Summary: We study skew-amenable topological groups, i.e., those admitting a left-invariant mean on the space of bounded real-valued functions left-uniformly continuous in the sense of Bourbaki. We prove characterizations of skew-amenability for topological groups of isometries and automorphisms, clarify the connection with extensive amenability of group actions, establish a Følner-type characterization, and discuss closure properties of the class of skew-amenable topological groups. Moreover, we isolate a dynamical sufficient condition for skew-amenability and provide several concrete variations of this criterion in the context of transformation groups. These results are then used to decide skew-amenability for a number of examples of topological groups built from or related to Thompson’s group F and Monod’s group of piecewise projective homeomorphisms of the real line.

MSC:

22A10 Analysis on general topological groups
43A07 Means on groups, semigroups, etc.; amenable groups
54H20 Topological dynamics (MSC2010)

Keywords:
topological group; group action; amenability; extensive amenability; isometry group

References:
[1] Proof. This is a consequence of Proposition 8.2, Remark 8.1, and Corollary 7.6. Alternatively, Corollary 8.3 above may be proved using Corollary 3.13 and Remark 8.1, via a more concrete rendering of the argument proving Proposition 7.5. Similarly, one may deduce Corollary 9.2 below from Corollary 3.13 and amenability of Z, by suitably reproducing the argument from the proof of Proposition 7.5. Furthermore, let us note the following immediate consequences of our observations above: Corollary 8.4. Let A be a unital subring of R. The following hold:

[2] H.A/ u is skew-amenable.

[3] An interesting discussion of properties of a topological space X ensuring that the associated compact-open topology and the topology of pointwise convergence agree on Homeo.X/ is to be found in [12, Remark 3, footnote 2, pp. 3-4].

[4] A. Arhangel'skii and M. Tkachenko, Topological groups and related structures. Atlantis Stud. Math. 1, Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008 Zbl 1323.22001 MR 2433295

[5] M. E. B. Bekka, Amenable unitary representations of locally compact groups. Invent. Math. 100 (1990), no. 2, 383-401 Zbl 0702.22010 MR 1047140

[6] J. F. Berglund, H. D. Junghenn, and P. Milnes, Analysis on semigroups. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1989 Zbl 0727.22001 MR 999922

[7] G. M. Bergman, Ordering coproducts of groups and semigroups. J. Algebra 133 (1990), no. 2, 313-339 Zbl 0666.06012 MR 1067409 - Zbl 0666.06012

[8] N. Bourbaki, General topology. Chapters 1-4. Transl. from the French, Reprint of the 1966 edn., Elements of Mathematics, Springer, Berlin, 1989 Zbl 0683.54003 MR 979294

[9] M. G. Brin and C. C. Squier, Groups of piecewise linear homeomorphisms of the real line. Invent. Math. 79 (1985), no. 3, 485-498 Zbl 0563.57022 MR 782231 - Zbl 0563.57022

[10] J. W. Cannon, W. J. Floyd, and W. R. Parry, Introductory notes on Richard Thompson’s groups. Enseign. Math. (2) 42 (1996), no. 3-4, 215-256 Zbl 0880.20027 MR 1426438 - Zbl 0880.20027

[11] M. M. Day, Correction to my paper “Fixed-point theorems for compact convex sets”. Illinois J. Math. 8 (1964), 713 Zbl 0124.07301 MR 169210 - Zbl 0124.07301

[12] B. Deroin, A. Navas, and C. Rivas, Groups, orders, and dynamics. Book manuscript, 2016 arXiv:1408.5805

[13] J. de Vries, Universal topological transformation groups. General Topology and Appl. 5 (1975), 107-122 Zbl 0299.54030 MR 372834 - Zbl 0299.54030

[14] E. Følner, On groups with full Banach mean value. Math. Scand. 3 (1955), 243-254 Zbl 0067.01203 MR 79220 - Zbl 0067.01203

[15] M. Ghysens, The homeomorphism group of the first uncountable ordinal. Enseign. Math. 67 (2021), no. 1-2, 145-159 MR
[16] T. Giordano and V. Pestov, Some extremely amenable groups related to operator algebras and ergodic theory. J. Inst. Math. Jussieu 6 (2007), no. 2, 279-315 Zbl 1133.22001 MR 2313665 · Zbl 1133.22001

[17] F. P. Greenleaf, Invariant means on topological groups and their applications. Van Nostrand Mathematical Studies 16, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969 Zbl 0174.19001 MR 0251549

[18] R. Grigorchuk and P. de la Harpe, Amenability and ergodic properties of topological groups: from Bogolyubov onwards. In Groups, graphs and random walks, pp. 215-249, London Math. Soc. Lecture Note Ser. 436, Cambridge Univ. Press, Cambridge, 2017 Zbl 1397.43001 MR 364011

