Modeling Inflation and Money Supply using Spatial Vector Autoregressive Model with Calendar Variation: Restricted vs Non-restricted Coefficient

Eni Sumarminingsih¹, Setiawan²*, Agus Suharsono³, Budi Nurani Ruchjana³

¹Doctoral Program at Department of Statistics, Institut Teknologi Sepuluh Nopember, Indonesia and Lecturer at Department of Statistics, University of Brawijaya, Indonesia.
²Department of Statistics, Institut Teknologi Sepuluh Nopember, Indonesia
³Department of Mathematics, University of Padjadjaran, Indonesia

*Corresponding author: setiawan@statistika.its.ac.id

Abstract. One of the tasks of the government is to maintain price stability reflected in the stability of inflation through the regulation of the money supply. Therefore, the government needs to know the forecast of the inflation rate and the money supply. In modeling inflation and the money supply simultaneously in Indonesia, three things need to be accommodated, namely the relationship between variables, the existence of space-time relationships and the effect of Eid al-Fitr. The spatial vector autoregressive model with calendar variation can accommodate these three things. The purpose of this study is to compare two types of spatial vector autoregressive models with calendar variations, namely restricted and non-restricted coefficient to model inflation and the money supply in Surabaya, Malang, Kediri, and Jember simultaneously. Results of this study indicate that the non-restricted spatial vector autoregressive model with calendar variation is better than the restricted one. This can be seen from the value of MSE of the non-restricted model that is smaller than the restricted model.

1. Introduction
High inflation is one of the important problems facing a country. This problem is very disturbing to the community and of course the government. High inflation shows the poor economy of a country. Therefore, inflation needs to be controlled. The government, in this case the central bank is in charge of controlling inflation to be stable. Bank Indonesia as the country's central bank maintains inflation stability by controlling the money supply. Increasing the money supply will result in a higher inflation rate. To reduce inflation the government seeks to reduce the money supply by (i) selling securities, (ii) increasing loan interest rates and (iii) increasing the required reserve ratio [1]. This shows that inflation and the money supply need to be predicted.

Inflation and the money supply have a space-time relationship. An increase in inflation in a city will usually be followed by an increase in inflation in other cities, especially the closest cities. This is because of economic relations between the closest cities. The money supply between cities is also related to the existence of relations between BI regional offices in meeting the demand for money from the public. Research on inflation and the money supply in Indonesia includes [2-6].

Inflation and the money supply in Indonesia have unique characteristics, namely increasing in the month of Eid al-Fitr and or in the month before Eid Al-Fitr. The occurrence of Eid al-Fitr follows a lunar
calendar so that it occurs on different dates and months each year. Such an event is commonly called calendar variation in this case is holiday variation. Holiday variation refers to fluctuations in economic activity because of the effects of certain holidays or religious holidays that are set on a lunar calendar so that the holiday occurs on a different date and month each year. Calendar Effect modeling can be done by adding a dummy variable that represents periods related to the holiday which is a concern in the regression model \[7\], ARIMA model \[8-10\] , and GSTAR model \[11\].

Based on the previous explanation, a model that can accommodate three aspects is needed to predict inflation and the money supply, namely: the relationship between variables, the existence of space-time relationships and the effects of calendar variations.

The Space-time model for one variable that has developed includes the Vector Autoregressive (VAR) model developed by \[12\] , Space Time Autoregressive (STAR) model developed by \[13\] and \[14\] , and Generalized Space Time Autoregressive (GSTAR) model by \[15\] and \[16\] . STAR and GSTAR models are VAR models whose coefficients are restricted. Meanwhile, the Space-time model for more than one variable is the Spatial Vector Autoregressive (SpVAR) model developed by \[17\] and \[18\] .

To accommodate the effect of exogenous variables on one space-time data, the GSTAR model with exogenous variables has been developed by \[19\] and \[11\] . Meanwhile, for space-time data with more than one variable, it has been developed the SpVAR model with calendar variation, (see \[20\] and \[6\]). The SpVAR model with calendar variations has two types of coefficient forms, namely non-restricted and restricted. The purpose of this study is to compare the two types of SpVAR models with calendar variations, namely the non-restricted and restricted coefficients for modeling inflation and the money supply in Surabaya, Malang, Kediri, and Jember simultaneously.

2. Methodology
In this section, data and methods that are used in this study are presented.

2.1. Data
The data used in this study is monthly inflation and money supply data from January 2003 to December 2014. Inflation data is obtained from the website of bps.go.id while the money supply data is obtained from Bank Indonesia.

2.2. Spatial Vector Autoregressive Model with Calendar Variation
Spatial Vector Autoregressive [SpVAR \((1, p)\)] model with Calendar Variation can be stated as
\[
y_t = \Gamma x_t + B_1 y_{t-1} + \ldots + B_p y_{t-p} + \xi_t,
\]
where
\[
y_t^* = \begin{bmatrix} y_{1t}^* \ y_{2t}^* \ \ldots \ y_{Kt}^* \end{bmatrix}, \ y_{kt}^* = \begin{bmatrix} y_{1kt} \ y_{2kt} \ \ldots \ y_{Nkt} \end{bmatrix}
\]
y_{nklt} : the value of k-th variable at n-th location at time t and
\[
\Gamma = \text{diag}\left(\gamma_1, \ldots, \gamma_{N_1}, \ldots, \gamma_{K}, \ldots, \gamma_{N_K}\right), \text{ is coefficient matrix for calendar variation dummy variables.}
\]
x_t = \begin{bmatrix} x_{1t}^* \ x_{2t}^* \ \ldots \ x_{Kt}^* \end{bmatrix}, \ x_{kt}^* = \begin{bmatrix} x_{1kt}^* \ x_{2kt}^* \ \ldots \ x_{Nkt}^* \end{bmatrix},
\]
x_{nkt} : is the l-th dummy variable for calendar variation for the k-th endogenous variable at n-th location at time t.
\[
B_h (h = 1, \ldots, p) \text{ is } N_K \times N_K \text{ non-restricted coefficient matrix,}
\]
\[
\xi_t = \begin{bmatrix} \xi_{1t} \ \xi_{2t} \ \ldots \ \xi_{Kt} \end{bmatrix}, \ \xi_{kt} = \begin{bmatrix} \xi_{1kt} \ \xi_{2kt} \ \ldots \ \xi_{Nkt} \end{bmatrix}
\]
E(\xi_t) = 0 , \ E(\xi_t \xi_t') = \Sigma,
\[E(\xi_r^{zt-h}) = 0, h = 1, 2, \ldots \]

2.3. Restricted Spatial Vector Autoregressive Model with Calendar Variation

Restricted Spatial Vector Autoregressive Model with Calendar Variation is Spatial Vector Autoregressive Model with Calendar Variation as in (1), but the coefficient matrix \(B \) is restricted by the restriction as

\[
B = \begin{bmatrix}
A_{11} & A_{12} & \ldots & A_{1K} \\
A_{21} & A_{22} & \ldots & A_{2K} \\
\vdots & \vdots & \ddots & \vdots \\
A_{K1} & A_{K2} & \ldots & A_{KK}
\end{bmatrix},
\]

where \(A_{ij} = \beta_{ij}^{(0)} + \beta_{ij}^{(1)} W_{kr} \), \(k, r = 1, \ldots, K; h = 1, \ldots, p \),

\[\beta_{ij}^{(0)} = \text{diag} \left(\beta_{i1}, \ldots, \beta_{iN} \right) \],

where \(W_{kr} \) is \(N \times N \) spatial weight matrix, where the element \(w_{ij}(i, j) \) has been previously known and assumed to be non-negative and positive if location \(i \) and \(j \) are neighbors and are zero if \(i = j \). Spatial weight is assumed to be constant over time. Autoregressive coefficients are assumed to vary between locations.

2.4. Procedure

The steps in this study are:

Step 1. Test the stationary of data using a panel data unit root test proposed by [21]. If the data is not stationary, then the difference is done so that the data is stationary.

Step 2. Determine the dummy variable for calendar variations.

Step 3. Determine the order of time with the following steps:

(i) Eliminate the effects of calendar variations by modeling

\[y_t^* = \Gamma x_t + w_t \]

and estimate the parameter using GLS.

