Pliocene–Pleistocene radiolarian and diatom biostratigraphy of ODP Hole 709C (equatorial Indian Ocean)

Simon K. Haslett¹, Kevin Kennington², Brian M. Funnell³ & Claire L. Kersley³

¹Faculty of Applied Sciences, Bath College of Higher Education, Newton Park, Newton St. Loe, Bath BA2 9BN, UK
²School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
³Grafham Carbons, Grafham Water Works, Perry, Huntingdon PE18 0BW, UK

ABSTRACT - Ocean Drilling Program (ODP) Hole 709C was drilled on Madingly Rise in the equatorial Indian Ocean. Thirteen radiolarian and diatom events were identified in the Pliocene to Early Pleistocene section studied. Five radiolarian zones could be recognized: Anthocyrtidium angulare, Pierocanium prismatium, Anthocyrtidium jenghisi, Sichocorys peregrina, and Phormostichoartus doliolum zones. The LAD of P. prismatium was found to be an unreliable indicator of the base of the A. angulare zone in Hole 709C and in other upwelling areas. Accordingly, the base of the A. angulare zone is redefined here by the FAD of A. angulare. The Phormostichoartus fusa zone, which normally separates the S. peregrina and P. doliolum zones, could not be identified due to the scarcity of P. fusa. Standard tropical diatom Pliocene–Pleistocene zones and subzones were identified: Nitzschia reinholdii, Rhizosolenia praebelongii, and Nitzschia joueae zones. The development of oxygen isotope calibrated dates enabled the dating of some radiolarian events: FAD A. angulare 1.65 Ma.; LAD Thecocorythium vertulum 2 Ma., LAD A. jenghisi 2.27 Ma.; FAD Theocalyptra daniana 2.33 Ma., FAD Thecocorythium trachelium 2.33 Ma., and FAD Lamprocyrtes neoheteroporus 2.4 Ma. J. Micropalaeontol. 14(2): 135–143, October 1995.

INTRODUCTION

The primary objective behind the drilling of Site 709 in the equatorial Indian Ocean, was to retrieve a continuous Neogene sediment sequence from which carbonate preservation variability throughout time could be assessed. Hole 709C was one of three holes drilled at the Site, with 327.9 m of core recovered at a total recovery rate of 93%, spanning the Eocene through to Recent. The first 20 cores representing the topmost 189.1 m of sediment, achieved almost 100% core recovery (Shipboard Scientific Party, 1988).

Most shipboard and post-cruise micropalaeontological work was carried out on calcareous microfossils: calcareous nanofossils (Fornaciari et al., 1990; Matsuoka & Okada, 1990; Okada, 1990; Rio et al., 1990), and foraminifera (Boersma, 1990; Premoli-Silva & Spezzaferri, 1990; Haslett & Kersley, 1995). Siliceous microfossils were also investigated: radiolaria (Johnson, 1990; Haslett, 1992; Haslett et al., 1994) and diatoms (Mikkelsen, 1990; Fenner & Mikkelsen, 1990; Kennington, 1992). From the three holes drilled at Site 709, Johnson (1990) concentrated on 709A to provide the Pliocene–Pleistocene radiolarian biostratigraphy, whilst using 709C to provide biostratigraphical data for Eocene–Oligocene sediments. Mikkelsen (1990) investigated the Pliocene–Pleistocene diatom biostratigraphy of 709C, but the resolution was low with some samples spaced more than 4 m apart. Fenner & Mikkelsen (1990) studied only Eocene–Oligocene diatoms.

The main purpose of the present study was to provide detailed biostratigraphical information, using radiolarian and diatom datum levels. The 709C radiolarian data are then compared with a recent palaeomagnetically constrained radiolarian biostratigraphical scheme from the Indian Ocean (Johnson et al., 1989).

At the present time the surface oceanography of the equatorial Indian Ocean is influenced by the seasonal variation of the monsoonal gyre. The seasonal changes involve the complete reversal of the prevailing wind field between the northeast and southwest monsoons. A distinct hydrochemical front, located approximately 10°S (Wyrtki, 1973), separates upwelling waters of the reversing gyre to the north from surface waters of the subtropical gyre to the south. North of the hydrochemical front (Site 709 is situated near 4°S), the surface waters possess higher nutrient levels and support correspondingly higher productivity. In the subtropical gyre both nutrient levels and productivity are low. The higher concentration of biogenic opal present in sediment north of 10°S (Leinen et al., 1986) is linked with the higher nutrient and productivity levels of the surface waters. This scenario is probably valid at least as far back as the middle Miocene (Johnson, 1990).

