Article title: Phosphorylation Dependent Sequestration Of Protein Phosphatase-1 I (PP-1 I) By Protein 14-3-3

Authors: H.Y. Lim Tung[1]
Affiliations: Nacbraht Biomedical Research Institute[1]
Orcid ids: 0000-0002-7112-7477[1]
Contact e-mail: hyltung2010@nacbrahtbiomedresins.net

License information: This work has been published open access under Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at https://www.scienceopen.com/.

Preprint statement: This article is a preprint and has not been peer-reviewed, under consideration and submitted to ScienceOpen Preprints for open peer review.

Funder: Nacbraht Biomedical Research Institute Fund
DOI: 10.14293/S2199-1006.1.SOR-.PP5HLQD.v1
Preprint first posted online: 09 March 2021
Keywords: Protein phosphatase-1 (PP-1), Protein phosphatase-1I (PP-1I), C-TAK1, Protein 14-3-3, Phosphorylation dependent sequestration, Cdc25, Meiotic and Mitotic cell division; G2 to M transition
Phosphorylation Dependent Sequestration Of Protein Phosphatase-1I (PP-1I) By Protein 14-3-3

H.Y. Lim Tung

3Peptide and Protein Chemistry Research Laboratory, Nacbraht Biomedical Research Institute, New York City (Astoria), New York 11106, USA.

*Correspondence to:
H.Y. Lim Tung
Peptide and Protein Chemistry Research Laboratory
Nacbraht Biomedical Research Institute
3164 21st Street, Suite 122
New York City (Astoria), NY 11106
USA
Tel: 332-201-7161
E mail: hyltung2010@nacbrahtbiomedresins.org
Abstract.

PP-1 is involved in the control of the meiotic and mitotic cell divisions at the G2 to M transition by dephosphorylating phospho-serine 217 (phospho-serine 287 in Xenopus) of Cdc25, accompanied by activation of Cdc25 which would then dephosphorylate and activate Cdk1. PP-1 has been proposed to be the form of PP-1 that dephosphorylates and activates Cdc25. Here we show that PP-1 is sequestered in a phosphorylation dependent manner by protein 14-3-3 involving phosphorylation of serine 71 of I-2 moiety of PP-1 by C-TAK1. Phosphorylation of serine 71 of the I-2 moiety of PP-1 by C-TAK1 enhanced the sequestration and inhibition of PP-1 by Protein 14-3-3. Phosphorylation of serine 71 of the I-2 moiety of PP-1 caused an increase in the Stability Energy, Binding Energy of the interaction between PP-1 and Protein 14-3-3 and a significant decrease in the IC₅₀ of the inhibition of PP-1 by Protein 14-3-3. PP-1 regulation by C-TAK1 and Protein 14-3-3 is a mechanism for the control of Cdc25 at the G2 to M transition of the cell cycle.
Introduction.

Protein phosphatase-1 (PP-1) was originally identified as an enzyme that dephosphorylates enzymes involved in the control of Glycogen breakdown and synthesis, including Phosphorylase a, Phosphorylase kinase and Glycogen synthase [1-4]. PP-1 was classified based on its preferential dephosphorylation of the subunit of Phosphorylase kinase and its specific inhibition by Inhibitor-1 (I-1) and Inhibitor-2 (I-2) [1-4]. Following the purification to homogeneity of the catalytic subunit of PP-1 (PP-1C), it was shown to be distinct from Protein phosphatase-2A (PP-2A) [5]. PP-1C is similar to Phosphatase C-I that was described and purified by Silberman et al. [6]. PP-1 was subsequently shown to be also involved in the control of cell cycle, cell survival and cell death, and other cellular processes [7-22]. PP-1C does not exist as such in the cell. Instead, it is complexed to other inhibitory and activating proteins, including I-1, I-2, DARPP-32 and CPI-17 which are specific inhibitory proteins [23-38] and Glycogen binding protein (GM, GL,) and Myosin binding protein (MP) [39-42]. GM, GL, and MP have been proposed to be "Targeting Proteins" because they apparently target the catalytic subunit of PP-1, PP-1C to different cellular compartments where PP-1C can dephosphorylate its many substrates [43,44]. It has also been argued that PP-1 is regulated by "Protein Targeting Mechanism" (PTM) as opposed to the established regulation of enzymes by activating proteins and inhibitory proteins, "Activating and Inhibitory Mechanism" (AIM) [43,44]. There is no scientific evidence that supports the regulation of PP-1 by the PTM as the PTM implies that the concentration of PP-1C would be a lot higher than what it is currently estimated to be [45]. Considering that there may be more than 100 different substrates for PP-1C, under PTM, the concentration of PP-1C in the cell would have to be at least one hundred times more than what it is currently estimated to be. It must be noted that there is not a single study that has determined the concentration of PP-1C in the cell with any degree of accuracy. On the other hand, the regulation of PP-1 by AIM follows established mechanism of enzyme regulation: PP-1 is regulated by Activating and Inhibitory Proteins and its concentration in the cell does not need to be proportionally higher in order to account for the dephosphorylation of all of its substrates in the different cellular compartments where its substrates are found [45].
A major proportion of PP-1 in the cell is in the form of PP-1₁ which is a complex consisting of PP-1₁C and I-2, and other regulatory proteins [46-52]. PP-1₁ is the same enzyme as ATP-Mg dependent protein phosphatase [53-57]. For a number of years, it was thought that PP-1₁ and ATP-Mg dependent protein phosphatase are two distinct enzymes because the ATP-Mg dependent protein phosphatase was described as a Protein phosphatase consisting of a single protein of apparent molecular mass 70 kDa [55,56] or multiple proteins of apparent molecular masses 62 kDa, 38 KDa, 31 KDa and 30 KDa respectively [57]. It is not clear why the studies of the ATP-Mg dependent protein phosphatase were neglected. In brain tissue, it has been estimated that almost 30% of protein phosphatase activity is in the form of PP-1₁[52]. PP-1₁ exists predominantly in an inactive form which can be activated following phosphorylation of I-2 molecule in PP-1₁ on threonine 72 by several protein kinases, including GSK-1, PP-1₁-ACK, Cdk5 and Cdk1 [46-52,58-60]. Brain PP-1₁ consists of PP-1₁C and I-2 which are bound to a number of proteins, including C-TAK1 and Protein 14-3-3 [52]. The inhibition of PP-1₁ by Protein 14-3-3 has been demonstrated [52]. However, the effect of Protein 14-3-3 on the activity of reconstituted PP-1₁ described by Platholi et al. [46] is most probably substrate directed and not enzyme directed because ³²P-BAD was used as substrate and Protein 14-3-3 is known to bind to BAD phosphorylated by PKA [61]. How Protein 14-3-3 regulates the activity of PP-1₁ remains to be established. Examination of the motif surrounding phosphorylation site threonine 72 of I-2 (DEPSpTP) reveals that it is a phosphorylation dependent binding and sequestration site for Protein 14-3-3 [62-67]. Serine 71 of I-2 can be phosphorylated by C-TAK-1 and the motif DEPpSTP in I-2 is very similar to a consensus C-TAK1 phosphorylation motif (RXXpSXP) [62-67]. The motif in I-2 (DEPpSTP) is very similar to DXXpSLP which has been shown to moderately bind Protein 14-3-3 [67]. It is not clear how Protein 14-3-3 sequesters PP-1₁ to inhibit PP-1₁.

