COMMUNICATION

TIGER BEETLES (COLEOPTERA: CICINDELINAE) OF DAVAO REGION, MINDANAO, PHILIPPINES

Milton Norman Medina, Analyn Cabras, Harlene Ramillano & Reagan Joseph Villanueva

26 March 2020 | Vol. 12 | No. 4 | Pages: 15460–15467
DOI: 10.11609/jott.5102.12.4.15460-15467

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.
Tiger beetles (Coleoptera: Cicindelinae) of Davao Region, Mindanao, Philippines

Milton Norman Medina¹,³, Analyn Cabras¹,³, Harlene Ramilliano⁴ & Reagan Joseph Villanueva⁴

¹² Coeloptera Research Center, Institute of Biodiversity and Environment, University of Mindanao, Davao City, 8000, Philippines. ³College of Arts and Sciences, University of Mindanao, Davao City, 8000, Philippines.

Abstract: An assessment of tiger beetles in select mountains of Davao region including Mt. Hamiguitan (MHRWS), Marilog District (MD), Davao City (DC), Sta. Cruz Davao del Sur (SCD), and Davao de Oro (DO) is herein presented. Materials were collected between December 2017 and February 2019 through a combination of opportunistic and standard light trapping methods. Twenty-two species belong to 9 genera were recorded with 64% endemic in the Philippines. Nine (9) species are recorded from MHRWS, 6 from MD, 8 from DC, 5 SCD, and 14 from DO (formerly Compostela Valley Province). Tiger beetles showed consistent habitat preferences particularly riparian species which includes the genera Calomera, Thopeutica, Therates, Prothryma, Cylindera, and Heptodonta. Strictly arboreal species include Tricondyla, Therates, and Neocollyris. Strict epigeic species include but not limited to the genera Calomera, Tricondyla, Thopeutica, Cylindera, Heptodonta, Neocollyris, and Prothryma. Endemic species such as Heptodonta lumawigi (Wiesner, 1980), Thopeutica (Thopeutica) anichtchenkoi (Wiesner, 2015), Thopeutica (Thopeutica) milanae (Wiesner, 1992), Thopeutica (Thopeutica) rollandmuelleri Cassola, 2000 and Thopeutica petertaylori (Medina, Cabras, Wiesner, 2019) prefers a more intact forests while others such as Calomera (Ifasina) discreta elaphroides (Dokhtouroff 1882), Calomera mindanaoensis (Cassola, 2000) and Necollyris sp. could tolerate disturbed secondary forest even agricultural lands. New distribution record for Heptodonta lumawigi (Wiesner, 1980) and Thopeutica (Thopeutica) milanae (Wiesner, 1992) for Marilog District were also recorded. Ecological data and conservation status of tiger beetles are also presented. Conservation actions are deemed necessary in the remaining green spaces in Davao City that hosts tiger beetle fauna should also be conducted.

Keywords: Conservation, davao region, diversity, Philippines.

Filipino abstract: Pag-lista sa tanan tiger beetles gikan sa mga bukid sa rehiyon sa Davao, apil ang Mt. Hamiguitan Range Wildlife Sanctuary (MHRWS), distrito sa Marilog, Davao City (DC), Sta. Cruz Davao del Sur (SCD), at Davao de Oro (DO) na usa ka makasaysay nga lugar hin alternatibong ug light trapping nga mga pamaagi. Twenty-two species sa 9 genera ang natukod sa mga bukid sa rehiyon sa Davao, 64% nga endemic sa Pilipinas. Syam ka mga species sa MHRWS, 6 sa MD, 8 sa DC, 5 sa SCD, at 14 sa DO (former Compostela Valley Province). Tiger beetles nagpa-on nga maletter magadhi sa riparian species nga inayon sa mga genera Calomera, Thopeutica, Therates, Prothryma, Cylindera, at Heptodonta. Striky epigeic species inayon sa mga genera Calomera, Tricondyla, Thopeutica, Cylindera, Heptodonta, Neocollyris, at Prothryma. Endemic species inayon sa mga genera Heptodonta lumawigi (Wiesner, 1980), Thopeutica (Thopeutica) anichtchenkoi (Wiesner, 2015), Thopeutica (Thopeutica) milanae (Wiesner, 1992), Thopeutica (Thopeutica) rollandmuelleri Cassola, 2000 at Thopeutica petertaylori (Medina, Cabras, Wiesner, 2019) inayon sa mga genera sa mga bukid nga adunay kahoy nga adunay magaletter. Naay duha ka mga species, Calomera mindanaoensis (Cassola, 2000) at Necollyris sp. mao naletter pa ang nasagda sa bagong lugar. Ka naay duha ka mga species sa MHRWS, 6 sa MD, 8 sa DC, 5 sa SCD, at 14 sa DO. Dapit nga adunay kasaysay sa davao region sa Marilog, Sta. Cruz, at Davao de Oro. Ang mga beetles mao naletter pa ang nasagda sa mga lugar nga adunay kahoy nga adunay magaletter. Ang mga species mao naletter pa ang nasagda sa mga lugar nga adunay kahoy nga adunay magaletter pa ang nasagda sa mga lugar nga adunay kahoy nga adunay magaletter.
INTRODUCTION