[19] M. Gromov and V. D. Milman, A topological application of the isoperimetric inequality. Amer. J. Math. 105 (1983), no. 4, 843-854 Zbl 0522.53039 MR 708367 · Zbl 0522.53039

[20] U. Haagerup and G. Picioroaga, New presentations of Thompson’s groups and applications. J. Operator Theory 66 (2011), no. 1, 217-232 Zbl 1249.22005 MR 2806554 · Zbl 1249.22005

[21] P. Hall, On representatives of subsets. J. London Math. Soc. 10 (1935), 26-30 Zbl 61.0067.01 · Zbl 61.0067.01

[22] I. M. James, Topological and uniform spaces. Undergrad. Texts Math., Springer, New York, 1987 Zbl 0625.54001 MR 884154

[23] K. Juschenko, N. Matte Bon, N. Monod, and M. de la Salle, Extensive amenability and an application to interval exchanges. Ergodic Theory Dynam. Systems 38 (2018), no. 1, 195-219 Zbl 1387.37030 MR 3742543 · Zbl 1387.37030

[24] K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups. Ann. of Math. (2) 178 (2013), no. 2, 775-787 Zbl 1283.37011 MR 3071509 · Zbl 1283.37011

[25] V. A. Kaimanovich, Thompson’s group F is not Liouville. In Groups, graphs and random walks, pp. 300-342, London Math. Soc. Lecture Note Ser. 436, Cambridge Univ. Press, Cambridge, 2017 Zbl 1373.60014 MR 364013

[26] S. Kakutani, Two fixed-point theorems concerning bicom pact convex sets. Proc. Imp. Acad. Tokyo 14 (1938), no. 7, 242-245 Zbl 0020.07906 MR 1568507 · Zbl 64.1101.03

[27] P. A. Linnell, A. Rheimtulla, and D. P. O. Rolfsen, Discretely ordered groups. Algebra Number Theory 3 (2009), no. 7, 797-807 Zbl 1229.06008 MR 2573935 · Zbl 1229.06008

[28] N. Monod, Groups of piecewise projective homeomorphisms. Proc. Natl. Acad. Sci. USA 110 (2013), no. 12, 4524-4527 Zbl 1305.57002 MR 3047655 · Zbl 1305.57002

[29] B. H. Neumann, On ordered groups. Amer. J. Math. 71 (1949), 1-18 Zbl 0031.34201 MR 2830241 · Zbl 0031.34201

[30] O. Ore, Graphs and matching theorems. Duke Math. J. 22 (1955), 625-639 Zbl 0068.16301 MR 708367 · Zbl 0068.16301

[31] J. Pachl, Approximate fixed points and B-amenable groups, 2018 arXiv:1711.02171

[32] J. Pachl, Uniform spaces and measures. Fields Inst. Monogr. 30, Springer, New York;

[33] V. G. Pestov, On free actions, minimal flows, and a problem by Ellis. Trans. Amer. Math. Soc. 350 (1998), no. 10, 4149-4165 Zbl 0911.54034 MR 1608494 · Zbl 0911.54034

[34] V. G. Pestov, Dynamics of infinite-dimensional groups. Univ. Lecturer Ser. 40, Amer. Math. Soc., Providence, RI, 2006 Zbl 1123.37003 MR 2279769

[35] V. G. Pestov, Review of “Amenability of the substitution group of formal power series” by I. K. Babenko and S. A. Bogatyĭ, Math. Rev. (2012), MR 2806554 · MR 2806554

[36] V. G. Pestov, Amenability versus property T / for non-locally compact topological groups. Trans. Amer. Math. Soc. 370 (2018), no. 10, 7417-7436 Zbl 1394.22006 MR 3841853 · Zbl 1394.22006

[37] V. G. Pestov, An amenability-like property of finite energy path and loop groups. C. R. Math. Acad. Sci. Paris 358 (2020), no. 11-12, 1139-1155 Zbl 1460.53535

[38] N. W. Rickert, Amenable groups and groups with the fixed point property. Trans. Amer. Math. Soc. 127 (1967), 221-232 Zbl 0152.40203 MR 22208 · Zbl 0152.40203

[39] W. Rudin, Functional analysis. Second edn., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991 Zbl 0867.46001 MR 1157815

[40] F. M. Schneider and A. Thom, On Folner sets in topological groups. Compos. Math. 154 (2018), no. 7, 1333-1361 Zbl 1400.54045 MR 3809992 · Zbl 1400.54045

[41] F. M. Schneider and A. Thom, The Liouville property and random walks on topological groups. Comment. Math. Helv. 95 (2020), no. 3, 483-513 Zbl 1468.22001 MR 4152622 · Zbl 1468.22001

[42] A. A. Vinogradov, On the free product of ordered groups. Mat. Sbornik N.S. 25(67) (1949), 163-168 MR 0031482

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.