The Coordination of F Ions around Mg and Ca Ions in Molten CaO–CaF₂–MgO–SiO₂ System at 1873 K

Yasushi SASAKI¹ and Manabu IGUCHI²

¹) Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea (South). ²) Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 Japan.

(Received on December 3, 2008; accepted on January 23, 2009)

In the previous papers,¹,²) the effect of F ions on the structure of molten CaO–CaF₂–Al₂O₃–SiO₂ system has been investigated by using molecular dynamics simulation. It has been found that loosely bound Ca–2F complexes are formed in the melts. It means that the addition of CaF₂ to CaO–SiO₂ or CaO–Al₂O₃–SiO₂ melts does not influence the relative distribution of silica network units in the melts.¹,²)

Steelmaking slags always contain small amount of MgO. The ionic diameter of Mg²⁺ ion is rather small than that of Ca²⁺ and the structures of CaF₂ and MgF₂ crystal are different. These infer that the coordination structure of F around Ca and Mg may not be the same. Consequently, it is not certain whether loosely bound Mg–2F complexes can exist or not. If the loosely bound Mg–2F complexes are existed, the addition of CaF₂ to CaO–MgO–SiO₂ melts may influence the relative distribution of silica network units in the melts.¹,²)

For the molecular dynamics simulation of the melts, the MXDORTHO program³ was used. The pair potential used is the Busing approximation of the Born–Mayer–Huggins algorithm⁴ using a time step of 2.0 fs. The calculation was carried out at a constant pressure of 101 kPa. The initial temperature was set to 3273 K to agitate the atoms and eliminate the effect of the initial distribution on the final structure. The temperature was then decreased to 2773, 2273 and finally 1873 K, and the calculation at each temperature was carried out for 10 000 steps. The temperature decreasing rate was set to 1 K per 10 steps. The calculated structural data were accumulated at each temperature. On the basis of these calculated data, the cumulative coordination numbers (CCNs), average distances between atoms, pair correlation functions (PCFs), and silicate anionic structural unit distributions were calculated. The compositions of the CaO–CaF₂–MgO–SiO₂ system in the present study are presented in Table 2 and Fig. 1.

Silicate melts are well known to consist of mixtures of five distinct types of structural units that have NBO/Si = 0, 1, 2, 3, and 4 (NBO/Si: nonbridging oxygen per silicon).⁶) In terms of a stoichiometric expression, these units are described as SiO₄²⁻ (monomer), Si₂O₆⁴⁻ (dimer), Si₃O₈⁶⁻ (chain unit), Si₄O₁₂⁸⁻ (sheet unit), and SiO₂ units. In the terminology commonly employed in NMR spectroscopy, these structures are referred to as Q¹, Q², Q³, Q⁴, and Q⁵, where the superscript refers to the number of bridging oxygen

Table 1. Parameter set used in the molecular dynamics calculation.

	Z	a (10 nm)	b (10 nm)
Si	4	1.102	0.080
Al	3	1.064	0.080
Na	1	1.260	0.080
Ca	2	1.414	0.080
F	–1	1.365	0.085
O	–2	1.626	0.085

Table 2. Investigated compositions of the CaO–CaF₂–MgO–SiO₂ systems.

	CaO	CaF₂	MgO	MgF₂	SiO₂	
A	5CaO·5SiO₂	50.0	0.0	0.0	0.0	50.0
B	4CaO·MgO·5SiO₂	40.0	0.0	10.0	0.0	50.0
C	3CaO·CaF₂·MgO·5SiO₂	30.0	10.0	0.0	0.0	50.0
D	2CaO·2CaF₂·MgO·5SiO₂	20.0	20.0	10.0	0.0	50.0
E	5CaO·MgF₂·5SiO₂	40.0	0.0	0.0	10.0	50.0

Fig. 1. Investigated compositions of the CaO–CaF₂–MgO–SiO₂ and CaO–MgF₂–SiO₂ systems. A: 5CaO·5SiO₂, B: 4CaO·MgO·5SiO₂, C: 3CaO·CaF₂·MgO·5SiO₂, D: 2CaO·2CaF₂·MgO·5SiO₂, E: 5CaO·MgF₂·5SiO₂.
atoms in a given structural unit.

