Effective kinetic description of event-by-event pre-equilibrium dynamics in high-energy heavy-ion collisions

Aleksi Kurkela
Theoretical Physics Department, CERN, Geneva, Switzerland and
Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway

Aleksas Mazeliauskas
Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany and
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA

Jean-François Paquet
Department of Physics, Duke University, Durham, NC 27708, USA and
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA

Sören Schlichting
Department of Physics, University of Washington, Seattle, WA 98195-1560, USA

Derek Teaney
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA

(Dated: May 4, 2018)

We develop a macroscopic description of the space-time evolution of the energy-momentum tensor during the pre-equilibrium stage of a high-energy heavy-ion collision. Based on a weak coupling effective kinetic description of the microscopic equilibration process (à la “bottom-up”), we calculate the non-equilibrium evolution of the local background energy-momentum tensor as well as the non-equilibrium linear response to transverse energy and momentum perturbations for realistic boost-invariant initial conditions for heavy ion collisions. We demonstrate how this framework can be used on an event-by-event basis to propagate the energy momentum tensor from far-from-equilibrium initial state models, e.g. IP-Glasma, to the time τ_{hydro} when the system is well described by relativistic viscous hydrodynamics. The subsequent hydrodynamic evolution becomes essentially independent of the hydrodynamic initialization time τ_{hydro} as long as τ_{hydro} is chosen in an appropriate range where both kinetic and hydrodynamic descriptions overlap. We find that for $\sqrt{s_{NN}} = 2.76$ TeV central Pb-Pb collisions, the typical time scale when viscous hydrodynamics with shear viscosity over entropy ratio $\eta/s = 0.16$ becomes applicable is $\tau_{\text{hydro}} \sim 1$ fm/c after the collision.

CONTENTS

I. Introduction 2
II. Pre-equilibrium evolution 3
A. Macroscopic description of equilibration 3
B. Effective kinetic theory & bottom-up thermalization 4
C. Approach to hydrodynamics for the homogeneous background 5
D. Hydrodynamization time and pre-equilibrium entropy production 7
III. Response functions 9
A. General decomposition of macroscopic response functions 9
B. Non-equilibrium response functions from effective kinetic theory 9
1. Scaling of response functions 10
2. Hydrodynamic constitutive equations 11
IV. Practical implementation: KøMPøST 12
V. Event-by-event pre-equilibrium dynamics & matching to viscous hydrodynamics 15
A. Energy perturbations with MC-Glauber initial conditions 16
1. Average hydrodynamic fields 17
2. Transverse plane profiles of hydrodynamic fields 19
3. Hadronic observables 19
B. Energy and momentum perturbations with IP-Glasma initial conditions 21
1. Average hydrodynamic fields 23
2. Transverse plane profiles of hydrodynamic fields 23
3. Hadronic observables 26
VI. Effective descriptions of early time dynamics 26
I. INTRODUCTION

High-energy heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) probe nuclear matter at extreme densities and temperatures. One of the primary goals of heavy-ion research is to study the properties of the new phase of deconfined matter created in such collisions: the Quark-Gluon Plasma (QGP).

Sophisticated multistage models, in which the QGP evolution is described by viscous relativistic hydrodynamics, have been remarkably successful in describing the soft hadronic observables measured in heavy-ion collisions [1–5]. Comprehensive model-to-data comparisons have been made to quantify systematically the constraints provided by measurements on the transport coefficient of the QGP, and to understand the impact of different observables on these constraints [6–8].

Considerable progress has been made to increase the predictive power of hydrodynamic simulations and to fully understand the assumptions built into such models. These advances include an evolving understanding of the conditions necessary for hydrodynamics to be applicable [9–13], and a more consistent treatment of the transition from hydrodynamics to hadronic kinetics at late times [14]. Progress is also being made on understanding the kinetics of early stages of the collision and the subsequent transition to hydrodynamics, which is the topic of this work.

The initial conditions of hydrodynamic models remain one of the major sources of uncertainty in phenomenological studies of heavy ion collisions. We will provide a practical way to propagate the energy-momentum tensor in a far-from-equilibrium initial state to a time when viscous hydrodynamics becomes applicable. Our goal is to have consistent overlapping descriptions of the early time dynamics, and to limit the dependence of the hydrodynamic model on ad hoc parameters such as the hydrodynamic initialization time \(\tau_{\text{hydro}} \) [15, 16].

One approach to the initial conditions is simply to parameterize the initial energy density and its fluctuations, sidestepping the thermalization process with additional parameters. Glauber-based models are commonly used for this purpose, and provide the energy density at \(\tau_{\text{hydro}} \) [17–20]. Besides the energy density, the remaining hydrodynamic fields (such as the flow velocity and the shear and bulk tensors) must also be parameterized, leading to an uncomfortable growth in the number of free parameters. Physically motivated models such as free streaming [21, 22] and the gradient expansion [15, 23, 24] have been used to relate the initial energy density to the full stress tensor which is ultimately needed to start the hydrodynamic simulation.

At weak coupling significant progress has been made in constructing a complete picture of the early time dynamics before \(\tau_{\text{hydro}} \). Since the relevant degrees of freedom change as a function of time, a consistent theoretical description of the pre-equilibrium stages requires a combination of different weak-coupling methods. Based on the Color Glass Condensate framework (CGC), the initial state immediately after the collision is characterized by strong color fields, whose dynamics is essentially non-perturbative and best-described in terms of classical-statistical field theory [25–29]. After a short period of time \(\sim 1/Q_s \) the system becomes increasingly dilute. Genuine quantum effects can then be no longer neglected, and the subsequent dynamics is better described in terms of QCD effective kinetic theory [30]. Several studies (which include some of the present authors) have investigated the various stages of the equilibration process in detail, including the early time dynamics using classical-statistical real-time lattice techniques [31–34], as well as the subsequent approach towards local thermal equilibrium using effective kinetic theory simulations [35–38], i.e. the “bottom-up” thermalization scenario [39].

Although the output of classical field simulations has been used to initialize hydrodynamic codes [40], a consistent treatment at weak coupling would pass the classical output through the kinetic theory simulation to determine the initial conditions for the subsequent hydrodynamic evolution. In this paper we provide a concrete realization of this set of steps, allowing for an event-by-event description of the early time dynamics of high-
energy heavy-ion collisions which smoothly approaches hydrodynamics.

Elaborating on the ideas formulated in Ref. [38], we describe the pre-equilibrium dynamics macroscopically in terms of non-equilibrium response functions of the energy-momentum tensor. Specifically, linearized energy and momentum perturbations are propagated on top of a boost-invariant and locally homogeneous background, and the energy-momentum tensor is evolved from a nonequilibrium initial state to a later time when viscous hydrodynamics becomes applicable. We demonstrate that the pre-equilibrium evolution smoothly matches onto hydrodynamics, and the subsequent hydrodynamic evolution becomes essentially independent of the matching time \(\tau_{\text{hydro}} \).

In order to obtain a smooth transition from kinetic description to realistic viscous hydrodynamic evolution with typical shear viscosity over entropy ratio \(\eta/s \sim 0.16 \), the coupling constant \(\lambda = N_c g^2 \) (the single parameter of kinetic theory) has to be extrapolated to large values of \(\lambda = 10–25 \). For such values of \(\lambda \), the entire nonequilibrium kinetic evolution is very well described by universal functions of scaled evolution time \(\tau T/\eta/s \).

The scalability of background and linear response functions greatly simplifies practical application, since the kinetic pre-equilibrium evolution needs only to be calculated once and then can be applied to any event-by-event hydrodynamic simulations. In order to facilitate the use of our results in phenomenological description of event-by-event high-energy heavy-ion collisions, we make public the linearized kinetic theory response functions and our implementation of the linear pre-equilibrium propagator KeMPoST [41].

The paper is organized as follows. We introduce a general macroscopic description of local pre-equilibrium evolution based on linear response theory out of equilibrium in Sec. II A, and discuss how to obtain the relevant inputs from an underlying microscopic description in effective kinetic theory in Sec. II B. We further study the equilibration of a locally uniform background in Sec. III C and derive local hydrodynamization time for realistic initial conditions in Sec. III D. In Sec. III A we provide the general decomposition of energy-momentum tensor response functions to initial energy and momentum perturbations and in Sec. III B we discuss their realization in effective kinetic theory. The implementation of the kinetic theory pre-equilibrium phase for hydrodynamic models of heavy-ion collisions is detailed in Sec. IV, and then applied to two types of initial conditions, MC-Glauber and IP-Glasma initial conditions, in Sections V A and V B respectively. We conclude with a compact summary of our findings and discussion of future directions in Sec. VII. Several appendices provide details on the background scaling functions (Appendix A), determination of the kinetic response functions (Appendix B), free streaming response functions (Appendix C), hydrodynamic response functions (Appendix D) and kinetic response in the low-\(k \) limit (Appendix E).

FIG. 1. The transverse energy density distribution for boost invariant IP-Glasma initial conditions at the start of the kinetic theory pre-equilibrium evolution at \(\tau_{\text{EKT}} = 0.2 \) fm and after the linearized kinetic evolution given by Eq. (4) at the hydrodynamic initialization time \(\tau_{\text{hydro}} = 1.2 \) fm. The white circle indicates the size of the causal neighbourhood in the transverse plane, Eq. (2).

II. PRE-EQUILIBRIUM EVOLUTION

A. Macroscopic description of equilibration

Although the initial state shortly after the collision of two heavy nuclei is presumably very complicated, many of the microscopic details wash out over the first \(\sim 1 \) fm/c as the Quark Gluon Plasma (QGP) equilibrates and becomes a hydrodynamically expanding fluid. Since the late time hydrodynamic behavior is fully characterized by the energy and momentum densities, it is conceivable that the most important features of the pre-equilibrium evolution also can be characterized by the energy-momentum tensor \(T^{\mu \nu} \). Following the computational strategy of Ref. [38], we will use QCD kinetics as a microscopic theory to determine the nonequilibrium evolution of \(T^{\mu \nu} \). This evolution propagates the non-equilibrium stress from an initial time \(\tau_{\text{EKT}} \sim 0.1 \) fm to a time when hydrodynamics becomes applicable \(\tau_{\text{hydro}} \sim 1 \) fm, and provides a map of the form

\[
T^{\mu \nu}(\tau_{\text{EKT}}, x)_{\text{out-of-equilibrium}} \rightarrow T^{\mu \nu}(\tau_{\text{hydro}}, x), \quad (1)
\]
as illustrated by Fig. 1.

We first note that, by virtue of causality, all contributions to the energy-momentum tensor at a given spacetime point \((\tau_{\text{hydro}}, x) \) are fully determined by the initial conditions at earlier time \(\tau_{\text{EKT}} \) in the causal neighborhood of point \(x \)

\[
|x' - x| < c(\tau_{\text{hydro}} - \tau_{\text{EKT}}), \quad (2)
\]
which is illustrated by a circle in Fig. 1. The energy-momentum tensor can always be split into a locally homogeneous background and perturbations around it

\[T^\mu{}_{\nu}(\tau_{EKT},x') = \mathcal{T}^\mu{}_{\nu}(\tau_{EKT}) + \delta T^\mu{}_{\nu}(\tau_{EKT},x'). \]

(3)

Since we anticipate the time scale of the equilibration process \((\tau_{\text{hydro}} - \tau_{EKT}) \lesssim 1 \text{ fm}\) to be small compared to the system size \(R_{\text{Pb}} \sim 5 \text{ fm}\), the long wavelength variations (of order nucleon size or less) are \(1/\sqrt{N}\) suppressed by the number of participant sources. Small perturbations around the background \(\mathcal{T}^\mu{}_{\nu}(\tau_{\text{hydro}})\) and the response to the initial out-of-equilibrium perturbations \(\delta \mathcal{T}^\mu{}_{\nu}(\tau_{EKT})\) can be described (to first approximation) by linear response theory. Based on this approach, the energy-momentum tensor at \((\tau_{\text{hydro}},x)\) can be expressed as a sum of the evolved background \(\mathcal{T}^\mu{}_{\nu}(\tau_{\text{hydro}})\) and the response to the initial out-of-equilibrium perturbations \(\delta \mathcal{T}^\mu{}_{\nu}(\tau_{EKT})\):

\[
T^\mu{}_{\nu}(\tau_{\text{hydro}},x) = \mathcal{T}^\mu{}_{\nu}(\tau_{\text{hydro}}) + \mathcal{T}^\mu{}_{\nu}(\tau_{\text{hydro}}) \times (4)
\]

\[
\times \int d^2x' G^\mu{}_{\alpha\beta}(x,x',\tau_{\text{hydro}},\tau_{EKT}) \delta \mathcal{T}^\alpha{}_{\beta}(\tau_{EKT},x').
\]

The first term represents the non-linear equilibration of the boost invariant homogeneous background. This contribution, discussed in detail in Sec. II C, has no transverse flow, but constitutes the major part of the final energy density and pressure. The second term in Eq. (4) is a convolution of initial perturbations with the response function \(G^\mu{}_{\alpha\beta}(x,x',\tau_{\text{hydro}},\tau_{EKT})\), which in our work is the sole contributor to the off-diagonal components of \(T^\mu{}_{\nu}(\tau_{\text{hydro}},x)\). The multicomponent structure of \(G^\mu{}_{\alpha\beta}\) and its realization in kinetic theory is examined in Sec. III. Finally, note that the longitudinal expansion has been factored out from the response functions by normalizing perturbations with the background energy density.

By applying the propagation formula in Eq. (4) to all points \(x\) in the transverse plane, we construct initial conditions \(T^\mu{}_{\nu}(\tau_{\text{hydro}},x)\), which can be used as input to the subsequent hydrodynamic description of high-energy heavy-ion collisions. Since the out-of-equilibrium evolution of the background and response functions smoothly approaches hydrodynamics, the initialization time \(\tau_{\text{hydro}}\) can be changed without affecting physical observables. Most importantly, this evolution consistently describes the pre-equilibrium production of entropy and transverse flow.

Eq. (4) provides a general framework to study the macroscopic features of the pre-equilibrium evolution. However, its inputs, the non-equilibrium evolution of the background stress \(\mathcal{T}^\mu{}_{\nu}(\tau)\) and response functions \(G^\mu{}_{\alpha\beta}(x,x',\tau_{\text{hydro}},\tau_{EKT})\), have to be computed based on an underlying microscopic description. In this work we use a weakly coupled kinetic theory to compute these inputs, and extrapolate our results to realistic values of the coupling constant. However, we note that in future applications, these could be also based on different microscopic descriptions e.g. strongly coupled holographic models.

While the details of the calculation are described in the following sections, we point out an important feature of the dynamics that greatly simplifies the practical use of Eq. (4) for realistic values of coupling constant. Specifically, we find that for the relevant range of couplings \(\lambda\) (or equivalently \(\eta/s\)), all of the \(\eta/s\) dependence of the background and response functions is described by \(\eta/s\)-independent functions of a scaled time, \(\tau T/(\eta/s)\). Thus, these universal functions can be tabulated for one value of \(\eta/s\), and the results can be used in Eq. (4) to initialize hydrodynamic simulations over a significant \(\eta/s\) range. Interestingly, this scaling property also allows us to smoothly extrapolate the weakly coupled results into the strongly coupled regime [42, 43].

B. Effective kinetic theory & bottom-up thermalization

In this work the microscopic description of equilibration is provided by QCD effective kinetic theory [30, 37, 38]. Specifically, for the boost-invariant SU(\(N_c\)) gluonic plasma considered here, the Boltzmann equation for the color and spin averaged gluon distribution function \(f_{x,p}\) takes the form\(^2\)

\[
\partial_\tau f_{x,p} + \frac{p}{|p|} \cdot \nabla_x f_{x,p} - \frac{p^2}{\tau} \partial_{p^2} f_{x,p} = -C_{2\leftrightarrow 2}[f_{x,p}] - C_{1\leftrightarrow 2}[f_{x,p}].
\]

(5)

\(C_{2\leftrightarrow 2}[f_{x,p}]\) is the collision integral for elastic scatterings at leading order in the coupling constant, \(\lambda = 4\pi\alpha_s N_c\). The elastic scattering matrix element,

\[
|M|^2 = 2\lambda^2\nu_g \left(9 + \frac{(s-t)^2}{u^2} + \frac{(u-s)^2}{t^2} + \frac{(t-u)^2}{s^2} \right),
\]

(6)

diverges at small momentum transfer, and is regulated by a screening mass which is adjusted so that the simulation reproduces the leading order drag and momentum diffusion coefficients for isotropic distributions [38, 44]. Similarly, \(C_{1\leftrightarrow 2}[f_{x,p}]\) describes the leading order inelastic (particle number changing) bremsstrahlung processes. It includes the Landau-Pomeranchuk-Migdal suppression of

\(^1\) We will consider a boost-invariant form of the energy-momentum tensor throughout this work and bold spatial vectors \(x\) lie entirely in the transverse plane. Note that in principle this framework could be extended to include an inhomogeneous background and variations of the energy-momentum tensor in rapidity.

\(^2\) Here \(x \equiv (x,y)\) is a 2-dimensional transverse coordinate vector, while \(p \equiv (p^\tau, p^\rho, p^\rho)\) is a 3-dimensional momentum vector.
collinear radiation, and also uses the isotropic screening approximation [37]. Details of the numerical implementation can be found along with detailed expressions for the matrix elements in Appendix A of Ref. [38].

We determine the microscopic input to Eq. (4) by performing two independent sets of calculations: one for the average background \(T^{\mu\nu} \) described in Sec. II C, and one for the response functions \(G^{\alpha\beta}_{\mu\nu} \) described in Sec. III B. We calculate the evolution of the average energy-momentum tensor \(T^{\mu\nu} \) by studying the equilibration of a spatially homogeneous “background” distribution \(\bar{f}(\tau, \mathbf{p}) \), starting from an initial condition

\[
\bar{f}_0(\mathbf{p}, \theta) = \frac{2A Q_0}{\lambda |\mathbf{p}|} e^{-4 \frac{p_z^2}{Q^2_0} [1 + (\xi^2 - 1) \cos^2(\theta)]} \quad (7)
\]

where we denote \(\cos(\theta) = p_z / |\mathbf{p}| \) and choose \(Q_0 = 1.8 Q_s \), \(\xi = 10 \), and \(A = 5.24 \) as in previous publications [37, 38]. This specific form is motivated by classical simulations of the early time dynamics [45], where the phase space distribution at \(\tau \sim \tau_{\text{EKT}} \) approaches a scaling form characterized by a large initial momentum anisotropy and a transverse momentum scale \(\sim Q_s \) as in the original “bottom-up” paper [39].

Before we analyze the evolution of the background energy-momentum tensor in detail, we briefly review how the phase space distribution of gluons evolves in the “bottom-up” equilibration scenario [39], which anticipated the essential physics at weak coupling. Even at moderate values of the coupling constant (\(\lambda = 10 \)), previous numerical simulations have shown that the system roughly follows the three different stages of the bottom-up picture [37]. This is illustrated in Fig. 2, where we present contour plots of the phase space distribution as a function of time. At early times, shown in Fig. 2(a), the longitudinal expansion competes with the elastic 2 ↔ 2 broadening of the distribution function. Subsequently, soft bremsstrahlung emissions from high momentum partons begin to fill up the low momentum phase space as shown in Fig. 2(b). These soft particles can equilibrate via elastic 2 ↔ 2 interactions, leading to the formation of a soft and approximately thermal component at low momentum seen in Fig. 2(b); simultaneously the few remaining energetic partons (“mini-jets”) are quenched and lose their energy to the soft thermal bath. Eventually, the mini-jets are fully quenched, the system approaches local thermal equilibrium, and the distribution function becomes well described by Bose-Einstein distribution with viscous corrections, c.f. Fig. 2(c).

C. Approach to hydrodynamics for the homogeneous background

Based on the above picture of the underlying microscopic dynamics, we will now discuss how the boost invariant homogeneous background evolves towards viscous hydrodynamics. As explained in Sec. II A, our main interest is in the non-equilibrium evolution of the energy-momentum tensor, which can be calculated directly from the underlying particle distribution function \(\bar{f}(\tau, \mathbf{p}) \)

\[
T^{\mu\nu}(\tau) = \nu_g \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{p^\mu p^\nu}{p} \bar{f}(\tau, \mathbf{p}), \quad (8)
\]

where \(\nu_g = 2(N_c^2 - 1) = 16 \) is the number of degrees of freedom for a pure glue plasma. We note that away from
equilibrium, \(T^{\mu\nu} \) does not satisfy hydrodynamic constitutive equations, and the energy-momentum tensor captures only the first moments of the non-equilibrium distribution function. However, the lowest moments of \(T^{\mu\nu} \) provide sufficient information for the late time hydrodynamic evolution, and we will therefore neglect the effect of higher-order moments throughout this work.

Our results for the evolution of the diagonal elements of the background energy-momentum tensor\(^3\),

\[T^{\mu\nu} = \text{diag} \left(e, P_t, P_t, \frac{1}{3} P_L \right), \]

are compactly summarized in Fig. 3, which shows the time evolution of the stress-energy tensor for different values of the 't Hooft coupling, \(\lambda = 10, 15, 20, 25 \). Motivated by previous work \([37, 46]\), we have rescaled the time and stress axes in order to fairly compare the physics at different values of the coupling. Specifically, at asymptotically late times the temperature approaches ideal hydrodynamics, parametrized as

\[T_{id.}(\tau; \Lambda_T) \equiv \frac{\Lambda_T}{(\tau \Lambda_T)^{1/3}}, \]

where \(\Lambda_T \) is a dimensionful integration constant

\[\Lambda_T^2 \equiv \lim_{\tau \to \infty} (\tau T^3). \]

In Fig. 3 we first normalized the stress on the vertical axis by its asymptotic ideal hydrodynamics expectation

\[T_{id.}(\tau) = \nu g \frac{\pi^2}{30} T_{id.}(\tau) \text{diag} \left(1, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right), \]

and then rescaled the time on the horizontal axis by the equilibrium relaxation time \(\tau_R(\tau) \), which for typical modes is determined by the shear viscosity and the ideal temperature \(T_{id.}(\tau; \Lambda_T) \) as

\[\tau_R(\tau; \Lambda_T) \equiv \frac{\eta/s}{T_{id.}(\tau; \Lambda_T)}. \]

After these rescalings the stress tensor follows a universal curve which is approximately independent of the coupling constant, at least for the range of couplings considered in this work.

Such a scaling is guaranteed to work at late times where kinetic theory matches viscous hydrodynamics. Indeed, in second-order conformal hydrodynamics the energy density in a Bjorken expansion has the following asymptotic form (see Ref. \([47]\) and Appendix A.1):

\[
\frac{e(\tau)}{\nu g \frac{\pi^2}{30} T_{id.}^4(\tau)} = 1 - \frac{8}{3} \frac{\eta/s}{T_{id.}} + \frac{8}{9} (3 - C_2) \left(\frac{\eta/s}{T_{id.}} \right)^2,
\]

where

\[
C_2 = \frac{\tau \pi}{\eta/(sT)} \left(1 - \frac{\lambda_1}{\tau \pi} \right)
\]

is a dimensionless combination of second order transport coefficients \(\tau_\pi, \lambda_1 \) and \(\eta/s \). In leading-order kinetic theory all transport coefficients are functions of the coupling constant \(\lambda \)—the only free parameter of the theory. Consequently there is a one-to-one correspondence between the macroscopic parameter \(\eta/s \) and the microscopic parameter \(\lambda \) used in the simulation. (The details of the matching between the macroscopic and microscopic parameters are given in Appendix A.) Unlike \(\eta/s \), the ratio \(C_2 \) has a much weaker dependence on the coupling constant \([48]\), and thus the coupling constant dependence in the hydrodynamic result (Eq. (14)) is essentially completely contained in the scaled time variable\(^4\)

\[
\frac{\tau}{\tau_R(\tau)} \equiv \frac{\tau T_{id.}(\tau)}{\eta/s}.
\]

Returning to Fig. 3, we see that for a substantial range of coupling constants (or \(\eta/s \)), the non-equilibrium evolution of the energy-momentum tensor follows universal functions of scaled time \(\tau T_{id.}/(\eta/s) \), which are independent of the value of the coupling constant. Although such behavior is expected to emerge at late times, it is remarkable that the early time dynamics also exhibits such a

\(^3\) Off-diagonal elements of the background energy-momentum tensor vanish by the symmetries of the underlying distribution. Hence off-diagonal contributions of \(T^{\mu\nu} \) that may exist at initial time \(\tau_{\text{EKT}} \) will be treated as linearized perturbations.

\(^4\) In plots we include an additional factor of \(1/4\pi \) so that scaled time \(\tau T_{id.}/(4\pi\eta/s) \) is typically of order unity.
universal behavior\(^5\). Similar observations have also been reported in [12, 46, 49], where this behavior is referred to as “hydrodynamic attractors”.

Exploiting the observed scaling property of the kinetic evolution, we will express the entire non-equilibrium energy-momentum tensor evolution in terms of a universal function of the scaled time \(\tau T_{id.}/(\eta/s) \). Since for a Bjorken expansion the longitudinal and transverse pressure can be readily determined from the conservation law \(P_L(\tau) = -\partial_\tau (\tau e(\tau)) \) and the tracelessness of the energy-momentum tensor \(-e + 2P_T + P_L = 0\), there is in fact only one independent function. Choosing the energy density \(e(\tau) \) as the independent variable, the entire pre-equilibrium evolution of the background energy-momentum tensor can be parametrized as

\[
e = \nu g \frac{\pi^2}{30} T_{id.}^4 E \left[\frac{\tau T_{id.}}{\eta/s} \right],
\]

with the universal scaling function \(E \left[\frac{\tau T_{id.}}{\eta/s} \right] \). For asymptotically early times \(\tau T_{id.}/(\eta/s) \ll 1 \) the effective kinetic theory evolution is approximately fitted onto the free-streaming behavior, while for late times \(\tau T_{id.}/(\eta/s) \gg 1 \), \(E \left[\frac{\tau T_{id.}}{\eta/s} \right] \) is very well described by the hydrodynamic asymptotics, Eq. (14), with \(C_2 \approx 1 \) determined in Appendix A. It is straightforward to construct a parametrization of \(E(x) \) which interpolates between the two limits and the resulting fit curve is displayed in Fig. 4.

The explicit parametrization of \(E(x) \) is provided in Appendix A. We emphasize once again that, thanks to the scaling of the background evolution with \(\eta/s \), the same fitted kinetic theory curve can be used for different values of \(\eta/s \) and different values of the initial energy density to map the early out-of-equilibrium energy density to the hydrodynamized energy-momentum tensor at later times.

\[\text{D. Hydrodynamization time and pre-equilibrium entropy production}\]

Based on the results in Fig. 3, we observe that, independently of the coupling constant, the kinetic description of equilibrating quark-gluon plasma overlaps well with hydrodynamics as soon as the reduced scaled time

\[
\tau T_{id.}/(\eta/s) = \frac{(4\pi\eta/s)^{5/4}}{\Lambda_T^2} \approx 1.
\]

where \(\Lambda_T \) is an energy scale defined through the asymptotic temperature \(\tau T_{id.}/(\eta/s) \), or alternatively to the asymptotic energy or entropy densities of the system. Specifically for a Bjorken expansion the temperature, energy density, and entropy density have the asymptotic forms:

\[
\lim_{T \to \infty} \tau T^3 = \Lambda_T^2,
\]

\[
\lim_{T \to \infty} \tau e^{3/4} = \Lambda_E^2,
\]

\[
\lim_{T \to \infty} \tau s = \Lambda_S^2,
\]

where \(\Lambda_T \), \(\Lambda_E \), and \(\Lambda_S \) are all related to each other by the equation of state. We will parametrize all equations of state with an effective number of degrees of freedom

\[
e = \nu_{\text{eff}}(T) \frac{\pi^2}{60} T^4.
\]

where \(\nu_{\text{eff}}(T) = \nu_g + 2(N^2_c - 1) = 16 \) for the gluon gas used in simulations, while for a three flavor gas of quarks and gluons \(\nu_{\text{eff}}(T) = 47.5 \). Finally, at \(T \sim 0.4 \text{ GeV} \) lattice QCD simulations give \(\nu_{\text{eff}} \sim 40 \) [50, 51]. Using the definition Eq. (20) and thermodynamic identities, it is straightforward to show that the relation between the
integration constants is6

\begin{equation}
\Lambda_T^2 \approx 0.3 \left(\frac{16}{\nu_{\text{eff}}} \right)^{3/4} \Lambda_E^2, \tag{21}
\end{equation}

\begin{equation}
\Lambda_S^2 \approx 2.0 \left(\frac{16}{\nu_{\text{eff}}} \right)^{1/4} \Lambda_E^2. \tag{22}
\end{equation}

Hydrodynamic simulations usually adjust the energy density Λ_E (or entropy density Λ_S) at equilibrium time to reproduce the multiplicity in the event. For central Pb + Pb events at $\sqrt{s_{NN}} = 2.76$ TeV discussed later in Sec. V B we estimated the average value of Λ_E^2 to be

$$\langle \pi e^{3/4} \rangle \approx 1.6 \text{ GeV}^2,$$

which is consistent with other hydrodynamic simulations with a realistic equation of state (i.e. $\nu_{\text{eff}} = 40$) where $\langle \pi s \rangle \approx 4.1 \text{ GeV}^2$[38]. Based on this estimate and using the hydrodynamization condition Eq. (18), we find that the hydrodynamization time of a boost invariant homogenous plasma is given by

$$\tau_{\text{hydro}} \approx 0.8 \text{ fm} \left(\frac{4\pi}{2} \right)^2 \left(\frac{\langle \pi e^{3/4} \rangle}{1.6 \text{ GeV}^2} \right)^{-1/2} \left(\frac{\nu_{\text{eff}}}{16} \right)^{3/8},$$

which provides a realistic bound for the applicability of relativistic viscous hydrodynamics (for a constant value of $\eta/s = 2/(4\pi)$). Changing the number of degrees of freedom from $\nu_{\text{eff}} = 16$ for a gluon gas to the more realistic $\nu_{\text{eff}} = 40$ increases the hydrodynamization time to 1.1 fm.

6 In Eq. (22) we used that $(e + p)/e = 4/3$, which is true within 5\% even for lattice equation of state at $T \sim 0.4$ GeV[50, 51].

One additional consequence of the pre-equilibrium evolution is a rather rapid entropy production associated with the increase of the gluon number density per rapidity. With the full gluon distribution at our disposal we can immediately calculate the Boltzmann entropy s and the particle number n

$$s(\tau) = -\nu_g \int \frac{d^3p}{(2\pi)^3} \left[f(\tau, p) \ln f(\tau, p) - (1 + f(\tau, p)) \ln(1 + f(\tau, p)) \right], \tag{25}$$

$$n(\tau) = \nu_g \int \frac{d^3p}{(2\pi)^3} f(\tau, p). \tag{26}$$

Our results for the non-equilibrium entropy (s) and particle number (n) production are summarized in Fig. 5. We find that, independently of the coupling constant (or effective η/s), over 80\% of total entropy per rapidity is produced by the end of the pre-equilibrium stage $\tau_{\text{id.}}/(4\pi\eta/s) \sim 1$. One observes that the non-equilibrium production can be very well reproduced for later times $\tau_{\text{id.}}/(4\pi\eta/s) \gtrsim 1$ in second order hydrodynamics, provided a non-equilibrium entropy definition $s_{\text{non-eq}}(\tau) = s_{\text{eq}}(\tau) \left(1 - \frac{\tau}{T_{\eta/s}} \pi^{\mu\nu} \pi_{\mu\nu} \right)$ is used[47]. Finally, the entropy and gluon number densities roughly double from the start of kinetic evolution to the time τ_{hydro} (see Fig. 5). Clearly, the rapid generation of entropy during the approach to equilibrium is very important in relating the initial state energy or gluon number density to the experimentally measured charged particle multiplicities (see Fig. 4 in Ref. [52] and Fig. 3 in Ref. [53], and references therein). Consequently, such large gluon multiplication factor needs to be taken into account in the correct estimation the properties of the initial state, e.g. the saturation scale Q_s in Color Glass Condensate picture, from the measured multiplicities.

FIG. 5. The entropy and gluon number density per rapidity as a function of scaled time $\tau_{\text{id.}}/(4\pi\eta/s)$. The kinetic theory results for the entropy are compared to viscous hydrodynamics (see text).
III. RESPONSE FUNCTIONS

A. General decomposition of macroscopic response functions

Continuing the discussion of Sec. II A, we now look into the general properties of response functions for the linearized energy-momentum perturbations evolving on top of the out-of-equilibrium background. We consider only boost invariant perturbations in the transverse plane, and focus on the energy-momentum response to perturbations of the conserved charges—initial energy density $\delta T^{\tau \tau}$ and initial momentum density $\delta \tau \tau$. By normalizing the perturbations to the background $T^{\tau \tau}(\tau)$, the evolution of energy-momentum perturbations can be compactly summarized as

$$\frac{\delta T^{\mu \nu}(\tau, x)}{T^{\tau \tau}_x(\tau)} = \frac{1}{T^{\tau \tau}_x(\tau_0)} \int d^2 x_0 \, G^{\mu \nu}_{\alpha \beta}(x, x_0, \tau, \tau_0) \, \delta T^{\tau \tau}_{x}(\tau_0, x_0).$$

Since we consider perturbations on top of a (locally) homogeneous and boost invariant background, translation invariance guarantees that the response functions depend only on the difference $x - x_0$ and it is often more convenient to work in Fourier space, where we define the Fourier transformed response function $\tilde{G}^{\mu \nu}_{\alpha \beta}$ according to

$$G^{\mu \nu}_{\alpha \beta}(x - x_0, \tau, \tau_0, T^{\tau \tau}_x(\tau_0)) = \int \frac{d^2 k}{(2\pi)^2} \, \tilde{G}^{\mu \nu}_{\alpha \beta}(k, \tau, \tau_0, \tilde{T}^{\tau \tau}_x(\tau_0)) \, e^{i k (x - x_0)}. \tag{28}$$

Based on rotational symmetry in the transverse plane, one can further decompose the response functions into a tensor basis. For (scalar) energy perturbations the response function $\tilde{G}^{\tau \tau}_{\alpha \beta}(k, \tau, \tau_0, \tilde{T}^{\tau \tau}_x(\tau_0))$ has only four independent structures

$$\tilde{G}^{ij}_{\tau \tau}(k) = \tilde{G}^i_{\tau \tau}(k), \quad \tilde{G}^{\tau i}_{\tau \tau}(k) = -i \tilde{G}^i_{\tau \tau}(k) \frac{k^i}{|k|},$$

while for (vector) momentum perturbations the decomposition position reads

$$\tilde{G}^{ij}_{\tau \tau}(k) = -i \tilde{G}^i_{\tau \tau}(k) \frac{k^j}{|k|},$$

$$\tilde{G}^{\tau i}_{\tau \tau}(k) = \tilde{G}^i_{\tau \tau}(k) + i \tilde{G}^{\tau j}_{\tau \tau}(k) \frac{k^j k^i}{|k|^2},$$

$$\tilde{G}^{\tau i}_{\tau \tau}(k) = 0, \quad \tilde{G}^{ij}_{\tau \tau}(k) = 0. \tag{29}$$

Since the longitudinal pressure components $\tilde{G}^{\eta \eta}_{\alpha \beta}$ are uniquely determined by the tracelessness of the energy-momentum tensor, one is then left with a total of ten independent response functions, which need to be determined by a particular microscopic model.

Similarly to the discussion in k-space, the coordinate space response $G^{\mu \nu}_{\alpha \beta}$ can be decomposed in tensors constructed from the radial vector $r = x - x_0$. In practice, we first compute the response in k-space and then do the reverse Fourier transform [38]. The relations between momentum and coordinate space Green’s functions are detailed in Appendix B.

B. Non-equilibrium response functions from effective kinetic theory

The independent components of macroscopic response functions $G^{\mu \nu}_{\alpha \beta}$ in Eqs. (29) and (30) need to be calculated by a particular microscopic theory. In this section we discuss the numerical realization of linear response in QCD kinetic theory around the non-equilibrium background presented in Sec. II C. At late times and close to thermal equilibrium, kinetic response functions are bound to approach the hydrodynamic limit, which is studied in Appendix D. Similarly, the early time dynamics can be profitably compared to the analytic results of collision-free evolution, discussed in Appendix C.

We follow the methodology of Ref. [38] and linearize the phase-space distribution function $f_{x,p}$ around the background \bar{f}_p, which is spatially homogeneous, but anisotropic in momentum space $p = (p^\tau, p^\eta, p^\pi)$. We consider only boost invariant δf perturbations, which can be decomposed into a Fourier integral of plane wave perturbation $\delta f_{k,p}$ labelled by the wavenumber k in the transverse plane

$$f_{x,p} = \bar{f}_p + \int \frac{d^2 k}{(2\pi)^2} \, \delta f_{k,p} \, e^{i k x}. \tag{31}$$

To linear order in perturbations, $\delta f_{k,p}$ evolves according
to coupled Boltzmann equations
\[
\left(\partial_\tau - \frac{p_z}{\tau} \partial_{p_z} \right) \tilde{f}_p = -C[f], \tag{32}
\]
\[
\left(\partial_\tau - \frac{p_z}{\tau} \partial_{p_z} + \frac{p \cdot k}{p} \right) \delta f_{k,p} = -\delta C[\tilde{f}, \delta f], \tag{33}
\]
where the collision kernel $\delta C[f, \delta f] + O(\delta f^2) = C[f + \delta f] - C[f]$ is linearized in δf. Since the evolution for different values of k on top of a homogenous background \tilde{f}_p decouples from each other [38], the linearized Boltzmann equation can be solved independently for each wavenumber k in the transverse plane.

Even though the effective kinetic description of the pre-equilibrium dynamics requires the knowledge of the phase-space distribution $\delta f_{k,p}$ at the initial time τ_0, one naturally expects the occurrence of memory loss during the evolution, so that the details of the initial phase-space distribution become irrelevant as the system approaches local thermal equilibrium. Since our ambition is merely to extract the energy-momentum tensor, a representative choice of $\delta f_{k,p}$ to characterize initial energy and momentum perturbations should be sufficient to describe the non-equilibrium evolution.

Based on a weak-coupling picture of the initial state, where the properties of the background distribution $f(\tau_0, p) = f_0(|p|/Q_s, \theta)$ are determined by a single dimensionless scale Q_s, it is natural to associate perturbations of the energy-momentum tensor $\delta T^{\mu\nu}(x, \tau_0)$ with local fluctuations of the scale $Q_s(x) = Q_s + \delta Q_s(k)e^{ikx}$. Hence one can motivate the initial phase-space distribution of scalar perturbations to be of the form
\[
\delta f_{k,p}^{(\text{Energy})} = \frac{\delta Q_s(k)}{Q_s} \delta f_{k,p}^{(s)} \tag{34}
\]
where $\delta Q_s(k)/Q_s = \delta T^{\tau\tau}/T^{\tau\tau}$ denotes the amplitude of the perturbation and the spectral shape
\[
\delta f_{k,p}^{(s)} = 1 - \frac{1}{4} Q_s \partial Q_s \tilde{f}_0 \left(\frac{|p|}{Q_s}, \theta \right) \tag{35}
\]
is determined from the variation of the background distribution, Eq. (7), with respect to the scale Q_s.

Similarly, considering that gradients of $Q_s(x)$ will lead to an initial velocity perturbation, e.g. $v_i(\tau_0) \propto \frac{\partial Q_s(x)}{Q_s}$, we can motivate vector perturbations of the form
\[
\delta f_{k,p}^{(\text{Momentum})} = v^i(k) \delta f_{k,p}^{(v),i} \tag{36}
\]
where $v^i(k) = \delta T^{\tau i}(x, \tau_0)/T^{\tau\tau}$ denotes the amplitude of the initial velocity perturbation and the spectral shape
\[
\delta f_{k,p}^{(v),i} = \frac{1}{2} \partial_{v_i} \tilde{f}_0 \left(\frac{|p - v|/Q_s}{\theta} \right) \mid_{v=0} \tag{37}
\]
is determined by a linearized velocity boost of the background momentum distribution. We note that in order to compute all response functions in the tensor decomposition in Eq. (30) it is important that we keep track of the independent components (labeled by the index i) of the momentum response.

Even though at the level of the linearized Boltzmann equation, the actual magnitude of the perturbations is irrelevant in computing the response functions (as long as it remains sufficiently small to justify the linearized approximation at the relevant momentum scale), we find it convenient to choose an appropriate normalization. Defining the moments of the distribution function
\[
\delta T_{k,(s)}^{\mu\nu}(\tau) = \nu_g \int \frac{d^3p}{(2\pi)^3} \frac{p^\mu p^\nu}{p} \delta f_{k,p}^{(s)}, \tag{38a}
\]
\[
\delta T_{k,(v),i}^{\mu\nu}(\tau) = \nu_g \int \frac{d^3p}{(2\pi)^3} \frac{p^\mu p^\nu}{p} \delta f_{k,p}^{(v),i}, \tag{38b}
\]
the corresponding energy and momentum perturbations associated with $\delta f_{k,p}^{(s)}$ and respectively $\delta f_{k,p}^{(v),i}$ at initial time are normalized such that for a highly oblate distribution ($\xi \gg 1$)
\[
\frac{\delta T^{\tau\tau}_{k,(s)}(\tau_0)}{T^{\tau\tau}(\tau_0)} = 1, \tag{39a}
\]
\[
\frac{\delta T^{\tau i}_{k,(v),i}(\tau_0)}{T^{\tau\tau}(\tau_0)} = \delta^{ki}. \tag{39b}
\]

Given the above explicit form of the initial perturbations one can then determine the response of the energy-momentum tensor at any later time by numerically solving the kinetic equations, Eqs. (32) and (33). Once the solution to the linearized Boltzmann equation is calculated numerically, the response functions $G^{\mu\nu}_{\kappa}(k, \tau, \tau_0, T_x^{\tau\tau}(\tau_0))$ can be directly constructed from the moments of the distribution function. For example, the energy response to energy or momentum perturbations is determined by the ratios
\[
\tilde{G}_s^{\tau}(\tau, \tau_0, |k|) = \frac{\delta T_{k,(s)}^{\tau\tau}(\tau)}{T^{\tau\tau}(\tau)} / \frac{\delta T_{k,(s)}^{\tau\tau}(\tau_0)}{T^{\tau\tau}(\tau_0)}, \tag{40}
\]
\[
\tilde{G}_s^{\nu}(\tau, \tau_0, |k|) = \frac{\delta T_{k,(v),i}^{\tau\tau,i}(\tau)}{T^{\tau\tau}(\tau)} / \frac{1}{2} \delta_{ij} \delta T_{k,(v),ij}^{\tau\tau}(\tau_0) / T^{\tau\tau}(\tau_0). \tag{41}
\]
Similarly, all the other components can be constructed by linear combinations of different components of $\delta T^{\mu\nu}$ as described in Appendix B

1. Scaling of response functions

We now present our numerical results for the non-equilibrium response functions calculated in effective kinetic theory. Even though generally the response functions $G^{\mu\nu}_{\alpha\beta}(k, \tau, \tau_0, T_x^{\tau\tau}(\tau_0))$ depend separately on the wavenumber k, the initial and final times τ and τ_0, the energy scale $T_x^{\tau\tau}(\tau_0)$, and the coupling constant
\[G^a_s(\tau_0, \tau, k) = \tilde{G}_s^a(\tau_0, \tau, k). \]

Even though this behavior is expected to emerge in the hydrodynamic limit of sufficiently late evolution times \(T_{id} \gg 1 \) and for small wave-numbers \(|k|(\tau - \tau_0) \ll 1 \), it is remarkable to observe that the scaling property holds across a much wider range of evolution times and wavelengths. As an illustrative example of the scaling, in Fig. 6 we present our results for the response functions \(G^a_s \) and \(\tilde{G}_s^a \) given by Eqs. (40) and (41) at scaled evolution time \(\tau_{id}/(4\pi\eta/s) \approx 1.0 \). Different curves in Fig. 6 correspond to simulations performed at different values of \(\lambda \), which not only correspond to different effective \(\eta/s \), but also amount to variations of the initial energy scale \(T_{x}^{\tau\tau}(\tau_0) \), as seen from Eq. (7). Other components of the response function in the decomposition given by Eqs. (29) and (30) also show a good scaling with \(\tau_{id}/(4\pi\eta/s) \) and phase \(|k|(\tau - \tau_0) \) (not shown).

Because of the scaling of the response functions with \(\eta/s \)—the same kinetic theory response function computed for one set of initial conditions, can be used for different values of \(\eta/s \) and different values of the initial energy density to map the early out-of-equilibrium energy and momentum perturbations to the hydrodynamized energy-momentum tensor perturbations at later times. This is the procedure adopted in the pre-equilibrium propagator \(\text{KoMPoST} \).

Finally, the coordinate space response functions used in the propagation formula Eq. (27) are obtained by Fourier transforming \(|k| \)-space components, e.g. Fig. 6, according to Eq. (28). The details of the procedure are given in Appendix B and also discussed in Ref. [38]. Here we only point to the final result, i.e. the complete set of coordinate space response functions summarized in Figures 26 and 27 in the Appendix B. Because the momentum space response functions are, to a good approximation, universal functions of scaling variables \(\tau_{id}/\eta/s \) and \(|k|(\tau - \tau_0) \), the coordinate space response functions are also universal when expressed in terms of the scaling variables \(\tau_{id}/\eta/s \) and \(|k|/x_0 \).
with prefactors depending on first and second order hydrodynamic transport coefficients, i.e. \(\eta, \tau_\pi \) and \(\lambda_1 \). By comparing constitutive equations with the decomposition in Eq. (29), we find the following relation between response function components for initial energy perturbations

\[
\tilde{G}^{t,k}_s(\tau, \tau_0, |k|) = \frac{3}{2} \epsilon^2 \tau_\pi \eta \frac{\tilde{G}^{s\pi}_s(\tau, \tau_0, |k|) |k|^2}{T^\tau} \\
+ 2(3\eta \tau_\pi + 1 - \frac{4}{3\tau} \lambda_1) \frac{|k| G^{s\pi}_s(\tau, \tau_0, |k|)}{T^\tau} + \frac{1}{2} T_k.
\]

In Fig. 7 we explicitly test the first and second order constitutive relations, Eqs. (43) and (44), in the kinetic evolution at scaled time \(\tau T_{\text{id}}/(4\pi\eta/s) \approx 2 \). Indeed for small wavenumbers \(|k|(|\tau - \tau_0| < 6 \) the second order constitutive equations are well satisfied, demonstrating that the low wavenumber perturbations approach hydrodynamic regime at sufficiently late times \(\tau T_{\text{id}}/(4\pi\eta/s) > 1 \).

Similar constitutive relations can be derived for momentum response components and are given in Eq. (D19). The complete derivation is summarized in Appendix D.

IV. PRACTICAL IMPLEMENTATION: KOMPØST

Based on the general formalism and results of linearized effective kinetic theory presented in the previous sections, we will now describe a practical implementation of the pre-equilibrium evolution for hydrodynamic modeling of heavy-ion collisions—KoMPøST. Starting from a given profile of the energy-momentum tensor \(T^{\mu\nu}(\tau_{\text{EKT}}, \mathbf{x}) \) at an early time \(\tau_{\text{EKT}} \), for example from the IP-Glasma model, we follow the procedure outlined below to calculate the energy momentum tensor \(T^{\mu\nu}(\tau_{\text{hydro}}, \mathbf{x}_0) \) at a later time \(\tau_{\text{hydro}} > \tau_{\text{EKT}} \) when the system is sufficiently close to local thermal equilibrium for viscous hydrodynamics to become applicable.

a. Decomposition in Background & Perturbations

We first split the initial energy-momentum tensor \(T^{\mu\nu} \) at KoMPøST initialisation time \(\tau_{\text{EKT}} \) in the background and perturbations

\[
T^{\mu\nu}(\tau, \mathbf{x}) = T^{\mu\nu}_{\text{background}}(\tau) + T^{\mu\nu}_{\text{perturbations}}(\tau, \mathbf{x}),
\]

where for linear evolution the decomposition into the background \(T^{\mu\nu}_{\text{background}} \) and perturbations \(\delta T^{\mu\nu} \) is arbitrary, as long as the perturbations are sufficiently small. As discussed in Sec. II C we consider locally homogeneous boost invariant background energy-momentum tensor \(T^{\mu\nu}_{\text{background}} = \text{diag}(e, P_T, P_T, \frac{1}{3} P_T) \) with only one independent component \(e(\tau) \). In order to obtain a smooth energy density profile from a discrete grid of input \(T^{\tau\tau} \) values, we define the local background energy density as a Gaussian

\[\text{Equilibration is not necessarily achieved everywhere at the same time } \tau, \text{ and the initial conditions could, in theory, be provided on a more complex } (\tau, x, y, \eta) \text{ hypersurface. However, it is the common practice to initialize hydrodynamic simulations on a constant } \tau \text{ hypersurface and we will follow this procedure in our present work.} \]
weighted average around the point x_0 of interest

$$T_{x_0}^{\tau\tau}(\tau) \equiv \int d^2 x' \frac{1}{2\pi\sigma^2} e^{-\frac{|x'-x_0|^2}{2\sigma^2}} T^{\tau\tau}(\tau, x'),$$ \hfill (46)$$
where the Gaussian width is taken to be $\sigma = \Delta \tau / 2$ \footnote{Note that changing the smearing width σ changes the decomposition into background and perturbations. We have checked by varying σ by a factor of two that the sum of background and perturbations after the kinetic evolution remains remarkably invariant everywhere, except for edges of the fireball, where the linearized treatment breaks down.}. Here $\Delta \tau = (\tau_{\text{hydro}} - \tau_{\text{EKT}})$ is the duration of kinetic evolution, i.e. the causal circle radius discussed in Sec. II.A. Once the homogeneous diagonal background energy-momentum tensor $T_{x_0}^{\mu\nu}$ is determined in the neighbourhood of point x_0, the perturbation tensor $\delta T_{x_0}^{\mu\nu}(\tau, x)$ is obtained according to Eq. (45). In particular, the (small) initial off-diagonal components of energy-momentum tensor $T_{x_0}^{\mu\nu}$ are completely absorbed in the perturbation tensor, e.g. $\delta T_{x_0}^{\tau\tau} = T_{x_0}^{\tau\tau}$. In accordance with the discussion in Sec. III.A we only consider the response to initial energy $\delta T_{x_0}^{\tau\tau}(\tau_{\text{EKT}}, x)$ and momentum perturbations $\delta T_{x_0}^{\tau\sigma}(\tau_{\text{EKT}}, x)$. The initial perturbations in the shear-stress part of the energy-momentum tensor, i.e. $\delta T_{x_0}^{\tau\sigma}$ are not taken into account in this work \footnote{Note that in this implementation the diagonal components of the background energy-momentum tensor are entirely given by $T^{\tau\tau}$. Even though the initial diagonal components of energy-momentum tensor, $T^{\tau\tau}$, $T^{\rho\rho}$ and $T^{\sigma\sigma}$, are not used directly to determine the background energy-momentum tensor $T_{x_0}^{\mu\nu}$, it is sufficient to assume that (on average) the system is highly anisotropic in the longitudinal direction, but approximately isotropic in the transverse plane, so that $T^{\tau\tau}$ can be used to estimate the diagonal components, i.e. $\tau^2 \approx T^{\tau\tau} \approx T^{\rho\rho}$, $T^{\sigma\sigma} \approx T^{\tau\tau}/2$. This assumption is justifiable at early times in central heavy ion collisions.}.

b. Background evolution & scale parameter Once the decomposition in background and perturbations is determined at each point x_0 in the transverse plane of the collision, we proceed to calculate the evolution of the background components of the energy-momentum tensor. Since in the relevant range of parameters the effective kinetic theory evolution exhibits a universal behavior in terms of the scaling variable $\tau_{\text{id}} \equiv \tau / \eta / s$ (see Sec. II.C), we can immediately obtain the evolution for a specified values of η / s by matching the point associated with the initial energy density $\epsilon(\tau_{\text{EKT}}) = T_{x_0}^{\tau\tau}(\eta_{\text{EKT}})$ at time τ_{EKT} to the universal scaling curve. Specifically, we determine the scale parameter Λ_T (which fixes the temperature function $T_{\text{id}}(\tau; \Lambda_T)$, see Eq. (10)) by solving the implicit equation

$$\epsilon(\tau_{\text{EKT}}) = \nu_g \frac{\pi^2}{30} T_{\text{id}}^4(\eta_{\text{EKT}}; \Lambda_T) \times \mathcal{E} \left[\frac{\tau_{\text{EKT}} T_{\text{id}}(\tau_{\text{EKT}}; \Lambda_T)}{\eta / s} \right], \hfill (47)$$

where $\mathcal{E}(x)$ corresponds to the universal scaling curve for the evolution of the energy density (c.f. Sec. II.C and Appendix A2). Eq. (47) is the requirement that the initial time and energy density, i.e. τ_{EKT} and $\epsilon(\tau_{\text{EKT}})$, lie somewhere on the scaling curve shown in Fig. 4. Once the temperature function $T_{\text{id}}(\tau; \Lambda_T)$ is known, the energy density at the hydrodynamic initialization time τ_{EKT} can be read off from the same universal curve as τ_{EKT} and $\epsilon(\tau_{\text{EKT}})$.

Similarly, the background longitudinal and transverse pressure components, $P_L = \tau^2 T^{\rho\rho}$ and $P_T = T^{\tau\tau}$, can be determined from the scaling curve as detailed in Appendix A2, and we obtain the background energy-momentum tensor $T_{x_0}^{\mu\nu}$ at time τ_{EKT}.

c. Energy & momentum perturbations Next we propagate the initial energy and momentum perturbations, $\delta T_{x_0}^{\tau\tau}(\tau_{\text{EKT}}, x)$ and $\delta T_{x_0}^{\tau\sigma}(\tau_{\text{EKT}}, x)$, to calculate the contributions to all components of the full energy-momentum tensor at hydrodynamic initialisation time τ_{hydro}. We use the pre-calculated linear kinetic response functions $G_{\alpha\beta}$ discussed in Sec. III. First, the tabulated Fourier-space functions $G_{\mu\nu}(\eta / s, |k|) \mid (\tau - \tau_0)\rangle$ are transformed to the coordinate space for the relevant values of scaled time $\tau_{\text{id}} \equiv \tau / \eta / s$ and radius $|x - x_0| / (\tau_{\text{hydro}} - \tau_{\text{EKT}})$, see Appendix B for details. Subsequently, the contributions to the energy-momentum tensor at each point x_0 at the hydrodynamic initialisation surface τ_{hydro} are determined by convoluting the coordinate space response functions with the initial energy and momentum perturbation as in Eq. (27). The coordinate space response functions contributing to $\delta T_{x_0}^{\mu\nu}(\tau_{\text{hydro}}, x_0)$ have only limited support, namely the neighbourhood of points x in the causal past of x_0

$$|x - x_0| < (\tau_{\text{hydro}} - \tau_{\text{EKT}}), \hfill (49)$$

so in practice only a small number of spatial points contribute. We note that, according to the decompositions in Eqs. (29) and (30), we explicitly compute the contributions of energy and momentum perturbations to all components of energy-momentum tensor, without ever enforcing constitutive relations by hand. Adding the perturbations and the background produces the complete energy-momentum tensor at the end of KeMPoST evolution

$$T^{\mu\nu}(\tau_{\text{hydro}}, x_0) = T_{x_0}^{\mu\nu}(\tau_{\text{hydro}}) + \delta T_{x_0}^{\mu\nu}(\tau_{\text{hydro}}, x_0). \hfill (50)$$

\footnote{We note that in practice the high $|k|$ tails are regulated by a small Gaussian damping and free-streaming extensions to stabilize numerical calculation of Fourier/Hankel transforms \cite{footnote:Gutz}.}
d. Decomposition of $T^{\mu \nu}$ in hydrodynamic variables

Once the full energy-momentum tensor is obtained at hydrodynamic initialization time τ_{hydro}, we perform a standard tensor decomposition into hydrodynamic variables [54, 55]. Hydrodynamic simulations of heavy ion collisions describe the spacetime evolution of the energy-momentum tensor $T^{\mu \nu}$ in terms of the energy density ρ, the flow velocity u^μ, the bulk pressure P and the shear-stress tensor $\pi^{\mu \nu}$. The evolution of these fields is given by the energy-momentum conservation equation $\nabla_{\mu} T^{\mu \nu} = 0$ and, in second-order Israel-Stewart formulations of relativistic viscous hydrodynamics [56], relaxation-type equations for the viscous fields, P and $\pi^{\mu \nu}$. The bulk pressure P for conformal systems is exactly zero and the explicit expressions of $T^{\mu \nu}$ in terms of hydrodynamics fields is then given by

$$T^{\mu \nu} = e u^\mu u^\nu + p(e) \Delta^{\mu \nu} + \pi^{\mu \nu}, \quad (51)$$

where $\Delta^{\mu \nu} \equiv g^{\mu \nu} + u^\mu u^\nu$ and the relation between energy and pressure is determined by the equation of state $P = p(e)$\(^{13}\). The tensor decomposition is done by identifying the local rest-frame velocity u^μ and local energy density e as the time-like eigenvector and eigenvalue of $T^{\mu \nu}$, $u^\nu = -e u^\mu$. Once e and u^μ values are known, $\pi^{\mu \nu}$ is obtained by tensor projection\(^{14}\). The independent hydrodynamic fields e, u^μ and $\pi^{\mu \nu}$ are then passed to the subsequent hydrodynamic evolution.

Note that the linearized kinetic theory evolution does not guarantees the existence of a local fluid rest frame for arbitrary inputs; for sick cases, the procedure fails to find a meaningful rest frame. Such instances appear for the cases where the initial gradients are particularly steep (e.g. edges or peaks of the medium). Problems in extracting the flow velocity u^μ from $T^{\mu \nu}$ in certain spatial regions are thus indicative of the linear approximation of the kinetic theory being pushed too far. Although these points make only a small fraction of the total points in the transverse extent of the fireball (quantified below), they tend to introduce instabilities in hydrodynamics code. Rather than attempting to address the problem in the hydrodynamic evolution, we developed a selective regulator of the kinetic theory output which we describe at the end of this section.

e. Hydrodynamic evolution

Once the hydrodynamic fields are initialized on a constant $\tau = \tau_{\text{hydro}}$ hypersurface, their subsequent spacetime evolution is determined by second order relativistic hydrodynamics. In this paper we use the publicly available viscous relativistic hydrodynamic code MUSIC [57–59] to solve numerically the hydrodynamic equations and the subsequent particlization, which is described below. For the hydrodynamic phase we use a lattice-based QCD equation of state [60], except when comparing to the conformal equation of state $p = e/3$. As for the first order transport coefficients, a constant shear viscosity over entropy density ratio $\eta/s = 2/4\pi \approx 0.16$ is used, while the bulk viscosity is neglected. The second order transport coefficients are determined by relating them to the first order ones in the relaxation-time approximation [61, 62]. The complete list of second order transport coefficients and hydrodynamic equations can be found in Ref. [63].

f. Hadronization

At the end of hydrodynamic evolution the hadronic observables are computed from a constant temperature freeze-out surface with $T_{\text{FO}} = 145 \text{MeV}$ using the standard Cooper-Frye procedure [64]. We note that for simplicity only thermal hadronic observables, i.e. without hadronic decays, are used in this work, but the viscous corrections to the hadronic momentum distribution are taken into account as described in Refs. [59, 63].

g. Regulators

Below we document the regulator procedure for the limited instances when the energy-momentum tensor $T^{\mu \nu}$ obtained at the end of the linear kinetic evolution cannot be inverted to define a local fluid restframe. The regulator we developed was motivated by free streaming, which is a meaningful and robust initial stage model. The regulator identifies regions of large gradients or low densities and drives the kinetic theory response towards free streaming in these regions by selectively lowering the scaling variable $x = \pi T_{\text{id}}(\tau)/(\eta/s)$ to compute the kinetic response. We emphasize that while the regulator is important for making the hydrodynamic simulations run, it produces only minimal modifications of the hydrodynamic input and does not affect the physical results discussed in Sec. V. Thus, our pragmatic purpose here is to document the computer code.

Physically in heavy ion collisions the low density regions at the edges of the fireball can be never meaningfully described as a hydrodynamic medium. Hence there is no need to assume that η/s is constant throughout. For the purposes of estimating the scaling variable we therefore define $$(\eta/s)(T) \equiv (\eta/s)_0 \left(1 + \frac{C_0^2}{T^2} \right), \quad (52)$$

where $C_0 = 100 \text{MeV}$, and $(\eta/s)_0$ is a constant physical input parameter, typically of order $1/4\pi^{15}$. The scaling variable is then replaced by the number of relaxation times between times τ_1 and τ_2

$$x_0(\tau_2, \tau_1) \equiv \frac{3}{2} \int_{\tau_1}^{\tau_2} \frac{dT_{\text{id}}(\tau)}{(\eta/s)_0 \left(1 + \frac{C_0^2}{T_{\text{id}}(\tau)} \right)}. \quad (53)$$

\(^{13}\) In this paper we use mostly-plus metric convention $g^{\mu \nu} = \text{diag}(-1, 1, 1, 1)$.

\(^{14}\) $\pi^{\mu \nu}$ is the symmetric transverse traceless part of $T^{\mu \nu}$, i.e. $\pi^{\mu \nu} = \pi^{\mu \nu} u_\nu = 0$ and $\pi^{\mu \nu} g_{\mu \nu} = 0$.

\(^{15}\) $(\eta/s)_0$ can easily be replaced with a physical dependence on temperature for the interior of the fireball in future implementations of the code.
Taking C_0 and τ_1 to zero, returns x_0 to the canonical scaling variable
\[x \equiv \frac{\tau T_{id}(\tau)}{(\eta/s)_0}. \] (54)

For obtaining the background energy density from the scaling curve, Eq. (17), we use the scaling variable value $x_0(\tau_{\text{hydro}}, 0)$, while for propagating the perturbations we use $x_0(\tau_{\text{hydro}}, \tau_{\text{EKT}})$, which provides a slightly better scaling parametrization of the Green functions\(^\text{16}\). Using x_0 as opposed to the canonical value, Eq. (54), removes a number of instabilities near the edge of the grid, but does not regulate the occasional regions of very high gradients in the central region of the fireball.

The remaining instabilities arise when non-linearities become important. Examining when the $T^{\mu\nu}$ decomposition fails to find a rest frame, we determined (semi-empirically) that for
\[z \equiv \frac{\sqrt{\delta T^{0x}\delta T^{0x} + \delta T^{0y}\delta T^{0y}}}{3 \hat{T}^{00}} - \frac{2 \delta T^{00}}{3 \hat{T}^{00}} > 0.5, \] (55)

the $T^{\mu\nu}$ decomposition may fail to find a rest frame. Certainly when z is of order 0.5 the linearized kinetic theory has reached its limit of applicability. For large z we regulated x_0 according to
\[x_{\text{reg}} = x_0 S(z; z_1, z_2), \] (56)

where $S(z; z_1, z_2)$ is a monotonic cubic spline interpolating between unity for $z < z_1$, and zero for $z > z_2$. In practice we take $z_1 = 0.4$ and $z_2 = 0.7$. When a regulated value x_{reg} is used as opposed to x_0 the dynamics is pushed closer to free streaming limit in localised regions of steep gradients as shown in Fig. 8.

Technically the event is processed in two passes. In the first pass no regulator is used, and the scaling variable x_0 is calculated according to Eq. (53). From the $T^{\mu\nu} + \delta T^{\mu\nu}$ of the first pass we record the size of the unregulated perturbations as measured by the variable z in Eq. (55), but we do not attempt to find a local fluid rest frame yet. In the second pass we use z from the first pass to determine a regulated value of scaling variable x_{reg}, Eq. (56). Then x_{reg} is finally used to propagate the background and perturbations from τ_{EKT} to τ_{hydro}. The second pass $T^{\mu\nu} = T^{\mu\nu} + \delta T^{\mu\nu}$ has a rest frame decomposition which is passed on to the hydrodynamics code. We quantify the effect of the regulator by looking at the relative change in $T^{\tau\tau}$ component with and without a regulator
\[\delta \equiv \frac{\int d^2x \left| T^{\tau\tau}_{\text{w/ reg}} - T^{\tau\tau}_{\text{w/o reg}} \right|}{\int d^2x \left| T^{\tau\tau}_{\text{w/o reg}} \right|}. \] (57)

\(^{16}\) Typically $\tau_{\text{hydro}} \gg \tau_{\text{EKT}}$ and the difference between the two values of the scaling variable is small.

![Figure 8: Profile of the energy density $T^{\tau\tau}$ along the y-direction for a kinetic theory evolution with and without a regulator, Eq. (56). For points with large gradients, the system response is driven towards free-streaming evolution. Note that only a small fraction of the total number of grid points in the transverse plane are affected, see Table I. Here IP-Glasma initial conditions are used with pre-equilibrium evolution from $\tau_{\text{EKT}} = 0.2$ fm to $\tau_{\text{hydro}} = 1.0$ fm.](image)

τ_{hydro} (fm)	MC-Glauber	IP-Glasma
0.4	0.002	0.001
0.6	0.004	0.005
0.8	0.006	0.01
1.0	0.01	0.03
1.2	0.02	0.05

Table I. Effect of the regulator as quantified by relative change in integrated energy density, Eq. (57), for MC-Glauber and IP-Glasma initial conditions, and different kinetic evolution times.

The relative change δ for MC-Glauber and IP-Glasma initial conditions for different evolution times is recorded in Table I. The transverse momentum flow grows with time and, according to criterion in Eq. (55), more points need to be regulated. However, from Table I it is clear that only a small fraction of points in the transverse extent of the fireball are affected and only for longest evolution times the change is at a few percent level.

V. EVENT-BY-EVENT PRE-EQUILIBRIUM DYNAMICS & MATCHING TO VISCOUS HYDRODYNAMICS

We will now illustrate the applicability of our framework to perform event-by-event simulations of the pre-equilibrium dynamics of high-energy heavy-ion collisions. Since the kinetic theory equilibration scenario described...
in the previous sections provides a smooth crossover from the early stage of heavy ion collisions to the viscous hydrodynamics regime, we will demonstrate with the example of two initial state models how initial conditions for hydrodynamic simulations can be obtained within our framework.

We first consider the Monte Carlo Glauber (MC-Glauber) model [17], which provides a phenomenological ansatz for the energy deposition in the transverse plane of heavy ion collisions, based on the location of binary nucleon collisions. Since MC-Glauber is not a dynamical model, most phenomenological studies use an initialization time $\tau_{\text{hydro}} \sim 0.5 - 1 \text{ fm}$ which is chosen empirically. However, we will show that the framework described in this work greatly reduces the sensitivity of the hydrodynamic evolution to the initialization time τ_{hydro}.

In the second part of this section, we will also consider the IP-Glasma model [65, 66], which provides a dynamical description of particle production and energy deposition. In this model color fields in each nucleus are sampled from a saturation model [67, 68] and subsequently evolved with classical Yang-Mills evolution to times $\tau \sim 1/Q_s \sim 0.1 \text{ fm}$. Since the early time dynamics of IP-Glasma matches smoothly onto our effective kinetic description, this implementation amounts to a complete dynamical evolution within a weak coupling framework.

While the microscopic IP-Glasma model provides an initialization for the entire energy-momentum tensor of the collision in 2+1D, the MC-Glauber model is typically used as an ansatz only for the transverse energy density [17], without specifying the other components of the energy-momentum tensor. In the language of this paper, this means that IP-Glasma initial conditions provide both energy and momentum perturbations [18], while the Glauber model only contains energy perturbations.

We note that the hydrodynamic initialization time τ_{hydro} is treated as a variable in this section. The values of τ_{hydro} used are of the order of the background hydrodynamization time given by Eq. 24, but not equal to it.

A. Energy perturbations with MC-Glauber initial conditions

We start our discussion with the Monte Carlo Glauber initial conditions, which provides an ansatz for the energy density distribution $e(x)$ at each point in the transverse plane of the collision [19]. Energy is deposited at the location of the participant nucleons, and the normalization of the energy distribution (i.e. total deposited energy) is adjusted so as to reproduce experimentally observed charged hadron multiplicities for typical central Pb+Pb events at LHC energies $\sqrt{s_{NN}} = 2.76 \text{ TeV}$. The energy-momentum tensor at time τ_{EKT} takes the form

$$T^{\mu\nu}(\tau_{\text{EKT}}, x) = \begin{pmatrix} e(x) & 0 & 0 & 0 \\ 0 & \frac{1}{2}e(x) & 0 & 0 \\ 0 & 0 & \frac{1}{2}e(x) & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Even though the Glauber model itself does not provide an intrinsic time scale τ_{EKT} for the dynamic evolution, it is clear that this time scale should be at least on the order of the formation time $\sim 1/Q$ required for semi-hard particles to go on-shell. Since we anticipate the typical momenta $Q \sim 2 \text{ GeV}$ for central Pb+Pb events, we will use $\tau_{\text{EKT}} = 0.1 \text{ fm}$ in the following if not stated otherwise [20]. Similarly, the specific form of the energy-momentum tensor $T^{\mu\nu} = e(\tau_{\text{EKT}}, x) \times \text{diag}(1, 1/2, 1/2, 0)$ in (τ, x, y, η) coordinates, can be motivated from the fact that due to the kinematics of high-energy collisions, the longitudinal

17 It is also common to use Glauber model as an ansatz for the entropy density, which is then related to the energy density through the equation of state. In this work, the Glauber model is used as an ansatz for the energy density directly.

18 We note that IP-Glasma also provides higher order fluctuations, e.g. of the different T^{ij} components. However, as discussed in Sec. III A we limit ourselves to the energy-momentum response to the fluctuations of conserved quantities like energy and momentum.

19 We used the publicly available TRENTo code [18] to generate the event. In our study, the reduced nuclear thickness parameter p of the model was set to unity to obtain a typical participant Glauber model, while the negative binomial parameter for nucleon fluctuations was set to $k = 1$, and the nucleon smearing width $w = 0.5 \text{ fm}$. We checked explicitly that the sensitivity of our results to this choice is relatively small, as long as the initial energy density is rescaled by an appropriate factor, which can be deduced from the relation $e(x) = e_{\text{sen}} + \int_0^\infty d\tau T^{\tau\tau}$ for Bjorken expansion. Since at very early times $T^{xx} \ll e$, such rescaling effectively mimics a free-streaming evolution.
momentum of each particle in the local rest frame is negligibly small compared to its transverse energy, such that the longitudinal pressure approximately vanishes at very early times (c.f. Sec. V B for a microscopic description of the early time dynamics). Since the $T^{\tau \tau}$ momentum components of the energy-momentum tensor are also initialized as zero in the MC-Glauber model, the effective kinetic theory evolution of the energy-momentum tensor in Eq. (58) involves only energy perturbations.

We used a single MC-Glauber event with $b = 0.9$ fm impact parameter, $N_{\text{part}} = 408$ participants and spatial eccentricity $\epsilon_2 = 0.064$. The total transverse energy per unit rapidity in the event at $\tau_{\text{EKT}} = 0.1$ fm was set to $\int d^2 x T^{\tau \tau} = 5.3 \times 10^4 \text{GeV/fm}$ to normalize the energy density distribution. The transverse distribution of a proxy quantity $\tau^{3/4} \sim s\tau$ for entropy per rapidity is shown in Fig. 9 for reference. Ultimately, after pre-equilibrium, hydrodynamic evolution, and freeze-out, this event corresponds to a midrapidity charged hadron multiplicity of $dN_{\text{ch}}/d\eta = 1870$. The event is thus in line with a central LHC at $\sqrt{s_{NN}} = 2.76$ TeV, which, for reference, have $dN_{\text{ch}}/d\eta = 1601 \pm 60$ and $\langle N_{\text{part}} \rangle = 383 \pm 3$ for the 5% most central events [69].

The energy momentum tensor in Eq. (58) features a quadratic in the flow velocity, suggesting that including the first nonlinear couplings between the background radial and the generated elliptic flow could improve the agreement here. In what follows, we look at averages and profiles of the hydrodynamics fields — or equivalently the energy-momentum tensor — as well as hadronic observables, and investigate their dependence on the hydrodynamic initialization time τ_{hydro}.

\section{Average hydrodynamic fields}

Since realistic fluctuating initial conditions are used, hydrodynamic fields have a complicated profile in the transverse xy-plane. As a starting point, we look at transversely averaged values of hydrodynamic fields. We define averages $\langle \ldots \rangle$ as

$$\langle \ldots \rangle \equiv \frac{\int d^2 x u^\tau e \ldots}{\int d^2 x u^\tau}$$ \hspace{1cm} (59)$$

where $\int d^2 x$ denotes an integral over the transverse coordinates. The factor u^τ is inserted for covariance, as would be obtained from the (covariant) surface flux $d\Sigma_\mu u^\mu$ with $d\Sigma_\mu$ in the (proper) time direction.

In Fig. 10(a) we present the evolution of $\langle \tau^{3/4} \rangle$, which is akin to the entropy per rapidity $(s\tau)$ of the boost-invariant system, as a function of physical time τ. Initial conditions at $\tau_{\text{EKT}} = 0.1$ fm are evolved with the kinetic theory in KoMPoSST (c.f. Sec. IV), and subsequently passed to the hydrodynamic model at five values of τ_{hydro}: 0.4, 0.6, 0.8, 1.0 and 1.2 fm. We first note that Fig. 10(a) shows the expected transition from $\langle \tau^{3/4} \rangle$ being approximately constant at early time to subsequently dropping when the transverse expansion becomes important. More importantly one observes from Fig. 10(a) that the evolution of $\langle \tau^{3/4} \rangle$ depends very weakly on the hydrodynamics initialization time τ_{hydro}.

In Fig. 10(b) we show the rise of radial velocity $\langle v_L \rangle = \sqrt{v_x^2 + v_y^2}$ with time τ. The kinetic theory pre-equilibrium captures well the rapid rise in the radial flow at early times, which levels off to a steady radial increase at later times. It is again remarkable that the spread between the calculations for different values of τ_{hydro} between 0.4 fm and 1.2 fm is at a percent level.

In order to follow the evolution of the azimuthal anisotropy, we computed the integrated transverse stress tensor $[T^{ij}]_s = \langle [T^{xx}]_s, [T^{xy}]_s, [T^{yy}]_s \rangle_s$, where

$$[\ldots]_s \equiv \int d^2 x u^\tau \ldots .$$ \hspace{1cm} (60)$$
denotes an integral over the transverse plane without the energy weight, as T^{uu} is already “energy weighted”. Examining the principal axes of $[T^{ij}]_s$, we define the momentum ellipticity

$$\varepsilon^p(\tau) \equiv \sqrt{[(T^{xx})_s - (T^{yy})_s]^2 + 4 [(T^{xy})_s]^2} \left[(T^{xx})_s + (T^{yy})_s \right]_s .$$ \hspace{1cm} (61)$$
which provides a measure of the elliptic flow as function of time.

Our results for momentum ellipticity are shown in Fig. 10(c), and indicate that the dependence of the averaged hydrodynamic fields on τ_{hydro} is modest even if τ_{hydro} is varied from 0.4 to 1.2 fm. Generally, the kinetic theory slightly under-predicts the pressure anisotropy $\varepsilon^p(\tau)$ in the hydrodynamic evolution. $\varepsilon^p(\tau)$ is inherently quadratic in the flow velocity, suggesting that including the first nonlinear couplings between the background radial flow and the generated elliptic flow could improve the agreement here.

The effective kinetic theory approach used in this work assumes that the system is conformal, i.e. the pressure is $p(e) = \frac{1}{4} e$. Even though QCD is nearly conformal at very high temperatures, deviations from conformality are expected for the range of temperatures of order 150–600 MeV encountered in heavy ion collisions at the RHIC and LHC, as can be observed from Fig. 11, where the ratio $e/6p$ is shown for a QCD equation of state [60]. Since hydrodynamic simulations of heavy ion collisions necessarily require a realistic equation of state, this leads
FIG. 10. (top row) The transverse averages (as defined in Eq. (59)) of (a) $\tau \epsilon^{3/4}$ and (b) transverse velocity v_{\perp}, and (c) momentum eccentricity (as defined by Eq. (61)) in the hydrodynamic phase as a function of time τ. The different lines correspond to different hydrodynamic initialization time τ_{hydro}, i.e. different duration of kinetic pre-equilibrium evolution. The initial condition of the effective kinetic theory at time $\tau_{\text{EKT}} = 0.1 \text{ fm}$ is a central participant MC-Glauber event normalized to correspond to a $\sqrt{s_{NN}} = 2.76 \text{ TeV Pb-Pb collisions}$ (see Fig. 9). (bottom row) the same as (a-c), except a conformal equation of state is used in the hydrodynamics evolution instead of a lattice QCD one (see Fig. 11).

FIG. 11. Deviation of the QCD equation of state [60] from conformality, as quantified by the ratio $\epsilon/(3p)$.

to discontinuous matching of the energy-momentum tensor. Specifically, when the energy-momentum tensor of KeMPoST is decomposed and passed to the hydrodynamics, the energy-momentum tensor of the hydrodynamics becomes:

$$T_{\text{hydro}}^{\mu\nu} = \epsilon u^\mu u^\nu + p_{\text{QCD}}(\epsilon) \Delta^{\mu\nu} + p^{\mu\nu}$$

which is not equal to $T^{\mu\nu}$ of the effective kinetic theory because $p_{\text{QCD}}(\epsilon) \neq p_{\text{conformal}}(\epsilon)$. Unfortunately, there is no obvious way to improve on this procedure, as a better matching will ultimately require breaking the conformal symmetry in the pre-equilibrium phase which is of higher order in α_s. On the other hand, it is straightforward to study and quantify the effects associated with this break of conformality, by replacing the QCD equation of state by a conformal one and reproducing Fig. 10(a-c). These results are presented in the bottom row of Fig. 10, where the different panels (d-f) again show the time evolution of $\langle \tau \epsilon^{3/4} \rangle$, $\langle v_{\perp} \rangle$ and ϵ'_{p}. It is clear from these figures that the τ_{hydro} dependence, which was already small for a QCD equation of state, is even smaller with the conformal equation of state. In particular, all of the τ_{hydro} dependence for $\langle \tau \epsilon^{3/4} \rangle$ — which amount to approximately 10% between $\tau_{\text{hydro}} = 0.4$ and 1.2 — is explained by the break of conformality between the initial conditions and the hydrodynamic evolution with a QCD equation.
of state. The flow observables $\langle v_{1} \rangle$ and ε also have a smaller dependence on τ_{hydro} when a conformal equation of state is used, as can be observed by comparing Fig. 10 (b) with (e), and (c) with (f). The effect is not as significant as for $\langle \tau \varepsilon^{3/4} \rangle$, however, in part because the τ_{hydro} dependence was already small in the first place with the QCD equation of state.

2. Transverse plane profiles of hydrodynamic fields

Based on our analysis in the previous section, the average energy, transverse velocity and momentum anisotropy were found to have a weak dependence on the value of τ_{hydro}. The reason for this insensitivity to τ_{hydro} is that after a short evolution, the dynamics of energy-momentum tensor in the effective kinetic theory approaches that of hydrodynamics, and the two descriptions are approximately equivalent. However, the integrated quantities shown in the previous subsection have a significantly reduced sensitivity to any type of fluctuations in the hydrodynamic fields. In this section we show profiles of hydrodynamic fields in the transverse plane of the collisions, to emphasize that the smaller features of the fields do not show any significant sensitivity to the hydrodynamic initialization time τ_{hydro}. Since the effect of the transition from a conformal kinetic theory to a non-conformal hydrodynamics evolution was quantified in the previous section, it is not revisited again here and all results that follow were obtained with a QCD equation of state.

In Fig. 12 we show profile plots of $\tau \varepsilon^{3/4}$ (top row) and the flow velocity v^y (bottom row) along the x-axis at midrapidity. Different panels (a-f) show the profiles at different hydrodynamic evolution times $\tau = 1.2, 2.0$ and 5.0 fm. The different curves on each panel correspond to a hydrodynamic initialization times τ_{hydro} from 0.4 to 1.2 fm. One observes that even for differential observables, the sensitivity to the initialization time of the hydrodynamic evolution is very small. Except for a few percent change in the overall normalization of $\tau \varepsilon^{3/4}$ between the different curves, which can be attributed to the mismatch between the conformal equation of state in KępΩST to the QCD equation of state in the hydrodynamic evolution, the profiles look essentially identical indicating a robust matching of the pre-equilibrium dynamics to viscous hydrodynamics.

One can further probe the approach of kinetic theory towards a hydrodynamic evolution by comparing the out-of-equilibrium shear-stress tensor $\pi^{\mu\nu}$ from the kinetic theory evolution with an estimate from the Navier-Stokes value $\pi^{\mu\nu} = -\tau_{\text{hydro}} \sigma^{\mu\nu}$, where $\sigma^{\mu\nu}$ is calculated from the velocity profile, see Eq. (D7). In Fig. 13(a) we plot the value of $\pi^{xx} + \pi^{yy}$ for $\tau_{\text{hydro}} = 0.8, 1.0, 1.2$ fm and Navier-Stokes estimate in dashed lines. We see that in most of the collision area the kinetic theory result approached hydrodynamic constitutive equations. One exception is the sharp edges of the fireball where the small gradient assumption breaks down. However, it is not clear that either hydrodynamics or linearized kinetic theory à la KępΩST provide an accurate description of the space-time evolution of the edges. The regions where a good matching between kinetic theory and hydrodynamics is expected can be quantified with the typical momentum relaxation time $\tau_R(\tau)$ defined at Eq. (13) in Section II C, using $\tau / \tau_R(\tau) \gtrsim 4\tau$, i.e. $\tau T_{\text{id}} / (4\pi \eta/s) \gtrsim 1$. This ratio can be calculated locally and indicates how the approach to hydrodynamics varies in the transverse plane. The result is shown in Fig. 13(b). As estimated in Sec. II D, we find that for starting times $\tau_{\text{hydro}} > 0.8$ fm, most of the medium is at scaled time $\tau T_{\text{id}} / (4\pi \eta/s) > 1$ where hydrodynamics becomes applicable. Since the local energy density at the edges is significantly smaller, the edges of the fireball remain at $\tau T_{\text{id}} / (4\pi \eta/s) < 1$ for a longer time, quantifying the statement that the approach to hydrodynamic behavior does not occur isochronously.

3. Hadronic observables

Based on the successful matching of the early time pre-equilibrium stage to the subsequent hydrodynamic regime discussed in the previous sections, we now investigate the impact of a consistent description of the early time dynamics on the final state hadronic observables computed after the freeze-out of the hydrodynamic evolution. We focus on the multiplicity dN_π/dy, the average transverse momentum $\langle p_T^2 \rangle$ and the v_2^y of thermal pions\(^{21}\), which can be thought of as analogues of the integrated hydrodynamic fields shown in Fig. 10. We note that, although only pion observables are shown in this section, we verified that similar results are found for heavier hadrons such as kaons and protons.

Starting with the same Glauber initial conditions at $\tau_{\text{kin}} = 0.1$ fm, the effective kinetic theory is used to evolve the energy-momentum tensor up to five different times τ_{hydro} from 0.4 fm to 1.2 fm, as in the previous sections. Subsequently, the hydrodynamic evolution is performed up to the isothermal freeze-out where hadronic observables are calculated. In Fig. 14, our results for the pion multiplicity dN_π/dy, the mean transverse momentum $\langle p_T^2 \rangle$ and the v_2^y are plotted as a function of τ_{hydro}. In addition to the results obtained from the effective kinetic theory pre-equilibrium evolution, the dependence of hadronic observables on τ_{hydro} is also shown for two other types of pre-equilibrium evolution: free-streaming\(^{22}\) and simple Bjørken $\tau^{-4/3}$ scaling. The use of free-streaming to describe the pre-equilibrium dynamics has been studied previously in \cite{21, 22}. Similarly, the procedure of

\(^{21}\) We reiterate, as noted in Sec. IV, that hadronic decays are not included.

\(^{22}\) Our results for free-streaming evolution are obtained by replacing the kinetic evolution of the background energy $E(x)$ and the corresponding response functions $G_{0/3}$ with their free-streaming counterparts (see Appendix C).
FIG. 12. Single event profiles along x-axis (y = 0) of $\tau^{3/4}$ (top row) and velocity v^x (bottom row) for different hydrodynamics transition times τ_{hydro}. Different columns correspond to three different times in hydrodynamic evolution: $\tau = 1.2, 2.0$ and 5.0 fm. The same EKT initialization time $\tau_{\text{EKT}} = 0.1$ fm was used. The equation of state is a realistic QCD one. The transverse velocity is not shown for very low energy densities ($\tau^{3/4} < 0.01 \text{GeV}^2$) where numerical errors can generate spurious values of velocity.

FIG. 13. (a) Comparison of the out-of-equilibrium shear stress tensor (c.f. Eq. (62)) with the Navier-Stokes estimate at different hydrodynamics initialization times τ_{hydro}. Different columns correspond to three different pre-equilibrium times in hydrodynamic evolution: $\tau = 1.2, 2.0$ and 5.0 fm. We find that for all pre-equilibrium scenarios, the multi-N_π (top row) and velocity v^x (bottom row) for different hydrodynamics transition times τ_{hydro}. Different columns correspond to three different times in hydrodynamic evolution: $\tau = 1.2, 2.0$ and 5.0 fm. The same EKT initialization time $\tau_{\text{EKT}} = 0.1$ fm was used. The equation of state is a realistic QCD one. The transverse velocity is not shown for very low energy densities ($\tau^{3/4} < 0.01 \text{GeV}^2$) where numerical errors can generate spurious values of velocity.

scaling the energy density of a set initial condition with $\tau^{-4/3}$, as would be expected for a system undergoing ideal Bjorken hydrodynamic expansion, is also used regularly in heavy ion physics to rescale the energy density of the initial conditions when changing the initialization time of hydrodynamics.

In Fig. 14(a) we show pion multiplicity dN_π/dy as a function of hydrodynamic initialization time τ_{hydro} for the three different pre-equilibrium evolution scenarios. We find that for all pre-equilibrium scenarios, the multi-
plicity has an approximately linear dependence on τ_{hydro}. For the effective kinetic theory, the multiplicity is only approximately $\sim 5\%$ smaller if the hydrodynamics is initialized at $\tau_{\text{hydro}} = 1.2$ fm rather than $\tau_{\text{hydro}} = 0.4$ fm, while in the case of the Bjorken $\tau^{4/3}$, this figure is significantly larger, $\sim 15\%$. Conversely, for a free-streaming pre-equilibrium dynamics the longitudinal pressure is underestimated during the pre-equilibrium phase, such that the energy decreases much less rapidly than in hydrodynamics, and the multiplicity is $\sim 8\%$ larger with $\tau_{\text{hydro}} = 1.2$ fm than with $\tau_{\text{hydro}} = 0.4$ fm. We conclude that overall, the pion multiplicity has the smallest dependence on τ_{hydro} when KsMPøST is used to describe the early stage of the medium evolution, although all curves are relatively flat.

In Fig. 14(b) we look at the radial flow dependence on τ_{hydro}, again for kinetic theory, free streaming and $\tau^{4/3}$ scaling. We find that for kinetic theory equilibration, the radial flow build-up is consistent with hydrodynamic evolution and the mean pion $\langle p_T^\pi \rangle$ is independent of switching time. In contrast, for the free streaming evolution, the overall energy scale grows slightly too rapidly, leading to a $\sim 3\%$ change in $\langle p_T \rangle$ if the hydrodynamics is initialized at $\tau_{\text{hydro}} = 1.2$ fm rather than $\tau_{\text{hydro}} = 0.4$ fm. Conversely, for Bjorken $\tau^{4/3}$ scaling, no pre-flow is built up during the pre-equilibrium stage resulting in a decrease by $\sim 8\%$ of $\langle p_T \rangle$ for $\tau_{\text{hydro}} = 1.2$ fm rather than $\tau_{\text{hydro}} = 0.4$ fm. Similar observations can be made for the second order flow harmonic v_2, presented in Fig. 14(c), albeit the overall magnitude of the variations is somewhat smaller in this case.

Besides the different τ_{hydro}-dependence of $\langle p_T^\pi \rangle$ and v_2, it is also clear from Fig. 14 that the $\langle p_T^\pi \rangle$ and v_2 obtained after a kinetic pre-equilibrium evolution is different from that obtained through the free-streaming and $\tau^{4/3}$ scaling. Of course the same is also true for the multiplicity in Fig. 14(a): given the same initial conditions, dN_π/dy is larger for a free-streaming evolution than a kinetic one, and smaller for $\tau^{4/3}$ scaling. In practice, the normalization of the initial conditions of hydrodynamics simulations of heavy-ion collision is always adjusted so as to reproduce hadronic multiplicities. It is thus relevant to ask how $\langle p_T^\pi \rangle$ and v_2 change for free-streaming and $\tau^{4/3}$ scaling if their respective initial condition normalizations are adjusted so that they produced the same pion multiplicity as the kinetic theory evolution. This result is shown with the open symbol on Fig. 14, for a fixed $\tau_{\text{hydro}} = 1.2$ fm. We see that even if the pion multiplicity is fixed by hand, different pre-equilibrium dynamics still lead to a difference in $\langle p_T \rangle$ and v_2, although this difference becomes very small for free-streaming. In the case of Bjorken $\tau^{4/3}$ scaling, the discrepancy remains relatively large, which we attribute in part of the lack of pre-equilibrium flow velocity resulting from this simplified scaling.

B. Energy and momentum perturbations with IP-Glasma initial conditions

Besides being applicable to general initial condition ansatzes, our framework of kinetic pre-equilibrium evolution can also be applied to microscopically motivated initial states. In this section we use the IP-Glasma model, where the evolution at early times of heavy ion collisions is described in terms of classical Yang-Mills (CYM) dy-
nematics [65, 66]. We note that in contrast to our previous discussion of the MC-Glauber model, the microscopic IP-Glasma model also includes initial momentum fluctuations $\delta T^{\mu\nu}$, which are propagated by our kinetic theory evolution. Therefore we need the complete set of response functions discussed in Sec. III A.

Since classical-statistical field theory and effective kinetic theory have an overlapping range of validity, the combination of the two allows for a consistent weak coupling description of early time dynamics [37, 44, 70, 71]. In principle, such combined approach describes particle production from the partonic structure of nuclei at high energies to the onset of hydrodynamics in the quark-gluon plasma.

In what follows, we use the original version of the IP-Glasma model, which is effectively 2+1D with boost-invariant fields in the longitudinal direction. Even though a qualitative matching between classical Yang-Mills and kinetic theory has been demonstrated in previous works [31, 37, 39, 72], no concrete implementation has been achieved to date for realistic full 2+1D simulation of heavy ion collisions. Because of the reduction to 2+1D (boost-invariant) fields, the dynamics in IP-Glasma becomes effectively free-streaming after $\tau \sim 1/Q_s \sim \mathcal{O}(0.1) \text{ fm}$ of classical Yang-Mills evolution [34]. This is different from the first stage of “bottom-up” equilibration, which is recovered in a full 3+1D classical-statistical simulation [31, 45]. However in practice, we find that at weak coupling (larger values of η/s) the matching between classical Yang-Mills and kinetic theory is still rather smooth, as long as the switching to the kinetic description is performed at sufficiently early times ($1/Q_s \ll \tau_{\text{EKT}} \ll (4\pi\eta/s)/T_{\text{id.}}$) as demonstrated below.

In order to illustrate the smooth matching at early times, we analyze the evolution of transversely averaged longitudinal $\langle P_L \rangle$ and transverse $\langle P_T \rangle$ pressures defined by Eq. (9), relative to the mean background energy density $\langle e \rangle$ in a particular event shown in Fig. 15. The IP-Glasma event used in our analysis is a central event with $N_p = 404$ participant nucleons and an eccentricity $e_2 = 0.126$ at time $\tau_{\text{EKT}} = 0.2 \text{ fm}$. The total energy in the event is $\int d^4x\tau_{\text{EKT}} T^{\mu\nu} = 4.4 \times 10^4 \text{ GeV}$, corresponding to a charged hadron multiplicity of $dN_{ch}/d\eta = 1419$. Fluctuations smaller than τ_{EKT} have been smeared with a Gaussian.

In Fig. 16 we present the time dependence of the pres-
sure to energy ratio $\langle P_{L,T} \rangle / \langle \epsilon \rangle$ during various stages of the evolution. In panel a) we see that at very early times ($\tau \ll 1/Q_s$) in the IP-Glasma evolution, the longitudinal pressure is negative due to the presence of strong longitudinal color fields [73]. However, on a time scale $\tau \sim 1/Q_s \sim 0.1$ fm the fields decay, and the longitudinal pressure approaches zero, except for a slight overshoot due to the residual pressure in the classical fields. At this time the 2+1D classical Yang-Mills dynamics becomes essentially free streaming, and one should then evolve the system with QCD kinetics in order to describe the subsequent approach towards equilibrium. Since at very early times, the expansion-dominated kinetic theory is also effectively free-streaming, the classical Yang-Mills and kinetic theory evolutions can be smoothly matched, provided $\tau_{\text{EKT}} \gtrsim 1/Q_s$ is small in units of the relaxation time, $\tau_{\text{EKT}} T_{\text{id}}/(4\pi \eta/s) \ll 1$. Indeed, in Fig. 16(a) we see that IP-Glasma to kinetic-theory transition becomes increasingly smooth as $4\pi \eta/s$ at early times is increased from 2 to 8. The energy density is high at such early times, and this would naturally lead to larger values of η/s in a theory where the coupling runs. Of course the physics of the running coupling is absent in our leading order analysis where $4\pi \eta/s \simeq 2$.

In Fig. 16(b) we see that during kinetic phase the pressure anisotropy decreases, and after the system is sufficiently close to local equilibrium $\tau T_{\text{id}}/(4\pi \eta/s) > 1$, the subsequent evolution can be smoothly matched to second order viscous hydrodynamics, as discussed in Sec. II C. Fig. 16 represents the integrated stress and energies across a realistic IP-Glasma event, which approximately follows a 1D Bjorken expansion for the first $\tau \lesssim 2.5$ fm/c. After this time the 3D hydrodynamic expansion starts, and the (integrated) estimate $\langle P_L \rangle / \langle \epsilon \rangle \simeq \frac{1}{4}$ does not provide a useful measure of local thermal equilibrium in the flowing fluid.

Having investigated the different stages of the evolution, we will evaluate the transition between kinetic theory and hydrodynamics in greater detail by monitoring the stress tensor, and by checking that hadronic observables are independent of the crossover time τ_{hydro}. The analysis parallels the MC-Glauber initial conditions described in Sec. VA1, and the discussion will highlight the differences.

1. Average hydrodynamic fields

As in Sec. VA1, we consider the transversely averaged hydrodynamic fields of energy $\langle \tau \epsilon^{3/4} \rangle$, velocity $\langle v_{\perp} \rangle$ and momentum eccentricity ϵ_p' (Eq. (61)) after the linearized kinetic pre-equilibrium evolution KoMPoST until $\tau_{\text{hydro}} = 0.4, 0.6, 0.8, 1.0, 1.2$ fm starting from IP-glasma initial conditions at $\tau_{\text{EKT}} = 0.2$ fm. The transversely averaged hydrodynamic fields are shown in Fig 17(a-c). The transverse average of $\tau \epsilon^{3/4}$ and the transverse velocity v_{\perp} are both showing an overall small dependence on τ_{hydro} consistent with what was observed in Sec. VA1 for MC-Glauber initial conditions. The momentum eccentricity ϵ_p' (Eq. (61)), on the other hand, is showing a larger dependence on τ_{hydro} than in the Glauber case. We verified that similar dependence is obtained for ϵ_p' in peripheral IP-Glasma collisions with appreciable background ellipticity (not shown). The initial momentum perturbations for IP-Glasma initial conditions (which are absent in MC-Glauber initialization) are also propagated by the kinetic theory evolution, but they only make a minor contribution to averaged energy density $\langle \tau \epsilon^{3/4} \rangle$ and radial velocity $\langle v_{\perp} \rangle$ at later times.

We note that both IP-Glasma and the kinetic theory are conformal, which means that the breaking of conformality discussed in Section VA1 also occurs and increases the dependence on τ_{hydro} for hydrodynamic evolution with realistic equation of state. In the bottom row of Fig. 17 we verified that using a conformal equation of state for the hydrodynamic phase slightly reduces the τ_{hydro} dependence of both the transverse average of $\tau \epsilon^{3/4}$ and of the transverse velocity v_{\perp}, while leaving ϵ_p' relatively unchanged, as discussed in the previous section.

We also vary the transition time between IP-Glasma and the kinetic theory τ_{EKT}, namely we do simulations with $\tau_{\text{EKT}} = 0.1$ fm and 0.2 fm, while keeping the crossover time to $\tau_{\text{hydro}} = 0.8$ fm fixed. As shown in Fig 18, all three averaged fields — the transverse energy, velocity and momentum eccentricities — show very little dependence on τ_{EKT}. This is expected as at the crossover time the 2+1D Yang Mills evolution and kinetic theory are both close to free streaming. For the rest of this section we will use a fixed transition time of IP-Glasma to kinetic theory of $\tau_{\text{EKT}} = 0.2$ fm.

2. Transverse plane profiles of hydrodynamic fields

Next, we scrutinize the matching between KoMPoST with IP-Glasma initial conditions and hydrodynamic evolution by looking at the transverse energy and velocity profiles along the x-axis ($y = 0$) in Fig. 19. The upper row shows the transverse profile of energy density $\tau \epsilon^{3/4}$ at different times in hydrodynamic evolution. Different lines represent a varying length of kinetic theory pre-equilibrium evolution with crossover times $\tau_{\text{hydro}} = 0.4$−1.2 fm. A good overlap of different curves indicates a smooth matching between kinetic theory and hydrodynamics. The small spread in energy can be attributed to the conformal breaking discussed in previous section, c.f. Fig. 17(a) and (d). In the bottom row of Fig. 19, we show the transverse velocity v^{τ} along x-axis. In the central region of the plasma we observe a smooth matching between kinetic theory and a full 2+1D relativistic hydrodynamics. For small energy densities at the edge of the medium ($|x| \gtrsim 5$ fm), the velocities are not as smoothly matched, but according to the discussion in Sec. IID, these regions do not satisfy the criterion of hydrodynamization anyway. Although at later times the pre-equilibrium flow is dominated by the response to ini-
FIG. 17. (top row) Transverse average of $\tau e^{3/4}$ and of the transverse velocity v_\perp, as defined in Eq. (59), and momentum eccentricity as defined by Eq. (61), as a function of time τ. The three average fields are plotted for different hydrodynamic initialization time τ_{hydro}, i.e. different duration of kinetic pre-equilibrium evolution. The initial condition of the effective kinetic theory at time $\tau_{\text{EKT}} = 0.2$ fm is a central IP-Glasma events normalized to correspond to a $\sqrt{s_{NN}} = 2.76$ TeV Pb-Pb collisions (see Fig. 15). (bottom row) the same as (a-c), except a conformal equation of state is used in the hydrodynamics evolution instead of a lattice QCD one.

FIG. 18. Transverse average of $\tau e^{4/3}$ and of the transverse velocity v_\perp, as defined in Eq. (59), and momentum eccentricity as defined by Eq. (61), as a function of time τ. The three average fields are plotted for a single hydrodynamic initialization time $\tau_{\text{hydro}} = 0.8$ fm, and two kinetic theory initialization time $\tau_{\text{EKT}} = 0.1$ fm and $\tau_{\text{EKT}} = 0.2$ fm, for IP-Glasma initial conditions. A realistic QCD equation of state is used in the hydrodynamics evolution.

itial energy gradients, the IP-Glasma initial conditions have a non-zero initial velocity at $\tau_{\text{EKT}} = 0.2$ fm, which contribute to the fine details of profiles shown in Fig. 19.

To test the convergence of viscous components of energy momentum tensor to hydrodynamic expectations, in Fig. 20(a) we show the shear stress tensor $\pi^{\mu\nu}$ profile for three values of the hydrodynamic initialization time $\tau_{\text{hydro}} = 0.8$ fm, 1.0 fm and 1.2 fm, and compare to the estimated Navier-Stokes value $\sim \eta s^{\mu\nu}$ (obtained from the velocity profile). The agreement with the Navier-Stokes
FIG. 19. Transverse profile of $\tau^{3/4}$ (upper panels) and velocity v^x (lower panels) for different hydrodynamics transition times τ_{hydro} at $y = 0$ fm. The different columns correspond to three different hydrodynamic evolution times, $\tau = 1.2, 2.0$ and 5.0 fm. The same EKT initialization time $\tau_{\text{EKT}} = 0.2$ fm was used. The equation of state is a realistic QCD one. The transverse velocity is not shown for very low energy densities ($\tau^{3/4} < 0.01$ GeV2) where numerical errors can generate spurious values of velocity.

FIG. 20. (a) Comparison of $\pi^{xx} + \pi^{yy}$ as defined in Eq. (62) with its Navier-Stokes counterpart at hydro initialization times $\tau_{\text{hydro}} = 0.8, 1.0, 1.2$ fm with IP-Glasma initial conditions. (b) Scaled time variable for different locations in the transverse plane and at different crossover times τ_{hydro}. Values of $\tau_{\text{id.}}/(4\pi\eta/s) > 1$ indicate that the system is close enough to local thermal equilibrium for hydrodynamics to become applicable (see Sec. II D).

value is not as good as observed for the smoother Glauber initial conditions (Fig. 13), although still reasonable. In panel (b) we show the local scaled evolution time $\tau_{\text{id.}}/(4\pi\eta/s)$ for different crossover times, which shows that the central part of the collision is within the hydrodynamic regime $\tau_{\text{id.}}/(4\pi\eta/s) > 1$ at time $\tau_{\text{hydro}} > 0.8$ fm as stipulated in Sec. II D.
3. Hadronic observables

After checking the smooth matching between individual stages of the evolution, we now test the effect of the hydrodynamic initialization time \(\tau_{\text{hydro}} \) on the final state observables. To recap, the IP-Glauber initial conditions are evolved until \(\tau_{\text{DGLAP}} = 0.2 \text{ fm} \) at which point the background energy density together with energy and momentum perturbations are passed to KoMPoST. After linearized kinetic theory pre-evolution the hydrodynamic fields like energy \(e \), velocity \(u^\mu \) and shear-stress tensor \(\pi^{\mu\nu} \) are passed to viscous hydrodynamic simulation at time \(\tau_{\text{hydro}} = 0.4-1.2 \text{ fm} \). Then thermal hadronic observables are computed at constant temperature \(T_{\text{FO}} = 145 \text{ MeV} \) freeze-out surface via the standard Cooper-Frye procedure. In Fig. 21 we show the thermal pion multiplicity \(dN_\pi/y \), the mean transverse momentum \(\langle p_T^\pi \rangle \) and \(v_2^\pi \), as a function of the hydrodynamic initialization time \(\tau_{\text{hydro}} \). For comparison, we replace the kinetic theory evolution with free-streaming background evolution and response functions. As observed in the Glauber case (see Sec. V A 3 and Fig. 14), hadronic observables show very little dependence on \(\tau_{\text{hydro}} \) when a kinetic theory pre-equilibrium evolution is used. The pion multiplicity changes by less than 4%; for free-streaming pre-equilibrium the change is twice as large in the opposite direction. The mean radial \(\langle p_T \rangle \) is essentially independent of \(\tau_{\text{hydro}} \), but is slightly increasing for free streaming pre-equilibrium. Finally, the elliptic flow slightly changes when a kinetic theory approach is used, but is still smaller for kinetic theory description. All in all, the dependence on \(\tau_{\text{hydro}} \) is small for the KoMPoST pre-equilibrium evolution and the dependence increase when the kinetic theory is replaced by free-streaming description. We highlight that the \(\tau_{\text{hydro}} \) dependence of the pion \(v_2 \) is still small, despite the somewhat larger dependence of \(c_p^\prime \) seen in Fig. 17.

VI. EFFECTIVE DESCRIPTIONS OF EARLY TIME DYNAMICS

So far we have demonstrated the practical performance of our framework to describe early time dynamics of high-energy collisions. We will now investigate in more detail theoretical relations and practical comparison to other approaches previously discussed in the literature [15, 21–24].

A. Long wavelength limit of kinetic theory response

In viscous hydrodynamics small scale fluctuations dampen rapidly, and many final state observables are only sensitive to long wavelength perturbations [74–80]. Consequently, one could expect that also the pre-equilibration discussed in previous sections could be well captured by the long wavelength response. We will now discuss how to formalize and test this idea, based on a low \(|k| \) expansion of our non-equilibrium linear response formalism. Interestingly, it will also be useful to establish the relation of our formalism to previous ideas related to the concept of a “universal pre-flow” [23]. Details of the derivations presented in this section are worked out in Appendix E.

In order to study the low \(|k| \) limit of kinetic theory pre-equilibrium evolution to initial conditions of heavy ion collisions, we first filter out the small wavelength perturbations by performing a Gaussian smearing of the initial energy-momentum tensor \(T^{\mu\nu}(\tau_0, \mathbf{x}_0) \). Specifically, we define a coarse grained energy-momentum tensor

\[
T^{\mu\nu}(\tau_0, \mathbf{x}_0) = \int d^2x_0' \ S_\sigma(\mathbf{x}_0 - \mathbf{x}_0') \ T^{\mu\nu}(\tau_0, \mathbf{x}_0') ,
\]

(63)

with the same Gaussian smearing kernel \(S_\sigma(\mathbf{x}_0 - \mathbf{x}_0') \) used to define the local background energy \(T^{\mu\nu}_{\text{BG}}(\tau_0) \) (c.f. Eq. (46)). Considering a space-time point \((\tau, \mathbf{x}) \) on the future hydrodynamic surface, we can then perform our usual decomposition of the energy-momentum tensor into local background \(T^{\mu\nu}_{\text{BG}}(\tau) \) and perturbations \(\delta T^{\mu\nu}(\tau_0, \mathbf{x}_0) \). However, instead of considering fluctuations on all scales, the initial energy-momentum tensor perturbation \(\delta T^{\mu\nu}_{\text{x}}(\tau_0, \mathbf{x}_0) \) can now be decomposed further into short and long-wavelength components as

\[
\delta T^{\mu\nu}_{\text{x}}(\tau_0, \mathbf{x}_0) = \left(T^{\mu\nu}(\tau_0, \mathbf{x}_0) - T^{\mu\nu}_{\text{BG}}(\tau_0, \mathbf{x}_0) \right)_{\text{short wavelength}} + \left(T^{\mu\nu}(\tau_0, \mathbf{x}_0) - T^{\mu\nu}(\tau_0) \right)_{\text{long wavelength}},
\]

(64)

where, recalling that the definition of the local background \(T^{\mu\nu}_{\text{BG}}(\tau_0) \) involves the same coarse graining procedure, the long wave-length components of \(\delta T^{\mu\nu}_{\text{x}}(\tau_0, \mathbf{x}_0) \) are then entirely given in terms of smooth fields \(T^{\mu\nu} \). If the initial profile of the energy-momentum tensor \(T^{\mu\nu}(\tau, \mathbf{x}) \) is sufficiently smooth on length scales smaller than \(\sigma \sim |\tau - \tau_0| \) the short-wave-length component is very small and can safely be ignored [23]. Neglecting short wavelength components in the following, the energy-momentum tensor at later times is then given by

\[
\frac{\delta T^{\mu\nu}(\tau, \mathbf{x})}{T^{\mu\nu}_{\text{x}}(\tau) \times T^{\mu\nu}_{\text{x}}(\tau_0)} = \int d^2x_0 G^{\mu\nu}_{\alpha\beta}(\tau, \tau_0, \mathbf{x} - \mathbf{x}_0) \left(T^{\alpha\beta}(\tau_0, \mathbf{x}_0) - T^{\alpha\beta}_{\text{BG}}(\tau_0) \right).
\]

(65)

Note that even if the initial energy-momentum tensor features fluctuations smaller on length scales smaller than \(\sigma \), short wave length components on scales less than \(\sigma_{\text{visc}} \sim (\tau - \tau_0)/\sqrt{a_T^2 + \eta/s} \), are subject to strong viscous damping and could still be neglected.
By expressing the convolution in Fourier space, and expanding the response functions in powers of the wave number |k|, as

$$
\tilde{G}_s^0(\tau, \tau_0, |k|) = \tilde{G}_s^0(\tau, \tau_0) \left(\tilde{s}_s^{(0)} - \frac{1}{2} |k|^2 (\tau - \tau_0)^2 \tilde{s}_s^{(2)} + \ldots \right),
$$

and similarly for the other components, it is then straightforward to show that the long wave length response in Eq. (65) is proportional to the gradients of the smoothed energy-momentum tensor $T^\mu\nu(\tau, x)$. Saving the details of the derivation for Appendix E, the energy-momentum response to initial energy gradients is then given by

$$
\frac{\delta T^{\tau\tau}(\tau, x)}{T_\tau^\tau(\tau)} \approx \frac{\tilde{G}_s^0(\tau, \tau_0)}{T_\tau^\tau(\tau_0)} \left[\frac{1}{2} \tilde{s}_s^{(2)}(\tau - \tau_0)^2 \partial_\tau \partial_\tau \right] \tilde{T}^{\tau\tau}(\tau_0, x)
$$

(67a)

$$
\frac{\delta T^{ij}(\tau, x)}{T_\tau^{\tau\tau}(\tau)} \approx \frac{\tilde{G}_s^0(\tau, \tau_0)}{T_\tau^{\tau\tau}(\tau_0)} \left[-\tilde{s}_s^{(1)}(\tau - \tau_0) \partial_\tau \right] \tilde{T}^{\tau\tau}(\tau_0, x)
$$

(67b)

which is a generalization of the previous result for the transverse pre-flow derived in [23, 38]. Eq. (67) says that in addition to the “pre-flow” which develops during the equilibration process due to gradients [23], local maxima of the initial energy density, which have negative second derivatives, are depleted during the evolution. We can also obtain the long wavelength response to initial mo-
momentum perturbations
\[
\frac{\delta T^{\tau\tau}(\tau, x)}{T^{\tau\tau}(\tau)} \approx \frac{\tilde{G}_0^{(1)}(\tau, \tau_0)}{T^{\tau\tau}(\tau_0)} \left(-\tilde{v}_s^{(1)}(\tau - \tau_0) \partial_i \right) \tilde{T}^{\tau\tau}(\tau_0, x),
\]
(68)

\[
\frac{\delta T^{ij}(\tau, x)}{T^{ij}(\tau)} \approx \frac{\tilde{G}_0^{(2)}(\tau, \tau_0)}{T^{ij}(\tau_0)} \left[1 + \frac{(\tau - \tau_0)^2}{2} \tilde{v}_s^{(2)} \partial_k \partial_j \right] \tilde{T}^{ij}(\tau_0, x) \left. \frac{\delta T^{ij}(\tau, x)}{T^{ij}(\tau)} \approx \frac{\tilde{G}_0^{(2)}(\tau, \tau_0)}{T^{ij}(\tau_0)} \left(\tilde{v}_s^{(2)} \partial_k \partial_j \right) \tilde{T}^{ij}(\tau_0, x). \right)
\]
(69)

We extract the 1st and 2nd order coefficients in $|k|(\tau - \tau_0)$ by performing a polynomial fit to the first few $|k|$ values of kinetic theory response functions, e.g. Fig. 6. Our results for the zero momentum response $G_s^{0 \nu}$, as well as the long wave-length coefficients $s^{(n)}, u^{(n)}$ from effective kinetic theory simulations, are compactly summarized in Fig. 22, where we plot the various response coefficients as a function of the scaling variables $\frac{\tau_x}{\eta/s}$. We find that the time dependence of the coefficients is rather weak, such that in practice the long wave length response can be approximated rather well by the hydrodynamic asymptotics, see Appendix D 2.

Before we compare the long wavelength results to the full treatment in KoMPOST, it is important to point out that the above separation into long and short wavelength modes introduces an artificial regulator dependence not present in the full treatment. Specifically for the long wavelength filter $\tilde{S}_s(k) \propto e^{-\frac{\sigma^2}{2}k^2} \simeq 1 - \frac{\sigma^2}{2}k^2$ in Eq. (63), the first difference formally appears at quadratic order $O(k^2)$. However, the $O(k^2)$ can always be absorbed into an additive renormalization of the long wavelength coefficients, i.e. by subtracting $\sigma^2/2(\tau - \tau_0)^2$ from the quadratic $s^{(2)}$ coefficient in energy response, as explained in Appendix E 2. Based on this renormalization scheme, the regulator dependence enters only at cubic order $O(|k|^3)$ and the residual dependence can be used to quantify the systematic uncertainties of the long wavelength approximation.

B. Comparison of effective kinetic theory, long wavelength response & free streaming

We now turn to the comparison between the full kinetic theory and the low-$|k|$ limit described in previous section. Our results are summarized in the top row of Fig. 23, where we compare profiles of the energy-momentum tensor at the end of the pre-equilibrium evolution at $t_{\text{hydro}} = 1.2\text{fm}$ initialized with the same MC-Glauber initial conditions at $t_{\text{ECT}} = 0.1\text{fm}$. We assess the robustness of the long wavelength results by using two different smearing widths $\sigma_1 = \sigma_0$ and $\sigma_2 = 2\sigma_0$, where $\sigma_0 = (\tau_{\text{hydro}} - t_{\text{ECT}})/2$ is the same Gaussian width used to define the local averaged background in the full kinetic theory response.

As it is visible from Fig. 23(a) the simplified low-k evolution accurate to quadratic order in small $|k|$ reproduces the energy density profile rather well and is largely insensitive to the transverse pressure is completely neglected, and thus the transverse stress $\pi^{xx} + \pi^{yy}$ is too large when the system is passed to hydrodynamics. (We have reduced the free $\pi^{xx} + \pi^{yy}$ by a factor of two in Fig. 23 for visibility.) If instead of the free streaming result for $\tilde{\pi}^{xx,yy}$, one just uses the free energy and velocity profiles, Fig. 23(d-e), together with the hydrodynamic constitutive relations, the
shear-stress tensor is closer to the kinetic theory result, as indicated by a Navier-Stokes estimate $\sim \eta \sigma_{\mu\nu}$ in the figure.

To summarize, the low-$|k|$ limit does a good job at describing the velocity, but it makes no predictions for the background energy density as a function of time. Therefore it must be supplemented by a theory (such as QCD kinetics) which describes the longitudinal pressure at early times. Free streaming also correctly describes the velocity response, but in this case the energy density and second order hydrodynamic variables must be continually readjusted in order to have a smooth transition to hydrodynamics. On a practical note, using KoMPoST is computationally no more expensive than the other alternatives, and it should become the pre-hydro engine of choice.

VII. SUMMARY & OUTLOOK

In this paper we developed a linear response framework to describe the non-equilibrium evolution of the energy-momentum tensor during the early stages of high-energy heavy-ion collisions. Based on microscopic input from effective kinetic theory simulations, we presented a practical implementation of the “bottom-up” thermalization scenario with realistic fluctuating heavy-ion initial conditions and demonstrated a consistent matching between the pre-equilibrium and the hydrodynamic evolution on an event-by-event basis. Our linear kinetic pre-equilibrium propagator KoMPoST [41] provides a practical implementation of a systematic procedure to propagate initial out-of-equilibrium perturbations to the hydrodynamic initialization time [38]. Crucially, for short evolution times the equilibration dynamics can be described as sum of local background equilibration and linear response to fluctuations of initial conserved energy and momentum density, Eq. (4). We developed a concrete realization of the general linear response formalism presented in Sec. II A and Sec. III A using QCD kinetic theory with gluonic degrees of freedom and extrapolation to moderate values of the coupling constant λ [30, 37, 38]. Within our framework, the entire kinetic equilibration of $T^{\mu\nu}$ is compactly summarized by a single evolution curve of the homogeneous background (c.f. Fig. 4) and a handful of response functions (c.f. Figs. 26 and 27). Interestingly, we find that for the relevant range of coupling constants, corresponding to realistic values of η/s, the kinetic equilibration only depends on the scaling time $\sim \tau T/(\eta/s)$ such that pre-tabulated kinetic response functions can be used for event-by-event simulations.

We found that for typical QGP parameters the leading order kinetic theory predicts a hydrodynamization time around $t_{\text{hydro}} \sim 1\text{fm}$ (c.f. Eq. (24) and Ref. [38]). During this time the initial gluon number density per rapidity
roughly doubles and, thus, significantly alters the relation between final particle multiplicities and the entropy density per rapidity in the initial state (see Fig. 5).

We applied our formalism to two widely used initial state descriptions: a phenomenological MC-Glauber ansatz for transverse energy density deposition in Sec. V A and the first-principle dynamical IP-Glasma model (which contains both energy and momentum fluctuations) in Sec. V B. In both cases we demonstrated a smooth matching between the kinetic theory and hydrodynamics, both in the hydrodynamics fields, e.g. Fig. 12, and in the final hadronic observables, see Figs. 14 and 21, largely eliminating the dependence on the crossover time \(\tau_{\text{hydro}} \). Note that the kinetic response functions reproduce the spatial components of the energy-momentum tensor \(\delta T^{ij} \) without explicitly imposing the constitutive relations, (c.f. Figs. 13(a) and 20(a)).

Finally we studied the kinetic response in the “low wavelength” (hydrodynamic) and “fast expansion” (free-streaming) limits to establish connections with the existing literature [15, 21–24]. We find that the first few terms in small \(|k|\)-expansion are sufficient to capture most of kinetic response (Fig. 23). Incidentally, the leading order velocity response in free-streaming limit agrees with kinetic theory, but energy density and shear-stress tensor evolution are described incorrectly.

Our publicly available kinetic propagator package KoMpoST [41] offers a simple, yet non-trivial description of hydrodynamization in heavy ion collisions. The reduced sensitivity on the hydrodynamic initialization time \(\tau_{\text{hydro}} \) brings us closer to ab initio initial conditions of heavy ion collisions. Moreover, there are multiple possibilities to build on this work to achieve an even better description of the early stage of heavy ion collisions. The inclusion of quarks as degrees of freedom would lead to a more realistic description of the pre-equilibration stage of collisions, which should provide a better matching with the QCD equation of state. Studying non-trivial background evolution in kinetic theory, e.g. radial gradients, could improve the applicability of presented framework at the edges of the QGP fireball and in small systems.

More importantly, the formalism derived in this work to propagate linear perturbations on top of a smoother background can be used with response functions computed in limits other than weakly-coupled effective QCD kinetic theory. By using this framework to compare systematically the macroscopic description of equilibration from a weakly-coupled regime and a strongly-coupled one, one can hope to better constrain the real dynamics of the medium produced in heavy ion collisions.

ACKNOWLEDGMENTS

The authors would like to thank Björn Schenke for insightful discussions and for his help adapting the hydrodynamics code MUSIC for this work, and Liam Keegan for his contributions at the beginning of this project. Useful discussions with Jürgen Berges, Stefan Flörchinger, Yacine Mehtar-Tani, Klaus Reygers, Raju Venugopalan are gratefully acknowledged. Results in this paper were obtained using the high-performance computing system at the Institute for Advanced Computational Science at Stony Brook University. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Numbers DE-FG02-88ER40388 (A.M., J.-F.P.), DE-FG02-05ER41367 (J.-F.P.) and DE-FG02-97ER41014 (S.S.). This work was supported in part by the German Research Foundation (DFG) Collaborative Research Centre (SFB) 1225 (ISOQUANT) (A.M.). Finally, A.M. would like to thank CERN Theoretical Physics Department for the hospitality during the short-term visit.

[1] U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013), arXiv:1301.2826 [nucl-th].
[2] D. A. Teaney, in Quark-gluon plasma 4, edited by R. C. Hwa and X.-N. Wang (2010) pp. 207–266, arXiv:0905.2433 [nucl-th].
[3] M. Luzum and H. Petersen, J. Phys. G41, 063102 (2014), arXiv:1312.5503 [nucl-th].
[4] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A28, 1340011 (2013), arXiv:1301.5893 [nucl-th].
[5] R. Derradi de Souza, T. Koide, and T. Kodama, Prog. Part. Nucl. Phys. 86, 35 (2016), arXiv:1506.03863 [nucl-th].
[6] H. Niemi, K. J. Eskola, and R. Paatelainen, Phys. Rev. C93, 024907 (2016), arXiv:1505.02677 [hep-ph].
[7] J. E. Bernhard, P. W. Marcy, C. E. Coleman-Smith, S. Huebauch, R. L. Wolpert, and S. A. Bass, Phys. Rev. C91, 054910 (2015), arXiv:1502.00339 [nucl-th].
[8] E. Sangaline and S. Pratt, Phys. Rev. C93, 024908 (2016), arXiv:1508.07017 [nucl-th].
[9] G. S. Denicol, U. W. Heinz, M. Martinez, J. Noronha, and M. Strickland, Phys. Rev. D90, 125026 (2014), arXiv:1408.7048 [hep-ph].
[10] M. P. Heller and M. Spalinski, Phys. Rev. Lett. 115, 072501 (2015), arXiv:1503.07514 [hep-th].
[11] M. P. Heller, R. A. Janik, and P. Witaszczuk, Phys. Rev. Lett. 110, 211602 (2013), arXiv:1302.0697 [hep-th].
[12] M. Strickland, J. Noronha, and G. Denicol, Phys. Rev. D97, 036020 (2018), arXiv:1709.06644 [nucl-th].
[13] P. Romatschke, JHEP 12, 079 (2017), arXiv:1710.03234 [hep-th].
[14] D. Molnar and Z. Wolff, Phys. Rev. C95, 024903 (2017), arXiv:1404.7850 [nucl-th].
[15] W. van der Schee, P. Romatschke, and S. Pratt, Phys. Rev. Lett. 111, 222302 (2013), arXiv:1307.2539 [nucl-th].
[16] A. Kurkela, Proceedings, 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark
Appendix A: Background evolution in kinetic theory

1. Extraction of transport coefficients

In this section we summarise the procedure of extracting the transport coefficients in kinetic theory for different values of the coupling constant \(\lambda \). At asymptotically weak coupling, the transport coefficients can be obtained from perturbative calculations [48, 81], however in this work we consider moderate values of \(\lambda \) instead of using perturbative formulas, we extract the transport coefficients directly from the evolution of homogeneous and longitudinally expanding plasma. Effectively we treat \(\lambda \) as a dial parameter in our leading order kinetic theory description to tune to different values of transport coefficients (which, perhaps, correspond to different value of the coupling constant in a higher order treatment).

First, the transport coefficients are obtained from the relaxation of pressure anisotropy. For Bjorken expansion and in second order conformal hydrodynamics one can show that it takes the following form (see Ref. [47] and Appendix D)

\[
\frac{P_T - P_L}{e + p} = 2 \left(\frac{\eta/s}{\tau T(e)} \right) + \frac{4}{3} C_2 \left(\frac{\eta/s}{\tau T(e)} \right)^2 \quad (A1)
\]

where \(T(e) \) is the equilibrium temperature obtained from the Landau matching condition, Eq. (20), and \(C_2 \) is a constant combination of first and second order transport coefficients, see Eq. (15). The shear over entropy ratio \(\eta/s \) and \(C_2 \) are then fitted to the late time tail of pressure anisotropy. The fit results for different values of \(\lambda \) is shown in Fig. 24. Note that \(C_2 \) is only modestly dependent on the coupling constant and rather close to the weak coupling estimate \(C_2 \approx 1.0 \) (\(\tau_id. \sim 5.1 \eta/sT \) and \(\lambda_1 \sim 0.8\eta_T[48] \)), so that in practice the same calculated value \(C_2 \approx 1.0 \) can be used for the entire range of the coupling constants.

As discussed in Sec. II C, the hydrodynamic evolution collapses to the same scaling curve if time is counted in relaxation time units, see Eq. (13). In order to define a simple single parameter temperature scale at all times we introduced temperature \(T_{id.}(\tau; \Lambda_T) \) in Eq. (10). Relating \(T_{id.} \) to the equilibrium temperature \(T(e) \) at first viscous order

\[
\Lambda_T^{2/3} \equiv T_{id.}^{1/3} = \frac{1}{3} \frac{2}{\eta/s} \left(\frac{T(e)}{3\tau T(e)} \right)^{1/3} \quad (A2)
\]

gives a simple and efficient way of determining the energy scale \(\Lambda_T \). Note that the pressure equilibrium, Eq. (A1), can be now written explicitly

\[
\frac{P_T - P_L}{e + p} = 2 \left(\frac{\eta/s}{\tau T_{id.}(\tau; \Lambda_T)} \right) + \frac{4}{3} (1 + C_2) \left(\frac{\eta/s}{\tau T_{id.}(\tau; \Lambda_T)} \right)^2 \quad (A3)
\]

as a function of time and three fit parameters: \(\eta/s \), \(C_2 \) and \(\Lambda_T \). Remarkably, the pressure anisotropy evolution in Fig. 24 collapses to the same curve even at earlier times than when the second order asymptotics becomes applicable.

Finally for completeness we list the asymptotic expansions for temperature, energy and entropy at second order in terms of scaling variable \(\tau T_{id.}/\eta/s \):

\[
\frac{T(\tau)}{T_{id.}} = 1 - 2 \frac{\eta/s}{3 \tau T_{id.}} - \frac{2}{9} C_2 \left(\frac{\eta/s}{\tau T_{id.}} \right)^2, \quad (A4)
\]

\[
\frac{e(\tau)}{\nu g \frac{\pi^2}{30} T_{id.}^3} = 1 - \frac{8}{3} \frac{\eta/s}{\tau T_{id.}} - \frac{8}{9} (3 - C_2) \left(\frac{\eta/s}{\tau T_{id.}} \right)^2, \quad (A5)
\]

\[
\frac{s(\tau)}{\nu g \frac{\pi^2}{45} T_{id.}^3} = 1 - \frac{2}{3} \frac{\eta/s}{\tau T_{id.}} + \frac{2}{3} (2 - C_2) \left(\frac{\eta/s}{\tau T_{id.}} \right)^2. \quad (A6)
\]

2. Parametrization of background evolution

Below we provide explicit parametrizations of the evolution of the background components of the energy momentum tensor. Based on our discussion in Sec. II C, the kinetic theory evolution can be parametrized in terms of a single scaling function \(E(x) \) for the energy density

\[
e(\tau) = \nu g \frac{\pi^2}{30} T_{id.}^3 E \left[x = \frac{\tau T_{id.}}{\eta/s} \right]. \quad (A7)
\]
FIG. 24. Evolution of pressure anisotropy, Eq. (A1), in kinetic theory with initial distribution function Eq. (7), and fitted transport coefficients η/s and C_2 (see text).

We parametrize the scaling function $\mathcal{E}(x)$ by the following ansatz

$$
\mathcal{E}(x) = \frac{1}{1 + \frac{8}{3}x + \frac{8}{9}(5 + C_2)\frac{1}{x^2}} \text{step}(x) + \sqrt{\tanh(F_0^2 x(1 + bx + cx^2)^2)} \left(1 - \text{step}(x)\right),
$$

(A8)

where $\text{step}(x)$ is a smooth function interpolating between $\text{step}(x \gg 1) = 1$ and $\text{step}(x \ll 1) = 0$. Explicitly we take

$$
\text{step}(x) = \frac{1}{2} \left(1 + \tanh \left[\frac{x^2 - x_{\text{switch}}^2}{x_{\text{range}}^2}\right]\right). \quad (A9)
$$

At early times we recover the hydrodynamic limit Eq. (A5)

$$
\tau \gg 1 \quad \mathcal{E}(x) \approx 1 - \frac{8}{3}x + \frac{8}{9}(3 - C_2)\frac{1}{x^2}, \quad (A10)
$$

which is quite well described by $C_2 = 1.02$ [48]. At early times, the energy evolution is matched to a free-streaming behavior

$$
x \ll 1 \quad \mathcal{E}(x) \approx F_0 \sqrt{x}. \quad (A11)
$$

The remaining fit parameters are

$$
\sqrt{4\pi} F_0 = 1.0767, \quad 4\pi b = -0.284, \quad (4\pi)^2 c = 0.134 \quad (A12)
$$

while the step function is parametrized by

$$
x_{\text{switch}}/(4\pi) = 0.65, \quad x_{\text{range}}/(4\pi) = 0.25 \quad (A13)
$$

The transverse and longitudinal pressure is determined by functions

$$
P_L(\tau) = \nu_s \pi^2 / 90 T_{\text{id}}^3 \mathcal{P}(x), \quad (A14)
$$

$$
P_T(\tau) = \nu_s \pi^2 / 90 T_{\text{id}}^3 \left(\frac{3}{2} \mathcal{E}(x) - \frac{1}{2} \mathcal{P}(x)\right). \quad (A15)
$$

Here the auxiliary function $\mathcal{P}(x)$ is determined by the equation of motion for Bjorken expansion, i.e. $\partial_r(\tau e) = -P_L$.

$$
\mathcal{P}(x) = \mathcal{E}(x) - 2x \frac{d}{dx} \mathcal{E}(x). \quad (A16)
$$

A comparison of the parametrization with the simulation data is compiled in Fig. 25. We note that since the scaling of kinetic evolution curves is not perfect, especially for the longitudinal pressure at very early times, there is a systematic error in this parametrization at the order of a few percent.

Appendix B: Decomposition of response functions

1. General response functions in coordinate space

Similar to the discussion in Sec. III A, the coordinate space Green functions defined by Eq. (27) can be decomposed into a complete set of tensor structures. Specifically, for (scalar) energy perturbations, the decomposition takes the form

$$
G_s^{\tau\tau}(\tau, \tau_0, \mathbf{r}) = G_s^s(\tau, \tau_0, |\mathbf{r}|),
$$

$$
G_s^{\tau i}(\tau, \tau_0, \mathbf{r}) = \frac{\mathbf{r}_i}{|\mathbf{r}|} G_s^s(\tau, \tau_0, |\mathbf{r}|),
$$

$$
G_s^{ij}(\tau, \tau_0, \mathbf{r}) = G^{\tau\tau}(\tau, \tau_0, |\mathbf{r}|) \delta^{ij} + G_s^{\tau, r}(\tau, \tau_0, |\mathbf{r}|) \frac{\mathbf{r}^i \mathbf{r}^j}{|\mathbf{r}|^2}, \quad (B1)
$$

and the coordinate space Green functions are related to their momentum space counterparts listed in Eq. (29) according to the following Fourier-Hankel transform

$$
G_s^s(\tau, \tau_0, |\mathbf{r}|) = \frac{1}{2\pi} \int d|\mathbf{k}| |J_0(|\mathbf{k}| |\mathbf{r}|)\tilde{G}_s^s(\tau, \tau_0, |\mathbf{k}|),
$$

$$
G_s^{\tau}(\tau, \tau_0, |\mathbf{r}|) = \frac{1}{2\pi} \int d|\mathbf{k}| |J_1(|\mathbf{k}| |\mathbf{r}|)\tilde{G}_s^s(\tau, \tau_0, |\mathbf{k}|),
$$

$$
G_s^{\tau, r}(\tau, \tau_0, |\mathbf{r}|) = \frac{1}{2\pi} \int d|\mathbf{k}| |\mathbf{k}| \left(J_0(|\mathbf{k}| |\mathbf{r}|)\tilde{G}_s^{\tau, \tau}(\tau, \tau_0, |\mathbf{k}|) + \frac{J_1(|\mathbf{k}| |\mathbf{r}|)}{|\mathbf{k}|} \tilde{G}_s^{\tau, k}(\tau, \tau_0, |\mathbf{k}|)\right),
$$

$$
G_s^{\tau, x}(\tau, \tau_0, |\mathbf{r}|) = \frac{1}{2\pi} \int d|\mathbf{k}| |\mathbf{k}| J_2(|\mathbf{k}| |\mathbf{r}|)\tilde{G}_s^{\tau, k}(\tau, \tau_0, |\mathbf{k}|), \quad (B2)
$$
Similarly, for (vector) momentum perturbations, the decomposition take the form

\[G_{v,i}^{\tau,k}(\tau, \tau_0, \mathbf{r}) = \frac{r^i}{|\mathbf{r}|} G_{v}^{\tau}(\tau, \tau_0, |\mathbf{r}|), \]

\[G_{v,i}^{\tau,i,k}(\tau, \tau_0, \mathbf{r}) = \frac{\delta^{jk}}{|\mathbf{r}|} G_{v}^{\tau}(\tau, \tau_0, |\mathbf{r}|) + \frac{r^i r^k}{|\mathbf{r}|^2} G_{v}^{\tau}(\tau, \tau_0, |\mathbf{r}|), \]

\[G_{v,i}^{\tau,j,k}(\tau, \tau_0, \mathbf{r}) = \frac{\delta^{ij}}{|\mathbf{r}|} G_{v}^{\tau}(\tau, \tau_0, |\mathbf{r}|) + \frac{r^l r^k}{|\mathbf{r}|^3} G_{v}^{\tau}(\tau, \tau_0, |\mathbf{r}|) + \frac{1}{2} \left(\frac{r^i}{|\mathbf{r}|} \delta^{jk} + \frac{r^j}{|\mathbf{r}|} \delta^{ik} \right) G_{v}^{\tau,m}(\tau, \tau_0, |\mathbf{r}|) + \frac{r^l r^i r^k}{|\mathbf{r}|^4} G_{v}^{\tau}(\tau, \tau_0, |\mathbf{r}|), \]

(B3)

with the different components obtained from Eq. (30) according to following transformations

\[
G_{v}^{\tau}(\tau, \tau_0, |\mathbf{r}|) = \frac{1}{2\pi} \int d|\mathbf{k}| |\mathbf{k}| J_1(|\mathbf{k}| |\mathbf{r}|) \tilde{G}_{v}^{\tau}(\tau, \tau_0, \mathbf{k}),
\]

\[
G_{v}^{\tau,\delta}(\tau, \tau_0, |\mathbf{r}|) = \frac{1}{2\pi} \int d|\mathbf{k}| |\mathbf{k}| \left(J_0(|\mathbf{k}| |\mathbf{r}|) \tilde{G}_{v}^{\tau,\delta}(\tau, \tau_0, |\mathbf{k}|) + \frac{J_1(|\mathbf{k}| |\mathbf{r}|)}{|\mathbf{k}| |\mathbf{r}|} \tilde{G}_{v}^{\tau,k}(\tau, \tau_0, |\mathbf{k}|) \right),
\]

\[
G_{v}^{\tau,\gamma}(\tau, \tau_0, |\mathbf{r}|) = \frac{1}{2\pi} \int d|\mathbf{k}| |\mathbf{k}| J_2(|\mathbf{k}| |\mathbf{r}|) \tilde{G}_{v}^{\tau,k}(\tau, \tau_0, |\mathbf{k}|),
\]

\[
G_{v}^{\tau,\delta}(\tau, \tau_0, |\mathbf{r}|) = \frac{1}{2\pi} \int d|\mathbf{k}| |\mathbf{k}| \left(J_1(|\mathbf{k}| |\mathbf{r}|) \tilde{G}_{v}^{\tau,\delta}(\tau, \tau_0, |\mathbf{k}|) + \frac{J_2(|\mathbf{k}| |\mathbf{r}|)}{|\mathbf{k}| |\mathbf{r}|} \tilde{G}_{v}^{\tau,k}(\tau, \tau_0, |\mathbf{k}|) \right),
\]

\[
G_{v}^{\tau,\gamma}(\tau, \tau_0, |\mathbf{r}|) = \frac{1}{2\pi} \int d|\mathbf{k}| |\mathbf{k}| J_1(|\mathbf{k}| |\mathbf{r}|) \tilde{G}_{v}^{\tau,\gamma}(\tau, \tau_0, |\mathbf{k}|) + \frac{J_2(|\mathbf{k}| |\mathbf{r}|)}{|\mathbf{k}| |\mathbf{r}|} \tilde{G}_{v}^{\tau,k}(\tau, \tau_0, |\mathbf{k}|),
\]

\[
G_{v}^{\tau,\delta}(\tau, \tau_0, |\mathbf{r}|) = \frac{1}{2\pi} \int d|\mathbf{k}| |\mathbf{k}| J_2(|\mathbf{k}| |\mathbf{r}|) \tilde{G}_{v}^{\tau,\delta}(\tau, \tau_0, |\mathbf{k}|) + \frac{J_3(|\mathbf{k}| |\mathbf{r}|)}{|\mathbf{k}| |\mathbf{r}|} \tilde{G}_{v}^{\tau,k}(\tau, \tau_0, |\mathbf{k}|),
\]

(B4)

2. Response functions from the energy-momentum tensor evolution

Different components of the out-of-equilibrium Green functions are determined from the kinetic evolution of the perturbations defined in Eqs. (35) and (37), and corre-
sponding to initial energy and momentum perturbations
\(\delta T_{k,(i)(v)}^{\mu
u}(\tau_0) \) and \(\delta T_{k,(v)}^{\mu\nu}(\tau_0) \).

If initial amplitude of perturbations relative to the background is chosen such that
\[
\frac{\delta T_{k,(i)(v)}^{\mu\nu}(\tau_0)}{\bar{T}^{\mu\nu}(\tau_0)} = i, \quad \frac{\frac{1}{2} \delta_{ij} \delta T_{k,(i)(v)}^{\mu\nu}(\tau_0)}{\bar{T}^{\mu\nu}(\tau_0)} = i .
\]
(B5)
then the response functions can be simply written as the following projections of the perturbation energy-momentum tensor \(\delta T_{k,(i)(v)}^{\mu\nu} \) at later time
\[
\hat{G}_{\mu}^\tau(\tau, \tau_0, \mathbf{k}) = \frac{\delta T_{k,(i)(v)}^{\mu\nu}(\tau)}{\bar{T}^{\mu\nu}(\tau)} ,
\]
\[
\hat{G}_{\nu}^\tau(\tau, \tau_0, \mathbf{k}) = \left[\frac{+i \mathbf{k}_i}{|\mathbf{k}|} \right] \frac{\delta T_{k,(i)(v)}^{\mu\nu}(\tau)}{\bar{T}^{\mu\nu}(\tau)} ,
\]
\[
\hat{G}_v^{\tau,\delta}(\tau, \tau_0, \mathbf{k}) = \frac{\delta_{ij} - \frac{\mathbf{k}_i \mathbf{k}_j}{|\mathbf{k}|^2}}{|\mathbf{k}|^2} \frac{\delta T_{k,(i)(v)}^{\mu\nu}(\tau)}{\bar{T}^{\mu\nu}(\tau)} ,
\]
\[
\hat{G}_v^{\tau,k}(\tau, \tau_0, \mathbf{k}) = \frac{2}{|\mathbf{k}|^2} \left[\frac{\mathbf{k}_i \mathbf{k}_j}{|\mathbf{k}|^2} - \delta_{ij} \right] \frac{\delta T_{k,(i)(v)}^{\mu\nu}(\tau)}{\bar{T}^{\mu\nu}(\tau)} ,
\]
while for momentum perturbations the decomposition takes the form
\[
\hat{G}_v^{\tau,k}(\tau, \tau_0, \mathbf{k}) = \frac{2}{|\mathbf{k}|^2} \left[\frac{\mathbf{k}_i \mathbf{k}_j}{|\mathbf{k}|^2} - \delta_{ij} \right] \frac{\delta T_{k,(i)(v)}^{\mu\nu}(\tau)}{\bar{T}^{\mu\nu}(\tau)} ,
\]
\[
\hat{G}_v^{\tau,\delta}(\tau, \tau_0, \mathbf{k}) = \frac{\delta_{ij} - \frac{\mathbf{k}_i \mathbf{k}_j}{|\mathbf{k}|^2}}{|\mathbf{k}|^2} \frac{\delta T_{k,(i)(v)}^{\mu\nu}(\tau)}{\bar{T}^{\mu\nu}(\tau)} ,
\]
\[
\hat{G}_v^{\tau,m}(\tau, \tau_0, \mathbf{k}) = \frac{2}{|\mathbf{k}|^2} \left[\frac{\mathbf{k}_i \mathbf{k}_j}{|\mathbf{k}|^2} - \delta_{ij} \right] \frac{\delta T_{k,(i)(v)}^{\mu\nu}(\tau)}{\bar{T}^{\mu\nu}(\tau)} ,
\]
\[
\hat{G}_v^{\tau,k}(\tau, \tau_0, \mathbf{k}) = \frac{2}{|\mathbf{k}|^2} \left[\frac{\mathbf{k}_i \mathbf{k}_j}{|\mathbf{k}|^2} - \delta_{ij} \right] \frac{\delta T_{k,(i)(v)}^{\mu\nu}(\tau)}{\bar{T}^{\mu\nu}(\tau)} .
\]
(B6)

Specifically, for \(\mathbf{k} = (|\mathbf{k}|, 0) \) the decomposition for energy perturbations then takes the form
\[
\hat{G}_{s}^{\tau}(\tau, \tau_0, \mathbf{k}) = \frac{\text{Im}\delta T_{k,(i)(v)}^{\tau\tau}(\tau)}{\bar{T}^{\tau\tau}(\tau)} ,
\]
\[
\hat{G}_{s}^{\nu}(\tau, \tau_0, \mathbf{k}) = \frac{\text{Re}\delta T_{k,(i)(v)}^{\nu\nu}(\tau)}{\bar{T}^{\nu\nu}(\tau)} ,
\]
\[
\hat{G}_v^{\tau,\delta}(\tau, \tau_0, \mathbf{k}) = \frac{\text{Im}\delta T_{k,(i)(v)}^{\tau\nu}(\tau)}{\bar{T}^{\tau\nu}(\tau)} ,
\]
\[
\hat{G}_v^{\tau,k}(\tau, \tau_0, \mathbf{k}) = \frac{\text{Im}\delta T_{k,(i)(v)}^{\tau\nu}(\tau)}{\bar{T}^{\tau\nu}(\tau)} ,
\]
\[
\hat{G}_v^{\tau,m}(\tau, \tau_0, \mathbf{k}) = \frac{\text{Im}\delta T_{k,(i)(v)}^{\tau\nu}(\tau)}{\bar{T}^{\tau\nu}(\tau)} ,
\]
(B9)
while for momentum perturbations it is
\[
\hat{G}_v^{\tau,k}(\tau, \tau_0, \mathbf{k}) = \frac{\text{Im}\delta T_{k,(i)(v)}^{\tau\nu}(\tau)}{\bar{T}^{\tau\nu}(\tau)} ,
\]
\[
\hat{G}_v^{\tau,m}(\tau, \tau_0, \mathbf{k}) = \frac{\text{Im}\delta T_{k,(i)(v)}^{\tau\nu}(\tau)}{\bar{T}^{\tau\nu}(\tau)} ,
\]
\[
\hat{G}_v^{\tau,\delta}(\tau, \tau_0, \mathbf{k}) = \frac{\text{Im}\delta T_{k,(i)(v)}^{\tau\nu}(\tau)}{\bar{T}^{\tau\nu}(\tau)} ,
\]
\[
\hat{G}_v^{\tau,k}(\tau, \tau_0, \mathbf{k}) = \frac{\text{Im}\delta T_{k,(i)(v)}^{\tau\nu}(\tau)}{\bar{T}^{\tau\nu}(\tau)} ,
\]
(B10)
(B11)
(B12)
which we use to determine the individual components of kinetic response functions.

Finally, the coordinate space response functions are obtained by Fourier transform according to Eqs. (B2) and (B4) and the results are summarized in Figs. 26 and 27. To recap, the distribution function \(\delta f_{\mathbf{k}, p} \) corresponding to initial \(k \)-wavenumber perturbation in energy or momentum density are evolved according to a linearized Boltzmann equation and the response functions are constructed from the energy-momentum tensor evolution. As discussed in Ref. [38], only a finite number of \(k \)-space points are calculated in kinetic theory evolution, so for a smooth Fourier transform the momentum space response functions are extended with free-streaming approximation. Furthermore, the uncertainty of kinetic theory applicability for large values of wavenumber \(|\mathbf{k}| \) can be included by regulating the large \(|\mathbf{k}| \)-tail by a Gaussian envelope \(\exp(-\sigma^2|\mathbf{k}|^2/2) \), where we take \(\sigma \approx 0.1 \) fm.

24 Note that Ref. [38] considered an incomplete set of response function components for momentum perturbations as opposed to Eq. (B9).
which corresponds to $\sigma/(\tau - \tau_0) = 0.1$ smearing for the functions shown in Figs. 26 and 27.

Because the momentum space response functions \tilde{G}_s are, to a good approximation, universal functions of scaling variables $|k|/(\tau - \tau_0)$ and $\frac{T_{\eta/s}}{\tau}$, the relations in Eqs. (B2) and (B4) imply that the coordinate space response functions $(\tau - \tau_0)^2 \tilde{G}(\tau, \tau_0, |r|)$ are also universal when expressed in terms of the scaling variables $|r|/(\tau - \tau_0)$ and $\frac{T_{\eta/s}}{\tau}$. Therefore the response functions in Figs. 26 and 27 computed for one value of the coupling constant, e.g., $\lambda = 10$ ($\eta/s \approx 0.62$), and some initial background energy density can be reused in calculating the non-equilibrium kinetic response for a different value of effective η/s or local energy density.

Appendix C: Free-Streaming response functions

Simple analytic results for the response functions can be obtained in the free-streaming limit, for which $P_{||} = 0$. This situation similar to early times of the kinetic evolution, when the expansion terms dominates over the collisions. The Bjorken expanding background energy density then simply scales with time

$$e(\tau) = \frac{e_0 \tau_0}{\tau}$$ \hspace{1cm} (C1)

The response functions for linearized perturbations around such boost invariant background can be straightforwardly found by solving the Boltzmann equation in the absence of interactions in Fourier space

$$\partial_\tau f_{k_\perp, p} + \frac{p \cdot k_\perp}{|p|} f_{k_\perp, p} - \frac{p^2}{\tau} \partial_p^2 f_{k_\perp, p} = 0,$$ \hspace{1cm} (C2)

which is solved by

$$f_{k_\perp, p} = f_{k_\perp, p_0} \frac{\tau}{\tau_0} e^{-\frac{i}{\eta/s} (\tau - \tau_0) \sqrt{\frac{p_{\perp}^2 + p_T^2}{\sqrt{\eta/s} \tau_0}}}$$ \hspace{1cm} (C3)

The independent structures of response functions for energy perturbations in Fourier space, Eq. (29), can be expressed in terms of Bessel functions as

$$\tilde{G}_s^\tau(\tau, \tau_0, k) = J_0 \left(|k|/(\tau - \tau_0) \right),$$

$$\tilde{G}_v^\tau(\tau, \tau_0, k) = J_1 \left(|k|/(\tau - \tau_0) \right),$$

$$\tilde{G}_t^\tau(\tau, \tau_0, k) = \frac{J_1 \left(|k|/(\tau - \tau_0) \right)}{|k|/(\tau - \tau_0)},$$

$$\tilde{G}_s^{\delta, \phi}(\tau, \tau_0, k) = -J_2 \left(|k|/(\tau - \tau_0) \right).$$ \hspace{1cm} (C4)

However, it is more insightful to consider the solutions in coordinate space, which are

$$G_s^\tau(\tau, \tau_0, |r|) = G_v^\tau(\tau, \tau_0, |r|) = G_s^{\tau, r}(\tau, \tau_0, |r|) =$$

$$= \frac{1}{2\pi(\tau - \tau_0)} \delta(|r| - (\tau - \tau_0))$$

$$G_t^{\tau, \delta}(\tau, \tau_0, |r|) = 0.$$ \hspace{1cm} (C5)

with characteristic concentric waves traveling at the speed of light. Then

$$G_s^{\tau^r}(x, \tau_0, \tau, \tau_0) = \frac{1}{2\pi(\tau - \tau_0)} \delta(|x - x_0| - (\tau - \tau_0))$$

$$G_s^{\tau^l}(x, \tau_0, \tau, \tau_0) = \frac{1}{2\pi(\tau - \tau_0)} \delta(|x - x_0| - (\tau - \tau_0))$$

$$G_v^{\tau^l}(x, \tau_0, \tau, \tau_0) = \frac{1}{2\pi(\tau - \tau_0)} \delta(|x - x_0| - (\tau - \tau_0))$$

$$G_v^{\tau^r}(x, \tau_0, \tau, \tau_0) = \frac{1}{2\pi(\tau - \tau_0)} \delta(|x - x_0| - (\tau - \tau_0))$$

$$G_s^{\tau^r}(x, \tau_0, \tau, \tau_0) = \frac{1}{2\pi(\tau - \tau_0)} \delta(|x - x_0| - (\tau - \tau_0))$$

$$G_s^{\tau^l}(x, \tau_0, \tau, \tau_0) = \frac{1}{2\pi(\tau - \tau_0)} \delta(|x - x_0| - (\tau - \tau_0))$$

$$G_v^{\tau^l}(x, \tau_0, \tau, \tau_0) = \frac{1}{2\pi(\tau - \tau_0)} \delta(|x - x_0| - (\tau - \tau_0))$$

$$G_v^{\tau^r}(x, \tau_0, \tau, \tau_0) = \frac{1}{2\pi(\tau - \tau_0)} \delta(|x - x_0| - (\tau - \tau_0))$$

and analogous expressions for the response of the energy-momentum tensor to initial momentum perturbations are

$$\tilde{G}_v^s(\tau, \tau_0, k) = 2J_1 \left(|k|/(\tau - \tau_0) \right)$$

$$\tilde{G}_v^{\delta, \phi}(\tau, \tau_0, k) = 2J_1 \left(|k|/(\tau - \tau_0) \right)$$

$$\tilde{G}_s^{\tau^r}(\tau, \tau_0, k) = 2J_2 \left(|k|/(\tau - \tau_0) \right)$$

$$\tilde{G}_s^{\tau^r}(\tau, \tau_0, k) = 2J_2 \left(|k|/(\tau - \tau_0) \right)$$

$$\tilde{G}_s^{\tau^l}(\tau, \tau_0, k) = 4J_2 \left(|k|/(\tau - \tau_0) \right)$$

$$\tilde{G}_s^{\tau^l}(\tau, \tau_0, k) = 4J_2 \left(|k|/(\tau - \tau_0) \right)$$

In coordinate space

$$G_v^s(\tau, \tau_0, |r|) = G_v^{\tau^r}(\tau, \tau_0, |r|) = G_v^{\tau^l}(\tau, \tau_0, |r|) =$$

$$= \frac{2}{2\pi(\tau - \tau_0)} \delta(|r| - (\tau - \tau_0))$$

$$G_v^{\tau^l}(\tau, \tau_0, |r|) = G_v^{\tau^r}(\tau, \tau_0, |r|) = G_v^{\tau^l}(\tau, \tau_0, |r|) = 0$$ \hspace{1cm} (C8)

We also note for later comparison the long wavelength limit of the free streaming response functions for initial energy

$$\tilde{G}_s^{\tau^r}(\tau, \tau_0, k) = 1 - \frac{1}{4} |k|^2(\tau - \tau_0)^2 + \frac{1}{64} |k|^4(\tau - \tau_0)^4 \ldots$$

$$G_s^{\tau^l}(\tau, \tau_0, |r|) = \frac{1}{2} |k|(\tau - \tau_0) - \frac{1}{16} |k|^3(\tau - \tau_0)^3 + \ldots$$ \hspace{1cm} (C9)

and momentum perturbations

$$\tilde{G}_s^{\tau^r}(\tau, \tau_0, k) = |k|(\tau - \tau_0) - \frac{1}{8} |k|^3(\tau - \tau_0)^3 \ldots$$

$$G_v^{\tau^l}(\tau, \tau_0, k) = 1 - \frac{1}{8} |k|^2(\tau - \tau_0)^2 \ldots$$

$$G_v^{\tau^l}(\tau, \tau_0, k) = -\frac{1}{4} |k|^2(\tau - \tau_0)^2 + \ldots$$ \hspace{1cm} (C10)

Appendix D: Viscous Hydrodynamic response

Below we detail the derivation of the hydrodynamic limit of the response functions for energy and momen-
tum perturbations. We employ co-moving coordinates
denotes as
\[x^\mu = (\tau, x^i, \eta) , \quad (D1) \]
with \(i = 1, 2 \) labeling the transverse Lorentz indices. Our
convention for the metric is mostly positive, i.e.
\[g_{\mu\nu} = \text{diag} (-1, +1, +1, +1/\tau^2) , \quad (D2) \]
such that the only non-vanishing Christoffel symbols
\[\Gamma_{\beta\gamma}^\alpha = \frac{1}{2} g^{\alpha\mu} \left(\frac{\partial g_{\mu\beta}}{\partial x^\gamma} + \frac{\partial g_{\mu\gamma}}{\partial x^\beta} - \frac{\partial g_{\beta\gamma}}{\partial x^\mu} \right) , \quad (D3) \]
are given by
\[\Gamma^\eta_{\eta\tau} = \frac{1}{\tau} , \quad \Gamma^\eta_{\tau\eta} = \frac{1}{\tau} , \quad \Gamma^\tau_{\eta\eta} = \tau . \quad (D4) \]

1. Second order viscous constitutive relations

Hydrodynamic constitutive relations take the form
\[T^{\mu\nu} = (e + p) \ u^\mu u^\nu + p \ g^{\mu\nu} + \pi^{\mu\nu} , \quad (D5) \]
where at second order the shear stress tensor \(\pi^{\mu\nu} \) is given by
\[\pi^{\mu\nu} = -\eta \sigma^{\mu\nu} + \eta \tau \left[\frac{u^\lambda}{2} \nabla_\lambda \sigma^{\mu\nu} + \frac{1}{3} \sigma^{\mu\nu} \nabla_\lambda u^\lambda \right] + \lambda_1 \left[\sigma^{\alpha\lambda} \sigma^{\mu\lambda} \right] , \quad (D6) \]
\[\sigma^{\mu\nu} = 2 \left[\nabla_\mu u_\nu \right] \]
\[= \left(\Delta^{\mu\alpha} \Delta^{\nu\beta} + \Delta^{\mu\beta} \Delta^{\nu\alpha} - \frac{2}{3} \Delta^{\mu\nu} \Delta^{\alpha\beta} \right) \nabla_\alpha u_\beta , \quad (D7) \]
where \(\nabla_\alpha u_\beta = \partial_\alpha u_\beta - \Gamma^\mu_{\alpha\beta} u_\mu \) denotes the covariant
derivative and \(\Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu} u^{\nu} \) is the usual projector
to the rest frame. Based on these definitions, the components of the shear-stress tensor can be evaluated
according to the following relations (no summation over
Background:
\[\Delta^{\tau\tau} = 0, \quad \Delta^{\tau i} = 0, \quad \Delta^{ij} = \delta^{ij}, \quad \Delta^{\eta\eta} = 1 / \tau^2. \]
\[\nabla_\alpha u_\beta = +\Gamma^\gamma_{\alpha\beta}, \quad \Delta^{\alpha\beta} \nabla_\alpha u_\beta = \nabla_\lambda u^\lambda = +\frac{1}{\tau}, \]
\[\sigma^{\tau\tau} = 0, \quad \sigma^{\tau i} = 0, \quad \sigma^{ij} = -\frac{2}{3} \delta^{ij}, \quad \sigma^{\eta\eta} = \frac{4}{3} \tau. \]
\[\langle u^\lambda \nabla_\lambda \sigma^{\tau\tau} \rangle + \frac{1}{3} \sigma^{\tau\tau} \nabla_\lambda u^\lambda = 0, \]
\[\langle u^\lambda \nabla_\lambda \sigma^{\tau i} \rangle + \frac{1}{3} \sigma^{\tau i} \nabla_\lambda u^\lambda = 0, \]
\[\langle u^\lambda \nabla_\lambda \sigma^{ij} \rangle + \frac{1}{3} \sigma^{ij} \nabla_\lambda u^\lambda = \frac{4}{9} \delta^{ij} \frac{1}{\tau^2}, \]
\[\langle u^\lambda \nabla_\lambda \sigma^{\eta\eta} \rangle + \frac{1}{3} \sigma^{\eta\eta} \nabla_\lambda u^\lambda = \frac{8}{9} \frac{1}{\tau^2}, \]
\[\langle \sigma^{\tau\lambda} \sigma^{\eta\lambda} \rangle = 0, \quad \langle \sigma^{\tau\lambda} \sigma^{i\lambda} \rangle = 0, \]
\[\langle \sigma^{ij} \sigma^{\lambda\lambda} \rangle = -\frac{4}{9} \frac{1}{\tau^2} \delta^{ij}, \quad \langle \sigma^{\eta\lambda} \sigma^{\eta\lambda} \rangle = \frac{8}{9} \frac{1}{\tau^2}. \]

(D8)

Linearized transverse perturbations \((u^\alpha \delta u_\mu = 0) \):
\[\delta \Delta^{\tau\tau} = 0, \quad \delta \Delta^{\tau i} = \delta \mu^i, \quad \delta \Delta^{ij} = 0, \quad \delta \Delta^{\eta\eta} = 0. \]
\[\nabla_\alpha \delta u_\beta = \partial_\alpha \delta u_\beta, \quad \Delta^{\alpha\beta} \nabla_\alpha \delta u_\beta + \delta \Delta^{\alpha\beta} \nabla_\alpha \delta u_\beta = \partial_i \delta u^i, \]
\[\delta \sigma^{\tau\tau} = 0, \quad \delta \sigma^{\tau i} = \frac{2}{3} \frac{1}{\tau} \delta \mu^i, \]
\[\delta \sigma^{ij} = \left(\partial^i \delta u^j + \partial^j \delta u^i - \frac{2}{3} \delta^{ij} \partial_k \delta u^k \right), \]
\[\delta \sigma^{\eta\eta} = -\frac{2}{3} \partial_k \delta u^k, \]
\[\delta \left[u^\lambda \nabla_\lambda \sigma^{\tau\tau} \right] + \frac{1}{3} \sigma^{\tau\tau} \nabla_\lambda u^\lambda = 0, \]
\[\delta \left[u^\lambda \nabla_\lambda \sigma^{\tau i} \right] + \frac{1}{3} \sigma^{\tau i} \nabla_\lambda u^\lambda = \frac{4}{9} \frac{1}{\tau^2} v^i, \]
\[\delta \left[u^\lambda \nabla_\lambda \sigma^{ij} \right] + \frac{1}{3} \sigma^{ij} \nabla_\lambda u^\lambda = \left(\frac{1}{3\tau} + \partial_\tau \right) \delta \sigma^{ij} - \frac{4}{9\tau} \delta^{ij} \partial_k \delta u^k, \]
\[\delta \left[u^\lambda \nabla_\lambda \sigma^{\eta\eta} \right] + \frac{1}{3} \sigma^{\eta\eta} \nabla_\lambda u^\lambda = \left(-\frac{1}{3\tau} + \partial_\tau \right) \delta \sigma^{\eta\eta}, \]
\[\delta \langle \sigma^{\tau\lambda} \sigma^{\tau\lambda} \rangle = 0, \quad \delta \langle \sigma^{\tau\lambda} \sigma^{i\lambda} \rangle = -\frac{4}{9} \frac{1}{\tau^2} v^i, \]
\[\delta \langle \sigma^{ij} \sigma^{\lambda\lambda} \rangle = -\frac{4}{9} \frac{1}{\tau^2} \delta^{ij}, \quad \delta \langle \sigma^{\eta\lambda} \sigma^{\eta\lambda} \rangle = \frac{8}{9} \frac{1}{\tau^2} \partial_k \delta u^k. \]

(D9)
So the energy-momentum tensor takes the form

Background:
\[
\delta \bar{T}^\tau = e, \quad \bar{T}^{ij} = \left(p + \frac{2 \eta}{3 \tau} + \frac{4 \tau_\pi \eta - \lambda_1}{9 \tau^2} \right) \delta^{ij}, \\
\bar{T}^{0i} = 0, \quad \bar{T}^0_\eta = \left(p - \frac{4 \eta}{3 \tau} + \frac{8 \tau_\pi \eta - \lambda_1}{9 \tau^2} \right),
\]

Linearized perturbations:
\[
\delta T^{\tau} = \delta e, \quad \delta T^{\tau i} = \left(e + p + \frac{2 \eta}{3 \tau} + \frac{4 \tau_\pi \eta - \lambda_1}{9 \tau^2} \right) \delta u^i, \\
\delta T^{ij} = \frac{\partial \bar{T}^{ij}}{\partial e} \delta e + \left(-\eta + \eta_\pi (\partial_\tau + \frac{1}{3 \tau}) - \frac{4}{3 \tau} \lambda_1 \right) (\partial^i \delta u^j + \partial^j \delta u^i), \\
\delta T^\eta_\eta = \frac{\partial \bar{T}^\eta_\eta}{\partial e} \delta e - \frac{2}{3} \left(-\eta + \eta_\pi (\partial_\tau + \frac{1}{3 \tau}) + \frac{4}{3 \tau} \lambda_1 \right) \partial_k \delta u^k,
\]

Specifically for a conformal system the speed of sound \(c_s^2 = 1/3 \), shear viscosity to entropy density ratio \(\eta/s \), and second order transport terms \(\tau_\pi T/(\eta/s) \) and \(\lambda_1/(\tau_\pi \eta) \) are all constant. Then
\[
\frac{\partial \eta}{\partial e} = \frac{\eta}{sT}, \quad \frac{\partial \tau_\pi}{\partial e} = -\frac{c_s^2 \tau_\pi}{sT}, \quad \frac{\partial \lambda_1}{\partial e} = \frac{1 - c_s^2}{sT}.
\]

Also the time derivatives in the second order terms can be replaced by using the leading order (ideal) equations of motion for perturbations, namely,
\[
\partial_\tau \delta u^i = \frac{c_s^2}{\tau} \delta u^i - \frac{c_s^2}{s} \partial^i \delta e. \quad \text{ideal order}
\]

By closer inspection of the relations, one immediately observes that the perturbation of the flow velocity can be inferred as
\[
\delta u^i = \frac{\delta T^{\tau i}}{\bar{T}^{\tau} + \frac{1}{2} \bar{T}^k_k}
\]
which can be used to eliminate the variable \(\delta u^i \) from the equations of motion.

Linearized perturbations:
\[
(\delta T^{\tau})^{ij} = \delta T^{\tau} \left[\left(c_s^2 + \frac{2 \eta/s}{3 \tau T} + \frac{4(1 - c_s^2) \tau_\pi \eta - \lambda_1}{sT^2} - \frac{2}{3} c_s^2 k^2 \tau_\pi \eta \right) \delta^{ij} + 2 c_s^2 k^i k^j \frac{\tau_\pi \eta}{sT} \right] + \\
\frac{i k^i \delta T^{\tau i} + i k^j \delta T^{\tau j}}{3 \bar{T}^{\tau} + \frac{1}{2} \bar{T}^k_k} \left[- \eta + \eta_\pi \frac{c_s^2 + \frac{1}{3}}{sT} \frac{2}{3} - \frac{4}{3} \lambda_1 \right], \\
\delta T^\eta_\eta = \delta T^{\tau} \left[c_s^2 - \frac{4 \eta/s}{3 \tau T} - \frac{8(1 - c_s^2) \tau_\pi \eta - \lambda_1}{sT^2} - \frac{2}{3} c_s^2 k^2 \tau_\pi \eta \right] + \\
\frac{2}{3} \frac{i k^i \delta T^{\tau i} + i k^j \delta T^{\tau j}}{3 \bar{T}^{\tau} + \frac{1}{2} \bar{T}^k_k} \left[\eta + \eta_\pi \frac{c_s^2 - \frac{1}{3}}{sT} + \frac{4}{3} \lambda_1 \right].
\]

By comparing the hydrodynamic constitutive relation with the explicit expressions in terms of the non-equilibrium Greens functions

Energy perturbations:
\[
\delta T^{\tau} (\tau, k) = \left(\frac{T^{\tau}}{\bar{T}^{\tau}(\tau_0)} \right) G_s^\tau(\tau, k) \delta T^{\tau}(\tau_0, k), \\
\delta T^{\tau i} (\tau, k) = -i \left(\frac{T^{\tau}}{\bar{T}^{\tau}(\tau_0)} \right) \frac{k^i}{k} G_s^\tau(\tau, k) \delta T^{\tau}(\tau_0, k), \\
\delta T^{ij} (\tau, k) = \left(\frac{T^{\tau}}{\bar{T}^{\tau}(\tau_0)} \right) \left(G_s^{\delta, \delta}(\tau, k) \delta^{ij} + G_s^{\delta, k}(\tau, k) \frac{k^i k^j}{k^2} \right) \delta T^{\tau}(\tau_0, k)
\]

Momentum perturbations:
\[
\delta T^{\tau} (\tau, k) = -i \left(\frac{T^{\tau}}{\bar{T}^{\tau}(\tau_0)} \right) \frac{k^i}{k} G_s^v(\tau, k) \delta T^{\tau i}(\tau_0, k), \\
\delta T^{\tau i} (\tau, k) = \left(\frac{T^{\tau}}{\bar{T}^{\tau}(\tau_0)} \right) \left(G_v^{\delta, \delta}(\tau, k) \delta^{ij} + G_v^{\delta, k}(\tau, k) \frac{k^i k^j}{k^2} \right) \delta T^{\tau}(\tau_0, k), \\
\delta T^{ij} (\tau, k) = -i \left(\frac{T^{\tau}}{\bar{T}^{\tau}(\tau_0)} \right) \left(G_v^{\delta, \delta}(\tau, k) \delta^{ij} k^k + G_v^{\delta, m}(\tau, k) \frac{\delta^{ik} k^j + \delta^{jk} k^i}{2|k|} + G_v^{\delta, k}(\tau, k) \frac{k^i k^j k^k}{|k|^3} \right) \delta T^{\tau}(\tau_0, k)
\]
It is then straightforward to derive the following relations between the Green functions

Energy perturbations:

\[G^{\tau,\delta}_{\tau}(\tau, \tau_0, k) = \left(c_s^2 + \frac{2}{3} \frac{\eta_s}{\tau} + \frac{4(1 - c_s^2)}{9} \frac{\tau_s \rho - \lambda_1}{\tau s T^2} - \frac{2}{3} c_s^2 k^2 \frac{\tau s \eta}{s T} \right) G^\tau(\tau, \tau_0, k) + \]

\[- \frac{2}{3} \left[\frac{\eta_s}{\tau T} + \frac{\tau_s^2}{\tau T} \right] \frac{\delta T}{\tau s T} \frac{\eta_s}{\tau s T} \frac{\tau}{\tau s T} \frac{G^\tau_s(\tau, \tau_0, k)}{\tau T^2} + \frac{1}{T_k^2} G^\tau(\tau, \tau_0, k), \]

\[G^{\tau,\tau}_{\tau}(\tau, \tau_0, k) = 2\left(\frac{\eta_s}{\tau T} + \frac{\tau_s^2}{\tau T} \right) \frac{\delta T}{\tau s T} \frac{\eta_s}{\tau s T} \frac{\tau}{\tau s T} \frac{G^\tau_s(\tau, \tau_0, k)}{\tau T^2} + \frac{1}{T_k^2} G^\tau(\tau, \tau_0, k), \]

(18)

Momentum perturbations:

\[G^{v,\delta}_{\tau}(\tau, \tau_0, k) = \left(c_s^2 + \frac{2}{3} \frac{\eta_s}{\tau} + \frac{4(1 - c_s^2)}{9} \frac{\tau_s \rho - \lambda_1}{\tau s T^2} - \frac{2}{3} c_s^2 k^2 \frac{\tau s \eta}{s T} \right) G^v(\tau, \tau_0, k) + \]

\[+ \frac{2}{3} \left[\frac{\eta_s}{\tau T} + \frac{\tau_s^2}{\tau T} \right] \frac{\delta T}{\tau s T} \frac{\eta_s}{\tau s T} \frac{\tau}{\tau s T} \frac{\delta T^v}{\tau T^2} + \frac{1}{T_k^2} G^v(\tau, \tau_0, k) \]

\[G^{v,\tau}_{\tau}(\tau, \tau_0, k) = 2\left(\frac{\eta_s}{\tau T} + \frac{\tau_s^2}{\tau T} \right) \frac{\delta T}{\tau s T} \frac{\eta_s}{\tau s T} \frac{\tau}{\tau s T} \frac{\delta T^v}{\tau T^2} + \frac{1}{T_k^2} G^v(\tau, \tau_0, k), \]

\[G^{v,\tau}_{\tau}(\tau, \tau_0, k) = 2\left(\frac{\eta_s}{\tau T} + \frac{\tau_s^2}{\tau T} \right) \frac{\delta T}{\tau s T} \frac{\eta_s}{\tau s T} \frac{\tau}{\tau s T} \frac{\delta T^v}{\tau T^2} + \frac{1}{T_k^2} G^v(\tau, \tau_0, k), \]

(19)

where to this order of accuracy in the hydrodynamic expansion one can approximate

\[\frac{s T}{\tau T^2} \approx 1 + \frac{2}{3} \frac{\eta_s}{\tau T}, \]

(D20)

2. Hydrodynamic response functions in the long wave-length limit

In the limit of \(|k| \to 0\), one can derive the exact expressions for energy and momentum perturbations from the conservation laws of energy and momentum [38]. Based on our symmetry assumptions the relevant evolution equations

\[\nabla_\mu T^{\mu\nu} = 0, \]

(D21)

take the explicit form

\[\partial_\tau T^{\tau\tau} + \partial_i T^{i\tau} = - \frac{T^{\tau\tau} + T^\eta}{\tau}, \]

\[\partial_\tau T^{ij} + \partial_i T^{ij} = - \frac{T^{ij}}{\tau}. \]

(D22)

(D23)

Evolution equations for linearized energy perturbations then take the form

\[\partial_\tau \frac{\delta T^{\tau\tau}}{\tau T^2} + \partial_i \frac{\delta T^{i\tau}}{\tau T^2} = - \frac{\delta T^{\tau\tau}}{\tau T^2} + \frac{\delta T^\eta}{\tau T^2} + \frac{T^\eta}{\tau T^2}, \]

\[\tau \partial_\tau \frac{\delta T^{\tau\tau}}{\tau T^2} + \partial_i \frac{\delta T^{i\tau}}{\tau T^2} = - \frac{\delta T^{\tau\tau}}{\tau T^2} + \frac{\delta T^\eta}{\tau T^2} \]

(D24)

(D25)

where the energy dependence of the function \(f \) accounts for the change in evolution speed under variations of the energy scale. Based on this relation, we can find the ratio \(\frac{\delta T^\eta}{\delta T^{\tau\tau}} \) at \(k = 0 \) by varying according Eq. (D26) with respect to \(T^{\tau\tau} \) to

\[\frac{\delta T^\eta}{\delta T^{\tau\tau}} \bigg|_{k=0} = f \left(T^{\tau\tau} (\tau)^{1/4} \right) \]

(D26)

where

\[\frac{\delta T^\eta}{\delta T^{\tau\tau}} \bigg|_{k=0} = \frac{8}{9} \frac{T^{\tau\tau}}{\tau T_\text{id}} \frac{T^{\tau\tau}}{\tau T^2 + \frac{1}{2} T_k^2} \frac{\delta T^{i\tau}}{\tau T^2}. \]

(D27)

\[\frac{\delta T^\eta}{\delta T^{\tau\tau}} \bigg|_{k=0} = \frac{8}{9} \frac{T^{\tau\tau}}{\tau T_\text{id}} \frac{T^{\tau\tau}}{\tau T^2 + \frac{1}{2} T_k^2} \frac{\delta T^{i\tau}}{\tau T^2}. \]

(D28)

Based on Eq. (D26) we obtain the relation

\[\tau \partial_\tau \frac{\delta T^\eta}{\delta T^{\tau\tau}} = \left(\frac{3}{4} - \frac{1}{4} \frac{T^\eta}{T^{\tau\tau}} \right) \frac{T^{\tau\tau} (\tau)^{1/4}}{\tau} f' \left(T^{\tau\tau} (\tau)^{1/4} \right). \]

(D29)
which can be used to re-express the equation of motion as

\[
\begin{align*}
\left(\tau \partial_\tau + \frac{T^{\tau \tau}}{3T^{\tau \tau} - T^{\eta \eta}_\eta} \left(\tau \partial_\tau \frac{T^{\eta \eta}_\eta}{T^{\tau}_\tau}\right)\right) \frac{\delta T^{\tau \tau}}{T^{\tau \tau}} + \left(1 + \frac{8}{9} \frac{\eta/s}{\tau T_{id}} \frac{T^{\tau \tau}}{T^{\tau \tau} + \frac{1}{2} T^k_k}\right) \tau \partial_\tau \frac{\delta T^{\tau \tau}}{T^{\tau \tau}} = 0 .
\end{align*}
\]

(D30)

Since the term associated with the momentum flow vanishes in the \(k \to 0\) limit we can obtain the solution in this case directly by noting that

\[
\begin{align*}
\left(\tau \partial_\tau + \frac{T^{\tau \tau}}{3T^{\tau \tau} - T^{\eta \eta}_\eta} \left(\tau \partial_\tau \frac{T^{\eta \eta}_\eta}{T^{\tau}_\tau}\right)\right) \frac{\delta T^{\tau \tau}}{T^{\tau \tau}} = \frac{3T^{\eta \eta}_\eta - T^{\eta \eta}_\eta}{T^{\tau \tau}} \partial_\tau \left(\frac{T^{\tau \tau}}{3T^{\tau \tau} - T^{\eta \eta}_\eta} \delta T^{\tau \tau}\right)
\end{align*}
\]

is proportional to a total time derivative. Hence the response function

\[
G^0_\tau(\tau, \tau_0) = \left.\frac{\delta T^{\tau \tau}(\tau)}{T^{\tau \tau}(\tau)} \right/ \left.\frac{\delta T^{\tau \tau}(\tau_0)}{T^{\tau \tau}(\tau_0)}\right|_{k=0},
\]

(D32)

can be found by direct integration of the equation of motion yielding

\[
G^0_\tau(\tau, \tau_0) = \frac{3 - \frac{T^{\eta \eta}_\eta(\tau)}{T^{\tau \tau}(\tau)}}{3 - \frac{T^{\eta \eta}_\eta(\tau_0)}{T^{\tau \tau}(\tau_0)}} .
\]

(D33)

Neglecting \(T^{\eta \eta}_\eta(\tau_0) \approx 0\) and using first order constitutive equations for \(T^{\eta \eta}_\eta(\tau)\) the late time behavior is given by

\[
\dot{G}^0_\tau(\tau, \tau_0) = \frac{8}{9} \left(1 + \frac{\eta/s}{3 T_{id}}\right) .
\]

(D34)

Similarly for momentum perturbations the relevant equation of motion takes the form

\[
\begin{align*}
\left(\tau \partial_\tau + 1 - \frac{T^{\tau \tau}}{T^{\tau \tau}} + \frac{T^{\eta \eta}_\eta}{T^{\tau \tau}}\right) \frac{\delta T^{\tau \tau}}{T^{\tau \tau}} + \tau \partial_\tau T^{ij} = 0 ,
\end{align*}
\]

(D35)

such that in the \(k \to 0\) limit

\[
G^0_\tau(\tau, \tau_0) = \frac{\delta T^{\tau \tau}(\tau)}{T^{\tau \tau}(\tau)} \left.\frac{\delta T^{\tau \tau}(\tau_0)}{T^{\tau \tau}(\tau_0)}\right|_{k=0} ,
\]

(D36)

can be immediately obtained as

\[
G^0_\tau(\tau, \tau_0) = \left(\frac{\tau_0}{\tau}\right) \frac{T^{\tau \tau}(\tau)}{T^{\tau \tau}(\tau_0)} .
\]

(D37)

Beyond the \(k = 0\) limit the evolution equations are coupled and by use of the first order constitutive relations take the following form

Energy perturbations:

\[
\begin{align*}
\left(\tau \partial_\tau + \frac{T^{\tau \tau}}{3T^{\tau \tau} - T^{\eta \eta}_\eta} \left(\tau \partial_\tau \frac{T^{\eta \eta}_\eta}{T^{\tau}_\tau}\right)\right) G^\eta_\tau(\tau, \tau_0, |k|) + \left(1 + \frac{8}{9} \frac{\eta/s}{\tau T_{id}} \frac{T^{\tau \tau}}{T^{\tau \tau} + \frac{1}{2} T^k_k}\right)|k|\tau G^\eta_\tau(\tau, \tau_0, |k|) = 0 ,
\end{align*}
\]

\[
\begin{align*}
\left(\tau \partial_\tau + 1 - \frac{T^{\tau \tau}}{T^{\tau \tau}} + \frac{T^{\eta \eta}_\eta}{T^{\tau \tau}}\right) G^\eta_\tau(\tau, \tau_0, |k|) - \frac{1}{3} \left(1 + \frac{\eta/s}{\tau T_{id}}\right)|k|\tau G^\eta_\tau(\tau, \tau_0, |k|) + \frac{16}{9} \frac{\eta/s}{\tau T_{id}} \frac{T^{\tau \tau}}{T^{\tau \tau} + \frac{1}{2} T^k_k} |k|^2 \tau^2 G^\eta_\tau(\tau, \tau_0, |k|) = 0 .
\end{align*}
\]

(D38)

Momentum perturbations:

\[
\begin{align*}
\left(\tau \partial_\tau + \frac{T^{\tau \tau}}{3T^{\tau \tau} - T^{\eta \eta}_\eta} \left(\tau \partial_\tau \frac{T^{\eta \eta}_\eta}{T^{\tau}_\tau}\right)\right) G^\tau_\tau(\tau, \tau_0, |k|) - \left(1 + \frac{8}{9} \frac{\eta/s}{\tau T_{id}} \frac{T^{\tau \tau}}{T^{\tau \tau} + \frac{1}{2} T^k_k}\right)|k|\tau G^\tau_\tau(\tau, \tau_0, |k|) = 0 ,
\end{align*}
\]

(D38)

\[
\begin{align*}
\left(\tau \partial_\tau + 1 - \frac{T^{\tau \tau}}{T^{\tau \tau}} + \frac{T^{\eta \eta}_\eta}{T^{\tau \tau}}\right) G^{\tau \delta}_\tau(\tau, \tau_0, |k|) + \frac{4}{3} \frac{\eta/s}{\tau T_{id}} \frac{T^{\tau \tau}}{T^{\tau \tau} + \frac{1}{2} T^k_k} |k|^2 \tau^2 G^{\tau \delta}_\tau(\tau, \tau_0, |k|) = 0
\end{align*}
\]

\[
\begin{align*}
\left(\tau \partial_\tau + 1 - \frac{T^{\tau \tau}}{T^{\tau \tau}} + \frac{T^{\eta \eta}_\eta}{T^{\tau \tau}}\right) G^{\tau \delta}_\tau(\tau, \tau_0, |k|) + \frac{4}{3} \left(1 + \frac{\eta/s}{\tau T_{id}}\right)|k|\tau G^{\tau \delta}_\tau(\tau, \tau_0, |k|)
\end{align*}
\]

\[
\begin{align*}
+ \frac{4}{9} \frac{\eta/s}{\tau T_{id}} \frac{T^{\tau \tau}}{T^{\tau \tau} + \frac{1}{2} T^k_k} |k|^2 \tau^2 \left(G^{\tau \delta}_\tau(\tau, \tau_0, |k|) + 4 G^{\tau \delta}_\tau(\tau, \tau_0, |k|)\right) = 0
\end{align*}
\]

where we projected the equation of motions for the momentum perturbations in the directions parallel and or-
thogonal to the momentum. Based on the knowledge of the explicit solution at \(|k| = 0 \), we can then attempt to construct the solution at small \(|k| \) in terms of a series expansion.

Energy perturbations:
\[
G_{v}^{s}(\tau, \tau_0, |k|) = G_{v}^{0}(\tau, \tau_0) \left(1 - \frac{1}{2} |k|^2 \tau \partial v^{(2)}_{\tau} + \cdots \right),
\]
\[
G_{v}^{0}(\tau, \tau_0) = \frac{1}{|k| \tau} \partial v^{(1)}_{\tau}, \quad (D39)
\]

Momentum perturbations:
\[
G_{v}^{s}(\tau, \tau_0, |k|) = G_{v}^{0}(\tau, \tau_0) \left(|k| \tau \partial v^{(2)}_{\tau} + \cdots \right),
\]
\[
G_{v}^{0}(\tau, \tau_0) = \frac{1}{|k| \tau} \partial v^{(1)}_{\tau}, \quad (D40)
\]

By inserting this ansatz into the evolution equations, and using the fact that \(G_{v}^{0}(\tau, \tau_0) \) is an explicit solution of the equation of motion at \(|k| = 0 \), we obtain evolution equations for the coefficient functions \(s_{v}^{(n)}(\tau, \tau_0) \) at each order in \(|k| \tau \). By keeping only the lowest order terms in \(|k| \tau \) we obtain the following set of evolution equations.

Energy perturbations:
\[
\frac{1}{2} \tau \partial_{\tau} \tilde{s}^{(2)}_{v} + \tilde{s}^{(2)}_{v} = \left(1 + \frac{8}{3} \frac{\eta}{\tau T_{id}} \frac{T^{\tau \tau}}{T^{\tau \tau} + \frac{1}{2} T^{k k}} \right) \tilde{s}^{(1)}_{v}, \quad (D41)
\]
\[
\tau \partial_{\tau} \tilde{v}^{(1)}_{s} - \frac{1}{3} \left(1 + \frac{1}{2} \frac{\eta}{\tau T_{id}} \right) = \left(2 - \frac{T^{\tau \tau} + T^\eta}{T^{\tau \tau}} - \frac{T^{\tau \tau}}{3 T^{\tau \tau} - T^\eta} \left(\tau \partial_{\tau} \frac{T^\eta}{T^{\tau \tau}} \right) \right) \tilde{v}^{(1)}_{s}, \quad (D43)
\]

Momentum perturbations:
\[
\frac{1}{2} \tau \partial_{\tau} \tilde{v}^{(2)}_{v_{\sigma, \rho}} + \tilde{v}^{(2)}_{v_{\sigma, \rho}} = \frac{4}{3} \frac{\eta}{\tau T_{id}} \frac{T^{\tau \tau}}{3 T^{\tau \tau} + \frac{1}{2} T^{k k}}, \quad (D44)
\]
\[
\frac{1}{2} \tau \partial_{\tau} \tilde{v}^{(2)}_{v_{k, k}} + \tilde{v}^{(2)}_{v_{k, k}} = \frac{1}{3} \left(1 + \frac{2}{3} \frac{\eta}{\tau T_{id}} \right) \tilde{v}^{(1)}_{s} + \frac{4}{9} \frac{\eta}{\tau T_{id}} \frac{T^{\tau \tau}}{3 T^{\tau \tau} - \frac{1}{2} T^{k k}}, \quad (D45)
\]

Evaluating the background coefficients to lowest order in the viscous corrections \(\eta/s \), we have
\[
\frac{T^{\tau \tau} + T^\eta}{T^{\tau \tau}} \approx \frac{4}{3} \frac{\eta}{9 \tau T_{id}}, \quad (D46)
\]
\[
\frac{T^{\tau \tau}}{3 T^{\tau \tau} - T^\eta} \left(\tau \partial_{\tau} \frac{T^\eta}{T^{\tau \tau}} \right) \approx \frac{4}{3} \frac{\eta}{9 \tau T_{id}}.
\]

such that the evolution equations can be re-written as

Energy perturbations:
\[
\frac{1}{2} \tau \partial_{\tau} \tilde{s}^{(2)}_{v} + \tilde{s}^{(2)}_{v} = \left(1 + \frac{2}{3} \frac{\eta}{\tau T_{id}} \right) \tilde{s}^{(1)}_{v}, \quad (D47)
\]
\[
\tau \partial_{\tau} \tilde{v}^{(1)}_{s} = \frac{4}{3} \frac{\eta}{\tau T_{id}} \tilde{v}^{(1)}_{s}, \quad (D48)
\]

To specify the initial conditions we use the late time expansion of free streaming given by Eqs. (C9) and Eq. (C10). Namely
\[
\tilde{s}^{(2)}_{s}(\tau_0) = \frac{1}{2}, \quad \tilde{s}^{(1)}_{s}(\tau_0) = \frac{1}{2}, \quad (D49)
\]
\[
\tilde{v}^{(2)}_{s}(\tau_0) = 1, \quad \tilde{v}^{(2)}_{v_{\sigma, \rho}}(\tau_0) = \frac{1}{4}, \quad \tilde{v}^{(2)}_{v_{k, k}}(\tau_0) = \frac{1}{2}. \quad (D50)
\]

noting that \(\tilde{v}^{(1)}_{s}(\tau_0) = \frac{1}{2} \) is a stationary solution of Eq. (D47), the leading order solution in viscous corrections is

Energy perturbations:
\[
\tilde{s}^{(2)}_{s} = \frac{5}{2} \frac{\eta}{2 \tau T_{id}} \left[1 - \left(\frac{\tau_0}{\tau} \right)^{1/3} \right], \quad (D51)
\]
\[
\tilde{s}^{(1)}_{s} = \frac{1}{2}. \quad (D52)
\]

Momentum perturbations:
\[
\tilde{v}^{(1)}_{s} = \frac{3}{4} \left[1 + \frac{1}{3} \left(\frac{\tau_0}{\tau} \right)^{4/3} \right], \quad (D53)
\]
\[
\tilde{v}^{(2)}_{s} = \frac{5}{2} \frac{\eta}{2 \tau T_{id}} \left[1 - \frac{2}{5} \left(\frac{\tau_0}{\tau} \right)^{2/3} - \frac{4}{5} \left(\frac{\tau_0}{\tau} \right)^{4/3} \right], \quad (D54)
\]
\[
\tilde{v}^{(2)}_{v_{\sigma, \rho}} = \frac{1}{4} \left[1 + \left(\frac{\tau_0}{\tau} \right)^{4/3} \right], \quad (D55)
\]
\[
\tilde{v}^{(2)}_{v_{k, k}} = \frac{5}{2} \frac{\eta}{2 \tau T_{id}} \left[1 - \frac{2}{5} \left(\frac{\tau_0}{\tau} \right)^{2/3} - \frac{4}{5} \left(\frac{\tau_0}{\tau} \right)^{4/3} \right],
\]
such that in the limit $\tau \gg \tau_0$ one has
\begin{equation}
\bar{s}_{t,\delta}^{(2)} = \frac{1}{2} + \frac{1}{2} \frac{\eta/s}{\tau T_{\text{id}}}, \quad \bar{s}_{t,\delta}^{(1)} = \frac{1}{2},
\end{equation}
\begin{equation}
\bar{s}_{t,\delta}^{(2)} = \frac{3}{4} + \frac{5}{4} \frac{\eta/s}{\tau T_{\text{id}}}, \quad \bar{s}_{t,\delta}^{(2)} = \frac{3}{2} \frac{\eta/s}{\tau T_{\text{id}}}, \quad \bar{s}_{t,\delta}^{(2)} = \frac{1}{4} + \frac{5}{2} \frac{\eta/s}{\tau T_{\text{id}}},
\end{equation}
which is the main result.

Note that for initial energy perturbations the leading Taylor expansion terms in energy and momentum response agrees between free streaming and hydrodynamic response. However, at higher orders in $|k|/(\tau - \tau_0)$ this agreement disappears, e.g. at cubic order one finds

\begin{equation}
\text{ideal hydro:} \quad \tilde{G}^{\alpha}_{\mu\nu}(\tau, \tau_0) = \frac{1}{2} |k| (\tau - \tau_0) - \frac{1}{32} (|k| (\tau - \tau_0))^3,
\end{equation}
\begin{equation}
\text{free streaming:} \quad \tilde{G}^{\alpha}_{\mu\nu}(\tau, \tau_0) = \frac{1}{2} |k| (\tau - \tau_0) - \frac{1}{16} (|k| (\tau - \tau_0))^3
\end{equation}

Consequently we find that in practice the extracted coefficients from kinetic evolution (see Fig. 22(a)) remain approximately constant for initial energy perturbations, while for initial momentum perturbations (see Fig. 22(b)) the approach to the hydrodynamic limit is well described by viscous asymptotics.

Once the response to conserved quantities is calculated, the shear response, i.e. $\delta T^{\gamma\beta}$ is completely determined by the constitutive relations. So for the low $|k|$ expansion

\begin{equation}
G^{\delta}_{\mu\nu}(\tau, \tau_0, |k|) = G^{\delta}_{\mu\nu}(\tau, \tau_0) \left(\bar{s}_{t,\delta}^{(0)} - \frac{1}{2} |k|^2 (\tau - \tau_0)^2 \bar{s}_{t,\delta}^{(2)} + \cdots \right),
\end{equation}
\begin{equation}
G^{\delta}_{t,\mu}(\tau, \tau_0, |k|) = G^{\delta}_{t,\mu}(\tau, \tau_0) \left(- \frac{1}{2} |k|^2 (\tau - \tau_0)^2 \bar{s}_{t,\delta}^{(2)} + \cdots \right),
\end{equation}

we get the response coefficients
\begin{equation}
\bar{s}_{t,\delta}^{(0)} = \frac{1}{3} \left(1 + 2 \frac{\eta/s}{\tau T_{\text{id}}} \right), \quad \bar{s}_{t,\delta}^{(2)} = \frac{1}{3} \left(1 + 2 \frac{\eta/s}{\tau T_{\text{id}}} \right) \bar{s}_{t,\delta}^{(0)} - \frac{4}{3} \frac{\eta/s}{\tau T_{\text{id}}} \bar{s}_{t,\delta}^{(1)}, \quad \bar{s}_{t,\delta}^{(2)} = \frac{4}{3} \frac{\eta/s}{\tau T_{\text{id}}} \bar{s}_{t,\delta}^{(1)},
\end{equation}

and similarly for momentum perturbations
\begin{equation}
G^{\delta_{t,\mu}}_{\delta_{t,\nu}}(\tau, \tau_0, |k|) = G^{\delta_{t,\mu}}_{\delta_{t,\nu}}(\tau, \tau_0) \left(|k| (\tau - \tau_0) \bar{v}_{t,\delta_{t,\nu}}^{(1)} \right),
\end{equation}

with the response coefficients
\begin{equation}
\bar{v}_{t,\delta_{t,\mu}}^{(1)} = \frac{1}{3} \bar{v}_{t,\delta_{t,\mu}}^{(1)} \left(1 + 2 \frac{\eta/s}{\tau T_{\text{id}}} \right) - \frac{2}{3} \frac{\eta/s}{\tau T_{\text{id}}}, \quad \bar{v}_{t,\delta_{t,\mu}}^{(1)} = \frac{2}{3} \frac{\eta/s}{\tau T_{\text{id}}}, \quad \bar{v}_{t,\delta_{t,\mu}}^{(1)} = 0.
\end{equation}

One important feature of the hydrodynamic Green functions is the fact that the solutions can be expressed entirely in terms of the two scaling variables $T_{\text{id}}, \tau/(\eta/s)$ and $|k|/(\tau - \tau_0)$. The scaling of hydrodynamic response functions motivates the use of scaled variables for the non-equilibrium response functions, see Sec. III.

Appendix E: Derivation of long-wavelength limit of kinetic theory response

Below we provide the details of the derivation of the long-wavelength limit of kinetic theory response, including the response in coordinate space as well as some additional discussion on the regulator dependence.

1. Coordinate space implementation

Starting point of our discussion is Eq. (65), which we re-write as

\begin{equation}
\bar{T}^{\mu\nu}(\tau_0, x) \delta T^{\mu\nu}(\tau, x) = \int d^2 x_0 \bar{G}^{\mu\nu}_{\alpha\beta}(\tau_0, x_0) \left(T^{\alpha\beta}(\tau, x_0) - T^{\alpha\beta}_x(\tau) \right),
\end{equation}

expressing the energy-momentum response at space-time point (τ, x) on the left hand side, in terms of the long wavelength components,

\begin{equation}
\delta T^{\alpha\beta}_x(\tau_0, x_0) = \bar{T}^{\alpha\beta}_x(\tau_0, x_0) - \bar{T}^{\alpha\beta}_x(\tau_0)
\end{equation}

where according to Eq. (63)

\begin{equation}
\bar{T}^{\mu\nu}(\tau_0, x_0) = \int d^2 x' S_\nu(x_0 - x_0') T^{\mu\nu}(\tau, x_0'),
\end{equation}

denotes the coarse-grained energy momentum tensor, and $\bar{T}^{\alpha\beta}_x(\tau_0)$ denotes the local average background.

Explicitly the background $\bar{T}^{\mu\nu}_x(\tau_0)$ is constructed from the local average background energy $\bar{c}_x(\tau_0) = \bar{T}^{\alpha\beta}_x(\tau_0, x)$ around the space-time point (τ_0, x) and defined to be diagonal

\begin{equation}
\bar{T}^{\mu\nu}_x(\tau_0) = \text{diag} \left(\bar{c}_x(\tau_0), P^{T}_x(\tau_0), P^{\gamma}_x(\tau_0), P^{\lambda}_x(\tau_0)/\tau_0^2 \right).
\end{equation}

Since the background is taken to be diagonal, all off-diagonal components, including e.g. the initial momentum flow $\bar{T}^{\gamma\mu}(\tau_0, x_0)$, are treated explicitly as perturbations. Similarly the transverse and longitudinal pressure $P^{\mu\nu}_x(\tau_0)$ in this expression correspond to values determined from the “non-equilibrium constitutive relations” determined by the universal background scaling curve (see Sec. II C), noting that possible deviations such as e.g. $\delta T^{\gamma\mu}_x(\tau_0, x_0) = P^{\gamma\mu}_x(\tau_0) - T^{\gamma\mu}(\tau_0, x_0)$, could be treated as tensor perturbations (which we neglect throughout this work).

Expressing the Greens functions on the right hand side of Eq. (E1) in Fourier (k) space as

\begin{equation}
\bar{T}^{\mu\nu}_x(\tau_0) \delta T^{\mu\nu}(\tau, x) = \int d^2 x_0 \int \frac{d^2 k}{(2\pi)^2} \bar{G}^{\mu\nu}_{\alpha\beta}(\tau, \tau_0, k) e^{ik(x-x_0)} \delta T^{\alpha\beta}_x(\tau_0, x_0).
\end{equation}
we can then take advantage of the usual tensor decomposition in Eqs. (29) and (30) and perform the low k expansion of the response functions as in Eq. (66). By focusing on the T^{xx} and T^{xy} components of the response, we obtain to following expressions

Energy perturbations:
\[
T^{T^{xx}}(\tau, x) = \int d^2\mathbf{x}_0 \int \frac{d^2k}{(2\pi)^2} \tilde{G}_o^x(\tau, x, \tau_x, T^{xx}(\tau)) \]
\[
\left(1 - \frac{|k|^2}{2} (\tau - \tau_0)^2 \delta^{(2)} \right) e^{ik(x-x_0)} \delta T^{xx}(\tau, x_0),
\]
\[
T^{T^{xy}}(\tau, x) = \int d^2\mathbf{x}_0 \int \frac{d^2k}{(2\pi)^2} \tilde{G}_o^y(\tau, x, \tau_x, T^{xy}(\tau)) \]
\[
\left(-i k^i (\tau - \tau_0)^1 \delta_v \right) e^{ik(x-x_0)} \delta T^{xy}(\tau, x_0),
\]
\[
\left(\delta_j^i - \frac{k^2}{2} (\tau - \tau_0)^2 \delta^{(2)} + \frac{k^i k^j}{2} \delta^{(2)} \right) e^{ik(x-x_0)} \delta T^{xy}(\tau, x_0). \]

Evaluating the derivatives $\partial^2_{\tau_0}$ of the long-wavelength perturbations $\delta T^{xx}(\tau, \tau_0)$ based on Eq. (E3), noting that according to our definition of the background $\delta T^{xx}(\tau, x_0) \big|_{x=x_0} = 0$ whereas $\delta T^{xx}(\tau, x_0) \big|_{x=x_0} \neq 0$, we can then express the long wave-length response in terms of derivatives of the coarse-grained energy momentum tensor

Energy perturbations:
\[
\delta T^{xx}(\tau, x) = \frac{\tilde{G}_o^x(\tau, \tau_0, T^{xx}(\tau))}{T^{xx}(\tau)} \left[\frac{(\tau - \tau_0)^2}{2} \delta(2) \partial_k \partial_{\tau_0} \delta T^{xx}(\tau_0, x) \right],
\]
\[
\delta T^{xy}(\tau, x) = \frac{\tilde{G}_o^y(\tau, \tau_0, T^{xy}(\tau))}{T^{xy}(\tau)} \left[- (\tau - \tau_0)^1 \delta_v \right] \delta T^{xy}(\tau_0, x),
\]
\[
\delta T^{xy}(\tau, x) = \frac{\tilde{G}_o^y(\tau, \tau_0, T^{xy}(\tau))}{T^{xy}(\tau)} \left[- (\tau - \tau_0)^1 \delta_v \right] \delta T^{xy}(\tau_0, x).
\]

which is the result given in the main text. We note that corresponding expressions for long wave-length response of the shear-stress (T^{ij}) components can be derived in a similar fashion. However, since in practice the shear-stress tensor at hydrodynamization time is typically close to the Navier-Stokes value, the result is of limited practical use and we therefore refrain from providing explicit expressions.

2. Regulator dependence and renormalization

We will now discuss in more detail how the long wave-length response depends on the choice of the regulator $S_o(x_0-x_0')$ in Eq. (63), and how part of this dependence can be absorbed into the renormalization of the long wave-length coefficients. The background energy momentum tensor in k space is given by
\[
\tilde{T}^{\tau ij}(\tau_0) = \int d^2\mathbf{x}_0 \tilde{T}^{\tau ij}(\tau_0, \mathbf{x}) e^{-ik\mathbf{x}_0} = \tilde{S}_o(k) T^{\tau ij}(\tau_0, k),
\]
\[
T^{\tau ij}(\tau_0, k) \text{ denotes the Fourier transform of the original energy momentum tensor and } \tilde{S}_o(k) \text{ is the}
\]
Fourier transform of the smearing kernel. Then the long-wavelength component of the initial energy $\delta T^\tau\tau$ perturbations in Eq. (E2) can be expressed as

$$
\delta T_{x}^{\tau\tau}(\tau_0, x_0) = \int \frac{d^2k}{(2\pi)^2} \tilde{S}_\sigma(k) \left(e^{ikx_0} - e^{ikx} \right) T^{\tau\tau}(\tau_0, k),
$$

(E10)

which makes the regulator (σ) dependence explicit. Changing σ also alters the smooth background, Eq. (46), around which the linearization of perturbations is performed, affecting the reconstruction of the energy momentum tensor at later times. Since we anticipate this difference of the background to be small and dominated by long wave-length modes, will can treat it as an additional source of long wave-length fluctuations

$$
\delta T_{x, (BG)}^{\tau\tau}(\tau_0, x_0) = \int \frac{d^2k}{(2\pi)^2} \left(\tilde{T}_k^{\tau\tau}(\tau_0) - T^{\tau\tau}(\tau_0, k) \right) e^{ikx} = \int \frac{d^2k}{(2\pi)^2} \left(\tilde{S}_\sigma(k) - 1 \right) T^{\tau\tau}(\tau_0, k) e^{ikx},
$$

(E11)

Collecting both contributions in Eq. (E10) and (E11) and inserting the expression into one of the response formulae in Eq. (E6), we schematically obtain expressions of the form

$$
\tilde{T}_x^{\tau\tau}(\tau_0) \frac{\delta T^{\alpha\beta}(\tau, x)}{T^{\tau\tau}(\tau)} = \int d^2x_0 \int \frac{d^2k}{(2\pi)^2} G_\sigma^0(\tau, \tau_0) e^{ik(x-x_0)} \left[\tilde{s}_{\alpha\beta}^{(0)} - i k^i (\tau - \tau_0) \tilde{s}_{\alpha\beta}^{(1), i} - \frac{k^i k^j}{2} (\tau - \tau_0)^2 \tilde{s}_{\alpha\beta}^{(2), ij} + \ldots \right] \int \frac{d^2k'}{(2\pi)^2} \left(\tilde{S}_\sigma(k') e^{ikx_0} - e^{ikx} \right) T^{\tau\tau}(\tau_0, k')
$$

(E12)

where the long wave-length coefficients $\tilde{s}_{\alpha\beta}^{(n), i_1 \ldots i_n}$ characterize the response of the different components. By performing the x_0 integral the expression simplifies to

$$
\tilde{T}_x^{\tau\tau}(\tau_0) \frac{\delta T^{\alpha\beta}(\tau, x)}{T^{\tau\tau}(\tau)} = \int \frac{d^2k}{(2\pi)^2} G_\sigma^0(\tau, \tau_0) e^{ikx} \left[\tilde{s}_{\alpha\beta}^{(0)}(\tilde{S}_\sigma(k) - 1) - i k^i (\tau - \tau_0) \tilde{s}_{\alpha\beta}^{(1), i} \tilde{S}_\sigma(k) - \frac{k^i k^j}{2} (\tau - \tau_0)^2 \tilde{s}_{\alpha\beta}^{(2), ij} \tilde{S}_\sigma(k) + \ldots \right],
$$

(E13)

which can be used to compare the long wave-length response for different regulator choices σ. Specializing on

the Gaussian regulator $\tilde{S}_\sigma(k) = e^{-\frac{1}{2} \sigma^2 k^2}$, and expanding the regulator into a Taylor series, one finds that the difference for two different regulators σ, σ' is given by

$$
\tilde{T}_x^{\tau\tau}(\tau_0) \frac{\delta T^{\alpha\beta(\sigma)}(\tau, x) - \delta T^{\alpha\beta(\sigma')}(\tau, x)}{T_x^{\tau\tau}(\tau)} =
\int \frac{d^2k}{(2\pi)^2} G_\sigma^0(\tau, \tau_0) e^{ikx} T^{\tau\tau}(\tau_0, k) \left[- \tilde{s}_{\alpha\beta}^{(0)} k^i k^j (\sigma^2 - \sigma'^2) \delta_{ij} + \ldots \right]
$$

(E14)

where \ldots denote terms of $\mathcal{O}(k^3)$ and higher the k expansion. It is important to note that the leading term in Eq. (E14), is of quadratic order indicating that the constant and linear response (i.e. terms proportional to $T^\mu\nu$ and its first order derivatives $\partial_\mu T^\nu\nu$ in the coordinate space response formula) are independent of the regulator choice. While naively one may expect that the leading difference appears at order k^2, it turns out that the dependence at this order can in fact be absorbed into the re-normalization of the quadratic response coefficients, i.e. by redefining regulator dependent response coefficient

$$
\tilde{s}_{\alpha\beta}^{(2), ij}(\sigma) = \tilde{s}_{\alpha\beta}^{(2), ij}(\sigma') - \tilde{s}_{\alpha\beta}^{(0)} \delta_{ij} \frac{\sigma^2 - \sigma'^2}{(\tau - \tau_0)^2}.
$$

(E15)

However at $\mathcal{O}(k^3)$ this is no longer possible, as the original truncation of the long-wavelength response does not contain third order derivatives terms, and the regulator dependence persists at this order. In particular, for the momentum response G_s^v, Eq. (66), the generated cubic term is

$$
G_s^v(\sigma) = G_s^0(\tau - \tau_0) k \tilde{s}_{\alpha\beta}^{(1)} (1 - \frac{1}{2} \sigma^2 |k|^2 + \ldots)
$$

(E16)

$$
= G_s^0 \left((\tau - \tau_0) |k| \tilde{s}_{\alpha\beta}^{(1)} - \frac{1}{2} \tilde{s}_{\alpha\beta}^{(1)} |k|^2 (\tau - \tau_0)^3 + \ldots \right)
$$

For $\sigma = \Delta \tau / 2$, $\tilde{s}_{\alpha\beta}^{(1)} = \frac{1}{2}$ and $G_s^0 \approx 1$ this approximately reproduces the cubic term in the free-streaming expansion, see Eq. (C9). This accidental agreement significantly improves the agreement between low- k expansion and full kinetic result in Fig. 23. Increasing σ value reveals the actual linear order accuracy for velocity response.

\footnote{Note that in the following discussion, we will neglect for simplicity the (weak) dependence of the response functions on the background energy scale $T_x^{\tau\tau}(\tau_0)$.}