What do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis of the secondary attack rate and associated risk factors

Wee Chian Koh, Lin Naing, Liling Chaw, Muhammad Ali Rosledzana, Mohammad Fathi Alikhan, Sirajul Adli Jamaludin, Faezah Amin, Asiah Omar, Alia Shazli, Matthew Griffith, Roberta Pastore, Justin Wong*

1 Centre for Strategic and Policy Studies, Brunei Darussalam, Bandar Seri Begawan, Brunei, 2 PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei, 3 Disease Control Division, Ministry of Health, Brunei Darussalam, Bandar Seri Begawan, Brunei, 4 Western Pacific Regional Office (Manila), World Health Organization, Manila, Philippines

* justin.wong@moh.gov.bn

Abstract

Introduction

Current SARS-CoV-2 containment measures rely on controlling viral transmission. Effective prioritization can be determined by understanding SARS-CoV-2 transmission dynamics. We conducted a systematic review and meta-analyses of the secondary attack rate (SAR) in household and healthcare settings. We also examined whether household transmission differed by symptom status of index case, adult and children, and relationship to index case.

Methods

We searched PubMed, medRxiv, and bioRxiv databases between January 1 and July 25, 2020. High-quality studies presenting original data for calculating point estimates and 95% confidence intervals (CI) were included. Random effects models were constructed to pool SAR in household and healthcare settings. Publication bias was assessed by funnel plots and Egger’s meta-regression test.

Results

43 studies met the inclusion criteria for household SAR, 18 for healthcare SAR, and 17 for other settings. The pooled household SAR was 18.1% (95% CI: 15.7%, 20.6%), with significant heterogeneity across studies ranging from 3.9% to 54.9%. SAR of symptomatic index cases was higher than asymptomatic cases (RR: 3.23; 95% CI: 1.46, 7.14). Adults showed higher susceptibility to infection than children (RR: 1.71; 95% CI: 1.35, 2.17). Spouses of index cases were more likely to be infected compared to other household contacts (RR: 2.39; 95% CI: 1.79, 3.19). In healthcare settings, SAR was estimated at 0.7% (95% CI: 0.4%, 1.0%).
Discussion

While aggressive contact tracing strategies may be appropriate early in an outbreak, as it progresses, measures should transition to account for setting-specific transmission risk. Quarantine may need to cover entire communities while tracing shifts to identifying transmission hotspots and vulnerable populations. Where possible, confirmed cases should be isolated away from the household.

Introduction

The COVID-19 pandemic continues to escalate. Modeling studies have enhanced understanding of SARS-CoV-2 transmission dynamics and initial phylogenetic analysis of closely related viruses suggest highly linked person-to-person spread of SARS-CoV-2 originating from mid-November to early December 2019 [1–3].

There are no known effective therapeutics or vaccines [4, 5]. As such, containment measures rely on the capacity to control viral transmission from person-to-person, such as case isolation, contact tracing and quarantine, and physical distancing [6]. Effective prioritization of these measures can be determined by understanding SARS-CoV-2 transmission patterns.

There is an abundance of literature on the biological mode of transmission of coronaviruses: through exhaled droplets, aerosol at close proximity, fomites, and possibly through fecal-oral contamination [7, 8]. However, few observational studies have assessed transmission patterns in populations, and what determines whether the infection is contained or spreads. Previous theoretical work by Fraser et al. proposed three transmission-related criteria that impact on outbreak control: (i) viral transmissibility; (ii) disease generation time; and (iii) the proportion of transmission occurring prior to symptoms [9].

To better understand SARS-CoV-2 transmission, we conducted a systematic review and meta-analyses of publicly available studies to estimate the secondary attack rate (SAR) in various settings. We also examined whether household transmission differed by symptom status of index case, adult and children (< 18 years old), and relationship to index case.

Methods

This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

Definition

SAR is defined as the probability that an exposed susceptible person develops disease caused by an infected person [10]. It is calculated by dividing the number of exposed close contacts who tested positive (numerator) by the total number of exposed close contacts of the index case (denominator).

Search strategy and inclusion criteria

We performed a literature search of published journal articles in PubMed and pre-print articles in medRxiv and bioRxiv from January 1, 2020 using the search terms (“SARS-CoV-2” OR “COVID-19”) AND (“attack rate” OR “contact tracing” OR “close contacts”). The last search date was on July 25, 2020. All studies that were written in English or have an abstract in English were included.
Studies reporting SAR were included if they: (i) presented original data for SAR estimation, such as from a contact tracing investigation; (ii) reported a numerator and denominator of close contacts, or at least two of numerator, denominator, and SAR; (iii) specified a particular setting; and (iv) cases were confirmed positive with SARS-CoV-2 through reverse transcription polymerase chain reaction (RT-PCR) test. Point-testing or prevalence studies to measure cumulative incidence of infection in a setting were excluded from the meta-analyses as the source of infection could not be traced, but we discussed some of these studies where relevant.

Data extraction and quality assessment

The articles were initially screened by title and abstract, and subsequently by review of selected full-text articles. Three reviewers selected the studies independently using predetermined inclusion criteria and differences in opinions were resolved through consensus. Data were obtained directly from the reports, but when not explicitly stated, we derived the data from tables, charts, or supplementary materials. The following data were extracted from each included study: surname of first author; study design; location of study; number of index cases; total number of close contacts; number of close contacts tested positive for SARS-CoV-2; setting type; symptom of index case; age group of secondary cases; and relationship of secondary cases to index case.

The quality of the studies was independently assessed by three reviewers based on the UK National Institute for Clinical Excellence guidelines [11]. The evaluation is based on a set of eight criteria. Differences in assessments were resolved through consensus. Studies with a score greater than 4 (out of 8) were considered to be of high quality and thus included in the meta-analyses [12].

Statistical analysis

Point estimates and 95% confidence intervals (CI) were calculated. CIs were estimated using a Normal approximation but in studies with a small number of secondary cases (< 5) a binomial approximation was used. Meta-analyses were performed using random-effects DerSimonian-Laird model [13]. We also estimated risk ratios to examine SAR differences by symptom status of the index case, age of close contacts, and relationship of household contacts. The I² statistic was used as a measure of heterogeneity, with higher values signifying greater degree of variation [14]. Publication bias was assessed by funnel plots and Egger’s meta-regression test [15]. A p-value of <0.05 was considered as statistically significant. Statistical analysis was done in STATA 14 using the package metan, metafunnel, and metabias [16–18].

Results

A total of 663 records were identified from the databases (Fig 1). After screening by title and abstract, we included 118 studies and after a detailed assessment based on the inclusion criteria and quality assessment, 57 studies were included in the meta-analyses. A majority of the included studies focused on transmission in households. In non-household settings, most studies were conducted in healthcare settings. As such, our systematic review and meta-analyses focused on SAR in household and healthcare settings, but we also discussed the SAR in other settings.

Household SAR

We identified 43 studies that allowed direct estimation of the SAR in households (Table 1). Thirty-five studies were published articles (five in Chinese language, two in Korean language)
and eight were pre-prints. About half of the studies were in China (22 in mainland China, 1 in Hong Kong, 1 in Taiwan), five in South Korea, four in the United States, two in Israel, and the others were in Australia, Brunei, Canada, Germany, India, Italy, Singapore, and Spain.

Index cases were confirmed positive cases identified or suspected to have been first exposed to the SARS-CoV-2 virus within the household, generally based on the timing of symptom onset and epidemiological link. Some studies identified close contacts through active surveillance systems while in others they were identified following an outbreak investigation. Testing protocols of close contacts also differed; all close contacts were tested regardless of symptoms in most studies, but only symptomatic contacts were tested in five studies.

There was variation in the definition of household contacts; most included only those who resided with the index case, some studies expanded this to include others who spent at least a night in the same residence or a specified duration of at least 24 hours of living together, while others included family members or close relatives.
Table 1. Description of studies included in the review and analysis of household secondary attack rate (SAR).

Study, location, Location	Description of study	Definition of close contact	Household SAR (%)	No. of index cases	Additional comments	Quality score
Wang et al., Beijing, China [19]	Retrospective study of households	Lived with primary case in a house for 4 days before and for more than 24 hours after the primary case developed illness related to COVID-19	77/335 (23.0%)	41	6	
Wang et al., Beijing, China [20]	Summary of contact investigations	Family members or relatives	111/714 (15.5%)	585	7	
Liu et al., Guangdong, China [21]	Retrospective study of different exposure settings	Spouse and family members	330/2441 (13.5%)	1361	7	
Jing et al., Guangzhou, China [22]	Retrospective study of households	Lived in the same residential area	93/542 (17.2%)	215	6	
Luo et al., Guangzhou, China [23]	Prospective study of different modes of contact	Lived in the same household	96/946 (10.1%)	347	7	
Zhang et al., Guangzhou, China [24]	Retrospective study of presymptomatic transmission in different exposure settings	Lived in the same household	10/62 (16.1%)	38	6	
Wu et al., Hangzhou, China [25]	Retrospective study of different exposure settings	Lived in the same household	50/280 (17.9%)	144	5	
Li et al., Hubei, China [26]	Retrospective study of households	Lived in the same residence for at least 24 hours	64/392 (16.3%)	105	6	
Zhang et al., Hunan, China [27]	Retrospective study of different exposure settings	Lived in the same household	339/617 (54.9%)	136	6	
Zhang et al., Liaocheng, China [28]	Retrospective study of a supermarket cluster	Family members	12/93 (12.9%)	25	5	
Deng et al., Nanchang, China [29]	Retrospective study of different exposure settings	Lived in the same household	20/201 (10.0%)	27	5	
Chen et al., Ningbo, China [30]	Prospective study of different exposure settings	Lived in the same household	37/279 (13.3%)	187	6	
Xin et al., Qingdao, China [31]	Prospective study of households	Family members in the same house	19/106 (17.9%)	31	7	
Bi et al., Shenzhen, China [32]	Retrospective study of cases identified through symptomatic surveillance and contact tracing	Shared a room, apartment, or other sleeping arrangement	77/686 (11.2%)	391	6	
Wei et al., Shenzhen, China [33]	Retrospective study of households	Lived in the same household, including visiting period	21/66 (31.8%)	60	5	
Dong et al., Tianjin, China [34]	Retrospective study of households	Family members	53/259 (20.5%)	135	5	
Wang et al., Wuhan, China [35]	Retrospective study of household transmission by healthcare workers	Family members	10/43 (23.3%)	25	5	
Wang et al., Wuhan, China [36]	Retrospective study of households	Lived in the same household	47/155 (30.3%)	85	Only close contacts with symptoms tested; 51 contacts without symptoms assumed negative	
Yu et al., Wuhan, China [37]	Retrospective study of different exposure settings	Family members	143/1396 (10.2%)	560	5	
Hua et al., Zhejiang, China [38]	Retrospective study of households	Family members	151/835 (18.1%)	n/a	7	
Sun et al., Zhejiang, China [39]	Retrospective study of family clusters	Family members	189/598 (31.6%)	148	5	
Wu et al., Zhuhai, China [40]	Retrospective study of households	Spent at least one night in the house after symptom onset of the index case	48/148 (32.4%)	35	6	

(Continued)
Study, location	Description of study	Definition of close contact	Household SAR (%)	No. of index cases	Additional comments	Quality score
Kwok et al., Hong Kong, China	Retrospective study of cases and close contacts	Provided care or stayed at the same place while the index case was ill	24/206 (11.7%)	53		6
Cheng et al., Taiwan, China	Prospective study of different exposure settings and different exposure time windows	Lived in the same household	10/151 (6.6%)	100	Only close contacts with symptoms tested	7
Draper et al., Northern Territory, Australia	Retrospective study in different exposure settings	Lived in the same household	2/51 (3.9%)	28	Only close contacts with symptoms tested	6
Chaw et al., Brunei	Retrospective study in different exposure settings	Lived in the same household	28/264 (10.6%)	19		5
Schwartz et al., Ontario, Canada	Retrospective study of household transmission by healthcare workers	Lived in the same residential address	391/3986 (9.8%)	n/a		6
Böhmer et al., Bavaria, Germany	Analysis of contact investigation	Shared living space	2/20 (10%)	1		6
Laxminarayan et al., Tamil Nadu, India	Retrospective study of different exposure settings	Lived in the same household	380/4066 (9.3%)	997		7
Boscolo-Rizzo et al., Treviso, Italy	Retrospective study of adult household contacts of mildly symptomatic cases	Lived in the same household	54/121 (44.6%)	179	Only 121 out of 296 close contacts tested	5
Dattner et al., Bnei Brak, Israel	Summary of contact investigations	Lived in the same household	981/2824 (34.7%)	529		6
Somekh et al., Bnei Brak, Israel	Analysis of contact investigation	Lived in the same household	36/94 (38.3%)	n/a		5
Yung et al., Singapore	Retrospective study of paediatric household contacts	Lived in the same household	13/213 (6.1%)	223		6
Lee et al., Busan, South Korea	Analysis of contact investigation of asymptomatic index cases	Lived in the same household	1/23 (4.3%)	10		5
Son et al., Busan, South Korea	Summary of contact investigations	Lived in the same household	16/196 (8.2%)	108		6
Park et al., Seoul, South Korea	Retrospective study of a call center cluster	Lived in the same household	34/225 (15.1%)	97		6
Korea CDC, South Korea	Summary of contact investigations	Lived in the same household	9/119 (7.6%)	30		5
Park et al., South Korea	Summary of contact investigations	Lived in the same household	1248/10592 (11.8%)	5706		7
Arnedo-Pena et al., Castellon, Spain	Retrospective study of households	Lived in the same household	83/745 (11.1%)	347		6
Rosenberg et al., New York State, United States	Retrospective study of different exposure settings	Lived in the same residential address	131/343 (38.2%)	229		6
Dawson et al., Wisconsin, United States	Retrospective study of households	Lived in the same household	16/64 (25%)	26		5
Yousaf et al., Wisconsin and Utah, United States	Retrospective study of households	Lived in the same household	47/195 (24.1%)	n/a		6

(Continued)
Only three studies differentiated the symptom status of index cases into pre-symptomatic and symptomatic. Fourteen studies had information on age groups that allowed differentiation by children and adults. Seven studies reported SAR by the relationship of close contacts of index cases.

From these 43 studies, we estimated household SAR and conducted subgroup analyses by stratifying according to location, definition of close contact, testing protocol, and publication status. We also examined whether SAR differed by symptom status of index case, child/adult infection, and relationship of close contacts of index cases.

Fig 2 summarizes the estimated SARs. The pooled household SAR is 18.1% (95% CI: 15.7%, 20.6%) with significant heterogeneity ($p < 0.001$). Household SAR ranged from 3.9% in Australia (Northern Territory) to more than 30% in some studies in China (Hunan, Shenzhen, Wuhan, Zhejiang, Zhuhai), Israel (Bnei Brak), Italy (Treviso), and the United States (New York).

Stratified household SAR

The household SAR from studies in mainland China (20.1%; 95% CI: 16.2%, 23.9%) was not significantly higher than other countries and areas (16.0%; 95% CI: 12.6%, 19.5%) (S1 Fig in S1 Materials). There was no significant difference in SAR in terms of the definition of household close contacts, whether they were based on living in the same household (18.2%; 95% CI: 15.3%, 21.2%) or based on relationships such as family and close relatives (17.8%; 95% CI: 13.8%, 21.8%) (S2 Fig in S1 Materials). Difference in testing protocols—whether testing was done for all contacts regardless of symptoms (18.0%; 95% CI: 15.4%, 20.5%) or symptomatic contacts only (19.8%; 95% CI: 4.6%, 35.0%)—also did not show a significant difference in household SAR (S3 Fig in S1 Materials).

The household SAR for published studies (18.7%; 95% CI: 16.0%, 21.4%) was not significantly higher than preprints (15.6%; 95% CI: 8.7%, 22.4%) (S4 Fig in S1 Materials). Funnel plot and Egger’s meta-regression test also did not indicate the presence of publication bias (S5 Fig and S1 Table in S1 Materials).

Risk factors of household transmission

The risk of transmission varies by the symptom status of the index case. Based on three studies with available data, household SAR of symptomatic index cases were significantly higher than asymptomatic and pre-symptomatic cases, with a relative risk (RR) of 3.23 (95% CI: 1.46, 7.14) (Fig 3). In all three studies, the household SAR of symptomatic index cases (20.0%; 95% CI: 11.4%, 28.6%) was higher than those of asymptomatic ones (4.7%; 95% CI: 1.1%, 8.3%) (Fig 4).

SAR from 14 studies showed that close contacts who were adults were more likely to be infected compared to children (< 18 years old), with a relative risk of 1.71 (95% CI: 1.35, 2.17).
However, there was considerable heterogeneity among the included studies. In three studies, infection in adults was marginally lower than in children, but overall, the household SAR in adults (33.3%; 95% CI: 24.4%, 42.1%) was significantly higher than that in children (16.9%; 95% CI: 10.9%, 22.9%) (Fig 6).

Spouse relationship to index case from seven studies indicated a significantly higher risk of infection (RR: 2.39; 95% CI: 1.79, 3.19) compared to other household members (Fig 7). In all seven studies, the SAR to spouses (37.5%; 95% CI: 22.2%, 52.7%) was higher than to other household contacts (16.3%; 95% CI: 10.6%, 22.1%) (Fig 8). However, there was considerable heterogeneity among the included studies.

Healthcare SAR

There are fewer SAR studies in non-household settings. We identified 18 studies that allowed direct estimation of the SAR in healthcare settings where transmission was determined to arise from an infected patient (Table 2). Nine of the studies covered multiple settings while the other nine studies focused solely on transmission in healthcare settings.

Sixteen studies were published articles (two in Chinese language) and two were pre-prints. Nine studies were in China, four in the United States, and the others were in Germany, India,
Japan, Singapore, and Switzerland. All close contacts were tested regardless of symptoms except for four studies where testing was done only on symptomatic contacts. There was minor variation in the definition of healthcare contacts; most included healthcare workers and patients that were exposed to the index case, although a few studies were more specific in indicating close contact as those without personal protective equipment (PPE) or within a certain distance from the index case.

Fig 9 summarizes the estimated SARs. The pooled healthcare SAR was 0.7% (95% CI: 0.4%, 1.0%). Heterogeneity was not significant (p = 0.690). The SAR in healthcare settings in most studies was generally low (< 2%), except for a study in Wuhan that indicated 2 of 5 (40%) healthcare personnel were infected [37]. A study in California that tested symptomatic contacts only [68] had a relatively high healthcare SAR (7.0%), but overall there was no significant difference according to testing protocols (S6 Fig in S1 Materials).

SAR in other non-household settings

We found 17 studies that allowed estimation of SAR in settings or by contact type other than household and healthcare: relatives outside the household; meal; travel; social; workplace; school; religious gathering; business meeting; choir; and chalet (Table 3). Due to the limited number of studies in each of these settings, unclear or imprecise definitions of close contacts, and the large variation in SAR across the settings, we did not estimate a pooled SAR. Instead, we reported the SAR to highlight potential high-risk settings.
High SARs were observed in a meeting (84.6%), a chalet (73.3%), and at choirs (70.4%, 53.3%). In other settings, relatively high SARs were reported in eating (38.8%, 28.6%) and traveling (80.8%, 46.6%) with a case, as well as a study evaluating a religious event (14.8%). SARs were much lower in encounters with relatives (3.5% to 6.6%), social contacts (0.9% to 2.2%), and at workplace or school (0% to 5.3%).

Discussion

Summary of key findings

We estimated household SAR at 18.1% (95% CI: 15.7%, 20.6%), with significant heterogeneity across studies ranging from 3.9% to 54.9%. Symptomatic persons in households had a significantly higher risk of infecting others compared to asymptomatic ones (RR: 3.23; 95% CI: 1.46, 7.14). Adults in households had a significantly higher risk of infection relative to children (RR: 1.71; 95% CI: 1.35, 2.17). Spouses of index cases were more likely to be infected when compared to other household contacts (RR: 2.39; 95% CI: 1.79, 3.19). In healthcare settings, SAR was estimated at 0.6% (95% CI: 0.4%, 0.9%).

Secondary attack rate

We used SAR across various settings as a measure of viral transmissibility. While a number of studies have estimated the basic reproductive number (R0) at 2–4, [77–80] in isolation it is a
suboptimal gauge of infectious disease dynamics as it does not account for variability in specific situations and settings [81, 82].

Significant heterogeneity in SAR across different settings is unsurprising given that SAR depends not only on the causative agent but also on socio-demographic, environmental, and behavioral factors in study populations [83]. Variation in methods for case ascertainment and subsequent detection of infected cases among contacts likely contributed to the heterogeneity across studies.

Household SAR was estimated at 18.1%. Reports suggest that familial transmission account for the majority of transmissions [36, 84]. The household is thought to be a fundamental unit of SARS-CoV-2 transmission because of the high frequency and intensity of contacts that occur between family members, and because transmission has continued in places with movement restriction [44]. We found that household SAR was higher than the upper range of estimates of the household SAR for the 2009 H1N1 pandemic influenza (5–15%) [85–87], and also higher than that observed for both SARS (5–10%) [88–90] and MERS (4–5%) [91, 92]. This suggests relatively higher SARS-CoV-2 transmissibility in the household setting, when compared to that of H1N1 and MERS viruses. SARS-CoV-2 also has a higher R0 when compared to MERS-CoV and SARS-CoV-1 [93]. This finding highlights the necessity of swift case isolation, immediate tracing, and quarantine of household contacts [94].

The highest household SARs were observed in mainland China, Israel, Italy, and the United States—countries with sustained outbreaks—whereas SARs were generally lower in countries and areas that have done relatively well in outbreak control, such as Brunei, Hong Kong, South

Fig 5. Forest plot of household transmission risk by adult and children close contact. RR is the estimated risk ratio, with 95% confidence intervals (CI). I-squared is the percentage of between-study heterogeneity that is attributable to variability in the true effect, rather than sampling variation.

https://doi.org/10.1371/journal.pone.0240205.g005
Korea, and Taiwan. Outside sources of infection are likely to be higher in countries with sustained community transmission, and as such without accounting for these, the household SARs are likely to be overestimated. Nonetheless, the potential for high transmission in households is clearly evident.

