A remark on the integrals of motion associated with level k realization of the elliptic algebra $U_{q,p}(\hat{sl}_2)$

February 10, 2022

T.KOJIMA $^\alpha$ and J.SHIRAISHI $^\beta$

$^\alpha$ Department of Mathematics, College of Science and Technology, Nihon University, Surugadai, Chiyoda-ku, Tokyo 101-0062, JAPAN

$^\beta$ Graduate School of Mathematical Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8914, JAPAN

Abstract

We give one parameter deformation of level k free field realization of the screening current of the elliptic algebra $U_{q,p}(\hat{sl}_2)$. By means of these free field realizations, we construct infinitely many commutative operators, which we call the nonlocal integrals of motion associated with level k-realization of the elliptic algebra $U_{q,p}(\hat{sl}_2)$. They are given as integrals involving a product of the screening current and elliptic theta functions. This paper gives level k generalization of the nonlocal integrals of motion given in [1].

1 Introduction

One of the results in V.Bazhanov, S.Lukyanov, Al.Zamolodchikov [4] is construction of field theoretical analogue of the commuting transfer matrix $T(z)$, acting on the highest weight rep-
presentation of the Virasoro algebra. Their commuting transfer matrix \(T(z) \) is the trace of the image of the universal \(R \)-matrix associated with the quantum affine symmetry \(U_q(\hat{sl}_2) \). This construction is very simple and the commutativity \([T(z), T(w)] = 0 \) is direct consequence of the Yang-Baxter equation. They call the coefficients of the Taylor expansion of \(T(z) \) the nonlocal integrals of motion. The higher-rank generalization of [4] is considered in [5, 6]. The elliptic deformation of the nonlocal integrals of motion is considered in [1]. V.Bazhanov, S.Lukyanov, A.Zamolodchikov [4] constructed the continuous transfer matrix \(T(z) \) by taking the trace of the image of the universal \(R \)-matrix associated with \(U_q(\hat{sl}_2) \). However it is not so easy to calculate the image of the elliptic version of the universal \(R \)-matrix, which is obtained by using the twister [10]. Hence the construction method of the elliptic version [1] should be completely different from those in [4]. Instead of considering the transfer matrix \(T(z) \), the authors [1] give the integral representation of the integrals of motion directly. The commutativity of the integrals of motion is not consequence of the Yang-Baxter equation. It is consequence of the commutative subalgebra of the Feigin-Odesskii algebra [11]. The higher-rank generalization of [1] is considered in [2, 3]. This paper is a continuation of [1, 2, 3]. This paper give level \(k \) generalization of the nonlocal integrals of motion given in [1].

The organization of this paper is as following. In section 2 we give one parameter “s” deformation of the level \(k \) free field realization of the screening current of the elliptic algebra \(U_{q,p}(\hat{sl}_2) \). In section 3 we construct infinitely many commutative operators, which are called the nonlocal integrals of motion associated with the elliptic algebra \(U_{q,p}(\hat{sl}_2) \) for level \(k \). In section 3 we state main theorem and give conjecture. In appendix we summarize the normal ordering of basic operators.

2 Elliptic current

In this section we give one parameter “s” deformation of the level \(k \) free field realization of the elliptic algebra \(U_{q,p}(\hat{sl}_2) \). We fix complex numbers \(x, r, r^*, s, (|x| < 1, \Re(r), \Re(r^*) > 0, s \neq 2) \), and \(k = r - r^* \neq 0, -2 \). We use symbols

\[
[n] = \frac{x^n - x^{-n}}{x - x^{-1}}, \quad [n]_+ = x^n + x^{-n}.
\]

We set the parameter \(\tau, \tau^* \)

\[
x = e^{-\pi \sqrt{-1}/r\tau} = e^{-\pi \sqrt{-1}/r\tau^*}.
\] (2.1)

Let us use parametrization \(z = x^{2u} \). The symbol \([u]_r \) stands for the Jacobi elliptic theta function

\[
[u]_r = x^{u^2/r - u\Theta_{2r}(z)}, \quad [u]_{r^*} = x^{u^2/r^* - u\Theta_{2r^*}(z)},
\] (2.2)
The theta function \(\Theta_p(z) = (z;p)_\infty(p/z;p)_\infty(p;p)_\infty \), \((z;p)_\infty = \prod_{n=0}^{\infty} (1 - p^n z) \). (2.3)

The theta function \([u]_r\) enjoys the quasi-periodicity property
\[
[u + r]_r = -[u]_r, \quad [u + r\tau]_r = -e^{\pi \sqrt{-1} r - \frac{2\pi \sqrt{-1}}{r}} [u]_r.
\] (2.4)

