Association between exposure to ambient air pollution and hospital admission, incidence, and mortality of stroke: an updated systematic review and meta-analysis of more than 23 million participants

Zhiping Niu 1,2, Feifei Liu 1,2, Hongmei Yu 3, Shaotang Wu 1,2* and Hao Xiang 1,2*

Abstract

Background: Previous studies have suggested that exposure to air pollution may increase stroke risk, but the results remain inconsistent. Evidence of more recent studies is highly warranted, especially gas air pollutants.

Methods: We searched PubMed, Embase, and Web of Science to identify studies till February 2020 and conducted a meta-analysis on the association between air pollution (PM$_{2.5}$, particulate matter with aerodynamic diameter less than 2.5 μm; PM$_{10}$, particulate matter with aerodynamic diameter less than 10 μm; NO$_2$, nitrogen dioxide; SO$_2$, sulfur dioxide; CO, carbon monoxide; O$_3$, ozone) and stroke (hospital admission, incidence, and mortality). Fixed- or random-effects model was used to calculate pooled odds ratios (OR)/hazard ratio (HR) and their 95% confidence intervals (CI) for a 10 μg/m3 increase in air pollutant concentration.

Results: A total of 68 studies conducted from more than 23 million participants were included in our meta-analysis. Meta-analyses showed significant associations of all six air pollutants and stroke hospital admission (e.g., PM$_{2.5}$: OR = 1.008 (95% CI 1.005, 1.011); NO$_2$: OR = 1.023 (95% CI 1.015, 1.030), per 10 μg/m3 increase in air pollutant concentration). Exposure to PM$_{2.5}$, SO$_2$, and NO$_2$ was associated with increased risks of stroke incidence (PM$_{2.5}$: HR = 1.048 (95% CI 1.020, 1.076); SO$_2$: HR = 1.002 (95% CI 1.000, 1.003); NO$_2$: HR = 1.002 (95% CI 1.000, 1.003), respectively). However, no significant differences were found in associations of PM$_{10}$, CO, O$_3$, and stroke incidence. Except for CO and O$_3$, we found that higher level of air pollution (PM$_{2.5}$, PM$_{10}$, SO$_2$, and NO$_2$) exposure was associated with higher stroke mortality (e.g., PM$_{10}$: OR = 1.006 (95% CI 1.003, 1.010); SO$_2$: OR = 1.006 (95% CI 1.005, 1.008).

(Continued on next page)
Conclusions: Exposure to air pollution was positively associated with an increased risk of stroke hospital admission (PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, CO, and O$_3$), incidence (PM$_{2.5}$, SO$_2$, and NO$_2$), and mortality (PM$_{2.5}$, PM$_{10}$, SO$_2$, and NO$_2$). Our study would provide a more comprehensive evidence of air pollution and stroke, especially SO$_2$ and NO$_2$.

Keywords: Stroke, Air pollution, Hospital admission, Incidence, Mortality

Introduction
Stroke, characterized by acute cerebral blood circulation disorder, is caused by artery stenosis, occlusion, or rupture caused by various inducing factors in patients with cerebrovascular diseases [1]. Stroke has become a leading contributor to the global burden of disease and the second leading cause of death worldwide [2, 3]. According to the Global Burden of Disease Study (GBD) report, there were approximately 80.1 million stroke patients, and 5.5 million deaths were attributed to stroke in 2016 globally [4]. Considering stroke is characterized with high incidence, high mortality, and contribute to severe burden disease, identifying potential risk factor of stroke is of great significance for public health. In parallel, air pollution has also been regarded as one of the major environmental problems and a risk factor of many cardio-vascular diseases (CVD), including stroke [5]. GBD 2019 showed that air pollution was globally the sixth leading cause of stroke death during 1990 to 2017, and 28.1% disability-adjusted life years (DALYs) of stroke attribute to environmental factors exposure [6, 7].

Air pollution is the most significant environmental risk factor for all-cause mortality [8]. Increasing number of human epidemiologic studies has been conducted to assess the potential association between air pollution exposure and stroke admission, incidence, and mortality in recent years. However, the results were inconsistent, and the associations between exposure to air pollution and stroke have not been fully understood. Some studies reported positive association between air pollution exposure and stroke hospital admission/incidence/mortality, whereas others did not [4, 9–14]. For example, Huang et al. 2019 indicated that exposure to PM$_{2.5}$ was associated with increased stroke incidence and the adjusted risk ratio (RR) was 1.130 (95%CI: 1.090, 1.170) for each increase of 10 μg/m3 in n PM$_{2.5}$ concentration [4]. The adjusted risk ratio (RR) was 1.130 (95% CI 1.090, 1.170) for each increase of 10 μg/m3 in PM$_{2.5}$ concentration, while Wing et al. suggested no association was found between PM$_{2.5}$ exposure and stroke incidence (RR = 0.950, 95% CI 0.710, 1.280) [11]. Previous meta-analyses have explored the associations between air pollution exposure and stroke [15–19]. However, these studies were mainly focused on the studies of particulate matter (PM$_{2.5}$, particulate matter with aerodynamic diameter less than 2.5 μm; PM$_{10}$, particulate matter with aerodynamic diameter less than 10 μm) and stroke outcomes [16–19]; results of gas air pollutants (NO$_2$, nitrogen dioxide; SO$_2$, sulfur dioxide; CO, carbon monoxide; O$_3$, ozone) were scarce. Moreover, to the best of our knowledge, more than 30 studies exploring the association between air pollution exposure and stroke, especially conducted from the multi-city level and with large sample sizes, were published after the most recent meta-analysis. The more recent and comprehensive studies should be included in the meta-analysis to conclude an updated pooled effect estimate.

We therefore conducted an updated systematic review and meta-analysis to assess the association between 6 main air pollutants (PM$_{2.5}$, PM$_{10}$, NO$_2$, SO$_2$, CO, and O$_3$) and 3 stroke outcomes (hospital admission, incidence, and mortality). This systematic review and meta-analysis was performed according to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) criteria (Table S1).

Methods
Search strategy
Literature was searched in three databases (PubMed, Embase, and Web of Science), with published date until 1 February 2020. The search strategy was pairwise of combinations of terms concerning air pollution (e.g., air pollution, particulate matter, particles, PM$_{2.5}$, PM$_{10}$, nitrogen oxides (NOx), NO$_2$, SO$_2$, CO, and O$_3$) and stroke (e.g., stroke, cerebrovascular disease, cerebrovascular disorder, cerebral hemorrhage, cerebral infarction, subarachnoid hemorrhage).

We first selected articles by screening titles and abstracts and then the full texts of potentially eligible studies were further evaluated. Reference lists of all the included studies were also manually searched. Literature selection was finished by two independent authors (ZP and FF L), and conflicts between the two authors were resolved by discussing with an arbitrator (H X).

Inclusion and exclusion criteria
Articles that met the following criteria were included: (1) provided quantitative measure of the associations between air pollution exposure with stroke admission, incidence, and/or mortality (relative risk (RR), odds ratio (OR), or hazard ratio (HR), and their 95% confidence interval (95%CI)); (2) cohort, cross-sectional, time series,
cross-sectional, case-control, case-crossover, or panel studies; (3) focused on outdoor (ambient) air pollution exposure but not indoor air pollution; (4) original peer-reviewed human subject research studies; (5) published in English. Studies were excluded if they were (1) toxicological studies, summaries, or reviews, and (2) articles without effect estimates after contacting the authors. In addition, for more than one article conducted from the same population, only the most recent studies were included.

