miR-96-5p enhances cell proliferation and invasion via targeted regulation of ZDHHC5 in gastric cancer

Baolong Wanga, Xianrong Liub, Xiangtao Meng\textsuperscript{c,\textasterisk{*}}

aGeneral surgery, ShanXian Hygeia Hospital, 274300, HeZe, Shandong Province, China

bOutpatient department, ShanXian Central Hospital, 274300, Heze, Shandong Province, China

cGeneral surgery, DongDa Hospital of ShanXian, 274300, Heze, Shandong Province, China

*Corresponding author.

Correspondence to: General surgery, DongDa Hospital of ShanXian, No.1, Shunshi East Road, Shanxian, Heze, 274300, Shandong Province, China.

\textbf{E-mail:} hennianwum4@163.com

\textbf{Tel:} +86-13854036656
Abstract

Objective: To explore the biological function and mechanism of miR-96-5p in gastric cancer.

Methods: The expression of DEMs related to GAC prognosis was identified in GAC tumor samples and adjacent normal samples by qRT-PCR. A target gene miR-96-5p was selected using TargetScan, miRTarBase, miRDB databases. The combination of miR-96-5p and ZDHHC5 was verified by luciferase receptor assay. To further study the function and mechanism of miR-96-5p, we treated MGC-803 cells with miR-96-5p inhibitor and si-ZDHHC5, then detected cell viability, apoptosis, migration and invasion ability, as well as the expression of ZDHHC5, Bcl-2, Bax, cleaved caspase-3, cleaved caspase-9 and COX-2 by western blot.

Results: Compared with adjacent normal samples, the levels of miR-96-5p, miR-222-5p, and miR-652-5p were remarkably increased, while miR-125-5p, miR-145-3p, and miR-379-3p were significantly reduced in GAC tumor samples ($P < 0.01$), which were consistent with bioinformatics analysis. Furthermore, ZDHHC5 was defined as a direct target gene of miR-96-5p. miR-96-5p silence significantly reduced cell viability, increased cell apoptosis, and suppressed cell migration and invasion, as well as inhibited the expression of Bcl-2 and COX-2 and promoted Bax, cleaved caspase-3 and cleaved caspase-9 level in MGC-803 cells ($P < 0.01$). Notably, ZDHHC5 silence reversed the inhibiting effects of miR-96-5p on MGC-803 cells growth and metastasis.

Conclusion: Our findings identified six miRNAs (miR-96-5p, miR-222-5p, miR-652-5p, miR-125-5p, miR-145-3p, and miR-379-3p) related to GAC prognosis, and suggested that downregulated miR-96-5p might inhibit tumor cell growth and metastasis via increasing ZDHHC5 expression enhance MGC-803 cell apoptosis, as well as decrease MGC-803 cell metastasis.

Keywords: gastric adenocarcinoma; prognosis; miR-96-5p; cell apoptosis; metastasis
Introduction

Gastric adenocarcinoma (GAC) is the most common malignant tumor originating in the stomach, with approximately 951,000 diagnosed cases and 723,000 deaths in 2012[1, 2]. At present, the common and effective treatment method is to combine surgery with adjuvant radiotherapy or chemotherapy to improve the 5-year survival rate of GAC[3]. However, due to atypical symptoms of early GAC, most patients with proximal or distal metastases find delayed diagnosis, which leads to poor treatment and prognosis[4]. Thus, it is essential to reveal novel diagnostic and therapeutic targets for GAC.

It is well known that a major challenge of GAC treatment is poor prognosis, and environmental exposures and genetic mutations have been identified to be associated with this outcome[5]. A large body of evidence indicates that the poor prognosis of GAC is significantly associated with many molecular biomarkers such as microRNA (miRNA)[6, 7]. miRNAs, as endogenous non-coding small-molecule RNAs, widely exist in severe conditions[8]. It has been revealed that a large number of miRNAs are involved in various biological functions such as cell differentiation, apoptosis, migration, invasion, and proliferation in human diseases through post-transcriptional regulation of gene expression[8, 9]. Previous studies have demonstrated that miRNA disorders can significantly influence the prognosis of patients with gastric cancer, such as miR-203[10], miR-21[11], and miR-25[12]. Imaoka et al.[10] have reported that a low serum miR-203 expression is related to poor prognosis, and which is considered as a noninvasive biomarker for prognosis of gastric cancer patients. Simonian et al. [11] also have evidence that circulating miR-21 can be considered as a diagnostic and prognostic biomarker for gastric cancer. In addition, Li et al. [12] revealed that miR-25 is associated with the prognosis of gastric cancer, and can induce cell migration and proliferation by targeting transducer of ERBB2, 1. Therefore, it is important to find novel miRNAs related to the prognosis of GAC. May contribute to the development of GAC diagnosis.
In the current study, the miRNA expression data of GAC based on The Cancer Genome Atlas (TCGA) were analyzed to screen differently expressed miRNAs (DEMs) and DEMs related to GAC prognosis. In addition, DEMs were identified in clinical samples and the mechanism of DEM was investigated in vitro. Based on this, we aimed to search for new therapeutic targets for GAC, and provide some useful insights in improving the prognosis of GAC patients.

