INTRODUCTION

With the substantial and increasing demands of consumer electronics in today’s society, electronic waste has become one of the fastest growing segments of environmental pollution (1–3). Therefore, the next generation of electronics with environment-friendly features, such as water dissolvability and recyclability, is in high demand. One of the possible approaches to realizing this prospect is the application of removable nontoxic materials in electronic devices, where functionalities can be created and removed by introducing and removing the material at will. However, thus far, a facile process of creation and removal of the material in electronics is still challenging to achieve.

Sr$_3$Al$_2$O$_6$ (SAO), which is easily dissolvable in water (4), allows a possibility to realize water-soluble or recyclable electronic devices. Recently, two-dimensional electron gases (2DEGs) have been facilely created and patterned at oxide heterointerfaces via room temperature deposition of various types of aluminum (Al)–based amorphous overlayers on SrTiO$_3$ (STO), such as LaAlO$_3$ (LAO), Al$_2$O$_3$, and YAlO$_3$ (5, 6). The interfacial 2DEGs originate from the oxygen vacancies, which were created by the AI-induced redox reactions (5–8).

However, in all these heterointerfaces, the defects, e.g., oxygen vacancies, are permanently constrained inside the heterostructures with fixed overlayers. This consequently limits its application in recyclable electronics (9–11), despite the fact that the facile room temperature fabrication process of this 2DEG system is convenient and promising for future adoption of oxides in electronics and thermoelectrics (5). Fortunately, as AI is also a main element of the SAO, the SAO meets the criteria for the occurrence of the AI-induced redox reactions (5–8). Therefore, it is potentially feasible to easily create a tunable 2DEG by controlling the concentration and distribution of the oxygen vacancy using the SAO, while the inherent solubility of the SAO offers a possibility to explore future water-soluble or recyclable electronics (12–15).

In this work, we report an erasable and recreatable 2DEG at the heterointerface between a water-dissolvable amorphous Sr$_3$Al$_2$O$_6$ (a-SA0) overlay and single-crystal STO. In particular, the patterning, deposition, and dissolution of a-aSAO thin film on STO substrate are all done at room temperature, leading to convenience and advantages in the fabrication and recycling processes. Furthermore, on the basis of photoluminescence (PL) measurement, we show that the 2DEG is induced by the oxygen vacancies at the interface, which could be conveniently removed by exposing the a-SA0 overlay in a humid environment, such as water or moisture. Last, during the a-SA0 and oxygen vacancy removal process, a nonlinear-to-linear Hall resistance transition occurs and the 2DEG eventually completes a metal-to-insulator transition (MIT), which is well explained by a two-band model supported by the first-principles calculations.

RESULTS

Time-dependent electrical transport characterization

Various types of a-SA0/STO heterointerfaces were prepared at room temperature deposition as described in Materials and Methods. The facile room temperature deposition is very beneficial to potential electronic applications. Additional amorphous LAO (a-LAO)/STO heterointerfaces...
were also prepared as a control sample to study the transport behavior of the stable oxygen vacancy as a function of air exposure time (t_{air}). It has been reported that the epitaxial SAO single-crystal film is water soluble (4). Here, we found that the a-SA0 thin film can also be easily dissolved in the deionized (DI) water. Figure 1 (A to C) shows the temperature-dependent sheet resistance, R_S, of the 4-nm a-LAO/STO, 4-nm a-SA0/STO, and 10-nm amorphous STO (a-STO)–capped 4-nm a-SA0/STO interfaces in an ambient environment with a relative humidity of 70% and different t_{air}. Right after deposition, all interfaces exhibit a similar metallic behavior, including R_S, carrier density (n_S), and carrier mobility (μ_S), in the entire temperature range of 2.5 to 300 K (Fig. S2). While the R_S of the metallic a-LAO/STO interface remains unchanged as t_{air} increases, the a-SA0/STO, however, is markedly affected by the exposure to ambient conditions, as illustrated in Fig. 1B. The metallic behavior ($dR_S/dT > 0$) of the 4-nm a-SA0/STO interface is preserved up to $t_{\text{air}} = 48$ hours, with marked changes in high-temperature R_S and negligible changes in low-temperature R_S. As t_{air} increases further (greater than 48 hours), the 4-nm a-SA0/STO interface exhibits an abrupt transition to a semiconducting behavior and eventually becomes insulating (see Fig. 1B). Therefore, we show that an MIT can be triggered by leaving the sample in air for a number of hours to absorb moisture from air. Furthermore, the MIT at the a-SA0/STO interface can be greatly slowed by capping a 10-nm a-STO thin film (Fig. 1C). Figure 1 (D and E) summarizes the t_{air} dependence of $R_S(2.5 \text{ K})$ and $R_S(300 \text{ K})$ of 4-nm a-LAO/STO, 4-nm a-SA0/STO, and 10-nm a-STO–capped 4-nm a-SA0/STO. A notable increase of $R_S(300 \text{ K})$ by more than one order of magnitude can be seen in 4-nm a-SA0/STO by exposing under ambient conditions. In contrast, both $R_S(2.5 \text{ K})$ of all heterointerfaces and the $R_S(300 \text{ K})$ of both the 4-nm a-LAO/STO and 10-nm a-STO–capped 4-nm a-SA0/STO show almost t_{air}-independent behaviors ($t_{\text{air}} \leq 48$ hours), further confirming the correlation between the MIT and the removal of a-SA0.

