Electrochemical Surface Analysis of LiMn$_2$O$_4$ Thin-film Electrodes in LiPF$_6$/Propylene Carbonate at Room and Elevated Temperatures

Junichi INAMOTO,a,* Tomokazu Fukutsuka,b,‡ Kohei Miyazaki,a,b and Takeshi Abe*a,b

ABSTRACT
Degradation of LiMn$_2$O$_4$ in LiPF$_6$-based electrolyte solution is complicated due to the influence of PF$_6^-$ anion. Decomposition of PF$_6^-$ anion accelerates both dissolution of manganese ion and surface-film formation. In this study, surface states of LiMn$_2$O$_4$ thin-film electrodes in LiPF$_6$/propylene carbonate (PC) derived from the surface-film formation were investigated using redox reaction of ferrocene and spectroscopic analyses. The spectroscopic analyses suggested that properties of the surface film depended the operation temperature (30°C and 55°C); a thinner surface film composed of LiF and PC decomposition products formed on LiMn$_2$O$_4$ at 30°C and a thicker surface film was formed at 55°C. The redox reaction of ferrocene clearly showed that LiMn$_2$O$_4$ was completely passivated at 30°C, while it was partially passivated at 55°C, indicating the surface film formed at 55°C was not compact and LiMn$_2$O$_4$ was exposed to the electrolyte solution. It was one of the causes of the rapid degradation of LiMn$_2$O$_4$ at elevated temperatures in LiPF$_6$-based electrolyte solution.

Keywords : Lithium-ion Batteries, LiMn$_2$O$_4$, Surface Film, Degradation

1. Introduction
Recent advancement in lithium-ion batteries (LIBs) technology has enabled practical use of electric vehicles (EVs). Since the energy density of the LIB determines the cruising distance of the EV, the LIB with high energy density is required. In addition, they are also required low cost and high reliability to avoid thermal run away. Concerning these required features, LiMn$_2$O$_4$ is one of the most attractive materials for positive electrode because manganese is relatively abundant transition metal and the material is thermally stable. Therefore, the material has been widely used in LIBs for EVs. Although LiMn$_2$O$_4$ shows such ideal properties, it suffers from severe capacity fading during its operation especially at elevated temperatures, which is a crucial shortcoming for long-term use of the LIBs.

Thus far, degradation mechanisms of LiMn$_2$O$_4$ have been extensively studied for over two decades, and various degradation phenomena such as Jahn–Teller distortion,6–8 dissolution of manganese ion,1–5 structural changes5–9,13 and surface film formation have been reported. In particular, the dissolution is the most severe problem for LiMn$_2$O$_4$. In the practical LIBs, LiPF$_6$ has been commonly used as a lithium salt. However, PF$_6^-$ decomposition products of PF$_6^-$ anion, reacts with impurity water in the solution to form HF, which accelerates the dissolution of manganese ion.7–9 In addition, the surface-film formation is also a severe problem in LiPF$_6$-based electrolyte solution because F$^-$ forms LiF, which has low conductivity of lithium-ion, on the surface of LiMn$_2$O$_4$.5,17,22,28 Moreover, since PF$_6^-$ is a strong Lewis acid, it triggers polymerization of organic solvent to form organic surface film, resulting in large interfacial resistance.30–32 Furthermore, these degradation phenomena brought by LiPF$_6$ are accelerated at elevated temperature because of thermal instability of LiPF$_6$. For these reasons, the degradation mechanism at the surface region of LiMn$_2$O$_4$ in LiPF$_6$-based electrolyte solution should be quite complicated.

Since the dissolution of manganese ion and formation of the surface film competitively occur, these processes possibly influence on each other. Hirayama et al. reported that the compact surface film formed in LiPF$_6$-based electrolyte solution protected the surface of LiMn$_2$O$_4$ from attack by HF, resulting in suppression of dissolution of manganese ion.17 In addition, it was also suggested that non-uniform surface film did not completely suppress the degradation of LiMn$_2$O$_4$.17 This study clearly showed that the properties of the surface film affected the other degradation phenomena occurring at the surface region of LiMn$_2$O$_4$. Based on this suggestive study, it is considered that the compact surface film which uniformly covers LiMn$_2$O$_4$ is ideal for protecting it from the side reactions. Thus far, a large number of surface analyses of LiMn$_2$O$_4$ were conducted using X-ray photoelectron spectroscopy (XPS), which is one of the most powerful tools for the surface analysis. However, since an area of X-ray beam spot is larger than micrometer scale, it was not suitable to analyze the compactness of the surface film along the in-plane direction. Since the side reactions takes place at the interface between LiMn$_2$O$_4$ and electrolyte solution, it is important to analyze the surface in much smaller scale. In general, there are few spectroscopic methods which can analyze the surface region of the sample in such scale. As for microscopic analysis such as transmission electron microscope (TEM), the surface region of the sample can be analyzed in atomic scale. However, since TEM is conducted after pre-treatment of the sample in high vacuum condition, it is difficult to observe fragile or volatile components in the surface film.

