Familial Frontal Fibrosing Alopecia
Report of a case and systematic review of the literature

Carlos Cuenca-Barrales,1 *Ricardo Ruiz-Villaverde,1 Alejandro Molina-Leyva2

ABSTRACT: Frontal fibrosing alopecia (FFA) is an emerging disease in Western countries. We present the cases of three sisters who were referred simultaneously to the Department of Dermatology, Hospital Universitario San Cecilio, Granada, Spain, in 2018. All patients suffered from at least partial frontotemporal hairline recession and eyebrow loss. Following trichoscopic examination, the three sisters were diagnosed with FFA. Only one of the sisters agreed to be treated; she was prescribed with topical clobetasol propionate solution and minoxidil and achieved disease control at the three-month follow-up. These patients represent a new case of familial FFA wherein three sisters as well as their mother were affected by FFA. A systematic review found a total of 24 cases of familial FFA, of which this report is the 25th. In the majority of families, only females were affected (88%) while in the remainder both males and females (8%) were affected; there was only one family where only males were affected (4%). The relationship between the affected individuals was predominately between sisters (56%) followed by mother and daughter (32%). The median age was 61 years old (range: 14–88 years) and the duration of the disease ranged between 3–360 months. Family groups of FFA are an infrequently described phenomenon with unknown prevalence.

Keywords: Alopecia; Dermatology; Hair Diseases; Case Report; Spain.

F RONTAL FIBROSING ALOPECIA (FFA) IS A TYPE of scarring alopecia described by Kossard in 1994.1 Since then, the number of publications about this disease has been rising. It has been considered a variant of lichen planopilaris due to histological similarities between the diseases;2 however, others consider it to be an independent disease among scarring alopecias due to the clinical peculiarities of FFA.3–5 New diagnostic criteria have recently facilitated its identification.6 In this case report, we report a case of familial FFA and perform a systematic review of the scientific evidence available in the literature.

Case Reports

Three sisters were referred simultaneously to the Department of Dermatology, Hospital Universitario San Cecilio, Granada, Spain, in 2018. The first patient was a 62-year-old female, who underwent menopause aged 52 and had a medical history of cutaneous lupus and breast cancer. She complained about frontotemporal hairline recession and partial eyebrow loss with a one year evolution [Figure 1A]. Trichoscopic examination showed erythema and follicular hyperkeratosis [Figure 1D]. Clinical and dermoscopic findings were consistent with the diagnosis of FFA. The patient claimed that her two sisters both presented with a similar type of alopecia as well as her mother, who died of breast cancer at the age of 55. Treatment with clobetasol propionate 0.1% solution and minoxidil 5% solution was established and achieved disease control at the scheduled three-month follow-up visit.

The second patient, who was the eldest sister, was a 67-year-old woman who had undergone menopause at the age of 53 and had no medical history of interest. A 10-year alopecia evolution presenting partial loss of eyebrows and slight involvement of frontotemporal hairline was noted with a slow progression [Figure 1B]. Dermoscopic signs were also consistent with the diagnosis of FFA. She refused any treatment.

The third patient, who was the youngest sister, was 59 years-old who underwent menopause at 50. She had a similar scarring alopecia with a three-year evolution but with a much more inflammatory pattern, accentuated perifollicular erythema, a higher recession of frontotemporal hairline and was overall more aggressive [Figure 1C]. Similar to her two sisters, her symptoms were in agreement with the diagnosis of FFA. Likewise, she rejected any therapeutic approach.

All patients provided consent to publish details and photographs of their case.

Discussion

In this article, we presented a case of familial FFA that adds to the body of literature on this condition. A systematic literature review was undertaken to determine the extent of available literature [Figure 2].
MEDLINE® (National Library of Medicine, Bethesda, Maryland, USA) and EMBASE (Elsevier, Amsterdam, Netherlands) databases were searched on 11th February 2020 using the term "ALOPECIA AND (FRONTAL OR FIBROSING) AND FAMILIAL". Articles that were published in English, Spanish, French or German as well as articles published for at least one year on the databases were included. FFA epidemiological studies were included but narrative reviews were excluded.

