Updated constraints from the effective field theory analysis of BOSS power spectrum on Early Dark Energy

Théo Simon,1 Pierre Zhang,2 Vivian Poulin,1 and Tristan L. Smith3

1Laboratoire Univers & Particules de Montpellier (LUPM), CNRS & Université de Montpellier (UMR-5299), Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France
2Department of Astronomy, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
3Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA

Analyses of the full shape of BOSS DR12 power spectrum using the one-loop prediction from the effective field theory of large-scale structure (EFTBOSS) have led to new constraints on extensions to the ΛCDM model, such as early dark energy (EDE), which has been suggested as a resolution to the “Hubble tension.” In this paper, we reassess the constraining power of the EFTBOSS on EDE in light of a correction to the normalization of BOSS window functions. Overall we find that constraints from EFTBOSS on EDE are weakened and represent a small change compared to constraints from Planck and the conventional BAO/σ_8 measurements. The combination of Planck data with EFTBOSS provides a bound on the maximal fractional contribution of EDE $f_{\text{EDE}} < 0.083$ at 95% C.L. (compared to < 0.054 with the incorrect normalization and < 0.088 without full-shape data) and the Hubble tension is reduced to 2.1σ. However, the more extreme model favored by an analysis with just data from the Atacama Cosmology Telescope is disfavored by the EFTBOSS data. We also show that the updated Pantheon+ type Ia supernova (SN1a) analysis can slightly increase the constraints on EDE. Yet, the inclusion of the SN1a magnitude calibration by SH0ES strongly increases the preference for EDE to above 5σ, yielding $f_{\text{EDE}} \sim 0.12^{+0.03}_{-0.02}$ around the redshift $z_e = 4365^{+3000}_{-1000}$. Our results demonstrate that EFTBOSS data (alone or combined with Planck data) do not exclude the EDE resolution of the Hubble tension.

I. INTRODUCTION

In recent years, several tensions between probes of the early and late Universe analyzed under the Λ cold dark matter (ΛCDM) model have emerged. The Hubble tension refers to the inconsistency between local measurements of the current expansion rate of the Universe, i.e., the Hubble constant H_0, and the value inferred from early Universe data using the ΛCDM model. This tension is predominantly driven by the Planck Collaboration’s observation of the cosmic microwave background (CMB), which predicts a value in ΛCDM of $H_0 = 67.27 \pm 0.60$ km/s/Mpc [1], and the value measured by the SH0ES Collaboration using the Cepheid-calibrated cosmic distance ladder, whose latest measurement yields $H_0 = 73 \pm 1$ km/s/Mpc [2] [3]. Taken at face value, these observations alone result in a $\sim 5\sigma$ tension[4]. Experimental efforts are underway to establish whether this discrepancy can be caused by yet unknown systematic effects (appearing in either the early or late Universe measurements [1] [5], or both). It appears that various attempts to alter the modeling of dust extinction are not successful in altering the Hubble constant [6–8], nor is there support for different populations of type Ia supernova (SN1a) at low–z and high–z causing significant impact [9–12]. In fact, the SH0ES team recently provided a comprehensive measurement of the H_0 parameter to 1.3% precision, addressing these potential systematic errors, and concluded that there is “no indication that the discrepancy arises from measurement uncertainties or [over 70] analysis variations considered to date” [2].

On the side of the CMB, it has been noted that Planck data carry a number of anomalies of low statistical significance that may play a role in this tension [1] [13] [16]. Nevertheless, the appearance of this discrepancy across an array of probes[4] (although not always with strong statistical significance) suggests that a sin-

[1] A new calibration including cluster cepheids and Gaia EDR3 parallaxes further increase the tension to 5.3σ [3].

[2] For a very short summary of alternative methods, let us mention that, on the one hand, there exists a variety of different techniques for calibrating ΛCDM at high redshifts and subsequently inferring the value of H_0, which do not involve Planck data. For instance, one can use alternative CMB datasets such as WMAP, ACT, or SPT, or even remove observations of the CMB altogether and combine measurements of big bang nucleosynthesis (BBN) with data from baryon acoustic oscillation (BAO) [17] [18], resulting in H_0 values in good agreement with Planck. On the other hand, alternative methods for measuring the local expansion rate have been proposed in the literature, in an at-
gle systematic effect may not be sufficient to resolve it. For recent reviews on the topic, we refer the reader to Refs. 31, 82.

Additionally, within ΛCDM, the parameter $S_8 \equiv \sigma_8 (\Omega_m / 0.3)^{0.5}$, where σ_8 is the root mean square of matter fluctuations on an $8h^{-1}$Mpc scale and Ω_m the (fractional) matter density today, inferred from CMB is about $2 - 3\sigma$ larger than that deduced from weak lensing surveys such as the CFHTLenS 33, KiDS-1000 34, DESY3 34, as well as from Planck Sunyaev-Zeldovich cluster abundances 11, 36 and SPT 37. Additionally, the measurements of S_8 on large scales with galaxy clustering from BOSS full-shape data that have been reported also indicate a value that is on a low side, although not at an important significant level due to large error bars ($\sim 2\sigma$) 38, 39. It is yet to be understood whether the S_8 tension is due to systematic effects 42, nonlinear modeling including the effect of baryons at very small scales 41, or physics beyond ΛCDM.

Along with experimental developments to confirm the Hubble and S_8 tension, a lot of effort has been given to explain these discrepancies with some new physical mechanism, often in the form of extensions to the ΛCDM model that may be connected to the (still unknown) nature of dark matter or dark energy. It has been argued that the most promising category of solutions to resolve the H_0 tension involves physics in the pre-recombination era leading to a decrease of the sound horizon at recombination 43, 45, such as models involving dark radiation and/or new neutrino properties 40, 59, early dark energy (EDE) 60, 66, modified gravity 67–86, or exotic recombination 87, 91 for (reviews, see Refs. 31, 48).

Interestingly, these models tend to leave signatures in the power spectrum on large scales that can be probed by large-scale structures surveys such as SDSS/BOSS 92. In fact, developments of the one-loop prediction of the galaxy power spectrum in redshift space from the effective field theory of large-scale structures (EFTofLSS 7, 93, 98) have made possible the determination of the ΛCDM parameters from the full-shape analysis of SDSS/BOSS data 92 at precision higher than that from conventional BAO and redshift space distortions (which measure the product $f\sigma_8$, where f is the growth function) analyses, and even comparable to that of CMB experiments. This provides an important consistency test for the ΛCDM model, while allowing one to derive competitive constraints on models beyond ΛCDM (see, e.g., Refs. 35, 39, 89, 110). A thorough study of the consistency of EFTBOSS analyses within the ΛCDM model is presented in a companion paper 111.

In this paper, we reassess the constraints on EDE from the full shape of the most recent measurements of the power spectrum (or correlation function) of BOSS in light of a correction to the normalization of BOSS window functions (presented in App. A). EDE has been shown to reduce the Hubble tension to the $\sim 1.5\sigma$ level, with an energy density representing at most a fraction $f_{\text{EDE}}(z_c) \sim 12\%$ at the critical redshift $z_c \sim 3500$ after which the fields start to dilute away 43, 60, 62. There exists a variety of other EDE models that can similarly reduce the tension to the $1.5 - 2.5\sigma$ level 63, 65, 112, 114. Recently, several groups have reported “hints” of EDE within ACT data at the $\sim 3\sigma$ level, alone or in combination with WMAP (or, equivalently, Planck temperature data restricted to $\ell < 650$) and Planck polarization data 115, 116, as well as with SPT-3G data 117, 118.

However, it has also been pointed out that EDE leaves an impact in the matter power spectrum that can be constrained thanks to the EFTofLSS applied to BOSS data or through measurements of the parameter S_8. Typically, in the EDE cosmology that resolves the Hubble tension, the amplitude of fluctuations σ_8 is slightly larger due to increase in ω_{cdm} and n_s, which are necessary to counteract some of the effects of the EDE on the CMB power spectra 61, 119, 120. As a result, the S_8 tension tends to increase by $\sim 0.5\sigma$ in the EDE cosmology, and large-scale structure (LSS) measurements may put pressure on the EDE model 119. Additionally, it has been argued that the full-shape analysis of the galaxy power spectrum of BOSS disfavors the EDE model as an efficient resolution of the H_0 tension 121, 122. Indeed, in order to adjust the BAO data seen either in 3D or 2D at different comoving distances in a galaxy clustering survey (typically at $z \sim 0.1 - 1$), it requires in the EDE cosmology an increase in ω_{cdm} 61, 91, which can affect the fit to the full-shape 119, 121, 122. Thus, galaxy clustering data can provide a way to break the degeneracy introduced by EDE, in particular, due to the constraints it provides on ω_{cdm} and σ_8.

4 See also the introduction footnote in, e.g., 49 for relevant related works on the effective field theory of large-scale structures (EFTofLSS).

5 A similar increase is required to keep the CMB peaks’ height fixed 51, in particular, through the ISW effect 120.
Although these effects are certainly relevant in constraining EDE, the original interpretation of the additional constraining power suggested in Refs. 121, 122 was disputed in Refs. 123, 124. There, it was argued that the apparent constraining power from the BOSS fullshape analysis may be artificially amplified by (i) the impact of the prior volume artificially favoring ΛCDM in the Bayesian context (later verified with a profile likelihood approach [126, 127]); (ii) a potential ∼20% mismatch in the overall amplitude (typically parametrized by the primordial power spectrum amplitude A_s) between BOSS and Planck, rather than additional constraints on ω_{cdm}. In parallel, it had already been pointed out in Ref. 128 that the effective field theory of LSS applied to BOSS data does not rule out the new EDE model.

In App. A we explore the impact of the correction to the normalization of the BOSS data window function within ΛCDM and show that it leads to a 1σ shift upward in the value of A_s, now in better agreement with Planck. Given that previous analyses, e.g., Refs. 121, 122, have used the measurements inconsistently normalized between the power spectrum and the window function (as already acknowledged in Ref. 129 for their previous analyses), the constraints from EDE are expected to change with these corrected BOSS measurements. While Refs. 121, 122 concluded that the BOSS data, combined with Planck data, disfavored the EDE model as a potential candidate to solve the H_0 tension, we find here that the conclusions reached strongly depend on the normalization of the window functions used in the BOSS measurements.

Our paper is structured as follows: In Sec. II, we review the model and data considered in this work. In particular, we detail the possible choice of BOSS measurements and EFT likelihoods. In Sec. III, we assess the constraining power of corrected BOSS data alone on the EDE resolution to the Hubble tension and discuss differences between the constraints derived from the various BOSS data and EFTToLSS likelihoods. In Sec. IV, we derive constraints on EDE from the EFTBOSS data combined with either Planck data (with and without SH0ES) or ACT data. We also show the impact of the new Pantheon+ SN1a catalog 130 on the constraints on EDE. We eventually present our conclusions in Sec. V.

In the following, we will fix $n = 3$ as it was found that the data are relatively insensitive to this parameter provided $2 < n < 5$ 102. Instead of the theory parameters f and m, we make use of $f_{EDE}(z_c)$ and z_c determined through a shooting method 62. We also include the initial field value Θ_0 as a free parameter, whose main role once $f_{EDE}(z_c)$ and z_c are fixed is to set the dynamics of perturbations right around z_c, through the EDE sound speed c_s^2.

The EDE field will provide a small contribution to the expansion rate $H(z)$ around z_c (we will focus on $\sim 10^3 - 10^4$ in the context of the Hubble tension), which causes a modification of the sound horizon at the recombination

$$r_s(z_{rec}) = \int_{z_{rec}}^{+\infty} \frac{c_s(z')}{H(z')} dz',$$

where c_s corresponds to the sound speed of the photon-baryon fluid acoustic waves. The sound horizon is observationally determined through the angular acoustic scale

\[\frac{r_s}{c_s} = \int_{z_{rec}}^{+\infty} \frac{H(z)}{c_s(z)} dz'. \]
at recombination θ_s, defined as
\[
\theta_s = \frac{r_s(z_{\text{rec}})}{D_A(z_{\text{rec}})},
\]
where $D_A(z_{\text{rec}}) = \int_0^{z_{\text{rec}}} dz'/H(z') \propto 1/H_0$ is the comoving angular diameter distance. Given that θ_s is determined from Planck CMB power spectra with a very high accuracy, the change in the sound horizon must be compensated by a readjustment of the angular diameter distance in order to keep the angular acoustic scale constant. This readjustment is automatically done by increasing H_0 (and additional shift in ω_{cdm} and n_s to compensate effect of EDE on the growth of perturbations), which can, by design, bring the CMB measurements and the late-time estimate of the Hubble constant from the SH0ES Collaboration into agreement. In this paper, we address the question of whether the current full shape of galaxy clustering data analyzed using the EFTofLSS, can accommodate EDE. Indeed, on the one hand, the sound horizon seen at baryon-drag epoch $r_s(z_{\text{drag}})$ is measured through another angular acoustic scale in galaxy surveys,
\[
\theta_g = \frac{r_s(z_{\text{drag}})}{D_V(z_{\text{eff}})},
\]
where z_{eff} is the effective redshift of the survey, and $D_V(z) = (D_A(z) \frac{c}{H(z)})^{1/3}$ is a volume average of the comoving distances in the directions parallel and perpendicular to the line of sight, with c the speed of light. The angle θ_g typically summarizes the information from the BAO, and measuring it with high precision has the potential to break the degeneracy between $r_s(z_{\text{drag}})$ and H_0 introduced by the EDE. In practice, BAOs from BOSS were shown to be well fit in combination with Planck and SH0ES when allowing for EDE \cite{38}, at the cost of a larger ω_{cdm} \cite{133}, which can simultaneously allow for the CMB peaks’ height to be kept fixed \cite{61} through the ISW effect \cite{120}. However, the full-shape of the galaxy power spectrum also contains additional information. For example, the amplitude of the small-scale galaxy power spectrum at $k > k_{eq}$, where k_{eq} is the wavenumber entering the horizon at matter/radiation equality, contains information about ω_m, h, and the spectral tilt n_s \cite{99,101}. As the values of ω_{cdm} and n_s are uplifted to compensate the growth of perturbations in the presence of EDE, the full shape of the galaxy power spectrum (with ω_b fixed by CMB or a BBN prior) is also modified in that respect. In the following, we quantify if these modifications from the EDE as a resolution of the H_0 tension are consistent with current cosmological data, including the full-shape galaxy power spectrum from BOSS modeled with the EFT.

