The genus *Clematis* contains about 355 species, many of which are used to study plant modeling, flower form, colors, and florescence (Wang et al. 2021). One of these species, *Clematis florida* Thunb. (First mentioned in 1784, see in http://www.iplant.cn/) is a herbaceous, perennial plant native to East Asia (Sheng et al. 2014). This species is resistant to cold temperature but is heat sensitive (Jiang et al. 2020). This species is well-known for its high ornamental value (Jiang et al. 2020). It is also a commonly used for landscaping and floriculture, which is a popular climbing plant worldwide (Jiang et al. 2020). It is also a plant source of many medicinal active ingredients including antioxidant and anti-inflammatory metabolites (Jung et al. 2014). The cp genome has a maternal inheritance and conserved structure, and has been used to examine the developmental and phylogenetic relationships of plants (Wang et al. 2018). To better understand the phylogenetic position of *C. florida*, we assembled and analyzed the complete cp genome of *C. florida* using Illumina pair-end sequencing data.

Clematis florida leaves were collected from Xinyang, Henan Province, China (Xinyang Agriculture and Forestry University: 114°13'E, 32°17'N) and preserved in liquid nitrogen. Later these specimens (Bio-sample accession: SAMN20060056) were stored at −80°C at the Horticultural Plant Biotechnology Laboratory, Xinyang Agriculture and Forestry University. A specimen was deposited at the Herbarium of the Horticultural Plant Biotechnology Laboratory, Xinyang Agriculture and Forestry University: 114°13'E, 32°17'N) and preserved in liquid nitrogen. Later these specimens (Bio-sample accession: SAMN20060056) were stored at −80°C at the Horticultural Plant Biotechnology Laboratory, Xinyang Agriculture and Forestry University. A specimen was deposited at the Herbarium of the Horticultural Plant Biotechnology Laboratory, Xinyang Agriculture and Forestry University. The complete chloroplast genome of *C. florida* Thunb. (Ranunculaceae), an ornamental and medicinal plant from Henan province, China

Yan Dong, Qingsong Zhu and Jianhua Yue

Xinyang Agriculture and Forestry University, Xinyang, Henan, People's Republic of China

ABSTRACT

Clematis florida Thunb. is a herbaceous and perennial plant native to East Asia. The plant is resistant to cold but sensitive to heat. It is an ornamental and medicinal plant that has great commercial potential. Here, we assembled and characterized the complete chloroplast (cp) genome of *C. florida*. The cp genome of *C. florida* was characterized by Illumina pair-end sequencing and is 159,606 bp in total length. The genome includes a large single-copy (LSC) region of 79,467 bp, a small single-copy (SSC) region of 18,057 bp, and a pair of inverted repeats (IR) regions of 31,041 bp. The genome contains 135 genes including 91 protein-coding, 36 tRNA, and eight rRNA genes. Phylogenetic analysis based on 18 *Clematis* species indicates that *C. florida* is closely related to *C. fusca* in the Ranunculaceae. The phylogenetic relationships and taxonomic status of *C. florida* revealed by cp genome were consistent with the previous molecular studies, and can serve as a reference for future studies on molecular biology, evolution, and taxonomy in the genus *Clematis*.
the phylogenetic analysis. All of the genomes were downloaded from NCBI GenBank. The sequences were aligned by MAFFT v7.307 using routine settings (Katoh and Standley 2013), and the phylogenetic tree was constructed by MEGA X (Kumar et al. 2018). The robustness of the topology was estimated using 1000 bootstrap replicates with the maximum likelihood method and nucleotide substitution model Tamura-Nei following Nguyen et al. (2015). The phylogenetic tree revealed that *C. florida* was fully resolved in a clade with *C. fusca* (Figure 1). The result was highly consistent with the phylogenetic relationships and taxonomic status of the *Clematis* species by using nuclear ITS and plastid atpB-rbcL fragments methods (Zhang et al. 2015). The analysis of the cp genome of *C. florida* provides excellent genetic information for further studies of this species and the taxonomy, phylogenetics, and evolution of the Ranunculaceae.

Acknowledgments

The authors wish to thank the anonymous reviewers who provided constructive comments and critical insight on this article.

Author contributions

Jianhua Yue planned the research and provided the material for sequencing. Qingsong Zhu did sampling. Yan Dong analyzed data and wrote the manuscript. Jianhua Yue revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Ethics statement

Plant material collection in this study was complied with the Convention on Biological Diversity and the Convention on the Trade in Endangered Species of Wild Fauna and Flora. See in PC RoP (cites.org). The permissions of plant material collection were not required as this is a common plant species and is abundantly available in the region of Xinyang, China.

Funding

This study was supported by the Science and Technology Innovation Team of Xinyang Agriculture and Forestry University [CXTD202002], the Experimental Teaching Demonstration Center of Xinyang Agriculture and Forestry University [202102], and the Foundation of Central Laboratory of Xinyang Agriculture and Forestry University [FCL202012].

ORCID

Jianhua Yue http://orcid.org/0000-0001-6573-488X

Data availability statement

The data that support the findings of this study are openly available at https://www.ncbi.nlm.nih.gov/. The complete cp genome has been deposited in GenBank with accession number MZ151500. And the associated Bio-project, SRA, Bio-sample numbers are PRJNA743757, SRR15041511, and SAMN20060056 respectively.

References

Dierckxsens N, Mardulyn P, Smits G. 2016. NOVOPlasty: *de novo* assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4):e18.

Jiang C, Bi Y, Mo J, Zhang R, Qu M, Feng S, Essemeine J. 2020. Proteome and transcriptome reveal the involvement of heat shock proteins and
antioxidant system in thermotolerance of *Clematis florida*. Sci Rep. 10(1):8883.

Jung J, Shin M, Jeong N, Hwang D. 2021. Antioxidant and anti-inflammatory activities of ethanol extract of *Clematis trichotoma* Nakai. Korean J Clin Lab Sci. 53(2):165–173.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thirer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGAX: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274.

Odahara M, Kuroiwa H, Kuroiwa T, Sekine Y. 2009. Suppression of repeat-mediated gross mitochondrial genome rearrangements by RecA in the Moss *Physcomitrella* patens. Plant Cell. 21(4):1182–1194.

Park KT, Park S. 2016. Complete chloroplast genome of *Clematis fusca* var. coreana (Ranunculaceae). Mitochondrial DNA A. 27(6):4056–4058.

Sheng L, Ji K, Yu L. 2014. Karyotype analysis on 11 species of the genus *Clematis*. Braz J Bot. 37(4):601–608.

Wang J, Li C, Yan C, Zhao X, Shan S. 2018. A comparative analysis of the complete chloroplast genome sequences of four peanut botanical varieties. PeerJ. 6:e5349.

Wang R, Mao C, Jiang C, Zhang L, Peng S, Zhang Y, Feng S, Ming F. 2021. One heat shock transcription factor confers high thermal tolerance in *Clematis* plants. UMS. 22(6):2900.

Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 31(20):3350–3352.

Zhang Y, Kong HH, Yang QE. 2015. Phylogenetic relationships and taxonomic status of the monotypic Chinese genus *Anemoclema* (Ranunculaceae). Plant Syst Evol. 301(5):1335–1344.