The tiger beetles are predatory beetles recognized by their lengthy legs, prominent sickle mandibles, 11 segmented filiform antennae, and a pair of conspicuous large compound eyes (Pearson 1998). Their size ranges from 6mm to the extent of 45mm (Pearson 1998). Recent revisions of Lopez-Lopez & Vogler (2017) and a comprehensive molecular phylogeny of tiger beetles of Gough et al. (2018) placed the taxon into a separate family Cicindilidae. Among the insect taxa, tiger beetles are a bioindicators of biodiversity (Pearson & Cassola 1992) and information can be gathered by analyzing their habitat specificity, presence of endemic species, and a possible translation of patterns to related taxa (Nose 1990; Morgan et al. 2000).

The Philippines is home to a high number of unique species of Cicindilinae. In 1992, Wiesner recorded 94 species of Cicindelid in the Philippines. Between 1990 and 2000, Cassola & Pearson (2000) listed 130 tiger beetles wherein 111 are endemic, making the Philippines the fifth in terms of the absolute number of tiger beetles, and ranked third based on endemism behind Madagascar and Australia. More recently, Cabras et al. (2016) listed a total of 155 tiger beetle species and 18 subspecies, of which 130 are endemic in the Philippines. Additionally, six new species were added by Dheurle (2016), Zettel & Pangantihon (2017), Zettel & Wiesner (2018), raising the list to 161 tiger beetles in the Philippines.

Consequently, tiger beetle studies in the Philippines are still scant mostly focusing on taxonomy with very few faunistic data (Wiesner 1980, 1988a, 1988b, 1989, 1992a, 1992b, 2015; Bogenberger 1988; Naviaux 1992, 2002; Cassola 2000, 2011; Cassola & Ward 2004; Cassola & Zettel 2006; Deuve 2015; Dheurle 2015; Cabras et al. 2016). In Mindanao, only Davao de Oro (formerly Compostela Valley) and Davao Oriental Province, particularly in Mainit Hot Spring Protected Landscape (MHSPL) and Mati Protected Landscape, have published data on tiger beetle fauna (Cabras et al. 2016). This paper presents the list of tiger beetles in Mt. Hamiguitan Range Wildlife Sanctuary Davao Oriental, Sta. Cruz Davao del Sur, green spaces of Davao City, and upland forests of Marilog District Davao City. Notes on their ecology and conservation status, which are an essential reference for conservation and monitoring purposes, are also presented.

MATERIALS AND METHODS

Collection of tiger beetles was done using opportunistic sampling and light trapping for Mt. Hamiguitan Range Wildlife Sanctuary (MHRWS) Davao Oriental [6°44’08.000”N, 126°08’33.810”E], Sta. Cruz Davao del Sur [6°52’27.000”N, 125°22’04.320”E], green spaces and lowland forest of Davao City [7°03’56.540”N, 125°35’36.910”E], mountain forests of Marilog District [7°26’31.070”N, 125°15’23.310”E] (Figure 1) from December 2017 to February 2019. Additional data from Davao de Oro [7021’21.080”N, 126011’00.220”E] is also included (Cabras et al. 2016b).

The daily collection was conducted using insect net and light trapping for nocturnal sampling from 18.00h to 22.00h. Collected specimens were killed using ethyl acetate and placed in 90% ethanol. Species identification was made by examining morphological characters were observed under Luxeo 4D and Nikon SMZ745T stereomicroscopes. Stacked digital habitus images were taken with Nikon D5300 digital camera and Sigma 18-250. All images were then stacked and processed using a licensed version of the software Photoshop CS6Portable with reference to taxonomic keys and published articles of Wiesner (1980, 1988a, 1988b, 1989, 1992a, 1992b, 2015), Cassola (2000, 2011), Cassola & Ward (2004), and Cabras et al. (2016).

RESULTS AND DISCUSSION

A total of 22 species belonging to nine genera were collected in all sampling sites (Table 1). Nine species were recorded from MHRWS, six from the mountain forests of Marilog District Davao City, eight from the urban green spaces of Davao City, five from Sta. Cruz Davao del Sur, and 14 species from Davao de Oro. Of the 22 species, nine (41%) are Philippine endemic, five (23%) are Mindanao endemic, four (18%) are distributed to Southeast Asia, and two (9%) are Oriental species. Five (23%) species are threatened according to the latest DENR Administrative Order (2017) https://www.philippineplants.org/dao-2017-11.pdf, while the other seventeen (77%) species are Data Deficient.

