Separability of Hamilton–Jacobi and Klein–Gordon Equations in General Kerr–NUT–AdS Spacetimes

Valeri P. Frolov, Pavel Krtouš, and David Kubizňák

1Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2G7
2Institute of Theoretical Physics, Charles University, V Holešovičkách 2, Prague, Czech Republic

(Dated: November 22, 2006)

We demonstrate the separability of the Hamilton–Jacobi and scalar field equations in general higher dimensional Kerr–NUT–AdS spacetimes. No restriction on the parameters characterizing these metrics is imposed.

PACS numbers: 04.70.Bw, 04.50.+h, 04.20.Jb

I. INTRODUCTION

The study of the separability of the Hamilton–Jacobi and the corresponding scalar field equations in a curved spacetime has a long history. Robertson [1] and Eisenhart [2] discussed general conditions for such a separability in spaces which admit a complete set of mutually orthogonal families of hypersurfaces. An important class of 4-dimensional separable spacetimes, including several type D metrics, was found by Carter [3]. Carter also proved the separability of the Hamilton–Jacobi and the scalar field equation in the Kerr metric [4]. It was demonstrated in [3] that this separability follows from the existence of a Killing tensor. This result was generalized later, namely, it was shown that Killing and Killing–Yano tensors play an important role in the separability theory (see, e.g., [3, 5, 6, 7, 8, 9, 10]).

In the present paper we prove the separability of the Hamilton–Jacobi and scalar field equations in the general ($D \geq 4$) Kerr–NUT–AdS spacetimes [11]. These solutions were obtained as a generalization of the metrics for the rotating higher dimensional black holes with a cosmological constant [12, 13, 14], which, in their turn, are generalizations of the Myers–Perry solution [15]. There are several publications devoted to the separation of variables for this class of metrics. However, all the results obtained up to now assume either a restriction on the number of dimensions [16, 17] or special properties of the parameters which characterize the solution [11, 18, 19, 20, 21, 22, 23]. The separation of variables which we prove in this paper is valid in the general Kerr–NUT–AdS spacetime in any number of dimensions and without any restriction on the parameters of the metric. We also discuss the relation of the separation constants with the conserved quantities connected with the Killing–Yano and Killing tensors recently discovered for this class of the metrics [24, 25, 26, 27].

II. KERR–NUT–ADS METRICS AND THEIR PROPERTIES

Our starting point is the general higher dimensional Kerr–NUT–AdS metric obtained in [11]. The metric can be written using D coordinates x^a which naturally splits into two groups. Radial and latitude coordinates are denoted as x_μ and labelled by the Greek indices $\mu, \nu = 1, \ldots, n$; $n = D/2$, i.e., $x_\mu = x^\mu$. Time and azimuthal coordinates $\psi_k = x^{n+1+k}$ are indexed by the Latin indices from the middle of the alphabet, $k, l = 0, \ldots, m$, $m = D - n - 1$. We use the Einstein summation convention only for the indices a, b, \ldots running over all coordinates. For the convenience we also introduce $\varepsilon = D - 2n$. In these coordinates the metric and its inverse read

$$ds^2 = \sum_{\mu=1}^{n} \left[\frac{dx_\mu^2}{Q_\mu} + Q_\mu \sum_{k=0}^{n-1} A^{(k)}_\mu d\psi_k^2 \right] - \frac{\varepsilon c}{A^{(n)}} \sum_{k=0}^{n} A^{(k)}_\mu d\psi_k^2,$$

and

$$(\partial_\mu)^2 = \sum_{\mu=1}^{n} \left[Q_\mu (\partial_\mu)^2 + \frac{1}{Q_\mu U_\mu} \left(\sum_{k=0}^{m} (-x_\mu^{n-1-k} \partial_\mu)^2 \right) \right] - \frac{\varepsilon}{c A^{(n)}} (\partial_\mu)^2. \quad (2)$$

Here,

$$Q_\mu = \frac{X_\mu}{U_\mu}, \quad U_\mu = \prod_{\nu=1, \nu \neq \mu}^{n} (x_\nu^2 - x_\mu^2), \quad c = \prod_{k=1}^{m} a_k^2,$$

and

$$X_\mu = (-1)^{1-\varepsilon} \frac{1 + \lambda x_\mu^2}{x_\mu^2} \left(\sum_{k=1}^{m} (a_k^2 - x_\mu^2) + 2M_\mu (x_\mu^2)^{1-\varepsilon} \right),$$

$$A^{(k)}_\mu = \sum_{\nu_1 < \cdots < \nu_k} x_{\nu_1}^{2} \cdots x_{\nu_k}^{2}, \quad A^{(k)} = \sum_{\nu_1 < \cdots < \nu_k} x_{\nu_1}^{2} \cdots x_{\nu_k}^{2}. \quad (3)$$

1 The form (1) of the metric is actually an analytical continuation related to the physical metric by a simple Wick rotation, see [11].
\(M_\mu \) are related to mass and NUT parameters, \(a_k \) to angular momentum, and \(\lambda \) is proportional to the cosmological constant.

The metric (11) is an Einstein space obeying the equation

\[
R_{ab} = (D - 1)\lambda g_{ab} .
\]

(4)

It possesses \(m + 1 = D - n \) Killing vectors \(\partial_k \), a \((D - 2)\)-rank Killing–Yano tensor \([25] \), and \(n \) second-rank Killing tensors \([27] \), as well as \(n - 2 \) higher-rank Killing tensors \([29] \).

The aim of this paper is to demonstrate that in the coordinates \(x_\mu, \psi_k \), both the Hamilton–Jacobi and Klein–Gordon equations separate. To prove this we shall need a set of algebraic relations which are valid for quantities which enter the metric (11). It is useful to introduce quantities

\[
U \equiv \prod_{\mu,\nu=1}^{n} (x_\mu^2 - x_\nu^2) , \quad \mathcal{A}_\mu \equiv \frac{U}{U_\mu} ,
\]

(5)

which satisfy the important identities

\[
\sum_{\mu=1}^{n} x_\mu^{2(n-1)} \mathcal{A}_\mu = (-1)^{n-1} U , \tag{6a}
\]

\[
\sum_{\mu=1}^{n} x_\mu^{2k} \mathcal{A}_\mu = 0 \quad \text{for} \quad k = 0, \ldots, n - 2 , \tag{6b}
\]

\[
\sum_{\mu=1}^{n} \frac{1}{x_\mu^2} \mathcal{A}_\mu = \frac{U}{A^{(n)}} , \tag{6c}
\]

\[
\sum_{\mu=1}^{n} \frac{A^{(k)}_{\mu}}{x_\mu^2} \mathcal{A}_\mu = \frac{A^{(k)}_1}{A^{(n)}} U \quad \text{for} \quad k = 0, \ldots, n - 1 , \tag{6d}
\]

and

\[
\partial_\mu \mathcal{A}_\mu = 0 . \tag{7}
\]

The first two identities follow from the fact that the matrix \(B^{(k)}_{\mu} = (-x_\mu^2)^{n-1-k} / U_\mu \) is the inverse of \(A^{(k)}_\mu \),

\[
\sum_{k=0}^{n-1} \frac{(-x_\mu^2)^{n-1-k}}{U_\mu} A^{(k)}_{\mu} = \delta_\mu , \quad \sum_{k=0}^{n-1} \frac{(-x_\mu^2)^{n-1-k}}{U_\mu} A^{(l)}_{\mu} = \delta^l_k ,
\]

(8)

(set \(l = 0 \) in the last expression), (6c) follows from (6a) by substitution \(x_\mu \to 1/x_\mu \), and (6d) can be verified using (6a), (8) and \(A^{(k)}_1 = A^{(k)} - x_\mu^2 A^{(k-1)}_\mu \). The identity (7) is obvious.

The function \(U \) is simply related to the determinant of the metric

\[
g = \det(g_{ab}) = (-c A^{(n)})^2 U^2 .
\]

(9)

III. Separability of the Hamilton–Jacobi Equation

The Hamilton–Jacobi equation for geodesic motion on a manifold with metric \(g_{\mu\nu} \) has the form

\[
\frac{\partial S}{\partial \lambda} + g^{\mu\nu} \partial_\mu S \partial_\nu S = 0 .
\]

(10)

Here \(\lambda \) denotes an ‘external’ time which turns out to be an affine parameter of the corresponding geodesic motion. We want to demonstrate that in the background (11) the classical action \(S \) allows a separation of variables

\[
S = -w \lambda + \sum_{\mu=1}^{n} S_\mu(x_\mu) + \sum_{k=0}^{m} \Psi_k \psi_k
\]

(11)

with functions \(S_\mu(x_\mu) \) of a single argument \(x_\mu \).

Substituting (11) into the Hamilton–Jacobi equation (10) and multiplying by \(U \) introduced in (5), we obtain

\[
\sum_{\mu=1}^{n} \partial_\mu F_\mu = wU + \varepsilon \frac{\Psi_0^2}{c} \frac{U}{A^{(n)}} ,
\]

(12)

where \(F_\mu \) is a function of \(x_\mu \) only,

\[
F_\mu = X_\mu S_\mu + \frac{1}{X_\mu} \left(\sum_{k=0}^{m} (-x_\mu^2)^{n-1-k} \Psi_k \right)^2 .
\]

(13)