Subsequently, two independent reviewers checked the title and abstract of the articles obtained. The full text of the articles was reviewed as well as the bibliography that supported them to search for sources of additional information. Only the articles agreed upon by both reviewers in relation to the inclusion criteria were included in the final analysis. In the case of disagreement, a third reviewer analysed the article. A total of 11 articles were included in this review in which there are a total of 24 cases of familial FFA [Figure 2]. The current case represents the 25th and resulted in a total of 59 individual cases [Table 1].4,7–16

Most affected family members were women (88%) but some families had both men and women (8%) who were affected; only one family presented with only affected males (4%). Analysis of the familial relationships showed that the most common relationship was between sisters (56%) followed by mother and daughter (32%) and brother and sister (8%). Regarding ethnicity, the majority of families with a known ethnicity were Caucasian (83%) followed by Hispanic (11%) and Black (6%). The median age was 61 years old (range: 14–88 years) and the duration of the disease ranged between 3–360 months. Eyebrows were involved in 93% of patients. Among the comorbidities, there were autoimmune disorders such as rheumatoid arthritis, vitiligo, hypothyroidism, primary biliary cirrhosis or cutaneous lupus, several cardiovascular risk factors such as diabetes mellitus type 2, dyslipidaemia, high blood pressure or psoriasis, other hair disorders such as lichen planopilaris or alopecia areata, cancers such as colorectal and breast cancer and infectious diseases such as a case of hepatitis due to the hepatitis C virus. It should be noted that this literature review was subject to the limitation that it only included case reports.

There is still uncertainty about aetiopathogenesis of FFA. Based on the apparent increase in incidence in recent years, FFA has been related to environmental factors such as dioxins and dioxin-like chemicals.7 The importance of hormonal factors has been posed too, due to the widespread prevalence in Caucasian postmenopausal women and the high effectiveness of anti-androgens compared with other treatments.5 Genetic factors have also been linked to this disease, as family cases reported in the literature to date suggest.4,5–19 Finally some authors have stated an autoimmune origin due to the inflammatory infiltrates in the bulb, the similarities to LPP and the association with other autoimmune diseases.17

Family groups of FFA are an infrequently described phenomenon, with unknown prevalence among all cases of FFA. From the genetic point of

Figure 1: Photographs of the heads of three sisters. A: A 62-year-old woman with frontotemporal hairline recession and partial eyebrow loss. B: A 67-year-old woman with similar pattern and accentuated eyebrow loss. C: A 59-year-old woman with marked hairline recession and almost total loss of eyebrows. D: Trichoscopic examination photograph of the 62-year-old woman showing erythema and follicular hyperkeratosis.

Figure 2: Flowchart showing the process of article selection for a literature review on frontal fibrosing alopecia.
Table 1: Epidemiologic and clinical characteristics of familial cases of FFA reported in the scientific literature.

Author and year of publication	Family no.	No. and gender	Relationship	Age in years	Ethnicity	History of FFA in months	Eyebrow involvement	Comorbidities
Dlava et al. \(^7\) (2013)	#1	3F Sisters	55	Caucasian	12	Yes	None	None
	#2	1F Sister	59	Caucasian	36	Yes	LPP	None
		1M Brother	62	Hispanic	12	Yes	None	None
	#3	2F Sisters	25	Black	3	Yes	None	None
		2F Mother	74	Black	3	No	Traction alopecia	None
		Daughter	50	Black	12	No	Traction alopecia	None
		Cousin	44	Black	12	Yes	Traction alopecia	None
Roche et al. \(^6\) (2008)	1F	Sister	75	Non-specified	12	Yes	None	None
	1M	Brother	71	Non-specified	8	Yes	None	None
Junqueira et al. \(^11\) (2010)	2F	Sisters	57	Caucasian	12	Yes	None	Ophorectomy (at 52 years-old), colorectal adenocarcinoma (at 54 years-old) and HCV treated with IFN + ribavirin (at 55 years-old)
		59	Caucasian	12	Yes	None	None	
Miteva et al. \(^4\) (2011)	2F	Twin sisters	67	Caucasian	12	Yes	Vitiligo	None
	2F	Mother	46	Non-specified	10	Yes	Vitiligo	None
Cranwell and Sinclair \(^8\) (2017)	2F	Daughter	Non-specified	10	Yes	Rheumatoid arthritis, AA	None	
Chan et al. \(^12\) (2014)	2F	Sisters	49	Caucasian	18	Yes	None	None
Navarro-Belmonte et al. \(^1\) (2012)	2F	Mother	75	Non-specified	24–36	Non-specified	Hypothyroidism	None
		Daughter	47	Non-specified	18	Yes	None	None
	#2	2F Mother	60	Non-specified	24	Yes	None	None
		Daughter	41	Non-specified	12	Yes	None	None
	#3	2F Mother	63	Non-specified	24	Yes	None	None
		Daughter	37	Non-specified	24	Yes	None	None
Atarguine et al. \(^13\) (2016)	2F	Twin sisters	14	Non-specified	108	Non-specified	Goitre (one sister)	None
Rocha et al. \(^14\) (2020)	6F	Sisters	67	Hispanic	180	Yes	DM, Systemic arterial hypertension	No
		64	Hispanic	144	Yes	No	None	
		62	Hispanic	24	No	None	None	
		61	Hispanic	360	Yes	Allergic rhinitis	None	
		52	Hispanic	24	Yes	Deep Vein Thrombosis	None	
		51	Hispanic	24	Yes	None	None	
Porrino-Bustamante et al. \(^15\) (2019)	2F	Sisters	59	Caucasian	30	Yes	Non-specified	None
		66	Caucasian	108	Yes	Non-specified	None	
	#3	2M Brothers	44	Caucasian	48	Yes	Non-specified	None
		46	Caucasian	12	Yes	Non-specified	None	
	#4	2F Sisters	39	Caucasian	72	Yes	Non-specified	None
		42	Caucasian	24	Yes	Non-specified	None	
	#5	3F Sisters	88	Caucasian	24	Yes	Non-specified	None
		72	Caucasian	12	Yes	Non-specified	None	
		64	Caucasian	48	Yes	Non-specified	None	
	#6	2F Sisters	53	Caucasian	36	Yes	Non-specified	None
		46	Caucasian	12	Yes	Non-specified	None	
	#7	2F Sisters	74	Caucasian	288	Yes	Non-specified	None
		72	Caucasian	240	Yes	Non-specified	None	
	#8	2F Sisters	77	Caucasian	204	Yes	Non-specified	None
		74	Caucasian	168	Yes	Non-specified	None	
	#9	2F Mother	70	Caucasian	144	Yes	Non-specified	None
		Daughter	44	Caucasian	24	Yes	Non-specified	None
Current case	2F	Mother	62	Caucasian	12	Yes	Breast cancer, cutaneous lupus	None
		Daughter	67	Caucasian	120	Yes	None	None
		59	Caucasian	36	Yes	None	None	

