Do children with suspected shunt failure also require a radiographic shunt series if head CT is going to be, or has been, performed?

CLINICAL SCENARIO
You are the specialist trainee working in a district general hospital Emergency Department (ED). A 4-year-old boy is presented to the ED by his parents following a 48-hour history of progressive headache and vomiting with lethargy and irritability. His parents report that he was born prematurely and has had a ventriculoperitoneal (VP) shunt inserted. He has otherwise been well for the past few weeks and there are no signs or symptoms of infection.

You want to obtain head CT imaging before discussing with the neurosurgical team but note that he has had numerous previous ED attendances with several radiographic and head CT examinations. You do not want to expose the child to unnecessary ionising radiation. Is a radiographic shunt series (SS) necessary if a head CT is going to be performed?

STRUCTURED CLINICAL QUESTION
Do children with suspected shunt failure (patient) also require a radiographic SS (outcome) if a head CT is going to be, or has been, performed (intervention)?

SEARCH
PubMed and MEDLINE databases on NHS Evidence were searched for eligible articles published in English from January 1980 to May 2020. The following search terms were used: (child* OR paediatric OR pediatric) AND ((acute AND failure) OR block*) AND ((ventriculoperitoneal OR VP OR V-P OR cerebral) AND shunt) OR hydrocephalus) AND (computed tomography OR CT OR computed assisted tomography OR CAT) AND ((radiograph* OR (x-ray OR xray)) AND shunt AND series). Eleven papers were obtained whose abstracts were double screened (GB and MP). Eight were excluded and the remaining three were tabulated (table 1).

COMMENTS
VP shunts are prone to complications with failure rates reported to be up to 50% within 2 years of placement and with up to 87.5% of shunts failing by 10 years. Complications can include infection, obstruction (most commonly cranial, rarely intraperitoneal) and mechanical failure due to component fracture or dislocation. No single symptom is diagnostic of shunt failure. Shunt failure can be life threatening if untreated; as such, a timely and accurate assessment of shunt function is required. A radiographic SS and a head CT use ionising radiation and both may be used to investigate suspected acute shunt failure. The SS comprises overlapping anteroposterior and lateral skull, chest and abdominal radiographs. The imaging may need to be repeated if suboptimal imaging is obtained.

Desai et al reported that the SS has a poor sensitivity (estimated 19.4%, true sensitivity <31% (95% CI)); a prediction that 10.46% of future SS will be expected to demonstrate the cause of shunt failure; and that the SS is even less likely to agree with the findings from CT, MRI and nuclear cisternography (Cohen’s kappa -0.02) than by chance alone. Thus, they concluded that the SS was not advocated as an acceptable modality in the investigation of suspected shunt failure.

Shunt images obtained when planning head CT examinations may provide comparable images to lateral skull radiographs to determine the VP shunt catheter location and to detect a disconnection from the valve. Further research is required to determine if the diagnostic quality of scout images allows programmable shunt valve settings to be read, obviating the need for formal skull

Table 1 Summary of evidence

Citation	Study group*	Study type (level of evidence)	Outcome	Key results	Comments
Desai et al	238 children, mean age 9.1 years (range 3 months–17 years)	Retrospective cohort study (level 3b)	To determine the accuracy of plain radiography in diagnosing VP SF in children in whom shunt malfunction is clinically suspected	16 (6.7%)=catheter discontinuity on SS, of which six had CT: 4=not SF; 2=conformatory SF	Majority of SF cases were not detected by SS. Only evidence of SF on SS was disconnection at the level of the valve at the neck or calvarium. SS is not advocated as mode of diagnosis in suspected SF. When SF is proven on other imaging, SS may be useful in excluding a mechanical aetiology.
Miller et al	155 children, mean age 8.1 years (range 0–16 years)	Retrospective cohort study (level 3b)	To determine the effectiveness of a shunt evaluation protocol that does not involve routine direct shunt tapping	373 CT performed, of which 363 had previous CT for comparison: 76/373 (20%)=enlarged ventricles compared with previous SS; 373 (2%)=shunt tubing breakage on SS with normal CT	Normal CT does not exclude shunt obstruction. Shunt taps may not be needed to assess shunt patency.
Marchese et al	790 children (274 prepathway, 516 postpathway, age not stated)	Prospective comparative study, non-randomised (level 2)	To standardise care and reduce radiation exposure for children and young adults requiring evaluation in the ED for ventricular shunt complications	Number of SS requested by ED prepathway and postpathway implementation, 62.4% vs 5.32%, respectively, p<0.01	Combination of LD CT protocol and focused radiographic projections versus complete SS significantly reduce radiation dose without compromising clinical care.

