0♯ AND ELEMENTARY END EXTENSIONS OF V_κ

AMIR LESHEM

(Communicated by Carl G. Jockusch)

Abstract. In this paper we prove that if κ is a cardinal in L[0♯], then there is an inner model M such that M ⊨ (V_κ, ∈) has no elementary end extension. In particular if 0♯ exists then weak compactness is never downwards absolute. We complement the result with a lemma stating that any cardinal greater than ℵ_1 of uncountable cofinality in L[0♯] is Mahlo in every strict inner model of L[0♯].

1. Introduction

In this paper we consider the question of existence of elementary end extensions of models of the form (V_κ, ∈).

Definition 1.1. 1. Let (E_M, ≺_M) denote the structure of all non-trivial elementary end extensions of M, with A ≺_M B iff B is an elementary end extension of A.

2. Let (E^wf_M, ≺_M) denote the structure of all non-trivial well founded elementary end extensions of M, with A ≺_M B iff B is an elementary end extension of A.

Several results regarding the existence of elements in E_M were proved by Keisler, Silver and Morley.

Theorem 1.2 (Keisler, Morley). Let M be a model of ZFC, cof(On^M) = ℵ. Then E_M ≠ ∅.

Theorem 1.3 (Keisler, Silver). Let M = (V_κ, ∈) be a model of ZFC, where κ is weakly compact cardinal. Then for every S ⊆ M E^wf_M(V_κ, ∈, S) ≠ ∅.

Villaveces [5], [6] has proved several other results regarding the existence of elementary end extensions of V_κ.

Theorem 1.4 (Villaveces). The theory “ZFC + GCH + ∃λ(λ measurable) + ∀κ|κ inaccessible not weakly compact → ∃ transitive M_κ ⊨ ZFC such that o(M) = κ and E^wf_M = ∅” is consistent relative to the theory “ZFC + ∃λ(λ measurable) + the weakly compact cardinals are cofinal in On”.

He also proved that the property E^wf_M ≠ ∅, is not preserved in certain generic extensions by destroying a weakly compact cardinal. In this paper we consider the

1991 Mathematics Subject Classification. 03E45, 03E55.
Key words and phrases. Models of set theory, 0♯, inner models.

©1997 American Mathematical Society
problem of downwards absoluteness of the existence of well founded elementary end extensions of $V_\kappa$. We prove the following:

**Theorem 1.5.** If $0^\sharp$ exists then for every cardinal $\kappa$ there is an inner model $M$ such that

(1.1) \[ M \models E_{V_\kappa} = \emptyset. \]

In particular weak compactness is never downwards absolute, once we have $0^\sharp$ in the universe. On the other hand we will prove that any cardinal with uncountable cofinality is Mahlo in any strict inner model of $L[0^\sharp]$. I would like to thank the referee for pointing out an inaccuracy in the formulation of lemma 3.1 and for asking the question at the end of the paper.

2. Main Theorem

In this section we prove theorem 1.5. Let $\kappa$ be a cardinal. Since we assume that $0^\sharp$ exists we can construct our model inside the inner model $L[0^\sharp]$. Note that since $\kappa$ is a cardinal in $V$ it remains a cardinal in $L[0^\sharp]$, and hence it is weakly compact in $L$. Our model will be a generic extension of $L$, such that we will be able to construct a generic object inside $L[0^\sharp]$. The basic idea will be to construct a generic Suslin tree and then to code it. For the construction of the Suslin tree we will follow Kunen’s construction [2], while the coding will use Levy collapse of certain $L$ cardinals. Then we will obtain the generic filter inside $L[0^\sharp]$.

The following theorem by Kunen gives us the forcing for generating the Suslin tree.

**Theorem 2.1.** Let $\kappa$ be a weakly compact cardinal and $P_\kappa$ be the forcing for adding a Cohen subset to $\kappa$. Then $P_\kappa \simeq R_\kappa \ast T_\kappa$, where $R_\kappa$ is a forcing that adds a Suslin tree to $\kappa$, and $T_\kappa$ is the forcing defined by the tree.

