On the accuracy and stability of algorithms most commonly used in the evaluation of Chebyshev polynomials of the first kind

Alicja Smoktunowicz * Agata Smoktunowicz †
Ewa Pawelec ‡

December 23, 2013

Abstract

This paper provides error analyses of the algorithms most commonly used for the evaluation of the Chebyshev polynomial of the first kind $T_N(x)$. Some of these algorithms are shown to be backward stable. This means that the computed value of $T_N(x)$ in floating point arithmetic by these algorithms can be interpreted as a slightly perturbed value of polynomial T_N, for slightly perturbed value of x.

Keywords Chebyshev polynomials, roots of polynomials, error analysis

Mathematics Subject Classification (2000) 65G50, 65D20, 65L70

*Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, Warsaw, 00-662 Poland, e-mail: smok@mini.pw.edu.pl
†School of Mathematics, University of Edinburgh, Edinburgh, Scotland EH9 3JZ, UK, e-mail: A.Smoktunowicz@ed.ac.uk. The research of Agata Smoktunowicz was funded by ERC grant 320974.
‡Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, Warsaw, 00-662 Poland, e-mail: E.Pawelec@mini.pw.edu.pl
1 Introduction

Chebyshev polynomials of the first kind \((T_n(x))\) are widely used in many applications. They satisfy the three-term recurrence

\[
T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad n = 2, 3, \ldots ,
\]

(1)

where \(T_0(x) = 1, T_1(x) = x\).

There are several algorithms for evaluating \(T_N(x)\) (see [2], [3], [7], [9]). However, for numerical purposes some of them are poor (see [1], [6], [7]). For example, using the symbolic calculations in MATHEMATICA, MAPLE, DERIVE and others packages, it is possible to find the expanded form of \(T_N(x)\), that is, the exact coefficients \(a_n\) of \(T_N(x)\) such that \(T_N(x) = a_0 + a_1 x + \cdots + a_N x^N\). However computing the value \(T_N(x)\) at a given floating point \(x\) from this form can be disastrous. At first this may seem surprising, since the coefficients \(a_n\) are integers. Note that there are large \(a_n\) for large \(N\), for example the leading coefficient \(a_N = 2^{N-1}\).

Symbolic and numeric computations often demand different approaches (see [7]). In practice, a desirable property for an algorithm is numerical stability (see [11]). Our problem of computing the value \(T_N(x)\) at a given point \(x\) is a special case of the general problem of evaluating the polynomial \(p_N(x) = c_0 T_0(x) + c_1 T_1(x) + \cdots + c_N T_N(x)\). Clenshaw’s and Forsythe’s algorithms are recommended here. An error analysis of Clenshaw’s algorithm in the general case was first provided by D. Elliott in [5]. See also [1], [6], [9], [2], [3], where the authors gave the forward error bounds for the evaluation of \(p_N(x)\) in floating point arithmetic. However, it is of interest to know whether an algorithm is backward stable with respect to the data \(x\). Roughly speaking, the computed value \(\tilde{T}_N(x)\) by a backward stable algorithm can be interpreted as a slightly perturbed value of the polynomial \(T_N\) for a slightly perturbed value of \(x\). A more precise definition is now given.

Definition 1 An algorithm \(W\) of computing \(T_N(x)\) is backward stable with respect to the data \(x\) if the value \(\tilde{T}_N(x)\) computed by \(W\) in floating point
arithmetic satisfies

\[\tilde{T}_N(x) = (1 + \delta_N)T_N((1 + \Delta_N)x) + O(\epsilon_M^2), \quad |\delta_N|, |\Delta_N| \leq \epsilon_M L, \]

(2)

where \(L = L(N) \) is a modest constant and \(\epsilon_M \) is machine precision.

Throughout this paper we will ignore the terms of order \(O(\epsilon_M^2) \). It is easy to check that (2) is equivalent to

\[|\tilde{T}_N(x) - T_N(x)| \leq \epsilon_M L C_N(x) + O(\epsilon_M^2), \]

(3)

where

\[C_N(x) = |T_N(x)| + |xT'_N(x)|. \]

(4)

Note that

\[C_N(x) = |T_N(x)| + N|xU_{N-1}(x)|, \]

(5)

where \(U_{N-1}(x) \) denotes the Chebyshev polynomial of the second kind. These polynomials satisfy the recurrence relations

\[U_n(x) = 2xU_{n-1}(x) - U_{n-2}(x), \quad n = 2, 3, \ldots, \]

(6)

where \(U_0(x) = 1, \ U_1(x) = 2x. \)

We will consider the following algorithms for computing \(T_N(x) \) at a given point \(x \in [-1, 1] \).

- **Algorithm I (Three – term recursion)**

 \[\begin{align*}
 T_0 &= 1; & T_1 &= x; \\
 T_n &= 2xT_{n-1} - T_{n-2} & \text{for } n = 2, 3, \ldots, N. \\
 T_N(x) &= T_N.
 \end{align*} \]

- **Algorithm II (Fast)**

 Let \(N = 2^p \).

 This algorithm uses the identity \(T_{2n}(x) = T_2(T_n(x)) \) and computes \(R_n = T_{2^n}(x) \) as follows:

 \[\begin{align*}
 R_0 &= x; \\
 R_n &= 2R_{n-1}^2 - 1 & \text{for } n = 1, \ldots, p. \\
 T_N(x) &= R_p.
 \end{align*} \]
- **Algorithm III (Trigonometric)**
 \[T_N(x) = \cos(N \ast \arccos(x)). \]

- **Algorithm IV (Horner)**
 Use Horner’s scheme for the expanded form of \(T_N(x) \):
 \[T_N(x) = 2^{N-1}x^N + a_{N-1}x^{N-1} + \ldots + a_0. \]
 Note that the coefficients \(a_n \) are integers.

The rest of this paper is organized as follows. In Section 2 we recall some basic properties of the Chebyshev polynomials. In Section 3 we will use these properties in a derivation of the lower and upper bounds for \(C_n(x) \). In Section 4 we present the error analyses for Algorithms I and II above, proving that these algorithms are backward stable in the sense of \([9]\). In Section 5 we compare the accuracy of the algorithms using numerical experiments performed in MATLAB; our tests show that Algorithm III can be less accurate for \(x \) near \(\pm 1 \) and that Algorithm IV is not always backward stable.

2 Preliminaries

We will need some properties of the Chebyshev polynomials (see \([8]\) and \([10]\)). For \(-1 \leq x \leq 1\) we have \(T_n(x) = \cos(n \Theta) \), where \(\Theta = \arccos x \) and \(U_{n-1}(x) = \sin(n \Theta)/\sin \Theta \) for \(0 < x < 1 \).

The following identities hold

\[
U_{n-1}(x) = \frac{T'_n(x)}{n},
\]

\[
T_n(-x) = (-1)^n T_n(x), \quad U_n(-x) = (-1)^n U_n(x).
\]

The Chebyshev polynomials of the first kind satisfy the following differential equations

\[
(1 - x^2)T''_n(x) - xT'_n(x) + n^2T_n(x) = 0
\]

\[(7) \]
and
\[T_n^2(x) + \frac{1-x^2}{n^2} T_n^2(x) = 1. \] (8)

The last equality is a consequence of the trigonometric identity \(\cos^2 n\theta + \sin^2 n\theta = 1. \)

For \(-1 \leq x \leq 1\) and \(n = 0, 1, \ldots\) we have the upper bounds
\[|T_n(x)| \leq |T_n(1)| = 1, \quad |U_n(x)| \leq |U_n(1)| = n + 1 \] (9)

and for \(-1 < x < 1\)
\[|U_n(x)| \leq \frac{1}{\sqrt{1-x^2}} \] (10)

The roots \((t_i)\) of \(T_n(x)\) are distinct and belong to \((-1, 1)\):
\[t_i = \cos \left(\frac{2i-1}{2n} \pi \right), \quad i = 1, 2, \ldots, n. \] (11)

