Microscopic study of higher-order deformation effects on the ground states of superheavy nuclei around 270Hs

Xiao-Qian Wang (王晓倩),1,2 Xiang-Xiang Sun (孙向向),3,* and Shan-Gui Zhou (周善贵)1,2,3

1CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

(Dated: November 16, 2021)

We study the effects of higher-order deformations $\beta_\lambda (\lambda = 4, 6, 8, 10)$ on the ground state properties of superheavy nuclei (SHN) near the doubly magic deformed nucleus 270Hs by using the multidimensionally-constrained (MDC) relativistic mean-field (RMF) model with five effective interactions PC-PK1, PK1, NL3, DD-ME2, and PKDD. The doubly magic properties of 270Hs are featured by the large energy gaps at $N = 162$ and $Z = 108$ in the single-particle spectra. By investigating the binding energies and single-particle levels of 270Hs in multidimensional deformation space, we find that the deformation β_6 has the greatest impact on the binding energy among these higher-order deformations and influences the shell gaps considerably. Similar conclusions hold for other SHN near 270Hs. Our calculations demonstrate that the deformation β_6 must be considered when studying SHN by using MDC-RMF.

PACS numbers:

I. INTRODUCTION

One of the challenges in modern nuclear physics is exploring the mass and charge limits of atomic nuclei [1–8]. The prediction of the existence of an “island of stability” of superheavy nuclei (SHN) was made [9–14] in the 1960s. The elements with $Z \leq 118$ have been synthesized [15–17] up to now. Various predictions of the center of the “island of stability” have been made [9–14, 18–20] and the position of this island is still not well determined. Contrary to the “island of stability”, the existence of a “shallow” of SHN has been well established theoretically and experimentally, which connects the continent of stable nuclei to the “island of stability” of SHN. The center of this shallow is predicted to be around $Z = 108$ and $N = 162$ and consists of deformed SHN [21–24]. 270Hs$_{162}$ is a doubly magic deformed nucleus [25, 26] and offers a prototype to explore the structure of SHN.

Nowadays, there are two kinds of theoretical approaches to study structures and properties of SHN, macroscopic-microscopic method (MMM) and microscopic method. Generally, the surface of a nucleus is parameterized as [27],

$$R(\theta, \varphi) = R_0 \left[1 + \beta_{00} + \sum_{\lambda=1}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \beta_{\lambda\mu} Y_{\lambda\mu}(\theta, \varphi) \right], \quad (1)$$

where $\beta_{\lambda\mu}$ is deformation parameter and R_0 is the radius of the sphere with the same volume. There is a remarkable question, how large should the dimension of the deformation space be when studying deformed SHN?

In 1991, Patyk and Sobczewkowski studied the ground state properties of the heaviest even-even nuclei with proton numbers $Z = 90–114$ and neutron numbers $N = 136–168$ by using the MMM and found that the β_6 degree of freedom is important for binding energies and the formation of deformed shells [23, 28]. In addition, β_6 also has a considerable influence on the moments of inertia [29, 30] and the high-K isomers [31, 32]. The microscopic description of the structure for SHN can be achieved by using density functional theories and there are few works investigating the influence of β_6 on the binding energy and shell structure of SHN so far.

Covariant density functional theory (CDFT) is one of the most successful self-consistent approaches and has been used to describe ground states and excited states of nuclei throughout the nuclear chart [33–41]. To study the ground state properties, potential energy surfaces (PESs), and fission barriers of heavy nuclei and SHN, the multidimensionally-constrained (MDC) CDFTs have been developed [41–44]. MDC-CDFTs have been applied to study hypernuclei [45–48], the fission barriers and the PESs of actinide nuclei [42, 43, 49], the ground state properties and PESs of the 270Hs [50], the nonaxial octupole Y_{32} correlations in $N = 150$ isotones [51] and Zr isotopes [52], octupole correlations in MgD of 78Br [53] and Ba isotopes [54], etc. In MDC-CDFTs, the reflection symmetry and the axial symmetry are both broken and the shape degrees of freedom $\beta_{\lambda\mu}$ with μ being even numbers are self-consistently included, such as $\beta_{20}, \beta_{22}, \beta_{30}, \beta_{32}, \beta_{30}, \beta_{32}$, and β_{34}. Either the Bardeen-Cooper-Schrieffer (BCS) approach or the Bogoliubov transformation has been implemented to consider the pairing effects. With two different ways of treating pairing correlations, there are two types of MDC-CDFTs: The one with the BCS approach is MDC relativistic mean-field (RMF) model, the other with the Bogoliubov