Materials and Methods

Data extraction and DEMs screening
Based on the Illumina HiSeq 2000 RNA Sequencing Platform platform, miRNA expression profile data (level 3) and corresponding GAC clinical information were downloaded from TCGA (https://portal.gdc.cancer.gov/). A total of 452 samples were obtained from this dataset, including 410 GAC tumor samples and 42 normal control samples. The edgeR package in R was utilized to screen DEMs between GAC samples and normal samples. The thresholds were defined as false discovery rate (FDR) <0.05 and |log fold change (FC)| >1. Meanwhile, volcano plots and heat maps were generated based on the obtained DEMs.

DEMs screening related to prognosis
The overall survival (OS) time was individually extracted from clinical information. Then, combined with the OS times and the expression levels of DEMs, DEMs related to prognosis were screened using KMsurv package of R, with the threshold of log-rank \(P < 0.05 \).

Clinical validation sample collection
This study obtained ethical approval from the ethics committee of DongDa Hospital of ShanXian, and the study was performed according to the Helsinki Declaration. Twenty paired adjacent normal tissues and GAC tumor tissues were collected from...
October 2017 to October 2018 in our hospital. All samples were confirmed by HE staining and stored in RNAlater. Meanwhile, peripheral blood from these GAC patients and 20 paired healthy subjects were obtained. The clinical information, including age, weight, gender, distant metastasis, lymph node metastasis, depth of invasion, and TNM stage are shown in Table 1.

Predicting target genes of DEMs

Target genes of DEMs related to prognosis were predicted using the three online analysis databases, including miRDB, miRTarBase, and TargetScan. Overlapping target genes among the three tools were selected to make the bioinformatic analysis more reliable. Then, the Venn diagram online tool was used to obtain the intersection of predicted target genes between the three databases, and the target genes that overlapped in the three databases were considered as potential target genes for DEM.

Cell culture and transfection

Human gastric carcinoma cell line MGC-803 was obtained from Shanghai Obio Technology Co., Ltd. The cells were maintained in Dulbecco's Modified Eagle Media (DMEM, Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, Carlsbad, CA, USA). MiR-96-5p mimics, mimic NC, miR-96-5p inhibitor, inhibitor NC, ZDHHC5 silence vector (si-ZDHHC5), and si-NC were constructed by Biosyntech Co., Ltd (Suzhou, China). MGC-803 cells were inoculated in six-well plates for 24 h with approximately 5 × 10^5 cells in each well, and then the above vectors () were transfected into MGC-803 cells by Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) as manufacturer’s instructions. Meanwhile, MGC-803 cells without transfection were served as control group.

Real-time quantitative polymerase chain reaction (qPCR)

Total RNA from tissues and peripheral blood was obtained by Trizol (Invitrogen) and RNeasy Plus Mini Kit (Qiagen, Valencia, California, USA) as the manufacturer's instructions. The concentration of RNA was detected using NanoDrop ND-2000
(Invitrogen). Mir-X™ miRNA FirstStrand Synthesis Kit (Takara, Dalian, China) was used to obtain cDNA by reverse transcription of RNA. The qPCR was carried out using the SYBR Premix Ex Taq TM II (Takara) by ABI 7900 qRT-PCR System (Applied Biosystems, Foster City, CA, USA). The primers sequences are listed in Table 2. U6 was used as the internal control for measuring miRNA level, and GAPDH was served as the internal control of for measuring ZDHHC5 expression. Data were analyzed with 2^{-ΔΔCt} method.

Luciferase reporter assay
The target gene of miR-96-5p was verified using the luciferase reporter assay. The 3'-UTR-wild-type (WT) or mutant (MUT) of ZDHHC5 was cloned into a pGL3-basic vector, named as ZDHHC5-WT and ZDHHC5-MUT. Then, ZDHHC5-WT or ZDHHC5-MUT and phRL-TK plasmid were co-transfected with miR-96-5p mimic or miR-96-5p NC (negative control) (synthesized by Biosyntech, Suzhou, China) into 293T cells, respectively, for 48 h using Lipofectamine 2000. Finally, the measurement of the relative luciferase activities was carried out by the Dual-Glo Luciferase Assay System (Promega) as the manufacturer's introductions.

Cell viability assay
MGC-803 cells were subjected to various transfection and then grown in 96-well plates. After conventional incubation for 24, 48, 72, and 96 h, each well was added with 10 μl of MTT (5 mg/mL, Sigma) for another 4 h. Afterwards, 100 μL of dimethyl sulfoxide was added. Microplate spectrophotometer was used to evaluate cell viability based on the absorbances at 470 nm.

