NONPERTURBATIVE TESTS OF THE PARENT/ORBIFFECT CORRESPONDENCE IN SUPERSYMMETRIC GAUGE THEORIES

Joshua Erlich and Asad Naqvi
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge MA 02139
jerlich@ctp.mit.edu, naqvi@ctp.mit.edu

Abstract

It has been shown that a procedure analogous to orbifolding in string theory, when applied to certain large N field theories, leaves correlators invariant perturbatively. We test nonperturbative agreement of some aspects of the orbifolded and non-orbifolded theories. More specifically, we find that the period matrices of parent and orbifolded Seiberg-Witten theories are related, even away from the 't Hooft limit. We also check that any large N theory which has an infrared conformal fixed point and satisfies certain anomaly positivity constraints required by theories with fixed points will continue to satisfy those constraints after orbifolding. We discuss extensions of these results to finite N.
1 Introduction

Motivated by a correspondence between certain supergravity theories and large N conformal field theories \cite{1}, and the preservation of this correspondence upon orbifolding of the supergravity theory \cite{2}, a relation between field theories and their orbifolds was derived in \cite{3}. It was shown that at large N all correlators of the orbifolded theory are simply related in perturbation theory to the same correlators in the parent theory. Although we will continue to use the term “orbifold” interchangeably for this procedure acting on field theories and on a supergravity or string theory, for us orbifolds of field theories do not include twisted sectors or anomalous U(1)’s. Hence the motivation from the AdS conjecture and the extension to orbifolds is tenuous.

In Sec. 2 we review orbifolding in field theories, and in Sec. 3 we discuss the perturbative result of Bershadsky and Johansen. In Sec. 4 we study nonperturbative extensions of this correspondence between field theories and their orbifolds. The result is that if a supersymmetric theory and its orbifold have Coulomb branches, the Seiberg-Witten period matrix of the orbifolded theory is simply related to that of the parent theory. This relation is valid for all N and coupling g. In Sec. 5 we study the anomaly positivity constraints \cite{4} on supersymmetric theories with infrared fixed points and find that they are satisfied in orbifolds of large N theories with infrared fixed points. We study two classes of theories at finite N and find that the positivity conditions hold for orbifolds of these theories, as well. Conclusions are summarized in Sec. 6.

2 Orbifolding in Field Theory

By orbifolding in field theory, we will mean removing from the theory all states which are not invariant under some discrete subgroup of the internal symmetry (gauge and global) of the theory (perhaps truncation is a more appropriate term but we will continue to use orbifolding). Unlike orbifolding in string theory, we do not orbifold space-time so we will look at quantum field theories in flat four dimensional Minkowski space. In cases where the four dimensional theory can be realized as a world-volume theory on D-branes which are part of some brane configuration, orbifolding the space transverse to these branes corresponds to orbifolding the field theory which lives on the world volume of the branes except that we do not include the twisted sector fields in the field theory orbifold \cite{5}. There are various restrictions on the type of orbifolds allowed which come from string theory consistency requirements such as tadpole cancelation. From the field theory point of view, the only restriction is from the requirement that the orbifolded field theory does not have any gauge anomalies. We will now discuss some examples of orbifolding in field theory. We will always use the regular representation (see below) of the orbifold group G
to embed it in the gauge group. If the field theory is realized as a world-volume theory in some brane configuration, this requirement comes from the consistency of string theory. The importance of the regular representation is not clear from a purely field theoretic point of view. However, it simplifies the analysis in perturbation theory [3]. We can also embed G in the global symmetries of the theory. Different embeddings in the global symmetries will lead to different orbifold theories.

SU(kN) pure gauge theory orbifolded by Z_k

As discussed above, Z_k is embedded by its regular representation in the gauge group. In general, a discrete group $G = \{g_1, g_2, \ldots, g_k\}$ has a regular representation given by $k \times k$ matrices γ^a defined by $g_ag_i = g_j(\gamma^a)_{ji}$. Using the fact that $g_ag_b \neq g_b$ unless $g_a = 1$ (1 is the identity element of the group which we will denote by g_1), we get

$$\text{Tr} \gamma^a = k\delta^a_1.$$

It is easy to show using simple group representation theory that the regular representation is reducible and by a suitable change of basis can be brought to a block diagonal form such that each irreducible representation R_i appears with multiplicity equal to its dimension $d_i = \text{dim}(R_i)$ along the diagonal. This implies that $\sum_i d_i^2 = k$. For the group Z_k, in an appropriate basis, the regular representation matrices are given by

$$\gamma^a = \text{diag}\{1, (\omega^a), (\omega^a)^2 \ldots (\omega^a)^{k-1}\}, a \neq 1,$$

$$\gamma^1 = \text{diag}\{1, 1, 1, \ldots, 1\},$$

where $\omega = e^{2\pi i/k}$ and $\omega^k = 1$. Now it is easy to embed the group Z_k in the gauge group SU(kN). The matrices,

$$\Gamma^a_N = \text{diag}\{1, (\omega^a) \times 1_N, (\omega^a)^2 \times 1_N \ldots (\omega^a)^{k-1} \times 1_N\}, a \neq 1,$$

$$\Gamma^1_N = \text{diag}\{1_N, 1_N, 1_N, \ldots, 1_N\}$$

form a Z_k subgroup of SU(kN). This means that the action of the orbifold group on the gauge field matrix $A_\mu = A_\mu^a T^a$ is given by $A_\mu \rightarrow \Gamma^a_N A_\mu \Gamma^a_N$. The components left invariant by the orbifold group can then easily seen to be $N \times N$ blocks along the diagonals. Hence the gauge group of the orbifolded theory is SU(N)\timesSU(N)$\times \ldots \times$SU(N) (k factors of SU(N)). Here, as mentioned in the introduction, we ignored anomalous gauge U(1)’s.

