Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Morningness-eveningness preference and shift in chronotype during COVID-19 as predictors of mood and well-being in university students

M. Mahmudul Hasan a,1, Konrad S. Jankowski b, Mozibul H.A. Khan a, *

a Department of Psychology, University of Rajshahi, Rajshahi-6205, Bangladesh
b Faculty of Psychology, University of Warsaw, Warsaw, Poland

ARTICLE INFO

Keywords:
Chronotype
COVID-19
Morningness-eveningness
Sleep habits
Circadian rhythm
Mood
Well-being

ABSTRACT

It is suggested that social obligations, such as early work/school starts, have a disadvantageous impact on sleep behavior that can further transfer to mental health problems. Lockdown as a result of the COVID-19 pandemic created a unique opportunity to research human sleep-wake behavior in naturalistic conditions of decreased social obligations. This study aimed to test whether a change in habitual sleep-wake timing (shift in chronotype) during the COVID-19 lockdown impacted mood and well-being, and whether the impact differs according to morningness-eveningness preference. University students (N = 1011; Mean age = 21.95 ± 1.95 years) filled out self-report questionnaires containing measures of chronotype (midpoint of sleep) before and during the COVID-19 lockdown, morningness-eveningness preference, mood, and well-being. The impact of morningness-eveningness preference and shift in chronotype was tested via multiple regression analyses. Results showed that participants shifted their chronotype in line with their morningness-eveningness preference, and that shift toward earlier sleep-wake timing was related to better moods and well-being. Moreover, higher levels of positive mood (vigor) and well-being were found in individuals who shifted their sleep-wake timing earlier and were higher on morningness.

1. Introduction

Morningness-eveningness, or chronotype, is an individual trait concerning a preference for functioning at different times of the day. Morningness-eveningness preference reflects individual differences in endogenous circadian rhythms which are demonstrated in several physiological and behavioral functions, such as core body temperature, hormonal secretion, sleep-wakefulness, alertness, and mood (Díaz-Morales & Parra-Robledo, 2021; Merikanto et al., 2021). Being an indicator of underlying biological processes, individuals’ morningness-eveningness preference can be used to explain numerous behavioral and psychological outcomes. For this reason, morningness-eveningness is receiving growing attention as a significant aspect of individual differences (Adan et al., 2012; Jankowski & Linke, 2020).

Morningness-eveningness preference and chronotype are often used interchangeably, though the first is determined through the preferred timing for sleep and activity while the second puts emphasis on the differences (Adan et al., 2012; Jankowski, 2014; Merikanto et al., 2021). While the evidence consistently indicates eveningness as a correlate and risk factor for mental health problems, the underlying mechanism is still unclear. Consequently, several hypotheses have been proposed to explain the relationship between chronotype and impaired well-being.

In addition to differences in the phase shift of circadian rhythms, morning- and evening-types differ in several psychological outcomes. A large number of studies have shown a greater incidence of mental health problems and mood disorders among evening-types compared to morning-types and intermediate-types (Taylor & Hasler, 2018). For instance, eveningness is reported to be associated with an inclination toward a higher level of negative moods, such as anger (Jankowski & Linke, 2020), confusion (Gobin, Banks, Fins, & Tartar, 2015), depression (Van den Berg, Kivelä, & Antypa, 2018), fatigue (Merikanto et al., 2021), and tension (Gobin et al., 2015), as well as poor well-being (Jankowski, 2014; Merikanto et al., 2021).
were interested to study the sleep-wake behavior, mood, and well-being during COVID-19 would have implications for mood and well-being. In habitual sleep-wake timing (shift in chronotype), affect psychological behavioral features within the chronotype construct, like changes in moodiness, as well as earlier shift will be associated positively with better well-being (Díaz-Morales, Escribano, & Jankowski, 2015). However, it is important to examine how a shift in chronotype could impact the general population and whether it is related to morningness-eveningness preference.

