Skin and Bone Tumors Induced by Repeated Beta-Irradiation of Mice:
Threshold Effect and p53 Mutations

AKIRA OOTSUYAMA*

Department of Radiation Biology and Health, Medical school, University of
Occupational and Environmental Health, Japan, 1-1 Iseigaoka,
Yahatanishi-ku, Kitakyushu 807, Japan
(Received, July 11, 1996)
(Revision received, July 31, 1996)
(Accepted, August 12, 1996)

Mouse/ Beta-rays/ Repeated irradiation/ Threshold/ p53.

INTRODUCTION

The question as to whether a threshold dose exists in radiation carcinogenesis is important for the estimation of radiation risk at low doses. Although the relationship between the radiation dose and tumor incidence fits a multihit or linear-quadratic model, a threshold model can not be excluded. In fact, the radiation dose at which no increase in tumor incidence is recognized over the background level can be seen in the induction of solid tumors and leukemia with single whole body exposure to X-rays or gamma rays, as well as in pulmonary tumors caused by partial irradiation with single doses of up to 2.5 Gy of X rays in mice. When irradiation is protracted or the total dose fractionated, no apparent increases in tumor incidence in skin cancer in mice and rats occurs, or in ovarian tumor and leukemia in mice. Error-free repair of DNA damaged by a low dose, low dose rate, or fractionated exposure is considered to be efficient.

We established the conditions of irradiation that yield 100% cumulative tumor incidence by repeated beta-ray radiation to the backs of mice 3 times a week. I here summarize our results which show the threshold effect in radiation carcinogenesis under our conditions and the associated p53 gene mutations.

EXPERIMENTAL

Various organs of rodents have been the targets in studies of radiation carcinogenesis. The lung, liver, ovary, mammary gland, bone, lymphoid tissue, skin, and pituitary and harderian glands have all been examined. Because inbred mice have spontaneous tumors, careful selection of the target organ is important.

* The author received the Award for Young Investigator of the Japan Radiation Research Society in 1995.
in examinations of tumors induced by a low dose or low dose rate of radiation. In our experiment, we used the skin of female ICR strain mice as the target organ, because spontaneous skin tumors are very rare in mice. Moreover, the setting of the exposure area and observation of tumor emergence are easy (Figure 1a). We used a 90Sr-90Y applicator (40 mCi loaded on a 2-cm diameter disk, maximum beta-ray energy 2.24 MeV). As the penetration of beta-particles into tissue is weak, the influence of radiation scattered to other body parts is negligible.

![Beta-ray source](image)

Figure 1. Irradiation method and scheme. a. ICR female mice (Charles River Japan) 7 weeks of age were irradiated. The backs of the mice were freed of hair and irradiated with beta-rays from 90Sr-90Y (Max. energy 2.24 MeV). b. Irradiation was repeated 3 times a week until a tumor appeared or until the mice died without developing tumors.

THRESHOLD RESPONSE FOR TUMOR INDUCTION

Cumulative tumor incidences for each dose group are shown in Figure 2. In groups irradiated at doses of 2.5 to 11.8 Gy per exposure, tumors began to emerge about the 200th day after the start of irradiation. At about the 500th day the cumulative tumor incidence became 100%. Emergence of tumors in the 1.5 Gy group began later, eventually reaching 100%. No tumors were generated in any of the mice in the 0.5 Gy group up to the end of their life spans. The threshold response is more clearly seen when the median time for tumor emergence is plotted against the beta-ray dose per exposure (Figure 3). In addition, immunological responses (mitogen in proliferation of lymphocytes, mixed lymphocyte reaction, killer T-cell activity, and NK-cell activity) did not decrease after repeated irradiation (Sado, Ootsuyama and Tanooka, unpublished observation).

Hecker et al. showed that the dose response for a tumor promoter is expressed in a threshold manner in their study of the chemical carcinogen DMBA (dimethylbenzanthracene) with 3TI (3-o-tetradecanoyligenol) as the promoter. Furthermore, Fujiki et al. showed that the activity of ODC (ornithinedecarboxylase), which is an index of the promotion effect, was elevated in skin exposed to beta-rays. We observed a significant delay in skin tumor emergence in a study in which tumors were induced by repeated irradiation combined with the continuous administration of DFMO (α-difluoromethylornithine), an inhibitor of tumor...
promotion, in the drinking water18). The results indicate that repeated irradiation with beta-rays has a tumor promotion effect and that the promoting action gives a threshold-like dose response.

