Hierarchical round-robin mapper emulator for evaluating massively parallel Ethernet physical layer developing

Kyosuke Sugiura1a), Masaki Murakami1, Yoshihiko Uematsu1, Satoru Okamoto1, and Naoaki Yamanaka1

1Graduate School of Science and Technology, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
a)kyosuke.sugiura@yamanaka.ics.keio.ac.jp

Abstract: Future bandwidth-consuming services will require 10 Tbps class network interface. Massively parallel transmission with dynamic bandwidth assignment becomes a key. To realize the 10 Tbps class dynamic bandwidth flexible media access control (MAC) mechanism, we have proposed “Dynamic MAC” concept. The key technical component is round-robin distribution of the MAC signal into parallel transmission lanes. Therefore, we have proposed a hierarchical round-robin mapper (HRRM) and developed a software-based dynamic MAC emulator for evaluating the HRRM. Details of the emulator and experiment results are presented.

Keywords: Ethernet, emulator, massively parallel, round-robin mapper, physical layer

Classification: Network system

References

[1] T. Sakamoto, T. Matsui, S. Aozasa, K. Tsujikawa, and K. Nakajima, “World’s highest density optical fiber for space division multiplexing with deployable reliability,” \textit{NTT Technical Review}, vol. 15, no. 2, pp. 1–6, Feb. 2017.

[2] K. Sugiura, M. Murakami, S. Okamoto, and N. Yamanaka, “Architecture of dynamic MAC using bit-by-bit mapping on massively parallel optical channels,” Proc. 15th International Conference on IP+Optical Network (iPOP 2019), Kawasaki, Japan, T3-4, May 2019.

[3] S. Okamoto, K. Sugiura, M. Murakami, E. Oki, and N. Yamanaka, “Research on Dynamic MAC Technologies for Future Massively Parallel and Sliced Optical Networks,” \textit{IEICE Technical Reports}, vol. 119, no.290, PN2019-25, pp. 7-14, Nov. 2011. (Written in Japanese)

[4] N. D. Matsakis and F. S. Klock, “The rust language,” Proc. the 2014 ACM SIGAda Annual Conference on High Integrity Language Technology (HILT ’14), New York, NY, USA, pp. 103-104, Oct. 2014. DOI:10.1145/2663171.2663188K
1 Introduction

The ever-growing network traffic implies 10 Tbps class network interface card (NIC) will be necessary. Although the transmission capacity of optical fibers has increased so far, spatial division multiplexing (SDM) technologies such as multi-core/multi-mode fibers are assumed to be essential, because there is a limitation around 100 Tbps for a single core single-mode fiber [1]. SDM fibers have lots of optical channels. Massively parallel transmission is attractive for realizing 10 Tbps class NIC. We have proposed a dynamic media access control (MAC) concept [2, 3] to fully utilize SDM. In [2], we have determined the bottleneck to expand the parallelism on Ethernet is the round-robin (R-R) mapper which distributes blocked MAC signals to multiple physical coding sublayer (PCS) lanes. As the number of PCS-lanes increases, one R-R cycle takes longer time or R-R circuit should be driven by faster clock. To relax this bottleneck, we have introduced a sub-layer before the PCS and added extra R-R mapper called “hierarchical round-robin mapper (HRRM)”. HRRM makes the R-R cycle shorter, thus it can increase parallelism. To verify HRRM’s effectiveness, we have developed a software-based emulator. In this paper detailed emulator architecture and evaluation results are presented.

2 Design of the software-based dynamic MAC emulator

10 Tbps class NICs on the server equipment are connected to the SDM network. In the client side, sub-Tbps class NICs are required. We have determined 25 Gbps granularity in the dynamic MAC which covers 25 Gbps in 1 lane to 10 Tbps in 400 lanes. The dynamic MAC will distribute MAC signals over up to 400 PCS-lanes using HRRM.

To implement HRRM, mechanism of 100 Gbps Ethernet (100GE) physical layer which uses 5 Gbps × 20 PCS-lanes is applied. In 100GE, a reconciliation sublayer (RS) produces 64-bit blocks from the received MAC frames. Next, the 64-bit blocks are distributed to 20 PCS-lanes in a R-R manner; multi-lane distribution (MLD). Under MLD, each MAC frame is mapped to 20 × 64-bit stream signal and the stream is distributed to each PCS-lane as a 64-bit block signal. PCS adds a 2-bit header into each block. An alignment marker (AM) is periodically inserted. Then, a physical medium attachment (PMA) performs bit multiplexing to fit lanes of physical medium dependent (PMD).

In 400 PCS-lanes with HRRM, MAC frames are treated as a $N \times 64$-bit stream ($N = 400$). The $N \times 64$-bit stream is distributed to p Pre-PCSs as $q \times 64$-bit block signal ($N = p \times q$) by 1st R-R distributor. Next, the Pre-PCS divides the $q \times 64$-bit block signal into q 64-bit block signals and distributed to q PCSs by 2nd R-R distributor. A 66-bit block signal is generated in each PCS and AM is inserted. In the current emulator design, the 2-bit header is omitted to add to a 64-bit block.
This is because, in the emulator, blocks are transmitted by IPv4 packets. AM is not periodically inserted but a sequence number is added to each 64-bit block as AM-information. This can relax the receiver side processing for reconstructing the MAC frame from received blocks. Total N 64-bit blocks with AM-information are input to r PMAs and PMDs. Here, each 64-bit block is encapsulated into UDP/IPv4 packet and then r packets are transmitted to the receiver.

Figure 1(a) shows a designed emulator architecture. Emulation is done on multi-core CPU environment. The emulator is constructed with 5 processing components, a sender, a mapper, a transmission network (omitted in Fig.1(a)), a de-mapper, and a receiver. The sender sends an Ethernet frame stream to the mapper. The mapper reads received frames and mapped to N PCS-lanes as 64-bit block signals and sends them to r physical signals with AM-information. Each 64-bit block is mapped into 46-byte UDP/IPv4 packet as shown in Fig.1(b). AM-information is inserted as a 10-byte block-header. 2-byte padding (PAD) will be done to make 48-byte minimum Ethernet payload. The packets are transmitted to the de-mapper via the Ethernet-based transmission network. Ethernet transmission requires additional overheads to the 64-bit block. They are 14-byte MAC header, 4-byte frame check sequence (FCS), 8-byte preamble, and minimum 12-byte inter frame gap (IFG). One 64-bit block is converted to at least 88 bytes. In the de-mapper, received packets are ordered by AM-information, and MAC frame is reconstructed from received 64-bit blocks. The reconstructed frame is sent to the receiver.

![Design of the emulator](image)

Fig. 1. The design of the emulator. (a) Detailed design of the mapper and the de-mapper functions. (b) UDP/IPv4 encapsulation design of the 64-bit block transmission.
In the hardware implementation, both p Pre-PCSs and p 2nd R-R distributors can be run in parallel. In the software implementation, multi-thread is applicable to emulate the parallel processing. However, because of the large transmission overhead and the software processing, end-to-end throughput of the emulator will not be reached to 1 Gbps even if multi 10 Gbps Ethernet (10GE) interfaces are assigned to PMA/PMDs.

3 Emulator implementation

Figure 2(a) shows a diagram of the emulator and Fig.2(b) shows a photograph. The emulator consists of four Linux-servers and four Ethernet switchies. Both the sender and the receiver use Intel Xeon E3-1200 v6 (4 cores, 3.00 GHz) CPU with 16 GB memory and 40 Gbps Ethernet (40GE) NIC. They act as MAC frame generator and consumer. Another two Linux-servers are assigned for the mapper and the de-mapper which have two Intel Xeon Silver 4116 CPUs (12 cores, 2.10 GHz) with 64 GB memory and one 40GE NIC and eight 10GE NICs. Total 24 cores can be used for multi-thread parallel processing. 40GE link is set between the sender and the mapper, and the de-mapper and the receiver. A parallel transmission network is set between the mapper and de-mapper for parallel PMD transmission.

The Rust language [4] and the lightweight thread [5] which is implemented at the programming language level are applied to reduce the performance degradation caused by software abstractions.

In the mapper, the program is composed of multiple-threads, “R-R_Distribution #1”, “Pre-PCS_and_R-R_Distribution #2”, “PCS_and_AM”, and “PMA/PMD_lanes_Tx”. Parameters “p”, “q”, and “r” can be re-configurable. In the without-HRRM case, the R-R_Distribution #1 is directly connected to the PCS_and_AM threads. Parameters of $p=1$ and $q=N$ will act as almost the same processing in the with-HRRP case.
In the de-mapper, a MAC frame restoration program is implemented. Several “PMA/PMD_lanes_Rx” threads receive 64-bit blocks from the mapper and pass them to a “Frame_Reconstruction” thread. In the Frame_Reconstruction thread, blocks are stored in a buffer and aligned by the block-header information. The block-header contains an 8-byte sequence number, an 1-byte flag that indicated the start or end of the client MAC frame, and an 1-byte field indicating a length of the client MAC frame for reconstructing. As a result, the dynamic MAC emulator can be seen real Ethernet equipment from the Ethernet MAC clients.

4 Experiments and discussion

First, we examined throughput between the sender and the receiver with and without HRRM, while changing the parallelism in the small scale (N=5-200). The iperf3 program in TCP mode is applied for evaluating the throughput. PCS-lanes of without-HRRM is set 5p (N=5p, r=p), and PCS-lanes of with-HRRM is 5p (q=5, N=5p, r=p). Figure 3(a) shows the throughput against parallelism parameter p. As shown in Fig.3(a), in the without-HRRM case, maximum 44.4 Mbps throughput at p=7 is observed. In the with-HRRM case, maximum 76.8 Mbps at p=19 is observed. This indicated that the R-R_Distribution_#1 thread becomes a bottleneck of the emulator. Theoretically, the parallelism should be extended ×5 in the with-HRRM case. However, as the CPU executes a limited number of instructions simultaneously, the result was deteriorated. The result still indicates the HRRM helps to expand parallelism.

Fig. 3. TCP throughput evaluation results. (a) Smaller N cases (N=5p, p=1-40, q=5, r=p). (b) N=256 (p=1-256, q=N/p, r=256). (c) N=400 (p=1-400, q=N/p, r=400).
Second, the large parallelisms \(N = 256 \) and 400 were examined. In these evaluations, we found that the CPU utilization became large (over 1,000 \%) and many threads were concurrently on all CPU cores. Throughput evaluation results are shown in Fig.3(b) and (c). In the without-HRRM, the R-R_Distribution_#1 thread should process the block distribution to 256 or 400 PCS_and_AM threads, this processing latency becomes a bottleneck to restrict throughput around 20 Mbps. In the with-HRRM, \(p=1 \) \((q=256 \) or 400) indicated the almost same performance as the without-HRRM. Theoretically, \(p = 256 \) and 400 cases also presented the same results. However, in this evaluation, less performance results were observed. We think that this is caused by the thread synchronization overhead among threads. As shown in Fig.3(b) and (c), in with-HRRM cases, the higher the \(p \), the higher the throughput performance until \(p=16 \). The developed emulator did not emulate the hardware clock specification of each function of the mapper. Therefore, this is true that parameters of \(p \approx q \approx \sqrt{N} \) will provide the maximum performance.

Applying much more CPU cores for emulation processing will realize the performance enhancement of the emulator and introducing the hardware clock emulation to each thread will provide precise emulated hardware environment on the software-based system.

5 Conclusion

We developed the dynamic MAC emulator which supports 400 parallel lanes with HRRM. The experimental results showed that the HRRM could expand the transmission throughput compared to the without-HRRM even in the software-based emulator environment.

Acknowledgments

This work is partly supported by the “Massively Parallel and Sliced Optical Network (MAPLE)” project funded by the National Institute of Information and Communications Technology (NICT), Japan.