Association between routine hematological parameters and sudden sensorineural hearing loss: A meta-analysis

Wei Ni, Shao-Peng Song, Yi-Dao Jiang

Department of Otolaryngology-Head and Neck Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, 434020, PR China

Objective: Recent studies have shown that chronic inflammation contributes to the development of sudden sensorineural hearing loss (SSNHL). Some hematologic parameters have also been linked to the prognosis of SSNHL. However, the prognostic value of such hematological factors is not conclusive. This study explored the association of routine hematological parameters with SSNHL.

Methods: A systematic literature search was conducted in PubMed, Cochrane Library, Web of Science and Embase to identify eligible studies. Standardized mean deviation (SMD) and the 95% confidence interval (CI) were retrieved from relevant studies for analysis. Heterogeneity, subgroup, and publication bias analyses were performed.

Results: A total of 18 studies involving 1505 SSNHL patients and 1466 healthy persons were enrolled in the final analysis. The study population included 699 responders and 458 non-responders to treatment. Pooled results revealed that the neutrophil/lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR) value in the SSNHL patient group were higher than in the healthy group (SMD = 1.05, 95% CI: 0.86,1.24, p < 0.001, SMD = 0.52, 95% CI: 0.26,0.78, p < 0.001, respectively). However, there was no significant difference in the mean platelet volumes (MPV) between the groups (SMD = −0.03, 95% CI: 0.44,0.49, p = 0.38).

Conclusions: Our results show that NLR and PLR values can predict the onset and prognosis of SSNHL.

Keywords: Sudden sensorineural hearing loss, Prognosis, Neutrophil/lymphocyte ratio, Platelet/lymphocyte ratio, Meta-analysis

Contents

1. Introduction ... 48
2. Materials and methods .. 48
 2.1. Search strategy ... 48
 2.2. Inclusion and exclusion criteria 48
 2.3. Data extraction and quality assessment 48
 2.4. Statistical analysis .. 48
3. Results ... 49
 3.1. Literature search and study characteristics 49
 3.2. Meta-analysis .. 49

* Corresponding author. Department of Otolaryngology-Head and Neck Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, No. 60 Jingzhong Road, Jingzhou District, Jingzhou, Hubei, 434020, PR China.

E-mail address: 1172694129@qq.com (Y.-D. Jiang).

Peer review under responsibility of PLA General Hospital Department of Otolaryngology Head and Neck Surgery.

1 These two authors contributed to this work equally.

2 Present address: Department of Otolaryngology-Head and Neck Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, No. 60 Jingzhong Road, Jingzhou District, Jingzhou, Hubei 434020, PR China.

https://doi.org/10.1016/j.joto.2020.07.006

© 2020 PLA General Hospital Department of Otolaryngology Head and Neck Surgery. Production and hosting by Elsevier (Singapore) Pte Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

SSNHL is commonly described as a quick hearing loss of not less than 30 dB at three contiguous frequencies occurring within 72 h (Leung et al., 2016). The incidence of SSNHL varies between 5 and 20 cases per 100,000 in the adult population (Stachler et al., 2012). Several factors, such as viral infections, immune mediation, microcirculatory disturbances, and vascular disturbance have been associated with the onset of SSNHL. However, other unidentified factors are thought to play a role in the pathogenesis of this condition. Recent studies indicate that chronic inflammation is a major cause of sudden deafness (Hiramatsu et al., 2012; Ulu et al., 2013). This is because it contributes to microvascular injuries, atherogenesis (Hoffman et al., 2004), and endocochlear immune responses (Masuda et al., 2012). These factors directly increase the risk of cochlear ischemia. Hematological indices, including NLR, PLR, and MPV, are typical inflammatory markers. A recent study identified NLR and PLR as the new inflammatory response biomarkers in renal illness, cerebrovascular, Alzheimer’s disease, oncologic and ulcerative colitis. The study concluded that these biomarkers are more effective of inflammation than interleukin (IL)-6, IL-1β, IL-8 (K et al., 2016). Furthermore, MPV is a marker of platelet activation which can predict cardiovascular disease (Acet et al., 2016). To date, several studies have revealed a strong link between these hematologic parameters and the diagnosis/prognosis of SSNHL. Some studies reported that higher NLR, PLR, and MPV values may predict poor prognosis of SSNHL (K et al., 2016; Qiao et al., 2019; Sun et al., 2017). By contrast, other studies have challenged this association (Karli et al., 2013; Ikinciogullari et al., 2014; Lee et al., 2017). Thus, this meta-analysis was designed to clarify the association of these hematologic biomarkers with the diagnosis and prognosis of SSNHL patients.

