Solving the grand challenge of phenotypic integration: allometry across scales

François Vasseur1 · Adrianus Johannes Westgeest1 · Denis Vile2 · Cyrille Violle1

Received: 3 December 2021 / Accepted: 13 June 2022 / Published online: 20 July 2022 © The Author(s) 2022

Abstract
Phenotypic integration is a concept related to the cascade of trait relationships from the lowest organizational levels, i.e. genes, to the highest, i.e. whole-organism traits. However, the cause-and-effect linkages between traits are notoriously difficult to determine. In particular, we still lack a mathematical framework to model the relationships involved in the integration of phenotypic traits. Here, we argue that allometric models developed in ecology offer testable mathematical equations of trait relationships across scales. We first show that allometric relationships are pervasive in biology at different organizational scales and in different taxa. We then present mechanistic models that explain the origin of allometric relationships. In addition, we emphasized that recent studies showed that natural variation does exist for allometric parameters, suggesting a role for genetic variability, selection and evolution. Consequently, we advocate that it is time to examine the genetic determinism of allometries, as well as to question in more detail the role of genome size in subsequent scaling relationships. More broadly, a possible—but so far neglected—solution to understand phenotypic integration is to examine allometric relationships at different organizational levels (cell, tissue, organ, organism) and in contrasted species.

Keywords Allometry · Phenotypic integration · Genome size · Metabolic scaling · Trait relationships

Building complex organisms: an allometric perspective

The development of large and complex multicellular organisms requires the coordination and integration of a multitude of processes at different organizational levels (Pigliucci 2007; Zinner et al. 2020). Phenotypic integration (i.e. how complex organisms are built and how phenotypic traits are connected and coordinated) has been examined from a wide variety of approaches and research fields, including physiology, evolutionary biology, ecology and allometry (see for instance Schlichting and Pigliucci 1995; Pigliucci et al. 1996; Klingenberg 1996; Murren 2002; Pigliucci 2003; Klingenberg and Marugan-Lobon 2013; Klingenberg 2014; Klingenberg 2016; Watanabe 2022). However, joint empirical efforts at the interface of those disciplines warrant further study. One reason is that the study of trade-offs and strategies in comparative ecology has largely occurred independently of the study of phenotypic integration in evolutionary biology. Indeed, comparative ecology has mainly focused on global trends and trait-trait relationships across species, taking advantage of large interspecific databases (Brosse et al. 2021; Kattge et al. 2011; Díaz et al. 2016; Mouillot et al. 2021; Toussaint et al. 2021); while evolutionary biology has mainly focused on investigating the mechanisms and consequences of genetic correlations within species (Steppan et al. 2002; Arnold et al. 2008; Penna et al. 2017; Milocco and Salazar-Ciudad 2022).

Following Arnold’s definition (Arnold 1983), phenotypic integration can be represented as a pyramid, in which traits related to gene products (RNA, enzymes) are at the bottom, and performance-related traits (growth rate, fecundity) at the top (Fig. 1). Ecological theory proposes a similar hierarchy of trait integration from genes to fitness (Violle et al. 2007). Basically, a trait Y is said to be integrated when it results from the effect of one or several traits X_i (considered...
at “lower degrees of phenotypic integration”). Traits at different organizational levels are assumed to be connected by scaling relationships or functions (Fig. 1). For instance, gene expression impacts RNA content, which in turn impacts cell metabolism and size, which in turn impacts organ physiology and size, and so on. Following Arnold’s view of phenotypic integration, a genetic variation impacting a trait should also impact the traits that are at higher levels and that result from the effect of the focal trait, with possible feedback effects between consecutive levels of integration. This is corroborated by recent findings, in which the rate of adaptive substitution (i.e. genetic variation that impacts organismal fitness) along the genome increases with the degree of phenotypic integration (Zhang 2018). However, the pyramidal view of phenotypic integration proposed by Arnold largely remains theoretical: the ‘cause-and-effect’ cascades, as well as the relationships involved, are notoriously difficult to establish, so is the hierarchy of phenotypic integration. Traits are generally organized into groups of interacting features, called modules, which are relatively independent from each others (e.g. floral traits versus vegetative traits in plants) (Wagner et al. 2007; Klingenberg 2008; Murren 2012; Diggle 2014). However, how modules and traits at different scales are connected to each other remains unclear.

