Non-Projective Dependency Parsing with Non-Local Transitions

Daniel Fernández-González and Carlos Gómez-Rodríguez
Universidade da Coruña
FASTPARSE Lab, LyS Research Group, Departamento de Computación
Campus de Elviña, s/n, 15071 A Coruña, Spain
d.fgonzalez@udc.es, carlos.gomez@udc.es

Abstract

We present a novel transition system, based on the Covington non-projective parser, introducing non-local transitions that can directly create arcs involving nodes to the left of the current focus positions. This avoids the need for long sequences of No-Arc transitions to create long-distance arcs, thus alleviating error propagation. The resulting parser outperforms the original version and achieves the best accuracy on the Stanford Dependencies conversion of the Penn Treebank among greedy transition-based algorithms.

1 Introduction

Greedy transition-based parsers are popular in the NLP community due to their efficiency and competitive accuracy. They syntactically analyze a sentence from left to right by greedily and locally applying one of the available transitions. The resulting transition sequence incrementally produces a dependency graph for the input sentence.

Due to the fact that the sentence is sequentially parsed, transition-based algorithms are prone to suffer from error propagation: one transition mistakenly applied will lead the parser to an erroneous state, causing more incorrect decisions in the rest of the sequence. This is especially crucial on the creation of long attachments that usually imply the application of a larger number of transitions (one early mistake might prevent the parser from building the desired arc). In addition, transition-based parsers traditionally focus on only two words of the sentence and their local context, and use this limited information to choose the next transition. The lack of a global perspective favors the presence of errors when creating arcs that involve multiple transitions. As expected, transition-based parsers show a better performance on building short arcs than long ones (McDonald and Nivre, 2007).

Previous research such as (Fernández-González and Gómez-Rodríguez, 2012) and (Qi and Manning, 2017) proves that the widely-used projective arc-eager transition-based parser developed by Nivre (2003) benefits from shortening the length of transition sequences by creating non-local attachments. In particular, they augmented the original transition system with new actions whose behavior entails more than one arc-eager transition and involves a context beyond the traditional two focus words. Attardi (2006) and Sartorio et al. (2013) also extended the arc-standard transition-based parser (Nivre, 2004) with the same success.

Following these approaches, we present a novel unrestricted non-projective transition system based on the well-known Covington parser (Covington, 2001) that is able to shorten the transition sequence necessary to parse a given sentence by the original algorithm, which becomes linear instead of quadratic with respect to sentence length. To achieve that, we propose new transitions that affect non-local words and are equivalent to one or more Covington actions, in a similar way to the transitions defined by Qi and Manning (2017) based on the arc-eager parser. Experiments show that this novel variant significantly outperforms the original one in all datasets tested, and achieves the best reported accuracy for a greedy dependency parser on the Stanford Dependencies conversion of the WSJ Penn Treebank.

2 Non-Projective Covington Transition System

The original non-projective parser defined by Covington (2001) was modelled under the transition-
based parsing framework by Nivre (2008). In particular, the transition system that defines this parser consists of these four components:

- A set of parser configurations. Each configuration is of the form $c = \langle \lambda_1, \lambda_2, B, A \rangle$, where λ_1 and λ_2 are lists of partially processed words, B is a list (called the buffer) that contains currently unprocessed words, and A is the set of dependency arcs that have already been built.

- An initial parser configuration. Given an input string $w_1 \cdots w_n$, this configuration is $c_s(w_1 \cdots w_n) = \langle [], [], [1 \ldots n], \emptyset \rangle$. Note that word occurrences are identified with their indices $1 \cdots n$ for simplicity.

- The set of terminal configurations of the form $\{ \langle \lambda_1, \lambda_2, [], A \rangle \in C \}$. When we reach such a configuration, the parsing process is finished and A contains a dependency graph for the input sentence. Note that, in general, A is a forest, but it can be converted to a tree by linking headless nodes as dependents of an artificial root node at position 0, making the parser output a dependency tree.