Therefore, in this study, we employed redox reaction of ferrocene as a probe for surface analysis of LiMn$_2$O$_4$. In our previous study, it was investigated that the surface-film formation behavior on the LiMn$_2$O$_4$ thin-film electrode in LiClO$_4$/propylene carbonate (PC) using redox reaction of ferrocene.31 As the result, it was clarified that...
the electronic passivation of the electrodes did not occur during charge–discharge cycles at room temperature, and it occurred only at elevated temperature. Using this method, the coverage of the surface film formed in LiPF6-based electrolyte solution can be discussed in much smaller scale than XPS. In order to investigate the effect of operating temperature on the surface states of LiMn2O4, the cycling test was carried out at 30 °C and 55 °C. Analyzing the changes in the surface state of LiMn2O4 thin-film electrodes during cycling using redox reaction of ferrocene together with spectroscopic analyses, the degradation phenomena at the surface region of LiMn2O4 was investigated.

2. Experimental

2.1 Preparation of LiMn2O4 thin-film electrode

LiMn2O4 thin-film electrodes were prepared by pulsed laser deposition (PLD) method using the fourth harmonic of Nd: YAG laser (Electronics Optic Research Ltd.). The energy density of the laser beam was set at 1.08 J cm−2. The repetition frequency was 10 Hz. Li1.4Mn2O4 was used as a target material. The chamber pressure was kept at 27 Pa by flowing O2 gas during the deposition. The thin film was prepared on a mirror-polished platinum substrate heated at 873 K for 1 h. The resulting thin film was characterized with X-ray diffraction measurement and Raman spectroscopy.

2.2 Electrochemical measurements and spectroscopic analysis

Using the LiMn2O4 thin-film electrode as a working electrode, three-electrode cell was composed for electrochemical measurements. As a reference and a counter electrode, lithium metal was employed. Hereafter, all potentials are referenced to Li+/Li. Lithium-ion extraction/insertion reaction was conducted by cyclic voltammetry in 1 mol dm−3 LiPF6/PC (lithium battery grade, purchased from KISHIDA CHEMICAL Co., Ltd.) at 0.1 mV s−1 in the range of 3.5–4.2 V at 30 °C and 55 °C. Redox reaction of ferrocene was conducted in 1 mol dm−3 LiClO4/PC (Tomiyama Pure Chemical Industries, Ltd.) containing 1 mmol dm−3 ferrocene (Alfa Aesar, purity 99%). Cyclic voltammetry of ferrocene was carried out at 10 mV s−1 in the range of 3.0–3.6 V at 30 °C before and after the 1st, 5th, 10th, and 20th lithium-ion extraction/insertion reaction. In addition, the electrochemical impedance spectroscopy (EIS) was conducted at 4.1 V before and after the cyclic voltammetry for the lithium-ion extraction/insertion reaction. Applied ac voltage and frequency range were set at 15 mV and 100 kHz–10 mHz. All the electrochemical measurements were conducted in argon filled glove box using HSV-100 (HOKUTO-DENKO) or Solartron1470E + 1255 (Solartron Analytical).

To evaluate redox behavior of ferrocene quantitatively, electrochemical surface area A and a standard rate constant kθ between ferrocene and electrode at each cycle were obtained by fitting a simulated voltammogram to the experimental one. The simulation procedure was followed to the literature, and the simulation condition was shown in our previous work. Modifying kθ and A until the simulated voltammogram fitted to the experimental ones, these values were obtained.

As the structural characterization after the lithium-ion extraction/insertion reaction, Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), and XPS measurement were conducted. Raman spectroscopy was measured with a triple monochromator (Jobin-Yvon, T64000) equipped with a CCD detector. As a light source, 514.5-nm line of argon ion laser (CVI Melles Griot, 543-GS-A03) was used. ATR FT-IR was conducted with Bruker Alpha in Ar-filled glove box. XPS measurements were carried out ex-situ with MT-5500 (ULVAC PHI, Inc.). Prior to XPS analysis, the cell was deconstructed in Ar-filled glove box to obtain cycled electrodes, and the electrodes were transferred in Ar-filled vessel to side chamber of the XPS instrument.

