The Analogue of the Dedekind Eta Function for CY Manifolds I.

Jamey Bass
University of California
Department of Mathematics,
Santa Cruz, CA 95064

Andrey Todorov*
University of California
Department of Mathematics,
Santa Cruz, CA 95064
Bulgarian Academy of Sciences
Institute of Mathematics
Sofia, Bulgaria

September 5, 2018

Abstract

This is the first of series of articles in which we are going to study the regularized determinants of the Laplacians of Calabi Yau metrics acting on \((0,q)\) forms on the moduli space of CY manifolds with a fixed polarization.

It is well known that in the case of elliptic curves, the Kronecker limit formula gives an explicit formula for the regularized determinant of the flat metric with fixed volume on the elliptic curves. The following formula holds in this case

\[
\exp\left(\frac{d}{ds} \zeta(s) \big|_{s=0}\right) = \det \Delta_{(0,1)}(\tau) = (\text{Im} \tau)^2 |\eta(\tau)|^4,
\]

where \(\eta(\tau)\) is the Dedekind eta function. It is well known fact that \(\eta(\tau)^{24}\) is a cusp automorphic form of weight 12 related to the discriminant of the elliptic curve.

Formula \(\text{(1)}\) implies that there exists a holomorphic section of some power of the line bundle of the classes of cohomologies of \((1,0)\) forms of the elliptic curves over the moduli space with an \(L^2\) norm equal to \(\det \Delta_{(0,1)}(\tau)\). This section is \(\eta(\tau)^{24}\). The purpose of this project is to find the relations between the regularized determinants of CY metric on \((0,1)\) forms and algebraic discriminants of CY manifolds.

In this paper we will establish the local analogue of the formula \(\text{(1)}\) for CY manifolds.

*Partially supported by The Institute of Mathematical Sciences of The Chinese University of Hong Kong.
Contents

1. **Introduction** .. 2
 1.1 General Comments ... 2
 1.2 Outline of the Main Ideas 5
 1.3 Organization of the Paper 7

2. **Preliminary Material** .. 8
 2.1 Basic Notions .. 8
 2.2 Basic Notions about Complex Structures 9
 2.3 Kuranishi Space and Flat Local Coordinates 10
 2.4 Family of Holomorphic Forms 12

3. **Weil-Petersson Metric** 12
 3.1 Basic Properties .. 12
 3.2 Infinitesimal Deformation of the Imaginary Part of the WP Metric 13

4. **Moduli of CY Manifolds** 16
 4.1 Basic Construction 16

5. **Hilbert Spaces and Trace Class Operators** 17
 5.1 Preliminary Material 17
 5.2 Trace Class Operators (See [3]) 18
 5.3 Adiabatic Limits, Heat Kernels and Traces 19
 5.4 Explicit Formulas 24

6. **The Variational Formulas** 25
 6.1 Preliminary Formulas 25
 6.2 The Computation of the Antiholomorphic Derivative of $\zeta^{\omega,-1}_{\tau,q}(s)$ 26
 6.3 The Computation of the Hessian of $\zeta^{\omega,-1}_{\tau,q}(s)$ 28
 6.4 The Computations of the Hessian of $\log \det \Delta^{\tau,q}$.. 32
 6.5 Some Applications of the Variational Formulas 34

7. **The Computation on Kähler Ricci flat Manifold with a Non Trivial Canonical Bundle** 37

1 Introduction

1.1 General Comments

The regularized determinants play an important role in different branches of Physics and Mathematics. The explicit formulas for the regularized determinants have many important applications both in Mathematics and Physics. They are well known. This is the first of a series of papers in which we will study the regularized determinant of the Laplacians of CY metrics on $(0,q)$ forms. We will first review the computation and the main results about the the regularized determinant of the flat metric on the elliptic. We will describe its
relations to the discriminant locus and then we will describe our program how
to generalize the results in the case of elliptic curves to CY manifolds.

An easy computations show that the zeta function of the Laplace o perator of
the flat metric on an elliptic curve with periods \((1, \tau)\) is given by the expression
\[
E(s) = \left(\frac{1}{2\pi}\right)^{2s} \sum_{n,m \in \mathbb{Z}, (n,m) \neq (0,0)} \frac{1}{|n + m\tau|^{2s}}
\]
where \(\tau \in \mathbb{C}, \text{Im } \tau > 0\) and \(^\wedge\) means that the sum is over all pair of integers
\((m, n) \neq (0, 0)\). The computation of the regularized determinant in the case of
the flat metric on an elliptic curve is based on the Kronecker limit formula. See
[28]. It states that \(E(s)\) has a meromorphic continuation in \(\mathbb{C}\) with only one
pole at \(s = 1\) and
\[
\exp\left(-\frac{d}{ds} E(s)|_{s=0}\right) = \frac{1}{(\text{Im } \tau)^2 |\eta|^4}
\]
where \(\eta\) is the Dedekind eta function. Thus formula (2) implies that
\[
\det \Delta_{\tau,1} = \exp\left(\frac{d}{ds} E(s)|_{s=0}\right) = (\text{Im } \tau)^2 |\eta|^4.
\]
Let us denote by \(G_k(\tau)\) the Eisenstein series of the lattice spanned by 1 and \(\tau\). Then the elliptic curve \(E_\tau = \mathbb{C}/(n + m\tau)\) is given by
\[
y^2 = 4x^3 - g_2x - g_3,
\]
where \(g_2 = 60G_2\) and \(g_3 = 140G_3\). The formula for the discriminant \(\Delta(\tau)\) of the
elliptic curve is given by
\[
\Delta(\tau) = \frac{g_2^3(\tau) - 27g_3^2(\tau)}{1728g_2^3(\tau)}.
\]
It is a well known formula that \(\Delta(\tau) = \eta(\tau)^{24}\). Thus the formula for the regu-
larized determinant of the Laplacian is related to the discriminant of the elliptic
curve \(E_\tau\).

In this paper we will use the following method of deriving (3). See [13] and
[15]. Compute the Hessian of \(\log \det \Delta_{\tau,1}\) and show that
\[
dd^c \log \det \Delta_{\tau,1} = -dd^c \log \text{Im } \tau = dd^c \log \langle \omega_\tau, \omega_\tau \rangle.
\]
Thus (6) implies that \(\log \det \Delta_{\tau,1}\) is a potential of the Poincare metric on the
upper half plane \(\mathbb{H}\), which is the Teichmuller space of marked elliptic curves.
Notice that
\[
\text{Im } \tau = -\frac{\sqrt{-1}}{2} \int_E \omega_\tau \wedge \bar{\omega}_\tau = \langle \omega_\tau, \omega_\tau \rangle,
\]
where ω_τ are holomorphic one forms on the elliptic curves normalized as follows:

$$\int_{\gamma_0} \omega_\tau = 1,$$ \hspace{1cm} (6)

where γ_0 is one of the generators of $H_1(E, \mathbb{Z})$. This means that: From the relation (6) we derive that we have

$$\det \Delta_{\tau,1} = \langle \omega_\tau, \omega_\tau \rangle |\eta(\tau)|^4 = (\text{Im} \tau)^2 |\eta|^4,$$ \hspace{1cm} (7)

where $\eta(\tau)$ is a holomorphic function.

We will outline how (7) implies that $\eta(\tau)$ is the Dedekind eta function. This can be done in several steps. The first step is to prove that $\det \Delta_{\tau,1}$ is a bounded function on the moduli space of the elliptic curves. The next step is to prove that $\langle \omega_\tau, \omega_\tau \rangle = \text{Im} \tau$ has a logarithmic growth near the the infinity of $\text{PSL}_2(\mathbb{Z}) \backslash \mathfrak{h}$. This will imply that $|\eta(\tau)|$ must vanish at infinity. It is not difficult to see that

$$\text{SL}_2(\mathbb{Z})/\text{SL}_2(\mathbb{Z}), \text{SL}_2(\mathbb{Z})] \cong \mathbb{Z}/12\mathbb{Z}.$$ \hspace{1cm} (8)

The normalization (6) implies that $\langle \omega_\tau, \omega_\tau \rangle = \text{Im} \tau$ is an automorphic form of weight -2. Thus (7) and (8) imply that $\eta(\tau)^{24}$ will be a cusp form of weight 12 up to a constant. This will prove that $\eta(\tau)$ is the Dedekind eta function.

This fact intuitively represents the following observation, when the metric degenerates then the discrete spectrum of the Laplacian in the limit turns into a continuous spectrum which contains the zero. Thus the regularized determinant must vanish at the points of the compactified moduli space that corresponds to singular manifolds. $\det \Delta_{\tau,1}$ is a bounded function on $\text{PSL}_2(\mathbb{Z}) \backslash \mathfrak{h}$.

One of the observation in this paper is that the normalization of the period of the holomorphic form ω_τ (6) is related to the choice of a maximal unipotent element of the mapping class group as follows. It was proved in [21] that maximal unipotent elements in the mapping class group correspond to a monodromy operator T acting on the middle cohomology group of a generic fibre of a family of projective algebraic varieties over the unit disk with only one singular fibre over the origin of the disk. Grothendieck proved that we always have:

$$(T^N - id)^{n+1} = 0$$

where N is some positive integer and n is the complex dimension of the fibre of the family. Maximal unipotent elements corresponds to Jordan blocks of dimension one. In case of CY manifolds it was proved in [21] that if T has maximal index of unipotency then T has a unique Jordan block of dimension $n + 1$. Thus once we choose the unipotent element of the mapping class group we can associate to it a unique up to a sign primitive class of homology in the middle homology group which corresponds to the invariant vanishing cycle. The cycle γ_0 that appears in (6) is the vanishing invariant cycle associated with the maximal unipotent element.

It is a classical fact that the Dedekind eta function is related to the algebraic discriminant of the equation that defines the elliptic curve. Thus the arguments
that we provided to prove that the absolute value of the holomorphic function that appeared in (7) is in fact the analytic analogue of the discriminant. This follows from the fact that \(\det \Delta_{\tau,1} \) can be interpreted as the \(L^2 \) norm of a holomorphic section of some power of the line bundle of the holomorphic one forms over the moduli space of elliptic curves. In our next publications we will generalize these arguments for CY manifolds.

This paper is the first one in the realization of the above described program. In it we will compute \(dd^c \log \det \Delta_{\tau,1} \). We will show that locally in the Teichmüller space of the polarized CY manifolds we have

\[
dd^c \log \det \Delta_{\tau,1} = dd^c \log \langle \omega_\tau, \omega_\tau \rangle, \tag{9}
\]

where \(\omega_\tau \) is a family of holomorphic \(n \) forms. Thus \(9 \) implies

\[
\det \Delta_{\tau,1} = \langle \omega_\tau, \omega_\tau \rangle |\eta(\tau)|^2. \tag{10}
\]

In fact by proving \(10 \) we generalized \(7 \) for higher dimensional CY manifolds.

In the case of elliptic curves formula \(5 \) implies that \(\log \det \Delta_{\tau,1} \) is the potential of the Poincare metric on the upper half plane which is the Teichmüller space of elliptic curves. In \[32\] we proved that \(dd^c \log \langle \omega_\tau, \omega_\tau \rangle \) gives the imaginary part of the Weil-Petersson metric on the Teichmüller space of polarized CY manifolds. Thus by establishing formula \(9 \), we proved that the logarithm of the regularized determinant \(\det \Delta_{\tau,1} \) forms is the potential of the Weil Petersson metric.

1.2 Outline of the Main Ideas

The ideas that we used in this paper are similar to the ideas used in [6] to established variational formulas for regularized determinants on vector bundles on Riemann surfaces. We need first to fix the coordinates of the local deformation space of the fix CY manifold \(M_0 \) with a fix polarization class. In fact we use the coordinates \((\tau^1, ..., \tau^N) \) introduced in [32]. These coordinates were later used in string theory. See [2]. The coordinates \((\tau^1, ..., \tau^N) \) depend on the choice of a basis of harmonic forms \(\phi_1, ..., \phi_N \) of \(H^1(M_0, T^{1,0}) \). In these coordinates we have the following local expression for the family \(\bar{\partial}_\tau \) on \(M_0 \):

\[
\bar{\partial}_{i,\tau} = \frac{\partial}{\partial z^i} - \sum_{k=1}^{N} \tau^k \phi^i_k \frac{\partial}{\partial z^j} + O(\tau^2),
\]

where \((z^1, ..., z^n) \) are local coordinates on \(M_0 \). Thus we get that \(\bar{\partial}_\tau \) depends holomorphically on \(\tau \) and

\[
\frac{\partial}{\partial \tau} \bar{\partial}_\tau = -\phi_i \circ \partial_0 + O(\tau). \tag{11}
\]

From the uniqueness of the solution of Calabi conjecture by Yau we know that once we fix the polarization class then we obtain a family of Calabi Yau metrics
such that $\text{Im } g_\tau = L$. One of our results is that $\text{Im } g_\tau$ is a constant symplectic form. From here and the expression for ∂_τ we obtain that ∂_τ depends anti holomorphically on τ.

After these preliminary results we are ready to compute the Hessian of $\log \det \Delta_{\tau,q}$. If we know the expressions for $\frac{\partial^2}{\partial \tau \partial \tau^*} \log \Delta_{\tau,q}$, where $\Delta_{\tau,q} = \Delta_{\tau,q}|_{\text{Im } \partial}$ then we know how to compute $\frac{\partial^2}{\partial \tau \partial \tau^*} \log \Delta_{\tau,q}$. So we describe the ideas of the computations of $\frac{\partial^2}{\partial \tau \partial \tau^*} \log \Delta_{\tau,q}$.

From (11) and (12) we obtain

$$\zeta_{\Delta_{\tau,q}}(s) = \frac{1}{\Gamma(s)} \int_0^\infty \text{Tr} \left(\frac{1}{4\pi t^n} \exp \left(-t \Delta_{\tau,q}^\ast \right) \right) t^{s-1} dt.$$

(12)

From (11) and (12) we obtain

$$\frac{\partial}{\partial \tau^*} \left(\zeta_{\tau,q}(s) \right) \bigg|_{\tau=0} =$$

$$\frac{1}{\Gamma(s)} \int_0^\infty \text{Tr} \left(\exp \left(-t \left(\Delta_{0,q}^\ast \circ \Delta_{0,q}^\ast \circ \partial_{\tau}^{-1} \circ F'(q + 1, \phi_i) \circ \partial_0 \right) \right) t^s dt,$$

(13)

where $\phi_i \in H^1(M,\Theta)$ are the Kodaira-Spencer classes viewed as bundle maps:

$$\phi_i : C^\infty \left(M, \Omega_{M}^{0,1} \right) \to C^\infty \left(M, \Omega_{M}^{0,1} \right)$$

and $F'(q + 1, \phi_i)$ are the map induced by

$$\phi_i \wedge id_{q-1} : C^\infty \left(M, \Omega_{M}^{0,q} \right) \to C^\infty \left(M, \Omega_{M}^{0,q} \right).$$

on $C^\infty \left(M, \Omega_{M}^{0,q+1} \right)$ and restricted in $\text{Im } \bar{\partial}$. From (13) we obtain

$$\frac{\partial^2}{\partial \tau \partial \tau^*} \left(\zeta_{\tau,q}(s) \right) =$$

$$\frac{1}{\Gamma(s)} \int_0^\infty \text{Tr} \left(\left(\frac{\partial}{\partial \tau^*} \exp \left(-t \left(\Delta_{\tau,q}^\ast \circ \Delta_{\tau,q}^\ast \circ \partial_{\tau}^{-1} \circ F'(q + 1, \phi_i) \circ \partial_0 \right) \right) \right) t^s dt$$

$$+ \frac{1}{\Gamma(s)} \int_0^\infty \text{Tr} \left(\exp \left(-t \left(\Delta_{\tau,q}^\ast \circ \partial_{\tau} \left(\Delta_{\tau,q}^\ast \circ \partial_{\tau}^{-1} \circ F'(q + 1, \phi_i) \circ \partial_0 \right) \right) \right) t^s dt.$$

(14)
Following the ideas in [6] to integrate by parts (14) we derive that:

$$\frac{\partial^2}{\partial \tau^i \partial \tau^j} \zeta_{\tau,q}(s) = \frac{s(1-s)}{\Gamma(s)} \int_0^\infty \text{Tr} \left(\exp \left(-t\Delta_{\tau,q+1}^\tau \right) F(q+1, \phi_i \circ \phi_j) \right) t^{s-1} dt.$$

(15)

By using the short term asymptotic expansion of $\exp \left(-t\Delta_{\tau,q+1}^\tau \right)$ we derive that

$$\text{Tr} \left(\exp \left(-t\Delta_{\tau,q+1}^\tau \right) F(q+1, \phi_i \circ \phi_j) \right) = \sum_{k=-n}^1 \frac{\alpha_{q,k}}{t^k} + \alpha_{q,0} + \psi_q(t).$$

(16)

Combining (15) and (16) we get that

$$\frac{d}{ds} \left(\frac{\partial^2}{\partial \tau^i \partial \tau^j} \zeta_{\tau,q}(s) \right) |_{s=0} = \frac{\partial^2}{\partial \tau^i \partial \tau^j} \log \det \Delta_{\tau,q}^\tau = \alpha_{0,q}.$$

In this paper we gave an explicit formula for $\alpha_{0,q}$. By using the expressions for $\alpha_{0,1}$ and $\alpha_{0,n-1}$ we show that $d \circ d^c (\log \det \Delta_{\tau,1}^\tau) = - \text{Im} WP$, where $\text{Im} WP$ is the imaginary part of the Weil-Petersson metric. This can be viewed as the generalization of the results in [14] and [17].

1.3 Organization of the Paper

This article is organized as follows.

In **Section 2** we introduce some basic notions about zeta functions of Laplacians on Riemannian manifolds. We review the results from [32].

In **Section 3** we review the basic properties of the Weil-Petersson metric on the moduli of CY manifolds. See also [24].

In **Section 4** we review the theory of moduli of CY manifolds following [22] and also metrics with logarithmic singularities on vector bundle following Mumford’s article [21]. We prove that the L^2 metric on the dualizing line bundle over the moduli space of CY manifolds is a good metric in the sense of Mumford. This implies that the volumes of the moduli spaces of CY manifolds are rational numbers.

In **Section 5** we review some facts about the Hilbert spaces of the $(0,q)$ forms and their isospectral identifications which we used in the paper. We also study traces the operators acting on the L^2 sections of some vector bundle induced by some global C^∞ section its endormorphisms composed with the heat kernel. We study the short term expansions of these operators and especially the constant term of the expansion.

In **Section 6** we establish the variational formulas for the zeta functions of the Laplacians and its regularized determinants. We also showed that

$$dd^c \log \det \Delta_{\tau,1} = - \text{Im} WP.$$

In **Section 7** we prove that for Kähler Ricci flat manifold N with $H^0(N,\Omega_M^n) = 0$ we have

$$dd^c \log \det \Delta_{\tau,n} = - \text{Im} WP.$$
Acknowledgement 1 The first author wants to thank G. Moore, J. Jorgenson S. Donaldson, S.-T. Yau, G. Zuckerman, D. Kazhdan, P. Deligne, S. Lang, B. Lian, J. Li, K. Liu, Y. Eliashberg, Dai and R. Donagi for useful comments and support. I want to thank Sinan Unver for his help. Special thanks to The Institute of Mathematical Sciences at CUHK and Hangzhou for their hospitality during the preparation of this article.

2 Preliminary Material

2.1 Basic Notions

Let M be a n-dimensional Kähler manifold with a zero canonical class. Suppose that $H^k(M, \mathcal{O}_M) = 0$ for $1 \leq k < n$. Such manifolds are called Calabi-Yau manifolds. A pair (M, L) will be called a polarized CY manifold if M is a CY manifold and $L \in H^2(M, \mathbb{Z})$ is a fixed class such that it represents the imaginary part of a Kähler metric on M.

Yau’s celebrated theorem asserts the existence of a unique Ricci flat Kähler metric g on M such that the cohomology class $[\text{Im}(g)] = L$. (See [34].) From now on we will consider polarized CY manifolds of odd dimension. The polarization class L determines the CY metric g uniquely. We will denote by

$$\Delta_q = \overline{\partial}^* \circ \overline{\partial} + \overline{\partial} \circ \partial^*$$

the associated Laplacians that act on smooth $(0, q)$ forms on M for $0 \leq q \leq n$. $\overline{\partial}^*$ is the adjoint operator of $\overline{\partial}$ with respect to the CY metric g.

The regularized determinants are defined as follows: Let (M, g) be an n-dimensional Riemannian manifold. Let

$$\Delta_q = dd^* + d^*d$$

be the Laplacian acting on the space of q forms on M. We recall that the spectrum of the Laplacian Δ_q is positive and discrete. Thus the non zero eigenvalues of Δ_q are

$$0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq \ldots$$

We define the zeta function of Δ_q as follows:

$$\zeta_q(s) = \sum_{i=1}^{\infty} \lambda_i^{-s}.$$

It is known that $\zeta_q(s)$ is a well defined analytic function for $\text{Re}(s) \gg C$, it has a meromorphic continuation in the complex plane and 0 is not a pole of $\zeta_q(s)$. Define

$$\det(\Delta_q) = \exp \left(-\frac{d}{ds} (\zeta_q(s)) \right) \bigg|_{s=0}.$$

\(^{1}\)Notice that $H^{1,1}(M, \mathbb{R}) = H^2(M, \mathbb{R})$ since $H^2(M, \mathcal{O}_M) = 0$ for CY manifolds.
The determinant of these operators Δ_q, defined through zeta function regularization, will be denoted by $\det(\Delta_q)$.

The Hodge decomposition theorem asserts that

$$\Gamma(M, \Omega^0_M) = \text{Im}(\overline{\partial}) \oplus \text{Im}(\overline{\partial}^*)$$

for $1 \leq q \leq \dim\mathbb{C} M - 1$. The restriction of Δ_q on $\text{Im}(\overline{\partial})$ will be denoted by Δ'_q and $\Delta'_q = \overline{\partial} \circ \overline{\partial}$ and the restriction of Δ_q on $\text{Im}(\overline{\partial}^*)$ will be denoted by Δ''_q and $= \overline{\partial}^* \circ \overline{\partial}$. Hence we have

$$\text{Tr}(\exp(-t\Delta_q)) = \text{Tr}(\exp(-t\Delta'_q)) + \text{Tr}(\exp(-t\Delta''_q)).$$

This implies that

$$\zeta_q(s) = \sum_{k=1}^{\infty} \lambda^{-s}_k = \zeta'_q(s) + \zeta''_q(s),$$

where $\lambda_k > 0$ are the positive eigen values of Δ_q and $\zeta'_q(s)$ & $\zeta''_q(s)$ are the zeta functions of Δ'_q and Δ''_q. From here and the definition of the regularized determinant we obtain that

$$\log \det(\Delta_q) = \log \det(\Delta'_q) + \log \det(\Delta''_q).$$

It is a well known fact that the action of Δ''_q on $\text{Im}\overline{\partial}^*$ is isospectral to the action of Δ'_{q+1} on $\text{Im}\overline{\partial}$, which means that the spectrum of Δ''_q is equal to the spectrum of Δ'_{q+1}. So we have the equality

$$\det(\Delta''_q) = \det(\Delta'_{q+1}).$$

Notation 2 Let f be a map from a set A to a set B and let g be a map from the set B to the set C, then the compositions of those two maps we will denote by $f \circ g$.

2.2 Basic Notions about Complex Structures

Let M be an even dimensional C^∞ manifold. We will say that M has an almost complex structure if there exists a section $I \in C^\infty(M, \text{Hom}(T^*, T^*))$ such that $I^2 = -\text{id}$. T is the tangent bundle and T^* is the cotangent bundle on M. This definition is equivalent to the following one: Let M be an even dimensional C^∞ manifold. Suppose that there exists a global splitting of the complexified cotangent bundle

$$T^*_M \otimes \mathbb{C} = \Omega^{1,0}_M \oplus \Omega^{0,1}_M,$$

where $\Omega^{0,1}_M = \overline{\Omega^{1,0}_M}$. Then we will say that M has an almost complex structure. We will say that an almost complex structure is an integrable one, if for each point $x \in M$ there exists an open set $U \subset M$ such that we can find local coordinates $z^1, ..., z^n$, such that $dz^1, ..., dz^n$ are linearly independent in each point $m \in U$ and they generate $\Omega^{1,0}_M|_U$.
Definition 3 Let M be a complex manifold. Let $\phi \in \Gamma(M, \text{Hom}(\Omega^1_M, \Omega^0_M))$, then we will call ϕ a Beltrami differential.

Since
$$\Gamma(M, \text{Hom}(\Omega^1_M, \Omega^0_M)) \cong \Gamma(M, \Omega^0_M \otimes T^1_M),$$
we deduce that locally ϕ can be written as follows:
$$\phi|_U = \sum \phi_\alpha \overline{dz}^\alpha \otimes \frac{\partial}{\partial z^\beta}.$$

From now on we will denote by A_ϕ the following linear operator:
$$A_\phi = \begin{pmatrix} id & \phi(\tau) \\ \phi(\tau) & id \end{pmatrix}.$$

We will consider only those Beltrami differentials ϕ such that $\det(A_\phi) \neq 0$. The Beltrami differential ϕ defines an integrable complex structure on M if and only if the following equation holds:
$$\overline{\partial}\phi = \frac{1}{2} [\phi, \phi], \quad (17)$$

where
$$[\phi, \phi]|_U := \sum_{\nu=1}^n \sum_{1 \leq \alpha < \beta \leq n} \left(\sum_{\mu=1}^n \left(\phi^\mu_\alpha \partial^\nu_{\beta} - \phi^\mu_\beta \partial^\nu_{\alpha} \right) \right) \overline{dz}^\alpha \wedge \overline{dz}^\beta \otimes \frac{\partial}{\partial z^\nu}. \quad (18)$$

(See [20].)

2.3 Kuranishi Space and Flat Local Coordinates

Kuranishi proved the following Theorem:

Theorem 4 Let $\{\phi_i\}$ be a basis of harmonic $(0,1)$ forms of $\mathbb{H}^1(M, T^{1,0})$ on a Hermitian manifold M. Let G be the Green operator and let $\phi(\tau^1, ..., \tau^N)$ be defined as follows:
$$\phi(\tau^1, ..., \tau^N) = \sum_{i=1}^N \phi_i \tau^i + \frac{1}{2} \overline{\partial} G[\phi(\tau^1, ..., \tau^N), \phi(\tau^1, ..., \tau^N)]. \quad (19)$$

There exists $\varepsilon > 0$ such that if $\tau = (\tau^1, ..., \tau^N)$ satisfies $|\tau_i| < \varepsilon$ then $\phi(\tau^1, ..., \tau^N)$ is a global C^∞ section of the bundle $\Omega^{0,1}_M \otimes T^{1,0}. (\text{See [20].})$

Based on Theorem 4 we proved in [32] the following Theorem:
Theorem 5 Let M be a CY manifold and let $\{\phi_i\}$ be a basis of harmonic $(0,1)$ forms with coefficients in $T^{1,0}$, i.e.

$$\{\phi_i\} \in H^1(M, T^{1,0}),$$

then the equation (17) has a solution in the form:

$$\phi(\tau^1, \ldots, \tau^N) = \sum_{i=1}^N \phi_i \tau^i + \sum_{|I_N| \geq 2} \phi_{I_N} \tau^{I_N} =$$

$$\sum_{i=1}^N \phi_i \tau^i + \frac{1}{2} \overline{\partial} G[\phi(\tau^1, \ldots, \tau^N), \phi(\tau^1, \ldots, \tau^N)]$$

and $\overline{\partial} \phi(\tau^1, \ldots, \tau^N) = 0$, $\phi_{I_N} \omega_M = \partial \psi_{I_N}$ where $I_N = (i_1, \ldots, i_N)$ is a multi-index,

$$\phi_{I_N} \in C^\infty(M, \Omega_M^{0,1} \otimes T^{1,0}), \tau^{I_N} = (\tau^i)^{i_1}(\tau^N)^{i_N}$$

and if for some $\varepsilon > 0$ $|\tau^i| < \varepsilon$ then $\phi(\tau) \in C^\infty(M, \Omega_M^{0,1} \otimes T^{1,0})$ where $i = 1, \ldots, N$. (See [31] and [32]).

