St Gallen 2019 guidelines undercover the axilla in lobular breast cancer: a population-based study

U. Narbe 1,2, P.-O. Bendahl1, M. Fernö1, C. Ingvar 3,4, L. Dihge 3,5 and L. Rydén3,4,*

1Department of Clinical Sciences, Division of Oncology, Lund University, Lund, Sweden
2Department of Oncology, Växjö Central Hospital, Växjö, Sweden
3Department of Clinical Sciences, Division of Surgery, Lund University, Lund, Sweden
4Department of Surgery, Skåne University Hospital, Lund, Sweden
5Department of Plastic and Reconstructive Surgery, Skåne University Hospital, Malmö, Sweden

*Correspondence to: Department of Clinical Sciences Lund, Division of Surgery, Faculty of Medicine, Lund University, Medicon Village, SE-223 81 Lund, Sweden (e-mail: lisa.ryden@med.lu.se)

Abstract

Background: The St Gallen 2019 guidelines for primary therapy of early breast cancer recommend omission of completion axillary lymph node dissection (cALND), regardless of histological type, in patients with one or two sentinel lymph node (SLN) metastases. Concurrently, adjuvant chemotherapy is endorsed for luminal A-like disease with four or more axillary lymph node (ALN) metastases. The aim of this study was to estimate the proportion of patients with invasive lobular cancer (ILC) versus invasive ductal cancer of no special type (NST) with one or two SLN metastases for whom cALND would have led to a recommendation for adjuvant chemotherapy.

Methods: Patients with ILC and NST who had surgery between 2014 and 2017 were identified in the National Breast Cancer Register of Sweden. After exclusion of patients with incongruent or missing data, those who fulfilled the St Gallen 2019 criteria for cALND omission were included in the population-based study cohort.

Results: Some 1886 patients in total were included in the study, 329 with ILC and 1507 with NST. Patients with ILC had a higher metastatic nodal burden and were more likely to have a luminal A-like subtype than those with NST. The prevalence of at least four ALN metastases was higher in ILC (31.0 per cent) than NST (14.9 per cent), corresponding to an adjusted odds ratio of 2.26 (95 per cent c.i. 1.59 to 3.21). Luminal A-like breast cancers with four or more ALN metastases were over-represented in ILC compared with NST, 52 of 281 (18.5 per cent) versus 43 of 1299 (3.3 per cent) (P < 0.001).

Conclusion: Patients with ILC more often have luminal A-like breast cancer with at least four nodal metastases. Omission of cALND in patients with luminal A-like invasive lobular cancer and one or two SLN metastases warrants future attention as there is a risk of nodal understaging and undertreatment in one-fifth of patients.

Lay summary

Nowadays patients who have breast cancer with one to two metastases in the first draining axillary lymph nodes are not recommended to undergo completion surgery of the axilla if they have breast-conserving surgery and will have adequate postoperative oncological treatment. Lobular breast cancer is the second most common type of breast cancer, and this study shows that patients with this type have an increased risk of having lymph node metastases remaining if completion surgery is omitted. The diagnosis of additional lymph node metastases is importance for guidance regarding adjuvant oncological therapy in lobular cancer with a hormonally sensitive low proliferative subtype.

Introduction

Invasive lobular cancer (ILC) comprises approximately 10–15 per cent of all invasive breast cancers1. It has distinct clinicopathological and genomic features with different responsiveness to systemic treatment, distinguishing it from ductal cancer of no special type (NST)2–4. The majority of ILCs are classified as luminal A-like2,5. The long-term prognosis appears the same for ILC and NST, although there is a tendency towards a higher incidence of late recurrences in ILC3,6,7.

ILC has a characteristic growth pattern, with single files of tumour cells diffusely infiltrating benign tissue8. Both primary tumours and axillary lymph node (ALN) metastases tend to be...
non-palpable and difficult to detect by imaging, or fine-needle aspiration or core needle biopsy. The sensitivity of axillary ultrasound imaging for detection of ALN metastases is lower in ILC, especially in patients with a high metastatic nodal burden. The clinical value of breast MRI and PET–CT for clinical staging remains unclear. Patients with ILC are often diagnosed at a more advanced stage, have a tendency towards having four or more ALN metastases, and more non-sentinel lymph node (SLN) metastases. Despite these differences, current treatment guidelines are similar for ILC and NST.