The COVID-19 stay-at-home condition allowed greater freedom in one's sleep-wake behaviors and thus created a unique environment to explore people's diurnal preferences and self-selected sleep-wake patterns (Acebo, Carskadon, 2007). Besides, most profound changes in sleep habits and higher incidence of stress, anxiety, and depressive symptoms are found in younger people (Korman et al., 2020; Varma, Junge, Meaklim, & Jackson, 2020), especially students (Marelli et al., 2020; Odriozola-González et al., 2020). These studies mainly analyzed the changes in sleep habits during COVID-19 pandemic independently of their effects on mental health and their interaction with morningness-eveningness preference.

The individual circadian system is a fundamental biological mechanism that affects both sleep and mental health, and especially mood (Merikanto et al., 2021). Moreover, on free days, people generally align sleep-wake behavior with their internal circadian rhythm (Crowley, Acebo, & Carskadon, 2007), and this was also seen during the COVID-19 stay-at-home situation (Merikanto et al., 2021). Therefore, the relationship between individual circadian rhythm—assessed through morningness-eveningness preference—and changes in sleep habits during COVID-19 would have implications for mood and well-being. In addition, it is necessary to determine how individual chronotype can benefit from changing social schedules during COVID-19—i.e., changing sleep-wake behavior. This will help to develop preventive actions to reduce mental health problems during and after the COVID-19 situation.

In this study, we aimed to test whether shifts in chronotype during lockdown are related to mood and well-being and whether morningness-eveningness preferences affect that relationship. Given that younger people and students appeared particularly vulnerable to both sleep and mental health-related problems during the COVID-19 lockdown, we were interested to study the sleep-wake behavior, mood, and well-being of the university students. We hypothesized that a shift in chronotype will follow one's morningness-eveningness preference, and morningness, as well as earlier shift will be associated positively with better mood and well-being.

2. Materials and methods

2.1. Participants and procedure

From 17 March 2020, the Bangladesh government imposed a suspension of academic activities on all of its educational institutions due to COVID-19 pandemic (Uddin, 2020). Besides, students had little scope for remote learning due to a lack of internet and other technological facilities, and unlike any technologically advanced country, Bangladesh started online classes late, from December 2020 (Khan, Rahman, & Islam, 2021). Moreover, the students could not start a job outside their academic activities as there was countrywide lockdown. Therefore, students stayed in their home without academic or other social activities, except a few personal/family responsibilities.

During the period of suspended academic activities, an online survey was conducted from August 21 to September 9, 2020, where 1011 students (aged 18—27, $M_{\text{age}} = 21.95 \pm 1.95, 383 females) participated from the University of Rajshahi, Bangladesh (23.5° N, 90.0° E). Thus, the participants were totally without academic responsibilities for five months before sampling, and during this study.

Participation in the study was voluntary and anonymous. An informed consent section was displayed at the beginning of the survey questionnaire, stating the free choice to participate or not. The study was carried out in line with Helsinki declaration and the ethical guidelines approved by the Academic/Ethics Committee of the Department of Psychology, University of Rajshahi, Bangladesh.

2.2. Questionnaires

2.2.1. Morningness-Eveningness Preference

The Composite Scale of Morningness (CSM; Smith, Reilly, & Midkiff, 1989) was used to assess morningness-eveningness preference. The CSM comprised 13 self-reported questions regarding individual preference in sleep-wake timing, feeling best time for physical and intellectual activities, subjective alertness after waking, and self-evaluation of morningness and eveningness. A Likert-type response format is used in the CSM items. Total CSM score ranges from 13 (extreme eveningness) to 55 (extreme morningness). The Cronbach’s alpha for the Bangla version of CSM was 0.88 (Hasan, Diaz-Morales, & Khan, 2021), and the alpha was 0.87 in the current sample.