B. Data and method

We analyze the EDE model in light of recent cosmological observations through a series of Markov chain Monte Carlo (MCMC) analyses using the Metropolis-Hastings algorithm from MontePython-v3 code \cite{134,135}, interfaced with our modified version of CLASS \cite{136}. In this paper, we carry out various analyses from a combination of the following datasets:

- **PlanckTTTEEEE**: The low-l CMB TT, EE, and the high-l TT, TE, EE data from Planck 2018 \cite{1}.
- **PlanckTTTEEEE**: Same dataset as Planck TTTEEEE, but in this case the TT power spectrum has a multipole range restricted to $l < 650$.
- **Lens**: The CMB gravitational lensing potential reconstructed from Planck 2018 temperature and polarization data \cite{137}. When used without high-l TT, TE, EE data, we use the CMB-marginalized version of the likelihood \cite{11}.
- **ACT**: The temperature and polarization angular power spectrum of the CMB from the Atacama Cosmology Telescope (ACT DR4) \cite{138}.
- **BBN**: The BBN measurement of ω_b \cite{39} that uses the theoretical prediction of \cite{140}, the experimental deuterium fraction of \cite{141}, and the experimental helium fraction of \cite{142}.
- **BAO**: The measurements of the BAO from the CMASS and LOWZ galaxy samples of BOSS DR12 at $z = 0.38, 0.51$, and 0.61 \cite{92}, which we refer to as BOSS BAO DR12, and the BAO measurements from 6dFGS at $z = 0.106$ and SDSS DR7 at $z = 0.15$ \cite{143,144}, which we refer to as BOSS BAO low-z.
- **BOSS fσ8 DR12**: We also sometimes include the redshift space distortion at $z = 0.38, 0.51$, and 0.61, which we refer to as $f \sigma_8$ \cite{92}, taking into account the cross-correlation with BAO measurements.
- **EFTBOSS**: The full-shape analysis of the BOSS power spectrum from the EFTofLSS, namely, $P_{\text{EFT}}^{\text{EFT/CM}} \cite{38}$, cross-correlated with reconstructed BAO, namely, $\sigma_{\text{EFT}}^{\text{EFT/CM}} \cite{145}$. The measurements are defined in Table \ref{table1}. The SDSS-III BOSS DR12 galaxy sample data and covariances are described in Refs. \cite{92,146}. The measurements, obtained in Ref. \cite{38}, are from BOSS catalogs DR12 (v5) combined CMASS-LOWZ \cite{147} and 147 and are divided in redshift bins LOWZ $0.2 < z < 0.43$ ($z_{\text{eff}} = 0.32$) and CMASS $0.43 < z < 0.7$ ($z_{\text{eff}} = 0.57$), with

\[\text{https://github.com/brinckmann/montepython_public}\]
\[\text{https://github.com/PoulinV/AxiCLASS}\]
\[\text{https://lesgourg.github.io/class_public/class.html}\]
\[\text{We thank Oliver Philcox for his help with correcting a bug in the standard Plink implementation.}\]
\[\text{https://data.sdss.org/sas/dr12/boss/ssl/}\]
north and south Galactic skies for each, respectively, denoted NGC and SGC. For the EDE analyses, we analyze the full shape of CMASS NGC, CMASS SGC, and LOWZ NGC, cross-correlated with post-reconstruction BAOs. The analysis includes the monopole and quadrupole between \((k_{\text{min}}, k_{\text{max}}) = (0.01, 0.20/0.23) \, h \, \text{Mpc}^{-1}\) in Fourier space and \((s_{\text{min}}, s_{\text{max}}) = (25/20, 200) \, \text{Mpc}/h\) in configuration space for LOWZ / CMASS. The theory prediction and likelihood are made available through PyBird. We also compare PyBird to CLASS-PT. More details on the differences between these likelihoods are given in Sec. II of Ref. [111]. When computing constraints with CLASS-PT, we use the galaxy power spectrum monopole, quadrupole, and hexadecapole, for \(0.01 \leq k \leq 0.2 \, h \, \text{Mpc}^{-1}\) as well as the real-space extension \(Q_0\), up to \(k_{\text{max}} = 0.4 \, h \, \text{Mpc}^{-1}\), and the post-reconstructed BAO parameters. We use the standard CLASS-PT priors on the bias parameters.

- Pan18: The Pantheon SNIa catalog, spanning redshifts \(0.01 < z < 2.3\) [38]. We will also study in Sec. IV.D the impact of the newer Pantheon+ catalog, favoring a larger \(\Omega_m\) [130], on our conclusions.

- SH0ES: The SH0ES determination of \(H_0 = 73.04 \pm 1.04 \, \text{km/s/Mpc}\) from cepheid calibrated SNIa, modeled as a Gaussian likelihood [13].

We will refer to the combination of PlanckTTTTEE+BAO+Pan18 as BaseTTTTEE, and to BaseTT650TTEE when replacing PlanckTTTTEE with PlanckTT650TTEE. In the absence of CMB TTTEE data, we refer to the dataset EFTBOSS+BBN+Lens+BAO+Pan18 as BaseEFTBOSS. For all runs performed, we use Planck conventions for the treatment of neutrinos, that is, we include two massless and one massive species with \(m_\nu = 0.06 \, \text{eV}\) [1]. In addition, we impose a large flat prior on the dimensionless cold dark matter energy density \(\omega_c\), the dimensionless cold dark matter energy density \(\omega_{\text{cdm}}\), the Hubble parameter today \(H_0\), the logarithm of the variance of curvature perturbations centered around the pivot scale \(k_p = 0.05 \, \text{Mpc}^{-1}\) (according to the Planck convention), \(\ln(10^{10} A_s)\), the scalar spectral index \(n_s\), and the reionization optical depth \(\tau_{\text{reio}}\). Regarding the three free parameters of the EDE model, we impose a logarithmic prior on \(z_c\) and flat priors for \(f_{\text{EDE}}(z_c)\) and \(\Theta_i\),

\[
3 \leq \log_{10}(z_c) \leq 4,
0 \leq f_{\text{EDE}}(z_c) \leq 0.5,
0 \leq \Theta_i \leq \pi.
\]

We define our MCMC chains to be converged when the Gelman-Rubin criterion \(R - 1 < 0.05\), except for runs combining Planck+EFTBOSS+ACT, for which we use a relaxed criterion of \(R - 1 < 0.1\) due to the complicated nature of the parameter space for the MCMC to explore. Finally, we extract the best-fit parameters from the procedure highlighted in the appendix of Ref. [38], and we produce our figures thanks to GetDist [149].

C. Details on the BOSS measurements and EFT likelihoods

In this paper, we perform a thorough comparison of the constraints derived from the EFTBOSS data, in order to assess the consistency of the various analyses presented in the literature. Indeed, there are various BOSS two-point function measurements available to perform full-shape analyses, as well as a different EFT code. As described in more detail in Ref. [111], the BOSS DR12 data can be divided into two different sets of redshift splitting (LOWZ/CMASS vs \(z_1/z_3\)). Furthermore, depending on the estimator, the data are sometimes analyzed by convolving the theory model with a window function, or not. For a window-free analysis, one way is to use the configuration-space correlation function \(\xi\), another is to use a quadratic estimator, which we denote with the subscript “QUAD.” Finally, there are different ways to analyze the post-reconstructed parameters, which are then combined with the EFTBOSS data, denoted by \(\alpha_{\text{rec}}\) and \(\beta_{\text{rec}}\). These different datasets include slightly different amounts of information (due to different scale cuts) but they all represent reasonable choices on how to analyze the BOSS DR12 observations.

The characteristics of each measurement are listed in Tab. 1 and more details can be found in Sec. IV of Ref. [111]. The EFT implementation and BOSS data we will focus on in this study are packaged in the PyBird likelihood, based on the EFT prediction and likelihood from PyBird [102] and the CLASS-PT likelihood, based on the EFT prediction from CLASS-PT [157] and likelihood from Ref. [39]. Details about the PyBird and CLASS-PT likelihoods are presented in Sec. II of Ref. [111]. Here, let us simply mention that CLASS-PT implements the IR-resummation scheme proposed in Ref. [158] and generalized to redshift space in Ref. [159]. This is different than that implemented in PyBird, proposed in Ref. [95], generalized to redshift space in Ref. [160], and made numerically efficient in Ref. [102]. The CLASS-PT scheme has been shown to be an approximation of the one used in PyBird in Ref. [161], where one considers only the resummation of the bulk displacements around

13 For discussions about this modeling, see Refs. [10,15]

14 Most parameters are converged at 0.01-0.05, the parameter with the worse convergence is \(\theta_i\), which is often unconstrained or multimodal in the analyses.

15 https://github.com/pierreyz/pybird

16 https://github.com/michalychforever/CLASS-PT

17 https://github.com/oliverphilcox/full_shape_likelihoods
the BAO peak, $r_{\text{BAO}} \sim 110 \text{Mpc}/h$. For this scheme to be made practical, one further relies on a wiggle-no-wiggle split procedure to isolate the BAO part. Although this scheme has been shown to work fairly well within ΛCDM for cosmologies not too far from the one of Planck, we cautiously observe that in far-away cosmologies as the ones probed in EDE, the BAO peak location happens to be dramatically modified, and it thus remains to be checked that the approximations still hold in these cases. For our prior choice (on f_{EDE}), we have checked that at least the wiggle-no-wiggle split procedure as implemented in CLASS-PT is as numerically stable as for a fiducial case where the BAO peak is $\sim 110 \text{Mpc}/h$.

In addition, in Ref. [111], we have checked the validity of the two pipelines by implementing in the PyBird likelihood the exact same prior as those used in the CLASS-PT likelihood, and we found agreement on the 1D posteriors of the cosmological parameters at $\lesssim 0.2\sigma$ in ΛCDM, where these residual differences can be attributed to the different implementations of the IR-resummation mentioned above.

III. UPDATED EFTBOSS CONSTRAINTS ON EDE

A. Preliminary study

In the recent literature, there has been a number of analyses showing hints of EDE and allowing for a resolution of the Hubble tension [63, 115, 118]. In this preliminary study, we will take the results of two representative analyses. First, the baseline analysis of BaseTTTEE+Lens+SH0ES data (second column of Tab. III) has a best-fit of $f_{\text{EDE}}(z_c) = 0.122$, $H_0 = 71.89 \text{ km.s}^{-1}\text{Mpc}^{-1}$. Second, the analysis of BaseTT650TEE+ACT (first column of Tab. IV) favors an EDE model with significantly larger values of $f_{\text{EDE}}(z_c)$ and H_0 compared to the BaseTTTEE+Lens+SH0ES, namely, $f_{\text{EDE}}(z_c) = 0.159$, $H_0 = 73.30 \text{ km.s}^{-1}\text{Mpc}^{-1}$ (see also [115, 118]). In this section, we will gauge how these two specific models fair against BOSS data following Refs. [111, 12].

Using the best-fit parameters listed in Tab. III (second column) and Tab. IV (first column), we perform a preliminary study where we determine the χ^2 of the EFTBOSS data (using our fiducial $P^{\text{NL}}_{\text{exp}} + \alpha_{\text{rec}}$ data) after optimizing only the EFT parameters (since the cosmological parameters are fixed here). Using the PyBird code, we show in Tab. III the χ^2 associated with the EFTBOSS data, and we plot in Fig. 1 the residuals with respect to

Pre-reconstructed measurements
Ref.

$P_{\text{exp}}^{\text{LOWZ}/\text{CMASS}}$
$P_{\text{exp}}^{\text{LOWZ}/\text{CMASS}}$
$P_{\text{exp}}^{\text{LOWZ}/\text{CMASS}}$
$P_{\text{exp}}^{\text{LOWZ}/\text{CMASS}}$

Post-reconstructed measurements
Ref.

$\sigma_{\text{rec}}^{\text{LOWZ}/\text{CMASS}}$
$\sigma_{\text{rec}}^{\text{LOWZ}/\text{CMASS}}$
$\sigma_{\text{rec}}^{\text{LOWZ}/\text{CMASS}}$

TABLE I: Comparison of pre and post-reconstructed BOSS two-point function measurements: reference, estimator, code of the measurements, redshift split [LOWZ, 0 < z < 0.43 (z_{\text{eff}} = 0.32); CMASS, 0.43 < z < 0.7 (z_{\text{eff}} = 0.57); z_{\text{eff}} = 0.2 < z < 0.5 (z_{\text{eff}} = 0.38); z_{\text{eff}} = 0.5 < z < 0.7 (z_{\text{eff}} = 0.61)], and window function treatment. For the post-reconstructed measurements, while we instead provide under “Method” the references presenting the algorithm used to extract the reconstructed BAO parameters and how the cross-correlation with the pre-reconstructed measurements is performed, “Ref.” now refers to the public post-reconstructed measurements used. The SDSS-III BOSS DR12 galaxy sample data are described in Refs. [92, 146]. The pre-reconstructed measurements are from BOSS catalogs DR12 (v5) combined CMASS-LOWZ public post-reconstructed measurements used. The SDSS-III BOSS DR12 galaxy sample data are described in Refs. [92, 146].
FIG. 1. Residuals of the monopole and quadrupole of the galaxy power spectrum in two EDE models (see, Tab. II) with respect to the ΛCDM model (obtained from the baseTTTEEE+Lens+EFTBOSS analysis [104]) for the three sky cuts of the EFTBOSS data.

ACDM from the BaseTTTEE+Lens+EFTBOSS analysis [104]. We also show the BOSS data residuals for comparison with respect to the same model. First, one can see that the changes in the residuals between those various fits are almost imperceptible by eye with respect to BOSS error bars. We find that the χ² of the BOSS data is degraded by +1.1 for BaseTTTEE+Lens+SH0ES (to be compared with ∼ +2.5 in Ref. [121]) and +2.4 for BaseTT650TEE+ACT, compared to the best-fit χ² of EFTBOSS data in the ΛCDM model. Despite this small χ² degradation, we note that the p-value of BOSS data in the EDE models that resolve the Hubble tension is still very good. Nevertheless, we anticipate that the EFTBOSS data could have a non-negligible constraining power in combination with BaseTT650TEE+ACT, while its impact should be small in the context of the BaseTTTEE+Lens+SH0ES analysis.