Nodal staging is one of the cornerstones in the diagnostic work-up of breast cancer as ALN metastasis is an important negative prognostic factor. In patients with clinically node-negative (cN0) breast cancer, axillary staging has been done by SLN biopsy followed by completion ALN dissection (cALND) in those with metastases. Two RCTs on ALN management, the American College of Surgical Oncology Group Z0011 trial and the International Breast Cancer Study Group 23-01 trial, showed that omitting cALND in patients with clinically node-negative but SLN-positive T1–2 breast cancer did not affect recurrence and survival rates during the first 10 years of follow-up. Furthermore, the AMAROS RCT, in which patients with clinically node-negative T1–2 breast cancer and at least one SLN metastasis were randomized to either cALND or axillary radiotherapy, showed no differences in recurrence or survival rates with 10 years of follow-up. The findings from these trials have led to a change in practice for axillary management, irrespective of histological subtype.

In the St Gallen 2019 guidelines for primary therapy of early breast cancer, all histological subtypes were included in the extended indication for cALND omission. Completion ALND can thus be omitted in clinically T3, N0 breast cancer with one or two SLN metastases, provided that the patient receives adjuvant systemic treatment and regional nodal irradiation. In addition, the St Gallen 2019 guidelines recommend adjuvant chemotherapy for patients with luminal A-like tumours and four or more ALN metastases. The number patients with ILC was small in the above-mentioned RCTs (8.0 per cent, 334 of 4192), and so the applicability these data as criteria for omitting cALND in patients with ILC is unclear.

The aim of the present study was to compare the prevalence of at least four ALN metastases and the number of non-SLN metastases in ILC and NST in a large population-based cohort from a validated register. A further aim was estimate the prevalence of luminal A-like tumours with at least four ALN metastases in ILC and NST among patients who met the criteria for omission of cALND according to the St Gallen 2019 guidelines or the Z0011 trial.

Methods

The present study was approved by the local ethics committee (2019–02139) and adheres to the STROBE guidelines for observational studies. Clinicopathological characteristics were retrieved from the Swedish National Breast Cancer Register for patients with primary breast cancer. The register is validated and covers 99.99 per cent of all breast cancers diagnosed in Sweden. The interval 2014–2017 was chosen based on cALND still being recommended in patients with SLN metastases by the Swedish treatment guidelines for breast cancer, and on key variables being available in the register. The study was registered in the ISRCTN registry (ISRCTN14341750).

Study populations

Women diagnosed with unilateral primary breast cancer classified as ILC, NST, or mixed ILC/NST, who underwent breast and axillary surgery as primary treatment, were identified. Patients who underwent SLN biopsy and subsequent cALND but who would have been eligible for omission of cALND according to the St Gallen 2019 criteria (clinically T1–3 N0 with 1–2 SLN metastases of which at least one was a macrometastasis) were included in the main study cohort (St Gallen 2019 cohort). In addition, a Z0011 cohort comprised patients who underwent breast-conserving surgery and SLN biopsy (with clinically T1–2 N0 and 1–2 SLN metastases of which at least one was a macrometastasis). Patients with node-negative disease and those with data from only SLN biopsy or ALND were excluded. The study flow chart is shown in Fig. 1.

Pathological assessment and surrogate molecular subtypes

Pathological assessments of the primary tumour, SLNs, and ALNs were performed in accordance with the Swedish Quality Document for Pathology. ILC was identified by specified morphological criteria. In the event of macrometastasis in an uncertain specimen showing a lobular growth pattern, complementary immunohistochemical E-cadherin staining was performed. ALNs were prepared identically irrespective of histological subtype, but in ILC the SLNs were stained using both haematoxylin–eosin and complementary cytokeratin staining. Oestrogen receptor (ER) and progesterone receptor (PR) positivity were defined by at least 10 per cent stained nuclei, and in accordance with Prat and colleagues, FR staining of 20 per cent or more was considered high. Human epidermal growth factor receptor 2 (HER2) positivity was defined as HER2 in situ hybridization test-positive, and, if this test was missing, by immunohistochemical 3+ scoring. The Ki-67 percentage was categorized into three groups—low, intermediate and high—based on local laboratory percentile-based cut-offs, and Nottingham histological grade (NHG) was evaluated according to Elston and Ellis.

Lymph node micrometastasis was defined as a cancer cell deposit larger than 0.2 mm but not larger than 2 mm consisting of at least 200 cancer cells, and a macrometastasis as a deposit larger than 2 mm. Deposits of 0.2 mm or smaller and/or consisting of fewer than 200 cancer cells were defined as isolated tumour cells. Patients with isolated tumour cells in the SLN were classified as having N0 disease. Patients with micrometastases (216, 10 per cent) were excluded (Fig. 1), as current clinical guidelines do not recommend cALND for these patients.

