The value of abdominal ultrasonography compared to colonoscopy and faecal calprotectin in following up paediatric patients with ulcerative colitis

Ioana Fodor1, Oana Serban2, Daniela E Serban3, Dorin Farcau1, Otilia Fufezan4, Carmen Asavoaeic, Sorin Claudiu Man1, Dan Lucian Dumitrescu2

13rd Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 22nd Internal Medicine Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3rd Pediatric Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4Radiology Department, Clinical Emergency Hospital for Children, Cluj-Napoca, Romania

Abstract

Aim: To evaluate the value of abdominal ultrasonography (US) in the follow-up of paediatric patients with ulcerative colitis (UC) compared to faecal calprotectin (FC) and colonoscopy. Material and method: In this retrospective study we enrolled 30 paediatric patients previously diagnosed with UC, examined by abdominal US and colonoscopy within the same week. FC was also determined during the same week. Disease activity was established using the paediatric ulcerative colitis activity index (PUCAI). The global endoscopic activity was evaluated using the Mayo endoscopic subscore. Results: Endoscopy revealed pathological findings of active disease in 27 out of 30 patients; 3 patients were in endoscopic remission. Only 18 of them had clinical active disease (PUCAI >10), [sensitivity (Se) 66.7% and specificity (Sp) 33% of PUCAI in detecting endoscopic active disease). Twenty-three (76.7%) patients had FC >250 mcg/g, but in 2 of these cases the colonoscopy was normal (Se 77.8% and Sp 33.3% in detecting active disease). At US examination, pathological findings (increased bowel wall thickness, hypervascularity, lymphadenopathies, and/or mesenteric inflammatory fat) were found in 27 patients (90%), all with endoscopic active disease (agreement US - colonoscopy, at patient level, k=1.0, p<0.001, Se 100% and Sp 100%). At segment level (totally 180 bowel segments examined by US), the overall agreement between US and colonoscopy was k=0.767, p<0.001, Se 86.5%, Sp 90.1%. Of the 27 patients with US pathological findings in any of colonic segments, 23 had FC >250 mcg/g (85.1%). The inter-observer agreement for the US measurements had an overall ICC of 0.926 with p<0.001. Conclusion: Abdominal US findings demonstrate a good to excellent concordance with endoscopic examination and are correlated with elevated FC levels. Therefore, US appears as an accurate technique in assessing activity in patients with UC and might replace colonoscopic evaluation for the follow-up.

Keywords: ultrasonography; colonoscopy; faecal calprotectin; IBD; ulcerative colitis

Introduction

Paediatric inflammatory bowel disease (IBD), with the two main entities, Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic, relapsing inflammatory condition of the gastrointestinal tract, with a worldwide increasing prevalence [1-3] and a major long-term implication in the patient’s growth, pubertal development and the quality of life [4].

Children with UC commonly present with abdominal pain, diarrhoea and rectal bleeding [5,6], but extraintestinal manifestations (6 to 17% of the patients [7,8]) including arthritis, uveitis or liver and colorectal carcinoma [9,10] can also be detected.

The European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) revised Porto criteria [11] for UC diagnosis include typical clinical manifestations and the confirmation of chronic active inflammation by colonoscopy (classically, starting from
The disease activity is currently assessed using the paediatric ulcerative colitis activity index (PUCAI), colonoscopy with multiple biopsies and faecal calprotectin (FC). Colonoscopy with biopsies is the gold standard for IBD diagnosis [15]. The recent ESPGHAN and European Crohn’s and Colitis Organisation (ECCO) guidelines recommend colonoscopic evaluation not only for the diagnosis but also for follow-up and assessment of therapeutic response (when major changes in treatment are necessary, cancer surveillance, when FC is elevated, but the symptoms are not clearly disease-related, and in patients with sustained clinical remission with high level of FC) [9]. The main limitations of endoscopy are the need of general anaesthesia and the possible complications, such as gastrointestinal bleeding and perforation [16,17]. Colonoscopy is not easily accepted by children and their caregivers, especially the repeated procedures, performed just to confirm the mucosal healing. FC represents a non-invasive marker of inflammation [18]. No ideal cut-off value of FC has been yet established [19,20] but according to ESPGHAN revised Porto criteria in children and adolescents [11], a value above 250 µg/g reflects more accurately the mucosal inflammation, with sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV) of 71%, 100%, 100% and 47.1%, respectively [21].

Among the imaging techniques, Magnetic Resonance Enterography (MRE) has high accuracy in identifying the bowel wall modifications and the disease complications [11,22]. However, high-quality images in children are more difficult to be obtained when compared to adults [23], due to the movement artefacts, poor acceptance of the oral contrast and the need of general anaesthesia [24]. The low accessibility, long examination time, need for specific radiological competence and high cost are other limits of this method [25,26]. Abdominal ultrasound (US) is a non-invasive, low cost, accessible, reproducible and easily accepted by children imaging technique, used more and more frequently in the recent years in assessing bowel inflammation [27,28]. It is largely used in clinical practice for abdominal complaints or check-up examinations. US was found to have 79.7% sensitivity and 96.7% specificity [29] in assessing the extension and activity of IBD [30], with a good concordance with the MRE findings [23,31]. In a recent systematic review in pediatric IBD, van Wassenae et al [30] concluded that the increased bowel wall thickness (BWT), bowel wall vascularity, presence of enlarged lymph nodes, alteration of wall stratification, creeping fat, abscesses or other complications and the absence of colonic haustration were the major US criteria for IBD. The majority of the included studies regarded both UC and CD patients (with a smaller number of UC), or only CD patients. Therefore, data about the usefulness of US in paediatric UC are limited [32]. Moreover, monitoring IBD patients using US is not yet part of the routine standardized clinical practice, despite the good results of published studies, in both children and adults [33-37].

Material and methods

This was a retrospective study, approved by the local Ethics Committee. Written informed consent was signed by the patient’s legal tutors before investigations, according to the hospital protocol. **Study Population**

From the hospital database, we selected the paediatric patients previously diagnosed with UC, according to the revised Porto criteria [11]. Patients were examined during admission by abdominal US and colonoscopy, within the same week, between January 2018 and January 2020. We excluded from the study the patients that did not provide a faecal sample. Patients without a legal tutor on admission were also excluded. Disease location and phenotype were determined using the Paris Classification of IBD [38] and data about the medications were collected. **Fecal calprotectin**

All patients provided a faecal sample, stored at 4°C until processed [19], for the FC determination using ELISA. **Abdominal US**

The protocol of the hospital regarding the abdominal US in IBD patients includes a standard preparation, patients being advised to fast for at least 8 hours. All the US examinations were performed by one of the two paediatric radiologists with more than 10 years of experience in bowel US, using Xario™ 200 (Canon Medical Systems Corporation, Otawara, Japan) or Aplio 500 machine (Canon Medical Systems Corporation, Otawara, Japan) with linear (7-14 MHz) and convex (4-6 MHz) transducers, without oral contrast medium administration. The investigation protocol included systematic evaluation
of the abdomen starting with the intra-abdominal solid organs using a low frequency convex probe, with the patient lying supine [27]. For a better examination of the large bowel, the high frequency linear probe [39] with graded compression [40] was used, starting at the caecum in the right iliac fossa, after the localization of the terminal ileum and progressing distally for the evaluation of ascending, transverse, descending and sigmoid colon [27]. Representative images from each bowel segment, normal or pathological (fig 1 and 2), were stored in each case in the Picture Archiving Communication System (PACS), as the standard protocol of our hospital requires.

The images stored in PACS were analysed individually by the two radiologists, blinded to the result of the colonoscopy, value of FC and PUCAI. In all bowel segments the following parameters were evaluated: BWT (normal value <3 mm for all segments), bowel vascularity (using power Doppler), presence of lymphadenopathies and mesenteric inflammatory fat, following the published protocols [27,41]. In case of disagreement between the examiners, the images were reviewed and conclusion was reached by consensus. The disease activity for each bowel segment on US was classified as present/absent based on the radiologist’s comprehensive examination.

Colonoscopy

All endoscopic evaluations were performed using paediatrics OLYMPUS CV-190 (Hamburg, Germany) endoscopes. All patients underwent bowel preparation with osmotic laxative, the afternoon before the colonoscopy [42]. On the day of examination, only clear liquids were permitted. The colonoscopy procedure and the assessment of inflammation, disease localization (rectum, sigmoid colon, descending colon, transverse, ascending colon, caecum and terminal ileum), severity and complications were documented using a standardized worksheet by a paediatric gastroenterologist with more than 10 years of experience. The global endoscopic activity was evaluated using the Mayo endoscopic subscore [43] (0 – normal/inactive, 1 – mild, 2 – moderate and 3 – severe disease) and the result was recorded immediately after the procedure.

