Power loss reduction by arctic wolf optimization algorithm

Kanagasabai Lenin
Department of EEE, Prasad V. Potluri Siddhartha Institute of Technology, India

ABSTRACT
This paper proposes Arctic Wolf optimization (AWO) algorithm to solve the optimal reactive power problem. Deeds of the Arctic wolf have been imitated to formulate the proposed algorithm. Arctic wolf also identified as the white wolf or polar wolf is a breed of gray wolf inhabitant from Melville Island to Ellesmere Island. It is average size, very smaller when compared to north western wolf, it possess whiter coloration, narrower braincase and big carnassials. Particle swarm optimization, Genetic algorithm has been used to improve the Exploration & Exploitation ability of the algorithm by utilizes flag vector & position, velocity update properties. Proposed Arctic Wolf optimization (AWO) algorithm has been tested in standard IEEE 30 bus test system and simulation results show the projected algorithms reduced the real power loss considerably.

Corresponding Author:
Kanagasabai Lenin,
Department of EEE,
Prasad V. Potluri Siddhartha Institute of Technology,
Chalasani Nagar, Kanuru, Vijayawada, Andhra Pradesh 520007, India.
Email: gklenin@gmail.com

1. INTRODUCTION
Reactive power problem plays an important role in secure and economic operations of power system. Numerous types of methods [1-6] have been utilized to solve the optimal reactive power problem. However many scientific difficulties are found while solving problem due to an assortment of constraints. Evolutionary techniques [7-16] are applied to solve the reactive power problem. This paper proposes Arctic Wolf optimization (AWO) algorithm to solve the optimal reactive power problem. Arctic wolf also identified as the white wolf or polar wolf is a breed of gray wolf inhabitant from Melville Island to Ellesmere Island. It is average size, very smaller when compared to north western wolf, it possess whiter coloration, narrower braincase and big carnassials. Arctic wolf is fairly unafraid of people, and can be entice to approach people in several areas. Very particularly they do not fear humans & approach cautiously, curiously and closely. During wintertime when there is absolute darkness Arctic wolf will make the movement at temperature was as low as -53 °C (-63 °F) and mainly they prey mainly on the muskoxen. Muskoxen are certainly their most important prey because Arctic wolf presence and reproduction seem to be superior when muskoxen are more available than normal availability. Particle swarm optimization, Genetic algorithm has been used to improve the Exploration & Exploitation ability of the algorithm by utilizes flag vector & position, velocity update properties. Proposed Arctic Wolf optimization (AWO) algorithm has been tested in standard IEEE 57 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.

2. PROBLEM FORMULATION
Objective of the problem is to reduce the true power loss:

\[F = P_L = \sum_{k \in \text{Nbr}} g_k \left(V_i^2 + V_j^2 - 2 V_i V_j \cos \theta_{ij} \right) \]

(1)
voltage deviation given as follows:

\[F = P_L + \omega \times \text{Voltage Deviation} \] \hspace{1cm} (2)

voltage deviation given by:

\[\text{Voltage Deviation} = \sum_{i=1}^{Npq} |V_i - 1| \] \hspace{1cm} (3)

constraint (Equality)

\[P_c = P_b + P_L \] \hspace{1cm} (4)

constraints (Inequality)

\[P_{g\text{slack}}^{\text{min}} \leq P_{g\text{slack}} \leq P_{g\text{slack}}^{\text{max}} \] \hspace{1cm} (5)

\[Q_{gi}^{\text{min}} \leq Q_{gi} \leq Q_{gi}^{\text{max}}, \quad i \in N_g \] \hspace{1cm} (6)

\[V_i^{\text{min}} \leq V_i \leq V_i^{\text{max}}, \quad i \in N \] \hspace{1cm} (7)

\[T_i^{\text{min}} \leq T_i \leq T_i^{\text{max}}, \quad i \in N_T \] \hspace{1cm} (8)

\[Q_c^{\text{min}} \leq Q_c \leq Q_c^{\text{max}}, \quad i \in N_C \] \hspace{1cm} (9)

