Naïve, unenculturated chimpanzees fail to make and use flaked stone tools [version 2; peer review: 3 approved]

Elisa Bandini1*, Alba Motes-Rodrigo1*, William Archer2, Tanya Minchin3, Helene Axelsen3, Raquel Adriana Hernandez-Aguilar4,5, Shannon P. McPherron2, Claudio Tennie1,2

1Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, 72070, Germany
2Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
3Kristiansand Zoo, Kardemomme By, Kristiansand, 4609, Norway
4Department of Social Psychology and Quantitative Psychology, University of Barcelona, Serra Hunter Program, Barcelona, 08035, Spain
5Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, NO-0316, Norway

* Equal contributors

First published: 24 Mar 2021, 1:20
https://doi.org/10.12688/openreseurope.13186.1
Latest published: 15 Jul 2021, 1:20
https://doi.org/10.12688/openreseurope.13186.2

Abstract

Background: Despite substantial research on early hominin lithic technologies, the learning mechanisms underlying flake manufacture and use are contested. To draw phylogenetic inferences on the potential cognitive processes underlying the acquisition of both of these abilities in early hominins, we investigated if and how one of our closest living relatives, chimpanzees (Pan troglodytes), could learn to make and use flakes.

Methods: Across several experimental conditions, we tested eleven task-naïve chimpanzees (unenculturated n=8, unknown status n=3) from two independent populations for their abilities to spontaneously make and subsequently use flakes as well as to use flakes made by a human experimenter.

Results: Despite the fact that the chimpanzees seemed to understand the requirements of the task, were sufficiently motivated and had ample opportunities to develop the target behaviours, none of the chimpanzees tested made or used flakes in any of the experimental conditions.

Conclusions: These results differ from all previous ape flaking experiments, which found flake manufacture and use in bonobos and one orangutan. However, these earlier studies tested human-enculturated apes and provided test subjects with flake making and using demonstrations. The contrast between these earlier positive findings and our negative findings (despite using a much larger sample size) suggests that enculturation and/or demonstrations may be necessary for chimpanzees to acquire these abilities. The data

Open Peer Review

Approval Status

	1	2	3
version 2 (revision)	✅	✅	✅
15 Jul 2021	view	view	view
version 1	✅	✅	✅
24 Mar 2021	view	view	view

1. Mark Moore, University of New England (UNE), Armidale, Australia
2. Jean-Baptiste Leca, University of Lethbridge, Lethbridge, Canada
National Institute of Advanced Studies, Bangalore, India
3. Kirsty Graham, University of St Andrews, St Andrews, UK

Any reports and responses or comments on the article can be found at the end of the article.
obtained in this study are consistent with the hypothesis that flake manufacture and use might have evolved in the hominin lineage after the split between *Homo* and *Pan* 7 million years ago, a scenario further supported by the initial lack of flaked stone tools in the archaeological record after this split. We discuss possible evolutionary scenarios for flake manufacture and use in both non-hominin and hominin lineages.

Keywords
chimpanzee flaking, chimpanzee tool use, lithic technologies, hominid material culture
Amendments from Version 1

In this revised version of our manuscript we have addressed the comments provided by the three reviewers as well as made some changes throughout the manuscript to improve clarity and readability. These changes mainly involve clarifications of concepts and provision of additional methodological information. For example, we have now clarified which mechanisms are encompassed by the term copying social learning and what behaviours were subsumed by the "tool" category during video coding. We have also specified that precision grips were not required to solve the task we implemented and we have provided further and more detailed information on the rearing background and the previous experience with stones of the chimpanzees included in the study. In this version of the manuscript we have conducted two different power analyses for the two behaviours tested (stone tool making and stone tool use) to replace the previous power analysis which considered simultaneously stone tool making and stone tool use. We have rewritten the first part of the discussion to include another possible explanation for our negative findings in stone tool use, namely that chimpanzees did not use stones because this was a novel material which wasn’t preferred over more familiar materials such as sticks or plastic. Finally, we have also discussed how the differences in hand morphology between stone-tool making and using hominins and chimpanzees influence the interpretation of our results.

Any further responses from the reviewers can be found at the end of the article.

Plain language summary

One of the first types of tools found in the archaeological record are sharp-edged stones. How tool-using hominins learnt to make and use these tools is still debated. One way to study how hominins might have learnt to make and use stone tools is to test our closest living relatives, chimpanzees. In this study, we aimed to elicit stone tool making and use by providing 11 untrained chimpanzees (most of whom were mother-reared) housed at two different institutions with baited puzzle boxes that could only be opened with a sharp tool. The chimpanzees were also provided with stone cores and hammerstones that they could use to make the sharp stone tools necessary to open the puzzle boxes. No demonstrations on how to make or use stone tools were provided to the chimpanzees before or during testing. Although the chimpanzees were motivated and interested in accessing the puzzle boxes, none of the subjects in this study spontaneously made or used sharp stones. Our findings suggest that without extensive human training and/or demonstrations, chimpanzees cannot learn how to make or use sharp stone tools by themselves. These results are consistent with the hypothesis that the ability to make and use sharp stone tools may have developed in our own lineage after the split from our last common ancestor with chimpanzees, approximately seven million years ago.

Introduction

Sharp-edged flakes (henceforth flakes) played a key role in human evolution by allowing the exploitation of new ecological niches. The two earliest types of archaeological assemblages containing flakes are the Lomekwian (at 3.3Ma; Harmand et al., 2015; but see Archer et al., 2020; Domínguez-Rodrigo & Alcalá, 2016 for a debate on the Lomekwian contexts) and the Oldowan (at 2.58Ma; Braun et al., 2019). Although it is widely accepted that intentional flake manufacture was a major milestone in hominin evolution (Roche, 2000; Semaw et al., 1997), it remains debated how this behaviour emerged and why reliable archaeological evidence is absent in the approximately four million years following the split between Homo and Pan. It has been suggested that the know-how required for flake manufacture was acquired by naïve individuals via special mechanisms of cultural transmission, namely copying variants of social learning (Stout et al., 2019). Copying variants of social learning, like imitation and some types of emulation (such as end-state emulation, Byrne & Russon, 1998) allow for the direct transmission of behavioural forms (encompassing bodily actions and/or artefacts) via the observation of a model or its products (Bandini et al., 2020; Tennie et al., 2020b). However, the hypothesis that flake manufacture and use (especially in early stone artefact assemblages) were learned via copying is still debated (Boyd & Richerson, 2005; Corbey et al., 2016; Foley, 1987; Tennie et al., 2016; Tennie et al., 2017). Due to the impossibility of directly testing the learning mechanisms underlying flake manufacture and use in early hominins, one must resort to indirect methods in order to reconstruct early hominin learning processes. One such method involves the application of cognitive cladistics to examine how our ancestors may have acquired their behaviors by testing our closest living relatives, non-human great apes (Arroyo et al., 2016; Carvalho & McGrew, 2012; Panger et al., 2002; Wynn et al., 2011).

So far, only three ape subjects – one orangutan (Pongo pygmaeus; ‘Abang’; Wright, 1972) and two bonobos (Pan paniscus; ‘Kanzi’ and ‘Panbanisha’; Schick et al., 1999; Toth et al., 1993) – have been tested for their ability to learn how to make and use flakes (note that two other juvenile bonobos, Panbanisha’s sons, were reported to have also acquired flake making abilities after observing Kanzi and Panbanisha, see below). Wright (1972) provided a male orangutan (Abang) with a fixed flint core, a loose river pebble that could be used as a hammerstone and a baited puzzle box that could only be opened with a sharp tool (by cutting a rope lock). Wright implemented two experimental conditions that included both demonstrations and tests. In the first experimental condition, Wright tested Abang’s abilities to learn how to use a flake as a cutting tool to open the puzzle box. In the second condition, Wright tested the orangutan’s abilities to make his own flakes and subsequently use them to open the puzzle box. Given Abang’s initial failure to use a flake as a cutting tool in the first experimental condition, Abang’s keeper tried to elicit flake use by “guiding his hand to cut the string” of the rope lock (Wright, 1972). After a total of nine human demonstrations of how to use a flake as a cutting tool (one of which involved the above-mentioned molding), Abang used a human-made flake as a cutting tool to open the puzzle box. In the second experimental condition, after seven human demonstrations of how to make a flake using freehand percussion (i.e. a technique
where a hand-held hammerstone is used to detach flakes from a bodily stabilized or hand-held core; Schick & Toth, 1994), Abang made four flakes in succession using a hand-held hammerstone to hit on the fixed core. Abang subsequently used one of the flakes he made himself to cut through the rope locking the puzzle box and obtain the food reward (Wright, 1972).

Twenty years later, Toth, Schick and colleagues adapted the methodology employed by Wright to test bonobos’ flake manufacture and using abilities (e.g., Schick et al., 1999; Toth et al., 1993). The language-trained and enculturated bonobo Kanzi was provided with a puzzle box that, similarly to Abang’s puzzle box, could only be opened using a sharp tool to cut a rope lock. As in the earlier study with Abang, Kanzi was also provided with human demonstrations of how to detach flakes from a core using freehand percussion. Following these demonstrations, Kanzi was provided with loose cores and hammerstones. Although molding did not take place in this case (to the best of our knowledge), the bonobo was encouraged to make flakes by placing stones in his hands. In addition to the puzzle box with the rope lock, Kanzi was also presented in later experiments with a second puzzle box designed to resemble a drum with a taut plastic/silicone cover. This drum box allowed Kanzi to obtain a food reward after cutting through the artificial cover with a sharp object (e.g., Schick et al., 1999; Toth et al., 1993).

Kanzi started using human-made flakes to open the puzzle boxes almost immediately after the experiments began (Toth et al., 1993). Eventually, Kanzi also reliably made flakes himself and used them to open the puzzle boxes (but see Eren et al., 2020). To make flakes, Kanzi brought down a hand-held hammerstone against a core either held in the other hand, braced against the floor with a foot or a hand, or on the ground (Toth et al., 1993). A couple of months into testing, Kanzi innovated a flake manufacturing technique that had not been modeled for him. Kanzi’s own technique involved forcefully throwing loose cores onto hard surfaces (throwing technique; Toth et al., 1993) or objects (directed-throwing technique; Toth et al., 1993). Later, Kanzi’s half-sister Panbanisha (who was also enculturated), was reported to have learnt how to make and use flakes after being provided with human demonstrations of freehand percussion (Savage-Rumbaugh & Fields, 2006). However, Panbanisha’s learning process and knapping skills were not described in detail. Similarly, Panbanisha’s two sons were also reported to have learnt flake manufacture and use after observing Kanzi and Panbanisha. However, neither their learning process nor their behaviours (i.e. which techniques they used and which puzzle boxes they opened) were reported (Toth et al., 2006).

Although these early ape studies were clearly innovative in their methods, there are several factors that limit the conclusions that can be drawn from their results. Firstly, all of the tested apes were enculturated at least to a certain degree. Enculturation refers to the rearing conditions of apes “in a human cultural environment, with wide exposure to human artifacts and social/communicative interactions” (Furlong et al., 2008; see also Henrich & Tennie, 2017). Enculturation severely limits the ecological relevance of apes’ behavior and cognition, reducing in turn the external validity of findings such as the ones described above. This is because enculturation and extensive training are known to change apes’ brain connectivity (Pope et al., 2018) as well as allow apes to acquire innovative and cognitive abilities that are beyond those of wild and/or unenculturated apes (e.g. copying social learning: Buttelmann et al., 2007; secondary representation: Suddendorf & Whiten, 2001; see also Tennie, 2019). For example, when testing the abilities of enculturated and semi-enculturated chimpanzees to correctly choose a functional raking tool, Furlong et al. (2008) found that enculturated apes outperformed both semi-enculturated and unenculturated conspecifics. Thus, given that wild apes do not have access to human enculturation, findings from enculturated apes are of limited value in phylogenetic inferences.

A second limitation of these early ape flaking studies is that, prior to test, all apes were provided with demonstrations of how to make and use flakes. Consequently, neither the spontaneous nor the naturally developing abilities of apes to make and use flakes have ever been investigated, as this would require testing unenculturated individuals in the absence of demonstrations (as has been previously done with untrained and unenculturated capuchin monkeys (Sapajus apella); Westergaard & Suomi, 1994). Finally, although chimpanzees are one of our two closest living relatives (alongside bonobos) and despite them showing by far the most extensive tool-use repertoires of all apes in the wild (including some stone tool behaviors such as nut-cracking with stone hammers; Whiten et al., 1999; Whiten et al., 2001), chimpanzees have never been tested before in knapping experiments.

Investigating individual flake manufacture and using abilities in the absence of demonstrations using task-naïve, unenculturated apes would provide insight on whether these behaviours are within the cognitive reach of ecologically representative apes. More generally, if such apes were found to spontaneously make and use flakes it would add further empirical evidence that, in species with broad tool repertoires, flake manufacture and use does not require copying social learning (following demonstrations) and/or cognitive skills potentially installed during human enculturation (similar to what was reported for naïve, unenculturated capuchin monkeys; Westergaard & Suomi, 1994). Finding flake making and/or use in naïve, unenculturated chimpanzees would be compatible with a scenario where these skills were also present in the last common ancestor of Homo and Pan approximately seven million years ago. However, if contrary to tutored and enculturated bonobos and orangutans (see above), untutored, unenculturated chimpanzees would not make or use flakes, this would suggest that these abilities are beyond the natural cognitive reach of ecologically-representative subjects of this species. This latter finding would support a scenario in which the provision
of human demonstrations and/or enculturation may be a pre-requisite for the development of flake making and use in chimpanzees.

We tested the largest experimental sample included in an ape flaking experiment to date by assessing the individual abilities of 11 task-naıве, untrained chimpanzees to make and use flakes. Eight of the chimpanzees tested were mother-reared (unenculturated) but the enculturation status of the remaining three subjects is unknown. We tested these subjects across several experimental conditions in which different amounts of social information were successively provided in order to examine the level and type of information required for chimpanzees to develop flake manufacture and/or use (compare Bandini et al., 2020). We also self-replicated our findings by testing chimpanzees across two different populations (Table S1 in Extended Data). As in the case of the tutored, enculturated ape subjects included in previous flaking studies (Toth et al., 1993; Wright, 1972), our subjects were provided with the necessary materials to make flakes (hammerstones and cores) as well as opportunities and a motivation to use them (two baited puzzle boxes that afforded the use of sharp tools equivalent to those employed in previous ape flaking studies). In contrast to these earlier studies, we did not precede tests by demonstrations or molding. We predicted that if flake manufacture and use were within the natural individual cognitive reach of apes, the chimpanzees in our study would spontaneously make and use flakes.