- To go from the initial configuration to a terminal one, a set of transitions is provided. These are detailed in Figure 1. Left-Arc and Right-Arc transitions are used to create a leftward (i ← j) or a rightward arc (i → j), respectively, between the rightmost word i in the list λ_1 and the leftmost word j in the buffer B. In addition, i is moved from λ_1 to the first position of λ_2. The same modification of λ_1 and λ_2 is made by the No-Arc transition, but without building any arc. Note that the two transitions that create arcs will be disallowed in configurations where this would cause a violation of the single-head constraint (a node can have at most one incoming arc) or the acyclicity constraint (no cycles are permitted in the dependency graph). Finally, the Shift transition moves the whole content of list λ_2 plus j to λ_1 when no more attachments are pending in λ_1 from or to j.

The described transition system implements the same logic as the double nested loop traversing word pairs in the original formulation by Covington (2001). Given a parser configuration $\langle \lambda_1 | i, \lambda_2, j | B, A \rangle$, we can consider i and j as focus words and the parser just must decide whether these two words should be linked with a leftward arc (Left-Arc transition), a rightward arc (Right-Arc transition), or not linked at all (No-Arc transition). After applying any of these three transitions, the focus word i is moved to $i – 1$. Regarding the Shift transition, this will read a new input word by placing the focus on j and $j + 1$.

Figure 3 shows the transition sequence in the Covington transition system which derives the dependency tree in Figure 2.

Transition systems are non-deterministic, since several transitions may be applicable to the same configuration. To build a greedy deterministic parser from a transition system, a classifier is trained to greedily select the best transition at each state.

The resulting parser can generate any possible dependency tree for the input, supporting arbitrary non-projective trees.

Finally, it can also be proven that the worst-case running time for the Covington algorithm is $O(n^2)$, where n is the length of the input sentence. To do so, we just have to compute the maximum number of transitions in a transition sequence, as each transition can be executed in constant time. In particular, for the Covington algorithm there will always be n Shift transitions, since every word of the input sentence must be processed by being moved from the buffer to λ_1. In addition, since the other three transitions decrease the length of λ_1 by 1, there can be at most k such transitions between the 4th and the $(k + 1)$th Shift transitions. For instance, in Figure 3, the 4th Shift transition placed the parser in the configuration where $i=4$ and $j=5$, allowing to use at most 4 of the other three transitions on λ_1 (in the example, Right-Arc + No-Arc + No-Arc + Left-Arc) before the 5th Shift transition is applied. Therefore, the maximum number of transitions in the Covington parser is $\sum_{k=1}^{n} k + 1$, which is $O(n^2)$. However, its practical runtime has been claimed to be competitive with linear-time parsers, with specific optimizations (Volokh and Neumann, 2012; Volokh, 2013).

3 Non-Projective NL-Covington Transition System

The original double-nested-loop logic described by Covington (2001) produces a dependency
would be shortened, alleviating error propagation.

2.5.2.2.2 of making a mistake when the focus word is on

Figure 4. This consists in a modification of the

(1) the risk

Covington algorithm where:

(2) the transition sequence No-Arc

non-projective Covington algorithm where:

Arc-transitions to be scored at each configuration, while

Arcs between the focus words.

Shift:
\[\langle \lambda_1, \lambda_2, j | B, A \rangle \Rightarrow \langle \lambda_1 \cdot \lambda_2 | [j], B, A \rangle \]

No-Arc:
\[\langle \lambda_1 | i, \lambda_2, B, A \rangle \Rightarrow \langle \lambda_1, i | \lambda_2, B, A \rangle \]

Left-Arc:
\[\langle \lambda_1 | i, \lambda_2, j | B, A \rangle \Rightarrow \langle \lambda_1, i | \lambda_2, j | B, A \cup \{ j \rightarrow i \} \]

only if \(\not\exists x \mid x \rightarrow i \in A \) (single-head) and \(i \rightarrow j \not\in A \) (acyclicity).

