Prediction of Surface Temperature and CO₂ Emission using a novel grey system model

Pawan Kumar Singh
Thapar University: Thapar Institute of Engineering and Technology

Alok Kumar Pandey (alokpandey@bhu.ac.in)
Banaras Hindu University
https://orcid.org/0000-0001-5604-3243

Anushka Chouhan
Banaras Hindu University

Research Article

Keywords: Grey System Theory, CO₂, Surface Temperature, Forecasting, Emission

Posted Date: January 13th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1176163/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The increase in surface temperature and CO₂ emissions are two of the most important issues in climate studies and global warming. The ‘Global Emissions 2021’ report identifies the six biggest contributors to CO₂ emissions; China, USA, India, Russia, Japan, and Germany. The current study projects the increase in surface temperature and the CO₂ emissions of these six countries by 2028. The EGM (1,1,α,β) grey model is an even form of the model with a first order differential equation, that has one variable and a weightage background value that contains conformable fractional accumulation. The results show that while the CO₂ emissions for Japan, Germany, USA and Russia show a downward projection, they are expected to increase in India and remain nearly constant in China by 2028. The surface temperature has been projected to increase at a significant rate in all these countries. By comparing with the EGM (1,1) grey model, the results show that the EGM (1,1,α,β) model performs better in both in-sample and out-of-sample forecasting. The paper also puts forward some policy suggestions to mitigate, manage and reduce increases in surface temperature as well as CO₂ emissions.

Introduction

Environment and climatic conditions affect human life; with global warming drawing the attention of scientists and researchers to the rising atmospheric temperature. Global warming negatively impacts human lives in terms of rising sea levels and the increasing number of extreme events (Melillo et al., 2014); while air temperature directly affects the land surface (Tajfar, Bateni, Lakshmi, et al., 2020), (Valipour et al., 2020) (Tajfar, Bateni, Margulis, et al., 2020). Health issues emerge due to variations in temperature (Lan et al., 2010), (Schulte et al., 2016), which also causes flora and fauna loss. An appropriate approach for air temperature prediction may help reduce the consequences of climate change and global warming. It can also play a vital role in framing policy for various business activities and energy-related matters. Nowadays, extreme weather is a common phenomenon that is being more frequently observed. Therefore, it is necessary to understand the changes in the weather condition. Temperature plays an important role in weather forecasting. Temperature prediction ability is useful for various activities performed in the future that determine economic abilities and ecological phenomenon (Sharma et al., 2011), (Sardans et al., 2006). Under climate change, temperature forecasting is an important research area. It is useful in understanding the macroscopic evolutionary processes, and also provides a significant reference source for sustainable economic development (H. Wang et al., 2019). Akram & El (2016) show that the LSTM based neural networks perform better in temperature prediction. H. Wang et al. (2019) used VMD-ARIMA model, ARIMA model, and Grey Model (1,1) and found that VMD-ARIMA provides more accurate forecasts. Kämmer (2009) advocate an intensive study for the short-term changes in different climate zones and total solar irradiance at the topmost of the atmosphere and surface air temperature series. Studies have been performed using ARIMA and its similar methods to predict weather conditions. Pybukot et al. (2000) created a neural network model for daily maximum ozone levels forecasting and compared it with the regression and Box-Jenkins ARIMA, concluding that the neural network model estimates better than regression and Box-Jenkins ARIMA models. Curcean et al. (2019) used non-parametric and parametric techniques for hourly air temperature forecast up to 24 hours in advance. The results suggest that Seasonal Autoregressive Moving Average (SARMA) performs better during the first six projected hours. Pooling projections improve forecasting accuracy. Nowadays, machine learning methods are becoming quite popular in weather forecasting. Machine learning techniques may be useful in improving regional air temperature forecasts in mid and high latitude regions where model capabilities are limited (Y. Feng et al., 2019) (Qian et al., 2020) (Ratnam et al., 2019) (Peng et al., 2020) (Cifuentes et al., 2020). Qian et al. (2020) used SVR and XGBoost in seasonal forecasts of the surface air temperature in winter in North America. The hindcasts of the SVR and XGBoost models outperform the L.R. model in terms of forecasting. The L.R. model is less affected by the size of the training data set. The genetic algorithm approach improves the spatial distribution of air temperature anomalies, resulting in a better representation of anomalies in predictions (Ratnam et al., 2019). Y. Feng et al. (2019) used four machine learning and empirical models for the daily global solar radiation prediction of temperate in China. The artificial neural network model and hybrid mind evolutionary algorithm give better estimates. Two machine learning methods of neural networks and natural gradient boosting (NGBoost) were used by Peng et al. (2020) to improve the prediction skills of the 2-m maximum air temperature with lead times of 1–35 days over East Asia. Post-processing approaches may effectively reduce prediction biases and uncertainties in the first two weeks during the validation phase. Neural networks and NGBoost perform as the best models in more than 90% of the study area (Peng et al., 2020). Cifuentes et al. (2020) disclose that Deep Learning approaches show smaller errors than traditional Artificial Neural Networks architectures. Appelhans et al. (2015) examined and compared a widely used kriging approach using a network of temperature monitoring plots throughout the southern slopes of Mt. Kilimanjaro. The ANN model has strong prediction performance as well as low computational and architectural complexities (Codeluppi et al., 2021). Jallal et al. (2019) suggest that an advanced autoregressive model, which has two hidden layers and a small number of hidden neurons, can effectively predict the target. Sanikhani et al. (2018) describe the development and application of data-intelligent models for air temperature estimation without climate-based inputs, using only geographic factors in a large spatial region in central India. The GRNN model is a qualified data-intelligent tool for temperature estimation without the need for climate-based inputs. This model can be investigated for its utility in energy management, building and construction, agriculture, heatwave studies, health, and other socio-economic areas, particularly forestry. LSTM and Facebook Prophet have been used to simulate the forecast of five-year daily air temperatures in Bandung. The results reveal that Prophet outperforms LSTM on maximum air temperature (Toharudin et al., 2021).

Researchers have studied the development of several grey models, such as G.M. (1,1), Grey Verhulst model, and modified grey models (Kayacan et al., 2010) (Guo et al., 2011) (X. Wang et al., 2014) (Hamzacebi & Es, 2014) (S. J. Feng et al., 2012) (L.-W. Wang et al., 2015) (S. Liu et al., 2012) (Faghhi Mohammadi Jalali & Heidari, 2020) (Javed, Zhu, et al., 2020). The electric energy consumption is forecasted by Hamzacebi & Es (2014) using an optimised Grey Modeling (1,1) forecasting technique for 2013–2025 in Turkey. Based on grey system theory, Guo et al. (2011) proposed a new technique for energy consumption prediction from a residential air source heat pump water heater (ASHPWH). X. Wang et al. (2014) propose an algorithm for predicting subject trends based on the Grey Verhulst Model. The modified G.M. (1,1) with Fourier series in time performs best in model fitting and forecasting among these grey models. S. J. Feng et al. (2012) created the grey model GM(1,1) for China's total energy, coal energy, and clean energy consumption. All three forms of energy consumption are rising, but the clean energy consumption is gaining the upper hand. China's goal of self-sufficiency in both biofuels (fuel ethanol and biodiesel) would remain a struggle. The United States and India will retain their ethanol and biodiesel self-sufficiency, respectively, at least until 2028. Biofuel is more likely to be an extra fuel than an alternative fuel, according to the study (Javed, Zhu, et al., 2020). Javed, Zhu, et al. (2020) optimised the model architecture of an existing grey forecasting model and suggested a new forecasting model. L.-W. Wang et al. (2015) and S. Liu et al. (2012) aimed to rate the performance of Indian mining
and metal firms and analyse and measure the change in productivity in these industries. The study contributes to a better understanding of India's mining industry, which is vital to the country's economy (S. Liu et al., 2012). Faghhi Mohammadi Jalali & Heidari (2020) used the grey system theory to forecast Bitcoin's price and changes in their research. Lin et al. (2011) indicated that CO₂ emissions would rise over the next three years in Taiwan. It is a useful reference for the Taiwanese government to develop policies to minimise CO₂ emissions by reducing unnecessary energy use. The study (Lin et al., 2011) used the grey forecasting model to anticipate future CO₂ emissions in Taiwan from 2010 to 2012. Guo et al. (2011) confirm that the Even form of Grey Forecasting model (EGM) is a non-optimised model in its original form. Its optimisation can be improved using conformable fractional accumulation and weighted background value generation. Self-sufficiency is an energy resource, an essential indicator of the gap between energy supply and demand. The biofuel self-sufficiency of these countries is also predicted. The top CO₂-producing countries are not only major polluters, but many of them are also major oil producers. (X. Wang et al., 2014). Studying and understanding their behaviour is important for general readers, environmentalists, biofuel dealers, and energy policymakers. Furthermore, even though grey forecasting models have been widely used in energy projections (including renewable energy), we are aware of only a few instances where they have been used to anticipate biofuels. The current work is notable in theory and application because it is the first attempt to estimate surface temperature change and CO₂ emission using a unique grey forecasting model, EGM (1, 1, α, θ), which generalised the classical model EGM (1, 1).

Methodology

Grey forecasting enables one to extract helpful insights about the future from small data, which can be as small as four and can be used for both short term and long term forecast (D. Lim et al., 2010), (Hamzacebi & Es, 2014), (Tsai et al., 2017), (S. Liu et al., 2020). If one looks at the increasing number of studies involving grey forecasting of energy, one would realise that energy forecasts are a typical problem for grey forecasting theory, especially when the number of observations is small and the distribution of data is undefined (Ofosu-Adarkwa et al., 2020), (Ye et al., 2019), (Ma et al., 2019). Therefore, Suganthi & Samuel (2012) identified grey models as one of the twelve notable energy models. The Even Formal of Grey Model with first-order differential equation containing one variable EGM (1,1) (EGM for short) and Discrete Form of Grey Model with first-order differential equation containing one variable DGM (1,1) (DGM for short), are two of the four basic models of grey forecasting theory. EGM is suitable for making predictions through non-exponential increasing data sequence, while DGM is suitable for making predictions through a homogenous exponential data sequence (D. Liu, 2017). DGM and EGM can be considered as different forms of the same model (Naiming & Sifeng, 2005). To execute these models, the minimum requirement for data is at least four, as proven from literature. For instance, Yifan and Julong (2004) studied the impact of variation in the number of data points, ranging from 4 to 10, on the parameters a and b of the grey model GM (1,1). Yao et al. (2009) argue that GM(1,1) requires 4 to 10 samples. Deng (2005) has presented a theorem with proof that establishes that the minimum data required for GM (1,1) is 4. Further, the Principle of Minimum Information is one of the six fundamental principles of Grey System Theory-based modelling (D. Liu, 2017); (Yifan and Julong, 2004) allows the grey forecasting models to execute on a small sample. Thus, it can be argued that GM (1,1) models are appropriate models for forecasting through small data (4 n 10). Further literature (S. J. Feng et al., 2012) suggests that if the parameter α is lesser than 0.3, i.e., α < 0.3, GM (1,1) is suitable for mid-long term forecasting. In the current study, the sample size in each case is within the acceptable range, and the parameter a is also within the acceptable range. In the following lines, Even GM (1,1) has been summarised as a special case of the proposed model EGM (1, 1, α, θ) (Javed, Ikram, et al., 2020); (S. Liu et al., 2017).

EGM (1, 1, α, θ)

Raw data contains noise, thus considering its direct use in grey forecasting theory, where the sample size is usually small with significant noise in raw data, can decrease forecast accuracy, Professor Julong Deng introduced the concept of accumulation of raw data (and inverse accumulation of the simulation of raw data) (Deng, 2004). In both Even and Discrete forms of GM (1,1), the data accumulation is usually done through the ‘once accumulating generation operator’ (1-AGO), which is basically a cumulative sum operator. If the sequence of raw data is

\[
X^{(0)} = \left(x^{(0)}(1), x^{(0)}(2), \ldots, x^{(0)}(n) \right), x^{(0)}(k) \geq 0 \quad (1)
\]

\[
X^{(1)} = \left(x^{(1)}(1), x^{(1)}(2), \ldots, x^{(1)}(n) \right) \quad (2)
\]

where, \(x^{(1)}(1) = \sum_{i=1}^{k} x^{(0)}(i), k = 1, 2, 3 \ldots \ldots \)

Even though 1-AGO is popular for data in grey prediction approaches, its limitations have prevented the application of GM (1,1) series models in various complicated situations, thus prompting scholars to propose alternative operators for data accumulation. One such fruitful attempt was recently made by Ma et al. (2020), who proposed the operations for the conformable fractional accumulation of raw data and the inverse conformable accumulation of simulated data. Building upon their operators, EGM(1,1) is extended in the current study. Unlike classical model EGM (1,1) where the background value of the model is usually calculated through the mean of two consecutive points on the curve of the 1-AGO data sequence, the current study has applied the concept of white-normalization of interval grey number (Javed, Ikram, et al., 2020) (S. Liu et al., 2017) to produce weighted background value. Literature confirms the soundness of weighing the background value (Niu et al., 2006). The complete algorithm of the proposed model EGM (1, 1, α, θ) is defined below.