One of the main consequences of a change in the size of an object is the modification of its internal properties is the central tenet of allometry research, which, in its broad definition, is the
study of the relationships between the size of a biological entity (e.g., genome, cell, organ, organism, population) and its morphological, physiological and metabolic traits (Niklas 1994). Allometric equations aim at modelling trait-trait relationships across organizational scales. They typically take the form of power-law functions $Y = \alpha X^\beta$, where X is a size-related trait and Y a morphological or physiological trait (Niklas 1994). Strikingly, the same equations are used to scale up from genome size to cell size (Kozłowski et al. 2003b; Beaulieu et al. 2008; Šímová and Herben 2011; Gonzalez-de-Salceda and Garcia-Pichel 2021), cell size to organ size (Gregory et al. 2000; Tisné et al. 2008; John et al. 2013), organ size to organism size (Stahl 1965; Gould 1971; Stevenson et al. 1995; Lindstedt and Schaeffer 2002; Shingleton et al. 2007; Poorter et al. 2015), body size to energy consumption (Huxley 1932; Kleiber 1932, 1947; DeLong et al. 2010; Capellini et al. 2010), as well as from organism size to population density (Enquist et al. 1998; Malera and Marshall 2019) (see Fig. 2 for examples of allometric relationships at different organizational levels). We advocate that a promising approach to understand phenotypic integration is to study scaling relationships, because modelling such relationships is built from a mathematical toolkit aimed at linking one level of integration to another.

Integrating traits across scales: biological regularity versus genetic diversity

The allometric equations used to connect one phenotypic level to another are generally linearized by log-transformation, and β becomes the slope of the relationships $\log(Y) = \log(\alpha) + \beta \log(M)$ (Fig. 2). Simple geometric models predict $\beta = 2/3$ because β must be determined by the ratios between surface area (square function) and volume (cubic function) (Rubner 1883; White and Seymour 2003). However, in 1932, Kleiber observed that energy consumption in animals—which spanned several orders of magnitude in size—scales with body mass with an allometric exponent $\beta = 1/3$ (Kleiber 1932). This observation yielded many studies on the value that β actually takes for different traits in different taxa. Moreover, the question of a biological constant that applies to virtually all organisms has been the subject of intense debates in the scientific literature. Indeed, the sole existence of a biological constant would suggest that organisms are built under the same developmental constraints, which translates into universal scaling relationships. Moreover, if the same constants are observed at different levels of phenotypic integration (from genomes to whole organisms), this would have strong implications for our understanding, and the potential prediction, of biological structures and organization.

The introduction of fractal geometries into mechanistic models has revolutionized the field of allometry research. In the late 1990s and early 2000s, a series of papers laid the theoretical foundations for the Metabolic Scaling Theory (MST) (Enquist et al. 1999, 2007b; West et al. 1999a, b, 2001, 2002; Niklas and Enquist 2001; Brown et al. 2004; Price and Enquist 2007), which invokes the fractal-like geometry of vascular networks as the main determinant of several scaling relationships in both plants and animals. MST is primarily based on two central hypotheses: the network is space-filling and the branching is area-preserving, i.e. the sum of cross-sectional areas of daughter branches equals the cross-sectional area of the mother branch. These hypotheses led to predictions concerning the variation of organism morphology, the allocation of biomass and the physiological rates at the organism level (Fig. 2) (Savage et al. 2008). For instance, the organism’s basal metabolic rate is expected to scale with $\beta = 1/3$ to the organism’s body mass due to the optimization of the internal transport distance for resources and energy (West et al. 1999b). In plants, the metabolic rate is expected to scale isometrically (i.e. with exponent $\beta = 1$, which directly translates strict proportionality) with total leaf area and total leaf biomass, and allometrically (with exponent $\beta = 1/4$) with the mass of the plant (Enquist et al. 1998; West et al. 1999a; Price et al. 2007). These scaling expectations represent the master equations of the MST, from which other scaling relationships at different levels of phenotypic integration have been derived, such as metabolic activity, relative growth rate, xylem fluxes and net photosynthetic rate in plants (Enquist 2002; Price and Enquist 2007; Enquist et al. 2007b; Savage et al. 2008). MST predictions even extend to population dynamics and demography, as illustrated by the expected exponent of $-3/4$ for the relationship between maximum plant density and plant size (Enquist et al. 1998). However, some of the mechanistic assumptions of MST remain controversial, in large part because the universality of the scaling exponent has been challenged theoretically and empirically (Dodds et al. 2001; Kozłowski and Konarzewski 2004; Glazier 2005; Coomes 2006; Russo et al. 2007).

