Environmental Research Letters

PAPER

Anthropogenic CO$_2$ emissions assessment of Nile Delta using XCO$_2$ and SIF data from OCO-2 satellite

Ankit Shekhar1,5, Jia Chen1,5, Johannes C Paetzold1, Florian Dietrich1, Xinxu Zhao1, Shrutilipi Bhattacharjee1, Veronika Ruisinger1 and Steven C Wofsy2

1 Professorship of Environmental Sensing and Modeling, Technical University of Munich, Germany
2 Chair of Computer Aided Medical Procedures & Augmented Reality, Technical University of Munich, Germany
3 Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
4 Department of Environmental Systems Science, ETH Zurich, Switzerland
5 Authors to whom any correspondence should be addressed.

E-mail: ankit.shekhar@usys.ethz.ch and jia.chen@tum.de

Keywords: agriculture, urban, STILT, EDGAR, ODIAC, XCO$_2$

Supplementary material for this article is available online

Abstract

We estimate CO$_2$ emissions from the Nile Delta region of Egypt, using over five years of column-averaged CO$_2$ dry air mole fraction (XCO$_2$) data from the NASA’s OCO-2 satellite. The Nile Delta has significant anthropogenic emissions of CO$_2$ from urban areas and irrigated farming. It is surrounded by the Sahara desert and the Mediterranean Sea, minimizing the confounding influence of CO$_2$ sources in surrounding areas. We compiled the observed spatial and temporal variations of XCO$_2$ in the Nile Delta region (XCO$_2$$_{2,del}$), and found that values for XCO$_2$$_{2,del}$ were on average 1.1 ppm higher than XCO$_2$$_{2,des}$ (mean XCO$_2$ in desert area). We modelled the expected enhancements of XCO$_2$ over the Nile Delta based on two global CO$_2$ emission inventories, EDGAR and ODIAC. Modelled XCO$_2$ enhancements were much lower, indicating underestimation of CO$_2$ emissions in the Nile Delta region by mean factors of 4.5 and 3.4 for EDGAR and ODIAC, respectively. Furthermore, we captured a seasonal pattern of XCO$_2$ enhancement (ΔXCO$_2$), with significantly lower ΔXCO$_2$ during the summer agriculture season in comparison to other seasons. Additionally, we used solar-induced fluorescence (SIF) measurement from OCO-2 to understand how the CO$_2$ emissions are related to agricultural activities. Finally, we estimated an average emission of CO$_2$ from the Nile Delta from 2014–2019 of 470 Mt CO$_2$/year, about 1% of global anthropogenic emissions, which is significantly more than estimated hitherto.

1. Introduction

Our planet Earth has witnessed about 40% increase in atmospheric CO$_2$ concentrations since the pre-industrial age. This increase is attributed to anthropogenic activities (IPCC 2013), primarily from combustion of fossil fuels. Agricultural activities are important sources of CO$_2$ associated with combustion of fossil fuels by farm machinery, biomass burning, and emissions from soil. Soil emissions can be especially high from intensively farmed, irrigated carbon rich soils in river deltas (Telmer and Veizer 1999, Hannam et al 2019).

Most global estimates of CO$_2$ emissions are provided by state-of-the-art emissions inventories which employ ‘bottom-up’ methods to quantify emissions, using human activity data and emission factors (Oda and Maksyutov 2011, Janssens–Maenhout et al 2019, Peylin et al 2013, Boden et al 2017, Oda et al 2018) as per the directions of IPCC (Intergovernmental Panel on Climate Change). These models have not been extensively tested for intensively farmed areas, like river deltas. Bottom-up methods use energy consumption data sets, such as fossil fuel consumption along with fuel purity, mix, efficiency, etc (see Boden et al 2017, Quéré et al 2018). There are discrepancies and uncertainties in the reported datasets on national scales (Miller et al 2013, Hutrya et al 2014, Liu et al 2015), especially for developing countries (Xue and Ren 2012). These discrepancies...
can result in \(\sim40\%\) to \(\sim100\%\) uncertainty in emission estimations at the country and the local scales, respectively (Peylin et al 2013, Wang et al 2013).

Effective monitoring of greenhouse gas emissions is also essential to keep track of humanities long-term emission reduction goals for keeping the global warming below 2 °C compared to pre-industrial levels, as defined in the Paris agreement. Ground-based or airborne monitoring of these emissions can be a tedious and expensive task because of the spatial distribution of various anthropogenic emission sources (Mckain et al 2012, Chang et al 2014, Lindenmaier et al 2014, Chen et al 2016, 2020, Viatte et al 2017, Luther et al 2019). The most promising way to monitor these emissions with consistent precision at different spatial scales is the use of satellite-based measurements (Wang et al 2018).

Satellites like SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) and GOSAT (Greenhouse Gases Observing Satellite) have been previously used to detect and analyze anthropogenic CO\(_2\) signatures (Yokota et al 2009, Kort et al 2012, Schneising et al 2013, Janardanan et al 2016). These studies generally suggested use of satellite-based observations with better spatial resolution to improve the detection of anthropogenic CO\(_2\) emissions as the enhancement of CO\(_2\) mixing ratio due to localized sources are a small fraction of the background values, thus making it a challenging task for low spatial resolution sensors to detect (Bovensmann et al 2010).

Here we use the observations from NASA’s OCO-2 (Orbiting Carbon Observatory-2) satellite as a primary monitoring tool to assess the CO\(_2\) emissions in the Nile Delta, one of the most important, intensively farmed regions in the world. The OCO-2 measures column-averaged dry air mole fraction of CO\(_2\) (XCO\(_2\)) with high spatial resolution (\(\sim3\) km\(^2\)) (Crisp et al 2017) and precision (\(\sim1\) ppm). The megacity Cairo lies just to the south of the Delta. Both are surrounded by desert in three directions, except for the narrow Nile valley leading southward, with the Mediterranean in the north. OCO-2 tracks are situated over and nearby this area making it an excellent target for quantifying emissions using OCO-2 data. Our work builds on previous studies to detect localized emission sources (Yokota et al 2009, de Gouw et al 2014, Hakkarainen et al 2016, 2019, Kuze et al 2016, Nassar et al 2017, Schwander et al 2017, Ye et al 2017, Wang et al 2018, Labzovski et al 2019, Reuter et al 2019, Zheng et al 2019) using OCO-2 data.

We examine the spatiotemporal gradients of XCO\(_2\) between the Nile Delta and surrounding desert over a 5 year period, and compared the observed enhancements to values modeled using global emission inventories. We find that the two investigated inventories underestimate CO\(_2\) emission rates in the region by large factors with significant seasonality during the winter and summer agriculture season. We conclude that intensively-farmed deltaic areas may be significantly more important in global CO\(_2\) emissions than appreciated hitherto.

2. Data and methods

2.1. Study area

The Nile Delta is considered to be one of the oldest cultivated areas in the world, having been continuously cultivated since 3000 B.C. (Negm et al 2017). It is a triangular shaped, tide-dominated delta (figure 1(a)) occupying about 2.5% of Egypt’s area (\(\sim25,000\) km\(^2\)) and giving shelter to about 60% of its population (Zeydan 2003, Negm et al 2017). Moreover, 96% of Egypt’s population is concentrated around Nile Delta (north of Cairo) along with Nile valley (south of Cairo) (Abd El-Kawy et al 2011). Since the construction of Aswan High Dam in 1970, the Nile Delta has received less input of nutrients and sediments from the river floods. This shift has resulted in intensive use of fertilizers for agriculture, thereby degrading the soil quality and potentially leading to loss of soil organic matter (Negm et al 2017). Furthermore, about 75,000 ha of fertile agricultural land was lost to urbanization within the Nile Delta between 1992 and 2015 (Radwan et al 2019). Nevertheless, the Nile Delta produces two-thirds of Egyptian crops (FAOSTAT 2019, www.fao.org/faostat/en/) with its still rich and fertile soil allowing two or more crops over the year (Osama et al 2017). Two main growing season in Nile Delta is the winter growing season (peak in January/February) and summer season (peak in July/August). Important winter crops are wheat, vegetable and clover crops, whereas in summer—maize, rice and cotton are extensively grown (El-Beheiry et al 2015). The Nile Delta today is mostly characterized by artificially irrigated agriculture and spreaded urban settlements (figure 1(a)), with minimal natural sources or sinks of CO\(_2\).

2.2. OCO-2 satellite data

We used five years of XCO\(_2\) data from NASA’s OCO-2 satellite. The OCO-2 satellite was designed to accurately measure XCO\(_2\) at kilometer-scale spatial resolution around 13:30 local time with a repeat cycle of 16 d (Crisp 2015) and 10 km swath (Bhattacharjee and Chen 2020). The satellite uses the Atmospheric CO\(_2\) Observations from Space (ACOS) algorithm (Wunch et al 2011a, 2011b, Crisp et al 2012, O’Dell et al 2012). We used the high quality measurement soundings of the latest version of the OCO-2 Level 2 Version 9 Lite product from September 2014 to July 2019 provided by the NASA’s Jet Propulsion Laboratory website (https://co2.jpl.nasa.gov/build?dataset=OCO2L2stdv8&product=FULL#download). The measurement soundings are obtained using an improved bias-correction approach and are pre- and post-filtered for potentially unreliable measurements (O’Dell et al 2018). The downloaded measurement data
also contain surface wind velocity information at each measurement sounding taken from the NASA’s GEOS5-FP-IT (Goddard Earth Observing System Version 5-Forward Processing for Instrument Teams). Each trajectory of OCO-2 measurement covers both the delta and desert area (figure S1 available online at stacks.iop.org/ERL/15/095010/mmedia), which enables us to quantify the spatial (delta-desert) XCO$_2$ gradient.

In addition to XCO$_2$ data, we also employed OCO-2’s SIF (Solar-induced fluorescence) data. SIF is a signal emitted from plants/crops during photosynthesis, thus indicating photosynthetic activities (Sun et al 2017, Shekhar et al 2019, Castro et al 2020). OCO-2 measures SIF at two wavelengths, 757 nm and 771 nm (Frankenberg et al 2014, 2015), based on the infilling of the Fraunhofer lines (Frankenberg et al 2011). We used SIF (measured at 757 nm) to help understand how the CO$_2$ emissions from the Nile Delta were related to agricultural activities.

2.3. Emission inventories

We computed the expected values of XCO$_2$ over the Delta, compared to surrounding desert areas, using two CO$_2$ emission inventories, EDGAR (Emissions Database for Global Atmospheric Research) and ODIAC (Open-source Data Inventory for Anthropogenic CO$_2$). Both are constructed based on the IPCC methodology. The latest version of EDGAR v5.0 (Crippa et al 2020) was recently made available. It provides global annual CO$_2$ emissions at 0.1° × 0.1° spatial resolution until 2018. EDGAR emissions are calculated using a bottom-up methodology: the inventory scales activity data, which is based on international annual statistics with the best-available emission factors. Then, it uses the monthly share and spatial proxies such as population and road density to downscale the national or state-level data to a finer spatial resolution. We used the CO$_2$ excl_short-cycle_org_C variable of the EDGAR v5.0 which includes total CO$_2$ emissions (in kgCO$_2$ (m2 s)$^{-1}$) from the considered fossil fuel sources such as fossil fuel combustion, various non-metallic mineral processes like cement production, various metallic and chemical production processes, urea productions and agricultural liming processes. The EDGAR v5.0 dataset was downloaded from the European Commission’s Joint Research Centre-EDGAR website (https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG). Mean EDGAR emissions over the Nile Delta from 2014–2018 was 108 Mt CO$_2$/year.

