Gastric cancer (GC) is one of the most common types of cancer worldwide, and it involves extensive local tumour invasion, metastasis and poor prognosis. Understanding the mechanisms regulating the progression of GC is necessary for the development of effective therapeutic strategies. Transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) is an important regulator controlling gene activation and repression, which has been thought to be involved in tumorigenesis. However, the role of TBL1XR1 in human GC remains largely unknown. Here, we find that TBL1XR1 is aberrantly expressed in human GC tissues, and TBL1XR1 levels are highly correlated with local tumour invasion, late tumor, lymph node, metastasis (TNM) stage and poor prognosis. Knockdown of TBL1XR1 by shRNA inhibits GC cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) in vitro, as well as tumorigenesis and peritoneal metastasis in vivo, whereas overexpression of TBL1XR1 produces the opposite effects. These effects are mediated by activation of the ERK1/2 signalling pathway, and inhibition of this pathway with a specific ERK1/2 inhibitor (U0126) significantly impairs the tumour-promoting effects induced by TBL1XR1. Moreover, TBL1XR1 mediated ERK1/2 activation is dependent on the β-catenin/MMP7/EGFR signalling pathway. In conclusion, TBL1XR1 contributes to GC tumorigenesis and progression through the activation of the β-catenin/MMP7/EGFR/ERK signalling pathway and may act as a new therapeutic target for GC.

Oncogene (2017) 36, 1873–1886; doi:10.1038/onc.2016.352; published online 3 October 2016

INTRODUCTION

Gastric cancer (GC) poses a tremendous health burden on communities worldwide, with 723,100 deaths reported in 2012.1-3 Despite the declining incidence of GC, patients have poor prognosis due to the high rate of metastasis and postsurgical recurrence. Surgical resection and adjuvant chemotherapy are the main methods used for the treatment of GC, the overall 5-year survival rate remains grim, with less than 30% survival worldwide.4,5 Therefore, it is vital for scientists and physicians to explore the molecular mechanisms underlying the development and progression of GC and identify new therapeutic targets.

Transducin (β)-like 1 X-linked receptor 1 (TBL1XR1 or TBLR1) is a newly discovered F-box/WD-40-containing protein that is mainly expressed in CD34+CD38+ cells and plays a crucial role in regulating the activation of corepressors.6-8 TBL1XR1 is an essential component of the SMRT (silencing mediator of retinoic acid and thyroid hormone receptors)/N-CoR (nuclear receptor corepressor)/HDAC3 (histone deacetylase 3)/TBL1 (transducin (beta)-like 1)/GPS2 (G-protein pathway suppressor 2) nuclear receptor corepressor complex,9-12 and overexpression of TBL1XR1 can induce gene repression by targeting gene promoters through transcription factors (TFs) and nuclear receptors (NRs).12-14 TBL1XR1 also acts as a special adaptor molecule for the localization of the ubiquitin-19S/proteasome complex, which modulates the efficient exchange of corepressors for coactivators.11,15 Many recurrent mutations and de novo deletions have been found in the TBL1XR1 gene, which are associated with intellectual disability.16-20 Studies have shown that TBL1XR1 can mediate the activation of many different transduction pathways, such as NF-kB, NRs, Wnt/β-catenin and Notch pathways.9-12,15,21-23

Recently, accumulating evidences have indicated that TBL1XR1 plays a crucial role in tumorigenesis, tumour progression and metastasis.23-29 Liu et al indicated that TBL1XR1 is highly expressed in human primary lung squamous cell carcinoma tissues.20 Li et al showed that TBL1XR1 is amplified in breast cancer and plays oncogenic role in breast cancer progression through activation of the Cyclin D1 and β-catenin signalling pathway.27 Liu et al demonstrated that TBL1XR1 mediates VEGF-C expression by binding to the promoter region of the VEGF-C gene, which induces lymphangiogenesis and lymphatic metastasis in esophageal squamous cell carcinoma.28 A recent study showed that TBL1XR1 can also serve as an androgen receptor coactivator and suppress prostate cancer growth by directly activating androgen receptor target genes involved in cell differentiation and growth suppression, instead of cell proliferation.29 Although previous findings strongly suggest the critical role of TBL1XR1 in tumorigenesis and progression of many types of cancer, the biological functions and clinical significance of TBL1XR1 in GC are not clear.

In this study, we show that TBL1XR1 is significantly elevated in GC and its overexpression is closely associated with local invasion, late tumor, lymph node, metastasis (TNM) stage and short survival of patients with GC. Studies of TBL1XR1 with gain- and loss-of-function approaches in GC cells reveal that TBL1XR1 regulates cell growth, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro, as well as tumorigenesis and peritoneal metastasis in vivo through the activation of the β-catenin/MMP7/EGFR/ERK pathway in...
Figure 1. Expression of TBL1XR1 in GC tissues and cell lines. (a) QRT-PCR analyses of TBL1XR1 mRNA expression in GC and patient-matched normal tissues (n=31). (b) Histogram displaying the relative mRNA expression of TBL1XR1 in 31 GC tissues. (c) Immunohistochemical staining of TBL1XR1 in GC tissues. Representative images of TBL1XR1 staining in surgical specimens from normal tissues, intestinal GC tissues and diffuse GC tissues (magnification: ×200). (d) Histogram shows the number of TBL1XR1 positive cells in gastric tumour tissues. (e) Cumulative survival curve of GC patients. (f) Immunofluorescence shows the nuclear localization of TBL1XR1 in GC tissues and paired normal tissues (magnification: ×200). (g) Histogram displaying the relative mRNA expression of TBL1XR1 in seven gastric tumour cell lines (SGC7901, MKN45, NCI-N87, BGC823, AGS, MKN28 and SNU-1) and one immortalized normal gastric epithelial cell line (GES-1). (h) The expression of TBL1XR1 protein in gastric tumour cell lines and immortalized normal gastric epithelial cell line (GES-1) was examined by western blot analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
GC cells. These findings indicate that TBL1XR1 plays a pivotal role in the progression of GC and it may be of clinical value as a therapeutic target to improve the treatment of GC.

