Benchmark ab initio thermochemistry of the isomers of diimide, \(\text{N}_2\text{H}_2 \), using accurate computed structures and anharmonic force fields

Jan M.L. Martin*

Department of Organic Chemistry, Kimmelman Building, Room 262, Weizmann Institute of Science, 76100 Rehovot, Israel. Email: comartin@wicc.weizmann.ac.il

Peter R. Taylor
San Diego Supercomputer Center and Department of Chemistry and Biochemistry, University of California, San Diego, P.O. Box 85608, San Diego, CA 92186-5608, USA. Email: taylor@sdsc.edu

(MS MP013 for B. Liu memorial issue of Mol. Phys.; received June 4, 1998; revised November 7, 2018)

Abstract

A benchmark ab initio study on the thermochemistry of the trans-HNNH, cis-HNNH, and \(\text{H}_2\text{NN} \) isomers of diazene has been carried out using the CCSD(T) coupled cluster method, basis sets as large as \([7s6p5d4f3g2h/5s4p3d2f1g]\), and extrapolations towards the 1-particle basis set limit. The effects on inner-shell correlation and of anharmonicity in the zero-point energy were taken into account: accurate geometries and anharmonic force fields were thus obtained as by-products. Our best computed \(\Delta H^\circ_{f,0} \) for trans-HNNH, 49.2±0.3 kcal/mol, is in very good agreement with a recent experimental lower limit of 48.8±0.5 kcal/mol. CCSD(T) basis set limit values for the isomerization energies at 0 K are 5.2±0.2 kcal/mol (cis-trans) and 24.1±0.2 kcal/mol (iso-trans). Our best computed geometry for trans-HNNH, \(r_e(NN)=1.2468 \ \text{Å} \),
$r_e(\text{NH}) = 1.0283$ Å, and $\theta_e = 106.17^\circ$, reproduces the precisely known ground-state rotational constants of trans-HNNH to within better than 0.1%. The rotation-vibration spectra of both cis-HNNH and H$_2$NN are dominated by very strong Coriolis and Fermi resonances. In addition, the NH stretches in H$_2$NN are so strongly anharmonic that vibrational perturbation theory breaks down, and the molecule appears to be an excellent test case for variational treatments of the vibrational Schrödinger equation.

I. INTRODUCTION

The existence of N$_2$H$_2$ (diazene, diimide) was suggested as early as 1892 [1] as an intermediate in the decomposition of azoformic acid. The trans isomer was finally discovered in 1958 by mass spectrometry as a gaseous discharge product of hydrazine [4], and around the same time in the infrared as a photolysis product of matrix isolated hydrazoic acid [3,4]. The compound is of importance in organic chemistry for the stereospecific reduction of olefins [5] and of course as the parent of a large number of azo compounds, and in inorganic chemistry as a ligand for transition metal complexes [3]. For comprehensive (if somewhat older) reviews on the preparation, properties, and reactions of diimide, the reader is referred to Back [7] and to a volume [8] in the Patai series on the chemistry of functional groups.

Early work on its rotation-vibration spectroscopy was reviewed by Craig and Levin [8] (CL). Its anharmonic force field was studied ab initio at the MP2/[4s3p2d1f] and CCSD/[3s2p1d] levels by Kobayashi, Blüdsky, Koch, and Jørgenson (KBKJ) [10] — who also considered the cis-diazene and isodiazene isomers — and very recently at the CCSD(T)/[4s3p2d1f] level by the present authors (MT) [11], who also reviewed more recent spectroscopic information. After publication of this latter paper, Demaison, Hegelund, and Bürger (DHB) [12] published new experimentally derived equilibrium geometry data, based in part on a re-analysis of recent high-resolution data for trans-HNNH [13], trans-DNND [14], and trans-HNND [15].
Experimental information on the cis isomer is quite limited, basically consisting of tentative assignments of bands at 3074 and 1279 cm$^{-1}$ by Rosengren and Pimentel (RP) \cite{4} and of bands at 1034, 1347, 3025, and 3116 cm$^{-1}$ by Wiberg, Fisher, and Bachhuber (WFB) \cite{16}. CL also derived estimated harmonic frequencies from an empirical force field based on the trans-HNNH frequencies. In light of the fact that some of these frequencies were misassigned \cite{11} and that various force constants had to be neglected for want of sufficient experimental data, these frequencies are of limited reliability.

The isodiazene isomer was predicted about a century ago to play a key role as an intermediate in the chemistry of azo compounds \cite{17}. Following earlier reporting of the synthesis of the substituted isodiazene (2,2,6,6-tetramethylpiperidyl)nitrene \cite{18}, isolation and characterization by low-temperature matrix infrared spectroscopy was reported by Sylwester and Derwan (SD) \cite{19}. Teles et al. (TMHS) \cite{20} obtained isodiazene by photolysis of aminoisocyanates in argon at 12 K, and recorded a complete infrared spectrum which they assigned with the help of fairly low-level ab initio harmonic frequency calculations. Finally, Goldberg et al. \cite{21} reported mass spectrometric detection of isodiazene and its cation in the gas phase. These authors also carried out G2 level calculations on the relative energies of various minima and transition states on the N$_2$H$_2$ potential surface, as did Smith \cite{22}.

Ab initio (e.g. \cite{23,25,21,26}) and density functional (e.g. \cite{27,28}) calculations on the relative stability of the trans-diazene, cis-diazene, and isodiazene isomers have consistently shown a stability ordering trans $>$ cis $>$ iso, as well as high (in excess of 40 kcal/mol) isomerization barriers between the isomers. (Very recently, the rigid cis-trans rotation of the molecule was proposed and studied \cite{29} as a test case for a new multireference coupled cluster method \cite{29}, the transition state being a ‘real-life’ alternative for H$_4$ as an essentially perfect two-configuration reference problem.)

The heat of formation of trans-HNNH is not very well established. The original paper by Foner and Hudson reports a mass spectrometric $\Delta H_{f,0}^{\circ} = 52.4 \pm 2.0$ kcal/mol. By photoionization mass spectrometry, Ruscić and Berkowitz \cite{30} established a lower limit, $\Delta H_{f,0}^{\circ} \geq 46.6 \pm 0.8$ kcal/mol, which is consistent with a calculated value using the G2 model
by Pople and Curtiss [25], 49.6 kcal/mol. The gap between theoretical value and experimental upper limit was narrowed by new vacuum UV photolysis experiments by Biehl and Stuhl (BS) [32] who obtained $\Delta H_{f,0}^\circ \geq 48.8 \pm 0.5$ kcal/mol. Clearly, the availability of a benchmark ab initio value would be highly desirable.

We have recently developed basis set extrapolation techniques [33,34] which permit the calculation of molecular total atomization energies (TAE$_e$ at the bottom of the well, TAE$_0$ at 0 K) with a mean absolute error as low as 0.12 kcal/mol. Using this technique, we were recently able [35] to resolve a long-standing controversy concerning the heat of formation of B(g). One objective of the present work is to obtain a benchmark heat of formation of trans-HNNH, as well as benchmark values for the isomerization energies in the \{trans,cis,iso\}diazene system.

As by-products of these calculations (which require inclusion of inner-shell correlation and of anharmonic contributions to the total atomization energy) we will also present accurate computed geometries and anharmonic force fields, although the latter are not the primary focus of the present work.

II. METHODS

All electronic structure calculations were carried out using the MOLPRO 96.4 [36] quantum chemistry package running on DEC Alpha 500/500 and SGI Origin 2000 computers at the Weizmann Institute, and on the Cray C90 at San Diego Supercomputer Center.

