AN EMPIRICAL STUDY OF EXAMPLE FORGETTING DURING DEEP NEURAL NETWORK LEARNING

Presented by: Qi Dang
2019.03.11
Questions

• Can we compress the dataset without compromising generalization accuracy?

• Can we use forgetting statistics to identify ”important” samples and detect outliers and examples with noisy labels?
Introduction

• Neural networks cannot perform continual learning
• Catastrophic forgetting[1]: forget previously learnt information when trained on new task (input distribution changing)

• In this paper: Investigate the forgetting process occurs in the same task

[1] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, and Others. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, pp. 201611835, 2017
Terms definition

• Forgetting events: A sample is classified correctly in time step t but misclassified in time step t+1
• Learning events: A sample is misclassified in time step t but classified correctly in time step t+1
• Unforgettable examples: samples are learnt at some point and experience no forgetting after
Settings for forgetable examples calculation

• Standard image classification (MNIST, permuted MNIST, CIFAR-10)
• A neural network optimised by SGD
• 5 random seeds for each dataset
Experiment procedures

Algorithm 1 Computing forgetting statistics.

initialize prev_acc_i = 0, i \in \mathcal{D}
initialize forgetting T[i] = 0, i \in \mathcal{D}

while not training done do
 B \sim \mathcal{D} # sample a minibatch
 for example i \in B do
 compute acc_i
 if prev_acc_i > acc_i then
 T[i] = T[i] + 1
 prev_acc_i = acc_i
 gradient update classifier on B
 return T
Number of forgetting events

Figure 1: Histograms of forgetting events on (from left to right) MNIST, permutedMNIST and CIFAR-10. Insets show the zoomed-in y-axis.

- Number of forgetting events=0 means unforgettable
- Unforgettable samples across 5 seeds: 91.7%(MNIST), 75.3%(permuted MNIST), 31.3%(CIFAR-10)
Stablility across seeds

- They compute the number of forgetting events per example for 10 different random seeds. The average Pearson correlation is 89.2%
- When split the 10 seeds to 2 group of 5, cumulated number of forgetting events within those two sets shows a high correlation of 97.6%
Stablility across seeds

Figure 14: 95% confidence interval on forgetting events averaged over 5 seeds.
Forgetting by chance

• compute the forgetting events of a classifier obtained by randomizing the update steps

?

1. Before the beginning of training, clone the “base” classifier into a new “clone” classifier with the same random weights.

2. At each training step, shuffle the gradients computed on the base classifier and apply those to the clone (the base classifier is still optimized the same way): this ensures that the statistics of the random updates match the statistics of the true gradients during learning.

3. Compute the forgetting events of the clone classifier on the training set exactly as is done with the base classifier.
First learning events

• How many times does a sample need to be presented to a model before it is learnt by the model learning?

Unforgettable examples are easier to learn
Missclassification margin

\[p(y_i|x_i; \theta) = \sigma(\beta(x_i)) \]

\[m = \beta_k - \arg \max_{k' \neq k} \beta_{k'} \]

- m: missclassification margin
- \(\beta \): logits of prediction
- \(\sigma \): sigmoid(softmax) activation function
- k: index of correct class

The Spearman rank correlation between an example’s number of forgetting events and its mean misclassification margin is -0.74

The examples that is easier to forget probably have larger missclassification margin (are classified worse)
Visual inspection
Detection of noisy examples

• The label of 20% of CIFAR-10 samples are changed
Continual learning setup

- (a) 10K examples are randomly sampled from CIFAR-10 and are divide to two groups (5k for each)
- (b) 5K examples are never forgotten, 5k examples are forgotten at least once
Removing unforgettable examples

- Left: remove the most unforgettable examples step by step
- Right: remove 5k forgettable examples
Analysis

• On separable data, a linear network will learn such a maximum margin classifier[1]

• Forgettable samples can be considered as support vectors (which are closer to decision boundary)

[1]Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The Implicit Bias of Gradient Descent on Separable Data.
Intrinsic dataset dimension

for a given architecture, the higher the intrinsic dataset dimension, the larger the number of support vectors, and the fewer the number of unforgettable examples.
Transferable forgetting event

• Do we have similar statistics if we reduce the train epoch?
• Do we have similar result if we use the statics from one model but test in another model?
Transferable forgetting event

ResNet18

WideResNet
Conclusions

• Within a task, some examples are prone to be forgotten, while others are consistently unforgettable.

• Forgetting statistics seem to be stable.

• Unforgettable examples are not that important as they can be removed from training set without hurting generalization.