Stability of Valuations: Higher Rational Rank

Chi Li and Chenyang Xu

Abstract

Given a klt singularity $x \in (X, D)$, we show that a quasi-monomial valuation v with a finitely generated associated graded ring is the minimizer of the normalized volume function $\hat{\text{vol}}_{(X, D), x}$ if and only if v induces a degeneration to a K-semistable log Fano cone singularity. Moreover, such a minimizer is unique among all quasi-monomial valuations up to rescaling. As a consequence, we prove that for a klt singularity $x \in X$ on the Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds, the intermediate K-semistable cone associated to its metric tangent cone is uniquely determined by the algebraic structure of $x \in X$, hence confirming a conjecture by Donaldson-Sun.

Contents

1 Introduction .. 2
 1.1 The strategy of studying a minimizer 2
 1.2 Geometry of minimizers 2
 1.3 Applications to singularities on GH limits 3
 1.4 Outline of the paper 4

I Geometry of minimizers .. 5

2 Preliminary and background results 5
 2.1 Normalized volumes .. 5
 2.2 Approximation .. 6
 2.3 Valuations and associated graded ring 7
 2.4 Singularities with good torus actions 9
 2.5 K-semistability of log Fano cone singularity 12

3 Normalized volumes over log Fano cone Singularities 14
 3.1 Special test configurations from Kollár components 15
 3.2 Convexity and uniqueness 18
 3.2.1 Toric valuations on toric varieties 18
 3.2.2 Toric valuations on T-varieties 20
 3.2.3 T-invariant quasi-monomial valuations on T-varieties .. 24

4 Models and degenerations 28
 4.1 Weak lc model of a quasi-monomial minimizer 29
 4.2 K-semistability and minimizing 33
 4.3 Uniqueness in general 36

II Singularities on GH limits 39

5 Canonicity of the semistable cone 39
 5.1 Metric tangent cones and valuations 39
 5.2 Minimizers from Ricci flat Kähler cone metrics 40
 5.3 Finite degree formula 46

A Example: D_{k+1}-singularities 47
1 Introduction
Throughout this paper, we work over the field \mathbb{C} of complex numbers. In [Li15a], the normalized volume function was defined for any klt singularity $o \in (X, D)$ and the question of studying the geometry of its minimizer was proposed. See [Li15b, Liu16, LL16, Blu16, LX16] for the results obtained recently. In particular, the existence of a minimizer of the normalized volume conjectured in [Li15b] was confirmed in [Blu16]. On the other hand, in [LX16], we intensively study the case that when the minimizer is a divisorial valuation. In the current paper, we want to investigate the case when the minimizing valuations are quasi-monomial of rational rank possibly greater than one. We note that this kind of cases do occur (see e.g. [Blu16] or Section A) and it was conjectured in [Li15a] that any minimizer is quasi-monomial.

1.1 The strategy of studying a minimizer
After the existence was settled in [Blu16], the remaining work of the theoretic study of the minimizer of the normalized volume function is to understand its geometry (see the conjectures in [Li15a, LX16]). Our method does not say much about the conjecture that the minimizer has to be quasi-monomial. Therefore, in the following we will always just assume that the minimizer is quasi-monomial. Partly inspired by the differential geometry theory on the metric tangent cone, the strategy of understanding it consists of two steps, for which we apply quite different techniques:

In the first step, we deal with a special case which is called a log Fano cone singularity. It is a singularity with a good torus action and a valuation induced by a Reeb vector field $\xi \in t^R_+$. This is indeed the case that has been studied in Sasakian-Einstein geometry on the link of a cone singularity (see e.g. [MSY08, CS15] etc.). In particular, when an isolated Fano cone singularity (X_0, ξ_0) admits a Ricci-flat Kähler cone metric, it was shown in [MSY08] that the normalized volume achieves its minimum at the corresponding Reeb vector field ξ_0 among all $\xi \in t^R_+$. Here we work on the algebraic side and only assume K-semistability instead of the existence of a Ricci-flat Kähler cone metric. We also improve this result by removing the isolated condition on the singularity and more importantly showing that ξ is indeed the only minimizer among all quasi-monomial valuations centered at o, which is a much more complicated space than the Reeb cone. In the rank 1 case, namely the case of a cone over a Fano variety, this question was intensively studied in [Li15b, LL16] which uses arguments from [Fuj15]. Here to treat the higher rank case, we work along a somewhat different approach using more ingredients from the convex geometry inspired by a circle of ideas from the Newton-Okounkov body construction (see e.g. [Oko96, LM09]) (see Section 3).

In the second step, given a quasi-monomial valuation in $\text{Val}_{X,x}$ which minimizes the normalized volume function $\hat{\text{vol}}_{(X,D)}$, we aim to obtain a degeneration from the klt singularity $o \in (X, D)$ to a log Fano cone singularity (X_0, D_0, ξ), and then we can study this degeneration family, so that we can deduce results for general klt singularities from log Fano cone singularities. Our study of the degeneration heavily relies on recent developments in the minimal model program (MMP) based on [BCHM10] (cf. e.g. [LX14, Xu14] etc.). In the rank 1 case, i.e., when the minimizing valuation is divisorial, we showed in [LX16] that the valuation yields a Kollár component (see also [Blu16]). Starting from such a construction, we can indeed complete the picture. For the case that the quasi-monomial minimizing valuation has a higher rational rank, the birational models we construct should be considered as asymptotic approximations. In particular, unlike the rank 1 case, we can not conclude the finite generation of the associated graded ring, thus we have to post it as an assumption. Once we have the finite generation, then we can degenerate both the approximating models and the sequences of ideals to establish a process of passing the results obtained in the Step 1 from a log Fano cone singularity in the central fiber to a general fiber (see Section 4).

1.2 Geometry of minimizers
For a valuation ν on a local ring R, we denote by $\text{gr}_{\nu}(R)$ the associated graded ring. First we prove the following result, which partially generalizes various parts of [LX16, Theorem 1.2] to the higher rank case.
Theorem 1.1. Let $x \in (X, D)$ be a klt singularity. Let v be a quasi-monomial valuation in $\text{Val}_{X,x}$ that minimizes $\hat{\text{vol}}_{(X,D)}$ and has a finitely generated associated graded ring $\text{gr}_v(R)$. Then the following properties hold:

1. There is a natural divisor D_0 defined as the degeneration of D such that
 \[(X_0 := \text{Spec}(\text{gr}_v(R)), D_0)\]
 is a klt singularity;

2. v is a K-semistable valuation;

3. Let v' be another quasi-monomial valuation in $\text{Val}_{X,x}$ that minimizes $\hat{\text{vol}}_{(X,D)}$. Then v' is a rescaling of v.

For the definition of K-semistable valuations, see Definition 4.12. The definition uses the notion of K-semistability of log Fano cone singularities (see [CS12]), which in turn generalizes the original K-semistability introduced by Tian ([Tia97]) and Donaldson ([Don01]). In fact, this leads to a natural refinement of [Li15a, Conjecture 6.1].

Conjecture 1.2. Given any arbitrary klt singularity $x \in (X = \text{Spec}(R), D)$. The unique minimizer v is quasi-monomial, with a finitely generated associated graded ring, and the induced degeneration
\[(X_0 = \text{Spec}(R_0), D_0, \xi_0)\]
is K-semistable. In other words, any klt singularity $x \in (X, D)$ always has a unique K-semistable valuation.

We shall also prove the following converse to Theorem 1.1.2, which was known in the rank 1 case by [LX16, Theorem 1.2].

Theorem 1.3. If (X, D) admits a K-semistable valuation v over o, then v minimizes $\hat{\text{vol}}_{(X,D)}$. In particular, if (X, D, ξ) is a K-semistable Fano cone singularity, then w_ξ is a minimizer of $\hat{\text{vol}}_{(X,D)}$.

1.3 Applications to singularities on GH limits

As proposed in [Li15a], one of our main applications is to study a singularity $x \in X$ appearing on any Gromov-Hausdorff limit (GH) of Kähler-Einstein Fano manifolds. By the work of Donaldson-Sun and Tian ([DS14, Tia90, Tia12]), we know that M_∞ is homeomorphic to a normal algebraic variety. Donaldson-Sun ([DS14]) also proved that M_∞ has at worst klt singularities. For any point on the Gromov-Hausdorff limit, we can consider the metric tangent cone C using the limit metric (see [CC97, CCT02]). In [DS15], Donaldson-Sun described C as a degeneration of a cone W and they conjectured that both C and W only depend on the algebraic structure of the singularity. Intuitively, W and C should be considered respectively as a ‘canonical’ K-semistable and a K-polystable degeneration of $x \in X$. We refer to Section 5 for more details of this conjecture. Here we want to verify the semistable part of the conjecture, namely we will show that W is indeed induced by a K-semistable valuation, and since such a valuation is unique by Theorem 1.1, it does not depend on what kind of metric it carries but only the algebraic structure. We note that the assumptions in Theorem 1.1 are automatically satisfied in this situation.

Theorem 1.4 ([DS15, Conjecture 3.22]). Denote by $\text{Spec}(R)$ the germ of a singularity o on a Gromov-Hausdorff limit M_∞ of a sequence of Kähler-Einstein Fano manifolds. Using the notation in [DS15] (see Section 5.1), the cone W associated to a metric tangent cone is isomorphic to $\text{Spec}(\text{gr}_v(R))$ where v is the unique K-semistable valuation in $\text{Val}_{M_\infty, o}$. In particular, it is uniquely determined by the algebraic structure of the singularity.

A standard point of the proof of Theorem 1.4 is to deduce the stability from the metric. For now, we only need the following statement, which generalize [CS12] to the case of non-isolated singularities (see Remark 5.6.)

Theorem 1.5 (=Theorem 5.5). If (X, ξ_0) admits a Ricci-flat Kähler cone metric, then $A_X(\xi_0) = n$ and (X, ξ_0) is K-semistable.
Remark 1.6. In a forthcoming work [LWX17], we plan to complete the proof of [DS15, Conjecture 3.22]. In fact, after Theorem 1.4 to prove C is uniquely determined by the algebraic structure of (o ∈ M∞), what remains to show is that C only depends on the algebraic structure of the K-semistable Fano cone singularity \((W, \xi_v)\). It follows from a combination of two well-expected speculations. The first one is an improvement of Theorem 1.5 which predicts that a Fano cone C with Ricci flat Kähler cone metric is indeed K-polystable. This was solved in [Ber15] for the quasi-regular case. In [LWX17], we plan to extend [Ber15] to irregular case. The second one is that any K-semistable log Fano cone has a unique K-polystable log Fano cone degeneration. In the regular case, for the case of smoothable Fano varieties, this was proved independently in [LWX14] and [SSY16] with different methods, but both relying on analytic tools. In [LWX17], we will use the algebraic tools developed in [Li15b, LX16] and the current paper, especially the ones related to \(T\)-equivariant degeneration, to investigate the problem again and give a purely algebro-geometric treatment.

As a corollary, we obtain the following formula for singularities appearing on the Gromov-Hausdorff limits (GH) of Kähler-Einstein Fano manifolds, which sharpens [SS17, Proposition 3.10] (see Corollary 5.7) as well as partially [LiuX17, Theorem 1.3.4].

Theorem 1.7. Let \(M_\infty\) be a GH limit of Kähler-Einstein Fano manifolds. Let \(o ∈ M_\infty\) be a singularity, and \(π : (Y, y) = (R', m_y) → (M_\infty, o) = (R, m_o)\) be a quasi-étale finite map, then

\[
\hat{\text{vol}}(Y, y) = \deg(π) \cdot \hat{\text{vol}}(M_\infty, o).
\]

In fact, for a quasi-étale finite covering \((Y, y) → (X, x)\) between any klt singularities, as we expect the minimizer of \(y ∈ Y\) is unique and thus \(G\)-invariant, such a formula should also hold. However, for now we can not prove this in the full generality.

1.4 Outline of the paper

In this section, we give an outline as well as the organization of the paper. The paper is divided into two parts. In Part 1, we study the geometry of the minimizer of a klt singularity in general. We note that this part is completely algebraic.

In Section 2, we recall a few concepts and establish some background results, especially on valuations and \(T\)-varieties (i.e. varieties with a torus action).

In Section 3, we focus on studying log Fano cone singularity (see Definition 2.23) and put it into our framework as mentioned in Section 1.1. In particular, we want to show that a K-semistable log Fano cone singularity does not only minimize the normalized volumes among the valuations in the Reeb cone, but indeed also among all valuations in \(\text{Val}_{X,x}\). Furthermore, it is unique among all quasi-monomial valuations. Our main approach is to use the ideas from the construction of Newton-Okounkov body to reduce the volumes of valuations to volume of convex polytopes and then using the known convexity of the volume function in such setting. This is obtained by three steps with increasing generality: we first consider toric singularities with toric valuations (see Section 3.2.1) where we set up the convex geometry problem; then general \(T\)-singularities with toric valuations (see Section 3.2.2); and eventually \(T\)-singularities with \(T\)-invariant valuations (see Section 3.2.3).

In Section 4, we investigate a quasi-monomial minimizer of a general klt singularities by intensively using the minimal model program and degeneration techniques. First in Section 4.1, we show that given a quasi-monomial minimizer \(v ∈ \text{Val}_X\) of \(\hat{\text{vol}}(X, D)\), one can find birational models which can be considered to approximate the valuations. This construction will be used later if we assume that the degeneration exists, i.e., the associated graded ring is finitely generated. In particular, we conclude that the degeneration is also klt. Then in Section 4.2, we show any quasi-monomial minimizer is K-semistable, and in Section 4.3, we use the degeneration technique and the uniqueness of the quasi-monomial minimizer for a log Fano cone singularity obtained in Section 3 to conclude the uniqueness of the quasi-monomial minimizer for a general singularity if one minimizer has a finitely generated associated graded ring.
In Part II (=Section 5), we apply our theory to the singularities appeared on a Gromov-Hausdorff limit \(X_\infty \) of Kähler-Einstein Fano manifolds. Obviously, we need to establish the results that connect the previous existing differential geometry work to our algebraic results in Part I. Our aim is to show that the semistable cone \(W \) associated to the metric tangent cone in Donaldson-Sun’s work depends only on the algebraic structure of the singularity. Since such a cone is induced by a valuation \(v \) and it always carries an (almost) Šasakian-Einstein metric, what remains to show is then such a cone is always K-semistable, i.e., the valuation \(v \) is a K-semistable valuation. This is achieved in Section 5.2. Then the finite degree multiplication formula is deduced in Section 5.3.

In Appendix A, we illustrate our discussion on \(n \)-dimensional \(D_{k+1} \) singularities. In particular, we verify that all the candidates calculated out in [Li15a], including all those irregular ones, are indeed minimizers of \(\hat{\text{vol}} \) (except \(D_4 \) in dimension 4).

Acknowledgement: We want to thank Harold Blum, Yuchen Liu, Mircea Mustaţă and Gang Tian for helpful discussions and comments. CL is partially supported by NSF DMS-1405936 and Alfred P. Sloan research fellowship. Part of this work was done during CX’s visiting of the Department of Mathematics in MIT, to which he wants to thank the inspiring environment. CX is partially sponsored by ‘The National Science Fund for Distinguished Young Scholars (11425101)’.

Part I
Geometry of minimizers

2 Preliminary and background results

Notation and Conventions: We follow [KM98] and [Kol13] for the standard conventions in birational geometry. For a log pair \((X, D)\), we also use \(a_\log(E; X, D) \) to mean the log discrepancy of \(E \) with respect to \((X, D)\), i.e., \(a_\log(E; X, D) = a(E; X, D) + 1 \). Similarly, we also define \(a_\log(E; X, D + c \cdot a) \) for an ideal \(a \subset O_X \) and \(c \geq 0 \).

When \(x \in X \), we use \(\text{Val}_X, x \) to denote all the real valuations of \(K(X) \) whose center on \(X \) is \(x \). If \(x \in (X, D) \) is a klt singularity, for any valuation \(v \in \text{Val}_X, x \), we can define its log discrepancy \(a_\log(X, D)(v) \) (see [JM12]) which is always positive, and its volume \(\text{vol}_X, x(v) \). Following [Li15a], we define the normalized volume

\[
\hat{\text{vol}}(X, D, x)(v) = a_\log(X, D)(v) \cdot \text{vol}_X, x(v).
\]

Let \(X = \text{Spec}(R) \) be a germ of algebraic singularity with the maximal ideal \(m \). We will denote by \(\text{PrId}_X, x \) the set of all the \(m \)-primary ideals.

Let \(x \in (X, D) \) be a klt singularity. We call a divisorial valuation \(\text{ord}_S \) in \(\text{Val}_X, x \) gives a Kollár component if there is a model \(\mu: Y \to X \) which is isomorphic over \(X \setminus \{x\} \) with the exceptional divisor given by \(S \) such that \((Y, \mu_*^{-1}D + S) \) is plt and \(-K_Y - \mu_*^{-1}D - S \) is ample over \(X \). We denote by \(\text{Kol}_X, D, x \) the set of Kollár components over \(x \in (X, D) \).

2.1 Normalized volumes

In this section, we summarize some known results of the normalized volumes.

Definition 2.1. For any klt singularity \(x \in (X, D) \), we define its normalized volume to be the following positive number:

\[
\hat{\text{vol}}(X, D, x) := \inf_{v \in \text{Val}_X, x} \hat{\text{vol}}(v).
\]

We often abbreviate it to \(\hat{\text{vol}}(X, D) \) if \(x \) is clear or \(\hat{\text{vol}}(X, x) \) if \(D = 0 \). We have the following description of \(\hat{\text{vol}}(X, D) \) using (normalized) multiplicities.
Theorem 2.2 ([Lin16]). There is an equality
\[\widehat{\text{vol}}(X, D) = \inf_{v \in \text{Val}_{X,x}} \widehat{\text{vol}}(v) = \inf_{a \in \text{PrId}_{X,x}} \text{lct}^\alpha_{X,D}(a) \cdot \text{mult}(a) \quad (1) \]

In [LX16], we showed that the the right hand of (1) is obtained by a minimizer \(a \) if and only if the minimum is calculated by the valutative ideals of a Kollár component. In general, [Bla16] showed that if we replace an ideal \(a \) by a graded ideal sequence \(\{a_i\} \), the minimum can be always obtained. Then we can easily show that a valuation \(v \) which computes the log canonical threshold of such a graded ideal sequence \(\{a_i\} \) satisfies the identity \(\widehat{\text{vol}}_{X,D}(v) = \widehat{\text{vol}}(X,D) \).

Theorem 2.3 ([Bla16]). There exists a valuation \(v \in \text{Val}_{X,x} \) such that
\[\widehat{\text{vol}}(X, D) = \widehat{\text{vol}}_{X,D}(v). \]

Remark 2.4. In [JM12], it was conjectured that any valuation computing the log canonical threshold of a graded sequence of ideals for a smooth point is quasi-monomial (see [JM12, Conjecture B]). We can naturally extend this conjecture from a smooth point to a klt pair \((X, D)\) and then have the following fact observed in [Bla16]: The strong version of Conjecture B for klt pair \((X, D)\) in [JM12] implies that any minimizer \(v \) of \(\text{vol}(X,D) \) is quasi-monomial.

Another characterization of the normalized volume is by using the volumes of models.

Theorem 2.5 ([LX16]). For any model \(Y \rightarrow X \) which is isomorphic over \(X \setminus \{x\} \) with nontrivial exceptional divisor, we can define its volume \(\text{vol}(Y/X) \) as in [LX16]. Furthermore, we have
\[\widehat{\text{vol}}(X, D) = \inf_{Y \rightarrow X \text{ isomorphic} \over \text{over } X \setminus \{x\} \text{ with nontrivial exceptional divisor}} \text{vol}(Y/X) = \inf_{s \in \text{Kol}_{X,D,x}} \text{vol}(S). \]

2.2 Approximation

For the latter, we need the following result.

Lemma 2.6. Given real numbers \(\alpha_i \) \((i = 1, 2, ..., r)\) such that \(\alpha_1, ..., \alpha_r \) and 1 are \(\mathbb{Q} \)-linearly independent. Let \(\delta_i \in \{-1, 1\} \). Then for any \(\epsilon > 0 \), we can find \(p_1, ..., p_r \) and \(q \in \mathbb{Z} \) such that for any \(i \) \((i = 1, 2, ..., r)\),
\[0 < \delta_i \cdot \left(\frac{p_i}{q} - \alpha_i \right) \leq \frac{\epsilon}{q}. \]

Proof. Let \(v = (\alpha_1, ..., \alpha_r) \in \mathbb{R}^r \) be a vector, then we consider the sequence \(\{v, 2v, ..., nv, ...\} \mod \mathbb{Z}^r \).

By Weyl’s criterion for equidistribution, using the assumption that \(\alpha_1, ..., \alpha_r \), and 1 are \(\mathbb{Q} \)-linearly independent, we know that this sequence is equidistributed in \([0,1]^r\). So our lemma follows easily.

We denote the norm \(| \cdot |\) on \(\mathbb{R}^r \) to be \(|x| = \max_{1 \leq i \leq r} |x_i|\).

Lemma 2.7. Let \(v \in \mathbb{R}^r \) be a vector. For any \(\epsilon > 0 \). There exists \(r \) vectors, \(v_1, v_2, ..., v_r \) and \(q_1, ..., q_r \) integers such that
1. \(q_1 v_1 \in \mathbb{Z}^r \),
2. \(v \) is in the convex cone generated by \(v_1, ..., v_r \), i.e., \(v = \sum a_i v_i \) for some \(a_i > 0 \); and
3. \(|v_1 - v| < \frac{\epsilon}{q} \).

Proof. After relabelling, we can assume that \(v = (\alpha_1, ..., \alpha_r) \) with \((1, \alpha_1, ..., \alpha_r)\) is linearly independent and span the space \(\text{span}(1, \alpha_1, ..., \alpha_r) \). Then by replacing \(\epsilon \) after we approximate \(v_1, ..., v_r \), we automatically get the approximation of all \(v_i \). Therefore, we may and will assume that \((1, \alpha_1, ..., \alpha_k)\) is linearly independent.
Applying Lemma 2.6 for all \(2^r\) choices of \(\delta_1, \ldots, \delta_r\), we find \(\nu_1, \ldots, \nu_{2^r}\) vectors, it suffices to show that we can choose \(r\) vectors out of them so that condition (2) is satisfied.

Let \(w_1 = v_1 - v\), then we know that the signs of the components of \(w_1, \ldots, w_{2^r}\) exhaust all \(2^r\) possible, and it suffices to show that \(0\) can be written as a positive linear combination of \(w_1, \ldots, w_{2^r}\). We prove this by induction on the dimension. Let \(w_1, \ldots, w_{2^r-1}\) are precisely the vectors with positive first component. Then using induction, we know that there exist positive numbers \(a_1, \ldots, a_{2^r-1}\) such that \(\sum_{i=1}^{2^r-1} a_i w_i\) has the form \((a, 0, \ldots, 0)\) with \(a > 0\). Similarly, we find positive numbers \(a_{2^r-1+1}, \ldots, a_{2^r}\) such that \(\sum_{i=2^r-1+1}^{2^r} a_i w_i\) is of the form \((-b, 0, \ldots, 0)\) with \(b > 0\). Then we know that

\[
(b_1) w_1 + \cdots + (b_{2^r-1}) w_{2^r-1} + (a a_{2^r-1+1}) w_{2^r-1+1} + \cdots + (a a_{2^r}) w_{2^r} = 0.
\]

\[
\square
\]

2.3 Valuations and associated graded ring

Given a valuation \(v\) whose valuate semi-group is denoted by \(\Phi\). Let \(\Phi^q\) be the corresponding group, and \(\Phi^q_{\text{+}} \supset \Phi\) be the nonnegative values. We can define the algebra as in [Tei03, Section 2.1]

\[
\mathcal{R}_v := \bigoplus_{\phi \in \Phi^q} a_\phi (v) t^{-\phi} \subset \mathcal{R}[t^{\Phi^q}]. \tag{2}
\]

By [Tei03, Proposition 2.3], we know \(\mathcal{R}_v\) is faithfully flat over \(k[\Phi^q]\).

The kind of valuations that our approach can deal with is called quasi-monomial valuation. It is known that it is the same as Abhyankar valuation over characteristic 0 (see e.g. [ELS03, Proposition 2.8]).

Definition 2.8. We call \(v = v_\alpha\) a quasi-monomial valuation over \(x\) of rational rank \(r\): if there exists a log resolution \(Z \to X\) with divisors \(E_1, \ldots, E_r\) over \(x\), and \(r\) nonnegative numbers \(\alpha = (\alpha_1, \ldots, \alpha_r)\) which are \(\mathbb{Q}\)-linearly independent, such that

1. \(\bigcap_{i=1}^r E_i \neq \emptyset\);
2. There exists a component \(C \subset \bigcap E_i\), such that around the generic point \(\eta\) of \(C\), \(E_i\) is given by the equation \(z_i\) and
3. for \(f \in \mathcal{O}_{X, \eta} \subset \mathcal{O}_{X, \eta}\) can be written as \(f = \sum c_\beta z^\beta\), with either \(c_\beta = 0\) or \(c_\beta(\eta)\) is a unit, then

\[
v_\alpha(f) = \min\{\sum \alpha_i \beta_i | c_\beta(\eta) \neq 0\}.
\]

In fact, for any \((\alpha_1', \ldots, \alpha_r') \in \mathbb{R}_{\geq 0}\), we can define a valuation as above, which is quasi-monomial with rational rank equal to the dimension of the \(\mathbb{Q}\)-linear vector space \(\sum \mathbb{Q} \alpha_i' \subset \mathbb{R}\). On the other hand, if we choose \(\alpha \in \mathbb{Z}_{\geq 0}\), the corresponding valuation is given by the toroidal divisor coming from the weighted blow up.

In the following, we also need a slight generalization of Definition 2.8, namely instead of assuming \((Z, E_1 + \cdots + E_r)\) is a simple normal crossing at \(\eta\), we assume

\[
(\eta \in Z, E_1 + \cdots + E_r) \cong (\eta' \in Z', E_1' + \cdots + E_r')/G,
\]

where \((\eta' \in Z', E_1' + \cdots + E_r')\) is a semi-local snc scheme, and \(G\) is an abelian group. Denote the pull back of \(E_i\) to be \(n_i E_i'\). Then for \(\alpha = (\alpha_1, \ldots, \alpha_r) \in \mathbb{R}_{\geq 0}\), we can define \(v_\alpha\) to be the restriction of \(v_{\alpha'}\) at \(\eta' \in (Z', E_1' + \cdots + E_r')\) as in Definition 2.8, where \(\alpha' = (n_1 \alpha_1, \ldots, n_r \alpha_r)\).

Definition 2.9. Let \((Z, E)\) be a pair which is (Zariski) locally an abelian group quotient of a snc pair (with reduced boundary). Denote the center of \(v\) on \((Z, E)\) by \(\eta\), we say \(v\) is computed on \(\eta \in (Z, E)\) if

1. \(\Pi\) is a component of the intersection of component of \(E\);
2. \(v = v_\alpha\) for some \(\alpha \in \mathbb{R}_{\geq 0}\).

For a general pair of a normal variety \(Z\) and a \(\mathbb{Q}\)-divisor \(E\), we say that \(v\) is computed on the center \(\eta\) of \(v\) in \((Z, E)\) if in a neighborhood \(U\) of \(\eta\), \((U, E|_U(= E^{-1}|_U))\) is locally a quotient of snc pair and \(v\) is computed on \((U, E|_U(= E^{-1}|_U))\) in the above sense.
Lemma 2.10. Let \(\nu_o \) be a quasi-monomial valuation as defined in Definition 2.8, whose associated graded ring \(\text{gr}_{\nu_o}(R) \) is finitely generated. Then we can choose \(\epsilon \) sufficiently small such that for any \(\alpha' \in \mathbb{Q}^r \) with \(|\alpha - \alpha'| < \epsilon \), there is an isomorphism \(\text{gr}_{\nu_o}(R) \to \text{gr}_{\nu_{\epsilon}}(R) \) induced by a morphism sending a set of homogeneous generators of \(\text{gr}_{\nu_o}(R) \) to one of \(\text{gr}_{\nu_{\epsilon}}(R) \).

Proof. Since \(\text{gr}_{\nu_o}(R) \) is finitely generated, we can find a finite set of homogenous generators \(f_1, \ldots, f_k \), and construct a surjective of graded ring

\[
\phi: k[t_1, \ldots, t_k] \to \text{gr}_{\nu_o}(R), \quad t_i \mapsto f_i,
\]

where \(t_i \) has the same degree as \(\text{deg}(f_i) \), which by our assumption can be written as \(\sum_{i=1}^{r} b_i' \alpha_i \).

We can lift \(f_i \) to \(g_i \in R \) such that \(\text{in}_o(g_i) = f_i \), and make the morphism

\[
\psi: k[t_1, \ldots, t_k] \to R, \quad t_i \mapsto g_i.
\]

Let \(t_i \) have degree \(\text{deg}(f_i) = \sum_i b_i' \alpha_i \). Consider the filtration

\[
\{ F_b \subset k[t_1, \ldots, t_k]| b \in \Phi, f \in F_b \text{ iff all monomials of } f \text{ have degree at least } b \}
\]

for any \(b \in \Phi \). We can similarly construct a Rees algebra

\[
\mathcal{R}^* = \sum_{a \in \Phi^*} s^{-a} F_{\rho(a)} \subset k[t_1, \ldots, t_k] \otimes k[\Phi^*].
\]

There is a surjection \(\mathcal{R}^* \to \mathcal{R}_{\nu_o} \), which degenerates \(\psi \) to \(\phi \) over \(\text{Spec} R(\Phi) \). Denote by \(I \) the kernel of \(\psi \), which we know degenerates to \(I_0 \) the Kernel of \(\phi \). By the flatness over \(R(\Phi) \), we know any element \(h' \in I_0 \) can be lift to an element \(h \in I \). Geometrically, this gives a pointed embedding \((x \in \mathbb{X}) \subset (0 \in \mathbb{C}^k) \), whose degeneration along one direction, denoted by \(\xi_o \), on \(\mathbb{C}^k \) gives the embedding \((o \in \mathbb{X}_0 = \text{Spec}(\text{gr}_{\nu_o}(R)) \subset (0 \in \mathbb{C}^k) \).

Let \(h_1, \ldots, h_m \) be elements in \(I \) whose degenerations \(h_1', \ldots, h_m' \) generate \(I_0 \). Assume \(h_j = h_j' + h_j'' \) with \(\text{deg}(h_j') = \sum \alpha_i c_i' \alpha_i \) and the monomials of \(h_j'' \) has degree larger than \(\sum \alpha_i c_i' \alpha_i \). We can choose \(\epsilon \) sufficiently small such that if \(\alpha' = (\alpha_1', \ldots, \alpha_r') \) satisfies \(|\alpha' - \alpha| < \epsilon \), then any monomial of \(h_j'' \) has a corresponding degree larger than \(\sum \alpha_i c_i' \alpha_i \).

