Expression and detection of LINE-1 ORF-encoded proteins

Lixin Dai,1 John LaCava,2 Martin S Taylor,3 and Jef D Boeke4,*
1High Throughput Biology Center and Department of Molecular Biology and Genetics; Johns Hopkins University School of Medicine; Baltimore, MD USA; 2Laboratory of Cellular and Structural Biology; The Rockefeller University; New York, NY USA; 3High Throughput Biology Center and Department of Pharmacology and Molecular Sciences; Johns Hopkins University School of Medicine; Baltimore, MD USA; 4Institute for Systems Genetics; New York University School of Medicine; New York, NY USA

LINE-1 (L1) elements are endogenous retrotransposons active in mammalian genomes. The L1 RNA is bicistronic, encoding two non-overlapping open reading frames, ORF1 and ORF2, whose protein products (ORF1p and ORF2p) bind the L1 RNA to form a ribonucleoprotein (RNP) complex that is presumed to be a critical retrotransposition intermediate. However, ORF2p is expressed at a significantly lower level than ORF1p; these differences are thought to be controlled at the level of translation, due to a low frequency ribosom...
An obvious potential cause for ORF2p’s recalcitrance to detection is its low expression level from native L1 RNA sequences. Endogenous L1 genes have high adenosine content (up to 40%) and as a result, can suffer from a transcription elongation defect. Moreover, ORF2p is believed to be translated by an unconventional mechanism at one molecule per RNA. Our group has synthesized two synthetic L1 elements (ORFeus-Mm and ORFeus-Hs) by codon optimizing L1s from mouse and human respectively. These two elements have provided significantly enhanced levels of RNA transcription and ORF protein expression, and now serve as useful tools for the study of L1 molecular biology.

