A systematic review of low-cost laparoscopic simulators

Mimi M. Li1 · Joseph George2

Received: 19 January 2016/Accepted: 18 April 2016/Published online: 18 May 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract
Background Opportunities for surgical skills practice using high-fidelity simulation in the workplace are limited due to cost, time and geographical constraints, and accessibility to junior trainees. An alternative is needed to practise laparoscopic skills at home. Our objective was to undertake a systematic review of low-cost laparoscopic simulators.

Method A systematic review was undertaken according to PRISMA guidelines. MEDLINE/EMBASE was searched for articles between 1990 and 2014. We included articles describing portable and low-cost laparoscopic simulators that were ready-made or suitable for assembly; articles not in English, with inadequate descriptions of the simulator, and costs £1500 were excluded. Validation, equipment needed, cost, and ease of assembly were examined.

Results Seventy-three unique simulators were identified (60 non-commercial, 13 commercial); 55 % (33) of non-commercial trainers were subject to at least one type of validation compared with 92 % (12) of commercial trainers. Commercial simulators had better face validation compared with non-commercial. The cost ranged from £3 to £216 for non-commercial and £60 to £1007 for commercial simulators. Key components of simulator construction were identified as abdominal cavity and wall, port site, light source, visualisation, and camera monitor.

Conclusion The models described provide simple and affordable options for self-assembly, although a significant proportion have not been subject to any validation. Portable simulators may be the most equitable solution to allow regular basic skills practice (e.g. suturing, knot-tying) for junior surgical trainees.

Keywords Laparoscopic · Simulation · Trainer · Trainee · Model · Low-cost

The use of laparoscopic surgery has become widely established in clinical practice, with the acquisition of laparoscopic skills now essential for surgical trainees. The technical skills required are, however, distinct from those needed for open surgery; depth perception is impaired due to visualisation on a two-dimensional screen, there is limited tactile feedback, and long laparoscopic instruments create a fulcrum effect and amplify tremor. There is a significant learning curve associated with laparoscopic surgery, and these skills cannot be easily learnt using the traditional apprentice model of surgical training [1].

Simulation is widely regarded as the way forward, and its use has been shown to improve laparoscopic surgical skills in trainees [2, 3]. Simulation offers the opportunity to improve technical skills in a structured, low-pressure environment outside of the operating theatre without risk to patient safety [4]. Different methods of simulation have been described, ranging from high-fidelity virtual reality systems and animal models to low-fidelity box trainers. Box trainers generally have a less realistic interface and...
are designed for the practice of generic skills required for laparoscopic surgery, such as instrument handling, cutting, and intracorporeal suturing. Virtual reality simulation uses computer-generated graphics and tactile feedback to recreate the operating environment, facilitating practice of procedural-specific skills as well as generic laparoscopic skills [5, 6]. Virtual reality systems are, however, very cost prohibitive and may be inaccessible to many trainees for regular personal use [7]. With the implementation of the European Working Time Directive, opportunities for surgical trainees to gain operative experience in the workplace have also become more limited [8]. A low-cost alternative is needed for trainees to be able to practise and develop their laparoscopic skills outside the workplace. Our objective was to undertake a systematic review of low-cost laparoscopic simulators suitable for home use.

Methods

A systematic review was undertaken according to PRISMA guidelines [9] to define the properties of low-cost laparoscopic simulators. MEDLINE and EMBASE databases were searched for articles on low-cost laparoscopic simulators published between January 1990 and August 2014. The search terms used were (laparoscopic or thoracoscopic or urological or gynaecological or gynaecological), (simulator or simulation or trainer or training), and (low-cost or home-made or inexpensive or DIY or cheap). Relevant articles from the search were identified by their titles and abstracts; the full paper was then assessed for inclusion. Reference lists for relevant articles were also examined to identify additional studies not identified by the original search.

Articles included were those describing low-cost laparoscopic simulators, which were ready-made or suitable for self-assembly. Articles not written in English, with inadequate descriptions of the simulator, and costs of >£1500 were excluded. The simulators described were categorised into commercial (commercially available or intended for commercial use) and non-commercial (intended for self-assembly). Validation, cost, equipment required, and ease of assembly were examined. For ease of comparison, simulator prices in other currencies were converted into British Pound Sterling using the exchange rate on 16 August 2014. We examined whether any form of validation had been described by the authors. The face validity of each simulator was also rated based on predefined criteria for the abdominal cavity and visualisation, giving a score between 0 and 6 (see Table 1).

Results

The results of the search are summarised in Fig. 1. 73 unique simulators were identified from 71 articles: 60 were non-commercial (Table 2) and 13 were commercial (Table 3); 55 % (33) of non-commercial trainers were subject to at least one type of validation compared with 92 % (12) of commercial trainers (Table 4). Commercial simulators were already constructed and ready to use, whereas non-commercial simulators required sourcing and self-assembly of materials. The key components required for non-commercial simulator construction were identified as abdominal cavity and wall, laparoscopic port site, light source, visualisation, and camera monitor.

Abdominal cavity and wall

Materials used to simulate the abdominal cavity aimed to prevent direct vision of the laparoscopic instruments; 68 % (41) of non-commercial simulators utilised off-the-shelf components for the abdomen, whilst 32 % (19) required a custom-made box. The commonest off-the-shelf component was a plastic storage box for the abdominal cavity, with the box lid serving as the abdominal wall [10–23]. Cardboard boxes were also commonly utilised [24–31].

Laparoscopic port site

The majority of non-commercial simulators (97 %, 58) required creating a hole in the abdominal wall material (by cutting, drilling or piercing) for the laparoscopic port site. Instruments could then be inserted directly into the cavity or through a trocar. Use of a flexible covering material, such as neoprene [13, 18], and ring reinforcement around the port site [13, 32–35] were also described as methods to increase simulator authenticity.

Primary light source

An adequate light source was required to visualise the interior of the abdominal cavity. External lighting was used for 38 % (23) of non-commercial simulators, particularly where boxes were made from a translucent material [11, 12, 17, 21] or had open sides [36–38]. This was useful in cost reduction, as no additional equipment was required to provide lighting in these cases. The built-in light source from the laparoscope itself provided lighting for 17 % (10) of simulators, desk lamps for 13 % (8), and light-emitting diodes (LED) for 8 % (5). Other lighting methods described included fluorescent lights [18, 34, 39], webcam inbuilt [40, 41], fibre optics [42], and torchlight [30].
Visualisation and camera monitor

Visualisation for non-commercial simulators was most commonly achieved using a webcam (37%, 22) or laparoscope (22%, 13). Other cameras types described included video cameras [29, 34, 43–45], digital cameras [24, 28, 46, 47], and tablet/smartphone cameras [30, 31, 37, 38]. Direct vision (full [10, 48] or unilaterally blinded [26]) and mirrors [23, 36] were non-electronic methods of visualisation described. Where electronic visualisation was used, a laptop computer, video monitor, tablet, or smartphone were prerequisite and not included in any cost estimates; this was true of both commercial and non-commercial simulators; 40% (24) of models described use of a laptop/desktop computer screen and 38% (23) described using a television or video monitor.