The most widespread species shared by almost all areas include Calomera mindanaoensis (Cassola, 2000), Cylindera (Ifasina) discreta elaphroides (Dokhtouroff, 1882), Neocollyris (Heterocollyris) similior (Horn, 1893), Therates fasciatus fasciatus (Fabricius, 1801), Therates fulvipennis everetti (Bates, 1878), and Tricondyla (Tricondyla) aptera punctipennis (Chevrolat, 1841).
JTT

The genus *Cylindera* is the most speciose with four species recorded, followed by *Therates*, *Tricondyla*, and *Thopeutica* with three species each. The genera *Calomera* and *Neocollyris* were represented by two species, while the rest of the genera, viz., *Heptodonta* and *Prothyma* with one species each, and *Thopeutica* with three species. Cabras et al. (2016) enumerated five subspecies of *Therates fasciatus*, of which two subspecies are found in the Davao Region. Two out of three species of *Calomera* in Mindanao are also recorded in Davao Region, namely *Calomera mindanaoensis* (Cassola, 2000) and *Calomera lacrymosa* (Dejean, 1825). Two of the recently described *Thopeutica* from Mindanao were also recorded in Davao Region, namely *Calomera mindanaoensis* (Cassola, 2000) and *Calomera lacrymosa* (Dejean, 1825). Two of the recently described *Thopeutica* from Mindanao were also recorded in Davao Region, namely *Thopeutica* (Thopeutica) anichtchenkoi (Wiesner, 2015) and *Thopeutica* (Thopeutica) rolandmuelleri Cassola, 2000. A new species of *Thopeutica* was also discovered in Compostela Valley, awaiting description. *Thopeutica* (Thopeutica) milanae (Wiesner, 1992) was also recorded for the first time in Davao Region, specifically in the mountain forests of Marilog District. It was initially known to be endemic in Leyte. Moreover, additional specimens were recorded for Samar and Mindanao by Cassola & Ward (2004) and Cabras et al. (2016).

Most species of tiger beetles are matched to a specific environmental condition, which makes the diversity of the fauna strongly determined by the availability and variety of suitable habitats (Willis 1967; Knisley 1984). In general, tiger beetles preferred river edges, water beaches, dunes, sandy flats, woodland paths, grasslands, and areas with dirt roads, trails, sandpits, and spoil deposits (Knisley 2011). The difference in habitats including physical parameters such as soil characteristics, plant composition, and the presence of bare patches of the ground determine their composition since these species need bare spots of the field as a habitat requirement both for adults and larvae (Dreisig 1980). For adults, the presence of sunlight is an essential physical factor in maintaining their high body temperature to enhance speed and effectiveness in catching their prey. Majority of the tiger beetles captured during day time were collected in open spaces where sunlight can penetrate and near river edges and cliffs. Species like *Heptodonta lumawigi* (Wiesner, 1980), *Thopeutica* (Thopeutica) anichtchenkoi (Wiesner, 2015), *Thopeutica* (Thopeutica) milanae (Wiesner,
Table 1. List of tiger beetles in Davao Region with their geographic distribution and conservation status. MH—Mt. Hamiguitan Range Wildlife Sanctuary | MD—Marilog District | DC—Davao City | SCDS—Sta. Cruz, Davao del Sur | CVP—Compostela Valley Province | PE—Philippine Endemic | O—Oriental region | ME—Mindanao Endemic | SE—Southeast Asia | OTS—Other Threatened Species | DD—Data Deficient.

Species (Mitesa, 1982)	MH	MD	DC	SCDS	CVP	GD	CS
Calomera lacrymosa (Dejean, 1825)	√	PE	OTS				
Calomera mindanaoensis (Cassola, 2000)	√	PE	OTS				
Cylindera (Ifasina) mouthezi (Dheurie, 2015)	√	ME	DD				
Cylindera (Ifasina) discreta elaphroides (Dokhtouroff, 1882)	√	PE	DD				
Cylindera viduata (Fabricius, 1801)	D	DD					
Cylindera (Eugrapha) excisa (Schaum, 1862)	SE	DD					
Heptodonta lumawigi (Wiesner, 1980)	PE	OTS					
Lophyra striolata (Illiger, 1800)	D	OTS					
Neocollyris (Heterocollyris) similior (Horn, 1893)	ME	DD					
Neocollyris sp.	√	ME	DD				
Prothyma (Symplecthyema) heteromallicollis heteromallicollis (Horn, 1909)	ME	DD					
Therates coracinus coracinus (Erichson, 1834)	SE	OTS					
Therates fasciatus fasciatus (Fabricius, 1801)	SE	DD					
Therates fasciatus quadrirunculatus (Horn, 1895)	PE	DD					
Therates fulvipennis everetti (Bates, 1878)	ME	DD					
Thopeutica (Thopeutica) anichtchenkoi (Wiesner, 2015)	√	ME	DD				
Thopeutica (Thopeutica) milanae (Wiesner, 1992)	√	PE	DD				
Thopeutica (Thopeutica) rolandmuelleri Cassola, 2000	ME	DD					
Thopeutica (Thopeutica) petertaylori (Medina, Cabras, Wiesner, 2019)	√						
Tricondyla (Stenotricondyla) cavifrons (Schaum, 1862)	PE	DD					
Tricondyla (Tricondyla) elongata (Horn, 1906)	PE	DD					
Tricondyla (Tricondyla) aptera puncticennis (Chevrolat, 1841)	SE	DD					