The theoretical underpinnings of MST are based on the idea that natural selection has optimized vascular networks in order to minimize the energy required for resource distribution, which would shape quasi-universal allometric relationships within and between species (West et al. 1999b). Interspecific comparisons have revealed global patterns of covariation that generally confirm the predictions of MST, in both animals and plants (Fig. 2). Moreover, recent intraspecific studies in plants also demonstrated an allometric exponent of $1/4$ in wild tomatoes and in A. thaliana (Vasseur et al. 2012; Muir and Thomas-Huebner 2013, 2015). This suggests that allometric relationships result from strong
constraints, which operate at different organizational levels independently from the taxonomic scale and which, on average, adhere to the predictions of MST. Yet, intraspecific variability in allometries are also frequently observed in animals (Kozlowski et al. 2003a; Sieg et al. 2009; Summers and Ord 2021), and in plants (Vasseur et al. 2012; Muir and Thomas-Huebner 2013, 2015). For instance, the rate of respiratory metabolism has been found to scale isometrically (i.e. with exponent $\beta \approx 1$) with plant biomass in herbaceous plants and tree seedlings (Reich et al. 2006; Cheng et al. 2010). Other studies in plants (Enquist et al. 2007a; Mori et al. 2010) and mammals (Kolokotrones et al. 2010), showed that respiration rate scales differently for organisms with small body mass and large body mass. In plants, competition for light results in significant variations in allometric relationships in trees (Russo et al. 2007; Lines et al. 2012). Strikingly, the
studies reporting that intraspecific plant allometries follow the ¾ rule on average, also showed that the allometric exponent can vary significantly around ¾ because of evolutionary adaptation to stressful environments (Vasseur et al. 2018b). Studies in plants also indicated that variation in allometric exponents are genetically associated with different carbon and water-use strategies (Vasseur et al. 2012, 2014; Muir and Thomas-Huebner 2015), as well as reproductive output and resistance to stress (Muir and Thomas-Huebner 2013; Vasseur et al. 2018b). Together, these recent findings support the idea that scaling relationships vary between populations as a consequence of evolutionary adaptation to different environments, but they generally center around ¾. Overall, it suggests that phenotypic integration obeys fundamental laws that are translated into the relative constancy of allometric relationships at different organizational levels. However, a key question related to the integration of phenotypic traits is how adaptation to contrasting environments is the result of, or is dependent on, substantial variations in allometric relationships (Pigliucci et al. 1996; Pélabon et al. 2014).

Current prospects in allometry: toward a genetic synthesis?

