Analysis of the MAT1-1 and MAT1-2 Gene Ratio in Black Koji Molds Isolated from Meju

Anbazhagan Mageswari¹, Jeong-seon Kim¹, Kyu-Ho Cheon¹, Soon-Wo Kwon¹, Osamu Yamada²* and Seung-Beom Hong¹*

¹Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Science, Wanju 55365, Korea
²National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan

Abstract Aspergillus luchuensis is known as an industrially important fungal species used for making fermented foods such as awamori and shochu in Japan, makgeolli and Meju in Korea, and Pu-erh tea in China. Nonetheless, this species has not yet been widely studied regarding mating-type genes. In this study, we examined the MAT1-1 and MAT1-2 gene ratio in black koji molds (A. luchuensis, Aspergillus niger, and Aspergillus tubingensis) and in Aspergillus welwitschiae isolated from Meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea. The number of strains with the MAT1-1 locus was 2 of 23 (A. luchuensis), 6 of 13 (A. tubingensis), 21 of 28 (A. niger), and 5 of 10 (A. welwitschiae). Fungal species A. tubingensis and A. welwitschiae showed a 1 : 1 ratio of MAT1-1 and MAT1-2 mating-type loci. In contrast, A. luchuensis revealed predominance of MAT1-2 (91.3%) and A. niger of MAT1-1 (75%). We isolated and identified 2 A. luchuensis MAT1-1 strains from Meju, although all strains for making shochu in Japan are of the MAT1-2 type. These strains may be a good resource for breeding of A. luchuensis to be used in the Asian fermented-food industry.

Keywords Aspergillus luchuensis, Mating type, Meju

Black aspergilli or Aspergillus section Nigri are an important and diverse group of fungi with several key characteristics including food spoilage, suitability as starters for fermentation, and production of metabolites for use in medicine. Black koji molds are major fungi belonging to this group and are associated with production of distilled alcoholic beverages awamori and shochu in Japan and makgeolli in Korea [1]. Three species Aspergillus luchuensis, Aspergillus niger, and Aspergillus tubingensis mainly constitute black koji molds among which A. luchuensis is an industrially important black aspergillus, especially in the food and fermentation industries of East Asia [2]. Fungus A. luchuensis has been well established as the chief fermentation agent in awamori-koji [3] but is also reported from nuruk and Meju, a Korean traditional fermentation starter for soybean paste and soy sauce [4, 5]. After A. luchuensis, A. niger is another important species of black koji mold that has been widely used in biotechnological processes and is the only one that has been granted the generally regarded as safe (GRAS) status by the U.S. Food and Drug Administration (FDA). With their potential applications, the members of black koji molds are a remarkable fungal resource for industrial research.

Almost all Aspergillus species from section Nigri exclusively propagate through asexual mode of reproduction. Nevertheless, there are reports on sexual reproduction of members of section Nigri that have the so-called mating-type (MAT) genes, which have been identified in other filamentous ascomycetes and found to play a major role in sexual reproduction [6, 7]. These MAT genes have been reported to encode several transcription factors that determine sexual identity and regulate later stages of sexual development. Two distinct classes of MAT genes, MAT1-1 and MAT1-2, are recognized. The MAT1-1 family is known to encode an α-domain protein, and the MAT1-2 gene family codes for a high-mobility group (HMG) box protein. These genes are located either both in a single MAT locus or at 2 loci, called MAT1-1 and MAT1-2, within the genome [8-11]. Homothallic aspergilli are known to possess both MAT genes in the same genome. In case of heterothallic species, only a single MAT locus is found to be present, which can...
contain either MAT1-1 or MAT1-2 family genes.

Sequence analysis has indicated that these MAT1-1 and MAT1-2 loci are vastly divergent, and gene mutation studies in the fungus *Aspergillus fumigatus* have shown MAT genes to be essential for sexual development [12]. Cloning of MAT genes by conventional methods has largely been unsuccessful due to high divergence of the gene sequences among ascomycetes despite evolutionary conservatism of the a box and HMG domains [13]. However, 2 methods, namely, the use of degenerate primers and whole-genome sequence mining, are now available for detection of the mating-type genes in *Aspergillus* species [9, 14-18].

