CO₂ availability influences hydraulic function of C3 and C4 grass leaves

Samuel H. Taylor1,2,*, Michael J. Aspinwall1,3, Chris J. Blackman1, Brendan Choat1, David T. Tissue1 and Oula Ghannoum1,4

1 Hawkesbury Institute for the Environment, Western Sydney University, Penrith 2571 NSW, Australia
2 Lancaster Environment Centre, University of Lancaster, Lancaster LA1 4YW, UK
3 Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
4 ARC Centre of Excellence for Translational Photosynthesis, Australia

* Correspondence: smuel.tylor@gmail.com

Received 8 February 2018; Editorial decision 3 March 2018; Accepted 3 March 2018

Abstract

Atmospheric CO₂ (cₐ) has increased since the last glacial period, increasing photosynthetic water use efficiency and improving plant productivity. Evolution of C₄ photosynthesis at low cₐ led to decreased stomatal conductance (gₛ), which provided an advantage over C₃ plants that may be reduced by rising cₐ. Using controlled environments, we determined how increasing cₐ affects C₄ water use relative to C₃ plants. Leaf gas exchange and mass per area (LMA) were measured for four C₃ and four C₄ annual, crop-related grasses at glacial (200 µmol mol⁻¹), ambient (400 µmol mol⁻¹), and super-ambient (640 µmol mol⁻¹) cₐ. C₄ plants had lower gₛ, which resulted in a water use efficiency advantage at all cₐ and was broadly consistent with slower stomatal responses to shade, indicating less pressure on leaf water status. At glacial cₐ, net CO₂ assimilation and LMA were lower for C₃ than for C₄ leaves, and C₃ and C₄ grasses decreased leaf hydraulic conductance (Kₗₑᵃftype) similarly, but only C₄ leaves decreased osmotic potential at turgor loss. Greater carbon availability in C₄ leaves at glacial cₐ generated a different hydraulic adjustment relative to C₃ plants. At current and future cₐ, C₄ grasses have advantages over C₃ grasses due to lower gₛ, lower stomatal sensitivity, and higher absolute water use efficiency.

Keywords: C₄ photosynthesis, glacial CO₂, grasses, leaf gas exchange, leaf hydraulic conductance, osmotic adjustment, pressure–volume curve, stomatal conductance, turgor loss point.

Introduction

C₄ photosynthetic pathways have evolved as solutions to photosynthetic inefficiencies linked with the oxygenation reaction of Rubisco (Sage, 2004; Sage et al., 2012). Because of its potential for greater efficiency, engineered C₄ photosynthesis has been proposed as a potential solution for improving global food security (von Caemmerer et al., 2012), and C₄ crops are leading contenders as sources of renewable biomass energy (Byrt et al., 2011). Our understanding of C₄ photosynthesis as an ecological adaptation is continuing to develop rapidly (Edwards and Smith, 2010; Lundgren et al., 2015; Atkinson et al., 2016; Watcharamongkol et al., 2018). New insights into the timing and sequence of C₄ evolution from phylogenetic studies have renewed debate about its expected physiological advantages (Edwards and Still, 2008; Edwards et al., 2010; Christin et al., 2011b, 2014; Sage et al., 2011). Some C₄ lineages probably arose during the Oligocene (~30 million years ago).
but most arose over the last 20 million years, during the sub-
sequent Miocene (Christin et al., 2008, 2011; Vicentini et al.,
2008; Besnard et al., 2009; but see Kadereit et al., 2012). During
this period, ‘icehouse’ conditions of globally cooler tempera-
tures and drier climates were linked with atmospheric CO₂
concentrations (ĉ) lower than present day (Pagani et al., 2005).
Atmospheric CO₂ has increased since the last glacial period,
and consequent increases in photosynthetic water use efficiency
have been associated with declines in water stress and improve-
ments in plant productivity (Polley et al., 1993; Mayeux et al.,
1997). It has been speculated that in addition to impacts on
photosynthetic performance (Ehleringer et al., 1997), hydraulic
function in C₃ and C₄ plants was differentially affected at
low atmospheric CO₂ (Osborne and Sack, 2012) because of
greater stomatal opening in C₃ plants resulting in greater water
stress (Polley et al., 1993). It is also expected that under future,
high CO₂ climates, the combination of CO₂ fertilization and
improved water use efficiency will continue to influence the
relative performance of C₃ and C₄ plants (Ghannoum et al.,
2000; Ainsworth and Long, 2005; Leakey, 2009). To establish
whether C₄ plants gain hydraulic advantages because of rela-
tively small increases in stomatal conductance (gₛ) responding
to ĉ (Osborne and Sack, 2012), it is important to verify relative
stomatal responses experimentally and investigate their impact
on physiological function, including hydraulic properties.
Photosynthesis in C₄ leaves is characterized by biochem-
ical pumps that initially combine phosphoenolpyruvate
(PEP) and CO₂ to form C₄ acids and subsequently trans-
fer those acids, release CO₂ in the presence of Rubisco,
and recycle PEP (Edwards et al., 2001; Sage, 2004). The initial
biochemical step used to form C₄ acids is highly efficient,
and a high CO₂ concentration at the site of Rubisco carbo-
oxylase minimizes photorespiration in C₄ plants. Therefore,
leaf internal CO₂ concentrations (ĉ) are lower for CO₂ com-
ensation and photosynthetic saturation, and quantum yield
can be greater (Pearcy and Ehleringer, 1984). Importantly for
plant hydraulics, photosynthetic water use efficiency is con-
sequently high (Pearcy and Ehleringer, 1984; Long, 1999).
A central question has been whether this improved water
use efficiency provides advantages for C₄ plants over C₃
plants in habitats with restricted water availability (Osmond
et al., 1982; Hattersley, 1983; Pearcy and Ehleringer, 1984).
Recent comparative studies of the numerous C₄ lineages in
the grass family have supported the idea that their evolution
and maintenance were often linked with improved perform-
ance in drier or more open habitats compared with C₃ sister
groups (Osborne and Freckleton, 2009; Edwards and Smith,
2010; Christin and Osborne, 2014). Osborne and Sack (2012)
proposed that improved hydraulic safety, afforded by the evo-
lution of lower gₛ among C₄ species (Osmond et al., 1982;
Taylor et al., 2010, 2012), might have increased the potential
of C₄ grasses to colonize drier habitats when ĉ was lower
than it is today. They also noted that gₛ is usually higher at
clinical ĉ compared with ambient ĉ, but the increase in gₛ is
less at glacial ĉ in C₄ plants than in C₃ plants. Using steady-
state models of coupled photosynthesis and plant hydraulics,
they showed that lower gₛ could have protected C₃ plants
from loss of hydraulic conductivity and allowed net CO₂
assimilation (A) to be maintained as soil dried at low ĉ.
They therefore proposed that in addition to biochemi-
ical advantages supporting higher A at low ĉ, protection of
hydraulic function was an important advantage to C₄ grasses
at low ĉ.
Importantly, the models that Osborne and Sack (2012) used
to predict hydraulic performance in C₃ and C₄ species at gla-
cial ĉ did not predict potential adjustments to co-ordination
of leaf gas exchange and hydraulic function at low ĉ. Although
evidence suggests that in non-woody species, decreased gₛ at
elevated ĉ is associated with less negative leaf water potentials,
lower hydraulic conductivity, and greater resistance to embol-
ism, little is known about the influence of ĉ on co-ordina-
tion between photosynthetic capacity and hydraulic function
(Domec et al., 2017). Changing irradiance results in parallel
changes in leaf hydraulic conductance (Kₑₐₙ) and photosyn-
thetic capacity of woody C₃ plants, optimizing leaf hydraulic
function (Brodribb and Jordan, 2011; Carins Murphy et al.,
2012). In contrast, adjustment to high vapour pressure deficit
(VPD) is linked with closure of stomata to protect hydraulic
function (Carins Murphy et al., 2014). In the case of ĉ, hydraulic
demand is influenced by changes in gₛ that compensate for car-
bon availability (Franks et al., 2013). Because the economics
of leaf structure–function relationships may depend on ĉ, it is
likely that ĉ has complex effects on co-ordination between Kₑₐₙ
and gₛ. For instance, smaller, more densely packed stomata are
sometimes observed at low c (Woodward, 1987; Woodward and
Bazzaz, 1988; Franks and Beering, 2009b), which may increase
the sensitivity of gₛ to VPD (Franks and Beering, 2009a; Drake
et al., 2013), serving a protective function. Conversely, higher
anatomical maxima for gₛ observed at low c in sunflower,
which were a result of larger, more densely packed stomata,
were linked with greater xylem-specific conductivity, but the
phloem ratio and hydraulic safety were decreased (Rico et al.,
2013). Photosynthetic type may further affect the impact of
ĉ on the relationships between hydraulic supply and demand
because the carbon assimilation advantage provided by C₄
photosynthesis may support additional flexibility in hydraulic
adjustment. At ambient CO₂, relative to C₃ species, C₄ dicots
maintain A at relatively lower gₛ, and either increase hydraulic
safety by decreasing xylem conduit diameter, or display greater
leaf area for similar investments in stem xylem supply (Kocacin-
ar and Sage, 2003, 2004; Kocacinar et al., 2008).
In grasses, leaf hydraulic performance is particularly impor-
tant: leaves contribute 50–72% of resistance along whole-plant
hydraulic pathways (Meinzer et al., 1992; Martre et al., 2001).
The relative sensitivities of Kₑₐₙ and gₛ are also crucial in determin-
ing water use strategies among grasses. Both C₃ and C₄ grasses
have been reported to show routine diurnal declines in leaf hydraulic
conductivity when stomata do not close sufficiently to protect
hydraulic function (Neufeld et al., 1992; Holloway-Phillips
and Brodribb, 2011b). Susceptibility to declines in conductivity
is variable both among species and among cultivars (Holloway-
Phillips and Brodribb, 2011a), and nocturnal root pressure and
refilling of embolized vessels facilitates recovery from diurnal
stress in some grass species (McCully, 1999; Holloway-Phillips
and Brodribb, 2011b; Cao et al., 2012; Gleason et al., 2017).
Protection against runaway declines in Kₑₐₙ can be provided by
stomatal closure (Brodribb and Holbrook, 2003), and fast sto-
matal responses are considered a key characteristic of grasses.
Faster stomatal responses to light can improve intrinsic water use efficiency (iWUE=A/g_{sw}, where g_{sw} is g_{s} for water) by producing a better match between rapid photosynthetic responses and the slower stomata, which may improve overall water use efficiency, resulting in greater conservation of soil water and thereby decreased hydraulic stress (Lawson and Blatt, 2014).

