Utilization of Styrene-Butadiene Rubber (SBR) Polymer Replacement of Fine Aggregate in Concrete

Mohamed M. Arbili1,*, Farman K. Ghaffoori2,b, Halmat A. Awlla1,c, Radhwan Alzeebaree3,d, and Talib K. Ibrahim4,e

1Department of Information Technology, Choman Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
2Ministry of municipality and tourism, Erbil, Kurdistan Region, Iraq
3Department of Civil Engineering, Duhok Polytechnic University, Duhok, Iraq
4Department of Petroleum Engineering, College of Engineering, Knowledge University, Kurdistan Region, Iraq
*Corresponding author

Abstract. This paper aims to examine the effect of styrene-butadiene rubber (SBR) polymer incorporation on the performance of no-fine aggregates produced from lightweight concrete. This type of concrete usually utilized for partitions and external walls and infilling panels in framed structures. Three concrete mixtures with varying aggregate/cement ratios (4:1, 6:1, and 8:1) were used by volume. Each of these mixtures consists of five sub-mixes with different proportions of polymer/cement (0, 5, 10, 15, and 20%) by mass. For using a (300×50) cylinder specimen, a tensile strength test was carried out on all concrete mixes after curing on 28 days in water. The test results demonstrated that no-fine aggregate concrete's strength increased with the increase in the polymer/cement ratio for all mixes. Whereas the rate of development in a group ratio (4:1) for water curing when increasing the polymer (0-10) %, was (192) % more than the strength in the control mix and the mix (M4-15) for water curing the strength was (130) % more than control mix. That indicates that the polymer is more effective in poor mixtures due to its containing high voids.

Keywords: Styrene-butadiene rubber; splitting tensile strength; lightweight concrete; ANOVA.

1. Introduction
This research's main object was to examine the representation of no-fine concrete produced with lightweight aggregate (porcelainize) and modify with (SBR) polymer and recommend potential applications of this kind of concrete. The commodity method categorizes Lightweight Concrete (LWC) broadly into three significant groups: aerated concrete, lightweight aggregate concrete, and no-fine concrete [1] as shown in Figure 1. Aerated concrete is accomplished by adding foam bubbles into the cement matrix or the grout of sand-cements. Lightweight aggregates used in lightweight concrete include a wide variety of products that can be raw materials, raw manufactured materials, or synthetic materials from recycled by-products or agricultural waste [2]. As the name suggests, no-fine concrete is concrete without any fine aggregate: just cement, water, and coarse aggregate. Consequently, no-fine concrete is an agglomeration of coarse aggregate particles, each becoming covered by a cement paste coating up to 1.3 mm thick [3-5].
No-fine concrete's interests include lower density, lower thermal conductivity, comparatively low drying shrinkage, no segregation and capillary water flow, more insulating properties than conventional concrete due to the absence of large voids [6]. This research's primary purpose was to study the efficiency of no-fine concrete manufactured modifications with lightweight aggregate (porcelainize) and with Styrene Butadiene Rubber (SBR) proposes possible concrete solutions of this kind. Many researchers and investigators are lately reusing the admixtures in economically sustainable ways [7-9].

![Aerated concrete](image1)
![No-fines concrete](image2)
![Lightweight aggregate concrete](image3)

Figure 1. Main shapes of lightweight concrete.

2. Methodology

All concrete samples were cast in steel molds in layers of around 100 mm depth. Every layer was compacted by simplistic rodding. The specimens were stored in their molds at room temperature with a plastic sheet covering to decrease water losses during 24 hrs. Then, it was demolded and soaked in a water tank up to the age of 7 days at a temperature of the laboratory about (23±2°C). The splitting tensile test was performed as maintained by ASTM C496. (d = 150 mm, h = 300 mm) cylinders’ concrete specimens were utilized. Figure 2 shows the specimens of cylinders’ concrete. The specimens were examined employing an electrical testing device with a capability of 2000 kN.

![Specimens of cylinders’ concrete](image4)

Figure 2. Specimens of cylinders’ concrete.

The materials utilized in this research were cement, coarse aggregate, and Styrene-Butadiene Rubber (SBR). The cement used in the study was brought from a cement factory – Sulaymaniyyah/Iraq. The cement’s percentage oxide composition and physical properties indicate that the adopted cement according to CEM I 42.5 R used in general construction confirmed by EN 197-1. Local natural lightweight porcelain stone aggregate was utilized as a coarse aggregate with a particular 19 mm size. The aggregate was washed by water then spread within the laboratory to produce the aggregate particles. The coarse porcelainizing aggregate specifications are described in Table 1. A white latex-based on modified styrene-butadiene copolymer emulsion, which is identified commercially as Cempatch SBR 100, was utilized during this study. Table 2 shows the description of the aqueous solution of SBR adopted in this investigation which is complied with ASTM C 1059. Figure 3 demonstrated the color of SBR.
Table 1. Specifications of porcelainize lightweight aggregate

Property	Value	Property	Value
Absorption, %	33	Dry loose unit weight, kg/m³	711
Specific gravity	1.64	Sulfate content (as SO₃), %	0.32
Aggregate crushing value, %	17	Dry rodded unit weight, kg/m³	755

Table 2. Description of the SBR Latex

Property	Value	Property	Value
Specific gravity	1.02	pH	10.7
Particle size	0.18 micron	Color	White emulsion
Solid particles content	57 %		-

Figure 3. Milky White SBR Latex.

