Lensing in the Einstein-Straus solution.

Thomas Schücker1 (CPT2)

Abstract

The analytical treatment of lensing in the Einstein-Straus solution with positive cosmological constant by Kantowski et al. is compared to the numerical treatment by the present author. The agreement is found to be excellent.

PACS: 98.80.Es, 98.80.Jk
Key-Words: cosmological parameters – lensing

CPT-P031-2010

1also at Université de Provence, Marseille, France, thomas.schucker@gmail.com
2Centre de Physique Théorique
 CNRS–Luminy, Case 907
 13288 Marseille Cedex 9, France
 Unité Mixte de Recherche (UMR 6207) du CNRS et des Universités Aix–Marseille 1 et 2
 et Sud Toulon–Var, Laboratoire affilié à la FRUMAM (FR 2291)
1 Introduction

Many applications of general relativity rely on two solutions of Einstein’s equation: (i) the outer Schwarzschild or – in presence of a cosmological constant – Kottler solution for tests in our solar system, (ii) the Friedmann solution used at cosmological scales. The Einstein-Straus solution \cite{1} merges both solutions. Such a joint solution is necessary for the understanding of weak and strong lensing because both are absent in Friedmann spaces for their symmetry. Also a naive superposition of Kottler’s and Friedmann’s solutions is incompatible with the non-linear nature of Einstein’s equations. Ishak et al. \cite{2} have used the Einstein-Straus solution to analyse the dependence of strong lensing on the cosmological constant. They present strong lensing in five clusters or galaxies including SDSS J1004+4112. More on this dependence can be found in the recent survey \cite{3}. In reference \cite{4} you find a detailed numerical analysis with numbers concerning SDSS J1004+4112. Last year Kantowski et al. \cite{5} have published an analytical formula for the bending angle of light in the Einstein-Straus solution and ZouZou et al. \cite{6} just accomplished the computation of the time delay in the same situation. The aim of the present paper is a comparison between the numerical results of \cite{4} and the analytical result of Kantowski et al. \cite{5}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{The two light rays emitted from the source S are refracted by the expanding Schücking sphere at four different radii and bent by the lens L while inside the spheres.}
\end{figure}

2 The set up

Let us summarise strong lensing in the Einstein-Straus solution using figure 1. Two light rays are emitted by the source S and propagate in Friedmann’s metric along straight lines. They pass inside the expanding Schücking sphere at different times and radii and are refracted. While the rays are inside the Schücking sphere they are bent towards its center by the gravitational field of the concentrated, spherical lens L of mass M sitting at the center of the Schücking sphere. Upon exiting the Schücking sphere, again at different times and radii, the rays are refracted and then continue their trip on straight
lines arriving at the Earth E under angles α and α' with $\alpha' < \alpha$. The primed ray arrives with a delay $\Delta t := t' - t$. To avoid overcharging the figure, most details of the unprimed ray are suppressed.

Since inside the Schücking sphere we use the exterior Kottler solution, the following hierarchies of length scales must be satisfied at all times:

$$s < r_{\text{cluster}} < r_P < r_{\text{Schü}}(t) < D_{\text{cluster}}/2 \quad \text{and} \quad r_{\text{Schü}} < r_{dS},$$

where $s = 2GM$ is the Schwarzschild radius of the cluster, r_{cluster} the radius of the cluster, r_P the peri-cluster, $r_{\text{Schü}}(t)$ the Schücking radius as a function of cosmological time t, D_{cluster} the typical distance between clusters and $r_{dS} = (\Lambda/3)^{-1/2}$ is the de Sitter radius. Details are given in references [4, 5].

3 Comparison

The main result of Kantowski et al. [5] is an explicit perturbative formula giving the bending angle α_{tot} as a function of the cosmological constant Λ, the lens mass M, the peri-cluster r_P and the angle $\tilde{\phi}_1$:

$$\alpha_{\text{tot}} = \frac{s}{2r_P} \cos \tilde{\phi}_1 \left[-4 \cos^2 \tilde{\phi}_1 - 12 \cos \tilde{\phi}_1 \sin \tilde{\phi}_1 \sqrt{\frac{1}{3} \Lambda r_P^2 + \frac{s}{r_P} \sin^3 \tilde{\phi}_1} \right. $$

$$+ \left. \frac{4}{3} \Lambda r_P^2 \left(2 - 5 \sin^2 \tilde{\phi}_1 \right) \right]$$

$$+ \left(\frac{s}{2r_P} \right)^2 \left[\frac{15}{4} (2\tilde{\phi}_1 - \pi) - 12 \log \left\{ \tan \frac{\tilde{\phi}_1}{2} \right\} \right] \sin^3 \tilde{\phi}_1$$

$$+ \cos \tilde{\phi}_1 \left(4 + \frac{33}{2} \sin \tilde{\phi}_1 - 4 \sin^2 \tilde{\phi}_1 + 19 \sin^3 \tilde{\phi}_1 - 64 \sin^5 \tilde{\phi}_1 \right)$$

$$+ O \left(\frac{s}{r_P} + \Lambda r_P^2 \right)^{5/2}. \quad (2)$$

This formula was derived under the assumption $s/r_P/\sin \tilde{\phi}_1 \ll 1$. Negative contributions to the bending angle are towards the lens. In principle the bending angle α_{tot}, the peri-cluster r_P and the angle $\tilde{\phi}_1$ are observable quantities, in practice they are not.

For concreteness, let us consider the images C and D (primed quantities) of the lensed quasar SDSS J1004+4112 where the following quantities were observed [7, 8]:

$$\alpha = 10'' \pm 10\%, \quad z_L = 0.68, \quad M = 5 \cdot 10^{13} M_\odot \pm 20\% \ (r_{\text{cluster}} = 3 \cdot 10^{21} \text{m}), \quad (3)$$

$$\alpha' = 5'' \pm 10\%, \quad z_S = 1.734, \quad \Delta t > 5.7 \text{ yr (oct. '07)}, \quad (4)$$

and let us use the spatially flat ΛCDM model with $\Lambda = 1.36 \cdot 10^{-52} \text{ m}^{-2} \pm 20\%$. In reference [4] the mass of the cluster M was computed numerically as a function of the cosmological constant and of the angles α and α' and using the measured redshift of the quasar z_S and of the cluster z_L. ZouZou et al. [6] have just published the time delay Δt as a function of the same variables. We recollect these numbers in table 1. With respect
to reference [4], table 1 has higher precision and more intermediate variables: besides ϕ_S, six others are exhibited, r_P, r'_P, ˜ϕ_1, ˜ϕ'_1, α_tot, α'_tot. Note the correction found by ZouZou et al. [6]: the third mass value 1.7981 · 10^{13} M_⊙ was wrongly reported as 1.7 · 10^{13} M_⊙ in reference [4].

The translation between the variables used by Kantowski et al. [5] and in reference [4] are given by the following relations, which can be read from figure 1:

\[\alpha_{tot} = \gamma_F + \gamma_F S + \varphi_{Schü S} - \varphi_{Schü E} - \pi, \]
\[\alpha'_{tot} = \gamma'_F + \gamma'_F S + \varphi'_{Schü E} - \varphi'_{Schü S} - \pi, \]
\[\tilde{\varphi}_1 = \frac{\pi}{2} - (\varphi_{Schü S} - \varphi_P), \]
\[\tilde{\varphi}'_1 = \frac{\pi}{2} - (\varphi'_P - \varphi'_{Schü S}), \]

where \(\varphi_{Schü S} - \varphi_P \) is obtained by integrating \(d\varphi/dr \),

\[\varphi_{Schü S} - \varphi_P = \frac{\pi}{2} - \arcsin \frac{r_P}{r_{Schü S}} \]
\[+ \frac{1}{2} \frac{s}{r_{Schü S}} \sqrt{r_{Schü S}^2 - 1} + \frac{1}{2} \frac{s}{r_{Schü S}} \sqrt{r_{Schü S}^2 - r_P} + O\left(\frac{s}{r_P} \right), \]

\[\varphi'_P - \varphi'_{Schü S} = \frac{\pi}{2} - \arcsin \frac{r'_P}{r_{Schü S}} \]
\[+ \frac{1}{2} \frac{s}{r'_{Schü S}} \sqrt{r'_{Schü S}^2 - 1} + \frac{1}{2} \frac{s}{r'_{Schü S}} \sqrt{r'_{Schü S}^2 - r'_P} + O\left(\frac{s}{r'_P} \right). \]

Finally the two columns \(\alpha_{tot_K} \) and \(\alpha'_{tot_K} \) were computed using the explicit formula (2) by Kantowski et al. For the indicated values we have: \(s/r_P \sim 10^{-5} \), \(\Lambda r_P^2 \sim 10^{-9} \) and \(s/r_P/\sin \tilde{\varphi}_1 \sim 10^{-3} \) meeting the working assumptions of equation (2). The agreement between the numerical results, \(\alpha_{tot} \) and \(\alpha'_{tot} \), and the analytical results, \(\alpha_{tot_K} \) and \(\alpha'_{tot_K} \), is excellent.

4 Conclusion

The analytical formula (2) by Kantowski et al. [5] for the bending angle is an important step towards understanding how the cosmological constant modifies the bending of light. This understanding is precious for two reasons.

- On the theoretical side, lensing in the Einstein-Straus solution is a concrete manifestation of the averaging problem, [9, 10]. While the Einstein-Straus solution requires the same cosmological constant inside and outside the Schücking sphere, the central mass is ‘renormalised’: \(M = 1.8 \cdot 10^{13} M_⊙ \) calculated from the angles \(\alpha \) and \(\alpha' \) in the above example differs significantly from the value \(M = 3.0 \cdot 10^{13} M_⊙ \) obtained from the Kottler solution alone with a moving observer [4]. Note also the non-monotonous dependence of \(M \) on \(\Lambda \).
• On the observational side, we are still looking for systems where these modifications are large enough with respect to the experimental uncertainties to be able to constrain the cosmological constant.

Two other questions remain open.

• In reality the lensed light rays pass through the galaxy or the cluster of galaxies, \(r_p \neq r_{\text{cluster}} \), see table 1 and \(r_{\text{cluster}} = 3 \cdot 10^{21} \) m. Therefore we have to use an inner Kottler solution [11] inside the Schücking sphere.

• A generalisation of the above calculations to non-spherical lenses is still out of reach.

References

[1] A. Einstein and E. G. Straus, “The influence of the expansion of space on the gravitation fields surrounding the individual star,” Rev. Mod. Phys. 17 (1945) 120, 18 (1946) 148, E. Schücking, “Das Schwarzschildscbe Linienelement und die Expansion des Weltalls,” Z. Phys. 137 (1954) 595.

[2] M. Ishak, W. Rindler, J. Dossett, J. Moldenhauer and C. Allison, “A New Independent Limit on the Cosmological Constant/Dark Energy from the Relativistic Bending of Light by Galaxies and Clusters of Galaxies,” Mon. Not. R. Astron. Soc. 388 (2008) 1279 [arXiv:0710.4726 [astro-ph]].

[3] M. Ishak and W. Rindler, “The Relevance of the Cosmological Constant for Lensing,” arXiv:1006.0014 [astro-ph.CO], Gen. Rel. Grav. in press.

[4] T. Schücker, “Strong lensing in the Einstein-Straus solution,” Gen. Rel. Grav. 41 (2009) 1595 [arXiv:0807.0380 [astro-ph]].

[5] R. Kantowski, B. Chen and X. Dai, “Gravitational Lensing Corrections in Flat ΛCDM Cosmology,” arXiv:0909.3308 [astro-ph.CO].

[6] K. E. Boudjemaa, M. Guenouche and S. R. ZouZou, “Time delay in the Einstein-Straus solution,” arXiv:1006.0080 [astro-ph.CO].

[7] N. Inada et al. [SDSS Collaboration], “A Gravitationally Lensed Quasar with Quadruple Images Separated by 14.62 Arcseconds,” Nature 426 (2003) 810 [arXiv:astro-ph/0312427], M. Oguri et al. [SDSS Collaboration], “Observations and Theoretical Implications of the Large Separation Lensed Quasar SDSS J1004+4112,” Astrophys. J. 605 (2004) 78 [arXiv:astro-ph/0312429], N. Ota et al., “Chandra Observations of SDSS J1004+4112: Constraints on the Lensing Cluster and Anomalous X-Ray Flux Ratios of the Quadruply Imaged Quasar,” Astrophys. J. 647 (2006) 215 [arXiv:astro-ph/0601700].
[8] J. Fohlmeister, C. S. Kochanek, E. E. Falco, C. W. Morgan and J. Wambsganss, “The Rewards of Patience: An 822 Day Time Delay in the Gravitational Lens SDSS J1004+4112,” arXiv:0710.1634 [astro-ph].

[9] G.F.R. Ellis, “ Relativistic cosmology its nature, aims and problems,” in General Relativity and Gravitation (D. Reidel Publishing Co., Dordrecht), ed. B. Bertotti, F. de Felice and A. Pascolini, pp. 215288 (1984).

[10] T. Buchert, “Dark Energy from Structure - A Status Report,” Gen. Rel. Grav. 40 (2008) 467 [arXiv:0707.2153 [gr-qc]].

[11] T. Sch"ucker, “Lensing in an interior Kottler solution,” arXiv:0903.2940 [astro-ph.CO], Gen. Rel. Grav. in press.
$\Lambda \pm 20\%$	$\alpha \pm 10\%$	$\alpha' \pm 10\%$	$-\varphi_S$ [°]	M [1013 M_\odot]	Δt [years]	r_P [1021 m]	r'_P [1021 m]	$\tilde{\varphi}_1$ [°]	$\tilde{\varphi}'_1$ [°]	α_{tot} [°]	$\alpha_{tot K}$ [°]	α'_{tot} [°]	$\alpha'_{tot K}$ [°]
$-$	±0	±0	10.57	1.8011	9.53	2.10205	1.05101	5405.6	2694.6	10.5589	10.5592	21.1352	21.1355
± 0	±0	±0	9.97	1.8200	9.72	2.25121	1.12559	4862.9	2423.8	9.96439	9.96462	19.9420	19.9424
$+$	±0	±0	9.03	1.7981	9.76	2.45579	1.22788	3682.1	1834.2	9.02778	9.02797	18.0625	18.0630
$-$	$+$	$+$	11.63	2.1794	11.53	2.31225	1.15611	5580.1	2781.1	11.6141	11.6144	23.2485	23.2490
± 0	$+$	$+$	10.97	2.2022	11.76	2.47633	1.23815	5019.8	2501.5	10.9606	10.9608	21.9366	21.9372
$+$	$+$	$+$	9.94	2.1757	11.81	2.70137	1.35067	3800.9	1892.9	9.93038	9.93061	19.8689	19.8695
$-$	$+$	$-$	13.74	1.7831	12.41	2.31226	0.94591	5967.4	2431.2	9.50059	9.50081	23.2492	23.2496
± 0	$+$	$-$	12.97	1.8018	12.68	2.47633	1.01303	5368.3	2186.8	8.96629	8.96648	21.9371	21.9376
$+$	$-$	$-$	11.74	1.7801	12.77	2.70138	1.10509	4064.9	1654.5	8.12411	8.12427	19.8692	19.8698
$-$	$-$	$+$	7.40	1.7831	6.60	1.89184	1.15612	4880.2	2976.2	11.6168	11.6171	19.0200	19.0203
± 0	$-$	$+$	6.98	1.8018	6.73	2.02608	1.23815	4390.2	2677.2	10.9626	10.9629	17.9470	17.9474
$+$	$-$	$+$	6.32	1.7801	6.74	2.21021	1.35067	3324.1	2026.2	9.93147	9.93170	16.2558	16.2562
$-$	$-$	$-$	9.51	1.4588	7.72	1.89185	0.94591	5219.1	2602.2	9.50313	9.50334	19.02175	19.0210
± 0	$-$	$-$	8.98	1.4741	7.87	2.02609	1.01303	4695.1	2340.7	8.96826	8.96845	17.9476	17.9479
$+$	$-$	$-$	8.13	1.4564	7.91	2.21022	1.1050	3555.0	1771.4	8.12514	8.12530	16.2561	16.2565

Table 1: The polar angle φ_S between Earth and source and the central mass M are computed numerically as functions of the cosmological constant and of the measured angles α and α'. ‘± 0’ stands for the central value, ‘$+$’ for the upper and ‘$-$’ for the lower experimental limit. Other intermediate variables are reported, r_P, r'_P, $\tilde{\varphi}_1$, $\tilde{\varphi}'_1$, α_{tot}, α'_{tot}. The last two variables are also computed using the explicit formula (2) by Kantowski et al. [5] yielding the values $\alpha_{tot K}$ and $\alpha'_{tot K}$. For completeness we reproduce the values for the time delay Δt found by ZouZou et al. [6].