2.1 Bosons

We set the bosons \(\alpha^j_m, \tilde{\alpha}^j_m, (j = 1, 2; m \in \mathbb{Z}_{\neq 0}) \),
\[
[\alpha^j_m, \alpha^n_n] = -\frac{1}{m} \frac{2m[rm]}{[km][(r-k)m]} \delta_{m+n,0}, \quad (j = 1, 2),
\] (2.5)
\[
[\alpha^1_m, \alpha^2_n] = \frac{1}{m} \left(\frac{x^{(r-k)m}[sm] - [(s-2)m]}{[rm]} + \frac{x^{km}[sm] + [(s-2)m]}{[km]} \right) \delta_{m+n,0},
\] (2.6)
\[
[\tilde{\alpha}^j_m, \tilde{\alpha}^n_n] = -\frac{1}{m} \frac{2m[(r-k)m]}{[km][rm]} \delta_{m+n,0}, \quad (j = 1, 2),
\] (2.7)
\[
[\tilde{\alpha}^1_m, \tilde{\alpha}^2_n] = \frac{1}{m} \left(\frac{x^{rm}[-sm] + [(s-2)m]}{[rm]} + \frac{x^{km}[sm] + [(s-2)m]}{[km]} \right) \delta_{m+n,0},
\] (2.8)
\[
[\alpha^j_m, \tilde{\alpha}^n_n] = -\frac{1}{m} \frac{2m}{[km]} \delta_{m+n,0}, \quad (j = 1, 2),
\] (2.9)
\[
[\alpha^1_m, \tilde{\alpha}^2_n] = \frac{1}{m} \frac{[sm] + [(s-2)m]}{[km]} \delta_{m+n,0},
\] (2.10)
\[
[\tilde{\alpha}^1_m, \alpha^2_n] = \frac{1}{m} \frac{[sm] + [(s-2)m]}{[km]} \delta_{m+n,0}.
\] (2.11)

We set the bosons \(\beta^j_m, \gamma^j_m, (j = 1, 2; m \in \mathbb{Z}_{\neq 0}) \),
\[
[\beta^j_m, \beta^n_n] = \frac{2m}{m} \frac{(k+2m)}{[km]} \delta_{m+n,0}, \quad (j = 1, 2),
\] (2.12)
\[
[\beta^1_m, \beta^2_n] = \frac{1}{m} \frac{[(k+2)m][sm] + [(s-2)m]}{[km]} \delta_{m+n,0},
\] (2.13)
\[
[\gamma^j_m, \gamma^n_n] = \frac{1}{m} \frac{2m}{[km]} \delta_{m+n,0}, \quad (j = 1, 2),
\] (2.14)
\[
[\gamma^1_m, \gamma^2_n] = -\frac{1}{m} \frac{[sm] + [(s-2)m]}{[km]} \delta_{m+n,0}.
\] (2.15)

We set the zero-mode operators \(P_0, Q_0, h, \alpha \) and \(h_0, h_1, h_2, \alpha_0, \alpha_1, \alpha_2 \),
\[
[P_0, iQ_0] = 1, \quad [h, \alpha] = 2,
\] (2.16)
\[
[h_0, \alpha_0] = [h_1, \alpha_2] = [h_2, \alpha_1] = (2 - s), \quad [h_1, \alpha_1] = [h_2, \alpha_2] = 0.
\] (2.17)

We set the Fock space \(\mathcal{F}_{K,L}, (K, L \in \mathbb{Z}) \),
\[
\mathcal{F}_{K,L} = \bigoplus_{n, n_0, n_1, n_2 \in \mathbb{Z}} \mathbb{C}[\alpha^j_m, \tilde{\alpha}^j_m, \beta^j_m, \gamma^j_m, (j = 1, 2; m \in \mathbb{Z}_{\neq 0})] \otimes |K, L\rangle_{n, n_0, n_1, n_2},
\]
\[|K, L\rangle_{n_0, n_1, n_2} = e^{\left(L \sqrt{\frac{2r}{r-k} - K \sqrt{\frac{2s}{r}}} \right)} i^Q \otimes e^{n_\alpha} \otimes e^{n_0 a_0} \otimes e^{n_1 a_1} \otimes e^{n_2 a_2}. \]

(2.19)

Upon specialization \(s \to 2 \), simplification occurs.

\[
\begin{align*}
\alpha_m^2 &= -\alpha_m^1, & \alpha_m^1 &= \left[\frac{(r-k)m}{rm} \right]_\alpha^1, & \alpha_m^2 &= -\left[\frac{(r-k)m}{rm} \right]_\alpha^1, \\
\beta_m^2 &= -\beta_m^1, & \gamma_m^2 &= -\gamma_m^1, & h_0 = h_1 = h_2 = \alpha_0 = \alpha_1 = \alpha_2 = 0.
\end{align*}
\]

(2.20)

The bosons \(\alpha_m^1, \beta_m^1, \gamma_m^1 \) are the same bosons which were introduced to construct the elliptic current associated with the elliptic algebra \(U_{q,p}(sl_2) \) and the deformed Virasoro algebra \(\hat{Vir}_{q,t} \) [7, 8, 9]. In order to construct infinitely many commutative operators, we introduce one parameter \(s \) deformation of the bosons in [7, 8, 9]. This additional parameter \(s \) plays an important role in proof of the main theorem.