SU(kN) theory with Adjoint scalars orbifolded by Z_k

Now consider an SU(kN) gauge theory with complex scalars Φ in the adjoint representation of the gauge group. This theory has a U(1) global symmetry $\Phi \rightarrow e^{i\alpha} \Phi$. We can
embed Z_k non-trivially in this global U(1) group as \(\{ \omega^j, j = 0 \ldots k-1 \} \) where \(\omega = e^{2\pi i / k} \). It is easy to check that the invariant scalars are in \(N \times N \) blocks shifted to the right of the diagonal. The matter content of the orbifolded theory is shown below (for \(k = 4 \)).

\[
\begin{array}{cccc}
SU(N) & SU(N) & SU(N) & SU(N) \\
\circ & \circ & 1 & 1 \\
1 & \circ & \circ & 1 \\
1 & 1 & \circ & \circ \\
\circ & 1 & 1 & \circ \\
\end{array}
\]

\(\mathcal{N} = 2 \), \(SU(kN) \) pure gauge theory orbifolded by \(Z_k \)

In \(\mathcal{N} = 1 \) language, the \(\mathcal{N} = 2 \) pure gauge theory has a vector superfield and a chiral superfield in the adjoint representation of the gauge group. This theory possesses a global U(1) symmetry under which the gauge field and its fermionic partner transform as \((A_\mu, \lambda) \rightarrow (A_\mu, \lambda) \), and the adjoint scalar and its fermionic partner as \((\phi, \psi) \rightarrow e^{i\alpha}(\phi, \psi) \). This symmetry is anomalous but there is a discrete non-anomalous subgroup \(Z_{2kN} \), which in turn has a \(Z_k \) subgroup generated by \(\omega = e^{2\pi i / k} \). We identify this \(Z_k \) with the orbifold group. The gauge group is embedded via the regular representation as usual. It is easy to see that the orbifolded theory is an \(\mathcal{N} = 1 \) supersymmetric \(SU(N)^k \) theory with chiral multiplets transforming as in the table above. We will discuss the relation between the two theories in the Coulomb phase in section 4.

\(\mathcal{N} = 1 \), \(SU(kN) \) theory with \(kF \) flavors orbifolded by \(Z_k \)

This theory has a \(SU(kF)_{L} \times SU(kF)_R \) global symmetry and we use \(F \)-fold copies of the regular representation to embed the orbifold group \(Z_k \) in each factor of the flavor group. We first embed the orbifold group trivially in the other global symmetries (various U(1)’s). The orbifolded theory is \(\mathcal{N} = 1 \) supersymmetric \(SU(N)^k \) theory where each factor is disconnected and has \(F \) flavors. We can also choose to embed the orbifold non-trivially in the \(U(1)_R \) symmetry under which the gauginos and flavors have charge +1 (implying that the fermionic quarks are uncharged)(this theory is discussed in detail in [6]). This symmetry is anomalous but has a non-anomalous \(Z_{kN} \) subgroup which in turn has a \(Z_k \) subgroup. This we identify with the orbifold group. We will use \(Q, \bar{Q}, \Psi, \bar{\Psi} \) for the scalar and fermionic components of the superfields transforming in the fundamental and anti-fundamental representation of the gauge group. Then, under the orbifold group, the fields will transform as \(A_\mu \rightarrow \Gamma_N A_\mu \Gamma_N^a, \lambda \rightarrow \omega^{a-1} \Gamma_N^a \lambda \Gamma_N^a, Q \rightarrow \omega^{a-1} \Gamma_N^a Q \Gamma_N^a, \bar{Q} \rightarrow \omega^{a-1} \Gamma_N^a \bar{Q} \Gamma_N^a, \Psi \rightarrow \Gamma_N^a \Psi \Gamma_N^a, \) and \(\bar{\Psi} \rightarrow \Gamma_N^a \bar{\Psi} \Gamma_N^a \), where \(\omega = e^{2\pi i / k} \). The orbifolded theory has no supersymmetry and the following matter content (for \(k = 3 \)).
	SU(N)	SU(N)	SU(N)	SU(F)_L	SU(F)_L	SU(F)_L	SU(F)_R	SU(F)_R	SU(F)_R
\(\lambda_1\)	\(\square\)	\(\square\)	1	1	1	1	1	1	1
\(\lambda_2\)	1	\(\square\)	1	1	1	1	1	1	1
\(\lambda_3\)	\(\square\)	1	\(\square\)	1	1	1	1	1	1
\(Q_1\)	\(\square\)	1	1	1	\(\square\)	1	1	1	1
\(Q_2\)	1	\(\square\)	1	1	1	\(\square\)	1	1	1
\(Q_3\)	1	1	\(\square\)	\(\square\)	1	1	1	1	1
\(\tilde{Q}_1\)	\(\square\)	1	1	1	1	1	\(\square\)	1	1
\(\tilde{Q}_2\)	1	\(\square\)	1	1	1	1	\(\square\)	1	1
\(\tilde{Q}_3\)	1	1	\(\square\)	1	1	1	\(\square\)	1	1
\(\Psi_1\)	\(\square\)	1	1	\(\square\)	1	1	1	1	1
\(\tilde{\Psi}_1\)	1	\(\square\)	1	1	\(\square\)	1	1	1	1
\(\Psi_2\)	1	1	\(\square\)	1	1	\(\square\)	1	1	1
\(\tilde{\Psi}_2\)	1	1	\(\square\)	1	1	\(\square\)	1	1	1
\(\Psi_3\)	1	1	\(\square\)	1	1	\(\square\)	1	1	1
\(\tilde{\Psi}_3\)	1	1	\(\square\)	1	1	\(\square\)	1	1	1