Consider the filtration given by setting the degree of \(t_i \) to be \(\sum_i b_i' \alpha_i' \) and it induces a filtration on \(R \) by its image. We denote the corresponding vector of the degeneration by \(\xi_{\epsilon'} \). Our argument above says for the filtration induced by \(\xi_{\epsilon'} \), the associated graded ring given by the filtration coincides with \(\text{gr}_{\nu}(R) \). Since the graded ring is an integral domain, by Lemma 2.11 the filtration comes from a valuation \(\nu' \). Now we claim \(\nu' \) is the same as the one given by \(\nu_{\epsilon'} \), which implies what we aim to prove.

In fact, by [Tev14], we know that for our embedding \((x \in \mathbb{X}) \subset (0 \in \mathbb{C}^k) \), we can indeed assume there is a toroidal morphism \(V \to \mathbb{C}^k \), such that the birational transformation of \(V \) in \(V \) gives the model \(Z \) in Definition 2.8 and the divisors \(E_i \) are the transversal intersection of \(Z \) and components \(F_i \) of \(\text{Ex}(V/\mathbb{C}^k) \). Let \(F_i \) along \(\cap_{i=1} F_i \) gives the coordinate \(y_i \), then its restriction to \(Z \cap (\cap_{i=1} F_i) \) induces the coordinate \(z_i \) for \(E_i \). By the transversality of \(E \) and components of \(\text{Ex}(V/\mathbb{C}^k) \), we know that for any function \(f \in R \), if we lift it as a function \(\tilde{f} \in k[x_1, \ldots, x_r] \), then

\[
\nu_{\epsilon'}(f) = \xi_{\epsilon'}(\tilde{f}),
\]

where \(\xi_{\epsilon'} \) is the corresponding toroidal valuation induced by \(\epsilon' \) over \(\mathbb{C}^k \). However, by our definition \(\xi_{\epsilon'}(f) = v'(f) \), which implies \(\nu_{\epsilon'} = v' \). \(\square \)

Let \(\Phi^o \) be an ordered subgroup of \(\mathbb{R} \). Let \((R, m) \) be the local ring at a normal singularity \(o \in \mathbb{X} \). A \(\Phi^o \)-graded filtration of \(R \), denoted by \(\mathcal{F} := \{ F^m \}_{m \in \Phi^o} \), is a decreasing family of \(m \)-primary ideals of \(R \) satisfying the following conditions:

(i) \(F^m \neq 0 \) for every \(m \in \Phi^o \), \(F^m = R \) for \(m \leq 0 \) and \(\cap_{m \geq 0} F^m = (0) \);

(ii) \(F^{m_1} \subseteq F^{m_2} \subseteq F^{m_1 + m_2} \) for every \(m_1, m_2 \in \Phi^o \).

Given such an \(\mathcal{F} \), we get an associated order function \(v = v_\mathcal{F} : R \to \mathbb{R}_{\geq 0} \) for any \(f \in R \), \(v(f) = \max \{ m : f \in F^m \} \). Using the above (i)-(ii), it is easy to verify that \(v \) satisfies
For any real valuation \(v \) with valuative group \(\Phi^\varphi \), \(\{F^m\} = \{a_m(v)\} \) is a \(\Phi^\varphi \)-graded filtration of \(R \). We need the following known facts.

Lemma 2.11 (see [Tei03, Tei14]). With the above notations, the following statement holds:

1. ([Tei14, Page 8]) If \(\Gamma R \) is an integral domain, then \(v = v_\Gamma \) is a valuation centered at \(o \in X \). In particular, \(v(fg) = v(f) + v(g) \) for any \(f, g \in R \).
2. ([Pil94]) A valuation \(v \) is quasi-monomial if and only if the Krull dimension of \(\text{gr}_v R \) is the same as Krull dimension one of \(R \).

2.4 Singularities with good torus actions

For general results of \(T \)-varieties in algebraic geometry, see [AH06, PS08, LS13, AIPS12]. Assume \(X = \text{Spec}_\mathbb{C}(R) \) is an affine variety with \(\mathbb{Q} \)-Gorenstein klt singularities. Denote by \(T \) the complex torus \((\mathbb{C}^*)^r\). Assume \(X \) admits a good \(T \)-action in the following sense.

Definition 2.12 (see [LS13]). Let \(X \) be a normal affine variety. We say that \(X \) has a good \(T \)-action if there is an effective \(T \)-action on \(X \) such that there is a closed point \(x \in X \) that is in the orbit closure of any \(T \)-orbit. We shall call \(x \) the vertex point of \(X \).

For a singularity \(x \in X \) (sometimes also denote by \(o \in X \)) with a good \(T \)-action, we will also call it a \(T \)-singularity for simplicity.

Let \(N = \text{Hom}(\mathbb{C}^*, T) \) be the co-weight lattice and \(M = N^* \) the weight lattice. We have a weight space decomposition

\[
R = \bigoplus_{\alpha \in \Gamma} R_\alpha \quad \text{where} \quad \Gamma = \{\alpha \in N \mid R_\alpha \neq 0\}.
\]

The action being good amounts to say \(R_0 = \mathbb{C} \), which will always assume in the below. An ideal \(a \) is called homogeneous if \(a = \bigoplus_{\alpha \in \Gamma} a \cap R_\alpha \). Denote by \(\sigma^\varphi \subset M_{\mathbb{Q}} \) the cone generated by \(\Gamma \) over \(\mathbb{Q} \), which is called the weight cone or the moment cone. The cone \(\sigma \subset N_{\mathbb{R}} \), dual to \(\sigma^\varphi \), is the same as the following set

\[
t^+_\mathbb{R} := \{ \xi \in M_{\mathbb{R}} \mid \langle \alpha, \xi \rangle > 0 \text{ for any } \alpha \in \Gamma\}.
\]

For convenience and by comparison with Sasaki geometry, we will introduce:

Definition 2.13. With the above notations, a vector \(\xi \in t^+_\mathbb{R} \) will be called a Reeb vector on \(X \).

We recall the following structure results for any \(T \)-varieties.

Theorem 2.14 ([AH06, Theorem 3.4]). Let \(X = \text{Spec}(R) \) be a normal affine variety and suppose \(T = \text{Spec}(\mathbb{C}[M]) \) acts effectively on \(X \) with the weight cone \(\sigma^\varphi \subset M_{\mathbb{Q}} \). Then there exists a normal semi-projective variety \(Y \) such that \(\pi : X \to Y \) is the good quotient under \(T \)-action and a polyhedral divisor \(\mathfrak{D} \) such that there is an isomorphism of graded algebras

\[
R \cong H^0(X, \mathcal{O}_X) \cong \bigoplus_{\sigma \subset \cap \cap \cap M} H^0(Y, \mathcal{O}(\mathfrak{D}(u))) =: R(Y, \mathfrak{D}).
\]

In fact, \(X \) is equal to \(\text{Spec}_\mathbb{C}(\bigoplus_{\sigma \subset \cap \cap \cap M} H^0(Y, \mathcal{O}(\mathfrak{D}(u)))) \).

Here a variety \(Y \) being semi-projective variety means it is projective over an affine variety \(Z \), which can be chosen to be \(Z = \text{Spec}(H^0(Y, \mathcal{O}_Y)) \). In our notation, we have

\[
H^0(Y, \mathcal{O}_Y) = R^T = R_0.
\]

We refer to Example A.2 for a concrete example. From now on, let \(X \) be an affine variety with a good action with \(o \in X \) being the vertex point. Then we know that \(Y \) is projective (see [LS13]). We collect some known results on valuations on a \(T \)-variety.
Theorem 2.15. Assume a T-variety X is determined by the data (Y, σ, \mathcal{D}) such that Y is a projective variety, σ is a maximal dimension cone in $N_\mathbb{R}$ and \mathcal{D} is a polyhedral divisor.

1. For any T-invariant quasi-monomial valuation v, there exist a quasi-monomial valuation $v^{(0)}$ over Y and $\xi \in M_\mathbb{R}$ such that for any $f \cdot \chi^u \in R_u$, we have:

$$v(f \cdot \chi^u) = v^{(0)}(f) + \langle u, \xi \rangle.$$

We will use $(v^{(0)}, \xi)$ to denote such a valuation.

2. T-invariant divisors on X are either vertical or horizontal. Any horizontal divisor is determined by a divisor Z on Y and a vertex v of \mathcal{D}_Z, and will be denoted by $D_{(Z,v)}$. Any vertical divisor is determined by a ray ρ of σ and will be denoted by E_ρ.

3. Let D be a T-invariant vertical effective \mathbb{Q}-divisor. If $K_X + D$ is \mathbb{Q}-Cartier, then the log canonical divisor has a representation $K_X + D = \pi^* H + \text{div}(\chi^{-u_0})$ where $H = \sum_Z a_Z Z$ is a principal \mathbb{Q}-divisor on Y and $u_0 \in M_\mathbb{Q}$. Moreover, the log discrepancy of the horizontal divisor E_ρ is given by:

$$A_{(X,D)}(E_\rho) = \langle u_0, n_\rho \rangle,$$

where n_ρ is the primitive vector along the ray ρ.

Proof. In the first statement, the case for valuations with rational rank 1 follows from [AIPS12, 11]. It can be extended to quasi-monomial valuations trivially since any such valuation is a limit of valuation of rational rank 1. The second statement is in [PS08, Proposition 3.13] and the third statement is in [LS13, Section 4].

As mentioned, we have the identity $\sigma = t^+_\mathbb{R}$. For any $\xi \in t^+_\mathbb{R}$, we can define a valuation

$$\ wt_\xi (f) = \min_{\alpha \in \mathbb{N}} \{ \langle \alpha, \xi \rangle \mid f_\alpha \neq 0 \}.$$

It is easy to verify that $w_\xi \in \text{Val}_X$. We also define the rank of ξ, denoted by $\text{rk}(\xi)$ to be the dimension of the subtorus T_ξ (as a subgroup of T) generated by $\xi \in t$.

Lemma 2.16. For any $\xi \in t^+_\mathbb{R}$, w_ξ is a quasi-monomial valuation of rational rank equal to the rank of ξ. Moreover, the center of w_ξ is x.

Proof. This follows from the work on T-varieties. By [AH06], $X = \text{Spec}_Y(R(Y, \mathcal{D}))$ for a polyhedral divisor \mathcal{D} over a semi projective variety Y. The rational rank of w_ξ is equal to the rank of ξ. Let $Y_\xi = X / T_\xi$, then

$$\text{tr.deg}(w_\xi) = \dim Y_\xi = \dim X - \dim T_\xi = \dim X - \text{rat.rk}w_\xi.$$

More explicitly, we will realize w_ξ as a monomial valuation on a log smooth model. By [AH06, Theorem 3.4], if we let

$$\tilde{X} = \text{Spec}_Y \bigoplus_{u \in \sigma^\vee \cap M} H^0(Y, \mathcal{D}(u)),$$

then there exists a birational morphism $\mu : \tilde{X} \to X$ and a projection $\pi : \tilde{X} \to Y$ such that the generic fibre of π is a normal affine toric variety of dimension r. This toric variety, denoted by Z, is associated to the polyhedral cone $\sigma \subset N_\mathbb{R}$. Each valuation w_ξ corresponds to a vector ξ contained in the interior of σ. Let U be a Zariski open set of Y such that the fibre of $\pi : \tilde{X} \to X$ over any point $p \in U$ is isomorphic to Z. Then w_ξ is the natural extension of the corresponding toric valuation on Z. As a consequence, it is a quasi-monomial valuation on $U \times Z$ and hence on the original X.

Next we can also realize w_ξ on a log smooth model. Let $\tilde{Z} \to Z$ be a fixed toric resolution of singularities. Then we can follow the construction in [LS13, Section 2] to obtain a toroidal resolution $\mathcal{X} \to X$ that dominates \tilde{X} and its restriction over U is isomorphic to $\tilde{Z} \times U$. Let $q \in \tilde{Z}$ be a contracting point of the torus action generated by ξ and choose a point $p \in U$. Then it is easy to see that w_ξ is realized as a monomial valuation with non-negative weights at $(p,q) \in U \times \tilde{Z}$.

}\)
Remark 2.17. The quasi-monomial property also follows from Lemma 2.11.(2).

By the construction in the above proof, the log discrepancy of $w_t\xi$ can indeed be calculated in the similar way as in the toric case and the toric case is well-know (see e.g. [Amb06], [BJ17, Proposition 7.2]). Assume X is a normal affine variety with \mathbb{Q}-Gorenstein klt singularities and a good T-action. Let D be a T-invariant vertical divisor. As in [MSY08, 2.7], we can solve for a nowhere-vanishing section T-equivariant section s of $m(K_X + D)$ where m is sufficiently divisible (also see Remark 2.19).

Lemma 2.18. Using the same notation as in the Theorem 2.15, the log discrepancy of $w_t\xi$ is given by: $A_{(X,D)}(w_t\xi) = \langle u_0, \xi \rangle$. Moreover, let s be a T-equivariant nowhere-vanishing holomorphic section of $| - m(K_X + D)|$. Let \mathcal{L}_ξ denote the Lie derivative with respect to the holomorphic vector field associated to ξ. $A_{(X,D)}(\xi) = \lambda$ is equivalent to:

$$\mathcal{L}_\xi(s) = m\lambda s \quad \text{for} \quad \lambda > 0.$$

Proof. Let $\mathcal{X} \to \tilde{X} \to X$ be the same morphisms as in the proof of Lemma 2.16 and let \mathcal{D} and \tilde{D} be the strictly transform of D on \mathcal{X} and \tilde{X} respectively. Then the situation can be reduced to the toric case (see also [LS13, Section 4]):

$$A_{(X,D)}(w_t\xi) = A_{(X',\mathcal{D})}(w_t\xi) + w_t\xi(K_{(X',\mathcal{D})}/(X,D))$$

$$= A_{\tilde{D}}(w_t\xi) + w_t\xi(K_{\tilde{D}}/\mathcal{Z})$$

$$= A_{\tilde{Z}}(w_t\xi) = \langle u_0, \xi \rangle.$$

Next we discuss the second statement, because the map $\xi \mapsto \mathcal{L}_\xi(s)/s$ is linear, we just need to verify the statement for rational ξ. Then this follows from was already showed in [Li15a] and [Li15b, Proof of Proposition 6.16] in the case $D = \emptyset$. The same argument applies in the logarithmic case.

Remark 2.19. Using the structure theory of T-varieties and under the assumption that $K_X + D$ is \mathbb{Q}-Gorenstein, one can write down a nowhere-vanishing holomorphic section s explicitly by using [PS08, Theorem 3.21] and [LS13, Proposition 4.4]. So one can also directly verify the equality of $\langle u_0, \xi \rangle = \frac{1}{m}(\mathcal{L}_s\xi)/s$.

As a consequence of the above lemma, we can extend $A_{(X,D)}(\xi)$ to a linear function on t_2.

Definition 2.20. Using the same notation as in the Theorem 2.15, for any $\eta \in t_2$, we define:

$$A_{(X,D)}(\eta) = \langle u_0, \eta \rangle. \quad (4)$$

By Lemma 2.18, $A_{(X,D)}(\eta) = \frac{1}{m}\mathcal{L}_\eta s/s$ where s is a T-equivariant nowhere-vanishing holomorphic section of $| - m(K_X + D)|$.

We will need the following important convexity property originally discovered in [MSY08] for cones with isolated singularities (see also [DS15] for the case of metric tangent cones).

Proposition 2.21 (see Proposition 3.10). The volume function $\text{vol} = \text{vol}_{X,x}$ is strictly convex on t^+_R. If ξ_0 is a minimizer of $\text{vol}_{X,x}$, then for any vector $\xi \in t^+_R$, we have the inequality

$$\text{vol}_{(X,D)}(w_t\xi_0) \leq \text{vol}_{(X,D)}(w_t\xi),$$

with the equality holds if and only if ξ is a rescaling of ξ_0.

Since we allow any klt singularity with good torus action, this is a gentle generalization of Martelli- Sparks-Yau’s result. We will give an algebraic proof of the above result in Section 3.2. In particular, we will interpret this as some problem in convex geometry.

For klt T-singularities, we also have the following improvement of Theorem 2.2 in the equivariant case.

Theorem 2.22 (See [LX16]). Let (X,D) be a T-equivariant klt singularity. Denote by $\text{Val}_{X,x}^T$ the set of T-invariant valuations centered at x, $\text{PrId}_{X,x}^T$ the set of homogeneous m-primary ideals, and $\text{Kol}_{X,x}^T$ the set of T-invariant Kollár component. Then we have the identity:

$$\text{vol}(X,D,x) = \inf_{S \in \text{Kol}_{X,x}^T} A_{(X,D)}(S)^n \cdot \text{vol}(S) = \inf_{v \in \text{Val}_{X,x}^T} \text{vol}(v) = \inf_{a \in \text{PrId}_{X,x}^T} \text{let}^n(a) \cdot \text{mult}(a). \quad (5)$$
Proof. We first show
\[
\begin{align*}
\text{vol}(X,D,x) = \inf_{a \in \text{PrId}_{X,x}} \text{lct}^n(a) \cdot \text{mult}(a).
\end{align*}
\]

In fact, give any ideal \(m\)-primary ideal \(a\), we consider the initial ideal sequence
\[
\{b_n\} = \text{in}(a^n),
\]
which we know is a graded sequence of \(T\)-equivariant ideals. Then we know that
\[
\lim_{m \to \infty} \text{lct}^n(b_m) \cdot \text{mult}(b_m) = \text{lct}^n(b_n) \cdot \text{mult}(b_n) \leq \text{lct}^n(a) \cdot \text{mult}(a),
\]
which confirms our claim.

Then to finish the proof, it suffices to show
\[
\inf_{a \in \text{PrId}_{X,x}} \text{lct}^n(a) \cdot \text{mult}(a) = \inf_{S \in \text{Kol}_{X,x}} A_{(X,D)}(S)^n \cdot \text{vol}(\text{ord}S).
\]

We follow the strategy in the proof of [LX16]. Given a \(T\)-equivariant primary ideal \(a\), we can take the an \(T\)-equivariant dlt modification \(Y \to X\) by running a \(T\)-equivariant model on a \(T\)-equivariant resolution. Then any exceptional divisor \(S\) on \(Y/X\) is equivariant, and we know that
\[
A_{(X,D)}(S)^n \cdot \text{vol}(\text{ord}S) \leq \text{vol}(Y/X) \leq \text{lct}^n(a) \cdot \text{mult}(a),
\]
where the equalities follow from [LX16].

\[\square\]

2.5 K-semistability of log Fano cone singularity

We are mostly interested in the case that the valuation is induced by a vector field in the Reeb cone. So we give the following

Definition 2.23 (See also [CS15]). If \((X,D)\) is an affine klt pair with a good \(T\) action (see Definition 2.12). For any \(\xi \in \mathbb{T}_K^1\), we say that the associated valuations \(w_t\) gives a toric valuation. For a fixed \(\xi\), we call the triple \((X,D,\xi)\) a klt singularity with a log Fano cone structure that is polarized by \(\xi\).

We proceed to study the K-semistable log Fano cone singularity \((X,D,\xi)\) in the sense of Collins-Székelyhidi ([CS12, CS15]), which generalizes the K-semistability for Fano varieties (see [Tia97, Don01]). We first define the general special test configurations of log Fano cone singularities.

Definition 2.24 (see [CS12, CS15]). Let \((X,D,\xi_0)\) be a log Fano cone singularity and \(T\) be the torus generated by \(\xi_0\).

A \(T\)-equivariant special test configuration (or \(T\)-equivariant special degeneration) of \((X,D,\xi_0)\) is a quadruple \((X,D,\xi_0;\eta)\) with a map \(\pi : (X,D) \to \mathbb{A}^1(=\mathbb{C})\) satisfying the following conditions:

1. \(\pi\) is a flat family of normal affine varieties;
2. \(\eta\) is a holomorphic vector field on \(X\) generating a \(C^\ast\)-action on \((X,D)\) such that \(\pi\) is \(C^\ast\)-equivariant where \(C^\ast\) acts on the base \(\mathbb{C}\) by multiplication (so that \(\pi_\ast\eta = t\partial_t\) if \(t\) is the affine coordinate on \(\mathbb{A}^1\) and there is a \(C^\ast\)-equivariant isomorphism \(\phi : (X,D) \times_\mathbb{C} C^\ast \cong (X,D) \times \mathbb{C}^\ast\);
3. the holomorphic vector field \(\xi_0\) on \(X \times \mathbb{C} C^\ast\) (via the isomorphism \(\phi\)) extends to become a holomorphic vector field on \(X\) and generates a \(T\)-action on \((X,D)\) that commutes with \(C^\ast\)-action generated by \(\eta\) and preserves \((X_0,D_0)\);
4. \((X_0,D_0)\) has klt singularities and \((X_0,D_0,\xi_0)\) is a log Fano cone singularity (see Definition 2.23).

\((X,D,\xi_0;\eta)\) is a product test configuration if there is a \(T\)-equivariant isomorphism \((X,D) \cong (X,D) \times \mathbb{C}\) and \(\eta = \eta_0 + t\partial_t\) with \(\eta_0 \in t\).

For simplicity, we will just say that \((X,D)\) is a \((T\)-equivariant) special test configuration if \(\xi_0\) and \(\eta\) are clear. We also say that \((X,D,\xi_0)\) specially degenerates to \((X_0,D_0,\xi_0;\eta)\) (or simply to \((X_0,D_0)\)).

If \((X,D,\xi_0;\eta)\) is a special test configuration, then under the base change \(\mathbb{A}^1 \to \mathbb{A}^1\), \(t \mapsto t^d\), we can pull back to get a new special test configuration \((X \times \mathbb{A}^1, t^d;\mathbb{A}^1, D \times \mathbb{A}^1, t^d;\xi_0; d(t^d)\ast(\eta))\), which will be denoted simply by \((X,D,\xi_0;\eta) \times_{\mathbb{A}^1} t^d\).
Let \((X, \mathcal{D}, \xi_0; \eta)\) be a \(T\)-equivariant special test configuration of \((X, D, \xi_0)\). We can define the Futaki invariant \(\textrm{Fut}(X_0, D_0, \xi_0; \eta)\) following \([\text{CS12, CS15}]\) where the index character was used. However, for our purpose, we reformulate the definition as the derivative of the normalized volume and we only consider special test configurations.

Since \(T\)-action and \(\mathbb{C}^*\)-action commute with each other, \(X_0\) has a \(T' = (T \times \mathbb{C}^*)\)-action generated by \((\xi_0, \eta)\). Let \(t' = \text{Lie}(T')\). For any \(\xi \in \mathbb{C}_1^\circ\), we have \(wt_\xi \in \text{Val}(X_0, \sigma')\) where \(\sigma' \in X_0\) is the vertex point of the central fibre \(X_0\). So we can define its volume \(\text{vol}(wt_\xi)\) and normalized volume \(\text{normvol}(wt_\xi)\). For simplicity of notations, we will frequently just write \(\xi\) in place of \(wt_\xi\). Recall that the volume \(\text{vol}(\xi)\) is equal to:

\[
\text{vol}(\xi) := \text{vol}_X(wt_\xi) = \lim_{m \to +\infty} \frac{\text{dim} C R/a_m(wt_\xi)}{m^n/n!};
\]

and the normalized volume is given by:

\[
\text{normvol}(\xi) := \text{normvol}_{X_0, D_0}(wt_\xi) = A(\xi)^n \cdot \text{vol}(\xi).
\]

Here \(A(\xi) = A_{(X_0, D_0)}(wt_\xi)\).

Remark 2.25. By \([\text{MSY08, CS15}]\), for any \(\xi \in \mathbb{C}_1^\circ\), the volume of \(wt_\xi\) can be obtained by using the index characters. Let \(X_0 = \text{Spec}_{\mathbb{C}}(B)\) and \(B = \bigoplus_{\alpha'} B_{\alpha'}\) be the weight decomposition with respect to \(T'\). For any \(\xi \in \mathbb{C}_1\), the index character is defined as:

\[
\Phi(t, \xi) = \sum \frac{e^{-t\alpha'\langle \xi \rangle}}{t^{\alpha'}} \dim B_{\alpha'}.
\]

Then by \([\text{MSY08, CS15}]\), \(\Phi(t, \xi)\) has the expansion:

\[
\Phi(t, \xi) = \frac{\text{vol}(\xi)}{t^n} + O(t^{-n}).
\]

Definition 2.26 (see \([\text{CS12, CS15}]\)). Let \((X_0, D_0, \xi_0)\) be a log Fano cone singularity with an good action by \(T' \cong (\mathbb{C}^*)^{r+1}\). Denote \(\text{vol} = \text{vol}_{X_0, D_0}\) on \(\mathbb{C}_1\) and \(A = A_{(X_0, D_0)}\) on \(\mathbb{C}_1\) (see Definition 2.20). Assume \(\xi_0 \in \mathbb{C}_1\). For any \(\eta \in \mathbb{C}_1\), we define:

\[
\text{Fut}(X_0, D_0, \xi_0; \eta) := (D_{-\eta} \text{vol})(\xi_0) = n A(\xi_0)^{n-1} A(-\eta) \text{vol}(\xi_0) + A(\xi_0)^n \cdot (D_{-\eta} \text{vol})(\xi_0).
\]

If \((X, \mathcal{D}, \xi_0; \eta)\) is a special test configuration of \((X, D, \xi_0)\), then the Futaki invariant of \((X, \mathcal{D}, \xi_0; \eta)\), denoted by \(\text{Fut}(X, \mathcal{D}, \xi_0; \eta)\) is defined to be \(\text{Fut}(X_0, D_0, \xi_0; \eta)\).

Remark 2.27. When \(\xi_0\) generates a one dimensional torus (i.e., \(T \cong \mathbb{C}^*\)), then quotient by \(T\), we get a special test configuration \((Y, E)\) of the log Fano pair \((Y, E) = (X, D) \setminus \{x\}/(\xi_0)\), and we have \(\text{Fut}(X, \mathcal{D}, \xi_0; \eta)\) is a rescaling of the Futaki invariant of \((Y, E)\) defined in \([\text{Tia97, Don01}]\) (see e.g., \([\text{Li15b, Lemma 6.13}]\)). This also verifies that the definition coincides with the one in \([\text{CS15}]\) as any vector can be approximated by rational ones, and the Futaki invariants in both definitions are continuous and coincide when \(\xi_0\) is rational.

We will need another form of the Futaki invariant later. For any \(\xi \in \mathbb{C}_1\), if we denote \(\hat{\xi} = \frac{\xi}{A(\xi)}\) such that \(\hat{\xi}\) lies on the truncated hyperplane

\[
P = \{\xi \in \mathbb{C}_1; A(\xi) = 1\},
\]

then we can transform the normalized volume to the usual volume:

\[
\text{normvol}(\xi) = A(\xi)^n \text{vol}(\xi) = \text{vol}\left(\frac{\xi}{A(\xi)}\right) = \text{vol}(\hat{\xi}).
\]

Moreover we can calculate:

\[
\text{Fut}(X_0, D_0, \xi_0; \eta) = \frac{d}{ds} \mid_{s=0} \text{vol}(\xi_0 - s\eta) = \frac{d}{ds} \mid_{s=0} \text{vol}(\hat{\xi}_0 - s \cdot T_{\xi_0}(\eta)) = (D_{\text{vol}}(\hat{\xi}_0)) \cdot (-T_{\xi_0}(\eta)),
\]

(11)
where we have denoted:
\[T_{\xi_0}(\eta) := \frac{A(\xi_0)\eta - A(\eta)\xi_0}{A(\xi_0)^2} \in t'_{\mathbb{R}}. \] (12)

Notice that \(T_{\xi_0}(\eta) \) in the tangent space of \(P \) at \(\xi_0 \). In other words \(A(T_{\xi_0}(\eta)) = 0 \) (see (4)).

The calculation (11) amounts to showing that re-normalization of the test configuration does not change the Futaki invariant:

\[\text{Fut}(\mathcal{X}, \mathcal{D}, \xi_0; \eta) = \text{Fut}(X_0, D_0, \xi_0; T_{\xi_0}(\eta)). \]

Definition 2.28. We say that \((X, D, \xi_0)\) is \(K \)-semistable, if for any \(T \)-equivariant special test configuration \(\mathcal{X} \) that degenerates \((X, D, \xi_0)\) to \((X_0, D_0, \xi_0; \eta)\), we have

\[\text{Fut}(X_0, D_0, \xi_0; \eta) \geq 0. \]

Applying the above discussion, we can then put the study of \(K \)-semistability of a local singularity in the framework of minimization of normalized volumes.

Let \(t' \) be the Lie algebra of \(T' = T \times \mathbb{C}^* \), \(N' = \text{Hom}(\mathbb{C}^*, T') \) and \(t'_{\mathbb{R}} = N' \otimes_{\mathbb{R}} \mathbb{R} \). Denote by \(t'_{\mathbb{R}}^+ \) the positive cone of \(t'_{\mathbb{R}} \) on the central fibre. Denote the ray in \(t'_{\mathbb{R}}^+ \) emanating from \(\xi_0 \) in the direction of \(\eta \) by:

\[\xi_0 + \mathbb{R}_{\geq 0}(-\eta) = \{ \xi_0 - \lambda \eta; \lambda \in \mathbb{R}_{\geq 0} \}. \]

Lemma 2.29. If \((X, D, \xi_0)\) is \(K \)-semistable, then for any special test configuration \((\mathcal{X}, \mathcal{D}, \xi_0; \eta)\),

\[\widehat{\text{vol}}(X_0, D_0)(\xi) \geq \widehat{\text{vol}}(X_0, D_0)(\xi_0) \]

for any \(\xi \in (\xi_0 + \mathbb{R}_{\geq 0}(-\eta)) \cap t'_{\mathbb{R}}^+ \), where \(t'_{\mathbb{R}} = t_{\mathbb{R}} \oplus \mathbb{R}(\eta) \).