Blum et al. observed a threshold-like response with repeated UV irradiation19. Shortening the UV irradiation interval made the threshold-like response even more clear. DeGruilj et al.20 and Forbes et al.21, however, did not find a threshold response in their studies with UV. This difference may be due to the choice of UV wave length.

Figure 2. Cumulative tumor incidences in mice exposed to repeated beta radiation plotted against time. Numbers of mice: a, 50; b, 31; c, 30; d, 22; e, 31; f, 21; g, 15; h, 31; i, 18; and the controls, 31. The cumulative tumor incidences were calculated by the Kaplan-Meier method22. (Data redrawn from Ref.15)

Figure 3. Relationship between the dose per exposure and the time required for 50% tumor incidence. The time required for 50% tumor incidence was nearly constant in the range of 2.5 to 11.8 Gy and was rapidly prolonged at lower doses. (Data redrawn from Ref.22)
HISTOLOGICAL TYPES OF BETA-RAY INDUCED TUMORS

The radiation-induced tumors found in our examinations were classified histologically as squamous cell carcinoma, basal cell carcinoma of epidermal origin, fibrosarcoma of dermal origin, and osteosarcoma of bone origin (Figure 4a-d). The number of each type of tumor is shown in Table 1. The osteosarcomas emerged from the lumbar vertebrae of the mice because the beta-rays reached not only skin but also lumbar vertebrae (80% of the surface dose at the top of the lumbar vertebrae)\(^\text{[23]}\). Adnexal tumors of the skin, seen in rats\(^\text{[22,24]}\), were not found in our examination. Albert et al. reported that mouse hair-follicle cells are more sensitive to radiation than those of the rat, therefore tumors of this origin are rare in mice\(^\text{[25]}\). None of these tumors were found in the non-irradiated control mice. No predominance of a specific type of tumor was found in each group, except for the slight predominance of bone tumors in the 2.5 and 3.5 Gy groups\(^\text{[14]}\).

Figure 4. Histological types of tumors induced by repeated beta-irradiation. a. squamous cell carcinoma; b. basal cell carcinoma; c. fibrosarcoma; d. osteosarcoma. Tumors were dehydrated using the common methodology after fixation with 10% formalin, then paraffin embedded, and stained with hematoxylin-eosin.

p53 MUTATIONS IN RADIATION-INDUCED TUMORS

In our examination\(^\text{[23]}\), mutations in the p53 gene of tumors induced by repeated irradiation were found in exons 4 to 8 (Figure 5, Table 2), the same distribution as in human cancers\(^\text{[27]}\). A frame shift mutation was
found in 3 deletions and 2 insertions. In tumors No. 4, 5 and 12, the mutated genes seemed to produce only 55% to 70% of the complete p53 protein, which protein is thought to have lost the nuclear localization signal (NLS) region. It is speculated that truncated p53 protein cannot migrate into the nucleus, resulting in the reduction of its ability to inhibit cellular transformation. Immunohistochemical staining showed that the p53 protein accumulated in all the tumors, except No. 12 (Figure 6).

All the base substitutions except one were in the conserved region. There were 4 substitutions in the CpG site, and 3 of these occurred in codon 122. This is the site at which spontaneous mutation occurs most frequently in human tumors. Codon 122 is thought to be the hot spot of mutation in the p53 gene in the laboratory mouse. We found 3 types of the p53 pseudogene in 5 species of mice, and all had the same base substitution in codon 122.

As for the spectrum of p53 mutations, no previous reports have described the high frequency of deletions, insertions and base substitutions in the p53 gene found in ionizing radiation-induced tumors. Most p53 mutations in experimental tumors induced by UV or chemicals are base substitutions, and most of the p53 mutations in human skin cancers also are base substitutions. Deletions have been reported in the p53 gene of lung cancers in uranium miners, which may be the result of long term exposure to ore dust. The mutations in the mouse p53 gene found in our study may be unique to tumors induced by the repeated irradiation used in our experimental regimen.

Our experimental system is unique in that irradiation is repeated over the entire life span of the animals. These conditions can be extrapolated to daily exposure with very low dose radiation, and they simulate environmental exposure to ionizing radiation.