RESULTS

TBL1XR1 is highly expressed in human GC and correlated with poor prognosis

To determine the biological role of TBL1XR1 in human GC progression, TBL1XR1 expression was first examined in human GC tissue samples. The mRNA expression of TBL1XR1 was measured in 31 pairs of GC and patients-matched normal tissues by quantitative RT-PCR (qRT-PCR). As shown in Figures 1a and b, the TBL1XR1 mRNA level was significantly higher in GC tissues than in normal tissues. TBL1XR1 protein expression was then examined in 134 pairs of GC and corresponding normal tissues by immunohistochemical staining (IHC). Here, 82 of 134 GC tissues (the positive rate: 61.2%) and 40 of 134 adjacent normal tissues (the positive rate: 30.7%) were found positive for TBL1XR1 expression (P < 0.05). Typical immunostaining of TBL1XR1 in normal and GC tissues was shown in Figure 1c and positive staining of TBL1XR1 protein was mainly identified in the nuclei of GC cells. The number of TBL1XR1 positive cells per field (200 ×) in tumour tissues was significantly higher than in normal tissues (Figures 1c and d). Moreover, the Pearson χ² test showed the expression of TBL1XR1 protein was significantly associated with local invasion (P = 0.040) and late TNM stage (P < 0.001), but not with other clinicopathological parameters including age, tumour differentiation or tumour size (Table 1). Furthermore, Kaplan–Meier survival analysis showed that patients with high TBL1XR1 expression had a shorter overall survival (Figure 1e). In addition, immunofluorescence also proved that TBL1XR1 was highly expressed in the nuclei of GC cells (Figure 1f). TBL1XR1 expression was also evaluated in seven GC cell lines and one normal gastric epithelial cell line (GES-1). As shown in Figures 1g and h, both mRNA and protein levels of TBL1XR1 were higher than GES-1 in seven GC cell lines. Thus, these results indicate that TBL1XR1 is overexpressed in GC and may play an important role in GC progression.

TBL1XR1 promotes GC cell growth in vitro

Given a potential link between TBL1XR1 overexpression and GC progression, we determined whether knockdown of TBL1XR1 expression could affect cell growth in GC. To further elucidate the biological functions of TBL1XR1 in GC progression, TBL1XR1 expression in GC cells was silenced by transfecting TBL1XR1-shRNA (sh#1, sh#2, sh#3 and sh#4) into NCI-N87 and SGC7901 cells expressing high levels of TBL1XR1 (Figures 2a–c). Sh#3 showed the most efficiency in silencing TBL1XR1 expression in GC cells, therefore, it was selected to establish NCI-N87/TBL1XR1-shRNA and SGC7901/TBL1XR1-shRNA cells stably expressing low levels of TBL1XR1 (Figures 2a and b). Meanwhile, TBL1XR1 expression in GC cells was upregulated by transfecting TBL1XR1-expressing vector into BGC823 and MKN45 cells with low levels of TBL1XR1 (Figure 2c). As shown in Figure 2d, knockdown of TBL1XR1 (NCI-N87/TBL1XR1-shRNA and SGC7901/TBL1XR1-shRNA) significantly attenuated GC cell proliferation compared with negative controls (NCI-N87/nc-shRNA and SGC7901/nc-shRNA). However, BGC823/TBL1XR1 and MKN45/TBL1XR1 cells proliferated faster than the empty vector groups (BGC823/vector and MKN45/vector) (Figure 2e). Cell apoptosis and cell cycle were then examined by flow cytometry and results showed that the percentage of apoptotic cells was significantly higher in NCI-N87/TBL1XR1-shRNA and SGC7901/TBL1XR1-shRNA groups than in NCI-N87/nc-shRNA and SGC7901/nc-shRNA groups (negative control) (Figures 2f and g), while knockdown of TBL1XR1 expression did not affect cell cycle of GC cells (data not shown). A colony formation assay was performed to further validate the proliferative effect of TBL1XR1 on the growth of GC cells. As shown in Figures 2h and i, the number of colonies from BGC823 and MKN45 cells transfected with TBL1XR1-expressing vector was more than those with control vectors. Together, these results indicate that TBL1XR1 promotes GC cell growth in vitro.

TBL1XR1 promotes the migration, invasion and EMT of GC cells

We further assessed the tumour cell migration and invasion ability using wound healing assays, transwell migration and invasion assays. The wounds healed better and faster in NCI-N87/nc-shRNA and SGC7901/nc-shRNA cells than in NCI-N87/TBL1XR1-shRNA and SGC7901/TBL1XR1-shRNA cells (Figures 3a and b). We further tested GC cell migration and metastatic properties using transwell migration and invasion assays. Knockdown of TBL1XR1 significantly decreased the migration and invasion ability of NCI-N87 and SGC7901 cells (Figures 3c and d), while overexpression of TBL1XR1 significantly increased the migration and invasion ability of BGC823 and MKN45 cells (Figures 3e and f). EMT plays a crucial role in tumour cell migration and invasion. To further investigate the molecular mechanism mediating the aggressive effects of TBL1XR1 on GC cells, we next explored whether TBL1XR1 status regulates EMT in GC cells. As shown in Figures 3g and h, TBL1XR1 knockdown significantly increased the expression levels of...
Figure 2. The effects of TBL1XR1 on tumour cell proliferation and apoptosis. (a) Western blot analyses of TBL1XR1 expression in NCI-N87 and SGC7901 cells underwent transient transfection of TBL1XR1 shRNA (sh#1, sh#2, sh#3 and sh#4). (b) TBL1XR1 protein expression in NCI-N87 and SGC7901 cells transfected with TBL1XR1-shRNA (sh#3) was confirmed by western blot analysis. (c) TBL1XR1 protein expression in BGC823 and MKN45 cells transfected with TBL1XR1-constructed plasmid. (d) The effect of TBL1XR1 knockdown on NCI-N87 and SGC7901 cell proliferation was analysed by CCK8 assay. (e) The effect of TBL1XR1 overexpression on BGC823 and MKN45 cell proliferation was analysed by CCK8 assay. (f) and (g) Knockdown of TBL1XR1 induced the apoptosis of NCI-N87 cells. (h) and (i) Overexpression of TBL1XR1 promoted the clone formation of BGC823 cells. Data are representative of three independent experiments (mean ± s.d.). *P < 0.05, **P < 0.01.
Figure 3. TBL1XR1 enhances the migratory and invasive ability of GC cells. (a), (c) and (e) Effects of knockdown and overexpression of TBL1XR1 on GC cell wound healing, migration and invasion was measured and representative images of distance (mm) of wound healing, migrated and invaded cells (magnification: × 100) are shown. (b), (d) and (f) Histogram shows the relative distance (mm) (magnification: × 100) of wound healing and the number of migrated and invaded cells. Five random fields were selected for statistical analysis. (g) and (i) The effects of knockdown and overexpression of TBL1XR1 on EMT markers was determined by western blot analysis. Densitometry shows relative protein expression normalized for GAPDH. (h) and (j) Densitometric analysis shows the effects of knockdown and overexpression of TBL1XR1 on EMT markers of GC cells. Data are shown as mean ± s.d. of three independent experiments. *P < 0.05, **P < 0.01.
epithelial cell markers (α-catenin and E-cadherin), and decreased the expression levels of mesenchymal cell markers (N-cadherin and ZEB2), which suggests that TBL1XR1 silencing could reverse the EMT phenotypes of GC cells. However, overexpression of TBL1XR1 significantly promotes the EMT phenotypes of BGC823 and MKN45 cells (Figures 3i and j). Taken together, these data suggest that TBL1XR1 may promote GC cell migration and invasion via the induction of EMT.

