Stable Water Use Efficiency under Climate Change of Three Sympatric Conifer Species at the Alpine Treeline

Gerhard Wieser, Walter Oberhuber, Andreas Gruber, Marco Leo, Rainer Matyssek, and Thorsten Erhard Edgar Grams

1 Department of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Innsbruck, Austria; 2 Institute of Botany, Leopold-Franzens-Universität Innsbruck, Innsbruck, Austria; 3 Ecophysiology of Plants, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany

The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies, and Larix decidua trees from 1975 to 2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ between 1979 and 2007. Results indicate that tree ring derived intrinsic water-use efficiency (iWUE) of P. cembra, P. abies, and L. decidua remained constant during the last 36 years despite climate warming and rising atmospheric CO2. Temporal patterns in $\Delta^{13}C$ and $\Delta^{18}O$ mirrored leaf level gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal conductance of treeline conifer species. As at the study site soil water availability was not a limiting factor iWUE remained largely stable throughout the study period. The stability in iWUE was accompanied by an increase in basal area increment (BAI) suggesting that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally, our results suggest that iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species.

Keywords: stable isotopes, intrinsic water use efficiency, tree growth, climate change, treeline, Central Alps

INTRODUCTION

High-altitude forest ecosystems at the timberline-treeline transition have raised concern as they may undergo significant alterations due to climate warming and changes in ground-level air chemistry (Holtmeier and Broll, 2007; Wieser et al., 2009). Dendroclimatological studies conducted within the treeline ecotone of the Central European Alps have shown radial stem growth to be limited by low summer temperature (Carrer and Urbinati, 2004; Oberhuber, 2004; Büntgen et al., 2005; Frank and Esper, 2005; Oberhuber et al., 2008). During recent decades, several authors report treeline-associated conifers to reflect increased radial growth, putatively related to climate warming (Graumlich et al., 1989; Peterson et al., 1990; Jacoby and D’Arrigo, 1997; Rolland and Florence-Schueller, 1998; Bunn et al., 2005). Moreover, increasing atmospheric CO2 concentration may act in concert with climate warming to increase carbon accumulation within the treeline ecotone (cf. Graumlich, 1991; Saurer et al., 1997; Duquesnay et al., 1998; Sidorova et al., 2009).
Notwithstanding, reduced radial growth has been attributed to late-summer drought under increasing treeline temperature in the European Alps (Büntgen et al., 2006; Carrer and Urbinati, 2006; Oberhuber et al., 2008; Wieser et al., 2009).

Stable isotope ratios of carbon and oxygen, i.e., $^{13}\text{C}/^{12}\text{C}$ and $^{18}\text{O}/^{16}\text{O}$, respectively, may serve as dendrochronological proxies that facilitate mechanistic understanding of climate-related influences on physiological processes such as leaf gas exchange and stem wood formation (Loader et al., 2007; Weigt et al., 2015; and further references therein). In plant organic matter, ^{13}C expressing the $^{13}\text{C}/^{12}\text{C}$ ratio in relation to an international standard (Pee Dee Belmimite) depends on variables such as leaf conductance for water vapor (g_w) that modify the net CO$_2$ uptake rate (A; Farquhar et al., 1989). In addition, ^{13}C of plant organic matter ($^{13}\text{C}_{p}$) is a function of atmospheric ^{13}C, which is accounted for by discriminating photosynthesis in ^{13}C ($\Delta^{13}\text{C}$; Farquhar and Richards, 1984) in relation to intrinsic water-use efficiency (iWUE), i.e., the ratio of A (rate of net CO$_2$ fixation) versus g_w (leaf conductance for water vapor). For a review see Brugnoli and Farquhar (2006).

When analyzing $^{13}\text{C}_{p}$ alone, the impacts of A (demand of CO$_2$) and g_w (supply of CO$_2$) on iWUE are difficult to separate (Saurer et al., 2008). The oxygen isotope ratio (^{18}O), however, may allow a distinction between biochemical and stomatal limitations of photosynthesis as it is not affected by the photosynthetic CO$_2$ carboxylation but linked to g_w (Barbour et al., 2000; Grams et al., 2007). It is, therefore, an ideal covariable to estimate to what degree photosynthesis and stomatal conductance modify $^{13}\text{C}_{p}$ (Scheidegger et al., 2000; Werner et al., 2012). Originally, this dual isotope approach was introduced for photosynthetic tissue and only recently tested conceptually for the interpretation of tree-ring data (Rodén and Farquhar, 2012), although several critical points should be taken into account during interpretation. Among the most important issues that need to be considered are the facts that the ^{18}O of source and atmospheric water can vary spatially and temporally and that post-photosynthetic and post-evaporative oxygen atom exchange processes could affect the initial leaf-level isotope signal (see below).

At the leaf level, ^{18}O of photoassimilates derive primarily from leaf water, typically being enriched in ^{18}O compared to the source water (i.e., xylem water) through evaporative enrichment at the site of transpiration. This enrichment is counteracted by the so-called Péclet effect and transpiratory leaf cooling (for a review see Barbour, 2007), which may result in the above-mentioned negative correlation between $^{18}\text{O}_p$ and g_w (e.g., Barbour et al., 2000; Grams et al., 2007). However, to an extent that may depend on species and site conditions, the signal is dampened by oxygen exchange with source water during biomass formation at the stem level (Gessler et al., 2013). This causes, at least partially, a decoupling between oxygen isotopic signatures of photoassimilates and the tree ring organic matter. However, in a recent report Weigt et al. (2015) confirmed that information may be exploited to relate ecophysiological responses of trees to environmental changes for both total sapwood organic matter and extracted cellulose. In any case, it appears advisable to confirm interpretation from the dual isotope approach by gas exchange assessments whenever possible.

Previous tree-ring carbon isotope studies carried out in tropical, arid, Mediterranean, temperate and boreal forest ecosystems have identified an increase in iWUE over the past 40 years in response to increasing atmospheric CO$_2$ concentration (Penuelas et al., 2011; Saurer et al., 2014) and just recently supported by tree-ring ^{13}C dynamic global vegetation models comparisons (DGVMs; Frank et al., 2015). Tree growth on the contrary, remained stable or even declined, suggesting local site conditions to override a potential CO$_2$-induced increase in growth (Penuelas et al., 2011; Silva and Anand, 2013; Levesque et al., 2014). Increasing iWUE accompanied by a reduced productivity has been attributed to the combined effect of elevated CO$_2$ and climate change-induced soil drying (Penuelas et al., 2011; Saurer et al., 2014).

The impact of the steadily increasing CO$_2$ level and concurrent climate change, however, still awaits clarification for treeline-associated conifers in the Central Austrian Alps where low temperatures limit tree growth (Oberhuber, 2007; Wieser et al., 2009). At treeline in the Central Austrian Alps ample precipitation during the growing season prevails every third to fourth day on average (Wieser, 2012), so that soil water limitation stays absent, allowing trees to meet their water demand (Tranquillini, 1979; Mayr, 2007; Matyssek et al., 2009). Hence, whole-tree conductance stays high and mainly depends on the evaporative demand in terms of irradiance and vapor pressure deficit (Wieser, 2012). Therefore, we hypothesize that treeline trees passively respond to the increasing atmospheric CO$_2$ level (C_a), so that their leaf-intercellular CO$_2$ concentration (C_i) rises in parallel, while iWUE remains unchanged. The hypothesis was evaluated by stable carbon and oxygen isotope sampling and radial growth analysis over the past 36 years (1975–2010) in stems of mature Pinus cembra, Picea abies and Larix decidua trees growing at the treeline of Mt. Patscherkofel in the Central Tyrolean Alps. Observed long-term trends in $^{13}\text{C}_{p}$, $^{18}\text{O}_p$ in tree rings and iWUE were at least for some years compared with in situ leaf-level gas exchange data, assessed at the same study site between 1979 and 2007 in adult P. cembra and L. decidua trees. Results are discussed in view of tree response to climate warming at the treeline ecotone.

MATERIALS AND METHODS

Study Site, Climatic Data, and Tree Species

The study was conducted in a scattered stand at the lower edge of the treeline ecotone at 1950 m a.s.l. on Mt. Patscherkofel (47°12′37″ N, 11°27′07″ E), south of Innsbruck, Austria. The site is characterized by a cool subalpine climate, the possibility of frost during the entire year and a continuous snow cover from October through April. We used monthly mean temperatures and monthly total precipitation from 1975 to 2010 from a weather station nearby (Klimahaus Research Station and Alpengarten; 1950 m a.s.l.) for our analysis. Mean annual precipitation averaged 878 mm, with 58% falling during...
the growing season (May through September). Mean annual air temperature averaged 2.4°C, with summer maxima of up to 27°C and winter minima of −28°C.

The geology of Mt. Patscherkofel is dominated by gneisses and schist. The soil at the study site is a haplic podzol, being a typical soil type of the treeline ecotone in the Central Tyrolean Alps (Neuwinger, 1972). The water holding capacity of the soil (at 5–65 cm depth) at saturation (−0.001 MPa) averages 0.60 m³ m⁻³. Due to frequent precipitation during the growing season soil water potential rarely drops below −0.01 MPa, approximating soil water contents above 0.35 m³ m⁻³ (Wieser, 2012; including the summer of 2003, unpublished data).

The stand is composed of the dominant tree species Pinus cembra, accounting for 84% of the tree population, and accompanied by Larix decidua (9%) and Picea abies L. Karst (7%) at some locations. Trees grew either as isolated trees or in groups of four to five. The distance between single trees or tree groups was 20–30 m. From 20 P. cembra trees cored at the lower edge of the treeline ecotone Oberhuber et al. (2008) derived an expressed signal population (EPS) value of 0.94, reflecting a strong climate signal in the site chronology. From these trees we selected five trees which had the strongest correlation to the site specific mean tree-ring chronology, no missing rings, and regular ring boundaries. In addition we cored five dominant P. abies and L. decidua trees each to account for potential interspecific differences of the three associated treeline species. In 2010 the trees were 69 ± 9 years old, with stem heights averaging 12 ± 1.3 m. The stem diameter at breast height (DBH) averaged 22 ± 3.2 cm.

Tree Ring and Basal Stem Area Increment

In fall 2010 we obtained two increment cores per trees at DBH using a 5-mm-diameter increment bore. For contrast enhancement of tree ring boundaries the cores were dried in the laboratory, non-permanently mounted on a holder, and the surface was prepared with a razor blade (Pilcher, 1990). Ring widths were measured to the nearest 1 μm using a reflecting microscope (Olympus SZ61) and the software package TSAP WIN Scientific. Ring widths of both cores from each sample tree were averaged and individual tree ring chronologies were then checked for dating accuracy using the COFECHA software (Holmes, 1994; Grissino-Mayer, 2001). As ring width may be biased by a negative correlation with the time course during tree maturation, ring width was converted to basal stem area increment (BAI) according to:

$$\text{BAI} = 3.14 (R_n^2 - R_{n-1}^2)$$

(1)

where R is stem radius inside tree bark and n is the year of tree ring formation (Fritts, 1976). Bark thickness was subtracted from stem radius. Finally BAI of each year were averaged over the five sample trees of each species.

Stable Isotope Analysis

$\delta^{13}C$ and $\delta^{18}O$ analyses for the years 1975–2010 were performed on the same cores as used for BAI assessment. Annual rings (early wood plus late wood) were cut exactly at ring boundaries by use of a scalpel and a reflecting microscope (Wild 308700). For each of the five study trees per species the two samples per tree ring were pooled and homogenized with a swing mill (Retsch MM301, Retsch Haan, Germany). In a subsample, we compared isotope signatures in bulk wood with those in cellulose for determining the necessity of cellulose extraction in our study trees. Cellulose extraction was performed using a modified version of the method of Brendel et al. (2000). The methodological comparison corroborated significant correlations in the cases of $\delta^{13}C$ and $\delta^{18}O$ (Figure 1) as reported earlier from coniferous and other tree species (Jaggi et al., 2002; Sohn et al., 2013) and is in accordance with a recent report (Weigt et al., 2015). On average, $\delta^{13}C$ in cellulose was 1.0–1.1‰ higher than in bulk wood (Table 1), being smaller than 1.3–1.4‰ found in Picea abies by Borella et al. (1998) and Sohn et al. (2013). Mean $\delta^{18}O$ in cellulose was 4.3–4.9‰ higher than in bulk wood (Table 1) being somewhat lower than 5.9‰ in bulk wood of Picea abies (Sohn et al., 2013). Based on these findings and in accordance with a recent methodological study (Weigt et al., 2015), we used bulk wood samples rather than extracted cellulose for isotope analysis.

Regarding $\delta^{13}C$, 2.0 ± 0.02 mg of homogenized samples were weighed into tin capsules each (3.5 × 5 mm, IVA Analysentechnik e.K., Meerbush, Germany) and combusted to CO₂ in an elemental analyzer (Eurovector EA3000) connected to an isotope ratio mass spectrometer (Isoprime, Elementar, Hanau, Germany). For $\delta^{18}O$ analysis 0.7 ± 0.05 mg were weighed into silver capsules each (3.5 × 5 mm, IVA Analysentechnik e.K., Meerbush, Germany) to obtain CO at 1,430°C in a high-temperature pyrolysis system (HTO, HekaTech, Wegberg, Germany) which was connected via an open-split interface (Conflow III; Finnigan MAT, Bremen, Germany) to an isotope ratio mass spectrometer (Delta Plus; Finnigan MAT, Bremen, Germany). Isotope abundances were expressed using the δ-notations in ‰ relative to the international standards:

$$\delta_{\text{sample}} = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000$$

(2)

where R_{sample} is the molar fraction of the $^{13}C/^{12}C$ or $^{18}O/^{16}O$ ratio of the sample, and R_{standard} that of the international IAEA standards V-PDB for carbon and V-SMOW for O. The analytical precision was <0.12‰ and <0.28‰ regarding $\delta^{13}C$ and $\delta^{18}O$, respectively (expressed as standard deviation of the internal laboratory standard at the same sample mass).

Isotope Discrimination and iWUE

Tree ring specific $\delta^{13}C_{\text{tring}}$ were corrected for the progressive decline in atmospheric $\delta^{13}C_{\text{atm}}$ through calculating $\Delta^{13}C$ discrimination ($\Delta^{13}C$):

$$\Delta^{13}C(\%) = \left(\delta^{13}C_{\text{atm}} - \delta^{13}C_{\text{tring}} \right) / \left(1 + \delta^{13}C_{\text{tring}}/1000 \right)$$

(3)

To this end, $\delta^{13}C_{\text{atm}}$ with its nearly linear time course during 1980 through 2010⁴ was extrapolated for the years 1975 through 1979. In a simplified model, Farquhar et al. (1982) related $\Delta^{13}C$

⁴www.scrippsco2.ucsd.edu/home
through plant physiological processes during CO₂ fixation in C3 plants with the ratio of intercellular to ambient CO₂ partial pressure (Cᵢ/Cₐ):

\[\Delta^{13}C = a + (b - a) \times C_i/C_a \]

where \(a (\approx 4.4\%) \) refers to the slower diffusivity of \(^{13}\)CO₂ relative to \(^{12}\)CO₂ in air and \(b (\approx 27\%) \) is the isotopic fractionation caused by enzymatic C fixation. \(C_a \) was obtained from published data\(^3\). It should be noted that \(\Delta^{13}C \) is determined by the ratio of chloroplast to the ambient CO₂ mole fraction (\(C_i/C_a \)) rather than \(C_i/C_a \), as used in equation 3, making the here calculated value sensitive to mesophyll conductance (\(g_m \); Seibt et al., 2008). The latter varies in accordance to changes in environmental conditions such as temperature, irradiance, water and CO₂ availability (Flexas et al., 2008). Consequently using \(C_a \) may be problematic if \(g_m \) to CO₂ is not constant (Seibt et al., 2008).

However, as information on mesophyll conductance of the three conifers under study is not available and published means of \(g_m \) would not improve results (Cernusak et al., 2013), we chose using \(C_a \) the simplified linear model of Farquhar et al. (1982). Hence, iWUE, i.e., the ratio of the net carbon gain (\(A \)) versus leaf conductance for water vapor (\(g_w \)), was calculated as follows:

\[\text{iWUE} = A/g_w = C_a(b - \Delta^{13}C/C_a)/1.6 \times (b - a) \]

where 1.6 is the ratio between the diffusivities of water vapor and CO₂ in air.

Enrichment in \(^{18}\)O in tree rings over source water (\(\Delta^{18}O \)), resulting from incorporation of \(^{18}\)O-enriched photoassimilates into stem biomass, was calculated from \(^{18}O \) of tree ring organic matter (\(^{18}O_{\text{ring}} \)) and precipitation (\(^{18}O_{\text{prep}} \)) according to:

\[\Delta^{18}O(\%) = (^{18}O_{\text{ring}} - ^{18}O_{\text{prep}})/(1 + ^{18}O_{\text{prep}}/1000) \]

\(^3\)http://cdiac.ornl.gov/trends/co2/sio-mlo.html
TABLE 2 | A comparison of published maximum net photosynthetic capacity (A_{max}) and leaf conductance for water vapor of sun exposed shoots of mature *Pinus cembra* and *Larix decidua* trees at the lower end of the treeline ecotone on Mt. Patscherkofel.

Species	Year	Measured trees	A_{max} [μmol m$^{-2}$ s$^{-1}$]	g_w [mmol m$^{-2}$ s$^{-1}$]	Reference
P. cembra	1979	1	3.4	nd	Havranek, 1981
P. cembra	2002	2	4.6 ± 0.2	nd	Wieser et al., 2005
P. cembra	2007	3	5.2 ± 0.7	nd	Wieser et al., 2010
L. decidua	1980	1	3.3	48	Benecke et al., 1981
L. decidua	1993	4	5.6 ± 0.9	85 ± 14	Volgger, 1995

$n d$, not determined.

FIGURE 2 | Temporal variation in (A) growing season mean air temperature (T_{air}), (B) total growing season precipitation (P) and (C) growing season mean vapor pressure deficit (VPD) during the period 1975 throughout 2010. Data were fit by linear regression analysis: T_{air}: $y = 0.053x - 97.0$, $r^2 = 0.30$, $P < 0.001$; P: $y = 0.075x - 365.3$, $r^2 = 0.00$, $P = 0.95$; VPD: $y = -0.055x + 13.3$, $r^2 = 0.01$, $P = 0.49$.

Statistical Analysis

Temperature, precipitation, vapor pressure deficit, $\Delta^{13}C$, $\Delta^{18}O$, BAI, C_i, G_i/C_a and iWUE trends were calculated for the time period 1975–2010 by least-squares linear regression analysis. For a given variable, differences among trends (slopes) between *P. cembra*, *P. abies* and *L. decidua* were assessed by the two-slope comparison test (Zar, 1999). We used repeated measures ANOVA to detect significant differences in the mean values.
(1975–2010) of Δ^{13}C, Δ^{18}O, BAI, C_i, C_i/C_a and iWUE of $P. cembra$, $P. abies$ and $L. decidua$. Following Kunter et al. (2004) we used multiple least-squares linear regression models to assess the influence of atmospheric CO$_2$ concentration (C_a) and mean growing season (May-Sep) air temperature (T_{veg}) and their interactions (explanatory variables) on tree-ring variables. For assessing the climatic impact on tree-ring variables (BAI, Δ^{13}C, and Δ^{18}O) statistical analyses were based on mean monthly air temperature (°C) and total monthly precipitation (mm) throughout the study period (1975–2010). For each species Pearson’s correlation coefficients between BAI, isotope chronologies and both climate variables were calculated from August of the year prior to growth to September of the growth year. All the statistical analysis were conducted by use of the SPSS 16 software package (SPSS. Inc. Chicago, IL, USA), and a probability level of $P < 0.05$ was considered as statistically significant. As suggested by Sarris et al. (2013) we did not remove any age related trend from our tree-ring chronologies by conventional detrending procedures, thus avoiding the risk of removing any environmental signal or trend captured by our tree-ring series.

RESULTS

Inter-annual Trends in Climate and Tree-Ring Indices

A warming trend is reflected at our treeline site during the growing seasons (0.50°C per decade $P < 0.001$) of 1975–2010, without concurrent trends in precipitation and vapor pressure.
deficit (Figure 2). During the whole study period $\Delta^{13}C$ and $\Delta^{18}O$ chronologies were synchronized between the three studied species. In each species $\Delta^{13}C$ increased over time (Figure 3A; Table 3) whereas $\Delta^{18}O$ decline (Figure 3B; Table 3). The increase in $\Delta^{13}C$ was accompanied by rising of A_{max} for both P. cembra (1979–2007) and L. decidua (1980–1993) by about 50%. Likewise, g_{w} increase by about 75% in L. decidua (Table 3).

The mean tree-ring $\Delta^{13}C$ was highest in L. decidua, although the increase was significantly higher in P. cembra and P. abies (Table 4). Temporal changes in $\Delta^{18}O$ by contrast, did not differ significantly between the tree species (Table 4). P. cembra showed the highest $\Delta^{18}O$ while P. abies presented the lowest $\Delta^{18}O$ and L. decidua displayed an intermediate mean (Table 4). On average, growth of P. cembra was significantly higher than growth of P. abies and L. decidua (Figure 3C; Table 4). During the whole study period all three species showed an increase in growth expressed as BAI, being significantly lower in P. cembra than P. abies, and L. decidua (Figure 3C; Table 4).

Paralleling atmospheric CO$_2$ enhancement (Figure 4A), tree ring derived C_t increased from 1975 through 2010 from 180 to 234 μmol mol$^{-1}$ in P. cembra, from 185 to 227 μmol mol$^{-1}$ in P. abies and from 213 to 256 μmol mol$^{-1}$ in L. decidua (Figure 4A; Table 2). Although species specific differences in the temporal change of C_t were not statistically significant different from each other, mean C_t was significantly lower in P. cembra and P. abies as compared to L. decidua (Table 4). Averaged over the study period P. cembra showed the lowest and L. decidua, the highest C_t/C_a, while the C_t/C_a of P. abies was intermediate (Table 4). The increase in C_t/C_a over time (Figure 4B; Table 3) was significantly higher in P. cembra and P. abies than in L. decidua (Table 4). In all the three species iWUE had remained stable during the study period (Figure 4C; Table 3). However, we observed statistically significant between species, with P. cembra showing the highest and Larix decidua showing the lowest iWUE averaged over the study period (Table 4).

Table 3 | Regression information for Figures 3 and 4.

Variable	Species	Equation	r^2	P-value
$\Delta^{13}C$	P. cembra	$y = 0.054x - 91.3$	0.77	<0.001
	P. abies	$y = 0.049x - 79.2$	0.76	<0.001
	L. decidua	$y = 0.030x - 40.1$	0.49	<0.001
$\Delta^{18}O$	P. cembra	$y = -0.062x + 159.9$	0.50	<0.001
	P. abies	$y = -0.075x + 184.7$	0.60	<0.001
	L. decidua	$y = -0.056x + 148.0$	0.51	<0.001
BAI	P. cembra	$y = 0.147x - 281.9$	0.50	<0.001
	P. abies	$y = 0.219x - 430.8$	0.90	<0.001
	L. decidua	$y = 0.273x - 538.4$	0.77	<0.001
C_t	P. cembra	$y = 1.81x - 3392.5$	0.94	<0.001
	P. abies	$y = 1.75x - 3296.0$	0.94	<0.001
	L. decidua	$y = 1.56x - 2873.3$	0.94	<0.001
C_t/C_a	P. cembra	$y = 0.002x - 4.33$	0.77	<0.001
	P. abies	$y = 0.002x - 3.88$	0.76	<0.001
	L. decidua	$y = 0.001x - 2.18$	0.62	<0.001
iWUE	P. cembra	$y = -0.085x + 249.4$	0.09	0.067
	P. abies	$y = -0.061x + 199.5$	0.06	0.148
	L. decidua	$y = 0.045x - 21.9$	0.05	0.215

Table 4 | Tree-ring carbon isotope characteristics ($\Delta^{13}C$, $\Delta^{18}O$, BAI, C_t, C_t/C_a, and iWUE) in P. cembra, P. abies, and L. decidua during the period 1975–2010.

Species	Change	Average (±SE)	Change	Average (±SE)	Change	Average (±SE)						
	$\Delta^{13}C$ [%]		$\Delta^{18}O$ [%]		BAI [cm2]		C_t [μmol mol$^{-1}$]		C_t/C_a		iWUE [μmol mol$^{-1}$]	
P. cembra	1.9a	17.2 ± 0.7a	−2.2b	35.9 ± 0.9b	5.3a	7.6 ± 3.8a	65.2a	203.5 ± 19.6a	0.1b	0.6 ± 0.03b	−3.1b	81.0 ± 2.9b
P. abies	1.8a	17.3 ± 0.6a	−2.7b	35.0 ± 1.052b	7.9a	5.7 ± 2.473a	63.06a	208.5 ± 19a	0.1b	0.6 ± 0.035b	−2.2b	78.4 ± 2.65b
L. decidua	1.1b	18.8 ± 0.484b	−2.0b	35.6 ± 0.883c	9.8b	5.8 ± 3.3d	56.2b	228.8 ± 16.9b	0.00c	0.8 ± 0.035c	−1.6b	67.8 ± 2.2d

Significant changes from 1975–2010 at $P < 0.05$ are in bold and italics. Between species differences in change and average (±SE) are marked with different letters. Change values were calculated as the slope of the corresponding least-squares linear regressions (Table 2) multiplied by the number of years of the study period 1975–2010 (=36).
Effects C_a and T_{veg} on $\Delta^{13}C$, $\Delta^{18}O$, BAI, C_i, C_i/C_a and iWUE

Multiple linear regression analysis show that $\Delta^{13}C$ and $\Delta^{18}O$ of all species significantly increased with increasing ambient CO$_2$ concentration (C_a) while growing season mean air temperature (T_{veg}) had no effect on $\Delta^{13}C$ and on $\Delta^{18}O$ (Table 5). Growth (BAI) of P. cembra, and P. abies significantly increased with increasing C_a and T_{veg}. L. decidua presented a significant increase in BAI at increasing C_a without any response to T_{veg} (Table 5). For all species we found a significant increase in C_i and C_i/C_a at higher C_a but not at higher T_{veg} (Table 5). iWUE of P. cembra, P. abies, and L. decidua, however, did not significantly respond to increasing C_a and T_{veg} (Table 5).

$\Delta^{13}C$, $\Delta^{18}O$, and BAI Response to Climate (Climate-Growth Relationships)

Climate-response relationships of $\Delta^{13}C$, $\Delta^{18}O$, and BAI differed both in time and in signal strength (Figures 5 and 6). In all three species $\Delta^{13}C$ was significantly positive correlated with April throughout June temperatures (Figure 5A) and significantly negative correlated with January precipitation (Figure 6A). Previous-year August and October temperature also favored $\Delta^{13}C$ in P. cembra and in P. abies, respectively (Figure 5A), whereas previous- and current-year August precipitation did so in P. abies (Figure 6A).

The effects of temperature and precipitation on $\Delta^{18}O$ were clearly in opposite directions (Figures 5B and 6B). In all the three species tree-ring $\Delta^{18}O$ was negative correlated to air temperature from April to June of the current year and significantly positive correlated to previous-year December temperature (Figure 5B) as well as to January precipitation (Figure 6B). From Figure 5B, previous-year August temperature had a negative correlation with L. decidua and current-year January temperature showed a negative correlation with L. decidua. Previous-year November and current-year March precipitation showed a negative correlation with $\Delta^{18}O$ in L. decidua, as did June precipitation in P. cembra (Figure 6B).

We also found significant positive correlations between BAI and temperature during April, May, and June in
TABLE 5 | Summary of multiple linear regression models fitted to explain inter-annual changes (1975–2010) in Δ^{13}C, Δ^{18}O, BAI, C, C/Ca, and iWUE of P. cembra, P. abies, and L. decidua in response to atmospheric CO$_2$ concentration (C$_a$) and mean growing season (May-Sep) air temperature (T$_{weg}$).