Exploring the genetic determinism of intraspecific allometries represents a promising avenue to better understand how organisms are built. Recent efforts have been devoted to the identification and characterization of genetic diversity in allometric relationships (Long et al. 2006; Qin et al. 2012, 2013; Vasseur et al. 2012, 2018b; Muir and Thomas-Huebner 2015). These works suggest that selection must operate on the genes that impact allometric parameters such as β, because the same biomechanical constraints (notably those related to surface area-to-volume ratio) are expected to operate at different scales. Identifying those genes should be a research priority to determine which molecular pathways are involved in the integration of phenotypic traits with size. In addition, the genetic architecture of intraspecific variability in allometry is directly informative about how organisms are expected to evolve. The predominance of few pleiotropic genes with strong effects on allometries, for instance genes related to life history, would suggest evolution by abrupt increments and sharp variations (Paaby and Rockman 2013). By contrast, if allometries are determined by a multitude of genes along the genomes, each having only a small effect, then a more gradual and continuous evolution of organisms is expected, which is directly related to the integration of multiple traits in complex organisms, and which has been called the “cost of complexity” (Orr 2000; Wagner et al. 2008). Genome-wide association studies (GWAS) might help to clarify the oligo- and/or the polygenic nature of allometric variations by the screening of plant and animal populations at different organizational levels. Furthermore, the recent rise of next-generation sequencing technologies allows extensive genomic analyses of the identified genes. The genetic survey of natural populations through space and time can reveal genomic signatures of selection and clarify the demographic history of the investigated populations (Weigel 2012). For instance, comparing genetic and phenotypic differentiation between populations through QST/FST approaches (Leinonen et al. 2013) allows testing whether allometric parameters such as β vary between populations due to neutral differentiation such as genetic drift, or because of directional or balancing selection. This kind of approach coupling allometry with quantitative genetics and genomics has recently been applied to the model plant Arabidopsis thaliana. It first identified two major pleiotropic genes as responsible for allometric variation between plant growth rate and plant dry mass (Vasseur et al. 2012), suggesting that plants evolve through strong allometric increments. However, this study was performed on a population of recombinant inbred lines (RIL) artificially created by crossing two contrasted ecotypes. A similar study performed six years later on a collection of 450 ecotypes (Vasseur et al. 2018b) revealed by contrast that plant allometry has a more polygenic architecture, with many contributing genes and with the major gene identified affecting only around 1% of the phenotypic variance. Taking advantage of the extensive genetic information available for A. thaliana, this study also showed that genes related to allometric variations exhibited signatures of selection and they were clustered geographically along a latitudinal gradient. Despite these encouraging findings, our knowledge of the genetic determinism of organism allometries remains limited. Yet, genetic studies of allometric variations could shed light on the complex genotype-to-phenotype relationships involved in the coordination of complex phenotypes. A more systematic analysis of intraspecific relationships at different levels of integration (genome, cell, organ, and whole organism) is needed, in different species and different environmental conditions. Moreover, testing the effect of natural or artificial selection in real time with experimental evolution is a promising avenue to examine the evolution of allometry and its role for organism adaptation to contrasted environments.

Allometric scaling from genome size to whole organisms: the grand challenge

An alternative approach to explore phenotypic integration through the lens of allometry is to link scaling relationships at different organizational levels (i.e. from genome to cell, organ and whole organism). Each level has its own set of allometric expectations, with its own theoretical corpus. For instance, there are allometric expectations for the allometry
of genome size versus cell size (Šímová and Herben 2011), and cell size versus organism size (Gregory et al. 2000), as well as organism size versus metabolic rate or growth rate (Brown et al. 2004; Savage et al. 2008). Connecting these expectations, made at different levels and from different biological considerations, around a unifying model represents the ultimate challenge in allometry research. However, and as said above, the questions surrounding the links of cause-and-effects between relationships and organizational levels are particularly difficult to address. If in theory we could build allometric relationships to directly connect the lower level of integration—genome size—to the upper—organism size and metabolism—, in practice allometric relationships are generally strong between two successive organizational levels—e.g., genome size versus cell size, organism size versus organ size—but they decrease in predictive power with increasing phenotypic scale (Knight and Beaulieu 2008).