The tumour-promoting effects induced by TBL1XR1 in GC are mediated through the activation of ERK1/2 pathway. The ERK1/2 signalling pathway plays a central role in the process of tumour cell migration and invasion induced by EMT. To better understand the signalling pathways involved in the tumour-promoting properties of TBL1XR1 in GC, we investigated the possible involvement of ERK1/2. We first examined the TBL1XR1 and pERK1/2 (Thr202/Tyr204 phosphorylation of ERK)
protein expression levels in GC and patient-matched normal gastric tissues by IHC and immunofluorescence staining, and found that the pERK1/2 expression level was positively correlated with TBL1XR1 (Figures 4a and b, Supplementary Figure S1). We next investigated the protein expression levels of pERK1/2 and TBL1XR1 in four GC cell lines, and found that both proteins were highly expressed in SGC7901 and NCI-N87 cells, while expression levels were significantly lower in MKN45 and BGC823 cells (Figure 4c), suggesting that the ERK1/2 signalling pathway may be involved in tumour-promotion effects induced by TBL1XR1.

To explore the involvement and functional effect of ERK1/2 activation in tumour promotion induced by TBL1XR1 in GC, we first treated SGC7901 cells and NCI-N87 cells expressing high levels of TBL1XR1 with a specific ERK1/2 inhibitor U0126. We demonstrated that U0126 (20 μM) significantly suppressed GC cell proliferation, migration and invasion (Figures 4d–f). Additionally, U0126 also reversed the EMT of GC cells (Figure 4g). We then determined whether knockdown of TBL1XR1 expression could inhibit the phosphorylation of ERK1/2 in GC cells. As shown in Figures 4h and i, TBL1XR1 knockdown significantly reduced the phosphorylation of ERK1/2 in NCI-N87/TBL1XR1-shRNA and SGC7901/TBL1XR1-shRNA cells, while TBL1XR1 overexpression significantly increased the phosphorylation of ERK1/2 in BGC823/TBL1XR1 and MKN45/TBL1XR1 cells. We then explored whether TBL1XR1 could enhance GC cell proliferation, migration and invasion through the activation of the ERK1/2 signalling pathway. After incubation with U0126, the proliferation, migration and invasion ability of BGC823/TBL1XR1 and MKN45/TBL1XR1 cells was significantly reduced in comparison with the control groups (Figures 4j–l). Western blot analysis demonstrated that EMT induced by overexpression of TBL1XR1 was also reversed after the treatment of BGC823/TBL1XR1 and MKN45/TBL1XR1 cells with U0126 (Figure 4m). However, U0126 had no effects on the expression of TBL1XR1 in GC cells (Figures 4g and m). Thus, these data suggest that TBL1XR1 regulates GC cell proliferation, migration, invasion and EMT by activating the ERK1/2 signalling pathway.

The activation of ERK1/2 induced by TBL1XR1 is mediated via the β-catenin/MMP7/EGFR signalling pathway. Aberrant activation of β-catenin signalling plays an important role in various cancers such as gastrointestinal and colorectal cancer. Recent findings indicated that TBL1XR1 and β-catenin can recruit each other to Wnt target gene promoters to facilitate transcriptional activation and oncogenesis. TBL1XR1 can promote the EMT of tumour cells via activating β-catenin signalling. To determine whether β-catenin signalling is involved in the activation of ERK1/2 induced by TBL1XR1, we first detected the phosphorylation levels of β-catenin (S675) and ERK1/2 in GC cells with different status of TBL1XR1 expression. We found that knockdown of TBL1XR1 expression significantly inhibited the phosphorylation of β-catenin (p-β-catenin) and ERK1/2 in NCI-N87/TBL1XR1-shRNA and SGC7901/TBL1XR1-shRNA cells (Figure 5a). In contrast, TBL1XR1 overexpression significantly increased the phosphorylation of β-catenin and ERK1/2 in BGC823/TBL1XR1 and MKN45/TBL1XR1 cells (Figure 5b). We then explored whether TBL1XR1 could promote the phosphorylation of ERK1/2 and EMT in GC cells through the activation of β-catenin. As shown in Figure 5c, after treatment with β-catenin inhibitor XAV939 (10 μM), the phosphorylation of ERK1/2 induced by overexpression of TBL1XR1 in BGC823/TBL1XR1 and MKN45/TBL1XR1 cells was significantly inhibited. Moreover, the EMT phenotypes induced by overexpression of TBL1XR1 were also reversed after the treatment with XAV939 (Figure 5c). Furthermore, the phosphorylation of β-catenin induced by overexpression of TBL1XR1 was not affected by U0126 (Figure 5d). Thus, these data suggest that TBL1XR1 promotes the activation of ERK1/2 and EMT in GC cells by activating the β-catenin signalling.

