I. INTRODUCTION

Quasi-one-dimensional (Q1D) systems, i.e. three- and two-dimensional (3D/2D) arrays composed of weakly coupled one-dimensional lattices of interacting quantum particles, exhibit rich and fascinating physics. They are studied across various areas of condensed matter and ultracold atomic lattice-gas physics, and are often marked by dimensional crossover as the coupling between one-dimensional systems is increased or temperature decreased, i.e. the Q1D system goes from appearing largely 1D to largely 3D. Phase transitions occurring along the crossover can strongly enhance this effect. Understanding these crossovers and associated phase transitions can be challenging due to the very different elementary excitations of 1D systems compared to higher-dimensional ones. In the present work, we combine numerical matrix product state (MPS) methods with mean-field (MF) theory to study paradigmatic cases of dimensional crossovers and the associated phase transitions in systems of both hard-core and soft-core lattice bosons, with relevance to both condensed matter physics and ultracold atomic gases. We show that the superfluid-to-insulator transition is a first order one, as opposed to the isotropic cases and calculate transition temperatures for the superfluid states, finding excellent agreement with analytical theory. At the same time, our MPS+MF approach keeps functioning well where the current analytical framework cannot be applied. We further confirm the qualitative and quantitative reliability of our approach by comparison to exact Quantum Monte Carlo calculations for the full 3D arrays.

Dimensional crossover and phase transitions in coupled chains: DMRG results

Gunnar Bollmark and Adrian Kantian

Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20, Uppsala, Sweden

Nicolas Laflorencie

Laboratoire de Physique Théorique, CNRS and Université de Toulouse, 31062 Toulouse, France

Quasi-one-dimensional (Q1D) systems, i.e. three- and two-dimensional (3D/2D) arrays composed of weakly coupled one-dimensional lattices of interacting quantum particles, exhibit rich and fascinating physics. They are studied across various areas of condensed matter and ultracold atomic lattice-gas physics, and are often marked by dimensional crossover as the coupling between one-dimensional systems is increased or temperature decreased, i.e. the Q1D system goes from appearing largely 1D to largely 3D. Phase transitions occurring along the crossover can strongly enhance this effect. Understanding these crossovers and associated phase transitions can be challenging due to the very different elementary excitations of 1D systems compared to higher-dimensional ones. In the present work, we combine numerical matrix product state (MPS) methods with mean-field (MF) theory to study paradigmatic cases of dimensional crossovers and the associated phase transitions in systems of both hard-core and soft-core lattice bosons, with relevance to both condensed matter physics and ultracold atomic gases. We show that the superfluid-to-insulator transition is a first order one, as opposed to the isotropic cases and calculate transition temperatures for the superfluid states, finding excellent agreement with analytical theory. At the same time, our MPS+MF approach keeps functioning well where the current analytical framework cannot be applied. We further confirm the qualitative and quantitative reliability of our approach by comparison to exact Quantum Monte Carlo calculations for the full 3D arrays.
wards this end we set up a comparatively simple model, 3D arrays formed from weakly coupled chains of interacting lattice-bosons with short-range interactions (c.f. Fig. 1). As will be shown and discussed, this class of models combines several advantages: (i) They show multiple interesting DCs and associated phase transitions, including first-order transitions (like the organics do between the USC and a magnetically ordered insulating phase) and possibly mixed-order transitions. (ii) They are perfect testbeds to further advance efficient yet remarkably accurate numerics based on combinations of matrix product states (MPS) and MF pioneered e.g. in ref. 21. Crucially, the accuracy of these MPS+MF numerics can be ascertained by the gold standard for 2D/3D lattice bosons, Quantum Monte Carlo (QMC) simulations. (iii) Our MPS+MF numerics can be checked directly against fit-free TLL+MF analytical theory used for the thermal transition to the superfluid regime [22, 23]. And our numerics will work in regimes where TLL+MF is no longer applicable. (iv) When specializing the study model to the case of hard-core bosons (HCBs) with nearest-neighbour (n.n.) repulsion, it admits mapping to Q1D arrays of doped Hubbard ladders at the level of low-energy, long-wavelength effective TLL theory. (v) These systems either already admit realization in many existing experiments on ultracold lattice-gases, including the possibility of observing mixed-order DC, or, in the case of HCBs with n.n. repulsion, may do so within the foreseeable future [24, 25].

The present article is thus structured as follows: Sec. II describes the Q1D array model of bosonic chains and introduces the transverse MF approximation. Section III describes the MPS+MF method we use for fast, efficient calculations of the system’s properties for ground and thermal states. Details of the QMC calculations are also given. Section IV discusses the zero-temperature first-order transition we find between a 3D superfluid (SF) and a 1D charge-ordered (CO) phase for HCBs with increasing n.n. repulsion, and the similar transition observed for soft-core bosons at integer filling. We also study the transition between SF and a thermal gas with rising temperature. The results of the MPS+MF approach are compared against both QMC and TLL+MF analytics and found to range from excellent to highly satisfactory. In Sec. V we summarize the validity of the MPS+MF approach to phase transitions in bosonic systems and discuss the implications of our results for DC physics in other systems. Section VI then provides an outlook on future research on the basis of the present work.

II. MODEL

In this work, we consider extended Bose-Hubbard models with anisotropic tunnelings. We first focus on hard-core bosons (HCB), for which the number of allowed particles is restricted to one boson per site. Further, to connect with established experiments we can also lift this restriction of one boson per site, and consider the more general case of soft-core bosons (SCB).

