Treatment of Synthetic Wastewater Containing Diethyl Phthalate through Photo-Fenton Method by Box-Behnken Design

Aref Shokri, Javad Hosseini, Mahdi Sanavi Fard

Background & Aims of the Study: Diethyl phthalate (DEP) cannot be proficiently degraded by ultraviolet (UV) radiation and hydrogen peroxide (H₂O₂) oxidation separately; however, the photo-Fenton method is verified to be operative and can completely degrade this pollutant. Currently, advanced oxidation methods have been growing to be employed for the remediation of industrial wastewater. In the present study, the photo-Fenton process investigated the degradation and mineralization of the aqueous solution containing DEP.

Materials and Methods: Synthesized wastewater was used in this study. In addition, the effects of operative factors, such as the initial concentrations of H₂O₂, ferrous ion, and DEP, have been studied. The response surface methodology and Box-Behnken design of experiments were applied to examine the effects of three sovereign variables on the response functions to obtain the optimum circumstances.

Results: The analysis of variance was carried out to determine the importance of the effects of independent variables on the response function. Various amounts of variables were optimized for the removal of DEP. At optimum conditions (i.e., H₂O₂ concentration of 400 mg/l, ferrous concentration of 75 mg/l, and DEP concentration of 50 mg/l) and 60 min following the reaction, the rates of degradation efficiency for DEP and chemical oxygen demand (COD) were 100% and 85.3%, respectively.

Conclusion: According to the obtained results, the suggested quadratic model showed good correctness. The statistical analysis of the model indicated that the model was satisfactory to predict the performance of the processes. The obtained findings demonstrated that the photo-Fenton processes can be used for the complete and partial removal of DEP and COD from wastewater, respectively. The benefits of the photo-Fenton process were less sludge formation, fewer chemicals, and time obligation but at the cost of consumed power. The power consumption can be reduced by employing sunlight instead of artificial UV light to a larger amount. The photo-Fenton procedure was influential in the degradation of DEP and can considerably decrease COD.

Please cite this article as: Shokri A, Hosseini J, Sanavi Fard M. Treatment of Synthetic Wastewater Containing Diethyl Phthalate through Photo-Fenton Method by Box-Behnken Design. Arch Hyg Sci 2020;9(2):121-131

Background

Today, water is likely to be the chief reason for the upcoming fights worldwide; accordingly, in the following century, freshwater capitals are similarly valued as oil wells. Therefore, human life is in danger due to the limited number...
of freshwater resources. Approximately, 2.1 billion of the inhabitants around the world have no access to harmless drinking water, and nearly 80% of infectious diseases in the Third World countries originate from drinking dirty water (1–3).

Diethyl phthalate (DEP) is one of the most commonly known phthalates with great water solubility and short-chain in various environmental samples comprising drinking water, surface water, and seawater. As DEP is problematic for photo-chemically and biologically degradation (4), there is a robust essential to look for operative treatment methods for such contaminants; as a result, water reuse and treatment are very significant issues.

Conventional remediation techniques were reported with high operational charges, long reaction times, and secondary contamination. Therefore, it is essential to examine the application of novel approaches lacking the aforementioned difficulties. Advanced oxidation processes (AOPs) generate hydroxyl radicals as robust oxidizing species. The hydroxyl radicals can be extensively employed for the removal of organic contaminants that cannot be treated by biological treatment methods (5).

Various AOPs were applied to degrade organic contamination in the water phase. For instance, heterogeneous photocatalysis, ozonation (6–9), ultraviolet (UV)/H2O2 (10), photo-Fenton, and Fenton methods (11–14) have been applied for this subject. The photo-Fenton and Fenton methods are good options due to the need for low-cost chemicals and low energy (e.g., hydrogen peroxide and iron salts) (15–16). It is clear that the Fenton technique generates hydroxyl radicals well originated from the reaction between H2O2 and Fe (II).

\[
\text{H}_2\text{O}_2 + \text{Fe}^{2+} \rightarrow \text{OH}^+ + \text{OH}^- + \text{Fe}^{3+} \quad \text{(Equation 1)}
\]

\[
\text{H}_2\text{O}_2 + \text{Fe}^{3+} \rightarrow \text{HO}^+ + \text{H}^+ + \text{Fe}^{2+} \quad \text{(Equation 2)}
\]

Furthermore, Fe (III) can react with the leftover H2O2, giving back Fe (II) (Equation 2) (13). In the photo-Fenton method, the reduction of ferric to ferrous ions is improved through the production of further OH+ radicals leading to an increase in the oxidation of pollutants. The AOPs are recognized as effective techniques for the removal of pollutants from industrial wastewaters. The aforementioned techniques were used in some studies for wastewater treatment (17).

In a study carried out by Huang et al., the Fenton, photo-Fenton, and electro-Fenton processes were compared regarding the degradation of Remazol Black B dye (18). In the aforementioned comparative study, the organic wastewater was converted into inorganic substance, and the rates of removal efficiency were 70% and 93% in the Fenton and electro-Fenton processes, respectively. This result was responsible for decreasing iron ions in the cathode.

The photo-Fenton was reported with the efficacy of higher than 98% based on the recovery of iron ions. The results showed that organic contaminants, such as formic acid, which cannot be removed using the Fenton technique, could be completely and quickly destroyed by the photo-Fenton method (18). In the current study, the synthetic wastewater containing DEP was remediated through the Photo Fenton method. The effects of various factors, including the concentrations of hydrogen peroxide, DEP, and ferrous, on DEP removal were investigated using the Box-Behnken design (BBD).

Materials & Methods

The FeSO4·7H2O, DEP (99.5%), and hydrogen peroxide solution (30% w/w) were supplied from Merck Company. Manganese oxide (MnO2) (≥99%) was provided by Sigma-Aldrich Company, and distilled water was used in all the experiments. The properties of DEP
are presented in Table 1.

Experimental Setup and Analytical Procedure

The experiments were carried out in a glass photoreactor with 1-liter capacity and prepared using a sampling system (Figure 1). The source of (UV-C) light was a 15W Philips vertically placed at the center of the reactor. The reactor was prepared by a water jacket with an exterior flow controlled by a thermostat for adjusting and maintaining the temperature at 25°C. A water bath (BW-20G, Jeio Tech Co., Daejon, Korea) was employed to control the temperature at 25°C.

The solution was stirred to be homogenized and avoid the precipitation of iron ions in the reactor. A pH meter (PT-10P Sartorius Instruments, Germany) was utilized for the measurement of the primary pH of the solution fixed at 3. The samples were transferred to a spectrophotometer (DR 5000, Hach, Jenway, USA) at 600 nm, and the chemical oxygen demand (COD) was measured using the standard methods (19).

About 1000 ml of synthetic wastewater was used in each test. The concentrations of ferrous ions, hydrogen peroxide, and DEP were the intended parameters, and the goal was to decrease the DEP concentration and COD amounts in synthetic wastewater. In all runs, the reaction time was reported as 30 min. The rates of DEP and COD removal were calculated using equations 3 and 4 as follows:

Removal of $\text{DEP} (%) = \left(\frac{[\text{DEP}]_0 - [\text{DEP}]_t}{[\text{DEP}]_0} \right) \times 100$ (Equation 3)

Removal of $\text{COD} (%) = \left(\frac{[\text{COD}]_0 - [\text{COD}]_t}{[\text{COD}]_0} \right) \times 100$ (Equation 4)

where $[\text{DEP}]_0$ and $[\text{COD}]_0$ are the concentration of the DEP and amount of COD at the initiation of the reaction, and $[\text{DEP}]_t$ and $[\text{COD}]_t$ are the concentration of the DEP and amount of COD at time t, respectively. The remaining hydrogen peroxide in the samples was eliminated through the MnO$_2$ powder to prevent from interfering with the COD test. Then, MnO$_2$ powders were separated using a filter (20).

Statistical analysis and experimental design

The experimental design was used for the optimization of the DEP removal efficiency in
a scientific way. The effects of ferrous concentration \((C_F) \), hydrogen peroxide concentration \((C_{HP}) \), and DEP dosage \((C_{DEP}) \) were investigated on DEP removal efficiency. Table 2 tabulates the input variables \((i.e., C_{HP}, C_F, \) and \(C_{DEP}) \) with their values and dimensions.

The BBD experiment requires a low number of tests \((15 \text{ tests for three variables}) \) \((21) \). Due to the design of the experiments, the resulting model \((Res.) \), as a polynomial equation of independent variables, was presented for the response variable as follows:

\[
Res. = b_0 + \sum b_i x_i + \sum \sum b_{ij} x_i x_j + \sum \sum b_{ijk} x_i^2 + \varepsilon \quad \text{(Equation 5)}
\]

where \(\varepsilon \) is the remainder of the equation; \(b_0 \) is a constant number; \(b_{ij} \) is a linear interaction among the input variables of \(x_i \) and \(x_j \) \((i = 1, 2 \) and \(j = 1, 2, 3) \); \(b_{i} \) is the slope of the variable; \(b_{ii} \) is the second order of the input variable \(x_i \) \((i = 1, 2, 3) \).

Results

The analysis of variance (ANOVA) was employed to investigate the importance of operating variables in the polynomial equation \(\text{(Equation 4)} \) \((22) \). In the ANOVA, the \(p \)-value of 0.05 was statistically significant. The \(p \)-values of less than 0.0500 showed the importance of model terms. The values higher than 0.1000 indicated no significance regarding the model terms. The statistical significance of the second-order models was introduced by \(F \)-value. The \(p \)-value will be much lower once the estimated \(F \)-value is higher than the \(F \)-value in the Table indicating the significance of the statistical model. The \(F \)-value was calculated by dividing the mean squares of regression, namely square, linear, and interaction, by the mean squares of residual as follows \((23) \):

\[
F - \text{value} = \frac{MS_{Reg.}}{MS_{Res.}} = \frac{SS_{Reg.}/DF_{Reg.}}{SS_{Res.}/DF_{Res.}} \quad \text{(Equation 6)}
\]

where the number of terms minus 1 represents the regression degree of freedom \((DF_{Reg.}) \), and the total degrees of freedom minus the regression degree of freedom equals the residual degree of freedom \((DF_{Res.}) \) \((23) \). About 15 tests \((i.e., 2 \text{ replicates at the central point and } 13 \text{ runs}) \) were included in the design of the experiments. The rates of DEP removal are presented in Table 3. The tests were randomly carried out to decrease the experimental errors.

Analysis of response variance and design of experiments

In the photo-Fenton method, the optimum conditions in the removal of DEP were obtained, and the impacts of three independent variables, including \(\text{H}_2\text{O}_2 \), \(\text{Fe}^{2+} \), and DEP concentrations, on the removal of DEP were studied using the BBD. The experimental results of the removal of DEP were presented in Table 3. By the adoption of the least-squares error procedure, the quadratic relationship was obtained for the determination of the response regarding the three independent variables as follows:

\[
DEP \text{ Removal } \% = 55.8 + 0.062C_{DEP} + 0.261C_{Ferrous} + 0.1121C_{H_2O_2} - 0.002093C_{DEP}^2 + 0.00035C_{Ferrous}^2 - 0.000122C_{H_2O_2}^2 - 0.00132C_{DEP}C_{Ferrous} + 0.00043C_{DEP}C_{H_2O_2} - 0.000020C_{H_2O_2}C_{Ferrous} \quad \text{(Equation 7)}
\]

Variable	Unit	Symbol	Dimension and level		
Diethyl phthalate concentration	mg/l	\(C_{DEP} \)	Low (-1)	Middle (0)	High (+1)
Ferrous Concentration	mg/l	\(C_{Ferrous} \)	50	100	150
Hydrogen peroxide Concentration	mg/l	\(C_{HP} \)	25	50	75
Table 3) Design of experiment for three independent variables and their responses

Run no.	C_{DEP}	C_{Fe}	C_{HP}	Responses (%)
1	100	75	400	92.0
2	100	50	250	79.4
3	100	25	100	61.3
4	50	50	400	97.1
5	100	25	400	86.6
6	50	50	100	73.0
7	100	50	250	79.1
8	150	75	250	60.0
9	100	75	100	67.0
10	50	75	250	98.8
11	150	50	400	76.0
12	150	50	100	39.0
13	150	25	250	53.0
14	100	50	250	79.3
15	50	25	250	85.2

Figure 2) Comparison of predicted and experimental values

The predicted values of the quadratic model in comparison to the experimental values in terms of the DEP removal were illustrated in Figure 2. The predicted values in the removal of DEP were gained through equation 7.