MATERIAL & METHODS

Hole 709C was drilled as part of Ocean Drilling Program (ODP) Leg 115, and is located in the equatorial Indian Ocean, in a small basin near the summit of Madingly Rise, a regional topographic high between the Carlsberg Ridge and the western Mascarene Plateau. Its position is Latitude 03°54.9'S, Longitude 60°33.1'E.

At Hole 709C the water depth is 3040.8 m with bottom felt (distance from rig floor to sea floor) at 3048.7 m. The total length of cored section was 353.7 m (to 3391.9 m) with 327.9 m of total core recovered. The samples used for Pliocene–Pleistocene radiolarian and diatom slide prepara-
tion range from 3/1/5–7 cm (hydraulic piston core/APC No. 3) to 6/2/5–7 cm (APC 6), spanning a depth in metres below sea-floor from 15.45 mbsf to 45.85 mbsf.

The basic lithology consisted of foraminifera-bearing nannofossil oozes, largely homogeneous but with some bioturbation. The sediment varies in colour from very light grey, through light greenish grey to white with some pyrite-stained burrows in sections 1 and 3 of Core 3. Core 5 possesses 26 thin interbedded horizons of very light grey and light greenish grey foraminifera-bearing nannofossil ooze concentrated in sections 2 and 4. Core 6 possesses 35 thin interbedded horizons of very light grey, light grey and very light greenish grey foraminifera-bearing nannofossil ooze distributed throughout the core (Shipboard Scientific Party, 1988).

Samples were provided as <150 μm dried residues (Andrews et al., 1990). Normally, 1 g of sediment was processed. Aliquots of the complete <150 μm fraction were used in the preparation of slides for diatom analysis, whilst a 63–150 μm fraction was used to concentrate radiolaria (Mullineaux & Westberg-Smith, 1986; Haslett & Robinson, 1991). 1 g of sediment from each sample was placed in 10 ml plastic test-tubes. Dilute hydrochloric acid (HCl) was added and agitated until all the carbonate had been dissolved. When the reaction was complete (no more effervescence) the samples were washed with distilled water to dilute and remove the HCl. The samples were then centrifuged and the supernatant decanted. This process was repeated before 10 ml of the deflocculent sodium hexametaphosphate (in solution) was added. The sample was again centrifuged and the supernatant decanted. Further rinsing, centrifuging and decanting was carried out until the sediment was seen to be ‘clean’.

A small quantity of sample was withdrawn with one squeeze of a pipette and then released onto a glass coverslip. The coverslips were left to dry on an even surface (i.e. microscope slide. The slide was inverted and used to pick up a pea-sized blob of Naphrax (Northern Biological Supplies, Ipswich) was pipetted onto a labelled glass. When dry, a pea-sized blob of Naphrax (Northern Biological Supplies, Ipswich) was pipetted onto a labelled glass. When dry, a pea-sized blob of Naphrax (Northern Biological Supplies, Ipswich) was pipetted onto a labelled glass. A coverslip using the natural tackiness of the mountant. Slides were placed on a warm hotplate to enable the mounting medium to spread evenly and also to expel any air bubbles (without allowing the mountant to boil). When the mounting medium reached the edges of the coverslip, the slides were removed from the hotplate and left to set. Two or three slides were prepared for each sample in case of breakage. These slides were then used for diatom analysis.

To concentrate radiolaria the remaining sediment in the plastic test-tubes were thoroughly washed through a 63 μm sieve. After washing, distilled water was used to channel the remaining 63–150 μm fraction into labelled storage vials or beakers. Slides were prepared as above with the exception that Canada Balsam was used as the mounting agent. In the first instance, slides were examined at regularly spaced core intervals of no more than 2 m apart. Additional slides were then examined to identify radiolarian and diatom datum levels more accurately.

The sample processing method employed here reflects the essentially non-quantitative approach taken in this particular biostratigraphical study and differs from processing techniques used for palaeoenvironmental analysis.