A. 3-dimensional Hamiltonian

The full Hamiltonian is given by the expression

\[H_B = -t \sum_{\langle \mathbf{R}_i \rangle} b^\dagger_{\mathbf{R}_i} b_{\mathbf{R}_i} + \text{h.c.} - \mu \sum_{\langle \mathbf{R}_i \rangle} b^\dagger_{\mathbf{R}_i} b_{\mathbf{R}_i} + \frac{U}{2} \sum_{\{ \mathbf{R}_i \}} n_{\mathbf{R}_i} (n_{\mathbf{R}_i} - 1) + V \sum_{\{ \mathbf{R}_i, \mathbf{R}_{i+\mathbf{z}} \}} n_{\mathbf{R}_i} n_{\mathbf{R}_{i+\mathbf{z}}} - t_\perp \sum_{\langle \mathbf{R}_i, \mathbf{R}_{i+a} \rangle, \mathbf{a} \in \{ \mathbf{y}, \mathbf{z} \}} b^\dagger_{\mathbf{R}_i} b_{\mathbf{R}_{i+a}} + \text{h.c.} \]

\[= H_t + H_\mu + H_U + H_V + H_{t_\perp}, \tag{1} \]

where \(\{ \mathbf{R}_i \} \) denotes the set of all lattice points, \(b^\dagger_{\mathbf{R}_i} (b_{\mathbf{R}_i}) \) is the creation (annihilation) operator associated with the site at \(\mathbf{R}_i \) and \(n_{\mathbf{R}_i} = b^\dagger_{\mathbf{R}_i} b_{\mathbf{R}_i} \) is the number operator on that site. We have set the lattice spacing \(a = 1 \).

The transverse hopping \(t_\perp \) governs two directions and the longitudinal hopping one direction. In this paper we consider cases where \(t_\perp / t \ll 1 \). Further, we restrict ourselves to \(U,V > 0 \), i.e. repulsive interactions. In addition, note that the repulsive interaction \(V \) between nearest neighbors only occurs along the strong tunneling direction.

B. Local Hilbert space truncation

The Hamiltonian Eq. (1) allows any number of bosons on one site: \(\langle n_i \rangle \in [0, \infty] \). In the hard-core case, \(U \rightarrow \infty \), such that \(0 \leq \langle n_i \rangle \leq 1 \). In the soft-core case we let \(0 \leq \langle n_i \rangle \leq 3 \). This cut-off of 3 bosons per site is chosen such that projections onto states of larger occupation number carry a small weight:

\[\langle \Psi | P_4(i) | \Psi \rangle \leq 10^{-4}, \tag{2} \]

where \(P_4(i) \) is the projector onto the state of 4 bosons on site \(i \). For SCB the value of \(U \) is of course very important and will be specified, while for simplicity we fix \(V = 0 \) in this model.

C. Quasi-1D Hamiltonian

We wish to use the Density Matrix Renormalization Group (DMRG) algorithm in Matrix Product State (MPS) formalism [26, 27] to solve our problem. However, calculations on 3D models using DMRG scale very poorly with system size. To bypass this issue we reduce the problem to solving an effectively one-dimensional (1D) model
using mean-field theory. We consider fluctuations around an order parameter
\[b_{\mathbf{R}} = \langle b_{\mathbf{R}} \rangle + \delta b_{\mathbf{R}} \]
and ignore terms in the Hamiltonian of order \(\mathcal{O}(\delta b^2) \). We make this substitution only in the transverse hopping Hamiltonian, \(H_{\perp} \). If we consider open boundary conditions (OBC) this yields the Q1D Hamiltonian
\[
H_{\text{SMF}}(\alpha) = -t \sum_{i=1}^{L-1} b_i^\dagger b_{i+1} + \text{h.c.} - \mu \sum_{i=1}^{L} b_i^\dagger b_i
+ U \frac{1}{2} \sum_{i=1}^{L} n_i (n_i - 1) + \sum_{i=1}^{L-1} n_i n_{i+1} - \alpha \sum_{i=1}^{L} \left(b_i^\dagger + b_i \right),
\]
where indices \(i \) have been introduced which indexes the site of a one-dimensional sub-set of the 3D model in the longitudinal direction. In this work we will use both OBC and periodic boundary conditions (PBC) the latter in which we have the additional condition of \(b_{L+1} = b_1 \) and the term
\[
H_L = -t \left(b_1^\dagger b_L + \text{h.c.} \right) + V n_1 n_L
\]
must be added to the Hamiltonian Eq. (4).

We only decouple the 3D system transversely since the coupling \(t_\perp/t \ll 1 \) is small by choice. We have routinely ignored any constant contribution to the Hamiltonian. The new coupling \(\alpha \) is obtained as
\[
\alpha^{(s)} = z_c t_\perp \langle b^{(1)} \rangle,
\]
where \(z_c = 4 \) is the coordination number for a simple cubic lattice and we have assumed that \(\alpha \) is real. We will call the constant \(\alpha \) a boson injection/ejection amplitude. Notably, the only difference between a 2D and 3D anisotropic system in this approach is \(z_c \). A schematic representation of this model is shown in Fig. 1.

III. METHODS

To find ground states and thermal states of the Hamiltonian Eq. (1) two methods will be used. The first one is comprised of using DMRG to solve the Q1D Hamiltonian Eq. (4). We then use quantum Monte Carlo (QMC) simulations [28] for the simplest case of hard-core bosons that we can directly compare with DMRG results.

A. DMRG with static mean-field

Since Eq. (4) is a one-dimensional Hamiltonian, the DMRG algorithm scales well with system size and can be used to compute ground states and thermal states [27]. The additional cost to this method is the self-consistent determination of \(\alpha \). We will call the outlined procedure MPS+MF for the remainder of this paper.