Fifteen concrete mixes with various aggregate/cement ratios (4:1, 6:1, and 8:1) by volume were used. These mixes covered five mixes that differed in polymer/cement ratios P/C (0%, 5%, 10%, 15%, and 20%) by mass to obtain the optimum P/C ratio. A water/cement ratio w/c, higher than the optimum, would get the cement paste flows to the bottom of the concrete and makes that portion dense, whereas, with additionally low a water/cement ratio, the cement paste will be so dry that aggregates do not get characteristic covered with a paste which occurs in insufficient adhesion between the particles. The specifications of all concrete mixes used throughout this research are shown in Table 3.

Table 3. The mixes portion of this study (*NP Non-Polymer).

Type of mix	Agg./Cement ratio by volume	P/C ratio by weight (%)	w/c ratio by weight of cement
M1-NP*	4:1	0%	0.33
M2-5	4:1	5%	0.31
M3-10	4:1	10%	0.28
M4-15	4:1	15%	0.26
M5-20	4:1	20%	0.25
M6-NP*	6:1	0%	0.38
M7-5	6:1	5%	0.35
M8-10	6:1	10%	0.33
M9-15	6:1	15%	0.31
M10-20	6:1	20%	0.30
M11-NP*	8:1	0%	0.43
M12-5	8:1	5%	0.41
M13-10	8:1	10%	0.38
M14-15	8:1	15%	0.36
M15-20	8:1	20%	0.34
3. Results and Discussion

The test results of the tensile splitting strength of different characters of no-fine concrete mixes are described in Table 4 and graphically displayed in Figures 4 and 5. It is observed that the highest splitting tensile strength was at an aggregate/cement ratio of 4:1 and decreased as the aggregate/cement ratio was increased. Furthermore, the splitting tensile strength has been increased with the increase of the polymer/cement ratio for all mixes with different Agg./cement ratio, Figure 5. The results indicated that the splitting tensile strength increased corresponded with adding the polymer/cement ratio from 5 to 20%. This can be described in terms of the influence of high tensile strength by the polymer itself and comprehensive development in the bond between cement-aggregate, the results are acceptable with other researchers such as [4, 10-12].

Table 4. The splitting tensile strength test results for all no-fine concrete mixes.

Type of mix	Agg./cement ratio by volume	P/C ratio by weight (%)	w/c ratio by weight of cement	Splitting tensile strength MPa
M1-NP	4:1	0%	0.33	0.56
M2-5	4:1	5%	0.31	0.46
M3-10	4:1	10%	0.28	0.33
M4-15	4:1	15%	0.26	0.72
M5-20	4:1	20%	0.25	0.62
M6-NP	6:1	0%	0.38	0.43
M7-5	6:1	5%	0.35	0.83
M8-10	6:1	10%	0.33	0.66
M9-15	6:1	15%	0.31	0.47
M10-20	6:1	20%	0.30	0.88
M11-NP	8:1	0%	0.43	0.81
M12-5	8:1	5%	0.41	0.56
M13-10	8:1	10%	0.38	0.96
M14-15	8:1	15%	0.36	0.9
M15-20	8:1	20%	0.34	0.63

Figure 4. Polymer/cement ratio effect on splitting tensile strength value.
Figure 5. Splitting tensile strength, P/C and Agg/cement ratio for no-fine concrete.

4. Statistical analysis
All data obtained from the experimental study are processed and entered into the Minitab program (Version 18). In the (ANOVA) Analysis of variance at 95% confidence level has been implemented to find the statistical factors' significance. In this investigation, the design factors are P/C, and Agg./cement is considered the main parameters, and the splitting strength is defined as design response. Also, ANOVA is presented to understand the level of effectiveness of the independent variables on the design responses. P-values for the statistical analysis results demonstrated in Tables 5 and 6, which is higher than 0.05, the parameter rejected as an insignificant factor on the response at 95% confidence level, such as 10% in P/C. Moreover, the highly effective outcomes obtained in P/C and Agg./cement, as shown in Tables 5, 6, and Figure 6.

Figure 6. Normalization of parameters.
Table 5. Analysis of variance.