2. Materials and methods

2.1. Search strategy

Relevant studies were searched in four databases, namely PubMed, Cochrane Library, Web of Science, and Embase from inception up to March 18, 2020. The search was performed using Medical Subject Headings (MeSH) terms combined with the following free words: “Hearing Loss, Sudden,” “Blood Cells,” “Lymphocytes,” “Neutrophils,” “Blood Platelets,” and “Leukocytes.” Additionally, we manually screened the reference lists of the retrieved papers to select other potentially relevant studies.

2.2. Inclusion and exclusion criteria

The criteria for selecting the relevant literature included: studies comparing NLR, PLR, and MPV values between healthy individuals and patients diagnosed with SSNHL, and (or) between recovered SSNHL patients and unrecovered SSNHL patients; studies that measured NLR, PLR, and MPV values before any treatments; provided the mean and standard deviation data; the study provided baseline data and study was published in English. In cases where multiple studies were performed on the same study population, the most representative study was included. The following articles were excluded: letters, comments, reviews, conference abstracts, case reports, studies lacking sufficient information in English, duplicate publications, studies with factors that affect NLR and PLR, such as previous steroid treatment, acute or chronic infectious diseases, rheumatic diseases, blood or endocrine diseases, etc.

2.3. Data extraction and quality assessment

Two researchers (N.W. and S.S.P.) screened for eligible studies and performed quality assessment separately. Any disagreements were settled through discussions. The following data were retrieved from the studies: first author, year, region, study design, sample size, age, gender, period, pretreatment NLR or PLR or MPV value, follow-up time, type of steroid, and definition of recovered patients. The Newcastle-Ottawa Scale (Cook and Reed, 2015) was used to estimate the quality of the studies which has scores ranging from 0 to 9 (the higher the score, the better the quality).

2.4. Statistical analysis

We performed statistical analyses in the Review manager 5.3 and Stata12.0 software. SMD and 95% CI values were compared
between groups. A two-tailed P value < 0.05 was considered statistically significant.

Heterogeneity among the included studies was determined using the Cochran Q test (P < 0.1 implied statistically significant heterogeneity) and I² statistic (a value below 25% indicated no heterogeneity; 25% to 50% implied moderate heterogeneity, and more than 50% indicated extreme heterogeneity) (Wu et al., 2016). If heterogeneity existed among the studies, a random effect’s model was used; otherwise, a fixed effect’s model was employed. When extreme heterogeneity existed among studies, subgroup analyses were performed by region, hematology analyzer, age, sample size, type of steroid, follow-up, brand audiometry device, and definition of recovered to investigate the potential confounding factors.

Sensitivity analysis was implemented by sequentially omitting one study at a time to confirm the stability of the pooled effect size. Publication bias was determined using the Egger test if more than five studies were available (Sutton et al., 2000); P > 0.1 implied no publication bias.

3. Results

3.1. Literature search and study characteristics

The search identified 799 papers, and one additional study was found by hand-searching the reference lists of included studies. After the removal of duplicate studies (n = 236), 564 were retained from the initial search. A further 520 articles were removed after reading the titles and abstracts of the relevant studies. From the remaining 44 articles, we excluded one study because it was not published in English, seven articles as they lacked outcomes of interest, five articles that did not give the mean and standard deviation of NLR, PLR, and MPV values, two articles that reported the same population, six letters, and five articles that focused on other topics. Finally, 18 studies (Ulu et al., 2013; K et al., 2016; Qiao et al., 2019; Karli et al., 2013; Ikinciogullari et al., 2014; Lee et al., 2017; Seo et al., 2014; Ozler, 2014; Kum et al., 2015; Kocak et al., 2017; Ha et al., 2019; Bulgurcu et al., 2017) were eligible for meta-analysis. (Fig. 1).

Overall, 1505 SSNHL patients and 1466 healthy controls were involved in the included studies, of which the number varied from 21 to 348 in the patient group, and 24 to 537 in the healthy group across studies. The critical characteristics of the included literature are summarized in Table 1.

3.2. Meta-analysis

3.2.1. NLR in the SSNHL and control groups

Overall, ten articles (Ulu et al., 2013; Qiao et al., 2019; Ikinciogullari et al., 2014; Lee et al., 2017; Seo et al., 2014; Ozler, 2014; Kum et al., 2015; Kocak et al., 2017; Ha et al., 2019; Bulgurcu et al., 2017) evaluated the diagnostic values of NLR in SSNHL in a total of 810 SSNHL patients and 1016 healthy controls. Owing to the extreme heterogeneity (P = 0.006, I² = 61%) among the included studies, a random-effects model was used to assess the pooled outcome. The NLR level of the control group was remarkably lower compared with that of the SSNHL group (SMD = 1.05, 95% CI: 0.86, 1.24, P < 0.001; Fig. 2). In subgroup analysis, region, hematology analyzer, and sample size were found to be sources of heterogeneity (Table 2). However, age was not a source of heterogeneity (Table 2).

3.2.2. PLR in SSNHL and control groups

Overall, seven papers (Qiao et al., 2019; Ikinciogullari et al., 2014; Lee et al., 2017; Seo et al., 2014; Kocak et al., 2017; Ha et al., 2019; Bulgurcu et al., 2017) estimated the diagnostic value of PLR in SSNHL in a total of 664 SSNHL patients and 872 healthy individuals. Given the extreme heterogeneity among the studies (P < 0.001, I² = 76%), a random-effects model was adopted. The PLR value of the SSNHL group was markedly higher than that of the healthy group (SMD = 0.52, 95% CI: 0.26, 0.78, P < 0.001; Fig. 3). In the subgroup analyses, region, age, hematology analyzer, and sample size were sources of heterogeneity (Table 3).

3.2.3. MPV in SSNHL and control groups

Overall, seven literature (Ulu et al., 2013; Karli et al., 2013; Lee et al., 2017; Zheng et al., 2014; Sagit et al., 2013; Mirvakili et al., 2016; Kum et al., 2015; Kocak et al., 2017; Ha et al., 2019; Bulgurcu et al., 2017) involving 377 SSNHL patients and 365 healthy persons reported the diagnostic role of MPV in SSNHL. Extreme heterogeneity was identified among the seven articles (P < 0.1, I² = 89%); therefore, a random-effects model was employed to inspect the pooled results. No significant difference in MPV levels

Fig. 1. Flow chart of the included studies.
3.2.4. NLR in the recovered and unrecovered groups

The neutrophil-to-lymphocyte ratio (NLR) was found between SSNHL patients and healthy group (SMD = 0.03, 95% CI: 0.44, 0.49, P = 0.91; Fig. 4). Subgroup analyses identified hematologist analyzer as the only source of heterogeneity (Table 4).

3.2.5. PLR in recovered and unrecovered group

Overall, seven studies (K et al., 2016; Qiao et al., 2019; Ikinciogullari et al., 2014; Seo et al., 2014; Quaranta et al., 2015; Kum et al., 2017; Bulgurcu et al., 2017) involving 597 SSNHL patients and 413 healthy individuals analyzed the association of PLR on the prognosis of SSNHL. Due to the extreme heterogeneity among the studies (P = 0.63, 95% CI: 1.02, –0.23, P = 0.002; Fig. 5). Subgroup analyses performed on the clinical variables revealed that hematologist analyzer and the sample size were the sources of heterogeneity, whereas region, type of steroid, brand audiometry device, the definition of recovered and follow up were not (Table 5).

