Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases

Harold I. ZELIGER
Zeliger Chemical, Toxicological, and Environmental Research, West Charlton, NY, USA

ABSTRACT

Many studies have associated environmental exposure to chemicals with neurological impairments (NI) including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders (NDD) including autism and attention deficit hyperactivity disorder (ADHD); neurodegenerative diseases (NDG) including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis (ALS). The environmental chemicals shown to induce all these diseases include persistent organic pollutants (POPs), the plastic exudates bisphenol A and phthalates, low molecular weight hydrocarbons (LMWHCs) and polynuclear aromatic hydrocarbons (PAHs). It is reported here that though these chemicals differ widely in their chemical properties, reactivities and known points of attack in humans, a common link does exist between them. All are lipophilic species found in serum and they promote the sequential absorption of otherwise non-absorbed toxic hydrophilic species causing these diseases.

KEY WORDS: neurological disease; Alzheimer’s disease; Parkinson’s disease; autism; ADHD; lipophilic chemicals; toxic chemicals

Introduction

Neurological impairments (NI), neurodevelopmental diseases (NDD) and neurodegenerative diseases (NDG) continue to increase dramatically worldwide. From 1990 to 2010, mental and behavioral disorders increased by more than 37%, Parkinson’s disease increased by 75%, Alzheimer’s disease doubled, autism increased by 30% and attention deficit hyperactivity disorder (ADHD) increased by 16% (Murray et al., 2012; Vos, et al., 2012). The increases in many epidemic and pandemic diseases, including neurological disorders, have been attributed to environmental exposures to exogenous toxic chemicals. The World Health Organization estimates that “as much as 24% of environmental disease is caused by environmental exposures that can be averted” (WHO, 2006).

Previously reported results have demonstrated the connection between lipophilic chemical exposure and type 2 diabetes (Zeliger, 2013b) and also with a cardiovascular disease (Zeliger, 2013a). It is reported here that such a connection also exists between lipophilic exposure and neurological impairments, neurodevelopmental diseases and neurodegenerative diseases.

It has been previously shown that mixtures of lipophilic and hydrophilic chemicals are toxic to humans at concentrations that are far below those known to be toxic for each of the components of such mixtures alone (Zeliger, 2003; Zeliger, 2011). It has also been previously reported that exposures to the hydrophilic and lipophilic chemicals need not occur simultaneously but can occur sequentially, with the lipophilic substance exposure coming first and the hydrophilic exposure occurring some time later, provided that the lipophilic species is still retained in the body (Zeliger et al., 2012). Such a sequential phenomenon has been demonstrated for the induction of type 2 diabetes (Zeliger, 2013b) and of a cardiovascular disease (Zeliger, 2013a). The case for such a mechanism for the induction of neurological disorders is proposed here.
The lipophiles associated with induction of neurological disorders can be long-lived persistent organic pollutants (POPs), which once absorbed can remain in the body’s adipose tissue for up to 30 years or more and can be transferred to serum (Yu et al., 2011). The lipophiles can also be intermediate-lived species, including polynuclear aromatic hydrocarbons (PAHs), bisphenol A (BPA) and phthalates, which can remain in the body for days or weeks (Stahlhut et al., 2009; Kessler et al., 2012; Li et al., 2012). This applies also to low molecular weight hydrocarbons (LMWHCs), which are retained in body serum for days after absorption (Pan et al., 1987; Zeliger et al., 2012). The serum concentrations of the lower-lived species remain more or less in a steady state due to continuous exposure and absorption (Zeliger et al., 2012), replacing the quantities lost via metabolism and elimination (Baselt, 2000).

Suggested mechanisms of neurotoxic action for some of these chemicals include oxidative stress, epigenetic effects and endocrine disruption (Kodavanti, 2005; Quaak et al., 2008; Calderon-Garciduenas et al., 2008; Colborn et al., 1997; Patrick, 2009). Yet to date, no one mechanism can account for the neurological toxicity of this group of chemicals which differ widely in structure, chemical properties and reactivity. It is reported here, however, that there is indeed a unifying explanation for the induction of neurological diseases by this diverse group of chemicals. The studies referred to above show that accumulation of all of these chemicals in body serum was associated with increased incidence of neurological impairment, neurodevelopmental and neurodegenerative diseases. All these chemicals are lipophilic and all were shown to accumulate in body serum following exposure to them. Lipophiles were found to facilitate the absorption of hydrophilic chemicals across the body’s lipophilic membranes (Zeliger, 2003; Zeliger, 2011). It is proposed here that the lipophiles of these exogenous chemicals induces neurological disorders by permeating lipophilic membranes, including the blood brain barrier, thus enabling the entry for toxic hydrophilic species that would otherwise not be absorbed.

Methods

The results presented here are based upon the literature review of numerous studies, published both by this author and by others, on toxic effects of the chemicals involved, including case studies and epidemiologic studies. Adverse effects on health were in all instances diagnosed by appropriate clinical examinations and tests and chemical analytical data were generated in accordance with accepted protocols.

The total lipophilic load in serum is postulated as responsible for the induction of cardiovascular diseases (CVD). As used here, total lipophilic load refers to the total concentration of all exogenous lipophilic chemicals found in serum, without specification of individual chemical species.

Results

As discussed below, exposures to POPs, plastic exudates, PAHs and LMWHCs have been found to be associated with neurological disorders. The POPs include polychlorinated biphenyls (PCBs), organochlorine pesticides (OCs), dioxins and furans and polybrominated diphenyl ethers (PBDEs). Plastic exudates include BPA and phthalates. LMWHCs include benzene, toluene, ethyl benzene, xylenes, C3–C8 aliphatics, gasoline, chlorinated methanes and ethanes and chlorinated ethylenes.

POPs, PAHs, LMWHCs, BPA and phthalates all have been shown to penetrate the blood-brain barrier (BBB) (Seelbach et al., 2010; Qiu et al., Escudar-Gilabert et al., 2009; Gupta et al., 1999, 2011; Hartz et al., 2008; Caldeiron-Garciduenas et al., 2008; Sun et al., 2002; Szychowski & Wojtowicz, 2013). Neurological disease

I. Neurological impairments

NIs associated with lipophilic chemical exposure include central nervous system disorders (cognitive, motor and sensory), as well as peripheral nervous system maladies (neuropathies) (Gamble 2000; Baker 1988; Maruff et al., 1988; Weintraub et al.; 2000; Lee et al., 2008b; Sendur et al., 2009; Gupta et al., 2011; Kodavanti, 2005; Patri et al., 2009; Gamble, 2000; White & Proctor, 1997; Burbacher, 1993).

Recent research has shown that neurological impairment prevalence is increased by exposure to a number of different chemicals. These include persistent organic pollutants (POPs) – polychlorinated biphenyls (PCBs) (Kodavanti 2005; Gascon et al., 2013; Faroon et al., 2001; Buters et al., 2007; Fitzgerald et al., 2012; Chia & Chu, 1984); organochlorine pesticides (OCs) (Jurewicz et al., 2013b; Moses et al., 2010; Iwaniuk et al., 2006; Colosio et al., 2003; Lee et al., 2008b); dioxins and furans (Kodavanti 2005), and polybrominated biphenyl ethers (PBDEs) used as fire retardants (Kodavanti 2005; Buters et al., 2007; Fitzgerald et al., 2012; Widholm et al., 2003; Thomke et al., 1999; Michalek et al., 2001; Sweeney et al., 1993); BPA, widely used in the manufacture of plastic food containers and other applications (Viberg et al., 2011; White et al., 1997; Viberg et al., 2012; Yolton 2011); phthalates, widely used as plasticizers for polyvinyl chloride (Jurewicz et al., 2013a; Le Cann et al., 2011; Yolton et al., 2011), which are exuded from plastics; low molecular weight aliphatic and aromatic hydrocarbons (LMWHCs) and their chlorinated products which evaporate from gasoline, adhesives, paints and household products (Viaene, 2002; Maruff et al., 1998; Burbacher, 1993; ATSDR, 2001; Lamiers et al., 2011); and polynuclear aromatic hydrocarbons (PAHs) which come from primary and secondary tobacco smoke inhalation and fuel combustion (ATSDR, 1995; He et al., 2012; Patri et al., 2009; Krivoshto et al., 2008).

II. Neurodevelopmental diseases

NDDs associated with lipophilic chemical exposure include autism spectrum disorders (ASD) (Winneke 2011; Roberts et al., 2007; Roberts et al., 2013; Larsson et al., 2010; de Cock et al., 2012; Cheslack-Postova et
Table 1. Neurological disorders associated with lipophilic chemical exposures.

Chemicals	PCs	OCS	PBDEs	Dioxins/Furans	Phthalates	BPA	PAHs	LMWHCs
Alzheimer's disease	0*	0*	0*	0	0	0	0	0
Parkinson's disease	0*	0*	0*	0	0	0	0	0
ALS	0*	0*	0*	0	0	0	0	0

* established relationship; ** suspected relationship

Discussion

The chemicals that are known to cause neurological diseases include POPs (PCBs, OCs, PBDEs, dioxins, furans, PFOEs), phthalates, BPA and hydrocarbons. These chemicals come from a variety of chemical classes that include chlorinated and brominated hydrocarbons, esters, ethers, polynuclear aromatic hydrocarbons, mononuclear aromatic hydrocarbons and straight chain aliphatic hydrocarbons. These chemicals differ widely in chemical properties, reactivity and rates of metabolism and elimination from the body.

The lipophiles associated with induction of neurological disorders can be long-lived POPs, which once absorbed can remain in the body's adipose tissue for up to 30 years or more and can be transferred to serum (Yu et al., 2011). The lipophiles can also be intermediate-lived species, including PAHs, BPA and phthalates, which can remain in the body for days or weeks (Stahlhut et al., 2009; Kessler et al., 2012; Li et al., 2012), as well as LMWHCs, which are retained in body serum for days after absorption (Pan et al., 1987; Zeliger et al., 2012). The serum concentrations of the lower-lived species remain more or less in a steady state due to continuous exposure (Zeliger, et al., 2012) and absorption that replaces quantities lost via metabolism and elimination (Baselt, 2000).