* All children had suspected shunt failure.

CI, confidence interval; CT, computed tomography; ED, emergency department; LD, low dose; MRI, magnetic resonance imaging; NMC, nuclear medicine cisternography; SF, shunt failure; SS, shunt series; VP, ventriculoperitoneal.
radiographs. However, single-view site-specific radiographs can reduce the number of SS requested by the ED without compromising clinical care when performed for specific indications: localised swelling or pain along the path of the shunt tubing, externalised shunt tubing from distal migration (rare) and at the request of the neurosurgical team for surgical planning.7 Cumulative lifetime exposure to ionising radiation can be significant and should be reduced wherever possible.8 Infants and children are more vulnerable to the accumulative risks of ionising radiation than adults9–11 with an increased risk of developing leukaemia or brain malignancy.12 Head CT examinations are high-dose investigations of approximately four times the dose of the SS (20.0 and 5.3 mSv, respectively),6 but doses will vary by institution, technical parameters and imaging protocol. Moreover, it is reported that children with VP shunts undergo a median of 8.5 head CT and 3 SS examinations,13 and undergo a head CT examination in nearly one out of every two ED attendances.14 Thus, it is incumbent on clinicians to reduce exposure to ionising radiation wherever possible by adhering to the As Low As Reasonably Practicable (ALARP) principle.

Other imaging techniques and modalities which reduce or obviate exposure to ionising radiation have been reported. Fast-sequence MRI is more cost-effective and definitive for the diagnosis of acute shunt failure when compared with head CT. Improved access to MRI is required, although several children’s hospitals in the UK are now able to provide this service.24/7. Sonographic measurement of optic nerve sheath diameter measurement may be a useful initial screening test in children with a low pretest probability of acute shunt failure.15–24

Given the small number of tabulated studies (two of which are retrospective) with a low number of participants, there is lack of clarity on the best diagnostic option/pathway. From the available evidence, the SS need not been performed when a head CT examination is going to be, or has been, performed in a child with suspected shunt failure. However, in children with long-term indwelling VP shunts, both the clinical teams and reporting radiologists must remember that the absence of a change in the intracranial appearances does not signify that the shunt is working properly or that there has not been a significant alteration in intracranial pressure. Thus, if there is persistent clinical concern, a neurosurgical opinion is required in order to assess the patient for shunt dysfunction. If there is clinical concern for mechanical shunt failure, that is, tubing disconnection, kink or breakage, specific single-view radiographs can be performed. Further prospective work is needed to robustly answer the clinical question.

Sponsorship. The radiographic shunt series should not be used as a first-line investigation for suspected shunt failure (grade C).

Sponsorship. Single-view radiographs for specific indications may be used if there is a suspicion of mechanical failure following proven shunt failure on cross-sectional imaging (grade C).

Clinical bottom lines

► The radiographic shunt series should not be used as a first-line investigation for suspected shunt failure (grade C).

► Single-view radiographs for specific indications may be used if there is a suspicion of mechanical failure following proven shunt failure on cross-sectional imaging (grade C).

REFERENCES

1. Browd SR, Ragel BT, Gottfried ON, et al. Failure of cerebrospinal fluid shunts: Part I: obstruction and mechanical failure. _Pediatr Neurol_ 2006;34:83–92.

2. Stone JJ, Walker CT, Jacobson M, et al. Revision rate of pediatric ventriculoperitoneal shunts after 15 years. _J Neurosurg Pediatr_ 2013;11:15–19.

3. Browd SR, Gottfried ON, Ragel BT, et al. Failure of cerebrospinal fluid shunts: Part II: overdrainage, loculation, and abdominal complications. _Pediatr Neurol_ 2006;34:171–6.

