Learning Multiagent Options for Tabular Reinforcement Learning using Factor Graphs

Jiayu Chen , Jingdi Chen, Tian Lan , and Vaneet Aggarwal , Senior Member, IEEE

Abstract—Covering option discovery has been developed to improve the exploration of reinforcement learning in single-agent scenarios, where only sparse reward signals are available. It aims to connect the most distant states identified through the Fiedler vector of the state transition graph. However, the approach cannot be directly extended to multiagent scenarios, since the joint state space grows exponentially with the number of agents, thus prohibiting efficient option computation. Existing research adopting options in multiagent scenarios still relies on single-agent algorithms and fails to directly discover joint options that can improve the connectivity of the joint state space. In this article, we propose a new algorithm to directly compute multiagent options with collaborative exploratory behaviors while still enjoying the ease of decomposition. Our key idea is to approximate the joint state space as the Kronecker product of individual agents’ state spaces, based on which we can directly estimate the Fiedler vector of the joint state space using the Laplacian spectrum of individual agents’ transition graphs. This decomposition enables us to efficiently construct multiagent joint options by encouraging agents to connect the subgoal joint states, which are corresponding to the minimum or maximum of the estimated joint Fiedler vector. Evaluation on multiagent collaborative tasks shows that our algorithm can successfully identify multiagent options and significantly outperforms prior works using single-agent options or no options, in terms of both faster exploration and higher cumulative rewards.

Impact Statement—Multiagent reinforcement learning (MARL) has become increasingly important due to growing complexity of real-world decision making problems. A key performance bottleneck for MARL is the lack of efficient coordinated exploration among multiple agents. The proposed multiagent option discovery approach addresses this problem by alleviating the exponential complexity involved in multi-agent explorations. The approach achieves significantly improved exploration and higher cumulative rewards in challenging multi-agent decision making scenarios.

Index Terms—Kronecker product, multiagent reinforcement learning (MARL), option discovery.

I. INTRODUCTION

REINFORCEMENT learning (RL) has achieved impressive performance in a variety of scenarios, such as robotic control [1], [2] and games [3]–[5]. However, most of its applications rely on carefully crafted task-specific reward signals to drive exploration and learning, limiting its use in real-life scenarios often with sparse or no rewards. To this end, acquiring skills from the experience in a task-agnostic manner by extracting temporal action-sequence abstractions, i.e., option discovery [6], to support efficient exploration can be essential. The acquired skills/options can then be employed by a metacontroller to solve downstream tasks more effectively. For instance, in a robotic navigation task, the robot can first learn locomotion skills in the environment, and then, an agent only needs to learn a controller to give out point-to-point navigation commands, which would be implemented through these skills. Thus, given useful skills, the downstream task can be greatly simplified from a continuous control task to a discrete one. Among recent developments on option discovery, covering option discovery [7], [8] has been shown to be effective to accelerate the exploration in sparse reward environments. In particular, it first computes the second smallest eigenvalue and the corresponding eigenvector (i.e., Fiedler vector [9]) of the Laplacian matrix extracted from the state transition process in RL. Then, options are built to connect the states corresponding to the minimum or maximum in the Fiedler vector, which has been proven to greedily improve the algebraic connectivity of the state space [10]. With these options, the accessibility from each state to the others will be enhanced, due to which the exploration in the state space can be accelerated a lot.

In this article, we consider the problem of constructing and utilizing covering options in multiagent reinforcement learning (MARL). Due to the exponentially large state space in multiagent scenarios, a commonly adopted way to solve this problem [11]–[15] is to construct the single-agent options as if in a single-agent environment first and, then, learn to collectively leverage these individual options to tackle multiagent tasks. This method fails to consider the coordination among agents in the option discovery process and, thus, can suffer from very poor behavior in multiagent collaborative tasks. To this end, in our work, we propose a framework that makes novel use of Kronecker product of factor graphs to directly construct the multiagent options in the joint state space and adopt them to accelerate the joint exploration of agents in MARL. We show through experiments that agents leveraging our multiagent options significantly outperform agents with single-agent
options or no options in MARL tasks. For some challenging tasks, the adoption of multiagent options can improve the convergence speed by two orders of magnitude and the episodic cumulative reward by about 100%. Also, instead of directly adopting the covering option discovery to the joint state space since its size grows exponentially with the number of agents, we build multiagent options based on the individual state transition graphs, making our method much more scalable.

Specifically, the main contributions are as follows.

1) We propose multiagent covering option discovery—it approximates the joint state transition graph as a Kronecker product of the individual ones, so that we can estimate the Fiedler vector of the joint state space based on the Laplacian spectrum of the individual state spaces to enjoy the ease of decomposition. Then, the joint options composed of multiple agents’ temporal action sequences can be directly constructed to connect the joint states corresponding to the minimum or maximum in the Fiedler vector, resulting in a greedy improvement of the joint state space’s algebraic connectivity.

2) We propose that the multiagent options can be adopted to MARL in either a decentralized or centralized manner and present the comparisons between these two approaches. For the centralized manner, different agents jointly decide on their options. In contrast, for the decentralized manner, agents can choose their options independently and select different options to execute simultaneously.

II. Related Work

Option discovery: Temporal abstraction allows representing knowledge about courses of action at different time scales, which is key to scaling up learning and planning in RL. The temporal abstraction in RL can be modeled with the option framework proposed in [6], which extends the usual notion of actions to include options—the closed-loop policies for taking actions over a period of time. While planning with options is well understood in research about semi-Markov decision process (MDP) [16], [17] and hierarchical RL [18], [19], constructing options autonomously from data, i.e., option discovery, has remained challenging. Literature on option discovery is summarized as follows.

Some works, such as [20]–[23], are based on task-related reward signals. Specifically, they directly define or learn through gradient descent the options that can lead the agent to the rewarding states in the environments and, then, utilize these trajectory segments (options) to compose the completed trajectory toward the goal state. These methods rely on dense reward signals, which are usually hard to acquire in real-life tasks. Other works define the subgoal states (i.e., termination states of the options) based on the visitation frequency of the states. For example, in [24]–[26], they discover the options by recognizing the bottleneck states in the environment, through which the agent can transfer between the subareas that are loosely connected in the state space, which are denoted as betweenness options. Recently, there have been some state-of-the-art (SOTA) option generation methods based on the Laplacian spectrum of the state-transition graph, such as in [7], [8], [27], and [28], since the eigenvectors of the Laplacian of the state space can provide embeddings in lower dimensional space, based on which we can obtain good measurements of the accessibility/connectivity from one state to another. Through adding options between states with poor connectivity, the exploration in the state space can be accelerated a lot. Note that all the approaches mentioned above are for single-agent scenarios, and in this article, we will extend the construction and adoption of options to MARL.

Adopting options in multiagent scenarios: Current research works on adopting options in MARL, such as [11]–[15] and [29], try to first learn the options for each individual agent with the option discovery methods we mentioned above and then learn to collaboratively utilize these individual options. Therefore, the options they use are still single-agent options, and the coordination in the multiagent system can only be shown/utilized in the option-choosing process while not the option discovery process. We can classify these works by the option discovery methods they use: the algorithms in [11] and [12] directly define the options based on their task without the learning process; the algorithms in [13]–[15] learn the options based on the task-related reward signals from the environment; the algorithm in [29] trains the options based on a reward function that is a weighted sum of the environment reward and information-theoretic reward proposed in [30].