Cell apoptosis assay
FITC-Annexin V Apoptosis kit was used in this experiment. Trypsin was used to digest cells with various treatments, and then cells were harvested. Next, cells were rinsed with PBS, and resuspended with Binding Buffer. After the incubation of
FITC-Annexin V and PI with cells for 15 min, flow cytometer (BD, CA, USA) was used to calculate the number of apoptotic cells.

Transwell assay

Tumor cell invasion and migration were elevated by Transwell chambers (Corning). Concretely, the bottom compartment was added with DMEM with 10% FBS. The transfected cells were grown in the upper compartment coated with Matrigel Matrix and cultured in medium free of serum for 24 h. Subsequently, the cells in the bottom compartment was fixed and stained 4,6-diamidino-2-phenylindole. An inverted microscope (Olympus, Japan) was utilized to evaluate cell migration and invasion.

Western blotting

Total proteins were isolated by RIPA Lysis Buffer (Beyotime, Shanghai, China). Proteins concentrations were tested by bicinchoninic acid (BCA) kit (Beyotime). The protein sample was separated on SDS-PAGE gel, and transferred to polyvinylidene fluoride membranes, followed by the blockage with 5% nonfat milk for 1 h. Next, the membranes were probed with primary antibodies of ZDHHC5 (1: 1000, proteintech), Bcl-2 (1: 1000, Abcam), Bax (1: 1000, Abcam), pro-caspase-3 (1: 1000, Abcam), cleaved-caspase-3 (1: 1000, Abcam), pro-caspase-9 (1: 1000, Abcam), cleaved-caspase-9 (1: 1000, Abcam), COX-2 (1: 1000, Abcam), and GAPDH (1: 1000, Beyotime) overnight at 4°C. Then, membranes were incubated with secondary antibody (1: 1000, Beyotime) for 2 hours keeping in dark place at room temperature. The protein levels were detected by enhanced chemiluminescence (ECL) Plus reagent (Beyotime).

Statistical analysis

Statistical analysis was conducted using SPSS Statistics software 22.0 (Chicago, IL, USA). Continuous variables were expressed as mean ± standard derivation (SD) and analyzed by independent-Samples t test. Categorical variables were expressed as
percentages and assessed by two-sided chi-square test. The differences of multiple groups were performed by one-way ANOVA following with post-hoc of Dunnett t test. \(P < 0.05 \) was considered to be statistically significant.

Results

DEMs between GAC sample and normal sample based on TCGA

According to the selective criteria, a total of 299 DEMs were identified between GAC and normal control samples, including 225 upregulated and 74 downregulated miRNAs. As shown in Figure 1A and B, volcano plots and heat maps were conducted for these 299 DEMs.

DEMs related to prognosis based on TCGA

Based on these 299 DEMs, the relationship between patient OS and miRNA expression was evaluated, and the results showed that 35 DEMs were significantly related to the prognosis of GAC patients \((P < 0.05) \). Among these DEMs, there are 7 miRNAs that have a higher correlation with GAC prognosis \((P < 0.01) \), including miR-96-5p \((P = 8.049 \times 10^{-3}) \), miR-125-5p \((P = 9.638 \times 10^{-4}) \), miR-145-3p \((P = 6.002 \times 10^{-3}) \), miR-222-5p \((P = 1.812 \times 10^{-3}) \), miR-379-3p \((P = 5.032 \times 10^{-3}) \), miR-652-5p \((P = 3.145 \times 10^{-3}) \), and miR-708-3p \((P = 7.984 \times 10^{-3}) \) (Figure 2).

DEMs identification in clinical samples

A total of 20 GAC patients and 20 healthy subjects were included in this study. There were no significant differences in age, weight, and gender between GAC patients and healthy subjects (Table 1). Based on the above survival analysis, six miRNAs were selected to identify in GAC tumor samples and adjacent normal samples. RT-qPCR showed that compared with adjacent normal samples, the levels of miR-96-5p, miR-222-5p, and miR-652-5p were remarkably increased, while miR-125-5p, miR-145-3p, and miR-379-3p levels were obviously reduced in GAC tumor samples.
(P<0.01, Figure 3A), which was consistent with bioinformatics analysis results by TCGA. Moreover, miR-96-5p levels were detected in the blood of GAC patients and healthy subjects, while no significant difference were found (Figure 3B).

Target gene prediction and identification of miR-96-5p
Considering that miR-96-5p has the highest correlation with GAC prognosis, the function of miR-96-5p was investigated in the following experiments. It was found that a total of 39 overlapping target genes existed in the TargetScan, miRTarBase, and miRDB databases (Figure 4A). Based on this bioinformatics analysis, ZDHHC5 was considered as a potential target gene of miR-96-5p (Figure 4B). Luciferase receptor assay showed that after co-transfection with ZDHHC5-WT and miR-96-5p mimic, the relative luciferase activity was reduced compared with co-transfection with miR-96-5p NC, while significant difference was not found after ZDHHC5-MUT treatment (Figure 4C), which suggested ZDHHC5 as a direct target gene of miR-96-5p. In addition, the mRNA level of ZDHHC5 was obviously decreased in cells with miR-96-5p mimic, and remarkably increased after transfection with miR-96-5p inhibitor (p < 0.01, Figure 4D).