BIOSTRATIGRAPHY

Radiolaria

Radiolarian zonal schemes relating to the tropical Indian Ocean are few in comparison with those proposed for the tropical Pacific (Nigrini, 1971; Johnson & Knoll, 1975; Riedel & Sanfilippo, 1978; Theyer et al., 1978; Goll, 1980; Nigrini, 1985). Johnson (1990) employed a standard low latitude Cenozoic radiolarian zonation (Sanfilippo et al., 1985), although in many instances this proved unsatisfactory. Partly in response to problems recognized in applying the zonation of Sanfilippo et al. (1985) to equatorial Indian Ocean Pliocene–Pleistocene sediments, Johnson et al. (1989) proposed a new zonation calibrated by palaeomagnetic age data. The Quaternary part of the zonation is essentially similar to the standard zonation; however, the Late Pliocene has been divided into six zones, which are equivalent to only two zones of the standard zonation. This biostratigraphical refinement has largely been made possible by taxonomic reviews of the radiolarian genera Anthocystidium (Nigrini & Caulet, 1988) and Pterocorys (Caulet & Nigrini, 1988). Unfortunately, due to the sporadic occurrence of a number of species belonging to these genera, some standard radiolarian events cannot be identified at Site 709 (Johnson, 1990). These events include the LAD (last appearance datum) of Anthocystidium nosicaca Caulet, FAD (first appearance datum) of A. euryclathrum Nigrini & Caulet, FAD of Pterocorys zancleus (Mueller), LAD of A. ehrenbergi (Stohr), and the LAD of A. prolatum (Nigrini & Caulet). Johnson (1990) noted that Theocorythium vetulum Nigrini was also virtually absent and that members of the Spongaster lineage, S. berminghampi (Campbell & Clark) to S. pentas Riedel & Sanfilippo to S. tetras Ehrenberg, were very rare or absent. Pterocorys prismatium Riedel was also found to be rare.

Diatoms

Schrader (1974) and Kazarina (1975) were the first workers to propose diatom zonal schemes for the tropical Indian Ocean. However, it is now possible to employ the cosmopolitan low-latitude zonation of Burckle (1972), which was originally proposed for the eastern equatorial Pacific. Barron (1985) updated Burckle’s scheme, and this version is used here. A coarse diatom biostratigraphy of 709C was given by Mikkelsen (1990).

RESULTS

Ten radiolarian and three diatom datum levels were identified (Table 1). Range and abundance data for radiolaria are given in Table 2, and for diatoms in Table 3. Preservation of both radiolaria and diatoms is generally good, however certain poorly preserved horizons were encountered, e.g. 5/1/45–47 – 5/2/105–107 and 4/4/145 – 4/5/145–147, which cause difficulty in assigning some datum levels.
Plio–Pleistocene radiolarian and diatom biostratigraphy

Species	Samples
LAD Anthocystidium michelinae	<3/1/5–7
LAD Nitzschia reinholdii	<3/1/5–7
LAD Plerocanium prismatium	<3/1/5–7
LAD Rhizosolenia praebergonii	<3/1/5–7
FAD Anthocystidium angulare	3/1/5–7
FAD Theocorythium vetulum	3/2/140–142–3/2/145–147
FAD Anthocystidium jenghisi	3/4/5–7–3/4/75–77
FAD Theocorythium trachelium	3/4/145–147–3/5/75–77
FAD Lamprocyrtis neo heteroporus	3/5/75–77–3/5/145–147
LAD Thalassiosira convexa	4/1/10–12–4/1/50–52
LAD Nitzschia jouseae	4/1/100–102–4/1/120–122
LAD Stichocyrtis peregrina	4/1/105–107–4/1/145–147
FAD Rhizosolenia praebergonii	4/1/145–147–4/2/5–7
LAD Lychnodictyum audax	5/2/105–107–5/2/145–147
LAD Phormostichoartus doliolum	5/2/145–147–5/3/35–37
FAD Amphirhopalum ypsilon	5/6/5–7–5/CC/5–7
FAD Spongaster tetras	>6/2/5–7

Table 1. Position of radiolarian and diatom data in Hole 709C.

Early Pliocene

Spongaster tetras was present in all samples examined; its FAD occurs below the studied section. *Amphirhopalum ypsilon* Haeckel is first encountered in 5/6/5–7, and is present in all subsequent samples. *Phormostichoartus doliolum* (Riedel & Sanfilippo) is common in samples up to its last appearance at 5/3/35–37. *Lychnodictyum audax* Riedel was present in only two samples, 5/6/5–7 and 5/2/145–147.