1992), Thopeutica (Thopeutica) rolandmuelleri Cassola, 2000, and Thopeutica sp. are habitat-specific and prefer a more intact forest habitat. Few species like Cylindera (Ifasina) discreta elaphroides (Dokhtouroff, 1882) and Calomera mindanaoensis (Cassola, 2000), can thrive in relatively disturbed habitats. Both were collected in the University of Mindanao campus and remaining green spaces in Bago Gallera as well as a mixed agricultural ecosystem or at least a few meters away from the river bank. Arboreal species such as Tricondyla and Neocollyris were mostly captured on shrubs’ branches and tree trunks, considering the genus Tricondyla (Latreille, 1822) is a tree-dwelling species. Because of this, most species are found on tree trunks or the ground, going from one tree to another. Tricondyla (Stenotricondyla) cavifrons (Schaum, 1862) and Tricondyla (Tricondyla) aptera puncticennis (Chevrolat, 1841) as well as Neocollyris (Heterocollyris) similior (Horn, 1893) and Neocollyris sp. prefers mixed agricultural to secondary forests ecosystem with shaded areas.

Species such as Heptodonta lumawigi (Wiesner, 1980), Thopeutica (Thopeutica) milanae (Wiesner, 1992), and Prothyma (Symplecthyema) heteromallicollis...
Image 1. Tiger beetles in Davao region: A—Calomera mindanaoensis (Cassola, 2000) | B—Calomera lacrymosa (Dejean, 1825) | C—Heptodonta lumawigi (Wiesner, 1980) | D—Therates fasciatus quadrimaculatus Horn 1895 | E—Therates fulvipennis everetti (Bates 1878) | F—Thopeutica petertaylori (Medina, Cabras, Wiesner, 2019). © A,D - H. Ramillano | B,C,E - C. Torrejos & R. Cabras | F - J. Wiesner.
heteromallicollis (Horn, 1909) were observed on steeply sloping areas near creeks and rivers (Image 2B,C). *Heptodonta lumawigi* (Wiesner, 1980) seemed to favor sloping creeks but also collected along with the road cuts in open spaces (Image 2A). The high preference of this species to inhabit intact forest habitat might be one of the reasons why this species is recorded under threatened species. *Heptodonta lumawigi* (Wiesner, 1980) was first believed to be endemic to Panay when Wiesner recorded it in 1980. New specimens, however, were recorded by Cassola (2000) in Mt. Parker, South Cotabato, listing the species as widely spread in the Philippines. This is also the first time that *H. lumawigi* is recorded in the forest of Marilog District, Davao City. The species under the genus *Therates*, on the other hand, are commonly found near the rivers, usually in the leaves of shrubs and ferns. At times, two species of *Therates* can co-exist in the same riverine area such as *Therates fulvipennis everetti* (Bates, 1878) and *Therates fasciatus fasciatus* (Fabricius, 1801). All species of *Therates* share the same habitat type, shrubs in relatively disturbed secondary forests system, and shaded riverine sandy areas (Image 2D).

The remaining green spaces of Davao City harbor eight species a testament of the importance of keeping the green spaces within urban areas for species to thrive and continue living. It is interesting to note that *Cylindera (fusina) discreta elaphraides* (Dokhtouroff, 1882) is documented both within the campus of the University of Mindanao Matina and in the secondary forests of Bago Galleria. *Neocollyris* sp. and *Calomera mindanaoensis* (Cassola, 2000) were captured in Shrine Hills, Matina, and in the agricultural ecosystem in Matina Pangi, respectively. Cassola & Ward (2004) observed different species of tiger beetles have various adaptations to the changing environment. Similar findings were observed by Cabras et al. (2016). The present list is more numerous compared to tiger beetle fauna in Calanasan Apayao Province which (Medina et al., 2020) which is dominated by old growth secondary forests. The other five species of tiger beetles from Davao City, viz., *Prothyma (Symplecthyma) heteromallicollis heteromallicollis* (Horn, 1909), *Tricondyla aptera punctipennis* (Chevrolat, 1841), *Neocollyris (Heterocollyris) similior* (Horn, 1893), *Therates fasciatus quadrimaculatus* (Horn, 1895), and *Therates fulvipennis everetti* (Bates, 1878) were documented in a pristine lowland secondary forests in Calinan and Baguio districts.
CONCLUSION & RECOMMENDATION

