Evaluating an app-guided self-test for influenza: lessons learned for improving the feasibility of study designs to evaluate self-tests for respiratory viruses

Monica L. Zigman Suchsland1*, Ivan Rahmatullah1, Barry Lutz1, Victoria Lyon1, Shichu Huang1, Enos Kline1, Chelsey Graham2, Shawna Cooper3, Philip Su3, Sam Smedinghoff3, Helen Y. Chu1, Kara Sewalk4, John S. Brownstein4, Matthew J. Thompson1 and on behalf of Seattle Flu Study investigators

Abstract

Background: Seasonal influenza leads to significant morbidity and mortality. Rapid self-tests could improve access to influenza testing in community settings. We aimed to evaluate the diagnostic accuracy of a mobile app-guided influenza rapid self-test for adults with influenza like illness (ILI), and identify optimal methods for conducting accuracy studies for home-based assays for influenza and other respiratory viruses.

Methods: This cross-sectional study recruited adults who self-reported ILI online. Participants downloaded a mobile app, which guided them through two low nasal swab self-samples. Participants tested the index swab using a lateral flow assay. Test accuracy results were compared to the reference swab tested in a research laboratory for influenza A/B using a molecular assay.

Results: Analysis included 739 participants, 80% were 25–64 years of age, 79% female, and 73% white. Influenza positivity was 5.9% based on the laboratory reference test. Of those who started their test, 92% reported a self-test result. The sensitivity and specificity of participants’ interpretation of the test result compared to the laboratory reference standard were 14% (95%CI 5–28%) and 90% (95% CI 87–92%), respectively.

Conclusions: A mobile app facilitated study procedures to determine the accuracy of a home based test for influenza, however, test sensitivity was low. Recruiting individuals outside clinical settings who self-report ILI symptoms may lead to lower rates of influenza and/or less severe disease. Earlier identification of study subjects within 48 h of symptom onset through inclusion criteria and rapid shipping of tests or pre-positioning tests is needed to allow self-testing earlier in the course of illness, when viral load is higher.

Keywords: Influenza, Self-test, Mobile application, Accuracy, Rapid diagnostic test

* Correspondence: mzigman@uw.edu
1University of Washington, 4225 Roosevelt Way NE Ste 308, Seattle, WA 98105-6099, USA
Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background
Seasonal influenza poses a substantial societal burden through morbidity and mortality annually. In the United States (US) alone, there are 37.4–42.9 million infections per year, with approximately half leading to health care visits and 36,400–61,200 deaths [1]. Health impact aside, the overall economic burden of seasonal influenza in the US from medical costs and indirect costs such as lost productivity is estimated to be $11.2 billion annually [2]. One main issue in effectively managing illness is differentiating influenza from other viral or bacterial respiratory tract infections [3]. This uncertainty can lead to over-prescribing of antibiotics (for presumed bacterial infections), as well as under-treatment of influenza since anti-influenza treatment is generally only recommended within 48 h of symptom onset except in severe cases [4, 5]. This diagnostic challenge has major implications for influenza management because many people do not seek medical care for influenza like illnesses (ILI) until at least 2 days after symptom onset, thus missing the treatment window and allowing greater time for viral spread due to delayed initiation of infection control measures [5, 6].

In the US, current clinical guidelines in ambulatory settings recommend testing for influenza in patients with ILI symptoms who are at risk for complications, or if testing will influence management such as starting antiviral treatment [7]. Typically testing involves an upper respiratory tract specimen (usually mid-turbinate or nasopharyngeal swab) by a health care professional, which is used to detect influenza either using on-site point of care or central laboratory assays. However, all current influenza tests in the US require an individual to visit a health care facility or pharmacy in order for a sample to be obtained. This requirement may act as a barrier to testing for some individuals, such as those who experience difficulties accessing healthcare due to out of pocket expenses, or constraints from work, school or childcare responsibilities.

The impact of seasonal influenza has prompted efforts to develop rapid diagnostic tests (RDTs) that individuals could conduct at home, unsupervised by healthcare professionals. However, demonstrating the accuracy of self-test RDTs for home use involves several challenges, including ensuring that an adequate nasal specimen is obtained, correctly following the instructions to perform the RDT, interpreting the test results, and understanding the implications or actions needed based on the test result. While there is robust evidence that viral detection from self-swabbing of the nose is equivalent to that of health care professionals (and is the current recommendation from the FDA for SARS-CoV-2 specimen collection) [8–11], often guided by web-based or mobile tools [12, 13], there is very limited evidence currently to support the entire self-testing process for influenza.

We developed a study to determine the accuracy of a mobile app guided self-test using a lateral flow RDT for influenza among adults experiencing influenza-like illness (ILI). This study was approved by the University of Washington Human Subjects Division (STUDY00006388).

Methods
Study design
We conducted an observational study to investigate the accuracy of an app-guided at-home test for influenza among adults experiencing influenza-like illness (ILI). A convenience sample of participants were recruited from March 4, 2019 – April 26, 2019. Eligible participants were 18 years and older, had an iPhone/iPad, and had ILI defined as presence of a cough and at least one or more of the following symptoms: fever, chills or sweats, muscle/body aches, or feeling tired/more tired than usual (Additional file 2) [14, 15]. Assuming a flu positivity rate of 10% and an attrition rate of return of the reference test of 50%, the estimated sample size needed to recruit 150 flu positive participants was 3000.

Study population
Participants were recruited within the continental US through emails to members of the Flu Near You influenza surveillance platform (flunearyou.org, Boston, MA), and through targeted advertisements on websites and social media platforms. Alaska and Hawaii were excluded due to potentially longer shipping times. Advertisements and recruitment emails encouraged individuals to download a study-specific app to determine eligibility for participation.