Orbifolding \(\square\) and \(\square\) under SU\((kN)\) by \(Z_k\)

The symmetric tensor may transform under some global U(1) as \(\square\) \(\square\) \(\rightarrow\) \(e^{i\alpha}\) \(\square\) \(\square\). If we embed the orbifold group trivially in this U(1), \(\square\) \(\square\) under SU\((kN)\) will become \(\square\) \(\square\) under each of the factors of SU\((N)^k\). However, if we choose to embed it non-trivially as \(\{\omega^j, j = 0 \ldots k - 1\}\), we get bifundamentals under the \(k\) factors if \(k\) is odd and bifundamentals under \(k - 1\) factors and \(\square\) \(\square\) under one of the factors if \(k\) is even.

3 Perturbative Correspondence between Parent and Orbifolded Theories

In this section, we review some of the arguments by Bershadsky and Johansen [3] who proved that at large \(N\), all correlators of the orbifolded theory are identical to the corresponding correlators in the parent theory up to a rescaling of the coupling constants. In the orbifolding procedure, the coupling constants \(g_{orb}\) of the various factors of the product groups are the same as that of the parent theory. However, if we define \(g_{orb}^2 = kg_{parent}^2\), the correlators of the two theories are identical.

We define a projector onto states which are invariant under the orbifold group by

\[
P = \frac{1}{k} \sum_{a=1}^{k} r^a, \quad (3.1)
\]
Figure 1: A two loop planar Feynman diagram

where r^a are matrices in a particular (generally reducible) representation of the orbifold group. It is easy to show that $P^2 = P$ and $P = 1$ in the trivial representation and that $P = 0$ in all other irreducible representations. Thus when acting of some field in representation R, the projector projects the invariant components. For example, for adjoint fields, the projector can be defined as

$$P = \frac{1}{k^3} \sum_{a=1}^{k} r_a \otimes \Gamma^\dagger_a \otimes \Gamma_a$$

(3.2)

where r_a is the action of the Z_k subgroup of the global symmetry, Γ^\dagger_a acts on the anti-fundamental index and Γ_a acts on the fundamental index. At large N, the perturbation series is dominated by planar Feynman diagrams with arbitrary number of loops. Each diagram factorizes into product of certain kinematic (group theory) factor and another factor with complicated momentum and spin dependence which is independent of the internal symmetry structure of the diagram. Consider the planar diagram shown in Fig. (1). The group theory factor is

$$g^4 \frac{1}{k^3} \sum_{a,b,c,d,e=1}^{k} \text{Tr}[T_1 \Gamma_a \Gamma_d T_2 \Gamma_e \Gamma_c] \text{Tr}[\Gamma^\dagger_e \Gamma_a \Gamma^\dagger_d] \text{Tr}[\Gamma^\dagger_e \Gamma^\dagger_c \Gamma^\dagger_b]$$

(3.3)

For simplicity, we are assuming that the orbifold group is embedded trivially in the global symmetry group. Since the matrices, Γ are in the regular representation, the diagram is
zero unless
\[\Gamma_c^\dagger \Gamma_b^\dagger \Gamma_a^\dagger = 1 \]
and
\[\Gamma_b^\dagger \Gamma_e^\dagger \Gamma_d^\dagger = 1. \]
It is then easy to see that \((3.3)\) becomes
\[g^4 N^2 \text{Tr}(T_1 T_2). \]
The same diagram in the parent theory will be proportional to
\[g^4 N^2 k^2 \text{Tr}(T_1 T_2). \]
The factor of \((Nk)^2\) comes from summing over \(Nk\) particles running in the two loops.
The momentum and spin dependence of the same diagram in both theories are identical
so we see that the two diagrams are the same upto rescaling of couplings. The general
proof is given in [3] and [4].

