Predictors of persistent functional tricuspid regurgitation after transcatheter closure of atrial septal defect and its relationship to tricuspid valve remodeling

Follow this and additional works at: https://www.j-saudi-heart.com/jsha

Part of the Cardiology Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation
Abohamar, Marwa Desoky; Ashmawy, Medhat Mohamed; Kasem, Hanan Kamel; Hamdy, Ehab Abdelwahab; and El Sheikh, Raghda Ghonimy (2021) "Predictors of persistent functional tricuspid regurgitation after transcatheter closure of atrial septal defect and its relationship to tricuspid valve remodeling," Journal of the Saudi Heart Association: Vol. 33 : Iss. 1 , Article 5. Available at: https://doi.org/10.37616/2212-5043.1241

This Original Article is brought to you for free and open access by Journal of the Saudi Heart Association. It has been accepted for inclusion in Journal of the Saudi Heart Association by an authorized editor of Journal of the Saudi Heart Association.
Predictors of Persistent Functional Tricuspid Regurgitation After Transcatheter Closure of Atrial Septal Defect and its Relationship to Tricuspid Valve Remodeling

Marwa Desoky Abohamar*, Medhat Mohamed Ashmawy, Hanan Kamel Kasem, Ehab Abdelwahab Hamdy, Ragha Ghonimy El Sheikh

Cardiovascular Medicine Department, Faculty of Medicine, Tanta University, Egypt

Abstract

Objectives: The aim of this study is assessment of persistent functional tricuspid regurgitation in patients with atrial septal defect before and after successful device closure and its relationship to tricuspid valve remodeling.

Methods: The current study was conducted on 60 patients referred to Tanta University Hospital Cardiology Department with the provisional diagnosis of atrial septal defect secundum type for transcatheter closure from December 2017 to December 2019. All patients were subjected to history taking, clinical examination, 12 lead electrocardiography, plain chest X-ray, full two dimension transthoracic echocardiography (for assessment of tricuspid regurgitation severity) before and at 3, 6 months after transcatheter closure.

Results: Tricuspid regurgitation was decreased significantly after atrial septal defect closure due to remodeling in the right side. Age, estimated systolic pulmonary artery pressure, right atrium end systolic area, right ventricular end diastolic area, tricuspid valve tenting area and height, tricuspid septal leaflet angle and tricuspid annular diameter were predictors of persistent tricuspid regurgitation after 3 and 6 months of closure. Only estimated systolic pulmonary artery pressure, tricuspid septal leaflet angle and tricuspid annular diameter were independent predictors of persistent tricuspid regurgitation after 3, and 6 months of closure.

Conclusion: Tricuspid regurgitation significantly improved after transcatheter atrial septal defect closure despite its significance at baseline due to remodeling in right side and tricuspid valve.

Keywords: Tricuspid regurgitation, Atrial septal defect, Tricuspid septal leaflet angle

1. Introduction

Atrial septal defect (ASD) accounts for 10% of congenital heart diseases [1]. Secundum ASD is a common type of ASD that causes shunting of blood between the systemic and pulmonary circulations [2].

While surgical repair has excellent results in the medium and long terms [3], percutaneous device closure is the preferred method in the management of the majority of secundum ASDs [4].

Functional tricuspid regurgitation (TR) often occurs in patients with ASD due to failure of tricuspid valve (TV) to properly coapt as a result of long-standing left-to-right shunting with subsequent right heart enlargement, tricuspid annular dilatation, papillary muscle displacement and tethering of tricuspid leaflets which are the main mechanisms of functional TR [4].

The aim of this study is assessment of persistent functional TR in patients with ASD before and after successful device closure and its relationship to tricuspid valve remodeling.

