Gorenstein algebras presented by quadrics

Uwe Nagel
(joint work with Juan Migliore)

University of Kentucky

Lincoln, October 15, 2011

Set-up

\[R = k[x_1, \ldots, x_r], \quad k \text{ a field} \]
\[A = R/I = \oplus_{j=1}^{e} [A]_j, \quad \text{a graded artinian Gorenstein algebra} \]

Hilbert series of \(H_A(z) := \sum_{j=0}^{e} \dim_k [A]_j z^j := \sum_{j=0}^{e} h_j z^j \)

- **h-vector or Hilbert function** of \(A \) is \(h = (h_0, h_1, \ldots, h_e) \)
- **Symmetry**: \(h_i = h_{e-i} \), \(e \) the socle degree
- **WLOG** \([I]_1 = 0\), so \(h_1 = r \), the codimension

Two scenarios:
(A) \(I \) contains a regular sequence of \(r \) quadrics.
(B) The minimal generators of \(I \) all have degree 2.

Question: What are the possible Hilbert functions of \(A \), assuming condition (A) or (B)?

Basic restrictions

Lemma

Assume \(A \) contains a regular sequence of \(r \) quadrics. Then

(a) \(h_2 \leq \binom{r+1}{2} - r = \binom{r}{2} \).
(b) \(e \leq r \) and \(e = r \) if and only if \(A \) is a complete intersection of \(r \) quadrics. In this case

\[h = (1, r, \binom{r}{2}, \binom{r}{3}, \ldots, \binom{r}{r-3}, \binom{r}{r-2}, r, 1) \]

(c) (Kunz) If \(e < r \), then \(I \) has at least \(r + 2 \) minimal generators.

Constructions

Proposition

If \(A \) and \(B \) are artinian Gorenstein algebras presented by quadrics, then so is \(A \otimes_k B \), and its Hilbert series is \(H_A(z) \cdot H_B(z) \).

Corollary 1.

If \((h_0, \ldots, h_e)\) is the \(h \)-vector of a Gorenstein algebra presented by quadrics, then so is the \(h \)-vector \((h_0, h_0 + h_1, h_1 + h_2, \ldots, h_{e-1} + h_e, h_e)\).

Example

(i) \(e = 2 \): (Sally) For each \(r \geq 1 \), \(h = (1, r, 1) \) is the \(h \)-vector of a Gorenstein algebra presented by quadrics.
(ii) \(e = 3 \): For each \(r \geq 1 \), \(h = (1, r, r, 1) \) is the \(h \)-vector of a Gorenstein algebra presented by quadrics.
Constructions

Corollary 2.
Fix $r \geq 2$. Then, for each e such that $2 \leq e \leq r$, there is an artinian Gorenstein algebra presented by quadrics of codimension $h_1 = r$ with socle degree e.

Recall: $e = r$ iff I is a complete intersection.

Corollary 3.
Fix $r \geq 2$. Then, for each e such that $4 \leq e \leq r - 2$, there are at least two artinian Gorenstein algebras presented by quadrics with socle degree e and $h_1 = r$ that have different values of h_2.

When $e = r - 1$?

Submaximal socle degree

Theorem
Assume that $e = r - 1 \geq 4$ and that I contains a regular sequence of r quadrics. Then:

(a) h_2 must be either \(\binom{r}{2} - 2 \), \(\binom{r}{2} - 1 \), or \(\binom{r}{2} \), and all of these possibilities do occur.

(b) If R/I is presented by quadrics, then $h_2 = \binom{r}{2} - 2$.

(c) If $h_2 = \binom{r}{2} - 2$, then R/I is presented by quadrics, and the entire Hilbert function of R/I is uniquely determined. It is

\[
h_j = \binom{r - 1}{j} + \binom{r - 3}{j - 1}.
\]

(d) For $r \geq 7$, if $h_2 = \binom{r}{2} - 1$ or \(\binom{r}{2} \), then the Hilbert function of R/I is not uniquely determined, at least if $\text{char } k = 0$.

For $r = 6$, $h = (1, 6, h_2, 6, 1)$

Injectivity conjecture

Injectivity Conjecture
Assume R/I is presented by quadrics, has socle degree $e \geq 3$, and $\text{char } k \neq 2$. Let $L \in R$ be a general linear form. Then the multiplication $\times L : [R/I]_1 \to [R/I]_2$ is injective.

Assumption on the characteristic is necessary:
If $I = (x_1^2, \ldots, x_r^2)$ and $\text{char } k = 2$, then $L^2 \in I$ for every linear form L.

Socle Lemma (Huneke, Ulrich)
Let $M \neq 0$ be a finitely generated graded R-module. Assume $\text{char } k = 0$. Let $L \in [R]_1$ be a general linear form, and consider the exact sequence

$$0 \to K \to M(-1) \xrightarrow{L} M \to C \to 0.$$

If $K \neq 0$, then the initial degrees satisfy $a(K) > a(Soc(C))$.

Submaximal socle degree

Proposition
Assume that $\text{char } k = 0$. Then, for any complete intersection $I = (Q_1, \ldots, Q_r)$ of quadrics, the Injectivity Conjecture is true.

