Ecological Factors Influencing the Occurrence of Macrofungi from Eastern Mountainous Areas to the Central Plains of Jilin Province, China

Jia-Jun Hu 1,2,3,4, Gui-Ping Zhao 1, Yong-Lan Tuo 1,3,4, Zheng-Xiang Qi 1, Lei Yue 1, Bo Zhang 1,3,4,* and Yu Li 1,2,3,4,*

Abstract: Macrofungi are essential in forest ecological functioning. Their distribution and diversity are primarily impacted by vegetation, topography, and environmental factors, such as precipitation and temperature. However, the composition and topographical changes of the macrofungi between the eastern mountainous area and central plains of Jilin Province are currently unknown. For this study, we selected six investigational sites representing three different topographical research sites in Jilin Province to assess macrofungal diversity, and applied a quadrat sampling method. Macro- and micro-morphological characteristics combined with the molecular method were used to identify the collected macrofungi. Meanwhile, selected meteorological data were obtained for statistical analysis. As a result, 691 species were identified, of which Agarics were the most common, accounting for 60.23%, while the Cantharelloid fungi were the least common (0.91%). Furthermore, most of the shared genera (species) were saprophytic. The α diversity showed that the species diversity and richness in Longwan National Forest Park (B2) were the highest at the genus level. The mycorrhizal macrofungi proportion revealed that Quanshuidong Forest Farm (A1) was the healthiest. Finally, species composition similarity decreased with the transition from mountainous to hilly plains. We concluded that the occurrence of macrofungi was most influenced by vegetation. The air humidity, precipitation, and wind velocity were also found to significantly impact the occurrence of macrofungi. Finally, the mycorrhizal:saprophytic ratios and species similarity decreased with the transition from the mountainous area to the plains. The results presented here help elucidate the macrofungi composition and their relationship with environmental factors and topography in Jilin Province, which is crucial for sustainable utilization and future conservation.

Keywords: ecology; environmental factors; forest type; forest health; landform; macrofungi occurrence

1. Introduction

Human beings have discovered and utilized macrofungi throughout history with an awareness of the essential role in forest ecology. Macrofungi form mycorrhizal symbioses with host plants to promote the absorbance of substances, such as mineral elements and water. They also improve the tolerance of host plants to heavy metals, promote the survival and growth of afforestation and seedlings, and improve the diversity and stability of plants in the forest ecosystem. The comprehensive effects of macrofungi on the forest ecosystem are mainly manifested by increasing the plant–soil connections, improving the soil structure, promoting soil microorganisms, enhancing the function of plant organs, resisting...
antagonistic plant root disease pathogens, and degrading wood and other substances [1–4]. Saprotrophic macrofungi are also involved in the material cycle and energy flow, such as decomposing fallen timber and dead wood into other substances, such as lignin, cellulose, and hemicellulose [5,6], finally converted into glucose, fructose, etc.

Forests, as a habitat, are essential for the growth of macrofungi. Studies have shown that canopy openness, vegetation structure, and tree species richness strongly influence the occurrence of macrofungal functional groups [7]. Plant size, tree density, herb richness, and evenness could also affect the macrofungi composition [8]. Wood rotting fungi are strongly associated with tree species and the degree of wood decay [9]. Additionally, the species richness of macrofungi is also significantly related to forest management [10–12].

Topography is an abiotic factor that affects macrofungi community structures, as spatial eigenvectors—for example, slope—strongly connect with macrofungi occurrence [13]. Topography, more importantly, forms micro-habitats, thus creating differences in the key factors such as temperature, air humidity, and light, which affect the occurrence of macrofungi.

Furthermore, the occurrence and growth of macrofungi are closely related to environmental factors. For example, ectomycorrhizal macrofungi (EM fungi) are closely associated with their host plants, as Tuo et al. revealed the quantity of EM fungi in Wunfeng National Forest Park, China, was positively correlated with the occurrence of *Quercus mongolica* [6]. Humidity is another critical factor, and Trudell et al. characterized the epigeous macrofungi communities in two old-growth conifer forests with a high level of similarity in their dominant tree species and proposed that the differences between the macrofungi communities were primarily related to the disparities in ecosystem moisture [14]. In addition, pH [15], soil temperature [16], and organic matter content [17,18] could also affect the occurrence of macrofungi.

There are apparent differences in the topography of Jilin Province. The terrain inclines from southeast to northwest and could be divided into two significant landforms: the eastern mountainous area and the central-western plains. The eastern mountainous area comprises the middle part of Mt. Changbai and its branches [19], accounting for 33% of the total area; hills account for 6% of the area. Due to the unique natural geographical environment and meteorological conditions, Jilin Province has become one of China’s biodiversity hotspots. New macrofungi species have been discovered here, including *Cortinarius laccariphyllus* Y. Li and M.L. Xie; *Cortinarius neotorvus* Y. Li, M.L. Xie, and T.Z. Wei [20]; *Cordyceps changchunensis* J.J. Hu, Bo Zhang, and Y. Li; *Cordyceps changbaiensis* J.J. Hu, Bo Zhang, and Y. Li; and *Cordyceps jingyuetanensis* J.J. Hu, Bo Zhang, and Y. Li [21]. However, the macrofungi distribution patterns and the relationship with the environmental factors are currently unclear.

With this study, we aim to understand the species composition and macrofungal distribution in the central and eastern areas of Jilin Province and analyze the relationship between their occurrence and environmental factors. In addition, we analyze the changes in the macrofungi composition about to topography.

2. Materials and Methods

2.1. Introduction of Investigation Site

Jilin Province has a temperate continental monsoon climate, with four distinct seasons, rain and heat in the same season, noticeable seasonal changes, and regional differences in temperature and precipitation. The average temperature is below -11°C in the winter and above 23°C in the summer [22–24], and the average annual precipitation is 400–600 mm [25–27]. However, precipitation significantly differs between seasons and regions, as 80% is concentrated in the summer, and the eastern area is the richest.

Six representative investigation sites were selected to assess the macrofungi resources and analyze the relationships between macrofungi occurrence in eastern Jilin Province, China, in detail (Figures 1 and 2 and Table 1). These sites are Mt. Changbai area (A)—Quanshuidong Forest Farm (A1) and Lushuihe National Forest Park (A2); Mt. Changbai branches, Mt. Laoyeling branch (B)—Shengli River Forest Farm (B1) and Mt. Longgang
branch—Longwan National Forest Park (B2); and low hilly plain areas (C)—Zuojia Region (C1) and Jingyuetan National Forest Park (C2). The investigation also aimed to improve our understanding of the composition transitions from the eastern to central regions, which cause changes in topography, vegetation, precipitation, and temperature.

Figure 1. Distribution map showing the investigation sites in Jilin Province (A1: Quanshuidong Forest Farm; A2: Lushuihe National Forest Park; B1: Shengli River Forest Farm; B2: Longwan National Forest Park; C1: Zuojia Region; C2: Jingyuetan National Forest Park).

Table 1. Geographical coordinates and vegetation of the investigation sites.

Investigation Sites	Longitude	Latitude	Vegetation	Soil Type	Investigation Time
Quanshuidong Forest Farm (A1)	128.89° E	42.68° N	*Pinus* and broadleaf mixed forest, *Quercus* and *Poplar* forest, coniferous forests (*Pinus koraiensis*), *Taxus cuspidata*, *Salix* spp., etc.	Dark brunisolic soil and planosol soil	2014–2016
Lushuihe National Forest Park (A2)	128.01° E	42.55° N	*Pinus koraiensis* and broadleaf mixed forest, larch forest, *Quercus mongolica* forest, *Acer truncatum*, *Tilia amurensis*, and *Fraxinus mandshurica*, etc.	Dark brunisolic soil and planosol soil	2013–2015
Mt. Laoyeling (Shengli River Forest Farm, B1)	127.83° E	43.69° N	*Pinus koraiensis* and broadleaf mixed forest, larch forest, *Quercus mongolica* forest, *Acer truncatum*, *Tilia amurensis*, and *Fraxinus mandshurica*, etc.	Dark brunisolic soil and planosol soil	2005–2007
Mt. Longgang (Longwan National Forest Park, B2)	126.45° E	42.37° N	*Quercus mongolica* forest and broadleaf mixed forest	Dark brunisolic soil	2011–2013
Zuojia Region (C1)	126.16° E	44.03° N	*Quercus mongolica* forest, spruce forest, and pine forest	Black soil and paddy soil	2011–2013
Jingyuetan national forest park (C2)	125.48° E	43.79° N	Larch forest, *Pinus* forest, and *Quercus mongolica* forest	Dark brunisolic soil	2003–2006
Figure 2. Forest types from the investigation sites in Jilin Province. (A) *Betula platyphylla* forest; (B) *Cunninghamia* forest; (C) broadleaf mixed forest (mainly *Acer* sp.); (D–F) Pine forest; (G) *Quercus mongolica* forest; (H) Coniferous and broadleaf mixed forest (*Pinus* and broadleaf mixed forest); (I) *Quercus mongolica* forest.

(1) Quanshuidong Forest Farm (A1)

Quanshuidong Forest Farm, located in Helong City, Jilin Province, belongs to the mid-temperate monsoonal semi-humid climate zone. The annual average temperature is 5.6 °C, and the effective accumulated temperature at 10 °C is 2534.0 °C. The average yearly precipitation is 573.6 mm, and the frost-free period is approximately 138 days [28].
(2) Lushuihe National Forest Park (A2)

Lushuihe National Forest Park, located in Fusong County, Baishang City, Jilin Province, belongs to the temperate monsoon climate. The annual average temperature is 2.9 °C, and the effective accumulated temperature at 10 °C is 2606.9 °C. The average yearly precipitation is 894 mm, and the frost-free period is approximately 110 days [29].

(3) Laoyeling Branch—Shengli River Forest Farm (B1)

Mt. Laoyeling belongs to the Mt. Changbai Systems and is in the northeast–southwest direction, 800–1000 m above sea level in Jilin Province, with a relative height of approximately 500 m. The landforms are mainly low and middle mountains, with narrow valleys between the mountains. Volcanoes and lava flows are widely distributed in this area [27]. Shengli River Forest Farm has a temperate continental climate with an average annual temperature of 3.8 °C, an average annual rainfall of 633.7 mm, and a frost-free period of 110–130 days.

(4) Longgang Mountain Branch—Longwan National Forest Park (B2)

Longwan National Forest Park is in the middle section of Mt. Longgang in Huinan County, Jilin Province, with an average sea level of 880 m. It has a northern temperate continental monsoon climate. The annual average temperature is 4.8 °C, the minimum temperature is −17 °C, and the maximum monthly average temperature is 22.4 °C. The sufficient accumulated temperature at 10 °C is 2728 °C. The average annual precipitation is 837.9 mm, ranging from 436.5 to 987.2 mm. The maximum daily precipitation is 124.2 mm, concentrated from June to August, with an average yearly frost-free period of 138 days and an average sunshine time of 2296 h [30].

(5) Zuojia Region (C1)

The Zuojia area, Jilin Province, belongs to the hilly plain areas of Mt. Changbai. It has a continental climate with temperate monsoons and often experiences Siberian cold waves, with changeable weather and distinct seasons. The annual average temperature is 5.6 °C, and the effective accumulated temperature at 10 °C is 2779.8 °C. The average yearly precipitation is 679 mm, the average annual evaporation is 1200 mm, and the frost-free period is approximately 120 days [31–33].

(6) Jingyuetan National Forest Park (C2)

Jingyuetan National Forest Park is in the transitional zone from the eastern mountain area to the western grasslands of Jilin Province. It belongs to the hill areas of Mt. Changbai. The elevation is between 245.8 and 371.6 m above sea level. The climate is temperate semi-dry, early, and semi-humid monsoon with four distinct seasons. The annual average temperature is 6.1 °C. The average annual precipitation is 577.3 mm. The rainy season is mainly concentrated in July and August, as it accounts for 67% of the annual precipitation, the annual evaporation is 1392.5 mm, and there is a frost-free period of 145 d [34].

2.2. Macrofungi Investigation

(1) Investigation

In this study, four plots were selected at each investigation site in which three quadrats of 10 m × 10 m [35] were set in parallel at each plot, and each plot was numbered with a distance of 300 m, applied with a quadrat sampling method.

(2) Specimen collection and recording

Specimens were mainly collected from July to September at every investigation site. The specimens were photographed in situ. The habitat, altitude, soil characteristics, and nearby trees were recorded. The size of basidiomata was measured when fresh, and features such as striations, hygrophanous, and squama were noted (Figure 3). After examining and describing the fresh macroscopic characters, the specimens were dried in an electric drier at 45–50 °C. All the collected specimens had conspicuous basidiomata.
Figure 3. An example of field record and microscopic observation record of the collected specimen.

(3) Specimen identification

The dried specimens were rehydrated in 94% ethanol for microscopic examination, then mounted in 3% potassium hydroxide (KOH), 1% Congo red, and Melzer’s reagent; they were then examined with a Zeiss Axiolab A1 microscope (Carl Zeiss, Jena, Germany) at magnifications up to 1000×. All measurements were taken from the sections mounted in 1% Congo red. A minimum of 40 spores, 20 basidia/asci, 20 cystidia, etc., were measured from at least two different fruiting bodies for each specimen [36]. When combined with the macroscopic characteristics, the classification status of the specimens was determined by referring to literature and monographs [37]. For some species, we also sequenced, and the sequences have been deposited in GenBank (GenBank accession numbers: ON683416–ON683495). The taxonomic status of all species is referenced in the Index Fungorum [38]. The specimens examined were deposited in the Herbarium of Mycology of Jilin Agricultural University (HMJAU).

(4) Data collection

The meteorological data—average temperature (T), average relative humidity (RH), average monthly precipitation (P), average wind speed, and accumulated temperature from July to September (AT)—were downloaded from the China meteorological data network [39]. The soil type and representative forest type data were obtained from the Chinese Academy of Sciences (Table 2) [40].

2.3. Data Analysis

Two alpha diversity indices, the Simpson diversity index [41] and the Shannon–Wiener index [42], were calculated at the genus level for each investigation site to analyze the community composition of the macrofungi. The Shannon index (H') reflected the diversity of the community species. The Simpson index (D) reflected the probability of two individuals being randomly selected from the same sample, and these two individuals are from the same class.
Table 2. Meteorological conditions and types of soil at the investigation sites.

Investigation Site	The Average Temperature from July to September/°C (T)	The Average Relative Humidity from July to September/% (RH)	The Average Monthly Precipitation from July to September/mm (P)	The Average Wind Speed from July to September/m/s (S)	The Accumulated Temperature from July to September/°C (AT)
Quanshuidong Forest Farm (A1)	18.60	80.67	152.27	1.57	1715.90
Lushuihe Town (A2)	19.60	81.67	143.27	1.67	1698.9
Mt. Laoyeling—Shengli River Forest Farm (B1)	17.67	79.00	118.63	1.90	1629.80
Mt. Longgang—Longwan National Forest Park (B2)	19.53	78.33	170.77	1.23	1746.40
Zuojia Region (C1)	19.93	77.00	124.43	2.03	1838.60
Jingyuetan National Forest Park (C2)	20.43	74.00	116.03	2.83	1884.30

The compositions of the macrofungi at Mt. Changbai (A), the transitional zone (B), and the plain hilly area (C) were compared by calculating the similarity coefficient (S) [43] and generating a complex heatmap [44]. The macrofungi compositions between Mt. Changbai and Mt. Laoyeling branch and Mt. Longgang Branch were also compared.

The diversity index formulae were as follows:

\[H' = - \sum Pi \ln(Pi) \]

\[D = 1 - \sum Pi^2 \]

\[S = \frac{2a}{b+c} \times 100 \]

where \(Pi \) is the proportion of species \(i \) to the total number of individuals of all species in the plot, \(a \) is the number of genera shared by the two places, and \(b \) and \(c \) are the genera that appear in the same place.

According to the Atlas of Chinese Macrofungal Resources [37], identified species were divided into eight categories: Larger Ascomycete, Agarics, Polyporoid, Hyonaceous and Thelephoroid fungi (PHT fungi), Cantharelloid fungi, Gasteroid fungi, Jelly fungi, Coral fungi, and Boletes.

The identified genera were summarized in an Excel table. Then, we specified a value of 0/1 for each genus shown at each investigation site (0 means that the genus did not appear at the investigation site). Originpro 2019 (OriginLab, Northampton, USA) was used to analyze common genera. Dominant family (number of species more than ten of the family) and dominant genus (number of species more than five of the genera) of each investigation site were counted [45]. Moreover, the species numbers per family (genera) at all six investigation sites were statistics, the top ten families (genera) were shown, and the bubble matrix was drowned.

The software Canoco 5.0 (Micro-computer Power, Ithaca, NY, USA) [46] fits and analyzes the relationship between macrofungi species and the environmental factors at six investigation sites. Log \((n + 1)\) was used to reduce meteorological data quality and balance the vast differences among the various factors. The quadat \(\times\) species matrix and the quadat \(\times\) environment matrix were established. Two-dimensional sorting and canonical correspondence analysis (CCA) of macrofungi and environmental factors in six different vegetation types were conducted.

3. Results

3.1. Composition Characteristics of the Macrofungi

In this study, genera with more than four species were chosen from the six investigation sites for analysis. Site A1 included the most identified families and species among six investigation sites, while site B2 had the fewest (Figure 4). General overview, Russula Pers.,
Pholiota (Fr.) P. Kumm., and Mycena (Pers.) Roussel, etc., were the most common genera recorded. Taxa belonging to Russula and Mycena were the most common at site A1; Pholiota and Polyporus were the most common ones at site A2; Russula, Pholiota, and Hygrophorus Fr. were the most reported genera at site B1; Russula and Amanita Pers were the most recorded at site B2; Russula, Suillus Gray, and Pholiota were the most reported at site C1; Russula, Suillus, and Agaricus L., were the most common genera at site C2. Overall, the most reported one is Russula.

Figure 4. Circos plot shows the relative abundance of macrofungi in six different sites in Jinlin Province based on the genera with more than four species. The analysis of species abundance shows Russula was the common genus and site A1 contains more species than the other five investigation sites. A1: Quanshuidong Forest Farm; A2: Lushuihe National Forest Farm; B1: Shengli River Forest Farm; B2: Longwan National Forest Park; C1: Zuojia Region; C2: Jingyuetan National Forest Park.

Figure 5A. A total of 691 species of macrofungi, belonging to 258 genera and 81 families, were identified (Table A1). There were 23 genera—including Ampulloclitocybe Redhead, Lutzoni, Moncalvo and Vilgalys, Cortinarius, and Pleurotus—identified at all six investigation sites.
3.2. Shared Genera (Species) Analysis

A total of 691 species of macrofungi, belonging to 258 genera and 81 families, were identified (Table A1). There were 23 genera—including *Ampulloclitocybe* Redhead, Lutzoni, Moncalvo and Vilgalys, *Cortinarius*, and *Pleurotus*—identified at all six investigation sites (Figure 5A).

Furthermore, 11 species, such as *Ampulloclitocybe clavipes* (Pers.) Redhead, Lutzoni, Moncalvo and Vilgalys, *Daldinia concentrica* (Bolton) Ces. and De Not., and *Ganoderma applanatum* (Pers.) Pat., co-occurred at each survey site (Figure 5B). Site A1 has the most endemic species, while site B2 has the fewest.

3.3. Macrofungi Composition Types Analysis

According to the *Atlas of Chinese Macrofungal Resources* [37], the macrofungi species were divided into eight statistical categories. Agarics were the most common, accounting for 60.23% of the total, followed by PHT fungi, accounting for 16.50%. In contrast, Jelly fungi and Cantharelloid fungi were rarely reported, accounting for 2.06% and 0.91%, respectively (Figure 6A).

The statistical analysis of each investigation site (Figure 6B) showed that Agarics and PHT fungi were predominant at sites A1, A2, B1, B2, C1, and C2, while Agarics and Jelly fungi were the most common at site B2. Coral fungi and Cantharelloid fungi were rarely reported at sites A1, A2, and B2. Jelly fungi and Cantharelloid fungi were seldom reported at sites B1, C1, and C2. In summary, Cantharelloid fungi were rare in all investigations, while the compositions of macrofungi at six investigation sites were vastly different.
Figure 6. Distribution proportions for different types of macrofungi in six different investigation sites from Jilin Province. (A) Analysis of all recorded species composition types of our investigation sites; Agarics were the most common macrofungi while Cantharelloid fungi were rare. (B) Species composition type analysis of every investigation site; Agarics were predominant at every site, Cantharelloid fungi were rare at all sites, and the compositions of macrofungi at six investigation sites were enormously different. PHT fungi: Polyporoid, Hyonaceous and Thelephoroid fungi; A1: Quanshuidong Forest Farm; A2: Lushuihe National Forest Park; B1: Shengli River Forest Farm; B2: Longwan National Forest Park; C1: Zuojia Region; C2: Jingyuetan National Forest Park.

3.4. Ecological Characteristics of Macrofungi

According to the reference [6] and FUNGuild [47], the numbers of mycorrhizal macrofungi and saprophytic macrofungi were counted. The proportion of mycorrhizal macrofungi at site A1 was the highest (0.47), indicating that the forest structure at this site was the healthiest and the most stable. While the proportion was the lowest at site C1 (Table 3).

Table 3. Mycorrhizal:saprophytic macrofungi ratios of the investigation sites from Jilin Province.

Sites	A1	A2	B1	B2	C1	C2
Mycorrhizal	92	76	77	30	60	57
Saprophytic	197	170	181	75	196	175
Ratio/%	0.47	0.45	0.43	0.40	0.31	0.33

3.5. Analysis of α Diversity

The α diversity at six investigation sites was analyzed (Figure 7). The summary statistics from the Simpson diversity index for site B2 were significantly higher than those from the other five investigation sites. This result indicated that site B2 had the richest species diversity at the genus level and the most uniform distribution of species quantity (Figure 7A). The Shannon–Wiener index results also indicated that the diversity at site B2 was the highest, and the species were the richest (Figure 6B).

3.6. Analysis of Dominant Families (Genera)

According to the identification results, 81 families were recorded. The top ten families were Russulaceae, Tricholomataceae, Agaricaceae, etc., successively, containing 43.54% of the total species (Table 4). There were 24 families with only one species, accounting for 29.63%. The dominant families at each investigation site are shown in Figure 8A.

A total of 258 genera were reported in this study, among which the top ten genera were Mycena (Pers.) Roussel, Cortinarius (Pers.) Gray, Lactarius Pers., etc., accounting for 22.46% (Table 4). There were 137 genera with only one species, accounting for 53.10%. The dominant genera are shown in Figure 8B.
Figure 7. Diversity index analysis at genus level in six different investigation sites from Jilin Province. (A) Simpson diversity analysis in six different investigation sites from Jilin Province; the Simpson diversity index revealed site B2 was higher than the other five sites. (B) Shannon–Wiener diversity analysis in six different investigation sites from Jilin Province; the Shannon–Wiener diversity analysis showed site B2 was higher than the other five investigation sites. This result indicated that site B2 had the richest species diversity at the genus level and the most uniform distribution of species quantity. A1: Quanshuidong Forest Farm; A2: Lushuihe National Forest Park; B1: Shengli River Forest Farm; B2: Longwan National Forest Park; C1: Zuojia Region; C2: Jingyuetan National Forest Park.

Table 4. Top 10 families and genera in six different investigation sites from Jilin Province.

No.	Family	Numbers of Species	Percentage	Genus	Numbers of Species	Percentage
1	Agaricaceae	52	7.07%	Lactarius	20	2.72%
2	Polyporaceae	50	6.80%	Mycena	19	2.59%
3	Tricholomataceae	41	5.58%	Cortinarius	18	2.45%
4	Inocybaceae	34	4.63%	Marasmius	18	2.45%
5	Strophariaceae	33	4.49%	Pholiota	18	2.45%
6	Hygrophoraceae	25	3.40%	Agaricus	16	2.18%
7	Marasmiaceae	25	3.40%	Entoloma	16	2.18%
8	Mycenaceae	23	3.13%	Amanita	14	1.90%
9	Cortinariaceae	19	2.59%	Crepidotus	13	1.77%
10	Omphalotaceae	18	2.45%	Inocybe	13	1.77%

3.7. Relationships between Macrofungi and Environmental Factors

At first, the number of macrofungi collected from May to October at the three investigation sites was analyzed statistically. The results showed that they mainly arose from July to September, with minimal presence in May, June, and October (Figure 9).

Secondly, the relationship between macrofungi and environmental facts—air humidity, precipitation, and temperature were also analyzed. Macrofungi occurrence was positively correlated with air humidity (Figure 10). When air humidity was higher, larger numbers of macrofungi were shown from July to September. Precipitation from May to October was positively correlated with macrofungi occurrence with a lag period (Figure 11).

Then, the relationship between the average temperature from May to October and macrofungi occurrence was also analyzed. The results showed that macrofungi occurrence at sites A1 (Figure 12A) and B2 (Figure 12B) was positively correlated with air temperature, and there was a relative lag period. However, numerous macrofungi occurred in September at site C2 (Figure 12C), while the monthly average temperature was significantly lower than from June to July. Further analysis of the meteorological data shows that the daily temperature difference at site C2 was significant in September, stimulating macrofungi formation.
Figure 8. Dominant families and genera of six investigation sites from Jilin Province. (A) Dominant families (number of species more than ten of the family) analysis of six investigation sites from Jilin Province. (B) Dominant genera (number of species more than five of the genera) analysis of six investigation sites from Jilin Province. The results show site A1 contains more dominant families and genera in six investigation sites; in contrast, site B2 includes few. A1: Quanshuidong Forest Farm; A2: Lushuihe National Forest Park; B1: Shengli River Forest Farm; B2: Longwan National Forest Park; C1: Zuojia Region; C2: Jingyuetan National Forest Park.

Figure 8. Dominant families and genera of six investigation sites from Jilin Province. (A) Dominant families (number of species more than ten of the family) analysis of six investigation sites from Jilin Province. (B) Dominant genera (number of species more than five of the genera) analysis of six investigation sites from Jilin Province. The results show site A1 contains more dominant families and genera in six investigation sites; in contrast, site B2 includes few. A1: Quanshuidong Forest Farm; A2: Lushuihe National Forest Park; B1: Shengli River Forest Farm; B2: Longwan National Forest Park; C1: Zuojia Region; C2: Jingyuetan National Forest Park.

At last, a canonical correspondence analysis (CCA) was performed on the genera with the top 50% species numbers recorded at the six investigation sites. Five environmental factors—adequate accumulated temperature (AT), monthly mean air temperature from (T), mean humidity (RH), mean precipitation (P), and mean wind speed from July to September (S)—were selected for CCA. The results (Figure 13) showed that all samples were roughly separated into six groups according to their corresponding locations. Eigenvalue axis 1 is higher than axis 2, with cumulative contributions of 32.70% and 28.50%, respectively. The selected environmental factors were found to impact the macrofungi occurrence. Of all the established ecological factors, the mean humidity from July to September, mean precipitation from July to September, and mean wind speed from July to September were the most significant factors.
Figure 9. Relationship between macrofungi occurrence and month in three different investigation sites from Jilin Province. The results showed that they mostly arose from July to September. A1: Quanshuidong Forest Farm; B1: Shengli River Forest Farm; C2: Jingyuetan National Forest Park.

Figure 10. Effect of air humidity on the occurrence of macrofungi in three different investigation sites from Jilin Province. (A) Quanshuidong Forest Farm; (B) Shengli River Forest Farm; (C) Jingyuetan National Forest Park.

Figure 11. Effect of precipitation on the occurrence of macrofungi in three different investigation sites from Jilin Province. (A) Quanshuidong Forest Farm; (B) Shengli River Forest Farm; (C) Jingyuetan National Forest Park.
Figure 11. Effect of precipitation on the occurrence of macrofungi in three different investigation sites from Jilin Province. (A) Quanshuidong Forest Farm; (B) Shengli River Forest Farm; (C) Jingyuetan National Forest Park.

Figure 12. Effect of temperature on the occurrence of macrofungi in three different investigation sites from Jilin Province. (A) Quanshuidong Forest Farm; (B) Shengli River Forest Farm; (C) Jingyuetan National Forest Park.

3.8. Analysis of Flora Diversity

The six investigation sites were divided into three groups: Mt. Changbai area (A), containing Quanshuidong Forest Farm (A1) and Lushuihe National Forest Park (A2); Mt. Changbai Branch (B), comprising the Mt. Longgang Branch (Longwan National Forest Park, B1) and the Mt. Laoyeling Branch (Shengli Forest Farm, B2); and plain low hilly areas (C), encompassing the Zuojia Region (C1) and Jingyuetan National Forest Park (C2). The macrofungi composition was found to change when the mountainous region transitioned to the plains and low hills, and this was determined by calculating the similarity coefficient (s). The similarity decreased from 42.06% to 39.95% (Table 5).

Table 5. Similarity comparison between Mt. Changbai, its branches, and five other investigation sites.

Location	B	C	B1	B2	C1	C2
S/%	42.06	39.95	37.23	32.39	26.85	30.88

Simultaneously, the macrofungi compositions of Mt. Changbai, its Laoyeling Branch (B1), and the Mt. Longgang Branch (B2) were compared. The similarity between Mt. Changbai and Laoyeling Branch (B1) was 37.23%, higher than the Mt. Longgang Branch.

The top 30 genera were selected to analyze the speciation differences (Figure 14). The composition of site C1 was the most similar to site C2, followed by site B2 and site B1, and site A was the least similar, which was consistent with the results for the similarity coefficient. The similarity of the species composition in Mt. Changbai Branch was lower than that in the plain low hilly area.

Substantial differences were seen in forming distinct genera among the six sites. The number of species in each genus was generally higher for area A and lower for site B2.
Figure 13. Canonical correspondence analysis (CCA) of the selected environmental factors and the recorded macrofungi species. All displayed environmental factors passed the most significant test ($p < 0.05$); P: mean precipitation from July to September; S: mean wind speed from July to September; RH: mean humidity from July to September; A1: Quanshuidong Forest Farm; A2: Lushuihe National Forest Park; B1: Shengli River Forest Farm; B2: Longwan National Forest Park; C1: Zuojia Region; C2: Jingyuetan National Forest Park. Letters are composed of the first three- or four-letter abbreviations of the scientific name, and the corresponding words are provided in Table A2.
3.8. Analysis of Flora Diversity

The six investigation sites were divided into three groups: Mt. Changbai area (A), containing Quanshuidong Forest Farm (A1) and Lushuihe National Forest Park (A2); Mt. Changbai Branch (B), comprising the Mt. Longgang Branch (Longwan National Forest Park, B1) and the Mt. Laoyeling Branch (Shengli Forest Farm, B2); and plain low hilly areas (C), encompassing the Zuojia Region (C1) and Jingyuetan National Forest Park (C2). The macrofungi composition was found to change when the mountainous region transitioned to the plains and low hills, and this was determined by calculating the similarity coefficient (s). The similarity decreased from 42.06% to 39.95% (Table 5).

Simultaneously, the macrofungi compositions of Mt. Changbai, its Laoyeling Branch (B1), and the Mt. Longgang Branch (B2) were compared. The similarity between Mt. Changbai and Laoyeling Branch (B1) was 37.23%, higher than the Mt. Longgang Branch. The top 30 genera were selected to analyze the speciation differences (Figure 14). The composition of site C1 was the most similar to site C2, followed by site B2 and site B1, and site A was the least similar, which was consistent with the results for the similarity coefficient. The similarity of the species composition in Mt. Changbai Branch was lower than that in the plain low hilly area.

Substantial differences were seen in forming distinct genera among the six sites. The number of species in each genus was generally higher for area A and lower for site B2.

Table 5. Similarity comparison between Mt. Changbai, its branches, and five other investigation sites.