F = female; M = male; LPP = lichen planopilaris; HCV = hepatitis C virus; IFN = interferon; AA = alopecia areata; HBP = high blood pressure; DM = diabetes mellitus.
view, genome-wide association studies in females from a UK cohort (comprising 844 cases and 3,760 controls) and a Spanish cohort (consisting of 172 cases and 385 controls) have been related to HLA-B*07:02; a genome-wide significant association with FFA was observed at four genomic loci (2p22.2, 6p21.1, 8q24.22 and 15q21).20 Inheritance mode seems to follow an autosomal dominant pattern with incomplete penetrance which is in line with the current case.21 Considering the findings of the present case and available scientific evidence, there are several phenotypic expression patterns of FFA which may be the result of epigenetic modulation or genic interaction mechanisms and give rise to the partial penetrance of the trait. Upon this genetic predisposition, some trigger factors may overlap. A decrease in serum oestrogen levels or traumatisms, setting off an inflammatory reaction at the level of the follicular bulb, leading to fibrosis and final loss of the follicular hair may be considered.

Conclusion

The cases of the three sisters highlights the need to carefully evaluate family aggregation patterns when examining patients, since on many occasions, unlike in our case, patients attend consultations alone. International collaboration between researchers is needed in order to perform epidemiological studies with larger sample sizes.

References

1. Kossard S. Postmenopausal frontal fibrosing alopecia. Scarring alopecia in a pattern distribution. Arch Dermatol 1994; 130:770–4. https://doi.org/10.1001/archderm.130.6.770.
2. Dlova NC. Frontal fibrosing alopecia and lichen planus pigmentosus: Is there a link? Br J Dermatol 2013; 168:439–42. https://doi.org/10.1111/j.1365-2133.2012.11146.x.
3. Banka N, Mubki T, Bunagan MJ, McElwee K, Shapiro J. Frontal fibrosing alopecia: A retrospective clinical review of 62 patients with treatment outcome and long-term follow-up. Int J Dermatol 2014; 53:1324–30. https://doi.org/10.1111/ijd.12479.
4. Navarro-Belmonte MR, Navarro-López V, Ramírez-Boscá A, Martínez-Andres MA, Molina-Gil C, González-Nebreda M, et al. Case series of familial frontal fibrosing alopecia and a review of the literature. J Cosmet Dermatol 2015; 14:64–9. https://doi.org/10.1111/j.1365-2133.2012.11146.x.
5. Vañó-Galván S, Molina-Ruiz AM, Serrano-Falcón C, Arias-Santiago S, Rodrigues-Barata AR, Garnacho-Saucedo G, et al. Frontal fibrosing alopecia: A multicenter review of 355 patients. J Am Acad Dermatol 2014; 70:670–8. https://doi.org/10.1016/j.jaad.2013.12.003.
6. Vañó-Galván S, Saceda-Corrado D, Moreno-Arrones ÓM, Camacho-Martínez FM. Updated diagnostic criteria for frontal fibrosing alopecia. J Am Acad Dermatol 2018; 78:e21–2. https://doi.org/10.1016/j.jaad.2017.08.062.
7. Dlova N, Goh CL, Tosti A. Familial frontal fibrosing alopecia. Br J Dermatol 2013; 168:220–2. https://doi.org/10.1111/1365-2133.2012.11101.x.
8. Roche M, Walsh MY, Armstrong DK. Frontal fibrosing alopecia – occurrence in male and female siblings. J Am Acad Dermatol 2008; 58. (Suppl. 2):A981.
9. Miteva M, Aber C, Torres F, Tosti A. Frontal fibrosing alopecia occurring on scalp vitiligo: report of four cases. Br J Dermatol 2011; 165:445–7.
10. Atarguine H, Hocar O, Hamdaoui A, Akhdari N, Amal S. [Frontal fibrosing alopecia: Report on three pediatric cases]. Arch Pediatr 2016; 23:832–5. https://doi.org/10.1016/j.arcped.2016.05.006.
11. Cranwell WC, Sinclair R. Familial frontal fibrosing alopecia treated with dutasteride, minoxidil and artificial hair transplantation. Australas J Dermatol 2017; 58:e94–6. https://doi.org/10.1111/ajd.12999.
12. Chan DV, Kartono F, Ziegler R, Abdulwahab N, DiPaola N, Flynn J, et al. Absence of HLA-DR1 positivity in 2 familial cases of frontal fibrosing alopecia. J Am Acad Dermatol 2014; 71:e208–10. https://doi.org/10.1016/j.jaad.2014.04.004.
13. Junqueira Ribeiro Pereira AF, Vincenzi C, Tosti A. Frontal fibrosing alopecia in six sisters. Br J Dermatol 2010; 162:1154–5. https://doi.org/10.1111/j.1365-2133.2010.09664.x.
14. Rocha VB, Pires MC, Contin LA. Familial fibrosing frontal alopecia in six siblings. An Bras Dermatol 2020; 95:125–8. https://doi.org/10.1016/j.abd.2019.02.009.
15. Porriño-Bustamante ML, García-Lora E, Buendía-Eisman A, Arias-Santiago S. Familial frontal fibrosing alopecia in two male families. Int J Dermatol 2019; 58:e178–80. https://doi.org/10.1111/ijd.14499.
16. Porriño-Bustamante ML, López-Nevot MA, Aneiros-Fernández I, García-Lora E, Fernández-Pignatare MA, Arias-Santiago S. Familial frontal fibrosing alopecia: A cross-sectional study of 20 cases from nine families. Australas J Dermatol 2019; 60:e113–18. https://doi.org/10.1111/ijd.12991.
17. Tavakolpour S, Mahmoudi H, Abedini R, Kamyab Hesari K, Kiani A, Daneshpazhooh M. Frontal fibrosing alopecia: An update on the hypothesis of pathogenesis and treatment. Int J Women Dermatol 2019; 5:116–123. https://doi.org/10.1016/j.ijwd.2018.11.003.
18. Mahmoudi H, Rostami A, Tavakolpour S, Nili A, Teimourpour A, Salehi Farid A, et al. Oral isotretinoin combined with topical clobetasol 0.05% and tacrolimus 0.1% for the treatment of frontal fibrosing alopecia: A randomized controlled trial. J Dermatolog Treat 2020; 1–7. https://doi.org/10.1002/1095-4663.2020.1750555.
19. Missio DM, Dias MFGR, Trieb RM. Familial cicatricial alopecia: Report of familial frontal fibrosing alopecia and fibrosing alopecia in a pattern distribution. Int J Trichology 2017; 9:130–4. https://doi.org/10.4103/ijt.ijt_59_17.
20. Triantzos C, Petridis C, Dand N, Ainali C, Saklatvala JR, Pullabhata V, et al. Genome-wide association study in frontal fibrosing alopecia identifies four susceptibility loci including HLA-B*07:02. Nat Commun 2019; 10:1150. https://doi.org/10.1038/s41467-019-09117-w.
21. Triantzos C, Stefanato CM, Fenton DA, Simpson MA, McGrath JA. Frontal fibrosing alopecia: Reflections and hypotheses on aetiology and pathogenesis. Exp Dermatol 2016; 25:847–52. https://doi.org/10.1111/edl.13071.