A Method for Solving the Three-dimensional Wave Equation

A. S. Yakimov

Tomsk State University, Tomsk, 634034, Russia
*Corresponding Author: yakimovas@mail.ru

Abstract On the basis of the Laplace integral transform, locally one-dimensional scheme of cleavage and quasi-linearization method to obtain an approximate analytical solution of the three-dimensional nonlinear hyperbolic equation of second order. The assessment of the accuracy of analytical formulas when compared with the exact solution of the first boundary value problem and numerical solution by a known method.

Keywords Analytical Solution, Three-dimensional Telegraph Equation, Laplace Integral Transform

1. Introduction

In mathematical modeling of heat and mass transfer [1], the heat transfer in high-frequency processes [2], vibrations [3] and so on. there is a problem the solution of telegraph type an equation [1-3]. If the solution of a nonlinear parabolic equation [1] there are a number of analytical techniques (reviewed in [4]), the exact analytical solutions are obtained for the linear one-dimensional (in the absence of a source) [5,6] or multi-dimensional [3] an equation of the telegraph type. However, in practice most often of interest to the solution of nonlinear boundary-value problems [1-4,7].

For one-dimensional solutions of nonlinear ordinary differential equations in [8] proposed a method of quasi-linearization. With this method, a decision along the nonlinear problem is reduced to solving a sequence of linear problems, which is essentially a development of the well-known Newton’s method and its generalized variant proposed by L. V. Kantorovich [9]. Otherwise, the quasi-linearization – is the application of a nonlinear functional generated by the nonlinear boundary value problem, the Newton-Kantorovich.

In the numerical solution of problems of mathematical physics were effective splitting methods [10,11]. In particular, the locally one-dimensional scheme cleavage [10] proposed to solve the multi-dimensional heat equation in combination with the analytical (constant coefficients) and numerical methods.

The purpose of article – with the help of the locally one-dimensional scheme splitting [11], quasi-linearization [8,9] and the Laplace integral transform [12] to find an approximate analytical solution of the nonlinear three-dimensional hyperbolic heat conduction equation in a finite region and to assess the accuracy of analytical formulas.

2. Statement of the Problem and the Algorithm of Method

Suppose you want to find a solution to a hyperbolic equation of the second order [1,3], with sources

\[z^{-1} \frac{\partial^2 T}{\partial t^2} + C(T) \frac{\partial T}{\partial t} = \sum_{j=1}^{3} \left[\frac{\partial}{\partial x_j} \left[A(T) \frac{\partial T}{\partial x_j} \right] + Y_j(T) \frac{\partial T}{\partial x_j} \right] + A(T) T^4 + A_0(x,t) \] (1)

in the parallelepiped \(Q: [x = (x_1, x_2, x_3), 0 < x_j < L_j, 0 < L_j < \infty, j = 1, 2, 3] \), \(\bar{Q} = Q + \Gamma \), \(\bar{Q} = \bar{Q} \times [0 < t \leq t_f] \), \(\Gamma \) – boundary surface of the domain \(Q \) with initial conditions

\[T|_{t=0} = p_i(x), \quad \frac{\partial T}{\partial t}|_{t=0} = p_2(x), \quad x = (x_1, x_2, x_3) \] (2)

and to simplify further calculations with the boundary condition of the first kind

\[T|_{\Gamma} = \Psi, \quad \Psi \neq \text{const}, \] (3)

where \(A_i = \text{const}, \quad z = c^2 / A_n, \quad Y_j = C(T) w_j(T), \quad j = 1, 2, 3, c – \text{the speed of propagation of thermal perturbations (speed of sound in the medium), m/s; } \quad w_j(T), \quad j = 1, 2, 3 – \text{the rate of convective heat transfer, m/s; } \quad C(T) – \text{the coefficient of volumetric heat capacity, J/(m}^3 \cdot \text{K}); \quad (A(T) \]
– the thermal conductivity, \(A_n\) – the thermal conductivity at the initial temperature, \(W/(m\cdot K)\); \(T\) – the temperature, \(K\); \(\chi_j, j = 1, 2, 3\) – axis of the Descartes coordinate system, \(m\); \(t\) – time, \(s\); \(L_j, j = 1, 2, 3\) – length of the sides of the parallelepiped, \(m\).

According to [1], the equation (1) is obtained assuming that \(C(T), Y_j(T), j = 1, 2, 3\) do not explicitly depend on time \(t\) and \(w_j << 1\) m/s, \(j = 1, 2, 3\) disregard mixed derivative \(\sum_{j=1}^{3} w_j \frac{\partial^2 T}{\partial x_j^2}\) as compared \(\frac{\partial^2 T}{\partial t^2}\) to the left of equation (1). Furthermore, in equation (1) on the right side are absent form mixed derivatives \(\sum_{j=1}^{3} \frac{\partial}{\partial x_j} \left(A(T) \frac{\partial T}{\partial x_j} \right)\) and summand \(- \tau_r \left(\frac{\partial A_2}{\partial t} \right), \tau_r = \chi / \varepsilon^2\) (\(\tau_r\) – relaxation time, \(\chi\) – coefficient thermal diffusivity \(m^2/s\)), whose value for the times considered below: \(t > 100 \times \tau_r\) (\(\tau_r \approx 10^{-9} s\) is negligible.

We will always assume:

1. Problem (1) – (3) has a unique solution \(T(x,t)\), which continuously in \(\Omega\) and has continuous derivatives \(\partial T / \partial t, \partial^2 T / \partial t^2, \partial T / \partial x_j, \partial^2 T / \partial x_j^2\) \(j = 1, 2, 3, 2\).