Effect of miR-96-5p on tumor growth and metastasis through ZDHHC5 in MGC-803 cells
To further study the effect of miR-96-5p on GAC, the miR-96-5p inhibitor was used to silence miR-96-5p level in MGC-803 cells. It was found that the mRNA level of ZDHHC5 was obviously down-regulated after transfection with si-ZDHHC5 compared with si-NC in MGC-803 cells (P< 0.01, Figure 5A). Moreover, miR-96-5p silence prominently inhibited cell viability (P< 0.05, Figure 5B), promoted cell apoptosis (P> 0.05, Figure 5C), and decreased cell migration and invasion (P< 0.01, Figure 5D, E). Notably, co-transfection of miR-96-5p inhibitor and si-ZDHHC5 exerted the opposite effects in comparison with miR-96-5p inhibitor treatment (Figure 5B-E). In addition, the expression of apoptosis-related proteins (Bcl-2, Bax, cleaved caspase-3, cleaved caspase-9 and COX) was detected by western blot. The results
revealed that compared with MGC-803 cells without treatment, miR-96-5p silence inhibited the expression of Bcl-2 and COX-2, as well as increased the expression of Bax, cleaved caspase-3 and cleaved caspase-9 (apoptosis proteins) in MGC-803 cells (P < 0.01, Figure 5F), while the expression of these proteins revealed a opposite trend after co-transfection of miR-96-5p inhibitor and si-ZDHHC5 (P < 0.01, Figure 5F).

Discussion

In this study, based on miRNA expression profile data from TCGA, a total of 299 DEMs and 35 DEMs related to the prognosis of GAC were screened. Then, six miRNAs were selected to identify in GAC tumor samples and adjacent normal samples, and the results were consistent with bioinformatics analysis. In addition, miR-96-5p is considered an important biomarker and has been studied in the following *in vitro* experiments. Our results revealed that ZDHHC5 was a direct target gene of miR-96-5p, and miR-96-5p silence reduced cell viability, increased cell apoptosis, and suppressed cell migration and invasion in MGC-803 cells, while ZDHHC5 silence partly reversed the effects of miR-miR-96-5p down-regulation on tumor cell growth and metastasis.

Six miRNAs were identified in this study, and the results showed that the levels of miR-96-5p, miR-222-5p, and miR-652-5p were overexpressed, while miR-125-5p, miR-145-3p, and miR-379-3p levels were down-regulated in GAC sample. Several studies have demonstrated that miR-96-5p is overexpressed in various cancers, including colorectal cancer[13], pancreatic carcinoma[14], prostate cancer[15], hepatocellular carcinoma[16], and breast cancer[17], and it is oncogene that promotes cell proliferation. It has been reported that miR-652-5p is associated with non-small cell lung cancer[18], esophageal adenocarcinoma[19], and breast cancer[20], while the mechanism of miR-652-5p was not elaborated. Current research on miR-222-5p has focused on the role of angiogenesis in the endothelium[21, 22], and few studies investigated the effect of miR-222-5p in cancers. As down-regulated miRNAs in GAC, miR-125-5p was identified as a tumor suppressor in glioblastoma[23], cervical
cancer[24], and renal cell carcinoma [25], which was involved in proliferation, migration, and apoptosis. More researches have investigated the role of miR-145-3p in cancers, such as bladder cancer[26], lung squamous cell carcinoma[27], gallbladder cancer[28], and head and neck squamous cell carcinoma[29], which is also considered as a tumor suppressor. However, few studies have investigated the role of miRNA-379-3p; only one recent study reported that miRNA-379-5p exerted an antitumor effect by regulating tumor invasion and metastasis in hepatocellular carcinoma[30]. Unfortunately, the effect of these miRNAs on GAC has not been reported. Therefore, it is important to further reveal the mechanism and prognostic significance of these miRNAs in GAC.

Due to the highest correlation of miR-96-5p with GAC prognosis, the effect of miR-96-5p on MGC-803 cells was investigated in this study. Consistent with previous studies[13-17], miR-96-5p silence reduced cell viability, increased cell apoptosis, and suppressed cell migration and invasion in MGC-803 cells, which suggested that miR-96-5p silence exerted tumor-promoting effect on MGC-803 cells. It is generally acknowledged that miRNAs develop biological functions by impeding translation of target mRNAs. In line with predictions, our study showed that ZDHHC5 was identified as a target gene of miR-96-5p. ZDHHC5 is a member of the ZDHHC protein family. It encodes a DHHC type with five zinc fingers and is recognized as palmitoyl S-acyltransferase (PAT)[31]. It has been suggested that S-palmitoylation is closely associated with cancer development, and ZDHHC enzymes are the key enzymes responsible for palmitoylation[32]. Individual ZDHHC enzymes exert different effects on various cancers, either tumor suppressors or oncogenes[32]. Previous studies have documented that high expression of ZDHHC5 is associated with the poor prognosis of glioma[33]. In addition, the report of Tian et al.[34] suggested that DHHC5 knockdown can dramatically inhibit cell proliferation and invasion in non–small cell lung cancer. The present study revealed that ZDHHC5 silence partly reversed the effects of miR-miR-96-5p down-regulation on tumor cell growth and metastasis, which indicated that miR-96-5p silence inhibited tumor cell
growth and metastasis by up-regulating ZDHHC5 expression. This result was inconsistent with previous studies, which may be explained that ZDHHC5 has different functions according to different cancer type[35].