Methods

Study design

We tested task-naıве, untrained chimpanzees across two institutions (a sanctuary; Chimfunshi Wildlife Orphanage, and a zoo; Kristiansand zoo; N\textsubscript{\text{total}} = 11). We aimed a priori to test all nine zoo-housed chimpanzees and all sanctuary housed chimpanzees belonging to the “Escape artists” group (n=4). However, two zoo-housed chimpanzees were excluded from the study. One zoo-housed female chimpanzee was excluded from the study after testing started as she chose not to participate in the experiments by not entering her testing quarter when the testing materials were placed inside it. One zoo-housed male was excluded from the study before the start of the tests as his rearing background included potential enculturation in a human cultural environment (he lived with humans for a period of time). This led to a total sample size of eleven chimpanzees (n=4 at Chimfunshi Wildlife Orphanage; n=7 at Kristiansand zoo). Each chimpanzee included in the study (except the mother-infant pair) was individually tested in order to ensure that if any chimpanzee performed the target behavior(s) (flake manufacture or use), this would not render the other chimpanzees nearby unsuitable for further testing (given that potential observers could not be considered task-naıve anymore). Thus, our experimental design allowed us to confidently conclude that any occurrence of the target behaviors during testing must have been individually learned and not copied from (or elicited by) others. Furthermore, we tested chimpanzees in two populations in order to a) self-replicate our findings; b) slightly vary specifics of our methods in order to maximize the chances of occurrence of the target behaviors; and c) account for potential inter-group differences in housing and rearing conditions.

Subjects were housed at Chimfunshi Wildlife Orphanage and Kristiansand Zoo. Chimfunshi Wildlife Orphanage is located in Zambia, in the Copperbelt region (12° 23’S, 29° 32’E). Four chimpanzees (mean\textsubscript{\text{age}} = 29.5, range\textsubscript{\text{age}}: 18–46, 2F & 2M; Table S1 in Extended Data) were tested individually at Chimfunshi between 9:00 and 16:00 in July 2016. During tests, one chimpanzee was called into the management area while the other chimpanzees remained in the outdoor enclosure. The chimpanzees had access to a small caged outdoor enclosure (approx. 75 m2) and four indoor management areas. The outdoor enclosure was a fenced area with natural soil, vegetation and a few small pebble-like stones. The chimpanzees spent the day primarily in the outdoor enclosure, and slept in the inside management rooms. The chimpanzees were regularly provided with several enrichment devices such as cardboard tubes with food inside that they could retrieve using small twigs or their hands and teeth. Two daily feeds were provided between 11:30 and 12:30 and between 14:30 and 16:30. Three of the chimpanzees in this group (Milla, Cleo and Chiffon) spent some of their lives in close contact with humans. The specific details of their experiences with humans are currently unknown, but all three chimpanzees were retrieved from human owners, after having lived with them for at least a couple of years. Milla, for example, was rescued from a bar where she was kept as amusement for the patrons. Therefore, it is possible that some, or all, of these three subjects were enculturated to a certain (unknown) degree before they arrived at Chimfunshi. It is also possible that whilst they lived with humans, these three chimpanzees were kept in ‘deprived’ conditions (see also Henrich & Tennie, 2017). Therefore, the enculturation or deprivation status of these three subjects cannot be confidently assessed. The living conditions experienced by the chimpanzees before they were brought to the sanctuary might have affected their performance in our study. However, Colin (the fourth chimpanzee in the group) is Cleo’s son, and was born and raised at Chimfunshi, meaning that he can be considered unenculturated and un-deprived.

Kristiansand Zoo is located in Kristiansand, Norway. Seven mother-reared, unenculturated chimpanzees (mean\textsubscript{\text{age}} = 23.7, range\textsubscript{\text{age}}: 7–41, 4F & 3M; Table S1 in Extended Data) were tested individually at Kristiansand Zoo (except a female, Jane, and her dependent offspring, which were tested together) in their sleeping quarters during the morning cleaning routines between 7:30 and 8:30 in May, June and November 2018. During this time, each individual was kept in a sleeping quarter, separated from the other chimpanzees by brick walls that prevented visual contact between the chimpanzees. Outside of cleaning hours, the chimpanzees at Kristiansand Zoo had access to two enclosures (one indoors and one outdoors). The indoor enclosure was equipped with several enrichment devices commonly found in zoological institutions such as an artificial termite mount regularly baited with honey,
climbing frames, an automated puzzle feeder that periodically released nuts into a maze which the chimpanzees could obtain using tools, and a hanging log with holes baited with food rewards. The outdoor enclosure was an island of 1840 m² surrounded by a water-filled moat, with natural soil and vegetation. The outdoor enclosure did not include any stones as the keepers removed them to prevent the chimpanzees from throwing them at the visitors. The indoor sleeping area was off-exhibit. Two daily feeds were provided at 10:00 and 14:00. Food was also scattered at 9:30 in the indoor and outdoor enclosures. It was decided a priori that only unenclturated chimpanzees that participated in all the test trials would be included in the study. All individuals entered the testing rooms voluntarily, and therefore could choose not to participate in the experiments.

Two different puzzle boxes baited with food items were used in order to motivate the chimpanzees to make (and subsequently use) flakes. Both puzzle boxes used in this study were novel for all the tested chimpanzees. However, the chimpanzees at both institutions were familiar with test apparatuses in general. Indeed the provision of the puzzle boxes served as part of the enrichment routine practiced in the testing facilities. In both testing institutions we used a puzzle box with a rope lock inspired by previous flaking experiments with great apes (e.g., Schick et al., 1999; Toth et al., 1993; Wright, 1972) that we named the “tendon box” (Figure 1). The tendon box was used to simulate a scenario in which, faced with an animal carcass, a subject must cut through taut tendons (a rope in our experiment) in order to dismember a body. Our tendon box consisted of two opaque boxes secured

Figure 1. Experimental set-up. Testing materials used in Chimfunshi Wildlife Orphanage (core A, tendon box and hammers C) and Kristiansand Zoo (core B secured to the mesh of the enclosure, hide box, tendon box and hammer D). At Chimfunshi (top picture), individuals were provided with a loose core (A), the baited “tendon box” (where a rope acted as a tendon substitute) and three loose hammerstones (C). At Kristiansand Zoo (bottom picture), individuals were provided with a fixed core (B), the baited “hide box”, the baited tendon box and an artificial hammer (D). Both boxes were modeled after those used in the previous ape flaking studies and the food rewards contained within could only be obtained using a cutting tool. The arrows link each chimpanzee population with the materials provided during the experiments (middle panel).
to a wooden board [box one (rewarded box): 26 × 17.3 × 17.3 cm; box two (non-rewarded): 36 × 15 × 17.2 cm]. The tendon box had a clear Plexiglas window (5 × 16 cm) at the top that allowed the reward inside to be visible to the chimpanzees. The door of the box was pulled shut by a rope that ran through the inside and exited through a hole in the opposite end. The rope then ran between the two boxes for approximately 5 cm and entered the second, non-rewarded box. The rope was secured in the non-rewarded box to a clamp that could be tightened to ensure that the rope was taut. The rope was only accessible in the area between the two boxes, and had to be cut there in order to open the door of box one. The rope was a brown twisted cord hemp rope, approx. 2 mm thick. This type of rope was selected as it was found to be (after pilot testing by EB) strong enough to withstand attempts by a human at opening the box without a tool but could be cut using a knife or flake. Collectively, the box weighed approximately 21 kg (including the board on which the boxes were fixed).

We also used a second puzzle box in Kristiansand Zoo named the “hide box”. The hide box design was inspired by the additional box used in the bonobo knapping experiments of Toth et al. (1993) as well as in the capuchin monkeys knapping experiments of Westergaard & Suomi (1994). This box (which was developed after data collection at Chimfunshi) roughly resembled a drum with an occluding silicone membrane 2 mm thick on top (Figure 1) and a transparent Plexiglass cylinder (16 cm wide × 15.5 cm high) with a metallic rim. The silicone membrane was screwed in between the cylinder and the rim, blocking the access to the reward placed inside the cylinder. The hide box was then secured to the bars of the rooms where the experiments took place (Figure 1).

The use of puzzle boxes baited with food is a common practice in cognitive experiments investigating animal’s problem solving abilities (e.g., Buttelmann et al., 2013; Forss et al., 2020; Hopper et al., 2007; Hopper et al., 2008; Whiten et al., 2005; Whiten et al., 2007). The rewards (baits) placed inside the two puzzle boxes included in our experiments consisted of peanuts and animal biscuits in Chimfunshi and half a banana or a yogurt in Kristiansand. The rewards were chosen based on the advice provided by the keepers regarding which were the preferred foods of the chimpanzees at each site.

In Chimfunshi, the chimpanzees were provided with three oval loose hammerstones (small, medium and large) in each trial (weight range 0.5–1 kg). Hammerstones were collected from streams around Birmingham, UK, based on the size and shape (similar to a potato) of the ones most commonly found in archaeological assemblages (Mora & De la Torres, 2005). Due to safety regulations, it was not possible to provide loose hammerstones to the chimpanzees housed at Kristiansand Zoo. Instead, one concrete rounded hammer (ca. 15 cm long × 10 cm wide, weight 2.2 kg) was provided during each trial. The weight of the hammer was modeled based on the hammers used by wild chimpanzees to crack nuts (Biro et al., 2003). The hammer was built around a metallic scaffold linked to a chain that allowed us to fix it to the bars of the testing rooms so the chimpanzees could not carry the hammer into the indoor enclosure. The concrete used to make the hammer included particles of up to 1 cm in diameter (Figure 1). The hammer was covered with non-toxic transparent epoxy resin to prevent its surface from disintegrating upon hammering.

In both sites, retouched Norfolk Chert cores were provided to the chimpanzees alongside the hammers (Figure 1). Unworked cores were purchased from a provider (Needham Chalks) in the UK and then knapped at the University of Birmingham. The cores were partially decortified to make the actual flint accessible, and in order to create platform angle variability between ~90 degrees and ~30–40 degrees which would make flake removal possible at the outset and without the need of manipulating the hammers by means of precision grips (similar to the procedure used in the earlier knapping studies; Toth et al., 1993; Westergaard & Suomi, 1994; Wright, 1972). This preparatory step was undertaken to account for the fact that chimpanzee hand morphology allows them to engage in power grips but prevents them from using forceful precision grips (Rolian & Carvalho, 2017). During the decortification process we aimed to produce either i) three separate surfaces with varying angles from which flakes could potentially be struck or ii) a continuous edge around the periphery of the core with continuously varying angles within the abovementioned platform angle range. The cores weighed between 0.8 and 1.5 kg. Subjects received one core per trial and if the core was not modified, the core was used in further trials. In Chimfunshi, cores were provided loose to the chimpanzees and therefore could have been reduced with various techniques. Due to safety regulations, in Kristiansand Zoo the core had to be fixed on a metallic platform (20 × 20 × 2 cm) to prevent the chimpanzees from carrying the core into the indoor enclosure. Similarly to the previous orangutan experiment (Wright, 1972), the stationary position of the core limited the possible techniques of flake removal. The core was attached to the metallic platform using a metallic wired mesh with openings 5 cm wide and 3 mm wire (XTEND, Carl Stahl ARC GmbH, Architectural Cables and Mesh Systems), leaving a knappable section of the core (with a platform angle of less than 90 degrees) exposed.

In Chimfunshi, the tendon box was placed on a ledge outside of the testing area and baited before the subjects entered the room. This set up was chosen to increase the visibility of the tendon box from the experimenters’ location 3 m away from the room’s bars. Three hammerstones and one core were placed – all unixed – on the floor inside the enclosure, allowing the chimpanzees to freely manipulate them. One camera (Sony HDR-CX330E Handycam) was set-up one meter from the enclosure, and recordings started once a subject entered the testing area. In Kristiansand, all testing materials (hide and tendon boxes, the artificial hammer and the fixed core) were placed inside the testing room and secured to the bars of the enclosure. All materials had to be placed inside the testing room because the chimpanzees could not extend
their arms through the bars (as in Chimfunshi) due to safety reasons. Two Sony HDR-CX330E Handycams were set-up half a meter from these bars, and started recording once the subject entered the testing room. Potential tools were cleared from the testing areas before the tests started. However, the chimpanzees often brought tools with them into the testing quarters at the start of the tests.

Experimental design

We implemented two experimental conditions: a baseline and a flake condition. During the baseline the subjects were provided with the testing materials but no demonstrations, guidance, or artefacts (e.g., no pre-made flakes) were provided. Crucially, no information regarding how to manufacture or use flakes was given before or during this condition. The aim of the baseline condition was to investigate whether chimpanzees could individually learn flake manufacture and use (as they were required to make a flake before they could use it). In Kristiansand Zoo, the baseline condition was split into two other sub-conditions (baseline condition I and baseline condition II) to control for the potential effect of testing with two baited boxes instead of one (as in Chimfunshi). During the baseline condition I, seven chimpanzees were provided with the tendon box, the hide box, a hammer and a fixed core (Figure 1). All chimpanzees in Kristiansand Zoo were tested individually in three trials each during the baseline condition I (condition duration range 01:05:40 to 03:00:49). We included a second baseline in Kristiansand Zoo to focus the attention of the individuals on solving a single task by only providing them with one box. In the baseline condition II, only the four most engaged individuals (two males and two females) of the seven that participated in the baseline condition I were tested. The box that each individual was tested with (tendon or hide box) was assigned randomly in baseline condition II. These four individuals were tested in three additional trials each during the baseline condition II (condition duration range 01:18:50 to 03:31:12). The individual trial length varied (range 00:29:14 to 02:02:19) depending on the duration of the local cleaning routines, as this was the time when testing took place. The same four individuals that we tested in the baseline condition II were further tested in the flake condition (condition duration range 01:46:23 to 02:38:32).