Healthcare workers who provide care to hospitalized patients could be at high risk of infection, particularly those without adequate PPE due to delayed diagnosis of COVID-19. We quantified this risk and found that SARs in healthcare settings in most studies were low (<2%). An exception is a study in Wuhan, which reported that 2 out of 5 (40%) medical personnel were infected [37]. The authors attributed the high SAR to inadequate acknowledgment of pathogens, misclassification of patients with COVID-19 as ordinary fever cases, and shortage of PPE during the early stage (late December 2019 to early January 2020) when the outbreak was still not well understood.

The generally low SAR in non-household settings may mask variation between setting types. Some studies reported significantly higher SAR in mass gatherings and other enclosed settings with potential for prolonged physical contact, such as at a meeting in Germany (84.6%) [75], a ski chalet in France (73.3%) [71], at a choir in France (70.4%) [72], during meals in China (38.8%) [40], and during travel in India (80.8%) [47]. In contrast, SAR in workplace, school, and social settings ranged between 0–5%, suggesting a gradation of risk outside the household.

Our meta-analyses excluded studies that solely reported attack rates (AR) without identification of an index case and their transmission generations within the cluster.
studies may be important in understanding the role of super-spreading events (SSEs) in driving SARS-CoV-2 transmission [82]. Specific settings where high ARs (> 20%) have been observed were in a correctional and detention facility in Louisiana (72.4%) [95], nursing homes in California (70.3%) [96] and the United Kingdom (40.3%) [97], in cruise ships (59%) [98], a call centre in South Korea (43.5%) [54], a church in Arkansas (38%) [99], among college students during a spring break trip in Mexico (32.8%) [100], a homeless shelter in Boston (36%) [101], a fitness dance class in South Korea (26.3%) [102], and a wedding in Jordan (21.7%) [103] (S2 Table in S1 Materials). High ARs have also been reported in healthcare settings in Mexico City (31.9%) [104] and the United Kingdom (27.7%) [105].

Reflecting on the high SAR in households and high AR in numerous non-household settings, we suggest that several common environmental factors could potentially account for the rapid person-to-person transmission observed: closed environments, population density, and shared eating environments. This is supported by environmental sampling studies [106] and from ecological observations on the declining incidence of COVID-19 cases in areas with restrictions placed on indoor mass gatherings [107].

There are implications for mass gatherings, particularly as countries begin to relax physical distancing measures. Non-household residential settings such as long-term care facilities, dormitories, and detention facilities pose specific challenges where additional prevention measures merit consideration, including staff screening, enhanced testing, and strict visitor policies [108].

Certainly, across all settings, the longer the duration and the greater the degree of physical contact with an index case, the higher the risk of transmission. However, we find that the risk model for transmission of SARS-CoV-2 is nuanced—while the highest risk of transmission is in crowded and enclosed settings, casual social interaction in some public settings have a lower risk. In addition, as the pandemic progresses and concern with physical distancing measures
(so-called “quarantine fatigue”) gain momentum [109], public communications surrounding these measures should convey this continuum of risk based on the transmission dynamics across different settings, supporting sustainable longer-term behavior changes.

SARS-CoV-2 transmission in children

For many infectious diseases, such as seasonal and pandemic influenza, children are known be drivers of transmission within households and communities [110]. Case series data on SARS-CoV-2 suggests that children are less likely to be affected than adults. A national analysis of the first 72,314 cases in China reported only 2.1% of all cases were children aged 0–19 years old [111]. Other population-wide studies show similarly low proportions [56, 112, 113].

To better understand their relative susceptibility to infection, we compared the SAR between adults and children and found that adults were at 1.7 times higher risk of infection than children. The lower rate of susceptibility in children could be explained by differences in symptomatic infection rates and subsequent issues with case ascertainment [114].

The literature surrounding infectivity in children was scarce. In household transmission studies, children were usually identified through contact tracing of adult cases, although a number of case reports documented transmission from children to adults [115]. There is also insufficient knowledge on transmissibility of SARS-CoV-2 from children to other children. In addition, age may be important to determine dynamics of interactions among children but inadequate data hampered our efforts at risk stratification by age.
Study, location	Description of study	Definition of close contact	Healthcare SAR (%)	No. of index cases	Additional comments	Quality score
Liu et al., Guangdong, China [21]	Retrospective study of different exposure settings	Healthcare workers exposed to case	2/573 (0.3%)	1361		7
Luo et al., Guangzhou, China [23]	Prospective study of different modes of contact	Medical staff who provide direct care, family members or others who have similar close contact with case, such as visiting or staying at the same hospital ward	7/679 (1.0%)	347		7
Wu et al., Hangzhou, China [25]	Retrospective study of different exposure settings	Healthcare provided or other patient	2/532 (0.4%)	144		5
Zhang et al., Hunan, China [27]	Retrospective study of different exposure settings	Diagnosed, treated, or nursed a case	7/565 (1.2%)	136		6
Deng et al., Nanchang, China [29]	Retrospective study of different exposure settings	Had medical services at the same time or shared wards	0/18 (0%)	27		5
Chen et al., Ningbo, China [30]	Prospective study of different exposure settings	Healthcare workers exposed to case	4/297 (1.3%)	187		6
Yu et al., Wuhan, China [37]	Retrospective study of different exposure settings	Doctors and patients exposed to case	2/5 (40%)	560		5
Wong et al., Hong Kong, China [62]	Retrospective study of healthcare setting	Patient or staff who stayed or worked in the same ward as the index patient	0/52 (0%)	1	Only 52 of 120 contacts tested; the rest were asymptomatic	5
Cheng et al., Taiwan, China [42]	Prospective study of different exposure settings and different exposure time windows	Within 2m without appropriate PPE and without a minimal requirement of exposure time	6/698 (0.9%)	100	Only close contacts with symptoms tested	7
Schneider et al., Munster, Germany [63]	Retrospective study of healthcare setting	Healthcare workers exposed to infected patient	0/66 (0%)	1		5
Laxminarayan et al., Tamil Nadu, India [47]	Retrospective study of different exposure settings	Healthcare workers exposed to case	2/210 (1.0%)	11		7
Hara et al., Kyoto, Japan [64]	Retrospective study of healthcare setting	Patients exposed to an infected healthcare worker	1/87 (1.1%)	1		5
Ng et al., Singapore [65]	Retrospective study of healthcare setting	Exposed to aerosol-generating procedures for at least 10 minutes at a distance of less than 2 meters from the infected patient	0/41 (0%)	1		5
Canova et al., Switzerland [66]	Analysis of contact investigation	Healthcare workers with unprotected contact with the case	0/21 (0%)	1		6
Baker et al., Boston, United States [67]	Retrospective study of healthcare setting	Provided care to infected patient	2/44 (4.5%)	1	7 healthcare workers not tested, and assumed negative	5
Heinzerling et al., California, United States [68]	Retrospective study of healthcare setting	Symptomatic healthcare workers exposed to infected patient	3/43 (7.0%)	1	121 healthcare workers exposed, but only those with symptoms tested	5
Ghinai et al., Illinois, United States [69]	Analysis of contact investigation	People who reported or were identified to have potential exposure on or after the date of symptom onset of the case	0/195 (0%)	1	Only persons under investigation and selected asymptomatic healthcare personnel tested	5
Chu et al., Washington, United States [70]	Retrospective study of healthcare setting	Face-to-face interaction with infected patient without full personal protective equipment (PPE)	0/37 (0%)	1		5

https://doi.org/10.1371/journal.pone.0240205.t002
While there are important unknowns with respect to SARS-CoV-2 in children, these early findings may assist health authorities in determining proportionate thresholds for school closures in future waves of the pandemic.

Strengths and limitations

Our analysis has important limitations. The studies selected were based on field investigation; variability was noted with respect to the study design, the number of individuals assessed, clinical definitions, the extent to which confirmatory laboratory tests were used, the methods of clinical data collection, and the duration of follow-up. Studies have different definitions of household and contacts and are subject to recall and observer bias [116]. Moreover, without accounting for outside sources of infection, setting-specific SARs are likely to be overestimated [83]. In fact, none of the reviewed studies addressed the composition of secondary vs. community infections when estimating the SAR or used viral sequencing to confirm homology between the strains infecting the index and secondary cases in the household.

All SAR studies were retrospective transmission studies based on contact tracing datasets where the index case determination or the direction of transmission may be uncertain, particularly as a substantial proportion of cases was asymptomatic or mild. An additional challenge concerns the timing of recruitment of cases and their contacts during the course of an epidemic. Studies conducted in early stages can provide timely SAR estimates; however, this may be influenced by behavioral factors and other non-pharmaceutical interventions (e.g. community quarantine) that could have altered over the course of the epidemic [83].
The major strength of our study is that it comprehensively covers publicly available studies on SARS-CoV-2 transmission-related dynamics with regards to settings and associated risk factors, thus allowing a better understanding and identification of the key drivers of transmission.

Conclusion

Our estimates of SAR across various settings demonstrate the challenges in controlling SARS-CoV-2 transmission. Overall, these findings suggest that aggressive contact-tracing strategies based on suspect cases may be appropriate early in an outbreak. However, as the outbreak progresses, control measures should transition to a combination of approaches that account for setting-specific transmission risk. Given the high SARs observed in households and other residential settings, physical distancing measures may need to cover entire communities such as dormitories, workplaces, or other institutional settings, while contact tracing should shift to

Study	Location	Setting	SAR (%)
Danis et al. [71]	French Alps	Chalet	11/15 (73.3%)
Charlotte [72]	France	Choir	19/27 (70.4%)
Hamner et al. [73]	Washington, United States	Choir	32/60 (53.3%)
Wu et al. [40]	Zhuhai, China	Meal	40/103 (38.8%)
Shen et al. [74]	Zhejiang, China	Meal	2/7 (28.6%)
Deng et al. [29]	Changsha, China	Meal	17/160 (10.6%)
Bi et al. [32]	Shenzhen, China	Meal	61/707 (8.6%)
Chen et al. [30]	Ningbo, China	Meal	52/724 (7.2%)
Hijnen et al. [75]	Munich, Germany	Meeting	11/13 (84.6%)
Cheng et al. [42]	Taiwan, China	Non-household family	5/66 (7.6%)
Liu et al. [21]	Guangdong, China	Non-household family	132/2266 (5.8%)
Chaw et al. [44]	Brunei	Non-household family	5/144 (3.5%)
Wang et al. [20]	Beijing, China	Social	75/3363 (2.2%)
Zhang et al. [24]	Guangzhou, China	Social	1/66 (1.5%)
Liu et al. [21]	Guangdong, China	Social	41/3344 (1.2%)
Chaw et al. [44]	Brunei	Social	4/445 (0.9%)
Laxminarayan et al. [47]	Tamil Nadu, India	Travel	63/78 (80.8%)
Wu et al. [40]	Zhuhai, China	Travel	34/73 (46.6%)
Chen et al. [30]	Ningbo, China	Travel	28/235 (11.9%)
Zhang et al. [24]	Hunan, China	Travel	22/304 (7.2%)
Bi et al. [32]	Shenzhen, China	Travel	18/318 (5.7%)
Draper et al. [43]	Northern Territory, Australia	Travel	2/46 (4.3%)
Liu et al. [21]	Guangdong, China	Travel	10/2778 (0.4%)
Luo et al. [23]	Guangzhou, China	Travel	3/2358 (0.1%)
Deng et al. [29]	Changsha, China	Travel	0/17 (0%)
Danis et al. [71]	French Alps	School	0/112 (0%)
Heavey et al. [76]	Ireland	School	0/1205 (0%)
Deng et al. [29]	Changsha, China	Workplace	5/94 (5.3%)
Zhang et al. [24]	Guangzhou, China	Workplace	0/119 (0%)
Chen et al. [30]	Ningbo, China	Workplace/school	1/47 (2.1%)
Chaw et al. [44]	Brunei	Workplace/school	6/848 (0.7%)

https://doi.org/10.1371/journal.pone.0240205.t003
identifying hotspots of transmission and vulnerable populations. Where possible, confirmed cases should be isolated away from the household.

Supporting information

S1 Checklist. PRISMA 2009 checklist.

S1 Materials.

Author Contributions

Conceptualization: Wee Chian Koh, Justin Wong.

Data curation: Wee Chian Koh, Lin Naing, Muhammad Ali Rosledzana, Mohammad Fathi Alikhan, Justin Wong.

Formal analysis: Wee Chian Koh, Sirajul Adli Jamaludin, Faezah Amin, Asiah Omar, Alia Shazli.

Methodology: Wee Chian Koh, Lin Naing, Liling Chaw, Justin Wong.

Supervision: Justin Wong.

Validation: Justin Wong.

Visualization: Wee Chian Koh.

Writing – original draft: Wee Chian Koh, Justin Wong.

Writing – review & editing: Wee Chian Koh, Lin Naing, Liling Chaw, Muhammad Ali Rosledzana, Mohammad Fathi Alikhan, Sirajul Adli Jamaludin, Faezah Amin, Asiah Omar, Alia Shazli, Matthew Griffith, Roberta Pastore, Justin Wong.

References

1. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565–74. https://doi.org/10.1016/S0140-6736(20)30251-8 PMID: 32007145

2. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020; 20(5):553–8. https://doi.org/10.1016/S1473-3099(20)30144-4 PMID: 32171059

3. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci U S A. 2020; 117(17):9241–3. https://doi.org/10.1073/pnas.2004999117 PMID: 32269081

4. Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 Vaccines at Pandemic Speed. N Engl J Med. 2020.

5. Salvi R, Patankar P. Emerging pharmacotherapies for COVID-19. Biomed Pharmacother. 2020;110267.

6. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020.

7. Cowling BJ, Leung GM. Epidemiological research priorities for public health control of the ongoing global novel coronavirus (2019-nCoV) outbreak. Euro Surveill. 2020; 25(6).

8. Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science. 2020; 368(6491).

9. Fraser C, Riley S, Anderson RM, Ferguson NM. Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci U S A. 2004; 101(16):6146–51. https://doi.org/10.1073/pnas.0307506101 PMID: 15071187
10. Liu Y, Eggo RM, Kucharski AJ. Secondary attack rate and superspreading events for SARS-CoV-2. Lancet. 2020; 395(10227):e47. https://doi.org/10.1016/S0140-6736(20)30462-1 PMID: 32113505
11. NICE. Appendix 4: quality of case series [Available from: https://www.nice.org.uk/guidance/cg3/documents/appendix-4-quality-of-case-series-form2.
12. Zhu J, Zhong Z, Ji P, Li H, Li B, Pang J, et al. Clinicopathological characteristics of 8697 patients with COVID-19 in China: a meta-analysis. Fam Med Community Health. 2020; 8(2).
13. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7(3):177–88. https://doi.org/10.1016/0197-2456(86)90046-2 PMID: 3510563
14. Sterne JAC, Harbord RM. Funnel Plots in Meta-analysis. 2004. The Stata Journal; 4(2):15.
15. Harris RJ, Bradburn MJ, Deeks JJ, Harbord RM, Altman DG, Sterne JAC. metan: fixed- and random-effects meta-analysis. The Stata Journal. 2008; 8:26.
16. Harbord RM, Harris RJ, Sterne JAC. Updated tests for small-study effects in meta-analyses. The Stata Journal. 2009; 9(2):14.
17. Wang Y, Tian H, Zhang L, Zhang M, Guo D, Wu W, et al. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. BMJ Glob Health. 2020; 7(4):e001546.
18. Zhang J, Litvinova M, Liang Y, Wang Y, Wang W, Zhao S, et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science. 2020; 368(6498):1481–6. https://doi.org/10.1126/science.abb8001 PMID: 32350060
19. Chen Y, Wang A, Yi B, Ding K, Wang H, Wang J, et al. The epidemiological characteristics of infection in close contacts of COVID-19 in Ningbo city. Chinese Journal of Epidemiology. 2020; 41:
20. Xin H, Jiang F, Xue A, Liang J, Zhang J, Yang F, et al. Risk factors associated with occurrence of COVID-19 among household persons exposed to patients with confirmed COVID-19 in Qingdao Municipal, China. Transbound Emerg Dis. 2020.
21. Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020.
22. Wei L, Lv Q, Wen Y, Feng S, Gao W, Chen Z, et al. Household transmission of COVID-19, Shenzhen, January-February 2020. medRxiv. 2020.
23. Dong XC, Li JM, Bai JY, Liu ZQ, Zhou PH, Gao L, et al. Epidemiological characteristics of confirmed COVID-19 cases in Tianjin. Zhonghua Liu Xing Bing Xue Za Zhi. 2020; 41(5):638–41. https://doi.org/10.3760/cma.j.cn112338-20200221-00146 PMID: 32164400
35. Wang X, Zhou Q, He Y, Liu L, Ma X, Wei X, et al. Nosocomial outbreak of COVID-19 pneumonia in Wuhan, China. Eur Respir J. 2020; 55(6).

36. Wang Z, Ma W, Zheng X, Wu G, Zhang R. Household transmission of SARS-CoV-2. J Infect. 2020.

37. Yu HJ, Hu YF, Liu XX, Yao XQ, Wang QF, Liu LP, et al. Household infection: The predominant risk factor for close contacts of patients with COVID-19. Travel Med Infect Dis. 2020; 201809.

38. Hua CZ, Miao ZP, Zheng JS, Huang Q, Sun QF, Lu HP, et al. Epidemiological features and viral shedding in children with SARS-CoV-2 infection. J Med Virol. 2020.

39. Sun WW, Ling F, Pan JR, Cai J, Miao ZP, Liu SL, et al. [Epidemiological characteristics of 2019 novel coronavirus family clustering in Zhejiang Province]. Zhonghua Yu Fang Yi Xue Za Zhi. 2020; 54(0): E027.

40. Wu J, Huang Y, Tu C, Bi C, Chen Z, Luo L, et al. Household Transmission of SARS-CoV-2, Zhuhai, China, 2020. Clin Infect Dis. 2020.

41. Kwok KO, Wong VWY, Wei WI, Wong SYS, Tang JW. Epidemiological characteristics of the first 53 laboratory-confirmed cases of COVID-19 epidemic in Hong Kong, 13 February 2020. Euro Surveill. 2020; 25(16).

42. Cheng HY, Jian SW, Liu DP, Ng TC, Huang WT, Lin HH, et al. Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset. JAMA Intern Med. 2020.

43. Draper AD, Dempsey KE, Boyd RH, Childs EM, Black HM, Francis LA, et al. The first 2 months of COVID-19 contact tracing in the Northern Territory of Australia, March-April 2020. Commun Dis Intell (2018). 2020; 44.

44. Chaw L, Koh WC, Jamaludin SA, Naing L, Alikhan MF, Wong J. Analysis of SARS-CoV-2 transmission in different settings, Brunei. Emerg Infect Dis. 2020 Nov. https://doi.org/10.3201/eid2611.202263:2020.05.04.20090043.

45. Schwartz KL, Achonu C, Buchan SA, Brown KA, Lee B, Whelan M, et al. COVID-19 infections among Healthcare Workers and Transmission within Households. medRxiv. 2020.

46. Böhmmer MM, Buchholz U, Corman VM, Hoch M, Katz K, Marosevic DV, et al. Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series. Lancet Infect Dis. 2020.

47. Laxminarayan R, Wahl B, Dudala SR, Gopal K, Mohan C, Neelima S, et al. Epidemiology and transmission dynamics of COVID-19 in two Indian states. medRxiv. 2020.

48. Boscolo-Rizzo P, Borsetto D, Spinato G, Fabbris C, Menegaldo A, Gaudioso P, et al. New onset of loss of smell or taste in household contacts of home-isolated SARS-CoV-2-positive subjects. Eur Arch Otorhinolaryngol. 2020.

49. Dattner I, Goldberg Y, Katriel G, Yaari R, Gal N, Miron Y, et al. The role of children in the spread of COVID-19: Using household data from Bnei Brak, Israel, to estimate the relative susceptibility and infectivity of children. medRxiv. 2020.

50. Somekh E, Gleyzer A, Heller E, Lopian M, Kashani-Ligumski L, Czeiger S, et al. The Role of Children in the Dynamics of Intra Family Coronavirus 2019 Spread in Densely Populated Area. Pediatr Infect Dis J. 2020; 39(8):e202–e4. https://doi.org/10.1097/INF.0000000000002783 PMID: 32496407.

51. Yung CF, Kam KQ, Chong CY, Nadua KD, Li J, Hui Tan NW, et al. Household Transmission of SARS-CoV-2 from Adults to Children. J Pediatr. 2020.

52. Lee M, Eun Y, Park K, Heo J, Son H. Follow up investigation of initially asymptomatic COVID-19 cases in Busan, South Korea. Epidemiology and Health. 2020:e2020046.

53. Son H, Lee H, Lee M, Eun Y, Park K, Kim S, et al. Epidemiological characteristics of and containment measures for coronavirus disease 2019 in Busan Metropolitan City, South Korea. Epidemiol Health. 2020:e2020039.

54. Park SY, Kim YM, Yi S, Lee S, Na BJ, Kim CB, et al. Coronavirus Disease Outbreak in Call Center, South Korea. Emerg Infect Dis. 2020; 26(8).

55. COVID-19 National Emergency Response Center EaCMT, K.rea Centers for Disease Control and Prevention. Coronavirus Disease-19: Summary of 2,370 Contact Investigations of the First 30 Cases in the Republic of Korea. Osong Public Health Res Perspect. 2020;11(2):81–4.

56. Park YJ, Choe YJ, Park O, Park SY, Kim YM, Kim J, et al. Contact Tracing during Coronavirus Disease Outbreak, South Korea, 2020. Emerg Infect Dis. 2020; 26(10).

57. Amedo-Pena A, Sabater-Vidal S, Meseguer-Ferrer N, Pac-Sa MR, Mañes-Flor P, Gascó-Laborda JC, et al. COVID-19 secondary attack rate and risk factors in household contacts in Castellon (Spain): Preliminary report. Enfermedades Emergentes. 2020; 19(2):64–70.
58. Rosenberg ES, Dufort EM, Blog DS, Hall EW, Hoefer D, Backenson BP, et al. COVID-19 Testing, Epidemic Features, Hospital Outcomes, and Household Prevalence, New York State-March 2020. Clin Infect Dis. 2020.

59. Dawson P, Rabold EM, Laws RL, Conners EE, Gharpure R, Yin S, et al. Loss of Taste and Smell as Distinguishing Symptoms of COVID-19. Clin Infect Dis. 2020.

60. Yousaf AR, Duca LM, Chu V, Reses HE, Fajans M, Rabold EM, et al. A prospective cohort study in non-hospitalized household contacts with SARS-CoV-2 infection: symptom profiles and symptom change over time. Clin Infect Dis. 2020.

61. Burke RM, Balter S, Barnes E, Barry V, Bartlett K, Beer KD, et al. Enhanced Contact Investigations for Nine Early Travel-Related Cases of SARS-CoV-2 in the United States. medRxiv. 2020:2020.04.27.20081901.

62. Wong SCY, Kwong RT, Wu TC, Chan JWM, Chu MY, Lee SY, et al. Risk of nosocomial transmission of coronavirus disease 2019: an experience in a general ward setting in Hong Kong. J Hosp Infect. 2020; 105(2):119–27. https://doi.org/10.1016/j.jhin.2020.03.036 PMID: 32259546

63. Schneider KN, Correa-Martínez CL, Gosheger G, Rickert C, Schorn D, Mellmann A, et al. Assessing the spreading potential of an undetected case of COVID-19 in orthopaedic surgery. Arch Orthop Trauma Surg. 2020.

64. Hara T, Yamamoto C, Sawada R, Ohara T, Oka K, Iwai N, et al. Infection risk in a gastroenterological ward during a nosocomial COVID-19 infection event. J Med Virol. 2020.

65. Ng K, Poon BH, Kiat Puar TH, Shan Quah JL, Loh WJ, Wong YJ, et al. COVID-19 and the Risk to Healthcare Workers: A Case Report. Ann Intern Med. 2020; 172(11):766–7. https://doi.org/10.7326/L20-0175 PMID: 32176257

66. Canova V, Lederer Schläpfer H, Piso RJ, Droll A, Fenner L, Hoffmann T, et al. Transmission risk of SARS-CoV-2 to healthcare workers—observational results of a primary care hospital contact tracing. Swiss Med Wkly. 2020; 150:w20257. https://doi.org/10.4414/smw.2020.20257 PMID: 3233603

67. Baker MA, Rhee C, Fiumara K, Bennett-Rizzo C, Tucker R, Williams SA, et al. COVID-19 infections among HCWs exposed to a patient with a delayed diagnosis of COVID-19. Infect Control Hosp Epidemiol. 2020:1–2.

68. Heinzerling A, Stuckey MJ, Scheuer T, Xu K, Perkins KM, Resseger H, et al. Transmission of COVID-19 to Health Care Personnel During Exposures to a Hospitalized Patient—Solano County, California, February 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(15):472–6. https://doi.org/10.15585/mmwr.mm6915e5 PMID: 32298249

69. Ghinai I, Woods S, Ritger KA, McPherson TD, Black SR, Sparrow L, et al. Community Transmission of SARS-CoV-2 at Two Family Gatherings—Chicago, Illinois, February-March 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(15):446–50. https://doi.org/10.15585/mmwr.mm6915e1 PMID: 32298246

70. Chu VT, Freeman-Ponder B, Lindquist S, Spitters C, Kawakami V, Dyal JW, et al. Investigation and Serologic Follow-Up of Contacts of an Early Confirmed Case-Patient with COVID-19, Washington, USA. Emerg Infect Dis. 2020; 26(8):1671–8. https://doi.org/10.3201/eid2608.201423 PMID: 32470316

71. Danis K, Epaulard O, Bénet T, Gaymard A, Campoy S, Bothelo-Nevers E, et al. Cluster of coronavirus disease 2019 (Covid-19) in the French Alps, 2020. Clin Infect Dis. 2020.

72. Charlotte N. High Rate of SARS-CoV-2 Transmission due to Choir Practice in France at the Beginning of the COVID-19 Pandemic. medRxiv. 2020.

73. Hamner L, Dubbel P, Capron I, Ross A, Jordan A, Lee J, et al. High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice—Sagitt County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(19):606–10. https://doi.org/10.15585/mmwr.mm6919e6 PMID: 3207303

74. Shen Y, Xu W, Li C, Handel A, Martinez L, Ling F, et al. A Cluster of Novel Coronavirus Disease 2019 Infections Indicating Person-to-Person Transmission Among Casual Contacts From Social Gatherings: An Outbreak Case-Contact Investigation. Open Forum Infect Dis. 2020; 7(6):ofaa231. https://doi.org/10.1093/ofid/ofaa231 PMID: 32613025

75. Hijnen D, Marzano AV, Eyerich K, GeurtsvanKessel C, Giménez-Arnau AM, Joly P, et al. SARS-CoV-2 Transmission from Presymptomatic Meeting Attendee, Germany. Emerg Infect Dis. 2020; 26(8):1935–7. https://doi.org/10.3201/eid2608.201235 PMID: 32392125

76. Heavey L, Casey G, Kelly C, Kelly D, McDarby G. No evidence of secondary transmission of COVID-19 from children attending school in Ireland, 2020. Euro Surveill. 2020; 25(21).

77. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020; 92:214–7. https://doi.org/10.1016/j.ijid.2020.01.050 PMID: 32007643
78. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020; 27(2).

79. Distante C, Piscitelli P, Miani A. Covid-19 Outbreak Progression in Italian Regions: Approaching the Peak by the End of March in Northern Italy and First Week of April in Southern Italy. Int J Environ Res Public Health. 2020; 17(9).

80. Caicedo-Ochoa Y, Rebellón-Sánchez DE, Peñaloza-Rallón M, Cortés-Motta HF, Méndez-Fandiño YR. Effective Reproductive Number estimation for initial stage of COVID-19 pandemic in Latin American Countries. Int J Infect Dis. 2020; 95:316–8. https://doi.org/10.1016/j.ijid.2020.04.069 PMID: 32360941

81. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005; 438(7066):355–9. https://doi.org/10.1038/nature04153 PMID: 16292310

82. Frieden TR, Lee CT. Identifying and Interrupting Superspreading Events-Implications for Control of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis. 2020; 26(6).

83. Tsang TK, Lau LLH, Cauchemez S, Cowling BJ. Household Transmission of Influenza Virus. Trends Microbiol. 2016; 24(2):123–33. https://doi.org/10.1016/j.tim.2015.10.012 PMID: 26612500

84. World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease (COVID-19) Geneva 2020 [Available from: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf.

85. Carcione D, Giele CM, Goggin LS, Kwan KS, Smith DW, Dowse GK, et al. Secondary attack rate of pandemic influenza A(H1N1) 2009 in Western Australia households, 29 May-7 August 2009. Euro Surveill. 2011; 16(3).

86. Casado I, Martínez-Baz I, Burgui R, Irisarri F, Arriazu M, Elía F, et al. Household transmission of influenza A(H1N1)pdm09 in the pandemic and post-pandemic seasons. PLoS One. 2014; 9(9):e108485. https://doi.org/10.1371/journal.pone.0108485 PMID: 25254376

87. Janjua NZ, Skowronski DM, Hottes TS, Osei W, Adams E, Petric M, et al. Transmission dynamics and risk factors for pandemic H1N1-related illness: outbreak investigation in a rural community of British Columbia, Canada. Influenza Other Respir Viruses. 2012; 6(3):e54–62. https://doi.org/10.1111/j.1750-2659.2012.00344.x PMID: 22385647

88. Goh DL, Lee BW, Chia KS, Heng BH, Chen M, Ma S, et al. Secondary household transmission of SARS, Singapore. Emerg Infect Dis. 2004; 10(2):232–4. https://doi.org/10.3201/eid1002.030676 PMID: 15030688

89. Lau JT, Lau M, Kim JH, Tsui HY, Tsang T, Wong TW. Probable secondary infections in households of SARS patients in Hong Kong. Emerg Infect Dis. 2004; 10(2):235–43. https://doi.org/10.3201/eid1002.030626 PMID: 17098951

90. Wilson-Clark SD, Deeks SL, Gournis E, Hay K, Bondy S, Kennedy E, et al. Household transmission of SARS, 2003. CMAJ. 2006; 175(10):1219–23. https://doi.org/10.1503/cmaj.050876 PMID: 17098951

91. Drosten C, Meyer B, Müller MA, Corman VM, Al-Masri M, Hossain R, et al. Transmission of MERS-coronavirus in household contacts. N Engl J Med. 2014; 371(9):828–35. https://doi.org/10.1056/NEJMoa1405858 PMID: 25162889

92. Van Kerkhove MD, Alaswad S, Assiri A, Perera RAPM, Peiris M, El Bushra HE, et al. Transmissibility of MERS-CoV Infection in Closed Setting, Riyadh, Saudi Arabia, 2015. Emerg Infect Dis. 2019; 25(10):1802–9. https://doi.org/10.3201/eid2510.190130 PMID: 31423971

93. Petrosillo N, Viceconte G, Ergonol O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020.

94. Salathe M, Althaus CL, Neher R, Stringhini S, Hodcroft E, Fellay J, et al. COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation. Swiss Med Wkly. 2020; 150:w20225. https://doi.org/10.4414/smw.2020.20225 PMID: 32191813

95. Njuguna H, Wallace M, Simonson S, Tobolowsky FA, James AE, Bordelon K, et al. Serial Laboratory Testing for SARS-CoV-2 Infection Among Incarcerated and Detained Persons in a Correctional and Detention Facility—Louisiana, April-May 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(26):836–40. https://doi.org/10.15585/mmwr.mm6926e2 PMID: 32614816

96. Feaster M, Goh YY. High Proportion of Asymptomatic SARS-CoV-2 Infections in 9 Long-Term Care Facilities, Pasadena, California, USA, April 2020. Emerg Infect Dis. 2020; 26(10).

97. Graham NSN, Junghanss C, Downes R, Sendall C, Lai H, McKirdy A, et al. SARS-CoV-2 infection, clinical features and outcome of COVID-19 in United Kingdom nursing homes. J Infect. 2020.

98. Ing AJ, Cocks C, Green JP. COVID-19: in the footsteps of Ernest Shackleton. Thorax. 2020; 75(8):693–4. https://doi.org/10.1136/thoraxjnl-2020-215091 PMID: 32461231
99. James A, Eagle L, Phillips C, Hedges DS, Bodenhamer C, Brown R, et al. High COVID-19 Attack Rate Among Attendees at Events at a Church—Arkansas, March 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(20):632–5. https://doi.org/10.15585/mmwr.mm6920e2 PMID: 32437338

100. Lewis M, Sanchez R, Auerbach S, Nam D, Lanier B, Taylor J. COVID-19 Outbreak Among College Students After a Spring Break Trip to Mexico—Austin, Texas, March 26-April 5, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(26):830–5. https://doi.org/10.15585/mmwr.mm6926e1 PMID: 32614814

101. Baggett TP, Keyes H, Sporn N, Gaeta JM. Prevalence of SARS-CoV-2 Infection in Residents of a Large Homeless Shelter in Boston. JAMA. 2020.

102. Jang S, Han SH, Rhee JY. Cluster of Coronavirus Disease Associated with Fitness Dance Classes, South Korea. Emerg Infect Dis. 2020; 26(8).

103. Yusef D, Hayajneh W, Awad S, Momany S, Khassawneh B, Samrah S, et al. Large Outbreak of Coronavirus Disease among Wedding Attendees, Jordan. Emerg Infect Dis. 2020; 26(9).

104. Antonio-Villa NE, Bello-Chavolla OY, Vargas-Vazquez A, Fermin-Martinez CA, Marquez-Salinas A, Bahena-Lopez JP. Health-care workers with COVID-19 living in Mexico City: clinical characterization and related outcomes. medRxiv. 2020.

105. Parcell B, Brechin K, Allstaff S, Park M, Third W, Bean S, et al. Drive-through testing for SARS-CoV-2 in symptomatic health and social care workers and household members: an observational cohort study in Tayside, Scotland. medRxiv. 2020.

106. Yamagishi T. Environmental sampling for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during a coronavirus disease (COVID-19) outbreak aboard a commercial cruise ship. medRxiv. 2020:2020.06.02.20088567.

107. Wang KW, Gao J, Wang H, Wu XL, Yuan QF, Guo FY, et al. Epidemiology of 2019 novel coronavirus in Jiangsu Province, China after wartime control measures: A population-level retrospective study. Travel Med Infect Dis. 2020;101654. https://doi.org/10.1016/j.tmaid.2020.101654 PMID: 32289214

108. Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, Jacobs JR, et al. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N Engl J Med. 2020.

109. Dailey SF, Kaplan D. Shelter-in-place and mental health: an analogue study of well-being and distress. J Emerg Manag. 2014; 12(2):121–31. https://doi.org/10.5055/jem.2014.0166 PMID: 24828908

110. Glatman-Freedman A, Portelli I, Jacobs SK, Mathew JI, Slutzman JE, Goldfrank LR, et al. Attack rates assessment of the 2009 pandemic H1N1 influenza A in children and their contacts: a systematic review and meta-analysis. PLoS One. 2012; 7(11):e50228. https://doi.org/10.1371/journal.pone.0050228 PMID: 23284603

111. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13):1239–42. https://doi.org/10.1001/jama.2020.2648 PMID: 32091533

112. Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, et al. Spread of SARS-CoV-2 in the Icelandic Population. N Engl J Med. 2020; 382(24):2302–15. https://doi.org/10.1056/NEJMoa2006100 PMID: 32289214

113. Lavezze E, Franchin E, Ciavarella C, Cuomo-Dannenburg G, Barzon L, Del Vecchio C, et al. Suppression of COVID-19 outbreak in the municipality of Vo, Italy. medRxiv. 2020:2020.04.17.20053157.

114. Mehta NS, Mytton OT, Mullins EWS, Fowler TA, Falconer CL, Murphy OB, et al. SARS-CoV-2 (COVID-19): What do we know about children? A systematic review. Clin Infect Dis. 2020.

115. Cai J, Xu J, Lin D, Yang z, Xu L, Qu Z, et al. A Case Series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clinical Infectious Diseases. 2020.

116. Yom-Tov E, Johansson-Cox I, Lampos V, Hayward AC. Estimating the secondary attack rate and serial interval of influenza-like illnesses using social media. Influenza Other Respir Viruses. 2015; 9 (4):191–9. https://doi.org/10.1111/irv.12321 PMID: 25962320