Nuclear Spin Relaxation Rate of Disordered $p_x + ip_y$-wave Superconductors

Qiang Han1,2 and Z. D. Wang1,4

1Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China and
2Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

(Dated: November 21, 2018)

Based on an effective Hamiltonian with the binary alloy disorder model defined in the triangular lattice, the impurity scattering effects on the density of states and especially on the spin-lattice relaxation rate $1/T_1$ of $p_x + ip_y$-wave superconductors are studied by solving numerically the Bogoliubov-de Gennes equations. In the clean limit, the coherence peak of $1/T_1$ is observed as expected. More intriguingly, for strong scattering potential, the temperature dependence of $1/T_1$ exhibits the two different power law behaviors near T_c and at low temperatures, respectively, which is in good agreement with the nuclear quadrupolar resonance measurement.

PACS numbers: 74.20.Rp, 74.25.Jb, 74.25.Nf

The novel superconductor, Na$_x$CoO$_2$$\cdotyH_2$O ($x = 0.35$), recently discovered by Takada et al.1 has stimulated much theoretical and experimental interest in studying its spin and orbital symmetries of the Cooper pairs, which helps to explore and understand the underlying superconducting mechanism of this new material. At present this issue is hotly debated and there still exist controversies both theoretically and experimentally. Resonating valence bond theories2 describe Na$_x$CoO$_2$$\cdotyH_2$O as an electron-doped Mott insulator based on the fact that the Co$^{2+}$ atoms has spin-$1/2$ as Cu$^{2+}$ in high-T_c cuprates. Such theories prefer the spin-singlet d-wave pairing (d$_{x^2-y^2}$). On the other hand, theories based on the NN bond pairing potential $\Delta_{ij} = 2\Delta_p$ have been proposed the singlet pairing although both examined the effect of disorder on the nuclear spin relaxation rate of the $p_x \pm ip_y$-wave superconductor for the first time. Our results indicate that the seemingly incompatible experimental observations of the temperature dependence of $1/T_1$ may be reconciled within the picture of the disordered chiral $p_x + ip_y$-wave pairing state if the effect of impurities is properly considered.

Here we employ a mean-field Bogoliubov-de Gennes (BdG) Hamiltonian on a tight-binding triangular lattice with the nearest-neighbor (NN) hopping integral t and the NN bond pairing potential Δ_{ij} resulting from the effective attractive interaction V. The model Hamiltonian12 is expressed as

$$H_{\text{eff}} = -\sum_{i,j,\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + \sum_{i,\sigma} (\epsilon_i - \mu) c_{i\sigma}^\dagger c_{i\sigma} + \sum_{(i,j)} \left[\Delta_{ij} (c_{i\uparrow}^\dagger c_{j\downarrow} + c_{i\downarrow}^\dagger c_{j\uparrow}) + \text{h.c.} \right],$$ \hspace{1cm} (1)

where $t_{ij} = t$ is the NN hopping integral and in the remainder of this paper, we choose $t < 0$ according to the analysis on the band calculation13 and the energies will be measured in unit of $|t|$. μ is the chemical potential. Here, we adopt the binary alloy disorder model14 where ϵ_i is the δ-function-like scalar scattering potential and takes the value U_0 on certain lattice sites according to the impurity concentration n_{imp} and zero elsewhere. The spin-triplet pairing potential Δ_{ij} is defined as $\Delta_{ij} = \frac{V}{2} (\langle c_{i\uparrow} c_{j\downarrow} \rangle + \langle c_{i\downarrow}^\dagger c_{j\uparrow} \rangle)$. Note that only the d_z component of the spin-triplet pairing is considered here in view of the experimental indication that the d vector is parallel to z-axis according to the invariant behavior of the Knight shift for the in-plane magnetic field.15 In the homogenous case, the $p_x + ip_y$-wave pairing state is expressed as

