A new family and two new genera from Avion, Northern France, confirm the high Moscovian (late Carboniferous) diversity of the insect superorder Archaeorthoptera

ANDRÉ NEL and PATRICK ROQUES

The new archaeorthopteran family Archaeogeraridae, based on Archaeogerarus schubneli gen. et sp. nov., is described from the Moscovian of Avion. It has several unique wing venation characters allowing to separate it from the other groups of this superorder, viz. a vein RP separating from RA very close to wing base and closely parallel to it; M shortly fused with RP; CuA+CuPa simple and straight; and CuPb branched. This last character is convergently present in a few Palaeozoic Panorthoptera, a feature of great interest for a future phylogenetic analysis of the whole superorder. Avionxixia gui gen. et sp. nov., second Cnemidolestidae from the Moscovian of Avion, is described and illustrated. It shares numerous characters with the Chinese Namurian genus Xixia and the European (Germany and France) Moscovian genus Piesbergopterum, suggesting possible phylogenetic affinities between these three genera. It is mainly separated from these two genera by the costal area much narrower than the subcostal one and the presence of only one posterior branch of the anterior branch of MP+CuA+CuPa. This new taxon confirms the high diversity of the Cnemidolestidae during the late Carboniferous.

Key words: Insecta, Polyneoptera, Cnemidolestodea, Archaeogeraridae, forewing venation convergences, Carboniferous, France.

Nel, A. and Roques, P. 2021. A new family and two new genera from Avion, Northern France, confirm the high Moscovian (late Carboniferous) diversity of the insect superorder Archaeorthoptera. Acta Palaeontologica Polonica 66 (4): 879–884.

Copyright © 2021 A. Nel and P. Roques. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

The superorder Archaeorthoptera, now-a-day reduced to the sole Orthoptera, witnesses an impressive diversification during the Palaeozoic and the early Mesozoic, with the orders Caloneurodea, Titanoptera, Cnemidolestodea, stem Orthoptera and a complex series of families and genera belonging to the Archaeorthoptera nec Panorthoptera (Béthoux and Nel 2002). Some historical outcrops have given numerous fossils of this superorder (e.g., Mazon Creek, USA; Commentré, France), showing that it was probably among the most diverse clade during the late Carboniferous, together with the two other polyneopteran groups Dictyoptera and “Grylloblattodea”. But, if the Dictyoptera were clearly very abundant, their morphological disparity was clearly lower than that of the Archaeorthoptera. That of the “Grylloblattodea” was very high too, but the monophyly of this group of taxa remains to be verified, unlike that of the Archaeorthoptera, well supported by a series of wing venation synapomorphies. Thanks to the efforts of one of us (PR), the Moscovian outcrop of Avion (Northern France) has given recently an impressive series of fossil insects, among which were found the oldest representatives of the Acercaria and Holometabola (Nel et al. 2013), but also numerous Archaeorthoptera of several orders and families. Nevertheless, all these new genera and species are based on single fossils, suggesting that the diversity of the original entomofauna was much higher than what has been recovered.

The present descriptions of two new fossils representing a new family, and two new genera and species support this assumption. They are of great interest for a better knowl-
edge of the Moscovian diversity and morphological disparity of the Archaeorthoptera.

Institutional abbreviations.—MNHN, Muséum National d’Histoire Naturelle, Paris, France.

Other abbreviations.—A, anal vein; C, costa; CuA, cubitus anterior; CuP, cubitus posterior; CuPa, anterior branch of CuP; CuPaa, anterior branch of CuPa; CuPab, posterior branch of CuPa; CuPb, posterior branch of CuP; MA, median anterior vein; MP, median posterior vein; PCu, post-cubital vein; RA, radius anterior; RP, radius posterior; ScP, subcostal posterior.

Nomenclatural acts.—This published work and the nomenclatural acts it contains, have been registered in ZooBank: urn:lsid:zoobank.org:pub:7D23AD1B-CA20-4BB8-A926-CEE97C49ADF1

Material and methods

The fossils were found by one of us (PR) in the slag heap of Avion. They were examined and drawn under a Nikon SMZ1500, and photographed with an AmScope camera MU900.

We follow the wing venation terminology of Béthoux and Nel (2002) modified by Schubnel et al. (2020), and the classification of Béthoux (2005) for the Cnemidolestodea.

Systematic palaeontology

Superorder Archaeorthoptera Béthoux and Nel, 2002
Order undetermined
Family Archaeogeraridae nov.

Zoobank LSID: urn:lsid:zoobank.org:act:5283533C-1641-4366-A77D-5CADECB66536
Type genus: Archaeogerarus gen. nov.; see below.

Diagnosis.—As for the type genus by monotypy.

Genus Archaeogerarus nov.

Zoobank LSID: urn:lsid:zoobank.org:act:95D9C644-779C-440E-BC-CC-71D6864D3D40
Type species: Archaeogerarus schubneli sp. nov.; see below.

Etymology: From Ancient Greek ἀρχαῖος (arkhaîos), primitive, and the genus Gerarus for its similarity in the forewing vein CuPb (gender masculine).

Diagnosis.—As for the type species by monotypy.

Archaeogerarus schubneli sp. nov.

Fig. 1.

Zoobank LSID: urn:lsid:zoobank.org:act:81243C11-E3B1-4DF4-9561-C0E248E2A41
Etymology: In honour of Thomas Schubnel, for his impressive scientific activity and the very useful interactions we have in the study of extant and fossil insect wing venation.

Fig. 1. Archaeorthopteran insect Archaeogerarus schubneli gen. et sp. nov., holotype MNHN.F.A70991 from Avion, France, Moscovian. Forewing, part (A) and counterpart (B) (photographs Thomas Schubnel), reconstruction (C). Black arrowhead, base of RP; white arrowhead, CuPa; black arrows, point of fusion between RP and M; white arrow, base of CuP. Scale bars 4 mm.

Holotype: MNHN.F. A70991, part and counterpart of the basalmost half of a forewing, with polarity of veins well visible.

Type locality: Terril N°7, Avion, Pas-de-Calais, France.

Type horizon: Moscovian (Westphalian C/D equivalent to Bolsovian/Asturian), middle Pennsylvanian, Carboniferous.

Material.—Type material only.

Diagnosis.—Forewing characters only. Base of RP opposite point of separation of M and CuA; RP closely parallel with RA; M shortly fused with RP and separating again distally (autapomorphy); CuA+CuPa simple (autapomorphy); CuPa very short; CuPb (+ first branch of PCu) with elongate distal branches; second branch of PCu simple; first anal vein with elongate branches; second anal vein elongate and sim-
ple. Further characters: ScP ending into C; CuP with three branches; M with four branches.

Description.—Based on forewing venation. Length of preserved part 17.0 mm, maximum width at midwing 7.5 mm; original coloration of wing membrane not preserved or hyaline; concave ScP distally slightly zigzagged, running parallel with costal margin, not ending into RA; costal area with numerous simple crossveins, 0.6 mm wide, slightly narrower than subcostal area, 0.8 mm wide; stem of R diverging from M+CuA near base of wing; division of RA and RP very basal, opposite point of separation of M and CuA, less than 1.0 mm distal of point of separation of R and M+CuA; strongly convex RA simple; concave RP very closely parallel with RA and with at least two posterior branches; neutral vein M diverging from M+CuA very close to its base, parallel to R, shortly fused with RP, and separating again 0.2 mm distally; M divided into MA and MP 4.5 mm distal to its separation from RP; both MA and MP with a distal fork; concave vein CuPa very short, ending into convex CuA 2.0 mm behind divergence of M from CuA; convex CuA+CuPa straight and simple (even if there are several oblique crossveins between it and MP superficially looking like anterior branches of CuA+CuPa); elongate concave CuP basally strongly curved towards R+M+CuA, CuPb with three long branches; a convex vein anterior branch of PCu separating from PCu at its base and ending into CuP; anal area with simple convex vein PCu 9.8 mm long, running parallel to CuP and CuPb; a broad area between CuP/CuPb and PCu; first anal vein with three branches; a second simple anal vein; no anal loop.