Data extraction
Data were extracted from all eligible studies, including the following: (1) study characteristics (first author, published year, study location, and period); (2) study population (sample size, proportion of males, range of age, mean age); (3) outcome (type of stroke and outcome was admission, incidence, and/or mortality); (4) air pollution assessment method and increment of air pollution used in effect estimates (per interquartile range (IQR), standard deviation (SD), or per 10 μg/m³); (5) effect estimates of the association between air pollution and stroke risk (OR, RR, HR with 95% CI). The effect estimates of single-pollutant model, generally called “main model” or “fully adjusted model,” were extracted [20].

Quality assessment
Two authors (ZP N and FF L) worked independently, and inconsistencies in quality assessment were resolved through discussion. We employed the Newcastle-Ottawa Scale (NOS) to evaluate the quality of included studies. The NOS Tool has designed 8 items to assess the critical appraisal of the potential risk of bias. Total score of NOS ranged from 0–9. Study score higher than or equal to 7 was regarded as high-quality; otherwise, the study was regarded as “low quality” [21].

Statistical analyses
This meta-analysis focused on examining the association between air pollution and three stroke outcomes, including admission, incidence, and/or mortality. We extracted effect estimates (OR, HR, RR, and 95% CI) from individual studies and then converted them into a standardized form of per 10 μg/m³ increases in air pollution. The significance of the pooled OR, RR, or HR was determined by the Z test [22], and p value less than 0.05 was considered statistically significant. Standard error (SE) for each effect estimate was calculated by using the formula: (upper limit – lower limit)/3.92.

Heterogeneity among studies was evaluated using I² statistics and Q test [23]. If the values of I² > 50% or p < 0.01, the heterogeneity was “high” and random effect model was used to pool estimates. Otherwise, heterogeneity was considered as “low or moderate,” and fixed-effect model was used to pool estimates.

Begg’s test and Egger’s test were conducted to assess publication bias. The influence of individual studies on the pooled estimates was examined by removing each study from the analysis one by one. Moreover, we also performed sensitivity analysis and subgroup analysis to evaluate if the exposure period would change the significance of the pooled results. Because long-term studies were limited, sensitivity analysis was conducted by omitting long-term exposure (cohort) studies. Subgroup analysis was only performed if the number of short-term exposure studies or long-term exposure studies was more than 3. Publication bias and sensitivity analysis were only performed if the number of included studies was more than 5. All statistical analysis was performed in Stata version 15.0 (StataCorp, College Station, TX, USA).

Results

Literature search and characteristics of included studies
After removing duplicates, 737 records were identified in the initial literature search. By reviewing title and abstracts, 93 studies were downloaded for full-text reading. According to the inclusion and exclusion criteria, a total of 68 studies were included in our meta-analysis (Fig. 1).

Table 1 provides the characteristics of 68 studies included in meta-analysis. As for air pollution involved in the study, there were 26 studies that reported the association between air pollution exposure and stroke hospital admission, 19 reported air pollution exposure and stroke incidence, 19 reported air pollution exposure and stroke mortality, and 3 reported both stroke incidence and mortality. The sample size of included studies ranged between 407 and 8,834,533; more than 23 million participants were included in meta-analysis eventually. Furthermore, the studies included were conducted from 18 countries. Time-series and cross-sectional were the most commonly adopted study designs. In our meta-analysis, all 68 included studies were considered as “high quality,” and the average NOS score was 8.26 for all studies (Table S2).

Air pollution and stroke hospital admission
A total of 29 studies were performed to assess the association for air pollution and stroke hospital admission, and the results were inconsistent. Most studies showed a positive correlation between exposure to air pollution and the risk of hospital admission for stroke. In meta-analysis, we enrolled 13 studies on PM_{2.5}, 11 studies on PM_{10} and NO\textsubscript{2}, 10 studies on SO\textsubscript{2} and O\textsubscript{3}, and 6 studies on CO with stroke hospital admission and suggested an increased stroke hospital admission risk after air pollution exposure. The pooled odds ratio (OR) of stroke with
a 10 μg/m³ increase in PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, CO, and O$_3$ was 1.008 (95% CI 1.005, 1.011), 1.004 (95% CI 1.001, 1.006), 1.013 (95% CI 1.007, 1.020), 1.023 (95% CI 1.015, 1.030), 1.000 (95% CI 1.000, 1.001), and 1.002 (95% CI 1.000, 1.003), respectively (Table 2, Figure S1-S6). Heterogeneity among studies was significant ($I^2 \geq 50\%$, $p < 0.001$).

Air pollution and stroke incidence

Twenty-three studies have investigated the association of air pollution on stroke incidence (Table 1). For meta-analysis, we extracted 18 studies on PM$_{2.5}$, 13 studies on PM$_{10}$, 10 studies on O$_3$, 7 studies on NO$_2$, and 4 studies on SO$_2$ and CO. Ten of these studies suggested increased risks for stroke incidence for at least one of the investigated pollutants. Meta-analysis showed that exposure to PM$_{2.5}$, SO$_2$, and NO$_2$ was associated with increased risks of stroke incidence, and the pooled HR with a 10 μg/m³ increase was 1.048 (95% CI 1.020, 1.076), 1.002 (95% CI 1.000, 1.003), 1.002 (95% CI 1.000, 1.003), respectively. However, no significant differences were found in associations of PM$_{10}$, CO, O$_3$, and stroke incidence (Table 3, Figure S7-S12).

Air pollution and stroke mortality

Twenty-two population-based studies have explored the association for exposure to air pollution and stroke mortality. As for meta-analysis, 11 articles on PM$_{2.5}$, 10 articles on NO$_2$, 9 articles on PM$_{10}$, 6 articles on O$_3$, and 4 articles on CO exposure were included. Meta-analysis showed that exposure to ambient PM$_{2.5}$ (OR = 1.008 95% CI 1.005, 1.012, per 10 μg/m³ increment), PM$_{10}$ (OR = 1.006, 95% CI 1.003, 1.010, per 10 μg/m³ increment), SO$_2$ (OR = 1.006, 95% CI 1.005, 1.008, per 10 μg/m³ increment), and NO$_2$ (OR = 1.009, 95% CI 1.003, 1.016, per 10 μg/m³ increment) was associated with increased risks of mortality due to stroke. No significant difference was shown in association between CO, O$_3$ exposure, and stroke mortality (Table 4, Figure S13-S18).

Publication bias and sensitivity analysis

Publication bias of studies on PM$_{10}$ exposure and stroke hospital admission may exist, since p values of Begg's
Reference	Study Location and period	Study population	Study design	Exposure	Exposure assessment method	Type of stroke	Outcome
Huang et al. [4]	15 provinces in China, 2000–2015	117,575 Chinese men and women without stroke from the Atherosclerotic Cardiovascular Disease Risk in China (China-PAR) project	Cohort	PM$_{2.5}$	A satellite-based spatiotemporal model, 1 × 1-km spatial resolution	All types of stroke	Incidence
Tian et al. [24]	172 cities in China, 2014–2016	2,032,667 hospital admissions for ischemic stroke in 172 cities in China	Time-series	PM$_{2.5}$	1–17 monitors in each city operated by the National Air Pollution Monitoring System	Ischemic stroke	Hospital admission
Chen et al. [25]	Jinan, China, 2013–2015	56,922 stroke admissions	Case-crossover	PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, O$_3$	14 fix-sited monitoring stations in urban areas of Jinan operated by Jinan Environment Monitoring Center	All types of stroke	Hospital admission
Chen et al. [26]	China, 2007–2008	12,291 ischemic stroke patients from first national hospital-based prospective registry cohort of stroke in China	Cohort	PM$_{2.5}$, PM$_{10}$, NO$_2$	Monitoring data, satellite remote sensing, meteorological and land use information	Ischemic stroke	Mortality
Xue et al. [27]	China, 2013–2015	1356 first-ever stroke events	Case-crossover	O$_3$	1463 continuous air pollution monitoring sites operated by the China Environmental Protection Ministry	All types of stroke	Incidence
Qian et al. [28]	Shanghai, China, 2012–2014	5286 fatal intracerebral hemorrhage (ICH) case	Case-crossover	PM$_{2.5}$	The Shanghai Environmental Monitoring Center	Hemorrhagic stroke	Incidence
Tian et al. [12]	184 major cities in China, 2014–2017	8,834,533 hospital admissions for cardiovascular causes in 184 Chinese cities	Time-series	PM$_{2.5}$	The National Air Pollution Monitoring System	Ischemic, hemorrhagic stroke	Hospital admission
Tian et al. [10]	172 cities in China, 2014–2016	2,032,667 hospital admissions for ischemic stroke in 172 cities in China	Time-series	PM$_{2.5}$, SO$_2$, NO$_2$, O$_3$, CO	1–17 monitors in each city operated by the National Air Pollution Monitoring System	Ischemic stroke	Hospital admission
Dong et al. [1]	Changzhou, China, 2015–2016	32,840 ischemic stroke (IS) cases, 4028 IS deaths	Time-series	PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, CO	10 air quality monitoring stations operated by the Changzhou Environmental Monitoring Center	Ischemic stroke	Mortality, incidence
Zhong et al. [29]	Changsha city, China, 2008–2009	1536 stroke patients	Case-crossover	PM$_{10}$, NO$_2$, SO$_2$	the Changsha Municipal Public Weather Information Service Website	All types of stroke	Hospital admission
Vivanco-Hidalgo et al. [30]	Barcelona, Spain, 2005–2014	27,421,536 stroke patients	Time-series	PM$_{2.5}$	An urban background research site located in southwest Barcelona	Ischemic stroke	Incidence
Yitshak-Sadeh et al. [31]	New England, 2001–2011	2,015,660 stroke admissions	Time-series	PM$_{2.5}$	Monitor PM data and aerosol optic depth (AOD) values (1 × 1 km)	Ischemic stroke	Hospital admission
Liu et al. [32]	272 cities in China, 2013–2015	294,199 deaths due to stroke in 272 Chinese cities	Time-series	CO	The National Urban Air Quality Real-time Publishing Platform	All types of stroke	Mortality
Wang et al. [33]	6 subtropical cities in China, 2013–2016	54,236 stroke deaths from six Chinese subtropical cities	Case-crossover	PM$_{2.5}$, PM$_{10}$	Municipal air monitoring system	All types of stroke	Mortality
Collart et al. [34]	Wallonia, Belgium, 2008–2011	113,147 hospital admissions due to stroke	Time-series	NO$_2$	ISSeP (the Scientific Institute of Public Services)	All types of stroke	Hospital admission
Chen et al. [35]	30 counties in China, 2013–2015	49,669 stroke deaths	Time-series	PM$_{2.5}$	Fixed-site monitoring station operated by the closest spatial distance to the county center. Daily air pollution data for PM2.5 and O3 concentrations were collected from the National Air	All types of stroke	Mortality
Reference	Study Location and period	Study population	Study design	Exposure	Exposure assessment method	Type of stroke	Outcome
---------------------------	-----------------------------------	--	--------------	----------	--	----------------	------------------
Wang et al. [36]	272 cities in China, 2013–2015	294,199 deaths due to stroke in 272 Chinese cities	Time-series	SO₂	The National Urban Air Quality Real-time Publishing Platform	All types of stroke	Mortality
Chen et al. [9]	272 cities in China, 2013–2015	294,199 deaths due to stroke in 272 Chinese cities	Time-series	PM₂.₅	The National Urban Air Quality Real-time Publishing Platform	All types of stroke	Mortality
Yin et al. [37]	272 cities in China, 2013–2015	294,199 deaths due to stroke in 272 Chinese cities	Time-series	O₃	The National Urban Air Quality Real-time Publishing Platform	All types of stroke	Mortality
Ha et al. [38]	USA, 2002–2008	228,438 deliveries	Case-crossover	PM₂.₅, PM₁₀, SO₂, O₃, CO	Community Multiscale Air Quality (CMAQ) models	All types of stroke	Incidence
Huang et al. [39]	Beijing, China, 2013–2014	147,624 stroke admissions	Case-crossover	SO₂, NO₂, O₃, CO	The Centre of City Environmental Protection Monitoring Website Platform of Beijing	All types of stroke	Hospital admission
Guo et al. [5]	South China, 2013–2015	95,562 ischemic stroke cases	Time-series	PM₂.₅, PM₁₀, NO₂, SO₂, O₃, CO	The Qingyue Open Environmental Data (QOED) Center	Ischemic hospital admission	Ischemic stroke
Liu et al. [40]	14 large cities in China, 2014–2015	200,958 ischemic stroke and 41,746 hemorrhagic stroke hospitalizations	Case-crossover	PM₁₀, SO₂, O₃, CO	The National Air Pollution Monitoring System	Ischemic, hemorrhagic stroke	Hospital admission
Wing et al. [11]	Texas, USA, 2000–2012	3216 first-ever ischemic strokes	Case-crossover	PM₂.₅, O₃	The Texas Commission on Environmental Quality’s Texas Air Monitoring Information System from a centrally located monitor	Ischemic stroke	Incidence
Liu et al. [41]	26 cities in China, 2014–2015	348,379 stroke admissions	Case-crossover	PM₂.₅, PM₁₀	The National Air Pollution Monitoring System	Ischemic, hemorrhagic stroke	Hospital admission
McClure et al. [42]	USA, 2003–2011	30,239 participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, 746 incidences	Case-crossover	PM₂.₅	Moderate Resolution Imaging Spectroradiometer instrument on the NASA Aqua satellite (10 km × 10 km)	All types of stroke	Incidence
Tian et al. [43]	Beijing, China, 2010–2012	63,956 first hospital admissions due to stroke	Case-crossover	PM₂.₅	An ambient air quality monitoring station on the rooftop of embassy building located in Chaoyang district, Beijing	Ischemic stroke	Hospital admission
Lin et al. [44]	6 low- and middle-income countries, 2007–2010	45,625 participants from the Study on Global Aging and Adult Health	Cohort	PM₂.₅	Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth	All types of stroke	Incidence
Hong et al. [45]	Changzhou, China, 2015–2016	32,840 ischemic stroke (IS) cases, 4028 IS deaths	Time-series	O₃	10 air quality monitoring stations operated by the Changzhou Environmental Monitoring Center	Ischemic stroke	Incidence, mortality
Stockfelt et al. [46]	Gothenburg, Sweden, 1990–2011	1391 cases of stroke from the Primary Prevention Study (PPS) cohort and GOT-MONICA cohort	Cohort	PM₂.₅, PM₁₀	High-resolution dispersion modeling was performed for the period 1990–2011 over a Gothenburg region domain (93 × 112 km)	All types of stroke	Incidence
Qiu et al. [47]	Hong Kong, China, 1998–2010	6,733 cases of incident stroke	Cohort	PM₂.₅	Satellite-based aerosol optical depth (AOD) recordings and monitoring data from ground-based stations	All types of stroke	Incidence
Crichton et al. [48]	South London, England, 2005–2015	1800 incidence due to stroke	Time-series	PM₂.₅, PM₁₀	The KCLurban model developed at King’s College London	Ischemic, hemorrhagic stroke	Incidence
Table 1
Descriptive summaries for all included studies (Continued)

Reference	Study Location and period	Study population	Study design	Exposure	Exposure assessment method	Type of stroke	Outcome
Huang et al. [49]	Beijing, China, 2013–2014	147,624 stroke admissions	Case-crossover	NO2, O3	The Centre of City Environmental Protection Monitoring Website Platform of Beijing	Ischemic, hemorrhagic stroke	Hospital admission
Lin et al. [50]	Guangzhou, China, 2007–2011	9066 stroke deaths	Time-series	PM2.5, PM10	An automatic air monitoring system was installed on the rooftop of Panyu Meteorological Centre	All types of stroke	Mortality
Han et al. [51]	South Korea, 2004–2014	1,477 consecutive hemorrhagic stroke events	Case-crossover	PM10, NO2, O3	The Climate and Air Quality Management Division of South Korea	Hemorrhagic stroke	Incidence
Montresor-López et al. [13]	South Carolina, USA, 2002–2006	21,301 stroke patients	Case-crossover	O3	The US Environmental Protection Agency (USEPA), Hierarchical Bayesian Model (HBM)	All types of stroke	Hospital admission
Korek et al. [52]	Stockholm, Sweden, 1991–2010	22,587 individuals in four cohorts	Cohort	PM10	The Airviro Air Quality Management System	All types of stroke	Incidence
Chang et al. [53]	Tropical City, Taiwan, 2006–2010	27,392 admissions due to stroke	Case-crossover	PM2.5	6 air quality monitoring stations in Kaohsiung city operated by the Taiwanese Environmental Protection Administration (EPA)	All types of stroke	Hospital admission
Tian et al. [54]	Hong Kong, 2004–2011	140,774 emergency hospital admissions	Time-series	CO	4 general monitoring stations operated by the Environmental Protection Department (EPD) of Hong Kong	All types of stroke	Hospital admission
To et al. [55]	Canada, 1998–2006	89,835 women of the Canadian National Breast Screening Study (CNBSS)	Cohort	PM2.5	Satellite-based estimates of surface concentrations of PM2.5	All types of stroke	Incidence
Hoffmann et al. [56]	Germany, 2008–2009	4433 subjects from the German Heinz Nixdorf Recall cohort	Cohort	PM2.5, PM10	Land-use regression (LUR) models	All types of stroke	Incidence
Chen et al. [57]	Taiwan, 2006–2010	27,392 hospital admissions due to stroke	Case-crossover	PM2.5, PM10	6 air quality monitoring stations established in Kaohsiung city operated by the Taiwanese Environmental Protection Administration (EPA)	All types of stroke	Hospital admission
Amancio and Nascimento [58]	Brazil, 2005–2009	1,032 deaths due to stroke	Time-series	PM10, SO2	A measuring station in downtown São José dos Campos	All types of stroke	Mortality
Chen et al. [59]	Taiwan, 2004–2008,	12,982 ischemic, 3362 hemorrhagic stroke cases	Time-series	PM2.5	The Sinjhuang Supersite located in the center of the Taipei metropolitan area	Hemorrhage, ischemic stroke	Hospital admission
Stafoggia et al. 2014 [60]	European, 2006–2010	99,446 study participants from 11 European Cohorts within the European Study of Cohorts for Air Pollution Effects (ESCAPE) Project	Cohort	PM2.5, PM10, NO2	Land-use regression (LUR) models	All types of stroke	Incidence
Chiu et al. [61]	Taipei, Taiwan, 2006–2010	12,520 hemorrhagic stroke (HS) hospital admissions for the 47 hospitals	Case-crossover	PM2.5	Air quality monitoring stations operated by the Taiwanese Environmental Protection Administration (EPA)	Hemorrhagic stroke	Hospital admission
Chen et al. [62]	8 cities in China, 1996–2008	4820,000 subjects of 8 Chinese cities, approximately	Time-series	PM10, SO2, NO2	2–12 monitoring stations in each city operated by the Ministry of Environmental Protection of China	All types of stroke	Mortality
Carlsen et al. [63]	Reykjavík, Iceland, 2003–2010	24,439 emergency hospital admissions due to stroke	Time-series	PM10, NO2, O3	The Environmental Branch of the Municipality of Reykjavik (2003–2010)	All types of stroke	Hospital admission
Reference	Study Location and period	Study population	Study design	Exposure	Exposure assessment method	Type of stroke	Outcome
-----------	--------------------------	-----------------	-------------	----------	---------------------------	----------------	---------
Johnson et al. [64]	Canada, 2007–2009	4,696 stroke (cases) and 37,723 injury patients (controls)	Case-crossover	NO₂	Land-use regression (LUR) model for the city of Edmonton	All types of stroke	Hospital admission
Atkinson et al. [65]	England, 2003–2007	836,557 patients	Cohort	PM₁₀, NO₂, NOₓ, O₃	Air dispersion models (1 × 1-km grids)	All types of stroke	Incidence
Xu et al. [66]	Pennsylvania, USA, 1994–2000	26,210 hospital admissions due to stroke	Case-crossover	O₃	The repository of ambient air quality database of the US Environmental Protection Agency	All types of stroke	Hospital admission
Xiang et al. [67]	Wuhan, China, 2006–2008	10,663 stroke hospital admissions from 4 major hospitals	Case-crossover	PM₁₀, SO₂, NO₂	9 fixed-site stations operated by the Wuhan Environmental Monitoring Center	All types of stroke	Hospital admission
Yorifuji et al. [68]	Shizuoka, Japan, 1999–2009	14,001 elderly residents	Cohort	NO₂	Land use regression (LUR) model	Hemorrhage, ischemic stroke	Mortality
Qian et al. [69]	Shanghai, China, 2003–2008	66,366 stroke deaths for adults aged over 65	Case-crossover	PM₁₀, SO₂, NO₂	6 fixed-site stations operated by Shanghai Environmental Monitoring Center	All types of stroke	Mortality
Andersen et al. [70]	Denmark, 1971–2006	52,215 participants of the Danish Diet, Cancer and Health cohort	Cohort	NO₂	The Danish geographic information system-based air pollution and human exposure modeling system	All types of stroke	Incidence, Mortality
Nascimento et al. [71]	São Paulo State, Brazil, 2007–2008	407 hospitalizations due to stroke	Time-series	PM₁₀, SO₂, O₃	Measuring station of the São Paulo State Environmental Agency	All types of stroke	Hospital admission
O’Donnell et al. [72]	Canada, 2003–2008	9,202 patients hospitalized due to ischemic stroke	Case-crossover	PM₂.₅	19 monitoring stations in the vicinity of the 11 regional stroke centers participating in the Registry	Ischemic Stroke	Incidence
Lipsett et al. [73]	California, USA, 1996–2005,	124,614 women living in California	Cohort	PM₂.₅, PM₁₀, SO₂, NO₂, CO, O₃	Fixed-site monitors, inverse distance weighting (IDW) interpolation	All types of stroke	Incidence
Yorifuji et al. [68]	Tokyo, Japan, 2003–2008	41,440 deaths due to stroke	Time-series	PM₂.₅, NO₂	2 monitoring stations in Tokyo’s 23 wards	Hemorrhagic stroke	Mortality
Ren et al. [74]	Massachusetts, USA, 1995–2002	157,197 non-accident deaths aging 35 years or older	Case-crossover	O₃	The Environmental Protection Agency, USA	All types of stroke	Mortality
Zanobetti and Schwartz [75]	USA, 1999–2005	330,613 deaths for stroke in 112 US cities	Time-series	PM₂.₅	Air Quality System Technology Transfer Network	All types of stroke	Mortality
Kettunen et al. [76]	Helsinki, Finland, 1998–2004	3265 deaths due to stroke	Time-series	PM₂.₅, PM₁₀, NO₂, NOₓ, CO, O₃	The Environmental Protection Agency, USA	All types of stroke	Mortality
Franklin et al. [77]	USA, 1997–2002	1310,781 deaths in 27 US communities	Case-crossover	PM₁₀	National, State, and Local Ambient Monitoring Stations	All types of stroke	Mortality
Qian et al. [78]	Wuhan, China, 2001–2004	89,131 non-accidental death cases	Time-series	PM₁₀	Wuhan Environmental Monitoring Center	All types of stroke	Mortality
Villeneuve et al. [79]	Edmonton, Canada, 1992–2002	12,422 stroke visits	Time-series	PM₂.₅, PM₁₀, SO₂, NO₂, CO, O₃	Fixed-site monitoring stations maintained by Environment Canada	All types of stroke	Hospital admission
test were less than 0.05. Publication bias of studies was remarkable in association of exposure to PM$_{2.5}$ and O$_3$ and stroke incidence according to funnel plots and Egger’s test. For PM$_{2.5}$ and stroke mortality, the p value of Egger’s test was 0.009, suggesting publication bias may exist. Other publication bias test indicated that no substantial publication bias of studies was observed according to funnel plots, Begg’s test, and Egger’s test (Table S3, Figure S19-34). Sensitivity analysis showed that the relation of exposure to CO and stroke hospital admission might be influenced by Tian et al.’s study [10]. And the association between exposure to NO$_2$ and stroke incidence may be influenced by Dong et al.’s study [1]. The pooled OR of exposure to air pollution and stroke mortality might be influenced by some studies (PM$_{2.5}$: Wang et al.’s study [33]; O$_3$: Yin et al.’s study [37]). We recalculated the pooled OR/HR and 95% CI after removing those studies (Table S3). Due to limited studies after excluding those studies, the pooled estimated effects of SO$_2$ and stroke incidence and O$_3$ and stroke mortality were not recalculated. Other sensitivity analyses indicated that excluding each individual study did not change the results, suggesting the results of the meta-analysis were stable (Table S4, Figure S35-50). Sensitivity analyses by exposure period found that the pooled effect estimates were not changed significantly after excluding the long-term (cohort) studies (Table S5). Subgroup analysis suggested that both short-term and long-term exposure to air pollution would increase the risk of stroke incidence (PM$_{2.5}$, PM$_{10}$, and NO$_2$) and mortality (NO$_2$) (Table S6).

Discussion

We conducted a systematic review and meta-analysis of 68 epidemiological studies and performed a comprehensive evaluation on exposure ambient air pollution and stroke, which were conducted from more than 23 million participants. Most studies suggested that exposure to a higher level of air pollution was associated with increased stroke risk. Meta-analysis showed that exposures to air pollutants were associated with increased risk of stroke hospital admission (PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, CO,

Table 1 Descriptive summaries for all included studies (Continued)

Reference	Study Location and period	Study population	Study design	Exposure	Exposure assessment method	Type of stroke	Outcome
Henrotin et al. [80]	Dijon, France, 1994–2004	1487 patients with ischemic stroke and 220 patients with hemorrhagic stroke	Case-crossover	PM$_{10}$, SO$_2$, CO, O$_3$	The monitoring station located in the town center, Dijon	Hemorrhage, ischemic stroke	Incidence
Tsi et al. [81]	Kaohsiung, Taiwan, 1997–2000	23,179 hospital admissions due to stroke	Case-crossover	PM$_{10}$, SO$_2$, NO$_2$, CO, O$_3$	6 air-quality monitoring stations operated by the Environmental Protection Administration (EPA)	All types of stroke	Hospital admission
Yu et al. [14]	Seoul, Korea, 1991–1997	7137 ischemic deaths due to stroke	Time-series	SO$_2$, NO$_2$, CO, O$_3$	20 monitoring site and data operated by the Department of the Environment (Seoul)	Ischemic stroke	Mortality

PM$_{2.5}$ particulate matter with aerodynamic diameter less than 2.5 μm, PM$_{10}$ particulate matter with aerodynamic diameter less than 10 μm, SO$_2$ sulfur dioxide, NO$_2$ nitrogen dioxide, CO carbon monoxide, O$_3$ ozone

| Table 2 Association between exposure to air pollution and stroke hospital admission (per 10 μg/m3 increment) |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Air pollution | Hospital admission | HR (95% CI) | Heterogeneity I^2 (%) | P |
| PM$_{2.5}$ | 19 | 1.008 (1.005, 1.011) | 96.6 | 0.000 |
| PM$_{10}$ | 15 | 1.004 (1.001, 1.006) | 92.7 | 0.000 |
| SO$_2$ | 13 | 1.013 (1.007, 1.020) | 94.5 | 0.000 |
| NO$_2$ | 15 | 1.023 (1.015, 1.030) | 92.6 | 0.000 |
| CO | 8 | 1.000 (1.000, 1.001) | 92.7 | 0.000 |
| O$_3$ | 15 | 1.002 (1.000, 1.003) | 80.2 | 0.000 |

HR hazard ratio, NO. number, PM$_{2.5}$ particulate matter with aerodynamic diameter less than 2.5 μm, PM$_{10}$ particulate matter with aerodynamic diameter less than 10 μm, SO$_2$ sulfur dioxide, NO$_2$ nitrogen dioxide, CO carbon monoxide, O$_3$ ozone

| Table 3 Association between exposure to air pollution and stroke incidence (per 10 μg/m3 increment) |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Air pollution | Incidence | NO. | OR (95% CI) | Heterogeneity I^2 (%) | P |
| PM$_{2.5}$ | 18 | 1.048 (1.020, 1.076) | 82.3 | 0.000 |
| PM$_{10}$ | 13 | 1.017 (0.981, 1.055) | 51.9 | 0.010 |
| SO$_2$ | 4 | 1.002 (1.000, 1.003) | 20.3 | 0.288 |
| NO$_2$ | 7 | 1.002 (1.000, 1.003) | 0.0 | 0.512 |
| CO | 5 | 0.999 (0.997, 1.001) | 0.0 | 0.763 |
| O$_3$ | 10 | 0.999 (0.999, 1.000) | 34.1 | 0.135 |

OR odds ratios, NO. number, PM$_{2.5}$ particulate matter with aerodynamic diameter less than 2.5 μm, PM$_{10}$ particulate matter with aerodynamic diameter less than 10 μm, SO$_2$ sulfur dioxide, NO$_2$ nitrogen dioxide, CO carbon monoxide, O$_3$ ozone
and O_3, incidence ($PM_{2.5}$, SO_2, and NO_2), and mortality ($PM_{2.5}$, PM_{10}, SO_2, NO_2, and CO). Although the high heterogeneity may reduce the credibility of the pooled evidence to some extent, the large number of studies included and the consistency of the results indicated that our conclusions were credible to some extent.

The positive associations between exposure to $PM_{2.5}$, PM_{10}, SO_2, NO_2, CO, and O_3 and stroke hospital admission were observed in other meta-analysis. Yang et al. meta-analyzed 34 case-crossover and time series studies and reported significant associations for PM_{10} (per 10 $\mu g/m^3$ increment: $RR = 1.007$, 95% CI 1.001, 1.013) and O_3 (per 10 ppb increment: $RR = 1.036$, 95% CI 1.016, 1.056), but non-significant association for $PM_{2.5}$, SO_2, NO_2, and CO [15]. The meta-analysis performed by Yang et al. was not consistent with our current study completely, which might be caused by the different number of the included studies. To our knowledge, more than 16 studies have been published after 2014, and studies included in Yang et al.’s study were mainly conducted in Europe and North America. Data from more recent studies, especially low- and middle-income countries were not considered. Moreover, many studies conducted from the multi-city level and with large sample sizes have been published in recent years, which were more likely to find a significant association between air pollution and stroke hospital admission. For example, Tian et al. performed a time-series of more than 2 million hospital admissions for ischemic stroke in 172 cities in China and suggested that elevated incidence of ischemic stroke hospital admissions was associated with exposure to higher level of $PM_{2.5}$ ($RR = 1.003$, 95% CI 1.002, 1.005, per 10 $\mu g/m^3$ increment), SO_2 ($RR = 1.013$, 95% CI 1.011, 1.017, per 10 $\mu g/m^3$ increment), and NO_2 ($RR = 1.018$, 95% CI 1.015, 1.022, per 10 $\mu g/m^3$ increment) [24].

Three meta-analyses were conducted to examine the association between exposure to particulate matter ($PM_{2.5}$ and PM_{10}) and stroke incidence, whereas no meta-analysis of gas air pollutants was published before the current study. Li et al. performed a meta-analysis to explore the association between PM_{10} and stroke incidence in time-series studies and case-crossover studies. These studies indicated that PM_{10} was not associated with stroke incidence in the time-series design ($HR = 1.002$, 95% CI 0.999, 1.005, per 10 $\mu g/m^3$ increment), but significantly associated in case-crossover studies ($HR = 1.028$, 95% CI 1.001, 1.057, per 10 $\mu g/m^3$ increment). Meanwhile, $PM_{2.5}$ exposure was related to an increased risk of stroke incidence in time-series design ($HR = 1.006$, 95% CI 1.002, 1.010, per 10 $\mu g/m^3$ increment), but no significant association in case-crossover studies ($HR = 1.016$, 95% CI 0.937, 1.097, per 10 $\mu g/m^3$ increment) [16]. Only 12 studies published before 2010 were included in Li et al.’s study. We updated the literature search up to 2020, which generated more than 10 studies. Moreover, Li et al. separately analyzed the data from time-series and case-crossover studies, which would reduce the number of studies calculated the pooled estimates. These might explain the inconsistency in between our study and Li et al.’s study. Yu et al. updated the literature search before 2012 and identified 19 studies [19]. Yu et al. found that exposure to PM_{10} was associated with an increased risk of stroke incidence ($HR = 1.004$, 95% CI 1.001, 1.008, per 10 $\mu g/m^3$ increment), but exposure to $PM_{2.5}$ was not significantly associated with stroke incidence ($HR = 0.999$, 95% CI 0.994, 1.003, per 10 $\mu g/m^3$ increment) [19]. The results of these published meta-analyses were not exactly the same as our study, which might be due to more than 15 studies published after Yu et al.’s study. Moreover, we conducted a meta-analysis of gas air pollutants and stroke incidence and found that exposure to a higher level of SO_2 and NO_2 was associated with higher risk of stroke incidence, which may fill the gap of meta-analysis of gas air pollutants and stroke incidence. We also found that compared to short-term exposure, long-term exposure to air pollution may be associated with a higher risk of stroke incidence ($PM_{2.5}$, PM_{10}, and NO_2), which may be explained by different pathophysiological pathways.

Studies investigating the association between exposure to air pollution and stroke mortality have been partly analyzed in two meta-analysis [15, 17]. Yang et al. evaluated the association between all 6 pollutants and suggested that stroke mortality increased 1.34% (95% CI 0.27, 2.42) per 10 $\mu g/m^3$ increase in $PM_{2.5}$, 0.65% (95% CI 0.54, 0.77) per 10 $\mu g/m^3$ increase in PM_{10}, 2.45% (95% CI 1.83, 3.07) per 10 parts per billion (ppb) increase in SO_2, 7.78% (95% CI 4.49, 11.60) per 1 ppm increase in CO, and 1.50% (95% CI 0.37, 2.63) per 10 ppb increase in NO_2, respectively [15]. Consistent with Yang et al.’s study, our meta-analysis also indicated that exposure to a higher level of $PM_{2.5}$, PM_{10}, SO_2, and NO_2
was related to higher risk of stroke mortality. No association was observed in both our study and Yang et al.’s study. However, Yang et al. reported a positive association in CO, whereas our study did not, which may be explained by the limited number of included studies. Scheers et al. performed a meta-analysis of exposure to PM$_{10}$ and stroke events (mortality and incidence) and suggested that exposure to PM$_{10}$ was positively associated with overall stroke events (mortality and incidence) (HR = 1.061, 95% CI 1.018, 1.105), but no significant association were observed in stroke mortality (HR = 1.080, 95% CI 0.992, 1.177) [17]. Inconsistency of Scheers et al.’s study and current study could be explained that Scheers et al.’s study included the studied estimated exposure to PM$_{10}$ from studies using PM$_{2.5}$, which may cause estimation bias to some extent.

Although accurate mechanisms of air pollution exposure and stroke remain unclear, several pathways including systemic inflammation, oxidative stress, thrombosis, and vascular endothelial dysfunction have been proposed [1, 9, 15, 82]. Vascular function injury may be central to mechanisms for air pollution-related stroke, which could lead to raised level of blood pressure and plasma viscosity [26]. It has been showed that exposure to air pollution was associated with increased thrombosis and vascular endothelial dysfunction by provoking oxidative stress and releasing systemic inflammatory cytokines [83]. Moreover, evidence also suggested that exposure to air pollution can lead to dysfunction of the autonomic system, which has been found as the major pathway that could result in air pollution-related adverse cardiovascular outcomes, such as stroke [84]. In addition, stroke status may aggravate the susceptibility of population to air pollution and increase the adverse cardiovascular effects of air pollution circularly [62].

A major strength of our meta-analysis is that our systematic review and meta-analysis covered six main air pollutants (PM$_{2.5}$, PM$_{10}$, NO$_2$, SO$_2$, CO, O$_3$) and a rich set of stroke outcomes (hospital admission, incidence, and mortality), which may be difficult to obtain from individual studies or isolated reviews or meta-analyses. However, some limitations should be acknowledged. Firstly, high heterogeneity existed in some meta-analysis, which may be due to different study designs, difference in exposure assessment method and population demographics, and the varied covariable adjustment strategies in different studies. Secondly, our study failed to perform the association between different subtypes of stroke (ischemic stroke, hemorrhagic stroke) and air pollution exposure separately because most included studies (48 out of 68 articles) did not report subtypes of stroke or results of ischemic stroke and hemorrhagic stroke specifically. Finally, the correlation between different air pollutants was not examined in our study because different air pollutants were controlled in different studies, and the results of those studies could not be pooled directly.

Conclusion

Our study demonstrated that exposure to air pollution was positively associated with an increased risk of stroke hospital admission (PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, CO, and O$_3$), incidence (PM$_{2.5}$, SO$_2$, and NO$_2$), and mortality (PM$_{2.5}$, PM$_{10}$, SO$_2$, and NO$_2$). Given the great global burden of stroke and air pollution, our findings could provide some scientific evidence to accurate prevention and treatment of stroke and air pollution exposure.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12199-021-00937-1.

Additional file 1.
Montresor-López JA, Yanosky JD, Mittleman MA, Sapkota A, He X, Hibbert JD, et al. Short-term exposure to ambient air pollution and risk of recurrent ischemic stroke. Environ Res. 2017;152:304–6. https://doi.org/10.1016/j.envpol.2016.06.033.

Xue T, Guan T, Liu Y, Zhang Y, Guo J, Fan S, et al. A national case-crossover study on ambient ozone pollution and first-ever stroke among Chinese adults: interpreting a weak association via differential susceptibility. Sci Total Environ. 2019;654:135–43. https://doi.org/10.1016/j.scitotenv.2018.11.067.

Qian Y, Yu H, Bai B, Fang B, Wang C. Association between incidental intracerebral hemorrhagic stroke and fine particulate air pollution. Environ Health Prev Med. 2019;24:38. https://doi.org/10.1186/s12942-019-0793-9.

Zhong H, Shu Z, Zhou Y, Li B, Tang X, et al. Seasonal effect on association between atmospheric pollutants and hospital emergency room visit for stroke. J Stroke Cerebrovasc Dis. 2018;27:169–76. https://doi.org/10.1016/j.jstrokecerebvasdis.2017.08.014.

Vivanco-Hidalgo RM, Wellenius GA, Basagaña X, Cirach M, González AG, Ceballos P, et al. Short-term exposure to traffic-related air pollution and ischemic stroke onset in Barcelona, Spain. Environ Res. 2018;162:160–5. https://doi.org/10.1016/j.envres.2017.12.024.

Ytshak-Sade M, Bobb JF, Schwartz JD, Kloog I, Zanobetti A. The association between short and long-term exposure to PM2.5 and temperature and hospital admissions in New England and the synergistic effect of the short-term exposures. Sci Total Environ. 2018;639:688–75. https://doi.org/10.1016/j.scitotenv.2018.05.181.

Liu C, Yin P, Chen R, Meng X, Wang L, Niu Y, et al. Ambient carbon monoxide and cardiovascular mortality: a nationwide time-series analysis in 272 cities in China. Lancet Planetary Health. 2018;2:e12–e8. https://doi.org/10.1016/S2542-5196(17)30181-x.

Wang X, Qian Z, Wang X, Hong H, Yang Y, Xu Y, et al. Estimating the acute effects of fine and coarse particle pollution on stroke mortality in six Chinese subtropical cities. Environ Pollut. 2018;239:812–7. https://doi.org/10.1016/j.envpol.2018.04.102.

References
1. Dong H, Yu Y, Yao S, Lu Y, Chen Z, Li G, et al. Acute effects of air pollution on ischemic stroke onset and deaths: a time-series study in Changzhou, China. BMJ Open. 2018. https://doi.org/10.1136/bmjopen-2017-020425.

2. Ekker MS, Verhoeven JI, Vaartjes I, Jolink WMT, Klijn CJM, de Leeuw F-E. Association of stroke among adults aged 18 to 49 years with long-term mortality. JAMA. 2019;321:2113–23. https://doi.org/10.1001/jama.2019.6560.

3. Wang Y, Yao J, Nie J, O’Neill A, Huang W, Zhang L, et al. Sex differences in the association between marital status and the risk of cardiovascular cancer, and all-cause mortality: a systematic review and meta-analysis of 7,881,040 individuals. Glob Health Res Policy. 2020;5:4. https://doi.org/10.1186/s41256-020-00167-y.

4. Huang K, Liang F, Yang X, Liu F, Li J, Xiao Q, et al. Long term exposure to ambient fine particulate matter and incidence of stroke: prospective cohort study from the China-PAR project. BMJ. 2019. doi:10.1136/bmj.l6720. doi:https://doi.org/10.1136/bmj.l6720.

5. Guo P, Wang Y, Feng W, Wu J, Fu C, Deng H, et al. Ambient air pollution and risk for ischemic stroke: a short-term exposure assessment in South China. Int J Environ Res Public Health. 2017;14. https://doi.org/10.3390/ijerph14091091.

6. Avan A, Digaleh H, Di Napoli M, Stranges S, Behrouz R, Shojaeiababaei G, et al. Socioeconomic status and stroke incidence, prevalence, mortality, and worldwide burden: an ecological analysis from the Global Burden of Disease Study 2017. BMC Med. 2019;17:191. https://doi.org/10.1186/s12916-019-1397-3.

7. GBD. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:439–58. https://doi.org/10.1016/S1474-4422(19)30034-1.

8. Karan A, Ali K, Teeluckingham S, Sahamurhi S. The impact of air pollution on the incidence and mortality of COVID-19. Glob Health Res Policy. 2020;5:39. https://doi.org/10.1186/s41256-020-00167-y.

9. Chen R, Yin P, Meng X, Liu C, Wang L, Xu X, et al. Fine particulate air pollution and daily mortality: A nationwide analysis in 272 Chinese cities. Am J Respir Crit Care Med. 2017;196:73–81. https://doi.org/10.1164/rccm.201609-1862OC.

10. Tian Y, Liu H, Zhao Z, Xiang X, Li M, Juan J, et al. Association between ambient air pollution and daily hospital admissions for ischemic stroke: a nationwide time-series analysis. PLoS Med. 2018;15:e1002668. https://doi.org/10.1371/journal.pmed.1002668.

11. Wing JJ, Adar SD, Silchenz BN, Morgenstern LB, Smith MA, Lisabeth LD. Short-term exposures to ambient air pollution and risk of recurrent ischemic stroke. Environ Res. 2017;152:304–7. https://doi.org/10.1016/j.envres.2016.11.001.

12. Tian Y, Liu H, Wu Y, Si Y, Song J, Cao Y, et al. Association between ambient fine particulate pollution and hospital admissions for cause specific cardiovascular diseases: time series study in 184 major Chinese cities. BMJ. 2019;367:l5672. https://doi.org/10.1136/bmj.l5672.

13. Montesrro-López JA, Yanosky JD, Mittleman MA, Sapkota A, He X, Hibbert JD, et al. Short-term exposure to ambient ozone and stroke hospital admission: a case-crossover analysis. J Exposure Sci Environ Epidemiol. 2016;26:162–6. https://doi.org/10.1038/jes.2015.48.
46. Stockfelt L, Andersson EM, Molnár P, Gidhagen L, Segersson D, Rosengren A, et al. Ambient PM(2.5) and cause-specific mortality of cardiovascular disease in Wallonia, Belgium. Int J Cardiol. 2018;255:231–6. https://doi.org/10.1016/j.ijcard.2017.12.058.

47. Chen C, Zhuo P, Lan Z, Zhou L, Liu R, Sun Q, et al. Short-term exposures to PM2.5 and cause-specific mortality of cardiovascular health in China. Environ Res. 2018;161:188–94. https://doi.org/10.1016/j.envres.2017.10.046.

48. Wang L, Liu C, Meng X, Niu Y, Lin Z, Liu Y, et al. Associations between short-term exposure to ambient sulfur dioxide and increased cause-specific mortality in 227 Chinese cities. Environ Int. 2018;117:33–9. https://doi.org/10.1016/j.envint.2018.04.019.

49. Yin P, Chen R, Wang L, Meng X, Liu C, Niu Y, et al. Ambient ozone pollution and daily mortality: a nationwide study in 227 Chinese cities. Environ Health Perspect. 2017;125:117006. https://doi.org/10.1289/ehp1849.

50. Ha S, Mannisto T, Liu D, Sherman S, Ying Q, Mendola P. Air pollution and cardiovascular events at labor and delivery: a case-crossover analysis. Ann Epidemiol. 2017;27:377–83. https://doi.org/10.1016/j.annepidem.2017.05.007.

51. Huang F, Luo Y, Tan P, Xu Q, Tao L, Guo J, et al. Gaseous air pollution and the risk for stroke admissions: a case-crossover study in Beijing, China. Int J Environ Res Public Health. 2017;14. https://doi.org/10.3390/ijerph14020189.

52. Korek MJ, Bellander TD, Lind T, Bottai M, Eneroth KM, Caracciolo B, et al. Chronic disease prevalence in women and air pollution—a 30-year longitudinal cohort study. Environ Int. 2015;80:26–32. https://doi.org/10.1016/j.envint.2015.03.017.

53. Hoffmann B, Weinmayr G, Henning F, Fuku K, Moebus S, Weimar C, et al. Air quality, stroke, and coronary events: results of the Heinz Nixdorf Recall Study from the Ruhr Region. Deutsches Arzteblatt Int. 2015;112:195–201. https://doi.org/10.3238/arztebl.2015.0195.

54. Tian L, Qiu H, Pun VC, Ho KF, Chan CS, Yu IT. Carbon monoxide and stroke: a time series study of ambient dioxide air pollution and emergency hospitalizations. Int J Cardiol. 2015;2014:4–9. https://doi.org/10.1016/j.ijcard.2015.07.099.

55. To T, Zhu J, Villeneuve PJ, Simatovic J, Feldman L, Gao C, et al. Chronic disease prevalence in women and air pollution—a 30-year longitudinal cohort study. Environ Int. 2015;80:26–32. https://doi.org/10.1016/j.envint.2015.03.017.

56. Chen YC, Weng YH, Chiu YW, Yang CY. Short-term effects of coarse particulate matter on hospital admissions for cardiovascular diseases: a case-crossover study in a tropical city. J Toxicol Environ Health A. 2015;78:241–53. https://doi.org/10.1080/15287394.2015.1083520.

57. Amancio CT, Nascimento LF. Environmental pollution and deaths due to stroke in a city with low levels of air pollution: ecological time series study. Sao Paulo Med J. 2014;132:353–8.

58. Chen SY, Lin YL, Chang WT, Lee CT, Chan CC. Increasing emergency room visits for stroke by elevated levels of fine particulate constituents. Sci Total Environ. 2014;473:474–446–50. https://doi.org/10.1016/j.scitotenv.2013.12.035.

59. Stafoggia M, Cersario G, Peters A, Andersen ZJ, Badaloni C, Beelen R, et al. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environ Health Perspect. 2014;122:1919–23. https://doi.org/10.1289/ehp.1307301.

60. Chiuf, Chang CC, Yang CY. Relationship between hemorrhagic stroke hospitalization and exposure to fine particulate air pollution in Taipei, Taiwan. J Toxicol Environ Health A. 2014;77:1154–63. https://doi.org/10.1080/15287394.2014.926801.

61. Chen R, Zhang Y, Yang C, Zhao Z, Xu X, Kan H. Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study. Stroke. 2013;44:4934–60. https://doi.org/10.1161/strokeaha.116.015739.

62. Cai S, Fosberg B, Meister K, Glison O, Toudin A. Ozone is associated with cardiopulmonary and stroke emergency hospital visits in Reykjavik, Iceland 2003-2009. Environ Health. 2013;12:28. https://doi.org/10.1186/1476-0711-12-28.

63. Johnson JT, Rowe BH, Allen RW, Peters PA, Villeneuve PJ. A case-control study of medium-term exposure to ambient nitrogen dioxide pollution and hospitalization for stroke. BMC Public Health. 2013;13:368. https://doi.org/10.1186/1471-2458-13-368.

64. Atkinson RW, Carey IM, Kent AJ, van Staa TP, Anderson HR, Cook DG. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology. 2013:24:44–53. https://doi.org/10.1097/EDE.0b013e318276ccb8.

65. Xu X, Sun Y, Ha S, Talbott EO, Lissaker CT. Association between ozone exposure and onset of stroke in Allegheny County, Pennsylvania, USA, 1994-2000. Neuroepidemiology. 2013;41:2–11. https://doi.org/10.1159/000354318.

66. Chen YC, Weng YH, Chiu YW, Bi Y, et al. Estimation of short-term effects of air pollution on stroke mortality in the China air pollution and health effects study. Stroke. 2012;43:320–5. https://doi.org/10.1161/strokeaha.112.673442.

67. Xiang H, Mertz KJ, Arena VC, Brink LL, Xu X, Bi Y, et al. Short-term effects of outdoor air pollution on stroke mortality in the China air pollution and health effects study. Stroke. 2012;43:320–5. https://doi.org/10.1161/strokeaha.112.673442.

68. Hoffmann B, Weinmayr G, Hennig F, Fuku K, Moebus S, Weimar C, et al. Air quality, stroke, and coronary events: results of the Heinz Nixdorf Recall Study from the Ruhr Region. Deutsches Arzteblatt Int. 2015;112:195–201. https://doi.org/10.3238/arztebl.2015.0195.

69. Chen YC, Weng YH, Chiu YW, Yang CY. Short-term effects of coarse particulate matter on hospital admissions for cardiovascular diseases: a case-crossover study in a tropical city. J Toxicol Environ Health A. 2015;78:241–53. https://doi.org/10.1080/15287394.2015.1083520.

70. Andersen ZJ, Kristiansen LC, Andersen KK, Olsen TS, Hvidberg M, Jensen SS, et al. Characteristics of PM pollution on mortality from ischemic and hemorrhagic strokes. Int J Hyg Environ Health. 2016;219:204–11. https://doi.org/10.1016/j.ijheh.2015.11.002.

71. Han MH, Yi HJ, Ko Y, Kim YS, Lee YJ. Association between hemorrhagic stroke occurrence and meteorological factors and pollutants. BMC Neuro. 2016;16:59. https://doi.org/10.1186/s12883-016-0579-2.

72. Korek MJ, Bellander TD, Lind T, Bottai M, Eneroth KM, Caracciolo B, et al. Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm. J Exposure Sci Environ Epidemiol. 2015;25:517–23. https://doi.org/10.1038/jes.2015.22.

73. Chang CC, Chen PS, Yang CY. Short-term effects of fine particulate air pollution on hospital admissions for cardiovascular diseases: a case-crossover study in a tropical city. J Toxicol Environ Health A. 2015;78:267–77. https://doi.org/10.1080/15287394.2014.960044.
74. Ren C, Melly S, Schwartz J. Modifiers of short-term effects of ozone on mortality in eastern Massachusetts—a case-crossover analysis at individual level. Environ Health. 2010;9. https://doi.org/10.1186/1476-069x-9-3.

75. Zanobetti A, Schwartz J. The effect of fine and coarse particulate air pollution on mortality: a national analysis. Environ Health Perspect. 2009;117:898–903. https://doi.org/10.1289/ehp.0800108.

76. Kettunen J, Lanki T, Tittanen P, Aalto PP, Koskentalo T, Kulmala M, et al. Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke. 2007;38:918–22. https://doi.org/10.1161/01.STR.0000257999.49706.3b.

77. Franklin M, Zeka A, Schwartz J. Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. J Exposure Sci Environ Epidemiol. 2007;17:279–87. https://doi.org/10.1038/sj.jes.7500530.

78. Qian Z, He Q, Lin HM, Kong L, Liao D, Dai J, et al. Association of daily cause-specific mortality with ambient particle air pollution in Wuhan, China. Environ Res. 2007;105:380–9. https://doi.org/10.1016/j.envres.2007.05.007.

79. Villeneuve PJ, Chen L, Stieb D, Rowe BH. Associations between outdoor air pollution and emergency department visits for stroke in Edmonton, Canada. Eur J Epidemiol. 2006;21:689–700. https://doi.org/10.1007/s10654-006-9050-9.

80. Henrotin JB, Besancenot JP, Bejot Y, Giroud M. Short-term effects of ozone air pollution on ischaemic stroke occurrence: a case-crossover analysis from a 10-year population-based study in Dijon, France. Occup Environ Med. 2007;64:439–45. https://doi.org/10.1136/oem.2006.029306.

81. Tsai SS, Goggins WB, Chiu HF, Yang CY. Evidence for an association between air pollution and daily stroke admissions in Kaohsuchen, Taiwan. Stroke. 2003;34:2612–6. https://doi.org/10.1161/01.str.0000095564.33543.64.

82. Zhang X, Fan C, Ren Z, Feng H, Zuo S, Hua J, et al. Maternal PM2.5 exposure triggers preterm birth: a cross-sectional study in Wuhan, China. Glob Health. Res Policy. 2020;5:17. https://doi.org/10.1186/s41256-020-00144-5.

83. Rich OJ, Kipen HM, Huang W, Wang G, Wang Y, Zhu P, et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA. 2012;307. https://doi.org/10.1001/jama.2012.3488.

84. Wu S, Deng F, Niu J, Huang Q, Liu Y, Guo X. Association of heart rate variability in taxi drivers with marked changes in particulate air pollution in Beijing in 2008. Environ Health Perspect. 2010;118:87–91. https://doi.org/10.1289/ehp.0900818.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.