Next-to-leading order transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: the role of the three-gluon correlator

Ling-Yun Dai,1 Ling-Bo Kang,2 Alexei Prokudin,1 and Ivan Vitev2

1 Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606, USA
2 Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

(Dated: September 23, 2014)

We study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at $O(\alpha_s^2)$, where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function.

PACS numbers: 12.38.Bx, 12.39.St, 13.85.Hd, 13.88.+e

I. INTRODUCTION

In recent years, the study of single transverse-spin asymmetries (SSAs) has become a forefront of both experimental and theoretical research in QCD and hadron physics. With extensive experimentation underway and major theoretical advances, we have begun to obtain a deeper understanding of the nucleon structure and the partons’ transverse motion. A lot of progress was made in the understanding of the underlying QCD mechanisms that generate these asymmetries. The transverse momentum dependent (TMD) factorization scheme [1–3] and the twist-3 collinear factorization approach [4–6] were studied theoretically and applied phenomenologically to describe the SSAs in various processes, including Drell-Yan, semi-inclusive deep inelastic scattering (SIDIS), e^+e^- annihilation, and hadron and jet production in pp scattering. These two mechanisms were shown to be closely related and provide a unified picture for SSAs [7–8].

SIDIS is one of the key experimental tools to study the spin asymmetries and the associated nucleon structure. A particular twist-3 quark-gluon correlation function, often called Qiu-Sterman function [6], plays a crucial role in generating non-zero SSA and is related to the quark Sivers function [9, 10]. SSAs enabled by the Sivers function were extensively studied experimentally in the SIDIS process by HERMES [11], COMPASS [12–14] and JLab [15]. It was discovered theoretically that the Sivers function should change sign when measured in the Drell-Yan process with respect to the SIDIS process [16] and a number of experiments, including COMPASS, RHIC experiments, and Fermilab experiments, are planned to test this prediction experimentally. Knowledge of the evolution of the Sivers function [19–23] (and Qiu-Sterman function [24–30]) with the hard scale is very important for accurate phenomenological application and, eventually, for precise extraction of these functions. Next-to-leading order (NLO) corrections involving the Qiu-Sterman function were calculated for Drell-Yan [26] and SIDIS [31].

Special three-gluon correlation functions [24, 32–37] become relevant at NLO ($O(\alpha_s^2)$) and can be studied experimentally via open charm production in SIDIS [35, 37]. The purpose of our current paper is to study the role of three-gluon correlation functions in SIDIS, and their connection to the quark Sivers function. Concentrating on the photon-gluon fusion channel, we first calculate the contributions of the three-gluon correlation functions to the transverse spin-dependent differential cross section within the twist-3 collinear factorization formalism. We then demonstrate that our result can be matched onto the TMD factorization formalism at moderate hadron transverse momenta, and that we can extend the unification of the two mechanisms to the case involving three-gluon correlation functions. We also derive the coefficient functions widely used in the TMD evolution formalism. This is achieved by expanding the quark Sivers function (in the Fourier transformed b-space) in terms of a convolution of the coefficient functions and the three-gluon correlation functions.
In the second part of our paper, we study the NLO perturbative QCD corrections to the transverse momentum-weighted spin-dependent SIDIS cross section. Our primary focus is again on the contributions of the three-gluon correlation functions. By analyzing the collinear divergence structure, we identify the evolution kernel for the Qiu-Sterman function that includes the off-diagonal contribution from the three-gluon correlators. The hard coefficient function is evaluated at one-loop order.

II. SIVERS ASYMMETRY FROM THREE-GLUON CORRELATION FUNCTIONS

In this section we first study the contribution of the three-gluon correlation functions to the Sivers asymmetry in SIDIS within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism and the usual TMD factorization formalism at moderate hadron transverse momenta $\Lambda_{QCD} \ll p_{h\perp} \ll Q$. Coincidently, we derive the coefficient functions C_{n-g} by expanding the quark Sivers function in the conjugate Fourier b-space in terms of the three-gluon correlation functions. Such coefficient functions are a key ingredient of the usual TMD evolution formalism.

A. Three-gluon correlation functions

To define the twist-3 three-parton correlation functions, we consider a nucleon of momentum $p^\mu = p^+ \tilde{n}^\mu$, with $\tilde{n}^\mu = [1^+, 0^-]_{\perp}$ expressed in light-cone coordinates. We also define a conjugated light-like vector $n^\mu = [0^+, 1^-]_{\perp}$, which obeys $n \cdot \tilde{n} = 1$, $n^2 = 0$, and $\tilde{n}^2 = 0$. The widely studied twist-3 quark-gluon correlation function $T_{qF}(x_1, x_2)$ (the so-called “Qiu-Sterman” function) is defined as follows [38]:

$$M_{F,\alpha ij}^\alpha = g_s \int \frac{dy_1 dy_2}{2\pi} e^{ix_1 p^+ y_1^-} e^{i(x_2-x_1)p^+ y_2^-} \langle PS|\bar{\psi}_j(0)F_{a\alpha}^{\gamma+}(y_2^-) \gamma_i(\gamma_1^-)|PS\rangle$$

$$= \frac{1}{2} \left[T_{qF}(x_1, x_2) \gamma \cdot \tilde{n} \epsilon^{\alpha n \tilde{n} s} \frac{2}{N_c^2 - 1} (t^a)_{ij} + \cdots \right], \quad (1)$$

where we use the convention $\epsilon^{0123} = +1$, and $N_c = 3$ is the number of the colors.

Classification of three-gluon correlation functions was first considered in [32]. These functions have been studied in the context of open charm production in [33–37]. Generically, three-gluon correlation functions can be constructed as combinations of the gauge invariant correlation functions $\langle i f_{abc} F_{a\alpha}^{\gamma+} F_{b\beta}^{\gamma+} \rangle$ and $\langle d_{abc} F_{a\alpha}^{\gamma+} F_{b\beta}^{\gamma+} \rangle$, where f_{abc} and d_{abc} are the anti-symmetric and symmetric structure constants of the $SU(N_c)$ color group. With slightly different normalization from Ref. [35], we define the following three-gluon correlation function:

$$M_{F,\alpha ij}^{\alpha \gamma}(x_1, x_2) = g_s \int \frac{dy_1 dy_2}{2\pi} e^{ix_1 p^+ y_1^-} e^{i(x_2-x_1)p^+ y_2^-} \frac{1}{p^+} \langle PS|F_{b\beta}^{\gamma+}(0)F_{c\gamma}^{\gamma+}(y_1^-) F_{a\alpha}^{\gamma+}(y_2^-)|PS\rangle$$

$$= (C_{g}^{(d)})^{\alpha \beta \gamma}(x_1, x_2) - (C_{g}^{(f)})^{\alpha \beta \gamma}(x_1, x_2), \quad (2)$$