Received 31 December 2020; revised 9 February 2021; accepted 10 February 2021.
Available online 15 April 2021

* Corresponding author at: Cardiovascular Medicine Department, Faculty of Medicine, Tanta University, Egypt
E-mail address: marwa_desoky87@yahoo.com (M.D. Abohamar).

https://doi.org/10.37616/2212-5043.1241
2212-5043© 2021 Saudi Heart Association. This is an open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2. Materials and methods

This study included 60 Egyptian patients with congenital ASD regardless to the age referred to cardiology department Tanta University for percutaneous transcatheter closure from December 2017 to December 2019.

2.1. Study approval

A) Ethics

Permission obtained from Research Ethics Committee as a part of Quality Assurance Unit in Faculty of Medicine at Tanta University to conduct this study and to use the facilities in the hospital.

B) Consent

Informed written consent was obtained from all patients after a full explanation of the benefits and risks of the study.

2.2. Inclusion criteria

Patients with secundum ASD with left to right shunt and an increased right ventricular volume overload or presence of right ventricular dilatation and suitable for percutaneous transcatheter closure, sinus rhythm.

2.3. Exclusion criteria

Primary TR, residual ASD after device closure, associated other congenital heart disease, primum and venosus type ASDs, eisenmenger’s patients, bad echo window, irregular rhythm and left ventricular ejection fraction <50%.

3. Methods

All patients were subjected to the following: history including: age, sex, body surface area and symptoms suggestive of significant ASD. Full general and local cardiac examination. Twelve leads surface electrocardiography (ECG). Plain chest x-ray poster anterior view. Routine laboratory investigations: complete blood picture, International normalized ratio, clotting time, bleeding time, renal function tests, C-reactive protein and virology.

3.1. Transcatheter ASD closure

This was the first time of intervention for all patients. The main limitation of transcatheter ASD closure was either insufficient or absent either superior and posterior rims together or Inferioposterior (IVC) rim alone, so these cases were excluded from our study. The procedure was performed under general or local anesthesia using both echocardiographic and fluoroscopic guidance. TTE was used to document complete occlusion of the defect and TEE was used in some cases mostly adults. Vascular access was obtained from the right femoral vein using a 5 F or 6 F sheath, right femoral artery was accessed if needed. The same approach in the standard ways was done in all patients but in cases with deficient aortic rim modified techniques like the pulmonary vein deployment technique or left atrial roof deployment method was used especially in adults. Amplatzer devices were used in 75% of patients while Occlutech devices were used in 25% patients with size range from 12 to 38 mm. All patients received short term antibiotic and anti-platelets (for 6 months) after the procedure.

3.2. Full two dimension transthoracic echocardiography (2D TTE)

All patients underwent TTE 12–24 h before as well as 3 and 6 month after successful closure (Vivid E9, General Electric Corporation). All measurements were assessed offline by single observer and averaged from 5 consecutive cardiac cycles. Right ventricular (RV) function was measured by fractional area change (FAC), tricuspid plane annulus systolic excursion (TAPSE) and systolic velocity of tricuspid annulus (S’wave). Right atrium (RA) area was measured at end-systole and RV area was measured in both end-diastole and end-systole at