Our goal was to determine whether growth q_{s} had different impacts on leaf function in selected C₃ and C₄ annual grasses comparable with crop species. We predicted that to support increased transpiration at low q_{s}, K_{leaf} would increase and turgor loss points would decrease to compensate for increased hydraulic demand. In addition, we determined whether rates of stomatal closure, responding to low light, increased at low q_{s}. We anticipated that leaf mass per area (LMA) would decrease in plants with carbon limitation at low q_{s}, and that decreases in iWUE and the extent of carbon limitation imposed by low q_{s} would be greater for C₃ than for C₄ species (Osborne and Sack, 2012). We therefore expected that leaf physiological responses to a range of q_{s} would be larger in C₃ than in C₄ grasses. Plants were grown in CO₂ concentrations that represented: some of the glacial period during which C₄ grass lineages diversified (Biochambers, Winnipeg, Manitoba) equipped with additive CO₂, and within PACMAD two C₄ crop species have been domesticated from wild relatives in the Chloridoideae (teff and finger millet), and several from the Paniceoideae subfamily (Christin et al., 2009). Grasses with C₃ photosynthesis used as grain crops originate in the subfamilies Pooidae and Oryzoideae, which belong to a separate clade currently referred to as BEP (Kellogg, 1998; Aliscioni et al., 2012). Relevant Chloridoideae species could not be obtained, so we used only C₃ grasses from the Paniceoideae. Sorghum bicolor (great millet), Setaria italica (foxtail millet), and Digitaria exilis (fonio millet) represent independent evolutionary origins of the NADP-malate (NADP-ME) subtype of C₄ photosynthesis (Aliscioni et al., 2012); Panicum miliaceum (proso millet) represents the NAD-ME C₄ subtype (Giussani et al., 2001; Aliscioni et al., 2012). C₃ species were Panicum bisulcatum and Steinchisma laxa (two wild relatives from Paniceoideae), Triticum turgidum (durum wheat, Pooidae), and Oryza sativa ssp. japonica (rice, Ehrhartoideae; Table 1).

Plants were grown from seed in Osmocote Professional Seed Raising & Cutting Mix (Scots Australia Pty Ltd, Bella Vista, NSW) in 0.55 litre plastic square tubes (Garden City Plastics, Somersby NSW: top dimension 70 × 70 mm, 160 mm deep). Seeds were sown directly into six pots and germinated under the different CO₂ treatments; the number of plants per pot and the size of plants varied depending on the species. To allow for balanced sampling and to account for within-cabinet variability, at germination, pots were arranged into a fully randomized block design with one pot from every species in each block. The pots and germinated under the different CO₂ treatments; the number of plants per pot and the size of plants varied depending on the species. To allow for balanced sampling and to account for within-cabinet variability, at germination, pots were arranged into a fully randomized block design with one pot from every species in each block. The pots were checked daily and watered as necessary to prevent surface drying. To minimize root binding, roots were allowed to grow into a layer of wetted Scoria. To minimize nutrient limitation, plants were fed with a complete fertilizer (Thrive All Purpose Soluble Plant Food, Yates, Auckland, New Zealand) every 2–3 weeks during the course of the experiment.

Materials and methods

Growth conditions

Plants were grown in walk-in climate-controlled growth chambers (Biochambers, Winnipeg, Manitoba) equipped with additive CO₂ and CO₂ scrubber equipment. Three q_{s} treatments were imposed: glacial (q_{GLA}, 204 ± 27 µmol mol⁻¹); ambient (q_{AMB}, 408 ± 11 µmol mol⁻¹); and super-ambient (q_{SUP}, 640 ± 2 µmol mol⁻¹) (mean ±SD; 72 daily means). The q_{AMB} and q_{SUP} treatments were rotated between cabinets 1 week prior to the first measurements, during the fourth week after sowing. The q_{GLA} treatment was maintained in a single cabinet throughout the experiment because of the technical demands of obtaining a stable CO₂ concentration at glacial q_{s}. Growing conditions were set to a night-time temperature of 18 °C and a daytime temperature of 26 °C, resulting in a daily mean temperature of 22 °C (mean ±SD for 72 daily means: q_{GLA}, 21.9 ± 0.23; q_{AMB}, 22.1 ± 0.21; and q_{SUP}, 22.1 ± 0.28).

