Plasmodium vivax is an important cause of malaria, associated with a significant public health burden. Whilst enhanced malaria-control activities have successfully reduced the incidence of *Plasmodium falciparum* malaria in many areas, there has been a consistent increase in the proportion of malaria due to *P. vivax* in regions where both parasites coexist. This article reviews the epidemiology and biology of *P. vivax*, how the parasite differs from *P. falciparum*, and the key features that render it more difficult to control and eliminate. Since transmission of the parasite is driven largely by relapses from dormant liver stages, its timely elimination will require widespread access to safe and effective radical cure.

Extent and Burden of Plasmodium vivax

Of the five *Plasmodium* species that cause human malaria, *Plasmodium vivax* is the most geographically widespread. The parasite is capable of surviving quiescent for prolonged periods when conditions are not conducive to its ongoing transmission. A century ago *P. vivax* was prevalent in almost all countries; even though the vivax endemic world has shrunk considerably, over four billion people remain at risk of infection [1]. In 2017, transmission was reported from 49 countries across Central and South America, the Horn of Africa, Asia, and the Pacific islands (Figure 1). In almost two-thirds of coendemic countries *P. vivax* is the predominant species of malaria (Figure 2), the proportion of malaria attributable to the parasite being greatest in areas where the prevalence of malaria is low (Figure 3) [2,3].

Until recently the global burden of *P. vivax* malaria was derived from estimates of *P. falciparum*, the most prevalent species causing human malaria. However, a growing awareness of the public health importance of *P. vivax* has led to the strengthening of surveillance systems and better reporting practices of all of the *Plasmodium* species. The World Health Organization (WHO) first included *P. vivax* case estimates in its *World Malaria Report* (WMR) in 2013, documenting between 11.9 and 22 million *P. vivax* clinical cases per year [4]. Recent estimates, incorporating national surveillance data, prevalence surveys, and geospatial mapping, have revised the global burden to between 13.7 and 15 million cases in 2017 [1]. An estimated 82% (11.7 million cases) of the global vivax burden comes from four high-burden countries: India, Pakistan, Ethiopia, and Sudan.

In sub-Saharan Africa, where the burden of malaria is overwhelmingly attributable to *P. falciparum* (Figure 1), the low prevalence of *P. vivax* is attributed to a high proportion of the population having a Duffy-negative blood group. The Duffy antigen is an important molecule for the erythrocytic invasion of *P. vivax*, and the lack of the receptor on red blood cells reduces the risk of infection [5]. However, a recent review of clinical and vector data has shown that *P. vivax* is present across almost all malaria-endemic regions of Africa [6].

Biological Differences between *P. falciparum* and *P. vivax*

The control and elimination of *P. vivax* is more challenging than that of *P. falciparum*, a reflection of key differences in parasite and vector biology. *P. vivax* usually circulates at low peripheral parasite burden, and morbidity and mortality are greater in *P. falciparum* infected individuals. *P. vivax* infections are often more chronic, with delayed clearance of blood stage parasites and a higher risk of recrudescence and longer duration. This challenges the implementation of universal radical cure for *P. vivax*.

In coendemic areas, where intense malaria-control activities have reduced the burden of *P. falciparum*, there has been a rise in the proportion of malaria attributable to *P. vivax*. There is an increased risk of *P. vivax* relapses, arising from dormant liver stages, cause recurrent episodes of malaria that are the main determinant of significant morbidity, mortality, and ongoing transmission.

Novel host and parasite diagnostics, single-dose tafenoquine, and short-course primaquine regimens offer hope for safer and more effective radical cure to eliminate the parasite.
Individuals infected with *P. vivax* who develop clinical illness and seek medical attention often present with both asexual and sexual parasite stages in the peripheral circulation, enabling efficient transmission prior to diagnosis of the parasite and its treatment [9]. This is in marked contrast to *P. falciparum*, in which the blood stages in the peripheral circulation tend to be more synchronous, with patent gametocytæmia occurring 7–14 days after the appearance of asexual stages in acute malaria [10]. Whilst *P. vivax* gametocytes also occur after the initial treatment of the asexual infection, these are usually associated with recurrent asexual parasitaemia arising from relapse (see Glossary) of the parasite [9]. Thus, while ongoing transmission of *P. falciparum* can be reduced significantly by early diagnosis and treatment with combination regimens – including artemisinin derivatives and a gametocytocidal agent – early treatment of *P. vivax* with this combination has less impact on transmission.

