Gallo, V; Leonardi, G; Genser, B; Lopez-Espinosa, MJ; Frisbee, SJ; Karlsson, L; Ducatman, AM; Fletcher, T (2012) Serum Perfluorooctanoate (PFOA) and Perfluorooctane Sulfonate (PFOS) Concentrations and Liver Function Biomarkers in a Population with Elevated PFOA Exposure. Environmental health perspectives, 120 (5). pp. 655-60. ISSN 0091-6765 DOI: 10.1289/ehp.1104436

Downloaded from: http://researchonline.lshtm.ac.uk/21157/

DOI: 10.1289/ehp.1104436

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Supplemental Material

Serum Perfluorooctanoate (PFOA) and Perfluorooctane Sulfonate (PFOS) Concentrations and Liver Function Biomarkers in a Population with Elevated PFOA Exposure

Valentina Gallo1,2, Giovanni Leonardi1, Bernd Genser3,4, Maria-Jose Lopez-Espinosa1, Stephanie J Frisbee5, Lee Karlsson1, Alan M Ducatman6, Tony Fletcher1

1Social and Environmental Health Research (SEHR), London School of Hygiene and Tropical Medicine, London, UK

2School of Public Health, Imperial College London, London, UK

3Mannheim Institute of Public Health, Social and Preventive Medicine, University of Heidelberg, Heidelberg, Germany

4Instituto de Saúde Coletiva, Federal University of Bahia, Salvador, Brazil

5Department of Community Medicine and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, USA

6Department of Community Medicine, West Virginia University School of Medicine, West Virginia, USA
Detail of between- and within-regression models

Water district data available in the C8 Health Project questionnaire data were considered: using the geocoded locations of the address, combined with a detailed mapping of streets covered by each water districts piped water supplies, geocoded residences could be assigned a water district code. These analyses were restricted to those living in the six contaminated districts (Little Hocking Water Association of Ohio; City of Belpre, Ohio; Tupper Plains–Chester District of Ohio; Village of Pomeroy, Ohio; Lubeck Public Service District of West Virginia; Mason County Public Service District of West Virginia) at the time of the survey ($n=26,777$). For each water districts, on the ln-transformed scale, a mean PFOA value and a deviation from the mean for each individual was calculated as the difference between the individual level and the water district mean. Regression coefficients with relative standard errors (SE) and p-values were calculated for the association within water district and between water districts with both the mean ln-PFOA values, and the individual deviations, in a fully adjusted linear regression model. The significance of the difference between these within and between water district coefficients was also assessed. Models also included a random effect at the water district level.

Formal model description:

To estimate within and between water district ($i=1,..., 6$) coefficients relating log serum PFOA in individual j in that district (x_{ij}) to numerical outcomes (y_{ij}), we fit the model:

$$y_{ij} = a + \beta_w(d_{ij}) + \beta_b\bar{x}_i + \{\text{covariate terms}\} + \alpha_i + \epsilon_{ij},$$

Where $d_{ij} = (x_{ij} - \bar{x}_i), \alpha_i \sim N(0, \sigma^2_\alpha), \text{and} \epsilon_{ij} \sim N(0, \sigma^2_\epsilon)$
To test the hypothesis $\beta_w = \beta_b$, we re-parameterised this relationship writing $\beta_{\text{diff}} = \beta_w - \beta_b$, giving:

$$E(y) = a + \beta_w(x_{i,j}) + \beta_{\text{difference}}\bar{x}_i + \{\text{covariate terms}\}$$

We used the Wald test for $\beta_{\text{diff}} = 0$ as a test for $\beta_w = \beta_b$.

For dichotomous outcomes we fit analogous logistic models, except that instead of fitting a random effect at water district level, which was computationally cumbersome, we used a sandwich (Huber-White) estimator of variance clustering by water district.