It is a standard fact from Kodaira-Spencer-Kuranishi deformation theory that for each

$$\tau = (\tau^1, \ldots, \tau^N) \in \mathcal{K}$$

as in Theorem 5 the Beltrami differential $\phi(\tau^1, \ldots, \tau^N)$ defines a new integrable complex structure on M. This means that the points of \mathcal{K}, where

$$\mathcal{K} : \{\tau = (\tau^1, \ldots, \tau^N) ||\tau^i| < \varepsilon\}$$

defines a family of operators $\overline{\partial}_\tau$ on the C^∞ family

$$\mathcal{K} \times M \to M$$

and $\overline{\partial}_\tau$ are integrable in the sense of Newlander-Nirenberg. Moreover it was proved by Kodaira, Spencer and Kuranishi that we get a complex analytic family of CY manifolds $\pi : \mathcal{X} \to \mathcal{K}$, where as C^∞ manifold $\mathcal{X} \cong \mathcal{K} \times M$. The family

$$\pi : \mathcal{X} \to \mathcal{K}$$

is called the Kuranishi family. The operators $\overline{\partial}_\tau$ are defined as follows:

Definition 6 Let $\{\mathcal{U}_i\}$ be an open covering of M, with local coordinate system in \mathcal{U}_i given by $\{z^k\}$ with $k = 1, \ldots, n = \text{dim}_C M$. Assume that $\phi(\tau^1, \ldots, \tau^N)|_{\mathcal{U}_i}$ is given by:

$$\phi(\tau^1, \ldots, \tau^N) = \sum_{j,k=1}^n (\phi(\tau^1, \ldots, \tau^N))_{j,k}^k \frac{dz^j}{\partial z^k} \otimes \frac{\partial}{\partial z^k}.$$

Then we define

$$\overline{\partial}_{\tau,j} = \frac{\overline{\partial}}{\partial z^j} - \sum_{k=1}^n (\phi(\tau^1, \ldots, \tau^N))_{j,k}^k \frac{\partial}{\partial z^k}.$$ (21)
Definition 7 The coordinates \(\tau = (\tau^1, \ldots, \tau^N) \) defined in Theorem 3 will be fixed from now on and will be called the flat coordinate system in \(\mathcal{K} \).

2.4 Family of Holomorphic Forms

In [32] the following Theorem is proved:

Theorem 8 There exists a family of holomorphic forms \(\omega_\tau \) of the Kuranishi family (20) such that

\[
\langle [\omega_\tau], [\omega_\tau] \rangle = 1 - \sum_{i,j} \langle \omega_0 \cdot \phi_i, \omega_0 \cdot \phi_j \rangle \tau_i \tau_j + O(\tau^5)
\]

\[
1 - \sum_{i,j} \tau_i \tau_j + \sum_{i,j} \langle \omega_0 \cdot \phi_i, \omega_0 \cdot \phi_j \rangle \tau_i \tau_j \tau_k \tau_l + O(\tau^5) \quad \text{and}
\]

\[
\langle [\omega_\tau], [\omega_\tau] \rangle \leq \langle [\omega_0], [\omega_0] \rangle.
\] (22)

3 Weil-Petersson Metric

3.1 Basic Properties

It is a well known fact from Kodaira-Spencer-Kuranishi theory that the tangent space \(T_{\tau, \mathcal{K}} \) at a point \(\tau \in \mathcal{K} \) can be identified with the space of harmonic (0,1) forms with values in the holomorphic vector fields \(\mathbb{H}^1(M_\tau, T) \). We will view each element \(\phi \in \mathbb{H}^1(M_\tau, T) \) as a point wise linear map from \(\Omega^{(1,0)}_{M_\tau} \) to \(\Omega^{(0,1)}_{M_\tau} \).

Given \(\phi_1 \) and \(\phi_2 \in \mathbb{H}^1(M_\tau, T) \), the trace of the map

\[
\phi_1 \circ \phi_2 : \Omega^{(0,1)}_{M_\tau} \rightarrow \Omega^{(0,1)}_{M_\tau}
\]

at the point \(m \in M_\tau \) with respect to the metric \(g \) is simply:

\[
Tr(\phi_1 \circ \phi_2) = \sum_{k,l,m=1}^n (\phi_1)^k_m (\phi_2)^m_l g^k g^l
\] (23)

Definition 9 We will define the Weil-Petersson metric on \(\mathcal{K} \) via the scalar product:

\[
\langle \phi_1, \phi_2 \rangle = \int_M Tr(\phi_1 \circ \phi_2) vol(g).
\] (24)

We proved in [32] that the coordinates \(\tau = (\tau^1, \ldots, \tau^N) \)

as defined in Definition 7 are flat in the sense that the Weil-Petersson metric is Kähler and in these coordinates we have that the components \(g_{i,j} \) of the Weil Petersson metric are given by the following formulas:

...
Very detailed treatment of the Weil-Petersson geometry of the moduli space of polarized CY manifolds can be found in [23] and [24]. In those two papers important results are obtained.

3.2 Infinitesimal Deformation of the Imaginary Part of the WP Metric

Theorem 10 Near each point τ_0 of the Kuranishi space K, the imaginary part $\text{Im}(g)$ of the CY metric g has the following expansion in the coordinates $\tau := (\tau^1, ..., \tau^N)$:

$$\text{Im}(g)(\tau, \bar{\tau}) = \text{Im}(g)(\tau_0) + O((\tau - \tau_0)^2).$$

Proof: Without loss of generality we can assume that $\tau_0 = 0$. In [32] we proved that the forms

$$\theta^k = dz^k + \sum_{l=1}^{n} \left(\phi(\tau^1, ..., \tau^N)^k_l \right) d\bar{z}^l$$

for $k = 1, ..., n$ form a basis of $(1, 0)$ forms relative to the complex structure defined by $\tau \in K$ in $\mathcal{U} \subset \mathcal{M}$. Let

$$\text{Im}(g_{\tau}) = \sqrt{-1} \left(\sum_{1 \leq k \leq l \leq n} g_{k, \bar{l}}(\tau, \bar{\tau}) \theta^k_{\tau} \wedge \bar{\theta}^l_{\tau} \right)$$

and

$$g_{k, \bar{l}}(\tau, \bar{\tau}) = g_{k, \bar{l}}(0) + \sum_{i=1}^{N} \left(\left(g_{k, \bar{l}}(1) \right)_i \tau^i + \left(g'_{k, \bar{l}}(1) \right)_i \bar{\tau}^i \right) + O(2).$$

We get the following expression for $\text{Im}(g_{\tau})$ in terms of dz^i and $d\bar{z}^i$, by substituting the expressions for θ^k from [32] and the expressions for $g_{k, \bar{l}}(\tau, \bar{\tau})$ from formula (27) in the formula (26):

$$\text{Im}(g_{\tau}) = \sqrt{-1} \left(\sum_{1 \leq k \leq l \leq n} g_{k, \bar{l}}(\tau, \bar{\tau}) \theta^k_{\tau} \wedge \bar{\theta}^l_{\tau} \right) = \sqrt{-1} \left(\sum_{1 \leq k \leq l \leq n} g_{k, \bar{l}}(0) dz^k \wedge d\bar{z}^l + \sum_{i=1}^{N} \left(\sum_{1 \leq k \leq l \leq n} \left(g_{k, \bar{l}}(1) \right)_i dz^k \wedge d\bar{z}^l + \sum_{m=1}^{n} \left(g_{k, m} \phi_{i, m}^{\mu} - g_{l, m} \phi_{i, k}^{\mu} \right) d\bar{z}^k \wedge dz^l \right) \right)$$

$$+ \sqrt{-1} \left(\sum_{i=1}^{N} \tau^i \left(\sum_{1 \leq k \leq l \leq n} \left(g_{k, \bar{l}}(1) \right)_i dz^k \wedge d\bar{z}^l + \sum_{m=1}^{n} \left(g_{k, m} \phi_{i, m}^{\mu} - g_{l, m} \phi_{i, k}^{\mu} \right) d\bar{z}^k \wedge dz^l \right) \right)$$

On page 332 of [32] the following results is proved:
Lemma 11 Let $\phi \in \mathbb{H}^1(M, T)$ be a harmonic form with respect to the CY metric g. Let

$$\phi|_U = \sum_{k,l=1}^n \phi^k_l \overline{dz}^k \otimes \frac{\partial}{\partial \overline{z}^l},$$

then

$$\phi|_U = \sum_{j=1}^n g_{jU} \phi^j = \sum_{j=1}^n g_{jU} \phi^j = \phi|_U.$$

From Lemma 11 we conclude that

$$\sum_{m=1}^n (g_{lm} \phi^m - g_{ml} \phi^m) = 0.$$

(28)

From (28) we get the following expression for $\text{Im}(g_\tau)$:

$$\text{Im}(g_\tau) = \sqrt{-1} \left(\sum_{1 \leq k \leq l \leq n} g_{k\overline{l}}(0) dz^k \wedge \overline{dz}^l \right) +$$

$$\sqrt{-1} \left(\sum_{i=1}^N \tau^i \left(\sum_{1 \leq k \leq l \leq n} \left(g_{k\overline{l}}(1) \right)_i dz^k \wedge \overline{dz}^l \right) \right) +$$

$$+ \sqrt{-1} \left(\sum_{i=1}^N \tau^i \sum_{1 \leq k \leq l \leq n} \left(g_{k\overline{l}}(1) \right)_i dz^k \wedge \overline{dz}^l \right) + O(2) \quad (29)$$

Let us define the (1,1) forms ψ_i as follows:

$$\psi_i = \sqrt{-1} \left(\sum_{1 \leq k \leq l \leq n} \left(g_{k\overline{l}}(1) \right)_i dz^k \wedge \overline{dz}^l \right) \quad (30)$$

We derive the following formula, by substituting in the expression (29) the expression given by (30):

$$\text{Im}(g_\tau) = \text{Im}(g_0) + \sum_{i=1}^N \tau^i \psi_i + \sum_{i=1}^N \tau^i \psi_i + O(\tau^2) \quad (31)$$

From the fact that the class of the cohomology of the imaginary part of the CY metric is fixed, i.e. $[\text{Im}(g_\tau)] = [\text{Im}(g_0)] = L$, and (31) we deduce that each ψ_i is an exact form, i.e.

$$\psi_i = \sqrt{-1} \partial \overline{\partial} f_i, \quad (32)$$

where f_i are globally defined functions on M. Our Theorem will follow if we prove that $\psi_i = 0$.

Lemma 12 $\psi_i = 0$.

14
Proof: In (32) we proved that
\[
\det(g_\tau) = \wedge^n \text{Im}(g_\tau) = \det(g_0) + O(2) \tag{33}
\]
in the flat coordinates \((\tau^1, ..., \tau^N)\). We deduce from the expressions (31) and (32), by direct computations that:
\[
\det(g_\tau) = \det(g_0) + \sqrt{-1} \sum_{i=1}^N \tau^i \left(\sum_{k,l} g^{k,l} \partial_k \partial_l (f_i) \right) + \frac{1}{\sqrt{-1}} \sum_{i=1}^N \tau^i \left(\sum_{k,l} g^{k,l} \partial_k \partial_l (f_i) \right) + O(2). \tag{34}
\]
Combining (33) and (34) we obtain that for each \(i\) we have:
\[
\sum_{k,l} g^{k,l} \partial_k \partial_l (f_i) = \triangle (f_i) = 0,
\]
where \(\triangle\) is the Laplacian of the metric \(g\). From the maximum principle, we deduce that all \(f_i\) are constants. Formula (32) implies that \(\psi_i = 0\). Lemma 12 is proved. ■

Theorem 10 follows directly from Lemma 12. Theorem 10 is proved. ■

Corollary 13 The imaginary part \(\text{Im} g_\tau\) of the CY metric is a constant symplectic form on the moduli space \(\mathcal{M}_L(M)\).

Corollary 14 The following formulas are true:
\[
\frac{\partial}{\partial \tau^i} (\partial_i)^\ast = 0 \text{ and } \overline{\frac{\partial}{\partial \tau^i}} (\partial_i)^\ast = 0. \tag{35}
\]

Proof: We know from Kähler geometry that \((\overline{\partial}_\tau)^\ast = [\Lambda_\tau, \partial_\tau]\), where \(\Lambda_\tau\) is the contraction with \((1,1)\) vector field:
\[
\Lambda_\tau = \frac{\sqrt{-1}}{2} \sum_{k,l} g^{k,l} (\theta^l_\tau)^\ast \wedge (\overline{\theta}^k_\tau)^\ast \tag{36}
\]
on \(M_\tau\) and \((\theta^l_\tau)^\ast\) is \((1,0)\) vector field on \(M_\tau\) dual to the \((1,0)\) form
\[
\theta^k_\tau = dz^k + \sum_{j=1}^N \tau^j (\sum_{k=1}^n (\phi_j)_{ik}^l dz^l).
\]
Corollary 13 implies that \(\frac{\partial}{\partial \tau^i} (\Lambda_\tau) = 0\). On the other hand, \(\partial_\tau\) depends antiholomorphically on \(\tau\), i.e. it depends on \(\overline{\tau} = (\overline{\tau_1}, ..., \overline{\tau_N})\). So we deduce that:
\[
\frac{\partial}{\partial \tau^i} (\overline{\partial}_\tau)^\ast = \left(\left[\frac{\partial}{\partial \tau^i} (\Lambda_\tau), \partial_\tau \right] + \left[\Lambda_\tau, \frac{\partial}{\partial \tau^i} (\partial_\tau) \right] \right) = 0.
\]
Exactly in the same way we prove that \(\overline{\frac{\partial}{\partial \tau^i} (\partial_\tau)^\ast} = 0\). Corollary 14 is proved. ■
4 Moduli of CY Manifolds

4.1 Basic Construction

Definition 15 We will define the Teichmüller space $T(M)$ of a CY manifold M as follows: $T(M) := \mathcal{I}(M)/\text{Diff}_0(M)$, where

$$\mathcal{I}(M) := \{ \text{all integrable complex structures on } M \}$$

and $\text{Diff}_0(M)$ is the group of diffeomorphisms isotopic to identity. The action of the group $\text{Diff}(M_0)$ is defined as follows; Let $\phi \in \text{Diff}_0(M)$ then ϕ acts on integrable complex structures on M by pull back, i.e. if $I \in C^\infty(M, \text{Hom}(T(M), T(M)))$, then we define $\phi(I) = \phi^*(I)$.

Definition 16 We will call a pair $(M; \gamma_1, \ldots, \gamma_n)$ a marked CY manifold where M is a CY manifold and $\{\gamma_1, \ldots, \gamma_n\}$ is a basis of $H_n(M, \mathbb{Z})/\text{Tor}$.

Remark 17 Let \mathcal{K} be the Kuranishi space. It is easy to see that if we choose a basis of $H_n(M, \mathbb{Z})/\text{Tor}$ in one of the fibres of the Kuranishi family $\pi : M \to \mathcal{K}$ then all the fibres will be marked, since as a C^∞ manifold $X_\mathcal{K} \cong M \times \mathcal{K}$.

In [22] the following Theorem was proved:

Theorem 18 There exists a family of marked polarized CY manifolds

$$Z_L \to \tilde{T}(M), \quad (37)$$

which possesses the following properties: a) It is effectively parametrized, b) The base has dimension $h^{n-1,1}$, c) For any marked CY manifold M of fixed topological type for which the polarization class L defines an imbedding into a projective space \mathbb{CP}^N, there exists an isomorphism of it (as a marked CY manifold) with a fibre M_s of the family Z_L.

Corollary 19 Let $\mathcal{Y} \to X$ be any family of marked polarized CY manifolds, then there exists a unique holomorphic map $\phi : X \to \tilde{T}(M)$ up to a biholomorphic map ψ of M which induces the identity map on $H_n(M, \mathbb{Z})$.