Mechanisms by which environmental chemicals trigger neurological diseases have been proposed. These include: oxidative stress (Uttara et al., 2009; Bolanos et al., 2009), epigenetic effects (Jakovcevski & Akbarian, 2012; Urdinguio et al., 2009) and endocrine disruption (Weiss, 2012; Mostafalou & Abdollahi, 2013; Colborn et al., 1997). Compelling evidence has been presented to give validity to these mechanisms in some instances (see for example Urdinguio et al., 2013). Until now, however, no single mechanism that accounts for the induction of a broad spectrum of neurological diseases has been proposed. The association with the onset of widely differing NIs, NDDs and NDGs with exposures to POPs, BPA, phthalates, PAHs and LMWHCs, chemicals which differ widely from...
each other, yet all of them are able to penetrate the blood-brain barrier, strongly suggests a lipophile-dependent mechanism for the induction of CVDs. The concept of lipophilic chemicals serving to assist the penetration of hydrophilic therapeutic drugs through the blood-brain barrier is well established (Partridge, 2012; Patel et al., 2009; Filmore, 2002; Seelig et al., 1994), lending credence to the mechanism suggested here.

It has been previously shown that mixtures of toxic chemicals containing at least one lipophilic and one hydrophilic agent produce effects not predictable from the known toxicology of the individual species. These effects include attack on organs and systems not known to be impacted by the individual species, low-level toxicity induced by exposures to concentrations far below those known to be toxic by single chemicals in the mixtures and enhanced toxicity to humans (Zeliger, 2003). The correlation presented here between lipophilic absorption with sequential hydrophilic absorption corroborates well these findings. In all the published studies, the levels of lipophiles in blood are far lower than those known to be acutely toxic for the individual species.

POPs are long-lived and accumulate in white adipose tissue (WAT) from which they can pass to the blood and be transported around the body (Yu et al., 2011; Mullerova & Kopecky, 2007; Covaci et al., 2002). Due to the slow rates of metabolism and elimination, once absorbed, POPs can persist in the body for 30 years or longer and can build up with time to toxic concentrations (Yu et al., 2011; Gallo et al., 2011). This bioaccumulation of POPs with time over many years accounts for the delayed onset of disease following initial exposure.

The lower molecular weight of NI, NDD and NDG inducing chemicals (phthalates, BPA, PAHs and LMWHCs), absorbed even at toxic concentrations, are more rapidly metabolized/eliminated. Nevertheless, they persist in body serum for days to weeks (Stahlhut et al., 2009; Koch et al., 2004; Li et al., 2012; Pan et al., 1987). Accordingly, short-term toxic concentrations from single exposures to these are fairly rapidly reduced. All of these chemicals, however, are ubiquitous in the environment as air, water or food contaminants, resulting in fairly continuous absorption and maintenance of steady-state concentrations in the blood of those who are continually exposed. Such a scenario applies as well to those who take some pharmaceutics on a regular basis and produce fairly constant levels of lipophiles in the blood stream (Zeliger et al., 2012; and Culver et al., 2012).

The chemicals described above have one characteristic in common, they are all lipophiles. Although the exposure levels of these lipophlic species are much lower than their known toxic levels, they are high enough to provide a vehicle for the sequential absorption of toxic hydrophilic species (Zeliger et al., 2012; Zeliger, 2013b). It is well known that mixtures of lipophilic and hydrophilic species induce low-level toxic effects and unanticipated points of attack (Zeliger, 2003; Zeliger 2011). It is proposed here that combinations of low-level lipophilic/hydrophilic mixtures act as agents for neurological disease induction.

We suggest that the structure of the lipophile is not the critical point. Rather, it is the lipophilicity and total serum load of a lipophilic species that is the determining factor in triggering neurological disease. Once a steady-state critical dose of a lipophile is reached, the body is ripe for sequential attack by a hydrophilic species, with the mixture of a lipophilic and a hydrophilic species capable to attack even at low levels of exposure (Zeliger, 2003; Zeliger, 2011, Zeliger et al., 2012).

Support for this proposal comes from a consideration of other environmental diseases that have been attributed to exposures to these chemicals. Exposures to POPs, hydrocarbons and plastic exudates have been associated with metabolic diseases including type 2 diabetes, metabolic syndrome and obesity (Zeliger, 2013b; Lee et al., 2010; Carpenter 2008). Exposures to the lipophilic chemicals discussed above have also been associated with a broad spectrum of cardiovascular diseases (Humblet et al., 2008). These include myocardial infarction (Mustafic et al., 2012, Wichmann et al., 2013); atherosclerosis (Whayne, 2011, Lind et al., 2012); hypertension (La Merrill et al., 2013; Sergeev & Carpenter, 2011; Lind & Lind, 2012; Ha et al., 2009; Valera et al., 2013), coronary heart disease (Shankar et al., 2012, Lind and Lind 2012), peripheral heart disease (Shankar et al., 2012; Lind & Lind, 2012); ischemic heart disease (Toren et al., 2007; Costello et al., 2013; Burstin et al., 2005); and impact on cardiac autonomic function (Wu et al., 2012).