$$\Delta_{p_x + ip_y}(k) = 2\Delta_p \left[\sin(k_x) + \sin(k_x/2) \cos(\sqrt{3}k_y/2) + i\sqrt{3} \cos(k_x/2) \sin(\sqrt{3}k_y/2) \right],$$ \hspace{1cm} (2)
where \(\Delta_p = \frac{1}{\Omega} \sum_{i, \delta} \Delta_{i+\delta} e^{-i\delta(\beta)} \) with \(i + \delta \) the six NN sites of \(i \). By applying the self-consistent mean-field approximation and performing the Bogoliubov transformation, diagonalization of the Hamiltonian \(H_{\text{eff}} \) can be achieved by solving the following BdG equations:

\[
\sum_j \left(\begin{array}{c} H_{ij} \\
-\Delta_{ij}^* - H^*_{ij} \end{array} \right) \left(\begin{array}{c} u^n_j \\
v^n_j \end{array} \right) = E_n \left(\begin{array}{c} u^n_j \\
v^n_j \end{array} \right)
\]

where \(u^n, v^n \) are the Bogoliubov quasiparticle amplitudes with corresponding eigenvalue \(E_n \). \(H_{ij} = -t_{ij} + \delta_{ij}(\epsilon_i - \mu) \). \(\Delta_{ij} \) is calculated according to:

\[
\Delta_{ij} = \frac{1}{\Omega} \sum_n (\rho^n_i v^n_j + u^n_j^* v^n_i^*) \tanh(\frac{E}{2k_BT}).
\]

Throughout this work, we set \(V = 2.3 \) and \(\mu = 1.0 \) which gives rise to \(\Delta_p = 0.12 \) and the electron number per site is 1.39 in the absence of disorder. Due to the vanishingly small anisotropic factor of the \(p_x + ip_y \)-wave pairing \([15] \), there is one \(s \)-wave-like full gap opened at approximately \(\Delta_{\text{Gap}} \approx 0.4 \) (see Fig. 1 for the clean limit).

Once the self-consistent quasiparticle spectrum is obtained, the nuclear spin relaxation rate is calculated according to \([16] \):

\[
R(i, j) = \text{Im} \chi_{\omega} \rightarrow+i(\omega+i0^+) / (\Omega/T)|_{\Omega \rightarrow 0} = \pi \int \int [\rho_{i1}(E)\rho_{j2}^*(-E') - \rho_{i2}(E)\rho_{j1}^*(-E')] \times f(E)[1 - f(E')]|\delta(E - E')| dEdE',
\]

\[
R(i, i) = -\pi T \int_{-\infty}^{\infty} \rho_{i1}(E)\rho_{i2}^*(-E) f(E) dE \tag{5}
\]

where \(\rho_{i,j}(E) \) is expressed as

\[
\begin{pmatrix}
\rho_{i1}(E) \\
\rho_{i2}(E)
\end{pmatrix} = \sum_n \begin{pmatrix} u^n_i u^n_j \\
v^n_i v^n_j \end{pmatrix} \delta(E - E_n).
\]

For the unconventional pairing, the contributions from the off-diagonal elements \(\rho_{12} \) and \(\rho_{21} \) are absent in Eq. (5) due to the pairing symmetry which forbids the on-site pairing amplitude \([13] \). The local density of states (DOS) is calculated according to

\[
\rho(i, E) = 2\rho_{i1}^*(E) = 2\rho_{22}^*(E).
\]

To numerically investigate the disorder effect on the electronic structure and accordingly the nuclear spin relaxation rate in the 2D system, for certain impurity content \(n_{\text{imp}} \), typical DOS and \(1/T_1 \) are obtained by averaging over 20 impurity configurations with the size of the supercell \(20 \times 20 \) and 100 wave vectors in the supercell Brillouin zone \([14] \). For each impurity configuration, self-consistent bond pairing potential \(\Delta_{ij} \) is obtained with the maximum relative error between two consecutive iteration steps is less than \(10^{-3} \). In this work, assuming that \(1/T_1(i) \) is determined by the on-site \(R(i, i) \) with ignoring the minor contributions from neighboring sites \(R(i, i + \delta) \), we have the impurity-averaged \(1/T_1 = \frac{1}{T_1(i)} \)

and \(\rho(E) = \rho(i, E) \), where \(\langle \ldots \rangle \) denotes averaging over space and impurity configurations.