Location	B	C	B1	B2	C1	C2
S/%	42.06	39.95	37.23	32.39	26.85	30.88

Figure 14. Complex heatmap of the macrofungi composition (genus level) at six investigation sites from Jilin Province. A1: Quanshuidong Forest Farm; A2: Lushuihe National Forest Park; B1: Shengli River Forest Farm; B2: Longwan National Forest Park; C1: Zuojia Region; C2: Jingyuetan National Forest Park.

4. Discussion

4.1. The Influence of Environmental Factors on Macrofungi Occurrence

CCA at the genus level of recorded macrofungi at six investigation sites showed that the mean humidity, mean precipitation, and mean wind speed from July to September were the most significant environmental factors influencing the occurrence and distribution of macrofungi.

The effect of wind speed on macrofungi is integrated and multifaceted. The most direct impact is an expansion of the dispersal of the spores range, promoting species dispersal and affecting the macrofungi’s community structure by promoting the formation of dominant populations and reducing the macrofungi species richness within the same plant community [48]. Wind speed will also affect the oxygen content of the plant–macrofungi community. The high oxygen content will influence the oxygen content of soil [49], thus promoting hyphae respiration—the more energy released, the more promotion of mycelium growth [50]. Oxygen content will also affect the fruiting body morphogenesis, and elevated carbon dioxide will result in the formation of deformed mushrooms, thus affecting the macrofungi growth (e.g., the height of fruiting bodies lower than average) [51,52]. Wind speed will also affect soil moisture and air humidity [53]. From a positive perspective, water evaporation and transpiration will increase air humidity and adjust soil and air temperature, which benefits fruiting body formation. However, if the soil moisture evaporates excessively during spore germination and vegetative hyphal growth, excessive evaporation of the soil moisture will inhibit spore germination and promote hyphal reproductive growth or dormancy [54–56]. Furthermore, soil dryness caused by high winds may be a reason that macrofungi become gasteroid.
Precipitation will increase the soil water content, enabling resting spores to obtain sufficient water levels. For spores with thick walls, water immersion is essential. Sufficient soaking softens the walls, triggering enzymes hydrolysis of the spore’s peptidoglycan cortex, enabling the mycelium to germinate more efficiently [57]. Water immersion will also dissolve the substances that inhibit spore germination into the water and release dormancy [58]. Furthermore, water can promote spore respiration and sugar decomposition, provide energy for growth activities, and stimulate spores to secrete various enzymes to destroy cell wall structures [59]. With the gradual temperature increase, the spores were found to absorb enough water to germinate gradually. The suitable temperature and humidity conditions were sufficient for the mycelium to grow in large quantities, laying the foundations for macrofungi occurrence [60,61]. However, this phenomenon depends on vital mechanisms of the spore, for dead spores do not swell, and absorption varies with the viability of the spore [62]. The swelling of spores is usually more than twice its original size [63], and with further germination, the protoplasm volume can sometimes increase more than ten times.

Relative humidity mainly affects the dispersal of spores. If the air humidity is too high, the weight/volume will also increase, thus reducing the dispersal range of spores [64]. The evidence shows that the RH had no direct influence on the growth of macrofungi [53]. If water is available on the surface, macrofungi may grow at deficient air humidity levels [65,66]. RH also influence the growth of mycelia. Excessively high RH would slow down or inhibit mycelium growth [67].

Mushrooms also arise from primordia that their formation and differentiation are influenced by environmental factors such as precipitation and temperature. From 1993 to 2007, Krebs et al. [68] found that mushroom production could be predicted by summer rainfall, in Yukon, the mushroom production is positively correlated with precipitation. Low humidity will slow down the growth rate during primordia formation [69]. The temperature is also another critical factor. The formation of some mushroom’s primordia requires low-temperature stimulation, such as *Flammulina filiformis* (Z.W. Ge, X.B. Liu, and Zhu L. Yang) P.M. Wang, Y.C. Dai, E. Horak, and Zhu L. Yang. The diverse climate types and environments allow different macrofungi to specialize and thrive [70].

4.2. The Influence of Vegetation on Macrofungi Occurrence

The Mt. Longgang and Mt. Laoyeling branches both belong to Mt. Changbai. However, the species richness in the Longwan National Forest Park (B2) was found to be higher than that at Mt. Changbai (A) and its Mt. Laoyeling branch (B1). This phenomenon may be due to the differences in their vegetation [71]. Mt. Changbai and its Mt. Laoyeling Branch are mainly covered by coniferous trees, including *Pinus* spp., *Picea* spp., etc. In contrast, Longgang Branch (Longwan National Forest Park, B2) is primarily covered with broadleaf mixed forests, such as *Quercus mongolica* and some pine forests. Macrofungi can show preferences for broadleaf or coniferous trees, vegetation, or substrate specificity might have contributed to the evolution of macrofungi [11,70]. Our result (Figure 6) shows that the typical composition of recorded macrofungi varied in proportion across the six investigation sites. Jelly fungi, for example, at site B2 reached 13%; however, they were only 1–3% at the other investigation sites. Furthermore, deadwood fungi prefer different deadwood characteristics (host species, decay, etc.), and thus, species composition changes can occur about these characteristics [72]. It is evidenced that macrofungi species are usually more abundant in broadleaf forests than in coniferous forests [11]. According to our calculations, the wood and litter saprotroph macrofungi reached 51.7% at site B2, while sites A1, A2, and B1 were 50.3%, 47.9%, and 46.3%, respectively. In addition, plant community composition determines understory light availability, humidity, and litter composition [73]. At the same time, many macrofungal species have host associations with particular plant species; for example, Tuo et al. revealed that the quantity of EM fungi in Wunvfeng National Forest Park, China, was positively correlated with the amount of *Q. mongolica* [6]. Based on our results, site A1 had the highest proportion of EM fungi at
45.78% and site B2 had the lowest at 28.57% among Mt. Changbai and its branch sites. The balance between mycorrhizal macrofungi and saprophytic macrofungi is a reference to forest conditions [74–77]. In a healthy forest, the number of mycorrhizal macrofungi often exceeds the number of saprophytic macrofungi [78,79]. Moreover, the plant community constitutes an abiotic factor of crucial importance for fungal composition [80,81]. However, some studies have demonstrated that the contribution of plant communities to the impact of macrofungi communities is only 1–10% [82]. Therefore, the effects of plant communities on macrofungi require further investigation.

4.3. The Influence of Topography on Macrofungi Occurrence

The ratio of mycorrhizal macrofungi to saprophytic macrofungi decreased with the transition from the eastern mountains to the central plains. Unlike light or soil properties, the topography is an indirect environmental variable [83,84]. Topography is considered an essential driver of micro-habitat diversity in forest ecosystems [85,86], as different topographies result in various micro-habitats. Different micro-habitats can favor the occurrence of a wider variety of macrofungal species [84], thus leading to different macrofungal compositions, which we observed in our results. In our findings, the proportion of macrofungal composition types varied across six survey sites (Figure 6). Moreover, the species numbers for each genus shifted with topography (Figure 14). For example, the Lepiota and Geastrum species were most common at site C2; however, they were considered rare at the other sites. Different macrofungi compositions eventually result in variations in species similarity. Species similarity decreased with the transition from the mountainous area to the plains area in this investigation. Furthermore, the similarity between Mt. Changbai and its Laoyeling Branch (Shengli Forestry Farm, B1) was higher than between Mt. Changbai and the Mt. Longgang branch (Longwan National Forest Park, B2). Based on the comparison of the representative vegetation and soil types of the three areas, the representative forest types and soil types in the Laoyeling Branch and Mt. Changbai area were highly similar, and it is speculated that the occurrence of macrofungi is not only related to vegetation but also closely related to soil types. Soil type influenced spore density and the percentage of mycorrhizal colonization of roots, where high spore density was not necessarily connected with intensive mycorrhizal development [87].

5. Conclusions

The occurrence of macrofungi is closely related to vegetation. By comparing sites B1 and B2, we found that the macrofungal abundance increased with increasing proportions of broadleaf trees, and specific genera were present at every survey site. Moreover, the nutritional patterns of co-occurring genera (species) were analyzed, most of which were saprophytic macrofungi.

The mycorrhizal:saprophytic ratios decreased with the transition from mountains to plains. The mycorrhizal:saprophytic ratios were consistently higher in the northeast than the southwest sites in the Mt. Changbai region and its branches. Species similarity decreased with the transition from the mountainous area to the plains area; in addition, the species similarity between the Laoyeling Branch (B1) and Mt. Changbai (A) is higher than that between the Mt. Longgang Branch (B2) and Mt. Changbai (A).

The main environmental factors affecting macrofungi occurrence from the eastern mountains to the central plains of Jilin Province are the air humidity (RH), precipitation (P), and wind speed (S) from July to September. Our canonical correspondence analysis reveals the importance of wind speed in macrofungal occurrence.
Author Contributions: Conceptualization, Y.L. and B.Z.; experimental design and methodology, Y.L., B.Z., J.-J.H. and Y.-L.T.; performance of practical work, J.-J.H. and G.-P.Z.; statistical analyses, J.-J.H., Y.-L.T., Z.-X.Q. and L.Y.; validation, J.-J.H. and B.Z.; writing—original draft preparation, J.-J.H.; writing—review and editing, B.Z.; supervision, Y.L. and B.Z.; project administration, B.Z.; funding acquisition, B.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (31970020), the Scientific and Technological Tackling Plan for the Key Fields of Xinjiang Production and Construction Corps (2021AB004), the Key Project on R&D of the Ministry of Science and Technology (2019YFD1001905-33), the Modern Agroindustry Technology Research System (CARS20), Research on the Creation of Excellent Edible Mushroom Resources and High Quality & Efficient Ecological Cultivation Technology in Jiangxi Province (2021BBF61002), Modern Agricultural Scientific Research Collaborative Innovation Special Project (JXXTCXBSSJJ202212), and the “111” program (D17014).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to give great thanks to Ye Ding, Xu Wang, Yue-Qu Chen, Shu-Rong Wang, and Jian-Rui Wang for their specimen collection. The authors would also like to give great thanks to the National Meteorological Science Data Center of China, the Resource Discipline Innovation Platform of China, for providing the data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Macrofungi list of collected species in three different landforms from Jilin Province.

Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number
Abortiporus biennis (Bull.) Singer	✓	SS	Medicinal	PHT fungi	
Agaricus abruptibulbus Peck	✓	SS	Edible, Poisonous	Agarics	ON683434
Agaricus arvensis Schaeff.	✓	SS	Edible, Medicinal	Agarics	
Agaricus bresadolanus Bohus	✓	SS	Edible, Medicinal	Agarics	
Agaricus campestris L.	✓	SS	Edible, Medicinal	Agarics	
Agaricus comtulus Fr.	✓	SS	Edible	Agarics	
Agaricus micromegethus Peck	✓	SS	Edible, Medicinal	Agarics	
Agaricus moelleri Wasser	✓	SS	Edible, Poisonous	Agarics	ON683435
Agaricus perrarus Fr.	✓	SS	Others	Agarics	
Agaricus purpurrellus F.H. Møller	✓	SS	Others	Agarics	
Agaricus silvaticus Schaeff.	✓	SS	Edible, Medicinal	Agarics	
Agaricus silvicola-similis Bohus and Locsmándi	✓	SS	Edible	Agarics	
Agaricus subrufescens Peck	✓	SS	Edible, Medicinal	Agarics	
Agaricus subrutilescens (Kauffman) Hotson and	✓	SS	Edible, Medicinal	Agarics	
D.E. Stuntz	✓	SS	Edible, Medicinal	Agarics	
Agaricus sylaticus Schaeff.	✓	SS	Edible, Medicinal	Agarics	
Agrocybe pediades (Fr.) Fayod	✓	SS	Edible, Medicinal	Agarics	ON683416
Agrocybe praecox (Pers.) Fayod	✓	SS	Edible	Agarics	
Aleuria aurantia (Pers.) Fückel	✓	SS	Edible, Medicinal	Agarics	
Aleurodiscus stereoides Yasuda	✓	SS	Edible	Agarics	ON683421
Amanita ceciliae (Berk. and Broome) Bas	✓	SS	Others	PHT fungi	
Amanita fulva Fr.	✓	SS	Others	PHT fungi	
Amanita hemibapha (Berk. and Broome) Sacc.	✓	SS	Others	PHT fungi	
Amanita imazekii T. Oda, C. Tanaka and Tsuda	✓	SS	Edible, Medicinal	Agarics	
Amanita longistriata S. Imai	✓	SS	Poisonous	Agarics	
Amanita nivalis Grev.	✓	SS	Edible	Agarics	
Amanita pantherina (DC.) Krombh	✓	SS	Poisonous	Agarics	
Amanita phalloides (Vaill. ex Fr.) Link	✓	SS	Others	Agarics	ON683436
Amanita porphyria Alb. and Schwein.	✓	SS	Others	Agarics	ON683437
Amanita spreta (Peck) Sacc.	✓	SS	Others	Agarics	
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number
---	--------------	------------------	---------------------------------------	------------	--------------------------
Amanita subjunquillea S. Imai	√		EM Poisonous	Agarics	ON683438
Amanita vaginata (Bull.) Lam.	√		EM Edible, Medicinal, Poisonous	Agarics	ON683439
Amanita virosa Secr.	√		EM		
Amanitopsis fulva (Fr.) W.G. Sm.			EM		
Ampulloclitocybe clavipes (Pers.) Redhead, Lutzoni, Moncalvo and Vilgalys	√ √ √ √ ✔		EM		
A. cepistipes Velen.	√		EM		
A. gallica Marxm. and Romagn.	√		EM		
A. mellea (Vahl) P. Kumm.	√ √ √ √		EM		
A. ostoae (Romagn.) Herink	√		EM		
A. sinapina Bérbé and Dessur.	√		EM		
A. mellea (Vahl) P. Karst.	√ √ √ √		EM		
Artomyces pyxidatus (Pers.) Jülich	√ √ √ √		EM		
Ascocoryne cylichnium (Tul.) Korf			EM		
Astraeus hygrometricus (Pers.) Morgan	√		EM		
Atheniella adonis (Bull.) Redhead, Moncalvo, Vilgalys, Desjardin, and B.A. Perry			EM		
Auricularia corna Ehrenb.	√		EM		
Auricularia hepatica F. Wu, B.K. Cui, and Y.C. Dai	√ √ √ √		EM		
Auricularia mesenterica (Dicks.) Pers.	√		EM		
Auricularia nigricans (Sw.) Birkebak, Looney and Sánchez-Garcia	√ √ √ √		EM		
Auriscalpium vulgare Gray			EM		
Baeospora myriacrylifila (Peck) Singer			EM		
Bizoprella sulfurina (Quél.) S.E. Carp.	√		EM		
Bjerckandra adusta (Willd.) P. Karst.	√		EM		
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number
----------------	--------------	------------------	----------------	-----------	-------------------------
Table A1. Cont.					
Scientific Name	**Distribution**	**Nutritional Mode**	**Economic Value**	**Categories**	**GenBank Accession Number**
Bolbitius vitellinus (Pers.) Fr.	√	SS	Others	Agarics	
Bolbitius vitellinus (Pers.) Fr.	√	√	SS	Others	Boletes
Boletinellus meruloides (Schwein.) Murrill	√	EM	Others	Boletes	
Boletus edulis Bull.	√	EM	Edible	Boletes	
Boletus subvelutipes Peck	√	EM	Others	Boletes	
Boletus yunnanensis W.F. Chiu	√	EM	Poisonous	Boletes	
Bovista pusilla (Batsch) Pers.	√	SS	Others	Gasteroid fungi	
Bovista pusilliformis (Kreisel) Kreisel	√	SS	Others	Gasteroid fungi	
Bulgaria inquinans (Pers.) Fr.	√	WS	Edible, Medicinal	Larger Ascomycetes	
Byssomerulius corium (Pers.) Parmasto	√	WS	Others	PHT fungi	
Calocera cornea (Batsch) Fr.	√	WS	Others	Jelly fungi	
Calocera viscosa (Pers.) Fr.	√	WS	Medicinal, Poisonous	Jelly fungi	
Calocybe gambosa (Fr.) Donk	√	SS	Edible, Medicinal	Agarics	
Calocybe ionides (Bull.) Donk	√	SS	Edible	Agarics	
Calothecia craniiformis (Schwein.) Fr. ex De Toni	√	SS	Edible, Medicinal	Gasteroid fungi	
Calothecia lilacinia (Mont. and Berk.) Henn.	√	SS	Edible, Medicinal	Gasteroid fungi	
Calothecia tatransis Hollös	√	SS	Medicinal	Gasteroid fungi	
Camarophyllus pratensis (Pers.) P. Kumm.	√	SS	Others	Agarics	
Campanella tristis (G. Stev.) Segedin	√	WS	Others	Agarics	
Cantharellus cibarius Fr.	√	EM	Edible, Medicinal	Cantharellloid fungi	ON683495
Cantharellus minor Peck	√	EM	Edible, Medicinal	Cantharellloid fungi	
Ceriporia squamosus (Huds.) Quél.	√	WS	Medicinal	PHT fungi	
Ceriporia varius (Pers.) Zmitr. and Kovalenko	√	WS	Edible	PHT fungi	
Ceriporia tarda (Berk.) Ginns	√	WS	Others	PHT fungi	
Chelilymenia coprinaria (Cooke) Boud.	√	WS	Others	Ascomycetes	
Chlorociboria aeruginascens (Nyl.) Kanouse	√	WS	Others	Ascomycetes	
Table A1. Cont.

Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number				
	A1	A2	B1	B2	C1	C2			
Chroogomphus purpurascens (Lj.N. Vassiljeva)	M.M. Nazarova	√	√		EM	Edible	Boletes		
Chroogomphus roseolus Y.C. Li and Zhu L. Yang	(Schaeff.) O.K. Mill.	√	√	√	EM	Edible, Medicinal	Boletes		
Chroogomphus tomentosus (Murrill) O.K. Mill.	Chrysomphalina aurantiaca (Peek) Redhead	√	√	√	EM	Edible, Medicinal	Boletes		
Chroogomphus roseoatrum (Schaeff.) O.K. Mill.	√	√	√	EM	Edible, Medicinal	Boletes			
Clavaria fragilis Holmsk.	(Schaeff.) Quél.	√	√	√	LS	Edible, Medicinal	Agarics		
Clavaria vermicularis Sw.	Clavariadelphus pistillaris (L.) Donk	√	√	√	LS	Edible, Poisonous	Coral fungi		
Clavicipita pyxidata (Pers.) Doty	Clavulinopsis fusiformis (Sowerby) Corner	√	√	√	LS	Edible	Coral fungi		
Clavulinopsis corniculata (Schaeff.) Corner	Clavulinopsis helvolus (Pers.) Corner	√	√	√	LS	Edible	Coral fungi		
Clavulinopsis coralloides (L.) J. Schröt.	Clitocybe nebularis (Batsch) P. Kumm.	√	√	√	LS	Edible, Medicinal	Agarics		
Clitocybe odora (Bull.) P. Kumm.	Clitocybe phyllophila (Pers.) P. Kumm.	√	√	√	LS	Edible	Agarics		
Clitocybe phyllophila (Pers.) P. Kumm.	Clitocybe phyllophila (Pers.) P. Kumm.	√	√	√	LS	Edible	Agarics		
Collybia nivea (Mont.) Dennis	Collybia nivea (Mont.) Dennis	√	√	√	SS	Edible	Agarics		
Collybiopsis confluens (Pers.) R.H. Petersen	Collybiopsis confluens (Pers.) R.H. Petersen	√	√	√	SS	Edible	Agarics		
Collybiopsis peronata (Bolton) R.H. Petersen	Collybiopsis peronata (Bolton) R.H. Petersen	√	√	√	SS	Edible	Agarics		
Coltricia cinnamomea (Jacq.) Murrill	Coltricia cinnamomea (Jacq.) Murrill	√	√	√	SS	Edible	PHT fungi		
Coltricia perennis (L.) Murrill	Connoporus acervatus (Fr.) K.W. Hughes, Mather and R.H. Petersen	√	√	√	SS	Edible	Agarics		
Connoporus acervatus (Fr.) K.W. Hughes, Mather and R.H. Petersen	Connoporus lacteum (J.E. Lange) Métrod	√	√	√	SS	Medicinal	Agarics		
Conocybe tenera (Schaeff.) Kühner	Conocybe tenera (Schaeff.) Kühner	√	√	√	SS	Poisonous	Agarics		
Coprinellus disseminatus (Pers.) J.E. Lange	Coprinus atramentaria (Bull.) Redhead, Vilgalys, Hopple and Jacq. Johnson	√	√	√	SS	Edible, Medicinal, Poisonous	Agarics		
Coprinus atramentaria (Bull.) Redhead, Vilgalys and Moncalvo	√	√	√	SS	Edible, Medicinal, Poisonous	Agarics			
Scientific Name	Distribution	Nutritional Mode	Economic Value Categories	GenBank Accession Number					
----------------	--------------	------------------	---------------------------	-------------------------					
Coprinopsis cinerea (Schaeff.) Redhead, Vilgalys and Moncalvo	A1 A2 B1 B2 C1 C2	SS	Medicinal	Agarics					
Coprinopsis insignis (Peck) Redhead, Vilgalys & Moncalvo	√	SS	Medicinal	Agarics					
Coprinopsis lagopus (Fr.) Redhead, Vilgalys and Moncalvo	√	SS	Medicinal	Agarics					
Coprinopsis picacea (Bull.) Redhead, Vilgalys and Moncalvo	√	SS	Poisonous	Agarics					
Coprinus comatus (O.F. Müll.) Pers.	√ A1 A2 B1 B2 C1 C2	DS	Edible, Medicinal, Poisonous	Agarics					
Coprinus micaceus (Bull.) Fr.	√	DS	Medicinal, Poisonous	Agarics					
Coprinus plicatilis (Curtis) Fr.	√	DS	Others	Agarics					
Coprinus sterquilinus (Fr.) Fr.	√	DS	Medicinal	Agarics					
Cordyceps farinosa (Holmsk.) Kepler, B. Shrestha and Spatafora	√	EI	Others	Larger Ascomycetes					
Cordyceps militaris (L.) Fr.	√ A1 A2 B1 B2 C1 C2	EI	Edible, Medicinal	Larger Ascomycetes					
Cordyceps nutans Pat.	√	EI	Others	Larger Ascomycetes					
Cordylopsis gallica (Fr.) Ryvarden	√	WS	Others	PHT fungi					
Cortinarius albobilaceus (Pers.) Fr.	√	EM	Edible	Agarics					
Cortinarius armillatus (Fr.) Fr.	√	EM	Others	Agarics					
Cortinarius bovinus Fr.	√	EM	Edible, Medicinal	Agarics					
Cortinarius caerulescens (Schaeff.) Fr.	√	EM	Others	Agarics					
Cortinarius callochrous (Pers.) Gray	√	EM	Edible, Poisonous	Agarics					
Cortinarius caperatus (Pers.) Fr.	√	EM	Edible, Medicinal	Agarics					
Cortinarius cinamomeus (L.) Gray	√	EM	Poisonous	Agarics					
Cortinarius collinitus (Sowerby) Gray	√	EM	Edible, Medicinal	Agarics					
Cortinarius colymbacinus Fr.	√	EM	Others	Agarics					
Cortinarius elator Fr.	√	EM	Others	Agarics					
Cortinarius galeroides Hongo	√	EM	Others	Agarics					
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number				
---	--------------	------------------	------------------	--------------------------	--------------------------				
A1 A2 B1 B2 C1 C2									
Cortinarius lilacinus Peck			EM	Poisonous					
Cortinarius longipes Peck			EM	Others					
Cortinarius multiformis Fr.	√		EM	Edible					
Cortinarius orellanus Fr.			EM	Poisonous					
Cortinarius purpurascens Fr.			EM	Edible					
Cortinarius sanguineus (Wulfen) Gray			EM	Medicinal, Poisonous					
Cortinarius trivialis J.E. Lange			EM	Poisonous					
Cotylidia diaphana (Cooke) Lentz			LS	Others	PHT fungi				
Cotylidia komabensis (Henn.) D.A. Reid			LS	Others	PHT fungi				
Craterellus undulatus (Pers.) E. Campo and Papetti			WS	Others					
Crepidotus applanatus (P.) Kumm.			WS	Others					
Crepidotus badiofoccosus S. Imai			WS	Others					
Crepidotus betulae Murrill			WS	Others					
Crepidotus brasilienensis Rick			WS	Medicinal					
Crepidotus epiphyus (Fr.) Qué.			WS	Others					
Crepidotus fulvomentosus (Peck) Peck			WS	Others					
Crepidotus herbarum Sacc.			WS	Others					
Crepidotus mollis (Schaeff.) Staude			WS	Others					
Crepidotus nephrode (Berk. and M.A. Curtis) Sacc.			WS	Others					
Crepidotus nephrodes (Berk. and M.A. Curtis) Sacc.			WS	Others					
Crepidotus palmularis (Berk. and M.A. Curtis) Sacc.			WS	Others					
Crepidotus sulphurinus Imazeki and Toki			WS	Others					
Crepidotus variabilis (Pers.) P. Kumm.			WS	Others					
Cryphellum stipitaria (Fr.) Pat.			LS	Others					
Cuphophyllus pratensis (Pers.) Bon			SS	Edible	Agarics				
Cuphophyllus virgineus (Wulfen) Kovalenko			SS	Others	Agarics				
Cyathus sacerdus (Schwein.) De Toni			WS	Medicinal	Gasteroid fungi				
Cyathus striatus Willd.			WS	Medicinal	Gasteroid fungi				
Cyclocebe cylindracea (DC.) Vizzini and Angelini			SS	Edible, Medicinal	Agarics				
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number				
--	--------------	------------------	----------------	-------------------------------------	--------------------------				
Table A1. Cont.									
Cyclocybe erebia (Fr.) Vizzini and Matheny									
Cystoderma amianthinum (Scop.) Fayod	✓		SS	Edible, Medicinal					
Cystoderma fallax A.H. Sm. and Singer	✓		SS	Edible					
Cystodermella granulosa (Batsch) Harmaja			SS	Edible					
Dacrymyces chrysospermus Berk. and M.A. Curtis	✓		WS	Others					
Dacrymyces palmatus Bres.			WS	Others					
Dacryopinax spathularia (Schwein.) G.W. Martin	✓		WS	Others					
Daedalea dickinsii Yasuda	✓		WS	Medicinal					
Daedaleopsis confragosa (Bolton) J. Schröt.	✓		WS	Medicinal					
Daedaleopsis tricolor (Bull.) Bondartsev and Singer	✓		WS	Medicinal					
Daldinia concentrica (Bolton) Ces. and De Not.	✓		WS	Medicinal					
Daldinia grandis Child	✓		WS	Others					
Deconica coprophila (Bull.) P. Karst.			DS	Poisonous					
Deconica merdaria (Fr.) Noordel.			DS	Poisonous					
Desarmillaria tabescens (Scop.) R.A. Koch and Aime			SS	Edible, Medicinal, Poisonous					
Descolea flavoannulata (Lj.N. Vassiljeva) E. Horak			SS	Edible					
Dumontinia tuberosa (Bull.) L.M. Kohn	✓		SS	Others					
Entoloma abortivum (Berk. and M.A. Curtis) Donk	✓		SS	Edible, Medicinal					
Entoloma albipes Hesler	✓		SS	Others					
Entoloma chamaecyparidis (Hongo) Hongo			SS	Others					
Entoloma elypeatum (L.) P. Kumm.	✓		SS	Medicinal					
Entoloma japonicum (Hongo) Hongo and Izawa			SS	Others					
Entoloma lividum Quel.			SS	Others					
Entoloma murrinipes (Murrill) Hesler	✓		SS	Others					
Entoloma murrillii Hesler	✓		SS	Others					
Entoloma politum (Pers.) Noordel.			SS	Others					
Table A1. Cont.

Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number				
Entoloma rhodopolium (Fr.) P. Kumm.	✓	✓	✓	SS	Medicinal, Poisonous				
Entoloma sinuatum (Bull.) P. Kumm.	✓		✓	SS	Medicinal, Poisonous				
Entoloma speculatum (Fr.) Quél.	✓			SS	Others	Agarics			
Entoloma umbilicatum Dennis	✓		✓	SS	Others	Agarics			
Entoloma liquescent Möller	✓			WS	Others	Agarics			
Exidia glandulosa (Bull.) Fr.	✓			WS	Edible, Poisonous	Jelly fungi			
Flammulaster erinaceellus (Peck) Watling	✓			WS	Others	Agarics			
Flammulina filiformis (Z.W. Ge, X.B. Liu, and Zhu L. Yang) P.M. Wang, Y.C. Dai, E. Horak, and Zhu L. Yang	✓			WS	Edible	Agarics			
Fomes fomentarius (L.) Fr.	✓			WS	Medicinal	PHT fungi			
Fomitopsis betulina (Bull.) B.K. Cui, M.L. Han, and Y.C. Dai	✓			WS	Medicinal	PHT fungi			
Fomitopsis officinalis (Vill.) Bondartsev and Singer	✓			WS	Medicinal	PHT fungi			
Galerina helvoliceps (Berk. and M.A. Curtis) Singer	✓			WS	Poisonous	PHT fungi			
Galerina margnata (Batsch) Kühner	✓			SS	Poisonous	PHT fungi			
Galerina vittaeformis (Fr.) Singer	✓			SS	Others	Agarics			
Galerina amurensis (Lj.N. Vassiljeva) Raitv.	✓			SS	Others	Larger Ascomycetes			
Ganoderma applanatum (Pers.) Pat.	✓			WS	Medicinal	PHT fungi			
Ganoderma tsugae Murrill	✓			WS	Medicinal	PHT fungi			
Geastrum fimbriatum Fr.	✓			LS	Medicinal	Gasteroid fungi			
Geastrum pectinatum Pers.	✓			LS	Others	Gasteroid fungi			
Geastrum saccatum Fr.	✓			LS	Medicinal	Gasteroid fungi			
Geastrum triplex Jungh.	✓			LS	Medicinal	Gasteroid fungi			
Geronema albidaum (Fr.) Singer	✓			SS	Edible	Agarics			
Gloiophorus psittacinu (Schaeff.) Herink	✓			SS	Edible, Poisonous	Agarics			
Gloeophyllum septarium (Wulfen) P. Karst.	✓			WS	Medicinal	PHT fungi			
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number				
---	--------------	------------------	----------------	------------------	--------------------------				
Gloeophyllum subferrugineum (Berk.) Bondartsev and Singer	√	√	WS	Others	PHT fungi				
Gloeophyllum trabeum (Pers.) Murrill			WS	Medicinal	PHT fungi				
Gloeostereum incarnatum S. Ito and S. Imai	√	√	WS	Edible, Medicinal	PHT fungi				
Gomphidius maculatus (Scop.) Fr.	√		EM	Edible	Boletes				
Gomphus clavatus (Pers.) Gray			EM	Edible, Medicinal	Cantharelloid fungi				
Guepinia helvelloides (DC.) Fr.	√		SS	Edible	Jelly fungi				
Gymnopilus aeruginosus (Peck) Singer	√		WS	Others	Agarics				
Gymnopilus flavonius (Fr.) P.D. Orton	√		WS	Others	Agarics				
Gymnopilus liquiritiae (Pers.) P. Karst			WS	Medicinal, Poisonous	Agarics				
Gymnopilus penetrans (Fr.) Murrill	√		WS	Poisonous	Agarics				
Gymnopilus dryophilus (Bull.) Murrill	√		LS	Others	Agarics				
Gymnopus erythropus (Pers.) Antonin, Halling and Noordel.			LS	Edible	Agarics				
Gymnopus fusipes (Bull.) Gray	√		LS	Edible	Agarics				
Gymnopus oclor (Pers.) Antonin and Noordel.	√		LS	Edible	Agarics				
Gymnopus polyphyllus (Peck) Halling	√		LS	Others	Agarics				
Harrya chromipes (Frost) Halling, Nuhn, Osmundson and Manfr. Binder			EM	Others	Boletes				
Helbeloma hiemalis Bres.			SS	Others	Agarics				
Helbeloma radicosum (Bull.) Ricken			SS	Edible, Poisonous	Agarics				
Helvellaatra J. König			SS	Edible	Larger				
Helvella crispa (Scop.) Fr.	√		SS	Edible, Poisonous	Larger				
Helvella elastica Bull.			SS	Edible	Larger				
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number				
--	--------------	------------------	----------------	---------------------	--------------------------				
Helvella ephippium Lévé	✓ ✓	SS	Edible	Larger					
Helvella lacunosa Afzel.	✓	SS	Edible, Medicinal	Ascomycetes					
Hemistropharia albocrenulata (Peck) Jacobsson and E. Larss.	✓	WS	Edible, Poisonous	Agarics					
Hericium coralloides (Scop.) Pers.	✓	WS	Edible, Medicinal	Larger Ascomycetes					
Hericium erinaceus (Bull.) Pers.	✓	WS	Edible, Medicinal	PHT fungi	ON683494				
Hohenbuehelia reniformis (G. Mey.) Singer	✓ ✓	SS	Edible, Medicinal	Agarics					
Hohenbuehelia serotina (Pers.) Singer	✓	WS	Edible	Agarics					
Hortiboletus rubellus (Krombh.) Simonini, Vizzini and Gelardi	✓ ✓	EM	Edible, Medicinal	Others					
Humaria hemisphaerica (E.H. Wigg.) Fuckel	✓ ✓	SS	Edible, Medicinal	Larger Ascomycetes					
Hydnum repandum L.	✓ ✓ ✓ ✓	EM	Edible, Medicinal	PHT fungi					
Hygrocybe ceracea (Sowerby) P. Kumm.	✓ ✓	SS	Edible	Agarics					
Hygrocybe chlorophana (Fr.) Wünsche	✓	SS	Edible	Agarics					
Hygrocybe coccinea (Schaeff.) P. Kumm.	✓	SS	Edible	Agarics					
Hygrocybe flavescens (Kauffman) Singer	✓ ✓	SS	Poisonous	Agarics	ON683450				
Hygrocybe marchii (Bres.) Singer	✓	SS	Others	Agarics					
Hygrocybe miniata (Fr.) P. Kumm.	✓ ✓	SS	Edible	Agarics					
Hygrocybe chrysodon (Batsch) Fr.	✓ ✓	SS	Edible	Agarics					
Hygrocybe earumus (Bull.) Fr.	✓ ✓	SS	Edible	Agarics					
Hygrophorus laurae Morgan	✓ ✓	SS	Others	Agarics					
Hygrophorus lucorum Kalchbr.	✓ ✓	SS	Edible, Medicinal	Agarics					
Hygrophorus occidentalis A.H. Sm. and Hesler	✓ ✓	SS	Others	Agarics					
Hygrophorus olivaceo-albus (Fr.) Fr.	✓	SS	Edible	Agarics					
Hygrophorus piceae Kühner	✓	SS	Others	Agarics					
Hygrophorus pseudochrysaspis Hesler and A.H. Sm.	✓ ✓	SS	Others	Agarics					
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number				
-----------------	--------------	------------------	----------------	------------	--------------------------				
Hygrophorus russula (Schaeff. ex Fr.) Kauffman	√		SS	Edible	Agarics	ON683451			
Hymenochaete adusta (Lév.) Har. and Pat.									
Hymenochaete corrugata (Fr.) Lév.	√	√		WS	Others	PHT fungi			
Hymenochaete xenantica (Berk.) S.H. He and Y.C. Dai									
Hymenopellis radicata (Relhan) R.H. Petersen				WS	Others	PHT fungi			
Hymenocyphus fructigenus (Bull.) Gray				WS	Others	Larger			
Hypholoma capnoides (Fr.) P. Kumm.	√		WS	Medicinal, Poisonous	Agarics				
Hypholoma fasciculare (Huds.) P. Kumm.	√	√	√	√	√	WS	Medicinal, Poisonous	Agarics	
Hypholoma lateritium (Schaeff.) P. Kumm.				WS	Poisonous	Agarics			
Hypsiszygus marmoreus (Peck) H.E. Bigelow				WS	Others	Agarics			
Hypsiszygus ulmarius (Bull.) Redhead				WS	Edible, Medicinal	Agarics			
Infundibulicybe geotropa (Bull.) Harmaja				SS	Poisonous	Agarics			
Infundibulicybe gibba (Pers.) P. Kumm.	√	√	√	√	√	LS	Edible	Agarics	ON683453
Inocybe asterospora Quél.				EM	Poisonous	Agarics			
Inocybe calamistrata (Fr.) Gillet				EM	Poisonous	Agarics			
Inocybe changbaiensis T. Bau and Y.G. Fan				EM	Others	Agarics			
Inocybe cookii Bres.				EM	Poisonous	Agarics			
Inocybe earleana Kauffma				EM	Others	Agarics			
Inocybe eucalyctea E. Ludw.				EM	Others	Agarics			
Inocybe fulvella Bres.				EM	Others	Agarics			
Inocybe geophilus P. Kumm.				EM	Poisonous	Agarics			
Inocybe napipes J.E. Lange				EM	Poisonous	Agarics			
Inocybe praetereisa Quél.				EM	Poisonous	Agarics			
Inocybe subalbidodisca Stangl and J. Veselsky				EM	Others	Agarics			
Inocybe umbrinella Bres.				EM	Others	Agarics			
Inonotus hispidus (Bull.) P. Karst.				WS	Medicinal	PHT fungi	ON683454		
Inonotus obliquus (Fr.) Pilát				WS	Medicinal	PHT fungi			
Inosperma calamistratum (Fr.) Matheny and Esteve-Rav.				LS	Others	Agarics			
Table A1. Cont.

Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number
Irpex lacteus (Fr.) Fr.	√	WS	Others	PHT fungi	ON683455
Isaria japonica Yasuda		EI	Others	Ascomycetes	
Junghuhnia nitida (Pers.) Ryvarden	√	WS	Edible	PHT fungi	
Kuehneromyces mutabilis (Schaeff.) Singer and A.H. Sm.	√, √, √	WS	Edible	Agarics	ON683456
Laccaria alba Zhu L. Yang and Lan Wang	√, √	EM	Edible	Agarics	ON683457
Laccaria amethystea (Bull.) Murrill	√, √, √, √	EM	Edible, Medicinal	Agarics	ON683458
Laccaria amethystina Cooke	√	EM	Others	Agarics	
Laccaria lactata (Scop.) Cooke	√, √, √	EM	Others	Agarics	
Laccaria purpureobadia D.A. Reid	√	EM	Others	Agarics	
Laccaria tortilis (Bolton) Cooke	√	EM	Edible, Medicinal	Agarics	ON683459
Lacrymaria lacrymabunda (Bull.) Pat.	√	SS	Poisonous	Agarics	
Lactarius acris (Bolton) Gray		EM	Others	Agarics	
Lactarius aurantiacus (Pers.) Gray	√	EM	Edible, Medicinal	Agarics	
Lactarius camphoratus (Bull.) Fr.	√, √	EM	Edible	Agarics	
Lactarius circellatus Fr.		EM	Edible	Agarics	
Lactarius deliciosus (L.) Gray	√, √	EM	Edible, Medicinal	Agarics	
Lactarius fuliginosus (Fr.) Fr.	√, √, √, √	EM	Edible, Medicinal	Agarics	
Lactarius hatsudake Nobuj. Tanaka	√, √, √	EM	Edible, Medicinal	Agarics	
Lactarius lignyotus Fr.		EM	Others	Agarics	
Lactarius mitissimus (Fr.) Fr.	√	EM	Others	Agarics	
Lactarius piperatus (L.) Pers.	√, √, √, √, √	EM	Edible, Medicinal, Poisonous	Agarics	
Lactarius subdulcis (Pers.) Gray		EM	Edible	Agarics	
Lactarius tetragonus (Bull.) Gray	√, √, √	EM	Others	Agarics	
Lactarius formosus (Schaeff.) Pers.	√, √, √, √	EM	Poisonous	Agarics	
Lactarius trivialis (Fr.) Fr.	√, √, √, √	EM	Edible, Medicinal, Poisonous	Agarics	
Lactarius vellereus (Fr.) Fr.	√, √, √, √	EM	Edible	Agarics	
Lactarius vietus (Fr.) Fr.	√, √, √, √	EM	Edible	Agarics	
Table A1. Cont.

Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number
Lactarius volemus (Fr.) Fr.	√		EM	Edible, Medicinal	Agarics
Lactarius zonarius (Bull.) Fr.	√		EM	Medicinal, Poisonous	Agarics
Lactifluus subpiperatus (Hongo) Verbeken	√		EM	Others	Agarics
Laetiporus crematus Y. Ota and T. Hatt.	√				
Laetiporus montanus Černý ex Tomšovský and Jankovský	√				
Laetiporus sulphureus (Bull.) Murrill	√				
Leccinum chromapes (Frost) Singer	√		EM	Others	Boletes
Leccinum scabrum (Bull.) Gray	√		EM	Edible, Poisonous	Boletes
Lentinellus flavelliformis (Bolton) S. Ito	√		WS	Others	Agarics
Lentinellus ursinus (Fr.) Kühner	√		WS	Edible	Agarics
Lentinula edodes (Berk.) Pegler	√		WS	Edible, Medicinal	Agarics
Lentinus arcularius (Batsch) Zmitr.	√		WS	Medicinal	PHT fungi
Lentinus brunalis (Pers.) Zmitr.	√		WS	Edible	PHT fungi
Lentinus elmeri Bres.	√		WS	Others	PHT fungi
Lentinus substrictus (Bolton) Zmitr. and Kovalenko	√		WS	Others	PHT fungi
Lentinus tigrinus (Bull.) Fr.	√		WS	Edible, Medicinal	PHT fungi
Lenzites albidà (Fr.) Fr.	√		WS	Edible	PHT fungi
Lenzites betulinus (L.) Fr.	√		WS	Medicinal	PHT fungi
Lenzites repanda Fr.	√		WS	Poisonous	PHT fungi
Leotia lubrica (Scop.) Pers.	√		SS	Others	Larger Ascomycetes
Lepiota brunneoincarnata Chodat and C. Martín	√		LS	Poisonous	Agarics
Lepiota castanea Quél.	√		LS	Poisonous	Agarics
Lepiota clypeolaria (Bull.) P. Kumm.	√		LS	Poisonous	Agarics
Lepiota cristata (Bolton) P. Kumm.	√		LS	Poisonous	Agarics
Lepiota erminea (Fr.) P. Kumm.	√		LS	Edible	Agarics
Lepiota felina (Pers.) Karst.	√		LS	Others	Agarics
Lepiota fusiceps Hongo	√		LS	Others	Agarics
Lepiota magnispora Murrill	√		LS	Others	Agarics
Lepista glaucoana (Bres.) Singer	√		LS	Edible	Agarics
Table A1. Cont.

Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number	
Lepista irina (Fr.) H.E. Bigelow	√	LS	Medicinal, Poisonous	Agarics		
Lepista nuda (Bull.) Cooke	√	LS	Edible, Medicinal	Agarics	ON683463	
Lepista personata (Fr.) Cooke	√	LS	Edible, Medicinal	Agarics		
Lepista sordida (Schumach.) Singer	√	LS	Edible, Medicinal	Agarics		
Leucoagaricus leucothites (Vittad.) Wasser	√	SS	Edible, Medicinal, Poisonous	Agarics		
Leucoagaricus rubrotinctus (Peck) Singer	√	SS	Others	Agarics	ON683464	
Leucocybe candidans (Pers.) Vizzini, P. Alvarado, G. Moreno, and Consiglio	√	SS	Medicinal, Poisonous	Agarics		
Leucocybe houghtonii (W. Phillips) Halama and Pencak.	√	SS	Others	Agarics		
Lopharia cinerascens (Schwein.) G. Cunn.		WS	Others	PHT fungi		
Lycoperdon fuscom Huds.		SS	Edible, Medicinal Gasteroid fungi	Gasteroid fungi		
Lycoperdon mammaeforme Pers.	√	SS	Others	Gasteroid fungi		
Lycoperdon pedicellatum Batsch	√	SS	Edible, Medicinal Gasteroid fungi	Gasteroid fungi		
Lycoperdon perlatum Pers.	√	SS	Others	Gasteroid fungi		
Lycoperdon pusillum Hedw.	√	SS	Edible, Medicinal Gasteroid fungi	Gasteroid fungi		
Lycoperdon pyriforme Schaeff.	√	SS	Others	Gasteroid fungi		
Lycoperdon umbrinum Pers.	√	SS	Edible, Medicinal Gasteroid fungi	Gasteroid fungi		
Lycophyllum decastes (Fr.) Singer	√	EM	Edible, Medicinal	Agarics	ON683465	
Lysurus mokusin (L.) Fr.		SS	Medicinal	Gasteroid fungi		
Macrolepiota procera (Scop.) Singer		SS	Others	Agarics		
Marasmiellus candidus (Fr.) Singer		SS	Edible	Agarics		
Marasmiellus eburneus (Theiss.) Singer	√	WS	Others	Agarics		
Marasmiellus ramealis (Bull.) Singer	√	WS	Medicinal	Agarics		
Marasmiurus aurantiacus I. Hino		LS	Edible, Medicinal	Agarics		
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number	
--	--------------	------------------	----------------	------------	--------------------------	
Marasmius beniensis Singer	√	LS	Others	Agarics		
Marasmius chordalis Fr.	√	LS	Others	Agarics		
Marasmius cohaerens (Pers.) Cooke and Quél.	√	LS	Others	Agarics		
Marasmius epiphyllus (Pers.) Fr.	√	LS	Others	Agarics		
Marasmius floriceps Berk. and M.A. Curtis	√	LS	Others	Agarics		
Marasmius maximus Hongo	√	LS	Edible	Agarics	ON683427	
Marasmius occultatiformis Antonín, Ryoo, and H.D. Shin	√	LS	Others	Agarics	ON683419	
H.D. Shin	√	LS	Others	Agarics		
Marasmius oreades (Bolton) Fr.	√	LS	Edible, Medicinal	Agarics		
Marasmius pallidocephalus Gilliam	√	LS	Others	Agarics		
Marasmius polylepidis Dennis	√	LS	Others	Agarics		
Marasmius pseudonevus Singer	√	LS	Others	Agarics		
Marasmius pulcherripes Peck	√	LS	Others	Agarics		
Marasmius riparius Singer	√	LS	Others	Agarics		
Marasmius rotuloides Dennis	√	LS	Others	Agarics		
Marasmius sessiliaffinis Singer	√	LS	Others	Agarics		
Marasmius siccus (Schwein.) Fr.	√	LS	Others	Agarics		
Megacollybia platyphylla (Pers.) Kotl. and Pouzar	√	WS	Others	Agarics		
Melanoleta brevipes (Bull.) Pat.	√	SS	Edible	Agarics		
Melanoleta grammopodia (Bull.) Murrill	√	SS	Edible	Agarics	ON683466	
Melanoleta melaleuca (Pers.) Murrill	√	SS	Edible	Agarics		
Melanoleta strictipes (P. Karst.) Jul. Schäff.	√	SS	Edible	Agarics		
Melanoleta striula (Fr.) Singer	√	SS	Others	Agarics		
Melanoleta verrucipes (Fr.) Singer	√	SS	Edible	Agarics		
Melastiza chateri (W.G. Sm.) Boud.	√	SS	Others	Larger	Ascomycetes	
Microporus affinis (Blume and T. Nees) Kuntze	√	WS	Others	PHT fungi		
Microstoma floccosum (Sacc.) Raitv.	√	WS	Others	Ascomycetes		
Morchella conica (Sacc.) Raitv.	√	SS	Edible	Ascomycetes		
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number	
---	--------------	------------------	----------------	------------	--------------------------	
Morchella crassipes (Vent.) Pers.	✓	✓	SS	Edible, Medicinal	Larger Ascomycetes	
Morchella esculenta (L.) Pers.	✓	✓	SS	Edible, Medicinal	Larger Ascomycetes	
Morchella vulgaris (Pers.) Gray	✓		SS	Edible, Medicinal	Larger Ascomycetes	
Mucidula brunnneomarginata (Lj.N. Vassiljeva)	✓	✓	WS	Edible	Agarics	
Mucidula mucida (Schrad.) Pat.	✓	✓	WS	Others	Agarics	
Mutinus caninus (Huds.) Fr.	✓	✓	SS	Poisonous	Gasteroid fungi	
Mycoena alpithophora (Berk.) Sacc.	✓		LS	Others	Agarics	
Mycoena collybiformis (Murrill) Murrill	✓		LS	Others	Agarics	
Mycoena debilis (Fr.) Quel.	✓		LS	Others	Agarics	
Mycoena epipterygia (Scop.) Gray	✓		LS	Others	Agarics	
Mycoena filopes (Bull.) P. Kumm.	✓		LS	Others	Agarics	
Mycoena flavescens Velen.	✓		LS	Others	Agarics	
Mycoena fulginella A.H. Sm.	✓		LS	Others	Agarics	
Mycoena galericulata (Scop.) Gray	✓		LS	Edible, Medicinal	Agarics	
Mycoena haematopus (Pers.) P. Kumm.	✓	✓	LS	Medicinal, Poisonous	Agarics	
Mycoena inclinata (Fr.) Quel.	✓		LS	Others	Agarics	
Mycoena nucleata X. He and X.D. Fang	✓		LS	Others	Agarics	
Mycoena osmundicola J.E. Lange	✓		LS	Others	Agarics	
Mycoena pseudoandrosacea (Bull.) Z.S. Bi	✓		LS	Others	Agarics	
Mycoena pura (Pers.) P. Kumm.	✓	✓	LS	Medicinal, Poisonous	Agarics	
Mycoena rosea Gramberg	✓		LS	Others	Agarics	
Mycoena sanguinolenta (Alb. and Schwein.) P.	✓		LS	Others	Agarics	
Mycoena subcana A.H. Sm.	✓		LS	Others	Agarics	
Mycoena subgracilis Métrod	✓		LS	Others	Agarics	
Mycoleptodonoides pergaminae (Yasuda) Aoshima and H. Furuk.	✓	✓	WS	Others	PHT fungi	
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number	
---------------------------------------	--------------	------------------	----------------	--------------------	--------------------------	
Myxarium nucleatum Wallr.	√	WS	Others	Larger Ascomycetes		
Naematelia aurantialba (Bandoni and M. Zang) Millanes and Wedin	√	WS	Edible, Medicinal	Jelly fungi		
Neofusculus alveolaris (DC.) Sotome and T. Hatt. **Neolentinus adhaerens** (Alb. and Schwein.) Redhead and Ginns	√	WS	Others	PHT fungi	ON683470	
Neolentinus cyathiformis (Schaeff.) Della Magg. and Trassin.	√	WS	Edible, Medicinal	PHT fungi		
Neolentinus leptotus (Fr.) Redhead and Ginns	√	WS	Edible, Medicinal, Poisonous PHT fungi	Ascomycetes		
Nidula niveotomentosa (Henn.) Lloyd	√	WS	Medicinal	Agarics		
Omphalina lilaceorosea Svřek and Kubička	√	WS	Others	Agarics		
Omphalotus guepiniformis (Berk.) Neda	√	WS	Poisonous	Agarics		
Onnia tomentosa (Fr.) P. Karst.	√	WS	Others	PHT fungi	Larger Ascomycetes	
Ophiocordyceps nutans (Pat.) G.H. Sung, J.M. Sung, Hywel-Jones, and Spatafora	√	EI	Medicinal	Larger Ascomycetes		
Ophiocordyceps sphecocephala (Klotzsch ex Berk.) G.H. Sung, J.M. Sung, Hywel-Jones, and Spatafora	√	EI	Medicinal	Larger Ascomycetes		
Ossicaulis lignatilis (Pers.) Redhead and Ginns	√	WS	Edible	Agarics		
Ostina undosa (Peck) Zmitr.	√	WS	Others	PHT fungi	Larger Ascomycetes	
Otidea cochleata (L.) Fuckel	√	SS	Poisonous	Agarics		
Otidea leporina (Batsch) Fuckel	√	SS	Others	Agarics		
Oudemansiella radicata (Relhan) Singer	√	SS	Others	Agarics		
Panaeolus campanulatus (L.) Quél.	√	DS	Others	Agarics		
Panaeolus finnicola (Pers.) Gillet	√	DS	Poisonous	Agarics		
Panaeolus papilionaceus (Bull.) Quél.	√	DS	Poisonous	Agarics		
Panellus stipticus (Bull.) P. Karst.	√	WS	Medicinal, Poisonous	Agarics	ON683472	
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number	
-----------------	--------------	------------------	----------------	------------	-------------------------	
Panus conchatus (Bull.) Fr.			WS	Edible, Medicinal	Agarics	ON673473
Panus rudis Fr.			WS	Others	Agarics	
Paralepista splendens (Pers.) Vizzini	√	√	SS	Others	Agarics	
Paralepistopsis acromelalga (Ichimura) Vizzini			SS	Poisonous	Agarics	
Parasola plicatilis (Curtis) Redhead, Vilgalys, and Hopple	√		SS	Medicinal	Agarics	
Parasola leiocephala (P.D. Orton) Redhead, Vilgalys and Hopple	√		SS	Others	Agarics	
Paxillus involutus (Batsch) Fr.			EM	Medicinal, Poisonous	Boletes	
Perenniporia inflexibilis (Berk.) Ryvarden	√		WS	Others	PHT fungi	
Perenniporia medulla-panis (Jacq.) Donk			WS	Others	PHT fungi	
Perenniporia subacida (Peck) Donk			WS	Medicinal	PHT fungi	
Peziza ampliata Pers.			SS	Others	Ascomycetes	
Peziza badia Pers.			SS	Poisonous	Ascomycetes	
Peziza praetervisa Bres.			SS	Others	Ascomycetes	
Peziza sylvestris (Boud.) Sacc. and Traverso			SS	Others	Ascomycetes	
Peziza vesiculosa Bolton			SS	Others	Ascomycetes	
Phaeoclavulina abietina (Pers.) Giachini			LS	Others	Coral fungi	
Phaeoclavulina flavida (Fr.) Giachini			LS	Poisonous	Coral fungi	
Phaeolepiota aurea (Matt.) Maire			SS	Edible, Poisonous	Ascomycetes	
Phaeolus schweinitzii (Fr.) Pat.			WS	Medicinal	PHT fungi	
Phaeotremella foliacea (Pers.) Wedin, J.C. Zamora and Millanes			EM	Edible, Medicinal	Jelly fungi	
Phallus flavocostatus Kreisel			SS	Others	Gasteroid fungi	ON683474
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number	
-----------------	--------------	------------------	----------------	------------	--------------------------	
Phallus hadriani Vent.	✓	✓	SS	Others	Gasteroid fungi	
Phallus impudicus L.	✓	✓	SS	Edible, Medicinal	Gasteroid fungi	
Phallus indusiatus Vent.	✓	✓	SS	Others	Gasteroid fungi	
Phallus rubicundus (Bosc) Fr.	✓	✓	SS	Others	Gasteroid fungi	
Phallus rugulosus (E. Fisch.) Lloyd	✓	✓	SS	Medicinal, Poisonous	Gasteroid fungi	
Phellinus gilicus (Schwein.) Pat.	✓	✓	WS	Others	PHT fungi	
Phellinus igniarius (L.) Quel.	✓	✓	WS	Medicinal	PHT fungi	
Phellodon fuligineoalbus (J.C. Schmidt) R.E. Baird	✓	✓	WS	Others	PHT fungi	
Phellodon tomentosus (L.) Banker	✓	✓	WS	Edible	PHT fungi	
Phillipsia domingensis (Berk.) Berk. ex Denison	✓	✓	WS	Others	Larger Ascomycetes	
Phlebia tremellosa (Schrad.) Nakasone and Burds.	✓	✓	WS	Medicinal	PHT fungi	
Phloeomana minutula (Sacc.) Redhead	✓	✓	WS	Others	Agarics	
Phloeomana speirea (Fr.) Redhead	✓	✓	WS	Others	Agarics	
Pholiota adiposa (Batsch) P. Kumm.	✓	✓	WS	Edible, Medicinal	Agarics	
Pholiota aurivella (Batsch) P. Kumm.	✓	✓	WS	Edible, Medicinal	Agarics	
Pholiota flammans (Batsch) P. Kumm.	✓	✓	WS	Edible, Medicinal, Poisonous	Agarics	
Pholiota hiemalis A.H. Sm. and Hesler	✓	✓	WS	Others	Agarics	
Pholiota lubrica (Pers.) Singer	✓	✓	WS	Edible, Medicinal, Poisonous	Agarics ON683475	
Pholiota mutabilis (Schaeff.) P. Kumm.	✓	✓	WS	Others	Agarics ON683476	
Pholiota spumosa (Fr.) Singer	✓	✓	WS	Edible, Medicinal	Agarics ON683477	
Pholiota squarrosa (Vahl) P. Kumm.	✓	✓	WS	Edible, Poisonous	Agarics	
Pholiota squarrosoides (Peck) Sacc.	✓	✓	WS	Others	Agarics	
Pholiota subflavida (Murrill) A.H. Sm. and Hesler	✓	✓	WS	Others	Agarics	
Pholiota tuberculosa (Schaeff.) P. Kumm.	✓	✓	WS	Others	Agarics	
Pholiota veris A.H. Sm. and Hesler	✓	✓	WS	Others	Agarics	
Pholiota vinaceobrunnea A.H. Sm. and Hesler	✓	✓	WS	Others	Agarics	
Table A1. Cont.

Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number
Pholiota terrestris Overh.	✓ ✓ ✓ ✓	WS	Edible, Medicinal,	Poisonous Agarics	
Phyllotopsis nidulans (Pers.) Singer	✓ ✓ ✓ ✓	WS	Edible Agarics		
Physalacria lateriparies X. He and E.Z. Xue	✓ ✓ ✓ ✓	WS	Others Agarics		
Picipes badius (Pers.) Zmitr. and Kovalenko	✓ ✓ ✓ ✓	WS	Others PHT fungi		ON683478
Picipes melanopus (Pers.) Zmitr. and Kovalenko	✓ ✓ ✓ ✓	WS	Others PHT fungi		
Pitoporos betulinus (Bull.) P. Karst.	✓ ✓ ✓ ✓	WS	Medicinal PHT fungi		
Plectania melastoma (Sowerby) Fuckel	✓ ✓ ✓ ✓	WS	Others Ascomycetes		
Pleuroflammula flavescens (Murrill) Singer	✓ ✓ ✓ ✓	SS	Others Agarics		
Pleuroflammula multifolia (Peck) E. Horak	✓ ✓ ✓ ✓	SS	Others Agarics		
Pleurotus citrinopileatus Singer	✓ ✓ ✓ ✓	WS	Edible, Medicinal	Agarics	ON683479
Pleurotus cornucopiae (Paulet) Quél.	✓ ✓ ✓ ✓	WS	Edible, Medicinal	Agarics	
Pleurotus corticus (Fr.) P. Kumm.	✓ ✓ ✓ ✓	WS	Others Agarics		
Pleurotus dryinus (Pers.) P. Kumm.	✓ ✓ ✓ ✓	WS	Edible, Medicinal	Agarics	
Pleurotus limpidus (Fr.) P. Kumm.	✓ ✓ ✓ ✓	WS	Edible Agarics		
Pleurotus ostreatus (Jaccq.) P. Kumm.	✓ ✓ ✓ ✓ ✓ ✓	WS	Edible, Medicinal	Agarics	ON683480
Pleurotus polymorphaeus (Fr.) Quél.	✓ ✓ ✓ ✓ ✓ ✓	WS	Edible, Medicinal	Agarics	ON683481
Pleurotus spodoecus (Fr.) Quél.	✓ ✓ ✓ ✓	WS	Edible, Medicinal	Agarics	
Pleurotus atricapillus (Batsch) Fayod	✓ ✓ ✓ ✓	WS	Others Agarics		
Pleurotus atrorangipes (Konrad) Kühner	✓ ✓ ✓ ✓	WS	Edible Agarics		
Pleurotus aurantiorugosus (Trog) Sacc.	✓ ✓ ✓ ✓	WS	Edible Agarics		ON683482
Pleurotus cervinus (Schaeff.) P. Kumm.	✓ ✓ ✓ ✓ ✓ ✓	WS	Edible Agarics		
Pleurotus depauperatus Romagn.	✓ ✓ ✓ ✓	WS	Others Agarics		
Pleurotus leoninus (Schaeff.) P. Kumm.	✓ ✓ ✓ ✓	WS	Edible Agarics		
Pleurotus namus (Pers.) P. Kumm.	✓ ✓ ✓ ✓	WS	Others Agarics		
Pleurotus petasatus (Fr.) Gillet	✓ ✓ ✓ ✓	WS	Edible Agarics		
Pleurotus plautius (Weinm.) Gillet	✓ ✓ ✓ ✓	WS	Others Agarics		
Pleurotus salicinus (Pers.) P. Kumm.	✓ ✓ ✓ ✓	WS	Edible Agarics		
Pleurotus umbrosus (Pers.) P. Kumm.	✓ ✓ ✓ ✓	WS	Edible Agarics		
Podosordaria pedunculata (Dicks.) Dennis	✓ ✓ ✓ ✓	WS	Others Ascomycetes		
Polyporus alveolaris (DC.) Bondartsev and Singer	✓ ✓ ✓ ✓	WS	Others PHT fungi		
Polyporus badius (Pers.) Schwein.	✓ ✓ ✓ ✓	WS	Others PHT fungi		
Table A1. Cont.

Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number
Polyporus brumalis (Pers.) Fr.	√	WS	Others	PHT fungi	ON683483
Polyporus conifericola H.J. Xue and L.W. Zhou	√	WS	Others	PHT fungi	
Polyporus squamosus (Huds.) Fr.	√	WS	Medicinal	PHT fungi	
Polyporus tuberaster (Jacq. ex Pers.) Fr.	√	WS	Others	PHT fungi	
Polystictus curius (Pers.) Fr.	√	WS	Others	PHT fungi	
Polystictus unicolor Rick	√	WS	Medicinal	PHT fungi	
Polystictus versicolor (L.) Fr.	√	WS	Others	PHT fungi	
Psathyrella candolleana (Fr.) Maire	√	WS	Medicinal	Agarics	ON683484
Psathyrella hydrophila (Bull.) Maire	√	WS	Others	Agarics	
Psathyrella multissima (S. Imai) Hongo	√	WS	Others	Agarics	
Psathyrella submuda (P. Karst.) A.H. Sm.	√	WS	Others	Agarics	
Pseudoclitocybe cyathiformis (Bull.) Singer	√	SS	Edible, Medicinal	PHT fungi	
Pseudofavolus tenuis (Fr.) G. Cunn.	√	WS	Medicinal,	Agarics	
Pseudohydnum gelatinosum (Scop.) P. Karst.	√	WS	Edible,	Jelly fungi	
Pseudosperma avellaneum (Kobayasi) Matheny and	√	SS	Others	Agarics	
Pseudosperma rimosum (Bull.) Matheny and	√	SS	Others	Agarics	
Pseudosperma umbrinellum (Bres.) Matheny and	√	SS	Others	Agarics	
Pterula multifida (Chevall.) Fr.	√	SS	Others	Coral fungi	ON683486
Pycnoporus cinnabarinus (Jacq.) P. Karst.	√	SS	Medicinal	PHT fungi	
Pycnoporus sanguineus (L.) Murrill	√	SS	Medicinal	PHT fungi	
Radulodon copelandii (Pat.) N. Maek.	√	SS	Others	PHT fungi	
Ramaria apiculata (Fr.) Donk	√	EM	Edible,	Coral fungi	
Ramaria botrytis (Pers.) Bourd.	√	EM	Edible, Coral	Coral fungi	
Ramaria bourdotiana Maire	√	EM	Edible, Coral	Coral fungi	
Ramaria flavo (Schaeff.) Quel.	√	EM	Edible, Coral,	Coral fungi	
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number
---	--------------	------------------	----------------	------------	--------------------------
Ramaria formosa (Pers.) Quél.			EM	Edible, Medicinal, Poisonous Coral fungi	
Ramaria lutea Schild			EM	Edible Coral fungi	
Ramaria madagascariensis (Henn.) Corner			EM	Others Coral fungi	
Ramaria stricta (Pers.) Quél.			EM	Edible Coral fungi	
Ramaria subborytis (Coker) Corner			EM	Edible Coral fungi	
Ramariopsis kunzei (Fr.) Corner			EM	Edible Coral fungi	
Resupinatus applicatus (Batsch) Gray			WS	Others Agarics	
Rhizocybe vernicularis (Fr.) Vizzini, P. Alvarado, G. Moreno, and Consiglio			SS	Others Agarics	
Rhizomarasmius undatus (Berk.) R.H. Petersen			SS	Others Agarics	
Rhodocollybia butyracea (Bull.) Lennox			SS	Edible Agarics	
Rhodocollybia proiza (Fr.) Antonin and Noordel.			SS	Others Agarics	
Rickenella fibula (Bull.) Raithelh.			EM	Others Cantharelloid fungi	
Ripartites tricholoma (Alb. and Schwein.) P. Karst.			LS	Others Agarics	ON683428
Russula adusta (Pers.) Fr.			EM	Edible Agarics	
Russula aeruginea Lindblad ex Fr.			EM	Edible Agarics	
Russula albida A. Blytt			EM	Edible Agarics	
Russula alutacea (Fr.) Fr.			EM	Edible, Medicinal, Poisonous Agarics	
Russula amoena Quel.			EM	Others Agarics	
Russula aurata Fr.			EM	Others Agarics	
Russula aurea Pers.			EM	Others Agarics	
Russula chloroides (Krombh.) Bres.			EM	Edible Agarics	ON683429
Russula crustosa Peck			EM	Edible, Medicinal Agarics	
Russula cyanoxantha (Schaeff.) Fr.			EM	Edible, Medicinal Agarics	ON683430
Russula delica Fr.			EM	Edible, Medicinal Agarics	
Russula densifolia Secr. ex Gillet			EM	Edible, Medicinal, Poisonous Agarics	ON683487
Russula emetica (Schaeff.) Pers.			EM	Poisonous Agarics	
Russula exalbicans (Pers.) Melzer and Zvára			EM	Edible Agarics	
Table A1. Cont.

Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number
Russula faginea Romagn.		EM	Edible	Agarics	
Russula flavida Frost ex Peck		EM, Poissonous	Medicinal	Agarics	
Russula foetens Pers.	√	EM, Poissonous	Medicinal	Agarics	
Russula fragilis Fr.	√	EM	Edible	Agarics	
Russula furcata Pers.		EM	Edible	Agarics	
Russula grata Britzelm.		EM	Edible	Agarics	
Russula integra (L.) Fr.		EM, Poissonous	Medicinal	Agarics	
Russula lilacea Quél.		EM	Edible, Medicinal	Agarics	
Russula mariae Peck		EM	Edible	Agarics	ON683488
Russula mustelina Fr.		EM	Edible	Agarics	ON683489
Russula nauseosa (Pers.) Fr.		EM	Edible	Agarics	
Russula paludosa Britzelm.		EM	Edible	Agarics	
Russula pectinata Fr.		EM	Poissonous	Agarics	
Russula pseudodelica J.E. Lange		EM	Edible, Medicinal	Agarics	
Russula pueilaris Fr.	√	EM	Edible	Agarics	
Russula pungens Beardslee		EM	Others	Agarics	
Russula risigallina (Batsch) Sacc.		EM	Edible	Agarics	
Russula rosea Pers.	√	EM	Edible, Medicinal	Agarics	
Russula rubra (Lam.) Fr.		EM	Edible	Agarics	
Russula sanguinaria (Schumach.) Rauschert		EM	Edible	Agarics	ON683431
Russula sanguinea Fr.	√	EM	Others	Agarics	
Russula sororia (Fr.) Romell		EM	Medicinal	Agarics	ON683432
Russula squallida Peck		EM	Others	Agarics	
Russula subdepallens Peck		EM	Others	Agarics	
Russula tososa Lindblad		EM	Others	Agarics	
Sarcodontia spumea (Sowerby) Spirin		EM	Others	PHT fungi	
Sarcomyxa edulis (Y.C. Dai, Niemelä, and G.F. Qin) T. Saito, Tonouchi, and T. Harada		WS	Medicinal	Agarics	
Sarcoscypha coccinea (Gray) Boud.		WS	Poisonous	Ascomycetes	
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number
----------------	--------------	------------------	----------------	------------	--------------------------
Schizophyllum commune Fr.	A1 A2 B1 B2 C1 C2	WS	Edible, Medicinal	Agarics	
Scleroderma areolatum Ehrenb.		SS	Edible, Medicinal, Poisonous	Gasteroid fungi	
Scleroderma bovista Fr.		SS	Edible, Medicinal	Gasteroid fungi	
Scleroderma polyrhizum (J.F. Gmel.) Pers.		SS	Edible, Medicinal	Gasteroid fungi	
Scutellinia pseudovitreola W.Y. Zhuang and Zhu L. Yang		WS	Others	Larger Ascomycetes	
Scutellinia scutellata (L.) Lambotte		WS	Edible, Medicinal	Larger Ascomycetes	ON683490
Sparassis latifolia Y.C. Dai and Zheng Wang		WS	Others	PHT fungi	
Spathularia flavida Pers.		SS	Others	Larger Ascomycetes	
Sphaerobolus stellatus Tode		WS	Others	Gasteroid fungi	
Spongiporus zebra (Y.L. Wei and W.M. Qin) B.K. Cui, L.L. Shen, and Y.C. Dai		WS	Others	PHT fungi	
Steccherinum ochraceum (Pers. ex J.F. Gmel.) Gray		WS	Others	PHT fungi	
Steccherinum rawakense (Pers.) Banker		WS	Others	PHT fungi	
Stereum hirsutum (Willd.) Pers.		WS	Medicinal	PHT fungi	
Stereum rugosum Pers.		WS	Others	PHT fungi	
Stereum subtomentosum Pouzar		WS	Others	PHT fungi	
Stereum ostrea (Blume and T. Nees) Fr.		WS	Others	PHT fungi	
Strobilurus stephanocystis (Kühner and Romagn. ex Hora) Singer		WS	Others	Agarics	
Stropharia acreginosa (Curtis) Quél.		SS	Edible, Poisonous	Agarics	
Stropharia rugosaonnulta Farl. ex Murrill		SS	Edible, Medicinal	Agarics	
Suillus luridus (Schaeff.) Murrill		EM	Edible, Medicinal	Boletes	ON683433
Suillus bovinus (L.) Roussel		EM	Edible, Medicinal, Poisonous	Boletes	
Suillus flavus (Quél.) Singer		EM	Others	Boletes	
Suillus granulatus (L.) Roussel		EM	Edible, Medicinal, Poisonous	Boletes	
Suillus grevillei (Klotzsch) Singer		EM	Edible, Medicinal	Boletes	
Suillus lactifluus (With.) A.H. Sm. and Thiers		EM	Edible	Boletes	
Table A1. Cont.

Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number					
Suillus laricinus (Berk.) Kuntze	✓	✓	EM	Others	Boletes					
Suillus luteus (L.) Roussel	✓	✓	EM	Edible, Medicinal,	Poisonous					
Suillus spraguei (Berk. and M.A. Curtis) Kuntze	✓	✓	EM	Others	Boletes					
Suillus subaureus (Peck) Snell	✓	✓	EM	Edible, Medicinal	Boletes					
Suillus viscidus (L.) Roussel	✓	✓	EM	Edible, Medicinal	Boletes					
Tapinella atrotomentosa (Batsch) Šutara	✓	✓	EM	Poisonous	Boletes					
Tapinella panuoides (Fr.) E.-J. Gilbert	✓	✓	EM	Poisonous	Boletes					
Terana caerulea (Lam.) Kuntze	✓	✓	WS	Others	PHT fungi					
Tetrapyrgos nigripes (Fr.) E. Horak	✓	✓	WS	Others	Agarics					
Thelephora anthocephala (Bull.) Fr.	✓	✓	SS	Others	PHT fungi					
Thelephora palmata (Scop.) Fr.	✓	✓	SS	Others	PHT fungi					
Tolypocladium capitatum (Holmsk.) C.A. Quandt,	✓	✓	EI	Others	Larger Ascomycetes					
Kepler, and Spatafora										
Trametes coccinea (Fr.) Hai J. Li and S.H. He	✓	✓	WS	Others	PHT fungi					
Trametes conchifer (Schwein.) Pilát	✓	✓	WS	Others	PHT fungi					
Trametes gibbosa (Pers.) Fr.	✓	✓	WS	Medicinal	PHT fungi					
Trametes hirsuta (Wulfen) Lloyd	✓	✓	WS	Medicinal	PHT fungi					
Trametes membranacea (Sw.) Kreisel	✓	✓	WS	Others	PHT fungi					
Trametes pubescens (Schumach.) Pilát	✓	✓	WS	Edible, Medicinal,	PHT fungi					
Trametes suecensis (L.) Fr.	✓	✓	WS	Poisonous	PHT fungi					
Trametes trogi Berk.	✓	✓	WS	Medicinal	PHT fungi					
Trametes versicolor (L.) Lloyd	✓	✓	WS	Medicinal	PHT fungi					
Tremella aurantia Schwein.	✓	✓	WS	Edible	Jelly fungi					
Tremella foliacea Pers.	✓	✓	WS	Others	Jelly fungi					
Tremella fusiformis Berk.	✓	✓	WS	Edible, Medicinal	Boletes					
Tremella mesenterica (Schaeff.) Pers.	✓	✓	WS	Edible, Medicinal	Jelly fungi					
Trichaptum abietinum (Pers. ex J.F. Gmel.) Ryvarden	✓	✓	WS	Medicinal	PHT fungi					
Trichaptum bifforme (Fr.) Ryvarden	✓	✓	WS	Medicinal	PHT fungi					
Trichaptum pargamenum (Fr.) G. Cunn.	✓	✓	WS	Others	PHT fungi					
Scientific Name	Distribution	Nutritional Mode	Economic Value	Categories	GenBank Accession Number					
----------------	--------------	------------------	----------------	------------	--------------------------					
	A1	A2	B1	B2	C1	C2				
Tricholoma acerbum (Bull.) Quél.	√						EM	Edible, Medicinal, Edible, Medicinal, Poisonous	Agarics	
Tricholoma album (Schaeff.) P. Kumm.	√	√					EM	Edible, Medicinal, Poisonous	Agarics	
Tricholoma aurantium (Schaeff.) Ricken	√						EM	Edible, Poisonous	Agarics	
Tricholoma equestre (L.) P. Kumm.	√	√					EM	Edible, Medicinal	Agarics	
Tricholoma matsutake (S. Ito and S. Imai) Singer	√	√					EM	Edible, Poisonous	Agarics	
Tricholoma scalpturatum (Fr.) Quél.	√						EM	Others	Agarics	
Tricholoma terreum (Schaeff.) P. Kumm.	√	√					EM	Others	Agarics	
Tricholoma tigrinum (Schaeff.) Gillet	√						EM	Poisonous	Agarics	
Tricholoma vaccinum (Schaeff.) P. Kumm.	√						EM	Edible, Medicinal	Agarics	
Tricholomopsis decora (Fr.) Singer	√						WS	Edible	Agarics	
Tricholomopsis rutilans (Schaeff.) Singer	√	√	√	√	√	√	WS	Poisonous	Agarics	
Tulostoma bonianum Pat.	√						SS	Others	Gasteroid fungi	
Turbinellus floccosus (Schwein.) Earle ex Giachini and Castellano	√	√					EM	Poisonous	Cantharelloid fungi	
Verpa bohemica (Krombh.) J. Schröt.	√						SS	Edible, Medicinal	Larger Ascomycetes	
Verpa digitaliformis Pers.	√						SS	Poisonous	Larger Ascomycetes	
Vitreoporus dichrous (Fr.) Zmitr.	√						WS	Others	PHT fungi	
Volvariella bombycina (Schaeff.) Singer	√						WS	Edible, Medicinal	Agarics	
Volvariella pusilla (Pers.) Singer	√	√					SS	Edible, Medicinal	Agarics	
Volvopluteus gloiocephalus (DC.) Vizzini, Contu and Justo	√						SS	Poisonous	Agarics	
Xanthochrous gilvicolor (Lloyd) Teng	√						WS	Others	PHT fungi	
Xerocomellus chrysenteron (Bull.) Šutara	√						EM	Others	Boletes	
Xerocomus chrysenteron (Bull.) Quél.	√	√					EM	Others	Boletes	
Xerophalina campanella (Batsch) Kühner and Maire	√	√	√	√	√	√	WS	Medicinal	Agarics	
Xerula pudens (Pers.) Singer	√						WS	Others	Agarics	
Scientific Name	A1	A2	B1	B2	C1	C2	Nutritional Mode	Economic Value	Categories	GenBank Accession Number
------------------------------------	----	----	----	----	----	----	------------------	----------------	--------------	------------------------
Xylaria carpophila (Pers.) Fr.			√			√	WS	Medicinal	Larger Ascomycetes	
Xylaria hypoxylon (L.) Grev.	√		√				WS	Others	Larger Ascomycetes	
Xylaria polymorpha (Pers.) Grev.	√				√		WS	Others	Larger Ascomycetes	

Note: EM = ectomycorrhizal; SS = soil saprotroph; WS = wood saprotroph; LS = litter saprotroph; DS = dung saprotroph; EI = endophyte insect pathogen.
Table A2. Species scientific names and their corresponding abbreviations.