B. Constraints from various BOSS data

As is done in Ref. [111] for ΛCDM, we compare the constraints on EDE from the various BOSS two-point function measurements, described in Tab. I, in combination with the BBN prior on ω_b. The comparison of the 2D posteriors is shown in Fig. 2, while the 1D posteriors of \{f_{EDE}(z_c), h, \omega_{cdm} \ln(10^{10} A_s), n_s, \Omega_m, \sigma_8, S_8 \} are shown in Fig. 3. In these figures, we also display the results from the BOSS data analyzed with the EFT predictions convolved with inconsistently normalized window functions, namely, \(P_{\text{FLKP}}^{\text{LZ/CX}} + \alpha_{\text{rec}}^{\text{LZ/CX}} \), which disfavor the EDE model when they are combined with Planck data [121, 122] (see the discussion in App. A for the impact of inconsistent normalization within the ΛCDM model). Interestingly, using the PyBird likelihood, the ΛCDM parameters are broadly consistent between \(P_{\text{FLKP}}^{\text{LZ/CX}} + \alpha_{\text{rec}}^{\text{LZ/CX}} \) and \(P_{\text{Quad}}^{\text{LZ/CX}} + \alpha_{\text{rec}}^{\text{Quad}} \), as we have a shift of ≲ 0.3σ on ΛCDM parameters between these two measurements. However, we find that \(P_{\text{FLKP}}^{\text{LZ/CX}} + \alpha_{\text{rec}}^{\text{LZ/CX}} \) leads to stronger

18 When combined with EFTBOSS, we do not include the BOSS BAO+\(f_{\sigma} \) data.
TABLE II. χ^2 of each sky cut of the EFTBOSS dataset for the EDE best-fit models extracted from a fit to BaseTTTEE+Lens+SH0ES and BaseTT650TEE+ACT and the ΛCDM model from a fit to BaseTTTEE+Lens+EFTBOSS. We also indicated the Δχ^2 with respect to the ΛCDM best-fit model. The associated p-value is calculated assuming that the data points are uncorrelated and taking 3·9 EFT parameters in each fit (given that the cosmology is fixed).

	BaseTTTEE+Lens +SH0ES (EDE)	BaseTT650TEE +ACT (EDE)	BaseTTTEE+Lens +EFTBOSS (ΛCDM)
$\chi^2_{\text{MASS NGC}}$	39.3	39.1	40.3
$\chi^2_{\text{MASS SGC}}$	45.2	46.0	44.0
$\chi^2_{\text{LOWZ NGC}}$	34.4	35.1	33.5
χ_{EFTBOSS}	118.9	120.2	117.8
Δχ^2_{min}(EDE − ΛCDM)	+1.1	+ 2.4	−
p-value (%)	16.7	14.7	18.5
N_{data}	132		

Concerning $\xi^{\text{LZ/CM}} + \alpha_{rec}^{\text{LZ/CM}}$, we find different constraints, even for the ΛCDM parameters: comparing $\xi^{\text{LZ/CM}} + \alpha_{rec}^{\text{LZ/CM}}$ to $P_{\text{FKP}}^{\text{LZ/CM}} + \alpha_{\text{rec}}^{\text{LZ/CM}}$, we find shifts of $\lesssim 1.2\sigma$, whereas comparing $\xi^{\text{LZ/CM}} + \alpha_{\text{rec}}^{\text{LZ/CM}}$ to $P_{\text{QUAD}}^{\text{LZ/CM}} + \alpha_{\text{rec}}^{\text{LZ/CM}}$, we find shifts of $\lesssim 1.0\sigma$. Let us note that the constraints on ΛCDM parameters reconstructed from $\xi^{\text{LZ/CM}} + \alpha_{\text{rec}}^{\text{LZ/CM}}$ are weaker than those of $P_{\text{FKP}}^{\text{LZ/CM}} + \alpha_{\text{rec}}^{\text{LZ/CM}}$ and $P_{\text{QUAD}}^{\text{LZ/CM}} + \alpha_{\text{rec}}^{\text{LZ/CM}}$, which is consistent with what was found within the ΛCDM model in our companion paper (see also Ref. 38 and explanations therein). Regarding the EDE parameters, we obtain weaker constraints on f_{EDE}, namely $f_{\text{EDE}}(z_c) < 0.468$. It is worth noting that, for the same likelihood, the constraints on $f_{\text{EDE}}(z_c)$ can be up to $\sim 35\%$ different depending on the data (especially between $P_{\text{FKP}}^{\text{LZ/CM}} + \alpha_{\text{rec}}^{\text{LZ/CM}}$ and $\xi^{\text{LZ/CM}} + \alpha_{\text{rec}}^{\text{LZ/CM}}$). However, regardless of the data we consider, the BOSS full-shape (analyzed on their own with a BBN prior) within EDE leads to reconstructed values of H_0 that are compatible with what is obtained by the SH0ES Collaboration.

This conclusion also holds for the CLASS-PT baseline (last line of Fig. 3), which is less constraining than the PyBird likelihood for the EDE model. Indeed, we obtain $f_{\text{EDE}}(z_c) < 0.448$, which is $\sim 15\%$ weaker than the constraint obtained with the PyBird likelihood, even for similar data ($P_{\text{QUAD}}^{\text{LZ/CM}}$). Furthermore, we note that the $f_{\text{EDE}}(z_c)$ constraint reconstructed from $P_{\text{FKP}}^{\text{LZ/CM}} + \alpha_{\text{rec}}^{\text{LZ/CM}}$, analyzed with the PyBird likelihood, is $\sim 35\%$ weaker than the constraint obtained from $P_{\text{QUAD}}^{\text{LZ/CM}} + \beta_{\text{rec}}^{\text{LZ/CM}}$, analyzed with the CLASS-PT likelihood. We conclude that the standard PyBird analysis setup (which consists of our baseline setup) shows a higher constraining power than the standard CLASS-PT analysis. Let us note that, for the H_0 parameter, we obtain a value 1.4σ higher than the Planck value ($h = 0.6851^{+0.0076}_{-0.0081}$ at 68% CL) with the PyBird analysis setup, and a value 1.8σ higher with the CLASS-PT analysis setup, which indicates a reasonably good consistency between Planck and BOSS regarding H_0. For a more detailed discussion, including other data combinations, of the differences between PyBird and CLASS-PT for the EDE model, we refer to App. D. We, however, warn that the cosmological constraints from

19 Per convention, we cite one-sided bound at 95% C.L. and two-sided ones at 68% C.L.
To extract a meaningful CMB-independent bound on \(f_{\text{ED}}(z_c) \), we perform an additional analysis now restricting the \(\log_{10}(z_c) \) range to \(\log_{10}(z_c) \in [3.4, 3.7] \), which corresponds to the region favored to resolve the Hubble tension. We find that the combination of EFTBOSS+CMB data with BBN prior on \(f_{\text{ED}}/z^3 \) in the EDE model leads to a constraint on \(f_{\text{ED}}(z_c) < 0.284 \) (95% C.L.) and \(h = 0.710_{-0.025}^{+0.015} \), which does not exclude the EDE models resolving the Hubble tension. When performing the same analysis with CLASS-PT, we find significantly weaker constraints, with \(f_{\text{ED}}(z_c) < 0.284 \) (95% C.L.) and \(h = 0.726_{-0.04}^{+0.04} \). Constraints from CLASS-PT are shown in App. [A] Fig. [9].

IV. EFTBOSS Combined with CMB Data

A. EFTBOSS+PlanckTTTEEE

We now turn to studying the constraining power of EFTBOSS data in combination with primary CMB datasets. We start by performing joint analyses with the full PlanckTTTEEE datasets. All relevant \(\chi^2 \) statistics are given in App. [B] Tables [VII] and [VIII] while the reconstructed posteriors and best-fit values of parameters are given in Tab. [III]. In the left panel of Fig. [3] we compare constraints obtained with the consistently and inconsistently normalized EFTBOSS data to that obtained with the compressed BAO/\(f_8 \) data. One can see that the correction of the normalization of the window function leads...
the new EFTBOSS data to have a constraining power only slightly stronger than the compressed BAO/$f\sigma_8$ data. We derive a BaseTTTTEE+Lens+EFTBOSS constraint of $f_{\text{EDE}}(z_c) < 0.083$, to be compared with $f_{\text{EDE}}(z_c) < 0.088$ from BaseTTTTEE+Lens+$f\sigma_8$, while the EFTBOSS data with wrong normalization incorrectly lead to $f_{\text{EDE}}(z_c) < 0.054$.

Moreover, as was already pointed out in various works [48, 123, 124, 126], posteriors are highly non-Gaussian with long tails toward high-H_0, and therefore these constraints should be interpreted with care. This is further attested by the fact that the best-fit point lies at the 2σ limit of our constraints (e.g., f_{EDE} at the best-fit is 0.082 for BaseTTTTEE+Lens+EFTBOSS). We defer to future work to compare constraints derived here with a Bayesian analysis to those derived with a profile likelihood approach (e.g., [126, 127]), which will be affected by our update to the survey window function calculation.
As advocated recently, we will gauge the level of the Hubble tension by computing the tension metric $Q_{\text{MAP}} = \sqrt{\chi^2(\text{w/ SH0ES}) - \chi^2(\text{w/o SH0ES})}$ [48,162], which agrees with the usual Gaussian metric tension for Gaussian posteriors, but better captures the non-Gaussianity of the posterior.

Once the SH0ES prior is included in the BaseTTTEE+Lens+EFTBOSS analysis, we reconstruct $f_{\text{EDE}}(z_c) = 0.103_{-0.023}^{+0.027}$ with $h = 0.713 \pm 0.009$ and find the tension metric $Q_{\text{MAP}} = 2.1\sigma$ (while we find 4.8σ in ΛCDM), see Tab. [I] and Fig. [5] right panel. This is only a minor difference compared to the results without BOSS f_{σ_8} or full-shape information, for which we get $f_{\text{EDE}}(z_c) = 0.109_{-0.024}^{+0.030}$ with $h = 0.715 \pm 0.009$ and the Q_{MAP} metric gives a 1.9σ tension between SH0ES and other datasets [20]. Similarly, when the f_{σ_8} information is included, we find a 2.0σ tension with $f_{\text{EDE}}(z_c) = 0.102_{-0.024}^{+0.030}$ and $h = 0.712 \pm 0.009$.

Analyses with CLASS+PT are presented in App. [B] and similar results are found. Therefore, current full-shape EFTBOSS data provide little additional constraining power ($\sim 10\%$) on the EDE model over Planck and f_{σ_8}.

20 This is different than what was reported in Ref. [48], because of an updated H_0 prior with tighter error bars.
We conclude that the EFTBOSS data are in agreement with the model reconstructed when including a SH0ES prior, as the preliminary study suggested, and BOSS data do not exclude the EDE resolution to the Hubble tension.

B. EFTBOSS + PlanckTT650TEE+ACT

We now turn to the combination of Planck data with ACT. We start with a restricted version of Planck temperature data at $\ell < 650$ (chosen to mimic WMAP and perform a consistency test between CMB datasets), combined with Planck polarization and ACT data. This data combination is known to favor EDE at $\sim 3\sigma$ [115–118], with large values of $f_{\text{EDE}}(z_c) = 0.128^{+0.064}_{-0.039}$ and $h = 0.723^{+0.021}_{-0.017}$ (see Tab. IV first column). In Ref. [118], it was shown that BOSS f_{σ_8} and Planck lensing data decreased the preference to 2.6σ. We now test whether the EFT analysis of BOSS data can put further pressure on this hint of EDE, as our preliminary study indicates. All relevant χ^2 statistics are given in App. C Tab. IX while we give the reconstructed posteriors of parameters in Tab. IV. We show in Fig. 6 (left panel) the 2D posterior distribution $\{f_{\text{EDE}}(z_c), \omega_{\text{cdm}}, h, \log_{10}(z_c)\}$ reconstructed from the analysis of BaseTT650TEE+ACT compared with that reconstructed with the addition of either f_{σ_8} or EFTBOSS data.

One can see that, in this case, the EFTBOSS data do not reduce the preference for EDE, with f_{EDE} now compatible with zero at 1σ. For the BaseTT650TEE+ACT+Lens+EFTBOSS dataset, represented by the dark blue line on Fig. 6 (left panel), we find a weak upper limit $f_{\text{EDE}} < 0.172$ and $h = 0.708^{+0.015}_{-0.022}$, with best-fit values $f_{\text{EDE}} \simeq 0.148$ and $h \simeq 0.725$ in good agreement with the SH0ES determination. Quantifying the preference over ΛCDM, we find a $\Delta \chi^2 = -11.1$ in favor of EDE (2.5σ), decreased from -14.6 without EFTBOSS and Planck lensing data. The χ^2 of EFTBOSS data is degraded by $+1.7$ in the EDE model compared to ΛCDM, while the improvement in the fit of ACT and PlanckTT650TEE is fairly stable, with $\Delta \chi^2(\text{ACT}) = -7.6$ and $\Delta \chi^2(\text{PlanckTT650TEE}) = -6.1$, respectively. Additionally, we note that, for this more extreme EDE model, the full EFTBOSS data provide stronger constraints than the conventional BAO/f_{σ_8} data. Although current data do not fully erase the preference for EDE over ΛCDM, this confirms that BOSS data, and more generally measurement of the matter power spectrum in the late Universe, provide an important probe of large EDE fraction in the early Universe. We find similar results with CLASS-PT (see App. B for details), attesting that once BOSS data are combined with CMB data, the results obtained are robust to reasonable choices in the EFT analysis.

