ASTROMETRY WITH THE HUBBLE SPACE TELESCOPE: A PARALLAX OF THE CENTRAL STAR OF THE PLANETARY NEBULA NGC 6853

G. Fritz Benedict, B. E. McArthur, L. W. Fredrick, T. E. Harrison, M. F. Skrutskie, C. L. Slesnick, J. Rhee, R. J. Patterson, E. Nelson, W. H. Jefferys, W. van Altena, T. Montemayor, P. J. Shelus, O. G. Franz, L. H. Wasserman, P. D. Hemenway, R. L. Duncombe, D. Story, A. L. Whipple, and A. J. Bradley

Received 2003 May 12; accepted 2003 July 22

ABSTRACT

We present an absolute parallax and relative proper motion for the central star of the planetary nebula NGC 6853 (the Dumbbell). We obtain these with astrometric data from the Fine Guidance Sensor 3, a white-light interferometer on the Hubble Space Telescope. Spectral classifications and VRIJHK$_2$M and DDO51 photometry of the stars making up the astrometric reference frame provide spectrophotometric estimates of their absolute parallaxes. Introducing these into our model as observations with error, we find $\pi_{\text{abs}} = 2.10 \pm 0.48$ mas for the DAO central star of NGC 6853. A weighted average with a previous ground-based USNO determination yields $\pi_{\text{abs}} = 2.40 \pm 0.32$. We assume that the extinction suffered by the reference stars nearest (in angular separation and distance) to the central star is the same as for the central star. Correcting for color differences, we find $\langle A_V \rangle = 0.30 \pm 0.06$ for the central star, hence, an absolute magnitude $M_V = 5.48 \pm 0.16$. A recent determination of the central star effective temperature aided in estimating the central star radius, $R_* = 0.055 \pm 0.02 R_\odot$, a star that may be descending to the white dwarfs cooling track.

Key words: astrometry — planetary nebulae: individual (NGC 6853) — stars: distances — techniques: interferometric — white dwarfs

On-line material: color figure

1. INTRODUCTION

Planetary nebulae (PNs) are a visually spectacular and relatively short-lived step in the evolution from asymptotic giant branch (AGB) stars, to a final white dwarf stage. Iben & Renzini (1983) first showed that the ejection of most of the gaseous envelope in AGB stars occurs at the tip of the giant branch (AGB) stars, to a final white dwarf stage. Iben & Renzini (1983) first showed that the ejection of most of the gaseous envelope in AGB stars occurs at the tip of the giant branch (AGB) stars, to a final white dwarf stage. Iben

Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

2. McDonald Observatory, University of Texas at Austin, Austin, TX 78712.

3. Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903.

4. Department of Astronomy, New Mexico State University, Box 30001, MSC 4500, Las Cruces, NM 88003.

5. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218.

6. Department of Astronomy, University of Texas at Austin, Austin, TX 78712.

7. Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520.

8. Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001.

9. Department of Oceanography, University of Rhode Island, Kingston, RI 02881.

10. Department of Aerospace Engineering, University of Texas at Austin, Austin, TX 78712.

11. Aerospace Engineering Division, Jackson and Tull, Suite 200, 7375 Executive Place, Seabrook, MD 20706.

12. Spacecraft System Engineering Services, P.O. Box 91, Annapolis Junction, MD 20706.

dynamic timescale, and others caused by the evolution of the stellar progenitors and of the CS. Morphology may also depend on the physical status of the interstellar environment of the PN progenitor. Intercomparison of PN can aid our understanding of the complicated astrophysics of this stage of stellar evolution, particularly if distances are known. Many indirect methods of PN distance determination exist (Ciardullo et al. 1999; Napiwotzki 2001). Agreement among these methods is seldom better than 20%. Direct parallax measurements of PN CSs rarely have precisions smaller than the measured parallax, a notable exception being Harris et al. (1997), who provide \sim0.5 mas precision parallaxes for seven PNs CS nearer than 500 pc.

As the last object on the Hubble Space Telescope (HST) Astrometry Science Team list of astrophysically interesting stars, we have determined the absolute parallax of the CS of NGC 6853 (the Dumbbell, M27) using the Fine Guidance Sensor 3 (FGS 3). Napiwotzki (1999) classifies the CS as a white dwarf of type DAO. Our extensive investigation of the astrometric reference stars provides an independent determination of the line-of-sight extinction to NGC 6853, a significant contributor to the uncertainty in the absolute magnitude, M_V, of its CS. We present the results of extensive spectrophotometry of the astrometric reference stars, required to correct our relative parallax to absolute; briefly discuss data acquisition and analysis; and derive an absolute parallax for the CS of NGC 6853. Finally, from a weighted average of our new result and that of Harris et al. (1997), we calculate an absolute magnitude for the CS and apply it to derive a stellar radius.

Bradley et al. (1991) and Nelan & Makidon (2002) provide an overview of the FGS 3 instrument and Benedict et al. (1999, 2002b) describe the fringe tracking (POS) mode astrometric capabilities of FGS 3, along with the data.
acquisition and reduction strategies used in the present study. We time-tag our data with a modified Julian Date, MJD = JD − 2,444,000.5, and abbreviate millisecond of arc, mas, throughout.

2. OBSERVATIONS AND DATA REDUCTION

Figure 1 shows the distribution of the seven reference stars and the CS relative to the brightest regions of the PN. This image, produced by compositing Johnson B, V, and I bandpass frames obtained with the McDonald Observatory 0.8 m telescope and Prime Focus Camera, reveals a particular difficulty with these data. The PN emission can contaminate the ancillary photometry and spectroscopy required to generate reference-star spectrophotometric parallaxes (\S 3).

Eight sets of astrometric data were acquired with HST, spanning 2.59 yr, for a total of 140 measurements of the NGC 6853 CS and reference stars. Each data set required approximately 33 minutes of spacecraft time. The data were reduced and calibrated as detailed in Benedict et al. (2002b, 2002c) and McArthur et al. (2001). At each epoch, we measured reference stars and the target multiple times, this to correct for intraorbit drift of the type seen in the cross-filter calibration data shown in Figure 1 of Benedict et al. (2002b).

Table 1 lists the eight epochs of observation and highlights another particular difficulty with these data. We obtain observations at each of the two maximum parallax factors, hence the two distinct spacecraft roll values in Table 1. These are imposed by HST rolling to keep its solar panels fully illuminated throughout the year. This roll constraint generally imposes alternate orientations at each time of maximum positive or negative parallax factor over a typical 2.5 yr campaign, usually allowing a clean separation of parallax and proper-motion signatures. In this case, two guide star acquisition failures on two attempts at roll $\sim 101^\circ$ (along with a bookkeeping error in scheduling the makeup observation) left us with the less than satisfactory temporal segregation of orientations shown in Table 1. Only the first two epochs occur at maximum negative parallax factor.

![Fig. 1.—NGC 6853 CS and astrometric reference stars. This composite color frame maps Johnson B, V, and I bandpasses as blue, green, and red, respectively. It illustrates potential nebular effects on reference-star photometry and spectroscopy. Exposures were obtained with the McDonald Observatory Prime Focus Camera on the 0.8 m telescope.](image)

Set	MJD	Rolla (deg)	V^b
1	49,985.60531	101.91	13.985 ± 0.004
2	50,021.33038	103.9	13.979 ± 0.002
3	50,172.92498	268.6	14.015 ± 0.003
4	50,178.95797	270.4	14.016 ± 0.002
5	50,208.6424	286.6	14.012 ± 0.002
6	50,233.84447	286.6	14.026 ± 0.002
7	50,569.61249	286.0	13.994 ± 0.003
8	50,932.79954	286.0	14.007 ± 0.003

a Spacecraft roll as defined in the FGS Instrument Handbook (Nelan & Makidon 2002, p. 140).

b Average of six to seven observations at each epoch. Errors are internal, not external.
3. SPECTROPHOTOMETRIC ABSOLUTE PARALLAXES OF THE ASTROMETRIC REFERENCE STARS

Because the parallax determined for the NGC 6853 CS will be measured with respect to reference-frame stars, which have their own parallaxes, we must either apply a statistically derived correction from relative to absolute parallax (Van Altena, Lee, & Hofleit 1995, hereafter YPC95) or estimate the absolute parallaxes of the reference-frame stars listed in Table 2. In principle, the colors, spectral type, and luminosity class of a star can be used to estimate the absolute parallaxes for reference-frame stars that have their own parallaxes, we must either apply a correction or determine the absolute parallaxes of the reference-frame stars.

Specifically, we employ the technique used by Majewski (1989) to obtain photometry in an attempt to confirm the luminosity classes. As a consequence, we obtained additional photometry for reference stars, ref-2 through ref-8.

The luminosity class is generally more difficult to estimate than the spectral type (temperature class). However, the derived absolute magnitudes are critically dependent on the luminosity class. As a consequence, we obtained additional photometry in an attempt to confirm the luminosity classes. Specifically, we employ the technique used by Majewski et al. (2000) to discriminate between giants and dwarfs for stars later than ~G5, an approach also discussed by Paltoglou & Bell (1994).

3.1. Photometry

Our bandpasses for reference-star photometry include BVRI (CCD photometry from a 0.4 m telescope at New Mexico State University), JHK (from a prerelease of Two Micron All Sky Survey (2MASS)), and Washington/DDO photometry for the NGC 6853 reference stars, ref-2 through ref-8.