To further determine how TBL1XR1 activates ERK1/2 by β-catenin signalling, we detected the expression of MMP7 (Matrix metalloproteinase-7), a target gene of β-catenin, in GC cells. We showed that MMP7 was elevated or downregulated in TBL1XR1-overexpressing or TBL1XR1-silencing GC cells (Figures 6a and b). It has been reported that MMP7 is responsible for EGFR receptor (EGFR) transactivation, downstream ERK activation and increased cell proliferation. This pathway is also confirmed in our study using β-catenin, MMP7, EGFR and ERK inhibitors (Figure 6). We showed that TBL1XR1 knockdown significantly decreased the expression of p-β-catenin, MMP7, pEGFR and pERK1/2 in NCI-N87 cells (Figure 6a). However, TBL1XR1 overexpression showed the opposite results in BGC823 cells (Figure 6b). Moreover, Batimastat (MMP7 inhibitor) inhibited the expression of MMP7, pEGFR and pERK, but had no effects on the expression of TBL1XR1 and p-β-catenin in both NCI-N87 and BGC823/TBL1XR1 cells (Figures 6c and d). Furthermore, Afinitinib (EGFR inhibitor) attenuated the activation of EGFR and ERK, but had no effects on the expression of TBL1XR1, p-β-catenin and MMP7 (Figure 6d). Thus, these results suggest that TBL1XR1 indirectly promotes the activation of ERK1/2 via the β-catenin/MMP7/EGFR signalling pathway.

TBL1XR1 facilitates GC cell growth and peritoneal dissemination in vivo. We further evaluated whether TBL1XR1 knockdown or overexpression could regulate gastric tumour growth and metastatic potential in vivo. NCI-N87/TBL1XR1-sh cells, NCI-N87/nc-shRNA cells, BGC823/TBL1XR1 and BGC823/vector cells were subcutaneously transplanted into the nude mice. As shown in Figures 7a–d, NCI-N87/nc-shRNA and BGC823/TBL1XR1 cells showed progressive growth, whereas the growth of NCI-N87/TBL1XR1-sh and BGC823/vector cells was significantly slower compared with NCI-N87/nc-shRNA and BGC823/TBL1XR1 cells. Additionally, the average weight of...
tumours generated from NCI-N87/TBL1XR1-sh and BGC823/vector cells was significantly reduced in comparison with tumours from the NCI-N87/nc-shRNA and BGC823/TBL1XR1 cells (0.989 ± 0.094 g vs 4.290 ± 0.224 g, \(P < 0.001 \), 1.581 ± 0.116 g vs 3.679 ± 0.210 g, \(P < 0.001 \), Figures 7e and f). To further assess whether the regulation of cell proliferation, EMT and the ERK1/2 pathway by TBL1XR1 could be recapitulated in vivo, we analysed the expression of Ki-67 antigen (a cellular marker for proliferation), pERK1/2, E-cadherin and ZEB2 protein expression by IHC. As shown in Figure 7g, there were fewer Ki-67 antigen-positive cells in tumours derived from NCI-N87/TBL1XR1-sh cells than in tumours derived from NCI-N87/nc-shRNA cells. Consistent with the in vitro data shown above, the expression of pERK1/2 and ZEB2 in NCI-N87/TBL1XR1-sh cells was also significantly lower than in NCI-N87/nc-shRNA cells, while E-cadherin showed increased expression in NCI-N87/TBL1XR1-sh cells. This further indicated that the knockdown of TBL1XR1 expression could inhibit cell growth and EMT of GC cells via the ERK1/2 pathway.

To further quantify metastatic and dissemination potential in vivo, NCI-N87/TBL1XR1-sh and NCI-N87/nc-shRNA cells were intraperitoneally transplanted into nude mice. The average volume of ascites NCI-N87/TBL1XR1-sh group was smaller than NCI-N87/nc-shRNA group (Figure 7h). Moreover, there were significantly fewer visible peritoneal nodules in the NCI-N87/TBL1XR1-sh group compared with controls (7.667 ± 1.202 vs 28.670 ± 3.180, \(P < 0.01 \), Figures 7i and k). In contrast, treatment of nude mice with BGC823/TBL1XR1 cells increased the formation of peritoneal metastatic nodules compared with BGC823/vector

Figure 5. The activation of ERK1/2 induced by TBL1XR1 is mediated via the β-catenin signalling pathway. (a) The phosphorylation levels of β-catenin (p-β-catenin) and ERK1/2 in NCI-N87/TBL1XR1-shRNA and SGC7901/TBL1XR1-shRNA cells were detected by western blot analysis. (b) The phosphorylation levels of β-catenin and ERK1/2 in BGC823/TBL1XR1 and MKN45/TBL1XR1 cells were detected by western blot analysis. (c) The phosphorylation level of ERK1/2 and EMT in BGC823/TBL1XR1 and MKN45/TBL1XR1 cells treated with XAV939 were detected by western blot analysis (10 μM). (d) The effect of U0126 (20 μM) on phosphorylation of β-catenin in NCI-N87 and SGC7901 cells was analysed by western blot analysis. Densitometry shows relative protein expression.
These results indicate that TBL1XR1 expression promotes gastric tumour growth, peritoneal dissemination and metastasis potential in vivo.

DISCUSSION

This study investigated the biological role of TBL1XR1 and its precise mechanisms in GC. The data show that TBL1XR1 expression is elevated in GC cells and closely correlated with poor prognosis of GC patients. Moreover, the data further reveal a potential molecular mechanism by which TBL1XR1 promotes tumorigenesis and progression of GC via activation of the ERK1/2 pathway. These findings indicate the key role of TBL1XR1 as an oncogenic protein and uncover a novel molecular mechanism underlying the development and progression of GC.