In conclusion, six prognosis-related miRNAs discovered from this work include miR-96-5p, miR-125-5p, miR-145-3p, miR-222-5p, miR-379-3p, and miR-652-5p in GAC samples. Furthermore, downregulated miR-96-5p markedly inhibited tumor cell growth and metastasis through targeting ZDHHC5. Current findings provide a potential molecular mechanism of miR-96-5p in GAC; however, further study is needed to investigate the mechanism and prognostic significance of these miRNAs in GAC.

Statement

Ethical approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of the DongDa Hospital Of ShanXian Ethics committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent statement: All participants in our study provided informed consent.

Declarations of Interest

All authors declare no conflict of interest.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Authors contributions

Baolong Wang designed the research; Xianrong Liu performed the research; Baolong Wang and Xianrong Liu analyzed the data; Xiangtao Meng wrote the paper.
References

[1] J.A. Ajani, J. Lee, T. Sano, Y.Y. Janjigian, D. Fan, S. Song, Gastric adenocarcinoma, Nature Reviews Disease Primers, 3 (2017) 17036.

[2] L.A. Torre, R.L. Siegel, E.M. Ward, A. Jemal, Global cancer incidence and mortality rates and trends—an update, Cancer Epidemiology and Prevention Biomarkers, 25 (2016) 16-27.

[3] R. Sitarz, M. Skierucha, J. Mielko, G.J.A. Offerhaus, R. Maciejewski, W.P. Polkowski, Gastric cancer: epidemiology, prevention, classification, and treatment, Cancer management and research, 10 (2018) 239.

[4] N. Kemi, M. Eskuri, J. Ikäläinen, T.J. Karttunen, J.H. Kauppila, Tumor budding and prognosis in gastric adenocarcinoma, The American journal of surgical pathology, 43 (2019) 229-234.

[5] P. Tan, K.-G. Yeoh, Genetics and molecular pathogenesis of gastric adenocarcinoma, Gastroenterology, 149 (2015) 1153-1162. e1153.

[6] M.-M. Tsai, C.-S. Wang, C.-Y. Tsai, H.-W. Huang, H.-C. Chi, Y.-H. Lin, P.-H. Lu, K.-H. Lin, Potential diagnostic, prognostic and therapeutic targets of microRNAs in human gastric cancer, International journal of molecular sciences, 17 (2016) 945.

[7] C. Jiang, X. Chen, M. Alattar, J. Wei, H. Liu, MicroRNAs in tumorigenesis, metastasis, diagnosis and prognosis of gastric cancer, Cancer gene therapy, 22 (2015) 291.

[8] M. Acunzo, G. Romano, D. Wernicke, C.M. Croce, MicroRNA and cancer—a brief overview, Advances in biological regulation, 57 (2015) 1-9.

[9] K. Saliminejad, H.R. Khorram Khorshid, S. Soleymani Fard, S.H. Ghaffari, An overview of microRNAs: Biology, functions, therapeutics, and analysis methods, Journal of cellular physiology, 234 (2019) 5451-5465.

[10] H. Imaoka, Y. Toiyama, M. Okigami, H. Yasuda, S. Saigusa, M. Ohi, K. Tanaka, Y. Inoue, Y. Mohri, M. Kusunoki, Circulating microRNA-203 predicts metastases,
early recurrence, and poor prognosis in human gastric cancer, Gastric cancer, 19 (2016) 744-753.

[11] M. Simonian, M. Mosallayi, H. Mirzaei, Circulating miR-21 as novel biomarker in gastric cancer: diagnostic and prognostic biomarker, Journal of cancer research and therapeutics, 14 (2018).

[12] B. Li, Q. Zuo, Y. Zhao, B. Xiao, Y. Zhuang, X. Mao, C. Wu, S. Yang, H. Zeng, Q. Zou, MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival, Oncogene, 34 (2015) 2556.

[13] A.L. Ress, V. Stiegelbauer, E. Winter, D. Schwarzenbacher, T. Kiesslich, S. Lax, S. Jahn, A. Deutsch, T. Bauernhofer, H. Ling, MiR-96-5p influences cellular growth and is associated with poor survival in colorectal cancer patients, Molecular carcinogenesis, 54 (2015) 1442-1450.