The self-consistent routine starts with guessing a boson injection amplitude \(\alpha_0 \) and then computing a new value \(\alpha_1 \)
\[
\alpha_1 = z_c t_\perp \langle b \rangle_0,
\]
where \(\langle \rangle_0 \) denotes an average with Hamiltonian \(H_{\text{SMF}}(\alpha_0) \) defined by Eq. (4) with \(\alpha = \alpha_0 \) and \(b \) is in principle any \(b_i \) given an infinite system though in practice an average over several sites. Extending the relation to an arbitrary number of loops simply yields
\[
\alpha_{n+1} = z_c t_\perp \langle b \rangle_n,
\]
Several exit conditions of the self-consistent loop can be used. Different observables converge at various rates (e.g. density typically converges quickly). In the present case, we use the Bose-Einstein condensate (BEC) order parameter as the observable for determining whether the self-consistent calculation has converged with the condition
\[
\left| \frac{\langle b \rangle_n - \langle b \rangle_{n-1}}{\langle b \rangle_{n-1}} \right| < \epsilon_{(b)}.
\]
The quantity \(\epsilon_{(b)} = 10^{-4} \) is an error tolerance which can be selected to desired convergence error. The convergence error should be the largest error in the problem. Any other larger error scale allows \(\alpha \) to
different dependence on \(\mu \) that gives you the desired density. Loop and then the calculation of a new chemical potential. This procedure involves the measurement of density each consistently we must do the same for \(\alpha \) typically converges faster than \(\alpha \) often we wish to fix the density of an individual chain to some value \(n_0 \) and must choose the corresponding chemical potential, \(\mu \). When converging \(\alpha \) in the self-consistent loop, the density for one value of \(\alpha \) may have different dependence on \(\mu \) than for other \(\alpha \) s.t.

\[
\eta_{\alpha_n}(\mu) \neq \eta_{\alpha_{n+1}}(\mu), \tag{10}
\]

where

\[
\eta_{\alpha_n} = \frac{1}{L} \sum_{i=1}^{L} \langle n_i \rangle_{\alpha_n}. \tag{11}
\]

This means that in addition to converging \(\alpha \) self-consistently we must do the same for \(\mu \) simultaneously. This procedure involves the measurement of density each loop and then the calculation of a new chemical potential that gives you the desired density.

Due to this issue the cost of computation increases as each new \(\mu \) requires a new state calculation to verify the density i.e. one self-consistent loop may require several DMRG computations. Fortunately, the density typically converges faster than \(\alpha \) and the performance is not greatly affected by the fixation of \(\mu \) in the cases we consider.

The density is treated as another quantity to converge in a similar manner to Eq. (9):

\[
\frac{|n_{\alpha_n} - n_0|}{n_{\alpha_n}} < \epsilon_n, \tag{12}
\]

where \(\epsilon_n = 10^{-5} \) is the error tolerance used for densities in calculations.

B. DMRG observables

When using DMRG we will consider two observables to characterize the studied phases. The BEC order is evaluated by measuring the expectation values \(\langle b_i \rangle \). When these are finite it means that there is a finite probability for particles to tunnel in and out of the quasi-1D system described by Eq. (4), i.e. the boson injection/ejection amplitude is non-zero. This quantity is our mean-field order parameter and it is computed by averaging over several sites of the quasi-1D model

\[
\langle b \rangle = \frac{1}{i_f - i_l} \sum_{i=i_l}^{i_f} \langle b_i \rangle, \tag{13}
\]

where \(i_f (i_l) \) is the first (last) site to be included in the average. This calculation assumes that there is no preferential site in the quasi-1D system from which to tunnel in or out. The choice of \(i_f, i_l \) depends on the boundary conditions. This means that OBC requires an average of the systems central sites to avoid boundary effects while PBC is free from this issue as all sites are equivalent.

Typically, DMRG is more efficient with OBC. However, in the hard-core case, OBC gives the system large boundary effects, as is shown in Appendix A. Thus, the boundary conditions we will use when resolving the SF-CDW transition are PBC for the hard-core case and OBC for the soft-core case.

To characterize CDW phases we compute the charge gap i.e. the energy required to add or remove one particle from the system. Since the Hamiltonian Eq. (4) does not conserve particle number we will, in this work, define the charge gap as the width in \(\mu \) of density plateaus

\[
\Delta \mu = \mu_{\text{upper}} - \mu_{\text{lower}}, \tag{14}
\]

where the chemical potentials at the plateau edges are defined by

\[
n(\mu) = \text{const.}, \mu \in [\mu_{\text{lower}}, \mu_{\text{upper}}] \tag{15}
\]

\[
n(\mu_{\text{upper}} + \delta) > n(\mu_{\text{upper}}) \tag{16}
\]

\[
n(\mu_{\text{lower}} - \delta) < n(\mu_{\text{lower}}), \tag{17}
\]

where \(\delta > 0 \) is a small addition (subtraction) of the chemical potential. Further details about the charge gap are given in Appendix B.
1. Truncation error extrapolation of DMRG observables

In order for results from a DMRG solution to be reliable an extrapolation to zero truncation error is required [27]. This is done for all observables X using a linear fit to the data points [29]:

$$X = X_0 + c_0 \epsilon_t.$$ \hfill (18)

We find that this expression fits not only energies but also measurements of the order parameter eq. (13).

