RESEARCH ARTICLE

Lrh1 can help reprogram sexual cell fate and is required for Sertoli cell development and spermatogenesis in the mouse testis

Kellie S. Agrimson\(^a\), Anna Minkina\(^ab\), Danielle Sadowski\(^c\), Andrew Wheeler\(^c\), Mark W. Murphy\(^c\), Micah D. Gearhart\(^d\), Vivian J. Bardwell\(^1,2\), David Zarkower\(^1,2\)*

1 Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America, 2 University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota, United States of America

\(^a\) Current address: St. Catherine University, Saint Paul, Minnesota, United States of America

\(^b\) Current address: University of Washington, Seattle, Washington, United States of America

\(^c\) Current address: University of Arizona, Tucson, Arizona, United States of America

\(^*\) zarko001@umn.edu

Abstract

The mammalian nuclear hormone receptors LRH1 (NR5A2) and SF1 (NR5A1) are close paralogs that can bind the same DNA motif and play crucial roles in gonadal development and function. *Lrh1* is essential for follicle development in the ovary and has been proposed to regulate steroidogenesis in the testis. *Lrh1* expression in the testis is highly elevated by loss of the sex regulator *Dmrt1*, which triggers male-to-female transdifferentiation of Sertoli cells. While *Sf1* has a well-defined and crucial role in testis development, no function for *Lrh1* in the male gonad has been reported. Here we use conditional genetics to examine *Lrh1* requirements both in gonadal cell fate reprogramming and in normal development of the three major cell lineages of the mouse testis. We find that loss of *Lrh1* suppresses sexual transdifferentiation, confirming that *Lrh1* can act as a key driver in reprogramming sexual cell fate. In otherwise wild-type testes, we find that *Lrh1* is dispensable in Leydig cells but is required in Sertoli cells for their proliferation, for seminiferous tubule morphogenesis, for maintenance of the blood-testis barrier, for feedback regulation of androgen production, and for support of spermatogenesis. Expression profiling identified misexpressed genes likely underlying most aspects of the Sertoli cell phenotype. In the germ line we found that *Lrh1* is required for maintenance of functional spermatogonia, and hence mutants progressively lose spermatogenesis. Reduced expression of the RNA binding factor *Nxt2* likely contributes to the SSC defect. Unexpectedly, however, over time the *Lrh1* mutant germ line recovered abundant spermatogenesis and fertility. This finding indicates that severe germ line depletion triggers a response allowing mutant spermatogonia to recover the ability to undergo complete spermatogenesis. Our results demonstrate that *Lrh1*, like *Sf1*, is an essential regulator of testis development and function but has a very distinct repertoire of functions.
Liver receptor homolog 1 (Lrh1) and its sister gene steroidogenic factor 1 (Sf1) are implicated in a number of aspects of gonadal development and function in mammals. Sf1 plays essential roles in the gonads of both sexes; Lrh1 is important in the ovary but its role in the testis has not been reported. We therefore used mouse genetics to ask whether Lrh1 has any requirements in the testis. We found that Lrh1 is essential for establishment and function of Sertoli cells, which provide support for germ cell development. We also found that Lrh1 is required in the germ cells themselves to maintain functional stem cells that allow males to produce vast quantities of sperm throughout adult life. Surprisingly, after spermatogenesis failed in mutant males it recovered, and the mutant sperm were capable of fertilization. This finding demonstrates that severe germ cell depletion can trigger a response allowing spermatogenesis to occur even in the absence of Lrh1. We also found that Lrh1 is required for male-to-female reprogramming of gonadal cells. Together our results establish that Lrh1, like Sf1, is a key regulator of testis development and function, but with distinct functions. Our results also extend the potential use of LRH1 in reprogramming cell types.

Introduction

Formation of the mammalian gonad requires the coalescence of migrating primordial germ cells with somatic progenitor cells during fetal development, followed by complex and sexually dimorphic growth and differentiation programs that give rise to either male testes or female ovaries [1]. In both sexes the gonads play dual roles: they produce sex hormones and other signaling molecules that direct and support sexual differentiation and reproduction; and they produce gametes, either sperm or oocytes, that perpetuate the genome. The gonads become morphologically distinct and produce sexually specialized signaling molecules by about 13.5 days of embryonic development (E13.5). Gametogenesis begins shortly after birth in both sexes, and in males it continues life-long, supported by a robust and renewable population of spermatogonial stem cells (SSCs) [2].

Somatic sexual fate and the SSC population normally are stable but both require long-term maintenance. In the testis and the ovary, loss of key cell fate regulators (for example Dmrt1 in males or Foxl2 in females) can cause somatic cells to undergo sexual cell fate transdifferentiation, even in fully differentiated adult gonads [3–5]. The result is a reprogramming of male Sertoli cells to female granulosa-like cells or vice versa. This surprising finding demonstrates that continuous maintenance of somatic sex is required in the postnatal gonads of both sexes. In the germ line, loss of SSC regulators can result in a gradual depletion of SSCs, and hence of spermatogenesis, due to reduced self-renewal, proliferation, or both [6–8].

Among the major regulators of gonadal differentiation and function are a number of members of the nuclear hormone receptor transcription family. Two closely related family members, Steroidogenic factor 1 (Sf1; Nr5a1) and Liver receptor homolog 1 (Lrh1; Nr5a2) play crucial roles in the mammalian gonad [9]. These two genes formed by duplication in an ancestral vertebrate [10] and encode transcription factors that bind to similar or identical DNA motifs [11] (jaspar.genereg.net). Despite their identical or near-identical DNA binding properties [11–13], interaction with shared coregulators [9,14,15], and expression in an overlapping set of tissues and organs [9,16], SF1 and LRH1 have a number of distinct functions. These differences likely derive in part from differential expression levels in different cell types and in part from distinct coregulator interactions [9].
Sf1 and Lrh1 perform multiple roles in the gonads. One of these is steroidogenesis, and the two regulators are proposed to control key enzymes in steroidogenic cells both in the testis (in Leydig and Sertoli cells) and the ovary (in theca and granulosa cells) [9]. Sf1 expression has been reported to be higher in Sertoli and theca cells and Lrh1 higher in Leydig and granulosa cells [17–20]. Lrh1 expression has also been reported in meiotic and postmeiotic germ cells in the rat testis [17]. In the mouse testis Sf1 also promotes Mullerian duct regression by activating anti-Mullerian hormone (AMH) expression in Sertoli cells, regulates Leydig cell formation and survival, and promotes Sertoli cell differentiation and survival [21–23]. Indeed, heterozygosity of human SF1 is a major cause of 46,XY gonadal dysgenesis (a difference in sex development, or DSD), resulting in male-to-female sex reversal [24,25]. In females, deletion of Sf1 in granulosa cells in mice causes hypoplastic ovaries and infertility [26]. Lrh1 also is important in the ovary. Homozygous null mutations in Lrh1 are lethal due to embryonic arrest [27,28] but heterozygous females are viable and have impaired luteal function and reduced fertility [29]. Conditional deletion of Lrh1 in granulosa cells affects activation of primordial follicles and granulosa cell proliferation and function, and the conditionally mutant females are anovulatory and infertile [19,20,30,31]. In the testis, despite reports of expression in Leydig, Sertoli, and germ cells [17,32], the function of Lrh1 is poorly understood. Heterozygosity of Lrh1 in the mouse caused reduced circulating testosterone levels [33], either via a direct role in testicular steroidogenesis or an indirect effect through regulation of the hypothalamic-pituitary-gonadal axis.

LRH1 and SF1 also can regulate stem cell pluripotency and differentiation: either protein can replace OCT4 in embryonic stem cells and either can induce differentiation of mesenchymal stem cells [34,35]. Moreover, LRH1 can replace OCT4 in generation of induced pluripotent stem cells (iPSCs) [36]. Thus SF1 and LRH1 can function either to promote pluripotency or to promote differentiation, depending on cellular context.

This study focuses on the role of Lrh1 in the mouse testis. In wild-type animals Lrh1 is expressed at much higher levels in the ovary than the testis, consistent with its well established roles in granulosa cells. In XY gonads mutant for Dmrt1, however, we previously found that Lrh1 is highly upregulated prior to and during male-to-female transdifferentiation, consistent with it potentially playing a role in reprogramming Sertoli cells to granulosa-like cells. We have exploited a conditional Lrh1 allele [37] to test the role of Lrh1 in this transdifferentiation as well as to ask whether Lrh1, like Sf1, is important for normal development and function of the testis.