The modification of the St Gallen 2019 guidelines and classification proposed by Maisonneuve et al. (including ER, PR, HER2, Ki-67, and NHG) were used to define surrogate molecular subtypes as luminal A-like, luminal B-like, HER2-positive, and triple-negative breast cancer (Table S1).

Statistical analysis

The primary endpoint was prevalence of at least four ALN metastases in patients with ILC and NST. A secondary endpoint was to estimate the proportion of patients with luminal A-like tumours with four or more ALN metastases in ILC and NST, in patients meeting the criteria for omission of cALND according to the St Gallen 2019 guidelines.

Differences in categorical variables, including patient and tumour characteristics, between the histological subtypes (ILC versus NST) were evaluated using Pearson’s χ² test, Fisher’s exact test, and the Wilcoxon rank sum test. All tests were two-sided and a P-value of 0.05 was considered significant.
test if one or more of the expected counts in the contingency table was below 5, or Pearson’s \(\chi^2 \) test for trend for ordinal variables with more than two categories. Variables measured on a continuous scale were evaluated using the Mann–Whitney \(U \) test. Univariable and multivariable analyses were performed using logistic regression.

\[P \text{ values, which were not adjusted for multiple testing, should be interpreted as level of evidence, on a continuous scale from 0 to 1, against the null hypothesis without reference to a cut-off for significance.} \]

SPSS version 25.0 (IBM, Armonk, NY, USA) and Stata version 16 (StataCorp, College Station, TX, USA) were used for statistical calculations.

Results

Demographics and non-sentinel node metastases by histological subtype in cohort based on St Gallen 2019 guidelines

Of a total of 20,139 women with unilateral ILC, NST, or mixed ILC/NST primary breast cancer, who underwent breast and axillary surgery as primary treatment, 1886 were included in the St Gallen 2019 cohort (Fig. 1). Among 329 patients with pure ILC and 1507 with pure NST with one or two metastatic SLNs, several differences in clinicopathological characteristics were identified (Table 1). Patients with ILC were older, and more often had a mastectomy. The tumours were larger, more often multifocal, and the metastatic burden in ALNs was higher. Additionally, the proportion of luminal A-like tumours was higher. The characteristics of the mixed ILC/NST group (50 patients) are shown separately, the biomarker profile in this group was closer to that of pure ILC than NST.

The number of excised ALNs did not differ by histological subtype (Table 1). One or more non-SLN metastases in the axillary specimen was, however, more common in ILC than NST: 165 of 329 (50.2 per cent) versus 545 of 1507 (36.2 per cent) \((P < 0.001; \text{ odds ratio (OR) 1.78, 95 per cent confidence interval c.i. 1.40 to 2.26})\). Similarly, a higher proportion of patients with ILC than NST had four or more ALN metastases: 102 of 329 (31.0 per cent) and 224 of 1507 (14.9 per cent) respectively \((P < 0.001; \text{ OR 2.57, 1.96 to 3.38})\) (Table 1, Fig. S1a, and Fig. 2a). In patients with one or more non-SLN metastases, the number of non-SLN metastases was also higher in ILC than NST: median 3 (i.q.r. 1–7) versus 2 (1–3) (Table 1 and Fig. S1b).

Four or more nodal metastases by histological and surrogate subtype in cohort based on St Gallen 2019 guidelines

Patients with the luminal A-like subtype and four or more ALN metastases were over-represented in the group with ILC, 52 of 281 (18.5 per cent) compared with 43 of 1299 patients with NST (3.3 per cent) \((P < 0.001; \text{ OR 6.63, 95 per cent confidence interval c.i. 4.32 to 10.17})\) (Table 1 and Fig. 2b). The relative frequency of at least four ALN metastases in all the different surrogate molecular subtypes was higher in ILC (Table 1 and Fig. 2c). The adjusted odds of at least four ALN metastases in patients with the luminal A-like subtype was higher in ILC compared with NST (OR 2.92, 1.73 to 4.94).
Table 1 Clinicopathological characteristics of patients eligible for omission of completion axillary lymph node dissection according to the St Gallen 2019 criteria