3. Results and Discussion

3.1 Characterization of a LiMn2O4 thin film prepared with PLD

Figure 1 shows XRD pattern of a LiMn2O4 thin film prepared with PLD. All the peaks were consistent with reported ones in previous reports, and no other peak was observed. In addition, relative peak intensities were similar to those of powder one, indicating that the film did not have any specific crystalline orientation. It also suggested that the film was composed of polycrystalline LiMn2O4. Therefore, using this thin film as an electrode, the information independent from crystalline orientation at the surface can be obtained.

Figure 2 shows Raman spectrum of the thin film. Peaks around 500, 580, and 625 cm−1 were attributed to F2g, F2g and A1g modes of LiMn2O4, respectively. Since no other peak was observed in the spectrum, the thin film was composed only of LiMn2O4 and did not contain impurity phase. From the results of XRD and Raman spectroscopy, it was found that the prepared LiMn2O4 thin film was desirable for a model electrode.
3.2 Electrochemical properties of LiMn$_2$O$_4$ thin-film electrodes

Figure 3 shows cyclic voltammograms of the LiMn$_2$O$_4$ thin-film electrodes in 1 mol dm$^{-3}$ LiPF$_6$/PC at 30 °C (a) and 55 °C (b). During 20 cycles at 55 °C, which was much larger increasing rate than that obtained at 30 °C. The results possibly suggests that a large number of the active sites decreased during the cycling process at 55 °C, which was consistent with the variations of cyclic voltammograms. The decrement of the active sites would be discussed in detail based on the results of redox reaction of ferrocene and X-ray photoelectron spectroscopy in the next sections.

Figure 4 shows the Nyquist plots of LiMn$_2$O$_4$ thin-film electrodes at 4.1 V vs. Li$^+$/Li during cycling in 1 mol dm$^{-3}$ LiPF$_6$/PC at 30 °C (a) and 55 °C (b). An enlarged view is inserted in (b). The value indicates the frequency at the top of the semi-circles.

3.3 Redox reaction of ferrocene on LiMn$_2$O$_4$ thin-film electrodes

Since the degradation behaviors of LiMn$_2$O$_4$ thin-film electrodes remarkably depended on the operation temperatures in LiPF$_6$/PC, the surface state of the LiMn$_2$O$_4$ thin-film electrodes at the temperatures were investigated with the redox reaction of ferrocene. Figure 5 shows the cyclic voltammograms of ferrocene on the LiMn$_2$O$_4$ thin-film electrodes. Before the 1st cycle of the lithium-ion extraction/insertion, clear reversible peaks of ferrocene were observed. At 30 °C, the peaks completely disappeared after the 1st cycle. In the case at 55 °C, although the peak currents decreased after the 1st cycle, the peaks were still slightly observable even after the 20th cycle. The standard rate constant k^0 and ratio of the surface area to the initial value A/A_0 were evaluated by fitting the simulated voltammograms to the experimental ones, and they were summarized in Table 1. At 30 °C, A/A_0 could not be evaluated because the...
peaks completely disappeared. After the 1st cycle, k^0 drastically decreased by a factor of almost one thousand at 30 °C, indicating complete electronic passivation of the LiMn$_2$O$_4$ thin-film electrode. Therefore, it was suggested that the film compactly covered the surface. It might suppress side reactions such as oxidation of electrolyte solution and H$^+$ attack to LiMn$_2$O$_4$, resulting in contribution to capacity retention. However, since the increase of R_d was observed in Nyquist plots at 30 °C, it was suggested that the surface film also decreased the number of the reaction sites for lithium-ion transfer at the electrode/electrolyte interface. In contrast, at 55 °C, A/A_0 drastically decreased after the 1st cycle, whereas k^0 kept similar values to the pristine one. It indicated that LiMn$_2$O$_4$ was not completely electronically passivated. There were two possible causes for the incomplete passivation of LiMn$_2$O$_4$: one is a part of LiMn$_2$O$_4$ was not covered by the surface film, and the other is exposure of platinum substrate resulted from massive dissolution of manganese ion. However, if platinum substrate was exposed by the dissolution of LiMn$_2$O$_4$, the redox current of the ferrocene must increase with increasing the cycling number. In Fig. 5(b), the redox current decreased with increasing the cycle number. Therefore, it is considered that the surface film formed at 55 °C did not completely cover the surface and a slight part of the surface was still exposed to the electrolyte solution. The incomplete formation of the surface film would be caused by the harsh dissolution of manganese ion at the elevated temperature. During the following cycles, the value of A/A_0 continuously decreased, indicating that the surface film grew after the 1st cycle and the exposed area of LiMn$_2$O$_4$ gradually decreased during cycling. It should be the reason of the continuous increase of R_d observed in EIS. The present results are consistent with the previous report in terms of the thickness of the surface film after the prolonged cycles. Since the surface film did not completely cover the surface of LiMn$_2$O$_4$ at the elevated temperature, side reactions such as further oxidation of electrolyte solution and H$^+$ attack to LiMn$_2$O$_4$ possibly occurred at the exposed area of LiMn$_2$O$_4$. It should be one of the reasons that capacity fading of LiMn$_2$O$_4$ rapidly and continuously proceeded at elevated temperatures.

3.4 Characterization of surface species on LiMn$_2$O$_4$ after cycling in LiPF$_6$/PC

To investigate the surface-state changes before and after the cycles, LiMn$_2$O$_4$ thin-film electrodes were analyzed with Raman spectroscopy, XPS and ATR FT-IR. Figure 6 shows Raman spectra of pristine and cycled LiMn$_2$O$_4$ thin-film electrodes. No new peak emerged after cycling, indicating other impurity phase did not exist in the LiMn$_2$O$_4$ thin-film electrodes. In our previous report, a new peak of Mn$_2$O$_3$ at 650 cm$^{-1}$ was observed for LiMn$_2$O$_4$ cycled in LiClO$_4$/PC at 55 °C. However, the peak was not observed in the present results in LiPF$_6$/PC. It was reported that Mn$_2$O$_3$ was easily dissolved into LiPF$_6$-based electrolyte solution at elevated temperature. Therefore, Mn$_2$O$_3$ might be once formed on LiMn$_2$O$_4$ at 55 °C in LiPF$_6$/PC, but it immediately dissolved into LiPF$_6$/PC. This may be the reason of no observation of Mn$_2$O$_3$. It should be emphasized that structural change at the surface region of LiMn$_2$O$_4$ was not the reason of the increase of R_d.

Figure 7 shows the depth profiles of the atomic concentrations at the surface region of pristine and cycled LiMn$_2$O$_4$ thin-film electrodes calculated from the results of XPS. In both profiles of cycled LiMn$_2$O$_4$, a large concentration of Li and F were observed at

Table 1. Ratio of surface area to the initial value A/A_0 and standard rate constant k^0 between ferrocene and LiMn$_2$O$_4$ thin-film electrodes.

number of cycle	30°C	55°C
	k^0/cm$^{-1}$	A/A_0
0	6.5×10^{-4}	1.0
1	<3.1×10^{-7}	9.6 $\times 10^{-2}$
5	<3.1×10^{-7}	7.2 $\times 10^{-2}$
10	<3.1×10^{-7}	7.6 $\times 10^{-2}$
20	<3.1×10^{-7}	3.4 $\times 10^{-2}$

Figure 5. Cyclic voltammograms of redox reaction of ferrocene on LiMn$_2$O$_4$ thin-film electrodes during cycling in 1 mol dm$^{-3}$ LiPF$_6$/PC at 30 °C (a) and 55 °C (b).

Figure 6. Raman spectra of LiMn$_2$O$_4$ thin-film electrodes before cycling and after the 20th cycle in 1 mol dm$^{-3}$ LiPF$_6$/PC at 30 °C and 55 °C.
short sputtering time. Since the LiMn$_2$O$_4$ cycled at 55 °C showed higher concentrations of Li and F at 486 s sputtering, the thicker LiF was formed on the surface. The results clearly indicated that the thickness of the LiF surface film increased with increasing temperature, and it is in good agreement with the previous report on surface film on LiMn$_2$O$_4$.

In addition, C and a slight amount of P were also observed, which were attributed to decomposition products of PC and PF$_6^-$, respectively. Comparing variations of C and F in depth profile, concentration of F kept almost the same value during 162 s of sputtering, while that of C gradually decreased. It indicated that organic species derived from PC was formed on top surface of the electrode, and LiF was formed near the surface of LiMn$_2$O$_4$. Since the formation of LiF on LiMn$_2$O$_4$ decrease active sites for lithium-ion extraction and insertion, it could cause the large increase of R_e observed in EIS.

In contrast, the organic surface film was formed at 30 °C, and the surface state of LiMn$_2$O$_4$ in LiClO$_4$ was not covered with the compact surface film composed of LiF and decomposition products of PC. The surface film derived from decomposition products of PC hardly hindered the interfacial lithium-ion transfer, resulting in severe capacity degradation. This shows marked contrast to the electronic passivation possibly suppressed further side reactions at the interface such as dissolution of manganese ion to a certain extent. However, since the charge-transfer resistance also largely increased by the surface film, the film also hindered interfacial lithium-ion transfer. Therefore, such low lithium-ion conductivity of the surface film was caused by LiF, which is known as a poor lithium-ion conductor. At 55 °C, although the thicker surface film was formed, it was not compact and LiMn$_2$O$_4$ was partially exposed to the electrolyte solution. It was probably because the emission of HF was accelerated at the elevated temperature and dissolution of manganese ion rapidly proceeded. The continuous dissolution of manganese ion occurred at the exposed area of LiMn$_2$O$_4$, preventing from formation of compact surface film, and resulted in severe capacity degradation of LiMn$_2$O$_4$. It is, namely, a vicious cycle of surface degradation. This shows marked contrast to the surface state of LiMn$_2$O$_4$ in LiClO$_4$/PC at 55 °C. The surface film formed in LiClO$_4$/PC completely electronically passivated LiMn$_2$O$_4$ and it prevented LiMn$_2$O$_4$ from the interfacial side reactions during cycling. The contrast clearly showed the intrinsic difficulties of LiPF$_6$-based electrolyte solution for long-term cycling of LiMn$_2$O$_4$. Even at 30 °C, the interfacial lithium-ion transfer was much slower because of the low lithium-ion conductive surface film. In addition, at 55 °C, the surface film could not suppress the severe interfacial side reactions. Although LiPF$_6$ is widely used in commercialized LIBs, alternative electrolytes which are safe and stable are required for further improvement of the long-term cycleability of the LIBs.

4. Conclusion

The electronic passivation behavior of LiMn$_2$O$_4$ cycled in LiPF$_6$/PC was strongly influenced by its operation temperature; At 30 °C, complete electronic passivation was brought by compact surface film composed of LiF and decomposition products of PC. The electronic passivation possibly suppressed further side reactions at the interface such as dissolution of manganese ion and oxidation of electrolyte solution, leading to suppression of capacity fading. However, it also hindered interfacial lithium-ion transfer, resulting in worse rate capability. On the other hand, at 55 °C, the surface film...
was thick but not compact, and it did not completely electronically passivate LiMn$_2$O$_4$. Therefore, LiMn$_2$O$_4$ was partially exposed to the electrolyte solution, and further side reactions such as dissolution of manganese ion continuously occurred during cycling, leading to instability of the surface film. This vicious cycle of surface degradation should be one of the causes of rapid degradation of LiMn$_2$O$_4$ at elevated temperatures.

References

1. R. J. Gummow, A. d. Kock, and M. M. Thackeray, *Solid State Ionics*, 69, 59 (1994).
2. D. H. Jang, Y. J. Shin, and S. M. Oh, *J. Electrochem. Soc.*, 143, 2204 (1996).
3. Y. Xia, Y. Zhou, and M. Yoshio, *J. Electrochem. Soc.*, 144, 2593 (1997).
4. T. Inoue and M. Sano, *J. Electrochem. Soc.*, 145, 3704 (1998).
5. D. Aurbach, M. D. Levi, K. Gamulski, C. N. Schmutz, A. Blyr, C. Sigala, A. S. Gozdz, D. Larcher, and J. M. Tarascon, *J. Power Sources*, 81, 472 (1999).
6. A. Yamada and M. Tanaka, *Mater. Res. Bull.*, 30, 715 (1995).
7. G. G. Amatucci, C. N. Schmutz, A. Blyr, C. Sigala, A. S. Gozdz, D. Larcher, and J. M. Tarascon, *J. Power Sources*, 69, 31 (1997).
8. C. M. Julien and M. Massot, *Mater. Sci. Eng., B*, 97, 217 (2003).
9. J. C. Hunter, *J. Solid State Chem.*, 39, 142 (1981).
10. A. Blyr, C. Sigala, G. Amatucci, D. Guyomard, Y. Chabre, and J.-M. Tarascon, *J. Electrochem. Soc.*, 145, 194 (1998).
11. D. H. Jang and S. M. Oh, *J. Electrochem. Soc.*, 144, 3342 (1997).
12. T. Uchiyama, M. Nishizawa, T. Itoh, and I. Uchida, *J. Electrochem. Soc.*, 147, 2057 (2000).
13. L.-F. Wang, C.-C. Ou, K. A. Striebel, and J.-S. Chen, *J. Electrochem. Soc.*, 150, A995 (2003).
14. J. Cho and M. M. Thackeray, *J. Electrochem. Soc.*, 146, 3577 (1999).
15. Y. Matsuo, R. Kostecki, and F. McLamor, *J. Electrochem. Soc.*, 148, A687 (2001).
16. G. Li, Y. Iijima, Y. Kudo, and H. Azuma, *Solid State Ionics*, 146, 55 (2002).
17. M. Hirayama, H. Ishio, K. S. Kim, W. Cho, K. Tamura, J. Misaki, and R. Kanno, *J. Am. Chem. Soc.*, 132, 15268 (2010).
18. D. Aurbach, K. Gamulski, B. Markovskiy, G. Salitza, Y. Gofer, U. Heider, R. Oesten, and M. Schmidt, *J. Electrochem. Soc.*, 147, 1322 (2000).
19. T. Eriksson, A. M. Andersson, A. G. Bishop, C. Gejke, T. Gustafsson, and J. O. Thomas, *J. Electrochem. Soc.*, 149, A69 (2002).
20. T. Eriksson, A. M. Andersson, C. Gejke, T. Gustafsson, and J. O. Thomas, *Langmuir*, 18, 3609 (2002).
21. J. Lei, L. Li, R. Kostecki, R. Muller, and F. McLamor, *J. Electrochem. Soc.*, 152, A774 (2005).
22. M. Matsu, K. Dokko, and K. Kanamura, *J. Electrochem. Soc.*, 157, A121 (2010).
23. F. Simmen, A. Hintenennach, M. Horisberger, T. Lippert, P. Novák, C. W. Schneider, and A. Wokaun, *J. Electrochem. Soc.*, 157, A1026 (2010).
24. F. Simmen, A. Foelske-Schmitz, P. Verma, M. Horisberger, Th. Lippert, P. Novák, C. W. Schneider, and A. Wokaun, *Electrochim. Acta*, 56, 8539 (2011).
25. J. Hwang and H. Jung, *J. Electrochem. Soc.*, 162, A103 (2015).
26. Y.-M. Liu, B. G. Nicolau, J. L. Eubenshade, and A. A. Gewirth, *Anal. Chem.*, 88, 7171 (2016).
27. M. Mohamedi, D. Takahashi, T. Itoh, and I. Uchida, *Electrochim. Acta*, 47, 3482 (2002).
28. A. Würnig, H. Buqa, M. Holzapfel, F. Krumeich, and P. Novák, *Electrochem. Solid-State Lett.*, 8, A34 (2005).
29. M. Murakami, S. Shimizu, Y. Noda, K. Takegoshi, H. Arai, Y. Uchimoto, and Z. Ogumi, *Electrochim. Acta*, 147, 540 (2014).
30. D. Aurbach, A. Zaba, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovskiy, M. Levi, E. Levi, A. Schechter, and E. Granot, *J. Power Sources*, 68, 91 (1997).
31. T. Kawamura, S. Okada, and J. Yamaki, *J. Power Sources*, 156, 547 (2006).
32. S. E. Shoop, J. B. Kerr, and K. Kinoshita, *J. Power Sources*, 119, 330 (2003).
33. J. Inamoto, T. Fukutsuka, K. Miyazaki, and T. Abe, *ChemistrySelect*, 2, 2895 (2017).
34. A. J. Bard and L. R. Faulkner, *Electrochemical Methods: Fundamentals and applications*, 2nd edition, Wiley, New York, pp. 785–805. Appendix B (2001).
35. Y. Matsuo, Y. Sugie, K. Sakamoto, and T. Fukutsuka, *J. Solid State Electrochem.*, 15, 503 (2011).
36. I. Yamada, T. Abe, Y. Iriyama, and Z. Ogumi, *Electrochem. Commun.*, 5, 502 (2003).
37. M. Matsu, K. Dokko, and K. Kanamura, *J. Power Sources*, 177, 184 (2008).