Comparison of Papanicolaou and Acridine Orange stains in the Diagnosis of Trichomonas Vaginalis Infection in Vaginal Discharge

Neena Piyush Doshi
Dept of Pathology, GMERS Medical College, Gotri, Vadodara (India)

ABSTRACT

Background: Trichomonas vaginalis is the most common cause of vaginitis. Diagnosis based on clinical presentation is often inaccurate. Clinical presentation with adjuvant laboratory evidence of trichomoniasis is required for the confirmation of the diagnosis and initiation of therapy. The aim of the present study was to compare the sensitivity and specificity of rapid staining Acridine Orange method for detection of trichomonas vaginalis infection with the routinely employed Papanicolaou staining.

Materials and Methods: Vaginal swab smears were prepared from 300 patients attending gynaecology outpatients’ clinic of S.S.G. Hospital, Vadodara with complain of abnormal vaginal discharge. The prospective study was conducted over a period of two years (from January’ 98 to December’ 99). The Papanicolaou and Acridine Orange stained smears were screened for presence of Trichomonas vaginalis infection.

Results: In the present study, the incidence of Trichomonas vaginalis infection was 12.3%. Considering Papanicolaou stain as standard, the sensitivity and specificity of Acridine Orange (AO) stain for detection of T. vaginalis was 92.8% and 93.01% respectively. The positive and negative predictive values were 74.2% and 99.2%, while false positive and false negative values are 3% and 0.66% respectively.

Conclusion: Trichomonas vaginalis infection is a sexually transmitted disease of the reproductive age group, which needs to be timely diagnosed to prevent its adverse effects. The rapidity, ease and reliability of Acridine Orange stain justify its use in routine laboratory diagnosis of Trichomonas vaginalis infection.

Keywords: Richomonas Vaginalis, Papanicolaou Stain, Acridine Orange Stain, Fluorescence
cessarean infection, and human immunodeficiency virus (HIV) infection. T. vaginalis is associated with 1.52-fold increased risk of HIV-1 acquisition. Therefore, the detection of T. vaginalis infection is of utmost importance. The elimination of trichomoniasis depends not only on treatment of the symptomatic cases, but also in detecting carrier patients who have mild symptoms or none, or who accept their vaginal discharge as ‘normal’ because every woman has a discharge anyway.

Wet smear examination though simple is an insensitive method. A minimum concentration of 10^4 organisms per milliliter of vaginal discharge is necessary for wet mount to be positive. The acknowledged insensitivity is in partly due to the rapid loss of the characteristic motility of the microorganism. A large number of culture and staining techniques have been designed to increase the reliability of laboratory diagnosis of T. vaginalis. Diamond’s medium is considered the gold standard. More recently culture method composed of liquid medium is used. Culture is a sensitive method for detecting trichomonas as compared to wet smear preparation, however it is relatively slower, requiring 2-7 days for diagnosis.

Papnicolaou stain, Giemsa stain, and other Romansowsky stains are amongst the stains for vaginal smears commonly used for the diagnosis of T. vaginalis. It is difficult to diagnose when trichomonas are scanty. Rounded forms of trichomonads can be confused easily with polymorphonuclear leukocytes or may look like dysplastic cells. Bare nuclei, degenerated cells and inspissated mucous plugs can be confused with trichomonads. The need for more sensitive, specific rapid and simpler method for detecting trichomonas vaginalis infection, to overcome the drawbacks of the existing methods, was recognized for a long time. More recent reports, describe the use of Acridine Orange stain using fluorescence microscope. The stain is differently adsorbed by the parasite and holds promise in improving the diagnostic ability of trichomonas vaginalis infection.

The present study is undertaken to evaluate the usefulness of Acridine Orange staining in the diagnosis of vaginal trichomoniasis and compare the efficacy with Papanicolaou staining routinely employed on vaginal smears. To define the performance characteristic of Acridine Orange stain, Papanicolaou stain is considered as standard for the present study.

Materials and Methods

The present study was carried out in the Department of Pathology, Medical College and S.S.G. Hospital, Vadodara, Gujarat, India over a period of two years (from January’ 98 to December’ 99). 300 patients attending gynaecology clinic of S.S.G. Hospital with complain of abnormal vaginal discharge formed the ‘target group’ of this prospective study. A detailed clinical history was taken. The findings were noted down in the performa.