	NST (n = 1507)	ILC (n = 329)	P (ILC versus NST)	Mixed ILC/NST (n = 50)
Age at surgery (years)*	62 (52–71)	65 (54–72)	0.011$	60 (48–70)
Detected by screening			0.549	
No	799 (53)	180 (55)		25 (50)
Yes	707 (47)	148 (45)		25 (50)
Missing	1	1		0
Type of breast surgery			<0.001	
BCS	861 (57)	113 (34)		17 (34)
Mastectomy	646 (43)	216 (66)		33 (66)
Multifocal tumour			0.012	
No	1142 (76)	223 (69)		28 (57)
Yes	362 (24)	99 (31)		21 (43)
Missing	3	7		1
T category			<0.001	
T1 (≤ 20 mm)	832 (55)	85 (26)		19 (38)
T2 (> 20 to 50 mm)	627 (42)	175 (53)		25 (50)
T3 (> 50 mm)	48 (3)	69 (21)		6 (12)
No. of SLNs excised†	2 (1–9)	2 (1–8)	0.025§	2 (1–9)
No. of SLN metastases			0.374	
1	1148 (76)	243 (74)		38 (76)
2	359 (24)	86 (26)		12 (24)
No. of nodes excised*	13 (10–17)	12 (10–16)	0.362§	12 (1–16)
No. of non-SLN metastases			<0.001	
No (0)	962 (64)	164 (50)	<0.001	31 (61)
Yes (≥1)	545 (36)	165 (50)	<0.001	19 (39)
1	250 (17)	42 (13)	<0.001	8 (16)
2	107 (7)	29 (9)		6 (12)
≥ 3	188 (12)	94 (29)		5 (10)
1–2	357 (24)	71 (22)	<0.001	14 (28)
≥ 3	188 (12)	94 (96)	<0.001	5 (10)
Median (i.q.r.) if > 0	2 (1–3)	3 (1–7)	<0.001§	2 (1–3)
N category, 3 groups			<0.001	
N1 (1–3 ALN metastases)	1283 (85)	227 (69)		43 (86)
N2 (4–9 ALN metastases)	181 (12)	69 (21)		6 (12)
N3 (≥ 10 ALN metastases)	43 (3)	33 (10)		1 (2)
Nodal category, 2 groups			<0.001	
N1 (1–3 ALN metastases)	1283 (85)	227 (69)		43 (86)
N2 (≥ 2 ≥ 4 ALN metastases)	224 (15)	102 (31)		7 (14)
Molecular subtype (all patients)†	484 (37)	176 (63)	<0.001	26 (62)
Luminal A-like				
Luminal B-like	501 (39)	88 (31)		14 (33)
HER-positive	210 (16)	13 (5)		2 (5)
TNBC	104 (8)	4 (1)		0 (0)
Missing	208	48		8
Molecular subtype (patients with ≥ 4 ALN metastases)	<0.001			
Luminal A-like	43 (23)	52 (60)		2 (33)
Luminal B-like	91 (48)	25 (29)		4 (67)
HER2-positive	42 (22)	7 (8)		0 (0)
TNBC*	15 (8)	3 (3)		0 (0)
Missing	33	15		1
Luminal A-like and ≥ 4 ALN metastases	<0.001			
No	1256 (97)	229 (81)		40 (95)
Yes	43 (3)	52 (19)		2 (5)
Missing	208	48		8
Luminal A-like			<0.001	24 (92)
<4 ALN metastases	441 (91)	124 (70)		2 (8)
≥ 4 ALN metastases	43 (9)	52 (30)		2 (8)
Luminal B-like			0.026	
<4 ALN metastases	410 (82)	63 (72)		10 (71)
≥ 4 ALN metastases	91 (18)	25 (28)		4 (29)
HER2-positive			0.004	
<4 ALN metastases	168 (80)	6 (46)		2 (100)
≥ 4 ALN metastases	42 (20)	7 (54)		0 (0)
TNBC			0.001	
<4 ALN metastases	89 (86)	1 (25)		0 (0)
≥ 4 ALN metastases	15 (14)	3 (75)		0 (0)

(continued)
Multivariable analyses of axillary nodal burden in cohort based on St Gallen 2019 guidelines

The odds of one or more non-SLN metastases remained higher for ILC than NST after adjustment for other relevant predictors including age, detection by screening, T category, multifocality, number of SLNs with macrometastases, and surrogate molecular subtypes (OR 1.55, 95 per cent c.i. 1.15 to 2.08; P = 0.004) (Table 2). The odds of at least four ALN metastases was higher in ILC than in NST after adjustment for the same variables (OR 2.26, 1.59 to 3.21; P = 0.001) (Table 2 and Fig. 3). Tumour stage, multifocality, surrogate molecular subtypes, and number of SLNs with macrometastases were confirmed as predictors of at least four ALN metastases, along with ILC (Table 2 and Fig. 3).

