Non-contiguous finished genome sequence and description of *Salmonella enterica* subsp. *houtenae* str. RKS3027

Songling Zhu1,2, Hong-Liang Wang3, Chunxiao Wang1,2, Le Tang1,2, Xiaoyu Wang1,2, Kai-Jiang Yu3*, Shu-Lin Liu1,2,4,*

1Genomics Research Center of Harbin Medical University, Harbin, China
2Genetic Detection Center of First Affiliated Hospital, Harbin Medical University, Harbin, China
3Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
4Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada

*Corresponding author: Prof. Shu-Lin Liu (slliu@ucalgary.ca) and Prof. Kai-Jiang Yu (drkaijiang@sohu.com)

Keywords: *Salmonella enterica*, subspecies, *houtenae*, genome.

Salmonella enterica subsp. *houtenae* serovar 16:z4, z32:-- str. RKS3027 was isolated from a human in Illinois, USA. *S. enterica* subsp. *houtenae* is a facultative aerobic rod-shaped Gram-negative bacterium. Here we describe the features of this organism, together with the draft genome sequence and annotation. The 4,404,136 bp long genome (97 contigs) contains 4,335 protein-coding gene and 28 RNA genes.

Introduction

Salmonella is an important genus of human and animal pathogens [1], and more than 2,600 different serovars have been described. Currently, the genus *Salmonella* is divided into two species, *S. enterica*, and *S. bongori* [2]. *S. enterica* comprises seven subspecies: I (also called subspecies *enterica*), II (also called subspecies *salamae*), IIIa (also called subspecies *arizonae*), IIIb (also called subspecies *diarizonae*), IV (also called subspecies *houtenae*), VI (also called subspecies *indica*), and VII [3]. Most of *Salmonella* serovars belong to the *S. enterica* subspecies I and are responsible for disease in warm-blooded animals and humans [4]. Other serovars were usually isolated from cold-blooded organisms and the environment, but could also cause human disease occasionally. In contrast with *S. enterica* subspecies I, very limited information is available regarding pathogenicity of the other subspecies. When infecting humans, these serovars usually cause an intestinal infection (e.g., diarrhea), but previous reports in the literature [5] have shown that the serovars of *Salmonella* subspecies II–IV are capable of causing serious infections, including septicemia and abscesses. There has been an increase in case reports on extraintestinal infections caused by these subspecies [6]. *S. enterica* subsp. *houtenae* serovar 16:z4, z32:-- str. RKS3027 is a human isolate. This strain is of interest because of its pathogenicity as well as its divergent phylogenetic position among *S. enterica*.

Classification and features

Few 16S rRNA sequences of *Salmonella* subspecies are available except *S. enterica* subsp. *enterica*. Meanwhile, it is increasingly commonplace to construct the phylogenetic tree by using the whole-genome sequence for higher precision and robustness [7,8]. Therefore we used a total of 2,500 orthologs of 18 strains of *Salmonella* for constructing a genome-scale phylogenetic tree. Genetic relatedness of *S. enterica* subsp. *houtenae* strain RKS3027 to other *Salmonella* subspecies strains was shown in Figure 1. On the tree, all *S. enterica* subsp. *enterica* strains were clustered together, and *S. enterica* subsp. *houtenae* RKS3027 positioned between *S. enterica* subsp. *enterica* and *S. bongori*.

The *Salmonella* genus belongs to the bacterial family *Enterobacteriaceae* [11]. The bacteria are rod shaped, Gram-negative, with diameter of 0.7 to 1.5 µm and length of 2 to 5 µm (Table 1). They are facultative anaerobes, non-spore-forming.
flagellated, and motile. They grow within the optimal temperature range 35 °C - 37 °C and within an optimal pH range of 7.2-7.6. *S. enterica subsp. houtenae* is salicin-positive and able to grow in KCB medium, two distinguishing characteristics when compared with *S. enterica subsp. enterica*. The strain is deposited in the Salmonella Genetic Stock Centre (SGSC), University of Calgary, Canada as *S. enterica subsp. houtenae* RKS3027 (= SGSC 3086).