Performed following conditions: \(A(T) \geq l_1 > 0\), \(C(T) \geq l_2 > 0\), \(z \geq l_3 > 0\), \(l_i = \text{const} i = 1, 2, 3, \) \(p_1, p_2\) – set to continuous function in \(\Omega\) \(, C, A, Y_j, \) \(A_2, j = 1, 2, 3\) – continuous functions in \(\partial \Omega\). The coefficients \(C(T), Y_j(T), j = 1, 2, 3\) in the general case can be non-linearly dependent on the solution of problem [1, 3]. View \(A(T)\) is defined by the following formula (16); \(\Psi\) – given continuous function on the boundary \(\Gamma\) for \(0 < t \leq t_0\), having bounded partial derivatives of the first order.

Applicable the locally one-dimensional scheme splitting of the equations (1) – (3) on the differential level [11] and introduce the superscripts (1), (2), (3) to denote the solution of the intermediate stages, as well as \(\xi\) there is the direction of wave decision and \(\eta\) there is direction the solution of the parabolic part equation (1). Then we have

\[\frac{z^{-1} \frac{\partial^2 T_j^{(1)}}{\partial t^2}}{\partial x_j} = \frac{\partial}{\partial x_j} \left[A(T_j) \frac{\partial T_j^{(1)}}{\partial x_j} \right] + \xi \sigma_1 A_2, \]

\[0 < t < t_*, \]

\[T_j^{(1)} \bigg|_{x=0} = p_j(x), \quad \frac{\partial T_j^{(1)}}{\partial t} \bigg|_{t=0} = p_2(x), \quad 0 < x_j < L_j, \]

\[j = 1, 2, 3, \]

\[T_j^{(1)} \bigg|_{x=L_j} = G_j(t_*, x_j, x_j), \]

\[C(T_j^{(1)}) \frac{\partial T_j^{(1)}}{\partial t} = \eta \frac{\partial}{\partial x_j} \left[A(T_j) \frac{\partial T_j^{(1)}}{\partial x_j} \right] + Y_j(T_j^{(1)}) \frac{\partial T_j^{(1)}}{\partial x_j} + \sigma_1 [A(T_j^{(1)})^k + \eta A_2], \]

\[0 < t < t_*, \]

\[T_j^{(1)}(0, x) = T_j^{(1)}(t_*, x), \quad T_j^{(1)} \bigg|_{x=0} = G_1, \]

\[T_j^{(1)}(0, x) = T_j^{(1)}(t_*, x), \quad \frac{\partial T_j^{(2)}}{\partial t} = \frac{\partial T_j^{(1)}}{\partial t}, \]

\[T_j^{(2)} \bigg|_{x=0} = T_j^{(1)}(t_*, x), \]

\[T_j^{(2)} \bigg|_{x=L_j} = Q_j(t_*, x_j, x_j), \]

\[C(T_j^{(2)}) \frac{\partial T_j^{(2)}}{\partial t} = \eta \frac{\partial}{\partial x_j} \left[A(T_j) \frac{\partial T_j^{(2)}}{\partial x_j} \right] + Y_j(T_j^{(2)}) \frac{\partial T_j^{(2)}}{\partial x_j} + \sigma_1 [A(T_j^{(2)})^k + \eta A_2], \]

\[0 < t < t_*, \]

\[T_j^{(2)}(0, x) = T_j^{(2)}(t_*, x), \quad \frac{\partial T_j^{(3)}}{\partial t} = \frac{\partial T_j^{(2)}}{\partial t}, \]

\[T_j^{(3)} \bigg|_{x=0} = T_j^{(2)}(t_*, x), \]

\[T_j^{(3)} \bigg|_{x=L_j} = Q_j(t_*, x_j, x_j), \]

\[0 < t < t_*, \]
\[T^{(3)}_{\xi}\Big|_{x_{\xi}=0} = D_{1}(t_{*},x_{1},x_{2}), \]

\[T^{(3)}_{\xi}\Big|_{x_{\xi}=L_{3}} = D_{2}(t_{*},x_{1},x_{2},L_{3}), \quad (13) \]

\[C(T^{(3)}_{\xi}) \frac{\partial T^{(3)}_{\xi}}{\partial t} = \eta \frac{\partial}{\partial x_{3}} \left[A(T^{(3)}_{\xi}) \frac{\partial T^{(3)}_{\xi}}{\partial x_{3}} \right] \]

\[+ \frac{\partial T^{(3)}_{\xi}}{\partial x_{3}} + Y_{j}(T^{(3)}_{\xi}) \]

\[+ \sigma_{3}[A(T^{(3)}_{\eta})^{k} + \eta A_{2}]_{0}, \quad 0 < t < t_{*}, \]

\[T^{(3)}_{\eta}(0,x) = T^{(3)}_{\xi}(t_{*},x), \quad T^{(3)}_{\eta}\Big|_{x_{\eta}=0} = D_{1}, \]

\[T^{(3)}_{\eta}\Big|_{x_{\eta}=L_{3}} = D_{2}, \quad (15) \]

where \(\xi + \eta = 1, \sigma_{1} + \sigma_{2} + \sigma_{3} = 1 \). When \(C(T) \neq 0 \) solved the system of equations (4) – (15) for the telegraph equation: the presence of friction (conductive medium). When \(C(T) = 0, A_{1} = 0, \eta = 0 \) solved the system of equations (4), (5), (8), (9), (12), (13) for the wave equation: the lack of friction (decaying environment). Indexes: \(n \) – the initial value, \(* \) – characteristic value, \(0 \) at the bottom – the ultimate value, \(n \) – value of relaxation, \(\xi \) – bottom part of the wave equation (1), \(\eta \) – below the parabolic component of the equation (1).

We are talking about the next model, for example, the conductive-convective heat transfer for the hyperbolic heat equation at \(A_{1} = A_{2} = 0 \). First, in the first stage is turned off by the conductive-convective heat balance coordinate directions \(x_{2}, x_{3} \), that is consider the problem (4) – (7). Then at \(t = t_{*} \) we get a temperature distribution \(T^{(1)}(t_{*},x) \). Taking her by the initialing, turn off the conductive-convective heat transfer on directions \(x_{1}, x_{3} \) and solve the problem (8) – (11), then at \(t = t_{*} \) we have the distribution \(T^{(2)}(t_{*},x) \). We take it for an initial temperature, turn off the conductive-convective heat transfer on directions \(x_{1}, x_{2} \) and consider the problem (12) – (15). Then in moment \(t = t_{*} \) we finally get the temperature \(T^{(3)}(t_{*},x) \), which coincides with the true value \(T(t_{*},x) \).