Using the conditional allele we find that Lrh1 plays a crucial role in sexual cell fate reprogramming: loss of Lrh1 in Sertoli cells largely blocked male-to-female transdifferentiation in Dmrt1 conditional mutant testes. Despite reports that Lrh1 is important for male steroidogenesis and is expressed at higher levels in Leydig than Sertoli cells, analysis of recent transcriptome data suggests it is not expressed in these cells, and we find that deletion of Lrh1 in Leydig cells has no obvious effect on testicular morphology or fertility. However, transcriptome data indicate that Lrh1 is expressed in neonatal and juvenile Sertoli cells. We find that Lrh1 is required for normal neonatal Sertoli cell expansion and for perinatal morphogenesis of seminiferous tubules, with mutant tubules disordered and deficient in blood-testis barrier function and unable to properly support spermatogenesis. Lrh1 also is expressed in undifferentiated spermatogonia including SSCs, and germ cell-specific loss of Lrh1 caused progressive loss of spermatogenesis, consistent with a failure of SSC maintenance and/or self-renewal. Unexpectedly, we found that Lrh1 mutant germ cells can regenerate to restore full spermatogenesis and can contribute to functional spermatozoa that pass the mutant allele to offspring. This regeneration occurs later in Lrh1 heterozygous germlines, which undergo a slower depletion. Our results indicate that Lrh1 activity is crucial for normal SSC maintenance or differentiation but mutant cells can be activated to restore fertility after germ cell depletion crosses a threshold level.
Results

Lrh1 is expressed in juvenile Sertoli cells and in putative SSCs in the mouse testis

We first examined \textit{Lrh1} expression to help gauge which cell types might require \textit{Lrh1} function. We were unable to identify a specific antibody for LRH1 immunofluorescence or an efficient in situ hybridization probe against the region deleted by the \textit{Lrh1} conditional allele. We therefore examined published mRNA sequencing data, comparing expression of \textit{Lrh1} to that of \textit{Sf1} and key cell type-specific markers. In transcriptome data from purified populations of fetal pre-Sertoli and postnatal Sertoli cells, \textit{Lrh1} mRNA was not detectable between E11.5 and E13.5 [38], but it was present at low levels relative to \textit{Sf1} in juvenile Sertoli cells at P5, P7 and P10 [39,40] and then it was very low or absent in P18 and adult Sertoli cells [39]. In fetal and adult Leydig cells (E14.5, E18.5, P10, P21, P56), \textit{Sf1} mRNA was abundant as expected but, counter to some previous reports, \textit{Lrh1} expression was not detected in Leydig cells at any stage [41]. Thus \textit{Lrh1} appears to be expressed in juvenile Sertoli cells but not in Leydig cells.

To assess \textit{Lrh1} expression in germ cells we analyzed single cell mRNA sequencing (scRNA-seq) data from fetal, juvenile, and adult testicular cells [42,43]. In germline scRNA-seq data from Law and colleagues [42], \textit{Lrh1} was expressed at low levels in E16.5 prospermatogonia and higher levels in postnatal germ cells, mainly in presumptive SSC precursors also expressing \textit{Id4} [44,45] (Fig 1A–1C). In contrast, \textit{Sf1} was not significantly detected in germ cells at these stages (Fig 1D). We also compared \textit{Lrh1} expression at these stages to that of the committed progenitor marker \textit{Ngn3} [46], and the differentiation marker \textit{Stra8} [47,48] (Fig 1E and 1F). At P3 and P6 \textit{Lrh1} expression was higher in \textit{Id4}-positive cells and low or absent in \textit{Ngn3}-positive committed progenitor cells and in \textit{Stra8}-positive differentiating spermatogonia. In summary, \textit{Lrh1} expression in the juvenile germline was primarily in SSCs and undifferentiated spermatogonia rather than committed or differentiating spermatogonia. This view was confirmed by analysis of seminiferous epithelium scRNA-seq data of Hermann and colleagues [43], comparing expression of \textit{Lrh1} and \textit{Sf1} to that of a panel of somatic and germ cell markers (S1 and S2 Figs). At P6, as expected, \textit{Sf1} was detected primarily in cells expressing the Sertoli cell marker \textit{Sox9} and the Leydig cell marker \textit{Cyp17a1}, while \textit{Lrh1} expression was absent from Sertoli and Leydig cells (S1 Fig) [43]. At this stage \textit{Lrh1} expression was detected mainly in germ cells expressing SSC markers including \textit{Zbtb16}, \textit{Etv5}, \textit{Rhox10}, \textit{Nanos2}, \textit{Tspan8}, \textit{Id4} and \textit{Gfra1}. Expression was lower or absent in committed and differentiating spermatogonia marked by \textit{Ngn3}, \textit{Stra8}, \textit{Dmrt1}, \textit{Piwi2}, \textit{Sohlh1}, \textit{Sohlh2} and \textit{Dmc1}, and in premeiotic cells strongly expressing \textit{Stra8}. Expression of \textit{Lrh1} was similar in the adult seminiferous epithelium, with expression primarily in undifferentiated spermatogonia including SSCs, and low or absent expression in differentiating spermatogonia and meiotic cells and in post-meiotic cells marked by \textit{Prm1} (S2 Fig). Together these analyses indicated that \textit{Lrh1} is expressed in juvenile Sertoli cells and in neonatal through adult SSCs and undifferentiated spermatogonia.

LRH1 promotes Sertoli-to-granulosa reprogramming when \textit{Dmrt1} is inactivated

Deletion of \textit{Dmrt1} in Sertoli cells causes elevated expression of an array of female regulators including \textit{Lrh1}, which is strongly upregulated in \textit{Dmrt1} mutant XY gonads [3]. Expression of these regulators, many of which normally are expressed during fetal ovary determination and differentiation, reprograms Sertoli cells to granulosa-like cells starting late in the first postnatal week [3,49]. Genetic analysis has confirmed that some of these regulators, including \textit{Foxl2}, \textit{Esr2} and \textit{Wnt} pathway components, are essential for Sertoli-to-granulosa transdifferentiation.
Fig 1. *Lrh1* is expressed in presumptive SSCs and undifferentiated spermatogonia. Analysis of scRNA-seq data of Law and colleagues [42]. (A) UMAP projection of data from prospermatogonia and spermatogonia isolated at E16 through P6 with developmental stages color coded as indicated in key. (B-F) Expression of *Id4*, *Lrh1*, *Sf1*, *Ngn3* and *Stra8* in isolated cells coded for expression level, with more intense blue color representing stronger expression.

https://doi.org/10.1371/journal.pgen.1010088.g001
Although loss of Lrh1 has not been shown to destabilize granulosa cell fate, Lrh1 does play an essential role in granulosa cell differentiation [20]. We hypothesized, therefore, that strong overexpression of Lrh1 might help promote the granulosa fate in Dmrt1 mutant Sertoli cells. To test this possibility we deleted Dmrt1 alone or together with Lrh1 in fetal Sertoli cells using Dhh-Cre [50] to recombine “floxed” alleles of both genes. We then examined the gonads one month postnatally by immunofluorescence, asking whether deletion of Lrh1 suppresses the transdifferentiation normally triggered by Dmrt1 loss. SOX9 and FOXL2 are sex-specific regulators of somatic cell fate that can be used to assess sexual cell fate and transdifferentiation [3,4,49]. In wild type XY gonads, as expected, Sertoli cells expressed SOX9, and FOXL2 was not detected (Fig 2A), whereas in wild type XX gonads granulosa cells expressed FOXL2 and SOX9 was not detected, other than non-specific background staining of ooplasm (Fig 2B). As previously reported [3], deletion of Dmrt1 in Sertoli cells results in loss of SOX9 expression and gain of FOXL2 expression in many cells as they adopt a female fate, together with depletion of male germ cells due to impaired somatic support. Dmrt1 conditional mutant XY gonads had abundant strongly FOXL2-positive cells, much like wild type XX ovaries (Fig 2C), but deletion of Dmrt1 together with even one copy of Lrh1 in XY gonads suppressed ectopic FOXL2, resulting in virtually all targeted cells instead expressing SOX9 (Fig 2D). Because Dmrt1 also is required not only for Sertoli fate maintenance but also for Sertoli cell maturation and support of spermatogenesis [51], the mutant gonads still lacked expanded tubule lumens and were severely depleted of germ cells (SOX9-negative cells with distinctive larger nuclei). Suppression of FOXL2 expression and rescue of SOX9 expression in Dmrt1 mutant gonads depleted for Lrh1 strongly suggests that LRH1 plays a crucial role in the reprogramming of Sertoli cell fate that occurs when DMRT1 is absent. Additionally, the nearly complete suppression of FOXL2 expression observed suggests that deletion of Lrh1 in Sertoli cells by Dhh-Cre was highly efficient.

Seminiferous tubule morphogenesis requires Lrh1

While reduced dosage of Lrh1 in Dmrt1 mutant XY gonads blocked transdifferentiation of Sertoli cells, gonads conditionally deleted for both genes also had greatly impaired seminiferous tubule morphogenesis (Fig 3). At 1.5 months, XY gonads conditionally mutant for Dmrt1 and one allele of Lrh1 expressed SOX9 and not FOXL2, as at one month, and they had smaller diameter tubules than controls lacking Dhh-Cre, at least partly due to depletion of germ cells (Fig 3A and 3B). Sertoli-specific loss of both Lrh1 alleles together with one or both Dmrt1 alleles (Fig 3C and 3D) more dramatically disrupted tubulogenesis, resulting in fewer and more highly disordered tubules. From these data we conclude that Lrh1 expression not only plays a crucial role in the transdifferentiation of Dmrt1 mutant Sertoli cells to granulosa-like cells but also is required for Sertoli cell support of germ cells and for normal seminiferous tubule morphogenesis.

