Identification of Arx targets unveils new candidates for controlling cortical interneuron migration and differentiation

Gaëlle Friocourt1,2,3,* and John G. Parnavelas4

1 Laboratory of Molecular Genetics and Histocompatibility, INSERM U813, Brest, France
2 Laboratory of Molecular Genetics and Histocompatibility, Centre Hospitalier Universitaire Brest, Brest, France
3 Faculté de Médecine de Brest et des Sciences de la Santé, IFR148, Brest University, Brest, France
4 Department of Cell and Developmental Biology, University College London, London, UK

*Correspondence: Gaëlle Friocourt, Laboratory of Molecular Genetics and Histocompatibility, INSERM U813, 29218 Brest Cedex 2, France. e-mail: gaëlle.friocourt@univ-brest.fr

INTRODUCTION

The cerebral cortex is formed of two broad classes of neurons: excitatory projection neurons, which primarily use glutamate as a neurotransmitter, and inhibitory GABA-containing interneurons. Whereas projection neurons are generated directly from neuroepithelial progenitors in the ventricular and subventricular zones (VZ and SVZ; reviewed by Zisch et al., 2005; Aminov, 2009), inhibitory GABAergic interneurons are generated in the ventral forebrain and reach the cortex for controlling cortical interneuron migration and/or differentiation. Between E13.5 and E15.5, interneurons are generated in the ventral forebrain, termed medial ganglionic eminences (MGE) and, to a smaller extent, from the embryonic preoptic area (Lavdas et al., 2002; Kriegstein and Noctor, 2004) or indirectly from intermediate progenitors in the subventricular zone (SVZ; Noctor et al., 2001, 2004), the majority of interneurons are generated in the ventral forebrain and reach the cortex by tangential migration along well-defined streams, guided by a combination of chemotactic and repulsive cues (reviewed by Marín and Rubenstein, 2003; Mittelmann et al., 2008). In rodents, cortical interneurons have been reported to arise predominantly from the medial ganglionic eminences (MGE) or caudal ganglionic eminences (CGE) and, to a smaller extent, from the embryonic preoptic area (Lavdas et al., 1999; Nery et al., 2002; Yozu et al., 2011). However, little is known about how Arx functions as a transcription factor or which genes it binds and regulates. Recently, we have combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified approximately 1000 gene promoters that a dysfunction of the GABAergic system is responsible for a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild forms of intellectual disabilities without apparent brain abnormalities, but with associated features of dystonia and epilepsy. Arx expression is mainly restricted to populations of GABA-containing neurons. Studies of the effects of ARX loss of function, either in humans or mutant mice, revealed varying defects, suggesting multiple roles of this gene in brain patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. However, to date, little is known about how Arx functions as a transcription factor or which genes it binds and regulates. Recently, we have combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified approximately 1000 gene promoters bound by Arx in transfected neuroblastoma N2a cells and mouse embryonic brain. To narrow the analysis of Arx targets to those most likely to control cortical interneuron migration and/or differentiation, we compare here our data to previously published studies searching for genes enriched or down-regulated in cortical interneurons between E13.5 and E15.5. We thus identified 14 Arx-target genes enriched (Cxcr7, Meis1, Ppap2a, Scl12a5, Etz2, Phlda1, Egr1, Igf1, Lmo3, Sema6a, Lgfi1, Aik, Tgfβ3, and Naspbl) and 5 genes specifically down-regulated (Hmgn3, Lmo1, Ebf3, Rasgef1b, and Slit2) in cortical migrating neurons. In this review, we present these genes and discuss how their possible regulation by Arx may lead to the dysfunction of GABAergic neurons, resulting in mental retardation and epilepsy.

Keywords: ARX, GABA, epilepsy, interneurons, neuronal migration, basal ganglia

Mutations in the homeobox transcription factor ARX have been found to be responsible for a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild forms of intellectual disabilities without apparent brain abnormalities, but with associated features of dystonia and epilepsy. Arx expression is mainly restricted to populations of GABA-containing neurons. Studies of the effects of ARX loss of function, either in humans or mutant mice, revealed varying defects, suggesting multiple roles of this gene in brain patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. However, to date, little is known about how Arx functions as a transcription factor or which genes it binds and regulates. Recently, we have combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified approximately 1000 gene promoters bound by Arx in transfected neuroblastoma N2a cells and mouse embryonic brain. To narrow the analysis of Arx targets to those most likely to control cortical interneuron migration and/or differentiation, we compare here our data to previously published studies searching for genes enriched or down-regulated in cortical interneurons between E13.5 and E15.5. We thus identified 14 Arx-target genes enriched (Cxcr7, Meis1, Ppap2a, Scl12a5, Etz2, Phlda1, Egr1, Igf1, Lmo3, Sema6a, Lgfi1, Aik, Tgfβ3, and Naspbl) and 5 genes specifically down-regulated (Hmgn3, Lmo1, Ebf3, Rasgef1b, and Slit2) in cortical migrating neurons. In this review, we present these genes and discuss how their possible regulation by Arx may lead to the dysfunction of GABAergic neurons, resulting in mental retardation and epilepsy.

Keywords: ARX, GABA, epilepsy, interneurons, neuronal migration, basal ganglia

Mutations in the homeobox transcription factor ARX have been found to be responsible for a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild forms of intellectual disabilities without apparent brain abnormalities, but with associated features of dystonia and epilepsy. Arx expression is mainly restricted to populations of GABA-containing neurons. Studies of the effects of ARX loss of function, either in humans or mutant mice, revealed varying defects, suggesting multiple roles of this gene in brain patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. However, to date, little is known about how Arx functions as a transcription factor or which genes it binds and regulates. Recently, we have combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified approximately 1000 gene promoters bound by Arx in transfected neuroblastoma N2a cells and mouse embryonic brain. To narrow the analysis of Arx targets to those most likely to control cortical interneuron migration and/or differentiation, we compare here our data to previously published studies searching for genes enriched or down-regulated in cortical interneurons between E13.5 and E15.5. We thus identified 14 Arx-target genes enriched (Cxcr7, Meis1, Ppap2a, Scl12a5, Etz2, Phlda1, Egr1, Igf1, Lmo3, Sema6a, Lgfi1, Aik, Tgfβ3, and Naspbl) and 5 genes specifically down-regulated (Hmgn3, Lmo1, Ebf3, Rasgef1b, and Slit2) in cortical migrating neurons. In this review, we present these genes and discuss how their possible regulation by Arx may lead to the dysfunction of GABAergic neurons, resulting in mental retardation and epilepsy.

Keywords: ARX, GABA, epilepsy, interneurons, neuronal migration, basal ganglia

Mutations in the homeobox transcription factor ARX have been found to be responsible for a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild forms of intellectual disabilities without apparent brain abnormalities, but with associated features of dystonia and epilepsy. Arx expression is mainly restricted to populations of GABA-containing neurons. Studies of the effects of ARX loss of function, either in humans or mutant mice, revealed varying defects, suggesting multiple roles of this gene in brain patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. However, to date, little is known about how Arx functions as a transcription factor or which genes it binds and regulates. Recently, we have combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified approximately 1000 gene promoters bound by Arx in transfected neuroblastoma N2a cells and mouse embryonic brain. To narrow the analysis of Arx targets to those most likely to control cortical interneuron migration and/or differentiation, we compare here our data to previously published studies searching for genes enriched or down-regulated in cortical interneurons between E13.5 and E15.5. We thus identified 14 Arx-target genes enriched (Cxcr7, Meis1, Ppap2a, Scl12a5, Etz2, Phlda1, Egr1, Igf1, Lmo3, Sema6a, Lgfi1, Aik, Tgfβ3, and Naspbl) and 5 genes specifically down-regulated (Hmgn3, Lmo1, Ebf3, Rasgef1b, and Slit2) in cortical migrating neurons. In this review, we present these genes and discuss how their possible regulation by Arx may lead to the dysfunction of GABAergic neurons, resulting in mental retardation and epilepsy.

