A Systematic Review of the Diagnostic Accuracy of Volatile Organic Compounds in Airways Diseases and their relation to Markers of Type-2 Inflammation

Wadah Ibrahim¹,²*, Sushiladevi Natarajan¹,²*, Michael Wilde³, Rebecca Cordell¹, Paul S Monks³, Neil Greening¹,², Christopher E Brightling¹,², Rachael Evans¹,², Salman Siddiqui¹,²

wadah.ibrahim@leicester.ac.uk; sushiladevi.natarajan@nhs.net; mjw77@leicester.ac.uk;
rc145@leicester.ac.uk; paul.monks@leicester.ac.uk; neil.greening@leicester.ac.uk;
ceb17@leicester.ac.uk; re66@leicester.ac.uk; ss338@leicester.ac.uk;

Corresponding author: Professor Salman Siddiqui,
Leicester Biomedical Research Centre (Respiratory Theme)
College of Life Sciences, Department of Respiratory Sciences, University of Leicester
Glenfield Hospital,
Groby Road
Leicester
LE3 9QP
t: +44 116 256 3841
e: ss338@le.ac.uk

Authors’ affiliations:
¹Leicester NIHR Biomedical Research Centre (Respiratory theme), Glenfield Hospital,
Groby Road, Leicester LE3 9QP
2 College of Life Sciences, Department Respiratory Sciences, University of Leicester,
University Road, Leicester LE1 7RH

3 Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH

*Equal contribution to work
Supplementary material

1. Search strategy

A PRISMA oriented systematic search was completed from January 1997 to December 2020 using the following sources of evidence, (i) Cochrane library, (ii) Medline and (iii) EMBASE.

Further details on methodology can be found in (PROSPERO - CRD42019141718).

Strategy 577083

#	Database	Search term	Results
1	Medline	("volatile organic compound*").ti,ab	7726
2	Medline	"VOLATILE ORGANIC COMPOUNDS"/	6691
3	Medline	(VOC OR vocs).ti,ab	7212
4	Medline	(exhal*6 OR breath*).ti,ab	113917
5	Medline	EXHALATION/	3377
6	Medline	(1 OR 2 OR 3)	14894
7	Medline	(4 OR 5)	117153
8	Medline	(6 AND 7)	1107
9	Medline	exp DYSPNEA/	19644
10	Medline	(breathless* OR dyspn*4).ti,ab	46465
11	Medline	(9 OR 10)	55084
12	Medline	(8 AND 11)	5
13	Medline	(asthma*).ti,ab	146117
14	Medline	exp ASTHMA/	121260
	EMBASE		
---	--	---	---
33	EMBASE ("volatile organic compound*").ti,ab		10048
34	EMBASE "VOLATILE ORGANIC COMPOUND"/		14083
35	EMBASE "VOLATILE ORGANIC COMPOUNDS"/		10777
36	EMBASE (voc OR vocs).ti,ab		9092
37	EMBASE (33 OR 34 OR 35 OR 36)		20436
38	EMBASE (exhal*6 OR breath*).ti,ab		165810
39	EMBASE EXHALATION/		4059
40	EMBASE (38 OR 39)		177809
41	EMBASE (37 AND 40)		1675
42	EMBASE (copd).ti,ab		70312
43	EMBASE (((chronic AND obstructive) AND pulmonary) AND disease).ti,ab		59947
44	EMBASE "CHRONIC OBSTRUCTIVE LUNG DISEASE"/ OR		112227
	"CHRONIC OBSTRUCTIVE LUNG DISORDER"/ OR		
	"CHRONIC OBSTRUCTIVE PSEUDOEMPHYSEMA"/ OR		
	"CHRONIC OBSTRUCTIVE PULMONARY DISEASE"/ OR		
	"CHRONIC OBSTRUCTIVE PULMONARY DISORDER"/ OR		
	"CHRONIC OBSTRUCTIVE RESPIRATORY DISEASE"/		
45	EMBASE (((chronic AND obstructive) AND airway) AND (disease OR coad)).ti,ab		9382
46	EMBASE (((chronic AND obstructive) AND lung) AND disease).ti,ab		24650
47	EMBASE ((chronic AND airflow) AND limitation).ti,ab		2646
EMBASE (((chronic AND obstructive) AND respiratory) AND disease).ti,ab 17649
EMBASE (emphysema).ti,ab 28141
EMBASE exp EMPHYSEMA/ 41697
EMBASE (chronic AND bronchitis).ti,ab 15855
EMBASE "CHRONIC BRONCHITIS"/ 11611
EMBASE exp ASThma/ 237742
EMBASE (asthma*).ti,ab 205990
EMBASE exp PNEUMONIA/ 265756
EMBASE (pneumonia* OR lung inflammation*or respiratory tract infection* OR respiratory infection*).ti,ab 225025
EMBASE exp "HEART FAILURE"/ 443663
EMBASE (heart failure).ti,ab 242128
EMBASE (42 OR 43 OR 44 OR 45 OR 46 OR 47 OR 48 OR 49 OR 50 OR 51 OR 52 OR 53 OR 54 OR 55 OR 56 OR 57 OR 58) 1204355
EMBASE (41 AND 59) 375

Cochrane search:

ID Search
#1 "volatile organic compound*"
#2 MeSH descriptor: [Volatile Organic Compounds] this term only
#3 VOC OR vocs
#4 MeSH descriptor: [Exhalation] this term only
#5 exhal*6 OR breath*
#6 #1 OR #2 OR #3
#7 #4 OR #5

#8 #6 AND #7

#9 asthma*

#10 MeSH descriptor: [Asthma] this term only

#11 MeSH descriptor: [Pulmonary Disease, Chronic Obstructive] this term only

#12 copd

#13 (((chronic AND obstructive) AND pulmonary) AND disease)

#14 (((chronic AND obstructive) AND airway) AND (disease OR coad))

#15 (((chronic AND obstructive) AND lung) AND disease)

#16 ((chronic AND airflow) AND limitation)

#17 (((chronic AND obstructive) AND respiratory) AND disease)

#18 (emphysema)

#19 MeSH descriptor: [Emphysema] this term only

#20 (chronic AND bronchitis)

#21 MeSH descriptor: [Bronchitis, Chronic] this term only

#22 {OR #9-#21}

#23 {AND #8-#22}

#24 #8 and #22
2. Risk of Bias table (QUADAS2)

Table A: Breakdown of included studies’ risk of bias and applicability concerns

Asthma studies	Risk of Bias	Applicability concerns										
Author	Patient selection	Index test	Reference standard	Flow and timing	Patient selection	Index test	Reference standard					
Olopade et al (1997)	Low	Unclear	Low	Low	Low	Low	Low					
Paredi et al (2000)	Low	High	Low	Low	Low	Unclear	Low					
Larstad et al (2007)	Low	High	Low	Low	Unclear	Low	Low					
Dragonieri et al (2007)	Low	Unclear	Low	Low	Low	Low	Low					
Fens et al (2009)	Low											
Ibrahim et al (2011)	High	High	Low	Low	Low	Low	Low					
Timms et al (2012)	Low	High	High	Low	Low	Low	Low					
Van der Schee et al (2012)	High	Low	Unclear	Low	Low	Low	Low					
Schivo et al (2013)	Low											
Meyer et al (2014)	Low	High	Low	Low	Low	High	Low					
Schliech et al (2019)	High	Low	Low	Low	Low	Low	Low					
Brinkman et al (2019)	Unclear	Low	Low	Low	Low	Low	Low					
Dragonieri et al (2018)	Low											
Brinkman et al (2019)	Low	High	Low	Low	Low	Low	Low					
Study	2017	2015	2010	2018	2010	2010	2010					
------------------------------	------	------	------	------	------	------	------					
Plaza et al (2015)			High									
Lazar et al (2010)												
De Vries et al (2018)												
Montuschi et al (2010)												
Brinkman et al (2020)												
COPD studies												
Dragonieri et al (2009)			High									
Westhoff et al (2010)				High								
Basanta et al (2010)												
Van berkel et al (2010)			High									
Fens et al (2011)												
Cristescu et al (2011)												
Hattesohl et al (2011)			High									
Westhoff et al (2011)												
Phillips et al (2012)												
Basanta et al (2012)												
Study	2013	2015	2015	2015	2016	2016	2017	2018	2018	2019	2019	2019
------------------------------	------	------	------	------	------	------	------	------	------	------	------	------
Martines Sinues et al (2013)	Low	High	Low									
Shafiek et al (2015)	Low	High	Low									
Cazzolla et al (2015)	Low	Unclear	Low									
Besa et al (2015)	Low	Unclear	Low									
Gaida et al (2016)	Unclear	Unclear	Low									
Allers et al (2016)	Low											
Jerno-estaban et al (2017)	Low	High	Low	Low	Low	High	Low	Low	Low	Low	Low	Low
Pizzini et al (2018)	Low											
Bregy et al (2018)	High	High	Unclear	Low	Unclear							
Scarlata et al (2018)	High	High	Low									
Phillips et al (2014)	Low	High										
Incalzi et al (2012)	Low	High	Low									
Rodriguez-Aguilar et al (2019)	Low	Unclear	Low									
Velzen et al (2019)	Unclear	Low										
Gaugg et al (2019)	High	High	Low									
Figure A: Risk of bias and applicability concerns graph: review authors' judgements about each domain presented as percentages across included studies.

- Patient Selection
- Index Test
- Reference Standard
- Flow and Timing

Legend:
- High
- Unclear
- Low
Table B: Description of modification of QUADAS-2:

Risk of Bias	QUADAS-2	Modified QUADAS-2
Patient selection	Was a consecutive or random sample of patients enrolled?	Was patient selection representative of the intended population
	Was a case-control design avoided?	Did the study include disease state and healthy controls
	Did the study avoid inappropriate exclusions?	Did the study avoid inappropriate exclusions?
Index test	Were the index test results interpreted without knowledge of the results of the reference standard?	Was the index test and data interpretation completed in a standardised and reproducible way?
	If a threshold was used, was it pre-specified?	Was any biomarker validation performed (internal or external)?
Reference standard	Is the reference standard likely to correctly classify the target condition?	Is the reference standards likely to correctly classify the target condition?
	Were the reference standard results interpreted without knowledge of the results of the index test?	Removed as not applicable
Flow and timing	Was there an appropriate interval between index test and reference standard?	Was there an appropriate interval between index test and reference standard?
	Did all patients receive the same reference standard?	Did all patients receive the same reference standard?
	Were all patients included in the analysis?	Were all patients included in the analysis?
Applicability	QUADAS-2	Modified QUADAS-2
--------------	--	---
Patient selection	Are there concerns that the included patients and setting do not match the review question?	Are there concerns that the included patients and setting do not match the review question?
Index test	Are there concerns that the index test, its conduct, or interpretation differs from the review question?	Could the conduct or interpretation of the index test have introduced bias?
Reference standard	Are there concerns that the target condition as defined by the reference standard does not match the question?	Are there concerns that the target condition as defined by the reference standard does not match the question?

Index test: Exhaled breath analysis

Reference standard: Internationally accepted standard for diagnosing asthma and COPD (i.e. following GINA and GOLD guidelines)

Target condition: Asthma and COPD

Intended use of the index test: diagnostic
3. PRISMA Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	7-8
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	7-8
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Supplementary material
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7-8
Section/topic	#	Checklist item	Reported on page #
---------------	---	----------------	-------------------
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7-8
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7-8
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	N/A
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis.	N/A

RESULTS

Section/topic	#	Checklist item	Reported on page #
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9 and Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8,9,10,11 and Tables 1-2
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8 and supplementary material
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	9-11
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	N/A
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Supplementary material
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	N/A
DISCUSSION

Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.

FUNDING

Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.

Funding

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org

Page 2 of 2
Compound and chemical classification	Author	Disease	Comments
1. Carbonyl containing			
1.1. Aldehydes			
2-oxoglutaric acid semi-aldehyde	Bregy et al [83]	COPD vs. controls	Analysis by SESI-MS - high levels in COPD patients
aspartic acid semi-aldehyde	Bregy et al [83]	COPD vs. controls	Analysis by SESI-MS - high levels in COPD patients
Benzaldehyde	Phillips et al [38]	COPD vs. controls	
Butanal	Rodriguez-Aguilar et al [40]	COPD vs. controls	Positively correlated to COPD
Decanal	Basanta et al [21]	COPD vs. controls	Identifying COPD (GC-TOF-MS)
Dodecanal	Basanta et al [21]	COPD vs. controls	Identifying COPD (GC-TOF-MS)
Hexanal	Basanta et al [21]	COPD vs. controls	Identifying COPD (GC-TOF-MS)
Hexanal	Jareno-estaban et al [46]	COPD vs. controls	Discriminates between COPD and healthy controls
Hexanal	Phillips et al [38]	COPD vs. controls	
Nonanal	Basanta et al [21]	COPD vs. controls	Identifying COPD (GC-TOF-MS)
Nonanal	Jareno-estaban et al [46]	COPD vs. controls	Discriminates smokers and former smokers (with and without COPD) and never smokers
Nonanal	Schliech et al [18]	Asthma	Discriminates paucigranulocytic and neutrophilic asthma (Higher in neutrophilic asthma)
Nonanal	Schliech et al [18]	Asthma	Discriminates eosinophilic and neutrophilic asthma (Higher in neutrophilic asthma)
Octanal	Brinkman et al [75]	Asthma	Association between exhaled breath VOCs and urinary levels of salbutamol and OCS
Compound	Authors	Study Type	Correlation/Method
---------------------------	-----------------	------------	--
Pentadecanal	Basanta et al [21]	COPD vs. controls	Identifying COPD (GC-TOF-MS)
Pentadecanal	Ibrahim et al [15]	Asthma vs. controls	Negatively correlated to asthma
Undecanal	Basanta et al [21]	COPD vs. controls	Identifying COPD (GC-TOF-MS)
3-methyl-propanal	Rodriguez-Aguilar et al [40]	COPD vs. controls	Positively correlated to COPD

1.2. Esters

Compound	Authors	Study Type	Correlation/Method
Ethyl 2,2-dimethylacetoacetate	Ibrahim et al [15]	Asthma vs. controls	Positively correlated to asthma
Linalylacetate	Gaida et al [47]	COPD vs. controls	VOCs seem to be related to COPD

1.3. Ketones

Compound	Authors	Study Type	Correlation/Method
2-butanone	Allers et al [82]	COPD vs. controls	IMS - smoking related compounds
2-butanone	Ibrahim et al [15]	Asthma vs. controls	Positively correlated to asthma
2-hexanone	Schliech et al [18]	Asthma	Discriminates pauci-granulocytic and eosinophilic asthma (lower in eosinophilic asthma)
2-pentanone	Allers et al [82]	COPD vs. controls	Detected by GC-APCI-MS discriminates COPD from healthy volunteers
2-pentanone	Pizzini et al [32]	Acute and stable COPD vs. controls	Indicative of acute exacerbation of COPD (positive correlation)
4-heptanone	Pizzini et al [32]	Acute and stable COPD vs. controls	Indicative of acute exacerbation of COPD (positive correlation)
6-methyl-5-hepten-2-one	Pizzini et al [32]	Acute and stable COPD vs. controls	Non-specific. Significant difference between COPD and healthy volunteers (higher in healthy)
Acetone	Martines et al [80]	COPD vs. controls	Discriminate COPD from healthy volunteers using IMS
Cyclohexanone	Pizzini et al [32]	Acute and stable COPD vs. controls	Indicative of acute exacerbation of COPD (positive correlation)
Chemical Name	Authors	Study Type	Result
-----------------------------	------------------------	-------------------	---
Cyclohexanone (CAS 108-94-1)	Westhoff *et al* [76]	COPD vs. controls	IMS identified - raised in COPD patients
Cyclopentanone	Rodriguez-Aguilar *et al* [40]	COPD vs. controls	Positively correlated to COPD

1.4. Organic acids

Chemical Name	Authors	Study Type	Result
11-hydroxyundecanoic acid	Bregy *et al* [83]	COPD vs. controls	Analysis by SESI-MS - low levels in COPD patients
2-hydroxyisobutyric acid	Bregy *et al* [83]	COPD vs. controls	Analysis by SESI-MS - compound predictive that breath is from a COPD patient
2-methyl butanoic acid	Rodriguez-Aguilar *et al* [40]	COPD vs. controls	Negatively correlated to COPD
Acetic acid	Phillips *et al* [38]	COPD vs. controls	
Butanoic acid	Basanta *et al* [21]	COPD vs. controls	Identifying COPD (GC-TOF-MS) - negative correlation
Dodecanedioic acid	Bregy *et al* [83]	COPD vs. controls	Analysis by SESI-MS - low levels in COPD patients
Oxoheptadecanoic acid	Bregy *et al* [83]	COPD vs. controls	Analysis by SESI-MS - low levels in COPD patients
Pentanoic acid	Basanta *et al* [21]	COPD vs. controls	Identifying COPD (GC-TOF-MS) - negative correlation
Lysine	Brinkman *et al* [75]	Asthma	Association between exhaled breath VOCs and urinary levels of salbutamol and OCS
Glycolic acid	Brinkman *et al* [75]	Asthma	Association between exhaled breath VOCs and urinary levels of salbutamol and OCS
ω-oxo-alkenoic acids	Gaugg *et al* [33]	COPD	Levels significantly reduced in frequent COPD exacerbators
ω-hydroxy acids	Gaugg *et al* [33]	COPD	Levels significantly reduced in frequent COPD exacerbators

2. Hydrocarbons

2.1. Alkanes
Compound	Author et al. [Ref]	Study Type	Findings
3,7-dimethylnonane	Schliech et al [18]	Asthma	Discriminates eosinophilic and neutrophilic asthma (Higher in neutrophilic asthma) and lower eosinophilic asthma
Hexane	Schliech et al [18]	Asthma	Discriminates paucigranulocytic and eosinophilic asthma (lower in eosinophilic asthma)
Undecane	Schliech et al [18]	Asthma	Discriminates paucigranulocytic and neutrophilic asthma (Higher in paucigranulocytic asthma)
2,6-Dimethyl-heptane	Van Berkel et al [19]	COPD vs. controls	Classification model differentiated COPD from healthy volunteers
4,7-Dimethyl-undecane	Van Berkel et al [19]	COPD vs. controls	Classification model differentiated COPD from healthy volunteers
4-Methyl-octane	Van Berkel et al [19]	COPD vs. controls	Classification model differentiated COPD from healthy volunteers
Hexadecane	Van Berkel et al [19]	COPD vs. controls	Classification model differentiated COPD from healthy volunteers
6-ethyl-2-methyl-Decane	Cazzola et al [39]	COPD vs. controls	Positively correlated to COPD
Decane	Cazzola et al [39]	COPD vs. controls	Positively correlated to COPD
Hexane, 3-ethyl-4-methyl-	Cazzola et al [39]	COPD vs. controls	Negatively correlated to COPD
Tridecane	Gaida et al [47]	COPD vs. controls	VOCs seem to be related to COPD
Tetradecane	Rodriguez-Aguilar et al [40]	COPD vs. controls	Negatively correlated to COPD
2-methyl-decane	Ibrahim et al [15]	Asthma vs. controls	Positively correlated to asthma
2,6,10-trimethyl-dodecane	Ibrahim et al [15]	Asthma vs. controls	Positively correlated to asthma
2,6,11-trimethyl-dodecane	Ibrahim et al [15]	Asthma vs. controls	Positively correlated to asthma
5,5-Dibutylnonane	Ibrahim et al [15]	Asthma vs. controls	Negatively correlated to asthma
Pentane	Olopade et al [29]	Acute and stable asthma vs. controls	Raised in asthma
Compound	Authors	Conditions	Observations
--------------------------------	-----------------	-----------------------------------	---
Ethane	Paredi et al [36]	Asthma vs. controls	Raised in asthma
Butane	Phillips et al [38]	COPD vs. controls	Undetermined correlation
2,4-dimethylheptane	Pizzini et al [32]	Acute and stable COPD vs. controls	Lower in COPD exacerbations compared to healthy volunteers
2,6-dimethyloctane	Pizzini et al [32]	Acute and stable COPD vs. controls	Lower in COPD exacerbations compared to healthy volunteers
2-methylhexane	Pizzini et al [32]	Acute and stable COPD vs. controls	Higher in COPD exacerbations compared to healthy volunteers
cyclohexane	Pizzini et al [32]	Acute and stable COPD vs. controls	Higher in COPD exacerbations compared to healthy volunteers
n-butane	Pizzini et al [32]	Acute and stable COPD vs. controls	Indicative of acute exacerbation of COPD (negative correlation)
n-Heptane	Pizzini et al [32]	Acute and stable COPD vs. controls	Indicative of stable COPD (positive correlation)

2.2. Alkenes

Compound	Authors	Conditions	Observations
3- tetradecene	Schliech et al [18]	Asthma	Discriminates paucigranulocytic and neutrophilic asthma (Higher in neutrophilic asthma)
Pentadecene	Schliech et al [18]	Asthma	Discriminates paucigranulocytic and neutrophilic asthma (Higher in neutrophilic asthma)
Isoprene	Van Berkel et al [19]	COPD vs. controls	Classification model differentiated COPD from healthy volunteers
1-Pentene, 2,4,4-trimethyl-	Cazzola et al [39]	COPD vs. controls	Negatively correlated to COPD
1,6-Dimethyl-1,3,5-heptatriene	Gaida et al [47]	COPD vs. controls	VOCs seem to be related to COPD
3,5-heptatriene	Gaida et al [47]	COPD vs. controls	VOCs seem to be related to COPD
Isoprene	Phillips et al [38]	COPD vs. controls	Differentiating stable COPD patients
2.3. Hydrocarbons

Compound	Authors	Study Group	Correlation
C16 hydrocarbon	Van Berkel *et al* [19]	COPD vs. controls	Classification model differentiated COPD from healthy volunteers
4-ethyl-o-xylene	Ibrahim *et al* [15]	Asthma vs. controls	Negatively correlated to asthma
Isoprene	Lastard *et al* [67]	Asthma vs. controls	Low in asthmatics
Nonadecane	Phillips *et al* [38]	COPD vs. controls	Undetermined correlation
Octane	Rodriguez-Aguilar *et al* [40]	COPD vs. controls	Positively correlated to COPD

2.4. Monoaromatics

Compound	Authors	Study Group	Correlation
Benzene, 1,3,5-tri-tert-butyl-	Cazzola *et al* [39]	COPD vs. controls	Negatively correlated to COPD
1-Ethyl-3-methyl benzene	Gaida *et al* [47]	COPD vs. controls	VOCs seem to be related to COPD
m/p-Xylene	Gaida *et al* [47]	COPD vs. controls	VOCs seem to be related to COPD
O-xylene	Gaida *et al* [47]	COPD vs. controls	VOCs seem to be related to COPD
Benzene	Phillips *et al* [38]	COPD vs. controls	Undetermined correlation
Toluene	Phillips *et al* [38]	COPD vs. controls	Undetermined correlation

2.5. Terpenes

Compound	Authors	Study Group	Correlation
Limonene	Cazzola *et al* [39]	COPD vs. controls	Negatively correlated to COPD
Terpinolene	Ibrahim *et al* [15]	Asthma vs. controls	Positively correlated to asthma
4-Carene	Brinkman *et al* [75]	Asthma	Association between exhaled breath VOCs and urinary levels of salbutamol and OCS

3. Alcohol and Phenols
3.1. Alcohols

Compound	Authors	Study Type	Correlation
Cyclohexanol	Basanta et al [21]	COPD vs. controls	Identifying COPD (GC-TOF-MS)
Bicyclo[2.2.2]octan-1-ol, 4-methyl -	Brinkman et al [25]	Acute and stable asthma vs. controls	Correlated with sputum eosinophils during loss of asthma control and with FENO during loss of asthma control
C9H16O			
Methanol CH3OH	Brinkman et al [25]	Acute and stable asthma vs. controls	Correlated with FEV1% predicted during loss of asthma control
2-Propanol	Cazzola et al [39]	COPD vs. controls	Negatively correlated to COPD
2-Propanol	Rodriguez-Aguilar et al [40]	COPD vs. controls	Positively correlated to COPD
Phenole	Gaida et al [47]	COPD vs. controls	VOCs seem to be related to COPD
2-butylcyclohexanol	Ibrahim et al [15]	Asthma vs. controls	Negatively correlated to asthma
2-butyloctanol	Rodriguez-Aguilar et al [40]	COPD vs. controls	Positively correlated to COPD
Benzyl alcohol	Ibrahim et al [15]	Asthma vs. controls	Positively correlated to asthma
Phenol	Phillips et al [38]	COPD vs. controls	Undetermined correlation
1-propanol	Schliech et al [18]	Asthma	Discriminates eosinophilic and neutrophilic asthma (Higher in neutrophilic asthma) and lower in eosinophilic asthma

3.2. Phenol derivatives

Compound	Authors	Study Type	Correlation
Butylated hydroxytoluene	Cazzola et al [39]	COPD vs. controls	Negatively correlated to COPD
m/p-Cresol	Gaida et al [47]	COPD vs. controls	VOCs seem to be related to COPD

4. Others
4.1. Sulphides

Compound	Author(s)	Group	Correlation
Phthalic anhydride	Phillips et al [38]	COPD vs. controls	Undetermined correlation
Sulphur dioxide	Phillips et al [38]	COPD vs. controls	Undetermined correlation
Dimethyl disulfide	Pizzini et al [32]	Acute and stable COPD vs. controls	Non-specific. Significant difference between COPD and healthy volunteers (higher in healthy)
Methyl propyl sulfide	Pizzini et al [32]	Acute and stable COPD vs. controls	Indicative of stable COPD (positive correlation)

4.2. Permanent gases

Compound	Author(s)	Group	Correlation
Ethyl 4-nitrobenzoate	Ibrahim et al [15]	Asthma vs. controls	Negatively correlated to asthma
Indole	Martines et al [80]	COPD vs. controls	Discriminate COPD from healthy volunteers using IMS
Indole	Gaida et al [47]	COPD vs. controls	VOCs seems to be related to COPD

4.3. Heterocycles

Compound	Author(s)	Group	Correlation
Oxirane-dodecyl	Basanta et al [21]	COPD vs. controls	VOCs seem to be related to COPD
γ-hydroxy-L-homoarginine	Bregy et al [83]	COPD vs. controls	Analysis by SESI-MS - compound predictive that breath is from a COPD patient

4.4. Nitriles

Compound	Author(s)	Group	Correlation
Ace-tonitrile - C2H3N	Brinkman et al [25]	Acute and stable asthma vs. controls	Correlated with sputum eosinophils and FEV1% during loss of asthma control
Hexyl ethylphosphonofluoridate	Cazzola et al [39]	COPD vs. controls	Negatively correlated to COPD

4.5. Anhydrides

Compound	Author(s)	Group	Correlation
Acetonitrile	Allers et al [82]	COPD vs. controls	IMS - smoking related compound

4.6. Furans
Compound	Authors	Study Groups	Correlation
2-pentylfuran	Basanta et al [21]	COPD vs. controls	Identifying COPD (GC-TOF-MS)
4.7. Quinones			
Carbon dioxide	Phillips et al [38]	COPD vs. controls	Undetermined correlation
4.8. Others			
2,6-Di-tert-butylquinone	Ibrahim et al [15]	Asthma vs. controls	Negatively correlated to asthma
3,4-Dihydroxybenzonitrile	Ibrahim et al [15]	Asthma vs. controls	Positively correlated to asthma
Allyl methyl sulphide	Ibrahim et al [15]	Asthma vs. controls	Positively correlated to asthma

Table C: Table outlining reported VOC biomarkers in Asthma and COPD.