The role of Protein 14-3-3 in the control of key cellular processes, including the cell cycle, cell survival and cell death is well established [68-81]. Many enzymes and regulatory proteins have been showed to be bound and sequestered in a phosphorylation dependent manner by Protein 14-3-3, including Cdc25, Raf1, and Bad which are involved in the control of the cell cycle, cell survival and cell death respectively [68-81]. In view
of the fact that PP-1c has been proposed to be involved in the control of Cdc25, Raf1 and Bad [13-15,71,74,75] and PP-1l is complexed to Protein 14-3-3 and C-TAK1, phosphorylation dependent binding and sequestration of PP-1l by Protein 14-3-3 suggests that PP-1l may also be involved in the control of the cell cycle, cell survival and cell death. Here, the sequestration of PP-1l by Protein 14-3-3 is analyzed. The results indicate that Protein 14-3-3 sequesters PP-1l in a phosphorylation dependent manner by binding I-2 molecule of PP-1l at phospho-serine 71 within the phosphorylaton motif, DEpSTP which is part of a phosphorylation recognition motif for C-TAK1 (RXXpSXP or DXXpSLP).

Materials and Methods.

Phosphorylase b, Phosphorylase kinase and PKA were purified from pig skeletal muscle as described in [82,83]. PP-1l and PP-1l-ACK were purified brain as described in [51]. C-TAK1 was prepared by inserting the gene coding for C-TAK1 into a Baculovirus Vector as described in [84]. Following infection and growth of infected cells, C-TAK1 was purified from extracts of infected cells by successive chromatographies on DEAE-Sepharose, Phospho-Cellulose and Superdex-200. Protein 14-3-3 was purified from pig brain extracts by successive chromatographies of pig brain extracts on DEAE-Sepharose, Phenyl-Sepharose and Superdex-200 as essentially described by Toker et al. [85].

32P-labeled Phosphorylase a was prepared by phosphorylation of phosphorylase b with phosphorylase kinase and 32P-labeled Phosphorylase kinase was prepared by phosphorylation of Phosphorylase kinase with PKA [86]. PP-1l was assayed for its ability to dephosphorylate 32P-labeled Phosphorylase a or 32P-labeled phosphorylase kinase in the presence of PP-1l-ACK, 1.25 mM MgCl$_2$ and .125 mM ATP as described in [49].

The full structure of PP-1l has not been determined from X-ray crystallography because I-2 has very little ordered structure. Only 59 residues of I-2 was observed from the crystal lattice of PP-1l reconstituted from recombinant PP-1c and I-2. [87]. The structure of PP-1l has been rendered from partial crystallographic data, NMR data and SAXS data.
However, these studies have not been verified and did not take into account phosphorylation of serine 71 of I-2 [88]. In the present work, the structure of I-2 was rendered de novo computationally pursuant to Xu and Zhang [89,90]. The structure of Human PP-1c was also rendered de novo computationally pursuant to Yang et al. [91,92]. The structure of Protein 14-3-3 as determined by Smidova et al. [93] was used in this study.

For the purpose of thermodynamic calculations, the phosphorylation of serine 71 of I-2 moiety in the PP-11 complex was performed using the Build Model Program of FoldX pursuant to Guerois et al. and Schymkowitz et al. [94,95]. The sequestrations and binding of PP-11 by Protein 14-3-3 was performed by Docking Experiments using Z Dock Program pursuant to Pierce et al. [96]. The structures of PP-1C, I-2, PP-11, and PP-11-Protein 14-3-3 were analyzed and visualized by the CCP4 Molecular Graphics Program Version 2.10.11 as described by Mc Nicolas et al [97] and the ZMM Molecular Modeling Program as described by Garden and Zhorov [98]. Determination and calculation of Stability Energy (ΔG_{\text{stability energy}}) of the protein complexes and non-complexed proteins was performed using the Stability Program of FoldX as described by Guerois et al. and Schymkowitz et al. [94,95]. Binding Energy (ΔG_{\text{binding energy}}) of protein complex was determined and calculated using the Analyze Complex Program of FoldX as described by Guerois et al. and Schymkowitz et al. [94,95]. Binding Energy Difference (ΔΔG_{\text{binding energy difference}}) between phospho-PP-11-Protein 14-3-3 complex and dephospho-PP-11-Protein 14-3-3 complex was calculated pursuant to Teng et al. and Nishi et al. [99-101] from the equation: ΔΔG_{\text{binding energy difference}} = ΔG_{\text{binding energy (binding energy of phospho-PP-11-14-3-3 complex)}} - ΔG_{\text{binding energy (binding energy of phospho-serine 71-PP-11-14-3-3 complex)}}.

Results.

The complete structure of PP-11 has not been determined from X-ray crystallography because I-2 apparently has very little ordered structure and only 59 residues of rabbit I-2 could be observed from the crystal lattice of PP-11 reconstituted from recombinant rabbit PP-1c and I-2 [87]. A PP-11 structure was rendered from partial crystallographic data,
NMR data and SAXS data. However, these studies have not been verified and phosphorylation of serine 71 was not taken into account in these studies [88]. The structure of Human I-2 which has 90% identity with Rabbit I-2 was rendered de novo pursuant to Xu and Zhang [89,90]. The structure of Human PP-1C was also rendered pursuant to Yang et al. [91,92]. Through computerized protein docking experiments pursuant to Pierce et al. [96], the structure of PP-1 consisting minimally of PP-1C and I-2 could be rendered (Figure 1). The result showed that I-2 interacted with PP-1C at several sites, including Site A (amino acids 10-22, Site B (amino acids 70-78) and Site C (amino acids 298-300). Site A of PP-1C (amino acids 10-22) formed contacts with Site X1 (amino acids 48 to 60) and part of Site X2 of I-2 (around amino acids 118, 131 and 150), Site B of PP-1C (amino acids 70 to 78) formed contacts with parts of Site X2 of I-2 (around amino acid 131), and Site C within PP-1C interacted with I-2 at two major stretches encompassing amino acids 48 to 60 (Site X1) and amino acids 118 to 160 (Site X2). Site C (amino acids 298 to 300) also formed contact with Site X2 (around amino acid 123).