3.2.4. NLR in the recovered and unrecovered groups

Ten studies (Ulu et al., 2013; K et al., 2016; Qiao et al., 2019; Ikinciogullari et al., 2014; Seo et al., 2014; Quaranta et al., 2015; Nonoyama et al., 2016; Kum et al., 2015; Kocak et al., 2017; Bulgurcu et al., 2017) involving 597 SSNHL patients and 413 healthy individuals analyzed the association of NLR on the prognosis of SSNHL. Due to the extreme heterogeneity among the studies (P = 0.006, P = 61%), a random-effects model was employed. The NLR level in the unrecovered group was significantly higher than that in the recovered group (SMD = –0.63, 95% CI: 1.02, –0.23, P = 0.002; Fig. 5). Subgroup analyses performed on the clinical variables revealed that hematologist analyzer and the sample size were the sources of heterogeneity, whereas region, type of steroid, brand audiometry device, the definition of recovered and follow up were not (Table 5).

Table 1
Summary of studies included in the meta-analysis. SD = standard deviation; M/F = male/female; NOS = Newcastle-Ottawa scale.

First author (year)	Region	Study design	Sample size	Age (mean ± SD)	Gender (M/F)	NOS
Bulgurcu et al., 2016	Turkey	retrospective case-control	46	14.7 ± 2.81	26/20	6
Ha, R (2019)	Korea	retrospective case-control	42	14.5 ± 4.1	20/19	6
Ikinciogullari et al., 2014	Turkey	retrospective case-control	102	48.94 ± 13.86	54/48	7
Karli, R (2013)	India	retrospective case-control	46	45.39 ± 15.70	25/21	7
Kocak, HE (2017)	Turkey	retrospective case-control	45	31.1 ± 7.4	25/20	8
Kum, RO (2015)	Turkey	cross-sectional historical cohort	59	461 ± 119.1	38/21	7
Lee, JS (2017)	Korea	retrospective case-control	17	14.1 ± 1.1	7/5	6
Mirvakili, A (2016)	Iran	prospective case-control	108	45.15 ± 14.42	61/47	7
Ozler, GS (2014)	Turkey	retrospective case-control	40	39.4 ± 11.2	15/25	7
Qiao, XF (2019)	China	retrospective case-control	60	45.62 ± 13.16	28/32	7
Sagit, M (2013)	Turkey	retrospective case-control	31	37.45 ± 15.7	17/14	8
Seo, YJ (2014)	Korea	retrospective case-control	348	48.19 ± 15.22	171/177	6
Ulu, S (2013)	Turkey	retrospective case-control	47	47.27 ± 16.88	27/20	8
Yasan, H (2013)	Turkey	prospective case-control	147	30.81 ± 11.08	79/68	7
Zheng, XS (2014)	China	retrospective case-control	40	44.7 ± 14.1	22/18	7
Durmus et al., 2016	Turkey	prospective case-control	140	47.02 ± 15.72; 48.03 ± 16.85	88/52	6
Nonoyama H (2016)	Japan	retrospective case-control	89	54.2 ± 17.5	50/39	8
Quaranta N (2015)	Turkey	retrospective case-control	94	48.4 ± 16.7	NR	8

Fig. 2. Forest plot of the differences in neutrophil-to-lymphocyte ratio (NLR) levels between SSNHL patients and healthy controls.
3.2.6. MPV in the recovered and unrecovered groups

Four articles (Ulu et al., 2013; K et al., 2016; Nonoyama et al., 2016; Kum et al., 2015) involving 199 SSNHL patients and 141 healthy persons examined the implications of MPV on prognosis of SSNHL. Considering the extreme heterogeneity ($P < 0.1$, $I^2 = 91\%$), the random-effects model was employed. There was no significant differences in MPV between the recovered and unrecovered groups (SMD $= 0.35$, 95% CI: 1.14–0.44, $P = 0.38$; Fig. 7). Results of subgroup analysis showed that the type of steroid, hematology analyzer, and sample size were the sources of heterogeneity (Table 7).

Table 7

Subgroup analyses for the predictive value of MPV in SSNHL diagnosis. SMD — standard mean deviation; CI — confidence interval; NR — none reported; MPV — mean platelet volume; SSNHL — sudden sensorineural hearing loss.

Categories	No. of studies	SMD (95% CI)	I^2
Total	7	0.03 (-0.44, 0.50)	89.6%
Region	4	0.03 (-0.44, 0.50)	89.6%
Blood product	3	0.36 (0.09, 0.63)	0%
Age	3	0.62 (0.23, 1.02)	87.4%
Adult<46	4	0.59 (0.11, 1.07)	90.0%
Adult\geq46	4	0.47 (0.22, 0.72)	17.0%

3.2.7. Sensitivity analysis and publication bias

The leave-one-out approach was employed to assess the hematological indices. Notably, the direction and degree of pooled results did not change significantly. This implied that the meta-analysis was robust. Moreover, there was no evidence of publication bias among the hematologic parameters used for the diagnosis of SSNHL (Egger test: NLR $P = 0.675$; PLR $P = 0.403$; MPV $P = 0.954$), and prognosis of SSNHL (Egger test: NLR $P = 0.357$; PLR $P = 0.974$). However, we could not assess the level of publication bias of MPV in the prognosis of SSNHL because the number of studies were fewer than five.

4. Discussion

Understanding the etiopathogenesis of diseases is a prerequisite to effective treatment of patients. Although the detailed mechanisms of SSNHL are currently unclear, compelling evidence indicate that inflammation may contribute significantly to this disease (Hiramatsu et al., 2012; Ulu et al., 2013). Chronic inflammation causes microvascular injuries, atherogenesis (Hoffman et al., 2004), and endocochlear immune responses (Masuda et al., 2012), all of which promote the risk of cochlear ischemia directly.

It has been reported that NLR, PLR, and MPV play a role in chronic inflammation. NLR or PLR are the two distinct subtypes of WBC which are more stable and reliable than a single inflammatory...
indicator (Yang et al., 2016). This is because these ratios are less influenced by circumferential factors, such as exercise and dehydration (Demir et al., 2015). Elevated NLR is associated with increased inflammatory activity (Imtiaz et al., 2012). Similarly, PLR levels can reflect the severity of systemic inflammation (Ye et al., 2019). For instance, elevated PLR indicates damage to blood vessels and platelet adhesion (Gary et al., 2013). High platelet aggregation in the damaged vessel walls result in vascular obstruction and perfusion problems (Sertoglu et al., 2015). MPV is negatively related to platelet count (Avci et al., 2017) and is a measure of platelet function or activation (Panova-Noeva et al., 2017). High levels of

![Fig. 5. Forest plot of the differences in neutrophil-to-lymphocyte ratio (NLR) levels between the recovered group and the unrecovered group.](image)

![Table 5](data)

Categories	No. of studies	SMD (95% CI)	I²
Total	10	-0.64 (-1.04, -0.24)	87%
Region			
European	7	-0.61 (-1.15, -0.07)	87.3%
Asian	3	-0.73 (-1.47,01)	88.8%
Hematology analyzer			
Beckman	2	-1.19 (-1.67, -0.71)	0%
Sysmex	4	-0.21 (-0.83,04)	90.1%
Others	2	-0.93 (-2.30,04)	93.6%
NR	2	-0.88 (-2.49,07)	87.0%
Type of steroid			
Prednisolone	2	-0.36 (-2.21,14)	92.0%
Prednisone	4	-0.63 (-1.01, -0.24)	70.6%
Others	4	-0.86 (-1.66, -0.05)	89.9%
Brand audiometry device			
AC40	5	-0.53 (-1.17,011)	87.3%
Others	1	0.04 (-0.41,048)	-
NR	4	-0.97 (-1.61, -0.32)	88.0%
Definition of "recovered"			
>15 dB	5	-1.04 (-1.56, -0.52)	83.2%
Others	4	-0.31 (-1.05,043)	89.0%
Follow-up			
30 days	5	-0.53 (-1.17,011)	87.3%
Others	4	-0.95 (-1.64, -0.26)	88.5%
NR	1	-0.08 (-0.49,033)	-
Sample size			
>60	5	-0.11 (-0.53,032)	86.6%
≤60	5	-1.28 (-1.66, -0.91)	35.2%

![Fig. 6. Forest plot of the differences in platelet-to-lymphocyte ratio (PLR) levels between the recovered group and the unrecovered group.](image)

![Table 6](data)

Categories	No. of studies	SMD (95% CI)	I²
Total	7	-0.40 (-0.77, -0.03)	78.5%
Region			
European	5	-0.31 (-0.86,024)	82.7%
Asian	2	-0.55 (-0.76, -0.34)	0%
Hematology analyzer			
Sysmex	2	-0.10 (-0.97,078)	93.2%
Others	3	-0.77 (-1.17, -0.38)	20.6%
NR	2	-0.35 (-1.09,039)	73.6%
Type of steroid			
Prednisolone	2	0.23 (-0.24,070)	22.6%
Prednisone	2	-0.30 (-0.80,020)	78.4%
Others	3	-0.88 (-1.20, -0.56)	0%
Brand audiometry device			
AC40	3	-0.27 (-1.21,068)	89.5%
NR	4	-0.47 (-0.80, -0.15)	56.0%
Definition of "recovered"			
≥15 dB	5	-0.98 (-1.43, -0.53)	12.5%
Others	2	0.18 (-0.20,093)	40.9%
Follow-up			
30 days	3	-0.27 (-1.21,068)	89.5%
Others	3	-0.57 (-0.77, -0.38)	0%
NR	1	-0.02 (-0.43,040)	-
Sample size			
>60	4	-0.29 (-0.80,022)	87.80%
≤60	3	-0.66 (-1.05, -0.26)	0%
MPV are an established risk factor for thrombotic disposition and indicate abnormal platelet function (Ji et al., 2019).

In this meta-analysis, we analyzed 18 publications involving 1505 SSNHL patients and 1466 healthy individuals to determine the association of NLR, PLR, and MPV values with SSNHL. Our findings suggest that NLR and PLR values of SSNHL patients are much higher than those of healthy people. However, there is no distinct difference in the MPV levels between these two groups. These results imply that the levels of NLR and PLR influence the pathogenesis of SSNHL. Hence, NLR and PLR are prospective biomarkers for predicting the pathogenesis of SSNHL. However, these results should be interpreted with caution considering the extreme heterogeneity among analyzed studies. In the subgroup analyses performed to identify the sources of heterogeneity, the region, hematology analyzer, and brand audiometry device on the merged results and identified them as sources of heterogeneity.

Fig. 7. Forest plot of the differences in mean platelet volume (MPV) levels between the recovered group and the unrecovered group.

Table 7

Categories	No. of studies	SMD (95% CI)	I²
Total	4	-0.35 (-1.15,0.44)	91.2%
Region			
European	3	-0.56 (-1.44,0.32)	89.9%
Asian	1	0.25 (-0.20,0.70)	0%
hematology analyzer			
Sysmes	2	0.08 (-0.32,0.49)	22.2%
Others	2	-0.74 (-1.96,0.48)	93.2%
type of steroid			
Prednisone	2	-0.13 (-0.52,0.25)	0%
Others	2	-0.55 (-2.12,1.02)	96.3%
brand audiometry device			
AC40	3	-0.56 (-1.44,0.32)	89.0%
Others	1	0.25 (-0.20,0.70)	0%
definition of recovered			
≥15 dB	1	-1.35 (-1.72,-0.98)	0%
Others	3	0.03 (-0.26,0.32)	0%
follow-up			
30 days	3	-0.56 (-1.44,0.32)	89.0%
Others	1	0.25 (-0.20,0.70)	0%
sample size			
>60	2	-0.55 (-2.12,1.06)	96.5%
≤60	2	0.13 (-0.52,0.25)	0%

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest

We declare that we have no conflict of interest.
References

Acet, H., Ertaj, F., Akol, M.A., et al., 2016. Relationship between hematologic indices and global registry of acute coronary events risk score in patients with ST-segment elevation myocardial infarction. Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis 22, 60–68.

Avci, A., Avci, D., Erdem, F., et al., 2017. Can we use the neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and mean platelet volume values for the diagnosis of anterior uveitis in patients with Behcet's disease? Therapeut. Clin. Risk Manag. 13, 881–886.

Bulgurcu, S., Dikilitas, B., Arslan, I.B., et al., 2017. Neutrophil-to-Lymphocyte and platelet-to-lymphocyte ratios in pediatric patients with idiopathic sudden hearing loss. The journal of international advanced otology 13, 217–220.

Cao, Z., Li, Z., Xiang, H., et al., 2018. Prognostic role of haematological indices in sudden sensorineural hearing loss: review and meta-analysis. Clin. Chim. Acta 483, 104–1.

Chen, L., Zhang, G., Zhang, Z., et al., 2018. Neutrophil-to-lymphocyte ratio predicts diagnosis and prognosis of idiopathic sudden sensorineural hearing loss. Medicine 97, e12452.

Cook, D.A., Reed, D.A., 2015. Appraising the quality of medical education research methods: the medical education research study quality instrument and the newcastle-Ottawa scale-education. Acad. Med. 90, 1067–1076.

Demir, K., Karadeniz, C., Ozdemir, R., et al., 2015. Usefulness of neutrophil to lymphocyte ratio in prediction of coronary artery lesions in patients with Kawasaki disease. Balkan Med. J. 32, 371–376.

Gary, T., Pichler, M., Belaj, K., et al., 2013. Platelet-to-lymphocyte ratio: a novel marker for critical limb ischemia in peripheral arterial occlusive disease patients. PLoS One 8, e67688.

Ha, R., Lim, B.W., Kim, D.H., et al., 2019. Predictive values of neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and other prognostic factors in pediatric idiopathic sudden sensorineural hearing loss. Int. J. Pediatr. Otorhinolaryngol. 120, 134–139.

Hiramatsu, M., Terasinski, M., Uchida, Y., et al., 2012. Polymorphisms in genes involved in inflammatory pathways in patients with sudden sensorineural hearing loss. J. Neurogenet. 26, 387–396.

Hoffman, M., Blum, A., Baruch, R., et al, 2004. Leukocytes and coronary heart disease. Atherosclerosis 172, 1–6.

Ikincigullari, A., Koseoglu, S., Klici, M., et al., 2014. New inflammation parameters in sudden sensorineural hearing loss: neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio. Journal of International Advanced Otology 10, 197–200.

Imtiaz, F., Shafique, K., Mirza, S.S., et al., 2012. Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. Int. Arch. Med. 5, 2.

Ji, S., Zhang, B., Wang, X., et al., 2019. Effects of statin therapy on mean platelet volume in patients with risk of cardiovascular diseases: a systematic review and meta-analysis. Bioisci. Rep. 39.

K, D., H, T, TD, K, et al, 2016. Assessment of hematological factors involved in development and prognosis of idiopathic sudden. Sensorineural Hearing Loss 27, e83–e91.

Karli, R., Alacan, H., Unal, R., et al., 2013. Mean platelet volume: is it a predictive parameter in the diagnosis of sudden sensorineural hearing loss? Indian Journal of Otolaryngology and Head & Neck Surgery 65, 350–353.

Kocak, H.E., Elibastan, M.S., Acipayam, H., et al., 2017. Are neutrophil/lymphocyte and platelet/lymphocyte ratios related with formation of sudden hearing loss and its prognosis? European annals of otorhinolaryngology, head and neck diseases 134, 383–386.

Kum, R.O., Ozcan, M., Baklaci, D., et al., 2015. Investigation of neutrophil-to-lymphocyte ratio and mean platelet volume in sudden hearing loss. Brazilian journal of otorhinolaryngology 81, 636–641.

Lee, J.S., Hong, S.K., Kim, D.H., et al., 2017. The neutrophil-to-lymphocyte ratio in children with sudden sensorineural hearing loss: a retrospective study. Acta Otolaryngol. 137, 35–38.

Leung, M.A., Flaherty, A., Zhang, J.A., et al., 2016. Sudden sensorineural hearing loss: Primary care update. Hawai‘i J. Med. Public Health 75, 172–174.

Masuda, M., Kanzaki, S., Minami, S., et al., 2012. Correlations of inflammatory biomarkers with the onset and prognosis of idiopathic sudden sensorineural hearing loss. Otol. Neurotol. : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otolaryngology and Neurotology 33, 1142–1150.