Proof. For any \(\xi_\lambda = \xi_0 - \lambda \eta \in t'_{\mathbb{R}}^+ \), we have: \(\widehat{\text{vol}}(\xi_\lambda) = \text{vol}(\xi_\lambda) \) (see (10)). Notice that:

\[\hat{\xi}_\lambda - \hat{\xi}_0 = \frac{\xi_0 - \lambda \eta}{A(\xi_0) - \lambda A(\eta)} = \frac{\xi_0 - \lambda \eta}{A(\xi_0)} = \frac{A(\xi_0)\eta - A(\eta)\xi_0}{A(\xi_0)^2} = \frac{A(\xi_0)\eta - A(\eta)\xi_0}{A(\xi_0)^2} = -T_{\xi_0}(\eta) \frac{A(\xi_0)}{A(\xi_\lambda)}. \]

So \(\hat{\xi}_\lambda \in \hat{\xi}_0 + \mathbb{R}_{\geq 0}(-T_{\xi_0}(\eta)) \cap t'_{\mathbb{R}}^+ \). Consider the function \(f(s) = \text{vol}(\hat{\xi}_0 + s(\hat{\xi}_\lambda - \hat{\xi}_0)) \). Then \(f(0) = \widehat{\text{vol}}(\xi) \) and

\[f'(0) = (D\text{vol})(\hat{\xi}_0) \cdot (-T_{\xi_0}(\eta)) \frac{A(\xi_0)}{A(\xi_\lambda)} = \text{Fut}(X_0, D_0, \xi_0; \eta) \frac{A(\xi_0)}{A(\xi_\lambda)}. \]

By the \(K \)-semistability assumption \(f'(0) \geq 0 \). By Proposition 2.21 (=Proposition 3.10), \(f(s) \) is a convex function. So we get \(f(1) = \widehat{\text{vol}}(\xi_\lambda) \geq f(0) = \widehat{\text{vol}}(\xi_0). \) \(\square \)

3 Normalized volumes over log Fano cone Singularities

In this section, we will study log Fano cone singularities \((X, D, \xi)\) (see Definition 2.23). In differential geometry, the stability theory in such settings has been investigated in the context of searching for a Sasakian-Einstein metric (see [MSY08, CS15] etc.). In particular, we will focus on the case that when the singularity is \(K \)-semistable, and show that in this case the natural toric valuation \(wt_\xi \) is the only minimizer up to scaling among all \(T \)-invariant quasi-monomial valuations. We achieve this by three steps with increasing generality: we first consider toric singularity with toric valuations, then general \(T \)-singularities with toric valuations and eventually \(T \)-singularities with \(T \)-invariant valuations.
3.1 Special test configurations from Kollár components

In this section, we study the special test configuration of T-varieties associated to Kollár components.

Let S be a Kollár component over $o \in (X, D)$ and $\pi : Y \to X$ be the plt blow up extracting S and let $K_Y + S|_Y = K_S + \Delta_S$. Then in [LX16] we used the deformation to normal cone construction to get a degeneration of X to an orbifold cone over (S, Δ_S). Here we write down the corresponding algebraic description.

Denote the associated graded ring of $v_0 = \operatorname{ord}_S$ by

$$A = \bigoplus_{k=0}^{+\infty} a_k(v_0)/a_{k+1}(v_0) = \bigoplus_{k=0}^{+\infty} A_k.$$

From now on, we always assume the Kollár component S is T-invariant so that T acts equivariantly on $Y \to X$, and we have a decomposition:

$$a_k(v_0) = \bigoplus_{\alpha} a_k^\alpha(v_0) = \bigoplus_{\alpha} R_{\alpha} \cap a_k(v_0).$$

T acts equivariantly on the extended Rees algebra:

$$\mathcal{R}' = \bigoplus_{k \in \mathbb{Z}} \mathcal{R}'_k := \bigoplus_{k \in \mathbb{Z}} a_k(v_0)t^{-k} \subset R[t, t^{-1}].$$

Let $\mathcal{X} = \operatorname{Spec}(\mathcal{R}')$. Then we get a flat family $\pi : \mathcal{X} \to \mathbb{A}^1$ satisfying $X_t = \mathcal{X} \times_{\mathbb{A}^1} \{t\} = X$ and $X_0 = \mathcal{X} \times_{\mathbb{A}^1} \{0\} = \operatorname{Spec}(A)$. Let D be the strict transform of $D \times \mathbb{A}^1$ under the birational morphism $\mathcal{X} \to X \times \mathbb{A}^1$.

Definition 3.1. Assume that $o \in (X, D)$ is a klt singularity with a good T action and S is a T-equivariant Kollár component. Let $\mathcal{X} \to \mathbb{A}^1$ be the associated degeneration which degenerates (X, D) to (X_0, D_0) and admits a $T' = T \times \mathbb{C}^*$-action. For any $f = \sum f_k \in \mathcal{R}'$, $\operatorname{ord}_S(f) = \max\{k; f_k \not\equiv 0\}$. Over X_0, ord_S corresponds to the \mathbb{C}^*-action corresponding to the \mathbb{Z}-grading. Denote the generating vector by $\xi_S \in t_\mathbb{R}^+$. With the above notations, we say that $(\mathcal{X}, D, \xi_0; \xi_S)$ is the special test configuration associated to the Kollár component S. If ξ_0 and ξ_S are clear, we just use (\mathcal{X}, D) to denote the special test configuration.

Lemma 3.2. Let $(\mathcal{X}, D, \xi_0; \xi_S)$ denote the special test configuration associated to a T-invariant Kollár component S. Let (X_0, D_0) be the corresponding pair on the special fiber. For any $\xi_0 \in t_\mathbb{R}^+$, let ξ_0 also denote the induced Reeb vector on X_0 (see Definition 2.13).

Then we have the following equalities:

1. $A_{(X, D)}(\operatorname{ord}_S) = A_{(X_0, D_0)}(\operatorname{wt}_{\xi_0})$ and $\operatorname{vol}_{(X, D)}(\operatorname{ord}_S) = \operatorname{vol}_{(X_0, D_0)}(\operatorname{wt}_{\xi_0})$;
2. $A_{(X, D)}(\operatorname{wt}_{\xi_0}) = A_{(X_0, D_0)}(\operatorname{wt}_{\xi_0})$ and $\operatorname{vol}_{(X, D)}(\operatorname{wt}_{\xi_0}) = \operatorname{vol}_{(X_0, D_0)}(\operatorname{wt}_{\xi_0})$.

Proof. The first statement is clear (see [LX16]). For the second statement, we first show the equality for log discrepancies. By Lemma 2.18, we just need to show the weights of holomorphic pluricanonical forms with respect to ξ_0, on X and X_0 respectively, are equal. Recall that

$$K_Y + D + S|_S = K_S + \operatorname{Diff}_S(D) =: K_S + \Delta.$$

Let m be a positive integer such that mS is Cartier on Y, which has a generator f locally at a point on S. Assume that s is a non-vanishing T-equivariant section of $\mathcal{O}(m(K_X + D))$. Let $\mu : Y \to X$ be the extraction of S. Then because of the identity

$$K_Y + \mu_*^{-1}D = \mu^*(K_X + D) + (A - 1)S$$

with $A = A_{(X, D)}(S)$, locally around S, we have the identity:

$$\mu^*(s) = s' \cdot f^{A-1},$$

where s' is a local generator of $m(K_Y + \mu_*^{-1}D)$. By taking the Poincaré residue, $\mathcal{O}_S(m(K_S + \Delta))$ is generated by $(s'/df)|_S =: dz$. For any $u \in T \cong (\mathbb{C}^*)^r$, we have $u \circ s = u^\beta s$ and $u \circ f = u^\gamma f$, for some $\beta, \gamma \in \mathbb{Z}^r$, by the equivariance of the the data. Then

$$u^\beta u^s = \mu^*(u \circ s) = u \circ \mu^* s = (u \circ s') \cdot (u \circ f)^{A-1}.$$
So \(u \circ s' = u^{\beta-(A-1)\gamma}s' \). As a consequence:

\[
 u \circ dz = u \circ \frac{s'}{df} = u^{\beta-A\gamma}s' = u^{\beta-A\gamma}dz.
\]

A non-vanishing holomorphic section of \(m(K_{X_0} + D_0) \) on \(X_0 = C(S, \Delta) \) is given by \(dz \otimes (df^A) \) (see [Li15b, 6.2.2] and Theorem 2.15.3). Therefore,

\[
 u \circ (dz \otimes df^A) = (u \circ dz) \otimes (u \circ df^A) = (u \circ \frac{s'}{df}) \otimes (u \circ df^A) = u^\beta(dz \otimes df^A).
\]

For the equality of the volume, we notice that

\[
 R/\mathfrak{a}_m(wt_{\xi_0}) = \bigoplus_{\alpha : (a, \xi_\alpha) < m} R_\alpha, \quad A/\mathfrak{a}_m(wt_{\xi_0}) = \bigoplus_{\alpha : (a, \xi_\alpha) < m} \bigoplus_k A_k^\alpha.
\]

Now equality follows from the identity:

\[
 \dim R_\alpha = \sum_k \dim \left(\frac{R_\alpha \cap \mathfrak{a}_k(\text{ord}_S)}{R_\alpha \cap \mathfrak{a}_{k+1}(\text{ord}_S)} \right) = \sum_k \dim A_k^\alpha.
\]

\[\blacksquare\]

For the later purpose, we need a little more:

Proposition 3.3. Let \(S \) be a \(T \)-invariant Kollár component and \((\mathcal{X}, \mathcal{D})\) be the special test configuration associated to \(S \). Then there is a \(T \)-equivariant nowhere-vanishing holomorphic section \(\mathcal{J} \) of \(m(K_{\mathcal{X}/k_t} + \mathcal{D}) \) for \(m \) sufficiently divisible.

Proof. We will use the same notations as used in the above proof. Let \(\tilde{\mu} = \mu \times \text{id} : Y \times \mathbb{A}^1 \rightarrow X \times \mathbb{A}^1 \) the extraction of \(S \times \mathbb{A}^1 \). To construct the special test configuration, we first consider the deformation to the normal cone by blowing up \(S \times \mathbb{A}^1 \). We can now generalize the minimization result in [Li15b, 6.2.2] and Theorem 2.15.3.

The minus sign is compatible with the fact that on the central fibre \(t\partial_t = -\xi_S \). Moreover, if we restrict both sides of (13) we see that \(A_{(X_0, D_0)}(S) = A_{(X, D)}(S) \) as mentioned.

We can now generalize the minimization result in [Li15b, LL16, LX16] to the higher rank case.

Theorem 3.5. \((X, D, \xi_0)\) is \(K \)-semistable if and only if \(wt_{\xi_0} \) is a minimizer of \(\text{vol}_{(X, D)} \) in \(\text{Val}_{X, d} \).
Proof. First we assume \((X, D, \xi_0)\) is K-semistable. By Theorem 2.22, we only need to show that for any \(T\)-invariant Kollár component \(S\),
\[
\hat{\text{vol}}(\text{ord}_S) \geq \hat{\text{vol}}(\text{wt}_{\xi_0}).
\]

Let \((\mathcal{X}, \mathcal{D})\) be the special test configuration of associated to \(S\). Since \(S\) is \(T\)-invariant, there is a \(T\)-action on \(\mathcal{X}\). Denote \(T' = T \times \mathbb{C}^* = (\mathbb{C}^*)^{d+1}\). Then there is a \(T'\)-action on \(\mathcal{X}\) which is effective if \(C(S)\) is not isomorphic to \(X\). The canonical valuation \(\text{ord}_S\) corresponds to \(\text{wt}_{\xi_0}\) for some \(\xi_0 \in \mathcal{X}_{+}\) which is equal to \(-\eta\) in the definition of the special test configuration. As a consequence the ray \(\xi_0 + \mathbb{R}_{\geq 0}(-\eta)\) is equal to \(\xi_0 + \mathbb{R}_{\geq 0}(\xi_S)\).

For any \(b \in \mathbb{R}_{\geq 0}\), denote \(\xi_b = \xi_0 + b\xi_S\), then we have
\[
\hat{\text{vol}}(X_0, D_0)(\text{wt}_{\xi_b}) \geq \hat{\text{vol}}(X_0, D_0)(\text{wt}_{\xi_0}) \quad (\text{by Lemma 2.29}) = \hat{\text{vol}}(X_0, D_0)(\text{wt}_{\xi_0}) \quad (\text{by Lemma 3.2.2}).
\]

On the other hand, because \(\xi_b/(1 + b) \to \xi_S\) as \(b \to +\infty\), by the rescaling invariance of \(\hat{\text{vol}}\) and the continuity of \(\text{vol}\) on \(\xi_S^+\), we have
\[
\lim_{b \to +\infty} \hat{\text{vol}}(X_0, D_0)(\text{wt}_{\xi_b}) = \lim_{b \to +\infty} \hat{\text{vol}}(X_0, D_0)(\text{wt}_{\xi_b}/(1 + b)) = \hat{\text{vol}}(X_0, D_0)(\text{wt}_{\xi_0}) = \hat{\text{vol}}(X_0, D_0)(\text{wt}_{\xi_0}) \quad (\text{by Lemma 3.2.1}).
\]

Combining the above inequalities, we get \(\hat{\text{vol}}(X_0, D_0)(\text{ord}_{\xi_S}) \geq \hat{\text{vol}}(X_0, D_0)(\text{wt}_{\xi_0})\).

For the converse direction, we assume \(\hat{\text{vol}}(X_0, D_0)(\text{wt}_{\xi_0})\) obtains its minimum at \(\text{wt}_{\xi_0}\) and let \((\mathcal{X}, \mathcal{D}, \xi_0; \eta)\) be any special test configuration.

If we let \(\xi_\epsilon = \xi_0 - \epsilon \eta \in \xi_S^+\), then \(\text{wt}_{\xi_\epsilon}\) can be considered as a valuation on \(\mathcal{X}\). Using the embedding \(\mathbb{C}(X) \to \mathbb{C}(\mathcal{X}) = \mathbb{C}(X \times \mathbb{C}^*) = \mathbb{C}(X \times \mathbb{C})\), \(\text{wt}_{\xi_\epsilon}\) can be restricted to be a valuation \(w_\epsilon\) on \(X\) (see [BHJ15, Li15b] for the regular case). Alternatively by equivariantly embedding of \(\mathcal{X}\) into \(\mathbb{C}^N\times \mathcal{X}\), \(\text{wt}_{\xi_\epsilon}\) is induced by a linear holomorphic vector field, still denoted by \(\xi_\epsilon\), on \(\mathbb{C}^N\). The weight function associated to \(\xi_\epsilon\) induces a filtration on \(R\) whose associated graded ring is equal to the coordinate ring of \(X_0\). By Lemma 2.11, this filtration is indeed determined by a valuation \(w_\epsilon\) on \(X\). As a consequence we have \(\text{vol}(X_0, D_0)(w_\epsilon) = \text{vol}(X_0, D_0)(\text{wt}_{\xi_\epsilon})\) because \(w_\epsilon\) and \(\text{wt}_{\xi_\epsilon}\) have the same associated graded ring. On the other hand, we claim that for each fixed \(\epsilon\),
\[
A_{(X,D)}(w_\epsilon) = A_{(X_0, D_0)}(\text{wt}_{\xi_\epsilon}) = A_{(X_0, D_0)}(\text{wt}_{\xi_0}) = 0.
\]

This follows from the general construction in the proof of Lemma 2.10 (see Lemma 4.10). If \(\epsilon \ll 1\) we can choose a sequence of rational vector fields \(\xi_{k, \epsilon} \in \xi_S^+\) approaching \(\xi_\epsilon\) as \(k \to +\infty\). Then the \(C^*\)-action generated by \(\xi_{k, \epsilon}\) corresponds to a Kollár component \(S_{k, \epsilon}\) which is isomorphic to the quotient \(X_0/(\exp(C_{k, \epsilon}))\). In other words, up to a base change, \((\mathcal{X}, D_0; \xi_{k, \epsilon})\) is equivalent to the special test configuration associated to \(S_{k, \epsilon}\) and there exists constant \(c_{k, \epsilon} > 0\) such that \(\text{wt}_{\xi_{k, \epsilon}}(C_{k, \epsilon}) = c_{k, \epsilon} \cdot \text{ord}_{S_{k, \epsilon}} \to w_\epsilon\) as \(k \to +\infty\). So by Lemma 3.2.1, we have \(A_{(X,D)}(c_{k, \epsilon} \cdot \text{ord}_{S_{k, \epsilon}}) = A_{(X_0, D_0)}(\text{wt}_{\xi_{k, \epsilon}})\) (see also [Li15b, Proposition 6.16.2]). Taking \(k \to +\infty\), we get the identity (14).

Thus we get \(\hat{\text{vol}}(X_0, D_0)(w_\epsilon) = \hat{\text{vol}}(X_0, D_0)(\text{wt}_{\xi_0})\). As a consequence:
\[
\hat{\text{Fut}}(X_0, D_0, \xi_0; \eta) = \left. \frac{d}{d\epsilon} \hat{\text{vol}}(X_0, D_0)(\text{wt}_{\xi_\epsilon}) \right|_{\epsilon = 0} = \left. \frac{d}{d\epsilon} \hat{\text{vol}}(X_0, D_0)(w_\epsilon) \right|_{\epsilon = 0} \geq 0.
\]

The last inequality is because \(w_0 = \text{wt}_{\xi_0}\) on \(\mathbb{C}(X)\) and hence by assumption \(\hat{\text{vol}}(X_0, D_0)(w_\epsilon)\) obtains the minimum at \(\epsilon = 0\).
By the construction in the above proof and Theorem 2.22, we also get the following:

Proposition 3.6. To test K-semistability of a log Fano cone singularity (X, D, ξ_0), we only need to test on the special test configurations associated to Kollár components, i.e., we only need to check for any T-equivariant Kollár component S, the generalized Futaki invariant $\text{Fut}(X_0, D_0, \xi_0; \eta) \geq 0$, where (X_0, D_0) is the induced special degeneration by S and $\eta = -\xi_S$.

The following purely algebro-geometric statement can be seen as a generalization of a result in [Li13], which was proved there by an analytic method.

Proposition 3.7. Let (X, D, ξ_0) be a log Fano cone singularity, which specially degenerates to $(X_0, D_0, \xi_0; \eta)$ via a T-equivariant special test configuration. Then (X, D, ξ_0) is K-semistable if (X_0, D_0, ξ_0) is K-semistable.

Proof. We use a degeneration argument which similar to the one used in [LX16, Blu16].

Let a be an m-primary ideal on (X, x). Let $T' \cong (\mathbb{C}^*)^{r+1}$ denote the torus generated by ξ_0 and η, then by choosing a lexicographic order on \mathbb{Z}^{r+1}, we can degenerate a^m to $b_m := \text{in}(a^m)$ on (X_0, o') which is T'-equivariant. Denote $X_0 = \text{Spec}(R(0))$. By the lower semicontinuity of log canonical threshold and the flatness of the degeneration, we get:

$$\text{let}(a^m)^n \cdot l_R(R/a^m) \geq \text{let}(\text{in}(a^m))^n \cdot l_{R(0)}(R(0)/\text{in}(a^m)).$$

Taking $m \to +\infty$, we get:

$$\text{let}(a)^n \cdot \text{mult}(a) \geq \text{let}(\text{in}(a))^n \cdot \text{mult}(\text{in}(a)) \geq \inf_v \text{vol}_{(X_0, D_0)}(v) = \text{vol}_{(X_0, D_0)}(\xi_0) \geq \text{vol}_{(X, D)}(\xi_0).$$

So we know that (X, D, ξ_0) is K-semistable by Theorem 3.5.

3.2 Convexity and uniqueness

The results in this section do not depend on other sections. Here we aim to show the volume function on the Reeb cone is strictly convex and hence conclude the uniqueness of the minimizer when the log Fano cone singularity is K-semistable. Our main approach is to describe the volume of a valuation as the volume of a convex polytope and then reduce the question to a known result in convex geometry. This is standard in our first step where we treat toric singularities. Then we generalize it to an arbitrary log Fano cone singularity with only toric valuations, by considering valuations with real rank larger than one. In the last step, we study a K-semistable log Fano cone singularity and compare its volume with those of T-invariant quasi-monomial valuations.

3.2.1 Toric valuations on toric varieties

In this section we will consider the case of toric singularities. Indeed, for the latter application, we will consider a more general setting of convex cones.

Let $\sigma \subset N \otimes \mathbb{Z} \mathbb{R}$ be a strictly convex cone. For $u_0 \in \text{relint}(\sigma^\vee)$, denote $H_0 = \{ \xi \in N_\mathbb{R}; \langle u_0, \xi \rangle = 1 \}$. Then $\hat{H}_0 := H_0 \cap \sigma$ is a bounded convex set on the affine space \hat{H}_0. For any $\xi \in \text{relint}(\sigma)$, we denote the bounded polyhedron

$$\Delta_\xi = \{ y \in \sigma^\vee; \langle y, \xi \rangle \leq 1 \}.$$

To state the next key result, we denote by $\text{vol}|_{\hat{H}_0}$ the restriction of $\text{vol}(\Delta_\xi)$ to \hat{H}_0 and let

$$\Pi_\xi = \{ u \in \sigma^\vee; \langle u, \xi \rangle = 1 \}.$$

Lemma 3.8 ([Gig78]). The function $\text{vol}(\Delta_\xi)$ is a strictly convex function for $\xi \in \text{relint}(\sigma)$. As a consequence, $\text{vol}|_{\hat{H}_0}$ is a strictly convex proper function for $\xi \in \hat{H}_0$ and has a unique minimizer ξ_0 of $\text{vol}|_{\hat{H}_0}$. Moreover, $\xi_0 \in \hat{H}_0 = H_0 \cap \sigma$ is a minimizer of $\text{vol}(\Delta_\xi)|_{\hat{H}_0}$ if and only if u_0 is the barycenter of Π_ξ.
For the reader’s convenience, we provide a proof of this result by deriving the volume formula and reducing the minimization to a calculus problem as in [Gig78].

Proof. We first derive a formula for \(\text{vol}(\xi) = \text{vol}(\Delta_\xi) \) for any \(\xi \in \text{relint}(\sigma) \). To do this, fix a cross section \(\tilde{u} : \tilde{\Pi} \rightarrow \sigma' \). For example, we can choose \(\xi \in \text{relint}(\sigma) \) and let \(\Pi = \sigma' \cap \{ u \in y; \langle u, \xi \rangle = 1 \} \). Consider the parametrization:

\[
U : [0,1] \times \tilde{\Pi} \rightarrow \Delta_\xi, \quad (t,y) \mapsto t \frac{\tilde{u}(y)}{\langle \tilde{u}(y), \xi \rangle}
\]

(15)

Denote \(u(y) = \tilde{u}(y)/\langle \tilde{u}(y), \xi \rangle \). The Jacobian determinant of \(F \) is equal to

\[
\det(\text{Jac}(U)) = \det(u(y), t\partial_y u(y), \ldots, t\partial_{y_{n-1}} u(y)) = r^{n-1} \det(u(y), \partial_y u(y), \ldots, \partial_{y_{n-1}} u(y)) = r^{n-1} \langle \tilde{u}(y), \xi \rangle^{-n} \det(\tilde{u}, \partial_y \tilde{u}, \ldots, \partial_{y_{n-1}} \tilde{u}).
\]

So we get:

\[
\text{vol}(\Delta_\xi) = \int_0^1 \int_{\tilde{\Pi}} t^{n-1} \det(\text{Jac}(U))dt\,dy = \frac{1}{n} \int_{\tilde{\Pi}} \det(u, \partial_y u, \ldots, \partial_{y_{n-1}} u) \, dy
\]

\[
= \frac{1}{n} \int_{\tilde{\Pi}} \det(\tilde{u}, \partial_y \tilde{u}, \ldots, \partial_{y_{n-1}} \tilde{u}) \, dy.
\]

(16)

For simplicity, denote \(\Phi(\xi) = \text{vol}(\Delta_\xi) \). Then its 1st order derivative is equal to:

\[
\frac{\partial}{\partial \xi} \Phi(\xi) = -\int_{\tilde{\Pi}} \tilde{u}(y) \det(\tilde{u}, \partial_y \tilde{u}, \ldots, \partial_{y_{n-1}} \tilde{u}) \, dy
\]

\[
= -\int_{\tilde{\Pi}} u(y) \det(u, \partial_y u, \ldots, \partial_{y_{n-1}} u) \, dy
\]

\[
= -\frac{1}{|\xi|} \int_{\Pi_\xi} u(y) \, dy = -\frac{\text{vol}(\Pi_\xi)}{|\xi|} \text{bc}(\Pi_\xi),
\]

(17)

where \(\text{bc}(\Pi_\xi) \) is the Euclidean barycenter of the bounded cross section \(\Pi_\xi \). In the last identity, we used the expression for the volume element \(d\text{vol}_\Pi \) of \(\Pi_\xi := F(1, \Pi) \) which is equal to \(s \cdot dy \) with \(s \) being equal to:

\[
s = (\det(\partial_y u(y), \partial_{y_1} u(y)))^{1/2} = \det(u, \partial_y u, \ldots, \partial_{y_{n-1}} u)|\xi|/\langle u, \xi \rangle.
\]

Similarly, we get the expression for the 2nd order derivative of \(\text{vol}(\Delta_\xi) \):

\[
\text{Hess}_\xi(\Phi(\xi)) = (n+1) \int_{\tilde{\Pi}} \left(\frac{\tilde{u} \otimes \tilde{u}}{\langle \tilde{u}(y), \xi \rangle^{n+2}} \right) \, dy
\]

\[
= \frac{(n+1)}{|\xi|} \int_{\Pi_\xi} u \otimes u \, d\text{vol}_{\Pi_\xi}.
\]

We see that \(\Phi(\xi) \) is strictly convex with respect to \(\xi \in \text{relint}(\sigma) \):

\[
\text{Hess}_\xi(\Phi(\xi))(\eta, \eta) > 0.
\]

(18)

Notice that as \(\xi \to \partial H_0 \), \(\Delta_\xi \) becomes unbounded, so \(\text{vol}(\Delta_\xi) \) approaches \(+\infty \). So we see that \(\text{vol}(\xi)|_{H_0} \) is a strictly proper function. As a consequence, there exists a unique minimizer of \(\text{vol}|_{H_0} \).

If \(\text{vol}(\Delta_\xi) \) obtains the minimum at \(\xi_0 \in H_0 \), then by Lagrangian multiplier method there exists \(\lambda_0 \in \mathbb{R} \) such that \((\xi_0, \lambda_0) \) is a critical point of the function:

\[
\tilde{\Phi}(\xi, \lambda) = \Phi(\xi) - \lambda(\langle u_0, \xi \rangle - 1).
\]

In other words, \((\xi_0, \lambda_0) \) satisfy:

\[
\partial_\xi \tilde{\Phi}(\xi_0, \lambda) = \partial_\xi \Phi(\xi_0) - \lambda u_0 = 0, \quad \partial_\lambda \tilde{\Phi}(\xi, \lambda) = -\langle u_0, \xi_0 \rangle + 1 = 0.
\]
Combining this with (17), we see that

\[u_0 = bc(\Pi_{\xi_0}), \quad \lambda = -\frac{|\xi|}{\text{vol}(\Pi_{\xi_0})}. \]

This completes the proof of Lemma 3.8.

\[\square \]

Remark 3.9. We notice that there is a similarity of the volume formula in (16) with the formula for the volumes of \(\mathbb{C}^* \)-invariant valuations derived in [Li15b]. We will see in Proposition 3.16 that this is not a coincidence. The properness of \(\text{vol}(\omega \xi) \) with respect to \(\xi \) also follows from the properness estimate in [Li15a].

Now we can easily finish the case of toric singularities. Let \(\sigma \subset N \otimes \mathbb{Z} \otimes \mathbb{R} \) be a strictly convex rational polyhedral cone and \(X = X(\sigma) \) is the associated toric variety. The dual cone is \(\sigma^\vee = \{ u \in M_\mathbb{R}; \langle u, \xi \rangle \geq 0 \text{ for any } \xi \in \sigma \} \). There is a one-to-one correspondence between toric valuations in \(\text{Val}(X) \) and the vectors in the relative interior \(\text{relint} (\sigma) \). Indeed, we can write \(X = \text{Spec}(R) \) where

\[R = \bigoplus_{u \in \sigma^\vee \cap M} \mathbb{C} [x_u]. \]

Then the valuation associated to \(\xi \in \text{relint} (\sigma) \) is given by:

\[v_\xi (f) = \min \left\{ \langle u, \xi \rangle, f = \sum_{i} f_i u_i \text{ with } f_i \neq 0 \right\}. \]

Then it is easy to verify that:

\[\text{vol} (v_\xi) = \text{vol}(\Delta_\xi) = : = \text{vol}(\xi). \]

By our assumption \(K_X + D = K_X + \sum a_i D_i \) is \(\mathbb{Q} \)-Cartier. Let \(\{v_i\}_{i \in I} \) be primitive integral vectors along the edges of \(\sigma \) which corresponds to the divisor \(D_i \). Then there exists \(u_0 \in \text{relint}(\sigma^\vee) \cap M_\mathbb{Q} \) such that \(\langle u_0, v_i \rangle = 1 - a_i \) for any \(i \in I \). The log discrepancy of any toric valuation has a simple expression:

\[A(\xi) = \langle u_0, \xi \rangle. \]

So the normalized volume of \(v_\xi \) is given by:

\[\text{vol} (v_\xi) = (u_0, \xi)^2 \cdot \text{vol}(\Delta_\xi) = \text{vol}(\Delta_\xi / \langle u_0, \xi \rangle). \]

Then the uniqueness of the minimizer of \(\text{vol} \) among toric valuations \(v_\xi \) immediately follows from Lemma 3.8.

3.2.2 Toric valuations on \(T \)-varieties

In this section, we treat a general Fano cone singularity with the toric valuations varying. Using the convex geometry result Lemma 3.8 and by considering valuations with real rank larger than 1, we could show that the volume function on the space of all toric valuations in the Reeb cone can be interpreted as a volume function of polytopes, therefore it is strictly convex (see Proposition 3.10). As mentioned before, this is a generalization from isolated singularities to general klt singularity with good torus action of the important convexity property originally discovered in [MSY08]. Unlike their usage of analytic tools, our proof is algebraic. Notice that Proposition 3.10 was used in the proof Theorem 3.5.

Let \(X \) be an \(n \)-dimensional normal affine variety with an effective algebraic action by \(T = (\mathbb{C}^*)^r \). Then by [AH06], there exists a normal semi-projective variety \(Y \) of dimension \(d := n - r \) and a proper polyhedral divisor \(D \) such that \(X = \text{Spec}(R) \), where

\[R := \bigoplus_{u \in \sigma^\vee \cap M} H^0(Y, \mathcal{O}(D(u))). \]

Fix any \(u_0 \in \text{relint}(\sigma^\vee) \), we shall use the same notation as before. For example, \(H_0 = \{ \xi \in N_\mathbb{R}; \langle u_0, \xi \rangle = 1 \} \) and \(\hat{H}_0 = H_0 \cap \sigma \). Denote by \(\hat{\text{vol}}_{\hat{H}_0} \) the restriction of \(\text{vol} \) to \(\hat{H}_0 \). The goal of this section is to prove the following result.
Proposition 3.10. The function \(\text{vol}: \xi \to \text{vol}(\text{wt}_\xi) \) is a strictly convex function of \(\xi \in \text{relint}(\sigma) \). The function \(\text{vol}|_{\hat{H}_0} \) is a strictly convex and proper function of \(\xi \in \hat{H}_0 = H_0 \cap \sigma \).

As a consequence, there exists a unique minimizer of \(\text{vol}|_{\hat{H}_0} \).

To prove Proposition 3.10, we apply the ideas from the theory of Newton-Okounkov body to reduce the volumes of \(\text{wt}_\xi \) to volumes of polytopes, and then apply Lemma 3.8.

Proof. We start by choosing a lexicographic order on \(\mathbb{Z}^r \) such that there is a \(\mathbb{Z}^r \) valued valuation:

\[
\forall_1(f) = \min \left\{ u; f = \sum_{u \in \sigma^r \cap M} f_u \text{ with } f_u \neq 0 \right\}.
\]

We extend this valuation to a \(\mathbb{Z}^n \)-valued valuation in the following way. Fix a smooth point \(p \in Y \) and algebraic coordinates \(\{z_1, \ldots, z_{n-r}\} \) at \(p \). Choose \(n-r \) \(\mathbb{Q} \)-linearly independent positive real numbers: \(\alpha = \{\alpha_1, \ldots, \alpha_{n-r}\} \). Denote by \(w_\alpha \) the quasi-monomial valuation on \(\mathbb{C}(Y) \) associated to these data. In other words, for any \(f \in \mathbb{C}(Y) \), we have:

\[
w_\alpha(f) = \min \left\{ \sum_{i=1}^{n-r} \alpha_i m_i; \; z_1^{m_1} \cdots z_{n-r}^{m_{n-r}} \text{ appear in the Laurent expansion of } f \text{ at } p \right\}.
\]

Then the valuative group \(G \) of \(w_\alpha \) is a subgroup of \(\mathbb{R} \) and \(G \) is isomorphic to \(\mathbb{Z}^{n-r} \). We now define the following lexicographic order on \(\mathbb{Z}^r \times G \cong \mathbb{Z}^r \times \mathbb{Z}^{n-r} = \mathbb{Z}^n \):

\[
(u, v) \leq (u', v') \text{ if and only if either } u < u', \text{ or } u = u' \text{ and } v \leq v'.
\]

Any \(f \in \mathbb{C}(X) \) can be decomposed into nonzero weight components \(f = \sum_{u \in \sigma^r \cap M} f_u \cdot \chi^u \) with \(f_u \in \mathbb{C}(Y) \). We let \(u_f = \forall_1(f) \in \sigma^r \) and denote by \(f_{u_f} \) the corresponding nonzero component. Then we can define a \(\mathbb{Z}^n \)-valued valuation on \(\mathbb{C}(X) \) (see Remark 3.15):

\[
\forall(f) = (u_f, w_\alpha(f_{u_f})).
\]

The valuation group of \(\forall \) is isomorphic to \(\mathbb{Z}^n = \mathbb{Z}^r \times \mathbb{Z}^{n-r} \) and the valuation semigroup \(S \) of \(\forall \) generates a convex cone \(\hat{\sigma} \) in \(\mathbb{Z}^n \). Let \(P: \mathbb{Z}^n \to \mathbb{Z}^r \) denote the projection from \(\mathbb{Z}^n \) to \(\mathbb{Z}^r \). Then \(P(\hat{\sigma}) = \sigma \). For any \(\xi \in \sigma \subset \mathbb{N} \cong \mathbb{R}^r \), we can extend it by zeros to become \(\hat{\xi} = (\xi, 0) \in \mathbb{R}^n \). Then we have \(\langle y, \hat{\xi} \rangle = \langle P(y), \xi \rangle \). For any \(\xi \in \text{relint}(\sigma) \), denote

\[
\Delta_\xi = \{y \in \sigma; \langle P(y), \xi \rangle \leq 1\}.
\]

We want to relate the volume of valuation to the volume of \(\Delta_\xi \). Following [LM09], we need to show that \(\forall \) satisfies the following properties (which is equivalent to \(\forall \) being a good valuation in the sense of [KK12, Definition 7.3]).

Lemma 3.11. Let \(S \) denote the semigroup of the valuation \(\forall \). Then \(S \) satisfies the following three properties:

(P1) \(S \cap \{y; P(y), \xi = 0\} = \{0\} \);

(P2) Denote by \(e_i \) the \(i \)-th standard vector of \(\mathbb{Z}^r \). There exist finitely many vectors \(\left(e_i, v_k^{(1)} \right) \)

spanning a semigroup \(B \subset \mathbb{Z}^n \) such that \(S \subset B \);

(P3) \(S \) generates \(\mathbb{Z}^n \) as a group.

Proof. The last condition follows from the fact the valuative semigroup \(S \) of \(\forall \) generates the valuative group which is isomorphic to \(\mathbb{Z}^n \). To verify the first two conditions, we just need to show that there exists a constant \(C > 0 \) such that for any \(u \) and \(f \in H^0(Y, \mathcal{D}(u)) \), we have:

\[
|w_\alpha(f)| \leq C(u, \xi). \tag{19}
\]

The following argument to prove this estimate is motivated by the argument in [LM09].

For \(b \) sufficiently divisible, \(\mathcal{D}(mu) \) is Cartier. Denote by \(L_{mu} \) the line bundle associated to \(\mathcal{D}(mu) \) and \(L_u \) the \(\mathbb{Q} \)-line bundle associated to \(\mathcal{D}(u) \). Fix a global section \(g_{mu} \in H^0(Y, \mathcal{D}(mu)) \) such that \(g_{mu}^{-1} \) is a local equation for \(\mathcal{D}(mu) \) near \(p \in Y \). Then for any \(f \in H^0(Y, \mathcal{D}(u)) \) we have the identity:

\[
w_\alpha(f) = \frac{1}{m} w_\alpha(f^m g_{mu}^{-1}) - \frac{1}{m} w_\alpha(g_{mu}^{-1}). \tag{20}
\]
For simplicity of notation, we write \(g_u := g_{m_u}^{1/m}\) as a multi-section of the \(\mathbb{Q}\)-line bundle \(L_u\). Then (20) can be written as:

\[
w_{\alpha}(f) = w_{\alpha}(fg_u^{-1}) - w_{\alpha}(g_u^{-1}).
\] (21)

We will bound both terms on the right hand side of (21). By Izumi’s theorem, \(w_{\alpha}\) is comparable to \(\text{ord}_p\). In other words there exists a constant \(C > 0\) such that:

\[
C^{-1} \cdot \text{ord}_p \leq w_{\alpha} \leq C \cdot \text{ord}_p.
\] (22)

So to show the inequality (19), we can replace \(w_{\alpha}\) by \(\text{ord}_p\).

Let \(k = \text{ord}_p(fg_u^{-1}) = \frac{1}{m} \text{ord}_p(fmg_u^{-1})\). Then

\[
f \in H^0(Y, \mathcal{D}(u) \otimes_O \mathfrak{m}_p^k).
\]

Let \(\mu : \tilde{Y} \to Y\) be the blow up of \(Y\) at \(p\). Fix a very ample divisor \(H\) on \(Y\). Then \(\tilde{H} := \mu^*H - \varepsilon E\) is ample for \(\varepsilon\) sufficiently small. So we get (\(\pi^*L_u - kE\) \cdot \(\tilde{H}^{d-1}\) \geq 0 and hence the estimate:

\[
k \leq \frac{\pi^*L_u \cdot \tilde{H}^{d-1}}{E \cdot \tilde{H}^{d-1}} = \frac{L_u \cdot H^{d-1}}{\varepsilon^{d-1}}.
\] (23)

So we are left with showing that

\[
L_u \cdot H^{d-1} \leq C(u, \xi).
\] (24)

Now by [AH06, Proposition 2.11], the polyhedral divisor \(\mathcal{D} : u \to \mathcal{D}(u)\) is a convex, piecewise linear, strictly semi-ample maps from \(\sigma^\vee\) to \(\text{CaDiv}_\mathbb{Q}(Y)\). More precisely, we have (see [AH06, Definition 2.9] for relevant definitions)

1. \(\mathcal{D}(u) + \mathcal{D}(u') \leq \mathcal{D}(u + u')\) holds for any two elements \(u, u' \in \sigma^\vee\),
2. \(u \to \mathcal{D}(u)\) is piecewise linear, i.e. there is a quasi-fan \(\Lambda\) in \(\mathcal{M}_\mathbb{Q}\) having \(\sigma^\vee\) as its support such that \(\mathcal{D}\) is linear on the cones of \(\Lambda\),
3. \(\mathcal{D}(u)\) is always semi-ample and, \(\mathcal{D}(u)\) is big for \(u \in \text{relint}(\sigma^\vee)\).

In the second item above, \(\Lambda\) being quasi-fan means that it is a finite collection of cones in \(\mathcal{M}_\mathbb{Q}\) satisfying natural compatible properties. Any \(u \in \sigma^\vee\) is contained in some cone \(\lambda\) of \(\Lambda\). Choose a finite set of generators \(\{u_i\}_{i \in I} \subseteq \mathcal{M}_\mathbb{Q}\) of \(\lambda\), then \(u = \sum_{i \in I} a_i u_i\) with \(a_i \geq 0\) \(\in \mathbb{Q}\) and \(\mathcal{D}(u) = \sum_{i \in I} a_i \mathcal{D}(u_i)\) as \(\mathbb{Q}\)-Cartier divisors.

Because \(\xi \in \text{relint}(\sigma)\), \(\langle u_i, \xi \rangle > 0\) for any \(i \in I\). So it is easy to see that there exists \(C_\lambda > 0\) depending only on \(\lambda\) such that:

\[
L_u \cdot H^{d-1} \leq \sum_{i \in I} a_i L_{u_i} \cdot H^{d-1} \leq \sum_{i \in I} a_i C_{\lambda} \langle u_i, \xi \rangle = C_{\lambda} \langle u, \xi \rangle.
\]

Because there are finitely many cones in \(\Lambda\), we get estimate (24).

By using piecewise linearity, we can use the same argument to show that there exists \(C > 0\) independent of \(u \in \sigma^\vee\), satisfying:

\[
|w_{\alpha}(g_u^{-1})| \leq C(u, \xi).
\] (25)

Combining (21)-(25) and the above discussions, we get the wanted estimate (19). \(\square\)

Lemma 3.12. With the above notation, for any \(\xi \in \text{relint}(\sigma)\), we have:

\[
\text{vol}(\text{wt}_\xi) = \text{vol}(\Delta_\xi).
\] (26)

Proof. With the good properties of \(V\) obtained via Lemma 3.11, we can prove this result by using the general theory developed in [Oko96, LM09, KK12, KK14]. We use the argument similar to the one used in [KK12, Cnt12]. Denote \(a_\lambda = \{f \in \mathbb{R}; \text{wt}_\xi(f) \geq \lambda\}\). By the estimate (19), we know that the cone \(\hat{\sigma} \subseteq \mathbb{Z}^n\) does not contain a line. Moreover, we can choose a linear function \(\ell : \mathbb{R}^n \to \mathbb{R}\) such that \(\hat{\sigma}\) lies in \(\ell_{>0}\) and intersects the hyperplane \(\ell^{-1}(0)\) only at the origin. In fact, we can choose \(\ell\) to be the linear function associated to any \(\xi \in \text{relint}(\sigma)\). Then we have the following identity:

\[
\text{codim}_\mathbb{C}(R/a_\lambda) = \#\{(\theta_1, \ldots, \theta_n) \in V(R); \ell(\theta) \leq C_\lambda, i = 1, \ldots, n\} - \#\{(\theta_1, \ldots, \theta_n) \in V(a_\lambda); \ell(\theta) \leq C_\lambda, i = 1, \ldots, n\}.
\] (27)
Define the semigroups of \(\mathbb{Z}^{n+1} \):

\[
\tilde{\Gamma} = \{(\theta_1, \ldots, \theta_n, \lambda); (\theta_1, \ldots, \theta_n) \in \mathcal{V}(a_\lambda) \text{ and } \ell(\theta) \leq C\lambda \}, \\
\tilde{\Gamma}' = \{(\theta_1, \ldots, \theta_n, \lambda); (\theta_1, \ldots, \theta_n) \in \mathcal{V}(R) \text{ and } \ell(\theta) \leq C\lambda \}.
\]

Because \(\mathcal{S} = \mathcal{V}(R) \) generates \(\mathbb{Z}^n \), we can choose \(C > 1 \) such that \(\tilde{\Gamma}' \) generates \(\mathbb{Z}^n \). Then \(\tilde{\Gamma}' \) also generates \(\mathbb{Z}^{n+1} \). By the general theory of Newton-Okounkov bodies from [Oko96, LM09, KK12], we have:

\[
\lim_{\lambda \to +\infty} \frac{\# \tilde{\Gamma}_\lambda^{\tilde{\Gamma}}}{\lambda^n} = \text{vol}(\Delta(\tilde{\Gamma})), \quad \lim_{i \to +\infty} \frac{\# \tilde{\Gamma}_i^{\tilde{\Gamma}'}}{\lambda^n} = \text{vol}(\Delta(\tilde{\Gamma}')), \tag{28}
\]

where

\[
\Delta(\tilde{\Gamma}) = \bigcup_{\lambda > 0} \left\{ \frac{\theta}{\lambda}; (\theta, \lambda) \in \tilde{\Gamma} \right\}, \quad \Delta(\tilde{\Gamma}') = \bigcup_{\lambda > 0} \left\{ \frac{\theta}{\lambda}; (\theta, \lambda) \in \tilde{\Gamma}' \right\}
\]

are the Newton-Okounkov bodies of \(\tilde{\Gamma} \) and \(\tilde{\Gamma}' \) respectively. By (27) we have:

\[
\text{codim}_C(R/a_\lambda) = \mathcal{S} \setminus \mathcal{V}(a_\lambda) = \tilde{\Gamma}_\lambda \setminus \tilde{\Gamma}. \tag{29}
\]

Combining this with (28), we get:

\[
\lim_{i \to +\infty} \frac{\#(\mathcal{S} \setminus \mathcal{V}(a_\lambda))}{\lambda^n} = \text{vol}(\Delta(\tilde{\Gamma}')) - \text{vol}(\Delta(\tilde{\Gamma})) = \text{vol} \left(\Delta(\tilde{\Gamma}') \setminus \Delta(\tilde{\Gamma}) \right). \tag{30}
\]

If \(\xi = \sum_{j=1}^r a_j e_j \), we have \(\ell(\theta) = \ell_\xi(\theta) = \sum_j a_j \theta_j \) and:

\[
\tilde{\Gamma} = \left\{ (\theta_1, \ldots, \theta_n, \lambda); (\theta_1, \ldots, \theta_n) \in \mathcal{S}, \sum_{j=1}^r a_j \theta_j \geq \lambda, \ell(\theta) \leq C\lambda \right\}.
\]

By [LM09, KK12, KK14], we know that:

\[
\Delta(\tilde{\Gamma}) = \sigma_{\ell_1 \geq 1} \cap \sigma_{\ell \leq C}, \quad \Delta(\tilde{\Gamma}') = \sigma_{\ell \leq C}.
\]

So we get:

\[
\Delta(\tilde{\Gamma}') \setminus \Delta(\tilde{\Gamma}) = \{ y \in \hat{\sigma}; \sum_{j=1}^r a_j y_j \leq 1 \} = \{ y \in \hat{\sigma}; \langle y, \hat{\xi} \rangle \leq 1 \} = \Delta_{\hat{\xi}}. \tag{31}
\]

By combining the above identities (29)-(31), we get the identity (26). \(\square \)

We can complete the proof of Proposition 3.10 by using the same argument as in the toric case. Indeed, Lemma 3.8 and Lemma 3.12 together imply that \(\text{vol}(\text{wt}_\xi) \) is a proper strictly convex function of \(\xi \in \hat{H}_0 = H_0 \cap \sigma \). So there exists a unique minimizer of \(\text{vol}(\text{wt}_\xi) \) among \(\xi \in \hat{H}_0 = H_0 \cap \sigma \). \(\square \)

Now assume that \((X, D)\) is a klt singularity. In particular, \(K_X + D \) is \(\mathbb{Q} \)-Gorenstein. Then by Theorem 2.15.3, there is a \(u_0 \in M \) and a principal divisor \(\text{div}(f) = \sum_{Z} a_Z \cdot Z \) on \(Y \) such that \(\text{div}(f \cdot \chi^u) = K_X + D \) and the log discrepancy of the toric valuation \(\text{wt}_\xi \) is calculated as

\[
A_{(X, D)}(\text{wt}_\xi) = \langle u_0, \xi \rangle.
\]

So the normalized volume is given by:

\[
\text{vol}(\text{wt}_\xi) = \langle u_0, \xi \rangle^n \cdot \text{vol}(\Delta_{\xi}) = \text{vol} \left(\Delta_{\xi/(u_0, \xi)} \right).
\]

So we have \(\text{vol}(\text{wt}_\xi) = \text{vol}(\xi) \) for \(\xi \in \hat{H}_0 = H_0 \cap \sigma \). As a corollary of Proposition 3.10, we immediately get Proposition 2.21.
3.2.3 T-invariant quasi-monomial valuations on T-varieties

As in the previous section, we assume that there is an effective $T = (\mathbb{C}^*)^r$ action on an affine normal variety $X = \text{Spec}(R)$. In this section, we aim to show the following theorem.

Theorem 3.13. Let (X, D, ξ) be a Fano cone singularity. If wt_T is the minimizer of $\overline{\text{vol}}(X, D)$, then it is unique among all T-invariant quasi-monomial valuations.

Remark 3.14. (i) By Theorem 3.5, the assumption is indeed equivalent to (X, D, ξ) being K-semistable.

(ii) Let ν be another T-invariant minimizer. If we could show the associated graded ring $\text{gr}_\nu(R)$ is finitely generated, then similar to the argument in Theorem 3.5, we can degenerate X to X_0 via ξ and both ξ and ξ_ν would be the minimizers of $\overline{\text{vol}}_{X_0, D_0}$, which is contradictory to Proposition 3.10. Using this method, we can give another proof of uniqueness of divisorial minimizers proved in [LX16] with a different argument. However, for general quasi-monomial minimizers, since we do not known yet the finite generation of the associated graded ring, we have to adapt a different argument. We also note that later in Proposition 4.17 we will show any quasi-monomial minimizer is automatically T-invariant.

The idea of the proof is to first connect any T-invariant quasi-monomial valuation ν with ξ by a family of T-invariant quasi-monomial valuations ν_t. This depends on the description of T-invariant valuations in [AIPS12]. Next we extend ν to a valuation V of rational rank n and prove that it satisfies properties as in Lemma 3.11. Then we can use the works of Newton-Okounkov bodies to realize the volumes of valuations as volumes of convex polytopes as has been done in the previous sub-section. Finally we use the previous convex geometric result to get the strict convexity of the volumes $\text{vol}(\nu_t)$ with respect to t which implies the uniqueness of the minimizer.

Proof. By [AH06], there exists a normal semi-projective Y of dimension $d := n - r$ and a proper polyhedral divisor $D : \sigma^Y \to \text{CarDiv}(Y)$ such that:

$$X = \text{Spec}_\mathbb{C} \left(\bigoplus_{u \in \sigma^Y} H^0(Y, D(u)) \right). \quad (32)$$

By Theorem 2.15.1, any (quasi-monomial) T-invariant valuation is of the form $\nu = (v(0), \zeta)$ defined via the identity:

$$v(f \cdot \chi^u) = v(0)(f) + \langle u, \zeta \rangle.$$

If ν is quasi-monomial. Then $v(0)$ is a quasi-monomial valuation on $\mathbb{C}(Y)$. Let s be the rational rank of $v(0)$. There exists a birational morphism $\psi : Y' \to Y$, a regular closed point $p \in Y'$, algebraic coordinates $\{z'; z''\} = \{z_1, \ldots, z_s, z_{s+1}, \ldots, z_d\}$ and s rationally independent positive real numbers $\beta = (\beta_1, \ldots, \beta_s)$ such that $v(0)$ is the quasi-monomial valuation associated to these data. More precisely, if the Laurent series of an $f \in \mathbb{C}(Y')$ has the form

$$f = \sum_{m \in \mathbb{Z}^s} z_1^{m_1} \cdots z_s^{m_s} \cdot \chi_m(z'') \quad (33)$$

we will say that $z_1^{m_1} \cdots z_s^{m_s}$ appear in the Laurent expansion of f if $\chi_m(z'') \neq 0$. Then we have:

$$v(0)(f) = \min \left\{ \sum_{i=1}^s \beta_i m_i; z_1^{m_1} \cdots z_s^{m_s} \text{ appear in the Laurent expansion of } f \right\}.$$

In the representation (32), we can replace Y by Y' and $D(u)$ by $\psi^* D(u)$. So for the simplicity of notations, in the following discussion, we will still denote Y' by Y. Moreover, if we let $D_i = \{z_i = 0\}$ for $i = 1, \ldots, d = n - r$, then by resolving the singularities of $(Y, \sum_i D_i)$, we can also assume $\sum_{i=1}^{n-r} D_i$ has simple normal crossings by possibly replacing Y by a new birational model.

As before, we fix a lexicographic order on \mathbb{Z}^r and define for any $f \in R$,

$$\forall_1(f) = \min \{u; f = \sum u f_u \text{ with } f_u \neq 0\} = \forall_1(f).$$
Again we will first extend this \mathbb{Z}^r-valuation \mathbb{V}_1 to become a \mathbb{Z}^n-valued valuation. Denote $u_f = \mathbb{V}_1(f) \in \sigma'$ and f_{u_f} the corresponding nonzero component. Define $\mathbb{V}_2(f) = v^{(0)}(f_{u_f})$. Because $\{\beta_i\}$ are \mathbb{Q}-linearly independent, we can write $\mathbb{V}_2(f) = \sum_{i=1}^n m_i^* \beta_i$ for a uniquely determined $m^*: = m^*(f_{u_f}) = \{m_i^*: = m_i^*(f_{u_f})\}$. Moreover, the Laurent expansion of f has the form:

$$f_{u_f} = \frac{m_1^*}{z_1^1} \ldots \frac{m_n^*}{z_n^1} c_{m^*} + \sum_{m \neq m^*} \frac{m_1^*}{z_1^m} \ldots \frac{m_n^*}{z_n^m} c_{m^*(m^*)}. \quad (34)$$

Then $c_{m^*(m^*)}$ in the expansion of (34) is contained in $\mathbb{C}(Z)$, where $Z = \{z_1 = 0 \cap \ldots \cap z_s = 0\} = D_1 \cap \cdots \cap D_s$.

Extend the $\{\beta_1, \ldots, \beta_s\}$ to $d-s = n-r-s$ \mathbb{Q}-linearly independent positive real numbers $\{\beta_1, \ldots, \beta_s; \gamma_1, \ldots, \gamma_{d-s}\}$. Define $\mathbb{V}_3(f) = w_\gamma(c_{m^*(m^*)})$ where w_γ is the quasi-monomial valuation with respect to the coordinates z'' and the $(d-s)$ tuple $\{\beta_1, \ldots, \beta_s; \gamma_1, \ldots, \gamma_{d-s}\}$.

Now we assign the lexicographic order on $G := \mathbb{Z}^r \times G_2 \times G_3 \cong \mathbb{Z}^r \times \mathbb{A}^s \times \mathbb{Z}^{n-r-s}$ and define G-valued valuation:

$$\mathbb{V}(f) = (\mathbb{V}_1(f), \mathbb{V}_2(f_{u_f}), \mathbb{V}_3(c_{m^*(m^*)})). \quad (35)$$

Remark 3.15. The construction of \mathbb{V} is an example of composite of valuations (see [ZS60, VI.16]).

Let S be the valuative semigroup of \mathbb{V}. Then S generates a cone $\hat{\sigma}$. Let $P_1: \mathbb{R}^n \to \mathbb{R}^r$, $P_2: \mathbb{R}^n \to \mathbb{R}^s$ and $P = (P_1, P_2): \mathbb{R}^n \to \mathbb{R}^{r+s}$ be natural projections. Then $P_1(\hat{\sigma}) = \sigma \subset \mathbb{R}^r$.

For any $\xi \in \text{int}(\sigma)$, denote by $w_{t\xi}$ the valuation associated to ξ. We can connect $w_{t\xi}$ and v by a family of quasi-monomial valuations: $v_t = ((1-t)\xi + t\zeta, tv^{(0)})$ defined as

$$v_t(f \cdot c_n) = tv^{(0)}(f) + \langle u, (1-t)\xi + t\zeta \rangle.$$

So the vertical part of v_t corresponds to the vector $\tilde{\xi}_t := ((1-t)\xi + t\zeta, t\beta) \in \mathbb{R}^{r+s}$. Extend $\xi_t \in \tilde{\xi}_t := (\tilde{\xi}_t, 0) \in \mathbb{R}^n$ and define the following set:

$$\Delta_{\tilde{\xi}_t} = \{ y \in \hat{\sigma}; \langle y, \tilde{\xi}_t \rangle \leq 1 \} = \{ y \in \hat{\sigma}; \langle P(y), \tilde{\xi}_t \rangle \leq 1 \}.$$

Because vol is rescaling invariant, we can assume $A_{(X,D)}(v) = A_{(X,D)}(\xi) = 1$. Then by the T-invariance of v_t, we easily get:

$$A(v_t) = tA(v^{(0)}) + A_{(X,D)}((1-t)\xi + t\zeta) = tA_{(X,D)}(v) + (1-t)A_{(X,D)}(\xi) \equiv 1.$$

So by Proposition 3.16 we have:

$$\text{vol}(v_t) = \text{vol}(v) = \text{vol}(\Delta_{\tilde{\xi}_t}).$$

Because $\tilde{\xi}_t$ is linear with respect to t, by Lemma 3.8 $\phi(t) := \text{vol}(\Delta_{\tilde{\xi}_t})$ is strictly convex as a function of $t \in [0, 1]$. By assumption $\phi(0) = \text{vol}(v_0) = \text{vol}(w_{t\xi})$ is a minimum. So by the strict convexity we get $\phi(1) = \text{vol}(\Delta_{\tilde{\xi}_t}) = \text{vol}(v)$ is strictly bigger than $\text{vol}(w_{t\xi})$.

Proposition 3.16. For any $\xi \in \text{relint}(\sigma)$ and the quasi-monomial valuation $v = (\eta, v^{(0)}) \in \text{Val}_{r,o}$ as above, we have the identity:

$$\text{vol}(v_t) = \text{vol}(\Delta_{\tilde{\xi}_t}). \quad (36)$$

Proof. The rest of this subsection is devoted to proof of the Proposition 3.16. Similar to the proof of Lemma 3.12, we know Proposition 3.16 follows if we can show that \mathbb{V} constructed above satisfies properties stated in Lemma 3.11, which in turn follows from the following uniform estimates: there exists a constant C such that for any $f \in R_u$,

$$|\mathbb{V}_2(f)| = C(u, \xi), \quad |\mathbb{V}_3(c_{m^*})| \leq C(u, \xi). \quad (37)$$

So we only need to concentrate on proving (37). To get the first inequality, we will use the same argument leading to (19). To get the second estimate, we will use divisorial valuations to approximate and prove that the estimates we obtained are uniform with respect to approximations.

25
Fix $u \in \sigma^{\vee}$ and $f = f_u \cdot \chi^s \in R_u$. For b sufficiently divisible, $\mathcal{D}(bu)$ is Cartier. We will denote by L_{bu} the line bundle associated to $\mathcal{D}(bu)$ and L_u the \mathbb{Q}-line bundle associated to $\mathcal{D}(u)$. Choose a global section $g_{bu} \in H^0(Y, \mathcal{D}(bu))$ such that g_{bu}^{-1} is a local equation for $\mathcal{D}(bu)$ near $p \in Y$. Then for any $f \in H^0(Y, \mathcal{D}(u))$ we have:

$$\forall(f) = \frac{1}{b} \mathcal{V}(f_b g_{bu}^{-1}) - \frac{1}{b} \mathcal{V}(g_{bu}^{-1}). \quad (38)$$

For simplicity of notation, we write $g_u := g_{bu}^{1/b}$ as a multi-section of the \mathbb{Q}-line bundle L_u. Then (38) can be written as:

$$\forall(f) = \mathcal{V}(f g_{bu}^{-1}) - \mathcal{V}(g_{bu}^{-1}). \quad (39)$$

We will bound both terms on the right hand side of (39). Using the piecewise linearity, we can easily show as before that there exists $C > 0$ independent of $u \in \sigma^{\vee}$, satisfying:

$$|\mathcal{V}(g_{bu}^{-1})| \leq C(u, \xi).$$

So we only need to bound the term $\mathcal{V}(f g_{bu}^{-1})$. Denote $\tilde{f}^b = f_b g_{bu}^{-1}$. Consider the Taylor expansion of F at p as in (33):

$$\tilde{f}^b = z_1^{m_1} \cdots z_s^{m_s} \chi_m(z'') + \sum_{m \in \mathbb{N}^s, m \neq m^*} z_1^{m_1} \cdots z_s^{m_s} \chi_m(z''), \quad (40)$$

where $m^* = v(0)(\tilde{f}^b)$. Notice that \tilde{f}^b is now regular at p. We can choose $\beta = (\beta_1', \ldots, \beta_s') \in \mathbb{Q}^s$ sufficiently close to $(\beta_1, \ldots, \beta_s)$ such that:

$$k_0 := k_0(\beta') = \langle \beta', m^* \rangle < \langle \beta', m \rangle \quad (41)$$

for any $m \neq m^*$ appearing in (40).

Next consider the weighted blow up of Y along the smooth subvariety $Z = \bigcap_{i=1}^s \{ z_i = 0 \}$ with weights $a = (a_1, \ldots, a_s) := (q \beta_1', \ldots, q \beta_s')$ where q is the least common multiple of the denominators of β'. We will denote this weighted blow up by $\mu_Y = \mu_{Y, \beta'} : \tilde{Y} \to Y$ with the exceptional divisor denoted by $E = E_{\beta'}$. Since Z is a smooth subvariety of Y, we have $E = \mathbb{P}(N_Z, a) = (N_Z \setminus \{ Z \})/\mathbb{C}^*$, where N_Z is the normal bundle of $Z \subset Y$ and $\tau \in \mathbb{C}^*$ acts along the fibre of the normal bundle $N_Z \to Z$ by $\tau \circ (x_1, \ldots, x_s) = (\tau^{a_1} x_1, \ldots, \tau^{a_s} x_s)$. So we have a fibration $\pi_E : E \to Z$ with each fibre being isomorphic to the weighted projective space $\mathbb{P}(a) := \mathbb{P}(a_1, \ldots, a_s)$. In particular, the inverse image of $p \in Z \subset Y$ under μ_Y, denoted by E_p, is a fibre of π_E which is isomorphic to the weighted projective space $\mathbb{P}(a)$.

Denoted by $v_{\beta'}^{(0)}$ the quasi-monomial valuation centered at $p \in Y$ but with the weight β' instead of β. Then $v_{\beta'}^{(0)}$ is a divisorial valuation and is equal to $q^{-1} \cdot \text{ord}_E$. Because of (41),

$$k_0 = \frac{1}{b^{v_{\beta'}^{(0)}}(f^b g_{bu}^{-1})} = \frac{1}{bq} \text{ord}_E \left(\tilde{f}^b \right).$$

Then $e := (\mu_Y^* f^b - k_0 bg_{bu}^{-1})|_E \in H^0(E, (\mu_Y^* L_{bu} - k_0 bg_{bu}^{-1})|_E)$ and moreover near $\pi^{-1}_E(p)$ we have:

$$e = \pi_E^* (\chi_{m^*}) \cdot s$$

where s is a local generator of $(\mu_Y^* L_{bu} - k_0 bg_{bu}^{-1})|_E$.