Demographics and nodal metastatic burden in subcohort based on Z0011 trial criteria

Clinicopathological data for the Z0011 subcohort of 975 patients (Table S2) and the entire cohort retrieved from the register (Table S3) showed essentially the same differences between pure ILC and pure NST cases as the cohort based on the St Gallen 2019 guidelines.

In the Z0011 cohort (105 ILC, 854 NST), 41.9 per cent of patients with ILC and 31.0 per cent with NST had one or more non-SLN metastases (P = 0.025; OR 1.60, 95 per cent c.i. 1.06 to 2.43), and the proportion of patients with at least four ALN metastases was higher in ILC (25.7 versus 10.7 per cent; P < 0.001; OR 2.90, 1.78 to 4.73). The total number of non-SLN metastases in those with one or more non-SLN metastases was higher in ILC than NST (Table S2). Patients in the cohort based on the Z0011 trial with the luminal A-like subtype and at least four ALN metastases were predictors of axillary nodal burden (Table 2 and Fig. 3).

Table 1. (continued)

Molecular subtype missing	NST (n = 1507)	ILC (n = 329)	P (ILC versus NST)‡	Mixed ILC/NST (n = 50)
<4 ALN metastases	175 (84)	33 (69)		7 (88)
≥ 4 ALN metastases	33 (16)	15 (31)		1 (12)

Values in parentheses are percentages unless indicated otherwise; *values are median (i.q.r.). Eligible patients underwent breast-conserving surgery (BCS) or mastectomy, and had T1–3 cN0 tumours, and one or two sentinel lymph node (SLN) metastases, of which at least one was a macrometastasis. †Based on a modification of the St Gallen 2019 guidelines and the classification proposed by Maisonneuve et al., tumours were defined as: luminal A-like (oestrogen receptor (ER)+, human epidermal growth factor receptor 2 (HER2)−, Nottingham histological grade (NHG) 1, or ER+, HER2−, NHG 2, Ki-67 low, or ER+, HER2−, NHG 2, Ki-67 intermediate, and progesterone receptor (PR) at least 20 per cent), luminal B-like (ER+, HER2−, NHG 3, or ER+, HER2−, NHG 2, Ki-67 high, or ER+, HER2−, NHG 2, Ki-67 intermediate and PR below 20 per cent), HER2-positive (all HER2+ independent of ER, NHG, Ki-67, and PR status), or triple-negative breast cancer (TNBC) (ER−, PR− and HER2−). NST, invasive ductal cancer of no special type; ILC, invasive lobular cancer; ALN, axillary lymph node. ‡Pearson’s χ² test (linear by linear association test if more than 2 ordered categories), except §Mann–Whitney U test.
metastases were also over-represented in ILC compared with NST: 13 of 83 (16 per cent) versus 21 of 738 (2.8 per cent) (P < 0.001; OR 6.34, 3.04 to 13.21) (Table S2).

In multivariable analyses, ILC remained an independent predictor of non-SLN metastases even after adjustments (OR 1.81, 1.11 to 2.98; P = 0.018) (Table S4). Finally, the adjusted odds of at least four ALN metastases was higher in ILC than in NST (OR 2.94, 1.56 to 5.54; P = 0.001) (Table S4).

Discussion

This population-based Swedish registry study showed that, when the St Gallen 2019 guidelines for omitting cALND were applied, the presence of non-SLN metastases and proportion of patients with at least four ALN metastases were higher among patients with ILC than those with NST. These findings highlight that the St Gallen 2019 guidelines for omission of cALND are associated with understaging of ALN status, and a subsequent risk of undertreatment, especially of ILCs with the luminal A-like subtype. Most patients with NST had benign non-SLNs after cALND, whereas half of the patients with ILC had non-SLN involvement in the axillary specimen. Similar results were seen for the narrower but more generally accepted Z0011 criteria for omitting cALND. Importantly, ILC was an independent predictor of non-SLN metastases and at least four ALN metastases after adjustment for validated predictors of non-SLN metastases in both cohorts.

Breast cancer classified as luminal A-like with at least four ALN metastases was more frequent in patients with ILC than those with NST. In patients with a luminal A-like subtype, the recommendation for adjuvant chemotherapy depends on ALN staging even in the era of genomic testing. Although patients with luminal B-like and HER2-positive subtypes had a higher risk of having at least four ALN metastases than those with the luminal A-like subtype, the staging information from cALND is of less importance for these patients as adjuvant chemotherapy would be recommended irrespective of nodal status. The present results suggest that, when the St Gallen 2019 criteria for omitting cALND are applied, approximately one-fifth of patients with ILC and 1 in 30 with NST having one or two confirmed SLN macrometastases will not be offered adjuvant chemotherapy due to understaging of the axilla. Essentially the same results were seen in the Z0011 cohort.

