LOCAL FORMULA FOR THE INDEX OF A FOURIER INTEGRAL OPERATOR

ERIC LEICHTNAM, RYSZARD NEST, AND BORIS TSYGAN

Abstract. Let X and Y be two closed connected Riemannian manifolds of the same dimension and $\phi : S^*X \to S^*Y$ a contact diffeomorphism. We show that the index of an elliptic Fourier operator Φ associated with ϕ is given by

$$\int_{B^*(X)} e^{\theta_0} \hat{A}(T^*X) - \int_{B^*(Y)} e^{\theta_0} \hat{A}(T^*Y)$$

where θ_0 is a certain characteristic class depending on the principal symbol of Φ and $B^*(X)$ and $B^*(Y)$ are the unit ball bundles of the manifolds X and Y. The proof uses the algebraic index theorem of Nest-Tsygan for symplectic Lie Algebroids and an idea of Paul Bressler to express the index of ϕ as a trace of 1 in an appropriate deformed algebra.

In the special case when $X = Y$ we obtain a different proof of a theorem of Epstein-Melrose conjectured by Atiyah and Weinstein.

Contents

1. Introduction 2
2. Symbolic calculus for ΨDO’s and formal deformations 6
 2.1. Deformation of T^*X 6
 2.2. Lie algebroid structure and deformation quantization the projective completion B^*X 7
3. Regularized Index formula for a Fourier Integral Operator 10
4. Algebraization of a Fourier Integral Operator 10
 5. The formal deformation and traces on $B^*X \cup_\phi B^*Y$ and regularized traces on ΨDO’s 14
6. The algebraic index theorem for the Lie algebroid \mathcal{E} 16
7. Local formula for the index of a Fourier Integral Operator 17
 7.1. General construction of the characteristic class of a formal deformation 18
 7.2. Local canonical liftings 20
 7.3. The cotangent bundle case 21
 7.4. The Lie algebroid case 22
 7.5. The characteristic class of $\mathcal{A}^\mathbb{A}(M)$ 23
 7.6. The Fourier Integral Operator 24
References 25
1. Introduction

Let X and Y be two smooth closed connected Riemannian manifolds of the same dimension such that there exists a contact diffeomorphism $\phi : S^*X \rightarrow S^*Y$ between the two unit cotangent bundles which induces a homogeneous symplectomorphism, still denoted by ϕ, from $T^*X \setminus X$ onto $T^*Y \setminus Y$.

We first recall the definition of the index of ϕ when $\dim X \geq 3$ following [10]. We will denote by $\Omega^{1/2}$ the half-density bundle over X or Y. Let C_{ϕ} be the graph of ϕ^{-1} in $(T^*Y \setminus Y) \times (T^*X \setminus X)$ and $L_{C_{\phi}}$ be the associated Maslov bundle. Let $A : L^2(X, \Omega^{1/2}) \rightarrow L^2(Y, \Omega^{1/2})$ be an elliptic Fourier Integral Operator of order zero whose canonical relation is C_{ϕ} and whose principal symbol is an invertible section of the bundle $\Omega^{1/2} \otimes L_{C_{\phi}} \rightarrow C_{\phi}$ (see [11], [5]) for details). Suppose that $B : L^2(Y, \Omega^{1/2}) \rightarrow L^2(X, \Omega^{1/2})$ is an elliptic Fourier Integral Operator of order zero whose canonical relation is $C_{\phi^{-1}}$. Then $B \circ A : L^2(X, \Omega^{1/2}) \rightarrow L^2(X, \Omega^{1/2})$ is an elliptic scalar pseudo-differential operator of order zero. Since $\dim X \geq 3$ there exists a smooth non vanishing function $x \in X \rightarrow a(x) \in \mathbb{C}^*$ such that the principal symbol of $B \circ A$ is homotopic to $(x, \xi) \in T^*X \rightarrow a(x) \in \mathbb{C}^*$. In particular the index of $B \circ A$ is zero. Thus $\text{Ind} B = -\text{Ind} A$ for any Fourier Integral Operators A and B as above, and, as the corollary of this fact, $\text{Ind} A$ does not depend on the choice of A. Since it only depends on the transformation ϕ, it is called the index of ϕ and denoted by $\text{Ind} \phi$. A. Weinstein has proved (see [11]) that the integer $\text{Ind} \phi$ naturally appears if one wants to compare the spectrum $(\lambda_k(X))_{k \in \mathbb{N}}$ of the Laplace Beltrami operator Δ_X of X with the one of Δ_Y; for instance if $T^*X \setminus X$ is simply connected then the sequence $(\lambda_k(X) - \lambda_k - \text{Ind} \phi(Y))_{k \in \mathbb{N}}$ is bounded.

The goal of this paper is to provide a geometric formula for the index an elliptic Fourier Integral Operator Φ of order zero whose canonical relation is C_{ϕ} (we do not assume $\dim X \geq 3$).

Let us first fix some notation. Given a smooth manifold X, we will use T^*X to denote the cotangent bundle of X and \overline{B}^*X to denote the projective compactification of T^*X. We will use M to denote the the smooth manifold obtained by glueing at infinity \overline{B}^*X and \overline{B}^*Y with the help of the map

$$\phi' : (x, \xi) \rightarrow \phi(x, -\xi).$$

Let $S^0(T^*X)$ and $S^0(T^*Y)$ denote the algebras of asymptotic symbols of pseudodifferential operators of order at most zero on X and Y. Given an element $a \in S^0(T^*X)$, we denote by a_\hbar the symbol a scaled by \hbar in
the cotangent direction and by $\text{Op}(a)$ the pseudodifferential operator associated to a. Given a pseudodifferential operator A, we denote by $\sigma(A)$ its full symbol (for the precise definition see the next section).

The general strategy is as follows. We interpret conjugation by Φ as an isomorphism of the algebras of pseudodifferential operators on X and Y. Translated into terms of formal deformations of the cotangent bundles, this allows us to construct a formal deformation $A^h(M)$ of $C^\infty(M)$ which on T^*X and T^*Y represents the calculus of differential operators, while on the common cosphere at infinity represents the calculus of pseudodifferential operators. While the symplectic structures on T^*X and T^*Y do not glue together (so there is in general no almost complex structure on $B^*X \cup_\phi B^*Y$), there is a (noncanonical) symplectic Lie algebroid structure $(\mathcal{E}, [[\cdot, \cdot]], \omega)$ over M and $A^h(M)$ is a deformation associated to it in the sense of [8]. The usual traces on the algebras of smoothing operators on X and Y give rise to a trace τ_{can} on $A^h(M)$ such that $\text{ind} \Phi = \tau_{\text{can}}(1)$. An application of the general algebraic index theorem from [8] gives the local formula for the index.

The content of the paper is given below.

1. In the first section we recall the relation between the calculus of smoothing operators on X and a formal deformation of T^*X which is basically given by full symbol of a pseudodifferential operator.

2. $\mathcal{B}X$ carries a structure of symplectic Lie algebroid $(\mathcal{E}_X, [[\cdot, \cdot]], \omega)$ described in Section 2. The symbolic calculus of pseudodifferential operators gives rise to a formal deformation of the sphere at infinity of \mathcal{B}^*X which, together with the formal deformation of T^*X given above, gives rise to a formal deformation $A^h(X)$ of \mathcal{B}^*X associated to $(\mathcal{E}_X, [[\cdot, \cdot]], \omega)$.

3. Let us fix an almost unitary elliptic Fourier Integral Operator Φ whose canonical relation is given by the graph of ϕ^{-1}. In Section 4 we show how to glue together the deformations $A^h(X)$ and $A^h(Y)$ into a formal deformation $A^h(M)$ of M associated to a symplectic Lie algebroid structure $(\mathcal{E}, [[\cdot, \cdot]], \omega)$ on M. The construction is based on the following strengthening of the Egorov theorem (see Theorem [8]).

1. The map which to any $a \in S^0(T^*X)$ associates the asymptotic expansion at $h = 0$ of $(\sigma(\Phi \text{Op}(a_h)\Phi^*))_{h^{-1}}$ induces an algebra isomorphism

$$\tilde{\Phi} : S^0(T^*X) \to S^0(T^*Y)$$
2. For each $k \in \mathbb{N}^*$, there exists an \mathcal{E}_X-differential operator D_k on B^*X such that, for any $a \in S^0(T^*X)$, the following identity holds:

$$\tilde{\Phi}(a) = (a + \sum_{k \geq 1} \hbar^k D_k(a)) \circ \phi^{-1}.$$

Egorov theorem corresponds to the leading term in the above expansion.

The real symplectic vector bundle \mathcal{E} is isomorphic to TM (as a vector bundle over M) and hence TM is the realification of a complex vector bundle on M which will be denoted by \mathcal{E}_C.

4.

In Section 5 we identify the space traces on $\mathbb{A}^\hbar(M)$ and relate it to the traces on the algebras of smoothing and of pseudodifferential operators.

5.

In Section 6 we identify the index of the Fourier Integral Operator with the trace of 1 in the formal deformation.

The local index formula for Ind Φ follows from the algebraic index theorem of [8], the class θ_0 being the coefficient of \hbar^0 in the characteristic class θ (in [8], [3]) of the deformation.

The main result can be formulated as follows.

1. Let Φ be a Fourier Integral Operator and $\mathbb{A}^\hbar(M)$ the formal deformation of M associated to it as in Definition [8]. Then

$$\text{ind } \Phi = \int_M e^{\theta_0} \hat{A}(M),$$

where θ_0 denotes the characteristic class of the deformation of the Lie Algebroid $(\mathcal{E}, [\cdot, \cdot], \omega)$ given by $\mathbb{A}^\hbar(M)$.