C. EFTBOSS + PlanckTTTEE+ACT

Except for consistency tests, there are no good reasons to remove part of the high-ℓ Planck TT data. In the following, we present results of combined analyses of PlanckTTTEE+ACT+EFTBOSS (i.e., including full Planck data) in Tab. IV and Fig. 6 (right panel). All relevant χ^2 statistics are given in App. C Tab. IX. We quantify the residual tension with SH0ES using the Q_{DMAP} metric introduced previously. In that case, we find that the preference for EDE without SH0ES is strongly reduced, in agreement with previous works, but the 2σ upper limit on $f_{\text{EDE}} < 0.110$ is much weaker than in

21. The preference persists until PlanckTT data at $\ell \gtrsim 1300$ are included, while the inclusion of SPT-3G TEE data has little impact (in fact, slightly strengthening the hint of EDE) [118].

22. As discussed by the ACT Collaboration [115], it is still a possibility that the apparent preference for EDE arises from remaining systematic errors in the data.

23. In the following, the preference is computed assuming the $\Delta \chi^2$ follows a χ^2 distribution with three degrees of freedom. We stress that this is just an approximation, as the true number of degrees of freedom is more complicated to estimate due to $\log_{10}(z_c)$ and θ_i becoming ill defined when $f_{\text{EDE}} \rightarrow 0$.

$f_{\text{EDE}}(z_c)$	$\log_{10}(z_c)$	θ_i	h	ω_{cdm}	n_s	τ_{reio}	S_8	Ω_m	$\Delta \chi^2(\text{EDE} - \text{ACDM})$
0.128 (0.159) ± 0.038	3.509 (3.521) ± 0.033	2.63 (2.77) ± 0.24	0.723 (0.735) ± 0.037	1.032 (1.039) ± 0.0071	0.998 (0.9963) ± 0.0002	0.052 (0.0506) ± 0.0077	0.84 (0.846) ± 0.016	0.299 (0.2828) ± 0.0061	-14.6
0.116 (0.148) ± 0.039	3.505 (3.514) ± 0.049	2.53 (2.78) ± 0.094	0.718 (0.728) ± 0.0182	1.020 (1.0355) ± 0.0062	1.901 (0.9963) ± 0.0099	0.051 (0.0506) ± 0.0077	0.841 (0.845) ± 0.017	0.301 (0.2995) ± 0.0068	-13.3
0.093 (0.148) ± 0.036	3.493 (3.514) ± 0.093	2.54 (2.78) ± 0.0065	0.713 (0.730) ± 0.0217	1.025 (1.0355) ± 0.0087	1.88 (0.9963) ± 0.0069	0.0523 (0.0506) ± 0.0072	0.830 (0.838) ± 0.016	0.2990 (0.2995) ± 0.0069	-12.0
0.346 (0.354) ± 0.061	3.825 (3.882) ± 0.067	2.41 (2.78) ± 0.12	0.708 (0.725) ± 0.0224	1.127 (1.1355) ± 0.0074	2.263 (2.265) ± 0.0139	0.986 (0.9936) ± 0.0086	0.308 (0.308) ± 0.015	0.3008 (0.3095) ± 0.0059	-11.1

TABLE IV. Mean (best-fit) ±1σ (or 2σ for one-sided bounds) of reconstructed parameters in the EDE model confronted to various datasets, including PlanckTT650TEE+ACT.

...
the BaseTT650TEE+Lens+EFTBOSS analysis presented previously, $f_{EDE} < 0.083$. As a result, the tension metric between BaseTT650TEE+ACT+Lens+EFTBOSS and SH0ES is released to 1.5σ compared to 4.7σ in ΛCDM (and 2.1σ without ACT data). When the SH0ES prior is included, we find $f_{EDE} = 0.108_{-0.021}^{+0.028}$ and $h = 0.715 \pm 0.009$ (in very good agreement with the results presented earlier without ACT), with no degradation in the χ^2 of EFTBOSS. This confirms that the EFTBOSS data can accommodate the amount of EDE required to resolve the Hubble tension (with $f_{EDE} \sim 0.1$ and $h \sim 0.72$), but constrain more extreme EDE contributions.

D. Impact of Pantheon+ data

To finish, we perform an analysis with the new Pantheon+ SN1a catalog [120], which is known to favor a higher $\Omega_m = 0.338 \pm 0.018$, to illustrate the impact that these new data have on the EDE model. We perform analyses of four datasets in combination with Pantheon+, following our baseline data, namely, BaseEFT-
BOSS, BaseTTTEEE+Lens+EFTBOSS(+SH0ES), and BaseTT650TEE+ACT+Lens+EFTBOSS. The results of these analyses are presented in Tab. VI and in Fig. 7 while all relevant χ^2 statistics are given in Tab. VII. First, without information from the primary CMB, we find that the combination of EFTBOSS+BBN+Lens+BAO+PanPlus (i.e., BaseEFTBOSS+PanPlus) leads to a weak constraint on $f_{\text{EDE}}(z_c) < 0.228$ with $h = 0.717^{+0.015}_{-0.026}$ in good agreement with SH0ES. In fact, even within ΛCDM we find $h = 0.694^{+0.012}_{-0.014}$, which is not in significant tension with SH0ES. This data combination was recently argued to constrain new physics solution to the Hubble tension that affects the sound horizon, due to the fact that the measurement of h based on the scale of matter-radiation equality k_{eq} (which can be extracted by marginalizing over the sound horizon information) is in tension with the SH0ES measurement. In our analysis, we stress that we do not marginalize over the sound horizon in the EFTBOSS analysis. We do not expect that removing part of the data through the marginalization procedure would make BOSS data appear in strong tension with SH0ES, at least in EDE. Rather, we expect that constraints would significantly weaken. We leave for future work to test whether the determination of h from k_{eq} is robust to changes in the cosmological model.

When combining with PlanckTTTTEE, we find that constraints on EDE are increased by ~ 5% with respect to the analogous analysis with Pantheon18, with $f_{\text{EDE}}(z_c) < 0.079$. This can be understood by noting that the larger correlation between $f_{\text{EDE}}(z_c) - h$, can lead to high $\omega_m = \Omega_m h^2$ which are constrained by CMB data. However, once the SH0ES cepheid calibration of SNi is included, we find a strong preference for EDE, with $f_{\text{EDE}}(z_c) = 0.123^{+0.030}_{-0.018}$ (i.e., nonzero at more than 5σ) and a $\Delta \chi^2 (\text{EDE} - \text{ACDM}) = -32.3$ (compared to ~22.7 with Pantheon18). The cost in χ^2 for PlanckTTTTEE+Lens and EFTBOSS compared to the analysis without the SH0ES calibration is small, with $\chi^2 (\text{Planck})$ increasing by +2.3 and $\chi^2 (\text{EFTBOSS})$ increasing by +0.9, which further attests to the non-Gaussianity of the posterior in the absence of the SH0ES calibration. The Q_{DMAP} tension metric introduced earlier cannot be used as easily, due to the fact that the SH0ES data are now modeled in a more involved way, making use of a correlation matrix connecting SNi calibrators and high-z SNi 2, rather than the simple Gaussian prior on h.

Finally, when combining with Planck TT650TEE and ACT, we find that the preference for EDE seen within ACT data further decreases to $\Delta \chi^2 = -9.2$ (2.2σ) and we derive a limit $f_{\text{EDE}}(z_c) < 0.137$, with $h = 0.700^{+0.013}_{-0.019}$ and a $\lesssim 2\sigma$ tension with SH0ES. We defer to future work to further test the ability of EDE (and other promising models) to resolve the Hubble tension in light of this new Pantheon+ SNi catalog.

V. DISCUSSION AND CONCLUSIONS

The developments of the predictions for the galaxy clustering statistics from the EFTofLSS have made possible the study of BOSS data beyond the conventional analyses dedicated to extracting BAO and $f_{\sigma8}$ information. There has been in the recent literature a number of studies aiming at measuring the ΛCDM parameters at precision comparable with that of Planck CMB data (see, e.g., Refs. [89, 99, 103, 105]). Additionally, it was shown that BOSS full-shape data, when analyzed using the one-loop predictions from the EFTofLSS (here called EFTBOSS data), can lead to strong constraints on extension to the ΛCDM model. In particular, the EDE model, currently one of the most promising models to resolve the Hubble tension [48, 61], was shown to be severely

24 More precisely, in Refs. [89, 99, 103], the marginalization over the sound horizon information is intended as a consistency test to be performed within ΛCDM.
constrained by EFTBOSS data [121, 122]. However, it was subsequently argued that part of the constraints may come from a mismatch in the primordial power spectrum A_s amplitude between EFTBOSS and Planck [123].

Recently, it was found that the original EFTBOSS data used in these analyses were affected by an inconsistency between the normalization of the survey window function and the one of the data measurements, which led to a mismatch in A_s. A proper reanalysis of the EFTBOSS data constraints on the EDE model was lacking until now.

In this paper, we have performed a thorough in-
investigation of the constraints on EDE in light of the correctly normalized EFTBOSS data and estimated the shifts introduced on the reconstructed cosmological parameters and their errors between various analysis strategies. A similar analysis within the ΛCDM model is presented in Sec. IV of our companion paper [111]. Our results are summarized in the following.

A. EFTBOSS constraints on EDE alone

We have shown in Sec. III B that, regardless of the BOSS data or the likelihood we consider, the BOSS full-shape (analyzed on their own with a BBN prior) leads to reconstructed values of H_0 that are compatible with what is obtained by the SH0ES Collaboration. Yet, the various EFTBOSS measurements, as well as the PyBird and CLASS-PT likelihoods, do not have the same constraining power on EDE:

- When using the PyBird likelihood, we found $f_{\text{EDE}}(z_c) < 0.321$ when analyzing $P_{\text{PK}}^{z_c/z_0} + \alpha_{\text{rec}}$, while analyzing $P_{\text{QUAD}}^{z_c/z_0} + \alpha_{\text{rec}}$ yields $f_{\text{EDE}}(z_c) < 0.382$, a $\sim 20\%$ difference.

- When using the same BOSS data, namely, $P_{\text{QUAD}}^{z_c/z_0}$, we have found that the PyBird likelihood gives $f_{\text{EDE}}(z_c) < 0.382$, while the CLASS-PT likelihood gives $f_{\text{EDE}}(z_c) < 0.448$, i.e., a $\sim 15\%$ difference.

- Restricting our analysis to the range of critical redshift $\log_{10}(z_c) \in [3.4, 3.7]$ that can resolve the Hubble tension, we have shown that the combination of EFTBOSS+BBN+Lens+BAO+Pan18, leads to the constraints $f_{\text{EDE}}(z_c) < 0.2$ (95% C.L.) and $h = 0.710^{+0.015}_{-0.015}$, which does not exclude the EDE models resolving the Hubble tension.

- The inclusion of the recent Pantheon+ data does not affect this conclusion as we find $h = 0.717^{+0.015}_{-0.026}$. We do not expect that marginalizing over the sound horizon as done in Refs. [33] [121] [154] would alter our conclusions, as it would simply remove information from the data. This question will be thoroughly explored elsewhere.

B. Planck+EFTBOSS constraints on EDE

In combination with Planck TTTEEE data, we have shown that constraints on EDE have changed due to the correction of the normalization of the window function:

- The combination of PlanckTTTEEE+Lens+BAO+Pan18+EFTBOSS leads to $f_{\text{EDE}}(z_c) < 0.083$, which is a $\sim 10\%$ improvement over the constraints without BOSS data and a $\sim 5\%$ improvement over the constraints with conventional BAO/f_{σ} data. Yet, this is much weaker than the constraints reported with the incorrect normalization, namely, $f_{\text{EDE}} < 0.054$. We quantify that the Hubble tension is reduced to the 2.1σ level in the EDE cosmology (1.9σ without EFTBOSS) compared to 4.8σ in the ΛCDM model, and we find $f_{\text{EDE}}(z_c) = 0.103^{+0.027}_{-0.027}$ at $z_c = 3970^{+526}_{-526}$ when the SH0ES prior is included.

- Replacing Pantheon18 by the new Pantheon+ data improves the constraints on EDE to $f_{\text{EDE}}(z_c) < 0.079$. Yet, the inclusion of the SH0ES cepheid calibration leads to $f_{\text{EDE}}(z_c) = 0.123^{+0.018}_{-0.018}$ at $z_c = 4365^{+0.006}_{-0.006}$, i.e., a nonzero $f_{\text{EDE}}(z_c)$ at more than 5σ with $\Delta \chi^2(\text{EDE}−\Lambda\text{CDM}) = −32.3$. The cost in χ^2 for PlanckTTTEEE+Lens and EFTBOSS compared to the analysis without the SH0ES calibration is small, with $\chi^2(\text{Planck})$ increasing by $+2.3$ and $\chi^2(\text{EFTBOSS})$ increasing by $+0.9$, which attests to the non-Gaussianity of the posterior in the absence of the SH0ES calibration. This deserves to be studied further through a profile likelihood approach [126] [127].

C. ACT+EFTBOSS constraints on EDE

Finally, we have studied the impact of EFTBOSS data on the recent hints of EDE observed within ACT DR4 data:

- EFTBOSS reduces the preference for EDE over ΛCDM seen when analyzing ACT DR4, alone or in combination with restricted PlanckTT data. The combination of PlanckTT650TEEE+Lens+BAO+Pan18+ACT+EFTBOSS leads to a mild constraint $f_{\text{EDE}}(z_c) < 0.172$ with $\Delta \chi^2(\text{EDE}−\Lambda\text{CDM}) = −11.1$, to be compared with $f_{\text{EDE}}(z_c) = 0.128^{+0.006}_{-0.006}$ without EFTBOSS+Lens, with $\Delta \chi^2(\text{EDE}−\Lambda\text{CDM}) = −14.6$.

- The inclusion of Pantheon+ data further restricts $f_{\text{EDE}}(z_c) < 0.137$, with $\Delta \chi^2(\text{EDE}−\Lambda\text{CDM}) = −9.2$.

- When full Planck data are included, we derived a constraint $f_{\text{EDE}}(z_c) < 0.110$, which is $\sim 30\%$ weaker than without ACT data. When all CMB data are included in combination with EFTBOSS, the Hubble tension is reduced to 1.5σ in the EDE model, to be compared with 4.7σ in ΛCDM. The inclusion of the SH0ES prior leads to $f_{\text{EDE}}(z_c) = 0.108^{+0.021}_{-0.021}$ at $z_c = 3565^{+229}_{-229}$.

We conclude that EFTBOSS data do not exclude EDE as a resolution to the Hubble tension, where we consistently find $f_{\text{EDE}}(z_c) \sim 10−12\%$ at $z_c \sim 3500−4000$.
with $h \sim 0.72$, when the cepheid calibration is included in the analyses. However, EFTBOSS data do constrain very high EDE fraction as seen when analyzing ACT DR4 data.

D. Final comments

There are a number of relevant caveats to stress regarding our analyses. First, we note that the reconstructed S_8 values from the various analyses that favor EDE are $\sim 2.8 - 3.2\sigma$ higher than those coming from weak lensing measurement (and their cross-correlation with galaxy clustering) such as DES [35] and KiDS [34]. As was already pointed out in the past, this indicates that weak lensing data (and the existence of a S_8 tension) could be used to further restrict the existence of EDE. Nevertheless, it has been noted that solutions to the S_8 tension may be due to systematic effects [42] or nonlinear modeling including the effect of baryons at very small scales [11] or to a more complete dynamics in the dark sector [163, 164]. In fact, models that resolve the S_8 tension leave the EDE resolution unaffected [165, 166] such that, although perhaps theoretically unappealing, it is possible that solutions to the H_0 and S_8 lie in different sectors. We leave for future work a robust study of EDE in light of the combination of EFTBOSS and weak lensing data, which will require better handling of the modeling of physical effects at scales beyond the range of validity of our EFT. Second, it will be very important to extend this work to include the bispectrum, which was recently analyzed at the one-loop level within ΛCDM [40, 167]. It will also be interesting to see if the eBOSS surveys can shed light on EDE [168], although the inclusion of eBOSS BAO was shown to not significantly modify the constraints on EDE (see, e.g., Refs. [43, 122]), the analysis of the full-shape of eBOSS quasars may have the potential to put stronger limits given the large size of the survey. Additional constraints on EDE may also arise from measurements of the age of old objects such as globular clusters of stars [169, 170], or the halo mass function at high z [171]. Interestingly, using N-body simulations, Ref. [171] showed that EDE predicts 50% more massive clusters at $z = 1$ and twice more galaxy-mass halos at $z = 4$ than ΛCDM. These predictions can be tested by observations from the James Webb Space Telescope and the first publicly available data are, in part, better fit by EDE than ΛCDM [172].

To close this work, we mention that we find here in agreement with previous literature, that the cosmological data including SH0ES prefer a higher value for the spectral tilt n_s in the EDE model than in ΛCDM, with $n_s \sim 1$ allowed at $\lesssim 2\sigma$ depending on the combination of data considered. Of interest here, we see that the inclusion of EFTBOSS data does not significantly pull back n_s to lower value, and when analyzed alone (with a BBN prior) also independently favors a value of n_s consistent with scale independence at $\sim 1\sigma$. A value of n_s close to that of the Harrison–Zeldovich spectrum, when put in perspective of CMB measurements of the tensor-to-scalar ratio, would dramatically change the status of the preferred inflationary models [173] (see also Refs. [174–176]). Therefore, if EDE is firmly detected with future cosmological data, beyond serving as resolution of the H_0 tension, it would also have important consequences for early Universe physics.

ACKNOWLEDGMENTS

We thank Adam Riess for interesting discussions and comments at various stages of the project, as well as kindly sharing Pantheon+ and SH0ES data, and Dillon Brout and Dan Scolnic for their precious help with the implementation of the likelihood into MontePython. We thank Guillermo Franco Abellán and José Louis Bernal for their contribution in the early stages of this project, and Guido D’Amico, Arnaud de Mattia, and Kevin Pardede for useful discussions. P. Z. would like to thank the organizers of the workshop LSS2022: Recent Developments in Theoretical Large-Scale Structure - IFPU for hospitality in Trieste during the late stage of completion of this project. This work has been partly supported by the CNRS-IN2P3 grant Dark21. The authors acknowledge the use of computational resources from the Excellence Initiative of Aix-Marseille University (A*MIDEX) of the “Investissements d’Avenir” program. These results have also been made possible thanks to LUPM’s cloud computing infrastructure founded by Occyuv labex, and France-Grilles. This project has received support from the European Union’s Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant agreement No. 860881-HIDDeN. This work used the Strelka Computing Cluster, which is run by Swarthmore College. T. L. S. is supported by NSF Grant No. 2009377, NASA Grant No. 80NSSC18K0728, and the Research Corporation.

Appendix A: Window function normalization

As discussed in Refs. [153, 177, 178] (see also [179]), the window function measurements, which are required to make an accurate theoretical calculation, have to be consistently normalized with the power spectrum measurements. The estimator for the power spectrum we are concerned with is the FKP estimator [180], later generalized to redshift space in Refs. [181, 182]. For fast estimation using FFTs [183, 184], the line of sight for a given galaxy pair is chosen to be in the direction of one of galaxy in the pair, r_1. For clarity in the discussion we are going to have next, let us first gather here pieces of derivations that can be found partially in Refs. [99, 185].

It is easy to see that the expectation value of the power spectrum FKP estimator reads (see, e.g., [186])
\[\langle \hat{P}_\ell(k) \rangle = \frac{2\ell + 1}{N_P} \int \frac{d\Omega_k}{4\pi} d^3r_1 d^3s \, e^{-ik \cdot s} \Theta(r_1) \Theta(r_1 + s) \tilde{n}_w(r_1) \tilde{n}_w(r_1 + s) \xi(s, r_1) \mathcal{L}_\ell(\hat{k} \cdot \hat{r}_1), \]

(A1)

where \(\mathcal{L}_\ell \) is the Legendre polynomial of order \(\ell \). Here \(\tilde{n}_w(r) \equiv w(r) \bar{n}(r) \) is the weighted mean galaxy density, with weight \(w(r) \) being the FKP weights times some correction weights (usually to account for veto and instrumental/observational systematics), \(\Theta(r) \) is one if the galaxy at position \(r \) falls inside the survey, zero otherwise, and \(\xi(s, r_1) \) is the correlation function, with \(s \) the separation between two galaxies. Importantly, \(N_P \) is a normalization factor that is chosen by the user, as we will precise below. Using the following identity:

\[\int \frac{d\Omega_k}{4\pi} e^{-ik \cdot s} \mathcal{L}_\ell(\hat{k} \cdot \hat{r}_1) = (-i)^\ell j_\ell(ks) \mathcal{L}_\ell(s \cdot \hat{r}_1), \]

(A2)

where \(j_\ell \) is the spherical-Bessel function of order \(\ell \), we obtain

\[\langle \hat{P}_\ell(k) \rangle = \frac{(2\ell + 1)}{N_P} (-i)^\ell \int ds s^2 j_\ell(ks) \int d\Omega s \int d^3r_1 \Theta(r_1) \Theta(r_1 + s) \tilde{n}_w(r_1) \tilde{n}_w(r_1 + s) \xi(s, r_1) \mathcal{L}_\ell(\mu), \]

(A3)

where we have introduced the notation \(\mu \equiv s \cdot \hat{r}_1 \). We now make the following approximation. We assume that the redshift evolution of the correlation function can be neglected within the observational bin such that \(\xi(s, r_1) = \xi(s, \mu, z_{\text{eff}}) \equiv \xi(s, \mu) \), where the latter is evaluated at the effective redshift \(z_{\text{eff}} \) of the survey.\(^{25}\) As such, we can pull out \(\xi(s, \mu) \) from the integral over \(d^3r_1 \). We can further expand in multipoles \(\xi(s, \mu) = \sum_{L} \xi_{L}(s, \mu) \mathcal{L}_L(\mu) \) to pull out \(\xi_{L}(s) \) from the angular integrals. Then, using the identity

\[\mathcal{L}_{\ell}(\mu) \mathcal{L}_{\ell'}(\mu) = \sum_{L} \left(\ell \ \ell' \ 0 \ 0 \ 0 \right)^2 (2L + 1) \mathcal{L}_L(\mu), \]

(A4)

where \(\left(\ell \ \ell' \ 0 \ 0 \ 0 \right) \) are the Wigner 3-j symbols, we get

\[\langle \hat{P}_\ell(k) \rangle = 4\pi(2\ell + 1)(-i)^\ell \sum_{L} \left(\ell \ \ell' \ 0 \ 0 \ 0 \right)^2 \int ds s^2 j_\ell(ks) \xi_{L}(s) Q_L(s), \]

(A5)

where we have defined the window functions

\[Q_L(s) = \frac{(2L + 1)}{N_P} \int \frac{d\Omega s}{4\pi} \int d^3r_1 \Theta(r_1) \Theta(r_1 + s) \tilde{n}_w(r_1) \tilde{n}_w(r_1 + s) \mathcal{L}_L(\mu). \]

(A6)

Inserting the relation between the multipoles of the correlation function and those of the power spectrum,

\[\xi_{L}(s) = i^\ell \int \frac{dk'}{2\pi^2} k'^2 P_{L'}(k') j_{L'}(k' s), \]

(A7)

we finally obtain

\[\langle \hat{P}_\ell(k) \rangle = \int dk' \, k'^2 \sum_{L} W_{LL'}(k, k') P_{L'}(k'), \]

(A8)

where we have defined

\[W_{LL'}(k, k') = \frac{2}{\pi} (2\ell + 1)(-i)^\ell \int ds s^2 j_\ell(ks) j_{L'}(k' s) \sum_{L} \left(\ell \ \ell' \ 0 \ 0 \ 0 \right)^2 Q_L(s). \]

(A9)

Notice that, for clarity, we have neglected the inte-

\(^{25}\) See Ref. [150] for a BOSS analysis that does not rely on this approximation.
gral constraints [177], as well as wide-angle contributions [185]. Our master formula is Eq. (A8): to predict the observed power spectrum \(\hat{P}_r(k) \), we simply need to convolve our predictions \(P_r(k') \) with \(W_{k',k}(k,k') \) given by Eq. (A9). \(W_{k',k}(k,k') \) can be precomputed, and the only input we need is \(Q_L(s) \).

The window function \(Q_L(s) \), Eq. (A6), can be obtained in the following way [185]. Using Eq. (A7) and the identity

\[
\int \frac{dk}{2\pi^2} \frac{(ks)^2}{\sin^2(ks)} j_L(ks) j_L(k's) = \frac{1}{4\pi} \delta_D(s-s') , \tag{A10}
\]

where \(\delta_D \) is the Dirac delta distribution, we see that

\[
Q_L(s) = i^L \int \frac{dk}{2\pi^2} k^2 Q_L(k) j_L(ks) , \tag{A11}
\]

where \(Q_L(k) \) is the expectation value of a power spectrum as defined in Eq. (A3) given \(\xi(s,r_1) \equiv 1 \). Therefore, \(Q_L(k) \) can be measured as the power spectrum \(P_L(k) \) of random objects (whose distribution is approaching Poisson) within the same geometry survey that we are dealing with,

\[
Q_L(k) = \alpha \langle \hat{P}_L(k) \rangle , \tag{A12}
\]

where \(\alpha = N_g/N_r \) is the ratio of the number of data “galaxy” objects to the number of random objects. Such catalog of random objects is already available to us, as it is also required for the estimation of the power spectrum.

The key point is the following: \(Q_L(k) \) is normalized by the same normalization factor as \(P_L(k) \), namely, \(N_P \). As such, in the limit of vanishing separation \(s \to 0 \), the window function monopole does not go to unity, \(Q_0(s) \neq 1 \), but instead

\[
Q_0(s \to 0) \to \frac{1}{N_P} \int d^3 r_1 \bar{n}_w^2(r) . \tag{A13}
\]

Given that one does not know the value of the numerator in the equation above prior to making the measurement, \(N_P \) can only be estimated \textit{approximately} in order to have \(Q_0(s) \) approaching 1 at vanishing separation \(s \to 0 \). It is in this sense that \(N_P \) is chosen by the user. However, the normalization choice is not important as long as the window function measurements are consistently normalized with the power spectrum measurements. Given the measurement protocol sketched above, this is automatic if one is able to evaluate [A11] accurately.\(^{27}\)

In past BOSS full-shape analyses, e.g., Refs. [99, 101, 121, 122], the window function normalizations were instead inconsistently enforced to \(Q_{0\text{wrong}}(0) \equiv 1 \), while in reality \(Q_0(0) \sim 0.9 \) given the choice of \(N_P \). Such inconsistency of \(\sim 0.9 \) led to a shift in \(A_s \) of around \(-1\sigma \) depending on the normalization choice. Let us list two choices for the normalization factor \(N_P \):

- **Choice 1**: \(N_P = \alpha \sum_{\{\text{randoms}\}} \bar{n}_w(r_i) w_{\text{FKP}}^2(r_i) \)

This was the choice in Ref. [187], which measurements were used in, e.g., Refs. [100, 122].

- **Choice 2**: \(N_P = A \star \int dr \bar{n}_w^2(r) \), where \(\bar{n}_w(r) \) is inferred from counting galaxies and binning them in shells and \(A \) is an associated estimated area.\(^{29}\)

This was the choice in Ref. [150], which measurements were in, e.g., Refs. [99, 101, 122]. \(P_{\text{FKP}}^{LL/CM} \), as defined in Table 1, is assigned window functions that are inconsistently normalized.

We stress again that those choices are not important as long as the same \(N_P \) is used to normalize the window functions and the power spectrum measurements. As already mentioned in the main text, except for \(P_{\text{FKP}}^{LL/CM} \) that is used in this paper for illustration purposes, all power spectrum measurements obtained with the FKP estimator, namely, \(P_{\text{FKP}}^{LL/CM} \) and \(P_{\text{FKP}}^{LL/z3} \), are instead consistently normalized with their window functions (see Table 4 for more details on the measurements). We finish this section by noting that, in analyses using measurements obtained from the FKP estimator, but also from the other estimators, the posteriors may depend on the effective-redshift approximation used above. This suggests that, for each estimator, more work is needed to understand the accuracy of this approximation, along

\[^{27}\text{At https://github.com/pierreyez/fkpwin}\] we provide a code written to perform the window function measurements, based on nbodykit. Let us note that we find that it is not straightforward to get a precise measurements of \(Q_L(k) \), namely, the power spectrum of the random objects over the whole range of \(k \) for which \(Q_L(k) \) contributes significantly to the integral in Eq. (A11). Furthermore, the estimator in Eq. (A12) might have a non-negligible variance, given that only one catalog is used. We nevertheless have checked that, letting the normalization of the window functions to be different from the one of the power spectrum by a few percents leads to tolerable shifts in the posteriors (\(\lesssim 1\sigma/5 \)) inferred fitting BOSS data. For future large-volume datasets, it would be, however, desirable to have a better numerical control over the measurements of \(Q_L(s) \) such that the normalization consistency with \(P_L(k) \) is achieved to sufficient accuracy given increasing precision of the data.

\[^{29}\text{Naively one might think that the sum over enough objects is a good approximation to the volume integral; Actually, \textit{Choice 1} poorly estimates the integral in Eq. (A13) because in the FKP estimator, \(\bar{n} \) is measured from the grid for FFT with finite cell resolution, while in \textit{Choice 1}, we are counting the objects instead.}\]

\[^{29}\text{We thank Hector Gil-Marin for private correspondence on this point.}\]
In the line of, e.g., [186] for the correlation function.

In Fig. 8, we show a comparison of the 1D posteriors from the full-shape analysis of the BOSS power spectrum measured with the FKP estimator, using window functions with consistent or inconsistent normalization. The inconsistency leads to a lower amplitude A_s, or equivalently σ_8, as well as higher $\Omega_m \sim f$, where f is the logarithmic growth rate, through anticorrelation. We find notable shifts on ω_{cdm}, $\ln(10^{10}A_s)$, Ω_m and σ_8 of 0.9σ, 1.1σ, 1.1σ, and 0.8σ, respectively.

Appendix B: Additional comparison between the PyBird and CLASS-PT likelihood in EDE

In Figs. 9, 10, and 11, we show the 2D posterior distributions reconstructed from BaseEFT-BOSS, BaseTTTEEEE+Lens+EFTBOSS, and BaseTT650TEE+ACT+Lens+EFTBOSS, respectively, comparing the results from the PyBird and the CLASS-PT likelihoods. In addition, we recall that EFTBOSS corresponds to $P_{\text{FKP}}^{\text{LZ}}$ + z_1/z_3 in the framework of the PyBird likelihood and to $P_{\text{Quad}}^{z_1/z_3}$ + $\beta_0^{z_1/z_3}$ in the framework of the CLASS-PT likelihood (see Tab. I). The most striking differences occur in the BaseEFTBOSS alone case, for which CLASS-PT leads to much weaker constraints on $f_{\text{EDE}}(z_c)$ and much larger error bars on h and ω_{cdm}. The origin of these differences can be traced back to the discussion presented in our companion paper [111], namely, to the choice of the power spectrum estimators, the BOSS post-reconstructed measurements used, the scale cut, the number of multipoles, and more importantly, the choice of EFT parameter priors. Once PlanckTTTEE or PlanckTT650TEE+ACT data are included in the analysis, we find that the reconstructed posteriors are very similar between the two EFTBOSS implementations and mostly driven by CMB data. We conclude that the main results of this paper, drawn from the combination of CMB and LSS data, are unaffected by the choice of EFT implementation. However, parameter reconstruction based on EFTBOSS data alone may vary at the 1σ level.

Appendix C: χ^2 per experiment

In this appendix, we report the best-fit χ^2 per experiment for both ΛCDM and EDE models. In Tabs. VII and VIII are presented the runs including Planck data, in Tab. IX the runs including ACT data, and in Tab. X the combination of the full Planck data and ACT data. Finally, Tab. XI present runs including the PanPlus data.

30 For this comparison, LOWZ SGC is not included in the PyBird likelihood. As expected, we have checked that the addition of this sky cut does not change the posteriors for the corresponding analyses.
FIG. 9. Comparison between the 2D posterior distributions of a subset of parameters in the EDE model reconstructed from the PyBird or CLASS-PT likelihood, in combination with BBN+Lens+BAO+Pan18 (i.e., BaseEFTBOSS).

FIG. 10. Comparison between the 2D posterior distributions of a subset of parameters in the EDE model reconstructed from the PyBird or CLASS-PT likelihood, in combination with BaseTTTEEE+Lens.
FIG. 11. Comparison between the 2D posterior distributions of a subset of parameters in the EDE model reconstructed from the PyBird or CLASS-PT likelihood, in combination with BaseTT650TEEE+ACT+Lens.

	Planck high–ℓ TTTEE	Planck low–ℓ TT	Planck low–ℓ EE	Planck lensing	BOSS BAO low–z	BOSS BAO DR12	BOSS BAO/fσ8 DR12	EFTBOSS CMASS	EFTBOSS LOWZ	Pantheon	SH0ES	total χ²	Q_DMAP
	2342.2	2345.0	2342.2	2344.6	2342.2	2345.2	23.4	22.9	23.5	23.0	23.4	22.8	
	2342.2	2345.2	2342.2	2344.6	2342.2	2345.2	396.3	397.2	396.1	397.2	396.3	397.2	
					8.9	9.4	9.0	9.4	9.0	9.0	9.0	9.4	
	1.2	1.9	1.2	1.8	1.2	1.9	1.2	1.9	1.2	1.9	1.2	1.9	
	4.3	3.4	–	–	–	–	6.7	5.9	–	–	–	–	
	–	–	–	–	–	–	84.6	83.1	33.5	33.7	33.5	33.7	
	1027.2	1026.9	1027.2	1026.9	1027.2	1026.9	1027.2	1026.9	1027.2	1026.9	1027.2	1026.9	
	–	19.9	–	20.4	–	19.8							
	3803.6	3826.6	3805.7	3829.1	3917.4	3940.0							
Q_DMAP	4.8σ	4.8σ	4.8σ										

TABLE VII. Best-fit χ² per experiment (and total) for ΛCDM when fit to different data combinations: BaseTTTEEE+Lens, BaseTTTEEE+Lens+fσ8, BaseTTTEEE+ACT+Lens+EFTBOSS, with and without SH0ES. We also report the tension metric Q_DMAP ≡ \sqrt{\chi^2(w/SH0ES) - \chi^2(w/o SH0ES)}.

[1] N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].
[2] Adam G. Riess et al., “A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team,” (2021), arXiv:2112.04510 [astro-ph.CO].
Planck high−ℓ TT	2339.4	2341.5	2339.1	2340.9	2339.3	2341.1
Planck low−ℓ TT	21.8	20.4	22.0	20.6	21.1	20.5
Planck low−ℓ EE	396.4	396.8	396.1	396.4	396.1	396.9
Planck lensing	9.5	10.0	9.3	9.9	9.6	9.9
BOSS BAO low−z	1.6	1.8	1.4	1.7	1.4	1.9
BOSS BAO DR12	3.7	3.5	–	–	–	–
BOSS BAO/Δσ DR12	–	–	6.5	7.0	–	–
EFTBOSS CMASS	–	–	–	–	84.1	83.3
EFTBOSS LOWZ	–	–	–	–	34.0	34.4
Pantheon	1027.0	1026.9	1027.0	1026.9	1027.0	1026.9
SH0ES	–	2.0	–	–	3.2	–
total χ²	3799.2	3802.9	3801.8	3806.1	3912.7	3917.3
Δχ² min(EDE − ΛCDM)	-3.8	-23.7	-3.9	-23.0	-4.7	-22.7
Preference over ΛCDM	1σ	4.2σ	1.1σ	4.1σ	1.3σ	4.1σ

TABLE VIII. Best-fit χ² per experiment (and total) for EDE when fit to different data combinations: BaseTT650TEE+Lens, BaseTT650TEE+Lens+ Δσ, BaseTT650TEE+Lens+EFTBOSS, with and without SH0ES. We also report the Δρ⁰ min ≡ ρ⁰ min(EDE) − ρ⁰ min(ΛCDM) and the tension metric QDMAP ≡ χ²(w/ SH0ES) − χ²(w/o SH0ES).

ACM	EDE				
1σ	4.2σ	1.1σ	4.1σ	1.3σ	4.1σ

TABLE IX. Best-fit χ² per experiment (and total) for ΛCDM and EDE when fit to different data combinations: BaseTT650TEE+ACT, BaseTT650TEE+ACT+Δσ, BaseTT650TEE+ACT+EFTBOSS, BaseTT650TEE+ACT+Lens+EFTBOSS, and BaseTT650TEE+ACT+Lens+EFTBOSS+PanPlus. We also report the Δρ⁰ min ≡ ρ⁰ min(EDE) − ρ⁰ min(ΛCDM) and the corresponding preference over ΛCDM, computed assuming the Δρ² follows a χ² distribution with three degrees of freedom.

[3] Adam G. Riess, Louise Breuval, Wenlong Yuan, Stefano Casertano, Lucas M. Macri, Dan Scolnic, Tristan Cantat-Gaudin, Richard I. Anderson, and Mauricio Cruz Reyes, “Cluster Cepheids with High Precision Gaia Parallaxes, Low ZeroPoint Uncertainties, and Hubble Space Telescope Photometry,” (2022), arXiv:2208.01045 [astro-ph.CO].

[4] Maria Giovanna Dainotti, Biagio De Simone, Tiziano Schiavone, Giovanni Montani, Enrico Rinaldi, Gaetano Lambiase, Malgorzata Bogdan, and Sahil Ugale, “On the Evolution of the Hubble Constant with the SNe Ia Pantheon Sample and Baryon Acoustic Oscillations: A Feasibility Study for GRB-Cosmology in 2030,” Galaxies 10, 24 (2022) arXiv:2201.09848 [astro-ph.CO].

[5] Maria Giovanna Dainotti, Biagio De Simone, Tiziano Schiavone, Giovanni Montani, Enrico Rinaldi, Gaetano Lambiase, Malgorzata Bogdan, and Sahil Ugale, “On the Evolution of the Hubble Constant with the SNe Ia Pantheon Sample and Baryon Acoustic Oscillations: A Feasibility Study for GRB-Cosmology in 2030,” Galaxies 10, 24 (2022) arXiv:2201.09848 [astro-ph.CO].

[6] Edvard Mortess, Ariel Goobar, Joel Johansson, and Suhail Dhawan, “Sensitivity of the Hubble Constant Determination to Cepheid Calibration,” (2021), arXiv:2103.02117 [astro-ph.CO].
Experiment	ΛCDM	EDE
Planck high−ℓ TTTEEE	2349.8	2352.0
Planck low−ℓ TT	22.4	22.0
Planck low−ℓ EE	396.2	396.8
Planck lensing	8.9	9.6
ACT DR4	240.6	241.0
BOSS BAO low−z	1.4	2.0
EFTBOSS CMASS	84.1	82.9
EFTBOSS LOWZ	33.6	33.8
Pantheon	1027.1	1026.9
SH0ES	-	19.5
total χ^2_{min}	4164.0	4185.9
$\Delta \chi^2_{\text{min}}(\text{EDE} - \text{ΛCDM})$	-6.4	-26.1
Preference over ΛCDM	-1.7σ	4.4σ
Q_{DMAP}	4.7σ	1.5σ

TABLE X. Best-fit χ^2 per experiment (and total) for ΛCDM and EDE when fit to BaseTTTEEE+ACT+Lens+EFTBOSS, with and without SH0ES. We also report the $\Delta \chi^2_{\text{min}} \equiv \chi^2_{\text{min}}(\text{EDE}) - \chi^2_{\text{min}}(\text{ΛCDM})$ and the tension metric $Q_{\text{DMAP}} \equiv \sqrt{\chi^2(\text{w/ SH0ES})} - \chi^2(\text{w/o SH0ES})$.

Experiment	ΛCDM	EDE
Planck high−ℓ TTTEEE	2346.18	2349.5
Planck low−ℓ TT	23.0	22.4
Planck low−ℓ EE	396.1	397.7
Planck lensing	8.9	9.0
BOSS BAO low−z	1.1	2.1
EFTBOSS CMASS	85.2	82.9
EFTBOSS LOWZ	33.6	33.8
Pantheon	1411.1	1411.6
Pantheon+SH0ES	-	1411.6
total χ^2_{min}	4305.1	4219.3
$\Delta \chi^2_{\text{min}}(\text{EDE} - \text{ΛCDM})$	-1.9	-32.3
Preference over ΛCDM	-0.5σ	5.9σ

TABLE XI. Best-fit χ^2 per experiment (and total) for ΛCDM and EDE when fit to BaseTTTEEE+Lens+EFTBOSS+PanPlus, with and without SH0ES. We also report the $\Delta \chi^2_{\text{min}} \equiv \chi^2_{\text{min}}(\text{EDE}) - \chi^2_{\text{min}}(\text{ΛCDM})$ and the corresponding preference over ΛCDM, computed assuming the $\Delta \chi^2$ follows a χ^2 distribution with three degrees of freedom.

[7] Edvard Mortsell, Ariel Goobar, Joel Johansson, and Suhail Dhawan, “The Hubble Tension Revisited: Additional Local Distance Ladder Uncertainties,” (2021), arXiv:2105.11461 [astro-ph.CO].

[8] Brent Follin and Lloyd Knox, “Insensitivity of the distance ladder Hubble constant determination to Cepheid calibration modelling choices,” Mon. Not. Roy. Astron. Soc. 477, 4534–4542 (2018), arXiv:1707.01175 [astro-ph.CO].

[9] M. Rigault et al., “Confirmation of a Star Formation Bias in Type Ia Supernova Distances and its Effect on Measurement of the Hubble Constant,” Astrophys. J. 802, 20 (2015), arXiv:1412.6501 [astro-ph.CO].

[10] M. Rigault et al. (Nearby Supernova Factory), “Strong Dependence of Type Ia Supernova Standardization on the Local Specific Star Formation Rate,” Astron. Astrophys. 644, A176 (2020), arXiv:1806.03849 [astro-ph.CO].

[11] D. O. Jones et al., “Should Type Ia Supernova Distances be Corrected for their Local Environments?” Astrophys. J. 867, 108 (2018), arXiv:1805.05911 [astro-ph.CO].

[12] Dillon Brout and Daniel Scolnic, “It’s Dust: Solving the Mysteries of the Intrinsic Scatter and Host-galaxy Dependence of Standardized Type Ia Supernova Brightnesses,” Astrophys. J. 909, 26 (2021), arXiv:2004.10206 [astro-ph.CO].

[13] G. E. Addison, Y. Huang, D. J. Watts, C. L. Bennett, M. Halpern, G. Hinshaw, and J. L. Weiland, “Quantifying discordance in the 2015 Planck CMB spectrum,” Astrophys. J. 818, 132 (2016), arXiv:1511.00055.

[14] N. Aghanim et al. (Planck), “Planck intermediate results. Ll. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters,” Astron. Astrophys. 607, A95 (2017), arXiv:1608.02487 [astro-ph.CO].
[15] Eleonora Di Valentino, Alessandro Melchiorri, and Joseph Silk, “Planck evidence for a closed Universe and a possible crisis for cosmology,” Nature Astron. 4, 196-203 (2019), arXiv:1911.02087 [astro-ph.CO].

[16] Will Handley, “Curvature tension: evidence for a closed universe,” Phys. Rev. D 103, L041301 (2021), arXiv:1908.09139 [astro-ph.CO].

[17] Nils Schöneberg, Julien Lesgourgues, and Deanna C. Hooper, “The BAO+BBN take on the Hubble tension,” JCAP 2019, 029 (2019), arXiv:1907.11594 [astro-ph.CO].

[18] G. E. Addison, D. J. Watts, C. L. Bennett, M. Halpern, G. Hinshaw, and J. L. Weiland, “Eliciting ΛCDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy,” ApJ 853, T19 (2018), arXiv:1707.06547 [astro-ph.CO].

[19] Wendy L. Freedman, Barry F. Madore, Dylan Hatt, Will Handley, and the Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch, ApJ 882, 34 (2019), arXiv:1907.05922 [astro-ph.CO].

[20] Wendy L. Freedman, “Measurements of the Hubble Constant: Tensions in Perspective,” (2021), arXiv:2106.15656 [astro-ph.CO].

[21] Hasnaa Zarrar, Jay P. Cowie, John A. Davis, and Jonathan H. Wise, “Red-Giant Branches in Galaxy Clusters and the Hubble Constant,” ApJ 835, 41 (2017), arXiv:1610.08418 [astro-ph.CO].

[22] M. M. Phillips, Andrew J. Taylor J. Hoyt, In Sung Jang, Rachael L. Beaton, Christopher R. Burns, Myung Gyoon Lee, Andrew J. Rich, and Mark Seibert, “The Carnegie-Chicago Hubble Program. IX. The Red Giant Branch in the Large Magellanic Cloud,” Astron. J. 153, 2 (2017), arXiv:1610.08418 [astro-ph.CO].

[23] John Soltis, Stefano Casertano, and Adam G. Riess, “The Parallax of ω Centauri Measured from Gaia EDR3 and a Direct, Geometric Calibration of the Tip of the Red Giant Branch and the Hubble Constant,” Astrophys. J. Lett. 908, L5 (2021), arXiv:2012.09196 [astro-ph.GA].

[24] Nandita Khetan et al., “A new measurement of the Hubble constant using Type Ia supernovae calibrated with surface brightness fluctuations,” Astron. Astrophys. 647, A72 (2021), arXiv:2008.07754 [astro-ph.CO].

[25] Caroline D. Huang, Adam G. Riess, Wenlong Yuan, Lucas M. Macri, Nadia L. Zakamska, Stefano Casertano, Patricia A. Whiteock, Samantha L. Hoffmann, Alexei V. Filippenko, and Daniel Scolnic, “Hubble Space Telescope Observations of Mira Variables in the Type Ia Supernova Host NGC 1599: An Alternative Candle to Measure the Hubble Constant,” (2019), 10.3847/1538-4357/ab55b. arXiv:1908.10883 [astro-ph.CO].

[26] James Schombert, Stacy McGaugh, and Federico Lelli, “Using the Baryonic Tully-Fisher Relation to Measure H0,” Astrophysical Journal 160, 71 (2020), arXiv:2006.08615 [astro-ph.CO].

[27] Kenneth C. Wong et al., “H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes,” Mon. Not. Roy. Astron. Soc. 498, 1420–1439 (2020), arXiv:1907.04869 [astro-ph.CO].

[28] S. Birrer et al., “TDCOSMO - IV. Hierarchical time-delay cosmography – joint inference of the Hubble constant and galaxy density profiles,” Astron. Astrophys. 643, A165 (2020), arXiv:2007.02941 [astro-ph.CO].

[29] D. W. Pesce et al., “The Megamaser Cosmology Project. XIII. Combined Hubble constant constraints,” (2020), arXiv:2001.09213 [astro-ph.CO].

[30] B. P. Abbott et al. (LIGO Scientific, Virgo), “A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo,” Astrophys. J. 909, 218 (2021), arXiv:1908.06600 [astro-ph.CO].

[31] Eleonora Di Valentino, Olga Mena, Supriya Pan, Luca Visinelli, Weiqiang Yang, Alessandro Melchiorri, David F. Mota, Adam G. Riess, and Joseph Silk, “In the realm of the Hubble tension—a review of solutions,” Class. Quant. Grav. 38, 153001 (2021), arXiv:2103.01183 [astro-ph.CO].

[32] Elcio Abdalla et al., “Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies,” JHEAp 34, 49–211 (2022), arXiv:2203.06142 [astro-ph.CO].

[33] Catherine Heymans et al., “CFHTLens: The Canada-France-Hawaii Telescope Lensing Survey,” Mon. Not. Roy. Astron. Soc. 427, 146 (2012), arXiv:1210.0032.

[34] Catherine Heymans et al., “KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints.” Astron. Astrophys. 646, A140 (2021) arXiv:2007.15632 [astro-ph.CO].

[35] T. M. C. Abbott et al. (DES), “Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing,” Phys. Rev. D 105, 023520 (2022), arXiv:2105.13549 [astro-ph.CO].

[36] P. A. R. Ade et al. (Planck), “Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich clusters counts,” Astron. Astrophys. 594, A24 (2016), arXiv:1502.01597 [astro-ph.CO].

[37] S. Bocquet et al. (SPT), “Cluster Cosmology Constraints from the 2500 deg2 SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope,” Astrophys. J. 878, 55 (2019), arXiv:1812.01679 [astro-ph.CO].

[38] Pierre Zhang, Guido D’Amico, Leonardo Senatore, Cheng Zhao, and Yifu Cai, “BOSS Correlation Function analysis from the Effective Field Theory of Large-Scale Structure,” JCAP 02, 036 (2022), arXiv:2110.07539 [astro-ph.CO].

[39] Oliver H. E. Philcox and Mikhail M. Ivanov, “BOSS DR12 full-shape cosmology: ΛCDM constraints from the large-scale galaxy power spectrum and bispectrum monopole,” Phys. Rev. D 105, 043517 (2022), arXiv:2112.04515 [astro-ph.CO].

[40] Guido D’Amico, Yaniv Donath, Matthew Lewandowski, Leonardo Senatore, and Pierre Zhang, “The BOSS bispectrum analysis at one loop from the Effective Field Theory of Large-Scale Structure,” (2022), arXiv:2206.08327 [astro-ph.CO].
[41] Alexandra Amon and George Efstathiou, “A non-linear solution to the S8 tension?” (2022), arXiv:2206.11794 [astro-ph.CO].

[42] A. Amon et al., “Consistent lensing and clustering in a low-S8 Universe with BOSS, DES Year 3, HSC Year 1 and KiDS-1000,” (2022), arXiv:2202.07440 [astro-ph.CO].

[43] Jose Luis Bernal, Licia Verde, and Adam G. Riess, “The trouble with H0,” JCAP 1610, 019 (2016), arXiv:1607.05617.

[44] Kevin Aylor, Mackenzie Joy, Lloyd Knox, Marius Millea, Srinivasan Raghunathan, and W. L. Kimmy Wu, “Sounds Discordant: Classical Distance Ladder & ACDM-based Determinations of the Cosmological Sound Horizon,” (2018), arXiv:1811.00537.

[45] Lloyd Knox and Marius Millea, “Hubble constant hunter’s guide,” Phys. Rev. D 101, 043533 (2020), arXiv:1908.03663 [astro-ph.CO]

[46] David Camarena and Valerio Marra, “On the use of the CMB search of the same coin: sterile neutrinos and dark radiation,” Phys. Rev. D 103, 083507 (2020), arXiv:2001.02451 [astro-ph.CO].

[47] George Efstathiou, “To H0 or not to H0?” arXiv e-prints (2021), arXiv:2101.08641 [astro-ph.CO].

[48] Nils Schöneberg, Guillermo Franco Abellán, Andrea Pérez Sánchez, Samuel J. Witte, Vivian Poulin, and Julien Lesgourgues, “The H0 Olympics: A fair ranking of proposed models,” (2021), arXiv:2107.10291 [astro-ph.CO].

[49] Christina D. Kreisch, Francis-Van Cyr-Racine, and Olivier Doré, “Neutrino puzzle: Anomalies, interactions, and cosmological tensions,” Phys. Rev. D 101, 123505 (2020), arXiv:1902.00534 [astro-ph.CO].

[50] Maximilian Berbig, Sudip Jana, and Andreas Trautner, “The Hubble tension and a renormalizable model of gauged neutrino self-interactions,” Phys. Rev. D 102, 115008 (2020), arXiv:2004.13039 [hep-ph].

[51] Subhajit Ghosh, Rishi Khatri, and Tuhin S. Roy, “Can dark neutrino interactions phase out the Hubble tension?”, Phys. Rev. D 102, 123544 (2020), arXiv:1908.09843 [hep-ph].

[52] Francesco Forastieri, Massimiliano Lattanzi, and Paolo Natoli, “Cosmological constraints on neutrino self-interactions with a light mediator,” Phys. Rev. D 100, 103526 (2019), arXiv:1904.07810 [astro-ph.CO].

[53] Miguel Escudero and Samuel J. Witte, “A CMB search for the neutrino mass mechanism and its relation to the Hubble tension,” Eur. Phys. J. C 80, 294 (2020), arXiv:1909.04044 [astro-ph.CO].

[54] Miguel Escudero and Samuel J. Witte, “The hubble tension as a hint of leptogenesis and neutrino mass generation,” Eur. Phys. J. C 81, 515 (2021), arXiv:2103.03240 [hep-ph].

[55] Nikita Blinov and Gustavo Marques-Tavares, “Interacting radiation after Planck and its implications for the Hubble Tension,” JCAP 09, 029 (2020), arXiv:2003.08387 [astro-ph.CO].

[56] Subhajit Ghosh, Soubhik Kumar, and Yuhsin Tsai, “Free-streaming and Coupled Dark Radiation Isocurvature Perturbations: Constraints and Application to the Hubble Tension,” (2021), arXiv:2107.09076 [astro-ph.CO].

[57] Maria Archidiacono and Stefano Gariazzo, “Two sides of the same coin: sterile neutrinos and dark radiation.

[58] Daniel Aloni, Asher Berlin, Melissa Joseph, Martin Schmaltz, and Neal Weiner, “A Step in understanding the Hubble tension,” Phys. Rev. D 105, 123516 (2022), arXiv:2111.00014 [astro-ph.CO].

[59] Nils Schöneberg and Guillermo Franco Abellán, “A step in the right direction? Analyzing the Wess Zumino Dark Radiation solution to the Hubble tension,” (2022), arXiv:2206.11276 [astro-ph.CO].

[60] Tanvi Karwal and Marc Kamionkowski, “Dark energy at early times, the Hubble parameter, and the string axiverse,” Phys. Rev. D94, 103523 (2016), arXiv:1608.01309 [astro-ph.CO].

[61] Vivian Poulin, Tristan L. Smith, Tanvi Karwal, and Marc Kamionkowski, “Early Dark Energy Can Resolve The Hubble Tension,” Phys. Rev. Lett. 122, 221301 (2019), arXiv:1811.04083 [astro-ph.CO].

[62] Tristan L. Smith, Vivian Poulin, and Mustafa A. Amin, “Oscillating scalar fields and the Hubble tension: a resolution with novel signatures,” Phys. Rev. D 101, 063523 (2020), arXiv:1908.06995 [astro-ph.CO].

[63] Florian Niedermann and Martin S. Sloth, “New early dark energy,” Phys. Rev. D 103, L041303 (2021), arXiv:1910.10739 [astro-ph.CO].

[64] Florian Niedermann and Martin S. Sloth, “Resolving the Hubble Tension with New Early Dark Energy,” (2020), arXiv:2006.06868 [astro-ph.CO].

[65] Gen Ye and Yun-Song Piao, “Is the Hubble tension a hint of AdS phase around recombination?” Phys. Rev. D 101, 083507 (2020), arXiv:2001.02451 [astro-ph.CO].

[66] Vivian Poulin, Tristan L. Smith, and Tanvi Karwal, “The Ups and Downs of Early Dark Energy solutions to the Hubble tension: a review of models, hints and constraints circa 2023,” (2023), arXiv:2302.09032 [astro-ph.CO].

[67] Janina Renk, Miguel Zumalacárregui, Francesco Montanari, and Alexandre Barreira, “Galileon gravity in light of ISW, CMB, BAO and H0 data,” JCAP 1710, 020 (2017), arXiv:1707.02263.

[68] C. Umlită, M. Ballardini, F. Finelli, and D. Paoletti, “CMB and BAO constraints for an induced gravity dark energy model with a quartic potential,” JCAP 1508, 017 (2015), arXiv:1507.00718.

[69] Mario Ballardini, Fabio Finelli, Caterina Umlită, and Daniela Paoletti, “Cosmological constraints on induced gravity dark energy models,” JCAP 1605, 067 (2016), arXiv:1601.03387.

[70] Massimo Rossi, Mario Ballardini, Matteo Braglia, Fabio Finelli, Daniela Paoletti, Alexei A. Starobinsky, and Caterina Umlită, “Cosmological constraints on post-Newtonian parameters in effectively massless scalar-tensor theories of gravity,” Phys. Rev. D 100, 103524 (2019), arXiv:1906.10218 [astro-ph.CO].