From now on we will denote by $T(M)$ the irreducible component of the Teichmüller space that contains our fixed CY manifold M.

Definition 20 We will define the mapping class group $\Gamma_1(M)$ of any compact C^∞ manifold M as follows: $\Gamma_1(M) = \text{Diff}_+(M)/\text{Diff}_0(M)$, where $\text{Diff}_+(M)$ is the group of diffeomorphisms of M preserving the orientation of M and $\text{Diff}_0(M)$ is the group of diffeomorphisms isotopic to identity.

Definition 21 Let $L \in H^2(M, \mathbb{Z})$ be the imaginary part of a Kähler metric. Let $\Gamma_2 := \{ \phi \in \Gamma_1(M) | \phi(L) = L \}$.

16
It is a well known fact that the moduli space of polarized algebraic manifolds $\mathcal{M}_L(M) = T(M)/\Gamma_2$. In [22] the following fact was established:

Theorem 22 There exists a subgroup of finite index Γ_L of Γ_2 such that Γ_L acts freely on $T(M)$ and $\Gamma \setminus T(M) = \mathcal{M}_L(M)$ is a non-singular quasi-projective variety. Over $\mathcal{M}_L(M)$ there exists a family of polarized CY manifolds $\mathcal{M} \to \mathcal{M}_L(M)$.

Remark 23 Theorem 22 implies that we constructed a family of non-singular CY manifolds $\pi : \mathcal{X} \to \mathcal{M}_L(M)$ over a quasi-projective non-singular variety $\mathcal{M}_L(M)$. Moreover it is easy to see that $\mathcal{X} \subseteq \mathbb{CP}^N \times \mathcal{M}_L(M)$. So \mathcal{X} is also quasi-projective. From now on we will work only with this family.

5 Hilbert Spaces and Trace Class Operators

5.1 Preliminary Material

Definition 24 We will denote by $L^2_{0,q}(\text{Im}(\overline{\partial}))$ the Hilbert subspace in $L^2(M,\Omega^{(0,q)}_M)$ which is the L^2 completion of the $\overline{\partial}$ exact forms in $C^\infty(M,\Omega^{(0,q)}_M)$ for $q \geq 0$.

In the same manner we will denote by $L^2_{-1,q-1}(\text{Im}(\partial))$ the Hilbert subspace in $L^2(M,\Omega^{(1,q-1)}_M)$ which is the L^2 completion of the ∂ exact $(1,q-1)$ forms in $C^\infty(M,\Omega^{(1,q-1)}_M)$ for $q > 0$. All the completions are with respect to the scalar product on the bundles $\Omega^{p,q}_M$ defined by the CY metric g.

Let $\phi(\tau^1, \ldots, \tau^N)$ be a solution of the equation (17):

$$\overline{\partial}\phi(\tau^1, \ldots, \tau^N) = \frac{1}{2}[\phi(\tau^1, \ldots, \tau^N), \phi(\tau^1, \ldots, \tau^N)]$$

which is guaranteed by Theorem 5. From Definition 3 of the Beltrami differential, we know that the Beltrami differential $\phi(\tau^1, \ldots, \tau^N)$ defines a linear fibrewise map

$$\phi(\tau^1, \ldots, \tau^N) : \Omega^{(1,0)}_M \to \Omega^{(0,1)}_M.$$

So

$$\phi(\tau^1, \ldots, \tau^N) \in C^\infty(M, \text{Hom}(\Omega^{(1,0)}_M, \Omega^{(0,1)}_M)).$$

Definition 25 We define the following maps between vector bundles

$$\phi \wedge \text{id} : \Omega^{(1,q-1)}_M \to \Omega^{(0,q)}_M$$

as

$$\phi(dz^i \wedge \alpha) = \phi(dz^i) \wedge \alpha$$

for each $1 \leq q \leq n$. Clearly each fibre wise linear map $\phi \wedge \text{id}_{q-1}$ defines a natural linear operator

$$F(q, \phi) : L^2(M, \Omega^{(1,q-1)}_M) \to L^2(M, \Omega^{(0,q)}_M).$$
between the Hilbert spaces. The restriction of the linear operator $F(q, \phi)$ on the subspace $\text{Im}(\partial) \subset L^2(M, \Omega^{(1,q-1)}_M)$ to $\text{Im}(\overline{\partial}) \subset L^2(M, \Omega^{(0)}_M)$ will be denoted by $F'(q, \phi)$. The restriction of the linear operator $F(q, \phi)$ on the subspace $\text{Im}(\partial^*) \subset L^2(M, \Omega^{(1,q-1)}_M)$ to $\text{Im}(\overline{\partial}^*) \subset L^2(M, \Omega^{(0,1)}_M)$ will be denoted by $F''(q, \phi)$. Let ϕ and ψ be two Kodaira Spencer classes and let

$$\phi \circ \psi : L^2(M, \Omega^{(0,1)}_M) \to L^2(M, \Omega^{(0,1)}_M)$$

be fibrewise linear map given by

$$\phi \circ \psi|_U := \sum_{\alpha, \beta = 1}^n (\phi \circ \psi)_{\beta}^\alpha \frac{\partial}{\partial z^\beta} \otimes \frac{\partial}{\partial \bar{z}^\alpha}. \quad (39)$$

We define the fibrewise bundle maps

$$((\phi \circ \psi) \wedge \text{id}_{q-1}) : \Omega^{0,q}_M \to \Omega^{0,q}_M, \quad (40)$$

as follows:

$$((\phi \circ \psi) \wedge \text{id}_{q-1})(\omega) := \left(\sum_{\alpha, \beta = 1}^n (\phi \circ \psi)_{\beta}^\alpha \frac{\partial}{\partial z^\beta} \otimes \frac{\partial}{\partial \bar{z}^\alpha} \right) \omega, \quad (41)$$

where \wedge means contraction of tensors and ω is some global form of type $(0,q)$ on M. We will define for the linear operators

$$F'(q, \phi \circ \psi) : L^2_{0,q}(\text{Im}(\overline{\partial})) \to L^2_{0,q}(\text{Im}(\overline{\partial})), \quad (42)$$

and

$$F''(q, \phi \circ \psi) : L^2_{0,q}(\text{Im}(\overline{\partial}^*)) \to L^2_{0,q}(\text{Im}(\overline{\partial}^*)), \quad (43)$$

as the restriction of the operators $((\phi \circ \psi) \wedge \text{id}_{q-1})$ on $L^2_{0,q}(\text{Im}(\overline{\partial}))$ and $L^2_{0,q}(\text{Im}(\overline{\partial}^*))$ respectively.

Remark 26 It is a standard fact that we can choose globally $\overline{\partial}$ closed forms $\omega_1, \ldots, \omega_N$ of type $(0,q)$ such that at each point $z \in M$ they span the fibre $\Omega^{0,q}_{M,z}$.

We can deduce directly from the definitions of the operators $F'(q, \phi), F'(q, \phi \circ \psi)$ and $F''(q, \phi), F''(q, \psi \circ \phi)$ and the existence of the forms $\omega_1, \ldots, \omega_N$ that the operators $F'(q, \phi), F'(q, \phi \circ \psi)$ and $F''(q, \psi \circ \phi)$ pointwise will be represented by matrices of dimensions $n \times (n)$, $n \times (n)$ and $n \times (n-1)$.

5.2 Trace Class Operators (See [3])

Let H be a Hilbert space with a orthonormal basis e_i. An operator A is a Hilbert-Schmidt operator if

$$\|A\|_{HS}^2 = \sum_i \|Ae_i\|^2 = \sum_{ij} |\langle Ae_i, e_j \rangle|^2 < \infty$$
is finite. The number $\|A\|_{HS}^2$ is called the Hilbert-Schmidt norm of A. If A is a Hilbert-Schmidt so is its adjoint A^* and $\|A\|_{HS}^2 = \|A^*\|_{HS}^2$. If U is a bounded operator on H and A is an Hilbert-Schmidt, then $U \circ A$ and $A \circ U$ are Hilbert-Schmidt operators and $\|U \circ A\|_{HS} \leq \|A \circ U\|_{HS}$.

In this paper we will consider the Hilbert spaces of the square integrable sections of the bundles $\Omega_M^{0,q} \otimes |\Lambda M|^{1/2}$ on M, where $|\Lambda M|$ is the trivial density bundles generated by the volume form of the CY metric.

An operator K with square-integrable kernel

$$k(w, z) \in \Gamma_{L^2} \left(M \times M, \left(\Omega_M^{0,q} \otimes |\Lambda M|^{1/2} \boxtimes \Omega_M^{0,q} \otimes |\Lambda M|^{1/2} \right) \right)$$

is Hilbert-Schmidt, and

$$\|K\|_{HS}^2 = \int_{(w, z) \in M \times M} \text{Tr} \left(k(w, z)^* k(w, z) \right).$$

Formula (44) follows from the definition of the Hilbert-Schmidt norm

$$\|K\|_{HS}^2 = \sum_{i,j} |\langle Ke_i, e_j \rangle|^2.$$

An operator K is said to be trace class if it has the form $A \circ B$, where A and B are Hilbert-Schmidt. For such operators, the sum

$$\text{Tr}K = \sum_i \langle Ke_i, e_i \rangle$$

is absolutely summable and $\text{Tr}K$ is independent of the choice of the orthonormal basis in H and is called the trace of K.

5.3 Adiabatic Limits, Heat Kernels and Traces

In this subsection we study the traces of operators which are compositions of the heat kernel with operators induced by endomorphisms of some vector bundle. We will use some of the results from [6] and will adopt them to our situation.

Let h be a metric on a vector bundle E over M. Let Δ_h be the Laplacian on E. It is a well known fact that the operator $\exp(-t\Delta_h)$ can be represented by an integral kernel:

$$k_t(w, z, \tau) = \sum_j \exp(-t\lambda_j) \phi_j(w) \otimes \phi_j(z),$$

where λ_j and ϕ_j are the eigen values and the eigen sections of the Laplace operator Δ_h on some vector bundle E on M. $k_t(w, z, \tau)$ is an operator of trace class. We know that the following formula holds for the short term asymptotic expansion of $\text{Tr} \left(k_t(w, z, \tau) \right)$

$$\text{Tr} \left(k_t(w, z, \tau) \right) = \frac{\alpha_0}{t^n} + \frac{\alpha_{-1}}{t} + \alpha_0 + O(t).$$
Let E be a holomorphic vector bundle over M, let $\phi \in C^\infty(M,\text{Hom}(E, E))$. It is easy to see that the operator $\exp(-\Delta_h) \circ \phi$ is of trace class and its trace has an asymptotic expansion

$$
\text{Tr} \left(k_t(w, z, \tau) \circ \phi \right) = \frac{\beta_{-n}(\phi)}{t^n} + \ldots + \frac{\beta_{-1}(\phi)}{t} + \beta_0(\phi) + O(t)
$$

(45)

according to [3]. We will study the following problem in this section:

Problem 27 Find an explicit expression for $\beta_0(\phi)$.

Definition 28 We define the function $k^d_t(w, z, t)$ in a neighborhood of the diagonal Δ in $M \times M$ as follows: Let ρ_τ be the injectivity radius on M_τ. Let $d_\tau(w, z)$ be the distance between the points w and z on M_τ with respect to CY metric g_τ. We suppose that $|\tau| < \varepsilon$. Let δ be such that $\delta > \rho_\tau$. Then we define the function $k^d_t(w, z, \tau)$ as a C^∞ function on $M \times M$ using partition of unity by using the functions

$$
k^d_t(w, z, \tau) = \begin{cases}
\frac{1}{(4\pi t)^{n/2}} \exp \left(-\frac{d_\tau^2(w, z)}{4t} \right) & \text{if } d_\tau(w, z) < \rho_\tau \\
0 & \text{if } d_\tau(w, z) > \delta.
\end{cases}
$$

(46)

defined on the opened balls around countable points (w_k, z_k) on $M \times M$ with injectivity radius ρ_τ.

Let E be a holomorphic vector bundle on M with a Hermitian metric h on it and let $P_\tau(w, z)$ be the parallel transport of the bundle E along the minimal geodesic joining the point w and z with respect to natural connection on E induced by the metric h on E. It was proved in [3] on page 87 that we can represent the operator $\exp(-t\Delta_h)$ by an integral kernel $k_t(w, z, \tau)$, where

$$
k_t(w, z, \tau) = k^d_t(w, z, \tau)(P_\tau(w, z) + O(t))
$$

(47)

and $\Delta_h := \overline{\partial}_h \circ \overline{\partial}$.

Definition 29 We will define the kernel $k^\#_t(w, z, \tau)$ as the matrix operator defined by

$$
k^\#_t(w, z, \tau) = k^d_t(w, z, \tau)(P_\tau(w, z),
$$

(48)

where

$$
k_t(w, z, \tau) = k^\#_t(w, z, \tau) + \varepsilon_t(w, z, \tau).
$$

(49)

Let us define

$$
\Upsilon_t(\phi, \tau, z) := \int_{M} Tr \left(\left(k^d_{t/2}(w, z, \tau) \right)^* \circ (k^\#_{t/2}(w, z, \tau) \circ \phi) \right) vol(g)_w.
$$

(50)

Proposition 30 We have

$$
\lim_{t \to 0} \int_{M} Tr \left(\varepsilon_t(w, z, 0) \circ \phi \right) vol(g)_w = 0.
$$

(51)
Proof: The definition 29 of $k^\#_t(w, z, t)$ and the arguments from 6 on page 260 imply that $\varepsilon_t(w, z, 0)$ is bounded and tends to zero away from the diagonal, as t tends to zero. From here we deduce that

$$\lim_{t \to 0} \int_M Tr(\varepsilon_t(w, z, 0) \circ \phi) \, vol(g)_w = 0$$

uniformly in z. Proposition 30 is proved. ■

Lemma 31 Let E be a holomorphic vector bundle over M, let $\phi \in C^{\infty}(M, Hom(E, E))$, then $\lim_{t \to 0} \Upsilon_t(\phi, \tau, z)$ exists and

$$\lim_{t \to 0} \Upsilon_t(\phi, \tau, z) = Tr(\phi|_{E_z}).$$ (52)

Proof: We have:

$$\lim_{t \to 0} \Upsilon_t(\phi, 0, z) = \lim_{t \to 0} \int_M Tr \left(\left(k^{d}_{t/2}(w, z, \tau) \right)^* \circ \left(k^\#_{t/2}(w, z, \tau) \circ \phi \right) \right) \, vol(g)_w =$$

$$\lim_{t \to 0} \int_M Tr \left(\frac{1}{(4\pi t)^{\frac{3}{2}}} \exp \left(-\frac{d^2_0(w, z)}{4t} \right) \, P_0(w, z) \circ \phi \right) \, vol(g)_w. \quad (53)$$

Using the fact that

$$\lim_{t \to 0} \left(\frac{1}{(4\pi t)^{\frac{3}{2}}} \exp \left(-\frac{d^2_0(w, z)}{4t} \right) \right) = \delta(z - w), \quad (54)$$

$$\lim_{w \to z} P_0(w, z) = id \quad (55)$$

and the explicit formula 53 for $\Upsilon_t(\phi, \tau, z)$ we obtain that

$$\lim_{t \to 0} \Upsilon_t(\phi, \tau, z) = \int_M Tr(\delta(z - w) \circ \phi) \, vol(g)_w = Tr(\phi(z)|_{E_z}). \quad (56)$$

Lemma 31 is proved. ■

Theorem 32 Let $\phi \in C^{\infty} \left(M, \left(\Omega^0_M \right)^* \otimes \Omega^0_M \right)$ then the operator $\exp(-t\Delta_h) \circ \phi$ for $t > 0$ is of trace class and its trace is given by the formula:

$$Tr(\exp(-t\Delta_h) \circ \phi) = \int_M \Upsilon_t(\phi, \tau, z) \, vol(g)_z + \Phi(t), \quad (57)$$

where the short term asymptotic of $\Phi(t)$ is given by

$$\Phi(t) = \sum_{k=1}^{N_0>0} \frac{a_{-k}}{t^k} + O(t). \quad (58)$$
Proof: The proof of Theorem 32 is based on the facts that

\[
\exp(-t\Delta_h) \circ \phi = \exp\left(-\frac{t}{2}\Delta_h\right) \circ \exp\left(-\frac{t}{2}\Delta_h \circ \phi\right),
\]

and the operators \(\exp\left(-\frac{t}{2}\Delta_h\right)\) and \(\exp\left(-\frac{t}{2}\Delta_h \circ \phi\right)\) can be represented by \(C^\infty\) kernels \(k_1(z, w, t)\) and \(k_{\phi}(z, w, t)\).