We advocate here that a promising avenue to solve this issue relies on the measurement of genome size. Genome size is usually estimated by DNA content in pg, which is expected to vary a lot among species because of different sources of variability in genome composition (including the number of genes but above all the amount of non-coding DNA, transposable elements, structural variations, repeated sequences, etc.) (Schubert and Vu 2016). However, this measurement of genome size misses the key point: what really matters is not the total amount of DNA, but the number of different genes that are effectively expressed during organism growth and development, as well as the amount (and repetition) of DNA segments regulating gene transcription and translation (mostly ribosomal DNA). The amount of DNA and the level of gene expression might differ a lot due to different processes. First, large portions of the genome exhibit presence/absence polymorphisms between genotypes of the same species (Tan et al. 2012; Bush et al. 2013; González et al. 2013; Zhang et al. 2014; Jiang et al. 2015), which suggests strong variability in the number of expressed genes between these genotypes. To what extent this variability is related to phenotypic variation remains unknown so far (Weisweiler et al. 2019). Second, the level of heterozygosity could positively impact the number of expressed genes and/or alleles. This could partly explain the increase in organism vigour and size frequently reported in hybrids between homozygous lines. For instance, methylated DNA, transposable elements, structural variations, and/or alleles. This could partly explain the increase in organism vigour and size frequently reported in hybrids between homozygous lines (Charlesworth and Charlesworth 1999). Indeed, the number of heterozygous genes, as well as presence/absence alleles has been shown to be positively correlated to hybrid vigour in plants (Springer et al. 2009; Paschold et al. 2012; Hochholdinger and Baldauf 2018). The links between expressed genome size and plant vigour are also supported by the higher size or organs and whole organisms in polyploid lines (containing 4 N, 6 N, 8 N etc.) versus their diploid relatives (Chen 2010; Sattler et al. 2016). Consistent with allometric expectations, polyploids might exhibit larger organs and body size due to their enlarged genomes (Otto 2007; Lavania 2016). Accordingly, endopolyploidy at the cellular level is also associated with increased cell size in both plants and animals (Leitch and Dodsworth 2001; Neiman et al. 2017). However, polyploidy could also uncouple trait covariations and, thus, alter the pattern of phenotypic integration observed in diploids. This is notably the case for the traits related to leaf physiology and resource use (López-Jurado et al. 2022). Yet, to what extent polyploidy might break allometric rules and alter scaling equations at different organization scales remains to be elucidated. Finally, epigenetic marks along the genome can repress the expression of a large number of genes. For instance, methylated regions, which have reduced RNA transcription, represent a significant portion of the genome (Seymour et al. 2014; Seymour and Becker 2017). Consistent with a link between genome methylation level and organism growth and size, the re-analysis of the amount of methylated regions measured on more than 1000 natural accessions of A. thaliana (Kawakatsu et al. 2016) with the growth-related traits measured on 409 accessions in common (Vasseur et al. 2018a) (but on different individuals cultivated in an independent experiment), revealed a negative correlation between individual growth rate and the fraction of methylated genome ($r = -0.044$, slope = -0.02, $P = 0.002$; unpublished data), which suggests that larger expressed genomes are associated with bigger plants and higher absolute growth rate. The potential allometric linkage between expressed genome size and growth rate could also rely on stoichiometric considerations. Indeed, individuals with large genomes are expected to produce more RNA (Kozlowski et al. 2003b), which is phosphorus consuming and could explain the positive relationship between growth rate and RNA/protein as well as phosphorus/protein ratios observed empirically (Elser et al. 2003). Consistently, a strong relationship has been observed between the number of ribosomal genes per cell and cell size across a large diversity of prokaryote and eu karyote organisms (Gonzalez-de-Salceda and Garcia-Pichel 2021). Collectively, these findings suggest that the number of expressed genes in the genome could be the key piece to link allometric relationships at different levels of phenotypic integration, as well as to reconcile allometry with other disciplines such as biological stoichiometry, quantitative genetics and physiology.

