The mitochondrial ATPase6 gene is more susceptible to mutation than the ATPase8 gene in breast cancer patients

Massoud Ghaffarpour1,5, Reza Mahdian2, Forouzandeh Fereidooni3, Behnam Kamalidehghan4, Nasrin Moazami5 and Massoud Houshmand1*

Abstract

Background: Breast cancer is the most common malignancy in women throughout the world. Mitochondria play important roles in cellular energy production, free radical generation and apoptosis. Identification of mitochondrial DNA mutations and/or polymorphisms as cancer biomarkers is rapidly developing in molecular oncology research.

Methods: In this study, the DNA alterations of the mitochondrial ATPase 6 and 8 genes were investigated in 49 breast cancer patients using PCR amplification and direct DNA sequencing on mtDNA. A possible association between these variants and tumorigenesis was assessed. Furthermore, the impact of non-synonymous substitutions on the amino acid sequence was evaluated using the PolyPhen-2 software.

Results: Twenty eight distinct somatic mitochondrial DNA variants were detected in tumor tissues but not in the corresponding adjacent non-tumor tissues. Among these variants, 9 were observed for the first time in breast cancer patients. The mtDNA variants of A8384 (T7A), T8567C (I14T), G8572A (G16S), A9041G (H172R) and G9055A (A177T) showed the most significant effects probably due to damaging changes to the resulting protein. Furthermore, non-synonymous amino acid changing variants were more frequent in the ATPase6 gene compared to the ATPase8 gene.

Conclusion: Our results showed that the ATPase6 gene is more susceptible to variations in breast cancer and may play an important role in tumorigenesis by changing the energy metabolism level in cancer cells.

Keywords: MtDNA, ATPase6, ATPase8, Breast cancer
non-tumor tissues in breast cancer patients. We also investigated the correlation between the variants in these genes and the clinico-pathological features in these breast cancer patients.

Materials and Methods
Tumor tissue collection
Forty-nine breast cancer patients (34–75 years of age with a median age of 52.43 years) took part in this study. The patients were referred to the National Cancer Institute (NCI) at Imam Khomeini Hospital Complex, Tehran, Iran, from Oct. 2007 to Oct. 2009. Tumor tissue and adjacent non-tumor tissue samples were obtained from the Iranian National Tumor Bank (INTB) at NCI. Each specimen was immediately frozen following resection and stored at −80°C until DNA extraction. The pathologic changes in tumor samples were confirmed by two expert pathologists as adenocarcinomas according to the American Joint Committee on Cancer [22]. None of the patients received chemotherapy or radiotherapy treatment before they underwent surgery. All patients were informed on the aim of the study and signed an informed consent approved by the INTB Ethical Committee for the genetic analysis.

DNA extraction and PCR
In order to identify the alterations in the mtDNA ATPase6 and ATPase8 genes, PCR-sequencing was performed as described previously with some modifications [23]. Total genomic DNA was extracted from fresh tumor samples containing at least 90% neoplastic cells, as well as their adjacent non-tumor tissues, using the QIAamp Mini Kit (USA). The sequences of the primers were as follows: F-ATPase: 5′- CTACGGTCAATGCTCTGAAA -3′ (Accession No. NC_012920.1, 8161–8180). R-ATPase: 5′- TACT ATATGATAGGCATGTGA-3′ (9219–9239). PCR amplification was performed using a ready-to-use PCR master mix (Sinaclon LTD, Tehran, Iran) in a final volume of 50 μl containing 5 ng of genomic DNA and 0.10 μM of each primer in a MJ Mini Gradient Thermal Cycler PTC-1148 (Bio-Rad, USA). PCR amplification was carried out with the following program: a 5-min pre-PCR incubation step at 95°C, 35 cycles of 95°C for 60 s, annealing temperature at 55°C for 1 min and 72°C for 2 min, and a final extension of 72°C for 10 min. The amplified fragment (1078 bp) was observed on 1.5% agarose gel.

