THE VARIETY OF SUBADDITIONAL FUNCTIONS FOR FINITE GROUP SCHEMES

DAVE BENSON AND HENNING KRAUSE

Abstract. For a finite group scheme, the subadditive functions on finite dimensional representations are studied. It is shown that the projective variety of the cohomology ring can be recovered from the equivalence classes of subadditive functions. Using Crawley-Boevey’s correspondence between subadditive functions and endofinite modules, we obtain an equivalence relation on the set of point modules introduced in our joint work with Iyengar and Pevtsova. This corresponds to the equivalence relation on \(\pi \)-points introduced by Friedlander and Pevtsova.

1. Introduction

A theorem of Crawley-Boevey [5] gives a correspondence between endofinite modules for a ring \(A \) and subadditive functions on the finitely presented \(A \)-modules.

We examine this correspondence in the context of finite group schemes, for certain endofinite ‘point modules’ for a finite group scheme \(G \) introduced in our joint work with Iyengar and Pevtsova [3]. These point modules come from the \(\pi \)-points introduced by Friedlander and Pevtsova [6]. There is a natural equivalence relation on \(\pi \)-points, and it is proved in [6] that the equivalence classes of \(\pi \)-points can be used to reconstruct the variety \(\text{Proj} \, H^*(G, k) \).

We translate the equivalence relation of Friedlander and Pevtsova into a corresponding equivalence relation on subadditive functions. This enables us to prove that one can recover \(\text{Proj} \, H^*(G, k) \) from the subadditive functions on finite dimensional \(G \)-modules in a natural way (Theorem 4.1).

2. Subadditive functions and endofinite modules

We briefly review Crawley-Boevey’s correspondence between subadditive functions and endofinite modules.

We fix a ring \(A \) and consider the category of (right) \(A \)-modules. Let \(\text{mod} \, A \) denote the full subcategory of finitely presented \(A \)-modules. For an \(A \)-module \(M \) let \(\ell_A(M) \) denote its composition length.

A subadditive function \(\chi : \text{mod} \, A \to \mathbb{N} \) assigns to each finitely presented \(A \)-module a non-negative integer such that

1. \(\chi(X \oplus Y) = \chi(X) + \chi(Y) \) for all \(X, Y \in \text{mod} \, A \), and
2. \(\chi(X) + \chi(Z) \geq \chi(Y) \) for each exact sequence \(X \to Y \to Z \to 0 \) in \(\text{mod} \, A \).

A subadditive function \(\chi \neq 0 \) is irreducible if \(\chi \) cannot be written as a sum of two non-zero subadditive functions.

Date: April 5, 2016.
2010 Mathematics Subject Classification. 16G10 (primary); 20C20, 20G10, 20J06 (secondary).
Key words and phrases. subadditive function, endofinite module, stable module category, finite group scheme.
Lemma 3.1. We apply Theorem 2.1. Write
\[\chi_M(X) := \ell_{\text{End}_A(M)}(\text{Hom}_A(X, M)) \quad \text{for} \quad X \in \text{mod} \ A. \]

The following theorem of Crawley-Boevey [5, §5] provides the context for our
study of subadditive functions.

Theorem 2.1. Any subadditive function \(\text{mod} \ A \to \mathbb{N} \) can be written uniquely as a
finite sum of irreducible subadditive functions. Sending an endofinite \(A \)-module \(M \) to \(\chi_M \) induces a bijection between the isomorphism classes of indecomposable endofinite \(A \)-modules and the irreducible subadditive functions \(\text{mod} \ A \to \mathbb{N} \).

Note that every endofinite module decomposes uniquely into indecomposable endofinite modules. We have \(\chi_{M \oplus M'} = \chi_M + \chi_{M'} \) when \(M \) and \(M' \) have no common indecomposable summand, while \(\chi_{M \otimes M} = \chi_M [5] \).

3. The additive locus of a subadditive function

We fix a ring \(A \) such that \(\text{mod} \ A \) is an abelian category. For a subadditive function \(\chi : \text{mod} \ A \to \mathbb{N} \) we define the additive locus \(\text{Adloc}(\chi) \) as the full subcategory of objects \(Z \in \text{mod} \ A \) such that for every exact sequence \(0 \to X \to Y \to Z \to 0 \) in \(\text{mod} \ A \)
\[\chi(X) - \chi(Y) + \chi(Z) = 0. \]

We collect some basic properties of the additive locus.