According to this model, the process the conductive-convective heat transfer "stretched" in time and takes place during the time of the gap \(3t_{*} \) [10], and instead \(t_{*} \). Such an approach to solve multi-dimensional equations of partial differential equations with constant coefficients is proposed and justified in [10,11]. For the wave equation (\(C(T) = 0, A_{1} = 0, \eta = 0 \)) are excluded by the coordinate directions \(x_{1}, x_{2}, x_{3} \) – wave velocity, shear elasticity of the medium and so on.

But before that, to the system (4) – (15) must apply Kirchhoff transformation [4] and quasi-linearization [8,9] to obtain the differential equations with constant coefficients, which can be solved with Laplace integral transform [12].

In the future, to use the inversion formula \(A(T) \) in (1) taken in the form

\[A(T) = N T^{m}, m \geq 0, \quad N > 0, \quad N = \text{const.}, \quad (16) \]

We use Kirchhoff transformation [4]

\[v = \int_{0}^{T} \frac{A(T)}{A_{n}} dT. \quad (17) \]

Then, taking into account the relations [4]:

\[\nabla A = \frac{\partial A}{\partial T} \nabla T, \quad \frac{\partial v}{\partial t} = \frac{A}{A_{n}} \frac{\partial T}{\partial t}, \quad \nabla v = \frac{A}{A_{n}} \nabla T, \quad (18) \]

get out (4) – (18)

\[v = T^{*} / \phi, \quad \phi = s A_{n} / N, s = m + 1, \quad (19) \]

\[b \frac{\partial}{\partial t} \left(A_{n} \frac{\partial v^{(1)}}{\partial t} \right) = \frac{\partial^{2} v^{(1)}}{\partial x_{1}^{2}} + \sigma_{2} a_{2}, \quad 0 < t < t_{*}, \quad (20) \]

\[T^{(1)}_{\xi}(0,x) = p_{1}(x), \quad \frac{\partial T^{(1)}_{\xi}}{\partial t}|_{t=0} = p_{2}(x), \quad 0 < x_{j} < L_{j}, j = 1, 2, 3, \quad (21) \]

\[v^{(1)}_{\xi}|_{x_{\xi}=0} = g_{1}, \quad v^{(1)}_{\eta}|_{x_{\eta}=0} = g_{2}, \quad (22) \]

\[c_{1} \frac{\partial v^{(1)}_{\eta}}{\partial t} = \frac{\partial^{2} v^{(1)}_{\xi}}{\partial x_{1}^{2}} + r_{1} \frac{\partial v^{(1)}_{\eta}}{\partial x_{1}} + \sigma_{1} a_{1}(T^{(1)}_{\eta})^{k} + a_{2}, \quad 0 < t < t_{*}, \quad (23) \]

\[v^{(1)}_{\eta}(0,x) = v^{(1)}_{\xi}(t_{*},x), \quad v^{(1)}_{\eta}|_{x_{\eta}=0} = g_{1}, \quad v^{(1)}_{\eta}|_{x_{\eta}=L_{3}} = g_{2}; \quad (24) \]

\[b \frac{\partial}{\partial t} \left(A_{n} \frac{\partial v^{(2)}}{\partial t} \right) = \frac{\partial^{2} v^{(2)}}{\partial x_{2}^{2}} + \sigma_{2} a_{2}, \quad 0 < t < t_{*}, \quad (25) \]

\[T^{(2)}_{\xi}(0,x) = T^{(1)}_{\eta}(t_{*},x), \quad \frac{\partial T^{(2)}_{\xi}(0,x)}{\partial t} = \frac{\partial T^{(1)}(t_{*},x)}{\partial t}, \]

\[v^{(2)}_{\xi}|_{x_{\xi}=0} = q_{1}, \quad v^{(2)}_{\eta}|_{x_{\eta}=L_{3}} = q_{2}, \]

\[c_{2} \frac{\partial v^{(2)}_{\eta}}{\partial t} = \frac{\partial^{2} v^{(2)}_{\xi}}{\partial x_{2}^{2}} + r_{2} \frac{\partial v^{(2)}_{\eta}}{\partial x_{2}} + \sigma_{1} a_{1}(T^{(2)}_{\eta})^{k} + a_{2}, \quad 0 < t < t_{*}, \quad (25) \]
and space)
$$
\frac{\partial^2 v_{n+1}}{\partial y^2} = f + (v_n - v_n') \frac{\partial f}{\partial v_n} + (v_n' - v_{n+1}) \frac{\partial f}{\partial v_n'} +
$$
$$
(v_{n+1} - v_{n+1}) \frac{\partial f}{\partial v_n'},
$$
(29)

where y there is the any coordinate from x_j, $j = 1, 2, 3$ in (29). Then for $y = x_1$ the rest coordinates in (29) $0 < x_j < L_j, j = 2, 3$ change parametrically. The remaining coordinates the preparation of expressions (29) and (30) occurs circular replacement index if instead substitute y respectively x_2, x_3. Note that in solving the three-dimensional boundary value problem (20) – (26), while in the first coordinate x_1 in the direction of an initial iteration acts v_n, the subsequent iteration v_{n+1} is obtained from the final expression $v_{n+1}(t, x) = \psi(t, x)$ [see comment below to formulas (56) – (61)]. Then in a quasi-one dimension of equation (29), (30) can be rewritten in the coordinate x_1 [7]:
$$
\frac{\partial^2 \psi^{(1)}}{\partial x_1^2} = f_1 + (\psi^{(0)} - \psi^{(0)}) \frac{\partial f_1}{\partial \psi^{(0)}} + (\psi^{(1)} - \psi^{(0)}) \frac{\partial f_1}{\partial \psi^{(0)}} +
$$
$$
+ (\psi^{(0)} - \psi^{(0)}) \frac{\partial f_1}{\partial \psi^{(0)}}
$$
(31)