Sequencing analysis
The PCR products were sequenced using the previously reported primers [23] on a ABI Prism 3700 automated sequencer (Applied Biosystems, USA). Sequence analysis was carried out using the FinchTV 1.4 software (Geospiza, Inc., USA). The sequences were compared to the human mtDNA reference sequence (Gene Bank ID: NC_012920.1) using the BLAST sequence analysis tool (NCBI, Bethesda, USA). The Mitomap database was used to identify mitochondrial genome sequence variants.

Prediction of pathogenicity by protein modeling analysis
The impact of non-synonymous (coding) substitutions in the resulting protein was assessed using PolyPhen-2 (v. 2.2.2) software, a tool for predicting the possible impact of an amino acid substitution variant on the structure and function of the corresponding protein, which is interpreted as benign and damaging effects [24].

Statistical analysis
The correlation between each alteration in the ATPase6 and ATPase8 genes in tumor samples and their adjacent normal tissue were analyzed by Fisher’s exact test using statistical package SPSS (v.16.1). The correlation between the groups was considered statistically significant if the p-value was less than 0.05. Additionally, for each variant the odds ratio (OR) and 95% confidence interval (95% CI) were calculated in order to determine its association to the increased risk in breast cancer patients. The association between mtDNA alteration and clinico-pathological characteristics of breast cancer patients with more than one missense mutation was evaluated using One-way ANOVA analysis.

Results
In this study, the complete sequences of the ATPase6 and 8 genes of 49 tumor tissues and adjacent non-tumor tissues were analyzed in a cohort of breast cancer patients. The clinico-pathological characteristics of the patients are summarized in Table 1. From 49 breast cancer cases, 28 mtDNA variants were found in tumor tissues, which were not present in their adjacent normal tissues. From 28 variants, 23 (82.14%) were found in the ATPase6 gene and the remaining 5 sequence variants were detected in the ATPase8 gene. All cases showed variants in the ATPase6 gene, whereas only 8.16% (4 of 49) cases had variants in the ATPase8 gene. Among 28 mtDNA alterations, 26 were at the homoplasmic state and the remaining 2 variants were at the heteroplasmatic state (Table 2). However, there was no significant correlation (P > 0.05) between the ATPase6 and 8 gene variants and the clinico-pathological characteristics of the patients (Table 1). Our results indicated that the A8860G variant was detected in 100% of tumor tissue samples compared to adjacent non-tumor tissues, showing that this alteration may significantly increase breast cancer risk (P < 0.05). However, the patients’ survival was shorter in cases with more than one mtDNA non-synonomous ATPase variant compared to the patients with only one mtDNA non-synonomous ATPase variant (A8860G) (P =0.051, Table 1).

Furthermore, the damaging impact of an amino acid substitution on the structure and function of the ATPase6
Table 1 Characterization of clinico-pathological parameters and the frequency of cases with more than one somatic mtDNA (ATPase6/8) mutation in breast cancer patients

Variable	Patients with more than one somatic mtDNA (ATPase6/8) mutation	OR (95% CI)*	P value
Frequency of patients in each group			
Total number of patients	49		
Age at diagnosis (Yrs)		1.482(0.403-5.451)	0.746
<50	19(42.2)	5(26.3)	
≥50	26(57.8)	9(34.3)	
Histological grade			0.121
I	13(29.5)	1(7.7)	
II	24(54.5)	9(37.5)	
III	7(15.9)	3(42.9)	
TNM(AJCC) stage			0.680
I	3(6.7)	1(33.3)	
II	10(22.2)	2(20)	
III	3(6.7)	0(0)	
IV	64(64.4)	11(37.9)	
Tumor size(cm)			0.889
<2	5(11.1)	2(40)	
2-5	30(66.7)	9(30)	
>5	10(22.2)	3(30)	
Lymph node status			
Negative	12(30.8)	4(33.3)	
Positive	27(69.2)	10(37)	
Lymphatic invasion			1.000
Negative	18(47.4)	6(33.3)	
Positive	20(52.6)	7(35)	
Vascular invasion			1.000
Negative	13(32.5)	4(30.8)	
Positive	27(67.5)	10(37)	
Estrogen receptor status			0.222
Negative	8(17.4)	4(50)	
Positive	38(82.6)	10(26.3)	
Progesterone receptor status			1.000
Negative	22(48.9)	7(31.8)	
Positive	23(51.1)	7(30.4)	
Her-2/neu receptor			1.000
Negative	30(65.2)	9(30)	
Positive	16(34.2)	5(31.3)	
PS3			0.526
Negative	23(53.50)	8(34.8)	
Positive	20(46.5)	5(25)	
Cancer metastasis			0.191
Negative	18(38.3)	3(16.7)	
Positive	29(61.7)	11(37.9)	
Overall survival (5 yr%)	18 of 41(43.9)	3(16.7)	

*OR; Odds ratio, (95% CI); confidence interval reflects a significance level of 0.05.
No	Locus	Allele	Nucleotide position	Nucleotide change	Amino acid change*	Mutation status**	Frequency	OR; 95% CI ***	P Value	Reference
1	MT-ATPase8	A8384G	8384	A-G	T7A	Hm	1	1.021; 0.980-1.063	0.315	NR [**]
2	MT-ATPase6	T8542C	8542	T-C	F6L	Hm	1	1.021; 0.980-1.063	0.315	NR [**]
3	MT-ATPase8	T8542C	8542	T-C	C59C	Hm	1	1.021; 0.980-1.063	0.315	NR [**]
4	MT-ATPase6	G8557A	8557	G-A	A11T	Hm	1	0.980-1.063	0.315	Colonic crypts cancer [34], Breast cancer [27,28]
5	MT-ATPase6	G8557A	8557	G-A	L64L	Hm	1	0.980-1.063	0.315	Alzheimer's disease [40]
6	MT-ATPase6	T8567C	8567	T-C	I14T	Hm	1	0.980-1.063	0.315	Parkinson's disease [42]
7	MT-ATPase6	T8567C	8567	T-C	S68P	Hm	1	OR 1.021; 0.980-1.063	0.315	Parkinson's disease [49]
8	MT-ATPase6	G8572A	8572	G-A	G16S	Hm	1	0.980-1.063	0.315	Thyroid tumor [50]
9	MT-ATPase6	G8572A	8572	G-A	G69S	Hm	1	0.980-1.063	0.315	Colonic crypts cancer [34]
10	MT-ATPase6	C8684T	8684	C-T	T53I	Hm	1	0.980-1.063	0.315	Multiple Sclerosis [51], Ataxia telangiectasia [21], Huntington [52], Autism [53], Osteosarcoma [54], Colorectal adenomatous polyps [40]
11	MT-ATPase6	T8697C	8697	T-C	I24T	Hm	1	0.980-1.063	0.315	Thyroid tumor [50], Multiple Sclerosis [51], Ataxia telangiectasia [21], Breast cancer [30], Colorectal adenomatous polyps [38], Osteosarcoma [54]
12	MT-ATPase6	A8701G	8701	A-G	T59A	Hm	2	0.984-1.063	0.153	Thyroid tumor [50], Ataxia telangiectasia [21], Breast cancer [27,29], colorectal adenomatous polyps [38], Osteosarcoma [54]
13	MT-ATPase6	T8777C	8777	T-C	F117F	Hm	1	0.980-1.063	0.315	NR [**]
14	MT-ATPase6	C8794T	8794	C-T	H90Y	Ht	2	0.984-1.063	0.153	Exercise Endurance/Coronary Atherosclerosis risk [32]
15	MT-ATPase6	A8850G	8860	A-G	T112A	Hm	49	0.000		Colorectal cancer [36,38], Ovarian cancer [37], Breast cancer [27,29,34], Human glioma cells [33], Osteosarcoma [54], Leber's hereditary optic neuropathy [35]
16	MT-ATPase6	T8877C	8877	T-C	F117F	Hm	3	0.992-1.114	0.079	Leber's hereditary optic neuropathy [55]
17	MT-ATPase6	T8881C	8881	T-C	S119P	Ht	1	0.980-1.063	0.315	NR [**]
18	MT-ATPase6	C8910T	8910	C-T	F128F	Ht	2	0.984-1.105	0.153	The southern belt of Siberia population [56]
19	MT-ATPase6	G8950A	8950	G-A	V142I	Hm	2	0.984-1.105	0.153	Huntington [54], LDYT [57]
20	MT-ATPase6	G8994A	8994	G-A	L156L	Hm	1	0.980-1.063	0.315	Ataxia telangiectasia [21], Breast cancer [27], Colorectal adenomatous polyps [38]
21	MT-ATPase6	C9003A	9003	C-A	R159R	Hm	1	OR 1.021; 0.980-1.063	0.315	NR [**]
22	MT-ATPase6	A9007G	9007	A-G	T161A	Hm	1	0.980-1.063	0.315	Deafness associated [58]
23	MT-ATPase6	A9041G	9041	A-G	H172R	Hm	1	0.980-1.063	0.315	NR [**]
24	MT-ATPase6	G9055A	9055	G-A	A177T	Hm	3	0.992-1.114	0.079	Colorectal cancer [36], Colorectal adenomatous polyps [38], Breast cancer [38,50], Non-muscle invasive bladder cancer [44], Osteosarcoma [54], Pancreatic cancer [43], Parkinson's disease protective factor [45]
Table 2 Frequency of mtDNA ATPase 6/8 gene sequence alterations in 49 breast cancer patients (Continued)

	MT-ATPase6	G9085A	9085	C-T	P187S	Hm	1	1.021; 0.980-1.063	0.315	NR
25	MT-ATPase6	G9085A	9085	C-T	P187S	Hm	1	1.021; 0.980-1.063	0.315	NR
26	MT-ATPase6	T9090C	9090	T-C	S188S	Hm	1	1.021; 0.980-1.063	0.315	NR
27	MT-ATPase6	T9148C	9148	T-C	L208L	Hm	1	1.021; 0.980-1.063	0.315	NR
28	MT-ATPase6	C9168T	9168	C-T	F214F	Hm	1	1.021; 0.980-1.063	0.315	NR

Abbreviations:
*Missense mutations are in bold.
**Hm: Homoplasmic, Ht: Heteroplasmic.
***OR; Odds ratio, (95% CI); confidence interval reflects a significance level of 0.05.
****NR; Not reported in mitomap website.
and 8 proteins was predicted using PolyPhen-2 software (Table 3). The mtDNA variants A8384 (T7A), T8567C (I14T), G8572A (G16S), A9041G (H172R) and G9055A (A177T) showed significant effects on the resulting protein. Moreover, there was no significant association between mtDNA alterations and the clinico-pathological characteristics of breast cancer patients.

Discussion

The identification of mitochondrial DNA mutations and/or polymorphism patterns is rapidly developing in the field of molecular oncology. A large number of somatic mutations in the mitochondrial genome have been recently reported in different types of cancers including breast, colon and ovarian cancers [5,6]. These molecular markers may have potential implication in cancer research.

Mitochondrial complex V genes play an important role in ATP production [25] and the apoptosis pathways [5]. The contribution of mtDNA complex V variants in cell transformation, elevated ROS production, and tumor progression has been described previously [26]. Moreover, efficient programmed cell death needs the molecular machinery of ATP synthase [27].

The ATPase6 gene, one of the complex V genes, contributes to mtDNA maintenance [25]. Furthermore, the ATPase8 variants have been detected in rat and human

Table 3 Impact of non-synonymous* (coding) substitutions on the ATPase6 and 8 genes

Non-synonymous coding substitutions	Damaging score	Benign score
ATPase 6 gene		
T8542C (F6L)	0.976	0.917
G8557A (A11T)	0.002	0.004
T8567C (I14T)	0.617	0.280
G8572A (G16S)	0.895	0.498
C8684T (T531)	0.005	0.005
A8701G (T59A)	0.002	0.005
C8794T (H90Y)	0.002	0.003
A8860G (T112A)	0.000	0.003
T8881C (S119P)	0.325	0.149
G8950A (V142I)	0.000	0.001
A9007G (T161A)	0.994	0.988
A9041G (H172R)	0.854	0.331
G9055A (A177T)	0.854	0.331
ATPase 8 gene		
A8384G (T7A)	0.845	0.399
T8542C (S68P)	0.000	0.000

Non-synonymous variants were predicted as damaging and benign (With a score of 0 to 1) based on effects on the resulting protein using PolyPhen-2 software. The new variants are in bold format.

The identified mitochondrial DNA mutations and/or polymorphism patterns are rapidly developing in the field of molecular oncology. A large number of somatic mutations in the mitochondrial genome have been recently reported in different types of cancers including breast, colon and ovarian cancers [5,6]. These molecular markers have potential implications in cancer research.

Mitochondrial complex V genes play an important role in ATP production [25] and the apoptosis pathways [5]. The contribution of mtDNA complex V variants in cell transformation, elevated ROS production, and tumor progression has been described previously [26]. Moreover, efficient programmed cell death needs the molecular machinery of ATP synthase [27].

The ATPase6 gene, one of the complex V genes, contributes to mtDNA maintenance [25]. Furthermore, the ATPase8 variants have been detected in rat and human bladder cancer cells developed through chemically-induced carcinogenesis [28]. In a meta-analysis study carried out by Lu et al. a total of 55 variants, comprising 34 missense variants, 20 silent variants and 1 nonsense variant, were found in the ATPase6 gene and a total of 9 variants, including 2 missense variants and 7 silent variants, were detected in the ATPase8 gene [6].

In our study, among 28 distinct somatic variants, 18 were missense variants. Six variants have been previously reported in breast cancer [29-32] and 9 variants were new, including 4 missense and 5 silent variants which were observed for the first time in breast cancer patients. However, 17 variants were previously reported in other types of cancers and diseases (Table 2). In addition, more non-synonymous amino acid changing variants were found in the ATPase6 gene in comparison with the ATPase8 gene (Table 2). Our findings suggest that in breast cancer patients, the ATPase6 gene might be more susceptible to mutation in comparison to the ATPase8 gene. Shidara et al. and Kirches reported that ATPase6 gene variants may enhance cancer progression by preventing apoptosis pathways [6,33].

The functional role of ATPase6/8 variants in tumorigenesis is debatable; however, some of these variants are located in structurally and functionally important regions of the proteins. For instance, the A8860G alteration in ATPase6 has been reported as a polymorphism in different studies [29,31,34-40]. The frequency of this polymorphism has been reported to be from 79–91.66% in breast cancer patients [30,31], 75-100% in other types of cancers [38-40] and 92.85%-100% in neurodegenerative diseases [37,41-43]. Our results indicated that the A8860G variant was present in 100% of tumor tissue samples. Although this variant is located in a poorly conserved protein region with no impact on protein structure based on PolyPhen-2 software (Table 3), the variation may still contribute to other mtDNA and nDNA mutations.

The frequency of the G9055A variation has been reported as either 10.5% [28] or 18.6% [30] in breast cancer patients, indicating that it may increase the risk of breast cancer progression (OR: 3.03, 95% CI: 1.63-5.63, P = 0.0004) [32,44]. This variation is located in a conserved protein region with damaging impact on protein structure (Table 3). Furthermore, the frequency of this polymorphism has been reported as 10% in pancreatic cancer [45] and as 57% and 100% in tubular and villous adenomas, respectively [40]. Moreover, the high frequency of this variation has been shown in non-muscle invasive bladder cancer [46]. In addition, this polymorphism has been reported as a protective factor (OR: 0.46, 95% CI: 0.22-0.91, P = 0.03) in Caucasian women with Parkinson’s disease [47]. From these results, we propose that this mtDNA variation is unfavorable for neurodegenerative disorders, while having a protective effect on cancer. According to our results, the

Ghaffarpour et al. Cancer Cell International 2014, 14:21
http://www.cancerci.com/content/14/1/21
Page 6 of 9
frequency of this variation was 6.12% (3 of 49) in tumor samples.

A study by Petros et al. indicated that T8993G in ATPase6 can contribute to tumor growth in nude mice [48]. Another study showed that cybrids with a T8993G or T9176 ATPase6 mutation in nude mice can contribute to tumor development by preventing apoptosis in the early stages of tumor growth [10]. However, we detected none of these mutations in breast cancer patients.

Based on our results, the existence of more than one missense variants in some cases with different clinico-pathological features (Table 4) suggests a synergistic effect of different mtDNA variations on carcinogenesis. In conclusion, the high frequency of ATPase6 gene alterations in breast cancer proposes that mitochondrial gene

Table 4 MtDNA alterations and clinico-pathological characteristics of breast cancer patients with more than one missense mutation

Case	Locus	Variant	Frequency	Age (Yrs)	Grade	Tumor size (cm)	TNM*	Stage
BC-6	ATPase6	A8384G	4	44	III	3	T2N1M0	II
	ATPase8	T8542C						
						T8542C		
						A8860G		
BC-10	ATPase6	A8860G	3	55	III	2.5	T2N0M1	IV
		G8950A						
		A9041G						
BC-19	ATPase6	A8860G	2	42	II	5	T3N2M1	IV
		G9055A						
BC-20	ATPase6	A8860G	2	68	III	1.8	T2N1M1	IV
		A9007G						
BC-21	ATPase6	A8860G	2	43	II	1.2	T1N0M1	IV
		G8950A						
BC-23	ATPase6	A8860G	2	36	III	10	T3N3M1	IV
		G9055A						
BC-25	ATPase6	A8860G	2	50	II	13	T4N3M1	IV
		C8794T						
BC-32	ATPase6	A8860G	2	74	I	5	T3N1M1	IV
		T8881C						
BC-35	ATPase6	C8794T	2	75	II	5	T3N3M1	IV
		A8860G						
BC-37	ATPase6	A8860G	2	67	II	2	T1N0M0	I
		G9095A						
BC-38	ATPase6	A8701G	3	69	II	3.5	T2N3M1	IV
		A8860G						
		T9685C						
BC-39	ATPase6	A8701G	2	59	III	3	T2N0M0	II
		A8860G						
BC-41	ATPase6	C8684T	2	51	II	3.5	T2N0M1	IV
		A8860G						
BC-48	ATPase6	T8567C	3	41	II	4.5	T2N3M1	IV
	ATPase8	T8567C						
		A8860G						

T1–T4: Size and/or extent of the primary tumor; NX: Regional lymph nodes cannot be evaluated; N0: No regional lymph node involvement (no cancer found in the lymph nodes); N1–N3: Involvement of regional lymph nodes (number and/or extent of spread); M0: No distant metastasis; M1: Distant metastasis (spread of cancer from one part of the body to another). There was no significant association between the mtDNA alterations and clinic-pathological characteristics of breast cancer patients.
variants may play an important role in tumorigenesis, changing the energy metabolism in cancer cells, and may be suggested as molecular biomarkers in breast cancer.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MG carried out the experimental procedures, participated in the sequence alignment and drafted the manuscript. RM, FF, and NM participated in the alignment and drafted the manuscript. BK wrote his constructive comments and edited the manuscript. MH conceived the project and supervised the study. All authors read and approved the final manuscript.

Acknowledgements

Tumor tissues and adjacent non-tumor tissues samples were provided by the Iran National Tumor Bank (INTB) which is funded by the Cancer Institute. This work was also supported by the Iran National Tumor Bank (INTB) which is funded by the Cancer Institute.

Author details

1Medical Genetics Department, National Institute for Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran.

2Biotechnology Research Center, Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran.

3National Cancer Institute, Imam Khomeini Hospitals Complex, Tehran University of Medical Science, Tehran, Iran.

4Pharmacy Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.

5Iranian Research Organization for Science and Technology, Tehran, Iran.

Received: 20 July 2013 Accepted: 20 February 2014

Published: 3 March 2014

References

1. Most frequent cancers; Women. [updated; 15/5/2013] cited from: http://globocan.iarc.fr/factsheets/cancers/breast.asp.

2. Movahedi MHS, Khayamzadeh M, Moradi A, Ghanbari-Motlagh A, Mirzaei H, Esrail-Akbari M: Survival rate of breast cancer based on geographical variation in Iran, a national study. Iran Red Crescent Med J 2012, 14(12):798–804.

3. Anderson SBA, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young KS: Sequence and organization of the human mitochondrial genome. Nature 1981, 290:457–464.

4. Wallace DC: a mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005, 39:359–408.

5. Czamecka AMKW, Krawczyk T, Scinska A, Kukwa A, Cappello F: Mitochondrial DNA mutations in cancer from bench to bedside. Front Biosci 2010, 15:437–463.

6. Lu JSI, Bai Y: Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis, Cell Research 2000, 9:802–815.

7. William C, Copeland ITW, Johnson FM, Penta JS: Mitochondrial DNA Alterations in Cancer. Cancer Investigation 2002, 20(4):554–566.

8. Chatterjee ADS, Sidransky D: Mitochondrial subversion in cancer. Cancer Prev Rev 2011, 45:58–649.

9. William C, Copeland ITW, Johnson FM, Penta JS: Mitochondrial DNA Alterations in Cancer. Cancer Investigation 2002, 20(4):12.

10. Shidara YYK, Kamonari T, Nakano K, Kwong JQ, Manfredi G, Oda H, Ohta S: Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 2005, 65(5):1655–1663.

11. Amruthan GBG, Zhang SY, Klein-Santo A, Vijaysarathy C, Avadhani NG: Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid. Cancer Genet Cytogenet 2005, 261(1):115–122.

12. Tan DIBR, Wong LJ: Comprehensive Scanning of Somatic Mitochondrial DNA Mutations in Breast Cancer. Cancer Res 2002, 62(4):972–976.

13. Czamecka AMKA, Krawczyk T, Zdrazny M, Arnold RS, Batrkh E, Petsos JA: Mitochondrial NADH-dehydrogenase polymorphisms as sporadic breast cancer risk factor. Oncol Rep 2010, 23(2):531–535.

14. Liu X, Shi B, Lai PS, Shen Y: Mitochondrial DNA polymorphisms and breast cancer risk. J Cancer 2011, 2(10):463–468.

15. Rolando WJ, Bloomer RJ, Honma Y, Hayashi J: Mitochondrial DNA mutations and their role in sporadic breast cancer. Ann Oncol 2008, 19(2):162–167.

16. Nakada K, Honma Y, Hayashi J: Mitochondrial DNA mutations and their role in sporadic breast cancer. Cancer Prev Res 2011, 4:3153–3156.

17. Czamecka AMKA, Krawczyk T, Zdrazny M, Kamioner T, Olszewski A: Mitochondrial DNA mutations and breast cancer risk. Curr Genomics 2009, 10(4):281–292.

18. Sawabe M, Tanaka M, Chida K, Arai N, Nishigaki Y, Fukui N, Mieno MN, Kuchiba A, Tanaka M: Mitochondrial haplogroups A and M7a confer a genetic risk for coronary atherosclerosis in the Japanese elderly: an autopsy study of 1,536 patients. Journal of Atherosclerosis and Thrombosis 2011, 18(2):166–175.

19. Delhain C, Habbibi-Nazhad B, Yan E, Saloum N, Parliament M, Allalunis-Turner J: Mitochondrial DNA mutational analysis in breast cancer patients. Breast Cancer 2004, 2(1):9.
36. Taylor RWBM, Borthwick GM, Gospel A, Chimney PF, Samuels DC, Taylor GA, Plusa SM, Needham SJ, Greaves LC, Kirkwood TB, Turnbull DM: Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 2003, 112(9):1351–1360.

37. Houshmand MMM, Kuchekian N, Noohi F, Nozar G, Zamani A: Is 8860 variation a rare polymorphism or associated as a secondary effect in HCM disease? Arch Med Sci 2011, 7(2):424–426.

38. Aikhionbare FO, Carey D, Okoli J, Go R: Is cumulative frequency of mitochondrial DNA variants a biomarker for colorectal tumor progression? Mol Cancer 2004, 3:30.

39. Aikhionbare FO MS, Kumaresan K, Zavareh M, Olatinwo M, Odunsi K, Partridge E: Mitochondrial DNA sequence variants in epithelial ovarian tumor subtypes and stages. J Cancerog 2007, 6:1.

40. Mehrabi SA, Adams G Jr, Grizzle W, Yao X, Aikhionbare FO: A sequence variant in colorectal adenomatous polyps. Diagn Pathol 2010, 5:66.

41. Fauser SLJ, Besch D, Leo-Kottler B: Sequence analysis of the complete mitochondrial genome in patients with Leber’s hereditary optic neuropathy lacking the three most common pathogenic DNA mutations. Biochem Biophys Res Commun 2002, 295:342–347.

42. Mostafaei N, Rossmanith W, Hombauer H, Dechat T, Raffelsberger T, Bauer K, Worofka B, Kittl E, Hofmann J, Hejtman M: Mitochondrial genotype and risk for Alzheimer’s disease: Cross-sectional data from the Vienna-Transdanube-Aging “VITA” study. J Neural Transm 2004, 111(9):1155–1165.

43. Kirk RFR, Amos W, Cooper G, Rubinsztein JS, Walsh C, Paykel ES, Rubinsztein DC: Mitochondrial genetic analyses suggest selection against maternal lineages in bipolar affective disorder. Am J Hum Genet 1999, 65:508–518.

44. Tan DJC, Chen WL, Agress LJ, Yeh KT, Wang B, Wong LJ: Novel heteroplasmic frameshift and missense somatic mitochondrial DNA mutations in oral cancer of betel quid chewers. Genes Chromosomes Cancer 2003, 37:186–194.

45. Wang LB, de Andrade M, Boardman LA, Cunningham JM, Thibodeau SN, Petersen GM: Mitochondrial genetic polymorphisms and pancreatic cancer risk. Cancer Epidemiol Biomarkers Prev 2007, 17(7):1455–1459.

46. Guney A, Koc G, Kirac D, Ulucan K, Javadova D, Turkeri L: Detection of mitochondrial DNA mutations in nonmuscle invasive bladder cancer. Gynecol Oncol 2012, 126(1):672–679.

47. van der Walt JM, Martin ER, Scott WK, Nance MA, Watts RI, Hubble JP, Haines JL, Koller WC, Lyons K, Pahwa R, Stem NB, Colcher A, Hiner BC, Jankovic J, Ondo W, Allen FH Jr, Goetz CG, Small GW, Mastaglia F, Tajich JM, McLaunor AC, Middleton LT, Scott BL, Schmeckel DE, Pericak-Vance MA, Vance JM: Mitochondrial Polymorphisms Significantly Reduce the Risk of Parkinson Disease. Am J Hum Genet 2003, 72(4):804–812.

48. Petros JA, Ruiz-Pesini E, Armin MB, Sun CQ, Hall J, Lin S, Issa J, Flanders WD, Hossaini SH, Marshall FF, Wallace DC: mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 2005, 102(3):719–724.

doi:10.1186/1475-2867-14-21
Cite this article as: Ghaffarpour et al.: The mitochondrial ATPase6 gene is more susceptible to mutation than the ATPase8 gene in breast cancer patients. Cancer Cell International 2014 14:21.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit