Zoos and public health: A partnership on the One Health frontier

C. Robinette a,1, L. Saffran b, A. Ruple c, S.L. Deem b,d,*

a Department of Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
b University of Missouri, Columbia, MO 65201, United States
c Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
d Institute for Conservation Medicine, Saint Louis Zoo, St. Louis, MO 63110, United States

Abstract

Today, accredited zoos are not just places for entertainment, they are actively involved in research for conservation and health. During recent decades in which the challenges for biodiversity conservation and public health have escalated, zoos have made significant changes to address these difficulties. Zoos increasingly have four key areas of focus: education, recreation, conservation, and research. These key areas are important in addressing an interrelated global conservation (i.e., habitat and wildlife loss) and public health crisis. Zoo and public health professionals working together within a One Health framework represent a powerful alliance to address current and future conservation and public health problems around the world. For researchers, practitioners, and students, the collaboration between zoos and public health institutions offers the opportunity to both teach and operationalize this transdisciplinary approach. Using examples from our programs, we give a template for moving forward with collaborative initiatives and sustainable solutions involving partners in both zoos and public health institutions. We provide examples of cooperative programs and suggest a model for consideration in the development of further activities in this area.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Conservation medicine
Animal health
Global health

The increasingly international work of both public health institutions (such as governments, non-governmental organizations, non-profit organizations, and/or schools of public health and medicine) and accredited zoos, including over 200 zoological facilities in North America accredited by the Association of Zoos and Aquariums (AZA) and 300 member facilities in the European Association of Zoos and Aquaria, reflects the reality that our world is shrinking [1]. An alliance between public health educators, institutions, and zoos—to explore connections between human, animal and ecological health and to craft innovative solutions—represents a new frontier in the field of One Health, defined as the collaboration across disciplines to improve the health of humans, animals, and the environment [2].

An estimated 700 million people visit the world’s accredited zoos each year [3]. Visitors ranging in age from days old to centenarians come to zoos to have fun and learn about wild animals and wild places. What they might not know is that in recent decades accredited zoos and aquariums have expanded beyond education and recreation, and are now fully committed to conservation and research [4,5]. Worldwide, accredited zoos and aquariums spend roughly $350 million dollars on

Abbreviations:
EID, Emerging Infectious Diseases; MERS, Middle East Respiratory Syndrome; GDP, Gross Domestic Product; ADHD, Attention Deficit Hyperactivity Disorder; MPH, Master of Public Health; MSc, Master of Science.

* Corresponding author at: Institute for Conservation Medicine, Saint Louis Zoo, St. Louis, MO 63110, United States.
E-mail address: deem@stzoo.org (S.L. Deem).
1 Present address: 2A Observatory Place, Norwalk, CT 06854, United States.

[i](http://dx.doi.org/10.1016/j.onehlt.2016.11.003)

2352-7714/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
emergence of Middle East Respiratory Syndrome (MERS), retrospective samples banked from our project offered an important source of data on this significant and emerging zoonotic disease [12]. Additionally, through this project we have trained a number of Kenyan and American veterinary, MSc and public health students to better understand the disease risks associated with changing environmental conditions, protein sources for humans, and the inevitable increase in interactions at the domestic animal/wildlife/human interface. This project is just one example of a key transdisciplinary One Health program in which zoos and public health institutions are integrated to study EID at this interface.

Many zoos and aquariums are involved in conservation across the globe, working to preserve biodiversity and in many cases studying diseases of conservation concern. A map of conservation projects initiated by accredited zoos and aquariums is shown in Fig. 1 [2]. These projects integrate various disciplines within the realm of natural and social sciences, with the goal to preserve the world’s biodiversity. Within this figure, there are areas where zoo-based in situ work overlays disease emergence and biodiversity hotspots, further exhibiting the important role zoos and aquariums have in regards to One Health. Although some of the disease emergence hotspots, as indicated on the map, do not have in situ projects marked, most of these areas are found in cities where accredited zoos and aquariums exist and these institutions may serve a similar role to in situ projects in more remote regions of the world.

Zoos and aquariums conduct disease surveillance programs that span the globe from fence to field [2,13]. Zoological health professionals study the epidemiology, pathology, and clinical implications of infectious diseases that play an important role in the long-term survival of species and often also have direct human health consequences (e.g., zoonotic diseases and diseases associated with degraded environments). These include, among many others, Ebola virus in human and non-human primates, rabies and canine distemper in carnivores, fibropapillomatosis in sea turtles, and chytridiomycosis in amphibians [14]. Further, the animals housed at accredited zoos may serve as sentinels of disease for humans, wildlife, and domestic animals [2]. For example, based on the bird species that did or did not experience morbidity and/or mortality at the Bronx Zoo in New York, public health officials were made aware of the presence of West Nile Virus (WNV) in the western hemisphere by veterinary staff at the Zoo [15]. In fact, the public health concerns associated with the arrival of WNV in the USA led to the launch of the National Surveillance of West Nile Virus in Zoological Institutions, which later became the AZA Avian Influenza Network [16]. These programs were the start of a partnership between zoos and public health agencies to utilize zoo collection animals as part of a nationwide disease surveillance system [17].

Along with EID, debilitating chronic non-infectious diseases such as heart disease, cancer, diabetes, and obesity represent another worldwide public health crisis [18]. Chronic non-infectious diseases globally cost US$30 trillion dollars, 48% of global Gross Domestic Product (GDP) in 2010 [19]. Also, losses attributed to mental illness will account for an additional US$16.1 trillion loss over the next 20 years [19]. By 2020, it is estimated that 7 out of 10 deaths in developed countries will be due to non-infectious diseases [18]. Accredited zoos have the potential to offer direct health benefits to visitors which may help to lower risk factors associated with chronic disease. For example, recent studies explore the direct benefits zoos offer for human health. In one study, a single zoo visit was shown to decrease blood pressure and result in approximately 6000 steps walked per visit [20]. In another study, visitors interacting with stingrays in a touch tank at a zoo felt happier, more energized, and less tense after their visit [21]. The impact that zoo visits have on human health and well-being are still poorly understood, but warrant further study. Engagement with the outdoors provides humans with psychological, emotional, spiritual and even physical benefits and it is thus imperative that we also understand how zoos impact human health [20–27].

Globally, as people continue to migrate into cities, less time is spent outdoors. The average American child, for example, spends less than

![Fig. 1. The global footprint of in situ programs branded by the World Association of Zoos and Aquariums, which are found in many of the Earth’s biodiversity and emerging disease hotspots. (Map modified from data presented in Jones et al., [8]).](image-url)
30 min per day of unstructured time outside [28]. This is problematic because exposure to nature has health benefits, including a positive effect on mental processes, behavior, cognitive ability and function; physical function and health; reduction of incidence of infectious disease; positive effects for individual, community, cultural, and spiritual well-being [27]. Also, being outside can help vision by lowering the chance of nearsightedness and improving distance vision [26], can reduce stress levels in children [24], aid in emotional development [29], foster the global reach of zoos and aquariums in visitor numbers and conservation expenditures, Zoo Biol. 30 (2011) 566–569.

N. Cari, S. Cohen. The public face of zoos: images of entertainment, education and conservation, Anthrozoos 24 (2) (2011) 175–189.

W.G. Conway, Zoos: their changing roles, Science 163 (3862) (1969) 48–52.

P. Daszak, A.A. Cunningham, A.D. Hyatt. Emerging infectious diseases of wildlife – threats to biodiversity and human health, Science 287 (2000) 443–449.

D.M. Morens, A.S. Fauci. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog. 9 (7) (2013), e1003467. http://dx.doi.org/10.1371/journal.ppat.1003467.

K.E. Jones, N.G. Patel, M.A. Levy, A. Storeygard, D. Balk, J.L. Gittleman, P. Daszak. Global trends in emerging infectious diseases, Nature 451 (7181) (2008) 990–993.

A.A. Aguirre, G.M. Tabor, Global factors driving emerging infectious diseases, Ann. N. Y. Acad. Sci. 1149 (1) (2008) 1–3.

L.F. Wang, G. Crameri, Emerging zoonotic viral diseases, Rev. Sci. Tech. (International Office of Epizootics) 33 (2) (2014) 569–581.

W. DePuy, V. Benka, A. Massey, S. Deem, M. Kinnaird, T. O'Brien, S. Wanyoike, J. Nyoka, B. Butt, J. Foudouposos, J. Eisenberg, R. Hardin, Q fever risk across a dynamic, heterogeneous landscape in central Kenya, EcosHealth 11 (3) (2014) 429–433.

S.L. Deem, E.M. Fèvre, M. Kinnaird, A.S. Browne, D. Muloi, J.-G. Goddeke, et al., Serological evidence of MERS-CoV antibodies in dromedary camels (Camelus dromedarius) in Laikipia County, Kenya, PLoS ONE 10 (10) (2015), e0140125. http://dx.doi.org/10.1371/journal.pone.0140125.

S.L. Deem, P. Dennis, Role of zoos in one health, One Health Newsletter 2012, pp. 4–7.

S.L. Deem, W.B. Kareem, W. Weissman, Putting theory into practice: wildlife health in conservation, Conserv. Biol. 15 (2001) 1224–1233.

G.V. Ludwig, P.P. Calle, J.A. Manglaﬁco, B.L. Raphael, D.K. Danner, J.A. Hille, et al., An outbreak of West Nile virus in a New York City captive wildlife population, Am. J. Trop. Med. Hyg. 67 (1) (2002) 67–75.

The Zoo Animal Health Network, http://www.zoanimalhealthnetwork.org/WVN. 2013 (Accessed on October 20, 2016).

The Zoo Animal Health Network, http://www.zoanimalhealthnetwork.org/ai. 2013 (Accessed on October 20, 2016).

A. Boustaye, The double burden of communicable and non-communicable diseases in developing countries, Trans. R. Soc. Trop. Med. Hyg. 100 (3) (2006) 191–199.

D.E. Bloom, E.T. Caﬁero, E. Jané-Llopis, S. Abrahams-Gessel, L.R. Bloom, S. Fathima. The Global Economic Burden of Non-communicable Diseases: Report by the World Economic Forum and the Harvard School of Public Health [Internet], World Economic Forum, Geneva, 2011.

T. Sakagami, M. Ohta, The effect of visiting zoos on human health and quality of life, Anim. Sci. J. 81 (1) (2010) 129–134.

J.M. Sahrhann, A. Needelbski, L. Bradshaw, R. Johnson, S.L. Deem, Changes in human health parameters associated with a touch tank experience at a zoological institution, Zoo Biol. 35 (1) (2016) 4–13.

G.N. Bratman, J.P. Hamilton, K.S. Hahn, G.C. Daily, J.J. Gross, Nature experience reduces rumination and subgenual prefrontal cortex activation, Proc. Natl. Acad. Sci. 112 (28) (2015) 8560–8562.

R.A. Fuller, K.N. Irvine, P. Devine Wright, P.H. Warren, K.J. Gaston, Psychological beneﬁts of greenspace increase with biodiversity, Biol. Lett. 3 (2007) 390–394.

P.D. Kuo, E. Frances, P.D. Andrea Faber Taylor, A potential natural treatment for attention-deﬁcit/hyperactivity disorder: evidence from a national study, Am. J. Public Health 94 (9) (2004). Sept.

R. Louw, Last Child in the Woods, Algonquin Books of Chapel Hill, Chapel Hill, North Carolina, 2008 390.

N.A. McBrien, I.G. Morgan, D.O. Mutti, What’s hot in myopia research— the 12th international myopia conference, Australia, July 2008, Optom. Vis. Sci. 86 (1) (2009) 2–3.

P.A. Sandifer, A.E. Sutton-Grier, B.P. Ward, Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: opportunities to enhance health and biodiversity conservation, Ecosyst. Serv. 12 (SI) (2015) 1–15.

F.T. Juster, et al., Changing Times of American Youth: 1981–2003, Institute for Social Research, University of Michigan, 2004 (Child Development Supplement).
[29] K.R. Ginsburg, Committee on Communications, Committee on Psychosocial Aspects of Child and Family Health, The importance of play in promoting healthy child development and maintaining strong parent-child bonds, Am. Acad. Pediatr. 119 (1) (Jan. 2007).

[30] J. Ernst, M. Monroe, The effects of environment-based education on students’ critical thinking skills and disposition toward critical thinking, Environ. Educ. Res. 10 (4) (2004) 507–522.

[31] N.M. Wells, At home with nature: effects of “greenness” on children’s cognitive functioning, Environ. Behav. 6 (32) (2000) 775–795.

[32] B. Natterson-Horowitz, K. Bowers, Zoobiquity: What Animals Can Teach Us About Health and the Science of Healing, Random House, New York, 2012.

[33] C.M. Jandegian, S.L. Deem, R.K. Bhandari, C.M. Holliday, D. Nicks, C.S. Rosenfeld, et al., Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta), Gen. Comp. Endocrinol. 216 (2015) 77–85.

[34] R.K. Bhandari, S.L. Deem, D.K. Holliday, C.M. Jandegian, C.D. Kasotis, S.C. Nagel, et al., Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species, Gen. Comp. Endocrinol. 214 (2015) 195–219.

[35] C. Darwin, On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray, London, 1859.

[36] P.J. Crutzen, Geology of mankind, Nature 415 (2002) 23.