Lemma 3.1. Let \(M \) be an endofinite \(A \)-module and \(Z \in \text{mod} \ A \). Then \(Z \) belongs
to \(\text{Adloc}(\chi_M) \) if and only if \(\text{Ext}^1_A(Z, M) = 0. \)

Proof. Applying \(\text{Hom}_A(-, M) \) to an exact sequence \(0 \to X \to Y \to Z \to 0 \) in \(\text{mod} \ A \) induces a long exact sequence
\[0 \to \text{Hom}_A(Z, M) \to \text{Hom}_A(Y, M) \to \text{Hom}_A(X, M) \to \text{Ext}^1_A(Z, M) \to \cdots \]
of \(\text{End}_A(M) \)-modules. Clearly, \(\text{Ext}^1_A(Z, M) = 0 \) implies
\[\chi_M(X) - \chi_M(Y) + \chi_M(Z) = 0. \]
The converse follows by choosing for \(Y \) a projective \(A \)-module. \(\square \)

Lemma 3.2. Let \(\chi, \chi' : \text{mod} \ A \to \mathbb{N} \) be subadditive functions. Then
\[\text{Adloc}(\chi + \chi') = \text{Adloc}(\chi) \cap \text{Adloc}(\chi'). \]

Proof. Let \(\eta : 0 \to X \to Y \to Z \to 0 \) be an exact sequence in \(\text{mod} \ A \). Then
\[\chi(\eta) := \chi(X) - \chi(Y) + \chi(Z) \text{ is a non-negative integer. Thus } (\chi + \chi')(\eta) = 0 \text{ if and only if } \chi(\eta) = 0 = \chi'(\eta). \]
From this observation the assertion of the lemma follows. \(\square \)

Lemma 3.3. Let \(\chi : \text{mod} \ A \to \mathbb{N} \) be a subadditive function. Then there exists an
endofinite \(A \)-module \(M \) such that \(\text{Adloc}(\chi) = \text{Adloc}(\chi_M) \).

Proof. We apply Theorem 2.1. Write \(\chi = \sum_i \chi_i \) with \(\chi_i \) irreducible and \(\chi_i \neq \chi_j \)
for all \(i \neq j \). There are indecomposable endofinite \(A \)-modules \(M_i \) such that \(\chi_i = \chi_{M_i} \) for all \(i \), and \(\sum \chi_i = \chi_M \) for \(M = \bigoplus_i M_i \). Then \(\text{Adloc}(\chi) = \text{Adloc}(\chi_M) \) by Lemma 3.2. \(\square \)

Let \(\chi, \chi' : \text{mod} \ A \to \mathbb{N} \) be subadditive functions. We set
\[\chi \geq \chi' : \iff \text{Adloc}(\chi) \subseteq \text{Adloc}(\chi') \]
and call \(\chi \) and \(\chi' \) equivalent if \(\text{Adloc}(\chi) = \text{Adloc}(\chi') \). Thus the equivalence classes of subadditive functions form a partially ordered set.
4. Subadditive functions for finite group schemes

Let G be a finite group scheme over a field k. Thus G is an affine group scheme such that its coordinate algebra $k[G]$ is finite dimensional as a k-vector space. The k-linear dual of $k[G]$ is a cocommutative Hopf algebra, called the group algebra of G, and denoted kG. We identify G-modules with modules over the group algebra kG. The category of finite dimensional G-modules is denoted by $\text{mod } G$.

The proof for finite groups given in [1] works just as well for finite groups.

We write $H^*(G, k)$ for the cohomology algebra of G and $\text{Proj } H^*(G, k)$ for the set of its homogeneous prime ideals not containing the unique maximal ideal of positive degree elements. Note that $H^*(G, k)$ acts on $\text{Ext}_G^*(M, N)$ for all G-modules M, N.

The support of a finite dimensional G-module M is

$$\text{supp}_G(M) := \{ p \in \text{Proj } H^*(G, k) \mid \text{Ext}_G^*(M, M)_p \neq 0 \}.$$

The following theorem says that $\text{Proj } H^*(G, k)$ can be recovered from the equivalence classes of subadditive functions on $\text{mod } G$.

For a finite group scheme G over a field k, we write Mod_G^G for the partially ordered set of equivalence classes of tensor closed subadditive functions.

We call a subadditive function on G that is tensor closed, if for any G-modules M, N in $\text{mod } G$ imply that $M \otimes_k N$ is in \mathcal{C}.

