Ecological substantiation of formation of the large city planting system

Dmitry K. Knyazev
Volgograd state technical university (VSTU), 28 V.I. Lenin avenue, Volgograd, 400005, Russian Federation

ABSTRACT: The subject of the research: the ecological justification of planting a large city in the context of the formation of conditions for its sustainable development. Objectives: to develop a methodology for determining priorities for planting to minimize the risks of damage to the environment and public health. Materials and methods: statistical and cartographic data, full-scale investigations of insolation regime and humidity characteristics, compositional city planning and technogenic nuances that cause the ecology of a million-industrial city (using an example of Volgograd). Research methods — statistical and cartograph-correlation analysis, geoinformation modeling, valuation technique for spread of pollution on the ground. Results: local and summary maps of atmospheric air pollution in Volgograd were built by industrial enterprises with the definition of the boundaries of pollution and the population under the influence; the zones of noise pollution and dispersion of carbon monoxide from motor vehicles (up to 180 m) were estimated, and as well as a higher content of heavy metals in soils near highways with a higher percentage of freight transport in the stream was detected; the oppressed state of the system of urban planting and below the normative provision of the population with plantations of common use were revealed. It has been established that sanitary protection zones do not have the proper density of green mass. Direct correlation between pollution levels and morbidity indicators, as well as inverse relationships between morbidity rates and the degree of planting are revealed. The author’s algorithm for calculating the requirement ratio for planting (KPO) is developed, which allows to assess the ecological picture of the analyzed territory, its potential for living / recreation of the citizens without the risk of causing direct harm or long-term health consequences, and the requirement for operational implementation environmental protection measures in the form of planting. Conclusions: 1) in Volgograd, foci of ecological disadvantage have clearly formed, under unfavorable weather conditions, at least 120,000 people will be exposed; 2) planting is in a depressed state, and the population’s supply of public green spaces is below the standard level by 2.5 times as a whole in the city and 3–4 times in some administrative districts; 3) the revealed correlation links testify to the negative impact of man-made impact factors and the compensation potential of the public access system of urban planting; 4) the developed author’s algorithm for calculating the requirement ratio for planting (KPO) allowed to carry out a comprehensive ecological zoning in Volgograd, to determine the priorities for environmental protection measures and from the ecological point of view to structure the concept of urban planting.

KEY WORDS: sustainable development of a large city, ecological role of green spaces, ecological bases of city planning, pollution levels and morbidity indicators, sanitary protection zones, ecological zoning.
INTRODUCTION

The formation of conditions for the successful development of the urban environment in the interests of future generations, the improvement and optimization of the qualitative indicators of the spheres of life activity of the population has always been a priority of city-planning policy and relevant scientific and practical research.

The search for answers to the multicomponent questions of safe, comfortable and progressive dynamics of urban-ecological structures is difficult in the absence of the scientific basis of decisions, clarification of the nuances of the functioning of the phenomenon/process of the urban organism as a whole or a separate urban planning unit in particular.

Unfavorable, and sometimes catastrophic for the natural environment, the experience of urbanization determines as a priority scientific and practical search for methods of protecting and improving the environment and public health in the conditions of functioning of the largest city. Significant impact is exerted by industrial enterprises and vehicles in the form of emissions of harmful substances, noise, vibration, soil contamination with heavy metals. Problems of the quality of living spaces, public areas, recreational areas require priority action and research, as high levels of ecological disadvantage of urban areas contribute to the decline in the health of the citizens.

The ecological basis and compensation potential of any city is formed mainly by greened areas [1, 2]. Grassy lawns, shrubs, tree species, a variety of flower beds create a certain ecological balance, acting as a counterbalance to the advancing aggressive urban environment (industrial zones, long roads, warehouse terminals, utilities and fuel and energy facilities, etc.). Along with the city’s clear life support systems (sewerage, water supply, electricity, etc.), green masses are the main environmental-forming component that forms quality indicators of the environment and public health [3, 4].

In urban structures with high anthropotechogenetic load, green masses are usually considered as an effective tool for protecting and improving the surrounding, their range of functions is diverse: filtration of pollutants, positive visual perception by citizens, air saturation with oxygen, improvement of temperature and humidity parameters, etc. [5, 6].

By means of practical observations, calculations and estimates by a number of authors, the absorption in one hour of about eight kilograms of carbon dioxide gas was estimated for vegetation planted on an area of one hectare, and the filtering potential of sulfuric pollutants reaches 3–3.5 times. Up to sixty tons of suspended particles per year settles on the leaf surfaces of tree-shrub plantings.

One of the means to restore eco-balance in the urban environment is the development/reconstruction of organized science-based green structures [7, 8]. At the present stage of the scientific and practical search, the composition and city-planning, natural and climatic, financial nuances of planting have been thoroughly studied, but the ecological justification for the development of the green systems of a large city is not enough, which is required in connection with the growth of urban transport, the increase in housing density, the functioning of industrial enterprises.