The vector biology of *P. vivax* also differs substantially from that of *P. falciparum*. *P. vivax* has evolved to survive in diverse ecological environments with varied *Anopheles* vectors. *P. vivax* gametocytes are transmitted more efficiently to *Anopheles* than are those of *P. falciparum* and are transmissible at lower parasite densities [11,12]. Parasite survival in more extreme geographical climates may be aided further by *P. vivax* sporozoites developing faster in the mosquito midgut and across a wider temperature range, compared with those of *P. falciparum* [13]. *P. falciparum* and *P. vivax* are transmitted preferentially by *Anopheles* species with different biting habits. Hence, in some coendemic locations, vector-control interventions, such as bed net distributions, may reduce *P. falciparum* malaria but have little impact on *P. vivax* transmitted by exophilic day-time vectors [14].

The defining feature of *P. vivax* is its ability to form dormant liver stages – hypnozoites that can reactivate weeks to months after an initial infection (relapse). The frequency and number of relapses vary markedly with host immunity and geographical location [15,16]. Early studies from individuals deliberately infected with malaria suggest that the number of sporozoites inoculated by the mosquito, as well as the geographical origin of parasites, are key determinants of relapse periodicity [15]. In tropical areas the risk of early relapse is high (>80%), with subsequent relapses occurring every 3–4 weeks. In temperate regions and some subtropical areas the risk of relapse is considerably lower, and there may be a long incubation or latency period between the initial illness and relapse, lasting 8–12 months.

The factors triggering the reactivation of hypnozoites are unknown, although episodic reactivation, acute febrile illness, and parasite-induced haemolysis have been postulated [15,17]. In a meta-analysis of clinical efficacy studies of patients treated for *P. falciparum* mono-infection, the greatest risk of recurrent parasitaemia was that arising from *P. vivax* rather than *P. falciparum*; overall, 24% of patients had documented *P. vivax* recurrence within 63 days [18]. The timing of recurrent *vivax* parasitaemia and the high efficacy of artemisinin-based combination therapies (ACTs) against the blood stages of both species, but not liver stages of *P. vivax*, suggest that the vivax recurrences were attributable to reactivation of *P. vivax* hypnozoites. A subsequent individual meta-analysis shows that the greatest risk of *P. vivax*

Glossary

Artemisinin-based combination therapy (ACT): an antimalarial drug regimen that includes an artemisinin derivative combined with a longer acting antimalarial treatment; it is now globally recommended for the treatment of *P. falciparum* infection and for chloroquine-resistant *P. vivax*.

CYP2D6: an isotype of the cytochrome 450 enzyme involved in primaquine metabolism. Polymorphisms are associated with reduced primaquine efficacy.

Glucose-6-phosphate dehydrogenase (G6PD) deficiency: an inherited enzyopathy that makes the host vulnerable to oxidative stress and severe haemolysis following administration of primaquine or tafenoquine.

Hypnozoites: the dormant liver stages of *P. vivax* and *P. ovale* that can reactivate and relapse weeks to months after the initial infection.

Radical cure: the treatment and eradication of all parasite stages in the host, including the asexual parasites associated with symptoms, the sexual stages causing transmission to the mosquito vector, and the dormant liver stages (hypnozoites) that can cause relapsing infection. It requires a combination of schizonticidal drug (s) plus a hypnozoicidal agent (primaquine or tafenoquine).

Recurrent parasitaemia: a repeat episode of peripheral asexual parasitaemia following initial treatment of malaria.

Relapse: recurrent parasitaemia arising weeks or months after an initial infection of *P. vivax* or *P. ovale*, following reactivation of the dormant liver stages (hypnozoites) that generate a new blood-stage infection.

Universal radical cure: the use of a radical cure in patients with uncomplicated malaria irrespective of the *Plasmodium* species causing the peripheral parasitaemia.
parasitaemia during follow up is in patients with delayed parasite clearance of their initial *P. falciparum* parasitaemia, consistent with either a parasite–host interaction triggering *P. vivax* relapse or vulnerability of a host with low immunity to recurrent parasitaemia [19]. Whilst there is also an increased risk of *P. vivax* in individuals following asymptomatic *P. falciparum* parasitaemia, this is considerably lower than that observed in symptomatic patients [20,21].