Other diseases associated with exposure to lipophilic chemicals include: immunological disorders (Hertz-Picciotto et al., 2008; Noakes et al., 2006; Tryphonas, 1998), musculoskeletal disorders (Lee et al., 2007), reproductive interferences (EPA, 2008; Nishijo et al., 2008; Herz-Picciotto et al., 2008), endocrine disruption (Snyder & Mulder, 2001; Colborn et al., 1997), autoimmune diseases (Koch et al., 2013; Sozeri et al., 2012; Farhat et al., 2011; Gregory et al., 2008; Dahlgren et al., 2007) and periodontal disease (Lee et al., 2008a).

The onset of many different cancers has also been associated with exposures to the chemicals described here. A discussion of environmental causes of cancer, however, is beyond the scope of this presentation. Zeliger 2004 and Zeliger 2011 offer an introduction to this subject.

People are routinely exposed to many other lipophilic chemicals that are retained in body serum. These include mycotoxins produced by mold and found in wet environments and in contaminated food (Brasel et al., Peraica et al., 1999; 2004; Brasel et al., 2004; Reddy & Bhoola, 2010; Bennett & Klich, 2003; Brewer et al., 2013), anti-oxidants and other preservatives added to foods and cosmetics, including triclosan, an antibacterial compound widely used in tooth paste, cleaners and other consumer products (Queckenberg et al., 2010; Sandborgh-Englund et al., 2006), butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) (Suak et al., 1977; Verhagen et al., 1989; Conning & Phillips, 1986). Other compounds are chlorinated derivatives of methane that are byproducts (DBPs) of the disinfection of water by chlorine, including chloroform and the bromo-chloro-methanes (Zeliger,
2011), the chlorinated derivatives of ethane, including 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene that are arise from cleaning products and contamination of aquifers (Zeliger, 2011), pharmaceuticals that are found in contaminated drinking water in many cities (Donn, 2008); antioxidants put into foods and cosmetics for preservation purposes, including BHA and BHT (Conning & Phillips, 1986; Verhagen et al., 1989), brominated vegetable oil, used to stabilize citrus-flavored soft drinks (Bernal et al., 1986; Bendig et al., 2013) and lipophilic pharmaceuticals, examples of which are statins, taken regularly (Culver et al., 2012; Zeliger et al., 2012).

The prevalence of neurological diseases discussed here as well as the other diseases cited have all increased dramatically in the past half century. For example, the prevalence of the bipolar disorder and of schizophrenia has increased in the range of 40% from 1990 to 2010 (Murray et al., 2012), the prevalence of Alzheimer’s disease is expected to double every 20 years (Mayeux & Stern, 2012). Such an increase can only be explained by environmental consideration and it corresponds to the worldwide increased use of POPs, plastic additives and other chemicals, fossil fuel and the environmental pollution associated with their use and discharge (EIA, 2013; Chen & McCarl, 2001; Colborn et al., 1997).

As previously discussed, PAHs emanating from the combustion of fossil fuels and tobacco are considered to induce many environmental diseases. Several of the studies cited have made the association with inhalation of fine particles rather than with the PAHs (Costello et al., 2013; Toren et al., 2007). It has been shown, however, that the toxicity of the particles is due to the adsorption of the PAHs on the solid particles and the subsequent partitioning from such particles onto and through lipophilic membranes (Yokota et al., 2008). The fine particles serve as vehicles to deliver the PAHs deep into the lungs, where these compounds are absorbed.

As seen in Table 1, not all of the lipophiles identified here have been associated with all of the diseases noted. This is due to the fact that causative studies are yet to be carried out for many chemical species.

It is to be noted that although the literature relating neurological disease to other exogenous lipophilic chemicals is scanty, mycotoxin exposures have been associated with neurological disease (Pestka et al., 2008; Doi & Uetsuka, 2011; Moldes-Anaya et al., 2012). Mycotoxins, as well as the widely used lipophilic disinfectant triclosan have been shown to accumulate in serum (Brewer et al., 2013; Queckenberg et al., 2010; Sandborgh-Englund et al., 2006) and as such, they contribute to the total lipophilic load.

Conclusion

The prevalence of neurological diseases, including NIs, NDDs and NDGDs is increasing rapidly throughout the world. The evidence presented here strongly suggests that this increase is due in large part to increased exposure to exogenous lipophilic chemicals which, though varying widely in structure, toxicology, chemical reactivity and retention time in the body, render the body susceptible to attack via subsequent exposure to low levels of hydrophilic toxins that would otherwise not be absorbed. The lipophilic chemicals can be POPs that are metabolized and eliminated slowly, or BPA, phthalates, PAHs, LMWHCs and other lipophilic species that are eliminated from the body more rapidly, but are constantly replenished in the body from polluted air and water and contaminated food. The accumulation of lipophilic chemicals in the body proceeds until a critical lipophilic load level is reached, at which point the body is vulnerable to attack by low levels of toxic hydrophilic chemicals that would otherwise not be toxic. Sequential absorption of lipophiles followed by hydrophiles provides a unified explanation of how low levels of rather different environmental pollutants are responsible for the alarming increase of neurological diseases.

REFERENCES

ATSDR. (1995). Toxicological profile for polycyclic aromatic hydrocarbons. Agency for Toxic Substances and Disease Registry. Atlanta, GA.

ATSDR (2001). Toluene toxicity. Agency for Toxic Substances and Disease Registry. Atlanta, GA.

Baker EL. (1988). Organic solvent neurotoxicity. Ann Rev Pub Health 9: 223–232.