Davao Region hosts a good number of tiger beetles with 22 species record with 64% endemism (Table 1). Five (23%) are listed as threatened species, which calls for immediate conservation efforts. The astonishing number of tiger beetles in the remaining green spaces of Davao City is a testament to the importance of keeping the urban that houses tiger beetles and other animal species. Tiger beetles of Davao Region show consistent habitat preferences to forested and riverine ecosystems. In the face of deforestation and conversion of forest habitats, tiger beetles, which are linked with forested habitats, are highly at risk of extinction. This calls for more expeditions and inventories to assess extant populations leading towards conservation.
REFERENCES

Bogenberger, J.M. (1988). Two new species of tiger beetles from Palawan (Coleoptera: Cicindelidae). Mitteilungen der Münchner Entomologischen Gesellschaft 78: 109–114.

Cabras, A., E. Cabigas & J. Wiesner (2016a). Updated checklist of Tiger Beetles in the Philippines (Coleoptera, Carabidae, Cicindelidae) (13th. Contribution towards the knowledge of Cicindelinae). Lambillionea 116(3): 188–201.

Cabras, A., M.N. Medina & J. Wiesner (2016b). Tiger beetles (Coleoptera: Carabidae: Cicindelidae) of Compostella Valley Province, Mindanao Island, Philippines. Biotropia, 23: 137–143.

Cassola, F. (2000). Studies on Tiger Beetles. Cl. The Cicindelidae Collected by Roland A. Muller in the Philippine Islands, with Description of Three New Species (Coleoptera, Cicindelidae). Zoologische Mededelingen, Leiden 73(33): 491–509.

Cassola, F. (2011). Studies on Tiger Beetles CLXXIX. A New Calomera Species from Mindanao, Philippines. Spixiana 34: 120–131.

Cassola, F. & D.L. Pearson (2000). Global Patterns Of Tiger Beetle Species Richness (Coleoptera: Cicindelidae): Their Use in Conservation Planning. Biological Conservation 95: 197–208.

Cassola, F. & R.D. Ward (2004). Systematics And Zoogeography Of The Philippine Species Of The Genus Theopneutra Chaudoria, 1861. Ann Mus Ciy Stor Nat Genova 96: 1–32.

Deuve, T. (2015). Deux nouvelles Cicindèles des Philippines et du Mozambique (Coleoptera: Caraboidae). Coleteres 21(8): 99–104.

Dheurle, C. (2015). Cylindera (fusina) mouthiezi, nouvelle espèce des Philippines (Coleoptera: Cicindelidae). L’Entomologiste 71(2): 123–124.

Dheurle, C. (2016). Une nouvelle espèce de Cylindera Westwood, 1831 de l’île de Samar aux Philippines est décrite et illustrée. L’Entomologiste 72(6): 401–403.

Dreisig, H. (1980). Daily activity, thermoregulation and water loss in the tiger beetle. Cicindela hybrida 44: 376 –389.

Gough, H., Duran, D., Kawahara, A., & E. Toussaint (2018). A comprehensive molecular phylogeny of tiger beetles (Coleoptera, Carabidae, Cicindelidae). Systematic Entomology 1–17. https://doi.org/10.1111/syen.12324

Knisley, C.B. (1984). Ecological Distribution of Tiger Beetles (Coleoptera: Cicindininae) in Colfax Country, New Mexico. Southwestern Naturalist 93–104.

Knisley, C.B. (2011). Anthropogenic disturbances and rare tiger beetle populations: benefits, risks, and implications for conservation. Terrestrial Arthropod Reviews 4: 41–61.

Lopez-Lopez, A., & A.P. Vogler (2017). The Mitogenome Phylogeny Of Adephaga (Coleoptera). Molecular Phylogenetics and Evolution 114: 116–174.

Medina, M.N.D., A. Cabras, & J. Wiesner (2019). Thopeutica petertaylori, a new tiger beetle species from Mindanao, Philippines. Insecta Mundi 0733: 1-5

Medina, M.N.D., A.A. Cabras, J. Ibanez, G.Opiso, & R.J.T. Villanueva (2020). Annotated list of tiger beetles (Coleoptera: Cicindelidae) in Calanasan, Apayao Province, Luzon, Philippines. Checklist 16(1): 37–45. https://doi.org/10.15560/16.1.137

Morgan, M., C.B. Knisley & A.P. Vogler (2000). New Taxonomic Status of the Endangered Tiger Beetle Cicindela limbata albissima (Coleoptera: Cicindelidae): Evidence from mtDNA. Annals of Entomological Society of America 93(5): 1108–1115.

Naviaux, R. (1992). Diagnose de quatre Neocollyris nouveaux des Philippines et du Vietnam (Col. Cicindilidae). Bulletin de la Société entomologique de France 97(1): 42.