The CCSD(T) electron correlation method [37,38], as implemented by Hampel et al. [39], has been used throughout. (For the atomic calculations involved in the TAE determinations, the definition of the restricted open-shell CCSD(T) energy according to Ref. [38] is used.) The acronym stands for coupled cluster with all single and double substitutions [40] augmented by a quasiperturbative account for triple excitations [37]. From extensive studies (see [41] for a review) this method is known to yield correlation energies very close to the exact n-particle solution within the given basis set as long as the Hartree-Fock determinant
is a reasonably good zero-order reference wave function. The T_1 diagnostic, proposed \cite{12} as a measure of the importance of nondynamical correlation, was found to be 0.017 and 0.018, respectively, for trans-HNNH and cis-HNNH: these values suggest a wavefunction dominated by a single reference determinant. The computed T_1 for isodiazene, 0.030, suggests a mild degree of nondynamical correlation which experience suggests \cite{11} is still well within the range of applicability for CCSD(T).

Calculations including only valence correlation were carried out using the cc-pVnZ and aug'-cc-pVnZ (n=D, T, Q, 5) basis sets of Dunning and coworkers \cite{13,14}. The highest angular momenta present in these basis sets are \{d,f,g,h\} in the series \{D,T,Q,5\}. The augmented correlation consistent (aug-cc-pVnZ) basis sets differ from the parent cc-pVnZ basis set by the addition of one diffuse (anion) function for each angular momentum. It was previously established that such basis functions are essential for accurate computed bond angles \cite{45} and atomization energies \cite{33,46} of strongly polar molecules. The aug'-cc-pVnZ notation \cite{47} stands for the combination of a regular cc-pVnZ basis set on hydrogen with an aug-cc-pVnZ basis set on first-row atoms. We previously found \cite{33} that this affects computed atomization energies by less than 0.1 kcal/mol. In the interest of brevity, the standard acronyms cc-pVnZ and aug'-cc-pVnZ will be replaced by VnZ and A'VnZ, respectively.

The effect of inner-shell correlation was assessed by taking the difference between CCSD(T) calculations with and without constraining the inner-shell orbitals to be doubly occupied. Inner-shell correlation requires sufficient flexibility of the s basis set in the high-exponent region as well as the presence of high-exponent p, d, and f functions. In the present work, we have employed the Martin-Taylor core correlation basis set \cite{15}, which was previously found \cite{18} to recover essentially the entire differential effect of inner-shell correlation for first-row molecules.

Geometry optimizations were carried out by repeated multivariate parabolic interpolation with a step size of 0.001 a_0 or radian, and a convergence threshold of about 10^{-5} a_0 or radian. Quartic force fields were set up by finite differentiation in symmetry-adapted coordinates. In order to keep higher-order contamination in the quartic portion of the force field to
a minimum, fairly small step sizes 0.01 Å and radian were used and CCSD(T) energies converged to essentially machine precision. Generation of the displaced Cartesian geometries and transformation of the internal coordinate force field to Cartesian coordinates were carried out with the help of the INTDER program. The anharmonic spectroscopic analysis was carried out by standard second-order rovibrational perturbation theory using a modified version of SPECTRO. Cubic and quartic resonances were accounted for using the method previously described in MT, as implemented by one of us.

III. RESULTS AND DISCUSSION

A. Thermochemistry

All relevant data can be found in Table I. In this molecule, the SCF and valence correlation contributions to the total atomization energy (TAE) are clearly equally important. Using the cc-pVnZ basis sets, basis set convergence for the SCF contribution is atypically slow: enlarging the basis set from cc-pVTZ to cc-pVQZ affects all three TAE values by around 2 kcal/mol, while further basis set expansion to cc-pV5Z still contributes another 0.5 kcal/mol, on average. By contrast, convergence in the aug′-cc-pVnZ series is considerably faster: improving the basis set from aug′-cc-pVTZ to aug′-cc-pVQZ increases TAE by only about 1 kcal/mol, while further enlargement to aug′-cc-pV5Z affects all values by only 0.1–0.2 kcal/mol. It is also worth noting that the SCF/cc-pVDZ and SCF/aug′-cc-pVDZ TAE values differ by 5–5.5 kcal/mol. These observations clearly demonstrate that diffuse functions on N are essential for a balanced description of these species.

For the sake of elegance, an extrapolation to the one-particle basis set limit is required. We have considered two alternatives: an \(A + B/(l+1/2)^5 \) extrapolation following the suggestion of Petersson et al. and Ref. , and the geometric extrapolation formula originally proposed by Feller. The extrapolated limits from the VnZ and A′VnZ series differ appreciably with the former formula: the latter yields essentially identical results for both molecules. In order to clarify this matter further, we have considered extrapolated total
SCF energies for a number of systems for which numerical Hartree-Fock limits are available. These data are given in Table II. It is clearly seen that the geometric formula most closely reproduces the numerical SCF energies, although the value of an extrapolation with basis sets as large as those considered here is largely cosmetic.

Following the pioneering work by Schwartz [57], Hill [58] and Kutzelnigg and Morgan [59] showed that the basis set convergence of pair correlation energies can be expanded as an asymptotic series in \(1/(l + 1/2)\), with \(l\) the highest angular momentum appearing in the basis set. Based hereon, Martin [33] proposed the use of a 3-point extrapolation formula of the form \(A + B/(l + 1/2)^C\). In combination with appropriate SCF extrapolations and accounts for inner-shell correlation, the present authors [34] found that the very precisely known experimental TAEs of 15 small polyatomic molecules could be reproduced to within 0.12 kcal/mol.

In the present case, the A’VnZ basis sets systematically recover a slightly larger percentage of the correlation energy than their VnZ counterparts: however, the differences are much smaller than for the SCF portion of TAE. As we previously found [33, 40, 34] for molecules with polar bonds, the extrapolated values based on VnZ calculations are substantially higher (about 0.6 kcal/mol in this case) than those obtained from A’VnZ results. Relative to the CCSD(T)/A’V5Z result, the extrapolation accounts for 1.5–1.7 kcal/mol.

It is perhaps worth mentioning that the convergence of the sum of SCF and correlation energies for relatively small basis sets would be dominated to a substantial extent by the SCF convergence behavior, and leads to the erroneous conclusion that overall convergence behavior is best described by an exponential series.

Inner-shell correlation contributes 0.91, 0.87, and 1.04 kcal/mol, respectively, for the trans-, cis-, and isodiazene isomers. It thus leaves the cis-trans equilibrium fundamentally unchanged but does favor the isodiazene isomer somewhat compared to the other two isomers.

For the ‘bottom-of-the-well’ situation, our best calculations thus predict a cis-trans isomerization energy of 5.59 kcal/mol and an iso-trans difference of 24.95 kcal/mol. Inclusion of CCSD(T)/cc-pVQZ anharmonic zero-point energies considerably affects these values, fa-
voring cis over trans by 0.38 kcal/mol and isodiazene over trans-diazene by 0.83 kcal/mol. Our final best isomerization energies at 0 K are then 5.21 kcal/mol (cis-trans) and 24.12 kcal/mol (iso-trans), which we estimate to be accurate to about 0.1 kcal/mol. The G2 values of Goldberg et al., 5.0 and 24.1 kcal/mol, are in excellent agreement with our values.

Combining our computed TAE$_0$ of 278.76 kcal/mol for the trans form with the JANAF heats of formation of N(g) and H(g), we obtain a computed CCSD(T) basis set limit $\Delta H_{f,0}^0$(trans-HNNH)=49.57 kcal/mol, to which we assign a conservative error bar of ±0.2 kcal/mol. The G2 value of 49.6 kcal/mol [25] is in perfect agreement with our calibration calculation. The most recent experimental value is a lower limit of 48.8 ± 0.5 kcal/mol by Biehl and Stuhl [32], which is quite consistent with our calculations.