4 Orbifolds of Seiberg-Witten Theories

As discussed in the last section, it has been demonstrated that, at least perturbatively
at large \(N\), all correlators of the orbifolded theory are equivalent to the corresponding
correlators in the parent theory up to a rescaling of the gauge coupling at some fixed
large scale, e.g. the Planck scale. In this section we demonstrate that at least one
aspect of the non-perturbative behavior of orbifolded and parent theories are related
at large \(N\), namely the gauge coupling functions of Seiberg-Witten theories. In the \('t\) Hooft
limit \(g^2 N\) is held fixed with \(g \to 0\). Then instanton corrections, which are proportional to
powers of \(e^{-\frac{8\pi^2}{g^2}}\), are generally negligible. Exceptions which involve \(N\)th roots of instanton
corrections, for example the gaugino condensate [5], are non-vanishing in the \('t\) Hooft
limit and vary as \(e^{-\frac{8\pi^2}{g^2} N}\). Furthermore, as discussed in [5], monopoles which become
massless at large \(N\) lead to important nonperturbative effects. We find a simple relation
between the (inverse) gauge coupling functions of the parent and orbifolded theories
nonperturbatively for all \(N\) and \(g\).

For simplicity we study the case where the curves for the orbifolded and parent
theories are hyperelliptic. Then the gauge coupling function at generic points in moduli
space, where the gauge group is broken to a product of \(U(1)\) factors, is given by the
period matrix of the corresponding curve and is easily expressed in terms of integrals
over cycles of the curve. The hyperelliptic curve [5, 10] can be written in the form
\[y^2 = f_{2r+2}(x, s_i), \]
(4.4)
where the subscript $2r + 2$ is the order of the polynomial f in x and r is the genus of the curve, which for pure $\mathcal{N} = 2$ supersymmetric Yang-Mills theory is equal to the rank of the corresponding gauge group. The moduli $s_i (i = 1, \ldots, r)$ which parameterize the Coulomb branch are the vacuum expectation values of the symmetric gauge invariant operators of the theory.

In [5] a prescription was given for generating the curves for $\mathcal{N} = 1$ supersymmetric $\text{SU}(N)^k$ gauge theory with bifundamental chiral multiplets from those of the $\mathcal{N} = 2$ $\text{SU}(kN)$ pure gauge theory by orbifolding the $\mathcal{N} = 2$ theory by the Abelian discrete group \mathbb{Z}_k. The curve of the orbifolded theory, which was obtained by other means in [11], was obtained by keeping only those terms of the parent theory with moduli invariant under the \mathbb{Z}_k, and rescaling $x \to x^k$ in the resulting curve.

We demonstrate here how the period matrix of the curve corresponding to the orbifolded theory is related to that of the parent theory. To be specific we will consider orbifolding of an $\text{SU}(kN)$ gauge theory by \mathbb{Z}_k. The genus r curve (4.4) ($r = kN - 1$ here) has $2r$ cycles which are divided into a cycles and b cycles with symplectic intersection $a_i \cdot b_j = \delta_{ij}$ and $a_i \cdot a_j = b_i \cdot b_j = 0$. In our case the cuts on the x-plane will have a \mathbb{Z}_k symmetry, and we label cycles schematically as follows. We choose a non-symplectic basis of cycles (α_i, β_i) as in Fig. 2. Then the appropriate symplectic basis is $a_i = \sum_{k=1}^{i} \alpha_k$, $b_i = \beta_i$. The subset of cycles relevant for comparison with the orbifolded theory are shown in Fig. 3. They correspond to the \mathbb{Z}_k invariant a cycles, as discussed below.

The genus r hyperelliptic curve also has a basis of r holomorphic differentials which can be written
\[\omega_j = \frac{x^{j-1} dx}{y(x)} \quad j = 1, \ldots, r. \] (4.5)

The matrices of a periods and b periods of the curve are given by integrals of the differentials (4.5) over the a and b cycles, respectively,
\[A_{ij} = \int_{a_i} \omega_j, \quad B_{ij} = \int_{b_i} \omega_j. \] (4.6)

The period matrix of the curve (4.4) is then given by
\[\tau_{jl} = B_{jk} A_{kl}^{-1}. \] (4.7)

The identification of the period matrix τ_{jl} of the hyperelliptic curve with the gauge coupling function in the $\mathcal{N} = 2$ $\text{SU}(kN)$ theory is made via [12, 13, 14]
\[\tau_{jl} = \frac{\partial a_l^P}{\partial a_l}, \] (4.8)

where a_l is the vacuum expectation value of the diagonalized adjoint scalars and a_l^P are their duals as described in [12]. Then if for some curve the period matrix (4.7) satisfies
Figure 2: A non-symplectic basis of cycles. On the orbifold sector of moduli space the cut x plane is symmetric under the orbifold group, in this case Z_3.
Figure 3: The orbifold sector of a symplectic basis of cycles.
appropriate monodromies around the singularities of the curve, then comparing (4.7) and (4.8) it is natural to set
\[
\frac{\partial a_j}{\partial s_k} = \int_{b_j} \omega_k, \quad \frac{\partial a_j}{\partial s_k} = \int_{a_j} \omega_k.
\]
(4.9)