Naviaux, R. (2002). Les Tricondylina (Coleoptera, Cicindelidae). Revision des genres Tricondyda Latreille et Deracrania Chaudourd et descriptions de nouveaux taxons. Memoires de la SEF 5: 1–106.

Nose, R.F. (1990). Indicators For Monitoring Biodiversity: A Hierarchal Approach. Conservation Biology 4: 355–364.

Pearson, D.L. (1998). Biology of Tiger Beetles. Annual Review Entomology, 33: 123–147.

Pearson, D.L. & F. Cassola (1992). World-wide Species Richness Patterns Of Tiger Beetles (Coleoptera: Cicindelidae): Indicator Taxon For Biodiversity And Conservation Studies. Conservation Biology 6: 376–391.

Wiesner, J. (1980). Beitrag zur Kenntnis der philippinischen Cicindelidae (Coleoptera). Mitteilungen der Münchner Entomologischen Gesellschaft 70: 119–127.

Wiesner, J. (1988a). Die Gattung Therates Latr. und ihre Arten. 15. Beitrag zur Kenntnis der Cicindelidae (Coleoptera). Mitteilungen der Münchner Entomologischen Gesellschaft 78: 5–107.

Wiesner, J. (1988b). Eine neue Cylindera von den Philippinen (Coleoptera: Cicindelidae). 16. Beitrag zur Kenntnis der Cicindelidae. Entomologische Zeitschrift 98: 153–5

Wiesner, J. (1989). Beiträge zur Kenntnis der philippinischen Cicindelidae (I) (Coleoptera). 22. Beitrag zur Kenntnis der Cicindelidae. Entomologische Zeitschrift 99: 237–8.

Wiesner, J. (1992). Verzeichnis der Sandlaufkäfer der Welt (Coleoptera: Cicindelidae). Erna Bauer; Kletern, 364.

Wiesner, J. (1992a). Eine neue Thoeutica von den Philippinen (Coleoptera: Cicindelidae). 26. Beitrag zur Kenntnis der Cicindelidae. Entomologische Zeitschrift 102: 128–30.

Wiesner, J. (1992b). Verzeichnis der Sandlaufkäfer der Welt. Check list of the Tiger Beetles of the World. Verlag Erna Bauer, Kletern, 1–364.

Wiesner, J. (2015). Two new Thoeutica species from the Philippines (Coleoptera: Carabidae: Cicindelidae). 122. Contribution towards the knowledge of Cicindelinae. Mitteilungen des Internationalen Entomologischen Vereins 401(12): 1–8.

Willis, H.L. (1967). Bionomics and zoogeography of tiger beetles of saline habitats in the central United States (Coleoptera: Cicindillinae). University of Kansas Science Bulletin 47: 145–131.

Zettel, H. & C.V. Pangantihon (2017). Two New Tiger Beetle Species Of The Therates Fasciatus Group (Coleoptera: Carabidae: Cicindelinae). Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen 69: 95–104.

Zettel, H., & J. Wiesner (2018). Cylindera (Conidera) mindoroana sp. n. (Coleoptera: Cicindelidae), a new tiger beetle species from the Philippines. Insecta Mundi 0632: 1–10.

Author details: DR. MILTON NORMAN MEDINA is a Filipino coleopterist working on Philippine Cicindelidae (tiger beetles). He is considered one of the Philippine worker of this group. He has published several new taxa and provided checklists of tiger beetles from different areas in the Philippines. Currently, Dr. Medina is the Assistant Vice President for Natural Science and Innovation at the University of Mindanao, Philippines. DR. ANALYN CABRAS is also a Philippine coleopterist working on the Families Curculionidae and Cerambycidae. She has described numerous species to science and have been working closely with leading coleopterists and coleoptera research centers from around the world. At present, she is the Director of the Philippine Coleoptera Research Center based in the University of Mindanao, Davao City Philippines. MS. HARLENE RAMILLANO is a scientific assistant at the Coleoptera Research Center. DR. REAGAN JOSEPH VILLANUEVA is an IUCN Odonata specialist from the Philippines. He is working closely at the CRC providing materials from around the Philippines.

Author contribution: MM—confirmed species identification, re-drafted the manuscript, provide data analyses; AC—provided the photos of specimens, habitats, and photos of tiger beetles in the wild; HR—drafted the manuscript, provide literatures; IV—provided additional materials, peer reviewed the manuscript.