A litmus test for basis set convergence of our computed value would be if a 3-point extrapolation from AVQZ, AV5Z, and AV6Z were to yield the same result as above (AVTZ,AVQZ,AV5Z). While a CCSD(T)/AV6Z calculation on trans-HNNH is beyond our computational resources, we can certainly carry out such calculations for the prototype systems N$_2$ and NH. For these systems, we find differences of -0.13 and -0.045 kcal/mol, respectively, adding up for HNNH to an estimated difference of only -0.04 kcal/mol. We can therefore assume that our result is converged with respect to the 1-particle basis set.

The remaining discrepancy with experiment for N$_2$, then, appears to be to some extent due to imperfections in the CCSD(T) treatment. Because their magnitude in trans-HNNH is somewhat hard to quantify, we affix an overall error bar of about 0.5 kcal/mol to our computed TAE$_e$.

In Ref. [34], it was proposed to add a correction term of 0.126 kcal/mol per bond order involving at least one N atom, which greatly improved agreement with experiment for such compounds as N$_2$, NH$_3$, NNO, and HNO. If the same were done here, this would lead to an increase of 0.504 kcal/mol in the computed TAE$_0$ to 279.26 kcal/mol, and a decrease in the computed $\Delta H_{f,0}^0$ to 49.07 kcal/mol, which is within the error bar of the Biehl and Stuhl lower limit.

Alternatively, we may use the 3-parameter empirical correction due to Martin [61,62]
\[
\Delta E_{\text{correction}} = a_{\sigma}n_{\sigma} + b_{\pi}n_{\pi} + (n_{\sigma} + n_{\pi} + n_{\text{lone pair}})c_{\text{pair}}
\]

in which \(n_{\sigma}, n_{\pi}, n_{\text{lone pair}}\) represent the numbers of \(\sigma\) bonds, \(\pi\) bonds, and lone pairs, respectively, and the coefficients \(a_{\sigma}, b_{\pi}, c_{\text{pair}}\) are specific for the basis set, electron correlation treatment, and (level of theory used for the) reference geometry. (They are determined by least-squares fitting to a fairly small sample of very accurately known TAEs.) Ref. [46] lists two sets of parameters, one which only attempts to correct for basis set incompleteness in the valence correlation treatment (the inner-shell correlation contribution being computed explicitly), and another which attempts to absorb the inner-shell correlation contribution in the parametrization. In the present case, as seen in Table I, the ‘implicit core correlation’ set of parameters yields essentially identical results to the set of parameters with explicit inclusion of core correlation. The 3-parameter corrected values converge surprisingly rapidly as a function of basis set (Table I): from VTZ to AV5Z, the variation is no larger than about 0.15 kcal/mol. The highest-level value, AV5Z with explicit core correlation, is TAE\(_e\)=296.5 kcal/mol, or TAE\(_0\)=279.0 kcal/mol, that is \(\Delta H_{f,0}^\circ=49.37\) kcal/mol. (The mean absolute error for the “training set” in Ref. [46] is 0.20 kcal/mol at this level.) Taking the average between the extrapolated and empirically corrected values and using twice the difference between the values as an estimated error bar, we finally suggest \(\Delta H_{f,0}^\circ=49.2 \pm 0.3\) kcal/mol as our best estimate for the heat of formation of trans-diazene.

As expected, basis set convergence for the cis-trans and iso-trans isomerization energies is quite fast, and there is no reason why our computed basis set limits should not be accurate to as little as 0.1 kcal/mol: we will conservatively double these error bars, leading to final best computed isomerization energies at 0 K of 5.2\(\pm\)0.2 (cis-trans) and 24.1\(\pm\)0.2 (iso-trans) kcal/mol.

Finally, in order to assess the performance of the ”Complete Basis Set” (CBS) hybrid extrapolation/empirical correction schemes of Petersson and coworkers [61] for this problem, we have calculated the TAE of \(N_2N_2\) and the isomerization energies using the CBS-Q and CBS-QCI/APNO models [55,61] as implemented in GAUSSIAN 94 [62]. The computed \(\Delta H_{f,0}^\circ\) values of 50.9 (CBS-Q) and 50.8 (CBS-QCI/APNO) kcal/mol agree fairly poorly
with the present best estimate: about one-third of the discrepancy (0.61 kcal/mol) is due to error in the approximate zero-point energy. The fact that G2 theory apparently agrees better with the benchmark heat of formation for N$_2$H$_2$ than the CBS-Q and particularly the CBS-QCI/APNO models goes against the general trend: e.g. for 14 experimentally very precisely (0.1 kcal/mol or better) known total atomization energies, one of us [63] found mean absolute errors of 1.32 kcal/mol for G2 theory, 0.82 kcal/mol for CBS-Q, and 0.45 kcal/mol for CBS-QCI/APNO. (We recall for comparison that the corresponding error statistics for the best extrapolation and 3-parameter correction used in the present work are 0.12 and 0.20 kcal/mol, respectively.) The cis-trans isomerization energy is computed as 5.2 kcal/mol using both models, in perfect agreement with our best computed value; like for G2 theory, the iso-trans isomerization energy is underestimated, at 23.6 kcal/mol by CBS-Q and 23.7 kcal/mol by the CBS-QCI/APNO model.

B. Geometries

All relevant data can be found in Table IV. Only for trans-HNNH are experimental geometric data available. Until recently, these essentially consisted of the older r_s (substitution) structure of Carlotti et al. [64]. Very recently, Demaison, Hegelund, and Bürger (DHB) [12] published a newly refined r_z geometry: r_z(NH)=1.041(1) Å, r_z(NN)=1.252(1) Å, and θ=106.3(1)$^\circ$. (For an overview of the definitions of various experimentally derived bond distances, see the review by Kuchitsu [53].) Using the average of r_z – r_e corrections obtained in three different ways (extrapolation from different isotopic values of r_z, CCSD(T)/cc-pVTZ calculated rotation-vibration coupling constants from Ref. [11], and their own MP2/6-311+G(2d,p) harmonic force field), they obtained the r_e geometry r_e(NH)=1.030(1) Å, r_e(NN)=1.247(1) Å, and θ_e=106.3$^\circ$.

We found that the r_z – r_e difference is only weakly affected by basis set expansion beyond CCSD(T)/cc-pVTZ: at the CCSD(T)/cc-pVQZ level, we obtain the correction r_z – r_e(NH)=0.01357 Å, r_z – r_e(NN)=0.00550 Å, and θ_z – θ_e=0.061$^\circ$. Applying these to
the DHB r_z values, we obtain an r_e geometry that principally differs by r(NH) being about 0.002–0.003 Å shorter.

Another approach, such as we have followed in previous studies on e.g. ethylene [66] and acetylene [67], consists of obtaining a best calculated geometry and computing ground state rotational constants from it and the anharmonic force field, then comparing the rotational constants with experiment. For good agreement with experiment in directly calculated bond distances, inclusion of inner-shell correlation is absolutely essential [48]. In this work, we find that inner-shell correlation shortens r(NN) by 0.0026 Å and r(NH) by 0.0013 Å, and opens up the NNH bond angle by 0.12°. Adding these contributions in to the CCSD(T)/cc-pVQZ equilibrium geometry, we obtain r_e(NN)=1.2468 Å, r_e(NH)=1.0283 Å, and θ_e=106.17°. From these parameters and the CCSD(T)/cc-pVQZ force field, we obtain A_0, B_0, and C_0 values which deviate from experiment by -0.04%, -0.06 %, and -0.07 %, respectively. These small discrepancies suggest that our calculated geometry is considerably closer to experiment than 0.001 Å and 0.1°.

However, it could be argued that since trans-HNNH has quite polar bonds, the use of diffuse function basis sets is in order. And indeed, as can be seen from Table [IV], adding diffuse functions considerably speeds up basis set convergence in the bond angle, with CCSD(T)/A′VTZ and CCSD(T)/A′VQZ bond angles now only differing by 0.13° (compared to 0.32° between CCSD(T)/VTZ and CCSD(T)/VQZ). Applying core-correlation corrections now to the CCSD(T)/A′VQZ geometry, we obtain r_e(NN)=1.2464 Å, r_e(NH)=1.0288 Å, and θ_e=106.37°. Together with the CCSD(T)/cc-pVQZ force field, our deviations for the ground-state rotational constants are then +0.19%, -0.11%, and -0.09%, respectively. Presumably due to an error compensation, the VQZ+core geometry appears to be the closer to experiment.

Both extrapolated geometries are in agreement about the fact that the DHB value for r_e(NH) is about 0.002 Å too long. Other discrepancies with DHB fall within the latter’s error bars.

Our predicted geometries and ground-state rotational constants (Table [IV]) for the cis-
diazene and isodiazene isomers may facilitate future experimental work on these species.

C. Vibrational frequencies

Computed harmonic frequencies can be found in Table V. Computed and observed fundamentals are given in Table VI, while computed anharmonicities and rotation-vibration coupling constants are presented in Tables VII and VIII, respectively, together with the relevant resonance constants.

The CCSD(T)/cc-pVQZ anharmonic force fields obtained in the present study were principally calculated in order to obtain reliable zero-point vibrational energies for the thermochemical calculations. The vibrational spectroscopy of trans-HNNH was discussed in detail in MT, while too little experimental information is available for cis-HNNH to make a meaningful comparison possible.

Based on our anharmonic force field calculations, however, we can draw some qualitative conclusions on the rotation-vibration spectrum of cis-HNNH. In particular, both ν_1 and ν_5 are involved in resonance triads, the former with $2\nu_3$ and $2\nu_6$, the latter with $\nu_2 + \nu_6 \approx \nu_5$ and $\nu_2 + \nu_6 \approx \nu_5$. The eigenvectors of the former triad include essentially perfect 50:50 mixtures of ν_1 and $2\nu_6$ states:

\[
\begin{pmatrix}
|100000\rangle \\
|100000\rangle \\
|002000\rangle \\
|000002\rangle
\end{pmatrix}
\begin{pmatrix}
1000000 \\
3010.07 \\
-91.580 \\
-65.556
\end{pmatrix}
\begin{pmatrix}
|002000\rangle \\
|002000\rangle \\
|000002\rangle \\
|000002\rangle
\end{pmatrix}
\begin{pmatrix}
002000 \\
2680.61 \\
0.910 \\
3039.32
\end{pmatrix} (2)
\]

with the eigensolution

\[
\begin{pmatrix}
2652.5 & 2986.5 & 3091.1 \\
|100000\rangle & -0.273 & 0.680 & -0.680 \\
|002000\rangle & -0.961 & -0.219 & 0.166 \\
|000002\rangle & -0.036 & 0.700 & 0.714
\end{pmatrix}
\]
Because of the relative positions of the deperturbed $\nu_1^*(3010.7 \text{ cm}^{-1})$ and $2\nu_6^*(3039.3 \text{ cm}^{-1})$ band origins, one could assign the 2986.5 cm\(^{-1}\) band to ν_1 and the 3091.1 cm\(^{-1}\) band to $2\nu_6$; however, this labeling is somewhat academic.

The resonance matrix involving ν_5 has the structure:

$$
\begin{pmatrix}
|000010\rangle & |010001\rangle & |001001\rangle \\
|000010\rangle & 2920.83 & 21.149 & -114.943 \\
|010001\rangle & 21.149 & 3061.78 & 1.963 \\
|001001\rangle & -114.943 & 1.963 & 2852.64
\end{pmatrix}
$$

with the eigensolution

$$
\begin{pmatrix}
2766.2 & 3002.5 & 3066.6 \\
|000010\rangle & 0.600 & 0.766 & -0.231 \\
|010001\rangle & -0.048 & -0.254 & -0.966 \\
|001001\rangle & 0.798 & -0.591 & 0.115
\end{pmatrix}
$$

where we can again label the 2766.2 and 3002.5 cm\(^{-1}\) states as $\nu_3 + \nu_6$ and ν_5, respectively, based on the deperturbed band origins, but the states mix so strongly that the labeling is again largely meaningless.

A very strong Coriolis resonance ($Z_{a46}^b=7.79 \text{ cm}^{-1}$) between ν_4 and ν_6 is predicted around the a axis, as is a strong Coriolis resonance around the b axis between ν_3 and ν_4 ($Z_{34}^b=-2.40 \text{ cm}^{-1}$) and a weaker one between ν_2 and ν_6 around the c axis ($Z_{26}^c=0.84 \text{ cm}^{-1}$). The quality of the computed Coriolis interaction parameters can be gauged by comparing CCSD(T)/cc-pVQZ computed with experimentally derived values for trans-HNNH. While agreement between the computed very large $Z_{a46}^b=8.708 \text{ cm}^{-1}$ and the experimental value of Hegelund et al. \cite{13}, 9.18234(58) cm$^{-1}$, is not as good as one would hope, the more recent value of DHB \cite{12}, 8.5895 cm$^{-1}$, is actually midway between our CCSD(T)/cc-pVTZ and CCSD(T)/cc-pVQZ values. Agreement between computed and observed Z_{a46}^b is likewise quite satisfactory.

Our calculations are rather difficult to reconcile with the assignments of WFB, as well as with the 1279 cm\(^{-1}\) assignment of RP; their 3074 cm\(^{-1}\) assignment could correspond to our
computed $\nu_2 + \nu_6$ band. Further experimental work on the cis molecule is clearly required: we hope that our calculations may assist the latter.

In isodiazene, our calculations likewise find four Fermi resonances: $\nu_1 \approx 2\nu_3$, $\nu_1 \approx 2\nu_6$, $\nu_2 \approx 2\nu_4$, and $\nu_5 \approx \nu_2 + \nu_6$. Aside from these strong resonances, however, the computed vibrational anharmonicities on the deperturbed ν_1 and ν_5 bands are exceedingly high: 274.5 and 314.8 cm$^{-1}$ at the CCSD(T)/cc-pVQZ level. The only case known to the present authors of a similarly large stretching anharmonicity in a tightly bound molecule is for the H–N stretch in HNO, for which Lee et al. \cite{68} calculated an anharmonic correction of 287.1 cm$^{-1}$ at the same level of theory as used here. These authors, in comparisons between variational calculations and vibrational perturbation theory found that the latter essentially breaks down completely for HNO. It would then stand to reason that the same would occur for isodiazene, and preliminary variational calculations with the POLYMODE program \cite{69} do indeed suggest such strong mixing that second-order perturbation theory is fundamentally inappropriate as a treatment. In the light thereof, it is perhaps not surprising that the agreement between the computed fundamentals and the matrix IR data of Teles et al. is atypically poor for this level of theory. Moreover, we find that the computed harmonic frequencies and vibrational anharmonicities are unusually sensitive to the basis set. That is, the deperturbed anharmonic corrections for ν_1 and ν_5 at the CCSD(T)/VTZ level are 278.4 and 335.8 cm$^{-1}$ (the latter a difference of no less than 20 cm$^{-1}$ with the CCSD(T)/VQZ value!), while the corresponding harmonic frequencies change by 16 and 25 cm$^{-1}$, respectively.