The roots \((u_i)\) of \(T'_n(x)\) (i.e. the roots of \(U_{n-1}(x)\)) are:
\[u_i = \cos \left(\frac{i\pi}{n} \right), \quad i = 1, 2, \ldots, n-1. \] (12)

Then \(-1 < t_n < u_{n-1} < \ldots < u_1 < t_1 < 1\) and
\[T_n(u_i) = (-1)^i \quad i = 1, 2, \ldots, n-1. \] (13)

For \(-1 \leq x \leq 1\) and \(m = 0, 1, \ldots\) we get
\[|T_{2m+1}(x)| \leq (2m+1)|x|, \quad |U_{2m+1}(x)| \leq 2(m+1)|x|. \] (14)

In evaluating the Chebyshev polynomials one can use the composition identity
\[T_{mn}(x) = T_m(T_n(x)), \quad m, n = 0, 1, \ldots. \] (15)

3 Lower and upper bounds for \(C_n(x)\)

Since \(C_n(-x) = C_n(x)\) for all \(x\), we restrict our considerations to the interval \([0, 1]\). From (8) it follows that \(C_n(x) \leq C_n(1) = n^2 + 1\) for \(0 \leq x \leq 1\). By (12) we have \(C_n(u_i) = 1\) for \(i = 1, \ldots, n-1\). If \(n\) is odd then \(C_n(0) = 0.\)
Theorem 1 Let \(n \) be a natural number. Assume that \(s_n \leq x \leq 1 \), where
\[
s_n = \frac{1}{\sqrt{n^2 + 1}}. \tag{16}
\]
Then we have
\[
C_n(x) = |T_n(x)| + |xT'_n(x)| \geq 1. \tag{17}
\]

Proof. Notice that the inequality \(x^2 \geq s_n^2 \) is equivalent to \(x^2 \geq \frac{1-x^2}{n^2} \). From this and (8) we get
\[
C_n^2(x) \geq T_n^2(x) + x^2T'_n^2(x) \geq T_n^2(x) + \frac{1-x^2}{n^2} T_n^2(x) = 1. \tag{18}
\]
The proof is now complete. \(\square \)

Theorem 2 Let \(n \) be a natural number. Assume that \(0 \leq x \leq s_n \), where \(s_n \) is defined by (16). Then

(i) \(C_n(x) \geq n|x| \) for all \(n \),

(ii) \(C_n(x) \geq 1 \) for even \(n \).

Proof. We consider case (i). Clearly, \(1 \geq n^2 x^2 \), by (16) and since \(0 \leq x \leq s_n \). Therefore,
\[
C_n^2(x) \geq 1T_n^2(x) + x^2T'_n^2(x) \geq n^2 x^2T_n^2(x) + x^2T'_n^2(x) \geq x^2n^2(T_n^2(x) + \frac{1}{n^2} T_n^2(x)).
\]
Since \(1 \geq 1 - x^2 \) we get
\[
C_n^2(x) \geq x^2n^2(T_n^2(x) + \frac{1-x^2}{n^2} T_n^2(x)) = x^2n^2,
\]
due to (8). Therefore, \(C_n(x) \geq n|x| \). This completes the proof of case (i).

Now we consider case (ii). Let \(n = 2m \). We first prove that \(T_{2m} \) has no roots in \((0, s_{2m})\). By (14), we need to show that
\[
t_m = \cos \left(\frac{(2m - 1)\pi}{4m} \right) > s_{2m}. \tag{18}
\]
Notice that
\[t_m = \cos\left(\frac{\pi}{2} - \frac{\pi}{4m}\right) = \sin\frac{\pi}{4m}. \]

Since \(0 < \tan \Theta > \Theta\) for all \(0 < \Theta < \frac{\pi}{2}\), we have \(\tan^2 \Theta > \frac{\Theta^2}{1 + \Theta^2}\). From this it follows that \(\sin^2 \Theta > \frac{\Theta^2}{1 + \Theta^2}\). Substituting \(\Theta = \pi/4m\) in the above inequality leads to
\[t_m^2 > \frac{\pi^2}{16m^2 + \pi^2} > \frac{1}{4m^2 + 1} = s_{2m}^2, \]
so \(t_m > s_{2m}\). This finishes the proof of (18).