Water-dissolvable and recyclable electronic devices

Because of the water solvability, recyclable electronic devices become possible with erasable and recreatable 2DEG enabled by adding or removing the a-SA0 overlayer. A Hall bar device was built on the a-SA0/STO heterointerface using photolithography, and the a-SA0 overlayer was then repeatedly removed and deposited. Figure 2B shows optical images of the Hall bar device with and without the a-SA0 overlayer. The Hall bar device of the heterointerface experiences three states in each repetition, as schematically shown in Fig. 2C, namely, (i) just after growth ($t = 0$ min and $0 \text{ min} < t < 30 \text{ min}$), (ii) one drop of DI water added onto the device to dissolve a-SA0 ($t = 30 \text{ min}$), and (iii) the a-SA0 completely dissolved ($30 \text{ min} < t < 60 \text{ or} \ 0 \text{ min}$). When the 20-nm a-SA0 deposited on STO ($t = 0$ min), a 2DEG is created with a sheet conductance at 300 K, $\sigma_S(300 \text{ K})$, of

Fig. 1. Temperature-dependent transport property with different t_{air}. A 2DEG is formed at (A) the a-LAO/STO (001), (B) a-SA0/STO (001) interfaces, and (C) a-STO–capped a-SA0/STO (001). The 2DEG at the a-LAO/STO interface is much more stable than that at the a-SA0/STO interface under ambient conditions of room temperature and 70% of relative humidity. R_S as a function of t_{air} at 300 and 2.5 K for (D) 4-nm a-LAO/STO, 4-nm a-SA0/STO, and (E) 10-nm a-STO–capped 4-nm a-SA0/STO, respectively. Inset: The schematic view of oxygen-vacancy-induced 2DEG exists at the (A) a-LAO/STO, (B) a-SA0/STO, and (C) a-STO–capped a-SA0/STO interfaces.
10^{-4} ohm$^{-1}$. At $t = 30$ min, a drop of DI water is added on the device. Note that the dissolution of SAO in water is a fast process. Therefore, a marked change of conductivity occurs almost instantaneously by adding one drop of DI water on top of the a-SA0/STO heterointerface, while the electrical transport varies gradually by exposing the a-SA0/STO heterointerface in the air (see Fig. 1D). This immediately removes the 2DEG with at least two orders of magnitude decrease in σ_S (300 K) down to the measurement limit. At 60 min (denoted as $t = 0$ min), the above process is repeated on the same device, and similar removal and recreation of 2DEG are demonstrated. Several repetitions of this process with a period of 1 hour are followed, which verifies the stability and repeatability of the electronic device (see Fig. 2C). In addition, during the practical implementation into a possible water-soluble electronic device, the key is to isolate the SAO and 2DEG from water or moisture. Fortunately, SAO is insoluble in organic solvent. However, the easiest method to the stability issues is to encapsulate the 2DEG with materials only soluble to a specific organic solvent. For example, polyvinyl methacrylate is a versatile polymeric material and highly soluble in a solvent like acetone not water. Hence, with the help of one or several of these packaging materials, a water-soluble electronic device may be developed. Therefore, we demonstrate that the highly reproducible and reversible control of the 2DEG at the a-SA0/ST0 heterointerface by water dissolution provides a possibility to construct next generation electronic devices with environment-friendly features.