Lrh1 is dispensable in Leydig cells for spermatogenesis and fertility

SF1 is essential for differentiation and function of Leydig cells [52]. Although mRNA profiling did not detect Lrh1 expression in either fetal or adult Leydig cells, LRH1 can bind the same target DNA motif as SF1 [11–13], and we considered the possibility that Lrh1 might be expressed at very low levels and play a role in Leydig cell development or function. We used Cyp17iCre [53] to delete Lrh1 specifically in Leydig cells in the fetal testis, confirming deletion by postnatal testis PCR, and examined testis histology and morphology and male fertility between postnatal day 10 (P10) and one year (Figs 4 and 5). At both P10 (Fig 4A and 4B) and one year (Fig 4C and 4D), testis morphology appeared normal: germ cells (TRA98-positive), Sertoli cells (interstitial, TRA98/SOX9 negative cells) were present in
normal numbers in conditionally targeted gonads relative to floxed controls lacking the Cyp17iCre transgene. Reproductive function also was normal in Leydig cell conditional mutants: testis size was unaffected at one year (Fig 5A); adult epididymis were filled with spermatozoa (Fig 5B and 5C); and conditionally-mutant males sired normal-sized litters. Conditionally-targeted Leydig cells also had normal expression of the key steroidogenic enzyme SCC (CYP11A1) (Fig 5D and 5E). Together with the lack of detectable Lrh1 expression in Leydig
cells, the lack of detectable phenotypes in Leydig-specific conditional mutants suggests that Lrh1 is dispensable in Leydig cells for normal development and fertility.

Lrh1 is required in Sertoli cells for postnatal proliferation and gametogenesis

Because our conditional genetics indicated that function of Lrh1 in the somatic gonad is primarily focused in Sertoli cells, we further examined this function. First we asked when loss of

Fig 3. Lrh1 is required in Sertoli cells for seminiferous tubule morphogenesis and spermatogenesis. Immunofluorescence (IF) and hematoxylin/eosin (H&E) staining for 6 week old testes of indicated genotypes: (A) Control testis homozygous for floxed alleles of Dmrt1 and Lrh1 but lacking Cre; (B) Mutant testis conditionally homozygous in Sertoli cells for Dmrt1 deletion and heterozygous for Lrh1 deletion; (C) Mutant testis conditionally heterozygous in Sertoli cells for Dmrt1 deletion and conditionally homozygous for Lrh1 deletion; (D) Mutant testis conditionally homozygous in Sertoli cells for both Dmrt1 and Lrh1 deletions. Dashed lines in left column indicate areas magnified in middle column. White scale bars: 100 um. Black scale bars: 50 um.

https://doi.org/10.1371/journal.pgen.1010088.g003
Lrh1 in Sertoli cells first affects tubule morphogenesis using Dhh-Cre, which is active in differentiating fetal Sertoli cells [50], and Sf1-Cre, which is active in fetal Sertoli and Leydig cells [54]. Between E15.5 and E18.5 gonad size, tubule morphology and expression of the Sertoli markers SOX9 and TRA98 appeared unaffected by deletion of Lrh1 with Dhh-Cre (S3A–S3D and S3G–S3J Fig). It was difficult to quantify the size of mutant tubules due to their irregular

Fig 4. Lrh1 is dispensable in Leydig cells. IF of control and Leydig cell conditional Lrh1 homozygous mutant testes at P10 (A,B) and one year (C,D), stained for Sertoli cell marker SOX9 (red), germ cell marker TRA98 (green), and DNA marker DAPI (blue). Scale bars: 100 um.

https://doi.org/10.1371/journal.pgen.1010088.g004
shapes but sectioning through the gonads showed qualitatively that mutant tubules were larger in diameter and less numerous by P0 (S3E, S3F, S3K and S3L Fig). Likewise, deletion of Lrh1 using either Dhh-Cre or Sf1-Cre compromised tubulogenesis by P1, leading to smaller gonads with fewer tubules (Fig 6A–6D). More germ cells were located centrally in the mutant tubules, possibly due to a reduced number of Sertoli cells and thus less available tubule epithelium. These results suggest that tubulogenesis defects arise perinatally. At P5 Dhh-Cre conditional mutant testes remained small and appeared to have reduced numbers of germ cells (Fig 7A and 7B). Sf1-Cre conditional mutants died after P1, presumably due to consequences of extra-gonadal deletion. To assess Sertoli cell numbers and proliferation in Dhh-Cre conditional mutants we quantified the number of SOX9-positive Sertoli cells per area and the proportion

Fig 5. Normal testis size, spermatogenesis and Leydig cell development in Leydig cell conditional mutants. (A) Intact testes from one year control and Leydig cell conditional homozygous mutant. (B,C) DAPI fluorescence of epididymis from one year control and Leydig cell conditional mutant. (D,E) IF of control and Leydig cell conditional Lrh1 mutant testes at P30 stained for Leydig cell marker SCC (green) and DAPI (blue). Scale bars: 100 um.

https://doi.org/10.1371/journal.pgen.1010088.g005
of BrdU-positive Sertoli cells at P3 and P5 (Fig 7C and 7D). We performed two-way ANOVA fit followed by post-hoc Tukey’s honest significance difference test. The number of Sertoli cells per area was affected by loss of \(Lrh1 \) (\(p = 5.18 \times 10^{-5} \)) but not by age (\(p = 0.441 \)). Proliferation rate determined by the fraction of BrdU-positive cells was affected by both loss of \(Lrh1 \).
We also examined Sertoli cell death by TUNEL labeling and did not observe any increase in P0 or P3 mutant testes. Together these results indicate that Lrh1 promotes expansion of Sertoli cell numbers during the previously described perinatal proliferative period [55].

We also asked whether the disrupted tubule morphology in Sertoli cell conditional mutants severely disrupts gametogenesis. At P10, testes with Lrh1 conditionally deleted in Sertoli cells were small and had dysgenic tubules in which Sertoli and germ cells were present but many were not properly localized to the tubule periphery (Fig 8A and 8B). At one year most tubules were small, irregular, and severely depleted of TRA98-positive germ cells, although some tubule sections did retain germ cells (Fig 8C and 8D). Tubules were malformed and testis size was severely reduced relative to controls (Fig 9A). H&E staining confirmed that a small

(p = 0.0291) and by age (p = 0.00988). We also examined Sertoli cell death by TUNEL labeling and did not observe any increase in P0 or P3 mutant testes. Together these results indicate that Lrh1 promotes expansion of Sertoli cell numbers during the previously described perinatal proliferative period [55].

We also asked whether the disrupted tubule morphology in Sertoli cell conditional mutants severely disrupts gametogenesis. At P10, testes with Lrh1 conditionally deleted in Sertoli cells were small and had dysgenic tubules in which Sertoli and germ cells were present but many were not properly localized to the tubule periphery (Fig 8A and 8B). At one year most tubules were small, irregular, and severely depleted of TRA98-positive germ cells, although some tubule sections did retain germ cells (Fig 8C and 8D). Tubules were malformed and testis size was severely reduced relative to controls (Fig 9A). H&E staining confirmed that a small
number of sections contained elongated spermatids and mature spermatozoa (Fig 9B), suggesting that Lrh1 mutant Sertoli cells were able to support complete gametogenesis, albeit with greatly reduced efficiency.

Sertoli cell tight junctions form the blood-testis barrier (BTB), which is present from puberty onward and is essential for spermatogenesis because it protects meiotic and

Fig 8. Lrh1 is required in Sertoli cells for sustained and robust spermatogenesis. IF of control and Dhh-Cre deleted Sertoli-specific Lrh1 conditional mutant testis sections stained for SOX9 (red), TRA98 (green) and DNA (DAPI, blue). (A,B) P10 testes, showing reduced testis size and disorganized tubules; (C,D) one year testes, showing presence of presence and absence of spermatogenesis in disorganized tubules. Scale bars: 100 um.

https://doi.org/10.1371/journal.pgen.1010088.g008
postmeiotic germ cells from immune surveillance [56]. We investigated the possibility that the disorganized tubules might have a compromised BTB that contributes to failure of gametogenesis. To test BTB function we assayed permeability of tubules to interstitially-injected biotin and found all tubules in the control excluded biotin but many tubules in the mutant gonads were biotin-permeable (Fig 9C and 9D). We did observe some biotin-impermeable tubules that lacked germ cells, suggesting that a compromised BTB is likely not the sole cause of the gametogenesis defects in mutants. Despite the presence of spermatids in the mutant testis we did not detect any spermatozoa in the epididymis of conditional mutants (Fig 9E and 9F). This absence might result from the very low numbers of mature testicular spermatozoa or from inefficient transport of spermatozoa from the disorganized mutant testis into the epididymis.
As expected from the lack of epididymal sperm, conditional mutant males were unable to sire progeny when mated to wild type females.

