PM$_{10}$ correlates with COVID-19 infections 15 days later in Arequipa, Peru

Eduardo D. Wannaz1 · Adriana E. Larrea Valdivia2 · Juan A. Reyes Larico2 · Jimena Salcedo Peña2 · Carlos Valenzuela Huillca2

Received: 23 December 2020 / Accepted: 8 March 2021 / Published online: 24 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

The emergence of COVID-19 and the spread of this novel disease around the world in 2020 has entailed several cultural changes; some of those changes are positive for the environment, such as the decrease in the concentration of atmospheric particulate matter. We compared the concentrations of PM$_{2.5}$ and PM$_{10}$ recorded in October and November 2019 (pre-pandemic period) with the concentrations recorded from May to October 2020 (pandemic period) in the city of Arequipa, Peru. A significant decrease in the concentration of PM$_{2.5}$ (less than 21.0%) and PM$_{10}$ (less than 21.5%) was observed on Sundays, when population movement was strongly restricted. First, we observed a significant correlation between PM$_{2.5}$ and PM$_{10}$ concentration in the atmosphere and the number of infections reported in Arequipa, Peru. However, when we removed the data of Sundays from the database, these correlations were no longer significant. Subsequently, we correlated PM$_{2.5}$ and PM$_{10}$ concentrations with the number of COVID-19 infections on the same day and up to a 20-day delay and found that from day 15 to day 18, PM$_{10}$ concentration was significantly correlated with COVID-19 infections, suggesting that SARS-CoV-2 might circulate attached to the coarse particle (PM$_{10}$) and that this fraction would act as infection vector. However, these results may reflect other factors, such as social or economic factors that could explain the dynamics of infection in Arequipa, Peru. Further research is needed to better understand the dynamics of the SARS-CoV-2 pandemic.

Keywords COVID-19 · SARS-CoV-2 · Lockdown · PM$_{2.5}$ · PM$_{10}$ · Arequipa · Peru

Introduction

In January 2020, a new virus, named SARS-CoV-2, was identified; later, a global public health emergency was declared by the World Health Organization (WHO 2020). This newly identified virus (SARS-CoV-2) causes an acute respiratory illness called coronavirus disease 2019 (COVID-19) (Gautam and Hens 2020), which can be mistaken for pneumonia (Jiang et al. 2020) and can spread rapidly in humans with close contact to infected persons (Bherwani et al. 2020). Many countries adopted local- or national-level measures to prevent the spread of the virus, resulting in restriction of transport, trade, and industrial activities (Stratoulias and Nuthammachot 2020). On the other hand, this decrease in human activities produced a positive impact on the environment, with air quality having been improved in several regions of the world (Muhammad et al. 2020; Wang and Su 2020; Gautam 2020).

In March 2020, the Government of Peru declared a state of national emergency and implemented lockdown of activities to tackle the COVID-19 outbreak (Arias Velásquez and Mejía Lara 2020); this situation continued for a few months, with some activities having been eased. In the urban area of the city of Arequipa, Peru, a recent study recorded values of PM$_{2.5}$ (72 ± 23 μg m$^{-3}$) and PM$_{10}$ (116 ± 41 μg m$^{-3}$) above the maximum limits established in the country (Larrea Valdivia et al. 2020). Our objectives were (I) to quantify the concentrations of particulate matter (PM$_{2.5}$ and PM$_{10}$) in an urban area of the
city of Arequipa and observe the effect of the restriction me-
asures implemented by the government and (II) to explore a
possible relationship between the amount of PM$_{2.5}$ and PM$_{10}$
in the atmosphere and the number of COVID-19 infections
recorded in Arequipa, Peru.

Materials methods

Study area

This study was conducted in the city of Arequipa, Peru, which
is located on the slopes of the Andes in the southern region of
the country (Fig. 1). This city is surrounded by mountains,
with an average altitude of 2335 m a.s.l. and a desert climate,
with an average annual rainfall of about 100 mm. The selected
sampling site was located in the downtown area of the city of
Arequipa (−16° 24′ 28″ S latitude, −71° 32′ 16″ W longitude),
characterized by heavy traffic; indeed, 64 of the 135 compa-
nies of the urban transport system operating in the city run
across this area.

Levels of PM$_{2.5}$ and PM$_{10}$ and study period

In the study area, the PM$_{2.5}$ and PM$_{10}$ concentration was re-
corded using Dustmate Particle Collector (Turnkey
Instruments, Northwich, UK) at the height of 2.5 m from
the ground. The Dustmate Particle Collector is a photometric
sensor that uses the technology of scattered light to detect
the concentration of dust and inhalable particles with diameter
within the range of 0.4 to 20 μm. A built-in sampling pump
draws in air with 600 mL min$^{-1}$ flow, and a continuous air-
flow containing particles passes through a laser beam in the
test chamber (Turnkey Instruments 2016). The Dustmate re-
corded PM$_{1}$, PM$_{2.5}$, PM$_{10}$, and PST concentration data every
30 min from 7:00 am to 7:00 am the next day; however, we
only used the PM$_{2.5}$ and PM$_{10}$ concentrations, since we pre-
viously calibrated the data obtained with Dusmate Particle
against values obtained with high volume sampler (HI-vol
3000, Ecotech) and observed significant correlations between
both sampling methods, with values of $R^2=0.74$ for PM$_{2.5}$ and
$R^2=0.81$ for PM$_{10}$.

Study period

During the study, data were collected for PM$_{2.5}$ and PM$_{10}$
between September 9 and October 24, 2019 (pre-pandemic
period), when activities in the city of Arequipa were normal;
thus, data were obtained for a total of 45 days. In 2020, data
were collected during the COVID-19 pandemic period, from
May 16 to October 25 (pandemic period); thus, a total of 151
days of PM$_{2.5}$ and PM$_{10}$ data were obtained. In Peru, social
isolation was implemented for 15 days, beginning on
March 16, 2020, when all activities in the country were
interrupted, except for the essential ones (security, health,
food transportation). Later, some activities were authorized,
such as public and private transportation. When we started
collecting data, on May 16, there was a total lockdown only
on Sundays, which lasted until Sunday, September 20, when
public and private transportation was allowed in the streets of
Arequipa.

Fig. 1 Study site in the Arequipa downtown region, Peru
Meteorological parameters

Daily temperature values (average, maximum, and minimum), relative humidity, and average and maximum wind speed were provided by the weather station located at the Alfredo Rodríguez Ballón Airport. These data were used to explore possible relationships between the meteorological parameters and the PM$_{2.5}$ and PM$_{10}$ concentrations. Precipitation was not included in the analysis because no precipitations occurred during the study period.

Statistical analyses

An analysis of variance (ANOVA) was used to compare (I) mean concentrations of PM$_{2.5}$ and PM$_{10}$ between study years, (II) mean concentrations of PM$_{2.5}$ and PM$_{10}$ between different weekdays in each study year, and (III) number of COVID-19 infections among weekdays. Values were statistically significant at $p < 0.05$. The assumptions of normal distribution and homoscedasticity were checked before analysis. When heteroscedasticity was found, it was modeled to be incorporated into the ANOVA. Means were compared using a post hoc LSD Fisher test. The Pearson correlation coefficient was used to study the relationship between (I) PM$_{2.5}$ and PM$_{10}$ and the meteorological variables (II) PM$_{2.5}$ and PM$_{10}$ with the number of COVID-19 infections. All analyses were performed using InfoStat software coupled to R (Di Rienzo et al. 2018). All data used in this research are presented in the supplementary material (Data.xlsx).

Results and discussion

Concentration of PM$_{2.5}$ and PM$_{10}$

Particulate matter (PM$_{2.5}$ and PM$_{10}$) concentration data collected in September and October 2019 (pre-pandemic period) and in 2020 (pandemic period) in Arequipa, Peru, are presented in Table 1. The PM$_{2.5}$ and PM$_{10}$ values recorded in this study are comparable to the PM$_{2.5}$ concentrations of 72 ± 23 μg m$^{-3}$ and PM$_{10}$ concentrations of 116 ± 41 μg m$^{-3}$ reported in a previous study conducted in downtown Arequipa 2018 (Larrea Valdivia et al. 2020).