LITERATURE REVIEW

In scientific papers [9–11] the key aspects of urbanization and emerging economic, psycho-emotional, socio-cultural problems are described in detail, the negative dynamics of eco-structures are described. In this
regard, the most appropriate characteristics of the territories selected for construction, as well as target indicators of promising functional areas, facilities, processes are formulated.

Other sources [12–14] indicate the unacceptability of spontaneous development of various functional areas and deviations from the strategy of city-planning unity, and the importance of controlling the development of territories is shown.

The authors of the works [15–18] investigated promising city-ecological concepts of urbanization, based on eco-balance. There is a need for, and proposals to increase the effectiveness of existing urban green systems in the context of improving the city’s ecology [19].

Studies of many authors distinguish stable in time dust masses, emissions of industrial enterprises and vehicles as the leading causes of significant environmental and hygienic risks of populated areas [20–25]. Development of technical, technological, organizational, economic, legal solutions to minimize gas contamination and the corresponding consequences for public health is the subject of scientific research of scientists of different directions [26]. The functioning of the vast majority of urban facilities and infrastructure systems is accompanied by emissions of harmful substances into the air, and a significant number of urban residents are exposed to them [27, 28]. In this regard, the publications on the development and implementation of environmental protection measures, such as increasing the density of the green mass in the sanitary protection zones of stationary sources of emissions of chemical impurities, the device of filtration structures along busy highways, etc. are analyzed [29–31]. The number of sources is represented by a mathematical dependence of the efficiency of green designs from the geometric characteristics of the plantations, the configuration of the crown, roughness or hairiness of the leaves, the period of active life and development of plants.

The papers devoted to the assessment of the comfort of public facilities of the greening system of the largest cities are analyzed [32, 33].

A number of publications noted the rationality of the use of geoinformation technologies in the management of urban areas, including in the planning of projects to reduce harmful effects [34–36].

An important task in the development and implementation of environmental protection measures is to develop a methodology for determining the priorities for improving of the urban environment and public health, aimed at solving the most acute environmental problems of a large city and affecting the interests of the largest number of local population.

In the existing scientific and practical works in the field of city planning, the ecological problems of a large city are rarely analyzed, the combined mechanism of the action of various sources of harmful influence, there are no priorities in the implementation of priority urban environmental problems, and therefore the presented publication is relevant.

MATERIALS AND METHODS

Materials of the research were statistical and cartographic data, full-scale investigations of insolation regime and humidity characteristics, compositional-city planning and technogenic nuances that determine the ecological situation of a million industrial city (using an example of Volgograd).

The methods of research were statistical and cartographic-correlation analysis, geoinformation modeling, the evaluation technique for spread of pollution on the ground.

The relief of the city of Volgograd is cut by gully plantings. Industrial enterprises, communal and warehousing facilities are mainly located in the coastal lowlands, residential and public areas on the contrary are in the depths of the city up the terrain. This situation in combination with the highest percentage of wind recurrence (20 % east rhumb) forms a stable migration of pollutants to the zone of the settlement.

In Volgograd the leading stationary sources of air pollution are represented by oil refining, heat and power, metallurgical, chemical, metalworking, and machine-building industries. According to the data of field measurements of the Volgograd center for Hydro-meteorology and Environmental Monitoring in general over the last 5 years recorded 0.16…0.22 % of samples in excess of hygienic standards, and in general the air quality is characterized by an increased level of environmental pollution (APS = 5.4 on average over the past 5 years).

According to the form of the state statistical reporting of 2-TP-air and volumes of maximum permissible emissions (MPE) of the largest enterprises in Volgograd on the basis of the technique [37] dispersion of priority pollutants in the territory of Volgograd is simulated.

In researches of the impact of vehicles using the provisions [38], researches were conducted at 23 characteristic points on highways with the identification of the main characteristics of traffic steam and an assessment of the pollution zone with exhaust gases.

Urban vegetation of the model site is included in the regional environment-forming framework, structurally represented by plantations of microdistrict, district, urban importance, as well as suburban green areas. Their condition is considered by the controlling services and the scientific community as one of the key criteria of ecological well-being [39].

A survey of tree and shrub vegetation in Volgograd found its low quality. Chemical contamination, mechanical damage, lack of watering water in most cases led to a significant retreat of green mass from residential and public areas. Plantations of mainland territories are exposed to the influence of motor vehicles year-round, as
a result of which their ecological value is significantly reduced.

The level of oxygenation by means of urban planting does not meet the existing need, and therefore residents suffering from respiratory disorders, cardiovascular system, feel a serious malaise in a specific meteorological setting (5 % of the days in the annual cycle).