Table 1. Sources and phylogenetic placement of study species

Species	Photosynthetic type	Phylogenetic placement	Accession (source)
Triticum turgidum L. ssp. durum	C₃	Pooidae	AUS-26564 /PERSIA1128 (Tony Condon, CSIRO Agriculture, ACT)
Oryza sativa L. ssp. japonica	C₃	Ehrhartoideae	IAC1131 (Brian Atwell, Macquarie University, Sydney NSW)
Panicum bisulcatum Thunb.	C₃	Panicoideae: Paniceae	(Ghannoum laboratory)
Steinchisma laxa (Sw.) Zuloaga	C₃	Panicoideae: Paspalaeae	(Ghannoum laboratory)
Sorghum bicolor (L.) Moench	C₄	Panicoideae: Andropogoneae	Tx623 (Alan Cruickshank, Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick QLD)
Setaria italica (L.) P.Beauv.	C₄	Panicoideae: Paniceae: Cenchrinae	AusTRCF 108040 (AusPGRIS: Tropical Crops and Forages Collection)
Digitaria exilis (Kippist) Stapf	C₄	Panicoideae: Paniceae: Anephorineae	AusTRCF 108024/PDE7 (AusPGRIS: Tropical Crops and Forages Collection)
Panicum miliaceum L.	C₄	Panicoideae: Paniceae	(Ghannoum laboratory)

* Aliscioni et al. (2012).*
Steady-state gas exchange and stomatal response to PPFD

We measured gas exchange using six LI-6400XT photosynthesis systems (LI-COR Inc., Lincoln NE, USA) equipped with CO₂ mixers (LI-6400-01) and 2 × 3 cm red-blue LED light sources (LI-6400-02B). Pairs of LI-6400XT machines were randomly allocated to the three treatments and were rotated every 2 d: each pair of machines was used to measure two of the six blocks in every cabinet over the course of the experiment. Measurements were made under the growth conditions. To minimize disruption of treatments, the cuvette and integrated gas analysers of the LI-6400XT were placed inside the growth chambers and consoles outside the growth chambers (growth chambers were opened briefly before and after switching leaves). Measurements were conducted on the mid-section of individual, recently expanded leaves inserted parallel to the long axis of the 2 × 3 cm chamber, and leaf areas were calculated as cuvette length×average leaf width, measured to the nearest 0.5 mm with a ruler. Leaves were allowed to come to steady state [showing no systematic trends with a coefficient of variation (CV) <0.1 over a 5 min period] at a PPFD of 500 μmol m⁻² s⁻¹ (growth light levels) and cuvette CO₂ concentrations matched to \(c_a \) at the time of measurement: \(c_{GLA} = 184 ± 4 \mu mol mol⁻¹; c_{AMB} = 406 ± 5 \mu mol mol⁻¹; \) and \(c_{SUP} = 647 ± 6 \mu mol mol⁻¹; \) mean ±SD ≥43 leaves, CV for individual leaves <5%). Relative humidity was maintained at ~70% and block temperature at 26 °C, resulting in leafVPDs of 1 ± 0.07 kPa (mean ±SD, n=137 leaves; CV for individual leaves <8.1%). An auto-program (logging every 10 s) was used to record initial steady-state values for gas exchange (\(A, c_{i}, g_{sw} \), and iWUE), followed by the response of \(c_{i} \) to a step-change decrease in light availability from 500 μmol m⁻² s⁻¹ to 100 μmol m⁻² s⁻¹ PPFD. The rate of stomatal response to PPFD (\(\Delta \psi \psi_a \) characterised on the magnitude \(\Delta \psi_a \) and duration \(\Delta t \)) of the initial decrease in \(c_{sw} \).

Leaf hydraulic conductance and LMA

Because \(C_3 \) and \(C_4 \) species differed in the response of \(A \) to \(c_a \) between \(c_{GLA} \) and \(c_{AMB} \), we determined \(K_{dev} \) in those treatments using the evaporative flux method (Sack et al., 2002). Cut stems were transported to the lab in water, where flag or second-leaf laminas were excised and, using LI-6400XT machines were randomly allocated to the three treatments. Measurements were made under the growth conditions. To minimize disruption of treatments, the cuvette and integrated gas analysers of the LI-6400XT were placed inside the growth chambers and consoles outside the growth chambers (growth chambers were opened briefly before and after switching leaves). Measurements were conducted on the mid-section of individual, recently expanded leaves inserted parallel to the long axis of the 2 × 3 cm chamber, and leaf areas were calculated as cuvette length×average leaf width, measured to the nearest 0.5 mm with a ruler. Leaves were allowed to come to steady state [showing no systematic trends with a coefficient of variation (CV) <0.1 over a 5 min period] at a PPFD of 500 μmol m⁻² s⁻¹ (growth light levels) and cuvette CO₂ concentrations matched to \(c_a \) at the time of measurement: \(c_{GLA} = 184 ± 4 \mu mol mol⁻¹; c_{AMB} = 406 ± 5 \mu mol mol⁻¹; \) and \(c_{SUP} = 647 ± 6 \mu mol mol⁻¹; \) mean ±SD ≥43 leaves, CV for individual leaves <5%). Relative humidity was maintained at ~70% and block temperature at 26 °C, resulting in leafVPDs of 1 ± 0.07 kPa (mean ±SD, n=137 leaves; CV for individual leaves <8.1%). An auto-program (logging every 10 s) was used to record initial steady-state values for gas exchange (\(A, c_{i}, g_{sw} \), and iWUE), followed by the response of \(c_{i} \) to a step-change decrease in light availability from 500 μmol m⁻² s⁻¹ to 100 μmol m⁻² s⁻¹ PPFD. The rate of stomatal response to PPFD (\(\Delta \psi \psi_a \) characterised on the magnitude \(\Delta \psi_a \) and duration \(\Delta t \)) of the initial decrease in \(c_{sw} \).

Pressure–volume relationships

Pressure–volume (P–V) relationships were determined using bench-dry-drying. On the morning of measurement, attached flag leaves were sealed into plastic bags containing exhaled breath and were allowed to equilibrate for a minimum of 40 min to quench transpiration and ensure high turgor. Leaves sheathed in this manner were subsequently excised at the base of the lamina and moved to the laboratory. Initially, leaves remained sealed in plastic between measurements of fresh mass (FM, g) and water potential (\(\psi \psi \), Scholander pressure bomb). As water potential declined, leaves were occasionally removed from the plastic for short periods to increase the rate of drying. A minimum of 20 min equilibration was ensured between pressure bomb measurements. At the conclusion of \(FM \) and \(\psi \psi \) measurements, leaves were dried for a minimum of 48 h at 65 °C to determine dry mass (DM, g). The turgid mass (TM, g) was estimated by extrapolation of the initial linear FM–\(\psi \psi \) relationship (Kubiske and Abrams, 1990) and used to calculate relative water contents (RWC, %) for entire leaves as \(FM–DM)/(TM–DM) \), and leaf dry matter content (LDMC=DM/TM).

We optimized parameter selection for P–V relationships of individual leaves by minimizing the absolute difference between estimates of osmotic potential at full turgor (\(\psi \psi_{a} \), MPa) obtained below \(\psi \psi_{a} \) and above \(\psi \psi_{a} \) turgor loss, comparing all possible combinations that could be fit for each leaf within our data set. First, below-turgor loss fits for \(1/\psi \psi = 1/(\psi \psi_{a} + \psi \psi_{1}) \) (linear regression with slope \(a \) and \(y \)-intercept \(\psi \psi_{1} \)) were obtained from all sequences representing at least three of the smallest RWC values and excluding two or more of the highest RWC values. Next, the \(a \)-intercept of the below–turgor loss relationship (apoplastic fraction, \(a \)) was used to establish the RWC of the symplasm \(\psi \psi_{2} = \psi \psi_{a} - \psi \psi_{1} \). Then the osmotic potential, \(\psi \psi_{o} = -e(1-\psi \psi_{2} - \psi \psi_{3}) \). Turgor loss point characteristics were calculated for the pair of linear relationships where \(\psi \psi_{a} = 1 \) and \(\psi \psi_{a} = 1 \) was smallest, and \(\psi \psi_{a} < 1 \). Using \(\psi \psi_{a} \) to estimate \(\psi \psi_{a} \) at turgor loss \(\psi \psi_{c} \) was established by determining the RWC at which \(\psi \psi_{a} = 0 \), and was used to predict osmotic potential at turgor loss \(\psi \psi_{a} \) from the equation for \(\pi \).
Table 2. Impact of photosynthetic type on leaf gas exchange relative to ambient CO2 (c_{AMB} ~400 μmol mol$^{-1}$), at glacial CO2 (c_{GLA} ~200 μmol mol$^{-1}$), and at super-ambient CO2 (c_{SUP} ~640 μmol mol$^{-1}$)