We find for our models using OBC that the truncation error is small even for a modest bond dimension as low as $\chi = 50$. Extrapolations to zero truncation error yield no improvements within the self-consistent error. On such occasions we do not perform extrapolations and use the largest bond dimension (smallest truncation error) available.

We note that when using PBC quite large bond dimensions are required. When computing charge gaps we have found truncation errors as large as $\epsilon_t \sim 10^{-4}$. Further, the manner in which charge gaps are computed in this paper carries an additional error (see Appendix B). This has made extrapolations in truncation error difficult. As a result, the charge gap data in Fig. 2a. comes with the caveat that it is affected by notable truncation errors.

2. Finite size extrapolation of DMRG observables

The type of DMRG used in the MPS+MF method is finite size DMRG to make on-site measurements and correlator measurements possible. We are often interested in the thermodynamic behaviour of a system and thus we must extrapolate results to the limit of infinitely large systems. The extrapolation scheme used depends on the observable that is being measured.

For the charge gap we use a second degree polynomial fit in L^{-1}:

$$\Delta \rho(L) = c_0 + c_1 \frac{1}{L} + c_2 \frac{1}{L^2} + \mathcal{O} \left(\frac{1}{L^3} \right).$$ \hfill (19)

This expression is commonly used to fit the finite size dependence of energies. We find that our charge gap measurements fit this ansatz as well.

For the order parameter we use two different fitting forms. When used to characterize the finite-temperature second-order normal to superfluid phase transition we use a power-law expression

$$\langle b \rangle (L) = c_0 + c_1 L^{-c_2},$$ \hfill (20)

This expression is known to hold analytically at the transition point, and we find our data for finite temperature fits eq. (20) quite well.

For the first order zero-temperature transitions from superfluid to CDW we use a second order polynomial for the squared order parameter

$$\langle b \rangle^2 = c_0 + c_1 \frac{1}{L} + c_2 \frac{1}{L^2} + \mathcal{O} \left(\frac{1}{L^3} \right).$$ \hfill (21)

These expressions hold close to phase transitions which is also the area where finite size effects are most prominent.

Often, the largest error of our MPS+MF method is from the self-consistent convergence as opposed to finite size errors. When this occurs, fitting to one of the forms Eq. (19)-(21) is difficult and yields poor fits. On these occasions we find that larger sizes do not change measured value outside of the self-consistent error and we use the largest size measurement available.

C. Quantum Monte Carlo

Our large-scale QMC simulations have been performed with the stochastic series expansion (SSE) algorithm [28] on 3D arrays of coupled chains, using anisotropic lattices of sizes $L_x \times L_y \times L_z$, with $L_x = L$ and $L_y = L_z = L/4$. We have only focused on the case of HCB, but extending to SCF is straightforward. Note also that PBC are used in all directions.

In order to address the bosonic phases and associated transitions for the 3D model Eq. (1) at both zero and finite temperatures, we compute the three following observables.

Charge density wave order is evaluated with the staggered correlation function at mid-distance, along the chain directions

$$C_{\text{stagg.}} = \frac{1}{N} \sum_i (-1)^{L/2} \left(\langle n_i n_{i+L/2} \rangle - \langle n_i \rangle \langle n_{i+L/2} \rangle \right),$$ \hfill (22)

where the sum is performed over the $N = L^3/16$ sites.

The BEC order parameter (condensate density) is obtained by summing off-diagonal correlators

$$\rho_0 = \frac{1}{N^2} \sum_{i,j} \langle b^\dagger_i b_j \rangle.$$ \hfill (23)

The superfluid response can be evaluated for longitudinal (intra-chain) and transverse (inter-chain) directions with the superfluid stiffness

$$\rho_{S,||}(\perp) = \frac{1}{N} \frac{\partial^2 E_0(\varphi_{||}(\perp))}{\partial \varphi_{||}(\perp)} \bigg|_{\varphi_{||}(\perp) = 0}.$$ \hfill (24)

In the above definition, E_0 is the total energy, and $\varphi_{||}(\perp)$ is a small twist angle enforced on all bonds in both longitudinal and transverse directions. Technically, the superfluid stiffness [30] is efficiently measured via the fluctuations of the winding number [31] during the SSE simulation [32].
IV. RESULTS

For most of the results we perform three different types of calculations: (i) an MPS+MF calculation of both ground and thermal states for hard-core bosons which we also compare with (ii) a correspondent QMC calculation and finally, (iii) calculations of both ground and thermal states for soft-core bosons using MPS+MF.

First, we analyze the system when interaction strength U, V is varied. We choose to analyze commensurate densities, where we expect quantum phase transitions to occur at zero temperature. In the hard-core case it is known that charge-ordering occurs for a half-filled isolated chain via a Berezinskii-Kosterlitz-Thouless (BKT) transition at $V_c = 2t$ [33]. This particular density $n = \frac{1}{L} \sum_{i=1}^{L} \langle n_i \rangle = 0.5$ is interesting as it forces the system to incur some energy penalty along with an energy gain from hopping due to the repulsive interaction. We expect there to be a charge-ordering transition for the quasi-1D model as well but with a shifted V_c compared to the 1D case.

For the soft-core case we instead target $n = 1$ and fix $V = 0$ to simplify the analysis. This unit-filled regime with only local repulsions can generally be expected to yield some type of order-to-order phase transition [34].

Second, we analyze the same systems but at finite temperature. We are primarily interested in the critical temperature and how it depends on the microscopic parameters of the Hamiltonian. In this context, we are interested in how accurate our approximate (but numerically low-cost) MPS+MF-based calculations of T_c are in comparison to those from quasi-exact QMC.