EGM (1, 1, α, θ) represents the even form of a grey model with a first-order differential equation containing one variable and weighted background value containing conformable fractional accumulation. Let the sequence of actual data be

\[
X^{(0)} = \left(x^{(0)}(1), x^{(0)}(2), \ldots, x^{(0)}(n) \right), x^{(0)}(k) \geq 0, n \geq 4 \quad (3)
\]
And the sequence of conformable fractional accumulated data of $X^{(0)}$ be

$$X^{(a)} = \left(x^{(a)}(1), x^{(a)}(2), \ldots, x^{(a)}(n) \right) \quad (4)$$

$$x^{(a)}(k) = \sum_{i=1}^{k} x^{(0)}(i) \left(\frac{x^{(0)}(i)}{i^{1-a}} \right), k = 1, 2, 3, \ldots$$

where,

In the classical, even grey model, $\alpha = 1$, however, in EGM$(1,1,\alpha, \theta)$, $\alpha, \theta \in (0,1)$.

The adjacent neighbour average sequence of $X^{(1)}$ will be

$$Z^{(1)} = \left(z^{(1)}(1), z^{(1)}(2), \ldots, z^{(1)}(n) \right) \quad (5)$$

$$\frac{ax^{(1)}(k)}{a_k} + ax^{(1)}(k) = b, k \geq 1 \quad (4a)$$

$$x^{(0)}k + ax^{(1)}(k) = b \quad (5a)$$

$$[a, b]^T = [B^T B]^{-1} B^T Y \quad (6)$$

$$\hat{x}^{(a)}(k) = \left(x^{(0)}(1) - \frac{b}{a} \right) e^{-a(k-1)} + \frac{b}{a}, k = 1, 2, \ldots, n \quad (7)$$

$$\hat{x}^{(a)}(k) = k^{a-1}(\hat{x}^{(a)}(k) - \hat{x}^{(a)}(k-1)), k = 1, 2, \ldots, n; \hat{x}^{(0)}(0) = 0 \quad (8)$$

$$\hat{x}^{(0)}(k) = k^{a-1}(1 - e^{b}) \left(x^{(0)}(1) - \frac{b}{a} \right) e^{-a(k-1)}, k = 1, 2, \ldots, n \quad (9)$$

$$X^{(0)} = \left(x^{(0)}(1), x^{(0)}(2), \ldots, x^{(0)}(n) \right), x^{(0)}(k) \geq 0 \quad (10)$$

$$X^{(1)} = \left(x^{(1)}(1), x^{(1)}(2), \ldots, x^{(1)}(n) \right) \quad (11)$$

$$x^{(1)}(k+1) = \beta_1 x^{(1)}(k) + \beta_2 \quad (12)$$

$$[\beta_1, \beta_2]^T = [B^T B]^{-1} B^T Y \quad (13)$$

$$\hat{x}^{(1)}(k) = \beta_1 \left(x^{(0)}(1) - \frac{\beta_2}{1 - \beta_1} \right) + \frac{\beta_2}{1 - \beta_1}, k = 1, 2, \ldots, n \quad (14)$$

$$\hat{x}^{(1)}(k) - \hat{x}^{(1)}(k-1), k = 1, 2, \ldots, n; \hat{x}^{(0)}(0) = 0 \quad (15)$$

$$\hat{x}^{(0)}(k) = (\beta_1 - 1) \left(x^{(0)}(1) - \frac{\beta_2}{1 - \beta_1} \right) \beta_1^{k-1}, k = 1, 2, \ldots, n \quad (16)$$

Data

There has been a rise in temperature around the world since the 1980s. Developments in Europe, North America, and Asia are particularly notable, where there are sometimes significant temperature increases. On the other hand, in the countries of Oceania, the trend has even been declining for several years.

Antarctica is not included here due to a lack of consistent data series. However, there too we can clearly observe a stagnation in the temperature increase (with restrictions). The Germanwatch Institute presented the Global Climate Risk Index 2020. Due to the impacts of extreme weather, the places most affected today by climate change are Japan, the Philippines, and Germany (Eckstein, 2019, p. 20).

The balance between entering and exiting energy is an essential factor for the earth’s temperature. Natural and human factors can disrupt the earth’s energy balance. Greenhouse gas emissions have increased the greenhouse effect, causing the earth’s surface temperature to rise (US EPA, 2017), (Mellilo et al., 2014), (Stocker et al., 2013), ASCC (2010). The most important GHGs directly emitted by humans include carbon dioxide (CO$_2$), methane (CH$_4$), nitrous oxide (N$_2$O), and several others. The sources and recent trends of these gases are detailed below. Level of CO$_2$ increases in the atmosphere by the burning of fossil fuels, trees, waste and biological materials, and the manufacture of cement. Carbon dioxide levels decrease in the atmosphere when plants absorb it as part of the biological carbon cycle. (US EPA, 2015), ("Global Emissions," 2021). CO$_2$ accounts for about 80 percent of total greenhouse gas emissions in 2019 (US EPA, 21). China is the world’s largest contributor (28%) for CO$_2$ emissions, followed by the USA (15%), India (10%), Russia (5%), Japan (3%), and Germany (2%);
these together contribute around 63 percent in total CO$_2$ emissions worldwide (Ortega, 2021), (UCSUSA, 2020). However, surface temperature data for the current study has been collected from FAOSTAT (2021) for the period 2010-20 and CO$_2$ emission data for the period 2009-2019 from World Data Bank 2021.

Accuracy Measurement Methods

In the literature, various performance measures have been proposed in order to determine the accuracy of the forecasting approaches. In the current study, five performance measures such as normalized mean absolute percentage error (NMAPE), mean absolute percentage error (MAPE), mean square error (MSE), root mean square error (RMSE), and normalized root mean square error (NRMSE) has been used to measure the accuracy of GM (1,1) and EGM (1,1,α,θ). The following equations show the calculation of the performance measures:

The Mean Square Error is

$$\text{MSE} = \frac{1}{N} \sum_{t=1}^{N} (\hat{y}_t - y_t)^2$$

The Normalized Mean Absolute Percentage Error (NMAPE) is

$$\text{NMAPE} = \frac{1}{n} \sum_{k=1}^{n} \frac{|y(t) - \hat{y}(t)|}{\sum_{k=1}^{n} y(t)}$$

The Mean Absolute Percentage Error (MAPE) is

$$\text{MAPE} = \frac{1}{N} \sum_{t=1}^{N} \frac{A_t - F_t}{\bar{A}_t}$$

The Root Mean Square Error (RMSE) is

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{t=1}^{N} (y(t) - \hat{y}_t)^2}$$

The Normalized Root Mean Square Error (NRMSE) is

$$\text{NRMSE} = \frac{\sqrt{\sum_{k=1}^{n} (y(t) - \hat{y}_t)^2}}{\sqrt{\sum_{k=1}^{n} y(t)^2}}$$