**Translation of L1 ORFs**

The two non-overlapping open reading frames comprising the L1 bicistron are separated by a 63 bp inter-ORF sequence. In contrast to viruses that translate their genes as a polyprotein or via translational frame shift, ORF1p and ORF2p are believed to be translated sequentially through an unconventional mechanism. It has been reported that there are internal ribosome entry sites (IRES) upstream of each mouse LINE-1 ORF, implying that they may be translated via an IRES-mediated translation initiation mechanism. But recoded ORFeus-Mm, which lacks these IRES sequences, transposes at a much higher rate than endogenous mouse L1, suggesting that IRES-mediated translation is not the major mechanism for LINE-1 ORFs or recoded ORFeus-Mm adopts a different mechanism. In human L1s, no such IRES has been identified, and the 3′-end of ORF1 as well as the inter-ORF spacer are dispensable for ORF2p translation. Furthermore, successful ORF2p translation is independent of its initiation codon AUG and of ORF1p functionality but requires completion of an upstream ORF (though it need not be ORF1 specifically). These properties of ORF2p are all in the context of the bicistronic transcript; when expressed as a monocistronic RNA from a conventional promoter, ORF2p is expressed at much higher levels. Until recently, it was widely postulated that the L1 RNA was fully coated with ORF1p trimers, but this hypothesis had never been tested. A previous study on mouse ORF1p showed that each trimer captures 50 nt of RNA. Based on the length of the RNA and the properties of the ORF1p timer, we calculated that a fully coated L1 RNA would contain as many as ~240 ORF1p molecules; and were such to be the case, it would support a model of ORF protein expression including numerous rounds of ORF1p translation and only infrequent ORF2p translation. Evidence suggests that upon successful translation, ORF2p joins the L1 RNA to form an RNP in cis, therefore, it is conceivable that ORF2 RNA sequences may no longer be available for further translation upon RNP complex formation. As little direct evidence of L1 stoichiometry exists, we assayed ORF protein abundance at both cell-population and molecular levels. Our results revealed an unexpected, stochastic pattern of ORF2p expression within cultured cells. Nearly all cells in the population expressed ORF1p in abundance, but within this seemingly homogenous cell population, the majority of cells (~70%) failed to express ORF2p. In the remaining ~30%, ORF2p expression is robust. ORF1p expression levels were found to be comparable in both ORF2p-expressing and non-expressing cells, thus, no connection between the level of ORF1p and ORF2p expression was found. In contrast, an ORF2p-only construct driven by a canonical Pol II promoter is expressed in >95% of cells. We confirmed these observations using both ORFeus-Hs and L1RP in HeLa and HEK293T cell lines transfected under varying conditions, suggesting that this pattern of expression may be an intrinsic property of the human L1 bicistronic RNA. At the level of the purified proteins, we observed some differences in the complement of proteins exhibiting specific co-enrichment with ORF1p and ORF2p. For example, TROVE2, known to bind to misfolded RNAs, and MEPCE, the 7SK snRNA methylphosphate capping enzyme were only identified as specific interactors in fractions affinity purified by ORF1p. Given the broader expression of ORF1p within the cell population, fractions captured by ORF1p from whole cell extracts must contain an abundance of co-purifying material originating from cells not expressing ORF2p. These complexes from ORF1p-only expressing cells may either comprise a comparable subset of those present in ORF2p expressing cells or be distinct “non-functional” particles. To directly examine the stoichiometry of ORF proteins in L1 RNP’s, we established a two-dimensional affinity purification procedure. After first affinity purifying 3xFlag-tagged ORF2p from whole cell extracts, natively eluted complexes were subsequently further purified by ORF1p using an antibody against the native protein. Thus, in this tandem enrichment procedure we obtained a fraction of L1 particles i) containing an ORF1p population in physical association with the co-purifying ORF2p throughout the procedure, and ii) which was also separated from extraneous ORF2p. We evaluated the amounts of ORF1 and ORF2 proteins in these particles selected for the presence of both proteins. Measuring by image densitometry using two staining methods, the ratio was estimated at ~6:1-9:1, and by label-free mass spectrometry (iBAQ), the ratio was estimated at between 27:1 and 47:1. In the first estimation only full-length protein signals were counted. The second estimation by mass spectrometry counts both full-length and fragmented proteins that fall below the level of detection by staining. Regardless of the method preferred, all values are much lower than the expected ORF1p:ORF2p ratio of ~240:1.
functions of any ORF1p-only RNPs, both remain unknown; but we speculate that these are related phenomenons. It is certainly conceivable that host defenses, trained on preventing L1 proliferation, include mechanisms specifically targeting ORF2p translation. This intriguing phenomenon is not yet remotely understood, and would be a worthwhile topic not only for those studying transposons but also for researchers working on eukaryotic translocation mechanisms.

Detecting LINE-1 Elements: Differences between Native and Synthetic Constructs

In order to affinity purify LINE-1 RNP complexes we systematically tested various epitope tags at different localizations of both ORFs from ORFeus-Hs. To assess the biological impact of various tagging strategies, we employed a retrotransposition assay as a test of function because retrotransposition requires the activity of both proteins. First we found that a single Flag tag, adding only 8 amino acids to the N-terminus of ORF1p, almost completely abolished L1 retrotransposition activity (0.2% of wild type). Since an N-terminus coiled coil domain is responsible for ORF1p trimerization, extra N-terminal tag sequence may disrupt proper trimerization, which is important to L1 activity. Compared with the N-terminus, the C-terminus of ORF1p tolerates tags. A single Flag tag had no effect on L1 retrotransposition and a longer tag of 48 amino acids including a flexible linker, TEV protease cleavage site, V5, HA, and Flag only decreased L1 activity by 2%. This tagged ORF1p was detected by western blot using V5, HA and Flag antibodies without difficulty. When we slightly increased the tag size by replacing single Flag with 3xFlag, L1 activity quickly dropped to 30% of wild type. But a similar 3xFlag at the C-terminus of ORF2p only had minimal impact to L1 activity. The 3xFlag tag is reported by Sigma-Aldrich to be 20–200 times more sensitive than other systems and this enhancement now makes detection of ORF2p routine. In a separate study on a different protein complex, we found that when the salt concentration was increased from 100 to 300 mM NaCl during affinity purification, single Flag signal is either completely or almost completely lost (by Coomassie staining and Western) whereas 3xFlag tagged protein was robustly purified in a high salt buffer. We also attempted to tag both ORFs with a fluorescent GFP tag and found that this longer tag inhibited L1 retrotransposition by -25% on either ORF1p or ORF2p C-terminus. ORF1p-GFP fusion exhibited strong signal in-cell by immunostaining, but a small yet significant population of free GFP was revealed by western blotting, suggesting a cleavage between ORF1p and the tag sequence (unpublished observation). When the linker sequence between ORF1p and GFP increased by 6 amino acids, L1 transposition dropped to 23% of wild type. ORF2p-GFP fusion protein was barely detectable in vivo by microscopy or in vitro by western blotting. Interestingly, native LINE-1 (L1RP) behaves differently when the same tag sequences were placed at the same location relative to the ORFs. For example, the 48 AA multi-tag (V5, HA, Flag) at the C-terminus of ORF1p reduced L1RP activity by more than 50%, which was deemed unsuitable for further study. Similarly, the 3xFlag tag, successfully appended ORF2p in the in ORFeus-Hs construct, was only compatible with ORF2p expressed from L1RP once the linker region was reduced by 2/3. We speculate that the differential sensitivity of L1RP and ORFeus-Hs to tag sequence is most likely due to different expression levels, but cannot rule out effects due to RNA structure or sequence-specific binding elements.