Table 4 tabulates the results of the ANOVA regarding the evaluation of the DEP removal model. As shown in Table 4, the residual error and degree of freedom for the model are 5 and 9, respectively. The tabulated F-value and the calculated F-value were shown in Table 4. In addition, the estimated F-value of the model was greater than the tabulated F-value; therefore, the p-value was very low ($p<0.0001$), and the model was significant. The p-values of C_{HP}, C_F, and C_{DEP}, and their squares were less than 0.01 and considered statistically significant (24). However, the p-value of the binary interaction between the variables was higher than 0.05 indicating that the interaction of variables was non-significant. Furthermore, the lack of fit was reported with a p-value of higher
Table 4) Results of analysis of variance for introduced model in removal of diethyl phthalate

Source	DF	Adj SS	Adj MS	F-value	P-value
Model	9	3841.07	426.79	37.11	0.00
Linear	3	3664.51	1221.50	106.20	0.00
C_{DEP}	1	1987.65	1987.65	172.81	0.00
C_{Ferrous}	1	125.61	125.61	10.92	0.021
C_{H_2O_2}	1	1551.24	1551.24	134.87	0.000
Square	3	124.05	41.35	3.60	0.101
C_{DEP}^2	1	101.12	101.12	8.79	0.031
C_{Ferrous}^2	1	0.17	0.17	0.02	0.907
C_{H_2O_2}^2	1	28.09	28.09	2.44	0.179
Two-way interaction					
C_{DEP}.C_{Ferrous}	1	10.89	10.89	0.95	0.375
C_{DEP}.C_{H_2O_2}	1	41.60	41.60	3.62	0.116
C_{Ferrous}.C_{H_2O_2}	1	0.02	0.02	0.00	0.966
Error	5	57.51	11.50		
Lack of fit	3	57.46	19.15	820.89	0.001
Pure error	2	0.05	0.02		
Total	14	3898.58			

Model summary

	S	R^2	R^2_adj	R^2_pred
	3.39144	98.52%	95.87%	76.41%

than 0.05, signifying the model’s mismatch.

Influence of operational variables

Figures 3-5 depict the effects of hydrogen peroxide (100, 250, and 400 mg/l), Fe^{2+} (25, 50, and 75 mg/l), and DEP (50, 100, and 150 mg/l) concentrations on the removal of DEP in synthetic wastewater. The aforementioned figures illustrated the three-dimensional (3D) plots of DEP removal based on these variables using equation 7. The 3D plot of the DEP removal according to hydrogen peroxide and DEP concentrations is depicted in Figure 3. In addition, the maximum percentage of DEP removal was obtained in low values of DEP and practically high values of hydrogen peroxide. In the photo-Fenton method, the DEP removal efficiency was enhanced with an excessive increase in H_2O_2 concentration.

Different dosages of Fe^{2+} (range: 25-75 mg/l) were applied to reach the optimal concentration. As illustrated in Figure 4, it is clear that in the photo-Fenton process, the removal efficiency of DEP was enhanced with an increase in the dosage of ferrous ion according to the following equations:

\[
Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^* + OH^- \quad (Equation \ 8)
\]

\[
Fe^{2+} + OH^* \rightarrow OH^- + Fe^{3+} \quad (Equation \ 9)
\]

In the photo-Fenton process, the production of hydroxyl radicals and removal of DEP were improved with an increase in the concentration of Fe^{2+} ions from 25 to 7 mg/l. Based on figures 3-5, the increase in the catalyst dosage was to some extent helpful. However, the catalyst could not be added without any limitations. High amounts of catalyst had a negative effect on DEP removal, since the scavenging outcomes might occur (Equations 10-12).
Treatment of Synthetic Wastewater Containing Diethyl Phthalate...

Figure 3) Contour plots of diethyl phthalate removal versus hydrogen peroxide and diethyl phthalate concentrations

\(pH = 3; T = 25^\circ C; t = 60 \text{ min} \)

Figure 4) Contour plots of diethyl phthalate removal in terms of ferrous and diethyl phthalate concentrations

\(pH = 3; T = 25^\circ C; t = 60 \text{ min} \)

\[
\begin{align*}
\text{OH}^* + Fe^{2+} & \rightarrow OH^- + Fe^{3+} \quad \text{(Equation 10)} \\
H_2O_2 + Fe^{3+} & \rightarrow H^+ + FeOOH^{2+} \quad \text{(Equation 11)} \\
FeOOH^{2+} & \rightarrow HO_2^* + Fe^{2+} \quad \text{(Equation 12)}
\end{align*}
\]

Moreover, the excessive catalyst dosage would result in the production of high amounts of sludge, which would increase the need for the following sludge treatment.

