Dietary Glutamate Supplementation Ameliorates Mycotoxin-Induced Abnormalities in the Intestinal Structure and Expression of Amino Acid Transporters in Young Pigs

Jielin Duan, Jie Yin, Miaomiao Wu, Peng Liao, Dun Deng, Gang Liu, Qingqi Wen, Yongfei Wang, Wei Qiu, Yan Liu, Xingli Wu, Wenkai Ren, Bie Tan, Minghong Chen, Hao Xiao, Li Wu, Tiejun Li, Charles M. Nyachoti, Olayiwola Adeola, Yulong Yin

Abstract

The purpose of this study was to investigate the hypothesis that dietary supplementation with glutamic acid has beneficial effects on growth performance, antioxidant system, intestinal morphology, serum amino acid profile and the gene expression of intestinal amino acid transporters in growing swine fed mold-contaminated feed. Fifteen pigs (Landrace ×Large White) with a mean body weight (BW) of 55 kg were randomly divided into control group (basal feed), mycotoxin group (contaminated feed) and glutamate group (2% glutamate+contaminated feed). Compared with control group, mold-contaminated feed decreased average daily gain (ADG) and increased feed conversion rate (FCR). Meanwhile, fed mold-contaminated feed impaired anti-oxidative system and intestinal morphology, as well as modified the serum amino acid profile in growing pigs. However, supplementation with glutamate exhibited potential positive effects on growth performance of pigs fed mold-contaminated feed, ameliorated the imbalance antioxidant system and abnormalities of intestinal structure caused by mycotoxins. In addition, dietary glutamate supplementation to some extent restored changed serum amino acid profile caused by mold-contaminated feed. In conclusion, glutamic acid may be act as a nutritional regulating factor to ameliorate the adverse effects induced by mycotoxins.

Introduction

Mycotoxins are a group of structurally diverse secondary metabolites produced by a wide variety of fungal species and are commonly detected in cereal crops and cereal-based food products in temperate regions [1–3]. According to the numerous well-designed experiments, mycotoxins are absorbed into the metabolic cycle by a paracellular pathway through the tight junctions [4], and then exert acute and chronic physiology and immune toxicity on animals and humans [3,6]. The ingestion of mycotoxins-contaminated feed lowers animal growth performance and meat quality [7], simultaneously alters gene expression [8,9] and decreases the activity of intestinal glucose transporters [10]. Meanwhile, mycotoxins inhibit the proliferation of intestinal cells by inducing oxidative DNA damage and G1-phase arrest [11], cause severe inflammatory reaction [12], and unbalance the antioxidant system [13,14] which play important roles in protecting our body against reactive oxygen species (ROS) [15]. Intestinal barrier dysfunction caused by mycotoxins [16] allows exogenous pathogenic antigens invasion, such as natural toxins and additional mycotoxins, which compromise intestinal homeostasis [17]. In contrast to normal feed or single-toxin contaminated feed, mold-contaminated feed contains multiple mycotoxins, such as aflatoxin B1 (AFB1), deoxynivalenol (DON), α-zearalenone (α-ZEA), ochratoxins (OCH), toxin-2 [18,19]. Such multi-mycotoxin-contaminated feed plausibly imposes more serious damage on animals than the consumption of any single mycotoxin alone. Thus, contamination of feed by mixed mycotoxins greatly affects...
Sample collection

All blood samples were collected through a jugular vein from all of the pigs. Serum was separated by centrifugation at 1,500 g for 10 min at 4°C and stored at −20°C until analysis [39]. At day 60, the pigs were sacrificed and two gut samples were taken from both the mid-jejunum and mid-ileum. One of the gut sample (3 cm) was immediately frozen in liquid nitrogen and stored at −70°C for subsequent analyses of gene expression [40].

Materials and Methods

Experimental design

Fifteen swine (Landrace x Large White) (ZhengHong Co., China) with a mean body weight (BW) of 55 kg were randomly divided into three treatment groups (n = 5/group): 1) the control group received basal feed; 2) the mycotoxin group received contaminated feed and dietary supplementation with 2% glutamate (purity >99%, Beijing Chemclin Biotech, Beijing, China). Contaminated feed was mildly cleared clearly under ambient conditions (temperature 23–28°C, humidity 68–85%) as described by Liu et al [34] and the mycotoxins were detected by liquid chromatography (Beijing Taileqi, Beijing, China) (Table 1). The basal diets were formulated to meet or exceed the nutritional needs of growing pigs as recommended by the NRC [37]. The quality of RNA was checked by 1% agarose gel electrophoresis after staining with 10 μg/ml ethidium bromide. The RNA had an OD260:OD280 ratio between 1.8 and 2.0. First-strand cDNA was synthesized with oligo (dT) 20 and Superscript II reverse transcriptase (Invitrogen, USA) (Table 1). The quality of RNA was checked by 1% agarose gel electrophoresis after staining with 10 μg/ml ethidium bromide. The RNA had an OD260:OD280 ratio between 1.8 and 2.0. First-strand cDNA was synthesized with oligo (dT) 20 and Superscript II reverse transcriptase (Invitrogen, USA).