Utilizing the epitope tags, we analyzed the sub-cellular localization of both L1 ORFs. Similar to several previous studies, we observed that both ORFs are epredominantly cytoplasmic. Although the presence of active retrotransposition in these cells demands that ORF2p must be in nucleus at a certain stage of the L1 life cycle, this population was not observed. In contrast, the literature documents several cases in which both ORFs were detectable in both nucleus and cytoplasm. The difference may also be due to different sensitivity or cross reactivity of
various antibodies, or to different behavior of endogenously expressed proteins vs. overexpressed proteins. Notably, when a massive overexpression system using a modified vaccinia virus/T7 RNA polymerase was used in HeLa cells, a very different pattern was observed than with the lower level of overexpression in our studies. In depth comparison, immunostaining and live cell imaging analysis are needed to better understand how L1 ORFs travel in the cell. An additional possibility is that the localization of the two ORFs may be cell-cycle dependent. Mitotic cells are poorly maintained through most 2D immunofluorescent staining protocols due to reduced adherence, and cell division is required for L1 retrotransposition. We summarize the detection of L1 encoded ORFs in Table 1.

**Synthetic vs. Native L1: Sequence and Context Dependent Expression Differences**

The variable impact of these sequence insertions may reflect context-dependent expression differences between synthetic and endogenous L1s. By lowering adenine content to 25% and codon optimization, a synthetic mouse LINE-1 element (ORFeus-Mm) displayed a > 200-fold increase in retrotransposition frequency. Using the same strategy, a synthetic human L1 (ORFeus-Hs) was generated based on the L1RP sequence, resulting in a ~40 fold increase in RNA and ~3–5-fold increase in ORF1p. The 3xFlag tag allowed us to quantify the ORF2p expressed from ORFeus-Hs, which is ~40 fold of that from L1RP. In contrast to the drastic increase in retrotransposition frequency observed for ORFeus-Mm, ORFeus-Hs retrotransposes at essentially similar levels as L1RP (which is also comparable to that of ORFeus-Mm).

An explanation for the failure to observe increased transposition frequency when expressing L1 from ORFeus-Hs, as compared with what was obtained with expression from ORFeus-Mm, is a different baseline activity level: while both synthetic constructs transpose at similar levels, L1RP already actively transposes in cell culture based assays with an absolute efficiency of ~10–15% in HEK293T cells or ~5–10% in HeLa cells, as monitored by a GFPAl marker, whereas the baseline activity of mouse L1 is ~0.1%. As mentioned above, we observed that in any snapshot in time, only ~30% of the cells transfected with L1 expression constructs expressed both ORF1p and ORF2p and the remainder expressed ORF1p only. If these cell populations are stable, meaning that cells that fail to express ORF2p do not regain this ability later, this may account in-part for the limitation in retrotransposition frequency, but cannot account for all of it.