Table 1. Number of tumors of different histological types induced by repeated radiation

Histological type	Total number of tumors
Squamous cell carcinoma	42
Basal cell carcinoma	12
Fibrosarcoma	46
Osteosarcoma	57

(Data from Ref. 26)

Figure 5. Site of mutations in the p53 cDNA of radiation-induced mouse tumors. Candidate DNA fragments for p53 mutation were selected by the SSCP method and directly sequenced. Deletions (1-24 base), base substitutions (4-8 base). Mutation sequences are shown in Table 2.

Table 2. Mutation sequences

Codon	Exon	Mutation type
0	1	8
1	2	123
2	3	456
3	4	789
4	5	012
5	6	345
6	7	678
7	8	890
8	9	901
9	10	0123
10	11	1234
11	12	2345
12	13	3456
13	14	4567

Threshold in tumor induced by radiation
Table 2. p53 mutations of mouse tumors induced by repeated radiation.

Type of p53 mutation	Sample number	Dose per exposure (Gy)	Tumor histology	Base(s) altered	IHC
Deletion	1	1.0	SCC	GCC CC	+
	2	1.0	SCC	T TC	+
	3	1.5	FS	C GCC ACA CCT CCA GCT GGG AGC CG	-
	4	1.5	FS	G	+
	5	2.5	FS	CAC AG	+
	6	3.0	OS	GT GCC GGC GCC A	+
	7*	3.0	SCC	T GGG AAC CTT CTG GGA CGG GAC AG	+
	8	3.5	FS	C TTA TCC GG	+
	9	4.5	FS	C AGC TTT GAG GTT	+
	10*	8.0	FS	TAC TCT CCT CCC CTC AAT AAG	+
	11	8.0	OS	T GGA AG	+
Insertion (repeated sequence)	12	1.0	SCC	C CTT	-
	13	3.0	FS	TC TG C C	+
	14	3.0	SCC	A CTG GAA G	+
Base substitution	15	1.0	SCC	ACG → ATG	+
	16	1.5	SCC	ACG → ATG	+
	17	1.5	FS	ACG → ATG	+
	18	2.5	OS	CGC → TTC	+
	19	3.0	FS	CTT → CCT	ND
	20	3.0	SCC	GCC → GAT	+

SCC: Squamous cell carcinoma, FS: Fibrosarcoma, OS: Osteosarcoma. IHC: Immunohistochemical analysis. CM-1 staining for p53. *: Splicing mutation. (Data from Ref. 26)

Figure 6. Immunostaining of tumor tissue with p53-antibody CM-1 (Ref. 44). a, Tumor No.13; b, Tumor No.20.
This review supplements previous reviews of our radiation carcinogenesis works45,46 with new p53 mutation data.

ACKNOWLEDGMENTS

The research reviewed in this article was performed in collaboration with Dr. H. Tanooka at the National Cancer Center Research Institute. I wish to thank him for the critical reading of this manuscript.