Then the orbifold invariant sector of the adjoint VEV’s \(a_j\) corresponds to the invariant sector of \(a\) cycles and differentials. Alternatively, the VEV’s are given directly by integrals of the Seiberg-Witten differential \(\lambda = (1/2\pi i)(x/y) dP(x)\) where \(P(x)\) is the polynomial that appears in the curve \(y^2 = P(x)^2 - \Lambda^2 N\) of the \(\mathcal{N} = 2\) pure gauge theory. Since the Seiberg-Witten differential is not invariant under the \(Z_k\) symmetry, only the integrals over the \(Z_k\) invariant cycles will be invariant. Hence, the invariant \(a_j\) correspond to the invariant \(a\) cycles. As matrices, we reorganize the periods in a convenient way: The first \((N-1) \times (N-1)\) block of \(A_{jl}\) corresponds to the orbifold invariant sector, which we will continue to call \(A_{km, kn}\).

In order to compare corresponding points in the moduli space of the orbifolded and parent theories, we set all non-invariant moduli in the parent theory to zero. We then study that sector of the gauge coupling functions of the parent theory that correspond to the \(U(1)\) gauge group factors that survive on the moduli space of the orbifolded theory. In the basis of cycles described above, these factors correspond to \(\tau_{jl}\) for \(j\) and \(l\) equal to multiples of \(k\), where \(k\) is the order of the orbifold group \(Z_k\). It is claimed that this sector of the inverse period matrix of the curve corresponding to the parent theory is related to the period matrix of the orbifolded theory. This is verified as follows.

We can think of the curve \(y(x)\) as being defined on a double sheeted cover of the cut \(x\)-plane with branch points at the roots of \(y(x)\) connected pairwise to form branch cuts. On the orbifold sector of the moduli space of the parent theory the curve is a function only of \(x^k\), and the roots are of the form \(x^k = p_i\). The roots can then be labeled by \(p_i\) and a \(k\)-th root of unity. The branch cuts and cycles on the \(x\)-plane can be distributed as in Figs. 2 and 3. The roots of the orbifolded curve are then given by \(p_i\). The holomorphic differentials (4.5) corresponding to the orbifolded sector are of the form
\[
\omega_{kj} = \frac{x^{kj-1} dx}{y(x^k)}, \quad j = 1, \ldots, r.
\]
(4.10)

These differentials are invariant under multiplication of \(x\) by \(e^{2\pi i/k}\), so the integrals over the \(\alpha\) and \(\beta\) cycles in Fig. 3 are invariant under similar rotations. The noninvariant differentials are all multiplied by \(e^{2\pi i/k}\) for some integer \(m\) under multiplication of \(x\) by \(e^{2\pi i/k}\). Then the integrals of the noninvariant differentials over the invariant \(a\) cycles vanish. For example, suppose \(\omega \to \omega e^{2\pi i/k}\) when \(x \to x e^{2\pi i/k}\). Then
\[
\int_{\alpha_k} \omega_{\text{noninv}} = \left(\sum_{n=0}^{k-1} e^{\frac{2\pi in}{k}} \right) \int_{\alpha_k} \omega_{\text{noninv}} = 0.
\]
(4.11)
Now, consider the invariant sector of the matrix A_{jl} of a periods. It is given by

$$A_{k,j,kl} = \int_{akj} x^{kl-1}dx = \int_{akj} \frac{dx^{l-1}}{y(x)} = \int_{a'j} \frac{\tilde{x}^{l-1}d\tilde{x}}{y(\tilde{x})} = A_{jl}^{\text{orb}},$$

where in the first line of (4.12) we changed variables $x \rightarrow \tilde{x} = x^k$, and the cycles a'_j are the a cycles of the orbifolded theory, drawn schematically in Fig. 4. An additional factor of k arises in the second line because the invariant a cycles become a sum over the a cycles of the orbifolded theory k times. Hence, the orbifold invariant sector of the a periods of the parent theory is equivalent to the matrix of a periods of the orbifolded theory. Hence, the matrix A_{jl} takes the block lower triangular form

$$A = \begin{pmatrix}
A^{\text{orb}} & 0 & 0 & \cdots & 0 \\
0 & \ddots & \vdots & \ddots & \vdots \\
0 & \ddots & 0 & \ddots & 0 \\
0 & 0 & \cdots & 0 & 0
\end{pmatrix}.
$$

(4.13)

A similar analysis applies to the b periods. By invariant b cycles we will mean those b cycles that have intersection with the invariant a cycles, and similarly for noninvariant
b cycles. In this case, the integrals of the invariant differentials over the noninvariant cycles vanish. The reason is that the integrals are all of the form

$$\int \omega_p^{1/k} \frac{x^{kj-1} dx}{y(x^k)},$$

(4.14)

for some root p_i of $y(x)$. Then letting $x \to x^k$ the path of integration contracts to a point, and the integral (4.14) vanishes.