To the best of our knowledge, we are the first to propose multiagent covering option discovery. Specifically, we propose algorithms for directly constructing multiagent options based on the Laplacian spectrum of the individual state transition graphs to encourage efficient exploration in the joint state space, and explore how to utilize the multiagent options in MARL effectively, so as to leverage the coordination among the agents in both the option discovery and adoption process.

III. Background

A. Basic Conceptions and Notations

In this section, we will introduce the necessary conceptions and corresponding notations used in this article. We provide a table of predefined symbols in Appendix A.

MDP: The RL problem can be described with an MDP, denoted by $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, R, \gamma)$, where \mathcal{S} is the state space, \mathcal{A} is the action space, $P : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to [0, 1]$ is the state transition function, $R : \mathcal{S} \times \mathcal{A} \to \mathbb{R}^1$ is the reward function, and $\gamma \in (0, 1]$ is the discount factor.

State transition graph in an MDP: The state transitions in \mathcal{M} can be modeled as a state transition graph $G = (V_G, E_G)$, where V_G is a set of vertices representing the states in \mathcal{S}, and E_G is a set of undirected edges representing state adjacency in \mathcal{M}. We note the following.

Remark 1: There is an edge between state s and s' (i.e., s and s' are adjacent) if and only if $\exists a \in \mathcal{A}$, s.t. $P(s, a, s') > 0$ OR $P(s', a, s) > 0$.

The adjacency matrix A of G is an $|\mathcal{S}| \times |\mathcal{S}|$ matrix, whose (i,j) entry is 1 when s_i and s_j are adjacent, and 0 otherwise. $|\mathcal{S}|$ denotes the cardinality of \mathcal{S}. The degree matrix D is a diagonal matrix whose entry (i,i) equals the number of edges incident
to s_i. The Laplacian matrix of G is defined as $L = D - A$. Its second smallest eigenvalue $\lambda_2(L)$ is called the algebraic connectivity of the graph G, and the corresponding eigenvector is called the Fiedler vector [9]. Furthermore, the normalized Laplacian matrix is defined as $\tilde{L} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$.

Kronecker product of graphs [31]: Let $G_1 = (V_{G_1}, E_{G_1})$ and $G_2 = (V_{G_2}, E_{G_2})$ be two state transition graphs, corresponding to the individual state space S_1 and S_2, respectively. The Kronecker product of them denoted by $G_1 \otimes G_2$ is a graph defined on the set of vertices $V_{G_1} \times V_{G_2}$, such that we have the following.

Remark 2: Two vertices of $G_1 \otimes G_2$, namely, (g, h) and (g', h'), are adjacent if and only if g and g' are adjacent in G_1 and h and h' are adjacent in G_2.

Thus, the Kronecker product graph can capture the joint transitions of the agents in their joint state space very well. In Section IV-B, we propose to use the Kronecker product graph as an effective approximation of the joint state transition graph, so that we can discover the joint options based on the factor graphs. Furthermore, $A_1 \otimes A_2$ is an $|S_1||S_2| \times |S_1||S_2|$ matrix with elements defined by $(A_1 \otimes A_2)(I,J) = A_1(i,j)A_2(k,l)$ with (1), where A_1 and A_2 are the adjacency matrices of G_1 and G_2, $A_1(i,j)$ is the element lies on the ith row and the jth column of A_1 (indexed from 1)

$$I = (i-1) \times |S_2| + k, \quad J = (j-1) \times |S_2| + l. \quad (1)$$

B. Covering Option Discovery

As defined in [6], an option ω consists of three components: an intraoption policy $\pi_\omega : S \times A \rightarrow [0, 1]$, a termination condition $\beta_\omega : S \rightarrow \{0, 1 \}$, and an initiation set $I_\omega \subseteq S$. An option $<I_\omega, \pi_\omega, \beta_\omega>$ is available in state s if and only if $s \in I_\omega$. If the option ω is taken, actions are selected according to π_ω, until ω terminates according to β_ω (i.e., $\beta_\omega = 1$). In order to get an option, we need to learn the intraoption policy and define the termination condition and initiation set.

Jinnai et al. [8] propose covering option discovery—discovering options by minimizing the upper bound of the expected cover time of the state space. First, they compute the Fiedler vector ω of the Laplacian matrix of the state transition graph. Then, they collect the states s_i and s_j with the largest $(F_i - F_j)^2$ (F_i is the ith element in F), based on which they construct two symmetric options:

$$\omega_{ij} = \{s_i, s_j, \pi_{\omega_{ij}}, \beta_{\omega_{ij}} = \{s_j\}\}$$

$$\omega_{ji} = \{s_j, s_i, \pi_{\omega_{ji}}, \beta_{\omega_{ji}} = \{s_i\}\} \quad (2)$$

to connect these two subgoal states bidirectionally, where π_ω is defined as the optimal path between the initiation and termination states. This whole process is repeated until they get the required number of options. The intuition is as follows.

Ghosh and Boyd [10] prove that $(F_i - F_j)^2$ gives the first-order approximation of the increase in $\lambda_2(L)$ (i.e., algebraic connectivity) by connecting (s_i, s_j). Based on that, they propose a greedy heuristic to improve the algebraic connectivity of a graph: adding a certain number of edges one at a time, and each time connecting (s_i, s_j) corresponding to the largest $(F_i - F_j)^2$.

Thus, applying this greedy heuristic to the state transition graph can effectively improve its connectivity, leading to a smaller upper bound of the expected cover time and accelerated exploration of the state space, as shown in [8].

IV. PROPOSED ALGORITHM

A. System Model

In this article, we consider to compute covering options in multiagent scenarios, with n being the number of agents, $S = S_1 \times S_2 \times \cdots \times S_n$ being the set of joint states, $A = A_1 \times A_2 \times \cdots \times A_n$ being the set of joint actions, and S_i and A_i being the individual state space and action space of agent i. Apparently, the size of the joint state space, i.e., $|S| = \prod_{i=1}^n |S_i|$, grows exponentially with n. Thus, it is prohibitive to directly compute the covering options based on the joint state transition graph using the approach introduced in Section III-B for a large n.

A natural method to tackle this challenging problem is to compute the options for each individual agent by considering only its own state transitions and then learn to collaboratively leverage these individual options. However, it fails to directly recognize joint (i.e., multiagent) options composed of multiple agents’ temporal action sequences for encouraging the joint exploration of all the agents. In this case, the connectivity of the joint state space may not be improved with these single-agent options. We illustrate this with a simple example.

Illustrative example: Fig. 1(a) shows a joint state transition graph G of two agents, where agent 1 has two states $S_1 = \{1, 2\}$ and agent 2 has four states $S_2 = \{1, 2, 3, 4\}$. In order to compute the individual options, we can restrict our attention to the state transition graph of each agent, namely, G_1 and G_2, with Laplacian given by L_1 and L_2, respectively (refer to Appendix C for derivation)

$$L_1 = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}, \quad L_2 = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}. \quad (3)$$

To compute the options for each agent, we first compute the Fiedler vectors of G_1 and G_2 (i.e., the eigenvectors corresponding to the second smallest eigenvalues of L_1 and L_2), namely, F_1 and F_2

$$F_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad F_2 = \frac{1}{\sqrt{8 - 4\sqrt{2}}} \begin{bmatrix} -1 \\ -\sqrt{2} + 1 \\ \sqrt{2} - 1 \\ 1 \end{bmatrix}. \quad (4)$$

Then, according to the option discovery approach described in Section III-B, we can get the individual options for agent 1 to connect its state 1 (minimum) and state 2 (maximum), and individual options for agent 2 to connect its state 1 (minimum) and state 4 (maximum). With these options, the joint transition from $(1, 1)$ to $(2, 4)$ (i.e., $(1, 1) \to (2, 4)$: agent 1 going from 1 to 2 and agent 2 going from 1 to 4) is possible, so are the transitions: $(2, 4) \to (1, 1)$ and $(2, 1) \leftrightarrow (1, 4)$. The newly updated transitions are shown as the green dashed lines in Fig. 1(b).
These options fail to create a connected graph. It implies that utilizing the single-agent options alone may not be sufficient for encouraging efficient joint exploration.

Therefore, we propose to build multiagent covering options to enhance the connectivity of the joint state space and accelerate the joint exploration of the agents within the scenario. We can represent it as a tuple: \((I_\omega, \pi_\omega, \beta_\omega) \), where \(I_\omega \subseteq \mathcal{S} \) is the set of initiation joint states, \(\beta_\omega : \mathcal{S} \rightarrow \{0, 1\} \) indicates the joint states to terminate, \(\pi_\omega = (\pi_\omega^1, \ldots, \pi_\omega^n) \) \((\pi_\omega^i : \mathcal{S}_i \times \mathcal{A}_i \rightarrow [0, 1]) \), is the joint intraoption policy that can lead the agents from the initiation states to the termination states. The key challenge is to calculate the Fiedler vector of the joint state space according to which we can define \((I_\omega, \pi_\omega, \beta_\omega) \) like Section III-B. Given that \(|\mathcal{S}| \) grows exponentially with \(n \), we propose to estimate the joint Fiedler vector based on the individual state spaces in the next section.

B. Theory Results

We propose to use the Kronecker product graph to decompose the eigenfunction calculation to single-agent state spaces, making our approach much more scalable. This decomposition is based on the facts: 1) the Kronecker product of individual state transition graphs \(\otimes_{i=1}^n G_i = G_1 \otimes \cdots \otimes G_n \) provides a good approximation of the joint state transition graph \(G \); and 2) the Fielder vector of \(\otimes_{i=1}^n G_i \) can be estimated with the Laplacian spectrum of \(G_i \) \((i = 1, \ldots, n)\).

We note that the use of \(\otimes_{i=1}^n G_i \) as a factorized approximation of \(G \) introduces noise, since \(\hat{G} = \otimes_{i=1}^n G_i \) becomes exact only in the case where agents’ transitions are not influenced by the others. However, for the purpose of option discovery, we only need to identify areas in the state space with relatively low or high values in the Fielder vector, so an exact calculation of \(G \) and its Fielder vector is not necessary. Moreover, the state transition influence among agents, e.g., collisions and blocking, would most likely result in local perturbations of the transition graph and, thus, is inconsequential to global properties of \(G \), like its algebraic connectivity and Fielder vector. Therefore, approximating \(\hat{G} \) by \(\otimes_{i=1}^n G_i \) allows efficient options discovery. Furthermore, in Section V-B, we empirically show in Fig. 10 that superior exploration can still be achieved under such approximation noise, numerically validating the robustness of our proposed approach to the approximation error. Moreover, we provide a quantitative study on the approximation error in Section V-B, showing that \(\otimes_{i=1}^n G_i \) can be used as a simple yet powerful approximation of \(\hat{G} \) for option discovery.

Next, we show how to effectively approximate the Fiedler vector of \(\otimes_{i=1}^n G_i \) based on the Laplacian spectrum of the factor graphs, which enables an effective decomposition of multiagent option discovery. Inspired by Basic et al. [32] who proposed an estimation of the Laplacian spectrum of the Kronecker product of two factor graphs, we have the following theorem.

Theorem 1: For graph \(\hat{G} = \otimes_{i=1}^n G_i \), we can approximate the eigenvalues \(\lambda \) and eigenvectors \(v \) of its Laplacian \(L \) by

\[
\lambda_{k_1, \ldots, k_n} \approx \left\{ \left[1 - \prod_{i=1}^n (1 - \lambda_{k_i}^{G_i}) \right] \prod_{i=1}^n d_{k_i}^{G_i} \right\}^{-1}
\]

(5)

\[
v_{k_1, \ldots, k_n} \approx \otimes_{i=1}^n v_{k_i}^{G_i}
\]

(6)

where \(\lambda_{k_i}^{G_i} \) and \(v_{k_i}^{G_i} \) are the \(k_i \)-th smallest eigenvalue and corresponding eigenvector of \(G_i \) (normalized Laplacian matrix of \(G_i \)), and \(d_{k_i}^{G_i} \) is the \(k_i \)-th smallest diagonal entry of \(D_{G_i} \) (degree matrix of \(G_i \)).

The proof of Theorem 1 is provided in Appendix B. Through enumerating \((k_1, \ldots, k_n) \), we can collect the eigenvalues of \(\otimes_{i=1}^n G_i \) by (5) and the corresponding eigenvectors by (6). Then, the eigenvector \(v_{k_1, \ldots, k_n} \) corresponding to the second smallest eigenvalue \(\lambda_{k_1, \ldots, k_n} \) is the estimated Fiedler vector of the joint state transition graph, namely, \(F_{\hat{G}} \). Based on it, we can define the joint states corresponding to the maximum or minimum in \(F_{\hat{G}} \) as the initiation or termination joint states, which can be connected with joint options. As discussed in Section III-B, connecting these two joint states with options can greedily improve the algebraic connectivity of the joint state space and accelerate the joint exploration within it.

Illustrative example: Now, we consider again the example in Fig. 1(a), where \(\hat{G} = G_1 \otimes G_2 \). We can approximate the Fiedler vector of \(\hat{G} \) using Theorem 1. As a result, we get two approximations of the Fiedler vector (refer to Appendix C for computing details)

\[
F_{\hat{G}}^1 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1, 1, 1, 1, 1, 1 \end{bmatrix}^T
\]

(7)

\[
F_{\hat{G}}^2 = \frac{1}{\sqrt{6}} \begin{bmatrix} -1, 1, -1, 1, -1, 1 \end{bmatrix}^T.
\]

(8)

Based on the two approximations and the indexing relationship between \(G \) and its factor graphs [see (1)], we can get two sets of multiagent options: \(\{I_{\omega 1} = \{(1, 2), (1, 3), (2, 2), (2, 3)\}, \beta_{\omega 1} = \{(1, 1), (1, 4), (2, 1), (2, 4)\} \} \) and \(\{I_{\omega 2} = \{(1, 2), (2, 3)\}, \beta_{\omega 2} = \{(1, 3), (2, 2)\} \} \), where we set the joint states corresponding to the maximum and minimum as the initiation and termination states, respectively. For example,
in F_G^ω [see (7)], the seventh element (indexed from 1) is a maximum, so the seventh joint state is within the initiation set $I_{\omega 1}$ and denoted as (2,3) according to (1), i.e., $7 = (2 - 1) \times |S_2| + 3$, where $|S_2| = 4$. As shown in Fig. 2, the green-dashed lines represent the joint options, which connect the states in the initiation and termination set bidirectionally. It can be observed that both of the two options can lead to a connected graph when applied to G. Thus, the adoption of multiagent options has the potential to encourage efficient exploration of the joint state space by improving its algebraic connectivity, and we can discover multiagent options based on individual agents’ state spaces, so that we can enjoy the ease of decomposition. Next, we will formalize our algorithm.

