Closing-wedge high tibial osteotomy: survival and risk factor analysis at long-term follow up

Turgay Efe1*, Gafar Ahmed1, Thomas J Heyse1, Ulrich Boudriot2, Nina Timmesfeld3, Susanne Fuchs-Winkelmann1, Bernd Ishaque4, Stefan Lakemeier1, Markus D Schofer1

Abstract
Background: Closing-wedge high tibial osteotomy (HTO) is successful for the treatment of medial osteoarthritis with varus malalignment. Preoperative risk factors for HTO failure are still controversial. The aim of this study was to elucidate the outcome and assess the influence of risk factors on long-term HTO survival.

Methods: 199 patients were retrospectively studied with a mean follow-up period of 9.6 years after HTO. HTO failure was defined as the need for conversion to TKA. Survival was analyzed with the Kaplan-Meier method. Knee function was evaluated by the Hospital for Special Surgery (HSS) score. HTO-associated complications were also assessed. Univariate, multivariate, and logistic regression analysis were performed to evaluate the influence of age, gender, BMI, preoperative Kellgren-Lawrence osteoarthritis grade, and varus angle on HTO failure.

Results: 39 complications were recorded. Thus far, 36 HTOs were converted to TKA. The survival of HTO was 84% after 9.6 years. Knee function was considered excellent or good in 64% of patients. A significant preoperative risk factor for HTO failure was osteoarthritis, Kellgren-Lawrence grade >2.

Conclusion: HTO provides good clinical results in long-term follow-up. Preoperative osteoarthritis Kellgren-Lawrence grade >2 is a significant predictive risk factor for HTO failure. Results of HTO may be improved by careful patient selection. Complications associated with HTO should not be underestimated.

Background
Closing wedge high tibial osteotomy (HTO) is an accepted procedure in the treatment of medial knee osteoarthritis with varus malalignment. Since Jackson and Waugh [1] initially described osteotomy below the tibial tubercle, various modifications of HTO have been published [2-7]. The fundamental goal of HTO is to partially offload the medial compartment and to realign the knee into valgus. Several studies have shown satisfactory short and medium term success; however, valgus-producing tibial osteotomy gradually deteriorates with time [8-10].

Ideal candidates for HTO are young and active patients who are not suitable for total knee arthroplasty (TKA) [11]. Even though TKA is a popular and well-established method, younger age was associated with an increased risk of revision [12]. Despite the fact that HTO results show its effectiveness, great debate on risk factors influencing HTO survival is still on-going. Various factors including age, gender, BMI, activity level, and varus angle are claimed to affect the duration of survival [13-18]. Selecting the ideal patient and identifying risk factors that may affect osteotomy longevity is important to obtain satisfactory results with HTO. The aim of this study was to determine HTO failure requiring conversion to TKA, including risk factors at long-term follow up. Furthermore, potential complications and clinical outcome of high tibial osteotomy were evaluated.

Methods
239 cases of closing-wedge osteotomy were performed between 1984 and 2001 at our institution. 13 (5.5%) patients were lost to follow-up. 27 (11%) patients were too ill or refused to participate in clinical and radiological assessment. With these patients, telephone interviews were performed to obtain information on further operations following HTO. 199 (83%) patients were...
therefore clinically and radiologically assessed. This study was approved by the ethics committee of the University Hospital Marburg and informed consent was obtained from all patients. This project was performed in accordance with the Helsinki Declaration, and with local legislation.

Patient demographics and clinical characteristics are illustrated in Table 1. The left knee was involved in 104 (52.2%) cases and the right in the remaining 95 (47.8%) cases. The average age at HTO was 54 ± 8 (25-72) years. The mean time of follow-up was 9.6 (1-18) years including 110 (55.3%) men and 89 (44.7%) women. A previous partial arthroscopic meniscectomy (less than one third) was performed in 51 (25.6%) cases.

The indication for HTO was symptomatic medial compartment osteoarthritis with varus malalignment. Preoperative radiographs included the full leg and standard short anteroposterior views in the standing position with the knee in full extension, as well as lateral and merchant views. The severity of osteoarthritis was scored according to the Kellgren-Lawrence system (0 normal, 4 severe [19]). Varus angle was measured using mechanical axes of the femur and the tibia (hip-knee-ankle angle) obtained on full length, full weight-bearing standing radiographs.

