INVESTIGATIONS OF DETERGENTS AND METAL COMPONENTS FOR SUPPORTING THE EFFECTIVE TREATMENT OF GREYWATER

Lós Réka¹, Izbékiné Szabolcsik Andrea², Bodnár Ildikó³

Debreceni Egyetem, Műszaki Kar, Környezetmérnöki Tanszék, Debrecen, Magyarország

¹ losrekaaa@gmail.com
² szabolcsikandi@eng.unideb.hu
³ bodnari@eng.unideb.hu

Abstract
The aim of our research was to investigate the detergent content and several micro and macro elements in greywater samples, a necessary step in determining the water quality for the further reuse of the greywater. We determined the anionic detergent content of synthetic greywater with a two-phased titration method prepared in laboratory conditions. The current study leads to a new suggestion for a more accurate and reliable titrimetric method for determination of anionic detergent content of synthetic greywater samples. Following these investigations, we also examined the metal content of synthetic bath water. We wanted to highlight how detergents in greywater influence the micro and macro element content of the given synthetic bath water samples.

Keywords: greywater, detergents, micro and macro elements.

Összefoglalás
Kutatásunk célja a szürkevizekben található detergenstartalom és számos mikro- és makroelem vizsgálata, melyek meghatározása a szürkevizekben további újraszíndításra miatt szükségszerű. Laboratóriumi körülmények között előállított szintetikus fürdővizek anionaktívdetergens-tartalmát vizsgáltuk kétfázisú titrimetriás módszerrel. A korábbi módszerfejlesztéseinken túl jelen tanulmányban további fejlesztéseket javasoltunk a módszer pontosabb és megbízhatóbb használatra érdekében. Ezen vizsgálatainkat követően a szintetikus fürdővizek fémtartalmát is vizsgáltuk, a vizsgálatok során arra szerettünk volna rávilágítani, hogy a detergens mennyisége és minősége milyen mértékben befolyásolja az adott szintetikus fürdővíz mikro- és makroelem-tartalmát.

Kulcsszavak: szürkevizek, detergens, mikro- és makro elemek.

1. Bevezető
Vizeink mennyiségének csökkenése, illetve az egyre növekvő vízigények jelentős problémákat okozhatnak a megfelelő minőségű víz biztosításában. Ezért alternatívákat kell kidolgoznunk, hogy csökkentsük a nagymértékű vízhasználatot. Egy lehetséges alternatívája, ha a háztartásokban például WC-öblítésre, öntözésre vagy autómosásra szürkevizet használunk ivóvíz helyett [1, 2]. Szürkevizeknek tekinthetők a háztartásokban mosogatási, mosás, kézmosás, fürdés során keletkező szennyvizek, melyekhez nem soroljuk a vízöblítéses WC-k vizeit [1, 2]. A szürkevizekben nagy mennyiségű felületaktív anyag található, amelyet felhasználás vagy vízbázisokba történő kijuttatás előtt szükségszerű elállítani, ugyan-
is ezek az anyagok habréteget képezhetnek a víz felszínén, ezzel csökkentve a vízben oldott oxidén mennyiségét és az öntisztulási folyamatokat. Emulgeáló hatásukból adódóan gátolják az oldhatatlan szennyezők kiülepedését, így költségesebbé teszik az ivóvíz előállítását felszíni vizekből [2].

A detergenseket kémiai szerkezetük szerint 4 csoportba sorolhatjuk, eszerint megkülönböztetünk anionaktív, kationaktív, nemions és amfoter detergenseket [3, 4]. A detergensek antropogén eredetű környezetbe jutása káros lehet, mivel megjátolják az oxidén diffúzióját a vízben, illetve algaavirágzást okozhatnak [2]. Zavarják a szennyezéktisztítást, az ivóvíztisztítást, rontják a felszíni víz öntisztulásának a hatásfokát. A szintetikus fürdővizek változatos összetételűek, ez a különbözőség a víz fém tartalmára is jellemző. A detergensek jelenléte mellett számlálunk kell a használt vizek mikro- és makroelem-tartalmának növekedésével, mivel nagy koncentrációban találhatók nyomelemek és nehézfémek is ezen frakciókban, melyek újrahasznosítás esetén jelenős tényleges gyakorolhatnak az ökoszisztémára [1, 5, 6].