P. vivax-Attributable Morbidity and Mortality

Historically, *P. vivax* malaria has been regarded as a benign illness; however, this dogma has been challenged as evidence of its appreciable morbidity and mortality has accumulated [22]. The aetiology of severe vivax malaria is complex, but a major contribution to morbidity is likely to be the parasite’s propensity to recur [23]. Following an acute infection, a nonimmune individual in an area of high *P. vivax* relapse periodicity can have recurrent episodes of malaria every month for over a year, a similar force of infection as that seen in areas hyperendemic for *P. falciparum* [24]. Recurrent bouts of malaria and subsequent parasite-induced haemolysis result in a cumulative risk of anaemia, particularly in young and malnourished children [25–27]. As the concentration of haemoglobin falls, the risk of mortality rises and this is compounded by concomitant infections such as pneumonia and diarrhoea [26]. In pregnancy, recurrent *P. vivax* malaria is associated with miscarriage, premature delivery, stillbirth, and low

Figure 1. The Incidence of Plasmodium falciparum and Plasmodium vivax Malaria in 2017. *P. falciparum* (A) and *P. vivax* (B) data from [1,77] with permission.
birth weight [28]. The overall direct risk of mortality in patients with acute *P. vivax* malaria has been estimated to be one in 8000 in patients presenting to community clinics – rising to one in 100 in patients admitted to hospital; however, these estimates vary markedly in different endemic settings [25,26,29,30].

Although the direct acute mortality of patients infected with *P. falciparum* is substantially greater than that of *P. vivax* [30], recent studies suggest that *P. vivax* malaria is also associated with delayed morbidity and an indirect mortality which is often ignored. In Papua, Indonesia, an area of short relapse periodicity, the risk of dying after 30 days of the initial presentation with malaria, was significantly higher in patients presenting with *P. vivax* than with *P. falciparum* [31]. Less than half of the patients who died after 30 days represented with another episode of malaria, but a high proportion were malnourished, severely anaemic, or presented with infective comorbidities such as pneumonia or diarrhoea [25,26]. These data suggest that, at least in Papua and Papua New Guinea, the actual mortality attributable to *P. vivax* has been underestimated.

The Rising Relative Burden of *P. vivax*

Over the past decade, enhanced malaria-control activities, supported by increased funding for malaria-elimination activities, have led to a substantial decrease in the incidence of malaria in many malaria-endemic countries [32]. However, there has been a consistent increase in the proportion of malaria due to *P. vivax* (Figure 4) [13,33–35]. This increase is likely due to multiple factors, including reporting practices, the ability to detect and treat infected individuals effectively,
greater resilience of P. vivax to standard malaria-control measures, and the parasite’s transmission dynamics (Table 1).

In 2006, Indonesia became the first malaria-endemic country to adopt a universal policy of an ACT for the treatment of malaria due to any species. Following the implementation of dihydroartemisinin-piperaquine in the western province of Papua, the incidence of malaria fell by more than a half, and this was associated with a significant fall in the proportion of malaria requiring admission to hospital and malaria-related mortality. The impact of ACT on P. vivax was less than that on P. falciparum, with the proportion of malaria attributable to P. vivax rising from 20% to 52%; in this region, 80% of malaria in young children is now due to P. vivax [35]. In nearby Papua New Guinea, where P. vivax is also the predominant cause of malaria in children, enhanced vector control, and a universal policy of artemether-lumefantrine for uncomplicated malaria, resulted in a marked decline in clinical malaria due to both falciparum and vivax, although the prevalence of P. vivax and asymptomatic infection remained high long after the early reductions in P. falciparum malaria [36]. In Thailand, Chu et al. reported that increased access to early diagnosis and treatment was associated with an early decline in P. falciparum infection – but a delayed fall in P. vivax malaria; the authors hypothesize that the reduction in P. falciparum transmission may have resulted in reduction of P. vivax infections due to decreasing relapse activation [37].
Over 80% of *P. vivax* malaria cases in the Asia Pacific region are estimated to arise from reactivation of dormant liver stages and clinical relapse [38,39]. Hence, the hypnozoite reservoir constitutes a major preventable burden of malaria that must be addressed to eliminate the parasite [40]. In most countries where malaria has been eliminated, the transmission of *P. falciparum* was interrupted several years before that of *P. vivax*. In Sri Lanka and Malaysia the falling burden of malaria allowed greater attention to be given to ensuring widespread access to effective radical cure, and patients treated with a 14 day regimen of primaquine could be supervised directly to monitor safety and encourage full adherence [41,42]. Whilst enhanced control efforts that do not include radical cure can reduce clinical cases considerably, they need to be sustained for prolonged periods to achieve elimination [37].

P. vivax Radical Cure

The radical cure of patients with vivax malaria requires treatment with a combination of both schizonticidal and hypnozoiticidal antimalarial drugs. The former clears the peripheral blood stages of the parasite to achieve resolution of the acute febrile illness and the latter kills the hypnozoite reservoir, preventing subsequent relapsing infections and onward transmission.

