Contraction semigroups on $L_\infty(\mathbb{R})$

A.F.M. ter Elst1 and Derek W. Robinson2

Dedicated to the memory of Günter Lumer 1929–2005

Abstract

If X is a non-degenerate vector field on \mathbb{R} and $H = -X^2$ we examine conditions for the closure of H to generate a continuous semigroup on L_∞ which extends to the L_p-spaces. We give an example which cannot be extended and an example which extends but for which the real part of the generator on L_2 is not lower semibounded.

June 2006

AMS Subject Classification: 47B44, 58G03.

Home institutions:

1. Department of Mathematics
 University of Auckland
 Private bag 92019
 Auckland
 New Zealand

2. Centre for Mathematics and its Applications
 Mathematical Sciences Institute
 Australian National University
 Canberra, ACT 0200
 Australia
1 Introduction

The Lumer–Phillips theorem [LuP] is a cornerstone of the theory of continuous semigroups. The theorem characterizes the generator of a contraction semigroup with the aid of a dissipativity condition. The latter is based on the elementary properties of the operator $-d^2/dx^2$ of double differentiation acting on $C_0(\mathbb{R})$. In this note we analyze contraction semigroups S generated by squares $-X^2$ of vector fields $X = a d/dx$ acting on $C_0(\mathbb{R})$, or $L_\infty(\mathbb{R})$. An integral part of the analysis consists of examining the one-parameter groups T generated by X. Throughout we assume $a > 0$. If a is smooth this is the one-dimensional analogue of Hörmander’s condition [Hö].

First, we identify the kernel of S acting on $L_\infty(\mathbb{R})$. Secondly, T is defined as a weak∗ continuous group of contractions on L_∞ and we derive necessary and sufficient conditions for it to extend to a continuous group on the $L_p(\mathbb{R}; \rho dx)$-spaces with $p \in [1, \infty)$, where $\rho: \mathbb{R} \to [0, \infty)$ is a C^∞-function. These conditions also ensure that S extends to a continuous semigroup. Thirdly, we characterize those S, or T, which extend to a contraction semigroup, or group, on $L_p(\mathbb{R}; \rho dx)$ for some $p \in [1, \infty)$. Fourthly, we give an example of a smooth vector field with a uniformly bounded coefficient for which neither T nor S can be extended to any of the L_p-spaces with $p < \infty$. Fifthly, we give an example of a smooth vector field with a uniformly bounded coefficient which is uniformly bounded away from zero for which T and S extend to all the L_p-spaces but the real part of the generator of S on $L_2(\mathbb{R}; \rho dx)$ is not lower semibounded. In particular the L_2-generator cannot satisfy a Gårding inequality. Since the Gårding inequality is the usual starting point for the analysis of elliptic divergence form operators on $L_2(\mathbb{R}; \rho dx)$, e.g., operators of the form X^*X, this example clearly demonstrates that the theory of ‘non-divergent’ form operators such as $-X^2$ on $L_\infty(\mathbb{R})$ is very different. Finally we discuss the volume doubling property for balls (intervals) whose radius (length) is measured by the distance associated with X.

2 Preliminaries

Let $a: \mathbb{R} \to [0, \infty)$ be a locally bounded differentiable function and assume the derivative a' is locally bounded. Further assume

$$\int_0^\infty dx a(x)^{-1} = \infty = \int_{-\infty}^0 dx a(x)^{-1}. \quad (1)$$

Equip \mathbb{R} with the measure ρdx where $\rho: \mathbb{R} \to [0, \infty)$ is a C^∞-function. Consider the vector field $X = a d/dx$ and the corresponding operators X_{\min} and X_{\max} on $L_\infty(\mathbb{R}; \rho dx)$ with domains $D(X_{\min}) = C_c^\infty(\mathbb{R})$ and $D(X_{\max}) = C^1_c(\mathbb{R})$. Set $H_{\min} = -X_{\min}^2$ and $H_{\max} = -X_{\max}^2$. Since we are dealing with operators on L_∞ it is appropriate to deal with the weak∗ topology.

Proposition 2.1

I. The operators X_{\min} and X_{\max} are weak∗ closable and $\overline{X}_{\min} = \overline{X}_{\max}$, where the bar denotes the weak∗ closure.

II. The operator H_{\max} is weak∗ closable and its weak∗ closure \overline{H}_{\max} generates a semigroup S which is weak∗ continuous, positive, contractive and holomorphic in the open right half-plane.
III. \(\overline{H}_{\text{max}} = -\overline{X}_{\text{max}}^2 \) and in particular \(\overline{X}_{\text{max}}^2 \) is weak* closed.

IV. If \(a \in C^\infty(\mathbb{R}) \) then \(\overline{H}_{\text{min}} = \overline{H}_{\text{max}} \), where \(\overline{H}_{\text{min}} \) is the weak* closure of \(H_{\text{min}} \).

Proof For all \(x_0 \in \mathbb{R} \) the ordinary differential equation \(\dot{x} = a(x) \), with initial data \(x(0) = x_0 \), has a unique maximal solution which we denote by \(t \mapsto e^{tX}x_0 \). Since \(a \) satisfies \((1) \) this maximal solution is defined for all \(t \in \mathbb{R} \). Moreover, \(e^{sX}e^{tX}x_0 = e^{(s+t)X}x_0 \) and

\[
\int_{x_0}^{e^{tX}x_0} dx \ a(x)^{-1} = t
\]

for all \(s, t \in \mathbb{R} \) and \(x_0 \in \mathbb{R} \). In addition both the maps \(t \mapsto e^{tX}x_0 \) and \(x \mapsto e^{sX}x \) are continuous. In particular for all \(t \in \mathbb{R} \) the map \(T_t: L_\infty \to L_\infty \) defined by \((T_t\varphi)(y) = \varphi(e^{-tX}y) \) is an isometry and \(T \) is a weak* continuous group on \(L_\infty \). This group is automatically positive and we next show that its generator is the weak* closure of the operator \(X_{\text{min}} \) on \(L_\infty \).

Clearly \(X_{\text{min}} \subseteq X_{\text{max}} \) and by a standard regularization argument it follows that \(\overline{X}_{\text{min}} = \overline{X}_{\text{max}} \). Hence to simplify notation we now set \(X_0 = X_{\text{min}} = \overline{X}_{\text{max}} \).

