Massive Dirac fermions in moiré superlattices: a route toward correlated Chern insulators

Ying Su,1,2 Heqiu Li,3 Chuanwei Zhang,2 Kai Sun,3 and Shi-Zeng Lin1

1Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, USA
3Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

(Dated: October 7, 2021)

We demonstrate a generic mechanism to realize topological moiré minibands by considering a massive Dirac fermion moving in a moiré potential, which can be achieved in a heterobilayer of transition metal dichalcogenides. We take the MoTe2/WSe2 heterobilayer as an example and show that the topological phase can be driven by a vertical electric field due to the lattice corrugation. Thus a correlated Chern insulator can be stabilized by the Coulomb interaction that breaks the time-reversal symmetry spontaneously. Our work explains the recent experiment on the observation of Chern insulating state in the AB-stacked MoTe2/WSe2 and unveils a general strategy to design topological moiré materials.

Introduction.— Moiré superlattices (MSL) of van der Waals materials have evoked great interest due to their flat minibands and hence strong electronic correlation that enables novel quantum states, such as superconductivity and correlated insulator states [1–25], Mott insulator and generalized Wigner crystal states [26–34]. Furthermore, these minibands can be topologically nontrivial. Indeed, the topological moiré minibands have been identified in the twisted multilayer graphene [35–53], ABC-stacked-trilayer graphene/hBN heterostructure [54–56], and transition metal dichalcogenide (TMD) homobilayer [57]. The interplay between electronic correlation and nontrivial topology in MSL can stabilize exotic quantum states including unconventional superconductivity [58–76] and fractional Chern insulator [77–81].

TMD heterobilayers are one important class of MSL and are being considered platforms to simulate the Hubbard model. Their single-particle physics is modeled by holes with parabolic dispersion subject to a periodic moiré potential that yields topologically trivial moiré minibands [82, 83]. This theoretical framework can describe the experimentally observed Mott insulator and Wigner crystal in the WSe2/WS2 heterobilayer [26–30].

Strikingly, a recent experimental work reports the observation of correlated Chern insulator at half filling (ν = 1 hole per moiré unit cell) and quantum valley-spin Hall insulator at full filling (ν = 2 holes per moiré unit cell) in an AB-stacked MoTe2/WSe2 heterobilayer under a vertical electric field [84]. The topological phases are absent in its AA-stacked counterpart [85]. The experimental observations suggest valley-contrasting Chern bands in the AB-stacked heterobilayer that cannot be explained by the existing model [82, 83]. Several proposals have been put forward to account for the experiments by including interlayer tunneling [86] and pseudomagnetic field [87] in the AB-stacked MoTe2/WSe2 heterobilayer.

In this work, we reexamine the low-energy continuum model describing the TMD heterobilayer MSL by emphasizing the Dirac structure of low-energy bands in constituent layers. The low-energy physics in the TMD monolayer is described by massive Dirac fermions with opposite chirality at two distinct valleys [88]. In TMD heterobilayers, such as WSe2/WS2 and MoTe2/WSe2, the Dirac bands of two different layers are weakly coupled due to the large energy offset and lattice mismatch. When focusing on the conduction or valence band edge from one layer, the other layer provides a periodic modulation, and the whole system can be described by a massive Dirac fermion moving in a moiré potential. In previous studies, the massive Dirac structure is often neglected via dropping the conduction (remote) band, which is far away from the Fermi energy (of the order of 1eV) [82, 83]. Although this approximation provides an accurate description of the band dispersion, our study indicates that the Dirac nature plays a crucial role in the topology of the moiré minibands. In particular, we find that in the presence of a vertical electric field, the Berry curvature induced by Dirac remote bands opens up a topological phase, which is absent if remote bands are ignored. Moreover, the Coulomb interaction can stabilize a correlated Chern insulator by spontaneously breaking the time-reversal symmetry (TRS). Our work provides a natural explanation for the quantum anomalous Hall effect observed in a TMD heterobilayer under a vertical electric field [84].

Continuum model reexamined.—The standard continuum model describing the valence minibands in a TMD heterobilayer reads [82, 83]

$$H_0 = -\frac{k^2}{2m} + V(r), \quad V(r) = 2V_0 \sum_{j=1}^{3} \cos(g_j \cdot r + \phi),$$

(1)

where $k = -i\nabla$ is the momentum operator, $g_j = 4\pi/\sqrt{3a_M} \cos(2\pi j/3) $ denotes the moiré wave vector, and ϕ is the phase of the moiré potential. The MSL constant is $a_M = a/\sqrt{\delta + \theta^2}$ where $\delta = (a - d)/d'$ is the mismatch of lattice constants and θ is the twist angle. The continuum model has an emergent intravalley TRS, i.e., $\mathcal{K}H_0\mathcal{K}^{-1} = H_0$ that enforces antisymmetric Berry curvature $\Omega(k) = -\Omega(-k)$ and hence no Chern band. The corresponding time-reversal operator is defined as $\mathcal{T} = \mathcal{K}$ where \mathcal{K} is the complex conjugate operator. The moiré potential couples Bloch states at the momenta differed by $\pm g_j$ that folds the energy bands into the mini Brillouin zone (MBZ) and leads to the moiré minibands.

To emphasize the Dirac structure of low-energy bands of the constituent layers, we propose a revised continuum model...
in which the massive Dirac fermion couples to the moiré potential
\[H_t = h_{k,\tau} + V(r), \quad h_{k,\tau} = at (\tau k_x \sigma_x + k_y \sigma_y) + \frac{\Delta}{2} \sigma_z, \]
(2)
where \(t \) is the intralayer hopping energy, \(\Delta \) is the band gap, and \(\tau = \pm 1 \) is the index of the locked valley and spin degrees of freedom in TMD. \(\sigma_{x,y,z} \) are the Pauli matrices acting on the two basis orbitals \(\{|d,z\rangle, \frac{1}{\sqrt{2}}(|d,z\rangle + i\tau|d,-z\rangle)\) of the conduction and valence band, respectively [88]. \(H_t \) is invariant under the threefold rotation since \(\mathcal{E}_3 h_{k,\tau} \mathcal{E}_3^{-1} = h_{R\mathbf{R},k,\tau} \) and \(V(R\mathbf{R},r) = V(r) \) where \(\mathcal{E}_3 = \text{diag}(e^{-\frac{2\pi i}{3}}, 1) \) [89] and \(R_3 \) are the threefold rotation operator and matrix. Eq. (1) can be derived from Eq. (2) through the second order perturbation theory for \(\Delta \gg atk \) and \(V_0 \), and the effective mass \(m = \Delta/2a^2t^2 \). In contrast to Eq. (1), the intravalley TRS is broken in the revised continuum model as \(\mathcal{H} h_{k,\tau} \mathcal{F}^{-1} = h_{-k,-\tau} \) where the time-reversal operator reverses the valley index and momentum. As will be shown below, the Dirac nature of low-energy states in TMD makes it possible to achieve the valley-contrasting Chern bands, even though the Dirac band gap \(\Delta \sim 1 \) eV is much larger than the energy scale of the moiré miniband.