Late Pliocene

Rhizosolenia praebergonii Mukhina is first encountered in 4/2/5–7. *Stichocyrtis peregrina* (Riedel) is very common in all samples up to 4/2/145–147, after which it becomes rare, and is last encountered in 4/1/145–147. *Nitzschia jouseae* Burkle and *Thalassiosira convexa* Mukhina, both of which occur consistently, are last encountered in 4/1/120–122 and 4/1/50–52 respectively. The evolutionary transition of *Lamprocyrtis neo heteroporus* Kling (2 segmented) from its ancestor *L. heteroporus* (Hays) (3 segmented) is often difficult to determine; however, undoubted specimens of *L. neo heteroporus* are present in 3/5/75–77, after which it is a common faunal component. *Theocorythium trachelium* (Ehrenberg) was first encountered in 3/4/75–77; however, it occurs rarely and sporadically thereafter, and is often poorly preserved. *Theocorythium davisi ana* (Ehrenberg) is also first encountered in 3/4/75–77, but does not become common until 3/3/65–67. *Anthocyrtidium jenghisi* Streeter is common up to 3/5/75–77, after which it becomes rare, and last appears in 3/4/75–77. *Theocorythium vetulum* is extremely rare throughout the section. Its last appearance occurs in 3/2/145–147.

Pleistocene

Anthocyrtidium angulare Nigrini is first encountered in the youngest sample examined, 3/1/5–7, although it is scarce in this sample (only two specimens seen). *Plerocanium prismatium* was only encountered in two samples, 3/3/65–67 and 3/2/140–142. The LAD of this species normally post-dates the FAD of *A. angulare* (therefore 3/2/140–142 is not taken to represent the LAD of *P. prismatium*). It is likely that the true LAD *P. prismatium* event occurs above 3/1/5–7.

The LADs of *Anthocyrtidium michelinae* Caulet, *Rhizosolenia praebergonii* and *Nitzschia reinholdii* Kanaya & Koizumi, which occur consistently throughout the section, also occur above 3/1/5–7.

DISCUSSION

The radiolarian events recognized here can generally be referred to the zonal scheme proposed by Johnson et al. (1989). There are two differences however, which lead to a redefined base for the *Anthocyrtidium angulare* zone and to the omission of the *Phormostichoartus fistula* zone. Also, the relative position of the FADS of *Theocorythium trachelium* and *Lamprocyrtis neo heteroporus* in 709A (Johnson, 1990) and 709C (this study) are reversed with respect to Johnson et al. (1989). Johnson et al. (1989) indicate that these data are diachronous, suggesting that *T. trachelium* migrates into equatorial waters from the south, and that *L. neo heteroporus* originates in equatorial waters subsequently migrating to the south.

Anthocyrtidium angulare Total Range Zone

(Nigrini, 1971; Caulet, 1979; Sanfilippo et al., 1985; Johnson et al., 1989; emend. here).

Definition. FAD to LAD of *Anthocyrtidium angulare*.

Remarks. This zone is usually considered an interval chronozone, the base of which is defined by the LAD of *Plerocanium prismatium*. However, in areas of equatorial upwelling *P. prismatium* has a sporadic occurrence and often has a last appearance which predates the FAD of *A. angulare*. This is seen at ODP Sites 677A (Alexandrovich, 1989), 709A (Johnson, 1990), 709C (this study), and 731 (Spaulding et al., 1991). It is clear therefore, that the LAD of *P. prismatium* is an unreliable indicator of the base of the *A. angulare* zone in upwelling areas, and its definition is accordingly emended here.

Plerocanium prismatium Interval Chronozone

(Riedel & Sanfilippo, 1970; emend. Riedel & Sanfilippo, 1978; Caulet, 1979; emend. Sanfilippo et al., 1985; emend. Johnson et al., 1989; emend. here).

Definition. LAD of *Anthocyrtidium jenghisi* to FAD of *Anthocyrtidium angulare*. 709C events included in this zone: LAD of *Theocorythium vetulum*.

Remarks. The top of this zone is redefined here as the FAD of *A. angulare*, as the LAD of *P. prismatium* is an unreliable event in upwelling areas.

Anthocyrtidium jenghisi Interval Chronozone

(non NR7 of Caulet, 1979; Johnson et al., 1989).

Definition. LAD of *Stichocyrtis peregrina* to LAD of *A. jenghisi*. 709C events included in this zone: FAD of *Theocorythium trachelium*.
Table 2. Radiolarian stratigraphy of Hole 109C.