All patients were underwent a lateral closing-wedge technique [4]. Fibular transection was performed at the junction of the middle and distal thirds [20] through a separate incision. A transverse incision with the patient in supine position was performed for the tibial osteotomy. The peroneal nerve was exposed and protected. The osteotomy was performed below the tibial tuberosity, leaving the medial cortex intact. Bone wedge size was based on the preoperative calculations from the long leg standing radiograph. A laterally-based wedge of bone was removed and the osteotomy was fixed with an AO-plate. Postoperative early active movement and physiotherapy were allowed. No casts were applied. Partial weight bearing using 2 crutches for 6 weeks was allowed until bony union was reached. Control standing X-rays were taken 6 weeks, 6 months, and 1 year after surgery as well as at time of latest follow-up.

The correlation between the conversion of HTO to TKA and possible risk factors including age, gender, body mass index (BMI), Kellgren-Lawrence grade of osteoarthritis, and varus angle were determined. Smoking was defined as a daily consumption of three or more cigarettes [21]. All patients underwent physical examination and the application of a clinical score by co-author GA, an orthopaedic resident. Knee function was evaluated by the Hospital for Special Surgery (HSS) score [22], consisting of a questionnaire and physical examination. The items are clustered into six categories which include pain, function and range of motion, muscle strength, flexion deformity, and instability. A maximum score is 100 points. 85-100 points are excellent, 70-81 good, 60-69 fair, and <60 poor. Knee ROM was measured using a goniometer [23]. An independent specialist in radiology evaluated the diagnostic images. All of the osteotomies were performed by two experienced knee surgeons. The operating surgeons were not involved in the clinical assessment.

HTO failure was defined as the need for conversion to TKA. Survival analysis was performed applying the Kaplan-Meier method. Potential risk factors (age, gender, BMI, Kellgren-Lawrence grade of osteoarthritis, and varus angle) were calculated by the univariate Log-Rank test. Cox regression models were used in both univariate (single risk factors) and multivariate (combinations of risk factors) analysis. Smoking as a risk factor for complications was calculated by Fisher’s exact test. A p-value of < 0.05 was considered to be statistically significant.

Results

At latest follow-up, 36 (16%) HTOs had been converted to TKA. The 5-year, 9.6 year, and 15-year HTO survival rates as determined by Kaplan-Meier analysis were 93%, 84%, and 68% (Figure 1). 54 patients had excellent results, 74 good, 51 fair and 20 poor. Pain was absent in 74 patients, mild in 66 cases, and severe in 58 cases (in motion but not at rest). No patient complained of continuous pain.

Partial arthroscopical meniscectomy prior to HTO did not influence HTO survival as shown by a multivariate Cox model (p = 0.65) and the log-rank test (p = 0.71).

Using the univariate and multivariate Cox regression model, age had no influence on HTO survival (p = 0.32 and p = 0.31, respectively). There was no significant

Table 1 Patient demographics and baseline characteristics at the time of closing wedge osteotomy
Age, mean (SD)
Men
Women
BMI, mean (SD)
20-24.9
25-29.9
30-34.9
35-39.9
>40
Varus angle (°), mean (SD)
Kellgren-Lawrence grading
Grade 1
2
3
Smoker
difference between the survival rate of men and women using the multivariate Cox model (p = 0.32) and the Log-Rank test (p = 0.31). Univariate and multivariate Cox regression models found the preoperative varus angle not to be a significant factor (p = 0.8 and p = 0.84, respectively). The correlation between BMI and HTO failure was not significant using the univariate (p = 0.2) and multivariate (p = 0.11) Cox regression model as well as Log-Rank test (p = 0.45). Statistical significant correlation between the preoperative Kellgren-Lawrence osteoarthritis grade >2 and HTO failure could be detected with the use of both univariate (p = 0.003) and multivariate (p = 0.01) Cox regression models.

38 (19%) complications were recorded: 8 cases of deep vein thrombosis requiring low molecular weight heparin and compressive therapy; 1 vascular injury requiring surgery; 6 cases of peroneal palsy left with permanent deficit; and 3 superficial wound infections which responded to antibiotics. 9 patients had non-union of the osteotomized tibia and 8 of the fibula which required reostheosyntheses with bone grafting. Comparing obese and non-obese patients, no significant difference in complications was noted (p = 0.37). 6 of the 21 smokers had postoperative complications (3 non-union of the tibia, 2 non-union of the fibula, and 1 deep vein thrombosis). There was no significant difference in complications between smokers and non-smokers (p = 0.54).