DDO filters M, DDO51, and T2 (obtained at McDonald Observatory with the 0.8 m and Prime Focus Camera). The 2MASS JHK bandpasses have been transformed to the Bessell & Brett (1988) system using the transformations provided in Carpenter (2001). The RI bandpasses are transformed (Bessell 1979) to the Johnson system from Kron-Cousins measures. Tables 3 and 4 list the visible, infrared, and Washington/DDO photometry for the NGC 6853 reference stars.

Table 2: CS and Reference-Star Data

ID	ξ^a	η^a	μ_α^b	μ_δ^b
CS	0.0000 ± 0.0006	0.0000 ± 0.0005	0.0069 ± 0.0005	0.0179 ± 0.0004
Ref-2	-62.9877 ± 0.0007	-90.3490 ± 0.0008	-0.0013 ± 0.0010	0.0052 ± 0.0007
Ref-3	-154.2862 ± 0.0008	-20.5996 ± 0.0009	0.0028 ± 0.0026	-0.0112 ± 0.0020
Ref-4	-13.2770 ± 0.0007	48.4715 ± 0.0007	-0.0066 ± 0.0026	0.0098 ± 0.0021
Ref-5	15.5963 ± 0.0008	34.4350 ± 0.0007	0.0058 ± 0.0031	0.0123 ± 0.0025
Ref-6	93.1016 ± 0.0008	89.0745 ± 0.0008	0.0004 ± 0.0006	0.0020 ± 0.0006
Ref-7	164.5535 ± 0.0010	51.1593 ± 0.0011	0.0026 ± 0.0024	-0.0107 ± 0.0019
Ref-8	67.3571 ± 0.0008	40.5966 ± 0.0008	-0.0064 ± 0.0023	0.0048 ± 0.0019

* The variables ξ and η are relative positions in arcseconds.
* The variables μ_α and μ_δ are relative motions in arcseconds per year.
* For this object, RA = 19 59 36.2, decl. = 22 43 1.0 (J2000.0), and epoch = MJD 51,486.092. CS position from 2MASS.

Table 3: Visible Photometry

ID	V	$B-V$	$V-R$	$V-I$	$V-K$
CS	13.98 ± 0.03	-0.24 ± 0.04	-0.46 ± 0.04	-0.08 ± 0.04	...
Ref-2	15.41 ± 0.06	2.2 ± 0.2	1.11 ± 0.08	2.19 ± 0.08	3.91 ± 0.06
Ref-3	11.66 ± 0.02	1.87 ± 0.03	1.47 ± 0.03	2.57 ± 0.03	4.52 ± 0.03
Ref-4	14.94 ± 0.03	0.76 ± 0.07	0.59 ± 0.04	1.21 ± 0.04	1.98 ± 0.04
Ref-5	15.45 ± 0.04	0.92 ± 0.07	0.55 ± 0.05	1.18 ± 0.05	2.03 ± 0.05
Ref-6	14.10 ± 0.03	1.95 ± 0.07	1.58 ± 0.04	2.66 ± 0.04	4.63 ± 0.03
Ref-7	13.71 ± 0.03	0.66 ± 0.06	0.49 ± 0.04	1.05 ± 0.04	...
Ref-8	14.69 ± 0.03	1.98 ± 0.07	1.12 ± 0.04	2.13 ± 0.04	4.07 ± 0.04

13 The Two Micron All Sky Survey is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center.

14 The Apache Point Observatory 3.5 m telescope is owned and operated by the Astrophysical Research Consortium.
Washington/DDO photometry is less helpful as a discriminator in this case than it has proved for our previous targets (e.g., Benedict et al. 2002b, 2002c; McArthur et al. 2001). As seen in Figure 1, the nebular emission can contaminate the aperture photometry, depending on the filter bandpass. This contamination occurs predominantly in the M filter, because its effective bandpass (4500–5400 Å) includes the strong emission lines at 5007 Å [O III] and 4861 Å Hα. This results in broadband $M-T_2$ colors that are slightly bluer than they would be in the absence of the nebula and significantly bluer M-DDO51 indices (M51 in Fig. 2). Additionally, the nebular emission contaminates the sky annulus, which leads to larger measured magnitude errors than would be the case in the absence of the nebula. We list in Table 4 the Washington-DDO photometry. Unfortunately both ref-2 and ref-6 fell on bad columns in the photometer CCD. Figure 3 shows the Washington-DDO photometry along with a dividing line between dwarfs and giants (Paltoglou & Bell 1994). The boundary between giants and dwarfs is actually far “fuzzier” than suggested by the solid line in Figure 3 and complicated by the photometric transition from dwarfs to giants through subgiants. This soft boundary is made readily apparent by Majewski et al. (2000, their Fig. 14). In the absence of contaminating nebular flux, objects just above the heavy line are statistically more likely to be giants than objects just below the line.