It has previously been reported that threonine 72 of I-2 moiety of PP-1 is a phosphorylation site for GSK-3, Cdk1, Cdk5 and PP-1-ACK which triggers the activation of PP-1 [29,46-52]. Adjacent to phospho-threonine 72 is serine 71 which is a phosphorylation site for C-TAK1 as it is part of the phosphorylation recognition site for C-TAK1 (RXXpSTP or DXXpSLP) [62-67] (the actual sequence is DEPpSTP). The phosphorylation sites, serine 71 and threonine 72 which are phosphorylated by C-TAK1 and PP-1-ACK, GSK-2 and Cdk1 respectively are located at the surface of I-2 (Figure 2A) adjacent to CKII phosphorylation sites (serines 86, 120, 121 and 126) (Figure 2B). Figure 3 shows the ribbon structure and realistic rendering of PP-1 with its I-2 moiety phosphorylated on serine 71. There was no significant difference in the structure of PP-1 and phospho-serine 71-I-2-PP-1. There was also no significant difference in the Stability Energy and Binding Energy of PP-1 and phospho-serine 71-I-2-PP-1 (Table 1) indicating that phospho-serine 71 does not affect the activity of PP-1.
It was previously shown that PP-1\textsubscript{I} purified from brain is found in a complex consisting of PP-1\textsubscript{C} and I-2 and other proteins including Protein 14-3-3 which inhibits the activity of PP-1\textsubscript{I} (most probably substrate directed and not enzyme directed) [52]. C-TAK1 can phosphorylate serine 71 of I-2 within the phosphorylation recognition motif DEPpSTP. Figure 3 and Figure 4 summarize the docking experiments between dephospho-PP-11, phospho-serine 71-PP-1\textsubscript{I} and Protein 14-3-3. Phosphorylation of serine 71 resulted in marked structural change. Computerized thermodynamic calculation shows that phosphorylation of serine 71 increased the Stability Energy (G\textsubscript{stability energy}) of the trimeric PP-1\textsubscript{C}-I-2-Protein 14-3-3 complex from ~893 Kcal/mol to ~918 Kcal/mol and Binding Energy (G\textsubscript{binding energy}) between PP-1\textsubscript{I} and Protein 14-3-3 of the trimeric PP-1\textsubscript{C}-I-2-Protein 14-3-3 complex from ~141 Kcal/mol to ~160 Kcal/mol. The Binding Energy Difference (G\textsubscript{binding energy difference}) between dephospho-PP-1\textsubscript{C}-I-2-Protein 14-3-3 complex and PP-1\textsubscript{C}-I-2-Protein 14-3-3 complex was calculated to be ~20 Kcal/mol (Table 1). These results are consistent with the conclusion that phosphorylation of serine 71 of I-2 enhances the stability and binding affinity between PP-1\textsubscript{I} and Protein 14-3-3.

Figure 5A shows that phosphorylation of serine 71 of I-2 moiety in PP-1\textsubscript{I} enhances its inhibition by Protein 14-3-3 by causing a decrease of I\textsubscript{50} from >300 µM to ~0.03 µM. Phosphorylation of serine 71 of I-2 moiety in PP-1\textsubscript{I} did not have a significant effect on the activation of PP-1\textsubscript{I} by PP-1\textsubscript{I}-ACK (Figure 6).

Discussion.

PP-1\textsubscript{I} is a major form of PP-1 PP-1\textsubscript{I} represents almost 30% of total PP-1 activity in extracts of brain from freshly killed pigs [49,51,52]. Several studies have implicated PP-1 as an important controller of key steps of the cell cycle, cell survival, cell death [7-22]. However, PP-1\textsubscript{C} does not exist by itself in the cell. Instead, it is complexed to a number of Activating and Inhibitory proteins, including Inhibitor-2 (I-2) to form PP-1\textsubscript{I} [46-52]. PP-1\textsubscript{I} consists minimally of PP-1\textsubscript{C} and I-2 and other regulatory proteins, including Protein 14-3-3 and C-TAK1. PP-1\textsubscript{C} has been proposed to be a key controller of meiosis and mitosis because (i) inhibiting its activity antagonizes G2 to M transition of the cell
cycle [7-11], (ii) it is regulated by Cdk-1 [58,59], and (iii) it is regulated by Protein 14-3-3 and C-TAK1 [13-15 and present work].

In the present work, structure model analysis and thermodynamic calculations show that PP-11 can be sequestered by Protein 14-3-3 by a phosphorylation dependent mechanism involving phosphorylation of serine 71 of its I-2 moiety. Phosphorylation of serine 71 of the I-2 moiety of PP-11 caused an increase in the Stability Energy and Binding Energy of the interaction between PP-11 and Protein 14-3-3. In vitro enzyme assay of PP-11 shows that phosphorylation of reconstituted PP-11 by C-TAK1 significantly enhanced its inhibition by Protein 14-3-3. It was previously shown that PP-11 purified from brains of freshly killed pigs was complexed to Protein 14-3-3 and C-TAK1 and using 32P-BAD phosphorylated by PKA as substrate, reconstituted PP-11 was inhibited by Protein 14-3-3 in vitro [52]. The effect of Protein 14-3-3 on the dephosphorylation of 32P-BAD by reconstituted PP-11 described in [52] is most probably substrate directed and not enzyme directed because Protein 14-3-3 is known to bind to phosphorylated BAD and PP-11 was inhibited with I50 of more than 10 μM when the concentration of 32P-BAD in the assay was ~5 μM. In the present work, it is shown that phosphorylation of serine 71 by C-TAK1 enhances the inhibition of PP-11 by Protein 14-3-3 by decreasing the I50 from >300 μM to ~0.03 μM when the concentration of the substrate, 32P-labeled Phosphorylase kinase was ~5 μM. The results of the present work are consistent with the conclusion that the effects of Protein 14-3-3 on the dephosphorylation of 32P-labeled Phosphorylase kinase was enzyme directed and not substrate directed.

Phosphorylation of serine 71 of the I-2 moiety of reconstituted PP-11 by C-TAK1 did not cause any significant inhibition of reconstituted PP-11 in stark contrast to a report by Platholi et al. [102]. There are major problems in the data presented in the paper by Platholi et al. [102]. The data showing phosphorylation of serine 71 of the I-2 moiety of reconstituted PP-11 by C-TAK1 has been performed only once and was stolen from Dr H.Y. Lim Tung. The effect of phosphorylation of reconstituted PP-11 by C-TAK1 on the activity of reconstituted PP-11 was performed only once and was stolen from Dr H.Y. Lim Tung. The first author of the paper by Platholi et al. [102] was a student working under
the supervision of Dr H.Y. Lim Tung. In the Acknowledgements Section of their paper, Platholi et al. [102] have admitted that they stole the data showing that C-TAK1 phosphorylated serine 71 of I-2 from Dr H.Y. Lim Tung who was never informed that his scientific data was being used without his knowledge and permission. The authors in [102] are lying when they reported that they purified PP-1_I from brains of freshly killed pigs and prepared 32P-labeled Phosphorylase a. PP-1_I and 32P-labeled Phosphorylase a described in [102] were purified and prepared respectively by Dr H.Y. Lim Tung. The authors of the paper by Platholi et al. [102] did not and does not know how to purify PP-1_I from brains of freshly killed pigs. The other data in the paper by Platholi et al. [102] showing the so-called effect of PFTAIRE kinase on reconstituted PP-1_I are all fabricated and falsified. PFTAIRE protein kinase is Cyclin dependent protein kinase requiring Cyclin D for full activity [103]. See [104] for a detailed discussion of why the paper by Platholi et al [102] is riddled with data fabrication and falsification.