RNA extraction and cDNA synthesis

Total RNA was isolated from liquid nitrogen-pulverized tissues as described above using TRIzol reagent (Invitrogen, USA) and treated with DNase I (Invitrogen, USA) according to the manufacturer’s instructions [45]. The quality of RNA was checked by 1% agarose gel electrophoresis after staining with 10 μg/ml ethidium bromide. The RNA had an OD260:OD280 ratio between 1.8 and 2.0. First-strand cDNA was synthesized with oligo (dT) 20 and Superscript II reverse transcriptase (Invitrogen, USA).

Quantification of mRNA by real-time PCR analysis

Primer sequences were designed with Primer 5.0 based on the cDNA sequence of the pig to produce an amplification product (Table 3). GAPDH was used as a housekeeping gene to normalize target gene expression levels. Real-time PCR was performed using SYBR Green PCR Mix, containing MgCl2, dNTP, and Hotstar Taq polymerase. Two μl of cDNA template was added to a total volume of 25 μl containing 12.5 μl SYBR Green mix and 1 μmol/l each of forward and reverse primers. We used the following protocol: (i) pre-denaturation (10 s at 95°C); (ii) amplification and quantification, repeated 40 cycles (5 s at 95°C, 20 s at 60°C); (iii) melting curve (60-95°C with a heating rate of 0.1°C S-1 and fluorescence measurement) (PMID:22006211).
Determination of serum T-SOD and GSH-Px activity

Growth performance

Result

Growth performance

In current study, the ADG and FCR were measured to evaluate the growth performance and feed efficiency of young pig respectively. The ADG in the mycotoxin group were significantly lowered (P<0.05) than those in the control group. The ADG in glutamate group was significant lower (P<0.05) than those in the control group.

Determination of serum T-SOD and GSH-Px activity

SOD and GSH-Px are two major antioxidant enzymes to scavenge the excessive internal reactive oxygen species (ROS) which exert radical-mediates damages to biological macromolecules (proteins, lipids and DNA) [42], therefore the activities of SOD and GSH-Px are plausibly regarded as a mark reflecting the redox of organism [15]. In this study, compared with control group, pigs with mold-contaminated feed remarkably increased (P<0.05) the FCR compared with control group (3.22 ± 0.04) compared with mycotoxin group. The ADG in glutamate group was significant lower (P<0.05) than those in the control group.

However, dietary supplementation with glutamic acid significantly augmented (P<0.05) serum T-SOD and GSH-Px activities compared with the mycotoxin group, and the serum T-SOD and GSH-Px activities in glutamate group were restored to parallel with the control group (Figure 2).

Determination of serum D-lactate and DAO

In this study, serum D-lactate levels and DAO activity were measured to evaluate intestinal integrity. As shown in figure 3, after pigs exposed to contaminated feed, the D-lactate levels were significantly increased (P<0.05). However, the D-lactate levels in the glutamate group were significantly lowered (P<0.05) than those in the mycotoxin group. There was no significant difference in the level of DAO among all groups (Figure 3).

Microscopic Evaluation

In this study, compared with control group, pigs with contaminated feed remarkably increased (P<0.05) in the villus height and crypt depth in the ileum and jejunum, while there was no difference in the ratio of villus height to crypt depth in the ileum and jejunum (Table 4).

As shown in Figure 4, no histological damage was observed in the ileum (Fig. 4A) and jejunum (Fig. 4D) in the control group. In the contaminated feed group, villi in the ileum (Fig. 4B) and jejunum (Fig. 4E) were scattered and desquamated. The glutamate group showed larger villi in both the ileum (Fig. 4C) and jejunum (Fig. 4F).

Serum amino acid parameters

As shown in Table 5, the consumption of contaminated feed resulted in decreases in the serum levels of some amino acids.

Table 1. Mycotoxin content of contaminated and non-contaminated feed mixtures.

Catalogue	AFB1 (ppb)	ZEN (ppm)	OCH (ppb)	DON (ppm)	FB1 (ppm)	T-2 (ppm)
Limit of detection	0.05	0.01	0.5	0.1	0.05	0.1
Non-contaminated feed	undetected	0.821	3.6	1	0.6	undetected
Contaminated feed	0.62	0.573	11.39	3	2	undetected

Samples were collected at every preparing feed in each group and then mixed their together respectively. Among these mycotoxins, AFB1 means Aflatoxin B1 (ppb); ZEN means zearalenone (ppm); OCH means ochratoxin (ppb); DON means deoxynivalenol (ppm); FB1 means Fusarium B1 (ppm) and T-2 means T-2 fungal toxin (ppm).

doi:10.1371/journal.pone.0112357.t001

Table 2. Composition and nutrient level of the basal diet.

