Data Article

Dataset of allele and genotype frequencies of the three functionally significant polymorphisms of the MMP genes in Russian patients with primary open-angle glaucoma, essential hypertension and peptic ulcer

Oksana Minyaylo, Dina Starikova, Maria Moskalenko, Irina Ponomarenko, Evgeny Reshetnikov, Volodymyr Dvornyk, Mikhail Churnosov

A R T I C L E I N F O

Article history:
Received 7 June 2020
Revised 1 July 2020
Accepted 3 July 2020
Available online 8 July 2020

Keywords:
Single nucleotide polymorphism
Primary open-angle glaucoma
Essential hypertension
Peptic ulcer
MMP

A B S T R A C T

Data on the allele and genotype frequencies of the three functionally significant single nucleotide polymorphisms (SNPs) of the matrix metalloproteinases (MMP) genes (rs1799750 MMP1, rs3918242 and rs17576 MMP9) in Russian patients with primary open-angle glaucoma (POAG), essential hypertension (EH) and peptic ulcer (PU) are presented. Association studies identified these SNPs as possible significant markers associated with many multifactorial disorders, including POAG, EH, and PU. The frequencies of alleles and genotypes of the three SNPs in Russian patients with POAG, EH, and PU were presented separately for the entire study sample, females, and males, respectively. The data can be used as a reference for the Russian population.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Biology
Specific subject area	Genetics
Type of data	Table and figure
How data were acquired	MALDI/TOF mass spectrometry using the Sequenom MassARRAY 4.0 platform (Agena Bioscience™)
Data format	Raw and analyzed data
Parameters for data	Whole blood (5 ml) was drawn to a plastic vial (Vacutainer®) containing 0.5 M EDTA (pH=8.0). Genomic DNA was isolated by the standard phenol-chloroform method. DNA samples were first checked for quality (concentration 10–15 ng/mL, purity A260/A280=1.7–2.0) and then used for genotyping. About 5% of blind replicate samples were used for genotyping quality control; the repeatability test indicated a 100% concordance rate.
collection	Description of data collection
	The quality of isolated DNA was checked by the Nanodrop-2000 spectrophotometer. Genotyping was performed on the Sequenom MassARRAY® iPLEX platform using the MALDI-TOF (matrix-assisted laser desorption/ ionization time-of-flight) mass spectrometry. Assay Design Suite 1.0 was used to design a multiplex genotyping assay (http://agenabio.com/assay-design-suite-10-software).
Data source location	Belgorod, Russia
Data accessibility	The data is available with this article

Value of the data

- The frequencies of alleles and genotypes of rs1799750 MMP1, rs3918242 and rs17576 MMP9 in Russian patients with POAG, EH, and PU are presented separately for the entire cohort, male and female participants.
- The polymorphisms rs1799750 MMP1, rs3918242 and rs17576 MMP9 may be associated with POAG, EH, and PU.
- The data on the allele and genotype frequencies of the MMP genes can be used for meta-analyses of genetic studies on POAG, EH, and PU.
- The presented data of the MMP genes polymorphisms can serve as a reference for population and genetic association studies of the common disorders.

1. Data description

The dataset contains the raw data (supplementary Table), frequencies of alleles and genotypes (Table 1) for three SNPs of two MMP genes (rs1799750 MMP1, rs3918242 and rs17576 MMP9) in Russian patients diagnosed with POAG, EH, and PU. These polymorphisms were previously reported for their association with POAG, EH, and PU (Table 2) [1–45]. The studied SNPs manifest the regulatory potential (Table 3), which is evidenced by several eQTLs (Table 4) and splicing QTLs (Table 5). The allele and genotype frequencies are provided separately for the whole study cohort, females, and males, respectively. No significant differences in the frequencies of alleles and genotypes were found between the male and female participants for each of the studied diseases.

2. Experimental design, materials, and methods

2.1. Study subjects

The study cohort consisted of 1556 Russian participants, including 536 patients diagnosed with POAG (290 females and 246 males), 621 patients with EH (359 females and 262 males), and 399 patients with PU (211 females and 188 males). The study participants were clinically
Diseases	SNP genotype or allele rs1799750	All n	frequency	Male n	frequency	Female n	frequency
POAG	1G1G	152	0.2836	73	0.2968	79	0.2724
	1G2G	267	0.4981	131	0.5325	136	0.4690
	2G2G	117	0.2183	42	0.1707	75	0.2586
	1G	571	0.5327	277	0.5630	294	0.5069
	2G	501	0.4673	215	0.4370	286	0.4931
	rs3918242						
	CC	385	0.7183	175	0.7114	210	0.7241
	CT	133	0.2482	65	0.2642	68	0.2345
	TT	18	0.0335	6	0.0244	12	0.0414
	C	903	0.8424	415	0.8435	488	0.8414
	T	169	0.1576	77	0.1565	92	0.1586
	rs17576						
	AA	205	0.3825	110	0.4472	95	0.3276
	GA	260	0.4851	108	0.4390	152	0.5241
	GG	71	0.1324	28	0.1138	43	0.1483
	A	670	0.6250	328	0.6667	342	0.5897
	G	402	0.3750	164	0.3333	238	0.4103
EH	rs1799750						
	1G1G	169	0.2721	65	0.2481	104	0.2987
	1G2G	309	0.4976	140	0.5334	169	0.4707
	2G2G	143	0.2303	57	0.2175	86	0.2396
	1G	647	0.5209	270	0.5153	377	0.5251
	2G	595	0.4791	254	0.4847	341	0.4749
	rs3918242						
	CC	444	0.7150	189	0.7214	255	0.7103
	CT	149	0.2399	64	0.2443	85	0.2368
	TT	28	0.0451	9	0.0343	19	0.0529
	C	1037	0.8349	442	0.8435	595	0.8287
	T	205	0.1651	82	0.1565	123	0.1713
	rs17576						
	AA	229	0.3688	100	0.3817	129	0.3593
	GA	311	0.5008	131	0.5000	180	0.5014
	GG	81	0.1304	31	0.1183	50	0.1393
	A	769	0.6192	331	0.6317	438	0.6010
	G	473	0.3808	193	0.3683	280	0.3899
PU	rs1799750						
	1G1G	121	0.3033	45	0.2394	76	0.3602
	1G2G	195	0.4887	98	0.5212	97	0.4597
	2G2G	83	0.2080	45	0.2394	38	0.1801
	1G	437	0.5476	188	0.5000	249	0.5901
	2G	361	0.4524	188	0.5000	173	0.4099
	rs3918242						
	CC	277	0.6942	129	0.6862	148	0.7014
	CT	115	0.2883	58	0.3085	57	0.2701
	TT	7	0.0017	1	0.0053	6	0.0285
	C	669	0.8383	316	0.8404	353	0.8365
	T	129	0.1617	60	0.1596	69	0.1635
	rs17576						
	AA	142	0.3559	69	0.3670	73	0.3460
	GA	184	0.4612	83	0.4415	101	0.4787
	GG	73	0.1829	36	0.1915	37	0.1753
	A	468	0.5865	221	0.5878	247	0.5853
	G	330	0.4135	155	0.4122	175	0.4147

Abbreviations: POAG - primary open-angle glaucoma, EH - essential hypertension, PU - peptic ulcer.
Table 2
The literature data about associations of the studied polymorphisms of the MMP genes with POAG, PU and some digestive diseases (gastric and esophageal cancer), EH and IS with EH.

SNP	Gene	Number of publications in PubMed/PubMed Central	Phenotype	Association (significance) (associated allele)	Reference
rs1799750	MMP1	70/119	POAG	**OR = 1.64, p = 0.01**	[1]
rs1799750	MMP1		POAG	**OR = 1.64, p = 0.002**	[2]
rs1799750	MMP1		POAG	**OR = 1.34, p = 0.017 (2 G)**	[3]
rs1799750	MMP1		POAG	**OR = 2.04, p<0.001 (2 G)**	[4]
rs1799750	MMP1		POAG	**OR = 1.35, p = 0.017 (2 G)**	[5]
rs1799750	MMP1		peptic ulcer	**OR = 3.46, p = 0.03 (1 G/1 G)**	[6]
rs1799750	MMP1		gastric cancer	**OR = 3.34, p = 0.016 (2 G/2 G)**	[7]
rs1799750	MMP1		gastric cancer	**OR = 1.05, p = 0.013 (2 G)**	[8]
rs1799750	MMP1		IS with hypertension	**OR = 1.54, p = 0.005 (2 G)**	[9]
rs1799750	MMP1		IS with hypertension	**OR >1; p<0.05 (2 G)**	[10]
rs1799750	MMP1		IS with hypertension	**p>0.05**	[11]
rs1799750	MMP1		essential hypertension in men	**OR = 2.58; p = 0.04 (together with rs11568818, rs1320632, rs11225395)**	[12–17, 18]
rs3918242	MMP9	106/127	POAG	**OR = 1.63; p = 0.002 (T)**	[19]
rs3918242	MMP9		POAG	**OR = 1.55, p = 0.012 (T)**	[20]
rs3918242	MMP9		POAG	**OR = 1.46, p = 0.032 (CT+TT)**	[21]
rs3918242	MMP9		peptic ulcer	**p>0.05**	[22]
rs3918242	MMP9		gastric cancer	**OR = 2.60; p<0.05 (together with rs17576 and rs17577)**	[23]
rs3918242	MMP9		esophageal cancer	**OR = 2.71; p = 0.02 (CC)**	[24]
rs3918242	MMP9		gastric cancer	**p>0.05**	[25]
rs3918242	MMP9		IS with hypertension	**OR = 2.76; p = 0.003 (TT)**	[26]
rs3918242	MMP9		IS with hypertension	**OR = 1.73; p<0.05 (T)**	[27]
rs3918242	MMP9		IS with hypertension	**OR = 2.20; p<0.05 (TT)**	[28]
rs3918242	MMP9		IS with hypertension	**OR = 2.08; p = 0.016 (T)**	[29]
rs3918242	MMP9		IS with hypertension	**OR<1; p = 0.001 (CC)**	[30]

(continued on next page)
SNP	Gene	Number of publications in PubMed/PubMed Central	Phenotype	Association (significance) (associated allele)	Reference
			IS with hypertension	OR > 1; $p = 0.009$ (T)	[31]
			IS with hypertension	OR = 5.53; $p = 0.001$ (CC)	[32]
			IS with hypertension	OR = 1.43; $p = 0.001$ (T)	[33]
			IS with hypertension	OR = 5.47; $p < 0.05$ (TT)	[34]
			IS with hypertension	OR = 1.27; $p = 0.01$ (T)	[12]
			IS with hypertension	$p > 0.05$	[35]
			essential hypertension	OR = 1.30; $p = 0.002$	[36]
			isolated systolic hypertension	OR > 1; $p = 0.009$ (T)	[37]
			left ventricular hypertrophy in hypertensive patients	OR > 1; $p = 0.0015$ (together with rs2234681 and rs17576)	[38]
			hypertension of pregnancy	OR < 1; $p = 0.007$ (CC)	[39]
			essential hypertension in children	OR > 1; $p < 0.05$ (TT)	[40]
			essential hypertension	$p > 0.05$	[41]
rs17576	MMP9	78/97	POAG	OR = 1.96; $p = 0.0005$ (AG)	[20]
			POAG	OR = 0.66; $p = 0.03$ (A)	[21]
			POAG	OR = 1.53; $p = 0.034$ (GG)	[42]
			POAG in men	OR = 0.56; $p = 0.003$ (together with rs2250889)	[43]
			POAG	OR = 2.34; $p = 0.01$ (GG)	[4]
			POAG	$p > 0.05$	[6]
			peptic ulcer	OR = 0.49; $p = 0.007$ (AA)	[7]
			gastric cancer	OR = 4.34; $p < 0.05$ (Q)	[23]
			gastric cancer	$p > 0.05$	[44]
			IS with hypertension	OR = 0.91; $p = 0.04$ (GG)	[45]
			IS with hypertension	$p > 0.05$	[46]
			left ventricular hypertrophy in hypertensive patients	OR > 1; $p = 0.0015$ (together with rs2234681 and rs3918242)	[38]
			essential hypertension	OR > 1; $p < 0.05$ (AA)	[41]
			isolated systolic hypertension	$p > 0.05$	[37]

Abbreviations: POAG - primary open-angle glaucoma, EH - essential hypertension, IS - ischemic stroke, PU - peptic ulcer.
Table 3
Regulatory effects of the 3 SNPs of the MMP genes (HaploReg, v4.1, update 05.11.2015) (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php).

c chr	pos (hg38)	variant	R ref	AM R	AS N	EU R	GE RP	Sip hy	Prom oter histone marks	Enhancer histone marks	DNA see	Prote ins boun ded	Motif s changed	GWAS hits	NHGRI/ EBI	GRA SP QTL	Selec ted eQTL	GENC ODE	RefSeq	dbSN P	func annot
1	102799 764	rs1799 750	T	C	0.5	0.4	0.3	0.4	5 tissues	5 tissues	CFOS	GATA 2	21 altered motifs	8 hits	1.6kb 5' of MMP1	LOC10028 8077	intronic				
2	460073 37	rs3918 342	C	0.1	0.0	0.1	0.1	1 tissues	1 tissues	BLD, THYM, SPLN IPS C	4 altered motifs	1 hit	6 hits	1.6kb 5' of MMP9	1.6kb 5' of MMP9	missense					
2	460115 86	rs1757 8	A	0.3	0.2	0.7	0.3	17 tissues	4 tissues	ESC	Pax-4	12 hits	MMP9	MMP9	missense						
Chr	SNP	Reference allele	Alternative allele	Gene expression	Effect Size (β)	P-Value	Tissue														
-----	-------	------------------	-------------------	-----------------	----------------------	---------	---------------------------------------														
11	rs1799750	TC	T	MMP1	-0.66	9.6E-84	Cells - Cultured fibroblasts														
				MMP1	-0.52	1.3E-25	Thyroid														
				MMP1	-0.42	1.9E-25	Lung														
				MMP1	-0.58	5.8E-23	Heart - Atrial Appendage														
				MMP1	-0.45	0.0000000000000000000017	Adipose - Visceral (Omentum)														
				MMP1	-0.46	0.0000000000000000000066	Heart - Left Ventricle														
				MMP1	-0.36	0.0000000000000000000022	Heart - Left Ventricle														
				MMP1	-0.32	0.000000013	Esophagus - Muscularis														
				MMP1	-0.35	0.000000015	Artery - Aorta														
				MMP1	-0.28	0.000000024	Adipose - Subcutaneous														
				MMP1	-0.22	0.000000038	Artery - Tibial														
				MMP10	-0.19	0.0000025	Lung														
				MMP1	-0.3	0.0000028	Esophagus - Gastroesophageal Junction														
				MMP1	-0.28	0.00000075	Breast - Mammary Tissue														
				WTAPP1	-0.15	0.00004	Testis														
20	rs3918242	C	T	SLC12A5	0.61	0.0000000000000000000059	Lung														
				SLC12A5	0.8	0.0000000000000000000016	Adipose - Visceral (Omentum)														
				SLC12A5	0.6	0.0000000000000000000045	Adipose - Subcutaneous														
				SLC12A5	0.69	0.0000000000000000000045	Breast - Mammary Tissue														
				SLC12A5	0.63	0.0000000000000000000082	Artery - Aorta														
				SLC12A5	0.78	0.000000018	Spleen														
				SLC12A5	-0.61	0.000000019	Adrenal Gland														
				SNX21	0.21	0.000000999	Muscle - Skeletal														
				SLC12A5	0.45	0.00000029	Thyroid														
				SLC12A5	0.43	0.00000037	Nerve - Tibial														
				SLC12A5	0.43	0.00000038	Uterus														

(continued on next page)
Chr	SNP	Reference allele	Alternative allele	Gene expression	Effect Size (β)	P-Value	Tissue
20	rs17576	A	G	SLC12A5	0.41	0.0000053	Skin - Sun Exposed (Lower leg)
				SLC12A5	0.48	0.000001	Skin - Not Sun Exposed (Suprapubic)
				PLTP	−0.25	0.0000028	Nerve - Tibial
				SLC12A5	−0.57	0.0000000000043	Adrenal Gland
				PLTP	−0.26	0.00000000033	Lung
				PLTP	−0.32	0.000000026	Heart - Left Ventricle
				PLTP	−0.24	0.000000034	Nerve - Tibial
				PLTP	−0.2	0.000000021	Adipose - Subcutaneous
				NEURL2	−0.3	0.000000026	Adipose - Visceral (Omentum)
				PLTP	−0.2	0.000000046	Thyroid
				PLTP	−0.19	0.000000055	Artery - Tibial
				PLTP	−0.37	0.000000066	Adrenal Gland
				NEURL2	−0.24	0.0000015	Adipose - Subcutaneous
				PLTP	−0.25	0.000002	Artery - Aorta
				NEURL2	−0.31	0.0000021	Artery - Aorta
				PLTP	−0.18	0.0000024	Adipose - Visceral (Omentum)
				PLTP	−0.3	0.0000025	Colon - Sigmoid
				PLTP	−0.22	0.0000033	Brain - Frontal Cortex (BA9)
				PCIF1	0.35	0.0000041	Adrenal Gland
				ZSWIM1	−0.26	0.0000068	Adipose - Visceral (Omentum)
				RP3–337018.9	−0.22	0.0000076	Lung
				PLTP	−0.32	0.0000091	Pituitary
				SNX21	0.14	0.0000012	Muscle - Skeletal
				RP3–337018.9	−0.2	0.0000028	Adipose - Subcutaneous
				NEURL2	−0.22	0.000036	Lung
				NEURL2	−0.22	0.000073	Thyroid
Table 5
The sQTL values of the 3 SNPs of the MMP genes. (according to Genotype-Tissue Expression (GTEx) (http://www.gtexportal.org/)).

Chr	SNP	Reference allele	Alternative allele	Gene Symbol	Intron Id	Effect Size (β)	P-Value	Tissue
11	rs1799750	TC	T	WTAPP1	102,832,906:102,833,452:clu_16,168	-0.51	0.000000000065	Testis
20	rs3918242	C	T	CD40	46,126,741:46,128,138:clu_33,045	0.5	0.00000000029	Thyroid
				CD40	46,126,741:46,128,138:clu_32,508	0.45	0.00000000067	Lung
				CD40	46,126,741:46,128,138:clu_32,508	0.45	0.00000000067	Lung
				SLC12AS	46,021,886:46,023,369:clu_29,529	0.79	0.00000000098	Pituitary
				CD40	46,126,741:46,128,138:clu_27,442	0.49	0.000000041	Artery - Aorta
				ACOT8	45,841,956:45,844,263:clu_24,540	0.58	0.00000011	Heart - Left Ventricle
				CD40	46,126,741:46,128,138:clu_22,055	0.74	0.00000015	Cells - EBV-transformed lymphocytes
				ACOT8	45,841,956:45,844,263:clu_27,123	0.49	0.00000041	Heart - Atrial Appendage
20	rs17576	A	G	SLC12AS	46,021,886:46,023,369:clu_29,529	0.63	0.000000000093	Pituitary
				SLC12AS	46,023,071:46,023,369:clu_24,852	-0.45	0.000000033	Brain - Cortex
				SLC12AS	46,021,886:46,023,369:clu_26,648	0.46	0.000002	Brain - Cerebellum
				SLC12AS	46,021,886:46,023,369:clu_53,353	0.38	0.000011	Testis
examined at the Department of Eye Microsurgery (patients with POAG), Department of Cardiology (patients with EH), and Department of Gastroenterology (patients with PU) of St. Isaaf Belgorod Regional Clinical Hospital. All participants were self-reported unrelated Russians born in Central Russia [46]. The study was approved by the Regional Ethics Committee of Belgorod State University. All participants signed an informed consent prior to the enrolment to this study.

2.2. DNA analysis

Phlebotomy was performed by a certified nurse. Blood (5 ml) was drawn from the ulnar vein to a plastic vial (Vacutainer®) with 0.5 M EDTA (pH = 8.0). Total genomic DNA was isolated from the buffy coat by the standard phenol-chloroform protocol [47] and then checked for quality using Nanodrop 2000 spectrophotometer (Thermo Scientific, Inc.). Only samples with A260/A280 = 1.7–2.0 were used for the analysis. The isolated DNA was stored at −80°C.

Three SNPs of the MMP genes (rs1799750 MMP1, rs3918242 and rs17576 MMP9) were selected for the analysis. The following selection criteria were applied [48,49]: 1) Previously reported associations with POAG, EH and PU (Table 2), 2) Regulatory potential (regSNP) (Table 3), 3) Effect on gene expression (eSNP) (Table 4), 4) Splicing QTLs (sSNP) (Table 5), and 5) MAF > 5%.

The selected loci were associated with POAG, EH and PU in previously published candidate gene association studies (Table 2) and have functional significance: significant regulatory potential (Table 3) (determined using the online tools HaploReg, v4.1 update 05.11.2015, https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php), influence gene expression level (Table 4) and involved in splicing QTLs (Table 5) (determined using the GTExportal data, http://www.gtexportal.org/).

The DNA samples used for the analysis had concentration 10–15 ng/ml. A single well iPLEX SNP genotyping assay was designed using the Assay Design Suite 1.0 (http://agenabio.com/assay-design-suite-10-software). For this purpose, three SNPs of interest were retrieved from dbSNP of NCBI and imported into the software according to their IDs. DNA genotyping was performed on the MALDI-TOF mass spectrometry iPLEX platform (Agena Bioscience Inc, San Diego, CA).

For quality control of genotyping, 5% of blind replicate samples were included. The concordance for replicate samples was 100%.

2.3. Statistical analysis

The studied SNPs were checked for their correspondence to the Hardy-Weinberg equilibrium (HWE) using the chi-square test. The frequencies of alleles and genotypes were analyzed for possible differences between the females and males in the study sample using the Kruskal-Wallis test.

Declaration of Competing Interest

The authors have no known competing financial interests or personal relationships that might have, or could be perceived to have influenced the results reported in this article.

Acknowledgments

The study of POAG and EH was supported by the grant of the President of the Russian Federation (NS-2609.2020.7).
Supplementary materials

Supplementary material associated with this article can be found in the online version, at doi:10.1016/j.dib.2020.106004.

References

[1] M. Chen, X. Yu, J. Xu, J. Ma, X. Chen, B. Chen, Y. Gu, K. Wang, Association of gene polymorphisms with primary open angle glaucoma: a systematic review and meta-analysis, Invest Ophthalmol. Vis. Sci. 60 (4) (2019) 1105–1121, doi:10.1167/iovs.18–25922.

[2] M. He, W. Wang, X. Han, W. Huang, Matrix metalloproteinase-1 rs1799750 polymorphism and glaucoma: a meta-analysis, Ophthalmol. Genet. 38 (3) (2017) 211–216, doi:10.1080/10438828.2016.1193877.

[3] I. Majsterek, L. Markiewicz, K. Przybylowska, Association of MMP1-1607 1G/2G and TIMP1 372 T/C gene polymorphisms with risk of primary open angle glaucoma in a Polish population, Med. Sci. Monit. 17 (7) (2011) CR417–CR421, doi:10.12659/msm.881854.

[4] S. Micheal, S. Yousaf, M.I. Khan, F. Akhtar, F. Islam, W.A. Khan, A.I. Hollander, R. Qamar, A. Ahmed, Polymorphisms in matrix metalloproteinases MMP1 and MMP9 are associated with primary open-angle and angle closure glaucoma in a Pakistani population, Mol. Vis. 19 (2013) 441–447.

[5] L. Markiewicz, I. Majsterek, K. Przybylowska, L. Dziki, M. Waszczyk, M. Gacek, A. Kaminska, J. Szaflik, J.P. Szaflik, Gene polymorphisms of the MMP1, MMP9, IL-1beta and TIMP1 and the risk of primary open-angle glaucoma, Acta Ophthalmol. 91 (2013) e516–e523, doi:10.1111/aos.12149.

[6] G. Mosshöck, M. Weger, C. Fasching, C. Zimmermann, O. Schmut, W. Renner, Y. El-Shahrawi, Role of functional single nucleotide polymorphisms of MMP1, MMP2, and MMP9 in open angle glaucomas, Mol. Vis. 16 (2010) 1764–1770.