Acknowledgements: We would like to thank the Commission on Higher Education (CHED) DARE TO of the University of Mindanao for the funding; University of Mindanao especially Dr. Guillermo Torres and Dr. Maria Linda Arquiza for the continuing support in our Coleoptera research endeavors. Our gratitude also to Prof. Treasure Susulam for providing the GIS map of sampling sites.
Northern Giraffe
Giraffa camelopardalis
Analysis of stereotypic behaviour and enhanced management in captive Communications
– Himika Deb, Tanmay Sanyal, Anilava Kaviraj & Subrata Saha, Pp. 15414–15425
Indian context

Hazards of wind turbines on avifauna - a preliminary appraisal within the Review
– Malaika Mathew Chawla, Arjun Srivathsa, Priya Singh, Iravatee Majgaonkar, Abinash Parida, Meesala Krishna Murthy & G.S. Solanki, Pp. 15489–15492

Carnivora: Mustelidae)
Mating behavior of the Yellow-throated Marten Mustela flavigula (Mammalia:
Notes
– Boyina Ravi Prasad Rao, Pp. 15481–15488

– Ananthaneni Sreenath, Midigesi Anil Kumar, Paradesi Anjaneyulu & Dhruv A. Prajapati & R.D. Kamboj, Pp. 15475–15480

– Kolkata

Additional morphological notes on the male of Icics albatormenteus (Caleb, 2014) (Araneae: Salticidae) with new distribution records from India
– Dhruv A. Prajapati & R.D. Kamboj, Pp. 15475–15480

Three moss families (Bryopsida: Calypogynaceae, Hyopterygiaceae, & Pterobryaceae): new distribution records to bryoflora of Andhra Pradesh, India
– Ananthaneni Sreenath, Midigesi Anil Kumar, Paradesi Anjaneyulu & Boyina Ravi Prasad Rao, Pp. 15481–15488

Notes
Mating behavior of the Yellow-throated Marten Martes flavigula (Mammalia: Carnivora: Mustelidae)
– Abinash Parida, Meesala Krishna Murthy & G.S. Solanki, Pp. 15489–15492

Conservation Application
Do wildlife crimes against less charismatic species go unnoticed? A case study of Golden Jackal Canis aureus Linnaeus, 1758 poaching and trade in India
– Malaika Mathew Chawla, Arjun Srivathsa, Priya Singh, Iravatee Majgaonkar, Sushma Sharma, Girish Punjabi & Aditya Banerjee, Pp. 15407–15413

Communications
Analysis of stereotypic behaviour and enhanced management in captive Northern Giraffe Giraffa camelopardalis housed at Zoological Garden Alipore, Kolkata
– Tushar Pramod Kulkarni, Pp. 15426–15435

A new species of shieldtail snake (Reptilia: Squamata: Uropeltidae) from Kolli Hill complex, southern Eastern Ghats, peninsular India
– S.R. Ganesh & N.S. Achyuthan, Pp. 15436–15442

The insect fauna of Tenompok Forest Reserve in Sabah, Malaysia
– Arthur Y.C. Chung, Vivianne Pyul & Steven Bosuang, Pp. 15443–15459

Tiger beetles (Coleoptera: Cicindelinae) of Davao Region, Mindanao, Philippines
– Milton Norman Medina, Analyn Cabras, Harlene Ramillano & Reagan Joseph Villanueva, Pp. 15460–15467

An assessment of the conservation status of a presumed extinct tree species Wendlandia angustifolia Wight ex. Hook.f. in southern Western Ghats, India
– Subhajit Lahiri, Sudhansu Sekhar Dash, Monalisa Das & Bipin Kumar Sinha, Pp. 15450–15513

Notes on Ptilomera agrioides (Hemiptera: Heteroptera: Gerridae) from Eastern Ghats, India
– J. Deepa, A. Narahari, M. Karuthapandi, S. Jadhav & C. Shiva Shankar, Pp. 15510–15513

Didymocarpus bhutanicus W.T. Wang (Gesneriaceae): a new addition to the herbs of India
– Subhajit Lahiri, Sudhansu Sekhar Dash, Monalisa Das & Bipin Kumar Sinha, Pp. 15514–15517

Rediscovery of Epilobium trichophyllum Hausskn.: a rare and endemic plant from Sikkim Himalaya, India
– David L. Biate & Dinesh K. Agrawala, Pp. 15518–15521

Additions of woody climbers (Lianas) to the flora of Manipur, India
– Subhajit Lahiri, Sudhansu Sekhar Dash, Monalisa Das & Bipin Kumar Sinha, Pp. 15522–15529

Molecular characterization of stinkhorn fungus Aseroë coccinea Imazeki et Yoshimi ex Kasuya 2007 (Basidiomycota: Agaricomycetes: Phallales) from India
– Vivek Bobade & Neelesh Dahanukar, Pp. 15530–15534

New to Myanmar: the Rosy Starling Pastor roseus (Aves: Passeriformes: Sturnidae) in the Hkakabo Razi Landscape
– Sai Sein Lin Oo, Myint Kyaw, Nay Myo Hlaing & Swen C. Renner, Pp. 15493–15494