The average concentrations of PM$_{2.5}$ and PM$_{10}$ recorded in the pandemic period are lower than those observed in the pre-pandemic period (Table 1), but without significant differences. Recent studies reported a decrease in atmospheric particulate matter as a result of the lockdown implemented in the different countries; for example, in the city of Milan, Italy, a reduction in PM$_{2.5}$ and PM$_{10}$ levels was observed during the pandemic period (Zonan et al. 2020); in the southeast of the UK, a decrease in particulate matter can be attributed to lockdown restrictions (Wyche et al. 2021); and in the city of Baghdad, Iraq, PM$_{2.5}$ and PM$_{10}$ concentrations were reduced by 8% and 15%, respectively, during the first partial and total lockdown (Hashim et al. 2021).

The average PM$_{2.5}$ and PM$_{10}$ concentrations recorded in 2020 (pandemic period) were significantly lower on Sundays than on the other days of the week (Table 1). This result may be attributed mainly to the restrictions that were implemented in Arequipa on Sundays during complete lockdown. Lower PM$_{2.5}$ and PM$_{10}$ concentrations were also observed on Sundays in 2019 than in the other days of the week, but without significant differences from PM$_{2.5}$ and PM$_{10}$ concentrations recorded on the other days of the week. Average PM$_{2.5}$ and PM$_{10}$ values obtained on Sundays during COVID-19 pandemic period were 21.0% and 21.5% lower, respectively, than in the pre-pandemic period (2019). This decrease in particulate matter concentrations is similar to that reported for Hat Yai city, Thailand, where lower concentrations of PM$_{2.5}$ (21.8%) and PM$_{10}$ (22.9%) were recorded during the pandemic period, as a result of the reduced economic and commercial activity (Stratoulas and Nuthammachot 2020). However, the lockdown effect was not as significant as reported in the Yangtze River Delta region, where a reduction of 26–48% for atmospheric PM$_{2.5}$ and 29–34% for atmospheric PM$_{10}$ was reported (Lee et al. 2020).

Effect of meteorological parameters on PM$_{2.5}$ and PM$_{10}$

The relationship between meteorological variables and concentrations of atmospheric particulate matter for 2019 showed a positive correlation between maximum temperature and PM$_{10}$ concentration, and a negative correlation between the average wind speed and PM$_{2.5}$ and PM$_{10}$ levels (Table 2). Plocoste et al. (2020) studied the relationship between PM$_{10}$ concentration and air temperature in the Caribbean for 11 years and concluded that the positive correlation can be attributed to a greenhouse effect caused by the presence of dust clouds in the atmosphere, as may have occurred in the city of Arequipa. On the other hand, the negative correlation between wind speed and particulate matter concentration was previously reported for the city of Arequipa, in a previous study showing the negative correlation between PM$_{10}$ and average wind speed. In that work, the authors explain that an average increase in wind speed decreases the concentration of particles in the atmosphere due to a washing effect (Larrea Valdivia et al. 2020).

During the pandemic period, only a negative correlation was observed between the percentage of ambient relative humidity and PM$_{10}$ concentration. These changes in correlation patterns could be explained by restrictions imposed during the pandemic period, such as traffic restrictions, which caused changes in the levels of particulate matter in this period, especially on Sundays.
Particulate matter (PM$_{2.5}$ and PM$_{10}$) and its relationship with the number of COVID-19 infections in the city of Arequipa, Peru

The average number of COVID-19 infections during the study for each day of the week is shown in Fig. 2. The number of infections recorded on Sundays was significantly lower than on other days of the week; this result is due to reduced health service on Sundays (hospitals, clinics, sanatoriums, laboratories), with fewer number of tests for COVID-19 being made on those days.

First, we performed a Pearson correlation analysis between COVID-19 transmission data and PM$_{2.5}$ and PM$_{10}$ concentrations recorded during 2020 (May to October) and obtained a value of $R^2=0.21$ ($p=0.0093$) for PM$_{2.5}$ and $R^2=0.18$ ($p=0.0255$) for PM$_{10}$. These results might lead to the conclusion that an increase in the concentration of particulate matter would cause an increase in of COVID-19 cases; indeed, the virus would be transported by PM$_{10}$, which would act as a vector of the pathogen, as suggested by Bontempi (2020a). However, this author was not able to prove a direct relationship between PM$_{10}$ concentration and COVID-19 transmission in the Lombardy region (Italy). Nevertheless, recent studies suggest that under stable climatic conditions and high concentrations of particles in the atmosphere, SARS-Cov-2 could create clusters with PM (Bontempi 2020a; Domingo and

Table 1

Model	September and October 2019 (pre-COVID-19 pandemic period)	From May to October 2020 (COVID-19 pandemic period)	ANOVA (p value)							
	n	Mean	Max.	Min	n	Mean	Max.	Min	p value	
PM$_{2.5}$ (μg m$^{-3}$)	Full data set	45	52.15	82.87	26.90	151	48.43	94.41	18.36	0.1361
	Monday	7	49.07	58.78	38.00	20	51.86	86.99	28.51	0.0255
	Tuesday	7	51.79	66.90	45.12	20	50.94	92.38	27.79	0.0047
	Wednesday	6	53.91	82.87	38.44	20	49.38	65.71	35.44	0.0003
	Thursday	7	51.80	59.70	46.48	20	49.18	68.43	29.32	0.0003
	Friday	6	59.74	68.57	42.20	20	53.35	94.41	31.85	0.0003
	Saturday	6	51.46	72.49	38.75	20	53.54	94.41	31.85	0.0003
	Sunday	6	47.93	71.77	26.90	20	37.65	68.71	18.36	0.0003
ANOVA (p value)	0.5899	0.0047								

ANOVA between years and ANOVA among days of the week; different letters indicate statistical difference.

Table 2

September and October 2019 (pre-COVID-19 pandemic period)	From May to October 2020 (COVID-19 pandemic period)	ANOVA (p value)						
n	Pearson R	p value	n	Pearson R	p value	n	Pearson R	p value
T (mean)	45	0.13	0.4002	45	0.30	0.0430		
T (max)	45	0.15	0.3243	45	0.39	0.0077		
T (min)	45	0.08	0.5905	45	0.14	0.3727		
WS (mean)	45	-0.46	0.0015	45	-0.32	0.0316		
WS (max)	45	-0.04	0.8148	45	0.06	0.6931		
RH (mean)	45	0.11	0.4897	45	-0.20	0.1836		

From May to October 2020 (COVID-19 pandemic period)

PM$_{2.5}$	PM$_{10}$					
n	Pearson R	p value	n	Pearson R	p value	
T (mean)	125	0.06	0.5338	125	0.07	0.4137
T (max)	125	0.03	0.7707	125	0.04	0.6217
T (min)	125	0.05	0.6096	125	0.01	0.9109
WS (mean)	125	-0.09	0.3450	125	-0.03	0.7746
WS (max)	125	0.01	0.8945	125	0.07	0.4195
RH (mean)	125	-0.13	0.1633	125	-0.27	0.0020

T temperature, WS wind speed, RH relative humidity

Particulate matter (PM$_{2.5}$ and PM$_{10}$) and its relationship with the number of COVID-19 infections in the city of Arequipa, Peru

The average number of COVID-19 infections during the study for each day of the week is shown in Fig. 2. The number of infections recorded on Sundays was significantly lower than on other days of the week; this result is due to reduced health service on Sundays (hospitals, clinics, sanatoriums, laboratories), with fewer number of tests for COVID-19 being made on those days.

First, we performed a Pearson correlation analysis between COVID-19 transmission data and PM$_{2.5}$ and PM$_{10}$ concentrations recorded during 2020 (May to October) and obtained a value of $R^2=0.21$ ($p=0.0093$) for PM$_{2.5}$ and $R^2=0.18$ ($p=0.0255$) for PM$_{10}$. These results might lead to the conclusion that an increase in the concentration of particulate matter would cause an increase in of COVID-19 cases; indeed, the virus would be transported by PM$_{10}$, which would act as a vector of the pathogen, as suggested by Bontempi (2020a). However, this author was not able to prove a direct relationship between PM$_{10}$ concentration and COVID-19 transmission in the Lombardy region (Italy). Nevertheless, recent studies suggest that under stable climatic conditions and high concentrations of particles in the atmosphere, SARS-Cov-2 could create clusters with PM (Bontempi 2020a; Domingo and
Rovira 2020; Srivastava 2020), although according to Yao et al. (2020), there is no evidence that the virus is airborne. However, recent studies indicate that the pandemic spread patterns are usually caused by a multiplicity of factors, such as environmental, economic, and social ones. Therefore, neglecting this multiplicity of factors in the analysis may lead to erroneous conclusions, and an interdisciplinary and multidimensional approach is necessary to understand the geographical diversity of infections (Bontempi 2020b; Bontempi et al. 2020).

It is important to note that our results are influenced by the values recorded on Sundays, when the concentrations of particulate matter were reduced due to traffic restrictions; on the other hand, fewer COVID-19 infections are reported on Sundays. Therefore, we removed the data corresponding to Sundays from the data set and then performed the Pearson correlation analysis again; the results showed no correlation between PM2.5 and PM10 concentration and COVID-19 infections (Table 3).

Recent studies reported that between 2 and 14 days can elapse from the day of SARS-CoV-2 infection and the

Days of delay	R² value	p value	Days of delay	R² value	p value
PM2.5			PM10		
0	0.10	0.2679	0	0.04	0.6893
1	0.08	0.3558	1	0.04	0.3558
2	0.06	0.4695	2	0.02	0.8427
3	0.07	0.4423	3	0.03	0.7502
4	0.04	0.6216	4	0.01	0.8762
5	0.06	0.4762	5	0.04	0.6645
6	0.08	0.3327	6	0.06	0.5231
7	0.09	0.3343	7	0.06	0.4800
8	0.11	0.2263	8	0.09	0.3329
9	0.11	0.2065	9	0.09	0.2839
10	0.12	0.1731	10	0.13	0.1571
11	0.03	0.6989	11	0.07	0.4345
12	0.11	0.2118	12	0.17	0.0572
13	0.07	0.4505	13	0.13	0.1495
14	0.08	0.3937	14	0.16	0.0685
15	0.09	0.2966	15	0.18	0.0398
16	0.09	0.3468	16	0.19	0.0380
17	0.10	0.2852	17	0.21	0.0205
18	0.07	0.4785	18	0.18	0.0449
19	0.06	0.5172	19	0.17	0.0606
20	0.06	0.5301	20	0.19	0.0435
appearance of the first disease symptoms (incubation period) (Kouidere et al. 2020; Lee et al. 2020; Huang et al. 2020). Thus, if SARS-CoV-2 were transported in particulate material, an increase of infection cases should be observed after contamination events. Therefore, we performed the Pearson’s correlation analysis between particulate matter concentrations (PM$_{2.5}$ and PM$_{10}$) and COVID-19 infections obtained on subsequent days; the R^2 values of Pearson’s correlation, with different days of delay, from day 0 (without delay) to a delay of 20 days, are presented in Table 3. The PM$_{2.5}$ levels detected in Arequipa were not related to the COVID-19 infections recorded on the same day, or to the infections recorded on the 20 subsequent days; therefore, PM$_{2.5}$ particle matter fraction would not be a SARS-CoV-2 pathway.

On the other hand, PM$_{10}$ concentration levels were significantly correlated with the number of COVID-19 infections recorded between 15 days and 18 days later. This result suggests that the SARS-CoV-2 virus could be transported attached to PM$_{10}$ particles, as suggested by Bontempi (2020a), and that an episode of increased atmospheric particulate matter might increase the number of infections, with this effect being observed 15 days later. In addition, the PM$_{10}$ concentration is significantly correlated with the number of infections recorded in Arequipa from day 15 to day 18 of the delay, with the highest R^2 value being observed on day 17 of delay ($R^2=0.21$). However, a recent study (Bianco et al. 2020) suggests that sunlight would be sufficient to inactivate SARS-CoV-2, which would make transmission in open sites unlikely, which is in disagreement with our results. In addition, Chirizzi et al. (2021) studied the presence of SARS-CoV-2 genetic material (using both real time RT-PCR and Droplet Digital PCR) in particulate matter samples collected from the north and south of Italy (Venice and Lecce, respectively) and observed that the amount of virus copies in PM$_{10}$ was < 0.8 copies m$^{-3}$; the authors concluded that virus spread is unlikely in open areas. However, the mean PM$_{10}$ concentrations reported for Venice (PM$_{10}$= 17.2 ± 5.2 μg m$^{-3}$) and Lecce (PM$_{10}$= 27.0 ± 14.8 μg m$^{-3}$) are much lower than those recorded in this study; these differences suggest that in Arequipa, Peru, the number of copies per virus would be higher than that reported for Italy, since the concentration of particulate matter is higher.

The correlations between the number of infections and PM$_{10}$ concentration could be reflecting other factors, such as an increase in population movement and commercial activities, which would increase atmospheric particulate matter; in turn, increasing movement and commercial activities would lead to more people coming into contact, which would ultimately lead to a greater number of infections. However, more studies are needed in different regions under different population, climatic and economic conditions, to understand the dynamics of the SARS-CoV-2 pandemic.

Conclusions

The restrictions implemented by the government between May and October 2020 produced a significant decrease in the levels of PM$_{2.5}$ and PM$_{10}$ on Sundays in the city of Arequipa, Peru.

Average temperature was positively correlated with PM$_{10}$ concentration; the negative correlation between wind speed and PM$_{10}$ concentration suggests that wind would cause a washing of particles into the atmosphere.

On the other hand, of the two fractions of particulate matter studied (PM$_{2.5}$ and PM$_{10}$), only the coarse fraction (PM$_{10}$) present in the atmosphere could be a vehicle for the transmission of SARS-CoV-2. Indeed, we observed a positive correlation between PM$_{10}$ concentration and the number of people infected with COVID-19, with a delay of 15 days. However, these results may be influenced by other social or economic factors that could explain the dynamics of infection in Arequipa, Peru. More studies are needed in different regions of the world in order to better understand the dynamics of the SARS-CoV-2 pandemic.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s11356-021-13408-5.

Author contribution

EDW: data analysis, discussion of the results, and writing of the manuscript.

ALV: methodology planning, discussion of the results, and administration of funds.

JRL: discussion of the results, acquisition of funds, and administration of funds.

JSP: data collection of PM$_{2.5}$ and PM$_{10}$ in 2019 and 2020.

CVH: support in data collection of PM$_{2.5}$ and PM$_{10}$ in 2019 and 2020.

Funding

The authors acknowledge the funding provided by UNSA-INVESTIGA of the National University of San Agustín de Arequipa (IBA-040) to carry out this research.

Data availability

Not applicable.

Declarations

Ethics approval and consent to participate Not applicable

Consent for publication Not applicable

Competing interests The authors declare no competing interests.

References

Arias Velásquez RM, Mejía Lara JV (2020) Gaussian approach for probability and correlation between the number of COVID-19 cases and the air pollution in Lima. Urban Clim 33:100664. https://doi.org/10.1016/j.uclim.2020.100664

Bherwani H, Gupta A, Anjum S, Anshul A, Kumar R (2020) Exploring dependence of COVID-19 on environmental factors and spread prediction in India. Res Square. https://doi.org/10.21203/rs.3.rs-25644/v1
Huang L, Zhang X, Zhang X, Wei Z, Zhang L, Xu J, Liang P, Xu Y, Bontempi E (2020b) Commercial exchanges instead of air pollution as Bontempi E (2020a) First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): the case of Lombardy (Italy). Environ Res 186:109639. https://doi.org/10.1016/j.envres.2020.109639

Bontempi E (2020b) Commercial exchanges instead of air pollution as possible origin of COVID-19 initial diffusion phase in Italy: More efforts are necessary to address interdisciplinary research. Environ Res 188:109775. https://doi.org/10.1016/j.envres.2020.109775

Bontempi E, Vergalli S, Squazzoni F (2020) Understanding COVID-19 diffusion requires an interdisciplinary, multi-dimensional approach. Environ Res 188:109814. https://doi.org/10.1016/j.envres.2020.109814

Chirizzi D, Conte M, Feltracco M, Dinoi A, Gregoris E, Barbaro E, La Bella G, Ciccarese G, La Saldana G, Gambaro A, Contini D (2021) SARS-CoV-2 concentrations and virus-laden aerosol size distributions in outdoor air in north and south of Italy. Environ Int 146: 106255. https://doi.org/10.1016/j.envint.2020.106255

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Domingo JL, Rovira J (2020) Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ Res 187: 109650. https://doi.org/10.1016/j.envres.2020.109650

Gautam S (2020) COVID-19: air pollution remains low as people stay at home. Air Qual Atmos Health 13:853–857. https://doi.org/10.1007/s11869-020-00842-6

Gautam S, Hens L (2020) COVID-19: impact by and on the environment, health and economy. Environ Dev Sustain 22:3867–3869. https://doi.org/10.1007/s11869-020-00818-7

Hashim BM, Al-Naseri SK, Al-Maliki A, Al-Ansari N (2021) Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci Total Environ 754:141978. https://doi.org/10.1016/j.scitotenv.2020.141978

Huang L, Zhang X, Zhang X, Wei Z, Zhang L, Xu J, Liang P, Xu Y, Zhang C, Xue A (2020) Rapid asymptomatic transmission of COVID-19 during the incubation period demonstrating strong infectivity in a cluster of youngsters aged 16-23 years outside Wuhan and characteristics of young patients with COVID-19: A prospective contact-tracing study. J Infect 80(6):e1–e13. https://doi.org/10.1016/j.jinf.2020.06.018

Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z (2020) Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med 35(5):1545–1549. https://doi.org/10.1007/s11606-020-05762-w

Koudere A, Kada D, Balatif O, Rachik M, Naim M (2020) Optimal control approach of a mathematical modeling with multiple delays of the negative impact of delays in applying preventive precautions against the spread of the COVID-19 pandemic with a case study of Brazil and Cost-effectiveness. Chaos, Solitons Fractals. In press. https://doi.org/10.1016/j.chaos.2020.110438

Larrea Valdivia AE, Reyes Larico JA, Salcedo Peña J, Wannaz ED (2020) Health risk assessment of polycyclic aromatic hydrocarbons (PAHs) adsorbed in PM2.5 and PM10 in a region of Arquepa, Peru. Environ Sci Pollut Res 27:3065–3075. https://doi.org/10.1007/s11356-019-07185-5

Lee H, Kim K, Choi K, Hong S, Ryu S, Son H (2020) Incubation period of the coronavirus disease 2019 (COVID-19) in Busan, South Korea. J Infect Chemother 26(9):1011–1013. https://doi.org/10.1016/j.jiac.2020.06.018

Muhammad S, Long X, Salman M (2020) COVID-19 pandemic and environmental pollution: a blessing in disguise? Sci Total Environ 728:138820. https://doi.org/10.1016/j.scitotenv.2020.138820

Plocostte T, Calif R, Euphrasie-Clotilde L, Brute F (2020) Investigation of local correlations between particulate matter (PM10) and air temperature in the Caribbean basin using Ensemble Empirical Mode Decomposition. Atmos Pollut Res 11:1692–1704. https://doi.org/10.1016/j.apr.2020.06.031

Srivastava A (2020) COVID-19 and air pollution and meteorology-an intricate relationship: a review. Chemosphere 263:128297. https://doi.org/10.1016/j.chemosphere.2020.128297

Stratioulas D, Nuthammachot N (2020) Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Sci Total Environ 746:141320. https://doi.org/10.1016/j.scitotenv.2020.141320

Turnkey Instruments Ltd (2016) Dustmate: operating instructions. https://turnkey-instruments.com/wp-content/uploads/2016/11/DustMate-Operating-Instructions.pdf. Accessed 19 March 2021

Wang Q, Su M (2020) A preliminary assessment of the impact of COVID-19 on environment – a case study of China. Sci Total Environ 728:138915

WHO (World Health Organization), (2020). Coronavirus disease 2019 (COVID-19) situation report-36, February 25, 2020. World Health Organization Geneva. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200225-sitrep-36-covid-19.pdf Accessed on 20 November 2020.

Wyche KP, Nichols M, Parfitt H, Beckett P, Gregg DJ, Smallbone KL, Turnkey Instruments Ltd (2016) Dustmate: operating instructions. https://turnkey-instruments.com/wp-content/uploads/2016/11/DustMate-Operating-Instructions.pdf. Accessed 19 March 2021

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.