3. ARCTIC WOLF OPTIMIZATION

Arctic Wolf optimization (AWO) mimics the deeds of Arctic Wolf in nature. The deeds of the arctic wolf have been imitated to formulate the algorithm. During wintertime when there is absolute darkness Arctic wolf will make the movement at temperature was as low as -53 °C (-63 °F) and mainly they prey mainly on the muskoxen. Muskoxen are certainly their most important prey because Arctic wolf presence and reproduction seem to be superior when muskoxen are more available than normal availability. Hunting procedure of the arctic wolf is designed to formulate the algorithm. There are three fittest candidate solutions (Arctic Wolf) embedded as \(\alpha, \beta, \gamma \) to lead the population toward capable regions of the exploration space in each iteration of Arctic Wolf optimization. \(\varphi \) is named for the rest of Arctic Wolf and it will assist \(\alpha, \beta, \gamma \) to encircle, hunt, and attack prey; to find improved solutions. In order to technically imitate the encircling deeds of Arctic wolves, the following equations are projected:

\[\vec{H} = |\vec{I}, \vec{J}_p(t) - \vec{j}(t)|, \hspace{1cm} (10) \]

\[\vec{j}(t + 1) = \vec{j}_p(t) - \vec{j}.\vec{H} \hspace{1cm} (11) \]

in order to scientifically imitate the hunting deeds of Arctic wolf, the following equations are projected,

\[\vec{H}_a = |\vec{I}_a, \vec{J}_a - \vec{j}| \]

\[\vec{H}_\beta = |\vec{I}_\beta, \vec{J}_\beta - \vec{j}| \]

\[\vec{H}_\gamma = |\vec{I}_\gamma, \vec{J}_\gamma - \vec{j}| \] \hspace{1cm} (12)

\[\vec{j}_1 = \vec{j}_a - \vec{G}_1 \cdot \vec{H}_a \]

\[\vec{j}_2 = \vec{j}_\beta - \vec{G}_2 \cdot \vec{H}_\beta \]

\[\vec{j}_3 = \vec{j}_\gamma - \vec{G}_3 \cdot \vec{H}_\gamma \] \hspace{1cm} (13)

\[\vec{j}(t + 1) = \frac{\vec{j}_1 + \vec{j}_2 + \vec{j}_3}{3} \] \hspace{1cm} (14)

The position of an Arctic wolf is modernized and then the following equation is used to discrete the position of the wolf.
\[\text{flag}_{i,j} = \begin{cases} 1 & j_{i,j} > 0.475 \\ 0 & \text{otherwise} \end{cases} \]

where \(i \) indicates the \(j \)th position of the \(i \)th Arctic wolf, \(\text{flag}_{i,j} \) is features of the Arctic wolf. The interactions of the Arctic wolf among them is increased by,

\[\omega_i = j_i^d + \varphi_i (j_i - z_i) + \varphi_i (j_i - j_k^d) \]

The confined density of the Arctic wolf is denoted by,

\[\rho_i = \sum_{j \in T(i)} e^{-\left(\frac{d_i}{c} \right)^2} \]

Arctic wolf is less than “dc” when the the Arctic wolf’s distance from the \(j \), the greater than the confined density of the Arctic wolf. \(d_i \) symbolize the Euclidean distance between the \(i \)th of Arctic wolf, \(\varphi_i \) is a arbitrary number in \([0, 1]\), \(\varphi_i \) is a arbitrary number in \([-1, 1]\).