The removal of DEP based on hydrogen peroxide and ferrous concentrations is depicted in Figure 4. At a pH of higher than 3, the main fraction of Fe (II) was precipitated as Fe(OH)₃, weakening the reaction between Fe²⁺ and H₂O₂. In addition, in alkaline conditions, the removal...
of DEP reduced because the H$_2$O$_2$ degrades faster into H$_2$O and O$_2$. Therefore, based on the evidence and preliminary experiment in the present study, pH was fixed at 3 in all tests and was not optimized.

Optimization of working conditions

According to figures 3-5, it is obvious that the DEP removal efficiency is high at optimum circumstances. The amounts of different parameters were obtained for the optimization of the DEP removal using Design-Expert software (version 7.0.0). The optimum values and removal of DEP are presented in Table 5. It was certain that the maximum removal of DEP was achieved at a ferrous concentration of 75 mg/l, hydrogen peroxide concentration of 400 mg/l, and DEP concentration of 50 mg/l. The maximum predicted and experimental values in the removal of DEP by three replications were 103.49% and 100.0%, respectively.

Table 5) Optimal conditions in removal of diethyl phthalate (T = 25°C; t = 60 min)

Parameter	Unit	Value
Hydrogen peroxide concentration	mg/l	400
Ferrous ion concentration	mg/l	75
DEP concentration	mg/l	50
Predicted DEP removal	%	103.49
Experimental DEP removal	%	100

Discussion

The treatment proficiency reduced with a decline in H$_2$O$_2$ dosage because the breakdown of H$_2$O$_2$ decreased in the presence of a catalyst for the production of hydroxyl radicals. However, extreme H$_2$O$_2$ quantity was not appropriate. Firstly, an extreme H$_2$O$_2$ dosage highly increases the treatment cost. Furthermore, the scavenger effect of H$_2$O$_2$ on hydroxyl radical (Equation 13) is significant when the H$_2$O$_2$ dosage is in excess (25-26).

$$\text{H}_2\text{O}_2 + \text{OH}^* \rightarrow \text{H}_2\text{O} + \text{HO}_2^*$$ \hspace{1cm} (Equation 13)

Therefore, the H$_2$O$_2$ dosage should be in the optimum range, and it was optimized. In the photo-Fenton process after 60 min of treatment, the removal of DEP was high that can be
related to the extensive regeneration of all Fe^{3+} to Fe^{2+} improved by UV (Equation 14) (27).

\[\text{H}_2\text{O} + \text{Fe}^{3+} + hv \rightarrow \text{OH}^- + \text{H}^+ + \text{Fe}^{2+} \]
(Equation 14)

The remaining ferrous ions were separated by changing the pH of the solution to the alkaline media at the end of the processes (28). At a high concentration of Fe (II), the initial generation rate of hydroxyl radicals, mostly formed by the cleavage of hydrogen peroxide, was very high. Accordingly, several hydroxyl radicals were consumed by the undesired reactions before they could be efficiently consumed for the degradation of DEP (Equation 15) (29).

\[\text{H}_2\text{O}_2 + hv \rightarrow 2\text{OH}^- \]
(Equation 15)

Additionally, the turbidity of solution can be changed to brown at high doses of ferrous ions, and subsequently, the absorption of the UV light reduced resulting in the recombination of OH^- radicals (30). This result is in line with the findings of multiple studies (Equation 16) (31).

\[\text{FeOH}^{+2} + hv \rightarrow \text{OH}^- + \text{Fe}^{2+} \]
(Equation 16)

The results of the present study are consistent with the findings of a study carried out by Jafari Mansoorian H et al. (32) indicating that the removal efficiency decreased with increasing the concentration of DEP. Finally, it can be realized that the photo-Fenton process as the modified Fenton process is better than the Fenton process regarding the removal of pollutants from aqueous environments.