In Fig. 1, we illustrate the dependence of the disorder-averaged DOS on the impurity content \(n_{\text{imp}} \) and the scattering strength \(U_0 \). The set of curves display clearly (1) the shrinking (and even vanishing) of the energy gap (2) the smearing and decreasing of the coherence peak as \(n_{\text{imp}} \) and \(U_0 \) increase. As \(n_{\text{imp}} \) increases from 0 to 2% and 5% for the fixed \(U_0 = 2 \), the gap is filled from the gap edge, resulting in a reduced effective gap. And when \(U_0 = 10 \) for \(n_{\text{imp}} = 5% \), strictly speaking the energy gap is closed with finite \(\rho(E) \) as \(E \rightarrow 0 \) (although the DOS lump around \(\Delta_{\text{Gap}} \) can still be identified) and the residual DOS at the Fermi level is as large as 60% of the normal state value. The large residual DOS in the superconducting state is consistent with the experimental study of specific heat \([17] \), indicating the importance of inhomogeneity in this material. In the inset of Fig. 1, we give \(\Delta_p(T) \) in the clean limit, \(n_{\text{imp}} = 2\% \), \(U_0 = 2 \), \(n_{\text{imp}} = 5\% \), \(U_0 = 2 \) and \(n_{\text{imp}} = 5\% \), \(U_0 = 10 \), showing that both the order parameter and the transition temperature are reduced and the decrease of \(\Delta_p \) as \(T \rightarrow T_c \) is also not so sharp in the disordered cases as in the dilute limit. These behaviors are in consistence with the pair breaking effect of non-magnetic impurities in unconventional superconductors.

The evolution of the density of states originates from the impurities, and depends on their content as well as strength. For the weak scalar scatterer with \(U_0 = 2 \) (corresponds to \(c_s \approx 0.5 \) according to Ref. \([14] \)), there are two
peaks of the local DOS around an isolated impurity near the gap edge with energies $\omega_b/\Delta_{\text{Gap}} \simeq \pm 0.89$ highlighting the presence of impurity bound state in the unconventional $p_x + ip_y$-wave superconductor \[13\] in remarkable contrast to the conventional s-wave superconductors although both are fully gapped. And for strong potential such as $U_0 = 10$ (corresponds to $c_s \simeq 2.5$), we have $\omega_b/\Delta_{\text{Gap}} \simeq \pm 0.37$. For finite impurity density, to look into the closure of the energy gap induced by the impurities, we study the impurity-averaged self-energy of the quasiparticle, which is determined by the self-consistent equations \[20\] \[21\]:

$$G(k, i\omega_n) = [i\omega_n - \xi(k)\sigma_z - \Delta_{p_x}\sigma_x - \Delta_{p_y}\sigma_y]$$

(7)

$$\Sigma(i\omega_n) = n_{\text{imp}} U_0^{-1} \int d^2k/(2\pi)^2 G(k, i\omega_n)$$

(8)

where $i\omega_n = \omega_n - \Sigma(i\omega_n)$. Δ_{p_x} and Δ_{p_y} are real and imaginary parts of Eq. 2, respectively. $\xi(k)$ is the normal state quasiparticle energy and $g(i\omega_n) = \int d^2k/(2\pi)^2 G(k, i\omega_n)$. For the weak scatterers $U_0^{-1} \gg g(i\omega_n)$, the scattering rate γ (determined by $\Sigma(\omega \rightarrow 0) = -i\gamma$) is $\gamma = \sqrt{(\pi N_0 n_{\text{imp}} U_0^2)^2 - \Delta_{\text{Gap}}^2}$, where N_0 is the normal density of states per spin at the Fermi level. Therefore, the impurity parameter $n_{\text{imp}} U_0^2$ must be larger than $\Delta_{\text{Gap}}(T)/\pi N_0$ to entirely close the gap, i.e. $\gamma \neq 0$ is real. This effect of disorders for the $p_x + ip_y$-wave pairing is significantly different from that for the high-T_c nodal $d_{x^2-y^2}$-wave pairing. In the d-wave pairing, infinitesimal $n_{\text{imp}} U_0^2$ gives rise to finite density of states at the Fermi level. In the strong scattering limit, $U_0^{-1} \ll g(i\omega_n)$, we obtain $\gamma = \sqrt{n_{\text{imp}} \Delta_{\text{Gap}}^2/\pi N_0}$, which is the same as the result of d-wave superconductors with unitary impurities \[22\] \[23\]. The above discussion qualitatively explain what we illustrate in Fig. 1.

The impurity effect on DOS is manifested by the variation of NMR relaxation according to Eq. 3. First, we address the temperature dependence of $1/T_1$ in the absence of disorder (clean limit). When $n_{\text{imp}} = 0$, the $1/\sqrt{E^2 - \Delta_{\text{Gap}}^2}$ divergence of the DOS $\rho(E)$ at the gap edge Δ_{Gap} will lead to the Hebel-Slichter coherence peak of $1/T_1$ just below T_c as shown in Fig. 2 although the jump of the peak is much lower than that of the s-wave pairing because the coherence factor changes from $1 + \Delta_{\text{Gap}}^2/E^2$ in the s-wave case to 1 in the $p_x + ip_y$-wave case. Furthermore, when $T \ll T_c$ and $\Delta_{\text{Gap}} \gg T$, $1/T_1$ of both the s- and $p_x + ip_y$-wave pairing states shows the behavior of $e^{-\Delta_{\text{Gap}}/T}$ due to their fully gapped nature. Also shown in Fig. 2 is the behavior of $1/T_1$ of the gapless p_x-wave pairing state for comparison. As for the nodal p_x-wave pairing [real part of Eq. 2], the slower logarithmic divergent of $\rho(E)$ and the halved coherent factor result in much suppressed coherence peak and in the low temperature region $\rho(E) \propto E$ gives rise to the T^3 dependence of the nuclear spin relaxation rate as shown in the figure.

Figure 3 shows the nuclear spin relaxation rate when the impurity scattering is present. Two typical results are compared with the experimental data \[10\]. As expected, the coherence peak of $1/T_1$ disappears for both the weak and strong scattering cases, in accord with the finding.
that small concentration of impurities is able to smear the sharp divergence of the DOS near the gap edge. For strong disorders with $U_0 = 10$, our results of $1/T_1$ as a function of temperature indicate a $T^{-1.1}$ dependence at the low temperature region and a T^{2-1} relation near T_c, being consistent with the results of an approximate constant $\rho(E)$ near zero energy as shown in Fig. 1. More importantly, these results are in good agreement with the experimental observation of Ref. 10. On the other hand, the study of weak disorders with $U_0 = 2$ exhibits that $1/T_1$ first drops with a T^n ($n \approx 3$) law at the vicinity of T_c and then exponentially similar to its behavior in the clean limit showing a downward curvature. The occurrence of the exponential behavior is due to the opening of the energy gap at certain temperature T_1 for the weak scatterers. And T_1 is governed by the solution of $\Delta_{\text{Gap}}(T_1) = \pi N_0 n_{\text{imp}} U_0^2$, which results in $T_1/T_c \simeq 0.8$ for $U_0 = 2$ and $n_{\text{imp}} = 5\%$. According to this, one will have a power-law dependence of $1/T_1$ down to lower temperature region by simply increasing the impurity content n_{imp}.

In summary, we have for the first time elucidated the disorder effects on the electronic structure and nuclear spin relaxation rate of the $p_x + ip_y$-wave pairing state, which is closely relevant to the new superconductor $\text{Na}_{0.35}\text{CoO}_2\cdot y\text{H}_2\text{O}$. The experimentally observed temperature dependence of $1/T_1$ is explained satisfactorily. It is also interesting to compare the present results with those for another layered superconductor Sr_2RuO_4 with a possible $p_x + ip_y$-wave pairing symmetry. We found that the gap in $\text{Na}_{0.35}\text{CoO}_2\cdot y\text{H}_2\text{O}$ is highly isotropic in the triangular lattice, while the gap in Sr_2RuO_4 with the proposed $p_x + ip_y$-wave pairing is strongly anisotropic. Therefore, we predict that future $1/T_1$ measurements on high-quality samples of $\text{Na}_{0.35}\text{CoO}_2\cdot y\text{H}_2\text{O}$ may observe both the coherence peak and the exponential dependence on temperature, in contrast to the T^3 behavior of $1/T_1$ in the significantly anisotropic Sr_2RuO_4 even if both are in the hypothetical $p_x + ip_y$-wave pairing states.