[7] E.K. Shyamardanova, A.K. Nurgaliyeva, I.M. Khidiyatova, et al., Role of allelic genes of matrix metalloproteinases and their tissue inhibitors in the risk of peptic ulcer disease development, Russ. J. Genet. 52 (2016) 320–330 doi:10.1134/S1022795416020113.

[8] K. Devulapalli, A.C. Bhayal, S.K. Porike, Role of interstitial collagenase gene promoter polymorphism in the etiology of gastric cancer, Saudi. J. Gastroenterol. 20 (5) (2014) 309–314, doi:10.4103/1319–3767.146193.

[9] P. Peng, Y. Xu, Association between promoter polymorphisms of matrix metalloproteinase-1 and gene polymorphisms and ischemic stroke: a meta-analysis, Mol. Neurobiol. 50 (3) (2014) 979–985, doi:10.1007/s12035-014–8687-8.

[10] G. Zhang, W. Li, Y. Guo, D. Li, Y. Liu, S. Xu, MMP gene polymorphisms, MMP-1 –1607 1G/2G, –519 A/G, and MMP-12 –182 A/G, and ischemic stroke: a meta-analysis, J. Stroke Cerebrovasc. Dis. 27 (1) (2018) 140–152, doi:10.1016/j.jsctc.2017.08.021.

[11] S. Misra, P. Talwar, A. Kumar, P. Kumar, R. Saggar, D. Vibha, A.K. Pandit, A. Gulati, S. Kushwaha, K. Prasad, Association between matrix metalloproteinase family gene polymorphisms and risk of ischemic stroke: a systematic review and meta-analysis of 29 studies, Gene 672 (2018) 180–194, doi:10.1016/j.gene.2018.06.027.

[12] K. Chehaibi, M.Y. Hria, S. Nouira, F. Maatouk, K. Ben Hamda, M.N. Slimane, Matrix metalloproteinase-1 and matrix metalloproteinase-12 gene polymorphisms and risk of ischemic stroke in a Tunisian population, J. Neurol. Sci. 342 (2014) 107–113, doi:10.1016/j.jns.2014.04.036.

[13] X.Y. Huang, L.Y. Han, X.D. Huang, C.H. Guan, X.L. Mao, Z.S. Ye, Association of Matrix Metalloproteinase-1 and Matrix Metalloproteinase–3 Gene Variants with Ischemic Stroke and Its Subtype, J. Stroke Cerebrovasc. Dis. 26 (2) (2017) 368–375, doi:10.1016/j.jstrokecerebrovasdis.2016.09.034.

[14] A. Polonikov, L. Rymarova, E. Klyosova, A. Volkova, I. Azarova, O. Bushueva, M. Bykanova, I. Bocharova, S. Zhabin, M. Chornosov, V. Laskov, M. Solodilova, Matrix metalloproteinases as target genes for gene regulatory networks driving cellular and cellular pathways related to a multistep pathogenesis of cerebrovascular disease, J. Cell Biochem. 120 (10) (2019) 16467–16482, doi:10.1002/jcb.29881.

[15] M.I. Moskalenko, I.V. Ponomarenko, A.V. Polonikov, N.I. Zhernakova, O.A. Efremova, M.I. Chornosov, The role of stress factors and genetic predisposition in the development of stroke in patients with essential hypertension, Zh. Nevrol. Psikhiatr. Im S S Korsakova 119 (3. Vyp. 2) (2019) 11–17, doi:10.17176/jnervoe20191903211.

[16] M.I. Moskalenko, I.V. Ponomarenko, A.V. Polonikov, N.I. Zhernakova, O.A. Efremova, M.I. Chornosov, The role of the stress factor in mediating the genetic predisposition to stroke of the background of hypertensive disease, Neurosci. Behav. Physiol. 50 (1) (2020) 143–148.

[17] M.I. Moskalenko, S.N. Milanova, I.V. Ponomarenko, A.V. Polonikov, M.I. Chornosov, Study of associations of polymorphism of matrix metalloproteinases genes with the development of arterial hypertension in men, Kardiologiya 59 (7S) (2019) 31–39, https://doi.org/10.18087/cardio.2598.

[18] M.I. Moskalenko, I.V. Ponomarenko, A.V. Polonikov, M.I. Chornosov, Polymorphic locus RS11568818 of the MMP7 gene is associated with the development of essential hypertension in women, Russ. J. Cardiol. 10 (10) (2018) 14–17 (In Russian) https://doi.org/10.15829/1560–4071-2018-10–14-17.

[19] F. Zhao, Z. Fan, X. Huang, Role of matrix metalloproteinase-9 gene polymorphisms in glaucoma: a hospital-based study in Chinese patients, J. Clin. Lab. Anal. 34 (3) (2020) e23105 doi.org/10.1002/jcla.23105.

[20] N. Thakur, M. Kupani, R.K. Pandey, R. Mannan, A. Pruthi, S. Mehrotra, Genetic association of -1562C>T polymorphism in the MMP9 gene with primary glaucoma in a north Indian population, PLoS ONE 13 (2) (2018) e0192636, doi:10.1371/journal.pone.0192636.