In addition we find a very strong Coriolis resonance $Z_{16}^{a6} = -11.96$ cm$^{-1}$, aside from a weaker one, $Z_{65}^{a6} = 1.02$ cm$^{-1}$. Under these circumstances, it seems almost certain that a variational treatment based on an approximate kinetic energy operator in the Watson Hamiltonian \cite{70} (such as implemented in the POLYMODE \cite{69,71} program) will be likewise inadequate. No tetratomic variational code with an exact kinetic energy operator (e.g. \cite{72,73}) is available to the present authors, and since this study principally concerns thermochemistry, we will not pursue this point further in the present paper.
IV. CONCLUSIONS

A benchmark ab initio study on the thermochemistry of the trans-HNNH, cis-HNNH, and H₂NN isomers of diazene has been carried out. Our best computed \(\Delta H_{f,0} \) for trans-HNNH, 49.2±0.3 kcal/mol, is in very good agreement with a recent experimental lower limit of 48.8±0.5 kcal/mol. CCSD(T) basis set limit values for the isomerization energies, including contributions of inner-shell correlation and anharmonicity in the zero-point energy, are 5.2±0.2 kcal/mol (cis-trans) and 24.1±0.2 kcal/mol (iso-trans). Performance of more approximate methods such as G2 theory and the CBS-Q and CBS-QCI schemes was assessed in detail for this system. For extrapolation of the SCF contribution to atomization energies, the Feller-type exponential extrapolation \(A + B.C^{-l} \), rather than the two-point \(A + B/(l + 1/2)^5 \) extrapolation, appears to be the formula of choice.

Our best computed geometry for trans-HNNH, \(r_e(\text{NN})=1.2468 \ \text{Å}, r_e(\text{NH})=1.0283 \ \text{Å}, \) and \(\theta_e=106.17^\circ \), reproduces the precisely known ground-state rotational constants of trans-HNNH to within better than 0.1 %. We conclude that the NH bond distance in the recent experimental \(r_e \) geometry of Demaison et al. \[12\] is about 0.002 Å too long.

The rotation-vibration spectra of both cis-HNNH and H₂NN are predicted to have very strong Coriolis and Fermi resonances. In addition, the NH stretches in H₂NN are so strongly anharmonic that vibrational perturbation theory breaks down, and the molecule appears to be an excellent test case for variational treatments of the vibrational Schrödinger equation.

ACKNOWLEDGMENTS

JM is a Yigal Allon Fellow, the incumbent of the Helen and Milton A. Kimmelman Career Development Chair (Weizmann Institute), and an Honorary Research Associate (“Onderzoekslider in eremandaat”) of the National Science Foundation of Belgium (NFWO/FNRS). This research was supported by the National Science Foundation (USA) through Cooperative Agreement DACI-9619020 and by Grant No. CHE-9700627 (PRT), and by a grant of computer time from SDSC.
REFERENCES

[1] J. Thiele, *Liebig Ann. Chem.* **271**, 127 (1892)

[2] S. N. Foner and R. L. Hudson, *J. Chem. Phys.* **28**, 179 (1958)

[3] E. D. Becker, G. C. Pimentel, and M. Van Thiel, *J. Chem. Phys.* **26**, 145 (1957); M. Van Thiel and G. C. Pimentel, *ibid.* **32**, 133 (1960)

[4] K. Rosengren and G. C. Pimentel, *J. Chem. Phys.* **43**, 507 (1965)

[5] W. J. Le Noble, *Highlights of organic chemistry* (Marcel Dekker, New York, 1974); S. K. Vidyarthi, C. Willis, R. A. Back, and R. M. McKittrick, *J. Am. Chem. Soc.* **96**, 7647 (1974).

[6] M. Veith, *Angew. Chem. Int. Engl. Ed.* **15**, 387 (1976)

[7] R. A. Back, *Reviews of Chemical Intermediates* **5**, 293 (1984)

[8] *The chemistry of diazonium and diazo groups* (ed. S. Patai), Wiley, New York, 1978; esp. J. B. Moffat, this reference, p.1

[9] N. C. Craig and I. W. Levin, *J. Chem. Phys.* **71**, 400 (1979).

[10] R. Kobayashi, O. Bludský, H. Koch, and P. Jørgensen, *Chem. Phys. Lett.* **215**, 576 (1993)

[11] J. M. L. Martin and P. R. Taylor, *Spectrochim. Acta A* **53**, 1039 (1997)

[12] J. Demaison, F. Hegelund, and H. Bürger, *J. Mol. Struct.* **413**, 447 (1997)

[13] F. Hegelund, H. Bürger, and O. Polanz, *J. Mol. Spectrosc.* **167**, 1 (1994)

[14] F. Hegelund, H. Bürger, and O. Polanz, *J. Mol. Spectrosc.* **179**, 142 (1996)

[15] F. Hegelund, H. Bürger, and O. Polanz, *J. Mol. Spectrosc.* **181**, 151 (1997)

[16] N. Wiberg, G. Fisher, and H. Bachhuber, *Angew. Chem. Int. Ed. Engl.* **16**, 780 (1977)
[17] A. Angeli, *Chem. Zentralbl. II* **71**, 857 (1900) quoted in Ref. [21]

[18] P. B. Derwan, M. E. Squillacote, P. M. Lahti, A. P. Sylwester, J. D. Roberts, *J. Am. Chem. Soc.* **103**, 1120 (1981)

[19] A. P. Sylwester and P. B. Derwan, *J. Am. Chem. Soc.* **106**, 4648 (1984)

[20] J. H. Teles, G. Maier, B. A. Hess Jr., and L. J. Schaad, *Chem. Ber.* **122**, 749 (1989)

[21] N. Goldberg, M. C. Holthausen, J. Hrušák, W. Koch, and H. Schwarz, *Chem. Ber.* **126**, 2753 (1993)

[22] B. J. Smith, *J. Phys. Chem.* **97**, 10513 (1993)

[23] H. J. Aa. Jensen, P. Jørgensen, and T. Helgaker, *J. Am. Chem. Soc.* **109**, 2895 (1987)

[24] S. P. Walch, *J. Chem. Phys.* **91**, 389 (1989)

[25] J. A. Pople and L. A. Curtiss, *J. Chem. Phys.* **95**, 4385 (1991)

[26] C. Angeli, R. Cimiraglia, and H.-J. Höffmann, *Chem. Phys. Lett.* **259**, 276 (1996)

[27] J. Andzelm, C. Sosa, and R. A. Eades, *J. Phys. Chem.* **97**, 4664 (1993)

[28] B. Jursić, *Chem. Phys. Lett.* **261**, 13 (1996) and references therein.

[29] P. Mach, J. Mášik, J. Urban, and I. Hubac, *Mol. Phys.* **94**, 173 (1998)

[30] B. Ruscic and J. Berkowitz, *J. Chem. Phys.* **95**, 4378 (1991)

[31] L. A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople, *J. Chem. Phys.* **94**, 7221 (1991).

[32] H. Biehl and F. Stuhl, *J. Chem. Phys.* **100**, 141 (1994)

[33] J. M. L. Martin, *Chem. Phys. Lett.* **259**, 669 (1996)

[34] J. M. L. Martin and P. R. Taylor, *J. Chem. Phys.* **106**, 8620 (1997)

[35] J. M. L. Martin and P. R. Taylor, *J. Phys. Chem. A* **102**, 2995 (1998)
[36] MOLPRO 96.4 is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from J. Almlöf, R. D. Amos, A. Berning, M. J. O. Deegan, F. Eckert, S. T. Elbert, C. Hampel, R. Lindh, W. Meyer, A. Nicklass, K. A. Peterson, R. M. Pitzer, A. J. Stone, P. R. Taylor, M. E. Mura, P. Pulay, M. Schütz, H. Stoll, T. Thorsteinsson, and D. L. Cooper. The tripu and scfpr0 patches were installed. Without the former, all open-shell CCSD(T) energies in cases with more than one doubly occupied orbital in any given irreducible representation are in error. The scfpr0 patch is required to permit sufficiently tight SCF convergence criteria to guarantee an accuracy of 12 decimal places in the CCSD and CCSD(T) energies.

[37] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, *Chem. Phys. Lett.* **157**, 479 (1989)

[38] J. D. Watts, J. Gauss, and R. J. Bartlett, *J. Chem. Phys.* **98**, 8718 (1993).

[39] C. Hampel, K. Peterson, and H. J. Werner, *Chem. Phys. Lett.* **190**, 1 (1992)

[40] G. D. Purvis III and R. J. Bartlett, *J. Chem. Phys.* **76**, 1910 (1982).

