. and Nagai, K. Experimental chemotherapy of carcinoma of the human stomach and colon serially transplanted in nude mice. \textit{Gann}, 69, 299–309 (1978).

13) Davies, B., Miles, D. W., Happerfield, L. C., Naylor, M. S., Bobrow, L. G., Rubens, R. D. and Balkwill, F. R. Activity of type IV collagenases in benign and malignant breast disease. \textit{Br. J. Cancer}, 67, 1126–1131 (1993).

14) Brown, P. D., Bloxidge, R. E., Stuart, N. S., Gatter, K. C. and Carmichael, J. Association between expression of activated 72 kD gelatinase and tumor spread in non-small-cell lung carcinoma. \textit{J. Natl. Cancer Inst.}, 85, 574–578 (1993).

15) Mak, N. K., Wong-Leung, Y. L., Chan, S. C., Wen, J., Leung, K. N. and Fung, M. C. Isolation of anti-leukemia compounds from \textit{Citrus reticulata}. \textit{Life Sci.}, 58, 1269–1276 (1996).

16) Liotta, L. A., Stee, P. S. and Stetlew-Stevenson, W. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. \textit{Cell}, 64, 327–336 (1991).

17) Sato, H. and Seiki, M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. \textit{Oncogene}, 8, 395–405 (1993).

18) Chunhong, Y., Heng, W. and Douglas, D. B. \textit{Kiss-1} represses 92-kDa type IV collagenase expression by down-regulating NF-κB binding to the promoter as a consequence of lKBa-induced block of p65/p50 nuclear translocation. \textit{J. Biol. Chem.}, 257, 1164–1172 (2001).

19) Tanaka, H., Nishida, K., Sugita, K. and Yoshioka, T. Antitumor efficacy of hypothyrmcin, a new ras-signaling inhibitor. \textit{Jpn. J. Cancer Res.}, 90, 1139–1145 (1999).

20) Takase, H., Yamamoto, K., Hirano, H., Saito, Y. and Yamashita, A. Pharmacological profile of gastric mucosal protection by marin and nobiletin from a traditional herbal medicine, \textit{Auranitii fructus immaturus}. \textit{Jpn. J. Pharmacol.}, 66, 139–147 (1994).

21) Bracke, M., Vyncke, B., Opdenakker, G., Foidart, J. M., De Pesel, G. and Mareel, M. Effect of catechins and citrus flavonoids on invasion \textit{in vitro}. \textit{Clin. Exp. Metastasis}, 9, 13–25 (1991).

22) Nikaido, T., Ohmoto, T., Sankawa, U., Hnamaka, T. and Totsuka, K. Inhibition of cyclic AMP phosphodiesterase by flavonoids. \textit{Planta Med.}, 46, 162–166 (1982).
23) Nguyen, T. D. and Canada, A. T. Citrus flavonoids stimulate secretion by human colonic T84 cells. *J. Nutr.*, **123**, 259–268 (1993).

24) Eberhart, C. E., Coffey, R. J., Radhika, A., Giardiello, F. M., Ferrenbach, S. and DuBois, R. N. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. *Gastroenterology*, **107**, 1183–1188 (1994).

25) Sano, H., Kawahito, Y., Wilder, R. L., Hashirimoto, A., Mukai, S., Asai, K., Kimura, S., Kato, H., Kondo, M. and Hla, T. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. *Cancer Res.*, **55**, 3785–3789 (1995).

26) Oshima, M., Dinchuk, J. E., Kargman, S. L., Oshima, H., Hancock, B., Kwong, E., Trzaskos, J. M., Evans, J. F. and Taketo, M. M. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). *Cell*, **87**, 803–809 (1996).

27) Reddy, B. S., Rao, C. V. and Seibert, K. Evaluation of cyclooxygenase-2 inhibitor for potential chemopreventive properties in colon carcinogenesis. *Cancer Res.*, **56**, 4566–4569 (1996).

28) Tsujii, M., Kawano, S. and DuBois, R. N. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. *Proc. Natl. Acad. Sci. USA*, **94**, 3336–3340 (1997).

29) Tomozawa, S., Nagawa, H., Tsuno, N., Hatano, K., Osada, T., Kitayama, J., Sunami, E., Nita, M. E., Ishihara, S., Yano, H., Tsuero, T., Shibata, Y. and Muto, T. Inhibition of haematogenous metastasis of colon cancer in mice by a selective COX-2 inhibitor, JTE-522. *Br. J. Cancer*, **81**, 1274–1279 (1999).

30) Tsujii, M., Kawano, S., Tsuji, S., Sawaoka, H., Hori, M. and DuBois, R. N. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. *Cell*, **93**, 705–716 (1998).

31) Ristimäki, A., Honkanen, N., Jankala, H., Sipponen, P. and Harkonen, M. Expression of cyclooxygenase-2 in human gastric carcinoma. *Cancer Res.*, **57**, 1276–1280 (1997).

32) Hida, T., Yatabe, Y., Achiwa, H., Muramatsu, H., Kozaki, K., Nakamura, S., Ogawa, M., Mitsudomi, T., Sugita, T. and Takahashi, T. Increased expression of cyclooxygenase-2 occurs frequently in human lung cancers, specifically in adenocarcinomas. *Cancer Res.*, **58**, 3761–3764 (1998).

33) Hwang, D., Scollard, D., Byrne, J. and Levine, E. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. *J. Natl. Cancer Inst.*, **90**, 455–460 (1998).

34) Zimmermann, K. C., Sarbia, M., Weber, A. A., Borchard, F., Gabbert, H. E. and Schror, K. Cyclooxygenase-2 expression in human esophageal carcinoma. *Cancer Res.*, **59**, 198–204 (1999).

35) Tucker, O. N., Danneberg, A. J., Yang, E. K., Zhang, F., Teng, L., Daly, J. M., Soslow, R. A., Masferrer, J. L., Woerner, B. M., Koki, A. T. and Fahey, T. J. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. *Cancer Res.*, **59**, 987–990 (1999).

36) Murata, H., Kawano, S., Tsuji, M., Sawaoka, H., Kimura, Y., Shiozaki, H. and Hori, M. Cyclooxygenase-2 overexpression enhances lymphatic invasion and metastasis in human gastric carcinoma. *Am. J. Gastroenterol.*, **94**, 451–455 (1999).