[21] M.Y. Wu, Y. Wu, Y. Zhang, C.Y. Liu, C.Y. Deng, L. Peng, L. Zhou, Associations between matrix metalloproteinase gene polymorphisms and glaucoma susceptibility: a meta-analysis, BMC Ophthalmol. 17 (1) (2017) 48 doi:10.1186/s12886-017-0442-2.
K. Nucleic (2020) 259–264, Y. M.R. pertrophy R. MMP-9 isolated H A X. the polymorphisms M.V. Moreno, Li, Q. J. Neurosurg. e01492 doi: (4), gene hypertensive in of Q. 245–251 Res. MMP9. P. V.L. Z. Hattori, Zhang, V.H. Sri Polyakova, A. X.J. glaucoma with genes Polyakova, I.N. 8955-8964. 10.1159/010.1016-0608-2.

L. Zhang, RX. Xi, X.Z. Zhang, Matrix metalloproteinase-9 gene polymorphisms associated with risk and clinical outcome of esophageal cancer, Genet. Mol. Res. 14 (2) (2015) 4616–4624, doi: 10.4238/2015.May.4.20.

D. Krishnaveni, A.C. Bhayal, K. Sri Manjari, A. Vidyasagar, M. Uma Dev, M. Ramanna, A. Jothy, P. Nallari, A. Venkateshwar, MMP 9 gene promoter polymorphism in gastric cancer, Indian J Clin Biochem 27 (3) (2012) 259–264, doi: 10.1007/s12291-012-012-0.2.

X. Yi, Q. Zhou, G. Sui, G. Ren, L. Tan, J. Li, J. Lin, S Bao, Interactions among variants in PS3 apoptotic pathway genes are associated with neurologic deterioration and functional outcome after acute ischemic stroke, Brain Behav. 00 (2020) e01492 https://doi.org/10.1002/brb3.1492.

K. Buraczynska, J. Kurzepa, A. Ksiazek, M. Buraczynska, K Rejdak, Matrix metalloproteinase-9 (MMP-9) gene polymorphism in stroke patients, Neuroim. Med. 17 (4) (2015) 385–390, doi: 10.1159/s102017-015-8367-5.

G. Wu, H. Cai, G. Li, S. Meng, J. Huang, H. Xu, M. Chen, M. Hu, W. Yang, C. Wang, Z. Wu, Y. Cai, Influence of the matrix metalloproteinase 9 Genes3918242 polymorphism on development of ischemic stroke: a meta-analysis, World Neurosurg. 133 (2020) e31–e61, doi: 10.1016/j.wneu.2019.08.026.

X. Yi, G. Sui, Q. Zhou, C. Wang, J. Lin, Z. Chai, J Zhou, Variants in matrix metalloproteinase-9 gene are associated with hemorrhagic transformation in acute ischemic stroke patients with atherothrombosis, small artery disease, and cardioembolic stroke, Brain Behav. 9 (2019) e01294 https://doi.org/10.1002/brb3.1294.

X. Yi, Q. Zhou, G. Sui, D. Fan, Y. Zhang, M. Shao, Z. Han, H. Luo, J. Lin, J Zhou, Matrix metalloproteinase-9 gene polymorphisms are associated with ischemic stroke severity and early neurologic deterioration in patients with atrial fibrillation, Brain Behav. 9 (2019) e01291 https://doi.org/10.1002/brb3.1291.

Y. Li, L. Chen, Y. Yao, J. Chen, W. Hu, M. Wang, S. Chen, X. Chen, S. Li, X. Gu, G. Ma, B. Zhao, W. Zhong, K Li, Association of polymorphisms of the matrix metalloproteinase 9 gene with ischaemic stroke in a Southern Chinese population, Cell Physiol. Biochem. 49 (6) (2018) 2188–2199, doi: 10.1159/000493823.

Y. Hao, S. Tian, M. Sun, Y. Zhu, Z. Nie, S Yang, Association between matrix metalloproteinase gene polymorphisms and development of ischemic stroke, Int. J. Clin. Exp. Pathol. 8 (9) (2015) 11647–11652.

T. Shen, J. Wang, X.L. Wang, W.S. Deng, P Sun, Association between the matrix metalloproteinase-9 rs3918242 polymorphism and ischemic stroke susceptibility: a meta-analysis, J. Stroke Cerebrovasc. Dis. 26 (5) (2017) 1136–1143, doi: 10.1016/j.jstrokecerebrovasdis.2016.12.036.

J.H. Zhao, Y.M. Xu, H.X. Xing, L.L. Su, S.B. Tao, X.J. Tian, H.Q. Yan, S.B Ji, Associations between matrix metalloproteinase-9 gene polymorphisms and the development of cerebral infarction, Genet. Mol. Res. 14 (4) (2016) 19418–19424, doi: 10.4238/2015. Y. Wang, L. Zhang, H. Huang, X. Qin, Z. Huang, J. Lan, S. Xu, H. Tang, C Huang, Relationship between the matrix metalloproteinase-9 gene polymorphisms and ischemic stroke, Int. J. Clin. Exp. Pathol. 12 (3) (2019) 949–956.

W. Yang, J. Lu, L. Yang, J.Z. Zhang, Association of Matrix Metalloproteinase-9 gene -1562C/T polymorphism with essential hypertension: a systematic review and meta-analysis article, Iran. J. Public Health 44 (11) (2015) 1445–1452.

R. Huang, L. Deng, A. Shen, J. Liu, H. Ren, D.L Xu, Associations of MMP1, 3, 9 and TIMP3 genes polymorphism with isolated systolic hypertension in Chinese han population, Int. J. Med. Sci. 10 (7) (2013) 840–847, doi: 10.7170/jims.11647–11652.

R. Lacchini, A.L. Jacob-Ferreira, M.R. Luizzon, F.B. Coeli, T.C. Izidoro-Toledo, S. Gasparini, M.C. Ferreira-Sae, R. Schreiber, W. Nadrzr Jr, J.E Tanus-Santos, Matrix metalloproteinase 9 gene haplotypes affect left ventricular hypertrophy in hypertensive patients, Clin. Chim. Acta 411 (23–24) (2010) 1940–1944, doi: 10.1016/j.cca.2010.08.008.

M.R. Luizzon, V.C. Sandrim, A.C. Palei, R. Lacchini, R.C. Cavalli, G. Duarte, J.E Tanus-Santos, Epistasis among eNOS, MMP-9 and VEGF maternal genotypes in hypertensive disorders of pregnancy, Hypertens. Res. 35 (9) (2012) 917–921, doi: 10.1007/s10992-012.6.

S.V. Goncharov, V.L. Gurianova, D.O. Stroy, T.I. Drevytyska, S.P. Kaplinskii, E.A. Nastenko, M. Litvinenko, R.V. Terletskyi, M.V. Khaitovych, O.O. Moibenko, V.E Dosenko, Genetic predisposition to essential hypertension in children: analysis of 17 single nucleotide polymorphisms, Fiziol. Zh. 59 (6) (2013) 12–24.

A.M.V. Ritter, A.P. de Faria, N.R. Barbato, A.R. Sabbatini, N.B. Corrêa, V. Brunelli, A. Fattori, R. Amorim, R. Modolo, H Moreno, The rs243866/243865 polymorphisms in MMP-2 gene and the relationship with BP control in obese resistant hypertensive subjects, Gene 646 (2018) 129–135, doi: 10.1016/j.gene.2017.12.023.

Y. Zhang, M. Wang, S Zhang, Association of MMP-9 gene polymorphisms with glaucoma: a meta-analysis, Ophthal. Res. 55 (4) (2016) 172–179, doi: 10.1159/000443627.

D.I. Svinareva, The contribution of gene-gene interactions of polymorphic loci of matrix metalloproteinases to susceptibility to primary open-angle glaucoma in men, Res. Results Biomed. 6 (1) (2020) 63–77 (In Russian), doi: 10.18413/2658-6553-2020-6-1-0-6.

J.H. Kim, J.A. Pyun, K.J. Lee, S.W. Cho, K.B Kwack, Study on association between single nucleotide polymorphisms of MMP7, MMP8, MMP9 genes and development of gastric cancer and lymph node metastasis, Korean J. Gastroenterol. 58 (5) (2011) 245–251.

R.M. Tanner, A.I. Lynch, V.H. Brophy, J.H. Eckfeldt, B.R. Davis, C.E. Ford, E. Boerwinkle, D.K Arnett, Pharmacogenetic associations of MMP9 and MMP12 variants with cardiovascular disease in patients with hypertension, PLoS ONE 6 (8) (2011) e23609 https://doi.org/10.1371/journal.pone.0023609.

I.N. Sorokina, N.A. Rudykh, I.N. Bezmanova, LS Polyakova, Population genetic characteristics and genetic epidemiological research of candidate genes associations with multifactorial diseases, Res. Results Biomed. 4 (2018) 20–30 (In Russian), doi: 10.18413/2313-8955-2018-4-20-0-3.

S.A. Miller, D.D. Dykes, H.F Polesky, A simple salting out procedure for extracting DNA from human nucleated cells, Nucleic Acids Res. 3 (1988) 1215, doi: 10.1093/nar/16.3.1215.
[48] I. Ponomarenko, E. Reshetnikov, O. Altuchova, A. Polonikov, I. Sorokina, A. Yermachenko, V. Dvornyk, M Churnosov, Association of genetic polymorphisms with age at menarche in Russian women, Gene 686 (2019) 228–236.

[49] I.V. Ponomarenko, Selection of polymorphic loci for association analysis in genetic-epidemiological studies, Res. Result Med. Pharm. (2018) 40–54 (in Russian), doi:10.18413/2313-8955-2018-4-2-0-5.