REFERENCES

1. Ullich, R. L. and Storer, J. B. (1979) Influence of gamma-irradiation on the development of neoplastic disease in mice. II. Solid tumors. Radiat. Res. 80: 317–324.
2. Upton, A. C. (1961) The dose-response relation in radiation-induced cancer. Cancer Res. 21: 717–729.
3. Ullich, R. L. and Storer, J. B. (1979) Influence of gamma-irradiation on the development of neoplastic disease in mice. I. Reticular tissue tumors. Radiat. Res. 80: 303–316.
4. Mole, R. H. (1979) Radiation-induced acute myeloid leukemia in the mouse: Experimental observation in vivo with implications for hypotheses about the basis of carcinogenesis. Leukemia Res. 10: 859–865.
5. Masin, J. R., Wambersie, A., Berber, G. B., Matteolin, G., Lambiet-Collier, M. and Gueulette, J. (1983) The effect of fractionated gamma irradiation on life shortening and disease incidence in BALB/c mice. Radiat. Res. 94: 359–373.
6. Ullich, R. L., Jernigan, M. C. and Adams, L. M. (1979) Induction of lung tumors in RFM mice after localized exposures to X rays and neutrons. Radiat. Res. 80: 464–473.
7. Hulse, E. V. and Mole, R. H. (1969) Skin tumor incidence in CBA mice given fractionated exposures to low energy beta particles. Br. J. Cancer 23: 452–463.
8. Burns, F. J. and Vanderlaan, M. (1977) Split-dose recovery for radiation-induced tumors in rat skin, Int. J. Radiat. Biol. 32: 135–144.
9. Burns, F. J., Albert, R. E., Sinclair, I. P. and Vanderlaan, M. (1975) The effect of a 24-hour fractionation interval on the induction of rat skin tumors by electron radiation. Radiat. Res. 62: 478–487.
10. Ullich, R. L. and Storer, J. B. (1979) Influence of gamma-irradiation on the development of neoplastic disease in mice. III. Dose rate effects. Radiat. Res. 80: 325–342.
11. Upton, A. C., Randolph, M. L. and Conklin, J. W. (1970) Late effects of fast neutrons and gamma rays in mice as influenced by the dose rate of irradiation: Induction of neoplasia. Radiat. Res. 41: 467–491.
12. Mole, R. H. and Major, I. R. (1983) Myeloid leukemia frequency after protracted exposure to ionizing radiation: Experimental confirmation of the flat dose-response found in ankylosing spondylitis after a single treatment course with X-rays. Leukemia Res. 7: 295–300.
13. Ootsuyama, A. and Tanooka, H. (1988) One hundred percent tumor induction in mouse skin after repeated beta irradiation in a limited dose range. Radiat. Res. 115: 398–494.
14. Ootsuyama, A. and Tanooka, H. (1988) Induction of osteosarcomas in mouse lumbar vertebrae by repeated external beta-irradiation. Cancer Res. 49: 1562–1564.
15. Ootsuyama, A. and Tanooka, H. (1993) Zero tumor incidence in mice after repeated lifetime exposures to 0.5 Gy of beta radiation. Radiat. Res. 134: 244–264.
16. Hecker, E. and Ripmann, F. (1990) Outline of a descriptive general theory of environmental chemical carcinogenesis—experimental threshold doses for tumor promoters. In “Mechanisms of Environmental Mutagenesis-carcinogenesis”, Ed. A. Kappas, pp. 167–173, Plenum, NY.
17. Fujiki, H., Mori, M. and Tanooka, H. (1982) Delayed induction of ornithine decarboxylase in mouse skin after irradiation with beta-rays. Cancer Lett. 15: 15–17.
18. Ootsuyama, A. and Tanooka, H. (1993) Effect of an inhibitor of tumor promotion, \(\alpha\)-difluoromethylornithine, on tumor induction by repeated beta irradiation in mice. Jpn. J. Cancer Res. 84: 34–36.

19. Blum, H. F., Kirby-Smith, J. S. and Grady, H. G. (1941) Quantitative induction of tumors in mice with ultra violet radiation. J. Natl. Cancer Inst. 2: 259–268.

20. DeGrujil, F. R., VanDerMeer, J. B. and VanDerLeun, J. C. (1983) Dose-time dependency of tumor formation by chronic UV exposure. Photochem. Photobiol. 37: 53–62.

21. Forbes, P. D., Blum, H. D. and Davies, R. E. (1981) Photocarcinogenesis in hairless mice: Dose-response and the influence of dose-delivery. Photochem. Photobiol. 34: 361–365.

22. Ootsuyama, A. and Tanooka, H. (1991) Threshold-like dose of local beta irradiation repeated through the life span of mice for induction of skin and bone tumors. Radiat. Res. 125: 98–101.

23. Albert, R. E., Newman, W. and Altshuler, B. (1961) The dose-response relationships of beta-ray-induced skin tumors in the rat. Radiat. Res. 15: 410–430.

24. Burns, F. J., Albert, R. E. and Heimbach, R. D. (1968) The RBE for skin tumors and hair follicle damage in the rat following irradiation with alpha particles and electrons. Radiat. Res. 36: 225–241.

25. Albert, R. E., Burns, F. J. and Bennett, P. (1972) Radiation-induced hair-follicle damage and tumor formation in mouse and rat skin. J. Natl. Cancer Inst. 49: 1131–1137.

26. Ootsuyama, A., Nagao, M., Makino, H., Ochiai, A., Yamauchi, Y. and Tanooka, H. (1994) Frequent p53 mutation in mouse tumors induced by repeated beta-irradiation. Mol. Carcinog. 11: 236–242.

27. Levine, A. J., Momand, J. and Finlay, C. A. (1989) The p53 tumor suppressor gene. Nature 342: 705–708.

28. Shaulsky, G., Goldfinger, N., Tosky, M. S., Levine, A. J. and Rotter, V. (1991) Nuclear localization is essential for the activity of p53 protein. Oncogene 6: 2055–2065.

29. Gannon, J. V. and Lane, D. P. (1991) Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature 349: 802–806.

30. Rideout, III, W. M., Coetzee, G. A., Olimi, A. F. and Jones, P. A. (1990) 5-methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249: 1228–1290.

31. Tanooka, H., Ootsuyama, A., Shiroishi, T. and Moriwaki, K. (1995) Distribution of the p53 pseudogene among mouse species and subspecies. Mammal. Genome 6: 360–362.

32. Ruggeri, B., DiRado, M., Zhang, S. Y., Baeuer, B., Goodrow, T. and Klein-Szanto, A. J. P. (1993) Benzo[a]pyrene-induced murine skin tumors exhibit frequent and characteristic G to T mutations in the p53 gene. Proc. Natl. Acad. Sci. USA 90: 1013–1017.

33. Ruggeri, B., Caamano, J., Goodrow, T. DiRado, M., Bianchi, A., Trono, C., Conti, C. J. and Klein-Szanto, A. J. P. (1991) Alterations of the p53 tumor suppressor gene during mouse skin tumor progression. Cancer Res. 51: 6615–6621.

34. Kress, S., Sutter, C., Strickland, P. T., Mukhtar, H., Schweizer, J. and Schwarz, M. (1992) Carcinogen-specific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin. Cancer Res. 52: 6400–6403.

35. Kanjilal, S., Pierceall, W. E., Cummings, K. K., Kripke, M. L. and Ananthaswamy, H. 1993. High frequency of p53 mutations in ultraviolet radiation-induced murine skin tumors: evidence for strand bias and tumor heterogeneity. Cancer Res. 53: 2961–2964.

36. Makino, H., Ishizuka, Y., Tsujimoto, A., Nakamura, T., Onda, M., Sugimura, T. and Nagao, M. (1992) Rat p53 gene mutations in primary Zymbal gland tumors induced by 2-amino-3-methylimidazo[4,5-f]quinoline, a food mutagen. Proc. Natl. Acad. Sci. USA 89: 4850–4854.

37. Halevy, O., Rodel, J., Peled, A. and Oren, M. (1991) Frequent p53 mutations in chemically induced murine fibrosarcoma. Oncogene 6: 1593–1600.

38. Brash, D. E., Rudolph, J. A., Simon, J. A., Lin, A. McKenna, G. J., Baden, H. P., Halperin A. J. and Ponten, J. (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 88: 10124–10128.

39. Sato, M., Nishigori, C., Zghal, M., Yagi, T. and Takebe, H. (1993) Ultraviolet-specific mutations in p53 gene in skin tumors in xeroderma pigmentosum patients. Cancer Res. 33: 2944–2946.
40. Rady, P., Scinicariello, F., Wagner, R. F. Jr. and Tyring, S. K. (1992) p53 mutations in basal cell carcinomas. Cancer Res. 52: 3804–3806.

41. Vähäkangas, K. H., Samet, J. M., Metcarf, R. A., Welsh, J. A., Bennett, W. P., Lane, D. P. and Harris, C. C. (1992) Mutations of p53 and ras genes in radon-associated lung cancer from uranium miners. Lancet 339: 576–580.

42. Hoel, D. G., Walburg, H. E. Jr. and Branch, B. (1972) Statistical analysis of survival experiments. J. Natl. Cancer Inst. 49: 361–372.

43. Orita, M., Suzuki, Y., Sekiya, T. and Hayashi, K. (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874–879.

44. Uchino, S., Noguchi, M. and Hirota, T. (1992) High incidence of nuclear accumulation of p53 protein in gastric cancer. Jpn. J. Clin. Oncol. 22: 225–231.

45. Tanooka, H. and Ootsuyama, A. (1991) Radiation carcinogenesis in mouse skin and its threshold-like response. J. Radiat. Res. Supple. 2: 195–201.

46. Tanooka, H. and Ootsuyama, A. (1993) Threshold-like dose response of mouse skin cancer induction by repeated beta irradiation and its relevance to radiation-induced human skin cancer. Recent Results Cancer Res. 128: 231–241.