Ingredients	Contents (%)	Nutrient Substance	Contents (%)
Corn	67.22	Crude protein	16
Soybean meal	21.8	Ca	0.6
Wheat bran	7.95	P	0.5
Limestone	1.03	CaHPO4	0.69
Lys	0.771	Salt	0.31
Met+Cys	0.584	Additive premix	1

Premix provided the following per kilogram of the diet: Sepiolite 8.072g; pig vitamin 750mg; FeSO4·H2O 317mg; CuSO4·5H2O 294mg; Antioxidants 200mg; MnSO4·H2O 172mg; ZnSO4·H2O 153mg; KI 24mg; Na2SeSO3 18mg.

doi:10.1371/journal.pone.0112357.t002
Compared with control group, contaminated feed significantly decreased (P < 0.05) the serum concentrations of L-glutamine, L-proline, 1-methyl-L-histidine, hydroxy-L-proline and L-tyrosine and simultaneously the concentrations of L-glutamic acid and amino acids related to its metabolism (L-ornithine) in mycotoxin group tended to be lower (P < 0.05), while the level of L-citrulline was significantly higher than that in the control group (P < 0.05).

However, dietary supplementation with glutamate significantly restored (P < 0.05) the serum levels of 1-methyl-L-histidine, hydroxy-L-proline, L-homocystine, and L-histidine, and the levels of L-homocystine and L-histidine were even higher than those in the control group. In addition, the concentrations of L-glutamic acid and L-proline in the glutamate group tended to be higher (P < 0.05) than those in the mycotoxin group.

Amino acid transporter gene expression

The ileal solute carrier family 7 (amino acid transporter light chain, y+L system), member 7 (SLC7A7), solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 (SLC7A1), solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member 1 (SLC1A1), and solute carrier family 5 (sodium/glucose cotransporter), member 1 (SLC5A1) mRNA abundances in the mycotoxin group exhibited no significant difference compared to those in the control group (Figure 5A). Contaminated feed also exhibited no effects on mRNA abundances of these genes in the jejunum excepting significantly increased (P < 0.05) mRNA abundance of SLC7A7 (Figure 5B). There was no difference about the mRNA expression of these transporters between mycotoxin group and glutamate group in the jejunum and ileum (P > 0.05).

Discussion

Glutamate is an important versatile functional amino acid because of its nutritional and immune contributions. Many well-designed studies have shown that glutamate performs critical roles in regulating intestinal health and maintaining intestinal homeostasis by providing pivotal oxidative fuels that are indispensable for enterocytes proliferation and turnover and enhancing intestinal barrier function [21,32]. Although dietary glutamate is crucial for

| Table 3. Primer pairs used in the RT-PCR reaction. |

Gene Accession No.	Nucleotide sequence of primers (5’–3’)
β-Actin NM_001172909.1	F:CTGGCCGTACCCAGAAACT R:AGGGCCGTGATCTCCTCTGT
SLC7A1 NM_001012613.1	F:GTGCCATACTTCGCGTCC R:GGTTCCAGTTACGTCAG
SLC7A7 NM_001253680.1	F:TTTTGTATGCGGAAGTGG R:AAAGGTTATGCGCAATGC
SLC1A1 NM_001164649.1	F:ATAAGAGTTGGAGACTGGGAAAT R:GTGTGCTGAACTGGAGAG
SLC5A1 NM_001164021.1	F:GGCTGGACGAGTATGGTGT R:ACACCCACCCACAGCAC

SLC7A1: solute carrier family 7 (cationic amino acid transporter, y+ system), member 1; SLC7A7: solute carrier family 7 (amino acid transporter light chain, y+L system), member 7; SLC1A1: solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member 1; SLC5A1: solute carrier family 5 (sodium/glucose cotransporter), member 1. All these primer sequence was designed based on the sequence corresponding to the accession number described above.

doi:10.1371/journal.pone.0112357.t003

Figure 1. ADG and FCR in growing pigs fed mycotoxin-contaminated diets. The treatments consisted of a control group (n = 5) receiving uncontaminated feed, a mycotoxin group (n = 5) receiving mould-contaminated diet, and the glutamate group (n = 5) receiving mould-contaminated diet and 2% glutamate. The data with different letters in the same factor differ significantly (P < 0.05), and same letters means no significant difference (p > 0.05).

doi:10.1371/journal.pone.0112357.g001
intestinal health, little is known about its role in protecting the gut from toxin-induced injury. Thus, we conducted the experiment to explore whether dietary supplementation with glutamate could attenuate the cytotoxic effects of mycotoxins on growing pigs.

In current study, liquid chromatography determination showed that AFB1 (0.62 ppb), OCH (11.39 ppb), DON (3 ppm), and FB1 (2 ppm) were the main mycotoxins in moldy feed. Although the AFB1 and OCH levels were quite low (the concentrations were still higher than those in the control group), there is as yet no method suitable for determining whether their co-effects might produce more serious impairments than either compound alone. A growing number of studies have shown that consumption of mycotoxins decreases ADG, feed intake, and thus lower animal performance [46]. Indeed, in our study, contaminated feed lowered pig growth performance and feed efficiency with significantly decreasing ADG and increasing FCR respectively, which parallelized with previous report that DON significantly decreases pig growth performance [45]. According to previous studies, ingestion of mycotoxins can remarkably damage intestinal structure, gut barrier and intestinal immunity, leading to the compromise intestinal function [4,12,]. Thus adverse effects of mycotoxins on intestinal function maybe account for the pig growth-suppression caused by contaminated feed in our study. However, supplementation with 2% glutamate failed to mitigate the growth-suppression caused by mycotoxins. Similarly, previous reports have shown that dietary supplementation with arginine and glutamine also fails to alleviate the growth-suppression induced by mycotoxins in growing pig. Thus, we speculate the reason may be that the supplemental glutamate concentration in current study is insufficient to overwhelm the mycotoxin-induced growth-suppression. As a result, to elucidate this point, further study need to be carried out.