In the flake condition we used the same materials as in the baseline condition but we also provided the chimpanzees with a pre-made flake. The aim of the flake condition was to test if the chimpanzees could spontaneously recognize a flake as a potential cutting tool to access the puzzle boxes. The flake provided during this condition was made out of chimpanzees’ sight by the experimenters using freehand percussion. In Chimfunshi the flake measures were: platform depth = 8.46 mm, platform width = 21.46 mm, technological length = 50.76 mm and flake width = 47.56 mm. In Kristiansand the flake measures were: platform depth = 10.93 mm, platform width = 25.9 mm, technological length = 61.73 mm and flake width = 42.36 mm. Platform depth was measured as the distance from the impact point along the platform surface to the exterior margin of the flake and perpendicular to the interior surface of the flake. Platform width was measured from one lateral margin of the platform to the other. Flake length was measured from the impact point to the most distal point of the flake and flake width as the distance between the two flake edges at the midpoint and perpendicular to the length axis. Before the start of the flake condition, the experimenters tested the functionality of the flakes by opening the puzzle boxes themselves (only flakes that could cut open the puzzle box were provided). Each flake was placed unfixed (loosely on the floor) next to the hammerstone(s), core and puzzle box(es) before the subjects were allowed into the testing rooms.

All four chimpanzees at Chimfunshi were tested in the baseline condition II setup (with the tendon box) and the flake condition. Each trial lasted 20 minutes. The four chimpanzees at Chimfunshi were tested in three trials of the baseline condition II (60 min in total per individual) and in two trials of the flake condition (40 min in total per individual).

Coding

From each video-recorded trial we coded i) the duration of the interactions (time spent in physical contact with the testing materials, from when the subject started contact until it paused for more than 3s or changed activity), ii) which testing material the chimpanzees interacted with and iii) if the interaction was manual or using a tool (objects other than the provided stones are subsumed under the ‘tool’ category, including objects that the chimpanzees brought into the enclosures themselves).

Flake data capture

The two flakes provided during the flake condition were scanned with an Artec Space Spider 3D scanner using the data capture software Artec Studio 14 (Figure S1 in Extended Data). Similar scans could be created using photogrammetric approaches with freely available software like VisualSFM (Wu, 2011).

Statistical analysis

A proportion (20%) of the interactions between the chimpanzees and the testing materials across experimental conditions from each institution were re-analysed by a second coder naïve to the goals of the experiment in order to assess the inter-rater reliability (one coder was used for each testing institution, so two separate second-coders recoded 20% of each data set, respectively). The second coders (AC & LK) were asked to re-code the videos based on a provided ethogram (Table S2 in Extended Data). The clips of the interactions provided to the second coders were randomly selected using a number generator and a number of dummy clips, where no interaction took place (10% of the total number of interactions), were included as a control. The second coders’ data was compared to the original coding using Cohen’s Kappa statistic. No statistical comparisons between individuals of the two housing facilities or experimental conditions were conducted.
To determine whether our sample size was suitably powered to test for the ability to manufacture and use flakes, the probability of the chimpanzees in our study not performing the target behaviors was calculated from a binomial probability distribution using the function \texttt{dbinom} from the R software version 3.6.1 (2019-07-05). The expected probability of the behaviors in the population was obtained from the only previous study that tested the spontaneous flake making and using abilities of naïve, unenculturated primates (Westergaard & Suomi, 1994). Westergaard & Suomi (1994) found that 54% of the tested subjects (6/11) spontaneously detached flakes from a provided core whereas 20% of the tested subjects (3/15) used stones to cut open the provided puzzle boxes. For our power analysis (see Figure S2 in Extended Data) we used the incidence of flake making and use in naïve, unenculturated capuchin monkeys (Westergaard & Suomi, 1994) as the probability that naïve, unenculturated chimpanzees would also innovate these behaviors. If we had based our analysis instead on the previous incidence of flake making and using of enculturated and trained apes, the expected probability of the behavior would have been 100% (based on the results of Toth et al., 1993; Wright, 1972).

Ethics

The experiments reported comply with the Guide for the Care and Use of Laboratory Animals (National Research Council, 2011), the American Society of Primatologists’ Principles for the Ethical Treatment of Primates, and with current Norwegian laws. The experiments were approved by the Ethical commission of the European Research Council (ERC). This study was further approved by the ethical board of Kristiansand Zoo before its commencement. The research at Chimfunshi was approved by the University of Birmingham research board (reference UOB 31213), in line with the requirements for testing of animals in the UK and internationally. The project was also approved by CRAB (Chimfunshi Research Advisory Board). All participation in the study was voluntary. The subjects were called by name into the testing quarters and could choose not to enter the testing rooms, and thus not participate in the study. If the subject chose to enter the testing quarters and thus participate in the study, the chimpanzees were free to interact as much or as little as they wanted with the testing materials. The experimenters never attempted to encourage the chimpanzees to interact or manipulate the testing materials, but merely observed their behavior during the trials. If the subjects showed any signs of distress or tried to exit the testing room by manipulating the door during testing, they would immediately be released back into their main enclosure. Subjects were never fed or water-deprived, and continued with their regular feeding routine during the study. Subjects had access to water \textit{ad libitum} prior, during, and after testing. The chimpanzees included in the study were used to being separated from their group for short periods of time during cleaning routines or veterinary check-ups. Therefore, the keepers and the research boards of both testing institutions agreed that the separation of the chimpanzees for this study would not cause any harm or distress to the chimpanzees. Nevertheless, the experimenters were always present during the experiments (alongside one chimpanzee keeper) and would have terminated the trial immediately if the chimpanzees had shown any signs of distress (this never occurred during the present study). No incidents or adverse events occurred during data collection for the present study.

Results

There was a substantial to almost perfect agreement (Cohen, 1988) between the two coders of the interactions between the chimpanzees and the testing materials at Chimfunshi (k=0.684) and Kristiansand Zoo (k=0.947; Motes-Rodrigo & Bandini, 2021). Regarding the chimpanzees’ spontaneous knapping abilities, none of the chimpanzees included in our sample made flakes in either the baselines (when no information or final products were provided) nor in the flake condition (when a human-made flake was provided). In addition, no chimpanzee used the provided flake during the flake condition to open any of the baited boxes.

Modeled on the results from the only previous study that tested the spontaneous flake making abilities of naïve, unenculturated primates (Westergaard & Suomi, 1994), we found that the probability that we would not find flake making even once in our ape sample was 0.0002 whereas the probability that we would not find flake use in our sample was 0.085.

Although the chimpanzees in our sample did not make or use flakes, they interacted frequently with the testing materials by trying to open the puzzle boxes both by hand and using their teeth, thus proving motivated to retrieve the food rewards from inside the puzzle boxes (Table S3 in Extended Data). In Chimfunshi, the total, cumulative interaction time with the testing materials was 00:54:37, while at Kristiansand Zoo it was 02:05:21. These differences between sites are likely due to the longer trials and the larger number of individuals tested at Kristiansand Zoo compared to Chimfunshi. In Chimfunshi, the chimpanzees interacted the most with the tendon box (total interaction time 00:50:34) and the least with the flake (in the flake condition; total interaction time 00:00:25). In Kristiansand Zoo the chimpanzees interacted the most (total interaction time 01:35:18) with the hide box (the hide box was not available at Chimfunshi) and the least with the flake (in the flake condition; total interaction time 00:00:08). In Kristiansand Zoo, the chimpanzees interacted with the tendon box for a total of 00:12:53. Interactions were made both by hand and using tools (Table S4 in Extended Data). The chimpanzees used straws, plastic hose fragments, plastic cups, sticks and plastic pieces that they retrieved on their own as tools to try to open the puzzle boxes. However, the chimpanzees were never successful in opening the boxes. Instead, at both testing institutions the chimpanzees used these materials to try to lever open the lid of the tendon box and to probe different part of the boxes. Chimpanzees at both institutions knocked (touched repeatedly and in quick succession an object with the knuckles), slapped (touched in a fast movement an object with the palm of the hand) and hit (touched fast and using considerable force an object with...
any part of hand other than the palm) the testing materials provided. However, no percussive actions with a tool (e.g. hammers) took place in any of the trials.

Discussion

In contrast to the earlier ape flaking studies using tutored, enculturated apes, none of the chimpanzees we tested made or used a flake during the baseline conditions or after being given a pre-made functional flake (flake condition). The same negative findings were obtained from the eight unenculturated, mother-reared chimpanzees as from the three chimpanzees with uncertain degrees of enculturation included in our sample. We did not observe sharp-edged stone tool making or use despite the fact that the chimpanzees seemed motivated to open the puzzle boxes, as suggested by their attempts to open the boxes both with and without tools. The use of tools other than a flake to try to open the puzzle boxes suggests that the chimpanzees did not perceive the flake as a potential tool. It is possible that the novelty of stone as a material compared to the familiar plastic and stick tools prevented the chimpanzees from innovating the use of stone as a tool during the experimental period (Gruber, 2016). It is unlikely that the notable absence of flake production and use in our study as compared to previous ape flaking studies is due to inter-species differences in cognitive and/or physical abilities. Cognitively, chimpanzees are at least on par in physical skills with orangutans and bonobos as they show by far the most extensive tool-use repertoires of all wild apes (which includes lithic percussive behaviours; Whiten et al., 1999; Whiten et al., 2001). Chimpanzees are also physically able to produce flakes, as evidenced by several reports of wild chimpanzees unintentionally detaching flake-like objects while engaging in nut-cracking using stone hammers and anvils (Carvalho et al., 2008; Mercader et al., 2007; Mercader et al., 2002). Although their hand morphology would have prevented the chimpanzees in our study from making sharp-edged stones using forceful precision grips in which the thumb is opposed to the other fingers (Rolian & Carvalho, 2017), the tested chimpanzees could have employed power grips similar to those described in the context of other chimpanzee stone behaviors such as nut-cracking (Boesch-Achermann & Boesch, 1993). Therefore, we do not believe that hand morphology prevented the chimpanzees from engaging in percussive behaviors that might have led to sharp-stone making.

A more likely explanation for the discrepancy between the results of our study and those of previous ape flaking studies is the background and experiences of the subjects, both in the long term and immediately before testing took place. Contrary to the apes tested in the early flaking experiments, most of the chimpanzees included in our study (at least 8 out of 11 tested) were not enculturated nor had been exposed to human training in this or related tasks. Furthermore, all chimpanzees in our study were untutored in the target behaviors as they were not provided with social demonstrations of how to make or use flakes, whereas all previously tested apes (Toth et al., 1993; Wright, 1972) were exposed to human demonstrations (and sometimes even molding) before testing. It is therefore likely that enculturation had a large direct or indirect (via demonstrations) role in driving the findings of earlier reports of ape flake making and use. Not only do enculturated apes generally show skills and cognitive abilities different from unenculturated apes (e.g., Tomasello & Call, 1997), but previous studies have found that enculturation and/or extensive human training in certain tasks (e.g. Pope et al., 2018) lead apes to attend to and even in some cases copy demonstrated behavioural forms (Buttelmann et al., 2007; Tomasello et al., 1993). That is, the degree of human enculturation of the previously tested apes could have predisposed them to attend and perhaps reproduce the human demonstrations of flake making and use provided in these earlier studies (Toth et al., 1993; Wright, 1972). Alternatively, or in addition, enculturation could have increased the apes’ individual innovative skills to a degree that helped or allowed for the production and use of sharp-edged stone tools, prior to – and perhaps entirely independent from – demonstrations. With regards to unenculturated apes (including the majority of the chimpanzees tested in our study), these are unlikely to make and use flakes following human demonstrations given that the behaviours are not already expressed in baseline conditions (as unenculturated apes do not seem to copy novel behaviours beyond baseline performance; Clay & Tennie, 2018; Tennie et al., 2012; Tennie et al., 2020a; Tennie et al., 2020b).

Our results suggest that, outside the sphere of human enculturation (in combination with human demonstration and/or molding), the individual abilities of chimpanzees (and by phyletogenetic proxy, that of hominins with chimpanzee-like cognitive abilities), do not seem sufficient to manufacture or use flakes. Assuming this interpretation is correct, there exist several possible evolutionary scenarios for the development of flake manufacture and use abilities in the hominid lineage. The first possible scenario is that hominin species pre-dating both the last common ancestor of chimpanzees and humans, as well as hominins with chimpanzee-like cognitive abilities, were able to intentionally manufacture and use flakes, but this ability was subsequently lost in the Pan lineage, and maintained in the hominin lineage. If this scenario did indeed occur, we would expect that hominin species that evolved after the hominin split from Pan (approximately seven million years ago) would have engaged in flake manufacture and use. However, there is a distinct absence of flaked stone tools in the archaeological record for millions of years after the split between hominins and the genus Pan. This gap in the archaeological record could be due to a very low density of manufactured flakes in the environment, which in addition to their archaic characteristics, would render their identification in archaeological excavations difficult (Semaw et al., 1997). Low flake manufacture densities during this period could be explained by a lack of necessity for flakes in the specific ecological niches inhabited by the different hominin species. An alternative scenario would be one in which hominoids with equivalent cognitive abilities to chimpanzees did not have the
ability to make flakes. According to this scenario, the ability to manufacture flakes would have evolved later in the hominin lineage (and then may or may not have remained dormant), resulting in certain hominin species eventually crossing the cognitive Rubicon for flake manufacture and use. In both of these scenarios, it remains an open question whether learning mechanisms involved in modern human cultural transmission (especially copying social learning mechanisms; Tennie et al., 2017) were responsible for the acquisition of flake manufacture and/or use abilities.

Flake manufacture and use independent of copying social learning has already been suggested to be the most likely explanation for a phylogenetically independent case of flake manufacture and use in task-naïve, unenculturated (G. Westergaard, pers. comm) capuchin monkeys (Westergaard & Suomi, 1994). Two previous studies tested the spontaneous flaking abilities of capuchin monkeys (Sapajus apella; Westergaard & Suomi, 1994; Westergaard & Suomi, 1995). To examine the spontaneous flaking abilities of this species, Westergaard and Suomi implemented a similar methodology to our baseline condition by providing task-naïve, unenculturated capuchins with the necessary materials (hammers and cores) and motivation (puzzle box baited with food similar to the hide box) to make and use flakes (Westergaard & Suomi, 1994). In contrast to the chimpanzees tested in our study, some capuchins spontaneously made (6/11) and used flakes (3/15) in baseline conditions, thus validating the experimental paradigm used in our study. As the tested capuchins were naïve to flake manufacture and use prior to and during testing (i.e. no demonstrations were provided) this capuchin study represents a proof of principle that the abilities to manufacture and use flakes as cutting tools in at least some species of tool-using primates can develop in the absence of copying opportunities and enculturation (Westergaard & Suomi, 1994).