MAT genes are therefore necessary for sexual reproduction among *Aspergillus* species. It has been reported that deletion of MAT1 and MAT2 genes leads to a loss of sexual reproduction in *Aspergillus nidulans*, whereas overexpression suppresses vegetative growth and induces sexual differentiation even under unfavorable conditions [19]. Thus, these genes may have an important function in the breeding of *Aspergillus* fungi. Apart from contributing to the evolution of new species, mating in aspergilli may aid survival during abiotic stress conditions and can improve industrially important species, mating in aspergilli may aid survival during abiotic stress conditions and can improve industrially important species, mating in aspergilli may aid survival during abiotic stress conditions and can improve industrially important species, mating in aspergilli may aid survival during abiotic stress conditions and can improve industrially important species, mating in aspergilli may aid survival during abiotic stress conditions and can improve industrially important species, mating in aspergilli may aid survival during abiotic stress conditions and can improve industrially important species. Thus, these genes may have an important function in the breeding of *Aspergillus* fungi. Apart from contributing to the evolution of new species, mating in aspergilli may aid survival during abiotic stress conditions and can improve industrially important species, mating in aspergilli may aid survival during abiotic stress conditions and can improve industrially important species, mating in aspergilli may aid survival during abiotic stress conditions and can improve industrially important species.

Table 1. The list of black koji mold strains used in this study with their source and mating type

Species	KACC No.	Strain information	Source	Mating type
Aspergillus luchuensis	46772	NBRC 4281 = RIB 2642 = CBS 205.80 (extype of *A. luchuensis*)	Koji, Okinawa, Japan	MAT1-2
	46771	NBRC 4308 = CBS 117.80 = NRRL 4886 (extype of *A. kawachii*)	Koji, Kyusyu, Japan	MAT1-2
	46516	CF 1005 (industrial strain of *A. kawachii* in Korea)	Koji, Korea	MAT1-2
	45131	NBRC 4121 = NRRL 4796 = CBS 564.65 (extype of *A. acida*us)	Koji, Okinawa, Japan	MAT1-2
	41731	CBS 119384 = NR 15-1 (extype of *A. coreanus*)	Nurrak, Korea	MAT1-2
	47234	JCM 2261 = IAM 2112 (extype of *A. awamori*)	Koji, Okinawa, Japan	MAT1-2
	47004	NBRC 4123 = NRRL 4797 = IAM 2397 = ATCC 16884	Koji, Okinawa, Japan	MAT1-2
		= CBS 565.65 = IMI 175963		
	47235	JCM 22302 = IAM 2255 = CBS 125.52 = R-0436 (extype of *A. inuii*)	Koji, Ryukyu, Japan	MAT1-2
	47005	K-4133 = NRRL 4750 = CBS 128.52	Unknown, Japan	MAT1-2
	M*29	This study	Meju, Yangpyeong, Korea	MAT1-2
	M532	This study	Meju, Hoengseong, Korea	MAT1-2
	M1003	This study	Meju, Yeoju, Korea	MAT1-2
	M2093	This study	Meju, Yongin, Korea	MAT1-2
	M2096	This study	Meju, Yongin, Korea	MAT1-2
	M2097	This study	Meju, Yongin, Korea	MAT1-2
	M2098	This study	Meju, Yongin, Korea	MAT1-2
	M2099	This study	Meju, Sunchang, Korea	MAT1-2
	46491	This study	Meju, Sunchang, Korea	MAT1-2
	M2103	This study	Meju, Yongin, Korea	MAT1-2
	M2104	This study	Meju, Anseong, Korea	MAT1-2
	46490	This study	Meju, Yongin, Korea	MAT1-2
	M2106	This study	Meju, Yongin, Korea	MAT1-2
	M2113	This study	Meju, Yangpyeong, Korea	MAT1-2

on the ratio of MAT genes in *A. luchuensis*, an industrially important species for fermentation in Asia. We planned to study the MAT1-1 and MAT1-2 gene ratio of *A. luchuensis* and extended our interest to black koji molds isolated from Meju using PCR analysis. The purpose is to expand existing knowledge about MAT genes in *Aspergillus* section Nigri and to use these data for future industrial breeding of *A. luchuensis*.

MATERIALS AND METHODS

Strains and media. Ex-types of *A. luchuensis*, *A. tubingensis*, *A. niger*, and *A. welwitschiae* were obtained from Korean Agricultural Culture Collection (KACC, Korea), and in addition, *Aspergillus* strains that were isolated from traditional Meju in South Korea were included in this study. Detailed information on the strains is given in Table 1. The strains were inoculated onto malt extract agar to revive the culture and for further experiments.

Genomic DNA extraction. Strains of section Nigri species used in this study (Table 1) were grown in 10 mL of malt extract broth at 200 rpm (25~28°C). The mycelium was harvested after 2~3 days of growth by filtration through Miracloth (Merck Millipore, Billerica, MA, USA) and was then placed loosely in microfuge tubes, frozen, and freeze dried. The freeze-dried biomass was ground to a fine powder,
Table 1. Continued

Species	KACC No.	Strain information	Source	Mating type
A. tubingensis	M100	This study	Meju, Haenam, Korea	MAT1-2
	46498	This study	Meju, Hoengseong, Korea	MAT1-1
	M1001	This study	Meju, Yeoju, Korea	MAT1-1
	M1004	This study	Meju, Yeoju, Korea	MAT1-2
	M1005	This study	Meju, Pocheon, Korea	MAT1-2
	M1006	This study	Meju, Anseong, Korea	MAT1-2
	M2095	This study	Meju, Yongin, Korea	MAT1-1
	46499	This study	Meju, Sunchang, Korea	MAT1-1
	M2101	This study	Meju, Sunchang, Korea	MAT1-1
	46805	CBS 134.48 = R. Mosseray, No. 726 (type of *A. tubingensis*)	Unknown	MAT1-1
	46993	NRRL 4757 = IAM 2209 = CBS 136.52 = R6711 (type of *A. saitoi*)	Koji, Japan	MAT1-2
	46994	NRRL 4758 = IAM 2190 = CBS 137.52 = K-3931 (type of *A. saitoi var. kagoshimaensis*)	Koji, Japan	MAT1-2
	47137	This study	Meju, Korea	MAT1-2
A. niger	M44	This study	Meju, Yangpyeong, Korea	MAT1-2
	M224	This study	Meju, Cheongwon, Korea	MAT1-1
	M267	This study	Meju, Goisan, Korea	MAT1-2
	M347	This study	Meju, Korea	MAT1-2
	46493	This study	Meju, Icheon, Korea	MAT1-1
	M458	This study	Meju, Icheon, Korea	MAT1-2
	M478	This study	Meju, Yangju, Korea	MAT1-1
	46494	This study	Meju, Hoengseong, Korea	MAT1-1
	M561	This study	Meju, Hoengseong, Korea	MAT1-1
	46495	This study	Meju, Gimpo, Korea	MAT1-1
	M581	This study	Meju, Gimpo, Korea	MAT1-1
	M602	This study	Meju, Kimcheon, Korea	MAT1-1
	M619	This study	Meju, Iksan, Korea	MAT1-1
	M630	This study	Meju, Gimcheon, Korea	MAT1-1
	M639	This study	Meju, Jcheon, Korea	MAT1-1
	M654	This study	Meju, Sunchang, Korea	MAT1-1
	M701	This study	Meju, Sunchang, Korea	MAT1-1
	M826	This study	Meju, Andong, Korea	MAT1-1
	M2108	This study	Meju, Buan, Korea	MAT1-1
	M2110	This study	Meju, Gongju, Korea	MAT1-1
	M2111	This study	Meju, Gongju, Korea	MAT1-1
	46497	This study	Meju, Yangpyeong, Korea	MAT1-1
	45072	CBS 554.65 = ATCC 16888 = NBRC 33023 = IMI 050566 = NRRL 326 (neotype of *A. niger*)	Tannin-gallic acid fermentation, Connecticut, USA	MAT1-2
	46995	NRRL 4785 = CBS 115.34 = NBRC 4034 (type of *A. batatae*)	Unknown, Japan	MAT1-1
	47003	NBRC 4031 = RIB 2014 = NRRL 4784 = CBS 121.28 (type of *A. aureus*)	Koji, Japan	MAT1-1
	46998	NRRL 4859 = CBS 117.51 (type of *A. miyakoenii*)	Koji, Japan	MAT1-2
	47000	NRRL 4388 = RIB 2602 = NRRL 4760 = CBS 139.2 = IAM 2185 = R-0635 (type of *A. usami*)	Koji, Japan	MAT1-1
	47001	NRRL 4889 (type of *A. usami mut. shirousami*)	Unknown, Japan	MAT1-1
A. welwitschiae	46492	This study	Meju, Haenam, Korea	MAT1-1
	M268	This study	Meju, Goisan, Korea	MAT1-1
	M504	This study	Meju, Buan, Korea	MAT1-1
	M672	This study	Meju, Sunchang, Korea	MAT1-2
	M792	This study	Meju, Sunchang, Korea	MAT1-2
	M1002	This study	Meju, Yeoju, Korea	MAT1-2
	46496	This study	Meju, Goisan, Korea	MAT1-1
	M2109	This study	Meju, Buan, Korea	MAT1-1
	46882	This study	Meju, Haenam, Korea	MAT1-2
	46996	NRRL 4948 = CBS 557.65 = ATCC 16877 (neotype of *A. awamori*)	Unknown, Japan	MAT1-2

M, Meju.
and total genomic DNA was extracted using the DNeasy Plant Mini-Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s protocol.

Identification of mating types. The primers used to partially amplify the MAT1-1 and MAT1-2 genes in the 74 isolates are presented in Table 2. PCR amplification was conducted in 50-μL reactions, which included 5 μL of 10× PCR buffer, 3 μL of deoxyribonucleotide triphosphates (dNTP; 2.5 mM), 0.4 μL of each primer (100 pmol), 0.3 μL of Taq DNA polymerase (Inclone, Daejeon, Korea), 39.9 μL of sterile deionized water, and 1 μL (approximately 10 ng) of a DNA template. The PCR conditions for primer (MAT1-1F-An, MAT1-1R-An) were as follows: 5 min at 95°C; denaturation for 30 sec at 95°C and annealing and extension for 2 min at 72°C (25 cycles); and a final extension for 5 min at 72°C.

Table 2. Primers used in this study

Primer	Sequence	Reference
MAT1-1F-An	5’-GCGGCCACTGAACAGTTTCATTGCT-3’	[23]
MAT1-1R-An	5’-TGATGGAGTATGCGCTTGCTACGATG-3’	[23]
MAT1-2F	5’-TTCCCTGTCGCCAAATGCA-3’	This study
MAT1-2R	5’-GAGATGATGGTCGAGCCTTC-3’	This study
M1F_Anig	5’-GGTCATCCGAATGATGGAG-3’	[22]
M1R_Anig	5’-CAGCCTGCTTTCAAGCGATCC-3’	[22]
MAT5-4	5’-AARRTCICCMICCCCAAGC-3’	[10]
MAT3-2	5’-TTNCCKGGGTTTATGRTARTCNCCG-3’	[10]

Fig. 1. MAT gene amplification from genomic DNA of Aspergillus tubingensis (A) and A. welwitschiae (B). A, Lane M, molecular weight markers; Lanes 1–9, amplicons from Meju isolates (M100, M554, M1001, M1004, M1005, M1006, M2095, M2100, and M2101); lanes 10–13, amplicons from KACC A. tubingensis (46805, 46993, 46994, and 47137); B, Lane M, molecular weight markers; lanes 1–8, amplicons from Meju isolates (M95, M268, M504, M672, M792, M1002, M2107, and M2109); lanes 9 and 10, amplicons from KACC A. welwitschiae (46882 and 46996).
for \textit{MAT1-1}. For \textit{MAT1-2} (\textit{MAT1-2F, MAT1-2R}), we used the following conditions: 5 min at 95°C; denaturation for 1 min at 95°C; annealing for 1 min at 58°C; and extension for 30 sec at 72°C (25 cycles); and final extension for 5 min at 72°C. The PCR conditions for previously reported primers [10, 22] were as follows: Primer (\textit{M1F} \textit{Anig, M1R} \textit{Anig}), the initial denaturation for 5 min at 95°C; followed by 25 cycles of denaturation for 1 min at 95°C, annealing for 1 min at 60°C, and extension for 30 sec at 72°C; and a final extension for 5 min at 72°C for \textit{MAT1-1}. In case of \textit{MAT1-2} (\textit{MAT5-4, MAT3-2}), we used denaturation for 5 min at 95°C; followed by 25 cycles of denaturation for 1 min at 95°C, annealing for 1 min at 55°C, and extension for 30 sec at 72°C; and a final extension for 5 min at 72°C. The reactions were run in a Peltier thermal cycler MJ Research PCT-200 gradient (Waltham, MA, USA). After the PCR, 5 mL of a PCR product was analyzed by electrophoresis and visualized by means of gel documentation equipment.