We see that \(T_{2m}\) has no roots in \((0, s_{2m})\). Moreover, \(T_{2m}(0) = (-1)^m\) and \(T'_{2m}(0) = 0\). We conclude from (11)–(12) that 0 is the only root of \(T_{2m}'\) in the interval \((-s_{2m}, s_{2m})\). Notice that \(T_{2m}\) and \(T''_{2m}\) are even, i.e. \(T_{2m}(-x) = T_{2m}(x)\) and \(T''_{2m}(-x) = T''_{2m}(x)\) for all \(x\). \(T_{2m}'\) is odd, that is, \(T'_{2m}(-x) = -T'_{2m}(x)\). Thus we see that the polynomials \(T_{2m}\) and \(T_{2m}'\) do not change the signs in \((0, s_{2m})\).

More precisely, if \(m\) is even, then for all \(0 < x < s_{2m}\) we have \(T_{2m}(x) > 0\) and \(T'_{2m}(x) < 0\), hence \(C_{2m}(x) = T_{2m}(x) - xT'_{2m}(x)\). Similarly, if \(m\) is odd then \(T_{2m}(x) < 0\) and \(T'_{2m}(x) > 0\), so \(C_{2m}(x) = -T_{2m}(x) + xT'_{2m}(x)\). We see that \(C'_{2m}(x) = -T''_{2m}(x)\) if \(m\) is even and \(C'_{2m}(x) = T''_{2m}(x)\) otherwise.

By (7) for \(n = 2m\), we obtain the formula
\[(1 - x^2)T''_{2m}(x) = xT'_{2m}(x) - 2m^2T_{2m}(x). \]
We see that for all \(0 < x < s_{2m}\) we have \(T''_{2m}(x) < 0\) if \(m\) is even and \(T''_{2m}(x) > 0\) if \(m\) is odd. We conclude that \(C''_{2m}(x) > 0\) for any \(m\), so \(C_{2m}(x)\) is increasing in the interval \((0, s_{2m})\). This gives the lower bound \(C_{2m}(x) \geq C_{2m}(0) = 1\). The proof of our theorem is now complete.

4 Error analysis

As a direct consequence of Theorems 1–2 we obtained the following result.
Corollary 4.1 Let $N \geq 2$ and $s_N = \frac{1}{\sqrt{N+1}}$. Assume that an algorithm W evaluates $T_N(x)$ in floating point arithmetic with the small forward error
\[|\tilde{T}_N(x) - T_N(x)| \leq \epsilon_M L_1 + O(\epsilon_M^2), \]
where $L_1 = L_1(N)$ is a modest constant and ϵ_M is machine precision. Then
(i) if N is even then W is backward stable in $[-1,1]$, i.e. \((19) \) holds with the constant $L = L_1$,
(ii) if N is odd then W is backward stable for $s_N \leq |x| \leq 1$ with the constant $L = L_1$,
(iii) if N is odd and there is a small constant $L_2 = L_2(N)$ such that for $|x| \leq s_N$ we have
\[|\tilde{T}_N(x) - T_N(x)| \leq \epsilon_M L_2 |x| + O(\epsilon_M^2), \]
then W is backward stable for $|x| \leq s_N$ with the constant $L = L_2/N$.

4.1 Error analysis of Algorithm I

We analyze the rounding errors in Algorithm I.

Theorem 3 Let $N \geq 2$ and $s_N = \frac{1}{\sqrt{N+1}}$. Let \tilde{T}_n denote the quantities computed by Algorithm I in floating point arithmetic fl with machine precision ϵ_M. Let $\tilde{T}_N(x) = \tilde{T}_N$. Assume that x is exactly representable in fl ($fl(x) = x$) and $x \in [-1,1]$.

Then we have the bound
\[|\tilde{T}_N(x) - T_N(x)| \leq \epsilon_M \frac{3N(N-1)}{2} + O(\epsilon_M^2). \]
If $|x| \leq s_N$ then
\[|\tilde{T}_N(x) - T_N(x)| \leq \epsilon_M \frac{9(N-1)}{2} + O(\epsilon_M^2). \]
Moreover, if $|x| \leq s_N$ and N is odd then
\[|\tilde{T}_N(x) - T_N(x)| \leq \epsilon_M \frac{5(N-1)(N+7)}{8} |x| + O(\epsilon_M^2). \]
Proof. Note that $\tilde{T}_0 = 1$, $\tilde{T}_1 = x$ and for $n = 2, \ldots$ we have

$$\tilde{T}_n = (2x \tilde{T}_{n-1}(1 + \alpha_n) - \tilde{T}_{n-2})(1 + \beta_n), \quad |\alpha_n|, |\beta_n| \leq \epsilon_M.$$

We rewrite it as follows

$$\tilde{T}_n = 2x \tilde{T}_{n-1} - \tilde{T}_{n-2} + \xi_n, \quad \xi_n = 2x \tilde{T}_{n-1} \alpha_n + \frac{\beta_n}{1 + \beta_n} \tilde{T}_n. \quad (24)$$

Let $e_n = \tilde{T}_n - T_n(x)$. We observe that $e_0 = e_1 = 0$ and $e_n = 2xe_{n-1} - e_{n-2} + \xi_n$ for $n = 2, 3, \ldots, N$. From this it follows that

$$e_N = \tilde{T}_N - T_N(x) = \sum_{n=2}^{N} U_{N-n}(x) \xi_n.$$

Therefore,

$$|e_N| \leq \sum_{n=2}^{N} |U_{N-n}(x)||\xi_n|.$$

This together with (24) leads to

$$|\xi_n| \leq \epsilon_M (2|x||T_{n-1}(x)| + |T_n(x)|) + \mathcal{O}(\epsilon_M^2), \quad (25)$$

hence

$$|e_N| \leq \epsilon_M \sum_{n=2}^{N} (2|x||T_{n-1}(x)| + |T_n(x)|)|U_{N-n}(x)| + \mathcal{O}(\epsilon_M^2). \quad (26)$$

Since $|T_n(x)| \leq 1$ for $|x| \leq 1$ we obtain

$$|e_N| \leq \epsilon_M 3 \sum_{n=2}^{N} |U_{N-n}(x)| + \mathcal{O}(\epsilon_M^2). \quad (27)$$

This together with (9) leads to

$$|e_N| \leq \epsilon_M 3 \sum_{n=2}^{N} (N - n + 1) + \mathcal{O}(\epsilon_M^2) \leq \epsilon_M \frac{3N(N - 1)}{2} + \mathcal{O}(\epsilon_M^2).$$

The proof of (21) is complete.

Now consider the case $|x| \leq s_N$. By (10) we get $|U_k(x)| \leq \frac{1}{\sqrt{1-s_N}}$ for $k = 0, 1, \ldots$.

9
Therefore,
\[|U_k(x)| \leq \frac{3}{2} \text{ for } |x| \leq s_N, \quad k = 0, 1, \ldots \]
(28)

From this and (27) the bound (22) follows immediately.

Now assume that \(N \) is odd and \(|x| \leq s_N \). We rewrite (26) as follows
\[|e_N| \leq \epsilon_M (A_N(x) + B_N(x)) + \mathcal{O}(\epsilon_M^2), \]
(29)

where
\[A_N(x) = 2|x| \sum_{n=2}^{N} |T_{n-1}(x)||U_{N-n}(x)|, \]
(30)
\[B_N(x) = \sum_{n=2}^{N} |T_n(x)||U_{N-n}(x)|. \]
(31)

This together with (28) and the inequality \(|T_{n-1}(x)| \leq 1\) gives
\[A_N(x) \leq 3|x|(N - 1). \]
(32)

To estimate \(B_N(x) \) for \(N = 2m + 1 \) we split it as follows
\[B_N(x) = \sum_{k=1}^{m} |T_{2k}(x)||U_{N-2k}(x)| + \sum_{k=1}^{m} |T_{2k+1}(x)||U_{N-(2k+1)}(x)|. \]

