Toxicity of essential oils from orange (*Citrus sinensis* L. Obbeck) and lemongrass (*Cymbopogon nardus* L. Rendle) on *Aedes aegypti* a vector of Dengue Hemorrhagic Fever (DHF)

N Kurniasih1,*, W Nuryadin1, M N Harahap1, A Supriadin1 and I Kinasih2

1 Department of Chemistry, Faculty of Sciences and Technology, Sunan Gunung Djati Islamic State University, Bandung, Indonesia
2 Department of Biology, Faculty of Sciences and Technology, Sunan Gunung Djati Islamic State University, Bandung, Indonesia

*nunungkurniasih@uinsgd.ac.id

Abstract. *Aedes aegypti* mosquito is one of common vectors for the pathogens of different diseases like dengue hemorrhagic fever. The most common approach to vector-borne disease is by chemical control, mostly through the use of insecticides. As compared to synthetic pesticides, essential oils (EOs) are ecologically safe, have no mammalian toxicity or the chances of development of resistance are reasonable and highly popular with the organic growers. This research has studied the larvicidal activity of essential oil from orange (*Citrus sinensis* L. Obbeck) and lemongrass (*Cymbopogon nardus* L. Rendle). Orange and lemongrass cleaned and cut into small pieces, dried and then blended to obtain crude drug samples. Samples distilled with the Stahl distillation method for 4 hours. Furthermore, terpenoids phytochemical test and test against larvae of *Aedes aegypti* larvicides to obtain the LC50 value. The yield of essential oil of orange (*Citrus sinensis* L Obbeck) obtained is 6.84%, while the essential oil of lemongrass (*Cymbopogon nardus* L. Rendle) was 0.96%. In the phytochemical test essential oils either of orange peel and lemongrass showed terpenoids. From the GCMS data, an essential oil from orange and lemongrass contain citronellal and limonene. Citronellal compound acts as an insecticide ingredient that works as an antifeedant and repellent. An essential oil from orange and lemongrass are toxic, with LC50 values obtained from lemongrass 35.133 ppm is smaller than the orange is 790.935 ppm. The essential oil of lemongrass more toxic than the essential oil of orange. Both of essential oils can be used as a green pesticide candidates.

1. Introduction

Aedes, Anopheles and *Culex* are common vectors for the pathogens of different diseases like polyarthritis, dengue, chikungunya, filariasis malaria, and yellow fever [1-3]. The major vector to transmit diseases is female mosquitoes. Chemical control like insecticides is the most common approach to vector-borne disease [4]. An effective tool to decrease mosquito populations before they emerge as adults is larviciding [5,6]. The chemical method is sufficient for the control of a large population of mosquitoes, just need small quantities, an effective weapon for quick and easy. One of chemical method is use synthetic organic insecticides. Although it very effective, they are have many bad impacts, resulting in ecological hazards [7]. Synthetic organic insecticides would be highly dangerous for the
environment and there are higher chances of developing resistance in insects and affecting the nontarget organisms [8,9].

Natural products, such as essential oils, are explore to the mosquito larvicidal and adulticidal activity [10,11]. The essential oils are composed of various potent bioactive compounds that are having larvicidal activities against various pests and mosquitoes [12-14]. Essential oils contain phytochemicals that are biodegradable, safe for the non-target organism. It would be an alternative to synthetic insecticides by under of their eco-friendly, inexpensive, easily biodegradable effectiveness and have been also used as pesticides for many years to manage the agricultural pests [15-17]. Phytochemicals of essential oil have previously shown different properties such as bactericial, antiviral, insecticidal, fungicidal or insect growth inhibitor and are known to cause toxic effects on various insects [18,19]. This present investigation aimed was to evaluate the toxicity of essential oils from orange (Citrus sinensis L Obbeck) and lemongrass (Cymbopogon nardus L. Rendle) against Aedes aegypti mosquitoes.

2. Materials and methods

2.1. Chemicals ad reagent
Orange (Citrus sinensis L. Obbeck) and lemongrass (Cymbopogon nardus L. Rendle) taken from Cibiru, Bandung. The 3rd instar larvae of Aedes aegypti mosquitoes from entomology laboratory Institute Technology Bandung. Liebermann-Burchard reagent and ethanol were purchased from Merck.

2.2. Methods

2.2.1. Distillation of essential oils. Orange and lemongrass cleaned and cut into small pieces, dried and then blended to obtain crude drug samples. Both samples (262.45 g orange and 200.15 g lemongrass) distilled with Stahl distillation method for 4 hours.

2.2.2. Phytochemistry assay and mass spectrometric identification. The Liebermann-Burchard reaction (acetic anhydride-conc. H₂SO₄) is used in this test, which produces a blue-green colour with most triterpenes and sterols. Mass spectrometric identification with GCMS – QP2010 Ultra in chemistry laboratory of Universitas Pendidikan Indonesia.

2.2.3. Larval bioassay. The third instar larvae of Aedes aegypti mosquito was used for the larvicidal property of the EOs, according to the WHO protocol [20]. In every 100 ml of the glass beaker, fifteen 3rd instar larvae were transferred. The essential oils were tested at 9 different concentrations as follows 0, 250, 500, 750, 1000, 1250, 1500, 1750 and 2000 ppm respectively. Oils were dissolved in ethanol as a stock solution and added to the beakers to produce the desired concentration. The test was replicated three times for each test concentration. A total number of dead larvae in each beaker were counted after 24 h, and percentage of larval mortality was calculated.

2.2.4. Statistical analysis. The average larval mortality data were subjected to regression analysis using the probit table.

3. Results and discussion
The yield of essential oil of orange (Citrus sinensis L. Obbeck) obtained is 6.84%, while the essential oils of lemongrass (Cymbopogon nardus L. Rendle) were 0.96%.
Figure 1. Stahl distillation to isolated the essential oils from orange and lemongrass.

In the phytochemical test essential oils either of orange peel and lemongrass showed terpenoids. From the GC-MS data, α-pinena, methyl salicylate, δ-carene, citronellal and limonene were found as the major aromatic compounds in lemongrass oil (Cymbopogon nardus L. Rendle). Limonene, citronellal, citronellol, geraniol, linalool, α-pinene, myrcene, sabinene, linalyl acetate, geraniol and α-terpineol were found in orange oil (Citrus sinensis L. Obbeck).

Figure 2. GCMS spectrum of essential oil from lemongrass oil (Cymbopogon nardus L. Rendle).

The five major compounds and their fragmentation of essential oil from lemongrass (Cymbopogon nardus L. Rendle) showed in Table 1.

Table 1. Identification of major chemical compositions by GC-MS of essential oil from lemongrass (Cymbopogon nardus L. Rendle).

No	R.time	% Area	Mol. weight	Fragmentation (m/z)	Compound name
1	4.403	30.42	136	37, 39, 53, 67, 77, 93, 121, 136	α-Pinene
2	10.402	13.74	152	39, 53, 65, 92, 120, 152, 154	Methyl Salicylate
3	5.830	11.66	136	38, 41, 67, 79, 93, 121, 136	δ-carene
4	9.228	9.71	154	41, 55, 69, 83, 95, 111, 121, 139, 154	Citronellal
5	6.215	3.39	136	41, 53, 68, 79, 93, 107, 121, 136	Limonene
A safe environment due to mosquito control is the main reason for using essential oils compared to synthetic pesticides. Essential oils from orange (*Citrus sinensis* L Obbeck) and lemongrass (*Cymbopogon nardus* L. Rendle) have the power to kill mosquito larvae that is quite promising.

Table 2. Relative toxicity of essential oils from orange (*Citrus sinensis* L. Obbeck) and lemongrass (*Cymbopogon nardus* L. Rendle) against 3rd instar larvae of *Aedes aegypti* mosquitoes after 24 h of treatment.

Essential oils	LC$_{50}$ (mg/l)	95% confidence limits (mg/l)	Fit of probit line
orange	790.935	1.933 – 3.102	15.154
lemongrass	35.133	0.708 - 1.431	4.261

LC$_{50}$ (lethal concentration required to kill 50% of the population) values was highly toxic if LC$_{50} \leq$ 30 ppm, moderately toxic if LC$_{50} \leq$ 1000 ppm, and nontoxic if LC$_{50} >$ 1000 ppm. An essential oil from orange (*Citrus sinensis* L Obbeck) and lemongrass (*Cymbopogon nardus* L. Rendle) are toxic, with LC$_{50}$ values obtained from lemongrass 35.133 ppm is smaller than the orange is 790.935 ppm. The essential oil of lemongrass more toxic than the essential oil of orange.

4. **Conclusion**

Both of essential oil from orange (*Citrus sinensis* L. Obbeck) and lemongrass (*Cymbopogon nardus* L. Rendle) contain citronellal and limonene. Citronellal compound acts as an insecticide ingredient that works as an antifeedant and repellent. The findings of the present investigation revealed that orange and lemongrass oil have a larvicidal effect which is concentration-dependent for the *Aedes aegypti* larvae. Based on research results essential oil can kill mosquito larvae, so they can be used as a green pesticide candidates.

Acknowledgement

This publication research was financially supported by Center for Research and Publishing UIN Sunan Gunung Djati Bandung.

References

[1] World Health Organization 2016 *World malaria report 2015* (World Health Organization)

[2] Shepard D S, Halasa Y A, Tyagi B K, Adhish S V, Nandan D, Karthiga K S and INCLEN Study Group 2014 Economic and disease burden of dengue illness in India *The American journal of tropical medicine and hygiene* 91 6 1235-1242

[3] Sabesan S, Vanamail P, Raju K H K and Jambulingam P 2010 Lymphatic filariasis in India: epidemiology and control measures *Journal of postgraduate medicine* 56 3 232

[4] Nyamador W S, Ketoh G K, Amévoink, Nuto Y, Koumaglo H K and Glitho I A 2010 Variation in the susceptibility of two Callosobruchus species to essential oils *Journal of Stored Products Research* 46 1 48-51

[5] Govindaranjan M and Karuppannan P 2011 Mosquito larvicidal and ovicidal properties of Eclipta alba (L.) Hassk (Asteraceae) against chikungunya vector, *Aedes aegypti* (Linn.)(Diptera: Culicidae) *Asian Pacific Journal of Tropical Medicine* 4 1 24-28

[6] Gbolade A A, Oyedele A O, Sosan M B, Adewoyin F B and Soyelu O L 2000 Mosquito repellent activities of essential oils from two Nigerian Ocimum species *Journal of Tropical Medicinal Plants* 1 1/2 146-148

[7] Govindaranjan M 2010 Chemical composition and larvicidal activity of leaf essential oil from *Clausena anisata* (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species *Asian
[8] Kweka E J, Nyindo M, Mosha F and Silva A G 2011 Insecticidal activity of the essential oil from fruits and seeds of Schinus terebinthifolia Raddi against African malaria vectors Parasites and vectors 4 1 129

[9] Phasomkusolsil S and Soonwera M 2011 Comparative mosquito repellency of essential oils against Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say) Asian Pacific Journal of Tropical Biomedicine 1 1 S113-S118

[10] Gayathri V and Murthy P B 2006 Reduced susceptibility to deltamethrin and kdr mutation in Anopheles stephensi Liston, a malaria vector in India Journal of the American Mosquito Control Association 22 4 678-688

[11] Sutthanont N, Choochote W, Tuetun B, Junkum A, Jitpakdi A, Chaithong U and Pitasawat B 2010 Chemical composition and larvicidal activity of edible plant- derived essential oils against the pyrethroid- susceptible and resistant strains of Aedes aegypti (Diptera: Culicidae) Journal of Vector Ecology 35 1 106-115

[12] Rahuman A A, Bagavan A, Kamaraj C, Saravanan E, Zahir A A and Elango G 2009 Efficacy of larvicidal botanical extracts against Culex quinquefasciatus Say (Diptera: Culicidae) Parasitology Research 104 6 1365

[13] Fradin M S and Day J F 2002 Comparative efficacy of insect repellents against mosquito bites New England Journal of Medicine 347 1 13-18

[14] Jaswanth A, Ramanathan P and Ruckmani K 2002 Evaluation of mosquitocidal activity of Annona squamosa leaves against filarial vector mosquito, Culex quinquefasciatus Say Indian Journal of Experimental Biology 40 3 363-365

[15] Pugazhvendan S R and Elumali K 2013 Larvicidal activity of selected plant essential oil against important vector mosquitoes: dengue vector, Aedes aegypti (L.), malarial vector, Anopheles stephensi (Liston) and filarial vector, Culex quinquefasciatus (Say)(Diptera: Culicidae) Middle-East Journal of Scientific Research 18 1 91-95

[16] Das N G, Goswami D and Rabha B 2007 Preliminary evaluation of mosquito larvicidal efficacy of plant extracts Journal of vector borne diseases 44 2 145

[17] Panella N A, Dolan M C, Karchesy J J, Xiong Y, Peralta-Cruz J, Khasawneh M and Maupin G O 2005 Use of novel compounds for pest control: insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar Journal of medical entomology 42 3 352-358

[18] Isman M B, Wan A J and Passreiter C M 2001 Insecticidal activity of essential oils to the tobacco cutworm, Spodoptera litura Fitoterpia 72 1 65-68

[19] Al-Hader A A, Hasan Z A and Aqel M B 1994 Hyperglycemic and insulin release inhibitory effects of Rosmarinus officinalis Journal of ethnopharmacology 43 3 217-221

[20] World Health Organization 2005 Guidelines for laboratory and field testing of mosquito larvicides (No. WHO/CDS/WHOPES/GCDPP/2005.13) (Geneva: World Health Organization)