SAMPLES	1	2	3	4	5	6	7	8	9	10	11	12	13	Z
3/1/5–7	C	C	+	C	C	~	C							I
3/1/65–67	C	C	C	C	C	+	C							
3/1/120–122	C	C	C	C	C	~	C							
3/1/145–147	C	C	C	C	C	~	C							
3/2/135–137	C	C	C	C	C	~	C							
3/2/140–142	C	C	C	C	C	C	C							
3/2/145–147	C	C	C	C	C	~	C	C						
3/3/10–12	C	C	C	C	C	~	C	C						
3/3/65–67	C	C	C	C	C	C	C							
3/4/5–7	+	+	C	C	C	~	C							
3/4/75–77	+	+	C	C	C	~	C	~	+					
3/4/145–147	+	+	C	C	C	~	C	~	+					
3/5/75–77	+	+	C	C	C	~	C	~	+					
3/5/145–147	+	+	C	C	C	~	C	~	+					
3/6/145–147	+	+	C	C	C	~	C	~	+					
3/7/50–52	+	+	C	C	C	~	C	~	+					
4/1/10–12	+	+	C	C	C	~	C	R						
4/1/105–107	+	+	C	C	C	~	C							
4/1/145–147	C	+	C	C	~	C	~	+						
4/2/65–67	C	+	C	C	~	C	~	+						
4/2/145–147	C	+	C	C	~	C	~	+						
4/3/145–147	C	+	C	C	~	C	~	+						
4/4/145–147	C	+	C	C	~	C	~	+						
4/5/145–147	C	+	C	C	~	C	~	+						
4/6/145–147	C	+	C	C	~	C	~	+						
4/7/60–62	C	+	C	C	~	C	~	+						
4/CC/10–12	C	+	C	C	~	C	~	+						
5/1/5–7	+	C	+	C	~	C	~	+						
5/1/145–147	+	+	+	+	~	C	~	+						
5/2/65–67	+	+	+	+	~	C	~	+						
5/2/105–107	+	+	+	+	~	C	~	+						
5/2/145–147	+	+	+	+	~	C	~	+						
5/3/35–37	+	+	+	+	~	C	~	+						
5/3/65–67	+	+	+	+	~	C	~	+						
5/3/145–147	+	+	+	+	~	C	~	+						
5/4/5–7	+	+	+	+	~	C	~	+						
5/5/110–112	+	+	+	+	~	C	~	+						
5/6/5–7	+	+	+	+	~	C	~	+						
5/CC/5–7	+	+	+	+	~	C	~	+						
6/11/10–12	+	+	+	+	~	C	~	+						
6/2/5–7	+	+	+	+	~	C	~	+						

C, common; +, present; −, searched for but not found; R, reworked occurrence. Species 1, *Anthocyrtidium angulare*; 2, *Theocorythium trachelium*; 4, *Lamprocyrtis neoheteroporos*; 5, *Amphirhopalum ypsilon*; 6, *Spongaster tetras*; 7, *Pterocanium prismatum*; 8, *Anthocyrtidium michelinae*; 9, *Theocorythium vetulum*; 10, *Anthocystidium jenghisi*; 11, *Stichocorys peregrina*; 12, *Lychnodictyum audax*; 13, *Phormostichoartus doliform*.* Zone I, *A. angulare* zone; 11, *P. prismatum* zone; 111, *A. jenghisi* zone: IV, *S. peregrina* zone; V, *P. doliform* zone.

Explanation of Plate 1

Fig. 1, 2. *Stichocorys peregrina* (Riedel), sample 5/3/65–67, mag. ×310. **Fig. 3.** *Theocorythium vetulum* Nigrini, sample 3/3/5–7, mag. ×330. **Fig. 4.** *Theocorythium trachelium* (Ehrenberg), sample 3/3/10–12, mag. ×330. **Fig. 5.** *Anthocyrtidium jenghisi* Streeter, sample 4/CC/10–12, mag. ×315. **Fig. 6.** *Anthocyrtidium michelinae* Caulet, sample 4/7/60–62, mag. ×250. **Fig. 7.** *Phormostichoartus doliform* (Riedel & Sanfilippo), sample 5/3/65–67, mag. ×230. **Fig. 8.** *Amphirhopalum ypsilon* Haecckel, sample 5/3/65–67, mag. ×380. **Fig. 9.** *Theocorythium daivisiana* (Ehrenberg), sample 3/1/5–7, mag. ×170. **Fig. 10.** *Spongaster tetras* Ehrenberg, sample 5/2/145–147, mag. ×320. **Fig. 11.** *Lamprocyrtis neoheteroporos* Kling, sample 3/3/5–7, mag. ×320. **Fig. 12.** *Hemidiscus cuneiformis* Wallich, sample 3/2/140–142, mag. ×1000. **Fig. 13.** Diploploneis sp., sample 5/2/145–147, mag. ×1200.
Plate 1
Haslett, Kennington, Funnel & Kersley

Samples	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Z
3/1/5–7	-	+	+	+	-	-	+	+	-	+	+	-	-	-	-	
3/1/120–122	-	+	-	+	+	-	+	-	-	-	+	-	-	-	-	I
3/1/145–147	-	+	-	+	+	-	+	+	-	-	-	-	-	-	-	
3/2/135–137	-	+	+	+	+	-	+	-	-	+	-	-	-	-	-	
3/2/140–142	-	+	+	+	+	-	+	-	-	+	-	-	-	-	-	
3/2/145–147	-	+	+	+	+	+	-	-	-	+	-	+	-	-	-	
3/3/5–7	-	+	+	+	+	+	-	-	-	+	-	+	-	-	-	
3/4/65–67	-	+	+	+	+	+	+	-	-	+	-	+	-	-	-	Iie
3/4/90–92	+	+	+	+	+	+	+	-	-	+	-	+	+	-	-	
3/4/145–147	-	+	+	+	+	+	-	-	-	+	-	+	-	-	-	
3/5/145–147	+	+	+	+	-	+	+	-	-	+	-	+	-	-	-	
3/6/145–147	+	+	+	+	+	-	+	-	-	+	-	+	-	-	-	
3/7/145–147	-	-	+	+	-	+	+	-	-	-	-	-	-	-	-	
3/7/50–52	+	-	-	-	+	+	-	-	-	-	-	-	-	-	-	
4/1/10–12	-	-	+	+	+	+	-	-	-	-	-	-	-	-	-	
4/1/50–52	-	+	-	+	+	+	+	-	-	-	-	-	-	-	-	Iib
4/1/100–102	+	-	-	+	+	-	-	-	+	+	-	-	-	-	-	
4/1/120–122	+	+	+	+	+	+	+	-	+	-	+	+	-	-	-	IIa
4/7/75–77	-	+	+	+	+	+	+	-	+	-	+	+	-	-	-	
4/2/120–122	+	+	+	+	+	+	+	-	+	-	+	+	-	-	-	
4/2/145–147	-	+	+	+	-	+	+	-	+	-	+	+	-	-	-	III
4/3/145–147	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
4/4/90–92	+	+	+	+	+	+	-	-	+	-	+	+	-	-	-	
4/4/120–122	+	+	+	+	-	+	+	-	+	-	+	+	-	-	-	
4/4/135–137	+	+	+	+	+	+	-	-	+	-	+	+	-	-	-	
4/5/145–147	+	+	+	+	+	+	-	-	+	-	+	+	-	-	-	
4/6/145–147	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
4/7/70–62	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	
4/CC/10–12	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	
5/1/5–7	-	-	+	+	-	+	+	-	+	-	+	+	-	-	-	
5/1/145–147	-	+	-	-	-	-	-	-	-	+	-	+	-	-	-	
5/2/145–147	-	+	-	-	-	-	-	-	-	+	-	+	-	-	-	
5/3/145–147	-	+	-	-	-	-	-	-	-	+	-	+	-	-	-	
5/CC/5–7	-	+	-	-	-	-	-	-	-	+	-	+	-	-	-	
6/1/10–12	+	-	-	-	-	-	-	-	-	+	-	+	-	-	-	

+ = present; - = searched for but not found. Species 1 = *Pseudoerruotia doliolus*; 2 = *Rhizosolenia praebargonii*; 3 = *Nitzschia reinholdii*; 4 = *N. marina*; 5 = *N. fossilis*; 6 = *Hemidiscus cuneiformis*; 7 = *Diplonoeis* sp.; 8 = *Coscinodiscus nodulifer*; 9 = *C. kolbei*; 10 = *C. excentricus*; 11 = *Bidulphia alternans*; 12 = *Ehdoniscus* sp.; 13 = *Rhizosolenia* sp.; 14 = *Thalassiosira conuexa*; 15 = *Nitzschia jouseae*. Zone 1 = *Nitzschia reinholdii* zone; II = *Rhizosolenia praebargonii* zone with subzones a, b, c; III = *Nitzschia jouseae* zone.

Table 3. Diatom stratigraphy of Hole 709C.

Stichopytis peregrina Interval Chronozone (non *S. peregrina* zone of Riedel & Sanfilippo, 1970; *emend.* Riedel & Sanfilippo, 1978; Johnson et al., 1989; *emend.* here).

Definition. LAD of *Phormostichoartus doliolum* to LAD of *S. peregrina*.

709C events included in this zone: LAD of *Lychnodictyum audax*.

Remarks. Johnson et al. (1989) define the base of this zone with the LAD of *Phormostichoartus fistula* Nigrini. However, in this study only one undoubted specimen of *P. fistula* was encountered. Therefore, the *P. fistula* Interval Chronozone of Johnson et al. (1989) is omitted here and the base of the *S. peregrina* Interval Chronozone is redefined here as the LAD of *P. doliolum*.

Explanation of Plate 2

Fig. 1. *Rhizosolenia* sp., sample 4/5/145–147, mag. ×1200. *Figs 2, 3.* *Rhizosolenia praebargonii* Mukhina, sample 3/3/65–67, mag. ×1200. *Fig. 4.* *Coscinodiscus nodulifer* Schmidt, sample 3/1/120–122, mag. ×1300. *Fig. 5.* *Thalassiosira conuexa* Mukhina, sample 4/CC/10–12, mag. ×1180. *Fig. 6.* *Nitzschia jouseae* Burkle, sample 4/2/145–147, mag. ×1300. *Fig. 7.* *Nitzchia fossilis* (Frenquelli), sample 3/1/145–147, mag. ×1100. *Fig. 8.* *Nitzchia reinholdii* Kanaya & Koizumi, sample 4/1/50–52, mag. ×1200. *Fig. 9.* *Nitzchia marina* Grunow, sample 3/1/5–7, mag. ×650.
Plio–Pleistocene radiolarian and diatom biostratigraphy

Plate 2
Phormostichoartus doliolum

Interval Chronozone
(Johnson et al., 1989).

Definition. LAD of Anthocytidium prolatum to LAD of P. doliolum.

709C events included in this zone: FAD of Amphirhopalum ypsilon.

The variations between the zonal scheme proposed by Johnson et al. (1989) and the scheme derived from the present study, can be attributed to oceanographical differences of the respective locations. Whereas Hole 709C is located 4°S in an area subject to equatorial upwelling, the three cores examined by Johnson et al. (1989) containing equivalent aged sediments, were all taken south of the hydrochemical front (Wyrtki, 1973). As already mentioned, this front separates high and low productivity areas respectively to the north and south of 10°S.

The diatom results from the present study support and refine those found by Mikkelsen (1990) with only one exception. Mikkelsen’s study of 709C located the FAD of Pseudoenuotia doliolus at 3/3/92-93 – 3/4/92-93. In the present study, however, this species was not encountered. The proximity of the FAD of P. doliolus in Mikkelsen’s study to the top of the section under examination here is very close. Other species found at this point are poorly preserved and perhaps this accounts for the absence of P. doliolus. A further possible explanation may be attributable to the similarity of P. doliolus and Nitzschia fossils (Frenquelli). With the poor preservational state and the similarity of these two species, it is plausible that an identification error may have been made.

In addition to biostratigraphically useful fossils, the presence of other diatom species were also noted. Nitzschia marina Grunow, Hemidiscus cuneiformis Wallich, Coscinodiscus nodulifer Schmidt, C. kolbei Jouse, C. excentricus Ehrenberg, Eremodiscus sp., and Rhizosolenia sp. occurred throughout the studied section, but Diploaneis sp. and Biddulphia alternans Van Heurck exhibit restricted ranges.

CONCLUSION

From Johnson (1990), Mikkelsen (1990) and the present study, it appears that Site 709 is unsuitable as a high resolution biostratigraphical reference section for siliceous microfossils. This is owing to a number of reasons. The poor preservation at certain horizons limits the precision with which bioevents can be identified. The scarcity and/or absence of some important stratigraphical marker species such as Pterocanium prismatum, Pterocorys zancleus, Theocorythium vetulm, Anthocytidium ehrenbergi (as noted by Johnson, 1990), A. piocienca (Seguenza), Phormostichoartus fistula and Pseudoenuotia doliolus (present study), is limiting. (Spongaster tetras which was recorded as very rare or absent in 709A (Johnson, 1990), was found to be more abundant in 709C).

Nevertheless, Site 709 is still very useful in terms of calcareous biostratigraphy and palaeoceanographical studies of both calcareous and siliceous microfossils. This is particularly so as oxygen isotope calibrated dates are being developed for Hole 709C from data presented by Shackleton & Hall (1990). Dates derived from oxygen isotope and calcareous microfossil data, downhole to sample 3/7/10–12, are assigned in Table 4.

ACKNOWLEDGEMENTS

This research was funded by an NERC Special Topic grant, Kevin Kennington is funded by an NERC Research Studentship.

Manuscript received March 1994

Manuscript accepted February 1995

REFERENCES

Alexandrovich, J. M. 1989. Radiolarian biostratigraphy of ODP Leg 111, Site 677, eastern equatorial Pacific. *Proceedings of the Ocean Drilling Program, Scientific Results*, 111: 245–262.

