ON \([L]\)-HOMOTOPY GROUPS

A. V. KARASEV

Abstract. The paper is devoted to investigation of some properties of \([L]\)-homotopy groups. It is proved, in particular, that for any finite CW-complex \(L\), satisfying double inequality \(\left[S^n\right] < [L] \leq [S^{n+1}]\), \(\pi_n^{[L]}(S^n) = \mathbb{Z}\). Here \([L]\) denotes extension type of complex \(L\) and \(\pi_n^{[L]}(X)\) denotes \(n\)-th \([L]\)-homotopy group of \(X\).

1. Introduction

A new approach to dimension theory, based on notions of extension types of complexes and extension dimension leads to appearance of \([L]\)-homotopy theory which, in turn, allows to introduce \([L]\)-homotopy groups (see [1]). Perhaps the most natural problem related to \([L]\)-homotopy groups is a problem of computation. It is necessary to point out that \([L]\)-homotopy groups may differ from usual homotopy groups even for complexes.

More specifically the problem of computation can be stated as follows: describe \([L]\)-homotopy groups of a space \(X\) in terms of usual homotopy groups of \(X\) and homotopy properties of complex \(L\).

The first step on this way is apparently computation of \(n\)-th \([L]\)-homotopy group of \(S^n\) for complex whose extension type lies between extension types of \(S^n\) and \(S^{n+1}\).

In what follows we, in particular, perform this step.

2. Preliminaries

Follow [1], we introduce notions of extension types of complexes, extension dimension, \([L]\)-homotopy, \([L]\)-homotopy groups and other related notions.

We also state Dranishnikov’s theorem, characterizing extension properties of complex [2].

All spaces are polish, all complexes are countable finitely-dominated CW complexes.

1991 Mathematics Subject Classification. Primary: 55Q05; Secondary: 54C20.
Key words and phrases. Extension dimension, \([L]\)-homotopy.
For spaces X and L, the notation $L \in \text{AE}(X)$ means, that every map $f : A \to L$, defined on a closed subspace A of X, admits an extension \bar{f} over X.

Let L and K be complexes. We say (see [1]) that $L \leq K$ if for each space X from $L \in \text{AE}(X)$ follows $K \in \text{AE}(X)$. Equivalence classes of complexes with respect to this relation are called extension types. By $[L]$ we denote extension type of L.

Definition 2.1. ([1]). The extension dimension of a space X is extension type $\text{ed}(X)$ such that $\text{ed}(X) = \min\{[L] : L \in \text{AE}(X)\}$.

Observe, that if $[L] \leq [S^n]$ and $\text{ed}(X) \leq [L]$, then $\dim X \leq n$.

Now we can give the following

Definition 2.2. [1] We say that a space X is an absolute (neighbourhood) extensor modulo L (shortly X is ANE($[L]$)) and write $X \in \text{ANE}([L])$ if $X \in \text{ANE}(Y)$ for each space Y with $\text{ed}(X) \leq [L]$.

Definition of $[L]$-homotopy and $[L]$-homotopy equivalence [1] are essential for our consideration:

Definition 2.3. Two maps $f_0, f_1 : X \to Y$ are said to be $[L]$-homotopic (notation: $f_0 \simeq f_1$) if for any map $h : Z \to X \times [0,1]$, where Z is a space with $\text{ed}(Z) \leq [L]$, the composition $(f_0 \oplus f_1)h|_{h^{-1}(X \times \{0,1\})} : h^{-1}(X \times \{0,1\}) \to Y$ admits an extension $H : Z \to Y$.

Definition 2.4. A map $f : X \to Y$ is said to be $[L]$-homotopy equivalence if there is a map $g : Y \to X$ such that the compositions gf and fg are $[L]$-homotopic to id_X and id_Y respectively.

Let us observe (see [1]) that ANE([L])-spaces have the following $[L]$-homotopy extension property.

Proposition 2.1. Let $[L]$ be a finitely dominated complex and X be a Polish ANE([L])-space. Suppose that A is closed in a space B with $\text{ed}(B) \leq [L]$. If maps $f, g : A \to X$ are $[L]$-homotopic and f admits an extension $F : B \to X$ then g also admits an extension $G : B \to X$, and it may be assumed that F is $[L]$-homotopic to G.

To provide an important example of $[L]$-homotopy equivalence we need to introduce the class of approximately $[L]$-soft maps.

Definition 2.5. [1] A map $f : X \to Y$ is said to be approximately $[L]$-soft, if for each space Z with $\text{ed}(Z) \leq [L]$, for each closed subset $A \subset Z$, for an open cover $\mathcal{U} \in \text{cov}(Y)$, and for any two maps $g : A \to X$ and $h : Z \to Y$ such that $fg = h|_A$ there is a map $k : Z \to X$ satisfying condition $k|_A = g$ and the composition fk is \mathcal{U}-close to h.
Proposition 2.2. [1] Let $f : X \to Y$ be a map between ANE([L])-compacta and $\text{ed}(Y) \leq [L]$. If f is approximately $[L]$-soft then f is a $[L]$-homotopy equivalence.

In order to define $[L]$-homotopy groups it is necessary to consider an n-th $[L]$-sphere $S^n_{[L]}$, namely, an $[L]$-dimensional ANE([L]) - compactum admitting an approximately $[L]$-soft map onto S^n. It can be shown that all possible choices of an $[L]$-sphere $S^n_{[L]}$ are $[L]$-homotopy equivalent. This remark, coupled with the following proposition, allows us to consider for every finite complex L, every $n \geq 1$ and for any space X, the set $\pi_n^{[L]}(X) = [S^n_{[L]}, X]_{[L]}$ endowed with natural group structure (see [1] for details).

Theorem 2.3. [1] Let L be a finitely dominated complex and X be a finite polyhedron or a compact Hilbert cube manifold. Then there exist a $[L]$-universal ANE([L]) compactum μ^L_X with $\text{ed}(\mu^L_X) = [L]$ and an $[L]$-invertible and approximately $[L]$-soft map $f^L_X : \mu^L_X \to X$.

The following theorem is essential for our consideration.

Theorem 2.4. Let L be simply-connected CW-complex, X be finite-dimensional compactum. Then $L \in \text{AE}(X)$ iff $c - \dim_{H_i(L)} X \leq i$ for any i.

From the proof of Theorem 2.4 one can conclude that the following theorem also holds:

Theorem 2.5. Let L be a CW-complex (not necessary simply-connected). Then for any finite-dimensional compactum X from $L \in \text{AE}(X)$ follows that $c - \dim_{H_i(L)} X \leq i$ for any i.

3. Cohomological properties of L

In this section we will investigate some cohomological properties of complexes L satisfying condition $[L] \leq S^n$ for some n. To establish these properties let us first formulate the following

Proposition 3.1. [4] Let (X, A) be a topological pair, such that $H_q(X, A)$ is finitely generated for any q. Then free submodules of $H^q(X, A)$ and $H_q(X, A)$ are isomorphic and torsion submodules of $H^q(X, A)$ and $H_{q-1}(X, A)$ are isomorphic.

Now we use Theorem 2.5 to obtain the following lemma.

Lemma 3.2. Let L be finite CW complex such that $[L] \leq [S^{n+1}]$ and n is minimal with this property. Then for any $q \leq n$ $H_q(L)$ is torsion group.
Proof. Suppose that there exists \(q \leq n \) such that \(H^q(L) = \mathbb{Z} \oplus G \). To get a contradiction let us show that \(|L| \leq |S^n| \). Consider \(X \) such that \(L \in \text{AE}(X) \). Observe, that \(X \) is finite-dimensional since \(|L| \leq |S^{n+1}| \) by our assumption. Denote \(H = H_q(L) \). By Theorem 2.5 we have \(c - \dim H X \leq q \). From the other hand, universal coefficients formula implies that \(H^{q+1}(X, A) \approx H^{q+1}(X, A) \otimes H \oplus \text{Tor}(H^{q+2}(X, A), H) \). Hence, \(H^{q+1}(X, A) \otimes H = \{0\} \). Observe, however, that by our assumption we have \(H^{q+1}(X, A) \otimes H = H^{q+1}(X, A) \oplus (H^{q+1}(X, A) \otimes G) \). Therefore, \(H^{q+1}(X, A) = 0 \).

From the last fact we conclude that \(c - \dim X \leq q \) and therefore since \(X \) is finite-dimensional, \(\dim X \leq q \) which implies \(S^q \in \text{AE}(X) \). \(\square \)

From this lemma and Proposition 3.1 we obtain

Corollary 3.3. In the same assumptions \(H^q(L) \) is torsion group for any \(q \leq n \).

The following fact is essential for construction of compacts with some specific properties which we are going to construct further.

Lemma 3.4. Let \(L \) be as in previous lemma. For any \(m \) there exists \(p \geq m \) such that \(H^q(L; \mathbb{Z}_p) = \{0\} \) for any \(q \leq n \).

Proof. From Corollary 3.3 we can conclude that \(H^q(L) = \bigoplus_{i=1}^{l_k} \mathbb{Z}_{m_{qi}} \) for any \(q \leq n \). Additionally, let \(\text{Tor } H^{n+1}(L) = \bigoplus_{i=1}^{l_{n+1}} \mathbb{Z}_{m_{(n+1)i}} \).

For any \(m \) consider \(p \geq m \) such that \((p, m_{ki}) \) for every \(k = 1 \ldots n+1 \) and \(i = 1 \ldots l_k \). Universal coefficients formula implies that \(H^q(L; \mathbb{Z}_p) = \{0\} \) for every \(k \leq n \). \(\square \)

Finally let us proof the following

Lemma 3.5. Let \(X \) be a metrizable compactum, \(A \) be a closed subset of \(X \). Consider a map \(f : A \to S^n \). If there exists extension \(\bar{f} : X \to S^n \) then for any \(k \) we have \(\delta_k : f^*(\zeta) = 0 \) in group \(H^{n+1}(X, A; \mathbb{Z}_k) \), where \(\zeta \) is generator in \(H^{n}(S^n, \mathbb{Z}_k) \).

Proof. Let \(\bar{f} \) be an extension of \(f \). Commutativity of the following diagram implies assertion of lemma:
4. SOME PROPERTIES OF $[L]$-HOMOTOPY GROUPS

In this section we will investigate some properties of $[L]$-homotopy groups.

From this point and up to the end of the text we consider finite complex L such that $[S^n] < [L] \leq [S^{n+1}]$ for some fixed n.

Remark 4.1. Let us observe that for such complexes $S^n_{[L]}$ is $[L]$-homotopic equivalent to S^n (see Proposition 2.2). Therefore for any X $\pi_n^{[L]}(X)$ is isomorphic to $G = \pi_n(S^n)/N([L])$ where $N([L])$ denotes the relation of $[L]$-homotopic equivalence between elements of $\pi_n(S^n)$.

From this observation one can easily obtain the following fact.

Proposition 4.1. For $\pi_n^{[L]}(S^n)$ there are three variants: $\pi_n^{[L]}(S^n) = \mathbb{Z}$, $\pi_n^{[L]}(S^n) = \mathbb{Z}_m$ for some integer m or this group is trivial.

Let us characterize the hypothetical equality $\pi_n^{[L]}(S^n) = \mathbb{Z}_m$ in terms of extensions of maps.

Proposition 4.2. If $\pi_n^{[L]}(S^n) = \mathbb{Z}_m$ then for any X such that $\text{ed}(X) \leq [L]$, for any closed subset A of X and for any map $f : A \to S^n$, there exists extension $\bar{h} : X \to S^m$ of composition $\bar{h} = z_m f$, where $z_m : S^n \to S^n$ is a map having degree m.

Proof. Suppose, that $\pi_n^{[L]}(S^n) = \mathbb{Z}_m$. Then from Remark 4.1 and since $[z_m] = m[\text{id}_{S^n}] = [*]$ (where $[f]$ denotes homotopic class of f) we conclude that $z_m : S^n \to S^n$ is $[L]$-homotopic to constant map. Let us show that $h = z_m f : A \to S^n$ is also $[L]$-homotopic to constant map. This fact will prove our statement. Indeed, by our assumption $\text{ed}(X) \leq [L]$ and $S^n \in ANE$ and therefore we can apply Proposition 2.1.