The distribution of urban vegetation in the administrative regions is uneven, represented mainly by narrow linear structures on city streets and boulevards. To a lesser extent, area green objects (parks, squares, sanitary protection zones) with high protective and health-improving potential are organized. The provision of residents with green common areas is only 10.8 m² per person at a rate of 25.

The sanitary gaps in large stationary sources of emissions, which are mainly in terms of distance to residential buildings but are totally unacceptable in terms of green mass, require close attention.

The screening analysis of morbidity of children aged 0–14 years as the most sensitive category of residents to the effects of environmental factors revealed a significant excess of morbidity in Volgograd over the indicators in the region and in the Russian Federation as a whole (table 1).

The analysis of conditions and features of formation of an ecological situation of Volgograd allows characterizing the city as the territory with high loading on environment, insufficient level of plantings by plantations of the general use, the increased level of morbidity of local population.

RESULTS OF THE RESEARCH

Based on the maps of the dispersion of priority pollutants of the MPE volumes of the largest enterprises, local and consolidated maps of atmospheric air pollution in Volgograd have been constructed with the definition of the boundaries of contaminated urban areas and the population under the influence. The results indicate a concentration of chemical air pollution in the southern and northern parts of the model site. Under adverse weather conditions, up to 120 thousand people can be exposed.

When assessing the role of road transport in the formation of the noise picture of Volgograd, the corresponding areas of distress are established - from 35 to 110 m from the highway border into the interior of the building. The negative impact of motor transport in the part of aerochemical pollution is estimated from 32 to 183 m from the main transport arteries.

Studies of the content in heavy metal soils have not revealed excess hygienic standards. However, higher concentrations of substances are noted in areas near highways with a higher percentage of freight traffic in the steam (fig. 1).

Analysis of planting of Volgograd was carried out on the basis of a specialized cartographic fund and a register of facilities of landscaping. The results of research papers and full-scale inspection of green spaces revealed a significant dispersion of vegetation formations in terms of the city.

Tree and shrub plantings, whose age is mostly fifty years old and characterized by clear signs of drying, are hardly capable of perceiving a wide range of urban influences, as well as resisting specific diseases and insect attacks. About twenty percent in the whole of the city is the share of plantings, characterized by extremely poor condition.

The forest vegetation of Volgograd is 4120 hectares, of which 29 % are needles, 45 % are hard-leaved species, 22 % are soft-leaved, 4 % are shrubs. The actual share of vegetation is less than the recommended value: on urban highways by 30 %, district value by 25 %, on residential streets by 48 %.

In order to confirm the negative impact of various kinds of pollution on the environment and public health, a correlation analysis was made between the levels of impact on urban areas, greenery and morbidity rates of the local population (table 2).

The table shows that there are significant direct correlations between the morbidity rates of the local population and the levels of urban environment, while the inverse correlation between the levels of morbidity and the degree of planting was revealed, which indicates the compensatory potential of planting systems in the issue of improving the urban environment and public health.

In order to substantiate the priorities in the implementation of planting works, the author’s algorithm for calculating the requirement ratio for planting is proposed:

\[
A = \sum_{i} (B_i \times C_i \times D_i),
\]

A — requirement ratio for planting; \(B\) — ratio characterizing the level of negative impact of the process / phenomenon; \(C\) — the value of the correlation between

Territory	Total (per 100 thousand children) child population (0–14 years)	Including diseases of the respiratory system				
	2014	2015	2016	2014	2015	2016
Volgograd	233266.0	223057.5	192057.6	162969.2	164599.3	140971.6
Volgograd region	166358.8	156139.7	155133.3	114169.8	109437.0	109208.1
Russian Federation	183499.4	177588.1	177438.1	117050.8	115757.8	117377
Table 2. Results of the correlation analysis between environmental factors and environmentally dependent diseases

Environmental factor	Cohorts of age groups	Affected organs and body systems										
	Total	Respiratory system	Asthma	Blood system	Neoplasms	Endocrine system	Circulatory system, incl. increased blood pressure	Digestion system	Skin diseases	Atopic dermatitis	Urinary system	Congenital malformation
Pollution by industrial emissions	Adults	0.85	0.84	0.59	0.30	0.39	0.77	0.94	0.6	0.31	0.37	
	Children	0.30	0.65	0.86	0.37							
	Teenagers	0.37										
Planting	Adults	–0.33	–0.57	–0.72	–0.30	–0.57	–0.58	–0.60				
	Children	–0.34										
	Teenagers	0.05										
Pollution by vehicle emissions	Adults	0.65	0.54	0.42	0.53							
	Children	0.90	0.42									
	Teenagers	0.57										
Noise from vehicles	Adults	0.48	0.59	0.076	0.41	0.87	0.74	0.9	0.57			
	Children	0.5										
	Teenagers	0.5										
Zinc	Adults	0.48	0.48	0.43								
	Children	0.78	0.32	0.58	0.62	0.3	0.49	0.39				
	Teenagers	0.38	0.49	0.51	0.61	0.65	0.65					
Copper	Adults	0.64	0.34	0.49	0.47	0.38	0.38					
	Children	0.43	0.43	0.41	0.47	0.41						
	Teenagers	0.41	0.47	0.41	0.41							
the process / phenomenon and the morbidity rate; \(D \) — number of population groups (children, adults, adolescents) with a correlation of more than 0.3; \(n \) — number of evaluated processes / phenomena.