[14] C. Li, X. Du, S. Tai, X. Zhong, Z. Wang, Z. Hu, L. Zhang, P. Kang, D. Ji, X. Jiang, GPC1 regulated by miR-96-5p, rather than miR-182-5p, in inhibition of pancreatic carcinoma cell proliferation, International journal of molecular sciences, 15 (2014) 6314-6327.

[15] J.-J. Yu, Y.-X. Wu, F.-J. Zhao, S.-J. Xia, miR-96 promotes cell proliferation and clonogenicity by down-regulating of FOXO1 in prostate cancer cells, Medical oncology, 31 (2014) 910.

[16] T.H. Wang, C.T. Yeh, J.Y. Ho, K.F. Ng, T.C. Chen, OncomiR miR-96 and miR-182 promote cell proliferation and invasion through targeting ephrinA5 in hepatocellular carcinoma, Molecular carcinogenesis, 55 (2016) 366-375.

[17] Y. Shi, Y. Zhao, N. Shao, R. Ye, Y. Lin, N. Zhang, W. Li, Y. Zhang, S. Wang, Overexpression of microRNA-96-5p inhibits autophagy and apoptosis and enhances the proliferation, migration and invasiveness of human breast cancer cells, Oncology letters, 13 (2017) 4402-4412.
[18] B. Wang, F. Lv, L. Zhao, K. Yang, Y.-S. Gao, M.-J. Du, Y.-J. Zhang, MicroRNA-652 inhibits proliferation and induces apoptosis of non-small cell lung cancer A549 cells, Int J Clin Exp Pathol, 10 (2017) 6719-6726.

[19] D. Matsui, A.H. Zaidi, S.A. Martin, A.N. Omstead, J.E. Kosovec, L. Huleihel, L.T. Saldiv, C. DiCarlo, J.F. Silverman, T. Hoppo, Primary tumor microRNA signature predicts recurrence and survival in patients with locally advanced esophageal adenocarcinoma, Oncotarget, 7 (2016) 81281.

[20] M. Lagendijk, S. Sadaatmand, L.B. Koppert, M.M. Tilanus-Linthorst, V. de Weerd, R. Ramírez-Moreno, M. Smid, A.M. Sieuwerts, J.W. Martens, MicroRNA expression in pre-treatment plasma of patients with benign breast diseases and breast cancer, Oncotarget, 9 (2018) 24335.

[21] D.A. Chistiakov, I.A. Sobenin, A.N. Orekhov, Y.V. Bobryshev, Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling, Biomed Research International, 2015 (2015) 354517.

[22] T. Celic, V.M. Meuth, I. Six, Z.A. Massy, L. Metzinger, The mir-221/222 Cluster is a Key Player in Vascular Biology via the Fine-Tuning of Endothelial Cell Physiology, Current Vascular Pharmacology, 15 (2017) -.

[23] J. Yuan, G. Xiao, G. Peng, D. Liu, Z. Wang, Y. Liao, Q. Liu, M. Wu, X. Yuan, MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ, Biochemical and biophysical research communications, 457 (2015) 171-176.

[24] M.-A. Natalia, G.-T. Alejandro, T.-V.J. Virginia, L.M. Alvarez-Salas, MARK1 is a novel target for miR-125a-5p: implications for cell migration in cervical tumor cells, MicroRNA, 7 (2018) 54-61.

[25] D. Chen, Y. Li, Z. Su, Z. Yu, W. Yu, Y. Li, Y. Gui, S. Yang, Y. Lai, Identification of miR-125a-5p as a tumor suppressor of renal cell carcinoma, regulating cellular proliferation, migration and apoptosis, Molecular medicine reports, 11 (2015) 1278-1283.
[26] R. Matsushita, H. Yoshino, H. Enokida, Y. Goto, K. Miyamoto, M. Yonemori, S. Inoguchi, M. Nakagawa, N. Seki, Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): Inhibition of bladder cancer cell aggressiveness, Oncotarget, 7 (2016) 28460.

[27] H. Mataki, N. Seki, K. Mizuno, N. Nohata, K. Kamikawaji, T. Kumamoto, K. Koshizuka, Y. Goto, H. Inoue, Dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p) coordinately targeted MTDH in lung squamous cell carcinoma, Oncotarget, 7 (2016) 72084.

[28] P. Letelier, P. García, P. Leal, H. Álvarez, C. Ili, J. López, J. Castillo, P. Brebi, J.C. Roa, miR-1 and miR-145 act as tumor suppressor microRNAs in gallbladder cancer, International journal of clinical and experimental pathology, 7 (2014) 1849.

[29] Y. Yamada, K. Koshizuka, T. Hanazawa, N. Kikkawa, A. Okato, T. Idichi, T. Arai, S. Sugawara, K. Katada, Y. Okamoto, Passenger strand of miR-145-3p acts as a tumor-suppressor by targeting MYO1B in head and neck squamous cell carcinoma, International journal of oncology, 52 (2018) 166-178.

[30] J.-S. Chen, H.-S. Li, J.-Q. Huang, S.-H. Dong, Z.-J. Huang, W. Yi, G.-F. Zhan, J.-T. Feng, J.-c. Sun, X.-H. Huang, MicroRNA-379-5p inhibits tumor invasion and metastasis by targeting FAK/ AKT signaling in hepatocellular carcinoma, Cancer letters, 375 (2016) 73-83.

[31] M.E. Linder, R.J. Deschenes, Palmitoylation: policing protein stability and traffic, Nature reviews Molecular cell biology, 8 (2007) 74.

[32] M. Yeste-Velasco, M.E. Linder, Y.-J. Lu, Protein S-palmitoylation and cancer, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1856 (2015) 107-120.

[33] X. Chen, H. Ma, Z. Wang, S. Zhang, H. Yang, Z. Fang, EZH2 Palmitoylation mediated by ZDHHC5 in p53-mutant glioma drives malignant development and progression, Cancer research, 77 (2017) 4998-5010.

[34] H. Tian, J.-Y. Lu, C. Shao, K.E. Huffman, R.M. Carstens, J.E. Larsen, L. Girard,
H. Liu, J. Rodriguez-Canales, E.P. Frenkel, Systematic siRNA screen unmasks NSCLC growth dependence by palmitoyltransferase DHHC5, Molecular Cancer Research, 13 (2015) 784-794.

[35] P.J. Ko, S.J. Dixon, Protein palmitoylation and cancer, EMBO reports, 19 (2018) e46666.
Figure legends

Figure 1. Differentially expressed miRNAs (DEMs) between gastric adenocarcinoma sample and normal sample. (A) Volcano plots for DEMs expression. Dark dots represent upregulated miRNAs, whereas lighter dots represent downregulated miRNAs. (B) Hierarchical gene clustering analysis of DEMs showed by heat map. Dark represents upregulated miRNAs, whereas lighter represents downregulated miRNAs.

Figure 2. Association of differentially expressed miRNAs (DEMs) with overall survival of gastric adenocarcinoma. Dark lines represent high expression, and lighter lines represent low expression.

Figure 3. The identification of differentially expressed miRNAs (DEMs) levels in gastric adenocarcinoma (GAC) patients and healthy subjects. (A) The levels of miR-96-5p, miR-222-5p, miR-652-5p, miR-125-5p, miR-145-3p, and miR-379-3p in tumor sample and adjacent normal samples by RT-qPCR. (B) The miR-96-5p level in blood of GAC patients and healthy subjects by RT-qPCR. (**) denotes difference from control ($P < 0.05$). Values are means ± SD.

Figure 4. Target gene prediction and identification of miR-96-5p. (A) The intersection of the predicting target genes of miR-96-5p among the TargetScan, miRTarBase, and miRDB databases using Venn diagram. (B) Prediction of the binding site of miR-96-5p to ZDHHC5 by bioinformatics. (C) Target regulation of miR-96-5p to ZDHHC5 proved by luciferase reporter system. (D) The mRNA level of ZDHHC5 in MGC-803 cells transfected with miR-96-5p mimic, miR-96-5p inhibitor or their corresponding control by qRT-PCR.
Figure 5. miR-96-5p silence inhibits tumor growth and metastasis in MGC-803 cells. (A) The mRNA level of ZDHHC5 in MGC-803 cells transfected with si-NC, si-ZDHHC5 by qRT-PCR. (B) Cell viability in MGC-803 cells transfected with miR-96-5p inhibitor, miR-96-5p inhibitor + si-ZDHHC5, or their corresponding controls by MTT assay. (C) The rate of apoptotic cells in MGC-803 cells transfected with miR-96-5p inhibitor, miR-96-5p inhibitor + si-ZDHHC5, or their corresponding controls by flow cytometry analysis. (D, E) Cell migration and invasion in MGC-803 cells transfected with miR-96-5p inhibitor, miR-96-5p inhibitor + si-ZDHHC5, or their corresponding controls by Transwell assay. (F) The protein levels of COX-2, Bcl-2, Bax, pro-caspase-3, cleaved-caspase-3, pro-caspase-9, and cleaved-caspase-9 in MGC-803 cells transfected with miR-96-5p inhibitor, miR-96-5p inhibitor + si-ZDHHC5, or their corresponding controls by western blotting. (**) denotes difference from control (P < 0.05). Values are means ± SD.
Table captions

Table 1. Distribution of characteristics in GAC patients and healthy subjects

Table 2. Primers used for the qRT-PCR related sequence
A

![Venn diagram showing the intersection of miRDB, miRTarBase, and TargetScan for hsa-miR-96-5p.](image)

B

Predicted consequential pairing of target region (top) and miRNA (bottom)	Site type	Context++ score	Context++ score percentile	Weighted context++ score	Conserved branch length	P-value		
Position 927-933 of ZDHHC5 3' UTR	7mer-A1	-0.17	85	-0.01	4.934	0.73		
hsa-miR-1271-5p	3'	AUUUGAUAUGAGAUCAGGAAGAAGUG	7mer-A1	-0.13	81	-0.01	4.934	0.73
hsa-miR-96-5p	3'	UCUGUGUUGUAUGAGAAGAAGUG	7mer-A1	-0.13	81	-0.01	4.934	0.73

C

Bar chart showing relative luciferase activity.