![Fig 1. Normal aspect of the bowel segments: a) longitudinal scan of the terminal ileum; b) transverse scan of the ascending colon; c) longitudinal scan of the transverse colon; d) longitudinal scan of the descending colon; e) transverse aspect of the sigmoid; f) longitudinal scan of the rectum (measurements in all cases between callipers).](image)

![Fig 2. Pathological aspect of the colon: a) transverse scan of the ascending colon, color Doppler ultrasound – the walls are thickened and hypervascularized; b) transverse scan of the proximal descending colon with increase bowel wall thickness; c) longitudinal scan of the distal descending colon with increase bowel wall thickness; d) mesenteric inflammatory lymphadenopathies. Of note the increased thickness and echogenicity of the submucosal layer.](image)
Statistical analysis

The Shapiro-Wilk test was used to assess the distribution of continuous variable. Descriptive analysis was performed and the results were presented as number (percent) for categorical variables and median (interquartile range) for continuous variables – all being non-normally distributed. The differences of medians between more than two independent samples were assessed using the Independent Samples – Kruskal-Wallis test. The agreement between the diagnosis methods of disease activity was measured by calculating the Cohen’s kappa coefficients (k). Cohen’s k values were interpreted as follows: < 0 no agreement, 0–0.20 poor, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 good, and 0.81–1 very good agreement. The sensitivity (Se) and specificity (Sp) for each method were also calculated, considering endoscopy as gold standard for disease activity. The intraclass correlation coefficient (ICC) was calculated to assess the overall inter-observer agreement for the US measurements. The ICC value was interpreted as poor when less than 0.50, moderate between 0.50 and 0.75, good between 0.75 and 0.90, and excellent when greater than 0.90. A p-value less than 0.05 was considered statistically significant. IMB SPSS Statistics v.23 and Microsoft Office 365 Excel were used to perform the statistical analysis.

Results

A total number of 30 children previously diagnosed with UC were selected from the hospital database. Patients' baseline characteristics are shown in Table I.

Of the 30 patients included in study, 27 (90%) had active lesions at colonoscopy, but only 18 of the 27 had clinical active disease with PUCAI >10, (Se 66.7%, Sp 33% of PUCAI in detecting active disease). FC >250 mcg/g was found in 23 (76.7%) patients, but in 2 of these cases the colonoscopy was normal (Se 77.8%, Sp 33.3% of FC in identifying the active disease).

At US, pathological findings were found in 27 patients, all with endoscopic active disease (excellent agreement between US and colonoscopy, at patient level, k=1.0, p<0.001, Se=100%, Sp=100%). When the results were analysed on a segment level (totally 180 bowel segments evaluated by US), the overall agreement between US and colonoscopy was good (k=0.767, p<0.001, Se 86.5%, Sp 90.1%) (detailed in Table II). Of the 27 patients with US pathological findings in any of colonic segments, 23 had FC >250 mcg/g (85.1%).

The overall inter-observer agreement for the US measurements was excellent (ICC=0.926, p<0.001).

Analysing the discordances between US and colonoscopy, we found that US detected normal findings, as follows: in one rectum, 4 sigmoid colon, 4 descending colon, 2 transverse colon and one ascending colon segments US detected increased BWT despite the normal colonoscopic aspect.

The differences between the medians of the BWT of each bowel segment according to the Mayo endoscopic subscore are listed in Table III. Lymphadenopathies, bowel hypervascularisation and mesenteric inflammatory fat were detected in all patients with Mayo endoscopic subscore 3, whereas only 7 patients (46.6%) with Mayo subscore 2 presented hypervascularity and adenopathies, with no mesenteric inflammatory fat at US.

The differences between the medians of the BWT of each bowel segment according to the Mayo endoscopic subscore are listed in Table III. Lymphadenopathies, bowel hypervascularisation and mesenteric inflammatory fat were detected in all patients with Mayo endoscopic subscore 3, whereas only 7 patients (46.6%) with Mayo subscore 2 presented hypervascularity and adenopathies, with no mesenteric inflammatory fat at US.

Discussion

In this retrospective study, we assessed the value of US in evaluating UC paediatric patients during follow-up, compared to FC and colonoscopy. We found that US was able to identify all patients with endoscopic active
disease, at patient level, but there were some differences between the identification of the affected bowel segments by the two aforementioned methods. The discordances between US and colonoscopy may occur, as described in the study of Christensen et al [44], taking into account that the mucosal healing is not in all cases uniform, proximal to distal, but also in a patchy manner. Moreover, US has the potential to examine all the layers of the bowel wall and the extraintestinal features, whereas colonoscopy is limited to the visualisation of the intestinal mucosa.

The US is recognised as first line imaging technique in assessing patients with IBD [45,46]. Generally, B-mode US and Doppler techniques are used and, in the last years, elastography; the oral contrast is useful only for small bowel investigation and intravenous contrast has not been approved for paediatric population. The performance of US in IBD paediatric patients was evaluated in many studies, by comparing this method to colonoscopy, histology or MRE. Barber et al [23] found in CD paediatric patients a good concordance between US and MRE findings, regarding the disease activity and localisation. These authors demonstrated also high specificity (the highest for sigmoid colon) of both imaging techniques in identifying the active disease and the histology confirmed disease at bowel segment level. A significant learning curve was demonstrated for MRE, with improvement of the results after 10 examinations, but not for US. This suggests that, for experienced radiologists, both methods can be used for follow-up. The same good agreement between US and MRE was obtained by Dillman et al [47] in children with CD. In this retrospective study, the interobserver agreement was best for the maximum BWT (95% CI 0.67 [0.64–0.70]) and relatively weak for the length of involved segment (95% CI 0.41 [0.35–0.40]). In our UC patients, we found an excellent agreement between radiologists, concerning the measurement of the BWT. The discrepancy with the aforementioned study could be related mainly to the underlying disease. While in CD the bowel is inflamed in a discontinuous and inhomogeneous manner (requiring the choice of the same segment for measurement in order to have a good interobserver agreement), in UC the disease is continuous and involves the entire circumference of the colon.

IBD cases may present different evolutive trends [48]; therefore, these patients must be monitored for long periods. The disease can progress to more extensive forms, more frequently in paediatric patients compared to adults (29.2% vs 20.2%) [48]. In our study, 5 children were diagnosed with pancolitis at onset and, during the follow-up, 3 other patients were found to have pancolitis at colonoscopy. US correctly identified all these three cases. Due to the good agreement between US and colonoscopy findings on patient and on segment level, we concluded that US can be used not only for assessing the favourable evolution of the disease but also to identify flares and to establish the new extension of UC. This is of utmost importance, as in these cases the colonoscopy could be replaced by US, much easier accepted by children and/or parents.

Table II. Ultrasound and colonoscopy agreement for each bowel segment

Segment	Ultrasound	Colonoscopy	k	P	Se (%)	Sp (%)
Rectum	25 (83.3)	26 (86.7)	0.870	<0.001	96.2	100
Sigmoid colon	22 (73.3)	26 (86.7)	0.595	<0.001	84.6	100
Descending colon	15 (50.0)	17 (56.7)	0.600	0.001	76.5	84.6
Transverse colon	10 (33.3)	10 (33.3)	0.700	<0.001	80.0	90.0
Ascending colon	9 (30.0)	8 (26.7)	0.754	<0.001	87.5	90.9

Results are expressed as number (%); Se: sensibility; Sp: specificity; k: < 0 no agreement, 0–0.20 poor, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 good, and 0.81–1 very good agreement; p< 0.05: statistically significant.

Table III. Mayo endoscopic subscore and median of the bowel wall thickness for each bowel segment

Mayo Score	0	1	2	3	
Bowel segment					
Rectum	2.3 (2.3-2.45)	3.45 (3.0-4.0)	4.0 (3.1-4.75)	3.65 (3.3-4.0)	0.043
Sigmoid colon	2.2 (2.2-2.35)	3.3 (2.5-3.8)	4.0 (3.3-4.75)	3.95 (3.4-4.5)	0.031
Descending colon	2.2 (2.1-2.2)	2.65 (2.5-3.8)	3.3 (2.5-4.25)	3.6 (3.5-3.7)	0.067
Transverse colon	2.4 (2.4-2.55)	2.6 (2.4-3.1)	2.5 (2.35-3.15)	3.15 (2.1-4.2)	0.978
Ascending colon	2.6 (2.3-2.7)	2.45 (2.3-3.5)	2.3 (2.2-2.9)	2.85 (2.2-3.5)	0.693

Results are expressed as median (range); BWT: bowel wall thickness; US: ultrasound; p< 0.05: statistically significant.
Mucosal healing or endoscopic remission is the ideal target for nowadays disease management strategy [49]. Clinical remission is considered when PUCAI <10 [50], but approximately 20% of children in Turner et al [9] and over 50% of children in Sarbagili-Shabat et al studies [51] had endoscopic inflammation despite clinical inactive disease. This category of patients, being asymptomatic and probably with normal FC, cannot undergo colonoscopy examination at every follow-up visit. In these cases, US can bring important information about the condition of the colonic wall.

Kellar et al [52] developed a US activity score - the simple paediatric ultrasound score (SPAUSS) - in order to determine the most reliable parameter (mesenteric inflammatory fat, mesenteric lymph nodes, hyperemia/ Doppler color flow and BWT) to predict bowel inflammation. Out of these 4 parameters, BWT and mesenteric inflammatory fat had significant prediction value for the severity of the disease. In our study, all the children with Mayo subscore of 3 presented mesenteric inflammatory fat and BWT >3 mm in all analysed segments.

No definition/recommendation about US findings regarding the remission in UC was published. However, as US can detect almost all the bowel segments, assess the inflammation, measure the BWT and has good correlation with colonoscopy findings, PUCAI and FC, the technique has to be considered for future analysis of IBD in children. US should be regarded as a valuable imaging technique for UC evaluation.

The main limitations of our study are the retrospective design, heterogeneity and the low number of patients. In addition, we did not compare the US findings, especially the power Doppler signal with the histology results. The lack of comparison of the US aspect with other imaging techniques, especially, MRE, is another limit of our study. It would have been of interest to compare US data at diagnosis and at the inclusion in the study, but due to lack of information regarding the US data at the diagnosis in some patients, we could not realize this analysis. Due to the retrospective design of our study, we did not analyse whether the US findings should prompt the clinician to reconsider the treatment options.

Conclusion

In conclusion, due to the good to excellent agreement between abdominal US and colonoscopy findings on patient and bowel segment levels, US should be considered as a useful imaging technique to assess and follow-up UC patients. The good correlation between elevated FC level and pathological US findings confirms the value of US in detecting bowel inflammatory process. US might replace the colonoscopy evaluation on follow-up, especially when PUCAI and FC suggest active disease.

Conflict of interest: none

References

1. Windsor JW, Kaplan GG. Evolving Epidemiology of IBD. Curr Gastroenterol Rep 2019;21:40.
2. Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 2018;390:2769-2778.
3. Sýkora J, Pomahačová R, Kreslová M, Cvalínová D, Štych P, Schwarz J. Current global trends in the incidence of pediatric-onset inflammatory bowel disease. World J Gastroenterol 2018;24:2741-2763.
4. Cabrera JM, Sato TT. Medical and surgical management of pediatric ulcerative colitis. Clin Colon Rectal Surg 2018;31:71-79.
5. Yu YR, Rodriguez JR. Clinical presentation of Crohn’s, ulcerative colitis, and indeterminate colitis: Symptoms, extraintestinal manifestations, and disease phenotypes. Semin Pediatr Surg 2017;26:349-355.
6. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition; Colitis Foundation of America, Bousvaros A, et al. Differentiating ulcerative colitis from Crohn disease in children and young adults: report of a working group of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the Crohn’s and Colitis Foundation of America. J Pediatr Gastroenterol Nutr 2007;44:653-674.
7. Aloi M, Cucchiara S. Extraintestinal manifestations of IBD in pediatrics. Eur Rev Med Pharmacol Sci 2009;13 Suppl 1:23-32.
8. Dotson JL, Hyams JS, Markowitz J, et al. Extraintestinal manifestations of pediatric inflammatory bowel disease and their relation to disease type and severity. J Pediatr Gastroenterol Nutr 2010;51:140-145.
9. Turner D, Ruemmele FM, Orlando-Meyer E, et al. Management of pediatric ulcerative colitis, part 1: ambulatory care—an evidence-based guideline from European Crohn’s and Colitis Organization and European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2018;67:257-291.
10. Greuter T, Bertoldo F, Rechner R, et al. Extraintestinal manifestations of pediatric inflammatory bowel disease: prevalence, presentation, and anti-TNF Treatment. J Pediatr Gastroenterol Nutr 2017;65:200-206.
11. Levine A, Koletzko S, Turner D, et al. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr 2014;58:795-806.
12. Spiceland CM, Lodhia N. Endoscopy in inflammatory bowel disease: Role in diagnosis, management, and treatment. World J Gastroenterol 2018;24:4014-4020.
13. Van Limbergen J, Russell RK, Drummond HE, et al. Definition of phenotypic characteristics of childhood-.
onset inflammatory bowel disease. Gastroenterology 2008;135:1114-1122.
14. DeRoche TC, Xiao SY, Liu X. Histological evaluation in ulcerative colitis. Gastroenterol Rep (Oxf) 2014;2:178-192.
15. Oliva S, Thomson M, de Ridder L, et al. Endoscopy in pediatric inflammatory bowel disease: a position paper on behalf of the Porto IBD Group of the European Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2018;67:414-430.
16. Thakkar K, El-Serag HB, Mattek N, Gilger M. Complications of pediatric colonoscopy: a five-year multicenter experience. Clin Gastroenterol Hepatol 2008;6:515–520.
17. Navaneethan U, Kochhar G, Phull H, et al. Severe disease on endoscopy and steroid use increase the risk for bowel perforation during colonoscopy in inflammatory bowel disease patients. J Crohns Colitis 2012;6:470-475.
18. Pathirana WGW, Chubb SP, Gillett MJ, Vasikaran SD. Faecal calprotectin. Clin Biochem Rev 2018;39:77-90.
19. Mumolo MG, Bertani L, Ceccarelli L, et al. From bench to bedside: Fecal calprotectin in inflammatory bowel diseases clinical setting. World J Gastroenterol 2018;24:3681-3694.
20. D’Amico F, Bonovas S, Danese S, Peyrin-Biroulet L. Review article: faecal calprotectin and histologic remission in ulcerative colitis. Aliment Pharmacol Ther 2020;51:689-698.
21. D’Haens G, Ferrante M, Vermeire S, et al. Fecal calprotectin is a surrogate marker for endoscopic lesions in inflammatory bowel disease. Inflamm Bowel Dis 2012;18:2218-2224.
22. Yoon HM, Suh CH, Kim JR, et al. Diagnostic performance of magnetic resonance enterography for detection of active inflammation in children and adolescents with inflammatory bowel disease: a systematic review and diagnostic meta-analysis. JAMA Pediatr 2017;171:1208-1216.
23. Barber JL, Maclachlan J, Planche K, et al. There is good agreement between MR enterography and bowel ultrasound with regards to disease location and activity in paediatric inflammatory bowel disease. Clin Radiol 2017;72:590-597.
24. Mollard BJ, Smith EA, Lai ME, Phan T, Christensen RE, Dillman JR. MR enterography under the age of 10 years: a single institutional experience. Pediatr Radiol 2016;46:43-49.
25. Manetta R, Capretti I, Belleggia N, et al. Magnetic resonance enterography (MRE) and ultrasonography (US) in the study of the small bowel in Crohn’s disease: state of the art and review of the literature. Acta Biomed 2019;90:38-50.
26. Spinelli A, Allocca M, Jovani M, Danese S. Review article: optimal preparation for surgery in Crohn’s disease. Aliment Pharmacol Ther 2014;40:1009-1022.
27. Elliott CL, Maclachlan J, Beal J. Paediatric bowel ultrasound in inflammatory bowel disease. Eur J Radiol 2018;108:21-27.
28. Kucharzik T, Kannengiesser K, Petersen F. The use of ultrasound in inflammatory bowel disease. Ann Gastroenterol 2017;30:135-144.
29. Calabrese E, Maaser C, Zorzi F, et al. Bowel ultrasonography in the management of Crohn’s Disease. A Review with Recommendations of an International Panel of Experts. Inflamm Bowel Dis 2016;22:1168-1183.
30. van Wassenberga EA, de Voogd FAE, van Rijn RR, et al. Diagnostic accuracy of transabdominal ultrasound in detecting intestinal inflammation in paediatric IBD patients—a systematic review. J Crohns Colitis 2019;13:1501-1509.
31. Barber JL, Zambrano-Perez A, Olsen ØE, et al. Detecting inflammation in inflammatory bowel disease - how does ultrasound compare to magnetic resonance enterography using standardised scoring systems? Pediatr Radiol 2018;48:843-851.
32. Civitelli F, Di Nardo G, Oliva S, et al. Ultrasonography of the colon in pediatric ulcerative colitis: a prospective, blind, comparative study with colonoscopy. J Pediatr 2014;165:78-84.
33. Maaser C, Petersen F, Helwig U, et al. Intestinal ultrasound for monitoring therapeutic response in patients with ulcerative colitis: results from the TRUST&UC study. Gut 2020;69:1629-1636.
34. Bryant RV, Friedman AB, Wright EK, et al. Gastrointestinal ultrasound in inflammatory bowel disease: an underused resource with potential paradigm-changing application. Gut 2018;67:973-985.
35. Rajagopalan A, Sathananthan D, An YK, et al. Gastrointestinal ultrasound in inflammatory bowel disease care: Patient perceptions and impact on disease-related knowledge. JGH Open 2019;4:267-272.
36. Kucharzik T, Wilkens R, Maconi G, et al. DOP10 Intestinal ultrasound response and transmural healing after 48 weeks of treatment with Ustekinumab in Crohn’s disease: START-DUST trial substudy. UEGW virtual 2020 LB12.
37. Kucharzik T, Helwig U, Seibold F, et al. Improvement of intestinal ultrasound parameters within 12 weeks after treatment induction in CD and UC patients - first interim analysis of the trust beyond study. UEGW virtual 2020 P430.
38. Levine A, Griffiths A, Markowitz J, et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm Bowel Dis 2011;17:1314-1321.
39. Cogley JR, O’Connor SC, Houshyar R, Al Dulaimy K. Emergent pediatric US: what every radiologist should know. Radiographics 2012;32:651-665.
40. Puylaert JB. Mesenteric adenitis and acute terminal ileitis: US evaluation using graded compression. Radiology 1986;161:691-695.
41. Spalinger J, Patrquin H, Miron MC, et al. Doppler US in patients with crohn disease: vessel density in the diseased bowel reflects disease activity. Radiology 2000;217:787-791.
42. Adamiak T, Altaf M, Jensen MK, et al. One-day bowel preparation with polyethylene glycol 3350: an effective regimen for colonoscopy in children. Gastrointest Endosc 2010;71:573-577.
43. Schroeder KW, Tremaine WJ, Ilstrup DM. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N Engl J Med 1987;317:1625-1629.
44. Christensen B, Hanauer SB, Gibson PR, Turner JR, Hart J, Rubin DT. Segmental histologic normalisation occurs in ulcerative colitis but does not improve clinical outcomes. J Crohns Colitis 2020;14:1345-1353.

45. Chiorean L, Schreiber-Dietrich D, Braden B, et al. Ultrasonographic imaging of inflammatory bowel disease in pediatric patients. World J Gastroenterol 2015;21:5231-5241.

46. Arndt H, Hauenstein C, Weber MA, Däbritz J, Bierwirth C. Imaging of chronic inflammatory bowel diseases in childhood and adolescence: Repetitorium. Radiologe 2020;60:1085-1096.

47. Dillman JR, Smith EA, Sanchez R, et al. Prospective cohort study of ultrasound-ultrasound and ultrasound-MR enterography agreement in the evaluation of pediatric small bowel Crohn disease. Pediatr Radiol 2016;46:490-497.

48. Roda G, Narula N, Pinotti R, et al. Systematic review with meta-analysis: proximal disease extension in limited ulcerative colitis. Aliment Pharmacol Ther 2017;45:1481-1492.

49. Kim S, Park S, Kang Y, Koh H. Combining faecal calprotectin and sigmoidoscopy can predict mucosal healing in paediatric ulcerative colitis. Eur J Gastroenterol Hepatol 2020;32:17-21.

50. Turner D, Otley AR, Mack D, et al. Development, validation, and evaluation of a pediatric ulcerative colitis activity index: a prospective multicenter study. Gastroenterology 2007;133:423-432.

51. Sarbagili-Shabat C, Weiner D, Wardi J, Abram L, Yaakov M, Levine A. Moderate to severe endoscopic inflammation is frequent after clinical remission in pediatric ulcerative colitis. J Pediatr Gastroenterol Nutr 2020. doi:10.1097/MPG.0000000000003018.

52. Kellar A, Wilson S, Kaplan G, DeBruyn J, Tanyingoh D, Novak KL. The Simple Pediatric Activity Ultrasound Score (SPAUSS) for the accurate detection of pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr 2019;69:e1-e6.