Extended regime of coexisting metallic and insulating phases in a two-orbital electronic system

M. Vandelli,1,2,3 J. Kaufmann,4 V. Harkov,1,5 A. I. Lichtenstein,1,5,2 K. Held,4 and E. A. Stepanov6,*

1I. Institute of Theoretical Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
2The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
3Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany
4Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria
5European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
6CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France

We investigate the metal-to-insulator phase transition driven by electronic interactions in the quarter-filled Hubbard-Kanamori model on a cubic lattice with two orbitals split by a crystal field. We show that a systematic consideration of the non-local collective electronic fluctuations strongly affects the state-of-the-art picture of the phase transition provided by the dynamical mean field theory. Our calculations reveal a region of phase coexistence between the metallic and the Mott insulating states, which is missing in the local approximation to electronic correlations. This coexistence region is remarkably broad in terms of the interaction strength. It starts at a critical value of the interaction slightly larger than the bandwidth and extends to more than twice the bandwidth, where the two solutions merge into a Mott insulating phase. Our results illustrate that non-local correlations have crucial consequences on the electronic properties in the strongly correlated regime, even in the simplest multi-orbital systems.

There are two main mechanisms responsible for the formation of an insulating phase in electronic materials: a gap at the Fermi energy in the non-interacting band structure and the many-body localization induced by strong electronic interactions, as for instance the Mott scenario [1, 2]. The interplay between these different mechanisms can strongly affect the degree of electronic correlations and therefore the phase diagram for the material [3]. Both these effects are especially important when a subset of doubly- or triply-degenerate localized orbitals appears in the electronic spectrum at Fermi energy. Usually, the charge distribution on neighboring atoms lifts this degeneracy, which results in a local splitting of the orbitals called crystal field splitting. Strong electronic correlations may greatly renormalize the electronic spectral distribution, thus affecting the orbital splitting [4–7]. The crystal field splitting also has a strong influence on the Mott transition in several materials, as it favors orbital polarization and orbital selective phenomena [8–17].

The dynamical mean field theory (DMFT) [18] provides the state-of-the-art theoretical description of the Mott transition in realistic materials [19, 20]. For instance, this method captures the coexistence of metallic and insulating phases that accompanies the Mott transition in both, single-band [21–27] and multi-orbital [28–32] systems. However, in some cases DMFT is insufficient, because this theory accounts only for local correlation effects. Considering even short-range correlations beyond DMFT significantly modifies the coexistence region and drastically reduces the critical value of the interaction [26]. Long-range correlations can have even more dramatic consequences [33]. Therefore, an important leap towards an accurate theoretical description of correlated materials would be to understand the effect of non-local collective electronic fluctuations on the spectral function. Unfortunately, computational and methodological issues have hindered the detailed investigation of this problem in multi-orbital systems so far. Indeed, most of the available theoretical methods are either limited to a weakly correlated regime [34–40], or do not take into account all desired physical ingredients, such as long-range correlations [41, 42] or spatial magnetic fluctuations [43–52]. Attempts to go beyond these assumptions lead to expensive numerical calculations and thus are rather rare [53–60].

In this work, we investigate the effect of non-local fluctuations on the Mott transition in a two-orbital Hubbard-Kanamori model with the crystal field splitting and the density-density approximation for the interaction. This model is relevant for investigating the low-energy physics of some transition metal oxides [9] and fulleride molecular crystals [61]. More importantly, this model is the simplest multi-orbital system, where the influence of the orbital splitting on the Mott transition was studied in details using DMFT [6]. We challenge this solution of the problem by utilizing a relatively inexpensive diagrammatic extension of DMFT [62] – the dual triply irreducible local expansion (D-TRILEX) method [63]. This approach allows one to account for the effect of the non-local collective electronic fluctuations on the spectral function in a self-consistent manner [64, 65]. We find that, despite the apparent simplicity, the considered model displays a non-trivial behavior around the Mott transition. In particular, considering the non-local electronic correlations beyond DMFT reveals an enormously broad coexistence region of metallic and Mott insulating phases that extends from approximately the bandwidth to more than twice the bandwidth in the value of the interaction.

Method. The Hamiltonian of the considered two-orbital model on a cubic lattice

\[H = \sum_{j \bar{j}, l, \sigma} \epsilon_{jl} c_{jl}^\dagger (\bar{c}_{j\bar{l}\sigma} + \Delta_l \delta_{j\bar{l}}) c_{j\bar{l}\sigma} + \frac{U}{2} \sum_{j, \bar{j}, \bar{l}} n_{j\bar{l}} n_{j\bar{l}} \]