As indicated by mfold, the extensive recoding of native human L1 during the construction of ORFeus-Hs most likely changed any specific sequence motif or RNA structure (secondary or tertiary) that may have resided within L1RP coding regions. In mass spectrometry-based proteomic experiments aimed at identifying stable constituents of L1 RNPs we identified comparable sets of proteins for both ORFeus-Hs and L1RP RNPs. This argues against gross differences in the synthetic and WT particles as a result of sequence specific protein interactors with RNA (at least among the most stable constituents). Additionally, the L1RP constructs contained the 5′UTR, whereas the ORFeus-Hs constructs did not, similarly arguing against sequence-specific binding partners in this region of the RNA. Therefore, it is plausible that the L1 life cycle is driven primarily by the L1-encoded ORFs, their binding partners, and RNA sequence/structure insensitive binding proteins, but we cannot exclude the existence of sequence/structure-specific host-encoded nucleic acid binding partners.

Though synthetic and native L1s formed similar RNP complexes, interesting differences exist. As mentioned earlier, epitope tags that behaved well in the ORFeus-Hs context didn’t necessarily work efficiently in the L1RP context. It has been suggested that the abundance of certain tRNAs, local mRNA structure, and translation rate all possibly affect the overall folding, activity and turnover rate of final polypeptide product. It is known that transient translational pausing or ribosomal attenuation aids cotranslational folding. We observed that an ORFeus-native chimera L1, containing 3/4 synthetic and 1/4 native coding sequence within ORF2p, acquired higher transposition efficiency (1.4-fold) than fully synthetic L1. Since the native L1 sequence contains rare codons, which are absent in the codon-optimized ORFeus-Hs, it is conceivable that slowing down of ribosomes near the end of ORF2 protein or better engagement of ORF2p to L1 RNA. This could lead to a higher retrotransposition frequency for the chimeric L1 element. While the 3′ UTR sequence is dispensable for L1 activity, we observed that the endogenous 5′ UTR sequence may affect L1 activity, especially for native L1. When L1 sequences were driven by a CMV promoter without the 5′ UTR, L1RP transposes at a lower frequency (~1/3) compared with ORFeus-Hs, but transposes at a similar level when the 5′ UTR was included in the constructs, in either the presence or absence of CMV promoter. So it is possible that there is some positive “crosstalk” between 5′ UTR and native coding RNA sequence that is absent from in ORFeus-Hs.

