On Soft \textit{w}-Structures Defined by Soft Sets

Won Keun Min
Department of Mathematics, Kangwon National University, Chuncheon, Korea

Abstract
In this work, we introduce the notion of soft \textit{w}-structure and investigate some basic properties of this new structure by using the concept of soft set. Moreover, we study the notions of soft \textit{w}-\textit{T}_0 (soft \textit{w}-\textit{T}_1, soft \textit{w}-\textit{T}_2).

Keywords: Soft set, Soft topology, Soft \textit{w}-structure, Soft \textit{w}-\textit{T}_0 (\textit{w}-\textit{T}_1, \textit{w}-\textit{T}_2).

1. Introduction and Preliminaries

In 1999, Molodtsov [1] initiated the notion of soft set theory as a new mathematical tool which is free from the complex problems. Later on Maji et al. [2] proposed several operations on soft sets and some basic properties and then Pei and Miao [3] investigated the relationships between soft sets and information systems.

In 2011, Shabir and Naz [4] introduced the notion of soft topological spaces and the author [5] corrected some their results. Zorlutuna et al. [6] continued to study the properties of soft topological spaces by defining the concepts of interior and soft neighborhoods in soft topological spaces. In 2011, Cagman et al. [7] defined soft topological spaces by modifying the soft set. Also, Roy and Samanta [8] strengthen the definition of the soft topological spaces presented in [7].

In 2017, with the aim of generalizing the notion of soft topology, Zakari et al. [9] introduced a soft weak structure. Recently, Al-Saadi and Min [10] investigated the notion of soft generalized closed sets in a soft weak structure.

Meanwhile, Min and Kim [11] introduced a new notion called weak structures as the following: Let \(X \) be a non-empty set and \(P(X) \) denote the power set of \(X \).

Definition 1.1 ([1]). For \(A \subseteq E \), a pair \((F,A)\) is called a soft set over \(X \), where \(F \) is a mapping given by \(F : A \rightarrow P(X) \). For \(e \in A \), \(F(e) \) may be considered as the set of \(e \)-approximate elements of the soft set \((F,A)\).

Definition 1.2 ([2]). A soft set \((F,A)\) over \(X \) is said to be:
1) A null soft set denoted by \emptyset if $F(e) = \emptyset$ for all $e \in A$.

2) An absolute soft set denoted by \bar{X} if $F(e) = X$ for all $e \in A$.

Definition 1.3 ([2]). For any two soft sets (F, A) and (G, B) defined over a common universe X, we have:

1) $(F, A)\tilde{\subseteq}(G, B)$ iff $A \subseteq B$ and $F(e) \subseteq G(e)$ for all $e \in A$.

2) $(F, A)=(G, B)$ iff $(F, A)\tilde{\subseteq}(G, B)$ and $(G, B)\tilde{\subseteq}(F, A)$.

3) $(F, A)\cup(G, B)=(H, C)$ where $C = A \cup B$ and

$$H(e) = \begin{cases} F(e), & \text{if } e \in A - B, \\ G(e), & \text{if } e \in B - A, \\ F(e) \cup G(e), & \text{if } e \in A \cap B, \end{cases}$$

for all $e \in C$.

4) $(F, A)\cap(h(G, B) = (K, D)$ where $D = A \cap B$ and $K(e) = F(e) \cap G(e)$ for all $e \in C$.

5) $x \in (F, A)$ where $x \in X$ iff $x \in F(e)$ for all $e \in A$ and $x \not\in (F, A)$ whenever $x \not\in F(e)$ for some $e \in A$.

Definition 1.4 ([12]). For a soft set (F, A) over X, the relative complement of (F, A) (denoted by $(F, A)'$) is defined by $(F, A)' = (F', A)$, where $F' : A \to P(X)$ is given by $F'(e) = X - F(e)$ for all $e \in A$.

Definition 1.5 ([4]). Let τ be the collection of soft sets over X. Then τ is called a soft topology on X if τ satisfies the following axioms:

1) \emptyset, \bar{X} belong to τ.

2) The union of any number of soft sets in τ belong to τ.

3) The intersection of any two soft sets in τ belong to τ.

The triple (X, τ, E) is called a soft topological space over X. The member of τ are said to be soft open in X. A soft set (F, E) over X is said to be soft closed in X if its relative complement $(F, E)'$ belong to τ.

2. Soft w-Structures

Definition 2.1. Let sw be the collection of soft sets over X. Then sw is called a soft w-structure on X if sw satisfies the following axioms:

- The intersection of any two soft sets in sw belongs to sw.