where the gluonic color projection operators $C_{g}^{(d)}$ and $C_{g}^{(f)}$ are given by

$$C_{g}^{(d)} = \frac{N_c}{(N_c^2 - 1)(N_c^2 - 4)} d_{abc}, \quad (3)$$

$$C_{g}^{(f)} = \frac{i}{N_c(N_c^2 - 1)} f_{abc}. \quad (4)$$

The functions $O^{\alpha \beta \gamma}(x_1, x_2)$ and $F^{\alpha \beta \gamma}(x_1, x_2)$ correspond to symmetric and anti-symmetric combinations of gluon field-strength tensors and read [35]

$$O^{\alpha \beta \gamma}(x_1, x_2) = g_s \int \frac{dy_1 dy_2}{2\pi} e^{ix_1 p^+ y_1^-} e^{i(x_2-x_1)p^+ y_2^-} \frac{1}{p^+} \langle PS|d_{b\gamma c} F_{a\alpha}^{\gamma+}(0)F_{b\beta}^{\gamma+}(y_1^-) F_{c\gamma}^{\gamma+}(y_2^-)|PS\rangle$$

$$= \frac{1}{2} \left[O(x_1, x_2) g_{\perp}^{\alpha \beta} \epsilon^{\gamma n \tilde{n} s} + O(x_2, x_1 - x_2) g_{\perp}^{\beta \gamma} \epsilon^{\alpha n \tilde{n} s} + O(x_1, x_1 - x_2) g_{\perp}^{\gamma \alpha} \epsilon^{\beta n \tilde{n} s} \right], \quad (5)$$

$$N^{\alpha \beta \gamma}(x_1, x_2) = g_s \int \frac{dy_1 dy_2}{2\pi} e^{ix_1 p^+ y_1^-} e^{i(x_2-x_1)p^+ y_2^-} \frac{1}{p^+} \langle PS|i f_{b\gamma c} F_{a\alpha}^{\gamma+}(0)F_{c\gamma}^{\gamma+}(y_1^-) F_{a\beta}^{\gamma+}(y_2^-)|PS\rangle$$

$$= \frac{1}{2} \left[N(x_1, x_2) g_{\perp}^{\alpha \beta} \epsilon^{\gamma n \tilde{n} s} - N(x_2, x_2 - x_1) g_{\perp}^{\beta \gamma} \epsilon^{\alpha n \tilde{n} s} - N(x_1, x_1 - x_2) g_{\perp}^{\gamma \alpha} \epsilon^{\beta n \tilde{n} s} \right], \quad (6)$$

In the second part of our paper, we study the NLO perturbative QCD corrections to the transverse momentum-weighted spin-dependent SIDIS cross section. Our primary focus is again on the contributions of the three-gluon correlation functions. By analyzing the collinear divergence structure, we identify the evolution kernel for the Qiu-Sterman function that includes the off-diagonal contribution from the three-gluon correlators. The hard coefficient function is evaluated at one-loop order.
where $g^\alpha_\perp = -g^{\alpha\beta} + \bar{n}^\alpha n^\beta + \bar{n}^\beta n^\alpha$. Our definitions are related to those of Refs. [33, 35] by Koike et al. as follows:

\[O(x_1, x_2) = 8\pi M O(x_1, x_2)|_{\text{Koike}}, \]
\[N(x_1, x_2) = 8\pi M N(x_1, x_2)|_{\text{Koike}}, \]

with M being the nucleon mass.

B. Spin-dependent cross section for SIDIS: three-gluon correlation functions

We now consider the contribution of the three-gluon correlation functions to the Sivers asymmetry for the SIDIS process, $e(\ell) + p(p, s_\perp) \rightarrow e(\ell') + h(p_h) + X$. This process has already been studied in [35]. We will reproduce the result here, then compute its low $p_h \perp \ll Q$ limit and study the matching to the TMD factorization formalism.

The differential cross section that includes the Sivers effect, i.e. the $\sin(\phi_h - \phi_s)$ module, can be written as follows [31, 39, 40]:

\[
\frac{d\sigma_{\text{Sivers}}}{dxdydz_h d^2p_{h\perp}} = \sigma_0 \left[F_{UU} + \sin(\phi_h - \phi_s) F_{UT}^{\sin(\phi_h - \phi_s)} \right],
\]

where F_{UU} and $F_{UT}^{\sin(\phi_h - \phi_s)}$ are the spin-averaged and transverse spin-dependent structure functions, respectively. σ_0 is given by

\[
\sigma_0 = \frac{2\pi a^2_{em} (1 + (1 - y)^2)}{Q^2},
\]

and x_B, y, and z_h are the standard SIDIS kinematic variables,

\[
S = (p + \ell)^2, \quad x_B = \frac{Q^2}{2p \cdot q}, \quad y = \frac{p \cdot q}{p \cdot \ell} = \frac{Q^2}{x_B S}, \quad z_h = \frac{p \cdot p_h}{p \cdot q}.
\]

The transverse spin-dependent differential cross section $d\Delta\sigma/dx_B dydz_h d^2p_{h\perp}$ is the main focus of this section. It can be written as [35]

\[
\frac{d\Delta\sigma}{dx_B dydz_h d^2p_{h\perp}} = \frac{\alpha_{em} y}{32\pi^3 Q^4 z_h} L^{\mu\nu} W^{\mu\nu}(p, q, p_h),
\]

where $L^{\mu\nu} = 2(\ell_{\mu} \ell'_{\nu} + \ell'_{\mu} \ell_{\nu}) - Q^2 g_{\mu\nu}$ is the leptonic tensor and $W^{\mu\nu}$ is the hadronic tensor. The hadronic tensor $W^{\mu\nu}$ is related to the partonic tensor $w^{\mu\nu}$ by

\[
W^{\mu\nu}(p, q, p_h) = \int \frac{dz}{z^2} D_{h/q}(z) w^{\mu\nu}(p, q, p_c),
\]

where $D_{h/q}(z)$ is the fragmentation function of a quark q into a hadron h, and the parton momentum $p^{\mu}_c = p^{\mu}_h / z$. In the following (and throughout the paper) we will only consider the so-called metric contribution [11, 14], i.e. we contract $w^{\mu\nu}$ with $-g^{\mu\nu}$ and write $w = [-g^{\mu\nu} w^{\mu\nu}]$ below. Within the collinear factorization formalism, the transverse spin-dependent cross section is a twist-3 effect. To extract this effect, one has to perform a collinear expansion around a vanishing parton k_\perp. For three-gluon correlation functions, the contribution can be written as [35]

\[
w(p, q, p_c) = \int \frac{dx_1}{x_1} \frac{dx_2}{x_2} \frac{\partial}{\partial k_\perp^\lambda} \left[H^{abc}_{\rho\sigma}(p, q, p_c, k_\perp) p^\rho \right]_{k_\perp \to 0} \omega_\rho^{\mu} \omega_\sigma^{\nu} \omega_\lambda^{\gamma} M^{3\gamma\delta}_{F,abc}(x_1, x_2),
\]

with $\omega^{\mu}_\rho = \delta^{\mu}_\rho - \bar{n}^\rho n^\mu$. A generic diagram to calculate the photon-gluon hard-part function $H^{abc}_{\rho\sigma}$ is sketched in Fig. 1.

