A characterization of normal 3-pseudomanifolds with at most two singularities

Biplab Basak, Raju Kumar Gupta and Sourav Sarkar

Department of Mathematics, Indian Institute of Technology Delhi, New Delhi 110016, India

June 22, 2023

Abstract

Characterizing face-number-related invariants of a given class of simplicial complexes has been a central topic in combinatorial topology. In this regard, one of the well-known invariants is g_2. Let K be a normal 3-pseudomanifold such that $g_2(K) \leq g_2(\text{lk}(v)) + 9$ for some vertex v in K. Suppose either K has only one singularity or K has two singularities (at least) one of which is an $\mathbb{R}P^2$-singularity. We prove that K is obtained from some boundary complexes of 4-simplices by a sequence of operations of types connected sums, bistellar 1-moves, edge contractions, edge expansions, vertex foldings, and edge foldings. In case K has one singularity, $|K|$ is a handlebody with its boundary coned off. Further, we prove that the above upper bound is sharp for such normal 3-pseudomanifolds.

MSC 2020: Primary 05E45; Secondary 52B05, 57Q05, 57Q25, 57Q15.

Keywords: Normal pseudomanifolds, f-vector, vertex folding, edge folding, edge contraction.

1 Introduction

For a d-dimensional finite simplicial complex K, $g_2(K)$ is defined by $g_2 := f_1 - (d+1)f_0 + \binom{d+2}{2}$, where f_0 and f_1 denote the number of vertices and edges in K. The study on g_2 has been illuminated in a different prospect due to the lower bound conjecture for 3- and 4-manifolds by Walkup [16] in 1970. He proved that for any closed and connected triangulated 3-manifold K, $g_2(K) \geq 0$, and the equality occurs if and only if K is a triangulation of a stacked sphere. Barnette [3, 4, 5] proved that if K is the boundary complex of a simplicial $(d + 1)$-polytope or, more generally, a triangulation of a connected d-manifold, then $g_2(K) \geq 0$. In [10], Kalai proved that if K is a normal pseudomanifold of dimension at least 3 with the 2-dimensional links as triangulated spheres, then $g_2(K) \geq g_2(\text{lk}(\sigma))$ for every face σ of co-dimension at least 3. Fogelsanger’s results in [8, Chapter 8] made it possible to remove the restriction on 2-dimensional links. Therefore, $g_2(K) \geq 0$ for every normal d-pseudomanifold K. In [9], Gromov has similar work on the non-negativity of g_2.

Based on values of g_2, several classifications of combinatorial manifolds and normal pseudomanifolds are studied in the literature. In [14], Swartz proved that the number of combinatorial manifolds, up to PL-homeomorphism, of a given dimension d with an upper bound on g_2, is finite. The combinatorial characterizations of normal d-pseudomanifolds are known due to Kalai [10] (for $g_2 = 0$), Nevo and Novinsky [11] (for $g_2 = 1$), and Zheng [17] (for $g_2 = 2$). In all

\[E-mail	ext{ addresses: biplab@iitd.ac.in (B. Basak), Raju.Kumar.Gupta@maths.iitd.ac.in (R. K. Gupta), Sourav.Sarkar@maths.iitd.ac.in (S. Sarkar).}\]
three cases, the normal pseudomanifold is the boundary complex of a simplicial polytope. The classification of all triangulated pseudomanifolds of dimension \(d \) with at most \(d + 4 \) vertices can be found in [2]. For further developments in this direction, one may refer to [12, 13, 15].

In [7], Basak and Swartz introduced two new concepts, viz., vertex folding and edge folding. For a normal 3-pseudomanifold \(K \) with exactly one singularity, they proved that if \(g_2(K) = g_2(\text{lk}(v)) \) for some vertex \(v \) in \(K \), then \(|K| \) is a handlebody with its boundary coned off. This leads to a natural question: what will be the maximum value of \(g_2(K) \)? In this article, we answer this question. We prove that if \(g_2(K) \leq g_2(\text{lk}(t)) + 9 \), then \(|K| \) is a handlebody with its boundary coned off. Moreover, the above upper bound is sharp for such normal 3-pseudomanifolds (cf. Corollary 4.6). We give a combinatorial characterization of normal 3-pseudomanifolds with at most two singularities, where, in the case of two singularities, one is assumed to be an \(\mathbb{R}P^2 \)-singularity. If \(K \) has no singular vertices, then from [6, 16], we know that \(g_2(K) \leq g_2(\text{lk}(t)) + 9 \) implies \(K \) is a triangulated 3-sphere and is obtained from some boundary complexes of 4-simplices by a sequence of operations of types connected sums, bistellar 1-moves, edge contractions, and edge expansions. In this article, we extend this characterization to normal 3-pseudomanifolds with at most two singularities, that reads as follows:

Theorem 1.1. Suppose \(g_2(K) \leq g_2(\text{lk}(v)) + 9 \) for some vertex \(v \) of a normal 3-pseudomanifold \(K \). If either \(K \) has only one singularity or \(K \) has two singularities (at least) one of which is an \(\mathbb{R}P^2 \)-singularity, then \(K \) can be obtained from some boundary complexes of 4-simplices by a sequence of operations of types connected sums, bistellar 1-moves, edge contractions, edge expansions, vertex foldings, and edge foldings. Further, the above upper bound is sharp for such normal 3-pseudomanifolds.

2 Preliminaries

A simplicial complex \(K \) is a finite collection of simplices in \(\mathbb{R}^m \) for some \(m \in \mathbb{N} \), such that for any simplex \(\sigma \in K \), all of its faces are in \(K \), and for any two simplices \(\sigma, \tau \in K \), \(\sigma \cap \tau \) is either empty or a face of both. We assume that the empty set \(\emptyset \) (is a simplex of dimension \(-1\)) is a member of every simplicial complex. We define the dimension of a simplicial complex \(K \) to be the maximum of the dimension of simplices in \(K \). For a \(d \)-dimensional simplicial complex \(K \), the \(f \)-vector is defined as a \((d+2)\)-tuple \((f_{-1}, f_0, \ldots, f_d)\), where \(f_{-1} = 1 \) and for \(0 \leq i \leq d \), \(f_i \) denotes the number of \(i \)-dimensional faces in \(K \). A maximal face in a simplicial complex \(K \) is called a facet, and if all the facets are of the same dimension, then \(K \) is said to be a pure simplicial complex. A subcomplex of \(K \) is a simplicial complex \(T \subseteq K \). Let \(S \subset V(K) \), where \(V(K) \) is the vertex set of \(K \). Then the subcomplex of \(K \) induced on the vertex set \(S \) is denoted by \(K[S] \). By \(|K|\) we mean the union of all simplices in \(K \) together with the subspace topology induced from \(\mathbb{R}^m \). A triangulation of a polyhedra \(X \) is a simplicial complex \(K \) together with a PL-homeomorphism between \(|K|\) and \(X \).

Two simplices \(\sigma = u_0u_1 \cdots u_k \) and \(\tau = v_0v_1 \cdots v_l \) in \(\mathbb{R}^n \) for some \(n \in \mathbb{N} \) are called skew if \(u_0, \ldots, u_k, v_0, \ldots, v_l \) are affinely independent. In that case \(u_0 \cdots u_k v_0 \cdots v_l \) is a \((k + l + 1)\)-simplex and is denoted by \(\sigma \star \tau \) or \(\sigma \tau \). Two simplicial complexes \(K \) and \(L \) in some \(\mathbb{R}^n \) are called skew if \(\sigma \) and \(\tau \) are skew for all \(\sigma \in K \) and \(\tau \in L \). If \(K \) and \(L \) are skew then we define \(K \star L = K \cup L \cup \{\sigma \tau : \sigma \in K, \tau \in L\} \). The simplicial complex \(K \star L \) is called the join of \(K \) and \(L \). If \(K \) and \(L \) are two simplicial complexes in \(\mathbb{R}^p \) and \(\mathbb{R}^q \) respectively, then we can define their join in a bigger space. More explicitly, let \(i_1 : \mathbb{R}^p \to \mathbb{R}^{p+q+1}, i_2 : \mathbb{R}^q \to \mathbb{R}^{p+q+1} \) be the inclusion maps.
given by \(i_1(x_1,\ldots,x_p) = (x_1,\ldots,x_p,0,\ldots,0) \) and \(i_2(x_1,\ldots,x_q) = (0,\ldots,0,x_1,\ldots,x_q,1) \). Let \(K' := \{ i_1(\sigma) : \sigma \in K \} \) and \(L' := \{ i_2(\tau : \tau \in L) \}. \) Then \(K \cong K' \), \(L \cong L' \) and \(K' \) and \(L' \) are skew in \(\mathbb{R}^{p+q+1} \). We define \(K \ast L = K' \ast L' \). For a simplex \(\sigma \) in \(\mathbb{R}^p \) and a simplicial complex \(K \) in \(\mathbb{R}^p \), by \(\sigma \ast K \) we mean \(\{ \alpha : \alpha \leq \sigma \} \ast K \) in \(\mathbb{R}^{p+q+1} \) for some \(p,q \in \mathbb{N} \). The link of a face \(\sigma \) in \(K \) is defined as \(\gamma \in K : \gamma \cap \sigma = \emptyset \) and \(\gamma \sigma \in K \), and it is denoted by \(\text{lk}(\sigma,K) \). The star of a face \(\sigma \) in \(K \) is defined as \(\{ \alpha : \alpha \leq \sigma \beta ; \beta \in \text{lk}(\sigma,K) \} \), and it is denoted by \(\text{st}(\sigma,K) \). If the underlying simplicial complex is specified, then we use the notations \(\text{lk}(\sigma) \) and \(\text{st}(\sigma) \) to refer to the link and star of the face \(\sigma \), respectively. For every face \(\sigma \) in \(K \), by \(d(\sigma,K) \) (or, \(d(\sigma) \) if \(K \) is specified) we mean the number of vertices in \(\text{lk}(\sigma) \). For two vertices \(x \) and \(y \), \((x,y) \) denotes the semi-open and semi-closed edge \(xy \), where \(y \in (x,y) \) but \(x \notin (x,y) \). By \((x,y) \), we denote the open edge \(xy \), where \(x,y \notin (x,y) \). By \(B_{x_1,\ldots,x_m}(p,q) \), we denote the bi-pyramid with \(m \) base vertices \(x_1,\ldots,x_m \) and apexes \(p \) and \(q \).

A normal \(d \)-pseudomanifold without boundary (respectively with boundary) is a connected pure simplicial complex in which every face of dimension \((d-1) \) is contained in exactly two (respectively at most two) facets and the links of all the simplices of dimension \(\leq (d-2) \) are connected. For a normal \(d \)-pseudomanifold \(K \) with a connected boundary, its boundary \(\partial K \) is a normal \((d-1) \)-pseudomanifold whose facets are \((d-1) \)-dimensional faces of \(K \), each of which is contained in exactly one facet of \(K \). Throughout the article, by a normal \(d \)-pseudomanifold, we mean a normal \(d \)-pseudomanifold without boundary. For a simplex \(\sigma \), its boundary complex \(\partial(\sigma) \) is the collection of all of its proper faces. Let \(K \) be a normal \(d \)-pseudomanifold with boundary \(\partial K \). Let \(K' = K \cup (t \ast \partial K) \), where \(t \) is a new vertex. If \(\partial K \) is connected, then \(K' \) is a normal \(d \)-pseudomanifold without boundary. We say \(K' \) is obtained from \(K \) by coning off the boundary at \(t \), and the topological space \(|K'| \) is the topological space \(|K| \) with its boundary coned off. In a normal \(d \)-pseudomanifold \(K \), the vertices whose links are triangulated spheres are called non-singular vertices, and the remaining are called singular vertices. Let \(v \) be a singular vertex in a normal \(d \)-pseudomanifold \(K \) with \(|\text{lk}(v,K)| \cong S \). In this case, we say \(K \) has an \(S \)-singularity at \(v \).

Definition 2.1. Let \(K \) be a normal \(d \)-pseudomanifold and \(u,v \) be two vertices in \(K \) such that \(uv \in K \), and \(\text{lk}(u,K) \cap \text{lk}(v,K) = \text{lk}(uv,K) \). Consider \(K' = K \setminus \{ \{ \alpha \in K : u \leq \alpha \} \cup \{ \beta \in K : v \leq \beta \} \} \) and \(K_1 = K' \cup (w \ast \partial K') \), where \(w \) is a new vertex. Then, we say \(K_1 \) is obtained from \(K \) by an edge contraction at \(uv \).

Let \(L \) be a normal \(d \)-pseudomanifold and \(w \) be a vertex in \(L \). Let \(S \) be an induced normal \((d-2) \)-pseudomanifold in \(\text{lk}(w) \) such that \(S \) separates \(\text{lk}(w) \) into two portions, say \(L_1 \) and \(L_2 \), where \(L_1 \) and \(L_2 \) are normal \((d-1) \)-pseudomanifolds with the same boundary complex \(S \). Consider \(L' = (L \setminus \{ \alpha \in L : w \leq \alpha \}) \cup ((u \ast L_1) \cup (v \ast L_2) \cup (uv \ast S)) \), where \(u \) and \(v \) are two new vertices. We say \(L' \) is obtained from \(L \) by an edge expansion. Note that, \(L \) can be obtained from \(L' \) by contracting the edge \(uv \).

Definition 2.2. Let \(K \) be a normal \(3 \)-pseudomanifold.

(A) Let \(uv \) be an edge in \(K \) such that \(\text{lk}(uv) = \partial(abc) \) and \(abc \notin K \). Consider \(K' = (K \setminus \{ \alpha \in K : uv \leq \alpha \}) \cup \{ abc, uabc, vabc \} \). Since \(abc \notin K \), we have \(|K'| \cong |K| \). Further, \(g_2(K') = g_2(K) - 1 \). We say \(K' \) is obtained from \(K \) by a bistellar 2-move. The reverse operation is called a bistellar 1-move.

(B) Let \(w \) be a non-singular vertex in \(K \) such that \(\partial(abc) \subset \text{lk}(w) \), where \(abc \notin K \). Then \(\partial(abc) \) separates \(\text{lk}(w) \) into two portions, say \(D_1 \) and \(D_2 \), where \(D_1 \) and \(D_2 \) are triangulated discs with the same boundary complex \(\partial(abc) \). Consider \(K' = (K \setminus \{ \alpha \in K : w \leq \alpha \}) \cup (u \ast D_1) \cup (v \ast D_2) \cup (abc \ast \partial(uv)) \), where \(u \) and \(v \) are two new vertices.
Then \(g_2(K') = g_2(K) - 1 \) and \(|K'| \cong |K| \). Note that this combinatorial operation is a combination of an edge expansion and a bistellar 2-move.

Remark 2.3. Let \(K \) be a normal 3-pseudomanifold. Let \(K' \) be obtained from \(K \) by one of the following combinatorial operations: (i) an edge contraction, (ii) a bistellar 2-move, (iii) the operation as in Definition 2.2 (B), or (iv) a combination of an edge expansion and an edge contraction. Then, \(K \) is obtained from \(K' \) by one of the following combinatorial operations: (i) an edge expansion, (ii) a bistellar 1-move, (iii) a combination of a bistellar 1-move and an edge contraction, or (iv) a combination of an edge expansion and an edge contraction.

Lemma 2.4. For \(d \geq 3 \), let \(K \) be a normal \(d \)-pseudomanifold. Let \(uv \) be an edge in \(K \) such that \(\text{lk}(u,K) \cap \text{lk}(v,K) = \text{lk}(uv,K) \) and \(|\text{lk}(v,K)| \cong S^{d-1} \). If \(K_1 \) is the normal pseudomanifold obtained from \(K \) by contracting the edge \(uv \), then \(|K| \cong |K_1| \).

Proof. Since \(\text{lk}(u,K) \cap \text{lk}(v,K) = \text{lk}(uv,K) \), the edge contraction is possible. Let \(w \) be the new vertex in \(K_1 \) obtained by identifying the vertices \(u \) and \(v \) in \(K \). Let \(K' = K \setminus \{ \{ \alpha \in K : u \leq \alpha \} \cup \{ \beta \in K : v \leq \beta \} \} \). Then \(K' \) is a normal \(d \)-pseudomanifold with boundary and \(\partial K' = \text{st}(u,K) \setminus \text{st}(v,K) \). Since \(\text{lk}(u,K) \cap \text{lk}(v,K) = \text{lk}(uv,K) \) and \(|\text{lk}(v,K)| \cong S^{d-1} \), \(\text{lk}(v,K) \setminus \{ \alpha \in \text{lk}(v,K) : u \leq \alpha \} \) is a triangulated \((d-1)\)-ball, say \(D \), with boundary \(\text{lk}(uv,K) \).

Further, \(K' \cap \text{st}(v,K) = D \). Since \(|\text{lk}(v,K)| \cong S^{d-1} \), \(|\text{st}(v,K)| \cong D^d \). Therefore, \(|K'| \) is PL-homeomorphic to \(|K' \cup \text{st}(v,K)| \). Let \(K'' := K' \cup \text{st}(v,K) \). Then \(K = K'' \cup (u \ast \partial K'') \) and \(K_1 = K' \cup (w \ast \partial K) \). Since \(|K''| \) and \(|K'| \) are PL-homeomorphic, \(|K| \) and \(|K_1| \) are also PL-homeomorphic.

From [16, Lemma 10.8], we have the following result (see [6, Section 4] for more details):

Proposition 2.5 ([6, 16]). If \(K \) is a triangulated 3-manifold with \(g_2(K) \leq 9 \), then \(K \) is a triangulated 3-sphere, and is obtained from some boundary complexes of 4-simplices by a sequence of operations of types connected sums, bistellar 1-moves, edge contractions, and edge expansions.

Let \(K \) be a normal \(d \)-pseudomanifold and \(f : V(K) \rightarrow \mathbb{R}^{d+1} \) be a function. A stress of \(f \) is a function \(\omega : E(K) \rightarrow \mathbb{R} \) such that for every vertex \(v \in V \), \(\sum_{vu \in E(K)} \omega(vu)(f(v) - f(u)) = 0 \), where \(E(K) \) denotes the set of edges in \(K \). The set of all stresses of \(f \) is an \(\mathbb{R} \)-vector space, which we denote by \(\mathcal{S}(K) \). From [10], we know that if \(K \) is a normal \(d \)-pseudomanifold (or a cone over a normal \((d-1)\)-pseudomanifold) and \(f \) is a generic map from \(V \) to \(\mathbb{R}^{d+1} \), then \(\dim \mathcal{S}(K_f) = g_2(K) \). Using the fact that a stress \(\omega \) on a subcomplex of \(K \) can be extended to \(K \) by setting \(\omega(uv) = 0 \) for any \(uv \) not in the subcomplex, we have the following result (due to Kalai [10]):

Lemma 2.6 ([7, 10]). Let \(K \) be a normal 3-pseudomanifold and \(v \) be a vertex in \(K \). Then \(g_2(K) \geq g_2(\text{st}(v,K)) = g_2(\text{lk}(v,K)) \). Moreover, if \(u \) and \(v \) are two vertices in \(K \) such that \(\text{st}(u,K) \cap \text{st}(v,K) = \emptyset \), then \(g_2(K) \geq g_2(\text{st}(u,K)) + g_2(\text{st}(v,K)) = g_2(\text{lk}(u,K)) + g_2(\text{lk}(v,K)) \).

Let \(K \) be a pure simplicial complex and \(\sigma_1, \sigma_2 \) be two facets of \(K \). A bijection \(\psi : \sigma_1 \rightarrow \sigma_2 \) is said to be admissible (cf. [11]) if for any vertex \(x \leq \sigma_1 \), length of every path between \(x \) and \(\psi(x) \) is at least 3. In this contest, any bijective map between two facets from different connected components of \(K \) is admissible. Now if \(\psi \) is an admissible bijection between \(\sigma_1 \) and \(\sigma_2 \), by identifying all the faces \(\rho_1 \leq \sigma_1 \) with \(\psi(\rho_1) \) and removing the identified facets, we get a new complex, say \(K^\psi \). If \(\sigma_1 \) and \(\sigma_2 \) are from the same component of \(K \), then we say \(K^\psi \) is formed via a handle addition (cf. [7]) to \(K \). If \(\sigma_1 \) and \(\sigma_2 \) are from different components of \(K \), then we say \(K^\psi \) is formed via a connected sum (cf. [7]), and we write it as \(K^\psi = K_1 \#_\psi K_2 \), where
A straightforward computation shows that if \(K \) is a similar spirit, \(\psi \) formed by identifying \(\sigma \) the links will remain the same.

A missing triangle of \(K \) is a triangle \(\sigma \) such that \(\sigma \notin K \) but \(\partial(\sigma) \subset K \). Similarly, a missing tetrahedron of \(K \) is a tetrahedron \(\tau \) such that \(\tau \notin K \) but \(\partial(\tau) \subset K \).

Lemma 2.7 (\[7\]). Let \(K \) be a normal 3-dimensional pseudomanifold, and suppose \(\tau \) is a missing tetrahedron in \(K \). If for every vertex \(x \leq \tau \), the missing triangle formed by the other three vertices separates the link of \(x \), then \(K \) is formed using either a handle addition or a connected sum.

A straightforward computation shows that for a \(d \)-dimensional complex \(K \), a handle addition and a connected sum satisfy the following:

\[
g_2(K^\psi) = g_2(K) + \binom{d+2}{2}, \tag{1}
\]
\[
g_2(K_1 \#_\psi K_2) = g_2(K_1) + g_2(K_2). \tag{2}
\]

Lemma 2.8. Let \(K \) be a normal 3-pseudomanifold such that \(g_2(K) \leq g_2(\text{lk}(v, K)) + 9 \) for some vertex \(v \). Let \(\sigma \) be a missing tetrahedron in \(K \) such that for every vertex \(x \leq \sigma \), the missing triangle formed by the other three vertices separates the link of \(x \). Then \(K \) is formed using a connected sum.

Proof. By Lemma 2.7, \(K \) is formed using either a handle addition or a connected sum. If possible, let \(K \) be formed using a handle addition from \(K' \) through the admissible bijection \(\psi : \sigma_1 \to \sigma_2 \). Then the identified simplex \(\sigma \) (obtained by identifying \(\psi(\sigma_1) \) with \(\sigma_2 \)) is a missing tetrahedron. If \(v \notin \sigma \), then \(g_2(\text{lk}(v, K)) \leq g_2(\text{lk}(v, K')) \leq g_2(K') = g_2(K) - 10 \). This is a contradiction. If possible, let \(v \leq \sigma \) be obtained by identifying \(v_1 \leq \sigma_1 \) and \(v_2 \leq \sigma_2 \) in \(K' \). Then \(g_2(\text{lk}(v, K)) = g_2(\text{lk}(v_1, K')) + g_2(\text{lk}(v_2, K')) \). Since \(\psi \) is admissible, \(\text{st}(v_1, K') \) and \(\text{st}(v_2, K') \) are disjoint. Then it follows from Lemma 2.7 that \(g_2(K') \geq g_2(\text{lk}(v_1, K')) + g_2(\text{lk}(v_2, K')) \). Therefore, \(g_2(K') \geq g_2(\text{lk}(v, K)) \) and \(g_2(K) = g_2(K') + 10 \). This implies, \(g_2(K) \geq g_2(\text{lk}(v, K)) + 10 \), which is a contradiction. Therefore, \(K \) is formed using a connected sum. \(\Box \)

Handle addition and connected sum are standard parts of combinatorial topology, but the operation of folding was recently introduced in \[7\].

Definition 2.9 (Vertex folding \[7\]). Let \(\sigma_1 \) and \(\sigma_2 \) be two facets of a simplicial complex \(K \), whose intersection is a single vertex \(x \). A bijection \(\psi : \sigma_1 \to \sigma_2 \) is vertex folding admissible if \(\psi(x) = x \) and for all other vertices \(y \) of \(\sigma_1 \), the only path of length two from \(y \) to \(\psi(y) \) is \(P(y, x, \psi(y)) \). For a vertex folding admissible map \(\psi \), we can form the complex \(K_x^\psi \) by identifying all faces \(\rho_1 \leq \sigma_1 \) and \(\rho_2 \leq \sigma_2 \), such that \(\psi(\rho_1) = \rho_2 \), and then removing the facet formed by identifying \(\sigma_1 \) and \(\sigma_2 \). In this case, we say that \(K_x^\psi \) is a vertex folding of \(K \) at \(x \). In a similar spirit, \(K \) is a vertex unfolding of \(K_x^\psi \).

A straightforward computation shows that if \(K_x^\psi \) is obtained from a \(d \)-dimensional simplicial complex \(K \) by a vertex folding at \(x \), then

\[
g_2(K_x^\psi) = g_2(K) + \binom{d+1}{2}, \tag{3}
\]

The definition of edge folding follows the same pattern as vertex folding.
Definition 2.10 (Edge folding [7]). Let σ_1 and σ_2 be two facets of a simplicial complex K, whose intersection is an edge uv. A bijection $\psi: \sigma_1 \to \sigma_2$ is edge folding admissible if $\psi(u) = u, \psi(v) = v$, and for all other vertices y of σ_1, all paths of length two or less from y to $\psi(y)$ pass through either u or v. Identify all faces $\rho_1 \leq \sigma_1$ and $\rho_2 \leq \sigma_2$, such that $\psi: \rho_1 \to \rho_2$ is a bijection. The complex obtained by removing the facet resulting from identifying σ_1 and σ_2 is denoted by K_{uv}^{ψ} and is called an edge unfolding of K_{uv}.

If K is a normal d-pseudomanifold and K_{uv}^{ψ} is obtained from K by an edge folding at uv, then

$$g_2(K_{uv}^{\psi}) = g_2(K) + \binom{d}{2}. \tag{4}$$

Let $vabc$ be a missing tetrahedron in K. If $|\text{lk}(v,K)|$ is an orientable surface, then a small neighborhood of $|\partial(abc)|$ in $|\text{lk}(v,K)|$ is an annulus, and if $|\text{lk}(v,K)|$ is a non-orientable surface, then a small neighborhood of $|\partial(abc)|$ in $|\text{lk}(v,K)|$ is either an annulus or a Möbius strip.

Lemma 2.11 ([7]). Let K be a normal 3-pseudomanifold. Let $abcd$ be a missing tetrahedron in K such that (i) for $x \in \{b, c, d\}$, $\partial(K[a,b,c,d] \setminus \{x\})$ separates $\text{lk}(x,K)$, and (ii) $\partial(bcd)$ does not separate $\text{lk}(a,K)$. Then there exists K', a normal 3-pseudomanifold such that $K = (K')_{uv}^{\psi}$, i.e., K is obtained from a vertex folding at $a \in K'$, and $abcd$ is the image of the removed facet.

Lemma 2.12 ([7]). Let K be a normal 3-pseudomanifold. Let $abuv$ be a missing tetrahedron in K such that (i) for $x \in \{a, b\}$, $\partial(K[a,b,u,v] \setminus \{x\})$ separates $\text{lk}(x,K)$, and (ii) a small neighborhood of $|\partial(abu)|$ in $|\text{lk}(u,K)|$ is a Möbius strip. Then a small neighborhood of $|\partial(abu)|$ in $|\text{lk}(u,K)|$ is also a Möbius strip. Further, there exists K' a normal 3-pseudomanifold such that $K = (K')_{uv}^{\psi}$, i.e., K is obtained from an edge folding at $uv \in K'$, and $abuv$ is the removed facet.

3 Some lower bounds of g_2 for normal 3-pseudomanifolds with one or two singularities

In this section, we establish a few lower bounds of g_2 for a class of normal 3-pseudomanifolds with one or two singularities. Our general approaches are motivated by the idea used in [16].

Definition of \mathcal{R}: Let \mathcal{R} be the class of all normal 3-pseudomanifolds K such that K has one or two singularities and K satisfies the following two properties:

(i) If K contains the boundary complex of a 3-simplex as a subcomplex, then K contains the 3-simplex as well.

(ii) There is no normal 3-pseudomanifold K' such that K' is obtained from K by a combinatorial operation mentioned in Remark 2.3 and $g_2(K') < g_2(K)$.

Now we state a few lemmas, the proofs of which follow from [16] using Lemma 2.4.

Lemma 3.1 (Lemma 10.1, [16]). Let $K \in \mathcal{R}$, and uv be an edge in K. Then $d(uv) \geq 4$, i.e., $\text{lk}(v,\text{lk}(u))$ has at least four vertices.

Lemma 3.2 (Lemma 10.2, [16]). Let $K \in \mathcal{R}$, and uv be an edge in K, where v is a non-singular vertex. Then $\text{lk}(u) \cap \text{lk}(v) \setminus \text{lk}(uv) \neq \emptyset$.
Lemma 3.3 (Lemma 10.4, [16]). Let $K \in \mathcal{R}$, and u be a non-singular vertex in K. If $\text{lk}(u)$ contains the boundary complex of a 2-simplex σ as a subcomplex, then $\text{lk}(u)$ contains the 2-simplex σ as well. Thus, for every vertex $v \in \text{lk}(u)$, $\text{lk}(u) \setminus \{\alpha \in \text{lk}(u) : v \leq \alpha\}$ does not contain a diagonal edge.

Lemma 3.4 (Lemma 10.6, [16]). Let $K \in \mathcal{R}$, and t be a singular vertex in K. Let uv be an edge in K such that $uv \notin \text{lk}(t)$. If $z \in \text{lk}(u) \cap \text{lk}(v) \setminus \text{lk}(uv)$, then $zw \notin \text{lk}(u) \cap \text{lk}(v)$ for every non-singular vertex $w \in \text{lk}(uv)$.

Lemma 3.5. Let $K \in \mathcal{R}$, and uv be an edge in K, where v is a non-singular vertex. Then $\text{lk}(u) \cap \text{lk}(v) \setminus \text{lk}(uv)$ contains some vertices.

Proof. It follows from Lemma 3.2 that $\text{lk}(u) \cap \text{lk}(v) \setminus \text{lk}(uv) \neq \emptyset$. If possible, let $\text{lk}(u) \cap \text{lk}(v) \setminus \text{lk}(uv)$ contain an open edge (z, w), where $z, w \in \text{lk}(uv)$. Then $uvzw$ is a missing tetrahedron in K. This contradicts the fact that $K \in \mathcal{R}$. Thus the result follows.

By using Lemma 2.4 in the proof of Lemma 11.1 of [16], we have the following result:

Lemma 3.6. Let $K \in \mathcal{R}$, and t be a singular vertex in K. Let u be a non-singular vertex in $\text{lk}(t, K)$ such that $\text{lk}(t) \cap \text{lk}(u) \setminus \text{lk}(ut) = \{t_1, w\}$ or $\{w\}$, where $w \in \text{lk}(u) \cap \text{lk}(t) \setminus \text{lk}(ut)$ and $t_1 \in \text{lk}(ut)$ is a singular vertex. Then $d(tw), d(uw) \geq d(tu)$.

Lemma 3.7. If $K \in \mathcal{R}$, and K contains exactly one singular vertex t, then $d(t) \geq 8$.

Proof. The proof follows from the hypothesis of Lemma 3.5 and the possible triangulations of $\text{lk}(t)$ for $d(t) \leq 7$.

Lemma 3.8. Let $K \in \mathcal{R}$, and t, t_1 be two singular vertices in K. If $d(t) = 7$, then $d(tt_1) = 6$ and $d(t_1) \geq 8$; otherwise $d(t), d(t_1) \geq 8$.

Proof. If either $d(t)$ or $d(t_1)$ is 6, then it contradicts the hypothesis of Lemma 3.5. Therefore, $d(t), d(t_1) \geq 7$. If $d(t) = 7$, then $f_1(\text{lk}(t)) \geq 18$. Thus $d(ut) = 6$ for some vertex $u \in \text{lk}(t)$. If u is a non-singular vertex, then it contradicts the hypothesis of Lemma 3.5. If $d(tt_1) = 6$, then $\text{lk}(t) \cap \text{lk}(t_1) \setminus \text{lk}(tt_1)$ is either empty or an open edge. If it is an open edge, then K contains a missing tetrahedron, which contradicts the fact that $K \in \mathcal{R}$. Therefore, $\text{lk}(t) \cap \text{lk}(t_1) \setminus \text{lk}(tt_1) = \emptyset$. If $d(t_1) = 7$, then the boundary complex of $\text{st}(t) \cup \text{st}(t_1)$ is a triangulated surface with 6 vertices with the first Betti number more than 1. This is not possible. Therefore, $d(t_1) \geq 8$.

Let uv be an edge in K, where u is a non-singular vertex. Define $D_vu := \text{lk}(u) \setminus \{\alpha \in \text{lk}(u) : v \leq \alpha\}$. We say D_vu is of type $m(n)$ if $d(u) = m$ and $d(uv) = n$.

![Figure 1: All possible types of D_vu, where u is a non-singular vertex in K and $d(u) \leq 7$.](image)

Lemma 3.9. Let $K \in \mathcal{R}$, and uv be an edge in K, where u is a non-singular vertex. Suppose $\text{lk}(uv)$ contains at most one singular vertex.
(i) If $d(u) = 6$, then $d(v) \geq 9$.

(ii) If $d(u) = 7$ and D_vu is of type 7(5), then $d(v) \geq 11$.

(iii) If $d(u) = 7$ and D_vu is of type 7(4), then $d(v) \geq 8$.

Proof. (i) Let $d(u) = 6$. Then D_vu is of type 6(4). Suppose $V(lk(uv)) = \{p_1, p_2, p_3, p_4\}$. It follows from Lemma 3.3 that $lk(u) \cap lk(v) \setminus lk(uv)$ contains exactly one vertex, say w. Then $uwp \in K$ for $1 \leq i \leq 4$. If some non-singular vertex $p_i \in lk(uv) \cap lk(vw)$, then $uwpt, uwp, vwp, w \in K$. This implies $\partial(uvw) \subset lk(p_i)$. It follows from Lemma 3.3 that $uvw \in K$. This is a contradiction. Therefore, $lk(uv) \cap lk(vw)$ does not contain any non-singular vertex. Since $lk(uv)$ contains at most one singular vertex, $lk(vw)$ contains at least three more vertices other than the vertices of $lk(uv)$. Thus, $d(v) \geq 9$.

(ii) Let $d(u) = 7$ and D_vu be of type 7(5). Suppose $V(lk(uv)) = \{p_1, p_2, p_3, p_4, p_5\}$. Since $lk(u) \cap lk(v) \setminus lk(uv) \neq \emptyset$, it contains exactly one vertex, say w. Therefore $uwpt \in K$ for $1 \leq i \leq 5$. Since $w \in lk(v)$, it follows from Lemma 3.6 that $d(wv) \geq 5$. If possible, let there be a non-singular vertex $p_i \in lk(uv) \cap lk(vw)$. Then $\partial(uvw) \subset lk(p_i)$. It follows from Lemma 3.3 that $uvw \in K$, which is a contradiction. Therefore, $lk(uv) \cap lk(vw)$ does not contain any non-singular vertex. Since $lk(uv)$ contains at most one singular vertex, $lk(vw)$ contains at least four more vertices other than the vertices of $lk(uv)$. Thus, $d(v) \geq 11$.

(iii) Let $d(u) = 7$ and D_vu be of type 7(4) for some vertex $v \in lk(u)$. Then Lemma 3.3 implies that $lk(u) \cap lk(v) \setminus lk(uv)$ contains a vertex, say w. It follows from Figure 1 that $d(wv) = 4$ and w is connected to 3 vertices of $lk(uv)$. Let $V(lk(u)) = \{a, b, c, d, e, w, v\}$, $V(lk(uv)) = \{a, b, c, d\}$, and w be connected to the vertices a, b, c in $lk(uv)$. Since $lk(uv)$ contains at most one singular vertex, without loss of generality, let a be the singular vertex (if any). It follows from Lemma 3.3 that $b, c \not\in lk(uw) \cap lk(vw)$. Therefore, $lk(vw)$ contains at least 2 vertices other than the vertices of $lk(uv)$. Thus, $d(v) \geq 8$. □

Lemma 3.10. Let $K \in \mathcal{R}$, and uv be an edge in K, where u is a non-singular vertex.

(i) If $d(u) = 6$, then $d(v) \geq 8$.

(ii) If $d(u) = 7$ and D_vu is of type 7(5), then $d(v) \geq 10$.

Proof. The proof follows by the similar arguments as in the proof of Lemma 3.9. □

Definition 3.11. Let $K \in \mathcal{R}$. First, we fix a singular vertex t such that $d(t) \geq 8$ (cf. Lemmas 3.7 and 3.8) and $g_2(lk(t, K)) \geq g_2(lk(v, K))$ for any other vertex v in K. Let u be a vertex in K. Then for every vertex $v \in lk(u, K)$, define the weight $\lambda(u, v)$ of the vertex u with respect to v as follows:

\[
\lambda(u, v) = \begin{cases}
\frac{2}{3} & \text{if } d(u) = 6, \text{ and either } u \not\in st(t) \text{ or } v \not\in st(t), \\
\frac{4}{3} & \text{if } d(u) = 7, d(v, lk(u)) = 5, \text{ and either } u \not\in st(t) \text{ or } v \not\in st(t), \\
\frac{1}{2} & \text{if } d(u) = 7, d(v, lk(u)) = 4, \text{ and either } u \not\in st(t) \text{ or } v \not\in st(t), \\
\frac{1}{2} & \text{if } d(u) = 8, \text{ and either } u \not\in st(t) \text{ or } v \not\in st(t), \\
1 - \lambda(v, u) & \text{if } d(u) \geq 9, d(v) \leq 8, \text{ and either } u \not\in st(t) \text{ or } v \not\in st(t), \\
\frac{1}{2} & \text{otherwise.}
\end{cases}
\]
Then from Lemmas 3.8, 3.9 and 3.10 it follows that \(\lambda(u, v) + \lambda(v, u) = 1 \) for every edge \(uv \) of \(K \). For a vertex \(u \in K \), we define the weight of the vertex \(u \) as \(W_u := \sum_{v \in \text{lk}(u)} \lambda(u, v) \). For a vertex \(u \in \text{lk}(t) \), we define the outer weight of the vertex \(u \) as

\[
\mathcal{O}_u := \sum_{\substack{v \in \text{lk}(u) \\cap \text{lk}(t) \\setminus u \in \text{lk}(t) \}} \lambda(u, v).
\]

Lemma 3.12. Let \(K \in \mathcal{R} \), and \(t \) be the singular vertex in \(K \) as in Definition 3.11. If \(u \in K \setminus \text{st}(t, K) \), then \(W_u = \sum_{v \in \text{lk}(u)} \lambda(u, v) \geq 4 \).

Proof. If \(d(u) \leq 7 \), then it follows from Lemmas 3.7 and 3.8 that \(u \) is a non-singular vertex. If \(d(u) = 6 \), then for any vertex \(v \in \text{lk}(u) \), \(\lambda(u, v) = 2/3 \). Therefore, \(\sum_{v \in \text{lk}(u)} \lambda(u, v) = 6 \times 2/3 = 4 \). If \(d(u) = 7 \), then for any vertex \(v \in \text{lk}(u) \), \(D_v u \) is of type either \(7(5) \) or \(7(4) \). It follows from Figure 1 that in both cases, \(\text{lk}(u) \) contains five vertices whose \(D_v u \) is of type \(7(4) \) and two vertices for which \(D_v u \) is of type \(7(5) \). Therefore \(\sum_{v \in \text{lk}(u)} \lambda(u, v) = 5 \times 1/2 + 2 \times 3/4 = 4 \).

If \(d(u) = 8 \), then for every vertex \(v \in \text{lk}(u) \), \(\lambda(u, v) = 1/2 \). Therefore \(\sum_{v \in \text{lk}(u)} \lambda(u, v) = 4 \).

If \(d(u) = 9 \), then it follows from Lemma 3.9 that \(\text{lk}(u) \) contains no singular vertex \(v \) for which \(\lambda(u, v) = 1/4 \) holds. If possible, let \(v \) be the other singular vertex such that \(\lambda(u, v) = 1/4 \). Then \(d(v) = 7 \), \(d(uv) = 5 \) and \(t \in \text{lk}(v) \) such that \(d(ut) = 6 \). This implies \(t \in \text{lk}(u) \), a contradiction as \(u \notin \text{st}(t) \). If for every vertex \(v \in \text{lk}(u) \), \(\lambda(u, v) = 1/2 \), then we are done. Suppose there is a vertex \(v \in \text{lk}(u) \) such that \(\lambda(u, v) = 1/3 \), i.e., \(d(v) = 6 \). Let \(\text{lk}(v) = B_{u_1, u_2, u_3, u_4}(u, z) \). Then Lemma 3.5 implies that \(z \in \text{lk}(u) \). It follows from Lemma 3.10 that the five vertices \(u_1, u_2, u_3, u_4, z \in \text{lk}(u) \) have a degree of at least 8. Further, \(d(uz) \geq 4 \), and Lemma 3.4 suggests that one vertex from the set \(\{u_1, u_2, u_3, u_4\} \) must be a singular vertex; otherwise, \(d(uz) \geq 10 \). Let’s assume that \(u_1 \) is the singular vertex. Therefore, \(\text{lk}(u) \) forms a 4-cycle, denoted as \(C_4(u_1, z_1, z_2, z_3) \). As there are no two adjacent vertices in \(C_4(u_1, z_1, z_2, z_3) \) with a degree of 6, we conclude that at least one of the vertices \(z_1, z_2, \) or \(z_3 \) has a degree greater than or equal to 8. Hence, there are more than five vertices in \(\text{lk}(u) \) that contribute a value of \(1/2 \) to \(\lambda \). Consequently, we deduce that \(\sum_{v \in \text{lk}(u)} \lambda(u, v) \geq 4 \).

If \(d(u) = 10 \), then by the same arguments as above, we have at least five vertices in \(\text{lk}(u) \) that contribute a value of \(1/2 \) to \(\lambda \). Hence, \(\sum_{v \in \text{lk}(u)} \lambda(u, v) \geq 4 \).

Finally, consider \(d(u) \geq 11 \). If there exists a vertex \(v \in \text{lk}(u) \) such that \(\lambda(u, v) = 1/3 \) or \(1/4 \), then \(D_v u \) must be of the type \(6(4) \) or \(7(5) \), respectively. Using similar reasoning as above, we conclude that there are at least five vertices in \(\text{lk}(u) \) that contribute a value of \(1/2 \) to \(\lambda \). Therefore, \(\sum_{v \in \text{lk}(u)} \lambda(u, v) \geq 4 \). \(\square \)

Lemma 3.13. Let \(K \in \mathcal{R} \), and \(t \) be the singular vertex in \(K \) as in Definition 3.11. Then

\[
g_2(K) \geq g_2(\text{lk}(t)) + \sum_{u \in \text{lk}(t)} \mathcal{O}_u.
\]

Proof. We know that \(f_1(\text{st}(t)) = f_1(\text{lk}(t)) + f_0(\text{lk}(t)) = g_2(\text{lk}(t)) + 4f_0(\text{lk}(t)) - 6 = g_2(\text{lk}(t)) + 4f_0(\text{lk}(t)) - 6 \).
4f₀(st(t)) − 10. It follows from Lemma 3.12 that \(\sum_{u \in st(t)} \mathcal{W}_u \geq 4f₀(K \setminus st(t)) \). Thus

\[
\begin{align*}
f₁(K) &= f₁(st(t)) + f₁(K \setminus st(t)) \\
&= f₁(st(t)) + \sum_{uv \in (K \setminus st(t))} [λ(u, v) + λ(v, u)] \\
&= f₁(st(t)) + \sum_{u \in lk(t)} \sum_{v \in lk(u)} λ(u, v) + \sum_{u \notin st(t)} \sum_{v \in lk(u)} λ(u, v) \\
&= g₂(lk(t)) + 4f₀(st(t)) − 10 + \sum_{u \in lk(t)} \mathcal{O}_u + \sum_{u \notin st(t)} \mathcal{W}_u \\
&≥ g₂(lk(t)) + 4f₀(st(t)) − 10 + \sum_{u \in lk(t)} \mathcal{O}_u + 4f₀(K \setminus st(t)) \\
&= 4f₀(K) + g₂(lk(t)) − 10 + \sum_{u \in lk(t)} \mathcal{O}_u.
\end{align*}
\]

Therefore, \(g₂(K) \geq g₂(lk(t)) + \sum_{u \in lk(t)} \mathcal{O}_u \). This proves the result. \(\square \)

Lemma 3.14. Let \(K \in \mathcal{R} \), and \(t \) be the singular vertex in \(K \) as in Definition 3.11. Let \(u \in lk(t) \) be a non-singular vertex such that \(lk(u) = B_{u_1, \ldots, u_m}(t; z) \). If \(u_i \) is a non-singular vertex, for some \(i \in \{1, \ldots, m\} \), then \(zu_i \notin st(t) \).

Proof. If \(zu_i \in lk(t) \) for some non-singular vertex \(u_i \), then \(tzu_i \in K \). Further, \(zwu, u_i tu \in K \). Thus, \(\partial(tzu) \subset lk(u_i) \), and by Lemma 3.3, \(tzu \in K \). This is a contradiction as \(z \notin lk(tu) \). Therefore \(zu_i \notin lk(t) \). Since \(z, u_i \notin t \), we have \(zu_i \notin st(t) \). \(\square \)

Lemma 3.15. Let \(K \in \mathcal{R} \), and \(t \) be the singular vertex in \(K \) as in Definition 3.11. If \(u \) is a non-singular vertex in \(lk(t) \) with \(\mathcal{O}_u < 1 \), then \(lk(u) \cap lk(t) \setminus lk(ut) \) contains exactly one vertex, say \(z \). Moreover, if \(z \) is non-singular, then \(\mathcal{O}_u = 0.5 \) and \(lk(u) = B_{u_1, \ldots, u_m}(t; z) \).

Proof. It follows from Lemma 3.5 that there are some vertices in \(lk(u) \cap lk(t) \setminus lk(ut) \). Since \(\mathcal{O}_u < 1 \), there is only one such vertex, called \(z \).

Let \(lk(tu) = C_m(u_1, u_2, \ldots, u_m) \), for some \(u_1, \ldots, u_m \in lk(t) \). Then by Lemma 3.1, \(m \geq 4 \). Since \(lk(u) \cap lk(t) \setminus lk(tu) \) has only one vertex \(z \), \(\mathcal{O}_u \geq λ(u, z) = 0.5 \). If \(\mathcal{O}_u = 0.5 \), then \(lk(u) \setminus st(t, lk(u)) \) contains no vertex other than \(z \). Therefore, \(lk(u) = B_{u_1, \ldots, u_m}(t; z) \).

If \(0.5 < \mathcal{O}_u < 1 \), then \(\mathcal{B}_u \setminus st(t, lk(u)) \) contains exactly two vertices \(z \) and \(w \) such that \(λ(u, z) = 0.5 \) and \(0 < λ(u, w) < 0.5 \). This implies that \(w \notin st(t) \) and \(λ(u, w) = \frac{1}{2} \) or \(\frac{3}{4} \).

If \(λ(u, w) = \frac{1}{2} \), then \(lk(w) = B_{w_1, \ldots, w_q}(u; q) \) and if \(λ(u, w) = \frac{3}{4} \), then \(lk(w) = B_{w_1, \ldots, w_q}(u; q) \). Since \(lk(tu) = C_m(u_1, u_2, \ldots, u_m) \) and there are exactly two vertices \(z, w \in lk(u) \setminus st(t, lk(u)) \), we have \(d(uz) \leq m + 1 \).

Let \(z \) be a non-singular vertex and \(λ(u, w) = \frac{1}{2} \) while \(lk(w) = B_{w_1, w_2, \ldots, w_4}(u; q) \). It follows from Lemma 3.5 that \(q = u_k \) for some \(k \). Thus, \(u_kw \notin lk(u) \), and hence \(u_kz \in lk(u) \). Therefore, \(ukwz, uzw, u_kwz \in K \). Since \(\partial(uwu_k) \subset lk(z) \), by Lemma 3.3, \(uwu_k \in K \). But \(u_k \notin lk(uw) \). This is a contradiction. Thus, \(λ(u, w) \neq \frac{1}{2} \). By the same arguments, we can show that \(λ(u, w) \neq \frac{3}{4} \). Therefore, \(\mathcal{O}_u = 0.5 \) and \(lk(u) = B_{u_1, \ldots, u_m}(t; z) \), \(m \geq 4 \). \(\square \)

Lemma 3.16. Let \(K \in \mathcal{R} \), and \(t \) be the singular vertex in \(K \) as in Definition 3.11. Let \(u \in lk(t) \) be a non-singular vertex such that \(lk(u) = B_{u_1, \ldots, u_m}(t; z) \), where \(z \) is a non-singular vertex. If there is a vertex \(v \in lk(u, lk(t)) \) with \(lk(v) = B_{v_1, \ldots, v_k}(t; z_1) \), then \(z \neq z_1 \).
Proof. If \(|\text{lk}(z_1)| \not= S^2\), then clearly, \(z \neq z_1\). For \(|\text{lk}(z_1)| \cong S^2\), let \(z = z_1\), i.e., \(\text{lk}(u) = B_u, \ldots, u_m(t; z)\) and \(\text{lk}(v) = B_{v_1, \ldots, v_k(t; z)}\), where \(v \in \text{lk}(u, \text{lk}(t))\). Since \(vw\) is an edge in \(K\), it follows from Lemma 3.15 that \(\text{lk}(u) \cap \text{lk}(v) \setminus \text{lk}(uv)\) contains some vertices. Let \(w \in \text{lk}(u) \cap \text{lk}(v) \setminus \text{lk}(uv)\). Then \(uv \subseteq uvzw\), and \(uvz\) are in \(K\). This implies that \(\partial(uwv) \subset \text{lk}(z)\), but \(uwv \notin K\). This contradicts Lemma 3.3 and hence \(z \neq z_1\). □

Lemma 3.17. Let \(K \in \mathcal{R}\), and \(t\) be the singular vertex in \(K\) as in Definition 3.11. Then \(\sum_{v \in \text{lk}(t)} \mathcal{O}_v \geq f_0(\text{lk}(t)) - 1\). Moreover, if \(\text{lk}(t, K)\) does not contain the other singular vertex, then \(\sum_{v \in \text{lk}(t)} \mathcal{O}_v \geq f_0(\text{lk}(t))\).

Proof. If for all vertices \(v \in \text{lk}(t)\), \(\mathcal{O}_v \geq 1\) holds, then trivially \(\sum_{v \in \text{lk}(t)} \mathcal{O}_v \geq f_0(\text{lk}(t))\). We consider the case when some vertices have an outer weight of less than 1. Let \(p_1 \in \text{lk}(t)\) be a non-singular vertex such that \(\mathcal{O}_{p_1} < 1\). Then by Lemma 3.15, \(\text{lk}(p_1) \cap \text{lk}(t) \setminus \text{lk}(p_1 t)\) contains exactly one vertex, say \(z_1\). If \(z_1\) is non-singular, then \(\mathcal{O}_{p_1} = 0.5\) and \(\text{lk}(p_1) = B_{p_1, \ldots, p_1 m}(t; z_1)\).

Let \(S_1\) be the set of all non-singular vertices \(v \in \text{lk}(t)\) such that \(\mathcal{O}_v = 0.5\) and \(\text{lk}(v) = B_{v_1, \ldots, v_m(t; z_1)}\), where \(z_1\) is the non-singular vertex as above. Then it follows from Lemma 3.16 that \(p_1, \ldots, p_1 m \notin S_1\). Let \(S'_1 = \{p_1, p_1^2, p_1^3, p_1^4\}\). Then by Lemma 3.14, \(z_1 p_1^1 \notin \text{lk}(t)\) for at least three \(p_1^1\)’s of \(S'_1\). Therefore,

\[
\sum_{v \in S_1 \cup \{z_1\}} \mathcal{O}_v = \mathcal{O}_{z_1} + \sum_{v \in S_1} \mathcal{O}_v \\
\geq 1.5 + \sum_{v \in S_1} \lambda(z_1, v) + \sum_{v \in S_1} \mathcal{O}_v \\
= 1.5 + \text{card}(S_1) \quad \text{(since} \quad \lambda(z_1, v) \quad \text{and} \quad \mathcal{O}_v = 1)\).
\]

Suppose that there is another non-singular vertex \(p_2 \in \text{lk}(t) \setminus S_1\) such that \(\mathcal{O}_{p_2} = 0.5\) and \(\text{lk}(p_2) = B_{p_2^1, \ldots, p_2^m}(t; z_2)\), where \(z_2 \neq z_1\) is also a non-singular vertex. Let \(S_2\) be the set of all non-singular vertices \(v \in \text{lk}(t)\) such that \(\mathcal{O}_v = 0.5\) and \(\text{lk}(v) = B_{p_2, \ldots, p_2 m(t; z_2)}\), where \(z_2\) is the non-singular vertex as above. Then by Lemma 3.16, \(p_2^1, \ldots, p_2^m \notin S_2\). Let \(S'_2 = \{p_2^1, p_2^2, p_2^3, p_2^4\}\). From Lemma 3.14, \(z_2 p_2^1 \notin \text{lk}(t)\) for at least three \(p_2^1\)’s in \(S'_2\). By similar arguments as above, we have

\[
\sum_{v \in S_2 \cup \{z_2\}} \mathcal{O}_v \geq 1.5 + \text{card}(S_2).
\]

Further, by the assumptions on \(S_1\) and \(S_2\), we have \((S_1 \cup \{z_1\}) \cap (S_2 \cup \{z_2\}) = \emptyset\). Therefore, after a finite number of steps, say \(n\), we get a set \(\tilde{S} = (S_1 \cup \{z_1\}) \cup \cdots \cup (S_n \cup \{z_n\})\), where \(z_1, \ldots, z_n\) are non-singular vertices and \(\sum_{v \in \tilde{S}} \mathcal{O}_v \geq \text{card}(\tilde{S}) + n/2\).

Let \(t_1\) be an edge in \(K\), where \(t_1\) is the other singular vertex in \(K\). Then \(\tilde{S} \subset V(\text{lk}(t) \setminus t_1)\). Suppose that there is a non-singular vertex \(p_3 \in V(\text{lk}(t))\) such that \(0.5 \leq \mathcal{O}_{p_3} < 1\) and \(\text{lk}(p_3) \cap \text{lk}(t) \setminus \text{lk}(p_3 t)\) contains the vertex \(t_1\). Let \(P\) be the set of all non-singular vertices \(v \in \text{lk}(t)\) such that \(0.5 \leq \mathcal{O}_v < 1\) and \(\text{lk}(v) \cap \text{lk}(t) \setminus \text{lk}(vt)\) contains only \(t_1\). Then,

\[
\sum_{v \in P \cup \{t_1\}} \mathcal{O}_v = \mathcal{O}_{t_1} + \sum_{v \in P} \mathcal{O}_v \\
\geq \sum_{v \in P} \lambda(t_1, v) + \sum_{v \in P} \mathcal{O}_v \\
\geq \text{card}(P) \quad \text{(since} \quad \lambda(t_1, v) \quad \text{and} \quad \mathcal{O}_v \geq 1)\).
\]

From our constructions of \(\tilde{S}\) and \(P\), it is clear that \(\tilde{S} \cap (P \cup \{t_1\}) = \emptyset\). Further, \(v \notin P\).
Let \(\tilde{S} \cup (P \cup \{ t_1 \}) \) implies \(O_v \geq 1 \). Thus,

\[
\sum_{v \in \text{lk}(t)} O_v = \sum_{v \in \tilde{S}} O_v + \sum_{v \in P \cup \{ t_1 \}} O_v + \sum_{v \in V(\text{lk}(t)) \setminus (\tilde{S} \cup (P \cup \{ t_1 \}))} O_v \\
\geq \text{card}(\tilde{S}) + n/2 + \text{card}(P) + f_0(\text{lk}(t)) - \text{card}(\tilde{S} \cup (P \cup \{ t_1 \})) \\
= \text{card}(\tilde{S}) + n/2 + \text{card}(P) + f_0(\text{lk}(t)) - \text{card}(\tilde{S}) - \text{card}(P) - 1 \\
= f_0(\text{lk}(t)) + n/2 - 1 \\
\geq f_0(\text{lk}(t)) - 1.
\]

If \(tt_1 \) is not an edge in \(K \) then \(P \) becomes empty, and \(v \notin \tilde{S} \) implies \(O_v \geq 1 \). Thus,

\[
\sum_{v \in \text{lk}(t)} O_v = \sum_{v \in \tilde{S}} O_v + \sum_{v \in V(\text{lk}(t)) \setminus \tilde{S}} O_v \\
\geq \text{card}(\tilde{S}) + n/2 + f_0(\text{lk}(t)) - \text{card}(\tilde{S}) \\
\geq f_0(\text{lk}(t)).
\]

This proves the result. \(\square \)

Lemma 3.18. Let \(K \in \mathcal{R} \), and \(t \) be the singular vertex in \(K \) as in Definition 3.11. Let \(u \in \text{lk}(t,K) \) be a non-singular vertex such that \(O_u = 0.5 \) and \(\text{lk}(u, \text{lk}(t)) = C_m(u_1, \ldots, u_m) \), for some \(m \geq 4 \). Then \(f_0(\text{lk}(t)) \geq 2m + 1 \).

Proof. Since \(O_u = 0.5 \), \(\text{lk}(u) \setminus \text{st}(t, \text{lk}(u)) \) contains exactly one vertex, say \(z \). Then \(\text{lk}(u) \cap \text{lk}(t) \setminus \text{lk}(tu) = \{z\} \) or \((u, z) \) for some singular vertex \(w \in \text{lk}(ut) \). It follows from Lemma 3.6 that \(d(tz), d(uz) \geq m \). Then \(utz \in \text{lk}(u) \), i.e., \(uu_iz \in K \) for \(1 \leq i \leq m \). If \(u_i \in \text{lk}(tz) \cap \text{lk}(tu) \) is a non-singular vertex, then \(u_iz, uz \in K \). Since \(u_iz \mu \in K \), \(\partial(uz) \subset \text{lk}(ut) \). This implies \(u_iz \mu \in K \) and hence \(z \notin \text{lk}(tu) \), which is not possible. Thus, \(u_iz \notin \text{lk}(t) \) for each non-singular vertex \(u_i \). Therefore, \(f_0(\text{lk}(t,K)) \geq f_0(\text{lk}(tu)) - 1 + f_0(\text{lk}(tz)) + \text{card}(\{u\}) + \text{card}(\{z\}) = 2m + 1 \). \(\square \)

Lemma 3.19. Let \(K \in \mathcal{R} \), and \(t \) be the singular vertex in \(K \) as in Definition 3.11. Let \(u \in \text{lk}(t,K) \) be a non-singular vertex such that \(4 \leq d(ut) \leq 5 \). Then either \(O_u = 0.5 \) or \(O_u \geq 1 \).

Proof. It follows from Lemma 3.5 that \(O_u \geq 0.5 \). If possible, let \(0.5 < O_u < 1 \). Then \(\text{lk}(u) \cap \text{lk}(t) \setminus \text{lk}(ut) \) contains exactly one vertex, say \(z \), and \(\text{lk}(u, K) \setminus \text{st}(t, \text{lk}(u)) \) contains exactly one vertex, say \(w \notin \text{lk}(t,K) \), other than \(z \). Then \(d(ut) \leq 8 \) and \(\lambda(ut) \leq 0.5 \). Then \(\lambda(w,u) > 0.5 \), and Lemma 3.9 implies that \(d(u) \geq 9 \). This is a contradiction. Thus, the result follows. \(\square \)

Lemma 3.20. Let \(K \in \mathcal{R} \), and \(t \) be the singular vertex in \(K \) as in Definition 3.11 such that \(f_0(\text{lk}(t)) \leq 10 \). Let \(u \in \text{lk}(t,K) \) be a non-singular vertex such that \(5 \leq d(ut) \leq 6 \). Then \(O_u \geq 1 \).

Proof. If \(\text{lk}(u) \cap \text{lk}(t) \setminus \text{lk}(ut) \) contains two or more vertices, then the result follows. Suppose \(\text{lk}(u) \cap \text{lk}(t) \setminus \text{lk}(ut) \) contains exactly one vertex, say \(z \). Then Lemma 3.6 implies that \(d(uz), d(tz) \geq d(ut) \). If \(d(ut) = 6 \), then \(\text{lk}(u) \) contains at least two vertices other than \(z \) and the vertices of \(\text{lk}(ut) \). Thus \(O_u \geq 1 \). If \(d(ut) = 5 \), then the result follows from Lemmas 3.18 and 3.19. \(\square \)

Lemma 3.21. Let \(K \in \mathcal{R} \), and \(t \) be the singular vertex in \(K \) as in Definition 3.11 such that \(f_0(\text{lk}(t)) \leq 10 \). Let \(u \in \text{lk}(t) \) be a non-singular vertex such that \(d(ut) = 4 \). Then either \(O_u \geq 1 \) or \(O_u = 0.5 \) and there exists a vertex \(z \in \text{lk}(t) \) such that \(O_z \geq 2 \).
Proof. If \(\text{lk} (u) \setminus \text{st} (t, \text{lk} (u)) \) contains more than two vertices, then the result follows. If \(\text{lk} (u) \setminus \text{st} (t, \text{lk} (u)) \) has two vertices, then \(D_1 u \) must be of type \(7(4) \), and the outer weight is 0.5 for both the vertices of \(\text{lk} (u) \setminus \text{st} (t, \text{lk} (u)) \). Therefore, \(\mathcal{O}_u = 1 \). If \(\text{lk} (u) \setminus \text{st} (t, \text{lk} (u)) \) has exactly one vertex, say \(z \), then \(\mathcal{O}_u = 0.5 \) and from Lemma 3.18 \(f_0 (\text{lk} (t)) \geq 9 \). It follows from Lemma 3.22 that \(\text{lk} (uz) \cap \text{lk} (tz) \) does not contain any non-singular vertex. Thus, \(d (tz) = 4 \) and \(\text{lk} (z) \cap \text{lk} (t) \setminus \text{lk} (tz) \) contains at least 4 vertices, and therefore \(\mathcal{O}_z \geq 2 \).

Lemma 3.22. Let \(K \in \mathcal{R} \), and \(t \) be the singular vertex in \(K \) as in Definition 3.11. Let \(u \in \text{lk} (t) \) be a non-singular vertex such that \(\mathcal{O}_u = 1 \) and \(d (ut) = n \), where \(4 \leq n \leq 6 \). Then there is a vertex \(z \in \text{lk} (t) \) such that \(\mathcal{O}_z \geq 1.5 \) for \(n = 4 \), and \(\mathcal{O}_z \geq 2 \) for \(n = 5, 6 \).

Proof. It follows from Lemma 3.15 that \(\text{lk} (u) \cap \text{lk} (t) \setminus \text{lk} (ut) \) contains some vertices. If \(\text{lk} (u) \setminus \text{st} (t, \text{lk} (u)) \) contains more than three vertices, then \(\mathcal{O}_u > 1 \), which is a contradiction. If \(\text{lk} (u) \setminus \text{st} (t, \text{lk} (u)) \) contains exactly three vertices, then \(\mathcal{O}_u = 1 \) implies that (i) \(\text{lk} (u) \cap \text{lk} (t) \setminus \text{lk}(ut) \) contains exactly one vertex, say \(z \), and (ii) other two vertices, say \(p, q \in \text{lk} (u) \) but \(p, q \notin \text{lk} (t) \), and \(\lambda (u, p) = \lambda (u, q) = 0.25 \). Further, \(d (u) \leq 10 \). However, \(\lambda (u, p) = 0.25 \), and \(\text{lk} (up) \) contains at most one singular vertex implying \(d (u) \geq 11 \) (cf. Lemma 3.9 (ii)), which is a contradiction.

Therefore, \(\text{lk} (u) \setminus \text{st} (t, \text{lk} (u)) \) contains exactly two vertices, say \(z \) and \(w \). It follows from Lemma 3.15 that \(\text{lk} (u) \cap \text{lk} (t) \setminus \text{lk}(ut) \) contains either both \(z \) and \(w \) or exactly one vertex, say \(z \).

Case 1: Let \(\text{lk} (u) \cap \text{lk} (t) \setminus \text{lk}(ut) \) contain only \(z \). It follows from Lemma 3.16 that \(d (uz) \geq d (tu) = n \). Therefore, \(z \) is connected with \(n - 1 \) vertices, say \(x_1, x_2, \ldots, x_{n-1} \), of \(\text{lk} (ut) \) in \(D_1 u \). Since \(\text{lk} (ut) \) can have at most one singular vertex, at least \(n - 2 \) vertices from \(x_1, x_2, \ldots, x_{n-1} \) are non-singular. Let \(x_1, x_2, \ldots, x_{n-2} \) be non-singular vertices. Then the edges \(zx_1, zx_2, \ldots, zx_{n-2}, zu \) are not in \(\text{lk} (t) \). Therefore, \(\mathcal{O}_z \geq \frac{n}{4} \).

Case 2: Let \(\text{lk} (u) \cap \text{lk} (t) \setminus \text{lk}(ut) \) contain both \(z \) and \(w \). For \(n = 4 \), both \(z \) and \(w \) are connected with precisely three vertices of \(\text{lk} (ut) \) in \(D_1 u \). By the same arguments as in Case 1, we get \(\mathcal{O}_z \geq 1.5 \). For \(n = 5, 6 \), one vertex, say \(z \), is connected with at least four vertices of \(\text{lk} (ut) \) in \(D_1 u \). Therefore, by similar arguments as in Case 1, we get \(\mathcal{O}_z \geq 2 \).

Lemma 3.23. Let \(K \in \mathcal{R} \), and \(t \) be the singular vertex in \(K \) as in Definition 3.11. Let \(u \in \text{lk} (t) \) be a non-singular vertex such that \(\text{lk} (ut) \) is a \((n - 2) \)-cycle and \(f_0 (\text{lk} (t)) = n \). Then \(\mathcal{O}_u \geq \left\lceil \frac{n}{2} \right\rceil \times 0.5 + \left\lceil \frac{n}{2} \right\rceil \times 0.25 + 0.5 \).

Proof. It follows from Lemma 3.15 that \(\text{lk} (u) \cap \text{lk} (t) \setminus \text{lk}(ut) \) contains exactly one vertex, say \(z \). Then Lemma 3.16 implies that \(d (tz), d (uz) \geq d (tu) = n - 2 \). Therefore, \(d (tz) = n - 2 \). Let \(\text{lk} (uz) = C_m (z_1, z_2, \ldots, z_m) \), for some \(m \geq n - 2 \). It follows from Lemma 3.13 that \(\text{lk} (uz) \cap \text{lk} (tu) \) does not contain any non-singular vertices. Since \(K \) has at most two singularities, \(\text{lk} (uz) \) contains at most one singular vertex, say \(z_m \) (if it exists), and hence \(\mathcal{O}_u \geq \lambda (u, z) + \sum_{i=1}^{m-1} \lambda (u, z_i) \). If \(\lambda (u, z_i) = 0.25 \), then \(f_0 (\text{lk} (z_i)) = 7 \), and hence \(f_0 (\text{lk} (z_{i+1})) \) and \(f_0 (\text{lk} (z_{i+1})) \) must be bigger than 8. Therefore \(\lambda (u, z_{i-1}) = \lambda (u, z_{i+1}) = 0.5 \) (here the summation in subscripts is modulo \(m \)). Therefore \(\mathcal{O}_u \geq \left\lceil \frac{m}{2} \right\rceil \times 0.5 + \left\lceil \frac{m}{2} \right\rceil \times 0.25 + 0.5 \).

Lemma 3.24. Let \(K \in \mathcal{R} \), and \(t \) be the singular vertex in \(K \) as in Definition 3.11. Let \(u \in \text{lk} (t) \) be a non-singular vertex such that \(\text{lk} (ut) \) is a \((n - 3) \)-cycle and \(f_0 (\text{lk} (t)) = n \), \(8 \leq n \leq 10 \). Then \(\mathcal{O}_u \geq 1.33 \) for \(n = 8, 9 \) and \(\mathcal{O}_u \geq 1.25 \) for \(n = 10 \).

Proof. It follows from Lemma 3.15 that \(\text{lk} (u) \cap \text{lk} (t) \setminus \text{lk}(ut) \) contains at most two vertices.

Case 1: Let \(\text{lk} (u) \cap \text{lk} (t) \setminus \text{lk}(tu) \) contains \(\{ z \} \) or \(\{ y, z \} \) for some singular vertex \(y \in \text{lk} (tu) \). Then by Lemma 3.16 \(d (tz), d (uz) \geq d (tu) = n - 3 \). Since \(f_0 (\text{lk} (ut)) = f_0 (\text{lk} (t)) - 3 \), \(\text{lk} (t) \setminus \text{st} (u, \text{lk} (t)) \)
contains exactly two vertices, and one of them is \(z \). Therefore, at least \(n - 4 \) vertices of \(\text{lk}(ut) \) are joined with \(z \) in \(\text{lk}(t) \) and at least \(n - 5 \) of them are non-singular. If one of those \(n - 5 \) non-singular vertices is joined with \(z \) in \(\text{lk}(u) \), then this contradicts the hypothesis of the Lemma \[\ref{lem:4.3}\]. Therefore, \(\text{lk}(u) \) contains at least \(n - 5 \) vertices other than \(z \) and the vertices of \(\text{lk}(tu) \). Let \(z_1, z_2, \ldots, z_m \) be the vertices in \(\text{lk}(u) \), where \(m \geq n - 5 \). Therefore, \(O_u \geq \lambda(u, z) + \sum_{i=1}^{m} \lambda(u, z_i) \geq 0.5 + \sum_{i=1}^{n-5} \lambda(u, z_i) \geq 1.5, 1.75 \) for \(n = 9, 10 \), respectively.

For \(n = 8 \), \(f_0(\text{lk}(ut)) = 5 \) and \(\text{lk}(u) \) contains at least 3 vertices other than \(z \) and the vertices of \(\text{lk}(ut) \). Therefore, \(d(u) \geq 10 \). If \(d(u) = 10 \), then \(\text{lk}(u) \) contains exactly 3 vertices, say \(z_1, z_2, \) and \(z_3 \) other than vertices of \(\text{lk}(ut) \), where \(z_1, z_2, z_3 \notin \text{lk}(t) \). Then from Lemma \[\ref{lem:3.9}\] \(\lambda(u, z_i) \geq 1/3 \). Thus, \(O_u \geq 1.5 \). If \(d(u) \geq 11 \), then \(\text{lk}(u) \) contains at least 4 vertices other than \(z \) and the vertices of \(\text{lk}(ut) \), and hence \(O_u \geq 1.5 \).

Case 2: Let \(\text{lk}(u) \cap \text{lk}(t) \setminus \text{lk}(tu) \) contain exactly two vertices, say \(z \) and \(w \). We claim that \(\text{lk}(u) \setminus \text{st}(t, \text{lk}(u)) \) contains at least three vertices (i.e., one extra vertex other than \(z \) and \(w \)). If possible, let \(\text{lk}(u) \setminus \text{st}(t, \text{lk}(u)) \) have exactly two vertices \(z, w \). Since \(D_tu \) does not contain any diagonal (cf. Lemma \[\ref{lem:3.3}\]) and \(D_tu \) is a triangulated disc, \(zw \) must be an edge, and each vertex in \(\text{lk}(tu) \) is joined with either \(z \) or \(w \) (or both) in \(\text{lk}(u) \). Let \(\text{lk}(zw, \text{lk}(u)) = \{p, q\} \). Then \(p, q \in \text{lk}(tu) \) and \(p, q \) are joined with both \(z \) and \(w \).

If possible, let \(zw \notin \text{lk}(t) \). If \(p \) (respectively \(q \)) is non-singular, then it follows from Lemma \[\ref{lem:3.4}\] that \(p \) (respectively \(q \)) is not joined with \(z \) and \(w \) in \(\text{lk}(t) \). Further, Lemma \[\ref{lem:3.4}\] implies that a non-singular vertex in \(\text{lk}(tu) \), which is joined with \(z \) (respectively \(w \)) in \(\text{lk}(u) \), is not joined with \(z \) (respectively \(w \)) in \(\text{lk}(t) \). Therefore, a non-singular vertex \(v(\neq p, q) \in \text{lk}(tu) \) is joined with at most one of \(z \) and \(w \) in \(\text{lk}(t) \). Since \(V(\text{lk}(t)) = \{z, w, u\} \cup V(\text{lk}(tu)) \) and \(\text{lk}(t) \) contains at most one singular vertex, we have \(d(tz) + d(tw) \leq n - 3 \). If \(n \leq 10 \), then \(d(tz) + d(tw) \leq 7 \), which contradicts the hypothesis of Lemma \[\ref{lem:3.1}\]. Therefore, \(zw \) must be an edge in \(\text{lk}(t) \).

Let \(\text{lk}(zw, \text{lk}(t)) = \{r, s\} \). Then \(rz, rw, sz, \) and \(sw \) are edges in \(\text{lk}(t) \). Since \(V(\text{lk}(t)) = \{z, w, u\} \cup V(\text{lk}(tu)) \) and \(\text{lk}(t) \) contains at most one singular vertex, without loss of generality, we assume that \(r \in \text{lk}(tu) \) is a non-singular vertex. Since \(r \in \text{lk}(tu) \), \(r \) is joined with either \(z \) or \(w \) in \(\text{lk}(u) \). This contradicts the hypothesis of the Lemma \[\ref{lem:3.4}\].

Therefore, \(\text{lk}(u) \setminus \text{st}(t, \text{lk}(u)) \) has at least three vertices. Let \(x \) be the third vertex. If \(\text{lk}(u) \setminus \text{st}(t, \text{lk}(u)) \) has exactly three vertices, then \(d(u) = 1 + n - 3 + 3 = n + 1 \). Therefore, \(\lambda(u, x) \geq 0.33 \) for \(n = 8, 9 \), and \(\lambda(u, x) \geq 0.25 \) for \(n = 10 \). Thus, \(O_u \geq \lambda(u, z) + \lambda(u, w) + \lambda(u, x) \geq 1.33 \) for \(n = 8, 9 \), and \(O_u \geq 1.25 \) for \(n = 10 \). If \(\text{lk}(u) \setminus \text{st}(t, \text{lk}(u)) \) has more than three vertices, then \(O_u \geq 1.5 \).

4 Normal 3-pseudomanifolds with exactly one singularity

In this section we consider normal 3-pseudomanifolds with exactly one singularity. Let us denote \(\mathcal{R}_1 = \{K \in \mathcal{R} : K \text{ has exactly one singularity}\} \). Let \(K \in \mathcal{R}_1 \) and \(t \) be the singular vertex in \(K \). Then \(\text{lk}(t, K) \) is either a connected sum of tori or a connected sum of Klein bottles. In short, we say that \(|\text{lk}(t, K)| \) is a closed connected surface with \(h \) number of handles, for \(h \geq 1 \). For \(m \geq 4 \), let \(x_m \) be the number of vertices in \(\text{lk}(t, K) \) with degree \(m \) in \(\text{lk}(t, K) \).

Lemma 4.1. Let \(K \in \mathcal{R}_1 \), and \(t \) be the singular vertex in \(K \). Then \(\sum_{v \in \text{lk}(t)} O_v \geq 10 \).

Proof. It follows from Lemma \[\ref{lem:3.7}\] that \(f_0(\text{lk}(t, K)) \geq 8 \). First, let us assume \(f_0(\text{lk}(t, K)) = 8 \). It follows from Lemma \[\ref{lem:3.5}\] that \(x_m = 0 \) for \(m = 7 \). Let \(u \in \text{lk}(t, K) \) be any non-singular vertex such that \(d(ut) = 4 \). It follows from Lemmas \[\ref{lem:4.18}\] and \[\ref{lem:3.19}\] that \(O_u \geq 1 \). Further, Lemmas \[\ref{lem:3.23}\] and \[\ref{lem:3.24}\] imply \(\sum_{v \in \text{lk}(t)} O_v \geq x_4 + 1.33x_5 + 2.375x_6 \), where \(x_4 + x_5 + x_6 = 8 \) and \(4x_4 + 5x_5 + 6x_6 = 48 \). Thus, by solving the L.P.P., \(\sum_{v \in \text{lk}(t)} O_v \geq 19 \).
Now, we assume that $f_0(\text{lk}(t, K)) = 9$. It follows from Lemma 3.2 that $x_m = 0$ for $m = 8$. Let $u \in \text{lk}(t, K)$ be any non-singular vertex such that $d(ut) = 4$. It follows from Lemma 3.10 that either $O_u = 0.5$ or $O_u \geq 1$. If $d(ut) = 4$ and $O_u = 0.5$, then by Lemma 3.5 \(\text{lk}(t) \cap \text{lk}(u) - \text{lk}(tu) \) contains exactly one vertex, say z. From Lemma 3.1 we get $d(tz), d(uz) \geq 4$. Since $\text{lk}(t, K)$ does not contain any singular vertex, by Lemma 3.4 \(\text{lk}(tz, K) \cap \text{lk}(tu, K) = \emptyset \). This implies, $f_0(\text{lk}(t, K)) \geq 10$. This is a contradiction. Therefore, $O_u \geq 1$. It follows from Lemmas 3.2, 3.3, and 3.4 that \(\sum_{v \in \text{lk}(t)} O_v \geq x_4 + x_5 + 1.33x_6 + 2.75x_7 \), where $x_4 + x_5 + x_6 + x_7 = 9$ and $4x_4 + 5x_5 + 6x_6 + 7x_7 = 54$. Thus, by solving the L.P.P., we get \(\sum_{v \in \text{lk}(t)} O_v \geq 11.97 \).

If $f_0(\text{lk}(t, K)) \geq 10$, then from Lemma 3.17 we have \(\sum_{v \in \text{lk}(t)} O_v \geq f_0(\text{lk}(t, K)) \geq 10 \). This proves the result. \(\square \)

Remark 4.2. Let $K \in \mathcal{R}_1$, and t be the singular vertex in K. Then the lower bound for \(\sum_{v \in \text{lk}(t)} O_v \) can be easily improved from 10. However, we did not move in that direction, as the lower bound 10 serves all of our purposes.

Theorem 4.3. If $K \in \mathcal{R}_1$, then $g_2(K) \geq g_2(\text{lk}(v, K)) + 10$ for every vertex $v \in K$.

Proof. Let t be the singular vertex in K. It follows from Lemma 4.1 that \(\sum_{v \in \text{lk}(t)} O_u \geq 10 \). Since $g_2(\text{lk}(t, K)) \geq g_2(\text{lk}(v, K))$ for any vertex v in K, the result follows from Lemma 3.13. \(\square \)

Theorem 4.4. Let K be a normal 3-pseudomanifold with exactly one singularity at t such that \(|\text{lk}(t, K)| \) is a connected sum of n copies of tori or Klein bottles for some positive integer n. Then $g_2(K) \leq 9 + 6n$ implies K is obtained from some boundary complexes of 4-simplices by a sequence of operations of types connected sums, bistellar 1-moves, edge contractions, edge expansions, and vertex foldings. More precisely, the sequence of operations includes exactly n vertex foldings and a finite number of remaining operations.

Proof. Let Δ be a normal 3-pseudomanifold with exactly one singularity at t such that \(|\text{lk}(t, \Delta)| \) is a connected sum of m copies of tori or Klein bottles for some positive integer m. Then $g_2(\text{lk}(t, K)) = 6m$. Let $g_2(\Delta) \leq 9 + 6m$. We have the following observation:

Observation 1: Let \(\Delta \) (may be Δ itself) be a normal 3-pseudomanifold obtained from Δ by the repeated applications of combinatorial operations mentioned in Remark 2.3 such that there is no normal 3-pseudomanifold Δ' that is obtained from Δ by a combinatorial operation mentioned in Remark 2.3 and $g_2(\Delta') < g_2(\Delta)$. If Δ has no missing tetrahedron, then $\Delta \in \mathcal{R}_1$ and hence by Theorem 4.3 $g_2(\Delta) \geq 6m + 10$. Thus, $g_2(\Delta) \geq g_2(\Delta) \geq 6m + 10$. This contradicts the given condition. Therefore, Δ must have a missing tetrahedron.

There can be four types of missing tetrahedra in Δ:

Type 1: Let σ be a missing tetrahedron in Δ such that t is not a vertex of σ.

Type 2: Let σ be a missing tetrahedron in Δ such that $t \leq \sigma$ and $\text{lk}(t, \Delta)$ is separated into two portions by the missing triangle formed by the other three vertices of σ, where one portion is a disc.

Type 3: Let σ be a missing tetrahedron in Δ such that $t \leq \sigma$ and $\text{lk}(t, \Delta)$ is not separated into two portions by the missing triangle formed by the other three vertices of σ.

Type 4: Let σ be a missing tetrahedron in Δ such that $t \leq \sigma$ and $\text{lk}(t, \Delta)$ is separated into two portions by the missing triangle formed by the other three vertices of σ, where no portions are triangulated discs.
Now, we are ready to prove our result. Let \(K \) be a normal 3-pseudomanifold with exactly one singularity at \(t \) such that \(|\text{lk} (t, K)| \) is a connected sum of \(n \) copies of tori or Klein bottles and \(g_2(K) \leq 9 + 6n \) for some positive integer \(n \). We use the principle of mathematical induction on \(n \). If a normal 3-pseudomanifold \(\Delta \) has no singular vertices and \(g_2(\Delta) \leq 9 \), then we can assume \(K = \Delta, n = 0, \) and \(t \) is any vertex of \(\Delta \). By Proposition 2.2, we can say that the result is true for \(n = 0 \). Let us assume that the result is true for \(0, 1, \ldots, n - 1 \), and let \(\Delta \) be the normal 3-pseudomanifold that corresponds to \(n \).

Step 1: Let \(\Delta \) be a normal 3-pseudomanifold obtained from \(K \) by repeated applications of the combinatorial operations mentioned in Remark 2.3 such that there is no normal 3-pseudomanifold \(\Delta' \) that is obtained from \(\Delta \) by a combinatorial operation mentioned in Remark 2.3 and \(g_2(\Delta') < g_2(\Delta) \). Then by Observation 1, we get \(\Delta \) must have a missing tetrahedron.

Step 2: Let \(\Delta \) have a missing tetrahedron of Type 1 or 2. Then it follows from Lemma 2.5 that \(\Delta \) is formed using a connected sum of Type 1 and Type 2. Let \(t \in \Delta_1 \) (in case of Type 2, we take \(t \) as a vertex in \(\Delta_1 \) such that \(|\text{lk} (t, \Delta_1)| \) is a connected sum of \(n \) number of handles). Then \(g_2(\Delta_1) \geq g_2(\text{lk}(t, \Delta_1)) \geq 6n \). Therefore \(g_2(\Delta_2) = g_2(\Delta) - g_2(\Delta_1) \leq 9 \). Thus, after a finite number of steps, we have \(\Delta = \Delta_1 \# \Delta_2 \# \cdots \# \Delta_n \), where \((i) \ t \in \Delta_1 \) and \(|\text{lk} (t, \Delta_1)| \) is a connected sum of \(n \) copies of tori or Klein bottles, \((ii) \ \Delta_1 \) has no missing tetrahedron of Type 1 or 2, \((iii) \ 6n \leq g_2(\Delta_1) \leq 6n + 9 \), and \((iv) \) for \(2 \leq i \leq n, \ \Delta_i \) has no singular vertices, and \(g_2(\Delta_i) \leq 9 \). Thus, by Proposition 2.5 we have, for \(2 \leq i \leq n, \ \Delta_i \) is a triangulated 3-sphere and is obtained from some boundary complexes of 4-simplices by a sequence of operations of types connected sums, bistellar 1-moves, edge contractions, and edge expansions. If there is no normal 3-pseudomanifold \(\Delta'_1 \), which is obtained from \(\Delta_1 \) by a combinatorial operation mentioned in Remark 2.3 and \(g_2(\Delta'_1) < g_2(\Delta_1) \), then by Observation 1, \(\Delta_1 \) has a missing tetrahedron of Type 3 or 4, and we move to Step 3 or 4, respectively. Otherwise, we move to Step 1 and replace \(K \) with \(\Delta_1 \). Since \(K \) has a finite number of vertices and \(g_2(K) \) is also finite, after a finite number of steps, we must move to either Step 3 or Step 4.

Step 3: Let \(\Delta_1 \) have a missing tetrahedron of Type 3. It follows from Lemma 2.11 that \(\Delta_1 \) is formed using a vertex folding from a normal 3-pseudomanifold \(\Delta'_1 \) at \(t \in \Delta'_1 \) and \(g_2(\Delta'_1) = g_2(\Delta_1) - 6 \). Here \(\text{lk} (t, \Delta'_1) \) is a connected sum of \(n - 1 \) copies of tori or Klein bottle and \(g_2(\Delta'_1) \leq 9 + 6(n - 1) \). Now, the result follows by the induction hypothesis.

Step 4: Let \(\Delta_1 \) have a missing tetrahedron of Type 4. Then it follows from Lemma 2.8 that \(\Delta_1 \) is formed using a connected sum of \(\Delta'_1 \) and \(\Delta''_1 \). Let \(t_1 \in \Delta'_1 \) and \(t_2 \in \Delta''_1 \) be identified during the connected sum and produce \(t \in \Delta_1 \). Let \(\text{lk} (t_1, \Delta'_1) \) and \(\text{lk} (t_2, \Delta''_1) \) be the connected sum of \(n_1 \) and \(n_2 \) copies of tori or Klein bottles, respectively, where \(n_1 + n_2 = n \) for some positive integers \(n_1, n_2 \). Since \(n_1, n_2 > 0 \), both \(n_1, n_2 < n \). Further, \(g_2(\Delta'_1) \leq 9 + 6n_1 \) and \(g_2(\Delta''_1) \leq 9 + 6n_2 \). Then the result follows by the induction hypothesis.

From the construction, we can see that the sequence of operations includes exactly \(n \) number of vertex foldings and a finite number of remaining operations.

Remark 4.5. The upper bound in Theorem 4.4 is sharp. In other words, there exists a normal 3-pseudomanifold with exactly one singularity such that \(g_2(K) = 10 + 6n \) and \(K \) is not obtained from some boundary complexes of 4-simplices by a sequence of operations of types connected sums, bistellar 1-moves, edge contractions, edge expansions, and vertex foldings. Let us take
a connected sum of a finite number of the boundary complexes of the 4-simplices, and then apply a handle addition. Let Δ_0 be the resulting 3-dimensional manifold. Then $g_2(\Delta_0) = 10$. Note that we can choose either an orientable or a non-orientable manifold according to our purpose. For $1 \leq i \leq n$, let Δ_i be a normal 3-pseudomanifold obtained from a connected sum of a finite number of the boundary complexes of the 4-simplices by applying a vertex folding at v_i, where $v_i \in \Delta_i$. Then $g_2(\Delta_i) = 6$ and $\text{lk}(v_i, \Delta_i)$ is a torus or Klein bottle (choose the surface according to the purpose). Let Δ be the connected sum $\Delta_0 \# \Delta_1 \# \cdots \# \Delta_n$, where the vertices v_1, \ldots, v_n are identified to a single vertex v. Then Δ is a normal 3-pseudomanifold with exactly one singularity at v such that $g_2(\Delta) = 10 + 6n$. This normal 3-pseudomanifold Δ will serve our purpose.

Let K be formed using a vertex folding from a normal 3-pseudomanifold K' at $t \in K'$ and $|K'|$ is a handlebody with its boundary coned off. Then K is the following pseudomanifold: take $K'[V(K') \setminus \{t\}]$ (the induced subcomplex of K' on the vertex set $V(K') \setminus \{t\}$), identify two triangles (with an admissible bijection between them) on the boundary, then coning off the boundary at t. Therefore, $|K|$ is a handlebody with its boundary coned off. Further, let $\text{lk}(t_1, \Delta_1)$ and $\text{lk}(t_2, \Delta_2)$ be the connected sum of n_1 and n_2 copies of tori or Klein bottles, respectively, where $n_1 + n_2 = n$ for some positive integers n_1, n_2. Let Δ_1 and Δ_2 be triangulated handlebodies with its boundary coned off at t_1 and t_2, respectively. Let $\Delta = \Delta_1 \# \Delta_2$, where $t_1 \in \Delta_1$ and $t_2 \in \Delta_2$ are identified to $t \in \Delta$ during the connected sum. Then Δ is the following pseudomanifold: take two triangulated handlebodies $\Delta_1[V(\Delta_1) \setminus \{t_1\}]$ and $\Delta_2[V(\Delta_2) \setminus \{t_2\}]$, identify two triangles from each of the boundaries, then coning off the boundary at t. Therefore, $|\Delta|$ is a handlebody with its boundary coned off. Therefore, from the proof of Theorem 4.4 and Remark 4.5 we have the following result:

Corollary 4.6. Let K be a normal 3-pseudomanifold with exactly one singularity at t such that $|\text{lk}(t, K)|$ is a connected sum of n copies of tori or Klein bottles for some positive integer n. Then $g_2(K) \leq 9 + 6n$ implies $|K|$ is a handlebody with its boundary coned off. Moreover, there exists a normal 3-pseudomanifold with exactly one singularity such that $g_2(K) = 10 + 6n$ and $|K|$ is not a handlebody with its boundary coned off.

5 Normal 3-pseudomanifolds with exactly two singularities

In this section we will consider normal 3-pseudomanifolds with exactly two singularities. Let us denote $R_2 = \{K \in \mathcal{R} : K$ has exactly two singularities$\}$. Let $K \in R_2$ and t be the singular vertex in K as in Definition 3.11 i.e., $g_2(\text{lk}(t, K)) \geq g_2(\text{lk}(v, K))$ for any vertex v in K. By Lemma 3.8 we can assume that $d(t) \geq 8$. Let y_4 be the number of non-singular vertices of degree 4 in $\text{lk}(t)$ whose outer weight is 0.5, and let x_n be the number of non-singular vertices of degree n in $\text{lk}(t)$ with outer weight greater than or equal to 1, for $4 \leq n \leq 9$.

Lemma 5.1. Let $K \in R_2$, and t be the singular vertex in K as in Definition 3.11. If $f_0(\text{lk}(t, K)) = 8$, then $\sum_{v \in \text{lk}(t)} O_v > 10$.

Proof. Since $f_0(\text{lk}(t, K)) = 8$, it follows from Lemma 3.2 that $x_7 = 0$. Let $u \in \text{lk}(t, K)$ be any non-singular vertex such that $d(ut) = 4$. It follows from Lemmas 3.18 and 3.19 that $O_u \geq 1$. We take the outer weight of any seven non-singular vertices of K contained in $\text{lk}(t)$. It follows from Lemmas 3.23 and 3.24 that $\sum_{v \in \text{lk}(t)} O_v \geq x_4 + 1.33x_5 + 2.375x_6$. Further, we have $x_4 + x_5 + x_6 = 7$, and $4x_4 + 5x_5 + 6x_6 \geq 35$. Therefore, by solving the L.P.P., we get $\sum_{v \in \text{lk}(t)} O_v \geq 9.31$.

\hspace{1cm} \square
Lemma 5.2. Let $K \in \mathcal{R}_2$, and t be the singular vertex in K as in Definition 3.11. If $f_0(\text{lk}(t, K)) = 9$, then $\sum_{v \in \text{lk}(t)} O_v > 9$.

Proof. Since $f_0(\text{lk}(t, K)) = 9$, Lemma 3.3 implies $x_8 = 0$. It follows from Lemma 3.19 that $O_u = 0.5$ or ≥ 1, when $d(tu) = 4$. Further, Lemmas 3.20, 3.23 and 3.24 imply $O_u \geq 1$ when $d(tu) = 5$, $O_u \geq 1.33$ when $d(tu) = 6$, and $O_u \geq 2.75$ when $d(tu) = 7$. Let t_1 be the singular vertex in K other than t. Now we have the following cases:

Case 1: Let there be a non-singular vertex $u \in \text{lk}(t, K)$ such that $O_u = 0.5$. Since $f_0(\text{lk}(t, K)) = 9$, it follows from Lemma 3.21 that there must be a vertex $z \in \text{lk}(t)$ such that (i) $O_z \geq 2$, (ii) $d(tu) = d(tz) = 4$, and (iii) $l(tu) \cap l(tz) = \{t_1\}$. Further, if $\text{lk}(t, K)$ contains at least two non-singular vertices, say u_1 and u_2, of K such that $O_{u_1} = O_{u_2} = 0.5$, then we have two vertices $z_1 \neq z_2$ such that $O_{z_1}, O_{z_2} \geq 2$ and $d(tu_1) = d(tu_2) = d(tz_1) = d(tz_2) = 4$. Then $\sum_{v \in \text{lk}(t)} O_v \geq 0.5y_4 + x_4 + x_5 + 1.33x_6 + 2.75x_7 + 2z$, with one of the following conditions:

(i) $y_4 + x_4 + x_5 + x_6 + x_7 + z = 8$, $4y_4 + 4x_4 + 5x_5 + 6x_6 + 7x_7 + 4z \geq 40$, $y_4 = 1$, $z = 1$.

(ii) $y_4 + x_4 + x_5 + x_6 + x_7 + z = 8$, $4y_4 + 4x_4 + 5x_5 + 6x_6 + 7x_7 + 4z \geq 40$, $y_4 \geq 2$, $z \geq 2$.

Thus, by solving the L.P.P., we get $\sum_{v \in \text{lk}} O_v \geq 9.16$.

Case 2: Suppose that for all non-singular vertices $u \in \text{lk}(t, K)$, $O_u > 0.5$. It follows from Lemmas 3.19 and 3.20 that $O_u \geq 1$, when $d(tu) = 4$ and 5. Further, Lemmas 3.23 and 3.24 imply $O_u \geq 1.33$ when $d(tu) = 6$, and $O_u \geq 2.75$ when $d(tu) = 7$.

Case 2a: Let there be a vertex $u \in \text{lk}(t)$ such that $d(u) = 5$ and $O_u = 1$. Then we must have a vertex $z \in \text{lk}(t)$ such that $O_z \geq 2$ and $d(tz) = 4$. Then $\sum_{v \in \text{lk}(t)} O_v \geq x_4 + x_5 + x_6 + 2z$, where $x_4 + x_5 + x_6 + x_7 + z \geq 8$, $4x_4 + 4x_5 + 4x_6 + 4x_7 + 4z \geq 40$, $x_4 \geq 1$, and $z \geq 1$. Thus, by solving the L.P.P., we get $\sum_{v \in \text{lk}(t)} O_v \geq 9.2$.

Case 2b: Suppose that $O_u > 1$ for all non-singular vertices $u \in \text{lk}(t, K)$, with $d(u) = 5$, i.e., $O_u > 1.16$. Then $\sum_{v \in \text{lk}(t)} O_v \geq x_4 + 1.16x_5 + 1.33x_6 + 2.75x_7$, where $x_4 + x_5 + x_6 + x_7 + z \geq 8$, and $x_4 + 4x_5 + 6x_6 + 7x_7 \geq 40$. Thus, by solving the L.P.P., we get $\sum_{v \in \text{lk}(t)} O_v \geq 9.28$.

Lemma 5.3. Let $K \in \mathcal{R}_2$, and $t \in K$ be the singular vertex as in Definition 3.11. If $f_0(\text{lk}(t)) = 10$, then $\sum_{v \in \text{lk}(t)} O_v > 9$.

Proof. If there is a non-singular vertex $u \in \text{lk}(t)$ such that $O_u = 0.5$, then from Lemma 3.18 we get $\sum_{v \in \text{lk}(t)} O_v \geq f_0(\text{lk}(t)) - 1/2$. Therefore, $\sum_{v \in \text{lk}(t)} O_v > 9$. Now, we assume that, for all non-singular vertex $u \in \text{lk}(t)$, $O_u > 0.5$. Then by Lemmas 3.20 and 3.21 we have $O_u \geq 1$, when $d(tu) = 4, 5$ and 6. Further, Lemmas 3.23 and 3.24 imply $O_u \geq 1.25$ when $d(tu) = 7$ and $O_u \geq 3.125$ when $d(tu) = 8$. Since $f_0(\text{lk}(t, K)) = 10$, it follows from Lemma 3.3 that $x_9 = 0$.

Case 1: If there is a non-singular vertex $u \in \text{lk}(t)$ such that $O_u = 1$ for $d(tu) = 4, 5$ or 6, then By Lemma 3.22 there is another vertex $z \in \text{lk}(t)$ such that $O_z \geq 1.5$. Then $\sum_{v \in \text{lk}(t)} O_v \geq x_4 + x_5 + x_6 + 1.25x_7 + 3.125x_8 + 1.5z$, where $z \geq 1$ and $x_4 + x_5 + x_6 + x_7 + x_8 + z \geq 9$. Therefore, $\sum_{v \in \text{lk}(t)} O_v \geq 9.5$.

Case 2: For all non-singular vertices $u \in \text{lk}(t)$, $O_u > 1$. Then $\sum_{v \in \text{lk}(t)} O_v > x_4 + x_5 + x_6 + x_7 + x_8 \geq 9$.

This proves the result.

Theorem 5.4. If $K \in \mathcal{R}_2$, then $g_2(K) \geq g_2(\text{lk}(v, K)) + 10$ for every vertex $v \in K$.

Proof. Let t be the singular vertex in K as in Definition 3.11 i.e., $g_2(\text{lk}(t, K)) \geq g_2(\text{lk}(v, K))$ for any vertex $v \in K$. If $8 \leq f_0(\text{lk}(t)) \leq 10$, then it follows from Lemmas 3.17, 5.2 and 5.3 that $\sum_{v \in \text{lk}(t)} O_u \geq 10$. If $f_0(\text{lk}(t)) \geq 11$, then it follows from Lemma 3.17 that $\sum_{v \in \text{lk}(t)} O_u \geq 10$. Now, the result follows from Lemma 3.13.
Let \(K \) be a normal 3-pseudomanifold with exactly two singularities at \(t \) and \(t_1 \) such that \(|\text{lk}(t_1)| \cong \mathbb{R}P^2 \). Then \(|\text{lk}(t)| \) is a connected sum of \((2m-1)\) copies of \(\mathbb{R}P^2 \) for some \(m \in \mathbb{N} \), and \(g_2(\text{lk}(t,K)) = 6m - 3 \). If \(K \in \mathcal{R}_2 \), then \(g_2(K) \geq 7 + 6m \).

Theorem 5.5. Let \(K \) be a normal 3-pseudomanifold with exactly two singularities at \(t \) and \(t_1 \) such that \(|\text{lk}(t)| \) is a connected sum of \((2m-1)\) copies of \(\mathbb{R}P^2 \) and \(|\text{lk}(t_1)| \cong \mathbb{R}P^2 \) for some positive integer \(m \). Then \(g_2(K) \leq 6 + 6m \) implies that \(K \) is obtained from some boundary complexes of 4-simplices by a sequence of operations of types connected sums, bistellar 1-moves, edge contractions, edge expansions, and edge foldings. More precisely, the sequence of operations includes exactly \((m - 1)\) vertex foldings, one edge folding and a finite number of remaining operations. Further, this upper bound is sharp for such normal 3-pseudomanifolds.

Proof. Let \(\Delta \) be a normal 3-pseudomanifold with exactly two singularities at \(t \) and \(t_1 \) such that \(|\text{lk}(t,\Delta)| \) is a connected sum of \((2k - 1)\) copies of \(\mathbb{R}P^2 \) and \(|\text{lk}(t_1,\Delta)| \cong \mathbb{R}P^2 \) for some positive integer \(k \). Then \(g_2(\text{lk}(t,K)) = 6k - 3 \). Let \(g_2(\Delta) \leq 6 + 6k \). We have the following observation:

Observation 1: Let \(\tilde{\Delta} \) (may be \(\Delta \) itself) be a normal 3-pseudomanifold obtained from \(\Delta \) by the repeated applications of the combinatorial operations mentioned in Remark 2.3 such that there is no normal 3-pseudomanifold \(\Delta' \) which is obtained from \(\Delta \) by a combinatorial operation mentioned in Remark 2.3 and \(g_2(\Delta') < g_2(\Delta) \). If \(\Delta \) has no missing tetrahedron, then \(\Delta \in \mathcal{R}_2 \) and hence by Theorem 3.4 \(g_2(\Delta) \geq (6k - 3) + 10 = 6k + 7 \). This contradicts the given condition. Therefore, \(\Delta \) must have a missing tetrahedron.

There can be five types of missing tetrahedra in \(\Delta \):

- **Type 1:** Let \(\sigma \) be a missing tetrahedron in \(\Delta \) such that \(t \) and \(t_1 \) are not vertices of \(\sigma \).

- **Type 2:** Let \(\sigma \) be a missing tetrahedron in \(\Delta \) such that \(\leq \sigma \) and \(\text{lk}(t,\Delta) \) is separated into two portions by the missing triangle formed by the other three vertices of \(\sigma \), where one portion is a disc. If \(t_1 \leq \sigma \), then \(\text{lk}(t_1,\Delta) \) is separated into two portions by the missing triangle formed by the other three vertices of \(\sigma \).

- **Type 3:** Let \(\sigma \) be a missing tetrahedron in \(\Delta \) such that \(t, t_1 \leq \sigma \) and \(\text{lk}(t_1,\Delta) \) is not separated into two portions by the missing triangle formed by the other three vertices. Then a small neighborhood of \(|\partial(\Delta[V(\sigma) \setminus \{t_1\}])| \) in \(|\text{lk}(t_1,\Delta)| \) is a Möbius strip, and it follows from Lemma 2.12 that a small neighborhood of \(|\partial(\Delta[V(\sigma) \setminus \{t\}])| \) in \(|\text{lk}(t,\Delta)| \) is also a Möbius strip. Further, there exists a normal 3-pseudomanifold \(\Delta' \) such that \(\Delta = (\Delta'_t)_{t_1} \) is obtained from an edge folding at \(t_1 \in \Delta' \). Therefore, \(\Delta' \) has exactly one singularity, say \(t \), such that \((i) \ |\text{lk}(t,\Delta')| \) is a connected sum of \((k - 1)\) copies of tori or Klein bottles, and \((ii) \ g_2(\Delta') \leq 6(k - 1) + 9 \). It follows from Theorem 4.4 that \(\Delta' \) is obtained from some boundary complexes of 4-simplices by a sequence of operations of types connected sums, bistellar 1-moves, edge contractions, edge expansions, and vertex foldings.

- **Type 4:** Let \(\sigma \) be a missing tetrahedron in \(\Delta \) such that \(\leq \sigma \) and \(\text{lk}(t,\Delta) \) is not separated into two portions by the missing triangle formed by the other three vertices of \(\sigma \). If \(t_1 \leq \sigma \), then \(\text{lk}(t_1,\Delta) \) is separated into two portions by the missing triangle formed by the other three vertices of \(\sigma \).

- **Type 5:** Let \(\sigma \) be a missing tetrahedron in \(\Delta \) such that \(\leq \sigma \) and \(\text{lk}(t,\Delta) \) is separated into two portions by the missing triangle formed by the other three vertices of \(\sigma \), where no portions are triangulated discs. If \(t_1 \leq \sigma \), then \(\text{lk}(t_1,\Delta) \) is separated into two portions by the missing triangle formed by the other three vertices of \(\sigma \).
Now, we are ready to prove our result. Let K be a normal 3-pseudomanifold with exactly two singularities at t and t_1 such that $|\text{lk}(t)|$ is a connected sum of $(2m - 1)$ copies of \mathbb{RP}^2, $|\text{lk}(t_1)| \cong \mathbb{RP}^2$ and $g_2(K) \leq 6 + 6m$ for some positive integer m.

Step 1: Let Δ be a normal 3-pseudomanifold obtained from K by repeated applications of the combinatorial operations mentioned in Remark 2.3 such that there is no normal 3-pseudomanifold Δ' which is obtained from Δ by a combinatorial operation mentioned in Remark 2.3 and $g_2(\Delta') < g_2(\Delta)$. Then by Observation 1, Δ must have a missing tetrahedron.

Step 2: Let Δ have a missing tetrahedron of Type 1 or 2. Then it follows from Lemma 2.8 that Δ is formed using a connected sum of Δ_1 and Δ_2. Let $t \in \Delta_1$ (in case of Type 2, we can take t as a vertex in Δ_1 such that $|\text{lk}(t, \Delta_1)|$ is a connected sum of $(2m - 1)$ copies of \mathbb{RP}^2. Then $g_2(\Delta_1) \geq g_2(|\text{lk}(t, \Delta_1)|) \geq 3(2m - 1)$ and $t_1 \in \Delta_1$, where $|\text{lk}(t_1)| \cong \mathbb{RP}^2$. Therefore, $g_2(\Delta_2) = g_2(\Delta) - g_2(\Delta_1) \leq 9$. Thus, after a finite number of steps, we have $\Delta = \Delta_1 \# \Delta_2 \# \cdots \# \Delta_n$, where (i) $t, t_1 \in \Delta_1$ such that $|\text{lk}(t)|$ is a connected sum of $(2m - 1)$ copies of \mathbb{RP}^2 and $|\text{lk}(t_1)| \cong \mathbb{RP}^2$ (ii) Δ_1 has no missing tetrahedron of Types 1 and 2, (iii) $6m - 3 \leq g_2(\Delta_1) \leq 6m + 6$, and (iv) for $2 \leq i \leq n$, Δ_i has no singular vertices and $g_2(\Delta_i) \leq 9$. Thus, by Proposition 2.5 we have, for $2 \leq i \leq n$, each Δ_i is a triangulated 3-sphere and is obtained from some boundary complexes of 4-simplices by a sequence of operations of types connected sums, bistellar 1-moves, edge contractions, and edge expansions. If there is no normal 3-pseudomanifold Δ_1', which is obtained from Δ_1 by a combinatorial operation mentioned in Remark 2.3 and $g_2(\Delta_1') < g_2(\Delta_1)$, then by Observation 1, Δ_1 has a missing tetrahedron of Type 3, 4 or 5, and we move to Steps 3, 4 or 5, respectively. Otherwise, we move to Step 1 and replace K with Δ_1. Since K has a finite number of vertices and $g_2(K)$ is also finite, after a finite number of steps we must move to Steps 3, 4 or 5.

Step 3: Let Δ_1 have a missing tetrahedron of Type 3. From the above arguments for Type 3, we get our result.

We use the principle of mathematical induction on m. First, we take $m = 1$. In this case, a missing tetrahedron will be of Type 1, 2 or 3 only. Therefore, from Step 2 we must move to Step 3 only. Thus, the result is true for $m = 1$. Let us assume that the result is true for $1, \ldots, m - 1$, and let K be the normal 3-pseudomanifold that corresponds to m. Then we start from Step 1, and after a finite number of steps we must move to Steps 3, 4 or 5. If we move to Step 3, then we are done. We can use the induction hypothesis if we move to either Step 4 or Step 5.

Step 4: Let Δ_1 have a missing tetrahedron of Type 4. Then it follows from Lemma 2.11 that Δ_1 is formed using a vertex folding from a normal 3-pseudomanifold Δ_1' at $t \in \Delta_1'$ and $g_2(\Delta_1') = g_2(\Delta_1) - 6$. Here $|\text{lk}(t, \Delta_1')|$ is a connected sum of $2m - 3$ copies of \mathbb{RP}^2 and $g_2(\Delta_1') \leq 6 + 6(m - 1)$. Now, the result follows by the induction hypothesis.

Step 5: Let Δ_1 have a missing tetrahedron σ of Type 5. Then it follows from Lemma 2.8 that Δ_1 is formed using a connected sum of Δ_1' and Δ_1''. Let $t' \in \Delta_1'$ and $t'' \in \Delta_1''$ be identified during the connected sum and produce $t \in \Delta_1$. Without loss of generality, assume $t_1 \in \Delta_1'$ (if $t_1 \leq \sigma$, then we can take t_1 as a vertex in Δ_1' such that $|\text{lk}(t_1, \Delta_1')| \cong \mathbb{RP}^2$). Then $|\text{lk}(t', \Delta_1')|$ is a connected sum of $2n_1 - 1$ copies of \mathbb{RP}^2 and $|\text{lk}(t'', \Delta_1'')|$ is the connected sum of n_2 copies of tori or Klein bottles, where $n_1 + n_2 = m$ for some positive
integers \(n_1, n_2 \). Since \(n_1, n_2 > 0 \), both \(n_1, n_2 < m \). Further, \(g_2(\Delta'_1) \leq 6 + 6n_1 \) and \(g_2(\Delta''_1) \leq 9 + 6n_2 \). Now, the result follows by the induction hypothesis and Theorem 4.4.

From the construction, we can see that the sequence of operations includes exactly \(m - 1 \) number of vertex foldings, one edge folding, and a finite number of remaining operations. Further, the upper bound in Theorem 5.5 is sharp, i.e., there exists a normal 3-pseudomanifold with exactly two singularities \(\mathbb{R}P^2 \) and \(\#(2m-1)\mathbb{R}P^2 \) such that \(g_2(K) = 7 + 6m \) and \(K \) is not obtained from some boundary complexes of 4-simplices by a sequence of operations of types connected sums, bistellar 1-moves, edge contractions, edge expansions, vertex foldings, and edge foldings. We can construct a normal 3-pseudomanifold \(\Delta \) as in Remark 4.5, where \(|\text{lk}(t, \Delta)| \) is the connected sum of \(m - 1 \) copies of tori or Klein bottles, and then apply an edge folding at some edge \(ta \). Then the normal 3-pseudomanifold \(\Delta_\psi^a \) will serve our purpose.

Proof of Theorem 1.1. Let \(K \) have exactly one singularity at \(t \). Then \(|\text{lk}(t, K)| \) is a connected sum of \(n \) copies of tori or Klein bottles for some \(n \in \mathbb{N} \), and \(g_2(\text{lk}(t, K)) = 6n \). Since \(g_2(K) \leq g_2(\text{lk}(v)) + 9 \) for some vertex \(v \) in \(K \) and \(g_2(\text{lk}(v)) \leq g_2(\text{lk}(t)) \), we have \(g_2(K) \leq 6n + 9 \). Therefore, the result follows from Theorem 4.4.

Now consider, \(K \) has exactly two singularities at \(t \) and \(t_1 \) such that \(|\text{lk}(t_1, K)| \cong \mathbb{R}P^2 \). Then \(|\text{lk}(t, K)| \) is a connected sum of \((2m - 1) \) copies of \(\mathbb{R}P^2 \) for some \(m \in \mathbb{N} \) and \(g_2(\text{lk}(t, K)) = 3(2m - 1) \). Since \(g_2(K) \leq g_2(\text{lk}(v)) + 9 \) for some vertex \(v \) in \(K \) and \(g_2(\text{lk}(v)) \leq g_2(\text{lk}(t)) \), we have \(g_2(K) \leq 6m + 6 \). Thus, the result follows from Theorem 5.5.

The sharpness of this bound follows from Remark 4.5 and Theorem 5.5.

Acknowledgement: The author would like to thank the anonymous referees for many useful comments and suggestions. The first author is supported by Science and Engineering Research Board (CRG/2021/000859). The second author is supported by CSIR (India). The third author is supported by Prime Minister’s Research Fellows (PMRF) Scheme.

References

[1] B. Bagchi and B. Datta, Lower bound theorem for normal pseudomanifolds, *Expo. Math.* 26 (2008), 327–351.

[2] B. Bagchi and B. Datta, A structure theorem for pseudomanifolds, *Discrete Math.* 188 (1998), 41–60.

[3] D. Barnette, A proof of the lower bound conjecture for convex polytopes, *Pacific J. Math.* 46 (1973), 349–354.

[4] D. Barnette, Graph theorems for manifolds, *Israel J. Math.* 16 (1973), 62–72.

[5] D. Barnette, The minimum number of vertices of a simple polytope, *Israel J. Math.* 10 (1971) 121–125.

[6] B. Basak and R. K. Gupta: A characterization of normal 3-pseudomanifolds with \(g_2 \leq 4 \), 2022, 13 pages. (arXiv: 2202.06638v1.)

[7] B. Basak and E. Swartz, Three-dimensional normal pseudomanifolds with relatively few edges, *Adv. Math.* 365 (2020) 107035, 1–25.
[8] A. Fogelsanger, The generic rigidity of minimal cycles, Ph.D. thesis, Cornell University, 1988.

[9] M. Gromov, Partial differential relations, Springer, Berlin Heidelberg New York, 1986.

[10] G. Kalai, Rigidity and the lower bound theorem I, Invent. Math. 88 (1987), 125–151.

[11] E. Nevo and E. Novinsky, A characterization of simplicial polytopes with $g_2 = 1$, J. Combin. Theory Ser. A 118 (2011), 387–395.

[12] I. Novik and E. Swartz, Face numbers of pseudomanifolds with isolated singularities, Math. Scan. 110 (2012), 198–212.

[13] E. Swartz, Face enumeration: From spheres to manifolds, J. Eur. Math. Soc. 11 (2009), 449–485.

[14] E. Swartz, Topological finiteness for edge-vertex enumeration, Adv. Math. 219 (2008), 1722–1728.

[15] T. Tay, N. White and W. Whiteley, Skeletal rigidity of simplicial complexes II, European J. Combin. 16 (1995), 503–525.

[16] D. Walkup, The lower bound conjecture for 3- and 4-manifolds, Acta Math. 125 (1970), 75–107.

[17] H. Zheng, A characterization of homology manifolds with $g_2 \leq 2$, J. Combin. Theory Ser. A 153 (2018), 31–45.