[71] Matteo Braglia, Mario Ballardini, William T. Emond, Fabio Finelli, A. Emir Gumrukcuoglou, Kazuya Koyama, and Daniela Paoletti, “Larger value for H0 by an evolving gravitational constant,” Phys. Rev. D 102, 023529 (2020), arXiv:2004.11161 [astro-ph.CO].

[72] Miguel Zumalacárregui, “Gravity in the Era of Equality: Towards solutions to the Hubble problem without fine-tuned initial conditions,” Phys. Rev. D 102, 023523 (2020), arXiv:2003.06396 [astro-ph.CO].
Meng-Xiang Lin, Giampaolo Benevento, Wayne Hu, Théo Simon, Pierre Zhang, and Vivian Poulin, “Constraining decaying dark matter with BOSS data and the effective field theory of large-scale structures,” Phys. Rev. D 106, 023516 (2022), arXiv:2203.07440 [astro-ph.CO].

Shi-Fan Chen, Zvonimir Vlah, and Martin White, “A new analysis of galaxy 2-point functions in the BOSS survey, including full-shape information and post-reconstruction BAO,” JCAP 02, 008 (2022), arXiv:2110.05530 [astro-ph.CO].

Suresh Kumar, Rafael C. Nunes, and Priya Yadav, “Updating non-standard neutrinos properties with Planck-CMB data and full-shape analysis of BOSS and eBOSS galaxies,” (2022), arXiv:2205.04292 [astro-ph.CO].

Rafael C. Nunes, Sunny Vagnozzi, Suresh Kumar, Eleonora Di Valentino, and Olga Mena, “New tests of dark sector interactions from the full-shape galaxy power spectrum,” Phys. Rev. D 105, 123506 (2022), arXiv:2203.08095 [astro-ph.CO].

Alex Lague, J. Richard Bond, Renée Hložek, Keir K. Rogers, David J. E. Marsh, and Daniel Grin, “Constraining ultralight axions with galaxy surveys,” JCAP 01, 049 (2022), arXiv:2104.07802 [astro-ph.CO].

Tristan L. Smith, Vivian Poulin, and Théo Simon, “Assessing the robustness of sound horizon-free determinations of the Hubble constant,” (2022), arXiv:2208.12902 [astro-ph.CO].

Théo Simon, Pierre Zhang, and Vivian Poulin, “Cosmological inference from the EFTofLSS: the eBOSS QSO full-shape analysis,” (2022), arXiv:2210.14931 [astro-ph.CO].

Théo Simon, Pierre Zhang, Vivian Poulin, and Tristan L. Smith, “On the consistency of effective field theory analyses of BOSS power spectrum,” (2022), arXiv:2208.05929 [astro-ph.CO].

Meng-Xiang Lin, Giampaolo Benevento, Wayne Hu, and Marco Raveri, “Acoustic Dark Energy: Potential Conversion of the Hubble Tension,” Phys. Rev. D100, 023516 (2019), arXiv:1905.12618 [astro-ph.CO].

Kim V. Berghaus and Tanvi Karwal, “Thermal Friction as a Solution to the Hubble Tension,” Phys. Rev. D 101, 083537 (2020), arXiv:1911.06281 [astro-ph.CO].

Tanvi Karwal, Marco Raveri, Bhuvnesh Jain, Justin Khoury, and Mark Trodden, “Chameleon Early Dark Energy and the Hubble Tension,” arXiv e-prints , arXiv:2106.13290 (2021), arXiv:2106.13290 [astro-ph.CO].

J. Colin Hill et al., “The Atacama Cosmology Telescope: Constraints on Pre-Recombination Early Dark Energy,” (2021), arXiv:2109.04511 [astro-ph.CO].

Vivian Poulin, Tristan L. Smith, and Alexa Bartlett, “Dark Energy at early times and ACT; a larger Hubble constant without late-time priors,” (2021), arXiv:2109.06229 [astro-ph.CO].

Adrien La Posta, Thibaut Louis, Xavier Garrido, and J. Colin Hill, “Constraints on Pre-Recombination Early Dark Energy from SPT-3G Public Data,” (2021), arXiv:2112.10754 [astro-ph.CO].

Tristan L. Smith, Matteo Lucca, Vivian Poulin, Guillermo F. Abellán, Lennart Balkenhol, Karim Benabed, Silvia Galli, and Riccardo Murgia, “Hints of Early Dark Energy in Planck, SPT, and ACT data: new physics or systematics?” (2022), arXiv:2202.09379 [astro-ph.CO].

J. Colin Hill, Evan McDonough, Michael W. Toomey, and Stephon Alexander, “Early dark energy does not restore cosmological concordance,” Phys. Rev. D 102, 043507 (2020), arXiv:2003.07355 [astro-ph.CO].

Sunny Vagnozzi, “Consistency tests of ΛCDM from the early ISW effect: implications for early-time new physics and the Hubble tension,” arXiv e-prints , arXiv:2105.10425 (2021), arXiv:2105.10425 [astro-ph.CO].

Mikhail M. Ivanov, Evan McDonough, J. Colin Hill, Marko Simonović, Michael W. Toomey, Stephon Alexander, and Matias Zaldarriaga, “Constraining Early Dark Energy with Large-Scale Structure,” Phys. Rev. D 102, 103502 (2020), arXiv:2006.11235 [astro-ph.CO].

Guido D’Amico, Leonardo Senatore, Pierre Zhang, and Henry Zheng, “The Hubble Tension in Light of the Full-Shape Analysis of Large-Scale Structure Data,” (2020), arXiv:2006.12420 [astro-ph.CO].

Tristan L. Smith, Vivian Poulin, José Luis Bernal, Kimberly K. Boddy, Marc Kamionkowski, and Riccardo Murgia, “Early dark energy is not excluded by current large-scale structure data,” Phys. Rev. D 103, 123542 (2021), arXiv:2009.10740 [astro-ph.CO].

Riccardo Murgia, Guillermo F. Abellán, and Vivian Poulin, “Early dark energy resolution to the Hubble tension in light of weak lensing surveys and lensing anomalies,” Phys. Rev. D 103, 063502 (2021), arXiv:2009.10733 [astro-ph.CO].

Adrià Gómez-Valent, “A fast test to assess the impact of marginalization in Monte Carlo analyses, and its application to cosmology,” (2022), arXiv:2203.16285 [astro-ph.CO].

Laura Herold, Elisa G. M. Ferreira, and Eiichiro Komatsu, “New constraint on Early Dark Energy from Planck and BOSS data using the profile likelihood,” (2021), arXiv:2112.12140 [astro-ph.CO].

Alexander Reeves, Laura Herold, Sunny Vagnozzi, Blake D. Sherwin, and Elisa G. M. Ferreira, “Restoring cosmological concordance with early dark energy and massive neutrinos?” (2022), arXiv:2207.01501 [astro-ph.CO].

Florian Niedermann and Martin S. Sloth, “New Early Dark Energy is compatible with current LSS data,” (2020), arXiv:2009.00006 [astro-ph.CO].

Oliver H. E. Philcox, Gerrit S. Farren, Blake D. Sherwin, Eric J. Baxter, and Dillon J. Brout, “Determining the Hubble Constant without the Sound Horizon: A 3% Constraint on H₀ from Galaxy Surveys, CMB Lensing and Supernovae,” (2022), arXiv:2204.02984 [astro-ph.CO].

Dillon Brout et al., “The Pantheon+ Analysis: Cosmological Constraints,” (2022), arXiv:2202.04077 [astro-ph.CO].

Michael S. Turner, “Coherent scalar-field oscillations in an expanding universe,” Phys. Rev. D 28, 1243–1247 (1983).

Vivian Poulin, Tristan L. Smith, Daniel Grin, Tanvi Karwal, and Marc Kamionkowski, “Cosmological impli-
cations of ultralight axionlike fields,” Phys. Rev. D98, 083525 (2018), arXiv:1806.10608

[13] Karsten Jedamzik, Levon Pogosian, and Gong-Bo Zhao, “Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension,” Commun. in Phys. 4, 123 (2021), arXiv:2010.04158 [astro-ph.CO]

[14] Benjamin Audren, Julien Lesgourgues, Karim Benabed, and Simon Prunet, “Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code,” JCAP 02, 001 (2013), arXiv:1210.7183 [astro-ph.CO]

[15] Theije Brinckmann and Julien Lesgourgues, “MontePython 3: boosted MCMC sampler and other features,” (2018), arXiv:1804.07261

[16] Diego Blas, Julien Lesgourgues, and Thomas Thom, “The Cosmic Linear Anisotropy Solving System (CLASH) II: Approximation schemes,” JCAP 1107, 034 (2011), arXiv:1104.2933 [astro-ph.CO]

[17] N. Aghanim et al. (Planck), “Planck 2018 results. VIII. Gravitational lensing,” Astron. Astrophys. 641, AS (2020), arXiv:1906.02610 [astro-ph.CO]

[18] Steve K. Choi et al. (ACT), “The Atacama Cosmology Telescope: a measurement of the Microwave Background power spectra at 98 and 150 GHz,” JCAP 12, 045 (2020), arXiv:2007.02729 [astro-ph.CO]

[19] Nils Schoneberg, Julien Lesgourgues, and Deanna C. Hooper, “The BAO+BBN take on the hubble tension,” Journal of Cosmology and Astroparticle Physics 2019, 029–029 (2019)

[20] R. Consiglio, P.F. de Salas, G. Mangano, G. Miele, S. Pastor, and O. Pisanti, “PARthEnoPE reloaded,” Computer Physics Communications 233, 237–242 (2018)

[21] Ryan J. Cooke, Max Pettini, and Charles C. Steidel, “One percent determination of the primordial deuterium abundance,” The Astrophysical Journal 855, 102 (2018)

[22] Erik Aver, Keith A. Olive, and Evan D. Skillman, “The effects of he i λ10830 on helium abundance determinations,” Journal of Cosmology and Astroparticle Physics 2015, 011–011 (2015)

[23] Florian Beutler, Chris Blake, Matthew Colless, D. Heath Jones, Lister Staveley-Smith, Lachlan Campbell, Quentin Parker, Will Saunders, and Fred Watson, “The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant,” Mon. Not. Roy. Astron. Soc. 416, 3017–3032 (2011), arXiv:1106.3366

[24] Ashley J. Ross, Lado Samushia, Cullan Howlett, Will J. Percival, Angela Burden, and Marc Manera, “The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z = 0.15,” Mon. Not. Roy. Astron. Soc. 449, 835–847 (2015), arXiv:1409.3242

[25] Héctor Gil-Marín et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies,” Mon. Not. Roy. Astron. Soc. 460, 4210–4219 (2016), arXiv:1509.06373 [astro-ph.CO]

[26] Francisco-Shi Kitaura et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: mock galaxy catalogues for the BOSS Final Data Release,” Mon. Not. Roy. Astron. Soc. 456, 4156–4173 (2016), arXiv:1509.06400 [astro-ph.CO]

[27] Beth Reid et al., “SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large scale structure catalogues,” Mon. Not. Roy. Astron. Soc. 455, 1553–1573 (2016), arXiv:1509.06529 [astro-ph.CO]

[28] D. M. Scollnic et al., “The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample,” Astrophys. J. 859, 101 (2018), arXiv:1710.00845 [astro-ph.CO]

[29] Antony Lewis, “GetDist: a Python package for analysing Monte Carlo samples,” (2019), arXiv:1910.13970 [astro-ph.IM]

[30] Héctor Gil-Marín et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies,” Mon. Not. Roy. Astron. Soc. 460, 4188–4209 (2016), arXiv:1509.06386 [astro-ph.CO]

[31] Cheng Zhao et al., “The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: 1000 multi-tracer mock catalogues with redshift evolution and systematics for galaxies and quasars of the final data release,” Mon. Not. Roy. Astron. Soc. 503, 1140–1173 (2021), arXiv:2007.08907 [astro-ph.CO]

[32] Nick Hand, Yu Peng, Florian Beutler, Yin Li, Chiraq Modi, Uros Seljak, and Zachary Slepian, “ndbokit: an open-source, massively parallel toolkit for large-scale structure,” Journal of Astrophysics 156, 160 (2018), arXiv:1712.05834 [astro-ph.IM]

[33] Florian Beutler and Patrick McDonald, “Unified galaxy power spectrum measurements from 6dFGS, BOSS, and eBOSS,” JCAP 11, 031 (2021), arXiv:2106.06324 [astro-ph.CO]

[34] Oliver H. E. Philcox, “Cosmology without window functions: Quadratic estimators for the galaxy power spectrum,” Phys. Rev. D 103, 103504 (2021), arXiv:2012.09389 [astro-ph.CO]

[35] Florian Beutler et al. (BOSS), “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Fourier space,” Mon. Not. Roy. Astron. Soc. 464, 3409–3430 (2017), arXiv:1607.03149 [astro-ph.CO]

[36] Oliver H. E. Philcox, Mikhail M. Ivanov, Marko Simonović, and Matias Zaldarriaga, “Combining Full-Shape and BAO Analyses of Galaxy Power Spectra: A 1.6% CMB-independent constraint on H0,” JCAP 05, 032 (2020), arXiv:2002.04035 [astro-ph.CO]

[37] Anton Chudaykin, Mikhail M. Ivanov, Oliver H. E. Philcox, and Marko Simonović, “Nonlinear perturbation theory extension of the Boltzmann code CLASS,” Phys. Rev. D 102, 063533 (2020), arXiv:2004.10607 [astro-ph.CO]

[38] Diego Blas, Mathias Garny, Mikhail M. Ivanov, and Sergey Sibiryakov, “Time-Sliced Perturbation Theory II: Baryon Acoustic Oscillations and Infrared Resummation,” JCAP 1607, 028 (2016), arXiv:1605.02149 [astro-ph.CO]

[39] Mikhail M. Ivanov and Sergey Sibiryakov, “Infrared Resummation for Biased Tracers in Redshift Space,” JCAP 1807, 053 (2018), arXiv:1804.05080 [astro-ph.CO]

[40] Matthew Lewandowski, Leonardo Senatore, Francisco Prada, Cheng Zhao, and Chia-Hsun Chuang, “EFT