2.2.2. Shift in chronotype

The sleep timing questionnaire was designed to assess chronotype based on habitual sleep-wake-related parameters separately during and before the COVID-19 suspension of academic activities. Firstly, questions about sleep-wake timing during COVID-19 were displayed (e.g., “Nowadays, during the COVID-19 suspension of academic activities, when do you go to bed?”), followed by questions about sleep-wake timing separately on workdays and free days during the period before COVID-19 (e.g., “Before the COVID-19 suspension of academic activities, when did you go to bed at the weekend or on free days?”). Chronotype was calculated as midsleep on free days sleep-corrected (MSFsc; Roenneberg, Wirz-Justice, & Merrow, 2003) for the period before the COVID-19 suspension, and using midsleep across the week for the period during the COVID-19 suspension, as there were no work schedule-related changes in sleep across the week (i.e., no social jetlag). Shift in chronotype (Jankowski, 2014) was determined by subtracting the ‘during COVID-19 midsleep time’ from the ‘before COVID-19 MSFsc’. Shift in chronotype shows the amount and direction of change in midsleep time, expressed in hours and minutes. A positive value indicates a shift toward a morning chronotype, while a negative value indicates a shift toward an evening chronotype.

2.2.3. Mood

The Brunel Mood Scale (BRUMS; Terry & Lane, 2010) was used to assess mood. The BRUMS was previously called the Profile of Mood
ranging from 0.77 to 0.86 in the current sample.

2.2.4. Well-being

The Positive Mental Health scale (PMH-scale; Lukat, Margraf, Lutz, van der Veld, & Becker, 2016) was used to assess well-being. The PMH-scale is a brief, unidimensional measure focused on hedonic and eudaimonic approaches to well-being. It contains nine self-reported scale items (e.g., “I am in good physical and emotional condition”) responded to on a Likert-type scale ranging from 1 (not true) to 4 (true). All in all, I am satisfied with my life); the total score ranges from 9 to 36, a higher score indicating a higher level of well-being. The Bangla validation of PMH-scale (Hasan & Khan, 2020) showed good internal consistency reliability for each subscale, and the alpha value ranged from 0.77 to 0.86 in the current sample.

Table 2

Variables	Total (N = 1011)	Morning-type (N = 108)	Intermediate-type (N = 802)	Evening-type (N = 101)	F (2, 1008)	\(\eta^2 \)				
M	M	M	M	M						
Morningness	36.28	7.62	48.13	2.09	36.47	5.26	22.16	2.62	764.39***	0.603
Chronotype Shift\(^a\)	-0.008	0.45	0.0021	1.40	-0.005	0.45	-0.013	0.35	18.59***	0.036
Mood										
Anger	4.78	3.91	3.57	3.16	4.70	3.86	6.71	4.39	18.19***	0.035
Confusion	4.23	3.36	2.96	2.67	4.19	3.28	5.86	3.94	20.45***	0.039
Depression	4.43	3.96	3.30	3.61	4.32	3.81	6.49	4.76	18.95***	0.036
Fatigue	4.17	3.02	3.02	2.73	4.12	2.86	5.73	3.87	22.37***	0.042
Tension	4.26	3.30	3.50	3.03	4.2	3.19	5.60	3.99	11.64***	0.023
Vigor	6.90	3.12	8.44	3.04	6.89	3.01	5.36	3.22	26.80***	0.050
Well-being	24.82	5.72	27.28	5.39	24.94	5.57	21.46	5.73	29.16***	0.055

\(^{***} p < .001.\)

\(^{a}\) Expressed in h:cm; Positive value indicates shift toward morning chronotype (delay in sleep-timing), and negative value indicates shift toward evening chronotype (advance in sleep-timing).

States-Adolescents (POMS-A; Terry, Lane, Lane, & Keohane, 1999) but later validated for adults (Terry, Lane, & Fogarty, 2003). The BRUMS comprises 24 adjectives (e.g., worried, angry, tired, alert), using a response timeframe “How do you feel normally?” To indicate the level of feelings, participants respond on a five-point Likert-type scale ranging from 0 (not at all) to 4 (extremely). The 24 self-reported items of BRUMS are divided into six mood dimensions: anger, confusion, depression, fatigue, tension, and vigor, each containing four items. The total scores for each dimension are considered separately and range from 0 to 16. The Bangla validation of BRUMS (Hasan & Khan, 2020) showed high internal consistency reliability for each subscale, and the alpha value in the current sample was 0.77.

Table 1

Variables	Total (N = 1011)	Morning-type (N = 108)	Intermediate-type (N = 802)	Evening-type (N = 101)	F (2, 1008)	\(\eta^2 \)				
M	M	M	M	M						
Morningness	36.28	7.62	48.13	2.09	36.47	5.26	22.16	2.62	764.39***	0.603
Chronotype Shift\(^a\)	-0.008	0.45	0.0021	1.40	-0.005	0.45	-0.013	0.35	18.59***	0.036
Mood										
Anger	4.78	3.91	3.57	3.16	4.70	3.86	6.71	4.39	18.19***	0.035
Confusion	4.23	3.36	2.96	2.67	4.19	3.28	5.86	3.94	20.45***	0.039
Depression	4.43	3.96	3.30	3.61	4.32	3.81	6.49	4.76	18.95***	0.036
Fatigue	4.17	3.02	3.02	2.73	4.12	2.86	5.73	3.87	22.37***	0.042
Tension	4.26	3.30	3.50	3.03	4.2	3.19	5.60	3.99	11.64***	0.023
Vigor	6.90	3.12	8.44	3.04	6.89	3.01	5.36	3.22	26.80***	0.050
Well-being	24.82	5.72	27.28	5.39	24.94	5.57	21.46	5.73	29.16***	0.055
Table 3

Linear regression with mood and well-being: the outcome predicted by variables entered in subsequent blocks.

Block	Anger	Confusion	Depression	Fatigue	Tension	Vigor	Well-being
	Beta	R	Beta	R	Beta	R	Beta
Age	0.024	0.099***	0.035	0.170***	0.096	0.000	0.000
Sex							
Morningness (CSM)	0.185***	0.096***	0.170***	0.096	0.000	0.000	0.000
Advance in chronotype	-0.012	-0.012	-0.012	-0.012	0.000	0.000	0.000
Morningness * advance in chronotype	-0.024	-0.024	-0.024	-0.024	0.000	0.000	0.000

Note: male = 0, female = 1.

4. Discussion

This study investigated whether a shift in chronotype during COVID-19 affected mood and well-being and whether such an effect was dependent on morningness-eveningness preferences. The results showed that during COVID-19 lockdown evening-types had a delayed shift while morning-types shifted earlier, indicating that a shift in sleep timing was in line with one’s chronotype. Similarly, the correlational analysis showed that advance in sleep-timing was associated with morningness. Though some studies conducted during COVID-19 reported a delayed sleep pattern among majority of the participants regardless of their chronotypes (Merikanto et al., 2021; Rome et al., 2021), the current study found that morning-types advanced their sleep timing— an unusual observation compared to the results of other studies. In fact, during normal conditions morning-types have to be involved in some evening activities (e.g., shopping, homework) and some of these activities (socializing) may play a special role in shifting morning-type students toward later hours. Reduced social opportunities at night during COVID-19 lockdown may allow morning types to advance their sleep timing to be more in line with their preferences. Nevertheless, further investigations are required to clarify this finding. Generally, there is a view that people tend to follow their internal rhythm when there are fewer social constraints (Crowley et al., 2007; Jankowski, 2015), and this study provides an empirical argument supporting the notion that such a mechanism works also in real life conditions—i.e., during the COVID-19 lockdown.

The findings support a well-known observation that eveningness is associated with higher negative mood and lower positive mood, and well-being. Several other studies have reported similar findings on the association between morningness-eveningness, mood (Jankowski & Linke, 2020; Partonen, 2015), and well-being (Merikanto et al., 2021; Papacostantinou et al., 2019). The mismatch between internal circadian rhythms and social schedules is considered the primary cause underlying the relationship between eveningness and disadvantageous moods as well as poor well-being (Díaz-Morales et al., 2015; Zaki et al., 2017). In contrast, during the COVID-19 stay-at-home condition, there was less requirement to maintain the normal social and working schedules, which could have lowered the mismatch (Korman et al., 2020; Wright et al., 2020). Despite this, we found that eveningness is related with adverse mood and poor well-being, which supports an alternative mechanism that besides the circadian misalignment, eveningness may be intrinsically—i.e., genetically (Maukkenen et al., 2020; Partonen, 2015)—related to, and more susceptible to, disadvantageous mood and mental health problems (Merikanto et al., 2021). Although the role of genetics in explaining evening-types’ adverse condition in health and well-being is still unclear, recent genome-wide association analysis, both became significant predictors of mood and well-being. This means that both morningness-eveningness and shift in chronotype independently contributed to mood and well-being. While morningness-eveningness and shift in chronotype were considered together, it was found that only morningness-eveningness had a significant effect on mood and well-being (see Table 3). Additionally, the interaction of morningness-eveningness and shift in chronotype was significant for positive mood (vigor) and well-being, but not for negative moods. To probe the significant interaction, the pick-a-point approach was used. The simple slopes were computed by the cut-off values for morningness-eveningness (Hasan et al., 2021) rather than conventional ±1 SD as suggested by Hayes (2018). Here, 46 and 26 were values for high morningness and low morningness (eveningness), respectively. The slopes were significantly different for both vigor (p < .001) and well-being (p < .001). Therefore, morningness was a statistically significant moderator in the relationship between shift in chronotype, vigor, and well-being. This result indicates that a shift toward earlier sleep-wake-timing was associated with higher level of vigor and well-being in individuals with higher morningness (see Fig. 1a and b).
The current study is the first to show that a shift in chronotype during the COVID-19 pandemic was a significant predictor of mood and well-being, such that an earlier shift is related to higher positive mood (vigor) and well-being, and this effect is higher in people with higher morningness. Though this study did not find any effect of shift in chronotype on the negative moods, the findings can help to understand how changes in sleep habits contribute to the development of mental health problems during the COVID-19 pandemic. While COVID-19 itself is a threat to human well-being, eveningness accompanied by delayed shift is exacerbating people’s mood and mental health-related problems. This study contributes to public health by indicating that one can enhance positive mood and well-being by shifting sleep-wake time earlier.

CRedit authorship contribution statement

M. Mahmudul Hasan: Conceptualization, Methodology, Investigation, Formal analysis, Visualization, Writing – original draft, Writing – review & editing. Konrad S. Jankowski: Methodology, Funding acquisition, Writing – original draft, Writing – review & editing. Mozibul H.A. Khan: Methodology, Supervision, Writing – review & editing.

Declaration of competing interest

None.

Acknowledgement

Preparation of the manuscript was supported by the Polish Ministry of Science and Higher Education (IP2015026774). We acknowledge the participants of this study for their voluntary participation.

References

Adan, A., Archer, S. N., Hidalgo, M. P., Di Milia, L., Natale, V., & Randler, C. (2012). Circadian typology: A comprehensive review. Chronobiology International, 29(9), 1153–1175.
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Sage.
Antúnez, J. M., Navarroa, J. F., & Adan, A. (2014). Morningness–eveningness and personality characteristics of young healthy adults. Personality and Individual Differences, 68, 136–142. https://doi.org/10.1016/j.paid.2014.04.015
Bullock, B. (2019). An interdisciplinary perspective on the association between chronotype and well-being. Yale Journal of Biology and Medicine, 92, 359–364.
Crowley, S. J., Acebo, C., & Carskadon, M. A. (2007). Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Medicine, 8, 602-612.
Díaz-Morales, J. F., Escribano, C., & Jankowski, K. S. (2015). Chronotype and time-of-day effects on mood during school day. Chronobiology International, 32, 37–42.
Díaz-Morales, J. F., & Parra-Robledo, Z. (2021). Day-of-week mood patterns in adolescents considering chronotype, sleep length and sex. Personality and Individual Differences., 179, Article 110951.
Facer-Childs, E. R., Middleton, B., Skene, D. J., & Bagshaw, A. P. (2019). Resetting the ‘internal clock’ and circadian rhythm disruption. Sleep Medicine, 60, 236-247.
Maukonen, M., Havulinna, A. S., Nochaiwong, S., Ruengorn, C., Thavorn, K., Hutton, B., Awiphan, R., Phosuya, C., Hasan et al., Merikanto, I., Kortesoja, L., Benedict, C., Chung, F., Cedernaes, J., Espie, C. A. Lukat, J., Margraf, J., Lutz, R., van der Veld, W. M., & Becker, E. S. (2016). Psychometric validation with Munich chronotype questionnaire and age/sex difference in Poland. Chronobiology International, 25, 577–595.

Jankowski, K. S., & Ciarkowska, W. (2008). Diurnal variation in energetic arousal, tense arousal and hedonic tone in extreme morning and evening types. Chronobiology International, 25, 277–292.

Jankowski, K. S. (2015). Composite scale of morningness: Psychometric properties, validity with Munich chronotype questionnaire and age/sex difference in Poland. European Psychiatry, 166–167. https://doi.org/10.1016/j.eurpsy.2014.01.004

Jankowski, K. S., & Clarkowska, W. (2008). Diurnal variation in energetic arousal, tense arousal and hedonic tone in extreme morning and evening types. Chronobiology International, 25, 577–595.

Jankowski, K. S., & Linke, M. (2020). Angry night birds: Emotionality, activity and sociability temperament in adolescent chronotypes. Chronobiology International. https://doi.org/10.1080/07420528.2020.1754844

Kantermann, T. (2020). How a global social lockdown helps to unblock time for sleep. Current Biology. https://doi.org/10.1016/j.cub.2020.06.037

Khan, M. M., Rahman, S. M. T., & Islam, S. T. A. (2021). Online education system in Bangladesh during COVID-19 pandemic. Creative Education, 12, 441–452. http://doi.org/10.4236/ce.2021.122031

Korman, M., Tkachev, V., Reis, C., Komada, Y., Kitamura, S., Gubin, D., Kumar, V., & Roenneberg, T. (2020). COVID-19-mandated social restrictions unvel the impact of social time pressure on sleep and body clock. Scientific Reports, 10, 22225. https://doi.org/10.1038/s41598-020-79299-7

Lukat, J., Margraf, J., Lutz, R., van der Veld, W. M., & Becker, E. S. (2016). Psychometric properties of the positive mental health scale (PMH-scale). BMC Psychology, 4, 8. https://doi.org/10.1186/s40359-016-0111-x

Marelli, S., Castelnuovo, A., Somma, A., Castronovo, V., Mombelli, S., Bottini, D., Leitner, C., Fossati, A., & Ferini-Strambi, L. (2020). Impact of COVID-19 lockdown on sleep quality in university students and administration staff. Journal of Neurology, 1–8. https://doi.org/10.1007/s00415-020-10556-6

Maukonen, M., Havulinna, A. S., Mannisto, S., Kanerva, N., Salomaa, V., & Partonen, T. (2020). Genetic associations of chronotype in the Finnish general population. Journal of Biological Rhythms. https://doi.org/10.1177/074873042095328

Merikanto, I., Kortesoja, L., Benedict, C., Chung, F., Cedernaes, J., Espie, C. A. Bjorvatn, B. (2021). Evening-types show highest increase of sleep and mental health problems during the COVID-19 pandemic—multinational study on 19 267 adults. Sleep. https://doi.org/10.1093/sleep/zsb216

Nochaiwong, S., Ruengorn, C., Thavorn, K., Hutton, B., Awiphan, R., Phosuya, C., Ruanta, Y., Wongpakaran, N., & Wongpakaran, T. (2021). Global prevalence of mental health issues among the general population during the coronavirus disease-2019 pandemic: A systematic review and meta-analysis. Scientific Reports, 11, 10173. https://doi.org/10.1038/s41598-021-97906-8

Odrzołoka-González, P., Plancheuelo-Gómez, Á., Irutina, M. J., & de Luis-García, R. (2020). Psychological effects of the COVID-19 outbreak and lockdown among students and workers of a spanish university. Psychiatry Research, 290, 13108. https://doi.org/10.1016/j.psychres.2020.11.0108

Pap常州尼斯努西努斯, A., Shearer, H., Fynn-Sackey, N., Smith, K., Taylor-Vaisey, A., & Cote, P. (2019). The association between chronotype and mental health problems in a university population: A systematic review of the literature. International Journal of Mental Health and Addiction, 17, 716–730. https://doi.org/10.1007/s11469-018-0006-6

Partonen, T. (2015). Chronotype and health outcomes. Current Sleep Medicine Reports. https://doi.org/10.1016/j.smrv.2007.07.005

Roenneberg, T., Wirs-Justice, A., & Merrow, M. (2007). Epidemiology of the human circadian clock. Sleep Medicine Reviews, 11(6), 429–438. https://doi.org/10.1016/j.smrv.2007.07.005

Roenneberg, T., Wirs-Justice, A., & Merrow, M. (2003). Life between clocks—dally temporal patterns of human chronotypes. Journal of Biological Rhythms, 18(1), 80–90.

Rome, O., Sinai, L., Sevitt, R., Merroody, A., Nadolne, M., & Shetrenshin, M. (2021). Owls and larks do not exist: COVID-19 quarantine sleep habits. Sleep Medicine, 77, 177–183. https://doi.org/10.1016/j.sleep.2020.09.003

Smith, C. S., Reilly, C., & Midkiff, K. (1989). Evaluation of three circadian rhythm questionnaire with suggestions for an improved measure of morningness. Journal of Applied Psychology, 74, 728–734.

Taylor, B. J., & Hasler, B. P. (2018). Chronotype and mental health: Recent advances. Current Psychiatry Reports, 20, 59. https://doi.org/10.11201-0925-8

Terry, P. C., & Lane, A. M. (2010). User guide for the Braden Mood Scale (BRUMS). Toowoomba, QLD: Peter Terry Consultants.

Terry, P. C., Lane, A. M., & Fogarty, G. J. (2003). Construct validity of the profile of mood states-adolescents for use with adults. Psychology of Sport and Exercise, 4, 125–139. https://doi.org/10.1016/S1469-0292(01)00035-6

Terry, P. C., Lane, A. M., Lane, H. J., & Kesbane, L. (1999). Development and validation of a mood measure for adolescents. Journal of Sports Sciences, 17, 861–872. https://doi.org/10.1097/0006-6

Uddin, M. (2020, June 13). Effects of the pandemic on the education sector in Bangladesh. The Financial Express. https://www.thefinancialexpress.com.bd/view/effects-of-the-pandemic-on-the-education-sector-in-bangladesh-1592061447.

Accessible December 2020)

Van den Berg, J. F., Kivela, L., & Antypa, N. (2018). Chronotype and depressive symptoms in students: An investigation of possible mechanisms. Chronobiology International, 35(9), 1248–1261

Varma, P., Junge, M., Meeklim, H., & Jackson, M. L. (2020). Younger people are more vulnerable to stress, anxiety and depression during COVID-19 pandemic: A global cross-sectional survey. Progress in Neuro-Psychopharmacology & Biological Psychiatry. https://doi.org/10.1016/j.pnpbp.2020.110236

Wright, K. P., Jr., Linton, S. K., Withrow, D., Caiaragh, L., Lanza, S. M., Iglesta, H., et al. (2020). Sleep in university students prior to and during COVID-19 stay-at-home orders. Current Biology, 30, R783–801.

Zaki, N. F. W., Spence, D. W., Bahammam, A. S., Pandji-Perumal, S. R., Cardinali, D. P., & Brown, G. M. (2017). Chronobiological theories of mood disorder. European Archive of Psychiatry and Clinical Neuroscience. https://doi.org/10.1007/s00406-017-0835-5