On the other hand, as far as the DOS-related physical quantities, such as $1/T_1$, are concerned, there should be no qualitative differences between the $p_x + ip_y$-wave pairing and the $d + id'$-wave pairing state in the sense that they are both fully-gapped and have similar response to impurities. Therefore, more definitive experimental measurements of the Knight shift are demanded to determine the symmetry of the spin part of the Cooper pair wave function. Moreover, the muon-spin-relaxation measurement, which is sensitive to the time-reversal-symmetry breaking effect in the $p_x + ip_y$- and $d + id'$-wave pairing states, and the phase-sensitive Josephson-tunnelling related experiments can give more decisive evidences to distinguish the gapped pairing states from the nodal ones, such as the p_x and $d_{x^2-y^2}$ waves. The scanning tunnelling microscopy experiments are also able to shed light on the pairing symmetry by examining the energy and spatial pattern of the impurity and vortex states.

We thank Y. Chen, J.-X. Li, X.-G. Li, and Q.-H. Wang for helpful discussions. We appreciate G.-q. Zheng for his sending us the preprint of Ref. 10. The work was supported by the RGC grant of Hong Kong under Grant Nos. HKU7092/01P and HKU7075/03P, the NSFC under Grant No. 10204019, and the 973-project of the Ministry of Science and Technology of China under Grant No. G1999064602.

* Electronic address: zwang@hkucc.hku.hk

1. K. Takada et al., Nature 422, 53 (2003).
2. P. W. Anderson, Science 235, 1196 (1987).
3. G. Baskaran, cond-mat/0303572.
4. B. Kumar and B. S. Shastry, cond-mat/0304210
5. Q.-H. Wang, D.-H. Lee, and P. A. Lee, cond-mat/0304377.
6. A. Tanaka and X. Hu, cond-mat/0304409.
7. Y. Kobayashi, M. Yokoi, and M. Sato, cond-mat/0305649.
8. T. Waki et al., cond-mat/0306036.
9. Y. Kobayashi, M. Yokoi, and M. Sato, cond-mat/0306264.
10. T. Fujimoto et al., cond-mat/0307127.
11. L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).
12. J.-X. Zhu and C. S. Ting, Phys. Rev. Lett. 87, 147002 (2001); Q. Han et al., cond-mat/0306408.
13. D. J. Singh, cond-mat/0304533.
14. W. A. Atkinson et al., Phys. Rev. Lett. 85, 3922; ibid. 85, 3926 (2000).
15. We find that for k on the Fermi surface, the gap anisotropy $\Delta_{p_x+ip_y}(k)^{\max}/\Delta_{p_x+ip_y}(k)^{\min}$ varies from 1.08 (for 0.2 electron doping) to 1.02 (for 0.4 electron doping) for $t < 0$.
16. R. Leodon and H. Suhl, Phys. Rev. 165, 596 (1968).
17. B. G. Ueland, et al., cond-mat/0307106.
18. M. Matsumoto, J. Phys. Soc. Jpn. 70, 2505 (2001).
19. Q.-H. Wang and Z. D. Wang, cond-mat/0305152.
20. C. Pethick and D. Pines, Phys. Rev. Lett. 57, 118 (1986).
21. P. J. Hirschfeld, P. Wolfe, and D. Einzel, Phys. Rev. B 37, 83 (1998).
22. P. J. Hirschfeld, and N. Goldenfeld, Phys. Rev. B 48, 4219 (1993).
23. A. V. Balatsky, A. Rosengren, and B. L. Altshuler, Phys. Rev. Lett. 73, 720 (1994).
24. K. Miyake and O. Narikiyo, Phys. Rev. Lett. 83, 1423 (1999).
25. K. Ishida, et al., Phys. Rev. Lett. 84, 5387 (2000).
26. G. M. Luke et al., Nature (London) 394, 558 (1998).
27. C. C. Tsuei et al., Phys. Rev. Lett. 73, 593 (1994).
28. S. H. Pan et al., Nature (London) 413, 282 (2001).
29. J.-X. Zhu and A. V. Balatsky, cond-mat/0306253.