Poor growth performance is relevant to injuries of intestinal absorption and intestinal function caused by mycotoxins. Many of studies have demonstrated that mycotoxins can damage intestinal structure, impair intestinal carrier function and unbalance antioxidant system [13,45,46]. Similar to the previous studies, fed contaminated feed impaired the intestinal structure, antioxi-

Figure 2. Serum GSH-Px and T-SOD activities in growing pigs fed mycotoxin-contaminated feed. The treatments consisted of a control group (n = 5) receiving uncontaminated feed, a mycotoxin group (n = 5) receiving mould-contaminated diet, and the glutamate group (n = 5) receiving mould-contaminated diet and 2% glutamate. The data with different letters in the same factor differ significantly (P<0.05), and same letters means no significant difference (p>0.05).

doi:10.1371/journal.pone.0112357.g002

Figure 3. Serum D-Lactate and DAO activities of growing pigs fed mycotoxin-contaminated feed. The treatments consisted of a control group (n = 5) receiving uncontaminated feed, a mycotoxin group (n = 5) receiving mould-contaminated diet, and the glutamate group (n = 5) receiving mould-contaminated diet and 2% glutamate. The data with different letters in the same factor differ significantly (P<0.05), and same letters means no significant difference (p>0.05).

doi:10.1371/journal.pone.0112357.g003
dant system and intestinal barrier function in our experiment. Intestinal histological and morphological impairment and intestinal barrier dysfunction lead to poor nutrient absorption, and then lower animal performance and in this study growth-suppression induced by mycotoxins have indirectly demonstrated this point. Intriguingly, according to previous investigations, supplementation

Table 4. Effect of dietary supplementation with glutamate on morphological characteristics in intestinal tissues in pigs fed experimental diets.

Catalogue	Control group	Mycotoxin group	Glutamate group
Ileum villus height (µm)	255.45±4.89b	356.15±8.08a	332.03±11.96a
Ileum crypt depth (µm)	120.00±1.56b	216.97±7.17a	139.90±8.75b
Jejunum villus height (µm)	295.08±6.39b	343.30±16.04a	298.65±7.05b
Jejunum crypt depth (µm)	99.13±3.90b	132.45±6.84a	113.35±6.31ab
Ileum V/C	2.97±0.18	2.48±0.20	2.68±0.22
Jejunum V/C	2.41±0.39	2.2±0.41	2.2±0.65
Ileum goblet cells number	32.00±1.92a	23.25±3.38b	25.00±2.47ab
Jejunum goblet cells number	16.50±1.50a	12.75±0.86b	16.33±0.62a
Ileum lymphocyte number	223.75±17.67	179.75±26.71	214.00±26.05
Jejunum lymphocyte number	286.00±27.25	248.20±18.83	226.80±11.38

The treatments consisted of a control group (n=5) receiving uncontaminated feed, a mycotoxin group (n=5) receiving mould-contaminated diet, and the glutamate group (n=5) receiving mould-contaminated diet and 2% glutamate. Villus height and crypt depth were measured using an image-analysis system. Among these indexes, Ileum C/V means the ration of ileal villus height to crypt depth and Jejunum C/V means the ration of jejunal villus height to crypt depth. The data with different letters in the same row differ significantly (P<0.05), and same letters mean no significant difference (p>0.05).

doi:10.1371/journal.pone.0112357.t004

Figure 4. Histological evaluation of intestinal tissues (HE×100) in growing pigs fed mould-contaminated feed. The treatments consisted of a control group (n=5) receiving uncontaminated feed, a mycotoxin group (n=5) receiving mould-contaminated diet, and the glutamate group (n=5) receiving mould-contaminated diet and 2% glutamate. Fig. 4A and D represented control group and Fig. 4B and E represented contaminated group and Fig. 4C and F represented glutamate group. There is no histological damage observed in the control group (Fig. 4A and D). In mycotoxin group, the villus was scattered and desquamated seriously in jejunum and ileum (Fig. 4B and E). A greater villus in jejunum and ileum was observed in glutamate group (Fig. 4C and F).

doi:10.1371/journal.pone.0112357.g004

Figure 4. Histological evaluation of intestinal tissues (HE×100) in growing pigs fed mould-contaminated feed. The treatments consisted of a control group (n=5) receiving uncontaminated feed, a mycotoxin group (n=5) receiving mould-contaminated diet, and the glutamate group (n=5) receiving mould-contaminated diet and 2% glutamate. Fig. 4A and D represented control group and Fig. 4B and E represented contaminated group and Fig. 4C and F represented glutamate group. There is no histological damage observed in the control group (Fig. 4A and D). In mycotoxin group, the villus was scattered and desquamated seriously in jejunum and ileum (Fig. 4B and E). A greater villus in jejunum and ileum was observed in glutamate group (Fig. 4C and F).