Fix a very ample divisor H on Y. There exists a sufficiently small positive constant $0 < \epsilon_0 = \epsilon_0(\beta') \ll 1$ such that

$$\tilde{H} := \tilde{H}_{\epsilon_0} = \mu_Y^* H - \epsilon_0 g_{E}$$

is still ample on \tilde{Y}. Then we have:

$$(\mu_Y^* \mathcal{D}(bu) - k_0 bg_{bu}^{-1}) \cdot (\mu_Y^* H - \epsilon_0 g_{E})^{d-1} > 0.$$

This implies:

$$k_0 \leq \frac{\mu_Y^* \mathcal{D}(bu) \cdot (\mu_Y^* H - \epsilon_0 g_{E})^{d-1}}{bq E \cdot (\mu_Y^* H - \epsilon_0 g_{E})^{d-1}} = \frac{\mu_Y^* \mathcal{D}(u) \cdot (\mu_Y^* H - \epsilon_0 g_{E})^{d-1}}{q E \cdot (\mu_Y^* H - \epsilon_0 g_{E})^{d-1}}. \quad (42)$$

26
Proof. We first verify there is a uniform $\varepsilon > 0$ is essentially the same as the argument in the proof of Lemma 3.19. We postpone more details into the proof of Lemma 3.19.

Remark 3.17. As mentioned above, this argument for the estimate of k_0 is essentially the same as the argument in the proof of Lemma 3.11.

Next we estimate $w_\gamma(\chi_{m^*})$. By Izumi’s theorem, there exists a positive constant $C > 0$ such that

$$C^{-1} \cdot \text{ord}_p \leq w_\gamma \leq C \cdot \text{ord}_p$$

as valuations on $\mathbb{C}(Z)$. So to prove the second estimate in (37), we just need to estimate $\text{ord}_p(\chi_{m^*}) = \text{ord}_p(\varepsilon)$.

Let $\mu_E : \tilde{E} \to E$ denote the blow up of E along the fibre E_p. The exceptional divisor denoted by F is isomorphic to $\mathbb{P}^{d-s-1} \times \mathbb{P}(\mathcal{a})$. In fact, since we have a fibration $\mathbb{P}(\mathcal{a}) \to E \to Z$, if $\mu_Z : \tilde{Z} \to Z$ denotes the blow up of $p \in Z$ with the exceptional divisor $D \cong \mathbb{P}^{d-s-1}$, then $\tilde{E} = \mu_E^* \mathbb{P}(\mathcal{a})$ and there is an induced fibration $\pi_{\tilde{E}} : \tilde{E} \to \tilde{Z}$. If we let $k_1 = \text{ord}_p(e) = \text{ord}_p(\chi_{m^*})$, then $\mu_E^* e - k_1 bF \in H^0(\tilde{E}, \mu_E^* M - k_1 bF)$ where $M = (\mu_*^* L_{bu} - k_0 bqE)|_E$.

Since $\tilde{H}_{\gamma_0} = \mu_E^* H - \varepsilon_0 q\varepsilon$ is ample on E, there exists ε_1 such that $\mu_E^* (\tilde{H}_{\gamma_0}|_E) - \varepsilon_1 F$ is ample on \tilde{E}. Then we have the inequality:

$$\left(\mu_E^* e - k_1 bF\right) \cdot \left(\mu_E^* (\tilde{H}_{\gamma_0}|_E) - \varepsilon_1 F\right)^{d-2} > 0.$$

So we get the estimate:

$$k_1 \leq \frac{\mu_E^* ((\mu_*^* L_{bu} - k_0 bqE)|_E) \cdot \left(\mu_E^* (\tilde{H}_{\gamma_0}|_E) - \varepsilon_1 F\right)^{d-2}}{bF \cdot \left(\mu_E^* (\tilde{H}_{\gamma_0}|_E) - \varepsilon_1 F\right)^{d-2}} = \frac{\mu_E^* ((\mu_*^* D(u) - k_0 qE)|_E) \cdot \left(\mu_E^* (\tilde{H}_{\gamma_0}|_E) - \varepsilon_1 F\right)^{d-2}}{F \cdot \left(\mu_E^* (\tilde{H}_{\gamma_0}|_E) - \varepsilon_1 F\right)^{d-2}}. \quad (43)$$

Finally we want to show that the above estimate can be made uniform with respect to β' that is sufficiently close to β. We first bound ε_0 and ε_1 uniformly in the following

Lemma 3.18. ε_0 and ε_1 can be chosen to be uniform with respect to β' that is close to β. More precisely, there exists $\delta = \delta(\beta) > 0$, $\varepsilon_0 = \varepsilon_0(\beta) > 0$, $\varepsilon_1 = \varepsilon_1(\beta) > 0$ such that if $|\beta' - \beta| \leq \delta$ then $\tilde{H}_{\gamma_0} := \mu_{\gamma' \beta'}^* H - \varepsilon_0 q\varepsilon_{E_{\gamma'}}$ is ample on \tilde{Y} and $\mu_E^* (\tilde{H}_{\gamma_0}|_E) - \varepsilon_1 F$ is ample on \tilde{E}.

Proof. We first verify there is a uniform ε such that \tilde{H}_{γ_0} is ample. In fact, it suffices to show the uniform ε for nefness. We can assume H is sufficiently ample, such that $H - D_i$ is ample for any $i = 1, ..., s$. Then $\mu_{\gamma' \beta'}^* D_i = \tilde{D}_i + q\beta_i^* E$ where \tilde{D}_i is the birational transform on \tilde{Y}. As $\bigcap_{i=1}^s \tilde{D}_i$ is empty, a curve C on \tilde{Y} is not contained in at least one \tilde{D}_i, which implies $C \cdot \tilde{D}_i \geq 0$. Thus

$$C \cdot (\mu_{\gamma' \beta'}^* H - q\beta_i^* E) \geq C \cdot \mu_{\gamma' \beta'}^* (H - D_i) \geq 0.$$

From this, we can easily see that we could take $\varepsilon_0 = \frac{1}{2} \min \{\beta_i\}$ and \tilde{H}_{γ_0} is ample for $|\beta' - \beta| < \varepsilon_0$.

Now we can similarly argue for ε_1. For this we need $H - D_i$ is ample for any $i = 1, ..., n-r$. Denote by $F_1, ..., F_{d-s}$ the restrictions of the birational transformations of $D_{s+1}, ..., D_d$ on E. Then for an irreducible curve C on \tilde{E}, if its image on it is not contained in one of F_j for some j. Then $\mu_E^* (\mu_{\gamma' \beta'}^* D_j|_E) = F_j + F$, which implies that

$$\left(\mu_E^* (\tilde{H}_{\gamma_0}|_E) - \varepsilon_1 F\right) \cdot C \geq \left(\mu_E^* (\tilde{H}_{\gamma_0} - \varepsilon_1 \mu_{\gamma' \beta'}^* D_j)|_E\right) \cdot C \geq 0,$$

if we take $\varepsilon_1 = 1$ and replace \tilde{H}_{γ_0} by $\tilde{H}_{\gamma_0} + \mu_{\gamma' \beta'}^* H$.

\[\square \]
Using (44), we have:
\[
\mu_E^\ast ((\mu_Z^\ast H - \epsilon_0 q E)_{|E}) - \epsilon_1 F = \pi_E^\ast (\mu_Z^\ast H_{|Z} - \epsilon_1 D) - \epsilon_0 q \mathcal{O}_{\mathbb{P}(\mu_Z^\ast N_Z, a)}(1)
\] (45)
is ample.

Lemma 3.19. The right-hand-side of (43) is uniformly bounded independent of β' if $|\beta' - \beta| \leq \delta$ where $\delta = \delta(\beta)$ is the same one as that in Lemma 3.18.

Proof. By (45), we get the denominator:
\[
F \cdot (\mu_E^\ast (\mathbb{H}_{\mathbb{O}}_{|E}) - \epsilon_1 F)^{d-2} = \epsilon_1^{d-s-1} \epsilon_0^{s-1} q^s \frac{1}{a_1 \ldots a_s} = \epsilon_1^{d-s-1} \epsilon_0^{s-1} \frac{1}{\beta'_1 \ldots \beta'_s}.
\]
By the commutative diagram (44), we have:
\[
\mu_E^\ast [([\mu_Z^\ast \mathfrak{D}(u) - k_0 q E]_{|E}) = \pi_E^\ast (\mu_Z^\ast (\mathfrak{D}(u)|z) - k_0 q \mathcal{O}_{\mathbb{P}(\mu_Z^\ast N_Z, a)}(1)
\] (46)
For simplicity, we denote
\[
B_1 = \pi_E^\ast (\mu_Z^\ast (\mathfrak{D}(u)|z), B_2 = \mu_Z^\ast H_{|z} - \epsilon_1 D, G = \mathcal{O}_{\mathbb{P}(\mu_Z^\ast N_Z, a)}(1).
\] Using (45) and (46), the numerator of (43) is equal to:
\[
(B_1 - k_0 q G) \cdot (B_2 - \epsilon_0 q G)^{d-2} = (B_1 - k_0 q G) \cdot \sum_{i=0}^{d-2} \binom{d-2}{i} B_2^{d-2-i}(\epsilon_0 q)^i (-G)^i.
\] (47)
By standard intersection theory, we have:
\[
\pi_E^\ast A_1 \ldots \pi_E^\ast A_{d-1-1} \cdot (-G)^i = A_1 \ldots A_{d-1-i} \cdot s_i(Q, a),
\] (48)
where $s_i(Q, a)$ is the weighted Segre class which can be defined as follows (cf. [Ful98, Section 3.1]): The total weighted Chern class of $Q = \mu_Z^\ast N_Z$ is given by
\[
c(Q, a) = \prod_{i=1}^{r} (1 + a_i^{-1} c_1(L_i)t) \text{ where } L_i = \mu_Z^\ast (D_i|z),
\]
and $\sum s_i(Q, a)^t = c(Q, a)^{-1}$. Then $s_i(Q, a) = q^{-i} \tilde{s}_i(Q, \beta')$ where $\tilde{s}_i(Q, \beta')$ depends only on β' and $c_1(L_i)$. Using (48), we see that each term in (47) depends continuously on $c_1(L_i)$ and β'. So we can indeed make the numerator of (43) uniform with respect to β'. \qed

4 Models and degenerations

In [LX16], we show that a divisorial minimizer always yields a Kollár component, and it can yield a degeneration which is the key for us to conclude results on general klt singularities from cone singularities. However, it is less clear, at least to us, what should be the corresponding construction for a higher rank quasi-monomial valuations. Nevertheless, in this section, we try to develop an approach to use models to approximate a quasi-monomial valuations, with possibly higher rank.

Let us first fix some notation. Fix a quasi-monomial valuation $v \in \text{Val}_{X,x}$. We know that there exists a log smooth model (Y, E) over X such that v is computed at its center η on (Y, E) (see Definition 2.9). Denote by E_i ($i = 1, \ldots, r$) the components of E containing η. In the below, we look at valuations v_α computed on $\eta \in (Y, E)$ for $\alpha \in \mathbb{R}^r_{\geq 0}$. In fact, if we rescale v_α such that $|A_{X,D}(v_\alpha)| = 1$, then all such points canonically form a simplex $\Delta \subset \text{Val}_{X,x}$ with the vertices given by $v_i = \text{ord}_{E_i}/A_{X,D}(E_i)$. 28
4.1 Weak lc model of a quasi-monomial minimizer

Definition 4.1. Let \(x \in (X, D) \) be a klt point and \(v \in \Val_{x,X} \) a quasi-monomial valuation. We say that \(v \) admits a weak lc model if there exists a birational morphism \(\mu: Y^{\text{wlc}} \to X \) such that

(a) \(\text{Ex}(\mu) = \mu^{-1}(x) = \sum_{i=1}^r S_i \);

(b) \(Y^{\text{wlc}}, \mu^{-1}D + \sum_{i=1}^r S_i \) is log canonical;

(c) \(-K_{Y^{\text{wlc}}} - \mu^{-1}D - \sum_{i=1}^r S_i \) is nef over \(X \); and

(d) \((Y^{\text{wlc}}, \mu^{-1}D + \sum_{i=1}^r S_i) \) is q-dlt at the generic point \(\eta \) of a component of the intersection of \(S_i \) (\(i = 1, 2, \ldots, r \)), where \(v \) can be computed (see Definition 2.9).

Theorem 4.2. Let \(x \in (X, D) \) be a klt point. If \(v \in \Val_{x,x} \) is a quasi-monomial valuation which minimizes \(\vol_{X,D} \), then it admits a \(\mathbb{Q} \)-factorial weak log canonical model.

The rest of Section 4.1 is devoted to prove Theorem 4.2.

Lemma 4.3. Fix \(f: Y \to (X, D) \) a log resolution, with \(Z \) a component of the intersection of some exceptional divisors \(E_i \) (\(i \in J \)). Then there exists a constant \(N \) (depending on \(Y \) and \((X, D) \)) which satisfies the following property: Let \(S \) be a toroidal divisor over \(Z \subset (X, D) \) and \(\mu: Y_S \to X \) a weak lc model over \(X \) with the only exceptional divisor \(S \) then for any quasi-monomial valuation \(v \) computed at the generic point \(\eta(Z) \in (X, D) \) satisfying \(|a \cdot \ord_S - v| < \epsilon \) for some \(a > 0 \), then

\[
A_{Y_S,\mu^{-1}D+S}(v) < N \cdot \epsilon.
\]

Proof. Denote by \(E_i \) (\(i \in I \)) all the exceptional divisors of \(Y \) over \(X \) and by \(A_{(X,D)}(E_i) = a_i \), then we know that

\[
b_i \overset{\text{defn}}{=} A_{Y_S,\mu^{-1}D+S}(E_i) < a_i.
\]

Let \(Y' \to Y \) be the toroidal blow up extracts \(S \) (if \(S \) is on \(Y \), then we let \(Y' = Y \)) and denote by \(g: Y' \to X \). Define the divisor \(F = g^{-1}_*D + \sum_{i \in J} b_i E_i \) on \(Y' \). Then as \(|a \cdot \ord_S - v| < \epsilon \) and \(A_{Y',F}(\ord_S) = 0 \) let \(J \subset I \) index \(E_i \) which contains the center of \(v \) then we know

\[
Y_{\nu} : F(v) \leq \epsilon \cdot \left(\sum_{i \in J} a_{Y',F}(E_i) \right) = \sum_{i \in J} b_i \cdot \epsilon < \sum_{i \in J} a_i \cdot \epsilon.
\]

Finally, since \(K_{Y_S} + \mu^{-1}_*D + S \) is anti-nef, by the negativity lemma, we know that

\[
A_{Y_S,\mu^{-1}_*D+S}(v) \leq A_{Y',F}(v).
\]

\[\square\]

In the above setting, for any two toroidal valuations which can be written \(v_\alpha \) and \(v_{\alpha'} \) on the fixed model \(Y \to (X, D) \), we define

\[
|v_\alpha - v_{\alpha'}| := |\alpha - \alpha'|.
\]

Recall we have defined the volume of a model \(\vol(Y/X) \) (or abbreviated as \(\vol(Y) \)) over a klt singularity \((X, D)\) in [LX16].

Lemma 4.4. Let \(Y \to X \) be a model with exceptional divisor \(E = \sum_{i \in J} E_i \). Let \(\mu': Y' \to X \) be a model with the exceptional divisor \(\sum_{i \in J} E_i \) for some \(J \subset I \) such that \(-K_{Y'} - \sum_{i \in J} E_i - \mu'^{-1}_*D \) is nef and \((Y', \sum_{i \in J} E_i + \mu'^{-1}_*D)\) is log canonical. Then

\[
\vol_{X,D}(Y') \leq \vol_{X,D}(Y).
\]

Proof. This directly follows from the negativity lemma as we know that the log pull back of \(K_Y + E + \mu^{-1}_*D \) is greater or equal to the log pull back of \(K_{Y'} + \sum_{i \in J} E_i + \mu'^{-1}_*(D) \). \(\square \)

Lemma 4.5. Let \(\Delta_i \subset \Delta \) be a sequence of subsimplices with rational vertices, such that for \(1 \leq j \leq q \), the limit of the vertices \(\lim_{i \to \infty} v'_i = v \). Assume for any rational vector in \(|\Delta| \), we have a weak lc model which only extracts the corresponding divisor. Let \(\mu_i: Y_i \to X \) be a \(\mathbb{Q} \)-factorial weak lc model which precisely extracts the divisors \(S_i' \) corresponding to the rescaling of \(v'_i \). Then

\[
\lim_{i \to \infty} \vol(Y_i) = \hat{\vol}(v).
\]
Proof. By the definition of the volume of a model, we know $\text{vol}(Y_\ast) \geq \hat{\text{vol}}(\text{ord}_S)$ for any j as S_j is a divisor on Y_\ast. Then it suffices to show that for any ϵ, we can find δ, such that for j sufficiently large and a rational vector v_\ast which after a rescaling is sufficiently close to v with

$$|v_j - v_\ast| \leq |v_j^\prime - v_\ast| + |v_\ast - v| \leq \delta,$$

we have

$$A_{Y_\ast,\mu^{-1}_jD + S_\ast}(\text{ord}_{S_j}) < \epsilon \cdot A_{X,D}(\text{ord}_{S_j}),$$

where $Y_\ast \to X$ be the weak lc model of v_\ast, because this implies that the log pull back of $K_{Y_\ast} + \mu^{-1}_jD + S_\ast$ is larger or equal to the pull back of

$$K_{Y_\ast} + \sum_j \left(1 - \epsilon A_{X,D}(\text{ord}_{S_j})\right) S_j + \mu^{-1}_jD,$$

which means $\hat{\text{vol}}(v_\ast) \geq (1 - \epsilon)^n \text{vol}(Y_\ast)$.

We continue by a similar argument as in Lemma 4.3: fix $Z \to X$ a log resolution. Denote by E_k ($k \in \{1,2,...,q\}$) the exceptional divisors of Y over X whose intersection gives the center $\text{Cent}_Y(v)$ and denote by $A_{X,D}(E_k) = a_k$. Denote the corresponding vector of S_i by $(n_1,...,n_q)$, so $A_{X,D}(S_j) = \sum n_k a_k$. We consider a model $Z_\ast \to Z$, which extracts the birational transform E_\ast of S_\ast. Then for any S_j, after relabelling, we can assume its vector is in the fan generated by $E_1,...,E_{q-1}$ and E_\ast. Therefore, by the same argument as in Proposition 4.3, we know the log discrepancy of S_j with respect to $(Y_\ast,\mu^{-1}_jD + S_\ast)$ is less or equal to

$$\frac{\epsilon}{q} \leq \epsilon \cdot A_{X,D}(\text{ord}_{S_j}).$$

Proof of Theorem 4.2. We fix a model as in Definition 2.8 which computes $v = v_\ast$. We can further assume that the codimension of n in the model is the same as the rational rank of v. Let a_\ast be the valuate ideals of v, i.e., $a_k = \{f \mid v(f) \geq k\}$. Let $c = \text{lct}(X,D,a_\ast)$.

Lemma 4.6. For any ϵ, there exists toroidal divisors $S_1,...,S_r$ given by vectors $s_1,...,s_r \in \mathbb{Z}_{\geq 0}^r$, constants $m \in \mathbb{N}$ and $\epsilon_0 > 0$, such that

1. $(X,D + (1 - \epsilon_0)c \cdot a_m)$ has a positive log discrepancy for any divisor E;
2. v is in the convex cone generated by $s_1,...,s_r$, and
3. the log discrepancy $a_i(S_j, X,D + (1 - \epsilon_0)c \cdot a_m) < \epsilon$.

Proof. Applying Lemma 2.7, for any ϵ, we can find vectors $s_j = (s_{ij})_{1 \leq i \leq r}$ (j = 1,2,...r) with $r_{ij},q_j \in \mathbb{N}$, such that

1. the vector $\alpha = (\alpha_i)$ can be written as

$$\alpha = \sum_{j=1}^k c_j s_j \quad \text{with } c_j > 0;$$

2. for any i and j,

$$|s_{ij} - \alpha_j| < \frac{\epsilon}{q_j}.$$

Clearly, we can assume $\text{gcd}(r_{1j},...,r_{rj},q_j) = 1$. Thus we conclude that for the integral divisor corresponding to the toric blow up of $(E_1,...,E_r)$ with coordinates $(r_{1j},...,r_{rj})$, we get an exceptional divisor S_j. Fix N_0 a sufficiently large positive number such that $q_j \leq N_0$.

Since v is a minimizer of $\text{vol}(X,D)$, we know that

$$\hat{\text{vol}}(v) = \lim_{k \to \infty} A_{X,D}(v)^n \cdot \text{mult}(a_k)$$

$$\geq \lim_{k \to \infty} \text{lct}(X,D,a_k)^n \cdot \text{mult}(a_k)$$

$$\geq \hat{\text{vol}}(v),$$
where $a_k = \{f \mid v(f) \geq k\}$. So we conclude that (see [Mus02])

$$\text{let}(X, D; a_k) := \lim_{k \to \infty} k \cdot \text{let}(X, D; a_k) = A_{(X,D)}(v),$$

which we denote by c. Denote by $\epsilon_0 = \frac{4}{Nq}$, and pick up N such that

$$a_l(E_i, X, D + c \cdot a_*) \leq N$$

for any i,

then we can choose m sufficiently large such that

(a) $(X, D + (1 - \epsilon_0)c \cdot a_m)$ is klt,

(b) $\frac{1}{m} \cdot v(a_m) < 2$

(c) $a_l(E_i, X, D + (1 - \epsilon_0)c \cdot \frac{1}{m}a_m) \leq N$.

Thus we have

$$a_l(S_j; X, D + (1 - \epsilon_0)c \cdot \frac{1}{m}a_m) - a_l(v; X, D + (1 - \epsilon_0)c \cdot \frac{1}{m}a_m)$$

$$\leq \sum_{i=1}^{r} |\alpha_i - \frac{r_{ij}}{q_j}| \cdot a_l(E_i; X, D + (1 - \epsilon_0)c \cdot \frac{1}{m}a_m)$$

$$\leq \sum_{i=1}^{r} \frac{q_j}{q_j} \cdot a_l(E_i; X, D + (1 - \epsilon_0)c \cdot \frac{1}{m}a_m).$$

$$\leq rN\epsilon \cdot \frac{1}{q_j}.$$

So for any j, we have

$$a_l(S_j; X, D + (1 - \epsilon_0)c \cdot \frac{1}{m}a_m) \leq rN\epsilon + q_j \cdot a_l(v; X, D + (1 - \epsilon_0)c \cdot \frac{1}{m}a_m)$$

$$\leq rN\epsilon + Nq2c\epsilon_0$$

$$= (rN + 2c)\epsilon.$$}

Here all the constants r, N and c only depend on the fixed log resolution $Z \to (X, D)$ and v but not the choices of S_j. So we can replace the constant ϵ and obtain the lemma. \qed

By Lemma 4.6, we can construct a \mathbb{Q}-factorial model $\mu : Y \to X$ such that

1. S_1, \ldots, S_r are the only exceptional divisors,

2. there is an effective \mathbb{Q}-divisor L on X, such that $(Y, \mu_{s}^{-1}(D + L) + \sum a_iS_i)$ is klt with $1 - \epsilon < a_i < 1$, and $K_Y + \mu_{s}^{-1}(D + L) + \sum a_iS_i \sim_{\mathbb{Q}, X} 0$.

Furthermore, we can assume Y is obtained by run an MMP from a toroidal blow up of Z extracting S_1, \ldots, S_r. In particular, $Z \to Y$ does not change the generic points of the intersection of $\cap_{i=1}^{r} S_i$.

Then by running a relative MMP $g : Y \to Y_1$ over X for

$$-K_Y - \mu_{s}^{-1}D - S \sim_{\mathbb{Q}, X} - \sum_{i=1}^{r} a_l(X, D, S_i)S_i,$$

we obtain a model $\mu_1 : Y_1 \to X$, such that $-K_{Y_1} - \mu_{s}^{-1}D - g_*S$ is nef.

By the ACC of the log canonical thresholds (see [HMX14]), we know that there exists a $\beta < 1$ which only depends on dim X and the coefficients of D such that if we choose $1 - \epsilon > \beta$, then we can conclude that $(K_Y, \mu_{s}^{-1}D + S)$ is log canonical, as $(K_Y, \mu_{s}^{-1}D + \beta \cdot S)$ is log canonical. Further, the same holds for Y_1 as $(Y_1, g_*(\mu_{s}^{-1}(D + L) + \sum a_iS_i))$ is log canonical. This implies that the MMP process $Y \to Y_1$ is isomorphic around any lc center of $(Y, \mu_{s}^{-1}D + S)$, since otherwise we will have for a divisor E over this center with

$$-1 = a(E, K_Y, \mu_{s}^{-1}D + S) \geq a(E, Y_1, \mu_{s}^{-1}D + g_*S),$$

which is a contradiction.

Therefore, $Y_1 \to X$ gives a weak log canonical model. \qed
A weak log canonical model provides us an explicit subset of valuations which can be used to understand the originally abstract approximation process by Kollár components in [LX16, Theorem 1.3]: Let \(v \) be a quasi-monomial minimizing valuation of a klt pair \(x \in (X, D) \) and \(Y^{wlc} \to X \) be a weak log canonical model of \((X, D)\) for \(v \) given by Theorem 4.2. Fix \(\mu : Y^{dlt} \to Y^{wlc} \) a dlt modification of \((Y^{wlc}, \mu_s^{-1}D + \sum_{i=1}^r S_i)\). Write the pull back of \(K_{Y^{wlc}} + \mu_s^{-1}D + \sum_{i=1}^r S_i \) to be \(K_{Y^{dlt}} + \Delta^{dlt} \). As in [dFKX17], we can formulate the dual complex \(DR(\Delta^{dlt}) \), which does not depend on the dlt modification. Moreover, as in the case of simplex, \(DR(\Delta^{dlt}) \) also forms a natural subspace of

\[
\text{Val}_{X,x}^{\eta} := \{ v \in \text{Val}_{X,x} \mid A_{X,D}(v) = 1 \} \subset \text{Val}_{X,x}
\]

(see [MN15, NX16] for more discussions on the background). We will need a strengthening of [LX16, Theorem 1.3].

Proposition 4.7. There exists a sequence of Kollár components \(T_j \) whose rescaling correspond to rational points on \(DR(\Delta^{dlt}) \), i.e. \(a(T_j; Y^{wlc}, \mu_s^{-1}D + \sum_{i=1}^r S_i) = 0 \), such that,

\[
c_j \cdot \text{ord}_{T_j} \to v,
\]

where \(c_j = \frac{1}{A_{X,D}(\eta_j)} \).

Proof. We will construct a sequence of Kollár component \(T_j \) and choose \(c_j = \frac{1}{A_{X,D}(\eta_j)} \), such that

a) \(a(T_j; Y^{wlc}, \mu_s^{-1}D + \sum_{i=1}^r S_i) = 0 \).

b) \(\{ c_j \cdot \text{ord}_{T_j} \} \) has a limit \(v' \geq v \).

c) \(\text{vol}(v') = \text{vol}(v) \).

In fact, from [LX16, Proposition 2.3], we can conclude \(v = v' \).

Denote by \(\Delta_j \) the simplex in \(\Delta^{dlt} \) generated by \(S_1, ..., S_r \) around \(\eta \). By Theorem 4.2, we can find a sequence of rational simplices \(\{ \Delta_j \}_{j=1}^\infty \) with vertices \(S_{j,i} \) \((i = 1, ..., r)\) such that \(\Delta_j \subset \Delta_{j+1} \), \(\lim_j \Delta_j = v \) and for each \(\Delta_j \) we have a weak log canonical model \(\mu_j : Y_{j}^{wlc} \to X \). Furthermore, we can require the constant \(c_j \) and \(\epsilon_{0,j} \) in Lemma 4.6 converges to 0.

By the negativity lemma we know that on a common resolution the pull back of \(K_{Y^{wlc}} + \mu_j^{-1}D + \sum_{i=1}^r S_{j,i} \) is larger or equal to the pull back of \(K_{Y^{wlc}} + \mu_{j+1}^{-1}D + \sum_{i=1}^r S_{j+1,i} \). In particular, for any divisor \(T \) and \(j \) with

\[
a_j(T; Y_j^{wlc}, \mu_j^{-1}D + \sum_{i=1}^r S_{j,i}) = 0,
\]

\(T \) is contained in \(DR(\Delta^{dlt}) \). By the proof of [LX16, Lemma 3.8] we can find a \(T_j \) such that

\[
\text{vol}(\text{ord}_{T_j}) \leq \text{vol}(Y_j^{wlc}) \quad \text{and} \quad a_j(T_j; Y_j^{wlc}, \mu_j^{-1}D + \sum_{i=1}^r S_{j,i}) = 0.
\]

We denote by \(v_j = c_j \cdot \text{ord}_{T_j} \) where \(c_j = \frac{1}{A_{X,D}(\eta_j)} \), then \(\text{vol}(v_j) = \text{vol}(\text{ord}_{T_j}) \). Since \(\text{vol}(P) \) is a continuous function on the compact set \(DR(\Delta^{dlt}) \) (see [BFJ14]), we know after replacing by a sequence, we can assume that \(v_j \) has a limit \(v' \) and we know that

\[
\text{vol}(v') = \lim_{j} \text{vol}(v_j) \leq \lim_{j} \text{vol}(Y_j^{wlc}) = \text{vol}(v),
\]

where the last equality follows from Lemma 4.5. Since \(\text{vol}(v) = \text{vol}(v) \leq \text{vol}(v') = \text{vol}(v') \), indeed the equality holds.

It remains to show property b) holds, which is similar to the proof of [LX16, Theorem 1.3]. Denote by \(v(f) = p \). For a fixed \(j \), choose \(l = \lceil j/p \rceil \). Denote by \(m_{j,i} \) the vanishing order of \(a_j \) along \(S_{j,i} \), then by Lemma 4.6.3, there exists \(a_{j,i} > (1 - \epsilon_j) \) \((1 \leq i \leq r)\) such that

\[
K_{Y^{wlc}} + \mu_{j,i}^{-1}D + \sum_{i=1}^r a_{j,i}S_{j,i} \sim_{Q,X} (1 - \epsilon_{0,j})c_j \cdot \sum m_{j,i}S_{j,i}.
\]
Therefore, we have

\[K_{\mathcal{Y}^{\nu-}} + \mu_{j_*}^{-1}D + \sum_{i=1}^{r} S_{j,i} \sim_{q.X} \sum_{i=1}^{r} (1 - a_{j,i} + (1 - \epsilon_{0,j})c_j \cdot m_{j,i}) S_{j,i}. \]

And since \(A_{X,D}(v) = 1 \) and \(v \) computes the log canonical threshold of \(\{a_*\} \), we know the log canonical thresholds \(c_j \) satisfies that

\[\lim_{j \to \infty} c_j \cdot j = \text{lct}(X, D; a_*) = 1. \]

Then we have the following implications:

\[
\begin{align*}
 v(f) = p & \implies v(f') = pl, \\
 & \implies f^l \in a_{p,l}, \\
 & \implies f^l \in a_j, \\
 & \implies l \cdot \text{ord}_{S_{j,i}}(f) \geq m_{j,i} \text{ for any } 1 \leq i \leq r, \\
 & \implies l \cdot v_j(f) \geq \min_{i} \frac{m_{j,i}}{1 - a_{j,i} + (1 - \epsilon_{0,j})c_j \cdot m_{j,i}}, \\
 & \implies v_j(f) \geq \min_{i} \frac{m_{j,i}}{(1 - a_{j,i} + (1 - \epsilon_{0,j})c_j \cdot m_{j,i})l},
\end{align*}
\]

where the fifth arrow follows from the negative lemma. Recall

\[\lim_{j \to \infty} a_{j,i} = 1, \quad \lim_{j \to \infty} \epsilon_{0,j} = 0, \quad \text{and} \quad \lim_{j \to \infty} c_j \cdot l = \frac{1}{p}, \]

Thus

\[v'(f) = \lim_{j \to \infty} v_j(f) \geq p = v(f). \]

\[\square \]

4.2 K-semistability and minimizing

In this section, we aim to prove the a quasi-monomial valuation \(v \) is minimizing if only it is K-semistable. As we mentioned, we indeed need to make the expected technical assumption that the associated graded ring \(\text{gr}_v(R) \) is finitely generated.

Definition 4.8. Let \(x \in X = \text{Spec}(R) \) be a normal singularity. Let \(v \in \text{Val}_{X,x} \) be a valuation and we assume \(\text{gr}_v(R) \) is finitely generated. Denote \(X_0 = \text{Spec}(\text{gr}_v(R)). \) Let the rational rank of \(v \) be \(r. \) Then there is a \(T = (\mathbb{C}^*)^r \)-action on \(X_0 \) induced by the \(\mathbb{Z}^r \)-grading. We denote by \(\xi_v \in \xi^+_v \) the natural vector given by the valuation \(v, \) namely \(\xi_v(f) = \min_{f_\ell \neq 0} \{a\} \) for any \(f = \sum_a f_\alpha \in \text{gr}_v(R). \)

In this section, we will always consider the degeneration induced by a valuation in the following case: \(x \in (X, D) \) is a klt singularity, \(v \) is a quasi-monomial valuation over \(x \) whose associated graded ring is finitely generated. We denote \(X_0 = \text{Spec}(\text{gr}_v(R)). \) By Lemma 2.10, we can choose a sequence \(v_i \to v, \) where \(v_i \) is a rescaling of a divisorial valuation, denoted by \(S_i \) over \(x. \)

Lemma 4.9. (see [Ish04]) Under the above assumption, we can construct a model \(\mu : Y \to X \) such that the only exceptional divisor is \(S_i \) and \(-S_i \) is ample over \(X. \)

Proof. Let \(\{a_*\} \) be the valuative ideal sequence of \(\text{ord}_{S_i}. \) It suffices to prove that \(\bigoplus a_i \) is finitely generated given the associated graded ring is finitely generated. We lift generators \(f_i \in a_{i}/a_{i+1} \) \(i = 1, \ldots, r \) of \(\text{gr}_v(R) \) to elements \(f_i \in a_j. \) Let \(d = \max j, \) let \(\{g_i\} \) \(1 \leq i \leq k \) be a generators of \(a_j \) \(0 \leq j \leq d, \) then we show that \(\bigoplus a_i \) is generated by \(\{g_i\}. \) We denote the graded ring generated by \(\{g_i\} \) to be \(\bigoplus b_i \in \bigoplus a_i. \)

Consider \(a_m, \) we claim \(b_m + a_{m+p} = a_m \) for any \(p \geq 0, \) which clear implies \(b_m = a_m. \) For \(p = 0, \) this is trivial. Assume we have proved this for \(p = p_0 - 1. \) Then for any \(f \in a_m, \) we can write \(f = g + f' \) where \(g \in b_m \) and \(f' \in a_{m+p_0 - 1}. \) Since

\[[f'] \in a_{m+p_0 - 1}/a_{m+p_0} = \sum_{\alpha} a_\alpha f'^{\alpha}, \]

33
where \(f_{r}^{*} = f_{1}^{*r_{1}} \cdots f_{r}^{*r_{r}} = f_{1} \cdots f_{1} \cdot f_{2} \cdots f_{r} \) is a product of \(\alpha_{1} + \cdots + \alpha_{r} \) terms and \(\sum_{i=1}^{r} j_{i} \cdot \alpha_{i} = m + p - 1 \). By considering some \(f_{i} \) to be in \(a_{j_{i}} \) instead of \(a_{j_{i}} \), for some \(0 \leq j_{i}' \leq j_{i} \), as \(a_{j_i'} \supset a_{j_i} \), we can assume \(f_{1}^{*r_1} \cdots f_{r}^{*r_r} \) is in \(a_{m_1} \), which is then by definition in \(b_m \).

We assume that \(X_0 \) is normal, and define \(D_0 \) to be the closure \(D \) (as \(\mathbb{Q} \)-divisor) in the following way: for each prime Weil divisor \(E \) on \(X \) with the ideal \(p_E \), we can consider the degeneration \(\text{in}(p_E) \) and let the degeneration \(E_0 \) to be its divisorial part. Then for general \(\mathbb{Q} \)-divisor \(D = \sum a_i E_i \), we define \(D_0 = \sum a_i E_{i,0} \).

Lemma 4.10. With the above notation, we have \(\text{vol}(v) = \text{vol}(wt_v) \). Furthermore, \(K_{X_0} + D_0 \) is \(\mathbb{Q} \)-Cartier and \(A_{(X,D)}(v) = A_{(X_0,D_0)}(wt_v) \).

Proof. The first part is straightforward. For the second part, since the closure of a Cartier divisor \(\text{div}(f) \) is given by the Cartier divisor \(\text{div}(\text{in}(f)) \), we see that \(K_{X_0} + D_0 \) is \(\mathbb{Q} \)-Cartier as \(K_X + D \) is \(\mathbb{Q} \)-Cartier.

Then as \(\text{gr}_v(R) \) is finitely generated, we conclude that there is a sequence of rescaling of divisorial valuations \(\xi_{v_i} \) approximating \(\xi_v \). By Lemma 4.9, we know that the degeneration \(X_0 \) can be considered as an orbifold cone over \(S_i \), which is normal since we assume \(X_0 \) is normal. In particular, we have

\[
A_{(X,D)}(v) = A_{(X_0,D_0)}(wt_{\xi_{v_i}}).
\]

Taking the limit \(i \to \infty \), we get the statement.

An important consequence of Proposition 4.7 is the following Theorem.

Theorem 4.11. Let \(X_0 = \text{Spec} (\text{gr}_v R) \) and denote by \(D_0 \) the closure of \(D \) on \(X_0 \). Then \((X_0,D_0) \) is klt.

Proof. By Lemma 2.10, under our assumption, we can choose a valuation divisorial \(v' \) such that \(\text{gr}_v R \) is isomorphic to \(\text{gr}_{v'} (R) \). Then Proposition 4.7 implies that \(v' \) indeed can be chosen to be a Kollár component. Thus by the argument in [LX16], we know \((X_0,D_0) \) is a klt pair, as it is an orbifold cone over a log Fano pair.

Definition 4.12. Under the above assumptions, we say that a quasi-monomial valuation over \(x \in X \) is K-semistable if \(\text{gr}_v (R) \) is finitely generated and the corresponding triple \((X_0,D_0,\xi_v) \) as in Definition 4.8 is K-semistable in the sense of Definition 2.28.

Proof of Theorem 1.3. By Theorem 3.5, we already know this for the log Fano cone case, i.e., the valuation on the singularity is given by a triple \((X,D,wt_\xi) \) as in Theorem 3.5. In the general case, if \(v \) induces a special test configuration of \((X,D) \) to \((X_0,D_0,\xi_v)\), then we know that for any ideal \(a \in \text{PrId}_{X,x} \), we can get a graded ideal sequence \(b_\bullet = \{ \text{in}(a^k) \} \), satisfying

\[
\text{mult}(a) \cdot \text{let}^{n}_{(X,D)}(a) = \text{mult}(b_\bullet) \cdot \text{let}^{n}_{(X_0,D_0)}(b_\bullet) \quad \text{(cf. [LX16, 3.3])}
\]

\[
\geq \text{vol}(X_0,D_0)(wt_\xi_v) \quad \text{(Theorem 3.5)}
\]

\[
= \text{vol}(X,D)(v) \quad \text{(Lemma 4.10)}.
\]

Theorem 4.13. If \(x \in (X,D) \) is a klt singularity and \(v \in \text{Val}_{X,x} \) which is a quasi-monomial minimizer of \(\text{vol}(X,D) \) such that its associated graded ring \(\text{gr}_v(R) \) is finitely generated, then \(v \) is a K-semistable valuation.

The proof of this theorem is similar to the case of Kollár component minimizer as in Section 6 of [LX16]. For reader’s convenience, we include a brief proof here.

Proof. Using the notation, we can assume the quasi-monomial valuation \(v = v_{a_\phi} \) on a log smooth model with the weight \(\alpha = (\alpha_1,\ldots,\alpha_r) \) and \(\alpha_1,\ldots,\alpha_r \) are \(\mathbb{Q} \)-linearly independent. Let \(\Phi \) and \(\Phi^\phi \) denote the valuative semigroup and valuative group of \(v \). Denote by \(\mathcal{R} \) the extended Rees algebra:

\[
\mathcal{R} = \mathcal{R}_v = \bigoplus_{\phi \in \Phi^\phi} a_\phi(v) t^{-\phi} \subset \mathcal{R}[t^{\Phi^\phi}].
\]
Then \mathcal{R} is faithfully flat over $\text{Spec}(\mathbb{C}[\Phi])$ ([Tei03, Proposition 2.3]). The central fibre X_0 is given by $\text{Spec}(\text{gr}_x \mathcal{R})$ where

$$\text{gr}_x \mathcal{R} = \bigoplus_{\varphi \in \Phi} (a_\varphi(v)/a_{\varphi}(v)).$$

Let $\xi_0 = \xi_v$ denote the induced valuation on the central fibre X_0 as in Definition 4.8.

For any Kollár component S over $\mathcal{D}' \times (X_0, D_0)$, let $(\mathcal{Y}, \mathcal{D}', \xi_0; \eta)$ be the associated special test configuration which degenerates (X_0, D_0) to an orbifold cone (Y_0, D'_0) over S, i.e., $S = Y_0/(\mathbb{C}[\mathbb{C}])$. By Proposition 3.6, it suffices to show that

$$\text{Fut}(\mathcal{Y}, \mathcal{D}', \xi_0; \eta) \geq 0,$$

for any such special test configurations.

Let $\Phi \subset \mathbb{R}_{\geq 0}$ be the valuative monoid of v. Then we have a $\Phi \times \mathbb{Z}_{\geq 0}$-valued function on R.

$$w : R \longrightarrow \Phi \times \mathbb{Z}_{\geq 0}$$

$$f \mapsto (v(f), \text{ord}_S(\text{in}(f))).$$

We give $\Gamma := \Phi \times \mathbb{Z}_{\geq 0} \subset \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ the lexicographic order $(m_1, u_1) < (m_2, u_2)$ if and only if $m_1 < m_2$, or $m_1 = m_2$ and $u_1 < u_2$. If we denote

$$\text{gr}_w R = \bigoplus_{(m,u) \in \Gamma} R_{(m,u)}/R_{(m,u)},$$

then $Y_0 = \text{Spec}_{\mathbb{C}}(\text{gr}_w R)$. Also denote:

$$A = \bigoplus_{m \in \Phi} R_{\geq m}/R_{> m} =: \bigoplus_{m \in \Phi} A_m.$$

Then $\text{Spec}(A) = X_0$. Moreover if we define the extended Rees ring of A with respect to the filtration associated to ord_S:

$$A = \bigoplus_{k \in \mathbb{Z}} A_k := \bigoplus_{k \in \mathbb{Z}} b_k t^{-k} \subset A[t, t^{-1}],$$

where $b_k = \{f \in A : \text{ord}_S(f) \geq k\}$. Then the flat family $\mathcal{Y} \to A^1$ is given by the $\text{Spec}_{\mathbb{C}[t]} (A')$.

In particular, we have

$$A \otimes_{\mathbb{C}[t]} \mathbb{C}[t, t^{-1}] \cong A[t, t^{-1}], \quad A \otimes_{\mathbb{C}[t]} \mathbb{C}[t]/(t) \cong \text{gr}_w R.$$

Pick up a set of homogeneous generators $\bar{f}_1, \ldots, \bar{f}_p$ for $\text{gr}_w R$ with deg$(\bar{f}_i) = (m_i, u_i)$. Lift them to generators f_1, \ldots, f_p for A such that $\bar{f}_i \in A_{m_i}$. Set $P = \mathbb{C}[x_1, \ldots, x_p]$ and give P the Γ-grading by deg$(x_i) = (m_i, u_i)$ so that the surjective map

$$P \to \text{gr}_w R \quad \text{by} \quad x_i \mapsto \bar{f}_i,$$

is a map of graded rings. Let $\bar{g}_1, \ldots, \bar{g}_q \in P$ be a set of homogeneous generators of the kernel and set deg$(\bar{g}_j) = (n_j, v_j)$.

Since $\bar{g}_j(f_1, \ldots, f_p) = 0 \in \text{gr}_w R$, it follows

$$\bar{g}_j(f_1, \ldots, f_p) \in (A_{n_j})_{> v_j} \quad \text{for each } j.$$

By the flatness of A over $\mathbb{C}[t]$, there exists $g_j \in \bar{g}_j + (P_{n_j})_{> v_j}$ such that $g_j(f_1, \ldots, f_p) = 0$ for $1 \leq j \leq q$. So $\{g_j\}$ form a Gröbner basis of J with respect to the order function ord_S, where J is kernel surjection $P \to A$. In other words, if we let $K = (\bar{g}_1, \ldots, \bar{g}_q)$ denote the kernel $P \to A_0$. Then K is the initial ideal of J with respect to the order determined by ord_S. As a consequence, we have:

$$A = P[\tau]/(\bar{g}_1, \ldots, \bar{g}_q),$$

where $\bar{g}_j = \tau^{v_j} g_j(\tau^{-u_1}x_1, \ldots, \tau^{-u_p}x_p)$.
Now we lift \(f_1, \ldots, f_p \) to generators \(F_1, \ldots, F_p \) of \(R \). Then we have: \(g_j(F_1, \ldots, F_p) \) lies in \(R_{>0} \). By flatness of \(R \) over \(\mathbb{C}[\Phi] \), there exist \(G_j \in g_j + P_{>0} \), such that \(G_j(F_1, \ldots, F_p) = 0 \). Let \(I \) be the kernel of \(P \to R \), then \(\{G_j\} \) form a Gröbner basis with respect to the order function \(v \) and the associated initial ideal is \(J \).

Given the above data, we know that there is a action of \(T := (\mathbb{C}^*)^{r+1} = (\mathbb{C}^*)^r \times \mathbb{C}^* \)-action on \(\mathbb{C}^p \). The valuation \(v \) corresponds to a holomorphic vector field \(\xi \) with an associated weight function denoted by \(\lambda _\bullet \). \(\text{ord}_v \) corresponds to another holomorphic vector field \(\xi _\bullet \) on \(\mathbb{C}^p \) whose associated weight function will be denoted by \(\lambda _\infty \).

Notice that because \(v \) is a real valuation, \(\Phi ^g \) is a subgroup of \(\mathbb{R} \). We denote by \(C \subset \Phi ^g \times \mathbb{Z} \subset \mathbb{R} \times \mathbb{Z} \) the finite set consisting of the differences \((n'_j, v'_j) - (n_j, v_j) \). Let \(M \) be a positive integer that is larger than all coordinates of \((m, u) - (n, v) \) for all pairs of elements \((m, u), (n, v) \in C \) and let \(\epsilon \) be sufficiently small such that \(1 > M\epsilon \). Denote by \(e_0^\epsilon \) (resp. \(e_1^\epsilon \)) the projection of \(\mathbb{R} \times \mathbb{Z} \) to \(\mathbb{R} \) (resp. \(\mathbb{Z} \)) and define:

\[
\lambda _\epsilon = e_0^\epsilon - \epsilon e_1^\epsilon : \mathbb{R} \times \mathbb{Z} \to \mathbb{R}.
\]

Then for \(\epsilon \) sufficiently small, \(\lambda _\epsilon : \mathbb{R} \times \mathbb{Z} \to \mathbb{R} \) satisfies \(0 < \lambda _\epsilon(n_j, v_j) < \lambda_\epsilon(n'_j, v'_j) \). As a consequence, the linear holomorphic vector field \(\xi _\epsilon \in \mathfrak{t}_\mathbb{R}^k \) associated with \(\lambda _\epsilon \) degenerates both \(X \) and \(X_0 \) to \(Y_0 \). On the other hand, the weight function \(\lambda _\epsilon \) determines a filtration on \(P = \mathbb{C}[x_1, \ldots, x_p] \) which in turn induces quotient filtrations on \(R \) and \(\text{gr}_vR \). Because the associated graded rings of the filtrations are both isomorphic to \(\text{gr}_vR \), by Lemma 2.11 \(\lambda _\epsilon \) induces a quasi-monomial valuation over \(X \) and a quasi-monomial valuation over \(X_0 \), both of which will be denoted by \(w_\epsilon \).

Since \(\lambda _\epsilon \) is linear with respect to \(\epsilon \), \(\{\xi _\epsilon \} \) is a ray in \(\mathfrak{t}_\mathbb{R}^k \) emanating from \(\xi _0 \). Denoting \(\eta = \frac{1}{\epsilon} \sum_{\xi \in 0}{\xi _\epsilon} \in \mathfrak{t}_\mathbb{Q} \), we then get a special test configuration \((X, D, \xi _0; \eta) \) of \((X, D) \) to \((Y_0, D'_0) \), and also a special test configuration of \((X_0, D_0) \) to \((Y_0, D'_0) \).

By Lemma 4.10, we have the identities of normalized volumes:

\[
\hat{\text{vol}}_{(X, D)}(w_\epsilon) = \hat{\text{vol}}_{(X_0, D_0)}(w_\epsilon) = \hat{\text{vol}}_{(Y_0, D'_0)}(\text{wt}_{\xi _\epsilon}) = \hat{\text{vol}}_{(Y_0, D'_0)}(\xi _\epsilon).
\]

Now we use the minimizing assumption: \(\hat{\text{vol}}_{(X, D)}(w_\epsilon) \geq \hat{\text{vol}}_{(X, D)}(v) \), which via the above identities gives \(\hat{\text{vol}}_{(Y_0, D'_0)}(\xi _\epsilon) \geq \hat{\text{vol}}_{(Y_0, D'_0)}(\xi _0) \). So we get:

\[
\text{Fut}(Y, D', \xi _0; \eta) = D\hat{\text{vol}}_{(Y_0, D_0)} \cdot (-\eta) = \frac{d}{d\epsilon} \bigg|_{\epsilon = 0} \hat{\text{vol}}_{(X, D)}(w_\epsilon) \geq 0. \tag{50}
\]

Because \(S \) is an arbitrary Kollár component over \((X_0, D_0) \), we get \((X_0, D_0; \xi _0) \) is K-semistable. As discussed above, this implies \(v \) is indeed K-semistable.

\[\square\]

4.3 Uniqueness in general

In this section, we will show the uniqueness of quasi-monomial minimizer if we assume one of them has a finitely generated associated graded ring. This assumption is always fulfilled when the minimizer is divisorial [Blu16, LX16] and conjectured to hold in general.

Assume a quasi-monomial valuation \(v \) minimizers \(\hat{\text{vol}} _{(X, D)} \) with finitely generated associated graded ring, then \((X_0, D_0, \xi _\epsilon) \) is a K-semistable log Fano cone singularity by Theorem 4.13. By Lemma 2.10, there is a divisorial valuation \(v' \) which after scaling is sufficiently close to \(v \) and satisfies that

\[
\text{gr}_{v'}(R) \cong \text{gr}_vR.
\]

\(X_0 = \text{Spec}(\text{gr}_{v'}R) \) is the central fiber of a special test configuration \(X \to \mathbb{A}^1 \).

Let \(w \) be a quasi-monomial minimizer of \(\hat{\text{vol}} _{(X, x)} \) over \(x \in X \). There exists a weak log canonical model \(Y \to X \) constructed Theorem 4.2 with the exceptional divisor \(\sum_{i=1}^r S_i \) on which \(w \) is computed. Denote by \(\{a_\bullet\} \) the valuative graded ideal sequence of \(w \). As in
[LX16, Section 3], we can degenerate \(\{a_*\} \) to \(\{b_*\} := \{\text{in}(a_*)\} \) to get a flat family of ideal sequences, and we have

\[
\hat{\text{vol}}(X, D_\eta)(\xi) = \text{vol}(X, D)(v) = \text{mult}(a_*) \cdot \text{lct}(a_*) \\
\geq \text{mult}(b_*) \cdot \text{lct}(b_*).
\]

Moreover, since \((X_0, D_0, \xi)\) is K-semistable, we know \(\text{wt}_\xi\) minimizes \(\text{vol}_{X_0, D_0}\), thus the last inequality is indeed an equality. As \(\text{mult}(a_*) = \text{mult}(b_*)\), we indeed have \(\text{lct}(a_*) = \text{lct}(b_*)\) and we denote it by \(c\).

Lemma 4.14. There is a \(\mathbb{Q}\)-factorial equivariant family \(\mu: Y \to X\) over \(\mathbb{A}^1\), whose general fiber gives \(Y \to X\). Furthermore, \((Y, \mu_*^{-1}D + \sum S_i + Y_0)\) is log canonical and \(Y_0\) is irreducible.

Proof. In the proof of Theorem 4.2, we show that for \(m\) sufficiently large, we can choose \(S_j\) such that \(a(S_j, X, D + (1 - \epsilon_0)c \cdot \frac{1}{m} a_m)\) is sufficiently small. For \(a_m\), let \(\pi_m\) be the family on \(X\), which degenerates \(a_m\) to its initial ideal. Then \(S_i\) in Theorem 4.2 will induce divisors \(S_i\) over \(X\) such that

\[
a(S_j, X, D + (1 - \epsilon_0)c \cdot \frac{1}{m} a_m) = a(S_j, X, D + (1 - \epsilon_0)c \cdot \frac{1}{m} \pi_m).
\]

It then follows from the standard approximation that for any \(\epsilon_0 > 0\) we can find \(m\) sufficiently large such that \((X_0, D_0 + (1 - \epsilon_0)c \cdot \frac{1}{m} \text{in}(a_m))\) is log canonical. By inversion of adjunction, this implies that

\[
(X, D + X_0 + (1 - \epsilon_0)c \cdot \frac{1}{m} \pi_m)
\]

is log canonical. In particular, we know that we can find \(Y \to X\) which precisely extracts the divisors \(S_i\) such that a general fiber yields \(Y\).

It remains to show that \((Y, \mu_*^{-1}D + \sum S_i + Y_0)\) is log canonical. Again by ACC of log canonical thresholds ([HMX14]), it suffices to show that for the constant \(\beta\) chosen in Theorem 4.2, \((Y, \mu_*^{-1}D + \beta \sum S_i + Y_0)\) is log canonical. But this is implied by the fact that the log pull back of \(K_Y + \mu_*^{-1}D + \beta \sum S_i\) is less or equal to the log pull back of \(K_X + D + (1 - \epsilon_0)c \cdot \frac{1}{m} \pi_m\).

Then we can define a valuation quasi-monomial \(w_0\) as in Definition-Proposition 4.15 over \(X_0\).

Definition-Proposition 4.15. Let \(\eta_0\) be the generic point of a component of \(\pi \cap Y_0\). Let \(T_i\) be the (not necessarily irreducible) reduction divisor of \(S_i\) at the generic point \(\eta_0\). Then \(\text{ord}_{T_1}, \text{ord}_{T_2}, \ldots, \text{ord}_{T_r}\) generate a rank \(r\) sublattice in \(\text{Val}_{Y_0, \eta_0}\). Furthermore, we can define a quasi-monomial valuation \(v_0\) over \(\eta_0\) which is of rational rank \(r\), such that \(v_0(T_i) = \alpha_i\).

Proof. By [dFKX17, Proposition 34] we know that the log canonical center given by an irreducible component \(Z_0\) of \(Y_0 \cap Z\) is q-dlt, so we can define such a quasi-monomial valuation \(v_0\) over \(\eta_0\).

The following lemma implies that such a degeneration is indeed uniquely determined.

Lemma 4.16. Let \(w_0\) be a degeneration of a quasi-monomial minimizer \(w\). Then for any function \(f \in R\), we have

\[
w(f) = w_0(\text{in}(f)).
\]

Proof. We easily see \(w(f) \leq w_0(\text{in}(f))\) and now we assume \(w(f) < w_0(\text{in}(f))\) from some \(f\) and we will argue this is contradictory to the fact that \(\text{vol}(w) = \text{vol}(w_0)\) as in the proof of [LX16, Proposition 2.3].

We prove it by contradiction. Assume this is not true, we fix \(g \in R\) such that

\[
w_0(\text{in}(g)) = l > w(g) = s.
\]

Denote by \(r = l - s > 0\). Fix \(k \in \mathbb{R}_{>0}\). Consider

\[
a_k := \{f_0 \in \text{gr}_c R\mid w_0(f_0) \geq k\} \quad \text{and} \quad b_k := \{f \in R\mid w(f) \geq k\}.
\]
So \(\text{in}(b_k) \subset a_k \), and we want to estimate the dimension of
\[
\dim(R/b_k) - \dim(\text{gr}_x R/a_k) = \dim(\text{gr}_x R/\text{in}(b_k)) - \dim(\text{gr}_x R/a_k) = \dim(a_k/\text{in}(b_k)).
\]

Fix a positive integer \(m < \frac{1}{k} \) and a set
\[
g_m^{(1)}, \ldots, g_m^{(k_m)} \in b_{k - ml}
\]
whose images in \(b_{k - ml}/b_{k - ml + r} \) form a \(C \)-linear basis.

We claim that
\[
\{ \text{in}(f^m \cdot g_m^{(j)}) \mid 1 \leq m \leq \frac{k}{l}, 1 \leq j \leq k_m \}
\]
are \(C \)-linear independent in \(a_k/b_k \). Granted this for now, we know since \(\text{vol}(v) > 0 \), then
\[
\limsup_{k \to \infty} \frac{1}{k^n} \sum_{1 \leq m \leq \frac{k}{l}} k_m = \limsup_{k \to \infty} \frac{1}{k^n} \dim(b_{k - ml}/b_{k - ml + r}) > 0,
\]
which then implies \(\text{vol}(w') > \text{vol}(w'_0) \) and yields a contradiction.

Now we prove the claim.

Step 1: For any \(1 \leq m \leq \frac{k}{l} \), \(1 \leq j \leq k_m \),
\[
w_0(\text{in}(f^m \cdot g_m^{(j)})) = w_0(\text{in}(f^m)) + w_0(\text{in}(g_m^{(j)}))
\]
\[\geq ml + w(g_m^{(j)}) \]
\[\geq ml + k - ml \]
\[\geq k.
\]

Thus \(\text{in}(f^m \cdot g_m^{(j)}) \in a_k \).

Step 2: Since taking the initial induces an isomorphism of \(C \)-linear spaces between \(R/b_k \) and \(\text{gr}_x R/\text{in}(b_k) \) ([LX16, Lemma 4.1]). To show \(\text{in}(f^m \cdot g_m^{(j)}) \) is linearly independent, it suffices to show that \(f^m \cdot g_m^{(j)} \) is linearly independent in \(R/b_k \). This is exactly the same as Step 2 in the proof of [LX16] once we replace \(v \) by \(w \). \(\square \)

Proposition 4.17. Let \(x \in X \) be a \(T \)-singularity. Assume a minimizer \(v \) of \(\text{vol}_{X,x} \) is quasi-monomial, then \(v \) is \(T \)-invariant.

Proof. It suffices to prove this for \(T = C^* \), since if a valuation \(v \) is \(C^* \)-equivariant for any \(C^* \), then it is \(T \)-invariant.

We have seen that the degeneration sequence \(\{ b_k \} := \{ \text{in}(a_x) \} \) has the same log canonical threshold \(c \) as \(v \). We fix \(\epsilon \), and assume that for \(m \in \Phi \) sufficiently large,
\[
(X, D, (c - \epsilon)\frac{1}{m}\text{in}(a_m))
\]
is klt.

As in the construction of \(S_i \), and the proof of Theorem 4.2 (see Lemma 4.6), we can indeed assume that
\[
a_t(S_i; X, D + (c - \epsilon)\frac{1}{m}a_m) < 1.
\]

We are going to show that \(S_i \) is equivariant, which then clearly implies \(v \) is equivariant. We consider the family of ideals \(a_m^\alpha \) which \(C^* \)-equivariantly degenerates \(a_m \) to \(b_m \). Since \(a_m^\alpha \) is \(C^* \)-equivariant, we can construct a \(C^* \)-equivariant model \(Y \to X \), which extracts exactly the closure of \(S_i \times C^* \) as the log discrepancy
\[
a_t(S_i \times C^*, X \times \mathbb{A}^1, D \times \mathbb{A}^1 + (c - \epsilon)a_m^\alpha) < 1,
\]
and \((X \times \mathbb{A}^1, D \times \mathbb{A}^1 + (c - \epsilon)a_m^\alpha) \) is klt.

Thus \(Y \) is indeed \(Y \times \mathbb{A}^1 \) where \(Y = Y \times \mathbb{A}^1 \{ t \} \) for some \(t \neq 0 \), which implies that \(S_i \) is equivariant. \(\square \)

38
Now we can complete the proof of Theorem 1.1.

Proof of Theorem 1.1. For the first part, it is Theorem 4.11.

For the second part, it is Theorem 4.13.

