Being a front-line dentist during the Covid-19 pandemic: a literature review

Hamid Reza Fallahi 1,2, Seied Omid Keyhan 3,4,5*, Dana Zandian 1,2, Seong-Gon Kim 6,7* and Behzad Cheshmi 8

Abstract
Coronavirus is an enveloped virus with positive-sense single-stranded RNA. Coronavirus infection in humans mainly affects the upper respiratory tract and to a lesser extent the gastrointestinal tract. Clinical symptoms of coronavirus infections can range from relatively mild (similar to the common cold) to severe (bronchitis, pneumonia, and renal involvement). The disease caused by the 2019 novel coronavirus (2019-nCoV) was called Covid-19 by the World Health Organization in February 2020. Face-to-face communication and consistent exposure to body fluids such as blood and saliva predispose dental care workers at serious risk for 2019-nCoV infection. As demonstrated by the recent coronavirus outbreak, information is not enough. During dental practice, blood and saliva can be scattered. Accordingly, dental practice can be a potential risk for dental staff, and there is a high risk of cross-infection. This article addresses all information collected to date on the virus, in accordance with the guidelines of international health care institutions, and provides a comprehensive protocol for managing possible exposure to patients or those suspected of having coronavirus.

Keywords: Coronavirus, Covid-19, 2019-nCoV, Dental care, Dentistry

Background
Since the first reported case in Wuhan, China, in December 2019, coronavirus disease-19 (Covid-19) has widely spread to Japan, Korea, Iran, and many European countries [1]. The World Health Organization (WHO) declared a pandemic in March 2020. As saliva is a main tool of spread, dentists are in danger of contracting Covid-19. Although the exact nature of this disease must be clarified in detailed studies, current knowledge of coronavirus infection should be shared without any restrictions.

This article was written by an Iranian team of oral and maxillofacial surgeons. As Iran has many Covid-19 patients, they have significant experience with this disease. Maxillofacial Plastic and Reconstructive Surgery is an open-access journal, and this type of important information can be shared via our publication platform without restrictions.

Coronaviruses
Coronaviruses are enveloped viruses with a positive-sense single-stranded RNA genome. Their helical symmetry nucleocapsid is approximately 26–32 kb in size, making it the largest investigated genome among RNA viruses [2, 3]. Coronaviruses have a fundamental resemblance in their organization and genome expression [4]. Previously, it was thought that coronaviruses only cause enzootic infections in a number of animals, including certain birds and mammals, but recent findings indicate that a variety of these viruses, including antigenic groups 1 (229E and NL63), antigenic groups 2 (OC43), and HKU1, can infect humans [5, 6]. These viruses often lead to upper respiratory tract infection, frequently resulting in common cold symptoms. Three specific strains of these viruses that are of zoonotic origin, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and 2019 novel coronavirus (2019-nCoV), have recently caused lethal infections in humans [4, 6, 7].

Coronavirus infections in humans mainly affect the upper respiratory tract and to a lesser extent the gastrointestinal
Manifestations of coronavirus infections can range from relatively mild (similar to the common cold) to severe (bronchitis, pneumonia, and renal involvement) [8] (Table 1).

Pathogenesis

The ability to infect humans is mainly due to the infection of peridomestic animals, which are considered intermediate hosts, nurturing recombination and mutation events as well as the development of genetic diversity among coronaviruses [29]. Studies have suggested that the spike glycoprotein (S glycoprotein) plays an important role in host range restriction by attaching virions to the host cell membrane [30]. Generally, coronaviruses primarily replicate in the respiratory and intestinal epithelial cells and subsequently cause cytopathic alterations [31].

Covid-19

Since December 2019, numerous unexplained cases of pneumonia have been reported in China. The disease caused by 2019-nCoV was called Covid-19 by the WHO in February 2020 [32]. Limiting the exposure of suspicious cases to the rest of society could be an effective strategy in the early outbreak phases. However, the subsequent worldwide virus spread and person-to-person transmission made the situation more complex and uncontrollable [33].