Figure 4. Histological evaluation of intestinal tissues (HE×100) in growing pigs fed mould-contaminated feed. The treatments consisted of a control group (n=5) receiving uncontaminated feed, a mycotoxin group (n=5) receiving mould-contaminated diet, and the glutamate group (n=5) receiving mould-contaminated diet and 2% glutamate. Fig. 4A and D represented control group and Fig. 4B and E represented contaminated group and Fig. 4C and F represented glutamate group. There is no histological damage observed in the control group (Fig. 4A and D). In mycotoxin group, the villus was scattered and desquamated seriously in jejunum and ileum (Fig. 4B and E). A greater villus in jejunum and ileum was observed in glutamate group (Fig. 4C and F).
Glutamate Supplementation Ameliorates Mycotoxin-Induced Abnormalities

with amino acid and peptide preparations may counteract the toxic effects of mycotoxins in mice and pigs [47]. For example, supplementation with protein and amino acids overcomes the mycotoxicoses [47,48] and the addition of proline exhibits a beneficial effect on the jejunal impairment induced by DON [49]. As expected, dietary supplementation with glutamate not only remarkably improved structure of the intestine (based on histological and morphological findings), but also restored intestinal barrier function and antioxidant system with decreased serum D-lactate level and increased serum SOD and GSH-Px levels which can scavenge excessive ROS. These results have demonstrated certain beneficial roles of glutamate restore impaired intestinal function in pigs after challenge with contaminated feed. In mammals, glutamate plays an important role in the synthesis and turnover of non-essential amino acids and protein in the gut [50] and also provides major oxidative fuels, which play critical roles in reducing experimental intestinal hyper-permeability and facilitating gut integrity and function [51]. Meanwhile, glutamate is a precursor for glutathione and N-acetylglutamate in enterocytes and glutathione is involved in intestinal redox state and in the detoxication process and simultaneously performs pivotal roles in regulating intestinal function [52]. Thus, considering the versatile beneficial function of glutamate in intestine, it is plausible that dietary supplementation with glutamate may to some extent protect the intestinal homeostasis from contaminated feed.

Serum amino acids are the substrate for nutritional anabolism and catabolism, playing important roles in immune response and growth performance. In current study, the contaminated feed decreased some of the serum amino acid concentration. In particular, the serum level of L-glutamine, L-proline, L-methyl-L-histidine, hydroxy-L-proline, and L-tyrosine were significantly decreased and L-glutamic acid and amino acids related to its metabolism (L-ornithine) tended to be lower. Meloche et al. have reported that T 2 toxin reduces amino acid uptake as well as the plasma amino acid concentration [53], which is consistent with our present results. However, dietary supplementation with glutamate restores L-histidine, L-methionine, L-homolysine, L-methyl-L-histidine and 3-methyl-L-histidine levels, but fails to restore serum L-glutamate, L-glutamine and L-citrulline levels.

Table 5. Effect of dietary supplementation with glutamate on concentration of serum amino acid parameters in growing pigs fed mycotoxin-contaminated feed.

Item	The molecular formula	Control group (ug/ml)	Mycotoxin group (ug/ml)	Glutamate group (ug/ml)
L-arginine	C6H14N4O2	23.34±0.32	20.79±2.82	20.43±0.32
L-histidine	C11H17N3O4	32.69±3.53b	32.76±2.70b	45.42±5.61a
L-isoleucine	C6H13N2O2	10.85±0.98	10.74±0.79	9.91±0.26
L-leucine	C6H13N2O2	22.48±0.21	22.61±0.89	22.05±0.64
L-lysine	C6H14N2O2	16.69±1.41	16.03±0.80	14.41±1.56
L-phenylalanine	C5H11O2N5	12.16±0.87	11.03±1.52	10.63±0.24
L-methionine	C9H11N2O2	32.93±0.90b	31.23±5.41b	50.28±3.50a
L-threonine	C4H9N3O3	10.17±0.34	10.08±0.94	9.57±0.94
L-tryptophan	C11H12N2O2	6.87±0.36	6.31±0.45	6.15±0.89
L-valine	C5H11N2O2	20.30±1.81	22.17±1.73	22.39±2.61
Glycine	C2H5NO2	67.83±3.25a	67.02±3.11b	74.33±2.37ab
L-serine	C3H7NO3	10.05±1.73	10.19±0.55	10.62±0.96
L-tyrosine	C2H7N5O3	23.25±1.24a	17.60±0.86b	17.13±2.08b
L-asparagine	C9H11N1O2	2.84±0.28	3.26±0.40	3.31±0.09
L-aspartic acid	C4H8N2O3	1.72±0.28b	1.67±0.99b	2.76±0.48a
L-citrulline	C4H7NO4	10.13±0.91b	17.70±1.09a	13.15±0.83b
L-glutamic acid	C6H13N3O3	57.25±3.09	49.31±2.85	53.12±8.78
L-glutamine	C5H9NO4	7.20±0.67a	3.90±0.30b	4.90±0.38b
L-ornithine	C5H10N2O3	13.09±0.92	11.02±1.21	12.05±2.14
L-cystine	C5H12N2O3	0.49±0.12	0.32±0.06	0.43±0.10
L-homocystine	C3H7NO2S	0.18±0.01b	0.15±0.02b	0.25±0.02a
L-alanine	C4H9N2O5	44.03±6.70	44.66±3.67	48.85±9.85
L-camidine	C3H7NO2	0.76±0.18	0.69±0.09	0.61±0.25
Hydroxy-L-proline	C3H9N0H2	80.85±5.76a	29.31±4.09c	53.18±4.70b
1-methyl-L-histidine	C7H11N3O2	0.70±0.05a	0.49±0.03b	0.69±0.06a
3-methyl-L-histidine	C7H11N3O2	1.64±0.10ab	1.46±0.08b	1.74±0.12a
L-proline	C5H9NO2	46.13±3.33a	20.37±3.66b	25.95±2.68b