Conclusion

How multiple traits at different organizational levels are phenotypically integrated to ensure the proper development of complex organisms in a coordinated way is a key question for modern biology. We advocate here that allometric
relationships offer a promising avenue to tackle this issue because (i) they rely on well-documented empirical observations, (ii) their mechanistic bases have been studied at different scales, and (iii) they propose a mathematical toolkit to infer hypotheses and make predictions. We argue that future directions for allometry research should focus in priority on the genetic determinism of scaling variation, taking advantage of the development of next-generation sequencing technologies, as well as on how the expressed genome size scales with higher orders of phenotypic integration, from cell to whole organism and metabolism. We hope that this article will encourage novel experiments and interdisciplinary investigations to address allometric questions at different levels of phenotypic integration.

Acknowledgements This work was supported by CNRS, INRAE, the French Agency for Research (ANR grant ANR-17-CE02-0018-01, ‘AraBreed’ to FV, DV and CV), and the European Research Council (ERC) (‘CONSTRANTS’: grant ERC-StG-2014-639706 to CV, ‘PHENOVIGOUR’: grant ERC-StG-2020-949843 to FV and AJW).

Author contributions All authors equally contributed to the writing of the paper.

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Arnold SJ (1983) Morphology, performance and fitness. Integr Comp Biol 23:347–361
Arnold SJ, Bürger R, Hohenlohe PA, Ajie BC, Jones AG (2008) Understanding the evolution and stability of the G-matrix. Evolution 62(10):2451–2461
Beaulieu JM, Leitch IJ, Patel S et al (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986
Bergmann C (1847) Über die Verhältnisse der Wärme ökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3:595–708
Bestová H, Segrestin J, von Schwartzenberg K et al (2021) Biological scaling in green algae: the role of cell size and geometry. Sci Rep 11(1):1–9
Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174
Brosse S, Charpin N, Su G, Toussaint A, Herrera-R GA, Tedesco PA, Villéger S (2021) FISHMORPH: a global database on morphological traits of freshwater fishes. Global Ecol Biogeogr 30(12):2330–2336
Brown JH, Gillooly JF, Allen AP et al (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789
Bush SJ, Castillo-Morales A, Tovar-Corona JM et al (2013) Presence-absence variation in A. Thaliana is primarily associated with genomic signatures consistent with relaxed selective constraints. Mol Biol Evol 31:59–69
Capellini I, Venditti C, Barton RA (2010) Phylogeny and metabolic scaling in mammals. Ecology 91:2783–2793
Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340
Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71
Cheng D-L, Li T, Zhong Q-L, Wang G-X (2010) Scaling relationship between tree respiration rates and biomass. Biol Lett 6:715–717
Coomes DA (2006) Challenges to the generality of WBE theory. Trends Ecol Evol 21:593–596
DeLong JP, Okie JG, Moses ME et al (2010) Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc Natl Acad Sci U S A 107:12941–12945
Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E (2016) The global spectrum of plant form and function. Nature 529(7585):167–171
Diggle PK (2014) Modularity and intra-floral integration in metameric organisms: plants are more than the sum of their parts. Philos Trans Royal Soc B Biol Sci 369(1649):20130253
Dodds PS, Rothman DH, Weitz JS (2001) Re-examination of the “3/4-law” of Metabolism. J Theor Biol 209:9–27
Elser JJ, Acharya K, Kyle M et al (2003) Growth rate–stoichiometry couplings in diverse biota. Ecol Lett 6:936–943
Enquist BJ (2002) Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol 22:1045–1064
Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410:655–660
Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165
Enquist BJ, West GB, Charnov EL, Brown JH (1999) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911
Enquist BJ, Allen AP, Brown JH et al (2007a) Biological scaling: does the exception prove the rule? Nature 445:E9–10
Enquist BJ, Kerkhoff AJ, Stark SC et al (2007b) A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature 449:218–222
González VM, Aventín N, Centeno E, Puigdomènech P (2013) High levels of phenotypic integration. Trends Ecol Evol 28:463–471
González VM, Aventín N, Centeno E, Puigdomènech P (2013) High levels of phenotypic integration. Trends Ecol Evol 28:463–471
Gray AB (1954) Evolution and the environment: an exploration of the hypothesis of adaptive radiation. Univ of Chicago Press
Havlík M, Šmídl V, Kolarˇcik P et al (2015) Phyletic trends in adaptive evolution of volant bats. Proc R Soc B Biol Sci 282(1809):20150921
Hsu MS, Yu CY, Yu CL et al (2010) Allometric scaling of body mass and body temperatures in the Eutheria. Biol Lett 6:715–717
Humphries ME, Rautiainen S, Chapman SG et al (2010) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911
Humphries ME, Rautiainen S, Chapman SG et al (2010) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911
Jeltsch T, Schmid B, Salomé P et al (2009) A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature 449:218–222
Kraft NJ, Lloret D, Nascetti J et al (2011) Phylogenetic approaches in the allometry of plant growth and metabolism: a critical review. New Phytol 190:630–645
Kraft NJ, Lloret D, Nascetti J et al (2011) Phylogenetic approaches in the allometry of plant growth and metabolism: a critical review. New Phytol 190:630–645
Kraft NJ, Sederoff RR, Waring RH et al (2004) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911
Kraft NJ, Sederoff RR, Waring RH et al (2004) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911
Kraft NJ, Sederoff RR, Waring RH et al (2004) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911
Kraft NJ, Sederoff RR, Waring RH et al (2004) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911
Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, John GP, Scoffoni C, Sack L (2013) Allometry of cells and tissues