The calculated distributions of \(Q^i\) in the \(\text{CaO} \cdot \text{SiO}_2\) system and \(4\text{CaO} \cdot \text{MgO} \cdot 5\text{SiO}_2\) system at 1873 K are shown in Fig. 2. Their distributions of \(Q^i\) are essentially the same. It means that the replacement of Ca ions by Mg ions has negligible effects on the relative distribution of silica network units in the melts. Namely, the network modifying ability of Mg ions is almost the same as that of Ca ions. Stebbins et al.\(^7\) mentioned that \(^{29}\text{Si} NMR separate peaks are not resolvable in \(\text{CaO} \cdot \text{SiO}_2\) system, although they span the known chemical shift ranges for at least the \(Q^1\), \(Q^2\), and \(Q^3\), and perhaps even \(Q^0\) and \(Q^4\) species. Thus, the calculated results results of \(Q^i\) distribution may not be compared with their measured NMR peaks. However, Mysen et al.\(^8\) measured Raman spectra of \(\text{CaO} \cdot \text{SiO}_2\) system and their \(Q^i\) distributions estimated from the spectra are well agreed with the present calculated result. This agreement strongly supports the reliability of the present MD calculation.

The effect of replacement of CaO by CaF\(_2\) in \(\text{CaO} \cdot \text{MgO} \cdot \text{SiO}_2\) melts at 1873 K is shown in Fig. 3. It is found that the fractions of \(Q^1\) and \(Q^2\) are increased by the substitution of F for O. Namely, it enhances the polymerization in the melts. The mechanism of the enhancement of the polymerization in the \(\text{CaO} \cdot \text{SiO}_2\) and \(\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{SiO}_2\) systems due to the substitution of F for O were already discussed and confirmed. Namely, due to the formation of the loosely bound Ca–F complexes in those melts, the number of Ca ions available to the network modifier is decreased so that the degree of the polymerization of Si units in the melts is increased.

The enhancement of the polymerization in the \(\text{CaO} \cdot \text{MgO} \cdot \text{SiO}_2\) systems due to the substitution of F for O can be explained not only by the formation of the loosely bound Ca–2F complexes but also possibly by the formation of the loosely bound Mg–2F complexes since the network modifying ability of Mg ions is found to be almost the same with that of Ca ions. To understand the details of the effect of F on the polymerization process of \(\text{CaO} \cdot \text{CaF}_2 \cdot \text{MgO} \cdot \text{SiO}_2\) melts, the coordination numbers of F around the Ca and Mg ions in the molten \(\text{CaO} \cdot \text{CaF}_2 \cdot \text{MgO} \cdot \text{SiO}_2\) system must be evaluated.

Information for F coordination around the Ca and Mg ions in the \(\text{CaO} \cdot \text{CaF}_2 \cdot \text{MgO} \cdot \text{SiO}_2\) system at 1873 K is shown in Fig. 4. The PCF value between ions i and j, is defined as the distance between the ion pairs where the PCF has the minimum value. The equilibrated bond length of the Ca–F pair is found to be 0.234 nm and that of Mg–F pair is 0.204 nm. This difference can be attributed to the different ionic diameters of Ca and Mg ions. The cumulative coordination number (CCN) is defined as the RCN value at the particular distance and the cumulative coordination number (CCN) is defined as the RCN value at the distance at which PCF has the minimum value. The equilibrated bond length is defined as the distance between the ion pairs where the PCF has the maximum value. The details of the calculation can be obtained from other studies.\(^6,9\)

The PCF and RCN curves for the Ca–F and Mg–F pairs in the \(3\text{CaO} \cdot 2\text{CaF}_2 \cdot \text{MgO} \cdot 5\text{SiO}_2\) system at 1873 K are shown in Fig. 4. The equilibrated bond length of the Ca–F pair is found to be 0.234 nm and that of Mg–F pair is 0.204 nm. This difference can be attributed to the different ionic diameters of Ca and Mg ions. The cumulative coordination number (CCN) is defined as the RCN value at the distance at which PCF has the minimum value. The CCNs for Ca–F and Mg–F are 2.6 and 0.89 respectively. The PCF curves for Ca–F and Mg–F pair have long tails as shown in Fig. 4. It means that the Ca–F or Mg–F bonding in the tail...
area is not tight enough to retain F ions around Ca or Mg ions, and some F ions can move out easily from the influential area of Ca or Mg ion’s Coulombic force. Namely, calculated CCNs include the number of F ions that are not essentially belonged to the cations. Despite of their including of the tail area, the CCN for Mg–F pair is still less than unit. If we assume tight binding between F ions and cations or neglect the tail effect, the RCN for F around Ca is about 2.0 and 0.6 for F around Mg. The assumed tight binding PCF curves are indicated by broken lines in Fig. 4. This value of 0.6 strongly suggests that Mg–2F complexes are not formed in the 3CaO·CaF₂·MgO·5SiO₂ system.

To confirm the no-existence of loosely bound Mg–2F complexes, the structure of liquid 4CaO·MgF₂·5SiO₂ system is simulated. The PCF and RCN curves for the Ca–F and Mg–F pairs in the 4CaO·MgF₂·5SiO₂ system at 1873 K are shown in Fig. 5. The PCF curves are slightly different from those in the 3CaO·CaF₂·MgO·5SiO₂ system, but the RCN curves are essentially the same as those in 3CaO·CaF₂·MgO·5SiO₂ system. The CCN for Mg–F and Ca–F pairs in the 4CaO·MgF₂·5SiO₂ system are found to be 0.81 and 2.87 respectively. These values simply indicate that F ions are mainly coordinate to Ca ions but not Mg ions. Namely the F ions initially associated with Mg ions are finally most coordinated to Ca ions. If so, the molten structure of 4CaO·MgF₂·5SiO₂ system could be the same as that of 3CaO·CaF₂·MgO·5SiO₂ system. The calculated distributions of Qᵢ in the 4CaO·MgF₂·5SiO₂ system and 3CaO·CaF₂·MgO·5SiO₂ system at 1873 K are shown in Fig. 6. Just as expected, the distributions of Qᵢ of both systems are essentially the same, although there are small differences in Q³ and Q⁴ units’ distribution. As shown in Fig. 4, a small amount of F ions is still coordinated to Mg ions. This F coordination to Mg ions may cause the small differences in the amount of Q³ and Q⁴ units between 4CaO·MgF₂·5SiO₂ and 3CaO·CaF₂·MgO·5SiO₂ systems. The agreement between the two systems simply means that the F ion has a strong preference to coordinate to Ca ions but not Mg ions in the molten CaO–CaF₂–MgO–SiO₂ system.

REFERENCES
1) Y. Sasaki, M. Iguchi and M. Hino: ISIJ Int., 47 (2007), 643.
2) Y. Sasaki, M. Iguchi and M. Hino: ISIJ Int., 47 (2007), 638.
3) K. Kawamura: MXDORTHO, Japan Chemistry Program Exchange, No. 076.
4) W. R. Busing: J. Chem. Phys., 57 (1972), 3008.
5) D. Frenkel and B. Smit: Understanding Molecular Simulation, Academic Press, San Diego, (1996), 60, 347.
6) Y. Sasaki, H. Urata and K. Ishii: ISIJ Int., 43 (2003), 1897.
7) J. F. Stebbind and P. McMillan: J. Non-Cryst. Solids, 160 (1993), 116.
8) B. O. Mysen, D. Virgo and C. M. Scarfe: Am. Mineral, 65 (1980), 690.
9) Y. Kawamoto, T. Horisaki, K. Hirao and N. Soga: J. Chem. Phys., 83 (1985), 2398.

Fig. 5. PCF and RCN curves for the Ca–F and Mg–F pairs in the 4CaO·MgF₂·5SiO₂ system at 1873 K.

Fig. 6. Calculated distribution of Qᵢ in the 3CaO·CaF₂·MgO·5SiO₂ and 4CaO·MgO·5SiO₂ system at 1873 K.