Topological phases.—Due to the \(\mathcal{C}_3 \) symmetry, the valley Chern number \(C_\tau \) of the top valence band can be determined by its \(\mathcal{C}_3 \) eigenvalues \(\eta_\tau(k) \) at the \(\mathcal{C}_3 \)-invariant points [90], i.e.,
\[e^{\pm \frac{2\pi i}{3} C_\tau} = \eta_\tau(\gamma) \eta_\tau(\kappa) \eta_\tau(-\kappa), \]
(3)
where \(\gamma \) represents the MBZ center and \(\pm \kappa \) are the MBZ corners. It is easy to show \(\eta_\tau(\gamma) = 1 \), while \(\eta_\tau(\pm \kappa) \) can be evaluated to the leading order by the degenerate perturbation theory in which the coupling among three degenerate Bloch states at \(\pm \kappa \) are considered, as shown in Fig. 1(a). In the basis of the Bloch states of the valence band without a moiré potential, i.e., \(\{|u_{\pm \kappa},\tau\rangle, |u_{\pm \kappa},\tau\rangle, |u_{\pm \kappa},\tau\rangle\} \) with \(h_{k,\tau} |u_{\pm \kappa},\tau\rangle = -\sqrt{\Delta^2/4 + \pi^2k^2} |u_{\pm \kappa},\tau\rangle \), the matrix representation of the moiré potential operator is
\[V_{\pm \kappa,\tau} = V^*_{\pm \kappa,\tau} = \begin{pmatrix} 0 & w(\pm \phi) & w(\pm \phi)^* \\ w(\pm \phi)^* & 0 & w(\pm \phi) \\ w(\pm \phi) & w(\pm \phi)^* & 0 \end{pmatrix}, \]
(4)
whose element
\[w(\pm \phi) = (u_{\pm \kappa,\tau} | V | u_{\pm \kappa,\tau}^*) = V_0 e^{i(\pm \phi - \pi/3)} \left(\frac{1}{2} + \frac{i\sqrt{3}}{2\sqrt{1+s}} \right), \]
(5)
depends on the dimensionless \(s = 64\pi^2/\tau^2(\delta^2 + \theta^2)/9\Delta^2 \).

The eigenvalues of Eq. (4) are \(E_0 = 2Re(w) \) and \(E_{\pm 1} = -Re(w) \pm \sqrt{3}Im(w) \), and the corresponding eigenstates have the \(\mathcal{C}_3 \) eigenvalues \(\mathcal{C}_3 | E_j \rangle = e^{i\frac{2\pi j}{3}} | E_j \rangle \). In Fig. 1(b), the three eigenvalues are shown as a function of arg\(w \) and the top valence band at \(\pm \kappa \) changes among \(E_0 \) and \(E_{\pm 1} \) through the band crossing at arg\(w \) = \(\pm \pi/3 \) and \(\pi \) where the topological transition can occur. In this way, we can identify \(\eta_\tau(\pm \kappa) \) and hence the valley Chern number \(C_\tau \) according to Eq. (3). Moreover, the TRS guarantees \(\eta_\tau(\pm \kappa) = \eta_\tau(\mp \kappa)^* \) and \(C_+ = -C_- \). A global phase diagram in terms of \(\phi \) and \(s \) is constructed in Fig. 1(c). Three topological phases with \(C_+ = -1 \) and \(C_- = 1 \) emerge at \(\phi = \pm \pi/3 \) and \(\pi \), and then expand in a wider range of \(\phi \) as \(s \) increases from zero. The topological phase boundaries can be obtained analytically by demanding arg\(|w(\pm \phi)\rangle = \pm \pi/3 \) and \(\pi \) that yields the critical \(s \) as
\[s_c = 3\cot^2(\phi - \alpha) - 1, \]
(6)
with \(\phi \in [-\pi/3 + \alpha, \pi/3 + \alpha] \) where \(\alpha = 0, \pm 2\pi/3 \).

Interestingly, \(s \) is proportional to the intrinsic Berry curvature \(\Omega_\tau(k) \approx 2a^2t^2/\Delta^2 \) (which is valid for \(\Delta \gg atk \) in the MBZ) of the Dirac model in Eq. (2) times the MBZ area \(A_\text{MBZ} = 8\pi^2(\delta^2 + \theta^2)/\sqrt{3}a^2 \). Namely, \(s \) measures the intrinsic Berry phase of the top valence band and the topological phase appears only when \(s > 0 \), as shown in Fig. 1(c). This also explains why the topological phase is absent when the Dirac nature of low-energy states in TMD is neglected, as described by Eq. (1).

To verify the topological phase, we take the MoTe\(_2\)/WSe\(_2\) heterobilayer as an example. MoTe\(_2\) and WSe\(_2\) have a valence band offset of about 200–300 meV and lattice mismatch \(\delta \sim 7\% \) [84, 85]. The top valence band is from MoTe\(_2\)
whose model parameters are $\Delta = 1.017$ eV, $a = 3.565$ Å, and $t = 0.709$ eV [91, 92]. By employing the plane wave expansion of the continuum model to the fifth shell, we obtain the topological phase diagram in terms of ϕ and θ in Fig. 1(d). Here the red dashed lines are the topological phase boundary predicted by Eq. (6) and are consistent with the numerical results. In Fig. 1(d), only the topological phase around $\phi = \pi/3$ is shown, and another two topological phases can be obtained by shifting ϕ by $\pm 2\pi/3$. For $\theta = 1^\circ$, $\phi = 59^\circ$, and $V_0 = 8$ meV, the top valence band displayed in Fig. 2(a) is topological with $C_+ = -1$. The red and blue lines are bands from the continuum models in Eqs. (1) and (2), respectively, and show good agreement with each other. Here we only show the valence bands from the +K valley, and those from the −K valley can be obtained by TRS. The corresponding Berry curvatures of the top valence band from the two different models are displayed in Figs. 2(b) and 2(c). The Berry curvature in Fig. 2(b) is antisymmetric due to the emergent intravalley TRS in Eq. (1), while that in Fig. 2(c) yields a Chern band with $C_+ = -1$. Deep inside the topological trivial phase, the Berry curvature derived from Eq. (1) could be a good approximation to that from Eq. (2) [93].

The moiré potential is inversion symmetric when $\phi = n\pi/3$ (n is an integer). Especially for an odd n, the minima of the moiré potential for holes form a honeycomb lattice where the top two valence bands with opposite Chern numbers can be mapped to the Haldane model [93, 94]. By further including the time-reversal counterparts from the other valley and the Coulomb interaction, the system can simulate the Kane-Mele-Hubbard model [95]. The deviation of ϕ from $n\pi/3$ for an odd n translates into a staggered potential in the Haldane model that can drive the topological transition, as shown in Fig. 1(c).

Electric-field-driven topological transition.—According to the first-principle calculation, the phase of the moiré potential in AA- and AB-stacked TMD heterobilayer is unlikely close to $\phi = \pm \pi/3$ or π [82, 83, 86]. Here we show that ϕ actually can be tuned by a vertical electric field. We notice that the two stacking configurations have different lattice corrugations that have been identified in both the STM measurement [96, 97] and the first-principal calculation [86, 98]. The electric field couples to the lattice corrugation and modifies the moiré potential as

$$
H'_e = \hbar k_z + V(r) + e E_\perp z(r) = \hbar k_z + 2V_0' \sum_{j=1}^3 \cos \left(G_j \cdot r + \phi + \phi' + \beta \right),
$$

where E_\perp is the vertical electric field and the topography of the corrugated layer is approximated by the lowest harmonics $z(r) \approx z_0 \sum_{j=1}^3 (G_j \cdot r + \phi')$. The role of electric field can be described by a modified moiré potential with $V_0' = \sqrt{V_0^2 + e^2 E_\perp^2 z_0^2/4 + V_0 e E_\perp z_0 \cos(\phi - \phi')}$, and $\tan \beta = 2V_0 - e E_\perp z_0 / 2V_0 + e E_\perp z_0$. As E_\perp ramps up, the phase of the moiré potential in Eq. (7) changes continuously from ϕ to ϕ' when $eE_\perp z_0 \gg V_0$, which points to an electric-field-driven topological phase transition.

In AA-stacked TMD heterobilayer, $z(r)$ is maximal at R_M^AA and minimal at R_N^AA and R_X^AA [96–98]. In AB-stacked TMD heterobilayer, $z(r)$ is maximal (minimal) at R_N^AB (R_M^AB), while H_{\perp}^0 is in between [86, 97]. Here M and X refer to the metal and chalcogen, while R and H represent the AA- and AB-stacking. The super- and subscript denote atoms from the top and bottom layer are aligned locally [93]. The variation of $z(r)$ at different local stacking regions in experiments translates into $\phi' \sim 0$ and $-\pi/2$ for the AA- and AB-stacked heterobilayer, as shown in Figs. 3(a) and 3(b). ϕ of the...
moiré potential is usually determined by fitting the continuum model to the first-principal energy bands. It has been reported that $\phi \sim \pi/12$ for AB-stacked MoTe$_2$/WSe$_2$ [86] while ϕ for AA-stacked MoTe$_2$/WSe$_2$ is still unclear. Nevertheless, most AA-stacked TMD heterobilayers have a ϕ of $\pi/6 \sim \pi/4$ [83, 99] and it is natural to expect AA-stacked MoTe$_2$/WSe$_2$ has ϕ in the same range. Because there is a topological phase around $\phi \sim -\pi/3$, as shown in Fig. 1(c), the electric field can drive the topological transition in AB- but not in AA-stacked MoTe$_2$/WSe$_2$. The critical E_\perp for the topological transition can be obtained from Eq. (6) by replacing ϕ with the phase of the modified moiré potential in Eq. (7). For $\theta = 0^\circ$, $V_0 = 4.3$ meV, and $z_0 = 0.024$ nm, the topological phase diagrams in terms of θ and E_\perp are displayed in Figs. S3(c) and S3(d) for the AA- and AB-stacked MoTe$_2$/WSe$_2$, respectively. For the AA-stacked MoTe$_2$/WSe$_2$, no topological phase appears for ϕ around $\pi/6 \sim \pi/4$. For the AB-stacked MoTe$_2$/WSe$_2$ with $\phi \sim \pi/12$, a topological phase appears for E_\perp within $0.66 \sim 0.73$ V/nm which is close to $0.68 \sim 0.70$ V/nm observed in the experiment [84].

Correlated Chern insulator.—To stabilize a Chern insulator, it is required to break the TRS, which can be achieved by the Coulomb interaction. We project the Coulomb interaction onto the moiré minibands as

$$H = \sum_{n,k,\tau} (E_{n,k,\tau} - \mu) c_{n,k,\tau}^\dagger c_{n,k,\tau} + \frac{1}{2A} \sum_q \rho(q) V_q \rho(-q),$$

where $c_{n,k,\tau}$ is the annihilation operator of the eigenstate given by $H_1 \ket{\psi_{n,k,\tau}} = E_{n,k,\tau} \ket{\psi_{n,k,\tau}}$. A is the area of the system, and μ is the chemical potential. $V_q = e^2 \tanh(qd_\perp)/2\varepsilon_0 q$ is the screened Coulomb interaction in a dual-gated setup whose gate distant is $d_\perp \sim 10$ nm [84]. Here ε is the dielectric constant and ε_0 is the vacuum permittivity. The density operator

$$\rho(q) = \sum_{n,k} \sum_{\tau} A_{n',q}(k,k') c_{n,k,\tau} c_{n,k',\tau}$$

where the form factor $A_{n',q}(k,k') = \langle \psi_{n,k,\tau} | e^{iq\cdot\tau} | \psi_{n',k',\tau} \rangle$ encodes the correlation between states in different bands and at different momenta.

The interacting Hamiltonian Eq. (8) can be solved self-consistently by using the standard Hartree-Fock approximation [93]. To identify the correlated Chern insulator at $\nu = 1$ and quantum valley-spin Hall insulator at $\nu = 2$ in AB-stacked MoTe$_2$/WSe$_2$, we calculate the Hall conductance G_H and spin Hall conductance G_{SH} as a function of ε under the electric field $E_\perp = 0.69$ V/nm at which the correlated Chern insulator was observed in the experiment [84]. At $\nu = 1$, the Hall conductance drops from e^2/h to 0 at $\varepsilon \sim 21$, as shown in Fig. 4(a). When $\varepsilon < 21$, the system becomes a valley-polarized Chern insulator whose energy bands are shown in Fig. 4(b). Here the blue solid and red dashed bands are from the $\pm K$ valleys, respectively, and the top valence band from the K valley with $C_+ = -1$ is empty. The energy gap Δ_ε decreases with ε and vanishes with G_H at ε_0 above which the valley polarization disappears and the system becomes a normal metal. The energy gap for $\varepsilon = 8$ in Fig. 4(b) is $\Delta_\varepsilon = 2.71$ meV that agrees with the one observed in the experiment [84]. At $\nu = 2$, the spin Hall conductance jumps from 0 to $2e^2/h$ at $\varepsilon \sim 6$ above which the system becomes a quantum valley-spin Hall insulator, as shown in Figs. 4(c) and 4(d). In this case, the top valence bands from $\pm K$ valleys with opposite Chern numbers $C_+ = -C_- = -1$ are empty. The energy gap decreases with ε. The valley polarization only appears at strong interaction for $\varepsilon < 6$, and the top two valence bands from either K or -K valley are empty. Because the two bands from the same valley carry opposite Chern numbers, the system becomes a valley-polarized trivial insulator.

Discussion and summary.—We demonstrate a generic mechanism to realize topological moiré minibands by placing massive Dirac fermions in a moiré potential. The revised continuum model can serve as a paradigm to investigate the interplay between electric correlation and nontrivial topology in the moiré system. The broadened topological phases for large s in Fig. 1(c) suggests that the nontrivial topology favors TMD heterobilayers with large twist angle and lattice mismatch whereas small band gap. The phase of the moiré potential also plays a vital role in determining the topological property and can be tuned by the vertical electric field.

A single Dirac cone in lattice model is not allowed when the TRS is present according to the Nielsen–Ninomiya theorem [100]. In MSL, it becomes possible to fold Dirac cones into the MBZ, and label them by the valley index. These Dirac cones with different valley indices are separated by a large momentum, and they do not hybridize at the single particle level in clean systems. With the Coulomb interaction, the
Dirac cone of one valley flavor is populated while that of the other valley remains empty, which results in the spontaneous breaking of TRS. Therefore, the TMD heterobilayer becomes an exciting platform to study the physics of a single massive Dirac cone, where topological bands can be realized. A similar situation for massless Dirac cone can be realized on the surface of 3D topological insulators [101, 102].

In summary, we highlight the importance of the Dirac nature of low-energy states in TMD constituent layers by explicitly demonstrating the existence of topological moiré minibands in TMD heterobilayer MSL. We take the AB-stacked MoTe$_2$/WSe$_2$ heterobilayer as an example and show that a correlated Chern insulator can be stabilized by the Coulomb interaction under a vertical electric field. Our theory provides a mechanism to the electric-field-driven Chern insulating state observed in the TMD heterobilayer and points a direction to design topological moiré materials.

Acknowledgments.—The work done at LANL was carried out under the auspices of the U.S. DOE NNSA under contract No. 89233218CNA000001 through the LDRD Program. S. Z. L. was also supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, Condensed Matter Theory Program. The work at the University of Texas at Dallas is supported by the Air Force Office of Scientific Research (FA9550-20-1-0220), National Science Foundation (PHY-2110212), and Army Research Office (W911NF-17-1-0128). H.L. and K.S. acknowledge support through NSF Grant No. NSF-EFMA-1741618.

[1] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556, 43 (2018).
[2] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556, 80 (2018).
[3] G. Chen, L. Jiang, S. Wu, B. Lyu, H. Li, B. L. Chittari, K. Watanabe, T. Taniguchi, Z. Shi, J. Jung, et al., Evidence of a tunable two-dimensional superlattice, Nature Physics 15, 237 (2019).
[4] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, Science 363, 1059 (2019).
[5] G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. J. Fox, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, et al., Signatures of tunable superconductivity in a trilayer graphene moiré superlattice, Nature 572, 215 (2019).
[6] Y. Xie, B. Lian, B. Jäck, X. Liu, C.-L. Chiu, K. Watanabe, T. Taniguchi, B. A. Bernevig, and A. Yazdani, Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene, Nature 572, 101 (2019).
[7] A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean, et al., Maximized electron interactions at the magic angle in twisted bilayer graphene, Nature 572, 95 (2019).
[8] Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule, J. Mao, and E. Y. Andrei, Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene, Nature 573, 91 (2019).
[9] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R. Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael, et al., Electronic correlations in twisted bilayer graphene near the magic angle, Nature Physics 15, 1174 (2019).
[10] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, et al., Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene, Nature 574, 653 (2019).
[11] Y. Cao, D. Rodan-Leegrain, O. Rubies-Bigorda, J. M. Park, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Tunable correlated states and spin-polarized phases in twisted bilayer graphene, Nature 583, 215 (2020).
[12] X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, Y. Ronen, H. Yoo, D. H. Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, et al., Tunable spin-polarized correlated states in twisted double bilayer graphene, Nature 583, 221 (2020).
[13] O. W. Burg, J. Zhu, T. Taniguchi, K. Watanabe, A. H. MacDonald, and E. Tutuc, Correlated insulating states in twisted double bilayer graphene, Phys. Rev. Lett. 123, 197702 (2019).
[14] C. Shen, Y. Chu, Q. Wu, N. Li, S. Wang, Y. Zhao, J. Tang, J. Liu, J. Tian, K. Watanabe, et al., Correlated states in twisted double bilayer graphene, Nature Physics 16, 520 (2020).
[15] P. Stepanov, I. Das, X. Lu, A. Fahimniya, K. Watanabe, T. Taniguchi, F. H. Koppens, J. Lischner, L. Levitov, and D. K. Efetov, Uniting the insulating and superconducting orders in magic-angle graphene, Nature 583, 375 (2020).
[16] H. S. Arora, R. Polski, Y. Zhang, A. Thomson, Y. Choi, H. Kim, Z. Lin, I. Z. Wilson, X. Xu, J.-H. Chu, et al., Superconductivity in metallic twisted bilayer graphene stabilized by wse 2, Nature 583, 379 (2020).
[17] Y. Saito, J. Ge, K. Watanabe, T. Taniguchi, and A. F. Young, Independent superconductors and correlated insulators in twisted bilayer graphene, Nature Physics 16, 926 (2020).
[18] S. Chen, M. He, Y.-H. Zhang, V. Hsieh, Z. Fei, K. Watanabe, T. Taniguchi, D. H. Cobden, X. Xu, C. R. Dean, et al., Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene, Nature Physics 17, 374 (2021).
[19] S. Xu, M. M. Al Ezzi, N. Balakrishnan, A. Garcia-Ruiz, B. Tsim, C. Mullan, J. Barrier, N. Xin, B. A. Piot, T. Taniguchi, et al., Tunable van hove singularities and correlated states in twisted monolayer–bilayer graphene, Nature Physics 17, 619 (2021).
[20] Y. Cao, D. Rodan-Leegrain, J. M. Park, N. F. Yuan, K. Watanabe, T. Taniguchi, R. M. Fernandes, L. Fu, and P. Jarillo-Herrero, Nematicity and competing orders in superconducting magic-angle graphene, Science 372, 264 (2021).
[21] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene, Nature 590, 249 (2021).
[22] Z. Hao, A. Zimmerman, P. Ledwith, E. Khalaf, D. H. Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, and P. Kim, Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene, Science 371, 1133 (2021).
[23] Y. Cao, J. M. Park, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Pauli-limit violation and re-entrant superconductivity in moiré graphene, Nature 595, 526 (2021).
[24] M. He, Y. Li, J. Cai, Y. Liu, K. Watanabe, T. Taniguchi, X. Xu, and M. Yankowitz, Symmetry breaking in twisted double bilayer graphene, Nature Physics 17, 26 (2021).
[25] H. Kim, Y. Choi, C. Lewandowski, A. Thomson, Y. Zhang, R. Polski, K. Watanabe, T. Taniguchi, J. Alicea, and S. Nadji-Perge, Spectroscopic signatures of strong correlations and unconventional superconductivity in twisted trilayer graphene (2021), arXiv:2109.12127 [cond-mat.mes-hall].

[26] Y. Tang, L. Li, T. Li, Y. Xu, S. Liu, K. Barmak, K. Watanabe, T. Taniguchi, A. H. MacDonald, J. Shan, and K. F. Mak, Simulation of hubbard model physics in wse$_2$/ws$_2$ moiré superlattices, Nature 579, 353 (2020).

[27] E. C. Regan, D. Wang, C. Jin, M. I. B. Utama, B. Gao, X. Wei, S. Zhao, W. Zhao, Z. Zhang, K. Yumigeta, et al., Mott and generalized wigner crystal states in wse$_2$/ws$_2$ moiré superlattices, Nature 579, 359 (2020).

[28] Y. Xu, S. Liu, D. A. Rhodes, K. Watanabe, T. Taniguchi, J. Hone, V. Elser, K. F. Mak, and J. Shan, Correlated insulating states at fractional fillings of moiré superlattices, Nature 587, 214 (2020).

[29] Z. Chu, E. C. Regan, X. Ma, D. Wang, Z. Xu, M. I. B. Utama, K. Yumigeta, M. Blei, K. Watanabe, T. Taniguchi, S. Tongay, F. Wang, and K. Lai, Nanoscale conductivity imaging of correlated electronic states in wse$_2$/ws$_2$ moiré superlattices, Phys. Rev. Lett. 125, 186803 (2020).

[30] X. Huang, T. Wang, S. Miao, C. Wang, Z. Li, Z. Lian, T. Taniguchi, K. Watanabe, S. Okamoto, D. Xiao, et al., Correlated insulating states at fractional fillings of the wse$_2$/ws$_2$ moiré lattice, Nature Physics 17, 715 (2021).

[31] L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes, C. Tan, M. Claassen, D. M. Kennes, Y. Bai, B. Kim, et al., Correlated electronic phases in twisted bilayer transition metal dichalcogenides, Nature materials 19, 861 (2020).

[32] Y. Zhou, J. Sung, E. Brutschea, I. Esterlisa, W. Yang, G. Scuri, R. J. Gelly, H. Heo, T. Taniguchi, K. Watanabe, et al., Bilayer wigner crystals in a transition metal dichalcogenide heterostructure, Nature 595, 48 (2021).

[33] A. Ghiotto, E.-M. Shih, G. S. Pereira, D. A. Rhodes, B. Kim, J. Zang, A. J. Millis, K. Watanabe, T. Taniguchi, J. C. Hone, et al., Quantum criticality in twisted transition metal dichalcogenides, Nature 597, 345 (2021).

[34] H. Li, S. Li, E. C. Regan, D. Wang, W. Zhao, S. Kahn, K. Yumigeta, M. Blei, T. Taniguchi, K. Watanabe, et al., Imaging two-dimensional generalized wigner crystals, Nature 597, 650 (2021).

[35] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-Gordon, Emergent fermigmatism near three-quarters filling in twisted bilayer graphene, Science 365, 605 (2019).

[36] Y.-H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T. Senthil, Nearly flat chern bands in moiré superlattices, Phys. Rev. B 99, 075127 (2019).

[37] Z. Song, Z. Wang, W. Shi, G. Li, C. Fang, and B. A. Bernevig, All magic angles in twisted bilayer graphene are topological, Phys. Rev. Lett. 123, 036401 (2019).

[38] Y.-H. Zhang, D. Mao, and T. Senthil, Twisted bilayer graphene aligned with hexagonal boron nitride: Anomalous hall effect and a lattice model, Phys. Rev. Research 1, 033126 (2019).

[39] J. Y. Lee, E. Khalaf, S. Liu, X. Liu, Z. Hao, P. Kim, and A. Vishwanath, Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene, Nature communications 10, 1 (2019).

[40] M. Serlin, C. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. Young, Intrinsically quantized anomalous hall effect in a moiré heterostructure, Science 367, 900 (2020).

[41] P. Stepanov, M. Xie, T. Taniguchi, K. Watanabe, X. Lu, A. H. MacDonald, B. A. Bernevig, and D. K. Efetov, Competing zero-field chern insulators in superconducting twisted bilayer graphene (2020), arXiv:2012.15126 [cond-mat.mes-hall].

[42] M. Xie and A. H. MacDonald, Nature of the correlated insulator states in twisted bilayer graphene, Phys. Rev. Lett. 124, 097601 (2020).

[43] N. Bultinck, S. Chatterjee, and M. P. Zaletel, Mechanism for anomalous hall ferromagnetism in twisted bilayer graphene, Phys. Rev. Lett. 124, 166601 (2020).

[44] F. Wu and S. Das Sarma, Collective excitations of quantum anomalous hall ferromagnets in twisted bilayer graphene, Phys. Rev. Lett. 124, 046403 (2020).

[45] Y. Su and S.-Z. Lin, Current-induced reversal of anomalous hall conductance in twisted bilayer graphene, Phys. Rev. Lett. 125, 226401 (2020).

[46] K. P. Nuckolls, M. Oh, D. Wong, B. Lian, K. Watanabe, T. Taniguchi, B. A. Bernevig, and A. Yazdani, Strongly correlated chern insulators in magic-angle twisted bilayer graphene, Nature 588, 610 (2020).

[47] Y. Choi, H. Kim, Y. Peng, A. Thomson, C. Lewandowski, R. Polski, Y. Zhang, H. S. Arora, K. Watanabe, T. Taniguchi, et al., Correlation-driven topological phases in magic-angle twisted bilayer graphene, Nature 589, 536 (2021).

[48] I. Das, M. Oh, J. Herzog-Arbeitsman, Z.-D. Song, K. Watanabe, T. Taniguchi, B. A. Bernevig, and D. K. Efetov, Symmetry-broken chern insulators and rashba-like landau-level crossings in magic-angle bilayer graphene, Nature Physics 17, 710 (2021).

[49] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Flavour hund’s coupling, chern gaps and charge diffusivity in moiré graphene, Nature 592, 43 (2021).

[50] Y. Wang, J. Herzog-Arbeitsman, G. W. Burg, J. Zhu, K. Watanabe, T. Taniguchi, A. H. MacDonald, B. A. Bernevig, and E. Tutuc, Topological edge transport in twisted double-bilayer graphene (2021), arXiv:2101.03621 [cond-mat.mes-hall].

[51] A. T. Pierce, Y. Xie, J. M. Park, E. Khalaf, S. H. Lee, Y. Cao, D. E. Parker, P. R. Forrester, S. Chen, K. Watanabe, et al., Unconventional sequence of correlated chern insulators in magic-angle twisted bilayer graphene, Nature Physics (2021).

[52] M. He, J. Cai, Y.-H. Zhang, Y. Liu, Y. Li, T. Taniguchi, K. Watanabe, D. H. Cobden, M. Yankowitz, and X. Xu, Chirality-dependent topological states in twisted double bilayer graphene (2021), arXiv:2109.08255 [cond-mat.mes-hall].

[53] B. L. Chittari, G. Chen, Y. Zhang, F. Wang, and J. Jung, Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices, Phys. Rev. Lett. 122, 016401 (2019).

[54] Y.-H. Zhang and T. Senthil, Bridging hubbard model physics and quantum hall physics in trilayer graphene/*–BN moiré superlattice, Phys. Rev. B 99, 205150 (2019).

[55] G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, et al., Tunable correlated chern insulator and ferromagnetism in a moiré superlattice, Nature 579, 56 (2020).

[56] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. MacDonald, Topological insulators in twisted transition metal dichalcogenide homobilayers, Phys. Rev. Lett. 122, 086402 (2019).

[57] C. Xu and L. Balents, Topological superconductivity in twisted multilayer graphene, Phys. Rev. Lett. 121, 087001 (2018).

[58] H. Guo, X. Zhu, S. Feng, and R. T. Scalettar, Pairing symmetry of interacting fermions on a twisted bilayer graphene superlat
B. Lian, Z. Wang, and B. A. Bernevig, Twisted bilayer graphene: A phonon-driven superconductor, Phys. Rev. Lett. 122, 257002 (2019).

T. Cea and F. Guinea, Coulomb interaction, phonons, and superconductivity in twisted bilayer graphene, Proceedings of the National Academy of Sciences 118, 10.1073/pnas.2107874118 (2021).

R. M. Fernandes and L. Fu, Charge-4e superconductivity from multicomponent nematic pairing: Application to twisted bilayer graphene, Phys. Rev. Lett. 127, 047001 (2021).

E. Khalaf, S. Chatterjee, N. Bultinck, and A. Vishwanath, Charged skyrmions and topological origin of superconductivity in magic-angle graphene, Science advances 7, eabf5299 (2021).

W. Qin and A. H. MacDonald, In-plane critical magnetic fields in magic-angle twisted trilayer graphene, Phys. Rev. Lett. 127, 097001 (2021).

E. Lake and T. Senthil, Re-entrant superconductivity through a quantum lshitz transition in twisted trilayer graphene (2021), arXiv:2104.13920 [cond-mat.mes-hall].

P. J. Ledwith, G. Tarnopolsky, E. Khalaf, and A. Vishwanath, Fractional chern insulator states in twisted bilayer graphene: An analytical approach, Phys. Rev. Research 2, 023237 (2020).

C. Repellin and T. Senthil, Chern bands of twisted bilayer graphene: Fractional chern insulators and spin phase transition, Phys. Rev. Research 2, 023238 (2020).

Z. Liu, A. Abouelkomsan, and E. J. Bergholtz, Gate-tunable fractional chern insulators in twisted double bilayer graphene, Phys. Rev. Lett. 126, 026801 (2021).

H. Li, U. Kumar, K. Sun, and S.-Z. Lin, Spontaneous fractional chern insulators in transition metal dichalcogenide moiré superlattices, Phys. Rev. Research 3, L032070 (2021).

Y. Xie, A. T. Pierce, J. M. Park, D. E. Parker, E. Khalaf, P. Ledwith, Y. Cao, S. H. Lee, S. Chen, P. R. Forrest, et al., Fractional chern insulators in magic-angle twisted bilayer graphene (2021), arXiv:2107.10854 [cond-mat.mes-hall].

F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald, Hubbard model physics in transition metal dichalcogenide moiré bands, Phys. Rev. Lett. 121, 026402 (2018).

Y. Zhang, N. F. Q. Yuan, and L. Fu, Moiré quantum chemistry: Charge transfer in transition metal dichalcogenide superlattices, Phys. Rev. B 102, 201115 (2020).

T. Li, S. Jiang, B. Shen, Y. Zhang, L. Li, T. Devakul, K. Watanabe, T. Taniguchi, L. Fu, J. Shan, and K. F. Mak, Quantum anomalous hall effect from intertwined moiré bands (2021), arXiv:2107.01796 [cond-mat.mes-hall].

T. Li, S. Jiang, L. Li, Y. Zhang, K. Kang, J. Zhu, K. Watanabe, T. Taniguchi, D. Chowdhury, L. Fu, J. Shan, and K. F. Mak, Continuous mott transition in semiconductor moiré superlattices, Nature 597, 350 (2021).

Y. Zhang, T. Devakul, and L. Fu, Spin-textured chern bands in ab-stacked transition metal dichalcogenide bilayers, Proceedings of the National Academy of Sciences 118, 10.1073/pnas.2112673118 (2021), https://www.pnas.org/content/118/36/2112673118.full.pdf.

Y.-M. Xie, C.-P. Zhang, J.-X. Hu, K. F. Mak, and K. Law, Theory of valley polarized quantum anomalous hall state in moiré mott/wse heterobilayers (2021), arXiv:2106.13991 [cond-mat.mes-hall].

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of m08 and other group-iii dichalcogenides, Phys. Rev. Lett. 108, 196802 (2012).

G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, Electronic structures and theoretical modelling of two-dimensional group-vib transition metal dichalcogenides, Chem. Soc. Rev. 44, 2643 (2015).

C. Fang, M. J. Gilbert, and B. A. Bernevig, Bulk topological invariants in noninteracting point group symmetric insulators, Phys. Rev. B 86, 115112 (2012).

N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari, Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds, Nature nanotechnology 13, 246 (2018).

L. Meckbach, J. Hader, U. Huttner, J. Neuhaus, J. T. Steiner, T. Stroucken, J. V. Moloney, and S. W. Koch, Ultrafast bandgap renormalization and build-up of optical gain in monolayer mott2/wse heterobilayers, Phys. Rev. B 101, 075401 (2020).

See Supplemental Materials for (i) local stacking configurations in AA- and AB-stacked TMD heterobilayer, (ii) comparison of the two continuum models in the trivial phase, (iii) Wannier orbitals of moiré minibands, and (iv) details of Hartree-Fock calculations.

F. D. M. Haldane, Model for a quantum hall effect without landau levels: Condensed-matter realization of the "parity anomaly", Phys. Rev. Lett. 61, 2015 (1988).

C. L. Kane and E. J. Mele, Quantum spin hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005).

C. Zhang, C.-P. Chuu, X. Ren, M.-Y. Li, L.-J. Li, C. Jin, M.-Y. Chou, and C.-K. Shih, Interlayer couplings, moiré patterns, and 2d electronic superlattices in m08/wse hetero-bilayers, Sci-
ence advances 3, e1601459 (2017).

[97] S. Shabani, D. Halbertal, W. Wu, M. Chen, S. Liu, J. Hone, W. Yao, D. N. Basov, X. Zhu, and A. N. Pasupathy, Deep moiré potentials in twisted transition metal dichalcogenide bilayers, Nature Physics 17, 720 (2021).

[98] W. T. Geng, V. Wang, Y. C. Liu, T. Ohno, and J. Nara, Moiré potential, lattice corrugation, and band gap spatial variation in a twist-free mote2/mos2 heterobilayer, The Journal of Physical Chemistry Letters 11, 2637 (2020), https://doi.org/10.1021/acs.jpclett.0c00605.

[99] F. Wu, T. Lovorn, and A. H. MacDonald, Topological exciton bands in moiré heterojunctions, Phys. Rev. Lett. 118, 147401 (2017).

[100] H. B. Nielsen and M. Ninomiya, A no-go theorem for regularizing chiral fermions, Physics Letters B 105, 219 (1981).

[101] J. Cano, S. Fang, J. H. Pixley, and J. H. Wilson, Moiré superlattice on the surface of a topological insulator, Phys. Rev. B 103, 155157 (2021).

[102] T. Wang, N. F. Q. Yuan, and L. Fu, Moiré surface states and enhanced superconductivity in topological insulators, Phys. Rev. X 11, 021024 (2021)
Supplemental Material: Massive Dirac fermions in moiré superlattices: a route toward correlated Chern insulators

AA- AND AB-STACKED TMD HETEROBILAYERS

The lattice structures of AA- and AB-stacked TMD heterobilayers are shown in Figs. S1(a) and S1(b), respectively. In the AA stacking (R stacking), the two layers have the same lattice orientation. There are three local stacking configurations R^M_M, R^M_X, and R^M_X where the atoms from the top and bottom layers are nearly aligned in the out-of-plane direction, as shown in Fig. S1(a). Here M and X refer to the metal and chalcogen. In the AB stacking (H stacking), the bottom layer is rotated by 180° with respect to the top layer and the local stacking configurations H^M_M, H^M_X, and H^X_X with near interlayer alignment are shown in Fig. S1(b). In both cases, the atomic registry between the two different layers varies periodically due to the lattice mismatch and the three different local stacking configurations can be identified in each moiré unit cell.

COMPARISON OF THE TWO CONTINUUM MODELS IN THE TRIVIAL PHASE

In this section, we focus on the topologically trivial phase and compare the energy bands and Berry curvatures given by the two continuum models in Eqs. (1) and (2) of the main text. Here we set $\theta = 1^\circ$, $\phi = 40^\circ$, and $V_0 = 8$ meV away from the topological phase identified in Fig. 1(d) of the main text. The other model parameters are same as those specified in the main text. The top valence bands from the two different models exhibit excellent agreement with each other, as shown in Fig. S2(a). The corresponding Berry curvatures of the top valence bands from the two different models are shown in Figs. S2(b) and S2(c), respectively. The two Berry curvature profiles agree well with each other. Nevertheless, the Berry curvature profile in S2(b) is strictly antisymmetric, $\Omega(k) = -\Omega(-k)$, due to the exact intravalley TRS of the model in Eq. (1) in the main text, while the Berry curvature profile in S2(c) is approximately antisymmetric.

WANNIER ORBITALS OF MOIRÉ MINIBANDS

In this section, we compare the Wannier orbitals of the moiré minibands from the two different continuum models. In Fig S3, we extract the top two valence bands from Fig. 2(a) of the main text. The red dashed bands are from the continuum model in Eq. (1) and have zero valley Chern numbers, while the blue solid bands are from the continuum model in Eq. (2) and have valley Chern numbers $C_+ = \mp 1$.

For the trivial band given by the continuum model in Eq. (1), the Wannier orbital can be obtained from the Fourier transform of the Bloch wave as

$$W_{n,\tau}(\mathbf{r} - \mathbf{R}) = \frac{1}{\sqrt{N}} \sum_k e^{-i\mathbf{k} \cdot \mathbf{r}} \psi_{n,\mathbf{k},\tau}(r),$$ \hspace{1cm} (S1)

where \mathbf{R} is the moiré superlattice vector and N is number of moiré unit cells. In Fig. S3, we show the Wannier orbital of the top trivial band for $\mathbf{R} = 0$. Here we choose a gauge in which the Bloch wave is real at H^M_M at the origin. The Wannier center at H^M_M forms a triangular lattice, as shown in Fig. S4. Therefore, the Coulomb interaction in the trivial moiré miniband can simulate the Hubbard model on a triangular lattice.
FIG. S3. The top two valence bands extracted from Fig. 2(a) of the main text. The red dashed and blue solid bands are from the continuum models in Eq. (1) and (2) of the main text, respectively. The valley Chern numbers of the valence bands are marked in the figure.

FIG. S4. The Wannier orbital of the top valence band (red dashed line) in Fig. S3 whose valley Chern number is $C_+ = 0$. The Wannier center at H_M^M is connected by the black triangular lattice.

On the other hand, the moiré minibands are topologically nontrivial according to the revised continuum model in Eq. (2), and Eq. (S1) is inapplicable to the case with Chern bands due to the Wannier obstruction. In this case, we need to consider the top two valence bands (blue solid lines) in Fig. S3 such that the total Chern number is zero. For the two-band system, the Wannier orbitals can be prepared as

$$W_{1, \tau}(r) = \frac{1}{\sqrt{2N}} \sum_k e^{-ikR} \left[\psi_{1,k,\tau}(r) + \psi_{2,k,\tau}(r) \right],$$

$$W_{2, \tau}(r) = \frac{1}{\sqrt{2N}} \sum_k e^{-ikR} e^{i\theta_{1,k,\tau}} \left[\psi_{1,k,\tau}(r) - \psi_{2,k,\tau}(r) \right],$$

(S2)

where $\psi_{1,k,\tau}(r)$ and $\psi_{2,k,\tau}(r)$ are the Bloch waves of the first and second valence band. For the Dirac model in Eq. (2), the Bloch wave is a two-component spinor, i.e., $\psi_{n,k,\tau} = (\psi_{n,k,\tau}^c, \psi_{n,k,\tau}^v)^T$. We fix a gauge such that $\psi_{1,k,\tau}(r)$ is real at H_M^M at the origin. Then we perform another gauge transformation $e^{i\theta_{n,k,\tau}} \psi_{n,k,\tau}(r)$ such that $e^{i\theta_{n,k,\tau}} \psi_{n,k,\tau}(r)$ is real at H_X^X at $r = (a_M/\sqrt{3}, 0)$. Note that H_M^M and H_X^X are the moiré potential minima for holes when $\phi \sim \pi/3$. For $R = 0$, the squared amplitudes of the two Wannier orbitals are shown in Figs. S5 (a) and S5(b). It is easy to show that the two Wannier orbitals are orthogonal. The Wannier centers at H_M^M and H_X^X form a honeycomb lattice and each Wannier center is surrounded by three peaks of wavefunction amplitude maxima. The peculiar three-peak structure of the Wannier orbitals is similar to that in twisted bilayer graphene [S1, S2]. The two moiré minibands with opposite Chern numbers together can realize the Haldane model as that proposed in TMD homobilayers [S3]. Further considering the time-reversal counterparts from two distinct valleys as well as the Coulomb interaction, the system can simulate the Kane-Mele-Hubbard model.

FIG. S5. (a) and (b) The Wannier orbitals for the top two valence bands (blue solid lines) in Fig. S3 whose valley Chern numbers are $C_+ = \mp 1$. The Wannier centers at H_M^M in (a) and at H_X^X in (b) correspond to the A and B sublattices of the white honeycomb lattice.
HARTREE-FOCK CALCULATIONS

Under the standard Hartree-Fock approximation, the mean-field Hamiltonian reads

\[H_{MF} = \sum_{n,k,\tau} (E_{n,k,\tau} - \mu + V_{n,k,\tau}^H + V_{n,k,\tau}^F) c_{n,k,\tau}^\dagger c_{n,k,\tau}, \quad (S3) \]

where the Hatree and Fock terms are

\[V_{n,k,\tau}^H = \sum_{n',k',q} \frac{V_q}{A} \Lambda_{n,n'}^{(\tau)}(k,k',q) \Lambda_{n',n}^{(\tau)}(k',k,-q) \langle c_{n',k',\tau}^\dagger c_{n',k',\tau} \rangle, \]

\[V_{n,k,\tau}^F = -\sum_{n',k',q} \frac{V_q}{A} \Lambda_{n,n'}^{(\tau)}(k,k',q) \Lambda_{n',n}^{(\tau)}(k',k,-q) \langle c_{n',k',\tau}^\dagger c_{n',k',\tau} \rangle. \quad (S4) \]

The form factor \(\Lambda_{n,n'}^{(\tau)}(k,k',q) \) and the screened Coulomb potential \(V_q \) are defined in the main text. The mean-field Hamiltonian is solved self-consistently numerically. Because the bandwidth of the top valence band is larger than the gap to the next valence band, it is insufficient to consider only the top one. To guarantee the convergence of the top valence band, we retain the topmost six valence bands from each valley in the numerical calculations and solve the mean-field Hamiltonian self-consistently at zero temperature.

[1] M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki, and L. Fu, Maximally localized wannier orbitals and the extended Hubbard model for twisted bilayer graphene, Phys. Rev. X 8, 031087 (2018).

[2] J. Kang and O. Vafek, Symmetry, maximally localized Wannier states, and a low-energy model for twisted bilayer graphene narrow bands, Phys. Rev. X 8, 031088 (2018).

[3] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. MacDonald, Topological insulators in twisted transition metal dichalcogenide homobilayers, Phys. Rev. Lett. 122, 086402 (2019).