New records of Heloderma alvarezi (Wiegmann, 1829) (Sauria: Helodermatidae) on the coast of Oaxaca and increases to its distribution in Mexico
– Jesús García-Grajales, Rodrigo Arrazola Bohórquez, María Arely Penguilly Macías & Alejandra Buenrostro Silva, Pp. 15495–15498

Description of a new subspecies of the genus Microcerotermes Silvestri, 1901 (Amorthermitidae: Termitidae: Isopera) and the first record of another termite species from Meghalaya, India
– Khird Sankar Das & Sudipta Choudhury, Pp. 15499–15502

A new record of the hoverfly genus Dasysyrphus Enderlein, 1938 (Insecta: Diptera: Syrphidae) from India
– Jayita Sengupta, Atanu Naskar, Aniruddha Maity, Panchanan Parui, Sumit Homchaudhuri & Dhriti Banerjee, Pp. 15503–15506

First record of Banded Lineblue Prosotas aluta Druce, 1873 (Insecta: Lepidoptera: Lycanaeidae) from Bangladesh
– Rajib Dey, Ibrahim Khalil Al Haidar, Sajib Rudra & M. Rafiqu Islam, Pp. 15507–15509

Notes on Ptilomera agrioides (Hemiptera: Heteroptera: Gerridae) from Eastern Ghats, India
– J. Deepa, A. Narahari, M. Karuthapandi, S. Jadhav & C. Shiva Shankar, Pp. 15510–15513

Didymocarpus bhutanicus W.T. Wang (Gesneriaceae): a new addition to the herbs of India
– Subhajit Lahiri, Sudhansu Sekhar Dash, Monalisa Das & Bipin Kumar Sinha, Pp. 15514–15517

Rediscovery of Epilobium trichophyllum Hausskn.: a rare and endemic plant from Sikkim Himalaya, India
– David L. Biate & Dinesh K. Agrawala, Pp. 15518–15521

Additions of woody climbers (Lianas) to the flora of Manipur, India
– Longjam Malemnganbee Chanu & Debjyoti Bhattacharyya, Pp. 15522–15529

Molecular characterization of stinkhorn fungus Aseroë coccinea Imazeki et Yoshimi ex Kasuya 2007 (Basidiomycota: Agaricomycetes: Phallales) from India
– Vivek Bobade & Neelesh Dahanukar, Pp. 15530–15534

New to Myanmar: the Rosy Starling Pastor roseus (Aves: Passeriformes: Sturnidae) in the Hkakabo Razi Landscape
– Sai Sein Lin Oo, Myint Kyaw, Nay Myo Hlaing & Swen C. Renner, Pp. 15493–15494

New records of Heloderma alvarezi (Wiegmann, 1829) (Sauria: Helodermatidae) on the coast of Oaxaca and increases to its distribution in Mexico
– Jesús García-Grajales, Rodrigo Arrazola Bohórquez, María Arely Penguilly Macías & Alejandra Buenrostro Silva, Pp. 15495–15498

Description of a new subspecies of the genus Microcerotermes Silvestri, 1901 (Amorthermitidae: Termitidae: Isopera) and the first record of another termite species from Meghalaya, India
– Khird Sankar Das & Sudipta Choudhury, Pp. 15499–15502

A new record of the hoverfly genus Dasysyrphus Enderlein, 1938 (Insecta: Diptera: Syrphidae) from India
– Jayita Sengupta, Atanu Naskar, Aniruddha Maity, Panchanan Parui, Sumit Homchaudhuri & Dhriti Banerjee, Pp. 15503–15506

First record of Banded Lineblue Prosotas aluta Druce, 1873 (Insecta: Lepidoptera: Lycanaeidae) from Bangladesh
– Rajib Dey, Ibrahim Khalil Al Haidar, Sajib Rudra & M. Rafiqu Islam, Pp. 15507–15509

Notes on Ptilomera agrioides (Hemiptera: Heteroptera: Gerridae) from Eastern Ghats, India
– J. Deepa, A. Narahari, M. Karuthapandi, S. Jadhav & C. Shiva Shankar, Pp. 15510–15513

Didymocarpus bhutanicus W.T. Wang (Gesneriaceae): a new addition to the herbs of India
– Subhajit Lahiri, Sudhansu Sekhar Dash, Monalisa Das & Bipin Kumar Sinha, Pp. 15514–15517

Rediscovery of Epilobium trichophyllum Hausskn.: a rare and endemic plant from Sikkim Himalaya, India
– David L. Biate & Dinesh K. Agrawala, Pp. 15518–15521

Additions of woody climbers (Lianas) to the flora of Manipur, India
– Longjam Malemnganbee Chanu & Debjyoti Bhattacharyya, Pp. 15522–15529

Molecular characterization of stinkhorn fungus Aseroë coccinea Imazeki et Yoshimi ex Kasuya 2007 (Basidiomycota: Agaricomycetes: Phallales) from India
– Vivek Bobade & Neelesh Dahanukar, Pp. 15530–15534