PL and the schematic mechanism of oxygen vacancies

Figure 3A shows the room temperature PL spectra of an as-received ST0 substrate, 4-nm a-LAO/ST0, 4-nm a-SA0/ST0, and 10-nm a-ST0–capped a-SA0/ST0 samples, a broad and intense PL emission centered at 430 nm (2.9 eV) was observed. This 2.9-eV PL peak corresponds to oxygen vacancies in ST0 (8, 16). The a-SA0/ST0, a-ST0–capped a-SA0/ST0, and a-LAO/ST0 all exhibit high PL intensity, indicating a high concentration of oxygen vacancies at the interfaces. Since all these samples show similar metallic behavior, we propose that the emergent conductivity in the a-SA0/ST0 interface right after the deposition also originates from oxygen vacancies at the surface of ST0 (see Fig. 3B). This is similar to that at the a-LAO/ST0 interface (5, 6, 8) and is further supported by the correlation between the interfacial conductivity and concentration of oxygen vacancy. The PL spectrum of the as-received insulating ST0 substrate was also measured as a baseline. We found that the baseline is a broad and weak PL peak at 415 nm (3.0 eV), due to the defects in the bulk of the as-received ST0 substrate created during the crystal growth (8, 16). Because the defect density is very small, the as-received ST0 substrate is insulating. Therefore, using the PL spectrum of the as-received ST0 substrate as the baseline, any additional oxygen vacancies at the interface would produce a PL peak with a higher intensity than the baseline. As shown in Fig. 3A, after exposure to ambient conditions for 1 hour, the PL intensity of the a-SA0/ST0 interface notably decreases, demonstrating the effective removal of oxygen vacancies. This also eliminates the possibility of oxygen vacancies moving deeper into ST0 bulk in-gap state with lower energy (Fig. 3C) (17–19). This process at the a-SA0/ST0 interfaces can also be substantially accelerated by dissolving the a-SA0/ST0 sample in DI water (see Fig. S3). Eventually, by dissolving in DI water, both a-SA0/ST0 and a-ST0–capped a-SA0/ST0 heterointerfaces eventually become insulating with the final PL intensity the same as the PL baseline of
the as-received STO substrate. To summarize, as the a-SA0 overlayer dissolves, the oxygen vacancy–related PL intensity is quenched, and the conductivity of the a-SA0/STO heterointerfaces vanishes. Therefore, we further conclude that the amount of oxygen vacancies at the a-SA0/STO heterointerface can be effectively controlled by removing the a-SA0 overlayer and eventually determines the conductivity of the a-SA0/STO heterointerface.}

There are three mechanisms that have been intensively discussed to explain the origin of 2DEG created at the heterointerface of amorphous/crystalline layer and STO, namely, (i) electronic reconstruction to resolve the polar catastrophe (8), (ii) thermal interdiffusion at the interface (20), and (iii) creation of oxygen vacancies in the STO substrate due to redox reaction (5, 6, 8). First, the macroscopic a-SA0 grown on top of STO could be ordered on a local length scale (21). However, the a-SA0 may not be a polar oxide because it does not have well-ordered crystalline (LaO)+ or (AlO2)- sublayers as the LAO. In addition, we performed an annealing experiment to examine the possibility of any polar catastrophe–related mechanism (8, 21). We have prepared a crystalline SA0/STO (001) heterointerface at 760°C under oxygen partial pressure of 1 × 10−6 torr and then in situ annealed at 600°C for 1 hour in 1 bar of oxygen partial pressure to remove any oxygen vacancy. If the main origin is indeed the polar catastrophe, then the annealed crystalline SA0/STO heterointerface shall remain conducting (8). However, our annealed sample turns insulating. Therefore, the mechanism of polar catastrophe is experimentally ruled out. Second, an Al-doped STO (SrTi1−xAlxO3−δ) could be formed if the thermal interdiffusion of Ti and Al happens at the a-SA0/STO heterointerface. However, it is reported that SrTi1−xAlxO3−δ has a bandgap of 3.5 eV, which is 0.3 eV larger than that of undoped STO (22). Hence, the second possible mechanism is also ruled out. Last, we propose that the most probable mechanism for the origin of 2DEG is the oxygen vacancies resulting from the Al-induced redox reactions (5, 6, 8). After adding the a-SA0 layer, the interface becomes conducting because of the creation of oxygen vacancies. On the contrary, the interface becomes insulating because of the removal of oxygen vacancies by dissolving the a-SA0. This is consistent with the PL results in our study (see Fig. 3A).

