An analysis of credit risk of middle and small-sized enterprises in the inclusive financial system: an example from China

Binghui Wu1,*, Jing Yang1,2, Tingting Duan3 and Wenlong Miao1

1International Business School, Shaanxi Normal University, Xi’an, China
2Lanzhou Branch of China Merchants Bank, Lanzhou, China
3School of Marxism, Northwestern Polytechnical University, Xi’an, China

*Corresponding author e-mail: vcmd@163.com

Abstract. Inclusive finance is a development direction of current finance reform for the nations of the world. Based on the theory of inclusive finance, this paper analyses the credit risk of middle and small-sized enterprises in China through KMV model. In empirical analysis, we choose the sample data coming from ST company, *ST company and non-ST company in the growth enterprise market of China. After calculating the default risk and the default probability of enterprises, the results show that, in general, the enterprises in unnormal operation have higher default risks relative to the enterprise in normal operation. According to sample data, individual enterprises in unnormal operation also have lower default risks. In the inclusive financial system, governments should pay more attentions to the development of middle and small-sized enterprises, and establish some proper measures to provide financial services for middle and small-sized enterprises, especially for enterprises in unnormal operation.

1. Introduction

With the development of society and economy, all classes of society produce the huge demands for financial services. But the unbalanced economic development leads to that some people cannot access to financial service to some degree [1]. The big financial institutions usually pay more attentions to some developed regions of economy and high-income groups, and neglect vulnerable groups, vulnerable areas and disadvantaged enterprises [2]. The mismatching of financial service has seriously influenced on national economic sustainable development. Although many financing ways can be adopted in theory, the middle and small-sized enterprises still face the problem of financing difficulties, such as narrow financing channels and limited financing scales [3]. Therefore, it is necessary to construct the inclusive financial system for any country, whether developed or developing. Even in a developed country, inclusive financial system may still need to be improved further.

At present, the main measuring method of credit risk focuses on Credit Metrics model, Credit Risk+ model and KMV model. Credit Metrics model was put forward in 1997 by JP Morgan. This model holds that the change of credit grade can cause credit risk, except for default behavior [4]. In Credit Metrics model, many indicators are included into an integrated framework of the analysis, such as credit rating, default rate, recovery rate and default correlation. Then Credit Risk+ model was first proposed by Credit Suisse Financial Products (CSFP) in 1997. As a statistical model of default risk, it considers only two states: default state and nondefault state. Based on a random default rate, Credit
Risk+ model measures the changes of expected loss and unexpected loss [5]. But Credit Metrics model mainly focuses on the changes of expected value and unexpected value. At last, KMV model was presented by KMV company in 1997. This model predicts loss given default (LGD) by using an expected delinquency frequency (EDF). To be specific, KMV model calculates EDF through the stock price of corporate borrower first, and then calculates LGD through EDF [6]. Because Credit Metrics model and Credit Risk+ model need a giant database, including rating data and macro-economic data, KMV model is more suitable for the research of this paper.

The main contributions of this paper are as follows: (1) we use the KMV model analyze the credit risk of middle and small-sized enterprises after the implementation of inclusive finance in China; (2) in the basis of Chinese stock market, we choose ST company, *ST company and non-ST company as research samples to comparing the credit risk of companies under different business performances; (3) empirical result shows that the enterprises in unnormal operation have higher default risks relative to the enterprise in normal operation in the inclusive financial system; (4) the emphasis of risk prevention is the default risk of middle and small-sized enterprises in unnormal operation for governments. The rest contents are organized as follows. Section 2 expounds inclusive financial system from the two aspects of inclusive finance and theoretical basis. Then, KMV model is adopted to analyze the credit risk of middle and small-sized enterprises in the inclusive financial system by using sample data coming from the growth enterprise market of China in section 3. Finally, the conclusions are drawn in section 4.

2. Inclusive financial system

2.1. Inclusive finance

Inclusive finance emphasizes a complete range of financial services for people coming from the entire class in society [7]. Especially for people in poverty area, inclusive finance offers them an opportunity to enjoy financial service. To be specific, inclusive finance includes three aspects. First, inclusive finance is a social idea. Every person should have the right to enjoy financial service in a society. The proposed inclusive finance displays society fair and harmony. Then, inclusive finance needs innovation. This innovation mainly reflects in financial products, financial institutions and financial systems. Finally, inclusive finance must keep the same treatment for different strata. The objects of financial serves should shift to low income people, not just high-income people.

The characteristics of inclusive finance can be concluded the following four parts: (1) Both households and firms can equally and fairly enjoy a series of financial services; (2) Inclusive finance has a sound service system, including the financial institution system, the financial management system and the financial regulatory system; (3) Financial institution has the ability of sustainable development, and can provide financial services for a long time; (4) Financial institutions offer a variety of financial products for clients [8]. In addition, the framework of inclusive financial system contains four layers: customer level, micro level, middle level and macro level. In customer level, low-income stratum is in the center of inclusive financial system. The micro level mainly relates to the provider which offers retail financial services. Then the middle level emphasizes financial infrastructure construction, which realizes the decrease of transaction costs in financial business. At last, macro level mainly concerns macro-financial supervision coming from central bank.

2.2. Theoretical basis

2.2.1. Financial exclusion theory

Financial exclusion was firstly seen in America, but much valued in Britain. The Great Depression and Economic Crisis drove the banking industry to focus on the goal of value maximization in the 1990s. Financial institutions began segmenting the market and tried to find a safer market, which was consisted of groups having powers and influences. However, for some poor and disadvantaged groups, financial institutions generally closed their branch offices. Finally, these poor and disadvantaged groups became increasingly difficult to obtain financial services [9].
In general, the objects of financial exclusion are mainly summarized as vulnerable groups, vulnerable areas and disadvantaged enterprises [10]. At first, vulnerable groups refer to low income people and poor people, who are hard to obtain financial services and products owing to the limitation of economic capacity, social status and education level. Then, vulnerable areas are widespread for every country. The geographical disadvantage is also an important restricting factor of sustainable development in inclusive finance. At last, disadvantaged enterprises mainly means middle and small-sized enterprises in bad operating states. These enterprises are always lack of financing channels, and many traditional financial institutions aren’t inclined to give a credit support.

Overall, financial exclusion theory is an emerging theory, which expounds the difficulties of financial services for vulnerable groups in society [11]. These difficulties concentrate in savings exclusion, loan exclusion, bank exclusion and insurance exclusion.

2.2.2. Credit risk theory

Credit risk means that the debtor cannot perform debt service obligations according to the previous agreement owing to all sorts of unpredictable reasons, thus the creditor confronts the possibility of losses [12]. The reasons of default may come from economic cycle and company performance. The default rate of enterprise always decreases in economic expansion. Whereas, an enterprise is inclined to default during economic downturn. In addition, a bad company performance probably can’t afford to debt service, and the probability of credit risk increases [13].

Credit risk has four types: default risk, market risk, income risk and purchasing power risk. More precisely, default risk manifests that the debtor is unable to service the debt on time because of some reasons, such as cash flow dilemma, bad management and lagging sale. Market risk indicates that the market price fluctuation may cause the downside risk of security price. With the longer time period, security price is more sensitive to the fluctuation of interest rate, and market risk increases further. When long-term funds are used for short-term investments, real investment income is probably higher than expected investment income with the appearance of income risk. Considering the influence of inflation, the real purchasing power of investment income is lower than the expected purchasing power, when the real inflation is higher than the expected inflation.

Besides, credit risk has some unique characteristics, such as potentiality, chronicity, destructiveness and uncontrollability. For the bond issuers, credit risk can increase the financing costs of enterprises. And for the bond investors, credit risk downgrades the credit rating of bond, and reduces the value of the bond. The measuring method of credit risk usually centres on KMV model, which adopts stock data to calculate the probability of default based on Black-Scholes option pricing formula [14].

3. Empirical analysis

KMV model is often used as a measuring method of credit risk, which shows the default interval in essence [15]. If an enterprise has higher liabilities rather than assets on the expiry date, this enterprise will probably default on its debts. In KMV model, Distance-to-Default is usually used for measuring the default risk of enterprise, abbreviated as DD. In general, a higher DD indicates a lower probability of default. The liability of enterprise is often classified two parts: the current liability of enterprise (STD) and the long-term liability of enterprise (LTD). According to KMV model, DPT, DD and Pi, can be shows by expression (1), (2) and (3), respectively [16]. The above parameters are described in table 1.

\[
DPT = STD + \frac{1}{2} LTD
\]
\[
DD = \frac{\ln \left(\frac{V_d}{D} \right) + (\mu - \frac{1}{2} \sigma^2)T}{\sigma \sqrt{T}} = \frac{E(V_d) - DPT}{E(V_d) \sigma_d}
\]
\[P_i = N \left[-\frac{\ln \frac{V_A}{D} + \left(\mu - \frac{1}{2} \sigma_A^2 \right) T}{\sigma_A \sqrt{T}} \right] = N(-DD) \]

(3)

Table 1. The description of parameters

Parameters	Descriptions	Parameters	Descriptions
\(V_A \)	The asset value of enterprise	\(\mu \)	The mean value of asset value
\(D \)	The market value of enterprise debt	\(\sigma_A \)	The volatility of asset value
\(T \)	The maturity date of enterprise debt	\(E(V_A) \)	The expectation value of \(V_A \)
\(r \)	The riskless interest rate	\(P_i \)	The default probability
\(N(\cdot) \)	The standard normal distribution	STD	The current liability of enterprise
DPT	The default point	LTD	The long-term liability of enterprise

As the research on credit risk is from the perspective of small and medium-sized enterprises, all sample data come from the growth enterprise market of China. This paper chooses ST company, *ST company and non-ST company having the same scale assets comparing with ST company and *ST company. In the process of data selection, this paper chooses more industry as much as possible. But, because of the limitation on sample data, many companies belong to manufacturing industry in the final result of data selection.

The sample interval in the paper is from Jan. 30, 2017 to Dec. 29, 2017. All sample data come from Wind database. The riskless interest rate is supposed as one-year deposit rate at 1.50%, which is published by the People's Bank of China in 2017. And the maturity date of enterprise debt is assumed to be equal to one year. Table 2 and 3 show the DPT of enterprise in normal operation and unnormal operation, respectively. And we can also calculate the asset value of enterprise, the volatility of asset value, the distance-to-default and the default probability. The results are shown in tables 4 and 5.

Table 2. The DPT of enterprise in unnormal operation

Stock code	Industry	STD (Million RMB)	LTD (Million RMB)	DPT (Million RMB)
002070	Manufacturing	1998.61	85.65	2041.44
002134	Manufacturing	199.95	16.06	207.98
002188	Leasing and business	258.86	0.31	259.02
002207	Mining	381.55	0.00	381.55
002248	Manufacturing and catering	1135.87	67.50	1169.62
002306	Accommodation	88.49	19.23	98.11
002312	Manufacturing	135.55	245.58	258.34
002427	Manufacturing	4540.18	756.22	4918.29
002473	Manufacturing	81.90	0.36	82.08
002490	Manufacturing	3619.39	253.96	3764.37
002504	Building	5099.36	0.00	5099.36
002571	Manufacturing	352.01	2.18	353.10
002604	Manufacturing	584.14	805.16	986.72
Table 3. The DPT of enterprise in normal operation

Stock code	Industry	STD (Million RMB)	LTD (Million RMB)	DPT (Million RMB)
002058	Manufacturing	27.35	3.22	1.31
002883	Technology service	51.73	0.04	7.13
002878	Leasing and business	135.06	3.20	6.76
002881	Manufacturing	307.02	4.33	4.65
002753	Manufacturing	267.40	275.47	5.52
002724	Manufacturing	155.05	17.06	2.94
002690	Manufacturing	240.47	65.87	3.25
002364	Manufacturing	211.44	8.88	4.16
002263	Manufacturing	1058.95	137.86	1.15
002181	Leasing and business	755.09	73.28	3.38
002145	Manufacturing	2316.96	539.31	1.88
002366	Manufacturing	2682.76	979.05	3.21
002496	Manufacturing	3237.53	858.29	2.52

Table 4. The default risk of enterprise in unnormal operation

Stock code	\(V_A \)	\(\sigma_A \)	DD	\(P_i \)
002070	3313.905	0.308	3.222	0.00064
002134	982.958	0.449	2.111	0.01740
002188	1243.335	0.466	1.909	0.02815
002207	1472.139	0.468	1.687	0.04578
002248	3418.479	0.530	1.664	0.04809
002306	5860.482	0.489	1.989	0.02337
002312	7664.821	0.247	3.911	0.00005
002427	8357.787	0.312	3.119	0.00091
002473	7529.111	0.155	5.495	0.00000
002490	7647.509	0.228	3.926	0.00004
002504	10535.375	0.191	3.958	0.00004
002571	23168.675	0.652	1.323	0.09293
002604	10548.164	0.157	4.160	0.00002
Table 5. The default risk of enterprise in normal operation

Stock code	V_A	σ_A	DD	P_i
002058	8046.529	0.304	2.454	0.00706
002883	3232.706	0.281	3.335	0.00043
002878	5003.432	0.268	3.541	0.00020
002881	2886.415	0.375	2.316	0.01028
002753	3623.754	0.263	2.577	0.00498
002724	3975.253	0.361	2.698	0.00348
002690	8609.090	0.258	3.764	0.00008
002364	15601.855	0.169	4.050	0.00003
002263	3045.403	0.292	3.330	0.00043
002181	7682.777	0.190	2.693	0.00355
002145	8844.430	0.110	3.855	0.00006
002366	2888.463	0.224	3.927	0.00004
002496	6270.347	0.234	3.600	0.00016

In order to reflect the comparison of DD in different types of enterprises, the mean and variance of DD are calculated in table 6. The mean of DD is higher for enterprise in normal operation, and the variance of DD is lower for enterprise in normal operation. Table 6 indicates that the enterprise in normal operation has the lower default risk and the relative stable value of DD. As for the enterprises in unnormal operation, the higher variance shows that the value of DD has a wide range of fluctuation based on the mean 2.960. The maximum and minimum also reflect this difference about the value of DD. In addition, according to tables 4, 5 and 6, the individual enterprises in unnormal operation have higher values of DD, which even exceed the maximum of DD comparing with the enterprises in normal operation. For example, the DD values of stock code 002473 and 002604 in table 4 are 5.495 and 4.160, respectively, which are also greater than the maximum of DD in table 5. So, in general, the enterprises in unnormal operation have higher credit risks, relative to the enterprises in normal operation. However, there are individual enterprises in unnormal operation having the lower credit risks. For commercial banks, they prefer to offer loans to the enterprise in normal operation.

Table 6. The comparison of DD in different types of enterprises

The types of enterprises	Mean	Variance	Maximum	Minimum
The enterprises in normal operation	3.242	0.614	4.050	2.316
The enterprises in unnormal operation	2.960	1.276	5.495	1.323

4. Conclusions

This paper chooses financial data of 26 listed enterprises, which contains 13 enterprise in normal operation and 13 enterprise in unnormal operation. KMV model is used for analyzing the credit risks of enterprises, and the values of DD and the default probabilities are calculated by means of the following parameters: V_A, V_E, σ_A, σ_E and DPT. Owing to the higher default risk of middle and small-sized enterprises, the government should increase the supports to middle and small-sized enterprises,
especially for the enterprises in unnormal operation, give full play to the development potentials of middle and small-sized enterprises in the inclusive financial system.

5. Acknowledgments

This work was financially supported by the Program of Humanities and Social Science Youth Foundation of the Ministry of Education of China (Grant No. 19XJC790014), the Research Project of Major Theoretical and Practical Issues in Social Science Circles in Shaanxi Province of China (Grant No. 2019C025), Industry-University Cooperative Education Project of Ministry of Education of China (Grant No.201801091012), the Fundamental Research Fund for the Central Universities of China (Grant No. 18SZYB07), the Program of Social Science Planning Fund in Xi’an city of China (Grant No. 19Z16) and the Joint Project of Major Theoretical and Practical Issues in Social Science Circles in Shaanxi Province of China (Grant No. 2019TJ037).

References

[1] Liu G, Liu Y and Zhang C 2018 Factor allocation, economic growth and unbalanced regional development in China World Econ. 41(9) 2439-2463
[2] Pham T and Talavera O 2018 Discrimination, social capital, and financial constraints: The case of Viet Nam World Dev. 102 228-242
[3] Kersten R, Harms J, Liket K, et al. 2017 Small Firms, large Impact? A systematic review of the SME Finance Literature World Dev. 97 330-348
[4] Gordy M B and Marrone J 2012 Granularity adjustment for mark-to-market credit risk models J. Bank Financ. 36(7) 1896-1910
[5] Bielecki T R and Rutkowski M 2013 Credit risk: modeling, valuation and hedging Springer Science & Business Media
[6] Duffie D and Singleton K J 2012 Credit risk: pricing, measurement, and management Princeton University Press
[7] Dixit R and Ghosh M 2013 Financial inclusion for inclusive growth of India-A study of Indian states Int. J. Bus. Manag. Res. 3(1) 147-156
[8] Zhou G, Gong K, Luo S, et al. 2018 Inclusive finance, human capital and regional economic growth in China Sustainability 10(4) 1194
[9] Komarova Loureiro Y and Gonzalez L 2015 Competition against common sense: insights on peer-to-peer lending as a tool to alay financial exclusion Int. J. Bank Mark. 33(5) 605-623
[10] Wentzel J P, Diatha K S and Yadavalli V S S 2016 An investigation into factors impacting financial exclusion at the bottom of the pyramid in South Africa Dev. South Afr. 33(2) 203-214
[11] Koku P S 2015 Financial exclusion of the poor: A literature review Int. J. Bank Mark 33(5) 654-668
[12] Gilchrist S and Mojon B 2017 Credit risk in the euro area Econ. J. 128(608) 118-158
[13] Bao J and Hou K 2017 De facto seniority, credit risk, and corporate bond prices Rev. Financ. Stud. 30(11) 4038-4080
[14] Zhuo Z, Liu J and Luo W 2016 Credit Default Risk Assessment of Local Government Debts Based on KMV Model Int. J. Econ. Financ. 8(5) 230-240
[15] Chaibi H and Fiti Z 2015 Credit risk determinants: Evidence from a cross-country study Res. Int. Bus. Manag. 33 1-16
[16] Han D 2018 Research on Credit Risk of Bank Credit Asset Securitization-An Empirical Analysis Based on KMV Model IEEE International Conference on Service Systems and Service Management 1-6