In the basis of cycles and one forms given above, the invariant sector of b periods of the parent theory is simply rescaled compared to the b periods of the orbifolded theory,

$$B_{kj,kl} = \int_b^{x_{kl}} x^{k-1} dx = \int_b^{\tilde{x}^{l-1}} \frac{\tilde{x}^{l-1} d\tilde{x}}{k y(\tilde{x})} = \int_b^{\tilde{x}^{l-1}} \frac{\tilde{x}^{l-1} d\tilde{x}}{k y(\tilde{x})} = \frac{1}{k} \frac{B_{\text{orb}}}{B_{jl}}.$$

(4.15)

There is no additional factor of k in the second line of (4.13) as in (4.12) since the relevant b cycles of the parent theory corresponds to single b cycles of the orbifolded theory and not a multiple cover as for the a cycles. Hence, the matrix of b periods takes the block upper triangular form

$$B = \begin{pmatrix}
\begin{pmatrix}
\frac{1}{k} \frac{B_{\text{orb}}}{B_{jl}} & \int_{b_{\text{inv}}} \omega_{\text{noninv}} \\
0 & \int_{b_{\text{inv}}} \omega_{\text{noninv}} \\
0 & \int_{b_{\text{inv}}} \omega_{\text{noninv}} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & 0
\end{pmatrix}
\end{pmatrix}.
$$

(4.16)

The orbifold sector of the inverse (or dual) period matrix, $\tau^{-1} = AB^{-1}$, of the parent theory is then simply related to that of the orbifolded theory. Namely,

$$\tau^{-1}_{kj,kl} = k \tau^{-1}_{j,l,\text{orb}}.$$

(4.17)

Therefore, the period matrix of the orbifolded theory is determined by that of the parent theory.

This is the main result of this section. Equation (4.17) relates the gauge coupling functions of the orbifold theory and the orbifold sector of the parent theory. It is valid for all N and g, and can be extended to more complicated orbifolds.
5 Anomaly Positivity Tests

In a series of papers [4, 15] it was demonstrated that in supersymmetric theories at conformal fixed points there are constraints on global anomalies which follow from unitarity. The argument relies on the supersymmetry multiplet structure which mixes the R-charge anomaly and the stress tensor trace anomaly, and positivity of central functions which appear in the operator product expansion of a product of two currents. At conformal fixed points these central functions are central charges which can be calculated in terms of global anomalies by ’t Hooft anomaly matching. This procedure is not valid away from a fixed point because corrections to the relation between the central functions and anomalies are proportional to the β function [4]. The argument can be reversed to give evidence for or against the existence of a conformal fixed point in a theory. One assumes that a theory has a fixed point and calculates the various central charges in terms of ’t Hooft matched global anomalies. If a central charge calculated this way is negative, then the theory could not have a conformal fixed point. If the central charge is positive when calculated this way, then a strong statement cannot be made, but positivity provides weak evidence for the existence of a conformal fixed point.

The Weyl anomaly coefficient, which must be positive at an infrared fixed point, can be written in terms of the $U(1)_R^3$ and $U(1)_R$ anomalies as

\[c_{IR} = \frac{1}{32} (9 U(1)^3_R - 5 U(1)_R) = \frac{1}{32} \left(4 \dim G + \sum_i (\dim R_i)(1 - r_i)(5 - 9(1 - r_i)^2) \right), \]

(5.18)

where $\dim G$ is the dimension of the gauge group and the sum is over all representations R_i of matter chiral multiplets in $\mathcal{N} = 1$ language with R-charges r_i. For example, for $\mathcal{N} = 1$ supersymmetric SU(N) QCD with N_f flavors of chiral multiplets, the ’t Hooft matched R charge of each flavor is $\frac{N_f - N}{N_f}$. The Weyl anomaly coefficient is [4]

\[c_{IR}^{SQCD} = \frac{1}{32} \left(4 (N^2 - 1) + 2 N N_f (\frac{N}{N_f})(5 - 9(\frac{N}{N_f})^2) \right), \]

(5.19)

which is easily checked to be positive in the conformal region $\frac{3N}{2} < N_f < 3N$.

If the theory has a global flavor symmetry, then the flavor central charge is required to be positive. At a conformal fixed point it is given by

\[b_{IR} = -3 U(1)_R F^2 = 3 \sum_{i,j} (\dim R_i)(1 - r_i) \mu_i, \]

(5.20)

where μ_i is the Dynkin index of the representation R_i.

The Euler anomaly coefficient a, which is believed to satisfy the Zamolodchikov C theorem in four dimensions [4, 16, 17], is also expected to be positive at fixed points.
In addition, the C theorem requires that the flow of the Euler anomaly be positive: $a_{UV} - a_{IR} > 0$. The relations between the Euler anomaly and the R current anomalies are \[4\],

\[
 a_{IR} = \frac{3}{32} \left(3U(1)_{R}^3 - U(1)_{R} \right) = \frac{3}{32} \left(2 \dim G + \sum_i (\dim R_i)(1 - r_i)(1 - 3(1 - r_i)^2) \right)
\]

\[
 a_{UV} - a_{IR} = \frac{1}{96} \sum_i (\dim R_i)(3r_i - 2)(5 - 3r_i).
\]

Assume a theory that flows to a conformal fixed point in the infrared has a unique anomaly free R symmetry. Then the positivity conditions are satisfied in that theory. If we consider orbifolding that theory, then the positivity conditions will remain to be true at large N. This is the case because the dimension of the orbifolded group at large N is rescaled by $1/k$, as are the dimensions of each matter representation. The anomaly free R-charges remain the same in this procedure. Hence, c_{IR} is rescaled by $1/k$ in the orbifolded theory, but otherwise is the same as c_{IR} in the parent theory. Hence, positivity is preserved at large N. That this is true for all theories which are obtained as orbifolds of theories with conformal fixed points provides evidence that the orbifolded theories also have conformal fixed points, as expected by the large N orbifold correspondence. One should note that the anomaly positivity conditions of \[4\] rely on supersymmetry, so we only consider orbifolds to supersymmetric theories. The anomaly calculations do not rely on a planar diagram expansion, so this result is valid also away from the 't Hooft limit at large N.

In our canonical example, large N, $\mathcal{N} = 2$ SU(kN) pure gauge theory orbifolded by \mathbb{Z}_k to $\mathcal{N} = 1$ SU(N)k with bifundamentals, the dimension of the parent gauge group is $(kN)^2$, whereas in the orbifolded theory it is N^2 for each SU(N) factor, or kN^2 total. Similarly, there are k bifundamental chiral multiplets in the orbifolded theory, as opposed to one adjoint chiral multiplet in the parent theory. The dimension of each of the k bifundamentals is N^2, so again the dimension of the representation is rescaled by $1/k$ in the orbifolded theory compared with the parent theory. The anomaly free R charges of the adjoint chiral multiplet in the parent theory and the bifundamental chiral multiplets in the orbifolded theory are 0.

At finite N the anomalies are not simply rescaled by $1/k$, so the above discussion of preservation of the positivity conditions does not carry through. This might be related to the problem of additional U(1)'s that appear in the orbifolded theory which decouple at large N, but not otherwise. If we naively add one U(1) gaugino for each SU(N) or SU(kN) factor, then the anomalies would be simply rescaled by $1/k$ as for large N. Although positivity in orbifolded theories is not guaranteed as it is for large N, we have surveyed orbifolds of a few theories with duals in the conformal regime and have not found violation of any of the positivity conditions in any of those orbifolds. A theory
which were to violate positivity would imply a violation of the orbifold correspondence at finite N, since then orbifolds of certain theories with infrared fixed points would not have infrared fixed points and correlators of these theories in the infrared would not match.

In [4] sufficient conditions on the R charges r_i of the chiral multiplets in an $\mathcal{N} = 1$ theory were given for the various positivity conditions to be met. Since orbifolding does not change the R charges, if a parent theory satisfies these sufficient conditions then so will the orbifolded theory. The result of [4] was that in all renormalizable models studied there the flow $a_{UV} - a_{IR}$ satisfied the sufficient condition for positivity $r_i \leq \sqrt{5}/3$ for all chiral superfields ϕ_i; in all models not requiring an accidental $U(1)$ symmetry for unitarity, b_{IR} and c_{IR} were positive by virtue of $1 - \sqrt{5}/3 < r_i < 1$ for all ϕ_i. Hence we only need to check positivity for a_{IR}, and for b_{IR} and c_{IR} in theories with accidental $U(1)$ symmetry. What follows is two simple tests that we have done. It would be useful to continue this program by testing the positivity constraints for orbifolds of other theories.

In the conformal region of $\mathcal{N} = 1$ supersymmetric $SU(kN)$ gauge theory with kN_f flavors, $3N_c/2 < N_f < 3N_c$, the anomaly positivity conditions were shown to be satisfied in [4]. If the theory is orbifolded by embedding the orbifold group trivially in the $U(1)_R$, then the orbifolded theory is described by k copies of $\mathcal{N} = 1$ $SU(N)$ gauge theory with N_f flavors. This theory is also in the conformal regime and satisfies the anomaly positivity conditions.

Matter content of Kutasov-Schwimmer models.

	$SU(N_c)$	$SU(N_f)_Q$	$SU(N_f)_{\tilde{Q}}$	$U(1)_R$
Q	\square	\square	\square	$1 - \frac{2N_c}{(k+1)N_f}$
Q	\square	\square	\square	$1 - \frac{2N_c}{(k+1)N_f}$
X	adj	\square	\square	$\frac{2}{k+1}$

The Kutasov-Schwimmer models are given by the matter content and charges in the table above. We have taken the superpotential to be $W = \text{Tr} X^3$, where X is the adjoint chiral superfield. An orbifold preserving the $\mathcal{N} = 1$ supersymmetry of those models is obtained by embedding the orbifold group in the gauge and global symmetries as for the SQCD case described above, and then the adjoint chiral multiplet decomposes into an adjoint under each of the $SU(N)$ factors of the orbifold theory. By explicit calculation we find that for all N_f and N_c in the conformal region without accidental symmetry, $N_c < N_f < 2N_c$, the anomaly positivity conditions are satisfied.

