Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite

Christopher G. Robertson¹,# and Ned J. Hardman²

¹ Endurica LLC, Findlay, OH 45840, USA
² Monolith Materials, Monolith Technical Center, Lincoln, NE 68522, USA

Speaker

Presented at the Fall 200th Technical Meeting of the Rubber Division, American Chemical Society
Pittsburgh, PA; October 5-7, 2021
Introduction

• This presentation is based on our recent review paper
 – C.G. Robertson and N.J. Hardman, “Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite”, Polymers 13, 538 (2021), open access paper; link to free download: https://www.mdpi.com/2073-4360/13/4/538
 – Please see references cited therein (146 papers)
Introduction

Carbon Black
15 million metric tons per year

nano-scale reinforcement for demanding rubber applications

Endurica
MONOLITH

tires non-tire rubber inks, paints, plastics, etc.

20%
73%
7%
Introduction

- Adding carbon black (CB) particles to elastomeric polymers is essential to the successful industrial use of rubber in many applications.
- The mechanical reinforcing effect of CB in rubber has been studied for nearly 100 years.
- Despite these many decades of investigations, the origin of stiffness enhancement of elastomers from incorporating CB is still debated:
 - Purely physical adsorption of polymer chains on CB surfaces; or
 - Some polymer–particle chemical bonds are also introduced in the process of mixing and curing the CB-filled rubber compounds.
Introduction

• We review key experimental observations of rubber reinforced with CB, including the finding that heat treatment of CB can greatly reduce the filler reinforcement effect in rubber.

• The details of the particle morphology and surface chemistry are described to give insights into the nature of the CB–elastomer interfaces.

• We also discuss:
 – The influence of CB on crosslinking
 – Various chemical modification approaches that have been employed to improve polymer–filler interactions and reinforcement.
CB reinforcement of rubber

- A.I. Medalia and G. Kraus, 1994

![Graph showing stress-strain relationship with Reinforcement Index (RI)]
Reinforcement regions

Regions of Reinforcement
1. Payne effect
2. Minimum / transition
3. Stress upturn
4. Modulus plateau
5. Ultimate softening and break

\[E = \frac{d\sigma}{d\varepsilon} \text{ (MPa)} \]

Strain (%)
0 \quad 100 \quad 200 \quad 300 \quad 400 \quad 500

Stress (MPa)
0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25
Reinforcement regions

- Data from N. Warasitthinon and C.G. Robertson, 2018
Reinforcement regions

- Data from N. Warasitthinon and C.G. Robertson, 2018
Reinforcement index to quantify stress upturn

• This new reinforcement index was introduced in our 2021 review paper
 \[\kappa = \frac{E_{\text{plateau}}}{E_{\text{min}}} \]

• Many folks still use M300/M100
CB particle morphology

- N660 carbon black
CB structure and chemistry

- (b) adapted from R.D. Heidenreich, W.M. Hess, and L.L. Ban, 1968
Heat treatment of CB

Heat treatment of CB at 900 to 1200 °C removes surface functional groups without significantly affecting the surface area or graphitic structure.

Table 2. Effects of Heat Treatment on CB Characteristics.

CB Sample	NSA (m²/g)	STSA (m²/g)	O (%)	N (%)	H (%)	S (%)	C (%)	L_c (nm)	d_002 (nm)
N234, untreated	126.4	120.3	2.21	0.145	0.337	0.924	93.7	1.19	0.365
N234, 900 °C	134.7	124.7	1.28	0.158	0.250	0.932	95.9	1.15	0.361
N234, 1000 °C	129.6	129.6	0.204	0.064	0.130	0.916	96.7	1.40	0.361
N234, 1200 °C	129.0	132.8	0.128	0.041	0.021	0.790	98.7	1.44	0.355
N660, untreated	36.4	35.2	0.576	0.082	0.339	1.84	95.9	1.78	0.352
N660, 1000 °C	36.4	37.3	0.110	0.056	0.141	1.78	96.8	1.59	0.355

Data from Monolith Technical Center in Lincoln, NE. Heat treatment conditions: CB annealed in inert atmosphere under positive-pressure Ar flow at indicated temperature for 18 h. Elemental analysis results from Leco ONH836 and Leco SC832 Elemental Analyzers. Crystallographic data (L_c and d_002) from Rigaku Miniflex powder X-ray diffractometer utilizing k alpha radiation.
Heat treatment of CB

Table 4. Effects of CB Heat Treatment on Tensile Properties of CB-Filled SBR.

CB Sample	M100 (MPa)	M300 (MPa)	M300/M100
N234, untreated	2.68	15.33	5.72
N234, 900 °C	2.77	15.33	5.54
N234, 1000 °C	2.11	11.11	5.27
N234, 1200 °C	1.78	7.78	4.36
N660, untreated	2.59	13.33	5.15
N660, 1000 °C	1.96	7.99	4.08

- N234 CB with surface functionality removed by heat treatment gives less reinforcement than untreated N660 CB
- Surface chemistry is more important than particle morphology

Data from Monolith Technical Center in Lincoln, NE (see Table 2 for CB characteristics). Heat treatment conditions: CB annealed in inert atmosphere under positive-pressure Ar flow at indicated temperature for 18 h. Results from room temperature tensile testing for emulsion SBR rubber formulation specified in ASTM D 3191.
Heat treatment of CB

E.M. Dannenberg, 1975

SBR + 50 phr ISAF CB (≈ N220)

Bound Rubber (%)

Bound rubber
M300

M300 (MPa)

CB Heat Treatment Temperature (°C)
Free radicals on CB

- G. Kraus and R.L. Collins, 1959
- R.L. Collins, M.D. Bell, and G. Kraus, 1960
Aggregate breakage during compounding

- M. Klüppel, 2003
Mixing time effect

- J.J. Brennan, T.E Jermyn, B.B Boonstra, 1964
Cure acceleration effect from CB

- S.M. Hosseini and M. Razzaghi-Kashani, 2018
Polymer-CB coupling

- Carbon black coupling agent
 - S. Han, W.-S. Kim, D.-Y. Mun, B. Ahn, and W. Kim, 2020

- Sn-functional groups on polymers have shown reaction with quinone groups on CB
 - V.A. Escobar Barrios and M. Garcia-Ramirez, 2003
 - F. Tsutsumi, M. Sakakibara, and N. Oshima, 1990
 - J.D. Ulmer, W.L. Hergenrother, and D.F. Lawson, 1998
Possible polymer–filler interaction/reaction scenarios

- Adsorption
- Adsorption + covalent bonding
- Covalent bonding

+ Crosslinking effect
Final Comments

• Heat treatment of CB at 900 to 1200 °C removes surface functional groups without significantly affecting the surface area or graphitic structure, and this greatly reduces the bound rubber and mechanical reinforcement.

• Considering the research literature in total, we believe that the most realistic scenario for polymer–CB interfaces is predominantly physical adsorption with some covalent chemical bonds also present.
Final Comments

• Additional complexities include:
 – Aggregate breakage during compounding
 – Free radical chemistry during compounding
 – Accelerating effect of CB on the sulfur vulcanization of rubber

• The cure acceleration effect may produce a layer around the particles with increased crosslink density compared to the bulk

• However, additional analytical research is needed since the exact nature of the polymer–filler interfaces in the final cured rubber has yet to be conclusively diagnosed
Acknowledgements

• The experimental contributions of the Rubber and Analytical teams at Monolith Technical Center are gratefully acknowledged

• Thank you to the Program Planning Committee of the Rubber Division for organizing this technical conference
Thank you for attending!