2.2 Elliptic current

We introduce the operators \(C_j(z), C_j^\dagger(z), \ (j = 1, 2) \) acting on the Fock space \(\mathcal{F}_{J,K} \).

\[
\begin{align*}
C_1(z) &= e^{-\sqrt{\frac{2r}{k(r-k)}} Q_0} e^{\frac{iQ}{k(r-k)}} P_{3 \log z} \exp \left(-\sum_{m \neq 0} \alpha_m^1 z^{-m} \right), \\
C_2(z) &= e^{\sqrt{\frac{2r}{k(r-k)}} Q_0} e^{\frac{-iQ}{k(r-k)}} P_{3 \log z} \exp \left(-\sum_{m \neq 0} \alpha_m^2 z^{-m} \right), \\
C_1^\dagger(z) &= e^{\sqrt{\frac{2r}{k(r-k)}} Q_0} e^{\frac{iQ}{k(r-k)}} P_{3 \log z} \exp \left(\sum_{m \neq 0} \beta_m^1 z^{-m} \right), \\
C_2^\dagger(z) &= e^{\sqrt{\frac{2r}{k(r-k)}} Q_0} e^{\frac{-iQ}{k(r-k)}} P_{3 \log z} \exp \left(\sum_{m \neq 0} \beta_m^2 z^{-m} \right).
\end{align*}
\]

(2.22)

(2.23)

(2.24)

(2.25)

Here : * : represents normal ordering. We set the operators \(\tilde{\Psi}_{j,I}(z), \tilde{\Psi}_{j,II}(z), \tilde{\Psi}_{j,I}^\dagger(z), \tilde{\Psi}_{j,II}^\dagger(z), \ (j = 1, 2) \) acting on the Fock space \(\mathcal{F}_{J,K} \).

\[
\begin{align*}
\tilde{\Psi}_{j,I}(z) &= \exp \left(-(x - x^{-1}) \sum_{m \geq 0} \frac{x^{km}}{[m]_+} \beta_m^j z^{-m} \right) \\
&\times \exp \left(-\sum_{m \geq 0} x^{-\frac{km}{2}} \gamma_m^j z^m \right) \exp \left(-\sum_{m \geq 0} x^{\frac{(k+1)m}{2}} \gamma_m^j z^{-m} \right), \ (j = 1, 2), \\
\tilde{\Psi}_{j,II}(z) &= \exp \left((x - x^{-1}) \sum_{m \geq 0} \frac{x^{km}}{[m]_+} \beta_m^j z^m \right),
\end{align*}
\]

(2.26)

(2.27)
where we have set

\[\psi_j(z) = \exp \left(- \sum_{m>0} x^{\frac{km}{m}} \gamma_m z^m \right) \exp \left(- \sum_{m>0} x^{\frac{-km}{m}} \gamma_m z^m \right), \quad (j = 1, 2), \]

\[\bar{\psi}_{j,I}(z) = \exp \left(x - x^{-1} \sum_{m>0} x^{\frac{km}{m}} \beta_m z^m \right) \]

\[\times \exp \left(\sum_{m>0} x^{\frac{km}{m}} \gamma_m z^m \right) \exp \left(\sum_{m>0} x^{\frac{-km}{m}} \gamma_m z^m \right), \quad (j = 1, 2), \]

\[\bar{\psi}_{j,II}(z) = \exp \left(-(x - x^{-1}) \sum_{m>0} x^{\frac{-km}{m}} \beta_m z^m \right) \]

\[\times \exp \left(\sum_{m>0} x^{\frac{-km}{m}} \gamma_m z^m \right) \exp \left(\sum_{m>0} x^{\frac{km}{m}} \gamma_m z^m \right), \quad (j = 1, 2). \]

We set the operators \(\psi_{j,I}(z), \bar{\psi}_{j,I}(z), \psi_{j,II}(z), \bar{\psi}_{j,II}(z), (j = 1, 2) \) acting on the Fock space \(\mathcal{F}_{I,K} \).

\[
\begin{align*}
\psi_{1,I}(z) &= \bar{\psi}_{1,I}(z)e^{a_0 + a_1 x^\frac{h}{2} + h_0 + h_1 z - \frac{h}{k}}, \\
\psi_{1,II}(z) &= \bar{\psi}_{1,II}(z)e^{a_0 + a_1 x^\frac{h}{2} + h_0 - h_1 z - \frac{h}{k}}, \\
\psi_{2,I}(z) &= \bar{\psi}_{2,I}(z)e^{-a_0 + a_2 x^\frac{h}{2} + h_0 + h_2 z - \frac{h}{k}}, \\
\psi_{2,II}(z) &= \bar{\psi}_{2,II}(z)e^{-a_0 + a_2 x^\frac{h}{2} + h_0 - h_2 z - \frac{h}{k}}, \\
\psi_{1,I}(z) &= \bar{\psi}_{1,I}(z)e^{-a_0 + a_1 x^\frac{h}{2} - h_0 - h_1 z + \frac{h}{k}}, \\
\psi_{1,II}(z) &= \bar{\psi}_{1,II}(z)e^{-a_0 + a_1 x^\frac{h}{2} - h_0 + h_1 z + \frac{h}{k}}, \\
\psi_{2,I}(z) &= \bar{\psi}_{2,I}(z)e^{a_0 + a_2 x^\frac{h}{2} - h_0 - h_2 z + \frac{h}{k}}, \\
\psi_{2,II}(z) &= \bar{\psi}_{2,II}(z)e^{a_0 + a_2 x^\frac{h}{2} - h_0 + h_2 z + \frac{h}{k}}.
\end{align*}
\]