Consider Z such that $\text{ed}(Z) \leq [L]$ and a map $H : Z \to A \times I$, where $I = [0, 1]$. Pick a point $s \in S^n$. Let $f_0 = z_m f$, $f_1 \equiv s$ -- constant map considered as $f_i : A \times \{i\} \to S^n$, $i = 0, 1$.

Define $F : A \times I \to S^n \times I$ as follows: $F(a, t) = (f(a), t)$ for each $a \in A$ and $t \in I$. Let $f'_0 \equiv z_m$ and $f'_1 \equiv s$ considered as $f'_i : S^n \times \{i\} \to S^n$, $i = 0, 1$.

\[
\begin{align*}
H^n(A; \mathbb{Z}_k) & \xrightarrow{\delta_{X,A}} H^{n+1}(X, A; \mathbb{Z}_k) \\
\xrightarrow{\delta_{z_n,S^n}} & H^{n+1}(S^n, S^n; \mathbb{Z}_k) = \{0\}
\end{align*}
\]
Consider a composition $G = FH : Z \to S^n \times I$. By our assumption f_0 is $[L]$-homotopic to f_1. Therefore a map $g : G^{-1}(S^n \times \{0\} \cup S^n \times \{1\}) \to S^n$, defined as $g|_{G^{-1}(S^n \times \{i\})} = f_i|L$ for $i = 0, 1$, can be extended over Z. From the other hand we have $G^{-1}(S^n \times \{i\}) \equiv H^{-1}(A \times \{i\})$ and $g|_{G^{-1}(S^n \times \{i\})} = f_i|LH = f_i$ for $i = 0, 1$. This remark completes the proof. □

Now consider a special case of complex having a form $S^n < L = K_s \vee K \leq S^{n+1}$, where K_s is a complex obtained by attaching to S^n a $(n + 1)$-dimensional cell using a map of degree s.

Proposition 4.3. Let $[\alpha] \in \pi_n(X)$ be an element of order s. Then α is $[L]$-homotopy to constant map.

Proof. Observe that similar to proof of Proposition 4.2 it is enough to show that for every Z with $\text{ed}(Z) \leq [L]$, for every closed subspace A of Z and for any map $f : Z \to S^n$ a composition $\alpha f : A \to X$ can be extended over Z.

Let $g : S^n \to K_s^{(n)}$ be an embedding (by $M^{(n)}$ we denote n-dimensional skeleton of complex M) and $r : L \to K_s$ be a retraction.

Since $\text{ed}(Z) \leq [L]$, a composition gf has an extension $F : Z \to L$. Let $F' = rF$ and α' be a map α considered as a map $\alpha' : K_s^{(n)} \to X$. Observe that $\alpha'F'$ is a necessary extension of αf. □

5. **Computation of $\pi_n^{[L]}(S^n)$**

In this section we will prove that $\pi_n^{[L]}(S^n) = Z$.

Suppose the opposite, i.e. $\pi_n^{[L]}(S^n) = Z_m$ (we use Proposition 4.1; the same arguments can be used to prove that $\pi_n^{[L]}(S^n)$ is non-trivial).

To get a contradiction we need to obtain a compact with special extension properties. We will use a construction of [3]

Let us recall the following definition.

Definition 5.1. [3] Inverse sequence $S = \{X_i, p_i^{i+1} : i \in \omega\}$ consisting of metrizable compacta is said to be L-resolvable if for any i, $A \subseteq X_i$-closed subspace of X_i and any map $f : A \to L$ there exists $k \leq i$ such that composition $f p_k^i : (p_k^i)^{-1}A \to L$ can be extended over X_k.

The following lemma (see [3]) expresses an important property of $[L]$-resolvable inverse sequences.

Lemma 5.1. Suppose that L is a countable complex and that X is a compactum such that $X = \lim S$ where $S = (X_i, \lambda_i), q_i^{i+1}$ is a L-resolvable inverse system of compact polyhedra X_i with triangulations λ_i such that $\text{mesh}\{\lambda_i\} \to 0$. Then $L \in \text{AE}(X)$
Let us recall that in [3] inverse sequence \(S = \{(X_i, \tau_i), p_i^{i+1}\} \) was constructed such that \(X_i \) is compact polyhedron with fixed triangulation \(\tau_i, X_0 = S^{n+1}, \) mesh \(\tau_i \to 0, S \) is \([L]\)-resolvable and for any \(x \in X_i \) we have \((p_i^{i+1})^{-1} x \simeq L \) or *.

It is easy to see that using the same construction one can obtain inverse sequence \(S = \{(X_i, \tau_i), p_i^{i+1}\} \) having the same properties with exeption of \(X_0 = D^{n+1} \) where \(D^{n+1} \) is \(n+1 \)-dimensional disk.

Let \(X = \lim S \). Observe, that \(\text{ed}(X) \leq [L] \). Let \(p_0 : X \to D^{n+1} \) be a limit projection.

Pick \(p \geq m + 1 \) which Lemma 3.4 provides us with. By Vietoris-Begle theorem (see [4]) and our choice of \(p \), for every \(i \) and every \(X'_i \subseteq X_i \), a homomorphism \((p_i^{i+1})^* : H^k(X'_i; Z_p) \to H^k((p_i^{i+1})^{-1} X'_i; Z_p) \) is isomorphism for \(k \leq n \) and monomorphism for \(k = n+1 \).

Therefore for each \(D' \subseteq X_0 = D^{n+1} \) homomorphism \(p_0^* : H^k(D'; Z_p) \to H^k((p_0)^{-1} D'; Z_p) \) is isomorphism for \(k \leq n \) and monomorphism for \(k = n+1 \). In particular, \(H^n(X; Z_p) = \{0\} \) since \(X_0 = D^{n+1} \) has trivial cohomology groups.

Let \(A = (p_0)^{-1} S^n \) and \(\zeta \in H^n(S^n; Z_p) \approx Z_p \) be a generator.

Since \(p_0^* : H^n(S^n; Z_p) \to H^n(A; Z_p) \) is isomorphism, \(p_0^*(\zeta) \) is generator in \(H^n(A, Z_p) \approx Z_p \). In particular, \(p_0^*(\zeta) \) is element of order \(p \).

From exact sequence of pair \((X, A)\)

\[
\ldots \to H^n(X; Z_p) = \{0\} \overset{i_X,A}{\longrightarrow} H^n(A; Z_p) \overset{\delta^*_{X,A}}{\longrightarrow} H^{n+1}(X, A; Z_p) \to \ldots
\]

we conclude that \(\delta^*_{X,A} \) is monomorphism and hence \(\delta^*_{X,A}(p_0^*(\zeta)) \in H^{n+1}(X, A; Z_p) \) is element of order \(p \).

Consider now a composition \(h = z_m p_0 \). By our assumption this map can be extended over \(X \) (see Proposition 4.2). This fact coupled with Lemma 3.5 implies that \(\delta^*_{X,A}(h^*(\zeta)) = 0 \) in \(H^{n+1}(X, A; Z_p) \). But \(\delta^*_{X,A}(h^*(\zeta)) = m \delta^*_{X,A}(p_0^*(\zeta)) \). We arrive to a contradiction which shows that

Theorem 5.2. Let \(L \) be a complex such that \([S^n] < [L] \leq [S^{n+1}] \). Then \(\pi_n^{[L]}(S^n) \approx Z \).

The author is greatfull to A. C. Chigogidze for usefull discussions.

References

[1] A. Chigogidze, *Infinite dimensional topology and shape theory*, to appear in: ”Handbook of Geometric Topology” edited by R. Daverman and R. B. Sher, North Holland, Amsterdam, 1999.

[2] A. N. Dranishnikov, *Extension of mappings into CW-complexes*, Math. USSR Sbornik 74 (1993), 47-56.
[3] A. N. Dranishnikov and D. Repovš, *Cohomological dimension with respect to perfect groups*, Topology Appl. 74 (1996), 123-140.

[4] E. H. Spanier, *Algebraic topology*, McGraw-Hill, New York, 1966.

Department of Mathematics and Statistics, University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK, S7N 5E6, Canada

E-mail address: karasev@math.usask.ca