Results And Discussion

CO$_2$ emission is usually considered when producing energy and environmental efficiency evaluation of transportation systems because of its essential role as a symbol of unwanted output (Chang et al., 2013) (Wu et al., 2016). The literature always considers CO$_2$ emission as deterministic, although it is challenging to develop a proper method to obtain correct CO$_2$ emission data due to its spatial and temporal variability (Monni et al., 2004). It is challenging to define the consequence of increased CO$_2$ on climate based on observational data (Wigley & Schlesinger, 1985). As a result, the energy balance model (EBM) has been frequently used to assess this impact (Crowley, 2000) (Hegel et al., 2006). Chen et al. (2014) concluded that the temperature changes in Asia and North America are susceptible to CO$_2$ emission. However, accurate prediction of CO$_2$ emission and surface temperature is known as one of the important indicators for policymakers. Saleh et al. (2016) have suggested a support vector machine to forecast CO$_2$ emission. The application of a hybrid SVM approach was also used by Ehteram et al. (2021). (Villa et al., 2018), (Noori et al., 2017) (H. S. Lim et al., 2021) suggest different time series based models to forecast surface temperature. While the application of Grey System prediction theory have been known for their reliable predictions with the dataset containing uncertainty or unexpected fluctuation (Liu, 2017) (Javed & Liu, 2018). This section has discussed the grey forecasting model EGM (1,1,α,θ) to evaluate the six leading CO$_2$ emitting countries and their increasing surface temperature: China, Germany, India, Japan, Russia, and the USA. China is projected to increase surface temperature by 4.75 Celsius and 7.52 metric tons per capita in 2028; thus, China should focus on reducing CO$_2$ emission and surface temperature to sustain long-term sustainable development, as shown in Fig. 1 and Table 1. Generally, the trend is increasing; however, this increasing trend is relatively more for surface temperature than CO$_2$ emission. Germany is projected to produce 8.55 metric ton CO$_2$ emissions per capita, which will increase surface temperature by 6.07 Celsius by 2028, as shown in table 1. Further, as shown in Fig. 2, positive changes in CO$_2$ emissions are almost stagnant, while surface temperature is rapidly changing. It is important for German policymakers to decide to maintain the changes in surface temperatures.

Although an economic shutdown, renewable energy use has led to reduced CO$_2$ emissions in four decades in India for some time (IEA, 2020). But a study conducted by Koshy (2021) said that India’s CO$_2$ emission rose faster than that the world average. In the current study, India is expected to produce CO$_2$ emissions of 2.95 metric tones per capita and 3.58 Celsius increase in surface temperature. As Fig. 3 shows, there is a large fluctuation in the actual value of India’s surface temperature, which explains a relatively larger error in the prediction. CO$_2$ emission per capita in metric tones in Japan is projected to be 8.90, followed by 10.77 in Russia and 13.48 in USA by 2028. They are top in per capita CO$_2$ emission worldwide, as shown in table 2-3. There is an urgent requirement to take immediate actions to manage climate change and mitigate greenhouse gases (GHGs).

To accomplish the target of carbon neutrality, a downward modification of economic growth is essential, which will help the country decrease pollution emissions. Japan is trying to use innovative ideas to reduce CO$_2$ emission, especially in the iron and steel industries (Tanaka, 2012) through supply chains (Nishitani et al., 2016) and other initiatives (Shimada et al., 2007). Russia has also taken the initiative to reduce black CO$_2$ emissions (Kholod & Evans, 2016),
and Russia needs to be careful about implementing environmental policy (Tsopanova & Kharitonova, 2020). The rapid improvement in economic activities has largely contributed to environmental distractions (Umar et al., 2020).

Table 1: China and Germany surface Temperature change and CO2 emission

Surface Temperature (Celsius)	CO2 emission (metric tons per capita)				
China	Germany				
Year	Actual GM(1,1) (1,α,θ)		Year	Actual GM(1,1) (1,α,θ)	
2010 0.98	0.98	0.20	2009 5.70	5.70	5.70
2011 0.81	0.82	1.12	2010 6.21	6.66	6.65
2012 0.65	0.90	1.35	2011 6.82	6.70	6.70
2013 1.10	1.00	0.58	2012 6.96	6.75	6.74
2014 1.11	1.10	1.12	2013 7.04	6.79	6.79
2015 1.34	1.24	1.67	2014 7.02	6.84	6.84
2016 1.38	1.38	1.99	2015 6.88	6.89	6.88
2017 1.64	1.48	2.06	2016 6.76	6.93	6.93
2018 1.42	1.63	2.40	2017 6.86	6.98	6.98
2019 1.47	1.80	2.34	2018 6.97	7.03	7.02
2020 1.70	1.99	2.52	2019 7.10	7.08	7.07
2021 2.20	2.31	3.03	2020 7.13	7.12	7.12
2022 2.42	2.57	3.34	2021 7.17	7.17	7.17
2023 2.68	2.84	3.68	2022 7.22	7.22	7.22
2024 2.96	3.15	4.05	2023 7.27	7.27	7.27
2025 3.26	3.49	4.46	2024 7.32	7.32	7.32
2026 3.60	3.87	4.91	2025 7.37	7.37	7.37
2027 3.98	4.29	5.41	2026 7.42	7.42	7.42
2028 4.39	4.75	5.96	2027 7.47	7.47	7.47
2029 4.85	5.27	6.56	2028 7.52	7.52	7.52
a, β1	-0.10	-0.10	a, β1	-0.01	-0.01
b, β2	0.68	1.08	b, β2	6.60	6.59
α	0.98	0.99	α	1.00	1.00
θ	0.70	0.71	θ	0.59	0.12

A study conducted by (Yang et al., 2021) suggested that in the long-run output, renewable energies, green growth, and globalisation are significant factors in affecting CO2 emission in the USA. Beijing has taken the initiative to control the growth of private vehicles to reduce CO2 emissions (Li & Jones, 2015). As shown in Fig. 4-6 (right-Fig.), the trend of CO2 emission in Japan, Russia, and the USA is moving in a downwards direction and is expected to decrease in significant proportions in the long run. Different studies have explained that unanticipated circumstances such as financial crises or natural hazards can affect emission patterns, even disturbing coordinated efforts to reduce GHG emissions or achieve decarbonisation (Peters et al., 2012), (Fang et al., 2019), (Long et al., 2021).

Table 2: India and Japan surface Temperature change and CO2 emission.
Table 3: Russia and USA surface Temperature change and CO₂ emission.

Russia plays an important role in global climate change with the largest land area, a forest area of around 871 million hectares and 221 million hectares of agricultural land. Its GHG emissions peaked in 1990. However, GHS emissions declined by 53% in 2000. Restrictions in the Russian economy, including structural and technological change, was a primary indicator to reduce GHG emissions. This country plays an important role in mitigating climate change, and there is a need to take sufficient initiative to reduce CO₂ emissions (Safonov et al., 2020). Generally, the trend is increasing for Surface temperature in Japan, Russia, and the USA. However, the trend is relatively less predictable compared to CO₂ emission in these countries, which will yield a larger error in the forecasting process of surface temperatures.