Genome sequencing information

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position and its serious virulence in humans compared to the reptiles. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession ANHR00000000. The version described in this paper is the first version, ANHR01000000, and the sequence consists of 97 large contigs. Table 2 presents the project information and its association with MIGS version 2.0 compliance [12].

Growth conditions and DNA isolation

S. enterica subsp. houtenae strain RKS3027 was grown Luria Broth (LB) medium at 37°C. The DNA was extracted from the cell, concentrated and purified using the Qiamp kit (Qiagen), as detailed in the manual for the instrument.

Genome sequencing and assembly

The genome of *S. enterica subsp. houtenae* RKS3027 was sequenced using the Illumina sequencing platform by the paired-end strategy (2×100bp). The details of library construction and sequencing can be found at the Illumina web site [26]. The final coverage reached 100-fold for an estimated genome size of 4.5 Mb. The sequence data from Illumina HiSeq 2000 were assembled with SOAPdenovo v1.05. The final assembly contained 97 large contigs (>3000 bp) in 59 scaffolds generating a genome size of 4.4 Mb.
Table 1. Classification and general features of *S. enterica* subsp. *houtenae* RKS3027 according to the MIGS recommendations [12]

MIGS ID	Property	Term	Evidence codea	
	Domain	*Bacteria*	TAS [13]	
	Phylum	*Proteobacteria*	TAS [14]	
	Class	*Gammaproteobacteria*	TAS [15,16]	
	Order	*Enterobacteriales*	TAS [17]	
	Family	*Enterobacteriaceae*	TAS [18-20]	
	Genus	*Salmonella*	TAS [18,21-23]	
	Species	*Salmonella enterica*	TAS [23,24]	
	Subspecies	*Salmonella enterica* subsp. *houtenae*	TAS [23,24]	
	Strain RKS3027		IDA	
	Serovar 16:z3, z32:--		IDA	
	Gram stain	Negative	IDA	
	Cell shape	Rod-shaped	IDA	
	Motility	Motile	IDA	
	Sporulation	Non-sporulating	IDA	
	Temperature range	Mesophilic	IDA	
	Optimum temperature	35 °C - 37 °C	IDA	
	Carbon source	Glucose	IDA	
	Energy source	Chemoorganotrophic	IDA	
	MIGS-6	Habitat	Reptiles	IDA
	MIGS-6.3	Salinity	Medium	IDA
	MIGS-22	Oxygen	Facultative anaerobes	IDA
	MIGS-15	Biotic relationship	Endophyte	IDA
	MIGS-14	Pathogenicity	Pathogenic	IDA
	MIGS-4	Geographic location	Illinois, USA	NAS
	MIGS-5	Sample collection time	1986	NAS
	MIGS-4.1	Latitude	Not report	NAS
	MIGS-4.2	Longitude	Not report	NAS
	MIGS-4.3	Depth	Not report	NAS
	MIGS-4.4	Altitude	Not report	NAS

a) Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [25].

Table 2. Project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Draft
MIGS-28	Libraries used	Illumina Paired-End library
MIGS-29	Sequencing platforms	Illumina HiSeq 2000
MIGS-31.2	Fold coverage	100 ×
MIGS-30	Assemblers	SOAPdenovo v1.05
MIGS-32	Gene calling method	RAST
Genbank ID	ANHR000000000	
GOLD ID	Gi21447	
Project relevance	Evolution in bacteria, human pathogen	
Genome annotation

Genes were predicted using RAST (Rapid Annotation using Subsystem Technology) [27] with gene caller GLIMMER3 [28] followed by manual curation. The predicted bacterial protein sequences were compared with the annotated genes from four available *Salmonella* genomes, i.e., *S. enterica* subsp. *enterica* Typhi P-stx-12, *S. enterica* subsp. *enterica* Heidelberg B182, *S. enterica* subsp. *enterica* Typhimurium UK-1 and *S. enterica* subsp. *enterica* Typhimurium 4/74 and searched against the Clusters of Orthologous Groups (COG) databases using BLASTP. The BLAST results were filtered with the following parameters: identities >90% and compared length >70%. CGViewer was used for visualization of genomic features [29].