4. Miller JP, Fulop SC, Dashli SR, et al. Rethinking the indications for the ventriculoperitoneal shunt TAP. _J Neurosurg Pediatr_ 2008;1:435–8.

5. Garton HI, Kestle JR, Drake JM. Predicting shunt failure on the basis of clinical symptoms and signs in children. _J Neurosurg_ 2001;94:202–10.

6. Desai KR, Babb JS, Amodio JB. The utility of the plain radiograph “shunt series” in the evaluation of suspected ventriculoperitoneal shunt failure in pediatric patients. _Pediatr Radiol_ 2007;37:452–6.

7. Marchese RF, Schwartz ES, Heuer GG, et al. Reduced radiation in children presenting to the ED with suspected ventricular shunt complication. _Pediatrics_ 2017;139:1–3.

8. Brenner DJ. Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. _Pediatr Radiol_ 2002;32:228–31. discussion 42–4.

9. Berrington de Gonzalez A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. _Lancet_ 2004;363:345–51.

10. Brenner D, Elliot C, Hall E, et al. Estimated risks of radiation-induced fatal cancer from pediatric CT. _Air Arm J Roentgenol_ 2001;176:289–96.

11. Kleinerman RA. Cancer risks following diagnostic and therapeutic radiation exposure in children. _Pediatr Radiol_ 2006;36:121–5.

12. Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. _Lancet_ 2012;380:499–505.

13. Antonucci MC, Zuckerbraun NS, Tyler-Kabara EC, et al. The burden of ionizing radiation studies in children with ventricular shunts. _J Pediatr_ 2017;182:210–6.

14. Florin TA, Aronson PL, Hall M, et al. Emergency department use of computed tomography for children with ventricular shunts. _J Pediatr_ 2015;167:1382–8.

15. Boyle TP, Paldino MJ, Kimia-RA, et al. Comparison of rapid cranial MRI to CT for ventricular shunt malfunction. _Pediatrics_ 2014;134:e57–54.

16. Yue EL, Meckler GD, Fleischman RJ, et al. Test characteristics of quick brain MRI for shunt evaluation in children: an alternative modality to avoid radiation. _J Neurosurg Pediatr_ 2015;15:420–6.
17 Boyle TP, Nigrovic LE. Radiographic evaluation of pediatric cerebrospinal fluid shunt malfunction in the emergency setting. *Pediatr Emerg Care* 2015;31:435–40. quiz 41-3.

18 Kim I, Torrey SB, Milla SS, et al. Benefits of brain magnetic resonance imaging over computed tomography in children requiring emergency evaluation of ventriculoperitoneal shunt malfunction: reducing lifetime attributable risk of cancer. *Pediatr Emerg Care* 2015;31:239–42.

19 George KJ, Roy D. A low radiation computed tomography protocol for monitoring shunted hydrocephalus. *Surg Neurol Int* 2012;3:103.

20 Udayasankar UK, Braithwaite K, Arvaniti M, et al. Low-Dose nonenhanced head CT protocol for follow-up evaluation of children with ventriculoperitoneal shunt: reduction of radiation and effect on image quality. *AJNR Am J Neuroradiol* 2008;29:802–6.

21 Gabriel S, Eckel LJ, DeLone DR, et al. Pilot study of radiation dose reduction for pediatric head CT in evaluation of ventricular size. *AJNR Am J Neuroradiol* 2014;35:2237–42.

22 Koral K, Blackburn T, Bailey AA, et al. Strengthening the argument for rapid brain MR imaging: estimation of reduction in lifetime attributable risk of developing fatal cancer in children with shunted hydrocephalus by instituting a rapid brain MR imaging protocol in lieu of head CT. *AJNR Am J Neuroradiol* 2012;33:1851–4.

23 Pindrik J, Huisman TAGM, Mahesh M, et al. Analysis of limited-sequence head computed tomography for children with shunted hydrocephalus: potential to reduce diagnostic radiation exposure. *J Neurosurg Pediatr* 2013;12:491–500.

24 Pershad J, Taylor A, Hall MK, et al. Imaging strategies for suspected acute cranial shunt failure: a cost-effectiveness analysis. *Pediatrics* 2017;140:1–3.