Smear Collection: Trichomonas vaginalis infection is essentially of the vaginal epithelium. The parasites shelter between rugae and acquire their food from glycogen rich vaginal epithelium. The specimen for the present study was thus collected from the posterior vaginal fornix pool. The vaginal swab containing the specimen was rolled onto two clean slides, one for Papanicolaou stain and other for Acridine Orange. The slides were immediately fixed by immersing in a coplin jar full of cytofix (a mixture of equal volumes of 95% ethanol and ether).

Processing of Smears: The smears were fixed in cytofix for a minimum of 30 minutes and stained by Papanicolaou and Acridine Orange. In case of any delay in staining, the slides are removed from cytofix and air-dried. For Acridine Orange stain, the staining characteristics are better with cytofixed slides than air-dried smears.

Papanicolaou (Pap) Staining Method:

Step	Solution	
1	90% ethyl alcohol	10 dips
2	70% ethyl alcohol	10 dips
3	50% ethyl alcohol	10 dips
4	Running water	1 minute
5	Harris’s haematoxylin	2 minutes
6	Running water	2 minutes
7	Acid alcohol	1 dip
8	Running water	5 minutes
9	50% ethyl alcohol	4 dips
10	70% ethyl alcohol	4 dips
11	90% ethyl alcohol	4 dips
12	Orange G. 6 (O.G. 6)	5 minutes
13	95% ethyl alcohol	4 dips
14	95% ethyl alcohol	4 dips
15	Eosin azure 50 (EA 50)	2 minutes
16	95% ethyl alcohol	4 dips
17	100% ethyl alcohol	4 dips
18	100% ethyl alcohol	4 dips
19	Xylol	half an hour
20	Xylol	half an hour
21	Blotted and mounted with Distrene 80 Dibutylphthalate Xylene (DPX)	

Microscopic Appearance of T. Vaginalis Infection in Pap Smear: In Papanicolaou smears, the parasites appear as gray-green, round or elliptical structures, varying in size...
from 8 to 20 μm (Fig. 1). Large size trichomonads appear when growing conditions are unfavorable while smaller sizes prevail in favorable growing conditions.

The smears from trichomoniasis are usually rich in leukocytes. There is excessive cytolysis. Debris and large plaques of necrotic cells are common. These make the background appear ‘dirty’. Clustering of leukocytes and macrophages around epithelial cells, called the ‘cannon ball or BB shot appearance’, may be observed. There is excessive eosinophilia involving the normally basophilic cells such as the intermediate and the parabasal (Fig. 2). Leptothrix, which are long filamentous bacterial structures, commonly occur in conjunction with trichomonads. All the above features are clue to the diagnosis of trichomoniasis, however identification of the parasite is essential before the diagnosis can be established with assurance.

It may be difficult to find T. vaginalis in severe inflammation (Fig. 3). Inspissated material (Fig. 4) and bare nuclei (Fig. 5) may be confused with T. vaginalis.

Microscopic Appearance of T. Vaginalis Infection Using AO Fluorescence Dye: Prior to screening, the AO stained smears are mounted in buffer. The exciter filter of the fluorescence microscope was adjusted to 400 ηm and barrier filter was used as a combination of filters 44 (10% transmission at 440 ηm) and 53 (10% transmission at 530 ηm). Acridine Orange is a nucleic acid stain, staining differently DNA and RNA, the former fluoresces yellow to green and the latter bright red under ultraviolet illumination. Acridine Orange is very sensitive for picking up organisms. Trichomonas vaginalis trophozoites stain a characteristic brick red with a yellowish-green banana shaped or rounder nucleus (Fig. 6). The cytoplasm of leukocytes does not stain but the nuclei fluoresce bright green. Yeasts stain red. Bacteria including those within phagocytic cells stain bright red. The likelihood that the additional positives detected by Acridine Orange stain would not be so, is slight, since nothing else in smears significantly resembles trichomonads to cause difficulty.

Results
In the present study, comparing results by both methods in each case, 26 cases were positive for T. vaginalis infection by both methods. There was disparity in 11 cases, in which 2 cases were positive by Papanicolaou stain and not by Acridine Orange, while 9 cases were positive by Acridine Orange but negative by Papanicolaou stain. Combining both, there were 37 positive cases in all as shown in table 1. Incidence of Trichomonas vaginalis infection was 12.3%.

Considering Papanicolaou stain as the standard for present study, the sensitivity and specificity of Acridine Orange (AO) stain for detection of T. vaginalis is calculated as 92.8% and 93.01% respectively. Positive and negative predictive values are 74.2% and 99.2% respectively, while false positive and false negative values are 3% and 0.66% respectively.

Table 1: Pap and AO stained smears positive for T. vaginalis infection.
Papanicolaou stain
Acridine Orange

a = true positive, b = false positive, c = false negative, d = true negative
Table 2: Incidence of Trichomonas vaginalis in female vaginal discharge as observed in different studies.

Sr. No.	Work done by	Incidence (%)
1.	Karaman et al [9]	8.1
2.	Klinger EV et al [10]	10.7
3.	Rassjo EB et al [11]	8.0
4.	Menezes CB et al [12]	15
5.	Khamees SS [13]	26.8
6.	Present study	12.3

Table 3: Sensitivity of Acridine Orange stain for detecting T. vaginalis infection.

Sr. No.	Work done by	Sensitivity (%)
1.	Khatoon R et al [2]	100
2.	Radonjic IV et al [14]	71.43
3.	Hussein AH et al [15]	81.8
4.	Present study	92.8

Table 4: Specificity of Acridine Orange stain for detecting T. vaginalis infection.

Sr. No.	Work done by	Specificity (%)
1.	Khatoon R et al [2]	98
2.	Radonjic IV et al [14]	99.44
3.	Hussein AH et al [15]	100
4.	Present study	93.01

Fig. 1: (Pap stained vaginal smear, 40x view): Trichomonas vaginalis in Papanicolaou stained vaginal smears.

Fig. 2: (Pap stained vaginal smear, 10x view): Cannon ball appearance, dirty background and excess eosinophilia.

Fig. 3: (Pap stained vaginal smear, 40x view): Severe inflammation making it difficult to find the trichomonads.

Fig. 4: (Pap stained vaginal smear, 40x view): Inspissated material can be confused with T. vaginalis.
Fig. 5: (Pap stained vaginal smear, 40x view): Bare nuclei can be confused with T. vaginalis.

Fig. 6: (AO stained vaginal smear, 40x view): T. vaginalis in Acridine Orange stained smears.

Discussion
Long considered a minor sexually transmitted disease (STD) with few associated complications, T. vaginalis is now known to be associated with pregnancy related complications and morbidity in non-pregnant women. Besides, trichomoniasis can be asymptomatic in nearly 50% of the infected women or they may present with wide variety of symptoms. Once established, the infection may persist for long periods in women.[6]

As per the published literature, the prevalence of T. vaginalis ranges from 0.4-27.4% in women.[4, 6] In India, trichomoniasis accounts for 2-7% of all sexually transmitted infections.[6] In the present study, Acridine Orange stained smears picked up 11.6% positive cases while Papanicolaou stain picked up 9.3% positive cases. Combining both results there were 37 positive cases in all, thus an incidence of 12.3%. Table 2 shows the incidence of Trichomonas vaginalis infection as observed by different workers.

The sensitivity of Acridine Orange stain in detecting Trichomonas vaginalis infection as observed by different workers is put in table 3. The sensitivity of Acridine Orange stain as observed by different workers varied between 33-93.8%.

Conclusion
High prevalence, increasing resistance to treatment and association with health complications are the burning issues related to T. vaginalis infection. A definitive diagnosis of trichomonas vaginalis infection cannot be made on clinical symptoms alone. Diagnosis must be laboratorial. Considering the higher sensitivity, specificity and the rapidity and ease of Acridine Orange staining, its use in routine laboratory diagnosis of trichomoniasis is justifiable. This will provide early diagnosis and prompt treatment to patients suffering from the infection. It will
help in reducing disease associated morbidity and adverse health outcomes. Although, in gynaecologic practice the value of Papanicolaou stained smears cannot be underestimated because of its primary usefulness in screening women for cervical cancer, but Acridine Orange staining is advocated in cases suspected of trichomonas infection.

Acknowledgements
I express my gratitude to Dr. M.R. Desai, then Professor & Head, O/G, Medical College, Vadodara for allowing me to collect cytology smears. I sincerely thank Dr. R.Z. Patel and Dr. R.K. Pasle, Pathologists, Vadodara in helping me through the making of stains. The work wouldn’t have been possible without the help of Dr. Rajapurkar, MD, MPUH, Nadiad, who very kindly allowed me to avail the facility of the institutional fluorescence microscope.

References
1. Pereira-Neves A, Benchimol M. Trichomonas vaginalis: in vitro survival in swimming pool water samples. Exp Parasitol. 2008 Mar;118(3):438-41.
2. Khatoon R, Jahan N, Khan HM, Rabbani T, Ahmad S. Evaluation of Different Staining Techniques in the Diagnosis of Trichomonas vaginalis Infection in Females of Reproductive Age Group. J Clin Diagn Res. 2014 Dec;8(12):DC05-8.
3. Menezes CB, Frasson AP, Tasca T. Trichomoniasis - are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microb Cell. 2016 Sep 5;3(9):404-19.
4. Sood S, Kapil A. An update on Trichomonas vaginalis. Indian J Sex Transm Dis. 2008;29(1):7-14.
5. Schwebke JR, Burgess D. Trichomoniasis. Clin Microbiol Rev. 2004 Oct;17(4):794–803.
6. Preethi V, Mandal J, Halder A, Parija SC. Trichomoniasis: An update. Tropical Parasitology. 2011;1(2):73-75.
7. Nassef NA, Afif AF, Bauni AA, Abo El-Nasr MF, Atia AF. Evaluation of microscopy and polymerase chain reaction for diagnosis of symptomatic and asymptomatic female trichomoniasis. 2014;7(1):37-46.
8. McClelland RS, Sangare L, Hassan WM, Lavreys L, Mandaliya K, Kiarie J, Ndinya-Achola J, Jaoko W, Baeten JM. Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. J Infect Dis. 2007 Mar 1;195(5):698-702.
9. Karaman U, Karadag N, Atlamby NB, Kay A, Daldal NU. A comparison of Cytological and Parasitological Methods in the Diagnosis of Trichomonas vaginalis. Turkiye Parazitololoji Dergisi. 2008;32(4):309-12.
10. Klinger EV, Kapiga SH, Sam NE, Aboud S, Chen CY, Ballard RC, Larsen U. A Community-based study of risk factors for Trichomonas vaginalis infection among women and their male partners in Moshi urban district, northern Tanzania. Sex Transm Dis. 2006 Dec;33(12):712-8.
11. Rassjo EB, Kambugu F, Tumwesigye MN, Tenywa T, Darj E. Prevalence of sexually transmitted infections among adolescents in Kampala, Uganda, and theoretical models for improving syndromic management. J Adolesc Health. 2006 Mar;38(3):213-21.
12. Menezes CB, Mello MS, Tasca T. Comparison of permanent staining methods for the laboratory diagnosis of Trichomoniasis. REV Inst Med Trop Sao Paulo. 2016;58:5.
13. Khamees SS. Prevalence of Trichomonas vaginalis among women in Albatnan District. Int. J. of Pharm. & Life Sci. 2012 Dec;3(12):2177-80.
14. Radonjic IV, Dzamic AM, Mitrovic SM, Arsic Arsenijevic VS, Popadic DM, Kranjcic Zec IF. Diagnosis of Trichomonas vaginalis infection: The sensitivities and specificities of microscopy, culture and PCR assay. Eur J Obstet Gynecol Reprod Biol. 2006 May 1;126(1):116-20.
15. Hussein AH, Saleh MH, Nagaty IM, Ghieth KA, El-Azab NA. Prevalence, Clinical Criteria and Sociodemographic Predictors of Trichomonas vaginalis Infection in Suspected Egyptian Women, Using Direct Diagnostic Techniques. Iranian Journal of Parasitology. 2015;10(3):432-40.

*Corresponding author:
Neena Piyush Doshi, Dept of Pathology, GMERS Medical College, Gotri, Vadodara (India)- 390021
Phone: +91 0265 239 8008
Email: neenapdoshi@gmail.com

Financial or other Competing Interests: None.