Note that (14) implies the following upper bounds (for the polynomials of the odd degrees)
\[|U_{N-2k}(x)| \leq (N - 2k + 1) |x|, \quad |T_{2k+1}(x)| \leq (2k + 1) |x|. \]

By (28), we have \(|U_{N-(2k+1)}(x)| \leq \frac{3}{2} |x|\) for \(|x| \leq s_N\). We conclude that
\[B_N(x) \leq \left(\sum_{k=1}^{m} 1(N - 2k + 1) |x| + \frac{3}{2} \sum_{k=1}^{m} (2k + 1) |x| \right). \]

The last inequality together with (29) and (32) leads to
\[|e_N| \leq \epsilon_M (3(N - 1) + m(N - m) + \frac{3}{2} m(m + 2)) |x| + \mathcal{O}(\epsilon_M^2). \]

Since \(m = (N - 1)/2 \) we get immediately (23). \(\Box \)

By Corollary 4.1 we conclude that Algorithm I is backward stable in \([-1, 1]\) with the constant \(L \) of order \(N^2 \). Algorithm I is backward stable with the constant \(L \) of order \(N \) for \(|x| \leq s_N\).
4.2 Error analysis of Algorithm II

Theorem 4 Let \(N = 2^p \) and \(\tilde{R}_n \) denote the quantities computed by Algorithm II in floating point arithmetic \(\text{fl} \) with machine precision \(\epsilon_M \). Let \(\tilde{T}_N(x) = \tilde{R}_p \). Assume that \(\text{fl}(x) = x \) and \(x \in [-1,1] \).

Then
\[
|\tilde{T}_N(x) - T_N(x)| \leq \epsilon_M N^2 + \mathcal{O}(\epsilon_M^2) \tag{33}
\]
and \((3) \) holds with the constant \(L = N^2 \).

Proof. We see that \(\tilde{R}_0 = x \) and for \(n = 1,2,\ldots,p \) we have
\[
\tilde{R}_n = (2 \tilde{R}_{n-1}^2(1 + \alpha_n) - 1)(1 + \beta_n), \quad |\alpha_n|, |\beta_n| \leq \epsilon_M.
\]
From this it follows that
\[
\tilde{R}_n = 2 \tilde{R}_{n-1}^2 - 1 + \xi_n, \quad \xi_n = 2 \tilde{R}_{n-1}^2 \alpha_n + \frac{\beta_n}{1 + \beta_n} \tilde{R}_n. \tag{34}
\]
We can prove by induction on \(n \) that
\[
\tilde{R}_n - R_n = \sum_{k=1}^{n-1} 4^{n-k} T_{2^k}(x) T_{2^{k+1}}(x) \cdots T_{2^{n-1}}(x) \xi_k + \xi_n + \mathcal{O}(\epsilon_M^2).
\]
Since \(|T_k(x)| \leq 1 \) for \(x \in [-1,1] \) we obtain
\[
|\tilde{R}_n - R_n| \leq \sum_{k=1}^{n} 4^{n-k} |\xi_k| + \mathcal{O}(\epsilon_M^2).
\]
This together with \((34) \) gives \(|\xi_k| \leq 3\epsilon_M + \mathcal{O}(\epsilon_M^2) \), so
\[
|\tilde{R}_n - R_n| \leq \epsilon_M 3 \sum_{k=1}^{n} 4^{n-k} + \mathcal{O}(\epsilon_M^2).
\]
Finally, for \(n = p \) we get the following upper bound on \(\tilde{T}_N(x) = \tilde{R}_p \)
\[
|\tilde{T}_N(x) - T_N(x)| \leq \epsilon_M N^2 + \mathcal{O}(\epsilon_M^2). \tag{35}
\]

From Corollary 4.1 we conclude that \((3) \) holds with the constant \(L = N^2 \), so Algorithm II is backward stable.
5 Numerical tests