Previous breast cancer studies exploring the impact of nodal staging on adjuvant treatment decision did not specify the histological subtypes and were based on smaller cohorts. Aigner and colleagues included 132 patients and found that 17 per cent of those with Z0011-eligible breast cancer would have been offered more extensive adjuvant treatment based on the information retrieved by cALND. Stenmark Tullberg et al. reported on 238 patients with clinically N0 breast cancers and one or more SLN metastases (at least 1 macrometastasis), in 18 per cent of those with luminal A-like tumours, four or more ALN metastases were detected on cALND.

In the population-based unselected cohort study, patients eligible for omission of cALND according to the St Gallen 2019 recommendation and Z0011 trial had a prognostically more unfavourable ALN status than those originally included in the Z0011, International Breast Cancer Study Group 23-01, and AMAROS trials. Study inclusion was restricted to patients with one or two SLN metastases (at least 1 macrometastasis), and patients with isolated tumour cells in the SLN were excluded. In the seminal trials, a majority of patients had micrometastases only in SLNs, isolated tumour cells were classified as micrometastasis, and at least 90 per cent received adjuvant systemic treatment. These conditions could have affected the outcome data and, with a follow-up time restricted to 10 years, there is still a risk of late recurrences, especially for ILC.

Additionally, only a small number of included patients had ILC (approximately 8 per cent), and in none of the trials were subgroup analyses of ILC versus NST reported.
Fig. 3 Forest plot visualization of multivariable logistic regression model for at least four axillary lymph node metastases in patients fulfilling the St Gallen 2019 criteria for omission of completion axillary lymph node dissection
Odds ratios are shown with 95% confidence intervals. ILC, invasive lobular cancer; NST, invasive ductal cancer of no special type; macro, macrometastasis; micro, micrometastasis; LumB, luminal B-like; LumA, luminal A-like; HER2+, human epidermal growth factor receptor 2-positive; TNBC, triple-negative breast cancer.

Discussion regarding omission of cALND is encouraged for all patients with ILC.

Disclosure. The authors declare no conflict of interest.

Funding
This study was funded by Skåne County Councils Research and Development Foundation, the Governmental Funding of Clinical Research within the National Health Service (ALF), the Swedish Cancer Society, the Erling Persson Family Foundation, Kronoberg County Council’s Research and Development Foundation, the Cancer Foundation Kronoberg, and the Swedish Breast Cancer Association. The funding agencies had no role in the study design or interpretation of the data.

Supplementary material
Supplementary material is available at BJS online.

Acknowledgements
The data set used during this study is available from the corresponding author on reasonable request.

References
1. Christgen M, Steinemann D, Kuhnel E, Langer F, Gluz O, Harbeck N et al. Lobular breast cancer: clinical, molecular and morphological characteristics. Pathol Res Pract 2016;212:583–597.
2. Barroso-Sousa R, Metzger-Filho O. Differences between invasive lobular and invasive ductal carcinoma of the breast: results and therapeutic implications. Ther Adv Med Oncol 2016;8:261–266.
3. Pestalozzi BC, Zarihied D, Mallon E, Gusterson BA, Price KN, Gelber RD et al. Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. J Clin Oncol 2008;26:3006–3014.
4. Thomas M, Kelly ED, Abraham J, Kruse M. Invasive lobular breast cancer: a review of pathogenesis, diagnosis,
management, and future directions of early stage disease. Semin Oncol 2019;46:121–132.
5. Burstein HJ, Curigliano G, Loibl S, Dubsky P, Gnant M, Poortmans P et al.; Members of the St. Gallen International Consensus Panel on the Primary Therapy of Early Breast Cancer 2019. Estimating the benefits of therapy for early-stage breast cancer: the St. Gallen International Consensus Guidelines for the primary therapy of early breast cancer 2019. Ann Oncol 2019; 30:1541–1557.
6. Arpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of the breast: tumour characteristics and clinical outcome. Breast Cancer Res 2006; 8(R149–R156).
7. Rakha EA, El-Sayed ME, Powe DG, Green AR, Habashy H, Grainge MJ et al. Invasive lobular carcinoma of the breast: response to hormonal therapy and outcomes. Eur J Cancer 2008; 44:73–83.
8. Martinez V, Azzopardi JG. Invasive lobular carcinoma of the breast: incidence and variants. Histopathology 1979; 3:467–468.
9. Johnson K, Sarma D, Hwang ES. Lobular breast cancer series: imaging. Breast Cancer Res 2015; 17:94.
10. Morrow E, Lannigan A, Doughty J, Litherland J, Mansell J, Stallard S et al. Population-based study of the sensitivity of axillary ultrasound imaging in the preoperating stage of node-positive invasive lobular carcinoma of the breast. Br J Surg 2018; 105:987–995.
11. Topps A, Clay V, Absar M, Howe M, Lim Y, Johnson R et al. The sensitivity of pre-operative axillary staging in breast cancer: comparison of invasive lobular and ductal carcinoma. Eur J Surg Oncol 2014; 40:813–817.
12. Hackney L, Williams S, Bajwa S, Morley-Davies AJ, Kirby RM, Britton I. Influence of tumour histology on preoperative staging accuracy of breast metastases to the axilla. Breast J 2013; 19:49–55.
13. van Nijnatten TJA, Ploumen EH, Schipper RJ, Goorts B, et al. Comparison of sentinel lymph node biopsy between invasive lobular carcinoma and invasive ductal carcinoma. Breast Cancer Res 2018; 20:2288–2294.
14. Motomura K, Izumi T, Tateishi S, Tamaki Y, Ito Y, Horinouchi T et al. Superparamagnetic iron oxide-enhanced MRI at 3 T for accurate staging in breast cancer. Br J Surg 2016; 103:60–69.
15. Krammer J, Schnitzer A, Kaiser CG, Buesing KA, Spier E, Brade J et al. 18F-FDG PET/CT for initial staging in breast cancer patients—is there a relevant impact on treatment planning compared to conventional staging modalities? Eur Radiol 2015; 25:2460–2469.
16. Adachi Y, Sawaki M, Hattori M, Yoshimura A, Gondo N, Kotani H et al. Comparison of sentinel lymph node biopsy between invasive lobular carcinoma and invasive ductal carcinoma. Breast Cancer 2018; 25:560–565.
17. Wasif N, Maggard MA, Ko CY, Giuliano AE. Invasive lobular vs. ductal breast cancer: a stage-matched comparison of outcomes. Ann Surg Oncol 2010; 17:1862–1869.
18. Fernandez B, Paish EC, Green AR, Lee AH, Macmillan RD, Ellis IO et al. Lymph-node metastases in invasive lobular carcinoma are different from those in ductal carcinoma of the breast. J Clin Pathol 2011; 64:995–1000.
19. Majid S, Ryden L, Manjer J. Determinants for non-sentinel node metastases in primary invasive breast cancer: a population-based cohort study of 602 consecutive patients with sentinel node metastases. BMC Cancer 2019; 19:626.
20. Caudle AS, Kuerer HM, Le-Petross HT, Yang W, Yi M, Bedrosian I et al. Predicting the extent of nodal disease in early-stage breast cancer. Ann Surg Oncol 2014; 21:3440–3447.
21. Saez RA, McGuire WL, Clark GM. Prognostic factors in breast cancer. Semin Surg Oncol 1989; 5:102–110.
22. Fitzgibbons PL, Page DL, Weaver D, Thor AD, Allred DC, Clark GM et al. Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 2000; 124:966–978.
23. Giuliano AE, Ballman KV, McCall I, Beitsch PD, Brennan MB, Kelemen PR et al. Effect of axillary dissection versus no axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastases: the ACOSOG Z0011 (Alliance) randomized clinical trial. JAMA 2017; 318:918–926.
24. Galimberti V, Cole BF, Viale G, Veronesi P, Vicini E, Intra M et al. Axillary dissection versus no axillary dissection in patients with breast cancer and sentinel-node micrometastases (IBCSG 23-01): 10-year follow-up of a randomised, controlled phase 3 trial. Lancet Oncol 2018; 19:1385–1393.
25. Donker M, van Tienhoven G, Straver ME, Meijnen P, van de Velde CJ, Mansel RE et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 inferiority trial. Lancet Oncol 2014; 15:1303–1310.
26. Rutgers E, Donker M, Poncet C, Straver M, Meijnen P, van de Velde C et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer patients: 10 year follow up results of the EORTC AMAROS trial (EORTC 10981-22023). ACR; Cancer Res 2019;79(4 Suppl): San Antonio Breast Cancer Symposium 2018; 79:GS4-01. Abstract nr GS4-01.
27. Mamtani A, Morrow M. ASO author reflections: early-stage lobular breast cancer: axillary treatment in the Z0011 era. Ann Surg Oncol 2019; 26:715–716.
28. Caudle AS, Hunt KK, Tucker SL, Hoffman K, Gainer SM, Lucci A et al. American College of Surgeons Oncology Group (ACOSOG) Z0011: impact on surgeon practice patterns. Ann Surg Oncol 2012; 19:3144–3151.
29. Lofgren L, Eloranta S, Krawiec K, Asterkvist A, Lonnqvist C, Sandelin K, steering group of the National Register for Breast Cancer. Validation of data quality in the Swedish National Register for Breast Cancer. BMC Public Health 2019; 19:495.
30. von Elm E, Altman DG, Egger M, Pocock SJ, Gotszche PC, Vandebroucke JP, STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 2007; 370:1453–1457.
31. Swedish Breast Cancer Group (SweBCG). Nationellt Vardprogram Bröstcancer. https://www.swebcg.se/vardprogram. (accessed 7 August 2020).
32. Swedish Society of Pathology. KVAST-dokument Bröstcancer. http://www.svfp.se/foreningar/uploads/115178/kvast/Gamla%20KVASTdokument/Brost(tcigare)/brostKVAST2014.pdf. (accessed 6 April 2020).
33. Prat A, Cheang MC, Martin M, Parker JS, Carrasco E, Caballero R et al. Prognostic significance of progesterone receptor-positive tumour cells within immunohistochemically defined luminal A breast cancer. J Clin Oncol 2013; 31:203–209.
34. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. 1. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 1991; 19:403–410.
35. Giuliano AE, Edge SB, Hortobagyi GN. Eighth edition of the AJCC cancer staging manual: breast cancer. Ann Surg Oncol 2018;25:1783–1785.

36. National Institute for Health and Care Excellence. Early and Locally Advanced Breast Cancer Diagnosis and Management. https://www.nice.org.uk/guidance/ng101/chapter/Recommendations. (accessed 2 October 2020).

37. American Society of Clinical Oncology. ASCO Guidelines: Breast Cancer. https://www.asco.org/research-guidelines/quality-guidelines/breast-cancer. (accessed 2 October 2020).

38. American Society of Breast Surgeons. Treatment Guidelines. https://www.breastsurgeons.org/resources/statements. (accessed 7 October 2020).

39. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT et al.; ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019;30:1194–1220.

40. Maisonneuve P, Disalvatore D, Rotmensz N, Curigliano G, Colleoni M, Dellapasqua S et al. Proposed new clinicopathological surrogate definitions of luminal A and luminal B (HER2-negative) intrinsic breast cancer subtypes. Breast Cancer Res 2014;16:R65.

41. Aigner J, Smetanay K, Hof H, Sinn HP, Sohn C, Schneeweiss A et al. Omission of axillary dissection according to ACOSOG Z0011: impact on adjuvant treatment recommendations. Ann Surg Oncol 2013;20:1538–1544.

42. Stenmark Tuillberg A, Lundstedt D, Olofsson Bagge R, Karlsson P. Positive sentinel node in luminal A-like breast cancer patients—implications for adjuvant chemotherapy? Acta Oncol 2019;58:162–167.

43. American Joint Committee on Cancer. AJCC Cancer Staging Manual Fifth Edition. https://cancerstaging.org/references-tools/deskreferences/Documents/AJCC5thEdCancerStagingManual.pdf. (accessed 7 August 2020).

44. Roberts A, Nofech-Mozes S, Youngson B, McCready DR, Al-Assi M, Ramkumar S et al. The importance of applying ACOSOG Z0011 criteria in the axillary management of invasive lobular carcinoma: a multi-institutional cohort study. Ann Surg Oncol 2019;22:3397–3401.

45. Wang J, Mittendorf EA, Sahin AA, Yi M, Caudle A, Hunt KK et al. Outcomes of sentinel lymph node dissection alone vs. axillary lymph node dissection in early stage invasive lobular carcinoma: a retrospective study of the surveillance, epidemiology and end results (SEER) database. PLoS One 2014;9:e89778.

46. Mamtani A, Zabor EC, Stempel M, Morrow M. Lobular histology does not predict the need for axillary dissection among ACOSOG Z0011-eligible breast cancers. Ann Surg Oncol 2019;26:3269–3274.

47. van den Hoven I, Kuijt G, Roumen R, Voogd A, Steyerberg EW, Vergouwe Y. A head to head comparison of nine tools predicting non-sentinel lymph node status in sentinel node positive breast cancer women. J Surg Oncol 2015;112:133–138.