The charm-quark contribution to ε_K and ΔM_K

Joachim Brod

Excellence Cluster Universe, Technische Universität München, Garching, Germany
University of Cincinnati, Cincinnati, OH, USA
E-mail: joachim.brod@uc.edu

Neutral Kaon mixing plays an important role in the phenomenology of the standard model and its extensions because of its sensitivity to high-energy scales. In particular ε_K, parameterising indirect CP violation in the neutral Kaon system, serves as an important constraint on models of new physics and is well suited for the indirect search for heavy new particles. In order to exploit this potential, a precise prediction of the standard-model background is crucial. I give a short summary of the standard-model prediction of ε_K, and present our recent NNLO QCD calculation of the charm-quark contribution η_{cc} to the $|\Delta S| = 2$ effective Hamiltonian. We find a large 36% shift with respect to the NLO value that leads to $\eta_{cc} = 1.87(76)$, shifting the standard-model prediction to $|\varepsilon_K| = 1.81(28) \times 10^{-3}$.

XXIst International Europhysics Conference on High-Energy Physics
21-27 July 2011
Grenoble, Rhônes-Alpes, France

*Speaker.
1. Introduction

Neutral Kaon mixing proceeds via the quark-level flavour-changing neutral current (FCNC) $s - d$ transition. In the standard model of particle physics (SM) it is forbidden at tree level and induced by the weak interaction via the well-known box diagrams (see Fig. 1). The parameter ε_K describes indirect CP violation in the neutral Kaon system. The top-quark contribution to ε_K is parametrically suppressed by small CKM-matrix elements, whereas the hadronic matrix elements of non-SM operators are enhanced by QCD effects. This leads to an exceptional sensitivity to high-energy scales.

In the last decade there has been huge progress in reducing the theory uncertainty of the hadronic contribution to ε_K, in particular in the lattice computation of the hadronic matrix elements. We have in turn calculated the NNLO QCD corrections to the effective $|\Delta S| = 2$ Hamiltonian. In this talk, I present our recent NNLO calculation of the charm-quark contribution η_{cc}: the correction is large and shifts the SM prediction to $|\varepsilon_K| = 1.81(28) \times 10^{-3}$ [1]. This prediction is in slight disagreement with the precisely measured value $|\varepsilon_K| = 2.228(11) \times 10^{-3}$ [2]. However, the remaining sizeable uncertainty of the SM prediction currently precludes us from inferring a clear sign of new physics in neutral Kaon mixing.

2. SM prediction of ε_K

The parameter ε_K is defined as the ratio of decay amplitudes\(^1\) $\varepsilon_K = \langle (\pi\pi)_I=0 | K_L \rangle / \langle (\pi\pi)_I=0 | K_S \rangle$ and vanishes in case of exact CP symmetry. It can be expressed by the following phenomenological formula [3]

$$\varepsilon_K = e^{i\phi_e} \sin \phi_e \left(\frac{\text{Im} M_{12}}{\Delta M_K} + \xi \right),$$

(2.1)

where $\phi_e = \arctan(2\Delta M_K/\Delta \Gamma_K) \approx 45^\circ$. $\xi = \text{Im} A_0 / \text{Re} A_0$, where $A_I = \langle (\pi\pi)_I | K^0 \rangle$, is a non-perturbative correction of $\mathcal{O}(5\%)$. We have neglected terms proportional to the second power of the small quantities $\phi = \text{arg}(-M_{12}/\Gamma_{12})$ and $|A_2| / |A_0|$, and to the first power in Γ_L/Γ_S. Taking ΔM_K and ϕ_e from experiment, we obtain a theory prediction of ε_K by computing $\text{Im} M_{12}$ and ξ.

The effective Hamiltonian below the charm-quark scale, inducing the $|\Delta S| = 2$ transitions in the SM, is given by

$$\mathcal{H}^{\Delta S=2} = \frac{G_F^2}{4\pi^2} M_W^2 \left[\lambda_c^2 \eta_{cc} S(x_c) + \lambda_t^2 \eta_{tt} S(x_t) + 2\lambda_c \lambda_t \eta_{ct} S(x_c, x_t) \right] b(\mu) \bar{Q}_{S2} + \text{H.c.} + \ldots$$

(2.2)

\(^1\)A very lucid discussion of the details can be found in Ref. [3].
where G_F is the Fermi constant, M_W the W-boson mass, and $x_i = m_i^2/M_W^2$ (m_i being the quark masses). We have defined $\hat{\lambda}_i = V_{is}^* V_{id}$ and eliminated $\hat{\lambda}_i$ using the unitarity of the CKM matrix. The factor $b(\mu)$ contains the remaining scale dependence. M_{12} is then given in terms of the effective Hamiltonian by $M_{12} = \langle \bar{K}^0 | \mathcal{H}^{(\Delta S=2)} | K^0 \rangle / (2M_K)$.

In Eq. (2.2), $\hat{Q}_{52} = (\bar{s}_L Y_d d_L)^2$ is the leading local four-quark operator that induces the $|\Delta S| = 2$ transition, defined in terms of the left-handed s- and d-quark fields. Higher-dimensional operators are estimated to contribute less than 1% to ε_K [11]. The hadronic matrix elements of the operator \hat{Q}_{52} constitute the major part of the long-distance contributions to ε_K. They are parameterised by the bag factor

$$\hat{B}_K = \frac{3}{2} b(\mu) \frac{\langle \bar{K}^0 | \hat{Q}_{52} | K^0 \rangle}{f_K^2 M_K^2},$$

(2.3)

where f_K is the Kaon decay constant, and $b(\mu)$ is factored out of Eq. (2.2) in such a way that \hat{B}_K is a renormalisation-group-invariant quantity. It has been calculated precisely using lattice QCD, with an total uncertainty of 4% or less [5]. The obtained values are consistent with the upper bound Ref. [1], the short-distance contribution to ε_K.

There are additional long-distance contributions which are not contained in \hat{B}_K, proportional to the dispersive and absorptive parts of the amplitude $\int d^4 x \langle \bar{K}^0 | \mathcal{H}^{(\Delta S=1)}(x) \mathcal{H}^{(\Delta S=1)}(0) | K^0 \rangle$, respectively. The estimates of the parameter ξ [3, 7] and of the dispersive part of the amplitude contributing to $\text{Im} M_{12}$ [8] have been combined with the experimental value of ϕ_ε into the correction factor $\kappa_\varepsilon = 0.94(2)$ [8], which multiplies the expression (2.1), in which we then set $\xi = 0$ and $\phi_\varepsilon = 45^\circ$.

The short-distance contributions are contained in the loop functions S in Eq. (2.2), the η factors comprising the higher-order QCD corrections. The dominant term proportional to λ_ε^2 contributes approximately $+75\%$ to ε_K. The QCD corrections have been computed by a fixed-order matching calculation at the top-quark scale at NLO, yielding $\eta_\varepsilon = 0.5765(65)$ [12]. The term proportional to $\lambda_\varepsilon^2 \lambda_\eta$ contributes roughly $+43\%$ to ε_K. Our NNLO QCD calculation [13] leads to $\eta_{cc} = 0.496(47)$. The smallest contribution of about -18% is proportional to λ_ε^2. The GIM mechanism causes the absence of a large logarithm $\log(m_c/M_W)$ at LO and the mixing of $|\Delta S| = 1$ into $|\Delta S| = 2$ operators above the charm-quark scale. We performed a three-loop matching calculation at the charm-quark scale [1] and find $\eta_{cc} = 1.87(76)$. The large $+36\%$ shift with respect to the NLO result [13] and the large residual scale dependence at NNLO give rise to our assignment of a sizeable theory uncertainty. A conversion of our result to a suitable RI-SMOM renormalisation scheme [12] might improve the convergence of the perturbation series.

Using the numerical input values as in [1] and the NNLO values $\eta_{\varepsilon t} = 0.496(47)$ and $\eta_{cc} = 1.87(76)$, we obtain the SM prediction

$$|\varepsilon_K| = (1.81 \pm 0.14 \eta_\varepsilon \pm 0.02 \eta_\varepsilon \eta_\varepsilon \pm 0.07 \eta_{\varepsilon t} \pm 0.08 \eta_{cc} \pm 0.23_{\text{parametric}} \times 10^{-3}).$$

(2.4)

The error indicated by LD originates from the long-distance contributions, namely \hat{B}_K and κ_ε. A large part of the parametric error stems from $|V_{cb}|$, which enters the dominant top-quark contribution to the fourth power.

Finally, we remark in passing that using the NNLO value of η_{cc} and again the input as in Ref. [1], the short-distance contribution to ΔM_K accounts for 86(34)% of the measured value [12].
3. Conclusion and outlook

I have presented the NNLO SM prediction of the important observable \(\varepsilon_K\), with the result
\[|\varepsilon_K| = 1.81(28) \times 10^{-3}\]. The uncertainty is dominated by the error on \(|V_{cb}|\) and the theory uncertainty of the perturbative contribution. The latter can possibly be decreased by transforming the result to a suitable RI-SMOM scheme at NNLO, or, in the long run, by computing the effects of a dynamical charm quark using lattice QCD.

Acknowledgments

I thank M. Gorbahn for the fruitful and pleasant collaboration and the organisers of EPS 2011 for the interesting and inspiring conference.

References

[1] J. Brod, M. Gorbahn, The NNLO Charm-Quark Contribution to \(\varepsilon_K\) and \(\Delta M_K\), [arXiv:1108.2036 [hep-ph]].

[2] K. Nakamura et al. (Particle Data Group), Review of particle physics, J. Phys. G 37, 075021 (2010).

[3] K. Anikeev et al., B physics at the Tevatron: Run II and beyond, arXiv:hep-ph/0201071.

[4] O. Cata and S. Peris, Long-distance dimension-eight operators in \(B(K)\), JHEP 0303 (2003) 060 [arXiv:hep-ph/0303162]; Kaon mixing and the charm mass, JHEP 0407 (2004) 079 [hep-ph/0406094].

[5] C. Aubin, J. Laiho and R. S. Van de Water, The neutral kaon mixing parameter \(B_K\) from unquenched mixed-action lattice QCD, Phys. Rev. D 81 (2010) 014507 [arXiv:0905.3947 [hep-lat]]; G. Colangelo et al., Review of lattice results concerning low energy particle physics, arXiv:1011.4408 [hep-lat]; Y. Aoki, R. Arthur, T. Blum, P. A. Boyle, D. Brommel, N. H. Christ, C. Dawson, T. Izubuchi et al., Continuum Limit of \(B_K\) from 2+1 Flavor Domain Wall QCD, Phys. Rev. D84 (2011) 014503. [arXiv:1012.4178 [hep-lat]].

[6] J. M. Gerard, An upper bound on the Kaon B-parameter and \(\text{Re}(\varepsilon_K)\), arXiv:1012.2026 [hep-ph].

[7] A. J. Buras and D. Guadagnoli, Correlations among new CP violating effects in \(\Delta F = 2\) observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887 [hep-ph]].

[8] A. J. Buras, D. Guadagnoli and G. Isidori, On \(\varepsilon_K\) beyond lowest order in the Operator Product Expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612 [hep-ph]].

[9] A. J. Buras, M. Jamin and P. H. Weisz, Leading and next-to-leading QCD corrections to the \(\varepsilon\) parameter and \(B_0 - \text{anti-}B_0\) mixing in the presence of a heavy top quark, Nucl. Phys. B 347 (1990) 491.

[10] J. Brod and M. Gorbahn, \(\varepsilon_K\) at Next-to-Next-to-Leading Order: The Charm-Top-Quark Contribution, Phys. Rev. D 82 (2010) 094026 [arXiv:1007.0684 [hep-ph]].

[11] S. Herrlich and U. Nierste, The Complete \(|\Delta S| = 2\) Hamiltonian in the Next-To-Leading Order, Nucl. Phys. B 476 (1996) 27 [arXiv:hep-ph/9604330].

[12] C. Sturm, Y. Aoki, N. H. Christ, T. Izubuchi, C. T. C. Sachrajda, A. Soni, Renormalization of quark bilinear operators in a momentum-subtraction scheme with a nonexceptional subtraction point, Phys. Rev. D80 (2009) 014501. [arXiv:0901.2599 [hep-ph]].