We write $\text{Proj } H^*(G, k)$ to tensor closed if its additive locus is a tensor closed subcategory of $\text{mod } G$.

An element x of a poset is join irreducible if it is not the supremum of elements that are strictly smaller than x.

Theorem 4.1. Let G be a finite group scheme over a field k and let $P(G, k)$ denote the partially ordered set of equivalence classes of tensor closed subadditive functions $\chi : \text{mod } G \to \mathbb{N}$. If the class of χ is join irreducible, then there exists a unique $p \in \text{Proj } H^*(G, k)$ such that

$$\text{Adloc}(\chi) = \{ M \in \text{mod } G \mid p \notin \text{supp}_G(M) \}.$$

Sending χ to p induces an order isomorphism between the set of join irreducible elements of $P(G, k)$ and $\text{Proj } H^*(G, k)$.

The proof will be given in [7].

5. The additive locus of a tensor closed function

In this section we study the additive locus of a subadditive function that is tensor closed. We need the following result, which essentially comes from [1].

For G-modules M, N and $n \in \mathbb{Z}$, we write $\text{Ext}_G^n(M, N)$ for the nth Tate extension group; it equals $H^n(\text{Hom}_G(tM, N))$ where tM denotes a Tate resolution of M.

Note that

$$\text{Ext}_G^n(M, N) \cong \text{Ext}_G^0(M, N) \quad \text{for} \quad n > 0.$$

Theorem 5.1. Given a finite group scheme G over a field k, there exists a positive integer r such that for any G-modules M and N, if $\text{Ext}_G^n(M, N) = 0$ for r consecutive values of n then $\text{Ext}_G^n(M, N) = 0$ for all n positive and negative.

Proof. The proof for finite groups given in [1] works just as well for finite group schemes. The input is the finite generation of cohomology, which for finite group schemes was proved by Friedlander and Suslin [2].

A full subcategory \mathcal{C} of $\text{mod } G$ is said to be thick, if any direct summand of a module in \mathcal{C} is also in \mathcal{C} and for every exact sequence $0 \to M' \to M \to M'' \to 0$ in $\text{mod } G$ with two of M, M', M'' in \mathcal{C} also the third is in \mathcal{C}.

\square
Corollary 5.2. Let $\chi: \text{mod}\, G \to \mathbb{N}$ be a tensor closed subadditive function. Then $\text{Adloc}(\chi)$ is a thick subcategory of $\text{mod}\, G$. If $\chi = \chi_M$ for some endofinite G-module M, then we have

$$\text{Adloc}(\chi_M) = \{ X \in \text{mod}\, G \mid \text{Ext}_G^n(X, M) = 0 \}. $$

Proof. We may assume that $\chi = \chi_M$ for some endofinite G-module M by Lemma 3.3. Fix $X \in \text{mod}\, G$. From Lemma 3.1 it follows that X is in $\text{Adloc}(\chi)$ if and only if $\text{Ext}_G^n(X, M) = 0$. Let $\Omega(X)$ denote the kernel of a projective cover of X, and observe that $\Omega(X) \cong X \otimes_k \Omega(k)$ up to projective direct summands. Using dimension shift and the fact that χ is tensor closed, it follows that X is in $\text{Adloc}(\chi)$ if and only if $\text{Ext}_G^n(X, M) = 0$ for every $n > 0$. Now Theorem 5.1 implies that X is in $\text{Adloc}(\chi)$ if and only if $\text{Ext}_G^n(X, M) = 0$. From this description of $\text{Adloc}(\chi)$ and the long exact sequence for $\text{Ext}_G^n(-, M)$ it follows that $\text{Adloc}(\chi)$ is a thick subcategory. \hfill \Box

Remark 5.3. Given any subadditive function $\chi: \text{mod}\, G \to \mathbb{N}$, then

$$\chi' := \sum_{S \text{ simple}} \chi(- \otimes_k S)$$

is up to equivalence the unique minimal tensor closed subadditive function such that $\chi' \geq \chi$. In fact, Lemma 3.2 shows that

$$\text{Adloc}(\chi') = \{ X \in \text{mod}\, G \mid X \otimes_k Y \in \text{Adloc}(\chi) \text{ for all } Y \in \text{mod}\, G \}. $$

6. Tensor closed thick subcategories and π-points

In this section we recall some of the results from our joint work with Iyengar and Pevtsova [2,3]. The first result is a classification of tensor closed thick subcategories of $\text{mod}\, G$ that has been anticipated in [6].