One computes from \((2) \) that

\[
\frac{d}{dy} e^{tX}y = \frac{a(e^{tX}y)}{a(y)}
\]

for all \(t \in \mathbb{R} \) and \(y \in \mathbb{R} \). Therefore

\[
\frac{d}{dy} (T_t\varphi)(y) = \varphi'(e^{-tX}y) \cdot \frac{a(e^{tX}y)}{a(y)}
\]

for all \(\varphi \in D(X_{\text{max}}) \), \(y \in \mathbb{R} \) and \(t > 0 \). So \(T_t(D(X_{\text{max}})) \subseteq D(X_{\text{max}}) \) for all \(t > 0 \). Moreover,

\[
t^{-1}(\varphi - T_t\varphi)(y) = -t^{-1} \int_0^t ds \frac{d}{ds} \varphi(e^{-sX}y)
\]

\[
= t^{-1} \int_0^t ds \varphi'(e^{-sX}y) a(e^{-sX}y) = t^{-1} \int_0^t ds (T_sX_{\text{max}}\varphi)(y)
\]

for all \(\varphi \in D(X_{\text{max}}) \), \(t > 0 \) and \(y \in \mathbb{R} \), since \(\varphi' \) is continuous. So \(\lim_{t \to 0} t^{-1}(I - T_t)\varphi = X_{\text{max}}\varphi \) strongly in \(L_\infty \) and \(X_{\text{max}} \) is the restriction of the generator of \(T \). Since \(D(X_{\text{max}}) \) is invariant under \(T \) and weak* dense it follows from Corollary 3.1.7 of \([BrR]\) that \(X_0 = X_{\text{max}} \) is the generator of \(T \).

Next define the semigroup \(S \) by the integral algorithm

\[
S_t = (4\pi t)^{-1/2} \int_{-\infty}^{\infty} ds \ e^{-s^2(4t)^{-1}} T_s.
\]

(3)

Obviously \(S \) is weak* continuous, positive, contractive and holomorphic in the open right half-plane. Let \(H_0 \) denote the weak* closed generator of \(S \). If \(\varphi \in D(X_0^2) \) then

\[
t^{-1} (I - S_t)\varphi = t^{-1} (4\pi t)^{-1/2} \int_{-\infty}^{\infty} ds \ e^{-s^2(4t)^{-1}} (I - T_s)\varphi
\]

\[
= t^{-1} (4\pi t)^{-1/2} \int_{-\infty}^{\infty} ds \ e^{-s^2(4t)^{-1}} \int_0^s du \ (s - u) T_u X_0^2 \varphi
\]

\[
= (4\pi)^{-1/2} \int_{-\infty}^{\infty} ds \ e^{-s^2/4} \int_0^s du \ (s - u) T_{t/2u} X_0^2 \varphi
\]
and it follows in the weak* limit $t \to 0$ that $\varphi \in D(H_0)$. Hence $H_0 \supseteq -X_0^2$. To prove $H_0 = -X_0^2$ it suffices to establish that the range $R(I - X_0^2)$ of $I - X_0^2$ is equal to L_∞. But X_0 generates the continuous group T. Therefore $R(I \pm X_0) = L_\infty$. Moreover, $I - X_0^2 = (I - X_0)(I + X_0)$. Hence $R(I - X_0^2) = L_\infty$ and $H_0 = -X_0^2$.

Clearly $H_{\max} \subseteq -X_0^2 = H_0$ so H_{\max} is weak* closable. It remains to prove that the weak* closure \overline{H}_{\max} of H_{\max} is equal to H_0.

Since $T_tD(X_{\max}) \subseteq D(X_{\max})$ and $X_{\max}T_t\varphi = T_tX_{\max}\varphi$ for all $\varphi \in D(X_{\max})$ one deduces by iteration that $T_tD(X_{\max}^2) \subseteq D(X_{\max}^2)$ and $X_{\max}T_t\varphi = T_tX_{\max}^2\varphi$ for all $\varphi \in D(X_{\max}^2)$. Next it follows from (4), by a Riemann approximation argument, that $S_tD(X_{\max}^2) \subseteq D(X_{\max}^2)$ and $X_{\max}S_t\varphi = S_tX_{\max}^2\varphi$ for all $\varphi \in D(X_{\max}^2)$ and all $t > 0$. Since S_t is continuous it further follows that $S_tD(X_{\max}^2) \subseteq D(X_{\max}^2)$ for all $t > 0$. But $C^1_c(\mathbb{R}) \subseteq D(X_{\max}^2) \subseteq D(\overline{H}_{\max})$ is weak* dense in L_∞ by the assumed differentiability of a. Hence by Corollary 3.1.7 of [BrR] it follows that $D(\overline{H}_{\max})$ is a core of H_0. Therefore $\overline{H}_{\max} = H_0$.

Finally, if $a \in C^\infty_c(\mathbb{R})$ then $C^\infty_c(\mathbb{R})$ is a core for X_{\max}^2. Therefore $\overline{H}_{\min} \supseteq H_{\max}$. Since $H_{\min} \subseteq H_{\max}$ this completes the proof of the proposition. \qed

Remark 2.2 It follows by definition that $T_tC_0(\mathbb{R}) \subseteq C_0(\mathbb{R})$ for all $t \in \mathbb{R}$ and a simple estimate shows that the restriction of T to $C_0(\mathbb{R})$ is strongly continuous. Therefore $S_tC_0(\mathbb{R}) \subseteq C_0(\mathbb{R})$ for all $t > 0$ and the restriction of S to $C_0(\mathbb{R})$ is also strongly continuous. This is a direct consequence of the algorithm [3]. Thus T is a Feller group and S is a Feller semigroup. Now let X_{00} and H_{00} denote the generators of the restricted group and the restricted semigroup, respectively. Then a slight modification of the foregoing argument allows one to obtain similar characterizations of the generators but in terms of norm closures. For example, X_{00} is the norm closure of X_{\min} which is equal to the norm closure of X_{\max}. The discussion of H_{00} can in fact be simplified. Since X_{00} generates a strongly continuous group of isometries the operator $-X_{00}^2$ is dissipative in the sense of Lumer and Phillips [LuP] and it is norm closed by standard estimates (see, for example, [Rob] Lemma III.3.3). But one again has $R(I \pm X_{00}) = L_\infty$. Therefore $R(I - X_{00}^2) = L_\infty$. Then $-X_{00}^2$ generates a strongly continuous contraction semigroup by the Lumer–Phillips theorem and it follows by uniqueness that $H_{00} = -X_{00}^2$.