Mirvali, K., Dadgarinia, M.H., Baradaranfar, M.H., et al., 2016. Role of platelet parameters on sudden sensorineural hearing loss: a case-control study in Iran. PloS One 11, e0148149.

Nonyayama, H., Tanigawa, T., Shibata, R., et al., 2016. Red blood cell distribution width predicts prognosis in idiopathic sudden sensorineural hearing loss. Acta Otolaryngol. 136, 1137–1140.

Ozler, G.S., 2014. Increased neutrophil-lymphocyte ratio in patients with idiopathic sudden sensorineural hearing loss. J. Craniofac. Surg. 25, e260–e263.

Panova-Noeva, M., Arnold, N., Hermanns, M.I., et al., 2017. Mean platelet volume and arterial stiffness - clinical relationship and common genetic variability. Sci. Rep. 7, 40229.

Qiao, X.F., Li, X., Wang, G.P., et al., 2019. Neutrophil-to-Lymphocyte ratio and platelet-to-lymphocyte ratio in patients with sudden sensorineural hearing loss. Medical principles and practice. international journal of the Kuwait University, Health Science Centre 28, 23–27.

Quaranta, N., Squero, V., Sangineto, M., et al., 2015. High total cholesterol in peripheral blood correlates with poorer hearing recovery in idiopathic sudden sensorineural hearing loss. PloS One 10, e0133308.

Sagit, M., Kavugodurmas, M., Guler, S., et al., 2013. Impact of mean platelet volume on the occurrence and severity of sudden sensorineural hearing loss. J. Laryngol. Otol. 127, 972–976.

Seo, Y.J., Jeong, J.H., Choi, J.Y., et al., 2014. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio: novel markers for diagnosis and prognosis in patients with idiopathic sudden sensorineural hearing loss. Dis. Markers 2014, 702807.

Sertoglu, E., Kayadibi, H., Uyanik, M., 2015. Comment on "Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio: novel markers for diagnosis and prognosis in patients with idiopathic sudden sensorineural hearing loss. Dis. Markers 2015, 745877.

Stachler, R.J., Chandrasekhar, S.S., Archer, S.M., et al., 2012. Clinical practice guide line: sudden hearing loss. Otolaryngology—head and neck surgery. official journal of American Academy of Otolaryngology-Head and Neck Surgery 146, 51–535.

Sun, Y., Guo, Y., Wang, H., et al., 2017. Differences in platelet-related parameters among patients with audiographically distinct sudden sensorineural hearing loss. Medicine 96, e7877.

Sutton, A.J., Duval, S.J., Tweedie, R.L., et al., 2000. Empirical assessment of effect of publication bias on meta-analyses. BMJ 320, 1574–1577.

Ulu, S., Ulu, M.S., Bucak, A., et al., 2013. Neutrophil-to-lymphocyte ratio as a new, quick, and reliable indicator for predicting diagnosis and prognosis of idiopathic sudden sensorineural hearing loss. Otol. Neurotol. : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otolaryngology and Neurotology 34, 1400–1404.

Wu, J., Liang, C., Chen, M., et al., 2016. Association between tumor-stroma ratio and prognosis in solid tumor patients: a systematic review and meta-analysis. Oncotarget 7, 68954–68965.

Yang, H.R., Xiong, M., Ma, L.N., et al., 2016. Prognostic significance of neutrophil-lymphocyte ratio/platelet-lymphocyte ratio in patients with head and neck cancer: a meta-analysis. Oncotarget 7, 67669–67778.

Yasan, H., Tuz, M., Yariktas, M., et al., 2013. The significance of routine laboratory parameters in patients with sudden sensorineural hearing loss. Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India 65, 553–556.

Ye, G.L., Chen, Q., Chen, X., et al., 2019. The prognostic role of platelet-to-lymphocyte ratio in patients with acute heart failure: a cohort study. Sci. Rep. 9, 10638.

Zheng, X., Hou, N., Hao, R., 2014. The relationship of mean platelet volume and sudden sensorineural hearing loss. J. Audiol. Speech Pathol. 22, 600–602.