Notably, this evolution of oxygen vacancy is in contrast to other previously reported STO-based amorphous 2DEG systems and our reference a-LA0/STO samples, where the RS(T) is stable (5). Normally, the oxygen vacancies are believed to remain in the STO after the removal of the a-SA0, because bulk oxygen vacancies are thermally stable at room temperature under ambient conditions. To be specific, oxygen atoms are expected to enter (or escape from) bulk STO only when both kinetic energy (typically >600°C) and oxidative (or reductive) conditions are simultaneously fulfilled (5, 23, 24). Hence, the results of tair-dependent conductivity and PL demonstrate an unexpected feature of the oxygen vacancies at the surface of STO, namely, that the oxygen vacancies at the surface can be removed when exposed to the humid environment instead of being permanent, like the bulk defects.

The oxygen vacancies are removed by the oxygen atoms either from the DI water or ambient O2. To identify the origin, we performed control experiments. First, we find that the RS(300 K) of the 4-nm a-SA0/STO heterointerface is almost constant after a storage of 12 hours in both 1-atm pure O2 and 1-atm pure N2 at room temperature. Second, while the heterointerface is sealed in 1-atm N2 environment, an abrupt MIT occurs only when a drop of DI water was added onto the surface. Hence, we can conclude that the oxygen atoms, which filling the oxygen vacancies, are from H2O instead of the O2 from air, as depicted in Fig. 3C. Previous studies have shown that the oxygen vacancies at the surface of many complex oxides, such as STO (25, 26), TiO2 (27, 28), and BaTiO3 (25, 29), are immediately filled at room temperature when exposed to water. The presence of hydroxide ions on the oxide surfaces is revealed by both scanning tunneling microscopy (27) and x-ray photoelectron spectroscopy (25, 26, 28, 29), which indicates that water dissociation at the oxygen vacancy into two hydroxide ions is an energetically favorable state (27, 29). Hence, the most possible chemical reaction to fill the oxygen vacancy is H2O + V0+ + O2− = 2(OH)−. The equations are expressed in Kröger-Vink notation, where V0+, O2−, and (OH)− denote oxygen vacancy, a lattice oxygen, and hydroxide ions occupying oxygen sites at the STO surface layer, respectively. In contrast, the conductance of both the reduced STO single-crystal substrate and oxygen-deficient thick STO film is stable, which is ascribed to the itinerant electrons buried deeply below the STO surface (30–32).

Two-band model

Unexpected complexity in the types, density, and mobility of the carriers can also be created at the a-SA0/STO heterointerface, depict of the mild room temperature deposition condition of a-SA0. Figure 4 shows the tair-dependent Hall resistance data with extracted nH and μH at T = 2.5 K. As the tair increases, RH(T) evolves from nonlinear (Fig. 4A) to almost linear behavior (Fig. 4B). In general, there are a number of possible origins of the nonlinear RH including (i) anomalous Hall effect in ferromagnetic materials (33), (ii) magnetic-field–induced phase transition (34), (iii) spatially separated parallel conducting channels (35–37), and (iv) different orbital occupancies of multiple types of itinerant carriers (14, 38, 39). In our case, the first two mechanisms can be ruled out as the system showed neither signature of ferromagnetic order nor magnetic-field–induced phase transition. In the case of spatially separated parallel conducting channels, the different types of
charge carriers are generally spread in two different regions, i.e., the overlayer and the interface (35–37). However, in our a-SAO/STO samples, the only conducting region is the surface, and the multiple types of carriers are not expected to be spread widely. We, therefore, conclude that the different orbital occupancies of itinerant carriers are the only reasonable origin for the observed nonlinear Hall effect. This is also in good agreement with the previous studies on the (001)-oriented STO-based 2DEG systems, where the itinerant electrons occupy the states of Ti 3d_{xy} and 3d_{xz,yz} energy bands (14, 38, 39). The nonlinear Hall effect in both cases can be well fitted by a two-band model. In the two-band conduction model, there are two types of carriers coexisting at the interface, and thus, the R_{xy} and R_{xx} can be written as