In most countries, chloroquine remains the mainstay of treatment for *P. vivax* blood stages. However, chloroquine-resistant (CQR) *P. vivax* has emerged and is now apparent in many areas, although the degree to which clinical efficacy is compromised varies considerably [43]. High-grade chloroquine resistance is apparent only on the island of Papua (Indonesia and Papua New Guinea), where there is intense transmission, and Sabah (Malaysia) which is in the

Figure 4. Rising Proportion of Malaria Due to Plasmodium vivax (Pv) Following Enhanced Malaria-Control Activities for Plasmodium falciparum.

(A) Thailand [13], (B) Papua, Indonesia [35], (C) Brazil [33], and (D) Columbia [34].

Trends in Parasitology, June 2020, Vol. 36, No. 6

565
final stages of elimination [44–46]. Elsewhere, CQR is mostly low grade and may even be transient, potentially reflecting the challenges of defining drug resistance in *P. vivax*, fitness disadvantages arising from the molecular acquisition of CQR, or the parasite’s transmission dynamics [47,48].

The use of suboptimal chloroquine dosing also increases the risk of recurrent *P. vivax* [49]. In a meta-analysis of individual pooled patient data, increasing the total dose of chloroquine from 25 mg/kg to 30 mg/kg, was predicted to reduce the number of recurrent infections by 41% in young children [50]. More importantly, however, was combining chloroquine with primaquine radical cure which reduced early recurrent *P. vivax* parasitaemia by 90%, likely through a combination of primaquine’s synergistic activity with chloroquine against the asexual blood-stage parasites and its hypnozoiticidal activity preventing early relapses [50]. To combat the declining susceptibility of *P. vivax* to chloroquine, five countries have adopted a policy of universal ACT for both *P. falciparum* and *P. vivax*: Indonesia, Papua New Guinea, Solomon Islands, Vanuatu, and Cambodia. ACTs, with the exception of artesunate-sulfadoxine-pyrimethamine, generally have excellent efficacy against CQR *P. vivax*, and a unified ACT-based treatment protocol has operational efficiencies and significant pragmatic advantages [51]. Comparison of the short-term efficacy of different ACTs against *P. vivax* highlights the benefits of combinations with a long-acting partner drug, such as artesunate-mefloquine or dihydroartemisinin-piperaquine, which have 90% fewer recurrences at day 42 compared with patients treated with the shorter-acting artemether-lumefantrine [52]. Suppression of the first relapse delays the time to symptomatic recurrence, and this is associated with improved haematological recovery [52].
Primaquine, an 8-aminoquinoline compound, is the only widely available hypnozoiticide capable of killing *P. vivax* hypnozoites and thereby preventing relapses. However, 8-aminoquinoline drugs can cause severe drug-induced haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency [24]. In view of the risk of haemolysis to the foetus and newborn infant, primaquine is contraindicated in pregnant women and lactating mothers. Although a recent study suggests that there is minimal excretion of primaquine in breast milk, treatment guidelines have yet to be revised to recommend primaquine use in lactating women [53].

The degree of primaquine-induced haemolysis depends upon the erythrocyte G6PD activity of the individual exposed. Up to 30% of patients in malaria-endemic communities have this X-linked enzyme deficiency, with more than 180 different G6PD deficiency alleles reported. Although the absolute haemolytic risks of different variants and the relationship with enzyme activity are largely unknown [54], there is a clear relationship between haemolysis and daily and total dose of primaquine administration [24].

WHO recommends routine testing of G6PD deficiency prior to primaquine administration; however, in poorly resourced communities this is rarely possible, and hence radical cure is usually prescribed without prior G6PD testing. To mitigate the risks of drug-induced haemolysis, many countries recommend a total primaquine dose of 3.5 mg/kg (15 mg per day in adults) spread over 14 days. The WHO recommends a higher dose (total 7 mg/kg or 30 mg per day in adults), also spread over 14 days, in areas where frequent-relapsing *P. vivax* is prevalent, such as in East Asia and Oceania [55]. In routine clinical practice, daily supervision is rarely possible and the prolonged treatment regimen is associated with poor adherence and effectiveness [56,57].

The antirelapse efficacy of primaquine is determined by the total dose of drug administered [24]. A systematic review in 2012 identified 18 studies in which schizonticidal treatment with primaquine was compared with a schizonticidal treatment alone [58]. In studies administering a low total dose of primaquine (2.5–5.0 mg/kg), primaquine reduced *P. vivax* recurrences sevenfold, but in studies administering a high-dose regimen (>5.0 mg/kg) the risk of recurrence was reduced by 33-fold. Only two randomized controlled trials, with follow up to 6 months, have compared 14 days of high- versus low-dose primaquine – both were conducted in India where the risk of relapse is generally low [59,60]. The combined relative risk at 6 months was 0.82, although the 95% confidence intervals crossed parity [61]. These meta-analyses are confounded by comparison of trials with different durations of follow up, marked heterogeneity in the risk and timing of relapse in different locations, differing endpoints, and small sample sizes.

Two recent clinical trials have demonstrated that a 7-day high-dose regimen has similar efficacy to the same total dose administered over 14 days [62,63], the risk of recurrent *P. vivax* malaria at 12 months ranging from 7% to 20% across nine sites located in Afghanistan, Ethiopia, Indonesia, Thailand, and Vietnam. Whilst shortening the treatment course of primaquine has potential to improve adherence, this requires a higher daily dose which increases the risk of haemolysis and gastrointestinal intolerance. Although these adverse effects can be reduced by point-of-care G6PD diagnostics and administration of the drug with food, the tolerability and effectiveness of high-dose 7-day primaquine has yet to be determined in clinical practice. Host factors also play an important role in antirelapse efficacy, including the ability of patients to convert the primaquine into its active metabolites. Primaquine is metabolized in the liver by monoamine oxide (MAO) and cytochrome P450 (CYP450) enzymes (notably the 2D6 isotype – CYP2D6) [64]. CYP2D6 is naturally polymorphic, and some variants, present in up to 25% of the population, are associated with significant reductions in antirelapse efficacy [65,66].
In 2018 tafenoquine, an 8-aminoquinoline drug with a longer terminal elimination half-life than primaquine, was registered with the FDA and the Australian Therapeutic Goods Administration (TGA) [67]. When administered with chloroquine, a single dose of 300 mg of tafenoquine has similar efficacy to a 14-day low-dose (3.5 mg/kg total dose) primaquine regimen – the risk of recurrent P. vivax malaria at 12 months ranging from 31% to 41% across eight sites located in Ethiopia, Peru, Brazil, Cambodia, Thailand, and the Philippines [68,69]. Tafenoquine is currently not licenced in children, although clinical trials are ongoing. Tafenoquine’s slow elimination from the peripheral circulation raises concerns of sustained drug-induced haemolysis, and this has led to it being recommended only in patients with a G6PD enzyme activity of 70% or greater. Diagnosis of G6PD deficiency at this level of enzyme activity requires the use of a quantitative G6PD assay [70,71]. By contrast, primaquine is currently recommended for patients with a G6PD enzyme activity as low as 30%. In the past decade, novel point-of-care G6PD tests have been developed, bringing a new era in which the widespread use of novel 8-aminoquinoline regimens, such as tafenoquine and/or short-course high-dose primaquine, can be explored and implemented [72,73].

Universal Radical Cure

The high risk of P. vivax parasitaemia following P. falciparum infection suggests that, in some coendemic areas, a universal policy of radical cure for patients with uncomplicated malaria due to either P. vivax or P. falciparum may offer significant benefits both for the individual and the community. Such a strategy would include an ACT to treat the asexual stages of all Plasmodium species plus a hypnozoictidal agent (either primaquine or tafenoquine) to eradicate the liver stages of P. vivax and Plasmodium ovale. Preventing recurrent parasitaemia can reduce acute morbidity and mortality directly associated with malaria and indirectly from diseases associated with a cumulative impact of repeated episodes of malaria [31]. At a community level a universal policy would also prevent the ongoing transmission of P. vivax and the infection of others [40].

Universal radical cure has been used in a cohort of children in Papua New Guinea, resulting in 90% reduction in P. vivax parasitaemia at 1 year compared with those treated with placebo [38]. On the Thailand–Myanmar border the radical cure of 12 individuals with asymptomatic P. falciparum was predicted to prevent one subsequent infection with P. vivax [20]. However, the risks and benefits of this strategy will vary considerably between endemic settings and over time. Indeed, on the Thailand–Myanmar border the risk of vivax following falciparum fell significantly as the prevalence of P. vivax decreased [74]. Prospective clinical trials are in progress.

Concluding Remarks

Although the global burden of P. vivax is considerably lower than that of P. falciparum it remains prevalent across most of the malaria-endemic world, exerting a considerable public health burden and cost to both infected individuals and communities. Outside of sub-Saharan Africa, P. vivax is becoming the predominant cause of malaria since intense malaria-control interventions, which prioritize the control of P. falciparum, generally have less impact on reducing the transmission of P. vivax. As the global community strives to achieve the elimination of malaria from all endemic countries, it is imperative that radical cure of the P. vivax parasite be implemented widely if the proposed ambitious timelines are to be met. Despite 60 years of widespread use, key questions regarding optimal strategies for radical cure remain (see Outstanding Questions). Policy makers and healthcare providers have to address these as a matter of urgency and find ways of providing radical cure to children and patients in remote rural areas – where most vivax malaria occurs. The recent development of novel diagnostic tools and treatment strategies provides fresh impetus to deliver radical cure safely and effectively. In view of the inherent
haemolytic risks of treatment with 8-aminoquinoline drugs, an integrated package of interventions will be required, including patient education, community engagement, consistent supply chains, and robust health systems, with sufficient funding to maintain these until the ultimate elimination of the parasite has been achieved.

Acknowledgments
We thank a large number of colleagues in the malaria community for valuable discussions. R.N.P. is a Wellcome Trust Senior Fellow in Clinical Science (2009-2010). K.T. is a CSL Centenary Fellow. This work was supported by the Australian Centre for Research Excellence on Malaria Elimination (ACREME), funded by the NHMRC of Australia (1134989).

References
1. Battle, K.E. et al. (2019) Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. Lancet 394, 322–343
2. Howes, R.E. et al. (2016) Global epidemiology of Plasmodium vivax in Latin America. J. Trop. Med. Hyg. 95, 15–34
3. Mendis, K. et al. (2001) The neglected burden of Plasmodium vivax malaria. Am. J. Trop. Med. Hyg. 64, 97–106
4. World Health Organization (2013) World Malaria Report: 2013, WHO
5. Gunalan, K. et al. (2019) Plasmodium vivax infections of Duffy-negative erythrocytes: historically undetected or a recent adaptation? Trends Parasitol. 35, 420–429
6. Teoh, H.K. et al. (2019) Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLoS Negl. Trop. Dis. 13, e0007140
7. Ding, K.C. et al. (2017) Defining the next generation of Plasmodium vivax diagnostic tests for control and elimination: Target product profiles. PLoS Negl. Trop. Dis. 11, e0005516
8. Michon, P. et al. (2007) The risk of malaria infections and disease in Papua New Guinean children. Am. J. Trop. Med. Hyg. 76, 987–1003
9. Douglas, N.M. et al. (2013) Gametocyte dynamics and the role of drugs in reducing the transmission potential of Plasmodium vivax. J. Infect. Dis. 208, 801–812
10. White, N.J. et al. (2014) Assessment of therapeutic responses to gametocytocidal drugs in Plasmodium falciparum malaria. Malar. J. 13, 483
11. Collins, W.E. et al. (2002) Experimental infection of Anopheles funestus with different species of Plasmodium. J. Parasitol. 88, 295–298
12. Bousema, T. and Drakeley, C. (2011) Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin. Microbiol. Rev. 24, 377–410
13. Sattabongkot, J. et al. (2004) Plasmodium vivax transmission: chances for control? Trends Parasitol. 20, 192–198
14. Bockarie, M.J. and Dagoro, H. (2006) Are insecticide-treated bednets more protective against Plasmodium falciparum than Plasmodium vivax-infected mosquitoes? Malar. J. 5, 15
15. White, N.J. (2011) Determinants of relapse periodicity in Plasmodium vivax malaria. Malar. J. 10, 297
16. Battle, K.E. et al. (2014) Geographical variation in Plasmodium vivax relapse. Malar. J. 13, 144
17. Shanks, G.D. and White, N.J. (2013) The activation of vivax malaria hypnozoites by infectious diseases. Lancet Infect. Dis. 13, 900–906
18. Commons, R.J. et al. (2019) Risk of Plasmodium vivax parasitaemia after Plasmodium falciparum infection: a systematic review and meta-analysis. Lancet Infect. Dis. 19, 91–101
19. Hossain, M.S. et al. (2019) The risk of Plasmodium vivax parasitaemia after Plasmodium falciparum infection: an individual patient data meta-analysis. In 7th International Conference in Plasmodium vivax Research, Paris, France
20. von Seidlein, L. et al. (2019) The probability of a sequential Plasmodium vivax infection following asymptomatic Plasmodium falciparum and P. vivax infections in Myanmar, Vietnam, Cambodia, and Laos. Malar. J. 18, 449
21. Douglas, N.M. et al. (2011) Plasmodium vivax recurrence following falciparum and mixed species malaria: risk factors and effect of antimalarial kinetics. Clin. Infect. Dis. 52, 612–620
22. Baird, J.K. (2013) Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin. Microbiol. Rev. 26, 36–57
23. Anstey, N.M. et al. (2012) Plasmodium vivax: clinical spectrum, risk factors and pathogenesis. Adv. Parasitol. 70, 151–201
24. Baird, J.K. (2019) 8-Aminoquinoline therapy for latent malaria. Clin. Microbiol. Rev. 32, e00011–e00019
25. Patiani, D. et al. (2019) Early and late mortality after malaria in young children in Papua, Indonesia. BMC Infect. Dis. 19, 922
26. Douglas, N.M. et al. (2014) Mortality attributable to Plasmodium vivax malaria: a clinical audit from Papua, Indonesia. BMC Med. 12, 217
27. Douglas, N.M. et al. (2013) Major burden of severe anemia from non-falciparum malaria species in southern Papua: a hospital-based surveillance study. PLoS Med. 10, e1001575
28. McGeer, R. et al. (2012) Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study. Lancet Infect. Dis. 12, 389–396
29. Tjitra, E. et al. (2008) Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med. 5, e129
30. Genton, B. et al. (2008) Plasmodium vivax and mixed infections are associated with severe malaria in children: a prospective cohort study from Papua New Guinea. PLoS Med. 5, e127
31. Dini, S. et al. (2020) The risk of morbidity and mortality following recurrent malaria in Papua, Indonesia: a retrospective cohort study. BMC Med. 18, 28
32. World Health Organization (2019) World Malaria Report 2019, WHO
33. Oliveira-Ferreira, J. et al. (2010) Malaria in Brazil: an overview. Malar. J. 9, 115
34. Rodrigues, J.C. et al. (2011) Epidemiology and control of malaria in Colombia. Mem. Inst. Oswaldo Cruz 106, 114–122
35. Kenangalem, E. et al. (2019) Malaria morbidity and mortality following introduction of a universal policy of artemisinin-based treatment for malaria in Papua, Indonesia: A longitudinal surveillance study. PLoS Med. 16, e1002315
36. Ome-Kaius, M. et al. (2019) Differential impact of malaria control interventions on P. falciparum and P. vivax infections in young Papua New Guinean children. BMC Med. 17, 220
37. Chu, C.S. et al. (2019) Declining burden of Plasmodium vivax in a population in Northwestern Thailand from 1995 to 2016 before comprehensive primaquine prescription for radical cure. Am. J. Trop. Med. Hyg. 102, 147–150
38. Robinson, L.J. et al. (2013) Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean children: a randomised placebo-controlled trial and mathematical model. PLoS Med. 12, e1001891
39. Adekunle, A.I. et al. (2015) Modeling the dynamics of Plasmodium vivax infection and hypnozoite reactivation in vivo. PLoS Negl. Trop. Dis. 9, e0003596
40. Douglas, N.M. et al. (2012) Chemotherapeutic strategies for reducing transmission of Plasmodium vivax malaria. Adv. Parasitol. 80, 271–300
41. Premaratne, R. et al. (2019) Technical and operational underpinnings of malaria elimination from Sri Lanka. Malar. J. 18, 258.
42. Cooper, D.J. et al. (2019) Plasmodium knowlesi malaria in Sabah, Malaysia, 2015-2017: ongoing increase in incidence despite near-elimination of the human-only Plasmodium species. Clin. Infect. Dis. 70, 361–367.
43. Price, R.N. et al. (2014) Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect. Dis. 14, 962–969.
44. Ratcliff, A. et al. (2007) Therapeutic response of multidrug-resistant Plasmodium falciparum and P. vivax to chloroquine and sulfadoxine-pyrimethamine in southern Papua, Indonesia. Trans. R. Soc. Trop. Med. Hyg. 101, 351–359.
45. Kanaracheva, H.A. et al. (2018) A trial of combination antimalarial therapies in children from Papua New Guinea. N. Engl. J. Med. 379, 2545–2557.
46. Grigg, M.J. et al. (2016) Efficacy of artesunate-mefloquine for chloroquine-resistant Plasmodium vivax malaria in Malaysia: an open-label, randomized, controlled trial. Clin. Infect. Dis. 62, 1403–1411.
47. Price, R.N. et al. (2012) Phenotypic and genotypic characterisation of drug-resistant Plasmodium vivax. Trends Parasitol. 28, 522–529.
48. Popovici, J. et al. (2019) Recrudescence, reinfection, or relapse? A more rigorous framework to assess chloroquine efficacy for Plasmodium vivax malaria. J. Infect. Dis. 219, 515–522.
49. de Sena, L.W.P. et al. (2018) Chloroquine versus dihydroartemisinin-piperazine with standard high-dose primaquine given either for 7 days or 14 days in Plasmodium vivax malaria. Clin. Infect. Dis. 68, 1311–1319.
50. Commons, R.J. et al. (2018) The effect of chloroquine dose and primaquine on Plasmodium vivax recurrence: a WorldWide Anti-Malarial Resistance Network systematic review and individual patient pooled meta-analysis. Lancet Infect. Dis. 18, 1025–1034.
51. Douglas, N.M. et al. (2010) Artemisinin combination therapy for vivax malaria. Lancet Infect. Dis. 10, 405–416.