Expressions similar to (29), (30) can be written in other coordinate directions x_2, x_3. In particular, the second coordinate direction x_2 is necessary in (31), (32) everywhere to replace the top and bottom indexes (1) and 1 on (2) and 2, and the top index (0) on (1). Thus for the entry condition in the second co-ordinate direction x_2 have
$$
\psi^{(2)}(0, x) = \psi^{(2)}(t_s, x).
$$
(32)

Each function v_{n+1} in (29), (30) in the case of quasi-one dimension or $\psi^{(1)}$ in (31), (32) is solution of the linear equation, which is a very important feature of this algorithm. The algorithm follows from the approximation method of Newton-Kantorovich [9] in the functional space. In order to reduce further records introduce the following notation:
\[R^{(l)}_\xi = \sigma, a_2, \]
\[f_i = c_i v^{(i-1)}_\eta - r_i \partial v^{(i-1)}_\eta / \partial x_i - \sigma_i (a_i Z^{k/s}_i + a_2), \]
\[Z_i = (\Phi v^{(i-1)}_\eta), \quad c_i (v^{(i-1)}_\eta) = \partial f_i / \partial v^{(i-1)}_\eta, \]
\[r_i = -\partial f_i / \partial v^{(i-1)}_\eta, \quad \Phi_i = \sigma_i a_i Z^{k/s}_i A_i / (Z_i N), \quad \Phi_i = -\partial f_i / \partial v^{(i-1)}_\eta, \]
\[R^{(i)}_\eta = \sigma_i a_i Z^{k/s}_i [1 - v^{(i-1)}_\eta k A_i / (Z_i N)] + \sigma_i a_2, \]
\[h^{(i)}_\eta = c_i v^{(i)}_\eta - R^{(i)}_\eta, \quad i = 1, 2, 3. \] (33)

Obtain a quasi-one dimension solution of the problem (31), (32) in coordinate direction \(x_1 \), using equation (20) – (22)
\[\frac{\partial^2 v^{(1)}_\xi}{\partial x_1^2} = h_1, \quad h_i = b \frac{\partial}{\partial t} \left(A_i \frac{\partial v^{(1)}_\xi}{\partial t} \right) - R^{(1)}_\xi, \quad 0 < t < t_*, \] (34)
\[T^{(1)}_\xi |_{t=0} = p_1(x), \quad \frac{\partial T^{(1)}_\xi}{\partial t} |_{t=0} = p_2(x), \] (35)
\[v^{(1)}_\xi |_{x_1=0} = g_1, \quad v^{(1)}_\xi |_{x_1=x_i} = g_2. \] (36)

Laplace integral transform is applicable to the differential equation (34), except for derivative on \(x_1 \) and replacing it with a linear expression relative to the image of the desired function. In what follows we consider functions for which the Laplace integral transform is absolutely convergent. The real part of the complex number \(p = \alpha + i \beta \), \(i = \sqrt{-1} \) is positive, that is \(\Re p > 0 \). We denote the image in big letters \(V^{(1)}, \ H_1 \). It is assumed that in calculating the image coordinates \(x_i, i = 1, 2, 3 \), we operate with the functions of the analytic continuation to the values \(x_i > L_i \) on that law, which are defined in the interval \((0, L_i) \), \(i = 1, 2, 3 \).

It is believed that the solution \(v^{(1)}(t, x) \) and its derivatives in equation (34), satisfy the conditions for the existence of Laplace integral transform on \(x_1 \), and the degree of growth on \(x_1 \) the function \(v^{(1)} \) and its derivatives do not depend from \(t, x_2, x_3 \). For simplicity, we omit the index calculations at \(t \) at the bottom of the index \(\xi \) at \(v^{(1)}_\xi \), as well as the index of (1) at the top and at the bottom at \(v^{(1)}_\xi, v^{(1)}_\eta, h_1, H_1 \), indicating \(\partial v^{(1)}_\xi (t, 0, x_2, x_3) / \partial x_1 = \partial g_1 / \partial x_1 \), then we have from (34) [12]:
\[p^2 V(t, p, x_2, x_3) - pg_1 - \frac{\partial g_1}{\partial x_1} = H(t, p, x_2, x_3). \]
\[0 < x_j < L_j, j = 2, 3, \]
\[V(t, p, x_2, x_3) = \frac{g_1}{p} + \frac{\partial g_1}{\partial x_1} + \frac{H}{p^2}. \] (37)

Using the inverse Laplace integral transform [12]:
\[L^{-1}(1/p^2) = x_1, \quad L^{-1}[H(p) / p] = \int_0^x h(y)dy, \]
in (39) we find, using the second boundary condition of (36)
\[g_2 = g_1 + L_4 \frac{\partial g_1}{\partial x_1} + \int_0^1 (L_4 - y)h(y)dy. \] (39)

Therefore, finding \(\partial g_1 / \partial x_1 \) in (39) and substituting it into (38), we obtain
\[v(t, x) = g_1 + \frac{x_1}{L_1} \left[g_2 - g_1 - \int_0^1 (L_4 - y)h(y)dy \right] + \int_0^1 (x_1 - y)h(y)dy. \] (40)