A. Zero temperature results

For small values of repulsion we expect there to be a BEC superfluid (SF) phase. At large values of repulsion, the system should become insulating and exhibit a charge-ordered phase (CDW). To analyze this transition we fix $t_{\perp}/t = 0.05$.

1. BEC/Superfluid to CDW at $T = 0$

MPS+MF results are shown in Fig. 2 (a) where the charge gap is plotted together with the BEC order parameter as a function of the nearest-neighbor repulsion V. Note that for an isolated 1D system the transition into CDW occurs at $V/t = 2$ whereas in the quasi-1D case we discuss here, the transition is pushed to quite a higher value $V_c/t \approx 3.02$, while $t_{\perp}/t = 1/20$ is small. Importantly, one observes clear discontinuities for both order parameters at V_c, meaning a first-order transition between a gapless BEC-SF and a CDW insulator. The MPS+MF results can be directly compared to the QMC simulations shown in Fig. 2b. The agreement is very good, since QMC results find a first-order transition for $V_c/t \approx 3$, the first-order (discontinuous step) character of the transition becoming more and more evident upon increasing system size.

The soft-core boson data has been computed for $V = 0$. Since we fix the density to $n = 1.0$ a nearest neighbour repulsion would disturb the potential Mott Insulator that can be established at large U. In Fig. 2c a transition to the CDW phase can be seen at $U_c/t \approx 8.12$. This strongly contrasts with the isolated chain case where a BKT transition occurs for a much smaller on-site repulsion at $U_c/t \approx 3.3$ [35]. At the transition point the charge gap attains a large value seemingly discontinuously while no such strong first
order behaviour is apparent when considering the order parameter. It is possible that the latter has a jump so small that it is undetectable by the current method and search grid we are using.

B. Finite temperature

Using the MPS+MF method it is also possible to obtain thermal averages [27], while for QMC finite temperature is natural. Thus, we next investigate \(T > 0 \) physics.

1. SF to normal

An interesting transition that should occur for finite temperature is that of 3D superfluid to a thermal gas (the normal or disordered phase). We wish to compute the critical temperature where the system looses BEC coherence and enters the normal phase. We will let the repulsion vary in the system to see how critical temperature is affected. Since we are mainly interested in the SF to normal phase transition we will stay away from values of the repulsion in which there is no SF even at zero temperature, i.e. we stay at \(V/t < 3 \) for hard-core bosons and \(U/t < 8.12 \) for soft-core bosons.

The critical temperature of the transition can be found by finding the point at which \(\langle b \rangle \rightarrow 0 \) in the thermodynamic limit. From Fig. 3 it is clear that for \(t_/t = 0.05 \) this point lies close to \(T/t = 0.4 \). An important question using our MPS+MF approach is how accurate the observed critical temperatures are (i.e. how incorrect is the mean-field approximation). A full mean field analysis overestimates the critical temperatures by a factor of 2 compared to exact calculations using QMC in the 3D case [36]. Hence, it is important to determine if and by how much our MPS+MF hybrid approach improves upon this factor.

We have therefore performed finite-\(T \) QMC simulations of the full 3D Hamiltonian Eq. (1). We determine the critical temperatures using standard finite-size scaling analysis which yields crossings for stiffnesses and BEC order parameter:

\[
\rho_{S,\parallel(L)}(T_c) \propto L^{z+d-2},
\]

with \(d = 3, \; z = 0 \) for a thermal transition, and

\[
\rho_0(T_c) \propto L^{2\beta/\nu},
\]

where \(\beta = 0.3486 \) and \(\nu = 0.6717 \) are the critical exponents of the 3D XY universality class [37, 38]. From the results given in Fig. 4 the three crossings are in perfect agreement, giving for \(V = 0 \) a critical temperature \(T_c/t = 0.323(1) \). Compared to the critical temperature from our MPS+MF approach of \(T_c/t \approx 0.4 \) we find that the difference is significantly better than a factor of 2[39].

The soft-core model finite temperature data is computed for \(U/t = 6.0 \) since leaving \(U \) too small makes the local Hilbert space truncation increasingly erroneous. A notable feature is the increased critical temperature at around \(T_c/t \approx 0.95 \) as seen in Fig. 3b, which puts these transitions squarely within the range of being observable within current experiments.

2. \(T_c \) dependence on \(t_/ \)

The dependency of \(\langle b \rangle \) on \(T \) does not change qualitatively with \(t_/ \), but the value of \(T_c \) does scale with \(t_/ \), as shown in Fig. 5.

Combining bosonization and mean field theory this scaling has been obtained as \(T_c \sim t_/^2 \) for this system [23]. Thus, we have performed a fit to the data with a power-law given by

\[
T_c = c_1 t_/^2.
\]

In Fig. 5a we perform a power-law fit of our data and obtain the exponent \(c_2 \approx 0.628 \). The scaling disagrees somewhat with the analytical value of \(c_2 = 2/3 \). This is expected as the analytical value is less accurate for larger \(T_c \). Further, we find the QMC \(T_c \) scaling, \(c_2 \approx 0.629 \), by fitting to all data points in the same manner. We do not expect the scaling to agree with the analytical expression which relies on mean-field theory - see Section V for a discussion of the different scaling behaviours.

