INTRODUCTION
The trans-translation process resolves issues arising when the translating bacterial ribosome reaches the end of an mRNA with no stop codon, chiefly releasing the stalled ribosome but also eliminating both the non-stop mRNA and the encoded incomplete protein. The main agents of trans-translation are the RNA tmRNA (whose gene is named ssrA) and its protein ligand SmpB. tmRNA has a tRNA-like domain (TLD) that lacks an anticodon stem-loop; a bound SmpB occupies this corresponding space, and the complex fills the A site in the stalled ribosome, mimicking tRNA (Bessho et al., 2007; Neubauer et al., 2012). After peptidyl transfer to the alanyl moiety of charged tmRNA, the ribosome switches from the non-stop mRNA to the resume codon on tmRNA and translation continues, adding a short hydrophobic tag peptide to the nascent protein that is the signal for proteolysis (Karzai and Sauer, 2001). Canonical release at the tag reading frame stop codon frees the ribosome. Two back-up systems for trans-translation, ArfA/RF-2 and ArfB, have been described that can allow ribosome release from non-stop mRNA even when ssrA or smpB is inactive; both require the peptidyl-tRNA hydrolase activity of a release factor family member, but not the stop codon recognition usually associated with release factors (Chadani et al., 2010, 2011; Handa et al., 2011).

The tmRNA-SmpB system is found in bacteria and some organelles and has not yet been identified in archaea or in eukaryotes targeted to the cytoplasm. Aside from one report of a bacterium with a frameshift mutation in smpB, it has generally been considered that all bacteria have the system. Here we present 22 examples of complete bacterial genomes where either ssrA cannot be found, or smpB has an apparently inactivating mutation. A particularly strong case for loss of the system in a bacterial genome comes from a strain of the insect endosymbiont Carsonella rudii, which, as best as current knowledge can be applied, further appears to lack trans-translation back-up systems. In the course of the exposition we survey bioinformatics tools for tmRNA and SmpB gene searches, and describe a major update of The tmRNA Website (http://bioinformatics.sandia.gov/tmRNA).

MATERIALS AND METHODS
SEARCH DATABASES
Genomic data were downloaded from four directories (archaea, bacteria, plasmid, and viruses) of RefSeq on November 2012. This dataset consisted of 2031 bacterial and 137 archaeal complete genomes, and 1711 additional bacterial plasmids and 543 bacterial viruses (and 44 additional archaeal plasmids and 38 archaeal viruses) that were not part of chromosomal genome projects. BLAST databases were downloaded on 5 August 2013.
tmRNA SEQUENCE SEARCH

Three primary tmRNA sequence identification tools have been described: the sister programs BRUCE (Laslett et al., 2002) and ARAGORN (Laslett and Canback, 2004) and the Rfam/Infernal system (Griffiths-Jones et al., 2005) that parallels Pfam/HMMER. Rfam has four covariance models for different tmRNA forms. We applied these tools in a combined search for tmRNA and tRNA genes, because the most common false positive tmRNA hits are to legitimate tRNA genes. Our first-pass wrapper tFind.pl (available at bioinformatics.sandia.gov/software) combines tmRNA and tRNA search by running the programs tRNAscan-SE (Lowe and Eddy, 1997), ARAGORN (which also searches for tRNA genes) and BRUCE. It then resolves overlapping calls, divides the tRNAs into the two categories “valid” (those with tRNAscan-SE Cove score above 50 not labeled Pseudo or Undetermined, and also called by ARAGORN) and “questionable” (the remaining tRNA calls), and aims for accurate terminal determinatio Secn (except with two-piece tRNAs). tmRNA calls in archaea or in bacteria with more than one call were scrutinized manually, rejecting some due to overlaps with better-called tRNAs, poor conservation of alanyl-tRNA synthetase discrimination features or other problems with the TLD. Other rejected bacterial tmRNA duplicate calls were tmRNA pseudogenes (missing one gene end) or tmRNA gene fragments formed by genomic island integration. Rfam-Infernal was not applied in this first pass because of a high false-positive rate (Table 1), but was instead applied when detection failed in a bacterial genome, along with a fourth tmRNA detection system, rFind.pl. This latter script uses our tmRNA full- and terminus-sequence databases with BLASTN to find additional tmRNAs and more accurately determine the termini of two-piece tRNAs. Attention to the RNA gene termini is important for one method of identifying genomic islands, which favor ssrA and tRNA genes as integration sites (Mantri and Williams, 2004). When the above approaches failed to locate ssrA in a bacterial genome, we searched manually in the vicinity of smpB.

We evaluated raw output of primary tmRNA-finding software by whether hits overlapped our final sets of tmRNA and other gene types (Table 1). The BRUCE and ARAGORN results were assessed together merging overlapping calls using BEDTools.

Domain	Raw	tmRNA	Valid tRNA	Quest. tRNA	Pfam	Unhit
BRUCE/ARAGORN						
Bacteria	2033	1983	0	15	14	21
Archaea	10	0	0	7	3	0
Rfam ABOVE-THRESHOLD						
Bacteria	13094	2037	10283	235	52	487
Archaea	1248	0	849	365	3	31
Rfam BELOW-THRESHOLD						
Bacteria	21337	5	15170	390	1138	4634
Archaea	808	0	402	159	45	202

See Materials and Methods.

RESULTS

EXHAUSTIVE SEARCH FOR ssrA

We applied our tFind.pl search method for ssrA to 2031 bacterial and 137 archaeal complete genomes, and additional RefSeq bacterial and archaeal plasmids and viruses not part of chromosomal genome projects. All ten raw tmRNA hits in Archaea were rejected by criteria noted above, while most bacterial genomes had a single ssrA located on the largest chromosome. Some genomes had a second or third ssrA allele, sometimes on a plasmid. Among plasmid and viral non-chromosomal projects, ssrA was only identified in eight mycobacteriophages Bxz1, CaLi, Catera, ET08, Rizal, ScottMcG, Spud and Wildcat, however we can name additional phage tmRNA sequences in genomes that were not in our RefSeq dataset: *Bacillus* phage G (tmID: 14561) and *mycobacteriophage DS6A* (tmID: 11587). The DS6A sequence consists of little more than the tmRNA TLD; a similar molecule, whether or not chargeable with alanine, has been shown to strongly inhibit tmRNA, perhaps acting by titrating SmpB (Mao et al., 2009). For six genomes no tmRNA sequence could be identified: *Carsonella rudii* PC, the four hemoplasmas of the *Mycoplasma suis* clade, and the secondary endosymbiont of *Ctenarytaina eucalypti* (Table 2). For *C. rudii* PC, we further examine ssrA pseudogenization below.
Table 2 | Genomes with unusual ssrA content.

ssrA	Strain	tmID
BACTERIAL STRAINS MISSING ssrA		
Carsonella ruddi PC*	19165	
secondary endosymbiont of Ctenarytaina eucalypti	19166	
Mycoplasma haemolamaeae str. Purdue*	19167	
Mycoplasma suis str. Illinois*	19168	
Mycoplasma wenyonii str. Massachusetts*	19169	
Mycoplasma suis Ki3806*	19170	
PHAGES WITH ssrA		
Bacillus phage G	14561	
Mycobacterium phage DS6A (TLD only)	11587	
Mycobacterium phage Bxz1	10675	
Mycobacterium phage Cai	12358	
Mycobacterium phage Catera	15205	
Mycobacterium phage ET08	14080	
Mycobacterium phage Rizal	14900	
Mycobacterium phage ScottMcG	10349	
Mycobacterium phage Spud	11713	
Mycobacterium phage Wildcat	11059	

Includes links to tmRNA webpages for bacterial strains missing tmRNA and phages with tmRNA. tmID is the tmRNA Website (http://bioinformatics.sandia.gov/tmRNA) identifier.

*Highly reduced genome (< 10^6 bp).

EXHAUSTIVE SEARCH FOR smpB

Upon characterization of SmpB as a 7-stranded β barrel, an oligonucleotide-binding (OB) fold was recognized for the region from β3-β7, hinting at possible ancient evolutionary relationships (Dong et al., 2002). However, based on comparisons of backbone coordinates, no other structures at PDB were found to be structurally similar (Dong et al., 2002). Likewise sequence based profiles, specifically the SmpB HMM from Pfam (a standalone family not part of a clan) and a set of 5 SmpB profiles available at the Conserved Domain Database (NCBI) show no interference with other family profiles; the SmpB family is bioinformatically well-behaved. It is a single-domain protein, except that four multi-domain architectures for five (of 4542) SmpBs are reported at Pfam. However, two of these can be explained as an artifactual double-SmpB call due to a 14-aa insert and an artifactual fusion arising from splicing a bacterial gene present in the eukaryotic genome project, while the other three may be explained by sequencing errors not found in related strains, that shifted the smpB frame to that of its upstream neighbor or fused it to the downstream CDS by converting the smpB stop codon to a sense codon.

The above genomes were searched using the SmpB profiles, and for the small number (n = 14) of bacterial genomes for which the profiles failed even below threshold, BLASTX was applied with our SmpB database; for Hodgkinia, comparative analysis with two newer genomes (below) was required to identify smpB (also identifying two new tmRNA sequences). All instances of smpB were on bacterial chromosomes, except for two copies found in Flavobacterium sp. K1723T1 plasmid pOAD2. Some genomes are deficient for smpB (Table 3). Tremblaya has

Table 3 | Genomes with unusual smpB content.

smpB	Strain	tmID
BACTERIAL STRAINS WITH PSEUDOGENIZED, FRAMESHIFTED OR TRUNCATED smpB		
Pseudogene	Hodgkinia cicadicae TETUND1*	19190
Truncation	Tremblaya princeps PCIT*	12215
Truncation	Tremblaya princeps PCVAL*	12077
Frameshift	Corynebacterium pseudodubercolus 31	11952
Frameshift	Mycobacterium intracellulare MOTT-2	19171
Frameshift	Clostridium difficile CF5	10063
Frameshift	Clostridium difficile M120	15031
Frameshift†	Buchnera aphidicola BCC*	15428
Frameshift	Buchnera aphidicola str. TLW03*	12194
Frameshift	Pectobacterium carotovorum PCC21	16329
Frameshift	Aggregatibacter actinomycetemcomitans ANH9381	19118
Frameshift	Pseudomonas putida DFT1E	10352
Frameshift	Simidua agarivorans SA1	19172
Frameshift	Mycoplasma pneumoniae FH	16792
Frameshift	Thermotoga maritima MSB8	12964
Frameshift	Petrotrobil mobilis SJ95	13623
smpBs IN BACTERIAL PLASMIDS		
Flavobacterium sp. K1723T1 plasmid pOAD2 (2 copies)	19173	

smpBs IN EUKARYOTIC GENOME PROJECTS		
Contaminant	Cucumis sativus	19176
Contaminant	Ceratidis capitata	19177
Endosymbiont	Trichoplax adhaerens	19178
Chromatophore	Paulinella chromatophora	19174
Oomycete mito.-targeted	Albugo labachi Nc14gi	19187
Oomycete mito.-targeted	Phytophthora infestans T304	19188
Oomycete mito.-targeted	Phytophthora sojae	19189
Algal plastid-targeted	Nannochloris gaditana CCMP526	19175
Algal plastid-targeted	Guillardia theta CCMP2712	19179
Algal plastid-targeted	Phaeodactylum tricornutum CCAP	19180
	1055/1	
Algal plastid-targeted	Thalassiosira pseudonana CCMP1335	19181
Algal plastid-targeted	Aureococcus anophagefferens	19182
Algal plastid-targeted	Callosobruchus chinensis	19183
Algal plastid-targeted	Cyanidioschyzon merolae	19184
Algal plastid-targeted	Ectocarpus siliculosus	19185
Algal plastid-targeted	Thalassiosira oceanica	19186

Includes links to webpages for bacterial strains with defective smpBs, bacterial plasmids with smpBs, and smpBs in eukaryotic genome projects (some of which are organelle-targeted). The Hodgkinia genome pseudogene has accumulated two premature stop codons in smpB. The two “truncation” cases have lost material reaching into the β-barrel at each end. We also note that SmpB lacks the central loop in the hemplasmas, Carsonella and Hodgkinia, and lacks the C-terminal α helix in Carsonella, but these SmpBs retain all β strand segments and may therefore retain weak function. tmID is the tmRNA Website (http://bioinformatics.sandia.gov/tmRNA) identifier.

*Highly reduced genome (< 10^6 bp).

†The description of this genome (Pérez-Brocal et al., 2006) noted and discussed this frameshift, suggesting confidence in the gene sequence; any of the other frameshifts could instead be sequencing errors.
truncations at both ends of smpB, so severe that they may inactivate the protein. Study of newer Hodgkinia genomes as described below identified an isolate that has accumulated two TAA stop codons in smpB. In 13 other strains single frameshifts would inactivate the genes, unless these may be sequencing errors; however in one case the authors discuss the pseudogene, suggesting confidence in its sequencing (Pérez-Brocal et al., 2006).

Some SmpBs show loss of important features, yet may retain some function, given that the β-barrel framework appears intact. The central loop region, which contacts the tmRNA tRNA-like domain and is thought to play roles in alanylation (Dong et al., 2002) and in activating EF-Tu (Miller and Buskirk, 2014), is missing in Caronella and the hemoplasmas (hemotropic Mycoplasma). The C-terminal tail, of demonstrated importance for SmpB function (Mantri and Williams, 2004; Jacob et al., 2005; Garza-Sánchez et al., 2011), is lost or truncated in Caronella. In the model Thermus SmpB, this tail is unstructured in solution, but helical when in place in the ribosomal A site with alanine-charged tmRNA (Neubauer et al., 2012). In this location it contacts the 16S rRNA decoding center and continues to follow the path normally occupied by downstream mRNA, yet must undergo major conformational change to make way for the resume codon in later trans-translation steps. Many SmpBs extend variably beyond the helical tail segment of Thermus, raising the question of accommodating this extension in the ribosome. Tropheryma (tmID: 14758) has the longest C-terminal extension, 44 extra residues; when we constrained Tropheryma SmpB to the corresponding Thermus portion (Kelley and Sternberg, 2009), its extension showed continued helical structure with some breaks.

We found 16 smpB instances in eukaryotic genome projects. Four of these can be described as bacterial: two appear to be from enterobacterial microbiome contaminants of the medfly and cucumber genomes, another is from the endosymbiont associated with the placozoan Trichoplax genome (Driscoll et al., 2013), and the fourth is from the quasi-organellar chromatophore of Paulinella that is a recently-captured cyanobacterium. The remaining eukaryotic SmpBs appear to be nuclear-encoded and organelle-targeted. Three are from oomycete genomes and score for the mitochondrial signal peptide, supporting the recent discovery of tmRNA genes in oomycte mitochondria (Hafez et al., 2013). Nine are from algal genomes whose plastids are known to encode tmRNA; for some of these the N-terminal plastid transit peptide sequences have been noted (Jacob et al., 2005), while in others transit peptide identification may require further search for 5′ exons.

smpB GENE NEIGHBORHOOD

We examined the neighborhood of smpB, and found 11 frequent neighbor gene families (Figure 1A). ssrA is the most frequent neighbor of smpB, yet accounts for fewer than half the cases. The clustering of these neighbors was also for fewer than half the cases. The association with the ubiquitin homolog RnfH1 and RatA toxin unit genes has been previously noted (Iyer et al., 2006). Several of these common neighbors also interact with the ribosome (RF-2, SecG, and RatA). Furthermore, RNase R is known to be a physical and functional partner with tmRNA-SmpB (Karzai et al., 2000; Liang and Deutscher, 2010; Venkataraman et al., 2014). Transcript analysis has confirmed operon structure for some of these clusters (Mantri and Williams, 2004; Garza-Sánchez et al., 2011).

FIGURE 1 | smpB gene neighborhoods. Each neighborhood (n = 2012) in our bacterial complete genome set was taken as the 11-gene window centered at smpB. (A) Frequent neighbors. The tmRNA gene (the only RNA gene encountered) and Pfam families present in more than 200 smpB neighborhoods are listed with a representative annotation for the instances of each family. (B) Clusters. Each neighborhood was summarized as a cluster, considering only the families of (A) (note the more specific gene annotations there). The top clusters are shown with color coding of common subclusters.

THE tmRNA WEBSITE

The tmRNA Website (De Novoa and Williams, 2004) (http://bioinformatics.sandia.gov/tmRNA) provides several research tools. Foremost is the sequence database. The previous instance of the database was updated with the above search results, and with the recently-described oomycete sequences, yielding 1631 unique sequences (1384 encoding one-piece tmRNA and 247 two-piece tmRNA); most are bacterial except for 41 mitochondrial and 22 plastid unique tmRNA sequences. These tmRNAs encode 710 unique proteolysis tag sequences. Each sequence was then used
as BLAST query against NCBI est, gss, htgs, nt, other_genomic, patnt, refseq_genomic, tsa_nt and wgs databases, yielding 9167 instances of perfect though occasionally incomplete matches, counting each RefSeq/GenBank cross-reference pair as a single instance. The tmRNA Website provides all these sequences for download or for query by BLAST. These were also provided to RNAcentral (Bateman et al., 2011) and as third-party annotation to the International Nucleotide Sequence Database Archives (GenBank/ENA/DDBJ). Related resources that should be consulted are tmRDB (Andersen et al., 2006), Rfam (Burge et al., 2013), and RNAcentral (Bateman et al., 2011).

The tmRNA Website includes a new SmpB database with 2258 distinct amino acid sequences. These are available for BLAST search and download, as an alignment, as raw sequence and as a database. SmpB sequence is presented together with tmRNA sequences found in the same genome.

ANOMALIES IN CARSONELLA

Carsonella ruddii is an insect endosymbiont, with extremely small (157–174 kbp) and AT-rich (14–18% GC) genomes, yet virtually no rearrangement of gene order (Sloan and Moran, 2012). The loss of the central loop and C-terminal tail of C. ruddii SmpB were noted above. When only one Carsonella tmRNA sequence was available, it was difficult to identify its tag reading frame. With several new sequences from additional strains, the tag reading has now been identified, standing out as the most conserved reading frame among the strains (Figure 2). C. ruddii is the only species encoding a tag ending in a charged residue (lysine), which hindered previous tag identification, however some strains do have as usual a hydrophobic terminal tag residue.

It was previously noted that smpB overlaps ssrA in Carsonella (Mao et al., 2009). This sets up an interesting feedback situation where the smpB mRNA would be cleaved by tmRNA maturation,
and thereby become a non-stop substrate for the action of its own gene product. However, this situation is not widespread; we found it nowhere else but in *Carsonella*, and in only half of the *Carsonella* strains.

All tmRNAs in our database and indeed all bacterial tRNA-Ala at the Genomic tRNA Database (Chan and Lowe, 2009) have a terminal G:C base pair closing the acceptor stem, except for the tRNAs of the *C. ruddii* HC/C. ruddii HT lineage. This anomaly is apparently due to a small deletion causing a 2-nt overlap between the 3′ termini of *ssrA* and the oppositely oriented tRNA-Phe gene, that changed the terminal residue of the tmRNA acceptor stem from the usual C to U (Figure 2). A base substitution mutation reversing this U back to C would have altered the discriminator base of tRNA-Phe; instead the deletion apparently drove the fixation of a compensatory mutation at the far end of *ssrA* producing the unique A:U closing base pair, which may allow better recognition by alanyl-tRNA synthetase than the post-deletion G:U pair would.

Although there were six complete bacterial genomes in which we failed to find tmRNA sequences, the genome of *C. ruddii* PC presents an especially clear case of pseudogenization. Because *C. ruddii* genomes show no rearrangement of gene order (Sloan and Moran, 2012), the site of any *ssrA* remnant could be predicted. An anchored segment (thin purple line in Figure 2) of the closely related *C. ruddii* PV genome is 216 bp (within which the tmRNA sequence occupies 202 bp); the corresponding segment in PC is 178 bp. This pseudogenization thus appears to have occurred largely in place and not by major deletion. The thoroughness of obliteration is remarkable; none of the most conserved regions of *ssrA* have been retained, neither for the 5′ tRNA-like domain, the residue codon region, nor the 3′ tRNA-like domain. Nucleotide bias has increased with this pseudogenization: GC content of the anchored region drops from and 17.6% in PV to 13.5% in PC. We expected that without tmRNA, selective regime on PV to 13.5% in PC. We expected that without tmRNA, selective regime on G:U content to for anchoring domain. Nucleotide bias has increased with this pseudogenization further. A restriction enzyme analysis of the *ssrA* fragment from the genome of *C. ruddii* PV (which encodes tmRNA) and *C. ruddii* PC (which does not) indicates that the sequence is not widespread; we found it nowhere else but in *Carsonella*, and in only half of the *Carsonella* strains.

The third group we find lacking the SmpB central loop is *H. cicadicola* was available. With the recent arrival of two new genomes, one, *H. cicadicola* TETUND2, gave low but consistent signals with the profiles, identifying *smpB* and leading to identification in the other two genomes. All three SmpBs lack the central loop. *H. cicadicola* Dsem may also have lost the C-terminal tail. The *H. cicadicola* TETUND1 *smpB* has further accumulated two TAA stop codons and we therefore classify it as a pseudogene.

ANOMALIES IN MYCOPLASMA

The third group we find lacking the SmpB central loop is the hemoplasmas (hemotropic Mycoplasma), which also have reduced genomes. We prepared a genome-based phylogenetic tree for *Mycoplasma* (Figure 3) that included 7 hemoplasmas, which
formed a clade in the tree with two main subclades, in agreement with (Guimaraes et al., 2014) who named the two subclades haemofelis and suis. We were unable to identify the tmRNA gene nor its trace in any of the four genomes of the suis clade. The haemofelis clade did not help locate it because the haemofelis ssrA region (greA/ssa/Hyp/riplQ/rpoA) is rearranged in the suis clade as greA/X/trimD/rpoA (where X is an 18 kbp insert of 26 hypothetical genes in M. wenyonii).

NON-STOP mRNAs DUE TO t(m)RNA GENE OVERLAP

The observation of *smpB* overlap with *ssrA* in *Carsonella* led us to ask how many mRNAs might become non-stop due to maturation of CDS-overlapping tmRNA or tRNA genes (Table 4). Others have found high-frequency non-stop mRNA caused by an RNase III site in arfA (Garza-Sánchez et al., 2011). We considered only the proteins positive for Pfam-A families, which account for 75.0% of the bacterial proteins studied, and for comparison included “questionable” tRNAs (probably mostly false positives) and oppositely oriented CDS/tRNA gene pairs. We consider the 379 same-orientation overlaps of valid t(m)RNA genes as candidates for producing high-frequency non-stop mRNAs, although those with the CDS downstream of the RNA gene are suspicious; they may result from calling the start codon too far upstream. This represents an exceedingly small fraction of mRNAs tested (∼1 in 15000). The top Pfam families among these candidates represent few evolutionary events, mostly affecting the same tRNA gene in a closely related group of genomes.

DISCUSSION

It is generally thought that neither tmRNA nor SmpB can function without the other (Sundermeier and Karzai, 2007; Felden and Gillet, 2011), although there are some counter-examples; e.g., *smpB* but not *ssrA* can be knocked out in *Mycobacterium tuberculosis* (Personne and Parish, 2014). Among the six bacteria that appear to lack tmRNA and 16 that appear to lack SmpB, none lack both; cofunction would predict eventual concomitant loss. In one case of tmRNA loss that we examined, selective constraint did not appear to relax for the remaining *smpB*. Both for tmRNA and SmpB, there may be more independent function than has been recognized.

The tmRNA literature cautions against reporting failure to find genes, and it is of course possible that our detection methods were inadequate or that genome sequences have errors, but we may be starting to identify bacteria that truly lack tmRNA or SmpB. These bacteria tend to have highly reduced genomes that have lost many genes otherwise widely conserved. It can moreover be noted that tmRNA-SmpB is lacking in most mitochondria and plastids, which likewise have highly reduced genomes derived from bacteria. Thus, tmRNA-SmpB is not always required in bacteria or their descendents. Those organelles where we can detect the system fit this pattern: the RNA gene is retained in the organelle and can be traced to the organelle’s ancestral bacterial group, while the partner protein gene resides in the nucleus, encoding the appropriate organellar import peptide. Intracellular but non-organellar bacteria do not have this luxury of passing genes to the nucleus for safekeeping. However, nucleus-stored organellar proteins need not always derive from the organelle’s ancestor. In our preliminary phylogenetic tree of SmpB (not shown), the plastid SmpBs did cluster with Cyanobacteria, but the mitochondrial SmpBs clustered apart from the Alphaproteobacteria.

The ArfA and ArfB backup systems for ribosome rescue are not of wide enough phylogenetic distribution to explain all the tmRNA or SmpB losses noted here, although a mitochondrial ArfB homolog has been reported (Richter et al., 2010), and additional analogs, homologs or backup systems may yet be discovered. The current data suggest that neither the primary nor the backup ribosome rescue systems are required in all bacteria.

ACKNOWLEDGMENTS

We thank Daniel Sloan (Yale U.) for detailed data on *Carsonella* dN/dS values. This research was fully supported by the Laboratory Directed Research and Development program at

Table 4 | Functional protein CDSs that overlap t(m)RNA genes.

	Valid t(m)RNA	Question-able tRNA	Top Pfam domain of CDSs overlapping valid t(m)RNA	No. top Pfam	Settings for top Pfam	
No. t(m)RNA	115660	4809				
Overlapping Pfam CDS	828	1364				
Same orientation	379	735				
CDS upstream	250	244	FTSW_RODA_SPOVE	44	All 44 are tRNAile-CAT in Helicobacter	
CDS downstream	106	186	Aminotran_3	9	8 are tRNAAsu_CAA in Prochlorococcus	
CDS internal	0	92	–	–	–	
CDS spanning	23	213	GTP_EFTU	6	All 6 are tRNASec in Rhizobiales	
Opposite orientation	449	629				
CDS upstream	23	187	RNB (RNase R)	4	All 4	4 are tRNAAsu_CAG in Burkholderiaceae
CDS downstream	381	186	Resolvase	72	Diverse settings	
CDS internal	0	83	–	–	–	
CDS spanning	45	173	Resolvase	16	Diverse settings	

Of the 6,489,445 original NCBI protein calls in the 2031 bacterial genome projects, 5,805,765 were positive for functionality with the Pfam/HMMER system (testing Pfam-A and Pfam-B) or with the CDD/RPSBLAST system, and were tested for overlap with either tmRNA genes from the tmRNA Website or tRNA genes found with a combination of tRNAscan-SE and Aragorn (see Materials and Methods for distinction between “valid” and “questionable” tRNAs).
REFERENCES

Andersen, E. S., Rosenblad, M. A., Larsen, N., Westergaard, J. C., Burks, J., Wower, R. K., et al. (2012). ArfA recruits release factor 2 to nucleate tmRNA tagging and ribosome rescue complex. Proc. Natl. Acad. Sci. U.S.A. 99, 3040–3044. doi: 10.1073/pnas.0911587

Chan, P. P., and Lowe, T. M. (2009). GtRNAdb: a database of transfer RNA genes in nucleotide sequences. Nucleic Acids Res. 37, D93–D97. doi: 10.1093/nar/gkn678

De Novoa, P. G., and Williams, K. P. (2004). The tmRNA website: reductive evolution and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, D55–D58. doi: 10.1093/nar/gkh059

Driscoll, T., Gillespie, J. J., Nordberg, A. F., and Sobral, B. W. (2013). An unusual mechanism for EF-Tu activation during tmRNA-mediated ribosome rescue. RNA Biol. 10, 1117–1124. doi: 10.4161/rna.25376

Handa, Y., Inaho, N., and Nameki, N. (2011). YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res. 39, 1739–1748. doi: 10.1093/nar/gkr997

Iyer, L. M., Burroughs, A. M., and Aravind, L. (2006). The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains. Genome Biol. 7, R60. doi: 10.1186/gb-2006-7-7-r60

Jacob, Y., Sharrad, K. M., Bhardwaj, K., Sanda, A., and Williams, K. P. (2005). Function of the SmpB tail in transfer-messenger RNA translation revealed by a nucleus-encoded form. J. Biol. Chem. 280, 5503–5509. doi: 10.1074/jbc.M409277200

Karzai, A. W., Roche, E. D., and Sauer, R. T. (2000). The SsrA–SmpB system for protein tagging, directed degradation and ribosome rescue. Nat. Struct. Mol. Biol. 7, 449–455. doi: 10.1038/75843

Karzai, A. W., and Sauer, R. T. (2001). Protein factors associated with the SsrA–SmpB tagging and ribosome rescue complex. Proc. Natl. Acad. Sci. U.S.A. 98, 3040–3044. doi: 10.1073/pnas.051628298

Kelley, L. A., and Sternberg, M. J. E. (2009). Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protocol. 4, 363–371. doi: 10.1038/nprot.2009.2

Laslett, D., and Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16. doi: 10.1093/nar/gkh152

Liang, W., and Deutscher, M. P. (2010). A novel mechanism for ribonuclease regulation: transfer-messenger RNA (tmRNA) and its associated protein SmpB regulate the stability of tmRNA. J. Biol. Chem. 285, 29054–29058. doi: 10.1074/jbc.C110.1168641

Lowe, T. M., and Eddy, S. R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–966. doi: 10.1093/nr/25.5.955

McCutcheon, J. P., and Moran, N. A. (2011). Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26. doi: 10.1038/nrmicro2670

Miller, M. R., and Buskirk, A. R. (2014). An unusual mechanism for EF-Tu activation during tmRNA-mediated ribosome rescue. RNA 20, 228–235. doi: 10.1261/rna.042226.111

Neuhauer, C., Gillet, R., Kelley, A. C., and Ramakrishnan, V. (2012). Decoding in the absence of a codon by tmRNA and SmpB in the ribosome. Science 335, 1366–1369. doi: 10.1126/science.1217039

Pérez-Brocal, V., Gil, R., Ramos, S., Lamelas, A., Postigo, M., Michelen, J. M., et al. (2006). A small microbial genome: the end of a long symbiotic relationship? Science 314, 312–313. doi: 10.1126/science.1130441

Personne, Y., and Parish, T. (2014). Mycobacterium tuberculosis possesses an unusual tmRNA rescue system. Tuberculosis 94, 34–42. doi: 10.1016/j.tube.2013.09.007

Quinlan, A. R., and Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842. doi: 10.1093/bioinformatics/btq303

Richter, R., Rorbach, J., Pajak, A., Smith, P. M., Wessels, H. J., Huynen, M. A., et al. (2010). A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome. EMBO J. 29, 1116–1125. doi: 10.1002/emboj.2010.14

Sloan, D. B., and Moran, N. A. (2012). Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol. Bio. Evol. 29, 3781–3792. doi: 10.1099/mbe.0.038189-0

Sundermeier, T. R., and Karzai, A. W. (2007). Functional SmpB–ribosome interactions require tmRNA. J. Biol. Chem. 282, 34779–34786. doi: 10.1074/jbc.M707256200

Guimaraes, A. M. S., Santos, A. P., Do Nascimento, N. C., Timenetsky, J., and Messick, J. B. (2014). Comparative genomics and phylogenetics of hemotropic Mycoplasmas. PLoS ONE 9:e91445. doi: 10.1371/journal.pone.0091445

Hafiez, M., Burger, G., Steinberg, S. V., and Lang, F. (2013). A second eukaryotic group with mitochondrion-encoded tmRNA: in silico identification and experimental confirmation. RNA Biol. 10, 1117–1124. doi: 10.4161/rna.25376
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 01 June 2014; accepted: 24 July 2014; published online: 13 August 2014.