Based on equation 17, the Fe^{3+} was altered to Fe^{2+}, and the Fenton reaction was initiated for DEP removal. The renewal of the catalyst and production of extra hydroxyl radicals were obtained through the continuous irradiation of the Fe^{3+} solution. However, the reaction is terminated in case of the consumption of all the H_2O_2 by Fe^{2+} (33).

\[\text{Fe}^{3+} + \text{H}_2\text{O}_2 \leftrightarrow \text{FeOOH}^{+2} + \text{H}^+ \rightarrow \text{Fe}^{2+} + \text{HOO}^- + \text{H}^+ \]
(Equation 17)

Conclusion

In the present study, the synthetic wastewater containing DEP was remediated by the photo-Fenton process, and the BBD was applied for designing the experiment. In addition, this study investigated the effects of H_2O_2, Fe^{2+}, and DEP concentrations on DEP removal from synthetic wastewater. The results of the ANOVA showed that the operational variables were efficient in the removal of DEP. A quadratic model was introduced to assess the impacts of variables on the removal of DEP. At optimum conditions (i.e., hydrogen peroxide concentration of 400 mg/l, ferrous concentration of 75 mg/l, and DEP concentration of 50 mg/l) and after 30 min, the degradation rates of DEP and COD were reported as 100% and 85.3%, respectively.

Based on the obtained results, the offered quadratic model showed good correctness. The statistical analysis of the model indicated that the model was satisfactory to predict the performance of the processes. The obtained findings revealed that the photo-Fenton processes can be employed for the complete and partial removal of DEP and COD from wastewater, respectively. The benefits of the photo-Fenton process were less sludge formation, fewer chemicals, and time obligation but at the cost of consumed power. The power consumption can be reduced by employing sunlight instead of artificial UV light to a larger amount.

Footnotes

Funding

The authors would like to extend their gratitude to Islamic Azad University, Tuyserkan Branch, Tuyserkan, Iran, for supporting this project.
Conflict of Interest
The authors declare that there is no conflict of interest.

References

1. Gareau BJ, Crow B. Ken Conca, governing water: contentious transnational politics and global institution building. Int Environ Agreem Politics Law Econ 2006;6(3):317-20. Link
2. Oki T, Kanee S. Global hydrological cycles and world water resources. Science 2006;313(5790):1068-72. PMID: 16931749
3. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 2004;47(4):219-56. Link
4. Xu B, Gao NY, Sun XF, Xia SJ, Rui M, Simonnot MO, et al. Photochemical degradation of diethyl phthalate with UV/H2O2. J Hazard Mater 2007;139(1):132-9. PMID: 16870331
5. Shokri A. Degradation of 4-Nitrophenol from industrial wastewater by nano catalytic Ozonation. Int J Nano Dimens 2016;7(2):160-7. Link
6. Shokri A. The treatment of spent caustic in the wastewater of olefin units by ozonation followed by electrocoagulation process. Desal Water Treat 2018;111:173-82. Link
7. Shokri A, Mahanpoor K, Soodbar D. Degradation of Ortho-Toluidine in petrochemical wastewater by Ozonation, UV/O3, O3/H2O2 and UV/O2/H2O2 processes. Desal Water Treat 2016;57(35):16473-82. Link
8. Shokri A, Mahanpoor K, Soodbar D. Evaluation of a modified TiO2 (GO–B–TiO2) photo catalyst for degradation of 4-nitrophenol in petrochemical wastewater by response surface methodology based on the central composite design. J Environ Chem Eng 2016;4(1):585-98. Link
9. Gharbani P, Mehrizad A. Heterogeneous catalytic ozonation process for removal of 4-chloro-2-nitrophenol from aqueous solutions. J Saudi Chem Soc 2014;18(5):601-5. Link
10. Shokri A. Investigation of UV/H2O2 process for removal of Ortho-Toluidine from industrial wastewater by response surface methodology based on the central composite design. Desal Water Treat 2017;58:258-66. Link
11. Trovo AG, Melo SA, Nogueira RF. Photo degradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process-application to sewage treatment plant effluent. J Photochem Photobiol A Chem 2008;198(2-3):215-20. Link
12. Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2014;2(1):557-72. Link
13. da Silva Leite L, de Souza Maselli B, de Araçao Umbuzeiro G. Pupo Nogueira RF. Monitoring ecotoxicity of disperse red I dye during photo-Fenton degradation. Chemosphere 2016;148:511-7. PMID: 26841294
14. Peralta-Hernandez JM, Vijay S, Rodriguez-Narvaez O, Pacheco-Alvarez MA. Photo and solar fenton processes for wastewater treatment. Electrochem Water Wastewater Treat 2018;9:223-37. Link
15. Garcia-Segura S, Bellotindos I, Yaw-Hui H, Brillas E, Ming-Chun L. Fluidized-bed Fenton process as alternative wastewater treatment technology—a review. J Taiwan Institute Chem Eng 2016;67:211-25. Link
16. Clarizia L, Russo D, Di Somma, I, Marrotta R, Andreozzi R. Homogeneous photo-Fenton processes at near neutral pH: a review. Appl Catal B Environ 2017;209:358-71. Link
17. Moon BH, Park YB, Park KH. Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron. Desalinization 2011;268(1-3):249-52. Link
18. Huang YH, Huang YF, Chang PS, Chen CY. Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton. J Hazard Mater 2008;154(1-3):655-62. PMID: 18063472
19. American Public Health Association. American water works association, water pollution control federation, & water environment federation. Standard methods for the examination of water and wastewater. Washington, D.C.: American Public Health Association; 2005. Link
20. El-sousy K, Hussen A, Hartani K, El-Aila H. Elimination of organic pollutants using supported catalysts with hydrogen peroxide. Jordan J Chem 2007;2(1):97-103. Link
21. Ahmadi M, Rahmani K, Rahmani A, Rahmani H. Removal of benzotriazole by Photo-Fenton like process using nano zero-valent iron: response surface methodology with a Box-Behnken design. Polish J Chem Technol 2017;19(1):104-12. Link
22. Rumky J, Ncibi MC, Burgos-Castillo RC, Deb A, Sillanpa M. Optimization of integrated ultrasonic-Fenton system for metal removal and dewatering of anaerobically digested sludge by Box-Behnken design. Sci Total Environ 2018;645:573-84. PMID: 30032079
23. Montgomery DC. Design and analysis of experiments. New Jersey: John Wiley & Sons; 2017.
24. Buyukada M. Prediction of photo catalytic degradation and mineralization efficiencies of basic blue 3 using TiO₂ by nonlinear modeling based on box–Behnken design. Arab J Sci Eng 2016;41(7):2631-46. Link