52. Commons, R.J. et al. (2019) The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysis. PLoS Med. 16, e1002628.
53. Gilder, M.E. et al. (2018) Primaquine pharmacokinetics in lactating women and breastfed infant exposures. Clin. Infect. Dis. 67, 1000–1007.
54. von Seidefeld, L. et al. (2015) Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malar. J. 12, 112.
55. World Health Organization (2015) Guidelines for the Treatment of Malaria (3rd ed.), WHO.
56. Thiemeier, K. et al. (2018) Quantifying primaquine effectiveness and improving adherence: a round table discussion of the APMEN Vivax Working Group. Malar. J. 17, 241.
57. Douglas, N.M. et al. (2017) Unsupervised primaquine for the treatment of Plasmodium vivax malaria relapses in southern Papua: A hospital-based cohort study. PLoS Med. 14, e1002379.
58. John, G.K. et al. (2012) Primaquine radical cure of Plasmodium vivax: a critical review of the literature. Malar. J. 11, 280.
59. Rajgor, D. et al. (2014) Antirelapse efficacy of various primaquine regimens for Plasmodium vivax. Malar. Res. Treat. 2014, 347018.
60. Saravu, K. et al. (2018) A pilot randomized controlled trial to compare the effectiveness of two 14-day primaquine regimens for the radical cure of vivax malaria in South India. Malar. J. 17, 321.
61. Milligan, R. et al. (2019) Primaquine at alternative dosing schedules for preventing relapse in people with Plasmodium vivax malaria. Cochrane Database Syst. Rev. 7, CD012666.
62. Chu, C.S. et al. (2019) Chloroquine versus dihydroartemisinin-piperazine with standard high-dose primaquine given either for 7 days or 14 days in Plasmodium vivax malaria. Clin. Infect. Dis. 68, 1311–1319.
63. Taylor, W.R.J. et al. (2019) Short-course primaquine for the radical cure of Plasmodium vivax malaria: a multicentre, randomised, placebo-controlled non-inferiority trial. Lancet 394, 929–938.
64. Ariffin, N.M. et al. (2019) Effects of MAO-A and CYP450 on primaquine metabolism in healthy volunteers. Parasitol. Res. 118, 1011–1018.
65. Baird, J.K. et al. (2018) Association of impaired cytochrome P450 2B6 activity genotype and phenotype with therapeutic efficacy of primaquine treatment for latent Plasmodium vivax malaria. JAMA Netw. Open 1, e181449.
66. Zhou, Y. et al. (2017) Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin. Pharmacol. Ther. 102, 689–700.
67. Tan, K.R. and Hwang, J. (2018) Tafenoquine receives regulatory approval in USA for prophylaxis of malaria and radical cure of Plasmodium vivax. J. Travel. Med. 25, tay071.
68. Llanos-Cuentas, A. et al. (2019) Tafenoquine versus primaquine to prevent relapse of Plasmodium vivax malaria. N. Engl. J. Med. 380, 259–241.
69. Lacerda, M.V.G. et al. (2019) Single-dose tafenoquine to prevent relapse of Plasmodium vivax malaria. N. Engl. J. Med. 380, 215–228.
70. Haston, J.C. et al. (2019) Guidance for using tafenoquine for prevention and antirelapse therapy for malaria – United States, 2019. MMWR Morb. Mortal. Wkly Rep. 68, 1062–1069.
71. Commons, R.J. et al. (2020) Tafenoquine for the radical cure and prevention of malaria: the importance of testing for G6PD deficiency. Med. J. Aust. 212, e151.
72. Ley, B. et al. (2018) Performance of the Access Bio/CareStart rapid diagnostic test for the detection of glucose-6-phosphate dehydrogenase deficiency: A systematic review and meta-analysis. PLoS Med. 16, e1002992.
73. Alam, M.S. et al. (2018) Field evaluation of quantitative point-of-care diagnostics to measure glucose-6-phosphate dehydrogenase activity. PLoS One 13, e0206331.
74. Ashley, E.A. et al. (2019) Plasmodium vivax relapse rates following Plasmodium falciparum malaria reflect previous transmission intensity. J. Infect. Dis. 220, 100–104.
75. Mayxay, M. et al. (2004) Mixed-species malaria infections in humans. Trends Parasitol. 20, 233–240.
76. Thiemeier, K. et al. (2017) Challenges for achieving safe and effective radical cure of Plasmodium vivax: a round table discussion of the APMEN Vivax Working Group. Malar. J. 16, 141.
77. Weiss, D.J. et al. (2019) Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. Lancet 394, 322–331.