Abbreviation

ASD Atrial septal defect
CI Confidence intervals
ECG Electrocardiogram
ESPAP Estimated systolic pulmonary artery pressure
FAC Fractional area change
OR Odds ratios
PISA Proximal isovelocity surface area
RA Right atrium
SD Standard Deviation
TA Tricuspid annulus
TAD Tricuspid annulus diameter
TAPA Tricuspid anterior leaflet angle
TAPSE Tricuspid annular plane systolic excursion
TEE Trans esophageal Echocardiography
TTE Transthoracic Echocardiography
TSLATricuspid septal leaflet angle, TR Tricuspid septal leaflet angle, TR Tricuspid regurgitation
2D TTE Two dimension transthoracic Echocardiography, 3D Two dimension transthoracic Echocardiography, 3D Three dimension.
The apical four-chamber, RV inflow, parasternal short-axis, and subcostal views were used for assessment of tricuspid valve, TR was measured by visual assessment of Color-flow TR jet: (trivial/mild: small, central jet—moderate: intermediate jet-severe: very large central or eccentric wall impinging jet), shape and intensity of continuous wave Doppler of TR jet signals: (trivial/mild: faint/parabolic —moderate: dense/parabolic -severe: dense triangular with early peaking), vena contracta width: (trivial/mild: less than 3 mm –moderate: 3–6.9 mm - severe: 7 mm or more) and PISA radius (trivial/mild: 5 mm or less –moderate: 6–9 mm - severe: more than 9 mm). In presence of conflicting parameters we depend on color-flow TR jet and the shape and intensity of continuous wave Doppler of TR jet signals because the results of these two parameters were nearly similar in assessment of grades of TR [6]. (Fig. 1). Estimated systolic pulmonary artery pressure (ESPAP) was calculated using the TR jet method [5]. The tenting area, tenting height, tricuspid septal (TSLA) and anterior leaflet angles (TALA) were measured in apical 4 chamber view in mid systole, tricuspid annulus diameter (TAD) was measured in the same view at an end-diastole (Fig. 2) [7].

3.3. Statistical analysis

The collected data were statistically analyzed by SPSS version 20 (IBM, Chicago, Illinois, USA). The qualitative variables were described by mean, standard deviation and range which were compared by student “t-test, while the qualitative parameters were described by number of frequency and percentage, and chi square or Fisher's exact test was used for data analysis. All tests of statistical significance were adopted at p < 0.05. Univariate and multivariate logistic regression analyses were performed to identify predictors of persistent TR after the procedure. Odds ratios (OR) are shown with 95% confidence intervals (CI).

4. Results

1) Patient characteristics:

The age of the patients ranged from 2 to 45 years. They were 30% males and 70% females. 78% were symptomatic.

2) 2D transthoracic echocardiography:

A) Echocardiographic parameters of reverse remodeling:

RA end-systolic area, RV end diastolic, RV end-systolic area Tricuspid valve (TV) tenting area, tenting height, TSLA, TALA, tricuspid annulus diameter and ESPAP were significantly decreased after 3 and 6 months post closure. As regard RV function, there was significant decrease in FAC, TAPSE at 3 and 6 months after closure also there was significant decrease S’wave 3 and 6 months after closure but there was non-significant change after 3 months as compared to 6 months after closure (Tables 1 and 2).

B) Tricuspid regurgitation:

We demonstrated that TR was decreased significantly at 3 and 6 months after ASD closure (Table 3), but there was non-significant difference between improved and persistent TR between 3 and 6 months after ASD closure. (Table 4).

C) Predictors of persistent TR:

Univariable logistic regression analysis for determinants of persistent TR at 3 and 6 months after closure:
The variables used were chosen based on clinical expertise, past literature and data availability. The age, ESPAP, RA end systolic area, RV end diastolic area, TV tenting area, TV tenting height, TSLA and tricuspid annular diameter were predictors of persistent TR after 3 and 6 months of closure (Table 5).

Multivariable logistic regression analysis for determinants of persistent TR at 3 and 6 months after closure

In multivariable analysis performed using the significant variables, ESPAP, TSLA and tricuspid annulus diameter at 3 and 6 months after ASD closure were independent predictors associated with persistent TR (Table 6).

5. Discussion

The current study was done on 60 patients with congenital ASD regardless to the age undergone to percutaneous transcatheter closure. We have shown a significant decrease in RA end systolic area, RV end diastolic and end-systolic area at 3 months and 6 months post closure. In many previous studies, the results of transcatheter closure of ASD on right heart chamber size have been evaluated which were concordant with our study, Beata Kucinska et al. 2010, demonstrated a significant decrease in RA and RV dimensions after 24 h and 1 month after transcatheter closure of ASD [8]. Also Vidya Sagar Akula et al. 2016, reported that RA end systolic area and RV size were decreased significantly up to 6 months after closure [9].