WLP Conjecture
Assume that $\text{char } k = 0$. Then every artinian Gorenstein algebra presented by quadrics and of socle degree $e \geq 3$ has the Weak Lefschetz Property (WLP), that is, for some linear form L, the multiplication

$$\times L : [A]_i \to [A]_{i+1}$$

has maximal rank for all i (i.e. is injective or surjective).

Note: The Gorenstein assumption can not be dropped. For example, if the ideal I is generated by squares of $r + 1$ general linear forms in an even number of variables, r, then R/I does not have the WLP (Migliore, Miró-Roig, N., 2010).
Injectivity conjecture

Corollary
Any complete intersection of at most 4 quadrics has the WLP, provided \(\text{char } k = 0. \)

Corollary
Let \(I \) be a complete intersection of \(r \geq 5 \) quadrics, and assume \(\text{char } k = 0. \) Then, for a general linear form \(L \), the multiplication \(\times L : [R/I]_2 \to [R/I]_3 \) has at most a 1-dimensional kernel.

For \(r = 5 \), the \(h \)-vector is \((1, 5, 10, 10, 5, 1)\).

Persistence

Proposition
Assume that \(A \) is an artinian Gorenstein algebra for which the multiplication by a general linear form on \(A \) from degree 1 to degree 2 is an isomorphism (so \(h_2 = r \)). Then \(h_i = r \) for all \(i = 1, 2, \ldots, e - 1. \) Furthermore, if \(A \) is presented by quadrics then \(e = 3. \)

Corollary
Let \(A \) be an artinian Gorenstein algebra presented by quadrics. Assume that \(r \geq 3 \) and that the Injectivity Conjecture is true for \(A \). Then the following are equivalent:
1. \(h_2 = r; \)
2. \(e = 3; \)
3. The \(h \)-vector is \((1, r, r, 1)\).

Injectivity conjecture

Lemma
Assume that \(R/I \) is presented by quadrics and that the Injectivity Conjecture is true for \(R/I \). Let \(Q_1, \ldots, Q_{h-1} \in R \) be \(h - 1 \) general quadrics, where \(h = \dim_k [R/I]_2 \), and consider the ideal \(J = (I, Q_1, \ldots, Q_{h-1}) \). Then \(R/J \) is Gorenstein with Hilbert function \((1, r, 1)\).

Idea of Proof: To show \(\text{Soc } R/J \] \(= 0, \) that is, for each \(\ell \in [R]_1, \ell \cdot [R]_1 \) is not in \((I, Q_1, \ldots, Q_{h-1})\). Let

\[\Lambda = \{ \text{hyperplanes in } \mathbb{P}([R]_2) \text{ containing } [I]_2 \} \]

\[\Sigma = \{ \text{linear subvarieties } \mathbb{P}(\ell \cdot [R]_1) \mid \ell \in [R]_1 \} \]

\[I = \{ (A, H) \in \Sigma \times \Lambda \mid A \subset H \} \]

Consider the projections \(\phi_1 \), \(\phi_2 \), \(\phi_3 \).

The Injectivity Conjecture provides \(\dim I = h - 2 \), whereas \(\dim \Lambda = h - 1. \)

Persistence

Theorem
Let \(A \) be presented by quadrics and of socle degree \(e \geq 4. \) Assume that \(h_2 = r < 4e - 6 \) and \(\text{char } k = 0. \) Then multiplication by a general linear form on \(A \) from degree 1 to degree 2 must be an isomorphism.

Proof uses the theory of generic initial ideals.

Note: \(h = (1, 21, 21, 20, 21, 21, 1) \) is the \(h \)-vector of a Gorenstein algebra.
Proposition

For $r \leq 5$, the following are the only h-vectors of artinian Gorenstein algebras presented by quadrics.

r	h-vectors
2	$(1, 2, 1)$
3	$(1, 3, 1), (1, 3, 3, 1)$
4	$(1, 4, 1), (1, 4, 4, 1), (1, 4, 6, 4, 1)$
5	$(1, 5, 1), (1, 5, 5, 1), (1, 5, 8, 5, 1), (1, 5, 10, 10, 5, 1)$

Remark

(i) $h_2 \leq 12$, $h_2 \neq 6$.

(ii) If char $k > 0$ is small, then $h_2 = 12$ is possible.

Theorem (Davis, Okun, 2001)

If I is a squarefree, monomial Gorenstein ideal generated by quadrics with h-vector $(1, r, h_2, r, 1)$, then $h_2 \geq 2r - 2$.

Proposition

For $r = 6$, the following are h-vectors of artinian Gorenstein algebras presented by quadrics and of socle degree e.

e	h-vectors
2	$(1, 6, 1)$
3	$(1, 6, 6, 1)$
4	$(1, 6, h_2, 6, 1)$, where $h_2 \in \{10, 11\}$
5	$(1, 6, 13, 13, 6, 1)$
6	$(1, 6, 15, 20, 15, 6, 1)$

Remark

(i) $h_2 \leq 12$, $h_2 \neq 6$.

(ii) If char $k > 0$ is small, then $h_2 = 12$ is possible.