One can associate a distance with the vector field X by the definition

$$d(x ; y) = \sup \{ |\psi(x) - \psi(y)| ; \psi \in C^\infty_c(\mathbb{R}) , \|X\psi\|_\infty \leq 1 \} .$$

Clearly one has

$$|\psi(x) - \psi(y)| = \left| \int_x^y dz \psi'(z) \right| \leq \left| \int_x^y dz \, a(z)^{-1} \right|$$

for all $\psi \in C^\infty_c(\mathbb{R})$ with $\|X_{\min}\psi\|_\infty \leq 1$. So

$$d(x ; y) \leq \left| \int_x^y dz \, a(z)^{-1} \right| .$$

But by regularizing a^{-1} on a compact interval one deduces that the inequality is in fact an equality, i.e.,

$$d(x ; y) = \left| \int_x^y dz \, a(z)^{-1} \right|$$
for all $x, y \in \mathbb{R}$. Note that by setting $x = e^{-sX}y$ and using (2) one finds
\[
d(e^{-sX}y; y) = \left| \int_y^{e^{-sX}y} dz \, a(z)^{-1} \right| = |s|.
\]
(5)

Therefore the distance is invariant under the flow in the sense that
\[
d(e^{-tX}x; e^{-tX}y) = d(x; y)
\]
for all $x, y \in \mathbb{R}$ and all $t \geq 0$. This follows by setting $x = e^{-sX}y$ and
\[
d(e^{-tX}x; e^{-tX}y) = d(e^{-sX}e^{-tX}y; e^{-tX}y) = |s| = d(e^{-sX}y; y) = d(x; y),
\]
where we have used (5).

Now one can calculate the kernel of the semigroup S.

Proposition 2.3 The kernel K of the semigroup S on $L_\infty(\mathbb{R})$ is given by
\[
K_t(x; y) = (4\pi t)^{-1/2} \left(a(y) \rho(y) \right)^{-1} e^{-d(x;y)^2/(4t)}^{-1}
\]
(6)

for all $x, y \in \mathbb{R}$ and $t > 0$. Moreover, K_t is continuous and $\int dy \, \rho(y) \, K_t(x; y) = 1$ for all $x \in \mathbb{R}$.

Proof First by (3) one has
\[
(S_t \varphi)(x) = (4\pi t)^{-1/2} \int_{-\infty}^{\infty} ds \, e^{-s^2/(4t)}^{-1} \varphi(e^{-sX}x)
\]
for all $\varphi \in C^\infty_c(\mathbb{R})$, $t > 0$ and $x \in \mathbb{R}$. Therefore by a change of variables $y = e^{-sX}x$ one deduces that
\[
(S_t \varphi)(x) = (4\pi t)^{-1/2} \int_{-\infty}^{\infty} dy \, a(y)^{-1} e^{-d(x;y)^2/(4t)}^{-1} \varphi(y)
\]
since $|s| = d(x; y)$ by (5). The representation (6) follows immediately.

Clearly K_t is continuous and $H_{\max} \mathbb{1} = 0$. So $S_t \mathbb{1} = 1$ in L_∞-sense. Therefore $\int dy \, \rho(y) \, K_t(x; y) = 1$ for all $t > 0$ and almost every $x \in \mathbb{R}$. Moreover, the map $x \mapsto \int dy \, \rho(y) \, K_t(x; y)$ is continuous. Hence $\int dy \, \rho(y) \, K_t(x; y) = 1$ for all $t > 0$ and $x \in \mathbb{R}$. \square

3 Extension properties

Although T is defined as a group of isometries and S as a contraction semigroup on L_∞ they do not automatically extend to the L_p-spaces. This requires extra boundedness conditions on the coefficient function a and the density function ρ. The following proposition gives necessary and sufficient conditions for T to extend to a continuous group and sufficient conditions for S to extend to a continuous semigroup.

Proposition 3.1 Let T be the group of isometries of $L_\infty(\mathbb{R}; \rho \, dx)$ defined by $(T_t \varphi)(y) = \varphi(e^{-tX}y)$. The following conditions are equivalent for all $C \geq 1$ and $\omega \geq 0$.

4
Therefore

I. There is a \(\omega \) for all \(p \in [1, \infty) \) such that \(T \) extends to a (strongly) continuous group on \(L_p(\mathbb{R}; \rho \, dx) \) satisfying the bounds \(\|T_t\|_{p \to p} \leq C^{1/p} e^{\omega |t|/p} \) for all \(t \in \mathbb{R} \).

II. For all \(p \in [1, \infty) \) the group \(T \) extends to a (strongly) continuous group on \(L_p(\mathbb{R}; \rho \, dx) \) satisfying the bounds \(\|T_t\|_{p \to p} \leq C^{1/p} e^{\omega |t|/p} \) for all \(t \in \mathbb{R} \).

III. \(a(y) \rho(y) \leq C e^{\omega d(x;y)} a(x) \rho(x) \) for all \(x, y \in \mathbb{R} \).

Moreover, if these conditions are satisfied then the semigroup \(S \) extends to a (strongly) continuous semigroup on all the \(L_p \)-spaces, \(p \in [1, \infty] \), satisfying the bounds

\[
\|S_t\|_{p \to p} \leq \left((2C)^{1/p} e^{\omega^2 t/p} \right) \wedge \left(2C^{1/p} e^{\omega^2 t/p^2} \right)
\]

if \(\omega > 0 \) and \(\|S_t\|_{p \to p} \leq C^{1/p} \) if \(\omega = 0 \), for all \(t > 0 \).

Proof First assume Condition \(\text{III} \) is satisfied. Then for all \(\varphi \in L_p \) one has

\[
\|T_t \varphi\|_p^p = \int_{\mathbb{R}} dy \, \rho(y) |\varphi(e^{-tX} y)|^p
\]

Secondly, by a change of variables \(x = e^{-tX} y \) one finds

\[
\|T_t \varphi\|_p^p = \int_{\mathbb{R}} dx \, \frac{a(e^{tX} x)}{a(x)} \rho(e^{tX} x) |\varphi(x)|^p = \int_{\mathbb{R}} dx \, \rho(x) \left(\frac{a(e^{tX} x)}{a(x)} \rho(e^{tX} x) \right) |\varphi(x)|^p
\]

Therefore

\[
\sup_{x \in \mathbb{R}} \left(\frac{a(e^{tX} x)}{a(x)} \rho(e^{tX} x) \right)^{1/p} = \|T_t\|_{p \to p} \leq C^{1/p} e^{\omega |t|/p}
\]

for all \(t \in \mathbb{R} \) and \(x \in \mathbb{R} \). Hence

\[
a(e^{tX} x) \rho(e^{tX} x) \leq C e^{\omega t} a(x) \rho(x)
\]

for all \(t \in \mathbb{R} \) and \(x \in \mathbb{R} \). Setting \(y = e^{tX} x \) and noting that \(d(x; y) = |t| \) one deduces that Condition \(\text{III} \) is satisfied. Conversely, the same calculation shows that if Condition \(\text{III} \) is satisfied then

\[
\|T_t \varphi\|_p \leq C^{1/p} e^{\omega |t|/p} \|\varphi\|_p
\]

for all \(p \in [1, \infty) \), \(\varphi \in L_p \) and \(t \in \mathbb{R} \). In addition if \(\varphi \in C_c^\infty \) then one calculates that

\[
\varphi - T_t \varphi = \int_0^t ds \, T_s X_{\min} \varphi
\]

Hence using \(\text{III} \) and the density of \(C_c^\infty \) in \(L_p \) one concludes that \(T_t \) extends to a continuous semigroup on \(L_p \) satisfying the bounds \(\text{III} \), i.e., Condition \(\text{II} \) is valid. The implication \(\text{II} \to \text{III} \) is trivial.

If the conditions are satisfied then \(S \) extends to the \(L_p \)-spaces by \(\text{III} \). The estimates on the norms of \(S_t \) are established in two steps. First, if \(\omega > 0 \) then it follows from \(\text{III} \) and the estimates on \(\|T_s\|_{1 \to 1} \) that

\[
\|S_t\|_{1 \to 1} \leq 2C e^{\omega^2 t}
\]

for all \(t > 0 \). Since \(S \) is contractive on \(L_\infty \) one deduces from interpolation that

\[
\|S_t\|_{p \to p} \leq (2C)^{1/p} e^{\omega^2 t/p}
\]
for all \(p \in (1, \infty) \) and \(t > 0 \). Alternatively, one can reverse the reasoning and use the interpolated bounds \(\| T_s \|_{p \rightarrow p} \leq C^{1/p} e^{\omega|s|/p} \) together with (3) to calculate that
\[
\| S_t \|_{p \rightarrow p} \leq 2 C^{1/p} e^{\omega^2 t/p^2}
\]
for all \(p \in [1, \infty] \) and \(t > 0 \).

If \(\omega = 0 \) similar arguments apply and both lead to the bounds \(\| S_t \|_{p \rightarrow p} \leq C^{1/p} \). \(\square \)

The situation described by the proposition simplifies if \(C = 1 \). Then Condition (III) together with (3) implies that
\[
\pm (a\rho)'(y) a(y) = \lim_{t \downarrow 0} t^{-1} \left((a\rho)(e^{\pm tX} y) - (a\rho)(y) \right)
\leq \limsup_{t \downarrow 0} t^{-1} (e^{\omega t} - 1)(a\rho)(y) = \omega (a\rho)(y)
\]
for all \(y \in \mathbb{R} \). Thus \(\| \rho^{-1}(a\rho)' \|_{\infty} \leq \omega \). Conversely, if \(\| \rho^{-1}(a\rho)' \|_{\infty} \leq \omega \) then
\[
\rho(e^{tX} y)^{-1} \frac{d}{dt} \left(e^{-\omega t} (a\rho)(e^{\pm tX} y) \right) \leq 0
\]
for all \(t \geq 0 \). Hence Condition (III) is satisfied with \(C = 1 \). But the condition \(\| \rho^{-1}(a\rho)' \|_{\infty} \leq \omega \) can be expressed in terms of the vector field. Therefore one has the following corollary.

Corollary 3.2 The following conditions are equivalent for all \(\omega \geq 0 \).

I. There is a \(p \in [1, \infty) \) such that \(T \) extends to a continuous group on \(L^p(\mathbb{R}; \rho dx) \) satisfying the bounds \(\| T_t \|_{p \rightarrow p} \leq e^{\omega|t|/p} \) for all \(t \in \mathbb{R} \).

II. For all \(p \in [1, \infty) \) the group \(T \) extends to a continuous group on \(L^p(\mathbb{R}; \rho dx) \) satisfying the bounds \(\| T_t \|_{p \rightarrow p} \leq e^{\omega|t|/p} \) for all \(t \in \mathbb{R} \).

III. \(\| \rho^{-1}(a\rho)' \|_{\infty} \leq \omega \).

IV. \(|(\psi, (X + X^*)\varphi)| \leq \omega \| \psi \|_q \| \varphi \|_p \) for all \(\varphi, \psi \in C^\infty_c(\mathbb{R}) \) and for one pair (for all pairs) of dual exponents \(p, q \in [1, \infty) \).

Moreover, if these conditions are satisfied then the semigroup \(S \) extends to a continuous semigroup on all the \(L^p \)-spaces, \(p \in [1, \infty) \), satisfying the bounds
\[
\| S_t \|_{p \rightarrow p} \leq e^{\omega^2 t/p^2}
\]
for all \(t > 0 \). In addition \(H_{\text{max}} \) satisfies a Gårding inequality. Precisely,
\[
\text{Re}(\varphi, H_{\text{max}} \varphi) \geq (1 - \varepsilon)\| X \varphi \|^2_2 - (4\varepsilon)^{-1}\| X + X^* \|_{2 \rightarrow 2}^2 \| \varphi \|^2_2
\]
for all \(\varphi \in C^\infty_c(\mathbb{R}) \) and \(\varepsilon > 0 \).

Proof The equivalence of the first three conditions and the existence of the extension of the semigroup \(S \) follow from Proposition 2.11 and the above discussion. Conditions (III) and (IV) are equivalent because
\[
(\psi, X \varphi) + (X \psi, \varphi) = \int_\mathbb{R} dx (a\rho)(x) \left(\psi(x) \varphi'(x) + \psi'(x) \varphi(x) \right)
= \int_\mathbb{R} dx \rho(x) \left(\rho(x)^{-1}(a\rho)'(x) \right) \psi(x) \varphi(x)
\]
for all $\varphi, \psi \in C_c^\infty(\mathbb{R})$. It remains to prove the Gårding inequality.

If $\varepsilon > 0$ then

$$
\text{Re}(\varphi, H_{\max}\varphi) = -\text{Re}(X^*\varphi, X\varphi) = \|X\varphi\|_2^2 - \text{Re}((X^* + X)\varphi, X\varphi) \\
\geq \|X\varphi\|_2^2 - \|(X^* + X)\varphi\|_2\|X\varphi\|_2 \\
\geq (1 - \varepsilon)\|X\varphi\|_2^2 - (4\varepsilon)^{-1}\|X + X^*\|_{2 \to 2}\|\varphi\|_2^2
$$

for all $\varphi \in C_c^\infty(\mathbb{R})$. \square

The corollary, applied with $\omega = 0$, gives the following criteria for T or S to extend to a contraction group or semigroup on the L_p-spaces.

Proposition 3.3 The following are equivalent.

I. There is a $p \in [1, \infty)$ such that T extends to a continuous contraction group on $L_p(\mathbb{R}; \rho \, dx)$.

II. For all $p \in [1, \infty)$ the group T extends to a continuous contraction group on $L_p(\mathbb{R}; \rho \, dx)$.

III. There is a $p \in [1, \infty)$ such that S extends to a continuous contraction group on $L_p(\mathbb{R}; \rho \, dx)$.

IV. For all $p \in [1, \infty)$ the semigroup S extends to a continuous contraction group on $L_p(\mathbb{R}; \rho \, dx)$.

V. The function $a\rho$ is constant.

Proof The implications $\text{V} \Rightarrow \text{I} \Rightarrow \text{II} \Rightarrow \text{IV}$ follow from Corollary 3.2 and the implication $\text{V} \Rightarrow \text{III}$ is trivial.

The proof of the implication $\text{III} \Rightarrow \text{V}$ relies on the reasoning of Lumer and Phillips.

If Condition III is valid for some $p \in [1, 2]$ then it follows by interpolation with the contraction semigroup on L_∞ that Condition III is valid for all $p > 2$. Hence it suffices to show that if $p \in \langle 2, \infty \rangle$ and S extends to a continuous contraction group on $L_p(\mathbb{R}; \rho \, dx)$ then the function $a\rho$ is constant, i.e., Condition V is valid. Fix $p \in \langle 2, \infty \rangle$ and assume S extends to a continuous contraction group on $L_p(\mathbb{R}; \rho \, dx)$. Then it follows from the Lumer–Phillips theorem, [LuP] Theorem 3.1, that the generator H of the semigroup S on $L_p(\mathbb{R}; \rho \, dx)$ is dissipative. So if $[\cdot, \cdot]$ is a semi-inner product on $L_p(\mathbb{R}; \rho \, dx)$ then $\text{Re}[H\varphi, \varphi] \geq 0$ for all $\varphi \in D(H)$. If $\varphi \in C_c^2(\mathbb{R})$ is real valued then $\varphi \in D(H_{\max})$ and $H_{\max}\varphi \in L_p(\mathbb{R}; \rho \, dx)$. So $\varphi \in D(H)$ and $H_{\max}\varphi = H\varphi$. Moreover,

$$
\int d(a \rho \varphi^{p-1}) a(d \varphi) = \int \rho \varphi^{p-1} H_{\max}\varphi = \int \rho \varphi^{p-1} H\varphi = \|\varphi\|_p^{p-2}[H\varphi, \varphi] \geq 0
$$

where $d = d/dx$. Hence

$$
\int d(a \rho \varphi^{p-1}) a(d \varphi) \geq 0
$$

for all real valued $\varphi \in W^{1,\infty}_c(\mathbb{R})$ by approximation.

Next fix $\tau \in C_c^\infty(\mathbb{R})$ such that $0 \leq \tau \leq 1$, $\tau(0) = 1$ and τ is decreasing on $[0, \infty)$. For all $n \in \mathbb{N}$ define $\varphi_n \in W^{1,\infty}_c(\mathbb{R})$ by

$$
\varphi_n = (a\rho)^{-1/p}(\tau \circ \Phi_n)
$$

for all $\varphi, \psi \in C_c^\infty(\mathbb{R})$. It remains to prove the Gårding inequality.

If $\varepsilon > 0$ then

$$
\text{Re}(\varphi, H_{\max}\varphi) = -\text{Re}(X^*\varphi, X\varphi) = \|X\varphi\|_2^2 - \text{Re}((X^* + X)\varphi, X\varphi) \\
\geq \|X\varphi\|_2^2 - \|(X^* + X)\varphi\|_2\|X\varphi\|_2 \\
\geq (1 - \varepsilon)\|X\varphi\|_2^2 - (4\varepsilon)^{-1}\|X + X^*\|_{2 \to 2}\|\varphi\|_2^2
$$

for all $\varphi \in C_c^\infty(\mathbb{R})$. \square
Then
\[\Phi_n(x) = n^{-1} d(0 ; x)^2 = n^{-1} \left(\int_0^x a^{-1} \right)^2. \]

Then
\[
\varphi'_n(x) = -p^{-1} (a \rho')(x)^{-1-p^{-1}} (a \rho)'(x) \tau(\Phi_n(x))
\]
\[+ 2n^{-1} (a \rho)(x)^{-1/p} \tau'(\Phi_n(x)) \left(\int_0^x a^{-1} \right) a(x)^{-1}. \]

and
\[
(a \rho \varphi'_n)(x) = -p^{-1} (a \rho)(x)^{-1/p} (a \rho)'(x) \tau(\Phi_n(x))
\]
\[+ 2n^{-1} \rho(x) (a \rho)(x)^{-1/p} \tau'(\Phi_n(x)) \left(\int_0^x a^{-1} \right). \]

Similarly, \((a \rho \varphi_n^{p-1})(x) = (a \rho)(x)^{1/p} \tau(\Phi_n(x))^{p-1}\) and
\[
(a \rho \varphi_n)'(x) = p^{-1} (a \rho)(x)^{-1+p^{-1}} (a \rho)'(x) \tau(\Phi_n(x))^{-1+p^{-1}}
\]
\[+ 2n^{-1} (p - 1) \rho(x) (a \rho)(x)^{-1+p^{-1}} \tau(\Phi_n(x))^{p-2} \tau'(\Phi_n(x)) \left(\int_0^x a^{-1} \right). \]

Then by \(\square\) it follows that
\[0 \leq \int \rho^{-1} d(a \rho \varphi_n^{p-1}) \rho (d \varphi_n)
\]
\[= \int dx \left(-p^{-2} \rho(x)^{-1} (a \rho)(x)^{-1}(a \rho)'(x)^2 \left(\tau(\Phi_n(x)) \right)^2
\]
\[- 2n^{-1} (1 - 2p^{-1}) (a \rho)(x)^{-1}(a \rho)'(x) \tau(\Phi_n(x))^{p-1} \tau'(\Phi_n(x)) \left(\int_0^x a^{-1} \right)
\]
\[+ 4n^{-2} (p - 1) \rho(x) (a \rho)(x)^{-1} \tau(\Phi_n(x))^{p-1} \left(\tau'(\Phi_n(x)) \right)^2 d(0 ; x)^2 \right). \]

Using the estimate \(a b \leq \varepsilon a^2 + (4 \varepsilon)^{-1} b^2\) for the second term, setting \(\varepsilon = (2p(p - 2))^{-1}\) and rearranging one finds
\[
(2p^2)^{-1} \int \rho^{-1} (a \rho)^{-1} ((a \rho)')^2 (\tau \circ \Phi_n)^2
\]
\[\leq n^{-1} \int \rho (a \rho)^{-1} \left(4(p - 1) \tau(\Phi_n)^{p-2} + 2(p - 2)^2 (\tau(\Phi_n)^{2p-2}) (\tau' \circ \Phi_n)^{2} \Phi_n \right) \]
\[\text{for all } n \in \mathbb{N}. \] There are \(b, c > 0\) such that
\[y \left(4(p - 1) \tau(y)^{p-2} + 2(p - 2)^2 \tau(y)^{2p-2} \right) (\tau'(y))^2 \leq c e^{-\left(4b\right)^{-1}y}
\]
for all \(y \in [0, \infty)\). Then
\[\left((a \rho)^{-1} \left(4(p - 1) (\tau \circ \Phi_n)^{p-2} + 2(p - 2)^2 (\tau \circ \Phi_n)^{2p-2} \right) (\tau' \circ \Phi_n)^{2} \Phi_n \right)(x)
\]
\[\leq c (a \rho)(x)^{-1} e^{-d(0;x)^2(4bn)^{-1}}
\]
\[= c (4 \pi b n)^{1/2} K_{bn}(0 ; x) \]

8
uniformly for all \(x \in \mathbb{R} \) and \(n \in \mathbb{N} \). Using Proposition 2.3 one deduces that
\[
\int \rho (a \rho)^{-1} (4(p-1)(\tau \circ \Phi_n)^{p-2} + 2(p-2)^2(\tau \circ \Phi_n)^{2p-2}) (\tau' \circ \Phi_n)^2 \Phi_n \leq c (4 \pi b n)^{1/2}
\]
for all \(n \in \mathbb{N} \). Finally and the monotone convergence theorem establishes that
\[
(2p^2)^{-1} \int \rho^{-1} (a \rho)^{-1} ((a \rho)'^2 = \lim_{n \to \infty} (2p^2)^{-1} \int \rho^{-1} (a \rho)^{-1} ((a \rho)'^2 (\tau \circ \Phi_n)^2 \leq \lim_{n \to \infty} n^{-1} c (4 \pi b n)^{1/2} = 0
\]
Therefore \((a \rho)' = 0\) as required. \(\square\)

In the unweighted case, i.e., \(\rho = 1 \), the proposition establishes that \(S \) extends to a contraction semigroups on one of the \(L_p \)-spaces with \(p < \infty \) only in the case that \(X \) is proportional to \(d/dx \).

4 Examples

Next we give two examples of rather unexpected properties although there is nothing inherently pathological about the weight \(\rho \) or the coefficient \(a \). In fact in both examples \(\rho = 1 \) and the coefficient \(a \) of the vector field is strictly positive, smooth and uniformly bounded. The first example gives a continuous group \(T \) and semigroup \(S \) which do not extend from \(L_\infty \) to the other \(L_p \) spaces. The principal reason for this singular behaviour is the fact that \(\inf a = 0 \), i.e., there is a mild degeneracy at infinity.

Example 4.1 Let \(\rho = 1 \). For all \(n \in \mathbb{N}_0 \) define \(h_n = n!^{-1} \). Define \(y_n \in \mathbb{R} \) for all \(n \in \mathbb{N}_0 \) by \(y_0 = 0 \) and inductively
\[
y_{n+1} = y_n + 4^{-1}(h_n + h_{n+1}) + 2^{-1}
\]
for all \(n \in \mathbb{N} \). Define \(\tilde{a}: \mathbb{R} \to (0, \infty) \) by
\[
\tilde{a}(x) = \begin{cases}
 h_n & \text{if } x \in [y_n - 4^{-1}h_n, y_n + 4^{-1}h_n) \quad (n \in \mathbb{N}_0), \\
 1 & \text{if } x \in [y_n + 4^{-1}h_n, y_n + 4^{-1}h_n + 2^{-1}) \quad (n \in \mathbb{N}_0), \\
 1 & \text{if } x \in (-\infty, 0].
\end{cases}
\]
Then \(\tilde{a}(y_n) = h_n \) and \(\int_{y_n}^{y_{n+1}} dx \tilde{a}(x)^{-1} = 1 \) for all \(n \in \mathbb{N} \). Next we regularize \(\tilde{a}^{-1} \). For all \(n \in \mathbb{N}_0 \) let \(\chi_n \in C_0^\infty(\mathbb{R}) \) be such that \(\chi_n \geq 0, \int \chi_n = 1, \supp \chi_n \subseteq [-8^{-1}h_n, 8^{-1}h_n] \) and \(\chi_n(-x) = \chi_n(x) \) for all \(x \in \mathbb{R} \). Define \(a \in C_0^\infty(\mathbb{R}) \) by
\[
a(x)^{-1} = \begin{cases}
 (\chi_0 \ast \tilde{a}^{-1})(x) & \text{if } x \leq 0, \\
 (\chi_n \ast \tilde{a}^{-1})(x) & \text{if } n \in \mathbb{N}_0 \text{ and } x \in [y_n - 4^{-1}h_n - 4^{-1}, y_n + 4^{-1}h_n + 4^{-1})
\end{cases}
\]
Then \(a(y) = h_n \) for all \(y \in [y_n - 8^{-1}h_n, y_n + 8^{-1}h_n] \) and \(\int_{y_n}^{y_{n+1}} dx a(x)^{-1} = 1 \) for all \(n \in \mathbb{N} \). Hence \(d(y_n, y_{n+1}) = 1 \) for all \(n \in \mathbb{N} \). But \(a(y_n) = (n + 1) a(y_{n+1}) \) for all \(n \in \mathbb{N} \). Therefore Condition [III] of Proposition 3.1 is not valid. In particular the group \(T \) does not extend to
any of the other \(L_p \) spaces. Next we show that the semigroup \(S \) also does not extend to another \(L_p \) space.

Let \(p \in [1, \infty) \), \(t > 0 \) and let \(q \) be the dual exponent of \(p \). For all \(n \in \mathbb{N} \) set \(I_n = [y_n - 8^{-1}h_n, y_n + 8^{-1}h_n] \). Let \(n \in \mathbb{N} \). Set \(\varphi = 1_{I_{n+1}} \) and \(\psi = 1_{I_n} \). Then \(\| \varphi \|_p = |I_{n+1}|^{1/p} \) and \(\| \psi \|_q = |I_n|^{1/q} \). Moreover,

\[
(\psi, S_t \varphi) = (4\pi t)^{-1/2} \int_{I_n} dx \int_{I_{n+1}} dy a(y)^{-1} e^{-d(x,y)^2(4t)^{-1}} \geq (4\pi t)^{-1/2} \int_{I_n} dx \int_{I_{n+1}} dy a(y)^{-1} e^{-3d(x,y)^2t^{-1}} = (4\pi t)^{-1/2} |I_n| |I_{n+1}| h_{n+1}^{-1} e^{-3d(x,y)^2t^{-1}}.
\]

So

\[
\| S_t \|_{p \to p} \geq (4\pi t)^{-1/2} |I_n|^{1/p} |I_{n+1}|^{1/q} h_{n+1}^{-1} e^{-3d(x,y)^2t^{-1}} = (64\pi t)^{-1/2} (n + 1)^{1/p}.
\]

Hence the operator \(S_t \) on \(L_\infty \) does not extend to a continuous operator on \(L_p \) for any \(p \in [1, \infty) \) or \(t > 0 \). \(\square \)

In the next example the coefficient \(a \) of \(X \) is uniformly bounded above and below by a positive constant but \(\sup a' = \infty \). The semigroup \(S \) extends to a continuous semigroup on all the \(L_p \)-spaces but the real part of the generator of \(S \) on \(L_2 \) is not lower semibounded. This contrasts with the case of continuous self-adjoint semigroups where boundedness of the semigroup immediately implies lower semiboundedness of the generator.

Example 4.2 First, let \(\rho = 1 \) and let \(\chi \in C^\infty(\mathbb{R}) \) be such that \(0 \leq \chi \leq 3 \), \(\chi' \geq 0 \), \(\chi(x) = 0 \) if \(x \leq 0 \), \(\chi(x) = 3 \) if \(x \geq 3 \) and \(\chi(x) = x \) if \(1 \leq x \leq 2 \). Define \(a: \mathbb{R} \to [1, 4] \) by

\[a(x) = 1 + \sum_{n=1}^\infty \left(\chi(n(x - 16n)) - \chi(n(x - (16n + 8))) \right). \]

Thus \(a = 1 \) on an infinite sequence of intervals of length almost equal to 8 spaced at distance 8 one from the other. On the intermediate intervals \(a \) increases smoothly to the value 4 and then decreases in a similar fashion to the value 1. The rate of increase and decrease, however, becomes larger with the distance of the interval from the origin. Nevertheless \(a \in C^\infty(\mathbb{R}) \) and the bounds of Proposition 3.1.1 are valid with \(C = 4 \) and \(\omega = 0 \). In particular \(S_t \) extends to the \(L_p \)-spaces and \(\| S_t \|_{p \to p} \leq 4^{1/p} \).

Secondly, let \(n \in \mathbb{N} \) with \(n \geq 4 \). Let \(\psi \in C^\infty(\mathbb{R}) \) be such that \(\psi(x) = 3 \) for all \(x \leq 16n + 8 \), \(0 \leq \psi' \leq n^{1/2} \), \(\psi'(x) = 0 \) for all \(x \geq 16n + 8 + 4n^{-1} \) and \(\psi'(x) = n^{1/2} \) for all \(x \in [16n + 8 + n^{-1}, 16n + 8 + 2n^{-1}] \). Then \(3 \leq \psi(16n + 8 + 4n^{-1}) \leq 5 \). Now define \(\varphi \in C_c^\infty(\mathbb{R}) \) by

\[
\varphi(x) = \begin{cases}
\chi(x - (16n + 4)) & \text{if } x \leq 16n + 8 \\
\psi(x) & \text{if } x \in [16n + 8, 16n + 8 + 4n^{-1}] \\
3^{-1}\psi(16n + 8 + 4n^{-1})\left(3 - \chi(x - (16n + 8 + 4n^{-1})\right) & \text{if } x \geq 16n + 8 + 4n^{-1}
\end{cases}
\]
Then \(\| \varphi \|_2 \leq 5 \cdot (12)^{1/2} = (300)^{1/2} \) and
\[
\| \varphi' \|_2 \leq 2 \| \chi' \|_{\infty} + n^{1/2}(4n^{-1})^{1/2} + 3^{-1}\psi(16n + 8 + 4n^{-1}) \| \chi' \|_{\infty} \leq 2 + 4 \| \chi' \|_{\infty} .
\]
But \(a' a \varphi \varphi' \leq 0 \) and
\[
-(a' \varphi, X\varphi) \geq \int_{16n+8+2n^{-1}} 16n+8+2n^{-1} (-a' a \varphi \varphi') \geq \int_{16n+8+2n^{-1}} n \cdot 2 \cdot 3 \cdot n^{1/2} = 6n^{1/2}
\]
by the previous estimates. Therefore
\[
\text{Re}(\varphi, H_{\min}\varphi) = \| X\varphi \|_2^2 + \text{Re}(a' \varphi, X\varphi) \leq \| a \|_{\infty}^2 (2 + 4 \| \chi' \|_{\infty})^2 - 8n^{1/2} \leq -300^{-1} \left(6n^{1/2} - 16(2 + 4 \| \chi' \|_{\infty})^2 \right) \| \varphi \|_2^2 .
\]
Consequently, \(\text{Re} H_{\min} \) is not lower semibounded. This is despite the uniform boundedness of \(S \) on \(L_2 \).

Next, since \(S \) is uniformly bounded on each of the \(L_p \)-spaces, the spectrum \(\sigma(H) \) of the generator \(H \) of the semigroup on \(L_p \) is contained in the right half-plane. But \(a(x) \in [1,4] \) for all \(x \in \mathbb{R} \). Therefore \(4^{-1}|x - y| \leq d(x; y) \leq |x - y| \) and Proposition 2.3 implies that
\[
K_t(x; y) \leq (4\pi t)^{-1/2} e^{-|x-y|^2/(64t)} t > 0 .
\]
for all \(x, y \in \mathbb{R} \) and \(t > 0 \). Hence it follows from Kun or LiV that \(\sigma(H) \) is independent of \(p \in [1, \infty] \). On the other hand \(\text{Re} H_{\min} \) is not lower semibounded on \(L_2 \) and the above estimates establish that \((-\infty, 0] \subset \Theta(H) \), the \(L_2 \)-numerical range of \(H \). Therefore \(\Theta(H) \neq \sigma(H) \) on \(L_2 \).

In fact this example illustrates the extreme situation that the spectrum of \(H \) is contained in the right half plane but the numerical range is the whole complex plane. This follows since one can establish that the numerical range \(\Theta(H) = C \) by a small modification of the foregoing estimates applied to the function \(\tilde{\varphi} \in C_0^\infty(\mathbb{R}) \) defined by
\[
\tilde{\varphi}(x) = e^{i\lambda x} \tau(x) + \varphi(x) ,
\]
where \(\lambda \in \mathbb{R} \) and \(\tau \in C_0^\infty((-1,4)) \) is fixed such that \(0 \leq \tau \leq 1 \) and \(\tau|_{[0,3]} = 1 \). One also uses the observation that the numerical range is convex.

Finally note that the semigroup \(S \) has a bounded holomorphic extension to the open right half-plane on each of the \(L_p \)-spaces, \(p \in [1, \infty] \). This follows from the explicit form of the kernel given in Propositions 2.3. Therefore the operator \(H \) is of type \(S_{0^+} \). Nevertheless, since \(\Theta(H) = C \) the operator \(H \) is not sectorial.

5 Volume doubling

Let \(V(x ; r) \) denote the measure of the ball of radius \(r \) centred at \(x \), i.e., the set \(\{ y : d(x ; y) < r \} = (e^{-rX}x, e^{rX}x) \). Then \(V \) is defined, as usual, to have the volume doubling property if there is a \(c > 0 \) such that
\[
V(x ; 2r) \leq c V(x ; r)
\]
for all \(r > 0 \). This property can be immediately related to the conditions of Proposition 3.3 which are necessary and sufficient for the continuous extension of \(T \) to the \(L_p \)-spaces.
Proposition 5.1

I. If the equivalent conditions of Proposition 3.1 are satisfied then

\[V(x; 2r) \leq 2C^2 e^{3\omega} V(x; r) \quad (10) \]

for all \(x \in \mathbb{R} \) and \(r \in (0, 1] \) where \(C \) and \(\omega \) are the parameters of Proposition 3.1. Moreover if \(\omega = 0 \) then (10) is valid for all \(x \in \mathbb{R} \) and \(r > 0 \).

II. If there exist \(c > 0 \) and a function \(v: (0, \infty) \rightarrow \mathbb{R} \) such that

\[c^{-1} v(r) \leq V(x; r) \leq cv(r) \]

for all \(x \in \mathbb{R} \) and \(r \in (0, 1] \) then Condition III of Proposition 3.1 is satisfied with \(\omega = 0 \).

Proof

It follows by definition that

\[V(x; r) = \int_{-rXx}^{e^{rXx}} dy \rho(y) . \]

But

\[\frac{d}{dr} V(x; r) = (a\rho)(e^{rXx}) + (a\rho)(e^{-rXx}) . \]

Hence

\[V(x; r) = \int_0^r ds \left((a\rho)(e^{sXx}) + (a\rho)(e^{-sXx}) \right) = \int_{-r}^r ds (a\rho)(e^{sXx}) . \]

Therefore if Condition III of Proposition 3.1 is satisfied one estimates that

\[2C^{-1} r e^{-\omega r} (a\rho)(x) \leq V(x; r) \leq 2C r e^{\omega r} (a\rho)(x) \]

for all \(x \in \mathbb{R} \) and \(r > 0 \). These bounds imply (11) for all \(x \in \mathbb{R} \) and \(r \in (0, 1] \) or, if \(\omega = 0 \), for all \(r > 0 \).

If, however, the assumptions of the second statement are valid then

\[c^{-1} v(r) \leq V(x; r) = \int_0^r ds (a\rho)(e^{sXx}) + (a\rho)(e^{-sXx}) \leq r \max_{y \in [e^{-Xx}, e^{Xx}]} (a\rho)(y) \]

for all \(x \in \mathbb{R} \) and \(r \in (0, 1] \). Similarly

\[cv(r) \geq r \min_{y \in [e^{-Xx}, e^{Xx}]} (a\rho)(y) . \]

Hence there exists a \(c_1 > 0 \) such that \(c_1^{-1} r \leq v(r) \leq c_1 r \) for all \(r \in (0, 1] \). But then

\[2(a\rho)(x) = \lim_{r \downarrow 0} r^{-1} \int_0^r ds (a\rho)(e^{sXx}) + (a\rho)(e^{-sXx}) = \lim_{r \downarrow 0} r^{-1} V(x; r) \leq \limsup_{r \downarrow 0} r^{-1} c v(r) \leq cc_1 \]

for all \(x \in \mathbb{R} \). Similarly \(2(a\rho)(x) \geq (cc_1)^{-1} \). Hence \(2cc_1^{-1} \leq a\rho \leq 2^{-1} cc_1 \) and Condition III of Proposition 3.1 is satisfied with \(\omega = 0 \). \(\square \)
Acknowledgement

This work was completed whilst the second named author was a guest of the Department of Mathematics at the University of Auckland.

References

[BrR] Bratteli, O., and Robinson, D.W., Operator algebras and quantum statistical mechanics, vol. 1. Second edition. Springer-Verlag, New York etc., 1987.

[Hör] Hörmander, L., Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147–171.

[Kun] Kunstmann, P.C., Heat kernel estimates and L^p-spectral independence of elliptic operators. Bull. London Math. Soc. 31 (1999), 345–353.

[LiV] Liskevich, V., and Vogt, H., On L^p-spectra and essential spectra of second order elliptic operators. Proc. London Math. Soc. 80 (2000), 590–610.

[LuP] Lumer, G., and Phillips, R.S., Dissipative operators in a Banach space. Pacific J. Math. 11 (1961), 679–698.

[Rob] Robinson, D.W., Elliptic operators and Lie groups. Oxford Mathematical Monographs. Oxford University Press, Oxford etc., 1991.