As regard RV function, there was significant decrease in FAC, TAPSE and S'wave at 3 and 6 months after closure also there was significant decrease S'wave at 3 and 6 months after closure but there was non-significant change at 3 months as compared to 6 months after closure. Oliver Monfredi et al. 2013, demonstrated that FAC, TAPSE and S'wave decreased over 2 months post closure procedure which were concordant with our study [10]. Vidya
Table 1. Comparison between RA end-systolic area, RV end-diastolic area, RV end-systolic area, FAC, TAPSE and S’wave velocity before, 3 and 6 months after closure.

Time	RA end systolic area (cm²)	Comparison	Differences	Paired Test				
	Range	Mean ± SD		Mean SD	t	P-value		
Before	7.5	29	16.447 ± 5.993	Before-After3 months	5.023	1.687	23.058	<0.001*
After 3 Months	4	23	11.423 ± 5.007	Before-After 6 months	8.340	3.005	21.499	<0.001*
After 6 Months	3	19.2	8.107 ± 3.634	After-3 - After 6 months	3.317	1.840	13.961	<0.001*

Time	RV end diastolic area (cm²)	Comparison	Differences	Paired Test				
	Range	Mean ± SD		Mean SD	t	P-value		
Before	9.5	38.5	23.247 ± 8.321	Before-After3 months	7.717	2.504	23.872	<0.001*
After 3 Months	6.1	30	15.530 ± 6.569	Before-After 6 months	12.708	4.363	22.562	<0.001*
After 6 Months	4	26	10.538 ± 4.657	After-3 - After 6 months	4.992	2.438	15.862	<0.001*

Time	RV end systolic (cm²)	Comparison	Differences	Paired Test				
	Range	Mean ± SD		Mean SD	t	P-value		
Before	5.6	23.5	13.563 ± 5.143	Before-After3 months	3.868	1.487	20.150	<0.001*
After 3 Months	3.8	22	9.695 ± 4.325	Before-After 6 months	6.908	2.590	20.663	<0.001*
After 6 Months	2.5	16.6	6.655 ± 2.991	After-3 - After 6 months	3.040	1.559	15.104	<0.001*

Time	FAC %	Comparison	Differences	Paired Test				
	Range	Mean ± SD		Mean SD	t	P-value		
Before	39	46	42.033 ± 1.983	Before-After3 months	4.300	1.169	28.497	<0.001*
After 3 Months	35	40	37.733 ± 1.191	Before-After 6 months	5.433	1.500	28.059	<0.001*
After 6 Months	35	39	36.600 ± 0.906	After-3 - After 6 months	1.133	0.747	11.750	<0.001*

Time	TAPSE (cm)	Comparison	Differences	Paired Test				
	Range	Mean ± SD		Mean SD	t	P-value		
Before	2	3.5	2.718 ± 0.21	Before-After3 months	0.480	0.116	32.010	<0.001*
After 3 Months	1.7	2.7	2.238 ± 0.21	Before-After 6 months	0.888	0.185	37.171	<0.001*
After 6 Months	1.5	2.2	1.830 ± 0.191	After-3 - After 6 months	0.408	0.114	27.762	<0.001*

Time	S’wave (cm/sec)	Comparison	Differences	Paired Test				
	Range	Mean ± SD		Mean SD	t	P-value		
Before	15	24	18.950 ± 1.899	Before-After3 months	1.683	1.228	10.617	<0.001*
After 3 Months	12	22	17.267 ± 2.002	Before-After 6 months	1.733	1.191	11.270	<0.001*
After 6 Months	12	22	17.217 ± 2.100	After-3 - After 6 months	0.050	0.220	1.762	0.083

FAC: Fractional area change, RA: Right atrium, RV: Right ventricle and TAPSE: Tricuspid annular plane systolic excursion.

Sagar Akula et al 0.2016, reported that there were statistically significant decrease in FAC, TAPSE and S’wave 1 month post closure.6 months post closure, there were no significant differences in S’wave in comparison with 1 month post closure which is concordant with our study, but no significant differences in TAPSE and FAC in comparison with 1 month post closure which is discordant with our study [9].