contains three contributions. The hopping \(\bar{t}_{j\bar{l}} \) between lattice
sites j and j' describes the electronic dispersion for each of the two orbitals $l \in \{1, 2\}$. $\Delta = 2\Delta_1 = -2\Delta_2$ is the bare crystal field splitting. The interaction U between electronic densities $n_{jl} = \sum_{\sigma} c_{\sigma j l}^\dagger c_{\sigma j l}$ describes both, the intra- and interorbital Coulomb repulsion. We restrict the hopping to the nearest-neighbor lattice sites and set it to $t_{(jj')} = 1/6$ for both orbitals. Hereinafter, the energy is expressed in units of the half-bandwidth of the cubic dispersion $W/2 = 6t = 1$. Calculations are performed at quarter-filling, which corresponds to the average density of $(n) = 1$ electron per two orbitals. In order to induce the orbital polarization $\delta n = (\langle n_2 \rangle - \langle n_1 \rangle)/\langle n \rangle$, we take a relatively large value for the crystal field splitting $\Delta = 0.3$. This case was studied in details in Ref. [6] using DMFT. It was demonstrated, that local electronic correlations enlarge the orbital splitting resulting in a high degree of orbital polarization. Consequently, the single electron mostly populates the lower orbital ($l = 2$) that undergoes the Mott transition at a critical value of the interaction. A similar interplay between the orbital polarization and Mott physics is also found in actual materials such as V_2O_3 [9] and SrVO$_3$ [66], where it is important for the Mott transition.

In order to investigate how non-local correlations affect the DMFT scenario of the Mott transition we employ the D-TRILEX method [63], where collective electronic fluctuations are treated diagrammatically beyond DMFT. This method was derived as an approximation to the dual boson theory [67–76], one of the more commonly used diagrammatic extensions of DMFT, cf. [55, 60, 77–90]. D-TRILEX method stands out for lowered complexity and its capability of correctly reproducing the results of more elaborate theories [64]. The computational simplicity of this approach allows for applications to multi-orbitals systems [91, 92].

If the system exhibits strong magnetic fluctuations, as frequently happens at half-filling, the Mott transition usually lies inside the antiferromagnetic (AFM) phase. In this case, addressing the Mott transition requires to perform calculations in a symmetry broken phase, which is problematic. Going away from half-filling suppresses the magnetic fluctuations and allows one to access the Mott transition from the paramagnetic phase. According to our calculations, the highest critical temperature for the Néel transition for the considered quarter-filled model lies below $T = 0.06$. For this reason, we set the inverse temperature to $T^{-1} = 15$, which ensures that the system is located outside the AFM phase but close to its boundary to observe strong magnetic fluctuations. We perform DMFT calculations using the w2dynamics package [93]. The D-TRILEX solution is based on the numerical implementation described in Ref. [92]. The local density of states (DOS) is obtained from corresponding local Green’s functions via analytical continuation using the ana_cont package [94].

Spectral function. To illustrate the effect of non-local correlations on the Mott transition, we compare the DOS predicted by DMFT and D-TRILEX methods. The result of these calculations is shown in Fig. 1 for three different values of the interaction $U = 1.8$, $U = 2.0$, and $U = 2.2$. First, let us focus on the quarter-filled calculations presented in the two upper rows of this Figure. We find that the results of the DMFT and D-TRILEX methods are different already at $U = 1.8$. In both cases, the DOS is metallic. The lower orbital ($l = 2$, red line) displays a three-peak structure consisting of the quasi-particle peak at Fermi energy $E = 0$ and two side peaks that correspond to lower and upper Hubbard bands (LHB and UHB). The upper orbital ($l = 1$, blue line) also exhibits the quasi-particle peak in the DOS that appears close to the Fermi energy at $E = \Delta$. However, the three-peak structure predicted by DMFT possesses a high degree of electron-hole symmetry. Instead, the DOS of obtained for the same orbital ($l = 1$) using the D-TRILEX approach resembles the DOS of a hole-doped Mott insulator with the quasi-particle peak being shifted closer to the LHB [18]. The quasi-particle peaks in the DOS of DMFT vanish simultaneously between $U = 1.8$ and $U = 2.0$, which signals the tendency towards a Mott insulating state. A further increase of the interaction decreases the electronic density at Fermi energy $A(E = 0)$. The latter
reaches zero at $U_c^* \approx 2.2$ (blue line in Fig. 2), and the DMFT solution enters the Mott insulating phase. On the contrary, the D-TRILEX solution remains metallic for the discussed values of the interaction (middle row in Fig. 1). Thus, even at U_c^* it reveals pronounced quasi-particle peaks in the DOS for both orbitals. Fig. 2 shows that $A(E = 0)$ in the metallic D-TRILEX solution also decreases upon increasing the interaction. However, this solution turns into a Mott insulator only at a very strong critical interaction $U_c \approx 4.5$, which is larger than twice the bandwidth. This result seems surprising, since in the single-orbital case the non-local correlations lead to a more insulating electronic behavior [26], as correctly captured by the D-TRILEX method [63].

To explain the observed effect, we note that quarter-filling in DMFT and D-TRILEX corresponds to different values of the chemical potential. The left panel of Fig. 3 shows that at $U \geq 1.5$ the chemical potential μ of D-TRILEX (red dots) significantly deviates from the μ^d of DMFT (blue dots), and this difference increases with the interaction. We point out that D-TRILEX calculations are based on the DMFT solution of the local impurity problem that plays the role of reference system [63, 64]. We find that the quarter-filled metallic D-TRILEX solution originates from the metallic reference system that has smaller average density. Fig. 4 shows that due to $(n) < 1$ the reference system (dashed lines) remains metallic even at U_c^*. At the same time, the DOS predicted by D-TRILEX (solid lines) is not dramatically different from the one of the reference system. This fact suggests that the effect of non-local collective electronic fluctuations in the metallic regime consists in moving the spectral weight from above to below the Fermi energy, which brings the filling of the system to $(n) = 1$. Consequently, such redistribution of the orbital occupation decreases the orbital polarization δn compared to DMFT, which is demonstrated in the left panel of Fig. 3.