Remarks.—*Archaeogerarus* gen. nov. can be clearly attributed to the Archaeorthoptera as it shares the main diagnostic character of this superorder, namely the basal fusion of CuA with M and subsequent connection with the concave anterior branch of CuP as CuPa (Béthoux and Nel 2002). The absence of a division of CuP into two branches CuPaa and CuPab is a symplesiomorphy excluding it from the Panorthoptera sensu Béthoux and Nel (2002). The most remarkable characters of *Archaeogerarus* gen. nov. is the vein RP closely parallel to RA and branching from R opposite the point of separation of M and CuA, and the vein M directly ending into RP to separate again just distally. A RP very long and closely parallel to RA is present in some Anthracobitidae (in Palaeozoic order Paoliida), e.g., *Mesoptilus dolloi* Lameere, 1917 (Guan et al. 2015); but these have a completely different pattern of the median and cubital veins at wing base, with a stem Cu from which the convex CuA and the concave CuP distally emerge. Such a vein RP elongate and closely parallel to RA, is also present in few Archaeoorthoptera, viz. *Eoblatta robusta* (Bronniiart, 1893), *Beloatta duquesnei* Nel, Garrouste, and Roques, 2020, *Cienoptilus elongatus* (Bronniiart, 1893), *Ichnoneura oustaleti* Bronniiart, 1893, *Ischnoptera diaphanes* Béthoux and Nel, 2005, *Kitshuga ryzhkovae* Aristov, 2012 (Béthoux and Nel 2005; Schubnel et al. 2019). All these taxa strongly differ from *Archaeogerarus* gen. nov. in the CuA+CuPa with numerous strong branches vs. simple in *Archaeogerarus schubnelli* gen. nov., M not fused with RP near their bases, and CuPb simple vs. with branches in *Archaeogerarus schubnelli* gen. nov.

In the other polyneopteran orders, the vein CuP is simple, suggesting that a branched CuPb is a specialized structure of some Archaeoorthoptera. It is encountered in very few Archaeoorthopteran Panorthoptera, viz. *Gerarus bruesi* Meunier, 1919, *Owadpteran dareki* Dvořák, Pecharová, Krzemiński, and Prokop, 2019, and *Nacekomia rossae* Richardson, 1956 (Béthoux and Nel 2002; Dvořák et al. 2019). But these have a branched CuP into a CuPaa and a CuPb (as Panorthoptera), and a branched CuA+CuPaa, unlike *Archaeogerarus schubnelli* gen. nov. *Archaeogerarus* gen. nov. is the first Archaeoorthoptera not belonging to the Panorthoptera with a branched CuPb. This character is a putative convergence between it and the panorthopteran genera *Gerarus*, *Owadpteran*, and *Nacekomia*. Notice that the pattern of PCu and of the anal veins of *Archaeogerarus schubnelli* gen. nov. is similar to that of *Nacekomia rossae*, these veins being very long and parallel.

The presence of this unique combination of characters plus some extremely particular structures supports the attribution of *Archaeogerarus schubnelli* gen. et sp. nov. to a new family of Archaeoorthoptera.

Stratigraphic and geographic range.—Type locality and horizon only.

Order Cnemidolestodea Handlirsch, 1937 (sensu Béthoux 2005)

Family Cnemidolestidae Handlirsch, 1906

Genus Avionxixia nov.

[Description and details]

Type species: *Avionxixia gui* sp. nov.; see below.

Etymology: Named after the type locality Avion and the genus *Xixia*.

Diagnosis.—As for the type species by monotypy.

Avionxixia gui sp. nov.

[Fig. 2]

Zoobank LSID: urn:lsid:zoobank.org:act:2494907A-6BFE-4FCC-97 CA-E615D573272D

Type species: *Avionxixia gui* sp. nov.; see below.

Etymology: Named after Jun-Jie Gu, for his work on the Cnemidolestidae.

Holotype: MNHN.F. A70990, part and counterpart of a nearly complete forewing, with only apex missing.

Type locality: Terril N°7, Avion, Pas-de-Calais, France.

Type horizon: Moscovian (Westphalian C/D equivalent to Bolsovian/Asturian, middle Pennsylvanian, Carboniferous).

Material.—Type material only.

Diagnosis.—Forewing characters only. Only one posterior branches of anterior branch of MP+CuA+CuPb; veinlet between MP+CuA+CuPa and posterior branch of MA strongly zigzagged and very short; area between MA and
anterior branch of MP+CuA+CuPa quite short, less than three times as long as wide; anterior branch of MA not touching RP; costal area distinctly narrower than subcostal area. Forewing only 12.1 mm long.

Description.—Based on forewing venation. Estimated total wing length 12.1 mm, maximum width at midwing 4.1 mm; bending of costal margin in about basal third; original coloration of wing membrane not preserved or hyaline; concave ScP slightly curved, running parallel with costal margin, ending to RA behind midwing; costal area with numerous simple crossveins, 0.3 mm wide, narrower than subcostal area, 0.6 mm wide; stem of R diverging from M+CuA near base of wing; division of RA and RP proximal of midwing, 1.5 mm basal to connection of ScP on RA; strongly convex RA simple ending on costal margin well basal to wing apex; numerous oblique crossveins present in space between RA and costal wing margin; concave RP posteriorly pectinate ending with four branches covering whole distal part of wing; neutral vein MA diverging from M+CuA and further running parallel to stem of R/RP; MA deeply forked into two simple branches, anterior one MA1 not connected to RP and posterior one MA2 nearly straight; concave vein CuP ending into MP+CuA slightly behind divergence of MA from MP+CuA; MP+CuA+CuPa emitting a posterior branch apically subdivided into two branches; and an anterior branch parallel to MA, emitting only one posterior branch, distally forked, a strongly zigzagged veinlet between MP+CuA+CuPa and MA, closing a short and broad area between it and MA (0.8 mm wide, 2.0 mm long), crossed by irregular veinlets; areas between branches of RP, MA and MP+CuA+CuPa regularly connected by simple and oblique crossveins; concave CuP basally dividing into CuPa and CuPb, simple CuPb running parallel to MP+CuA+CuPa towards posterior wing margin; anal area with convex vein PCu running parallel to CuP and CuPb; first anal vein distally connected to PCu, forming an elongate “anal loop”, 2.5 mm long; a second short anal vein.

Remarks.—Avionxixia gen. nov. can be attributed to the Archaeorthoptera as it shares the main diagnostic character of this superorder, namely the basal fusion of CuA with M and subsequent connection with the anterior branch of CuP as CuPa (Béthoux and Nel 2002). Furthermore, it displays characters typical of the order Cnemidolestodea, such as ScP terminating on RA, CuP ending into MP+CuA, MP+CuA+CuPa emitting an anterior branch parallel to MA, with a specialised veinlet between it and MA, thus defining a large area between it and MA crossed by irregular veinlets (Béthoux 2005; Gu et al. 2014: figs. 1, 2). Aristov (2014), using a different diagnosis and wing venation nomenclature for the Cnemidolestodea, proposed a key to families.

Avionxixia gen. nov. falls in the family Cnemidolestidae Handlirsch, 1906 (sensu Aristov 2014: 10) because of the character “MP weak, ending on CuA or MA, or absent”. Indeed, in Avionxixia gen. nov., MP is clearly basally fused with CuA.

The family Cnemidolestidae comprises the following genera, after Aristov (2014), Gu et al. (2014), and Dvořák et al. (2021): Aetophlebia Scudder, 1885, Amphibioliacritides Langiaux and Parriot, 1974, Anarkema Aristov, 2014, Argen tinonarkemina Martins-Neto, Gallego, and Brauckmann, 2007, Bouleites Lameere, 1917, Carbonokata Aristov, 2013, Cnemidolestes Handlirsch, 1906, Evenkiophlebia Aristov, 2013, Irajanarkema Aristov, 2013, Proto diphlophnoa Brongniart, 1893, Longzhua Gu, Béthoux, and Ren, 2011, Narkema Handlirsch, 1911, Narkemina Martynov, 1930, Narkeminopsis Whalley, 1979, Narkeminctia Aristov, 2013, Narkemulla Aristov, 2013, Paranarkemina Pinto and Ornellas, 1980, Piesbergopterum Dvořák, Pecharová, Leipner, Nel, and Prokop, 2021, Prot diamphlophnoa Brongniart, 1885, Tshunoptera Aristov, 2013, Velizphlebia Martins-Neto, Gallego, and Brauckmann, 2007, and Xixia Gu, Béthoux, and Ren, 2014.

Narkema (N. taeniatum) Handlirsch, 1911, N. alternatum Cockerell, 1924 shares with Avionxixia gen. nov. the presence of only two posterior branches of anterior branch of MP+CuA+CuPa, but it has a very long stem of RP, a very long stem of anterior branch of MP+CuA+CuPa, and posterior branch of MP+CuA+CuPa branched (Handlirsch 1911: fig. 28; Cockerell 1924, 1927).

Irajanarkemina, Velizphlebia, Ar gen tonarkemina, and Paranarkema have few or no posterior branch of the anterior branch of MP+CuA+CuPa, but they all have a longer stem of RP and a narrower area between MA and MP+CuA+CuPa than in Avionxixia gen. nov. Aetophlebia and Longzhua also differ from Avionxixia gen. nov. in the
same characters (Scudder 1890: 301–302, pl. 17: 9; Martins-Neto et al. 2007: figs. 2, 7; Gu et al. 2011: fig 3). *Avionixia* gen. nov. differs from *Narkeminopsis* in much broader area between MA and MP+CuA+CuPa (Whalley 1979: fig. 3; Brauckmann and Herd 2006: fig. 9; Béthoux and Nel 2005: fig. 20; Aristov 2013: fig. 1b).

Piesbergopterum (*Piesbergopterum punctatum* Dvořák, Pecharová, Leipner, Nel, and Prokop, 2021, *Piesbergopterum schubneli* Nel and Roques, 2021c), and *Xixia* (*Xixia huban* Gu, Béthoux, and Ren, 2014) share with *Avionxixia* gen. nov. the presence of few posterior branches of anterior branch of MP+CuA+CuPa (two or three at most) (Gu et al. 2014; Dvořák et al. 2021; Nel and Roques 2021). The specialized veinlet between MP+CuA+CuPa and posterior branch of MA is short and simple in *Piesbergopterum*, vs. elongate and more or less sigmoidal with crossvein(s) branching on it in *Xixia*. In *Avionixia* gen. nov., this veinlet is strongly zigzagged and very short. *Piesbergopterum* has a posterior branch of MP+CuA+CuPa with more than two branches, unlike *Avionixia* gen. nov. and *Xixia*. Lastly, the area between MA and anterior branch of MP+CuA+CuPa is quite short in *Avionixia* gen. nov., less than three times as long as wide, while it is three times (or more) as long as wide in *Xixia* and *Piesbergopterum*. The anterior branch of MA in *Avionixia* gen. nov. is not touching RP, unlike in *Piesbergopterum*. The costal area of *Avionixia* gen. nov. is distinctly narrower than the subcostal area, unlike in *Piesbergopterum* and *Xixia*. Lastly the forewing of *Avionixia* gen. nov. is only 12.1 mm long, instead of 20–21 mm in the two species of *Piesbergopterum*, and 17.9–21.8 mm in *Xixia huban*.

All the other cnemidolestid genera have three or more posterior branches of the anterior branch of MP+CuA+CuPa, which is itself quite elongate, unlike *Avionixia* gen. nov.

It is worth to note that apart from *Piesbergopterum avionensis* there are two other cnemidolestodeans known from Avion: *Avionixia gui* gen. nov. differs strongly both from *Aviocladus pectinatus* Prokop, Roques, and Nel, 2014 and *Aviohapaloptera bethouxi* Prokop, Roques, and Nel, 2014 in the presence of a strong anterior branch of MP+CuA+CuPa and the different shape of CuA+CuPa (Prokop et al. 2014).

Concluding remarks

With these two new taxa, the Avion locality shows an impressive diversity of Archaeorthoptera, with no less than 13 genera and 13 species (Table 1; 10% of the ca. 121 Carboniferous archaeorthopteran species, after the Fossilworks Database http://fossilworks.org accessed 30/08/2021). It confirms that this superorder underwent an important diversification during the late Carboniferous, with a high disparity of wing venations. Unfortunately no body structure of these insects has been found in Avion, which is also rarely encountered in the other Carboniferous outcrops. Thus their biology remains unknown in main part. The discovery of *Archaeogerarus schubneli* gen. et sp. nov. with a highly specialized branched vein CuPb, convergently present in a few Panorthoptera, is especially interesting for a future phylogenetic analysis of the whole superorder Archaeorthoptera.

Acknowledgements

We thank a lot Eric Damay (Society Eiffage Route Nord Est, Avion, France) for the kind authorization to collect fossil insects in the terril of Avion. We also sincerely thank two anonymous referees, and Thomas Schubnel (MNHN) for their useful remarks on the first version of the paper.

References

Aristov, D.S. 2012. Composition and distribution of the family Cacurgidae (Insecta; Grylloblattida). *Paleontological Journal* 46: 250–257.

Aristov, DS. 2013. New and little-known Eoblattida (Insecta) from the Palaeozoic of Russia. *Paleontological Journal* 47: 272–282.

Aristov, D.S. 2014. Classification of the order Cnemidolestida (Insecta:...
Gu, J.-J., Béthoux, O., and Ren, D. 2011. *Longzhua loculata* Dvořák, T., Pecharová, M., Leipner, A., Nel, A., and Prokop, J. 2021. New Cockerell, T.D.A. 1924. *Fossil insects*. *Entomological News*.

Brongniart, C. 1893. *Recherches pour servir à l'histoire des insectes*. Wilhelm Engelman, Leipzig. 1430 pp.

Handlirsch, A. 1911. *New Paleozoic insects from the vicinity of Mazon Creek, Illinois*. *American Journal of Sciences* 31: 297–326, 353–377.

Handlirsch, A. 1937. *Untersuchungen über die fossilen Insekten*. *Annalen des Naturhistorischen Museums in Wien* 48:1–140.

Lameere, A. 1917. *Révision sommaire des insectes fossiles du Stéphanien de Commentry*. *Bulletin du Muséum National d'Histoire Naturelle, Paris* 23: 141–200.

Langiaux, J. and Parriot, H. 1974. *Faune entomologique du bassin de Blanzy-Montceau*. *La Physiophilie*, *Société d'Étude des Sciences Naturelles et Historique de Montceau-les-Mines* 81: 62–74.

Martins-Neto, R.G., Gallego, O.F., Brauckmann, C., and Cruz, J.L. 2007. A review of the South American Palaeozoic entomofauna. Part I: the Ischnoneuroidea and Cacugoidea, with description of new taxa. *African Invertebrates* 48: 87–101.

Martynov, A.V. 1930. *Palaeozoic insects from the Kuznetsk Basin* [in Russian with English summary]. *Izvestia Glavnogo Geolo-Geovodochnogo Upravleniâ Moskva* 49: 1221–1248.

Meunier, F. 1909. Nouvelles recherches sur les insectes du terrain houiller de Commeny, Allier. *Annales de Paléontologie* 4: 125–152.

Nel, A. and Roques, P. 2021a. A new strange Archaeorthoptera from the Moscovian of Avion (France) (Insecta, Polyneoptera). *Historical Biology* [published online https://doi.org/10.1080/08912963.2021.1978082].

Nel, A. and Roques, P. 2021b. The second Caloneurodea from the Moscovian of Avion, France (Insecta, Archaeorthoptera). *Palaeontology* 4: 320–322.

Nel, A. and Roques, P. 2021c. The second species of the cnemidolestid genus *Piesbergopterum* from the upper Carboniferous of Avion, Northern France (Archaeorthoptera: Cnemidolestidae). *Palaeontology* 3: 323–325.

Nel, A., Garrouste, R., and Roques, P. 2020. The first representative of the archaeorthopteran family Eoblatidae in the Konservat-Lagerstätte of Avion (France) (Insecta: Polyneoptera). *Palaeontology* 3: 552–555.

Nel, A., Roques, P., Nel, P., Prokin, A.A., Bourgoin, T., Prokop, J., Szendoza, J., Azar, D., Desutter-Grandcolas, L., Wappler, T., Garrouste, R., Coty, D., Huang, D., Engel, M., and Kirejšchuk, A.G. 2013. The earliest known holometabolous insects. *Nature* 503: 257–261.

Pinto, I.D. and Ornellas, L. 1981. A new *Upper Carboniferous paraplecopteran insect* from Argentina. *Anais do Congresso Latino-Americano de Palaeontologia* 2 (1): 107–111.

Prokop, J., Roques, P., and Nel, A. 2014. New non-holometabolous insects from the Moscovian of Avion locality in Pas-de-Calais, France (Insecta: “Exopterygota”). *Alcheringa* 38: 155–169.

Richardson, E.S. Jr. 1956. *Pennsylvanian invertebrates of the Mazon Creek area, Illinois*. *Insects. Fieldiana, Geology* 12 (1–4): 15–56.

Schubnel, T., Desutter-Grandcolas, L., Legendre, F., Prokop, J., Mazurier, A., Garrouste, R., Grandcolas, P., and Nel, A. 2020. To be or not to be: postcubital vein in insects revealed by microtomography. *Systematic Entomology* 45: 327–336.

Schubnel, T., Legendre, F., Roques, P., Garrouste, P., Cornette, R., Perreau, M., Perreau, N., Desutter-Grandcolas, L., and Nel, A. 2021. Sound vs. light: wing-based communication in Carboniferous insects. *Communications Biology* 4: 1–11.

Whalley, P.E.S. 1979. New species of Protorthoptera and Protodonata (Insecta) from the upper Carboniferous of Britain, with a comment on the origin of wings. *Bulletin of the British Museum of Natural History, (Geology)* 32: 85–90.