No detailed studies have been conducted to expound the pathogenicity of 2019-nCoV on a molecular scale. However, exploratory data established via whole-genome sequencing and subsequent bioinformatics analyses revealed that 2019-nCoV is phylogenetically related to SARS-CoV that was isolated for the first time in Chinese horseshoe bats between 2015 and 2017 [34–36].

Clinical manifestations

To a large extent, the clinical similarities of 2019-nCoV infection with SARS-CoV infection are substantial. The incubation period of 2019-nCoV has been estimated to be 1–14 days, and it has been shown that asymptomatic individuals may also be involved in the spread of this virus [26–28]. Since the possibility of the transmission from asymptomatic carriers has been raised currently, checking body temperature only may not be enough to screen asymptomatic carriers. According to a recent report, temperature-based screening in the airport can detect only 46% of 2019-nCoV carriers and the others were found during the self-isolation period after immigration [29]. To suppress the disease spread, a wide range of laboratory tests for immigrants and general population seems to be necessary. However, the infection rate from asymptomatic carriers has not been clarified until now. The primary non-specific reported symptoms of 2019-nCoV infection at the prodromal phase are malaise, fever, and dry cough. The most commonly reported signs and symptoms are fever (98%), cough (76%), dyspnea (55%), and myalgia or fatigue (44%) [25, 26]. Unlike patients with other human coronavirus infections (such as SARS-CoV), upper respiratory tract and intestinal manifestations such as sore throat, rhinorrhea, and diarrhea in those with 2019-nCoV infection are infrequent [15, 25, 26] (Fig. 1).

Patient characteristics

The patient mean age is generally between 49 and 61 years. Studies have shown that males are more likely to have this infection [25, 26, 37]. The lack of serious illness in youngsters is a characteristic of SARS-CoV infection, which is similarly observed in 2019-nCoV infection [32]. Increased exposures to 2019-nCoV due to occupational requirements, for instance health care workers, maybe another factor contributing to the higher risk of infection.

Diagnosis

Following the outbreak, the full 2019-nCoV genomic sequence was released in public databases [38]. This facilitates the way for further PCR assays for virus

Table 1 Comparison of clinical symptoms and incubation time of human coronaviruses [4]

Human coronaviruses	Clinical symptoms	Incubation period	Refs.
229E	General malaise, headache, nasal discharge, sneezing, sore throat, fever and cough (10–20% of patients)	2–5 days	[9–11]
OC43	General malaise, headache, nasal discharge, sneezing, sore throat, fever and cough (10–20% of patients)	2–5 days	[9, 11–13]
NL63	Cough, rhinorrhea, tachypnea, fever, hypoxia, obstructive laryngitis (croup)	2–4 days	[14–19]
HKU1	Fever, running nose, cough, dyspnea	2–4 days	[20–22]
SARS-CoV	Fever, myalgia, headache, malaise, chills, non-productive cough, dyspnea, respiratory distress, diarrhea (30–40% of patients)	2–11 days	[14–19]
MERS-CoV	Fever, cough, chills, sore throat, myalgia, arthralgia, dyspnea, pneumonia, diarrhea and vomiting (one third of patients), acute renal impairment	2–13 days	[15, 23, 24]
2019-nCoV	Malaise, fever, dry cough, cough, dyspnea, myalgia, fatigue	1–14 days	[25–28]
detection. The WHO recommendations for outpatient cases and patients with more critical conditions respectively include rapid collection and nucleic acid amplification testing (NAAT) of respiratory samples including nasopharyngeal and oropharyngeal swabs as well as sputum and/or endotracheal aspirate or bronchoalveolar lavage [39]. Table 2 presents recommended instructions that all practitioners in the field of dental care, including dentists, assistants, and others, should consider when treating patients or those suspected of having coronavirus.

Protocol
Figure 2 shows a protocol that can organize our approach to managing suspected or infected patients. The purpose of this protocol is to protect the entire dental care team, prevent any cross-infection in the office, inform health authorities active in the field of controlling and managing the disease, and ultimately provide the optimal medical and dental care for patients affected by the virus according to the CDC and the ADA guidelines.