\textbf{RESULTS AND DISCUSSION}

During our experiments, we initially observed PCR amplification of both \textit{MAT1-1} and \textit{MAT1-2} in the same strains using the primers and protocol reported elsewhere [22]. After optimizing the PCR conditions as described above, we were able to rectify this problem and to obtain either \textit{MAT1-1} or \textit{MAT1-2} for a single strain.

After that, we used PCR to determine the ratio of \textit{MAT} genes in 74 isolates of 4 species of \textit{Aspergillus} section \textit{Nigri} isolated from Meju, a traditional fermented food product of South Korea: namely, \textit{A. luchuensis}, \textit{A. niger}, \textit{A. tubingensis}, and \textit{A. welwitschiae}. PCR analysis revealed amplification of an approximately 200-bp fragment for \textit{MAT1-1} and 300-bp fragment for \textit{MAT1-2} with the primer set designed by Yamada (Figs. 1~3) and the primer set of Horn et al. [22] resulted in a ~500-bp amplicon for \textit{MAT1-1} and a 300-bp amplicon for \textit{MAT1-2} (data not shown). The present PCR results indicate that all isolates yielded either \textit{MAT1-1} or \textit{MAT1-2} but never both \textit{MAT} genes during PCR amplification.

In this study, the \textit{MAT1-1} locus was detected in 2 of 23 strains of \textit{A. luchuensis}, 6 of 13 strains of \textit{A. tubingensis}, 21 of 28 stains of \textit{A. niger}, and 5 of 10 strains of \textit{A. welwitschiae}. Furthermore, in case of \textit{A. tubingensis} and \textit{A. welwitschiae}, distributions of \textit{MAT1-1} and \textit{MAT1-2} were random approaching 50% for each mating type (Fig. 1). In contrast, the \textit{MAT1-1} type is dominant in \textit{A. niger} (75% of

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{\textit{MAT1-1} and \textit{MAT1-2} genes amplified from \textit{Aspergillus niger} isolates. A, Lane M, molecular weight markers; lanes 1~15, amplicons from Meju isolates (M22, M224, M267, M347, M450, M458, M478, M557, M561, M579, M581, M602, M619, M630, and M639); B, Lane M, molecular weight markers; lanes, 1~7, amplicons from Meju isolates (M654, M701, M826, M2108, M2110, M2111, and M2112); lanes 8~13, amplicons from KACC \textit{A. niger} (45072, 46995, 47003, 46998, 47000, and 47001).}
\end{figure}
Mageswari et al. studied strains (Fig. 2) and MAT1-2 type is dominant in *A. luchuensis* (91.3% of strains under study) (Fig. 3).

Several research groups have reported the ratio of MAT1-1 and MAT1-2 genes in the species of *Aspergillus* [11, 19, 21, 22]. In the *Aspergillus* section *Flavi*, the MAT1-1 to MAT1-2 gene ratio showed mixed results but to some extent was found to be sample dependent. In *Aspergillus flavus* strains isolated from peanut field soil, this ratio is 1:1 [11]. Nonetheless, *A. flavus* from clinical samples carried only MAT1-1 (100%) [21]. Among other species, e.g., in *Aspergillus oryzae* isolated from soy sauce, 72.5% of strains were found to be of the MAT1-2 type. The preference for MAT1-2 in *A. oryzae* from soybean was hypothesized to be due to its short aerial hyphal phenotype, which can both improve fermentation enzyme efficiency and block growth of contaminating fungi [19].

Other species of *Aspergillus* section *Nigri* except for *A. luchuensis* have been studied regarding the MAT1-1 to MAT1-2 gene ratio [21, 22]. Among 125 isolates from *A. tubingensis*, *A. niger*, and *A. welwitschiae*, the ratio of MAT1-1 and MAT1-2 was found to be 1:1 in isolates belonging to *A. tubingensis* and *A. niger*. Strains of *A. welwitschiae* showed a strong bias toward MAT1-1 [21]. Our present results add to the existing knowledge on the ratio of MAT genes in the *Aspergillus* section *Nigri* with the emphasis on *A. luchuensis*, which has not been widely studied. Most of our strains were isolated from Meju. Although the strains of *A. tubingensis* and *A. welwitschiae* in our results indicated an approximately 1:1 distribution, the majority of *A. niger* strains indicated a bias toward the MAT1-1 type, whereas the strains of *A. luchuensis* showed predominance of the MAT1-2 type (91.3%). The remaining 8.7% of strains (2 strains) were found to be in the MAT1-1 category. The presence of the MAT1-1 mating type in *A. luchuensis* has not been reported until now, and hitherto various researchers have observed MAT1-2 only among 28 strains of *A. luchuensis*, which are used for brewing Japanese traditional spirits such as awamori and shochu [23].