2. Anyag és módszer

A Környezetmérnöki Tanszéken évek óta folyó kutatások során adekvát mérésekkel is sikerült bebizonyítani, hogy a szürkevizek minősége (összetétele) nagyon változó. Ezért kidolgoztak egy szintetikus szürkevíz receptet, mely jól reprezentálja a régióban keletkező átlagos fürdővízmintákat. Az így fejlesztett állandó összetételű szintetikus szürkevízzel többek között a detergenstartalom meghatározására szolgáló módszerfejlesztési kísérleteink eredményei is jól összehasonlíthatók egymással. Kutatásunk célja a szürkevizek detergenstartalmának meghatározására szolgáló módszerfejlesztési kísérleteinek megfelelő hatásfokának vizsgálata, és az elemek koncentrációit.

2.1. Anyag és módszer

A vizsgálatok alkalmával csak az anionaktív detergensek (röviden ANA-tartalom) meghatározzuk célul, melyeket az ISO 2271:1989 nemzetközi szabvány segítségével végeztünk el. Átlagoljuk. Detergenstartalom meghatározására 3 vízmintát készítettünk, elsőként a laboratórium-milag előállított fürdővízet vizsgáltuk, melynek ANA-tartalma 44,427 ± 1,59 mg/L, a csak tusfürdőt tartalmazó vízminta ANA-tartalma 21,726 ± 0,39 mg/L, a csak sampont tartalmazó vízminta ANA-tartalma 24,491 ± 2,00 mg/L-nek adódott, melyet az 1. ábra szemléltet.

Megállapítottuk, hogy a csak tusfürdőt és csak sampont tartalmazó minták ANA-értékeit összeadva megközelítőleg megkaptuk a szintetikus fürdővíz ANA-tartalmát, ami azt mutatja meg, hogy a háztartásokban főként a kozmetikai szerekből, tusfürdőkből és samponokból származik a fürdővíz ilyen jellegű detergenstartalma. Fémanalitikai mérések során mikrohullámulapmaatoma-emissziós spektrometriát, röviden MP-AES mérőműszert használtunk, mely méréseket a Debreceni Egyetem Szervetlen és Analitikai Kémiai Tanszékén található Agilent 4210 MP-AES-készülékekkel végezhettünk el. Ezen méréstechnika alkalmazása során az elemeket egymást követően tudjuk mértani szorzattal, hullámhossz szerint növekvő sorrendben. A nagyszámú hullámhossz-adatbázis lehetővé teszi a megfelelő hullámhossz kiválasztását, ezzel minimalizálva a spektrális zavaró hatásokat.

3. Eredmények és értékelésük

Kutatásunk során vizsgáltuk a szintetikusan előállított fürdővizek mikro- és makroelem-tartalmát. Célunk az volt, hogy megvizsgáljuk a detergensek milyen mértékben változtatják meg az adott elemek koncentrációértékeit. A mérések alkalmával kontrollként a minták készítéséhez használt ivóvíz mikro- és makroelem-tartalmát is mértük, ugyanis a későbbiekben ezen eredmények
nyeket is összehasonlítottuk a szintetikus fürdővízmintákra kapott eredményeinkkel.

A 2. ábra a bárium-, réz-, stroncium- és cinktartalmat szemlélteti.

A 3. ábrán az az aluminium-, kadmium-, króm- és vastartalmak láthatóak.

A lítium, mangán, nikkel és ólom-koncentrációkra vonatkozó adatokat pedig a 4. ábra mutatja.

Mikroelemek vizsgálatai során megállapíthattuk, hogy a réz-, cink- és níkkelelemek koncentrációemelkedéséért jelentős mértékben felelősök a detergensek. Ólom esetén azt tapasztaltuk, hogy a detergensek mellett a szintetikus fürdővízhez szükséges egyéb alkötok is befolyásolják ezen mikroelem-koncentráció növekedését. A vas, alúminium és lítium mikroelemek esetében elmondhatjuk, hogy a szintetikus fürdővíz egyéb alkötoi okozhatják a koncentrációváltozásokat. Stroncium-, bárium-, kadmium- és mangántartalom már jellemzően az ivóvízmintákban is megtalálható, tehát ezen elemek mennyiségét nem befolyásolja a detergensek jelenléte. A krómtartalomra vonatkozó vizsgálatok minden esetben mérésátr alatt elemtartalmat jeleztek, vagyis a minták krómtartalma 0,1 μg/L alatti értékeket adottak, mivel az alkalmazott készülék kimutatási határa krómra vonatkozóan 0,1 μg/L volt. Az 5. ábrán láthatók a vizsgált makroelem-tartalmak (kálcium, kálium, magnézium és nátrium).

Makroelemek vizsgálata során megállapíthattuk, hogy a vártnak megfelelően a kalcium és magnézium jelenléte már az ivóvízben is jelenős, azaz ezek az elemek az egyéb ólomok, nem a detergensek okozzák, hanem az ivóvíz keménységéből származnak. A megemelkedett kálcium- és nátriumkoncentrációk kapcsán elmondhatjuk, hogy a fürdővízekben található detergensek befolyásolják ezen elemek mennyiségét. Mindezek alapján az elemkoncentrációk alakulását nagymértékben felelős lehetnek a detergensek, melyek változatos tisztító-, mosó- vagy kozmetikai szerepük lehetnek a szürkevízbéletétől az ivóvízhez. Összefoglalás

Vízgálaaink során a detergenstartalom meg-
nokból származik a fürdővíz detergenstartalma. Mikroelemek esetén a cink-, réz-, nikkel- és ólomelemek koncentrációiban okozott a detergensjelenlét elemkoncentráció-növekedést. Cink esetében teljes mértékben, réznel kb. 80%-ban, míg nikkel és ólom esetén kb. 30%-ban okozták a detergensek az elemnövekedéseket. Makroelemek vizsgálata során a nátrium- és káliumelemek koncentrációi változtak a detergenshasználattal. Nátriumtartalom alapján 30%-ban, kálium esetén 60%-ban a detergensek felelősek a megnövekedett elemkoncentrációért.

Szakirodalmi hivatkozások

[1] Ghaitidak D. M., Yadav K. D.: Characteristics and treatment of greywater. A review. Environmental Science and Pollution Research, 20/5. (2013) 2795–2809.

[2] Lós R., Izbékiné Szabolcsik A., Bodnár I.: Szürkevizek detergens tartalmának meghatározására alkalmas analitikai módszerek fejlesztése. International Journal of Engineering and Management Sciences (IJEMS), 3/2. (2018).

[3] Juhász É, Lelkesné Erős M.: Felületaktiv anyagok zsebkönyve. Műszaki Könyvkiadó, 1979.

[4] Ketola A.: Determination of surfactants in industrial waters of paper-and board mills. (2016). DOI: 10.13140/RG.2.2.36735.41124

[5] Bodnár I., Szabolcsik A., Baranyai E., Uveges A., Boros N.: Qualitative characterization of household greywater in the Northern great plain region of Hungary. Environmental Engineering and Management Journal, 13/11. (2014) 2717–2724.

[6] Bodnár I., Boros N., Baranyai E., Fórián S., Izbékiné Szabolcsik A., Jolánkái G., Keczánné Üveges A., Kocsis D.: Épületek csapadékvizeinek és szürkevizeinek vizsgálata az Észak-Alföld régióban környezetbarát és energiahatékony hasznosítás céljából. In: F. Kálmár (szerk.) Fenntartható energetika megújuló energiaforrások optimalizált integrálásával, Akadémiai Kiadó, 2014, 167–201.

[7] Baranyai. E.: Mikrohullámú plazma atomemissziós spektrometria, Debreceni Egyetem, Szervetlen és Analitikai Kémiai Tanszék, 2015.