Genome properties

The genome of *S. enterica* subsp. *houtenae* RKS3027 is 4,404,136 bp long (97 contigs) with a 51.68% G + C content (Table 3 and Figure 2). Of the 4,363 predicted genes, 4,335 were protein-coding genes, and 28 were RNAs (1 5S rRNA gene and 27 predicted tRNA genes). A total of 3,378 genes (77.42%) were assigned a putative function. The remaining genes were annotated as hypothetical proteins. The properties and statistics of the genome are summarized in Table 3. The distribution of genes into COGs functional categories is presented in Table 4.

Table 3. Nucleotide content and gene count levels of the genome

Attribute	Value	% of total
Genome size (bp)	4,404,136	
DNA coding region (bp)	3,824,952	86.85
DNA G+C content (bp)	2,276,005	51.68
Total genes	4,363	100
RNA genes	28	0.06
Protein-coding genes	4,335	99.36
Genes assigned to COGs	3,378	77.42

a) The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome.
Figure 2. Graphical circular map of the S. enterica subsp. houtenae strain RKS 3027 genome. From the outside to the center: genes on forward strand (color by COG categories), genes on reverse strand (color by COG categories), GC content, GC skew. The map was generated with the CGviewer software.
Table 4. Number of genes associated with the 25 general COG functional categories

Code	Value	%agea	Description
J	163	3.76	Translation
A	1	0.02	RNA processing and modification
K	281	6.48	Transcription
L	176	4.06	Replication, recombination and repair
B	0	0.00	Chromatin structure and dynamics
D	32	0.74	Cell cycle control, mitosis and meiosis
Y	0	0.00	Nuclear structure
V	48	1.11	Defense mechanisms
T	103	2.38	Signal transduction mechanisms
M	235	5.42	Cell wall/membrane biogenesis
N	95	2.19	Cell motility
Z	0	0.00	Cytoskeleton
W	0	0.00	Extracellular structures
U	41	0.95	Intracellular trafficking and secretion
O	138	3.18	Posttranslational modification, protein turnover, chaperones
C	254	5.86	Energy production and conversion
G	343	7.91	Carbohydrate transport and metabolism
E	319	7.36	Amino acid transport and metabolism
F	77	1.78	Nucleotide transport and metabolism
H	131	3.02	Coenzyme transport and metabolism
I	89	2.05	Lipid transport and metabolism
P	175	4.04	Inorganic ion transport and metabolism
Q	47	1.08	Secondary metabolites biosynthesis, transport and catabolism
R	318	7.34	General function prediction only
S	312	7.20	Function unknown
-	957	22.08	Not in COGs

a) The total is based on the total number of protein coding genes in the annotated genome.

Acknowledgments

This work was supported by grants of the National Natural Science Foundation of China (NSFC30970119, 81030029, 81271786, NSFC-NIH 81161120416) to SLL.

References

1. Grassl GA, Finlay BB. Pathogenesis of enteric Salmonella infections. Curr Opin Gastroenterol 2008; 24:22-26. PubMed http://dx.doi.org/10.1097/MOG.0b013e3282f21388

2. Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJ, III. Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 1989; 27:313-320. PubMed

3. Boyd EF, Wang FS, Whittam TS, Selander RK. Molecular genetic relationships of the salmonellae. Appl Environ Microbiol 1996; 62:804-808. PubMed

4. Li J, Ochman H, Grosman EA, Boyd EF, Solomon F, Nelson K, Selander RK. Relationship between evolutionary rate and cellular location among the

http://standardsingenomics.org
Inv/Spa invasion proteins of Salmonella enterica. Proc Natl Acad Sci USA 1995; 92:7252-7256. PubMed http://dx.doi.org/10.1073/pnas.92.16.7252

5. Weiss SH, Blaser MJ, Paleologo FP, Black RE, McWhorter AC, Asbury MA, Carter GP, Feldman RA, Brenner DJ. Occurrence and distribution of serotypes of the Arizona subgroup of Salmonella strains in the United States from 1967 to 1976. J Clin Microbiol 1986; 23:1056-1064. PubMed