* Note: ratio \(B \) is estimated in conventional units, depending on the ratio of the actual level of exposure to the normalized.

The requirement ratio for planting expresses the level of ecological well-being of the assessed territory and, accordingly, the requirement for the operational implementation of environmental protection measures in the form of planting. Classification of territories with different man-caused loads is as follows (table 3).

Approbation of the developed algorithm in the conditions of the model site made it possible to draw up a scheme for an integrated environmental assessment (fig. 2).

The greatest risk of harmful effects on human health arises from the emissions of industrial enterprises (the facts of exceeding standards in the residential district, 3 population groups under the influence, the correlation coefficient \(r_{\text{max}} = 0.86 \); in second place — emissions vehicles (the facts of exceeding standards, 2 population groups under the influence, \(r_{\text{max}} = 0.9 \)); in third place — the influence of heavy metals contained in the soil (2 population groups under the influence, correlation, medium, and strong forces, but not registered exceeding of hygienic standards in soil samples); in fourth place — noise pollution from vehicles (exceeding standards, one group of exposure to one type of disease, \(r_{\text{max}} = 0.5 \)).

The resulting ranking of influencing factor the urban environment of the model site (Volgograd) determines the following priorities in the improvement of the environment by means of planting:

- implementation of scientifically grounded planting projects for the sanitary protection zones of industrial enterprises, the formation of a system for protecting it (primarily from fires) and sustainable development (pest management, irrigation, etc.); first of all, the sanitary protection zones of the southern and northern industrial centers, which form the centers of aerochemical pollution in Krasnoarmeysk, Krasnooktyabrsky, and Tractorozavodsky districts, require sanitary measures;

- development of a system of landscaping of mainland territories that can significantly reduce the range

Ranking of the requirement ratio for planting	Assessment of the environmental situation	Requirement for planting	Territory strategy
0.3…3 Low man-caused load	Low	Low	it is recommended to develop without protective / health improvement projects
3…6Average man-caused load	Average	Average	It is allowed to develop during local protective / health improvement projects
6…9 High man-caused load	High	High	it is allowed to develop only during large-scale protective / health improvement projects

Fig. 2. Map of the integrated environmental assessment of Volgograd

Table 3. Classification according to the requirement ratio for planting
of dispersion of harmful emissions within the urban development;
• the development of grassy planting in the city, aimed at containing the movement of dust particles and heavy metals near the soil cover in the period of high wind speeds, which in the annual cycle for the conditions of Volgograd constitute a significant amount of time;
• formation on the main sections where soundproof screens are not rational, the dense structure of green spaces is not rational in order to reduce noise near residential buildings and recreation areas of the population.

CONCLUSIONS

1. On the basis of full-scale measurements and geo-information modeling, we obtained the polluting maps of the contamination of the model site (Volgograd and its suburban zone), identified environmental outbreaks.

2. In order to confirm the negative impact of environmental factors, a correlation analysis between the levels of exposure and morbidity of the population with ecologically dependent diseases was carried out, connections of medium and strong strength were identified, and age contingents were identified that were more at risk of developing ecologically dependent diseases.

3. In order to confirm the positive effect of planting, a correlation analysis was made between the level of planting of urban areas and the morbidity rates of the population with ecologically dependent diseases, inverse correlations of medium and strong strength were identified, age contingents most sensitive from the point of view of health to this kind of land improvement.

4. In order to substantiate the priorities in the implementation of environmental protection works, the authors propose an algorithm for calculating the requirement ratio for planting, which expresses the level of ecological well-being of the assessed territory and, accordingly, the requirement for prompt implementation of measures in the form of planting.

5. Approbation of the developed algorithm in the conditions of the model site made it possible to draw up a scheme for an integrated environmental assessment.

6. From the ecological point of view, the main directions of development of the urban planting are substantiated.

REFERENCES

1. Kamischova A.S., Mileschko L.P. Rol’ zelenich nasadennyh v obespechenii ekologicheskoy bezopasnosti gorodov [Role of green plantings in ensuring ecological safety of the cities]. Internet-zhurnal «Technologii technosfernoy bezopasnosti” [Online magazine “Technologii Tehnosfernoy Bezopasnosti”]. 2017, issue 2 (72), pp. 285–288. URL: http://academygps.ru/thb2017. (In Russian)

2. Jim C.Y. Sustainable urban greening strategies for compact cities in developing and developed economies. Urban Ecosystems, 2013, vol. 16, issue 4, pp. 741–761. DOI: 10.1007/s11252-012-0268-x.

3. Kozlov A.T., Cypluchina U.V., Manchenko E.V. Rol’ rekreacionnykh zon v formirovanii zhorov’ya cheholoveka [A role of green plantations in providing ecological safety of cities]. Kachestvo i zhizn’ [Quality and life]. 2017, no. 3 (15), pp. 76–78. (In Russian)

4. Adinolfi C., Suárez-Cáceres G.P., Carriñanos P. Relation between visitors’ behaviour and characteristics of green spaces in the city of Granada, southeastern Spain. Urban Forestry and Urban Greening. 2014, vol. 13, no. 3, pp. 534–542. DOI: 10.1016/j.ufug.2014.03.007.

5. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE, ICP Forests Programme Coordinating Centre. Hamburg.

6. Östberg J. Tree Inventories in the Urban Environment. Methodological development and new applications. Umeå, Acta Universitatis agriculturae Sueciae, 2013, vol. 29, 78 p.

7. Garanovich I. Osobennosti otseleneniya oblastnykh tsentrov Belarusi [Features of gardening of the regional centers of Belarus]. Nauka i innovatsii [Science and innovations]. 2015, vol. 3, no. 145, pp. 4–8. (In Russian)

8. Michaylova T.A., Schergina O.V. Ekologicheskie kriteriy dlya rascheta ploshchadi zelenykh nasazhdeniy v promyshlennykh gorodakh [Ecological criteria for calculation of the area of green plantings in the industrial cities]. Uspekhi sovremennoy estestvoznaniya [Advances in current natural sciences]. 2015, no. 6, pp. 123–128. (In Russian)

9. Cherepanov K.A. Problemy vybora optimal’nykh parametrov zastroyki v zavisimosti ot sosial’nykh, ekonomicheskikh i ekologicheskikh svoystv gorodskoy sredy [Problems of the choice of optimum parameters of building depending on social, economic and ecological properties of the urban environment]. Molodoy uchenyy [Young scientist]. 2014, no. 2, pp. 216–232. URL: https://moluch.ru/archive/61/9036/. (In Russian)

10. Haydukov D.S., Tasalov K.A. Realizatsiya kontseptsii ustoychivogo razvitiya v regional’nom upravlenii [Implementation of the concept of sustainable development in regional government]. Effektivnoe upravlenie: sb. mat. I nauch.-prakt. konf. MGU [Effective management : collection of materials I of the scientific
and practical conference MGU]. Moscow, Poligraf servis publ., 2015. 206 p. (In Russian)

11. Samoylenko N.N., Bayrachny V.B., Shapornev V.P., Kaklauskas A., Kofanova E.V. et al. Ekologicheskii ustoychivoe razvitie gorodov [Ecologically sustainable development of the cities]. Kharkiv. The sadiba plus is generous publ., 2015. 220 p. (In Russian)

12. Tarasova L.G. Gradostroitel’noe planirovanie i regulirovanie razvitiya kryupnykh gorodov s uchetom deystviya proissess samooorganizatsii : avtoref. dis. ... d.okh. [Town-planning planning and regulation of development of the large cities taking into account action of processes of self-organization: abstract of the thesis ... doctor of architecture]. Saratov, 2010. 49 p. (In Russian)

13. Jenks M., Jones C. Dimensions of the Sustainable City. Springer, 2010. 282 p.

14. Ecopolis: Urban Ecology & the Architecture of Ecopolis URL: http://ecopolis.com.au/theory/ecology.html.

15. Register R. Ecocities: building cities in balance with nature. Gabriola Island, BC, New Society Publishers, 2006. 368 p. URL: http://www.worldcat.org/title/ecocities-building-cities-in-balance-with-nature/oclc.

16. Roseland M. Eco-city dimensions: healthy communities, healthy planet. Gabriola Island, B.C., New Society Publishers, 224 p. URL: http://www.worldcat.org/title/eco-city-dimensions-healthy-communities-healthy-planet.