Sertoli cells play a central role in gonadal hormone production, so we evaluated testicular and circulating hormone levels in Sertoli-specific Lrh1 mutant males (Fig 10). We found that total testosterone levels were normal in testes of conditional mutants (3803 ng/dl, versus 4097 ng/dl in controls; p-value = 0.495). Average circulating testosterone was higher in mutants by

Fig 10. Lrh1 is required in Sertoli cells for feedback regulation of the hypothalamic-pituitary axis. Plots show mean and standard deviation for hormone levels in control (N = 12) and Dhh-Cre conditional Lrh1 mutant (N = 10) testes (A) or serum (B-E). Asterisks indicate statistically significant difference. Error bars: SEM.

https://doi.org/10.1371/journal.pgen.1010088.g010
about two-fold, 216 versus 107 ng/dl, but the difference was not statistically significant (p-value = 0.158; Fig 10A and 10B). Serum FSH was elevated about two-fold (from 88 to 208 ng/ml) with a highly significant p-value (p = 3.07 x 10^{-5}), and LH was elevated about eight-fold (from 0.35 to 2.6 ng/ml), also with a significant p-value (p = 0.014; Fig 10C and 10D). Sertoli cells normally limit FSH and LH release from the pituitary by feedback regulation; the elevated levels of these hormones suggested a possible defect in this feedback. We therefore assayed circulating inhibin B, a key feedback signal from Sertoli cells, and found that it was reduced about ten-fold, from 533 to 46 pg/ml (Fig 10E; p-value = 7.39 x 10^{-8}). Together these results suggest that at least some of the defects caused by Lrh1 loss in Sertoli cells may derive from failure of inhibin-mediated feedback to the hypothalamic-pituitary-gonadal axis.

To learn more about the nature of Sertoli cell defects in mutants we performed RNA-seq on testes from Sertoli-specific mutants at P3. Because mutant testes have 3-fold fewer Sertoli cells at this stage we only examined genes with >3-fold misexpression (S1 Table). To ensure that expression changes were robust we excluded genes with expression of less than 0.5 FPKM in control testes. This analysis identified 77 downregulated and 48 upregulated genes. Among these genes were a number with functions that potentially contribute to the Lrh1 mutant phenotype (Table 1). For example, downregulated genes have been shown to control Sertoli cell metabolism (Foxq1), cell adhesion and tight junctions (Cdh23, Cgn) and tubule organization (Erbb4). Sex hormone binding globulin (Shbg), which functions to retain androgens in the testis [57], also was downregulated. Among the upregulated were genes involved in blood-testis barrier.

Table 1. Genes linked to reproductive function that are regulated by Lrh1 in Sertoli cells.

Gene	Fold change	Reported functions	References (PMID)
Etd	-5.78	Novel testis-specific gene	12617826
Foxq1	-5.70	Forkhead TF; required for lactate metabolism in Sertoli cells and for spermatogenesis	34091745
GM2044	-5.46	lncRNA expressed in spermatocytes	29934815
Shbg	-5.02	Sex hormone binding globulin; expressed in Sertoli cells, required for testosterone retention	21613632
Cited1	-4.54	P300-interacting transactivator expressed in Sertoli cells	28459107
Masp1	-4.47	Sertoli-enriched serine peptidase; regulated by Inhibin A.	32274496
Cstdc1	-4.41	Sertoli-expressed cystatin-related protein; also called CstSC	18391548
Cdhh23	-4.29	Cadherin-23; mediates cell adhesion	30747484
Spp1	-4.23	Secreted phosphoprotein; expressed in Sertoli cells and spermatogonia; also called Osteopontin	15937924, 18240954
Gata1	-3.73	Sertoli-specific GATA TF; regulates Inhbb	12954777, 11075815
Pak6	-3.71	Testis-expressed p21-activated kinase; interacts with androgen and estrogen receptors	11278661, 11773441
Rasd1	-3.61	Ras-related protein; may mediate Sertoli proliferation	29162477
Sfrp4	-3.53	Secreted frizzled-related protein; regulated by Inhibin A	32274496
Aard	-3.51	Alanine- and arginine-rich domain protein; regulated by androgen receptor in Sertoli cells	17486547, 17959439
Sox9	-3.34	Sry-related TF; required for establishment of Sertoli cell fate	15056615
Cgn	-3.32	Tight junction protein	26821949
Esr2	-3.23	Estrogen receptor; may regulate Sertoli cell differentiation	24056172
Erbb4	-3.05	Receptor tyrosine kinase; required in Sertoli cells for tight junctions and tubule organization	25058600
Lrrc4c	4.53	Leucine rich repeat protein; copy number variation associated with human infertility	25439847
Nrg1	3.86	Neuregulin secreted signaling protein; regulates Sertoli proliferation, promotes SSC self-renewal	30040984, 25504872
Tgb2	3.48	TGF-beta signaling ligand; disrupts blood-testis barrier	18192323
Ngf	3.34	Nerve growth factor; regulates Sertoli cell energy metabolism and proliferation	28470720, 32567558
Cdkn1a	3.32	Cell cycle regulator, also called p21Cip1; regulates Sertoli cell proliferation; LRH1 represses Cdkn1a to stimulate proliferation in multiple cell types	15728790, 26400164, 25435372
Cyp1b1	3.18	P450 enzyme; stimulated by FSH and LH; regulated by LRH1	19074971, 25873311

https://doi.org/10.1371/journal.pgen.1010088.t001
barrier regulation (Tgfβ2), signaling regulation of SSC self-renewal (Nrg1), Sertoli cell energy metabolism and proliferation (Ngf), and Sertoli cell proliferation (Cdkn1a). The enlarged tubules in conditional mutant testes were reminiscent of those reported in testes mutant for the estrogen receptor gene Esr1 [58], suggesting a possible defect in estrogen signaling via ESR1. However, while Esr2 expression was reduced at P3, Esr1 expression was not significantly altered.

Lrh1 is required for SSC maintenance but not for recovery from germ cell depletion

Conditional deletion in somatic cells showed that Lrh1 is required cell non-autonomously in Sertoli cells for spermatogenesis. Next we asked whether Lrh1 also is autonomously required in the germ line. We used Nanos3-Cre [59] to delete Lrh1 in fetal germ cells from about E12.5 and examined germ line development from birth. We found that conditional mutant testes appeared normal for about one month postnatally but then underwent a progressive loss of spermatogenesis, with most tubule sections severely or completely depleted of germ cells by six months (Fig 11A–11D). Most tubule sections lacked germ cells entirely, suggesting a defect in SSC maintenance. In other depleted tubules there were small numbers of germ cells remaining. These cells had typical spermatogonial morphology were a mixture of cells expressing the undifferentiated spermatogonial marker PLZF and cells also expressing the differentiating spermatogonial marker STRA8 (Fig 12A and 12B). This pattern and the lack of more advanced germ cell types in most tubule sections suggests that mutants are unable to maintain a functional population of SSCs and spermatogonia. Testes were very small by six months and no sperm were detected in the epididymis at this stage (S4A and S4B Fig).

Unexpectedly, we found that spermatogenesis recovered in conditional mutant testes after six months, with recovery evident by eight months and nearly all tubules showing substantial spermatogenic cell profiles by one year (Figs 13A–13E and S5E) and spermatozoa reappearing in the epididymis by 8 months (S5G–S5I Fig). Progressive loss of spermatogenesis also occurred in heterozygous conditional mutants, but was delayed by several months relative to homozygotes; abundant germ cell deficient tubules appeared around eight months instead of six months, and severe depletion was evident at one year, a stage by which homozygous mutants had recovered abundant spermatogenesis (S5A–S5F Fig). At 8 months, heterozygous conditional mutants had greatly reduced epididymal sperm relative to controls and homozygotes (S5G and S5H Fig) and at one year, heterozygous conditional mutants had severely reduced testis size compared with controls and homozygous mutants (S6A–S6C Fig), and still had very few epididymal sperm, in contrast to the abundant sperm in controls and homozygous mutants (S6D–S6F Fig). The progressive loss of spermatogenesis was again consistent with a defect in spermatogonial function.

We considered possible explanations for the recovery of spermatogenesis in germ cell-specific Lrh1 mutants. A trivial explanation is that deletion of Lrh1 was not highly efficient and wild type cells remained that were able to repopulate the depleted tubules. To test this possibility, we bred three homozygous conditional mutant males to wild type females starting at one year of age, after spermatogenesis had recovered. We genotyped the offspring, asking whether the deleted Lrh1 allele was efficiently transmitted by mutant males. All offspring from eleven litters (89/89) were heterozygous for Lrh1, indicating that more than 98% of functional germ cells in the conditionally mutant males carried the mutant allele. We therefore conclude that germ line deletion of Lrh1 was highly efficient but surviving mutant germ cells can somehow be activated to re-establish spermatogenesis after severe depletion.

To learn more about the role of Lrh1 in spermatogonia we performed RNA-seq comparing germ line conditional mutant testes with heterozygous controls lacking Nanos3-Cre at P1,
seeking the earliest changes in gene expression that might underlie the later phenotype. We detected significant misexpression of only four genes at this stage in conditional mutants relative to controls lacking Cre: expression of the mitochondrial CoA transporter Slc25a42, the C-type lectin Chodl, and the cerebellin1 precursor Cbln1 was elevated, while expression of the nuclear RNA export factor Nxf2 was reduced (S1 Table). Of these four genes, only Nxf2 has
been reported to function in the testis. NXF2 is restricted to spermatogonia and spermatocytes within the testis, with nuclear localization in spermatogonia and localization to the nuclear periphery in spermatocytes [60]. Strikingly, deletion of Nxf2 in mice has revealed two functions: the gene is required for spermatogonial proliferation and SSC maintenance, and also, in a strain-dependent manner, for meiotic progression [61]. Since Nxf2 mutant mice exhibit age-dependent loss of spermatogenesis similar to that observed in Lrh1 germ cell-specific mutants [61], reduced Nxf2 expression might play a role in the Lrh1 germ line phenotype.