Also tricuspid valve tenting area, tenting height, TSLA, TALA, tricuspid annulus diameter were significantly decreased at 3 and 6 months post closure. Agustin C et al. 2020 demonstrated that, there was a significant decrease in TV annular diameter, TV tenting height and TV tenting area at 6 months and 1 year after closure [11].

We have shown that TR was decreased significantly after closure due to remodeling in right side and TV anatomy; of all 60 patients: 23.33% and 10% of patients had persistent TR after 3 and 6 months after closure respectively. Age, ESPAP, RA end systolic area, RV end diastolic area, TV tenting area, TV tenting height, TSLA and tricuspid annular diameter were predictors of persistent TR after 3 and 6 months after closure. Only ESPAP, TSLA and tricuspid annular diameter were independent predictors of persistent TR after 3, and 6 months post closure. Chen et al. 2018, reported significant TR reduction at 1 and 6-month after closure which is correlated with age, left atrial diameter and volume, ESPAP, RA and RV volume but only age and EPASP were independent determinants of persistent TR at follow up [12]. Fang et al. 2015, a significant TR reduction after 3 months post closure. RV end diastolic area, tricuspid annular diameter, tricuspid tenting area and TSLA were predictors of persistent...
TR: Tricuspid regurgitation.

Table 2. Comparison between tricuspid valve tenting area, tenting height, TSLA, TALA, tricuspid annulus diameter and ESPAP before, 3 and 6 months after closure.

Time	Tenting area (cm²)	Comparison.	Differences	Paired Test		
	Range	Mean ± SD	Before-After 3 months	Mean ± SD	t	P-value
Before	0.3	2.8 ± 1.187	0.575	Before-After 3 months	0.383 ± 0.225	13.205 <0.001*
After 3 Months	0.3	2 ± 0.803	0.391	Before-After 6 months	0.630 ± 0.364	13.399 <0.001*
After 6 Months	0.2	1.7 ± 0.557	0.260	After 3-6 months	0.247 ± 0.189	10.105 <0.001*

Time	Tenting height (cm)	Comparison.	Differences	Paired Test		
	Range	Mean ± SD	Before-After 3 months	Mean ± SD	t	P-value
Before	0.4	1.6 ± 0.797	0.274	Before-After 3 months	0.210 ± 0.124	13.069 <0.001*
After 3 Months	0.3	1.2 ± 0.587	0.183	Before-After 6 months	0.360 ± 0.173	16.127 <0.001*
After 6 Months	0.2	0.9 ± 0.437	0.134	After 3-6 months	0.150 ± 0.083	13.938 <0.001*

Time	Annulus diameter (cm)	Comparison.	Differences	Paired Test		
	Range	Mean ± SD	Before-After 3 months	Mean ± SD	t	P-value
Before	2.2	4.5 ± 3.543	0.682	Before-After 3 months	0.580 ± 0.178	25.195 <0.001*
After 3 Months	1.8	4.1 ± 2.963	0.673	Before-After 6 months	0.982 ± 0.233	32.601 <0.001*
After 6 Months	1.5	3.9 ± 2.562	0.634	After 3-6 months	0.402 ± 0.147	21.208 <0.001*

Time	Tricuspid septal leaflet angle (TSLA) (Degree)	Comparison.	Differences	Paired Test		
	Range	Mean ± SD	Before-After 3 months	Mean ± SD	t	P-value
Before	22	48 ± 32.883	6.173	Before-After 3 months	7.933 ± 3.359	18.294 <0.001*
After 3 Months	19	35 ± 24.950	3.771	Before-After 6 months	13.833 ± 4.698	22.807 <0.001*
After 6 Months	15	24 ± 19.050	2.273	After 3-6 months	5.900 ± 2.199	20.779 <0.001*