[41] T. J. Lee and G. E. Scuseria, in *Quantum mechanical electronic structure calculations with chemical accuracy* (S. R. Langhoff, Ed.), Kluwer, Dordrecht, The Netherlands, 1995.

[42] T. J. Lee and P. R. Taylor, *Int. J. Quantum Chem. Symp.* **23**, 199 (1989).

[43] T. H. Dunning, Jr., *J. Chem. Phys.* **90**, 1007 (1989).

[44] R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, *J. Chem. Phys.* **96**, 6796 (1992).

[45] J. M. L. Martin and P. R. Taylor, *Chem. Phys. Lett.* **225**, 473 (1994).

[46] J. M. L. Martin, *J. Mol. Struct. (Theochem)* **398**, 135 (1997)

[47] J. E. Del Bene, *J. Phys. Chem.* **97**, 107 (1993).

[48] J. M. L. Martin, *Chem. Phys. Lett.* **242**, 343 (1995).
[49] W. D. Allen, INTDER, a general coordinate transformation program (Stanford University, 1993).

[50] D. Papoušek and M. R. Aliev, Molecular Vibrational-Rotational Spectra (Elsevier, Amsterdam, 1981).

[51] J. K. G. Watson, in Vibrational spectra and structure: a series of advances (ed. J. R. Durig), Elsevier Scientific Publishing Co., Amsterdam, 1977, p.1.

[52] A. Willetts, J. F. Gaw, W. H. Green Jr., and N. C. Handy, SPECTRO, a second-order rovibrational perturbation theory program, version 3.0 (University Chemical Laboratory, Cambridge, UK, 1994); extended by J. M. L. Martin for arbitrary resonance polyads and generalized second-order resonances.

[53] J. F. Gaw, A. Willetts, W. H. Green, and N. C. Handy, in Advances in molecular vibrations and collision dynamics (ed. J. M. Bowman), JAI Press, Greenwich, CT, 1990.

[54] J. M. L. Martin, POLYAD, a vibrational analysis program for asymmetric and symmetric tops (Weizmann Institute of Science, 1997).

[55] J. A. Montgomery, Jr., J. W. Ochterski, and G. A. Petersson, J. Chem. Phys. 101, 5900 (1994) and references therein.

[56] D. Feller, J. Chem. Phys. 96, 6104 (1992).

[57] C. Schwartz, in Methods in Computational Physics 2, ed. B. J. Alder (Academic Press, New York, 1963).

[58] R. N. Hill, J. Chem. Phys. 83, 1173 (1985)

[59] W. Kutzelnigg and J. D. Morgan III, J. Chem. Phys. 96, 4484 (1992); erratum 97, 8821 (1992)

[60] J. M. L. Martin, J. Chem. Phys. 97, 5012 (1992).

[61] J. W. Ochterski, G. A. Petersson, and J. A. Montgomery, Jr., J. Chem. Phys. 104, 2598
(1996) and references therein.

[62] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, Binkley J. S., D. J., DeFrees J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, *GAUSSIAN 94 Revision D.4* (Gaussian, Inc., Pittsburgh, 1995).

[63] J. M. L. Martin, in *Computational thermochemistry: prediction and estimation of molecular thermodynamics*, Eds. K. K. Irikura and D. J. Frurip, ACS Symposium Series No. 677 (American Chemical Society, Washington, DC, 1998). For more extensive comparisons between CBS-Q and G2 theory, see J. W. Ochterski, G. A. Petersson, and K. B. Wiberg, *J. Am. Chem. Soc.* 117, 11299 (1995) and L. A. Curtiss, K. Raghavachari, P. C. Redfern, and B. B. Stefanov, *J. Chem. Phys.* 108, 692 (1998).

[64] M. Carlotti, J. W. C. Johns, and A. Trombetti, *Can. J. Phys.* 52, 340 (1974).

[65] K. Kuchitsu, in *Accurate Molecular Structures*, Eds. A. Domenicano and I. Hargittai (Oxford University Press, 1992), pp. 14–46.

[66] J. M. L. Martin and P. R. Taylor, *Chem. Phys. Lett.* 248, 336 (1996).

[67] J. M. L. Martin, T. J. Lee, and P. R. Taylor, *J. Chem. Phys.* 108, 676 (1998).

[68] C. E. Dateo, T. J. Lee, and D. W. Schwenke, *J. Chem. Phys.* 101, 5853 (1994).

[69] H. Romanowski and J. M. Bowman, POLYMODE, QCPE program #496 (Quantum Chemistry Program Exchange, Bloomington, IN); ported to Unix workstations by J.M.L. Martin and P.R. Taylor.

[70] J. K. G. Watson, *Mol. Phys.* 15, 470 (1968).
[71] H. Romanowski, J. M. Bowman, and L. B. Harding, *J. Chem. Phys.* **82**, 4155 (1985).

[72] M. J. Bramley and N. C. Handy, *J. Chem. Phys.* **98**, 1378 (1993).

[73] D. W. Schwenke, *J. Phys. Chem.* **100**, 2867 (1996).
TABLE I. Convergence of different components (kcal/mol) of the total atomization energy of trans-HNNH and the cis-trans and iso-trans isomerization energies

	TAE(trans-HNNH)	∆E(cis-trans)	∆E(iso-trans)
SCF contribution			
SCF/VDZ	143.18	5.78	18.07
SCF/VTZ	152.61	5.88	17.83
SCF/VQZ	154.63	5.98	17.96
SCF/V5Z	155.15	6.07	17.96
SCF/V∞Z (a)	155.29	6.10	17.94
SCF/V∞Z (b)	155.46	6.12	17.95
SCF/A′VDZ	148.63	6.18	18.20
SCF/A′VTZ	154.05	6.16	17.91
SCF/A′VQZ	155.26	6.18	18.04
SCF/A′V5Z	155.30	6.09	17.99
SCF/A′V∞Z (a)	155.30	6.08	17.98
SCF/A′V∞Z (b)	155.33	6.04	17.96
Valence correlation contribution			
CCSD(T)-SCF/VDZ	115.64	-0.70	9.05
CCSD(T)-SCF/VTZ	129.40	-0.74	7.89
CCSD(T)-SCF/VQZ	135.57	-0.77	7.15
CCSD(T)-SCF/V5Z	137.94	-0.74	6.98
CCSD(T)-SCF/V∞Z (c)	140.56	-0.63	6.99
CCSD(T)-SCF/A′VDZ	116.40	-0.86	7.92
CCSD(T)-SCF/A′VTZ	130.96	-0.79	7.24
CCSD(T)-SCF/A′VQZ	136.44	-0.79	6.86
CCSD(T)-SCF/A′V5Z	138.33	-0.72	6.88
CCSD(T)-SCF/A′V∞Z (c)	140.05	-0.53	7.10
Other contributions			
CCSD(T)/MTcore-MTnocore	0.908	0.039	-0.127
best at bottom of well	296.26	5.59	24.95
∆ZPE	-17.527	-0.38	-0.83
best at 0 K	278.73	5.21	24.12

(a) Using geometric extrapolation \[54\], \(A + B.C^{-l}\), from SCF components of TAE\(_e\) with three largest basis sets in series

(b) Using extrapolation \[55\] \(A + B/(l+1/2)^5\) from SCF components of TAE\(_e\) with two largest basis sets in series
(c) Using variable-exponent t-extrapolation $[33], \ A + B/(l + 1/2)C$, from correlation components of TAE$_e$ for three largest basis sets in series

	numerical HFa	Feller(Q56)b	Schwartz5(56)c
Ne	-128.54709809	-128.547089	-128.547284
$\text{N}_2(R=2.068 \ a_0)$	-108.9938257	-108.993818	-108.993988
BH($R=2.336 \ a_0$)	-25.1315987	-25.131601	-25.131629
$\text{H}_2(R=1.4 \ a_0)$	-1.13362957	-1.133625	-1.133634
H	-0.5 exactly	-0.500000	-0.500003
BF($R=2.386 \ a_0$)d	-124.1687792	-124.16875956	-124.168904