*Electronic address: sunxiangxiang@ucas.ac.cn
transformation is MDC relativistic Hartree-Bogoliubov (RHB) theory. In this work, we use the MDC-RMF model to study the ground state properties of SHN around the doubly magic deformed nucleus 270Hs and focus on the influence of the higher-order deformations. This paper is organized as follows. The MDC-CDFTs is introduced in Sec. II. Then in Sec. III the results and discussions are presented. Finally, we summarize this work in Sec. IV.

II. THEORETICAL FRAMEWORK

In the CDFT, nucleons interact with each other through the exchange of mesons and photons or point-coupling interaction. To obtain correct saturation properties of nuclear matter, the non-linear coupling terms or the density dependence of the coupling constants are introduced. Accordingly, there are four kinds of covariant density functionals: The meson exchange (ME) or point-coupling (PC) combined with the non-linear (NL) or density dependent (DD) couplings. In this work, both the ME and PC density functionals are used. The main formulae of the MDC-CDFTs can be found in Refs. [41, 43, 50, 52]. For convenience, here we only introduce the MDC-RMF with the NL-PC effective interactions briefly.

The NL-PC Lagrangian is

$$\mathcal{L} = \bar{\psi} \left(i \gamma_{\mu} \partial^{\mu} - M \right) \psi - \mathcal{L}_{\text{lin}} - \mathcal{L}_{\text{nl}} - \mathcal{L}_{\text{der}} - \mathcal{L}_{\text{Coul}},$$

where the linear, nonlinear, derivative couplings, and the Coulomb terms are

$$\mathcal{L}_{\text{lin}} = \frac{1}{2} \alpha_{S} \rho_{S}^{2} + \frac{1}{2} \alpha_{V} \rho_{V}^{2} + \frac{1}{2} \alpha_{TS} \rho_{TS}^{2}$$

$$+ \frac{1}{2} \alpha_{TV} \rho_{TV}^{2},$$

$$\mathcal{L}_{\text{nl}} = \frac{1}{3} \beta_{S} \rho_{S}^{3} + \frac{1}{4} \gamma_{S} \rho_{S}^{2} + \frac{1}{4} \gamma_{V} \rho_{V}^{2},$$

$$\mathcal{L}_{\text{der}} = \frac{1}{2} \delta_{S} \left(\partial_{\mu} \rho_{S} \right)^{2} + \frac{1}{2} \delta_{V} \left(\partial_{\mu} \rho_{V} \right)^{2} + \frac{1}{2} \delta_{TS} \left(\partial_{\mu} \rho_{TS} \right)^{2}$$

$$+ \frac{1}{2} \delta_{TV} \left(\partial_{\mu} \rho_{TV} \right)^{2},$$

$$\mathcal{L}_{\text{Coul}} = \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + e \frac{1 - \tau_{3}}{2} A_{0} \rho_{V}.$$

M represents the nucleon mass and e is the unit charge. $\alpha_{S}, \alpha_{V}, \alpha_{TS}, \alpha_{TV}, \beta_{S}, \gamma_{S}, \gamma_{V}, \delta_{S}, \delta_{V}, \delta_{TS},$ and δ_{TV} are coupling constants. The isoscalar density ρ_{S}, isovector density ρ_{TS}, the time-like components of isovector current ρ_{V}, and the time-like components of isovector currents ρ_{TV} are defined as

$$\rho_{S} = \bar{\psi} \tau_{3} \psi, \quad \rho_{TS} = \bar{\psi} \tau_{3} \psi, \quad \rho_{V} = \bar{\psi} \gamma^{0} \tau_{3} \psi, \quad \rho_{TV} = \bar{\psi} \gamma^{0} \psi.$$

The single particle wave function $\psi_{k}(r)$ with the energy of E_{k} of a nucleon is obtained by solving the Dirac equation

$$\hat{h} \psi_{k}(r) = E_{k} \psi_{k}(r),$$

with the Dirac Hamiltonian

$$\hat{h} = \alpha \cdot p + \beta [M + S(r)] + V(r),$$

where the scalar potential $S(r)$ and vector potential $V(r)$ are

$$S = \alpha_{S} \rho_{S} + \alpha_{TS} \rho_{TS} \cdot \tau + \beta_{S} \rho_{S}^{3} + \gamma_{S} \rho_{S}^{2}$$

$$+ \delta_{S} \Delta \rho_{S} + \delta_{TS} \Delta \rho_{TS} \cdot \tau,$$

$$V = \alpha_{V} \rho_{V} + \alpha_{TV} \rho_{TV} \cdot \tau + \gamma_{V} \rho_{V}^{2} \rho_{V}$$

$$+ \delta_{V} \rho_{V} + \delta_{TV} \rho_{TV} \cdot \tau + \frac{1 - \tau_{3}}{2} A_{0}.$$

In the MDC-CDFTs, the wave functions are expanded in terms of the axially deformed harmonic oscillator (ADHO) basis [55, 56], which is obtained by solving the Schrödinger equation

$$\left[-\frac{\hbar^{2}}{2M} \nabla^{2} + V_{B}(z, \rho) \right] \Phi_{\alpha}(r, \sigma) = E_{\alpha} \Phi_{\alpha}(r, \sigma),$$

where $r = (z, \rho)$ with $\rho = \sqrt{x^{2} + y^{2}}$ and

$$V_{B}(z, \rho) = \frac{1}{2} M (\omega_{z}^{2} \rho_{z}^{2} + \omega_{\perp}^{2} x^{2}),$$

is the ADHO potential with the oscillator frequency represented by ω_{z} (ω_{\perp}) perpendicular to (along) the z axis. More detailed formulae on the applications of ADHO in MDC-RMF can be find in Refs. [41, 43, 50, 52]. After obtaining the ADHO basis, the single-particle wave functions can be expanded by using this basis

$$\psi_{l}(r, \sigma) = \left(\sum_{\alpha} f_{l}^{\alpha} \Phi_{\alpha}(r, \sigma) \right) \left(\sum_{\sigma} g_{l}^{\sigma} \Phi_{\alpha}(r, \sigma) \right),$$

where α denotes a set of quantum numbers of the ADHO basis function, $\alpha \equiv \{ n_{z}, n_{\rho}, m_{l}, m_{\sigma} \}$. f_{l}^{α} and g_{l}^{α} are the expansion coefficients. As for the truncation of the ADHO basis, we follow Refs. [55, 57]. Finally, the wave functions are obtained by self-consistent iterations. 270Hs is an axially deformed nucleus in the ground state [50, 58, 59]. Reflection-asymmetric deformations occur normally only for ultra-neutron-rich nuclei with $N \geq 182$ in SHN region [59]. Thus we only consider the axially symmetric deformations β_{λ} with λ being even numbers in the present work. To study the influence of each shape degree of freedom on the bulk properties of SHN, constraint calculations on mass multipole moments are performed [27]. In MDC-CDFTs, a modified linear-constraint method is implemented [42, 43] and the Routhian reads

$$E' = E_{\text{RMF}} + \sum_{\lambda} \frac{1}{2} C_{\lambda} Q_{\lambda}.$$

After the nth iteration, the variable $C_{\lambda}^{(n+1)}$ is determined by

$$C_{\lambda}^{(n+1)} = C_{\lambda}^{(n)} + k_{\lambda} \left(\beta_{\lambda}^{(n)} - \beta_{\lambda} \right).$$
where $C_{\lambda}^{(n)}$ is the value in the nth iteration, k_λ is a constant and β_λ is the desired value of deformation parameter.

The intrinsic multipole moments are calculated as

\[Q_{\lambda,\tau} = \int d^3r \rho_\tau(r) r^\lambda Y_{\lambda,\tau}(\Omega), \]

where τ represents the nucleon, the neutron or the proton. ρ_τ is the corresponding vector density. The deformation parameter $\beta_{\lambda,\tau}$ is given by

\[\beta_{\lambda,\tau} = \frac{4\pi}{3N_\tau R^3} Q_{\lambda,\tau}, \]

where $R = r_0 A^{1/3}$, the parameter $r_0 = 1.2$ fm, and N_τ represents the corresponding particle’s number A, N or Z.

III. RESULTS AND DISCUSSIONS

In order to study the influence of higher-order deformations on the ground state properties of SHN, the

E_B (MeV)	R_c (fm)	R_t (fm)	R_p (fm)	R_n (fm)	β_2	β_4	β_6	β_{10}
1924.415	6.138 2	6.182 6	6.090 2	6.245 4	0.270	0.280	0.274	-0.002
1939.205	6.148 2	6.200 2	6.101 4	6.267 4	0.266	0.276	0.271	-0.021
1953.554	6.158 2	6.217 4	6.111 4	6.288 4	0.262	0.273	0.266	-0.040
1967.408	6.167 2	6.232 4	6.120 4	6.306 5	0.257	0.269	0.261	-0.057
1979.303	6.178 2	6.252 4	6.131 5	6.330 5	0.245	0.258	0.250	-0.060
1990.951	6.182 2	6.263 4	6.135 4	6.344 4	0.216	0.228	0.221	-0.053
2002.778	6.185 2	6.273 4	6.139 4	6.357 4	0.188	0.198	0.192	-0.049

The effective interactions PC-PK1, PK1, PKDD, DD-ME2, and NL3* are used in the particle-hole channel.
In AME2020, the binding energies of one nucleus with five effective interactions differ from each other, and one could find that the binding energies of one nucleus differ from each other, with five effective interactions. The Weizsäcker-Skyrme (WS) mass formula, the finite range droplet model (FRDM(2012)) $E_B = 1971.48$ MeV [58], and several RMF calculations [69–73]. For other nuclei, similar conclusions can also be obtained. From these two tables, it is obvious that all the nuclei involved in the present work are deformed in MDC-RMF calculations with five effective interactions. This is consistent with the results shown in MMM calculations [23, 58, 59] and the other global studies [74, 75]. In addition, it has been shown that the inclusion of the rotational energy correction (REC) can improve the description of binding energies with PC-PK1 [60]. In this work, after considering RECs in PC-PK1 calculations, the binding energy of 270Hs changes from 1967.45 MeV to 1969.76 MeV, which is more close to the value given in AME2020.

274Hs	0.213	0.222	0.216	−0.032	−0.054	0.007	0.012	6.240	6.101	6.185	6.148 \(E_B = 1981.994 \)
274Hs	0.196	0.204	0.199	−0.039	−0.041	0.007	0.010	6.256	6.107	6.198	6.154 \(E_B = 1993.391 \)
276Hs	0.178	0.186	0.181	−0.048	−0.027	0.008	0.007	6.271	6.113	6.210	6.160 \(E_B = 2004.657 \)

Table II: Same as Table I, but for isotones with $N = 162$.

266Rf	0.261	0.274	0.266	−0.039	−0.060	0.005	0.013	6.303	6.083	6.218	6.129 \(E_B = 1953.531 \)
268Sg	0.260	0.274	0.266	−0.048	−0.063	0.009	0.015	6.304	6.102	6.225	6.149 \(E_B = 1961.448 \)
270Hs	0.257	0.269	0.261	−0.057	−0.061	0.012	0.015	6.306	6.120	6.232	6.167 \(E_B = 1974.408 \)
272Ds	0.249	0.258	0.253	−0.061	−0.055	0.015	0.012	6.308	6.139	6.240	6.186 \(E_B = 1971.338 \)

PC-PK1

266Rf	0.256	0.265	0.260	−0.038	−0.062	0.007	0.017	6.296	6.053	6.202	6.100 \(E_B = 1957.699 \)
268Sg	0.257	0.268	0.261	−0.046	−0.067	0.010	0.018	6.299	6.075	6.211	6.122 \(E_B = 1966.814 \)
270Hs	0.245	0.251	0.248	−0.044	−0.062	0.010	0.016	6.297	6.091	6.216	6.138 \(E_B = 1973.766 \)
272Ds	0.225	0.228	0.226	−0.037	−0.054	0.007	0.012	6.292	6.104	6.217	6.151 \(E_B = 1979.041 \)