These results provide evidence that orbifolds of theories with fixed points have fixed points themselves, also hinting at a correspondence between certain theories and their orbifolds, even at finite N. A more complete study would be useful. Comments on the ADS/CFT correspondence at finite N were made recently in [13].
6 Conclusions

We have demonstrated a simple relation between the gauge coupling functions of $\mathcal{N} = 2$ SU(kN) pure gauge theory and $\mathcal{N} = 1$ SU($N)^k$ gauge theory with bifundamental chiral multiplets. If the prescription given in [5] is generic for producing Seiberg-Witten curves of orbifolded field theories with a Coulomb branch, then this result is valid for all such theories. The problem of anomalous U(1)'s has not been satisfactorily understood in generic orbifolds of field theories. In the case studied above, the problem of anomalous U(1)'s is compensated for by axions in the twisted sectors of the orbifold theory [5]. In that case, the curves obtained are those of the orbifolded theory without the additional U(1)'s or twisted sector fields, as derived in [11]. It is not known to us whether this behavior is generic. This demonstrates a correspondence between one aspect of the orbifolded and parent theories at finite N. It is not known to us whether the Kahler potentials for the two theories behave similarly.

We studied the anomaly positivity constraints [4] on theories with infrared fixed points and found that at large N these constraints are satisfied also in field theory orbifolds of such theories. At finite N we studied two classes of theories and their orbifolds and found no violation of the positivity constraints in the orbifolded theories. This provides some evidence that orbifolds of theories with conformal fixed points have conformal fixed points themselves, in keeping with the parent/orbifold correspondence.

Acknowledgments

We are grateful to Dan Freedman, Martin Gremm, Ami Hanany, Lisa Randall and Martin Schmaltz for useful conservations. This research was supported in part by the U.S. Department of Energy under cooperative agreement # DE-FC02-94ER40818.

References

[1] J. Maldacena, “The Large N Limit of Superconformal Field Theories and Supergravity”, [hep-th/9711200].

[2] S. Kachru and E. Silverstein, “4-D Conformal Theories and Strings on Orbifolds”, [hep-th/9802183].

[3] M. Bershadsky and A. Johansen, “Large N Limit of Orbifold Field Theories”, [hep-th/9803249].
[4] D. Anselmi, J. Erlich, D.Z. Freedman, and A.A. Johansen, “Positivity Constraints on Anomalies in Supersymmetric Gauge Theories”, *Phys. Rev. D* **57**, 7570 (1998), hep-th/9711035.

[5] J. Lykken, E. Poppitz, and S.P. Trivedi, “Chiral Gauge Theories from D-Branes”, *Phys. Lett.* **416B**, 286 (1998), hep-th/9708134.

[6] M. Shmaltz, “Duality of Non-Supersymmetric Large N Gauge Theories”, hep-th9805218.

[7] G. ’t Hooft, “A Planar Diagram Theory of Strong Interactions:”, *Nucl. Phys. B* **72**, 461 (1974).

[8] M. Douglas and S. Shenker, “Dynamics of SU(N) Supersymmetric Gauge Theory”, *Nucl. Phys. B* **447**, 271 (1995), hep-th 9503163.

[9] K. Ueno, “An Introduction to Algebraic Geometry”, *Translations of Mathematical Monographs*, **166**, American Mathematical Society, Rhode Island, 1995.

[10] W. Fulton, “Algebraic Topology: A First Course”, *Graduate Texts in Mathematics*, **153**, Springer-Verlag, New York, 1995.

[11] C. Csáki, J. Erlich, D. Freedman, and W. Skiba, “N = 1 Supersymmetric Product Group Theories in the Coulomb Phase”, *Phys. Rev. D* **56**, 5209, (1997), hep-th/9704067.

[12] N. Seiberg and E. Witten, “Monopole Condensation, and Confinement in N = 2 Supersymmetric Yang-Mills Theory”, *Nucl. Phys. B* **426**, 19 (1994), hep-th/9407087.

[13] P.C. Argyres, M.R. Plesser, and A. Shapere, “The Coulomb Phase of N = 2 Supersymmetric QCD”, *Phys. Rev. Lett.* **75**, 1699 (1995), hep-th/9505100.

[14] A. Hanany and Y. Oz, “On the Quantum Moduli Space of N = 2 Supersymmetric SU(Nc) Gauge Theories”, *Nucl. Phys. B* **452**, 283 (1995), hep-th/9505075.

[15] D. Anselmi, D.Z. Freedman, M.T. Grisaru, and A.A. Johansen, “Nonperturbative Formulas for Central Functions of Supersymmetric Gauge Theories”, hep-th/970842.

[16] J.L. Cardy, “Is There a c-Theorem in Four Dimensions?”, *Phys. Lett. B* **215** 749, (1988).

[17] S. Forte and J.I. Latorre, “A Proof of the Irreversibility of Renormalization Group Flows in Four Dimensions”, hep-th/9805015.
[18] O. Aharony and E. Witten, “Anti-de Sitter Space And the Center Of the Gauge Group”, hep-th 9807203