C. Multiagent Covering Option Discovery

In this article, we adopt Algorithm 1 to construct multiagent options, based on the individual state transition graphs of each agent, which are represented as a list of adjacency matrices $A_{1:n}$. First, in lines 5–9 of Algorithm 1, we acquire the estimation of the Fielder vector F_G of the joint state space through Theorem 1 based on $A_{1:n}$, so that we can collect the joint states corresponding to the minimum or maximum of F_G. Then, in line 10 of Algorithm 1, we split each joint state into a list of individual states. For example, after getting a pair of minimum or maximum in $(\min \, A, \max \, A)$ respectively, (indexed from 0) in the state space of agent ω_i, we will formalize our algorithm.

Algorithm 1: Multiagent Covering Option Discovery.

1. **Input:** number of agents n, list of adjacency matrices $A_{1:n}$, number of options to generate tot_num
2. **Output:** list of multiagent options Ω
3. $\Omega \leftarrow \emptyset$, $\text{cur_num} \leftarrow 0$
4. while $\text{cur_num} < \text{tot_num}$ do
5. Collect the degree list of each individual state transition graph $D_{1:n}$ according to $A_{1:n}$
6. Obtain the list of normalized Laplacian matrices $\tilde{L}_{1:n}$ corresponding to $A_{1:n}$
7. Calculate the eigenvalues U_i and corresponding eigenvectors V_i for each \tilde{L}_i and collect them as $U_{1:n}$ and $V_{1:n}$
8. Obtain the Fielder vector F_G of the joint state space using Theorem 1 based on $\tilde{D}_{1:n}$, $U_{1:n}$ and $V_{1:n}$
9. Collect the list of joint states corresponding to the minimum or maximum in F_G, named \min and \max respectively
10. Convert each joint state s_{joint} in \min and \max to (s_1, \ldots, s_n), where s_i is the corresponding individual state of agent ω_i, based on the equation: $\text{ind}(s_{\text{joint}}) = ((\text{ind}(s_1) \times \text{dim}(A_2) + \text{ind}(s_2)) \times \text{dim}(A_3) + \cdots + \text{ind}(s_{n-1})) \times \text{dim}(A_n) + \text{ind}(s_n)$, where $\text{dim}(A_i)$ is the dimension of A_i, $\text{ind}(s_i)$ is the index of s_i (indexed from 0) in the state space of agent ω_i
11. Generate a new list of options Ω' through Algorithm 2
12. $\Omega \leftarrow \Omega \cup \Omega'$, $\text{cur_num} \leftarrow \text{cur_num} + \text{len}(\Omega')$
13. Update $A_{1:n}$ through Algorithm 3
14. end while

Algorithm 2: Generate Multiagent Options.

1. **Input:** \min, \max: list of joint states corresponding to the minimum or maximum in the Fielder vector β_G
2. **Output:** list of multiagent options Ω'
3. $\Omega' \leftarrow \emptyset$
4. for $s = (s_1, \ldots, s_n)$ in ($\min \cup \max$) do
5. Define the initiation set I_o as the joint states in the known region of the joint state space
6. Define the termination condition: $\beta_G(s_{\text{cur}}) \leftarrow \{1$ if $s_{\text{cur}} == s$ or s_{cur} is unknown
7. Train the intrapolicy domain $\pi_o = (\pi_{o1}, \ldots, \pi_{on})$, where π_{oi} maps the individual state of agent ω_i to its action aiming at leading agent ω_i to its action aiming at leading agent ω_i
8. $\Omega' \leftarrow \Omega' \cup \{s, \pi_o, \beta_{\omega_i}\}$
9. end for

Algorithm 3: Update Adjacency Matrices.

1. **Given:** list of adjacency matrices $A_{1:n}$, \min, \max
2. for $s_{\min} = (s_{\min 1}, \ldots, s_{\min n})$ in \min do
3. for $s_{\max} = (s_{\max 1}, \ldots, s_{\max n})$ in \max do
4. for $i = 1$ to n do
5. $A_i[\text{ind}(s_{\min i})][\text{ind}(s_{\max i})] = 1$
6. $A_i[\text{ind}(s_{\max i})][\text{ind}(s_{\max i})] = 1$
7. end for
8. end for
9. end for

Fig. 2. Joint state transition graph updated with the detected multiagent options. (a) Joint state transition graph updated with option ω_1. (b) Joint state transition graph updated with option ω_2.

CHEN et al.: LEARNING MULTIAGENT OPTIONS FOR TABULAR REINFORCEMENT LEARNING USING FACTOR GRAPHS 1145
individual state space. After decentralizing the joint states, we can define the multiagent options as follows. For each option ω, we define I_ω as the explored joint states and β_ω as a joint state in $\text{MIN} \cup \text{MAX}$ or the unexplored area. Option ω is available in state s if and only if $s \in I_\omega$. Therefore, instead of constructing a point option between $(s_{\text{min}}, s_{\text{max}})$, e.g., setting $\{s_{\text{min}}\}$ as I_ω and $\{s_{\text{max}}\}$ as β_ω, we extend I_ω to the known area to increase the accessibility of ω. As for the intraoption policy π_ω used for connecting the initiation and termination joint state, we divide it into a list of single-agent policies π^i_ω $(i = 1, \ldots, n)$, where π^i_ω can be trained with any single-agent RL algorithm aiming at leading agent i from its own initiation state to the termination state $s^i_{\text{min}}(s^i_{\text{max}})$. At last, before entering the next loop, we adopt Algorithm 3 to update the individual state transition graphs with the newly discovered options. This whole process (lines 5–13 in Algorithm 1) is repeated until we get a certain number of options.

To sum up, the proposed algorithm first discovers the joint states that need to be explored most and then build multiagent options to encourage agents to visit these subgoals. More precisely, we project each subgoal joint state into its corresponding individual state spaces and train the intraoption policy for each agent to visit the projection of the subgoal state in its individual state space.

At last, we give out the computational complexity of our approach. Consider an MDP with n agents and r states for each agent. To compute the Fiedler vector directly from the joint state transition graph would require time complexity $O(r^{3n})$, since there are in total r^n joint states and the time complexity of eigenvalue decomposition (line 7 in Algorithm 1) is cubic with the size of the joint state space. With our Kronecker factor graph approach, we can decompose the original problem into computing eigenvectors of the individual state transition graphs, of which the overall time complexity is $O(nr^3)$. Thus, our solution significantly reduces the problem complexity from $O(r^{3n})$ to $O(nr^3)$ for multiagent problems. Also, note that for problems with continuous or large state space (i.e., r is large), our approach could be directly integrated with sample-based techniques for eigenfunction estimation (line 7 in Algorithm 1), like [33] and [34]. Hence, the bottleneck on computational complexity can be overcome. More precisely, the Laplacian spectrum of the factor graphs can be estimated using neural networks and then leveraged by our proposed algorithm to find the Fiedler vector of the joint state transition graph, which is considered as future work.

D. Adopting multiagent Options in MARL

In order to take advantage of options in the learning process, we adopt a hierarchical algorithm framework, shown in Fig. 3. When making decisions, the RL agent first decides on which option ω to use according to the high-level policy and then decides on the action to take based on the corresponding intraoption policy π_ω. The agent does not decide on a new option with the high-level policy until the current option terminates.

![Fig. 3. Hierarchical algorithm framework: When making decisions, the agent first decides on which option ω to use according to the high-level policy and then decides on the primitive action to take based on the corresponding intraoption policy π_ω. The agents can decide on their options independently (the left side) or jointly (the right side).](image-url)
above. Furthermore, if there is no way to divide the (identical) agents based on subtasks, we can still group them randomly to a list of two-agent or three-agent subgroups. Agents within the same subgroup will co-explore their joint state space using the algorithm framework shown in Fig. 3. In Section V, we show that the adoption of grouping techniques can not only accelerate the exploration but also greatly improve the scalability of our algorithm.

V. EVALUATION AND RESULTS

A. Simulation Setup

As shown in Fig. 4, the proposed approach is evaluated on four multiagent goal-achieving tasks.

1) For tasks shown in Fig. 4(b) and (d), n ($2–8$) agents (triangles) must reach the goal area (circles) at the same time to complete this task, without going through the walls (squares). If some agents have reached the goal and the others have not, the n agents will continue to move until all of them reach the goal in the meantime.

2) For tasks shown in Fig. 4(c) and (e), there are m groups of agents, and each group contains n agents. Each group of agents has a special goal area labeled with the same color.

Note that all the $m \times n$ agents should get to their related goal areas at the same time to complete this task, and the agents do not know which goal area is related to them at first. We only show the four-agent and (3×2)-agent cases for the four-room task in Fig. 4. For the illustrations of other cases used in the following evaluations, refer to Appendix D. For all the four tasks, different agents can share the same grid, and only when the agents complete the task can they receive a reward signal $r = 1.0$, which is shared by all the agents; otherwise, they will receive $r = 0.0$. In the following experiments, we use the episodic cumulative reward as the metric, which is defined as $\sum_{i=0}^{l} \lambda^i r$. $\lambda = 0.99$ is the discount factor of the MDP, and l is the horizon of each episode of which the maximum is set as 200.

Note that these evaluation tasks are multiagent versions of the simulators used in [8] (i.e., one of our baselines), which are quite challenging. On the one hand, the agents need to make decisions based on only their current locations (i.e., without knowing where the goal area is). On the other hand, the reward space is very sparse: for example, in the eight-agent four-room task, there are in total 104 states (i.e., non-wall grids) for each agent and four of them are the rewarding states (i.e., goals), so the ratio of the rewarding joint states is $(4/104)^{8} \approx 4.8 \times 10^{-12}$, which is also the probability that the eight agents can complete this task through the random walk [38]. Hence, agents without highly efficient exploration strategies cannot complete these tasks. In Section V-B, we evaluate on tasks of increasing complexity (e.g., Fig. 6 and 8). The more difficult the task is, the more advantageous our approach becomes.

We compare our approach—agents with multiagent options, with two baselines.

1) Agents without options: the high-level policy is directly used to choose primitive actions, rather than choosing the option first and then choosing the primitive action with the corresponding intraoption policy. Comparisons with this baseline can show the effectiveness of using options to aid the exploration.

2) Recent works on adopting options in MARL: As mentioned in Section II, these works [11]–[15], [29] first construct single-agent options for each agent based on their individual state spaces and then learn to collaboratively utilize them in MARL, so we denote these methods as agents with single-agent options in the following. However, they either rely on predefined options or adopt the option discovery methods that depend on dense task-related reward signals and suffer from poor performance in environments with only sparse rewards like ours. In this case, we adopt the SOTA algorithm proposed in [8] to replace the option discovery algorithm component in these methods, which claims to outperform previous option discovery algorithms, including [26], [27], and [30], for sparse reward scenarios. Comparisons with this baseline can show the superiority of our approach to directly identify and adopt joint options in multiagent scenarios. To be fair, we set the number of single-agent and multiagent options for each agent to select as the same. Also, we extend the initiation set of each single-agent option to the known area to increase their accessibility, like what we do with multiagent options.

There are two kinds of policies in Fig. 3: the high-level policy for selecting among options, and the low-level policy for...

![Image of the page content]

TABLE I

Algorithm	Input	Output	How to utilize multi-agent options
Random	Individual state	Individual action	Decentralized
Independent Q-Learning [35]			
Distributed Q-Learning [37]	Joint state	Individual action	Decentralized
Centralized Q-Learning	Joint state	Joint action	Decentralized
Centralized Q-Learning + Force	Joint state	Joint action	Centralized

Fig. 5. Comparisons on the two-agent four-room task. (a)–(e) show the results of using different algorithms as the high-level policy. No matter which algorithm we adopt, agents with multiagent options can converge faster than the baselines. Also, our approach converges to a higher cumulative reward. (a) Random. (b) Independent Q-learning. (c) Distributed Q-learning. (d) Centralized Q-learning. (e) Centralized Q-learning + force.

for selecting among primitive actions. In the following experiments, we evaluate the performance of agents with five different algorithms as the high-level policy: random policy, independent Q-learning [35], distributed Q-learning [37] (each agent decides on their own option based on the joint state), centralized Q-learning, and centralized Q-learning + force, to make sure that the performance improvement is not specific to a certain algorithm. Table I shows the comparisons among these algorithms.

1) If adopting “independent Q-learning” as the high-level policy, agents need to make decisions based on only their local states; otherwise, agents within the same subgroup can share their views and make decisions based on their joint states.

2) For “centralized Q-learning + force,” agents are forced to choose the same multiagent option at a time (centralized), while, for the others, agents can choose different options to execute simultaneously (decentralized).

As for the low-level policy, we adopt value iteration [39] to find the optimal path between each pair of initiation and termination state for each agent i as π^i_ω. Compared with baseline 2), our approach does not cost additionally for learning the low-level policy, since the number of single and multiagent options is the same for each agent.

B. Main Results

For each experiment, we present comparisons among the performance of agents with multiagent options (blue line), agents with single-agent options (red line), and agents without options. We run each experiment five times with different random seeds and plot the change of the mean (the solid line) and standard deviation (the shadow area) of the episodic cumulative reward during the training process (1000 episodes).

1) Two-Agent Four-Room Task: As shown in Fig. 5, we present comparisons on the two-agent four-room task, with different algorithms (listed in Table I) as the high-level policy. It can be observed that no matter which algorithm we adopt as the high-level policy, agents with multiagent options can converge faster than the baselines. However, when using independent Q-learning to train the high-level policy, the performance of our approach and the baselines is very close. Thus, in the follow-up experiments, we compare these approaches on more challenging tasks with independent Q-learning as the high-level policy to see if there will be more significant performance increase. Also, we will adopt centralized Q-learning + force to train the high-level policy in the following experiments, to compare the two manners (decentralized or centralized) to utilize the multiagent options.

2) N-Agent Four-Room Task: In Fig. 6(b)–(d), we test these methods on n-agent four-room tasks ($n = 3–5$), using independent Q-learning as the high-level policy. We can observe
Fig. 6. Evaluation on n-agent four-room tasks. (a)–(c) Using independent Q-learning as the high-level policy. The performance improvement of our approach is more and more significant as the number of agents increases. (d)–(f) Using centralized Q-learning + force as the high-level policy. Agents with single-agent options start to fail due to the three-agent case. Also, it can be observed that the centralized way to utilize the n-agent options leads to faster convergence. (a) Three-agent four-room task. (b) Four-agent four-room task. (c) Five-agent four-room task. (d) Three-agent four-room task. (e) Four-agent four-room task. (f) Five-agent four-room task.

that the performance improvement brought by our approach is more and more significant as the number of agents increases. When $n = 5$, both the baselines fail to complete the task, while agents with five-agent options can converge within 200 episodes. Furthermore, in Fig. 6(e)–(g), we show the results of using centralized Q-learning + force as the high-level policy on the same tasks. We can see that the centralized way to utilize the n-agent options leads to faster convergence since the joint output space of the agents is pruned. As mentioned in Section IV-D, the size of the joint output space is $(j + k)^n$ for the decentralized manner and $j^n + k$ for the centralized manner if there are j primitive actions and k options for the n agents to select. Note that when the number of agents is three, the agents with single-agent options already fail to complete the four-room task. We do not include the results of agents with single-agent options in Fig. 6(f)–(g), because it takes a tremendously long time to run those experiments and it can be predicted that the results will be the same as Fig. 6(e).

3) Four-Room Task With Subtask Grouping: The size of the joint state space grows exponentially with the number of agents, making it infeasible to directly construct n-agent options and adopt centralized Q-learning for a large n. However, in real-life scenarios, a multiagent task can usually be divided into subtasks, and the agents can be divided into subgroups based on the subtasks they are responsible for. Thus, we test our proposed method on the $m \times n$ four-room tasks shown in Fig. 4(c), where we divide the agents into m subgroups, each of which contains n agents with the same goal area. Fig. 7 shows comparisons between our method and the baselines on $m \times n$ four-room tasks. Note that, in the 2×2 (3×2) four-room task, we use two-agent (pairwise) options rather than four-agent (six-agent) options, and when using centralized Q-learning + force, we only use the joint state space of the two agents as input to decide on their joint option choice. We can see that agents with pairwise options can learn to complete the tasks much faster than the baselines, even when both the baselines fail on the 3×2 four-room task. Also, agents trained with centralized Q-learning + force have faster convergence speed and higher convergence value. (a) (2×2)-agent four-room task. (b) (3×2)-agent four-room task. (c) (2×2)-agent four-room task. (d) (3×2)-agent four-room task.
Fig. 8. Comparisons on the n-agent four-room tasks with random grouping. (a)–(c) Independent Q-learning. (d)–(f) Centralized Q-learning + force. When n-agent options are not available, we can still get a significant performance improvement with only pairwise options. (a) Four-agent four-room task. (b) Six-agent four-room task. (c) Eight-agent four-room task. (d) Four-agent four-room task. (e) Six-agent four-room task. (f) Eight-agent four-room task.

Fig. 9. Performance change of the agents as the number of options increases, evaluated on the eight-agent four-room task with random grouping. As the number of options increases, the performance of agents with centralized Q-learning + force as the high-level policy can be improved further, while for independent Q-learning, the agents’ performance would go worse. (a) Independent Q-learning. (b) Centralized Q-learning + force.

trained with centralized Q-learning + force [see Fig. 7(c) and (d)] have faster convergence speed and higher convergence value.

4) Four-Room Task With Random Grouping: Our method also works with random grouping when subtask grouping may not work. The intuition is that adopting two-agent or three-agent options can encourage the joint exploration of the agents in small subgroups, which can increase the overall performance compared with only utilizing single-agent explorations. As shown in Fig. 8, we compare the performance of agents with pairwise options, single-agent options, and no options on the n-agent four-room tasks ($n = 4, 6, 8$). We can observe that when $n = 6$ or 8, agents with single-agent options or no options cannot complete this task, while we can get a significant performance improvement with only pairwise options. On the other hand, agents with pairwise options cannot complete the most challenging eight-agent four-room task, if we use independent Q-learning to train the high-level policy, shown as Fig. 8(c). However, if we adopt centralized Q-learning + force, agents with pairwise options can still complete this challenging task with satisfaction, shown in Fig. 8(f).

Furthermore, in Fig. 9, we show how the performance of agents using pairwise options would change with the number of options, based on the eight-agent four-room tasks (the orange line: number of steps to complete the task; the blue line: episodic cumulative reward). Note that for each step, every agent will make a decision to move one grid in any of the four directions (i.e., up, down, left, or right), and the maximum of the decision steps for each episode is 200. When increasing the number of options, the performance of agents with pairwise options and using centralized Q-learning + force as the high-level policy can be improved further. If using the independent Q-learning as the high-level policy, the agents’ performance would go worse as the number of options increases. The reason is that, as mentioned in Section IV-D, the joint output space of the agents will grow exponentially with the number of options if we utilize the multiagent options in a decentralized way. In contrast, the size of the joint output space is linear with the number of options when we use multiagent options in a centralized manner.

5) Four-Room Task With Random Grouping and Dynamic Influences Among Agents: Furthermore, we show that even if in
environments where an agent’s state transitions can be strongly influenced by the others, we can still obtain good approximations of the multiagent options to encourage joint exploration using Theorem 1. For this new setting, we make some modifications based on the 4-agent four-room task [see Fig. 4(b)]—different agents cannot share the same grid so that an agent may be blocked by others when moving ahead, and this influence is highly dynamic. We use the centralized Q-learning + force as the high-level policy, of which the results are shown in Fig. 10. We can see that although this modification affects the performance of agents with single-agent options, we can still get significant performance improvement with pairwise options discovered with Theorem 1.

As mentioned in Section IV-B, the approximation error occurs when the state transitions of an agent are influenced by others. In Fig. 10, we have evaluated on the case where an agent’s state transitions will be influenced by others’ states (i.e., blocking by other agents when going ahead). However, the transition influence for an agent may also come from the action choices of other agents. Thus, we further evaluate on a modified two-agent four-room task. We set agent 1 as the leading agent and agent 2 will follow the moving direction of agent 1 with the probability α, so the state transition of agent 2 can be influenced by the action choice of agent 1. With a certain α, we collect a million state transitions (i.e., (s, a, s')) through Monte Carlo sampling, based on which we can build the joint state transition graph \tilde{G} and the individual state transition graphs G_i ($i=1, 2$) and then get $\otimes_{i=1}^n G_i$. Then, as shown in Table II, we compare the algebraic connectivity and Fiedler vector of \tilde{G} (i.e., λ_2, F) and $\otimes_{i=1}^n G_i$ (i.e., $\tilde{\lambda}_2$, \tilde{F}) as α increases, which are closely related to the covering option discovery. We can see that the approximation error on these global properties of \tilde{G} caused by the transition influence among the agents is inconsequential. Thus, approximating \tilde{G} with $\otimes_{i=1}^n G_i$ allows accurate option discovery. There are in total 104^2 joint states, which is also the size of F and \tilde{F}, and the complexity for the eigendecomposition is already $O(10^{13})$ (i.e., $(104^2)^3$), so we limit the number of agents to 2.