As we pointed out the operators defined by the kernels \(k_1(z, w, t)\) and \(k_{\phi}(z, w, t)\) are Hilbert-Schmidt operators. Thus since the operator \(\exp(-t\Delta_h) \circ \phi\) is a product of two Hilbert-Schmidt operators it is of trace class. On the other hand the definition of the trace of the operator \(\exp(-t\Delta_h) \circ \phi\) implies that

\[
Tr(\exp(-t\Delta_h) \circ \phi) = \left\langle \exp\left(-\frac{t}{2}\Delta_h\right)^*, \exp\left(-\frac{t}{2}\Delta_h \circ \phi\right) \right\rangle = \int_{(z, w) \in M \times M} Tr((k_1(z, w, t))^* \circ k_{\phi}(z, w, t)) \text{vol}(g_{z, w}).
\]

From the definitions of the function \(\Upsilon_t(\phi, \tau, z)\) and the operator \(\varepsilon_t(w, z, \tau)\) we deduce that

\[
Tr(\exp(-t\Delta_h) \circ \phi) = \left\langle (k_{t/2}(w, z, \tau))^* \circ (k_{t/2}(w, z, \tau) \circ \phi) \right\rangle
= \int_M \left(\int_M \left(\int_M Tr((\varepsilon_{t/2}(w, z, \tau))^* \circ k^{\#}_{t/2}(w, z, \tau) \circ \phi) \right) vol(g)_\omega \right) vol(g)_z =
\int_M \Upsilon_t(\phi, \tau, z) vol(g)_z +
\int_M \left(\int_M Tr((\varepsilon_{t/2}(w, z, \tau))^* \circ k^{\#}_{t/2}(w, z, \tau) \circ \phi) \right) vol(g)_\omega vol(g)_z =
\int_M \left(\int_M \left(\int_M Tr(k^{\#}_{t/2}(w, z, \tau) \circ \varepsilon_{t/2}(w, z, \tau) \circ \phi) \right) vol(g)_\omega \right) vol(g)_z.
\]

Lemma 33 Let

\[
\Phi_1(t) := \int_M \left(\int_M Tr((\varepsilon_{t/2}(w, z, \tau))^* \circ k^{\#}_{t/2}(w, z, \tau) \circ \phi) \right) vol(g)_\omega vol(g)_z
\]

and

\[
\Phi_2(t) := \int_M \left(\int_M Tr(k^{\#}_{t/2}(w, z, \tau) \circ \varepsilon_{t/2}(w, z, \tau) \circ \phi) \right) vol(g)_\omega vol(g)_z
\]
then we have

$$\Phi_1(t) = \sum_{k=1}^{N_0>0} \frac{b_{-k}}{t^k} + O(t) \quad \text{and} \quad \Phi_2(t) = \sum_{k=1}^{N_0>0} \frac{c_{-k}}{t^k} + O(t).$$

(63)

Proof: Let

$$k_{t/2}^*(w, z, \tau) = \sum_{k=1}^{N_0>0} \frac{B_{-k}(w, z)}{t^k} + B_0(w, z) + \sum_{k=1}^{N_0>0} B_k(w, z)t^k$$

(64)

be the short term asymptotic expansion of the operator \(k_{t/2}^*(w, z, \tau)\). We know that

$$\lim_{t \to 0} \varepsilon_t(w, z, \tau) = 0$$

(65)

away from the diagonal \(\Delta \subset \mathcal{M} \times \mathcal{M}\). Combining (64) and (65) with the definitions of operators \(k_{t/2}^*(w, z, \tau) \circ \varepsilon_{t/2}(w, z, \tau) \circ \phi\) and \((\varepsilon_{t/2}(w, z, \tau))^* \circ k_{t/2}^*(w, z, \tau) \circ \phi\) we obtain that

$$k_{t/2}^*(w, z, \tau) \circ \varepsilon_{t/2}(w, z, \tau) \circ \phi = \sum_{k=1}^{N_0>0} \frac{B_{-k}(w, z) \circ \varepsilon_{t/2}(w, z, \tau) \circ \phi}{t^k} + B_0(w, z) \circ \varepsilon_{t/2}(w, z, \tau) \circ \phi + O(t)$$

(66)

and

$$(\varepsilon_{t/2}(w, z, \tau))^* \circ k_{t/2}^*(w, z, \tau) \circ \phi = \sum_{k=1}^{N_0>0} \frac{(\varepsilon_{t/2}(w, z, \tau))^* \circ B_{-k}(w, z)}{t^k} + (\varepsilon_{t/2}(w, z, \tau))^* \circ B_0(w, z) + O(t).$$

(67)

Combining (66), (67) with (65) we get that

$$\lim_{t \to 0} B_0(w, z) \circ \varepsilon_{t/2}(w, z, \tau) \circ \phi = \lim_{t \to 0} (\varepsilon_{t/2}(w, z, \tau))^* \circ B_0(w, z) = 0$$

away from the diagonal. From here we obtain that

$$\lim_{t \to 0} \int_{\mathcal{M}} Tr \left(B_0(w, z) \circ \varepsilon_{t/2}(w, z, \tau) \circ \phi \right) vol(g) = 0$$

and

$$\lim_{t \to 0} \int_{\mathcal{M}} Tr \left((\varepsilon_{t/2}(w, z, \tau))^* \circ B_0(w, z) \right) vol(g) = 0.$$

Lemma 33 is proved. ■

Theorem 32 follows directly from Lemma 33 and (61). ■

23
Theorem 34 We have the following expression for $\beta_0(\phi)$ from (45):

$$\beta_0(\phi) = \lim_{t \to 0} \int_M Y_t(\phi, \tau, z) \text{vol}(g) = \int_M Tr(\phi) \text{vol}(g).$$ \hspace{1cm} (68)

Proof: Theorem 34 follows directly from Theorem 32, Lemma 31 and the definition of $Y_t(\phi, \tau, z)$. \[\blacksquare\]

5.4 Explicit Formulas

Theorem 35 Let $F'(q, \phi \circ \psi)$ be given by the formula (42). Then for $t > 0$ and $q \geq 1$ the following equality of the traces of the respective operators holds

$$Tr\left(\exp\left(-t\Delta_{q-1}^\phi \circ \overline{\partial}^{-1} \circ F'(q, \phi \circ \psi) \circ \overline{\partial}\right)\right) = Tr\left(\exp\left(-t\Delta_{q-1}^\phi \circ (F'(q, \phi \circ \psi))\right)\right).$$ \hspace{1cm} (69)

Proof: From Proposition 2.45 on page 96 in [3] it follows directly that the operators $\exp(-t\Delta_{q-1}^\phi)$ have smooth kernels for $q \geq 1$. We know from Proposition 2.45 in [3] that we have the following formula:

$$Tr(DK) = Tr(DA)$$ \hspace{1cm} (70)

where D is a differential operator and A is an operator with a smooth kernel. By using (70) and the fact that the operators Δ_q and $\overline{\partial}$ commute we derive Theorem 35. Theorem 35 is proved. \[\blacksquare\]

Remark 36 From Definition 24 of the operator $F'(q, \phi_i \circ \phi_j)$ and Remark 26 we know that it can be represented pointwise by a matrix which we will denote by $F'(q, (\phi_i \circ \phi_j))$. Since $k_{ij}^\#(z, w, 0)$ is also a matrix of the same dimension as the operator $F'(q, \phi_i \circ \phi_j)$ we get that the operator $k_{ij}^\#(z, w, 0) \circ F'(q, \phi_i \circ \phi_j)$ will be represented pointwise by the product of finite dimensional matrices. So the integral

$$\int_M \text{Tr}\left(\left(\left(\left(k_{ij/2}^\#(z, w, 0)\right)^* \circ k_{ij/2}^\#(z, w, 0) \circ F'(q, \phi_i \circ \phi_j)\right)^* \circ k_{ij/2}^\#(z, w, 0) \circ F'(q, \phi_i \circ \phi_j)\right) \text{vol}(g)\right)$$

makes sense for $t > 0$.

Theorem 37 Let

$$Tr\left(k_{ij}(w, z, \tau) \circ F'(q, (\phi_i \circ \phi_j))\right) =$$

24
be the short term asymptotic. Then the following limit
\[
\lim_{t \to 0} \int_M \left(\int_M \text{Tr} \left(\left(k_{t/2}^\#(z, w, 0) \right)^* \circ k_{t/2}^\#(z, w, 0) \circ \mathcal{F}'(q, \phi_i \circ \phi_j) \right) \text{vol}(g)_w \right) \text{vol}(g) \right)
\]
exists and
\[
\beta_0(\phi_i \circ \phi_j) = \lim_{t \to 0} \int_M \left(\int_M \text{Tr} \left(\left(k_{t/2}^\#(z, w, 0) \right)^* \circ k_{t/2}^\#(z, w, 0) \circ \mathcal{F}'(q, \phi_i \circ \phi_j) \right) \text{vol}(g)_w \right) \text{vol}(g) = \int_M \text{Tr} \left(\mathcal{F}'(q, \phi_i \circ \phi_j) \right) \text{vol}(g) < \infty. \quad (72)
\]

Proof: Formulas (57) and (58) in Theorem 32 imply that
\[
\beta_0(\phi_i \circ \phi_j) = \lim_{t \to 0} \int_M \Upsilon(t, \mathcal{F}'(q, \phi_i \circ \phi_j), \tau, z) \text{vol}(g)_z
\]
Theorem 34 imply that
\[
\beta_0(\phi_i \circ \phi_j) = \lim_{t \to 0} \int_M \Upsilon(t, \mathcal{F}'(q, \phi_i \circ \phi_j), \tau, z) \text{vol}(g)_z = \text{Tr} \left(\mathcal{F}'(q, \phi_i \circ \phi_j) \right) |_z. \quad (73)
\]
Formula (73) implies formula (72). Theorem 37 is proved. ■

6 The Variational Formulas

6.1 Preliminary Formulas

Lemma 38 The following formulas are true for $1 \leq q \leq n$:
\[
\frac{\partial}{\partial \tau^i} \left(\partial^j \right) |_{\tau=0} = -F(q, \phi_i) \circ \partial \quad (74)
\]
and
\[
\frac{\partial}{\partial \tau^i} \left(\overline{\partial}^j \right) |_{\tau=0} = -F(q, \overline{\phi}_i) \circ \overline{\partial}. \quad (75)
\]

Proof: From the expression of $\overline{\partial}$, given in Definition 6,
\[
\overline{\partial} = \overline{\partial} \frac{\partial}{\partial z^j} = \sum_{m=1}^N \left(\sum_{k=1}^n (\phi_m)_k^j \frac{\partial}{\partial z^k} \right) \tau^m + O(\tau^2),
\]
we conclude that

\[
\frac{\partial}{\partial \tau^i} \left(\frac{\partial}{\partial \tau} \right) |_{\tau=0} = - \sum_{k=1}^{N} (\phi_i)'_{jk} \frac{\partial}{\partial z^k}.
\]

Formula \(76\) is proved in the same way as formula \(76\). Lemma \(38\) follows directly from Definition \(25\) of the linear operators \(F'(q, \phi)\) and \(F''(q, \phi)\). ■

Corollary 39 The following formulas are true for \(1 \leq q \leq n\):

\[
\left(\frac{\partial}{\partial \tau^j} \left(\Delta_{\tau, q}^* \right) \right) |_{\text{Im } \overline{\partial}} |_{\tau=0} = - \Delta_{0, q}^* \circ \partial_0^{-1} \circ F(q, \phi_i) \circ \partial_0,
\]

and

\[
\left(\frac{\partial}{\partial \tau^j} \left(\Delta_{\tau, q}^* \right) \right) |_{\text{Im } \overline{\partial}} |_{\tau=0} = - \Delta_{0, q}^* \circ \partial_0^{-1} \circ F'(q + 1, \overline{\phi}) \circ \partial_0.
\]

Proof: From the standard facts of Kahler geometry we obtain that on \(\text{Im } \overline{\partial}\) in \(\Omega_{\mathbb{M}}^{0, q}\) we have

\[
\Delta_{\tau, q} |_{\text{Im } \overline{\partial}} = \Lambda_{\tau} \circ \partial_\tau \circ \overline{\partial}_{\tau} = \Lambda_{\tau} \circ \overline{\partial}_{\tau} \circ \partial_\tau.
\]

We know from \(74\) and \(74\) that

\[
\frac{\partial}{\partial \tau^j} \left(\overline{\partial}_{\tau} \right) |_{\tau=0} = -F'(q + 1, \phi_j) \circ \partial_0, \quad \frac{\partial}{\partial \tau^j} (\Lambda_\tau) = \frac{\partial}{\partial \tau^j} (\partial_\tau) = 0.
\]