**Summary and Conclusions**

Routine detection of LINE-1 ORF2p has been a major challenge in the field due to the difficulty of generating reliable antibodies. Epitope tagging with 3xFlag facilitates this goal by its high sensitivity and small size, without adversely affecting human L1 retrotransposition activity. We believe that a comparable tagging strategy is likely applicable to ORF sequences from other species. Synthetic L1 elements have further aided this situation by significantly enhancing the L1 expression level and providing a point of comparison to endogenous L1s, together advancing our understanding of the fundamental properties of this active “jumping gene” that has contributed > 20% of our genome. The ability to affinity purify highly active L1 RNP complexes has allowed us to catalog its composition, assess functional relationships between constituents, and will enable additional assays targeted at biochemical and structural characterization of L1 transposition pathway. The ability
| Antigen       | Epitope location | Epitope         | RNA/protein expression | Retrotransposition efficiency | Detection                          | Endogenous or overexpressed | Subcellular localization | Ref. |
|---------------|------------------|-----------------|------------------------|------------------------------|-----------------------------------|------------------------------|--------------------------|------|
| ORF1p (mouse) | Full-length protein | Western blot, | Endo                   | Cyto                         | 15                               |
|               |                  | immunostaining  |                        |                              |                                   |                             |                          |      |
|               | Full-length protein | Western blot   | Over                   | ND^a                         | 37                               |
| ORF1p (rat)   | Fragment (1–143) | Western blot, | Endo                   | Cyto and nuclear             | 22                               |
|               |                  | immunoprecipitation |                        |                              |                                   |                             |                          |      |
| ORF2p (rat)   | Fragment (292–480) | Western blot, | Endo                   | Cyto and nuclear             | 22                               |
|               |                  | immunoprecipitation |                        |                              |                                   |                             |                          |      |
|               | Full-length protein | Western blot, | Endo                   | ND^a                         | 14                               |
|               |                  | immunostaining  |                        |                              |                                   |                             |                          |      |
|               | Full-length protein | Western blot, | Over                   | Cyto                         | 38                               |
|               |                  | immunostaining  |                        |                              |                                   |                             |                          |      |
|               | Full-length protein | Western blot   | Endo                   | ND^a                         | 37                               |
|               |                  | immunostaining  |                        |                              |                                   |                             |                          |      |
|               | Fragment          | Western blot, | Endo                   | ND^a                         | 23                               |
|               |                  | immunostaining  |                        |                              |                                   |                             |                          |      |
| ORF1p (human) | Peptide (35–44)  | Western blot, | Endo                   | Cyto                         | 18, 23                            |
|               |                  | immunoprecipitation |                        |                              |                                   |                             |                          |      |
|               | Peptide (318–338) | Western blot, | Over                   | Cyto                         | 21                               |
|               |                  | immunostaining  |                        |                              |                                   |                             |                          |      |
|               | Full-length protein | Western blot, | Endo                   | Cyto and nuclear             | 39                               |
|               |                  | immunostaining  |                        |                              |                                   |                             |                          |      |
|               | N^a               | GFP             | ND^a                   | ND^a                         | 21                               |
|               |                  | immunostaining  |                        |                              |                                   |                             |                          |      |
|               | C^1               | T7              | No change              | Almost the same as untagged  | Western blot, immunostaining     | Over                       | Cyto                     | 10, 20, 21 |
|               | Flag-HA           | ND^a            | ND^a                   | Western blot, immunoprecipitation | Over                  | ND^a                     | 19                           |
|               | Flag              | No change       | 63% of untagged        | Western blot                 | Over                             | ND^a                     | 23                           |
|               | Myc               | ND^1            | 88% of untagged        | Western blot                 | Over                             | ND^a                     | 23                           |
|               | 3 × Myc           | ND^1            | 64% of untagged        | Western blot                 | Over                             | ND^a                     | 23                           |
| ORF1p (ORFeus-Hs) | Flag              | No change       | 0.2% of untagged       | Western blot                 | Over                             | ND^a                     | 23                           |
|               | HA-V5-Flag        | No change       | 102% of untagged       | Western blot                 | Over                             | ND^a                     | 23                           |
|               | GFP               | ND^a            | 12–73% of untagged     | Western blot, immunoprecipitation | Over                  | ND^a                     | 23                           |
|               | 3 × Flag          | No change       | 30% of untagged        | Western blot                 | Over                             | ND^a                     | 23                           |
|               | Myc               | No change       | 80% of untagged        | Western blot                 | Over                             | ND^a                     | 23                           |
|               | 3 × Myc           | No change       | 64% of untagged        | Western blot                 | Over                             | ND^a                     | 23                           |
to monitor LINE-1 ORFs in cell culture has raised new questions about sub-cellular localization. We have already shown that ORF2p functional mutants (EN- and RT-) failed to interact with PCNA at a late stage of the L1 life cycle. By applying the same technique to other ORF1p/ORF2p mutants, we should be able to further dissect the L1-host interactome and catalog the relationships with respect to specific step(s) of the L1 lifecycle. A complementary approach includes coupling large scale RNAi with L1 induction in suspension cell culture, since we have been able to easily generate shRNA-L1 co-expression vectors. This will allow us to test which L1 RNP constituents affect the remaining complement of proteins’ abilities to co-purify with the L1 RNP, as well as to assay effects on retrotransposition activity in vivo and in vitro.

One mysterious step in the L1 life cycle is TPRT, which is mostly hypothesized based on the similarity of L1 structure to another non-LTR retrotransposon - R2 element, and because it explains the phenomenon of target site duplication. Previously full-length L1 ORF2 protein could only be obtained as a purified fraction from insect cells, and only inefficiently catalyzed a TPRT reaction in vitro. Furthermore, though it displayed active reverse transcriptase activity, endonuclease activity was not detected until a partial proteolytic digestion was performed. Our affinity purified RNP complex contains high RT and LEAP activity and it will be very interesting to compare ORF2p EN function from both sources. We expect to be able to perform a more efficient in vitro TPRT reaction on account of the quantity and purity of the L1 RNP complex we can obtain by our recently described methods.