6) Maze Task With Random Grouping or Subtask Grouping: Finally, in order to show the effectiveness of our approach on more challenging tasks, we compare it with the baselines on the maze tasks shown in Fig. 4(d) and (e), of which the results are shown in Fig. 11(a) and (b), respectively. Compared with the four-room task, the state space of the maze task is larger and the path finding toward the goal area is much more difficult. Again, both the baselines fail to complete the tasks, while our approach can converge within 500 episodes with a fairly high cumulative reward. Note that, for both the tasks, we first group the agents based on subtasks [see Fig. 4(e)] or randomly [see Fig. 4(d)] and, then, learn the pairwise options for each subgroup and utilize these options in a centralized manner to aid the exploration. To further show the difficulty of this task and significance of our algorithm, we apply SOTA MARL algorithms, including COMA [40], Weighted QMIX [41], and MAVEN [42], on the
six-agent maze task, each of which is repeated three times with different random seeds. The mean and standard deviation of the cumulative rewards in the training process (50,000 episodes) of these baselines are shown in Table III, showing that none of these algorithms can learn to complete this task. The reason is that as a challenging cooperative search problem, the reward space is highly sparse since only when the six agents arrive at the goal area at the same time can they receive the reward signal, so efficient exploration strategies in the joint state space like ours is required. The code for reproducibility of these results has been made available in [43].

VI. CONCLUSION

In this article, we propose to approximate the joint state space in MARL as a Kronecker graph and estimate its Fiedler vector using the Laplacian spectrum of the individual agents’ state transition graphs. Based on the approximation of the Fiedler vector, multiagent covering options are constructed, containing multiple agents’ temporal action sequence toward the subgoal joint states, which are usually infrequently visited, so as to accelerate the joint exploration in the environment. Furthermore, we propose algorithms to adopt these options in MARL, using centralized, decentralized, and group-based strategies, respectively. We empirically show that agents with multiagent options have significantly superior performance than agents relying on single-agent options or no options.

A future direction would be to scale our algorithm for real-life applications with SOTA representation learning techniques, such as in [33] and [34]. On the other hand, there will be nonnegligible differences between $\otimes_{i=1}^n G_i$ and the joint state transition graph \hat{G}, if the state transitions of an agent are hugely influenced by the others. Therefore, mechanisms to detect these situations in a task scenario and integrate them with $\otimes_{i=1}^n G_i$ for a better approximation of \hat{G} will also be an interesting future direction.

REFERENCES

[1] F. Ebert, C. Finn, S. Dasari, A. Xie, A. X. Lee, and S. Levine, “Visual foresight: Model-based deep reinforcement learning for vision-based robotic control,” 2018, arXiv:1812.00568.
[2] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,” in Proc. 4th Int. Conf. Learn. Represent., 2016.
[3] N. Brown and T. Sandholm, “Superhuman AI for multiplayer poker,” Science, vol. 365, pp. 885–890, 2019.
[4] D. Silver et al., “Mastering the game of go with deep neural networks and tree search,” Nature, vol. 529, pp. 484–489, 2016.
[5] I. Hosu and T. Rebeda, “Playing Atari games with deep reinforcement learning and human checkpoint replay,” 2016, arXiv:1607.05077.
[6] R. S. Sutton, D. Precup, and S. P. Singh, “Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning,” Artif. Intell., vol. 112, pp. 181–211, 1999.
[7] Y. Jin, D. Abel, D. E. Hershkowitz, M. L. Litman, and G. D. Konidaris, “Finding options that minimize planning time,” in Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 3120–3129.
[8] Y. Jin, J. W. Park, D. Abel, and G. D. Konidaris, “Discovering options for exploration by minimizing cover time,” in Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 3130–3139.
[9] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Math. J., vol. 23, pp. 298–305, 1973.
[10] A. Ghosh and S. P. Boyd, “Growing well-connected graphs,” in Proc. 45th IEEE Conf. Decis. Control, 2006, pp. 6605–6611.
[11] C. Amato, G. D. Konidaris, and L. P. Kaelbling, “Planning with macro-actions in decentralized POMDPs,” in Proc. Int. Conf. Auton. Agents Multiagent Syst., 2014, pp. 1273–1280.
[12] C. Amato, G. Konidaris, L. P. Kaelbling, and J. P. How, “Modeling and planning with macro-actions in decentralized POMDPs,” J. Artif. Intell. Res., vol. 64, pp. 817–859, 2019.
[13] J. Shen, G. Gu, and H. Liu, “Multi-agent hierarchical reinforcement learning by integrating options into MAXQ,” in Proc. 1st Int. Multisym. Comput. Comput. Sci., 2006, pp. 676–682.
[14] J. Chakravorty et al., “Option-critic in cooperative multi-agent systems,” in Proc. 19th Int. Conf. Auton. Agents Multiagent Syst., 2020, pp. 1792–1794.
[15] Y. Lee, J. Yang, and J. J. Lim, “Learning to coordinate manipulation skills via skill behavior diversification,” in Proc. 8th Int. Conf. Learn. Represent., 2020.
[16] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Hoboken, NJ, USA: Wiley, 1994.
[17] R. Fruit and A. Lazaric, “Exploration-exploitation in MDPs with options,” in Proc. 20th Int. Conf. Artif. Intell. Statist., 2017, pp. 576–584.
[18] A. S. Vezhnevets et al., “Feudal networks for hierarchical reinforcement learning,” in Proc. 34th Int. Conf. Mach. Learn., 2017, pp. 3540–3549.
[19] S. Patera, B. Subagjda, A. Tan, and C. Quek, “Hierarchical reinforcement learning: A comprehensive survey,” ACM Comput. Surv., vol. 54, pp. 109:1–109:35, 2021.
[20] A. McGovern and A. G. Barto, “Automatic discovery of subgoals in reinforcement learning using diverse density,” in Proc. 8th Int. Conf. Mach. Learn., 2001, pp. 361–368.
[21] I. Menache, S. Mannor, and N. Shimkin, “Q-Cut—Dynamic discovery of sub-goals in reinforcement learning,” in Proc. 13th Eur. Conf. Mach. Learn., 2002, pp. 295–306.
[22] D. J. Mankowitz, T. A. Mann, and S. Mannor, “Adaptive skills adaptive partitions (ASAP),” in Proc. 30th Int. Conf. Neural Inf. Process. Syst., 2016, pp. 1588–1596.
[23] J. Harb, P. Bacon, M. Klisarov, and D. Precup, “When waiting is not an option: Learning options with a deliberation cost,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 3165–3172.
[24] M. Stolle and D. Precup, “Learning options in reinforcement learning,” in Proc. 5th Int. Symp. Abstraction, Reformulation Approximation, 2002, pp. 212–223.
[25] O. Simsek, A. P. Wolfe, and A. G. Barto, “Identifying useful subgoals in reinforcement learning by local graph partitioning,” in Proc. 22nd Int. Conf. Mach. Learn., 2005, pp. 816–823.
[26] O. Simsek and A. G. Barto, “Skill characterization based on betweenness,” in Proc. 22nd Int. Conf. Neural Inf. Process. Syst., 2008, pp. 1497–1504.
[27] M. C. Machado, M. G. Bellemare, and M. H. Bowling, “A Laplacian framework for option discovery in reinforcement learning,” in Proc. 34th Int. Conf. Mach. Learn., 2017, pp. 2295–2304.
[28] M. C. Machado, C. Rosenbaum, X. Guo, M. Liu, G. Tesarou, and M. Campbell, “Eigenoption discovery through the deep successor representation,” in Proc. 6th Int. Conf. Learn. Represent., 2018.
[29] J. Yang, I. Borovikov, and H. Zha, “Hierarchical cooperative multi-agent reinforcement learning with skill discovery,” in Proc. 19th Int. Conf. Auton. Agents Multiagent Syst., 2020, pp. 1566–1574.
[30] B. Eysenbach, A. Gupta, J. Barz, and S. Levine, “Diversity is all you need: Learning skills without a reward function,” in Proc. 7th Int. Conf. Learn. Represent., 2019.
[31] P. M. Weichsel, “The Kronecker product of graphs,” Proc. Amer. Math. Soc., vol. 13, pp. 47–52, 1962.
[32] M. Basic, B. Arsic, and Z. Obradovic, “Another estimation of Laplacian spectrum of the Kronecker product of graphs,” Informat. Sci., vol. 609, pp. 605–625, 2022, doi: 10.1016/j.ins.2022.07.082.

TABLE III

Algorithm	Mean	Standard deviation
COMA [40]	0.0	0.0
CWQMDX [41]	0.0	0.0
OWQMDX [41]	0.0	0.0
MAVEN [42]	0.0	0.0
[33] Y. Wu, G. Tucker, and O. Nachum, “The Laplacian in RL: Learning representations with efficient approximations,” in Proc. 7th Int. Conf. Learn. Represent., 2019.

[34] K. Wang, K. Zhou, Q. Zhang, J. Shao, B. Hooi, and J. Feng, “Towards better Laplacian representation in reinforcement learning with generalized graph drawing,” in Proc. 38th Int. Conf. Mach. Learn., 2021, pp. 11003–11012.

[35] M. Tan, “Multi-agent reinforcement learning: Independent versus cooperative agents,” in Proc. 10th Int. Conf. Mach. Learn., 1993, pp. 330–337.

[36] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, pp. 279–292, 1992.

[37] M. Lauer and M. A. Riedmiller, “An algorithm for distributed reinforcement learning in cooperative multi-agent systems,” in Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 535–542.

[38] K. Pearson, “The problem of the random walk,” Nature, vol. 72, pp. 342–342, 1905.

[39] R. S. Sutton and A. G. Barto, Reinforcement Learning—An Introduction. Cambridge, MA, USA: MIT Press, 1998.

[40] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-agent policy gradients,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 2974–2982.

[41] T. Rashid, G. Farquhar, B. Peng, and S. Whiteson, “Weighted QMIX: Expanding monotonic value function factorisation for deep multi-agent reinforcement learning,” in Proc. 34th Int. Conf. Neural Inf. Process. Syst., 2020, pp. 10199–10210.

[42] A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson, “MAVEN: Multi-agent variational exploration,” in Proc. 33th Int. Conf. Neural Inf. Process. Syst., 2019, pp. 7613–7624.

[43] J. Chen, J. Chen, T. Lan, and V. Aggarwal, “Multi-agent option discovery based on Kronecker product,” 2022. [Online]. Available: https://github.com/Clan-labs/MAOD_via_KP

[44] H. Sayama, “Estimation of Laplacian spectra of direct and strong product graphs,” Discrete Appl. Math., vol. 205, pp. 160–170, 2016.

[45] D. B. West, Introduction to Graph Theory, vol. 2. Englewood Cliffs, NJ, USA: Prentice-Hall, 2001.

Jiayu Chen received the B.E. degree in the department of engineering from Peking University, Beijing, China, in 2020. He is currently working toward the Ph.D. degree with the School of Industrial Engineering, Purdue University, West Lafayette, IN, USA.

He is also a Research Assistant with the School of Industrial Engineering, Purdue University. His research interests include algorithm design and applications of machine learning, temporal abstraction, and exploration efficiency in reinforcement learning and multiagent reinforcement learning.

Jingdi Chen received the B.S. degree in information and computing science from Fudan University, Shanghai, China, in 2017, the M.S. degree in statistics department, in 2019 from George Washington University, Washington, DC, USA, where she is currently working toward the Ph.D. degree with the Department of Electrical and Computer Engineering.

She is also a Research Assistant with the Department of Electrical and Computer Engineering, George Washington University. Her research interests include fairness optimization, network optimization, communications, and machine learning.

Tian Lan received the B.A.Sc. in electrical engineering degree from Tsinghua University, Beijing, China, in 2003, the M.A.Sc. degree in electrical and computer engineering from the University of Toronto, Toronto, ON, Canada, in 2005, and the Ph.D. degree in electrical engineering from Princeton University, Princeton, NJ, USA, in 2010.

He is currently a Full Professor of Electrical and Computer Engineering with George Washington University, Washington, DC, USA. His research interests include network optimization, algorithms, and machine learning.

Dr. Lan is the recipient of the Meta Research Award in 2021, the SecureComm Best Paper Award in 2019, the SEAS Faculty Recognition Award in 2018, the Hegarty Faculty Innovation Award in 2017, the AT&T VURI Award in 2015, the IEEE INFOCOM Best Paper Award in 2012, Wu Prizes for Excellence at Princeton University in 2010, the IEEE GLOBECOM Best Paper Award in 2009, and the IEEE Signal Processing Society Best Paper Award in 2008. He is an Associate Editor for IEEE/ACM TRANSACTIONS ON NETWORKING and an IEEE R2 (Eastern US) Regional Chapter Coordinator.

Vaneet Aggarwal (Senior Member, IEEE) received the B.Tech. degree from the Indian Institute of Technology, Kanpur, India, in 2005, and the M.A. and Ph.D. degrees from Princeton University, Princeton, NJ, USA, in 2007 and 2010, respectively, all in electrical engineering.

Since January 2015, he has been with Purdue University, West Lafayette, IN, USA, where he is currently a Full Professor. He was a Senior Member of Technical Staff Research with AT&T Labs-Research, Middletown, NJ, USA, in 2010 to 2014, an Adjunct Assistant Professor with Columbia University, New York, NY, USA, from 2013 to 2014, and a VAJRA Adjunct Professor with the Indian Institute of Science, Bangalore, India, from 2018 to 2019. He is also a Visiting Professor with the King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. His current research interests include machine learning and its applications.

Dr. Aggarwal was the recipient of the Princeton University’s Porter Ogden Jacobus Honorific Fellowship in 2009, the 2017 Jack Neubauer Memorial Award recognizing the Best Systems Paper published in IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, the 2018 Infocom Workshop Best Paper Award, and the 2021 NeuhFNS Cooperative Artificial Intelligence Workshop Best Paper Award. He was on the Editorial Board of IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING and IEEE TRANSACTIONS ON COMMUNICATIONS. He is on the Editorial Board of IEEE/ACM TRANSACTIONS ON NETWORKING and the Founding co-Editor-in-Chief of ACM Journal on Transportation Systems.