Transmission dynamics
The two main routes known for 2019-nCoV transmission include (1) direct transmission (through coughing, sneezing, and inhalation of droplets) and (2) contact transmission (through contact with nasal, oral, and ocular mucosa) [43]. Typical clinical manifestations of Covid-2019 do not comprise ocular symptoms. However, conjunctival sample analysis has revealed that the transmission of 2019-nCoV is not limited to the respiratory tract route [26], but ocular exposure is also an effective method of virus transmission [44]. Moreover, studies have revealed that via direct/indirect contact or course and/or droplets, respiratory viruses such as 2019-nCoV may be transmitted from human to human. Studies have also shown direct and indirect transmission of 2019-nCoV through saliva [45].

For a comprehensive understanding of the transmission dynamics of 2019-nCoV, it is also important to know that this virus is also transmissible through asymptomatic patients [34]. The remarkable feature of 2019-nCoV is that its RNA is detectable via quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in stool samples after the first week of infection [46]. However, the aerosol and fecal-oral transmission routes, which carry more public concern, still need further investigation and confirmation [47] (Fig. 3).

Transmission dynamics in dentistry practice
New evidence suggests that 2019-nCoV may be transmitted directly from human to human via respiratory secretion containing droplets [44, 48]. Virus transmission through contact and fomites is also likely [44, 48]. To et al. [44] reported that using the viral culture
that are propelled by coughing and talking without a mask [51–55] (Fig. 4).

The most important concern in dental clinics is the transmission of 2019-nCoV via droplets and aerosol because, despite all of the precautions taken, it is almost impossible to reduce droplet and aerosol production to zero during dental procedures [54]. Dental handpieces utilize high-speed gas to rotate with running water, which leads to the generation of a considerable amount of droplets and aerosol mixed with patients’ saliva and/or blood [55]. Therefore, it can be deduced that 2019-nCoV is capable of transmitting through dental practice; this transmission can be from patients to clinic staff or other patients at the clinic [56].

Research has shown that coronaviruses can remain on metal, glass, and plastic surfaces for several days [52, 57]. Therefore, as surfaces in dental clinics serve as venues for droplets and aerosol mixed with patients’ saliva and/or blood, they can effectively help spread infection. Coronaviruses can actively maintain their virulence at room temperature from 2 h up to 9 days. Their activity at 50% humidity was significantly higher than 30%. Therefore, in the dental environment, it seems that keeping surfaces clean and dry will play a significant role in preventing 2019-nCoV transmission [52].
Following the announcement of the disease outbreak by international or local authorities, the dentist can play a significant role in disrupting the transmission chain and thereby reducing the incidence of the disease by just by postponing all non-emergent dental care for all individuals.

Fig. 2 Protocol for the management of patients during the Covid-19 pandemic

Patient At Reception
Do the symptoms are evident in patient?
Yes
Provide them a surgical face mask.
Isolate him/her in a separate room keeping the door closed.
Minimize their direct contact with other patients and staff
Patients should be required to wear masks outside the room.
Dental personnel should inform the dentist

Dental personnel

The patient's body temperature should be measured using a contact-free forehead thermometer.

The patient should reply the following questions:
1. Have you been feeling fever now or during the past 14 days?
2. Have you had any respiratory problems during the past 14 days, such as cough or shortness of breath?
3. Have you traveled to one of the countries considered as disease hotspots in the last 14 days or have you encountered people from those countries or people who have traveled to those countries?
4. Have you encountered a patient with documented COVID-19 in the last 14 days?
5. Have you encountered any person with flu-like symptoms in the last 14 days?
6. Have you recently attended a meeting with many people?

Inform the dentist about the patient's responses

The dentist should examine the patient in case of any potential need for emergent treatment

In cases of non-emergent issues, the dentist should defer the treatment for at least 14 days.

- The patient should be mandated for self-quarantine at home and report any flu-like symptoms to the local health authority.

Emergent dental care should be accomplished at an outpatient dental setting where there is a minimum of six air changes per hour, such as a hospital with dental care services or special clinics equipped for COVID-19 medical care.

In cases of non-emergent issues, the dentist should defer the treatment for at least 14 days.

- The patient should be mandated for self-quarantine at home and report any flu-like symptoms to the local health authority.

Emergent dental care should be accomplished at an outpatient dental setting where there is a minimum of six air changes per hour, such as a hospital with dental care services or special clinics equipped for COVID-19 medical care.

The patient must be reported to the local or public health authorities.

With extra-protection measures, the dentist can treat the patient just for emergent issues, avoiding any spatter or aerosol-generating procedures as much as possible.

In cases of non-emergent issues, the dentist should defer the treatment for at least 14 days.

- The patient should be mandated for self-quarantine at home and report any flu-like symptoms to the local health authority.

Emergent dental care should be accomplished at an outpatient dental setting where there is a minimum of six air changes per hour, such as a hospital with dental care services or special clinics equipped for COVID-19 medical care.

The patient must be reported to the local or public health authorities.

Table 1

Body Temperature	Action
≤ 37.3 °C	Yes
> 37.3 °C	No

Table 2

Body Temperature	Action
≤ 37.3 °C	Yes
> 37.3 °C	No
Infection control

Since the fecal-oral route is considered one of the 2019-nCoV transmission routes, attention to hand hygiene before, during, and after dental practice is important. Dentists should exercise extreme caution to avoid contact with their own facial mucosal surfaces including their eyes, mouth, and nose. Since transmission of airborne droplet is considered one of the main routes of infection spread, application of personal protective equipment such as masks, protective goggles, gowns, helmet, gloves, caps, face shields, and shoe covers is strongly recommended for all health care personnel.

Covid-19 patients should not be treated in a regular dental care setting without special considerations. Unexpected circumstances may occur when the dentist cannot delay treatment or refer the patient to the appropriate
medical institution. Under such circumstances, special protective clothing such as hazardous materials (hazmat) suits are required. If hazmat suits are not available, white coats, gowns, head caps, protective eyewear, face shields, masks, latex gloves, and virus-proof shoe covers should be used [56].

Mouth rinses
The effect of chlorhexidine, which is commonly used for pre-procedural mouth washing in dental practice, has not yet been demonstrated to be capable of eliminating 2019-nCoV. However, oxidative agents containing mouth rinses with 1% hydrogen peroxide or 0.2% povidone-iodine are recommended. Pre-procedural use of mouthwash, especially in cases of inability to use a rubber dam, can significantly reduce the microbial load of oral cavity fluids [58].

Rubber dam isolation
Using rubber dams due to the creation of a barrier in the oral cavity effectively reduces the generation of droplets and aerosol mixed with patient saliva and/or blood in 1 m diameter of the surgical field by 70% [59]. Following the placement of the dam, extra high-volume suction is also required for maximum prevention of aerosol and spatter from spreading [60]. If it is not possible to use rubber dams for any reason, manual tools such as Carisolves or hand scalers are preferable.

Anti-retraction handpiece
Throughout the COVID-19 pandemic, the use of any dental handpieces that do not have an anti-retraction function should be avoided. For emergency treatment, anti-retraction handpieces designed with anti-retractive valves can play an effective role in preventing the diffusion and dispersion of droplets and aerosol [60, 61].

Appropriate disinfectants
Since there is still little information available regarding 2019-nCoV, relatively similar genetic features between 2019-nCoV and SARS-CoV indicate that the novel coronavirus can be vulnerable to disinfectants such as sodium hypochlorite (1000 ppm or 0.1% for surfaces and 10,000 ppm or 1% for blood spills), 0.5% hydrogen peroxide, 62–71% ethanol, and phenolic and quaternary ammonium compounds if utilized in accordance with the manufacturer’s instructions. Studies show that other biocidal agents such as 0.05–0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate probably have lower efficiency. In addition to the type of disinfectant, paying attention to other factors such as the duration of use, dilution rate, and especially the expiration time following the preparation of the solution according to the manufacturer’s instructions is also crucial.

Management of medical waste
Prior to any inappropriate accumulation, dental office waste should be routinely transported to the institution’s temporary storage facility. Reusable tools and equipment must be properly pre-treated, cleaned, sterilized, and properly stored until the next use. Dental waste resulting from the treatment of suspected or confirmed 2019-nCoV patients is considered medically infectious waste that must be strictly disposed of in accordance with the official instructions using double-layer yellow medical waste package bags and “gooseneck” ligation.

Conclusion
Following the announcement of the disease outbreak by international or local authorities, dentists can play a significant role in disrupting the transmission chain, thereby reducing the incidence of disease by simply postponing all non-emergency dental care for all patients. Dental professionals must be fully aware of 2019-nCoV spreading modalities, how to identify patients with this infection, and, most importantly, self-protection considerations. The effect of chlorhexidine, which is commonly used for pre-procedural mouth washing in dental practice, has not yet been demonstrated to be capable of eliminating 2019-nCoV. However, the prescription of oxidative agents containing mouth rinses such as 1% hydrogen peroxide or 0.2% povidone is recommended. A higher rate of virus exposure because of occupational commitments in health care workers is considered a key factor associated with the increased risk of infection.

Abbreviations
Covid-19: Coronavirus disease-19; WHO: World Health Organization; SARS-CoV: Severe acute respiratory syndrome coronavirus; MERS-CoV: Middle East respiratory syndrome coronavirus; 2019-nCoV: 2019 novel coronavirus; qRT-PCR: Quantitative reverse transcriptase polymerase chain reaction; ACE2: Angiotensin-converting enzyme 2; NAAT: Nucleic acid amplification testing

Acknowledgements
Prof. Esmaeil Yazdi passed away due to coronavirus infection few days ago. He was one of the Iranian Society of OMFS founder 60 years ago. The authors send sincere condolence to his family and colleagues. The authors also appreciate his great contribution on the progress of maxillofacial surgery.

Authors’ contributions
The article was written by HRF and BC. DZ collected the data. Illustrations were drawn by SOK and BC. SOK and KSG corrected the article and performed the critical review. The authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.

Competing interests
The authors declare that the authors have no competing interests as defined by Nature Research or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Author details
1School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 2Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 3CMRFC, National Advance Center for Craniomaxillofacial Reconstruction, Tehran, Iran. 4Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran. 5Bahar building, Shahid Nouranian Alley, Saatad Abad, Isfahan, Iran. 6Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 28644, Republic of Korea. 7Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, 7 JukHyun-gi1, Gangneung 25457, Republic of Korea. 8Faculty of Dentistry, Boroujerdi Islamic Azad University, Boroujerd, Iran.

Received: 16 March 2020 Accepted: 2 April 2020
Published online: 24 April 2020

References
1. Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): facts and myths. J Microbiol Immunol Infect 2020.02.012
2. Sexton NR, Smith EC, Blanc H, Vignuzzi M, Peersen OB, Denison MR (2016) Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens. J Virol 90(16):7415–7428
3. Weiss SR, Navas-Martin S (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69(4):655–664
4. Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J et al. (2016) Epidemiology, clinical features and infectivity of a novel coronavirus isolated from respiratory tract infections. J Med Microbiol 24(6):490–502
5. Schoeman D, Fielding BC (2019) Coronavirus envelope protein: current knowledge. Virol J 16(1):69
6. World Health Organization (2020) Coronavirus. https://www.who.int/health-topics/coronavirus.
7. Habibzadeh P, Stoneman EK (2020) The novel coronavirus: a bird’s eye view. Int J Occup Environ Med 11(2):65–71
8. Wövers BA, van der Hoek L (2009) Recently discovered human coronaviruses. Clin Lab Med 29(4):715–724
9. Monto AS (1974) Medical reviews. Coronaviruses. Yale J Biol Med 47(4):234–251
10. Pene F, Merlet A, Vabret A, Rozenberg F, Buzyn A, Dreyfus F et al. (2003) Coronavirus 229E-related pneumonia in immunocompromised patients. Clin Infect Dis 37(7):929–932
11. Papa A, Papadimitriou E, de Souza Luna UK, Al Masri M, Soulouli E, Eboladiou M et al. (2007) Coronavirus infections in children. Greece. Emerg Infect Dis 13(8):947–949
12. Cabeça TK, Granato C, Belloi N (2013) Epidemiological and clinical features of human coronavirus infections among different subsets of patients. Influenza Other Respir Viruses 7(6):1040–1047
13. Dijkman R, Jebbink MF, Koekkoek SM, Deijts M, Jöndödttit HR, Molenkamp R et al. (2013) Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism. J Virol 87(11):6081–6090
14. Peiris J, Lai S, Poon L, Guan Y, Lam L, Lim W et al. (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361(9366):1319–1325
15. Aasen A, Al-Tawfiq JA, Al-Rabeah AA, Al-Rashah FA, Al-Hajjar S, Al-Barrak A et al. (2013) Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 13(9):752–761
16. Ricketts A, Vemalao J (2010) Severe acute respiratory syndrome (SARS). Infect Dis Clin N Am 24(1):175–202
17. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y et al. (2005) Multiple organ infection and the pathogenesis of SARS. J Exp Med 202(3):415–424
18. Tsang KW, Ho PL, Ooi GC, Yee WK, Wang T, Chan-Yeung M et al. (2003) A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348(20):1977–1985
19. Peiris JS, Chu CM, Cheng VC-C, Chan K, Hung I, Poon LL et al. (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361(9371):1767–1772
20. Moës E, Vlijgen L, Keyaerts E, Zlatev K, Li S, Maes P et al. (2005) A novel pan-coronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium. BMC Infect Dis 5(1):6
21. Bastien N, Anderson K, Hart L, Caeselee PV, Brandt K, Milley D et al. (2005) Human coronavirus NL63 infection in Canada. J Infect Dis 191(4):503–506
22. van der Hoek L, Sure K, Horst G, Stang A, Pyck K, Jebbink MF et al. (2005) Croup is associated with the novel coronavirus NL63. PLoS Med 2(8):e240
23. Al-Tawfiq JA, Hinedi K, Ghandour J, Khairalla H, Musleh S, Ujali A et al. (2014) Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients. Clin Infect Dis 59(2):161–165
24. Araby YM, Aftiri AA, Balthy HH, Najm H, Aldwoodood AS, Ghabashi A et al. (2014) Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ana Intern Med 160(6):389–397
25. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y et al. (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10233):507–513
26. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506
27. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. https://doi.org/10.1056/NEJMoa2002032
28. Backer JA, Rinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Euro Surveill. https://doi.org/10.2861/1560-7691.ES.2020.25.5.2000652
29. Paules C, Marston HD, Fauci AS (2020) Coronavirus infections—more than just the common cold. JAMA. 323(8):707–708
30. de Wilde A, Snijder EJ, Kikker M, van Hempten MJ (2017) Host factors in coronavirus replication. In: Roles of Host Gene and Non-coding RNA Expression in Virus Infection. Springer, pp 1–42
31. Fields BN, Knipe DM, Howley PM (1996) Fields virology. Lippincott-Raven
32. Sun P, Lu X, Xu C, Sun W, Pan B (2020) Understanding of COVID-19 based on current evidence. J Med Virol
33. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C et al. (2020) Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med.
34. Chan JF-W, Yuen S, Kok K-H, To K-W, Chu H, Yang J et al. (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10233):514–523
35. Hu D, Zhu C, Ai L, He T, Wang Y, Ye F et al. (2018) Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect 7(1):1–10
36. Hu T, Li G, Zuo Y, Zhou X (2007) Risk of hepatitis B virus transmission via dental handpieces and evaluation of an antisuction device for prevention of transmission. Infect Control Hosp Epidemiol 28(1):80–82
37. Peris JS, Yuan KY, Osterhaus AD, Stöhr K (2003) The severe acute respiratory syndrome. N Engl J Med 349(25):2431–2441
38. Cohen J (2020) Chinese researchers reveal draft genome of virus implicated in Wuhan pneumonia outbreak
39. Organization WH. Laboratory testing of 2019 novel coronavirus (2019-nCoV) in suspected human cases: interim guidance, 17 January 2020. 2020. Available from: https://www.who.int/hsa/publications/advisory-circulars/who-advisory-board-2019-ncov-laboratory-testing-update-20200211.pdf
40. CDC reminds clinicians to use standard precautions, recommends isolating patients with coronavirus symptoms: American Dental Association; 2020. Available from: https://www.ada.org/en/publications/ada-news/2020-archive/february/cdc-reminds-clinicians-to-use-standard-precautions
42. Infectious Diseases: 2019 Novel Coronavirus: American Dental Association; 2020. Available from: https://success.ada.org/en/practicemanagement/patients/infectious-diseases-2019-novel-coronavirus?_ga=2.107628096.398540419.1583353764-477099557.1583353762.