For the last part, using Proposition 4.17 and Theorem 3.13, we know that \(w_0 \) is the same as \(\xi_v \) on \((X_0, D_0)\). Then for any \(g \in R \), by Lemma 4.16 we have

\[
 w(g) = w_0(\text{in}(g)) = v_0(\text{in}(g)) = v(g),
\]

thus \(w = v \).

\[\square \]

Part II

Singularities on GH limits

5 **Canonicity of the semistable cone**

5.1 **Metric tangent cones and valuations**

Let \((M, \omega)\) be a sequence of smooth Kähler-Einstein Fano manifolds. By Gromov’s compactness in Riemannian geometry, it’s known that a subsequence converges to a limit metric space in the Gromov-Hausdorff topology:

\[
 \lim_{j \to +\infty} (M_{i_j}, \omega_{i_j}) = (M_{\infty}, d_{\infty}).
\]

By the work of Donaldson-Sun ([DS14]) and Tian ([Tia90], [Tia12, 4.14-4.16], see also [Tia13]), we know that \(M_\infty \) is homeomorphic to a normal algebraic variety. Donaldson-Sun ([DS14]) also showed that \(M_\infty \) has at worst normal klt singularities and admits a Kähler-Einstein metric \(\omega_\infty \) in the sense of pluripotential theory (see also [BBEGZ]). On the regular locus \(M_\infty^{\text{reg}}, \omega_\infty \) is a smooth Kähler-Einstein metric. To understand the metric behavior near the singular locus, it is important to understand the metric tangent cones of \((M_\infty, d_\infty)\) (see [CC97]). From now on, fix \(o \in M_\infty \) and denote by \(C := C_o M_\infty \) a metric tangent cone at \(o \in M_\infty \). In other words, there exists a sequence of positive numbers \(\{r_k \}_{k \in \mathbb{N}} \) converging to 0 such that

\[
 (C, d_C, o) = \lim_{r_k \to 0} \left(M_\infty, \frac{d_\infty}{r_k}, o \right),
\]

where the convergence is the pointed Gromov-Hausdorff topology. We know that \(C \) admits a Ricci-flat Kähler cone structure by the work of Cheeger-Colding-Tian ([CCT02]). More recently, Donaldson-Sun proved in [DS15] that \(C \) is an affine variety with a torus action and can be obtained in three steps. In the first step, they defined a filtration \(\{F^\lambda \}_{\lambda \in S} \) of the local ring \(R = O_{M_\infty, o} \) using the limiting metric structure \(d_\infty \). Here \(S \) is a set of positive numbers that they called the holomorphic spectrum which depends on the torus action on the metric tangent cone \(C \). In the second step, they proved that the associated graded ring of \(\{F^\lambda \} \) is finitely generated and hence defines an affine variety, denoted by \(W \). In the last step, they showed that \(W \) specially degenerates to \(C \). Notice that this process depends crucially on the limiting metric \(d_\infty \) on \(M_\infty \). On the other hand, they made the following conjecture.

Conjecture 5.1 (Donaldson-Sun). Both \(W \) and \(C \) depend only on the algebraic structure of \(M_\infty \) near \(o \).

One goal of the project proposed in [Li15a] is to prove this conjecture. We observed in [Li15a, LX16] that \(\{F^\lambda \} \) comes from a valuation \(v_0 \). This is due to the fact that \(W \) is a normal variety since it degenerates to the normal variety \(C \). As mentioned in [HS16], this was implicit in [DS15] and [Don16]. More explicitly, by the work in [DS15], one can embed both \(X \) and \(C \) into a common ambient space \(C^N \), and \(v_0 \) on \(X \) is induced by the monomial valuation \(\text{wt}_{\xi_0} \) where \(\xi_0 \) is the linear holomorphic vector field with \(2\text{Im}(\xi_0) \) being the Reeb vector field of the Ricci flat Kähler cone metric on \(C \). By this construction, it is clear that the induced valuation by \(v_0 \) on \(W \) is nothing but \(\text{wt}_{\xi_0} \).
Here in this paper we also observe that \(v_0 \) is a quasi-monomial valuation. As mentioned in Lemma 2.11, this follows from a general fact due to Piltant ([Pil94], see [Tei03, Proposition 3.1]) that a valuation \(v_0 \) is quasi-monomial if and only if the associated graded ring has the same Krull dimension as \(\dim X \). See also Lemma 2.16 where the quasi-monomial property of \(wt_{v_0} \) on \(W \) and \(C \) is explained.

More importantly we conjectured in [Li15a] that \(v_0 \) can be characterized as the unique minimizer of \(\bar{\text{vol}}_{M_{\infty,0}} \). For now we can not prove this conjecture in the full strength, nevertheless, as a corollary of the theory developed in this paper (and its predecessors [Li15a, Li15b, Li16, LX16]), we can already prove Theorem 1.4 and confirm [DS15, Conjecture 3.22] for \(W \).

Proof of Theorem 1.4. By the above discussion, for any valuation \(v_0 \) as above, we already know that it is quasi-monomial and centered at \(o \in M_{\infty} \) and the induced valuation on \(W = \text{Spec}(gr_{v_0} R) \) is equal to \(wt_{\xi_0} \). By Theorem 5.5, we know that \((C, \xi_0) \) is K-semistable. By Lemma 3.7, we know that \((W, \xi_0) \) is K-semistable. By Theorem 1.3, \(v_0 \) is a minimizer of \(\bar{\text{vol}}_{M_{\infty,0}} \). By Theorem 1.1(3), \(v_0 \) is the unique minimizer of \(\bar{\text{vol}}_{M_{\infty,0}} \) among all quasi-monomial valuations in \(\text{Val}_{M_{\infty,0}} \), and it only depends on the algebraic structure of \(R \). Therefore \(W \) only depends on the algebraic structure of the germ \(o \in M_{\infty} \).

Remark 5.2. As mentioned in Remark 1.6, our theory also has implications on the canonicity of the metric tangent cone \(C \). This will be discussed in a future work [LWX17].

5.2 Minimizers from Ricci flat Kähler cone metrics

Let \((X, \xi_0)\) be a Fano cone singularity. Recall that this implies that \(X \) is a normal affine variety with at worst klt singularities. Moreover there is a good \(T \) action where \(T \cong (\mathbb{C}^\ast)^r \) and \(\xi_0 \in \mathfrak{t}_X^\ast \). On \(X \) there exists a \(T \)-equivariant nowhere-vanishing holomorphic \(m \)-pluricanonical form \(s \in \mathcal{O}(-mKX) \). Such holomorphic form can be solved uniquely up to a constant as in [MSY08, 2.7]. In the following, we will use the following volume form on \(X \):

\[
dV = \left(\sqrt{-1} \frac{\partial s}{\partial s} \right)^{1/m} \left(s \wedge \bar{s} \right)^{1/m}. \tag{51}
\]

We can assume that \((X, \xi_0)\) is equivariantly embedded into \((\mathbb{C}^N, \xi_0)\) with \(\xi_0 = \sum a_i \frac{dz_i}{\bar{z}_i} \) with \(a_i \in \mathbb{R}_{>0} \). Fix a reference cone metric on \(\mathbb{C}^N \) with the radius function given by:

\[
r^2 = \sum_{i=1}^N |z_i|^{2/a_i}.
\]

The corresponding Kähler cone metric on \(\mathbb{C}^N \) is equal to:

\[
\omega_{\mathbb{C}^N} = -i \sqrt{-1} \sum_{i=1}^N a_i^{-2} |z_i|^{2(a_i^{-1} - 1)} dz_i \wedge d\bar{z}_i.
\]

The restriction \(\omega_X := \omega_{\mathbb{C}^N} |_X \) is a Kähler cone metric on \(X \). Moreover \(2\text{Im}(\xi_0) = J(r \partial_r) \) is the Reeb vector field of \(\omega_{\mathbb{C}^N} \) and \(\omega_X \). For later purpose, we record following identities which can be verified directly:

\[
\xi_0(r^2) = \bar{\xi}_0(r^2) = r^2, \quad 2\text{Re}(\xi_0) = r \partial_r; \tag{52}
\]

\[
\frac{n \sqrt{-1} 2(\partial u) \wedge (\bar{\partial} v) \wedge (\sqrt{-1} \partial \bar{\partial} r)^{n-1}}{(\sqrt{-1} \partial \bar{\partial} r)^n} = \xi_0(u). \tag{53}
\]

Since \(T \) acts on \(X \), \(T \) also acts on the set of functions on \(X \) by \(\tau \circ f(x) = f(\tau^{-1} x) \) for any \(\tau \in T \) and \(x \in X \). For convenience, we introduce the following

Definition 5.3. Denote by \(\text{PSH}(X, \xi_0) \) the set of bounded real functions \(\varphi \) on \(X \) that satisfies:

1. \(\tau \circ \varphi = \varphi \) for any \(\tau \in T \);
2. \(r_\varphi^2 := r^2 e^\varphi \) is a proper strictly plurisubharmonic function on \(X \).
Definition 5.4. We say that $r_o^2 := r^2 e^\varphi$ where $\varphi \in PSH(X,\xi_0)$ is the radius function of a Ricci-flat Kähler cone metric on (X,ξ_0) if φ is smooth on X^{reg} and there exists a positive constant $C > 0$ such that

$$(\sqrt{-1}\partial\bar\partial r_o^2)^n = C \cdot dV.$$

(54)

Compared with the weak Kähler-Einstein case, it is expected that the regularity condition in the above definition is automatically satisfied. With this regularity assumption, on the regular part X^{reg}, both sides of (54) are smooth volume forms and we have $r_o \partial r_o = 2\text{Re}(\xi_0)$ or, equivalently, $0 = r_o \partial r_o - iJ(r_o \partial r_o)$. Moreover, taking $L_{r_o \partial r_o}$ on both sides gives us the identity $L_{r_o \partial r_o} dV = 2n dV$. Equivalently we have:

$$L_{\xi_0} s = mn \cdot s,$$

where $s \in \{| - mK_X| \}$ is the chosen T-equivariant non-vanishing holomorphic section. By Lemma 2.18, this implies $A_X(\omega(t)) = n$ (see [HS16, LL16] for this identity in the quasi-regular case). The main goal of this section is to give a proof of the following fact.

Theorem 5.5. If (X,ξ_0) admits a Ricci-flat Kähler cone metric, then $A_X(\xi_0) = n$ and (X,ξ_0) is K-semistable.

Remark 5.6. 1. In the case when X has isolated singularities at $o \in X$, this was proved in [CS12] using an approximation by rational elements in L^2 to reduce to the orbifold case studied in [RT11]. The proof given below for the general case is different and is a direct generalization of a corresponding proof in the usual Kähler case. We also depend heavily the calculations from [MSY08] which have also appeared in different forms in [CS15, DS15].

2. As already mentioned, after Berman’s work [Ber15], it is natural to expect that (X,ξ_0) should actually be K-polystable. Since this requires more technical arguments involving geodesic rays and we do not need this stronger conclusion in this paper, we will leave its verification in [LWX17].

As an immediate corollary, we can also verify that the volume density is equal to the normalized volume at any point on the Gromov-Hausdorff limit. In [HS16] Hein-Sun pointed out the relationship between these two quantities. Here the volume density of the limit metric space M_∞ at o is defined to be:

$$\Theta(M_\infty, o) = \lim_{r \to 0^+} \frac{\text{vol}(B(o,r))}{\omega_{2n} r^{2n}},$$

where $\omega_{2n} = \pi^n$ denotes the volume of the unit ball in the flat \mathbb{C}^n.

Corollary 5.7. Let $o \in M_\infty$ be a closed point. Then we have the identity:

$$n^n \cdot \Theta(M_\infty, o) = \text{vol}(M_\infty, o).$$

(55)

Proof. If (C, d_C) denotes the metric tangent cone of (M_∞, d_∞) at o, then by standard metric geometry it is known that

$$\Theta(M_\infty, o) = \Theta(C, o) = \frac{\text{vol}(B_C(o,1))}{\pi^n/n!}. $$

(56)

Let ξ_0 be the holomorphic vector field such that $2\text{Im}(\xi_0)$ is the Reeb vector field of the Ricci-flat Kähler cone metric $\sqrt{-1}\partial\bar\partial r_o^2$. Then we claim that

$$\text{vol}_C(\xi_0) = n^n \cdot \Theta(C, o).$$

(57)

As explained in [HS16, Appendix C] (see also [CS12, DS15]) we know that

$$\text{vol}_C(\xi_0) = \Theta(C, o).$$

(58)

By Theorem 5.5, $A_C(\xi_0) = n$. So we have $n^n \Theta(C, o) = \text{vol}(\xi_0) = \text{vol}(M_\infty, o)$, where the second identity is by Theorem 5.5 and Theorem 1.3. \qed
Remark 5.8. Both sides of (58) is equal to:

$$\frac{1}{n! (2\pi)^n} \int_C e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n = \frac{n!}{\pi^n} \text{vol} \{ x \in C ; r_\varphi \leq 1 \}, \quad (59)$$

where r_φ is the radius function for the Kähler cone metric on C.

The rest of this section is devoted to the proof of Theorem 5.5. Since $A_X(\xi_0) = n$ has been shown, we will focus on the second statement.

Now assume that $(X, \xi_0; \eta)$ is a special test configuration of X that is induced by a Kollár component. Because η commutes with ξ_0 and generates a \mathbb{C}^*-action, we can assume that $\eta = \sum b_i z_i \frac{\partial}{\partial z_i}$ with $b_i \in \mathbb{Z}$. The norm square of $\eta = \sum_{i=1}^N b_i z_i \frac{\partial}{\partial z_i}$ with respect to $\omega_{\mathbb{C}^N}$ is equal to:

$$|\eta|^2_{\omega_{\mathbb{C}^N}} = -\sqrt{-1} \omega_{\mathbb{C}^N}(\eta, \bar{\eta}) = \sum b_i^{-2} |z_i|^{2a_i^{-1}} |b_i|^2.$$

Let $\sigma(t) : \mathbb{C}^* \to \text{Aut}(\mathbb{C}^N)$ be the one-parameter subgroup generated by the vector field η. Then $\sigma(t)(z_i) = t^{b_i} z_i$ and thus

$$r(t)^2 := \sigma(t)^*(r^2) = r^2 \sum |t|^{2b_i/a_i} |z_i|^{2/a_i} = r^2 e^\varphi(t),$$

where the function $\varphi(t)$ is given by:

$$\varphi(t) = \log \left(\sum |t|^{2b_i/a_i} |z_i|^{2/a_i} \right) - \log \left(\sum |z_i|^{2/a_i} \right).$$

Notice that $\varphi(t)$ satisfies the condition $\xi_0(\varphi) = \bar{\xi}_0(\varphi) = 0$, which corresponds to the fact that $\varphi(t)$ descends to become a basic function on the link of (X, x).

Following [CS15], we consider the following cone version of Ding energy:

Definition 5.9. For any function $\varphi \in \text{PSH}(X, \xi_0)$, we define:

$$D(\varphi) = E(\varphi) - \frac{1}{n} \log \left(\int_X e^{-r^2} dV \right) =: E(\varphi) - G(\varphi), \quad (60)$$

where $E(\varphi)$ is defined by its variations:

$$\delta E(\varphi) \cdot \delta \varphi = -\frac{1}{n! (2\pi)^n \text{vol}_X(\xi_0)} \int_X (\delta \varphi) e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n. \quad (61)$$

By [CS15], $E(\varphi)$ is a well-defined function of φ. Moreover by calculating in the polar coordinate with respect to r_φ, one easily sees that $D(\varphi + c) = D(\varphi)$. The Euler-Lagrangian equation of $D(\varphi)$ is the equation of Ricci-flat Kähler cone metric in (54). The following lemma is a generalization of a well known fact in the regular case.

Lemma 5.10. $E(\varphi(t))$ is a concave function with respect to $s = -\log |t|^2 \in \mathbb{R}$.

Proof. We want to show that $\frac{d^2}{ds^2} E(\varphi) \leq 0$ for any $s \in \mathbb{R}$. By a change of variable, it’s clear that we just need to show this when $|t| = 1$ or equivalently when $s = 0$. Denoting $\bar{\varphi} = \frac{\partial}{\partial s} \varphi = \frac{\partial}{\partial (\log |t|^2)} \varphi(t)$, we calculate the second order derivative of $E(\varphi)$ with respect to $s \in \mathbb{R}$. For the simplicity of notation, we denote $C(n, \xi_0) = n! (2\pi)^n \text{vol}(\xi_0)$.

$$C(n, \xi_0) \frac{d^2}{ds^2} E(\varphi) \bigg|_{s=0} = -\frac{\partial}{\partial s} \int_X \bar{\varphi} e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n \bigg|_{s=0}$$

$$= -\int_X \left(\bar{\varphi} e^{-r^2} - \bar{\varphi}^2 r^2 \right) e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n$$

$$- \int_X \bar{\varphi} e^{-r^2} n(\sqrt{-1} \partial \bar{\partial} r^2)^{n-1} \quad (62)$$

42
To simplify the result, we use the identity $\partial_\nu (\dot{\varphi}) = 0$ to calculate:

$$- \int_X \dot{\varphi} e^{-r^2} n \sqrt{-1} \bar{\partial} (r^2 \dot{\varphi}) (\sqrt{-1} \bar{\partial} \partial r)^{n-1}$$

$$= \int_X n \sqrt{-1} \left[\bar{\partial} \varphi \wedge \partial (r^2 \dot{\varphi}) - \dot{\varphi} \partial (r^2) \wedge (\partial (r^2) \dot{\varphi}) \right] e^{-r^2} (\sqrt{-1} \bar{\partial} \partial r)^{n-1}$$

$$= \int_X n \sqrt{-1} \left[r^2 \dot{\varphi} \wedge \partial \varphi - \dot{\varphi} (\partial (r^2)) \wedge (\partial (r^2)) \right] e^{-r^2} (\sqrt{-1} \bar{\partial} \partial r)^{n-1}$$

$$= \int_X (r^2 |\partial \varphi|^2_{\omega, X} - r^2 \dot{\varphi}^2) e^{-r^2} (\sqrt{-1} \bar{\partial} \partial r)^n. \quad (63)$$

The integration by parts in the first identity is valid, because we have the following estimate, which can be derived from the invariance of $\dot{\varphi}$ under ∂_ν:

$$|\partial_\nu \dot{\varphi}|_{\omega, X} \leq |\partial_\nu \dot{\varphi}|_{\omega, C} \leq \frac{C}{r}.$$

Substituting (63) into (62), we get:

$$\left. \frac{d^2}{ds^2} E(\varphi) \right|_{s=0} = -C(n, \xi_0)^{-1} \int_X (\dot{\varphi} - r^2 |\partial \varphi|^2_{\omega, X}) e^{-r^2} (\sqrt{-1} \bar{\partial} \partial r)^n. \quad (64)$$

To see the negativity of $\frac{d^2 E}{ds^2}$, we can define a $(1,1)$-form on $X \times \mathbb{C}$ with respect to the variable (z, s) by the formula:

$$\Omega = \sqrt{-1} \bar{\partial} (r(t)^2) = \sqrt{-1} \bar{\partial} \left(r e^\varphi \right)$$

$$= \sqrt{-1} \left(\partial X \bar{\partial} X r(t)^2 + r(t)^2 (\dot{\varphi} + \varphi) dt \wedge d\bar{t} \right)$$

$$+ dt \wedge (\partial X r(t)^2 \dot{\varphi} + r(t)^2 \partial X \varphi) + (\partial X r(t)^2) \dot{\varphi} + r(t)^2 \partial X \varphi) \wedge d\bar{t}. \quad (67)$$

Because Ω is the pull back of positive $(1,1)$-form on \mathbb{C}^N under the holomorphic mapping $(p, t) \mapsto \sigma(t) \cdot s$, Ω itself is a smooth positive $(1, 1)$-form. Using identities (52)-(53), it’s easy to verify that (64) can be expressed as:

$$- \left. \frac{d^2}{ds^2} E(\varphi(s)) \right|_{s=0} = \frac{1}{C(n, \xi_0)(n+1)} \int_{X \times \mathbb{C}/\mathbb{C}} \Omega^{n+1} r(s)^{-2} e^{-r(s)^2} \geq 0. \quad (65)$$

The inequality is in the sense of positivity of currents. \hfill \square

Remark 5.11. As in the usual Kähler case, we could write the integrand in (64) more explicitly. We can decompose $\eta = \sum_i b_i z_i \partial z_i$ into transversal and radial components with respect to $\omega_{\mathbb{C}^N}$: $\eta = \eta' + \eta''$ such that η' and η'' satisfy:

$$\eta'' = \lambda \sum_i a_i z_i \partial z_i, \quad \omega_{\mathbb{C}^N} \left(\sum_i a_i z_i \partial z_i, \eta' \right) = 0. \quad (66)$$

If we denote $\eta' = \sum_i c_i z_i \partial z_i$, then it is easy to verify the expression for c_i:

$$c_i = b_i - a_i \sum_j a_j^{-1} b_j |z_j|^{2/a_j^{-1}} \sum_k |z_k|^{2/a_k}. \quad (67)$$

Moreover one can verify directly that:

$$\bar{\partial} \varphi|_{s=0} = \sum_i \frac{a_i^{-2} b_i |z_i|^{2/a_i}}{\sum_i |z_i|^{2/a_i}} = \frac{|\eta'|_{\omega_{\mathbb{C}^N}}^2}{r^2};$$

$$\partial \varphi|_{s=0} = \sum_i \frac{(-c_i) a_i^{-2} |z_i|^{2/a_i}}{\sum_i |z_i|^{2/a_i}} = \frac{\ell_{-\eta' \omega_{\mathbb{C}^N}}}{r^2},$$

and that:

$$\left. \frac{d^2}{ds^2} E(\varphi(s)) \right|_{s=0} = -\frac{1}{C(n, \xi_0)} \int_X \left(|\eta'|_{\omega_{\mathbb{C}^N}}^2 - \sqrt{-1} n \ell_{(-\eta') \omega_{\mathbb{C}^N} \wedge \ell_{(-\eta') \omega_{\mathbb{C}^N} \wedge \omega_{\mathbb{C}^N}}} \right) e^{-r^2}. \quad (68)$$
We claim this integral is non-positive. If \(X \) has isolated singularity at \(o \in X \) and we let \(\tilde{\eta}' \) the orthogonal projection of \(\eta \) to \(T(X \setminus \{o\}) \) with respect to \(\omega_{C^1} \), then because \(\eta' \) and \(\tilde{\eta}' \) vanishes at \(o \in X \), it’s easy to get:

\[
\frac{d^2 E(\varphi(s))}{ds^2} \bigg|_{s=0} = -\frac{1}{C(n, \xi)} \int_{X \setminus \{o\}} \left(|\eta'|^2_{\omega_{C^1}} - |\tilde{\eta}'|^2_{\omega_{C^1}} \right) r^{-2} e^{-r^2} \omega^N_X \leq 0. \tag{69}
\]

In general, we can pull back the integral to an embedded resolution of \(X \subset \mathbb{C}^N \) to see the positivity of the integrand.

Now let \(\xi_e = \xi - \epsilon \eta = \sum_i (a_i - eb_i) z_i \partial z_i \) and

\[
r^2_e := \sum_i |z_i|^2/(a_i - eb_i),
\]

We use the following identity expressing the volume of \(\text{wt}_{\xi_e} \) (see [MSY08, CS12, DS15, HS16]):

\[
\text{vol}_{X_0}(\xi_e) := \text{vol}_{X_0}(\text{wt}_{\xi_e}) = \frac{1}{(2\pi)^n n!} \int_{X_0} e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n. \tag{70}
\]

We need the following important formula due to Martelli-Sparks-Yau (see also [DS15])

Lemma 5.12 ([MSY08, Appendix C]). The first order derivative of \(\text{vol}_{X_0}(\xi_e) \) is given by the formula:

\[
\frac{d}{d\epsilon} \text{vol}(\xi) \bigg|_{\epsilon=0} = \frac{1}{(2\pi)^n n!} \int_{X_0} (r^2 \theta) e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n \]

\[
= \frac{1}{(2\pi)^n (n-1)!} \int_{X_0} \theta e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n, \tag{71}
\]

where \(\theta = \theta_\eta \) the following globally defined function on \(\mathbb{C}^N \setminus \{0\} \):

\[
\theta = \eta \left(\log r^2 \right) = \sum_i \frac{b_i}{a_i} |z_i|^{2/a_i} = \sum_i |z_i|^{2/a_i}. \tag{72}
\]

Since our notations may be different from that in the literature, for the reader’s convenience we provide a brief calculation.

Proof. Let \(\frac{d}{d\epsilon} \bigg|_{\epsilon=0} r^2 = r^2 u \). Then we have

\[
\frac{d}{d\epsilon} \bigg|_{\epsilon=0} \text{vol}_{X_0}(\xi_e) = \frac{1}{(2\pi)^n n!} \left(\int_{X_0} (-r^2 u) e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n \right.
\]

\[
+ \int_{X_0} e^{-r^2} n \sqrt{-1} \partial \bar{\partial} (r^2 u) \wedge (\sqrt{-1} \partial \bar{\partial} r^2)^{n-1} \bigg). \tag{73}
\]

To simplify the expression, we do the integration by parts:

\[
\int_{X_0} e^{-r^2} n \sqrt{-1} \partial \bar{\partial} (r^2 u) \wedge (\sqrt{-1} \partial \bar{\partial} r^2)^{n-1}
\]

\[
= \int_{X_0} n \sqrt{-1} \partial \bar{\partial} (r^2 u) \wedge (\sqrt{-1} \partial \bar{\partial} r^2)^{n-1}
\]

\[
= \int_{X_0} n \sqrt{-1} (2ru \partial r + r^2 \partial u) \wedge 2r \partial r \wedge (\sqrt{-1} \partial \bar{\partial} r^2)^{n-1}
\]

\[
= \int_{X_0} (r^2 u + r^3 \xi_0(u)) (\sqrt{-1} \partial \bar{\partial} r^2)^n. \tag{74}
\]

In the last identity, we have used (53) for \(v = r \) and \(v = u \) respectively. Now the key is to take the variation of the following identity:

\[
r^2_e = \xi_0(r^2_e)
\]

to get:

\[
r^2 u = -\eta(r^2) + \xi_0(r^2 u) = -\eta(r^2) + r^2 u + r^3 \xi_0(u), \tag{75}
\]

which implies \(r^3 \xi_0(u) = \eta(r^2) \). Combining this with (73)-(74), we get the first identity of (71). The second identity follows from the first one by using polar coordinate and the fact that \(\theta \) does not depend on \(r \). \(\square\)
Proposition 5.13. (see [CS15]) The limiting slope of $E(\varphi(s))$ is equal to the derivative of the volume up to a constant:

$$\lim_{s \to +\infty} \frac{d}{ds} E(\varphi(s)) = \frac{(D_n \text{vol})(\xi)}{n \cdot \text{vol}(\xi_0)}.$$ (76)

Proof. Let $\sigma(t)$ be the \mathbb{C}^*-action generated by $\eta = \sum b_i z_i \partial z_i$. Recall that we have $r(t)^2 = (\sigma^* r^2)|_{X}$, and $\dot{\varphi}$ is equal to:

$$\dot{\varphi}(t) = \sum \frac{-b_i |t|^{2b_i/a_i} |z_i|^{2/a_i}}{\sum_i |t|^{2b_i/a_i} |z_i|^{2/a_i}} = -\sigma(t)^* (\theta)$$ (77)

where θ is the function in (72). So we get the following identities:

$$\frac{d}{ds} E(\varphi(s)) = - \frac{1}{(2\pi)^n n! \text{vol}(\xi_0)} \int_X \dot{\varphi}(t) e^{-r(t)^2} (\sqrt{-1} \partial \bar{\partial} r(t))^n$$

$$= \frac{1}{(2\pi)^n n! \text{vol}(\xi_0)} \int_X \sigma(t)^* (\theta) e^{-\sigma^* (r^2)} (\sqrt{-1} \partial \bar{\partial} \sigma^* (r^2))^n$$

$$= \frac{1}{(2\pi)^n n! \text{vol}(\xi_0)} \int_{X_t} \dot{\varphi} e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n.$$ By using polar coordinate it’s easy to see that:

$$\int_{X_t} \dot{\varphi} e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n = C_n \cdot \int_{\{r \leq 1\} \cap X_t} \dot{\varphi} e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n,$$ (78)

where

$$C_n = \int_0^\infty e^{-r^2} r^{2n-2} dr = \frac{1}{1 - e^{-1} \sum_{i=0}^{n-1} 1/i!}.$$ Then using the boundedness of θ and the argument in [Li13] (see also [Ber15]), we get that:

$$\lim_{s \to +\infty} \int_{\{r \leq 1\} \cap X_t} \dot{\varphi} e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n = \int_{\{r \leq 1\} \cap X_t} \dot{\varphi} e^{-r^2} (\sqrt{-1} \partial \bar{\partial} r^2)^n.$$ (79)

Combining the above identities and (71), we get the equality. \hfill \Box

Next we need to deal with the part $G(\varphi(s))$:

$$G(\varphi(s)) = \frac{1}{n} \log \left(\int_X e^{-r(t)^2} dV \right).$$

The flat family $X \to \mathbb{C}$ has a \mathbb{C}^*-equivariant volume form $dV_{X/\mathbb{C}}$ such that $dV_{X/\mathbb{C}}|_{X_t}$ is a volume form on X_t. In the case when X is induced by a Kollár component which is the main case that we used in the main text, we have given an explicit description in Proposition 3.3. Moreover, by Remark 3.4, we have $L_\eta dV_{X/\mathbb{C}} = A(\eta) \cdot dV_{X/\mathbb{C}}$, which implies

$$\sigma(t)^* dV_{X/\mathbb{C}} = e^{A(\eta) \log |t|^2} \cdot dV_{X/\mathbb{C}}.$$ (80)

Then we have:

$$G(\varphi_t) = \frac{1}{n} \log \left(\int_X e^{-\sigma(t)^* r^2} (\sigma^* dV_{X_t}) e^{-A(\eta) \log |t|^2} \right)$$

$$= \frac{A(\eta)}{n} (- \log |t|^2) + \frac{1}{n} \log \left(\int_{X_t} e^{-r^2} dV_{X_t} \right)$$

$$= \frac{A(\eta)}{n} s + \tilde{G}(t),$$ (81)

where we have denoted

$$\tilde{G}(t) = \frac{1}{n} \log \left(\int_{X_t} e^{-r^2} dV_{X_t} \right).$$ (82)

We need the following variation of a result from [Li13]:
Lemma 5.14. The function $\tilde{G}(t)$ in (82) is a bounded continuous function with respect to $t \in \mathbb{C}$.

Proof. As in the proof of Proposition 5.13, we first transform the integration domain to a compact set. Because $\mathcal{L}_{\xi_0}dV_X = A(\xi_0)dV_X$, and $r\partial_r = 2\text{Re}(\xi_0)$, we also have $\mathcal{L}_{r\xi_0}dV_X = 2A(\xi_0)dV_X$. So it’s easy to verify that:

$$\int_{X_t} e^{-r^2}dV_X = C_n \cdot \int_{\{r \leq 1\} \cap X_t} e^{-r^2}dV_X,$$

(83)

Now on the part $X \cap \{(r \leq 1) \times \mathbb{C}\} \subset \mathbb{C}^N \times \mathbb{C}$, we can then use the same calculation as in [Li13] to get the conclusion.

Proposition 5.15 (see also [CS15]). If $A_X(\xi_0) = n$, then the asymptotic slope of the Ding energy is equal to the Futaki invariant of the special test configuration:

$$\lim_{s \to +\infty} \frac{D(\varphi(s))}{s} = \frac{\text{Fut}(X_0, \xi_0; \eta)}{n^{n+1} \cdot \text{vol}(\xi_0)}.$$

(84)

Proof. Combining (76) and (81), we get:

$$\lim_{s \to +\infty} \frac{D(\varphi(s))}{s} = \lim_{s \to +\infty} \frac{E(\varphi(s))}{s} - \lim_{s \to +\infty} \frac{G(\varphi(s))}{s} = \frac{(D-n\text{vol})(\xi_0)}{n \cdot \text{vol}(\xi_0)} - \frac{A(\eta)}{n} \frac{(D-n\text{vol})(\xi_0) + A(-\eta)\text{vol}(\xi_0)}{n \cdot \text{vol}(\xi_0)}.$$

On the other hand, using the assumption that $A_X(\xi_0) = A_{X_0}(\xi_0) = n$, we have

$$\text{Fut}(X_0, \xi_0; \eta) = (D-n\text{vol})X_0)(\xi_0) = A^2_{X_0}(\xi_0)(D-n\text{vol}X_0)(\xi_0) + nA_{X_0}(\xi_0)n^{-1}A_{X_0}(-\eta)\text{vol}X_0(\xi_0) = n^n((D-n\text{vol})(\xi_0) + A(-\eta)\text{vol}(\xi_0)) = n^n \cdot n \cdot \text{vol}(\xi_0) \cdot \lim_{s \to +\infty} \frac{D(\varphi(s))}{s}.$$

Now (84) follows from the above identity.

Finally we can complete the proof of Theorem 5.5.

Completion of the proof of Theorem 5.5. If there exists a Ricci-flat Kähler cone metric on (X, ξ), then the Ding energy $D(\varphi)$ is bounded from below. As pointed out in [DS15] this can be proved by following the same proof for the Kähler-Einstein case. Indeed, for any $\varphi \in \text{PSH}(X, \xi_0)$, we get transversal Kähler potential which is still denoted by φ. By using the same proof as in [Bern15, pp. 156-157], there exists a bounded geodesic φ_t connecting 0 and φ. On the other hand, adapting Berndtsson’s proof to the Sasakian case, Donaldson-Sun showed that $D(\varphi_t)$ is convex with respect to t. Because $\varphi_0 = 0$ is a critical point of $D(\varphi_t)$, one knows that $D(\varphi) \geq D(0)$.

Since $D(\varphi(s))$ is uniformly bounded from below, by (84), $\text{Fut}(X, \xi_0; \eta) \geq 0$. As this holds for any special test configuration induced by any Kollár component, we get the conclusion.

5.3 Finite degree formula

Now we can verify the degree multiplication formula in Theorem 1.7.

Proof of Theorem 1.7. We first assume π is a Galois covering with the Galois group G.

Let v_0 be the valuation defined in Section 5.1, which induces the degeneration of $(o \in M_\infty)$ to W. We can fix a sequence of $v_0 \to v_0$ such that v_i is a rescaling of Kollár component. Since the pull back of a Kollár component is a G-invariant Kollár component, we conclude
that we can pull back \(\nu_0 \) to get a \(G \)-invariant valuation \(\nu' \in \text{Val}_{Y,y} \). It suffices to prove \(\nu' \) is a minimizer of \(\text{vol} \) (see e.g., [LiuX17, Theorem 2.6]).

Since \(\nu' \) is \(G \)-invariant, \(\nu'(f) = \frac{1}{|G|} \nu'((\text{Nm}(f))) \), we know that the \(G \)-invariant element in \(R' \) whose valuation under \(\nu' \) is at least \(k \) is precisely the element in \(R \) whose valuation under \(\nu \) is at least \(k \), i.e., \((a_{\nu}/k)^G = (a_{\nu})_k \). In particular, \(\text{gr}_\nu R' \) is finitely generated as it is finite over \(\text{gr}_\nu R \). We denote by \(W_Y = \text{Spec}(\text{gr}_\nu R') \). Then \(\pi_W : W_Y \to W \) is quasi-étale with Galois group \(G \). In fact this is clear in the quasi-regular case, and in the general case, we can use Lemma 2.10 to reduce to the quasi-regular case. Furthermore, \(G \) commutes with the \(T \)-action on \(W_Y \) as it preserves the \(\nu \)-degree, and the vector associated to \(\nu' \) on \(W_Y \) is \(\pi^*(\xi_0) \), which is denoted by \(\xi'_0 \).

Consider the special test configuration \((W,\xi_0;\eta) \) which degenerates \((W,\xi_0) \) to \((C,\xi_0) \). Taking the finite normalization of \(W \) in the function field \(K(W_Y \times \mathbb{A}^1) \), we obtain a normal variety \(W \): \(W_Y \to W \) with the special fiber denoted by \(C_Y \), which is reduced as \(G \) acts on trivially on the base \(C^* \). Since \((W,C) \) is plt, it implies \((W_Y,C_Y) \) is plt. Therefore, \((W_Y,\xi'_0;\eta') \) is a special test configuration of \((W_Y,\xi'_0) \) to a Fano cone singularity \((C_Y,\xi'_0) \) which is a \(G \)-covering of \((C,\xi_0) \). The latter has a Ricci-flat Kähler cone metric (see [CCT02, DS15]) which can be pulled back to give such a metric on \((C_Y,\xi_0) \). More precisely, there exists a radius function \(r_{\varphi} = re^{\varphi/2} \) that is a solution to the Monge-Ampère equation (see (54))

\[
(\sqrt{-1}\partial\bar{\partial}r_{\varphi}^2)^n = C \cdot \left(\sqrt{-1}^{mn^2} s \wedge \bar{s} \right)^{1/m},
\]

where \(s \) is a \(T \)-equivariant non-vanishing holomorphic section of \(|mK_C| \). We can pull back both sides of (85) to \(C_Y \) and get a solution to the corresponding Monge-Ampère equation on \(C_Y \):

\[
(\sqrt{-1}\partial\bar{\partial}\pi^*(r_{\varphi}^2)) = C \cdot \left(\sqrt{-1}^{mn^2} (\pi^*s') \wedge (\pi^*\bar{s}') \right)^{1/m}.
\]

The identity holds in the sense of pluripotential theory. Moreover, because \(\pi \) is quasi-étale, it is easy to see that \(\pi^*(r_{\varphi}^2) \) is a Ricci-flat Kähler cone metric in the sense of Definition 5.4 and the associated Reeb vector field on the regular part of \(C_Y \) is nothing but \(2\text{Im}(\xi'_0) \). So by Theorem 5.5, \(\text{wt}_{\xi'_0} \) is indeed a minimizer of \(\text{vol}_{C_Y} \). Arguing in the proof of Theorem 1.4, we know that \(\nu' \) is indeed a minimizer of \(\text{vol} \).

Now we treat the case that \(\pi \) is a general quasi-étale morphism. Let \(\pi' : (Y',y') \to (M_\infty,o) \) be the Galois morphism generated by \(\pi \) which factors through \(\pi \) and denote its Galois group by \(G \). Then we know that the minimizer \(\nu' \) of \((Y',y') \) is \(G \)-invariant by the above discussion on the Galois case. Therefore it is also Galois\((Y'/Y') \)-invariant, which implies \(\text{vol}(y',Y') = \text{deg}(Y'/Y) \cdot \text{vol}(y,Y) \). So we conclude

\[
\text{vol}(Y,y) = \text{deg}(Y'/Y) \cdot \text{vol}(M_\infty,o),
\]

as \(\text{deg}(\pi) = |G|/ \text{deg}(Y'/Y) \).

\[\square\]

A Example: \(D_{k+1} \)-singularities

In this section, we verify that the candidate minimizers computed in [Li15a] for \(D_{k+1} \) singularities induced by monomial valuations on the ambient spaces are indeed the unique quasi-monomial minimizer of \(\text{vol} \), except possibly for the case of 4-dimensional \(D_4 \) singularity for which we can not confirm yet.

Example A.1. Consider the 3-dimensional \(D_{k+1} \) singularity for \(k \geq 4 \):

\[
o := \{0,0,0,0\} \in X = \{f(z_1,\ldots,z_4) = z_1z_2 + z_3z_4 + z_4^k = 0\}.
\]

\(X = \text{Spec} \mathbb{R} \) with \(R = \mathbb{C}[z_1,\ldots,z_4]/(f(z)) \). In [Li15a], we calculated the candidate minimizing valuation \(\nu_0 \) of \(\text{vol}_{X,x} \). \(\nu_0 \) is induced by the weight

\[
u_0 = (1,1,\sqrt{3} - 1,4 - 2\sqrt{3}).\]

47
We verify here that this is indeed a global minimizer of $\widehat{\text{vol}}_{X,x}$. First notice that the weight w_0 degenerates X to the following klt singularity:

$$X_0 = \{z_1z_2 + z_3^2z_4 = 0\}. \tag{87}$$

X_0 is called the suspended pinch point in [MSY06]. It is a toric singularity. Indeed it admits an effective action by $T = (\mathbb{C}^*)^3$ given by:

$$(t_1, t_2, t_3) \circ (z_1, \ldots, z_4) = (t_1z_1, t_2z_2, t_3z_3, t_1t_2t_3^{-2}z_4).$$

It is easy to see that the polyhedral cone σ and its dual (moment cone) σ^\vee are given by:

$$\sigma = \text{Span}\left\{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \right\};$$

$$\sigma^\vee = \text{Span}\left\{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \right\}.$$

Moreover, it was known that there exists a Sasaki-Einstein metric on X_0 and its Reeb vector field can be calculated explicitly (see [MSY06]). Here we can calculate the Reeb vector field using the above combinatorial data. $J(r_0) = 2\text{Im}(\xi_0)$ where the holomorphic vector field ξ_0 corresponds to an element $\xi_0 \in t_2^* \mathbb{Z}$ which satisfies two conditions: (i) $A_X(\xi_0) = 3$, (ii) ξ_0 minimizes $\text{vol}(\xi)$ among all $\xi \in t_2^* \mathbb{Z}$. Notice that X_0 is a Gorenstein singularity and $A(\xi) = \langle v_0, \xi \rangle$ with $v_0 = (1, 1, -1)$. By using the \mathbb{Z}_2 symmetry of the cones, it’s elementary to get the unique minimizer

$$\xi_0 = \left(\frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2}, \sqrt{3}\right). \tag{88}$$

Now the weight corresponding to ξ_0 on the (z_1, \ldots, z_4) is equal to:

$$\left(\frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2}, \sqrt{3}, 3 - \sqrt{3}\right) = \frac{3 + \sqrt{3}}{2} \left(1, 1, \sqrt{3} - 1, 4 - 2\sqrt{3}\right) = \frac{3 + \sqrt{3}}{2} w_0. \tag{89}$$

So w_0 is indeed a global minimizer of $\widehat{\text{vol}}_{X,x}$.

Example A.2. Consider the 4-dimensional D_{k+1} singularity for $k \geq 4$:

$$X = \{z_1z_2 + z_3^2 + z_4^2z_5 + z_5^k = 0\}.$$

The candidate minimizing valuation calculated in [Li15a] is induced by the following weight:

$$w_0 = \left(1, 1, -\frac{3 + \sqrt{33}}{4}, -\frac{7 - \sqrt{33}}{2}\right).$$

The weight w_0 degenerates X to the non-isolated singularity:

$$X_0 = \{z_1z_2 + z_3^2 + z_4^2z_5 = 0\}.$$

We observe that X_0 is a T-variety of complexity one. $T = (\mathbb{C}^*)^3$ acts by:

$$t \cdot z = (t_1z_1, t_1^{-1}t_2^2z_2, t_2z_3, t_3z_4, t_2^2t_3^{-2}z_5).$$

We want to show that (X_0, ξ_0) is K-semistable by using the theory of T-varieties as has been used in [CS15] which is based on the study of T-equivariant special test configurations in [IS17]. Notice that because we have been studying the question purely algebraically, we can indeed deal with K-semistability of general (non-isolated) klt singularities like X_0.

Using the process in [AH06, Section 11], we can write down the polyhedral divisor determining X_0. First we write down the polyhedral divisor for \mathbb{C}^5 as the T-variety. Following [AH06], for the above T-action, we have the exact sequence:

$$0 \to N_1 := \mathbb{Z}^3 \xrightarrow{F} N_2 := \mathbb{Z}^5 \xrightarrow{p} N_3 := \mathbb{Z}^2 \to 0,$$ \tag{90}
where F and P are given by the following matrices:

$$
F = \begin{pmatrix}
1 & 0 & 0 \\
-1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 2 & -2
\end{pmatrix}, \quad P = \begin{pmatrix}
-1 & -1 & 0 & 2 & 1 \\
-1 & -1 & 2 & 0 & 0
\end{pmatrix}
$$

(91)

We then find $s : N_2 \to N_1$ satisfying $s \circ F = \text{id}_{N_1}$. s can be chosen simply to be:

$$
s = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{pmatrix}.
$$

(92)

The generic fibre of $\mathbb{C}^5 \to Y_{\text{toric}}$ is the toric variety associated to the following cone:

$$
\sigma = s(\mathbb{Q}^5_{\geq 0} \cap F(\mathbb{Q}^2)) = \{x \geq 0, y \geq 0, z \geq 0, -x + 2y \geq 0, y - z \geq 0\}
$$

$$
= \text{Span}_{\mathbb{R}^\geq_0} \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}.
$$

The dual cone σ^\vee is given by:

$$
\sigma^\vee = \text{Span}_{\mathbb{R}^\leq_0} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}
$$

$$
= \{y \geq 0, 2x + y \geq 0, 2x + y + z \geq 0, y + z \geq 0\}.
$$

The base of Y_{toric} of \mathbb{C}^5 as the T-variety is given by the toric variety associated to the fan cut out by the column vectors of P. So it's clear that $Y_{\text{toric}} = \mathbb{P}^2$. The associated polyhedral divisor, denoted by

$$
\mathcal{D} = \Delta_{(1,0)} \otimes \{w_0 = 0\} + \Delta_{(0,1)} \otimes \{w_1 = 0\} + \Delta_{(-1,-1)} \otimes \{w_2 = 0\},
$$

(93)

can be calculated using the recipe from [AH06]:

$$
\Delta_{(1,0)} = s(\mathbb{Q}^5_{\geq 0} \cap P^{-1}(1,0)) = \{x \geq 0, y \geq 0, z \geq 0, -x + 2y \geq 0, 2y - 2z + 1 \geq 0\}
$$

$$
= \{(0,0,t); 0 \leq t \leq 1/2\} + \sigma =: \Delta_0
$$

$$
\Delta_{(0,1)} = s(\mathbb{Q}^5_{\geq 0} \cap P^{-1}(0,1)) = \{x \geq 0, y \geq 0, z \geq 0, -x + 2y - 1 \geq 0, 2y - 2z - 1 \geq 0\}
$$

$$
= \{(0,t,0); 0 \leq t \leq 1/2\} + \sigma =: \Delta_1
$$

$$
\Delta_{(-1,-1)} = s(\mathbb{Q}^5_{\geq 0} \cap P^{-1}(-1,-1)) = \{x \geq 0, y \geq 0, z \geq 0, -x + 2y + 1 \geq 0, 2y - 2z \geq 0\}
$$

$$
= \{(t,0,0); 0 \leq t \leq 1\} + \sigma =: \Delta_2.
$$

Notice that Δ_0 and Δ_1 are non-integral while Δ_2 is integral. Now the base Y of X is the normalization of the closure of image of $X \cap (\mathbb{C}^*)^5$ in Y_{toric}. The map $(\mathbb{C}^*)^5 \to (\mathbb{C}^*)^2$ is induced by the ring homomorphism $\mathbb{C}[N_5^\vee] \to \mathbb{C}[N_2^\vee]$ and hence is given under the coordinate by:

$$
(\mathbb{C}^*)^5 \to (\mathbb{C}^*)^2, \quad (z_1, z_2, z_3, z_4, z_5) = \left(\frac{z_1^2 z_5}{z_2}, \frac{z_2^2}{z_1 z_2}\right).
$$

So Y is given by

$$
Y = \{w_0 + w_1 + w_2 = 0\} \cong \mathbb{P}^1.
$$

We can restrict $\mathcal{D}_{\text{toric}}$ to Y and thus obtain a proper polyhedral divisor for the T-variety X:

$$
\mathcal{D} = \Delta_0 \otimes \{0\} + \Delta_1 \otimes \{1\} + \Delta_\infty \otimes \{\infty\}.
$$

By the argument in [IS17], one knows that normal test configurations are determined by a triple (q,v,m) where $q \in \mathbb{P}^1$, v is a vertex of $\sigma \cap (N_1)_Q$ and $m \in \mathbb{Z}$ and they need to satisfy
Theorem A.3. \([AIPSV12] \) K. Altmann, N.O. Ilten, L. Petersen, H. Süss and R. Vollmert, The geometry by \(w \)
\([AH06] \) K. Altmann and J. Hausen, Polyhedral divisors and algebraic torus actions, \textit{Math. Ann.} \textbf{224}, Issue 3 (2006) 557-607.

\[\Delta_{p}(u) = \min_{v \in \Delta_{p}} \langle u, v \rangle \]

is non-integral. In the current example, if we choose \(u = (0, 1, -1) \in \sigma^{1} \cap N_{1}^{1} \) then
\[\Delta_{0}(u) = -\frac{1}{2}, \quad \Delta_{1}(u) = \frac{1}{2}. \]

So to get a normal test configuration, by the admissibility condition we are forced to choose either \(q = 0 \) or \(q = 1 \). On the other hand, the data \((v, m) \) only changes the action and does not change the total space of the test configuration. We can now easily guess the special test configurations whose special fibres are given by
\[X_{0}' = \{ z_{1}z_{2} + z_{3}^{2} = 0 \} = \mathbb{C}^{2}/\mathbb{Z}_{2} \times \mathbb{C}^{2}; \]
\[X_{0}'' = \{ z_{1}z_{2} + z_{4}z_{5} = 0 \} = \tilde{X}^{3}. \]

Here, \(\tilde{X}^{3} \) is the 3-dimensional suspended pinch point that appeared in (87). One can verify by the same calculation in \([Li15a] \) or \([CS15] \) that these two special test configurations have positive Futaki invariants. So we conclude that \((X_{0}, \xi_{0}) \) is K-semistable and hence \(v_{0} \) induced by \(v_{0} \) is indeed a global minimizer of \(\Delta_{v} \).

Theorem A.3. For any \((n+1)\)-dimensional \(D_{k+1} \) singularity, except for 4-dimensional \(D_{4} \) singularity, we know its unique quasi-monomial minimizer.

In fact, combining the above examples with the calculations in \([Li15a] \) and the arguments in \([LX16] \), we have the following almost complete picture:

1. \(n+1 = 2 \), then \(X \cong \{ z_{1}^{2} + z_{2}^{2}z_{3} + z_{4}^{2} = 0 \} = \mathbb{C}^{2}/D_{k+1} \) where \(D_{k+1} \) is the \((k+1) \)-th binary dihedral group. By \([LL16] \), the valuation \(v_{0} \) induced by the weight \((1, 1 - \frac{1}{k+2}, \frac{k}{k+2}) \) is a global minimizer of \(\Delta_{v} \).

2. \(n+1 = 3 \), \(k = 3 \). \(X = \{ z_{1}z_{2} + z_{3}^{2}z_{4} + z_{5}^{2} = 0 \} \) is a \(T \)-variety of complexity one with an isolated singularity. By \([CS15] \), \(X \) admits a quasi-regular Ricci flat Kähler cone metric whose Reeb vector field up to rescaling is associated to the natural weight \((1, 1, 2, 3, 2, 3)\).

3. \(n+1 = 4 \), \(k = 3 \). In this case, we expect that \(X \) admits a quasi-regular Ricci-flat Kähler cone metric whose Reeb vector field is associated to the natural weight \((1, 1, 1, 2, 3, 2, 3)\).

4. \(n+1 = 5 \), \(k = 3 \). \(X = \{ z_{1}z_{2} + z_{3}^{2} + z_{4}^{2} + z_{5}^{2}z_{6} + z_{7}^{2} = 0 \} \). The minimizer \(v_{0} \) is induced by the weight \(w_{0} = (1, 1, 1, 2, 3, 2, 3) \) which preserves \(X \). \(X \) is strictly semistable because it specially degenerates to \(X' = \{ z_{1}z_{2} + z_{3}^{2} + z_{4}^{2} = 0 \} \cong A_{1}^{1} \times \mathbb{C}^{2} \) with zero Futaki invariant.

5. \(n+1 = 3 \) or \(4 \), and \(k \geq 4 \). These are the examples considered above. The minimizers found are quasi-monomial valuations of rational rank 3.

6. \(n+1 = 5 \) and \(k \geq 4 \). The minimizer \(v_{0} \) is induced by the weight \(w_{0} = (1, 1, 1, 2, 3, 2, 3) \).

\(w_{0} \) specially degenerates \(X \) to \(X_{0} = \{ z_{1}z_{2} + z_{3}^{2} + z_{4}^{2} + z_{5}^{2}z_{6} = 0 \} \) which is strictly semistable since \(X_{0} \) further degenerates to \(X' = \{ z_{1}z_{2} + z_{3}^{2} + z_{4}^{2} = 0 \} \cong A_{1}^{1} \times \mathbb{C}^{2} \) with zero Futaki invariant.

7. \(n+1 \geq 6 \) and \(k \geq 3 \). The minimizer \(v_{0} \) is induced by \(w_{0} = \left(1, \ldots, 1, \frac{n-2}{n-1}, \frac{n-4}{n-3} \right) \). \(w_{0} \) degenerates \(X \) to \(\{ z_{1}^{2} + \cdots + z_{n}^{2} = 0 \} = A_{1}^{n-1} \times \mathbb{C}^{2} \).

References

[AH06] K. Altmann and J. Hausen, Polyhedral divisors and algebraic torus actions, \textit{Math. Ann.} \textbf{224}, Issue 3 (2006) 557-607.

[AIPSV12] K. Altmann, N.O. Ilten, L. Petersen, H. Süss and R. Vollmert, The geometry of \(T \)-varieties. \textit{Contributions to algebraic geometry}, 17–69, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012.
[Amb06] F. Ambro, The set of toric minimal log discrepancies, *Cent. Eur. J. Math.* 4 (2006), no. 3, 358-370.

[Ber15] R. Berman, K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics, *Invent. Math.*, 203 (2015), no. 3, 973-1025.

[Bern15] B. Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and the Bando-Mabuchi uniqueness theorem, *Invent. Math.* (2015) 200: 149-200.

[BEGZ] R. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, to appear in *J. Reine Angew. Math.*, arXiv:1111.7158.

[BCHM10] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, *J. Amer. Math. Soc.* 23 (2010), 405-468.

[Blu16] H. Blum, Existence of Valuations with Smallest Normalized Volume. arXiv:1606.08894.

[BJ17] H. Blum, M. Jonsson. Thresholds, valuations, and K-stability, arXiv:1706.04548.

[BFJ14] S. Boucksom, C. Favre and M. Jonsson, A refinement of Izumi’s theorem. *Valuation theory in interaction*, 55-81, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014.

[BHJ15] S. Boucksom, T. Hisamoto and M. Jonsson, Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, arXiv:1504.06568.

[CC97] J. Cheeger, T.H. Colding, On the structure of spaces with Ricci curvature bounded below. I. *J. Differential Geom.* Vol. 46, No. 3, (1997), 406-480.

[CCT02] J. Cheeger, T.H. Colding and G. Tian, On the singularities of spaces with bounded Ricci curvature. *Geom. Funct. Anal.* 12, no.5 (2002) 873-914.

[CD14] X.X. Chen, S. K. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds, I-III, *J. Amer. Math. Soc.* 28 (2015), 183-197, 199-234, 235-278.

[CS12] T. Collins and G. Székelyhidi, K-semistability for irregular Sasakian manifolds, to appear in *J. Differential Geom.*, arXiv:1204.2230.

[CS15] T. Collins and G. Székelyhidi, Sasaki-Einstein metrics and K-stability. arXiv:1512.07213.

[Cut12] S.D. Cutkosky, Multiplicities associated to graded families of ideals. *Algebra Number Theory* 7 (2013), no. 9, 2059-2083. arXiv:1206.4077.

[dFKX17] T. de Fernex, J. Kollár and C. Xu, The dual complex of singularities. Higher dimensional algebraic geometry, 103-130, Adv. Stud. in Pure Math., 74, 2017.

[Don01] S. Donaldson, Scalar curvature and projective embeddings. I. *J. Differential Geom.* 59 (2001), no. 3, 479–522.

[Don16] S. Donaldson, Kähler-Einstein metrics and algebraic structures on limit spaces, arXiv:1603.08444.

[DS14] S. Donaldson and S. Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. *Acta Math.* 213 (2014), no. 1, 63–106.

[DS15] S. Donaldson and S. Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II, to appear in *J. Differential Geom.*, arXiv:1507.05082.

[ELS03] L. Ein, R. Lazarsfeld and K. Smith, Uniform approximation of Abhyankar valuation ideals in smooth function fields, *Amer. J. of Math.*, 125 (2003), no. 2, 409-440.

[Fuj15] K. Fujita, Optimal bounds for the volumes of Kähler-Einstein Fano manifolds, to appear in *Amer. J. Math*.

[Ful98] W. Fulton, Intersection theory. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2. Springer-Verlag, Berlin, 1998.

[Fu83] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, *Invent. Math.*, 43, 437-443 (1983)

[Gig78] S. Gigena, Integral invariants of convex cones, *J. Differential Geom.*, 13 (1978), 191-222.
[HMX14] C. Hacon, J. Mckernan and C. Xu, ACC for log canonical thresholds, *Annals of Math.* 180 (2014), no. 2, 523-571.

[HS16] H.-J. Hein and S. Sun, Calabi-Yau manifolds with isolated conical singularities, to appear in *Publ. Math. IHES*, arXiv:1607.02940.

[IS17] N. Ilten and H. Süss, K-stability for Fano manifolds with torus action of complexity 1, *Duke Math. J.* 166, No. 1, 2017.

[Ish04] S. Ishii, Extremal functions and prime blow-ups. *Comm. Algebra* 32 (2004), no. 3, 819-827.

[JM12] M. Jonsson and M. Mustaţă, Valuations and asymptotic invariants for sequences of ideals, *Ann. Inst. Fourier (Grenoble)* 62 (2012), no. 6, 2145-2209.

[KK12] K. Kaveh and A. Khovanskii, Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, *Ann. of Math.* 176 (2012), 925-978.

[KK14] K. Kaveh and A. Khovanskii, Convex bodies and multiplicities of ideals. Proceedings of the Steklov Institute of Mathematics, 2014, Vol. 286, 268-284.

[KM98] J. Kollár and S. Mori, Birational geometry of algebraic varieties, *Cambridge Tracts in Math.* 134, Cambridge Univ. Press, Cambridge, 1998.

[Kol13] J. Kollár, Singularities of the Minimal Model Program, *Cambridge Tracts in Math.* 200, Cambridge Univ. Press, Cambridge, 2013.

[LM09] R. Lazarsfeld and M. Mustaţă, Convex bodies associated to linear series, *Ann. Sci. Éc. Norm. Supér.* 42 (2009), no. 5, 783-835.

[Li13] C. Li, Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds. To appear in *J. Reine Angew. Math.*, arXiv:1302.6681.

[Li15a] C. Li, Minimizing normalized volumes of valuations. arXiv:1511.08164.

[Li15b] C. Li, K-semistability is equivariant volume minimization, to appear in *Duke Math. Journal*, arXiv:1512.07205.

[Liu16] Y. Liu, The volume of singular Kähler-Einstein Fano varieties, arXiv:1605.01034.

[LL16] C. Li and Y. Liu, Kähler-Einstein metrics and volume minimization, arXiv:1602.05094.

[LS13] A. Liendo and H. Süss, Normal singularities with torus actions, *Tohoku Mathematical Journal*, Second Series, 65 (2013), no. 1, 105-130.

[LWX14] C. Li, X. Wang and C. Xu, On proper moduli space of smoothable Kähler-Einstein Fano varieties, arXiv:1411.0761v3.

[LWX17] C. Li, X. Wang and C. Xu, Equivariant degeneration of K-semistable Fano cone singularities, in preparation.

[LX14] C. Li and C. Xu, Special test configurations and K-stability of Fano varieties, *Ann. of Math.* (2) 180 (2014), no.1, 197-232.

[LX16] C. Li and C. Xu, Stability of valuations and Kollár components, arXiv:1604.05398.

[Liu17] Y. Liu and C. Xu, K-stability of cubic threefolds, arXiv:1706.01933.

[MN15] J. Nicaise and M. Mustaţă, Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton, *Algebraic Geometry* 2 (3) (2015) 365–404.

[MSY06] D. Martelli, J. Sparks and S.-T. Yau, The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds, *Commun. Math. Phy.* 268 (2006), 39-65.

[MSY08] D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, *Commu. Math. Phys.* 280 (2008), 611-673.

[Mus02] M. Mustaţă, On multiplicities of graded sequences of ideals, *Journal of Algebra* 256 (2002), 229-249.

[NX16] J. Nicaise and C. Xu, The essential skeleton of a degeneration of algebraic varieties, *Amer. J. Math.* 138 (2016), No. 6, 1645-1667.

[Oko96] A. Okounkov, Brunn-Minkowski inequality for multiplicities, *Invent. Math.* 125 (1996), 405-411.

[PS08] L. Petersen and H. Süss, Torus invariant divisors, *Israel J. Math.* 182 (2011), 481-504.
[RT11] J. Ross and R. Thomas, Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics. *J. Differential Geom.* 88 (2011), no. 1, 109–159.

[Pil94] O. Piltant, Graded algebras associated with a valuation, preprint Ecole Polytechnique.

[SS17] C. Spotti and S. Sun, Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds, arXiv:1705.00377.

[SSY16] C. Spotti, S. Sun and C. Yao, Existence and deformations of Kähler-Einstein metrics on smoothable \mathbb{Q}-Fano varieties, *Duke Math. J.* 165 (2016), no. 16, 3043–3083.

[Tei03] B. Teissier, Valuations, deformations, and toric geometry. *Valuation theory and its applications, Vol. II* (Saskatoon, SK, 1999), 361–459, Fields Inst. Commun., 33, Amer. Math. Soc., Providence, RI, 2003.

[Tei14] B. Teissier, Overweight deformations of affine toric varieties and local uniformization, arXiv:1401.5204.

[Tev14] J. Tevelev, On a Question of Teissier, *Collect. Math.*, 65, no. 1 (2014), 61-66.

[Tia90] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class. *Invent. Math.* 101 (1990), 101-172.

[Tia97] G. Tian, Kähler-Einstein metrics with positive scalar curvature. *Invent. math.* 137 (1997), 1-37.

[Tia12] G. Tian, Existence of Einstein metrics on Fano manifolds, in *Metric and Differential Geometry*, Progr. Math., 297, pp. 119-159. Birkhäuser/Springer, Basel, 2012.

[Tia13] G. Tian, Partial C^0-estimate for Kähler-Einstein metrics, *Commun. Math. Stat.* 1 (2013), no. 2, 105–113.

[Tia15] G. Tian, K-stability and Kähler-Einstein metrics, *Comm. Pure App. Math.*, 68 (2015), Issue 7, 1085-1156.

[Xu14] C. Xu, Finiteness of algebraic fundamental groups, *Compos. Math.* 150 (2014), no. 3, 409-414.

[ZS60] O. Zariski and P. Samuel, *Commutative Algebra II, Grad. Texts in Math.*, Vol. 29, Springer-Verlag, New York, 1960.