Source	Degree of Freedom	Adj Sum of Squares	Adj Mean Square	F-Value	P-Value
P/C	4	0.257707	0.064427	52.52	0.000
Agg./cement	2	0.243453	0.121727	99.23	0.000
Error	8	0.009813	0.001227		
Total	14	0.510973			

Table 6. Coefficients of statistics analysis.

Term	Coefficient	SE Coef	T-Value	P-Value	VIF
Constant	0.65467	0.00904	72.39	0.000	
P/C					
0	-0.2047	0.0181	-11.32	0.000	1.60
5	-0.0647	0.0181	-3.58	0.007	1.60
10	-0.0013	0.0181	-0.07	0.943	1.60
15	0.0953	0.0181	5.27	0.001	1.60
Agg./cement					
4	0.1353	0.0128	10.58	0.000	1.33
6	0.0353	0.0128	2.76	0.025	1.33
8	0.0285	0.0128	1.58	0.015	1.33

To predict the value of splitting strength according the ratios of P/C and Agg./cement by using regression equation as Eq. 1.

\[
\text{Splitting Strength} = 0.65467 - 0.2047P/C_0 - 0.0647P/C_5 - 0.0013P/C_{10} + 0.0953P/C_{15} + 0.1753P/C_{20} + 0.1353\text{Agg./cement}_4 + 0.0353\text{Agg./cement}_6 + 0.0285\text{Agg./cement}_8
\]

(1)

5. Conclusions

Using SBR in no-fine concrete has some important conclusions that can be described in the following points:

- The mix proportions 4:1 gives higher tensile strength than the other two proportions.
- While the polymer/cement ratio was increased in all mixtures containing different aggregate/cement ratios, the splitting tensile strength was increased.
- The value of amelioration in splitting tensile strength compared with the control mixture increased approximately 30-50%, increasing the polymer/cement rate from 5 to 20%.
- When aggregate/cement increased, the tensile strength decreased due to adding SBR.
- The results showed that no-fine concrete's enhancement strength properties improve it and are utilized in engineering projects.
- Finally, using SBR materials in construction buildings improves the quality of concrete for sustainability and durability of the structures; therefore, no-fines concrete differs from other types. It does not contain fine aggregate, resulting in no segregation of ingredients.

References

[1] Mohammed, J.H. and Hamad, A.J., 2014. Materials, properties and application review of Lightweight concrete. Technical Review of the Faculty of Engineering University of Zulia, 37(2), pp.10-15.
[2] Abd Elrahman, M., Chung, S.Y. and Stephan, D., 2019. Effect of different expanded aggregates on the properties of lightweight concrete. Magazine of Concrete Research, 71(2), pp.95-107.

[3] Neville, A.M., 2006. Properties of Concrete, Asia, Person Education Pte.

[4] Khan, A.N., Bheel, N.D., Ahmed, M., Abbasi, R.A. and Sohu, S., 2020. Use of styrene butadiene rubber (SBR) polymer in cement concrete. Indian Journal of Science and Technology, 13(5), pp.606-616.

[5] Hwang, E.H., Ko, Y.S. and Jeon, J.K., 2007. Effect of Polymer Cement Modifiers on Mechanical and Physica Properties of Polymer-Modified Mortar Using Recycled Waste Concrete Fine Aggregate. Journal of industrial and engineering chemistry, 13(3), pp.387-394.

[6] Yao, S.Y. and Ge, Y., 2012. Effect of styrene butadiene rubber latex on mortar and concrete properties. In Advanced Engineering Forum (Vol. 5, pp. 283-288). Trans Tech Publications Ltd.

[7] Mermerdaş, K., Arbili, M.M. and Ghaffoori, F.K., Statistical analysis of the performance of the soft computing based prediction model for shrinkage of concrete including mineral admixtures.

[8] Mermerdaş, K. and Arbili, M.M., 2015. Explicit formulation of drying and autogenous shrinkage of concretes with binary and ternary blends of silica fume and fly ash. Construction and Building Materials, 94, pp.371-379.

[9] Alam, M.I., Kuddus, M.A. and Islam, S., 2014. Laboratory Investigation of No Fine Concrete. In Proc. 2nd Int. Conf. Civ. Eng. Sustain. Dev.

[10] Al-Nu'man, B.S., Al-Jumaily, I.A. and Jabal, Q.A., 2005. Stress strain relationship of polymer modified no-fine concrete. Iraqi Journal of Civil Engineering, (6).

[11] Grinys, A., Augonis, A., Daukšys, M. and Pupeikis, D., 2020. Mechanical properties and durability of rubberized and SBR latex modified rubberized concrete. Construction and Building Materials, 248, p.118584.

[12] Jasim, A.T. and Jabal, Q.A., 2010. No-fine lightweight aggregate concrete modified with styrene butadiene rubber. Kufa Journal of Engineering, 1(2).