6. Abbott SL, Ni FC, Janda JM. Increase in extraintestinal infections caused by Salmonella enterica subspecies II-IV. Emerg Infect Dis 2012; 18:637-639. PubMed http://dx.doi.org/10.3201/eid1804.111386

7. Luo Y, Fu C, Zhang DY, Lin K. BPhyOG: an interactive server for genome-wide inference of bacterial phylogenies based on overlapping genes. BMC Bioinformatics 2007; 8:266. PubMed http://dx.doi.org/10.1186/1471-2105-8-266

8. Jiang LW, Lin KL, Lu CL. OGtree: a tool for creating genome trees of prokaryotes based on overlapping genes. Nucleic Acids Res 2008; 36(Web Server issue):W475-80.

9. Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005; 33:511-518. PubMed http://dx.doi.org/10.1093/nar/gki198

10. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731-2739. PubMed http://dx.doi.org/10.1093/molbev/msr121

11. Ewing WH. Edwards and Ewing’s identification of Enterobacteriaceae. 4th ed. Burgess Publishing Co., New York, NY, 1986.

12. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed http://dx.doi.org/10.1038/nbt1360

13. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed http://dx.doi.org/10.1073/pnas.87.12.4576

14. Garrity GM, Bell JA, Lilburn T. Phylum XIV. Proteobacteria phyl. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1.

15. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 106. Int J Syst Evol Microbiol 2005; 55:2235-2238. http://dx.doi.org/10.1099/ijs.0.64108-0

16. Garrity GM, Bell JA, Lilburn T. Class III. Gammaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1.

17. Garrity GM, Holt JG. Taxonomic Outline of the Archaea and Bacteria. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 155-166.

18. Skerman VBD, McGowan V, Sneath PHA. Approved Lists of Bacterial Names. Int J Syst Bacteriol 1980; 30:225-420. http://dx.doi.org/10.1099/00207713-30-1-225

19. Rahn O. New principles for the classification of bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 1937; 96:273-286.

20. Judicial Commission. Conservation of the family name Enterobacteriaceae, of the name of the type genus, and designation of the type species OPINION NO. 15. Int Bull Bacteriol Nomencl Taxon 1958; 8:73-74.

21. Lignieres J. Maladies du porc. Bulletin of the Society on Central Medical Veterinarians 1900; 18:389-431.

22. Le Minor L, Rohde R. Genus IV. Salmonella Lignieres 1900, 389. In: Buchanan RE, Gibbons NE (eds), Bergey’s Manual of Determinative Bacteriology, Eighth Edition, The Williams and Wilkins Co., Baltimore, 1974, p. 298-318.

23. Judicial Commission of the International Committee on Systematics of Prokaryotes. The type species of the genus Salmonella Lignieres 1900 is Salmonella enterica (ex Kaufmann and Edwards 1952) Le Minor and Popoff 1987, with the type strain LT2, and conservation of the epithet enterica in Salmonella enterica over all earlier epithets that may be applied to this species. Opinion 80. Int J Syst Evol Microbiol 2005; 55:519-520. PubMed http://dx.doi.org/10.1099/ijs.0.63579-0
24. Le Minor L, Popoff MY. Request for an Opinion. Designation of *Salmonella enterica* sp. nov., nom. rev., as the type and only species of the genus *Salmonella*. *Int J Syst Bacteriol* 1987; 37:465-468. http://dx.doi.org/10.1099/00207713-37-4-465

25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet* 2000; 25:25-29. PubMed http://dx.doi.org/10.1038/75556

26. http://www.illumina.com/technology/sequencing_technology.ilmn

27. Aziz RK, Bartels D, Best AA, DeLongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. The RAST Server: rapid annotations using subsystems technology. *BMC Genomics* 2008; 9:75. PubMed http://dx.doi.org/10.1186/1471-2164-9-75

28. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. *Bioinformatics* 2007; 23:673-679. PubMed http://dx.doi.org/10.1093/bioinformatics/btm009

29. Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. *Bioinformatics* 2005; 21:537-539. PubMed http://dx.doi.org/10.1093/bioinformatics/bti054