Mating experiments on fungi are useful tools for genetic analysis and are also a good strategy for strain improvement. The mating type in fungi has long been associated with breeding for production of industrially important strains with desired traits. In mushrooms, mating-type genes can be used as marker genes for breeding methods, and their functions that are required for formation of stable dikaryons are essential for breeding [24]. Strain improvement based

Fig. 3. PCR amplification of MAT1-1 and MAT1-2 genes from *Aspergillus luchuensis* isolates. A, Lane M, molecular weight markers; lanes 1~8, amplicons from KACC *A. luchuensis* (46772, 46771, 45131, 47234, 47004, 47235, and 47005); lanes 9~15, amplicons from Meju isolates (M29, M532, M1003, M2099, M2093, M2096, and M2097); B, Lane M, molecular weight markers; lanes 1~8, amplicons from Meju isolates (M2098, M2099, M2102, M2103, M2104, M2105, M2106, and M2113).
on the mating type in penicillin-producing fungus *Penicillium chrysogenum* has been reported to be biotechnologically advantageous because the fungus showed improved penicillin production and fermentor-friendly changes in the morphology of hyphae and conidia upon breeding [25]. Even in ascomycetes, the presence of mating-type genes and their biotechnological potential have been discussed in detail [26].

A. luchuensis MAT1-1 mating-type strains were proposed as a valuable source for breeding [23]. Our results therefore should advance the understanding of biology and evolution of *A. luchuensis*. Our findings also have industrial relevance because the sexual cycle can now be utilized for strain improvement for use in the brewing and fermented food industry. In general, natural mating of *A. luchuensis* MAT1-1 and MAT1-2 type strains can have advantages over genetic recombination technologies because recombination tends to occur throughout the genome resulting in excessive genetic variation for screening purposes. Mating is also an inexpensive technique for manipulation of several genes *in vitro* to produce an industrially preferable mutant strain. In addition, the stability of industrial strains remains unaffected when sexual reproduction is used for breeding because no harmful mutations are introduced. Therefore, our identification of MAT1-1 type *A. luchuensis* can be used for selective breeding to produce commercially important strains that are cost-effective and beneficial for industries.

ACKNOWLEDGEMENTS

This study was carried out with the support (Project No. PJ01194902) of Rural Development Administration, Republic of Korea.

