Ortholog Alleles at Xa3/Xa26 Locus Confer Conserved Race-Specific Resistance against Xanthomonas oryzae in Rice

Hong-Jing Li, Xiang-Hua Li, Jing-Hua Xiao, Rod A. Wing and Shi-Ping Wang

ABSTRACT The rice disease resistance (R) gene Xa3/Xa26 (having also been named Xa3 and Xa26) against Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight disease, belongs to a multiple gene family clustered in chromosome 11 and is from an AA genome rice cultivar (Oryza sativa L.). This family encodes leucine-rich repeat (LRR) receptor kinase-type proteins. Here, we show that the orthologs (alleles) of Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3, from wild Oryza species O. officinalis (CC genome) and O. minuta (BBCC genome), respectively, were also R genes against Xoo. Xa3/Xa26-2 and Xa3/Xa26-3 conferred resistance to 16 of the 18 Xoo strains examined. Comparative sequence analysis of the Xa3/Xa26 families in the two wild Oryza species showed that Xa3/Xa26-3 appeared to have originated from the CC genome of O. minuta. The predicted proteins encoded by Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3 share 91–99% sequence identity and 94–99% sequence similarity. Transgenic plants carrying a single copy of Xa3/Xa26, Xa3/Xa26-2, or Xa3/Xa26-3, in the same genetic background, showed a similar resistance spectrum to a set of Xoo strains, although plants carrying Xa3/Xa26-2 or Xa3/Xa26-3 showed lower resistance levels than the plants carrying Xa3/Xa26. These results suggest that the Xa3/Xa26 locus predates the speciation of A and C genome, which is approximately 7.5 million years ago. Thus, the resistance specificity of this locus has been conserved for a long time.

Key words: Bacterial blight; broad-spectrum resistance; durable resistance; Oryza officinalis; Oryza minuta; Oryza sativa.

INTRODUCTION

Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the major diseases affecting rice production. Breeding rice with the quality of broad-spectrum and durable disease resistance is one of the principal goals of rice improvement (Yang et al., 2008; Kou and Wang, 2010). Exploitation and utilization of major resistance (R) genes is an effective way to control bacterial blight. Wild germplasm is always recognized as an important repository of useful allelic variation for crop improvement including resistance against Xoo.

Harlan and de Wet (1971) proposed a concept involving three levels of the gene pools for classifying crop species and their wild relatives, according to the crossability between them. The genus Oryza includes two cultivated rice species, Asian cultivated rice Oryza sativa (AA genome) and African cultivated rice Oryza glaberrima (AA genome), and 22 wild species, representing AA, BB, CC, BBCC, CCDD, EE, FF, GG, HHJJ, and KKLL genomes (Ge et al., 1999; Lu et al., 2009; Ammiraju et al., 2010). According to the crossability between O. sativa and other Oryza species, the wild species also have been categorized as the primary, secondary, and tertiary gene pools for the cultivars (Khush, 1997). All AA genome Oryza species are relatively easy to cross with O. sativa and are regarded as the primary gene pool, the wild species with BB, CC, BBCC, CCDD, EE, and FF genomes constitute the secondary gene pool, and the remaining wild species with the GG, HHJJ, and KKLL genomes belong to the tertiary gene pool (Khush, 1997; Lu et al., 2009).
The classic example of transfer of a disease resistance gene against Xoo from a wild species into cultivated rice is the introgression of Xa21 from the AA genome wild rice *Oryza longistaminata* into Asian cultivated rice (Khush et al., 1990). Xa21 has a broad-spectrum of resistance to nearly all races of Xoo in the Philippines (Cottyn and Mew, 2004); however, the activity of Xa21 is developmentally regulated (Century et al., 1999; Zhao et al., 2009). Another broad-spectrum bacterial blight resistance gene Xa23, from *Oryza rufipogon* (AA), was transferred into Asian cultivated rice and is active throughout the lifecycle of the plant (Zhang et al., 2000). Both Xa21 and Xa23 are located on chromosome 11 in cultivated rice (Song et al., 1995; Zhang et al., 2000). Wild *Oryza* species belonging to the secondary gene pool have also provided valuable genes that confer resistance to Xoo, such as Xa27 from *Oryza minuta* (BBCC) (Amante-Bordeos et al., 1992) and Xa29(t) from *Oryza officinalis* (CC) (Tan et al., 2004). The introgressed Xa27 and Xa29(t) genes are located on chromosomes 6 and 1 in cultivated rice, respectively (Gu et al., 2004; Tan et al., 2004). However, only limited gene transfer is possible from the secondary gene pool into the Asian cultivated rice by crossing, because there is limited homology between *O. sativa* and these wild *Oryza* species (Khush, 1997).

Rice Xa3/Xa26, encoding a leucine-rich repeat (LRR) receptor kinase-type protein, is an R gene conferring resistance against Xoo (Sun et al., 2004; Xiang et al., 2006). Asian-cultivated rice consists of two major subspecies, indica (*O. sativa* L. ssp. *indica*) and japonica (*O. sativa* L. ssp. *japonica*). Xa3/Xa26 was first identified in the indica rice cultivar Minghui 63 and named Xa26 (Yang et al., 2003). Further study revealed that Xa3, an R gene conferring resistance against Xoo, and Xa26 are actually the same gene and then it was renamed Xa3/Xa26 (Xiang et al., 2006). Xa3/Xa26 has been an important resistance gene for both indica and japonica rice production in China for a long time (Xu et al., 2004; Gao et al., 2010). Quantitative trait loci for disease resistance and defenses-responsive genes functioning and putatively functioning downstream of Xa3/Xa26 in defense signaling have been identified (Hu et al., 2008; Qiu et al., 2008, 2009; Kou et al., 2010). In this study, we used an ortholog (allele) mining strategy to isolate new R genes against Xoo in the Xa3/Xa26 family from wild *Oryza* species. The Xa3/Xa26 orthologs or alleles, Xa3/Xa26-2 from *O. officinalis*, and Xa3/Xa26-3 from *O. minuta* that encodes proteins different from Xa3/Xa26 protein can mediate a similar spectrum of resistance against Xoo. The Xa3/Xa26-carrying cultivars have been widely used in rice production for a long period of time. These results suggest that the Xa3/Xa26 locus may confer a durable resistance.

RESULTS

Isolation of Xa3/Xa26 Family Genes from *O. officinalis* and *O. minuta*

A total of nine and seven positive bacterial artificial chromosome (BAC) clones were identified after screening high-density hybridization filters from the *O. officinalis* and *O. minuta* BAC libraries, respectively, using a set of Xa3/Xa26 family DNA probes. Based on the finger printing analysis of these clones (Supplemental Figure 1), BAC clones Oo_Ba0120J21 from *O. officinalis* and OM_Ba0293H21 from *O. minuta*, which had the greatest degree of overlap with other positive clones from the same genome, were sequenced.

Analysis of approximately 113-kb sequences of clone Oo_Ba0120J21 identified four putative genes that belonged to the Xa3/Xa26 gene family. Three of the four paralogs in *O. officinalis* were orthologs of the Xa3/Xa26 gene family TRKα, TRKb, and TRKf in Asian rice cultivar Teqing (*O. sativa* L. ssp. *indica*; Sun et al., 2006), respectively, according to their sequence similarity, corresponding locations within the family, and transcriptional orientation; they were thus named OoRKα, OoRKb1, and OoRKf (Figure 1). The fourth paralog in *O. officinalis* showed very high sequence similarity with OoRKb1 (94%) and TRKb (94%); it could be generated through tandem duplication or unequal crossover and thus was named OoRKb2.

Analysis of approximately 149 kb of sequence of clone OM_Ba0293H21 identified five putative genes that showed sequence homology with the Xa3/Xa26 family orthologs. The five paralogs spanned an approximately 50-kb region (Figure 1) and four of them showed a high degree of sequence similarity respective to the Xa3/Xa26 family orthologs TRKα, TRKb, TRKg, and TRKc in rice cultivar Teqing; they were designated OmRKα, OmRKb1, OmRKg, and OmRKc. The fifth paralog in *O. minuta* showed very high sequence similarity with OoRKb2 (99%) and OmRKb1 (94%); it was named OmRKb2. These results suggest that the origin of member b2 must have occurred before polyploidization.

OoRKb1, OmRKα, and OmRKb1 were predicted to be intact genes, using Xa3/Xa26 as the reference (Supplemental Figure 2). OoRKα and OmRKc were pseudogenes, with each containing a frame-shift mutation. OoRKb2, OoRKf, OmRKb2, and OmRKg were truncated as compared to Xa3/Xa26 (Supplemental Figure 2). OoRKb2 and OmRKb2 appeared to encode only an incomplete kinase domain. OoRKf lost the predicted intron and the following sequence of this family and putatively encoded an intact LRR domain, but an incomplete kinase domain. OmRKg contained an in-frame stop codon and putatively encoded an incomplete LRR domain. The orthologs a, b, and c in rice cultivar Teqing are intact genes; the orthologs f and g in Teqing are pseudogenes with insertion, deletion, or in-frame stop codon, which are different from the mutations in OoRKf and OmRKg (Sun et al., 2006) (Supplemental Figure 2).

Comparing the sequences of Xa3/Xa26 family orthologs in the two wild *Oryza* species to four Asian rice cultivars, Minghui 63 (*O. sativa* L. ssp. *indica*), Teqing, 93–11 (*O. sativa* L. ssp. *indica*), and Nipponbare (*O. sativa* L. ssp. *japonica*) (Sun et al., 2006), it was easy to recognize that they had very low sequence similarity (<49% sequence identity) between cultivated rice and wild *Oryza* species in the intergenic regions. However, nearly 34-kb regions with 95% sequence identity in the Xa3/
The Xa26 family were identified between *O. officinalis* and *O. minuta*, which harbored orthologs a, b1, and b2 (Figure 1). These results suggest that the Xa3/Xa26 families in the two wild *Oryza* species are less diverse between each other than compared to the diversity found between them and cultivars.

Xa3/Xa26 Orthologs of the Wide *Oryza* Species Were Functional Disease Resistance Genes

OoRKb1 and *OmRKb1* were the orthologs of the *R* gene Xa3/Xa26. To determine whether *OoRKb1* and *OmRKb1* were functional in the rice–Xoo interaction, genomic fragments containing *OoRKb1* and *OmRKb1* with their native promoters were individually transformed into rice cultivar Mudanjiang 8, which is susceptible to Xoo (Supplemental Figure 3). Thirty-one independent positive transformants carrying *OoRKb1* (named D101OM) and 18 independent positive transformants carrying *OmRKb1* (named D103OM) were obtained. Eleven of the T₀ plants transformed with *OoRKb1* construct showed significantly (*P* < 0.01) enhanced resistance to Xoo strain PXO61, with lesion areas ranging from 3.4 to 35.0%, compared to 50.3% for wild-type Mudanjiang 8; another 10 of the T₀ plants transformed with the same construct showed significantly (*P* < 0.01) enhanced resistance to Xoo strain PXO341, with lesion areas ranging from 1.6 to 44.4%, compared to 61.2% for wild-type Mudanjiang 8 (Supplemental Table 1). All 18 T₀ plants transformed with *OmRKb1* construct showed significantly (*P* < 0.01) enhanced resistance to Xoo strain PXO61, with lesion areas ranging from 6.7 to 27.5%, compared to 55.2% for wild-type Mudanjiang 8 (Supplemental Table 1).

Two T₁ families from resistant T₀ (D101OM1 and D101OM43) and Two T₁ families from resistant T₀ (D103OM25 and D103OM43) were further analyzed for resistance to PXO61, and for the existence of the transgenic marker gene *GUS* that was tightly linked to the targeted transgene. The results showed that the enhanced resistance was associated with the presence of *OoRKb1/GUS* or *OmRKb1/GUS* in the T₁ families (Figure 2). The bacterial growth rates in *OoRKb1*- and *OmRKb1*-carrying plants were 7–51-fold and 13–153-fold lower than that in wild-type at the booting (panicle development) stage and 4–8-fold and 2–5-fold lower than that in wild-type at six-leaf stage at 6–12 d after infection, respectively (Figure 3). These results suggest that *OoRKb1* and *OmRKb1* confer *Xoo* resistance. Thus, we designated them Xa3/Xa26-2 (*OoRKb1*; GenBank accession number: HQ148674) and Xa3/Xa26-3 (*OmRKb1*; GenBank accession number: HQ148675) based on the naming system of rice *R* genes against Xoo.

Xa3/Xa26-2 and Xa3/Xa26-3 Mediated Broad-Spectrum Resistance

Transgenic plants carrying a single copy of Xa3/Xa26-2 or Xa3/Xa26-3 were examined for their responses to different Xoo strains. The resistance of the transgenic plants to 16 of the 18 strains was significantly enhanced as compared to the wild-type Mudanjiang 8 at adult stage (Figure 4). The lesion areas of the transgenic plants carrying Xa3/Xa26-2 and plants carrying Xa3/Xa26-3 to the 16 Xoo strains were 31–92% and 15–91% smaller than those of the wild-type plants, respectively. The plants carrying Xa3/Xa26-2, and the plants carrying Xa3/Xa26-3, showed a similar resistance spectrum to the transgenic rice line Rb49, which carried a single copy of Xa3/Xa26 driven by its native promoter with the same genetic background as the transgenic plants carrying Xa3/Xa26-2 or Xa3/
However, the resistance level of plants carrying \(Xa3/Xa26 \) was significantly higher than plants carrying \(Xa3/Xa26-2 \) or \(Xa3/Xa26-3 \) to all 16 \(Xoo \) strains, which showed incompatible reactions with all the transgenic plants (Figure 4). Although the Rb49 line was compatible with \(Xoo \) strain PXO99, plants carrying \(Xa3/Xa26-2 \) and plants carrying \(Xa3/Xa26-3 \) appeared to be more susceptible to PXO99 than the Rb49. In addition, plants carrying \(Xa3/Xa26-2 \) appeared to have a higher level of resistance to some of the \(Xoo \) strains than plants carrying \(Xa3/Xa26-3 \) (Figure 4). These results suggest that the resistance of the two wild \(Oryza \) species to \(Xoo \) is at least partly contributed by \(Xa3/Xa26-2 \) or \(Xa3/Xa26-3 \). However, they may also carry other \(R \) genes against \(Xoo \) in addition to \(Xa3/Xa26-2 \) or \(Xa3/Xa26-3 \).

Figure 2. Enhanced Resistance to \(Xoo \) Strain PXO61 Associated with the Presence of a GUS Marker Gene that Was Tightly Linked to \(OoRKb1 \) or \(OmRKb1 \) in \(T_1 \) Families at Booting Stage. Bars represent mean (three to five replicates) ± standard deviation. The ‘a’ or ‘b’ indicates that a significant difference between transgenic and wild-type (WT) Mudanjiang 8 was detected at \(P < 0.01 \) or \(P < 0.05 \), respectively.

Figure 3. Growth of \(Xoo \) Strains PXO341 and PXO61 in Leaves of \(OoRKb1 \)-Carrying (D101OM) and \(OmRKb1 \)-Carrying (D103OM) Plants at Adult (Booting) Stage (\(T_1 \) Plants) and Seedling (Six-Leaf) Stage (\(T_3 \) Homozygous Lines). Bacterial populations were determined from three leaves at each time point by counting colony-forming units (cfu). Mudanjiang 8 was wild-type. Rb49 was a transgenic line carrying \(Xa3/Xa26 \) regulated by its native promoter in Mudanjiang 8 background.
Variations of Amino-Acid Sequences Encoded by Xa3/Xa26 Orthologs

Aligning the genomic and cDNA sequences of Xa3/Xa26-2 and Xa3/Xa26-3 showed that the two orthologs had similar structures to Xa3/Xa26: two exons and one intron that was inserted in the region encoding the kinase domain (Figure 5). Xa3/Xa26-2 and Xa3/Xa26-3 had nearly the same structure: the same sizes of exons and 5' and 3' untranslated regions.

The only difference between the two orthologs was that they had different sizes of introns (103 versus 104 nucleotides). Comparative sequence analyses of the coding regions and introns of Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3 revealed 82–99% identity among the three orthologs.

Both Xa3/Xa26-2 and Xa3/Xa26-3 encode proteins that consisted of 1092 amino acids as compared to 1103 amino acids encoded by Xa3/Xa26. The predicted proteins encoded by

Table 1. Resistance of Two Wild Oryza Species to Xoo as Compared to Cultivated Rice Mudanjiang 8.

Xoo strain	Mudanjiang 8	O. officinalis (accession 100896)	O. minuta (accession 101141)	Mudanjiang 8	Rb49 (Xa3/Xa26, Mudanjiang 8 background)
PXO61	55.3 ± 16.0	2.7 ± 0.9a	1.4 ± 0.5a	50.9 ± 14.7	3.1 ± 2.1a
PXO99	57.7 ± 14.8	8.6 ± 2.1a	2.4 ± 0.2a	53.8 ± 11.8	44.5 ± 7.0
PXO341	81.6 ± 6.0	9.9 ± 3.4a	1.5 ± 1.0a	88.7 ± 1.0	2.1 ± 0.8a

1 Three to five uppermost fully expanded leaves of each plant were inoculated. Data represent mean (three to five replicates) ± standard deviation. The ‘a’ indicates that a significant difference between wild species or rice transgenic line Rb49 and susceptible rice Mudanjiang 8 (control) was detected at P < 0.01.
2 The lesion areas (%) were measured 23 d after inoculation.
3 The lesion areas (%) were measured 14 d after inoculation of PXO61 and PXO99 and 12 d after inoculation of PXO341.
the three orthologs share 91–99% sequence identity and 94–99% sequence similarity. Xa3/Xa26-2 and Xa3/Xa26-3 proteins share 98% sequence identity and have only a total of 14 amino-acid residues distinct from each other (Figure 6). Of these 14 amino-acid changes, four are located in the region in front of the LRR domain, seven in the LRR domain, and three in the kinase domain.

Both Xa3/Xa26-2 and Xa3/Xa26-3 proteins share 91% sequence identity to Xa3/Xa26 protein. The two proteins have 88 and 90 amino-acid difference from Xa3/Xa26, respectively (Figure 6). Of these 88 and 90 amino-acid changes, 11 are amino-acid deletions (eight in the regions in front of the LRR domain, two in the kinase domains, and one in the juxtamembrane regions) in the same sites of Xa3/Xa26-2 and Xa3/Xa26-3. Of the 77 and 79 total amino-acid substitutions compared to Xa3/Xa26, approximately half of them (39 and 38) are in the LRR domains of Xa3/Xa26-2 and Xa3/Xa26-3, respectively. Most of the substitution sites are the same in the LRR domains of the two proteins. Compared to Xa3/Xa26, the distributions of the amino-acid changes in the LRR regions of Xa3/Xa26-2 and Xa3/Xa26-3 are dispersed. Nearly one-third of the variants in the LRR regions lie within the xxLxLxx (‘x’ indicates any amino-acid residue) motifs. Xa3/Xa26-2 and Xa3/Xa26-3, compared to Xa3/Xa26, have the same nine substitutions in the transmembrane and juxtamembrane regions. Nearly half of the remaining variants are concentrated in the regions in front of the LRR domain, within an approximate range of 80 amino acids. The rest of the variants are dispersed in the kinase domains of Xa3/Xa26-2 and Xa3/Xa26-3 proteins. These results suggest that Xa3/Xa26-2 and Xa3/Xa26-3 are more evolutionarily related to each other than their evolutionary relationship with Xa3/Xa26.

Figure 5. Comparison of the Structures of Xa3/Xa26-2 and Xa3/Xa26-3 with Xa3/Xa26. The coding regions (black boxes) of the genes are interrupted by one intron (line). The positions of 5’ and 3’ UTR (white boxes), translation start codon (ATG), and translation stop codon (TGA) are also indicated. The numbers indicate the nucleotides of each substructure.

Figure 6. Alignment of Xa3/Xa26-2, Xa3/Xa26-3, and Xa3/Xa26 Proteins. All sequences are compared with the reference Xa3/Xa26. The predicted signal peptide sequence is underlined. The predicted transmembrane region is double underlined. The arrows above the amino-acid residues indicate the LRR repeats and the xxLxLxx motifs of the LRR domain are boxed. Dots represent identical amino acids of Xa3/Xa26-2 and Xa3/Xa26-3 to Xa3/Xa26. The dash represents the single amino acid absent in Xa3/Xa26-2 and Xa3/Xa26-3.
DISCUSSION

The Xa3/Xa26 family is a potential disease resistance gene reservoir. In addition to Xa3/Xa26, the MRKs, a paralog of Xa3/Xa26 in rice cultivar Minghui 63, can mediate Xoo resistance when enhancing its expression (Cao et al., 2007b). Other paralogs of this family in different Asian rice cultivars are expressed in rice leaves, which are one of the major invasion sites of pathogens, suggesting their potential role in rice–pathogen interactions (Xu et al., 2007). The present results further support the assumption that the Xa3/Xa26 family is rich in genes for disease resistance.

It is generally accepted that the LRR domains of R proteins function directly or indirectly in recognition of pathogen effectors and play an important role in race-specific resistance (Rivas and Thomas, 2005; Ellis et al., 2007). Comparative sequence analysis of Xa3/Xa26 family paralogs in four rice cultivars reveals that positive selection of point mutations in the LRR domains is a major force for the evolution of this family, suggesting the important roles of LRR domains in the functions of these family members (Sun et al., 2006). Domain swapping analysis further supports this hypothesis; this analysis has revealed that the LRR domain of Xa3/Xa26 protein is a major determinant of race-specific recognition during rice–Xoo interaction (Zhao et al., 2009). Furthermore, the juxtamembrane region of Xa3/Xa26 protein also appears to contribute to resistance specificity (Zhao et al., 2009). In addition, genetic background also influences the resistance spectrum and resistance level conferred by Xa3/Xa26 (Cao et al., 2007a; Zhou et al., 2009). Analysis of the predicted amino-acid sequences of Xa3/Xa26-2 and Xa3/Xa26-3 revealed the same known motif (transmembrane region) and domains (LRR and kinase) with Xa3/Xa26 (Figure 6). Xa3/Xa26-2 and Xa3/Xa26-3 also harbor 26 imperfect LRRs with consensus sequence of LxxxxLxxLxxLxxxxNxLxGxxIPxx for LRR (**x** indicating any amino acid) as Xa3/Xa26. Although more than 40% of the amino-acid diversity residues between Xa3/Xa26-2 or Xa3/Xa26-3 and Xa3/Xa26 occur in the LRR domain, even in the xxxLxx motif that forms the solvent-exposed surface for pathogen recognition in the LRR domain (Padmanabhan et al., 2009), plants carrying Xa3/Xa26-2 or Xa3/Xa26-3 showed a similar resistance spectrum to plants carrying Xa3/Xa26. These results suggest that these polymorphic amino-acid residues in Xa3/Xa26-2 and Xa3/Xa26-3 proteins, compared to Xa3/Xa26 protein, are not at the core region for pathogen recognition specificity. However, further study is required to determine whether some of these amino-acid changes may influence the level of resistance.

O. officinalis and O. minuta belong to the O. officinalis complex, and both species carry the C genome. O. minuta is a BBCC genome allotetraploid and is thought to have arisen from a hybridization between O. officinalis, a CC genome diploid, and an extinct BB diploid species (Wang et al., 2009). Comparative sequence analysis revealed a high degree of sequence homology of Xa3/Xa26 families between diploid O. officinalis and tetraploid O. minuta, suggesting that the analyzed BAC clone containing Xa3/Xa26 family in O. minuta might have originated from the CC genome. Thus, both Xa3/Xa26-2 and Xa3/Xa26-3 belong to the CC genome. Xa3/Xa26 was first isolated from rice cultivar Minghui 63 (AA genome) (Sun et al., 2004). Minghui 63 has the pedigree of O. nivara, an AA genome wild species (Xie, 1998; Khush and Virk, 2005). Comparison of the Xa3/Xa26 family sequences in Minghui 63 (Sun et al., 2006) and O. nivara (Li and Wang, unpublished data) revealed that Xa3/Xa26 and its paralog MRKc as well as the intergenic region between Xa3/Xa26 and MRKc in Minghui 63 share 98, 98, and 97% sequence identity to their orthologs and the corresponding intergenic region in O. nivara, respectively. However, the ortholog of Xa3/Xa26 in the O. nivara accession used for sequencing is a pseudogene with an in-frame stop codon. This comparison suggests that the region harboring Xa3/Xa26 in Minghui 63 might have been introduced from an O. nivara accession that was similar to the accession used for sequencing. The AA and CC genome lineages diversified ~7.5 million years ago (Ammiraju et al., 2008; Lu et al., 2009; Ammiraju et al., 2010; Sanyal et al., 2010). The orthologs at Xa3/Xa26 locus in different Oryza species confers a similar resistance spectrum, which may imply that this resistance locus appeared earlier than the divergence of the AA and CC genomes. Thus, the resistance function of Xa3/Xa26 locus appears to be relatively conserved during evolution.

Xa3/Xa26 family proteins belong to the same type of LRR-receptor kinase proteins as rice Xa21 protein, which also mediates resistance to Xoo (Sun et al., 2004). Xa21 functions both as an R protein and as a pattern recognition receptor (PRR) by recognition of an evolutionarily conserved pathogen-associated molecular pattern, a sulfated peptide (Lee et al., 2009). Another well-studied PRR is Arabidopsis FLS2, which also encodes a LRR-receptor kinase (Gómez-Gómez and Boller, 2000; Ali and Reddy, 2008). The Xa3/Xa26, Xa3/Xa26-2, and Xa3/Xa26-3 from the two diverged genomes mediate similar resistance spectrums. It remains to be elucidated whether the encoding proteins of Xa3/Xa26 and its alleles perceive the same conserved pathogen component in rice–Xoo interaction.

Durable resistance refers to resistance that remains effective during its prolonged and widespread use in environments favorable to pathogen or disease spread (Johnson, 1981). The indica rice cultivar Minghui 63, carrying Xa3/Xa26, is a parent of a set of hybrids that account for more than 20% of total rice production area in China for the last two decades. In addition, Xa3/Xa26 is also an important resistance gene in japonica cultivar breeding in China (Xu et al., 2004). The two wild Oryza accessions used both presented a high level of resistance to Xoo strains PXO61, PXO99, and PXO341. However, transgenic plants carrying Xa3/Xa26-2 or Xa3/Xa26-3 showed enhanced resistance to PXO61 and PXO341 but susceptibility to PXO99 as the transgenic line (Rb49) carrying Xa3/Xa26. These results indicated that there is another R gene(s) in the two wild Oryza species against PXO99. Although the CC and BBCC wild rice species have not been cultivated in large areas, the orthologs, originated at least 7.5 million years ago, still remain functionally in the same genomes as other R genes together by the long
natural selection. The wide use of Xa3/Xa26-carrying cultivars in rice production and the similar resistance specificity of the ancient Xa3/Xa26-2 and Xa3/Xa26-3 as the present Xa3/Xa26 suggest that this R gene locus may confer durable resistance in addition to conferring a relative broad-spectrum resistance.

METHODS
Selection of BAC Clone

Mixed probes of DNA segments of Xa3/Xa26 and its paralog MRKas from rice cultivar Minghui 63 (Oryza sativa ssp. indica; Cao et al., 2007b) were used to screen the O. officinalis and O. minuta BAC libraries (Ammiraju et al., 2006). DNA segments corresponding to the LRR domain of MRKas and the kinase domain of Xa3/Xa26 were amplified using gene-specific primers (Supplemental Table 2). Positive BACs were digested with restriction enzymes HindIII, transferred to nylon membranes, and hybridized separately using Xa3/Xa26 and MRKas DNA probes. BAC that has the most hybridizing bands in each genome was sequenced.

BAC Sequencing and Sequence Assembly

BAC clones were sequenced using a shotgun strategy. To construct a subclone library for sequencing, DNA from each BAC clone was randomly sheared by sonication. DNA fragments in the 2–4-kb size frame were size-selected, blunt-ended, and then ligated into the pUC19 vector. Clones were sequenced from both directions using M13 universal forward and reverse primers and BigDye Terminator v3.0 Cycle Sequencing Kits (Applied Biosystems, Foster City, CA, USA). Sequence reads were assembled with Sequencher 4.5 (Gene Codes Corporation, Ann Arbor, MI, USA). Gaps were filled by a combination of primer walking and shotgun sequencing of subclones with extremes at both sides of the sequencing gaps.

Sequence Annotation and Computational Analysis

Assembled BAC sequences were annotated by using the gene prediction program Fgenesh (http://morissardjerome.free.fr/infobiogen/www.softberry.com/berry.html) (Salamov and Solovyev, 2000) and BLAST (Blastn, Blastx and Blastp) analyses against different databases (Altschul et al., 1997). Pair-wise sequence comparisons were carried out using YASS program (http://bioinfo.lifl.fr; Noe and Kucherov, 2005) and the Global Sequence Alignment Tool (www.ncbi.nlm.nih.gov/blast/Blast.cgi; Needleman and Wunsch, 1970). ClustalX (Thompson et al., 1997) was used for multiple sequence alignment.

Gene Cloning and Rice Transformation

BAC clones OO_Ba0120J21 from O. officinalis and OM_Ba0293H21 from O. minuta were digested with restriction enzymes EcoRV and SmaI, respectively. An 11.9-kb DNA fragment harboring OoRKB1 and its native promoter from OO_Ba0120J21 and a 13.7-kb DNA fragment harboring OmRKB1 and its native promoter from OM_Ba0293H21 were individually ligated with the vector pCAMBIA1301 digested with restriction enzyme SmaI (Supplemental Figure 2). The constructs containing OoRKB1 and OmRKB1 were transferred into Agrobacterium tumefaciens strain EHA105 by electroporation. Agrobacterium-mediated transformation was performed using calli derived from mature embryos of susceptible rice cultivars Mudanjiang 8 (O. sativa L. ssp. japonica) according to a published procedure (Lin and Zhang, 2005). Positive transgenic plants were identified by PCR amplification of the marker gene β-glucuronidase (GUS) using gene-specific primers (Supplemental Table 2).

Pathogen Inoculation and Disease Scoring

Three to five uppermost fully expanded leaves of each plant were inoculated with different Xoo strains using the leaf-clipping method (Chen et al., 2002) at six-leaf and booting stages. Xoo strains included Chinese strains GD414, HeN11, JL691, LN44, YN1, and ZHE173, Japanese strain T7174, and Philippine strains PXO61 (race 1), PXO86 (race 2), PXO79 (race 3), PXO71 (race 4), PXO112 (race 5), PXO99 (race 6), PXO280 (race 8), PXO349 (race 9b), PXO347 (race 9c), PXO364 (race 9d), and PXO341 (race 10). Because cultivated rice and wild Oryza species had different leaf length, disease was scored by measuring percent lesion area (lesion length/leaf length) 2–3 weeks after inoculation. The bacterial growth rate in rice leaves was determined by counting colony-forming units (Sun et al., 2004).

Gene Structure Analysis

Total RNA extracted from the leaves of resistant T1 transgenic plants was used to analyze the structures of the transgenes. The 5’ and 3’ end cDNA sequences of target genes were determined by rapid amplification of cDNA ends (RACE) using the SMARTer RACE cDNA Amplification Kit (Clontech) according to the manufacturer’s instructions (Qiu et al., 2007). Intermediate cDNA fragments of the transgenes were obtained by reverse transcription (RT)–PCR. The primers used for RACE and RT–PCR analyses are listed in Supplemental Table 1. The RACE and RT–PCR products were ligated into the pGEM–T Easy vector (Promega, Madison, WI, USA) and sequenced.

Statistical Analyses

The significant differences between the samples of transgenic and wild-type plants were analyzed by the pair-wise t-test installed in the Microsoft Office Excel program.

SUPPLEMENTARY DATA

Supplementary Data are available at Molecular Plant Online.

FUNDING

This work was supported by grants from the National Program on the Development of Basic Research in China (2011CB100700) and the National Natural Science Foundation of China (30930063, 30921091).
ACKNOWLEDGMENTS

We thank Dr Meizhong Luo of Huazhong Agricultural University (originally Arizona Genomics Institute, University of Arizona) for helping obtaining BAC clones, Dr Mingsheng Chen of Institute of Genetics and Developmental Biology, Chinese Academy of Sciences for providing the O. officinalis and O. minuta accessions, and Drs Jetty S.S. Ammiraju, Chuanzhu Fan, and Fusheng Wei for critical reading of the manuscript. No conflict of interest declared.

REFERENCES

Ali, G.S., and Reddy, A. (2008). PAMP-triggered immunity: early events in the activation of FLAGELLIN SENSITIVE2. Plant Signal Behav. 3, 423–426.
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.
Amane-Bordeos, A., Sitch, L.A., Nelson, R., Dalmacio, R.D., Oliva, N.P., Aswidinnoor, H., and Leung, H. (1992). Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor. Appl. Genet. 84, 345–354.
Ammiraju, J.S., et al. (2006). The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res. 16, 140–147.
Ammiraju, J.S., et al. (2008). Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. Plant Cell. 20, 3191–3209.
Ammiraju, J.S., et al. (2010). Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. Plant J. 63, 430–442.
Brar, D.S., and Khush, G.S. (2002). Transferring genes from wild species into rice. In Quantitative Genetics, Genomics and Plant Breeding, Kang, M.S., ed. (Wallingford, UK: CAB International).
Cao, Y., Ding, X., Cai, M., Zhao, J., Lin, Y., Li, X., Xu, C., and Wang, S. (2007a). The expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics. 177, 523–533.
Cao, Y., Duan, L., Li, H., Sun, X., Zhao, Y., Xu, C., Li, X., and Wang, S. (2007b). Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonas oryzae pv. Oryzae. Theor. Appl. Genet. 115, 887–895.
Century, K.S., Lagman, R.A., Adkisson, M., Morlan, J., Tobias, R., Schwartz, K., Smith, A., Love, J., Ronald, R.C., and Whalen, M.C. (1999). Developmental control of Xa21-mediated disease resistance in rice. Plant J. 20, 231–236.
Chen, H., Wang, S., and Zhang, Q. (2002). New gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an elite restorer line. Phytopathology. 92, 750–754.
Cottyn, B., and Mew, T. (2004). In Bacterial blight of rice. In Encyclopedia of Plant and Crop Science, Goodman R.M., ed. (Abingdon, UK: Taylor and Francis).
Ellis, J.G., Dodds, P.N., and Lawrence, G.J. (2007). Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annu. Rev. Phytopathol. 45, 289–306.
Gao, J., Zhao, J., Xu, C., Li, X., and Wang, S. (2010). Development of rice germplasms conferring high-level and broad-spectrum resistance to Xanthomonas oryzae pv. oryzae at both seedling and adult stages. Mol. Plant Breed. 8, 420–525.
Ge, S., Sang, T., Lu, B.R., and Hong, D.Y. (1999). Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc. Natl Acad. Sci. U S A. 96, 14400–14405.
Gómez-Gómez, L., and Boller, T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell. 5, 1003–1011.
Gu, K., Tian, D., Yang, F., Wu, L., Sreekala, C., Wang, D., Wang, G.L., and Yin, Z. (2004). High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativa L. Theor. Appl. Genet. 108, 800–807.
Harlan, J.R., and de Wet, J.M.J. (1971). Toward a rational classification of cultivated plants. Taxon. 20, 509–517.
Hu, K., Qiu, D., Shen, X., Li, X., and Wang, S. (2008). Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol. Plant. 1, 786–793.
Johnson, R. (1981). Durable resistance: definition of, genetic control, and attainment in plant breeding. Phytopathology. 71, 567–568.
Khush, G.S. (1997). Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35, 25–34.
Khush, G.S., and Virk, P.S. (2005). IR Varieties and Their Impact. International Rice Research Institute, Los Baños, Philippines.
Khush, G.S., Bacalangco, E., and Ogawa, T. (1990). A new gene for resistance to bacterial blight from O. longistaminata. Rice Genet. Newslett. 7, 121–122.
Kou, Y., and Wang, S. (2010). Broad-spectrum and durability: understanding of quantitative disease resistance. Curr. Opin. Plant Biol. 13, 181–185.
Kou, Y., Li, X., Xiao, J., and Wang, S. (2010). Identification of genes contributing to quantitative disease resistance in rice. Sci. China Life Sci. 53, 1263–1273.
Lee, S.W., Han, S.W., Siriyanum, M., Park, C.J., Seo, Y.S., and Ronald, P.C. (2009). A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science. 326, 850–853.
Lin, Y., and Zhang, Q. (2005). Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep. 23, 540–547.
Lu, F., et al. (2009). Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes. Proc. Natl Acad. Sci. U S A. 106, 2071–2076.
Needleman, S.B., and Wunsch, C.D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.
Noe, L., and Kucherov, G. (2005). YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 33 (Web Server issue), W540–W543.
Padmanabhan, M., Cournoyer, P., and Dinesh-Kumar, S.P. (2009). The leucine-rich repeat domain in plant innate immunity: a wealth of possibilities. Cell Microbiol. 11, 191–198.
Qiu, D., Xiao, J., Ding, X., Xiong, M., Cai, M., Cao, Y., Li, X., Xu, C., and Wang, S. (2007). OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol. Plant-Microbe Interact. 20, 492–499.