Species	Variable	coefficient	SE	t-value	p-value			
Δ^{13}C	P. cembra	Intercept	5.483	1.225	4.477	<0.001		
		C_a	0.034	0.004	0.903	8.584	0.831	<0.001
		T_{weg}	-0.058	0.067	-0.091	-0.865	0.149	0.393
P. abies	Intercept	6.797	1.054	6.446	<0.001			
	C_a	0.031	0.003	0.925	9.187	0.848	<0.001	
	T_{weg}	-0.064	0.058	-0.111	-1.106	-0.189	0.277	
L. decidua	Intercept	11.883	1.027	11.572	<0.001			
	C_a	0.023	0.003	0.901	6.917	0.769	<0.001	
	T_{weg}	-0.164	0.056	-0.378	-2.900	-0.451	0.007	
Δ^{18}O	P. cembra	Intercept	49.624	2.360	21.030	<0.001		
		C_a	-0.039	0.008	-0.742	-5.158	-0.668	<0.001
		T_{weg}	0.054	0.130	0.060	0.419	0.073	0.678
P. abies	Intercept	51.708	2.363	21.886	<0.001			
	C_a	-0.050	0.008	-0.842	-6.513	-0.750	<0.001	
	T_{weg}	0.143	0.130	0.143	1.013	0.189	0.278	
L. decidua	Intercept	45.863	2.219	20.671	<0.001			
	C_a	-0.026	0.007	-0.574	-3.671	-0.538	0.001	
	T_{weg}	-0.094	0.122	-0.120	-0.768	-0.013	0.448	
BAI	P. cembra	Intercept	-19.964	5.482	-3.642	0.001		
		C_a	0.079	0.018	0.627	4.472	0.614	<0.001
		T_{weg}	0.357	0.301	0.166	1.184	0.202	<0.001
P. abies	Intercept	-40.583	2.643	-15.354	<0.001			
	C_a	0.120	0.009	0.855	13.990	0.925	<0.001	
	T_{weg}	0.401	0.145	0.169	2.761	0.433	0.009	
L. decidua	Intercept	-53.532	5.382	-9.947	<0.001			
	C_a	0.159	0.017	0.844	9.128	0.846	<0.001	
	T_{weg}	0.272	0.296	0.085	0.919	0.158	0.365	
C$_i$	P. cembra	Intercept	-188.830	19.045	-9.915	<0.001		
		C_a	1.119	0.062	0.991	18.130	0.953	<0.001
		T_{weg}	-1.033	1.047	-0.054	-0.987	-0.169	0.331
P. abies	Intercept	-177.500	17.308	-10.255	<0.001			
	C_a	1.100	0.056	0.966	19.623	0.960	<0.001	
	T_{weg}	-1.014	0.952	-0.054	-1.065	-0.182	0.294	
L. decidua	Intercept	-113.938	14.692	-7.755	<0.001			
	C_a	0.987	0.048	1.011	20.726	0.964	<0.001	
	T_{weg}	-1.313	0.808	-0.079	-1.625	-0.272	0.114	
C$_i$/C$_a$	P. cembra	Intercept	0.037	0.054	0.680	0.501		
		C_a	0.002	0.000	0.906	8.752	0.836	<0.001
		T_{weg}	-0.003	0.003	-0.087	-0.843	-0.145	0.405
P. abies	Intercept	0.087	0.049	1.795	0.082			
	C_a	0.001	0.000	0.918	9.118	0.864	<0.001	
	T_{weg}	-0.003	0.003	-0.096	-0.995	-0.164	0.347	
L. decidua	Intercept	0.321	0.041	7.817	<0.001			
	C_a	0.001	0.000	0.887	7.240	0.783	<0.001	
	T_{weg}	-0.004	0.002	-0.0193	-1.574	-0.264	0.125	
iWUE	P. cembra	Intercept	98.731	9.964	9.909	<0.001		
		C_a	-0.082	0.032	-0.372	-1.915	-0.316	0.064
		T_{weg}	0.534	0.548	0.189	0.974	0.337	
P. abies	Intercept	92.903	9.022	10.263	<0.001			
	C_a	-0.053	0.029	-0.351	-1.798	-0.299	0.081	
	T_{weg}	0.534	0.554	0.210	1.072	0.184	0.291	

(Continued)
TABLE 5 | Continued

Species	Variable	coefficient	SE	β	t-value	r-value	P-value
L. decidua	Intercept	59.644	7.661		7.785		<0.001
	C_a	0.007	0.025	0.052	0.270	0.047	0.789
	T_{seg}	0.695	0.421	0.317	1.650	0.276	0.108

Explanatory variables significantly influencing Δ¹³C, Δ¹⁸O, BAI, C, C/C_q and iWUE at P < 0.05 are in bold and italics. Multiple linear regressions to obtain a relationships between (dependent) tree-ring variables and the explanatory variables C_a and T_{seg} were calculated according to: Tree-ring variable = a + b(Δ¹³C) + c(T_{seg}), where a, b, and c are fitting coefficients. Note that the β-coefficient expresses the relative importance of each explanatory variable in standardized terms. The direction of the relationships between variables (plus or minus) of the β-coefficients and the Pearson’s correlation coefficient indicates whether the relationship between the explanatory variable and the dependent variable is positive or negative.

P. cembra, P. abies, and L. decidua (Figure 5C). Current-year August temperature also favored BAI in L. decidua and P. abies, and also previous-year October temperature in P. abies (Figure 5C). The correlations between BAI and precipitation were weak, except for significant positive correlations in February and current-year August in P. cembra and a significant negative correlation in January in P. abies (Figure 6C).

DISCUSSION

Similar growth and Δ¹³C, and Δ¹⁸O responses were found over time in P. cembra, P. abies and L. decidua at the lower edge of the treeline ecotone in the central Austrian Alps. From 1975 throughout 2010 the three species increased Δ¹³C and BAI, while Δ¹⁸O showed a declining trend. Apparently, underlying response mechanisms were similar across the three studied species.

Our observed correlations for temperature and precipitation for Δ¹³C and Δ¹⁸O (Figures 5 and 6) are consistent with results reported for oak and pine trees at temperate sites in Switzerland (Saurer et al., 2008). Weather conditions prevailing during April through June predominantly were responsible for variations in tree-ring Δ¹³C, Δ¹⁸O, and BAI of P. cembra, P. abies, and L. decidua. We found positive correlations between April to June temperatures and Δ¹³C. Δ¹³C is strongly affected by net CO₂ uptake rates, which at treeline are governed by both photon flux density and temperature (Treydte et al., 2001; McCarrol and Pawellek, 2004; Kress et al., 2011) as well as enhanced plant transpiration (Liu et al., 2015). Moreover, at our study site in situ net photosynthetic capacity of sun exposed twigs from the upper canopy of mature P. cembra and L. decidua trees measured under clear summer days also tended to increase between 1979 and 2007 (Table 2), which might be attributed to both the observed increase in atmospheric C_a and T_{air}. Additionally, the temperature optimum of A_{max} for P. cembra increased from 12.5°C in 1956 (Pisek et al., 1969, 1973) to 15.0°C in 2002 (Wieser, 2004) and to 17.1°C in 2007 (Wieser et al., 2010), matching the observed increase in mean growing season air temperature of 0.9°C per decade (Figure 2). An increase in net photosynthetic rates under elevated CO₂ was also observed in P. mugo and L. decidua after nine years of free-air CO₂ enrichment at the Swiss treeline (Dawes et al., 2013; Streit et al., 2014). Three years of ecosystem warming also increased carbon uptake of Pinus cembra at treeline in the Austrian Alps (Wieser et al., 2015).

Our precipitation signals suggest that trees do not suffer from moisture stress. Indeed the observed declining trend Δ¹⁸O and the strong negative correlations between Δ¹⁸O and growing season precipitation is consistent with the physiological isotopic responses (Barbour and Farquhar, 2000), suggesting that stomatal conductance is increased during the study period. Although a leaf physiological signal in δ¹⁸O will be dampened at the level of tree rings due to oxygen exchange with source water during cellulose biosynthesis, impact of gw on Δ¹⁸O in tree rings may be still detectable, even in whole wood analyses (Weigt et al., 2015). Ecosystem warming accompanied by unchanged VPD also increased gw and hence also transpiration in boreal Picea abies (Bergh and Linder, 1999), Pinus sylvestris (Kellomäki and Wang, 1998), Picea mariana (Van Herk et al., 2011), Pinus cembra at treeline (Wieser et al., 2015), and Populus deltoides (Barron-Gafford et al., 2007). Thus, it seems that in cold environments under non-limiting water availability increasing temperatures counteract the diminishing effect of rising CO₂ on leaf conductance (Saurer et al., 2014).

The observed positive correlations between BAI and April–June temperatures are also reflected in wood formation. At the study site wood formation of larch, spruce and pine generally starts in May, reaches its maximum in June, and terminates in August (Havranek, 1981; Loris, 1981; Gruber et al., 2009). Beside summer temperatures (Figure 5C) other climatic variable like winter and August precipitation (Figure 6C) are also known to influence radial growth at treeline as shown for P. cembra by Oberhuber (2004), reflecting minor soil water effects on tree growth at treeline (Tranquillini, 1979; Wieser, 2004). Although treeline trees are saturated with carbohydrates (Gruber et al., 2011), growth of trees at treeline is primarily affected by temperature dependent carbon sink activity during tissue formation (Hoch and Körner, 2003, 2012). The observed increase in BAI (Figure 3C) suggests that our treeline trees benefit from climate warming, although effects of CO₂ fertilization on growth may not completely ruled out (Table 5). Four years of experimental air warming with open-top-chambers also stimulated radial growth of Picea glauca seedlings at the subarctic treeline in southwest Yukon, Canada (Danby and Hik, 2007). Thus, when growth is stimulated and there is plenty of water gw can increase as indicated by a decline in Δ¹⁸O (Figure 3B) along with increasing A, resulting in a constant iWUE (Figure 4C).
Elevated atmospheric CO$_2$ is expected to affect plant carbon-water relationships, as a decline in stomatal conductance is often observed when plants are exposed to elevated CO$_2$ (Battipaglia et al., 2013). If stomatal conductance declines under increasing CO$_2$ in combination with an increased or unchanged carbon assimilation, this will decrease the C_i to C_a ratio and thus decrease $\Delta^{13}C$. Conversely, in all three study species $\Delta^{13}C$ increased from 1975 throughout 2010, while tree-ring derived iWUE remained stable (Figure 4C) although ambient CO$_2$ concentration increased by 60 μmol mol$^{-1}$ (Figure 2B). The stability of iWUE resulted as C_i drifted upward paralleling the rise in C_a (Figure 2B). Likewise, in *Picea schrenkiana* at treeline in the western Tianshan Mountains in China iWUE remained also unchanged from 1985 to 2010 (Wu et al., 2015). No change in iWUE (i.e., homeostasis) over the last 100 years was also reported for three conifer species in the Selkirk Range (Rocky Mountains, Idaho, ID, USA) by Marshall and Monserud (1996). Other studies by contrast observed a 20% increase in iWUE from the 1960 throughout 2000 in mature trees in tropical, arid, Mediterranean, wet temperate and boreal forests distributed through Europe, Asia, Africa, America, and Oceania (Penuelas et al., 2011; Saurer et al., 2014; Frank et al., 2015). In these latter studies, increasing iWUE was attributed to the combined effect of increasing CO$_2$ and climate change-induced soil drying that reduced stomatal aperture. Soil drought can be ruled out along the treeline ecotone of the Central Alps (Mayr, 2007; Wieser, 2012). Occurrence of soil drought strongly depends on site conditions such as precipitation patterns, water holding capacity of the soil, and evaporative demand. Ample precipitation and moderate evaporative demand in general cause soil water availability to be sufficiently high to meet the trees' water demand at treeline in the Central Tyrolean Alps (Mayr, 2007; Wieser et al., 2009). As a consequence, treeline trees are rarely forced to restrict transpiration (Tranquillini, 1979; Benecke et al., 1981; Matyssek et al., 2009; Wieser and Leo, 2012; Wieser et al., 2014, 2015). Given the ample soil water availability whole-tree conductance of *P. cembra*, *P. abies*, and *L. decidua* remains high for CO$_2$ uptake because leaf conductance for water vapor depends only on the evaporative demand driven by irradiance and vapor pressure deficit (Wieser, 2012).
Beside climate warming and increasing C_a, nitrogen deposition could also be important for explaining the observed increase in tree growth as increasing nitrogen deposition during the 1980ties (Smidt and Mutsch, 1993) has been suggested as a possible growth stimulator. However, there is evidence that nitrogen contents per needle dry mass are higher in trees at treeline as compared to trees growing at lower elevation sites (Körner, 1989; Birmann and Körner, 2009). Furthermore, since 1988, nitrogen deposition at treeline in the Tyrolean Alps is steadily declining (Amt der Tiroler Landesregierung, 2015), and a nitrogen fertilizer experiment at the alpine treeline in the Swiss Alps showed little or no growth stimulation (Keller, 1970). Thus, it seems that presently nitrogen deposition is insufficient to explain observed growth trends at treeline as reported previously by Tranquillini (1979) and Nicolussi et al. (1995).

CONCLUSION

Treeline trees respond to the increasing atmospheric CO$_2$ level (C_a) in a way that their leaf-intercellular CO$_2$ concentration (C_i) drifted upward paralleling the rise in atmospheric CO$_2$ while iWUE remained stable over the last 36 years. The stability in iWUE was accompanied by an increase in BAI suggesting that treeline trees benefit from both recent climate warming) and CO$_2$ fertilization. In addition, treeline trees are rarely forced to restrict
transpiration due to ample soil water availability (Tranquillini, 1979; Matyssek et al., 2009; Wieser et al., 2015). A stable iWUE suggests an increase of both carbon gain and leaf conductance for water vapor as also indicated by stable C and O isotope analysis and direct gas exchange assessments. Furthermore, iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species. Our finding that growth of treeline associated conifers increases with slowly rising ambient CO₂ concentration and warming may be relevant for assessing complex growth models with empirical data, finally leading to model improvements and better estimations of forest-climate feedbacks.

REFERENCES

Amit der Tiroler Landesregierung (2015). Luftgüte in Tirol. Bericht über das Jahr 2014. Innsbruck: Amt der Tiroler Landesregierung.

Barbour, M. M. (2007). Stable oxygen isotope composition of plant tissue: a review. Funct. Plant Biol. 34, 83–94. doi: 10.1071/FB060228

Barbour, M. M., and Farquhar, G. D. (2000). Relative humidity and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell Environ. 23, 473–485. doi: 10.1046/j.1365-3040.2000.00575.x

Barbour, M. M., Fischer, R. A., Sayre, K. D., and Farquhar, G. D. (2000). Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Austr. J. Plant Physiol. 27, 625–637.

Barron-Gafford, G. A., Grieve, K. A., and Murthy, R. (2007). Leal-andstand...Frontiers in Plant Science | www.frontiersin.org

Battipaglia, G., Saurer, M., Cherubini, P., Calfapietra, C., McCarthy, H. R., Norby, R. J., et al. (2013). Elevated CO₂ increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol. 197, 544–554. doi: 10.1111/nph.12044

Benecke, U., Schulze, E.-D., Matyssek, R., and Havranek, W. M. (2001). Environmental control of CO₂-assimilation and leaf conductance in Larix decidua Mill. I. a comparison of contrasting natural environments. Oecologia 50, 54–61. doi: 10.1007/BF00378793

Bergh, J., and Linder, S. (1999). Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Glob. Change Biol. 5, 245–253. doi: 10.1046/j.1365-2486.1999.00205.x

Bittipaglia, G., Saurer, M., Cherubini, P., Calippietra, C., McCarthy, H. R., Norby, R. J., et al. (2013). Elevated CO₂ increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol. 197, 544–554. doi: 10.1111/nph.12044

Borella, S., Leuenberger, M., Saurer, M., and Siegwolf, R. (1998). Reducing CO₂ uptake in the eastern Swiss Alps: a seasonal and annual study using IRGA and stable isotope analysis. Austr. J. Plant Physiol. 25, 544–554. doi: 10.1071/pp9820121

Birnbaum, L., and Körner, C. (2009). Nitrogen status of conifer needles at the treeline in the Austrian Alps. Oecologia 161, 351–361. doi: 10.1007/s00442-012-2576-5

Brenkel, O., Iannetta, P. P. M., and Stewart, D. (2000). Arapid and simple method to isolate pure alpha-cellulose. Phytochem. Anal. 11, 7–10. doi: 10.1002/(SICI)1099-1565(20000102)11:1<7::AID-PCA488>3.0.CO;2-U

Brunnig, E., and Farquhar, G. D. (2000). “Photosynthetic fractionation of carbon isotopes,” in Photosynthesis: Physiology and Metabolism, Vol. 9, eds R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (Dordrecht: Kluwer Academic Publishers), 399–434.

Bunn, A. G., Graumlich, L. J., and Urban, D. L. (2005). Trends in twentieth century temperature and vapour pressure deficit. J. Hydrol. 309, 1–26. doi: 10.1016/j.jhydrol.2005.02.026

Carrer, M., and Urbiniti, C. (2004). Age-dependent tree-ring growth response to climate in Larix decidua and Pinus cembra. Ecology 85, 730–740. doi: 10.1890/02-0478

Carrer, M., and Urbiniti, C. (2006). Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol. 170, 861–872. doi: 10.1111/j.1469-8137.2006.01703.x

Cernusak, L. A., Ubertini, N., Winter, K., Holtum, J. A. M., Marshall, J. D., and Farquhar, G. D. (2013). Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 200, 950–965. doi: 10.1111/nph.12423

Danby, R. K., and Hik, D. S. (2007). Response of white spruce (Pinus glauca) to experimental warming at a subarctic alpine treeline. Glob. Change Biol. 13, 437–451. doi: 10.1111/j.1365-2486.2006.01302.x

Dawes, M. A., Hagedorn, F., Handa, I. T., Streit, K., Ebkald, Q. A., Rixen, C., et al. (2013). An alpine treeline in a carbon dioxide-rich world: synthesis of a nine-year free-air carbon dioxide enrichment study. Oecologia 171, 623–637. doi: 10.1007/s00442-012-2576-5

Duquesnay, A., Breda, N., Steivenard, M., and Dupouey, J. L. (1998). Changes of δ13C and water-use efficiency of beech (Fagus sylvatica L) in north-eastern France during the past century. Plant Cell Environ. 21, 565–572. doi: 10.1046/j.1365-3040.1998.00304.x

Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. 40, 503–537. doi: 10.1146/annurev.pp.40.060189.002443

Farquhar, G. D., O’Leary, M. H., and Berry, J. A. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant. Physiol. 9, 121–137. doi: 10.1071/pp9820121

Farquhar, G. D., and Richards, R. A. (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotype. Aust. J. Plant. Physiol. 11, 539–552. doi: 10.1071/PP9840539

Flexas, J., Ribas-Carbo, M., Díaz-Depejo, A., Glámès, J., and Medrano, H. (2008). Mesophyll conductance to CO₂: current knowledge and future prospects. Plant Cell Environ. 31, 602–621. doi: 10.1111/j.1365-3040.2007.01757.x

Frank, D., and Esper, J. (2005). Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. Int. J. Climatol. 25, 1437–1454. doi: 10.1002/joc.1210

Frank, D. C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., et al. (2015). Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Change 5, 579–583. doi: 10.1038/nclimate2614

Fritts, H. C. (1976). Tree Rings and Climate. London: Academic Press.

Flexas, J., Brandes, E., Keitel, C., Boda, S., Kayler, Z., Granier, A., et al. (2013). The oxygen isotope enrichment of leaf-exported assimilates—does it always reflect lamina leaf water enrichment? New Phytol. 200, 144–157. doi: 10.1111/nph.12359

Grans, T. E. E., Kozovits, A. R., Haberle, K.-H., Matyssek, R., and Dawson, T. E. (2015). Combining δ13C and δ18O analyses to unravel competition, CO₂ and

AUTHOR CONTRIBUTIONS

GW, RM, and TG conceived and designed the experiment. WO, AG, and ML performed the experiment. GW, WO, AG, and ML analyzed the data. GW, RM, and TG wrote the manuscript and WO and AG provided editorial advice.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund Project No. FWF P22206-B16 “Transpiration of conifers in contrasting environments.” Thanks to the Umweltbundesamt Austria for providing us with annual mean δ18O data for Mt. Patscherkofel.
O$_3$ effects on the physiological performance of different-aged trees. *Plant Cell Environ.* 30, 1023–1034. doi: 10.1111/j.1365-3040.2007.01696.x

Graumlich, L. J. (1991). Subalpine tree growth, climate, and increasing CO$_2$: an assessment of recent growth trends. *Ecology* 72, 1–11. doi: 10.2307/1937545

Graumlich, L. J., Bruktaber, L. B., and Grier, C. C. (1989). Long-term growth trends in forest net primary productivity: cascade Mountains, Washington. *Ecology* 70, 405–410. doi: 10.2307/1937545

Grissino-Mayer, H. D. (2001). Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. *Tree Ring Res.* 57, 205–221.

Gruber, A., Pirscherbener, D., Oberhuber, W., and Wieser, G. (2011). Spatial and seasonal variations in mobile carbohydrates in *Pinus cembra* in the timberline ecotone of the Central Austrian Alps. *Eur. J. Forest Res.* 130, 173–179. doi: 10.1007/s10342-010-0149-7

Havlíček, M., Matyssek, R., Wieser, G., and Oberhuber, A. (2009). Intra-annual dynamics in stem CO$_2$ efflux in relation to cambial activity and xylem development in *Pinus cembra*. *Tree Physiol.* 29, 641–649. doi: 10.1093/treephys/tpp011

Havranek, W. M. (1981). Dickenwachstum von Zirbe, Fichte und Lärche an der alpinen Graumlich, L. J., Brubaker, L. B., and Grier, C. C. (1989). Long-term growth trends in forest net primary productivity: cascade Mountains, Washington. *Ecology* 70, 405–410. doi: 10.2307/1937545

Havlíček, M., Matyssek, R., Wieser, G., and Oberhuber, A. (2009). Intra-annual dynamics in stem CO$_2$ efflux in relation to cambial activity and xylem development in *Pinus cembra*. *Tree Physiol.* 29, 641–649. doi: 10.1093/treephys/tpp011

Havlíček, M., Matyssek, R., Wieser, G., and Oberhuber, A. (2009). Intra-annual dynamics in stem CO$_2$ efflux in relation to cambial activity and xylem development in *Pinus cembra*. *Tree Physiol.* 29, 641–649. doi: 10.1093/treephys/tpp011

Havlíček, M., Matyssek, R., Wieser, G., and Oberhuber, A. (2009). Intra-annual dynamics in stem CO$_2$ efflux in relation to cambial activity and xylem development in *Pinus cembra*. *Tree Physiol.* 29, 641–649. doi: 10.1093/treephys/tpp011

Havlíček, M., Matyssek, R., Wieser, G., and Oberhuber, A. (2009). Intra-annual dynamics in stem CO$_2$ efflux in relation to cambial activity and xylem development in *Pinus cembra*. *Tree Physiol.* 29, 641–649. doi: 10.1093/treephys/tpp011
Scheidegger, Y., Saurer, M., Bahn, M., and Siegwolf, R. (2000). Linking stable isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125, 350–357. doi: 10.1007/s004420000466

Seibt, U., Rajabi, A., Griffiths, H., and Berry, J. (2008). Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155, 441–454. doi: 10.1007/s00442-007-0932-7

Sidorova, O. V., Siegwolf, R. T. W., Saurer, M., Shashkin, A. V., Knorre, A. A., Prokushkin, A. S., et al. (2009). Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) indicate increasing water shortage in the Siberian north? Oecologia 161, 825–835. doi: 10.1007/s00442-009-1411-0

Silva, L. R. C., and Anand, M. (2013). Probing for the influence of atmospheric CO2 and climate change on forest ecosystems across biomes. Glob. Ecol. Biogeogr. 22, 83–92. doi: 10.1111/1466-8238.2012.00783.x

Smidt, S., and Mutsch, F. (1993). "Messungen der nassen Freilanddeposition an alpinen Höhenprofilen," in Proceedings of the International Symposium 'Stoffsieitritte aus der Atmosphäre und Waldböden-Lastung in den Ländern der ARGE ALP und ALPEN ADRIA'. GSF-Report, Neuherberg, 21–29.

Sohn, J. A., Gebhardt, T., Ammer, C., Bauhus, J., Häberle, K.-H., Matyssek, R., et al. (2013). Mitigation of drought by thinning: short-term and long-term effects on growth and physiological performance of Norway spruce (Picea abies). Forest Ecol. Mang. 308, 188–197. doi: 10.1016/j.foreco.2013.07.048

Stritzel, K., Siegwolf, R. T. W., Hagedorn, F., Schaub, M., and Buchmann, N. (2014). Lack of photosynthetic or stomatal regulation after 9 years of elevated [CO2] and 4 years of soil warming in two conifer species at the alpine treeline. Plant Cell Environ. 37, 315–326. doi: 10.1111/pce.12197

Tranquillini, W. (1979). Physiological Ecology of the Alpine Timberline. Tree Existence in High Altitudes with Special Reference to the European Alps. Ecological Studies 31. Berlin: Springer.

Treydte, K., Boda, S., Graf Pannatier, E., Fonti, P., Frank, D., Ullrich, B., et al. (2014). Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment. New Phytol. 202, 772–783. doi: 10.1111/nph.12741

Treydte, K. S., Schleser, G. H., Schweingruber, F. H., and Winiger, M. (2001). The climatic significance of δ13C in subalpine spruces (Lötschental, Swiss Alps). Tellus Ser. B 53, 593–611. doi: 10.1034/j.1600-0889.2001.530505.x

Van Herk, I. G., Gower, S. T., Bronson, D. R., and Tanner, M. S. (2011). Effect of climate warming on canopy water dynamics of a boreal black spruce plantation. Can. J. For. Res. 41, 217–227. doi: 10.1139/X10-196

Volgger, E. (1995). Zur Ozonempfindlichkeit der Europäischen Lärche (Larix decidua Mill.) an der Waldgrenze. Diploma thesis, Botany, University of Innsbruck, Innsbruck.

Weigt, R. B., Bräunlich, S., Zimmermann, L., Saurer, M., Grams, T. E. E., Dietrich, H.-P., et al. (2015). Comparison of δ13C and δ18O values between tree-ring whole wood and cellulose in five species growing under two different site conditions. Rapid Commun. Mass Spectr. 29, 2233–2244. doi: 10.1002/rcm.7388

Wieser, G., Schnyder, H., Cuntz, M., Keitel, C., Zeeman, M. J., Dawson, T. E., et al. (2012). Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences 9, 3083–3111. doi: 10.5194/bg-9-3083-2012

Wieser, G. (2004). Environmental control of carbon dioxide gas exchange in needles of a mature Pinus cembra tree at the alpine timberline during the growing season. Phyton 44, 145–153.

Wieser, G. (2012). Lessons from the timberline ecotope in the Central Tyrolean Alps: a review. Plant Ecol. Div. 5, 127–139. doi: 10.1008/17550874.2010.498062

Wieser, G., Gigele, T., and Pausch, H. (2005). Seasonal and spatial variation of woody tissue respiration in a Pinus cembra tree at the alpine timberline in the Central European Alps. Eur. J. For. Res. 124, 1–8. doi: 10.1007/s10342-004-0050-6

Wieser, G., Grams, T. E. E., Matyssek, R., Oberhuber, W., and Gruber, A. (2013). Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps. Tree Physiol. 35, 279–288. doi: 10.1093/treephys/tvp009

Wieser, G., Oberhuber, W., and Matyssek, R. (2014). Sap flow characteristics and whole-tree water use of Pinus cembra across the treeline ecotone in the central Tyrolean Alps. Eur. J. For. Res. 133, 287–295. doi: 10.1007/s10342-013-0760-8

Wieser, G., and Leo, M. (2012). Whole tree water use by Pinus cembra at the Central Tyrolean Alps. Plant Ecol. Div. 5, 81–88. doi: 10.1093/treephys/tvp009

Wieser, G., Matyssek, R., Luzian, R., Zwenger, P., Pindur, P., Oberhuber, W., et al. (2009). Effects of atmospheric and climate change at the timberline of the Central European Alps. Ann. For. Sci. 66:402. doi: 10.1051/forest:2009023

Wieser, G., Oberhuber, W., Walder, L., Spieler, D., and Gruber, A. (2010). Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps. Ann. For. Sci. 67:201. doi: 10.1051/forest:2009009

Wu, G., Liu, X., Chen, T., Xu, G., Wang, W., Zeng, X., et al. (2015). Elevation-dependent variations of tree growth and intrinsic water-use efficiency in Schrenk spruce (Picea schrenkiana) in the western Tianshan Mountain, China. Front. Plant Sci. 6:309. doi: 10.3389/fpls.2015.00309

Zar, J. H. (1999). Biotiostatistical Analysis. Upper Saddle River, NJ: Prentice Hall.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Wieser, Oberhuber, Gruber, Leo, Matyssek and Grams. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.