The present study strongly suggests that contrary to the capuchins, naïve untrained chimpanzees do not possess or develop flake making and using abilities spontaneously. Such inter-species differences could perhaps be explained by different genetic predispositions for stone manipulation in capuchins and chimpanzees (Hayashi, 2015). For example, previous studies have shown that capuchins spontaneously manipulate novel objects by hitting them against hard substrates (Brunon et al., 2014). Taken together, the results of the present study, the capuchin data and the archaeological record, support a scenario in which the abilities to make and use flakes would have evolved independently, and at least twice, during primate evolution: in capuchins (see also Proffitt et al., 2016 for flake production in wild capuchins) and at least once in the hominin lineage once cognitive abilities more advanced than those found in chimpanzees developed and/or the ecological pressure for sharp tools emerged. This scenario would also explain the large time gap (spanning several million years) between the split of hominins and *Pan* and when the first flaked stone tools appear in the archaeological record (currently circa 2.58 million years: Braun et al., 2019).

Data availability

Underlying data

Open Science Framework: Naïve, unenculturated chimpanzees fail to make and use flaked stone tools. [https://doi.org/10.17605/OSF.IO/SUWKA (Motes-Rodrigo & Bandini, 2021)].

This project contains the following underlying data:

- coding stonecult AMR kristiansand.csv (Data coded from the experiments conducted at Kristiansand Zoo)
- coding stonecult EB chimfunshi.csv (Data coded from the experiments conducted at Chimfunshi Wildlife Orphanage)
- second_coder_data_louise.csv (Data coded by the second coder from Kristiansand Zoo)
- second_coder_data_MB.xlsx (Data coded by the second coder from Chimfunshi Wildlife Orphanage)

Extended data

Open Science Framework: Naïve, unenculturated chimpanzees fail to make and use flaked stone tools. [https://doi.org/10.17605/OSF.IO/SUWKA (Motes-Rodrigo & Bandini, 2021)].

This project contains the following extended data:

- Dictionary variable names.docx
- Extended data figures and tables.docx
- Power simulations Bandini, Motes-Rodrigo et al. R
- stonecult_SubKnerten_ConFlaketendon_s23_t44_Cam2.mp4
- stonecult_SubJosefine_ConFlakedrum_s22_t42_Cam1.mov
- Chimfunshi_SubChiffon_ConBaseline.MPEG

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgments

The authors are grateful to Chimfunshi Wildlife Orphanage Trust and Kristiansand Zoo for allowing testing access to the chimpanzees. The authors also thank the members of the CRAB research board, Innocent Mulenga and Thalita Calvi, and Goodson Muletele, Felix Chinyama, Patrick Mwika, Mumba Kwele and Joseph Kasongo for their help during testing at Chimfunshi. The authors are also grateful to Linda Oia, Ruth Sonnwebber, Catherine Crockford and Katja Liebal for their advice and support during testing at Chimfunshi. The authors are also thankful to the ape keepers and maintenance team of Kristiansand Zoo for their help with the experiments performed by AMR, to the Metallwerkstatt of the University of Tübingen for building the testing apparatuses used at Kristiansand Zoo, to Louise Kristensen for acting as second coder and Roger Mundry for statistical advice.
References

Archer W, Aldeais A, McPherron SP: What is ‘in situ’? a reply to Harmand et al. (2015). / Hum Evol. 2020; 142: 102740.
Published Abstract | Publisher Full Text

Arroyo A, Hirata S, Matsuzawa T, et al.: Nut cracking tools used by captive chimpanzees (Pan troglodytes) and their comparison with early stone age percussive artifacts from Olduvai Gorge. PLoS One. 2016; 11(1): e0166788.
Published Abstract | Publisher Full Text | Free Full Text

Bandini E, Motes-Rodrigo A, Steele MP, et al.: Examining the mechanisms underlying the acquisition of animal tool behaviour. Biol Lett. 2020; 16(6): 20200122.
Published Abstract | Publisher Full Text | Free Full Text

Biro D, Inoue-Nakamura N, Tonoora K, et al.: Cultural innovation and transmission of tool use in wild chimpanzees: evidence from field experiments. Anim Cogn. 2009; 6(4): 213–223.
Published Abstract | Publisher Full Text

Boesch Achermann H, Boesch C: Tool use in wild chimpanzees: New light from dark forests. Curr Dir Psychol Sci. 1993; 2(1): 16–21.
Published Full Text

Boyd R, Richerson PJ: The origin and evolution of cultures. Oxford: Oxford University Press. 2005.

Braun DR, Aldeais V, Archer W, et al.: Earliest known Oldowan artifacts at >2.5 Ma from Ledi-Geraru, Ethiopia, highlight early technological diversity. Proc Natl Acad Sci U S A. 2019; 116(24): 11712–11717.
Published Abstract | Publisher Full Text | Free Full Text

Bruno A, Bovet D, Bourgeois A, et al.: Motivation and manipulation capacities of the blue and yellow macaw and the tufted capuchin: A comparative approach. Behav Processes. 2014; 107: 1–14.
Published Abstract | Publisher Full Text

Buttelmann D, Carpenter M, Call, et al.: Enculturated chimpanzees imitate rationally. Dev Sci. 2007; 10(4): F31–F38.
Published Abstract | Publisher Full Text

Buttelmann D, Carpenter M, Call, et al.: Chimpanzees, Pan troglodytes, recognize successful actions, but fail to imitate them. Anim Behav. 2013; 86(4): 755–761.
Published Full Text

Byrne RW, Russon AE: Learning by imitation: a hierarchical approach. Behav Brain Sci. 1998; 21(5): 667–84; discussion 684–721.
Published Abstract | Publisher Full Text

Carvalho S, Cunha E, Sousa C, et al.: Chains opératoires et ressource-exploitation strategies in chimpanzee (Pan troglodytes) nut cracking. / Hum Evol. 2008; 59(1): 148–163.
Published Abstract | Publisher Full Text

Carvalho S, McGrew WC: The origins of the Oldowan: why chimpanzees (Pan troglodytes) still are good models for technological evolution in Africa. In M. Dominguez-Rodrigo (Ed.), Stone Tools and Fossil Bones: Debates in the Archaeology of Human Origins. Cambridge: Cambridge University Press. 2012; 201-221.
Published Full Text

Clay Z, Tennie C: Is overimitation a uniquely human phenomenon? Insights from human children as compared to bonobos. Child Dev. 2018; 89(5): 1535–1544.
Published Abstract | Publisher Full Text

Clay Z, Tennie C, Bickerton D: Chimpanzees and bonobos imitate human actions but only after some exposure. Curr Anthropol. 2018; 3(6): 267–91.
Published Abstract | Publisher Full Text

Corley J: Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates. 1988: 567.
Published Full Text

Corley R, Jagich A, Vaesen K, et al.: The Acheulean handaxe: more like a bird’s song than a beetle’s tune? / Evol Anthropol. 2016; 25(1): 6–19.
Published Abstract | Publisher Full Text | Free Full Text

Dominguez-Rodrigo M, Alcalá L: 3.3-million-year-old stone tools and butchery traces? more evidence needed. PalesAnthropology. 2016; 2016: 46–53.
Reference Source

Eren MI, Lycett SJJ, Tomonaga M: Underestimating Kanzi? Exploring Kanzi-Oldowan comparisons in light of recent human stone tool replication. Evol Anthropol. 2020; 29(6): 310–316.
Published Abstract | Publisher Full Text

Foley R: Hominid species and stone-tool assemblages: how are they related? Antiquity. 1987; 61(233): 380–392.
Published Full Text

Forss S, Motes-Rodrigo A, Hrubesch C, et al.: Chimpanzees’ (Pan troglodytes) problem-solving skills are influenced by housing facility and captive care duration. PeerJ, 2020; 8: e10263.
Published Abstract | Publisher Full Text | Free Full Text

Furlong EE, Boose KJ, Boyesen ST: Raking it in: the impact of enculturation on chimpanzee tool use. Anim Cogn. 2008; 11(1): 83–97.
Published Abstract | Publisher Full Text

Gruber T: Great apes do not learn novel tool use easily: Conservatism, functional fixedness, or cultural influence? Int / Primatol. 2016; 37(2): 296–316.
Published Full Text

Harmand S, Lewis JE, Feibel CS, et al.: 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature. 2015; 521(7552): 310–315.
Published Abstract | Publisher Full Text

Hayashi M: Perspectives on object manipulation and action grammar for percussive actions in primates. Philos Trans R Soc Lond B Biol Sci. 2015; 370(1682): 20140350.
Published Abstract | Publisher Full Text | Free Full Text

Henrich J, Tennie C: Cultural evolution in chimpanzees and humans. In M. Muller, R. Wrangham, & D. Pilbeam (Eds.), Chimpanzees and Human Evolution. Cambridge, MA: Harvard University Press. 2017; 645–702.
Published Full Text

Hopper LM, Lambeth SP, Schapiro SJ, et al.: Observational learning in chimpanzees and children studied through ‘ghost’ conditions. Proc Biol Sci. 2008; 275(1630): 835–40.
Published Abstract | Publisher Full Text | Free Full Text

Hopper LM, Spiteri A, Lambeth SP, et al.: Experimental studies of traditions and underlying transmission processes in chimpanzees. Anim Behav. 2007; 73(6): 1021–1032.
Published Full Text

Mercader J, Barton H, Gillespie J, et al.: 4,300-Year-old chimpanzee sites and the origins of percussive stone technology. Proc Natl Acad Sci U S A. 2007; 104(9): 3043–3048.
Published Abstract | Publisher Full Text | Free Full Text

Mercader J, Panger M, Boesch C: Excavation of a chimpanzee stone tool site in the African rainforest. Science. 2002; 296(5572): 1452–1455.
Published Abstract | Publisher Full Text

Mora R, de la Torre I: Percussion tools in Olduvai Beds I and II (Tanzania): implications for early human activities. / Anthropol Anz. 2005; (24): 179–192.
Published Full Text

Motes-Rodrigo A, Bandini E, Archer W, et al.: Naïve, unenculturated chimpanzees fail to make and use flaked stone tools. 2021.
http://www.doi.org/10.17605/OSF.IO/UWKWA

National Research Council, Division on Earth and Life Studies, Institute for Laboratory Animal Research: Guide for the care and use of laboratory animals. 8th Edition. National Academic Press, Washington, D.C., 2011.
Reference Source

Panger MA, Brooks AS, Richmond BG, et al.: Older than the Oldowan? rethinking the emergence of hominin tool use. Evol Anthropol. 2002; 11(6): 235–245.
Published Full Text

Pope SM, Taglialatela JP, Skiba SA, et al.: Changes in frontoparietotemporal connectivity following do-as-i-do imitation training in chimpanzees (Pan troglodytes). / Cogn Neurosci. 2018; 30(3): 421–31.
Published Abstract | Publisher Full Text

Proffitt T, Lunza LV, Falotico T, et al.: Wild monkeys flake stone tools. Nature. 2016; 539(7627): 85–81.
Published Abstract | Publisher Full Text

Roche H: Variability of Pliocene lithic productions in East Africa. Acta Anthropol Sin. 2000; 19: 98–103.
Published Abstract | Publisher Full Text

Rolan C, Carvalho S: Tool use and manufacture in the last common ancestor of Pan and Homo. In M. N. Muller, R. W. Wrangham, & D. R. Pilbeam (Eds.), Chimpanzees and human evolution. The Belknap Press of Harvard University Press. 2017; 602-644.
Published Full Text

Savage-Rumbaugh S, Fields WM: Rules and tools: beyond anthropomorphism. In N. Toth & K. Schick (Eds.), The Oldowan: Case studies into the earliest stone age. Gosport, IN: Stone Age Institute Press. 2006; 223–241.
Published Abstract | Publisher Full Text

Schick KD, Toth NP: Making silent stones speak: human evolution and the dawn of technology. Simon and Schuster. 1994.
Reference Source

Schick KD, Toth N, Garufi G, et al.: Continuing investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). / Archaeol. 1999; 26(7): 821–832.
Published Full Text

Semaw S, Renne P, Harris JW, et al.: 2.5-million-year-old stone tools from Gona, Ethiopia. Nature. 1997; 385(6614): 333–336.
Published Abstract | Publisher Full Text

Stout D, Rogers MJ, Jaeggi AV, et al.: Archaeology and the origins of human cumulative culture: a case study from the earliest Oldowan at Gona, Ethiopia. / Curr Anthropol. 2016; 60(3): 309–340.
Published Full Text

Suddendorf T, Whiten A: Mental evolution and development: evidence for secondary representation in children, great ages, and other animals. Psychol Bull. 2001; 127(3): 629–50.
Published Abstract | Publisher Full Text

Publisher Full Text

Publisher Full Text
Tennie C: Could nonhuman great apes also have cultural evolutionary psychology? Behav Brain Sci. 2019; 42: e184. PubMed Abstract | Publisher Full Text
Tennie C, Braun DR, Premo LS, et al.: The Island test for cumulative culture in the Paleolithic. In M. N. He Idle, N. J. Conard, & M. Bolus (Eds.), The Nature of Culture. Tübingen, Germany: Springer. 2016; 121-133. Publisher Full Text
Tennie C, Bandini E, van Schaik CP, et al.: The zone of latent solutions and its relevance to understanding ape cultures. Biol Philos. 2020a; 35(5): 55. PubMed Abstract | Publisher Full Text | Free Full Text
Tennie C, Call J, Tomasello M: Ratcheting up the ratchet: on the evolution of cumulative culture. Philos Trans R Soc Lond B Biol Sci. 2009; 364(1528): 2405–2415. PubMed Abstract | Publisher Full Text | Free Full Text
Tennie C, Call J, Tomasello M: Untrained chimpanzees (Pan troglodytes schweinfurthii) fail to imitate novel actions. PLoS One. 2012; 7(8): e41548. PubMed Abstract | Publisher Full Text | Free Full Text
Tennie C, Hopper L, van Schaik CP: On the origin of cumulative culture: consideration of the role of copying in culture-dependent traits and a reappraisal of the zone of latent solutions hypothesis. In S. R. Ross & L. M. Hopper (Eds.), Chimpanzees In Context: A Comparative Perspective on Chimpanzee Behavior, Cognition, Conservation, and Welfare. University of Chicago Press. 2020b. Reference Source
Tennie C, Premo LS, Braun DR, et al.: Early stone tools and cultural transmission: resetting the null hypothesis. Curr Anthropol. 2017; 58(5): 652-672. Publisher Full Text
Tomasello M, Call J: Primate cognition. Oxford: Oxford University Press. 1997. Reference Source
Tomasel lo M, Savage-Rumbaugh S, Kruger AC: Imitative learning of actions on objects by children, chimpanzees, and enculturated chimpanzees. Child Dev. 1993; 64(6): 1688-1705. PubMed Abstract | Publisher Full Text
Toth N, Schick K, Semaw S: A comparative study of the stone tool-making skills of Pan, Australopithecus, and Homo sapiens. In N. Toth & K. Schick (Eds.), The Oldowan: case studies into the earliest Stone Age. Gosport, IN: Stone Age Institute Press. 2006. Reference Source
Toth N, Schick KD, Savage-Rumbaugh ES, et al.: Pan the tool-maker: investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). J Archaeol Sci. 1993; 20(1): 81-91. Publisher Full Text
Westergaard GC, Suomi SJ: A simple stone-tool technology in monkeys. J Hum Evol. 1994; 27(5): 399-404. Publisher Full Text
Westergaard GC, Suomi SJ: The stone tools of capuchins (Cebus apella). Int J Primatol. 1995; 16: 1017–1024. Publisher Full Text
Whiten A, Goodall J, McGrew WC, et al.: Cultures in chimpanzees. Nature. 1999; 399(6737): 682-85. PubMed Abstract | Publisher Full Text
Whiten A, Goodall J, McGrew WC, et al.: Charting cultural variation in chimpanzees. Behaviour. 2001; 138(11/12): 1481-1516. Publisher Full Text
Whiten A, Horner V, de Waal FBM: Conformity to cultural norms of tool use in chimpanzees. Nature. 2005; 437(7059): 757-740. PubMed Abstract | Publisher Full Text
Whiten A, Spiteri A, Horner V, et al.: Transmission of multiple traditions within and between chimpanzee groups. Curr Biol. 2007; 17(12): 1038-43. PubMed Abstract | Publisher Full Text
Wright RVS: Imitative learning of a flaked stone technology-the case of an orangutan. Mankind. 1972; 8(4): 296-306. Publisher Full Text
Wu C: VisualSFM: a visual structure from motion system. 2011. Reference Source
Wynn T, Hernandez-Aguilar RA, Marchant LF, et al.: “An ape's view of the Oldowan” revisited. Evol Anthropol. 2011; 20(5): 181-197. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️ ✔️

Version 2

Reviewer Report 25 November 2021
https://doi.org/10.21956/openreseurope.15034.r27259

© 2021 Graham K. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✔️ Kirsty Graham
School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK

I do not have any new comments.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Primatology, animal behaviour, gestural communication.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 16 July 2021
https://doi.org/10.21956/openreseurope.15034.r27258

© 2021 Leca J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✔️ Jean-Baptiste Leca
1 Department of Psychology, University of Lethbridge, Lethbridge, Canada
2 School of Natural and Engineering Sciences, National Institute of Advanced Studies, Bangalore, India

I thank the authors for taking into account my comments and addressing my few and minor concerns. I am happy to state that the manuscript has significantly improved. I am now glad to recommend this manuscript for indexing.

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Since 2003, my main research program focuses on the mechanisms and evolution of material culture in non-human primates (more specifically macaques), with an emphasis on stone play and stone tool use.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 18 May 2021

https://doi.org/10.21956/openreseurope.14256.r26750

© 2021 Graham K. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Kirsty Graham

School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK

This article is a much needed update to the question of whether nonhuman apes can make and use sharp stone tools. Previously we were left to decide whether we considered early studies of enculturated apes with incredibly small sample sizes (n=1 or 2) to be convincing evidence of this ability. Indeed, the authors take us through a step-by-step account of the training process involved in those “successful” experiments. They highlight the unusual conditions in which these apes were raised and how this may have contributed to their success. I have some specific comments about the manuscript below:

Introduction -
I wonder: had Kanzi been trained/taught to cut things before this experiment (e.g. using a knife)? He may have had a concept of “cutting” from past experiences.

I agree with the authors that it's surprising that chimpanzees haven't been tested before, given propensity for tool-use. A valuable addition to the literature!

Methods:
Early in the methods the authors introduce “a sanctuary and a zoo” before naming them further down. Either name them at the initial mention or state later on that Chimfunshi Wildlife Orphanage is the sanctuary as it may not be clear to all readers.

In the methods, it would be more helpful to give the n for the chimpanzees that were included, rather than an n for the total number of chimpanzees and then allow the reader to calculate how many the authors ended up with. Maybe change to something like "We aimed a priori to test all nine zoo-housed chimpanzees... However, once testing started, two zoo-housed chimpanzees..."
were excluded from the study (n=7).” Otherwise at a cursory glance it seems that the sample size is inflated.

Either remove “Africa” after Zambia, or add “Europe” after Norway. Could also give a more specific location for Chimfunshi in Zambia. Otherwise, it's a very good description of the conditions for the subjects in both locations.

Why was the “hide box” only used at the zoo and not the sanctuary?

 Flake data capture is great! Very helpful. I also appreciated the thoroughness of descriptions for the coding and analysis for interobserver reliability, as well as the power analysis for the sample size. And the ethics! A lot to commend about how clear this section is.

Results and Discussion –
 These sections were clearly written and easy to follow. The comparison to the capuchin study is very interesting, and presented in a way that is clearly relevant for the current study.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and does the work have academic merit?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Primatology, animal behaviour, gestural communication.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 28 Jul 2021

Alba Motes Rodrigo

Responses to Reviewer Kirsty Graham: 1) This article is a much-needed update to the
question of whether nonhuman apes can make and use sharp stone tools. Previously we were left to decide whether we considered early studies of enculturated apes with incredibly small sample sizes (n=1 or 2) to be convincing evidence of this ability. Indeed, the authors take us through a step-by-step account of the training process involved in those “successful” experiments. They highlight the unusual conditions in which these apes were raised and how this may have contributed to their success. I have some specific comments about the manuscript below:

-->Thank you very much for your overall positive assessment of our manuscript, the succinct summary of our paper, and all the helpful comments. We address them all below and in the manuscript. We have also changed the manuscript based on feedback we received at conferences as well as on the comments of the other reviewers.

2) I wonder: had Kanzi been trained/taught to cut things before this experiment (e.g. using a knife)? He may have had a concept of “cutting” from past experiences.

-->We could not find any specific information on Kanzi’s previous experience with cutting before the stone tool experiment, but Toth and colleagues do write that Kanzi was shown how to use the flake as a cutting tool: “In the first phase of the experiment, Kanzi was shown how a stone could be fractured and how the flakes produced could be used to cut the cord…” (Toth et al., 1993; p. 83). Therefore, Kanzi had the possibility to observe and learn the use of cutting tools before he was given the opportunity to make and use a flake individually. Given Kanzi’s degree of enculturation, it is possible that he benefited from the demonstrations provided.

3) I agree with the authors that it’s surprising that chimpanzees haven’t been tested before, given propensity for tool-use. A valuable addition to the literature!

-->Thank you very much.

4) Early in the methods the authors introduce “a sanctuary and a zoo” before naming them further down. Either name them at the initial mention or state later on that Chimfunshi Wildlife Orphanage is the sanctuary as it may not be clear to all readers.

-->Thank you for this suggestion, we have now amended the manuscript as suggested.

5) In the methods, it would be more helpful to give the n for the chimpanzees that were included, rather than an n for the total number of chimpanzees and then allow the reader to calculate how many the authors ended up with. Maybe change to something like “We aimed a priori to test all nine zoo-housed chimpanzees… However, once testing started, two zoo-housed chimpanzees were excluded from the study (n=7).” Otherwise at a cursory glance it seems that the sample size is inflated.

-->Thank you, we have changed the manuscript as suggested.

6) Either remove “Africa” after Zambia, or add “Europe” after Norway. Could also give a more specific location for Chimfunshi in Zambia. Otherwise, it’s a very good description of the conditions for the subjects in both locations.

-->Thank you. We have removed ‘Africa’ after Zambia and included the region in which Chimfunshi is found, which comes right before the coordinates of the sanctuary.

7) Why was the “hide box” only used at the zoo and not the sanctuary?

-->The hide box was designed and built after data collection was carried out at Chimfunshi. We
have now included this information in the manuscript as well.

8) Flake data capture is great! Very helpful. I also appreciated the thoroughness of descriptions for the coding and analysis for interobserver reliability, as well as the power analysis for the sample size. And the ethics! A lot to commend about how clear this section is. These sections were clearly written and easy to follow. The comparison to the capuchin study is very interesting, and presented in a way that is clearly relevant for the current study.

-->Thank you very much.

Competing Interests: No competing interests were disclosed.
were clearly summarized and put into perspective in light of this study (but see below my few minor questions). The authors did a good job at making a relatively complex study design simple, which makes the study accessible to a non-expert audience (while maintaining the interest of experts in this field). I have no major issues with the outline/structure and conclusion of the manuscript. The (extended) figures, tables, and underlying data are informative and relevant. This is an interesting study that clearly fits an information gap, and has significant implications for the emergence of a major milestone in human evolutionary history.

Before I can recommend this manuscript for indexing, I just have a series of minor question/concerns (some of them are actually not central to the manuscript), which I anticipate the authors will be able to handle easily.

Page 1 (and Discussion section) I understand the phylogenetic relevance of the comparison between Homo sapiens and Pan troglodytes in specific behavioral domains to draw inferences on the evolution of specific cognitive abilities. In the context of stone tool-making (probably more than in the context of stone tool use), I am wondering to what extent some of your analyses should control for obvious inter-species differences in hand anatomy and their consequences in terms of manual dexterity, bimanual coordination, the magnitude of manual asymmetries, and variation in independent control over the digits. If it is not possible to analytically control for these variables, could you at least please elaborate on this confounder in your Discussion section?

Page 3: Could you please clarify the following statement about your study, by possibly making it more specific?

“Therefore, these findings suggest that without extensive human training and demonstrations, chimpanzees cannot learn how to make or use stone tools by themselves.”

Are you suggesting that the stone-assisted nut-cracking behavior reported in several wild communities of chimpanzees across West Africa – where this activity has existed for at least 4,300 years (Mercader et al., 2007; Sirianni et al., 2015[ref-1]) – would not have been possible without any human influence?

Or did you mean “[…] chimpanzees cannot learn how to make or use sharp-edged stone tools by themselves.”?

Page 3: Could you please specify what you mean by “some types of emulation”? What are the different forms of product-oriented copying, and among them, which ones “allow for the direct transmission of behavioural forms via the observation of [a model’s...] products”?

Page 4 (or page 9): When explaining the severe limitations of research on enculturated great apes, maybe you could cite a couple of relevant studies, such as Suddendorf & Whiten (2001: Psychol Bull)[ref-2]. In their paper, they stated that “Enculturation does have the potential to modify the cognitive abilities of apes” (p. 644). They found that these modifications concern the domains of both physical cognition (such as hidden displacement of objects but also tool use) and social cognition (such mind reading, including attributing intentions to others and imitation).

Alternatively, maybe you could elaborate on the study by Furlong et al. (2008) that you just cited. Even though their experiments are not about stone tool-making/use, their methodology systematically compared the performance of non-enculturated, semi-enculturated, and fully-enculturated captive chimps in three raking tool tasks, and their results provided the first empirical evidence for the differential effects of enculturation on subsequent tool use capacities in captive chimpanzees.
Page 4: In light of your present results (about the failure to make and use flaked stone tools by naïve and unenculturated chimpanzees), how do you interpret positive findings of flake manufacture and use in untrained, unenculturated capuchin monkeys (Westergaard & Suomi, 1994) in an experimental paradigm that was similar to that used with chimpanzees? I understand your brief and speculative explanation in the Discussion section about “different genetic predispositions for stone manipulation in capuchins and chimpanzees” (page 10). However, considering the prevalence and diversity of stone-assisted percussive behaviors in wild and captive chimpanzees, I have to admit that I am not fully convinced by the interpretation that chimpanzees would be less prone to stone manipulation than capuchin monkeys. Could you please elaborate on this argument by using further empirical evidence from the literature?

Page 5: At both study sites, you stated that “rocks” were available in the outdoor enclosure. Could you please be more specific about the exposure to these obviously relevant lithic materials? Were they loose stones or embedded substrates? If the former, would you have an estimation of the density, average size, types of stones? Were the chimpanzees ever observed manipulating them? If so, what type of manipulation are we talking about here? (e.g., exploratory, playful, instrumental/tool use?)

Page 5: At both study sites, you stated that the chimpanzees were “familiar with test apparatuses in general” and were even provisioned with “puzzle boxes”. Could you please be more specific about the nature of these test apparatuses and puzzle boxes, other than the ones you provided to these study subjects?

Page 8: In the Methods, you first wrote “a second coder” and then, in the next sentence, you wrote “Two naïve coders”. Could you please clarify? Was there one second coder at one study site and another second coder at the other study site?

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and does the work have academic merit?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Since 2003, my main research program focuses on the mechanisms and evolution of material culture in non-human primates (more specifically macaques), with an emphasis on stone play and stone tool use.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Alba Motes Rodrigo

Responses to Reviewer Jean-Baptiste Leca: Jean-Baptiste Leca:
1) This is a well-written manuscript presenting an innovative, solid, and thorough experimental study on the ability (or lack thereof) to make and use flaked stone tools by captive, naïve, and unenculturated chimpanzees. The overarching goal of this research is to gain a better understanding of the cognitive processes underlying the emergence and evolution of lithic technologies in early hominins. The topic was well introduced. The background literature was appropriately reviewed and critically addressed (but see below my few minor questions). The objectives were clearly laid out and ultimately reached – even though the results obtained by the authors were largely negative in the sense that the study subjects failed to express flake-making and flake-using behaviors. The methodological procedures were clearly described and extensively explained (but see below my few minor questions). The self-replication across two populations of chimpanzees was certainly a bonus. Overall, the layout is logical and the manuscript reads quite well. Findings from previous research were clearly summarized and put into perspective in light of this study (but see below my few minor questions). The authors did a good job at making a relatively complex study design simple, which makes the study accessible to a non-expert audience (while maintaining the interest of experts in this field!). I have no major issues with the outline/structure and conclusion of the manuscript. The (extended) figures, tables, and underlying data are informative and relevant. This is an interesting study that clearly fits an information gap, and has significant implications for the emergence of a major milestone in human evolutionary history.

-->Thank you very much for the overall positive assessment of our study and for your comments, which we address below and in the manuscript. We have also changed the manuscript based on the feedback we received at conferences as well as on the comments of the other reviewers.

2) Before I can recommend this manuscript for indexing, I just have a series of minor question/concerns (some of them are actually not central to the manuscript), which I anticipate the authors will be able to handle easily. Page 1 (and Discussion section) I understand the phylogenetic relevance of the comparison between Homo sapiens and Pan troglodytes in specific behavioral domains to draw inferences on the evolution of specific cognitive abilities. In the context of stone tool-making (probably more than in the context of stone tool use), I am wondering to what extent some of your analyses should control for obvious inter-species differences in hand anatomy and their consequences in terms of manual dexterity, bimanual coordination, the magnitude of manual asymmetries, and variation in independent control over the digits. If it is not possible to analytically control for these variables, could you at least please elaborate on this confounder in your Discussion
Thank you for pointing this out. We agree that the different hand anatomies of chimpanzees and Homo species are an important factor limiting the comparisons that can be made between these species in terms of the specific precision grips that may have been employed for stone tool making. Previous studies (Rolian et al., 2011) have found that chimpanzee hand morphology is not ideal for tasks that involved forceful oppositions of the thumb and the other fingers in precision grips, as it is the case in stone tool making. Therefore, if/when chimpanzees engaged in stone tool making, we would not expect them to use forceful precision grips. Instead, similarly to how wild chimpanzees and captive bonobos use stone tools (Toth et al. 1993 J Archaeol Sci), we would have expected the captive chimpanzees to produce sharp-edged stones using power grips. In our study, the cores provided to the chimpanzees were prepared in order to allow detachment of sharp stones from the edges even when holding a hammer with a power grip. In other words, having the ability to apply precision grips was not necessary for succeeding in the task. Consequently, we agree that the hammer grips potentially used by the chimpanzees would not have been comparable in all respects to those of Homo species. However, the question we were addressing with our experiments was whether chimpanzees would intentionally make sharp-edged stones (regardless of technique) to use them as tools, not whether they would use stone tools in the same way as Homo species did. We have added this information to the revised version of the manuscript.

3) Page 3: Could you please clarify the following statement about your study, by possibly making it more specific?

“Therefore, these findings suggest that without extensive human training and/or demonstrations, chimpanzees cannot learn how to make or use stone tools by themselves.”

Are you suggesting that the stone-assisted nut-cracking behavior reported in several wild communities of chimpanzees across West Africa – where this activity has existed for at least 4,300 years (Mercader et al., 2007; Sirianni et al., 2015) – would not have been possible without any human influence?

Or did you mean “[…] chimpanzees cannot learn how to make or use sharp-edged stone tools by themselves.”?

Thank you for pointing out this error. Indeed, we meant ‘sharp-edged stone tools’ and have now corrected this in the manuscript.

4) Page 3: Could you please specify what you mean by “some types of emulation”? What are the different forms of product-oriented copying, and among them, which ones “allow for the direct transmission of behavioural forms via the observation of [a model's...] products”?

We have now specified in the manuscript that we mean by social learning mechanisms such as “end-state emulation” (where individuals attend to the environmental changes produced by the behaviour, not the actions themselves).

5) Page 4 (or page 9): When explaining the severe limitations of research on encultured great apes, maybe you could cite a couple of relevant studies, such as Suddendorf & Whiten (2001: Psychol Bull). In their paper, they stated that “Enculturation does have the potential to modify the cognitive abilities of apes” (p. 644). They found that these modifications concern the domains of both physical cognition (such as hidden displacement of objects but also tool use) and social cognition (such mind reading, including attributing intentions to others and imitation).
Thank you for your suggestion. We have now added this reference to the manuscript when we discuss the impact of enculturation on apes.

6) Alternatively, maybe you could elaborate on the study by Furlong et al. (2008) that you just cited. Even though their experiments are not about stone tool-making/use, their methodology systematically compared the performance of non-enculturated, semi-enculturated, and fully-enculturated captive chimps in three raking tool tasks, and their results provided the first empirical evidence for the differential effects of enculturation on subsequent tool use capacities in captive chimpanzees.

---Thank you. We have added more information about the study by Furlong et al. (2008) in the new version of the manuscript.

7) Page 4: In light of your present results (about the failure to make and use flaked stone tools by naïve and unenculturated chimpanzees), how do you interpret positive findings of flake manufacture and use in untrained, unenculturated capuchin monkeys (Westergaard & Suomi, 1994) in an experimental paradigm that was similar to that used with chimpanzees?

I understand your brief and speculative explanation in the Discussion section about “different genetic predispositions for stone manipulation in capuchins and chimpanzees” (page 10). However, considering the prevalence and diversity of stone-assisted percussive behaviors in wild and captive chimpanzees, I have to admit that I am not fully convinced by the interpretation that chimpanzees would be less prone to stone manipulation than capuchin monkeys. Could you please elaborate on this argument by using further empirical evidence from the literature?

---Wild capuchins have been observed using stones in a variety of foraging behaviors (digging, nut-cracking, and cracking molluscs and crustaceans in coastal environments; Falótico et al. 2017 Sci Rep, Barret et al. 2018 RSOS; Visalberghi et al. 2005 Science) as well as during sexual displays (Falótico and Ottoni, 2013 PLOS ONE). Captive capuchins show similar tool using abilities to their wild counterparts and develop stone tool-use behaviors in the absence of social demonstrations (Westergaard and Suomi, 1993 J Hum Evol; Ottoni and Mannu 2001 Int J Primatol; Visalberghi 1987 Folia Primatol). Furthermore, recent findings in other species of stone tool using primates (e.g., long-tailed macaques) suggest that individuals with specific phenotypes are more likely to engage in stone tool using behaviors (Gumert et al. 2019 Behavior). On the contrary, although several populations of chimpanzees have been observed using stone tools, this behavior is by no means widespread across chimpanzee populations. Furthermore, captive populations of chimpanzees seem to only develop stone tool using behaviors after dedicated training and/or demonstrations (Sumita et al. 1985 Primates; Neadle et al. 2019 PeerJ; although there are also some unclear cases which may show individual learning instead; e.g. Marshall-Pescini et al., 2005 J Comp Psychol). Given the distribution of stone tool use among chimpanzee and capuchin populations, we (and others, Hayachi 2015 Phil Trans B) believe that, similar to other tool using taxa such as otters (Fujii et al., 2017 Behav Ecology) and crows (Kenward et al. 2006 Anim Behav), capuchins (rather than chimpanzee) are likely to have some genetic predisposition(s) for stone manipulation.

8) Page 5: At both study sites, you stated that “rocks” were available in the outdoor enclosure. Could you please be more specific about the exposure to these obviously relevant lithic materials? Were they loose stones or embedded substrates? If the former, would you have an estimation of the density, average size, types of stones? Were the chimpanzees ever observed manipulating them? If so, what type of manipulation are we
talking about here? (e.g., exploratory, playful, instrumental/tool use?)

-->Thank you for pointing this out. At Kristiansand zoo all stones had been removed from the outdoor enclosure of the chimpanzees by the keepers to prevent the chimpanzees from throwing them at the visitors. Therefore, stones were only available at Chimfunshi. The outdoor area at Chimfunshi measures approx. 75 square meters and it contained a few small pebble-like stones. Although we did not collect systematic data on the size or abundance of stones, we never observed the chimpanzees’ manipulating these small pebbles during testing. However, we agree that it would have been a good idea to systematically observe if and how the chimpanzees manipulated the stones available in their environment.

9) Page 5: At both study sites, you stated that the chimpanzees were “familiar with test apparatuses in general” and were even provisioned with “puzzle boxes”. Could you please be more specific about the nature of these test apparatuses and puzzle boxes, other than the ones you provided to these study subjects?

-->At Chimfunshi the chimpanzees were regularly provided with baited cardboard tubes that were folded at the edges. The chimpanzees then had to use small twigs or their hands and teeth to access the tubes and retrieve the food, as a form of enrichment. At Kristiansand zoo the chimpanzees had several enrichment devices in the indoor enclosure aimed at promoting the use of tools such as a perforated hanging log baited with honey and berries and an automatic puzzle feeder that periodically released nuts into a maze that the chimpanzees could obtain using tools (Motes-Rodrigo et al. 2019 Primates). We have now added this information to the manuscript.

10) Page 8: In the Methods, you first wrote “a second coder” and then, in the next sentence, you wrote “Two naive coders”. Could you please clarify? Was there one second coder at one study site and another second coder at the other study site?

-->Thank you. We had two, different, second coders in total, one for each testing institution. We have now clarified this in the manuscript.

Competing Interests: No competing interests were disclosed.
The topic is important because some researchers see the emergence of stone-flaking as cognitively insignificant, while others see it as a sort of ‘cognitive Rubicon’. An independent assessment of these competing models is possible through what the authors refer to as ‘cognitive cladistics’—by studying the capabilities of the great apes, our closest living primate relatives. The authors assess prior experiments in great ape stone-flaking, and conclude that the results are of limited use for two reasons: 1) the tested apes were enculturated into human ways of learning because they were reared in a human cultural environment; and 2) stone-flaking and use was demonstrated to the tested apes. The behaviours observed in prior studies were therefore not ‘spontaneous’, and did not track ‘naturally developing abilities’, and are therefore of limited use in assessing the emergence of stone flaking. The authors' experiments in this paper were with unenculturated chimpanzees, and without prior demonstration, in order to test the hypothesis that flake manufacture and use were within the ‘natural individual cognitive reach of apes’.

A premise of the present study is that the learning environment was key to the copying of stone flaking behaviour, as summarised in the paper’s introduction. Therefore, the authors argue, the prior experiments were of limited value because the subjects were deliberately and extensively enculturated by their handlers. However, Eren et al. (2019,1 not cited by the authors) suggest that it is ‘incongruous’ that the apes—particularly Kanzi, a bonobo—in these prior experiments were not able to mimic Oldowan stone tools given hominoid’s technological propensities, suggesting instead that the apes were actually working in an impoverished learning environment. Eren et al. suggest that apes may indeed have the necessary cognition to make Oldowan stone tools, but that the ‘misdirection’ inherent in the demonstrations by human experimenters compromised the ape’s learning; and indeed, Eren et al. suggest that the demonstrations were ‘minimal’ (Eren et al. 2019:313), in contradiction to the present authors’ interpretation of the same studies (although I note that the present authors express more ambivalence about the importance of ‘demonstrations’ in the discussion section than in the introduction). The authors should consider and respond to Eren et al.’s conclusion in developing the background to their experiments.

The experimental design followed aspects of prior work on this topic by using two types of baited boxes, and provisioning the rooms with one or more indentors (hammerstones) and a high-quality knapping stone with appropriate angles for flaking. In one set of experiments, the hammerstone was made of concrete and chained to the metal bars of the cage, and the core was secured in wire mesh. This effectively prevented a full and free manipulation of these objects, and would have stopped the sort of stone-fracturing events documented in Kanzi; that is, the chimpanzees in this set of the authors’ experiments were not given full range to discover the affordances offered by the stones. However, the chimpanzees in the other set of experiments were given the stones unimpeded by chains and wire, yet those chimpanzees also did not make Kanzi-like stone-flaking manipulations. Because of this, although perhaps not ideal, I am happy with accepting this aspect of the experimental design. I note that all of the chimpanzees were given free manipulation of the provided flake in certain experimental iterations, yet did not discover the affordance offered by the sharp edge. The experimental design, controls, and data collection effectively support the authors’ experimental conclusions that chimpanzees do not spontaneously flake stone to solve ecological problems.

One aspect of the discussion needs to be further elaborated, however. The authors state that the chimpanzees ‘demonstrated an understanding of the requirements of the task’ to remove the treats from the two types of containers, and were ‘motivated to open the puzzle boxes’. Their evidence for this is the observation that the chimpanzees ‘frequently interacted with’ the lock/hide
mechanisms. However, the authors’ observations are vague and, as given, are insufficient for inferring ‘understanding’ and ‘motivation’. More detail is necessary to support this point, as ‘understanding’ and ‘motivation’ are key in the epistemological chain that links the possible recognition of tool affordances to a goal. The ways that the chimpanzees used other objects in attempts to gain access to the boxes—referred to only briefly—may provide the necessary information if developed in more detail. How, specifically, were those objects used, and what does this say about the characteristics the chimpanzees thought those objects had, but were (apparently) not perceived in the stones? Perhaps there’s a degree of object familiarity at play here.

Under ‘coding’, the authors should clarify that the tool-use referred to involved other objects the chimpanzees brought into the room, and not stone tools.

References
1. Eren MI, Lycett SJ, Tomonaga M: Underestimating Kanzi? Exploring Kanzi-Oldowan comparisons in light of recent human stone tool replication. *Evol Anthropol*. 2020; 29 (6): 310-316 [PubMed Abstract](https://pubmed.ncbi.nlm.nih.gov/32425556/) [Publisher Full Text](https://onlinelibrary.wiley.com/doi/abs/10.1002/evan.21667)

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and does the work have academic merit?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Stone tools, hominin cognitive evolution, the design space of stone flaking.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
1) This is an important study into the ability of chimpanzees to spontaneously make and use stone flakes, and I recommend indexing with minor revisions. The topic is important because some researchers see the emergence of stone-flaking as cognitively insignificant, while others see it as a sort of 'cognitive Rubicon'. An independent assessment of these competing models is possible through what the authors refer to as ‘cognitive cladistics’—by studying the capabilities of the great apes, our closest living primate relatives. The authors assess prior experiments in great ape stone-flaking, and conclude that the results are of limited use for two reasons: 1) the tested apes were enculturated into human ways of learning because they were reared in a human cultural environment; and 2) stone-flaking and use was demonstrated to the tested apes. The behaviours observed in prior studies were therefore not ‘spontaneous’, and did not track ‘naturally developing abilities’, and are therefore of limited use in assessing the emergence of stone flaking. The authors’ experiments in this paper were with unenculturated chimpanzees, and without prior demonstration, in order to test the hypothesis that flake manufacture and use were within the ‘natural individual cognitive reach of apes’.

-->Thank you very much for the overall positive assessment of the study. We have responded to your comments below and in the manuscript. We have also changed the manuscript based on feedback we received at conferences as well as on the comments of the other reviewers. We agree with the summary and we would only like to clarify that the enculturation process can not only enhance/install certain social learning capabilities in apes, but can also increase their innovative capabilities. Enculturation can enable apes to learn behavioural know-how from demonstrations whilst at the same time influence their individual learning abilities. In such cases, enculturated apes could be able to innovate behaviors (such as sharp-edged stone tool making and use) beyond what unenculturated individuals could have learned on their own. For example, the first successful sharp-edged stone tool production technique used by Kanzi (throwing) had not been demonstrated to him. We have now clarified this point in our manuscript.

2) A premise of the present study is that the learning environment was key to the copying of stone flaking behaviour, as summarised in the paper's introduction. Therefore, the authors argue, the prior experiments were of limited value because the subjects were deliberately and extensively enculturated by their handlers. However, Eren et al. (2019,1 not cited by the authors) suggest that it is 'incongruous' that the apes—particularly Kanzi, a bonobo—in these prior experiments were not able to mimic Oldowan stone tools given hominoid's technological propensities, suggesting instead that the apes were actually working in an impoverished learning environment. Eren et al. suggest that apes may indeed have the necessary cognition to make Oldowan stone tools, but that the 'misdirection' inherent in the demonstrations by human experimenters compromised the ape's learning; and indeed, Eren et al. suggest that the demonstrations were 'minimal' (Eren et al. 2019:313), in contradiction to the present authors’ interpretation of the same studies (although I note that the present authors express more ambivalence about the importance of 'demonstrations' in the discussion section than in the introduction). The authors should consider and respond to Eren et al.'s conclusion in developing the background to their experiments.

-->Thank you for bringing Eren et al.'s paper to our attention, which we have now cited in the manuscript. Although we believe that the discussion of Eren et al. is interesting to better understand the stone tool making and using abilities of enculturated apes, we believe that the relevance of their conclusion for our study is limited. Eren et al. discuss the fact that whilst Kanzi
made stone tools, he did not use the techniques used by early hominins nor did he produce the same type of flakes found in the Oldowan archaeological record. Eren et al. argue that this is because Kanzi did not have access to demonstrators with sufficient knowledge of how to make Oldowan flakes. Although Eren et al.‘s arguments are a valuable contribution to the discussion of Kanzi’s proficiency – and the general proficiency of enculturated apes – in sharp-stone tool making, the focus of our study was on whether unenculturated chimpanzees would spontaneously make and use sharp-edged stones in the absence of demonstrations. Therefore, the conclusions of Eren et al. are of very limited applicability for our findings. Furthermore, we believe that the fact that Kanzi first used a sharp-edged stone tool making technique that had not been demonstrated to him contradicts the conclusion of Eren et al. that the quality of the demonstrations hindered the bonobo’s performance.

3) The experimental design followed aspects of prior work on this topic by using two types of baited boxes, and provisioning the rooms with one or more indentors (hammerstones) and a high-quality knapping stone with appropriate angles for flaking. In one set of experiments, the hammerstone was made of concrete and chained to the metal bars of the cage, and the core was secured in wire mesh. This effectively prevented a full and free manipulation of these objects, and would have stopped the sort of stone-fracturing events documented in Kanzi; that is, the chimpanzees in this set of the authors’ experiments were not given full range to discover the affordances offered by the stones. However, the chimpanzees in the other set of experiments were given the stones unimpeded by chains and wire, yet those chimpanzees also did not make Kanzi-like stone-flaking manipulations. Because of this, although perhaps not ideal, I am happy with accepting this aspect of the experimental design. I note that all of the chimpanzees were given free manipulation of the provided flake in certain experimental iterations, yet did not discover the affordance offered by the sharp edge. The experimental design, controls, and data collection effectively support the authors’ experimental conclusions that chimpanzees do not spontaneously flake stone to solve ecological problems.

-->

We agree that it would have been preferable to provide loose hammers and cores at both institutions to allow for a broader range of manipulations and affordances, but unfortunately, we could not do so due to the institutions’ safety concerns. However, we do not fully agree with the reviewer that the set up at Kristiansand prevented the chimpanzees from performing all stone-fracturing events reported in the studies with Kanzi. According to Toth et al. (1993, J Arhaeol Sci), “Kanzi sometimes held one rock in his right hand and struck it repeatedly against another stone on the ground” (p.84) and "Kanzi had discovered on his own that he can throw a well-aimed cobble against another on the ground to produce flakes and fragments [...]” (p.85). Both of these techniques were not demonstrated to Kanzi and were equally available to the chimpanzees tested at Kristiansand zoo. The only techniques that the chimpanzees could not perform were those involving hand-held/body-stabilised cores such as in freehand knapping. Therefore, the experimental set up did not prevent the untrained, unenculturated chimpanzees at Kristiansand zoo from engaging in all stone-fracturing techniques previously innovated by Kanzi.

4) One aspect of the discussion needs to be further elaborated, however. The authors state that the chimpanzees ‘demonstrated an understanding of the requirements of the task’ to remove the treats from the two types of containers, and were ‘motivated to open the puzzle boxes’. Their evidence for this is the observation that the chimpanzees ‘frequently interacted with’ the lock/hide mechanisms. However, the authors’ observations are vague
and, as given, are insufficient for inferring ‘understanding’ and ‘motivation’. More detail is necessary to support this point, as ‘understanding’ and ‘motivation’ are key in the epistemological chain that links the possible recognition of tool affordances to a goal. The ways that the chimpanzees used other objects in attempts to gain access to the boxes—referred to only briefly—may provide the necessary information if developed in more detail. How, specifically, were those objects used, and what does this say about the characteristics the chimpanzees thought those objects had, but were (apparently) not perceived in the stones? Perhaps there’s a degree of object familiarity at play here.

Following the Reviewer’s comment, we have rephrased our results and discussion in the manuscript stating that the chimpanzees were motivated to access the food rewards as shown by their manipulations of the puzzle boxes. In addition, we have also rephrased our conclusions regarding the causal or physical understanding that the chimpanzees might have had of the puzzle boxes, as this question could not be directly answered with the data we collected. We have also added to our discussion that the fact that the chimpanzees used familiar materials as tools but not the unfamiliar stone flakes might represent a case of conservatism in the use of novel tool materials. Regarding the comment of the reviewer about the chimpanzees “understanding” the requirements of the task, we believe that the results from previous studies on the topic of chimpanzee problem solving make it possible that the chimpanzees understood the puzzle boxes provided in our study. The hide box was a transparent device where access to a food reward was prevented by a translucid silicone membrane. Taking also into consideration that chimpanzees can spontaneously solve multi-step sequential puzzles even when requiring the use of tools (e.g., Vale et al. 2021 Evolution and Human Behavior), it is unlikely that all the chimpanzees across both testing locations did not understand the requirements of the hide box. Therefore, we believe that most apes likely did “understand” the hide box. On the other hand, it is a possibility that at least some chimpanzees did not understand the requirements of the tendon box (given that this box was opaque). The reason behind using the tendon box in our experiments was that a box with a very similar design had been employed in previous flaking studies with enculturated apes (Wright 1972 Mankind; Toth et al. 1993 J Archaeol Sci), who successfully opened them using sharp-edged stone tools after watching demonstrations. Given that we wanted to provide the chimpanzees with a task as similar as possible to the previous ape flaking studies, we used boxes with similar designs as those used by Toth et al. and Wright.

5) Under ‘coding’, the authors should clarify that the tool-use referred to involved other objects the chimpanzees brought into the room, and not stone tools.

Thank you, we have now added this information to the manuscript.

Competing Interests: No competing interests were disclosed.
Alba Motes Rodrigo

Responses to Reviewer Mark Moore:
1) This is an important study into the ability of chimpanzees to spontaneously make and use stone flakes, and I recommend indexing with minor revisions. The topic is important because some researchers see the emergence of stone-flaking as cognitively insignificant, while others see it as a sort of ‘cognitive Rubicon’. An independent assessment of these competing models is possible through what the authors refer to as ‘cognitive cladistics’—by studying the capabilities of the great apes, our closest living primate relatives. The authors assess prior experiments in great ape stone-flaking, and conclude that the results are of limited use for two reasons: 1) the tested apes were enculturated into human ways of learning because they were reared in a human cultural environment; and 2) stone-flaking and use was demonstrated to the tested apes. The behaviours observed in prior studies were therefore not ‘spontaneous’, and did not track ‘naturally developing abilities’, and are therefore of limited use in assessing the emergence of stone flaking. The authors’ experiments in this paper were with unenculturated chimpanzees, and without prior demonstration, in order to test the hypothesis that flake manufacture and use were within the ‘natural individual cognitive reach of apes’.

-->Thank you very much for the overall positive assessment of the study. We have responded to your comments below and in the manuscript. We have also changed the manuscript based on feedback we received at conferences as well as on the comments of the other reviewers. We agree with the summary and we would only like to clarify that the enculturation process can not only enhance/install certain social learning capabilities in apes, but can also increase their innovative capabilities. Enculturation can enable apes to learn behavioural know-how from demonstrations whilst at the same time influence their individual learning abilities. In such cases, enculturated apes could be able to innovate behaviors (such as sharp-edged stone tool making and use) beyond what unenculturated individuals could have learned on their own. For example, the first successful sharp-edged stone tool production technique used by Kanzi (throwing) had not been demonstrated to him. We have now clarified this point in our manuscript.

2) A premise of the present study is that the learning environment was key to the copying of stone flaking behaviour, as summarised in the paper’s introduction. Therefore, the authors argue, the prior experiments were of limited value because the subjects were deliberately and extensively enculturated by their handlers. However, Eren et al. (2019,1 not cited by the authors) suggest that it is ‘incongruous’ that the apes—particularly Kanzi, a bonobo—in these prior experiments were not able to mimic Oldowan stone tools given hominoid’s technological propensities, suggesting instead that the apes were actually working in an impoverished learning environment. Eren et al. suggest that apes may indeed have the necessary cognition to make Oldowan stone tools, but that the ‘misdirection’ inherent in the demonstrations by human experimenters compromised the ape’s learning; and indeed, Eren et al. suggest that the demonstrations were ‘minimal’ (Eren et al. 2019:313), in contradiction to the present authors’ interpretation of the same studies (although I note that the present authors express more ambivalence about the importance of ‘demonstrations’ in the discussion section than in the introduction). The authors should consider and respond to Eren et al.’s conclusion in developing the background to their experiments.

-->Thank you for bringing Eren et al.’s paper to our attention, which we have now cited in the manuscript. Although we believe that the discussion of Eren et al. is interesting to better understand the stone tool making and using abilities of enculturated apes, we believe that the relevance of their conclusion for our study is limited. Eren et al. discuss the fact that whilst Kanzi made stone tools, he did not use the
techniques used by early hominins nor did he produce the same type of flakes found in the Oldowan archaeological record. Eren et al. argue that this is because Kanzi did not have access to demonstrators with sufficient knowledge of how to make Oldowan flakes. Although Eren et al.'s arguments are a valuable contribution to the discussion of Kanzi's proficiency – and the general proficiency of enculturated apes – in sharp-stone tool making, the focus of our study was on whether unenculturated chimpanzees would spontaneously make and use sharp-edged stones in the absence of demonstrations. Therefore, the conclusions of Eren et al. are of very limited applicability for our findings. Furthermore, we believe that the fact that Kanzi first used a sharp-edged stone tool making technique that had not been demonstrated to him contradicts the conclusion of Eren et al. that the quality of the demonstrations hindered the bonobo's performance.

3) The experimental design followed aspects of prior work on this topic by using two types of baited boxes, and provisioning the rooms with one or more indentors (hammerstones) and a high-quality knapping stone with appropriate angles for flaking. In one set of experiments, the hammerstone was made of concrete and chained to the metal bars of the cage, and the core was secured in wire mesh. This effectively prevented a full and free manipulation of these objects, and would have stopped the sort of stone-fracturing events documented in Kanzi; that is, the chimpanzees in this set of the authors' experiments were not given full range to discover the affordances offered by the stones. However, the chimpanzees in the other set of experiments were given the stones unimpeded by chains and wire, yet those chimpanzees also did not make Kanzi-like stone-flaking manipulations. Because of this, although perhaps not ideal, I am happy with accepting this aspect of the experimental design. I note that all of the chimpanzees were given free manipulation of the provided flake in certain experimental iterations, yet did not discover the affordance offered by the sharp edge. The experimental design, controls, and data collection effectively support the authors' experimental conclusions that chimpanzees do not spontaneously flake stone to solve ecological problems.

-->We agree that it would have been preferable to provide loose hammers and cores at both institutions to allow for a broader range of manipulations and affordances, but unfortunately, we could not do so due to the institutions' safety concerns. However, we do not fully agree with the reviewer that the set up at Kristiansand prevented the chimpanzees from performing all stone-fracturing events reported in the studies with Kanzi. According to Toth et al. (1993, J Arhaeo! Sci), "Kanzi sometimes held one rock in his right hand and struck it repeatedly against another stone on the ground" (p.84) and "Kanzi had discovered on his own that he can throw a well-aimed cobble against another on the ground to produce flakes and fragments [...]" (p.85). Both of these techniques were not demonstrated to Kanzi and were equally available to the chimpanzees tested at Kristiansand zoo. The only techniques that the chimpanzees could not perform were those involving hand-held/body-stabilised cores such as in freehand knapping. Therefore, the experimental set up did not prevent the untrained, unenculturated chimpanzees at Kristiansand zoo from engaging in all stone-fracturing techniques previously innovated by Kanzi.

4) One aspect of the discussion needs to be further elaborated, however. The authors state that the chimpanzees 'demonstrated an understanding of the requirements of the task' to remove the treats from the two types of containers, and were 'motivated to open the puzzle boxes'. Their evidence for this is the observation that the chimpanzees ‘frequently interacted with’ the lock/hide mechanisms. However, the authors' observations are vague and, as given, are insufficient for inferring 'understanding' and 'motivation'. More detail is necessary to support this point, as
‘understanding’ and ‘motivation’ are key in the epistemological chain that links the possible recognition of tool affordances to a goal. The ways that the chimpanzees used other objects in attempts to gain access to the boxes—referred to only briefly—may provide the necessary information if developed in more detail. How, specifically, were those objects used, and what does this say about the characteristics the chimpanzees thought those objects had, but were (apparently) not perceived in the stones? Perhaps there’s a degree of object familiarity at play here.