TABLE 4

ID	K	$J-H$	$H-K$	$M-T_2$	M51
Ref-2	11.50 ± 0.02	0.74 ± 0.04	0.15 ± 0.04
Ref-3	7.14 ± 0.02	0.89 ± 0.03	0.23 ± 0.03	2.51 ± 0.01	−0.17 ± 0.01
Ref-4	12.96 ± 0.03	0.35 ± 0.04	0.13 ± 0.04	1.34 ± 0.10	−0.01 ± 0.14
Ref-5	13.42 ± 0.03	0.42 ± 0.04	0.10 ± 0.05	0.56 ± 0.09	−0.02 ± 0.1
Ref-6	9.47 ± 0.02	0.81 ± 0.03	0.25 ± 0.03
Ref-7
Ref-8	10.62 ± 0.03	0.80 ± 0.04	0.24 ± 0.04	1.97 ± 0.08	−0.09 ± 0.11

Fig. 2. — M-DDO51 (M51) vs. $M-T_2$ color-color diagram. The solid line is the division between luminosity class V and luminosity class III stars. Giants are generally above the line, dwarfs below. The reddening vector is for an $A_V = 1.0$. The circled numbers are the reference-star identifications plotted at the dereddened values, based on the per-star (A_i) from Table 5. Nebular emission lines will move objects toward bluer M51 values.

Fig. 3. — $J-H$ vs. $H-K$ and $J-H$ vs. $V-K$ color-color diagrams. The dashed line is the locus of dwarf (luminosity class V) stars of various spectral types; the dot-dashed line is for giants (luminosity class III). The reddening vector indicates $A_V = 1.0$ for the plotted color systems.
After correcting for interstellar extinction, our reference stars lie on the dividing line to the left, where giant/dwarf discrimination is poorest. Nebular emission lines could have depressed ref-3 and ref-8 (giants, as determined from spectroscopy) below the giant-dwarf dividing line.

3.3. Interstellar Extinction

To determine interstellar extinction, we first plot these stars on several color-color diagrams. A comparison of the relationships between spectral type and intrinsic color against those we measured provides an estimate of reddening. Figure 3 contains $J-H$ versus $H-K$ and $V-H$ versus $V-K$ color-color diagrams and reddening vectors for $A_V = 1.0$. Also plotted are mappings between spectral type and luminosity class V and III from Bessell & Brett (1988) and Cox (2000; hereafter AQ2000). Figure 3, and similar plots for the other measured colors, along with the estimated spectral types, provides an indication of the reddening for each reference star.

Assuming an $R = 3.1$ galactic reddening law (Savage & Mathis 1979), we derive A_V values by comparing the measured colors (Tables 3 and 4) with intrinsic $V-R$, $V-I$, $J-K$, and $V-K$ colors from Bessell & Brett (1988) and AQ2000. Specifically, we estimate A_V from four different ratios, each derived from the Savage & Mathis (1977) reddening law: $A_V/E(V-R) = 5.1$, $A_V/E(J-K) = 5.8$, $A_V/E(V-K) = 1.1$, and $A_V/E(V-I) = 2.4$. We excluded $A_V/E(B-V)$ due to the higher errors in that color index. The resulting A_V are collected in Table 5. The errors are the standard deviation of the means for each star. We also tabulate A_V per unit 100 pc distance for each star. Colors and spectral types of the NGC 6853 reference stars are consistent with a field-wide average $\langle A_V \rangle = 1.46 \pm 0.35$, far less than the maximum reddening, $A_V < 4.66$ determined by Schlegel, Finkbeiner, & Davis (1998).

3.4. Adopted Reference-Frame Absolute Parallaxes

We derive absolute parallaxes with M_V values from AQ2000 and the $\langle A_V \rangle$ derived from the photometry. Our parallax values are listed in Table 6. Individually, no reference-star parallax is better determined than $\sigma_\pi/\pi = 18\%$. The average absolute parallax for the reference frame is $\langle \pi_{abs} \rangle = 1.0$ mas. As a check, we compare this with the correction to absolute parallax discussed and presented in YPC95 (\S 3.2, Fig. 2). Entering YPC95, Fig. 2, with the NGC 6853 galactic latitude, $l = -3^\circ 7$, and average magnitude for the reference frame, $\langle V_{ref} \rangle = 14.3$, we obtain a correction to absolute of 1.1 mas. We will use the 1.0 mas correction derived from spectrophotometry. When such data are available the use of spectrophotometric parallaxes offers a more direct way of determining the reference-star absolute parallaxes.

4. Absolute Parallax of the CS of NGC 6853

4.1. The Astrometric Model

With the positions measured by FGS 3, we determine the scale, rotation, and offset “plate constants” relative to an arbitrarily adopted constraint epoch (the so-called master plate) for each observation set (the data acquired at each epoch). The MJD of each observation set is listed in Table 1, along with a measured magnitude transformed from the FGS instrumental system as per Benedict et al. (1998). The NGC 6853 reference frame contains seven stars. We employ the six-parameter model discussed in McArthur et al. (2001) for those observations. In this case, we determined the plate parameters from reference-star data only then apply them as constants to obtain the parallax and proper motion of the CS. For the NGC 6853 field, all the reference stars are redder than the science target. Hence, we apply the corrections for lateral color discussed in Benedict et al. (1999).

As for all our previous astrometric analyses, we employ GaussFit (Jefferys, Fitzpatrick, & McArthur 1987) to minimize χ^2. The solved equations of condition for NGC 6853 are

$$x' = x + lcx(B - V),$$
$$y' = y + lcy(B - V),$$
$$\xi = Ax' + By' + C + R_x(x'^2 + y'^2) - \mu_x \Delta t - P_{\pi_x},$$
$$\eta = -Bx' + Ay' + F + R_y(x'^2 + y'^2) - \mu_y \Delta t - P_{\pi_y},$$

where x and y are the measured coordinates from HST, lcx, ξ, and η are the correction terms, and P_{π_x} and P_{π_y} are the proper motions of the reference frame. Table 6 gives the reference-star spectral classifications and spectrophotometric parallaxes.

ID	Sp. T.	V	M_V	A_V	π_{abs} (mas)
Ref-2	K0 III	15.41	0.7 ± 0.4	1.8	0.3 ± 0.1
Ref-3	K3 III	11.66	0.3 ± 0.4	2.1	1.4 ± 0.2
Ref-4	G3 V	14.94	5.9 ± 0.4	0.6	2.1 ± 0.4
Ref-5	G5 V	15.45	5.1 ± 0.4	0.4	1.2 ± 0.5
Ref-6	K0 III	14.10	0.7 ± 0.4	3.0	0.8 ± 0.2
Ref-7	F4 V	13.71	3.3 ± 0.4	0.9	1.3 ± 0.2
Ref-8	K2 III	14.69	0.5 ± 0.4	1.6	0.3 ± 0.1
and h and l are the lateral color corrections from Benedict et al. (1999), and $B - V$ are the $B - V$ colors of each star. A and B are scale and rotation plate constants, C and F are offsets, R_x and R_y are radial terms, μ_x and μ_y are proper motions; Δt is the epoch difference from the mean epoch, P_0 and P_1 are parallax factors, and π_x and π_y are the parallaxes in x and y. We obtain the parallax factors from a JPL Earth-orbit predictor (Standish 1990), upgraded to version DE405. We imposed the constraint that the reference-star proper motions are random in direction by forcing their sum in x and y to be zero, $\sum \mu_x = \sum \mu_y = 0$. Orientation to the sky is obtained from ground-based astrometry (USNO-A2.0 Catalog, Monet 1998) with uncertainties in the field orientation ± 0.05.

4.2. Assessing Reference-Frame Residuals

The Optical Field Angle Distortion calibration (McArthur et al. 1997) reduces as-built HST and FGS 3 distortions with amplitude $\sim 1''$ to below 2 mas over much of the FGS 3 field of regard. From histograms of the reference-star astrometric residuals (Fig. 4), we conclude that we have obtained satisfactory correction in the region available at all HST rolls (an inscribed circle centered on the pickle-shaped FGS field of regard). The resulting reference-frame “catalog” in ξ and η standard coordinates (Table 2) was determined with $\langle \sigma_\xi \rangle = 1.0$ mas and $\langle \sigma_\eta \rangle = 1.0$ mas.

To determine if there might be unmodeled—but possibly correctable—systematic effects at the 1 mas level, we plotted the NGC 6853 reference-frame X and Y residuals against a number of spacecraft, instrumental, and astrophysical parameters. These included (X, Y)-position within the pickle, radial distance from the pickle center, reference-star V magnitude and $B - V$ color, and epoch of observation. We saw no obvious trends, other than an expected increase in positional uncertainty with reference-star magnitude.

4.3. The Absolute Parallax of the NGC 6853 CS

In a quasi-Bayesian approach, the reference-star spectro-photometric absolute parallaxes were input as observations with associated errors, not as hardwired quantities known to infinite precision. We obtain for the NGC 6853 CS an absolute parallax $\pi_{\text{abs}} = 2.10 \pm 0.48$ mas. We note that the formal error on this particular HST parallax is larger than we typically achieve with FGS 3. For eight objects in common with Hipparcos, we obtain an average parallax precision, $\langle \sigma_\pi \rangle = 0.26$ mas, with no statistically significant scale difference compared with Hipparcos (Benedict et al. 2002c, 2002a). We attribute the larger than expected parallax error for the NGC 6853 CS to the less than optimum pattern of maximum positive and negative parallax factors seen in Table 1. However, our result agrees to within the errors with the previous ground-based parallax measurement of the NGC 6853 CS (Harris et al. 1997), $\pi_{\text{abs}} = 2.63 \pm 0.43$ mas. Parallaxes from HST and USNO and relative proper-motion results from HST are collected in Table 7. For the remainder of this paper, we adopt as the absolute parallax of the NGC 6853 CS, $\pi_{\text{abs}} = 2.40 \pm 0.32$ mas, the weighted average of these two completely independent parallax determinations.

![Fig. 4.—Histograms of x and y residuals obtained from modeling the astrometric reference stars with eqs. (4) and (5). Distributions are fitted with Gaussians whose σ values are noted in the plots.](image)

TABLE 7

Parameter	Value
HST study duration (yr)	2.59
Number of observation sets	8
Reference stars (V)	14.28
Reference stars ($B - V$)	1.47
HST absolute parallax (mas)	2.10 ± 0.48
USNO absolute parallax (mas)	2.63 ± 0.43
Weighted average absolute parallax (mass)	2.40 ± 0.32
HST proper motion (mas yr$^{-1}$)	19.2 ± 1.1
Position angle (deg)	21 ± 1
5. DISCUSSION AND SUMMARY

5.1. FGS Photometry of the CS

FGS 3 is a precision photometer, yielding relative photometry with 0.002 mag errors (Benedict et al. 1998). During each of the eight total observation sets, we observed the NGC 6853 CS 6–7 times over approximately 33 minutes. No nonrandom variations were noted within any one data set. The average \(\sigma_V \) for the eight data sets was \(\langle \sigma_V \rangle \approx 0.002 \) mag. However, statistically significant variations over the 2.6 yr campaign duration are evident in Table 1. Our coverage is too sparse to extract any periodic component to this variation.

5.2. The Lutz-Kelker-Hanson (LKH) Bias

When using a trigonometric parallax to estimate the absolute magnitude of a star, a correction should be made for the Lutz-Kelker bias (Lutz & Kelker 1973) as modified by Hanson (1979). Because of the galactic latitude and distance of NGC 6853 and the scale height of the stellar population of which it is a member, we use a uniform space density for determining this LKH bias. The LKH bias is proportional to \(T \), the CS temperature in Kelvin. We use a uniform space density for which it is a member, we use a uniform space density for determining this LKH bias. The LKH bias is proportional to \(T \), the CS temperature in Kelvin.

5.3. The Absolute Magnitude of the CS of NGC 6853

Adopting for the NGC 6853 CS \(V = 13.98 \pm 0.03 \) and the weighted average absolute parallax, \(\pi_{\text{abs}} = 2.40 \pm 0.32 \) mas from § 4.3, we determine a distance modulus, \((m-M) = 8.10 \pm 0.15 \). In Table 5 (§ 3.3), we list a derived per star, per unit 100 pc distance absorption, \(\langle A_V \rangle /100 \) pc. Given the considerable scatter in that value, we adopt the average of the three stars nearest the central target (see Fig. 1), ref-4, -5, and -8, \(\langle A_V \rangle /100 \) pc = 0.07 \pm 0.03. With this per-unit 100 pc \(\langle A_V \rangle \) and the measured distance to the NGC 6853 CS, \(d = 417_{-28}^{+26} \) pc, we obtain a total absorption for the CS, \(A_V = 0.30 \pm 0.06 \). As a check, we employ the formulation (Laney & Stobie 1993)

\[
R = 3.07 + 0.28(B-V)_0 + 0.04(E(B-V))
\]

to obtain for the NGC 6853 CS, \(R = 2.99 \). From \(R = A_V/E(B-V) \), we then obtain \(E(B-V) = 0.10 \) and a reddening-corrected \(B-V = 0.34 \), a value one would expect for an object with \(T \approx 10^5 \) K. For further confirmation of this reddening value, Ciardullo et al. (1999) obtain for NGC 6853 \(A_V = 0.2 \pm 0.1 \) from an \(E(B-V) \) relation, assuming a CS temperature of \(10^5 \) K. With \(A_V = 0.30 \pm 0.06 \), we obtain \(M_V = 5.43 \pm 0.28 \). We have included the LKH correction and its uncertainty and the 0.06 mag uncertainty in \(A_V \) in quadrature (for a summary of the astrophysical quantities for NGC 6853, see Table 8).

5.4. A CS Radius

To estimate a radius, \(R_\star \), for this star, we require a distance, an absolute magnitude, an effective temperature, \(T_{\text{eff}} \), and a bolometric correction (BC). These quantities then yield a radius via differential comparison with the Sun. Our parallax provides a distance, \(d = 417_{-49}^{+49} \) pc, and an absolute magnitude, \(M_V = 5.43 \pm 0.28 \). Napwotzki (1999) has estimated \(T_{\text{eff}} = 108,600 \pm 6800 \) K from model atmosphere fits to the Balmer \(H\delta \) and \(H\epsilon \) absorption lines.

For the BC, we have two sources, Bergeron, Wesemael, & Beauchamp (1995) tabulate BC up to \(T_{\text{eff}} = 100,000 \) K from a pure hydrogen, \(\log g = 8 \), DA white dwarf model convolved with a \(V \) bandpass. A small extrapolation yields BC = –7.13. Flower (1996) provides bolometric corrections for normal stars up to \(T_{\text{eff}} \approx 54,000 \) K. From Flower (1996, his Fig. 4), the relationship between log \(T_{\text{eff}} \) and BC is linear for \(T_{\text{eff}} > 25,000 \) K. Hotter stars lie on the Rayleigh-Jeans tail of the blackbody curve, which flux is roughly proportional to \(T_{\text{eff}} \) and not \(T_{\text{eff}}^4 \). A linear extrapolation yields BC = –7.03 for the NGC 6853 CS. We adopt BC = –7.1 \pm 0.2, where the error is dominated by the uncertainty in \(T_{\text{eff}} \) and the poorly characterized behavior of the BC at these high temperatures.

We obtain a CS bolometric luminosity \(M_{\text{bol}} = M_V + BC = -1.67 \pm 0.37 \). Following for this radius are in the absolute magnitude (i.e., the parallax), the bolometric correction, and the \(T_{\text{eff}} \).

A second way to obtain \(R_\star \) involves the \(V \)-band average flux, \(H_V \), discussed in Bergeron et al. (1995). They list \(H_V^* \) as a function of temperature for, again, a pure hydrogen, \(\log g = 8 \), DA model. We obtain \(H_V^* \) for \(T_{\text{eff}} = 108,600 \) K by a small extrapolation from the highest temperature considered by Bergeron et al. (1995), \(T_{\text{eff}} = 100,000 \) K. If we can determine an \(H_V^\odot \), we can derive \(R_\star \) from

\[
R_\star = (H_V^*/H_V^\odot) \times 10^{-0.4(M_V^\odot-M_V^\star)}.
\]

In Benedict et al. (2000), we estimated the radius of Feige 24, the exponent on \(R_\star \) was inadvertently omitted, but not in the calculation. In that paper, we obtained \(H_V^\odot \) by convolving the Bessell (1990) \(V \)-band response with the solar spectral distribution listed in Allen (1973). We calculated \(H_V^\odot = 6.771 \times 10^{18} \) ergs cm\(^{-2}\) s\(^{-1}\) Å\(^{-1}\) str\(^{-1}\). We obtain for this CS with \(T_{\text{eff}} = 108,600 \) K, \(M_V^\star = 5.43 \) from our parallax, and \(M_V^\odot = 4.82 \) an \(R_\star = 0.06 \pm 0.02 \). As a final check, we calculate \(R_\star \) from equation (8), but differentially with respect to our Feige 24 \(M_V \) (Benedict et al. 2000, Table 5), rather than \(M_V^\odot \). This also yields \(R_\star = 0.06 \pm 0.02 \). Given that the approach relying directly on the BC and the approach using \(H_V^\star \) yield \(R_\star \) values that agree within
their errors, we adopt \(R_* = 0.055 \pm 0.02 \, R_\odot \). The error on this radius (2.75 \(\sigma \)) cannot be further reduced by a weighted average of the results from the two approaches, because their errors are highly correlated, both having significant contributions from the uncertainties in \(T_{\text{eff}} \) and \(M_\gamma \).

Comparing with the results presented in Provencal et al. (1998, Fig. 3), and our radius for the hot white dwarf Feige 24, we find the CS of NGC 6853 to have a radius larger than any other white dwarf so far measured. On a log \(g \)-log \(T_{\text{eff}} \) diagram (Napiwotzki 1999, Fig. 2), the evolutionary track of a post-AGB star of a given mass traces a path at first of both increasing log \(g \) and log \(T_{\text{eff}} \). Once the star reaches the WD cooling track, log \(T_{\text{eff}} \) then decreases, with a smaller rate of change in log \(g \). Having determined both \(T_{\text{eff}} \) and log \(g \) from line profile fitting, Napiwotzki (1999) estimates the mass of the NGC 6853 CS from such a diagram, obtaining \(M = 0.56 \pm 0.01 \, M_\odot \). A mass and radius uniquely determine a gravity, \(g \),

\[
g = MG/R^2,
\]

where \(G \) is the gravitational constant. Our radius, \(R_* = 0.055 \pm 0.02 \, R_\odot \) and the Napiwotzki (1999) mass yield log \(g = 6.7 \pm 0.4 \), in good agreement with the Napiwotzki (1999) line profile fitting value, log \(g = 6.7 \pm 0.2 \). Our radius estimate is consistent with a stellar core not yet descended to the white dwarf cooling sequence.

5.5. Summary

HST astrometry yields an absolute trigonometric parallax for the NGC 6853 CS, \(\pi_{\text{abs}} = 2.10 \pm 0.48 \) mas. A weighted average with a previous ground-based determination (Harris et al. 1997) provides \(\pi_{\text{abs}} = 2.40 \pm 0.32 \) mas. The higher precision resulting from the average of two independent parallax determinations requires a smaller LKH bias correction, \(-0.15 \pm 0.07 \) mag. Spectrophotometry of the astrometric reference stars local to NGC 6853 suggest an extinction for the CS, \(A_V^* = 0.30 \pm 0.06 \). The dominant error terms in the resulting absolute magnitude, \(M_V = 5.43^{+0.31}_{-0.28} \), are the parallax and the uncertainty in the amount of extinction for the CS itself. Two methods for estimating the radius of the CS yield \(R_* = 0.055 \pm 0.02 \, R_\odot \), suggesting a star still above the white dwarf cooling track.

We thank Conard Dahn for his careful and critical refereeing of this paper. Support for this work was provided by NASA through grant NAG 5-1603 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These results are based partially on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by NASA and the NSF. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France; the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA; and NASA’s Astrophysics Data System Abstract Service.

REFERENCES

Allen, C. W. 1973, Astrophysical Quantities (3d ed.; London: Athlone)
Benedict, G. F., et al. 1999, AJ, 118, 1086
———. 2002a, ApJ, 581, L115
———. 2000, AJ, 119, 2382
———. 2002b, AJ, 123, 473
———. 2002c, AJ, 124, 1695
———. 1998, AJ, 116, 429
Bergeron, P., Wesemael, F., & Beauchamp, A. 1995, PASP, 107, 1047
Bessell, M. S. 1979, PASP, 91, 5
———. 1990, PASP, 102, 1181
Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134
Bradley, A., Abramowicz-Reed, L., Story, D., Benedict, G., & Jefferys, W. 1991, PASP, 103, 317
Carpenter, J. M. 2001, AJ, 121, 2851
Ciardullo, R., Bond, H. E., Sipior, M. S., Fultton, L. K., Zhang, C.-Y., & Schaefer, K. G. 1999, AJ, 118, 488
Cox, A. N., ed. 2000, Allen’s Astrophysical Quantities (4th ed.; New York: AIP) (AQ2000)
Flower, P. J. 1996, ApJ, 469, 355
Hanson, R. B. 1979, MRAS, 186, 875
Harris, H. C., Dahn, C. C., Monet, D. G., & Pier, J. R. 1997, in IAU Symp. 180, Planetary Nebulae, ed. H. J. Habet & H. J. G. L. M. Lamers (Dordrecht: Kluwer), 40
Iben, I., & Renzini, A. 1983, ARA&A, 21, 271
Jaffe, W., Fitzpatrick, J., & McArthur, B. 1987, Celest. Mech., 41, 39
Lane, C. D., & Stobie, R. S. 1993, MNRA, 263, 921
Lutz, T. E., & Kelker, D. H. 1973, PASP, 85, 573
Majewski, S. R., Ostheimer, J. C., Kunkel, W. E., & Patterson, R. J. 2000, AJ, 120, 2550
McArthur, B., Benedict, G. F., Jefferys, W. H., & Nelson, E. 1997, in Proc. 1997 HST Calibration Workshop, ed. S. Casertano, R. Jedrzejewski, T. Keyes, & M. Stevens (Baltimore: STScI)
McCarron, B. E., et al. 2001, ApJ, 560, 907
Monet, D. G. 1998, BAAS, 30, 1427
Napiwotzki, R. 1999, A&A, 350, 101
———. 2000, A&A, 350, 101
Nelan, E., & Makidon, R., eds. 2003, Fine Guidance Sensor Instrument Handbook, Version 11 (Baltimore: STScI)
Paltoglou, G., & Bell, R. A. 1994, MNRA, 268, 793
Provencal, J. L., Shipman, H. L., Hog, E., & Thejll, P. 1998, ApJ, 494, 759
Savage, B. D., & Mathis, J. S. 1979, ARA&A, 17, 73
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 255
Standish, E. M., Jr 1990, A&A, 233, 252
Stanghellini, L., Villaver, E., Manchado, A., & Guerrero, M. A. 2002, ApJ, 576, 285
van Altena, W. F., Lee, J. T., & Hoffleit, E. D. 1995, Yale Parallax Catalog (4th ed.; New Haven: Yale Univ. Obs.) (YP9C95)