Time	Tricuspid anterior leaflet angle (TALA) (Degree)	Comparison.	Differences	Paired Test		
	Range	Mean ± SD	Before-After 3 months	Mean ± SD	t	P-value
Before	18	38 ± 24.983	5.014	Before-After 3 months	4.983 ± 2.288	16.868 <0.001*
After 3 Months	15	29 ± 20.000	3.319	Before-After 6 months	8.933 ± 3.030	22.836 <0.001*
After 6 Months	12	23 ± 16.050	2.727	After 3-6 months	3.950 ± 1.512	20.238 <0.001*

Time	ESPAP (mmHg)	Comparison.	Differences	Paired Test		
	Range	Mean ± SD	Before-After 3 months	Mean ± SD	t	P-value
Before	25	60 ± 41.050	10.355	Before-After 3 months	13.150 ± 4.449	22.897 <0.001*
After 3 Months	15	48 ± 27.900	9.189	Before-After 6 months	23.317 ± 7.984	22.621 <0.001*
After 6 Months	15	40 ± 17.733	4.317	After 3-6 months	10.167 ± 6.641	11.858 <0.001*

ESPAP: Estimated systolic pulmonary artery pressure, TALA: Tricuspid anterior leaflet angle, TSLA: Tricuspid septal leaflet angle.

TR at 3 months post closure. Tricuspid annulus diameter and TSLA were independent predictors of persistent TR [7]. Agustin C et al. 2020, a significant reduction in the TR,6.8% and 12.3% at 6 and 12 months post closure, respectively. They found no differences in RV parameters between those with and without residual TR, this may suggest that longstanding preoperative remodeling of the tricuspid valve parameters were responsible for TR, with limited influence of RV changes This may also explain why persistent TR at 12 months was higher...

Table 3. Pre-and post-closure TR grades in number and percentages.

TR	Before Number %	After 3 Months Number %	After 6 Months Number %
Trace	0.00	11.33	32.33
Mild	34.67	35.00	22.33
Moderate	30.00	30.00	6.00
Severe	13.33	13.33	0.00
Total	100.00	100.00	100.00

Chi-Square	Before-After 3 months Number %	After-After 6 months Number %	After-3 months After-6 months Number %
X²	19.514	48.571	16.421
P-value	<0.001*	<0.001*	<0.001*

Table 4. Post procedural Improved and persistent TR.

TR	After 3 Months Number %	After 6 Months Number %	Chi-Square X²	P-value	
Improved	46	76.67	90.00	2.940	0.086
Persistent	14	23.33	6.00	10.00	
Total	60	100.00	60.00	100.00	

Improved indicates (trace or mild), persistent indicates (moderate or severe).

TR: Tricuspid regurgitation.
Table 5. Uni-variable logistic regression analysis for determinants of persistent TR at 3 and 6 months after closure.

	TR at 3 months		T-Test	
	Improved Mean ± SD	Persistent Mean ± SD	t	P-value
Age (Years)	13.654 ± 11.127	36.643 ± 5.329	-7.442	<0.001*
Shunt size (mm)	20.087 ± 7.330	22.500 ± 8.112	-1.052	0.297
ESPAP (mmHg)	24.239 ± 5.904	39.929 ± 7.701	-8.094	<0.001*
RA end systolic area (cm²)	9.487 ± 3.556	17.786 ± 3.628	-7.611	<0.001*
RV end diastolic (cm²)	13.117 ± 5.152	23.457 ± 3.962	-6.899	<0.001*
Tenting area (cm²)	0.657 ± 0.262	1.286 ± 0.561	-1.713	<0.001*
Tenting height (cm)	0.522 ± 0.115	0.800 ± 0.204	-6.507	<0.001*
TSLA (Degree)	23.696 ± 2.772	29.071 ± 3.751	-5.834	<0.001*
TALA (Degree)	19.826 ± 3.164	20.571 ± 3.857	-0.733	0.467
Annulus diameter (cm)	2.737 ± 0.594	3.707 ± 0.237	-5.942	<0.001*

TR at 6 months

| | Improved Mean ± SD | Persistent Mean ± SD | t | P-value |
|----------------|---------------|------------------|--------|
| Age (Years) | 16.687 ± 12.747 | 40.000 ± 3.633 | -4.429 | <0.001* |
| Shunt size (mm)| 20.481 ± 7.630 | 22.167 ± 6.853 | -0.518 | 0.607 |
| ESPAP (mmHg) | 16.759 ± 2.248 | 26.500 ± 7.994 | -7.113 | <0.001* |
| RA end systolic area (cm²) | 7.481 ± 2.998 | 13.733 ± 4.281 | -4.643 | <0.001* |
| RV end diastolic (cm²) | 9.820 ± 4.040 | 17.000 ± 5.215 | -4.016 | <0.001* |
| Tenting area (cm²) | 0.511 ± 0.176 | 0.967 ± 0.497 | -4.762 | <0.001* |
| Tenting height (cm) | 0.415 ± 0.105 | 0.633 ± 0.207 | -4.320 | <0.001* |
| TSLA (Degree) | 18.852 ± 2.210 | 20.833 ± 2.229 | -2.082 | 0.042* |
| TALA (Degree) | 16.222 ± 2.786 | 14.500 ± 1.517 | 1.482 | 0.144 |
| Annulus diameter (cm) | 2.480 ± 0.601 | 3.300 ± 0.434 | -3.328 | 0.002* |

ESPAP: Estimated systolic pulmonary artery pressure, RA: Right atrium, RV: Right ventricle, TALA: Tricuspid anterior leaflet angle, TR: Tricuspid regurgitation, TSLA: Tricuspid septal leaflet angle.

table 6. Multivariable logistic regression analysis for determinants of persistent TR at 3 and 6 months after closure.

	3 months	6 months	OR	95.0% C.I	P-value
Age (Years)	1.397	1.066	1.397	0.996–2.561	0.152
ESPAP (mmHg)	1.541	1.385	1.541	0.376–2.542	0.022*
RA end systolic (cm²)	1.393	1.084	1.393	0.798–2.178	0.120
RV end diastolic (cm²)	1.453	1.057	1.453	1.249–2.461	0.091
Tenting area (cm²)	0.993	0.515	0.993	0.722–1.366	0.566
Tenting height (cm)	0.641	0.515	0.641	0.376–2.542	0.471
TSLA (Degree)	1.618	1.138	1.618	1.252–2.091	<0.001*
TALA (Degree)	1.575	1.202	1.575	0.820–2.536	0.010*

C.I: confidence interval, ESPAP: Estimated systolic pulmonary artery pressure, OR: Odds ratio, RA: Right atrium, RV: Right ventricle, TALA: Tricuspid anterior leaflet angle, TR: Tricuspid regurgitation, TSLA: Tricuspid septal leaflet angle.

compared with 6 months post [11]. Toyono et al. 2009, they found that significant TA dilatation and leaflet tethering (concordant with our study) were predictive of persistent TR, not RV remodeling (disconcordant with our study) [13].

5.1. Study limitations

Our follow up period is relatively short, also we used 2D instead of 3D echocardiography to measure TV parameters while 3D echocardiography may be more accurate to evaluate TV structures.

6. Conclusion

TR significantly improved after transcatheter ASD closure despite its significance at baseline due to remodeling in right side and tricuspid valve.

Author's contribution

Marwa Desoky Abohamar: Conception and design of Study, Literature review, Analysis and interpretation of data, Research investigation and analysis, Data collection, Drafting of manuscript, Revising and editing the manuscript critically for important intellectual contents.

Medhat Mohamed Ashmawy: Conception and design of Study, Drafting of manuscript, Revising
and editing the manuscript critically for important intellectual contents.

Hanan Kamel Kasem: Conception and design of Study, Literature review, Data collection, Drafting of manuscript, Revising and editing the manuscript critically for important intellectual contents.

Ehab Abdelwahab Hamdy: Conception and design of Study, Literature review, Analysis and interpretation of data, Research investigation and analysis, Data collection, Revising and editing the manuscript critically for important intellectual contents.

Raghda Ghonimy El Sheikh: Conception and design of Study, Drafting of manuscript, Literature review, Research investigation and analysis, Data collection, Revising and editing the manuscript critically for important intellectual contents.

Disclosure of funding

The authors declare that they have no funding.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] Van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 2011;58:2241–7. https://doi.org/10.1016/j.jacc.2011.08.025.

[2] Geva T, Martins JD, Wald RM. Atrial septal defects. Lancet 2014;383:1921–32. https://doi.org/10.1016/S0140-6736(13)62145-5.

[3] Roos-Hesselink JW, Meiboom FJ, Spitaels SEC, Van Domburg R, Van Rijen, Simoons ML, et al. Excellent survival and low incidence of arrhythmias, stroke and heart failure long-term after surgical ASD closure at young age. A prospective follow-up study of 21–33 years. Eur Heart J 2003;24:190–7. https://doi.org/10.1016/S0195-668X(02)00383-4.

[4] Webb G, Gatzoulis MA. Atrial septal defects in the adult: recent progress and overview. Circulation 2006;114:1645–53. doi:10.1161.

[5] Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American society of echocardiography. Endorsed by the European association of echocardiography, a registered branch of the European society of cardiology, and. J Am Soc Echocardiogr 2010;23(7):685–713. https://doi.org/10.1016/j.echo.2010.05.010.

[6] Lancellotti P, Moura L, Pierard LA, Agricola E, Popescu BA, Tribouilloy C, et al. European association of echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr 2010;11(3):223–44. https://doi.org/10.1093/ejcho/ejpq031.

[7] Fang F, Wang J, Yip GWK, Lam YY. Predictors of mid-term functional tricuspid regurgitation after device closure of atrial septal defect in adults: impact of pre-operative tricuspid valve remodeling. Int J Cardiol 2015;187:447–52. https://doi.org/10.1016/j.ijcard.2015.03.332.

[8] Kucinska B, Werner B, Wroblewska-Kaluzewska M. Assessment of right atrial and right ventricular size in children after percutaneous closure of secundum atrial septal defect with Amplatzer septal occluder. Arch Med Sci 2010;6(4):567. https://doi.org/10.5114/aoms.2010.14469.

[9] Akula VS, Durgaprasad R, Velam V, Kasala L, Rodda M, Erathi HV. Right ventricle before and after atrial septal defect device closure. Echocardiography 2016;33(9):1381–8. https://doi.org/10.1111/echo.13250.

[10] Monfredi O, Luckie M, Mirjafari H, Willard T, Buckley H, Griffiths L, Mahadevan V, et al. Percutaneous device closure of atrial septal defect results in very early and sustained changes of right and left heart function. Int J Cardiol 2013;167(4):1578–84. https://doi.org/10.1016/j.ijcard.2012.04.081.

[11] A C, Dimopoulos K, Boutsikou M, Martin-Garcia A, Kempny A, Alonso-Gonzalez R, et al. Tricuspid regurgitation severity after atrial septal defect closure or pulmonic valve replacement. Heart 2020;106(8):455–61. https://doi.org/10.1136/heartjnl-2019-315287.

[12] Chen L, Shen J, Shan X, Wang F, Kan T, Tang X, et al. Improvement of tricuspid regurgitation after transcatheter ASD closure in older patients. Herz 2018;43(6):529–34. https://doi.org/10.1007/s00059-017-4594-x.

[13] Toyono M, Fukuda S, Gillinov AM, Pettersson GB, Matsumura Y, Wada N, et al. Different determinants of residual tricuspid regurgitation after tricuspid annuloplasty: comparison of atrial septal defect and mitral valve prolapse. J Am Soc Echocardiogr 2009;22(8):899–903. https://doi.org/10.1016/j.echo.2009.04.005.