17. Krasnoshechkova N.S. Formirovanie prirodnoy sredy Volgogradskoy oblasti v 2017 godu [The report “About state of environment of the Volgograd region in 2017”]. Comitet prirodnyh resursov i ecologii Volgogradskoy oblasti [Committee of natural resources and ecology of the Volgograd region]. Volgograd, TEMPORA, 2017. 300 p. URL: http://oblikpriroda.volgograd.ru/upload/iblock/909/Doklad-v-Komitent-prir.-resursov.pdf. (In Russian)

18. Rybkina S.V. Rol’ zelenykh nasazhdeniy v otsenke kompleksnoy obshchestvennoy ustoichivosti indistrii na territorii oblasti [The role of green plantings in ecological safety of construction objects: abstract of the thesis ... candidate of technical sciences]. Volgograd, 2018. 26 p. (In Russian)

19. Hamamova A.A. Gradostroitel’noe obosnovanie razmeshcheniya promyshlennykh zon na territorii oblasti [Town-planning justification of placement of industrial zones in the territory of the Volgograd region]: abstract of the thesis ... candidate of technical sciences]. Moscow, Architecture-S, 2010. 183 p. (In Russian)

20. Antonovich A.O. Ekologicheskiy monitoring sostoyaniya zelenykh nasazhdeniy urbanizirovannykh territoriy [Environmental monitoring of a condition of green plantings of the urbanized territories: abstract of the thesis ... candidate of biological sciences]. Krasnoyarsk, 2013. 19 p. (In Russian)

21. Stetsenko S.E. Uchet faktora zapylennosti v formirovanii gorodskoy zastroyki: avtoref. diss. ... kand. tech. nauk [Accounting of a factor of dust content in forming of city building: abstract of the thesis ... candidate of technical sciences.] Moscow, 2006, pp. 18. (In Russian)

22. Maslov N.V. Gradostroitel’naya ekologiya [Town-planning ecology]. Moscow, Higher school publ., 2002. 284 p. (In Russian)

23. Marshchakov A.S. Ekologiya gorodskoy sredy [Ecology of the urban environment]. Metodicheskie ukazaniya dlya praktikheskih zanyatii i laboratornyh rabot [Methodical instructions for a practical training and laboratory works]. Moscow, MGSU publ., 2013. 64 p. (In Russian)

24. Doklad «O sostoyanii okruzhayushchey sredy Volgogradskoy oblasti v 2017 godu» [The report “About state of environment of the Volgograd region in 2017”]. Comitet prirodnyh resursov i ecologii Volgogradskoy oblasti [Committee of natural resources and ecology of the Volgograd region]. Volgograd, TEMPORA, 2017. 300 p. URL: http://oblikpriroda.volgograd.ru/up-load/iblock/909/Doklad-v-Komitent-prir.-resursov.pdf. (In Russian)

25. Abros’kin A.A. Dinamicheskaya sistema ekologicheskogo monitoringa atmosfernogo vozduха dlya obshcheniyi ekologicheskoy bezopasnosti stroitel’nykh ob”ektov: avtoref. diss. ... kand. tech. nauk [The dynamic system of environmental monitoring of atmospheric air for providing ecological safety of construction objects: abstract of the thesis ... candidate of technical sciences]. Volgograd, 2018. 26 p. (In Russian)

26. Knyazev D.K. Ekologicheskie osnovy planirovki rek-reatsionnykh zon kryupnykh gorodov Povolzh’ya: avtoref. diss. ... kand. tech. nauk [Ecological bases of the layout of recreational zones of the large cities of the Volga region: abstract of the thesis ... candidate of technical sciences]. Moscow, 2010. 19 p. (In Russian)

27. Knyazev D.K. Ekologicheskie osnovy planirovki rek-reatsionnykh zon kryupnykh gorodov Povolzh’ya: avtoref. diss. ... kand. tech. nauk [Ecological bases of the layout of recreational zones of the large cities of the Volga region: abstract of the thesis ... candidate of technical sciences]. Moscow, 2010. 19 p. (In Russian)

28. Knyazev D.K. Otsenka kompleksnogo regional’nogo zagryazneniya okruzhayushchei prirodnoy sredy Volgogradskoy oblasti [Evaluation of the Integrated Regional Pollution of Environment in the Volgograd Region]. Ezhegodnaya nauchno-prakticheskaya konferentsiya professorskogo-prepodavatel’skogo sostava i studentov VolgGASU : materialy v 3-kh ch. (g. Volgograd, 24–27 aptrelya 2007 g.) [Annual Scientific and Practical Conference of Academic Teaching Staff and Students of VolgGASU : proceedings in 3 parts (Volgograd, April, 24–27, 2007)]. Volgograd, VolgGASU publ., 2008, pp. 60–62. (In Russian)
29. Dokuchaeva V.F. Nasadjeniya i zagryaznenie atmosferiy [Plantings and air pollution]. URL: http://landscape.totalarch.com/planting_pollution_atmosphere. (In Russian)

30. Mahonin V.E. Ekologicheskaya rol’ zelenykh nasadjeniy v zashchite okruzhayushchey sredy ot vozdeystviya stressovykh faktorov goroda (na primere g. Orla) : avtoref. diss. ... kand. biol. nauk [Eco logical role of green plantings in environment protection against influence of stressful factors of the city (on the example of Oryol) : abstract of the thesis ... candidate of biological sciences]. Oryol, 2006. 19 p. (In Russian)

31. Rol’ zelenykh nasadjeniy v gorode [Role of green plantings in the city]. URL: http://www.ecosystemaspb.com/stat/rol-zelenykh-nasadjeniy-v-gorode. (In Russian)

32. Otserka ozeleneniy v gorode // Technological bases of geoinformation support of management of territories: abstract of the thesis ... candidate of technical sciences]. Moscow, 2011. 20 p. (In Russian)

33. Prokopenko V.V. Sovremennoe otserka metodov otserki pokazatelya komfortnosti ob”ektov obshchego pol’zovaniya sistemy ozeleneniya krympeshekh goro dov (na primere Volgograda) : avtoref. diss. ... kand. tech. nauk [Improvement of methods of assessment of an indicator of comfort of public objects of system of gardening of the largest cities (on the example of Vol gograd) : abstract of the thesis ... candidate of technical sciences]. Moscow, 2015. 21 p. (In Russian)

34. Matveev R.B. Metodicheskie osnovy geoinformacionnogo obespecheniya upravleniya razvitiem territorii : avtoref. diss. ... kand. tech. nauk [Methodological bases of geoinformation support of management of development of the territory : abstract of the thesis ... candidate of technical sciences]. Moscow, 2011. 20 p. (In Russian)

35. Zakabluk O.V., Zakabluk O.V. Primenyeniya GIS-tehnologiy v territorialnom planirovanii [Use of GIS-technologies in territorial planning]. Studencheskii forum: nauchny zhurnal [Student’s forum: scientific magazine]. Moscow, Izd. «MCNO» publ., 2017, no. 13 (13), 38 p. URL: https://nauchforum.ru/journal/stud/13. (In Russian)

36. Trubina L.K., Nikolaeva O.N., Mullayaro va P.I., Baranova E.I. Inventarizatsiya gorodskikh zelenykh nasadjeniy sredstvami GIS [Inventory of city green plantings by means of GIS]. Vestnik SGU IT [Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT)]. 2017, vol. 22, no. 3, pp. 107–116. URL: https://cyberleninka.ru/article/n/inventarizatsiya-gorodskih-zelenykh-nasadjeniy-sredstvami-gis. (In Russian)

37. OND-86. Metodika rascheta kontsentratsiy v atmosfernom vozdukh vrednykh veshestev, sodor-zhashchikhsya v ybrosakh predpriyatiy [A method of calculation of concentration in atmospheric air of the hazardous substances containing in emissions of the entities]. Vved. 01.01.1987. Leningrad, Gidrometizdat, 1987. 97 p. (In Russian)

38. Sidorenko V.F. Teoreticheskie i metodologicheskie osnovy ekologicheskogo stroitel’stva [Theoretical and methodological bases of ecological building]. Volgograd, Izd-vo VolgGASA publ., 2000. 200 p. (In Russian)

39. Gorodskie zelenye nasadjeniya Volgograd // City green plantings of Volgograd. URL: http://info-volgograd.ru/business/ecology5.htm. (In Russian)
5. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests / UNECE, ICP Forests Programme Coordinating Centre, Hamburg.

6. Östberg J. Tree inventories in the urban environment. Methodological development and new applications. Umeå : Acta Universitatis agriculturae Sueciae. 2013. Vol. 29. 78 p.

7. Гаринович И. Особенности озеленения областных центров Беларуси // Наука и инновации. 2015. Т. 3. № 145. С. 4–8.

8. Михайлова Т.А., Щербина О.В. Экологические критерии для расчета площади зеленых насаждений в промышленных городах // Успехи современного естествознания. 2015. № 6. С. 123–128.

9. Черепанов К.А. Проблемы выбора оптимальных параметров застройки в зависимости от социальных, экономических и экологических свойств городской среды // Молодой ученый. 2014. № 2 (61). С. 216–232. URL: https://moluch.ru/archive/61/9036/.

10. Хайдуков Д.С., Тасалов К.А. Реализация концепции устойчивого развития в региональном управлении // Эффективное управление : сб. мат. I науч.-практ. конф. МГУ. М. : Полиграф сервис, 2015. 206 с.

11. Самойленко Н.Н., Байрактаров В.Б., Шапошников В.П., Кавалюк А., Кошмана Е.В. и др. Экологически устойчивое развитие городов / под ред. И.И. Самойленко. Харьков : Щедра садиба плюс, 2015, 220 с.

12. Тарасова Л.Г. Градостроительное планирование и регулирование развития крупных городов с учетом действия процессов самоорганизации : автореф. дис. … канд. техн. наук. М., 2010. 49 с.

13. Jenks M., Jones C. Dimensions of the sustainable city. Springer. 2010. 282 p.

14. Ecopolis: urban ecology & the architecture of ecopolis. URL: http://ecopolis.com.au/ecology.html.

15. Register R. Ecocities : building cities in balance with nature. Gabriola Island, BC : New Society Publishers. 2006. 368 p. URL: http://www.worldcat.org/title/ecocities-building-cities-in-balance-with-nature/oclc.

16. Roseland M. Eco-city dimensions : healthy communities, healthy planet. Gabriola Island, B.C. : New Society Publishers. 224 р. URL: http://www.worldcat.org/title/eco-city-dimensions-healthy-communities-healthy-planet.

17. Краснощекова Н.С. Формирование природного каркаса в генеральных планах городов. М. : Архитектура-С, 2010, 184 с.

18. Хамавова А.А. Градостроительное обоснование размещения промышленных зон на территории субъекта РФ (на примере Ростовской области) : автореф. дис. … канд. техн. наук. М., 2013. 20 с.

19. Дарьянова Д.В. Направления преобразования открытых озелененных пространств Нижнего Новгорода : автореф. дис. … канд. арх. СПб., 2013. 23 с.

20. Антоневич О.А. Экологический мониторинг состояния зеленых насаждений урбанизированных территорий : автореф. дис. … канд. биол. наук. Красноярск, 2013. 19 с.

21. Стеценко С.Е. Учет фактора запыленности в формировании городской застройки : автореф. дис. … канд. техн. наук. М., 2006. 18 с.

22. Маслов И.В. Градостроительная экология. М. : Высшая школа, 2002. 284 с.

23. Маршалкович А.С. Экология городской среды. М. : МГСУ, 2013. 64 с.

24. Доклад «О состоянии окружающей среды Волгоградской области в 2017 году». Волгоград : ТЕМПОРА, 2018. 300 с. URL: http://oblkompriroda.volgograd.ru/upload/iblock/909/Doklad-v-Komitset-prir.-resursov.pdf.

25. Аброськин А.А. Динамическая система экологического мониторинга атмосферного воздуха для обеспечения экологической безопасности строительных объектов : автореф. дис. … канд. техн. наук. Волгоград, 2018. 26 с.

26. Рыбкина С.В. Роль зеленых насаждений в оздоровлении экологической обстановки городов // Ecological education and ecological culture of the population: materials of the VI international scientific conference on February 25–26, 2018. Prague : Vědecko vydavatelské centrum «Sociósfera-CZ», 2018. Pp. 79–84. URL: http://sociosphera.com/en/conference/2018/ecological_education_and_ecological_culture_of_the_population/.

27. Кизиев Д.К. Экологические основы планировки рекреационных зон крупных городов Поволжья : автореф. дис. … канд. техн. наук. М., 2010. 19 с.

28. Кизиев Д.К. Оценка комплексного регионального загрязнения окружающей природной среды Волгоградской области // Ежегодная научно-практическая конференция профессорско-преподавательского состава и студентов ВолгГАСУ : мат. в 3 ч. (г. Волгоград, 24–27 апреля 2007 г.). Волгоград : ВолГАСУ, 2008. С. 60–62.

29. Докучаева В.Ф. Насаждения и загрязнение атмосферы. URL: http://landscape.totalarch.com/planting_pollution_atmosphere.

30. Махонин В.Е. Экологическая роль зеленых насаждений в защите окружающей среды от воздействия стрессовых факторов города (на примере г. Орла) : автореф. дис. … канд. биол. наук. Орел, 2006. 19 с.

31. Роль зеленых насаждений в городе. URL: http://www.ecosystemaspb.com/stati/rol-zelenykh-nasazhdenij-v-gorode.

32. Оценка озеленения как фактора оптимизации городской экосистемы // Информационный ресурс «Киберпедия». URL: https://cyberpedia.su/9x1591f.html.

33. Прокопенко В.В. Совершенствование методов оценки показателя комфортности объектов общего пользования системы озеленения крупнейших
ECOLOGICAL SUBSTANTIATION OF FORMATION OF THE LARGE CITY PLANTING SYSTEM

С. 973–983

Вестник МГСУ
ISSN 1997-0935 (Print) ISSN 2304-6600 (Online)
Том 13 Выпуск 8, 2018

Принята в доработанном виде 13 июля 2018 г.
Одобрена для публикации 31 июля 2018 г.

О б а в т о р е: Князев Дмитрий Константинович — кандидат технических наук, доцент кафедры экологического строительства и городское хозяйство, Волгоградский государственный технический университет (ВолГТУ), 400005, г. Волгоград, пр-т им. В.И. Ленина, д. 28, dknjazev@mail.ru.