Definition 2.1 \(\) We set the operators \(E_j(z), F_j(z), (j = 1, 2) \), which can be regarded as one parameter deformation of the level \(k \) elliptic currents associated with the elliptic algebra \(U_{q,p}(sl_2) \) \([7, 9] \).

\[
E_j(z) = C_j(z)\psi_j(z), \quad F_j(z) = C_j^\dagger(z)\psi_j^\dagger(z), \quad (j = 1, 2),
\]

where we have set

\[
\psi_j(z) = \frac{1}{x - x^{-1}}(\psi_{j,I}(z) - \psi_{j,II}(z)), \quad \psi_j^\dagger(z) = \frac{-1}{x - x^{-1}}(\psi_{j,I}^\dagger(z) - \psi_{j,II}^\dagger(z)), \quad (j = 1, 2).
\]

We have following proposition as direct consequence of the normal orderings of the basic operators summarized in appendix.

Proposition 2.2 \(\) The elliptic currents \(E_j(z), (j = 1, 2) \) satisfy the following commutation relations.

\[
[u_1 - u_2]_{r-k}[u_1 - u_2 - 1]_{r-k}E_j(z_1)E_j(z_2)
\]
The currents \(E_j(z) \), \((j = 1, 2)\) satisfy the following commutation relations.

\[
[u_1 - u_2]_r [u_1 - u_2 + 1]_r E_j(z_2) F_j(z_1), \quad (j = 1, 2),
\]

\[
[u_1 - u_2 - \frac{s}{2}]_r [u_1 - u_2 + \frac{s}{2} - 1]_r E_1(z_1) E_2(z_2)
\]

\[
= \left[u_2 - u_1 + \frac{s}{2} \right]_r \left[u_2 - u_1 - \frac{s}{2} + 1 \right]_r E_2(z_2) E_1(z_1).
\] (2.41)

The elliptic currents \(F_j(z) \), \((j = 1, 2)\) satisfy the following commutation relations.

\[
[u_1 - u_2]_r [u_1 - u_2 + 1]_r F_j(z_2) F_j(z_1), \quad (j = 1, 2),
\]

\[
[u_1 - u_2 - \frac{s}{2}]_r [u_1 - u_2 + \frac{s}{2} - 1]_r F_1(z_1) F_2(z_2)
\]

\[
= \left[u_2 - u_1 - \frac{s}{2} \right]_r \left[u_2 - u_1 + \frac{s}{2} - 1 \right]_r F_2(z_2) F_1(z_1).
\] (2.43)

The currents \(E_j(z) \) and \(F_j(z) \) satisfy

\[
[E_j(z_1), F_j(z_2)] = \frac{x^{(s-1)(s-2)} x^{-1}}{x - x^{-1}} \left(C_j(z_1) C_j^\dagger(z_2) \Psi_{j,I}(z_1) \Psi_{j,I}^\dagger(z_2) : \delta \left(\frac{x^k z_2^2}{z_1^2} \right) \right)
\]

\[
- : C_j(z_1) C_j^\dagger(z_2) \Psi_{j,I}(z_1) \Psi_{j,I}^\dagger(z_2) : \delta \left(\frac{x^{-k} z_2^2}{z_1^2} \right) \right), \quad (j = 1, 2).
\] (2.44)

Here we have used the delta-function \(\delta(z) = \sum_{n \in \mathbb{Z}} z^n \).

Upon specialization \(s = 2 \) the currents \(E_1(z), F_1(z) \) degenerate to elliptic currents in [9]. We set \(E_j^{DV}(z) = E_j(z)|_{s=2}, F_j^{DV}(z) = F_j(z)|_{s=2}, \quad (j = 1, 2). \)

\section{Integrals of motion}

In this section we construct infinitely many commutative operators \(G^*_m, G_m, (m \in \mathbb{N}) \), which we call the nonlocal integrals of motion for level \(k \).

\subsection{Nonlocal integrals of motion}

Let us set the theta function \(\vartheta^*_\alpha(u), \vartheta_\alpha(u), (\alpha \in \mathbb{C}) \) by

\[
\vartheta^*(u + 1) = \vartheta^*(u), \quad \vartheta^*(u + r^* \tau^*) = e^{-2\pi \sqrt{1 - r^*^2} \pi - 2\pi \sqrt{1 - r^*^2} \pi} P_0 \Phi(2u - \sqrt{2\pi} P_0 P_0) \vartheta^*(u),
\] (3.1)

\[
\vartheta(u + 1) = \vartheta(u), \quad \vartheta(u + r \tau) = e^{-2\pi \sqrt{1 - r^2} \pi - 2\pi \sqrt{1 - r^2} \pi} P_0 \Phi(2u - \sqrt{2\pi} P_0 P_0) \vartheta(u).
\] (3.2)

Let us use the parametrization \(z_j^{(t)} = x^{2u_j^{(t)}}, (t = 1, 2; j = 1, 2, \cdots, m). \)

\textbf{Definition 3.1} We define the operator \(G^*_m \) for the regime \(\text{Re}(r) > k \) and \(0 < \text{Re}(s) < 2 \) by

\[
\mathcal{G}_m^* = \int \prod_{j=1}^m \frac{dz_j^{(1)}}{z_j^{(1)}} \prod_{j=1}^m \frac{dz_j^{(2)}}{z_j^{(2)}} E_1(z_1^{(1)}) E_1(z_2^{(1)}) \cdots E_1(z_m^{(1)}) E_2(z_2^{(2)}) \cdots E_2(z_m^{(2)})
\]
We define the operator G.