Let $P$ be the reverse Easton iteration for adding a Cohen subset to each inaccessible, defined by:

**Definition 2.2.**

(2.1) \[ P = (P_\alpha, Q_\alpha \mid \alpha \in On), \]

where \[ P_0 = \emptyset. \]

If $\alpha$ is not inaccessible then $P_\alpha \Vdash Q_\alpha = \emptyset$

If $\alpha$ is inaccessible then $Q_\alpha$ is a $P_\alpha$ name for a partial order adding a Cohen subset to $\alpha$ i.e. $P_\alpha \Vdash Q_\alpha = (2^{<\alpha}, \subseteq)$.

Direct limits are taken at inaccessible limits of inaccessibles and inverse limits otherwise.

Solovay (see M. Stanley [4]) proved that the reverse Easton support iteration for adding Cohen subsets to every $L$ inaccessible has a generic filter in $L[0^\sharp]$, and therefore our iteration up to $\kappa$ has a generic filter as well.

Let $G = \langle G_\alpha \mid \alpha \leq \kappa \rangle$ be $P$ generic. By Kunen’s theorem we can interpret $G_\kappa$ as a pair $G_\kappa = \langle T_\kappa, b_\kappa \rangle$ where $T_\kappa$ is a $\kappa$ Suslin tree and $b_\kappa$ is a branch through $T_\kappa$.

Next we define the forcing used to code the tree $T_\kappa$. Let $S$ be the Easton supported product of collapsing of $\alpha^{+3}$ to $\alpha^{+2}$ defined inside $L$.

(2.2) \[ S = \prod \{ S_\alpha : \alpha \text{ is inaccessible} \} \]
where $S_\alpha = \text{Coll}(\alpha^{+2}, \alpha^{+3})$.

**Proposition 2.3.** There is a $P \times S$ generic over $L$, inside $L[\emptyset]$.

**Proof.** The method of proof of this lemma is almost identical to the proof of M. Stanley of Solovay’s theorem that there exists a $P$ generic filter over $L$ inside $L[\emptyset]$.

We shall build the generic filter by induction on the Silver indiscernibles. The main point will be taking care that at limits the generic filter will be the direct limit of the previously built generic filters.

Let $\langle i_\alpha : \alpha < \kappa \rangle$ be an increasing enumeration of the indiscernibles below $\kappa$. For any indiscernible $\lambda$ the forcing can be factored as

\begin{equation}
(2.3) \quad P \times S = \left( P^{\lambda+1} \times P_{\lambda+1} \right) \times \left( S^{\lambda} \times S_\lambda \right)
\end{equation}

where $P^\lambda$ is the iteration up to $\lambda$, and $P_\lambda$ is the iteration from $\lambda$ upwards. For each $\alpha$ we define $G^{i_\alpha}$, and then define $(G^{i_\alpha+1}, H^{i_\alpha+1})$ such that $G^{i_\alpha+1} \times H^{i_\alpha+1}$ is $(P^{i_\alpha} \times Q^{i_\alpha}) \times S^{i_\alpha+1}$ generic over $L[Q^{i_\alpha} \times H^{i_\alpha}]$. We shall build the generic filter by induction on the Silver indiscernibles. The main point will be taking care that at limits the generic filter will be the direct limit of the previously built generic filters.

We have that in $L$ for every indiscernible $\lambda$ both $P^\prime_{\lambda+1}$ and $S_\lambda$ are $\lambda^+$ closed, where

\begin{equation}
(2.4) \quad P^\prime_{\lambda+1} = \{ \tau : \tau \text{ is a name and } \exists \eta \in P_{\lambda+1} \}
\end{equation}

is the term forcing for $P_{\lambda+1}$. Hence $P_{\lambda+1} \times S_\lambda$ is $\lambda^+$-distributive over $L P^{\lambda+1} \times S^\lambda$, since $P^{\lambda+1} \times S^\lambda$ is obviously $\lambda^+\text{-c.c.}$.

By the same argument $P^{i_\alpha+1}_{i_\alpha+1} \times S^{i_\alpha+1}_{i_\alpha}$ is also $i_\alpha^+$ distributive. Let

\begin{equation}
(2.5) \quad M = L P^{i_\alpha+1} \times S^{i_\alpha+1}.
\end{equation}

Note that each $L$ name for dense subset of $P^{i_\alpha+1}_{i_\alpha+1} \times S^{i_\alpha+1}_{i_\alpha}$ in $M$, belongs to the Skolem hull of the ordinals up to $i_\alpha$, and finitely many indiscernibles above $i_\alpha+1$, say $\{i_{\alpha+1}, \ldots, i_{\alpha+n}\}$. Hence in $L[\emptyset]$ we can represent the dense subsets of $P^{i_\alpha+1}_{i_\alpha+1} \times S^{i_\alpha+1}_{i_\alpha}$ and finitely many indiscernibles above $i_\alpha+1$, by a countable union of families of dense subsets each of size $i_\alpha$. Now using the $i_\alpha^+$-distributivity we can meet each of these dense subsets. To ensure downwards compatibility we also demand that $(G^{i_\alpha+1}, H^{i_\alpha+1})$ extends $(G^{i_\alpha}, H^{i_\alpha})$. Finally use the same distributivity argument to define a generic filter $G(i_{\alpha+1})$ for $Q^{i_{\alpha+1}}$ over $L(P^{i_{\alpha+1}} \times S^{i_{\alpha+1}})$. Again in order to ensure extension we demand that $G(i_{\alpha+1})$ extends $G(i_\alpha)$, by putting a condition forcing it into the generic. Since $S$ is not active at these stages and using the fact that $P$ is a reverse Easton iteration this is possible.

We have built generic objects $\langle G^i \times H^i : i < \alpha \rangle$ for the product up to $\alpha$. Now we would like to build a generic filter for $P^{i_\alpha} \times S^{i_\alpha}$. Note that since $i_\alpha$ is Mahlo in $L$ we take direct limit. Moreover $P^{i_\alpha} \times S^{i_\alpha}$ is $i_\alpha^+$-c.c. Define $G^{i_\alpha}$, $H^{i_\alpha}$ by

\begin{equation}
(2.6) \quad p \in G^{i_\alpha} \text{ iff } \forall \gamma < i_\alpha p|\gamma \in G^\gamma.
\end{equation}

\begin{equation}
(2.7) \quad s \in H^{i_\alpha} \text{ iff } \forall \gamma < i_\alpha s|\gamma \in H^\gamma.
\end{equation}

We prove that $G^{i_\alpha} \times H^{i_\alpha}$ is $P^{i_\alpha} \times S^{i_\alpha}$ generic over $L$. Suppose that $D \subseteq P^{i_\alpha} \times S^{i_\alpha}$ is dense open. $D$ belongs to the Skolem hull of finitely many ordinals below $i_\alpha$ a $\langle \gamma_1, \ldots, \gamma_n \rangle$ and finitely many indiscernibles above $\alpha$ say
Let \( i_n = \langle i_{\alpha+1}, \ldots, i_{\alpha+n} \rangle \). Let \( \sup(a) < i_\beta < i_\alpha \). Define an elementary embedding \( j : L \to L \) by
\[
(2.10) \quad j(i_\gamma) = \begin{cases} 
  i_\gamma & \text{if } \gamma < \beta \\
  i_{\alpha+\beta} & \text{if } \gamma = \beta + \delta, 0 \leq \delta
\end{cases}
\]

Obviously \( D \in \text{rng} j \), and \( j^{-1}(D) \) is dense open in \( P^\beta \times S^\beta \). Let \( (p', q') \in j^{-1}(D) \cap (P^\beta \times S^\beta) \). Since both \( p', q' \) are trivial on an end segment we obtain that
\[
(2.9) \quad j((p', q')) = (p, q)^\wedge \langle \emptyset Q, S^\beta : \beta \leq \gamma < \alpha \rangle.
\]

Hence by our choice of \( (G^{i_\alpha}, H^{i_\alpha}) \) we obtain that \( j((p', q')) \in (G^{i_\alpha}, H^{i_\alpha}) \).

Finally we prove that we can find a generic object \( G(i_\alpha) \) for \( Q_{i_\alpha} \) over \( L(G^{i_\alpha} \times H^{i_\alpha}) \). Define
\[
(2.11) \quad G(i_\alpha) = \cup_{\beta < \alpha} G(i_\beta).
\]

Let \( D \) be a dense subset of \( Q_{i_\alpha} \) in \( L(G^{i_\alpha} \times H^{i_\alpha}) \). Let \( \hat{D} \) be a name for \( D \) in \( P^{i_\alpha} \times S^{i_\alpha} \). Again \( \hat{D} \) is in the Skolem hull of some \( i_\beta < i_\alpha \) and finitely many indiscernibles \( i_n = \langle i_{\alpha+1}, \ldots, i_{\alpha+n} \rangle \). Define \( j : L \to L \) as above. As we have proved if \( (p, q) \in G^{i_\beta} \times H^{i_\beta} \) then \( j(p, q) \in G^{i_\alpha} \times H^{i_\alpha} \). Hence the embedding \( j \) has a canonical extension to an embedding \( j^\wedge : L[G^{i_\beta} \times H^{i_\beta}] \to L[G^{i_\alpha} \times H^{i_\alpha}] \) defined by
\[
(2.12) \quad j^\wedge(\tau(G^{i_\beta} \times H^{i_\beta})) = j(\tau)(G^{i_\alpha} \times H^{i_\alpha}).
\]

Since \( \hat{D} \) is in \( \text{rng} j \) we have \( D \in \text{rng} \hat{j} \). The proof ends as follows: Let
\[
(2.13) \quad p' \in G(i_\beta) \cap \hat{j}^{-1}(D).
\]

\( p' \) exists since by induction hypothesis, \( G(i_\beta) \) is \( Q_{i_\beta} \) generic, and \( \hat{j}^{-1}(D) \) is dense in \( Q_{i_\beta} \) by elementarity, and hence \( \hat{j}(p') \in D \). Since \( p' \in L_{i_\beta}[G^{i_\beta} \times H^{i_\beta}] \) we have
\[
(2.14) \quad p' \in G(i_\beta) \cap D \subseteq G(i_\alpha) \cap D.
\]

Let \( G \times H \) be \( P \times S \) generic over \( L \). Suppose that \( H = \langle h_\alpha | \alpha < \kappa \rangle \) is the \( S \) generic filter. Let \( < , > \) be a definable pairing function in \( L \), such that for every \( \beta, \gamma, < \beta, \gamma > \) is an \( L \) inaccessible. Since the pairing is definable and \( \kappa \) is an indiscernible it is closed under the pairing function.

Let \( T \) be the tree part of \( G(\kappa) \). Our final model will be \( N = L[T, \langle h_\alpha | \alpha \in C_T \rangle] \)
where
\[
C_T = \{ \alpha | \exists \beta, \gamma (\alpha =< \beta, \gamma > \wedge \beta < T \gamma) \}.
\]

To finish the proof of the theorem we have to prove:

**Proposition 2.4.**
\[
(2.14) \quad N \models \text{“} V_\kappa \text{ has no elementary end extension”}.
\]

**Proof.** The proof will be done by a sequence of claims.

**Claim 2.5.** \( N \models T \) is Suslin.
Proof. The claims follows from the fact that the forcing $S$ is $\kappa$-Knaster in $L[T]$. Hence $S \times T$ is $\kappa$-c.c. in $L[T]$, so especially $T$ is $\kappa$-c.c. in $N' = L[T; \langle h_\alpha | \alpha < \kappa \rangle]$. But $N \subseteq N'$ and $\kappa^N = \kappa^{N'}$, thus $N$ contains no large anti-chains of $T$ as well. □

Claim 2.6. For every inaccessible $\alpha$

\begin{equation}
(2.15) \quad N \models \alpha^{+++L} < \alpha^{+++} \iff \alpha \in C_T.
\end{equation}

Proof. Since for every $\alpha \in C_T$ the claim obviously holds, it will be enough to prove that other cardinals are not collapsed inside $L[G, \langle h_\alpha | \alpha \in C_T \rangle]$. For each $\mu \notin C_T$ we can even work inside $L[G, \langle h_\alpha | \alpha \neq \mu \rangle]$. However since both forcing notions $P$ and

$$S^{-\mu} = \prod \{ S_\alpha : \alpha \neq \mu \text{ and } \alpha \text{ is inaccessible} \}$$

factors nicely, it is obvious that the only $L$-cardinals collapsed are the triple successors of cardinals in $C_T$.

Notice that by the inaccessibility of $\kappa$ all the collapsing functions are inside $V^N_\kappa$.

Now we finish the proof of proposition 2.4. In $(V^N_\kappa, \in)$ the tree $T$ is definable by the first order formula:

$$\beta <_T \gamma \iff \exists \alpha (\alpha \text{ is inaccessible} \land \alpha = \beta, \gamma > \wedge \alpha^{+++L} < \alpha^{+++} ).$$

$(V^N_\kappa, \in) \models T$ is a $\kappa$ tree, i.e., for every ordinal $\alpha \{ x \in T | \text{hight}_T(x) = \alpha \}$ is a set, and for every ordinal $\alpha$ there is an element of $T$ of hight $\alpha$. Assume that $(M, E)$ is an end extension of $(V^N_\kappa, \in)$. Let $a$ be a new ordinal in $M$. In $M$ there is a tree $T'$ which end extends the tree $T$, since $T$ was definable. By elementarity

$$M \models \text{there is a branch } b \text{ in } T' \text{ of length } a.$$

Now it follows that

$$N \models \{ x \in b | \text{rk}(x) < \kappa \} \text{ is a branch through } T.$$

Hence any end extension of $(V^N_\kappa, \in)$ will provide a branch through $T$ in $N$. This is a contradiction since $N \models T$ is Suslin. □

3. Mahloness in inner models

In view of the previous result it is natural to ask whether we can get an inner model $M \subseteq L[0^\#]$ such that for every inaccessible cardinal $\alpha \in M$, $(V_\alpha, \in)$ has no well founded elementary end extension. This turns out to be impossible by the following lemma:

Lemma 3.1. Let $\kappa > \aleph_1$ be a cardinal in $L[0^\#]$, $\text{cf}(\kappa) > \aleph_0$, then $\kappa$ is weakly Mahlo in any strictly inner model $M \subseteq L[0^\#]$. Moreover if $\kappa$ is a limit cardinal then $\kappa$ is strongly Mahlo in every $M \subseteq L[0^\#]$.

Proof. The basic idea is to use the covering theorem to prove that certain cardinals are not collapsed, in any strict inner model of $L[0^\#]$. Then we use the covering theorem again to prove that actually there must be a stationary set of inaccessibles below $\kappa$. Let $M \subseteq L[0^\#]$ be an inner model. Let $I = \{ i_\alpha | \alpha \in On \}$ be an increasing enumeration of Silver’s indiscernibles. Then for every $\alpha$ such that $\omega < \text{cf}(\alpha)$ we have $M \models i_\alpha^{+L}$ is a cardinal. The proof of this uses an idea of Beller [1]. Assume $M \models i_\alpha^{+L}$ is not a cardinal. Then $|i_\alpha^{+L}|^M = |i_\alpha|^M$. By the covering theorem also $M \models \text{cf}(i_\alpha^{+L}) = \text{cf}(i_\alpha) = |i_\alpha|$. So in $M$ there is an $f : i_\alpha \rightarrow i_\alpha^{+L}$ which maps in
an order preserving way a cofinal subset of $i_\alpha$ into a cofinal subset of $i_\alpha^+ L$. Since $L[0^\sharp] \models \text{cf}(i_\alpha^+ L) = \omega$ choose a cofinal sequence (in $i_\alpha^+ L$) $\{\beta_n : n < \omega\}$ inside $L[0^\sharp]$. Now let $\gamma_n$ be the least $\gamma$ such that $f(\gamma) > \beta_n$. We obtain that $\{\gamma_n : n < \omega\}$ is cofinal in $i_\alpha$ so $L[0^\sharp] \models \text{cf}(i_\alpha) = \omega$. This contradicts the fact that $i_\alpha$ has uncountable cofinality. Hence every limit of indiscernibles of uncountable cofinality is a limit cardinal. By the covering theorem it must be a regular cardinal, so it is weakly inaccessible. Especially any uncountable cardinal is weakly inaccessible.