Cost

Forty-six percentage (26) of non-commercial and 54% (6) of commercial simulators provided a figure for cost. For non-commercial, this was the cost of materials and assembly (e.g. custom-made parts); for commercial simulators, the cost represented the current or intended retail price. The cost ranged from £3 to £216 for non-commercial simulators and £60 to £1007 for commercial simulators.
Paper	Cost	Undergone validation	Face validity score	Abdominal cavity	Abdominal wall	Port sites	Light source	Visualisation	Camera monitor	
1991 Sackier (USA) [32]/ 1998 Chung (USA) [56]	–	Yes	6 (A3 B3)	Custom-made black perspex box; rubber sheet sides	Black perspex	Hole; rubber gasket; trocar	Laparoscope	Laparoscope	Unspecified	
1992 Majeed (UK) [33]	–	No	5 (A2 B3)	Metal frame	Black perspex double sheet	Hole; rubber disc; trocar	External lighting	Laparoscope	Video monitor	
1992 Mughal (UK) [10]	£75	No	4 (A1 B3)	Opaque plastic storage box	Clear perspex lid	Hole; plastic floor tile; trocar	20 W strip lamps	Laparoscope (or direct vision)	Video monitor	
1995 Gue (Australia/NZ) [43]	–	No	3 (A1 B2)	Small coffee table/TV stand	Black plastic sheet; wire mesh	Hole; trocar	Table lamp	Video camera	TV screen	
1996 Shapiro (USA) [57]	–	Yes	6 (A3 B3)	Custom-made plastic box	Flexible plastic covering	Hole; trocar	Laparoscope	Laparoscope	Video monitor	
2001 Hasson (USA) [58]	–	Yes	6 (A3, B3)	Custom-made metal box	Rubber sheet	Hole; rubber sheet; trocar	Laparoscope	Laparoscope (or camcorder)	Video monitor	
2003 Lee (UK) [44]	–	No	4 (A1 B3)	Computer game station (tiered table)	Table top	Anchored trocar	Lamp; external lighting	Camcorder	TV screen	
2004 Pokorny (NZ) [11]	NZ $200 (£101.69)	No	4 (A2 B2)	Translucent plastic storage box	Rubber foam sheet over plastic lid	Hole; rubber foam sheet	External lighting	Spy cam; plastic pipe	TV screen	
2005 Beatty (UK) [12]	£50	No	2 (A1 B1)	Clear plastic storage box	Clear plastic lid	Hole	External lighting (bright room/ lamp)	Webcam	Unspecified	
2005 Blacker (UK) [24]	–	No	3 (A1 B2)	Desk drawer	Cardboard	Hole	Desk lamp/strip lamps	Webcam	Desktop computer monitor	
2005 Chung (USA) [25]	–	Yes	2 (A1 B1)	Cut-out cardboard box	Cardboard	Hole	External lighting	Webcam	Laptop	
2005 Ricchiuti (USA) [13]/ Bell (USA) [14]	US $360 (£215.70)	No	6 (A3 B3)	Plastic storage box	Plastic lid; plastic sheet	Reinforced hole; neoprene; trocar	Laparoscope/ halogen lights	Laparoscope	TV screen	
2005 Sharpe (USA) [48]	US $185 (£110.84)	Yes	0 (A0 B0)	Custom-made plastic box	Clear plastic lid	Hole	External lighting	Direct vision	N/A	
Paper	Cost	Undergone validation	Face validity Score	Abdominal cavity	Abdominal wall	Port sites	Light source	Visualisation	Camera monitor	
----------------------	---------------	-----------------------	---------------------	------------------	----------------	------------	--------------	---------------	----------------	
Chandrasekera (UK) [26]	–	Yes	1 (A1 B0)	Cut-out cardboard box	Cardboard	Hole; trocar	External lighting	Direct vision (unilaterally blinded)	N/A	
Do (USA) [59]	–	Yes	5 (A2 B3)	2 large plastic basins	Plastic basin base	Hole; trocar	Lamp	Video camera	Laptop	
Griffin (UK) [45]	–	Yes	2 (A0 B2)	Custom-made wooden frame	Thin wooden sheet	Hole	Desk lamp	Camcorder	TV screen	
Nataraja (UK) [60] / Nataraja (UK) [61]	–	Yes	3 (A0 B3)	Perspex box	Darkened perspex lid	Hole	Laparoscope	Laparoscope	TV screen	
Robinson (USA) [36]	US $50 (£29.96)	Yes	0 (A0 B0)	Custom-made metal box	Metal lid	Hole; unspecified covering material	External lighting	Mirrors	Mirrors	
Dhariwal (India) [42]	–	Yes	5 (A2 B3)	Custom-made plastic box	Black plastic lid	Hole; rubber gasket; trocar	Fibre-optic light source	Laparoscope	Video monitor	
Haveran (USA) [46]	–	Yes	2 (A0 B2)	Adjustable height posts; wooden sheet	Neoprene; plexiglass frame	Hole	Xenon light source	Camera	TV screen	
Martinez (Mexico) [34]	–	No	5 (A2 B3)	Custom-made semi-cylindrical metal box	Metal	Hole; rubber covering	Fluorescent lamp	Video camera; mirror	TV screen	
Clevin (Denmark) [62]	–	Yes	5 (A2 B3)	White plastic wash tub	Plastic	Hole; trocar	Laparoscope	Laparoscope	Unspecified	
Dennis (UK) [35]	£150	No	4 (A2 B2)	Custom-made wooden box	Plaster of paris	Hole; rubber grommet	Bicycle light	Camcorder	Camcorder screen	
Mir (India) [27]	–	No	4 (A1 B3)	Cardboard box	Cardboard	Hole	Laparoscope	Laparoscope	TV screen	
Raptis (UK) [15]	£27	No	3 (A2 B1)	Opaque plastic box	Plastic	Hole; trocar	Night-vision camera	Computer monitor/TV screen		
Sparks (USA) [39]	US $150 (£89.87)	No	3 (A1 B2)	Plywood box; foam board; foam hinged lid	Plywood	Hole	Fluorescent light	Webcam	Laptop	
Al-Abed (UK) [16]	£40	No	6 (A3 B3)	Plastic storage box	Foam; latex gloves	Hole; trocar	Halogen light	Webcam; plastic pipe	Laptop	
Helmy (Egypt) [40]	–	Yes	4 (A2 B2)	White foam food storage box	Foam box lid	Hole; trocar	Webcam in-built	Webcam	Laptop	
Pawar (India) [47]	–	No	3 (A1 B2)	Plywood box box	Plywood	Hole	Tube light	Digital camera	TV screen	
Year	Author (Country)	Cost	Undergone validation	Face validity Score	Abdominal cavity	Abdominal wall	Port sites	Light source	Visualisation	Camera monitor
------	------------------	------	----------------------	---------------------	-----------------	----------------	------------	-------------	--------------	---------------
2009	Jain (India) [63]	–	Yes	6 (A3 B3)	Custom-made box	Elastic rubber sheet	Hole; trocar	Laparoscope	Laparoscope	Video monitor
2009	Singh (UK) [28]	–	No	4 (A2 B2)	Shoebox	Cardboard	Hole; trocar	Desk lamp	Digital camera	TV monitor/computer monitor
2010	Jaber (Saudi Arabia) [64]	US $41 (£24.57)	No	2 (A1 B1)	Metallic wire basket; acrylic sheet	Rubber mouse pad	Hole	External lighting	Webcam	Laptop
2010	Rabie (Saudi Arabia) [29]	–	No	3 (A1 B2)	Half large plastic water container; plywood board	Plastic	Hole; trocar	Light bulb	Video camera	TV screen
2010	Rivas (Spain) [17]	–	Yes	4 (A2 B2)	Translucent plastic storage box	Plastic	Reinforced hole; trocar	External lighting	Micro-camera; tube	TV screen
2010	Oliver (UK) [65]	–	Yes	3 (A1 B2)	Cardboard box	Cardboard lid	Hole	Desk light	Webcam	Laptop
2010	Ramalingam (India) [66]	–	Yes	5 (A2 B3)	Custom-made white box (unspecified material)	Box lid	Hole; rubber sheet; trocar/tube	Laparoscope	Laparoscope	TV screen
2011	Alfa-Wali (UK) [30]	–	Yes	3 (A1 B2)	Shoe box	Cardboard	Hole	Torch	Mobile phone camera	Phone screen
2011	Khine (UK) [18]	£60	No	5 (A3 B2)	Translucent plastic storage box	Foldable plastic lid	Hole; neoprene; trocar	Fluorescent light	Webcam	Laptop/desktop computer
2011	Kobayashi (USA) [20]	US $100 (£59.92)	Yes	3 (A2 B1)	Translucent plastic storage box	Plastic lid	Hole; rubber strip	External lighting	Webcam	Laptop
2011	Kiely (Canada) [19]	C $100-160 (£54.98-£87.97)	Yes	3 (A2 B1)	Translucent plastic storage box	Plastic lid	Hole; trocar	External lighting	Webcam (various brands)	Laptop/desktop computer (various brands)
2012	Afuwape (Nigeria) [67]	US $34 (£20.37)	No	2 (A1 B1)	Recycled plastic liquid container; plywood board	Plastic	Hole	External lighting	Webcam	Laptop
2012	Bahsoun (UK) [31]	–	Yes	3 (A3 B1)	Cut-out cardboard box; polystyrene	Cardboard	Hole; trocar	External lighting	iPad camera	iPad screen
2013	Akdemir (Turkey) [68]	–	Yes	4 (A1 B3)	Custom-made plastic box	Plastic	Hole; trocar	Laparoscope	Laparoscope	Video monitor
2013	Hennessey (Australia) [69]	–	No	2 (A1 B1)	None	Laptop lid	Trocar; string; skirt hanger	External lighting	Webcam	Laptop
Paper	Cost	Undergone validation	Face validity Score	Abdominal cavity	Abdominal wall	Port sites	Light source	Visualisation	Camera monitor	
-------------------------------	-------------	----------------------	---------------------	----------------------------------	---------------------------------------	------------	--------------	---------------	----------------	
Moreira-Pinto (Portugal) [21]	€33.67 (£26.99)	Yes	4 (A3 B1)	Translucent plastic storage box	Cut-out plastic lid; rubber sheet	Hole; trocar	External lighting	Webcam	Laptop	
Omokanye (Nigeria) [41]	–	No	4 (A2 B2)	Plywood box	Box lid	Hole; foam piece	Camera in-built; light bulb	IR CCTV Camera	TV screen	
Ruparel (USA) [37]	US $5 (£3.00)	Yes	1 (A0 B1)	Ring binder	Ring binder	Hole	External lighting	iPad camera	iPad screen	
	US $5 (£3.00)	Yes	2 (A1 B1)	Cut-out cardboard box	Cardboard	Hole	External lighting	iPad camera	iPad screen	
Smith (UK) [70]	US $100 (£59.92)	No	4 (A2 B2)	Plastic crate, plywood and cork sheet	Plastic	Hole; trocar; plastic rings	LED lamp	Webcam	Laptop	
	US $130 (£77.89)	No	5 (A3 B2)	Upgraded version: add plywood frame and foam pads to port site	Plastic	Hole; trocar	LED lamp	Webcam	Laptop	
Wong (USA) [71]	US $309 (£185.14)	Yes	4 (A2 B2)	Custom-made hard plastic box	Vinyl membrane glued to plastic frame	Hole; trocar	LED strip	Miniature CCD camera	Video monitor	
Beard (USA) [22]	US $85 (£50.93)	Yes	3 (A2 B1)	Translucent plastic storage box	Plastic lid	Hole; flexible material cover	External lighting	Webcam	Laptop	
Escamirosa (Mexico) [38]	–	No	2 (A1 B1)	Clear plastic document case	Plastic	Hole	External lighting	Smartphone or tablet camera	Video monitor	
Walczak (Poland) [23]	US $51 (£30.56)	No	3 (A2 B1)	Translucent plastic storage box	Opaque plastic lid	Hole; rubber sheet; metal washer; trocar	LED light bulb	Mirrors	Mirrors	
	US $99 (£59.32)	No	5 (A3 B2)	Translucent plastic storage box	Opaque plastic lid	Hole; rubber sheet; metal washer; trocar	LED light bulb	Webcam	Home computer	
The cost of laparoscopic equipment (instruments and laparoscope) was not included in cost estimates for non-commercial simulators. However, a number of articles suggested that used or expired disposable instruments could be obtained from the operating department at no cost to the trainee [16, 23–26, 39, 40, 44]. Alternatively, they could also be obtained by donation from laparoscopic equipment manufacturers [15, 20, 26]. Electronic devices for visualisation (video monitor, laptop computer, tablet/smartphone) were not included in cost estimates for non-commercial simulators. Laparoscopic equipment and visualisation monitors were also not consistently included for commercial simulator model packages [49–52].

Face validity

Commercial simulators had better face validity than non-commercial simulators, with a median score of 5 compared to 3 (maximum 6). Commercial simulators tended to utilise higher-fidelity visualisation equipment, with a median visualisation score of B3 compared with B2 for non-commercial simulators. For the abdominal cavity, there was comparable face validity, with both groups having a median score of A2.

Discussion

Cost will undeniably be a key factor in the accessibility of a simulator model. Many articles omitted cost estimates, so there is difficulty in making a true cost comparison between commercial and non-commercial simulators available. Although there is an overlap in the price range, non-commercial models appear to be able to achieve a lower cost than commercial ones, with the lowest reported figure being $5 (£3) compared to $100 (£60) for a commercial model [37, 53]. This difference could be due to commercial models factoring in a profit margin and assembly fee in addition to the value of the raw materials. Moreover, commercial models will usually include
expensive laparoscopic instruments in the cost, which could potentially be obtained cost-free when self-assembling [16, 23–26, 44].

Non-commercial models commonly utilised off-the-shelf components—a potentially a cost-reductive strategy, as custom-made parts could incur a greater expense. In particular, the use of a translucent plastic box provided a sturdy frame and utilised external lighting, negating the need for an additional light source inside the box [11, 12, 17, 21]. Visualisation using a webcam and computer offered an inexpensive solution, as they can be obtained cheaply. With computer ownership being widespread [54], it can be assumed that most trainees have access to a computer at home. Many trainees may also own a tablet computer. Tablet-based simulation could provide a video feed more comparable in quality to a laparoscope than a budget webcam [31]. Using a tablet or smartphone, where the screen and camera are on the same device, may also be easier to assemble. However, adjustment of camera position would be more difficult.

Commercial simulators, although seemingly costlier in comparison, do have the advantage that they come assembled and ready to use, with more models having undergone some form of validation. However, the appropriateness of the validation methods undertaken are not easily assessed, and only models from established industry suppliers appear to have undergone more extensive validation [50, 55]. In terms of face validity, commercial simulators largely seem to have better face validity, particularly as laparoscopes are more frequently used for visualisation, allowing realistic image quality and camera motion. A laparoscope may be difficult to obtain at a reasonable cost; an alternative may be to use a small camera mounted on a plastic pipe, which also allows adjustment of the operative field view [11, 16, 17]. The ideal simulator would have a highly realistic user interface and allow development of both the technical and non-technical skills required for laparoscopic surgery. The simulators examined in this review chiefly aim to develop basic laparoscopic skills such as instrument handling and cutting; therefore, a highly realistic user interface, as in virtual reality simulators, may be superfluous to requirements. However, use of lower-fidelity simulators does not preclude the development of non-technical skills. For example, the simulator could be incorporated into an operating theatre environment with other team members present, where trainees could be observed and assessed on emergency or elective scenarios.

Of course, simply having access to a simulator does not equate to improvement in surgical skill. Regular use of the trainer with feedback from a supervisor would be ideal. Simulator training could take place during the normal working day with allocated practice time, or this could be done at leisure at home.

Conclusion

The models described provide simple and affordable options for self-assembly, although a significant proportion has not been subject to any validation. Whilst simulation cannot replace operating theatre experience, portable simulators may be the most equitable solution to allow regular basic skills practice (e.g. intra-corporeal suturing, knotting) for junior surgical trainees.

Compliance with ethical standards

Disclosures Miss. Mimi M Li and Mr. Joseph George have no conflicts of interest or financial ties to disclose.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aggarwal R, Moorothy K, Darzi A (2004) Laparoscopic skills training and assessment. Br J Surg 91:1549–1558
2. Nagendran M, Gurusamy KS, Aggarwal R, Loizidou M, Davidson BR (2013) Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database Syst Rev (8):CD006575. doi:10.1002/14651858.CD006575.pub3
3. Zendejas B, Brydges R, Hamstra SJ, Cook DA (2013) State of the evidence on simulation-based training for laparoscopic surgery: a systematic review. Ann Surg 257:586–593. doi:10.1097/SLA.0b013e318288c40b
4. Gaba DM (2004) The future vision of simulation in health care. Qual Saf Health Care 13(Suppl 1):i2–i10
5. Undre S, Darzi A (2007) Laparoscopy simulators. J Endourol 21:274–279
6. Dunkin B, Adrales G, Apelgren K, Mellinger J (2007) Surgical simulation: a current review. Surg Endosc 21:357–366
7. Schijven M, Jakimowicz J (2003) Virtual reality surgical laparoscopic simulators. Surg Endosc Other Interv Tech 17:1943–1950
8. Fitzgerald J, Caesar B (2012) The European working time directive: a practical review for surgical trainees. Int J Surg 10:399–403
9. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. doi:10.1136/bmj.b2535
10. Mughal M (1992) A cheap laparoscopic surgery trainer. Ann R Coll Surg Engl 74:256–257
11. Pokorny MR, McLaren SL (2004) Inexpensive home-made laparoscopic trainer and camera. ANZ J Surg 74:691–693
12. Beatty JD (2005) How to build an inexpensive laparoscopic webcam-based trainer. BJU Int 96:679–682
13. Ricchiuti D, Ralat DA, Evancho-Chapman M, Wyneski H, Cerone J, Wegryn JD (2005) A simple cost-effective design for construction of a laparoscopic trainer. J Endourol 19:1000–1005
14. Bell R, Maseeall P, Fanning J, Fenton B, Flora R (2007) A laparoscopic simulator tool for objective measurement of residents’ laparoscopic ability. JSLS 11:470–473
15. Raptis D, Mouzaki K, Gore D (2008) Technical notes and tips: DIY laparoscopic kit. Ann R Coll Surg Engl 90:167
16. Al-Abed Y, Cooper DG (2009) A novel home laparoscopic simulator. J Surg Educ 66:1–2
17. Rivas AM, Vilanova AC, Perererrrer FS, González MH, del Castillo Déjardín D (2010) Low cost simulator for acquiring laparoscopic skills. Cirugía Española (English Edition) 87:26–32
18. Khine M, Leung E, Morran C, Muthukumarasamy G (2011) Homemade laparoscopic simulators for surgical trainees. Clin Teach 8:118–121
19. Kiely DJ, Stephanson K, Ross S (2011) Assessing image quality of low-cost laparoscopic box trainers: options for residents training at home. Simul Healthc 6:292–298. doi:10.1097/SHC.0b013e31819d9b68
20. Kobyashi SA, Jamsidi R, O’Sullivan P, Palmer B, Hirose S, Stewart L, Kim EH (2011) Bringing the skills laboratory home: an affordable webcam-based personal trainer for developing laparoscopic skills. J Surg Educ 68:105–109
21. Moreira-Pinto J, Silva JG, Ribeiro de Castro JL, Correia-Pinto J (2013) Five really easy steps to build a home-made low-cost simulator. Surg Innov 20:95–99. doi:10.1177/1553350612440508
22. Beard JH, Akoko L, Mwanga A, Mkony C, O’Sullivan P (2014) A simple and cheap home built laparoscopic box in Tanzania. J Surg Educ 71:85–90
23. Walczak DA, Piotrowski P, Jędrzejczyk A, Pawełczak D, Pasieka P (2014) Manual laparoscopic skills development using a low-cost trainer box. J Surg Educ 71:85–90
24. Beets AJ (2005) How to build your own laparoscopic trainer. J Endourol 19:748–752
25. Chung SY, Landsdell T, Chon CH, Ng CS, Fuchs GJ (2005) Laparoscopic skills training using a webcam trainer. J Urol 173:180–183
26. Chandrasekera SK, Donohue JF, Orley D, Barber NJ, Shah N, Bishai PM, Muir GH (2006) Basic laparoscopic surgical training: examination of a low-cost alternative. Eur Urol 50:1285–1291
27. Mir IS, Mohsin M, Malik A, Shah AQ, Majid T (2008) A structured training module using an inexpensive endotrainer for improving the performance of trainee surgeons. Trop Doct 38:217–218. doi:10.1258/tid.2008.070359
28. Singh I, Panesar N, Haq A (2009) Blue Peter: on a shoe string budget for laparoscopic training. J Postgrad Med 55:233–234. doi:10.1007/s12602-008-0579-6
29. Rabie M (2010) Acquiring laparoscopic suturing skills using a homemade trainer. Eur Surg 42:149–151
30. Alfa-Wali M, Antoniou A (2011) Eco-friendly laparoscopic home trainer. Simul Healthc 6:176–179. doi:10.1097/SHE.0b013e318208549b
31. Basihoun AN, Malik MM, Ahmed K, El-Hage O, Jaye P, Dasgupta P (2013) Tablet based simulation provides a new solution to accessing laparoscopic skills training. J Surg Educ 70:161–163
32. Sackier JM, Berici G, Paz-Partlow M (1991) A new training device for laparoscopic cholecystectomy. J Endourol 5:158–159
33. Majeed R, Reed MW, Johnson AG (1992) Simulated laparoscopic cholecystectomy. Ann R Coll Surg Eng 74:70–71
34. Martinez AM, Espinoza DL (2007) Novel laparoscopic home trainer. Surg Laparosc Endosc Percutan Tech 17:300–302. doi:10.1097/SLE.0b013e31805d091d
35. Dennis R (2008) A simple and cheap home built laparoscopic trainer. J Minim Access Surg 4:88
36. Robinson JK, Kushner DM (2006) Development and validation of a home-based, mirrored, gynecologic laparoscopy trainer. J Minim Invasive Gynecol 13:102–107
37. Ruparel RK, Brabham RD, Dove JC, Hutchinson RC, Stauffer JA, Bowers SP, Richie E, Lannen AM, Thiel DD (2014) “iTrain”ers—novel and inexpensive alternatives to traditional laparoscopic box trainers. Urology 83:116–120
38. Escamirosa Fernando P, Flores Ricardo O, Martínez Arturo M (2014) How to build a portable laparoscopic trainer for smartphones and tablets. J Laparoendosc Adv Surg Tech B. doi:10.1089/ver.2014.0200
39. Sparks D, Chase D, Lee W (2008) An inexpensive solution for laparoscopic simulation. OPUS 12:1–3
40. Helmy S, El-Shenoufy A (2009) Development of laparoscopic skills using a new inexpensive webcam trainer. J Biol Sci 9:766–771
41. Omokanye L, Olatunwo A, Saladeen A, Balogun O, Saidu R (2013) An improvised endotrainer for low resource settings. Res J Health Sci 1:2360–7793
42. Dharwal AK, Prabhu RY, Dalvi AN, Supe AN (2007) Effectiveness of box trainers in laparoscopic training. J Minim Access Surg 3:57–63. doi:10.4103/0972-9941.33274
43. Gue S (1995) Home-made videoconference trainer for operative laparoscopic surgery. Aust N Z J Surg 65:820–821
44. Lee AC (2003) A homemade minimal access surgical skills station. Pediatric Endosurg Innov Tech 7:273–277
45. Griffin S, Kumar A, Burgess N, Donaldson P (2006) Development of laparoscopic suturing skills: a prospective trial. J Endourol 20:144–148
46. Haveran LA, Novitsky YW, Czerniak DR, Kabak GK, Taylor M, Gallagher-Dorval K, Schmidt R, Kelly JJ, Litwin DE (2007) Optimizing laparoscopic task efficiency: the role of camera and monitor positions. Surg Endosc 21:980–984
47. Pawar DS, Singh SK, Benjwal S, Kumari I (2010) A novel idea of using digital camera for laparoscopy training in urology. Urol J 7:56–58
48. Sharpe BA, MacHaidze Z, Ogan K (2005) Randomized comparison of standard laparoscopic trainer to novel, at-home, low-cost, camera-less laparoscopic trainer. Urology 66:50–54
49. Hruby GW, Spenkle PC, Abdelshheid C, Clayton RV, McDougall EM, Landman J (2008) The EZ Trainer: validation of a portable and inexpensive simulator for training basic laparoscopic skills. J Urol 179:662–666
50. Hennessey IA, Hewett P (2013) Construct, concurrent, and content validity of the eoSIm laparoscopic simulator. J Laparoendosc Adv Surg Tech A 23:855–860
51. Xiao DJ, Albayrak A, Buzink SN, Jakimowicz J, Goossens RHM (2013) A newly designed portable laparoscopic trainer based on ergonomic guidelines. Surg Endosc Other Interv Tech 27:S5
52. Xiao D, Jakimowicz JJ, Albayrak A, Buzink SN, Boten SM, Goossens RH (2014) Face, content, and construct validity of a novel portable ergonomic simulator for basic laparoscopic skills. J Surg Educ 71:65–72
53. Yoon R, del Junco M, Kaplan A, Okhunov Z, Bucur P, Hofmann M, Alipanah R, McDougall EM, Landman J (2015) Development of a novel iPad-based laparoscopic trainer and comparison with a standard laparoscopic trainer for basic laparoscopic skills testing. J Surg Educ 72:41–46
54. Office for National Statistics (2014) Internet access—households and individuals 2014. http://www.ons.gov.uk/peoplepopulationandcommunity/householdcharacteristics/homeinternetandsocialmediausage/bulletins/internetaccesshouseholdsandindividuals/2015-08-06
55. Nakamura LY, Martin GL, Fox JC, Andrews PE, Humphreys M, Castle EP (2012) Comparing the portable laparoscopic trainer with a standardized trainer in surgically naive subjects. J Endourol 26:67–72
56. Chung J, Sackier J (1998) A method of objectively evaluating improvements in laparoscopic skills. Surg Endosc 12:1111–1116
57. Shapiro S, Paz-Partlow M, Daykhovsky L, Gordon L (1996) The use of a modular skills center for the maintenance of laparoscopic skills. Surg Endosc 10:816–819
58. Hasson HM, Aruna Kumari NV, Eekhout J (2001) Training simulator for developing laparoscopic skills. JSLS 5:255–265
59. Do AT, Cabbad MF, Kerr A, Serur E, Robertazzi RR, Stankovic MR (2006) A warm-up laparoscopic exercise improves the subsequent laparoscopic performance of Ob-Gyn residents: a low-cost laparoscopic trainer. JSLS 10:297–301
60. Nataraja R, Ade-Ajayi N, Holak K, Arbell D, Curry J (2006) Pilot study of new training model for laparoscopic surgery. Pediatr Surg Int 22:546–550
61. Nataraja R, Ade-Ajayi N, Curry J (2006) Surgical skills training in the laparoscopic era: the use of a helping hand. Pediatr Surg Int 22:1015–1020
62. Clevin L, Grantcharov TP (2008) Does box model training improve surgical dexterity and economy of movement during virtual reality laparoscopy? A randomised trial. Acta Obstet Gynecol Scand 87:99–103
63. Jain M, Tantia O, Khanna S, Sen B, Kumar Sasmal P (2009) Hernia endotrainer: results of training on self-designed hernia trainer box. J Laparoendosc Adv Surg Tech 19:535–540
64. Jaber N (2010) The basket trainer: a homemade laparoscopic trainer attainable to every resident. J Minim Access Surg 6:3–5. doi:10.4103/0972-9941.62525
65. Oliver J, Carty N, Wakefield C (2010) Low-cost model for laparoscopic appendectomy in a webcam simulator. Bull R Coll Surg Engl 92:122–125
66. Ramalingam M, Senthil K, Murugesan A, Pai MG (2010) Cost reductive laparoendoscopic single site surgery endotrainer and animal lab training-our methodology. Diagn Ther Endosc 2010:598165. doi:10.1155/2010/598165
67. Afuwape O (2012) An affordable laparoscopic surgery trainer for trainees in poor resource settings. West Afr J Med 31(1):63–65
68. Akdemir A, Şendag F, Öztekin MK (2014) Laparoscopic virtual reality simulator and box trainer in gynecology. Int J Gynecol Obstet 125:181–185
69. Hennessey IA (2012) How to make a portable laparoscopic simulator. J Laparoendosc Adv Surg Tech 22
70. Smith MD, Norris JM, Kishkova L, Smith DP (2013) Laparoscopic simulation for all: two affordable, upgradable, and easy-to-build laparoscopic trainers. J Surg Educ 70:217–223
71. Wong I, Bhattacharya G, Vance SJ, Bistolarides P, Merchant AM (2013) Construction and validation of a low-cost laparoscopic simulator for surgical education. J Surg Educ 70:443–450
72. Derossis AM, Fried GM, Abrahamowicz M, Sigman HH, Barkun JS, Meakins JL (1998) Development of a model for training and evaluation of laparoscopic skills. Am J Surg 175:482–487
73. Keyser EJ, Derossis AM, Antoniuk M, Sigman HH, Fried GM (2000) A simplified simulator for the training and evaluation of laparoscopic skills. Surg Endosc 14:149–153
74. Scott DJ, Bergen PC, Rege RV, Laycock R, Tesfay ST, Valentine RJ, Euhus DM, Jeyarajah DR, Thompson WM, Jones DB (2000) Laparoscopic training on bench models: better and more cost effective than operating room experience? J Am Coll Surg 191:272–283
75. Adrales G, Chu U, Witzke D, Donnelly M, Hoskins D, Mas-trangelo M, Gandas A, Park A (2003) Evaluating minimally invasive surgery training using low-cost mechanical simulations. Surg Endosc Other Interv Tech 17:580–585
76. Adrales G, Chu U, Hoskins J, Witzke D, Park A (2004) Development of a valid, cost-effective laparoscopic training program. Am J Surg 187:157–163
77. Waseda M, Inaki N, Mailaender L, Buess G (2005) An innovative trainer for surgical procedures using animal organs. Minim Invasive Ther Allied Technol 14:262–266
78. Dayan AB, Ziv A, Berkenstadt H, Munz Y (2008) A simple, low-cost platform for basic laparoscopic skills training. Surg Innov 15:136–142
79. Boon JR, Salas N, Avila D, Boone TB, Lipshultz LI, Link RE (2008) Construct validity of the pig intestine model in the simulation of laparoscopic urothreovescical anastomosis: tools for objective evaluation. J Endourol 22:2713–2716
80. Singh PB, Saw NK, Mokete M, Martin FL, Matanheilia SS (2008) An integrated laparoscopic simulator (i-Sim™) to develop surgical skills outside the operating theatre: a novel means to improve training facilities in the UK. Int J Surg 6:64–70
81. Hull L, Kassab E, Arora S, Kneebone R (2010) Increasing the realism of a laparoscopic box trainer: a simple, inexpensive method. J Laparoendosc Adv Surg Tech Part A 20:559–562