Keywords: ARX, GABA, epilepsy, interneurons, neuronal migration, basal ganglia
positioning, usually due to defects in migration, and susceptibility to epilepsy. Moreover, subtle alterations in interneuron position and/or function have been reported to contribute to disorders such as dyslexia, schizophrenia, autism, and mental retardation (Galaburda et al., 2006; Nakazawa et al., 2011). It is thus important to better characterize the molecular mechanisms involved in interneuron generation, migration and differentiation through, for example, the analysis of genes important for interneuron development.

The ARX gene was first identified in 2002 as being responsible for a rare and severe cortical malformation in human, the X-linked lissencephaly associated with abnormal genitalia (XLAG), typically characterized by severe congenital or postnatal microcephaly, complete disorganization of cortical layers (lissencephaly), absence of the corpus callosum, midbrain malformations, and neonatal-onset intractable epilepsy (Kitamura et al., 2002). Interestingly, a complete absence of interneurons was described in the cortex of these patients (Bonneau et al., 2002; Forman et al., 2005; Okazaki et al., 2008; Marcorelles et al., 2010). Similarly, aberrant migration and differentiation of GABAergic interneurons in the ganglionic eminences and neocortex were described in male embryonic Arx mutant mice (Kitamura et al., 2002; Colombo et al., 2007). Since then, ARX has been associated with no less than 10 different syndromes ranging from phenotypes characterized by severe neuronal migration defects, to mild or moderate forms of intellectual disability without apparent brain abnormalities, but often with dystonia and epilepsy (reviewed in Friocourt and Parnavelas, 2010; Shoubridge et al., 2010).

Although ARX is expressed in several structures including the brain, pancreas, developing testes, heart, skeletal muscle, and liver (Bienvenue et al., 2002; Colombo et al., 2003; Busosi et al., 2008), the most striking consequences of its loss of function concern the brain and testes in both mouse and human. During development, ARX is expressed early in telencephalic structures, and more specifically in the mantle zones of the developing lateral ganglionic eminences (LGE) and MGE in the basal forebrain. In the developing cortex, its expression is observed in progenitor cells of the VZ as well as in migrating interneurons, but not in radially migrating cells (Colombo et al., 2004; Poirier et al., 2004; Friocourt et al., 2006). The extensive cellular co-localization between Arx and GABAergic neurons (Gad67-positive cells) in the ganglionic eminence versus those migrating in the cortex at the same stages (Marsh et al., 2008; Faux et al., 2010). As ARX is strongly expressed in cortical migrating interneurons, we decided to compare these datasets with ours and present here a list of ChIP-positive (Arx-bound) and regulated genes (Quillé et al., 2011) that are enriched or downregulated in migrating cortical interneurons and, thus, are good candidates to control, positively or negatively, molecular mechanisms involved in interneuron migration and/or differentiation (Table 1).

Table 1

Gene	Description
Lmo3	Lmo3-positive cells in the ganglionic eminence versus
Slc12a5	those migrating in the cortex at the same stages
Sema6a	Sema6a-positive cells in the ganglionic eminence versus
Lgi1	those migrating in the cortex at the same stages
Alk	Alk-positive cells in the ganglionic eminence versus
Tgfb3	those migrating in the cortex at the same stages
Slc12a5	Slc12a5-positive cells in the ganglionic eminence versus
Napb	Napb-positive cells in the ganglionic eminence versus
Shox2	Shox2-positive cells in the ganglionic eminence versus

In vitro and in vivo studies have previously demonstrated that Arx can act as both transcriptional repressor and activator (Seufert et al., 2005; McKenzie et al., 2007; Fullenkamp and El-Hodiri, 2008). Accordingly, eight of Arx putative direct targets presented in Table 2 (Egr1, Igf1, Lmo3, Semat, Egil, Alk, TgfB3, and NapB) show either a significant reduction in expression as a consequence of increased Arx levels or increased expression in Arx knock-out brains (Table 2). However, four genes (Ppap2a, Slc12a5, Efr2, and Phad1) show similar changes in expression following Arx overexpression or knock-down, thus making it difficult to determine whether Arx normally activates or represses these genes.

Table 2

Gene	Description
Ppap2a	Ppap2a-positive cells in the ganglionic eminence versus
Slc12a5	Slc12a5-positive cells in the ganglionic eminence versus
Efr2	Efr2-positive cells in the ganglionic eminence versus
Phad1	Phad1-positive cells in the ganglionic eminence versus

In order to provide novel insights into genetic networks regulated by Arx and specifically controlling the development of GABAergic neurons, we took advantage of previously published studies comparing the level of expression of genes between, on one hand, cortical interneurons (Dlx5/6-derived cells) and cortical non-interneurons (non-Dlx5/6-derived cells) in the telencephalon of E13.5, E14.5, and E15.5 mice (Batista-Brito et al., 2008; Marsh et al., 2008) and, on the other hand, genes expressed by GABAergic neurons (Gad67-positive cells) in the ganglionic eminence versus those migrating in the cortex at the same stages (Marsh et al., 2008; Faux et al., 2010). As ARX is strongly expressed in cortical migrating interneurons, we decided to compare these datasets with ours and present here a list of ChIP-positive (Arx-bound) and regulated genes (Quillé et al., 2011) that are enriched or downregulated in migrating cortical interneurons and, thus, are good candidates to control, positively or negatively, molecular mechanisms involved in interneuron migration and/or differentiation (Table 1).
Table 1 | List of candidate genes regulated by Arx and controlling cortical interneuron migration and/or differentiation.

Gene symbol	Gene name	Human CNS disease	Mouse endophenotype
Cxcr7	Chemokine (C-X-C motif) receptor 7	NA	Interneuron migration defects
Mafs	Mais homeobox 1	Restless legs syndrome	NA
Ppp2a	Phosphatidic acid phosphatase type 2A	NA	NA
Stc2	Salute carrier family 12, member 5	NA	Severe motor deficits
Etn2	E26 avian leukemia oncogene 2	May contribute to Down syndrome	NA
Phd1a	Paclitaxin homology-like domain, family A, member 1	NA	NA
Egf	Early growth response 1	NA	Learning and memory defects
Igf1	Insulin-like growth factor 1	Growth retardation, deafness, and mental retardation	Defects in neurologic development
Lmna3	LIM domain only 3	NA	NA
Sam68a	Semaphorin 6A	NA	Impaired development of thalamocortical projections
Lgfp	Leucine-rich repeat LGI family, member 1	Lateral temporal epilepsy	Increased excitatory synaptic transmission
Akt	Anaplastic lymphoma kinase	Susceptibility to neuroblastoma	NA
Tgfβ3	Transforming growth factor, beta 3	NA	NA
Napb	Nε-trimethyllysine-sensitive factor attachment protein, beta	NA	NA
Hmg12	High mobility group nucleosomal binding domain 3	NA	NA
Lmna1	LIM domain only 1	NA	NA
Ebfa	Early B-cell factor 3	NA	Intermolecular migration defects
Raps6f	Raps6 gene family member 1B	Candidate for the 4p12 deletion syndrome	NA
Shh2	Shh homolog 2 (Drosophila)	NA	Abnormal axonal projections

NA, not available.

The Table 2.
The one such gene positively regulated by Arx is Cxcr7 (Chemokine receptor 7), which role in interneuron migration has recently been described (Sanchez-Alcantara et al., 2011; Wang et al., 2011). Cxcr4 and Cxcr7 are receptors for the chemokine Cxcl12 (also called Sdf1, stromal cell-derived factor) expressed in tangentially migrating interneurons (Sanchez-Alcantara et al., 2011; Wang et al., 2011). Cxcl12 binding to Cxcr4 triggers cell proliferation, whereas Cxcl12 binding to Cxcr7 activates the mitogen-activated protein kinase (MAPK) cascade (Sanchez-Alcantara et al., 2011; Wang et al., 2011). Cxcl12 expression in the marginal zone (MZ) and SVZ of the cortex attracts Cxcr4- and Cxcr7-expressing migrating interneurons, guiding them to tangential streams and controls the timing of the switch from tangential to radial migration to their destinations in the CP (Tiveron et al., 2006; Li et al., 2008; Lopez-Bendito et al., 2008; Wang et al., 2011). Loss of Cxcl12 signaling has been shown to induce defects in both interneuron mortality and leading process morphology, as well as a premature entry into the CP, resulting in a significant decrease in their numbers in the migratory streams and an increase in the lower part of the CP (Stumm et al., 2003; Tiveron et al., 2006; Li et al., 2008; Liapi et al., 2008; Lopez-Bendito et al., 2008; Lysko et al., 2011; Sanchez-Alcantara et al., 2011; Wang et al., 2011).

Interestingly, Cxcr7 mRNA has been shown to be down-regulated in cortical interneurons and the GE of Dlx1/2 knockout mice (Long et al., 2009a,b). Similarly, Cxcr7 and Cxcr4 receptors are positively regulated by Lhx6 (Zhao et al., 2008).

In migrating interneurons, we had previously described similar results for some other genes and suggested that Arx may switch from repressor to activator depending on the developmental stage, the molecular context (posttranslational modifications such as phosphorylation or the presence of cofactors and/or chromatin-modifying enzymes) or the cellular model used (Quille et al., 2011).

On the contrary, two genes look positively regulated by Arx, Cxcr7 and Cxcr4. One such gene positively regulated by Arx is Cxcr7 (Chemokine receptor 7), which role in interneuron migration has recently been described (Sanchez-Alcantara et al., 2011; Wang et al., 2011). Cxcr4 and Cxcr7 are receptors for the chemokine Cxcl12 (also called Sdf1, stromal cell-derived factor) expressed in tangentially migrating interneurons (Sanchez-Alcantara et al., 2011; Wang et al., 2011). Cxcl12 binding to Cxcr4 triggers cell proliferation, whereas Cxcl12 binding to Cxcr7 activates the mitogen-activated protein kinase (MAPK) cascade (Sanchez-Alcantara et al., 2011; Wang et al., 2011). Cxcl12 expression in the marginal zone (MZ) and SVZ of the cortex attracts Cxcr4- and Cxcr7-expressing migrating interneurons, guiding them to tangential streams and controls the timing of the switch from tangential to radial migration to their destinations in the CP (Tiveron et al., 2006; Li et al., 2008; Lopez-Bendito et al., 2008; Wang et al., 2011). Loss of Cxcl12 signaling has been shown to induce defects in both interneuron mortality and leading process morphology, as well as a premature entry into the CP, resulting in a significant decrease in their numbers in the migratory streams and an increase in the lower part of the CP (Stumm et al., 2003; Tiveron et al., 2006; Li et al., 2008; Liapi et al., 2008; Lopez-Bendito et al., 2008; Lysko et al., 2011; Sanchez-Alcantara et al., 2011; Wang et al., 2011).
Table 2 | Examples of Arx-bound and regulated genes that are enriched in migrating cortical interneurons (IN) compared to neurons in ganglionic eminences (GE) and cortical non-interneurons (non-IN).

Gene	Arx knock-out mice (Quillé et al., 2011)	Arx-transfected N2a cells (Quillé et al., 2011)	Expression in cortical migrating interneurons
Cux1	↓ KO subpallium (FC = 1.6, p = 0.05)	No specific change	IN > GE at E13.5 and E15.5 2.2–2.3 Faux et al. (2010)
Mix1	No specific change	↑ N2a cells (p < 0.005)	GE > IN at E13.5 and E15.5 2.6–2.8 Faux et al. (2010)
Ppp3a	↑ KO subpallium (FC = 1.4, p = 0.05)	↑ N2a cells (p < 0.05)	IN > non-IN at E13.5 2.6 Batista-Brito et al. (2008)
Slc12a5	↓ KO subpallium (FC = 1.6, p = 0.01)	↑ N2a cells (p < 0.005)	IN > non-IN at E13.5 2.2 Batista-Brito et al. (2008)
Etn2	↑ KO subpallium (FC = 1.8, p = 0.001)	↑ N2a cells (p < 0.005)	IN > non-IN at E13.5 2.7 Batista-Brito et al. (2008)
Phox1	↑ KO subpallium (FC = 2.2, p = 0.05)	↑ N2a cells (p < 0.001)	IN > non-IN at E13.5 3.2–3.7 Batista-Brito et al. (2008)
ZG68	↑ KO subpallium (FC = 3.1, p = 0.05)	No specific change	IN > GE at E13.5 and E15.5 1.9–2.5 Faux et al. (2010)
Igf1	↑ KO subpallium (FC = 1.5–5, p = 0.001)	No specific change	IN > non-IN at E13.5 6.4 Batista-Brito et al. (2008)
Lmx3	↑ KO subpallium (FC = 3.3, p < 0.001)	No specific change	IN > non-IN at E13.5 6.9 Batista-Brito et al. (2008)
Sema6a	↑ KO subpallium (FC = 1.6, p = 0.01)	No specific change	IN > GE at E15.5 1.9 Faux et al. (2010)
Lfp3	No specific change	↓ N2a cells (p < 0.005)	IN > non-IN at E13.5 and E15.5 2.7–26.2 Batista-Brito et al. (2008)
Aki	No specific change	↓ N2a cells (p = 0.05)	IN > GE at E13.5 and E15.5 1.8–2.2 Faux et al. (2010)
Tgfb3	No specific change	↓ N2a cells (p = 0.05)	IN > GE at E13.5 and E14.5 2.5 Marsh et al. (2008)
Klf3b	No specific change	↓ N2a cells (p < 0.005)	IN > GE at E15.5 and E14.5 3.4–4.5 Faux et al. (2010)
Klf4b	No specific change	↓ N2a cells (p < 0.005)	IN > non-IN at E13.5 and E15.5 5.3–5.5 Batista-Brito et al. (2008)

FC, fold change; NA, not available.