PKD

266Rf	0.256	0.266	0.260	−0.043	−0.063	0.009	0.018	6.272	6.050	6.186	6.097 \(E_B = 1955.230 \)
268Sg	0.259	0.272	0.264	−0.051	−0.070	0.013	0.020	6.277	6.073	6.197	6.120 \(E_B = 1965.167 \)
270Hs	0.252	0.261	0.256	−0.059	−0.062	0.017	0.017	6.278	6.091	6.204	6.138 \(E_B = 1972.399 \)
272Ds	0.241	0.245	0.242	−0.060	−0.056	0.017	0.015	6.278	6.107	6.210	6.154 \(E_B = 1977.775 \)

DD-ME2

266Rf	0.255	0.268	0.260	−0.040	−0.061	0.008	0.017	6.224	6.062	6.161	6.109 \(E_B = 1955.711 \)
268Sg	0.257	0.271	0.262	−0.048	−0.065	0.012	0.019	6.231	6.086	6.174	6.132 \(E_B = 1964.571 \)
270Hs	0.252	0.264	0.257	−0.058	−0.060	0.017	0.017	6.236	6.105	6.184	6.152 \(E_B = 1971.027 \)
272Ds	0.242	0.249	0.245	−0.060	−0.054	0.017	0.015	6.241	6.123	6.193	6.170 \(E_B = 1975.320 \)

NL3

266Rf	0.261	0.272	0.266	−0.038	−0.062	0.007	0.017	6.325	6.070	6.226	6.116 \(E_B = 1956.503 \)
268Sg	0.261	0.273	0.266	−0.047	−0.066	0.011	0.018	6.325	6.091	6.233	6.137 \(E_B = 1965.582 \)
270Hs	0.256	0.265	0.260	−0.054	−0.061	0.015	0.017	6.326	6.109	6.240	6.156 \(E_B = 1972.574 \)
272Ds	0.248	0.253	0.250	−0.058	−0.055	0.016	0.014	6.326	6.127	6.247	6.174 \(E_B = 1977.689 \)
To determine the dimension of the deformation space when studying the ground states of SHN by using MDC-CDFTs, we calculate the binding energies of Hs isotopes and isotones with $N = 162$ in different deformation space $\{\beta_\lambda; \lambda = 0, 2, \cdots, \lambda_{\text{max}}\}$ with λ_{max} being the maximum order of deformation parameters, which means that all the deformation parameters $\beta_\lambda \leq \beta_{\lambda_{\text{max}}}$ are considered self-consistently while other deformation parameters are constrained to be zero. In Fig. 1, the binding energies of $N = 162$ isotones with five different effective interactions are plotted as function of λ_{max}. For convenience, here we take ^{270}Hs with the effective interaction PC-PK1 as an example to discuss the influence of each order of deformation on the binding energy in detail. When constraining ^{270}Hs to be spherical, i.e., in the deformation space $\{\beta_\lambda; \lambda = 0\}$, the resulting binding energy is 1956.39 MeV, which is close to the prediction of relativistic continuum Hartree-Bogoliubov theory 1952.65 MeV \cite{76} but far from the value given in AME2020 (marked by black square in Fig. 1). After taking the quadrupole deformation β_2 into account, the binding energy of ^{270}Hs changes very much (about 8.43 MeV) and becomes closer to that in AME2020. This result indicates the importance of the quadrupole deformation. The influence of the hexadecapole deformation β_4 on the binding energy is not so big, only 0.68 MeV. If we further consider β_6, the change of energy is about 1.87 MeV, which is much larger than that corresponding to β_4 and E_B approaches to the value given in AME2020. Including β_8 and β_{10} almost does not affect the binding energy, which converges well at $\{\beta_\lambda; \lambda = 0, 2, \cdots, 10\}$. From these results, we can conclude that to get a proper description of ^{270}Hs, one should consider the β_6 deformation at least from the point of view of binding energy. Calculated binding energy versus λ_{max} with other density functionals are also shown in Fig. 1 and one can find that although the binding energies with five effective interactions differ from each other, the overall trends that E_B changes with λ_{max} are similar. The binding energy of ^{270}Hs is largely changed by β_2, then β_6 and β_4. The influence of β_8 and β_{10} can be ignored. As for the RECs for ^{270}Hs with PC-PK1, they are 2.27, 2.03, 2.29, 2.31, and 2.31 MeV in deformation spaces $\{\beta_\lambda; \lambda = 0, \cdots, \lambda_{\text{max}}\}$ with $\lambda_{\text{max}} = 2, 4, 6, 8$, and 10, respectively. The values of RECs change slightly in different deformation space and almost do not influence the trends of binding energies with respect to λ_{max}.

To check whether the conclusion mentioned-above is valid for other SHN, we performed similar calculations for even-even isotones with $N = 162$ and Hs isotopes and results are also presented in Fig. 1 and 2. From these figures, we can find that the binding energies of these nuclei are significantly changed by β_2. The influence of β_4 and β_6 cannot be ignored and the contribution to total energy from β_6 is larger than that from β_4. For Hs isotopes, with the decease of the neutron number, the value of β_2 increases a lot and the differences of total energies between in the spherical case and in ground states become larger, which can be seen from Fig. 2. For iso-
tones with $N = 162$, the value of β_2 changes not so big with the proton number. So for these nuclei, the trends of binding energies with respect to $\beta_{\lambda_{\text{max}}}$ keep the same as that for ^{270}Hs.

It is well known that the shell structure is especially important for SHN and very sensitive to the deformation of the nucleus [28]. We take ^{270}Hs as an example again to explore how the deformations influence the shell gaps at $Z = 108$ and $N = 162$ by studying the structure of single-particle levels (SPLs) in different deformation spaces. In Fig. 3 we show the SPLs for protons and neutrons of ^{270}Hs versus λ_{max}, calculated with PC-PK1.
When $\lambda_{\text{max}} = 10$, i.e., for the ground state, the energy gaps at $Z = 108$ and $N = 162$ are about 1.34 MeV and 1.85 MeV, which are considerably large for such a heavy nucleus \[77\] and result in deformed shells.

In the spherical limit, $\lambda_{\text{max}} = 0$, each single particle state is labelled by $|nlj\rangle$ where n, l, and j denote the radial quantum number, orbital angular momentum, and total angular momentum, respectively. It is obvious that there are no shell gaps at $Z = 108$ and $N = 162$. After including β_2, a spherical orbital $|nlj\rangle$ with the degeneracy of $2j + 1$ splits into $(2j + 1)/2$ levels and each one is represented by Ω^π with the projection Ω of total angular momentum on the symmetry axis and the parity π. It is found that due to quadrupole correlations the shell gaps at $Z = 108$ and $N = 162$ appear, 0.66 MeV and 1.17 MeV, respectively. When including the β_4 into the deformation space, the order of SPLs around two gaps changes and the shell gaps at $Z = 108$ (up to about 1.28 MeV) and $N = 162$ (up to about 1.56 MeV) increase largely. The impact of β_6 on the shell gap at $Z = 108$ is not so big, only 0.02 MeV, but for neutrons the shell gap at $N = 162$ increases about 0.26 MeV. The inclusion

FIG. 3: Single proton and neutron levels of 270Hs from PC-PK1 calculations with different λ_{max}. In the spherical case ($\lambda_{\text{max}} = 0$), each level is labelled by $|nlj\rangle$. When $\lambda_{\text{max}} \neq 0$, each level is labelled by the projection Ω of total angular momentum on the symmetry axis and the parity π. Single-particle levels with positive and negative parities are presented by red and black lines, respectively.
of β_6 and β_{10} almost does not change the shell gaps and
the order of SPLs. From these discussions, one can conclud-
that β_2 plays a vital role for the formation of the
shell closures $Z = 108$ and $N = 162$, which are further
enhanced by β_4. The influence of β_6 is relatively small
and the effects of β_8 and β_{10} can be negligible. There
remains a question: Where do the Y_{60} correlations come
from? By checking the SPLs, we find that two proton
levels $1/2^+$ originating from the spherical orbitals $3s_{1/2}$
and $1d_{3/2}$ are very close to each other and the mixing
of these two spherical orbital in the deformed SPLs re-
sults in Y_{60} correlations. For neutrons, these correlations
originate from the mixing of the spherical orbitals $3p_{3/2}$
and $1j_{15/2}$ in the levels $3/2^-$ close to the neutron Fermi
energy.

IV. SUMMARY

In this work, we investigate the ground state properties
of SHN around 270Hs in multidimensional deformation
spaces by using the MDC-RMF model with five density
functionals. The influence of higher-order deformation
parameters on the ground state of nuclei near 270Hs are
studied, including the binding energies and SPLs. We
have shown that the binding energies of deformed SHN
around 270Hs are significantly affected by the higher-
order deformations. In particular, the influence of β_8 on
binding energy is larger than that from β_4. For doubly
magic nucleus 270Hs, the deformed shell gaps at $Z = 108$
and $N = 162$ are mainly determined by quadrupole
correlations and enhanced by the inclusion of β_4. In
conclusion, the β_6 degree of freedom should be considered
at least in the study of SHN by using CDFTs. It is also very
interesting to study how the higher-order deformations
fluence other properties of SHN, such as moment of in-
ertia, energy spectra by using density functional theories.
In addition, we would like to mention that the calcula-
tions performed in this work can also be done with the
deformation relativistic Hartree-Bogoliubov (DRHBc) the-
ory [78–84], in which the scalar potential and densities
are expanded in terms of the Legendre polynomials but
the time consuming of the DRHBc theory is much heav-
ier than that for MDC-RMF. Very recently, the influence
of higher-order deformation on possible bound nuclei be-
ond the drip line has been investigated in the transfer-
mium region from No ($Z = 102$) to Ds ($Z = 110$) by
using the DRHBc theory [85] and a nuclear mass table
with the DRHBc theory is in progress [86–89].

Acknowledgments

We thank Bin-Nan Lu, Yu-Ting Rong, and Kun Wang for
helpful discussions. This work has been supporteds
by the National Key R&D Program of China (Grant No.
2018YFA0404402), the National Natural Science Foundation
of China (Grants No. 11525524, No. 12070131001,
No. 12047503, No.11975237, and No. 11961141004), the
Key Research Program of Frontier Sciences of Chinese
Academy of Sciences (Grant No. QYZDB-SSWSYS013),
the Strategic Priority Research Program of Chinese
Academy of Sciences (Grant No. XDB34010000 and No.
XDPB15), and the IAEA Coordinated Research Project
(Grant No. F41033). The results described in this paper
are obtained on the High-performance Computing Cluster
of ITF-CAS and the ScGrid of the Supercomputing
Center, Computer Network Information Center of Chi-
inese Academy of Sciences.

[1] J. H. Hamilton, S. Hofmann, and Y. T. Oganessian,
Annu. Rev. Nucl. Part. Sci. 63, 383 (2013).
[2] W. Nazarewicz, Nat. Phys. 14, 537 (2018).
[3] S. A. Giuliani, Z. Matheson, W. Nazarewicz,
E. Olsen, P.-G. Reinhard, J. Sadhukhan,
B. Schuetrumpf, N. Schunck, and P. Schwerdtfeger,
Rev. Mod. Phys. 91, 011001 (2019).
[4] S.-G. Zhou, Phys. 43, 817 (2014), (in Chinese).
[5] L.-L. Li, B.-N. Lu, N. Wang, K. Wen, C.-J. Xia, Z.-H. Zhang, J. Zhao, E.-G. Zhao, and S.-G. Zhou,
Nucl. Phys. Rev. 31, 253 (2014), Proc. Symposium on
Heavy Ion Collisions and Related Topics, Mar. 28-31,
2013, Shanghai (in Chinese).
[6] S.-G. Zhou, Nucl. Phys. Rev. 34, 318 (2017), (in Chi-
inese).
[7] X.-H. Zhou and H.-S. Xu, Phys. 48, 640 (2019), (in Chi-
inese).
[8] X.-H. Zhou, Z.-Y. Zhang, Z.-G. Gan, F.-R. Xu, and S.-G.
Zhou, Sci. Sin.-Phys. Mech. Astron. 50, 112002 (2020),
(in Chinese).
[9] W. D. Myers and W. J. Swiatecki,
Nucl. Phys. 81, 1 (1966).
[10] C. Y. Wong, Phys. Lett. 21, 688 (1966).
[11] A. Sobieczewski, F. A. Gareev, and B. N. Kalinkin,
Phys. Lett. 22, 500 (1966).
[12] H. Meldner, Ark. Fys. 36, 593 (1967).
[13] U. Mosel and W. Greiner, Z. Phys. A 222, 261 (1969).
[14] S. G. Nilsson, C. F. Tsang, A. Sobieczewski, Z. Szymański,
S. Wycech, C. Gustafson, I.-L. Lamm, P. Möller,
and B. Nilsson, Nucl. Phys. A 131, 1 (1969).
[15] S. Hofmann and G. Münzenberg,
Rev. Mod. Phys. 72, 733 (2000).
[16] K. Morita, Nucl. Phys. A 944, 30 (2015), special Issue
on Superheavy Elements.
[17] Y. T. Oganessian, A. Sobieczewski, and G. M. Ter-
akopian, Phys. Scr. 92, 023003 (2017).
[18] K. Rutz, M. Bender, T. Burvenich, T. Schilling,
P. G. Reinhard, J. A. Maruhn, and W. Greiner,
Phys. Rev. C 56, 238 (1997).
[19] W. Zhang, J. Meng, S. Zhang, L. Geng, and H. Toki,
Nucl. Phys. A 753, 106 (2005).
[20] A. Sobieczewski and K. Pomorski,
[71] L.-S. Geng, H. Toki, and J. Meng, Prog. Theo. Phys. 113, 785 (2005).
[72] H. F. Zhang, Y. Gao, N. Wang, J. Q. Li, E. G. Zhao, and G. Royer, Phys. Rev. C 85, 014325 (2012).
[73] M. Shi, Z.-M. Niu, and H.-Z. Liang, Chin. Phys. C 43, 074104 (2019).
[74] S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring, Phys. Rev. C 89, 054320 (2014).
[75] J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. M. Perhac, and M. Stoitsov, Nature 486, 509 (2012).
[76] X. Xia, Y. Lim, P. Zhao, H. Liang, X. Qu, Y. Chen, H. Liu, L. Zhang, S. Zhang, Y. Kim, and J. Meng, At. Data Nucl. Data Tables 121-122, 1 (2018).
[77] S. E. Agbemava, A. V. Afanasjev, T. Nakatsukasa, and P. Ring, Phys. Rev. C 92, 054310 (2015).
[78] S.-G. Zhou, J. Meng, P. Ring, and E.-G. Zhao, Phys. Rev. C 82, 011301(R) (2010).
[79] L.-L. Li, J. Meng, P. Ring, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C 85, 024312 (2012).
[80] X.-X. Sun, J. Zhao, and S.-G. Zhou, Phys. Lett. B 785, 530 (2018).
[81] X.-X. Sun, J. Zhao, and S.-G. Zhou, Nucl. Phys. A 1003, 122011 (2020).
[82] X.-X. Sun, Phys. Rev. C 103, 054315 (2021).
[83] X.-X. Sun and S.-G. Zhou, Sci. Bull. 66, 2072 (2021).
[84] X.-X. Sun and S.-G. Zhou, arXiv:2107.05925 [nucl-th] (2021), 2107.05925v2.
[85] X.-T. He, C. Wang, K.-Y. Zhang, and C.-W. Shen, Chin. Phys. C 45, 101001 (2021).
[86] K. Zhang, M.-K. Cheoun, Y.-B. Choi, P. S. Chong, J. Dong, L. Geng, E. Ha, X. He, C. Heo, M. C. Ho, E. J. In, S. Kim, Y. Kim, C.-H. Lee, J. Lee, Z. Li, T. Luo, J. Meng, M.-H. Mun, Z. Niu, C. Pan, P. Papakonstantinou, X. Shang, C. Shen, G. Shen, W. Sun, X.-X. Sun, C. K. Tam, Thaivayongnou, C. Wang, S. H. Wong, X. Xia, Y. Yan, R. W.-Y. Yeung, T. C. Yiu, S. Zhang, W. Zhang, and S.-G. Zhou, Phys. Rev. C 102, 024314 (2020).
[87] E. J. In, P. Papakonstantinou, Y. Kim, and S.-W. Hong, Int. J. Mod. Phys. E 30, 2150009 (2021).
[88] K. Zhang, X. He, J. Meng, C. Pan, C. Shen, C. Wang, and S. Zhang, Phys. Rev. C 104, L021301 (2021).
[89] C. Pan, K. Y. Zhang, P. S. Chong, C. Heo, M. C. Ho, J. Lee, Z. P. Li, W. Sun, C. K. Tam, S. H. Wong, R. W.-Y. Yeung, T. C. Yiu, and S. Q. Zhang, Phys. Rev. C 104, 024331 (2021).