- Black bars: mimic NC
- Gray bars: miR-96-5p mimic

D

Bar chart showing relative ZDHHC5 level.

- Black bars: Control
- Gray bars: mimic NC
- Light gray bars: miR-96-5p mimic
- Lighter gray bars: inhibitor NC
- Dark gray bars: miR-96-5p inhibitor

* and ** denote statistical significance.
A

![Relative mRNA levels and cell viability graphs](https://portlandpress.com/bioscirep/article-pdf/doi/10.1042/BSR20191845/870037/bsr-2019-1845.pdf)

B

![Cell viability and apoptosis bar charts](https://portlandpress.com/bioscirep/article-pdf/doi/10.1042/BSR20191845/870037/bsr-2019-1845.pdf)

C

![Flow cytometry images](https://portlandpress.com/bioscirep/article-pdf/doi/10.1042/BSR20191845/870037/bsr-2019-1845.pdf)

D

![Epithelial to mesenchymal transition images](https://portlandpress.com/bioscirep/article-pdf/doi/10.1042/BSR20191845/870037/bsr-2019-1845.pdf)

E

![Invasion and migration images](https://portlandpress.com/bioscirep/article-pdf/doi/10.1042/BSR20191845/870037/bsr-2019-1845.pdf)

F

![Protein expression Western blots](https://portlandpress.com/bioscirep/article-pdf/doi/10.1042/BSR20191845/870037/bsr-2019-1845.pdf)
Table 1. Distribution of characteristics in GAC patients and healthy subjects

Variables	Patients (n = 20)	Controls (n = 20)	P^a		
	n	%	n	%	
Age (years, mean ± SD)	62.1	65.0	60.1	55.0	0.73
Weight (kg, mean ± SD)	64.0	65.0	69.1	45.0	0.88
Gender					
Male	13	65.0	1	55.0	0.64
Female	7	35.0	9	45.0	
Depth of invasion					
T1/T2	7	35.0	-	-	
T3/T4	13	65.0	-	-	
Lymph node metastasis					
N0	6	30.0	-	-	
N1/N2/N3	14	70.0	-	-	
Distant metastasis					
M0	8	40.0	-	-	
M1	12	60.0	-	-	
TNM stage					
I/II	7	35.0	-	-	
III/IV	13	65.0	-	-	

^aIndependent-Samples T Test and Two-sided \(\chi^2 \) test for selected variables distributions between cases and controls.
Table 2. Primers used for the qRT-PCR related sequence

Gene	Primer sequence
miR-96-5p	F: 5'-TCAACTGGTGTCGGAGTGCAATTGAGAGCAAAAAA-3'
miR-96-5p	R: 5'-ACACTCCAGCTGGTTGCACTAGCAGCTTTCCAGGAGGAATAAGC
miR-125a-5p	F: 5'-CCCTGAGACCCCTTTAACC-3'
miR-125a-5p	R: 5'-GTCCAGGTTTTTTTTTTTTCACAG-3'
miR-145-3p	F: 5'-GGTCCAGGTTTCCAGGAGG-3'
miR-145-3p	R: 5'-CCAGTTTTTTTTTTTTTTAGGATTCC-3'
miR-222-5p	F: 5'-GCTCAGTAGCCAGTGTTAGA-3'
miR-222-5p	R: 5'-GTCCAGGTTTTTTTTTTTTCAGATCT-3'
miR-379-3p	F: 5'-GCAGTGTTGACTATAGGAAAC-3'
miR-379-3p	R: 5'-GGTCCAGGGTTTTTTCCT-3'
miR-652-5p	F: 5'-CCTAGGAGGGGCTGCA-3'
miR-652-5p	R: 5'-GTCCAGCTTTTTTTTTTTTTTGAATGG-3'
miR-708-3p	F: 5'-GCAAAGTACTGGAGCTTC-3'
miR-708-3p	R: 5'-GGTCCAGTTTTTTTTTTTTCTAGA-3'
ZDHHC5	F: 5'-GAAGACTGAAAGAAAGATAAGAGACATTG-3'
ZDHHC5	R: 5'-GACACTTTCAAAGTTTTACTGGTGGAGTG-3'
GAPDH	F: 5'-AGAAGGCTGGGCTATTGA-3'
GAPDH	R: 5'-AGGACCATCCACAGTCTTC-3'
U6	F: 5'-AGGGGGCCATCCACAGTCTTC-3'
U6	R: 5'-AACGCTTCACGAATTGCGT-3'