$$R_{xy} = R_{H}B \frac{(\mu_1^2 n_1 + \mu_2^2 n_2) + (\mu_1 \mu_2) (n_1 + n_2)}{e[\mu_1 (n_1 + n_2) + \mu_2 (n_1 + n_2) + (\mu_1 \mu_2)^2 (n_1 + n_2)]} B \quad (1)$$

and

$$R_{xx}(0) = \frac{1}{e[\mu_1 (n_1 + n_2)]} \quad (2)$$

where R_{H} is the Hall coefficient, and n_1, n_2 and μ_1, μ_2 are the densities and mobilities of the two types of carriers, respectively (33, 35, 36, 38, 40). As shown in Fig. 4A, the experimental data (hollow symbols) of the nonlinear R_{xy} can be fitted by Eq. 1 (solid lines) with two types of electrons. Figure 4 (C and D) summarizes the extracted two types of carrier density and carrier mobility as a function of t_{air} from 0 to 48 hours. We first focus our discussion on t_{air} from 0 to 18 hours. Figure 4 (C and D) shows that the minority electrons have a relatively constant density n_1 of 3.75 \times 10^{12} cm^{-2} with mobility μ_1 slightly increasing from 2100 to 3500 cm^{2} V^{-1} s^{-1}, whereas the majority of electrons have density n_2 decreasing from 6.12 \times 10^{13} to 1.56 \times 10^{13} cm^{-2} with mobility μ_2 notably increasing from 288 to 1261 cm^{2} V^{-1} s^{-1}. In the process, as the a-SAO is gradually dissolved, the enhancement in the carrier mobility shall be attributed to the reduction of defect scattering (13) and electron-electron scattering (41, 42). We note here the apparent appearance of a crossover point at $t_{air} = 24$ hours. For t_{air} longer than 24 hours, the electron mobility μ_1 and μ_2 becomes much closer. Providing $\mu_1 = \mu_2$, Eq. 1 can be simplified to $R_{xy} = \frac{1}{e[\mu_1 (n_1 + n_2)]} B$, consistent with the almost linear B dependence of R_{xy} (Fig. 4B). Overall, n_1 changes slightly, while n_2 decreases more than one order of magnitude, accompanied by an increase in mobility for both carriers with μ_2 (2242 cm^{2} V^{-1} s^{-1}) approaching μ_1 (3000 cm^{2} V^{-1} s^{-1}) at the crossover point of $t_{air} = 24$ hours.

First-principles calculations

We propose that the evolution of multiple types of carriers is due to the change of the density of oxygen vacancies formed at the a-SAO/STO heterointerface. To clarify this, first-principles calculations on a $2 \times 2 \times 9$ supercell of cubic STO (space group $Pm\bar{3}m$, no. 221) with different number of oxygen vacancies were carried out to investigate the band structure. Figure 5 (A to D) shows the perfect supercell and that with one, two, and three oxygen vacancies, respectively, where, for clarity, only partial atoms of the supercell along the vertical direction are displayed. The corresponding band structures are plotted in Fig. 5 (E to H), along the high-symmetry point: $M = (0.5, 0.5, 0)$, $\Gamma = (0, 0, 0)$, and $X = (0.5, 0, 0)$. It is apparent that, at the Γ point, there are two types of conduction bands near the Fermi energy with different symmetries are occupied. It turns out that the parabolic bands are of Ti 3d_{xy} character, and the asymmetry bands are of Ti 3d_{xz,yz} character. As we can see, the more oxygen vacancies at the heterointerface, the more Ti 3d_{xz,yz} orbitals are occupied. Moreover, the effective mass of electrons occupying the Ti 3d_{xy} orbital is lighter than that of electrons occupying the Ti 3d_{xz,yz} orbital, as the effective masses associated to different bands are proportional to the inverse of the second
derivative along G_X and G_M directions in the k-space $(43, 44)$. Therefore, on the basis of the orbital occupancies of the STO-based 2DEG systems $(14, 37, 38, 45-49)$, we conclude that the observed two types of electrons occupy different 3d orbitals: The first type of carriers with an almost constant carrier density (n_1) and higher mobility (μ_1) occupies the Ti 3$d_{x^2-y^2}$ subband, and the second type of carriers with a higher carrier density (n_2) and lower mobility (μ_2) occupies the Ti 3$d_{x^2+y^2}$ subbands.

