DISCOVERY OF NEW INTERACTING SUPERNOVA REMNANTS IN THE INNER GALAXY

JOHN W. HEWITT AND FARHAD YUSEF-ZADEH
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA

Received 2008 October 17; accepted 2009 January 30; published 2009 February 25

ABSTRACT

OH(1720 MHz) masers are excellent signposts of interaction between supernova remnants (SNRs) and molecular clouds. Using the Green Bank Telescope and Very Large Array we have surveyed 75 SNRs and six candidates for masers. Four SNRs are detected with OH masers: G5.4-1.2, G5.7-0.0, G8.7-0.1, and G9.7-0.0. Two SNRs, G5.7-0.0 and G8.7-0.1, have TeV γ-ray counterparts which may indicate a local cosmic ray enhancement. It has been noted that maser-emitting (ME) SNRs are preferentially distributed in the molecular ring and nuclear disk. We use the present and existing surveys to demonstrate that masers are strongly confined to within |l| ≤ 50° at a rate of 15% of the total SNR population. All new detections are within 10° Galactic longitude emphasizing this trend. Additionally, a substantial number of SNR masers have peak fluxes at or below the detection threshold of existing surveys. This calls into question whether maser surveys of Galactic SNRs can be considered complete and how many ME remnants remain to be detected in the Galaxy.

Key words: masers – radio lines: ISM – shock waves – supernova remnants – surveys

1. INTRODUCTION

Uncovering supernova remnants (SNRs), which are directly interacting with molecular clouds, is an important avenue for understanding energy injection and chemical evolution in the Galactic interstellar medium (ISM). Yet only a small fraction of known remnants have been identified as interacting.

A prominent indicator of such interactions is maser emission from the 1720 MHz transition of hydroxyl (OH) accompanied by absorption in the other ground-state lines. These SNR-type masers have proven to be important probes of the temperature, density, magnetic field, energetic photon flux, and shock chemistry arising in the cooling post-shock gas behind the shock front (Frail et al. 1994a; Wardle & Yusef-Zadeh 2002). They are one of the few reliable methods to determine the SNR distance, which in turn places important constraints on the remnant’s age, size, and supernova (SN) energy. Early single-dish surveys with interferometric follow-up were able to search most of the known population of SNRs identifying 20 Galactic remnants with OH(1720 MHz) masers (Frail et al. 1996; Green et al. 1997). Since then multifrequency surveys, particularly at low frequencies, have nearly doubled the number of known Galactic SNRs (Gray 1994; Whiteoak & Green 1996; Brogan et al. 2006). As has been noted, the inner Galaxy with its large reservoir of dense molecular material is a particularly promising region to search for SNR masers with a high incidence of maser-emitting (ME) SNRs near the Galactic center (Green et al. 1997; Yusef-Zadeh et al. 1999).

Masers identify a valuable class of high-energy sources. A close association is seen with mixed-morphology SNRs which are thought to arise from thermal conduction of gas into the remnant interior (Yusef-Zadeh et al. 2003). Furthermore, nine of 24 ME SNRs have coincident EGRET or HESS sources (Esposito et al. 1996; Aharonian & HESS Collaboration 2006). This may indicate that ME SNRs are sites of cosmic ray acceleration where the presence of dense molecular material acts as a target for cosmic rays producing prominent GeV and TeV γ-ray emission (Fatuzzo et al. 2006). There may also be a causal relationship between mixed-morphology or γ-ray remnants and OH masers. Increased ionization from either the soft X-ray flux from the interior or a local cosmic ray enhancement can produce the requisite OH abundance in the post-shock gas in which masers form (Wardle 1999).

Here, we report a new survey for OH(1720 MHz) masers which includes the 30 newly discovered SNRs in the inner Galaxy (Brogan et al. 2006) as well as two HESS sources and 49 SNRs from Green’s (2006) Catalog which had not been previously surveyed. We find OH(1720 MHz) masers in four SNRs: G5.4-1.2, G5.7-0.0, G8.7-0.1, and G9.7-0.0 which was previously listed as an unconfirmed candidate SNR. Of the new detections G5.7-0.0 and G8.7-0.1 are coincident with HESS TeV detections and possible sites of cosmic ray acceleration. Given these new detections we re-analyze the properties of ME SNRs as a class in Section 4. We find that the statistical distribution of maser peak flux from all reported observations in the literature casts doubt as to whether the sensitivity of previous surveys is sufficient for them to be considered complete. It is likely that deeper searches for OH(1720 MHz) masers will identify further ME SNRs.

2. OBSERVATIONS

Motivated by the incompleteness of previous surveys for OH(1720 MHz) emission and the prospect that ME SNRs lie preferentially in the inner Galaxy, we used the Green Bank Telescope (GBT) and Very Large Array (VLA)1 to search for OH(1720 MHz) masers as a tracer of interaction. This new survey is comprised of both a VLA survey of 18 SNRs as well as a separate GBT survey of 69 targets with VLA follow-up. Table 1 lists all 75 SNRs and six candidates with notes as to the nature of the source and observations.

We used the GBT to survey 63 SNRs, four unconfirmed candidate SNRs from Brogan et al. (2006), and two unidentified HESS sources from Aharonian & HESS Collaboration (2006). Multiple GBT pointings were used to map the entirety of SNRs preferentially in the inner Galaxy, we used the Green Bank Telescope (GBT) and Very Large Array (VLA)1 to search for OH(1720 MHz) emission and the prospect that ME SNRs lie preferentially in the inner Galaxy, we used the Green Bank Telescope (GBT) and Very Large Array (VLA)1 to search for OH(1720 MHz) masers as a tracer of interaction. This new survey is comprised of both a VLA survey of 18 SNRs as well as a separate GBT survey of 69 targets with VLA follow-up. Table 1 lists all 75 SNRs and six candidates with notes as to the nature of the source and observations.

We used the GBT to survey 63 SNRs, four unconfirmed candidate SNRs from Brogan et al. (2006), and two unidentified HESS sources from Aharonian & HESS Collaboration (2006). Multiple GBT pointings were used to map the entirety of SNRs preferentially in the inner Galaxy, we used the Green Bank Telescope (GBT) and Very Large Array (VLA)1 to search for OH(1720 MHz) emission and the prospect that ME SNRs lie preferentially in the inner Galaxy, we used the Green Bank Telescope (GBT) and Very Large Array (VLA)1 to search for OH(1720 MHz)

1 The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Note. B: SNR candidate from Brogan et al. (2006); D: single dish 1720 MHz detection; H: unidentified HESS source; v: only observed with the VLA; f: follow-up observations with the VLA were obtained for these GBT detected SNRs.

Table 1

l	b	Notes	l	b	Notes
4.2	−3.5	v	18.6	−0.2	D
4.8	+6.2	v	18.9	−1.1	D
5.2	−2.6	v	19.1	+0.2	D
5.4	−1.2	v	19.1	+0.9	B
5.5	+0.3	D	20.0	−0.2	D
5.7	−0.0	D,B,f	20.4	+0.1	D
5.9	+3.1	v	21.0	−0.4	D
6.1	+1.2	v	21.5	−0.1	D
6.1	+0.5	D	25.5	+0.0	D
6.3	+0.5	D,B	28.6	−0.1	D
6.5	−0.4	D	29.6	+0.1	D
6.4	+4.0	v	30.7	+1.0	D
7.2	+0.2	D	31.5	−0.6	D
7.7	−3.7	v	36.6	−0.7	D
8.3	−0.0	D	36.6	+2.6	
8.7	−0.1	v	40.5	−0.5	D
8.7	−5.0	v	42.8	+0.6	
8.9	+0.4	D	45.7	−0.4	D
9.7	−0.0	D,f	46.8	−0.3	D,f
9.9	−0.8	D	53.6	−2.2	
10.5	−0.0	D	55.0	+0.3	
11.1	−1.0	D	55.7	+3.4	
11.8	−0.2	D	57.2	+0.8	
12.2	+0.3	D	59.8	+1.2	
12.5	+0.2	D	63.7	+1.1	
12.7	−0.0	D	65.7	+1.2	
12.8	−0.2	D,H	67.7	+1.8	
12.8	−0.0	D	68.6	−1.2	D
14.1	−0.1	D	69.7	+1.0	
14.3	+0.1	D	79.9	+0.9	
15.1	−1.6	v	76.9	+1.0	
15.4	+0.1	D,f	84.9	+0.5	D,f
15.5	−0.1	D,B	85.4	+0.7	
16.0	−0.5	D	85.9	−0.6	
16.2	−2.7	v	130.7	+3.1	
16.4	−0.5	D	347.3	−0.5	v
16.8	−1.1	v	350.0	−2.0	v
17.0	−0.0	D	353.9	−2.0	
17.4	−0.1	D	356.2	+4.5	
17.8	−0.7	D,H,f	358.0	+3.8	v
18.1	−0.1	D			

SNR G8.7-0.1 is a large 45° remnant which together with nine H II regions along its southeastern extent forms the W30 complex (Kassim & Weiler 1990). The SNR interior is filled by a thermal X-ray plasma (T ∼ 6 × 10^6 K) making G8.7-0.1 as a mixed-morphology remnant (Finley & Oegelman 1994). Extended γ-ray source HESS J1804-216 is detected along the western shell and may be further evidence of shock interaction and cosmic ray acceleration (Aharonian & HESS Collaboration 2006). A single, bright OH (1720 MHz) maser is detected at +36 km s^{-1} along the eastern edge of G8.7-0.1. Figure 1 shows the location of the maser between twisting synchrotron filaments visible at both 20 and 90 cm. Radio recollimation line emission from the young H II regions in the vicinity of G8.7-0.1 indicates velocities between +30 and +45 km s^{-1} (Kassim & Weiler 1990) similar to that of the SNR. However, we find no compact radio source within 5′′ of the maser, strengthening our classification as an SNR-type maser. GBT spectra at the position of the maser show symmetric absorption from the main-line and 1612 MHz OH transitions about 10 km s^{-1} in width. Additional absorption features are seen at −29, +4, +15, and +19 km s^{-1} but not at velocities higher than that of the SNR maser. X-ray observations find a neutral hydrogen column density of only N_H ∼ 1.2 × 10^{22} cm^{-2}, so we conclude that the SNR G8.7-0.1 lies at a distance of 4.5 kpc.

3.2. G5.7-0.0

Identified by Brogan et al. (2006) as an SNR candidate, SNR G5.7-0.0 is a partial 12′ shell with a spectral index of −0.5. Though it is not currently listed in Green’s catalog of Galactic
SNRs, it is coincident with TeV γ-ray source HESS J1800-240C (Aharonian & HESS Collaboration 2008) and has the characteristics of an interacting SNR which will be an excellent target for further study.

A single OH(1720 MHz) maser is detected at +12.8 km s\(^{-1}\) at a peak in the radio shell as can be seen in Figure 1. The radio morphology of the SNR is somewhat unclear though, given its low surface brightness. GBT spectra show characteristic OH absorption that is narrow and symmetric. The maser velocity places the remnant at a kinematic distance of either 3.1 or 13.7 kpc. Absorption is seen at \(+7\) and \(\sim-25\) km s\(^{-1}\). However, a compact radio source also lies within the GBT beam so the near/far distance ambiguity to G5.7-0.0 cannot be resolved with the current resolution.

3.3. G5.4-1.2

It has long been suspected that SNR G5.4-1.2 is associated with nearby pulsar wind nebula PSR J1801-2451. The nearby
energetic pulsar has a characteristic age of 15.5 kyr at a distance of 5.2 ± 0.5 kpc. A proper motion limit of 11 ± 9 mas yr$^{-1}$ was determined for the pulsar, ruling out an origin from the center of SNR G5.4-1.2 within the characteristic age of the pulsar (Zeiger et al. 2008, and references therein). However, the radio shell is much brighter along the western edge, suggestive of such a density gradient, so the apparent center of the SNR is not necessarily the location of the SNe. X-ray observations are not sensitive enough to detect thermal emission typical of mixed-morphology remnants (Kaspi et al. 2001). Faint Hz nebulosity is seen toward the interior of the remnant (Zealey et al. 1979), which has been observed for other interacting remnants.