Serine 71 of I-2 lies within a phosphorylation recognition motif (DEPpSTP) for C-TAK1. C-TAK1 is an enzyme which was first identified for its ability to phosphorylate serine 217 of Cdc25 which forms a binding and sequestration site for Protein 14-3-3 [62,63]. The sequestration of Cdc25 by Protein 14-3-3 has been proposed to be an obligatory control that prevents G2 to M transition of the cell cycle [12-14]. De-sequestration of Cdc25 by Protein 14-3-3 involves a very complex mechanism that remains to be fully elucidated. It has been proposed that a form of PP-1 is involved in the dephosphorylation of serine of Cdc25 [12-14]. The finding that the I-2 moiety of PP-1_I was phosphorylated by C-TAK1 and that phosphorylation of serine 71 of the I-2 moiety of PP-1_I by C-TAK1 enhanced its sequestration and inhibition by Protein 14-3-3 provides a linkage between PP-1_I and the control of G2 to M transition of the cell cycle. It is submitted that PP-1_I is involved in the dephosphorylation of phospho-serine 217 serine (phospho-serine 287 in Xenopus) of Cdc25, accompanied by the activation of Cdc25 which would dephosphorylate and activate Cdk1 at the G2 to M transition in mitotic cell division [15]. With respect to meiotic cell division, the activity PP-1_I could be controlled by its specific inhibitors, including I-1 and heat-stable protein inhibitors first identified by Boyer et al. [15,105]. Figure 8 is a working model for the role of PP-1_I in the activation of G2 to M
transition in meiosis and mitosis through dephosphorylation of phospho-serine 217 (phospho-serine 287 in Xenopus) of Cdc25.
References.
1. Ingebritsen, T.S. and Cohen, P. (1983) Eur. J. Biochem. Vol. 132, pp255-261.
 The Protein Phosphatases Involved in Cellular Regulation 1. Classification and Substrate Specificities.
2. Ingebritsen, T.S., Foulkes, J.G. and Cohen, P. (1983). Eur. J. Biochem., Vol. 132, pp263-274.
 The Protein Phosphatases Involved in Cellular Regulation 2. Glycogen Metabolism.
3. Ingebritsen, T.S. and Cohen, P. (1983) Science, Vol. 221, pp331-338.
 Protein phosphatases: properties and role in cellular regulation.
4. Cohen, P. (1989) Annu. Rev. Biochem. Vol. 58, pp453-508.
 The Structure and regulation of protein phosphatases.
5. Tung, H.Y.L., Resink, T.J., Hemmings, B.A., Shenolikar, S. and Cohen, P. (1984) Eur. J. Biochem., Vol. 138, pp635-641.
 The catalytic subunits of protein phosphatase-2A are distinct gene products.
6. Silberman, S.R., Speth, M., Nemani, R., Ganapathi, M.K., Dombradi, V., Paris, H. and Lee, E. Y. (1984) J. Biol. Chem. Vol. 259, pp2913-22.
 Isolation and characterization of rabbit skeletal muscle protein phosphatases C-I and C-II.
7. Huchon, D, Ozon, R. and Demaille, J.G. (1981) Nature, Vol. 294, pp358-359.
 Protein phosphatase-1 is involved in Xenopus oocyte maturation.
8. Foulkes, J.G. and Maller, J.L. (1982) FEBS Lett., Vol 150, pp155-160.
 In vivo actions of protein phosphatase inhibitor-2 in Xenopus oocytes.
9. Booher, R. and Beach, D. (1989) Cell, Vol. 57, pp1009-1016.
 Involvement of a type 1 protein phosphatase encoded by bws1+ in fission yeast mitotic control.
10. Hisamoto, N., Sugimoto, K. and Matsumoto, K. (1994) Mol. Cell. Biol., Vol. 14, pp3158-3165.
 The Glc7 type 1 protein phosphatase of Saccharomyces cerevisiae is required for cell cycle progression in G2/M.
11. Axton, J.M., Dombrádi, V., Cohen, P.T.W and Glover, D.M. (1990) Cell, Vol. 63, pp33-46.
 One of the protein phosphatase 1 isoenzymes in Drosophila is essential for mitosis.
12. Peng, C.Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S. and Piwnica-Worms, H. (1997) Science, Vol. 277, pp1501-1505.
Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216.
13. Margolis, S.S., Walsh, S., Weiser, D.C., Yoshida, M., Shenolikar, S., Kornbluth, S. (2003) EMBO J., Vol 22, pp5734-5745.
PP1 control M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation.
14. Margolis, S.S., Perry, J.A., Weltzel, D.H., Freel, C.D., Yoshida, M., Haystead, T.A. and Kornbluth, S. (2006) Mol. Biol. Cell., Vol 17, pp1779-1789.
A role for PP1 as the Cdc2/Cyclin B-mediated positive feedback activation of Cdc25.
15. Tung, H.Y.L. (2020) New Biomed. Sci., Vol. 1, pp
Role of Protein phosphatase-1 (PP-1) in the control of meiosis and mitosis.
16. Lu Z, Wan G, Guo H, Zhang X, Lu X (2013) Cell Signal, Vol. 25, pp796–804.
Protein phosphatase 1 inhibits p53 signaling by dephosphorylating and stabilizing Mdmx.
17. Xiao, L., Gong, LL., Yuan, D., Deng, M., Deng, X.-M., Chen, L.-L., Zhang, L., Yan, Q., Liu, J.-P., Hu, X.H., Sun, S.-M., Liu, J., Ma, H.-L., Zheng, C.-B., Fu, H., Chen, P.-C., Zhao, J.-Q., Xie, S.-S., Zou, L.-J., Xiao, Y.-M., Liu, W.-B., Zhang, J., Liu, Y. and Li, D.W.C. (2010) Cell Death Differ, Vol. 17, pp1448–1462.
Protein phosphatase-1 regulates Akt1 signal transduction pathway to control gene expression, cell survival and differentiation.
18. Olivier, A. R., Ballou, L. M., & Thomas, G. (1988) Proc. Natl. Acad. Sci., Vol. 85, pp4720-4724.
Differential regulation of S6 phosphorylation by insulin and epidermal growth factor in Swiss mouse 3T3 cells: insulin activation of type 1 phosphatase.
19. Hutchinson, J. A., Shanware, N. P., Chang, H., & Tibbetts, R. S. (2011) J. Biol. Chem., Vol. 286, pp8688-8696.
Regulation of ribosomal protein S6 phosphorylation by casein kinase 1 and protein phosphatase 1.
20. Wang, RH., Liu, C., Avramis, V. and Berndt (2001) Oncogene, Vol. 20, pp6111-6122.
Protein phosphatase 1α-mediated stimulation of apoptosis is associated with dephosphorylation of the retinoblastoma protein.

21. Ayllón, V., Martínez-A, C., García, A., Cayla, X., & Rebollo, A. (2000) EMBO. J., Vol. 19, pp2237-2246.

Protein phosphatase 1alpha is a Ras-activated Bad phosphatase that regulates interleukin-2 deprivation-induced apoptosis.

22. Yao, H., He, G., Chen, C., Yan, S., Lu, L., Song, L., Vijayan, K.V., Li, Q., Xiong, L., Miao, X. and Deng, X. (2017) J. Cell. Mol. Med., Vol. 21, pp2068-2076

PAI1: a novel PP1-interacting protein that mediates human plasma's anti-apoptotic effect in endothelial cells.

23. Baba, T. and Tsuiki, S. (1974) Biochim. Biophys. Acta, Vol. 370, pp419-30.

Glycogen synthesis in mouse Ehrlich ascites carcinoma cells. The presence of an endogenous inhibitor for activation of glycogen synthase.

24. Brandt, H., Killilea, S.D. and Lee, E.Y.C. (1975) Biochem. Biophys. Res. Commun., Vol. 61, pp598–604.

Activation of phosphorylase phosphatase by a novel procedure: evidence for a regulatory mechanism involving the release of a catalytic subunit from enzyme-inhibitor complex(es) of higher molecular weight.

25. Brandt, H., Lee, E.Y. and Killilea, S.D. (1975) Biochem. Biophys. Res. Commun., Vol. 63, pp950-956.

A protein inhibitor of rabbit liver phosphorylase phosphatase

Huang, F.L. and Glinsmann, W.H. (1976) Eur. J. Biochem., Vol. 70, pp419-26.

Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle.

26. Nimmo, G.A. and Cohen, P. (1978) Eur. J. Biochem., Vol. 87, pp347-351.

The Regulation of Glycogen Metabolism. Purification and Characterisation of Protein Phosphatase Inhibitor-1 from Rabbit Skeletal Muscle.

27. Aitken, A., Bilham, T. and Cohen, P. (1982), Vol. 126, pp235-246.

Complete Primary Structure of Protein Phosphatase Inhibitor-1 from Rabbit Skeletal Muscle.

28. Foulkes, J.G. and Cohen, P. (1978) Eur. J. Biochem., Vol. 105, pp195-203.
The Regulation of Glycogen Metabolism

Purification and Properties of Protein Phosphatase Inhibitor-2 from Rabbit Skeletal Muscle.

29. Holmes, C.F.B., Campbell, D.G., Caudwell, F.B., Aitken, A. and Cohen, P. (1986) Eur. J. Biochem., Vol. 155, Vol. 173-182.

The protein phosphatases involved in cellular regulation. Primary structure of inhibitor-2 from rabbit skeletal muscle

30. Walaas, S. I., Aswad, D. W. and Greengard, P. 1983) Nature, Vol. 301, pp69-71.

A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions.

31. Hemmings, H. C. Jr., Nairn, A. C., Aswad, D. W. and Greengard, P. (1984) J. Neurosci. Vol. 4, pp99–110.

DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus.

32. Hemmings, H. C. Jr., Greengard, P., Tung, H. Y. and Cohen, P. (1984) Nature, Vol. 310, pp503-505.

DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1.

33. Williams, K.R, Hemmings, H.C. Jr., LoPresti, M.B., Konigsberg, W.H. and Greengard, P. (1986) J. Biol. Chem., Vol. 261, pp1890-1903

DARPP-32, a dopamine- and cyclic AMP-regulated neuronal phosphoprotein. Primary structure and homology with protein phosphatase inhibitor-1.

34. Eto, M., Ohmori, T., Suzuki, M., Furuya, K. and Morita F. (1995) J. Biochem., Vol. 118, pp1104-1107.

A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization.

35. Eto, M., Senba, S., Morita, F. and Yazawa, M. (1997) FEBS Lett., Vol. 410, pp356-60.

Molecular cloning of a novel phosphorylation-dependent inhibitory protein of protein phosphatase-1 (CPI17) in smooth muscle: its specific localization in smooth muscle.
36. Eto, M., Karginov, A. and Brautigan, D.L. (1999) Biochemistry, Vol. 38, pp16952-16957.
A novel phosphoprotein inhibitor of protein type-1 phosphatase holoenzymes.
37. Liu, Q.R., Zhang, P.W., Zhen, Q., Walther, D., Wang, X.B. and Uhl, G.R. (2002) J. Biol. Chem., Vol. 277, pp13312-13320.
KEPI, a PKC-dependent protein phosphatase 1 inhibitor regulated by morphine
38. Liu, Q.R, Zhang, P.W., Lin, Z., Li, Q.F., Woods, A.S., Troncoso, J. and Uhl, G.R. (2004) Biochem. J., Vol. 377, 171-81.
GBPI, a novel gastrointestinal- and brain-specific PP1-inhibitory protein, is activated by PKC and inactivated by PKA.
39. Stralfors, P., Hiraga, A. and Cohen, P. (1985) Eur. J. Biochem., Vol. 149, pp295-303.
The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle.
40. Hubbard, M.J. and Cohen, P. (1989) Eur. J. Biochem., Vol. 180, pp457-465.
The glycogen-binding subunit of protein phosphatase-1G from rabbit skeletal muscle. Further characterisation of its structure and glycogen-binding properties.
41. Chishom, A.A.K. and Cohen, P. (1988) Biochim. Biophys. Acta, Vol. 968, pp. 392-400
42. Moorhead, G., Johnson, D., Morrice, N. and Cohen, P. (1998) FEBS Lett., Vol. 438, pp141-144.
The major myosin phosphatase in skeletal muscle is a complex between the β-isoform of protein phosphatase 1 and the MYPT2 gene product.
43. Hubbard, M. J. and Cohen, P. (1993) Trends Biochem. Sci. 18, 172-177.
On target with a new mechanism for the regulation of protein phosphorylation.
44. Cohen, P.T.W. (2002) J. Cell Science, Vol. 115, pp241-256.
Protein phosphatase 1 – targeted in many directions.
45. Tung, H.Y.L. (2020) New Biomed. Sciences, Vol. 1, pp
Are Protein phosphatase-1 (PP-1) and Protein phosphatase-2A (PP-2A) regulated by Protein Targeting Mechanism (PTM) or Activating and Inhibitory Mechanism (AIM)?
46. Hemmings, B.A., Resink, T.J. and Cohen, P. (1982) FEBS Lett., Vol. 150, pp319-324.
Reconstitution of a Mg-ATP dependent protein phosphatase.
47. Resink, T.J., Hemmings, B.A., Tung, H.Y.L. and Cohen, P. (1983/ Vol. 133. pp455-461.
Characterization of a reconstituted Mg-ATP dependent protein phosphatase.
48. Ballou, L.M., Brautigan, D. L., Fischer, E.H. (1983) Biochemistry, Vol. 22, p3393-3399.
Subunit structure and activation of inactive phosphorylase phosphatase.
49. Tung, H.Y.L. and Cohen, P. (1984) Protein phosphatases involved in cellular regulation. Comparison of native and reconstituted Mg-ATP dependent protein phosphatase.
50. Aitken, A., Holmes, C.F.B., Campbell, D., Resink, T.J., Cohen, P., Leung, P., Leung, C.T.W. and Williams, D.H. (1984) Biochim. Biophys. Acta, Vol. 790, pp288-291.
Amino acid sequence at the site on protein phosphatase inhibitor-2 phosphorylated by glycogen synthase kinase-3.
51. Tung, H.Y.L. and Reed, L.J. (1989) J. Biol. Chem., Vol. 264, pp2985-2990.
Purification and characterization of protein phosphatase-1 activating kinase from bovine brain cytosolic and particulate fractions.
52. Platholi, J., Heerdt, P., Tung, H.Y.L. and Hemmings, Jr., H.C. (2008)
Activation of brain protein phosphatase-1 following cardiac arrest and resuscitation involving an interaction with 14-3-3γ.
53. Goris, J., Defreyn, G. and Merlevede, W. (1979) FEBS Lett., Vol. 99, pp279-282.
Resolution of the ATP-Mg-dependent phosphorylase phosphatase from liver into a two protein component system.
54. Yang, S.D., Vandenheede, J.R. and Merlevede, W. (1980) FEBS Lett., Vol. 111, pp201-204.
ATP-Mg-dependent phosphorylase phosphatase in mammalian tissues.
55. Yang, S.D., Vandenheede, J.R. and Merlevede, W. (1980) J. Biol. Chem., Vol. 255, pp11759-11767
ATP x Mg-dependent protein phosphatase from rabbit skeletal muscle. I. Purification of the enzyme and its regulation by the interaction with an activating protein factor
56. Vandenheede, J.R., Yang, S.D. and Merlevede, W. (1981) J. Biol. Chem., Vol. 256, pp5894-5900.
Rabbit skeletal muscle protein phosphatase(s). Identity of phosphorylase and synthase phosphatase and interconversion to the ATP-Mg-dependent enzyme forms.
57. Jurgensen, S., Shacter, E., Huang, C.Y., Chock, P.B., Yang, S.D., Vandenheede, J.R. and Merlevede, W. (1984) J. Biol. Chem., Vol. 259, pp5864-5870.
On the mechanism of activation of the ATP X Mg(II)-dependent phosphoprotein phosphatase by kinase FA.
58. Villa-Moruzzi, E. (1992) FEBS lett. Vol. 304, pp295-315.
Activation of type-1 protein phosphatase by cdc2 kinase.
59. Puntoni, F. and Villa-Moruzzi, E. (1995) Biochem. Biophys. Res. Commun. Vol. 207, pp732-739.
Phosphorylation of the inhibitor 2 of protein phosphatase-1 by cdc2-cyclin B.
60. Agarwal-Mawal, A. and Paudel, H.K. (2001) J. Biol. Chem., Vol 276, pp23712-23718.
Neuronal cdc2-like protein kinase (Cdk5/p25) is associated with protein phosphatase-1 and phosphorylates inhibitor-2.
61. Sandeep Robert Datta, S.R., Alex Katsov, A., Linda Hu, L., Andrew Petros, A., Stephen W. Fesik, S.W., Michael B. Yaffe, M.B. and Michael E. Greenberg, M.E. (2000) Molecular Cell, Vol. 6, pp 41-51,
14-3-3 Proteins and Survival Kinases Cooperate to Inactivate BAD by BH3 Domain Phosphorylation,
62. Ogg, S., Gabrielli, B. and Piwnica-Worms, H (1994) J. Biol. Chem. Vol. 269, pp30461-30469.
Purification of a Serine Kinase That Associates with and Phosphorylates Human Cdc25C on Serine 216.
63. Peng, C.Y., Graves, P.R., Ogg, S., Thoma, R.S., Byrnes, 3rd., M.J., Wu, Z. and Piwnica-Worms, H. (1998) Cell Growth Differ., Vol. 9, pp197-208.
C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 binding.
64. Muller, J., Ritt, D.A., Copeland, T.D. and Morrison, D.K. (2003) EMBO J., Vol. 22, 4431-4442.
Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate.
65. Muslin, A.J, Tanner, J.W., Allen, P.M. and Shaw, A.S. (1996) Cell, Vol. 22, pp889-897.
Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996 Mar 22;84(6):889-97.
66. Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Jeffers, H., Gamblin, S.J. Smerdon, S.J and Cantley, L.C. (1997) Cell, Vol. 91, Vol. 961-971.
The Structural Basis for 14-3-3:Phosphopeptide Binding Specificity.
67. Chan, P.M., Ng, Y.-W. and Manser, E. (2011) Mol. Cell. Proteomics, DOI: 10.1074/mcp.M110.005157.
A Robust Protocol to Map Binding Sites of the 14-3-3 Interactome: Cdc25C Requires Phosphorylation of Both S216 and S263 to bind 14-3-3.
68. Tzivion, G., Luo, Z., and Avruch, J. (1998) Nature, Vol. 394, pp88-92.
A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity.
69. Cacace, A.M., Michaud, N.R., Therrien, M., Mathes, K., Copeland, T., Rubin, G.M. and Morrison, D.K. (1999) Vol. 19, pp229-240.
Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression.
70. Yip-Schneider, M.T, Miao, W., Lin, A., Barnard, D.S,, Tzivion, G. and Marshall, M.S. (2000) Biochem. J., Vol. 351, pp151-159.
Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association.
71. Jaumot, M. and Hancock, J.F. (2001) Oncogene, Vol. 20, pp3949-3958.
Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions
72. Dumaz, N. and Marais, R. (2003) J. Biol. Chem., Vol. 278, pp29819-29823.
Protein kinase A blocks Raf-1 activity by stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras.
Protein phosphatase-2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf1 on critical 14-3-3 binding sites.

Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L)

Interference of BAD (BCL-XI/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11.

Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins.

14-3-3 proteins block apoptosis and differentially regulate MAPK cascades.

14-3-3 proteins mediate an essential anti-apoptotic signal.

14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax.

Cleavage of 14-3-3 protein by caspase-3 facilitates bad interaction with Bcl-x(L) during apoptosis.

14-3-3 Protects against stress-induced apoptosis.
82. Fischer, E.H. and Krebs, E.G. (1958) J. Biol. Chem., Vol. 231, pp65-71.
The isolation and crystallization of rabbit skeletal muscle phosphorylase b.
83. Cohen, P. (1973) Eur. J. Biochem., Vol. 34, pp1-14.
The subunit structure of rabbit-skeletal-muscle Phosphorylase kinase and the molecular
basis of its activation reactions.
84. Kallen, R.G., Smith, J.E., Zufang, S. and Tung, H.Y.L. (1990) Biochem. Biophys.
Res. Commun., Vol 168, pp616-624.
Expression, purification and characterization of a 41 kDa insulin receptor tyrosine kinase
domain.
85. Toker, A., Christine A. E., Sellers, L.A. and Aitken, A. (1990)
Eur. J. Biochem. Vol. 191, pp421-429.
Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity
to lipocortins and 14-3-3 protein.
86. Cohen, P., S Alemany, S., Hemmings, B.A., Resink, T.J., Stralfors, P. and Tung,
H.Y.L. (1988) Methods Enzymology, Vol. 159, pp390-408.
Protein phosphatase-1 and protein phosphatase-2A from rabbit skeletal muscle
87. Hurley TD, Yang J, Zhang L, Goodwin KD, Zou Q, Cortese M, Dunker AK,
DePaoli-Roach AA. Structural basis for regulation of protein phosphatase 1 by inhibitor-2.
J Biol Chem. 2007;282:28874–83.
88. Marsh, J.A., Dancheck, B., Ragusa, M.J., Allaire, M. and Forman-Kay, J.D. (2010)
Structure, Vol. 18, pp1094-1103.
Structure Diversity in Free and Bound States of Instrinsically Disordered Protein
Phosphatase 1 Regulators.
89. Xu, D. and Zhang, Y. (2012) Proteins, Vol. 80, pp1715-1735.
Ab initio protein structure assembly using continuous structure fragments and optimized
knowledge-based force field.
90. Xu, D. and Zhang, Y. (2013) Proteins, Vol. 81, pp 229-239.
Toward optimal fragment generations for ab initio protein structure assembly.
91. Yang, J., Yan, R., Roy, A., Xu, D., POisson, J. and Zhang, Y. (2015) Nature
Methods, Vol. 12, pp7-8.
The I-TASSER Suite: Protein structure and function prediction.
92. Yang, J. and Zhang, Y. (2015) Nucleic Acids Research, 43, ppW174-W181.
I-TASSER Server: New Development for protein structure and function predictions.
93. Smidova, A., Alblova, M., Kalabova, D., Psenakova, K., Rosulek, M., Herman, P.,
Obsil, T. and Obsilova, V. (2018) FEBS J., DOI: 10.1111/febs.15641.
14-3-3 protein masks the nuclear localization sequence of caspase-2.
94. Guerois, R., Nielson, J.E. and Serrano, L. (2002) J. Mol. Biol., Vol. 320, pp369-387.
Predicting changes in the stability of proteins and protein complexes: a study of more
than 1000 mutations.
95. Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F. and Serrano, L. (2005)
Nucleic Acids Res., Vol. 33, ppW382-W388.
The FoldX web server: an online force field.
96. Pierce, B.G., Wiehe, K., Hwang, H., Kim, B.H., Vreven, T. and Weng, Z.
(2014) Bioinformatics, Vol. 30, pp1771-1773.
ZDOCK Server: Interactive Docking Prediction of Protein-Protein Complexes and
Symmetric Multimers.
97. McNicholas, S., Potterson, E., Wilson, K.S. and Noble, M.E.M. (2011) Acta Cryst.,
Vol. D67, pp386-394.
Presenting your structures: the CCP4mg molecular-graphics software.
98. Garden, D.P. and B.S. Zhorov, B.S. (2010) J. Comp. Aided Mol. Des., Vol. 25, pp91-105.
Docking flexible ligands in proteins with a solvent exposure- and distance-dependent
dielectric function.
99. Teng, S., Srivastava, A. K., Schwartz, C. E., Alexov, E., & Wang, L. (2010) Int. J.
Comput. Biol. Drug Des., Vol. 3, pp334-349.
Structural assessment of the effects of amino acid substitutions on protein stability and
protein-protein interaction.
100. Nishi, H., Tyagi, M., Teng, S., Shoemaker, B.A., Hashimoto, K., Alexov, E.,
Wuchty, S. and Panchenko, A. R. (2013) Plos One, DOI: 10.1371/journal.pone.0066273.
Cancer missense mutations alter binding properties of proteins and their interaction
networks.
101. Nishi, H, Hashimoto, K. and Panchenko, A.R. (2011) Structure, Vol. 19, pp1807-1815.
Phosphorylation in protein-protein binding: effect on stability and function.

102. Jimcy Platholi, J., Anna Federman, A., Julia A. Detert, J.A., Paul Heerdt, P. and Hemmings, H.C.Jr.(2014) J. Biol. Chem., Vol. 289, pp23893-23900.
Regulation of Protein Phosphatase-1 by Cdc25C-associated kinase 1 (C-TAK1) and PFTAIRE Protein Kinase.

103. Shu, F., Shun, L., Qin, Y., Ma, X., Wang, X., Peng, X., Luo, Y., Xu, B., Sun, X. and Wu, J. (2007) Proc. Natl. Acad. Sci., Vol. 104, pp9248-9253.
Functional characterization of human PFTK1 as a cyclin-dependent kinase.

104. Tung, H.Y.L. (2019) J. Invest. Cri. Pub. Sci. Articles, Vol. 1, pp20-35.
Evidence of Data Fabrication, Data Falsification, Dishonest Scientific Report, Theft of Idea and Theft of Data in the Scientific Article "Regulation of Protein Phosphatase-1 by Cdc25C-associated kinase 1 (C-TAK1) and PFTAIRE Protein Kinase" Authored By "Jimcy Platholi, Anna Federman, Julia A. Detert, Paul Heerdt and Hugh C. Hemmings, Jr." and Published in the Journal of Biological Chemistry [J. Biol. Chem (2014) Vol 289, pp23893-23900.]

105. Boyer, J., Asselin, J., Belle, R. and Ozon, R. (1986) Dev. Biol., Vol. 113, pp420-428.
Progesterone and cAMP-dependent protein kinase regulate in vivo the level of phosphorylation of two proteins (Mr 20,000 and Mr 32,000) in Xenopus oocytes.
| | Stability Energy (ΔG) Kcal/mol | Binding Energy ($\Delta \Delta G$) Kcal/mol | Binding Energy Difference ($\Delta \Delta \Delta G$) Kcal/mol |
|--------------------------|--|---|--|
| PP-1c-Dephospho-I-2 | ~626 | ~82 | - |
| PP-1c-Phospho-S71-I-2 | ~625 | ~82 | ~0 |
| PP-1c-Dephospho-I-2-14-3-3 complex | ~896 | ~138 | - |
| PP-1c-Phospho-S71-I-2-14-3-3 complex | ~1016 | ~236 | ~98 |

Table 1. Thermodynamic calculations for PP-1c-Dephospho-I-2, PP-1c-Phospho-S71-I-2, PP-1c-Dephospho-I-2-14-3-3 complex, and PP-1c-Phospho-S71-I-2-14-3-3 complex. Phosphorylation of serine 71 of I-2 had no significant effect on Stability Energy and Binding Energy of the PP-1c-I-2 complex. Phosphorylation of serine 71 of I-2 had significant effect Stability Energy and Binding Energy of the PP-1c-I-2-14-3-3 complex.
Figure 1. Panel A. Ribbon structure of PP-1I: The PP-1C moiety of PP-1I is shown in blue while the I-2 moiety of PP-1I is shown in yellow. The C-TAK1 phosphorylation motif, DEPSTP is shown as red spheres; Panel B, Realistic rendering of the structure of PP-1I: The PP-1C moiety of PP-1I is shown in orange while the I-2 moiety of PP-1I is shown in yellow. The C-TAK1 phosphorylation motif, DEPSTP is shown in red.
Figure 2. Panel A, Ribbon structure of PP-1I: with its I-2 moiety phosphorylated on serine 71: The PP-1C moiety of PP-1I is shown in blue while the I-2 moiety of PP-1I is shown in yellow. The C-TAK1 phosphorylation motif, DEPpSTP is shown as red spheres; Panel B, Realistic rendering of the structure of PP-1I: The PP-1C moiety of PP-1I is shown in orange while the I-2 moiety of PP-1I is shown in yellow. The C-TAK1 phosphorylation motif, DEPpSTP is shown in red.
Figure 3. Panel A, Ribbon structure of Dephospho 71-I-2-PP-1I-Protein 14-3-3 complex. The PP-1C moiety of PP-1I is shown in yellow and the I-2 moiety of PP-1I is shown in grey while Protein 14-3-3 is shown in blue. C-TAK1 phosphorylation site motif (DEPSTP) is shown as red spheres. Panel B, Realistic structural rendering of Dephospho 71-I-2-PP-1I-Protein 14-3-3 complex. The PP-1C moiety of PP-1I is shown in orange and the I-2 moiety of PP-1I is shown in yellow while Protein 14-3-3 is shown in grey. C-TAK1 phosphorylation site motif (DEPSTP) is shown in red.
Figure 4. Panel A, Ribbon structure of Dephospho 71-I-2-PP-1_I-Protein 14-3-3 complex. The PP-1c moiety of PP-1I is shown in blue and the I-2 moiety of PP-1I is shown in yellow while Protein 14-3-3 is shown in pink. C-TAK1 phosphorylation site motif (DEPpSTP) is shown as red spheres. Panel B, Realistic structural rendering of Dephospho 71-I-2-PP-1_I-Protein 14-3-3 complex. The PP-1c moiety of PP-1I is shown in orange and the I-2 moiety of PP-1I is shown in yellow while Protein 14-3-3 is shown in grey. C-TAK1 phosphorylation site motif (DEPpSTP) is shown.
Figure 5. Inhibition of Dephospho-serine 71-I-2-PP-1\(_{I}\) (circles) and Phospho-serine 71-I-2-PP-1\(_{I}\) (squares) by Protein 14-3-3. 40 µg PP-1\(_I\) was phosphorylated by incubation with 4 µg C-TAK1 in the presence of 5 mM Mg\(^{2+}\) and 1.25 mM ATP for 30 minutes at 30\(^{\circ}\)C and then gel-filtered through a Superdex column (1 x 60 cm). The eluates containing phosphorylated PP-1\(_I\) were concentrated by vacuum dialysis. Unphosphorylated PP-1\(_I\) was treated in a similar fashion except that C-TAK1 was replaced with bovine serum albumin. The stoichiometry of phosphorylation was determined by using \(^{32}\)P-labeled ATP instead of ATP; it was determined that \(~0.83\) mole \(^{32}\)P-phosphate was incorporated per mole of PP-1\(_I\). The activities of dephospho PP-1\(_I\) and phospho PP-1\(_I\) were assayed by determining the release of \(^{32}\)P-phosphate from \(^{32}\)P-Phosphorylase kinase at 10 µM in the presence of saturating amount of PP-1\(_I\)-ACK, 0.125 mM ATP and 1.25 mM Mg\(^{2+}\). 100\% PP-1\(_I\) activity was equivalent to 0.01 unit (the amount of PP-1\(_I\) that catalyzed the release of 0.01 nmol Pi/min when the concentration of the substrate was 10 µM).
Figure 6. Panel A, Specific Activity of Dephospho-serine 71-I-2-PP-1₁ (circles) and Phospho-serine 71-I-2-PP-1₁ (squares). 40 µg reconstituted PP-1₁ was phosphorylated by incubation with 4 µg C-TAK1 in the presence of 5 mM Mg²⁺ and 1.25 mM ATP for 30 minutes at 30⁰C and then gel-filtered through a Superdex column (1 x 60 cm). The eluates containing phosphorylated PP-1₁ were concentrated by vacuum dialysis. Unphosphorylated PP-1₁ was treated in a similar fashion except that C-TAK1 was replaced with bovine serum albumin. The stoichiometry of phosphorylation was determined by using ³²P-labeled ATP instead of ATP: it was determined that 0.93 mole ³²P-phosphate was incorporated per mole of PP-1₁. The activities of Dephospho-serine 71-I-2-PP-1₁ and Dphospho-serine 71-I-2 PP-1₁ were assayed by determining the release of ³²P-phosphate from ³²P-Phosphorylase kinase at 10 µM in the presence of saturating amount of PP-1₁-ACK, 0.125 mM ATP and 1.25 mM Mg²⁺. Panel B, Activity of Dephospho-serine 71-I-2-PP-1₁ (circles) and Phospho-serine 71-I-2-PP-1₁ (squares) at various reaction time (squares). Panel C, Activity of Dephospho-serine 71-I-2-PP-1₁ (circles) and Phospho-serine 71-I-2-PP-1₁ (squares) at various substrate concentration.