DISCUSSION

In summary, we present an erasable and recreatable 2DEG at the interface between water-dissolvable a-SAO and STO. This interfacial 2DEG is induced by oxygen vacancies at room temperature, which is verified by the PL measurement. Taking a-LAO/STO heterointerface with a stable 2DEG as a control sample, we speculate that the erasable 2DEG is due to the water solubility of a-SAO. During the dissolving process, the oxygen vacancies, which were created by a-SAO and are responsible for the occurrence of 2DEG, are refilled rapidly once exposed directly to the ambient conditions or water. Moreover, the removal rate of the oxygen vacancies is accompanied by the evolution of two types of carriers, demonstrating a tantalizing band structure in the easily created and patterned 2DEG. The facile process to erase and recreate 2DEG in this study is of possible help to the future novel electronics with environment-friendly features.

MATERIALS AND METHODS

Sample preparation

The a-LAO, a-SAO, and a-STO films were deposited under oxygen partial pressure of 1×10^{-6} torr by pulsed laser deposition using a KrF excimer laser ($\lambda = 248$ nm) with a repetition rate of 1 Hz and a laser fluence of 1.3 J/cm2. For the STO substrates, a singly TiO$_2$ termination atomically flat surface was achieved by chemical etching and annealed at 950°C $(50, 51)$. Commercial LAO, STO single crystals, and sintered SAO ceramic were used as targets. Films deposited at room temperature showed an amorphous structure, which was confirmed by in situ reflection high-energy electron diffraction (RHEED). The growth rate was calibrated with the in situ RHEED oscillations obtained during the growth of single-crystalline SAO-STO samples (see fig. S1). All the amorphous films showed flat surfaces with a root mean square roughness less than 0.5 nm, as confirmed by atomic force microscopy (AFM).

Electronic transport and PL measurement

The sheet resistance and Hall effect were carried in a Quantum Design physical property measurement system with temperature range of 300 down to 2.5 K and magnetic fields up to 9 T. To determine the exact carrier density, a Hall bar pattern on STO substrate was prepared by a standard photolithography process. The PL spectra were carried at room temperature by a He-Cd laser with an excimer wavelength of 325 nm. A broad characteristic PL peak of oxygen vacancies centered at 430 nm (2.9 eV) was observed for different oxygen-deficient samples.

First-principles calculations

First-principles calculations were carried out using the Vienna Ab Initio Simulation Package (52) with the projector-augmented wave potentials (53). The kinetic energy cutoff is fixed to 520 eV, and the Monkhorst-Pack k-point mesh (54) is taken as $6 \times 6 \times 1$. The coordinates and the cell shape were fully relaxed until the forces acting on the atoms are all smaller than 0.05 eV/Å.

Fig. 5. First-principles calculations of electronic band structures of a $2 \times 2 \times 9$ supercell of cubic STO with oxygen vacancies. Side view of the supercell structure with (A) zero, (B) one, (C) two, and (D) three vacancies, where, for clarity, only four layers along the vertical direction are shown. Corresponding band structures with (E) zero, (F) one, (G) two, and (H) three vacancies are also plotted, respectively.
subband occupancy at the (La,Sr) O₂/SrTiO₃ interface. Phys. Rev. Mater. 1, 011601 (2017).

41. G. Cheng, M. Tomczyk, A. B. Tacla, H. Lee, S. Lu, J. P. Veazey, M. Huang, P. Irvin, S. Ryu, C.-B. Eom, A. Daley, D. Pekker, J. Levy, Tunable electron-electron interactions in LaAlO₃/SrTiO₃ nanostructures. Phys. Rev. X. 6, 041042 (2016).

42. X. Lin, B. Fauqué, K. Behnia, Scalable 2D resistivity in a small single-component Fermi surface. Science 349, 945–948 (2015).