Right-Arc:
\[\langle \lambda_1 | i, \lambda_2, j | B, A \rangle \Rightarrow \langle \lambda_1, i | \lambda_2, j | B, A \cup \{ i \rightarrow j \} \]

only if \(\not\exists x \mid x \rightarrow j \in A \) (single-head) and \(j \rightarrow i \not\in A \) (acyclicity).

Figure 1: Transitions of the non-projective Covington dependency parser. The notation \(i \rightarrow^* j \in A \)

Figure 2: Dependency tree for an input sentence.

graph by systematically trying to link every pair of

words. In transition-based terms, this means that

the list \(\lambda_1 \) must be emptied before the parsing process
can move forward from a given right focus word to the next. To make the system more efficient, Nivre (2008) introduced the Shift transition presented in the previous section in his transition-based version of the Covington algorithm. This transition can be applied even when \(\lambda_1 \) is not empty, avoiding the need to apply a sequence of No-Arc transitions to empty it before proceeding.

However, there are still situations where it is necessary to use a sequence of No-Arc transitions. For instance, the arc that connects 1 and 5 in the graph of Figure 2 requires to apply two No-Arc transitions consecutively to move the focus \(i \) on 3 to 1, as can be seen in the transition sequence in Figure 3. This could be avoided if a non-local Left-Arc transition could be undertaken directly when \(i \) was on 3, creating the arc \(1 \rightarrow 5 \) and moving the string 123 to \(\lambda_2 \) at once. The advantage of such approach would be twofold: (1) the risk of making a mistake when the focus word is on 2 would disappear, as that configuration would be skipped entirely, and (2) the transition sequence would be shortened, alleviating error propagation.

We present a novel transition system called NL-Covington (for “non-local Covington”), described in Figure 4. This consists in a modification of the non-projective Covington algorithm where:

- the Left-Arc and Right-Arc transitions are parameterized with \(k \), allowing the immediate creation of any attachment between \(j \) and the \(k \)th leftmost word in \(\lambda_1 \) and moving \(k \) words to \(\lambda_2 \) at once.
- the No-Arc transition is removed since it is no longer necessary.

The proposed transition system is able to use some restricted global information to build non-local dependencies and, consequently, reduce the number of transitions necessary to derive a dependency graph for an input sentence. For instance, a Left-Arc\(_3\) (equivalent to the original transition sequence No-Arc + No-Arc + Left-Arc) could immediately create the arc \(1 \rightarrow 5 \) when 3 and 5 are focus words in Figure 3. Therefore, as shown in Figure 5, the NL-Covington parser will need 9 transitions instead of 12 to analyze the sentence in Figure 2.

This difference will be more significant on longer sentences with a large amount of long dependencies. In general, while in the standard Covington algorithm a transition sequence for a sentence of length \(n \) has length \(O(n^2) \) in the worst case (if all nodes are connected to the first node, then we need to traverse every node to the left of each right focus word); for NL-Covington the sequence length is always \(O(n) \): one Shift transition for each of the \(n \) words, plus one arc-building transition for each of the \(n - 1 \) arcs in the dependency tree.

Note, however, that this does not affect the computational complexity of the parser, which is still quadratic like the original Covington parser. This is because the algorithm has \(O(n) \) possible transitions to be scored at each configuration, while the original Covington has \(O(1) \) transitions due to being limited to creating local leftward/rightward arcs between the focus words.

The original Covington parser can be seen as the NL-Covington system plus the No-Arc transition and with the parameter \(k \) limited to 1. The completeness and soundness of NL-Covington can easily be proved as there is a mapping between
Tran.	λ_1	λ_2	Buffer	Added Arc
SH	[]	[]	[1, 2, 3, 4, 5]	
LA	[1]	[]	[2, 3, 4, 5]	1 \rightarrow 2
SH	[1, 2]	[]	[3, 4, 5]	
NA	[1]	[2]	[3, 4, 5]	
LA	[]	[1, 2]	[3, 4, 5]	1 \rightarrow 3
SH	[1, 2, 3]	[]	[4, 5]	
RA	[1, 2, 3]	[4]	[5]	4 \leftarrow 5
NA	[1]	[2, 3, 4]	[5]	
LA	[]	[1, 2, 3, 4]	[5]	1 \rightarrow 5
SH	[1, 2, 3, 4, 5]	[]	[]	