We call the operators G were the integral contour C as below. We note that parameter s analytic continuation. In the limit G The definition of the operators G do not hold for m.

\[
\prod_{t=1,2} \prod_{1 \leq i \leq j \leq m} \left[u_i^{(t)} - u_j^{(t)} \right]_{r-k} \left[u_j^{(t)} - u_i^{(t)} + 1 \right]_{r-k} \prod_{1 \leq i \leq j \leq m} \left[u_i^{(1)} - u_j^{(1)} - \frac{s}{2} \right]_{r-k} \left[u_j^{(2)} - u_i^{(1)} - \frac{s}{2} + 1 \right]_{r-k} \vartheta^* \left(\sum_{j=1}^{m} (u_j^{(2)} - u_j^{(1)}) \right), \tag{3.3}
\]

were the integral contour C^* encircles $z_j^{(t)} = 0$, $(t = 1, 2; j = 1, 2, \cdots, m)$ in such a way that

\[|z_j^{(t)}| = 1, \quad (t = 1, 2; j = 1, 2, \cdots, m). \]

We define the operator G_m for the regime $\text{Re}(r) > 0$ and $0 < \text{Re}(s) < 2$ by

\[
G_m = \int \cdots \int_{C, \text{Arg}} \prod_{j=1}^{m} \frac{dz_j^{(1)}}{z_j^{(1)}} \prod_{j=1}^{m} \frac{dz_j^{(2)}}{z_j^{(2)}} F_1(z_1^{(1)}) F_2(z_2^{(2)}) \cdots F_1(z_1^{(m)}) F_2(z_2^{(2)}) \cdots F_2(z_2^{(2)}) \prod_{1 \leq i \leq j \leq m} \left[u_i^{(t)} - u_j^{(t)} \right]_{r-k} \left[u_j^{(t)} - u_i^{(t)} - 1 \right]_{r-k} \prod_{1 \leq i \leq j \leq m} \left[u_i^{(1)} - u_j^{(1)} + \frac{s}{2} \right]_{r-k} \left[u_j^{(2)} - u_i^{(1)} + \frac{s}{2} - 1 \right]_{r-k} \vartheta^* \left(\sum_{j=1}^{m} (u_j^{(1)} - u_j^{(2)}) \right), \tag{3.4}
\]

were the integral contour C^* encircles $z_j^{(t)} = 0$, $(t = 1, 2; j = 1, 2, \cdots, m)$ in such a way that

\[|z_j^{(t)}| = 1, \quad (t = 1, 2; j = 1, 2, \cdots, m). \]

We call the operators G_m^* and G_m the nonlocal integrals of motion for level k.

The definition of the operators G_m^*, G_m for generic $s \in \mathbb{C}, (s \neq 2)$ should be understood as analytic continuation. In the limit $s \to 2$, the contour C^*, C pinch at $z_j^{(t)} = z_i^{(t')}$. Hence the definition of G_m^*, G_m do not hold for $s = 2$. We give modified definition of G_m^*, G_m for $s = 2$, below. We note that parameter $s \neq 2$ plays an important role in proof of main theorem 3.3.

Definition 3.2 We define the operator G_m^{DV*} for the regime $\text{Re}(r) > k$ and $s = 2$ by

\[
G_m^{DV*} = \int \cdots \int_{C, \text{Arg}} \prod_{j=1}^{m} \frac{dz_j^{(1)}}{z_j^{(1)}} \prod_{j=1}^{m} \frac{dz_j^{(2)}}{z_j^{(2)}} E_1^{DV}(z_1^{(1)}) \cdots E_1^{DV}(z_1^{(m)}) E_2^{DV}(z_2^{(1)}) \cdots E_2^{DV}(z_2^{(2)}) \prod_{1 \leq i \leq j \leq m} \left[u_i^{(t)} - u_j^{(t)} \right]_{r-k} \left[u_j^{(t)} - u_i^{(t)} + 1 \right]_{r-k} \prod_{1 \leq i \leq j \leq m} \left[u_i^{(1)} - u_j^{(1)} - 1 \right]_{r-k} \left[u_j^{(2)} - u_i^{(1)} \right]_{r-k} \vartheta^* \left(\sum_{j=1}^{m} (u_j^{(2)} - u_j^{(1)}) \right), \tag{3.5}
\]

were the integral contour C^*_Arg encircles $z_j^{(t)} = 0$, $(t = 1, 2; j = 1, 2, \cdots, m)$ in such a way that