The latest ODIAC v2019 provides monthly CO$_2$ emissions (in tons of Carbon/(km2-month)) from fossil fuel combustion at a much higher spatial resolution of 1 km × 1 km (GeoTIFF file format) till the end of 2018 (Oda et al 2018).
A hybrid approach is implemented to construct the ODIAC emission inventory, which integrates national emission estimates produced by CDIAC (Carbon Dioxide Information Analysis Center, Andres et al. 1996) and nighttime data with individual power plant emissions/locations profiles (Oda and Maksyutov 2011). The ODIAC v2019 dataset was downloaded from the CGER-NIES (Center for Global Environmental Research, National Institute for Environmental Studies) website (http://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2019.html).

Since neither the EDGAR nor the ODIAC dataset was fully available for the time period of this study (September 2014–July 2019), we used the latest available data point for each inventory for the remaining time period, i.e. the EDGAR and ODIAC estimates of 2018 were used for the year of 2019. It is important to note that neither of these two emission inventories include CO₂ emission from agricultural soil degradation. Both EDGAR and ODIAC emission datasets are widely used by the international carbon cycle research community (Quéré et al. 2018). Mean ODIAC emissions over the Nile Delta from September 2014–July 2019 was 136.5 Mt CO₂/year. Figure S3 shows the CO₂ emission map for Nile Delta as per EDGAR and ODIAC.

2.4. Modelling methods
To simulate the enhancement of XCO₂ values from the local CO₂ emissions sources we employed a forward model based on the emission inventories and an atmospheric transport model.

For any location, the XCO₂ can be modelled as the sum of the initial background concentration and the enhancement due to the upstream sources and sinks (Gerbig et al. 2003, Hu et al. 2018a). Equations (1) and (2) describe our calculations:

\[
XCO₂,\text{fn} = XCO₂,\text{bkg} + XCO₂,\text{enh} \tag{1}
\]

\[
XCO₂,\text{enh} = \sum_{i=1}^{N_i} \sum_{j=1}^{N_j} \left[\text{footprint}(x_i, y_j) \times \text{emission}(x_i, y_j) \right] \tag{2}
\]

where, XCO₂,fn is the forward modelled concentration for any location, XCO₂,bkg is an initial background XCO₂ value and XCO₂,enh is the enhancement due to upstream CO₂ emission sources. The ‘footprint’ is obtained from an atmospheric transport model and the ‘emission’ data are obtained from the emission inventories (more information below). Therefore, XCO₂,enh is the summation of the enhancements caused by all locations \((x_i,y_j): i = 1,2…N_i; j = 1,2…N_j\), in the study domain containing the Nile Delta and valley (Latitude:[26, 32]; Longitude:[29, 33]). For the case of simplicity here, we have neglected the effect of sinks on XCO₂,enh as the Nile Delta is characterized by minimal or no natural vegetation, and net emissions are plainly positive. To study the XCO₂ enhancement in the Nile Delta we applied a local regression smoothing (LOESS, Jacoby 2000) with loess parameter (span) of 0.15 to the XCO₂ concentrations along the OCO-2 trajectory (latitude-wise) for each measurement day, and these locally regressed XCO₂ (XCO₂,enh) values were used for further calculation.

Since OCO-2 measures XCO₂ along a narrow swath of 10 km (figure 1), selection of background concentration (XCO₂,bkg) can be tedious. In this study, we leveraged the wind data from ECMWF’s ERA5 dataset (Copernicus Climate Change Service (C3S) 2017) to select a particular section of one degree latitude range (background section) of XCO₂ values in the desert that did not pass over the Nile Delta as XCO₂, bkg. The selection of ‘background section’ was semi-automated for all the 32 dates. The semi-automated process involved visual inspection and automated selection of the background section. The detailed procedure is given in supplementary section S1. Figure 2 illustrates the background section for few dates. For example on 2014-09-23, the wind direction is north, contaminating the proximate observations with CO₂ from the Delta, so we selected the lower section of OCO-2 measurements (shown in green box in figure 2), where the wind was coming from the east side. Similarly, for 2015-05-19, the selected section does not have any influence from Nile Delta and minimal influence from the Nile valley. The mean of the locally smoothed XCO₂ values within this section was taken as a XCO₂,bkg for each day. The selected background section for all the other dates is shown in figure S3.

Calculation of XCO₂,enh requires footprint information from the atmospheric transport model, and local emission data. The geographic distributions of emissions were adopted from EDGAR and ODIAC (section 2.2). Here, we simulated the footprints using the STILT (Stochastic Time-Inverted Lagrangian Transport) model that is based on HYSLIT model (Lin et al. 2003, Fasoli et al. 2018, Wu et al. 2018). The STILT model simulates convective and diffusive air transport patterns by releasing a certain amount of particles (N) from a receptor (i.e. an observation location in this case) and tracking the particles backwards in time (Hu et al. 2018b). Thus, the STILT footprints are equivalent to the sensitivity of XCO₂ (unit of ppm·m⁻²·s⁻¹·µmol⁻¹) at the receptor location with respect to changes in surface flux (Gerbig et al. 2003).

Our STILT simulation was based on ERA5 meteorological data and we chose a backward time of 32 h and N = 500 particles and 11 vertical levels for each receptor location. Figure 3 shows column averaged STILT footprints for 2014-09-23 and 2016-02-15 at 13:30 (local overpass time of OCO-2). Finally for each OCO-2 trajectory we chose 5 receptor locations.
within the Nile Delta at a distance of 10, 15, 20, 25 and 30 km along the OCO-2 trajectory to calculate XCO$_{2,\text{fm}}$ (in ppm), which is the accumulated CO$_2$ enhancement occurring over the 32 h back trajectory at the receptor location due to emissions from the upstream sources. Figure 1 shows the receptor locations along the delta and within the background section for OCO-2 measurements on 2016-02-15. It is also evident from figure 3 that the footprints of the background receptor are not influenced by the Nile.
Delta area. Ultimately we compared the XCO$_2$$_{fm}$ with the LOESS smoothed OCO-2’s XCO$_2$ value at the receptor locations (XCO$_2$$_{O}$) for each OCO-2 trajectory over study period (2014–2019) to estimate CO$_2$ emissions based on the two inventory data.

3. Results and discussions

3.1. Spatiotemporal variation of XCO$_2$ and SIF

We studied 62 d of OCO-2 measurements over the Nile Delta and desert area spanning five years of observations. We observed the expected steady seasonal cycle in XCO$_2$ concentration over the delta (XCO$_2$$_{del}$) and the desert (XCO$_2$$_{des}$) from 2014 to 2019 (figure 4). About 80% of the measurements showed a mean XCO$_2$$_{del}$ of 1.11 (0.83,1.21) (95% confidence interval) ppm higher than mean XCO$_2$$_{des}$ with a maximum ΔXCO$_2$ (XCO$_2$$_{del}$—XCO$_2$$_{des}$), of 2.2 ppm. Expectedly, consistent higher SIF values in the Nile Delta indicated the agricultural production (figure S4), with high SIF values during the months of peak of winter growing season (DJF) and summer growing season (JJA), but the latter season showed significantly lower ΔXCO$_2$ values (figure 5). This seasonal pattern of ΔXCO$_2$ can be attributed to the river flow dynamics and crops grown in the winter and summer season. The delta receives sediment and carbon-rich water during the winter season from the Aswan high dam (El Gamal and Zaki 2017), which is recycled and also used in the summer season. The emissions from newly arrived carbon-rich soil (carbon source) could result in high ΔXCO$_2$. However in summer, high photosynthetic activity of well-irrigated maize and rice during the mid-day could be a significant carbon sink (Rana et al 2016, She et al 2017) with reduced CO$_2$ emission from soil, thereby resulting in lower XCO$_2$ values in the delta. A detailed study combined with cropping pattern and river flow dynamics could give insight that is more accurate. On average higher SIF values correlated with higher XCO$_2$, which might not be expected for forest, but because of all the fossil fuel and soil CO$_2$ emissions associated with the farming and irrigation in the Nile Delta (figure 5 and S5).

The OCO-2 clearly captured the latitudinal variation of XCO$_2$ concentrations along its trajectory as depicted in figure 6. Transportation of CO$_2$ plumes from emission sources in the delta region including Cairo city and Nile valley by the wind resulted in comparatively high XCO$_2$ values in the downwind desert area. For example, on 2015-05-19 the CO$_2$ emissions from Cairo results in as much as 3 ppm higher XCO$_2$ values in the downwind desert area compared to the southern desert, with minimum influence from the Nile Delta or valley (figure 6). Furthermore, emissions from the Nile valley clearly resulted in elevated XCO$_2$ values in the downwind desert area, for example on 2018-11-03 (figure 6, latitude: \sim26.5 deg.). Such wind transport of CO$_2$ plume resulted in high XCO$_2$ values in the desert region. Thus, OCO-2’s XCO$_2$ measurement clearly demonstrates the capability to measure local enhancement in XCO$_2$ values.

3.2. Forward modeling of emission inventories

Out of the 62 d of OCO-2 measurements, many days had sparse measurements over the Nile Delta and desert area, making it difficult to select background XCO$_2$ values. Therefore, before performing the forward modeling of emission inventories to calculate
Figure 4. Variation of XCO$_2$ from OCO-2 over the Nile Delta and desert from September 2014 to July 2019 with 62 d of measurement. The triangular/circular point and error lines shows mean and 95% CI of mean for the XCO$_2$ measurements over the Nile Delta/desert. The observed ∆XCO$_2$ in the secondary axis shows the difference between XCO$_2$ from delta and desert (XCO$_2$des−XCO$_2$del). The OCO-2 soundings for Nile Delta and desert were selected based on the ESA-CCI land-cover map (figure 1). The ∆XCO$_2$ data showed deviation from the normality at the higher and lower end of its quartiles as shown in the q-q plot.

XCO$_2$,m, we applied a threshold criteria of minimum 100 and 200 measurements over the Nile Delta and desert area, respectively. Finally, 32 d satisfied the above criteria. Correspondingly, we performed forward modeling calculations on 5 locations at 32 different dates from 2014 to 2019. Two out of 32 d (2017-06-09 and 2018-07-07) showed consistently higher measurement values in the desert area resulting in higher XCO$_2$,bkg values compared to the XCO$_2$,O values at the receptor locations. These two dates occur during the peak of summer growing season and might indicate the agricultural crops grown (e.g. maize) in summer as a CO$_2$ sink.

For all 32 dates at 5 locations (total 160 receptor locations), the observed enhancements (XCO$_2$,O−XCO$_2$,bkg) averaged 1.21 (1.05,1.36) ppm. The calculated enhancements were much lower, 0.27 (0.23,0.32) ppm and 0.36 (0.31,0.43) ppm based on EDGAR and ODIAC, respectively (figure 7). Very prominent enhancements of as high as 1.7 ppm and 4 ppm by EDGAR and ODIAC, respectively were obtained for receptor location in the Cairo city (figure 7).

Over the 32 d of study, 23 d showed underestimation of modelled enhancement (figure 8), which indicates high underestimation of CO$_2$ emission by the emission inventories. Our calculations indicate an underestimation by a mean emission factor (MEF) (95% confidence interval) of 4.53 (4.34, 4.68) and 3.36 (3.19, 3.45) (calculated as a ratio of the mean observed enhancement over all the days, divided by the mean modelled enhancement for all days, and bootstrapped) for EDGAR and ODIAC, respectively. Based on these calculated MEFs we also estimated the CO$_2$ emissions from the Nile Delta based on scaling up the two emission inventories. Our estimates of mean CO$_2$ emission are about 489 Mt CO$_2$/year and 457 Mt CO$_2$/year based on EDGAR and ODIAC inventory over the study period (September 2014–July 2019).

Our estimate compares relatively well with recent CO$_2$ emissions of about 1500 Mt CO$_2$/year estimated from Yangtze River Delta in 2013 based on remote sensing (nighttime light) and statistical data (socioeconomic indicators) by Zhou et al. (2019) as shown in table 1. The Yangtze River Delta is
Figure 5. Seasonal decomposition of observed ΔXCO$_2$ with respect to SIF for chosen four seasons. DJF seasons comprises of December, January, and February, and so on for other three seasons. The dashed vertical and horizontal lines represent the corresponding mean values of ΔXCO$_2$ and SIF, respectively. The error bars are the 95% CI of the mean.

about 4 times larger than Nile Delta and is similarly characterized by intense urbanization and agricultural activity. However, our emissions estimates are quite high as compared to values obtained for the Pearl River Delta (table 1). Xu et al (2018) used urbanization indicators (like land, population and economic urbanization) to estimate carbon emissions in Pearl River Delta and also highlighted uncertainties in emission estimates due to selection of indicators (Peng et al 2017). None of the above studies included emissions from exploited/degrading carbon-rich agriculture soils, which may be a significant source in Nile Delta.

Uncertainties in CO$_2$ emission inventories have been reported for developing countries, e.g. India and China (Guan et al 2012, Xue and Ren 2012, Janardanan et al 2016), and have mostly been attributed to uncertainties in the national level energy statistics and human activity data used to construct inventory data sets. Furthermore, the plot of ΔXCO$_2$ and SIF (indication of agriculture activity) in figures 5 and S5, clearly shows seasonal differences, especially for the two main growing season (winter and summer) with lower XCO$_2$ for the Delta during the summer growing season. We also calculated the seasonal MEFs for each season and found that the factors for the JJA season (MEF \sim 1.05) was significantly lower than MAM season (MEF \sim 5–8), and SON season (MEF \sim 6–11) (see table S1). However, for DJF season, only two OCO-2 measurements dates have sufficient observations over the Nile Delta and desert area for the emission assessments (2015-02-15 and 2017-02-03). There are very high differences between modelled and observed XCO$_2$ enhancements (>2 ppm in figure 8), which resulted in very high MEF (\sim30 to 50, see table S1), which may be biased due to less measurement samples. Nevertheless, such strong signal of seasonal variation of XCO$_2$ can be attributed directly or indirectly to agricultural farming and irrigation activities associated with the sediment-rich river inflow that occurs during the winter season.

Direct agriculture emissions include tillage enhanced soil respiration and crop residue burning, whereas indirect emission comes from fossil fuel consumption by farm machineries for various inter-cultural activities like tilling, weeding, harvesting etc, and pumps for irrigation. In 2010, as per report from EAS (2014), irrigation pumps (mostly diesel pumps) were used in 75% of the cultivated area. El-Gafy and El-Bably (2016) measured an average emission of 6.55 tCO$_2$/ha from on-farm diesel pumps used for irrigation.

Apart from agricultural activities, anthropogenic emissions from transportation, industrial and household use (combined energy statistics) of various distributed cities in the Nile Delta might also
Figure 6. Latitudinal variation of XCO$_2$ in the Nile Delta and desert and wind direction at 13:30 for a few selected dates. Black solid line is the local regression (loess) smoothed result with span = 0.15. The urban settlement in the lower end of the delta area is the Cairo megacity. The arrows represent the wind direction at the OCO-2 measurement points.

Figure 7. Comparison of modelled/calculated XCO$_2$ enhancements (XCO$_2$,enh) using the EDGAR and the ODIAC emission inventories with the observed enhancements (XCO$_2$,O—XCO$_2$,bkg) for receptor locations. Red dots represents receptor location in Cairo megacity, whereas grey dots are for receptor locations at Nile Delta excluding Cairo megacity. The horizontal line inside the box plots represent the median value.
Table 1. Comparison of CO₂ emissions from Nile Delta with other river delta.

Country	Nile Delta	Pearl River Delta	Yangtze River Delta
Area (km²)	~25 000	~40 000	~110 000
Population (millions)	39	56	96
Year	2014–2019	2014	2013
Data	OCO-2 XCO₂	Urbanization indicators	City Panel remote sensing and statistical data
Emission estimate (Mt CO₂/year)	473ᵃ	151	1450
Reference	Present study	Xu et al (2018)	Zhou et al (2019)

ᵃAverage of CO₂ emission based on EDGAR and ODIAC data

Figure 8. Difference between observed and modelled enhancement. Only 4 dates of OCO-2 measurements passed through Cairo city (marked in red color).

be under-reported in these global emission inventories (Guan et al 2012). Gately and Hutyra (2017) argued that global emission inventories (like ODIAC) appear to deflect from spatial patterns in source activity in comparison to national scale inventories, and thus the former might not accurately represent anthropogenic emissions at subnational or urban scales. Our calculated delta emissions are based on yearly (for EDGAR) and monthly (ODIAC) average of CO₂ emissions, whereas the OCO-2 XCO₂ measurements are instantaneous, at 13:30 local time. This can result in under-/over-estimation of calculated enhancements as CO₂ emissions vary diurnally, weekly and seasonally, especially for urban areas. Burri et al (2009) measured CO₂ fluxes using the eddy covariance method at the University of Cairo and showed that the CO₂ fluxes have a significant diurnal and weekly variation, with peak CO₂ flux occurring between 14:00 and 16:00 and minimum flux on Friday (rest day due to Muslim prayer day on Friday). In our study, ODIAC performed a little better compared to EDGAR, as the former gives monthly average estimates and thus has the capability to capture the seasonal variability of CO₂ emissions, which cannot be implied for the latter.

4. Conclusions

Our study assesses CO₂ emissions from the Nile Delta, which is particularly characterized by anthropogenic activities such as agriculture and urbanization, using the OCO-2 satellite observations of atmospheric CO₂ concentrations. We found that emission inventory-based modelled XCO₂ values were significantly lower than the satellite-based observed XCO₂ values in the Nile Delta (factor 4.53 [4.34, 4.68] for EDGAR and 3.36 [3.19, 3.45] for ODIAC), indicating underestimation of CO₂ emissions reported in the emission inventory. We combined XCO₂ data with SIF to relate CO₂ emissions from agricultural production in the Nile Delta. Our emission estimate for the Nile Delta was about 1% of the global anthropogenic CO₂ emission and was comparable to the scaled CO₂ emissions estimated for the Yangtze River Delta considering the differences in size. Our results are particularly important in the context of uncertainties in national level reported energy/activity statistics for developing nations, which results in underestimation of their CO₂ emissions by the state-of-the art emission inventories. Our study provides an approach for verification of bottom-up emission inventories...
using satellite-based XCO₂ measurement over consistently emitting local and regional sources. The latest OCO satellite, OCO-3 (launched in May 2019 and data available since January 2020), which also measures XCO₂ and SIF, captures data of larger area (100 km × 100 km) in a snapshot mode with the same high spatial resolution, thus providing the opportunity to assess spatial variability of carbon emissions of larger area based on our approach. Based on the findings of our study, we recommend eddy covariance flux measurements in such a carbon-rich delta to quantify the seasonality of CO₂ emissions, which could be used to improve the emission inventories. Finally, we call for more research in estimating possible uncertainties and thereby improve the accuracy of the emission inventories especially for countries with intense agriculture activities.

Acknowledgments

The authors would like to extend their gratitude towards NASA and the OCO-2 team for publicly providing such a valuable data. This work was supported in part by the Institute for Advanced Study (IAS), Technical University of Munich, funded by the German Excellence Initiative and the European Union Seventh Framework Program under grant 291763 and German Research Foundation (DFG) under Grant 419317138. This work was conducted while Ankit Shekhar was with Professorship of environmental sensing and modeling, Technical University of Munich. Now he is at ETH Zürich. We are also grateful to two anonymous reviewers for their suggestions which improved the manuscript.

Data availability statement

The data that support the findings of this study are openly available at the OCO-2 data portal at https://co2.jpl.nasa.gov/#mission=OCO-2

ORCID iDs

Ankit Shekhar 🌐 https://orcid.org/0000-0003-0802-2821
Jia Chen 🌐 https://orcid.org/0000-0002-6350-6610
Florian Dietrich 🌐 https://orcid.org/0000-0002-3069-9946
Xinxu Zhao 🌐 https://orcid.org/0000-0002-2251-3451
Shrutilipi Bhattacharjee 🌐 https://orcid.org/0000-0002-6288-0942

References

Abd El-Kawy O R, Röd J K, Ismail H A and Suliman A S 2011 Land use and land cover change detection in the western Nile Delta of Egypt using remote sensing data Appl. Geogr. 31 483–94
Andres R J, Marland G, Fung I and Matthews E 1996 A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990 Global Biogeochem. Cycles 10 419–29
Bhattacharjee S and Chen J 2020 Prediction of satellite-based column CO₂ concentration by combining emission inventory and LULC information IEEE Trans. Geosci. Remote Sens. 1–16
Boden T A, Marland G and Andres R J 2017 Global, regional, and national fossil-fuel CO₂ emissions, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy (https://doi.org/10.3334/CDIAC/00001_V2017)
Bovensmann H, Buchwitz M, Burrows J P, Reuter M, Kriting S, Gerilowski K, Schneising O, Heymann J, Trettern A and Erzinger J 2010 A remote sensing technique for global monitoring of power plant CO₂ emissions from space and related applications Atmos. Meas. Tech. 3 781–811
Burri S, Frey C, Parlow E and Vogt R 2009 CO₂ fluxes and concentrations over an urban surface in Cairo/Egypt. Paper Presented at the Seventh Int. Conf. on Urban Climate Organized by the IAUC, Yokohama, 29 June–3 July
Castro A O, Chen J, Zang C S, Shekhar A, Jimenez J C, Bhattacharjee S, Kindu M, Morales V H and Rammig A 2020 OCO-2 solar-induced chlorophyll fluorescence variability across ecoregions of the Amazon basin and the extreme drought effects of El Niño (2015–2016) Remote Sens. 12 1202
Chang R Y W et al 2014 Methane emissions from Alaska in 2012 from CARVE airborne observations Proc. Natl Acad. Sci. 111 16694–9
Chen J, Dietrich F, Maazallah H, Forstmaier A, Winkler D, Hofmann M E G, Denier van der Gon H and Röckmann T 2020 Methane emissions from the Munich Oktoberfest Atmos. Chem. Phys. 20 3683–90
Chen J, Viatte C, Heidelberg K J, Jones T, Franklin J E, Parker H, Gottlieb L, Wobus C S 2016 Differential column measurements using compact solar-tracking spectrometers Atmos. Chem. Phys. 16 8479–98
Copernicus Climate Change Service (CSS) 2017 ERA5: fifth generation of ECMWF atmospheric reanalysis of the global climate. Copernicus climate change service climate data store (CDS) (https://cds.climate.copernicus.eu/cdsapp#!/home) (Accessed: 5 January 2020)
Crippa M, Solazzo E, Huang G, Guizzardi D, Koffi E, Muntean M, Schieberle C, Friedrich R and Janssens-Maenhout G 2020 Global XCO₂ data characterization Atmos. Meas. Tech. 13 687–707
Crippa D et al 2012 The ACOS CO₂ retrieval algorithm-part II: global X CO₂ data characterization Atmos. Meas. Tech. 5 687–707
Crippa D et al 2017 The on-orbit performance of the orbiting carbon observatory-2 (OCO-2) instrument and its radiometrically calibrated products Atmos. Meas. Tech. 10 59–81
de-Gouve J A, Parrish D D, Frost G J and Trainer M 2014 Reduced emissions of CO₂, NOₓ, and SO₂ from U.S. power plants owing to switch from coal to natural gas with combined cycle technology Earths Future 2 75–82
EAS (Economic Affairs Sector) 2014 Agricultural Census for the Agricultural Year 2009–2010—The Total Republic (Egypt: Ministry of Agricultural and Land Reclamation)
El Gamal T and Zaki N 2017 Egyptian irrigation after the Aswan high dam Irrigated Agriculture in Egypt (Berlin: Springer International Publishing) pp 47–79
El-Beheiry M, Ahmed D, Ammar E and Shaltout K 2015 Diversity of crop plants in Nile Delta, Egypt Taakholma 35 77–97
El-Gafy I K E-D and El-Bably W F 2016 Assessing greenhouse gasses emitted from on-farm irrigation pumps: case studies from Egypt Ain Shams Eng. J. 7 939–51
Fasoli B, Lin J C, Bowling D R, Mitchell I and Mendoza D 2018 Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the stochastic time-inverted Lagrangian transport model's R interface (STILT-R version 2) Geosci. Model Dev. 11 2813–24

Food and Agriculture Organization of the United Nations 2019 FAOSTAT Database (www.fao.org/faostat/en/#data/QC) (Accessed: 11 November 2019)

Frankenberg C et al 2011 New observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity Geophys. Res. Lett. 38 17

Frankenberg C, O’Dell C, Berry J, Guanter L, Joiner J, Köhler P, Pollock R and Taylor T E 2014 Prospects for chlorophyll fluorescence remote sensing from the orbiting carbon observatory-2 Remote Sens. Environ. 147 1–12

Frankenberg C et al 2015 The orbiting carbon observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements Atmos. Meas. Tech. 8 301–13

Gately C K and Hutrya I R 2017 Large uncertainties in urban-scale carbon emissions J. Geophys. Res. Atmos. 122 11,242–11,260

Gerbig C, Lin J C, Wofsy S C, Daube B C, Andrews A E, Stephens B B, Bakwin P S and Grainger C A 2003 Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework J. Geophys. Res. Atmos. 108 4757

Guan D, Liu Z, Geng Y, Lindner S and Hubacek K 2012 The gigatonne gap in China’s carbon dioxide inventories Nat. Clim. Chang. 2 672–5

Hakkarainen J, Jalongo I, Maksyutov S and Crisp D 2019 Analysis of four years of global XCO2 anomalies as seen by orbiting carbon observatory-2 Remote Sens. 11 850

Hakkarainen J, Jalongo I and Tamminen J 2016 Direct space-based observations of anthropogenic CO2 emission areas from OCO-2 Geophys. Res. Lett. 43 11,400–11,406

Hannam K D, Midwood A J, Neilson D, Forge T A and Jones M D 2019 Bicarbonates dissolved in irrigation water contribute to soil CO2 efflux Geoderma 337 1097–104

Hollmann R et al 2013 The ESA climate change initiative: satellite data records for essential climate variables Bull. Am. Meteorol. Soc. 94 1541–52

Hu C, Higgins T J, Lee X, Millet D B, Chen Z, Baker J M and Xiao K 2018a Top-down constraints on anthropogenic CO2 emissions within an agricultural-urban landscape J. Geophys. Res. Atmos. 123 4674–94

Hu C, Liu S, Wang Y, Zhang M, Xiao W, Wang W and Xu J 2018b Anthropogenic CO2 emissions from a megacity in the Yangtze River Delta of China Environ. Sci. Pollut. Res. 25 23157–69

Hutrya I, R, Duren R, Gurney K R, Grimm N, Kort E A, Larson E and Shrestha G 2014 Urbanization and the carbon cycle: current capabilities and research outlook from the natural sciences perspective Earths Future 2 473–95

IPCC: Climate Change 2013 The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed T F Stocker, D Qin, G-K Plattner, M Tignor, S K Allen, J Boschung, A Nauels, Y Xia, V Bex and P M Midgley (Berlin: Springer) pp 153–8

Jacobson W G 2000 Loess: a nonparametric, graphical tool for depicting relationships between variables Elect. Stud. 19 577–81

Janardanan R, Maksyutov S, Oda T, Saito M, Kaiser J W, Ganeshin D, Stohl A, Matsuura T, Yoshida Y and Yokota T 2016 Comparing GOSAT observations of localized CO2 enhancements by large emitters with inventory-based estimates Geophys. Res. Lett. 43 3486–93

Janssens-Maenhout G et al 2019 EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012 Earth Syst. Sci. Data 11 959–1002

Kort E A, Frankenberg C, Miller C E and Oda T 2012 Space-based observations of megacity carbon dioxide Geophys. Res. Lett. 39

Kuze A et al 2016 Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space Atmos. Meas. Tech. 9 2445–61

Labzowska I D, Jeong S-I and Parazoo N C 2019 Working towards confident spaceborne monitoring of carbon emissions from cities using orbiting carbon observatory-2 Remote Sens. Environ. 233 111359

Lin J C, Gerbig C, Wofsy S C, Andrews A E, Daube B C, Davis K J and Grainger C A 2003 A near-field tool for simulating the upstream influence of atmospheric observations: the Stochastic Time-Inverted Lagrangian Transport (STILT) model J. Geophys. Res. Atmos. 108 4495

Lindzenrau R, Dubey M K, Henderson B G, Butterfield Z T, Herman J R, Rahn T and Lee S H 2014 Multiscale observations of CO2, 13CO2, and pollutants at four corners for emission verification and attribution Proc. Natl Acad. Sci. USA 111 8386–91

Liu Z et al 2015 Reduced carbon emission estimates from fossil fuel combustion and cement production in China Nature 524 355–8

Luther A et al 2019 Quantifying CH4 emissions from hard coal mines using mobile sun-viewing Fourier transform spectrometer Atmos. Meas. Tech. 12 5217–30

Mckain K, Wofsy S C, Nehrkorn T, Eluszkiewicz J, Ehleringer J R and Stephens B B 2012 Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region Proc. Natl Acad. Sci. 109 8423–8

Miller S M et al 2013 Anthropogenic emissions of methane in the United States Proc. Natl Acad. Sci. 110 20018–22

Nassar R, Hill T G, McLinden C A, Wunch D, Jones D B A and Crisp D 2017 Quantifying CO2 emissions from individual power plants from space Geophys. Res. Lett. 44 10045–53

Negm A M, Saavedra O and El-Adawy A 2016 Nile Delta Biography: Challenges and Opportunities Handbook of Environmental Chemistry (Berlin: Springer) pp 5–18

O’Dell C W et al 2012 The ACOS CO2 retrieval algorithm—part 1: description and validation against synthetic observations Atmos. Meas. Tech. 5 99–121

O’Dell C W et al 2018 Improved retrievals of carbon dioxide from orbiting carbon observatory-2 with the version 8 ACOS algorithm Atmos. Meas. Tech. 11 6539–76

Oda T and Maksyutov S 2011 A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights Atmos. Chem. Phys. 11 543–56

Oda T, Maksyutov S and Andres R J 2018 The open-source data product of gridded anthropogenic CO2 emissions for emission verification and attribution (ODIAC2016): A global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions Earth Syst. Sci. Data 10 87–107

Osama S, Elkholly M and Kanosh R M 2017 Optimization of the crop model parameters in Egypt Aces. Eng. J. 56 557–66

Peng J, Tian L, Liu Y, Zhao M, Hu Y and Wu J 2017 Ecosystem carbon cycle from GOSAT: patterns of plant fluorescence Geophys. Res. Lett. 44 9423–49

Queré C et al 2018 Global carbon budget 2018 Earth Syst. Sci. Data 10 2141–94

Radwan T M, Blackburn G A, Whyatt J D and Atkinson P M 2019 Dramatic loss of agricultural land due to urban expansion threatens food security in the Nile Delta, Egypt Remote Sens. 11 1–20

Rana G, Ferrara R M, Vitale D, d’Andrea L and Palumbo A D 2016 Carbon assimilation and water use efficiency of a
perennial bioenergy crop (cynara cardunculus L.) in mediterranean environment Agric. For. Meteorol. 217 137–50

Reuter M, Buchwitz M, Schneising O, Krautwurst S, O’Dell C W, Richter A, Bovensmann H and Burrows J P 2019 Towards monitoring localized CO2 emissions from space: co-located CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites Atmos. Chem. Phys. 19 9371–83

Schneising O, Heymann J, Buchwitz M, Reuter M, Bovensmann H and Burrows J P 2013 Anthropogenic carbon dioxide source areas observed from space: assessment of regional enhancements and trends Atmos. Chem. Phys. 13 2445–54

Schwandner F M et al 2017 Spaceborne detection of localized carbon dioxide sources Science 358 eaam5782

She W, Wu Y, Huang H, Chen Z, Cui G, Zheng H, Guan C and Chen F 2017 Integrative analysis of carbon structure and carbon sink function for major crop production in China’s typical agriculture regions J. Clean. Prod. 162 702–8

Shekhar A, Bhattacharjee S, Chen J and Rammig A 2019 Spring-summer variation analysis in OCO-2’s solar induced fluorescence during the European heatwave in 2018 Geophys. Res. Abstr. 21 EGU2019-17409-1

Sun Y et al 2017 OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence Science 358 eaam5747

Telmer K and Veizer J 1999 Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives Chem. Geol. 159 61–86

Viatte C et al 2017 Methane emissions from dairies in the Los Angeles Basin Atmos. Chem. Phys. 17 7509–28

Wang R et al 2013 High-resolution mapping of combustion processes and implications for CO2 emissions Atmos. Chem. Phys. 13 5189–203

Wang S, Zhang Y, Hakkarainen J, Ju W, Liu Y, Jiang F and He W 2018 Distinguishing anthropogenic CO2 emissions from different energy intensive industrial sources using OCO-2 observations: a case study in Northern China J. Geophys. Res. Atmos. 123 9462–73

Wu D, Lin J C, Fasoli B, Oda T, Ye X, Lauvaux T, Yang E G and Kort E A 2018 A Lagrangian approach towards extracting signals of urban CO2 emissions from satellite observations of atmospheric column CO2 (XCO2): X-stochastic time-inverted lagrangian transport model (‘X-STILT v1’) Geosci. Model Dev. 11 4843–71

Wunch D, Toon G C, Blavier J F L, Washenfelder R A, Notholt J, Connor B J, Griffith D W T, Sherlock V and Wennberg P O 2011a The total carbon column observing network Philos. Trans. R. Soc. A 369 2087–112

Wunch D et al 2011b A method for evaluating bias in global measurements of CO2 total columns from space Atmos. Chem. Phys. 11 13237–57

Xu Q, Dong Y and Yang R 2018 Urbanization impact on carbon emissions in the Pearl River Delta region: kuznets curve relationships J. Clean. Prod. 180 514–23

Xue B and Ren W 2012 China’s uncertain CO2 emissions Nat. Clim. Chang. 2 762–762

Ye X, Lauvaux T, Kort E A, Oda T, Feng S, Lin J C, Yang E and Wu D 2017 Constraining fossil fuel CO2 emissions from urban area using OCO-2 observations of total column CO2 Atmos. Chem. Phys. Discuss. 1–30

Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H and Maksyutov S 2009 Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results SOLA 5 160–3

Zeydan B A 2005 The nile delta in a global vision Ninth Int. Water Technol. Conf. IWTC9 2005, Sharm El-Sheikh, Egypt vol 31 pp 31–40

Zheng T, Nassar R and Baxter M 2019 Estimating power plant CO2 emission using OCO-2 XCO2 and high resolution WRF-Chem simulations Environ. Res. Lett. 14 085001

Zhou C, Wang S and Wang J 2019 Examining the influences of urbanization on carbon dioxide emissions in the Yangtze River Delta, China: kuznets curve relationship Sci. Total Environ. 675 472–82