Figure 3: Transition sequence for parsing the sentence in Figure 2 using the Covington parser (LA=LEFT-ARC, RA=RIGHT-ARC, NA=NO-ARC, SH=SHIFT).

transition sequences of both parsers, where a sequence of $k-1$ No-Arc and one arc transition in Covington is equivalent to a Left-Arc$_k$ or Right-Arc$_k$ in NL-Covington.

4 Experiments

4.1 Data and Evaluation

We conduct our experiments on nine datasets\footnote{We excluded the languages from CoNLL-X that also appeared in CoNLL-XI, i.e., if a language was present in both shared tasks, we used the latest version.} from the CoNLL-X shared task (Buchholz and Marsi, 2006) and all datasets from the CoNLL-XI shared task (Nivre et al., 2007). To compare our system to the current state-of-the-art transition-based parsers, we also evaluate it on the Stanford Dependencies (de Marneffe and Manning, 2008) conversion (using the Stanford parser v3.3.0)\footnote{https://nlp.stanford.edu/software/lex-parser.shtml} of the Wall Street Journal portion of Penn Treebank (Marcus et al., 1993), hereinafter PT-SD, with standard splits (sections 2-21 for training, section 22 as development and section 23 as test). As in previous work, POS tags were assigned using the Stanford POS tagger (Toutanova et al., 2003) with ten-way jackknifing of the training data. Labelled and Unlabelled Attachment Scores (LAS and UAS) are computed by the official CoNLL eval.pl script for all languages, excluding punctuation exclusively on experiments on the PT-SD, to facilitate comparisons. Statistical significance is calculated by performing a paired test with 10,000 bootstrap samples. Finally, we repeat each experiment with three independent random initializations and report the average accuracy.

4.2 Model

To implement our approach we take advantage of the model architecture described in Qi and Manning (2017) to develop the arc-swift parser, which extends the architecture of Kiperwasser and Goldberg (2016) by applying a biaffine combination during the featurization process, and implement both the original Covington parser and the variant proposed here under this architecture.

More in detail, the model is composed of two blocks of 2-layered bidirectional long short-term memory (BiLSTM) networks (Graves and Schmidhuber, 2005) with 400 hidden units in each direction. The first block is used for POS tagging and the second one, for parsing. As the input of the tagging block, we use words represented as word embeddings, and BiLSTMs are employed to perform feature extraction. The resulting output is fed into a multi-layer perceptron (MLP), with a hidden layer of 100 rectified linear units (ReLU), that provides a POS tag for each input token in a 32-dimensional representation. Word embeddings
concatenated to these POS tag embeddings serve as input of the second block of BiLSTMs to undertake the parsing stage. Then, the output of the parsing block is fed into a MLP with two separate ReLU hidden layers (one for deriving the representation of the head, and the other for the dependency label) that, after being merged and by means of a softmax function, score all the feasible transitions, allowing to greedily choose and apply the highest-scoring one.

Moreover, we adapt the featurization process with biaffine combination described in Qi and Manning (2017) for the arc-swift system to be used on the original Covington and NL-Covington parsers. In particular, arc transitions are feature-
ized by the concatenation of the representation of the head word and the dependent word of the arc to be created, the No-Arc transition is feature-
ized by the rightmost word in λ_1 and the leftmost word in the buffer and, finally, for the Shift transition only the leftmost word in the buffer is used. Unlike Qi and Manning (2017) do for baseline parsers, we do not use the featureization method detailed in Kiperwasser and Goldberg (2016) for the original Covington parser. While they feature-
ize all transitions by concatenating the representations of the top 3 words on the stack and the leftmost word in the buffer, we have observed that this results in lower scores in the case of the Covington parser, and then the comparison would be unfair in our case. Instead, for the Covington parser we concatenate only representations of the two focus words, without adding more words from λ_1, which provides better results. We believe that this is because, contrary to what happens in stack-based parsers, the words in the list of the Covington parser are always contiguous to the left focus word, so their relevant information is already being captured by the LSTM as part of the left focus word representation, and including them as separate features is redundant. We implement both systems under the same framework, with the original Covington parser represented as the NL-Covington system plus the No-Arc transition and with k limited to 1. A thorough description of the model architecture and featureization mechanism can be found in Qi and Manning (2017).