25. Jiang CC, Pang S, Ouyang F, Ma J, Jiang J. A new insight into Fenton and Fenton-like processes for water treatment. J Hazard Mater 2010;174(1-3):813-7. PMID: 19853996

26. Xu HY, Liu WC, Qi SY, Li Y, Zhao Y, Li JW. Kinetics and optimization of the decoloration of dyeing wastewater by a schorl-catalyzed Fenton-like reaction. J Serb Chem Soc 2014;79:361-77. Link

27. Bali U, Catalkaya EC, Sengul F. Photochemical degradation and mineralization of phenol: a comparative study. J Environ Sci Health A Tox Hazard Subst Environ Eng 2003;38:2259-75. PMID: 14524680

28. Zhao XK, Yang GP, Wang YJ, Gao XC. Photochemical degradation of dimethyl phthalate by Fenton reagent. J Photochem Photobiol A Chem 2004;161(2-3):215-20. Link

29. Catalkaya EC, Sengul F. Application of Box–Wilson experimental design method for the photo degradation of bakery’s yeast industry with UV/H₂O₂ and UV/H₂O₂/Fe (II) process. J Hazard Mater 2005;128(2-3):201-7. Link

30. Mohadesi M, Shokri A. Evaluation of Fenton and photo-Fenton processes for the removal of p-chloronitrobenzene in aqueous environment using Box–Behnken design method. Desal Water Treat 2017;81:199-208. Link

31. Lioua MJ, Lub MC, Chena JN. Oxidation of explosives by Fenton and photo-Fenton processes. Water Res 2003;37(13):3172-9. PMID: 14509704

32. Jafari MH, Bazrafshan E, Yari AR, Alizadeh M. Removal of azo dyes from aqueous solution using Fenton and modified Fenton processes. Health Scope 2014;3(2):15507. Link

33. Raut-Jadhav S, Saharan VK, Pinjari D, Sonawane S, Saini D, Pandit A. Synergetic effect of combination of AOP’s (Hydrodynamic Cavitation and H₂O₂) on the degradation of neonicotinoid class of insecticide. J Hazard Mater 2013;261:139-47. PMID: 23912079