Transform the expression on the right-hand side of (40) so as to get rid of the integral with variable upper limit. Then, by introducing the Green's function \(E_i(x_1, y) \) [7,8]
\[E_i(x_1, y) = \begin{cases} y(L_1 - x_1) / L_1, & 0 \leq y \leq x_1, \\ x_1(L_1 - y) / L_1, & x_1 \leq y \leq L_1, \end{cases} \] (41)
expression (40) is rewritten in the return of the upper index (1) and lower \(\xi \), noting that \(b, A \) is clearly not dependent on \(x_1 \), unlike \(R^{(1)}_\xi \) in (33)
\[b \frac{\partial}{\partial t} \left(A_i \frac{\partial v^{(1)}_\xi}{\partial t} \right) \int_0^1 E_i(x_1, y)dy + v^{(1)}_\xi = \] (42)
\[= \left[g_1 + \frac{x_1}{L_1} (g_2 - g_1) + \int_0^1 E_i(x_1, y)R^{(1)}_\xi dy \right] = F_1. \]

We apply again Kirchhoff transformation (17) to return to the original variable \(T \) in equation (4)
\[T = \int_0^1 A_i dv, \quad A = N T^m, \quad T = (\Phi v)^{1/8}. \] (43)
Transform the left side of equation (42), using (43)
\[
\frac{\partial T}{\partial t} = \frac{A_n}{A} \frac{\partial v}{\partial t},
\frac{\partial^2 T}{\partial t^2} = \frac{\partial}{\partial t} \left(\frac{A_n}{A} \frac{\partial v}{\partial t} \right), \quad v = T^\gamma / \phi.
\]
\[\phi = sA_n / N, \quad s = m + 1.\)
Since the second term on the left-hand side of equation (42) takes the form \(v_{i}^{(1)} = (T_{i}^{(1)})^\gamma / \phi\), then it is necessary to reapply the quasi-linearization (31), (32), then we have
\[
\frac{\partial^2 T_{i}^{(1)}}{\partial t^2} + \frac{s}{\phi} B_{i} (T_{i}^{(0)})^{m} T_{i}^{(1)} = \frac{\partial}{\partial t} \left(\frac{s}{\phi} B_{i} (T_{i}^{(0)})^{m} \right) \cdot (44)
\]
\[= [Y_i^{-1} F_i + (s / \phi - 1) B_{i} (T_{i}^{(0)})^{m}] = P_i, \]
\[Y_i = \int_{0}^{t_i} E_i (x_1, y) dy, \]
где, \(B_{i} = Y_i^{-1}, \quad B_{i} > 0, \quad T_{i}^{(0)} = p_i (x), \quad E_i (x_1, y) > 0 \) из (41). We use the idea of Doetsch [13] on the applicability of Laplace integral transform to the partial differential equation as many times as its dimension. Then, with the initial conditions (35), we obtain [7,12] of (44)
\[
T_{i}^{(1)} (t, x) = s_i (t) p_i (x) + s_2 (t) p_2 (x) + \int_{0}^{t_i} s_2 (t - \tau) P_i (t, x) d\tau, \quad (45)
\]
\[s_2 (t) = \gamma_{1}^{-1} \sin (\gamma_{1} t), \quad s_2 (t - \tau) = \gamma_{1}^{-1} \sin (\gamma_{1} (t - \tau)), \quad (46)
\]
\[s_1 (t) = \cos (\gamma_{1} t), \quad s_1 (t - \tau) = \cos (\gamma_{1} (t - \tau)), \quad (46)
\]
\[\gamma_{1} = \sqrt{\beta_1}, \quad \beta_1 = sB_{i} (T_{i}^{(0)})^{m} / \phi, \quad (47)
\]
\[\frac{\partial T_{i}^{(1)}}{\partial t} (t, x) = s_1 (t) p_2 (x) - \gamma_{1}^{-1} s_2 (t) p_i (x) + \int_{0}^{t_i} s_1 (t - \tau) P_i (t, x) d\tau. \]
Now we obtain an analytical solution of the problem of the intermediate (23), (24), using the notation (33)
\[
\frac{\partial^2 v_{i}^{(1)}}{\partial x_1^2} + \Phi_1 v_{i}^{(1)} = h_{i}^{(1)} - r_{i}^{(1)} \frac{\partial v_{i}^{(1)}}{\partial x_1}, \quad 0 < t < t_*, \quad (48)
\]
\[v_{i}^{(1)} (0, x) = v_{i}^{(1)} (t, x), \quad v_{i}^{(1)} (x_1 = 0) = g_1, \quad v_{i}^{(1)} (x_1 = l) = g_2. \]
Note that \(\Phi_1\) of (33) does not depend explicitly of \(x_1\)
in (48) [\(\Phi_1\) you can always ask at the bottom of iteration \(n\), knowing the value \(T_{i}^{(1)}\) of the initial and subsequent times from (45) and \(v_{i}^{(1)}\) from (19)]. For simplicity, we omit the index calculations * at t the bottom of the index \(\eta\) at \(v_{\eta}^{(1)}\), and as well as the index of (1) at the top and at the bottom at \(v_{\eta}^{(1)}, v^{(1)}, h_{\eta}^{(1)}, H_1\). Then, as in (34) – (41) we have
\[
p^2 V (t, p, x_2, x_3) - p g_1 - \frac{\partial g_1}{\partial x_1} + \Phi_1 V (t, p, x_2, x_3)
\]
\[+ r_1 [p V (t, p, x_2, x_3) - g_1] = H (t, p, x_2, x_3), \quad 0 < x_j < L_j, j = 2, 3,
\]
\[V = \frac{(p + \delta) g_1}{(p + \delta)^2 + b^2} + \frac{b (\delta g_1 + \frac{\partial g_1}{\partial x_1} + H)}{b ((p + \delta)^2 + b^2)} \quad (49), \]
where \(\delta = r_i / 2, \quad b_i = \sqrt{\Phi_1 - \delta^2}\).
Using the inverse Laplace integral transform [12]:
\[L^{-1} [p / (p^2 + b^2)] = \cos (b x_1) \quad \text{at} \quad b^2 = \Phi_1 - \delta^2 > 0, \quad (50)
\]
\[L^{-1} [p / (p^2 - b^2)] = \cosh (b x_1) \quad \text{at} \quad b^2 < 0, \quad (51)
\]
\[L^{-1} [((p + \delta)^{-1}] = \exp (-\delta x_1), \quad (52)
\]
\[L^{-1} [H (p) / p] = \int_{0}^{x_1} h (y) dy, \quad (53)
\]
to restore the original for \(v (t, x)\) of (49) [12]
\[v (t, x) = \exp (-\delta x_1)
\]
\[\{g_1 [u_1 (x_1) + \delta u_2 (x_1)] + u_2 (x_1) \frac{\partial g_1}{\partial x_1} + \exp (-\delta x_1) \int_{0}^{x_1} \exp (\delta y) u_2 (x_1 - y) h (y) dy, \]
\[0 < x_j < L_j, j = 2, 3;
\]
\[u_2 (x_1) = b_1^{-1} \sin (b_1 x_1), \quad u_2 (x_1 - y) = b_1^{-1} \sinh (b_1 (x_1 - y)), \quad (51)
\]
\[u_1 (x_1) = \cos (b_1 x_1), \quad b_1^2 = \Phi_1 - \delta^2 > 0; \quad (51)
\]
\[u_1 (x_1) = \cosh (b_1 x_1), \quad u_2 (x_1) = b_1^{-1} \sinh (b_1 x_1), \quad u_2 (x_1 - y) = b_1^{-1} \sinh (b_1 (x_1 - y)), \quad b_1^2 < 0. \quad (51)
\]
We find the derivative \(\frac{\partial g_1}{\partial x_1}\) in (50) as in (39), using the second boundary condition in (48) and substitute it into equation (50), we obtain
A Method for Solving the Three-dimensional Wave Equation

\[v(t, x) = \exp(-\delta x_i) g_i[u_i(x_i) + \delta u_2(x_i)] + (52) \]

\[+ \exp(-\delta x_i) \int_0^L \exp(\delta y) u_2(x_i - y) h(y) dy - \frac{u_2(x_i)}{u_2(L)} \times \exp(-\delta x_i) \int_0^L \exp(\delta y) u_2(L_i - y) h(y) dy \]

\[\times \exp(-\delta x_i) \]

\[u_2(L_i). \]

Transform the expression on the right-hand side of (52) so as to get rid of the integral with variable upper limit. Then, by introducing the Green’s function \(G_i(x_i, y) \) [7,8]

\[G_i(x_i, y) = \int \exp(\delta y - x_i)[u_i(x_i) u_2(L_i - y) - u_2(x_i - y)] dy, \]

[0 ≤ y ≤ x_i, \]

\[\int x_i ≤ y ≤ L_i, \] expression (51), using the formulas (33) and the return of a subscript *, η, as well as the top – (1), is rewritten

\[v^{(1)} \eta + U v^{(1)} \eta = X^{-1} S(t, x) + \int_0^L G_i(x_i, y) R^{(1)}(y) dy = W(t, x), \]

\[S(t, x) = \exp(-\delta x_i) g_i[u_i(x_i) + \delta u_2(x_i)] + u_2(x_i) \exp(-\delta x_i) \times \{ \exp(\delta L_i) - [u_i(L_i) + \delta u_2(L_i)]g_i / u_2(L_i) \} \]

\[X_i = \int_0^L G_i(x_i, y) c_i(v^{(1)} \eta) dy, U_1 = X^{-1} i \]

\[v^{(1)} \eta (0, x) = v^{(1)} (t, x) \]

As a result, the solution of (54) takes the form [14]:

\[v^{(1)} (t, x) = \left[v^{(1)} (t, x) + \int_0^t W_i(x, \tau) \exp(\tau U_i) d\tau \right] \times (55)

\[\times \exp(-t U_i), \ 0 < x_i < L_i, j = 2, 3, \]

where \(v^{(1)} (t, x) \) is taken from the formula (45) using equation (19). Similarly, solutions are obtained quasi one-dimensional problems (25), (26) on the coordinate directions \(x_2, x_3 \) with the involvement of (31) – (33) and the inversion formula (27). Then, according to the algorithm (37) – (55) at \(\partial^2 T^{(i)} \eta (t, x) / \partial t^2 = 0, \ i = 1, 2, 3 \) in (6), (10), (14) (these derivatives were not present) we have

\[T^{(i)}(t, x) = s_1(t) T^{(i-1)}(t, x) + s_2(t) \frac{\partial T^{(i-1)}(t, x)}{\partial t} + (56) \]

\[+ \int_0^t s_2(t - \tau) P_i(\tau, x) d\tau, \]

\[P_i = Y_i^{-1} F_i + B_i (s / \phi - 1)(T^{(i-1)} \eta)^s, \]

\[T^{(i)}(t, x) = s_1(t) T^{(i-1)}(t, x) + s_2(t) \frac{\partial T^{(i-1)}(t, x)}{\partial t} + (57) \]

\[+ \int_0^t s_2(t - \tau) P_i(\tau, x) d\tau, \]

\[Y_i = b \int E_i(x, y) dy, B_i = Y_i^{-1}, i = 2, 3, \]

\[F_2 = \left[q_1 + \frac{x_2}{L_2} (q_2 - q_1) + \int_0^L E_2(x_2, y) R^{(2)}(y) dy \right], \]

\[F_3 = \left[d_1 + \frac{x_3}{L_3} (d_2 - d_1) + \int_0^L E_3(x_3, y) R^{(3)}(y) dy \right], \]

\[\frac{\partial T^{(i)}(t, x)}{\partial t} = 2 \]

\[s_1(t) \frac{\partial T^{(i-1)}(t, x)}{\partial t} - \gamma_i^2 s_2(t) T^{(i-1)}(t, x) + (58) \]

\[+ \int_0^t s_i(t - \tau) P_i(\tau, x) d\tau, \]

\[P_i = Y_i^{-1} F_i + B_i (s / \phi - 1)(T^{(i-1)} \eta)^s, i = 2, 3, \]

\[\frac{\partial T^{(i)}(t, x)}{\partial t} = 2 \]
3. Test Results of Inspections