We use exactly the same setup for training as described in Qi and Manning (2017). As they do, we train our models during 10 epochs for large data-

Tran.	λ_1	λ_2	Buffer	Added Arc
SH	[]	[]	[1, 2, 3, 4, 5]	
LA$_1$	[1]	[1]	[2, 3, 4, 5]	1 \rightarrow 2
SH	[1, 2]	[]	[3, 4, 5]	
LA$_2$	[]	[1, 2]	[3, 4, 5]	1 \rightarrow 3
SH	[1, 2, 3]	[]	[4, 5]	
SH	[1, 2, 3, 4]	[]	[5]	
RA$_1$	[1, 2, 3]	[4]	[5]	4 \leftarrow 5
LA$_3$	[]	[1, 2, 3, 4]	[5]	1 \rightarrow 5
SH	[1, 2, 3, 4, 5]	[]	[]	

Figure 4: Transitions of the non-projective NL-Covington dependency parser. The notation $i_n \rightarrow^* j \in A$ means that there is a (possibly empty) directed path from i_n to j in A.

Figure 5: Transition sequence for parsing the sentence in Figure 2 using the NL-Covington parser (LA=Left-Arc, RA=Right-Arc, SH=Shift).
sets, and 30 epochs for small ones. In addition, we initialize word embeddings with 100-dimensional GloVe vectors (Pennington et al., 2014) for English and use 300-dimensional Facebook vectors (Bojanowski et al., 2016) for other languages. The other parameters of the neural network keep the same values.

Since this architecture uses batch training, we train with a static oracle. In particular, it is easy to see that the NL-Covington algorithm has no spurious ambiguity at all, so there is only one possible static oracle: canonical transition sequences are generated by choosing the transition that builds the shortest pending gold arc involving the current right focus word \(j \), or Shift if there are no un-built gold arcs involving \(j \). Any different choice of transitions would lead to building a non-gold tree.

It is worth noting, however, that it is possible to obtain a dynamic oracle for the NL-Covington parser by adapting the dynamic oracle for standard Covington of (Gómez-Rodríguez and Fernández-González, 2015). Since NL-Covington transitions are concatenations of Covington transitions, one can calculate the cost of each NL-Covington transition by applying the loss calculation algorithm of (Gómez-Rodríguez and Fernández-González, 2015) to its destination configuration. Apart from error exploration, this also opens the way to incorporating non-monotonicity (Fernández-González and Gómez-Rodríguez, 2017). While these approaches have shown to improve accuracy under online training settings, we prefer here to ensure homogeneous comparability to (Qi and Manning, 2017), so we use batch training and a static oracle, nevertheless obtaining state-of-the-art accuracy for a greedy parser.

4.3 Results

Table 1 presents a comparison between the Covington algorithm and the novel variant developed in this work. The NL-Covington parser outperforms the original version in all datasets tested, achieving statistically significant improvements in all cases (\(\alpha = .05 \)).

It is worth mentioning that poor results are achieved by both of the parsers on datasets such as Arabic, Bulgarian, Spanish and Swedish. Although this it is outside the scope of this paper, it seems that neural networks need a larger amount of data to obtain a competitive accuracy on these languages or a different training setup might improve their performance.

4.4 Comparison

Table 2 compares our novel system with other state-of-the-art transition-based dependency parsers on the PT-SD. Greedy parsers are in the first block, beam-search and dynamic programming parsers in the second block. The third block shows the best result on this benchmark, obtained with constituent parsing with generative re-ranking and conversion to dependencies.

Despite being the only non-projective parser tested on a practically projective dataset, our parser achieves the highest score among greedy transition-based models (even above those that use a dynamic oracle for training).

We even slightly outperform the arc-swift system developed by Qi and Manning (2017), with the same model architecture, implementation and training setup, but based on the projective arc-eager transition-based parser instead. We hypothesize that this might be because our system takes into consideration any permissible attach-

Language	Covington UAS	Covington LAS	NL-Covington UAS	NL-Covington LAS
Arabic	66.67	53.24	68.69	54.59
Basque	74.31	66.18	75.45	67.61
Catalan	91.93	86.12	92.60	86.99
Chinese	83.87	76.19	85.25	77.56
Czech	84.27	77.91	86.26	79.95
English	89.94	88.74	91.51	90.47
Greek	79.91	72.65	80.61	73.41
Hungarian	76.80	65.21	78.57	67.51
Italian	82.03	75.87	83.63	78.03
Turkish	80.29	70.68	81.30	71.28
Bulgarian	81.78	76.23	83.65	78.40
Danish	86.56	81.18	88.40	82.77
Dutch	86.19	82.24	87.45	83.76
German	85.72	82.82	87.24	83.92
Japanese	92.20	90.41	93.63	91.65
Portuguese	86.69	82.19	87.89	83.69
Slovene	76.07	66.81	77.83	69.74
Spanish	74.67	69.41	76.58	71.60
Swedish	74.65	64.67	75.62	65.95
Average	81.82	75.17	83.27	76.78

Table 1: Parsing accuracy (UAS and LAS, including punctuation) of the Covington and NL-Covington non-projective parsers on CoNLL-XI (first block) and CoNLL-X (second block) datasets. Best results for each language are shown in boldface. All the improvements in this table are statistically significant (\(\alpha = .05 \)).

3Only 41 out of 39,832 sentences of the PT-SD training dataset present some kind of non-projectivity.
improvements in accuracy on seven of them, and statistically significant increases in just one.

5 Conclusion

We present a more accurate variant of the non-projective Covington transition-based parser. This novel approach is able to apply non-local transitions, reducing the length of transition sequences consumed by the original algorithm from $O(n^2)$ to $O(n)$. The resulting parser significantly outperforms the original Covington parser in all the datasets tested, and achieves the highest accuracy on the WSJ Penn Treebank (Stanford Dependencies) obtained to date with greedy dependency parsing.

Acknowledgments

This work has received funding from the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE, grant agreement No 714150), from the TELEPARES-UDC project (FFI2014-51978-C2-2-R) from MINECO, and from Xunta de Galicia (ED431B 2017/01). We gratefully acknowledge the support of NVIDIA Corporation with the donation of a GTX Titan X GPU used for this research.

Table 2: Accuracy comparison of state-of-the-art transition-based dependency parsers on PT-SD. The “Type” column shows the type of parser: gs is a greedy parser trained with a static oracle, gd a greedy parser trained with a dynamic oracle, b(n) a beam search parser with beam size n, dp a parser that employs global training with dynamic programming, and c a constituent parser with conversion to dependencies.

Parser	Type	UAS	LAS
(Chen and Manning, 2014)	gs	91.8	89.6
(Dyer et al., 2015)	gd	93.1	90.9
(Weiss et al., 2015)	gd	93.6	91.2
(Ballesteros et al., 2016)	b(n)	94.0	92.1
(Kiperwasser and Goldberg, 2016)	b(n)	94.2	92.4
(Qi and Manning, 2017)		94.3	92.2
This work		94.5	92.4
(Weiss et al., 2015)	b(n)	94.0	92.1
(Albieti et al., 2015)	b(32)	94.2	92.4
(Andor et al., 2016)	b(32)	94.6	92.8
(Shi et al., 2017)	dp	94.5	-

(Kuncoro et al., 2017) (constit.) c 95.8 94.6

Table 3: Parsing accuracy (UAS and LAS, including punctuation) of the arc-swift and NL-Covington parsers on CoNLL-XI (first block) and CoNLL-X (second block) datasets. Best results for each language are shown in boldface. Statistically significant improvements ($\alpha = .05$) are marked with *.

Language	Arc-swift	NL-Covington		
	UAS	LAS	UAS	LAS
Arabic	67.54	53.65	68.69	54.59*
Basque	74.88	67.44	75.45	67.61
Catalan	92.98	87.51*	92.60	86.99
Chinese	84.96	77.34	85.25	77.56
Czech	85.92	79.82	86.26	79.95
English	91.41	90.43	91.51	90.47
Greek	81.64*	74.56	80.61	73.41
Hungarian	78.70	69.27*	78.57	67.51
Italian	83.29	78.60*	83.63	78.03
Turkish	79.56	70.22	81.30*	71.28*
Bulgarian	83.28	78.19	83.65	78.40
Danish	87.86	82.58	88.40*	82.77
Dutch	83.27	80.14	87.45*	83.76*
German	86.28	82.97	87.24*	83.92*
Japanese	93.64	91.92	93.63	91.65
Portuguese	87.01	83.09	87.89*	83.69*
Slovene	77.89	69.37	77.83	69.74
Spanish	75.55	70.62	76.58*	71.60*
Swedish	75.00	65.66	75.62	65.95
Average	82.67	76.49	83.27	76.78

Table 3: Parsing accuracy (UAS and LAS, including punctuation) of the arc-swift and NL-Covington parsers on CoNLL-XI (first block) and CoNLL-X (second block) datasets. Best results for each language are shown in boldface. Statistically significant improvements ($\alpha = .05$) are marked with *.

Table 2: Accuracy comparison of state-of-the-art transition-based dependency parsers on PT-SD. The “Type” column shows the type of parser: gs is a greedy parser trained with a static oracle, gd a greedy parser trained with a dynamic oracle, b(n) a beam search parser with beam size n, dp a parser that employs global training with dynamic programming, and c a constituent parser with conversion to dependencies.
References

Chris Alberti, David Weiss, Greg Coppola, and Slav Petrov. 2015. Improved transition-based parsing and tagging with neural networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 1354–1359. http://aclweb.org/anthology/D/D15/D15-1159.pdf.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally normalized transition-based neural networks. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. http://aclweb.org/anthology/P/P16/P16-1231.pdf.

Giuseppe Attardi. 2006. Experiments with a multi-lingual non-projective dependency parser. In Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL). pages 166–170.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and Noah A. Smith. 2016. Training with exploration improves a greedy stack-lstm parser. CoRR abs/1603.03793. http://arxiv.org/abs/1603.03793.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL), pages 149–164. http://www.aclweb.org/anthology/W06-2920.

Danqi Chen and Christopher Manning. 2014. A fast and accurate dependency parser using neural networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar, pages 740–750. http://www.aclweb.org/anthology/D14-1082.

Michael A. Covington. 2001. A fundamental algorithm for dependency parsing. In Proceedings of the 39th Annual ACM Southeast Conference. ACM, New York, NY, USA, pages 95–102.

Marie-Catherine de Marneffe and Christopher D. Manning. 2008. The stanford typed dependencies representation. In Coling 2008: Proceedings of the Workshop on Cross-Framework and Cross-Domain Parser Evaluation. Association for Computational Linguistics, Stroudsburg, PA, USA, CrossParser '08, pages 1–8. http://dl.acm.org/citation.cfm?id=1608858.1608859.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. 2015. Transition-based dependency parsing with stack long short-term memory. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing. ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pages 334–343. http://aclweb.org/anthology/P/P15/P15-1033.pdf.

Daniel Fernández-González and Carlos Gómez-Rodríguez. 2012. Improving transition-based dependency parsing with buffer transitions. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Association for Computational Linguistics, pages 308–319. http://aclweb.org/anthology/D/D12/D12-1029.pdf.

Daniel Fernández-González and Carlos Gómez-Rodríguez. 2017. A full non-monotonic transition system for unrestricted non-projective parsing. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Vancouver, Canada, pages 288–298. http://aclweb.org/anthology/P17-1027.

Carlos Gómez-Rodríguez and Daniel Fernández-González. 2015. An efficient dynamic oracle for unrestricted non-projective parsing. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2015). Volume 2: Short Papers. Association for Computational Linguistics, Beijing, China, pages 256–261. http://www.aclweb.org/anthology/P15-2042.

Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification with bidirectional lstm and other neural network architectures. Neural Networks pages 5–6.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency parsing using bidirectional LSTM and other neural network architectures. TACL 4:313–327. https://transacl.org/ojs/index.php/tacl/article/view/885.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, Graham Neubig, and Noah A. Smith. 2017. What do recurrent neural network grammars learn about syntax? In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Association for Computational Linguistics, pages 1249–1258. http://aclanthology.coli.uni-saarland.de/pdf/E/E17/E17-1117.pdf.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. *Computational Linguistics* 19:313–330.

Ryan McDonald and Joakim Nivre. 2007. Characterizing the errors of data-driven dependency parsing models. In *Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)*, pages 122–131.

Joakim Nivre. 2003. An efficient algorithm for projective dependency parsing. In *Proceedings of the 8th International Workshop on Parsing Technologies (IWPT 03)*. ACL/SIGPARSE, pages 149–160.

Joakim Nivre. 2004. Incrementality in deterministic dependency parsing. In *Proceedings of the Workshop on Incremental Parsing: Bringing Engineering and Cognition Together (ACL)*, pages 50–57.

Joakim Nivre. 2008. *Algorithms for Deterministic Incremental Dependency Parsing*. *Computational Linguistics* 34(4):513–553. https://doi.org/10.1162/coli.07-056-R1-07-027.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007. The CoNLL 2007 shared task on dependency parsing. In *Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007*, pages 915–932. http://www.aclweb.org/anthology/D/D07/D07-1096.pdf.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *Glove: Global vectors for word representation*. In *Empirical Methods in Natural Language Processing (EMNLP)*, pages 1532–1543. http://www.aclweb.org/anthology/D14-1162.

Peng Qi and Christopher D. Manning. 2017. *Arcswift: A novel transition system for dependency parsing*. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 2: Short Papers*, pages 110–117. https://doi.org/10.18653/v1/P17-2018.

Francesco Sartorio, Giorgio Satta, and Joakim Nivre. 2013. A transition-based dependency parser using a dynamic parsing strategy. In *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Association for Computational Linguistics, pages 135–144. http://aclanthology.coli.uni-saarland.de/pdf/P/P13/P13-1014.pdf.

Tianze Shi, Liang Huang, and Lillian Lee. 2017. Fast(er) exact decoding and global training for transition-based dependency parsing via a minimal feature set. *CoRR* abs/1708.09403. http://arxiv.org/abs/1708.09403.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. 2003. *Feature-rich part-of-speech tagging with a cyclic dependency network*. In *Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology - Volume 1*. Association for Computational Linguistics, Stroudsburg, PA, USA, NAACL ’03, pages 173–180. https://doi.org/10.3115/1073445.1073478.

Alexander Volokh. 2013. *Performance-Oriented Dependency Parsing*. Doctoral dissertation, Saarland University, Saarbrücken, Germany.

Alexander Volokh and Günter Neumann. 2012. *Dependency parsing with efficient feature extraction*. In Birte Glimm and Antonio Krüger, editors, *KI*. Springer, volume 7526 of *Lecture Notes in Computer Science*, pages 253–256. https://doi.org/10.1007/978-3-642-33347-7.

David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. 2015. *Structured training for neural network transition-based parsing*. In *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers*, pages 323–333. http://aclweb.org/anthology/P/P15/P15-1032.pdf.