Another gene enriched in cortical migrating interneurons and positively regulated by Arx is Mix1 (murine ecotropic integration site 1), a transcription factor involved in cell proliferation in retina and hematopoietic stem cell development. Although the function of this gene has not been studied in interneurons, its expression is consistent with a role in GABAergic neuron development. First detected around E10.5 in mouse ventrolateral telencephalon, it is expressed at later stages at high levels in the CGE and developing amygdala and more weakly in the MGE and LGE (Doresman et al., 2000). Interestingly, a recent paper on the effect of Mix1 knock-down in a human precursor B-cell leukemia line K562 reported an impairment of cell migration, possibly due to a defect in the CXCR4/SDF-1 axis (Ohrlovsky et al., 2011). Further studies should be undertaken in interneurons to assess whether this gene is also important for their migration and/or differentiation. This may be a worthwhile pursuit, as this gene has been linked to the restless legs syndrome (RLS), a common neurological disorder characterized by an irresistible urge to move the legs at night. RLS is generally considered to be a central nervous system-related disorder due to reduced intracortical inhibition and is often treated by benzodiazepines, a class of sedative drugs affecting the GABA receptors.

Among the genes that appear negatively regulated by Arx is Egr1 (early growth response 1), a transcription factor that has been implicated in synaptic plasticity underlying learning and memory in mouse (Jin et al., 2003). A recent study has reported that Egr1 overexpression in rat brain hippocampus and primary cultures of neurons regulates cytoskeleton dynamics by inactivating the...
subpallial postmitotic cells, and cortical migrating interneurons) and its putative positive role in cell migration. This discrepancy may be caused by the developmental stage, the biological context or the molecular interaction of the accumulation of cells that failed to exit the subpallium in the absence of Arx. Interestingly, $Egr1$ expression was found up-regulated in Arx mutant mice (Table 2), suggesting that Arx normally represses its expression in the subpallium. This is somewhat contradictory with its putative positive role in cell migration. This discrepancy may be explained by the fact that Arx is expressed in different cell types in the forebrain during development (cortical neuronal progenitors, subpallial postmitotic cells, and cortical migrating interneurons) and may thus differentially regulate the same gene depending on the developmental stage, the biological context or the molecular environment. It is thus possible that Arx normally down-regulates $Egr1$ in the subpallium in order to keep these cells undifferentiated, but up-regulates it in cortical migrating interneurons. Alternatively, $Egr1$ up-regulation in Arx mutant mice may just be the result of the accumulation of cells that failed to exit the subpallium in the absence of Arx.

Another gene that may have a similar role is $Igf1$ (insulin-like growth factor-1), which encodes a growth factor highly expressed in embryonic brain. It has been implicated in several processes such as projection neuron growth, dentritic arborization, synaptogenesis, and adult hippocampal neurogenesis. In human, mutations in this gene are responsible for intrauterine and postnatal growth retardation with sensorineural deafness and intellectual deficit (Woods et al., 1996). In mouse, disruption of $Igf1$ results in reduced brain size, hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons (Beck et al., 1995). More recently, this gene was found to promote neuronal migration and positioning in the OB and the incorporation of neurons in the ML had failed to radially re-orient their cell bodies, maintaining a relatively tangential orientation. These results suggest that, in the absence of $Igf1$, there was a defect in the switch from tangential to radial migration in the ML of the OB (Hurtado-Chong et al., 2009). In addition, they showed that Dab1 activity was necessary for $Igf1$ action suggesting that, similar to $Egr1$, its role in interneuron migration may at least partly, intersect with the Reelin signaling pathway (Hurtado-Chong et al., 2009).

Forskolin and Pamavensies

Phosphatase PP1 and activates cyclin-dependent kinase 5 (Cdks) to promote phosphorylation of Tau, a microtubule-associated protein (Liu et al., 2011). This is of particular interest, as both Cdks and PP1 are involved in neuronal migration (Gilmour et al., 1998; Shmueli et al., 2006; Rakic et al., 2009). The observed enrichment of this gene in cortical migrating interneurons suggests that it may positively control interneuron migration and/or differentiation. Accordingly, angiopep-1 (Ang-1) was found to stimulate cell migration in endothelial cells by increasing expression of $Egr1$ (Abdel-Malak et al., 2009). In addition, it has been reported that Reelin, produced by the mitral cells of the olfactory bulb (OB), activates the MAPK/extracellular signal-regulated kinase (ERK) pathway and induces $Egr1$ transcription, which in turn promotes the shift from tangential/chain to radial/individual neuronal migration, and the detachment of neurons in the rostral migratory stream (RMS; Simó et al., 2007). These findings are particularly relevant as Reelin, produced by Cajal–Retzius cells, is also important for neuronal migration in the cortex. It is thus possible that fine regulation of $Egr1$ expression may be necessary to control cortical interneuron migration and the switch from tangential to radial mode into the CP.

Interestingly, $Egr1$ expression was found up-regulated in Arx mutant mice (Table 2), suggesting that Arx normally represses its expression in the subpallium. This is somewhat contradictory with its putative positive role in cell migration. This discrepancy may be explained by the fact that Arx is expressed in different cell types in the forebrain during development (cortical neuronal progenitors, subpallial postmitotic cells, and cortical migrating interneurons) and may thus differentially regulate the same gene depending on the developmental stage, the biological context or the molecular environment. It is thus possible that Arx normally down-regulates $Egr1$ in the subpallium in order to keep these cells undifferentiated, but up-regulates it in cortical migrating interneurons. Alternatively, $Egr1$ up-regulation in Arx mutant mice may just be the result of the accumulation of cells that failed to exit the subpallium in the absence of Arx.

Another gene that may have a similar role is $Igf1$ (insulin-like growth factor-1), which encodes a growth factor highly expressed in embryonic brain. It has been implicated in several processes such as projection neuron growth, dentritic arborization, synaptogenesis, and adult hippocampal neurogenesis. In human, mutations in this gene are responsible for intrauterine and postnatal growth retardation with sensorineural deafness and intellectual deficit (Woods et al., 1996). In mouse, disruption of $Igf1$ results in reduced brain size, hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons (Beck et al., 1995). More recently, this gene was found to promote neuronal migration and positioning in the OB and the incorporation of neurons in the ML had failed to radially re-orient their cell bodies, maintaining a relatively tangential orientation. These results suggest that, in the absence of $Igf1$, there was a defect in the switch from tangential to radial migration in the ML of the OB (Hurtado-Chong et al., 2009). In addition, they showed that Dab1 activity was necessary for $Igf1$ action suggesting that, similar to $Egr1$, its role in interneuron migration may at least partly, intersect with the Reelin signaling pathway (Hurtado-Chong et al., 2009).

Table 2: Genes involved in interneuron development

Gene	Fold Change	Expression in Subpallium	Expression in Cortex	Function
Arx	26.2	Up-regulated	Down-regulated	Migration
Lgi1	10.5	Up-regulated	Down-regulated	Migration

The role of $Igf1$ in cortical interneuron migration has never been studied, but this gene is probably a good candidate as other members of the semaphorin family have been shown to be important for the guidance of cortical interneurons as they migrate in the ventral telencephalon (Marin et al., 2001; Hernandez-Miranda et al., 2011).

Although no change of $Lgi1$ (leucine-rich, glioma-inactivated) was detected in Arx mutant subpallium, this gene was found to be down-regulated following Arx transfection in N2a cells. Interestingly, mutations of this gene result in autosomal dominant lateral temporal epilepsy (Kalischkov et al., 2002). Enhanced excitatory synaptic transmission through increased release of glutamate has been suggested as a basis for the seizure phenotype. $Lgi1$, which encodes a secreted protein involved in postnatal glutamatergic synapse development, has not been studied in interneurons, but its strong enrichment in these cells compared to cortical non-interneurons (Table 2, fold change = 26.2 at E13.5), suggests an important role in interneuron development and possibly migration, as $Lgi1$ has been shown to regulate cell mobility through the formation of stress fibers in glioblastoma cells (Kanapali et al., 2011).