Basset RC. (2000). Disposition of toxic drugs and chemicals in man, 5th ed. Chemical Toxicology Institute. Foster City, CA.

Bendig P, Maier Lehnert K, Knapp H, Vetter W. (2012). Mass spectra of methyl esters of brominated fatty acids and their presence in soft drinks and cocktail syrups. Rapid Commun Mass Spectrum 27(9): 1083–1089.

Bennett JW, Klich M. (2003). Mycotoxins. Clin Microbial Rev 16(3): 497–516.

Bernal C, Basilio MZ, Lombardo YB. (1986). Toxicological effects induced by the chronic intake of brominated vegetable oils. Arch Latinoam Nutr 36(3): 432–442.

Bolanos JP, Moro MA, Lizardo X, Almeida A. (2009). Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: Therapeutic implications. Adv Drug Deliv Rev 61(4): 1299–1313.

Blanc-Lapierre A, Bouvier G, Garrigou A, Canal-Raffin M, Raherison C, Bernal C, Basilico MZ, Lombardo YB. (1986). Toxicological effects induced by the chronic intake of brominated vegetable oils. Arch Latinoam Nutr 36(3): 432–442.

Breder JD, Felkner M, Suarez L, Canfield MA, Henry JP. (2010). Maternal pesticide exposure and neural tube defects in Mexican Americans. Ann Epidemiol 20(1): 16–22.

Brewer JH, Thrasher JD, Strauss DC, Madison RA, Hooper D. (2013). Detection. Burstyn I, Kromhout H, Partanen T, Svane O, Langard S, Ahrens W, et al. (2008). Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid β–42 and a-synuclein in children and young adults. Toxicologic Pathology 36: 289–310.
Carpenter DO. (2008). Environmental contaminants as risk factors for developing diabetes. Rev Environ Health 23(1): 59–74.

Caudle WM, Guilhot TS, Laxo C, Miller GW. (2012). Parkinson’s disease and the environment: Beyond pesticides. Neurotoxicology 33: 178–188.

Chen CC, McCair BA. (2001). An investigation of the relationship between pesticide usage and climate change. Climatic Change 50: 475–87.

Chen R, Wilson K, Chen Y, Zhang D, Quin X, He M, et al. (2013). Association between environmental tobacco smoke exposure and dementia syndromes. Occup Environ Med 70: 63–79.

Cheslack-Postava K, Rantakokko P, Hinkka-Yli-Salomaki S, Surcel HM, McKague EW, Kiviranta HA, et al. (2013). Maternal serum persistent organic pollutants in the Finnish Prenatal Study of Autism: A pilot study. Neurotoxicology Teratol 38: 1–5. doi: 10.1016/j.ntt.2013.04.001.

Chia LG, Chu FL. (1984). Neurological studies on polychlorinated biphenyl (PCB)-poisoned patients. Prog Clin Biol Res 137: 117–26.

Colborn T, Dimas D, Myers JP. (1997). Association between serum concentrations of persistent organic pollutants and prevalence of newly diagnosed hypertension: results from the National Health and Nutrition Examination Survey 1999–2002.

Harley KG, Gunier RB, Kogut K, Johnson C, Bradman A, Calafat AM, Eskenazi B. (2013). Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ Res. 126: 43–50. doi: 10.1016/j.envres.2013.06.004.

Hart AMS, Bauer B, Block ML, Hong JS, Miller DS. (2008). Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier. FASEB J: 22: 2723–33.

He C, Wang C, Zhou Y, Li J, Zuo Z. (2012). Embryonic exposure to benzo(a)pyrene influences neural development and function in rockfish (Sebastes marmoratus). Neurotoxicology 33(4): 758–762.

Hertz-Picciotto I, Park HY, Volkel W, Seckin E, Csanady GA, Putz C, et al. (2013). Pre-natal exposure to persistent and non-persistent organic compounds and effects on immune system development. Basic Clin Pharmacol Toxicol 102(2): 146–154.

Humelott B, Olimb P, Rimm E, Mittelmeier HA, Hauser R. (2008). Oxidative and cardiovascular disease mortality. Environ Health Perspect 116(11): 1443–48.

Iwanuk AN, Koperski DT, Cheng KM, Elliot Je, Smith LW, Wilson LW, Wiley DR. (2006). The effects of environmental exposure to DDT on the brain of a songbird: changes in structures associated with mating and song. Behav Brain Res 173(1): 1–10.

Jakovcevska M, Alkbaran S. (2012). Epigenetic mechanisms in neurological disease. Nat Med 18(8): 1194–1204.

Jurewicz J, Polanska K, Hanke W. (2013a). Exposure to widespread environmental toxins and children’s cognitive development and behavioral problems. Int J Occup Med Environ Dis 26(2): 185–204.

Jurewicz J, Polanska K, Hanke W. (2013b). Chemical exposure early in life and the neyrodevelopment of children – an overview of current epidemiological evidence. Ann Agric Environ Med 20(3): 465–86.

Kessler W, Numtip W, Volkel W, Sekic E, Csanady GA, Putz C, et al. (2012). Kinetics of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate in blood and of DEHP metabolites in urine of male volunteers after single ingestion of ring-diluted DEHP. Toxicol Appl Pharmacol 264(2): 284–291.

Kim BH, Cho SC, Kim Y, Shin MS, Kim JW, Yang YH, et al. (2009). Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol Psychiatry 66(10): 958–963.

Koch HM, Holt BM, Angerer J. (2004). Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labeled DEHP. Arch Toxicol 78(3): 123–130.

Koch MW, Metz LM, Agrawal SW, Yong VW. (2013) Environmental factors and their regulation of immunity in multiple sclerosis. J Neuro Sci 324: 10–16.

Kodavanti PRS. (2005). Neurotoxicity of persistent organic pollutants: possible mode(s) of action and further considerations. Dose-Response 3: 273–305.

Krivoshto BA, Richards JR, Albertson TE, Derlet RW. (2008). The toxicity of diesel exhaust: Implications for primary care. J Am Bd Fam Med 21(1): 55–62.

La Merrill M, Cirillo PM, Terry MB, Krigbaum NY, Flom JD. (2013). Prenatal exposure to the pesticide DDT and hypertension diagnosed in women before age 50: A longitudinal birth control study. Environ Health Perspect 111(4): 596–599.

Lammers JHCM, Muisjer H, Owen DE, Kulig BM, McKee RH. (2011). Neurobehavioral effects of acute exposure to normal (n) paraffins. Int J Toxicol 30(1): 47–58.
Larsson M, Hagerhed-Engman L, Kolarik B, James P, Lundin F, Janson S, et al. (2010). PVC – as flooring material – and its association with incident asthma in a Swedish child cohort study. Indoor Air 20: 494–501.

Le Cam P, Bonvallot N, Gloorrennes P, Deguen S, Goeyry C, Le Bot B. (2011). Indoor environment and children's health: recent developments in chemical, biological, physical and social aspects. Int J Hyg Environ Health 215(1): 1–18.

Lee DH, Jacobs DR, Porta M. (2007). Association of serum concentrations of persistent organic pollutants with the prevalence of learning disability and attention deficit disorder. J Epidemiol Community Health 61: 591–596.

Lee DH, Steffes MW, Jacobs DR. (2007). Positive association of serum concentration of polychlorinated biphenyls or organochlorine pesticides with self-reported arthritis, especially rheumatoid type in women. Environ Health Perspect 115(6): 883–888.

Lee DH, Jacobs DR Jr, Steffes M. (2008b). Association of organochlorine pesticides with peripheral neuropathy in patients with diabetes or impaired fasting glucose. Diabetology 57(1): 3108–3111.

Lee DH, Steffes MW, Spoden A, Jones RS, Needham LL, et al. (2010). Low dose of some persistent organic pollutants predicts type 2 diabetes: a nested-case control-study. Environ Health Perspect 118(9): 1233–1242.

Li Z, Romanoff L, Bartell S, Pittman EN, Trinidad DA, McLean M, et al. (2012). Excretion profiles and half-lives of ten urinary polycyclic aromatic hydrocarbon metabolites after dietary exposure. Chem Res Toxicol 25(7): 1452–1461.

Lind PM, van Bavel B, Salihovic S, Lind L. (2012). Circulating levels of persistent organic pollutants (POPs) and carotid atherosclerosis in the elderly. Environ Health Perspect 120(1): 38–43.

Lind PM, Lind L. (2012). Can persistent organic pollutants and plastic-associated chemicals cause cardiovascular disease? J Intern Med 271(6): 537–553.

Lochhead JL, McCaffrey G, Quigley CE, Finch J, DeMarco KM, Nametz N, Davis TP. (2010). Oxidative stress increases blood-brain barrier permeability and induces alterations in occluding during hypoxia-reoxygenation. J Cerebral Blood Flow Metab 30: 1625–1632.

Logroscino G, Traynor BJ, Hardiman O, Chio’ A, Couratier P, Mitchell JD, Maruff P, Burns CB, Tyler P, Currie BJ, Currie J. (1998). Neurological and cognitive defects. Roze E, Meijer L, Bakker A, Van Braechel KN, Sauer PJ, Bos AF. (2009). Prenatal exposure to organochlorines and their neurotoxic potency in association with oxidative stress: a brief overview. Ann Neurosci 16(1): 1–9.

Patrick L. (2009). Thyroid disruption: mechanisms and clinical implications in human health. Alt Med Rev 14(4): 326–346.

Pereca M, Radic B, Pavlovic M. (1999). Toxic effects of mycotoxins in humans. Bull World Health Org 79(7): 754–766.

Pessah IN, Seegal RF, Levin PJ, LaSalle J, Yee BK, Van De Water J, Berman RF. (2008). Immunological and neurodevelopmental susceptibilities of autism. Neurotoxicology 29(3): 531–544.

Petkja JY, Yike I, Dearborn DG, Ward MD, Harkema JR. (2008). Stachybotrys, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci 104(1): 4–26.

Polanka K, Jurwicz W, Hanke W. (2013). Review of current evidence on the impact of pesticides, polychlorinated biphenyls and selected metals on attention deficit / hyperactivity disorder in children. Int J Occupat Med Environ Health 26(1): 16–38.

Quaal K, Bruins MR, Van de Bor M. (2013). The dynamics of autism spectrum disorders: How neurotoxic compounds and neurotransmitters interact. Int J Environ Res Public Health 10: 3384–3408.

Queckenberg C, Meins J, Wachall B, Drosophyenko O, Tomalik-Scharte D, Basian B, et al. (2010). Absorption, pharmacokinetics, and safety of triclosan after dermal administration. Antimicrobial Agents and Chemotherapy 54(1): 570–572.

Qiu C, Cheng S, Xia Y, Peng B, Tang Q, Tu B. (2011). Effects of subchronic benzo[a]pyrene exposure on neurotransmitter receptor gene expression in the rat hippocampus related with spatial learning and memory change. Toxicology 289(2–3): 83–90.

Ren A, Qiu X, Jin J, Li Z, Ma J, Zhwen L, et al. (2011). Association of selected persistent organic pollutants in the placenta with the risk of neural tube defects. Proc Natl Acad Sci USA 108(31): 12770–12778.

Reddy L, Bhoola K. (2010). Ochratoxins – food contaminants: impacts on human health. Toxins 2: 771–779.

Roberts EM, English PB, Grether JK, Windham GC, Somberg L, Wolff C. (2007). Neonatal air pollutant exposures and autism spectrum disorder in the children of Nurses’ Health Study II participants. (2013): 978–984.

Roberts EM, English PB, Grether JK, Windham GC, Somberg L, Wolf C. (2007). Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environ Health Perspect 115(10): 1482–1489.

Roze E, Meijer L, Bakker A, Van Braechel KN, Sauer PJ, Bos AF. (2009). Prenatal exposure to organohalogens, including brominated flame retardants, influences motor, cognitive, and behavioral performance at school age. 2009. Environ Health Perspect 117(12): 1953–1958.

Sagiv SK, Thurston SW, Bellinger DC, Altschul LM, Korrick SA. (2012). Neuro-psychological measures of attention and impulse control among 8-year old children exposed prenatally to organochlorines. Environ Health Perspect 120(6): 904–909.

Sagiv SK, Thurston SW, Bellinger DC, Tolbert PE, Altschul LM, Korrick SA. (2012). Prenatal organochlorine exposure and behaviors associated with attention deficit hyperactivity disorder in school-aged children. Am J Epidemiol 171: 593–601.

Sandberg-Englund G, Adolfsson-Enici M, Otham G, Ekstrand J. (2006). The Toxicol Environ Health A 69(20): 1861–1873. Copyright © 2013 SETOX & Institute of Experimental Pharmacology and Toxicology, SASc.
Seelbach M, Chen L, Powell A, Choi YJ, Zhang B, Hennig B, Toborek M. (2010). Polychlorinated biphenyls disrupt blood-brain barrier integrity and promote brain metastasis formation. Environ Health Perspect 118(4): 479–84.

Selig A, Gottschlich R, Devant RM. (1994). A method to determine the ability of drugs to diffuse through the blood-brain barrier. Proc Natl Acad Sci USA 91: 68–72.

Sendur OF, Turan Y, Bal S, Gursan A. (2009). Toxic neuropathy due to N,hexane: report of three cases. Inhal Toxicol 21(3): 210–214.

Sergeev AV, Carpenter DO. (2011). Geospatial patterns of hospitalization rates for stroke with comorbid hypertension in relation to environmental sources of persistent organic pollutants: results from a 12-year population-based study. Environ Sci Pollut Res Int 18(4): 576–585.

Shankar A, Teppala S. (2012). Urinary bisphenol A and hypertension in a middle-aged population. J Environ Public Health 2012: 481641. doi: 10.1155/2012/897734.

Snyder MJ, Mulder EP. (2001). Environmental endocrine disruption in decapod crustacean larvae: hormone titers, cytochrome P 450, and stress protein responses to heptachlor exposure. Aquat Toxicol 53(3–4): 177–190.

Sozeri B, Gulez N, Aksu G, Kutukculer N, Akalin T, Kandiloglu G. (2012). Pesticide-induced scleroderma and early intensive immunosuppressive treatment. Arch Environ & Occupat Health 67(1): 43–47.

Stahlhut RW, Welshons WV, Swan SH. (2009). Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Perspect 117S5: 784–789.

Stoneend K, Wesseling C, Roman N, Quiros I, Juncos JL. (2013). Occupational pesticide exposure and screening tests for neurodegenerative disease among an elderly population in Costa Rica. Environ Res 120: 96–101. doi.org/10.1016/Len2res.2012.08.014.

Sun Y, Nakashima MN, Takashashi M, Kuroda N, Nakashima K. (2002). Determination of bisphenol A in rat brain by microdialysis and column switching high-performance liquid chromatography with fluorescence detection. Biomed Chromatogr 16(5): 319–26.

Surak JG, Bradley RL Jr, Branen AL, Maurer AJ, Ribelin WE. (1977). Butylated hydroxytoluene (BHT) effects on serum and liver lipid levels in Gallus domesticus. Poultry Sci 56(3): 747–753.

Sweeney MH, Fingerhut MA, Arezzo JC, Hornung RW, Connally LB. (1993). Protein responses to heptachlor exposure. Environ Health Perspect 101(suppl 2): 75–83.