\[|x^2 z_m^{(2)}|, |x^{2r} z_m^{(2)}| < |z_1^{(1)}| < |z_1^{(2)}| < |z_2^{(1)}| < |z_2^{(2)}| < \cdots < |z_m^{(1)}| < |z_m^{(2)}|. \]
We define the operator G^D_m for the regime $\text{Re}(r) > 0$ and $s = 2$ by

$$G^D_m = \int \ldots \int_{C_{\text{Arg}}} \prod_{j=1}^{m} \frac{d^2 z_j}{z_j^{(1)}} \prod_{j=1}^{m} \frac{d^2 z_j}{z_j^{(2)}} F^D_1(z_1^{(1)}) \cdots F^D_1(z_m^{(1)}) F^D_2(z_1^{(2)}) \cdots F^D_2(z_m^{(2)})$$

$$\times \prod_{t=1, 2} \prod_{1 \leq i < j \leq m} \left[u_i^{(t)} - u_j^{(t)} \right] \left[u_j^{(t)} - u_i^{(t)} \right] - 1 \prod_{1 \leq i < j \leq m} \left[u_i^{(2)} - u_j^{(2)} \right] \left[u_j^{(2)} - u_i^{(1)} \right] - 1 \prod_{j=1}^{m} \frac{d^2 \vartheta \left(\sum_{j=1}^{m} \left(u_j^{(1)} - u_j^{(2)} \right) \right)}{r},$$

(3.6)

were the integral contour C_{Arg} encircles $z_j^{(t)} = 0$, ($t = 1, 2; j = 1, 2, \ldots, m$) in such a way that

$$|x^2 z_m^{(2)}|, |x^2 z_m^{(2)}| < |z_1^{(1)}| < |z_2^{(1)}| < |z_2^{(2)}| < \cdots < |z_1^{(2)}| < |z_1^{(2)}| < \cdots < |z_m^{(2)}| < |z_m^{(2)}|.$$

3.2 Main result

The following is main theorem of this paper.

Theorem 3.3 For the regime $s \neq 2$ and $\text{Re}(r) > k$, we have

$$[G^n_m, G^n_n] = 0, \quad (m, n \in \mathbb{N}).$$

(3.7)

For the regime $s \neq 2$ and $\text{Re}(r) > 0$, we have

$$[G_m, G_n] = 0, \quad (m, n \in \mathbb{N}).$$

(3.8)

We sketch proof of theorem 3.3. Proof is given as the same manner as level $k = 1$ case [1, 3]. By symmetrization of the screenings $E_j(z)$, the commutation relation $[G^n_m, G^n_n] = 0$ is reduced to the following sufficient condition of the theta functions, which is shown by induction as the same manner as [1, 3]. We note that this symmetrization procedure holds only for $s \neq 2$.

$$\sum_{K \subseteq K^c = \{1, 2, \ldots, n+m\} \backslash \{K = n, L^c = m\}} \sum_{L \subseteq L^c = \{1, 2, \ldots, n+m\} \backslash \{L = n, L^c = m\}} \vartheta^*(\sum_{j \in K^c} u_j^{(2)} - \sum_{j \in L^c} u_j^{(1)}) \vartheta^*(\sum_{j \in K} u_j^{(2)} - \sum_{j \in L} u_j^{(1)})$$

$$\times \prod_{i \in K^c} \prod_{j \in K^c} \prod_{p \in K^c} \prod_{q \in K^c} \frac{u_j^{(2)} - u_p^{(1)} - s}{u_i^{(1)} - u_p^{(1)} - s} \frac{u_j^{(2)} - u_q^{(1)} - s}{u_i^{(1)} - u_q^{(1)} - s} = 0$$

(3.9)
Naively, when we take the limit \(s \to 2 \), it seems that we have \([G_m^{DV*}, G_n^{DV*}] = 0 \). However, very precisely, in order to take the limit \(s \to 2 \), we have to consider special treatment which we call “renormalized” limit in [1]. Here we state only conjecture on the operator \(G_m^{DV*} \). Theorem 3.3 give a supporting argument of the following conjecture.

Conjecture 3.4 For the regime \(s = 2 \) and \(\text{Re}(r) > k \) we have

\[
[G_m^{DV*}, G_n^{DV*}] = 0 \quad (m, n \in \mathbb{N}). \tag{3.10}
\]

For the regime \(s = 2 \) and \(\text{Re}(r) > 0 \) we have

\[
[G_m^{DV}, G_n^{DV}] = 0, \quad (m, n \in \mathbb{N}). \tag{3.11}
\]

In this paper we gave one parameter “\(s \)” deformation of level \(k \) free field realization of the screening current of the elliptic algebra \(U_{q,p}(\hat{sl}_2) \). By means of these free field realizations, we constructed infinitely many commutative operators, which we call the nonlocal integrals of motion associated with the elliptic algebra \(U_{q,p}(\hat{sl}_2) \) for arbitrary level \(k \neq 0, -2 \). They are given as integrals involving a product of the screening current and Jacobi elliptic theta functions. The construction of the local integrals of motion \(I_m \) for arbitrary level \(k \) is open problem. Elliptic deformation of the extended Virasoro algebra is needed for this construction.