Year	Actual	GM(1,1)	EGM (1,1,θ)	Actual	GM(1,1)	EGM (1,1,θ)	Actual	GM(1,1)	EGM (1,1,θ)
2010	1.10	1.10	0.90	0.90	1.32	1.32	0.90	1.32	9.04
2011	0.32	0.37	0.58	0.50	1.38	1.37	0.56	9.44	9.94
2012	0.45	0.43	0.55	0.51	1.44	1.44	0.51	9.88	9.85
2013	0.40	0.50	0.61	0.63	1.51	1.50	0.63	10.17	9.79
2014	0.49	0.58	0.53	0.58	1.58	1.58	0.58	10.25	9.76
2015	0.65	0.67	0.82	0.75	1.64	1.65	0.75	9.85	9.70
2016	1.05	0.77	1.30	0.84	1.72	1.73	0.84	9.55	9.61
2017	0.95	0.89	0.77	0.83	1.79	1.81	0.83	9.42	9.58
2018	0.86	1.03	0.90	0.95	1.87	1.89	0.95	9.31	9.52
2019	0.77	1.19	1.25	1.14	1.96	1.98	1.14	8.93	9.46
2020	0.46	1.38	1.41	1.26	2.04	2.07	1.26	9.40	9.37
2021	1.60	1.35	1.40	1.29	2.13	2.16	1.29	9.34	9.31
2022	1.85	1.55	1.55	1.43	2.22	2.26	1.43	9.28	9.25
2023	2.14	1.79	1.71	1.59	2.33	2.36	1.59	9.22	9.19
2024	2.47	2.05	1.90	1.76	2.54	2.58	1.76	9.17	9.13
2025	2.86	2.36	2.10	1.95	2.65	2.70	1.95	9.05	9.02
2026	3.31	2.71	2.33	2.16	2.77	2.82	2.16	9.00	8.96
2027	3.83	3.11	2.58	2.40	2.89	2.95	2.40	8.94	8.90
2028	4.43	3.58	2.86	2.66	3.02	3.08	2.66	8.88	8.85
2029	5.13	4.11	3.17	2.95	3.08	3.08	2.95	8.88	8.85
\(\alpha\)	-0.15	-0.14	-0.10	-0.10	\(\alpha\)	-0.04	-0.04	0.01	0.01
\(\beta_2\)	0.18	0.16	0.38	0.34	\(\beta_2\)	1.30	1.28	10.00	10.03
\(\theta\)	1.00	1.00	\(\alpha\)	0.99	\(\theta\)	0.68	0.00	0.00	0.00

Russia plays an important role in global climate change with the largest land area, a forest area of around 871 million hectares and 221 million hectares of agricultural land. Its GHG emissions peaked in 1990. However, GHS emissions declined by 53% in 2000. Restrictions in the Russian economy, including structural and technological change, was a primary indicator to reduce GHG emissions. This country plays an important role in mitigating climate change, and there is a need to take sufficient initiative to reduce CO₂ emissions (Safonov et al., 2020). Generally, the trend is increasing for Surface temperature in Japan, Russia, and the USA. However, the trend is relatively less predictable compared to CO₂ emission in these countries, which will yield a larger error in the forecasting process of surface temperatures.
The accuracy level of the grey system theory models: GM (1, 1) and EGM (1, 1, α, θ) has been shown in Table 4 & 5. Table 4 & 5 show that all accuracy indicators are almost relatively low with proposed new grey theory approach EGM (1,1,α,θ).

Table4: Evaluation of in-sample and out-of-sample Forecast Accuracy of the models.
Conclusion

The current study predicts changes in surface temperature and CO₂ emissions (per capita) for China, Germany, India, Japan, Russia and USA, six of the world’s largest contributors to greenhouse gas (GHG) emissions. The study applies the grey model EGM (1,1,θ) which is an even form of the grey model in first order differential equation with one variable and weighted background value that contains conformable fractional accumulations. The results show that the CO₂ emissions and surface temperature increase for the top six countries in terms of emissions follows a similar trend. Apart from India with increasing CO₂ emissions and China with an increasing but near constant emissions, all other countries i.e., Germany, Japan, Russia and USA have a decreasing trend in CO₂ emissions (per capita). The projected emission estimates for 2028, however, are still very high: 8.55 metric tons per capita for China, 7.52 metric tons for Germany, 2.95 for India, 8.85 for Japan, 10.77 for Russia, and 13.48 for USA. The change in surface temperature is more alarming with significant increases in temperature for all the six countries, and the results project increase of 6.70°C by 2028 in China, 7.52°C by 2028 in Germany, 2.95°C in India, 2.66°C in Japan, 3.61°C in Russia, and 13.48°C in USA by 2028. This is a concerning issue as surface temperature increases adversely affect economic activities and capabilities.
and environmental phenomena (Sharma et al., 2011), (Sardans et al., 2006). This study also finds that the EGM (1,1,α,θ) grey model performs better than the EGM (1,1) grey model in terms of both in-sample and out of sample testing.

The current work is limited to the top six countries in terms of GHG emissions as per the Germanwatch Institute's Global Climate Risk Index 2020. Further studies including the impact of lockdowns on CO₂ emissions, along with predicting the general trend of all the other major GHG emissions. The study can also be extended in scope to include other countries of the world, especially predictions for the major developing countries of the world and oil-exporting countries.

Policy Suggestions

The results of the current study point to an important trend in surface temperature changes, which is a major issue at the global as well as national levels. The increase of surface temperature is an increasingly concerning issue that affects a range of factors that concern human life as well as flora and fauna. These, therefore, in conjunction with GHG and particularly CO₂ emissions, need to be addressed by governments and other stakeholders. The following suggestions are hereby forwarded. First, with reference to GHG and CO₂ emissions, the governments must put into place strategic and comprehensive plans that ensure lower emissions without compromising on the quality of economic growth and human development. Such strategies are already in force in Japan, particularly in the iron and steel industry. More countries should adopt such measures and innovate keeping in mind their local constraints and the larger public interest. Second, to reduce GHG and CO₂ emissions, the governments should take into consideration the risk-reward tradeoff for all the major stakeholders. The adoption of strategies that are based on an active participation of stakeholders will ensure maximum participation and minimum need for control and intervention. Third, to reduce the overall emissions, governments can adopt strategies that are based on the relative contribution of specific sectors. Such an approach will give maximum results with the acknowledgement of target areas and help in devising detailed, innovative and focused solutions.

Fourth, with respect to the rising surface temperatures for nearly all the six countries under study, an attempt must be made to bring down surface temperature, and avoid promotion of industries and sectors that contribute highly to GHG emissions. An important consideration along with reducing GHG emissions, is the increase of forest area and green cover. Finally, to mitigate rising surface temperatures, the governments should focus on switching to renewable energy and low-emission energy sources and roll out such policies in a phased manner. The adoption of a series of detailed and short and medium term phased plans are more effective than broad and vague long term goals.

Declarations

Acknowledgements: The authors express their gratitude to the editorial board and reviewer for the efforts for suggestion and reviewing this paper. The authors also appreciate the editor for his cooperation during the review process.

Data availability: The data that support the findings of this study are openly available on request.

Author contribution: Conceptualization, introduction, and results writing, and data analysis: Pawan Kumar Singh, Alok Kumar Pandey, and Anushka Chouhan.

Ethical approval: Not applicable.

Consent to participate: Not applicable.

Consent to publish: All authors have read and approved this manuscript.

Competing interests: The authors declare no competing interests.

Funding: The authors did not receive any funding from any organization to conduct this study.

References

1. Advancing the Science of Climate Change | The National Academies Press. Retrieved September 24, 2021, from https://www.nap.edu/catalog/12782/advancing-the-science-of-climate-change

2. Akram M, El C (2016) Sequence to Sequence Weather Forecasting with Long Short-Term Memory Recurrent Neural Networks. Int J Comput Appl 143(11):7–11. https://doi.org/10.5120/ijca2016910497

3. Appelhans T, Mwangomo E, Hardy DR, Hemp A, Nauss T (2015) Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spatial Statistics 14:91–113. https://doi.org/10.1016/j.spasta.2015.05.008

4. AR (2021) 5 Climate Change 2013: The Physical Science Basis — IPCC. (n.d.). Retrieved September 24, from https://www.ipcc.ch/report/ar5/wg1/

5. Chang Y-T, Zhang N, Danao D, Zhang N (2013) Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy 58:277–283. https://doi.org/10.1016/j.enpol.2013.03.011

6. Chen Y, Li B, Li Z, Shi X (2014) Quantitatively evaluating the effects of CO₂ emission on temperature rise. Quatem Int 336:171–175. https://doi.org/10.1016/j.quaint.2013.11.031

7. Cifuentes J, Marulanda G, Bello A, Reneses J (2020) Air Temperature Forecasting Using Machine Learning Techniques: A Review. Energies 13(16):4215. https://doi.org/10.3390/en13164215
9. Crowley TJ (2000) Causes of Climate Change Over the Past 1000 Years. Science 289(5477):270–277. https://doi.org/10.1126/science.289.5477.270

10. Curcesc C, Temnyck C, Ouarda TBMJ, Chebana F, Niang SD (2019) Short-term air temperature forecasting using Non-parametric Functional Data Analysis and SARMA models. Environ Model Softw 111:394–408. https://doi.org/10.1016/j.envsoft.2018.09.017

11. Each Country's Share of CO2 Emissions | Union of Concerned Scientists. (n.d.). Retrieved September 24, from https://www.ucsusa.org/resources/each-countrys-share-co2-emissions

12. EBSCHost | On IAGO Operator. (n.d.). Retrieved October 8, from https://web.a.ebscohost.com/abstract?site=ehost&scope=site&jrnid=23969040&AN=16016710&h=KwhmWJkic4vG19qk9JRBQzVB7jSBi7ZuXNgYmVoh9YlCzshwy8AsQpVuVIZZWPspHCRf

13. Eckstein D, Wingse M, Kilić, Sznzel V, Laura S (2019) Germanwatch. Global Climate Risk Index 2020 Who Suffers Most from Extreme Weather Events? Wether-Related Loss Events in 2018 and 1999 to 2018

14. Ehteram M, Sammen SSh, Panahi F, Sidek LM (2021) A hybrid novel SVM model for predicting CO2 emissions using Multiobjective Seagull Optimisation. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-15223-4

15. Faghih M, Jalali M, Heidari H (2020) Predicting changes in Bitcoin price using grey system theory. Financial Innovation 6(1):13. https://doi.org/10.1186/s40854-020-0174-9

16. Fang J, Lau CKM, Lu Z, Wu W, Zhu L (2019) Natural disasters, climate change, and their impact on inclusive wealth in G20 countries. Environ Sci Pollut Res 26(2):1455–1463. https://doi.org/10.1007/s11356-018-3634-2

17. FAOSTAT. (n.d.). Retrieved September 24 (2021) from https://www.fao.org/faostat/en/#data/ET

18. Feng SJ, Ma YD, Song ZL, Ying J (2012) Forecasting the Energy Consumption of China by the Grey Prediction Model. Energy Sources, Part B: Economics, Planning, and Policy 7(4):376–389. https://doi.org/10.1080/15567240903300426

19. Feng Y, Gong D, Zhang Q, Jiange S, Zhao L, Cui N (2019) Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation. Energy Convers Manag 198:111780. https://doi.org/10.1016/j.enconman.2019.111780

20. Global Emissions (2021, September 8) Center for Climate and Energy Solutions. https://www.c2es.org/content/international-emissions/

21. Global Energy Review (2021) : CO2 Emissions in 2020 – Analysis. (n.d.). IEA. Retrieved October 24, from https://www.iea.org/articles/global-energy-review-co2-emissions-in-2020

22. Guo JJ, Wu JY, Wang RZ (2011) A new approach to energy consumption prediction of domestic heat pump water heater based on grey system theory. Energy Build 43(6):1273–1279. https://doi.org/10.1016/j.enbuild.2011.01.001

23. Hamzacebi C, Es HA (2014) Forecasting the annual electricity consumption of Turkey using an optimised grey model. Energy 70:165–171. https://doi.org/10.1016/j.energy.2014.03.105

24. Hegel GC, Crowley TJ, Hyde WT, Frame DJ (2006) Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440(7087):1029–1032. https://doi.org/10.1038/nature04679

25. Jallal MA, Chabaa S, EI Yassini A, Zeroual A, Ibnyaich I (2019) Air temperature forecasting using artificial neural networks with delayed exogenous input. 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), 1–6. https://doi.org/10.1109/WITS.2019.8723699

26. Javed SA, Ikram M, Tao L, Liu S (2020) Forecasting key indicators of China's inbound and outbound tourism: Optimistic–pessimistic method. Grey Systems: Theory and Application 11(2):265–287. https://doi.org/10.1016/j.ysr.2019.0664

27. Javed SA, Liu S (2018) Predicting the research output/growth of selected countries: Application of Even GM (1, 1) and NDGM models. Scientometrics 115(1):395–413. https://doi.org/10.1007/s11192-017-2586-5

28. Javed SA, Zhu B, Liu S (2020) Forecast of biofuel production and consumption in top CO2 emitting countries using a novel grey model. J Clean Prod 276:123997. https://doi.org/10.1016/j.jclepro.2020.123997

29. Kämper O (2009) ARIMA representation for daily solar irradiance and surface air temperature time series. J Atmos Solr Terr Phys 71:841–847. https://doi.org/10.1016/j.jastp.2009.03.018

30. Kayacan E, Ulutas B, Kaynak O (2010) Grey system theory-based models in time series prediction. Expert Syst Appl 37(2):1784–1789. https://doi.org/10.1016/j.eswa.2009.07.064

31. Kholod N, Evans M (2016) Reducing black carbon emissions from diesel vehicles in Russia: An assessment and policy recommendations. Environ Sci Policy 56:1–8. https://doi.org/10.1016/j.envsci.2015.10.017

32. Koshy J (2021, March 1) India's percentage CO2 emissions rose faster than the world average. The Hindu. https://www.thehindu.com/news/national/indias-percentage-co2-emissions-rose-faster-than-the-world-average/article33965283.ece

33. Lan L, Lian Z, Pan L (2010) The effects of air temperature on office workers' well-being, workload and productivity-evaluated with subjective ratings. Appl Ergon 42(1):29–36. https://doi.org/10.1016/j.apergo.2010.04.003

34. Li P, Jones S (2015) Vehicle restrictions and CO2 emissions in Beijing – A simple projection using available data. Transportation Research Part D: Transport and Environment 41:467–476. https://doi.org/10.1016/j.trd.2015.09.020
36. Lim D, Anthony P, Ho CM (2010) Predict the online auction's closing price using Grey System Theory. 2010 IEEE International Conference on Systems, Man and Cybernetics, 156–163. https://doi.org/10.1109/ICSMC.2010.5642224

37. Lim HS, Rajab J, Al-Salhi A, Salih Z, MatJafri MZ (2021) A statistical model to predict and analyse air surface temperature based on remotely sensed observations. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-16321-z

38. Lin CS, Liou FM, Huang CP (2011) Grey forecasting model for CO2 emissions: A Taiwan study. Appl Energy 88(11):3816–3820. https://doi.org/10.1016/j.apenergy.2011.05.013

39. Liu D (2017) Multi-factor Consideration in Selection of a Capital for a Country. Asian Social Science 13(7):p150. https://doi.org/10.5539/ass.v13n7p150

40. Liu S, Forrest J, Yang Y (2012) A brief introduction to grey systems theory. Grey Systems: Theory and Application 2(2):89–104. https://doi.org/10.2495/GSThema1200081

41. Liu S, Lin C, Tao L, Javed SA, Fang Z, Yang Y (2020) On Spectral Analysis and New Research Directions in Grey System Theory. 10

42. Liu S, Yang Y, Forrest J (2017) Grey Data Analysis: Methods, Models and Applications. Springer Singapore. https://doi.org/10.1007/978-981-10-1841-1

43. Long Y, Yoshida Y, Liu Q, Guan D, Zheng H, Li Y, Gasparatos A (2021) Japanese carbon emissions patterns shifted following the 2008 financial crisis and the 2011 Tohoku earthquake. Communications Earth & Environment 2(1):1–12. https://doi.org/10.1038/s43247-021-00194-8

44. Ma X, Mei X, Wu W, Wu X, Zeng B (2019) A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China. Energy 178:487–507. https://doi.org/10.1016/j.energy.2019.04.096

45. Ma X, Wu W, Zeng B, Wang Y, Wu X (2020) The conformable fractional grey system model. ISA Trans 96:255–271. https://doi.org/10.1016/j.isatra.2019.07.009

46. Mellilo JM, Richmond T (2014) (T. C.), & Yohe, G. W. Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program. https://doi.org/10.7930/J0231WJ2

47. Monni S, Syri S, Savolainen I (2004) Uncertainties in the Finnish greenhouse gas emission inventory. Environ Sci Policy 7(2):87–98. https://doi.org/10.1016/j.envsci.2004.01.002

48. Naiming X, Sifeng L (2005) Research on discrete grey model and its mechanism. 2005 IEEE International Conference on Systems, Man and Cybernetics, 1, 606-610 Vol. 1. https://doi.org/10.1109/ICSMC.2005.1571213

49. Nishitani K, Kokubu K, Kajiwara T (2016) Does low-carbon supply chain management reduce greenhouse gas emissions more effectively than existing environmental initiatives? An empirical analysis of Japanese manufacturing firms. Journal of Management Control 27(1):33–60. https://doi.org/10.1007/s00187-015-0224-z

50. Niu D, Zhang B, Meng M, Cheng G (2006) Grey Model of Power Load Forecasting Based on Particle Swarm Optimization. 2006 6th World Congress on Intelligent Control and Automation, 2, 7651–7655. https://doi.org/10.1109/WCICA.2006.1713455

51. Noori R, Abbasi MR, Adamowski JF, Dehghani M (2017) A simple mathematical model to predict sea surface temperature over the northwest Indian Ocean. Estuar Coast Shelf Sci 197:236–243. https://doi.org/10.1016/j.ecss.2017.08.022

52. Ofosu-Adarkwa J, Xie N, Javed SA (2020) Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1, N) model and emissions’ technical conversion. Renew Sustain Energy Rev 130:109945. https://doi.org/10.1016/j.rser.2020.109945

53. Ortega V (2021, May 17) Which countries are the world's biggest carbon polluters? Climate Trade. https://climatetrade.com/which-countries-are-the-worlds-biggest-carbon-polluters/

54. Peng T, Zhi X, Ji Y, Ji L, Tian Y (2020) Prediction Skill of Extended Range 2-m Maximum Air Temperature Probabilistic Forecasts Using Machine Learning Post-Processing Methods. Atmosphere 11(8):823. https://doi.org/10.3390/atmos11080823

55. Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nature Climate Change 2(1):2–4. https://doi.org/10.1038/nclimate1332

56. Prybutok VR, Yi J, Mitchell D (2000) Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations. Eur J Oper Res 122(1):31–40. https://doi.org/10.1016/S0377-2217(99)00069-7

57. Qian QF, Jia XJ, Lin H (2020) Machine Learning Models for the Seasonal Forecast of Winter Surface Air Temperature in North America. Earth and Space Science, 7(8), e2020EA001140. https://doi.org/10.1029/2020EA001140

58. Ratnam JV, Dijkstra HA, Doi T, Morioka Y, Nonaka M, Behera SK, Dijkstra HA, Doi T, Morioka Y, Nonaka M, Behera SK (2019) Improving seasonal forecasts of air temperature using a genetic algorithm. Sci Rep 9(1):12781. https://doi.org/10.1038/s41598-019-49281-z

59. Safonov G, Potashnikov V, Lugovoy O, Safonov M, Dorina A, Bolotov A (2020) The low carbon development options for Russia. Clim Change 162(4):1929–1945. https://doi.org/10.1007/s10584-020-02780-9

60. Saleh C, Dzakiyullah NR, Nugroho JB (2016) Carbon dioxide emission prediction using support vector machine. IOP Conference Series: Materials Science and Engineering, 174, 012148. https://doi.org/10.1088/1757-899X/114/1/012148

61. Sanikhani H, Deo RC, Samui P, Kisi O, Deo RC, Samui P, Kisi O, Mirabbasi R, Gavili S, Yaseen ZM (2018) Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic information as model predictors. Comput Electron Agric 152:242–260. https://doi.org/10.1016/j.compag.2018.07.008

62. Sardans J, Peñuelas J, Estiarte M (2006) Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant Soil 289(1):227–238. https://doi.org/10.1007/s11104-006-9131-2

63. Schulte PA, Bhattacharya A, Butler CR, Chun HK, Jacklitsch B, Jacobs T, Kiefer M, Lincoln J, Pendergrass S, Shire J, Watson J, Wagner GR (2016) Advancing the framework for considering the effects of climate change on worker safety and health. J Occup Environ Hyg 13(11):847–865. https://doi.org/10.1080/15459624.2016.1179388
64. Sharma N, Sharma P, Irwin D, Shenoy P (2011) Predicting solar generation from weather forecasts using machine learning. 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), 528–533. https://doi.org/10.1109/SmartGridComm.2011.6102379

65. Shimada K, Tanaka Y, Gomi K, Matsuoka Y (2007) Developing a long-term local society design methodology towards a low-carbon economy: An application to Shiga Prefecture in Japan. Energy Policy 35(9):4688–4703. https://doi.org/10.1016/j.enpol.2007.03.025

66. Suganthi L, Samuel AA (2012) Energy models for demand forecasting—A review. Renew Sustain Energy Rev 16(2):1223–1240. https://doi.org/10.1016/j.rser.2011.08.014

67. Tajfar E, Bateni SM, Lakshmi V, Ek M (2020) Estimation of surface heat fluxes via variational assimilation of land surface temperature, air temperature and specific humidity into a coupled land surface-atmospheric boundary layer model. J Hydrol 583:124577. https://doi.org/10.1016/j.jhydrol.2020.124577

68. Tajfar E, Bateni SM, Margulis SA, Gentine P, Auligne T (2020) Estimation of Turbulent Heat Fluxes via Assimilation of Air Temperature and Specific Humidity into an Atmospheric Boundary Layer Model. J Hydrometeor 21(2):205–225. https://doi.org/10.1175/JHM-D-19-0104.1

69. Tanaka K (2012) A comparison study of EU and Japan methods to assess CO2 emission reduction and energy saving in the iron and steel industry. Energy Policy 51:578–585. https://doi.org/10.1016/j.enpol.2012.08.075

70. Toharudin T, Pontoh RS, Caraka RE, Zahroh S, Lee Y, Chen RC (2021) Employing long-short term memory and Facebook prophet model in air temperature forecasting. Communications in Statistics - Simulation and Computation 0(0):1–24. https://doi.org/10.1080/03610918.2020.1854302

71. Tsai S-B, Xue Y, Zhang J, Chen Q, Liu Y, Zhou J, Dong W (2017) Models for forecasting growth trends in renewable energy. Renew Sustain Energy Rev 77:1169–1178. https://doi.org/10.1016/j.rser.2016.06.001

72. Tsopanova Z, Kharitonova N (2020) Features of the implementation of environmental policies by Russian fuel and energy enterprises. 837:012002. https://doi.org/10.1088/1757-899X/837/1/012002

73. Umar M, Ji X, Kirikkaleli D, Shahbaz M, Zhou X (2020) Environmental cost of natural resources utilisation and economic growth: Can China shift some burden through globalisation for sustainable development? Sustain Dev 28(6):1678–1688. https://doi.org/10.1002/sd.2116

74. US EPA, O. (n.d.). Causes of Climate Change [Overviews and Factsheets]. Retrieved September 24 (2021) from https://19january2017snapshot.epa.gov/climate-change-science/causes-climate-change

75. US EPA O (2015, December 23) Overview of Greenhouse Gases [Overviews and Factsheets]. https://www.epa.gov/ghgemissions/overview-greenhouse-gases

76. Valipour M, Bateni SM, Gholami Sefidkouhi MA, Raeini-Sarjaz M, Singh VP (2020) Complexity of Forces Driving Trend of Reference Evapotranspiration and Signals of Climate Change. Atmosphere 11(10):1081. https://doi.org/10.3390/atmos11101081

77. Villa F, Marengo M, De Coninck J (2018) A new model to predict the influence of surface temperature on contact angle. Sci Rep 8(1):6549. https://doi.org/10.1038/s41598-018-24828-8

78. Wang H, Huang J, Zhou H, Zhao L, Yuan Y (2019) An Integrated Variational Mode Decomposition and ARIMA Model to Forecast Air Temperature. Sustainability 11(15):4018. https://doi.org/10.3390/su11154018

79. Wang L-W, Tran T-T, Nguyen N-T (2015) An Empirical Study of Hybrid DEA and Grey System Theory on Analyzing Performance: A Case from Indian Mining Industry. Journal of Applied Mathematics, 2015, e395360. https://doi.org/10.1155/2015/395360

80. Wang X, Qi L, Chen C, Tang J, Jiang M (2014) Grey System Theory based prediction for topic trend on Internet. Eng Appl Artif Intell 29:191–200. https://doi.org/10.1016/j.engappai.2013.12.005

81. Wigley TML, Schlesinger ME (1985) Analytical solution for the effect of increasing CO2 on global mean temperature. Nature 315(6021):649–652. https://doi.org/10.1038/315649a0

82. Wu J, Zhu Q, Chu J, Liu H, Liang L (2016) Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach. Transportation Research Part D: Transport and Environment 48:460–472. https://doi.org/10.1016/j.trd.2015.08.001

83. Yang H, Shahzadi I, Hussain M (2021) USA carbon neutrality target: Evaluating the role of environmentally adjusted multifactor productivity growth in limiting carbon emissions. J Environ Manage 298:113385. https://doi.org/10.1016/j.jenvman.2021.113385

84. Yao T, Liu S, Xie N (2009) On the properties of small sample of GM(1,1) model. Appl Math Model 33(4):1894–1903. https://doi.org/10.1016/j.apm.2008.03.017

85. Ye J, Dang Y, Ding S, Yang Y (2019) A novel energy consumption forecasting model combining an optimised DGM (1, 1) model with interval grey numbers. J Clean Prod 229:256–267. https://doi.org/10.1016/j.jclepro.2019.04.336

Figures
Figure 1

China's Surface Temperature Change (in Celsius-Left-Fig.) & CO₂ Emission Trend (Metric Tons Per Capita-Right-Fig.).

Figure 2

Germany's Surface Temperature Change (in Celsius-Left-Fig.) & CO₂ Emission Trend (Metric Tons Per Capita-Right-Fig.).
Figure 3

India's Surface Temperature Change (in Celsius-Left-Fig.) & CO₂ Emission Trend (Metric Tons Per Capita-Right-Fig.).

Figure 4

Japan's Surface Temperature Change (in Celsius-Left-Fig.) & CO₂ Emission Trend (Metric Tons Per Capita-Right-Fig.).

Figure 5

Russia's Surface Temperature Change (in Celsius-Left-Fig.) & CO₂ Emission Trend (Metric Tons Per Capita-Right-Fig.).
Figure 6
USA’s Surface Temperature Change (in Celsius-Left-Fig.) & CO₂ Emission Trend (Metric Tons Per Capita-Right-Fig.).