LETTER TO THE EDITOR

Comments on “Quantifiable urine glyphosate levels detected in 99% of the French population, with higher values in men, in younger people, and in farmers”

William Reeves1 · John L. Vicini1 · John T. Swarthout1 · Bruce M. Young1 · Pamela K. Jensen1

Received: 28 March 2022 / Accepted: 12 May 2022 / Published online: 20 May 2022 © The Author(s) 2022

Keywords Glyphosate · France · General population · Dietary habits · Occupational exposure

To the Editor,

Grau et al. reported quantifiable levels of glyphosate in 99.8% of urine samples collected in France between 2018 and 2020. Conclusions about these data rest on the reliability of the analytical method and the ability to put the data into the context of safety standards. Rather than demonstrating evidence of a health concern for the French population, data from the study confirm that human exposures to glyphosate are well below safety thresholds established by regulatory authorities in Europe.

Grau et al. relied on an ELISA method to estimate glyphosate concentrations in urine samples. This method was designed for testing glyphosate in water and is meant to serve as a screening tool to identify samples for more robust quantitative analysis. The ELISA does not provide a clear confirmation of a specific concentration (Vicini et al. 2021), and as the authors admit, tends to overestimate glyphosate levels in urine.

Additionally, the publication is missing key information that would have helped readers understand whether the reported values indicate a health concern. Other publications presenting human urinary glyphosate data provide estimates of daily exposure and compare those estimates to allowable exposure levels (Niemann et al. 2015; Solomon 2020; Vicini et al. 2021). These comparisons consistently demonstrate that human exposures to glyphosate are well below established safety thresholds.

Grau et al. reported the highest mean urinary glyphosate concentration was 2.05 ± 1.29 ng/ml for study participants under the age of 16 years. Taking this largest mean value plus three times the standard deviation gives an estimated upper end concentration of 5.92 ng/ml. Assuming a 30-kg child with a 1-L/day urinary volume results in an estimated intake of 0.000987 mg/kg-body weight/day or 0.2% of allowable exposures in the European Union (currently 0.5 mg/kg/day). This value is based on 20% bioavailability (EFSA 2015). Even using the 1% bioavailability value Grau et al. cite, the estimated exposure corresponding to the highest urinary concentration would still be 4.0% of allowable EU exposures for glyphosate.

It is important to note that Grau et al. did not disclose that the sponsor of their study and the employer of three authors, Association Campagne Glyphosate, advocates for a ban on the use of glyphosate-based herbicides in France. This information would have provided readers with important context regarding the purpose of the study and publication.

This letter was drafted by scientists employed by Bayer Crop Science, a manufacturer of glyphosate. The method used to calculate exposure was first published by Niemann et al. (2015).

Authors’ contributions The authors wrote the letter. All authors read and approved the final manuscript.

Funding The authors are employees of Bayer Crop Science. The authors wrote this letter as part of their roles at Bayer Crop Science. There was no additional funding.
Declarations

Competing interests The authors are employees of Bayer Crop Science, a manufacturer of glyphosate and glyphosate-based herbicides.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Association Campagne Glyphosate (2022) Nous appelons à une agriculture post industrielle. https://www.campagneglyphosate.com/pesticides/. Accessed 15 March 2022 (In French)

EFSA (2015) Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J 13:4302. https://doi.org/10.2903/j.efsa.2015.4302

Niemann L, Sieke C, Pfeil R, Solecki R (2015) A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J Verbr Lebensm 10:3–12. https://doi.org/10.1007/s00003-014-0927-3

Solomon K (2020) Estimated exposure to glyphosate in humans via environmental, occupational, and dietary pathways: an updated review of the scientific literature. Pest Manag Sci 76:2878–2885. https://doi.org/10.1002/ps.5717

Vicini J, Jensen P, Young B, Swarthout J (2021) Residues of glyphosate in food and dietary exposure. Compr Rev Food Sci Food Saf 20:5226–5257. https://doi.org/10.1111/1541-4337.12822

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.