Andrews, J. E., Funnell, B. M., Jickells, T. D., Shackleton, N. J., Swallow, J. E., Williams, A. C. & Young, K. A. 1990. Preliminary assessment of cyclic variations in foraminifers, barite, and cadmium/calcium ratios in early Pleistocene sediments from Hole 709C (equatorial Indian Ocean). *Proceedings of the Ocean Drilling Program, Scientific Results*, 115: 611–619.

Barron, J. A. 1985. Miocene to Holocene planktic diatoms. In Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K. (Eds), *Plankton Stratigraphy*, 763–809. Cambridge University Press, Cambridge.

Boersma, A. 1990. Late Oligocene to Late Pliocene benthic Foraminifers, from depth traverses in the central Indian Ocean. *Proceedings of the Ocean Drilling Program, Scientific Results*, 115: 315–379.

Bureck, L. H. 1972. Late Cenozoic planktonic diatom zones from the eastern equatorial Pacific. *Novo Hedwigia*, 39: 217–246.

Cauet, J. P. 1979. Les dépots à Radiolaires d’âge pliocène supérieur à pleistocène dans l’océan indien central: nouvelle zonation biostratigraphique. *Mém. Musée Nationale de la Nature*, Série C. 43: 119–141.

Cauet, J. P. & Nigrini, C. 1988. Le genre *Pterocorys* (Radiolaria) from the tropical late Neogene of the Indian and Pacific Oceans. *Micropaleontology*, 34: 217–235.

Fenner, J. & Mikkelsen, N. 1990. Eocene–Oligocene diatoms in the western Indian Ocean: taxonomy, stratigraphy and paleoecology. *Proceedings of the Ocean Drilling Program, Scientific Results*, 115: 453–463.

Fornaciari, E., Raffi, I., Rio, D., Villa, G., Backman, J. & Olafsson, G. 1990. Quantitative distribution patterns of Oligocene and Miocene calcareous nanofossils from the western equatorial Indian Ocean. *Proceedings of the Ocean Drilling Program, Scientific Results*, 115: 237–254.

Goll, R. M. 1980. Pliocene–Pleistocene radiolaria from the East Pacific Rise and the Galapagos spreading centre; DSDP Leg 54. *Initial Reports of the Deep Sea Drilling Project*, 54: 425–454.

Haslett, S. K. 1992. Plio–Pleistocene radiolarian biostratigraphy of the tropical Indian Ocean (ODP Hole 709C). In Haslett, S. K.
Nigrini, C. 1971. Radiolarian zones in the Quaternary of the tropical Indian Ocean. In Funnell, B. M. & Riedel, W. R. (Eds), *The Micropaleontology of Oceans*, 443–461. Cambridge University Press, Cambridge.

Nigrini, C. 1985. Radiolarian biostratigraphy in the central equatorial Pacific. *Deep Sea Drilling Project Leg 85. Initial Reports of the Deep Sea Drilling Project*, 85: 511–551.

Okada, H. 1990. Quaternary and Paleogene calcareous nannofossils, Leg 115. *Proceedings of the Ocean Drilling Program, Scientific Results*, 115: 129–174.

Premoli-Silva, I. & Spezzaferri, S. 1990. Paleogene planktonic Foraminifera biostratigraphy and paleoenvironmental remarks on Paleogene sediments from Indian Ocean sites, Leg 115. *Proceedings of the Ocean Drilling Program, Scientific Results*, 115: 277–314.

Riedel, W. R. & Sanfilippo, A. 1970. Radiolarians, Leg 4, *Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project*, 4: 503–575.

Riedel, W. R. & Sanfilippo, A. 1978. Stratigraphy and evolution of tropical Cenozoic radiolarians. *Micropaleontology*, 24: 61–96.

Schrader, H. J. 1974. Cenozoic marine planktonic diatom stratigraphy of the tropical Indian Ocean. *Deep Sea Drilling Project*.

Spaulding, S. A., Bloemendal, J., Hayashida, A., Herrmann, J. O. R., Kamoo, K., Kroon, D., Nigrini, C. A., Sato, T., Steens, T. N. F., Takayama, T. & Troelstra, S. R. 1991. Magnetostratigraphic and biostratigraphic synthesis, Leg 117, Arabian Sea. *Proceedings of the Ocean Drilling Program, Scientific Results*, 117: 127–145.

Wyrtki, K. 1973. Physical oceanography of the Indian Ocean. In Zeitzschel, B. & Gerlach, S. A. (Eds), *The Biology of the Indian Ocean*, 18–36. Springer-Verlag, New York.