Using Eqs. (2), (5), and (6), we can rewrite Eq. (13) as

\[
w(p, q, p_c) = \int \frac{dx_1}{x_1} \frac{dx_2}{x_2} \frac{\partial}{\partial k_\perp^\lambda} \left[H^{abc}_{\rho\sigma}(p, q, p_c, k_\perp) p^\rho \right]_{k_\perp \to 0} F_{NO}^{\rho\sigma\lambda}(x_1, x_2),
\]

where $F_{NO}^{\rho\sigma\lambda}(x_1, x_2)$ represents

\[
F_{NO}^{\rho\sigma\lambda}(x_1, x_2) = (C^{(d)}_g)^{abc} \left(O(x_1, x_2) g^{\rho}_\perp \epsilon^{\lambda\mu\nu} + O(x_2, x_2 - x_1) g^{\sigma}_\perp \epsilon^{\mu\nu} + O(x_1, x_1 - x_2) g^{\lambda}_\perp \epsilon^{\sigma\mu\nu} \right)
- (C^{(f)}_g)^{abc} \left(N(x_1, x_2) g^{\rho}_\perp \epsilon^{\lambda\mu\nu} - N(x_2, x_2 - x_1) g^{\sigma}_\perp \epsilon^{\mu\nu} - N(x_1, x_1 - x_2) g^{\lambda}_\perp \epsilon^{\sigma\mu\nu} \right).
\]
FIG. 1. Generic diagram that is used to calculate the hard-part function $H_{ρδσ}^ABC$.

The relevant Feynman diagrams for the transverse momentum dependent differential cross section $d∆σ/dx_Bdydz_Bd^2p_{t⊥}$ at leading order (LO) are listed in Fig. 2. The technique to extract twist-3 contributions is well explained in the literature. The idea is that the so-called “pole-propagators” and the on-mass-shell condition for the unobserved parton in the final-state lead to kinematic $δ$-functions, which can be used to integrate out the parton momentum fractions x_1 and x_2. These parton momentum fractions generally depend on $k_{t⊥}$, and, thus, are expanded with respect to $k_{t⊥}$. After some algebraic manipulation we have the following “master formula”:

$$w(p, q, p_c) = (v_1 - v_2)_λ \frac{1}{x^2} \left[\frac{dF_{ρσλ}^NO(x, x)}{dx} - \frac{2F_{ρσλ}^NO(x, x)}{x} \right] H_{ρσ}^L(x, x, 0) + \frac{F_{ρσλ}^NO(x, x)}{x^2}$$

$$\times \lim_{k_{t⊥} → 0} \frac{∂}{∂k_{t⊥}} \left[H_{ρσ}^L(x + (v_2 - v_1) · k_{t⊥}, x + v_2 · k_{t⊥}, k_{t⊥}) - H_{ρσ}^R(x, x + v_1 · k_{t⊥}, k_{t⊥}) \right],$$

where $H_{ρσ}^L$ are remainders of the hard parts $[H_{ρσ}^{abc}]$ given in Fig. 2, while $H_{ρσ}^R$ are the mirror diagrams where the middle gluon is to the right of the unitary cut. The two four-vectors v_1 and v_2 are given by

$$v_1^μ = -\frac{2x}{t} p_c^μ, \quad v_2^μ = -\frac{2x}{t} p_c^μ,$$

with the partonic Mandelstam variables

$$s = (xp + q)^2, \quad t = (q - p_c)^2, \quad u = (xp - p_c)^2.$$

FIG. 2. Feynman diagrams that enter the calculation of the photon-gluon fusion hard part. The mirror diagrams, where middle gluon is to the right of the unitary cut, also contribute and are included in our final result.
are for the quark-gluon correlation function T
integration by parts in Eq. (19) to convert all the derivative terms to non-derivative terms, as well as the fact that
where ϵ
are consistent with each other in the kinematic region Λ
with \hat{g}
we find that
One simply realizes that \[
\delta
\begin{equation}
\frac{d\Delta\sigma}{dx_B dy dz d^2 p_{h\perp}} = \sigma_0 \left(\epsilon^{\alpha \beta} s_{\perp} \epsilon^{\alpha \beta}_{\perp} p_{h\perp}^2 \sum_q e_q^2 \left(\frac{1}{4} \right) \frac{\alpha_s}{2\pi^2} \int \frac{dx}{x} \frac{dz}{z} D_{h/q}(z) \frac{1}{z Q^2} \delta \left(p_{h\perp}^2 - z_h Q^2 \left(\frac{1}{x} - 1 \right) \frac{1}{z} - 1 \right) \right) \times \left\{ \left(\frac{dO(x, x)}{dx} - \frac{2O(x, x)}{x} \right) H_1 + \left(\frac{dO(x, 0)}{dx} - \frac{2O(x, 0)}{x} \right) H_2 \right\} + \left\{ \left(\frac{dN(x, x)}{dx} - \frac{2N(x, x)}{x} \right) H_1 - \left(\frac{dN(x, 0)}{dx} - \frac{2N(x, 0)}{x} \right) H_2 \right\} \right\},
\end{equation}
\]
where $\epsilon^{\alpha \beta}$ is a two-dimensional anti-symmetric tensor with $\epsilon^{12} = 1$, and thus $\epsilon^{\alpha \beta} s_{\perp} \epsilon^{\alpha \beta}_{\perp} p_{h\perp} = p_{h\perp} \sin(\phi_h - \phi_s)$. The hard-part functions $H_{i=1,2,3,4}$ have the following expressions:
$$
H_1 = \frac{\hat{x} \left[2z^2 - 2\hat{z} + (1 - 2\hat{z} + 2\hat{z}^2) \right]}{\hat{z}^2 (1 - \hat{z})^2},
$$
$$
H_2 = \frac{\hat{x} \left[4z^2 - 4\hat{z} + (1 - 2\hat{z} + 2\hat{z}^2) \right]}{\hat{z}^2 (1 - \hat{z})^2},
$$
$$
H_3 = \frac{2\hat{x} \left(1 - 2\hat{z} \right)}{\hat{z}^2 (1 - \hat{z})^2},
$$
$$
H_4 = \frac{2\hat{x} \left(1 - 4\hat{z} \right)}{\hat{z}^2 (1 - \hat{z})^2},
$$
with $\hat{x} = x_B / x$ and $\hat{z} = z_h / z$. Our results are consistent with those in [33].

C. Matching onto the TMD factorization formalism

It has been demonstrated that the collinear twist-3 factorization formalism and the TMD factorization formalism are consistent with each other in the kinematic region $\Lambda_{QCD} \ll p_{h\perp} \ll Q$, see e.g., [2, 8, 15, 49]. These demonstrations are for the quark-gluon correlation function $T_{qF}(x_1, x_2)$ only. In this paper we generalize the known correspondence to include the three-gluon correlation functions. First, we study the limit of the transverse spin-dependent cross section in Eq. (19) derived from the collinear twist-3 factorization formalism when $p_{h\perp} \ll Q$. Using [46]
$$
\delta \left(p_{h\perp}^2 - z_h^2 Q^2 \left(\frac{1}{x} - 1 \right) \frac{1}{z} - 1 \right) \right|_{p_{h\perp} \ll Q} = \left(1 - \hat{x} \right) \left(1 - \hat{z} \right) \left(\frac{1}{1 - \hat{x}} \right) \left(\frac{1}{1 - \hat{z}} \right) \left(\frac{1}{1 - \hat{x}} \right) \left(\frac{1}{1 - \hat{z}} \right) \delta (1 - \hat{x}) \delta (1 - \hat{z}) \ln \left(\frac{z_h^2 Q^2}{p_{h\perp}^2} \right),
$$
we find that
$$
\frac{d\Delta\sigma}{dx_B dy dz d^2 p_{h\perp}} \bigg|_{p_{h\perp} \ll Q} = -z_h \sigma_0 \left(\epsilon^{\alpha \beta} s_{\perp} \epsilon^{\alpha \beta}_{\perp} p_{h\perp}^2 \sum_q e_q^2 \frac{\alpha_s}{2\pi^2} \int \frac{dz}{z} D_{h/q}(z) \delta (1 - \hat{z}) \right.
\left. \times \int \frac{dx}{x} P_{q\rightarrow g}(\hat{x}) \left(\frac{1}{2} \right) \right) O(x, x) + O(x, 0) + N(x, x) - N(x, 0),
$$
where $P_{q\rightarrow g}$ is the usual gluon-to-quark splitting kernel
$$
P_{q\rightarrow g}(\hat{x}) = T_R \left[\hat{x}^2 + (1 - \hat{x})^2 \right],
$$
with the color factor $T_R = \frac{4}{3}$. It is instructive to point out that to arrive at the final result in Eq. (25) we have used integration by parts in Eq. (19) to convert all the derivative terms to non-derivative terms, as well as the fact that $O(x, x), O(x, 0), N(x, x), N(x, 0)$ vanish when parton momentum fraction $x \rightarrow 1$.

1 One simply realizes that $-g^{\mu\nu} w_{\mu\nu} = \left(2V_1^{\mu\nu} - 3V_2^{\mu\nu} \right) w_{\mu\nu}$ in [33].
On the other hand, the TMD factorization formalism \[13\] for the SIDIS process gives

\[
\frac{d\Delta\sigma}{dx_Bdydz_hd^2p_{h\perp}} = \sigma_0 \sum_q e_q^2 \int d^2k_\perp d^2p_{\perp} \lambda_\perp^2 \left(z_hk_\perp + \tilde{p}_\perp + \tilde{\lambda}_\perp - \tilde{p}_{h\perp}\right) \\
\times \frac{e^{\alpha_s g_\perp k^2}}{M} f^{I_q}_{1T}(x_B, k^2_\perp) D_{h/q}(z_h, p^2_\perp) S(\lambda_\perp) H(Q^2),
\]

where \(f^{I_q}_{1T}(x_B, k^2_\perp) \) is the quark Sivers function, \(D_{h/q}(z_h, p^2_\perp) \) is the transverse momentum dependent fragmentation function, \(S(\lambda_\perp) \) and \(H(Q^2) \) denotes the soft and hard factors, respectively. Note that here both \(f^{I_q}_{1T}(x_B, k^2_\perp) \) and \(D_{h/q}(z_h, p^2_\perp) \) are the so-called unsubtracted TMD functions \[3\]. Since we are mainly interested in the matching for three-gluon correlation functions, we thus use the leading order expansion for all other factors

\[
D_{h/q}(z_h, p^2_\perp) = D_{h/q}(z_h)\delta^2(p_\perp), \quad S(\lambda_\perp) = \delta^2(\lambda_\perp), \quad H(Q^2) = 1.
\]

At the same time, we just need the expansion of the quark Sivers function \(f^{I_q}_{1T}(x_B, k^2_\perp) \) in terms of the three-gluon correlation functions when \(k_\perp \gg \Lambda_{\text{QCD}} \). The relevant Feynman diagrams are shown in Fig. \[3\]. We perform the same collinear expansion similar to Eqs. \[18\] and \[19\], and the final result can be written as

\[
\frac{1}{M} f^{I_q}_{1T}(x_B, k^2_\perp) = -\frac{\alpha_s}{2\pi} \frac{1}{(k^2_\perp)^2} \int_{x_B}^1 dx P_{q\rightarrow g}(\hat{x}) \left(\frac{1}{2}\right) \left[O(x, x) + O(x, 0) + N(x, x) - N(x, 0)\right],
\]

where to arrive at the above result we have again used integration by parts to convert all derivative terms to non-derivative terms.

![Fig. 3. Feynman diagram for expansion of the quark Sivers function in terms of the three-gluon correlation function. The mirror diagram where middle gluon is to the right of the unitary cut also contributes and is included in our final result.](image)

Substituting this expansion, Eq. (29), into Eq. (27), we find:

\[
\frac{d\Delta\sigma}{dx_Bdydz_hd^2p_{h\perp}} \bigg|_{p_{h\perp} \ll Q} = -z_h\sigma_0 \left(\frac{e^{\alpha_s g_\perp k^2}}{\lambda_{\perp p_{h\perp}}^2}\right) \frac{1}{(p^2_{h\perp})^2} \sum_q e_q^2 \frac{\alpha_s}{2\pi^2} \int \frac{dz}{z} D_{h/q}(z)\delta(1 - \hat{z}) \\
\times \int \frac{dx}{x} P_{q\rightarrow g}(\hat{x}) \left(\frac{1}{2}\right) \left[O(x, x) + O(x, 0) + N(x, x) - N(x, 0)\right].
\]

It is evident that the above result reproduces the transverse spin-dependent differential cross section in Eq. (25), the one derived from the collinear twist-3 factorization formalism. We have thus demonstrated the consistency between the collinear twist-3 factorization formalism and TMD factorization formalism for the twist-3 three-gluon correlation functions at moderate transverse momenta, \(\Lambda_{\text{QCD}} \ll p_{h\perp} \ll Q \).

Another result from our calculation above will be to obtain the QCD evolution equation of the Qiu-Sterman function \(T_{q,F}(x, x) \), specifically the contribution from the three-gluon correlation functions. To achieve this, we start from Eq. (29) and using the following identify on the left hand side \[32, 50\],

\[
T_{q,F}(x_B, x_B, \mu^2_F) = -\frac{1}{M} \int \frac{d^2k_\perp d^2k_{\perp}}{2\pi^2} f^{I_q}_{1T}(x_B, k^2_\perp) [\text{SIDIS}],
\]

we find (in the cut-off scheme)

\[
T_{q,F}(x_B, x_B, \mu^2_F) = \int \frac{d^2k_\perp}{2\pi} \frac{\alpha_s}{k^2_\perp} \left(\frac{1}{2}\right) \int_{x_B}^1 dx \frac{x}{x^2} P_{q\rightarrow g}(\hat{x}) \left(\frac{1}{2}\right) \left[O(x, x) + O(x, 0) + N(x, x) - N(x, 0)\right].
\]
The evolution equation corresponding to the above expression is then
\[
\frac{\partial}{\partial \ln \mu_F^2} T_{q,F}(x_B, x_B, \mu_F^2) = \frac{\alpha_s}{2\pi} \int_{x_B}^1 \frac{dx}{x} P_{q\to g}(\hat{x}) \left(\frac{1}{2} \right) \left[O(x, x, \mu_F^2) + O(x, 0, \mu_F^2) + N(x, x, \mu_F^2) - N(x, 0, \mu_F^2) \right],
\]
which is exactly the same as the one derived before from different approaches[24,27,51]. In the next section, we will perform a complete NLO calculation for the \(p_{h\perp} \)-weighted transverse spin-dependent cross section, and re-derive this evolution equation using dimensional regularization.

D. Coefficient functions in TMD evolution formalism

To study the QCD evolution of TMDs, one usually defines the TMDs in the Fourier conjugated 2-dimensional coordinate space - the so-called “\(b \)-space”. For the quark Sivers function, the common definition in \(b \)-space is the following19,23:

\[
f_{1T}^{\perp q(\alpha)}(x_B, b) = \frac{1}{M} \int d^2 k_\perp \ e^{-ik_\perp \cdot b} f_{1T}^{\perp q}(x_B, k_\perp^2).
\]

In the perturbative region \(1/b \gg \Lambda_{\text{QCD}} \), one can expand the above quark Sivers function \(f_{1T}^{\perp q(\alpha)}(x_B, b) \) in terms of the corresponding collinear functions, i.e. the twist-3 Qiu-Sterman function \(T_{q,F}(x_1, x_2) \) as well as the three-gluon correlation functions \(O(x_1, x_2) \) and \(N(x_1, x_2) \). If we collectively denote them as \(f^{(3)}(x_1, x_2) \), we can write formally

\[
f_{1T}^{\perp q(\alpha)}(x_B, b) = \left(\frac{ib^\alpha}{2} \right) C_{q\to i}(\hat{x}_1, \hat{x}_2) \otimes f_i^{(3)}(x_1, x_2),
\]

where \(C_{q\to i}(\hat{x}_1, \hat{x}_2) \) is the coefficient function with \(\hat{x}_{1,2} = x_B/x_{1,2} \). The precise meaning of the convolution \(\otimes \) will be defined below, where the inclusion of the factor \(\left(\frac{ib^\alpha}{2} \right) \) will also become clear.

At leading order, one has19,20,23:

\[
f_{1T}^{\perp q(\alpha)}(x_B, b) = \left(\frac{ib^\alpha}{2} \right) \int_{x_B}^1 \frac{dx}{x} \delta(1 - \hat{x}) T_{q,F}(x, x),
\]

which tells us that the coefficient function \(C_{q\to i} \) at leading order is given by

\[
C_{q\to i} = \delta q \delta(1 - \hat{x}).
\]

Now, we will study the coefficient function \(C_{q\to g} \) from the expansion of the quark Sivers function in terms of three-gluon correlation functions. To start, we redo the calculation which leads to Eq. (29) 2 in \(n = 4 - 2\epsilon \) dimensions, and obtain the following result:

\[
\frac{1}{M} f_{1T}^{\perp q}(x_B, k_\perp^2) = -\frac{\alpha_s}{2\pi^2} \left(\frac{4\pi^2\mu^2}{1 - \epsilon} \right)^\epsilon \int_{x_B}^1 \frac{dx}{x^2} \left\{ \frac{1}{2} \right\} \left[O(x, x) + O(x, 0) + N(x, x) - N(x, 0) \right]
- \frac{\epsilon}{4} \left[O(x, x) + N(x, x) \right] - \epsilon(1 - \hat{x}) \left[O(x, 0) - N(x, 0) \right],
\]

where \(\mu \) comes from the replacement \(g \to g\mu' \) in \(n = 4 - 2\epsilon \) dimensions. The factor \(\frac{1}{1 - \epsilon} \) on the right hand side comes from the following replacement in Eqs. (5) and (9):

\[
\frac{1}{2} \to \frac{1}{2(1 - \epsilon)}.
\]

Performing the Fourier transform

\[
f_{1T}^{\perp q(\alpha)}(x_B, b) = \frac{1}{M} \int d^2 k_\perp \ e^{-ik_\perp \cdot b} f_{1T}^{\perp q}(x_B, k_\perp^2),
\]

2 Note the proper defined TMDs depend on two additional scales, i.e., the factorization scale \(\mu \) and another scale \(\zeta \) associated with rapidity divergence. Here we suppress both dependences for simplicity.
we finally obtain the quark Sivers function in b-space in terms of the three-gluon correlation functions:

\[f_1^{Tq(\alpha)}(x_B,b) = \left(\frac{ib^\alpha}{2} \right) \left\{ \frac{\alpha_s}{2\pi} \left(- \frac{1}{\epsilon} \right) \right. \int \frac{dx}{x^2} P_{q\to g}(\hat{x}) \left(\frac{1}{2} \right) \left[O(x,x) + O(x,0) + N(x,x) - N(x,0) \right]
\]

\[+ \frac{\alpha_s}{4\pi} \int \frac{dx}{x^2} \left[P_{q\to g}(\hat{x}) \ln \left(\frac{c^2}{b^2\mu^2} \right) + \hat{x}(1 - \hat{x}) \right] \left[O(x,x) + N(x,x) \right]
\]

\[+ \frac{\alpha_s}{4\pi} \int \frac{dx}{x^2} \left[P_{q\to g}(\hat{x}) \ln \left(\frac{c^2}{b^2\mu^2} \right) - \frac{1}{2} \left(1 - 6\hat{x} + 6\hat{x}^2 \right) \right] \left[O(x,0) - N(x,0) \right] \right\}, \tag{41} \]

where $1/\epsilon = 1/\epsilon - \gamma_E + \ln 4\pi$ and $c = 2e^{-\gamma_E}$. To arrive at the above result, we have used the following identity:

\[\int \frac{d^nk_\perp}{(2\pi)^n} \frac{1}{(k_\perp^2)^m} e^{-ik_\perp \cdot b} = \frac{1}{(4\pi)^{n/2}} \frac{\Gamma \left(\frac{n}{2} - m \right)}{\Gamma(m)} \left(\frac{b^2}{4} \right)^{m-n/2}. \tag{42} \]

The terms with k_\perp^0 in the integrand can be derived by taking derivative with respect to b^α from the above formula.

It is instructive to realize that the term $\propto -1/\epsilon$ in Eq. (11) is simply the $\mathcal{O}(\alpha_s)$ correction to the Qiu-Sterman function $T_{q,F}(x,x)$ (recall the evolution equation in Eq. (33)), and should thus be subtracted in the definition of the perturbative coefficient functions [3, 52]. If we write the coefficient functions as follows:

\[f_1^{Tq(\alpha)}(x_B,b) = \left(\frac{ib^\alpha}{2} \right) \int_{x_B}^1 \frac{dx}{x^2} \left\{ C_{q\to g,1}(\hat{x}) \left[O(x,x) + N(x,x) \right] + C_{q\to g,2}(\hat{x}) \left[O(x,0) - N(x,0) \right] \right\}, \tag{43} \]

we then have

\[C_{q\to g,1}(\hat{x}) = \frac{\alpha_s}{4\pi} \left[P_{q\to g}(\hat{x}) \ln \left(\frac{c^2}{b^2\mu^2} \right) + \hat{x}(1 - \hat{x}) \right], \tag{44} \]

\[C_{q\to g,2}(\hat{x}) = \frac{\alpha_s}{4\pi} \left[P_{q\to g}(\hat{x}) \ln \left(\frac{c^2}{b^2\mu^2} \right) - \frac{1}{2} \left(1 - 6\hat{x} + 6\hat{x}^2 \right) \right]. \tag{45} \]

To summarize, we have derived the coefficient functions $C_{q\to g}$ when expanding the unsubtracted quark Sivers function in terms of the three-gluon correlation functions. However, it is important to point out that such coefficient functions will be exactly the same even if one uses the new properly defined TMDs in [3] and/or [21, 53]. This is because at order $\mathcal{O}(\alpha_s)$ there is no contribution from soft factor subtraction [3, 52]. Thus, one can use the coefficient functions derived above in the standard TMD evolution formalism [21, 23].

III. Transverse Momentum Weighted Spin-Dependent Cross Section

In this section we study the transverse momentum-weighted transverse spin-dependent cross section at next-to-leading order. Such a transverse momentum-weighted transverse spin-dependent cross section is defined as [31]:

\[\frac{d\langle p_{h\perp} \Delta \sigma \rangle}{dx_B dy dz_h} = \int d^2p_{h\perp} e^{\alpha^\beta s^\alpha_\perp p_{h\perp}^\beta} \frac{d\Delta \sigma}{d^2x_B dy dz_h d^2p_{h\perp}}. \tag{46} \]

The leading order result is proportional to the twist-3 quark-gluon correlation function $T_{q,F}(x_1, x_2)$ and is given by [31]

\[\frac{d\langle p_{h\perp} \Delta \sigma \rangle}{dx_B dy dz_h} = -z_h \sigma_0 \frac{2}{\epsilon} \sum_q c_q^2 \int \frac{dx}{x^2} \frac{dz}{z} T_{q,F}(x,x) \delta(1 - \hat{x}) \delta(1 - \hat{z}). \tag{47} \]

Since we will compute such a $p_{h\perp}$-weighted cross section at NLO, which contains divergences, we will present all results in $n = 4 - 2\epsilon$ dimensions, in which σ_0 in Eq. (47) is given by

\[\sigma_0 = \frac{2\pi\alpha_s^2}{Q^2} \frac{1 + (1 - y)}{y} (1 - \epsilon). \tag{48} \]

3 This fact only applies to the off-diagonal coefficients $C_{q\to g}$. For the diagonal ones $C_{q\to q}$, one has to include the contributions from the additional soft factors in the definition of TMDs.
We carry out the finite NLO correction contributions. To simplify our notation, let us define

Finally, the following replacement in the calculations

where the hard-part functions are given by

where the hard-part functions are given by

The next step will be to perform the ϵ-expansion for our result in Eq. (50) and isolate the divergence part and the finite NLO correction contributions. To simplify our notation, let us define

We carry out the ϵ-expansion for the products $I \times (H_1, H_2, H_3, H_4)$, which have the following results:

where

\[I_0 = \frac{x}{(1 - x)^2} \frac{1}{\epsilon^2(1 - \frac{x}{2})^2}. \]
Here the *finite* hard-part functions $\hat H_{i=1,2,3,4}$ are given by

\[
\begin{align*}
\hat H_1 &= \delta(1-\hat z)(1-\hat x) \left[(2\hat x^2 - 2\hat x + 1) \ln \frac{\hat x}{1-\hat x} + 2 \right] - \frac{(1-\hat x)(2\hat x^2 - 2\hat x + 1 - 2\hat x + 2\hat z^2)}{\hat z^2(1-\hat z)}, \\
\hat H_2 &= \delta(1-\hat z)(1-\hat x)(1-2\hat x)^2 \left(\ln \frac{\hat x}{1-\hat x} + 3 \right) - \frac{(1-\hat x)(4\hat x^2 - 4\hat x + 1 - 2\hat x + 2\hat z^2)}{\hat z^2(1-\hat z)}, \\
\hat H_3 &= \delta(1-\hat z)(1-\hat x)2\hat x(1-2\hat x) \left(\ln \frac{\hat x}{1-\hat x} + 2 \right) - \frac{(1-\hat x)2\hat x(1-4\hat x)}{\hat z^2(1-\hat z)}, \\
\hat H_4 &= \delta(1-\hat z)(1-\hat x)2\hat x \left[(1-4\hat x) \ln \frac{\hat x}{1-\hat x} + 2 \right] - \frac{(1-\hat x)2\hat x(1-4\hat x)}{\hat z^2(1-\hat z)}.
\end{align*}
\]

Let us now concentrate on the divergent $1/\epsilon$ terms as given in Eqs. (60), (67), (68), and (69), which are all proportional to $\delta(1-\hat z)$. We collect these terms, perform integration by parts to convert all the derivative terms to non-derivative terms, and find the following expression:

\[
d\langle p_{h\perp} \Delta \sigma \rangle \over dx_B dy_d z_h = - \frac{z_h \alpha_0}{2} \sum_q c_q^2 \int \frac{dz}{z} D_{h/q}(z) \delta(1-\hat z) \left(\frac{-1}{\epsilon} + \ln \left(\frac{Q^2}{\mu^2} \right) \right) \times \frac{\alpha_s}{2\pi} \int \frac{dx}{x^2} P_{q\rightarrow g}(\hat x) \left(\frac{1}{2} \right) [O(x,x) + O(x,0) + N(x,x) - N(x,0)],
\]

where the "\cdots" represents the finite NLO corrections and will be given below in Eq. (67). By comparing Eq. (64) to the LO result in Eq. (67), one realizes that the divergent part should be the collinear QCD correction to the LO bare Qiu-Sterman function $T_{q,F}^{(0)}(x_B, x_B)$ that is absorbed into the definition of the renormalized $T_{q,F}(x_B, x_B)$ as follows:

\[
T_{q,F}(x_B, x_B, \mu_f^2) = T_{q,F}^{(0)}(x_B, x_B) + \left(-\frac{1}{\epsilon} + \ln \left(\frac{\mu_f^2}{\mu^2} \right) \right) \alpha_s \int_0^1 \frac{dx}{x^2} P_{q\rightarrow g}(\hat x) \left(\frac{1}{2} \right) [O(x,x,\mu_f^2) + O(x,0,\mu_f^2) + N(x,x,\mu_f^2) - N(x,0,\mu_f^2)].
\]

where we have adopted $\overline{\text{MS}}$-scheme and μ_f is the factorization scale. From Eq. (65), one can obtain the evolution equation for the Qiu-Sterman function (the off-diagonal contribution from three-gluon correlation functions):

\[
\frac{\partial}{\partial \ln \mu_f^2} T_{q,F}(x_B, x_B, \mu_f^2) = \frac{\alpha_s}{2\pi} \int_0^1 \frac{dx}{x^2} P_{q\rightarrow g}(\hat x) \left(\frac{1}{2} \right) [O(x,x,\mu_f^2) + O(x,0,\mu_f^2) + N(x,x,\mu_f^2) - N(x,0,\mu_f^2)].
\]

This result confirms our result derived above in the cut-off scheme, Eq. (63), and also agrees with the earlier findings [24, 27, 51].

After the $\overline{\text{MS}}$ subtraction of the collinear divergence into the Qiu-Sterman function $T_{q,F}(x_B, x_B, \mu_f^2)$, we obtain the NLO corrections for the three-gluon correlation functions to the $p_{h\perp}$-weighted transverse spin-dependent differential cross section:

\[
\begin{align*}
\frac{d\langle p_{h\perp} \Delta \sigma \rangle}{dx_B dy_d z_h} &= - \frac{z_h \alpha_0}{2} \sum_q c_q^2 \int_0^1 \frac{dx}{x^2} \int_{z_h}^1 \frac{dz}{z} D_{h/q}(z) \left\{ \delta(1-\hat z) \ln \left(\frac{Q^2}{\mu_f^2} \right) P_{q\rightarrow g}(\hat x) \right. \\
&\quad \times \left(\frac{1}{2} \right) [O(x,x,\mu_f^2) + O(x,0,\mu_f^2) + N(x,x,\mu_f^2) - N(x,0,\mu_f^2)] \\
&\quad + \left(\frac{1}{4} \right) \left[\left(\frac{dO(x,x,\mu_f^2)}{dx} - 2O(x,x,\mu_f^2) \right) \hat H_1 + \left(\frac{dO(x,0,\mu_f^2)}{dx} - 2O(x,0,\mu_f^2) \right) \hat H_2 \\
&\quad + \frac{O(x,x,\mu_f^2)}{x} \hat H_3 + \frac{O(x,0,\mu_f^2)}{x} \hat H_4 \right] + \left(\frac{1}{4} \right) \left[\left(\frac{dN(x,x,\mu_f^2)}{dx} - 2N(x,x,\mu_f^2) \right) \hat H_1 \\
&\quad - \left(\frac{dN(x,0,\mu_f^2)}{dx} - 2N(x,0,\mu_f^2) \right) \hat H_2 + \frac{N(x,x,\mu_f^2)}{x} \hat H_3 - \frac{N(x,0,\mu_f^2)}{x} \hat H_4 \right\},
\end{align*}
\]
where the finite hard-part functions $\hat{H}_{i=1,2,3,4}$ are given in Eqs. (60), (61), (62), and (63), respectively. The result follows the standard form expected from collinear factorization, i.e. the logarithm containing the factorization scale together with the splitting function (the first line above) determines the evolution of the twist-3 Qiu-Sterman function in terms of the three-gluon correlation functions.

IV. CONCLUSIONS

In this paper we calculated the contribution of the three-gluon correlation functions to the Sivers asymmetry for semi-inclusive hadron production in deep inelastic scattering. Within the twist-3 collinear factorization formalism, we first studied the unweighted spin-dependent differential cross section. We then demonstrated that the result derived in such a framework is consistent with the one obtained from the transverse momentum dependent factorization at moderate hadron transverse momenta, $A_{QCD} \ll p_{h \perp} \ll Q$. This extends the unification of the two mechanisms to include the case of three-gluon correlation functions. In the process of this demonstration, we also derived the $O(\alpha_s)$ expansion of the quark Sivers function in terms of the three-gluon correlation functions, from which we identified the so-called coefficient functions that are used in the usual TMD evolution formalism. We further calculated the next-to-leading order perturbative QCD corrections to the transverse-momentum-weighted spin-dependent differential cross section, from which we identified the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function. We found that our evolution equation agrees with those derived previously from different approaches.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contracts DE-AC05-06OR23177 (L.D., A.P.) and DE-AC52-06NA25396 (Z.K., I.V.), and in part by the LDRD program at LANL.

[1] X.-d. Ji, J.-p. Ma, and F. Yuan, Phys.Rev. D71, 034005 (2005), arXiv:hep-ph/0404183.
[2] X.-d. Ji, J.-P. Ma, and F. Yuan, Phys.Lett. B597, 299 (2004), arXiv:hep-ph/0405085.
[3] J. Collins, Cambridge University Press (2011).
[4] A. Efremov and O. Teryaev, Sov.J.Nucl.Phys. 36, 140 (1982).
[5] A. Efremov and O. Teryaev, Phys.Lett. B150, 383 (1985).
[6] J.-W. Qiu and G. F. Sterman, Phys.Rev.Lett. 67, 2264 (1991).
[7] X. Ji, J.-W. Qiu, W. Vogelsang, and F. Yuan, Phys.Rev.Lett. 97, 082002 (2006), arXiv:hep-ph/0602239.
[8] A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, JHEP 0808, 023 (2008), arXiv:0803.0227.
[9] D. W. Sivers, Phys.Rev. D41, 83 (1990).
[10] D. Boer and P. Mulders, Phys.Rev. D57, 5780 (1998), arXiv:hep-ph/9711485.
[11] HERMES Collaboration, A. Airapetian et al., Phys.Rev.Lett. 103, 152002 (2009), arXiv:0906.3918.
[12] COMPASS Collaboration, M. Alekseev et al., Phys.Lett. B673, 127 (2009), arXiv:0802.2160.
[13] COMPASS, C. Adolph et al., Eur.Phys.J. C73, 2531 (2013), arXiv:1305.7317.
[14] C. Adolph et al., (2014), arXiv:1408.4405.
[15] Jefferson Lab Hall A Collaboration, X. Qian et al., Phys.Rev.Lett. 107, 072003 (2011), arXiv:1106.0363.
[16] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Phys.Lett. B530, 99 (2002), arXiv:hep-ph/0201296.
[17] J. C. Collins, Phys.Lett. B536, 43 (2002), arXiv:hep-ph/0204004.
[18] Z.-B. Kang and J.-W. Qiu, Phys.Rev.Lett. 103, 172001 (2009), arXiv:0903.3629.
[19] Z.-B. Kang, B.-W. Xiao, and F. Yuan, Phys.Rev.Lett. 107, 152002 (2011), arXiv:1106.0266.
[20] S. M. Aybat, J. C. Collins, J.-W. Qiu, and T. C. Rogers, Phys.Rev. D85, 034043 (2012), arXiv:1110.6428.
[21] M. G. Echevarria, A. Idilbi, A. Schfer, and I. Scimemi, Eur.Phys.J. C73, 2636 (2013), arXiv:1208.1281.
[22] P. Sun and F. Yuan, Phys.Rev. D88, 114012 (2013), arXiv:1308.5003.
[23] M. G. Echevarria, A. Idilbi, Z.-B. Kang, and I. Vitev, Phys.Rev. D89, 074013 (2014), arXiv:1401.5078.
[24] Z.-B. Kang and J.-W. Qiu, Phys.Rev. D79, 016003 (2009), arXiv:0811.3101.
[25] J. Zhou, F. Yuan, and Z.-T. Liang, Phys.Rev. D79, 114022 (2009), arXiv:0812.4484.
[26] W. Vogelsang and F. Yuan, Phys.Rev. D79, 094010 (2009), arXiv:0904.0410.
[27] V. Braun, A. Manashov, and B. Pirnay, Phys.Rev. D80, 114002 (2009), arXiv:0909.3410.
[28] Z.-B. Kang and J.-W. Qiu, Phys.Lett. B713, 273 (2012), arXiv:1205.1019.
[29] A. Schafer and J. Zhou, Phys.Rev. D85, 117501 (2012), arXiv:1203.5293.
[30] Z.-B. Kang, Phys.Rev. D83, 036006 (2011), arXiv:1012.3419.
[31] Z.-B. Kang, I. Vitev, and H. Xing, Phys.Rev. D87, 034024 (2013), arXiv:1212.1221.
[32] X.-D. Ji, Phys.Lett. B289, 137 (1992).
[33] H. Eguchi, Y. Koike, and K. Tanaka, Nucl.Phys. B752, 1 (2006), arXiv:hep-ph/0604003.
[34] H. Eguchi, Y. Koike, and K. Tanaka, Nucl.Phys. B763, 198 (2007), arXiv:hep-ph/0610314.
[35] H. Beppu, Y. Koike, K. Tanaka, and S. Yoshida, Phys.Rev. D82, 054005 (2010), arXiv:1007.2034.
[36] Z.-B. Kang and J.-W. Qiu, Phys.Rev. D78, 034005 (2008), arXiv:0806.1970.
[37] Z.-B. Kang, J.-W. Qiu, W. Vogelsang, and F. Yuan, Phys.Rev. D78, 114013 (2008), arXiv:0810.3333.
[38] Z.-B. Kang, J.-W. Qiu, W. Vogelsang, and F. Yuan, Phys.Rev. D83, 094001 (2011), arXiv:1103.1591.
[39] A. Bacchetta et al., JHEP 0702, 093 (2007), arXiv:hep-ph/0611265.
[40] Z.-B. Kang and A. Prokudin, Phys.Rev. D85, 074008 (2012), arXiv:1201.5427.
[41] D. Graudenz, Nucl.Phys. B432, 351 (1994), arXiv:hep-ph/9406274.
[42] A. Daleo, D. de Florian, and R. Sassot, Phys.Rev. D71, 034013 (2005), arXiv:hep-ph/0411212.
[43] Z.-B. Kang, E. Wang, X.-N. Wang, and H. Xing, (2014), arXiv:1409.1315.
[44] Z.-B. Kang, E. Wang, X.-N. Wang, and H. Xing, Phys.Rev.Lett. 112, 102001 (2014), arXiv:1310.6759.
[45] X. Ji, J.-W. Qiu, W. Vogelsang, and F. Yuan, Phys.Rev. D73, 094017 (2006), arXiv:hep-ph/0604023.
[46] X. Ji, J.-W. Qiu, W. Vogelsang, and F. Yuan, Phys.Lett. B638, 178 (2006), arXiv:hep-ph/0604128.
[47] Y. Koike, W. Vogelsang, and F. Yuan, Phys.Lett. B659, 878 (2008), arXiv:0711.0636.
[48] F. Yuan and J. Zhou, Phys.Rev.Lett. 103, 052001 (2009), arXiv:0903.4680.
[49] D. Boer, Z.-B. Kang, W. Vogelsang, and F. Yuan, Phys.Rev.Lett. 105, 202001 (2010), arXiv:1008.3543.
[50] D. Boer, P. Mulders, and F. Pijlman, Nucl.Phys. B667, 201 (2003), arXiv:hep-ph/0303034.
[51] J. Ma and Q. Wang, Phys.Lett. B715, 157 (2012), arXiv:1205.0611.
[52] A. Bacchetta and A. Prokudin, Nucl.Phys. B875, 536 (2013), arXiv:1303.2129.
[53] M. G. Echevarra, A. Idilbi, and I. Scimemi, Phys.Lett. B726, 795 (2013), arXiv:1211.1947.