2. Let ∇_X be a connection ∇_X on the tangent bundle $T(B^*X)$ and $\hat{A}(T^*X)$ an associated representative form of the \hat{A}-class of ∇_X. The symplectomorphism ϕ induces a connection $\phi^*(\nabla_X)$ on the tangent space of $B^*Y \setminus B^*(Y)$. Let ∇_Y denote its extension to a connection of $T(BY)$ and $\hat{A}(T^*Y)$ an associated representative differential form of the \hat{A}-class of ∇_Y. Then

$$\text{ind } \Phi = \int_{B^*(X)} e^{\theta_0} \hat{A}(T^*X) - \int_{B^*(Y)} e^{\theta_0} \hat{A}(T^*Y)$$

6.

The computation of the characteristic class of the deformation is given in the last section, where we simultaneously construct a deformation of M and the Fourier Integral Operator whose index is given
by the trace of the 1 in the deformed algebra. As the starting point we give a somewhat nonstandard definition of the characteristic class of a formal deformation which is more amenable to computations in the case of deformations associated to (twisted) differential or pseudodifferential operators.

As a corollary we get the following result.

1. There exists an almost unitary Fourier integral operator Φ_0 whose canonical relation is C_ϕ and such that:

$$\text{ind} \Phi_0 = \int_M \hat{A}(M)e^{\frac{i}{2}\varepsilon_1(\mathcal{E}_C)}$$

2. If the dimension of M is at least three, then

$$\text{ind}(\phi) = \int_M \hat{A}(M)e^{\frac{i}{2}\varepsilon_1(\mathcal{E}_C)}$$

(compare with [3], [10]).

In the case when $X = Y$ a straightforward Meyer-Vietoris type argument with the mapping torus of ϕ shows that our results recover those of Epstein and Melrose.

7.

Remark 1. The methods of this paper extend in a fairly straightforward manner to the case of a Fourier Integral Operator Φ between L^2 sections of vector bundles E and F of the same dimension on X and Y. In the case when both X and Y possess a metalinear structure, the corresponding index formula is given by the expression

$$\text{ind} \Phi = \int_{B^*(X)} \text{ch}(\mathcal{L})\hat{A}(T^*X) - \int_{B^*(Y)} \text{ch}(\mathcal{L})\hat{A}(T^*Y)$$

Here \mathcal{L} is the vector bundle over M obtained by glueing together pull backs (by the canonical projections π_X^* and π_Y^*) to the cotangent bundles of X (resp. Y) of the bundles $\Lambda^2(X) \otimes E$ and $\Lambda^2(Y) \otimes F$ with the help of the symbol of Φ.

Note that existence of an isomorphism of $\pi_X^*(\Lambda^2(X) \otimes E)$ and $\pi_Y^*(\Lambda^2(Y) \otimes F)$ over ϕ' is equivalent to existence of an elliptic Fourier Integral Operator from $L^2(X, E)$ to $L^2(Y, F)$.

Remark 2. It is easy to see that our local formula implies the following fact:

If ϕ extends as a symplectomorphism $T^*X \to T^*Y$ up to the zero section, then $\text{Ind} \Phi = 0$.
2. Symbolic calculus for \(\Psi DO' \)'s and formal deformations

2.1. Deformation of \(T^*X \). We will recall the pertinent facts from [9].

Let \(\chi \) be a smooth, non-negative function on \(X \times X \) satisfying the following conditions:

1. \(\chi(x, y) = \chi(y, x) \);
2. \(\chi \equiv 1 \) on an open set containing the diagonal in \(X \times X \).
3. For each \(x \in X \), the set \(D_x = \{ y \in X / (x, y) \in \text{supp } \chi \} \) is geodesically convex.

We denote by \(\text{Exp}_x \) the unique smooth inverse to the exponential map:

\[\text{Exp}_x : T_x X \to X \]

defined on \(D_x \) and such that \(\text{Exp}_x^{-1}(x) = 0 \).

Given \(x \in X, y \in D_x \), let \(z \) denote the midpoint of the unique geodesic joining \(x \) and \(y \) within \(D_x \), and let \(v \in T_z X \) be given by

\[\frac{v}{2} = \text{Exp}_x^{-1}(y) = -\text{Exp}_x^{-1}(x) \]

Now, denote by \(S^m(T^*X) \) the space of classical symbols of order \(m \) on \(X \), i.e., smooth functions \(\theta \) on \(T^*X \) satisfying estimates of the form:

\[\sup_{(x, \xi)} |\partial_x^\alpha \partial_\xi^\beta \theta(x, \xi)| \leq C_{\alpha,\beta} \left(1 + |\xi|^2 \right)^{m-|\beta|} \]

\(S^m(T^*X) \) is given the topology of (Frechet) topological vector space by the "best" \(C_{\alpha,\beta} \).

We will denote by \(S^{+\infty}(T^*X) = \bigcup_{m \in \mathbb{R}} S^m(T^*X) \) the set of all classical symbols on \(T^*X \).

With the above notation (9), the map:

\[\text{Op} : S^m(T^*X) \to \text{End}(C^\infty(X)) \]

given by

\[\text{Op}(\theta)(u)(x) = \int_{T_x^*X} d\xi \int dy \chi(x, y) e^{i\xi \cdot v} \theta(z, \xi) u(y) \]

defines a pseudo-differential operator. Conversely, if \(P \) is a pseudo-differential operator on \(X \) we define its complete symbol to be:

\[\sigma(P)(z, \xi) = P_y(\chi(x, y) e^{i\xi \cdot v})|_{x=y=z} \]

where \(z \) is the midpoint of the geodesic joining \(x \) and \(y \) and \(v \) satisfies (g). We observe that \(P - \text{Op}(\sigma(P)) \) is a smoothing operator whose Schwartz kernel vanishes to infinite order on the diagonal. Now, for a given \(\theta \in C^\infty(T^*X) \), we set: \(\theta_h(x, \xi) = \theta(x, h\xi) \).
Following (3), we endow the algebra
\[A^h(T^*X) = C^\infty(T^*X) \otimes_{\mathbb{C}} \mathbb{C}[[\hbar]] \]
with a star product \(\star_X \) by defining, for any symbols \(\theta^1, \theta^2, \in S^m(T^*X) \), \(\theta^1 \star_X \theta^2 \) to be the asymptotic expansion at \(\hbar = 0 \) of:
\[(3) \quad \sigma(\text{Op}(\theta^1_\hbar) \circ \text{Op}(\theta^2_\hbar)) \hbar^{-1} \]
One sees immediately that \(\star_X \) extends to \(A^h(T^*X) \)
Recall that there exists, unique up to normalization, a canonical trace on \((A^h(T^*X), \star_X) \), \(\text{Tr}^X_{\text{can}} \), given by:
\[\forall a \in S^{-\infty}(T^*X), \quad \text{Tr}^X_{\text{can}}(a) = \text{Tr}(\text{Op}(a_\hbar)) = \frac{1}{n!} \hbar^n \int_{T^*X} a(\omega^X)^n \in \mathbb{C}[\hbar^{-1}, \hbar] \]
(Proposition 2.5 (3) of [9]).

2.2. Lie algebroid structure and deformation quantization the projective completion \(\overline{B}^*X \). For any \(x \in X \), we set \(B^*_xX = \mathbb{R}_+ \oplus T^*_xX \setminus \{(0,0)\} \), and embed \(T^*_xX \) in \(\overline{B}^*_xX \) by sending \(\xi \) to the class of \(1 \oplus \xi \). We view \(B^*_xX \) as a compactification of \(T^*_xX \). Then we consider the fiber bundle \(\overline{B}^*X \) over \(X \) defined by \(\overline{B}^*X = \cup_{x \in X} B^*_xX \). Therefore \(\overline{B}^*X \) is a compactification of \(T^*X \) and a smooth compact manifold with boundary: \(\partial \overline{B}^*X = \overline{B}^*X \setminus T^*X \). Similarly one defines the bundle \(\overline{B}^*Y \) over \(Y \). We observe that the map from \(S^*X \) into \(\overline{B}^*X \) given by \(\xi \rightarrow 0 \oplus \xi \) defines an isomorphism between \(S^*X \) and \(\overline{B}^*X \setminus T^*X \). For any \(\xi = (x, \xi_x) \in T^*X \) we will define \(-\xi \) to be \((x, -\xi_x) \in T^*_xX \). Clearly, \(\phi \) induces a natural smooth isomorphism of manifolds with boundary:
\[\phi' : \overline{B}^*X \setminus X \mapsto \overline{B}^*Y \setminus Y \]
defined by
\[\phi'(\lambda \oplus \xi) = (\lambda \oplus \phi(-\xi)) \text{ if } \xi \in T^*X \setminus X, \quad \phi'(\lambda \oplus 0) = (\lambda \oplus 0). \]
By glueing \(\overline{B}^*X \) and \(\overline{B}^*Y \) along the boundary \(\overline{B}^*X \setminus T^*X \) with the help of \(\phi' \), we define the following smooth compact manifold \(M \):
\[(4) \quad M = \overline{B}^*X \cup_{\phi'} \overline{B}^*Y \]
Let \(\Pi_X : \overline{B}^*X \rightarrow X \) be the projection map. We denote by \(\Xi^X \) the set of smooth vectors fields of \(\overline{B}^*X \) which are tangent to all the submanifolds \(\Pi_X^{-1}(x) \cap (\overline{B}^*X \setminus T^*X), \ x \in X \). Let \((x, \xi) = (x_1, \ldots, x_n; \xi_1, \ldots, \xi_n) \) be a local chart of \(T^*X \) and \((\rho, \theta) \) be the polar coordinates: \(\rho = \]
\[\|\xi\|, \theta = \frac{\xi}{\|\xi\|}, \text{ where } \|\| \text{ denotes the Euclidean norm of } T^*X. \] Then a local chart of \(B^*X \) near \(B^*X \setminus T^*X \) is given by

\[(x_1, \ldots, x_n; t = \frac{1}{\rho}, \theta = (\theta_1, \ldots, \theta_{n-1})) \ t \geq 0, \ \theta \in S^{n-1} \]

(5)

In this local chart, \(\Xi^X \) is generated by the vector fields \(t \frac{\partial}{\partial x_j}, t \frac{\partial}{\partial t}, \frac{\partial}{\partial \theta_l} \), where \(1 \leq j \leq n \), \(1 \leq l \leq n-1 \). We will use several times the following obvious Lemma

Lemma 1. The vector fields \(\frac{\partial}{\partial \xi_j} (1 \leq j \leq n) \) belong to the \(C^\infty(\overline{B}^*X) \)-module \(t\Xi^X \) generated by \(t^2 \frac{\partial}{\partial \xi_j}, t \frac{\partial}{\partial \theta_l} \) \((1 \leq l \leq n - 1)\).

Moreover we observe that the set of classical symbols of order zero on \(T^*X \) is nothing else but \(C^\infty(\overline{B}^*X) \).

Before we continue, let us recall the definition of a symplectic Lie algebroid (see for instance [4], [8]).

Definition 1.

1) A symplectic Lie algebroid on \(M \) is a quadruple \((\mathcal{E}, \rho, [,], \omega)\) on \(M \), where \(\mathcal{E} \) is a smooth vector bundle on \(M \), \([,] \) is a Lie algebra structure on the sheaf of sections of \(\mathcal{E} \), \(\rho \) is a smooth map of vector bundles:

\[\rho : \mathcal{E} \to TM \]

such that the induced map:

\[\Gamma(\rho) : C^{+\infty}(M, \mathcal{E}) \to C^{+\infty}(M, TM) \]

is a Lie algebra homomorphism and, for any sections \(\sigma \) and \(\tau \) of \(\mathcal{E} \) and any smooth function \(f \) on \(M \), the following identity holds:

\[[\sigma, f\tau] = \rho(\sigma)(f)\cdot \tau + f[\sigma, \tau] \]

Lastly, \(\omega \) is a closed \(\mathcal{E}-\text{two form on } M \) such that the associated linear map:

\[C^{+\infty}(M, \mathcal{E}) \times C^{+\infty}(M, \mathcal{E}) \ni (U, V) \mapsto \omega(U, V) \in C^{+\infty}(M) \]

defines a symplectic structure on \(\mathcal{E} \).

2) The ring of \(\mathcal{E}-\text{differential operators is by definition the ring generated by smooth functions on } M \) and smooth sections of \(\mathcal{E} \).

3) We denote by \(\xi^*\Omega^* = C^{+\infty}(M, \Lambda \mathcal{E}^*) \) the set of smooth sections on \(M \) of the bundle of alternating multilinear forms on \(\mathcal{E} \).

We leave to the reader the easy proof of the following:

Proposition 1. For any \(p \in B^*X \), we set

\[\mathcal{E}_p^X = \frac{\Xi^X}{I_p \Xi^X} \]
where \(I_p \) is the set of smooth real-valued functions on \(\overline{B} X \) which vanish at \(p \). Then:

1) \((\mathcal{E}_p^X)_{p \in \overline{B} X} \) form a smooth vector bundle, denoted \(\mathcal{E}^X \), over \(\overline{B} X \) such that the set of smooth sections over \(\overline{B} X \) of \(\mathcal{E}^X \) is the same as \(\Xi^X \). If \(U, V \in \Xi^X \) then the Lie bracket \([U, V]\) also belongs to \(\Xi^X \).

2) The fundamental two-form \(\omega^X(=\sum_{j=1}^{n} d\xi_j \wedge dx_j) \) of \(T^*X \) induces a smooth form, still denoted \(\omega^X \), in \(C^\infty(\overline{B} X, \mathcal{E}^X \Omega^2) \). Moreover, \((\mathcal{E}^X, [\cdot, \cdot], \omega^X)\) defines a symplectic Lie algebroid over \(\overline{B} X \).

Proposition 2. The star product \(\star_X \) on \(T^*X \) extends to a star product, still denoted \(\star_X \), on \(\overline{B} X \) such that for any \(f, g \in C^\infty(\overline{B} X) \) we have:

\[
f \star_X g = fg + \sum_{n \geq 1} h^n A^{(n)}(f, g)\]

where the \(A^{(n)} \) are \(\mathcal{E}^X \)-bidifferential operators.

Proof. Let \((x, \xi) = (x_1, \ldots, x_n; \xi_1, \ldots, \xi_n)\) be a local chart of \(T^*X \). Then for any \(f, g \in C^\infty(\overline{B} X) \) and \((x, \xi)\) in the domain of this local chart we have:

\[
f \star_X g(x, \xi) = \sum_{\alpha, \beta} \frac{h^{\left|\alpha\right|}}{\alpha!} c_{\alpha, \beta}(x) D^\alpha_f(x, \xi) \frac{\partial^\beta}{\partial^\beta x} g(x, \xi)\]

then, using the local coordinates \((\xi)\) and Lemma \(\square\), one gets easily all the results of the proposition. \(\square\)

Proposition \(\square\) allows to formulate the following definition.

Definition 2.
1) A smooth real-vector bundle \(\mathcal{E}^Y \) over \(\overline{B} Y \) is defined by setting \(\mathcal{E}^Y_{|T^*Y} = T(T^*Y) \) and \(\mathcal{E}^Y_{|\overline{B} Y \setminus Y} = \phi^* (\mathcal{E}^X_{|\overline{B} X \setminus X}) \).

2) By glueing \(\mathcal{E}^X \) and \(\mathcal{E}^Y \) along \(\overline{B} X \setminus T^*X \) with the help of \(\phi^\prime \), one defines a smooth vector bundle \(\mathcal{E} \) over \(M \) which is isomorphic to \(TM \).

A smooth exact differential form \(\omega \in C^\infty(M, \mathcal{E} \Omega^2) \) is defined by setting \(\omega_{|T^*X} = \omega^X \), \(\omega_{|\overline{B} Y \setminus Y} = (\phi^\prime)^* (\omega^X_{|\overline{B} X \setminus X}) \) and \(\omega_{|T^*Y} = \omega^Y \) (where \(\omega^Y \) is the canonical two form of \(T^*Y \)).

3) The natural injection:

\[
C^\infty(M, \mathcal{E}) \rightarrow C^\infty(M, TM)\]

is induced by a bundle map \(\rho : \mathcal{E} \rightarrow TM \) as in Proposition \(\square\) and \((\mathcal{E}, [\cdot, \cdot], \omega)\) defines a symplectic Lie algebroid which will be denoted \((\mathcal{E}, [\cdot, \cdot], \omega)\) in the sequel.
3. Regularized Index formula for a Fourier Integral Operator

Let C_{ϕ} be the graph of ϕ^{-1} in $(T^*Y \setminus Y) \times (T^*X \setminus X)$ and $L_{C_{\phi}}$ be the associated Maslov bundle over C_{ϕ}. We fix $\Phi : L^2(X, \Omega^1_{\mathbb{Z}}) \to L^2(Y, \Omega^1_{\mathbb{Z}})$ an elliptic Fourier integral operator of order zero whose canonical relation is C_{ϕ} and whose principal symbol a is a unitary section of the bundle $\Omega^1_{\mathbb{Z}} \otimes L_{C_{\phi}} \to C_{\phi}$: this means that a is homogeneous of degree zero (i.e. constant on each ray) and that $a^2 \equiv 1$: see [11]. We can, and will, assume in the sequel that $\Phi^* \Phi \equiv \text{Id}$ and $\Phi^* \Phi = \text{Id}$ are smoothing. As observed in [11] Φ is Fredholm, with index defined by $\text{ind } \Phi = \dim \ker \Phi - \dim \text{coker } \Phi$. In order to give a formula "via regularization" for $\text{ind } \Phi$ we introduce the following algebra A which will have a "regularized" trace.

$$A = \{(A, B) \in \Psi^0(X, \Omega^1_{\mathbb{Z}}) \times \Psi^0(Y, \Omega^1_{\mathbb{Z}}) | A - \Phi^* B \Phi \text{ is smoothing} \}$$

We leave to the reader the easy proof of the following:

Proposition 3.

1) The map $\tau : A \to \mathbb{C}$ given by:

$$\forall (A, B) \in A, \tau(A, B) = \text{Tr}(A - \Phi^* B \Phi) - \text{Tr}(B(\text{Id} - \Phi \Phi^*))$$

is a trace

2) $\text{ind } \Phi = \tau(\text{Id}, \text{Id})$.

Remark 3. $\tau(A, B)$ is a "regularization" of $\text{Tr}A - \text{Tr}B$.