“2 m” Arctic Wolf with the leading confined thickness is chosen & well-organized by density \([17]\) from big to little in set “R”. Afterwards, “2 m” Arctic Wolf’s, are selected to adjust to the most awful Arctic Wolf’s and it has been placed in set “Y” with reference to the fitness values from very small to large. “X” and “Y” intersection of sets is symbolized by “E”:

\[E = X \cap Y \]

\[E = \{ e; e \in S, e \in X, i = 1,2,..,i \} \]

Two major abolishment methods are implemented. Let “\(V \)” be the store to stockpile the abolished individuals,

\[V = \begin{cases} V_{i,random} > e^{\left(\frac{t}{t_{maximum}} \right)^2} & \\ \text{S}[1;E], \text{other} \end{cases} \]

Arbitrary numbers are engendered by the random function in the interval \([0, 1]\). The probability of the establishment of \(random > e^{\left(\frac{t}{t_{maximum}} \right)^2} \) in the primary stage is big. With the increase in iteration steps, the probability will be reducing to lesser. The algorithm to be inclined to explore globally, and afterwards, the algorithm is apt to explore local mode.

Positions and velocities are modernized to improve the performance of the exploration & exploitation in the projected algorithm.

\[v_{i+1} = \omega_i v_i + c_{g1},R_{m1},(m_i - y_i) + c_{g2},R_{m2},(m_i - y_i) \]

\[y_{i+1} = y_i + v_i \]

The present position of particle is \(y_i \) & search velocity is \(v_i \). Global best-found position is. \(m_i \). In uniformly distributed interval \((0, 1)\) \(R_{m1} \) & \(R_{m2} \) are arbitrary numbers. Where \(c_{g1} \) and \(c_{g2} \) are scaling parameters. \(\omega_i \) is the particle inertia. The variable \(\omega_i \) is modernized as:

\[\omega_i = (\omega_{\text{max}} - \omega_{\text{min}}) \frac{(t_{\text{max}} - t)}{t_{\text{max}}} + \omega_{\text{min}} \]

Maximum and minimum of \(\omega_i \) is represented by \(\omega_{\text{max}} \) and \(\omega_{\text{min}} \); maximum number of iterations is given by \(t_{\text{max}} \).

Genetic algorithm (GA) as an adaptive optimization exploration method is based on natural selection and genetics. In GA, a population is composed of a set of candidate solutions called chromosomes and it includes numerous genes with binary values 0 and 1. The major steps are of GA are. (i) Initialization; Chromosomes are arbitrarily generated. (ii) Selection; to choose parent chromosomes a roulette choosing method is used. (iii) Crossover; to generate offspring chromosome a single point crossover method is used. (iv) Mutation; unvarying mutation is implemented (v) Decode; Decode the mutated chromosomes as the preliminary positions of population.
Fitness function will be calculated by,

$$Fitness = \alpha T + \beta \frac{M - G}{M}$$

(24)

Where T define the accurateness, G is the length of chosen element division, M is the sum of all features, and \(\alpha \) and \(\beta \) are the weight of classification and picking quality, \(\alpha \in [0,1] \) and \(\beta = 1 - \alpha \)

Initialization of the parameters
i = 1: population size; j = 1: n
When (i, j) > 0.475; (i) = 1; Else (j) = 0;
End if
End for
Calculation of the fitness functions by;

$$Fitness = \alpha T + \beta \frac{M - G}{M}$$

Primary, secondary, third maximum fitness of the Arctic wolf is designated as “\(\alpha \)”, “\(\beta \)”, “\(\gamma \)”

While k < maximum number of iteration
For i = 1: population size
Modernize the existing position of Arctic wolf by

$$\tilde{f}(t + 1) = \frac{\tilde{f}_1(t) + \tilde{f}_2(t) + \tilde{f}_3(t)}{3}$$

Existing wolf Arctic location has been revised periodically
End for
For i = 1: population size; For i = 1:n
If (i, j) > 0.475; (j) = 1; Else; (j) = 0;
End if
End for
At irregular intervals renew the parameter values
Fitness function will be calculated by;

$$Fitness = \alpha T + \beta \frac{M - G}{M}$$

The assessment of Arctic Wolf "\(\alpha \)" , "\(\beta \)" and "\(\gamma \)" has to be revised

\(t = t + 1; \)
End while
Return the best solution” \(\alpha \) “
End

4. SIMULATION STUDY

Proposed Arctic Wolf optimization (AWO) algorithm has been tested, in IEEE 57 Bus system [18]. Table 1 shows the constraints of control variables, Table 2 shows the limits of reactive power generators and comparison results are presented in Table 3. Figure 1 gives the Comparison of real power loss and Figure 2 gives the Reduction of real power loss (%) with reference to base case value.

Table 1. Constraints of control variables
System
IEEE 57 Bus
Transformer Tap
VAR Source

Table 2. Constrains of reactive power generators
System
IEEE 57 Bus
2
3
6
8
9
12
Table 3. Simulation results of IEEE-57 system

Control variables	Base case	MPSO [19]	PSO [19]	CGA [19]	AGA [19]	AWO
\(V_G \) 1	1.040	1.093	1.083	0.968	1.027	1.008
\(V_G \) 2	1.010	1.086	1.071	1.049	1.011	1.012
\(V_G \) 3	0.985	1.056	1.055	1.056	1.033	1.004
\(V_G \) 6	0.980	1.038	1.036	0.987	1.001	1.029
\(V_G \) 8	1.005	1.066	1.059	1.022	1.051	1.048
\(V_G \) 9	0.980	1.054	1.048	0.991	1.051	1.039
\(V_G \) 12	1.015	1.054	1.046	1.004	1.057	1.026
Tap 19	0.970	0.975	0.987	0.920	1.030	0.911
Tap 20	0.978	0.982	0.983	0.920	1.020	0.909
Tap 31	1.043	0.975	0.981	0.970	1.060	0.906
Tap 35	1.000	1.025	1.003	NR*	NR*	1.007
Tap 36	1.000	1.002	0.985	NR*	NR*	1.021
Tap 37	1.043	1.007	1.009	0.900	0.990	1.032
Tap 41	0.967	0.994	1.007	0.910	1.100	0.947
Tap 46	0.975	1.013	1.018	1.100	0.980	1.028
Tap 51	0.955	0.988	0.986	0.940	1.010	0.939
Tap 54	0.955	0.979	0.992	0.950	1.080	0.928
Tap 59	0.900	0.983	0.990	1.030	0.940	0.938
Tap 65	0.930	1.015	0.997	1.090	0.950	1.026
Tap 66	0.895	0.975	0.964	0.900	1.050	0.939
Tap 71	0.958	1.020	0.990	0.900	0.950	1.042
Tap 73	0.958	1.001	0.988	1.000	1.010	1.012
Tap 76	0.980	0.979	0.980	0.960	0.940	0.906
Tap 80	0.940	1.002	1.017	1.000	1.000	1.030
\(QC \) 18	0.1	0.179	0.131	0.084	0.016	0.140
\(QC \) 25	0.059	0.176	0.144	0.608	0.013	0.131
\(QC \) 55	0.063	0.141	0.162	0.053	0.034	0.120
\(PG \) (MW)	1278.6	1274.4	1274.8	1276	1275	1272.67
\(QG \) (Mvar)	321.08	272.27	276.58	309.1	304.4	272.38
Reduction in \(P_Loss \) (%)	0	15.4	14.1	9.2	11.6	27.43
Total \(P_Loss \) (Mw)	27.8	23.51	23.86	25.24	24.56	20.172

NR* - Not reported.

Figure 1. Comparison of real power loss

Figure 2. Reduction of real power loss (%) with reference to base case value
5. CONCLUSION

In this paper Arctic Wolf optimization (AWO) algorithm successfully solved the optimal reactive power problem. (Arctic Wolf) embedded as \(\alpha, \beta \) and \(\gamma \) to lead the population toward capable regions of the exploration space in each iteration of Arctic Wolf optimization. \(\varphi \) is named for the rest of Arctic Wolf and it will assist \(\alpha, \beta \) and \(\gamma \) to encircle, hunt, and attack prey. Proposed Arctic Wolf optimization (AWO) algorithm has been tested in standard IEEE 57 bus test system and simulation results show the projected algorithms reduced the real power loss efficiently.

REFERENCES

[1] K. Y. Lee, "Fuel-cost minimisation for both real and reactive-power dispatches," Proceedings Generation, Transmission and Distribution Conference, vol. 131(3), pp. 85-93, 1984.
[2] N. I. Deeb, "An efficient technique for reactive power dispatch using a revised linear programming approach," Electric Power System Research, vol. 15(2), pp. 121-134, 1998.
[3] M. R. Bjelogrlic, M. S. Calovic, B. S. Babic, "Application of newton’s optimal power flow in voltage/reactive power control," IEEE Trans Power System, vol. 5(4), pp. 1447-1454, 1990.
[4] S. Granville, "Optimal reactive dispatch through interior point methods," IEEE Transactions on Power System, vol. 9(1), pp. 136-146, 1994.
[5] N. Gradin, "Reactive power optimization using successive quadratic programming method," IEEE Transactions on Power System, vol. 13(4), pp. 1219-1225, 1998.
[6] Ng Shin Mei R., Sulaiman M.H., Mustaffa Z., Daniyal H., "Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique," Appl. Soft Comput., vol. 59, pp. 210-222, 2017.
[7] Chen G., Liu L., Zhang Z., Huang S., "Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints," Appl. Soft Comput., vol. 50, pp. 58-70, 2017.
[8] Naderi E., Narimani H., Fathi M., Narimani M. R., "A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch," Appl. Soft Comput., vol. 53, pp. 441-456, 2017.
[9] Heidari A. A., Ali Abbaspour R., Rezaee Jordehi A., "A gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems," Appl. Soft Comput., vol. 57, pp. 657-671, 2017.
[10] Mahalethum Morgan, Nor Rul Hasma Abdullah, Mohd Herwan Sulaiman, Mahfuzah Mustafa, Rosdiyana Samad, "Benchmark studies on optimal reactive power dispatch (ORPD) based multi-objective evolutionary programming (MOEP) using mutation based on adaptive mutation adapter (AMO) and polynomial mutation operator (PMO)," Journal of Electrical Systems, vol. 12(1), 2016.
[11] Rebecca Ng Shin Mei, Mohd Herwan Sulaiman, Zuriani Mustaffa, "Ant lion optimizer for optimal reactive power dispatch solution," Journal of Electrical Systems, pp. 68-74, 2016.
[12] P. Anbarasan, T. Jayabarathi, "Optimal reactive power dispatch problem solved by symbiotic organism search algorithm," Innovations in Power and Advanced Computing Technologies, 2017.
[13] Gagliano A., Nocera F., "Analysis of the performances of electric energy storage in residential applications," International Journal of Heat and Technology, vol. 35(1), pp. S41-S48, 2017.
[14] Caldera M., Ungaro P., Cammarata G., Puglisi G., "Survey-based analysis of the electrical energy demand in Italian households," Mathematical Modelling of Engineering Problems, vol. 5(3), pp. 217-224, 2018.
[15] M. Basu, "Quasi-oppositional differential evolution for optimal reactive power dispatch," Electrical Power and Energy Systems, vol. 78, pp. 29-40, 2016.
[16] X. S. Yang, "Bat algorithm for multi-objective optimization," International Journal of Bio-Inspired Computation, vol. 3(5), pp. 267-274, 2011.
[17] Y. W. Yamany, E. Emary and A. E. Hassanien, "Wolf search algorithm for attribute reduction in classification," Computational Intelligence and Data Mining (CIDM), 2014 IEEE Symposium, IEEE, pp. 351-358, 2014.
[18] IEEE, "The IEEE-test systems," 1993. http://www.ee.washington.edu/trsearch/pstca/
[19] Ali Nasser Hussain, Ali Abdulabbas Abdullah and Omar Muhammed Neda, "Modified particle swarm optimization for solution of reactive power dispatch," Research Journal of Applied Sciences, Engineering and Technology, vol. 15(8), pp. 316-327, 2018.