Acknowledgements

We would like to thank the organizing committee of the X-th International Conference on Geometry, Integrability and Quantization in Sts.Constantine and Elena, Bulgaria. We would like to thank Professors V Bazhanov, P Bouwknegt, A Chervov, V Gerdjikov, F Goehmann, K Hasegawa, M Jimbo, A Klumper, P Kulish, W-X Ma, V Mangazeev and I Mladenov for their interest in this work. This work is partly supported by Grant-in Aid for Young Scientist B (18740092) from JSPS.

A Normal Ordering

In appendix we summarize the normal orderings of the basic operators.

\[
C_j(z_1)C_j(z_2) = :: z_1^{\frac{\beta}{k} + 1} \frac{(x^{-2+2k}z_2/z_1;x^{2r^*})_{\infty}(x^{-2}z_2/z_1;x^{2k})_{\infty}}{(x^{2+2k}z_2/z_1;x^{2r^*})_{\infty}(x^{2}z_2/z_1;x^{2k})_{\infty}}, \quad (j = 1, 2), \tag{A.1}
\]

\[
C_1(z_1)C_2(z_2) = :: z_1^{-\frac{2s-2}{k}} \frac{(x^sz_2/z_1;x^{2r^*})_{\infty}(x^{-s}z_2/z_1;x^{2s})_{\infty}}{(x^{-s}z_2/z_1;x^{2s})_{\infty}(x^sz_2/z_1;x^{2r^*})_{\infty}}.
\]
\[C_2(z_1)C_1(z_2) = \frac{z_1 \tilde{\Psi}}{z_2} \frac{(x^{s+2k} z_2^2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2^2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2^2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2^2/z_1; x^{2k})_\infty}, \quad (A.2) \]

\[C_j^\dagger(z_1)C_j^\dagger(z_2) = \frac{z_1 \tilde{\Psi}_j}{z_2} \frac{(x^{s+2k} z_2^2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2^2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2^2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2^2/z_1; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.4) \]

\[C_j(z_1)C_j(z_2) = \frac{z_1 \tilde{\Psi}_j}{z_2} \frac{(x^{s+2k} z_2^2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2^2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2^2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2^2/z_1; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.7) \]

\[\bar{\Psi}_{1,f}(z_1)\bar{\Psi}_{2,f}(z_2) = \frac{(x^{s-2} z_2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2/z_1; x^{2k})_\infty (x^{s-2} z_2/z_1; x^{2k})_\infty}, \quad (A.9) \]

\[\bar{\Psi}_{2,f}(z_1)\bar{\Psi}_{1,f}(z_2) = \frac{(x^{s-2} z_2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2/z_1; x^{2k})_\infty (x^{s-2} z_2/z_1; x^{2k})_\infty}, \quad (A.10) \]

\[\bar{\Psi}_{1,f}(z_1)\bar{\Psi}_{2,f}(z_2) = \frac{(x^{s-2} z_2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2/z_1; x^{2k})_\infty (x^{s-2} z_2/z_1; x^{2k})_\infty}, \quad (A.11) \]

\[\bar{\Psi}_{2,f}(z_1)\bar{\Psi}_{1,f}(z_2) = \frac{(x^{s-2} z_2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2/z_1; x^{2k})_\infty (x^{s-2} z_2/z_1; x^{2k})_\infty}, \quad (A.12) \]

\[\bar{\Psi}_{1,f}(z_1)\bar{\Psi}_{2,f}(z_2) = \frac{(x^{s-2} z_2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2/z_1; x^{2k})_\infty (x^{s-2} z_2/z_1; x^{2k})_\infty}, \quad (A.13) \]

\[\bar{\Psi}_{2,f}(z_1)\bar{\Psi}_{1,f}(z_2) = \frac{(x^{s-2} z_2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2/z_1; x^{2k})_\infty (x^{s-2} z_2/z_1; x^{2k})_\infty}, \quad (A.14) \]

\[\bar{\Psi}_{1,f}(z_1)\bar{\Psi}_{2,f}(z_2) = \frac{(x^{s-2} z_2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2/z_1; x^{2k})_\infty (x^{s-2} z_2/z_1; x^{2k})_\infty}, \quad (A.15) \]

\[\bar{\Psi}_{2,f}(z_1)\bar{\Psi}_{1,f}(z_2) = \frac{(x^{s-2} z_2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2/z_1; x^{2k})_\infty (x^{s-2} z_2/z_1; x^{2k})_\infty}, \quad (A.16) \]

\[\bar{\Psi}_{1,f}(z_1)\bar{\Psi}_{2,f}(z_2) = \frac{(x^{s-2} z_2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2/z_1; x^{2k})_\infty (x^{s-2} z_2/z_1; x^{2k})_\infty}, \quad (A.17) \]

\[\bar{\Psi}_{2,f}(z_1)\bar{\Psi}_{1,f}(z_2) = \frac{(x^{s-2} z_2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2/z_1; x^{2k})_\infty (x^{s-2} z_2/z_1; x^{2k})_\infty}, \quad (A.18) \]

\[\bar{\Psi}_{1,f}(z_1)\bar{\Psi}_{2,f}(z_2) = \frac{(x^{s-2} z_2/z_1; x^{2k})_\infty (x^{s-2+2k} z_2/z_1; x^{2k})_\infty}{(x^{s+2k} z_2/z_1; x^{2k})_\infty (x^{s-2} z_2/z_1; x^{2k})_\infty}, \quad (A.19) \]
\[\tilde{\Psi}_{2,I}(z_1)\tilde{\Psi}_{1,II}(z_2) = \frac{(x^{-s+2k}z_2/z_1^2; x^{2k})_\infty (x^{2-s+2k}z_2/z_1^2; x^{2k})_\infty}{(x^{s+2k}z_2/z_1^2; x^{2k})_\infty (x^{s-2+2k}z_2/z_1^2; x^{2k})_\infty}, \quad (A.20) \]

\[\tilde{\Psi}_{1,I}(z_1)\tilde{\Psi}_{2,II}(z_2) = \frac{(x^{-s}z_2/z_1^2; x^{2k})_\infty (x^{2-s}z_2/z_1^2; x^{2k})_\infty}{(x^s z_2/z_1^2; x^{2k})_\infty (x^{s-2}z_2/z_1^2; x^{2k})_\infty}, \quad (A.21) \]

\[\tilde{\Psi}_{2,II}(z_1)\tilde{\Psi}_{1,II}(z_2) = \frac{(x^{-s+2k}z_2/z_1 II; x^{2k})_\infty (x^{2-s+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{s+2k}z_2/z_1 II; x^{2k})_\infty (x^{s-2+2k}z_2/z_1 II; x^{2k})_\infty}, \quad (A.22) \]

\[\tilde{\Psi}_{1,II}(z_1)\tilde{\Psi}_{2,II}(z_2) = \frac{(x^{-s}z_2/z_1 II; x^{2k})_\infty (x^{2-s}z_2/z_1 II; x^{2k})_\infty}{(x^s z_2/z_1 II; x^{2k})_\infty (x^{s-2}z_2/z_1 II; x^{2k})_\infty}, \quad (A.23) \]

\[\tilde{\Psi}_{2,II}(z_1)\tilde{\Psi}_{1,II}(z_2) = \frac{(x^{-s}z_2/z_1 II; x^{2k})_\infty (x^{2-s}z_2/z_1 II; x^{2k})_\infty}{(x^s z_2/z_1 II; x^{2k})_\infty (x^{s-2}z_2/z_1 II; x^{2k})_\infty}, \quad (A.24) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.25) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.26) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.27) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.28) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.29) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.30) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.31) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.32) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.33) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.34) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.35) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.36) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.37) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.38) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2), \quad (A.39) \]

\[\tilde{\Psi}_{j,II}(z_1)\tilde{\Psi}_{j,II}(z_2) = \frac{1}{(1-z_2/z_1^2)} \frac{(x^{2+2k}z_2/z_1 II; x^{2k})_\infty}{(x^{-2}z_2/z_1 II; x^{2k})_\infty}, \quad (j = 1, 2). \quad (A.40) \]
References

[1] Feigin B., Kojima T., Shiraishi J. and Watanabe H., The integrals of motion for the deformed Virasoro algebra, Preprint 54 pages (2007), submitted for publication, arXiv:0705.0427.

[2] Feigin B., Kojima T., Shiraishi J. and Watanabe H., The integrals of motion for the deformed W-algebra $W_{q,t}(\hat{sl}_N)$, Proc.for Representation Theory 2006 (Atami, Japan), 102-114 (2006), ISBN 4-9902328-2-8.

[3] Kojima T. and Shiraishi J., The integrals of motion for the deformed W-algebra $W_{q,t}(\hat{gl}_N)$ II: Proof of the commutation relations, Commun.Math.Phys.(2008) at press, arXiv:0709.2305.

[4] Bazhanov V., Lukyanov S. and Zamolodchikov Al., Integrable structure of conformal field theory :quantum KdV theory and thermodynamic Bethe ansatz, Commun.Math.Phys.177, 381-398, (1976).

[5] Bazhanov V., Hibberd A. and Khoroshkin S., Integrable structure of W_3 conformal field theory, quantum Boussinesq theory and boundary affine Toda theory, Nucl.Phys.B622,475-547, (2002).

[6] Kojima T., Baxter’s Q-operator for the W-algebra W_N, J.Phys A41: Math.Theor.(2008) at press, arXiv.0803.3505.

[7] Konno H., An elliptic algebra $U_{q,p}(\hat{sl}_2)$ and the fusion RSOS model, Commun.Math.Phys. 195, 373-403, (1998).

[8] Matsuo A., A q-deformation of Wakimoto modules, Primary fields and screening operators, Commun.Math.Phys.161,33-48,(1994).

[9] Jimbo M., Konno H., Odake S. and Shiraishi J., Elliptic algebra $U_{q,p}(\hat{sl}_2)$: Drinfeld current and Vertex operators, Commun.Math.Phys.199,605-647, (1999).

[10] Jimbo M., Konno H., Odake S. and Shiraishi J., Quasi-Hopf twistors for elliptic quantum groups, Transformation Group 4, 303-327, (1999).

[11] Feigin B. and Odesskii A., A family of elliptic algebras, Internat.Math.Res.Notices 11,531-539, (1997).