Overexpression of TBL1XR1 has been confirmed in several types of cancer, including esophageal squamous cell carcinoma, squamous cell lung carcinoma, cervical cancer and breast cancer. Liu et al found that overexpression of TBL1XR1 enhanced lymphangiogenesis and lymphatic metastasis in esophageal squamous cell carcinoma and was positively correlated with tumour stage and overall survival, which suggest that TBL1XR1 might serve as an independent unfavourable prognostic factor for outcome of esophageal squamous cell carcinoma patients. TBL1XR1 amplification has also been shown in breast cancer, and inactivation of TBL1XR1 attenuated tumour cell migration and invasion. Here, we find that TBL1XR1 is upregulated in GC cells, and correlates with clinicopathological characteristics such as local invasion and late TNM stage. Furthermore, Kaplan–Meier survival analysis shows that patients with high TBL1XR1 expression have a shorter overall survival. Thus, these results indicate that TBL1XR1 can act as a novel predictor of poor prognosis in human GC patients.

Accumulating evidences indicate that TBL1XR1 has an important role in cell cycle regulation, anti-apoptosis, inflammatory responses, resistance to therapies and EMT. In accordance
with previous studies, we find that TBL1XR1 acts as a multifunctional protein that affects tumour cell proliferation, migration and invasion, and knockdown of TBL1XR1 significantly inhibited gastric tumour growth and metastatic potential both in vitro and in vivo. Notably, TBL1XR1 inactivation attenuates GC cell proliferation by inducing apoptosis. Aberrant apoptotic events are closely involved in oncogenesis and tumour regression in numerous cancers, including GC. Thus, elevated TBL1XR1 conferred growth advantages to GC cells, which may be linked to the chemoresistance of GC. However, further studies are needed to...
β-catenin, ERK1/2 and JAK/STAT3, have been reported to regulate EMT in tumour progression. ERK1/2 is one of the most important pathways contributing to cell proliferation, EMT and metastasis during tumorigenesis, and the expression of E-cadherin, N-cadherin and ZEB1 mediated by the ERK1/2 pathway during EMT is regulated by the corepressor CtBP.11 Researchers have shown that gene activation in cancer requires the dismissal of both N-CoR/SMRT- and CtBP1/2-dependent repression, via the interaction of TBL1XR1 and TBL1, which allow the ubiquitination and degradation of N-CoR/SMRT- and CtBP1/2, respectively.11 In the present study, we show that the tumour-promoting effects induced by TBL1XR1 in GC are mediated through the activation of ERK1/2 pathway. TBL1XR1 knockdown attenuated the phosphorylation of ERK1/2 and consequently led to decreased cell growth, migration, invasion and EMT in GC cells in vitro and in vivo. In contrast, TBL1XR1 overexpression exhibited the opposite results, which supports that TBL1XR1 is an upstream activator of ERK1/2 and serves as an important regulator of cell growth and EMT. Additionally, we find that the inhibitory effects of ERK1/2 inhibitor U0126 on GC cells are much more significant than those of silencing TBL1XR1 alone. We consider that there are several reasons resulting in such phenotypes. First, ERK1/2 is known as a convergence point of multiple tumour-promoting cascades, and TBL1XR1 is one of these receptors that can activate the ERK1/2 signalling pathway in tumour microenvironment. Second, RNAi usually does not completely shut off the gene, the knockdown efficiency of RNAi was 70–80% in silencing TBL1XR1 expression in GC cells, and the rest unchanged TBL1XR1 might still promote GC progression. Third, we cannot exclude the possibility of the dose effect of MEK inhibitor U0126 on GC cells.

Recent findings have shown that TBL1XR1 and β-catenin can recruit each other to Wnt target gene promoters to facilitate transcription activation and oncogenesis.10 Beta-catenin activation could promote the phosphorylation of ERK1/2, leading to the increased expression of Bcl-2.60 The activation of ERK1/2 mediated by TBL1XR1 was dependent on the phosphorylation of β-catenin. Wang et al. have indicated that TBL1XR1 could promote EMT via the β-catenin signalling pathway in cervical cancer.37 MMP7 (Matrix metalloproteinase-7) serves as a target gene of β-catenin.31 Beta-catenin activation promotes prostate tumour progression by upregulating MMP7.42 Further study showed that MMP7 is responsible for EGFR transactivation, downstream ERK1/2 activation and increased cell proliferation.38 This signalling pathway is confirmed in our study using β-catenin, MMP7, EGFR and ERK1/2 inhibitors. Here, we find that β-catenin, MMP7 and EGFR are involved in the activation of ERK1/2 induced by TBL1XR1, and treatment of GC cells with β-catenin inhibitor XAV939, MMP inhibitor Batimastat or EGFR inhibitor Afatinib leads to the inhibition of ERK1/2 phosphorylation and reversion of EMT induced by overexpression of TBL1XR1. Thus, these data indicate that the activation of ERK1/2 induced by TBL1XR1 is dependent on the β-catenin/MMP7/EGFR signalling.

In conclusion, we demonstrated that TBL1XR1 plays a crucial role in tumour growth, metastasis and prognosis via activation of the β-catenin/MMP7/EGFR/ERK pathway (Figure 8). Thus, this study links TBL1XR1/β-catenin/MMP7/EGFR/ERK signalling to the control of the progression of GC and establishes TBL1XR1 as a potential biomarker for clinical prognosis and a therapeutic target in GC.

MATERIALS AND METHODS

Ethical statement

An institutional review board from the local Human Research Ethics Committee of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China approved the study. All human participants provided informed consent. All animal experiments were also approved by the local Laboratory Animals Committee of Ruijin Hospital and conducted based on the Guide for the Care and Use Laboratory Animals of Ruijin Hospital. All samples tested for GC were anonymous in accordance with legal and ethical standards.

Reagents and cell cultures

Seven GC cell lines including SGC7901, MKN45, NCI-N87, BGC823, AGS, MKN28, SNU-1 and one immortalized normal gastric epithelial cell line GES-1 were cultured and passages according to the manufacturer’s instructions. All cell lines were cultured in RPMI-1640 medium (Gibco BRL, San Francisco, CA, USA) containing 100 U/ml penicillin, 100 μg/ml streptomycin and 10% fetal bovine serum.
serum (Invitrogen, Carlsbad, CA, USA) at 37 °C in a 5% CO₂-humidified incubator. ERK1/2 specific inhibitor U0126 was purchased from Cell Signaling Technology (Danvers, MA, USA; no. 9903S). Beta-catenin specific inhibitor XAV939, MMP7 inhibitor Batimastat and EGFR inhibitor Afatinib were purchased from Selleck (Houston, TX, USA; no. S1180, no. S7155, no. S1011).

Tissue specimens and histological examination

GC tissues and corresponding normal tissues were collected from 134 patients who underwent gastrectomy between 1 January 2011 and 30 December 2013 in the Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. None of these patients had received chemotherapy or radiation therapy before. All samples from GC patients were confirmed by two experienced pathologists according to the seventh edition of the American Joint Committee on Cancer staging system. After being being fixed in formalin and embedded in paraffin, all samples were made into tissue microarrays (Outdo Biotech Co. Ltd., Shanghai, China). Thirty pairs of tissues were immediately embedded in Optimal Cutting Temperature Compound (Sakura Finetek, Torrance, CA, USA) with Tissue-Tek Cryomold (Sakura Finetek) and stored at −80 °C. Frozen sections were prepared with a cryostat. Forty pairs of tissues were stored at −80 °C for protein and RNA extraction.

Immunofluorescence

The frozen sections of tissue samples were fixed in 4% paraformaldehyde at room temperature for 10 min. Sections were gently washed three times in 1 x phosphate buffered saline (PBS) and then permeabilized with 0.5% NP-40 (Sigma, St Louis, MO, USA) in 1 x PBS for 10 min. After being blocked with 1% normal goat serum for 45 min, the sections were incubated with anti-TBL1XR1 (Abcam, Cambridge, MA, USA; no. ab117761), anti-pERK1/2 (Cell Signaling Technology; no. 9100S) primary antibodies for 2.5 h at room temperature and gently washed three times in PBS. Sample sections were then incubated with Alexa Fluor 488 dye-conjugated secondary antibody, Alexa Fluor 568 dye-conjugated phalloidin, and Hoechst 33342 (Molecular Probes, Waltham, MA, USA). Pictures were taken using an Olympus BX50 microscope (Olympus, Tokyo, Japan).

Immunohistochemical staining (IHC)

Immunohistochemical staining was performed on the tissue microarray according to a previously reported standard protocol used in Shanghai Institute of Digestive Surgery. Two independent board-certified pathologists evaluated the protein expression levels in an unbiased fashion. The staining intensity was graded in four segments: 0 for no staining, 1 for light brown, 2 for brown staining, and 3 for dark brown staining. The overall staining score was calculated by the following formula: overall staining score = intensity score × percentage score. A final score ≤ 3 was defined as negative staining, and > 3 as positive staining.

Western blot analysis

Cell sample extracts were prepared in RIPA cell lysis buffer (Pierce, Rockford, IL, USA) against a bovine serum albumin standard curve. A total of 40 μg of protein was loaded onto a 10% sodium dodecyl sulfate polyacrylamide gel and then transferred onto 0.22 μm PVDF membranes (Millipore, MA, USA). The membranes were blocked with 1 x TBST buffer containing 5% bovine serum albumin and incubated with the corresponding primary antibodies at 4 °C overnight. Anti-GAPDH (no. HRP-60004), anti-a-catenin (no. 12831-1-AP), anti-E-cadherin (no. 20874-1-AP), anti-N-cadherin (no. 22081-1-AP), anti-β-catenin (no. 51067-2-AP) and anti-MMP7 (10374-2-AP) antibodies were purchased from Proteintech (Rosemont, IL, USA). Anti-TBL1XR1 (no. ab117761) and anti-ZEB2 (no. ab138222) antibodies were purchased from Cell Signaling Technology (Ser675) (no. 95675), anti-pEGRF (Tyr1068) (no. 37775) and HRP-conjugated secondary (1:5000) antibodies were purchased from Cell Signaling Technology. After the addition of secondary antibodies, membranes were visualized with Thermo Pierce chemiluminescent (ECL) Western Blotting Substrate (Thermo, Waltham, MA, USA) using a Tanon 5200 system (Tanon, Shanghai, China).

Cell proliferation assay

GC cells were cultured in 96-well plates at a density of 2 x 10^5 cells (200 μl/well). A cell proliferation assay was conducted using a CCK-8 (Cell Counting Kit-8) (Dojindo, Kumamoto, Japan) according to the manufacturer’s instructions. The OD 450 was measured by spectrophotometry (BioTek, Vermont, USA) 2 h after being incubated with 20 μl of CCK-8 reagent.

Quantitative real-time PCR (QRT-PCR)

Total RNA was extracted using TRIzol reagent (Invitrogen) and cDNA synthesis was performed using a reverse transcription kit (Promega, Madison, WI, USA) according to the manufacturer’s instructions. The mRNA level of TBL1XR1 was measured using the SYBR Green PCR Master Mix (Applied Biosystems, Waltham, MA, USA) and the Applied Biosystems 7900HT sequence detection system (Applied Biosystems). TBL1XR1 mRNA relative expression level was evaluated using the 2^-ΔΔCt method and normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

Plasmids construction and transfection

TBL1XR1 shRNA sequences and negative control sequences were designed and synthesized by Genechem (Genechem Co. Ltd., Shanghai, China). The corresponding vector was hU6-MCS-U6-Biotechnology-EGFP-IRE-puromycin. SGC7901 and NCI-N87 cells were cultured in six-well plates and transfected with 4 μg shRNA plasmids using Lipofectamine 2000 reagent (Invitrogen) following the manufacturer’s protocol. Cells were treated with puromycin (1 μg/ml) (InvivoGen, San Diego, CA, USA) to produce stably transfected cells (NCI-N87/shRNA, SGC7901/shRNA). The full length TBL1XR1 plasmid and corresponding empty vector were transfected into GC cells (BGC823 and MKN45) using Lipofectamine 2000 reagent (Invitrogen) following the manufacturer’s protocol. Stably transfected cells (BGC823/vector, BGC823/TBL1XR1, MKN45/vector and MKN45/TBL1XR1) were selected by using puromycin (1 μg/ml) (InvivoGen). Knockdown and overexpression of TBL1XR1 were confirmed by western blot analysis.

Flow cytometry

For cell cycle analysis, tumour cells were collected and fixed in 70% ice-cold ethanol at 4 °C overnight. After washing with PBS, cells were incubated with 100 μg/ml RNase A at 37 °C for 20 min. Cells were then washed with PBS and incubated with 100 μg/ml RNase A at 37 °C for 20 min. Cells were then washed with PBS and incubated with Annexin V and propidium iodide (BD Biosciences, San Jose, CA, USA) according to the manufacturer’s instructions.

Cell migration, invasion and wound healing assays

Cell migration and invasion assays were conducted using 24-well plates and 8 μm transwell inserts (Corning Life Science, Acton, MA, USA). For migration assays, tumour cells were suspended in 200 μl serum-free RPMI 1640 medium (4 x 10^5 cells) and cultured in the upper chamber. Fetal bovine serum-conditioned medium (10%) (800 μl) was added to the lower 24-well plates. For invasion assays, the inserts were coated with Matrigel (50 μl/well) (BD Biosciences) before adding the cells. After 24 h of culture, tumour cells remaining in the upper side of the inserts were removed with cotton swabs. Tumour cells that migrated to the lower side of the inserts were fixed in methanol and stained with 0.5% crystal violet for 20 min. Migrated cells were photographed using Nikon Digital Research System (DS-U2) (Nikon, Tokyo, Japan) and Olympus BX50 microscopes (Olympus Optical Co. Ltd., Tokyo, Japan). Six visual fields were randomly chosen to calculate the number of migrated cells. For the wound healing assay, tumour cells were cultured in six-well plates until confluent, and scratched with a 20 μl pipette tip. The previous medium was replaced with fresh medium containing 1% fetal bovine serum. Cells were photographed at 0, 12, 24 and 48 h after the scratches were made.
Statistical analysis
All experimental results were repeated at least three times and are shown as mean ± standard deviation (s.d.). The association between TBL1XR1 expression and clinicopathological characteristics was statistically determined using the Pearson χ² test. Differences between treated and control groups were analysed using the Student’s t-test and one-way ANOVA. A two-tailed value of P < 0.05 was considered statistically significant. All statistical analyses were performed with the Stata software 12.0 (Stata Corporation, College Station, TX, USA).

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We thank LePub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript. Support: This study was supported by grants from National Natural Science Foundation of China (No.81572798, No.81272749, No. 91229106 and No. 91529302), Key Projects in the National Science & Technology Pillar Program of China (No. 2014BA09B03), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20152505), and Doctoral Pillar Program of China (No. 2014BAI09B03), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20152505), and Doctoral Pillar Program of China (No. 2014BAI09B03), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20152505), and Doctoral Pillar Program of China.

REFERENCES
1 Jemal A, Bray F, Center MM, Ferlay J, Ward E. Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.
2 Wadhwa R, Song S, Lee JS, Yao Y, Wei Q, Ajani JA. Gastric cancer-molecular and clinical dimensions. Nat Rev Clin Oncol 2013; 10: 643–655.
3 Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2013; 65: 87–107.
4 Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 2004; 22: 2137–2150.
5 den Hool GM, Kuipers EJ. Gastric cancer: how can we reduce the incidence of this disease? Curr Gastroenterol Rep 2016; 18: 34.
6 Zhang X, Dormady SP, Basch RS. Identification of four human cDNAs that are differentially expressed by early hematopoietic progenitors. Exp Hematol 2000; 28: 1286–1296.
7 Andersson S, Wallin KL, Hellstrom AC, Morrison LE, Hjerpe A, Auer G et al. Frequent gain of the human telomerase gene TERC at 3q26 in cervical adenocarcinomas. Br J Cancer 2006; 95: 331–338.
8 Yang YC, Shyong WV, Chang MS, Chen YJ, Lin CH, Huang ZD et al. Frequent gain of copy number on the long arm of chromosome 3 in human cervical adenocarcinoma. Cancer Genet Cytogenet 2001; 131: 48–53.
9 Zhang J, Kalkum M, Chait BT, Roeder RG. The N-Cor-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GP2. Mol Cell 2002; 9: 611–623.
10 Li J, Wang CY. TBL1-YB1 and beta-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat Cell Biol 2008; 10: 160–169.
11 Perissi V, Scaffogra C, Zhang J, Ogli KA, Rose DW, Glass CK et al. TBL1 and TBLR1 phosphorylation on regulated gene promoters overcomes dual CTBP and NCoR/SMRT transcriptional repression checkpoints. Mol Cell 2008; 29: 755–766.
12 Yoon HG, Chan DW, Huang ZO, Li J, Fondell JD, Qin J et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J 2003; 22: 1336–1346.
13 Tomita A, Buchholz DR, Shi YB. Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development. Mol Cell Bioi 2004; 24: 3337–3346.
14 Tomita A, Buchholz DR, Obata K, Shi YB. Fusion protein of retinoic acid receptor alpha with promyelocytic leukemia protein or promyelocytic leukemia zinc finger protein recruits N-CoR-TBLR1 corepressor complex to repress transcription in vivo. J Biol Chem 2003; 278: 30707–30715.
15 Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 2004; 116: 511–526.
16 Saito H, Tohyama J, Walsh T, Kato M, Kobayashi Y, Lee M et al. A girl with West syndrome and autistic features harboring a de novo TBL1XR1 mutation. J Hum Genet 2014; 59: 581–583.
17 Tabet AC, Leroy C, Dupont C, Serrano E, Hernandez K, Gallard J et al. De novo deletion of TBL1XR1 in a child with non-specific developmental delay supports its implication in intellectual disability. Am J Med Genet A 2014; 164A: 2335–2337.
18 Pons L, Cordier MP, Labalme A, Till M, Louvrier C, Schlut-Obolard C et al. A new syndrome of intellectual disability with dysmorphism due to TBL1XR1 deletion. Am J Med Genet A 2015; 167A: 164–168.
19 O’Roak BJ, Vives L, Fu W, Egerton JD, Stanaway IB, Phelps IG et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 2012; 338: 1619–1622.
20 Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin D et al. Identification of genes differentially expressed in human liver squamous cell carcinoma. Lung Cancer 2007; 56: 307–317.
21 Chou HK, Choi KC, Yoo JY, Song M, Ko SJ, Kim CH et al. Reversible SUMOylation of TBL1-TBLR1 regulates beta-catenin-mediated Wnt signaling. Mol Cell 2011; 43: 203–216.
22 Hoberg JE, Yeung F, Mayo MW. SMRT de-repression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Mol Cell 2004; 16: 245–255.
23 Kadota M, Sato M, Duncan B, Ooshima A, Yang HH, Diaz-Meyer N et al. Activation of beta-catenin signaling. Endocr Relat Cancer 2009; 69: 7357–7365.
24 Daniels G, Li Y, Gellert LL, Zhou A, Melamed J, Wu X et al. TBL1 as an androgen receptor (AR) coactivator selectively activates AR target genes to inhibit prostate cancer growth. Endocrinology 2014; 21: 127–142.
25 Li X, Liang W, Liu J, Lin C, Wu S, Song L et al. Transducin (beta)-like 1 X-linked receptor 1 promotes proliferation and tumorigenicity in human breast cancer via activation of beta-catenin signaling. Breast Cancer Res 2014; 16: 465.
26 Li JY, Daniels G, Wang J, Zhang X. TBL1XR1 in physiological and pathological states. Am J Clin Exp Urol 2013; 3: 13–23.
27 Kuang X, Zhu J, Peng Z, Wang J, Chen Z. Transducin (beta)-Like 1 X-linked receptor 1 correlates with clinical prognosis and epithelial-mesenchymal transition in hepatocellular carcinoma. Dig Dis Sci 2016; 61: 489–500.
28 Liu L, Lin C, Liang W, Su S, Liu A, Wu J et al. TBL1XR1 promotes lymphangiogenesis and lymphatic metastasis in esophageal squamous cell carcinoma. Gut 2015; 64: 26–36.
29 Chen SP, Yang G, Wang CJ, Zhang LJ, Fang Y, Lei FY et al. Transducin beta-like 1 X-linked receptor 1 suppresses cisplatin sensitivity in nasopharyngeal carcinoma via activation of NF-kappaB pathway. Mol Cancer 2014; 13: 195.
30 Ichikawa K, Kubota Y, Nakamura T, Weng JS, Tomida T, Saito H et al. MCRB1, an ERK substrate, mediates ERK-induced gene silencing during epithelial-mesenchymal transition by regulating the co-repressor TBP. Mol Cell 2015; 58: 35–46.
31 Komatsu N, Fujita Y, Matsuda M, Aoki K. mTORC1 upregulation via ERK-dependent gene expression changes confer intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells. Oncogene 2015; 34: 5607–5616.
32 Gan Y, Shi C, Inge L, Hibner M, Balducci J, Huang Y. Differential roles of ERK and Akt pathways in regulation of EGF/medicated signaling and motility in prostate cancer cells. Oncogene 2010; 29: 4947–4958.
33 Suh Y, Yoon CH, Kim RK, Lim EH, Oh HS, Hwang SG et al. Claudinin-1 induces epithelial-mesenchymal transition through activation of the c-Ab1-ERK signaling pathway in human liver cells. Oncogene 2013; 32: 4873–4882.
34 Yanaka Y, Muramatsu T, Uetake H, Kozaki K, Inazawa J. mir-544a induces epithelial-mesenchymal transition through the activation of WNT signaling pathway in gastric cancer. Carcinogenesis 2015; 36: 1363–1371.

Transducin (β)-like 1 X-linked receptor 1 and gastric cancer
Q Zhou et al
35 Gao C, Chen G, Kuan SF, Zhang DH, Schlaepfer DD, Hu J. FAK/PYK2 promotes the Wnt/beta-catenin pathway and intestinal tumorigenesis by phosphorylating GSK3beta. *Elife* 2015; 4: e10072.

36 Goretsky T, Bradford EM, Ryu H, Tahir M, Moyer MP, Gao T et al. A cytosolic multiprotein complex containing p85alpha is required for beta-catenin activation in colitis and colitis-associated cancer. *J Biol Chem* 2016; 291: 4166–4177.

37 Wang J, Ou J, Guo Y, Dai T, Li X, Liu J et al. TBLR1 is a novel prognostic marker and promotes epithelial-mesenchymal transition in cervical cancer. *Br J Cancer* 2014; 111: 112–124.

38 Oganesian A, Yarov-Yarovoy V, Parks WC, Schwinn DA. Constitutive coupling of a naturally occurring human alpha1a-adrenergic receptor genetic variant to EGFR transactivation pathway. *Proc Natl Acad Sci USA* 2011; 108: 19796–19801.

39 Li T, Zhang C, Ding Y, Zhai W, Liu K, Bu F et al. Umbilical cord-derived mesenchymal stem cells promote proliferation and migration in MCF-7 and MDA-MB-231 breast cancer cells through activation of the ERK pathway. *Oncol Rep* 2015; 34: 1469–1477.

40 Zhang T, Liu S, Yang P, Han C, Wang J, Liu J et al. Fibronectin maintains survival of mouse natural killer (NK) cells via CD11b/5/1c/beta-catenin pathway. *Blood* 2009; 114: 4081–4088.

41 Chen X, Meng J, Yue W, Yu J, Yang J, Yao Z et al. Fibulin-3 suppresses Wnt/beta-catenin signaling and lung cancer invasion. *Carcinogenesis* 2014; 35: 1707–1716.

42 Yu X, Wang Y, DeGraff DJ, Wills ML, Matusik RJ. Wnt/beta-catenin activation promotes prostate tumor progression in a mouse model. *Oncogene* 2011; 30: 1868–1879.

43 Qu Y, Li J, Cai Q, Liu B. Hec1/Ndc80 is overexpressed in human gastric cancer and regulates cell growth. *J Gastroenterol* 2014; 49: 408–418.

44 Bandyopadhyay S, Zhan R, Chaudhuri A, Watabe M, Pai SK, Hirota S et al. Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. *Nat Med* 2006; 12: 933–938.