43. Lu C-w, X-f L, Z-f J (2020) 2019-nCoV transmission through the ocular surface must not be ignored. Lancet

44. To KK-W, Tsang OTY, Chik-Yan Yip C, Chan K-H, Wu T-C, Chan J et al (2020) Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis

45. Belser JA, Rota PA, Tumpey TM (2013) Ocular tropism of respiratory viruses. Microbiol Mol Biol Rev 77(1):144–156

46. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H et al (2020) First case of 2019 novel coronavirus in the United States. N Engl J Med

47. Peng X, Xu X, Li Y et al (2020) Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci

48. Rodríguez-Morales AJ, MacGregor K, Kanagarajah S, Patel D, Schlagenhauf P (2020) Going global-Travel and the 2019 novel coronavirus. Travel Med Infect Dis:101578

49. Letko MC, Munster V (2020) Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV. bioRxiv

50. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature:1–4

51. Liu L, Wei Q, Alvarez X, Wang H, Du Y, Zhu H et al (2011) Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of rhesus macaques. J Virol 85(8):4025–4030

52. Kampf G, Todt D, Pfenniger S, Steinmann E (2020) Persistence of coronaviruses on inanimate surfaces and its inactivation with bicoidal agents. J Hosp Infect

53. Chen J (2020) Pathogenicity and Transmissibility of 2019-nCoV—A Quick Overview and Comparison with Other Emerging Viruses. Microbes Infect

54. Cleveland JL, Gray SK, Harte JA, Robison VA, Moorman AC, Gooch BF (2016) Transmission of blood-borne pathogens in US dental health care settings: 2016 update. J Am Dent Assoc 147(9):729–738

55. Harrel SK, Molinari J (2004) Aerosols and splatter in dentistry: a brief review of the literature and infection control implications. J Am Dent Assoc 135(4):429–437

56. Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B (2020) Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci 12(1):1–6

57. Otter J, Donskey C, Yezli S, Douthwaite S, Goldenberg S, Weber D (2016) Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J Hosp Infect 92(3):235–250

58. Xian Peng XX, Li Y, Cheng L, Zhou X, Ren B (2020) Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci Vol

59. Committee GOoNH. Office of State Administration of Traditional Chinese Medicine. Notice on the issuance of a program for the diagnosis and treatment of novel coronavirus (2019-nCoV) infected pneumonia (Trial Version 3). 2020. 2020.

60. Samaranayake LP, Reid J, Evans D (1989) The efficacy of rubber dam isolation in reducing atmospheric bacterial contamination. ASDC J Dentistry Children 56(6):442–444

61. Samaranayake LP, Peris M (2004) Severe acute respiratory syndrome and dentistry: a retrospective view. J Am Dent Assoc 135(9):1292–1302

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.