Combining \(79\), \(78\) we obtain:

\[
\frac{\partial}{\partial \tau^j} \left(\Delta_{\tau, q}^* \right) |_{\tau=0} = \frac{\partial}{\partial \tau^j} (\Lambda_\tau \circ \overline{\partial}_{\tau} \circ \partial_\tau) |_{\tau=0} = \frac{\partial}{\partial \tau^j} (\overline{\partial}_{\tau} \circ \partial_\tau) |_{\tau=0} = -\overline{\partial}_{0} \circ F'(q + 1, \phi_j) \circ \partial_0.
\]

Thus on \(\text{Im } \overline{\partial}\) we have

\[
\partial_\tau^* = \Delta_{\tau, q}^* \circ \overline{\partial}_{\tau}^{-1}.
\]

Substituting \(81\) in \(80\) we obtain the first formula in \(77\). In the same manner we obtain the second formula in \(77\). Corollary \(39\) is proved. ■

6.2 The Computation of the Antiholomorphic Derivative of \(\zeta''_{\tau, q-1}(s)\)

First we will compute the antiholomorphic derivative of \(\zeta''_{\tau, q}(s)\).
Theorem 40 The following formula is true for $t > 0$:

\[
\frac{\partial}{\partial \tau} \left(\zeta_{q,\tau}(s) \right) |_{\tau=0} = \frac{1}{\Gamma(s)} \int_0^\infty \text{Tr} \left(\exp(-t(\Delta_{0,q}) \circ \partial_0^{-1} \circ \mathcal{F}'(q+1, \phi_i) \circ \partial_0) \right) t^s dt.
\]

Proof: For the proof of Theorem 40 we will need the following Lemma:

Lemma 41 The following formula is true for $t > 0$ and $0 < q < n$:

\[
\frac{\partial}{\partial \tau} \left(\text{Tr}(\exp(-t\Delta_{0,q})) \right) |_{\tau=0} = t \text{Tr} \left(\exp\left(-t\Delta_{\tau,q} \circ \partial_0^{-1} \circ \mathcal{F}'(q+1, \phi_i) \circ \partial_0\right) \right) |_{\tau=0}.
\]

(82)

Proof: Direct computations based on Proposition 9.38. on page 304 of the book [6] show that:

\[
\frac{\partial}{\partial \tau} \left(\text{Tr}(\exp(-t\Delta_{0,q})) \right) |_{\tau=0} = -t \left(\exp(-t\Delta_{0,q}) \circ \frac{\partial}{\partial \tau} \left(\Delta_{\tau,q} \right) \right) |_{\tau=0}.
\]

(83)

See also [2] page 98 Theorem 2.48. Formulas (74) and (75) in Lemma 38 imply that

\[
\frac{\partial}{\partial \tau} (\partial_\tau) = -F'(q+1, \phi_i(\tau)) \circ \partial.
\]

(84)

and on $\text{Im} \partial^*$ we have

\[
\frac{\partial}{\partial \tau^*} (\partial^*_\tau) = \frac{\partial}{\partial \tau^*} (\Lambda \circ \partial_\tau) = \left(\frac{\partial}{\partial \tau^*} \Lambda \right) \circ \partial_\tau + \Lambda \circ \frac{\partial}{\partial \tau^*} (\partial_\tau) = 0.
\]

(85)

The last equality follows from Corollary. [3] and [13] On Kähler manifolds we know that $\partial^* \circ \partial + \partial \circ \partial^* = \partial^* + \partial + \partial^*$. So we deduce that

\[
\Delta_{\tau,q}^\tau = (\partial^*_\tau \circ \partial_\tau + \partial_\tau \circ \partial^*_\tau) |_{\text{Im} \partial_\tau} = \partial^*_\tau \circ \partial_\tau |_{\text{Im} \partial_\tau}.
\]

Thus from formulas (84) and (85) it follows:

\[
\frac{\partial}{\partial \tau^*} \left(\Delta_{\tau,q} \right) = \left(\partial^*_\tau \circ \frac{\partial}{\partial \tau^*} (\partial_\tau) \right) = -\partial^*_\tau \circ F'(q+1, \phi_i(\tau)) \circ \partial.
\]

(86)

By substituting in (83) the expression from (86) we obtain:

\[
\frac{\partial}{\partial \tau} \left(\text{Tr}(\exp(-t\Delta_{\tau,q})) \right) |_{\tau=0} = t \text{Tr} \left(\exp\left(-t\Delta_{q} \circ \partial_0^{-1} \circ \mathcal{F}'(q+1, \phi_i) \circ \partial_0\right) \right).
\]

(87)
The operator ∂^*_{τ} is well defined on the space of $C^\infty(0,q)$ forms on M_τ. So the following formula is true on $\text{Im} \partial^*_{\tau}$:

$$\partial^*_{\tau} = (\triangle^*_{\tau,q}) \circ (\partial_{\tau})^{-1}. \quad (88)$$

Substituting the expression for ∂^*_{τ} in formula (88) in (87), we deduce formula (82). Lemma 41 is proved. ■

The end of the proof of Theorem 40: The definition of the zeta function implies that

$$\frac{\partial}{\partial \tau^i} (\zeta_{\Delta^*_{\tau,q}} (s)) \bigg|_{\tau=0} = \frac{\partial}{\partial \tau^i} \left(\frac{1}{\Gamma(s)} \int_0^\infty Tr \left(\exp(-t(\Delta^*_{\tau,q})) t^{s-1} dt \right) \right) \bigg|_{\tau=0} =$$

$$\frac{1}{\Gamma(s)} \int_0^\infty \left(\frac{\partial}{\partial \tau^i} (Tr \exp(-t(\Delta^*_{\tau,q}))) \right) \bigg|_{\tau=0} t^{s-1} dt. \quad (89)$$

Substituting in (89) the expression for $\frac{\partial}{\partial \tau^i} (Tr \exp(-t(\Delta^*_{\tau,q})))$ given by (82) we obtain:

$$\frac{\partial}{\partial \tau^i} (\zeta_{\Delta^*_{\tau,q}} (s)) \bigg|_{\tau=0} =$$

$$\frac{1}{\Gamma(s)} \int_0^\infty Tr \left(\exp(-t(\Delta^*_{0,q})) \circ (\Delta^*_{0,q}) \circ \partial^{-1} \circ F'(q+1, \phi_i) \circ \partial \right) t^{s} dt. \quad (90)$$

Theorem 40 is proved. ■

6.3 The Computation of the Hessian of $\zeta_{\tau,q}''(s)$

Theorem 42 The following formula holds:

$$\frac{\partial^2}{\partial \tau^j \partial \tau^i} (\zeta_{\tau,q}''(s)) \bigg|_{\tau=0} =$$

$$\frac{(1-s)}{\Gamma(s)} \int_0^\infty Tr \left(\left(\exp(-t(\Delta^*_{0,q+1})) \circ F'(q+1, \phi_j \circ \phi_i) \right) t^{s-1} dt. \quad (91)$$

Proof: The facts that the operators

$$\frac{\partial}{\partial \tau^i} (\partial_{\tau}) = (-\phi_i + O(\tau)) \circ \partial_0$$

depend holomorphically on τ and the operator ∂_{τ}^{-1} depends antiholomorphically imply that the operators $\partial_{\tau}^{-1} \circ F'(q+1, \phi_i) \circ \partial_0$ depend antiholomorphically on...
the coordinates $\tau = (\tau^1, ..., \tau^N)$. By using the explicit formula (90) for the
antiholomorphic derivative of $\zeta_{\tau,q}(s)$ and that

$$\frac{\partial}{\partial \tau_j} \left(\partial^{-1}_\tau \circ F'(q + 1, \bar{\phi}_i) \circ \partial_0 \right) = 0$$

we derive

$$\frac{\partial^2}{\partial \tau^j \partial \tau^l} (\zeta_{\tau,q}(s)) =$$

$$\frac{1}{\Gamma(s)} \int_0^\infty \text{Tr} \left(\left(\frac{\partial}{\partial \tau^j} \exp(-t \left(\Delta^\tau_{\tau,q} \right)) \circ \left(\Delta^\tau_{\tau,q} \right) \circ \partial^{-1}_\tau \circ F'(q + 1, \bar{\phi}_i) \circ \partial_0 \right) t^s dt \right) +$$

$$\frac{1}{\Gamma(s)} \int_0^\infty \text{Tr} \left(\left(\exp(-t \left(\Delta^\tau_{\tau,q} \right)) \circ \frac{\partial}{\partial \tau^j} \left(\Delta^\tau_{\tau,q} \right) \circ \partial^{-1}_0 \circ F'(q + 1, \bar{\phi}_i) \circ \partial_0 \right) t^s dt \right).$$

(92)

Lemma 43 We have the following expression:

$$\frac{1}{\Gamma(s)} \int_0^\infty \text{Tr} \left(\left(\frac{\partial}{\partial \tau^j} \left(\exp(-t \left(\Delta^\tau_{\tau,q} \right)) \right) \right) \circ \left(\Delta^\tau_{\tau,q} \right) \circ \partial^{-1}_\tau \circ F'(q + 1, \bar{\phi}_i) \circ \partial_0 \right) t^s dt =$$

$$\frac{-s}{\Gamma(s)} \int_0^\infty \text{Tr} \left(\left(\exp(-t \left(\Delta^\tau_{\tau,q} \right)) \circ \frac{\partial}{\partial \tau^j} \left(\Delta^\tau_{\tau,q} \right) \circ \partial^{-1}_0 \circ F'(q + 1, \bar{\phi}_i) \circ \partial_0 \right) t^s dt \right).$$

(93)

Proof: Direct computations show that

$$\frac{1}{\Gamma(s)} \left(\int_0^\infty \text{Tr} \left(\left(\frac{\partial}{\partial \tau^j} \left(\exp(-t \left(\Delta^\tau_{\tau,q} \right)) \right) \right) \circ \left(\Delta^\tau_{\tau,q} \right) \circ \partial^{-1}_\tau \circ F'(q + 1, \bar{\phi}_i) \circ \partial_0 \right) t^s dt \right) \bigg|_{\tau = 0} =$$

$$\frac{-1}{\Gamma(s)} \int_0^\infty \left(\frac{d}{dt} \text{Tr} \left(\left(\frac{\partial}{\partial \tau^j} \left(\exp(-t \left(\Delta^\tau_{\tau,q} \right)) \right) \bigg|_{\tau = 0} \circ \partial^{-1}_0 \circ F'(q + 1, \bar{\phi}_i) \circ \partial_0 \right) \right) t^s dt$$

(94)

By integrating by parts the right hand side of formula (94) we deduce that:

$$\frac{-1}{\Gamma(s)} \int_0^\infty \left(\frac{d}{dt} \text{Tr} \left(\left(\frac{\partial}{\partial \tau^j} \left(\exp(-t \left(\Delta^\tau_{\tau,q} \right)) \right) \bigg|_{\tau = 0} \circ \partial^{-1}_0 \circ F'(q + 1, \bar{\phi}_i) \circ \partial_0 \right) \right) t^s dt =$$

$$\frac{s}{\Gamma(s)} \int_0^\infty \text{Tr} \left(\left(\frac{\partial}{\partial \tau^j} \left(\exp(-t \left(\Delta^\tau_{\tau,q} \right)) \right) \bigg|_{\tau = 0} \circ \partial^{-1}_0 \circ F'(q + 1, \bar{\phi}_i) \circ \partial_0 \right) t^{s-1} dt.$$
Direct computations of the right hand side of (95) show that:

\[
\frac{s}{\Gamma(s)} \int_{0}^{\infty} Tr \left(\left(\frac{\partial}{\partial \tau_j} \left(\exp(-t\Delta^\tau_{\tau,q}) \right) \middle|_{\tau=0} \circ \partial_0^{-1} \circ F'(q + 1, \overline{\phi_1}) \circ \overline{\partial_0} \right) t^{s-1} dt =
\]

\[
\frac{-s}{\Gamma(s)} \int_{0}^{\infty} Tr \left(\left(\exp(-t\Delta^\tau_{\tau,q}) \circ \frac{\partial}{\partial \tau_j} \left(\Delta^\tau_{\tau,q} \right) \middle|_{\tau=0} \circ \partial_0^{-1} \circ F'(q + 1, \overline{\phi_1}) \circ \overline{\partial_0} \right) t^{s} dt.
\]

Formula (93) is proved. ■

Substituting in (92) the expression from (93) for

\[
\frac{1}{\Gamma(s)} \int_{0}^{\infty} Tr \left(\left(\frac{\partial}{\partial \tau_j} \left(\exp(-t\Delta^\tau_{\tau,q}) \right) \right) \circ \left(\Delta^\tau_{\tau,q} \right) \circ \partial_0^{-1} \circ F'(q + 1, \overline{\phi_i}) \circ \overline{\partial_0} \right) t^{s} dt
\]

we get:

\[
\frac{\partial^2}{\partial \tau_j \partial \tau_i} \left(\zeta_{q-1,\tau}(s) \right) \mid_{\tau=0} =
\]

\[
\frac{1 - s}{\Gamma(s)} \int_{0}^{\infty} Tr \left(\left(\exp(-t\Delta^\tau_{\tau,q}) \right) \circ \frac{\partial}{\partial \tau_j} \left(\Delta^\tau_{\tau,q} \right) \mid_{\tau=0} \circ \partial_0^{-1} \circ F'(q + 1, \overline{\phi_i}) \circ \overline{\partial_0} \right) t^{s} dt.
\]

Lemma 44

\[
\int_{0}^{\infty} Tr \left(\left(\exp(-t\Delta^\tau_{\tau,q}) \right) \circ \frac{\partial}{\partial \tau_j} \left(\Delta^\tau_{\tau,q} \right) \mid_{\tau=0} \circ \partial_0^{-1} \circ F'(q + 1, \overline{\phi_i}) \circ \overline{\partial_0} \right) t^{s} dt =
\]

\[
s \int_{0}^{\infty} Tr \left(\left(\exp(-t\Delta^\tau_{\tau,q}) \right) \mid_{\tau=0} \circ (\partial_0)^{-1} \circ F'(q + 1, \overline{\phi_i}) \circ \overline{\partial_0} \right) t^{s-1} dt.
\]

Proof: Substituting the expression of (77) for

\[
\frac{\partial}{\partial \tau_j} \left(\Delta^\tau_{\tau,q} \right) \mid_{\tau=0} = -\Delta^\tau_{a,q} \circ (\partial_0)^{-1} \circ F'(q + 1, \overline{\phi_j}) \circ \overline{\partial_0}
\]

in the expression of

\[
\int_{0}^{\infty} Tr \left(\left(\exp(-t\Delta^\tau_{\tau,q}) \right) \circ \frac{\partial}{\partial \tau_j} \left(\Delta^\tau_{\tau,q} \right) \mid_{\tau=0} \circ \partial_0^{-1} \circ F'(q + 1, \overline{\phi_i}) \circ \overline{\partial_0} \right) t^{s} dt
\]
we obtain:
\[
\int_0^\infty Tr \left(\left(\exp \left(-t \left(\Delta_{\tau,q} \right) \right) \right) \circ \frac{\partial}{\partial \tau} \left(\Delta_{\tau,q} \right) \right)_{\tau=0} \circ \partial_0^{-1} \circ F' (q + 1, \phi_i) \circ \partial_0 t^s \, dt = \\
- \int_0^\infty Tr \left(\left(\exp \left(-t \left(\Delta_{0,q} \right) \right) \right) \circ \Delta_{0,q} \circ \partial_0^{-1} \circ F' (q + 1, \phi_i) \circ F' (q + 1, \phi_i) \circ \partial_0 t^s \, dt. \right)
\]