To illustrate our results we present numerical tests in MATLAB with machine precision $\epsilon_M = 2^{-52} \approx 2.2 \cdot 10^{-16}$. We compare the results computed by Algorithms I–IV with the exact values of the Chebyshev polynomial $T_N(x)$. They were obtained by implementing Algorithm I in high precision using the VPA (Variable Precision Arithmetic) function from MATLAB’s Symbolic Math Toolbox and then rounded to 16th decimal digits. We compute the relative error

$$e_N = \frac{\max_{x \in S} |T_N(x) - \tilde{T}_N(x)|}{\epsilon_M}. \quad (36)$$

Here S consists of pth equally spaced checkpoints t_1, t_2, \ldots, t_p from the interval $[a, b]$, where $-1 \leq a < b \leq 1$, i.e. $t_i = a + (i - 1)h$, $i = 1, 2, \ldots, p$ and $h = (b - a)/(p - 1)$.

Table 1: The error (36) for Algorithms I–IV in $[-1, 1]$ and $h = 1/100$.

N	Algorithm I	Algorithm II	Algorithm III	Algorithm IV
8	5.25	6.68	13.12	95.68
16	11.00	12.00	22.37	3.48e+04
32	21.78	43.00	55.12	3.13e+10
64	35.00	98.75	88.50	4.83e+22
128	66.00	257.00	193.50	2.88e+47
256	165.00	888.75	410.25	1.09e+96
512	280.75	1770.0	841.87	1.61e+194
1024	679.62	3570.0	1783.20	NaN

We see that Algorithm IV is poor as a method of evaluating the Chebyshev polynomial $T_N(x)$, even for $N \geq 16$. The best results are produced by Algorithm I. These tests indicate that Algorithm II is less accurate than Algorithm I.

Table 2: The error (36) for Algorithms I and III in $[-0.8, -0.6]$ and $h = 1/1000$.
Table 3: The error for Algorithms I and III in \([-1, -0.8]\) and \(h = 1/1000\).

\(N\)	Algorithm I	Algorithm III
100	35.500	176.125
300	104.125	607.750
500	164.50	1008.0
800	262.25	1355.0
900	289.50	2159.0
1000	340.34	2137.0

These tests show that Algorithm III can be much less accurate than Algorithm I for \(x\) near \(-1\). Numerical properties of Algorithm III strongly depend upon the accuracy of computing the trigonometric functions \(\cos\) and \(\arccos\). For a deeper discussion of the accuracy of the evaluation of trigonometric series we refer the reader to [6].

References

[1] N. S. Bakhvalov, The stable calculation of polynomial values, J. Comp. Math. and Math. Phys. 11 (1971) 1568–1574.

[2] R. Barrio, Rounding error bounds for the Clenshaw and Forsythe algorithms for the evaluation of orthogonal series, J.Comput.Appl.Math. 138 (2002) 185–204.
[3] R. Barrio, A unified rounding error bound for polynomial evaluation, Adv. Comput. Math. 19(4) (2003) 385–399.

[4] P. Deuflhard, On algorithm for the summation of certain special functions, Computing 17 (1976) 37–48.

[5] D. Elliott, Error analysis of an algorithm for summing certain finite series, J. Austral. Math. Soc. 8 (1968) 213–221.

[6] W. M. Gentleman, An error analysis of Goertzel’s (Watt’s) method for computing Fourier coefficients, Comput. J. 12 (1969) 160–165.

[7] W. Koepf, Efficient computation of Chebyshev polynomials, Computer Algebra Systems: A Practical Guide (Ed. M. J. Wester), New York: Wiley, 79–99 (1999).

[8] S. Paszkowski, Numerical applications of Chebyshev polynomials, Warsaw 1975 (in Polish).

[9] A. Smoktunowicz, Backward stability of Clenshaw’s algorithm, BIT 42 (3) (2002) 600–610.

[10] G. Szegö, Orthogonal polynomials, rev. ed. New York, 1959.

[11] J. H. Wilkinson, The algebraic eigenvalue problems, Oxford University Press, 1965.