Discussion

Here we have used conditional genetics to explore the function of Lrh1 in the mouse testis. We find that Lrh1, like its close paralog Sfl, plays an essential role in testis development but, unlike Sfl, Lrh1 is required both in the somatic and germ cell lineages. Analysis of published RNA sequencing data showed that Lrh1 mRNA is expressed in neonatal and juvenile Sertoli cells and in juvenile and adult spermatogonia, but not in Leydig cells. Conditional gene targeting revealed that Lrh1 is essential in Sertoli cells for their normal development and function and is required in the germ line for SSC maintenance or function. Consistent with its lack of expression in this cell type, we found that Lrh1 does not appear to have an essential function in Leydig cells. In Sertoli cells Lrh1 was required for several distinct functions including neonatal proliferation, seminiferous tubule morphogenesis, support of spermatogenesis, blood-testis barrier integrity, and hormonal feedback to the hypothalamus/pituitary axis. In the germ line Lrh1 was required for sustained spermatogenesis, and the progressive loss of spermatogenesis in mutants, including loss of spermatogonia, suggests a defect in SSC maintenance, differentiation, or both. Profiling of mRNA in mutant testes identified a number of potential mediators...
Fig 13. Recovery of spermatogenesis in *Lrh1* germ cell mutant testes. (A-D) IF of sections from control or germ cell-specific Nanos3-Cre *Lrh1* mutant testes stained for SOX9 (red), TRA98 (green) and DAPI (blue) at eight months (A,B) and one year (C,D). Scale bars: 100 um. (E) Plot of germ cell composition of seminiferous tubules in germ cell mutant testes at six months and one year. Error bars: SEM.

https://doi.org/10.1371/journal.pgen.1010088.g013
of Lrh1 action in Sertoli cells and germ cells, some with well-established functions and some that are candidates for further analysis.

We also examined the role of Lrh1 in sexual cell fate reprogramming. These experiments were motivated by the previous observation that Lrh1 is highly overexpressed in XY testes mutant for Dmrt1 and undergoing male-to-female transdifferentiation [3]. Loss of Lrh1 strongly suppressed the formation of FOXL2-positive granulosa-like cells in Dmrt1 mutant XY testes, indicating that Lrh1 expression is required for this cell fate transformation. The mechanism by which Lrh1 promotes cell fate reprogramming in this context is unknown. It is noteworthy, however, that LRH1 can replace OCT4 in reprogramming cultured cells to pluripotency [36]. One possibility, therefore, is that LRH1 helps drive Sertoli cells to a more permissive and plastic chromatin state that can be more readily reprogrammed by other factors that are active when DMRT1 is missing.

We found similarities and differences in the roles of Lrh1 and its close paralog Sf1 in the testis. As summarized earlier, Sf1 plays important roles in development of both Sertoli and Leydig cells but appears to affect germ cell development only indirectly. In contrast, we find that Lrh1 is important and acts cell type autonomously in Sertoli cells and germ cells but is dispensable in Leydig cells. Sf1 is important for the earliest stages of fetal Sertoli cell determination and development. In contrast, Lrh1 appears to be required in Sertoli cells only from late fetal or perinatal stages. Both genes regulate sex hormone levels but they do so differently. Sf1 controls steroidogenesis in Leydig cells by controlling expression of key steroidogenic enzymes. Our results suggest that Lrh1 acts on steroidogenesis mainly via Sertoli cell feedback control of gonadotropins.

Loss of Lrh1 in the germ line caused a classic progressive failure of spermatogenesis that is suggestive of compromised SSC maintenance or differentiation. Strikingly, however, spermatogenesis recovered in the mutant gonads, and older mutant males were fertile. In heterozygous mutants spermatogenesis also failed progressively, but with a delay of several months relative to homozygotes, and it did not recover by one year. We confirmed, by breeding older homozygous males, that the gametes after recovery were mutant for Lrh1 and were not simply cells that escaped targeting. Since the repopulating germ cells were mutant, a puzzle is what allows spermatogenesis to recover after depletion, given that Lrh1 clearly is required in germ cells for sustained spermatogenesis prior to depletion. One idea is that germ line depletion reduces a signaling molecule needed for spermatogenesis but, beyond a critical threshold of depletion, Sertoli cells can respond by producing this molecule to restart spermatogenesis. A strong candidate for the signaling molecule would be retinoic acid (RA), which normally is produced by Sertoli cells in the juvenile testis to initiate spermatogonial differentiation and meiosis and later is produced by spermatocytes to help sustain steady state spermatogenesis [62]. Reactivated RA production in Sertoli cells might be sufficient to stimulate developmentally arrested Lrh1 mutant spermatagonia to differentiate when spermatocytes and other advanced germ cells are severely depleted. Another scenario, which is also speculative, is that a surviving population of quiescent “reserve” SSCs can be activated when germ cell depletion reaches a critical threshold and that these cells do not require Lrh1 for proliferation or differentiation. In either scenario, heterozygotes would fail to recover by one year because they reach the critical depletion threshold later than homozygotes. Testing these and other possible mechanisms will be a future challenge but our analysis documents a remarkable ability of the germ line to respond to and functionally recover from a severe genetic disruption.

This study establishes Lrh1 as a key regulator of testis development and function, performing essential functions both in somatic and germ line cells of the testis. We recently identified sex-biased differentially accessible regions (DARs) in Sertoli and granulosa cells that are likely to mediate sex-biased gene expression, and we found that these regions are enriched for the
DNA motif bound by SF1 and LRH1 [63]. Because LRH1 had no reported function in the testis, we suggested that these sites might be bound by SF1. Given the important role of LRH1 in Sertoli cells revealed by the present study, these sites also are candidates for LRH1 binding. It will be informative to perform comparative ChIP-seq or CUT&RUN analysis to learn which sites are bound by each protein in each cell type and whether they control separate or overlapping sets of target genes. These and other comparative approaches will help establish the relationship between this pair of nuclear hormone receptors in supporting male reproduction.

Materials and methods

Ethics statement

Experimental protocols and euthanasia protocols were approved by the University of Minnesota Animal Care and Use Committee (protocol number: 2106-39153A).

Mice

Mice were of mixed genetic background (129Sv and C57Bl/6j) and maintained in conventional housing facilities. Presence of a copulation plug in the morning was recorded as day E0.5.

Dhh-Cre mice [50] were provided by D. Meier, Sf1-Cre mice [54] were provided by K. Parker, Nanos3-Cre mice [59] were provided by Y. Saga, Cyp17iCre mice [53] were provided by C. Mendelsohn and M. Griswold. Lrh1 floxed mice [37] were provided by K. Schoonjans and J. Auwerx. For Sertoli and Leydig cell conditional gene targeting, males homozygous for the Lrh1 floxed allele were bred to females homozygous for the Lrh1 floxed allele and carrying a cell type-specific Cre transgene. Homozygous floxed offspring lacking Cre were used as controls for Dhh-Cre and Sf1-Cre experiments. Heterozygous floxed/wild type animals lacking Cre were used as controls for Nanos3-Cre phenotypic analysis and floxed/null animals lacking Cre were used as controls for Nanos3-Cre RNA-seq experiments. In all experiments, gonads from a minimum of three animals were examined for each genotype at each developmental stage described.

Genotyping

PCR genotyping on tail clip DNA for the Lrh1 floxed allele transgene was conducted using primers: 5’ (5’ GCT ATA GGG AGT CAG GAT ACC ATG G 3’) and 3’ (5’ GTT CGT ACC ACT TTC ATC TCC TCA CG 3’) which yield an approximately 300 bp band for the wild type allele and a 400 bp band for the floxed allele. Reactions ran for 35 cycles with a 30 second 60°C annealing step and a 1-minute 72°C elongation. To genotype the Lrh1 deleted allele the Lrh1 5’ primer was used with the deletion 3’ primer (5’ TCT GCA CAGCAG AAA ACC TCC 3’). 10% betaine was included in PCR reactions. Reactions ran 35 cycles with a 1 minute 60°C annealing step and 1 minute 72°C elongation. The deletion allele band is approximately 350 bp. Genotyping of the Dmrt1 floxed allele, and the Cyp17iCre, Nanos3-Cre, Dhh-Cre, and Sf1-Cre transgenes were as described [50,51,53,54,64].

Immunofluorescent staining

Immunofluorescence was performed on paraffin-embedded 5μm tissue sections after fixation with Bouin’s fixative (Sigma HT10132) or 4% paraformaldehyde (Electron Microscope Sciences 15710) diluted in PBS. Slides were stained overnight after antigen retrieval. Slides were blocked using donkey serum (S30-100ML Sigma-Aldrich) diluted to 10% in 1X PBS with 0.1% BSA (Sigma A9647) and 0.1% Tween 20 (Sigma P9416). The following primary antibodies
were used: rabbit anti-DMRT1 (1:400) [65]; rat anti-TRA98 (1:200) (Abcam ab82527); rabbit anti-SCC (1:200) (Chemicon AB1294); goat anti-GFP (1:600) (Novus NB100-1770); rat anti-BrdU (Abcam ab6326), rabbit anti-SOX9 (1:200) (EMD Millipore AB5535); rabbit anti-RFP (1:200) (Rockland 600401379); and goat anti-FOXL2 (1:200) (Abcam ab5096). The following secondary antibodies were used: Alexa Fluor 594 donkey anti-rabbit IgG (Invitrogen A21207); Alexa Fluor 488 donkey anti-rabbit IgG (Invitrogen A21206); Alexa Fluor 594 donkey anti-rat IgG (Invitrogen A21209); Alexa Fluor 488 donkey anti-rat IgG (Invitrogen A21208); Alexa Fluor 594 donkey anti-goat IgG (Life Technologies A11058); and Alexa Fluor 488 donkey anti-goat IgG (Invitrogen A11055). Slides were counterstained with DAPI diluted in PBS at 1 mg/ml (Thermo Scientific 62248) to detect nuclei. Slides were cover slipped (Fisher Scientific 22037298) in mounting medium (Permafluor, Thermo Scientific TA030FM).

Image capture
Immunofluorescence images were captured with a Zeiss Axio Imager Z1 microscope and Zeiss MRm camera, processed and false-colored using Zeiss Axiovision software. High magnification images were captured using Zeiss Apotome structured illumination. Histology (hematoxylin and eosin) images were captured with a Leica DMRB microscope using a Zeiss MRc camera and processed using Zeiss MRGrab software.

Sertoli cell numbers and BrdU incorporation
BrdU was injected intraperitoneally two hours prior to tissue collection and detected using rat anti-BrdU antibody (Abcam ab6326), as described [66]. SOX9-positive Sertoli cells with and without BrdU incorporation were counted from testis cross-sections separated by at least 20 um, with three cross-sections counted per animal and three animals per age and genotype. Testis section area was measured and used to normalize Sertoli cell numbers per square millimeter.

BTB permeability assay
Biotin permeability was assayed essentially as described [67,68] using freshly dissected testes from P60 mutant and control. Ten mg/ml of EZ-Link Sulfo-NHS-LC-Biotin (Pierce 21335) diluted in 1×PBS containing 1 mM CaCl₂ was injected into one testis while the other was injected with vehicle. Testis sections were stained with Alexa Fluor 594 conjugated streptavidin (Invitrogen S32356).

Mating test
Three one-year-old Lrh1^{fl/fl}; Nanos3-Cre males were bred to three fertile C57B6/J wildtype females. Eighty-nine offspring from eleven litters (three or more litters per male) were genotyped to ensure that the Lrh1 allele was deleted in male germ cells. All male and female offspring were found to be heterozygous for Lrh1, confirming transmission of the mutant allele.

Hormone measurements
Testicular and blood serum testosterone measurements, blood serum luteinizing hormone (LH), blood serum follicle stimulating hormone (FSH), and blood serum inhibin-B for control and mutant mice were performed by The University of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core. The intra-assay coefficient of variation for testicular testosterone measurements ranged from 0.4 to 10.5% and for serum measurements ranged from 0.1 to 19.2% for testosterone, 0 to 10% for LH, 0.3 to 8.9% for FSH, and 1.5 to 19.4% for
inhibin-B. Significance between the control and mutant assays was determined using a Two-sample Assuming Unequal Variances t-test. Samples analyzed were from twelve control and ten mutant mice. Six controls were eliminated from LH assays and four from inhibin-B assays due to sub-threshold values.

Analysis of seminiferous tubule content
Round tubule cross sections were examined from at least six testis sections separated by at least 20 μm from at least three animals per age and genotype (73–334 tubule sections per section). Tubules were classified as being Sertoli-only, containing spermatogonia, or containing both spermatogonia and more advanced germ cells (“other”). Statistical comparison was by paired Student’s t-test.

mRNA sequencing
P1 or P3 testes were harvested and homogenized in Trizol reagent (Thermo Fisher) and stored at -80°C prior to processing. Total RNA was extracted from the aqueous phase, mixed with ethanol and purified using the RNeasy kit protocols and reagents (Qiagen). RNA was quantified using the Qubit RNA assay (Thermo Fisher) and 400–500 ng total RNA per sample was used in stranded mRNA-seq library preparation (KAPA Biosystems, KK8481) for Illumina sequencing. Libraries were pooled and sequenced with 2x150 cycles paired-end to an average depth of 26 million reads per sample on a HiSeq 4000 by Genewiz (South Plainfield, NJ). Reads were trimmed using Trim Galore (v0.6.0) and cutadapt (v1.18) and assessed for quality with FastQC (v0.11.8). Trimmed reads were mapped with STAR (v2.7.2a) to the GRCm38 (mm10) genome. The GENCODE M25 gene annotation set was used to estimate strand-specific gene expression data with the Bioconductor package RSubread (v2.2.6). Differentially expressed genes were identified using DESeq2 (v1.28.1).

Supporting information
S1 Fig. Lrh1 expression in P6 seminiferous epithelium. UMAP projection of scRNA-seq data from Hermann and colleagues [43]. Level of expression in single cells is represented by blue color intensity.
(TIF)

S2 Fig. Lrh1 expression in adult seminiferous epithelium. UMAP projection of scRNA-seq data from Hermann and colleagues [43]. Level of expression in single cells is represented by blue color intensity.
(TIF)

S3 Fig. Sertoli-specific Lrh1 conditional mutant testes develop tubulogenesis defects perinatally. (A-F) IF staining of testis sections for Sertoli marker SOX9 (green) and DAPI (blue) comparing controls lacking Cre and Dhh-Cre deleted Lrh1 mutants. (A,B) E15.5, (C,D) E18.5, (E,F) P0 (G-L) IF staining of testis sections for germ cell marker TRA98 (green) and DAPI (blue) comparing controls lacking Cre and Dhh-Cre deleted Lrh1 mutants. (G,H) E15.5, (I,J) E18.5, (K,L) P0. Scale bars: 50 um.
(TIF)

S4 Fig. Lrh1 germ cell conditional mutants have small testes and severely depleted epididymal sperm at 6 months. (A) Intact testes from control and Nanos3-Cre deleted germ cell conditional mutant at 6 months. (B,C) H&E stained sections of epididymis from control and germ
S5 Fig. *Lrh1* heterozygous germ cell conditional mutants have delayed loss of spermatogenesis relative to homozygotes. (A-D) IF of testis sections stained for SOX9 (red), TRA98 (green) and DAPI (blue) showing presence of both Sertoli-only and spermatogenic tubules at 8 months (A,B) and mainly Sertoli-only tubules at 1 year (C,D). (E,F) Plots comparing percentage of seminiferous tubules with normal spermatogenesis in *Lrh1* heterozygous and homozygous germ cell conditional mutant testes (E) and distribution of tubule germ cell content (F) from 6 months to one year. (“Other” indicates mix of spermatogonia and advanced germ cells.) Error bars: SEM. (G-I) H&E stained sections of epididymi from control and germ cell conditional *Lrh1* mutants showing abundant epididymal sperm in homozygous mutant (I) but not in heterozygous mutant (H) at 8 months. White scale bars: 100 um. Black scale bars: 50 um.

S6 Fig. Spermatogenesis recovers in homozygous but not heterozygous germ cell conditional *Lrh1* mutants by one year. (A) *Lrh1* homozygous Nanos3-Cre deleted germ cell mutant testes are normal size and heterozygotes are severely reduced in size relative to controls at one year. (B-C) Plots showing observed testis size of collected heterozygous and homozygous mutant mice at 6 months, 8 months, and 1 year. (D-F) H&E stained sections of epididymi from control and germ cell conditional mutants showing abundant epididymal sperm in homozygous mutant (F) but not in heterozygous mutant (E) at 1 year. Scale bars: 50 um.

S1 Table. mRNA profiling data. Sheet 1: expression level (FPKM) of genes expressed in each experiment. Sheet 2: differentially expressed genes in Nanos-Cre deleted *Lrh1* mutant testes at P1. Sheet 3: differentially expressed genes in Dhh-Cre deleted *Lrh1* mutant testes at P3.

Acknowledgments

The authors thank J. Auwerx, M. Griswold, D. Meier, C. Mendelsohn, B. Murphy, K. Parker, Y. Saga and K. Schoonjans for providing mouse strains, N. Law and J. Oatley for sharing data ahead of publication, and J. Oatley for suggesting that Sertoli cells may reactivate RA production in *Lrh1* germ cell mutant testes. The authors also thank the University of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core, which is supported by Eunice Kennedy Shriver NICHD/NIH grant R24HD102061.

Author Contributions

Conceptualization: Kellie S. Agrimson, Anna Minkina, Mark W. Murphy, Micah D. Gearhart, Vivian J. Bardwell, David Zarkower.

Data curation: Micah D. Gearhart.

Formal analysis: Kellie S. Agrimson, Anna Minkina, Andrew Wheeler, Micah D. Gearhart, Vivian J. Bardwell.

Funding acquisition: Vivian J. Bardwell, David Zarkower.

Investigation: Kellie S. Agrimson, Anna Minkina, Danielle Sadowski, Andrew Wheeler, Mark W. Murphy.
Methodology: Mark W. Murphy, Micah D. Gearhart.

Software: Micah D. Gearhart.

Supervision: Kellie S. Agrimson, Vivian J. Bardwell, David Zarkower.

Validation: Micah D. Gearhart.

Visualization: Kellie S. Agrimson, Anna Minkina.

Writing – original draft: David Zarkower.

Writing – review & editing: Kellie S. Agrimson, Anna Minkina, Danielle Sadowski, Andrew Wheeler, Mark W. Murphy, Micah D. Gearhart, Vivian J. Bardwell.

References

1. Svingen T, Koopman P. Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev. 2013; 27(22):2409–26. https://doi.org/10.1101/gad.228080.113 PMID: 24240231

2. Fayomi AP, Orwig KE. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res. 2018; 29:207–14. https://doi.org/10.1016/j.scr.2018.04.009 PMID: 29730571

3. Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature. 2011; 476(7358):101–4. https://doi.org/10.1038/nature10239 PMID: 21775990

4. Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell. 2009; 139(6):1130–42. https://doi.org/10.1016/j.cell.2009.11.021 PMID: 20005806

5. Couse JF, Hewitt SC, Bunch DO, Sar M, Walker VR, Davis BJ, et al. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science. 1999; 286(5448):2328–31. https://doi.org/10.1126/science.286.5448.2328 PMID: 10600740

6. Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, et al. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 2004; 36(6):647–52. https://doi.org/10.1038/ng1366 PMID: 15156142

7. Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nature genetics. 2004; 36(6):653–9. https://doi.org/10.1038/ng1367 PMID: 15156143

8. Chan AL, La HM, Legrand JMD, Makela JA, Eichenlaub M, De Seram M, et al. Germline Stem Cell Activity Is Sustained by SALL4-Dependent Silencing of Distinct Tumor Suppressor Genes. Stem Cell Reports. 2017; 9(3):956–71. https://doi.org/10.1016/j.stemcr.2017.08.001 PMID: 28867346

9. Meinsohn MC, Smith OE, Bertolin K, Murphy BD. The Orphan Nuclear Receptors Steroidogenic Factor-1 and Liver Receptor Homolog-1: Structure, Regulation, and Essential Roles in Mammalian Reproduction. Physiol Rev. 2019; 99(2):1249–79. https://doi.org/10.1152/physrev.00019.2018 PMID: 30810078

10. Kuo MW, Postlethwait J, Lee WC, Lou SW, Chan WK, Chung BC. Gene duplication, gene loss and evolution of expression domains in the vertebrate nuclear receptor NR5A (Ftz-F1) family. Biochem J. 2005; 389(Pt 1):19–26. https://doi.org/10.1042/BJ20050005 PMID: 15725073

11. Yin Y, Morgunova E, Joima A, Kaasinen E, Sahu B, Khund-Sayeed S, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science. 2017; 356(6337). https://doi.org/10.1126/science.aaj2239 PMID: 28473536

12. Fayard E, Auwerx J, Schoonjans K. LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol. 2004; 14(5):250–60. https://doi.org/10.1016/j.tcb.2004.03.006 PMID: 15130581

13. Lala DS, Rice DA, Parker KL. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol. 1992; 6(6):1249–58. https://doi.org/10.1210/mend.6.8.1406703 PMID: 1406703

14. Iyer AK, McCabe ER. Molecular mechanisms of DAX1 action. Mol Genet Metab. 2004; 83(1–2):60–73. https://doi.org/10.1016/j.ymgme.2004.07.018 PMID: 15464421

15. Xu PL, Liu YQ, Shan SF, Kong YY, Zhou Q, Li M, et al. Molecular mechanism for the potentiation of the transcriptional activity of human liver receptor homolog 1 by steroid receptor coactivator-1. Mol Endocrinol. 2004; 18(8):887–905. https://doi.org/10.1210/me.2003-0334 PMID: 15143151
16. Sirianni R, Seely JB, Attia G, Stocco DM, Carr BR, Pezzi V, et al. Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes. J Endocrinol. 2002; 174(3):R13–7. https://doi.org/10.1677/joe.0.174r013 PMID: 12208674

17. Pezzi V, Sirianni R, Chimento A, Maggiolini M, Bourguiba S, Delalande C, et al. Differential expression of steroidogenic factor-1/adrenal 4 binding protein and liver receptor homolog-1 (LRH-1)/fetoprotein transcription factor in the rat testis: LRH-1 as a potential regulator of testicular aromatase expression. Endocrinology. 2004; 145(5):2186–96. https://doi.org/10.1210/en.2003-1366 PMID: 14736734

18. Hinshelwood MM, Repa JJ, Shelton JM, Richardson JA, Mandelsdorf DJ, Mendelson CR. Expression of LRH-1 and SF-1 in the mouse ovary: localization in different cell types correlates with differing function. Mol Cell Endocrinol. 2003; 207(1–2):39–45. https://doi.org/10.1016/s0303-7207(03)00257-0 PMID: 12971282

19. Jeyasuria P, Ikeda Y, Jamin SP, Zhao L, De Rooij DG, Themmen AP, et al. Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in gonadal function. Mol Endocrinol. 2004; 18(7):1610–9. https://doi.org/10.1210/me.2003-0040 PMID: 15118069

20. Duggavathi R, Volle DH, Mataki C, Antal MC, Messadegh N, Auwerx J, et al. Liver receptor homolog 1 is essential for ovulation. Genes Dev. 2008; 22(14):1871–6. https://doi.org/10.1101/gad.427008 PMID: 18628394

21. Ananthathmakula P, Miryala CSJ, Moreci RS, Kyathanahalli C, Hassan SS, Condon JC, et al. Steroidogenic Factor 1 (Nr5a1) is Required for Sertoli Cell Survival Post Sex Determination. Sci Rep. 2019; 9(1):4452. https://doi.org/10.1038/s41598-019-41051-0 PMID: 30872705

22. Shen WH, Moore CC, Ikeda Y, Parker KL, Ingraham HA. Nuclear receptor steroidogenic factor 1 regulates the mullerian inhibiting substance gene: a link to the sex determination cascade. Cell. 1994; 77(5):651–61. https://doi.org/10.1016/0092-8674(94)90057-1 PMID: 8205615

23. Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell. 1994; 77(4):481–90. https://doi.org/10.1016/0092-8674(94)90211-9 PMID: 8187173

24. Mallet D, Bretones P, Michel-Calear M, Djoud J, David M, Morel Y. Gonadal dysgenesis without adrenal insufficiency in a 46, XY patient heterozygous for the nonsense C16X mutation: a case of SF1 haploinsufficiency. J Clin Endocrinol Metab. 2004; 89(10):4829–32. https://doi.org/10.1210/jc.2004-0673 PMID: 15472171

25. Lin L, Philibert P, Ferraz-de-Souza B, Kelberman D, Homfray T, Albanese A, et al. Heterozygous missense mutations in steroidogenic factor 1 (SF1/Ad4BP, NRSF1) are associated with 46,XY disorders of sex development with normal adrenal function. J Clin Endocrinol Metab. 2007; 92(3):391–9. https://doi.org/10.1210/jc.2006-1672 PMID: 17200175

26. Pelusi C, Ikeda Y, Zubair M, Parker KL. Impaired follicle development and infertility in female mice lacking steroidogenic factor 1 in ovarian granulosa cells. Biol Reprod. 2008; 79(6):1074–83. https://doi.org/10.1095/biolreprod.108.069435 PMID: 18703422

27. Labelle-Dumais C, Jacob-Wagner M, Pare JF, Belanger L, Dufort D. Nuclear receptor NR5A2 is required for proper primitive streak morphogenesis. Dev Dyn. 2006; 235(12):3359–69. https://doi.org/10.1002/dvdy.20996 PMID: 17075876

28. Pare JF, Malenfant D, Courtemanche C, Jacob-Wagner M, Roy S, Allard D, et al. The fetoprotein transcription factor (FTF) gene is essential to embryogenesis and cholesterol homeostasis and is regulated by a DR4 element. J Biol Chem. 2004; 279(20):21206–16. https://doi.org/10.1074/jbc.M401523200 PMID: 15014077

29. Labelle-Dumais C, Pare JF, Belanger L, Farookhi R, Dufort D. Impaired progesterone production in Nr5a2/- mice leads to a reduction in female reproductive function. Biol Reprod. 2007; 77(2):217–25. https://doi.org/10.1095/biolreprod.106.059121 PMID: 17409375

30. Meinsohn MC, Hughes CHK, Estienne A, Saactioglu HD, Pepin D, Duggavathi R, et al. A role for orphan nuclear receptor liver receptor homolog-1 (LRH-1, NR5A2) in primordial follicle activation. Sci Rep. 2021; 11(1):1079. https://doi.org/10.1038/s41598-020-80178-4 PMID: 33441767

31. Meinsohn MC, Morin F, Bertolin K, Duggavathi R, Schoonjans K, Murphy BD. The Orphan Nuclear Receptor Liver Homolog Receptor-1 (Nr5a2) Regulates Ovarian Granulosa Cell Proliferation. J Endocrinol Soc. 2018; 2(1):24–41. https://doi.org/10.1210/js.2017-00329 PMID: 29379893

32. Hinshelwood MM, Shelton JM, Richardson JA, Mandelson CR. Temporal and spatial expression of liver receptor homologue-1 (LRH-1) during embryogenesis suggests a potential role in gonadal development. Dev Dyn. 2005; 234(1):159–68. https://doi.org/10.1002/vdev.20490 PMID: 16003771

33. Volle DH, Duggavathi R, Magnier BC, Houten SM, Cummins CL, Lobaccaro JM, et al. The small heterodimer partner is a gonadal gatekeeper of sexual maturation in male mice. Genes Dev. 2007; 21(3):303–15. https://doi.org/10.1101/gad.409307 PMID: 17289919
Helsel AR, Yang QE, Oatley MJ, Lord T, Sablitzky F, Oatley JM. ID4 levels dictate the stem cell state in mouse gonadal cells from retinoid-dependent sexual transdifferentiation. Dev Cell. 2014; 29(5):511–20. https://doi.org/10.1016/j.devcel.2014.04.017 PMID: 24856513

Coste A, Dubuquoy L, Barmouin R, Annicotte JS, Magnier B, Notti M, et al. LRH-1-mediated glucocorticoid synthesis in enterocytes protects against inflammatory bowel disease. Proc Natl Acad Sci U S A. 2008; 105(39):14976–80. https://doi.org/10.1073/pnas.0807297105 PMID: 18799751

Miyabayashi K, Shima Y, Inoue M, Sato T, Baba T, Ohkawa Y, et al. Alterations in Fetal Leydig Cell gene expression during fetal and adult development. Sex Dev. 2017; 11(2):53–63. https://doi.org/10.1109/00453323 PMID: 27960177

Yoshida S, Takakura A, Ohbo K, Abe K, Wakabayashi J, Yamamoto M, et al. Neurogenin3 delineates male gonadal cells from retinoid-dependent sexual transdifferentiation. Dev Cell. 2014; 29(6):511–20. https://doi.org/10.1016/j.devcel.2014.04.017 PMID: 24856513

Law NC, Oatley MJ, Oatley JM. Developmental kinetics and transcriptome dynamics of stem cell specification in the spermatogonial lineage. Nat Commun. 2019; 10(1):2787. https://doi.org/10.1038/s41467-019-10596-0 PMID: 31243261

Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen IC, et al. The Mammalian Spermatogenesis Single-Cell Transcriptome, from Spermatogonial Stem Cells to Spermatids. Cell Rep. 2018; 25(6):1650–67 e8. https://doi.org/10.1016/j.celrep.2018.10.026 PMID: 30404016

Chan F, Oatley MJ, Kaucher AV, Yang QE, Bieberich CJ, Calvel P, et al. The dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis. Mol Endocrinol. 2015; 29(4):627–42. https://doi.org/10.1210/me.2014-1356 PMID: 25710594

Zimmermann C, Stevant I, Borel C, Conne B, Pitetti JL, Calvel P, et al. Research resource: the dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis. Mol Endocrinol. 2015; 29(4):627–42. https://doi.org/10.1210/me.2014-1356 PMID: 25710594

Lindeboom F, Gillemans N, Karis A, Jaegle M, Meijer D, Gросved F, et al. A tissue-specific knockout reveals that Gata1 is not essential for Sertoli cell function in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci U S A. 2008; 105(38):14976–80. https://doi.org/10.1073/pnas.0807297105 PMID: 18799751

Zhou Q, Li Y, Nie R, Friel P, Mitchell D, Evanno RM, et al. Expression of stimulated by retinoic acid gene 8 (Stra8) and maturation of murine gonocytes and spermatogonia induced by retinoic acid in vitro. Biol Reprod. 2008; 78(3):537–45. https://doi.org/10.1095/biolreprod.107.064337 PMID: 18032419

Minkina A, Matson CK, Lindeman RE, Ghyselinck NB, Bardwell VJ, Zarkower D. DMRT1 protects male gonadal cells from retinoid-dependent sexual transdifferentiation. Dev Cell. 2014; 29(6):511–20. https://doi.org/10.1016/j.devcel.2014.04.017 PMID: 24856513

Kim S, Bardwell VJ, Zarkower D. Cell type-autonomous and non-autonomous requirements for Dmrt1 in postnatal testis differentiation. Dev Biol. 2007; 307(2):314–27. https://doi.org/10.1016/j.ydbio.2007.04.046 PMID: 17540358

Karpova T, Ravichandiran K, Insiessmay L, Rice D, Agbor V, Heckert LL. Steroidogenic factor 1 differentially regulates fetal and adult Leydig cell development in male mice. Biol Reprod. 2015; 93(4):83. https://doi.org/10.1095/biolreprod.115.131193 PMID: 26269506
53. Bridges PJ, Koo Y, Kang DW, Hudgins-Spivey S, Lan ZJ, Xu X, et al. Generation of Cyp17iCre transgenic mice and their application to conditionally delete estrogen receptor alpha (Esr1) from the ovary and testis. Genesis. 2008; 46(9):499–505. https://doi.org/10.1002/dvg.20428 PMID: 18781648

54. Bingham NC, Verma-Kurvari S, Parada LF, Parker KL. Development of a steroidogenic factor 1/Cre transgenic mouse line. Genesis. 2006; 44(9):419–24. https://doi.org/10.1002/dvg.20231 PMID: 16937416

55. Vergouwen RP, Jacobs SG, Huiskamp R, Davids JA, de Rooij DG. Proliferative activity of gonocytes, Sertoli cells and interstitial cells during testicular development in mice. J Reprod Fertil. 1991; 93(1):233–43. https://doi.org/10.1530/jrf.0.0930233 PMID: 1920294

56. Kaur G, Thompson LA, Dufour JM. Sertoli cells—immunological sentinels of spermatogenesis. Semin Cell Dev Biol. 2014; 30:36–44. https://doi.org/10.1016/j.semcdb.2014.02.011 PMID: 24603046

57. Hammond GL. Diverse roles for sex hormone-binding globulin in reproduction. Biol Reprod. 2011; 85(3):431–41. https://doi.org/10.1095/biolreprod.111.092593 PMID: 21613632

58. Goulding EH, Hewitt SC, Nakamura N, Hamilton K, Korach KS, Eddy EM. Ex3alphaER KO male infertility phenotype recapitulates the alphaERKO male phenotype. J Endocrinol. 2010; 207(3):281–8. https://doi.org/10.1677/JOE-10-0290 PMID: 20833731

59. Suzuki H, Tsuda M, Kiso M, Saga Y. Nanos3 maintains the germ cell lineage in the mouse by suppressing both Bax-dependent and-independent apoptotic pathways. Dev Biol. 2008; 318(1):133–42. https://doi.org/10.1016/j.ydbio.2008.03.020 PMID: 18436203

60. Wang PJ, Pan J. The role of spermatogonially expressed germ cell-specific genes in mammalian meiosis. Chromosome Res. 2007; 15(5):623–32. https://doi.org/10.1007/s10577-007-1141-2 PMID: 17674150

61. Pan J, Eckardt S, Leu NA, Buffone MG, Zhou J, Gerton GL, et al. Inactivation of Nxf2 causes defects in male meiosis and age-dependent depletion of spermatogonia. Dev Biol. 2009; 330(1):167–74. https://doi.org/10.1016/j.ydbio.2009.03.022 PMID: 19345203

62. Ravereau M, Gely-Pernot A, Feret B, Dennefeld C, Benoit G, Davidson I, et al. Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis. Proc Natl Acad Sci U S A. 2012; 109(41):16582–7. https://doi.org/10.1073/pnas.1214936109 PMID: 23012458

63. Lindeman RE, Murphy MW, Agrimson KS, Gewiss RL, Bardwell VJ, Gearhart MD, et al. The conserved sex regulator DMRT1 recruits SOX9 in sexual cell fate reprogramming. Nucleic Acids Res. 2021; 49(11):6144–64. https://doi.org/10.1093/nar/gkaa448 PMID: 34096593

64. Suzuki A, Saga Y. Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev. 2008; 22(4):430–5. https://doi.org/10.1101/gad.1612708 PMID: 18281459

65. Raymond CS, Murphy MW, O’Sullivan MG, Bardwell VJ, Zarkower D. Dmr1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev. 2000; 14(20):2587–95. https://doi.org/10.1101/gad.834100 PMID: 11040213

66. Matson CK, Murphy MW, Griswold MD, Yoshida S, Bardwell VJ, Zarkower D. The mammalian double-sex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells. Dev Cell. 2010; 19(4):612–24. https://doi.org/10.1016/j.devcel.2010.09.010 PMID: 20951351

67. Perez CV, Sobarzo CM, Jacobo PV, Pellizzari EH, Cigorraga SB, Denduchis B, et al. Loss of occludin expression and impairment of blood-testis barrier permeability in rats with autoimmune orchitis: effect of interleukin 6 on Sertoli cell tight junctions. Biol Reprod. 2012; 87(5):122. https://doi.org/10.1095/biobreprod.112.101709 PMID: 23018187

68. Jauregui EJ, Mitchell D, Topping T, Hogarth CA, Griswold MD. Retinoic acid receptor signaling is necessary in steroidogenic cells for normal spermatogenesis and epididymal function. Development. 2018; 145(13). https://doi.org/10.1242/dev.160465 PMID: 29899137