REFERENCES

1. Hong SB, Yamada O, Samson RA. Taxonomic re-evaluation of black koji molds. Appl Microbiol Biotechnol 2014;98:555-61.
2. Hong SB, Lee M, Kim DH, Varga J, Frisvad JC, Perrone G, Gomi K, Yamada O, Machida M, Houbraken J, et al. *Aspergillus luchuensis*, an industrially important black *Aspergillus* in East Asia. PLoS One 2013;8:e63769.
3. Inui T. Ryukyu awamori hakko kin chyosa houkokusyo. J Tokyo Chem Soc 1901;22:669-88.
4. Hong SB, Kim DH, Kim SH, Bang N, Kwon SW. Identification of black *Aspergillus* strains isolated from Meju. Kor J Mycol 2013;41:132-5.
5. Hong SB, Kim DH, Samson RA. *Aspergillus* associated with Meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea. Mycobiology 2015;43:218-24.
6. Glass NL, Vollmer SJ, Staben C, Grotelueschen J, Metzenberg RL, Yanofsky C. DNAs of the two mating-type alleles of *Neurospora crassa* are highly dissimilar. Science 1988;241:570-3.
7. Debuchy R, Berteaux-Lecellier V, Silar P. Mating systems and sexual morphogenesis in ascomycetes. In: Borkovich KA, Ebbole DJ, editors. Cellular and molecular biology of filamentous fungi. Washington, DC: American Society for Microbiology; 2010. p. 501-35.
8. Dyer PS. Sexual reproduction and significance of MAT in the aspergilli. In: Heitman J, Kronstad JW, Taylor JW, Cassetol LA, editors. Sex in fungi: molecular determination and evolutionary implications. Washington, DC: ASM Press; 2007. p. 123-42.
9. Paoletti M, Seymour FA, Alcocer MJ, Kaur N, Calvo AM, Archer DB, Dyer PS. Mating type and the genetic basis of self-fertility in the model fungus *Aspergillus nidulans*. Curr Biol 2007;17:1384-9.
10. Rydholm C, Dyer PS, Lutzoni F. DNA sequence characterization and molecular evolution of MAT1 and MAT2 mating-type loci of the self-compatible ascomycete mold *Neosartorya fischeri*. Eukaryot Cell 2007;6:686-74.
11. Ramirez-Prado JH, Moore GG, Horn BW, Carbone I. Characterization and population analysis of the mating-type genes in *Aspergillus flavus* and *Aspergillus parasiticus*. Fungal Genet Biol 2008;45:1292-9.
12. Szewczyk E, Krappmann S. Conserved regulators of mating are essential for *Aspergillus fumigatus* cleistothecium formation. Eukaryot Cell 2010;9:774-83.
13. Debuchy R, Turgeon BG. Mating-type structure, evolution, and function in Euascomycetes. In: Kües U, Fischer R, editors. The Mycota, Vol. I. Growth, differentiation and sexuality. Berlin: Springer-Verlag; 2006. p. 293-323.
14. Singh G, Dyer PS, Ashby AM. Intra-specific and inter-specific conservation of mating-type genes from the discomycete plant-pathogenic fungi *Pyrenopeziza brassicae* and *Tapesia yallundae*. Curr Genet 1999;36:290-300.
15. Paoletti M, Rydholm C, Schwier EU, Anderson MJ, Szakacs G, Lutzoni F, Debeaupuis JP, Latgé JP, Denning DW, Dyer PS. Evidence for sexuality in the opportunistic fungal pathogen *Aspergillus fumigatus*. Curr Biol 2005;15:1242-8.
16. Archer DB, Dyer PS. From genomics to post-genomics in *Aspergillus*. Curr Opin Microbiol 2004;7:499-504.
17. Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Bästürkmen M, Spevak CC, Clutterbuck J, et al. Sequencing of *Aspergillus nidulans* and comparative analysis with *A. fumigatus* and *A. oryzae*. Nature 2005;438:1105-15.
18. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, et al. Genome sequencing and analysis of the versatile cell factory *Aspergillus niger* CBS 513.88. Nat Biotechnol 2007;25:221-31.
19. Wada R, Maruyama J, Yamaguchi H, Yamamoto N, Wagu Y, Paoletti M, Archer DB, Dyer PS, Kitamoto K. Presence and functionality of mating type genes in the supposedly asexual filamentous fungus *Aspergillus oryzae*. Appl Environ Microbiol 2012;78:2819-29.
20. O’Gorman CM, Fuller H, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen *Aspergillus fumigatus*. Nature 2009;457:471-4.
21. Varga J, Szigeti G, Baranyi N, Kocsübe S, O’Gorman CM, Dyer PS. *Aspergillus*: sex and recombination. Mycopathologia
22. Horn BW, Olarte RA, Peterson SW, Carbone I. Sexual reproduction in *Aspergillus tubingensis* from section Nigri. Mycologia 2013;105:1153-63.

23. Yamada O, Machida M, Hosoyama A, Goto M, Takahashi T, Futagami T, Yamagata Y, Takeuchi M, Kobayashi T, Koike H, et al. Genome sequence of *Aspergillus luchuensis* NBRC 4314. DNA Res 2016 Sep 20 [Epub]. https://doi.org/10.1093/dnares/dsw032.

24. Kothe E. Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl Microbiol Biotechnol 2001;56:602-12.

25. Böhm J, Hoff B, O’Gorman CM, Wolfers S, Klix V, Binger D, Zadra I, Künzle H, Pöggeler S, Dyer PS, et al. Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus *Penicillium chrysogenum*. Proc Natl Acad Sci U S A 2013;110:1476-81.

26. Pöggeler S. Mating-type genes for classical strain improvements of ascomycetes. Appl Microbiol Biotechnol 2001;56:589-601.