Simple observations show that
\[
\int_0^\infty Tr \left(\left(\exp \left(-t \left(\Delta_{0,q} \right) \right) \right) \circ \Delta_{0,q} \circ \partial_0^{-1} \circ F' (q + 1, \phi_i) \circ F' (q + 1, \phi_i) \circ \partial_0 t^s \, dt = \\
- \int_0^\infty Tr \left(\frac{d}{dt} \exp \left(-t \left(\Delta_{0,q} \right) \right) \partial_0^{-1} \circ F' (q + 1, \phi_i) \circ F' (q + 1, \phi_i) \circ \partial_0 t^s \, dt. \right)
\]

By integrating by parts the right hand side of (99) we obtain:
\[
\int_0^\infty Tr \left(\frac{d}{dt} \exp \left(-t \left(\Delta_{0,q} \right) \right) \partial_0^{-1} \circ F' (q + 1, \phi_i) \circ F' (q + 1, \phi_i) \circ \partial_0 t^s \, dt = \\
-s \int_0^\infty Tr \left(\exp \left(-t \left(\Delta_{0,q} \right) \right) \partial_0^{-1} \circ F' (q + 1, \phi_i) \circ F' (q + 1, \phi_i) \circ \partial_0 t^s \, dt. \right)
\]

Thus we derive formula (97), i.e.
\[
\int_0^\infty Tr \left(\frac{d}{dt} \exp \left(-t \left(\Delta_{0,q} \right) \right) \partial_0^{-1} \circ F' (q + 1, \phi_i) \circ F' (q + 1, \phi_i) \circ \partial_0 t^s \, dt = \\
s \int_0^\infty Tr \left(\exp \left(-t \left(\Delta_{0,q} \right) \right) \partial_0^{-1} \circ F' (q + 1, \phi_i) \circ F' (q + 1, \phi_i) \circ \partial_0 t^s \, dt. \right)
\]

Lemma 44 is proved. ■

Substituting the expression of (97) in the expression (96) we get the following equality:
\[
\frac{\partial^2}{\partial \tau^2 \partial t^t} \left(\zeta'_{\tau,s}(s) \right) \right|_{\tau=0} = \\
\frac{(1-s)}{\Gamma(s)} \int_0^\infty Tr \left(\left(\exp \left(-t \left(\Delta_{0,q} \right) \right) \right) \circ \partial_0^{-1} \circ F' (q + 1, \phi_j \circ \phi_i) \circ \partial_0 t^s \, dt. \right)
\]

Applying Theorem 35 we deduce Theorem 42. ■
6.4 The Computations of the Hessian of $\log \det \Delta_{\tau,q}$

Theorem 45 The following formula is true:

$$\frac{\partial^2}{\partial \tau^j \partial \tau^i} (\log \det \Delta_{\tau,q}^\tau) |_{\tau=0} =$$

$$-\lim_{t \to 0} \int_M \left(\frac{\partial^2}{\partial \tau^j \partial \tau^i} \right) \left(\left(\frac{\partial^2}{\partial \tau^j \partial \tau^i} \right) \left(\frac{\partial^2}{\partial \tau^j \partial \tau^i} \right) \right) |_{\tau=0} =$$

$$\int_M \left(\frac{\partial^2}{\partial \tau^j \partial \tau^i} \right) \left(\left(\frac{\partial^2}{\partial \tau^j \partial \tau^i} \right) \right) |_{\tau=0} s + O(s^2).$$

Proof: $\zeta_{\tau,q}^\tau(s)$ is obtained from the meromorphic continuation of

$$\frac{1}{\Gamma(s)} \int_0^\infty \left(\frac{\partial^2}{\partial \tau^j \partial \tau^i} \right) \left(\left(\frac{\partial^2}{\partial \tau^j \partial \tau^i} \right) \right) |_{\tau=0} s + O(s^2).$$

Thus from the definition of the regularized determinant

$$\log \det(\Delta_{\tau,q}^\tau) = \left(\frac{d}{ds} (-\zeta_{\tau,q}^\tau(s)) \right) |_{s=0}$$

we see that

$$\frac{\partial^2}{\partial \tau^j \partial \tau^i} (\log \det \Delta_{\tau,q}^\tau) |_{\tau=0} = \frac{d}{ds} \left(\left(\frac{\partial^2}{\partial \tau^j \partial \tau^i} \right) \left(\left(\frac{\partial^2}{\partial \tau^j \partial \tau^i} \right) \right) \right) |_{s=0} = -\alpha_1.$$

Combining formula (101)
with the short term expansion:

\[
Tr \left(\left(\exp(-t(\Delta_{0,q+1}')) \circ F' (q + 1, \phi_j \circ \bar{\phi}_i) \right) = \sum_{k=-n}^{1} \frac{\nu_k}{t^k} + \nu_0 + \psi(t) \quad (104)
\]

where

\[
\psi(t) = Tr \left(\left(\exp(-t(\Delta_{0,q+1}')) \circ F' (q + 1, \phi_j \circ \bar{\phi}_i) \right) - \sum_{k=-n}^{1} \frac{\nu_k}{t^k} + \nu_0
\]

we obtain:

\[
\frac{\partial^2}{\partial \tau_j \partial \tau_i} \left(\zeta_{\tau,q} (s) \right) |_{\tau=0} =
\]

\[
\frac{s}{\Gamma(s)} \left(\int_{0}^{1} \left(\sum_{k=-n}^{1} \frac{\nu_k}{t^k} \right) t^{s-1} dt + \nu_0 \int_{0}^{1} t^{s-1} dt + \int_{0}^{1} \psi(t) t^{s-1} dt \right) +
\]

\[
- \frac{s^2}{\Gamma(s)} \left(\int_{0}^{\infty} Tr \left(\left(\exp(-t(\Delta_{0,q+1}')) \circ F' (q + 1, \phi_j \circ \bar{\phi}_i) \right) t^{s-1} dt \right) -
\]

\[
- \frac{s^2}{\Gamma(s)} \left(\int_{0}^{\infty} \left(\sum_{k=-n}^{1} \frac{\nu_k}{t^k} \right) t^{s-1} dt + \nu_0 \int_{0}^{1} t^{s-1} dt + \int_{0}^{1} \psi(t) t^{s-1} dt \right) -
\]

\[
- \frac{s^2}{\Gamma(s)} \left(\int_{0}^{\infty} Tr \left(\left(\exp(-t(\Delta_{0,q+1}')) \circ F' (q + 1, \phi_j \circ \bar{\phi}_i) \right) t^{s-1} dt \right) \right) . \quad (105)
\]

By using formula (105) we will prove the following Lemma:

Lemma 46 We have the following formula:

\[
\frac{\partial^2}{\partial \tau_j \partial \tau_i} (\log \det \Delta_{\tau,q}) |_{\tau=0} = - \int_{M} Tr F' (q + 1, \phi_i \circ \overline{\phi}_j) vol(g) = -\alpha_1.
\]

Proof: Lemma 9.34 on page 300 of [3] or direct computations show that for \(|s| < \varepsilon\) we have the following identity:

\[
\frac{1}{\Gamma(s)} \int_{0}^{\infty} Tr \left(\left(\exp(-t(\Delta_{0,q}')) \circ F' (q + 1, \phi_j \circ \overline{\phi}_i) \right) t^{s-1} dt =
\]

\[
\frac{1}{\Gamma(s)} \left(\int \left(\sum_{k=-n}^{1} \frac{\nu_k}{t^k} \right) t^{s-1} dt + \nu_0 \int_{0}^{1} t^{s-1} dt + \int_{0}^{1} \psi(t) t^{s-1} dt \right) +
\]

33
\[+ \frac{1}{s} \int_1^\infty \text{Tr} \left(\left(\exp(-t(\Delta'_{\theta,q})) \circ F'(q + 1, \phi_j \circ \phi_i) \right) t^{s-1} dt = \frac{\nu_0}{s} + \kappa + O(s). \]

Combining the expression in (106) with the following standard fact \(\frac{\nu}{s} = s^2 + O(s^3) \) we obtain from formulas (105) and (106) that for \(|s| < \varepsilon \)

\[\frac{\partial^2}{\partial \tau_j \partial \tau_i} \left(\zeta_{\tau,q}(s) \right) |_{\tau=0} = \nu_0 + O(s^2). \]

(107)

Thus according to (103) and (107)

\[\frac{d}{ds} \left(\frac{\partial^2}{\partial \tau_j \partial \tau_i} \left(\zeta_{\tau,q}(s) \right) \right) |_{s=0} = \nu_0 = \alpha_1. \]

(108)

Applying Theorem 34 to formula (108) we deduce that

\[\alpha_1 = \nu_0 = \int_M \text{Tr} \left(F'(q + 1, \phi_i \circ \phi_j) \right) \text{vol}(g). \]

Lemma 46 is proved. ■

Lemma 46 implies directly Theorem 45. ■

6.5 Some Applications of the Variational Formulas

Theorem 47 The following identity holds \(\frac{dd^c}{dd^c} (\log \det \Delta_{\tau,1}) = \frac{dd^c}{dd^c} \left(\log \det \Delta'_{\tau,1} \det \Delta''_{\tau,1} \right) = \frac{1}{2} \text{Im} W.P. \)

Proof: The proof of Theorem 47 is based on the following formulas which holds for Kähler manifolds:

\[\Delta_{\theta} = \Delta_{\tau}, \partial^* = -* \overline{\partial} * \text{ and } \overline{\partial}^* = -* \partial *, \]

(109)

where * is the Hodge star operator. See [20] page 95. On CY manifold we have the following duality: \(* : \Omega^0,\theta_M \cong \Omega^0,n-\theta^* \) induced by the Hodge star operator * of a CY metric and the holomorphic n form. Using this duality direct check shows that on CY manifolds we have

\[* (\text{Im} \overline{\partial} q) = \text{Im} \left(\overline{\partial}_{n-q} \right) \text{ and } * (\text{Im} \overline{\partial} q) = \text{Im} \left(\partial_{n-q} \right). \]

(110)

Formulas (109) and (110) imply that we have \(\det \Delta'_{\tau,q} = \det \Delta'_{\theta,q} = \det \Delta''_{\theta,n-q} = \det \Delta'_{\partial,n-q} \).
Lemma 48 We have the following relations between the operators on a CY manifold

\[\text{Tr} \left(\exp(-t\Delta_{\tau,1}) \circ F'(1, \phi_i \circ \bar{\phi}_j) \right) = \text{Tr} \left(\exp(-t\Delta_{\tau,1}) \circ F'(n-1, \phi_i \circ \bar{\phi}_j) \right) \]

and

\[\text{Tr} \left(\exp(-t\Delta_{\tau,1}) \circ F'(1, \phi_i \circ \bar{\phi}_j) \right) = \text{Tr} \left(\exp(-t\Delta_{\tau,1}) \circ F'(n-1, \phi_i \circ \bar{\phi}_j) \right) \]

by identifying the Hilbert spaces \(\text{Im} \mathcal{D} \subset L^2(M, \Omega_{M,1}^1) \) and \(\text{Im} \mathcal{D}' \subset L^2(M, \Omega_{M}^{0,1}) \) with \(\text{Im} \partial^* \subset L^2(M, \Omega_{M}^{0,0}) \) and \(\text{Im} \partial \subset L^2(M, \Omega_{M}^{0,1}) \) respectively by using (110).

Proof: We will need the following Propositions to prove Lemma 48.

Proposition 49 Let \(\{\omega_i\} \) be an orthonormal basis at \(\Omega_{x,0}^1 \). Let \(\overline{\omega}_n = \overline{\omega}_1 \wedge \ldots \wedge \overline{\omega}_n \) be the antiholomorphic volume form. Then for \(\alpha \neq \beta \) we have

\[(\phi_i \circ \overline{\phi}_j \wedge i\!d_{n-2}) \left(\overline{\omega}_n \cdot \frac{\partial}{\partial z^\alpha} \right) = \sum_{\beta} (\phi_i \circ \overline{\phi}_j)_{\overline{\alpha}} \left(\overline{\omega}_n - \frac{\partial}{\partial z^{\alpha}} \wedge \frac{\partial}{\partial z^{\beta}} \right) \wedge d\overline{z}^{\alpha}. \] (112)

Proof: Formula (112) follows directly from the definition of the linear operator \((\phi_i \circ \overline{\phi}_j \wedge i\!d_{n-2}) \).

Proposition 50 Let us define \((\phi_i \circ \overline{\phi}_j \wedge i\!d_{n-2})^* : \Omega_{M}^{0,0} \rightarrow \Omega_{M}^{0,0} \) as follows:

\[(\phi_i \circ \overline{\phi}_j \wedge i\!d_{n-2})^* = * ((\phi_i \circ \overline{\phi}_j) (\overline{\omega}_k)) \] (113)

Let us denote by \(M (\overline{\phi}_j \circ \phi_i) \) and \(M \left((\phi_i \circ \overline{\phi}_j \wedge i\!d_{n-2})^* \right) \) the matrices of the operators \(\overline{\phi}_j \circ \phi_i \) and \((\phi_i \circ \overline{\phi}_j \wedge i\!d_{n-2})^* \) in the orthonormal bases with respect to the CY metric. Then fibrewise we have the equality

\[M (\overline{\phi}_j \circ \phi_i) = M \left((\phi_i \circ \overline{\phi}_j \wedge i\!d_{n-2})^* \right). \] (114)

Proof: We need to compute the matrix of the operator \((\phi_i \circ \overline{\phi}_j \wedge i\!d_{n-2})^* \) in the orthonormal basis \(\overline{\omega}_1 \wedge \ldots \wedge \overline{\omega}_{n-k} \) and compare it with the matrix of the operator \(\overline{\phi}_j \circ \phi_i \) of the bundle \(\Omega_{M}^{1,0} \) written in the orthonormal basis \(\{\omega_i\} \).

Let \(\{\omega_i\} \) be an orthonormal basis at \(\Omega_{x,0}^{1,0} \). According to Lemma 111 the operators \(\phi_i : \Omega_{x,0}^{1,0} \rightarrow \Omega_{x,0}^{0,1} \) in the orthonormal basis \(\{\omega_i\} \) and \(\{\overline{\omega}_k\} \) are given by symmetric matrices. From here (114) follows directly. Indeed from the relations of the elements of the matrices of the operators \(\phi_i \) in an orthonormal basis \(\phi_{i,\beta}^{\alpha} = \phi_{i,\beta}^{\alpha} \) we obtain

\[(\phi_i \circ \overline{\phi}_j)_{\overline{\alpha}} = \sum_{\mu=1}^{n} \phi_{i,\mu}^{\alpha} \overline{\phi}_{j,\overline{\mu}}^{\alpha} = \sum_{\mu=1}^{n} \phi_{i,\mu}^{\alpha} \overline{\phi}_{j,\overline{\mu}}^{\alpha} = \sum_{\mu=1}^{n} \phi_{j,\overline{\mu}}^{\beta} \phi_{i,\mu}^{\alpha} = (\overline{\phi}_j \circ \phi_i)_{\beta}. \] (115)
From the definition of the operator \((\phi_i \circ \overline{\phi}_j \wedge id_{n-2})^*\) given by (113) we get:
\[
(\phi_i \circ \overline{\phi}_j \wedge id_{n-2})^* (\omega_k) = * \left((\phi_i \circ \overline{\phi}_j) (\omega_k) \right) = *
\left(\sum_{k,l=1}^{n} (\phi_i \circ \overline{\phi}_j)_k^l \omega_l (\omega_k) \right) =
\]
\[
\sum_{k,l=1}^{n} (\phi_i \circ \overline{\phi}_j)_k^l (* (\omega_l)) = \sum_{k,l=1}^{n} (\phi_i \circ \overline{\phi}_j)_k^l (\omega_l \wedge ... \wedge \omega_{l-1} \wedge \omega_{l+1} \wedge ... \wedge \omega_n)
\]

(116)

Combining (115) and (116) we get
\[
(\phi_i \circ \overline{\phi}_j \wedge id_{n-2})^* (\omega_k) = \sum_{l=1}^{n} (\overline{\phi}_j \circ \phi_i)_l^k (\omega_l \wedge ... \wedge \omega_{l-1} \wedge \omega_{l+1} \wedge ... \wedge \omega_n) =
\]
\[
\sum_{l=1}^{n} (\phi_i \circ \overline{\phi}_j)_k^l (\omega_l \wedge ... \wedge \omega_{l-1} \wedge \omega_{l+1} \wedge ... \wedge \omega_n).
\]

By using the Calabi-Yau metric and the holomorphic volume form we can identify the dual of \(\Omega_{0,n-1}^M\) with \(\Omega_{1,0}^M\). This identification is given by
\[
\omega_l \wedge ... \wedge \omega_{l-1} \wedge \omega_{l+1} \wedge ... \wedge \omega_n \longrightarrow \omega_l.
\]

Thus from (112) we get
\[
* ((\phi_i \circ \overline{\phi}_j) (\omega_k)) =
\]
\[
(\phi_i \circ \overline{\phi}_j \wedge id_{n-2})^* (\omega_k) = \sum_{l=1}^{n} (\overline{\phi}_j \circ \phi_i)_l^k (\omega_l) = \sum_{l=1}^{n} (\overline{\phi}_j \circ \phi_i)_l^k \omega_k
\]

(117)

From (117) and (115) we conclude Proposition 50.

Corollary 51 Formula (117) implies that the composition of the complex conjugation with the Hodge star operator * identifies the restriction of the image \((\overline{\phi}_j \circ \phi_i) (\text{Im} \partial) on \text{Im} \partial in C^\infty(M,\Omega_{1,0}^M)\) with the restriction of the image \((\phi_i \circ \overline{\phi}_j \wedge id_{n-2}) (\text{Im} \overline{\partial}) on \text{Im} \overline{\partial} in C^\infty(M,\Omega_{0,n-1}^M)\) and the restriction of \(\phi_i \circ \overline{\phi}_j \wedge id_{n-2}\) (\text{Im} \partial*) on \text{Im} \partial* in \(C^\infty(M,\Omega_{1,0}^M)\) with the restriction of \((\phi_i \circ \overline{\phi}_j \wedge id_{n-2}) (\text{Im} \overline{\partial})\) on \text{Im} \overline{\partial} in \(C^\infty(M,\Omega_{0,n-1}^M)\).

From (117), (110), and the identification \(\Omega_{1,0}^M\) with \(\Omega_{0,n-1}^M\) we deduce that we can identify \((\overline{\phi}_j \circ \phi_i) (\text{Im} \partial^*) in C^\infty(M,\Omega_{1,0}^M)\) with \((\phi_i \circ \overline{\phi}_j \wedge id_{n-2}) (\text{Im} \overline{\partial}) in C^\infty(M,\Omega_{0,n-1}^M)\) and \((\phi_j \circ \overline{\phi}_i) (\text{Im} \partial) in C^\infty(M,\Omega_{1,0}^M)\) with \((\phi_i \circ \overline{\phi}_j \wedge id_{n-2}) (\text{Im} \overline{\partial}) in C^\infty(M,\Omega_{0,n-1}^M)\). Since on a Kähler manifold we have that \(\Delta_\beta = \Delta_{\overline{\beta}}\), (111) is established. Lemma 18 is proved.
From (111) we deduce that

\[Tr \left(\exp(-t\Delta'_{r,1}) F' \left(1, \phi_i \circ \overline{\phi_j} \right) + \exp(-t\Delta''_{r,1}) F'' \left(1, \phi_i \circ \overline{\phi_j} \right) \right) = \]

\[\int_M Tr \left(\exp(-t\Delta_{r,1}) \left(\phi_i \circ \overline{\phi_j} \right) \right) \text{vol}. \quad (118) \]

We know that

\[Tr \left(F' \left(1, \phi_i \circ \overline{\phi_j} \right) + F'' \left(1, \phi_i \circ \overline{\phi_j} \right) \right) = \int_M \left(\phi_i \circ \overline{\phi_j} \right) \text{vol} = W.P. \quad (119) \]

Combining (118), (119) with Theorem 45 we deduce that

\[\partial c \left(\log \det \Delta_{r,1} \right) = \partial c \left(\Delta'_{r,1} \times \Delta''_{r,1} \right) = - \text{Im} W.P. \quad (120) \]

Theorem 47 is proved. ■

Theorem 52

The relative dualizing sheaf \(\pi_* \left(\omega_{X/\mathcal{M}(M)} \right) := L \) is a trivial \(C^\infty \) line bundle.

Proof: It is well known fact that a complex line bundle on a complex manifold \(\mathcal{M}(M) \) is topologically trivial if and only if its first Chern class is zero. According to [32] the first Chern class of the relative dualizing sheaf \(\pi_* \left(\omega_{X/\mathcal{M}(M)} \right) := L \) is the minus the imaginary part of the Weil-Petersson metric on \(\mathcal{M}(M) \). We observe that the regularized determinant of the Laplacian of the CY metric is a well defined function on \(\mathcal{M}(M) \). Theorem 47 implies that \(\partial c \left(\log \det \Delta_{r,1} \right) \) is minus the imaginary part of the Weil-Petersson metric on \(\mathcal{M}(M) \). Thus the first Chern class of the relative dualizing sheaf \(\pi_* \left(\omega_{X/\mathcal{M}(M)} \right) := L \) is represented by the zero class of cohomology. This proves that the relative dualizing sheaf \(\pi_* \left(\omega_{X/\mathcal{M}(M)} \right) := L \) is topologically trivial on \(\mathcal{M}(M) \). Theorem 52 is proved. ■

7 The Computation on Kähler Ricci flat Manifold with a Non Trivial Canonical Bundle

Theorem 53

Suppose that \(M \) is \(n \) complex dimensional Kähler Ricci flat Manifold such that \((K_M)^{\otimes n} \cong \mathcal{O}_M \). Then

\[\partial c \left(\log \det \Delta_{r,n} \right) = - \text{Im} W.P. \quad (121) \]

Proof: The proof of Theorem 53 is based on Theorem 45 which shows that we need to compute

\[\int_M \left(F' \left(n, \phi_i \circ \overline{\phi_j} \right) \right) \text{vol}(g). \]
Here we are using the fact that \(\det \Delta_{\tau,n} = \det \Delta_{\tau,n-1} \). Since we assumed that \(H^n(M, \Omega^n_M) = 0 \) we get that

\[
\int \limits _M \text{Tr} \left(F'(n, (\phi_i \circ \phi_j)) \right) \text{vol}(g) = \int \limits _M \text{Tr} \left((\phi_i \circ \phi_j) \wedge id_{n-1}) \right) \text{vol}(g).
\]

Direct computation using elementary linear algebra shows that if \(A : V \to V \) is a linear operator acting on an \(n \) dimensional vector space then the trace of the operator \(A \wedge id_{n-1} \) acting on \(\wedge^n V \) is given by the formula:

\[
\text{Tr}(A \wedge id_{n-1}) = \text{Tr}(A). \tag{122}
\]

From formula \(\tag{122} \) and the definition of the Weil-Petersson metric given by \(\tag{21} \) we derive \(\tag{124} \). Theorem \(\tag{121} \) is proved. ■

References

[1] D. Abramovich, J.-F. Burnol, J. Kramer and C. Soulé, ”Lectures on Arakelov Geometry”, Cambridge Studies In Advanced Mathematics Volume 33, Cambridge University Press, 1992.

[2] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, ”Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitude”, Comm. Math. Phys. 165 (1994), 311-428.

[3] N. Berline, E. Getzler and M. Vergne, ”Heat Kernels and Dirac Operators”, Springer Verlag, 1991.

[4] E. Calabi, ”Extremal Kähler Metrics”, Seminar on Differential Geometry, ed. S.-T. Yau, Annals of Mathematical Studies, vol. 102, Princeton University Press.

[5] S. Donaldson, ”Infinite Determinants, Stable Bundles and Curvature”, Duke Mathematical Journal, vol. 54, Number 1(1987), 231-248.

[6] S. Donaldson and P. Kronheimer, ”The Geometry of Four Manifolds”, Oxford Mat. Monog., Oxford Science Publications, Oxford University Press, New York 1990.

[7] A. Grothendieck, ”Éléments de Géométrie Algébrique”, IHES, Publications Mathématiques, vol. 8.

[8] H. Fang and Z. Lu, ”Generalized Hodge Metric and BCOV Torsion on Calabi-Yau Moduli”, DG/0310007.

[9] P. Gilkey, ”Invariance Theory, The Heat Equation, And the Atiyah-Singer Index Theorem”, Mathematics Lecture Series vol. 11, Publish or Parish, Inc. Wilmington, Delaware (USA) 1984.
[10] Ph. Griffiths, "Periods of Integrals on Algebraic Manifolds" I and II, Amer. Jour. Math. 90 (1968), 568-626 and 805-865.

[11] Ph. Griffiths and J. Harris, "Principles of Algebraic Geometry".

[12] J. Harvey and G. Moore, "Algebras, BPS States, and Strings", Nucl. Phys. B 463 (1996), 315-368, hep-th/9510182.

[13] J. Harvey and G. Moore, "On the Algebras of BPS States", hep-th/9609017.

[14] J. Jorgenson and A. Todorov, "A Conjectural Analogue of Dedekind Eta Function for K3 Surfaces", Math. Research Lett. 2 (1995) 359-360.

[15] J. Jorgenson and A. Todorov, "Analytic Discriminant for Manifolds with Zero Canonical Class", Manifolds and Geometry, ed. P. de Bartolomeis, F. Tirareri and E. Vesantini, Symposia Mathematica 36, (1996) 223-260.

[16] J. Jorgenson and A. Todorov, "Ample Divisors, Automorphic Forms and Shafarevich’s Conjecture", Mirror Symmetry IV, ed. S-T. Yau and Phong, AMS.

[17] J. Jorgenson and A. Todorov, "Analytic Discriminant for Polarized Algebraic K3 Surfaces", Mirror Symmetry III, ed. S-T. Yau and Phong, AMS, p. 211-261.

[18] J. Jorgenson and A. Todorov, "Enriques Surfaces, Analytic Discriminants, and Borcherd’s Φ Function", Com. Math. Phys. 191, (1998), 249-264.

[19] J. Jorgenson and A. Todorov, "Correction to "Enriques Surfaces Analytic Discriminants, and Borcherd’s Φ Function", Com. Math. Phys. (1999).

[20] K. Kodaira and Morrow, "Complex Manifolds".

[21] B. Lian, A. Todorov and Shing-Tung Yau, Maximal Unipotent Monodromy for Complete Interesction CY Manifolds”, American Journal of Mathematics, 127 (2005), 1-50.

[22] K. Liu, A. Todorov, Shing-Tung Yau and K. Zuo, "The Analogue of Shafarevich Conjecture for CY Manifolds I.", Quarterly Journal of Pure and Applied Mathematics, vol.1 No1 (2005), p. 28-67.

[23] Z. Lu, "On the Curvature Tensor of the Hodge Metric of Moduli of Polarized Calabi-Yau Threefolds", J. Geom. Analysis, 11 (2001), No 4, 633-645.

[24] Z. Lu and X. Sun, "Weil-Petersson Geometry on Moduli space of Polarized Calabi-Yau Manifolds." preprint.

[25] Z. Lu and X. Sun, "On Weil-Petersson Volume and the First Chern Class of the Moduli Space of CY Manifolds." preprint.

[26] D. Mumford, "Hirzebruch’s Proportionality Principle in the Non-Compact Case", Inv. Math. 42 (1977), 239-272.
[27] J.Roe, "Elliptic Operators, Topology and Asymptotic Methods" Pitman Research Notes in Mathematics Series 179, Longman Scientific & Technical, 1988.

[28] D. Ray and I. Singer, "Analytic Torsion for Complex Manifolds", Ann. Math. 98 (1973) 154-177.

[29] A. Grothendieck, "Séminaire de Géométrie Algébrique", IHES, Paris, 1960-1961.

[30] D. Sullivan, "Infinitesimal Computations in Topology", Publ. Math. IHES, No 47 (1977), 269-331.

[31] G. Tian, "Smoothness of the Universal Deformation Space of Calabi-Yau Manifolds and its Petersson-Weil Metric", Math. Aspects of String Theory, ed. S.-T.Yau, World Scientific (1998), 629-346.

[32] A. Todorov, "The Weil-Petersson Geometry of Moduli Spaces of SU(n≥ 3) (Calabi-Yau Manifolds) I", Comm. Math. Phys. 126 (1989), 325-346.

[33] A. Todorov, "Weil-Petersson Volumes of the Moduli of CY Manifolds", preprint.

[34] S. T. Yau, "On the Ricci Curvature of Compact Kähler Manifolds and Complex Monge-Amper Equation I", Comm. Pure and App. Math. 31, 339-411(1979).