Abbreviation	Genus											
Abo	Abortiporus	Dac	Dacrymyces	Lec	Leccinum	Pip	Piptoporus					
Aga	Agaricus	Dac	Dacrypinax	Len	Lentinellus	Ple	Pleurotus					
Agr	Agrocybe	Daed	Daedalea	Lent	Lentinus	Plu	Pluteus					
Ale	Aleuria	Daed	Daedaleopsis	Lenz	Lenzites	Pol	Polyvarpus					
Ama	Amanita	Daed	Daldinia	Leo	Leotia	Poly	Polystictus					
Amp	Ampulloclitocybe	Dec	Deconica	Lep	Lepiota	Pos	Postia					
Api	Apieperon	Des	Descolea	Lepi	Lepista	Ps	Psathyrella					
Arm	Armillaria	Dum	Dumentinia	Leu	Leucoagaricus	Pse	Pseudoclitocybe					
Art	Artromyces	Ent	Entoloma	Leuc	Leucoagyrus	Pseu	Pseudosperma					
Asc	Ascomycetes	Exi	Exidia	Lyc	Lycomperdon	Pte	Pterula					
Aur	Auricularia	Flam	Flammulaster	Lyo	Lophyllum	Pyc	Pycnoporus					
Auri	Auriscalpium	Flamm	Flammulina	Lys	Lysurus	Rad	Radulodon					
Bis	Bisporella	Fom	Fomes	Mac	Macrocystidium	Ram	Ramaria					
Bje	Bjerandera	Fomi	Fomitopsis	Macr	Macropleiotia	Res	Resupinatus					
BolI	Boletinellus	Gal	Galerina	Mar	Marasmiellus	Rho	Rhodocyllia					
Bol	Boletus	Gan	Ganoaderma	Mara	Marasmius	Ric	Rickenella					
Cal1	Calocera	Gea	Geastrum	Mel	Melanoleuca	Rus	Russula					
Calo	Calocybe	Ger	Gerronema	Mor	MORCHELLA	Sar	Sarcoconia					
Cal	Calvatia	Glo	Gloeophrlyllum	Mac	Maciudula	Sar	Sarcomyces					
Can	Cantharellus	Gloe	Gloeostereum	Mut	Mutinus	Sarc	Sarcoscypha					
Cer	Ceriporos	Gue	Guiporia	Myc	Mycena	Sch	Schizophyllum					
Che	Cheilymenia	Gym	Gymnopus	Neo	Neofavolus	Scl	Scleroderma					
Chl	Chlorociboria	Gymn	Gymnoporus	Neol	Neolentines	Scu	Scutellinia					
Chr	Chroogomphus	Har	Harraja	Omp	Omphalotus	Spa	Spathularia					
Cla	Clavaria	Hel	heliuma	Oph	Ophiocercoecys	Ste	Stecerenium					
Clav	Clavariadelphus	Hem	Hemistophobia	Oss	Ossicaulis	Ste	Stereum					
Clavu	Clavulina	Her	Hericium	Oti	Otidea	Str	Stropharia					
Clavul	Clavulinopsis	Hor	Heterobasison	Pan	Panaeolus	Sui	Suillus					
Clavu1	Clavulinopsis	Hor	Heterobasison	Pan	Panaeolus	Sui	Suillus					
Cli	Clitocybe	Hoh	Hohenhuelcha	Pane	Panellus	Tap	Tapinella					
Col	Coltricia	Hum	Humaria	Panu	Panus	Ter	Terana					
Con	Cononopus	Hyd	Hydnum	Par	Paralepista	The	Thelephora					
Cono	Conocybe	Hygr	Hygrocybe	Para	Parasola	Tra	Trametes					
Cop	Coprinellus	Hygr	Hygrophor	Pax	Paxillus	Tre	Tremella					
Copri	Coprinopsis	Hym	Hymenopelis	Per	Perenponeria	Tri	Trichaptum					
Cor	Coprinus	Hyp	Hypoholoma	Pez	Peziza	Tric	Tricholoma					
Cori	Cordyceps	Hyp	Hypsyzgus	Pha	Phaeolepota	Trich	Tricholomopsis					
Corioulipos	Coriolis	Inf	Infuliduliclyce	Phae	Phaeotremla	Tul	Tulostoma					
Curt	Cortinarius	Ino	Inocyce	Pha	Phallus	Tur	Turbinellus					
Cot	Cotylidia	Ino	Inonotus	Phe	Phellinus	Vol	Volvariella					
Cre	Crepidotus	Irp	Irpx	Phel	Phelidion	Volv	Volvoluteus					
Cup	Cuphophylius	Kue	Kuehneromyces	Phil	Phleomana	Xer1	Xerocomius					
Cya	Cyathus	Lac	Laccaria	Pho	Pholiota	Xer	Xeromphalina					
Cyc	Cyclocybe	Lact	Lactarius	Phy	Phylotopsis	Xyl	Xylaria					
Cys	Cystoderma	Lact	Laetiporus	Pic	Picipes							

References
1. Huo, W. Research Progress on improving heavy metal tolerance of host plants by Ectomycorrhizal Fungi. Zhejiang Agric. Sci. 2010, 5, 1059–1061. [CrossRef]
2. Liang, Y.; Guo, L.D.; Ma, K.P. The role of mycorrhizal fungi in ecosystems. Acta Phytoecol. Sin. 2002, 26, 739–745.
3. Yu, F.Q.; Liu, P.G. Reviews and Prospects of the Ectomycorrhizal Research and Application. Acta Ecol. Sin. 2002, 22, 2217–2226. [CrossRef]
4. Zhu, J.J.; Xu, H.; Xu, M.L.; Kang, H.Z. Relationship between ectomycorrhizal fungi and forest trees. Chin. J. Ecol. 2003, 22, 70–76.
5. Cristiana-Virginia, P.; Tiberius, B.; Catállin, T. Lignicolous basidiomycetes as valuable biotechnological agents. Mem. Sci. Sect. Rom. Acad. 2014, 37, 37–62.
6. Tuó, Y.L.; Rong, N.; Hu, J.J.; Zhao, G.P.; Wang, Y.; Zhang, Z.H.; Qi, Z.X.; Li, Y.; Zhang, B. Exploring the Relationships between Macrofungi Diversity and Major Environmental Factors in Wunfeng National Forest Park in Northeast China. J. Fungi 2022, 8, 98. [CrossRef] [PubMed]
36. Hu, J.J.; Zhao, G.P.; Tuo, Y.L.; Rao, G.; Zhang, Z.H.; Qi, Z.X.; Yue, L.; Liu, Y.J.; Zhang, T.; Li, Y.; et al. Morphological and Molecular Evidence Reveal Eight New Species of *Gymnopogon* from Northeast China. *J. Fungi* 2022, 8, 349. [CrossRef] [PubMed]

37. Li, Y.; Li, T.H.; Yang, Z.L.; Bau, T.; Dai, Y.C. *Atlas of Chinese Macrofungi Resources*; Central Chinese Farmer: Zhengzhou, China, 2015.

38. Index Fungorum. Available online: http://www.indexfungorum.org/Names/Names.asp (accessed on 7 February 2022).

39. China Meteorological Data Network. Available online: http://data.cma.cn/ (accessed on 7 February 2022).

40. Resource Discipline Innovation Platform. Available online: http://www.data.ac.cn/ (accessed on 7 February 2022).

41. Thoiron, P. Diversity index and entropy as measures of lexical richness. *Comput. Humanit.* 2013, 1, 1135–1143.

42. Sneath, P.H.; Sokal, R.R. *Numerical Taxonomy: The Principles and Practice of Numerical Classification*; W. H. Freeman and Company: San Francisco, CA, USA, 1973.

43. Gu, Z.G.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. *Bioinformatics* 2016, 32, 2847–2849. [CrossRef]

44. ter Braak, C.J.; Petr, S. *Biodiversity* 2000, 8, 73–80. [CrossRef]

45. Bau, T.; Li, Y. Study on fungal flora diversity in Daqinggou Nature Reserve. *Biodiversity* 2020, 8, 73–80. [PubMed]

46. Gu, Z.G.; Eils, R.; Schlesner, M. *Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0*; Microcomputer Power: Ithaca, NY, USA, 2012.

47. FUNGUILD. Available online: http://www.funguild.org/ (accessed on 7 February 2022).

48. Rieus, A.; Soubeyard, S.; Bonnot, F.; Klein, E.K.; Ngando, J.E.; Mehl, A.; Ravigne, V.; Cartier, J.; Luc de Lapeyre, B. Long-distance wind-dispersal of spores in a fungal plant pathogen: Estimation of anisotropic dispersal kernels from an extensive field experiment. *PLoS ONE* 2014, 9, e103225. [CrossRef]

49. Neira, J.; Ortiz, M.; Morales, L.; Acevedo, E. Oxygen diffusion in soils: Understanding the factors and processes needed for modeling. *Chil. J. Agric. Res.* 2015, 75, 35–44. [CrossRef]

50. San Antonio, J.; Thomas, R. Carbon dioxide stimulation of hyphal growth of the cultivated mushroom, *Agaricus bisporus* (Lange Sing). *Mushroom Sci.* 1972, 8, 623–629.

51. Brown, W. On the germination and growth of fungi at various temperatures and in various concentrations of oxygen and carbon dioxide. *Ann. Bot.* 1922, 36, 257–283. [CrossRef]

52. Ruijten, P.; Huinink, H.P.; Adan, O.C. Hyphal growth of *Schizophyllum commune*. *Appl. Microbiol.* 2012, 48, 1–11. [CrossRef]

53. Davarzani, H.; Smits, K.; Tolene, R.M.; Illangasekare, T. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface. *Water Resour. Res.* 2014, 50, 661–680. [CrossRef] [PubMed]

54. Ayerst, G. The effects of moisture and temperature on growth and spore germination in some fungi. *J. Stored Prod. Res.* 1969, 5, 127–141. [CrossRef]

55. Mikuła, A.; Tomiczak, K.; Makowski, D.; Niedzielski, M.; Rybczyński, J.J. The effect of moisture content and temperature on spore aging in *Osmunda regalis*. *Acta Phytophyl. Plant.* 2015, 37, 1–11. [CrossRef]

56. Ruijten, P.; Huinink, H.P.; Adan, O.C. Hyphal growth of *Penicillium rubens* in changing relative humidity. *Appl. Microbiol. Biotechnol.* 2021, 105, 5159–5171. [CrossRef]

57. Setlow, P. Spore germination. *Curr. Opin. Microbiol.* 2003, 6, 550–556. [CrossRef]

58. Setlow, P.; Huinink, H.P.; Adan, O.C. Hyphal growth of *Penicillium rubens* in changing relative humidity. *Appl. Microbiol. Biotechnol.* 2021, 105, 5159–5171. [CrossRef]

59. Setlow, P.; Kornberg, A. Biochemical studies of bacterial sporulation and germination: XXII. Energy metabolism in early stages of development. *Appl. Microbiol. Biotechnol.* 2000, 53, 307–314. [CrossRef]

60. Hoa, H.T.; Wang, C.-L. The effects of temperature and nutritional conditions on mycelial growth of two oyster mushrooms (*Pleurotus ostreatus* and *Pleurotus cystidiosus*). *Mycobiology* 2015, 43, 14–23. [CrossRef]

61. Balai, L.P.; Ahir, R. Role of temperature and relative humidity on mycelial growth of *Alternaria alternata* infecting brinjal. *Trends Biosci.* 2013, 6, 307–308.

62. Gottlieb, D. The physiology of spore germination in fungi. *Bot. Rev.* 1936, 16, 229–257. [CrossRef]

63. Gottlieb, D. The physiology of spore germination in fungi. *Bot. Rev.* 1936, 16, 229–257. [CrossRef]

64. Mandels, G.R.; Norton, A.B. *Studies on the Physiology of Spores of the Cellulolytic Fungus Myrothecium verrucaria*; Creative Media Partners, LLC: Philadelphia, PA, USA, 1948.

65. Reponen, T.; Willeke, K.; Ulevicius, V.; Reponen, A.; Grinshpun, S.A. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores. *Atmos. Environ.* 1996, 30, 3967–3974. [CrossRef]

66. Yarwood, C.E. The tolerance of *Erysiphe polygoni* and certain other powdery mildews to low humidity. *Phytopathology* 1956, 26, 845–859.

67. Johnson, E.M.; Sutton, T.B. Response of two fungi in the apple sooty blotch complex to temperature and relative humidity. *Phytopathology* 2000, 90, 362–367. [CrossRef] [PubMed]
68. Krebs, C.; Carrier, P.; Boutin, S.; Boonstra, R.; Hofer, E. Mushroom crops in relation to weather in the southwestern Yukon. *Botany 2008*, 86, 1497–1502. [CrossRef]

69. Kim, S.Y.; Kim, M.-K.; Im, C.H.; Kim, K.-H.; Kim, D.S.; Park, K.K.; Lee, S.D.; Ryu, J.-S. Optimal relative humidity for *Pleurotus eryngii* cultivation. *J. Mushroom 2013*, 11, 131–136. [CrossRef]

70. Feng, B.; Yang, Z. Studies on diversity of higher fungi in Yunnan, southwestern China: A review. *Plant Divers. 2018*, 40, 165–171. [CrossRef]

71. Li, H.L.; Guo, J.Y.; Ye, L.; Gui, H.; Hyde, K.D.; Xu, J.C.; Mortimer, P.E. Composition of woody plant communities drives macrofungal community composition in three climatic regions. *J. Veg. Sci. 2021*, 32, e13001. [CrossRef]

72. Kutszegi, G.; Siller, I.; Dimai, B.; Takács, K.; Merényi, Z.; Varga, T.; Turcsányi, G.; Bidló, A.; Ódor, P. Drivers of macrofungal species composition in temperate forests, West Hungary: Functional groups compared. *Fungal Ecol. 2015*, 17, 69–83. [CrossRef]

73. Iwabuchi, S.; Sakai, S.; Yamaguchi, O. Analysis of mushroom diversity in successional young forests and equilibrium evergreen broad-leaved forests. *Mycoscience 1994*, 35, 1–14. [CrossRef]

74. Antonio, O.; Juan, L. Macrofungi diversity in cork-oak and holm-oak forests in Andalusia (southern Spain); an efficient parameter for establishing priorities for its evaluation and conservation. *Cent. Eur. J. Biol. 2007*, 2, 276–296. [CrossRef]

75. Ortega, A.; Navarro, F. The mycobiota (*Agaricales, Boletales, Russulales*) from Andalusia (southern Spain): Chorological and biogeographical analysis. *Nova Hedwig. 2006*, 83, 233–248. [CrossRef]

76. Fellner, R.; Arnoldès, E. Proposal for monitoring of macromycetes in European spruce (*Picea*) and oak (*Quercus*) forests. *Can. J. Bot. 1995*, 37, 1310–1315. [CrossRef]

77. Selosse, M.A. Adding pieces to fungal mosaics. *New Phytol. 2001*, 149, 159–162. [CrossRef]

78. Zervakis, G.I.; Dimou, D.M.; Polemis, E.; Karadelev, M. Mycobiota studies in selected ecosystems of Greece: II. Macrofungi associated with conifers in the Taygetos Mountain (Peloponnese). *Mycotaxon 2002*, 83, 97–126.

79. Zervakis, G.I.; Polemis, E.; Dimou, D.M. Mycobiota studies in selected ecosystems of Greece: III. Macrofungi recorded in *Quercus* forests from southern Peloponnese. *Mycotaxon 2002*, 84, 141–162.

80. Eastwood, D.C.; Floudas, D.; Binder, M.; Majcherczyk, A.; Schneider, P.; Aisiegbu, F.O.; Baker, S.E.; Barry, K.; Bendiksby, M. The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. *Science 2011*, 333, 762–765. [CrossRef]

81. Smith, J.E.; Molina, R.; Huso, M.M.; Luoma, D.L.; Mckay, R.; Castellano, M.A.; Lebel, T.; Valachovic, Y. Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (*Pseudotsuga menziesii*) in the Cascade Range of Oregon, USA. *Can. J. Bot. 2002*, 80, 186–204. [CrossRef]

82. Wang, W.J.; Sun, J.X.; Zhong, Z.L.; Xiao, L.; Wang, Y.Y.; Wang, H.M. Relating macrofungal diversity and forest characteristics in boreal forests in China: Conservation effects, inter-forest-type variations, and association decoupling. *Ecol. Evol. 2021*, 11, 13268–13282. [CrossRef]

83. Ledo, A.; Burslem, D.F.; Condés, S.; Montes, F. Micro-scale habitat associations of woody plants in a neotropical cloud forest. *J. Veg. Sci. 2013*, 24, 1086–1097. [CrossRef]

84. Chen, Y.; Yuan, Z.L.; Bi, S.; Wang, X.Y.; Ye, Y.Z.; Svenning, J.C. Macrofungal species distributions depend on habitat partitioning of topography, light, and vegetation in a temperate mountain forest. *Sci. Rep. 2018*, 8, 1–13. [CrossRef][PubMed]

85. Guo, Y.; Wang, B.; Mallik, A.U.; Huang, F.Z.; Xiang, W.S.; Ding, T.; Wen, S.J.; Lu, S.H.; Li, D.X.; He, Y.L. Topographic–habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China. *J. Plant Ecol. 2017*, 10, 450–460. [CrossRef]

86. Moeslund, J.E.; Arge, L.; Bøcher, P.K.; Dalgaard, T.; Svenning, J.C. Topography as a driver of local terrestrial vascular plant diversity patterns. *Nord. J. Bot. 2013*, 33, 129–144. [CrossRef]

87. Land, S.; Schönhäubl, F. Influence of different soil types on abundance and seasonal dynamics of vesicular arbuscular mycorrhizal fungi in arable soils of North Germany. *Mycorrhiza 1991*, 1, 39–44. [CrossRef]