Using the same approach it is also possible to produce an analytical expression for the critical temperature [23]:

\[
T_c = \frac{v_n}{4\pi} \left[F(K) \frac{t_/ v_n}{v_n} \right]^{\frac{2\nu}{\nu+1}},
\]
where K, v_s are the Tomonoga-Luttinger liquid (TLL) parameters [19], n is the density and z_c the coordination number. The function F is given by

$$F(K) = A_B(K) \sin \left(\frac{\pi}{4K} \right) \beta^2 \left(1 - \frac{1}{4K} \right).$$

where the amplitude $A_B(K)$, relating the microscopic lattice operators to the ones of the effective field theory, is non-universal and depends on the specifics of the model and $\beta(x,y)$ is the Euler beta function. Within the mean-field approximation, eq. (28) is exact and fit-free, as long as K, v_s and A_B are known. Hence, using ground-state DMRG we can obtain these three parameters from numerical fitting of the single particle density matrix [19] at $T = 0$. Thus, it is possible to produce critical temperatures given a ground-state calculation of a 1D system with conserved quantum numbers which is considerably less costly computationally. These values will be good approximations as long at T_c is only a small fraction of the systems bandwidth - the deviations between eq. (28) and our MPS+MF numerics at larger T_c-values visible in Fig. 5a are due to this. Conversely, at small T_c the agreement is excellent.

It is possible to extract critical temperature dependence on t_\perp from QMC as well and the results are shown in Fig. 5b. Using the analytical expression Eq. (28) with a renormalization of t_\perp allows the overlapping of QMC data and analytical data [40]:

$$T_c = \frac{v_s n}{4\pi} \left[F(K) \frac{R \cdot t_\perp z_c}{v_s n} \right]^\frac{1}{1-eta},$$

where the renormalization constants $R \in [0.74, 0.66]$, depending on t_\perp, is found to fit the QMC data as shown in Fig. 5c. This renormalization constant has been discussed in the literature extensively [5, 41–46], but here we find that as t_\perp decreases, it appears to converge to a larger value than the one found in ref. [42] for the case of an $SU(2)$-invariant system.
The data presented so far for finite temperature have been in the simplified regime of no nearest-neighbor repulsion $V = 0$. However, the MPS+MF algorithm gains none or slight penalties in having finite V. This yields the possibility of measuring how the critical temperature depends on repulsive interactions. Further, it is interesting to see whether the relation between T_c estimates from QMC and MPS+MF remains the same when interactions are turned on.

![Graph](image)

FIG. 6. A plot of the critical temperature from superfluid to normal phase. The blue dashed line is computed using MPS+MF with OBC and the orange solid line using QMC. The black dash-dotted line is a ratio of the two results with values on the right axis.

In general, when repulsive interactions are turned on we know from Fig. 2 that the superfluid should weaken. We expect that the critical temperature is depressed for stronger interactions and this can be seen in Fig. 6. Remarkably, the ratio of critical temperatures is confined to a narrow band

$$0.73 < \frac{T_c^{QMC}}{T_c^{MPS+MF}} < 0.82.$$

(31)

This remains true even when the quantum critical point at $V_c/t \approx 3$ is approached.

We point out that the MPS+MF approach we have developed here has a crucial advantage over the TLL+MF framework behind eq. (28): it can compute T_c even in regimes where the individual 1D systems no longer realize a TLL, such as for $V/t > 2$ for HCBs and $U/t > 3.3$ for SCBs, as shown in Figs. 3b and 6.

V. DISCUSSION

The zero-temperature SF-CDW transition is an example of so-called dimensional cross-over [22]. We can see this by noting that the order parameter for SF witnesses an exchange of bosons between chains. When the order parameter for SF goes to zero tuning between chains is completely suppressed. The system now behaves more like a set of 1D systems whereas in the case of finite SF order parameter the exchange of particles made the system fully 3D. So, a cross-over from 3D to 1D has occurred at the transition point. A major difference to the quantum phase transitions from SF to CDW occurring in 3D systems with isotropic tunneling and interactions that are showing here is that the transition in the present quasi-1D systems is not second order, but first order for HCBs, and possibly also for SCBs, as discussed below.

At the same time, it is evident from Fig. 2 that soft-core and hard-core bosons have qualitatively similar behaviour. One notable difference is that the charge gap is much larger in the soft-core case. This is likely due to the transitions occurring at much larger values of U. Thus, the energy penalty for adding and removing particles is much larger than in the hard-core case. In addition, there is a small region around the transition where the two order parameters co-exist i.e. where both are small but finite. But as the limitations of mean field approaches (and we are using a partial one here) in predicting superfluids are well-documented, we refrain from concluding the existence of such a state here. We also note that the SF order parameter is enhanced for the soft-core case. This could be explained by the fact that sites are almost never locked as they often would be in the hard-core case. In other words, it is almost always possible to inject particles into the system in contrast to the hard-core case. If the maximum boson number is reached the site is artificially locked but the amplitude for a state where this occurs is negligible in accordance with Eq. (2).

For soft-core bosons, in the true 1D case the CDW transition occurs at $U_{1D}/t \approx 3.3$ [35] whereas in the quasi-1D case with $t_{1D}/t = 0.05$ (see Fig. 2) it does not occur until $U_{Q1D}/t \approx 8.12$ [47]. For comparison, a 3D system with isotropic tunneling yields $U_{3D}/t = 29.94(2)$ [48] indicating that the large increase we observe from U_{1D} to U_{Q1D} is reliable and the value of U_{Q1D} is heavily dependent on t_{1D}.

Overall, the soft-core boson case appears to differ qualitatively from the hard-core case when it comes to transition order. In the soft-core model we could not find any clear first order behaviour in the superfluid order parameter while the charge gap behaves similarly to the hard-core case - in fact, charge gaps in both cases show a more pronounced discontinuity than the superfluid order parameter or the transverse superfluid stiffness (see Fig. 2). While we cannot detect a jump in the SF order parameter, and thus a full first-order transition, for the SCB system, this scenario remains the most likely explanation for the observed behaviour. We note that there may
be effects of the mean-field approximation that degrade
any jump below the threshold that we could numerically
resolve. The only other alternative we see that could ex-
plain the behaviour of Fig 2 is that of a simultaneous SF
and CDW order, i.e. a supersolid. As discussed above,
its appears to us that such an alternative would however
require more evidence than what can be supplied with the
MPS+MF approach on its own.
For the critical temperatures of the SF to normal tran-
sition, the analytical prediction agrees well with the nu-
merical correspondents as seen in Fig. 5, especially at
low T_c’s. It is notable that the scaling of both MPS+MF
and QMC data are very similar, another positive for the
approximative MPS+MF approach, with a power below
that of the power of 2/3 predicted from TLL+MF. At
small t_\perp we expect and find improved agreement between
analytical theory and MPS+MF, in line with the fact
that the TLL+MF prediction will work better as T_c
becomes a small fraction of the systems bandwidth. For
both the MPS+MF and the QMC data we find that in-
creasingly constraining the fitting window to the smallest
values of t_\perp yields exponents approaching $c_2 \approx 2/3$ from
below, showing that the mean-field approximation be-
comes better with decreasing t_\perp. The close agreement
in the scaling behaviour of T_c with t_\perp between the QMC
and MPS+MF techniques, and their common disagree-
ment with the $t_\perp^{2/3}$-scaling derived from TLL+MF points
to the source being within the TLL approximation of the
microscopic lattice Hamiltonian of the chains.
For the temperature data at finite repulsion in a hard-
core system it is interesting to note the relative constancy
of the T_c ratio between MPS+MF and QMC. The dif-
cerent critical temperatures seem to agree less for larger
values of repulsion with the exception of the point at
$V = 2.75$ where there is a different trend.

VI. CONCLUSION

Our results show that an approach using DMRG to
solve a decoupled 3D system self-consistently is valid for
use on an anisotropic system and also reproduces the
transition points with reasonable accuracy. In particu-
lar, the SF to CDW phase transition has nearly equal
critical repulsion V_c for the MPS+MF case compared to
QMC. The major benefit is that the DMRG approach
is computationally cheaper than the corresponding ex-
act QMC. For the finite temperature transition to a nor-
mal phase the critical temperature deviates more from
the exact case. However, this deviation is much less siz-
able than what a full mean-field approximation produces.
This method presents a powerful possibility of treating
anisotropic 2D and 3D systems quickly using DMRG, in
particular beyond the TLL approach.
Another key finding of this work is the first-order na-
ture of the quantum phase transition between the su-
perfuid and the charge density wave order for hard-core
bosons in these quasi-1D anisotropic systems, as opposed
to the expected purely second order transition in a 3D
system isotropic in tunneling (and interactions, in the
case of HCBs). At the same time, the discontinuous
opening of the charge gap contra the apparent continu-
ous vanishing of the SF order parameter, which occurs
for the case of soft-core bosons, may indicate different or-
ders of the transition in that specific system. The former
suggesting first order while the latter looks like second
order. Our current method and analysis is insufficient to
determine whether there is a very small jump. If that is
the case it is further possible that the gap gets smoothed
out by the mean-field treatment. A more detailed analy-
sis of the soft-core model is required to ascertain whether
the transition is truly first order.

The method presented in this paper reproduces pre-
vious analytical results. Critical temperature calcula-
tions using this method scale with transverse hopping
strength t_\perp corresponding to what you would obtain us-
ing an effective field theory on the 3D system and then
decoupling with mean-field theory. Replacing the effec-
tive field theory with DMRG we find similar scaling laws
with a modified exponent. In addition, using ground
state data from the normal 1D MPS routine we may pro-
duce a critical temperature estimate from the field the-
ory. Both the scaling and estimated value agree well with
the presented approach at small t_\perp, where agreement is
expected. The reasonably close agreement to theory al-
ows us to trust our numerical methods in the context of
mean-field theory. Combining analytical and numerical
methods in this manner could allow us to obtain T_c
estimates in parameter regions that are too computationally
costly. This will be especially true for an extension of our
method to fermionic systems, where, even putting aside
the sign-problem, auxiliary-field QMC approaches scale
much worse in the number of lattice sites than in QMC
for bosons (cubic vs. linear scaling).

ACKNOWLEDGEMENTS

We would like to thank Thierry Giamarchi, Thomas
Köhler and Shintaro Takayoshi for useful discussions.
This work has received funding through an ERC Start-
ing Grant from the European Union’s Horizon 2020 re-
search and innovation programme under grant agree-
ment No. 758935. Part of the simulations were per-
formed using the MPToolkit, written by Ian McCulloch
[49]. The computations were performed on resources pro-
vided by SNIC through Uppsala Multidisciplinary Center
for Advanced Computational Science (UPPMAX) under
Projects SNIC 2019/3-323 and SNIC 2019/8-26.

NL thanks the French National Research Agency
(ANR) for support under project THERMOLOC ANR-
16-CE30-0023-0. We acknowledge CALMIP (Grants
No. 2018-P0677 and 2019-P0677) and GENCI
(Grant A0030500225) for high-performance computing
resources.
Appendix A: OBC boundary contamination

When using OBC the boundaries are dissimilar from other sites in the system in that they are missing one neighbouring site. Depending on the Hamiltonian this causes a bias towards either holes or particles to occupy the edge sites.

The usual method to deal with this bias is to focus on the central part of the system and assume that boundary effects do not reach in beyond a certain point. However, as can be seen from Fig. 7, the assumption does not hold for the case of Hamiltonian in eq. (4).