Photosynthetic type (C4 subtype)	Species	iWUE (μmol mol$^{-1}$)	Net CO2 assimilation (μmol m$^{-2}$ s$^{-1}$)	Stomatal conductance (mol m$^{-2}$ s$^{-1}$)			
		$c_{\text{GLA}}/c_{\text{AMB}}$	$c_{\text{SUP}}/c_{\text{AMB}}$	$c_{\text{GLA}}/c_{\text{AMB}}$	$c_{\text{SUP}}/c_{\text{AMB}}$	$c_{\text{GLA}}/c_{\text{AMB}}$	$c_{\text{SUP}}/c_{\text{AMB}}$
C4 (NADP-ME)	T. turgidum	0.66	1.35	0.51	1.07	0.77	0.79
C3 (NAD-PME)	S. bicolor	0.37	1.1	0.63	1.2	1.72	0.93
C4 (NADP-ME)	D. exilis	0.53	1.04	0.87	0.92	1.65	0.88
C4 (NADP-ME)	S. italica	0.42	1.13	0.93	0.94	2.23	0.83
C4 (NADP-ME)	P. miliaceum	0.51	1.56	0.93	1.11	2.43	0.71

Kruskal–Wallis P C3/C4 (df=1)

*P<0.05.

Impact of c_a on LMA

At c_{SUP}, LMA values for flag leaves of C3 and C4 species were similar (Fig. 3); however, the response of LMA to c_a differed among the eight species (Fig. 3; $F_{1,6,42}=0.0004$). None of the C4 species exhibited significant changes in LMA in response to c_a (Tukey’s HSD, $P>0.72$). In the C3 species, LMA was similar across the three c_a treatments for S. laxa, but T. turgidum, P. bisulcatum, and O. sativa all showed significant reductions in LMA from either c_{GLA} to c_{AMB} (T. turgidum and P. bisulcatum, Tukey’s HSD $P<0.05$) or from c_{AMB} to c_{GLA} (O. sativa, $P=0.039$; Fig. 3). The contrasts term for photosynthetic type $\times c_a$, which was statistically significant (t-test $P=0.014$), was therefore broadly associated with less sensitivity of LMA to c_a among the C4 species. Conservation of LMA across CO2 treatments in most C4 species was linked with proportionate decreases in mass and area of the flag leaves as c_a was reduced. Among C3 species, decreases in LMA arose because flag leaf mass decreased with c_a from c_{SUP} to c_{GLA} and flag leaf area decreased from c_{AMB} to c_{GLA}, but leaf areas were often similar at c_{GLA} and c_{AMB} (Fig. 4).

Response of K_{leaf} and P–V characteristics to decreases in c_a from c_{AMB} to c_{GLA}

There were no significant species $\times c_a$ effects on K_{leaf} (species $\times c_a$, $F_{1,6,41}=0.814$); however, on average, K_{leaf} was lower in plants grown at c_{GLA} ($F_{1,6,41}=0.005$). The exception was D. exilis, a C4 species with small leaves, for which measurement errors were large (Fig. 5A).

In the P–V analysis, the response of LDMC to c_a was consistent with that of LMA measured during determination of K_{leaf}. LDMC was not significantly different between the photosynthetic types at either c_a, but was lower at c_{GLA} among C3 and not C4 leaves (Table 3). LDMC decreased by 4–11% in C3 grasses grown at c_{GLA}, but C4 species showed no adjustment to c_{GLA} or increased LDMC by ≤3% at c_{GLA}. This difference in average LDMC responses to c_a was statistically significant when comparing C3 and C4 species (Table 3). Despite these differences in LDMC responses between C3 and C4 species, we found no evidence for significant effects of photosynthetic type on the response of ε or RWC$_{\text{TLT}}$ to c_a. In contrast, the median π$_{\text{TLT}}$ differed between C3 and C4 grasses at c_{AMB} but not at c_{GLA}, linked...
with a significant effect of photosynthetic type (Table 3). At \(\epsilon_{\text{AMB}} \), \(\pi_{\text{LTP}} \) was less negative among C4 species (C4, −0.72 MPa to −0.87 MPa; C3, −0.94 MPa to −1.36 MPa). This difference was eliminated at \(\epsilon_{\text{GLA}} \) because only C4 grasses decreased \(\pi_{\text{LTP}} \) to more negative values (C4, −0.79 MPa to −1.27 MPa; C3, −0.91 MPa to −1.21 MPa; Table 2).

Discussion

We exposed C3 and C4 grasses to atmospheric CO2 concentrations ranging from levels that occurred during the last 30 million years, when C4 lineages evolved and diversified, to those that could be experienced in the coming centuries. Across the range of \(\epsilon \), we expected that C4 species would maintain an iWUE advantage and show smaller physiological adjustments. Our results broadly support this expectation: the absolute response of \(g_{\text{sw}} \) to \(\epsilon \) was greater among C3 than among C4 grasses; and, as \(\epsilon \) decreased from \(\epsilon_{\text{AMB}} \) to \(\epsilon_{\text{GLA}} \), A, LDMC, and LMA declined more among C3 than among C4 species. Investigation of leaf hydraulic function at \(\epsilon_{\text{AMB}} \) and \(\epsilon_{\text{GLA}} \) showed that at \(\epsilon_{\text{GLA}} \), \(K_{\text{leaf}} \) decreased in both C3 and C4 species;
and \(\pi_{\text{TLP}} \) of \(\text{C}_4 \) leaves became more negative, hence more similar to \(\pi_{\text{TLP}} \) of \(\text{C}_3 \) leaves, which did not adjust. Assaying the stomatal response to shade showed that higher steady-state \(g_{\text{sw}} \) of \(\text{C}_3 \) species was linked with more rapid adjustment of \(g_{\text{sw}} \) to match \(A \). Rates of stomatal closure were slightly more similar for \(\text{C}_3 \) and \(\text{C}_4 \) species at low \(c_a \), driven by strong responses of species that achieved high iWUE at elevated \(c_a \). These new findings are consistent with the hypothesis that carbon limitation is an important factor influencing leaf hydraulic function at different atmospheric [CO2]. Although there was substantial variation among species, photosynthetic type affected how leaf dry matter was deployed and how leaf turgor characteristics responded to \(c_{\text{GLA}} \).

Gas exchange responses to \(c_a \)

Steady-state gas exchange measurements provided the expected outcomes: \(g_s \) usually increased as \(c_a \) decreased (Osborne and Sack, 2012; Franks et al., 2013); high \(g_s \) of \(\text{C}_3 \) grasses was associated with greater \(g_s \) responses to \(c_a \); and low \(g_{\text{sw}} \) of \(\text{C}_4 \) leaves resulted in higher iWUE at all levels of \(c_a \). Importantly, \(A \) declined for \(\text{C}_3 \) but not \(\text{C}_4 \) grasses at \(c_{\text{GLA}} \). Greater \(A \) among some \(\text{C}_3 \) species compared with \(\text{C}_4 \) species at \(c_{\text{AMB}} \) and \(c_{\text{SUP}} \) suggested that \(\text{C}_4 \) photosynthetic performance may have been limited by PPFD, so the iWUE advantage to \(\text{C}_4 \) species may underestimate advantages to \(\text{C}_4 \) species that could arise at higher irradiances (Osmond et al., 1982).