For a subcategory C of $\text{mod}\, G$ we set

$$\text{supp}_C(C) := \bigcup_{M \in C} \text{supp}_C(M).$$

A subset \mathcal{U} of $\text{Proj}\, H^*(G, k)$ is called specialisation closed if whenever p is in \mathcal{U} so is any prime q containing p.

Theorem 6.1. Let G be a finite group scheme over a field k. Then the assignments

$$C \mapsto \text{supp}_C(C) \quad \text{and} \quad \mathcal{U} \mapsto \{ M \in \text{mod}\, G \mid \text{supp}_C(M) \subseteq \mathcal{U} \}$$

give mutually inverse and inclusion preserving bijections between the non-zero tensor closed thick subcategories of $\text{mod}\, G$ and the specialisation closed subsets of $\text{Proj}\, H^*(G, k)$.

Proof. See Theorem 10.3 of [2]. \hfill \Box

In [6], Friedlander and Pevtsova introduced for a finite group scheme G over a field k of characteristic $p > 0$ the notion of a π-point. This is by definition a flat algebra homomorphism $\alpha: K[t]/(t^p) \to KG$ for some field extension K/k such that α factors through the group algebra of a unipotent abelian subgroup scheme of G_K, where G_K denotes the group scheme over K with group algebra $KG := kG \otimes_k K$. Let $\alpha^*: \text{mod}\, G_K \to \text{mod}\, K[t]/(t^p)$ denote restriction along α. We set

$$\text{Thick}(\alpha) := \{ M \in \text{mod}\, G \mid \alpha^*(M \otimes_k K) \text{ is projective} \}$$

and observe that $\text{Thick}(\alpha)$ is a tensor closed thick subcategory of $\text{mod}\, G$.

Two π-points α and β are equivalent if $\text{Thick}(\alpha) = \text{Thick}(\beta)$, and the equivalence classes are in natural bijection with the points of $\text{Proj}\, H^*(G, k)$; see [6, Theorem 3.6]. The following theorem makes this correspondence explicit.
Theorem 6.2. Let \(p \in \text{Proj} \ H^*(G, k) \). Then there exists a \(\pi \)-point \(\alpha \) such that
\[
\text{Thick}(\alpha) = \{ M \in \text{mod} \, G \mid p \not\in \text{supp}_G(M) \}.
\]

Proof. See Theorem 6.1 of [2]. \(\square \)

7. Proof of the main theorem

This section provides the proof of the main theorem, and we begin with some preparation.

Let \(\alpha \colon K[t]/(t^p) \to KG \) be a \(\pi \)-point for \(G \). This gives rise to a subadditive function \(\chi_\alpha \) on \(\text{mod} \, G \) by setting
\[
\chi_\alpha := \dim_K(\text{Hom}_{K[t]/(t^p)}(\alpha^*(- \otimes_k K), K)).
\]
We may think of \(\chi_\alpha \) as composite
\[
\text{mod} \, G \xrightarrow{- \otimes_k K} \text{mod} \, K \xrightarrow{\alpha^*} \text{mod} \, K[t]/(t^p) \xrightarrow{\chi_K} \mathbb{N}.
\]

Lemma 7.1. We have \(\text{Adloc}(\chi_\alpha) = \text{Thick}(\alpha) \).

Proof. Let \(Z \in \text{mod} \, G \). If \(\alpha^*(Z \otimes_k K) \) is a projective \(K[t]/(t^p) \)-module, then for any exact sequence \(0 \to X \to Y \to Z \to 0 \) in \(\text{mod} \, G \) we have
\[
\chi_\alpha(X) - \chi_\alpha(Y) + \chi_\alpha(Z) = 0.
\]
For the converse, choose an exact sequence \(0 \to X \to Y \to Z \to 0 \) in \(\text{mod} \, G \) with \(Y \) projective. Thus \(\alpha^*(Y \otimes_k K) \) is projective. If
\[
\chi_\alpha(X) - \chi_\alpha(Y) + \chi_\alpha(Z) = 0,
\]
then the sequence
\[
0 \to \alpha^*(X \otimes_k K) \to \alpha^*(Y \otimes_k K) \to \alpha^*(Z \otimes_k K) \to 0
\]
splits, and therefore \(\alpha^*(Z \otimes_k K) \) is projective. \(\square \)

Lemma 7.2. Let \(X \) be a topological space which is a \(T_0 \) space. Fix a set \(P \) of closed subsets of \(X \) that contains the closure \(\overline{\{x\}} \) for each \(x \in X \), and view \(P \) as a poset via the inclusion order. Then the assignment \(x \mapsto \overline{\{x\}} \) identifies \(X \) with the set of join irreducible elements of \(P \).