The triple (X, sw, E) is called a soft w-space over X. The member of sw is said to be soft w-open in X. A soft set (F, E) over X is said to be soft w-closed in X if its relative complement $(F, E)'$ belongs to sw.

Remark 2.2. Let sw be a soft w-structure over X. The soft w-structure sw is a kind of generalized soft topology and a stronger structure than a soft weak structure defined by Zakari et al. [9] as the following: Let X be a non-empty set and E a set of parameters. A collection ω of soft sets defined over X with respect to E is called a soft weak structure [9] iff $\emptyset \in \omega$.

Example 2.3. Let $X = \{h_1, h_2, h_3, h_4\}$, $E = \{e_1, e_2\}$ and $sw = \{(\emptyset, \bar{X}, (F_1, E), (F_2, E), (F_3, E))\}$, where

- $F_1(e_1) = \{h_2, h_3\}$, $F_2(e_2) = \{h_1, h_2\}$;
- $F_2(e_1) = \{h_1, h_2\}$, $F_3(e_2) = \{h_1, h_3\}$;
- $F_3(e_1) = \{h_2\}$, $F_4(e_2) = \{h_1\}$.

Then sw is a soft w-structure over X with respect to E but not a soft topology.

Definition 2.4. Let sw be a soft w-structure over X with respect to E. For a soft set (F, E) over X, the soft w-closure of (F, E) (simply, $c_{sw}(F, E)$) and the soft w-interior of (F, E) (simply, $i_{sw}(F, E)$) are defined as the following:

- $i_{sw}(F, E) = \bigcup\{(G, E) : (G, E)\tilde{\subseteq}(F, E), (G, E) \in sw\}$.
- $c_{sw}(F, E) = \bigcap\{(H, E) : (F, E)\tilde{\subseteq}(H, E), (H, E)' \in sw\}$.

Theorem 2.5. Let sw be a soft w-structure over X with respect to the parameters set E and (F, E) a soft set. If there exists a soft w-open set (G, E) such that $x \in (G, E)\tilde{\subseteq}(F, E)$, then $x \in i_{sw}(F, E)$

Proof. It is obvious.

Example 2.6. As in Example 2.3, consider the soft w-structure sw over X with respect to E and a soft set (F_4, E) as follows:

- $F_4(e_1) = \{h_1, h_2, h_3\}$,
- $F_4(e_2) = \{h_1, h_2, h_3\}$.

Then $(F_4, E) = i_{sw}(F_4, E)$. For $h_3 \in i_{sw}(F_4, E)$, there is no a soft w-open set containing h_3 in sw. So the converse of Theorem 2.5 is not always true.

Theorem 2.7. Let sw be a soft w-structure over X with respect to the parameters set E and (F, E) a soft set. If $x \in c_{sw}(F, E)$,
then $(G, E) \cap (F, E) \neq \emptyset$ for all $(G, E) \in sw$ such that $x \in (G, E)$.

Proof. Let $x \in c_{sw}(F, E)$. Suppose that there exists an element $(G, E) \in sw$ such that $x \in (G, E)$ and $(F, E) \cap (G, E) = \emptyset$. Then $(F, E) \subset (G, E)'$, so $c_{sw}(F, E) \subset \tilde{G}(G, E)'$ and $x \notin c_{sw}(F, E)$. So it is a contradiction. \[\square \]

Example 2.8. Let $X = \{h_1, h_2, h_3\}$, $E = \{e_1, e_2\}$ and $sw = \{\emptyset, X, (F_1, E), (F_2, E), (F_3, E)\}$ where

\[
F_1(e_1) = \{h_2, h_3\}, \quad F_2(e_2) = \{h_1, h_2\}; \\
F_2(e_1) = \{h_1, h_2\}, \quad F_3(e_2) = \{h_1, h_3\}; \\
F_3(e_1) = \{h_2\}, \quad F_4(e_2) = \{h_1\}.
\]

Then sw is a soft w-structure over X with respect to E. Consider a soft set (F_4, E) defined as:

\[
F_4(e_1) = \{h_1\}, \quad F_4(e_2) = \{h_3\}.
\]

Since (F_4, E) is soft w-closed, $(F_4, E) = c_{sw}(F_4, E)$. For $h_1 \in X$, (F_2, E) is the only soft w-open set and $(F_4, E) \cap (F_2, E) = \emptyset$, however, $h_3 \notin c_{sw}(F_4, E)$. So the converse of Theorem 2.7 is not always true.

Theorem 2.9. Let sw be a soft w-structure defined over X with respect to the parameters set E and (F, E) be a soft set.

- If (F, E) is a soft w-open set, then $(F, E) = i_{sw}(F, E)$.
- If (F, E) is a soft w-closed set, then $(F, E) = c_{sw}(F, E)$.

Proof. From the definitions of soft w-interior and soft w-closure, it is obvious. \[\square \]

But the converses in Theorem 2.9 are not always true as shown the next example.

Example 2.10. Let $X = \{h_1, h_2, h_3\}$, $E = \{e_1, e_2\}$ and $sw = \{\emptyset, X, (F_1, E), (F_2, E), (F_3, E), (F_4, E), (F_5, E)\}$, where

\[
F_1(e_1) = \{h_3\}, \quad F_1(e_2) = \{h_2\}; \\
F_2(e_1) = \{h_2, h_3\}, \quad F_2(e_2) = \{h_1, h_2\}; \\
F_3(e_1) = \{h_1, h_2\}, \quad F_3(e_2) = \{h_1, h_3\}; \\
F_4(e_1) = \{h_1\}, \quad F_4(e_2) = \{h_2, h_3\}; \\
F_5(e_1) = \{h_2\}, \quad F_4(e_2) = \{h_1\}; \\
F_6(e_1) = \{h_1, h_3\}, \quad F_4(e_2) = \{h_2, h_3\}.
\]

Then sw is a soft w-structure over X with respect to E. For a soft set (F_5, E), $c_{sw}(F_5, E) = (F_5, E)$ but (F_5, E) is not soft w-closed. And, for a soft set (F_6, E), $i_{sw}(F_6, E) = (F_6, E)$ but (F_6, E) is not soft w-open.

Theorem 2.11. Let sw be a soft w-structure over X with respect to E. Let (F, E) and (G, E) be two soft sets over X. Then:

- $i_{sw}(F, E) \subset \tilde{G}(F, E)$.
- If $(F, E) \subset \tilde{G}(F, E)$, then $i_{sw}(F, E) \subset i_{sw}(G, E)$.
- $i_{sw}(F, E) = i_{sw}(F, E) \subset i_{sw}(G, E)$.
- $i_{sw}(F, E) \subset i_{sw}(F, E) = i_{sw}(F, E)$.

Proof. (1) and (2) are obvious.

(3) It is obvious that $i_{sw}(F, E) \subset \tilde{G}(F, E) \subset i_{sw}(G, E)$ from (2). For soft w-open sets $(U, E) \subset \tilde{G}(F, E)$ and $(V, E) \subset \tilde{G}(G, E)$, $(U, E) \cap (V, E)$ is a soft w-open set contained in $(F, E) \cap (G, E)$. This implies that $i_{sw}(F, E) \cap i_{sw}(G, E) = i_{sw}((F, E) \cap (G, E))$.

(4) From (1), it follows $i_{sw}(F, E) \subset i_{sw}(F, E) \subset i_{sw}(F, E)$. For any soft w-open set (U, E) such that $(U, E) \subset i_{sw}(F, E)$, $(U, E) = i_{sw}(U, E) \subset i_{sw}(i_{sw}(F, E))$, and so $i_{sw}(F, E) \subset i_{sw}(i_{sw}(F, E))$. Consequently, we have $i_{sw}(i_{sw}(F, E)) = i_{sw}(F, E)$. \[\square \]

Theorem 2.12. Let sw be a soft w-structure defined over X with respect to E. If (F, E) and (G, E) are two soft sets over X, then:

- $(F, E) \subset \tilde{c}_{sw}(F, E)$.
- If $(F, E) \subset \tilde{c}_{sw}(F, E)$, then $c_{sw}(F, E) \subset c_{sw}(G, E)$.
- $c_{sw}(F, E) \subset c_{sw}(G, E)$.
- $c_{sw}(c_{sw}(F, E)) = c_{sw}(F, E)$.

Proof. It is similar to the proof of Theorem 2.11. \[\square \]

Now, we introduce the separation axioms in soft w-space with a soft w-structure sw.

Definition 2.13. Let sw be a soft w-structure over X with respect to E. A soft w-space (X, sw, E) is called:
\[w - T_0 \] if for each \(x, y \in X \) such that \(x \neq y \), there exists a soft \(w \)-open set \((F, E)\) such that \(x \in (F, E) \) and \(y \notin (F, E) \) or \(x \notin (F, E) \) and \(y \in (F, E) \).

\[w - T_1 \] if for each \(x, y \in X \) such that \(x \neq y \), there exist soft \(w \)-open sets \((F, E)\) and \((G, E)\) such that \(x \in (F, E) \) and \(y \notin (F, E) \) and \(x \notin (G, E) \) and \(y \in (G, E) \).

\[w - T_2 \] if for each \(x, y \in X \) such that \(x \neq y \), there exist soft \(w \)-open sets \((F, E)\) and \((G, E)\) such that \(x \in (F, E) \) and \(y \in (G, E) \) and \((F, E) \cap (G, E) = \emptyset \).

We have the following diagram:

\[
\text{soft } w - T_2 \Rightarrow \text{soft } w - T_1 \Rightarrow \text{soft } w - T_0.
\]

Example 2.14. Let \(X = \{h_1, h_2, h_3\} \), \(E = \{e_1, e_2\} \) and \(\text{sw} = \{\emptyset, X, (F_1, E), (F_2, E), (F_3, E), (F_4, E), (F_5, E), (F_6, E)\} \), where

\[
\begin{align*}
F_1(e_1) &= \{h_3\}, & F_1(e_2) &= \{h_3\}; \\
F_2(e_1) &= \{h_1, h_2\}, & F_2(e_2) &= \{h_1, h_3\}; \\
F_3(e_1) &= \{h_2, h_3\}, & F_3(e_2) &= \{h_1, h_2\}; \\
F_4(e_1) &= \{h_2\}, & F_4(e_2) &= \{h_1\}; \\
F_5(e_1) &= \{h_3\}, & F_5(e_2) &= \emptyset; \\
F_6(e_1) &= \emptyset, & F_6(e_2) &= \{h_3\}.
\end{align*}
\]

Then \(\text{sw} \) is a soft \(w \)-structure over \(X \) with respect to \(E \). It is obviously a soft \(w - T_1 \) space. For \(h_1, h_2 \in X \), \((F_2, E)\) and \((F_3, E)\) are unique soft \(w \)-open sets of \(h_1, h_2 \), respectively. But \((F_2, E) \cap (F_3, E) \neq \emptyset \). So \((X, \text{sw}, E)\) is not soft \(w - T_2 \).

Example 2.15. Let \(X = \{h_1, h_2, h_3\} \), \(E = \{e_1, e_2\} \) and \(\text{sw} = \{\emptyset, X, (F_1, E), (F_2, E), (F_3, E), (F_4, E)\} \), where

\[
\begin{align*}
F_1(e_1) &= \{h_1\}, & F_1(e_2) &= \{h_1\}; \\
F_2(e_1) &= \{h_2\}, & F_2(e_2) &= \{h_2\}; \\
F_3(e_1) &= \{h_1, h_3\}, & F_3(e_2) &= X; \\
F_4(e_1) &= \emptyset, & F_4(e_2) &= \{h_2\}.
\end{align*}
\]

Then \(\text{sw} \) is a soft \(w \)-structure over \(X \) with respect to \(E \). It is obviously a soft \(w - T_0 \) space but it is not soft \(w - T_1 \).

Let \(\text{sw} \) be a soft \(w \)-structure over \(X \) with respect to \(E \). A soft \(w \)-space \((X, \text{sw}, E)\) is called relative soft \(w - T_0 \) if for each \(x, y \in X \) such that \(x \neq y \), there exists a soft \(w \)-open set \((F, E)\) such that \(x \in (F, E) \) and \(y \notin (F, E) \) or \(x \notin (F, E) \) and \(y \in (F, E) \).

Theorem 2.16. Let \(\text{sw} \) be a soft \(w \)-structure on \(X \). If \(X \) is a relative soft \(w - T_0 \) space, then for each \(x, y \in X \) such that \(x \neq y \), we have \(c_{\text{sw}}(x, E) \neq c_{\text{sw}}(y, E) \).

Proof. Let \(X \) be a relative soft \(w - T_0 \) and \(x, y \in X \) such that \(x \neq y \). Then there exists a soft \(w \)-open set \((F, E)\) such that \(x \in (F, E) \) and \(y \notin (F, E) \). Therefore \((F, E)'\) is a soft \(w \)-closed set such that \(x \notin (F, E)' \) and \(y \in (F, E)' \). Since \(c_{\text{sw}}(y, E) \) is the intersection of all soft \(w \)-closed subsets containing \((y, E)\), \(c_{\text{sw}}(y, E) \cap (F, E)' \) and hence \(x \notin c_{\text{sw}}(y, E) \). Thus \(c_{\text{sw}}(x, E) \neq c_{\text{sw}}(y, E) \).

Theorem 2.17. Let \(\text{sw} \) be a soft \(w \)-structure on \(X \). If \(y \in c_{\text{sw}}(x, E) \), then for each soft \(w \)-open set \((G, E)\) containing \(y \), there exists a parameter \(e \in E \) such that \(x \in G(e) \).

Proof. Let \(y \in c_{\text{sw}}(x, E) \). Then by Theorem 2.7, \((G, E) \cap (x, E) \neq \emptyset \) for all \((G, E) \in \text{sw} \) such that \(y \in (G, E) \). Since \((G, E) \cap (x, E) \neq \emptyset \), there exists a parameter \(e \in E \) such that \(x \in G(e) \).

Theorem 2.18. Let \(\text{sw} \) be a soft weak structure on \(X \). A soft \(w \)-space \((X, \text{sw}, E)\) is soft \(w - T_1 \) if \((x, E)\) is soft \(w \)-closed set for all \(x \in X \).

Proof. Let \(x, y \in X \) such that \(x \neq y \). Then \((x, E)'\) and \((y, E)\)' are soft \(w \)-open sets such \(y \in (x, E)' \), \(x \in (x, E)' \) and \(y \notin (y, E)' \), \(x \in (y, E)' \). Hence \(X \) is soft \(w - T_1 \).

3. Conclusions

The author introduced the notion of soft \(w \)-structure and investigated some basic properties of this new structure. In the next research, the author will introduce the associated soft \(w \)-structures induced by soft topologies and study the relationship between soft \(w \)-structures and associated soft \(w \)-structure induced by soft topologies.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

[1] D. Molodtsov, “Soft set theory—First results,” *Computers & Mathematics with Applications*, vol. 37, no. 4-5, pp. 19-31, 1999. https://doi.org/10.1016/S0898-1221(99)00056-5
[2] P. K. Maji, R. Biswas, and A. R. Roy, “Soft set theory,” Computers & Mathematics with Applications, vol. 45, no. 4-5, pp. 555-562, 2003. https://doi.org/10.1016/S0898-1221(03)00016-6

[3] D. Pie and D. Miao, “From soft sets to information systems,” in Proceedings of 2005 IEEE International Conference on Granular Computing, Beijing, China, 2005, pp. 617-621. https://doi.org/10.1109/GRC.2005.1547365

[4] M. Shabir and M. Naz, “On soft topological spaces,” Computers & Mathematics with Applications, vol. 61, no. 7, pp. 1786-1799, 2011. https://doi.org/10.1016/j.camwa.2011.02.006

[5] W. K. Min, “A note on soft topological spaces,” Computers & Mathematics with Applications, vol. 62, no. 9, pp. 3524-3528, 2011. https://doi.org/10.1016/j.camwa.2011.08.068

[6] I. Zorlutuna, M. Akdag, W. K. Min, and S. Atmaca, “Remarks on soft topological spaces,” Annals of Fuzzy Mathematics and Informatics, vol. 3, no. 2, pp. 171-185, 2012.

[7] N. Cagman, S. Karatas, and S. Enginoglu, “Soft topology,” Computers & Mathematics with Applications, vol. 62, no. 1, pp. 351-358, 2011. https://doi.org/10.1016/j.camwa.2011.05.016

[8] S. Roy and T. K. Samanta, “An introduction of a soft topological spaces,” in Proceedings of UGC Sponsored National Seminar on Recent Trends in Fuzzy Set Theory, Rough Set Theory and Soft Set Theory, Howrah, India, 2011, pp. 9-12.

[9] A. H. Zakari, A. Ghareeb, and S. Omran, “On soft weak structures,” Soft Computing, vol. 21, no. 10, pp. 2553-2559, 2017. https://doi.org/10.1007/s00500-016-2136-8

[10] H. S. Al-Saadi and W. K. Min, “On soft generalized closed sets in a soft topological space with a soft weak structure,” International Journal of Fuzzy Logic and Intelligent Systems, vol. 17, no. 4, pp. 323-328, 2017. https://doi.org/10.5391/IJFIS.2017.17.4.323

[11] Y. K. Kim and W. K. Min, “On weak structures and w-spaces,” Far Eastern Journal of Mathematical Sciences, vol. 97, no. 5, pp. 549-561, 2015. http://dx.doi.org/10.17654/FJMSJul2015_549_561

[12] M. I. Ali, F. Feng, X. Liu, W. K. Min, and M. Shabir, “On some new operations in soft set theory,” Computers & Mathematics with Applications, vol. 57, no. 9, pp. 1547-1553, 2009. https://doi.org/10.1016/j.camwa.2008.11.009

Won Keun Min received the M.S. and the Ph.D. degrees in mathematics from Korea University, Seoul, Korea in 1983 and 1987, respectively. He is currently a professor in the Department of Mathematics, Kangwon National University. His research interests include general topology, fuzzy topology and soft set theory. E-mail: wkmin@kangwon.ac.kr