The accuracy of the analytical formulas (19), (27), (45) – (47), (55) – (61) check on the test function in the solution of boundary value problems for partial differential equations in $\Omega_j : [0 \leq x_j \leq L_j, j = 1, 2, 3] \times [0 < t \leq t_0]$ at $A(T) = N T^m, m > 0$

$$z^{-1} \frac{\partial^2 T}{\partial t^2} + A_1 \frac{\partial T}{\partial t} = \sum_{j=1}^{m} \left(\frac{\partial}{\partial x_j} \left(A(T) \frac{\partial T}{\partial x_j} \right) + C_2 \frac{\partial T}{\partial x_j} \right) + A_1 T^k + F(x, t)$$

with initial conditions

$$T \mid_{t=0} = \exp(y), \quad \frac{\partial T}{\partial t} \mid_{t=0} = w^{-1} \exp(y), \quad w = \text{const}, \quad w > 0$$

and the boundary conditions of the first kind

$$T \bigg|_{x_i=0} = \exp(\tau + z_2 + z_3), \quad T \bigg|_{x_i=L_i} = \exp(\tau + 1 + z_2 + z_3)$$

$$T \bigg|_{x_2=0} = \exp(\tau + z_1 + z_3), \quad T \bigg|_{x_2=L_2} = \exp(\tau + z_1 + 1 + z_3)$$

$$T \bigg|_{x_3=0} = \exp(\tau + z_1 + z_2), \quad T \bigg|_{x_3=L_3} = \exp(\tau + z_i + z_2 + 1), \quad \tau = t / w.$$

(64)
It was taken the exact solution (62) – (64)
\[T = \exp(\tau + y), \]
then the source of \(F \) in (62) has the form
\[F = \exp(\tau + y) \left\{ z^{-1}/w^2 + A_1/w - C_2(L_1^{-1} + L_2^{-1} + L_3^{-1}) - s(L_1^{-2} + L_2^{-2} + L_3^{-2})N \exp[m(\tau + y)] \right\} - A_1 \exp[k(\tau + y)]. \]

The following reference values were used input: \(m = 0.5 \),
\(w = 1 \), \(\xi = \eta = 0.5 \), \(\sigma_1 = 0.4 \), \(\sigma_2 = 0.3 \), \(\sigma_3 = 0.3 \),
\(t_0 = 10^{-3} \) s, \(L_i = 0.1 \) m, \(i = 1, 2, 3 \), \(A_n = N = 0.0253 \),
\(W/(mK) \), \(c = 340 \) m/s, \(A_k = 1.3 \times 10^3 \) J/(m\(^3\)-K) (air environment [16]); \(N_i = 11 \), \(\Delta x_i = L_i/(N_i - 1) \), \(i = 1, 2, 3 \), \(\Delta t = t_0/(M - 1) \), \(M = 11 \) – estimated number of units and the steps in space and time in finding the integrals in equations (42), (45) – (47), (55) – (61) by Simpson [17].

The boundary value problem (62) – (64) was solved with the help of formulas (19), (27), (45) – (47), (55) – (61) in equations (42), (45) – (47), (55) – (61). The number of iterations was monitored for the final expression in (61) by Simpson [17].

The three-level scheme for the time derivative with approximation error – \(O[\Delta t^2] \). For reference input values and \(m = A_1 = 0 \), \(A_3 = 1300 \), \(t_0 = 0.2 \) s, \(L_i = 0.1 \) m, \(i = 1, 2, 3 \), \(C_2 = 1.3 \) on equations (19), (27), (45) – (47), (55) – (61) get \(\varepsilon = 9.1 \% \), and on the difference schemes [18] at \(N_i = 41, i = 1, 2, 3 \), \(\Delta t = 10^{-3} \) get \(\varepsilon = 18.6 \% \) and \(t_e = 3 \) c. A specific example is the accuracy of analytical formulas (19), (27), (45) – (47), (55) – (61) was found in two times better than the accuracy of the numerical schemes [18].

In table 2 shows the solution of the wave equation by formulas (19), (27), (45) – (47), (57), (59) at different values of \(m, t_0 \), \(L_i = a, i = 1, 2, 3 \). As can be seen from table 2 in the solution of the wave equation satisfactory accuracy (\(\varepsilon < 10 \% \)) is achieved for a small times \(5 \times 10^{-6} \leq t_0 \leq 10^{-3} \) s.

Table 1.* The maximum relative error \(\varepsilon \) at the solution of the telegraph equation

\#	\(A_i \)	\(C_2 \)	\(k \)	\(\varepsilon, \% \)
1	1	-6.5	1	0.085
2	1	13	1	0.242
3	1	-13	1	0.083
4	1	13	2	0.297
5	2	13	2	0.419
6	1	-13	2	0.224
7	2	13	2	0.273
8	-2	13	2	0.083

\[\varepsilon = \max_{x, t \in D} \left| \frac{T - \hat{T}}{T} \right| \times 100\%, \]
(66)

where \(T \) – the exact explicit solution (66), \(\hat{T} \) – an approximate analytical solution for intensive mathematical

Now, compare the accuracy of the analytical formulas (19), (27), (45) – (47), (55) in the one-dimensional case in the absence of iterations for simplified boundary value problem
\[z^{-1} \frac{\partial^2 T}{\partial t^2} + \chi^{-1} \frac{\partial T}{\partial y^2} = \frac{\partial^2 T}{\partial y^2}, \quad 0 < t \leq t_0, \]
(67)

\[T_{|y=0} = T_n, \quad \frac{\partial T}{\partial y}_{|y=0} = 0, \quad T_{|y \to \infty} = T_n, \quad T_{|t=0} = T_n, \]
(68)

with known analytical solution of [5] at \(z = c^2 \), \(\chi = A_n/C \)
\[T(y,t) = \Theta(T_{w} - T_{n}) + T_{n}, \quad \Theta = u(\beta - \delta) \exp(-\delta) + \]
(69)
\[+ \delta u (\beta - \delta) \int_0^{\beta^2 - \delta^2} I_1 (\eta) \exp \left[-\left(\eta^2 + \delta^2 \right)^{0.5} \right] d\eta \]

\[\eta = \sqrt{\beta^2 - \delta^2}, \quad \beta = c^2 t / (2 \chi), \quad \delta = c y / (2 \chi), \]

where \(u(\beta - \delta) \) is the unit function \(u = 1 \) at \(u(\beta - \delta), u = 0 \) for \(\beta < \delta \), \(I_1(\eta) \) is modified Bessel function of the first order [5]

\[I_1 = \sum_{k=0}^{\infty} \frac{\left(\eta / 2 \right)^{2k+1}}{(k+1)(k!)^2}, \quad (70) \]

As can be seen from (70) the row converge slowly at \(\eta > 20 \). Therefore, by (69), (70), for example, in metals:

- steel – \(c = 5700 \text{ m/s}, \quad \chi = 5 \times 10^{-6} \text{ m}^2 / \text{s} \), copper – \(c = 4700 \text{ m/s}, \quad \chi = 1.16 \times 10^{-4} \text{ m}^2 / \text{s} \),
- liquid: water – \(c = 1500 \text{ m/s}, \quad \chi = 1.43 \times 10^{-7} \text{ m}^2 / \text{s} \) [16], air and other under normal conditions, you can actually study only rapid processes \((t \leq 10^{-8} \text{ s}) \) on micro distance \((L_i \leq 10^{-6} \text{ m}) \),

described by the one-dimensional problem of the form (67) and (68).

At \(\chi = 2 \times 10^{-5} \text{ m}^2 / \text{s}, \quad c = 340 \text{ m/s}, \quad T_w = 800 \text{ K}, \quad T_u = 293 \text{ K}, \quad L_1 = 4 \times 10^{-7} \text{ m}, \quad t_0 = 2.5 \times 10^{-9} \text{ s}, \quad \beta = 7.225, \quad 0 \leq \delta \leq 3.4 \), \(0 \leq \eta \leq 6.375 \), \(\Delta \eta = 6.375 / (N_i -1) \), \(N_i = 51 \) unlike the analytical solution (19), (27), (45) – (47), (55) in the one case the exact (69) is not exceeded 5.6%.

3. Conclusion

1. On the basis of the locally one-dimensional scheme splitting, quasi-linearization and Laplace integral transform find an approximate analytical solution of a nonlinear hyperbolic equation of the second order, without using the theory of the series [17]. 2. In the one case, a comparison of the accuracy of analytical formulas articles with known exact solution of the telegraph type [5]. 3. The method of the trial function given the comparison of analytical solutions, the developed technology, with the exact solution of the boundary value problem with the numerical solution by a known method. 4. At the test calculations of (62) – (64) are considered conventional finite space-time intervals: \(0.1 \leq L_i \leq 1 \text{ m}, \quad i = 1, 2, 3, \quad 10^{-8} \leq t_0 \leq 0.2 \text{ s} \), encountered in practice [1,3,13,15].

The work was supported by the Single Order Attire – 1.1.19.09.

REFERENCES

[1] Lykov A.V. Heat and mass transfer, Handbook,Energy,Moscow 1971.

[2] Zhou D., Casas BaskesX., LebonDj. Extended irreversible thermodynamics, NITs "Regular and chaotic thermodynamics"; Instcomp. tests were performed,Moscow-Izhevsk 2006.

[3] Tichonov A.N., Samarsky A.A. The equations of mathematical physics,Science,Moscow1977.

[4] Lykov A.V. Methods for solving nonlinear transient heat conduction equations,News Academy of Sciences of the USSR, Energy and transport,Moscow,№ 5, 109-150, 1970.

[5] Baumeister K., Hamill T. Hyperbolic equation of heat conduction. The solution of the semi-infinite body, Heattransfer,№ 4, 112-119, 1969.

[6] Kudinov V.A., Kudinov I.V. Preparation and analysis of exact analytical solutions of hyperbolic-parameter equation of heat conduction for a flat wall, Thermal physics of high temperature, Moscow, vol. 50, № 1, 118-125, 2012.

[7] Yakimov A.S. The analytical method for solving boundary value problems, Ed. 2-nd, add, Publishing House of Tomsk. University Press,Tomsk 2011.

[8] Bellman R., Kalaba R. Quasi-linearization and nonlinear boundary value problems, Springer-Verlag, New York 1968.

[9] Kantorovich L.V. Functional analysis and applied mathematics, Success of mathematical sciences, Moscow, №6, 89-185, 1948.

[10] Samarsky A.A. On numerical methods for solving mathematical physics, Heat and mass transfer, Science and technology, Minsk, vol. 11, 990-1006, 1969.

[11] Samarsky A.A. Introduction to the theory of difference schemes, Science, Moscow 1971.

[12] Diktin V.A., Prudnikov A.P. Operational calculus, High school, Moscow 1966.

[13] Doetsch G. Guide to the practical application of the Laplace transform, Physical and mathematical State edition, Moscow 1960.

[14] Matveev N.M. Methods for the integration of ordinary differential equations, High school, Moscow 1967.

[15] Yakimov A.S. On a method of solving the conjugate heat transfer problem. Part 2, Journal of Engineering Physics, Minsk, vol. 86, № 3, 464-474, 2013.

[16] Koshkin N.I., Shirkevich M.G. Handbook of elementary physics, Science, Home edition of the physical and mathematical literature, Moscow 1988.

[17] Bronstein N.I., Semendyaev L.A. Handbook of mathematics for engineers and students of VTU-call,Science, Home edition of thephysical and mathematical literature, Moscow 1986.

[18] Grishin A.M., Yakimov A.S. The iterative-interpolation method for solving three-dimensional wave equation, Computational technologies, Novosibirsk, vol. 12, № 1, 22-34, 2007.