At the start of corticogenesis, GABAergic interneurons enter the neocortex at the level of the preplate layer (PPL) andIZ. Loss of the upper stream(s) was reported at E14.5 and E18.5 in Arx knock-out mice, but the stream in the IZ/SVZ looked intact (Kitamura et al., 2002; Colombo et al., 2007). Interestingly,
Arx overexpression in N2a cells results in neuroblastoma cells and E15.5 mouse embryonic brain, and that investigated a possible role for the TGF-β (Quillé et al., 2011), confirming a possible involvement of Arx in the TGF-β migratory interneurons. In addition, inhibition of TGF-β signaling by the use of dominant-negative forms of Smad proteins in the pallium at E15.5, where they exhibit expression levels similar to those of the TGF-β signaling pathway. Maira et al. (2010) have recently investigated a possible role for the TGF-β superfamily pathway in telencephalic GABAergic neuron development. They first showed that Smad1, Smad2, Smad4, and Smad5 are expressed in the subpallium at E15.5, where they exhibit expression levels similar to those of Dlx genes. They also observed the presence of activated Smad1 and Smad2 in the developing basal ganglia and in cortical migrating interneurons. In addition, inhibition of TGF-β signaling by the use of dominant-negative forms of Smad proteins in the basal ganglia, impairs tangential migration of cortical interneurons: Smad1 or Smad2 dominant-negative mutants only partially blocked migration, whereas inhibition of Smad4 completely abrogated the migration of electroporated cells to the cortex, thus providing evidence that both branches of the TGF-β signaling pathway are important for cortical interneuron migration (Maira et al., 2010).

It is interesting to note that Arx transfection of N2a cells induces down-regulation of Smad1, but that the level of expression of Smad2 and Smad4 was unchanged in Arx knock-out, similar to Dlx1/2 mutant mice (Maira et al., 2010). It has thus been suggested that expression of most TGF-β superfamily genes was not down-stream of Dlx. Interestingly, we found that Arx up-regulates two more components of the TGF-β superfamily, Smad3 and Bmpper (BMP binding endothelial regulator). The latter was recently identified as a Dlx5 direct target in inner ear (Sajan et al., 2011). As Arx expression is ectopically induced by forced expression of Dlx1, Dlx2, or Dlx5 in mouse dorsal thalamus (Gabol et al., 2005), it appears very likely that the Dlx and Arx genes act through the same components of the TGF-β pathway to regulate interneuron migration and/or differentiation.

The Slc12a5 gene (solute carrier family 12, member 5, also called Kcc2, potassium/chloride cotransporter 2) was found up-regulated in both Arx mutant subpallium and transfected N2a cells, confirming that it is a direct target of Arx. Up-regulation of Slc12a5 by migrating interneurons results in the termination of their tangential migration and allows the radial sorting of different populations of tangentially migrating interneurons, resulting in their layer-specific integration into the emerging cortical network (Borttone and Pellieux, 2009; Miyoshi and Fishell, 2011). It is thus likely that Arx, through Slc12a5 expression, regulates the timing of migration and the final organization of interneurons in cortical layers.

There is little information available concerning the other genes found enriched in migrating cortical interneurons. As Slc12a5, the Phlda1 (pleckstrin homology-like domain, family A, member 1) gene was found up-regulated in both Arx mutant subpallium and transfected N2a cells (Table 2). This gene encodes a proline-histidine rich nuclear protein which is specifically induced by Igf1. Although it has never been studied in interneuron development, it has recently been reported that siRNA-mediated suppression of Phlda1 in colon cancer cells inhibited cell migration (Satki- anandeswaraen et al., 2011). Similarly, Ppap2a (phosphatidic acid phosphatase type 2A) encodes an enzyme that converts phosphatidic acid to diacylglycerol and functions in de novo synthesis of glycerolipids. Ppap2a has been shown to reduce platelet-derived growth factor (PDGF)- and lysophosphatidic acid-induced migration of embryonic fibroblasts (Long et al., 2006). Concerning Ets2 (E26 avian leukemia oncogene 2), this gene encodes a transcription factor located on chromosome 21 which has been suggested to contribute to Down syndrome’s phenotype. Its role is not yet well understood. Finally, the Lmo3 (LIM-only protein 3) gene was consistently found up-regulated in Arx mutant subpallium (Colasante et al., 2008; Fulp et al., 2008; this study). Forced expression of this gene in the MGE of E14.5 brain slices has no effect on neuronal migration (Colasante et al., 2009), suggesting that Lmo3 expression is not required for the initiation of migration. However, to exclude a definite role in migration, it would be interesting to knock down this gene specifically during migration. In addition, Lmo3 has been reported to form a complex with HEN2 and induce Mash1 expression (Isogai et al., 2011). Although these observations were made in neuroblastoma cells, this is potentially relevant as Mash1 is known to be specifically expressed in the ventral part of the telencephalon and contributes to the generation of GABAergic neurons.

In contrast, the Alk (Anaplastic lymphoma kinase) gene seems to be repressed by Arx. This gene encodes a receptor tyrosine kinase (RTK) that has been shown to concentrate in postynaptic domains. Its role in interneuron development has never been studied. Similarly, Napb encodes soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein beta (beta Snap) involved in SNAP receptor (SNARE)-mediated vesicle trafficking and synaptic formation. The mode of migration used by cortical interneurons is very similar to that of other types of migrating cells. They first extend a leading process in the direction of migration, followed by nuclear translocation and the retraction of the trailing process (Métin et al., 2006). During migration, interneurons show highly dynamic branching with changes in the orientation of the leading process, migration in all directions within streams and the use of different substrates. The role of vesicular trafficking in processes such as endocytosis to regulate substrate attachment or detachment, or membrane cycling from the leading and trailing process is thus very important (Ushaki et al., 2010; Shieh et al., 2011).
IDENTIFICATION OF CANDIDATE GENES NEGATIVELY REGULATING CORTICAL INTERNEURON MIGRATION AND/OR DIFFERENTIATION

We found five Arx-bound genes specifically down-regulated in migrating cortical interneurons compared to neurons of the GE and cortical non-interneurons (Table 3). Thus, these genes may be necessary for cortical progenitor proliferation and/or pyramidal neuron development. Alternatively, as Arx negatively regulates most of these genes, they may repress interneuron migration and/or differentiation.

Only one gene, Hmg3 (Table 3 high mobility group nucleosomal binding domain 3) appears to be positively regulated by Arx (Table 3). This gene encodes a nucleosome binding protein that affects chromatin function. It has been reported to induce the expression of the glycine transporter 1 gene (Glyt1), a membrane transporter that regulates glycine concentration in synaptic junctions (West et al., 2004). In addition, Hmg3 expression is very similar to that of the glial fibrillary acidic protein (GFAP), suggesting that it might play a role in astrocyte function.

The four other genes seem to be repressed by Arx (Table 3) and may thus normally inhibit cortical interneuron migration and/or differentiation. Accordingly, a recent study has shown that ectopic expression of one of these genes, Ebf3 (early B-cell factor 3), in basal ganglia severely interferes with tangential migration of GABAergic interneurons to the cortex. On the opposite, knock-down experiments targeting this gene in Arx mutant mice were found to rescue, at least partially, neuronal migration defects (Colasante et al., 2009). These results confirm the implication of this transcription factor in neuronal migration, although the underlying mechanisms are still unknown. Ebf3 is also known to be expressed in the developing hindbrain and spinal cord where it promotes neuronal differentiation and radial migration (Garcia-Dominguez et al., 2003). This gene is normally not (or only marginally) expressed in the developing telencephalon, but it was found strongly misexpressed in the MGE and present in the LGE of Arx mutant mice (Colasante et al., 2009). Interestingly, it was also found up-regulated in Dlx1/2 mutant subpallium (Fulp et al., 2008), suggesting that Ebf3 may belong to a pathway that is common to Dlx and Arx genes (Cobos et al., 2003).

The Rasgeflb (RasGEF domain family, member 1b) gene encodes a guanine nucleotide exchange factor (GEF) for Ras family proteins, and several members have been reported as key regulators of actin and microtubule dynamics during dendrite or spine structural plasticity. GEF proteins stimulate the intrinsic GDP/GTP exchange activity of Ras and promote the formation of active Ras-GTP, which in turn controls diverse signaling networks important for the regulation of cell proliferation, survival, differentiation, vesicular trafficking, or gene expression. Rasgeflb has been shown to function as a very specific exchange factor for Rap2, which is implicated in the regulation of cell adhesion, the establishment of cell morphology, and the modulation of synapses in neurons (Yaman et al., 2009). Normally located in the differentiated striatal mantle, Rasgeflb was found misexpressed in the SVZ of the basal ganglia of Arx mutant mice (Colasante et al., 2009). Interestingly, it is present in some migrating cortical interneurons, at least in the G2 layer, compared to the PPL (Antypa et al., 2011) suggesting that, contrary to Ebf3, the expression of this gene is compatible with migration. In addition, whereas it was found up-regulated in Arx mutant subpallium, it appeared down-regulated in Dlx1/2 mutants (Fulp et al., 2008), suggesting that the role of this gene in neuronal migration may be more complex than just the control of cell motility. However, since this gene has been linked to severe mental retardation, absent speech, distinctive facial features, and severe growth delay (Bonnet et al., 2010), the study of this gene is probably worth pursuing.

Gene	Arx knock-out mice (Quillé et al., 2011)	Arx-transfected N2a cells (Quillé et al., 2011)	Expression in cortical migrating interneurons	Cells and stage	FC	Reference
Hmgn3	KO subpallium (FC = 1.3, p < 0.001)	No specific change	GE > IN at E13.5	2.1	Faux et al. (2010)	
Lmo1	KO subpallium (FC = 1.6, p < 0.001)	N2a cells (p < 0.05)	GE > IN at E13.5 and E15.5	3.0–3.3	Faux et al. (2010)	
	KO subpallium		Non-IN > IN at E13.5	2.6–2.9	Batista-Brito et al. (2008)	
	Fulp et al., 2008/Colasante et al., 2009			3.3–5.8	Fulp et al. (2008)	
Ebf3	KO subpallium (FC = 1.6, p < 0.001)	No specific change	GE > IN at E13.5 and E15.5	2.0–2.3	Faux et al. (2010)	
	KO subpallium		Non-IN > IN at E13.5	5.5	Batista-Brito et al. (2008)/Fulp et al. (2008)	
Rasgeflb	KO subpallium (FC = 1.6, p < 0.001)	No specific change	GE > IN at E13.5	3	Faux et al. (2010)	
	Fulp et al., 2008/Colasante et al., 2009		Non-IN > IN at E14.5	NA	Fulp et al. (2008)	
Slit2	KO subpallium (FC = 1.4, p < 0.005)	No specific change	GE > IN at E13.5	2.1–2.2	Faux et al. (2010)	
	KO subpallium		Non-IN > IN at E13.5	3.5	Batista-Brito et al. (2008)	

FC, fold change; NA, not available.
Similarly, Lmo1 (LIM domain only 1) gene, consistently found repressed by Arx in several previous studies (Fulp et al., 2008; Colasante et al., 2009; Quillé et al., 2011), is found down-regulated in migrating cortical interneurons (Table 3). Interestingly, we found that Arx also regulates other members of this family of LIM-containing transcription factors. Arx directly binds to Lmo3 and Lmo4 promoters and down-regulates their expression in N2a-transfected cells as shown by gene expression profile analysis and quantitative RT-PCR (Quillé et al., 2011 and data not shown). Accordingly, Lmo1, Lmo3, and Lmo4 genes were found up-regulated in Arx mutant subpopulation (Fulp et al., 2008; Colasante et al., 2009). These three genes are normally never, or only marginally, transcribed in the ventral telencephalon, but were found strongly expressed in Arx mutant MGE and LGE/GGE (Colasante et al., 2009). It is thus possible that they play important roles in interneuron differentiation.

The last gene found to be down-regulated in migrating cortical interneurons is Slit 2 (slit homolog 2, Drosophila). This chemorepulsive ligand and its receptors of the Robo family are expressed in the developing and adult brain and have been reported to regulate commissural axon guidance and axonal branching as well as cell migration. Double labeling experiments have shown that the vast majority of cortical interneurons express Robo1 and Robo2 and that Slit proteins are present in a complementary manner in the proliferative zones of the ventral telencephalon and in the septum during early and mid-phases of corticogenesis (Andrews et al., 2008). Evidence from in vitro experiments indicates that migration of Robo-expressing interneurons is initiated by the chemorepulsive activity of Slit secreted from the VZ of the LGE. In the developing cortex, Slit1 is robustly expressed in the CP, Slit3 is restricted to the MZ, while Slit2 is weakly expressed in the VZ. The presence of a putative Slit gradient along the interneuron migratory routes suggests that Slit/Robo signaling may also play a role in the positioning of the different tangential migratory paths within the developing cortex. However, it has been reported that migration of cortical interneurons is normal in Slit1/Slit2 double knock-out mice, prompting speculation that Slits do not play a major role in tangential migration, although they seem to be important regulators of neuronal positioning within the basal telencephalon (Marin et al., 2003). Nevertheless, the Slit/Robo signaling pathway has also been shown to regulate cell division and interneuron morphology (Andrews et al., 2008).

CONCLUSION

The Arx gene has been shown to play different roles in brain development: patterning, cell proliferation, migration and differentiation as well as axonal outgrowth and connectivity (Kitamura et al., 2002; Cobos et al., 2005; Colombo et al., 2007; Colasante et al., 2008; Friocourt et al., 2008). Accordingly, we recently identified a high number of putative direct targets for this transcription factor (Quillé et al., 2011), several of them being involved in cell proliferation, cytoskeleton dynamic regulation, axonal guidance, or neurotransmission. To narrow the analysis of Arx targets to those most likely to control cortical interneuron migration, we compared our data to previously published studies in search of genes enriched or down-regulated in cortical migrating interneurons. We found several Arx-bound and regulated genes that may be good candidates to explain the severe defects of interneuron migration observed in the absence of Arx in both human and mice. In particular, we identified a few genes (Igfl, Egfr, Cxcr7, Semaln, and Slk12a5) involved in the control of the mode of migration or the switch from tangential to radial migration. This is of particular interest in the light of our previous observation, that Arx overexpression in radially migrating cells promotes tangentially oriented migration in the SVZ and lower LZ, although these cells do not express GABAergic markers (Friocourt et al., 2008; Friocourt and Parnavelas, 2010).

As previously reported (Marsh et al., 2008), several of the genes that were enriched in migrating cortical interneurons are involved in synaptic transmission (Egfr, Igfl, Egfr, Alk, Naph, Gap43, ...), probably due to the fact that migration is known to be partly controlled by paracrine transmitter release requiring synaptic vesicle proteins. One of these genes, Slk12a5, has been identified as a direct target for Arx (Quillé et al., 2011), thus implicating Arx in the control of the capacity for migrating cells to respond to GABA and switch from depolarization to hyperpolarization (Ben-Ari, 2002), resulting in a voltage-sensitive, calcium-mediated reduction of interneuron motility. Interestingly, we identified several putative direct targets for Arx which are related to calcium release (Cah1, Cah2, Cacna1a, Cacna2d1, the latter being specifically down-regulated in cortical migrating interneurons) that may be good candidates for a role during interneuron migration.

It is not always clear whether the genes we identified are normally activated or repressed by Arx as a few genes in Tables 2 and 3 showed the same the type of regulation in Arx-overexpressing N2a cells and in knock-out brains. These apparent discrepancies may have several explanations. First, it is important to note that the microarray experiments on Arx knock-out brains were performed from ventral telencephalon (Fulp et al., 2008; Colasante et al., 2009), thus leaving out possibly different gene expression changes during interneuron migration and differentiation in the cortex. Second, some changes in gene expression may be too low to be detected in microarray experiments. We previously observed that some Arx-bound genes such as Gabbr3, Lmo3, or Cah2 showed a change of expression in qRT-PCR experiments following Arx expression in N2a cells but not on microarrays (Quillé et al., 2011). Third, Arx is expressed in different cell types during brain development and in adult, and it is thus possible that, depending on the presence or the absence of specific cofactors it may activate one gene at some stage and repress the same gene at a different time or in a different cell. Fourth, changes or the absence of change in a given gene expression may be the result of some compensatory effect of Arx knock-out or overexpression.

In addition, the disadvantage of using transfected N2a cells is that, as Arx is normally not expressed in these cells, it may lack binding partners and/or cofactors necessary to regulate the expression of certain genes. On the other hand, as we performed gene expression analysis relatively shortly (2 days) after Arx transfection in N2a cells, it is likely that the changes we see are a direct effect of Arx expression. For example,
important genes for cortical development such as Dab1 or Dvl1 were found expressed following Arx transfection in N2a cells (Quillé et al., 2011). Dab is an intracellular adaptor which is expressed in cells that respond to Reelin and is required for correct radial migration of cortical pyramidal neurons (Hammond et al., 2006). Similarly, Dvl1 (diligerin-like kinase 1) is necessary for correct migration of both pyramidal cells and interneurons (Deuel et al., 2006; Koizumi et al., 2006; Friocourt et al., 2007). Thus, gene expression in transfected N2a cells brings new and complementary information to expression studies performed in Arx mutant subpallium (Fulop et al., 2008; Colasante et al., 2009).

REFERENCES

Abdell-Malak, N. A., Mofarrahi, M., Matsuda, D., Khaliqian, L. M., and Hassoun, S. A. (2009). Early growth response-1 regulates apoptosis-1-induced endothelial cell proliferation, migration, and differentiation. Arterioscler Thromb Vasc Biol. 29, 209–215.

Aliotti, P., Lips, A., and Pamuleni, J. G. (2004). Inhibits regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. J. Neurosci. 24, 5643–5648.

Anderson, S. A., Eisenstat, D. D., Shi, A., Alifragis, P., Liapi, A., and Parnavelas, J. G. (2004). Lhx6 regulates the migration of cortical interneurons in the developing mouse cortex. J. Neurosci. 24, 5643–5648.

Baulac, S., Huberfeld, G., Gourfinkel-Beisson, S., Bienvenu, T., Poirier, K., Friocourt, G., Biressi, S., Messina, G., Collombat, P., van Stavele, H., and Parnavelas, J. G. (2008). The role of slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Dev. Biol. 313, 648–658.

Beck, K. D., Powell-Braxton, L., Widholm, I., Mitropoulou, G., Beranger, A., Prud’homme, J. F., Basile, M., Antonius, R., Beaumoulin, R., and LeGuern, A. (2001). First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat. Genet. 26, 46–48.

Bock, K. D., Possid-Brunton, L., Walter, H. R., Valverde, I., and Hefi E. (1995). 5p gene disruption results in reduced brain size, CNS hypoplasmatation, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neurosci. 11, 717–736.

Bon-Ar, V. (2002). Excitatory actions of GABA during development the nature of the nurture. Nat. Rev. Neurosci. 3, 724–729.

Bourrie, N., Potier, K., Friocourt, G., Bahi, N., Murakami, F., and Parnavelas, J. G. (2008). The role of slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Dev. Biol. 313, 648–658.

Brice, A., Bruzzone, R., and LeGuern, E. (2001). Igf1 gene disruption results in reduced brain size, CNS hypoplasmatation, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neurosci. 11, 717–736.

Bourrie, N., Potier, K., Friocourt, G., Bahi, N., Murakami, F., and Parnavelas, J. G. (2008). The role of slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons. Dev. Biol. 313, 648–658.

Bueno, S., Mendina, G., Colombo, P., Tagliasco, E., Biressi, S., Benedetti, L., Candia De Angele, G., Manocchi, A., Ferreri, S., Tagliabue, S., Broccoli, V., and Consolo, G. (2008). The homeobox gene Arx is a novel positive regulator of embryonic migration. Dev. Biol. 318, 108–119.

In conclusion, we identified here a set of candidate genes important for cortical interneuron migration and/or differentiation. Some of these genes have already been described to play a role in neuronal migration, but others have never been investigated in this context. Further studies will definitely bring new information about their function and how their possible regulation by Arx may lead to the dysfunction of GABAergic neurons, resulting in mental retardation and epilepsy.

ACKNOWLEDGMENTS

We wish to thank Drs C. Faux, W. Andrews, M. Antypa, R. Barista-Brito, and G. Fishell for accepting to share their microarray data. We also acknowledge the Inserm, la Fondation Jerome Lejeune, la Fondation Gaetan Salame, and le Fonds Européen de Développement Régional for support of the work on ARX.
Genes involved in interneuron development

V. Alcaniz, H. Kalloniatis, and G. Friocourt

J. Neurosci. 29, 9380–9389.

The role of ARX in cortical development and neuronal differentiation is dependent on Reelin but not p75 signaling. J. Neurosci. 28, 1069–1073.

H. M. (2008). The function of the Nastrozoli-related homolog (Arc) gene product as a transcriptional repressor is diminished by mutation. Cell. Tissue Res. 335, 1–7.

W. R., Kawano, H., Yoda, T., Kato, M., Dooy, W. R., Yokoyama, M., and Mochizuki, K. (2002). Mutation of ARX causes abnormal development of forebrain and tests in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat. Genet. 32, 559–569.

K. Y., Huang, Y., and Gao, J. S. (2011). Early growth response 1 (Egr-1) regulates phosphorylation of microtubule-associated protein tau in mammalian brain. J. Biol. Chem. 286, 25059–25068.

D. N., Levesque, A., and Davis, R. L. (2006). The role of ARX in cortical formation and migration in the developing cerebral cortex. J. Neurosci. 26, 13708–13718.

K. T., Kuriyama, H., Takeda, T., Kojima, K., Matsumoto, Y., and Takeda, T. (2009). Expression of LHX6 in the developing cerebral cortex. Biol. Chem. 390, 999–1005.

K. A., Yamada, S., and Takeda, T. (2002). The lissencephalic encephalocoele gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888.

{

}\text{fncel-05-00028} \text{— 2011/12/26 — 10:51 — page 10 — #10}

Friscourt and Parnavelas

Games involved in interneuron development

Frontiers in Cellular Neuroscience

www.frontiersin.org
Nakazawa, K., Zsiros, V., Jiang, Z., Miyoshi, G., and Fishell, G. (2011). Neuron 69, 714–720.

Kriegstein, A. R. (2001). Neurons
man, T. A., Dammerman, R. S., and

Kriegstein, A. R. (2004). Neuron 39, 239–249.

Price, M. G., Yoo, J. W., Burgess, K., van Esch, H., Friocourt, G., and Parnavelas, J. G. (2006). Nat. Neurosci. 9, 625–632.

Baldessin, R., Zhoun, C., Ara, T., Lazarini, F., Dubos-Dolig, M., Nagawara, T., Höhl, V., and Schulz, S. (2011). Curr. Biol. regulates interneuron migration in the developing neocortex. J. Neurosci. 31, 5123–5130.

Tanaka, D. H., Macdonald, K., Yamasawa, E., Otaka, E., and Marukami, E. (2006). Multidirectional and multisegmented tangential migration of GABAergic interneurons in the developing cerebral cortex. Development 133, 2167–2176.

Okazaki, S., Ohsawa, M., Kuki, I., Sanbo, M., Suto, F., Acker, M. E., and Lovett, M. (2011). PHLDA1 expression is critical for the development of the neocortex through gliogenesis. Nat. Neurosci. 14, 368–376.

Tovaros, M. C., Rossel, M., Moospa, B., Zhang, Y. L., Sekido, B., Favre, J., Kong, N., and Cour, H. (2006). Molecular interactor between projection neuron precursors and interneuron precursors via stromal-derived factor-1 (cxs/cxcl signaling in the cortical subventricular zone/intermediate zone. J. Neurosci. 26, 12375–12384.

Troncoso, H., Parmar, M., and Campbell, K. (2008). Expression of Mfn and Ptn genes and their protein products in the developing tectal hypothalamic implications for regional differentiation. Mech. Dev. 125, 313–324.

Shimizu, H., Shimizu, H., and Shimizu, H. (2011). CXCR4 and CXCR7 play different roles in interneuron migration. Neuro 71, 379–379.

Sanchez-Alcaniz, J. A., Hase, M., Mueller, W., Pa, B., Moekly, F., Schale, S., Lopez-Bendito, G., Stumm, R., and Martin, O. (2011). Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuro 69, 77–90.

Sotelo, D., Diez, N., and Borchardt, M. H. (2005). Xgene arrest following single mutagenesis cell fate decision in the SCID mouse. J. Neurosci. 25, 4496–4503.

Strehl, S., Brunner, N., and Holshouser, B. (2001). Sema6A regulates terminal guidance and directs migration of cortical interneurons. J. Neurosci. 21, 7529–7534.

Nery, S., and Parnavelas, J. G. (2006). Multidirectional and multisegmented tangential migration of GABAergic interneurons in the developing cerebral cortex. Development 133, 2167–2176.

Simó, S., Pujados, L., Segura, M. F., La Torre, A., Del Rio, J. A., Utret, J. M., Comaslla, J. X., and Soria, E. (2007). Reelin induces the detachment of postnatal subcortical

cortex zones and the expression of the Egr-1 through Erk1/2 activation. Cereb. Cortex 17, 294–305.

Skalicki, M., Qi, Q., Korn, J. M., Myers, D. W., Williams, K. E., Bresnick, A., and Copeland, M. G. (2011). Lamellipodium extension and membrane ruffling require different SNARE-mediated trafficking pathways. JBC Cell Biol. 131, 2121–11-62.

Simões, R. K., Ghosh, A., Ara, T., Lazarini, F., Dubos-Dolig, M., Nagawara, T., Höhl, V., and Schulz, S. (2011). CXXC4 regulates interneuron migration in the developing neocortex. J. Neurosci. 31, 5123–5130.

Tanaka, D. H., Macdonald, K., Yamasawa, E., Otaka, E., and Marukami, E. (2006). Multidirectional and multisegmented tangential migration of GABAergic interneurons in the developing cerebral cortex. Development 133, 2167–2176.

Okazaki, S., Ohsawa, M., Kuki, I., Sanbo, M., Suto, F., Acker, M. E., and Lovett, M. (2011). PHLDA1 expression is critical for the development of the neocortex through gliogenesis. Nat. Neurosci. 14, 368–376.

Tovaros, M. C., Rossel, M., Moospa, B., Zhang, Y. L., Sekido, B., Favre, J., Kong, N., and Cour, H. (2006). Molecular interactor between projection neuron precursors and interneuron precursors via stromal-derived factor-1 (cxs/cxcl signaling in the cortical subventricular zone/intermediate zone. J. Neurosci. 26, 12375–12384.

Troncoso, H., Parmar, M., and Campbell, K. (2008). Expression of Mfn and Ptn genes and their protein products in the developing tectal hypothalamic implications for regional differentiation. Mech. Dev. 125, 313–324.

Shimizu, H., Shimizu, H., and Shimizu, H. (2011). CXCR4 and CXCR7 play different roles in interneuron migration. Neuro 71, 379–379.

Sotelo, D., Diez, N., and Borchardt, M. H. (2005). Xgene arrest following single mutagenesis cell fate decision in the SCID mouse. J. Neurosci. 25, 4496–4503.

Strehl, S., Brunner, N., and Holshouser, B. (2001). Sema6A regulates terminal guidance and directs migration of cortical interneurons. J. Neurosci. 21, 7529–7534.

Nery, S., and Parnavelas, J. G. (2006). Multidirectional and multisegmented tangential migration of GABAergic interneurons in the developing cerebral cortex. Development 133, 2167–2176.
Friocourt and Parnavelas

Genes involved in interneuron development

West, K. L., Castellini, M. A., Duncan, M. K., and Bustin, M. (2004). Chromosomal proteins HMGN3a and HMGN3b regulate the expression of glycine transporter 1. *Mol. Cell. Biol.* 24, 3747–3756.

Woods, K. A., Camacho-Hubner, C., Savage, M. O., and Clark, A. J. L. (1998). Intratunial growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor 1 gene. *New Engl. J. Med.* 339, 1363–1367.

Yaman, E., Gasper, R., Koerner, C., Wittinghofer, A., and Tanghay, U. H. (2009). RasGEF1A and RasGEF1B are guanine nucleotide exchange factors that discriminate between Rap GTP-binding proteins and mediate Rap2-specific nucleotide exchange. *FEBS J.* 276, 4607–4616.

Yama, M., Shibata, H., and Nakajima, K. (2005). The caudal migratory stream: a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. *J. Neurosci.* 25, 7268–7277.

Zecevic, N., Hu, F., and Jakovcevski, I. (2011). Interneurons in the developing human neocortex. *Dev. Neurobiol.* 71, 18–33.

Zhao, Y., Flandin, P., Long, J. E., Castrua, M. D., Westphal, H., and Rubenstein, J. L. (2008). Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. *J. Comp. Neurol.* 510, 70–99.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 24 October 2011; accepted: 08 December 2011; published online: 27 December 2011.

Copyright © 2011 Friocourt and Parnavelas. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.