Update of the China-VO AstroCloud

Chenzhou Cui 1, Ce Yu2, Jian Xiao2, Boliang He1, Changhua Li1, Dongwei Fan1, Chuanjun Wang3, Zhi Hong2, Shanshan Li1, Linying Mi1, Wanghui Wan1,4, Zhiuang Cao1, Jiawei Wang1, Shucheng Yin2, Yufeng Fan3, Jianguo Wang3, Sisi Yang1, Yin Ling1, Hailong Zhang5, Junyi Chen3, Liang Liu6, Xiao Chen7

1National Astronomical Observatories, Chinese Academy of Sciences (CAS), 20A Datun Road, Beijing 100012, China; ccz@nao.cas.cn
2Tianjin University, 92 Weijin Road, Tianjin 300072, China; xiaojian@tju.edu.cn
3Yunnan Astronomical Observatory, CAS, P.O.Box110, Kunming 650011, China; wcj@ynao.ac.cn
4Wuhan Science and Technology Museum, 104 Zhaojiatiao Road, Wuhan 430010, China; wanwh@nao.cas.cn
5Xinjiang Astronomical Observatory, CAS, 150 Science 1-Street, Urumqi, Xinjiang 830011, China; zhanghailong@xao.ac.cn
6Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008, China; liangliu@pmo.ac.cn
7Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai 200030, China; cx@shao.ac.cn

Abstract. As the cyber-infrastructure for Astronomical research from Chinese Virtual Observatory (China-VO) project, AstroCloud has been archived solid progresses during the last one year. Proposal management system and data access system are re-designed. Several new sub-systems are developed, including China-VO PaperData, AstroCloud Statics and Public channel. More data sets and application environments are integrated into the platform. LAMOST DR1, the largest astronomical spectrum archive was released to the public using the platform. The latest progresses will be introduced.

1. Introduction

AstroCloud(Cui et al. 2015) is a cyber-infrastructure for astronomy research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Tasks such as proposal management, data archiving, data quality control, data release and open access, Cloud based data processing and analyzing, are integrated into the physical distributed platform. It acts as a full lifecycle management system and gateway for astronomical data and telescopes.
2. New feature

Since its lunch on May 15, 2014, many new features and remarkable improvements have been made to the platform. The current system consists of five channels, i.e. Observation, Data, Tools, Cloud and Public.

![Figure 1. Channels of AstroCloud](image)

Proposal submission sub-system (Xiao et al. 2015) was re-designed to provide flexible management features for telescope managers. Configuration parameters for back-end instrument, proposal submission, peer-review, and observation time allocation can be changed by telescope managers easily.

![Figure 2. Proposal Management System](image)

Data query and access sub-system (Fan et al. 2015) was improved for better performance and interoperability. Tens of datasets hosted at the platform can be queried and cross identified through a uniform interface. LAMOST DR1 (Luo et al. 2015),
the largest astronomical spectrum dataset with 2.2M spectra was open to the public in March 2015 through the system.

A new dashboard is designed to give a user fast access points of frequently used resources and services, and summary information of the system and the user.

Acquisition, Reduction and Analysis of Multi-wavelength Astronomical Data (MADARA) is a Cloud Computing (Li et al. 2015) based teaching and research environment for astronomical lectures and graduate students. Common used software packages, for example IRAF, DS9, CASA, HEASOFT, SSW, IDL, Python, to process and analyze multi-wavelength observation data are pre-installed. A virtual machine instance with these packages can be initiated and ready for using in only few minutes.

China-VO Paper Data Repository, provides long-term storage and open access service for user’s paper data, which includes but not limited tables, figures, pictures, movies, source codes, models, software packages mentioned in his scientific papers. A permanent but user specified URL will be provided for each item.

Public channel is a new one especially developed for the public and amateur astronomers in the last year. Video streams provide live images taken from video cameras at different observatories. Gallery is a collection of beautiful pictures taken by AstroCloud users. China-VO Special is a collection of China-VO hosted services, for example Astronomical Dictionary and WWT Beijing Community.

On July 29, 2015, Popular Supernova Project was lunched. It is the first astronomical citizen science project in China as a joint venture between China-VO and Xingming Amateur Astronomical Observatory. In the morning of Sep. 12, a supernova candidate
was discovered by a 10-year old pupil. Inspired by the news, number of the registered users of AstroCloud platform raised violently to 105K by the end of September. Two supernova candidates discovered by public users in October 2015 have been confirmed by professional observations.

In addition to the above user facing channels, several crucial functions are provided by the backend platform. Two examples are given here.

CSTNET passport, the combination of an email address and a password provided by China Science & Technology Network (CSTNET) that you use to sign in to supported services. If you don't have a CSTNET passport, you can sign up for free at any time.

Usage Statistics, give out important statistic data about the platform interested by users and administrators. For example, general weblog results and platform running status including online users, registered users, login in numbers, etc. Submitted proposals for telescopes. Archived astronomical observation datasets and their latest progress (He et al. 2015); Running status and number of virtual machine instances at each Cloud computing node.

Acknowledgments. This paper is funded by National Natural Science Foundation of China (11503051, U1231108, U1531246, U1531115), Ministry of Science and Technology of China (2012FY120500), Chinese Academy of Sciences (XXH12503-05-05). Data resources are supported by Chinese Astronomical Data Center.

References

Cui, C., Yu, C., Xiao, J., He, B., Li, C., Fan, D., Wang, C., Hong, Z., Li, S., Mi, L., Wan, W., Cao, Z., Wang, J., Yin, S., Fan, Y., Wang, J., & Yang, S. 2015, in ADASS XXIV, edited by A. R. Taylor, & E. Rosolowsky (San Francisco: ASP), vol. 495 of ASP Conf. Ser., 469

Fan, D., He, B., Xiao, J., Li, S., Li, C., Cui, C., Yu, C., Hong, Z., Yin, S., Wang, C., Cao, Z., Fan, Y., Mi, L., Wan, W., & Wang, J. 2015, in ADASS XXIV, edited by A. R. Taylor, & E. Rosolowsky (San Francisco: ASP), vol. 495 of ASP Conf. Ser., 477

He, B., Cui, C., Fan, D., Li, C., Xiao, J., Yu, C., Wang, C., Cao, Z., Chen, J., Yi, W., Li, S., Mi, L., & Yang, S. 2015, in ADASS XXIV, edited by A. R. Taylor, & E. Rosolowsky (San Francisco: ASP), vol. 495 of ASP Conf. Ser., 483

Li, C., Wang, J., Cui, C., He, B., Fan, D., Yang, Y., Chen, Y., Zhang, H., Yu, C., Xiao, J., Li, S., Mi, L., Wang, C., Cao, Z., Fan, Y., Hong, Z., Wan, W., Wang, J., & Yin, S. 2015, in ADASS XXIV, edited by A. R. Taylor, & E. Rosolowsky (San Francisco: ASP), vol. 495 of ASP Conf. Ser., 487

Luo, A.-L., Zhao, Y.-H., & Zhao, G. 2015, Research in Astronomy and Astrophysics, 15, 1095

Xiao, J., Yu, C., Cui, C., He, B., Li, C., Fan, D., Hong, Z., Yin, S., Wang, C., Cao, Z., Fan, Y., Li, S., Mi, L., Wan, W., Wang, J., & Zhang, H. 2015, in ADASS XXIV, edited by A. R. Taylor, & E. Rosolowsky (San Francisco: ASP), vol. 495 of ASP Conf. Ser., 473