Jiang L, Lv Y, Li T et al (2015) Identification and characterization of presence/absence variation in maize genotype Mo17. Genes Genomics 37:503–515

John GP, Scoffoni C, Sack L (2013) Allometry of cells and tissues within leaves. Am J Bot 100:1936–1948

Kattej D, Diaz S, Lavello T, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Corneliussen JHC (2011) TRY—a global database of plant traits. Glob Chang Biol 17(9):2905–2935

Kawakatsu T, Huang S-SC, Jupe F et al (2016) Epigenomic diversity in a global collection of arabidopsis thaliana accessions. Cell 166:492–505

Kleiber M (1932) Body size and metabolism. Energy 1:9

Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541

Klingenberg CP (1996) Multivariate allometry. In Advances in morphometrics, Springer, Boston, MA

Klingenberg CP (2008) Morphological integration and developmental modularity. Annual Rev Ecol Evol Syst 115:132

Klingenberg CP (2014) Studying morphological integration and modularity at multiple levels: concepts and analysis. Phil Trans R Soc B: Biol Sci 369(1649):20130249

Klingenberg CP (2016) Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol 226(3):113–137

Klingenberg CP, Marugán-Lobón J (2013) Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst Biol 62(4):591–610

Knight CA, Beaulieu JM (2008) Genome size scaling through phenotype space. Ann Bot 101:759–766

Kolokotrones T, Savage V, Deeds EJ, Fontana W (2010) Curvature of presence/absence variation in maize genotype Mo17. Genes Genomics 37:503–515

Kozłowski J, Konarzewski M, Gawelczyk AT (2003a) Intraspecific allometric scaling laws. Genet Res 87:207–216

Kozłowski J, Konarzewski M, Gawelczyk AT (2003b) Cell size as a link between noncoding DNA and metabolic rate scaling. Proc Natl Acad Sci U S A 100:14080–14085

Kozłowski J, Konarzewski M, Gawelczyk AT (2003a) Intraspecific body size optimization produces interspecific allometries. Macroecology: concepts and consequences 299–320

Leinonen T, Scott McCairns RJ, O’Hara RB, Merilä J (2013) QST–FST comparisons: evolutionary and ecological insights from genomic heterogeneity. Nat Rev Genet 14:179–190

Leitch IJ, Dodsworth S (2001) Endopolyploidy in Plants. In: Wiley J, Ltd S (eds) eLS. John Wiley & Sons Ltd, Chichester, UK, pp 1–10

Lindmark M, Ohlberger J, Huss M, Gärdenmark M (2019) Size-based ecological interactions drive food web responses to climate warming. Ecol Lett. https://doi.org/10.1111/ele.13235

Lindstedt SL, Schaeffer PJ (2002) Use of allometry in predicting anatomical and physiological parameters of mammals. Lab Anim 36(1–19

Lines ER, Zavala MA, Purves DW, Coomes DA (2012) Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob Ecol Biogeogr 21:1017–1028

Long F, Chen YQ, Cheverud JM, Wu R (2006) Genetic mapping of allometric scaling laws. Genet Res 87:207–216

López-Jurado J, Mateos-Naranjo E, Balao F (2022) Polyploidy promotes divergent evolution across the leaf economics spectrum and plant edaphic niche in the Dianthus broteri complex. J Ecol 110(3):605–618

Malerba ME, Marshall DJ (2019) Size-abundance rules? Evolution changes scaling relationships between size, metabolism and demography. Ecol Lett 22:1407–1416

Malerba ME, White CR, Marshall DJ (2017) Eco-energetic consequences of evolutionary shifts in body size. Ecol Lett 21:54–62

Milocco L, Salazar-Ciudad I (2022) Evolution of the G matrix under nonlinear genotype-phenotype maps. Am Nat 199(3):420–435

Mori S, Yamaji K, Ishida A et al (2010) Mixed-power scaling of whole-plant respiration from seedlings to giant trees. Proc Natl Acad Sci U S A 107:1447–1451

Mouillot D, Loisien N, Gremi M, Algar AC, Allegra M, Cadotte MW, Casajus N, Denelle P, Guéguen M, Maire A, Maitner B (2021) The dimensionality and structure of species trait spaces. Ecol Lett 24(9):1988–2009

Muir CD, Thomas-Huebner M (2013) Small interspecific variation in metabolic scaling mediates tradeoff between drought tolerance and fecundity in wild tomatoes (Solanum sect. Lycopersicon; Solanaceae). Ecophysiology And Genetics Of Phenotypic Diversification In Solanum 61

Muir CD, Thomas-Huebner M (2015) Constraint around quarter-power allometric scaling in wild tomatoes (Solanum sect. Lycopersicon; Solanaceae). Am Nat 186:421–433

Murren CJ (2002) Phenotypic integration in plants. Plant Species Biol 17(2–3):89–99

Murren CJ (2012) The integrated phenotype. Integr Comp Biol 52(1):64–76

Neiman M, Beaton MJ, Hessen DO et al (2017) Endopolyploidy as a potential driver of animal ecology and evolution. Biol Rev Camb Philos Soc 92:234–247

Niklas KJ, Enquist BJ (2001) Invariant scaling relationships for interspecific plant biomass production rates and body size. Proc Natl Acad Sci U S A 98:2922–2927

Niklas KJ (1994) Plant Allometry: The Scaling of Form and Process. University of Chicago Press

Ohlberger J (2013) Climate warming and ectotherm body size–from individual physiology to community ecology. Ecol Lett 27:991–1001

Orr HA (2000) Adaptation and the cost of complexity. Evolution 54:13–20

Paaby AB, Rockman MV (2013) The many faces of pleiotropy. Trends Genet 29:66–73

Paschold A, Jia Y, Marcon C et al (2012) Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res 22:2445–2454

Pélabon C, Firmat C, Bolstad GH, Voje KL, Houle D, Cassara J, Rouzic AL, Hansen TF (2014) Evolution of morphological allometry. Ann N Y Acad Sci 1320(1):58–75

Penna A, Melo D, Bernardi S, Oyarzabal MI, Marroig G (2017) The evolution of phenotypic integration: How directional selection reshapes covariance in mice. Evolution 71(10):2370–2380

Pigliucci M (2003) Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecol Lett 6(3):265–272

Pigliucci M (2007) Finding the way in phenotypic space: the origin and maintenance of constraints on organismal form. Ann Bot 100(3):433–438

Pigliucci M, Schlichting CD, Jones CS, Schwenk K (1996) Developmental reaction norms: the interactions among allometry, ontogeny and plasticity. Plant Species Biol 11(1):69–85

Poorter H, Jagodziński AM, Ruiz-Peinado R et al (2015) How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol 208:736–749