(ii) Calculating the residual from equation (4), determining the spatial weight and determining the model SpVAR using \(w_t \),

\[w_t = B_1 y_{t-1}^* + \cdots + B_p y_{t-p}^* + \xi_t. \]

(iii) Test the null hypothesis and the following alternative hypothesis uses the Likelihood Ratio Test in sequence.

\[H_0: \beta(M) = 0 \text{ vs } H_1: \beta(M) \neq 0 \]

where \(M \) is positive integer number. If the null hypothesis is not rejected, then the hypothesis test for the order \((M-1) \) is carried out. Each null hypothesis is tested conditional on the previous null hypothesis is correct. This procedure stops if one null hypothesis is rejected. If \(H_0 \) is rejected, then \(\hat{p} = M - i + 1 \) is chosen as the order of the SpVAR model with calendar variation.

Step 4. Estimate the parameter of SpVAR model with calendar variation using Full Information Maximum Likelihood (FIML) method.

Step 5. Get the best model by comparing MSE from the non-restricted SpVAR model with calendar variation and restricted SpVAR models with calendar variation.
3. Result and Discussion
In this results and discussion section, the results of the stationary test, order determination and parameter estimation are discussed.

3.1. Stationary test results
The results of the stationary test for inflation data are presented in Table 1.

Deterministic Variable	Adjusted t	p-value
Zero Mean	-2.52	0.0059
CS Fixed	-13.53	<.0001
CS Fixed, Time	-24.10	<.0001
TS Fixed	-17.65	<.0001
CS, TS Fixed	-19.35	<.0001
CS, TS Fixed, Time	-27.68	<.0001

Table 1 shows that the p-value is less than 5 percent, this means that inflation in all four cities is stationary.

Deterministic Variable	Adjusted t	p-value
Zero Mean	2.44	0.9927
CS Fixed	5.84	1.0000
CS Fixed, Time	6.36	1.0000
TS Fixed	1.78	0.9625
CS, TS Fixed	4.83	1.0000
CS, TS Fixed, Time	6.41	1.0000

Table 2 shows that the p-value is more than 5 percent. This means that the money supply is not stationary so it needs to be differenced. The stationary test results of the money supply after differencing are presented in Table 3. The table shows that the p-value is less than 5 percent so it can be concluded that the data is stationary.

Deterministic Variable	Adjusted t	p-value
Zero Mean	-37.98	<.0001
CS Fixed	-43.77	<.0001
CS Fixed, Time	-49.34	<.0001
TS Fixed	-37.79	<.0001
Deterministic Variable

Deterministic Variable	Adjusted t	p-value
CS, TS Fixed	-44.74	<.0001
CS, TS Fixed, Time	-50.58	<.0001

3.2. Order Determination

In this order determination, dummy variables are determined for periods of calendar variation. In this study 8 variables calendar variations were used and defined:

$$x_{bi,t} = \begin{cases}
1, & \text{if } t \text{ is one month before Eid al Fitr} \\
0, & \text{for another month}
\end{cases}$$

where Eid al Fitr at the i-th week

$$x_{it} = \begin{cases}
1, & \text{if } t \text{ is Eid al Fitr month} \\
0, & \text{for another month}
\end{cases}$$

for $i = 1, 2, 3, 4$

For example, the data used are inflation and the money supply from January 2003 to December 2014. Eid al-Fitr in 2003 occurred on November 25, 2003 or the fourth week of November. Dummy variable value $x_{b4,10} = 1, x_{a1,11} = 1$, while $x_{b1,10} = x_{b2,10} = x_{b3,10} = 0$, likewise $x_{a1,10} = x_{a2,10} = x_{a3,10} = 0$.

Furthermore, dummy variables are chosen which significantly influence the endogenous variables using the backward procedure. The parameter estimation method used is Generalized Least Square (GLS). The results of selecting this dummy variable are presented in Table 4.

Table 4. The Significant Calendar Variations Variable

Endogenous Variable	Significant Dummy Variables for Calendar Variations
Inflation in Surabaya	x_{b1t}, x_{b2t}
Inflation in Malang	x_{b1t}, x_{b2t}
Inflation in Kediri	x_{b1t}, x_{b2t}
Inflation in Jember	x_{b1t}, x_{b2t}
Money Supply in Surabaya	$x_{b1t}, x_{b2t}, x_{b3t}, x_{b4t}$
Money Supply in Malang	$x_{b1t}, x_{b2t}, x_{b3t}, x_{b4t}$
Money Supply in Kediri	$x_{b1t}, x_{b2t}, x_{b3t}, x_{b4t}$
Money Supply in Jember	$x_{b1t}, x_{b2t}, x_{b3t}, x_{b4t}$

The modeling results with calendar variations variables are

$$\hat{y}_{1t} = 3.6799x_{b1t} + 0.4522x_{b2t},$$

(7)

$$\hat{y}_{2t} = 3.781x_{b1t} + 0.3951x_{b2t},$$

(8)

$$\hat{y}_{3t} = 5.3702x_{b1t} + 0.4147x_{b2t},$$

(9)

$$\hat{y}_{4t} = 3.9088x_{b1t} + 0.3327x_{b2t},$$

(10)

$$\hat{y}_{12t} = 1.9500x_{b1t} + 1.3329x_{b2t} - 2.7404x_{b3t} + 0.8639x_{b3t} + 1.8153x_{b4t},$$

(11)

$$\hat{y}_{22t} = 0.6446x_{b1t} + 0.4015x_{b2t} - 0.8298x_{b3t} + 0.3467x_{b3t} + 0.5373x_{b4t},$$

(12)
\[
\hat{y}_{3t} = 0.9125x_{3t} + 0.5024x_{2t} - 1.2564x_{3t} + 0.4140x_{3t} + 0.6276x_{4t}, \\
\hat{y}_{4t} = 0.4558x_{4t} + 0.2306x_{2t} - 0.6333x_{3t} - 0.1063x_{2t} + 0.2282x_{4t},
\]

where \(\hat{y}_{1t} \) is the predicted value of inflation in Surabaya at time \(t \), \(\hat{y}_{2t} \) is the predicted value of inflation in Malang at time \(t \), \(\hat{y}_{3t} \) is the predicted value of inflation in Kediri at time \(t \), \(\hat{y}_{4t} \) is the predicted value of inflation in Jember at time \(t \), \(\hat{y}_{1t} \) is the predicted value of money supply in Surabaya at time \(t \), \(\hat{y}_{2t} \) is the predicted value of money supply in Malang at time \(t \), \(\hat{y}_{3t} \) is the predicted value of money supply in Kediri at time \(t \), \(\hat{y}_{4t} \) is the predicted value of money supply in Jember at time \(t \).

Then the residuals are calculated from the model (7) up to the model (14). This residual is modeled using the SpVAR model to determine the order of the SpVAR model with calendar variations for inflation and the money supply in the cities of Surabaya, Malang, Kediri and Jember. In determining this order, the maximum order is determined which is four. The G value for the fourth order is 4.3806 while the value \(\chi^2_{(0.10,32)} = 42.5847 \), so the null hypothesis fails to be rejected. Furthermore, the G value for the third order is calculated and the G value is 32.75188, so the null hypothesis still fails to be rejected. The next step is to calculate the G value for second order and the G value of 342.7024 is obtained, so the null hypothesis is rejected. Based on this procedure, the order chosen is two.

3.3. Parameter estimation results

Comparison of MSE values from non-restricted SpVAR models with calendar variations and restricted SpVAR models with calendar variations on inflation and the money supply modeling in Surabaya, Malang, Kediri, and Jember are presented in Table 5. The table shows that the non-restricted SpVAR model with calendar variations have MSE values that are smaller than the restricted SpVAR model with calendar variations. Therefore the selected model is the non-restricted SpVAR model with calendar variations and the results of estimating the parameters are presented in Table 6.

Equation	MSE	
\(y_{11t} \)	0.450414	0.467466
\(y_{21t} \)	0.518846	0.528772
\(y_{31t} \)	0.911847	0.925423
\(y_{41t} \)	0.632692	0.64156
\(y_{12t} \)	0.598552	0.732718
\(y_{22t} \)	0.042527	0.056566
\(y_{32t} \)	0.098445	0.123183
\(y_{42t} \)	0.021207	0.026587
Table 6. Parameter Estimation Results

Variable	\(y_{1t}\)	\(y_{2t}\)	\(y_{3t}\)	\(y_{4t}\)	\(y_{12t}\)	\(y_{22t}\)	\(y_{32t}\)	\(y_{42t}\)
\(x_{b1t}\)	3.6379*	3.7424*	5.3564*	3.9848*	2.1511*	0.6898*	0.9997*	0.4633*
\(x_{b2t}\)	0.4656*	0.4072*	-	-	0.8992*	0.2552*	0.3503*	0.1937*
\(x_{1t}\)	-	-	-	-	-0.8614	-0.302*	-0.3959	-0.3074*
\(x_{2t}\)	-	-	0.4137*	0.3339*	-	-	-	-
\(x_{3t}\)	-	-	-	-	2.2474*	0.8139*	0.9667*	0.3244*
\(x_{4t}\)	-	-	-	-	1.8115*	0.4769*	0.6435*	0.2557*
\(y_{11t-1}\)	0.0114	0.1518	0.0144	0.0967	0.2078	0.1329*	0.0848	0.0717
\(y_{12t-1}\)	-0.359*	-0.2962	-0.479*	-0.416*	-0.949*	-0.113*	-0.220*	-0.0640
\(y_{11t-2}\)	-0.1699	0.0626	0.1757	-0.1812	-0.2593	-0.138*	-0.1532*	-0.0619
\(y_{12t-2}\)	-0.1112	0.0442	-0.0351	-0.0520	-0.412*	-0.0148	0.0002	-0.0145
\(y_{21t-1}\)	-0.0659	-0.2381	-0.0248	-0.2602	0.0861	-0.0147	-0.0337	-0.0182
\(y_{22t-1}\)	1.0852	0.2935	1.0207	0.7525	-1.924*	-1.177*	-0.787*	-0.487*
\(y_{21t-2}\)	0.1102	-0.1090	-0.0428	0.0561	0.2541	0.1199*	0.1801*	0.0657
\(y_{22t-2}\)	-0.1038	-0.3947	-0.6056	-0.1088	-2.474*	-0.993*	-1.106*	-0.549*
\(y_{31t-1}\)	-0.1860	-0.0810	-0.2784	-0.2229	-0.1315	-0.0330	-0.0484	-0.0071
\(y_{32t-1}\)	0.7859	1.0254*	1.2812*	1.0537*	1.2361*	0.3229*	0.0314	0.2677*
\(y_{31t-2}\)	0.0634	0.1244	-0.0742	0.2585	-0.0205	0.0293	0.0060	0.0096
\(y_{32t-2}\)	0.8421*	0.4817	1.3585*	0.6622	1.2271	0.3779*	0.2813	0.2872*
\(y_{41t-1}\)	0.3820*	0.3406*	0.4231*	0.5574*	-0.1989	-0.0932	-0.0303	-0.0430
\(y_{42t-1}\)	-1.1733	-0.8043	-1.3638	-0.8546	1.7293*	0.7435*	0.7557*	-0.1825
\(y_{41t-2}\)	-0.0868	-0.0660	-0.1436	-0.2936	-0.1173	-0.0691	-0.1266	-0.0547
\(y_{42t-2}\)	-1.1762	-0.6635	-1.9052	-0.9035	1.9923*	0.4323	0.5668	0.0480

where *: coefficient with p-value less than 10%

Table 6 shows that there is one calendar variation dummy variable that affects all equations, namely \(x_{b1t}\), with a positive coefficient for all equations. This means that if Eid al-Fitr occurs in the first week then inflation and the money supply in the month of Ramadan (one month before Eid) increase in all cities. In addition, there are two calendar variation dummy variables that effect on the money supply in all cities, namely \(x_{3t}\) and \(x_{4t}\), with positive coefficients. This means that if Eid al-Fitr occurs in the third or fourth week, the money supply will increase in the month of Eid. Table 6 also shows that there is a relationship between inflation and the money supply and there is a space-time relationship on inflation and the money supply.
4. Conclusion
Conclusion of this study is the non-restricted SpVAR (1, 2) model with calendar variations better than the restricted SpVAR model (1, 2) with calendar variations. Moreover, there is the effect of Eid al-Fitr both on inflation and the money supply. Furthermore, there is a space-time relationship in inflation and the money supply.

Acknowledgements
Our thanks to the Statistics Department of University of Brawijaya for the funds provided for the registration fee at the 9th Basic Science International Conference.

References
[1] P. Rahardja and M. Manurung, Teori Ekonomi Makro: Suatu Pengantar, Fourth. Jakarta: Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia, 2008.
[2] E. Sumarminingsih, Setiawan, A. Suharsono, and B. N. Ruchhana, “Spatio-Temporal Analysis of Inflation Rate: Vector Autoregressive Approach with Calendar Effect,” in International Conference on Theoretical and Applied Statistics, 2016.
[3] E. Sumarminingsih, Setiawan, A. Suharsono, and B. N. Ruchhana, “Modeling Inflation and Money Supply using Spatial Vector Autoregressive,” AIP Conf. Proc., vol. 2021, no. 060012, 2018.
[4] E. Sumarminingsih and W. H. Nugroho, “Vector Autoregressive for Assessing Relationship between Inflation, Interest Rate and Money Supply,” Int. J. Appl. Math. Stat., vol. 51, no. 21, pp. 1–10, 2013.
[5] E. Sumarminingsih, “Spatio – Temporal Analysis of Inflation Rate in East Java , Indonesia : Vector Autoregressive Approach,” Int. J. Appl. Math. Stat., vol. 53, no. 5, pp. 16–23, 2015.
[6] E. Sumarminingsih, S. Matoha, A. Suharsono, and B. N. Ruchhana, “Spatial Vector Autoregressive Model with Calendar Variation for East Java Inflation and Money Supply,” Appl. Math. Inf. Sci., vol. 12, no. 6, pp. 1157–1163, 2018.
[7] G. J. Marrett and A. C. Worthington, “An empirical note on the holiday effect in the Australian stock market, 1996–2006,” J. Appl. Econ. Lett., vol. 16, no. 17, pp. 1769–1772, 2009.
[8] M. H. Lee, Suhartono, and N. A. Hamzah, “Calendar variation model based on ARIMAX for forecasting sales data with Ramadhan effect,” in Proceedings of the Regional Conference on Statistical Sciences, 2010, no. June, pp. 349–361.
[9] I. S. Ahmad, Setiawan, Suhartono, and N. H. Masun, “Forecasting of monthly inflow and outflow currency using time series regression and ARIMAX: The Idul Fitri effect,” in AIP Conference Proceedings 1691, 2015.
[10] Setiawan, Suhartono, I. S. Ahmad, and N. I. Rahmawati, “Configuring calendar variation based on time series regression method for forecasting of monthly currency inflow and outflow in Central Java,” in AIP Conference Proceedings 1691, 2015, pp. 050024-1-050024-8.
[11] Suhartono, S. R. Wahyuningrum, Setiawan, and M. S. Akbar, “GSTARX-GLS Model for Spatio-Temporal Data Forecasting,” Malaysian J. Math. Sci., vol. 10, no. S, pp. 91–103, 2016.
[12] C. A. Sims, “Macroeconomics and Reality,” Econometrica, vol. 48, no. 1, 1980.
[13] P. E. Pfeifer and S. J. Deutsch, “Identification and Interpretation of First Order Space-Time ARMA Models,” Technometric, vol. 22, no. 3, pp. 397–408, 1980.
[14] P. E. Pfeifer and S. J. Deutsch, “A Three-Stage Iterative Procedure for Space-Time Modeling,” Technometric, vol. 22, no. 1, pp. 35–47, 1980.
[15] B. N. Ruchjana, “A Generalized Space-Time Autoregressive Model and Its Application to Oil Production,” Institut Teknologi Bandung, 2002.
[16] B. N. Ruchjana, S. Borovkova, and H. P. Lopuha, “Least Squares Estimation of Generalized Space Time AutoRegressive (GSTAR) Model and Its Properties,” in AIP Conference Proceedings 1450, 2012, no. May, pp. 61–64.
[17] M. Beenstock and D. Felsenstein, “Spatial Vector Autoregressions,” Spat. Econ. Anal., vol. 2, no.
2, pp. 167–196, 2007.

[18] V. Di Giacinto, “On Vector Autoregressive Modeling in Space and Time,” *J. Geogr. Syst.*, vol. 12, pp. 125–154, 2010.

[19] D. Astuti, B. N. Ruchjana, and Soemartini, “Generalized space time autoregressive with exogenous variable model and its application,” in *IOP Conf. Series: Journal of Physics: Conf. Series 893*, 2017.

[20] E. Sumarminingsih, Setiawan, A. Suharsono, and B. N. Ruchjana, “Simulation Study to Evaluate Full Information Maximum Likelihood as Parameter Estimation Methods for Spatial Vector Autoregressive Model with Calendar Variation Simulation Study to Evaluate Full Information Maximum Likelihood as Parameter Estimation Metho,” *J. Physic Conf. Ser.*, vol. 1097, no. 012075, 2018.

[21] A. Levin, C.-F. Lin, and C.-S. J. Chu, “Unit Root Tests in Panel Data: Asymptotic and Finite Sample Properties,” *J. Econom.*, vol. 108, no. 1, pp. 1–24, 2002.