Here, the prime denotes the derivative of \(S_\mu \) with respect to its single argument \(x_\mu \). Thanks to the identities (6), the equation (12) is satisfied if the functions \(F_\mu \) have the form

\[
F_\mu = \sum_{k=0}^{m} \bar{c}_k (-x_\mu^2)^{n-1-k} ,
\]

(14)

where \(\bar{c}_k \), \(k = 1, \ldots, n - 1 \) are arbitrary constants, \(\bar{c}_0 = w \), and the constant \(\bar{c}_n \), which is present only in odd number of dimensions, is related to \(\Psi_n \) as

\[
\bar{c}_n = -\frac{\Psi_0^2}{c} .
\]

(15)

The condition (14) leads to equations for \(S'_\mu \)

\[
S'_\mu = -\frac{1}{X_\mu^2} \left(\sum_{k=0}^{m} (-x_\mu^2)^{n-1-k} \Psi_k \right)^2 + \frac{1}{X_\mu} \sum_{k=0}^{m} \bar{c}_k (-x_\mu^2)^{n-1-k} ,
\]

(16)

which can be solved by quadratures. Notice that in odd dimensions there is an additional term in which \(\bar{c}_n \) is not an independent constant, cf. Eq. (15).

Thus we have shown that Hamilton–Jacobi equation (11) in the gravitational background (11) can be solved by the classical action \(S \) in the separated form (11) with \(S_\mu \) satisfying (10). The solution contains \(D \) constants, namely \(\bar{c}_0 = w, \bar{c}_1, \ldots, \bar{c}_{n-1}, \) and \(\Psi_0, \ldots, \Psi_m. \)
The gradient of S gives the momentum $p_a = \partial_a S$. Substituting our expression for S we obtain p_a in terms of the constants \tilde{c}_k and Ψ_k. These relations can be inverted. Clearly, $\Psi_k = p_k$ are constants linear in the momentum generated by Killing vectors. To evaluate \tilde{c}_k we rewrite (13) as

$$ F_\mu - \varepsilon \frac{p^2}{cU_\mu x_\mu} = \sum_{k=0}^{n-1} \tilde{c}_k \frac{(-x_\mu^2)^{n-1-k}}{U_\mu}. \tag{17} $$

It can be inverted using (35). Employing the expression for \tilde{c}_n with $\Psi_n = p_n$ and the identity (60) we obtain

$$ \tilde{c}_k = \sum_{\mu=1}^{n} A^{(k)}_\mu F_\mu - \varepsilon \frac{p^2}{cA(n)}, \tag{18} $$

where F_μ is given by (13) with p_μ and p_k substituted for S_μ and Ψ_k, respectively.

We thus found that the constants \tilde{c}_k are quadratic in the momenta p_μ (for example, for $k = 0$ we get $w = \tilde{c}_0 = g^{0b} p_0 p_b$). It can be shown that they are the same as the constants introduced recently using the Killing–Yano tensor and that they are generated by second rank Killing tensors (27).

IV. SEPARABILITY OF THE KLEIN–GORDON EQUATION

The behavior of a massive scalar field Φ in the gravitational background g_{ab} is governed by the Klein–Gordon equation

$$ \Box \Phi = \frac{1}{\sqrt{|g|}} \partial_a (\sqrt{|g|} g^{ab} \partial_b \Phi) = m^2 \Phi. \tag{19} $$

This equation remains valid for the non-minimal coupling case as well. The term ξR is constant in the Einstein spaces and can be included into the definition of m^2.

Now, we demonstrate that the Klein–Gordon equation (19) in the background (11) allows a multiplicative separation of variables

$$ \Phi = \prod_{\mu=1}^{n} R_\mu(x_\mu) \prod_{k=0}^{m} e^{i \Psi_k x_k}. \tag{20} $$

This equation has the following explicit form

$$ \sqrt{|g|} m^2 \Phi = \sum_{\mu=1}^{n} \partial_\mu \left(\frac{\sqrt{|g|}}{U_\mu} X_\mu \partial_\mu \Phi \right) + \sum_{\mu=1}^{n} \frac{\sqrt{|g|}}{U_\mu X_\mu} \left(\sum_{k=1}^{m} (-x_\mu^2)^{n-1-k} \partial_k \right)^2 \Phi $$

$$ - \varepsilon \frac{\sqrt{|g|}}{cA(n)} \partial_\mu \Phi \cdot \tag{21} $$

Here we used the quasidiagonal property of the inverse metric g^{ab} and the fact that ∂_k are Killing vectors. We further notice that

$$ \sqrt{|g|} \propto U P^\varepsilon, \quad P \equiv \prod_{\mu=1}^{n} x_\mu, \tag{22} $$

where “\propto” means equality up to a constant factor (which can be ignored in Eq. (21)). Using the identities (35), (65), (7) and the definition of Ω_μ we find that (21) gives

$$ \sum_{\mu=1}^{n} \Omega_\mu \left[(-1)^n m^2 x_\mu^{2(n-1)} \Phi + \partial_\mu (P^\varepsilon X_\mu \partial_\mu \Phi) / P^\varepsilon \right] $$

$$ + \sum_{\mu=1}^{n} \left[\frac{\Omega_\mu}{X_\mu} \left(\sum_{k=1}^{m} (-x_\mu^2)^{n-1-k} \partial_k \right)^2 \Phi - \varepsilon \frac{\Omega_\mu}{c x_\mu^2} \partial_\mu \Phi \right] = 0. \tag{23} $$

Using the ansatz (20) we find

$$ \partial_\mu \Phi = i \Psi_k \Phi, \quad \partial_\mu \Phi = \frac{R'_\mu}{R_\mu} \Phi, \quad \partial_\mu^2 \Phi = \frac{R''_\mu}{R_\mu} \Phi, \tag{24} $$

and the Klein–Gordon equation (28) takes the form

$$ \sum_{\mu=1}^{n} \Omega_\mu G_\mu \Phi = 0, \tag{25} $$

where G_μ is function of x_μ only.

$$ G_\mu = (-1)^n m^2 x_\mu^{2(n-1)} + \frac{R'_\mu}{R_\mu} \left(X_\mu' + \varepsilon \frac{X_\mu}{x_\mu} \right) + X_\mu \frac{R''_\mu}{R_\mu} $$

$$ - \frac{1}{X_\mu} \left(\sum_{k=1}^{m} (-x_\mu^2)^{n-1-k} \Psi_k \right)^2 + \frac{\varepsilon \Psi^2}{c x_\mu^2}. \tag{26} $$

As earlier, the prime means the derivative of functions R_μ and X_μ with respect to their single argument x_μ. Employing the identity (65) we realize that (25) is automatically satisfied when

$$ G_\mu = \sum_{k=1}^{n-1} b_k (-x_\mu^2)^{n-1-k}, \tag{27} $$

where b_k are arbitrary constants.

Therefore we have demonstrated that the Klein–Gordon equation (19) in the background (11) allows a multiplicative separation of variables (20), where functions $R_\mu(x_\mu)$ satisfy the ordinary second order differential equations

$$ (X_\mu R'_\mu)' + \varepsilon \frac{X_\mu}{x_\mu} R'_\mu - \frac{R'_\mu}{X_\mu} \left(\sum_{k=0}^{m} (-x_\mu^2)^{n-1-k} \Psi_k \right)^2 $$

$$ - \sum_{k=0}^{m} b_k (-x_\mu^2)^{n-1-k} R_\mu = 0. \tag{28} $$

Here $b_0 = m^2$, $b_1 \ldots b_{n-1}$ are arbitrary separation constants. The constant b_0 is present only in an odd number
of spacetime dimensions and is related to the constants Ψ_n and c through

$$b_n = \frac{\Psi_n^2}{c} \quad (29)$$

We expect that the separation constants are related to the Killing tensors obtained in [27].

V. DISCUSSION

We demonstrated the separability of the Hamilton–Jacobi and the scalar field equations in the general (higher-dimensional) Kerr–NUT–AdS spacetime. For particle motion the separability implies that the corresponding equations of motion can be written in the first order form [10]. In the Klein–Gordon case we obtained a set of ordinary second order differential equations [28]. The problem to solve them is usually much simpler. Even when some of these equations cannot be solved in terms of known elementary or special functions, one can always use numerical methods. The numerical integration of ordinary differential equations can be performed very effectively.

In the present paper we established the separability property by ‘brute force’—by writing the corresponding equations in a special coordinate system. As we already mentioned, the constants of separation are directly related to the existing complete set of the second rank Killing tensors [27]. It would be interesting to derive the separability property by starting with the general symmetry properties of the considered spacetime, using, for example, the results of [9].

The separation of variables in the scalar field equation can be used for the study of different interesting problems. One of them is the calculation of the bulk Hawking radiation of higher dimensional rotating black holes. As it was shown by Teukolsky [28, 29] in the 4D Kerr metric, not only the scalar field equation allows separation of variables, but the equations of the other (massless) fields with non vanishing spin can also be decoupled and separated. An interesting question is whether the existing symmetry connected with a complete set of the Killing tensors in the general Kerr–NUT–AdS spacetime makes such a decoupling and separation of the higher spin fields equations possible.

Acknowledgments

V.F. thanks the Natural Sciences and Engineering Research Council of Canada and the Killam Trust for the financial support. P.K. was kindly supported by the grant GAČR 202/06/0041 and appreciates the hospitality of the University of Alberta. D.K. is grateful to the Golden Bell Jar Graduate Scholarship in Physics at the University of Alberta. The authors also thank Don N. Page and M. Vasudevan for reading the manuscript.