\(\text{C}_3 \) grass leaves generally closed their stomata more quickly than \(\text{C}_4 \) leaves in response to shade. The higher steady-state \(g_{\text{sw}} \) of \(\text{C}_3 \) leaves may partially explain this difference between the photosynthetic types, but closer inspection of the data shows that \(\Delta g_{\text{sw}} / \Delta t \) did not parallel the steady-state \(g_{\text{sw}} \) for species within each photosynthetic type. Interestingly, among \(\text{C}_4 \) species, the rate of \(g_{\text{sw}} \) responses to light was slightly, but consistently, greater at \(c_{\text{GLA}} \) compared with \(c_{\text{AMB}} \) and \(c_{\text{SUP}} \). This decreased the difference in \(\Delta g_{\text{sw}} / \Delta t \) between \(\text{C}_3 \) and \(\text{C}_4 \) species. However, a more striking trend, that probably underpinned the subtle difference in relative performance based on photosynthetic type, was that species with higher iWUEs showed greater changes in \(\Delta g_{\text{sw}} / \Delta t \) in response to decreasing \(c_a \). At \(c_{\text{GLA}} \), species with high iWUE showed some of the slowest stomatal responses to shade. Because faster stomatal responses are consistent with improved water use efficiency (Lawson and Blatt, 2014), this suggests that transpiration is regulated less tightly at high \(c_a \), supporting the overarching hypothesis that increasing \(c_a \) minimizes the costs associated with hydraulic stress (Polley et al., 1993). It also suggests that characteristics producing high iWUE in the steady state may be costly in low-\(c_a \)-like scenarios that increase transpiration. For example, high iWUE is likely to be facilitated by
Table 3. Impact of growth c_3 on pressure–volume curve characteristics and leaf dry matter content (medians, n=3–5; c_{GLA}, glacial CO2 ~200 μmol mol$^{-1}$; c_{AMB}, ambient CO2 ~400 μmol mol$^{-1}$)

Photosynthetic type (C$_4$ subtype)	Species	Modulus of elasticity (t, MPa)	Osmotic potential at turgor loss (mtLP, MPa)	RWC at turgor loss (RWC$_{TLP}$, %)	Leaf dry matter content (LDMC, %)								
		c_{GLA}	c_{AMB}	Difference in median: c_{GLA}−c_{AMB}	c_{GLA}	c_{AMB}	Difference in median: c_{GLA}−c_{AMB}	c_{GLA}	c_{AMB}	Difference in median: c_{GLA}−c_{AMB}	c_{GLA}	c_{AMB}	
C$_1$	T. turgidum	11	9.4	1.6	−1.17	−1.31	0.14	94.8	94.5	−0	17	26	−8*
C$_1$	O. sativa	5.4	5.7	−0.3	−1.21	−1.36	0.15	94.2	89.4	4.8	24	28	−4
C$_1$	S. laxa	8	7.1	0.9	−1.13	−1.01	0.12	93.3	92.3	1	18	29	−11*
C$_1$	P. bisulcatum	4.1	6.2	−2.1	−0.91	−0.94	0.04	89.4	93.9	−4.5	26	32	−6*
C$_1$ (NADP-ME)	S. bicolor	7.7	5.1	2.6	−1.03	−0.82	−0.2	97	97	0	26	23	3
C$_1$ (NADP-ME)	D. exilis	5.9	9.4	−3.5	−0.79	−0.72	−0.08	92.1	93.6	−1.5	19	19	0
C$_1$ (NADP-ME)	S. italica	8.1	7.4	0.7	−1.27	−0.87	−0.41**	93.2	95.7	−2.5	28	26	2
C$_1$ (NADP-ME)	P. miliaceum	6.5	7.3	−0.8	−1	−0.85	−0.18*	94.8	95.8	−1	31	29	2
Kruskal–Wallis P species (df=7)	NS	NS	NS	NS	*	*	*	NS	NS	NS	NS	NS	*
Kruskal–Wallis P C$_3$/C$_4$ (df=1)	NS	NS	NS	NS	*	*	*	NS	NS	NS	NS	NS	*

*P<0.05; **P<0.01; †P<0.001; *0.001<P<0.01; †P<0.05 after exclusion of an extreme value >40% from c_{GLA} treatment that led to a median of 22% and difference in median of 10%

high rates of internal diffusion, which are linked with decreases in cell wall dry matter (Onoda et al., 2017) and might increase vulnerability to changes in leaf water status.

Among-species variation was an important feature of our gas exchange results. This is consistent with previous studies, which have indicated that the degree to which grass stomata protect against decreases in hydraulic conductance varies even among genotypes (Neufeld et al., 1992; Holloway-Phillips and Brodribb, 2011a). Among C$_3$ species in our study, only that with the highest iWUE, P. bisulcatum, showed a clear negative association between c_t and the stomatal response to shade. At the other extreme, T. turgidum showed exceptionally high steady-state g_{sw} and slow stomatal responses to shade in all three c_t treatments, suggesting high transpiration irrespective of leaf water status, a strategy that can maximize CO2 uptake at a cost to hydraulic conductance (Holloway-Phillips and Brodribb, 2011b). The apparent lack of stomatal regulation in T. turgidum compared with other C$_3$ species is important to note because iWUE for this species did not decrease at c_{GLA}, contradicting the otherwise consistent trend towards greater decreases in iWUE among C$_3$ compared with C$_4$ species.

Impact of glacial c_3 on LMA and hydraulic characteristics

LMA decreased at c_{GLA} among C$_3$ but not C$_4$ grasses. This finding is consistent with observed differences in A_t, results from a meta-analysis addressing variation in LMA (Poorter et al., 2009), and more recent comparisons using species and c_t treatments similar to those chosen for our experiment (Pinto et al., 2014). Further evidence is needed, however, before this result can be generalized as a photosynthetic type effect. LMA responses can, for example, be modified by temperature (Pinto et al., 2011). It is also important to note that the C$_3$ and two of the wild C$_3$ species included in our experiment were drawn from one subfamily of the Poaceae: Panicoideae, a broadly mesic-adapted clade (Taub, 2000; Osborne, 2008; Edwards and Smith, 2010; Visser et al., 2014). We expect leaf functional traits to reflect adaptations to habitat, and some major C$_4$ lineages are adapted to drier environments than those favoured by the Panicoideae (Taub, 2000; Edwards and Smith, 2010). In addition, LMA responses to c_t (Pinto et al., 2016) and leaf size (Liu et al., 2012) differ between the Chloridoideae and Panicoideae grass subfamilies. While further work will be needed to establish whether the patterns we observed are general across grass lineages, our findings are directly relevant to crop and crop-related annual grass species from mesic habitats. Taken together with the gas exchange results, differences in LMA indicate that c_{GLA} was linked with greater carbon limitation in C$_3$ grasses compared with their C$_4$ relatives. This is important because differences in carbon supply affecting plant size and allocation at the whole-plant level have previously been highlighted as central to functional contrasts between C$_3$ and C$_4$ plants (Long, 1999; Atkinson et al., 2016), and influence the mechanisms by which plants acclimate to hydraulic stress (Maseda and Fernández, 2006).

C$_3$ and C$_4$ grasses showed similar K_{leaf} and K_{leaf} decreased at c_{GLA}. The finding that there was no clear difference in K_{leaf} between photosynthetic types is consistent with a previous comparison using the high pressure flow meter technique, applied to predominantly perennial, North American prairie grasses (Ocheltree et al., 2014b). Both of these results are surprising because the clearest anatomical differences between C$_3$ and C$_4$ grass lineages are in the ratio of bundle sheath to mesophyll (Hattersley, 1984; Dengler et al., 1994; Christin et al., 2013; Griffiths et al., 2013; Lundgren et al., 2014). Increases in this ratio should decrease hydraulic resistance external to the xylem (Buckley et al., 2015), supporting the hypothesis that differences in leaf hydraulic properties could affect responses to stress imposed by low c_t and/or water availability (Osborne and Sack, 2012; Griffiths et al., 2013). It is possible that other aspects of C$_4$ leaf anatomy or function counteract positive effects of
increased bundle sheath ratios on K_{leaf} in C$_4$ grasses. It is also important to note that C$_3$ and C$_4$ grasses often show similar average mesophyll cell sizes at ambient CO$_2$ (Lundgren et al., 2014), and the cross-sectional area of vascular relative to chloro-enchyma tissues does not necessarily change with photosynthetic type (Dengler et al., 1994).

The evidence we found for decreased K_{leaf} at c$_{\text{GLA}}$ was surprising, because xylem conductivity generally increases with declining c$_l$ to support increased g_{sw} (Rico et al., 2013; Domec et al., 2017). Previous in situ measurements of transpiration and leaf water potential in sunflower plants grown at c$_l$ similar to c$_{\text{GLA}}$ and c$_{\text{AMB}}$ showed the expected result: that K_{leaf} increased for plants grown at c$_{\text{GLA}}$, minimizing the impact of increased g_{sw} on ΔΨ (Simonin et al., 2015). A decrease in xylem conductivity, linked with smaller conduits in water-stressed tissue that would increase redundancy among conducting elements (Comstock and Sperry, 2000), might contribute to decreases in K_{leaf} for leaves grown at c$_{\text{GLA}}$. However, this is not consistent with the decrease in LMA that we observed and, since transpiration was driven using moderate levels of light, we expect that the primary source of hydraulic resistance was exterior to the xylem (Ocheltree et al., 2014a).

The values of K_{leaf} were low compared with other recently published estimates for similar species [S. bicolor, 19–38 mmol m$^{-2}$ s$^{-2}$ MPa$^{-1}$ (Ocheltree et al., 2014a); O. sativa cultivars, 7.1–8.7 mmol m$^{-2}$ s$^{-2}$ MPa$^{-1}$ (Xiong et al., 2015)], but are within the range reported in the literature for grasses (~0.44–51 mmol m$^{-2}$ s$^{-2}$ MPa$^{-1}$; Holloway-Phillips and Brodribb, 2011a; Ocheltree et al., 2014a; Liu and Osborne, 2015; Xiong et al., 2015) and may be a consequence of moderate PPFD during growth and measurements (Cochard et al., 2007; Ocheltree et al., 2014a). Further experimentation and comparison of methods is needed for measurements of K_{leaf} in grasses.

We need to understand why measurements of K_{leaf} produce similar values for C$_3$ and C$_4$ species; to establish whether K_{leaf} responses to c$_l$ correspond to changes in hydraulic vulnerability; and to determine the anatomical basis of adjustments to K_{leaf}, especially given evidence for declining LDLC and LMA among C$_3$ species at c$_{\text{GLA}}$. It will also be important to measure K_{leaf} at different [CO$_2$]; as in the study of K_{leaf} responses to c$_l$ that used sunflower (Simonin et al., 2015), we measured K_{leaf} at ambient [CO$_2$].

Effects of c$_l$ on P–V characteristics also provide motivation for further investigation of photosynthetic type×c$_l$ responses. As leaf size decreased at c$_{\text{GLA}}$, C$_4$ grasses maintained LDLC and C$_3$ grasses did not. In parallel, π_{TLP} of C$_4$ grasses became more negative at c$_{\text{GLA}}$, while π_{TLP} of C$_3$ grasses did not change. This is an important result because π_{TLP} is a powerful indicator of physiological responses that is expected to integrate smaller changes in, for example, π_s and ε (Bartlett et al., 2012). The decrease in LDLC shown by C$_3$ leaves grown at c$_{\text{GLA}}$ is consistent with both lower A and LMA, and previous evidence that C$_3$ leaves decrease mesophyll cell volume and total non-structural carbohydrates as c$_l$ declines (Poorter et al., 2009). Maintenance of LDLC and more negative π_{TLP} in C$_4$ grasses therefore might be linked with solute accumulation at c$_{\text{GLA}}$. Presumably, decreases in π_{TLP} of C$_4$ leaves at low c$_l$ would support maintenance of turgor in the presence of larger ΔΨ induced by higher g_{sw} (Franks, 2006; Simonin et al., 2015); however, we do not know how leaf-level changes were integrated with adjustments in root and stem properties. The lack of an adjustment in π_{TLP} by C$_3$ grasses grown at c$_{\text{GLA}}$ might be associated with maintenance of leaf water status if root and stem xylem hydraulic conductivity increased or xylem solute concentrations decreased.

Conclusions

We predicted that gas exchange would show greater absolute responses to c$_l$ in C$_3$ compared with C$_4$ grass leaves, especially in terms of the positive relationship between iWUE and c$_l$. We also predicted that low iWUE at c$_{\text{GLA}}$ would be linked with changes in leaf hydraulic properties. We found that while the iWUE advantage of some C$_4$ grass leaves increased in absolute terms at c$_{\text{SUP}}$, co-ordination among leaf traits was more strongly affected by c$_{\text{GLA}}$ than by c$_{\text{SUP}}$. These experimental results broadly support predicted smaller impacts of c$_{\text{GLA}}$ on performance of C$_4$ grasses (Osborne and Sack, 2012), and suggest that iWUE advantages to C$_4$ species will continue to be important in future. A finding with potential importance for crop improvement programmes is that as c$_l$ increases, pressure on plants to improve iWUE through rapid stomatal responses to shade may be reduced, particularly for species capable of achieving high iWUE. These results highlight the need for continued efforts to establish how hydractics and photosynthetic performance are co-ordinated, both within leaves and at the scale of whole plants. The mechanistic basis of these responses still needs to be better understood to predict the physiological implications of C$_4$ photosynthesis, both under past glacial climates and as they will affect performance in a future high CO$_2$ world.

Acknowledgements

SHT was supported by funding from the Hawkesbury Institute for the Environment at Western Sydney University awarded to OG, MJA, and DTT. OG was supported by funding from the Australian Research Council Centre of Excellence for Translational Photosynthesis (CE140100015). Fiona Koller, Walter Israel, and Goran Lopaticki provided technical assistance. Markus Nolf, Danielle Creek, and Rosana López shared equipment and suggestions facilitating EFM measurements. SHT thanks Hiu Liu for sharing references on K_{leaf} of grasses. The authors thank Howard Griffiths and two anonymous reviewers for their assistance in substantially improving the manuscript.

References

Abramoff MD, Magalhães PJ, Ram SJ, 2004. Image processing with ImageJ. Biophotonics International 11, 36–41.

Ainsworth EA, Long SP, 2005. What have we learned from 15 years of free-air CO$_2$ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO$_2$. New Phytologist 165, 351–371.

Aliscioni S, Bell HL, Besnard G, et al., 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C$_4$ origins. New Phytologist 193, 304–312.

Atkinson RR, Mockford EJ, Bennett C, Christin PA, Spriggs EL, Freckleton RP, Thompson K, Rees M, Osborne CP, 2016. C4...
photosynthesis boosts growth by altering physiology, allocation and size. Nature Plants 2, 16038.

Bartlett MK, Scoffoni C, Sack L. 2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters 15, 393–405.

Besnard G, Muasya AM, Russier F, Roalson EH, Salamin N, Christin PA. 2009. Phylogenomics of C₄ photosynthesis in sedges (Cyperaceae): A survey of appearances and genetic convergence. Molecular Biology and Evolution 26, 1909–1919.

Brodribb TJ, Holbrook NM. 2003. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiology 132, 2166–2173.

Brodribb TJ, Jordan GJ. 2011. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist 192, 437–448.

Buckley TN, John GP, Scoffoni C, Sack L. 2015. How does leaf anatomy influence water transport outside the xylem? Plant Physiology 168, 1616–1635.

Byrt CS, Grof CP, Furbank RT. 2016. C₄ plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. Journal of Integrative Plant Biology 53, 120–135.

Cao KF, Yang SJ, Zhang YJ, Brodribb TJ. 2012. The maximum height of grasses is determined by roots. Ecology Letters 15, 666–672.

Carins Murphy MR, Jordan GJ, Brodribb TJ. 2012. Differential leaf expansion can enable hydraulic accretion to sun and shade. Plant, Cell and Environment 35, 1407–1418.

Carins Murphy MR, Jordan GJ, Brodribb TJ. 2014. Accretion to humidity modifies the link between leaf size and the density of veins and stomata. Plant, Cell and Environment 37, 124–131.

Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V, Salamin N. 2008. Oligocene CO₂ decline promoted C₄ photosynthesis in grasses. Current Biology 18, 37–43.

Christin PA, Osborne CP. 2014. The evolutionary ecology of C₃ plants. New Phytologist 204, 765–781.

Christin P-A, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ. 2013. Anatomical enablers and the evolution of C₄ photosynthesis in grasses. Proceedings of the National Academy of Sciences, USA 110, 1381–1386.

Christin PA, Osborne CP, Sage RF, Arakaki M, Edwards EJ. 2011a. C₃ eudicots are not younger than C₄ monocots. Journal of Experimental Botany 62, 3171–3181.

Christin PA, Sage TL, Edwards EJ, Ogburn RM, Khoshravesh R, Sage RF. 2011b. Complex evolutionary transitions and the significance of C₃—C₄ intermediate forms of photosynthesis in Molluginaceae. Evolution 65, 643–660.

Christin PA, Salamin N, Kellogg EA, Vicentini A, Besnard G. 2009. Integrating phylogeny into studies of C₃ variation in the grasses. Plant Physiology 149, 82–97.

Christin PA, Spriggs E, Osborne CP, Strömberg CA, Salamin N, Edwards EJ. 2014. Molecular dating, evolutionary rates, and the age of the grasses. Systematic Biology 63, 153–165.

Cochard H, Venisse JS, Barigah TS, Brunel N, Herbette S, Guilliot A, Tyree MT, Sakr S. 2007. Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiology 143, 122–133.

Comstock JP, Sperry JS. 2000. Theoretical considerations of optimal conduit length for water transport in vascular plants. New Phytologist 148, 195–218.

Dengler NG, Dengler RE, Donnelly PM, Hattersley PW. 1994. Quantitative leaf anatomy of C₃ and C₄ grasses (Poaceae): bundle sheath and mesophyll surface area relationships. Annals of Botany 73, 241–255.

Domec JC, Smith DD, McCulloh KA. 2017. A synthesis of the effects of atmospheric carbon dioxide enrichment on plant hydraulics: implications for whole-plant water use efficiency and resistance to drought. Plant, Cell and Environment 40, 921–937.

Drake PL, Friend RH, Franks PJ. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany 64, 495–505.

Edwards EJ, Osborne CP, Strömberg CA, et al. 2010. The origins of C₄ grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591.

Edwards EJ, Smith SA. 2010. Phylogenetic analyses reveal the shadiest history of C₄ grasses. Proceedings of the National Academy of Sciences, USA 107, 2562–2567.

Edwards EJ, Still CJ. 2008. Climate, phylogeny and the ecological distribution of C₄ grasses. Ecology Letters 11, 266–276.

Edwards GE, Furbank RT, Hatch MD, Osmond CB. 2001. What does it take to be C₄? Lessons from the evolution of C₄ photosynthesis. Plant Physiology 125, 46–49.

Ehleringer JR, Cerling TE, Helliker BR. 1997. C₄ photosynthesis, atmospheric CO₂, and climate. Oecologia 112, 285–299.

Franks PJ. 2006. Higher rates of leaf gas exchange are associated with higher leaf hydrodynamic pressure gradients. Plant, Cell and Environment 29, 584–592.

Franks PJ, Adams MA, Amthor JS, et al. 2013. Sensitivity of plants to changing atmospheric CO₂ concentration: from the geological past to the next century. New Phytologist 197, 1077–1094.

Franks PJ, Beerling DJ. 2009a. CO₂-forced evolution of plant gas exchange capacity and water-use efficiency over the Phanerozoic. Geobiology 7, 227–236.

Franks PJ, Beerling DJ. 2009b. Maximum leaf conductance driven by CO₂ effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, USA 106, 10343–10347.

Franks PJ, Farquhar GD. 2007. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiology 143, 78–87.

Ghanounou O, von Caemmerer S, Ziska LH, Conroy JP. 2000. The growth response of C₃ plants to rising atmospheric CO₂ partial pressure: a reassessment. Plant, Cell and Environment 23, 931–942.

Giussani LM, Cota-Sánchez JH, Zuloaga FO, Kellogg EA. 2001. A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C₄ photosynthesis. American Journal of Botany 88, 1993–2012.

Gleason SM, Wiggins DR, Bliss CA, Young JS, Cooper M, Willi KR, Comas LH. 2017. Embolized stems recover overnight in Zea mays: the role of soil water, root pressure, and nighttime transpiration. Frontiers in Plant Science 8, 662.

Griffiths H, Weller G, Toy LF, Dennis RJ. 2013. You’re so vein: bundle sheath physiology, phylogeny and evolution in C₃ and C₄ plants. Plant, Cell and Environment 36, 249–261.

Hattersley PW. 1983. The distribution of C₃and C₄ grasses in Australia in relation to climate. Oecologia 57, 113–128.

Hattersley PW. 1984. Characterization of C₃ type leaf anatomy in grasses (Poaceae). Mesophyll/bundle sheath area ratios. Annals of Botany 53, 163–179.

Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. Nature 424, 901–908.

Holloway-Phillips MM, Brodribb TJ. 2011a. Contrasting hydraulic regulation in closely related forage grasses: implications for plant water use. Functional Plant Biology 38, 594–605.

Holloway-Phillips MM, Brodribb TJ. 2011b. Minimum hydraulic safety leads to maximum water-use efficiency in a forage grass. Plant, Cell and Environment 34, 302–313.

Kaderiet G, Ackerly DD, Pirie MD. 2012. A broader model for C₃ photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.). Proceedings of the Royal Society B: Biological Sciences 279, 3304–3311.

Kellogg EA. 1998. Relationships of cereal crops and other grasses. Proceedings of the National Academy of Sciences, USA 95, 2005–2010.

Kocacin F, McKown AD, Sage TL, Sage RF. 2008. Photosynthetic pathway influences xylem structure and function in Flaveria (Asteraceae). Plant, Cell and Environment 31, 1363–1376.

Kocacin F, Sage RF. 2003. Photosynthetic pathway alters xylem structure and hydraulic function in herbaceous plants. Plant, Cell and Environment 26, 2015–2026.

Kocacin F, Sage RF. 2004. Photosynthetic pathway alters hydraulic structure and function in woody plants. Oecologia 139, 214–223.

Kubeske ME, Abrams MD. 1990. Pressure-volume relationships in non-rehydrated tissue at various water deficits. Plant, Cell and Environment 13, 995–1000.
CO₂ and hydraulic function in C₃ and C₄ grasses | 2741

Lawton T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164, 1556–1570.

Leakey ADB. 2009. Rising atmospheric carbon dioxide concentration and the future of C₄ crops for food and fuel. Proceedings of the Royal Society B: Biological Sciences 276, 2333–2343.

Liu H, Edwards EJ, Freckleton RP, Osborne CP. 2012. Phylogenetic niche conservatism in C₄ grasses. Oecologia 170, 835–845.

Liu H, Osborne CP. 2015. Water relations traits of C₃, C₄, and C₃–C₄ grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability. Journal of Experimental Botany 66, 761–773.

Long SP. 1999. Environmental responses. In: Sage RF, Monson RK, eds. C₄ plant biology. San Diego, CA: Academic Press, 215–249.

Lundgren MR, Osborne CP, Christin PA. 2014. Deconstructing Kranz anatomy to understand C₄ evolution. Journal of Experimental Botany 65, 3357–3369.

Lundgren MR, Besnard G, Ripley BS, et al. 2015. Photosynthetic innovation broadens the niche within a single species. Ecology Letters 18, 1021–1029.

Marx P, Cochard H, Durand J-L. 2001. Hydraulic architecture and water flow in growing grass tillers (Festuca arundinacea Schreb.). Plant, Cell and Environment 24, 65–76.

Maseda PH, Fernández RJ. 2006. Stay wet or else: three ways in which plants can adjust hydraulically to their environment. Journal of Experimental Botany 57, 3963–3977.

Mayeux H, Johnson H, Polley W, Malone S. 1997. Yield of wheat across a subambient carbon dioxide gradient. Global Change Biology 3, 269–278.

McCully ME. 1999. Root xylem embolisms and refilling. Relation to water potentials of soil, roots, and leaves, and osmotic potentials of root xylem sap. Plant Physiology 119, 1001–1008.

Meinzer FC, Goldstein G, Neufeld HS, Grantz DA, Crisosto GM. 1992. Hydraulic architecture of sugarcane in relation to patterns of water use during plant development. Plant, Cell and Environment 15, 471–477.

Neufeld HS, Grantz DA, Meinzer FC, Goldstein G, Crisosto GM, Crisosto C. 1992. Genotypic variability in vulnerability of leaf xylem to cavitation in water-stressed and well-irrigated sugarcane. Plant Physiology 100, 1020–1026.

Ocheltree TW, Nippert JB, Kirkham MB, Prasad PVV. 2014a. Partitioning hydraulic resistance in Sorghum bicolor leaves reveals unique correlations with stomatal conductance during drought. Functional Plant Biology 41, 25–36.

Ocheltree TW, Nippert JB, Prasad PVV. 2014b. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance. Plant, Cell and Environment 37, 132–139.

Onoda Y, Wright LJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M. 2017. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist 214, 1447–1463.

Osborne CP. 2008. Atmosphere, ecology and evolution: what drove the Miocene expansion of C₃ grasslands. Journal of Ecology 96, 35–45.

Osborne CP, Freckleton RP. 2009. Ecological selection pressures for C₃ photosynthesis in the grasses. Proceedings of the Royal Society B: Biological Sciences 276, 1753–1760.

Osborne CP, Sack L. 2012. Evolution of C₄ plants: a new hypothesis for an interaction of CO₂ and water relations mediated by plant hydraulics. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 583–600.

Osmond CB, Winter K, Ziegler H. 1982. Functional significance of different pathways of CO₂ fixation in photosynthesis. In: Lange OL, Nobel P, Osmond CB, Ziegler H, eds. Encyclopedia of plant physiology: physiological plant ecology II. Berlin: Springer Verlag, 479–547.

Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603.

Pearcy RW, Ehleringer JR. 1984. Comparative ecophysiology of C₃ and C₄ plants. Plant, Cell and Environment 7, 1–13.

Pinto H, Powell JR, Shaword RE, Tissue DT, Ghannoum O. 2016. Variations in nitrogen use efficiency reflect the biochemical subtype while variations in water use efficiency reflect the evolutionary lineage of C₂ grasses at inter-glacial CO₂. Plant, Cell and Environment 39, 514–526.

Pinto H, Shaword RE, Tissue DT, Ghannoum O. 2014. Photosynthesis of C₃, C₃–C₄, and C₄ grasses at glacial CO₂. Journal of Experimental Botany 65, 3669–3681.

Pinto H, Tissue DT, Ghannoum O. 2011. Panicum milioides (C₃–C₄) does not have improved water or nitrogen economies relative to C₃ and C₄ congeners exposed to industrial-age climate change. Journal of Experimental Botany 62, 3223–3234.

Polley HW, Johnson HB, Marino BD, Mayeux HS. 1993. Increase in C₃ plant water-use efficiency and biomass over glacial to present CO₂ concentrations. Nature 361, 61–64.

Poorter H, Niinemets Ü, Poorter L, Wright JJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182, 565–598.

R Core Team. 2016. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Rico C, Pittermann J, Polley HW, Aspinwall MJ, Fay PA. 2013. The effect of subambient to elevated atmospheric CO₂ concentration on vascular function in Helianthus annuus: implications for plant response to climate change. New Phytologist 199, 956–965.

Sack L, Melcher PJ, Zwieniecki MA, Holbrook NM. 2002. The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods. Journal of Experimental Botany 53, 2177–2184.

Sage RF. 2004. The evolution of C₃ photosynthesis. New Phytologist 161, 341–370.

Sage RF, Christin PA, Edwards EJ. 2011. The C₄ plant lineages of planet Earth. Journal of Experimental Botany 62, 3155–3169.

Sage RF, Sage TL, Kocacinac F. 2012. Photosynthesis and the evolution of C₄ photosynthesis. Annual Review of Plant Biology 63, 19–47.

Simonin KA, Burns E, Choot B, Barbour MM, Dawson TE, Franks PJ. 2015. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf. Journal of Experimental Botany 66, 1303–1315.

Taub DR. 2000. Climate and the U.S. distribution of C₄ grass subfamilies and decarboxylation variants of C₄ photosynthesis. American Journal of Botany 87, 1211–1215.

Taylor SH, Franks PJ, Hulme SP, Spriigs E, Christin PA, Edwards EJ, Woodward FI, Osborne CP. 2012. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytologist 193, 387–396.

Taylor SH, Hulme SP, Rees M, Ripley BS, Woodward FI, Osborne CP. 2010. Ecophysiological traits in C₃ and C₄ grasses: a phylogenetically controlled screening experiment. New Phytologist 185, 783–791.

Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA. 2008. The age of the grasses and clusters of origins of C₄ photosynthesis. Global Change Biology 14, 2963–2977.

Visser V, Clayton WD, Simpson DA, Freckleton RP, Osborne CP. 2014. Mechanisms driving an unusual latitudinal diversity gradient for grasses. Global Ecology and Biogeography 23, 61–75.

von Caemmerer S, Quick WP, Furbank RT. 2012. The C₄ plant lineages of planet Earth. Journal of Experimental Botany 63, 1671–1672.

Watcharamongkol T, Christin PA, Osborne CP. 2018. C₄ photosynthesis evolved in warm climates but promoted migration to cooler ones. Ecology Letters 21, 376–383.

Woodward FI. 1987. Stomatal numbers are sensitive to increases in CO₂ and hydraulic function in C₃ and C₄ grasses. Proceedings of the Royal Society B: Biological Sciences 276, 1753–1760.

von Caemmerer S, Quick WP, Furbank RT. 2012. The C₄ plant lineages of planet Earth. Journal of Experimental Botany 63, 1671–1672.

Watcharamongkol T, Christin PA, Osborne CP. 2018. C₄ photosynthesis evolved in warm climates but promoted migration to cooler ones. Ecology Letters 21, 376–383.

Woodward FI, Bazzaz FA. 2003. The effect of subambient to elevated atmospheric CO₂ concentration on vascular function in Helianthus annuus: implications for plant response to climate change. New Phytologist 199, 956–965.