Experimental Study on Postcombustion Systems Including a Hollow Fiber Membrane and a Packed Column

Yanchi Jiang, Zhongxiao Zhang, Junjie Fan, Liu Yang, and Jian Liu

ABSTRACT: In this work, a comprehensive lab-scale carbon capture installation was established to study the separation performances of CO₂/N₂ systems for the postcombustion technology. Four kinds of mono-/two-stage carbon capture methods containing membrane separation and chemical absorption processes were investigated. The result shows that the CO₂ capture performance of the one-stage membrane separation method (Memb) exhibits a profitable CO₂ removal efficiency but defective CO₂ concentration, while the one-stage chemical absorption method (Chem) indicates both CO₂ removal efficiency and CO₂ purity of more than 95.0% but suffers a regeneration heat of at least 2.7 MJ/t CO₂. The CO₂ purity of the two-stage membrane separation method (Memb−Memb) is 46.2% higher than the Memb method because of the additional membrane pretreatment. Two-stage methods have a superior gas recovery efficiency of over 99.0%, which is dramatically higher than the homogeneous Memb method. In addition, the investigation on the hybrid chemical absorption−membrane separation method (Memb−Chem) provides an alternative approach to reduce the mass transfer and solve the problems caused by an unequal mass flow distribution.

1. INTRODUCTION

Climate change has become a major threat to humankind survival in recent years.¹ With the rapid growth of industry and population, the contradiction between greenhouse gas emissions and economic development becomes a severe topic.² This challenge is particularly prominent for developing countries, such as China, the biggest contributor to global carbon emission.³ For a long time, coal has occupied the main status of China’s energy resource structure and produced a substantial amount of CO₂. In order to ensure the supply of sustainable energy, China has been committed to reducing the carbon emission from coal combustion from power plants.⁴,⁵ The CO₂ capture process in coal-fired power plants mainly corresponds to postcombustion capture.⁶,⁷ Compared with other fuels, the flue gas generated from coal combustion has the characteristics of an enormous gas flow rate, a low CO₂ partial pressure, and a high discharge temperature, and the working condition is obviously different from other chemical processes, such as ammonia synthesis and natural gas purification.⁸ At present, the development of other carbon captures technologies, such as adsorption, absorption, and membrane separation, has made great progress in lab and industry, which provides more options for satisfying the carbon capture requirements in the postcombustion process.⁹,¹⁰ Membrane separation is now considered as one of the most prospective carbon capture methods because of the low pollution and energy consumption.¹¹,¹² However, in research and application processes, the separation performance and operation stability are more sensitive to the change of the working conditions, especially during the start-up and shut-down procedures.¹³ At present, few of the CO₂ separation membranes can perfectly meet the demands of permeability, selectivity, and manufacturing cost. Besides that, the chemical absorption method has been wildly implemented in the carbon capture process according to the reaction between CO₂ and absorbents¹⁴,¹⁵ (e.g., mono-/di-/tri-ethanolamine and ionic liquids). It demonstrated some advantages about reliability and suitability, but the defects including superfluous energy consumption restricted its development. It was reported that every increase of 1.0 MJ/kg CO₂ in regeneration energy will cause the decline of power generation efficiency by 2.0%.¹⁶ As shown above, it is difficult for the onefold method to completely meet the demands of carbon removal efficiency and economy in the postcombustion process, thus some concept of...
novel technical routes such as multistage hybrid methods were proposed as a practically promising way. However, the coupling characteristics of each unit in system integration are hard to meet the requirement because of the strict requirements of the hybrid process on design parameters, and the combination performance between different carbon removal units is vulnerably challenged by some factors, such as differences in mass-transfer rates. Hence, most of the research only stays in the stage of theoretical research and numerical simulation so far.

Therefore, in this work, a comprehensive lab-scale carbon capture installation was established to study the properties of one-/two-stage carbon capture methods containing membrane separation and chemical absorption processes for the postcombustion technology. Four kinds of configurations were proposed, and the operation coefficients, such as the feeding pressure and amine solution flow rate, were investigated to determine the overall CO₂ removal performances. Eventually, a comparison of the critical parameters was proposed to evaluate the technical properties of different carbon capture methods.

2. EXPERIMENTAL INSTALLATION

The experimental carbon capture system is schematically shown in Figure 1. There are mainly five subsystems in the overall installation.

- Gas supply system: Carbon dioxide 99.9% (v/v) and nitrogen 99.9% (v/v) cylinders, provided by Shanghai Dahua, are applied to generate a simulated gas mixture. Three-stage gas filters, EVOLUTION-X, provided by Parker, are equipped to purify the feed gas mixture and ensure the safety of the follow-up equipment. The temperature of the inlet gas is controlled between 303 and 323 K by the heating belt and the temperature controller and remains consistent with that of the membrane module.

- Membrane separation system: Two kinds of CO₂-selected polyimide (PI) membrane modules (Table 1) are used in the membrane separation system. Pressure-regulating valves are adopted at the retentate and permeate sides to adjust the pressure. Needle valves are

![Figure 1. Schematic diagram of carbon capture installation containing membrane and chemical processes.](image)

Table 1. Parameters of Separation Membrane Modules

items	1# membrane	2# membrane
supplier	Shandong High-tech	Chengdu Asia
type	SE2050-P2-HO-BO	Generon 210
material	PI	PI
endurance temperature	93.3 °C	55 °C
weight	92 kg	1.81 kg
external diameter	8.23 cm	5.40 cm
length	181 cm	69 cm
arranged on the stainless-steel pipes to control gas flow directions and transform the arrangements of different carbon removal methods.

Before the experiment begins, the separation performance and stability were carefully verified; part of the results can be found in Figure 2, which depicts that the membrane can quickly reach the performance balance and dynamic stability within 2−3 min and stably maintained during the subsequent operation.

- Chemical absorption system: The main body of the self-designed absorption column is manufactured by borosilicate glass, and two packing regions connected with clamps are axially random-packed with glass spring rings (Ø 6 mm × 14 mm). The length of the absorption column is 2300 mm long and the internal packing diameter is 100 mm; packing specifications are displayed in Table 2.

Five sampling holes are evenly arranged in every 300 mm at its axial distribution for detecting the gas component and an air insulating layer is covered outside the packing regions to lessen the thermal loss; the absorption performance was verified and is shown in Figure 3. The total mass-transfer coefficient \(K_G a_e \) of the gas phase volume is adopted to characterize the mass-transfer performance of the packed column. The total volume mass-transfer coefficient of the packed tower was measured by a differential method. In the packed tower with a counter-current contact, the height of the micro unit \(d_z \) is taken as the material balance, and the specific calculation method is the same as that of Naami et al.18

- The desorption column is equipped with a heat-resistant fiberglass steam jacket, in which the moving of the high-temperature steam can reduce the temperature difference of the desorption column to ensure the operation safety. A reboiler provided by Wenzhou Dashun is applied to provide the driving force for the desorption process by introducing the superheated vapor into the desorption column. Magnetic-driven circulating pumps, MP-30R, provided by Shanghai Xinxishan are adopted to confirm the amine solution supply of the overall system. According to the change in the working

Table 2. Packing Specifications

packing type	material	packing height	packing size	bulk density	specific surface area	porosity
rasching ring	glass	1500 mm	diameter 7 mm, length 22 mm	0.3 g/cm\(^3\)	198 m\(^{-1}\)	0.757

![Figure 2. Stability test of the membrane module.](image1)

![Figure 3. CO2 absorption performance of the packed column.](image2)
conditions, the amine flow s is controlled between 15 and 35 L/h, and the CO$_2$ loadings of lean and rich solutions are controlled around 0.2–0.3 mol CO$_2$/mol amine and 0.4 mol CO$_2$/mol amine, respectively.

- Two types of infrared gas analyzers, Gasboard-3100 (0–35 vol % CO$_2$, ±1% FS) provided by Wuhan Sifang and XH-3010E1 (0–100 vol % CO$_2$, ±2% FS) provided by Beijing Huayun, are adopted for measuring the composition of gas flow. During the working course, the filtered gas was flown into gas analyzers, the output signal of which was transported to a computer for online-monitoring.

- Exhaust gas evacuation system: A gas terminal box, 142526-188, provided by Anhui Guorui is installed at the end of gas pipes to collect and purify the purge gas. Functions, such as the stabilizing pressure, resisting fire, and filtering wastes, could guarantee the operation safety of the whole system. After being treated, the filtered gas was pumped out to the atmosphere by an air extractor, MTS-YIDA-01010 provided by Mantingshu.

3. PROCESS DESCRIPTION

For the sake of investigating the characteristics of various carbon capture methods for postcombustion, our work has been divided into four parts: a one-stage chemical absorption method (Chem), a one-stage membrane separation method (Memb), a two-stage membrane separation method (Memb–Memb), and a hybrid chemical absorption–membrane separation method (Chem–Memb), which are shown in Figure 4.

For one-stage methods, the main facilities are separately membrane modules and packed columns. During the Memb process (Figure 4a), the feed gas entered a hollow fiber membrane module, and the fast gas (rich in CO$_2$) and slow gas (rich in N$_2$) were, respectively, enriched at the permeate side and retentate sides, and the gas components were measured by infrared analyzers. In the Chem process (Figure 4b), the feed gas was delivered into the absorption column from the bottom entrance, and the lean solution was delivered into the column by a sprayer installed above the packing areas. After the gas–liquid phase reaction, the exhaust gas was purged out to the pipes, while the rich solution was pumped to the desorption column for the regeneration process.

With regard to two-stage methods such as Memb–Memb (Figure 4c), two hollow fiber membrane modules were serially arranged to form its configuration. The gas mixture was delivered into 1# module to get the initial-stage carbon removal, then the permeate gas was delivered into 2# module by the differential pressure, and the retentate gas was collected by pipes in order to heighten the gas recovery performance of the whole system. Meanwhile, the Chem–Memb (Figure 4d) configuration was formed by combining the membrane and chemical processes. The retentate gas from the membrane module was gathered to recover N$_2$, while the permeate gas was fed into the absorption column for further treatment and then the N$_2$-rich gas mixture was purged out from the top exit.

In general, this installation was established mainly to investigate the properties of one-/two-stage carbon capture methods containing membrane separation and chemical absorption processes for the postcombustion technology. The operating variables are listed in Table 3 including the parameters such as the gas flow rate, temperature, and so forth.

4. ANALYTICAL METHODS

In this study, the CO$_2$ removal efficiency γ (%) is adopted to estimate the system carbon removal performance (eq 1).\(^\text{19}\)

$$\gamma = \frac{V_{CO_2,\text{in}} - V_{CO_2,\text{out}}}{V_{CO_2,\text{in}}} \times 100\% \quad (1)$$

Table 3. Operating Variables Used in the Experimental Work

parameter	unit	value
feed gas flow	L/min	30–60
feed gas CO$_2$ concentration	%	15
feed gas pressure	MPa	0.3–1.7
membrane module temperature	K	293–318
absorbent temperature	K	293–328
absorbent flow rate	L/min	15–35
steam generator output	K	428
superheated steam temperature	MPa	0.45
where $V_{\text{CO}_2,\text{in}}$ and $V_{\text{CO}_2,\text{out}}$ are the inlet and outlet CO$_2$ volume flow rates, respectively.

The gas recovery efficiency ψ (%) refers to the ratio between the amounts of feed and recovered gases (eq 2).\(^{20}\)

$$\psi = \frac{V_{\text{rec}}}{V_{\text{feed}}} \times 100\%$$

(2)

where V_{feed} and V_{rec} are the inlet and recovery gas flow rates, respectively.

CO$_2$ regeneration efficiency λ (%) is defined to describe the regeneration performance of the aqueous amine solution in the desorption process (eq 3).

$$\lambda = \frac{n_{\text{out}}}{n_{\text{in}}} = \frac{Q_{\text{out}} \times \omega_{\text{out}}}{Q_{\text{in}} \times \omega_{\text{in}}} \times 100\%$$

(3)

where n_{out}, ω_{out}, Q_{out}, n_{in}, ω_{in}, and Q_{in} are the CO$_2$ amount, volume flow rate, and CO$_2$ concentration of the rich solution, respectively. The n_{out}, Q_{out}, and ω_{out} are the parameters for the lean solution.

During the chemical process, the lean solution converts to rich solution by absorbing CO$_2$. The regeneration heat, consisting of sensible heat, vaporization heat, and desorption heat, can be calculated by the energy balance in the desorption column (eqs 4–7).\(^{21,22}\)

$$Q_{\text{re}} = Q_{\text{sa}} + Q_{\text{vu}} + Q_{\text{de}}$$

(4)

$$Q_{\text{sa}} = q_{\text{in}} \cdot C_p \cdot (T_o - T_i)$$

(5)

$$Q_{\text{vu}} = \kappa r c_{\text{CO}_2}$$

(6)

$$Q_{\text{de}} = r c_{\text{CO}_2} \Delta q_f$$

(7)

where Q_{sa}, Q_{vu}, Q_{de} are, respectively, the regeneration heat, sensible heat, vaporization heat, and desorption heat. q_{in} is the mass flow of the rich liquid, kg/h; C_p is the specific heat of the absorption liquid, kJ/(kg·K); T_o and T_i are, respectively, the temperature of the desorption tower and rich liquid; K_i; c_{CO_2} is the CO$_2$ molar flow rate in the desorption process, mol/h; Δq_f is the heat of reaction between CO$_2$ and amine, kJ/mol; κ is the reflux ratio of the condensate in the desorption tower; and r is the heat of evaporation of the amine solution, kJ/mol.

5. RESULTS AND DISCUSSION

5.1. One-Stage Membrane Separation Method (Memb). Figure 5 shows the effect of gas temperature on the carbon removal performance of the Memb method.

It can be indicated in Figure 5a that CO$_2$ concentrations of 1# membrane declined from 55.3 to 42.6%, but the CO$_2$ removal efficiency increased from 58.1 to 84.8% as the temperature increased from 298 to 318 K. The kinetic diameter of CO$_2$ is 0.33 nm, which is less than 0.36 nm of N$_2$; while the narrower the size distribution of free volume holes in membranes, the greater the difference between the diffusion rates of CO$_2$ and N$_2$, so the diffusion of CO$_2$ occurs prior to N$_2$ in membranes.

The promotion of CO$_2$ removal efficiency is because the rising of temperature can lead to a higher permeability but a lower solubility of the PI membrane, proving that the condensable gas CO$_2$ is more susceptible to temperature variation than the permanent gas N$_2$.\(^{23}\) Meanwhile, Figure 5b shows that the increase in the temperature can decrease the gas recovery efficiency from 89.4 to 78.3% but promote the N$_2$ concentration from 90.4 to 94.6%. This is because the temperature growth increases the amount of permeate N$_2$, but weakens the gas recovery process, and the N$_2$ permeability growth rate is drastically lower than CO$_2$ for the CO$_2$-selected membrane. Thus, the proportion of N$_2$ collected at the retentate side promotes the increase of the N$_2$ concentration. According to the solubility–diffusivity mechanism, the gas permeation behavior is determined by the diffusion effect, the temperature growth promotes the diffusion rate in the main body of the membrane, resulting in a promotion of the CO$_2$ permeate rate.

Figure 6 shows the effect of feed gas pressure on the separation performance of two kinds of membranes. It can be seen from Figure 6a,b that the CO$_2$ concentration increases but the gas recovery efficiency decreases as the pressure rises. Because CO$_2$ is a condensable gas subjected to the plasticizing swelling effect, the CO$_2$ permeability of the PI membrane increases with pressure enhancement. However, for the CO$_2$/ N$_2$ gas mixture, the rising of the feed gas pressure can enlarge the competitive adsorption coupling effect between gas molecules.\(^{24}\) The CO$_2$ solubility and intermolecular adsorption competition reach a relatively balanced state when the feed gas pressure remains at an overly high level, which is the reason that the CO$_2$ concentration of the permeate gas cannot show significant promotion when the pressure is above 0.7 MPa.
Furthermore, the promotion of the feed gas pressure also increases the amount of permeate N₂, especially under low-pressure conditions. At the same time, the gas recovery efficiency is negatively influenced when the increase in the rate of N₂ exceeds CO₂.

It can be concluded from the overall view that the experimental results from Figure 6b also prove that 1# membrane has a higher gas recovery efficiency and CO₂ concentration yielded from the permeate side, which will optimally do good to the overall CO₂ capture performance when the 1# membrane is applied in two-stage methods. This is because the higher CO₂ concentration of the feed gas in second-stage treatment can availably promote the CO₂ purity of the final gas product. Whereas the higher primary gas recovery rate also accelerates the overall gas recovery performance.

5.2. One-Stage Chemical Absorption (Chem). Figure 7 shows the effect of absorption temperature on the overall separation performance of the Chem method. It can be seen from Figure 7a that the CO₂ removal efficiency and N₂ concentration increase as the absorption temperature rises from 298 to 318 K. This is because the absorption between MEA and CO₂ is a mass-transfer process accompanied by chemical reactions. The carbamate produced by the absorption reaction has high viscosity but is sensitive to the temperature vibration, thus resulting in the decline of liquid-phase mass-transfer resistance promoting the absorption process.

In addition, increasing the absorption temperature can profitably raise the desorption temperature, which intensifies the rich solution desorption process and depresses the CO₂ loading of the lean solution. However, when the temperature rises above 318 K, the increasing curves of CO₂ removal efficiency and N₂ concentration show reducing trends. This is because the absorption reaction is exothermic; the superlative heightening of the absorption temperature will improve the Henry coefficients of the absorption column, which refers to the fact that the CO₂ solubility of the amine solution declines under exorbitant temperature conditions.²⁵

Moreover, as shown in Figure 7b, the regeneration heat decreases but the regeneration efficiency increases as the absorption temperature rises. Because the growth of carbon removal efficiency provides supplemental heat and initial temperature, the increase of the rich-lean solution loading difference can lead to a higher regeneration efficiency,
contributing to the desorption temperature increase and regeneration heat reduction at the same time.

Figure 8 shows the effect of solution flow on the overall carbon separation performance in the Chem process. From

![Figure 8](image)

Figure 8. Effect of solution flow on the overall carbon separation performance in the Chem process. (a) Effect of solution flow rate on CO₂ capture performance. (b) Effect of solution flow rate on regeneration performance.

With the increase of the feed gas flow rate, the gas concentrations and recovery efficiency rise simultaneously, but the CO₂ removal efficiency descends from 80.1 to 52.4%. The results indicate that the improvement of the feed gas flow rate

5.3. Two-Stage Membrane Separation Method (Memb−Memb). Figure 9 shows the effect of feed gas

![Figure 9](image)

Figure 9. Effect of feed gas pressure on the carbon removal performance of the Memb−Memb method. (a) Effect of feed gas pressure on gas components. (b) Effect of feed gas pressure on separation properties.
can effectively guarantee the gas recovery performance and permeate gas CO2 concentration but decline the CO2 removal capability of the Memb−Memb process. The reason is that the increase of the feed gas flow rate can simultaneously promote the mass-transfer performance of both PI membrane modules, which profitably enhances the CO2 concentration of the permeate gas but inhibits more retentate gas to be recovered.27 The acceleration of gas flow cuts down the contact time between CO2 and the membrane, which is the primary cause of carbon removal efficiency reduction. Thus, according to effective demand, it is a requisite to choose a reasonable flow rate for keeping the balance between the treated gas amount and the carbon removal efficiency.

5.4. Hybrid Membrane Separation−Chemical Absorption (Memb−Chem). The effect of feed gas pressure on the overall carbon capture performance of the Memb−Chem method is shown in Figure 11. It can be found from Figure 11a that the carbon capture efficiency increases from 41.5 to 70.7% and the CO2 permeate rate rises from 10.3 to 19.3 mol/h with the enhancement of the feed gas pressure. This is mainly because the growth of feed gas pressure significantly promotes the CO2 permeation performance of the PI membrane, thus more CO2 can be introduced into the absorption column and increases the carbon removal efficiency of the overall system.

Furthermore, Figure 11b shows that the N2 concentration increases as the feed gas pressure grows. The reason is that the promotion of feed gas pressure reduces the superfluous CO2 component purged into pipelines from the retentate side. In addition, it can also be obtained from Figure 11b that the amount of N2 recovered from the absorption column increases from 6.2 to 12.1 mol/h, but the total recovered amount N2 remains steady. Because the incremental permeate gas into the absorption process is accompanied by surplus N2, most of them can be collected from the exhaust outlet of the...
absorption column, so that the gas recovery performance of the overall system can be promoted. Figure 11c presents the effect of feed gas pressure on the regeneration heat of the Memb–Chem process. It can be indicated that when the feed gas pressure increases up to 0.7 MPa, the regeneration heat rises from 2.50 MJ/kg CO2 to 3.33 MJ/kg CO2, but the regeneration heat remains stable as the feed gas pressure grows more than 0.7 MPa. The explanation can be given as follows: the increase of the feed gas pressure can heighten the permeability of the PI membrane and drive more CO2 into the absorption apparatus, which raises the total regeneration heat. However, when the pressure rises to a high level, the gas flow enlargement will lead to a superfluous CO2 concentration in the gas–liquid interface and impel more MEA molecules to diffuse into the liquid film to participate in the absorption reaction.28 Thus, the solution loading difference increases, and CO2 regeneration heat can be profitably reduced.

Figure 12 shows the effect of the solution flow rate on the CO2 capture performance of the Memb–Chem method. It can be seen that the overall CO2 capture efficiency of the Memb–Chem system increases from 68.2 to 74.7% with the growth of the amine flow rate. The reason is that the increase of the amine solution flow forces more MEA molecules to reach the liquid film and promotes the absorption reaction of both liquid and gas phases. In addition, it can also be found from Figure 12 that the promotion of amine flow rate enhances the regeneration heat from 2.05 MJ/kg CO2 to 3.92 MJ/kg CO2, which chiefly due to the drop of the solution temperature and growth of the CO2-loading difference.

5.5. Comparison between Four Kinds of Carbon Capture Methods. The comparison of CO2 capture performance on four kinds of methods is shown in Figure 13 indicating that the CO2 purity of the Memb–Memb method is 46.22% higher than the Memb method; such sharp improvement is mainly due to the pretreatment of the additional membrane separation stage. Meanwhile, the two-stage methods, including Memb–Memb and Memb–Chem, have a superior gas recovery efficiency of over 99.0%. This is because the second-stage process remaining in two-stage methods can retrieve an extra N2 component existing in the permeate gas, and the promotion of gas recovery performance is realized by accessing the recovery gas with a high N2 concentration to mix with the primary-stage retentate gas. In addition, the CO2 removal efficiency of two-stage methods is slightly lower than the Memb method; this is because the recovery gas contains 0.5–8.6% CO2, which cannot be captured by a packed column or membrane module. Especially, the lessening of the CO2 capture performance significantly occurs when the feed gas pressure is maintained at a lower value.

Moreover, the data in Figure 13 also show that the Chem method has the upper carbon capture performance compared with other methods, which possesses both the CO2 removal efficiency and CO2 purity of more than 95%. While the N2 purification and recovery properties also keep in excellent standards. However, the regeneration heat of amine desorption heightens the energy consumption of the overall system. As shown in Table 4, regeneration heat requirement of various solvents ranges from 2.51 MJ/kg CO2 to 16.9 MJ/kg CO2 under different operating conditions.

In this study, the optimal reboiler regeneration heat of the Chem method attains 2.70 MJ/kg CO2, which is 34.33% higher than the Memb–Chem method. This proves that the additional membrane process of the Memb–Chem method can effectively reduce the peroration loading of absorption devices, especially at a low amine solution flow rate. Besides that, the Memb–Chem method can reduce the application amount of amine solution, which will decline the negative effect caused by amine solvents. Furthermore, the hybrid method provides a coupled approach to overcome the challenge in the carbon capture method by combining membrane separation and absorption processes to balance the differences in mass transfer in these two processes as well as reduce the overall rate of mass transfer.

6. CONCLUSIONS

Four kinds of carbon capture configurations containing chemical absorption and membrane separation were adopted to investigate the carbon capture performances of the CO2/N2
Table 4. Regeneration Heat Requirement of Various Solvents

reference	solvents	regeneration heat (MJ/kg CO2)
Asif37	10 wt % NH3	6.7
Asif37	30 wt % AMP	9.3
Asif37	30 wt % AMP and 3 wt % NH3	6.7
Warudkar30	20 wt % MEA	6.8
Razavi31	40 wt % MEA	3.0
Brüder32	MEA	6.5
Warudkar30	40 wt % DEA	3.2
Warudkar30	60 wt % DGA	3.1
Zhang33	NH3	5.8
Jilvero34	5 wt % NH3	2.5
Darde35	7.8 wt % NH3	2.5
Darde35	6 wt % NH3	4.2
Artanto36	25 wt % AMP + 5 wt % PZ	4.4
Adeosun37	3 wt % DEA + 27 wt % AMP	3.7
Adeosun37	DEA/MDEA	4.3
Adeosun37	MEA/AMP	7.4
Kaip38	NH3	1.9
Jilvero34	NH3	2.5
Cousins39	MEA	3.3
Chem (this study)	20 wt % MEA	2.7
Memb–Chem (this study)	20 wt % MEA	2.0

systems in a self-designed lab-scale instigation. A comparison of critical parameters was proposed to evaluate the technical properties of different carbon capture methods. The combination of membrane separation and absorption processes by a common solvent was systematically realized to solve the problem originating from the difference in mass transfer. The major conclusions are drawn as follows.

- The growth of the feed gas temperature can promote the diffusion effect in the membrane module, resulting in the promotion of CO2 permeate rate for the Memb method. While the competitive adsorption coupling and plasticizing swelling effects provide a bidirectional influence under variable pressures.
- There exists a reasonable MEA solution temperature of 318 K according to the performance variation of absorption and desorption processes for the Chem Method. Increasing the amine flow rate makes a positive impact on the mass-transfer performance in the absorption column but causes a decline of the desorption temperature.
- The CO2 purity of the Memb–Memb method is 46.22% higher than the Memb method; such sharp improvement is mainly due to the pretreatment of the additional membrane separation stage. The increase of the feed gas flow rate can simultaneously promote the mass-transfer performance of membrane modules because of the enhancement of permeate CO2 concentration.
- The Memb–Chem method provides an alternative way to reduce the solution flow and regeneration heat of the Chem method. The investigation on the Memb–Chem method provides an alternative approach to reduce the mass transfer and solve the problems caused by the unequal mass flow distribution.

REFERENCES

(1) Chang, B.; Sun, L.; Shi, W.; Zhang, S.; Yang, B. Cost-Efficient Strategy for Sustainable Cross-Linked Microporous Carbon Bead with Satisfactory CO2 Capture Capacity. *ACS Omega* 2018, 3, 5563–5573.

(2) de Lima Batista, A. P.; de Oliveira-Filho, A. G. S.; Galembeck, S. E. Computationally Designed 1,2,4-Triazolylidene-Derived N-Heterocyclic Olefins for CO2 Capture, Activation, and Storage. *ACS Omega* 2017, 2, 299–307.

(3) Wang, Z.; Liu, T. Scenario analysis of regional carbon reduction targets in China: A case study of Beijing. *J. Renewable Sustainable Energy* 2015, 7, 043125.

(4) Baker, R. W.; Freeman, B.; Kniep, J.; Wei, X.; Merkel, T. CO2 capture from natural gas power plants using selective exhaust gas recycle membrane designs. *Int. J. Greenhouse Gas Control* 2017, 66, 35–47.

(5) Sheng, L.; Chen, Q.; Wang, C.; Chen, H.; Zhang, T.; Qin, T.; Li, M.; Zhang, J.; Ma, J.; Zhang, S. X.-A. Oxazolidine Transparent Bases as Molecular Platforms for Testing Dynamic CO2 Capture in Biochemical Systems. *ACS Omega* 2018, 3, 2883–2894.

(6) Liu, L.; Zhao, J.; Deng, S.; An, Q. A technical and economic study on solar-assisted ammonia-based post-combustion CO2 capture of power plant. *Appl. Therm. Eng.* 2016, 102, 412–422.

(7) Kawabata, M.; Kurata, O.; Ikui, N.; Tsutsumi, A.; Furutani, H. System modeling of energy recuperated IGCC system with pre- and post-combustion CO2 capture. *Appl. Therm. Eng.* 2013, 54, 310–318.

(8) Wang, Y.; Zhao, L.; Otto, A.; Robinius, M.; Stolten, D. A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. *Energy Procedia* 2017, 114, 650–665.

(9) Kanniche, M.; Gros-Bonnivard, R.; Jaud, P.; Valle-Marcos, J.; Amann, J.-M.; Bouallou, C. Premixed combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. *Appl. Therm. Eng.* 2010, 30, 53–62.

(10) Xu, G.; Hu, Y.; Tang, B.; Yang, Y.; Zhang, K.; Liu, W. Integration of the steam cycle and CO2 capture process in a decarbonization power plant. *Appl. Therm. Eng.* 2014, 73, 277–286.

(11) Amaral, R. A.; Habert, A. C.; Borges, C. P. Performance evaluation of composite and microporous gas–liquid membrane contactors for CO2 removal from a gas mixture. *Chem. Eng. Process.* 2016, 102, 202–209.
(12) El-Kadri, O. M.; Tessema, T.-D.; Almotawa, R. M.; Arvapally, R. K.; Al-Sayah, M. H.; Omary, M. A.; El-Kaderi, H. M. Pyrene Bearing Azo-Functionalized Porous Nanofibers for CO2 Separation and Toxic Metal Cation Sensing. ACS Omega 2018, 3, 15510–15518.