The treatments consisted of a control group (n = 5) receiving uncontaminated feed, a mycotoxin group (n = 5) receiving mould-contaminated diet, and the glutamate group (n = 5) receiving mould-contaminated diet and 2% glutamate. The data with different letters in the same row differ significantly (P < 0.05).

doi:10.1371/journal.pone.0112357.t005
Similarly, Boutry et al have also reported glutamate supplementation fail to reverse decreased glutamate, glutamine and citrulline concentrations in plasma in endotoxemia. A possible explanation for these results is that both glutamate and other amino acids (glutamine, ornithine and proline) are accumulated in the intestinal mucosa and then preferentially are used for oxidative metabolism to produce ATP and protein biosynthesis in enterocytes [21] to repair injured intestinal function induced by mycotoxins, rather than are transferred to the bloodstream. The levels of serum amino acids are related to amino acid transporters [54]. Before used for metabolism, luminal amino acids must be transported into the bloodstream through amino acid transporters (e.g., SLC7A7, SLC7A1, SLC1A1, and SLC5A1) which are extensively located at the intestinal mucosa. In current study, contaminated feed exhibited no significant effects on the mRNA expression of intestinal amino acid transporters. However, previous studies have indicated that mycotoxins inhibit amino acid transporters expression [55]. The discrepancy with other studies may be growing pigs that highly adapt to

Figure 5. Effect of dietary supplementation with glutamate on relative mRNA abundances in ileum (A) and jejunum (A) of growing pigs fed mould-contaminated feed. The treatments consisted of a control group (n = 5) receiving uncontaminated feed, a mycotoxin group (n = 5) receiving mould-contaminated diet, and the glutamate group (n = 5) receiving mould-contaminated diet and 2% glutamate. SLC7A1: solute carrier family 7 (cationic amino acid transporter, \(y^+\) system), member 1; SLC7A7: solute carrier family 7 (amino acid transporter light chain, \(y^+L\) system), member 7; SLC1A1: solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member 1; SLC5A1: solute carrier family 5 (sodium/glucose cotransporter), member 1. The data with different letters in the same row differ significantly (\(P<0.05\), and same letters means no significant difference (\(p>0.05\)).

doi:10.1371/journal.pone.0112357.g005
Glutamate Supplementation Ameliorates Mycotoxin-Induced Abnormalities

contaminated feed. However, dietary supplementation with glutamate exhibits no benefits to amino acid transporters expression after contaminated feed challenge. Previous study has reported that dietary supplementation with arginine or N-carbamylglutamate up-regulates of SLC1A1 gene expression or various cellular growth factors and mTOR Signaling Activity [56–59]. However, our previous investigation has indicated that supplementation with arginine also fails to up-regulate intestinal amino acid transporters [37]. Thus, with respect to this contradictory results, we speculate that the reason may be due to animal model, duration of feeding and the concentration of glutamate supplementation. However, further studies should be carried out to elucidate this point in detail.

In conclusion, treatment of pigs with mold-contaminated feed has adverse effects on growth performance, structure of the intestine (histology, morphology and barrier function), and serum amino acid profile. Glutamate likes other functional amino acids can improve animal health [60–77]. Dietary supplementation with glutamate partially counteracts the impairments induced by mycotoxins. Therefore, glutamate may be useful as a nutritional regulating factor to alleviate the adverse effects of mycotoxins.

Author Contributions
Conceived and designed the experiments: JD JY MW GL YY. Performed the experiments: JD JY MW GL PL DD YL XW QW YW WQ. Analyzed the data: JD JY MW GL WR BT MC HX LW TL. Contributed reagents/materials/analysis tools: JD JY YY. Contributed to the writing of the manuscript: JD GMN OA YY.

References
1. Beardall J, Miller JD (1994) Natural occurrence of mycotoxins other than aflatoxins in African and South African Mycotoxin Res 10: 25–30.
2. Xiao H, Wu MM, Tan BE, Yin YL, Li TJ, et al. (2013a) Effects of composite antimicrobial peptides in weaning piglets challenged with deoxynivalenol: I. Growth performance, immune function, and抗氧化性. Journal of Animal Science 91: 4772–4780.
3. Malekiviene A, Jablonskyy-Rasce D, Maiksteneiene S (2014) Occurrence of mycotoxins in spelt and common wheat grain and their products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31: 132–138.
4. Burkhardt B, Pfeiffer E, Metzler M (2009) Absorption and metabolism of the mycotoxins alternariol and alternariol-9-methyl ether in Caco-2 cells in vitro. Mycotoxin Res 25: 149–157.
5. Coppock RW, Jacobsen BJ (2009) Mycotoxins in animal and human patients. Toxicol Lett 25: 637–653.
6. Abbas HK, Yoshizawa T, Shio WT (2013) Cytotoxicity and phototoxicity of trichothecene mycotoxins produced by Fusarium spp. Toxicon 74: 68–75.
7. Windisch K, Haeberle-Cr, Haushold I, Vale MM, et al. (2012) Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs. Animal 6: 1476–1482.
8. Stoll B, Burrin DG, Henry J, Hsu J, Bahadori F, et al. (2007) Substrate oxidation by the portal drained viscera of fed piglets. Am J Physiol 297: E168–175.
9. Wu X, Zhang Y, Liu Z, Li TJ, Yin YL (2012) Effects of oral supplementation with glutamate or combination of glutamate and N-carbamylglutamate on intestinal mucosa morphology and epithelium cell proliferation in weaning piglets. J Anim Sci 90 Suppl 4: 337–339.
10. Xiao W, Feng Y, Holst JI, Hartmann B, Yang H, et al. (2014) Glutamate prevents intestinal atrophy through luminal nutrient sensing in a mouse model of total parenteral nutrition. FASEB J.
11. Beck C, Blouin J, Marsalik P, Bonich T, Factum P, et al. (2013) The effects of mycotoxin deoxynivalenol (DON) on haematological and biochemical parameters and selected parameters of oxidative stress in piglets. Neuro Endocrinol Lett 34: 84–89.
12. Hou YJ, Zhao YY, Xiong B, Cui XS, Kim NH, et al. (2013) Mycotoxin-containing diet causes oxidative stress in the mouse. PLoS One 8: e50574.
13. Yin J, Ren W, Liu G, Duan J, Yang G, et al. (2013) Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radic Res 47: 1027–1035.
14. Danicke S, Brosig B, Klunker LR, Kahlert S, Khreis J, et al. (2012) Systemic and local effects of the Fusarium toxin deoxynivalenol (DON) are not alleviated by dietary supplementation of human substances (HS). Food Chem Toxicol 50: 979–988.
15. Yunus AW, Blajet-Kosicka A, Kosicki R, Khan MZ, Rehman H, et al. (2012) Birth oxidative stress and the development of an antioxidant system in newborn piglets. Am J Physiol 277: E168–175.
16. Stoll B, Burrin DG, Henry J, Hsu J, Bahadori F, et al. (2007) Substrate oxidation by the portal drained viscera of fed piglets. Am J Physiol 297: E168–175.
17. Tan B, Yin Y, Liu Z, Li X, Xu H, et al. (2009) Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37: 167–173.
18. Yang DG, Zhang ZZ, Huang J, Yin YL (2010) Digestion rate of dietary starch affects systemic circulation of amino acids in weaned pigs. Brit J Nutr 103: 1404–1412.
39. Yin YL, Yao K, Liu ZJ, Gong M, Ruan Z, et al. (2010) Supplementation L-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 39: 1477–1486.

40. Wu X, Yin YL, Li TJ, Huang RL, Zhang Z, et al. (2010) Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids 39: 831–839.

41. Tan BE, Li XG, Kong XF, Yin YL, Li TJ, et al. (2010) Dietary L-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37: 323–331.

42. Ruan Z, Yang M, Zhou Y et al. (2014) Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid. Amino Acids 46: 2219–2229.

43. Yin J, Ren WK, Wu XS, Yang G, Wang J, et al. (2013) Oxidative stress-mediated signaling pathways: A review. Journal of Food Agriculture & Environment 11: 132–139.

44. Ren WK, Chen S, Yin J, Duan L, Li T, et al. (2014) Dietary Arginine Supplementation of Mice Alters the Microbial Population and Activates Intestinal Innate Immunity. J Nutr 144: 568–579.

45. Ren W, Yu R, Liu GY, Jin J, Yin YL, et al. (2013) DNA vaccine encoding the major virulence factors of Shiga toxin type 2e (Stx2e)-expressing Escherichia coli induces protection in mice. Vaccine 31: 367–72.

46. Wu L, Wang W, Yan K, Zhou T, Yin J, et al. (2013) Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs. PLoS One 8: e69592.

47. Belokrylov GA, Popova O, Sorochinskaia EI (1999) [Detoxication of benzene and alfatoxin B1 by amino acid and peptide preparations in mice and chicken]. Biof Ekol Biol Med 129: 419–421.

48. Mezes M, Balogh K, Toth K (2010) Preventive and therapeutic methods against the toxic effects of mycotoxins - a review. Acta Vet Hung 58: 1–17.

49. Awad WA, Rehman H, Bohm J, Razzazi-Fazeli E, Zentek J (2005) Effects of luminal deoxynivalenol and L-proline on electrophysiological parameters in the jejuna of laying hens. Poult Sci 84: 928–932.

50. Nakamura H, Kasamata Y, Kusakaba T, Torii K, Sakai R (2013) Nitrogen in dietary glutamate is utilized exclusively for the synthesis of amino acids in the rat intestine. Am J Physiol Endocrinol Metab 304: E100–108.

51. Wu GY, Bazer FW, Davis TA, Johnson GA, Yin YL, et al. (2007) Important roles for arginine-family amino acids in swine nutrition and production. Livestock Science 122: 8–22.

52. Martensson J, Jain A, Meister A (1998) Glutathione Is Required for Intestinal Function. Proceedings of the National Academy of Sciences of the United States of America 87: 1715–1719.

53. Meloche JL, Smith TK (1995) Altered tissue amino acid metabolism in acute T-2 toxicosis. Proc Soc Exp Biol Med 210: 260–265.

54. Taylor PM (2014) Role of amino acid transporters in amino acid sensing. Journal of Proteome Research. 10: 5214–5224.

55. Ren WK, Duan JL, Yin YL, Li TJ, Yin YL, et al. (2014) Dietary L-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids. Amino Acids 46: 2403–2413.

56. Geng MM, Li TJ, Kong XF, Song XY, Chu WW, et al. (2011) Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates. Amino Acids. Amino Acids 40: 1513–1522.

57. He LQ, Yang HS, Hou YQ, Li TJ, Fang J, et al. (2013) Effects of dietary L-lysine intake on the intestinal mucosa and expression of CAT genes in weaned piglets. Amino Acids. Amino Acids 45: 383–391.

58. Wu X, Shu GX, Xie GY, Li HJ, et al. (2013) The Acute and Chronic Effects of Monosodium L-Glutamate on Serum Iron and Total Iron-Binding Capacity in the Jugular Artery and Vein of Pigs. Biol Trace Elem Res 153: 191–195.

59. Tan BE, Yin YL, Kong XF, Li T, Yin YL, et al. (2010) L-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38: 1227–1235.

60. Yin YL, Tan BE. (2010) Manipulation of dietary nitrogen, amino acids and phosphorus to reduce environmental impact of swine production and enhance animal health. Journal of Food, Agriculture & Environment. 8: 476–482.

61. Yao K, Fang J, Yin YL, Huang RL, Yin YL, et al. (2011) Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids. Amino Acids 46: 2403–2413.

62. Li FN, Yin YL, Tan BE, Li H, Duan Y, et al. (2011) Leucine nutrition in animals and humans: mTOR signaling 3 and beyond. Amino Acids 41: 1183–1193.

63. He QH, Tang HR, Ren PP, Li TJ, Yin YL, et al. (2011). Dietary Supplementation with L-Arginine Partially Counteracts Serum Metabonome Induced by Weaning Stress in Piglets. Journal of Proteome Research. 10: 5214–5224.

64. Tan BE, Li XG, Yin YL, Li TJ, Kong XF, et al. (2012) Regulatory roles for L-arginine in reducing white adipose tissue. Frontiers in Bioscience. 17: 2237–2246.

65. Kong XF, Yin YL, Wu GY (2012) Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophoderm cells. Journal of Nutritional Biochemistry 23 1178–1183.

66. Liu XD, Wu X, Yin YL, Li T, Huang RL, et al. (2012). Effects of dietary L-arginine and N-carbamylglutamate supplementation during late gestation of sows on the mTOR13b/16, mTOR221/222VEGFAandVEGFR1expression in umbilical vein. Amino Acids 42: 2111–2119.

67. Wu X, Liu YL, Yin YL, Li TJ, et al. (2013) Effect of dietary arginine and N-carbamylglutamate supplementation on reproduction and gene expression of eNOS, VEGFA and PGE1 in in late pregnancy of sows placenta. Animal Reproduction Science. 132 187–192.

68. Tan BE, Li XG, Wu GY, Yin YL, et al. (2012) Dynamic changes in blood flow and oxygen consumption in the portal-drained viscera of growing pigs receiving acute administration of L-arginine. Amino Acids. 43: 2481–2489.

69. Wu GY, Wu ZL, Dai ZL, Wang JJ, Yin YL, et al. (2013). Dietary requirements of nutritionally non-essential aminoacids by animals and humans Amino Acids 43: 1187–1193.

70. Wu X, Xie GY, Yin YL, Li TJ, Huang RL, et al. (2013) Effect of L-arginine on HSP70 expression in liver in weanling piglets. BMC Veterinary Research, 9: 63–65.