Suppose now that $i_\alpha$ is not Mahlo in $M$ and $i_\alpha$ is a limit of indiscernibles of uncountable cofinality. Then there is a club $C \subseteq i_\alpha$ consisting of singular cardinals in $M$. By the covering theorem (between $L$ and $M$) each element of $C$ is singular in $L$. Hence $C \cap I = \emptyset$. Hence $L[0^\sharp] \models \text{cf}(i_\alpha) = \omega$ (since it has two disjoint clubs through $i_\alpha$). Therefore if $\text{cf}(i_\alpha) > \omega$ and $i_\alpha$ is a limit of indiscernibles of uncountable cofinality it must be Mahlo in any strict inner model.

If $\kappa$ is also a limit cardinal in $L[0^\sharp]$ it is strong limit by GCH. Hence it is strong limit in any inner model, so it is strongly Mahlo in $M$.

Therefore if $\kappa$ is limit in $L[0^\sharp]$ and $\text{cf}(\kappa) > \omega$, then in every inner model there is an inaccessible $\alpha < \kappa$ such that $\mathbb{E}^{\text{WF}}_{(V, \kappa)} \neq \emptyset$.

A natural question is whether one can have no weakly compacts in a strictly inner model of $L[0^\sharp]$. We comment that if there is a $\kappa$ such that $L[0^\sharp] \models \kappa \rightarrow (\omega)^{<\omega}$ then by a result of Silver \cite{Silver} any inner model $M$, $M \models \kappa \rightarrow (\omega)^{<\omega}$, hence there are many ineffable cardinals in $M$. Similarly if there is a subtle cardinal $\kappa$, in $L[0^\sharp]$, then obviously $\kappa$ is subtle in every inner model (the definition is $\Pi_1$). Hence there are many large cardinals below it in any inner model (e.g., totally indescribables).

However the following question remains open:

**Question:** $(\text{ZFC} + V = L[0^\sharp])$. Let $M$ be an inner model. Is it consistent that $M$ has no weakly compact cardinals? Is it consistent that for no $\kappa M \models \kappa \rightarrow (\omega)^{<\omega}$?

**References**

[1] A. Beller, R.B. Jensen, and P. Welch. *Coding the Universe*. Cambridge University Press, 1982.

[2] K. Kunen. Saturated ideals. *Journal of Symbolic Logic*, 102:173–181, 1978.

[3] J. Silver. *Some applications of model theory in set theory*. PhD thesis, University of California, Berkeley, CA, 1966.

[4] M.C. Stanley. Backwards Easton forcing and $0^\sharp$. *Journal of Symbolic Logic*, 53, 1988.

[5] A. Villaveces. Chains of elementary end extensions of models of set theory. *Journal of Symbolic Logic*, 63:1116–1136, September 1998.

[6] A. Villaveces. Height of models of ZFC and the existence of end elementary extensions. Preprint, 1996.

**Institute of Mathematics, Hebrew University, Jerusalem, Israel**

**Current address:** Circuit and Systems, Faculty of Information Technology and Systems, Mekeleweg 4, 2628CD Delft, The Netherlands

**E-mail address:** leshem@cas.et.tudelft.nl