Mobile application
An iOS application (flu@home) was developed (Audere, Seattle, WA, Additional file 1) that served multiple functions: eligibility screening, obtaining electronic consent, administering the study questionnaire, step-by-step instructions for obtaining a low nasal swab and conducting a lateral flow test, and details on return of a second nasal swab to the research team for in-lab testing. The flu@home app also contained general information about influenza and directed participants to appropriate publicly-available patient resources about influenza.
Self-testing methods and quantitative data collection
After downloading the flu@home app onto their device, the app assessed eligibility, based on study inclusion criteria, through two specific questions (Additional file 2). Interested participants could take the eligibility survey once every 24 h to ascertain eligibility. Eligible participants were then guided through informed consent which was recorded in the app and a copy of the consent form was emailed to the participant if requested. Next, the app arranged for free next-day delivery (for orders before 1 pm and 2 day delivery for orders placed after 1 pm) of a self-test kit to the user’s home address. Orders placed over the weekend were not processed until Monday and the shipping service did not deliver to most residential addresses on Saturday. Once the test kit arrived, the app provided directions to complete the QuickVue Influenza A + B RDT (Quidel Corporation, San Diego, CA). This involved collecting a low nasal swab from both nostrils using a 3 in. foam tipped swab (Quidel Corporation, San Diego, CA), inserting the swab into a small tube containing reagent solution to disrupt the virus, stirring 4 times, and leaving it in the solution for 1 min. The user was then instructed to remove the swab by squeezing it against the side of the tube, thereby extracting the liquid from the swab into the tube. The lateral flow test strip was inserted into the tube, with instructions to leave it in the solution for 10 min which was timed by the app. During this test processing time, the app prompted participants to answer a series of questions on 9 symptoms (including their date of onset and severity) to assess how they felt when they took the test, as well as smoking history, contact with individuals with respiratory illness, underlying medical conditions, history of influenza vaccination, and impact of illness on daily activities (Additional file 2). The questionnaire was developed specifically for this study. The app notified the participant when 10 min had elapsed, and asked them to remove the test strip from the tube and visually examine the test strip for the presence and position of lines. They were first asked whether they saw a blue line in the middle of the test strip. If they indicated there was no blue line, they were not asked further questions about what they saw on the test strip, as a test strip without a control line (blue line) was considered invalid. All participants indicating they did see a blue control line were asked whether there were any red lines (test lines) showing on their test strip and presented with the following 4 options in the app: a) No red lines, b) Yes, above the blue line, c) Yes, below the blue line, or d) Yes, above and below the blue line. While these 4 options indicated a) a valid negative result, b) a valid influenza A result, c) a valid influenza B result and, d) a valid influenza A and B result, respectively, these interpretations were not provided to study participants or to those at the central laboratory conducting the reference test. Participants took a picture of the test strip using the app, which was available for the research team to later review, and participants were asked to rate how well they thought they performed the rapid test and reference sample collection.

Reference testing
Participants were then instructed to collect a second nasal swab using an identical technique to the first swab, and place it in universal transport medium (UTM) (Becton Dickinson, Franklin Lakes, NJ); the app provided instructions on packaging and shipping of the sample via prepaid priority mail to the research laboratory. The packaging of returned samples was inspected on receipt at the lab. In accordance with expert guidelines for influenza testing, a polymerase chain reaction (PCR) diagnostic (X-pert Xpress Flu/RSV Assay, Cepheid Inc., Sunnyvale, CA) was selected as the reference standard. The reference swab was tested for influenza A and B by PCR [7]. The Cepheid test is an FDA-cleared CLIA-waived assay and instrument that extracts and detects RNA from influenza A (two targets), influenza B, and RSV, as well as a sample process control. Test results and cycle threshold (Ct) values for each target were calculated and interpreted by instrument embedded algorithms and exported for use in this study. Results of the reference test were not shared with the participant. Test strip images captured by participants were interpreted by two members of the research team blinded to each other’s interpretation and blinded to the reference test results. Discrepancies in test image interpretation were reviewed with two other research members who were also blinded to any other interpretations, and to the reference test results.

Compensation
Study participants were given a gift card on completion of the study, defined as receipt of the reference sample at the research laboratory. The initial compensation for participation was $50. The study advertisement was posted to external coupon/cash back websites creating a sudden increase in participant responses that exceeded research team ability to supply test kits. In response, these websites were blocked and we reduced the compensation amount to $25 on March 17, 2019.

Data analysis
We calculated the numbers of study participants who completed each step in the app (download, eligibility, consent, ordered kit, scanned kit bar code, questionnaire completion, RDT image capture, and app completion), as well as receipt of reference samples in the research lab, and successful analysis of the reference test. Time to
completion of study steps, missing values, and error
erates of packaged samples were tracked and reported.
Summary statistics of demographics, risk factors, poten-
tial exposures, symptoms, and symptom severity were
calculated. Comparisons between PCR+ and PCR- sam-
ple were made using Chi-square (or where appropriate
Fisher’s exact) tests. Comparisons were statistically sig-
nificant at $P \leq 0.05$.

We calculated sensitivity, specificity, positive and
negative likelihood ratios (and 95% Confidence Intervals
(95%CI)) of the test strip results interpreted by partici-
pants compared to the presence of influenza detected by
the reference test. We also calculated the accuracy of re-
search staff interpretation of the image of the test strip,
compared to the presence of influenza in the reference
test. Subgroup analyses explored accuracy of the test
strip compared to participants who completed reference
testing within 4 days of ordering the test kit, tests that
were conducted by participants within 3 days of reported
symptom onset, and in reference samples that were re-
ceived without discolored UTM fluid. Analyses were
conducted in RStudio (Version: Desktop 1.2.5033, RStu-
dio, Inc., Boston, MA). The study is reported in accord-
ance with STARD guidelines.

Results

Participant recruitment and study completion rates

There were a total of 2858 unique installations of the
flu@home app (Fig. 1). Each app/device allowed mul-
ple participants to complete study procedures (i.e.
people in the same household could use the same
app), of whom 1976 participants met eligibility cri-
teria, 1853 provided consent, and 1608 ordered a test
kit. Of these, the research team mailed 1129 test kits;
450 test kits were ordered but could not be fulfilled
due to limited test kit inventory at the time of order-
ing. Other reasons kits were not shipped included ad-
dresses in Alaska or Hawaii, or undeliverable
addresses.

There were 874 participants who initiated study pro-
cedures in the app by scanning a barcode located on the
test kit, 811 reported an RDT result in the app, and 780
samples were shipped back to the lab. Eight of 780 that
were received at the lab could not be tested and there-
fore do not have PCR results. Of the remaining 772 sam-
ple, we were able to match a total of 739 out of 772
PCR results from reference samples to flu@home app
records. PCR results for 33 records could not be
matched to flu@home app records because: samples (19)
returned to the lab did not have identification barcodes,
or samples (14) returned to the lab did not have a bar-
code that matched the barcode in the app due to incor-
correct manual entry or scanning the wrong barcode (such
as the shipping label) by the participant. The remain

of the results presented here refer to the final study sam-
ple of 739 matched records.

Participants were recruited from 39 states, and of re-
sponses available ($n = 552$), the majority were recruited
through online advertisements (218, 29.5%), online
searches (118, 15.9%), referred through friends (91,
12.3%), with the remainder recruited from Flu Near You,
the App store or other sources (Additional file 3).

**Description of participants, risk factors for influenza, and
symptoms**

The majority of participants were between 25 and 64
years of age (80.6%), female (79%), and white (73%)
(Table 1). Most were non-smokers (81.2%) and had ei-
ther private (57.8%) or government insurance (34.1%). A
minority (16.4%) were currently taking antibiotics or
antiviral medications, and most (59.7%) had been in con-
tact with a person who appeared to the participant to
have a cold in the past week. Influenza was detected in
the reference test on 43 (5.9%) participants (41 influenza
A, 2 influenza B). Influenza positivity on PCR, was sig-
nificantly associated with current illness interfering with
daily activity (90.7% vs 67.2%, $p = 0.002$).

The majority of individuals (78.6%) reported 5 or more
symptoms (Additional file 4). A total of 70% of PCR+
participants reported 8 or 9 symptoms and 11.6% re-
ported 5 or fewer symptoms, compared to 39.1 and
21.7% of PCR- participants respectively ($p = 0.041$). The
most frequently reported symptoms overall were fatigue
(92.5%), cough (90.8%) or runny nose (88.9%) (Table 2).

Cough was a required symptom for study eligibility but
9.2% of participants did not report cough in the symp-
tom questionnaire collected after enrollment. Fever and
chills/sweats were significantly associated with PCR posi-
tivity ($p = 0.0004$ and $p = 0.0003$, respectively). Reported
severity of chills/sweats, fatigue, and fever was greater in
PCR+ than PCR- participants. Participants with influ-
zena were also more likely to report moderate or severe
fever, cough, fatigue, muscle or body aches, headache or
shortness of breath, and less likely to report severe sore
throat or runny nose than those without influenza, but
none of these associations were statistically significant
(Additional file 5).

Timing of illness and completion of study procedures

The number of days that elapsed between ordering the
test kit and starting the home test (indicated by scanning
the test kit barcode in the app), ranged from zero (same
day) to 40 days; 617 (83.4%) participants started study
procedures within 4 days, and 474 (64.1%) within 2 days
of ordering the test kit, (Table 3). The time from starting
the home test to receipt of the reference swab sample at
the research lab varied from zero to 28 days; 449 (60.9%)
were received within 4 days, and 289 (39.1%) within 5–
28 days (Table 3). Only 4.7% participants completed the RDT within 2 days of symptom onset, 15.7% completed it within 3 days, and 587 (79.4%) completed the RDT 4 or more days after the start of their earliest-reported symptom. A higher percent of participants with influenza had symptom onset within 3 days of taking the test compared to those without influenza (\(p = 0.024\)) (Additional file 6).

Self-reported errors in test performance and errors in reference test return

Immediately after completing the RDT, the app asked participants whether they thought they performed the steps of the RDT correctly; 85.9% responded “It was easy to follow and I think I completed the test correctly”, 11.3% noted “It was a little confusing but I think I did the test correctly”, 0.8% noted “It was very confusing and I’m not sure I completed the test correctly”, and 0.6% indicated “During the test, I realized I did something incorrectly” (Additional file 7). Participants were asked the same question about collecting the reference sample; 95.2% said “It was easy to follow and I think I completed the test correctly”, 2% said “It was a little confusing but I think I did the test correctly”, 0.7% indicated “It was very confusing and I’m not sure I completed the test correctly”, and 0.1% said “During the test, I realized I did something incorrectly” (Additional file 8).

No adverse events were reported by study participants.
Table 1 Characteristics of study participants and association with influenza status

Characteristics	Overall (N = 739)	PCR+ (N = 43)	PCR- (N = 696)	p-value
Demographics				
Age				
18 to 24	86 (11.6)	0 (0)	86 (12.4)	0.002
25 to 34	202 (27.3)	12 (27.9)	190 (27.3)	
35 to 44	191 (25.8)	19 (44.2)	172 (24.7)	
45 to 64	203 (27.5)	12 (27.9)	191 (27.4)	
65 and older	57 (7.7)	0 (0)	57 (8.2)	
Sex (n = 736)				
Female	584 (79.0)	35 (81.4)	549 (78.9)	0.865
Male	150 (20.3)	8 (18.6)	142 (20.4)	
Other	2 (0.3)	0 (0)	2 (0.3)	
Race (n = 730)				
White	539 (73.0)	35 (81.4)	504 (72.4)	0.289
Black	59 (8.0)	1 (2.3)	58 (8.3)	
Asian	62 (8.4)	2 (4.7)	60 (8.6)	
Native (American Indian, Alaska Native, native Hawaiian)	6 (0.8)	0 (0)	6 (0.9)	
Other	30 (4.1)	4 (9.3)	26 (3.7)	
Mixed race	34 (4.6)	1 (2.3)	33 (4.7)	
Ethnicity (Hispanic or Latino) (n = 733)				
No	654 (88.5)	38 (88.4)	616 (88.5)	1.0
Yes	79 (10.7)	4 (9.3)	75 (10.8)	
Exposure or Risk Factor				
Health Insurance (n = 737)				
Government	252 (34.1)	14 (32.6)	238 (34.2)	0.963
No Insurance	58 (7.8)	3 (6.9)	55 (7.9)	
Private	427 (57.8)	26 (60.5)	401 (57.6)	
Received flu shot in the last year (n = 715)				
No	359 (48.6)	21 (48.8)	338 (48.6)	0.977
Yes	356 (48.2)	22 (51.2)	334 (47.9)	
Currently smokes tobacco (n = 734)				
No	600 (81.2)	39 (90.7)	561 (80.6)	0.172
Yes	134 (18.1)	4 (9.3)	130 (18.7)	
Currently taking antibiotics or antivirals (n = 729)				
No	608 (82.3)	32 (74.4)	576 (82.5)	0.149
Yes	121 (16.4)	11 (25.6)	110 (15.8)	
Contact with a person who seemed to have a cold in the past week (n = 734)				
Don't know	184 (24.9)	9 (20.9)	175 (25.1)	0.735
No	109 (14.7)	8 (18.6)	101 (14.5)	
Yes	441 (59.7)	26 (60.5)	415 (59.6)	
If yes to contact with a sick person did they have a cough or sneeze (n = 441)				
Don't know	15 (3.4)	1 (3.4)	14 (3.4)	0.039
No	14 (3.2)	3 (11.5)	11 (2.6)	
Yes	406 (92.0)	21 (80.8)	385 (92.8)	
Overall 284 of the 780 returned reference sample packages (36.4%) had errors observed in packaging, including incorrect sealing of the return envelope, biohazard labels missing or applied incorrectly, specimen transport bag not sealed correctly, or damage to the shipping box (Additional file 9). Problems with the reference samples were noted in 180 samples. Most (170) were discolored UTM fluid indicating a spoiled sample, the remaining (10) errors were UTM tube not placed inside transport bag, UTM tube leaking (top loose/missing), nasal swab not in UTM tube, 2 nasal swabs in UTM tube, RDT test strip in UTM tube, or participant entered personal identifying information on the tube label.

Accuracy of self-test
The sensitivity and specificity of participants’ interpretation of the test strip result compared to the reference test were 14% (95%CI 5–28%) and 90% (95%CI 87–92%), respectively (Table 4). Images of the test strip were uploaded successfully by 96.2% of participants, of these images (n = 687), two expert reviewers had consensus on the result for 679 (98.8%) images, and the remaining 8 were reviewed by two additional expert reviewers to make a final determination. The sensitivity and specificity of test strip image interpretation by the research team compared to the reference test were 12% (95%CI 4–25%) and 99% (95%CI 98–100%) respectively. Discrepancy between participant-interpreted results and expert-interpreted results were mainly (57) due to flu-negative participants incorrectly interpreting background red color from the detection particles on the test strip as a positive test. Another source for discrepancy was that 6 image files were unreadable (corrupt file or dark image) for expert review.

Test accuracy was similar to the above results among subgroups of individuals who had reported symptom onset of 3 (72 h) or fewer days at the time of testing, those who completed the test within 4 days of ordering, and in those with a reference UTM tube that was not discolored (Additional file 10).

Discussion
Main findings
Our study found low sensitivity of a self-test for influenza which involved recruitment of participants with ILI remotely without physical connection to the research team. Sensitivity of this test among the 739 participants self-reporting ILI symptoms (with prevalence of influenza of 5.9%) was only 14%, but specificity in contrast was high (90%). The majority of participants were able to complete the multiple steps required for this study, guided by a mobile app; these included confirming eligibility, consent, guidance in obtaining nasal swabs, and returning a reference sample by mail. Indeed, 93% of individuals completed all steps required for the index test following consent, indicated by reporting RDT test results. However, only about 5% of participants took the test within 48 h of symptom onset, and only an additional 16% took the test within 72 h of symptom onset. Errors due to the user in returning reference test materials by mail were rare (1.3%), and a reference sample was received from the vast majority (95%) of individuals reporting RDT results.

Table 1 Characteristics of study participants and association with influenza status (Continued)

Characteristics	Overall (N = 739)	PCR+ (N = 43)	PCR− (N = 696)	p-value
Current illness interferes with daily activity (n = 737)				
No	230 (31.1)	4 (9.3)	226 (32.5)	0.002
Yes	507 (68.6)	39 (90.7)	468 (67.2)	

Table 2 Reported influenza symptoms, reported symptom severity, and association with influenza status

Symptoms	Overall (N = 739)	PCR+ (N = 43)	PCR− (N = 696)	p-value
Fatigue	686 (92.5)	42 (97.7)	644 (92.5)	0.334
Cough	671 (90.8)	42 (97.7)	629 (90.4)	0.163
Runny Nose	657 (88.9)	39 (90.7)	618 (88.8)	0.892
Headache	615 (83.2)	35 (81.4)	580 (83.4)	0.904
Muscle or Body Aches	581 (78.6)	37 (86.1)	544 (78.2)	0.301
Sore throat	570 (77.1)	35 (81.0)	535 (76.9)	0.617
Chills or Sweat	518 (70.1)	41 (95.4)	477 (68.5)	0.0003
Fever	440 (59.3)	37 (86.1)	403 (57.9)	0.0004
Shortness of Breath	333 (45.1)	25 (58.1)	308 (44.2)	0.105
Comparison to existing literature

Several studies have applied home based sampling using mobile technology to track influenza. For example, a study of influenza surveillance in Japan which used a mobile application to track influenza activity recruited over 10,000 individuals in one influenza season [13]. Web based platforms can have high retention rates over time, even without participant incentives [16]. The Influweb influenza tracking project in Italy assessed ILI in the general population over 4 influenza seasons [17]. Other mobile and web based applications have also provided guidance to participants on how to collect specimens without a trained professional. Two studies, GoViral in the US and Flusurvey in the UK, recruited participants on their web based platforms and successfully demonstrated that participants could self-collect nasal samples [12, 18]. Recent SARS-CoV-2 testing studies also show that self-collected swabs are just as effective as professionally collected swabs [19, 20]. Several point of care tests for SARS-CoV-2 have been evaluated, but mainly in healthcare settings. Conclusions from a systematic review hypothesize that point of care testing in more diverse populations and settings will cause the technical performance of the test to deteriorate [21].

We believe that the low observed sensitivity represented time delays from symptom onset to conducting the RDT, although we could not confirm this on subgroup analyses. Viral shedding declines rapidly after 3 days for influenza, yielding samples which are likely below the limit of detection for an antigen-based RDT. The ideal window for testing with RDTs is within 72 h of symptom onset when viral load is at its highest and also in the window when treatment can be administered [33–35]. Low sensitivity may also be partially due to

Table 3	Time taken to complete required steps in the study			
	Overall (N = 739)	PCR+ (N = 43)	PCR- (N = 696)	p-value
Number of days between ordering a test kit, shipping/delivery, and beginning testing procedures at home				
No data	28 (3.8)	2 (4.7)	26 (3.7)	0.191
0–1 day	171 (23.1)	10 (23.3)	161 (23.2)	
2 days	303 (41.0)	23 (53.4)	280 (40.3)	
3 days	88 (11.9)	4 (9.3)	84 (11.9)	
4 days	55 (7.4)	3 (6.9)	52 (7.5)	
5–40 days	94 (12.7)	1 (2.3)	93 (13.4)	
Number of days from starting test procedure at home to receipt of reference sample at the study lab				
No data	1 (0.1)	0	1 (0.1)	0.2183
0–1 days	9 (1.2)	1 (2.3)	8 (1.1)	
2 days	96 (12.9)	8 (18.6)	88 (12.7)	
3 days	176 (23.8)	7 (16.3)	169 (24.2)	
4 days	168 (22.7)	14 (32.6)	154 (22.2)	
5–28 days	289 (39.1)	13 (30.2)	276 (39.7)	

*Includes package pick-up/dropoff and shipping time to study lab

Table 4	Accuracy of influenza self-test compared to reference specimen PCR
	True positive
Participant interpretation of self-test	6
Expert interpretation of image of self-test	5
errors in obtaining nasal samples (although this would impact both the index test and the reference test), or conducting the RDT, even though participant self-report suggested such errors were unusual. A final source of diagnostic error was a participant’s ability to correctly read the test strip results. The larger number of false positive results appear to be mainly due to misinterpreted background red color from the detection particles, suggesting interpretation was poor or that participants waited more than 10 min to read their test strip. Specificity increased to 99% when images of the RDT results were interpreted by experts, suggesting that automated systems to interpret RDTs using mobile phone technologies may be valuable [36]. Previous studies have reported that on some lateral flow tests the red test line may appear light and difficult to see, which has been documented to occur for the QuickVue test and may be an indication of lower viral load [34, 37]. Additionally, it is believed that both trained and untrained individuals favor indicating a negative result when the line is faint. This may partially explain the false negative rate.

Lessons learned
We believe there is much to learn from the study design and procedures that can provide valuable insight for researchers and test developers evaluating the accuracy of self/home tests for influenza and other respiratory viruses such as SARS-CoV-2 (Table 5). This study design allowed us to recruit a large sample of participants nationally through online marketing without face to face clinical sites. However, our sample demographics are limited to majority female and non-Hispanic white, indicating additional recruitment methods are needed for a more diverse sample. Study procedures were guided by an app designed to facilitate multiple steps in the research process, including screening, consent, data collection, and collection of images of the completed test strip to mitigate errors in user interpretation of test strip images. Integrating multiple research procedures and functions within a single digital platform provided a user friendly study interface, and facilitated components such as timers to help guide the participants through steps in the RDT procedure. The single interface also reduced the need to move between on-line study instruments, and took advantage of wait times to administer survey questions. The use of the smartphone to capture an image of the completed test strip also allowed the research team to independently interpret the RDT result. The high rate of completion of the study procedures implies high usability.

We identified within the first week of recruitment the study advertisement promoted on websites and social media groups targeted to individuals looking for ways to earn money. Use of financial incentives is more challenging for this type of study than face to face contact with research subjects, and likely led to some individuals participating partly for monetary incentives, and/or who did

Study Design Feature	Advantages	Disadvantages
Integrated study functions streamlined into a mobile application	• Reduced resources needed for recruitment	
• Efficiency in expanding geographic reach		
• Maintained protocol standardization between participants		
• Single interface which simplified study procedures and aided participant engagement (e.g. participant took the study questionnaire while they waited for the test results)	• Resources needed to develop app	
• No human interaction with risks to study fidelity:		
➜ Unable to verify accuracy of self-reported responses		
➜ Difficult to verify if participants conducted the swabbing correctly without marker of human DNA		
Recruitment using online marketing through social media	• Expanded geographic reach	
• Ability to target specific groups and regions		
• Improves generalizability (people in the community versus recruitment in a clinic seeking care)		
• Facilitates tailoring of recruitment materials compared to paper based recruitment materials	• Can be expensive	
• Financial incentives noted in online recruitment can attract participants only interested in financial reward		
• Avoid recruitment materials that advertise monetary incentive		
Determining eligibility through Self-reported symptoms	• Prevents exposure of study staff to ILI	• Unable to verify eligibility information provided by the participant
• We accepted participants with ILI symptoms longer than 72 h		
Shipping of test kit to and from study lab	• Prevents exposure of ILI to study staff and potentially people at a health care clinic	
• Central distribution of study kits allowed for quality control	• Despite priority and overnight shipping, shipping and time to participants taking the test took too long to capture many participants early in their illness	
Return of reference sample	• Facilitated reference sampling, without need for study staff or clinic visits	
• Low error rate and participants reported that it was easy to collect | • Study design did not stress rapid return of the sample thus lead to longer times to return to study lab and spoiled UTM fluid
• Time of the year/temperature may impact UTM fluid stability |
not meet inclusion criteria. While this can be mitigated to some extent by limiting where the study is advertised online, using minimal financial incentives (or making these less obvious to participants), it is difficult to know how effective these mitigation efforts are. While we believe that a better incentive to participate would have been to display the results of the influenza test to individuals, return of research results from diagnostic tests is prohibited by regulations from state Departments of Health.

Several methods likely impacted test performance. We began recruitment late in the influenza season, thus under-recruited due to decreasing influenza activity, potentially influencing the prevalence of influenza in our sample. Additionally, study recruitment relied on self-report of ILLI symptoms which could not be verified. This likely contributed to a lower rate of influenza and milder spectrum of infection, than individuals visiting health care settings, as well as recruitment of participants who did not have ILLI. Furthermore, 1 in 10 people did not report cough occurring during their illness on their symptom questionnaire (reported while taking the test) which was an eligibility requirement to be able to order a test kit, indicating some participants may not have been truthful or a long time elapsed between the eligibility and symptom questionnaire. Last, while fever was on the list of eligibility symptoms we did not make it a requirement for participation. Those participating without a fever may have also impacted test sensitivity.

In some instances next day shipping could not be guaranteed (orders after 1 pm and weekends), this contributed to delays in testing. Self-reported time from symptom onset to testing for most participants was 4 or more days, at which time viral load may have been below the limit of detection. Participants’ interpretation of test strips resulted in a large number of false positive test strips. Given that participants were not provided information about the meaning of the test lines, we do not believe this represents participants over-diagnosing influenza, but rather misunderstanding the color changes in test strips. This suggests a need for better guidance for participants, and/or automated ways to interpret test strip images [36]. The reference test relied on individuals collecting and returning a second nasal swab to the reference laboratory. We noted a high rate (21.8%) of spoilage of the UTM fluid based on visual discoloration, which may have adversely affected the reference testing. Uncontrolled temperature conditions can spoil the UTM and/or cause lysis of the virus that exposes viral RNA to enzymes that degrade it. However, removing samples with discolored UTM samples from the analysis did not change test accuracy compared to the overall group. We did not test for a marker of human DNA on the reference swab therefore do not know how well individuals performed the reference or the index swabs.

Conclusions

This is one of the first studies to measure the accuracy of a test for influenza involving participants conducting both the index and reference tests, unsupervised by the research team. While the test sensitivity we report does not support current deployment of the RDT, several features of the study design have implications for evaluating self tests for influenza and other respiratory viral infections. First, recruiting study participants within windows of infectivity where not only is viral material within the expected limit of detection of the RDT, but also when a test result could lead to an actionable result is critical. This can be done through restricting time from symptom onset in the inclusion criteria. The multiple strengths of using a mobile app platform (streamlined study procedures etc.) need to be balanced by its inherent weaknesses (lack of face to face contact with research team). Optimize user interpretation of test results using automated interpretation where possible. Minimize delays in delivering test kits by pre-positioning tests at local clinics prior to a study or at healthy participants’ homes prior to an illness, or reducing a study’s geographic reach. Last, improve the speed of return and/or improve the stability of reference samples.

Abbreviations

US: United States; ILLI: Influenza-like-Illness; RDT: Rapid diagnostic test; UTM: Universal transport medium; PCR: Polymerase chain reaction; Ct: Cycle threshold; CI: Confidence interval

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12879-021-06314-1.
Acknowledgements
We acknowledge the support of the Seattle Flu Study Research Team/participating clinics/participating organizations, specifically Mark Rieder, Jeris Bosua, Dr. Helen Chu’s laboratory team: Caitlin Wolf, Jennifer Logue, Kristen Huden; Kit fabrication team: Alexandra Brandt, Kendall Escene, Kara De Leon, Grace Kim, Rosemichelle Marzan, Ashley Song, Angel Wong, Henry Wu, Audere, Formative, Quidel, and FluNearYou.

Authors’ contributions
All authors have read and approved the manuscript. MLZS – design, conception, acquisition, analysis, interpretation, drafted the work, approved submitted version, personally accountable. IR – analysis, approved submitted version, personally accountable. BL – conception, design, interpretation, substantively revised, approved submitted version, personally accountable. VL – design, acquisition, interpretation, substantively revised, approved submitted version, personally accountable. SH – design, acquisition, approved submitted version, personally accountable. EK – design, acquisition, approved submitted version, personally accountable. CG – design, acquisition, approved submitted version, personally accountable. SC – design, acquisition, analysis, substantively revised, approved submitted version, personally accountable. PS – design, acquisition, analysis, substantively revised, approved submitted version, personally accountable. SS – design, analysis, approved submitted version, personally accountable. HYC – conception, acquisition, substantively revised, approved submitted version, personally accountable. KS – design, approved submitted version, personally accountable. JSB – design, substantively revised, approved submitted version, personally accountable. MJT – conception, design, interpretation, substantively revised, approved submitted version, personally accountable.

Funding
The Seattle Flu Study is funded by Gates Ventures. The funder was not involved in the design of the study, does not have any ownership over the management and conduct of the study, the data, or the rights to publish. Audere’s participation was enabled through a grant funded by the Bill & Melinda Gates Foundation (Seattle, WA, USA; www.gatesfoundation.org).

Availability of data and materials
The datasets generated during the current study are not publicly available due to additional planned analyses for the dataset and IRB restrictions but are available from the corresponding author on reasonable request and proof of IRB approval from requesting party.

Declarations
Ethics approval and consent to participate
This study was approved by the University of Washington Human Subjects Division (STUDY00006388). Participants provided informed electronic written consent.

Consent for publication
Not applicable.

Competing interests
Monica L. Zigman Suchsland – None to declare. Ivan Rahmatullah – None to declare. Barry Lutz – None to declare. Victoria Lyon – None to declare. Shichu Huang – None to declare. Enos Kline – None to declare. Chelsey Graham – None to declare.

Shawna Cooper – None to declare. Philip Su – None to declare. Sam Smedinghoff – None to declare. Helen Y. Chu – reports grants from Gates Ventures, non-financial support from Cepheid; non-financial support from Ellume; personal fees from Merck, personal fees from Glaxo Smith Kline; grants from Sanofi Pasteur, grants from Bill and Melinda Gates Foundation, grants from NIH, outside the submitted work.

Kara Sewalk – None to declare.

John S. Brownstein – None to declare. Matthew J. Thompson – None to declare.

Author details
1University of Washington, 4225 Roosevelt Way NE Ste 308, Seattle, WA 98105-6099, USA. 2Massachusetts Institute of Technology, Cambridge, MA, USA. 3Audere, Seattle, WA, USA. 4Boston Children’s Hospital, Boston, MA, USA.

Received: 26 October 2020 Accepted: 10 June 2021
Published online: 29 June 2021

References
1. Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases. 2018–2019 U.S. Flu Season: Preliminary Burden Estimates | CDC. https://www.cdc.gov/flu/about/burden/preliminary-in-season-estimates.htm. Accessed 10 Sep 2019.
2. Putti WCWS, Muscatello DJ, Stockwell MS, Newall AT. Economic burden of seasonal influenza in the United States. Vaccine. 2018;36(27):3960–6. https://doi.org/10.1016/j.vaccine.2018.05.057.
3. Havers FP, Hicks LA, Chung JR, Gaglani M, Muthuy K, Zimmerman RK, et al. Outpatient antibacterial prescribing for acute respiratory infections during influenza seasons. JAMA New Open. 2018;1(2):e180243. https://doi.org/10.1001/jamaneurol.2018.0243.
4. Oxford JS. Antivirals for the treatment and prevention of epidemic and pandemic influenza. Influenza Other Respir Viruses. 2007;1(1):27–34. https://doi.org/10.1111/j.1750-2659.2006.00006.x.
5. Choi SH, Chung JW, Kim T, Park KH, Lee MS, Kwak YG. Late diagnosis of influenza in adult patients during a seasonal outbreak. Korean J Intern Med. 2018;33(2):391–6. https://doi.org/10.3904/kjem.2016.226.
6. Biggerstaff M, Jhung MA, Reed C, Fry AM, Balluz L, Fennell L. Influenza-like illness, the time to seek healthcare, and influenza antiviral receipt during the 2010–2011 influenza season—United States. J Infect Dis. 2014;210(4):535–44. https://doi.org/10.1093/infdis/jiu224.
7. Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM Jr, Fry AM, et al. Clinical practice guidelines by the Infectious Diseases Society of America: 2018 update on diagnosis, treatment, chemoprophylaxis, and institutional outbreak management of seasonal influenza. Clin Infect Dis. 2019;68(6):e1–e47. https://doi.org/10.1093/cid/ciy866.
8. Akmatov MK, Gatzeimeier A, Schugart K, Pessler F. Equivalence of self- and staff-collected nasal swabs for the detection of viral respiratory pathogens. Plas ONE. 2012;7(11):1–7. https://doi.org/10.1371/journal.pone.0048508.
9. Dhiman N, Miller RM, Finley JL, Stajnkeyer MD, Nestler DM, Boggust AJ, et al. Effectiveness of patient-collected swabs for influenza testing. Mayo Clin Proc. 2012;87(6):548–54. https://doi.org/10.1016/j.mayocp.2012.02.011.
10. Goyal S, Prasert K, Phraphatis P, Chittagarnitch M, Waihaoren S, Dtsungnoen D, et al. The acceptability and validity of self-collected nasal swabs for detection of influenza virus infection among older adults in Thailand. Influenza Other Respir Viruses. 2017;11(3):412–7. https://doi.org/10.101111/j.12471.
11. FAQs on Testing for SARS-CoV-2 | FDA. https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/faqs-testing-sars-cov-2. Accessed 14 Sep 2020.
12. Wenham C, Gray ER, Keane CE, Donatii M, Paolotti D, Pelleby R, et al. Self-swabbing for virological confirmation of influenza-like illness among an internet-based cohort in the UK during the 2014-2015 flu season: pilot study. J Med Internet Res. 2018;20(3):1–9. https://doi.org/10.2196/jmir.9084.
13. Fujibayashi K, Takahashi H, Tanef M, Uehara Y, Yokokawa H, Naito T. A new influenza-tracking smartphone app (flu-report) based on a self-administered questionnaire: cross-sectional study. JMIR mHealth uHealth. 2018;6(6):1–8. https://doi.org/10.2196/mhealth.8334.
14. Powers JH, Guerrero ML, Leidy NK, Fairchok MP, Rosenberg A, Hernández A, et al. Development of the flu-PRO: a patient-reported outcome (PRO) instrument to evaluate symptoms of influenza. BMC Infect Dis. 2016;16(1):1–11. https://doi.org/10.1186/s12879-015-1330-0.

15. Ebell MH, Afonso AM, Gonzales R, Stein J, Genton B, Senn N. Development and validation of a clinical decision rule for the diagnosis of influenza. J Am Board Fam Med. 2012;25(1):55–62. https://doi.org/10.3122/jabfm.2012.01.110161.

16. Dalton C, Carlson S, Butler M, Cassano D, Clarke S, Fejsa J, et al. Insights from flutracking: thirteen tips to growing a web-based participatory surveillance system. JWMR Public Heal Survell. 2017;3(3):e48. https://doi.org/10.2196/publichealth.7323.

17. Perrotta D, Bellia A, Rizzo C, Paolotti D. Participatory online surveillance as a supplementary tool to sentinel doctors for influenza-like illness surveillance in Italy. PLoS One. 2017;12(1):1–15. https://doi.org/10.1371/journal.pone.0196901.

18. Goff J, Rowe A, Brownstein JS, Chunara R. Surveillance of acute respiratory infections using community-submitted symptoms and specimens for molecular diagnostic testing. PLoS Curr. 2015;7(OUTBREAKS). https://doi.org/10.1371/currents.outbreaks.0371243ba963c36b0b99999b66c.

19. Tu Y-P, Jennings R, Hart B, Cangelosi GA, Wood RC, Wehber K, et al. Swabs collected by patients or health care workers for SARS-CoV-2 testing. N Engl J Med. 2020;383(5):1–3. https://doi.org/10.1056/nejmc2016321.

20. Altamirano J, Govindarajan P, Blomkains AI, Kuschnir LE, Stevens BA, Pinsky BA, et al. Assessment of sensitivity and specificity of patient-collected lower nasal specimens for sudden acute respiratory coronavirus 2 testing. JAMA Netw Open. 2020;3(6):e2012005. https://doi.org/10.1001/jama networkopen.2020.12005.

21. La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SW. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online. 2020; (January). https://doi.org/10.1016/j.rbmo.2020.06.001.

22. Bruning AHL, Leeflang MMG, Vos JMBW, Spijker R, de Jong MD, Wolthers MJ, et al. Performance of the QuickVue influenza A+B rapid test for pandemic H1N1 2009 virus infection in adults. JAMA Netw Open. 2011;4(6):e89–92. https://doi.org/10.1001/jama.2010.1038/jid.2014.371.

23. Green DA, St George K. Rapid antigen tests for influenza: rationale and significance of the FDA reclassification. J Clin Microbiol. 2018;56(10):1–10. https://doi.org/10.1128/JCM.00711-18.

24. Velasco JMS, Montesa-Develos ML, Jarman RG, Lopez MNB, Gibbons RV, Valderama M, et al. Evaluation of QuickVue influenza A + B rapid test for detection of pandemic influenza A/H1N1 2009. J Clin Virol. 2010;48(2):120–2. https://doi.org/10.1016/j.jcv.2010.03.010.

25. Cheng CKY, Cowlng BJ, Chan WK, Fang VJ, Seto WH, Yung R, et al. Factors affecting QuickVue influenza A + B rapid test performance in the community setting. Diagn Microbiol Infect Dis. 2009;65(1):35–41. https://doi.org/10.1016/j.diagmicrobio.2009.05.003.

26. Park C, Mariakakis A, Yang J, et al. Supporting smartphone-based image capture of rapid diagnostic tests in low-resource settings. ACM Int Conf Proc Ser. 2020. https://doi.org/10.1145/3392561.3394638.

27. Stevenson HL, Loeffelholz MJ. Poor positive accuracy of QuickVue rapid antigen tests during the influenza A (H1N1) 2009 pandemic. J Clin Microbiol. 2010;48(10):3729–31. https://doi.org/10.1128/JCM.01562-10.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:
- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions