Global and regional emissions estimates for HCFC-22

Eri Saikawa

Massachusetts Institute of Technology

May 17, 2012
Importance of HCFC-22 (CHClF$_2$)

- Major Greenhouse Gas
 - Global Warming Potential: 1810

- Ozone-Depleting Substance: Regulated by the Montreal Protocol
 - Developed countries already started regulation (cease production by 2030, 99.5% by 2020)
 - Developing countries start in 2013

- Atmospheric lifetime: 11.9 years (primary sink - OH)

- Used for commercial refrigeration, air conditioning, and foam industries.
HCFC-22 Mixing Ratio Increasing

- No atmospheric mixing ratio in pre-industrial times

Source: AGAGE, NOAA, CGAA, and THD air samples
Source and Magnitude of HCFC-22 Emissions

- **Source:** Only anthropogenic

Source: McCulloch et al., 2003

![HCFC-22 global emissions estimate graph](image)

Source: Eri Saikawa

Global and regional emissions estimates for HCFC-22
Methods

- Global 3-dimensional chemical transport model MOZART v4
- Conducted 2 simulations:
 - 1st simulation: Global, 1995-2009
 - Horizontal resolution: 5° latitude x 5° longitude
 - 2nd simulation: Regional, 2005-2009
 - Horizontal resolution: 1.9° latitude x 2.5° longitude
- 56 vertical levels from the surface to approximately 2mb
- Meteorological field: MERRA
- Bayesian weighted least-squares:
 - Minimizing the following cost function with respect to x:
 \[J = (y - Hx)^T W^{-1} (y - Hx) + x^T S^{-1} x \] (1)
A priori emissions

- McCulloch et al. (2003): 1995-2000.
- Consumption data submitted to United Nations: 2001-2009.

Source: UNEP
10 Regions used for the inversion

- Canada & Alaska
- US West
- US Midwest
- US East
- Central & South America
- Europe
- Africa & Middle East
- North Asia
- Article 5 Asia
- Oceania
Observational Data

Eri Saikawa
Global and regional emissions estimates for HCFC-22
Global HCFC-22 emissions estimated from inversion

- Optimized emissions (this study)
- Polynomial fit prior (this study)
- "Raw" prior (this study)
- Bank emissions estimate (IPCC/TEAP, 2005; UNEP, 2007)
- "Bottom-up" emissions estimate (UNEP/TEAP, 2006)
- 12-box model emissions estimate (Wang)
- 1-box model emissions estimate (Montzka et al., 2009)

Global and regional emissions estimates for HCFC-22
Results: Regional Emissions

(a) US East

prior emissions
optimized (AGAGE + NOAA flasks + NOAA tower)
optimized (AGAGE + NOAA flasks)
optimized (AGAGE only)
optimized (NOAA flasks only)

uncertainty reduction (%)

optimized (AGAGE + NOAA flasks + NOAA tower)
optimized (AGAGE + NOAA flasks)
optimized (AGAGE only)
optimized (NOAA flasks only)
Results: Regional Emissions

(b) US Midwest

Global and regional emissions estimates for HCFC-22
Results: Regional Emissions

(c) US West
Results: Regional Emissions

(d) North Asia

(e) Article 5 Asia
Global HCFC-22 emissions (Gg year$^{-1}$)

- AFEAS (1997): 225 Gg year$^{-1}$ in 1995
- This study: 169±45.69 Gg year$^{-1}$ in 1995
Comparison with other models - Global

Global HCFC-22 emissions (Gg year\(^{-1}\))

- AFEAS (1997): 225 Gg year\(^{-1}\) in 1995
- This study: 169 ± 45.69 Gg year\(^{-1}\) in 1995
- Stohl et al. (2009): 333 Gg year\(^{-1}\) for 2005 and 2006
- This study: 272 ± 78 Gg year\(^{-1}\) for 2005 and 2006
Comparison with other models - Global

Global HCFC-22 emissions (Gg year\(^{-1}\))

- AFEAS (1997): 225 Gg year\(^{-1}\) in 1995
- This study: 169±45.69 Gg year\(^{-1}\) in 1995
- Stohl et al. (2009): 333 Gg year\(^{-1}\) for 2005 and 2006
- This study: 272±78 Gg year\(^{-1}\) for 2005 and 2006
- Montzka et al. (2009) - global emissions increasing by 93 Gg from 2004-2007 & emissions shift towards low latitude in NH
- This study: 251±13.3 Gg year\(^{-1}\) in 2004 to 368±15.9 Gg year\(^{-1}\) in 2007.
Comparison with other models - Regional

- United States HCFC-22 emissions (Gg year$^{-1}$)
 - Miller et al. (2009): 46 Gg year$^{-1}$ for 2005 and 2006
 - EPA bottom-up estimates: 83Gg year$^{-1}$ in 2004
 - This study: 67.9±20.6 Gg year$^{-1}$ for 2005 and 2006
Comparison with other models - Regional

- Regional HCFC-22 emissions for 2005 and 2006 (Gg year\(^{-1}\))
 - This study:
 - North America: 75±35 Gg year\(^{-1}\)
 - Europe: 7.3±2.0 Gg year\(^{-1}\)
 - Asia: 121±31 Gg year\(^{-1}\)
 - Oceania: 1.5±0.4 Gg year\(^{-1}\)
 - Stohl et al., 2010:
 - North America: 80 Gg year\(^{-1}\)
 - Europe: 24 Gg year\(^{-1}\)
 - Asia: 149 Gg year\(^{-1}\)
 - Australia: 12 Gg year\(^{-1}\)
Conclusion

- We conducted a global and a regional inversion study for estimating HCFC-22 emissions.
- Our model results indicate an increase in global emissions from 1995 to 2009, with a large growth from 1999 to 2001 and from 2004 to 2006.
- In recent years, emissions are mostly flat in developed countries.
- We find a rapid emissions increase in Asia in the recent years.
Acknowledgments

- Matt Rigby, Ron G. Prinn (MIT)
- Stephen A. Montzka, Ben R. Miller, Jim Elkins, Bradley Hall, Colm Sweeney, Arlyn Andrews, Pieter Tans (NOAA/ESRL)
- Lambert J. M. Kuijpers (Eindhoven)
- Martin K. Vollmer (EMPA)
- Jens Mühle, Peter Salameh, Chris Harth, Ray Weiss (Scripps)
- Paul Fraser, Paul Krummel, Paul Steele (CSIRO)
- Takuya Saito, Yoko Yokouchi (NIES)
- Dickon Young, Peter Simmonds, Simon O’Doherty, Archie McCulloch (Bristol)
- Chris Lunder, Ove Hermansen (NILU)
- Michela Maione, Jgor Arduini (Urbino)
- Bo Yao, Lingxi Zhou (CAMS)
- J. Kim, S. Li, S. Park, K.-R. Kim (SNU)