(a) D. Moncrieff and S. Wilson, *Mol. Phys.* 85, 103 (1995); J. Kobus, D. Moncrieff, and S. Wilson, *Mol. Phys.* 86, 1315 (1995). Bond distances R taken from these references

(b) geometric extrapolation $A + B.C^{-t}$ from SCF/cc-pVQZ, SCF/cc-pV5Z, and SCF/cc-pV6Z energies

(c) 2-point extrapolation $A + B/(l + 1/2)^5$ from SCF/cc-pV5Z and SCF/cc-pV6Z energies

(d) aug-cc-pVnZ basis sets used $[35]$
	implicit core corr.	explicit core corr.
CCSD(T)/VDZ	297.96	297.97
CCSD(T)/VTZ	296.53	296.55
CCSD(T)/VQZ	296.44	296.45
CCSD(T)/V5Z	296.50	296.51
CCSD(T)/A'VDZ	297.87	297.88
CCSD(T)/A'VTZ	296.59	296.60
CCSD(T)/A'VQZ	296.50	296.51
CCSD(T)/A'V5Z	296.49	296.50
l-extrapolated†	296.26	296.26

(a) core correlation absorbed in the parametrization of the correction
(b) core correlation contribution computed explicitly as difference between CCSD(T)/MTcore and CCSD(T)/MTnocore
(c) See Table I
TABLE IV. Convergence of CCSD(T) computed r_e geometries (Å, degrees), best computed r_z and r_g geometries (Å, degrees) and best computed and observed ground-state rotational constants (cm$^{-1}$)

	trans	cis	iso						
	r_e(NN)	r_e(NH)	r_e(NN)	r_e(NH)	r_e(NN)	r_e(NH)	r_e(NN)	r_e(NH)	
VDZ	1.2643	1.0447	104.97	1.2592	1.0501	111.48	1.2280	1.0528	124.46
VTZ	1.2536	1.0310	105.73	1.2512	1.0360	111.64	1.2214	1.0370	123.70
VQZ	1.2494	1.0294	106.05	1.2481	1.0343	111.79	1.2194	1.0351	123.49
A'VDZ	1.2660	1.0423	105.74	1.2652	1.0463	111.53	1.2373	1.0443	123.50
A'VTZ	1.2529	1.0320	106.12	1.2525	1.0367	111.77	1.2242	1.0361	123.39
A'VQZ	1.2489	1.0300	106.25	1.2486	1.0347	111.85	1.2206	1.0350	123.36
MTcore	1.2471	1.0285	105.97	1.2450	1.0334	111.83	1.2153	1.0351	123.70
MTnocore	1.2497	1.0297	105.85	1.2475	1.0346	111.75	1.2175	1.0360	123.71
best calc.a	1.2468	1.0281	106.17	1.2456	1.0331	111.88	1.2172	1.0342	123.49
Expt. $^{[12]}$	1.247(1)	1.030(1)	106.3(1)	—	—	—	—	—	—

	A_e	B_e	C_e	A_e	B_e	C_e	A_e	B_e	C_e
best calc.a	10.12689	1.31151	1.31151	9.75433	1.30580	1.15163	11.24253	1.29790	1.16357
A_0	B_0	C_0	A_0	B_0	C_0	A_0	B_0	C_0	
best calc.a	10.00064	1.30354	1.14917	9.65724	1.29706	1.13945	11.06453	1.29487	1.15518
expt. $^{[13]}$	10.001203(5)	1.3043373(6)	1.1499757(6)	—	—	—	—	—	—

	r_z(NN)	r_z(NH)	θ_z(NH)	r_z(NN)	r_z(NH)	θ_z(NH)	r_z(NN)	r_z(NH)	θ_z(NH)
best calc.a	1.2523	1.0418	106.23	1.2503	1.0471	112.33	1.2194	1.0498	123.59
Expt. $^{[12]}$	1.252(1)	1.041(1)	106.3(1)	—	—	—	—	—	—

	r_g(NN)	r_g(NH)	θ_g(NH)	r_g(NN)	r_g(NH)	θ_g(NH)	r_g(NN)	r_g(NH)	θ_g(NH)
best calc.a	1.2524	1.0507	106.18	1.2506	1.0561	112.18	1.2198	1.0596	123.28

(a) CCSD(T)/cc-pVQZ+CCSD(T)/MTcore-CCSD(T)/MTnocore
Trans-diazene	VDZ	VTZ	VQZ	A'VDZ	A'VTZ	A'VQZ	MTcore	MTnocore
\(\omega_1 (a_g)\)	3281.7	3269.8	3278.3	3242.4	3264.2	3276.9	3276.7	3268.9
\(\omega_2 (a_g)\)	1614.8	1621.8	1619.9	1608.4	1612.3	1616.3	1625.3	1623.7
\(\omega_3 (a_g)\)	1569.4	1558.4	1567.3	1550.0	1552.5	1564.8	1566.7	1559.4
\(\omega_4 (a_u)\)	1317.5	1328.4	1327.7	1304.6	1319.2	1323.2	1334.2	1331.8
\(\omega_5 (b_u)\)	3248.9	3301.6	3310.1	3271.4	3296.8	3309.1	3309.2	3301.7
\(\omega_6 (b_u)\)	1343.0	1350.3	1349.8	1341.8	1345.1	1348.2	1355.5	1353.2

Cis-diazene	VDZ	VTZ	VQZ	A'VDZ	A'VTZ	A'VQZ	MTcore	MTnocore
\(\omega_1 (a_1)\)	3185.2	3235.9	3245.4	3205.9	3231.9	3243.8		
\(\omega_2 (a_1)\)	1588.3	1575.7	1582.7	1556.9	1564.9	1578.2		
\(\omega_3 (a_1)\)	1347.1	1371.6	1370.1	1356.7	1364.6	1367.7		
\(\omega_4 (a_2)\)	1247.8	1258.7	1261.8	1237.4	1251.7	1258.7		
\(\omega_5 (b_2)\)	3085.1	3146.5	3160.7	3118.6	3147.3	3160.9		
\(\omega_6 (b_2)\)	1560.7	1565.3	1562.9	1548.1	1556.1	1559.8		

Isodiazene	VDZ	VTZ	VQZ	A'VDZ	A'VTZ	A'VQZ	MTcore	MTnocore
\(\omega_1 (a_1)\)	3028.1	3107.4	3123.3	3103.6	3124.7	3129.1		
\(\omega_2 (a_1)\)	1726.0	1728.4	1728.9	1721.7	1725.2	1727.4		
\(\omega_3 (a_1)\)	1602.4	1584.6	1588.9	1571.0	1574.1	1585.0		
\(\omega_4 (b_1)\)	972.2	995.6	999.1	969.6	991.2	997.0		
\(\omega_5 (b_2)\)	2990.8	3103.5	3128.9	3120.0	3135.8	3141.0		
\(\omega_6 (b_2)\)	1316.0	1323.0	1326.9	1302.3	1317.2	1324.6		
TABLE VI. Computed and observed fundamentals (cm$^{-1}$) for isomers of HNNH

	trans-HNNH	cis-HNNH	H$_2$NN
	CCSD(T)/cc-pVQZ (this work)	CCSD/cc-pVDZ (Ref. [10])	Experiment
ν_1	3051.0a	2986.5	2866.5
ν_2	1578.5	1548.4	1665.3
ν_3	1528.2	1334.7	1560.4
ν_4	1294.2	1231.9	991.0
ν_5	3133.3	3002.5	2769.7
ν_6	1317.4	1520.7	1292.7

	CCSD/cc-pVDZ (Ref. [10])	Experiment	
ν_1	3005	2962	2838
ν_2	1609	1622	1679
ν_3	1584	1340	1613
ν_4	1329	1244	2724
ν_5	3096	2947	1305
ν_6	1310	1536	977

(a) $\nu_2 + \nu_3 = 3127.9$ cm$^{-1}$

(b) clearly $\nu_2 + \nu_3$ misassigned to fundamental

(c) Craig and Levin [9]

(d) Ref. [13]

(e) Estimates of Craig and Levin [9], based on approximate force field derived from trans-HNNH

(f) A. P. Sylwester and P. B. Dervan, J. Am. Chem. Soc. 106, 4648 (1984)
TABLE VII. CCSD(T)/cc-pVTZ and CCSD(T)/cc-pVQZ zero-point energies, anharmonic corrections, and anharmonicity constants for HNNH isomers. Quantities deperturbed for resonances are marked by an asterisk. All units are cm$^{-1}$ unless indicated otherwise.

	trans-HNNH	cis-HNNH	H$_2$NN			
	cc-pVTZ	cc-pVQZ	cc-pVTZ	cc-pVQZ	cc-pVTZ	cc-pVQZ
ZPE(kcal/mol)	17.492	17.527	17.101	17.148	16.607	16.699
E_0	20.359	20.594	34.341	32.295	35.785	35.263
$\omega_1 - \nu_1^*$	210.6	209.7	236.5	235.3	278.4	274.5
$\omega_2 - \nu_2$	42.4	41.4	35.0	34.2	56.9	55.7
$\omega_3 - \nu_3$	39.1	39.1	38.4	35.5	28.8	28.5
$\omega_4 - \nu_4$	34.2	33.5	31.1	30.0	11.2	8.1
$\omega_5 - \nu_5^*$	227.4	226.4	240.4	239.9	335.8	314.8
$\omega_6 - \nu_6$	32.8	32.5	42.7	42.2	31.2	34.3
X_{11}	-47.016	-46.808	-45.549	-45.693	-57.506	-56.621
X_{22}	-1.865	-2.133	-12.350	-12.138	-3.209	-3.279
X_{33}	-11.126	-10.019	4.992	5.638	-11.290	-11.061
X_{44}	-6.347	-6.174	-3.769	-3.899	2.158	1.908
X_{55}	-45.556	-45.332	-46.301	-46.397	-79.637	-76.380
X_{66}	-4.813	-4.704	-1.047	-1.008	1.437	-0.233
X_{21}	-27.577	-25.420	2.181	2.222	-32.983	-33.673
X_{31}	-3.877	-5.914	-40.740	-40.264	8.589	7.786
X_{32}	-8.636	-9.773	-7.165	-6.854	-6.152	-6.059
X_{41}	-13.653	-13.854	-16.641	-15.054	-5.591	-5.666
X_{42}	-4.380	-4.565	-10.042	-9.841	-7.964	-7.089
X_{43}	-9.650	-9.169	-4.170	-3.713	-13.963	-13.415
X_{51}	-180.771	-179.861	-201.169	-200.502	-267.335	-260.605
X_{52}	-32.750	-29.999	1.948	1.854	-52.212	-49.283
X_{53}	-6.506	-9.206	-41.131	-39.299	12.772	12.432
X_{54}	-19.012	-18.833	-17.851	-17.555	-13.165	-1.266
X_{61}	-7.235	-7.347	-34.364	-34.197	-29.518	-30.291
X_{62}	-4.048	-4.644	-7.666	-7.322	-1.706	-2.095
X_{63}	-5.045	-4.127	-3.501	-2.700	-13.692	-13.412
X_{64}	3.602	3.786	1.638	1.826	9.735	3.549
X_{65}	-33.615	-33.765	-37.468	-38.006	-33.028	-25.402

For trans-HNNH, the following resonance constants appear in resonance polyads involving fundamentals (CCSD(T)/cc-pVQZ): $k_{122}=48.367$, $k_{123}=127.771$, $k_{256}=-243.953$, $k_{133}=47.116$, $k_{356}=-210.321$ cm$^{-1}$; $K_{22:23}=7.451$, $K_{23:33}=21.293$, $K_{21:31}=-24.145$, $K_{25:35}=-31.927$, $K_{24:34}=2.687$, $K_{26:36}=8.428$, $K_{22:33}=-5.680$ cm$^{-1}$.
For cis-HNNH, \(k_{133} = -198.795 \), \(k_{166} = -108.090 \), \(K_{33;66} = 1.820 \); \(k_{256} = -59.817 \) cm\(^{-1} \); \(K_{22;23} = -12.588 \); \(K_{33;32} = -9.784 \); \(K_{21;31} = 5.516 \); \(K_{24;34} = -0.645 \); \(K_{25;35} = 2.384 \); \(K_{26;36} = 2.422 \).

For H\(_2\)NN, CCSD(T)/cc-pVQZ \(k_{133} = 37.952 \), \(k_{166} = -147.470 \), \(K_{33;66} = -5.086 \); \(k_{244} = -100.842 \), \(k_{256} = -262.610 \) cm\(^{-1} \).
TABLE VIII. CCSD(T) computed rotational, rotation-vibration coupling, and Coriolis coupling constants (cm⁻¹)

	trans-HNNH	cis-HNNH	H₂NN			
	cc-pVTZ	cc-pVQZ	cc-pVTZ	cc-pVQZ	cc-pVTZ	cc-pVQZ
A_e	10.00200	10.08275	9.66754	9.71969	11.23667	11.22354
B_e	1.30099	1.30712	1.29594	1.30132	1.28780	1.29338
C_e	1.15124	1.15712	1.14275	1.14766	1.15538	1.15973
α₁a	0.21332	0.21358	0.17466	0.17547	0.21871	0.21673
α₂a	-0.15339	-0.14991	0.02869	0.02918	-0.05290	-0.05192
α₃a	0.00250	-0.01664	-0.19817	-0.20356	0.01040	0.00947
α₄a	0.14715*	0.14717*	0.14862*	0.14814*	0.19226*	0.18978*
α₅a	0.16364	0.16447	0.16068	0.16110	0.14159	0.14166
α₆a	-0.11293*	-0.11623*	-0.11352*	-0.11683*	-0.14907*	-0.15040*
α₁b	-0.00111	+0.00068	0.01187	0.01171	-0.00636	-0.00645
α₂b	0.01133	0.01044	0.00557*	0.00550*	0.01183	0.01173
α₃b	0.00291*	0.00287*	0.00275*	0.00282*	0.00931	0.00938
α₄b	-0.00088	-0.00082	-0.00147	-0.00142	-0.00438	-0.00415
α₅b	0.00375*	0.00373*	-0.00131	-0.00133	-0.00123	-0.00128
α₁c	0.00106	0.00111	0.00167	0.00168	-0.00094	-0.00075
α₂c	0.00437*	0.00456*	0.01065*	0.01060*	0.00554	0.00550
α₃c	0.01136*	0.01105*	0.00607	0.00599	0.01080*	0.01068*
α₄c	0.00069	0.00063	0.00023	0.00020	-0.00048	-0.00050
α₅c	0.00145	0.00150	0.00092	0.00097	-0.00319	-0.00308
α₆c	0.00498	0.00496	0.00480*	0.00479*	0.00486*	0.00483*

Rotation-vibration coupling constants marked with an asterisk have had terms deleted that were near-singular due to Coriolis resonance.

(a) Experimental values [13]: $Z^{a}_{46}=9.18234(58)$, $Z^{b}_{46}=-2.3663(34)$ cm⁻¹. Re-analysis by DHB [12]: $Z^{a}_{46}=8.5895$, $Z^{b}_{46}=-2.41605(7)$ cm⁻¹.