Thomke F, Jung D, Besser R, Roder R, Konietzko J, Hopf HC. (1999). Increased susceptibility of single oral doses of butylated hydroxytoluene in man and rat. Food Chem Toxicol 27(12): 765–772.

Uccelli R, Binazzi A, Altavista P, Belli S, Compa M, Mastrantonio M, Vanacore N. (2007). Geographical distribution of amyotrophic lateral sclerosis through motor neuron disease mortality data. Eur J Epidemiol 22(5): 781–790.

Urdinguio RG, Sanchez-Mut JV, Esteller M. (2009). Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. The Lancet Neurology 8(1): 1056–1072.

Uttara B, Singh AV, Zamboni P, Mahajan RT. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1): 65–74.

Viene MK. (2002). Overview of the neurotoxic effects in solvent-exposed workers. Arch Pub Health 60: 217–232.

Viberg H, Lee I. (2012). A single exposure to bisphenol A alters the levels of important neuroproteins in adult male and female mice. Neurotoxicology 33(5): 1390–1395.

Vincenti M, Bottecchi I, Fan A, Finkelstein Y, Mandrioli J. (2012). Are Environmental exposures to selenium, heavy metals and pesticides risk factors for amyotrophic lateral sclerosis? Rev Environ Health 27(1): 19–41.

Volk HE, Hertz-Picciotto I, Delwiche L, Lurmann F, McConnell R. (2011). Residential proximity to freeways and autism in the CHARGE study. Environ Health Perspect 119(8): 873–877.

Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2163–96.

Wang A, Costello S, Cockburn N, Zhang X, Bronstein J, Ritz B. (2011). Parkinson’s disease risk form ambient exposure to pesticides. Eur J Epidemiol 26(7): 547–555.

Weihraub T, Gandhi D, Robinson C. (2000). Medical complications due to mothball abuse. South Med J 93(4): 427–429.

Weiss B. (2012). The intersection of neurotoxicology and endocrine disruption. Neurotoxicology 33(6): 1410–19.

Wetzmam M, Govil N, Liu YH, Lalwani AK. (2013). Maternal prenatal smoking and hearing loss among adolescents. JAMA Otolaryngol Head Neck Surg 139(7): 669–677.

White RF, Proctor SP. (1997). Solvents and neurotoxicity. Occup Med 349: 1239–1243.

Whane TF. (2011). Atherosclerosis: current status of prevention and treatment. Int J Angiology 20(4): 213–222.

Widholm JJ, Seo BW, Strupp BJ, Seagal RF, Schantz SL. (2003). Effects of perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on spatial and visual reversal learning in rats. Neurotoxicol Teratol 25(4): 459–71.

WHO. (2006). Almost a quarter of all disease caused by environmental exposure. World Health Organization, Geneva, Switzerland. Available from http://www.who.int/mediacentre/news/releases/2006/pr32/index.html (Accessed September 6, 2013).

Wichmann J, Folke F, Torp-Pedersen C, Lippert F, Ketzel M, et al. (2013). Out-of-hospital cardiac arrests and outdoor air pollution exposure in Copenhagen, Denmark. PLoS One 8(1): e53684.

Winneke G. (2011). Developmental aspects of environmental neurotoxicology: lessons from lead and polychlorinated biphenyls. J Neurol Sci 308(1–2): 9–15.

Wu S, Deng F, Liu Y, Shima M, Niu J, et al. (2012). Temperature, traffic-related air pollution, and heart variability in a panel of healthy adults. Environ Res 120: 82–89.

Yokota S, Ohara N, Kabayashi T. (2008). The effects of organic extract or diesel exhaust particles on ischema/reperfusion-related arrhythmia and on pulmonary function. J Toxicol Sci 33(1): 1–10.

Yolton K, Xu Y, Altaye M, Calafat AM, Khoury J. (2011). Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. Neurotoxicol Teratol 33(5): 558–566.

Yu GW, Lasser J, Mylander C. (2011). Persistent organic pollutants in serum and several different fat compartments in humans. J Environ Public Health 2011: 471970. doi: 10.1155/2011/471970.

Zaganas I, Kapatanski S, Mastorodemos V, Knavouras K, Colosio C, Wilks MF, Tsatsakis AM. (2013). Linking pesticide exposure and dementia: What is the evidence? Toxicology 337: 3–11. Doi: 10.1016/j.tox.2013.02.002.

Zeliger HI. (2003). Toxic effects of chemical mixtures. Arch Environ Health 58(1): 23–29.

Zeliger HI. (2004). Unexplained cancer clusters: common threads. Arch Environ Health 59(4): 172–176.

Zeliger HI. (2011). Human toxicology of chemical mixtures, 2nd ed. Elsevier, London.

Zeliger HI. (2012). Statin use and risk of diabetes. Arch Int Med 171(11): 896–897.

Zeliger HI, Pan Y, Rea WJ. (2012). Predicting co-morbidities in chemically sensitive individuals from exhaled breath analysis. Interdiscip Toxicol 5(3): 123–126.

Zeliger HI. (2013a). Lipophilic chemical exposure as a cause of cardiovascular disease. Interdiscip Toxicol 6(2): 55–62.

Zeliger HI. (2013b). Lipophilic chemical exposure as a cause of type 2 diabetess (T2D). Rev Environ Health 28(1): 9–20.