Qiu, D., Xiao, J., Xie, W., Cheng, H., Li, X., and Wang, S. (2009). Exploring transcriptional signaling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biol. 9, 74.

Qiu, D., Xiao, J., Xie, W., Liu, H., Li, X., Xiong, L., and Wang, S. (2008). Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol. Plant. 1, 538–551.

Rivas, S., and Thomas, C.M. (2005). Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu. Rev. Phytopathol. 43, 395–436.

Salamov, A., and Solovyev, V. (2000). Ab initio gene finding in Drosophila genomic DNA. Genome Res. 10, 516–522.

Sanyal, A., et al. (2010). Orthologous comparisons of the Hd1 region across genera reveal Hd1 gene lability within diploid Oryza species and disruptions to microsynteny in Sorghum. Mol. Biol. Evol. 27, 2487–2506.

Song, W.Y., et al. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 279, 1804–1806.

Sun, X., Cao, Y., and Wang, S. (2006). Point mutations with positive selection were a major force during the evolution of a receptor-kinase resistance gene family of rice. Plant Physiol. 140, 998–1008.

Sun, X., Cao, Y., Yang, Z., Xu, C., Li, X., Wang, S., and Zhang, Q. (2004). Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J. 37, 517–527.

Tan, G.X., Ren, X., Weng, Q.M., Shi, Z.Y., Zhu, L.L., and He, G.C. (2004). Mapping of a new resistance gene to bacterial blight in rice line introgressed from Oryza officinalis. Acta Genetica Sinica. 31, 724–729.

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

Wang, B., Ding, Z., Liu, W., Pan, J., Li, C., Ge, S., and Zhang, D. (2009). Polyploid evolution in Oryza officinalis complex of the genus Oryza. BMC Evol. Biol. 9, 250.

Xiang, Y., Cao, Y., Xu, C., Li, X., and Wang, S. (2006). Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor. Appl. Genet. 113, 1347–1355.

Xie, H. (1998). Selection and utilization of Minghui 63. Fujian Journal of Agricultural Sciences. 4, 1–6.

Xu, S., Cao, Y., Li, X., and Wang, S. (2007). Expressional and biochemical characterization of rice disease resistance gene Xa3/Xa26 family. J. Integr. Plant Biol. 49, 852–862.

Xu, Z., Sun, Q., Liu, F., Chen, Z., Hu, B., Guo, Y., Liu, Y., and Liu, H. (2004). Race monitoring of rice bacterial blight (Xanthomonas oryzae pv. oryzae) in China. Chin. J. Rice Sci. 18, 469–472.

Yang, D., Li, Q., Deng, Y., Lou, Y., Wang, M., Zhou, G., Zhang, Y., and He, Z. (2008). Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol. Plant. 1, 528–537.

Yang, Z., Sun, X., Wang, S., and Zhang, Q. (2003). Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor. Appl. Genet. 106, 1467–1472.

Zhang, Q., et al. (2000). Identifying and mapping a new gene Xa-23(t) for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) from O. rufipogon. Acta Agronomica Sinica. 26, 536–542.

Zhao, J., Fu, J., Li, X., Xu, C., and Wang, S. (2009). Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice. Theor. Appl. Genet. 119, 231–239.

Zhou, Y., Cao, Y., Huang, Y., Xie, W., Xu, Cai, Li, X., and Wang, S. (2009). Multiple gene loci affecting genetic background-controlled disease resistance conferred by R gene Xa3/Xa26 in rice. Theor. Appl. Genet. 120, 127–138.