Two OH(1720 MHz) masers are found along the bright western edge of SNR G5.4-1.2 as seen in Figure 1. Both lie at a velocity of −21 km s$^{-1}$ and are located within an arcminute of each other. Absorption at the velocity of the maser appears symmetric with both a narrow and a broad component, ΔV = 3 and 17 km s$^{-1}$, respectively. The systemic velocity of the SNR as traced by masers is contrary to rigid Galactic rotation and places G5.4-1.2 within the 3 kpc expanding arm of our Galaxy at a distance of 5.2 kpc (Dame & Thaddeus 2008). H I absorption is seen at +40 to −40 km s$^{-1}$ toward the SNR indicating a distance of greater than 4.5 kpc consistent with our distance determination (Frail et al. 1994b). Given the similar distance for PSR J1801-2451 and that it is only ∼3′ from the shell of SNR G5.4-1.2, if the pulsar is slightly older than its characteristic age a past interaction with the SNR shock wave cannot be ruled out. A large age for the system of ∼70 kyr is also possible (Blazek et al. 2006).

3.4. G9.7-0.0

An SNR first identified by Frail et al. (1994b) as a low surface brightness source (10$^{-21}$ W m$^{-2}$ Hz$^{-1}$ sr$^{-1}$ at 327 MHz) with a partial shell 15′ in diameter, Brogan et al. (2006) confirmed the nonthermal nature of the source.

We detect a single maser at +43 km s$^{-1}$ within the projected extent of G9.7-0.0 shown in Figure 1. GBT spectra toward the position of the maser show absorption at +5, +20, and +43 km s$^{-1}$ in the OH 1667, 1665, and 1612 MHz lines. Surveys of CO and H I show emission at velocities up to +160 km s$^{-1}$ yet no OH absorption features are seen against the SNR at velocities higher than the detected maser. This suggests that the SNR lies at the near kinematic distance of 4.7 kpc.

We compared our observations of G9.7-0.0 with Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer (MIPS) images at 3.6, 4.5, 5.8, 8, and 24 μm to see if there was any evidence of an interaction as has been done by Reach et al. (2006). No IR emission is seen associated with the SNR, but it is difficult to detect SNRs against the bright IR background of the Galaxy. We do note that the 20 cm radio emission is encircled by a series of IR dark clouds. That the position of the detected OH(1720 MHz) maser is coincident with one of these clouds is suggestive, but further study is needed to confirm that the SNR G9.7-0.0 is an interacting remnant.

4. DISCUSSION

New maser detections presented here make it worthwhile to re-analyze the statistics of ME SNRs. Including this work, 223 of 266 Galactic SNRs have been searched for masers using both single dishes and interferometers with sensitivities of 5–25 mJy and 35–160 mJy, respectively (Frail et al. 1994a, 1996; Green et al. 1997; Koralesky et al. 1998; Yusef-Zadeh et al. 1995, 1996, 1999; Sjouwerman & Pihlström 2008). This has resulted in the detection of 24 ME SNRs in the Galaxy, consistent with earlier estimates that 10% of the SNRs harbor masers.

ME SNRs trace regions of elevated molecular gas density, particularly the molecular ring ([l] ≤ 50°) and the nuclear disk ([l] ≤ 5°; Green et al. 1997). The galactocentric distances for all ME SNRs (derived from maser velocities as in Section 3) can be used to obtain a radial distribution shown in Figure 2(a). Two-thirds of ME SNRs are seen within 5 ± 2 kpc. This coincides with the location of the molecular ring seen as a peak in CO emissivity between 3.5 and 7.5 kpc (Clemens et al. 1988). We note that a correlation with dense molecular material is to be expected as theoretical studies show that OH(1720 MHz) masers appear only at moderately high densities of the order of 103 cm$^{-3}$ (Lockett et al. 1999).

To test the correlation of ME SNRs with the total distribution of SNRs we apply the Kolmogorov–Smirnov (K–S) test.
Figure 2(b) shows the cumulative distribution function of SNRs compared to that of ME SNRs as a function of Galactic latitude. It is immediately clear that ME SNRs are more centrally concentrated; the K–S test gives a 99% certainty that ME SNRs do not follow the longitudinal Galactic SNR distribution. Similarly, poor correlations are found between ME SNRs and the distribution of both bright SNRs \((\Sigma_{\text{int}} > 5 \times 10^{-20} \text{ W m}^{-2} \text{ Hz sr}^{-1})\) and CO gas. However, when we only examine SNRs in the first quadrant, the focus of our new survey, we find that the ME SNRs are not distributed significantly differently from the total SNR population in this region. If current surveys are taken to be complete, then 15% of the SNRs within the molecular ring have masers.

ME SNRs are among the brightest in the Galaxy (Green et al. 1997). Figure 2(c) shows the distribution of surface brightness at 1 GHz for SNRs with masers (filled histogram). The distributions of SNRs which have been searched for masers in previous surveys (Frail et al. 1996; Green et al. 1997) and from this work are given as unfilled and hatched histograms, respectively. All surface brightnesses are taken from Green's (2006) Catalog. The median surface brightness for ME SNRs is \(2.6 \times 10^{-20} \text{ W m}^{-2} \text{ Hz sr}^{-1}\). This is an order of magnitude higher than the median surface brightness for all Galactic SNRs, \(3.5 \times 10^{-21} \text{ W m}^{-2} \text{ Hz sr}^{-1}\) (Green 2004, Figure 4).

It is noteworthy that the newly detected ME SNRs are of relatively lower surface brightness with an average of \(4.5 \times 10^{-21} \text{ W m}^{-2} \text{ Hz sr}^{-1}\). This work has focused on the region in the inner Galaxy surveyed by Brogan et al. (2006) where a deep 90 cm survey yields a complete census of SNRs in the region down to a surface brightness of \(\sim 10^{-21} \text{ W m}^{-2} \text{ Hz sr}^{-1}\). As can be seen in Figure 2(c), there are fewer brighter SNRs included in the current survey than in the previous surveys. While ME SNRs are preferentially brighter, there is a large range of surface brightness. As future radio surveys uncover faint remnants in the inner Galaxy it can be expected that a comparable fraction will harbor OH(1720 MHz) masers.

We also consider whether maser surveys are sufficiently sensitive to detect all ME SNRs. The distribution of peak flux densities for individual masers resolved by interferometric observations is given in Figure 2(d). The 3σ detection threshold of both single-dish surveys (solid line) and interferometer follow-up (dashed line) is indicated. Green et al. (1997) concluded that single-dish surveys for OH(1720 MHz) masers were complete as few masers with a peak flux density below 100 mJy had then been detected. However, in the current sample more than a quarter of the detected maser spots have fluxes below 100 mJy, including four of the five masers in this work. Given these updated results, the existing single-dish surveys cannot be taken to be complete.

Interferometric surveys have covered fewer SNRs with higher sensitivity, but it is unclear whether these are complete. The distribution of maser peak flux densities falls steeply from a peak at the detection threshold of VLA surveys. Many, but not all, deep VLA observations do detect masers down to the sensitivity limits of the observations (Claussen et al. 1997, for example). This is suggestive that sensitivity limits the detection of fainter masers. It is not clear how many additional ME SNRs could be detected by deeper surveys.

5. CONCLUSION

We have surveyed 75 known SNRs in the inner Galaxy yielding four new detections of SNRs with OH(1720 MHz) masers: G5.4-1.2, G5.7-0.0, G8.7-0.1, and G9.7-0.0. SNRs G5.7-0.0 and G8.7-0.1 are coincident with sources of TeV γ-ray emission which may indicate cosmic ray enhancement. These four SNRs are clearly interacting with adjacent molecular clouds and are excellent targets for further study. We present statistical analysis showing ME SNRs are generally of high surface brightness and preferentially distributed in the inner Galaxy where molecular gas is more abundant, as had been previously suggested. We also find that the sensitivity of existing maser surveys may not be sufficient to detect all ME SNRs. Sensitive interferometric observations may determine whether lower flux density masers are common and how profitable a more sensitive survey would be. We note that the four new ME remnants detected here are all of average surface brightness, so as further moderate to low surface brightness remnants are detected they are likely to yield further maser detections.

Support for this work was provided by the NSF through award GSSP06-0009 from the NRAO.

REFERENCES

Aharonian, F., & HESS Collaboration, 2006, ApJ, 636, 777
Aharonian, F., & HESS Collaboration, 2008, A&A, 481, 401
Bamba, A., et al. 2007, PASJ, 59, 209
Blazek, J. A., Gaensler, B. M., Chatterjee, S., van der Swaluw, E., Camilo, F., & Stappers, B. W. 2006, ApJ, 652, 1523
Brogan, C. L., Gelfand, J. D., Gaensler, B. M., Kassim, N. E., & Lazio, T. J. W. 2006, ApJ, 639, L25
Claussen, M. J., Frail, D. A., Goss, W. M., & Gaume, R. A. 1997, ApJ, 489, 143
Clemens, D. P., Sanders, D. B., & Scoville, N. Z. 1988, ApJ, 327, 139
Dame, T. M., & Thaddeus, P. 2008, ApJ, 683, L143
Esposito, J. A., Hunter, S. D., Kanbach, G., & Sreekumar, P. 1996, ApJ, 461, 820
Fatuzzo, M., Adams, F. C., & Melia, F. 2006, ApJ, 653, L49
Fich, M., Blitz, L., & Stark, A. A. 1989, ApJ, 342, 272
Finley, J. P., & Oegelmann, H. 1994, ApJ, 434, L25
Frail, D. A., Goss, W. M., Reynoso, E. M., Giacani, E. B., Green, A. J., & Otrupcek, R. 1996, AJ, 111, 1651
Frail, D. A., Goss, W. M., & Slysh, V. I. 1994a, ApJ, 424, L111
Frail, D. A., Kassim, N. E., & Weiler, K. W. 1994b, AJ, 107, 1120
Gray, A. D. 1994, MNras, 270, 861
Green, D. A. 2004, Bull. Astron. Soc. India, 32, 335
Green, D. A. 2006, A Catalogue of Galactic Supernova Remnants, 2006, April version (Cambridge, UK: Astrophysics Group, Cavendish Laboratory), available at http://www.mrao.cam.ac.uk/surveys/snr/
Green, A. J., Frail, D. A., Goss, W. M., & Otrupcek, R. 1997, AJ, 114, 2058
Helfand, D. J., Becker, R. H., White, R. L., Fallon, A., & Tuttle, S. 2006, AJ, 131, 2525
Hewitt, J. W. 2009, PhD Thesis, Northwestern Univ.
Kaspi, V. M., Gotthelf, E. V., Gaensler, B. M., & Lyutikov, M. 2001, ApJ, 562, L163
Kassim, N. E., & Weiler, K. W. 1990, ApJ, 360, 184
Koralesky, B., Frail, D. A., Goss, W. M., Claussen, M. J., & Green, A. J. 1998, AJ, 116, 1323
Lockett, P., Gauthier, E., & Elitzur, M. 1999, ApJ, 511, 235
Reach, W. T., et al. 2006, AJ, 131, 1479
Sjouwerman, L. O., & Pilhström, Y. M. 2008, ApJ, 681, 1287
Wardle, M. 1999, ApJ, 525, L101
Wardle, M., & Yusef-Zadeh, F. 2002, Science, 296, 2350
Whiteoak, J. B. Z., & Green, A. J. 1996, A&AS, 118, 329
Yusef-Zadeh, F., Goss, W. M., Roberts, D. A., Robinson, B., & Frail, D. A. 1999, ApJ, 527, 172
Yusef-Zadeh, F., Roberts, D. A., Goss, W. M., Frail, D. A., & Green, A. J. 1996, ApJ, 466, L25
Yusef-Zadeh, F., Uchida, K. I., & Roberts, D. 1995, Science, 270, 1801
Yusef-Zadeh, F., Wardle, M., Rho, J., & Sakano, M. 2003, ApJ, 585, 319
Zealey, W. J., Elliott, K. H., & Malin, D. F. 1979, A&AS, 38, 39
Zeilinger, B. R., Briggs, W. F., Chatterjee, S., & Goss, W. M. 2008, ApJ, 674, 271