It has been hypothesized that excess retrotransposon activity in testicular germ cell tumors amplifies DNA damaging effects of chemo/radiotherapy and is the reason for their high sensitivity to therapy (Lisa Cheng Ran Huang, personal communication). We believe that a comparable approach should be applied in other cell-types such as germ line, stem cells and cancer cells, where LINE-1 has been found to actively transpose—such data are certain to support important hypotheses pertaining to L1 function in carcinogenesis and pluripotency/cell differentiation.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.
12. Luan DD, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devgon K, Dewar K, Doyle M, Fiz-Hugh W, et al.; International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409:860-921; PMID:12137001; http://dx.doi.org/10.1038/35070626.

13. Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr. High frequency retrotransposition in cultured mammalian cells. Cell 1996; 87:917-27; PMID:8945518; http://dx.doi.org/10.1016/S0092-8674(00)91196-4.

14. Brathauer JD, Cole CJ, Fanning TG. Expression of LINE-1 retrotransposons in human breast cancer. Cancer 1994; 73:2333-6; PMID:8168038; http://dx.doi.org/10.1002/1097-0142(19940501)73:3<2333::AID-CLI1356>3.0.CO;2-4.

15. Martin SL, Bancroft D. Synchronous expression of LINE-1 RNA and protein in mouse embryonal carcinoma cells. Mol Cell Biol 1993; 13:5383-92; PMID:8955005.

16. Ergin S, Buschmann C, Heuschjoven J, Dammann K, Schnieders F, Laake H, Chalalou F, Kilic N, Stratling WH, Schumann GM. Cell type-specific expression of LINE-1 open reading frames 1 and 2 in fetal and adult human tissues. J Biol Chem 2004; 279:27753-63; PMID:15096671; http://dx.doi.org/10.1074/jbc.M312984200.

17. An W, Dai L, Niewiadomska AM, Yeril A, O’Donnell KA, Han JS, Boeke JD. Characterization of a synthetic human LINE-1 retrotransposon ORFeus-Hs. Mob DNA 2011; 2:1; PMID:21283087; http://dx.doi.org/10.1186/1675-9166-2-1.

18. Rodi N, Sharma R, Sharma R, Zampella J, Dai L, Taylor MS, Hruban RH, Iacobuzio-Donahue CA, Maitra A, Torbenson MS, et al. Long interspersed element-1 protein expression is a hallmark of many mammalian cancers. Am J Pathol 2014; 184:1280-6; PMID:24607099; http://dx.doi.org/10.2353/ajpath.2014.010007.

19. Goodier JL, Cheung LE, Kazazian HH Jr. Mapping the LINE1 ORF1 protein interaction reveals associated inhibitors of human retrotransposition. Nucleic Acids Res 2013; 41:7401-19; PMID:23590601; http://dx.doi.org/10.1093/nar/gkt1512.

20. Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC, Athanikar JN, Hasnaoui M, Bucheton A, Moran JV, et al. Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 2010; 6: e1000962; PMID:20949108; http://dx.doi.org/10.1371/journal.pgen.1000962.

21. Goodler JL, Ostertag EM, Engleka KA, Seleine MC, Kazazian HH Jr. A potential role for the nucleolus in LINE-1 retrotransposition. Hum Mol Genet 2004; 13:1041-8; PMID:15028673; http://dx.doi.org/10.1093/hmg/ddh118.

22. Kirilyuk A, TolSTONOG GV, Damert A, Held U, Taylor MS, LaCava J. Improved methodology for the affinity isolation of human protein complexes revealed by label-free quantitative mass-spectrometry-based proteomics. Nucleic Acids Res 2013; 41:e68; PMID:23006610; http://dx.doi.org/10.1093/nar/gkt941.