Following the Reviewer’s comment, we have rephrased our results and discussion in the manuscript stating that the chimpanzees were motivated to access the food rewards as shown by their manipulations of the puzzle boxes. In addition, we have also rephrased our conclusions regarding the causal or physical understanding that the chimpanzees might have had of the puzzle boxes, as this question could not be directly answered with the data we collected. We have also added to our discussion that the fact that the chimpanzees used familiar materials as tools but not the unfamiliar stone flakes might represent a case of conservatism in the use of novel tool materials. Regarding the comment of the reviewer about the chimpanzees “understanding” the requirements of the task, we believe that the results from previous studies on the topic of chimpanzee problem solving make it possible that the chimpanzees understood the puzzle boxes provided in our study. The hide box was a transparent device where access to a food reward was prevented by a translucid silicone membrane. Taking also into consideration that chimpanzees can spontaneously solve multi-step sequential puzzles even when requiring the use of tools (e.g., Vale et al. 2021 Evolution and Human Behavior), it is unlikely that all the chimpanzees across both testing locations did not understand the requirements of the hide box. Therefore, we believe that most apes likely did “understand” the hide box. On the other hand, it is a possibility that at least some chimpanzees did not understand the requirements of the tendon box (given that this box was opaque). The reason behind using the tendon box in our experiments was that a box with a very similar design had been employed in previous flaking studies with enculturated apes (Wright 1972 Mankind; Toth et al. 1993 J Archaeol Sci), who successfully opened them using sharp-edged stone tools after watching demonstrations. Given that we wanted to provide the chimpanzees with a task as similar as possible to the previous ape flaking studies, we used boxes with similar designs as those used by Toth et al. and Wright.

5) Under ‘coding’, the authors should clarify that the tool-use referred to involved other objects the chimpanzees brought into the room, and not stone tools.

Thank you, we have now added this information to the manuscript.

Competing Interests: No competing interests were disclosed.

Author Response 28 Jul 2021
Alba Motes Rodrigo

Responses to Reviewer Jean-Baptiste Leca: Jean-Baptiste Leca:
1) This is a well-written manuscript presenting an innovative, solid, and thorough experimental study on the ability (or lack thereof) to make and use flaked stone tools by captive, naïve, and unenculturated chimpanzees. The overarching goal of this research is to gain a better understanding of the cognitive processes underlying the emergence and evolution of lithic technologies in early hominins. The topic was well introduced. The background literature was
appropriately reviewed and critically addressed (but see below my few minor questions). The objectives were clearly laid out and ultimately reached – even though the results obtained by the authors were largely negative in the sense that the study subjects failed to express flake-making and flake-using behaviors. The methodological procedures were clearly described and extensively explained (but see below my few minor questions). The self-replication across two populations of chimpanzees was certainly a bonus. Overall, the layout is logical and the manuscript reads quite well. Findings from previous research were clearly summarized and put into perspective in light of this study (but see below my few minor questions). The authors did a good job at making a relatively complex study design simple, which makes the study accessible to a non-expert audience (while maintaining the interest of experts in this field!). I have no major issues with the outline/structure and conclusion of the manuscript. The (extended) figures, tables, and underlying data are informative and relevant. This is an interesting study that clearly fits an information gap, and has significant implications for the emergence of a major milestone in human evolutionary history.

---Thank you very much for the overall positive assessment of our study and for your comments, which we address below and in the manuscript. We have also changed the manuscript based on the feedback we received at conferences as well as on the comments of the other reviewers.

2) Before I can recommend this manuscript for indexing, I just have a series of minor question/concerns (some of them are actually not central to the manuscript), which I anticipate the authors will be able to handle easily. Page 1 (and Discussion section) I understand the phylogenetic relevance of the comparison between *Homo sapiens* and *Pan troglodytes* in specific behavioral domains to draw inferences on the evolution of specific cognitive abilities. In the context of stone tool-making (probably more than in the context of stone tool use), I am wondering to what extent some of your analyses should control for obvious inter-species differences in hand anatomy and their consequences in terms of manual dexterity, bimanual coordination, the magnitude of manual asymmetries, and variation in independent control over the digits. If it is not possible to analytically control for these variables, could you at least please elaborate on this confounder in your Discussion section?

---Thank you for pointing this out. We agree that the different hand anatomies of chimpanzees and Homo species are an important factor limiting the comparisons that can be made between these species in terms of the specific precision grips that may have been employed for stone tool making. Previous studies (Rolian et al., 2011) have found that chimpanzee hand morphology is not ideal for tasks that involved forceful oppositions of the thumb and the other fingers in precision grips, as it is the case in stone tool making. Therefore, if/when chimpanzees engaged in stone tool making, we would not expect them to use forceful precision grips. Instead, similarly to how wild chimpanzees and captive bonobos use stone tools (Toth et al. 1993 J Archaeol Sci), we would have expected the captive chimpanzees to produce sharp-edged stones using power grips. In our study, the cores provided to the chimpanzees were prepared in order to allow detachment of sharp stones from the edges even when holding a hammer with a power grip. In other words, having the ability to apply precision grips was not necessary for succeeding in the task. Consequently, we agree that the hammer grips potentially used by the chimpanzees would not have been comparable in all respects to those of Homo species. However, the question we were addressing with our experiments was whether chimpanzees would intentionally make sharp-edged stones (regardless of technique) to use them as tools, not whether they would use stone tools in the same way as Homo species did. We have added this information to the revised version of the manuscript.
3) Page 3: Could you please clarify the following statement about your study, by possibly making it more specific?

“Therefore, these findings suggest that without extensive human training and/or demonstrations, chimpanzees cannot learn how to make or use stone tools by themselves.”

Are you suggesting that the stone-assisted nut-cracking behavior reported in several wild communities of chimpanzees across West Africa – where this activity has existed for at least 4,300 years (Mercader et al., 2007; Sirianni et al., 2015) – would not have been possible without any human influence?

Or did you mean “[…] chimpanzees cannot learn how to make or use sharp-edged stone tools by themselves.”?

-->Thank you for pointing out this error. Indeed, we meant ‘sharp-edged stone tools’ and have now corrected this in the manuscript.

4) Page 3: Could you please specify what you mean by “some types of emulation”? What are the different forms of product-oriented copying, and among them, which ones “allow for the direct transmission of behavioural forms via the observation of [a model’s...] products”?

-->We have now specified in the manuscript that we mean by social learning mechanisms such as “end-state emulation” (where individuals attend to the environmental changes produced by the behaviour, not the actions themselves).

5) Page 4 (or page 9): When explaining the severe limitations of research on encultured great apes, maybe you could cite a couple of relevant studies, such as Suddendorf & Whiten (2001: Psychol Bull). In their paper, they stated that “Enculturation does have the potential to modify the cognitive abilities of apes” (p. 644). They found that these modifications concern the domains of both physical cognition (such as hidden displacement of objects but also tool use) and social cognition (such mind reading, including attributing intentions to others and imitation).

-->Thank you for your suggestion. We have now added this reference to the manuscript when we discuss the impact of enculturation on apes.

6) Alternatively, maybe you could elaborate on the study by Furlong et al. (2008) that you just cited. Even though their experiments are not about stone tool-making/use, their methodology systematically compared the performance of non-enculturated, semi-enculturated, and fully-enculturated captive chimps in three raking tool tasks, and their results provided the first empirical evidence for the differential effects of enculturation on subsequent tool use capacities in captive chimpanzees.

-->Thank you. We have added more information about the study by Furlong et al. (2008) in the new version of the manuscript.

7) Page 4: In light of your present results (about the failure to make and use flaked stone tools by naive and unenculturated chimpanzees), how do you interpret positive findings of flake manufacture and use in untrained, unenculturated capuchin monkeys (Westergaard & Suomi, 1994) in an experimental paradigm that was similar to that used with chimpanzees? I understand your brief and speculative explanation in the Discussion section about “different genetic predispositions for stone manipulation in capuchins and chimpanzees” (page 10). However, considering the prevalence and diversity of stone-assisted percussive behaviors in wild and captive chimpanzees, I have to admit that I am not fully convinced by the interpretation that chimpanzees
would be less prone to stone manipulation than capuchin monkeys. Could you please elaborate on this argument by using further empirical evidence from the literature?

--->Wild capuchins have been observed using stones in a variety of foraging behaviors (digging, nut-cracking, and cracking molluscs and crustaceans in coastal environments; Falótico et al. 2017 Sci Rep, Barret et al. 2018 RSOS; Visalberghi et al. 2005 Science) as well as during sexual displays (Falótico and Ottoni, 2013 PLOS ONE). Captive capuchins show similar tool using abilities to their wild counterparts and develop stone tool-use behaviors in the absence of social demonstrations (Westergaard and Suomi, 1993 J Hum Evol; Ottoni and Mannu 2001 Int J Primatol; Visalberghi 1987 Folia Primatol). Furthermore, recent findings in other species of stone tool using primates (e.g., long-tailed macaques) suggest that individuals with specific phenotypes are more likely to engage in stone tool using behaviors (Gumert et al. 2019 Behavior). On the contrary, although several populations of chimpanzees have been observed using stone tools, this behavior is by no means widespread across chimpanzee populations. Furthermore, captive populations of chimpanzees seem to only develop stone tool using behaviors after dedicated training and/or demonstrations (Sumita et al. 1985 Primates; Neadle et al. 2019 PeerJ; although there are also some unclear cases which may show individual learning instead; e.g. Marshall-Pescini et al., 2005 J Comp Psychol). Given the distribution of stone tool use among chimpanzee and capuchin populations, we (and others, Hayachi 2015 Phil Trans B) believe that, similar to other tool using taxa such as otters (Fujii et al., 2017 Behav Ecology) and crows (Kenward et al. 2006 Anim Behav), capuchins (rather than chimpanzees) are likely to have some genetic predisposition(s) for stone manipulation.

8) Page 5: At both study sites, you stated that “rocks” were available in the outdoor enclosure. Could you please be more specific about the exposure to these obviously relevant lithic materials? Were they loose stones or embedded substrates? If the former, would you have an estimation of the density, average size, types of stones? Were the chimpanzees ever observed manipulating them? If so, what type of manipulation are we talking about here? (e.g., exploratory, playful, instrumental/tool use?)

--->Thank you for pointing this out. At Kristiansand zoo all stones had been removed from the outdoor enclosure of the chimpanzees by the keepers to prevent the chimpanzees from throwing them at the visitors. Therefore, stones were only available at Chimfunshi. The outdoor area at Chimfunshi measures approx. 75 square meters and it contained a few small pebble-like stones. Although we did not collect systematic data on the size or abundance of stones, we never observed the chimpanzees manipulating these small pebbles during testing. However, we agree that it would have been a good idea to systematically observe if and how the chimpanzees manipulated the stones available in their environment.

9) Page 5: At both study sites, you stated that the chimpanzees were “familiar with test apparatuses in general” and were even provisioned with “puzzle boxes”. Could you please be more specific about the nature of these test apparatuses and puzzle boxes, other than the ones you provided to these study subjects?

--->At Chimfunshi the chimpanzees were regularly provided with baited cardboard tubes that were folded at the edges. The chimpanzees then had to use small twigs or their hands and teeth to access the tubes and retrieve the food, as a form of enrichment. At Kristiansand zoo the chimpanzees had several enrichment devices in the indoor enclosure aimed at promoting the use of tools such as a perforated hanging log baited with honey and berries and an automatic puzzle feeder that periodically released nuts into a maze that the chimpanzees could obtain using tools (Motes-Rodrigo et al. 2019 Primates). We have now added this information to the manuscript.
10) Page 8: In the Methods, you first wrote “a second coder” and then, in the next sentence, you wrote “Two naïve coders”. Could you please clarify? Was there one second coder at one study site and another second coder at the other study site?

-->Thank you. We had two, different, second coders in total, one for each testing institution. We have now clarified this in the manuscript.

Competing Interests: No competing interests were disclosed.

Author Response 28 Jul 2021

Alba Motes Rodrigo

Responses to Reviewer Kirsty Graham: 1) This article is a much-needed update to the question of whether nonhuman apes can make and use sharp stone tools. Previously we were left to decide whether we considered early studies of enculturated apes with incredibly small sample sizes (n=1 or 2) to be convincing evidence of this ability. Indeed, the authors take us through a step-by-step account of the training process involved in those “successful” experiments. They highlight the unusual conditions in which these apes were raised and how this may have contributed to their success. I have some specific comments about the manuscript below:

-->Thank you very much for your overall positive assessment of our manuscript, the succinct summary of our paper, and all the helpful comments. We address them all below and in the manuscript. We have also changed the manuscript based on feedback we received at conferences as well as on the comments of the other reviewers.

2) I wonder: had Kanzi been trained/taught to cut things before this experiment (e.g. using a knife)? He may have had a concept of “cutting” from past experiences.

-->We could not find any specific information on Kanzi's previous experience with cutting before the stone tool experiment, but Toth and colleagues do write that Kanzi was shown how to use the flake as a cutting tool: “In the first phase of the experiment, Kanzi was shown how a stone could be fractured and how the flakes produced could be used to cut the cord...” (Toth et al., 1993; p. 83). Therefore, Kanzi had the possibility to observe and learn the use of cutting tools before he was given the opportunity to make and use a flake individually. Given Kanzi's degree of enculturation, it is possible that he benefited from the demonstrations provided.

3) I agree with the authors that it's surprising that chimpanzees haven't been tested before, given propensity for tool-use. A valuable addition to the literature!

-->Thank you very much.

4) Early in the methods the authors introduce “a sanctuary and a zoo” before naming them further down. Either name them at the initial mention or state later on that Chimfunshi Wildlife Orphanage is the sanctuary as it may not be clear to all readers.

-->Thank you for this suggestion, we have now amended the manuscript as suggested.

5) In the methods, it would be more helpful to give the n for the chimpanzees that were included,
rather than an n for the total number of chimpanzees and then allow the reader to calculate how many the authors ended up with. Maybe change to something like “We aimed a priori to test all nine zoo-housed chimpanzees... However, once testing started, two zoo-housed chimpanzees were excluded from the study (n=7).” Otherwise at a cursory glance it seems that the sample size is inflated.

-->Thank you, we have changed the manuscript as suggested.

6) Either remove “Africa” after Zambia, or add “Europe” after Norway. Could also give a more specific location for Chimfunshi in Zambia. Otherwise, it’s a very good description of the conditions for the subjects in both locations.

-->Thank you. We have removed ‘Africa’ after Zambia and included the region in which Chimfunshi is found, which comes right before the coordinates of the sanctuary.

7) Why was the “hide box” only used at the zoo and not the sanctuary?

-->The hide box was designed and built after data collection was carried out at Chimfunshi. We have now included this information in the manuscript as well.

8) Flake data capture is great! Very helpful. I also appreciated the thoroughness of descriptions for the coding and analysis for interobserver reliability, as well as the power analysis for the sample size. And the ethics! A lot to commend about how clear this section is. These sections were clearly written and easy to follow. The comparison to the capuchin study is very interesting, and presented in a way that is clearly relevant for the current study.

-->Thank you very much.

Competing Interests: No competing interests were disclosed.