4. Algebraization of a Fourier Integral Operator

We are going to use the following (deformed quantized algebra), where the manifold Z is equal to X or Y:

$$\mathbb{B}^h(B^*Z) = \frac{C^\infty(B^*Z)}{C_0^\infty(B^*Z)} \otimes_{\mathbb{C}} \mathbb{C}[[\hbar]]$$

where $C_0^\infty(B^*Z)$ denotes the set of smooth functions which vanish to infinite order at $B^*Z \setminus T^*Z$. We observe that \star_Z induces a star-product, still denoted \star_Z, on $\mathbb{B}^h(B^*Z)$.

Theorem 1.

1) The map which to any $a \in S^0(T^*X)$ associates the asymptotic expansion at $\hbar = 0$ of $(\sigma(\Phi \text{Op}(a_{\hbar}) \Phi^*))_{\hbar^{-1}}$ induces an algebra isomorphism $\tilde{\Phi}$ from $(\mathbb{B}^h(B^*X), \star_X)$ onto $(\mathbb{B}^h(B^*Y), \star_Y)$.

2) For each \(k \in \mathbb{N}^* \), there exists an \(\mathcal{E} \)-differential operator \(D_k \) on \(B^*X \) such that for any \(a \in C^{+\infty}(B^*X) \) which is identically zero in a neighborhood of the zero section, we have the following identity:

\[
\tilde{\Phi}(a) = (a + \sum_{k \geq 1} \hbar^k D_k(a)) \circ \phi^{-1}
\]

in the vector space \(\mathbb{B}^h(B^*Y) \)

Before proving this theorem we state the next proposition which is an easy consequence of Proposition 2 and Theorem 1

Proposition 4. The star product \(\star_Y \) on \(T^*Y \) extends to a star product, still denoted \(\star_Y \), on \(B^*Y \) such that for any \(f, g \in C^\infty(B^*Y) \) we have:

\[
f \star_Y g = fg + \sum_{n \geq 1} \hbar^n B^{(n)}(f, g)
\]

where the \(B^{(n)} \) are \(\mathcal{E}^Y \)-bidifferential operators.

Proof. Let us first assume part 2). Then, using the results of Section 2.1 and the fact that \(\Phi \Phi^* - \text{Id} \) and \(\Phi^* \Phi - \text{Id} \) are smoothing, one proves easily that \(\tilde{\Phi} \) is an isomorphism whose inverse is given by:

\[
b \in S^0(T^*Y) \rightarrow (\sigma(\Phi^* \text{Op}(b\hbar)\Phi))_{\hbar^{-1}}
\]

Now let us prove part 2). Following [5] page 26, we recall that the Schwartz kernel of \(\Phi \) is the finite sum of a smooth function and of oscillatory integrals (supported in small coordinates charts) of the following type:

\[
K(y, x) = \int_{\mathbb{R}^n} e^{i(\varphi(y, \eta) - x \cdot \eta)} b(y, \eta) d\eta
\]

where \(b(y, \eta) \in S^0(T^*Y) \) vanishes for \(||\eta|| \leq 1 \), \(\varphi(y, \eta) \) is an homogeneous phase function parametrizing locally the graph \(C_\phi \) of \(\phi^{-1} \) which satisfies \(\det \frac{\partial^2 \varphi}{\partial y \partial \eta} \neq 0 \) so that locally we have:

\[
\{(y, \varphi'_y(y, \eta), \varphi'_\eta(y, \eta), \eta) \} = C_\phi
\]

and \(\phi^{-1}(y, \varphi'_y(y, \eta), (\varphi'_\eta(y, \eta))) = (\varphi'_y(y, \eta), \eta) \). Notice moreover that \((y, \eta) \rightarrow (y, \varphi'_y(y, \eta)) \) and \((y, \eta) \rightarrow (\varphi'_\eta(y, \eta), \eta) \) are local diffeomorphisms.

With these notations, the Schwartz kernel of \(\Phi^* \) is the finite sum of a smooth function and of oscillatory integrals (supported in small coordinates charts) of the following type:

\[
K^*(x, y) = \int_{\mathbb{R}^n} e^{-i(\varphi(y, \eta) - x \cdot \eta)} b_1(y, \eta) d\eta
\]
Let \(a \in C^\infty(B^\infty X) \) which is identically zero in a neighborhood of the zero section, in order to analyze \(\Phi \circ \text{Op}(a_\hbar) \) it is enough to study the operator \(K \circ \text{Op}(a_\hbar) \) where \(K \) denotes the operator whose Schwartz kernel is given by (5).

The Schwartz kernel of \(K \circ \text{Op}(a_\hbar) \) is given by:

\[
T(y, z) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(\varphi(y,\eta) - x \cdot \eta)} b(y, \eta) a(x, \hbar \xi) e^{i(x-z) \cdot \xi} d\xi dx d\eta
\]

In this integral we replace \(a(x, \hbar \xi) \) by its Taylor expansion:

\[
\sum_{\alpha \in \mathbb{N}^n} \frac{1}{\alpha!} \partial_x^\alpha a(z, \hbar \xi)(x - z)^\alpha
\]

Using the following two identities

\[
(x - z)^\alpha e^{i(x-z) \cdot \xi} = D^\alpha_x (e^{i(x-z) \cdot \xi})
\]

\[
\int_{\mathbb{R}^n} e^{ix \cdot (\xi - \eta)} dx = (2\pi)^n \delta_{\xi=\eta}
\]

and integrating by parts we see that \(T(y, z) \) is the sum of a smooth function and of

\[
H(y, z) = \int \int \int e^{i(\varphi(y,\eta) - x \cdot \eta)} b(y, \eta) \sum_{\alpha \in \mathbb{N}^n} \frac{1}{\alpha!} (-\hbar)^{\alpha} D_x^\alpha a(z, \hbar \xi) e^{i(x-z) \cdot \xi} d\xi dx d\eta
\]

\[
= (2\pi)^n \int_{\mathbb{R}^n} e^{i(\varphi(y,\eta) - z \cdot \eta)} b(y, \eta) \sum_{\alpha \in \mathbb{N}^n} \frac{1}{\alpha!} (-\hbar)^{\alpha} D_x^\alpha a(z, \hbar \eta) d\eta
\]

Now for \(\alpha \in \mathbb{N}^n \) we set

\[
c_\alpha(z; \hbar \eta) = \partial_x^\alpha D_x^\alpha a(z, \hbar \eta)
\]

and we consider

\[
H_\alpha(y, z) = \int \int e^{i(\varphi(y,\eta) - z \cdot \eta)} b(y, \eta) c_\alpha(z, \hbar \eta) d\eta
\]

If we replace \(c_\alpha(z, \hbar \eta) \) by its Taylor expansion

\[
\sum_{\beta \in \mathbb{N}^n} \frac{1}{\beta!} \partial_x^\beta c_\alpha(\varphi'_\eta; \hbar \eta)(z - \varphi'_\eta)^\beta
\]

then, using integrations by parts as above, it follows easily that \(H_\alpha(y, z) \) is the sum of a smooth function and of

\[
\int_{\mathbb{R}^n} e^{i(\varphi(y,\eta) - z \cdot \eta)} \sum_{\beta \in \mathbb{N}^n} \frac{1}{\beta!} D_\eta^\beta \left(b(y, \eta) \partial_x^\beta c_\alpha(\varphi'_\eta; \hbar \eta) \right) d\eta
\]
We observe that if we apply the Leibniz rule for the term $D_{\eta}^{\beta}(....)$ in the previous integral then the following differential operators will appear
\[(8)\]
\[D_{\eta}^{\beta-\gamma}b(y, \eta)D_{\eta}^{\gamma-\gamma'}(\varphi'_{\eta})(D_{\eta}^{\gamma'})^{\beta}_{\partial_{\eta}^{\beta}}\]
It is clear from Lemma 1 that, expressed in the coordinates $(\varphi'_{\eta}(y, \eta), \eta)$, these differential operators (8) are $E-$differential operators. Therefore we have just proved that $T(y, z)$ is the sum of a smooth function and of:
\[\int_{\mathbb{R}^{n}} e^{i(\varphi(y, \eta)-z, \eta)} \sum_{k \in \mathbb{N}} \hbar^{k} P_{k}(a)(\varphi'_{\eta}(y, \eta), \hbar \eta) \eta d\eta\]
where the P_{k} are $E-$differential operators.

Now we recall that the Schwartz kernel of Φ^{*} is the finite sum of a smooth function and of terms of the type (8). So in order to analyze $\Phi \circ \text{Op}(a_{\hbar}) \circ \Phi^{*}$ it is enough to study the operator $K \circ \text{Op}(a_{\hbar}) \circ K^{*}$ whose Schwartz kernel is the finite sum of a smooth function and of integrals of the type:
\[\int \int \int e^{i(\varphi(y, \eta)-x, \eta)} e^{-i(\varphi(y', \eta')-x, \eta')} P_{k}(a)(\varphi'_{\eta}(y, \eta), \hbar \eta) \int d\eta \eta' d\eta\]
\[(9)\]
\[= (2\pi)^{n} \int_{\mathbb{R}^{n}} e^{i(\varphi(y, \eta)-\varphi(y', \eta))} P_{k}(a)(\varphi'_{\eta}(y, \eta), \hbar \eta) \int \eta d\eta \eta' d\eta\]
Moreover we can write $\varphi(y, \eta) - \varphi(y', \eta) = (y - y').\hat{\eta}(y, y', \eta)$ where $\hat{\eta}(y, y, \eta) = \varphi'_{\eta}(y, \eta)$ and we can assume (at the expense of shrinking the local coordinates charts) that $\eta \rightarrow \hat{\eta}(y, y', \eta)$ is a local diffeomorphism whose inverse is denoted $\hat{\eta} \rightarrow \eta(y, y', \hat{\eta})$. With these notations, we set:
\[A_{k}(y, y', \hbar, \hat{\eta}) = P_{k}(a)(\varphi'_{\eta}(y, \eta), \hbar \eta) \eta \eta' d\eta\]
Then a change of variable formula allows us to see that the oscillatory integral (9) is equal to
\[(2\pi)^{n} \int_{\mathbb{R}^{n}} e^{i(y-y') \cdot \hat{\eta}} A_{k}(y, y', \hbar, \hat{\eta}) \left| \frac{D\eta}{D\hat{\eta}} \right| d\hat{\eta}\]
We observe that, expressed in the coordinates $(\varphi'_{\eta}(y, \eta), \eta)$, the vector fields $\partial_{\eta}(\varphi'_{\eta})\partial_{\eta}$ are $E-$differential operators. Therefore one proves easily the assertion of Part 2) of the Theorem by replacing $A_{k}(y, y', \hbar, \hat{\eta})$ by its Taylor expansion
\[\sum_{\beta \in \mathbb{N}^{n}} \frac{1}{\beta!} \partial_{y}^{\beta} A_{k}(y, y, \hbar, \hat{\eta})|_{y=y'} (y' - y)^{\beta}\]
and using, as before, integration by parts.

\[\square\]
5. THE FORMAL DEFORMATION AND TRACES ON $\mathcal{B}^r X \cup_\phi \mathcal{B}^r Y$ AND
REGULARIZED TRACES ON ΨDO’S

Recall first that $C^+\infty(M)$ is exactly the set of functions $(f, g) \in C^+\infty(\mathcal{B}^r X) \times C^+\infty(\mathcal{B}^r Y)$ such that $f - g \circ \phi'$ vanish of infinite order at the boundary of $\mathcal{B}^r X$.

We are going to use the \star-products denoted \star_X, \star_Y on $\mathcal{B}^r X$ and $\mathcal{B}^r Y$ defined in Propositions 2 and 4. We set $\mathbb{A}^h(\mathcal{B}^r X) = C^+\infty(\mathcal{B}^r X) \otimes \mathbb{C}[[\hbar]]$ and $\mathbb{A}^h(\mathcal{B}^r Y) = C^+\infty(\mathcal{B}^r Y) \otimes \mathbb{C}[[\hbar]]$.

Let $\mathbb{A}^h(\mathcal{M})$ be the vector space given by

$$\{(a, b) \in \mathbb{A}^h(\mathcal{B}^r X) \times \mathbb{A}^h(\mathcal{B}^r Y) \mid \tilde{\Phi}(\bar{a}) = \bar{b}\}$$

where \bar{a} (resp. \bar{b}) denotes an element of $\mathbb{B}^h(\mathcal{B}^r X)$ (resp. $\mathbb{B}^h(\mathcal{B}^r Y)$) induced by a (resp. b). Theorem 1 shows that $\mathbb{A}^h(\mathcal{M})$ is an algebra with respect to the diagonal product: (\star_X, \star_Y). In particular, pairs of the form $(\sigma(\Phi^*\Phi), \sigma(\Phi\Phi^*))$ belong to $\mathbb{A}^h(\mathcal{M})$.

In the statement of the next proposition we will use the notations of Theorem 1.

Proposition 5.

1) Let $\chi \in C^+\infty(T^*X, [0, 1])$ be such that $\chi(x, \xi) = 0$ for $||\xi|| \leq 1/2$ and $\chi(x, \xi) = 1$ for $||\xi|| \geq 1$. For any $f \in C^+\infty(\mathcal{B}^r X)$ we have :

$$\tilde{\Phi}(\chi f) - (\chi f) \circ \phi^{-1} \in h\mathbb{B}^h(\mathcal{B}^r Y)$$

2) For each $b \in C^+\infty(\mathcal{B}^r Y)$ one defines $b^- \in C^+\infty(\mathcal{B}^r Y)$ by setting $b^-(\eta) = b(-\eta)$ for any $\eta \in \mathcal{B}^r Y$. The following formula:

$$\forall (a, b) \in \mathbb{A}^h(\mathcal{M}), \mathcal{U}(a, b) = (a + \sum_{k \geq 1} \hbar^k D_k(a), b^-) \in C^+\infty(\mathcal{M}) \otimes \mathbb{C}[[\hbar]]$$

defines a $\mathbb{C}[[\hbar]]$-linear isomorphism \mathcal{U} from $\mathbb{A}^h(\mathcal{M})$ to $C^+\infty(\mathcal{M}) \otimes \mathbb{C}[[\hbar]]$.

3) The product $\mathcal{U}(\star_X, \star_Y)$ defines an \mathcal{E}-deformation of \mathcal{M} (or a star product) associated to the symplectic Lie algebroid $(\mathcal{E}, [,], \omega)$ (see [8] section 3.3).

Proof. Parts 1) and 2) are left to the reader. Part 3) is an easy consequence of part 2) and of Theorem 1 2).

Definition 3.

$\mathbb{A}^h(\mathcal{M})$ denotes the formal deformation of \mathcal{M} associated to the symplectic Lie algebroid $(\mathcal{E}, [,], \omega)$ constructed in the proposition 5.

The linear functional

$$\tau_{\text{can}} : \mathbb{A}^h(\mathcal{M}) \rightarrow \mathbb{C}[h^{-1}, \hbar]$$
is given by

\[\forall (a, b) \in A^h(M), \tau_{\text{can}}(a, b) = \begin{cases} \text{asymptotic expansion at } h = 0 \text{ of } \tau \mapsto \tau(\text{Op}(a_h), \text{Op}(b_h)) \end{cases} \]

(10)

where \(\tau \) is the trace defined in Proposition 3. It follows immediately from the definition that \(\tau_{\text{can}} \) is a trace.

Computation of \(\tau \).

Since the space of traces on \(A^h(M) \) may be very big we introduce the following algebra:

\[D^h(M) = A^h(M) \left[(\chi \| \xi \|, (\chi \| \xi \| + \sum_{k \geq 1} h^k D_k(\chi \| \xi \|)) \circ \phi^{-1} \right] \]

Another way of describing \(D^h(M) \) is given by glueing from \(\tilde{\phi} : A^h(B^* X)[\chi \| \xi \|] \to A^h(B^* Y)[\chi \| \xi \|] \)

where \(\chi \) is as in previous Proposition. It is easily seen that \(\tau_{\text{can}} \) defines, by the same formula as (10), a trace on \(D^h(M) \).

Next Proposition describes the space of traces on \(D^h(M) \).

Proposition 6. The space of traces with values in \(\mathbb{C}[h^{-1}, h] \) on the algebra \(D^h(M) \) is two dimensional over \(\mathbb{C}[h^{-1}, h] \). A basis is given by \((\tau_{\text{can}}, \tau_1) \) where for any \((a, b) \in D^h(M) \) \(\tau_1(a, b) = \text{Res}_W(a) \). Here \(\text{Res}_W \) denotes Wodzicki’s noncommutative residue.

Proof. For \(Z = X \) or \(Y \) we set:

\[C_0^\infty(B^* Z) \otimes \mathbb{C}[[h]] = A^h_0(T^* Z) \]

where \(C_0^\infty(B^* Z) \) denotes the set of smooth functions which vanish of infinite order at \(B^* Z \setminus T^* Z \). Then we have the following exact sequence:

\[0 \to A^h_0(T^* X) \oplus A^h_0(T^* Y) \to D^h(M) \to \mathcal{T}(M) \to 0 \]

of \(\mathbb{C}[[h]] \)-algebras. Here \(\mathcal{T}(M) \) denotes the induced formal \(\mathcal{E} \)-deformation of the sphere at infinity. A direct construction of this deformation may be described as follows. Let \(P^i \) denote the space of pseudodifferential operators on, say, \(X \) of order \(\leq i \) modulo the smoothing operators. Then the space of doubly infinite sequences

\[\{P_i\}_{i \in \mathbb{Z}}, P_i \in P^i, \text{ there exists } i_0, P_i \in P^{i_0} \text{ for } i \text{ large} \]

is a flat module over \(\mathbb{C}[[h]] \), where the multiplication by \(h \) acts as the right translation. If we endow it with the product

\[\{P_i\}, \{Q_i\} = \{ \sum_{i+j=n} P_i Q_j \}_{n} \]
it is easily seen to be isomorphic to $\mathcal{T}(M)$. Any trace τ on $\mathcal{T}(M)$ is given by a sequence of \mathbb{C}-linear, $\mathbb{C}[[\hbar]]$-valued functionals τ_n on P^n such that

$$\tau(\{P_i\}) = \sum \tau_i(P_i).$$

The \hbar-linearity of τ implies that $\tau_{i+1} = \hbar \tau_i$ and the trace condition on τ implies that each τ_i is a trace on the algebra of pseudodifferential operators modulo the smoothing operators. Recall that, on this latter algebra, the Wodzicki residue res is the unique trace up to multiplicative constant. Thus τ is, up to multiplicative constant, uniquely determined by $\tau_n = \text{res}$, and hence the space of traces on $\mathcal{T}(M)$ is one-dimensional.

We recall that $A^0_\hbar(T^* X)$ is H-unital (in the sense of Wodzicki, see [13]), so we have the following long exact sequence in cyclic cohomology:

$$0 \to HC^0(\mathcal{T}(M)) \to HC^0(D^\hbar(M)) \to HC^0(A^0_\hbar(T^* X) \oplus A^0_\hbar(T^* Y)) \to HC^1(\mathcal{T}(M)) \to \ldots$$

From Section 2.1 we recall that the space of $\mathbb{C}[[\hbar]]$-linear traces (with values in $\mathbb{C}[\hbar^{-1}, \hbar]]$) on $A^0_\hbar(T^* X)$ is one dimensional and generated by Tr_{\can}^X. By above, $HC^0(\mathcal{T}(M))$ is one-dimensional. The connecting map:

$$\delta : HC^0(A^0_\hbar(T^* X) \oplus A^0_\hbar(T^* Y)) \to HC^1(\mathcal{T}(M))$$

is given by taking a trace on $A^0_\hbar(T^* X) \oplus A^0_\hbar(T^* Y)$, extending it to a linear functional on $D^\hbar(M)$ and taking its Hochschild boundary. In particular, it is not zero (this is equivalent to existence of a pseudodifferential operator with nonzero index!). This implies that $HC^0(D^\hbar(M))$ is either one or two dimensional. Since, with the notations of the Proposition, τ_{\can}, τ_1 are two linearly independent elements of the vector space of traces on $D^\hbar(M)$, the rest of the statement of above Proposition follows.

6. The algebraic index theorem for the Lie algebroid \mathcal{E}

The following Theorem is proved in [8] and is an extension to the symplectic Lie algebroid $(\mathcal{E}, [\cdot, \cdot], \omega)$ of the Riemann Roch theorem (on symplectic manifolds) for periodic cochains of [1], [7].

Theorem 2. The following diagram is commutative:

$$\begin{array}{ccc}
CC^*_\per(A^\hbar(M)) & \overset{\sigma}{\longrightarrow} & CC^*_\per(C^\infty(M)) \\
\mu^h \downarrow & & \downarrow \mu_{\per}(A(M) \cup \theta^h) \\
(\mathcal{E}\Omega^{2n-*}(M)[\hbar^{-1}, \hbar]], d) & & (\mathcal{E}\Omega^{2n-*}(M)[\hbar^{-1}, \hbar]], d)
\end{array}$$
where σ is the specialization map at $h = 0$, μ is the Hochschild-Kostant-Rosenberg map, μ^h is the trace density map defined in [7] and $\theta = \frac{1}{\sqrt{-1}} \omega + \sum_{k \geq 0} \hbar^k \theta_k \in \mathcal{E} H^2(M, \mathbb{C}[[\hbar]])$ is the characteristic class of the deformation of the symplectic Lie algebroid $(\mathcal{E}, [\cdot, \cdot], \omega)$ ([8]).

The natural injection $A^h(M) \to D^h(M)$ induces a natural map:

$$CC^*_\text{per}(A^h(M)) \to CC^*_\text{per}(D^h(M))$$

Since the traces τ can and τ_1 of Proposition 6, and the trace density map μ^h extend to $CC^*_\text{per}(D^h(M))$, they can be identified using the following result.

Proposition 7.
1) The \mathbb{C}-vector space $\mathcal{E} H^{2n}(M, \mathbb{C})$ is two-dimensional. The vector space of \mathbb{C}-linear forms on $\mathcal{E} \Omega^{2n}(M)$ which vanish on the range of the \mathcal{E}-exterior derivative $\mathcal{E} d$ admits a unique linear basis $(\text{reg} \int, \int_1)$, characterized by the following properties

For any $(\alpha, \beta) \in \mathcal{E} \Omega^{2n}(M)$ such that α (resp. β) is zero in a neighborhood of the boundary of $\overline{B} X$ (resp. $\overline{B} Y$)

$$\text{reg} \int (\alpha, \beta) = \int_{T^* X} \alpha - \int_{T^* Y} \beta, \quad \int_1 (\alpha, \beta) = 0.$$

Moreover $\int_1 \circ \mu^h = \text{Res}_W$.

2) There exists a constant C such that

$$\tau \text{can} = \text{reg} \int \circ \mu^h + C \int_1 \circ \mu^h$$

Moreover $\int_1 \circ \mu^h(1, 1) = 0$ and for any $(a, b) \in D^h(M)$ such that a is zero in a neighborhood of the boundary of $\overline{B} X$, $\int_1 \circ \mu^h(a, b) = 0$.

Proof. 1) A standard Mayer-Vietoris sequence argument shows that $\mathcal{E} H^{2n}(M, \mathbb{C})$ is indeed two dimensional. The fact that $(\text{reg} \int, \int_1)$ defines a basis is left to the reader.

2) This is an easy consequence from part 1) and of the properties (see [4], [5]) of the trace density map μ^h.

7. Local formula for the index of a Fourier Integral Operator

Theorem 3.

Let Φ be a Fourier Integral Operator and $A^h(M)$ the formal deformation of M associated to it as in Definition [3]. Then

$$\text{ind} \Phi = \int_M e^{\theta_0} \hat{A}(M),$$
where θ_0 denotes the characteristic class of the deformation of the Lie Algebroid $(\mathcal{E}, [\cdot, \cdot], \omega)$ given by $\mathbb{A}^h(M)$.

Let ∇_X be a connection ∇_X on the tangent bundle $T(B^*X)$ and $\hat{A}(T^*X)$ an associated representative form of the \hat{A}-class of ∇_X. The symplectomorphism ϕ induces a connection $\phi^*(\nabla_X)$ on the tangent space of $B^*Y \setminus B^*(Y)$. Let ∇_Y denote its extension to a connection of $T(B^*Y)$ and $\hat{A}(T^*Y)$ an associated representative differential form of the \hat{A}-class of ∇_Y. Then

$$\text{ind } \Phi = \int_{B^*X} e^{\theta_0} \hat{A}(T^*X) - \int_{B^*Y} e^{\theta_0} \hat{A}(T^*Y)$$

Proof. One obtain this formula by first applying Proposition 3, Theorem 2 and Proposition 7 and then by letting $h \to 0^+$. As we will see below, the involved characteristic classes of vector bundles on M are in fact standard de Rham cohomology classes and hence the regularized integral coincides with the orientation class of M. □

The previous formula shows that if ϕ extends as a symplectomorphism $T^*X \to T^*Y$ up to the zero section then $\text{ind } \Phi = 0$.

For a deformation associated with a Fourier Integral Operator (as in Proposition 5) the characteristic class θ of Theorem 2 is in fact of the form

$$\theta = \frac{1}{\sqrt{-1}h} \omega + \theta_0$$

where $\theta_0 \in H^2(M, \mathbb{C})$ is a closed differential form (not only an \mathcal{E}-differential form). In order to do this and to identify the relevant characteristic class we will give below a slightly nonstandard description of a formal deformation.

7.1. General construction of the characteristic class of a formal deformation.

Let \mathbb{A}^h denote the Weyl algebra of the symplectic vector space \mathbb{R}^{2n} with the standard symplectic structure, i.e. the algebra generated by the vectors $\hat{x}_l, \hat{\xi}_l$ $(1 \leq l \leq n)$ satisfying the relations $[\hat{\xi}_k, \hat{x}_l] = 1$.

The algebra \mathbb{A}^h is completed in the topology associated to the ideal generated by $\{\hat{x}_l, \hat{\xi}_l, h; 1 \leq l \leq n\}$ and has the grading induced by

$$\deg \hat{x}_l = \deg \hat{\xi}_l = 1, \ \deg \ h = 2.$$

The corresponding Lie algebra $\frac{1}{h} \mathbb{A}^h$ will be denoted by \mathfrak{g}. We set:

$$\mathfrak{g} = \text{Der } (\mathbb{A}^h) = \mathfrak{g}/\text{center}$$

and

$$G = \text{Aut}(\mathbb{A}^h) = \exp(\mathfrak{g}_{\geq 0})$$
We set
\[\tilde{G} = \left\{ g \in \frac{1}{\hbar} \mathbb{A}^h \mid g \in \mathfrak{sp}(2n, \mathbb{R}) \mod \mathfrak{g}_{\geq 1} \right\} \]
and will endow it with the group structure coming from the exponential map. Note that \(\tilde{G} \) is an extension of \(G \) associated to the (Lie algebra) central extension \(\tilde{g} \) of \(g \).

We endow the bundle \(\mathbb{R}^{2n} \times \mathbb{A}^h \) with the obvious fiber-wise action of \(\tilde{G} \) and with the \(\tilde{g} \)-valued (Fedosov) connection
\[\tilde{\nabla}^0 = \sum_{l=1}^{n} \left(d\xi_l (\partial_{\xi_l} - \frac{1}{\sqrt{-1}\hbar} \hat{x}_l) + dx_l (\partial_{x_l} + \frac{1}{\sqrt{-1}\hbar} \hat{\xi}_l) \right). \]

Let us recall (see Section 2.2) that a local chart of \(\mathbb{B}^* \mathbb{R}^n \) near \(\mathbb{B}^* \mathbb{R}^n \setminus T^* \mathbb{R}^n \) is given by:
\[(x_1, \ldots, x_n; t = \frac{1}{||\xi||}, \theta = (\theta_1, \ldots, \theta_{n-1}) \mid t \geq 0, \theta \in S^{n-1}) \]

By using the local coordinates (11) one checks easily that \(\tilde{\nabla}^0 \) extends as an \(\mathcal{E}^{\mathbb{R}^n} \)-connection, still denoted \(\tilde{\nabla}^0 \), of \(\mathbb{B}^* \mathbb{R}^n \times \mathbb{A}^h \).

The description given below of a formal deformation of a symplectic Lie algebroid structure on \(M \) is just the representation of the Fedosov construction in terms of the bundle of jets on \(M \) with the fiber-wise product structure induced by the *-product (which is isomorphic to Weyl bundle).

Local description of the characteristic class \(\theta \) of a formal deformation.

The deformation is described by a local (Darboux) cover \(\{U_i\}_{i \in I} \) of \((M, \omega) \), a collection of functions \(\{g_{i,j} : U_i \cap U_j \rightarrow \tilde{G}\} \) and a collection of \(\tilde{g} \)-valued \(\mathcal{E} \)-connections \(\tilde{\nabla}_i \) on \(U_i \times \mathbb{A}^h \) which, when expressed in terms of local Darboux coordinates \((x_1, \ldots, x_n, \xi_1, \ldots, \xi_n) \) (resp. (11)) if \(U_i \) does not meet (resp meets) the boundary at infinity, are equal to \(\tilde{\nabla}^0 \) modulo \(\tilde{g}_{\geq 1} \) and so that the three following conditions hold.

1) The cocycle condition:
\[g_{i,j}g_{j,i} = 1 \quad \text{and} \quad g_{i,j}g_{j,k} = g_{i,k} \quad \text{on} \quad U_i \cap U_j \cap U_k \]

In particular \(\{g_{i,j} : U_i \cap U_j \rightarrow \tilde{G}\} \) define a smooth bundle \(\mathcal{W} \) of algebras over \(M \) with fiber isomorphic to \(\mathbb{A}^h \) and the structure group \(\tilde{G} \).

2) The local connections \(\tilde{\nabla}_i \) define a \(\tilde{g} \)-valued connection \(\tilde{\nabla} \) on the bundle \(\mathcal{W} \), i.e.:
\[g_{i,j} \tilde{\nabla}_j = \tilde{\nabla}_i g_{i,j} \]
3) The induced g-valued connection ∇ on the bundle W is flat, i.e. $\theta = \tilde{\nabla}^2$ is a globally defined differential form on M with values in the center of \tilde{g}, necessarily of the form

$$\frac{1}{\sqrt{-1}\hbar}\omega + \theta_0 \quad \text{where } \theta_0 \in \Omega^2(M, \mathbb{C}[[\hbar]]).$$

The algebra of ∇-flat sections of W is a formal deformation of (M, ω) whose characteristic class is θ.

7.2. Local canonical liftings. We endow \mathbb{R}^{2n} with its canonical symplectic structure $\omega = \sum_{i=1}^n d\xi_i \wedge dx_i$. Given any smooth, $\mathbb{C}[[\hbar]]$-valued function H on \mathbb{R}^{2n}, we set

$$H_0 = H(x, \xi)|_{\hbar=0}, \quad H_1 = \sum_{i=1}^n (\hat{x}_i \partial_{x_i} H_0 + \hat{\xi}_i \partial_{\xi_i} H_0)$$

and

$$\tilde{H} = \sum_{\alpha, \beta} \frac{\hat{x}^\alpha \hat{\xi}^\beta}{\alpha! \beta!} \partial_x^\alpha \partial_{\xi}^\beta H.$$

We will associate to H the following \tilde{g}-lift of the Lie derivative $\mathcal{L}_{\{H, \cdot\}}$:

$$\mathcal{D}_H = \mathcal{L}_{\{H, \cdot\}} + \frac{1}{\hbar}(\tilde{H} - H_0 - H_1 + \frac{1}{2}\hbar \sum_{i=1}^n \partial^2_{x_i, \xi_i} H_0).$$

We can think of it as an element of the Lie algebra of the semidirect product of $C^\infty(\mathbb{R}^{2n}, \tilde{G})$ by the pseudogroup of local diffeomorphisms of \mathbb{R}^{2n}. The \mathcal{D}_H’s form a Lie algebra, in fact

$$[\mathcal{D}_H, \mathcal{D}_K] = \mathcal{D}_{\frac{1}{\hbar}(H*K - K*H)},$$

and they satisfy

$$[\mathcal{D}_H, \tilde{\nabla}^0] = -\frac{1}{2}d(\sum_{i=1}^n \partial^2_{x_i, \xi_i} H_0).$$

We will also have an occasion to use

$$\mathcal{D}^0_H = \mathcal{L}_{\{H, \cdot\}} + \frac{1}{\hbar}(\tilde{H} - H_0 - H_1),$$

which commutes with $\tilde{\nabla}^0$.
7.3. **The cotangent bundle case.** The deformation of T^*X associated to the sheaf of differential operators on X can be now described as follows.

Locally on a coordinate domain $U \subset X$ we use coordinates on U to give an explicit symplectomorphism

$$T^*U \to \mathbb{R}^{2n}$$

and use Weyl deformation of \mathbb{R}^{2n} to construct the deformation of T^*U. This amounts to the choice of a $(\tilde{g}\text{-valued})$ connection given in our local coordinates (x_1, \ldots, x_n) on U and the induced local coordinates $(x_i, \xi_i)_{i=1,\ldots,n}$ on $T^*U \simeq U \times \mathbb{R}^n$ by

$$\tilde{\nabla}^0 = d + \frac{1}{\hbar} \sum_{i=1}^n (dx_i \hat{\xi}_i - d\xi_i \hat{x}_i).$$

The infinitesimal change of coordinates on U is given by a vector field of the form $\sum_{i=1}^n X_i \partial_{x_i}$ and the associated infinitesimal symplectomorphism of T^*U is given by the Hamiltonian vector field $\{ \sum_{i=1}^n X_i \xi_i, \cdot \}$.

It is immediate to see that the map

$$\sum_i X_i \partial_{x_i} \mapsto \mathcal{D}_{\sum_i X_i \xi_i}$$

is the Lie algebra homomorphism.

The associated local diffeomorphisms (coordinate changes) $\exp \sum_i X_i \partial_{x_i}$ lift to a local isomorphisms of the bundle $T^*U \times \mathbb{A}^\hbar$ given by $\exp \mathcal{D}_{\sum_i X_i \xi_i}$.

Given a local coordinate cover $\{U_i\}_{i \in I}$ of X it is now immediate to construct the associated G-valued cocycle $\{g_{ij}\}$ glueing the bundles together. Note that, since \mathcal{D}'s do not commute with the connection $\tilde{\nabla}^0$, the corresponding collection of connections

$$\tilde{\nabla}_i = \tilde{\nabla}^0 \text{ in i’th coordinate system on } T^*U_i$$

do not glue together. But it is not difficult to check that

$$g_{ij} \tilde{\nabla}_i g_{ji} = \frac{1}{2} d \log \det Dg_{ij},$$

where Dg_{ij} is the induced action of g_{ij} on the tangent bundle. By trivializing the cocycle $\frac{1}{2} d \log \det Dg_{ij}$ in $\mathcal{C}^1(X, \Omega^1(T^*X))$ we get a globally defined connection $\tilde{\nabla}$ and it is immediate that the characteristic class of the associated deformation is $\frac{1}{2} \pi^* c_1(T_{C^\infty}X)$, where $\pi : T^*X \to X$ is the canonical projection. It is also immediate that the deformation constructed in this way coincides with the one associated to the calculus of differential operators on X, while its jet at $\xi = \infty$ gives the deformation associated to the calculus of pseudodifferential operators on X, the characteristic class being given by the jets at $\xi = \infty$ of $\frac{1}{2} c_1(E_C)$.
(recall that the real symplectic vector bundle E is the realification of a complex vector bundle E_C).

7.4. **The Lie algebroid case.** Recall now that the Lie algebroid (on M) $(E, [,], \omega)$ is given by gluing (at infinity) the two cotangent bundles (T^*X, ω^X) and (T^*Y, ω^Y) by the symplectomorphism ϕ'. To construct the deformation in this case, we will use the following data, whose existence follows immediately from the compactness of the co-sphere bundles of X and Y.

1. A local coordinate cover $\{U_i\}_{i \in I}$ of X and an open relatively compact neighborhood U_X of the zero section in T^*X;
2. A local coordinate cover $\{V_i\}_{i \in I}$ of Y and an open relatively compact neighborhood U_Y of the zero section in T^*Y;
3. For each $i \in I$ a one-homogeneous real-valued function H_i on $T^*X \setminus X \simeq T^*Y \setminus Y$ such that the restriction ϕ_i of the symplectomorphism ϕ to $T^*U_i \setminus U_X$ is given by integrating the (time dependent) hamiltonian flow L_{H_i}.

Using the above data, we can construct cocycles $T^*U_i \cap T^*U_j \ni p \to g_{ij}(p) \in C^\infty(T^*U_i \cap T^*U_j, \tilde{G})$ and $T^*V_i \cap T^*V_j \ni p \to h_{ij}(p) \in C^\infty(T^*V_i \cap T^*V_j, \tilde{G})$ intertwining the flat connections ∇_0 up to the term $\frac{1}{2} d \log \det Dg_{ij}$ ($\frac{1}{2} d \log \det Dh_{ij}$ respectively) as in the cotangent bundle case. We can also construct, using the notation of (12), a lifting of ϕ_i

$$\exp D_{H_i}^0 = \Psi_i : \Gamma(T^*U_i \setminus U_X, \mathbb{A}^h) \to \Gamma(T^*V_i \setminus U_Y, \mathbb{A}^h).$$

From now on we view Φ_i as local isomorphisms of jets at infinity of the \tilde{G}-bundles on compactified cotangent bundles of X and Y constructed from the cocycles g_{ij} and h_{ij}. While both g_{ij}’s and h_{ij}’s do satisfy the cocycle conditions on $T^*(X)$ ($T^*(Y)$ respectively), however

$$\lambda_{ij} = \Psi_j^{-1} h_{ij} \Psi_i g_{ij} \neq 1.$$

and hence we do not yet have the data necessary to construct the bundle \mathcal{W} over M.

The following facts are easy corollaries of the construction:

1. $\lambda_{ij} = 1 \mod \tilde{G}_{\geq 1}$;
2. $\lambda_{ij} \nabla_0^i \lambda_{ij} = \nabla_0^i - \frac{1}{2} d \log \det Dg_{ij} - \frac{1}{2} d \log \det Dh_{ij}$;
3. λ_{ij} form a two-cocycle with values in \tilde{G}.
To begin with, note that both \(\frac{1}{2} \log \det Dg_{ij} \) and \(\frac{1}{2} \log \det Dh_{ij} \) as cohomology classes on \(T^*X \setminus X \) and \(T^*Y \setminus Y \) represent (under our symplectomorphism) the same cohomology class, to wit half of the first Chern class of the tangent bundle with the complex structure induced by the symplectic form. Since these vanish, we can find a zero-Cech cochain \(\tau \), of the sheaf of functions with values in \(\mathbb{C} \setminus \{0\} \) and such that \(\tau_{i} \lambda_{ij} \tau_{ij}^{-1} \) intertwines the (local) flat connections \(\tilde{\nabla}_i^0 \) and \(\tilde{\nabla}_j^0 \).

In particular, \(\tau_{i} \lambda_{ij} \tau_{ij}^{-1} \) are given by exponentials of jets of \(\tilde{\nabla}_i^0 \)-flat sections of the bundle \(T^*U_i \times \mathbb{A}^h \) and, using a partition of unity, they can be written in the form
\[
\tau_{i} \lambda_{ij} \tau_{ij}^{-1} = \lambda_{i} \lambda_{j}^{-1},
\]
where \(\lambda_{i} \) is a jet of a flat section of the Weyl bundle supported on \(T^*U_i \setminus U_X \). We now define an operator \(\Psi \), acting on the set of sections of the Weyl bundle \(\mathcal{W} \), by setting for each \(i \in I \):
\[
\Psi|_{T^*U_i \setminus U_X} = \Psi_i \tau_i \mathcal{M}_{\lambda_i}.
\]
Here \(\mathcal{M}_{\lambda_i} \) stands for the operator of multiplication with the flat section \(\lambda_i \). It is easy to see that \(\Psi \) descends to an isomorphism of jets at the sphere at infinity of the deformations of cotangent bundles constructed above so that
\[
\forall a \in C^\infty(B^*X), \: \Psi(a) = (a + \sum_{k \geq 1} \hbar^k \hat{D}_k(a)) \circ \phi^{-1}
\]
holds in \(\mathbb{H}^h(B^*Y) \), where the \(\hat{D}_k \) are \(\mathcal{E} \)-differential operators. Hence, as in Proposition 5, \(\Psi \) induces a deformation of the Lie algebroid \((\mathcal{E}, [\cdot, \cdot], \omega)\).

7.5. The characteristic class of \(\mathbb{A}^h(M) \). The characteristic class of the deformation constructed above can now be easily obtained as follows. The collection \(g_{ij}, h_{ij} \), and the jet at infinity of \(\Psi_i \mathcal{M}_{\lambda_i} \) give a cocycle with values in \(G \), and it commutes with local flat connections up to the Cech cocycle given by the collection of differential forms
\[
\frac{1}{2} d \log \det Dg_{ij}, d \log \tau_i, \frac{1}{2} d \log \det Dh_{ij}.
\]
As in the case of cotangent bundle, we can correct local connections by a scalar term. The characteristic class \(\theta_0 \) of the deformation is given by \((13) \) as a cochain in \(\tilde{C}^1(M, \Omega^1(T^*M)) \) Moreover, in the case that both \(X \) and \(Y \) admit metalinear structures, the collection \(\{\tau_i\}_{i \in I} \) can be thought of as glueing of the pulled back of the half-top form bundles of \(X \) and \(Y \) along the graph of the symplectomorphism into a line bundle \(\mathcal{L} \) over \(M \) and, in this case,
\[
\theta_0 = c_1(\mathcal{L})
\]
7.6. **The Fourier Integral Operator.** To get the Fourier integral operator we will work locally. We will dispense with the half-density bundles (trivial in any case) for the sake of simplicity of notation. We will begin by constructing, for each i, an operator on $L^2(\mathbb{R}^n)$ as follows. Choosing local coordinates on U_i and V_i, we can assume that H_i (introduced at the end of section 7.4) is actually a smooth function on $T^*\mathbb{R}^{2n}$ which is 1-homogeneous in the cotangent direction. The solution of the following differential equation

$$\frac{d}{dt} T_i(t) = \text{Op}(\sqrt{-1} H_i) \circ T_i(t), \quad T_i(0) = 1$$

is a smooth family of bounded operators. Using the fact that $\{\tau_i\}_{i \in I}$ is a Čech zero-cochain of the sheaf of functions with values in the unit circle and proceeding as in [4], one checks that $T_i(1)$ satisfies

$$\text{Ad} (T_i(1) \text{Op}(\lambda_i)) \text{Op}(f_h) \sim \text{Op}(\Psi(f)\hbar)$$

mod \hbar^∞ as $\hbar \to 0$ whenever $\text{supp} f \subset T^*U_i \setminus X$ (recall that λ_i is introduced in Section 7.4). In other words, the deformation constructed above is associated (in the sense of Proposition [3]) to the almost unitary Fourier Integral Operator $\Phi = \sum_{i \in I} T_i(1) \text{Op}(\lambda_i)$ whose canonical relation is C_ϕ. Moreover, the index of this operator Φ_0 is given by

$$\int_M \hat{A}(M)e^{\theta_0},$$

Remark 4. The result above depends on the choice of the τ_i’s which in turn determine the homotopy class of the symbol of the Fourier Integral Operator. Moreover, since the characteristic classes involved are given by differential forms associated to connections on a vector bundle over M and $\Omega \subset \mathcal{E}\Omega$, the \mathcal{E}-classes involved in the index formulas are in fact identical with corresponding standard characteristic classes.

Let us recall that the real vector bundle $\mathcal{E} \simeq TM$ is given by realification of a complex vector bundle \mathcal{E}_C on M (the almost complex structure coming from the symplectic vector bundle structure on \mathcal{E}). Moreover, it is easy to see, that there exists a choice of the τ_i’s such that the associated characteristic class of the deformation coincides with $\frac{1}{2}c_1(\mathcal{E}_C)$. This gives the following result (compare with [3] and [11]):

Theorem 4. There exists an almost unitary Fourier integral operator Φ_0 (as in Section 3) whose canonical relation is C_ϕ and such that:

$$\text{ind} \Phi_0 = \int_M \hat{A}(M)e^{\frac{1}{2}c_1(\mathcal{E}_C)}$$
REFERENCES

[1] P. Bressler, R.Nest and B.Tsygan, Riemann-Roch theorems via deformation quantization, I.Math. Res. Letters 20, (1997), page 1033.
[2] J-L. Brylinski and E. Getzler, The Homology of algebras of pseudo-differential symbols and the non-commutative residue, K-Theory 1, page 385 (1987).
[3] C.Epstein and R.Melrose, Contact degree and the index of Fourier Integral Operator, I. Math. Res. Letters 5, No. 3,(1998), page 363.
[4] B. Fedosov, Deformation Quantization and Index Theory, Akademie Verlag (1996).
[5] L. Hormander, The Analysis of Linear Partial Differential Operators IV, Springer Verlag (1985).
[6] K. Mac Kenzie, Lie groupoids and Lie algebroids in differential geometry, Lecture Notes Series 124, London Mathematical Society, (1987).
[7] R.Nest and B.Tsygan, Algebraic Index theorems, Com. in Math. Phys. 172, No 2, (1995), page 223.
[8] R.Nest and B.Tsygan, Deformations of symplectic Lie algebroids, Deformations of holomorphic symplectic structures, and index theorems, submitted to Journ. Diff. Geom.
[9] R.Nest and B.Tsygan, Formal versus analytic index theorems, I.Math. Res. Letters 11, No. 2, (1996) page 151.
[10] A.Weinstein, Some questions about the index of quantized contact transformations , to appear in RIMS Kokyuroku.
[11] A.Weinstein, Fourier Integral Operators, quantization, and the spectrum of a Riemannian manifold, Géométrie Symplectique et Physique Mathématique, Colloque International du Centre National de la Recherche Scientifique, no. 237, (1976), page 289.
[12] M. Wodzicki, Noncommutative residue, I. Fundamentals, LN Math. 1289, 1987.
[13] M. Wodzicki, Excision in cyclic homology and in rational algebraic K-Theory, Annals of Mathematics 129, (1989), page 591.

Institut de Jussieu-Chevelaret, Etage 7, plateau E, 175 rue de Chevaleret
75013, Paris, France
E-mail address: leicht@math.jussieu.fr

Copenhagen
E-mail address: ernest@math.ku.dk

Pennsylvania State University, Math. Dept., University Park, PA 16802, USA
E-mail address: tsygan@math.psu.edu