23. Souehs J, Young DF, Heaney F, Baumgartner WK, Randall RE. Identification of an epitope on the P and V proteins of simian virus 5 that distinguishes between two isolates with different biological characteristics. J Gen Virol 1991; 72:1551-7; PMID:17132601; http://dx.doi.org/10.1099/0022-1317-72-7-1551.

24. Chen YT, Holcomb C, Moore HP. Expression and localization of two low molecular weight GTP-binding proteins, Rab8 and Rab10, by epitope tag. Proc Natl Acad Sci U A S 1993; 90:6508-12; PMID:8768123; http://dx.doi.org/10.1073/pnas.90.13.6508.

25. Hernan R, Heuermann K, Brizard B. Multiple epitope tagging of expressed proteins for enhanced detection. Biotechniques 2000; 28:789-93; PMID:10707959.

26. Domanksi M, Molko K, Jiang H, Chait BT, Rout MP, Jensen TH, LaCava J. Improved methodology for the affinity isolation of human protein complexes expressed at near endogenous levels. Biotechniques 2012; 0:1-6; PMID:22668517.

27. Sokolowski M, deHaro D, Christian CM, Kines KJ, Belancio VP. Characterization of L1 ORFp self-interaction and cellular localization using a mammalian two-hybrid system. PLoS One 2013; 8:e82021; PMID:23425740; http://dx.doi.org/10.1371/journal.pone.0082021.

28. Dai L, Taylor MS, O'Donnell KA, Boeke JD. Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation. Mol Cell Biol 2012; 32:4232-36; PMID:22977758; http://dx.doi.org/10.1128/MCB.01785-11.

29. Chen L, Dubreuil J, Chandra A, Board P, Rangasamy D. Prognostic value of LINE-1 retrotransposon expression and its subcellular localization in breast cancer. Breast Cancer Res Treat 2012; 136:129-42; PMID:22305364; http://dx.doi.org/10.1007/s10549-012-2270-8.

30. Zaker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31:3460-15; PMID:12824337; http://dx.doi.org/10.1093/nar/gkg595.
41. Kubo M, Imanaka T. mRNA secondary structure in an open reading frame reduces translation efficiency in Bacillus subtilis. J Bacteriol 1989; 171:4080-2; PMID:2500423
42. Siller E, DeZwaan DC, Anderson JR, Freeman BC, Barral JM. Slowing bacterial translation speed enhances eukaryotic protein folding efficiency. J Mol Biol 2010; 396:1310-8; PMID:20043920; http://dx.doi.org/10.1016/j.jmb.2009.12.042
43. Yanagitani K, Kimata Y, Kadokura H, Kohno K. Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA. Science 2011; 331:586-9; PMID:21233347; http://dx.doi.org/10.1126/science.1197142
44. Zhang G, Hubalewska M, Ignatova Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 2009; 16:274-80; PMID:19198590; http://dx.doi.org/10.1038/nsmb.1554
45. Novoa EM, Ribas de Pouplana L. Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet 2012; 28:574-81; PMID:22921354; http://dx.doi.org/10.1016/j.tig.2012.07.006
46. Saunders R, Deane CM. Synonymous codon usage influences the local protein structure observed. Nucleic Acids Res 2010; 38:6719-28; PMID:20530529; http://dx.doi.org/10.1093/nar/gkq695
47. Makhoul CH, Trifonov EN. Distribution of rare triplets along mRNA and their relation to protein folding. J Biomol Struct Dyn 2002; 20:413-20; PMID:12437379; http://dx.doi.org/10.1080/073915102.2002.10506859
48. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009; 10:691-703; PMID:19763352; http://dx.doi.org/10.1038/nrg2640
49. Garcia-Perez JL, Morell M, Scheys JO, Kulpa DA, Morell S, Carter CC, Hammer GD, Collins KL, O’Shea KS, Menendez P, et al. Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 2010; 466:769-73; PMID:20686575; http://dx.doi.org/10.1038/nature09209
50. Garcia-Perez JL, Marchetto MC, Murotii AR, Coufal NG, Gage FH, O’Shea KS, Moran JV. LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 2007; 16:1569-77; PMID:17468180; http://dx.doi.org/10.1093/hmg/ddn105