(13) Pohlinmann, J.; Bram, M.; Wilkner, K.; Brinkmann, T. Pilot scale separation of CO2 from power plant flue gases by membrane technology. Int. J. Greenhouse Gas Control 2016, 53, 56–64.

(14) Zhang, K.; Liu, Z.; Huang, S.; Li, Y. Process integration analysis and improved options for an MEA CO2 capture system based on the pinch analysis. Appl. Therm. Eng. 2015, 85, 214–224.

(15) Assaf, K. I.; Qaroush, A. K.; Mustafa, F. M.; Alsouabri, F.; Pehl, T. M.; Troll, C.; Rieger, B.; Eftaiha, A. F. Biomaterials for CO2 Harvesting: From Regulatory Functions to Wet Scrubbing Applications. ACS Omega 2019, 4, 11532–11539.

(16) Goto, K.; Yogo, K.; Hijikawa, T. A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture. Appl. Energy 2013, 111, 710–720.

(17) Akinlabi, C. O.; Gerogiorgis, D. I.; Georgiadis, M. C.; Pistikopoulos, E. N. Modelling, design and optimisation of a hybrid PSA-membrane gas separation process. Comput.-Aided Chem. Eng. 2007, 24, 363–370.

(18) Naami, A.; Sema, T.; Edali, M.; Liang, Z.; Idem, R.; Tontiwachwuthikul, P. Analysis and predictive correlation of mass transfer coefficient KGav of blended MDEA-MEA for use in post-combustion CO2 capture. Int. J. Greenhouse Gas Control 2013, 19, 3–12.

(19) Liu, Y.; Fan, W.; Wang, K.; Wang, J. Studies of CO2 absorption/regeneration performances of novel aqueous monothanolamine (MEA)-based solutions. J. Cleaner Prod. 2016, 122, 4012–4021.

(20) Galindo, P.; Schäffer, A.; Brechtel, K.; Unterberger, S.; Scheiffler, G. Experimental research on the performance of CO2-loaded solutions of MEA and DEA at reduction conditions. Fuel 2012, 101, 2–8.

(21) Yeh, J. T.; Pennline, H. W.; Resnik, K. P. Study of CO2 Absorption and Desorption in a Packed Column. Energy Fuels 2001, 15, 274–278.

(22) Knuutila, H. K.; Rennemo, R.; Ciftja, A. F. New solvent blends for post-combustion CO2 capture. Green Energy Environ. 2019, 4, 439–452.

(23) Wang, X.; Chen, H.; Zhang, L.; Yu, R.; Qu, R.; Yang, L. Effects of coexistent gaseous components and fine particles in the flue gas on CO2 separation by flat-sheet polysulphone membranes. J. Membr. Sci. 2014, 470, 237–245.

(24) Powell, C. E.; Qiao, G. G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 2006, 279, 1–49.

(25) Saiwan, C.; Chanchey, A.; Supap, T.; Idem, R.; Tontiwachwuthikul, P. Ammonia emission kinetics of monoethanolamine (MEA) based CO2 absorption process. Int. J. Greenhouse Gas Control 2013, 12, 330–340.

(26) Sema, T.; Naami, A.; Fu, K.; Edali, M.; Liu, H.; Shi, H.; Liang, Z.; Idem, R.; Tontiwachwuthikul, P. Comprehensive mass transfer and reaction kinetics studies of CO2 absorption into aqueous solutions of blended MDEA–MEA. Chem. Eng. J. 2012, 209, 501–512.

(27) Bakonyi, P.; Nemestóthyi, N.; Bélafi-Bakó, K. Biophore purification by membranes: An overview on the operational conditions affecting the performance of non- porous, polymeric and ionic liquid based gas separation membranes. Int. J. Hydrogen Energy 2013, 38, 9673–9687.

(28) Yin, J.; Gao, J.; Tong, M.; Chen, X.; Kang, W.; Zhou, Y.; Lu, J. Absorption and regeneration characteristics of alkanoamines after CO2 removal from flue gas. Energy Sources, Part A 2016, 38, 3202–3206.

(29) Asif, M.; Bak, C.-u.; Kim, W.-S. Energy Minimization and Ammonia Abatement for CO2 Capture Using a Blend of Ammonia and 2-Amino-2-Methyl-1-Propanol Solution. Sep. Sci. Technol. 2014, 50, 1565–1576.