To confirm this statement, we perform D-TRILEX calculations for the chemical potential μ^d of the quarter-filled DMFT solution. The corresponding result is shown in the bottom row of Fig. 1 and is referred to as the D-TRILEX* calculation in order not to confuse it with the metallic solution. We observe that the obtained DOS is again practically identical to the one of DMFT (bottom vs. top row in Fig. 1). However, the D-TRILEX* calculations performed in the regime $1.0 \leq U < 2.2$ where DMFT solution is metallic correspond to $(n) > 1$. Moreover, no quarter-filled D-TRILEX* solution is found near μ^d in this regime of interactions. This fact supports our previous finding that in the metallic regime non-local correlations increase the average density of the considered two-orbital system.

This physical picture changes when the DMFT solution becomes Mott insulating. We find that the corresponding D-TRILEX* solution undergoes the Mott transition at the same critical interaction U_c^* as in DMFT (bottom right panel of Fig. 1). Moreover, at $U \geq U_c^*$ the average density for the D-TRILEX* solution becomes $(n) = 1$ for $\mu^* \approx \mu^d$ (bottom left panel of Fig. 3). Right panel of Fig. 3 shows that the insulating DMFT and D-TRILEX* solutions are almost fully polarized and have approximately the same value of δn, which results in electron-hole symmetric DOS for the lower orbital (top and bottom left panels of Fig. 3). Consequently, the upper orbital becomes nearly unoccupied and thus cannot strongly interact with the lower one. For this reason no transfer of the spectral weight between the orbitals by means of the non-local fluctuations occurs in the insulating regime. At $U \geq U_c^*$
the D-TRILEX * solution remains quarter-filled and Mott insulating, which is confirmed by the zero electronic density at Fermi energy (red asterisks in Fig. 2). Therefore, both, the DMFT and the D-TRILEX methods predict the Mott transition for the considered system at the same value of the critical interaction U^*_c. However, including non-local collective electronic fluctuations beyond DMFT allows one to additionally capture the metallic solution that coexists with the Mott insulating one up to the second critical interaction U^*_c.

The phase coexistence is signalled by the appearance of two different values of the chemical potential μ and μ^* leading to the same average density $\langle n \rangle$, as demonstrated in the left panel of Fig. 3. If we follow the $\mu(U)$ curve that gives $\langle n \rangle = 1$ in the weak coupling regime (red dots), we obtain the metallic solution until it continuously turns into an insulating phase at U^*_c. Above this threshold, any value of the chemical potential inside the Mott gap gives the same average density, and the two solutions corresponding to μ and μ^* can be considered equivalent from there on. On the other hand, if we start from the chemical potential μ^* that corresponds to the insulating phase and decrease the interaction following the condition $\langle n \rangle = 1$, we obtain the insulating solution (red asterisks). The latter exists until the critical interaction U^*_c below which no solution for $\mu^* \approx \mu^d$ is available at quarter-filling. At this value of the interaction the hysteresis loop is abruptly connected to the metallic solution with a jump. This behavior means that the function $\langle n \rangle(\mu)$ is not monotonic and exhibits a region of negative charge compressibility $\kappa = \frac{1}{\langle n \rangle^2} \frac{d\langle n \rangle}{d\mu}$. According to our calculations, the metallic and insulating D-TRILEX solutions are both characterized by $\kappa > 0$, hence they are thermodynamically stable and are separated by a region of negative charge compressibility. A similar behavior was found in DMFT solution of the Hubbard-Kanamori model for small doping around half-filling [95–99], and for different parameters using a strong-coupling expansion [97].

Conclusions. We investigated the effect of non-local collective electronic fluctuations on the Mott transition in a two-orbital quarter-filled Hubbard-Kanamori model by comparing the results of the D-TRILEX and DMFT methods. At the considered temperature, the DMFT solution of the problem remains metallic below the critical interaction $U^*_c = 2.2$, and at this value of the interaction undergoes the Mott transition. We find that the inclusion of non-local correlations by means of the D-TRILEX approach stabilizes the metallic phase up to the very large critical interaction $U^*_c = 4.5$. The D-TRILEX method also captures the Mott transition at U^*_c as a second stable solution. This leads to a remarkably broad coexistence region between the metallic and the Mott insulating phases that exist at the same filling, but with different values of the chemical potential between the U^*_c and the U^*_c critical interactions. Our results show that already for a simple two-orbital model DMFT cannot correctly interpolate between the moderately- and strongly-interacting regimes. This fact bring an interesting evidence that non-local correlations in multi-orbital systems may lead to non-trivial effects due to the presence of additional channels for collective electronic fluctuations.

As the considered model was proposed for a low-energy description of some realistic materials [9, 61], the coexistence of metallic and Mott insulating phases could be detected experimentally, for example by measuring dielectric properties of the system [100]. One can speculate that the observed phase coexistence could be exploited in the realization of Mott-based electronic switches or transistors. The experimental realization of Mott field effect transistors (MottFET) was shown to be practically viable [66, 101, 102]. The region of negative charge compressibility between the two stable solutions could forbid the spontaneous switch between the two solutions. In this case, application of a static electric field should be sufficient to drive the transition between the metallic and Mott insulating phases, as this perturbation would effectively change the chemical potential from μ to μ^* or vice versa.

M.V., V.H., and A.I.L. acknowledge the support by the Cluster of Excellence “Advanced Imaging of Matter” of the Deutsche Forschungsgemeinschaft (DFG) - EXC 2056 - Project No. ID390715994, and by North-German Supercomputing Alliance (HLRN) under the Project No. hhp00042. J.K. and K.H. have been supported by the Austrian Science Fund (FWF) through projects P33044 and I5868 (“Quast”). V.H. and A.I.L. further acknowledge the support by the DFG through FOR 5249-449872909 (Project P8) and the European Research Council via Synergy Grant 854843-FASTCORR. The work of E.A.S. was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska Curie grant agreement No. 839551 - 2DMAGICS. E.A.S. is also thankful to the CPHT computer support team.

* evgeny.stepanov@polytechnique.edu

[1] N. F. Mott, Metal-insulator transitions (London: Taylor & Francis, 1974).
[2] Masatoshi Imada, Atsushi Fujimori, and Yoshinori Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70, 1039–1263 (1998).
[3] Wei Bao, C. Broholm, G. Aeppli, P. Dai, J. M. Honig, and P. Metcalfe, “Dramatic switching of magnetic exchange in a classic transition metal oxide: Evidence for orbital ordering,” Phys. Rev. Lett. 78, 507–510 (1997).
[4] Frank Lechermann, Silke Biermann, and Antoine Georges, “Interorbital Charge Transfers and Fermi-Surface Deformations in Strongly Correlated Metals: Models, BaVS$_3$ and NaKcoO$_3$,” Progress of Theoretical Physics Supplement 160, 233–252 (2005).
[5] Alexander I. Poteryaev, Jan M. Tomczak, Silke Biermann, Antoine Georges, Alexander I. Lichtenstein, Alexey N. Rubtsov, Tanusri Saha-Dasgupta, and Ole K. Andersen, “Enhanced crystal-field splitting and orbital-selective coherence induced by strong correlations in V$_2$O$_5$,” Phys. Rev. B 76, 085127 (2007).
[6] Alexander I. Poteryaev, Michel Ferraoro, Antoine Georges, and Olivier Parcollet, “Effect of crystal-field splitting and interband hybridization on the metal-insulator transitions of strongly correlated systems,” Phys. Rev. B 78, 045115 (2008).
[7] N. Parragh, G. Sangiovanni, P. Hansmann, S. Hummel, K. Held, and A. Toschi, “Effective crystal field and Fermi surface topology: A comparison of a- and dp-orbital models,” Phys. Rev. B 88, 195116 (2013).
[8] V. I. Anisimov, I. A. Nekrasov, D. E. Kondakov, T. M. Rice, and M. Sigrist, “Orbital-selective Mott-insulator transition in Ca$_2$SrRuO$_4$,” The European Physical Journal B – Condensed Matter and Complex Systems 25, 191–201 (2002).
[9] G. Keller, K. Held, V. Eyert, D. Vollhardt, and V. I. Anisimov, “Electronic structure of paramagnetic V$_2$O$_5$: Strongly correlated metallic and mott insulating phase,” Phys. Rev. B 70, 205116 (2004).
[10] Luca de’ Medici, Syed R. Hassan, and Massimo Capone, “Genesis of coexisting itinerant and localized electrons in iron pnictides,” Journal of superconductivity and novel magnetism 22, 535–538 (2009).
[11] Andreas Hackl and Matthias Vojta, “Pressure-induced magnetic transition and volume collapse in FeAs superconductors: an orbital-selective Mott scenario,” New Journal of Physics 11, 055064 (2009).
[12] Philipp Werner, Emanuel Gull, and Andrew J. Millis, “Metal-insulator phase diagram and orbital selectivity in three-orbital models with rotationally invariant Hund coupling,” Phys. Rev. B 79, 115119 (2009).
[13] Luca de’ Medici, S. R. Hassan, Massimo Capone, and Xi Dai, “Orbital-Selective Mott Transition out of Band Degeneracy Lifting,” Phys. Rev. Lett. 102, 126401 (2009).
[14] Tomoko Kita, Takuma Ohashi, and Norio Kawakami, “Mott transition in three-orbital Hubbard model with orbital splitting,” Phys. Rev. B 84, 195130 (2011).
[15] Li Huang, Liang Du, and Xi Dai, “Complete phase diagram for three-band Hubbard model with orbital degeneracy lifted by crystal field splitting,” Phys. Rev. B 86, 035150 (2012).
[16] Yifin Wang, Li Huang, Liang Du, and Xi Dai, “Doping-driven orbital-selective Mott transition in multi-band Hubbard models with crystal field splitting,” Chinese Physics B 25, 037103 (2016).
[17] Fabian B. Kagler, Seung-Sup B. Lee, Andreas Weichselbaum, Gabriel Kotliar, and Jan von Delft, “Orbital differentiation in Hund metals,” Phys. Rev. B 100, 115159 (2019).
[18] Antoine Georges, Gabriel Kotliar, Werner Krauth, and Marcelo J. Rozenberg, “Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions,” Rev. Mod. Phys. 68, 13–125 (1996).
[19] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, “Electronic structure calculations with dynamical mean-field theory,” Rev. Mod. Phys. 78, 865–951 (2006).
[20] Antoine Georges, Luca de’ Medici, and Jernej Mravlje, “Strong Correlations from Hund’s Coupling,” Annual Review of Condensed Matter Physics 4, 137–178 (2013).
[21] X. Y. Zhang, M. J. Rozenberg, and G. Kotliar, “Mott transition in the $d_{x^2−y^2}$ Hubbard model at zero temperature,” Phys. Rev. Lett. 70, 1666–1669 (1993).
[22] Antoine Georges and Werner Krauth, “Physical properties of the half-filled Hubbard model in infinite dimensions,” Phys. Rev. B 48, 7167–7182 (1993).
[23] M. J. Rozenberg, G. Kotliar, and X. Y. Zhang, “Mott-Hubbard transition in infinite dimensions. II,” Phys. Rev. B 49, 10181–10193 (1994).
[24] R. Bulla, “Zero temperature metal-insulator transition in the infinite-dimensional Hubbard model,” Phys. Rev. Lett. 83, 136–139 (1999).
[25] Martin Eckstein, Marcus Kollar, Michael Potthoff, and Dieter Vollhardt, “Phase separation in the particle-hole asymmetric Hubbard model,” Phys. Rev. B 75, 125103 (2007).
[26] H. Park, K. Haule, and G. Kotliar, “Cluster Dynamical Mean Field Theory of the Mott Transition,” Phys. Rev. Lett. 101, 186403 (2008).
[27] Hugo U. R. Strand, Andro Sabashvili, Mats Granath, Bo Hellsing, and Stellan Östlund, “Dynamical mean field theory phase-space extension and critical properties of the finite temperature Mott transition,” Phys. Rev. B 83, 205136 (2011).
[28] Marcelo J. Rozenberg, “Integer-filling metal-insulator transitions in the degenerate hubbard model,” Phys. Rev. B 55, R4855–R4858 (1997).
[29] Sergei Florens and Antoine Georges, “Quantum impurity solvers using a slave rotor representation,” Phys. Rev. B 66, 165111 (2002).
[30] G. Kotliar, Sahana Murthy, and M. J. Rozenberg, “Compressibility Divergence and the Finite Temperature Mott Transition,” Phys. Rev. Lett. 89, 046401 (2002).
[31] Y. Öno, M. Potthoff, and R. Bulla, “Mott transitions in correlated electron systems with orbital degrees of freedom,” Phys. Rev. B 67, 035119 (2003).
[32] Jakob Steinbauer, Luca de’ Medici, and Silke Biermann, “Doping-driven metal-insulator transition in correlated electron systems with strong Hund’s exchange coupling,” Phys. Rev. B 100, 085104 (2019).
[33] T. Schäfer, F. Geles, D. Rost, G. Rohringer, E. Arrigoni, K. Held, N. Blümmer, M. Aichhorn, and A. Toschi, “Fate of the false Mott-Hubbard transition in two dimensions,” Phys. Rev. B 91, 121509 (2015).
[34] N. E. Bickers, “Self-consistent many-body theory for condensed matter systems,” in Theoretical Methods for Strongly Correlated Electrons, edited by David Sénéchal, André-Marie Tremblay, and Claude Bourbonnais (Springer New York, New York, NY, 2004) pp. 237–296.
[35] Tetsuya Takimoto, Takashi Hotta, and Kazuo Ueda, “Strong-coupling theory of superconductivity in a degenerate Hubbard model,” Phys. Rev. B 69, 104504 (2004).
[36] Katsunori Kubo, “Pairing symmetry in a two-orbital hubbard model on a square lattice,” Phys. Rev. B 75, 224509 (2007).
[37] Lars Hedlin, “New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem,” Phys. Rev. 139, A796–A823 (1965).
[38] F. Aryasetiawan and O. Gunnarsson, “The GW method,” Reports on Progress in Physics 61, 237 (1998).
[39] Lars Hedin, “On correlation effects in electron spectroscopies and the GW approximation,” Journal of Physics: Condensed Matter 11, R489 (1999).
[40] Giovanni Onida, Lucia Reining, and Angel Rubio, “Electronic excitations: density-functional versus many-body green’s-function approaches,” Rev. Mod. Phys. 74, 601–659 (2002).
[41] Yusuke Nomura, Shiro Sakai, and Ryotaro Arita, “Multiorbital cluster dynamical mean-field theory with an improved continuous-time quantum monte carlo algorithm,” Phys. Rev. B 89, 195146 (2014).
[42] Yusuke Nomura, Shiro Sakai, and Ryotaro Arita, “Nonlocal correlations induced by hund’s coupling: A cluster dmft study,” Phys. Rev. B 91, 235107 (2015).
[43] S. Biermann, F. Aryasetiawan, and A. Georges, “First-principles approach to the electronic structure of strongly correlated systems: Combining the gw approximation and dynamical mean-field theory,” Phys. Rev. Lett. 90, 086402 (2003).
[44] Jan M. Tomczak, Michele Casula, Takashi Miyake, Ferdi Aryasetiawan, and Silke Biermann, “Combined GW and dynamical mean-field theory: Dynamical screening effects in transition metal oxides,” EPL (Europhysics Letters) 100, 67001 (2012).
[45] Jan M. Tomczak, M. van Schilfgaarde, and G. Kotliar, “Many-Body Effects in Iron Pnictides and Chalcogenides: Nonlocal Versus Dynamic Origin of Effective Masses,” Phys. Rev. Lett. 109, 237010 (2012).
[46] C. Taranto, M. Kaltak, N. Parragh, G. Sangiovanni, G. Kresse, A. Toschi, and K. Held, “Comparing quasiparticle GW+DMFT and LDA+DMFT for the test bed material SrVO3,” Phys. Rev. B 88, 165119 (2013).
[47] R. Sakuma, Ph. Werner, and F. Aryasetiawan, “Electronic structure of SrVO3 within GW+DMFT,” Phys. Rev. B 88, 235110 (2013).
[48] Jan M. Tomczak, M. Casula, T. Miyake, and S. Biermann, “Asymmetry in band widening and quasiparticle lifetimes in SrVO3: Competition between screened exchange and local correlations from combined GW and dynamical mean-field theory GW + DMFT,” Phys. Rev. B 90, 165138 (2014).
[49] Ambroise van Roekhem, Thomas Alyal, Jan M. Tomczak, Michele Casula, Nan Xu, Hong Ding, Michel Ferrero, Olivier Parcollet, Hong Jiang, and Silke Biermann, “Dynamical Correlations and Screened Exchange on the Experimental Bench: Spectral Properties of the Cobalt Pnictide BaCo2As2,” Phys. Rev. Lett. 113, 266403 (2014).
[50] Lorenzo Sponza, Paolo Pisanti, Alena Vishina, Dimitar Pashov, Cedric Weber, Mark van Schilfgaarde, Swagata Acharya, Julien Vidal, and Gabriel Kotliar, “Self-energies in itinerant magnets: A focus on Fe and Ni,” Phys. Rev. B 95, 041112(R) (2017).
[51] Swagata Acharya, Cédric Weber, Evgeny Plekanov, Dimitar Pashov, A. Taraphder, and Mark Van Schilfgaarde, “Metal-Insulator Transition in Copper Oxides Induced by Apex Displacements,” Phys. Rev. X 8, 021038 (2018).
[52] Siheon Ryee, Patrick Séamon, Myung Joon Han, and Sangkook Choi, “Nonlocal coulomb interaction and spin-freezing crossover as a route to valence-skipping charge order,” npj Quantum Materials 5, 19 (2020).
[53] Hyowon Park, Kristjan Haule, and Gabriel Kotliar, “Magnetic Excitation Spectra in BaFe2As2: A Two-Particle Approach within a Combination of the Density Functional Theory and the Dynamical Mean-Field Theory Method,” Phys. Rev. Lett. 107, 137007 (2011).
[54] Lewin Boehnke and Frank Lechermann, “Competing orders in Na2CoO3 from strong correlations on a two-particle level,” Phys. Rev. B 85, 115128 (2012).
[55] Anna Galler, Patrik Thunström, Patrik Gunacker, Jan M. Tomczak, and Karsten Held, “Ab initio dynamical vertex approximation,” Phys. Rev. B 95, 115107 (2017).
[56] Anna Galler, Josef Kaufmann, Patrik Gunacker, Matthias Pickem, Patrik Thunström, Jan M. Tomczak, and Karsten Held, “Towards ab initio Calculations with the Dynamical Vertex Approximation,” Journal of the Physical Society of Japan 87, 041004 (2018).
[57] Lewin Boehnke, Philipp Werner, and Frank Lechermann, “Multi-orbital nature of the spin fluctuations in Sr2RuO4,” EPL (Europhysics Letters) 122, 57001 (2018).
[58] Swagata Acharya, Dimitar Pashov, Cédric Weber, Hyowon Park, Lorenzo Sponza, and Mark Van Schilfgaarde, “Evening out the spin and charge parity to increase Tc Sr2RuO4,” Communications Physics 2, 1–8 (2019).
[59] Hugo U. R. Strand, Manuel Zingl, Nils Wentzell, Olivier Parcollet, and Antoine Georges, “Magnetic response of Sr2RuO4: Quasi-local spin fluctuations due to Hund’s coupling,” Phys. Rev. B 100, 125120 (2019).
[60] Josef Kaufmann, Christian Eckhardt, Matthias Pickem, Motoharu Kitatani, Anna Kauch, and Karsten Held, “Self-consistent ladder dynamical vertex approximation,” Phys. Rev. B 103, 035120 (2021).
[61] Nicola Manini, Giuseppe E. Santoro, Andrea Dal Corso, and Erio Tosatti, “Sensitivity of the Mott transition to noncubic splitting of the orbital degeneracy: Application to NH3K3C60,” Phys. Rev. B 66, 115107 (2002).
[62] For a review on diagrammatic extensions of DMFT see [77].
[63] E. A. Stepanov, V. Harkov, and A. I. Lichtenstein, “Consistent partial bosonization of the extended Hubbard model,” Phys. Rev. B 100, 205115 (2019).
[64] V. Harkov, M. Vandelli, S. Brener, A. I. Lichtenstein, and E. A. Stepanov, “Impact of partially bosonized collective fluctuations on electronic degrees of freedom,” Phys. Rev. B 103, 245123 (2021).
[65] E. A. Stepanov, V. Harkov, M. Rössner, A. I. Lichtenstein, M. I. Katsnelson, and A. N. Rudenko, “Coexisting charge density wave and ferromagnetic instabilities in monolayer InSe,” (2021), arXiv:2107.01132 [cond-mat.mtrl-sci].
[66] Zhicheng Zhong, Markus Wallerberger, Jan M. Tomczak, Ciro Taranto, Nicolaus Parragh, Alessandro Toschi, Giorgio Sangiovanni, and Karsten Held, “Electronics with Correlated Oxides: SrVO3/SrTiO3 as a Mott Transistor,” Phys. Rev. Lett. 114, 246401 (2015).
[67] A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, “Dual boson approach to collective excitations in correlated fermionic systems,” Annals of Physics 327, 1320 – 1335 (2012).
[68] Erik G. C. P. van Loon, Alexander I. Lichtenstein, Mikhail I. Katsnelson, Olivier Parcollet, and Hartmut Hafermann, “Beyond extended dynamical mean-field theory: Dual boson approach to the two-dimensional extended Hubbard model,” Phys. Rev. B 90, 235135 (2014).
[69] E. A. Stepanov, E. G. C. P. van Loon, A. A. Katanin, A. I. Lichtenstein, M. I. Katsnelson, and A. N. Rubtsov, “Self-consistent dual boson approach to single-particle and collective excitations in correlated systems,” Phys. Rev. B 93, 045107 (2016).
[70] E. A. Stepanov, A. Huber, E. G. C. P. van Loon, A. I. Lichten-
stein, and M. I. Katsnelson, “From local to nonlocal correlations: The Dual Boson perspective,” Phys. Rev. B 94, 205110 (2016).

[71] E. A. Stepanov, S. Brener, F. Krien, M. Harland, A. I. Lichtenstein, and M. I. Katsnelson, “Effective Heisenberg Model and Exchange Interaction for Strongly Correlated Systems,” Phys. Rev. Lett. 121, 037204 (2018).

[72] Evgeny A. Stepanov, Lars Peters, Igor S. Krivenko, Alexander I. Lichtenstein, Mikhail I. Katsnelson, and Alexey N. Rubtsov, “Quantum spin fluctuations and evolution of electronic structure in cuprates,” npj Quantum Materials 3, 54 (2018).

[73] E. A. Stepanov, A. Huber, A. I. Lichtenstein, and M. I. Katsnelson, “Effective Ising model for correlated systems with charge ordering,” Phys. Rev. B 99, 115124 (2019).

[74] L. Peters, E. G. C. P. van Loon, A. N. Rubtsov, A. I. Lichtenstein, M. I. Katsnelson, and E. A. Stepanov, “Dual boson approach with instantaneous interaction,” Phys. Rev. B 100, 165128 (2019).

[75] M. Vandelli, V. Harkov, E. A. Stepanov, J. Gukelberger, E. Kozik, A. Rubio, and A. I. Lichtenstein, “Dual boson diagrammatic Monte Carlo approach applied to the extended Hubbard model,” Phys. Rev. B 102, 195109 (2020).

[76] E. A. Stepanov, S. Brener, V. Harkov, M. I. Katsnelson, and A. I. Lichtenstein, “Spin dynamics of itinerant electrons: local magnetic moment formation and Berry phase,” (2021), arXiv:2106.12462 [cond-mat.str-el].

[77] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanian, A. E. Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N. Rubtsov, and K. Held, “Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory,” Rev. Mod. Phys. 90, 025003 (2018).

[78] A. Toschi, A. A. Katanian, and K. Held, “Dynamical vertex approximation: A step beyond dynamical mean-field theory,” Phys. Rev. B 75, 045118 (2007).

[79] A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, “Dual fermion approach to nonlocal correlations in the Hubbard model,” Phys. Rev. B 77, 033101 (2008).

[80] A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, and A. Georges, “Dual fermion approach to the two-dimensional Hubbard model: Antiferromagnetic fluctuations and fermi arcs,” Phys. Rev. B 79, 045133 (2009).

[81] H. Hafermann, G. Li, A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, and H. Monien, “Efficient Perturbation Theory for Quantum Lattice Models,” Phys. Rev. Lett. 102, 206401 (2009).

[82] A. A. Katanian, A. Toschi, and K. Held, “Comparing pertinent effects of antiferromagnetic fluctuations in the two- and three-dimensional Hubbard model,” Phys. Rev. B 80, 075104 (2009).

[83] G. Rohringer, A. Toschi, H. Hafermann, K. Held, V. I. Anisimov, and A. A. Katanian, “One-particle irreducible functional approach: A route to diagrammatic extensions of the dynamical mean-field theory,” Phys. Rev. B 88, 115112 (2013).

[84] Thomas Ayral and Olivier Parcollet, “Mott physics and spin fluctuations: A unified framework,” Phys. Rev. B 92, 115109 (2015).

[85] Thomas Ayral and Olivier Parcollet, “Mott physics and spin fluctuations: A functional viewpoint,” Phys. Rev. B 93, 235124 (2016).

[86] Thomas Ayral, Jaksa Vučičević, and Olivier Parcollet, “Fierz convergence criterion: A controlled approach to strongly interacting systems with small embedded clusters,” Phys. Rev. Lett. 119, 166401 (2017).

[87] Friedrich Krien, Angelo Valli, Patrick Chalupa, Massimo Capone, Alexander I. Lichtenstein, and Alessandro Toschi, “Boson-exchange parquet solver for dual fermions,” Phys. Rev. B 102, 195131 (2020).

[88] Sergey Brener, Evgeny A. Stepanov, Alexey N. Rubtsov, Mikhail I. Katsnelson, and Alexander I. Lichtenstein, “Dual fermion method as a prototype of generic reference-system approach for correlated fermions,” Annals of Physics 422, 168310 (2020).

[89] Friedrich Krien, Anna Kauch, and Karsten Held, “Tiling with triangles: parquet and GW\text{y} methods unified,” Phys. Rev. Research 3, 013149 (2021).

[90] Thomas Schäfer, Nils Wentzell, Fedor Šimkovic, Yuan-Yao He, Cornelina Hille, Marcel Klett, Christian J. Eckhardt, Behnam Arzhang, Viktor Harkov, François-Marie Le Régent, Alfred Kirsch, Yan Wang, Aaram J. Kim, Evgeny Kozik, Evgeny A. Stepanov, Anna Kauch, Sabine Andergassen, Philipp Hansmann, Daniel Rohe, Yuri M. Vilkh, James F. P. LeBlanc, Shiwei Zhang, A.-M. S. Tremblay, Michel Ferrero, Olivier Parcollet, and Antoine Georges, “Tracking the Footprints of Spin Fluctuations: A MultiMethod, MultiMessenger Study of the Two-Dimensional Hubbard Model,” Phys. Rev. X 11, 011058 (2021).

[91] Evgeny A. Stepanov, Yusuke Nomura, Alexander I. Lichtenstein, and Silke Biermann, “Orbital Isotropy of Magnetic Fluctuations in Correlated Electron Materials Induced by Hund’s Exchange Coupling,” Phys. Rev. Lett. 127, 207205 (2021).

[92] M. Vandelli et al., “To be published,” (2022).

[93] Markus Wällberger, Andreas Hausoel, Patrik Gunacker, Alexander Kowalski, Nicolaus Parragh, Florian Goth, Karsten Held, and Giorgio Sangiovanni, “w2dynamics: Local one- and two-particle quantities from dynamical mean field theory,” Computer Physics Communications 235, 388–399 (2019).

[94] Josef Kaufmann and Karsten Held, “ana.cont: Python package for analytic continuation,” (2021), arXiv:2105.11211.

[95] Luca de’ Medici, “Hund’s Induced Fermi-Liquid Instabilities and Enhanced Quasiparticle Interactions,” Phys. Rev. Lett. 118, 167003 (2017).

[96] Maria Chatzieleftheriou, Maja Berović, Pablo Villar Arribi, Massimo Capone, and Luca de’ Medici, “Enhancement of charge instabilities in Hund’s metals by breaking of rotational symmetry,” Phys. Rev. B 102, 205127 (2020).

[97] A. Sherman, “Hubbard-Kanamori model: spectral functions, negative electron compressibility, and susceptibilities,” Physica Scripta 95, 095804 (2020).

[98] Maria Chatzieleftheriou, Charge instabilities, Mott transition and transport in Hund metals, Theses, Université Paris sciences et lettres (2021).

[99] Maria Chatzieleftheriou, Alexander Kowalski, Maja Berović, Adriano Amaricci, Massimo Capone, Lorenzo De Leo, Giorgio Sangiovanni, and Luca de’ Medici, “Mott Quantum Critical Points at finite doping,” (2022), arXiv:2203.02451 [cond-mat.str-el].

[100] A. Pustogow, R. Rösshuber, Y. Tan, E. Uykur, A. Böhme, M. Wenzel, Y. Saito, A. Löhle, R. Hübner, A. Kawamoto, J. A. Schlueter, V. Dobrosavljević, and M. Dressel, “Low-temperature dielectric anomaly arising from electronic phase separation at the mott insulator-metal transition,” npj Quantum Materials 6, 9 (2021).

[101] D. M. Newsn, J. A. Misewich, C. C. Tsuei, A Gupta, B. A. Scott, and A. Schrott, “Mott transition field effect transistor,” Applied Physics Letters 73, 780–782 (1998).

[102] Junwoo Son, Siddharth Rajan, Susanne Stemmer, and
S. James Allen, “A heterojunction modulation-doped mott transistor,” Journal of Applied Physics 110, 084503 (2011).