![Graph](image1)

FIG. 7. Order parameter $\langle b \rangle$ across the hard-core system for different values of nearest neighbour repulsion V using OBC. The OBC data is for an $L = 100$ system and the PBC data is extrapolated to $L \to \infty$.

Instead we see the boundaries start a pattern of alternating particles and holes. Since it is clearly preferable to have particles on the edges in the considered system, the two edges have large weight on the occupation state. After $V/t = 3$ the pattern becomes increasingly apparent and finally the average simply does not attain the system center value. Further, even if the average was a good measure of the center value it can be seen from Fig. 7 that the boundaries actually incur a finite superfluid order inside the system which leads to a transition occurring only at $V_\text{c}/t = 3.24$.

It is further clear that this is a boundary effect since when system size is increased above the sizes used in this paper the finite size trend changes, making extrapolations difficult. In practice, to overcome the boundary effect on superfluid order in the hard-core system with nearest neighbour interaction we find that sizes of $L = 200$ are insufficiently long to see any convergence.

This clearly shows the periodic boundary conditions are necessary to analyze the hard-core bosons with nearest neighbour repulsion since extrapolations to infinite size suffer no trend changes at moderate sizes.

This is a much smaller problem in the case of soft-core bosons with on-site repulsion as seen in Fig. 8. We can clearly see the order parameter saturate to a specific value at the center of the system quite quickly. Further, the plateauing does not seem to be strongly affected by the on-site repulsion.

![Graph](image2)

FIG. 8. Order parameter $\langle b \rangle$ across the soft-core system for different values of on-site repulsion U using OBC.

Evidently, when there is no nearest neighbour interaction the effect of the boundaries is much smaller and OBC can safely be used.

These observations have led us to use PBC for the
hard-core system with nearest neighbour interactions and OBC for the soft-core system with on-site interactions.

Appendix B: Density plateaus

When the considered model does not conserve particle number it is not possible to use energy differences of states with different particle number to determine the charge gap (as in e.g. Karakonstantakis et al. [20]). This is because it can occur that

\[n(\mu) = n(\mu + \delta \mu), \]

where \(\delta \mu \) is some small shift from \(\mu \). In practice, this occurs in the CDW phase which yields a certain arbitrariness to the energy since certainly

\[E(\mu) \neq E(\mu + \delta \mu) \]

as long as there are any particles in the system, while from Eq. (B1) we would obtain

\[E(N) = E(n(\mu)) = E(n(\mu + \delta \mu)). \]

Another method may be used based on the variation of \(\mu \). When computing density versus chemical potential, in the CDW phase you find plateaus of constant density, as shown in Fig. 9a, whose width are the energy required to increase particle number by one. It is possible to compute how much the chemical potential \(\mu \) must be increased (decreased) to obtain an increase (decrease) in the systems density. This yields an upper and lower chemical potential for that particular density. The difference of this upper and lower bound is then the energy required to increase/decrease particle number.

The width of the density plateau, \(W \), is related to an energy difference obtained from a number-conserving calculation once you enter the CDW phase of the system

\[W \approx E(N + 1) + E(N - 1) - 2E(N). \]

Further, as can be seen from Fig. 9b, when repulsion is decreased and we enter the superfluid phase the plateauing tendency disappears.

\[\epsilon_{\Delta \rho} \sim 10^{-2}. \]

FIG. 9. Showing the density of a system with \(\alpha = 0 \) at a \(V \) in the (a) CDW phase and (b) the TLL phase. Note the clear plateau around \(n = 0.5 \) inside the CDW phase.

It is important to note that we have found this method to carry an intrinsic uncertainty. Despite fixing \(\mu \) and \(n \) to good precision this method tends to be reliant on how you approach the edge of the plateaus and from where you start. We have observed this to yield errors up to

\[\epsilon_{\Delta \rho} \sim 10^{-2}. \]

1 M. Klanjsek, H. Mayaffre, C. Berthier, M. Horvatić, B. Chiari, O. Piovesana, P. Bouillot, C. Kollath, E. Orignac, R. Citro, and T. Giamarchi, Phys. Rev. Lett. 101, 137207 (2008).
2 P. Bouillot, C. Kollath, A. M. Läuchli, M. Zvonarev, B. Thielemann, C. Rüegg, E. Orignac, R. Citro, M. Klanjšek, C. Berthier, M. Horvatić, and T. Giamarchi, Phys. Rev. B 83, 054407 (2011).
3 C. Rüegg, K. Kiefer, B. Thielemann, D. F. McMorrow, V. Zapf, B. Normand, M. B. Zvonarev, P. Bouillot, C. Kollath, T. Giamarchi, S. Capponi, D. Poilblanc, D. Biner, and K. W. Krämer, Phys. Rev. Lett. 101, 247202 (2008).
4 M. Jeong, H. Mayaffre, C. Berthier, D. Schmidiger, A. Zhelev, and M. Horvatić, Phys. Rev. Lett. 111, 106404 (2013).
5 R. Blinder, M. Dupont, S. Mukhopadhyay, M. S. Grbić, N. Laflamme, S. Capponi, H. Mayaffre, C. Berthier, A. Paduan-Filho, and M. Horvatić, Phys. Rev. B 95, 020404 (2017).
6 A. Schwartz, M. Dressel, G. Grner, V. Vescoli, L. Degiorgi, and T. Giamarchi, Phys. Rev. B 58, 1261 (1998).
7 T. Giamarchi, Chem. Rev. 104, 5037 (2004).