43. A. Janotti, D. Steiauf, C. G. Van de Walle, Strain effects on the electronic structure of 2D electron gases mobility induced by interfacial localized electron screening effect. Nano Lett. 10, 166804 (2009).

44. Z. Zhong, P. Wissgott, K. Held, G. Sangiovanni, Microscopic understanding of the orbital splitting and its tuning at oxide interfaces. Europhys. Lett. 99, 37011 (2012).

45. M. Salluzzo, J. C. Cezar, N. B. Brookes, V. Bisogni, G. M. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijbens, A. Brinkman, G. Rijnberk, G. Ghiringhelli, Orbital reconstruction and the two-dimensional electron gas at the LaAlO₃/SrTiO₃ interface. Phys. Rev. Lett. 102, 166804 (2009).

46. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, G. Koster, B. L. Kropman, G. J. H. M. Rijnders, D. H. A. Blank, H. Rogalla, Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920–2922 (1998).

47. A. Janotti, D. Steiauf, C. G. Van de Walle, Strain effects on the electronic structure of 2D electron gases mobility induced by interfacial localized electron screening effect. Nano Lett. 10, 166804 (2009).

48. X. Chi, Z. Huang, T. C. Asmara, K. Han, X. Yin, X. Yu, C. Diao, M. Yang, D. Schmidt, P. Yang, P. E. Trevisanutto, T. J. Whitcher, T. Venkatesan, M. B. H. Breese, Ariando, A. Rusydi, Large enhancement of 2D electron gases mobility induced by interfacial localized electron screening effect. Adv. Mater. 30, 1707428 (2018).

49. J. Park, B.-G. Cho, K. D. Kim, J. Koo, H. Jang, K.-T. Ko, J.-H. Park, K.-B. Lee, J.-Y. Kim, D. R. Lee, C. A. Burns, S. S. A. Sea, H. N. Lee, Oxygen-vacancy-induced orbital reconstruction of Ti atoms at the interface of LaAlO₃/SrTiO₃ heterostructures: A resonant soft-X-ray scattering study. Phys. Rev. Lett. 110, 017401 (2013).

50. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

51. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

52. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

53. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

54. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

Acknowledgments: We thank C. Mun Yin and K. Onggadinata for their fruitful discussion. Funding: X.R.W. acknowledges supports from the Nanyang Assistant Professorship grant from Nanyang Technological University and Academic Research Fund Tier 1 (RG108/17 and RG177/18) and Tier 3 (MOE2018-T3-1-002) from Singapore Ministry of Education. K. Hu acknowledges financial support from National Natural Science Foundation of China (grant no. 11647108) and the China Scholarship Council (grant no. 201808440038). Z.H., S.Z., and A.A. acknowledge the support from the NUS Academic Research Fund (AcRF Tier 1 grant nos. R-144-000-391-114 and R-144-000-364-112) and the Singapore National Research Foundation (NRF) under the Competitive Research Programs (CRP grant no. NRF-CRP15-2015-01). D.Q. and J.Y. acknowledge the support of the Australian Research Council (grant no. FT160100207 and FT160100205, respectively). Author contributions: X.R.W., W.L., and K.Ha. conceived and designed the experiments. K. Hu and X.R.W. wrote the manuscript with help from all other authors. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 19 January 2019
Accepted 11 July 2019
Published 16 August 2019
10.1126/sciadv.aaw7286

Citation: K. Han, K. Hu, X. Li, K. Huang, Z. Huang, S. Zeng, D. Qi, C. Ye, J. Yang, H. Xu, A. Ariando, J. Yi, W. Lu, S. Yan, X. R. Wang, Erasable and recreatable two-dimensional electron gas at the heterointerface of SrTiO₃ and a water-dissolvable overlayer. Sci. Adv. 5, eaaw7286 (2019).
Erasable and recreatable two-dimensional electron gas at the heterointerface of SrTiO₃ and a water-dissolvable overlayer

Kun Han, Kaige Hu, Xiao Li, Ke Huang, Zhen Huang, Shengwei Zeng, Dongchen Qi, Chen Ye, Jian Yang, Huan Xu, Ariando Ariando, Jiabao Yi, Weiming Lü, Shishen Yan and X. Renshaw Wang

Sci Adv 5 (8), eaaw7286.
DOI: 10.1126/sciadv.aaw7286

Use of this article is subject to the Terms of Service