A genome-wide association for kidney function and endocrine-related traits in the NHLBI's Framingham Heart Study

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Hwang, Shih-Jen, Qiong Yang, James B. Meigs, Elizabeth N. Pearce, and Caroline S. Fox. 2007. A genome-wide association for kidney function and endocrine-related traits in the NHLBI's Framingham Heart Study. BMC Medical Genetics 8(Suppl 1): S10.
Published Version	doi:10.1186/1471-2350-8-S1-S10
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:4853405
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

A genome-wide association for kidney function and endocrine-related traits in the NHLBI's Framingham Heart Study

Shih-Jen Hwang¹, Qiong Yang³, James B Meigs², Elizabeth N Pearce⁴ and Caroline S Fox*¹,⁵

Address: ¹National Heart Lung and Blood Institutes, Bethesda, MD, USA, ²Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, ³Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA, ⁴Boston University School of Medicine, Boston, MA, USA and ⁵Department of Endocrinology, Diabetes, and Hypertension, the Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

Email: Shih-Jen Hwang - hwangs2@nhlbi.nih.gov; Qiong Yang - qyang@bu.edu; James B Meigs - jmeigs@partner.org; Elizabeth N Pearce - Elizabeth.pearce@bmc.org; Caroline S Fox* - foxca@nhlbi.nih.gov

* Corresponding author

Abstract

Background: Glomerular filtration rate (GFR) and urinary albumin excretion (UAE) are markers of kidney function that are known to be heritable. Many endocrine conditions have strong familial components. We tested for association between the Affymetrix GeneChip Human Mapping 100K single nucleotide polymorphism (SNP) set and measures of kidney function and endocrine traits.

Methods: Genotype information on the Affymetrix GeneChip Human Mapping 100K SNP set was available on 1345 participants. Serum creatinine and cystatin-C (cysC; n = 981) were measured at the seventh examination cycle (1998–2001); GFR (n = 1010) was estimated via the Modification of Diet in Renal Disease (MDRD) equation; UAE was measured on spot urine samples during the sixth examination cycle (1995–1998) and was indexed to urinary creatinine (n = 822). Thyroid stimulating hormone (TSH) was measured at the third and fourth examination cycles (1981–1984; 1984–1987) and mean value of the measurements were used (n = 810). Age-sex-adjusted and multivariable-adjusted residuals for these measurements were used in association with genotype data using generalized estimating equations (GEE) and family-based association tests (FBAT) models. We presented the results for association tests using additive allele model. We evaluated associations with 70,987 SNPs on autosomes with minor allele frequencies of at least 0.10, Hardy-Weinberg Equilibrium p-value ≥ 0.001, and call rates of at least 80%.

Results: The top SNPs associated with these traits using the GEE method were rs2839235 with GFR (p-value 1.6*10⁻⁵), rs1158167 with cysC (p-value 8.5*10⁻⁹), rs1712790 with UAE (p-value 1.9*10⁻⁵), and rs6977660 with TSH (p-value 3.7*10⁻⁶), respectively. The top SNPs associated with these traits using the FBAT method were rs6434804 with GFR (p-value 2.4*10⁻⁵), rs563754 with cysC (p-value 4.7*10⁻⁵), rs1243400 with UAE (p-value 4.8*10⁻⁵), and rs4128956 with TSH (p-value 3.6*10⁻⁵), respectively. Detailed association test results can be found at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. Four SNPs in or near the CST3 gene were highly associated with cysC levels (p-value 8.5*10⁻⁹ to 0.007).
Background

Kidney disease affects 19 million adults in the United States [1]. Chronic kidney disease (CKD) is associated with cardiovascular disease [2-4], stroke [5], peripheral arterial disease [5,6], and all-cause mortality [7,8]. CVR risk factors are associated with the development of kidney disease [9], and the prevalence of traditional and novel CVR risk factors is elevated among those with kidney disease [7,10]. Urinary albumin excretion (UAE) is an early marker of kidney function that predicts CKD progression [11-14]. While glomerular filtration rate (GFR) and UAE are both measurements for kidney function, they represent different phenotypes and identify different subsets of at-risk individuals [15].

Genetic factors play a role in the progression of renal disease. Familial aggregation of end-stage renal disease has been identified [16]. Linkage analyses of kidney function have been conducted [17-21], and novel loci have been mapped to chromosomes 1 [18], 2 [21,22], 3 [17], 7 [22], 10 [19,20,22], and 18 [22]. In the Framingham Heart Study, we have shown that kidney function is heritable [23], suggesting a role for genetic mechanisms in its etiology. Results of the linkage study from the Framingham Heart Study suggested linkage between kidney disease and a locus on chromosome 4 with a LOD score of 2.2 [23]. Familial clustering of UAE has been observed in siblings of subjects with diabetes [24], and UAE has been shown to be heritable among the offspring of diabetic subjects [25]. Genome-wide linkage analyses have mapped novel loci to chromosomes 12 [26] and 19 [26] among families enriched for hypertension. Among families with more severe forms of nephropathy, suggestive evidence for linkage has been found on chromosome 10p [27] and 9q31-32 [28]. In the Framingham Heart Study, we observed a LOD score of 2.2 for UAE on chromosome 8 [29].

Thyroid disease, including Hashimoto's thyroiditis and Graves' disease, has a known familial component [30], and the same genes may underlie both conditions [31]. Measures of thyroid function have been shown to be heritable [32-34], and linkage has been reported to chromosome 18 for autoimmune thyroid disease in at least 2 studies [35,36].

As part of the Framingham Heart Study 100K Project, we sought to test the relation of multiple kidney and endocrine traits to 70,987 SNPs. In this manuscript, we focus the results of association studies for GFR, UAE, cysC, and thyroid stimulating hormone (TSH), a sensitive measure of thyroid function.

Methods

Overall, 1345 participants were genotyped for the Affymetrix GeneChip Human Mapping 100K SNP set. For this manuscript, we focused on GFR from examination 7, UAE from examination 6, serum cysC from examination 7, and mean TSH from examinations 3 and 4. Phenotypes were available in 1010 participants for GFR at exam cycle 7, 822 participants for UAE at exam cycle 6, 981 participants for cysC at exam cycle 7, and 810 participants for mean TSH at exam cycles 3 and 4. Details about the selection process and genotyping are provided in the Overview [37]. Age-sex- and multivariable-adjusted residuals were generated; we present here only the results for multivariable-adjusted traits (all available results can be found in the website http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007). We evaluated associations with 70,987 SNPs on autosomes with minor allele frequencies of at least 0.10, HWE p-value ≥ 0.001, and genotypic call rates of at least 80%.

Phenotype assessment

Serum creatinine was measured using the modified Jaffe method at exams 2 (1978–1981), 5 (1991–1995), 6 (1995–1998), and 7 (1998–2001), and glomerular filtration rate (GFR) was estimated using the simplified Modification of Diet in Renal Disease Study equation [38,39]. CKD was defined based on the National Kidney Foundation Kidney Disease Outcome Quality Initiative working group, and modified slightly as previously described [9]. Urinary albumin concentration (UAE) was measured by immuno-turbidimetry (Tina-quant Albumin assay; Roche Diagnostics, Indianapolis, IN) during the sixth examination cycle (1995–1998). Urinary albumin was indexed to urinary creatinine (as the urine albumin/creatinine ratio, UACR) in order to account for differences in urine concentration. UACR is a validated and reliable single-sample measure of urinary albumin excretion and is highly correlated with albumin excretion rates assessed by 24-h urine collection [40,41]. Cystatin-C (cysC) was measured using particle enhanced immunonephelometry (Dade Behring BN 100 nephelometer; Dade Behring – Cystatin C reagent) with an inter-assay and intra-assay coefficient of variation of 3.3 and 2.4%, respectively. We have previously published correlates of CKD in the Framingham Heart Study, including hypertension, diabetes, smoking, obesity, and low HDL cholesterol [9,42].

Conclusion: Kidney function traits and TSH are associated with SNPs on the Affymetrix GeneChip Human Mapping 100K SNP set. These data will serve as a valuable resource for replication as more SNPs associated with kidney function and endocrine traits are identified.
TSH was measured using a chemiluminescence assay (London Diagnostics, Eden Prairie, Minn) with a lower limit of detection of 0.01 mU/L. Luteinizing hormone (LH), follicle stimulating hormone (FSH), and dehydroepiandrosterone sulfate (DHEAS) were measured as previously described [43,44]. Briefly, DHEAS concentrations were measured on serum samples via radioimmunoassay (Diagnostic Products Corp, CA). Calcium and phosphorous were measured at the second examination cycle using a standard colorimetric method (Roche Diagnostics, Alameda, CA), and uric acid was measured at the second examination cycle using an autoanalyzer with a phosphotungstic acid reagent.

Genotyping

Genotyping was performed using the 100K Affymetrix GeneChip. Please see the Overview [37] for details.

Statistical methods

Phenotypes used for the analysis were created by generating normalized residuals. We generated both age-sex adjusted and multivariable adjusted residuals for each trait. Table 1 shows the covariates included in the multivariable adjustment; all data in this manuscript represents the multivariable-adjusted traits. All association analyses were performed using the generalized estimating equations or family based association tests; details are provided in the Overview [37]. Methods to verify family structure, generate identity-by-descent for these 1345 participants with genotype information as well as the markers used for linkage analysis, is detailed in the Overview [37]. To assess the clustering of significance between each SNP and phenotypes that were repeatedly measured in several examination cycles (see the third table in this article), we generated the geometric mean of p-values for SNPs that fit the following criteria: at least 4 out of 6 p-values of <0.01 in GEE or FBAT analyses for 6 GFR traits (change in serum creatinine from exam 2 to 7; GFR at exam 2; GFR at exam 5; GFR at exam 6; GFR at exam 7; mean GFR exams 2, 5, 6, 7); one out of two UACR traits (UACR; UACR in a sample enriched for hypertension); three out of three of TSH traits (TSH at exam 3; TSH at exam 4; mean TSH at exams 3 and 4). Among the GFR traits, Pearson correlation coefficients ranged from 0.18 (p < 0.001) between GFR at exam 2 and exam 7, to 0.77 (p < 0.001) for the mean of GFR at exams 2, 5, 6, and 7 and GFR at exam 7. Linkage analysis was performed using the variance components methods on a subset of 100K markers and Marshfield short-tandem repeats; please see the variance components methods on a subset of 100K and GFR at exam 7. Linkage analysis was performed using a standard colorimetric method (Roche Diagnostics, Alameda, CA), and uric acid was measured at the second examination cycle using an autoanalyzer with a phosphotungstic acid reagent.

Results

A description of all traits and phenotypes, including relevant examination cycles and multivariable-adjustments, is presented in Table 1. The median eGFR among individuals with CKD in our sample is 53.7 ml/min/1.73 m². Table 2a presents the top 25 SNPs with the lowest p-values obtained via GEE for GFR, cysC, UAE, and mean TSH; additional results can be found on the National Center for Biotechnology Information website [http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/]

Additional findings

We also identified several other plausible candidate genes that appear in our list of top 500 SNPs for each trait (see [http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/]

Table 3 presents the top SNPs for our multiple phenotype analysis for GFR, UAE, and TSH with a total of 24 SNPs showing consistently significant associations with multiple related phenotypes. Tables 4a and 4b present results looking at replication of genes that have been associated with kidney traits in the published literature. Four SNPs in or near the CST3 gene were highly correlated with cysC levels (p-value 8.5*10-09 to 0.007). All four SNPs have minor allele frequencies greater than 10% and none were in linkage disequilibrium (defined by R² > 0.8) as shown on Table 4. The proportion of the cysC variation that can be explained by these SNPs is shown in Table 4. rs1158167 accounts for 2.5% of the cysC variation. We found nominal significance between a SNP near the APOE gene and CKD (p = 0.04).
For UAE, we observed strong association with between cysC levels and 4 SNPs in or near the GeneChip. We found strong evidence for association related traits and TSH with SNPs on the Affymetrix 100K strong evidence for association between multiple kidney-

In our analysis of kidney-related traits, we have found

Discussion

Table 1: Traits names, Framingham Heart Study examination cycle, and multivariable adjustments

Trait	Sample size	Exam cycle/s	Adjustment†
Serum Creatinine	840–1010	2, 5, 6, 7	0 Age and sex; multivariable*
Change in serum creatinine	854	2, 7	0 Age and sex; multivariable*
Glomerular Filtration Rate (GFR)	840–1010	2, 5, 6, 7	0 Age and sex; multivariable*
Chronic Kidney Disease	1010	7	0 Age and sex; multivariable*
Cystatin C	981	7	0 Age and sex; multivariable*
Uric acid	912–1031	1, 2	0 Age and sex; multivariable*
Urinary Albumin Excretion ≥ 30 mg/g	822	6	0 Age and sex; multivariable*
Mean of TSH exam 3 & 4	810	3, 4	0 Age and sex; age, sex, body mass index, smoking, menopausal status, thyroid hormone use
Luteinizing hormone (LH)	508	3	0 Age and sex; multivariable***
Follicle stimulating hormone (FSH)	509	3	0 Age and sex; multivariable***
Dehydroepiandrosterone sulfate (DHEAS)	850	3	0 Age and sex; multivariable***

*Multivariable adjustment include age, sex, systolic blood pressure, hypertension treatment, HDL-cholesterol, smoking, diabetes, body mass index
**Men and post-menopausal women only with natural menopause not using hormone replacement treatment or oral contraceptive pills
*** Age, diabetes mellitus, impaired fasting glucose, smoking, systolic blood pressure, diastolic blood pressure, body-mass index, hypertension treatment, prevalent cardiovascular disease, total cholesterol/HDL ratio and alcohol intake

study.cgi?id=phs0000007). For GFR, we identified LRP1B (GEE p-value = 0.0006, rs1049688), ADRBK2 (GEE p-value = 0.002, rs1048312), APOB (GEE p-value = 0.003, rs1048312), several genes in the chromosome 17 cytokine gene cluster including CCL3, CCL4, and CCL18 (GEE p-value 0.004, rs1818816), SCARB1 (GEE p-value = 0.004, rs1902569), NFKB1 (FBAT p-value = 0.001, rs230489), TGFB1 (FBAT p-value = 0.003, rs2072239), and PPARG (FBAT p-value = 0.005, rs709157). For UAE, we also identified a SNP in the LRP1B gene (GEE p-value = 0.004, rs1049687). For cysC, we identified SNPs in the LRP1B gene (GEE p-value = 0.001, rs1463615), ANGPT1 (GEE p-value = 0.005, rs4354281), NFKB1 (FBAT p-value = 0.004, rs2991716), and PPARG (FBAT p-value = 0.004, rs1051041). For mean TSH, we identified SNPs in ADRBK2 (GEE p-value = 0.002, rs3888397), TRDH (GEE p-value = 0.002, rs2044305) and DIO2 (GEE p-value = 0.003, rs54566), the SCD4 gene (rs10516679 GEE p-value = 0.0007 FBAT p-value = 0.02), VLDLR (FBAT p-value = 0.002, rs4084415) and APOBEC2P (FBAT p-value = 0.005, rs722442).

Discussion

In our analysis of kidney-related traits, we have found strong evidence for association between multiple kidney-related traits and TSH with SNPs on the Affymetrix 100K GeneChip. We found strong evidence for association between cysC levels and 4 SNPs in or near the CST3 gene. For UAE, we observed strong association with ADAM23, a gene involved in the metalloproteinase family, which may be involved in the pathophysiology of glomerulosclerosis [46], and PCDH9, a gene that is a member of the cadherin superfamily. For TSH, we observed significant association with the HSPA4L gene with a mean p-value for all three TSH measurements, a gene that is part of the heat shock protein family, which may be involved in the pathophysiology of thyroid disease [47]. We also observed association with the SCD4 gene, a gene involved in the conversion of saturated to monounsaturated fatty acids; TSH is an important correlate of lipid levels [48].

In our linkage results, we observed a region we have previously noted for uric acid [45], albeit with a significantly higher LOD score. We identified a LOD score of 2.78 on chromosome 3, approximately 18 Mb away from a region previously noted in association with kidney function in hypertensive individuals [17], a region that lies within our 1.5 support LOD interval. We also report novel loci for GFR and TSH.

We show significant association between cysC levels and the CST3 gene, an observation that has been previously noted [49]. Our top SNP reaches genome-wide significance, and may represent a true finding. In our candidate gene approach, we found nominal significance for a SNP near the APOE gene, a gene that has been associated with CKD [50]. Unfortunately, poor coverage of the APOE gene by the Affymetrix 100K Genechip precluded a more in-depth test of association with SNPs in the APOE gene and CKD.

Strengths of our study lie in our assessment of multiple measures of kidney function and endocrine traits in a sample unselected for these traits, thus reducing bias. We
Table 2: Most significant results for GFR (examination 7), UAE (examination 6), cysC (examination 7), and mean TSH (examinations 3 and 4) by GEE (2a), FBAT (2b) and linkage (2c) analyses

2a. Top 25 SNPs for association with GFR (examination 7), UAE (examination 6), cysC (examination 7), and mean TSH (examinations 3 and 4) based on the lowest p value of the GEE test. Corresponding phenotype names on the web are GFRMV7 (GFR), UAELNMV6 (UAE), CYSCMV7 (CysC), and TSHMEAN34MV (TSH)

TRAIT	SNP	Physical Location (Mb)	Chromosome	P value – FBAT	P value – GEE	GENE		
CysC	rs1158167	23,526,189	20	0.006	8.5*10^-09	CST9L	CST9	CST3
UAE	rs1712790	114,126,679	11	0.014	1.9*10^-06	FAM55B		
TSH	rs6977660	19,578,720	7	0.010	3.7*10^-06			
TSH	rs9322817	105,339,926	6	0.502	6.5*10^-06	HACE1		
UAE	rs10499559	21,882,699	7	0.068	8.3*10^-06	RAPGEFS		
UAE	rs9305354	28,397,067	21	0.013	8.4*10^-06			
CysC	rs2145231	23,573,547	20	0.011	1.1*10^-05	CST9L	CST3	CST4
UAE	rs723464	133,940,196	4	0.000	1.1*10^-05			
UAE	rs2113379	207,177,180	2	0.003	1.4*10^-05	ADAM23		
GFR	rs2839235	46,625,020	21	0.055	1.6*10^-05	PCNT2		
TSH	rs10493147	129,095,104	4	0.040	2.1*10^-05	HSPA4L		
TSH	rs784490	39,148,534	3	0.005	2.8*10^-05	TTC21A		
UAE	rs278021	6,698,929	1	0.958	2.9*10^-05	DNAJC11		
UAE	rs1856190	33,598,615	9	0.127	3.0*10^-05			
UAE	rs10485409	91,562,132	6	0.147	3.1*10^-05			
UAE	rs2785980	216,088,914	1	4.8*10^-04	3.7*10^-05			
UAE	rs837678	191,168,583	3	0.012	3.8*10^-05	LEPREL1		
GFR	rs3095160	49,844,269	13	0.002	3.8*10^-05			
UAE	rs2761171	99,278,898	13	0.078	4.1*10^-05	CLYBL		
GFR	rs10507344	24,623,069	13	0.017	4.1*10^-05	PABPC3		
GFR	rs890945	157,924,801	5	0.036	4.7*10^-05			
UAE	rs10502192	114,127,562	11	0.051	4.9*10^-05	FAM55B		
GFR	rs10489639	157,492,600	11	0.194	4.9*10^-05	CD48		
TSH	rs9308765	118,599,439	2	0.353	5.1*10^-05			
TSH	rs3908399	12,849,275	20	8.0*10^-04	5.2*10^-05			

2b. Top 25 SNPs for association with GFR (examination 7), UAE (examination 6), cysC (examination 7), and mean TSH (examinations 3 and 4) based on the lowest p-value of the FBAT test. Corresponding phenotype names on the web are GFRMV7 (GFR), UAELNMV6 (UAE), CYSCMV7 (CysC), and TSHMEAN34MV (TSH)

TRAIT	SNP	Physical Location (Mb)	Chromosome	P value – FBAT	P value – GEE	GENE
UAE	rs1243400	9,016,664	10	4.8*10^-04	0.036	
UAE	rs827640	9,028,017	10	1.5*10^-05	0.047	
Table 2: Most significant results for GFR (examination 7), UAE (examination 6), cysC (examination 7), and mean TSH (examinations 3 and 4) by GEE (2a), FBAT (2b) and linkage (2c) analyses (Continued)

Trait	SNP	Chromosome	Physical location (Mb)	LOD 1.5 (Lower; Mb)	LOD 1.5 (Upper; Mb)	LOD 1.5
Serum Phosphorous	rs754958	8	134307953	130413367	139409406	4.33
Uric acid	rs10495487	2	2310945	107241	3787803	4.28
Serum creatinine (exam 6)	rs10489578	1	229251990	224108350	230301885	3.35
Luteinizing Hormone	rs10515134	17	52218447	45043525	59136652	3.17
GFR (exam 6)	rs1049578	1	229251990	220881707	230301885	3.08
Serum Calcium	rs10484370	6	18686366	10181754	21792915	3.03
GFR (exam 7)	rs10511176	3	100809191	73551217	103238533	2.79
Serum creatinine (exam 5)	rs10502302	18	2542886	156277	3857290	2.51

2c. Magnitude and Location of Peak LOD scores for regions in which LOD exceeds 2.5. Corresponding phenotype names on the web are: PHOSPHORUSMV2 (serum phosphorous), URICACIDMV2 (uric acid), SCRLNMVNL6 (serum creatinine exam 6), LHMY3 (luteinizing hormone), GFRMVNL6 (GFR exam 6), CALCIUMMV2 (serum calcium), GFRMV7 (GFR exam 7), and SCRLNMVNL5 (serum creatinine exam 5)

*All traits are multivariable-adjusted; see Table 1 for specific covariate adjustments.
Table 3: SNPs showing the top 8 significant association with multiple measurements of GFR, UACR, or TSH phenotypes.

Trait	chromosome	SNP (rsID)	Physical Location	Genes (in or near)	Mean p-value (GEE)	Mean p-value (FBAT)
GFR	21	rs2839235	46625020	PCNT2	6.3*10^-4	0.281
GFR	17	rs10512437	27046466		0.002	0.197
GFR	13	rs2480555	70785310	DACH1	0.003	0.006
GFR	7	rs10486135	11301740		0.004	0.142
GFR	7	rs727087	8244570	ICA1	0.004	0.223
GFR	13	rs1005066	70790573	DACH1	0.004	0.022
GFR	18	rs2885618	41244839	SETBP1	0.004	0.024
GFR	2	rs10496887	142198571	RPR1B	0.005	0.091
UAE	11	rs1712790	114126679	FAM5SD	9.1*10^-7	0.009
UAE	6	rs10485409	91562132	EPHA7	1.0*10^-5	0.067
UAE	21	rs9305354	28397067		1.9*10^-5	0.018
UAE	11	rs10502192	114127562	FAM5SD	3.6*10^-5	0.041
UAE	1	rs2077678	75246848		4.4*10^-5	0.022
UAE	4	rs723464	133940196		4.9*10^-5	0.000
UAE	21	rs9305355	28397088		5.0*10^-5	0.011
UAE	6	rs10484587	143183270	AIG1	5.2*10^-5	0.032
TSH	7	rs6977660	19578720		1.6*10^-5	0.022
TSH	4	rs10493147	129095104	HSPA4L	2.1*10^-5	0.019
TSH	7	rs10495959	21882699	DNAIHI	2.8*10^-5	0.111
TSH	6	rs9322817	105338926		7.4*10^-5	0.576
TSH	2	rs9308765	118759439	INSIG2	7.7*10^-5	0.404
TSH	6	rs6942331	105298507		1.6*10^-4	0.541
TSH	7	rs10486365	19574604		1.9*10^-4	0.221
TSH	7	rs10486653	34484903	BMPER	2.7*10^-4	0.252

*see details in methods for criteria for generating mean p-value

Table 4: Results on Association Analysis for Candidate Genes

4a. Results of GEE analysis between SNPs in the CST3 and APOE candidate genes and the kidney function traits with p-value < 0.05. Corresponding phenotype names on the web are CYSMV7 (CysC) and CKDMV7 (CKD).

Candidate gene	PHENOTYPE	SNP	CHROMOSOME	Location	Minor allele frequency(%)	P_value (GEE)	Partial R²
CST3	CysC	rs1158167	20	23,526,189	21	8.0*10^-9	2.5
CST3	CysC	rs2145231	20	23,573,547	15	1.1*10^-5	1.2
CST3	CysC	rs726217	20	23,532,116	38	3.1*10^-4	0.8
CST3	CysC	rs911122	20	23,573,746	37	0.007	1.1
APOE	CKD	rs3760626	19	50,148,945	45		-

4b. Results of FBAT analysis between SNPs in the CST3 candidate gene and kidney function traits with p-value < 0.05. Corresponding phenotype names on the web are CYSMV7 (CysC) and UAEGE30HTNMV6 (UAE ≥ 30 mg/g)

Candidate gene	PHENOTYPE	SNP	CHROMOSOME	Location	P_value
CST3	CysC	rs1158167	20	23,526,189	0.006
CST3	CysC	rs2145231	20	23,573,547	0.011
CST3	UAE ≥ 30*	rs911122	20	23,573,746	0.032

*In a sample enriched for hypertensive individuals
also have excellent assessment of potential confounders that we are able to adjust for in our residual creation. Because the Framingham Heart Study has measured multiple traits, we are able to examine phenotype clustering. Limitations exist as well. Kidney function was ascertained by a single serum creatinine measure, which may lead to misclassification. Our sample was not selected for CKD, and as a result, affected individuals had moderate CKD as reflected by the median eGFR of 53.7 ml/min/1.73 m² among participants with CKD. The MDRD equation, which was used to estimate GFR, has been shown to underestimate GFR by 29% in healthy individuals [51]; therefore, we may have introduced additional misclassification into our trait definition. We used a spot urine specimen to assess UAE instead of a 24-hour collection. However, spot UAE approximates 24-hour collections [40], and are not prone to the error inherent in collecting 24-hour urine specimens. We used cysC as a continuous trait and did not use transforming equations to estimate GFR, as most existing equations have been developed in small, selected samples [52,53], or developed using immunoturbimetric method [53,54] instead of nephelometry and therefore we did not feel as though they were appropriate for use in our large population-based cohort. Further, we used cystatin C as a marker of kidney function but can not rule out that it may also reflect cardiovascular disease risk above and beyond its relation to kidney function [55-59]. Our focus on multivariable models may have led us to miss important bivariate associations between SNPs and measures of kidney function. Given that our findings have not yet been replicated, many p-values may represent false positive findings. We used TSH as an indicator of thyroid function, as we do not have measures of free thyroxine or a reliable assessment of thyroid disease in our study sample. Our sample is neither ethnically diverse nor nationally representative, and it is uncertain how our results would apply to other ethnic groups. However, in genetics studies, sample homogeneity is beneficial in order to reduce population stratification. For limitations pertaining to our genotyping or statistical methods, please see the Overview [37].

Conclusion
Kidney function traits and TSH are associated with SNPs on the Affymetrix 100K SNP GeneChip. Replication of association between these traits and SNPs requires follow-up in independent samples. These data will serve as a valuable resource for replication as more SNPs associated with kidney function and endocrine traits are identified.

Abbreviations
CKD = chronic kidney disease; cysC = cystatin-C; DHEAS = dehydroepiandrosterone sulfate; FBAT = family-based association tests; FSH = follicle stimulating hormone; GEE = generalized estimating equations; GFR = glomerular filtration rate; LD = linkage disequilibrium; LH = luteinizing hormone; MDRD = Modification of Diet in Renal Disease; SNP = single nucleotide polymorphism; TSH = thyroid stimulating hormone; UAE = urinary albumin excretion.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SH generated the phenotype data, participated in the analysis, and drafted the manuscript. CF helped generate the phenotype data, interpret the results, and draft the manuscript. QY generated the phenotype data, interpreted the results, and helped draft the manuscript. JBM helped generate the phenotype data, interpret the results, and revised the manuscript critically for important intellectual content; and has given final approval of the version to be published. EP assisted in the acquisition and cleaning of the TSH data and critically reviewed a draft of the manuscript. All authors gave final approval to the manuscript.

Acknowledgements
The Framingham Study is supported by N01-HC 25195. Dr Meigs is supported by an American Diabetes Association Career Development Award. The study was also supported by donation of urinary albumin excretion assay reagents from Roche Diagnostics Inc. A portion of the research was conducted using the BU Linux Cluster for Genetic Analysis (LinGA) funded by the NIH NCRR (National Center for Research Resources) Shared Instrumentation grant (1S10RR16373-01A1). The investigators would like to recognize the Framingham Heart Study participants and the following collaborators: Martin Larson, Daniel Levy, Emelia J. Benjamin, Joanne M. Murabito, and Ramachandran S. Vasan.

This article has been published as part of BMC Medical Genetics Volume 8 Supplement 1, 2007: The Framingham Heart Study 100,000 single nucleotide polymorphisms resource. The full contents of the supplement are available online at http://www.biomedcentral.com/1471-2350/8?issue=S1.

References
1. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS: Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 2003, 41:1-12.
2. Manjunath G, Tighiouart H, Iribham H, MacLeod B, Salem DN, Griffith JL, Coresh J, Levey AS, Sarnak MJ: Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community. J Am Coll Cardiol 2003, 41:47-55.
3. Manjunath G, Tighiouart H, Coresh J, MacLeod B, Salem DN, Griffith JL, Levey AS, Sarnak MJ: Level of kidney function as a risk factor for cardiovascular outcomes in the elderly. Kidney Int 2003, 63:1121-1129.
4. Mann JF, Gerstein HC, Pogue J, Bosch J, Yusuf S: Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med 2001, 134:629-636.
5. Fried LF, Shlipak MG, Crump C, Bleyer A, Gottlieb J, Kronmal RA, Kuller LH, Newman AB: Renal insufficiency as a predictor of cardiovascular outcomes and mortality in elderly individuals. J Am Coll Cardiol 2003, 41:1364-1372.
6. O’Hare AM, Vittinghoff E, Hsia J, Shlipak MG: Renal insufficiency and the risk of lower extremity peripheral arterial disease: results from the heart and estrogen/progestin replacement study (HERS). J Am Soc Nephrol 2004, 15:1046-1051.
Page 9 of 10
(page number not for citation purposes)
all burden and rates of treatment and control. Arch Intern Med 2006, 166:1884-1891.

43. Amin S, Zhang Y, Sawin CT, Evans SR, Hannan MT, Kiel DP, Wilson PW, Selvin DT: Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framingham study. Ann Intern Med 2000, 133:951-963.

44. Arnlov J, Pencina MJ, Amin S, Nam BH, Benjamin EJ, Murabito JM, Wang TJ, Knapp PE, D’Agostino RB Sr, Bhasin S, Vasan RS: Endogenous sex hormones and cardiovascular disease incidence in men. Ann Intern Med 2006, 145:176-184.

45. Yang Q, Guo CY, Cupples LA, Levy D, Wilson PW, Fox CS: Genome-wide search for genes affecting serum uric acid levels: the Framingham Heart Study. Metabolism 2005, 54:1435-1441.

46. Camp TM, Smiley LM, Hayden MR, Tyagi SC: Mechanism of matrix accumulation and glomerulosclerosis in spontaneously hypertensive rats. J Hypertens 2003, 21:1719-1727.

47. Eriksson P, Deguchi H, Samnegard A, Lundman P, Boquist S, Tornvall P, Ericsson CG, Bergstrand L, Hansson LO, Ye S, Hamsten A: Human evidence that the cystatin C gene is implicated in focal progression of coronary artery disease. Arterioscler Thromb Vasc Biol 2004, 24:551-557.

48. Amin S, Zhang Y, Sawin CT, Evans SR, Hannan MT, Kiel DP, Wilson PW, Selvin DT: Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framingham study. Arch Intern Med 2000, 162:773-779.

49. Hoek FJ, Kemperman FA, Krediet RT: A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 2003, 18:2024-2031.

50. Krediet RT: A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 2003, 18:2024-2031.

51. Rule AD, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG: Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med 2004, 141:929-937.

52. Rule AD, Bergstralh EJ, Slezak JM, Bergert J, Larson TS: Glomerular filtration rate estimated by cystatin C among different clinical presentations. Kidney Int 2006, 69:399-405.

53. Hoek FJ, Kemperman FA, Krediet RT: A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 2003, 18:2024-2031.

54. Grubb A, Bjork J, Lindstrom V, Sterner G, Bondesson P, Nyman U: A cystatin C-based formula without anthropometric variables estimates glomerular filtration rate better than creatinine clearance using the Cockcroft-Gault formula. Scand J Clin Lab Invest 2005, 65:153-162.

55. Shlipak MG, Sarnak MJ, Katz R, Fried LF, Seliger SL, Newman AB, Siscovick DS, Stehman-Breen C: Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med 2005, 352:2049-2050.

56. Shlipak MG, Wassel Fyr CL, Chertow GM, Harris TB, Kritchevsky SB, Tylavsky FA, Satterfield S, Cummings SR, Newman AB, Fried LF: Cystatin C and mortality risk in the elderly: the health, aging, and body composition study. J Am Soc Nephrol 2006, 17:254-261.

57. Fried LF, Katz R, Sarnak MJ, Shlipak MG, Chaves PH, Jenny NS, Stehman-Breen C, Gillen D, Bleyer AJ, Hirsch C, Siscovick D, Newman AB: Kidney function as a predictor of noncardiovascular mortality. J Am Soc Nephrol 2005, 16:3728-3735.

58. O’Hare AM, Newman AB, Katz R, Fried LF, Stehman-Breen CO, Seliger SL, Siscovick DS, Shlipak MG: Cystatin C and incident peripheral arterial disease events in the elderly: results from the Cardiovascular Health Study. Arch Intern Med 2005, 165:2666-2670.

59. Shlipak MG, Katz R, Fried LF, Jenny NS, Stehman-Breen CO, Newman AB, Siscovick DS, Pasky BM, Sarnak MJ: Cystatin-C and mortality in elderly persons with heart failure. J Am Coll Cardiol 2005, 45:268-271.