Discussion

We aimed to evaluate the clinical outcome of HTO and to assess potential risk factors that may influence its longevity. There were several limitations to our study, including its retrospective design and lack of control group. There were a significant number of patients who were lost to follow-up, although over 80% of patients could be included, which is satisfactory when compared with other studies in this area [18,24].

Although there have been several studies on closing-wedge HTO, there is great variability in the results. Differences in patient outcome may be caused by wide heterogeneity among studies (e.g. different techniques and evaluation systems, varying degrees of deformity, and varus angle). Pooling the results is a challenge, as described by Amendola et al. [25] in a systematic review. There are few randomized controlled trials; well designed studies should include larger numbers to generate a higher quality of evidence. Long-term results are also needed for more solid conclusions. Thus, we conducted this study in order to select the ideal patient for HTO and improve the understanding of potential associated complications.

With the increasing numbers and success of TKA [26], fewer HTOs have been performed in the last several decades [27]. Although Brouwer et al. failed to show in a systematic review that HTO was more effective than conservative treatment [28], it is an accepted method for medial gonarthritis with varus malalignment [29].

The complication rate of HTO is between 5.6% and 34% [30-32], including non-union and peroneal palsy. In our study, the 19% complication rate is within the range of published results [33]. We performed all osteotomies below the tubial tubercle, with 9 cases of non-union. Non-union of the tibia is an uncommon complication after closing-wedge HTO, but is more frequently found in osteotomies below rather above the tubial tubercle (14% vs 3.6%) [33]. The risk of peroneal palsy is the most reported neurovascular complication after HTO [34]. Wootton et al. [35] showed that the majority of peroneal damage occurred when fibular osteotomy is performed 8-15 cm below the fibular head - a zone that should be avoided when performing fibular osteotomy. Even when fibular transection was performed at the junction of the middle and distal thirds, 6 cases of peroneal palsy were noted. Peroneal palsy was a substantial contributing factor to patient dissatisfaction in our cohort.

Survival rate analysis revealed an 84% survival at 9.6 years follow-up, which is confirmed in other studies (75%-98%) [36-38]. Clinical outcome was also considered excellent or good in 64% cases 9.6 years postoperatively, similar to previous studies [31,36,39]. Results appear to gradually deteriorate after ten years [10,13,25].

Patient age is a crucial criterion for HTO indication. In our study, age was not a significant predictive factor for HTO failure. Contrary to our findings, Gstöttner et al. [8] and Trieb [18] demonstrated that age significantly influenced HTO survival.

As observed by other authors [11,14,37,40], a significant association exists between preoperative Kellgren-Lawrence osteoarthritis grading and HTO failure.
Patients with a higher grade of osteoarthritis (≥2) may be better treated with arthroplasty. Huang et al. [41] reported that a large preoperative varus angle is influential factors in HTO survival. We did not find this to be true in our cohort. A possible explanation for this discrepancy may be that in our patients, there was only a moderate average preoperative varus angle (6 degrees). However, two studies with similar preoperative varus angles (6° [37] and 6.5° [14]) confirmed our findings. Obesity is a growing problem in industrialized countries; some studies have reported that HTO in obese patients is associated with early failure [15,31,42]. In our cohort, significant differences between obese and non-obese patients were not found [43]. In a systematic review and meta-analysis, Blagojevic et al. [44] demonstrated female gender to be both a risk factor for osteoarthritis, and associated with severe OA. In our data, gender was not associated with HTO failure.

For several years, the lateral closing wedge HTO was the preferred treatment approach for patients with medial knee osteoarthritis. Due to some disadvantages of this technique, the medial opening wedge HTO regained popularity, since improvements in operative approach and special implants were developed [45,46]. There is only one prospective, randomized study comparing lateral closing wedge and medial opening wedge osteotomies [47]. At one year follow-up, both techniques reduced pain and improved knee function, but the difference was not significant.

A further option for treatment of unicompartimental gonarthritis is unicompartimental arthroplasty (UKA). Even if there are differences in the indications for the two procedures, some patients can be treated either by HTO or UKA. Only a few studies compare the clinical outcome of UKA versus closing wedge HTO [48-50], and only two were randomized controlled studies [51,52]. Data comparing UKA with HTO appear to support UKA over HTO. However, Brouwer et al. [28] stated in their meta-analysis that there is silver evidence for no significant difference in pain, knee function, and gait after HTO compared to UKA, and that HTO causes more complications than UKA.

Conclusion

HTO has a favorable outcome at 9.6 years of follow-up. A significant risk factor for HTO failure was preoperative Kellgren-Lawrence osteoarthritis grade ≥2. In order to improve the durability of HTO, appropriate patient selection is necessary. Surgeons should be aware that HTO is not without complications.

References

1. Jackson JP, Waugh W: Tibial osteotomy for osteoarthritis of the knee. J Bone Joint Surg Br 1961, 43-B:746-751.
2. Debyeey J, Artigou JM: [Long term results of 260 tibial osteotomies for frontal deviations of the knee], Rev Chir Orthop Reparatrice Appar Mot 1972, 58(4):333-339.
3. Coventry MB: Osteotomy about the knee: degenerative and rheumatoid arthritis. J Bone Joint Surg Am 1973, 55(1):23-48.
4. Wagner H, Zeiler G, Bauer W: [Indication, technical and results of supra- and infraradial osteotomy in osteoarthrosis of the knee joint], Orthopade 1985, 14(3):172-192.
5. Devas MB: High tibial osteotomy for arthritis of the knee. A method specially suitable for the elderly. J Bone Joint Surg Br 1969, 51(1):95-99.
6. Dietz FR, Weinstein SL: Spike osteotomy for angular deformities of the long bones in children. J Bone Joint Surg Am 1988, 70(6):848-852.
7. Insall J, Shoji H, Mayer V: High tibial osteotomy. A five-year evaluation. J Bone Joint Surg Am 1974, 56(7):1397-1405.
8. Gostotter M, Pedross F, Liebensteiner M, Bach C: Long-term outcome after high tibial osteotomy. Arch Orthop Trauma Surg 2008, 128(1):111-115.
9. Koshino T, Yoshida T, Aya Y, Saito I, Saito T: Fifteen to twenty-eight years' follow-up results of high tibial valgus osteotomy for osteoarthritic knee. Knee 2004, 11(6):439-444.
10. Vroolainen P, Aro HT: High tibial osteotomy for the treatment of osteoarthritis of the knee: a review of the literature and a meta-analysis of follow-up studies. Arch Orthop Trauma Surg 2004, 124(4):258-261.
11. lavender RJ, Myerzys R, Gilquist J: High tibial osteotomy for medial osteoarthritis of the knee. A 5 to 7 and 11 year follow-up. J Bone Joint Surg Br 1990, 72(2):238-244.
12. Robertson O, Knutson K, Lewold S, Lidgren L: The Swedish Knee Arthroplasty Register 1975-1997; an update with special emphasis on 41,223 knees operated on in 1988-1997. Acta Orthop Scand 2001, 72(5):503-513.
13. Coventry MB, Ikram DM, Wallrichs SL: Proximal tibial osteotomy. A critical long-term study of eighty-seven cases. J Bone Joint Surg Am 1993, 75(2):196-201.
14. Flecher X, Parette S, Aubanac JM, Argenson JN: A 12-28-year followup study of closing wedge high tibial osteotomy. Clin Orthop Relat Res 2006, 452:91-96.
15. Naudey D, Bourne RB, Rossebelie GH, Bourne TJ: The Install Award. Survivorship of the high tibial valgus osteotomy. A 10- to 22-year followup study. Clin Orthop Relat Res 1999, 367:18-27.
16. Wolcott M: Osteotomies around the knee for the young athlete with osteoarthritis. Clin Sports Med 2005, 24(1):153-161.
17. Matthews LS, Goldstein SA, Malwitz TA, Katz BP, Kaufer H: Proximal tibial osteotomy. Factors that influence the duration of satisfactory function. Clin Orthop Relat Res 1988, 229:193-200.
18. Tief K, Goshs J, Hanslik-Schnadel B, Stuhl T, Panotopoulos J, Wanivenhaus A: Age predicts outcome of high-tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2006, 14(2):149-152.
19. Kelgren JH, Lawrence JS. Radiological assessment of osteo-arthritis. Ann Rheum Dis 1957, 16(4):494-502.

22. Aydogdu S, Yercan H, Saylam C, Sur H. Peroneal nerve dysfunction after high tibial osteotomy. An anatomical cadaver study. Acta Orthop Belg 1996, 62(2):156-160.

23. Watkins MA, Riddle DL, Lamb RL, Personius WJ. Improvements in surgical technique of high tibial osteotomy: long term survival analysis. J Bone Joint Surg Am 1976, 58(6):754-765.

24. Watkins MA, Riddle DL, Lamb RL, Personius WJ. Improvements in surgical technique of high tibial osteotomy: long term survival analysis. J Bone Joint Surg Am 1976, 58(6):754-765.

25. Amendola A, Bonasia DE. Complications of closing wedge high tibial osteotomy for the treatment of varus osteoarthrosis. J Bone Joint Surg Am 2005, 87(7):1320-1328.

26. Kurtz SM, Lau E, Ong K, Zhao K, Kelly M, Bozic KJ. Unicompartmental replacement and high tibial osteotomy for osteoarthritis of the knee. A comparative study after 5-10 years’ follow-up. J Bone Joint Surg Br 1998, 80(3):447-452.

27. Brouwer RW, Bierma-Zeinstra SM, van Raaij TM, Verhaar JA. Osteotomy for medial compartment arthritis of the knee using a closing wedge or an opening wedge controlled by a Puddu plate. A one-year randomised, controlled study. J Bone Joint Surg Br 2006, 88(11):1454-1459.

28. Broughton NS, Newman IH, Baily RA. Unicompartmental replacement and high tibial osteotomy for osteoarthritis of the knee. A comparative study after 5-10 years’ follow-up. J Bone Joint Surg Br 1986, 68(3):447-452.

29. Papachristou G, Plessas S, Sourlas J, Levidiotis C, Chronopoulos E, Rodríguez Ibáñez M, Herrero Labarga I. Bronconeumol 62(3):156-160.

30. Wu LD, Hahne HJ, Hassenpflug T. Improvements in surgical technique of high tibial osteotomy. An anatomical cadaver study. Acta Orthop Belg 1995, 71(2):90-96. Discussion 96-97.

31. Gull N, Fickert S, Puhl W, Gunther KP, Stove J. (Predictors of tibial head transposition in the therapy of varus knee osteoarthritis). Z Orthop Ihre Grenzgeb 2003, 143(5):551-555.

32. Insall JN, Ranawat CS, Aglietti P, Shine J. A comparison of four models of total knee-replacement prostheses. J Bone Joint Surg Am 1976, 58(6):754-765.

33. Vainionpaa S, Laike E, Kirves P, Tiusanen P. Neurological complications of high tibial osteotomy. Anatomical and electrophysiological study. J Bone Joint Surg Am 2003, 85-A(3):469-474.

34. Aydogdu S, Cullu E, Arac N, Varolgunes N, Sur H. Prolonged peroneal nerve dysfunction after high tibial osteotomy: pre- and postoperative electrophysiological study. Knee Surg Sports Traumatol Arthrosc 2000, 8(3):305-308.

35. Wootten JR, Ashworth MJ, MacLaren CA. Neurological complications of high tibial osteotomy–the fibular osteotomy as a causative factor: a clinical and anatomical study. Ann R Coll Surg Eng 1995, 77(1):31-34.

36. Akizuki S, Shibakawa A, Takizawa T, Yamazaki I, Horiuchi H. Preoperative tibiofemoral angle predicts survival of proximal tibia osteotomy. Clin Orthop Relat Res 2005, 432:188-195.

37. van Raaij T, Reijman M, Brouwer RW, Jakma TS, Verhaar JA. Tibial osteotomy for treating knee osteoarthritis. J Am Acad Orthop Surg 2001, 9(3):139-144.

38. Papachristou C: High tibial osteotomy in patients under 60 years of age. Acta Orthop Scand 1983, 54(3):272-278.

39. van Raaij T, Reijman M, Brouwer RW, Jakma TS, Verhaar JA. Tibial osteotomy for treating knee osteoarthritis. J Am Acad Orthop Surg 2001, 9(3):139-144.

40. Spahn G, Muckley T, Kahl E, Hofmann GO. Biomechanical investigation of different internal fixations in medial opening-wedge high tibial osteotomy. Clin Biomech (Bristol, Avon) 2006, 21(3):272-278.

41. Armin AK, Clayton RA, Patton JT, Gaston M, Cook RE, Breenel U. Total knee replacement in morbidly obese patients. Results of a prospective, matched study. J Bone Joint Surg Br 2006, 88(10):1321-1326.

42. Blagojevic M, Jinks C, Jeffery A, Jordan KP. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthrits Cartilage 2010, 18(1):24-33.