Proof. Straightforward. \(\square \)

Proof of Theorem 6.1. We consider \(\text{Proj} \ H^*(G, k) \) with the Hochster dual of the Zariski topology. Thus the open subsets are precisely the specialisation closed subsets [3]. The assignment
\[
\chi \mapsto \text{Proj} \ H^*(G, k) \setminus \text{supp}_G(\text{Adloc}(\chi))
\]
identifies the equivalence classes of tensor closed subadditive functions \(\text{mod} \, G \to \mathbb{N} \) with certain closed subsets of \(\text{Proj} \ H^*(G, k) \). This follows from Corollary 5.2 and Theorem 6.1. On the other hand, Theorem 6.2 provides for each \(p \in \text{Proj} \ H^*(G, k) \) a \(\pi \)-point \(\alpha \) such that \(\chi_\alpha \) is a tensor closed subadditive function satisfying
\[
\text{Adloc}(\chi_\alpha) = \{ M \in \text{mod} \, G \mid p \not\in \text{supp}_G(M) \}
\]
by Lemma 7.1. Thus the function \(\chi_\alpha \) is sent to the closure \(\overline{\{p\}} = \{ q \mid q \subseteq p \} \). Moreover, given a \(\pi \)-point \(\beta \) corresponding to \(q \in \text{Proj} \ H^*(G, k) \) we have
\[
\chi_\alpha \geq \chi_\beta \iff \text{Adloc}(\chi_\alpha) \subseteq \text{Adloc}(\chi_\beta) \iff p \supseteq q.
\]
Now the assertion of the theorem follows from Lemma 7.2. \(\square \)
8. π-POINTS AND POINT MODULES

Let G be a finite group scheme over a field k of characteristic $p > 0$. To each π-point $\alpha: K[t]/(t^p) \to KG$ corresponds a point module

$$\Delta_G(\alpha) := \text{res}^K_K(KG, K).$$

This is an endofinite G-module and plays a prominent role in recent work with Iyengar and Pevtsova [3].

Lemma 8.1. We have $\chi_{\Delta_G(\alpha)} = \chi\alpha$.

Proof. Adjunction gives for each $M \in \text{mod } G$ a natural isomorphism

$$\text{Hom}_G(M, \Delta_G(\alpha)) \cong \text{Hom}_{K_K}(M \otimes_k K, \text{Hom}_{K}[t]/(t^p)(KG, K))$$

$$\cong \text{Hom}_{K[1]/(t^p)}(\alpha^*(M \otimes_k K), K)$$

which restricts to submodules over the endomorphisms rings of $\Delta_G(\alpha)$ and K respectively.

Corollary 8.2. Let G be a finite group scheme over a field k. Given π-points α and β of G, the following conditions are equivalent:

1. The π-points α and β are equivalent.
2. The subadditive functions $\chi_{\Delta_G(\alpha)}$ and $\chi_{\Delta_G(\beta)}$ are equivalent.

Proof. Combine Lemmas 7.1 and 8.1.

References

[1] D. J. Benson, J. F. Carlson and G. R. Robinson, On the vanishing of group cohomology, J. Algebra 131 (1990), no. 1, 40–73.
[2] D. J. Benson, S. B. Iyengar, H. Krause, and J. Pevtsova, Stratification for module categories of finite group schemes, preprint 2015; arXiv:1510.06773.
[3] D. J. Benson, S. B. Iyengar, H. Krause, and J. Pevtsova, Colocalising subcategories of modules over finite group schemes, preprint 2016; arXiv:1604.00524.
[4] W. Crawley-Boevey, Tame algebras and generic modules, Proc. London Math. Soc. (3) 63 (1991), no. 2, 241–265.
[5] W. Crawley-Boevey, Modules of finite length over their endomorphism rings, Representations of algebras and related topics (Tsukuba, 1990), 127–184, London Math. Soc. Lecture Note Ser., 168 Cambridge Univ. Press, Cambridge, 1992.
[6] E. M. Friedlander and J. Pevtsova, Π-supports for modules for finite groups schemes, Duke Math. J. 139 (2007), 317–368.
[7] E. M. Friedlander and A. Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), 209–270.
[8] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60.

Dave Benson, Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen AB24 3UE, Scotland U.K.

Henning Krause, Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany.