An HDG Method for Time-dependent Drift-Diffusion Model of Semiconductor Devices

Gang Chen∗ Peter Monk† Yangwen Zhang‡

November 27, 2018

Abstract

We propose a hybridizable discontinuous Galerkin (HDG) finite element method to approximate the solution of the time dependent drift-diffusion problem. This system involves a nonlinear convection diffusion equation for the electron concentration \(u \) coupled to a linear Poisson problem for the electric potential \(\phi \). The non-linearity in this system is the product of the \(\nabla \phi \) with \(u \). An improper choice of a numerical scheme can reduce the convergence rate. To obtain optimal HDG error estimates for \(\phi \), \(u \) and their gradients, we utilize two different HDG schemes to discretize the nonlinear convection diffusion equation and the Poisson equation. We prove optimal order error estimates for the semidiscrete problem. We also present numerical experiments to support our theoretical results.

1 Introduction

Drift-diffusion equations play an important role in modeling the movement of charged particles particularly in semiconductor physics \cite{1,2,9,27,44,45,47,53}. Besides the applications to semiconductors, these kinds of PDEs have many applications in the simulation of batteries \cite{54,65}, charged particles in biology \cite{52,66} and physical chemistry \cite{29,42,43,63}.

We consider the following model time dependent drift-diffusion equation posed on a Lipschitz polyhedral domain \(\Omega \subset \mathbb{R}^d (d \geq 2) \): we seek to determine the unknown electron density \(u \) and the electric potential \(\phi \) that satisfy

\[
\begin{align*}
 u_t - \Delta u + \nabla \cdot (u \nabla \phi) &= 0 & \text{in } \Omega \times (0, T], \quad (1.1a) \\
 -\varepsilon \Delta \phi + u &= 0 & \text{in } \Omega \times (0, T], \quad (1.1b) \\
 u &= g_u & \text{on } \partial \Omega \times (0, T], \quad (1.1c) \\
 \phi &= g_\phi & \text{on } \partial \Omega \times (0, T], \quad (1.1d) \\
 u(\cdot, 0) &= u_0 & \text{in } \Omega, \quad (1.1e)
\end{align*}
\]

where \(\varepsilon \) is a constant and typically small in real applications. In our analysis, we assume \(\varepsilon = O(1) \) and have not analyzed the \(\varepsilon \) dependence of the coefficients. This will be considered in future work. We shall discuss the smoothness assumptions on \(g_u \), \(g_\phi \) and \(u_0 \) needed for our analysis later in the paper. Applications of the drift-diffusion model often involve more complicated versions of

∗School of Mathematics Sciences, University of Electronic Science and Technology of China, Chengdu, China (cglwdm@uestc.edu.cn).
†Department of Mathematics Science, University of Delaware, Newark, DE, USA (monk@udel.edu).
‡Department of Mathematics Science, University of Delaware, Newark, DE, USA (ywzhangf@udel.edu).
the above model, for example including additional particle transport equations (for example, for holes) and recombination terms. However the above system contains the principle difficulty from the point of view of proving convergence: the term $\nabla \cdot (u \nabla \phi)$.

Theoretical and numerical studies for this type of partial differential equation (PDE) have a long history. For the theoretical analysis of the drift-diffusion system; see [5, 6, 33, 34, 46, 56] and the references therein. Computational studies started in the 1960s [28, 38] and many discretization methods have been used for the drift-diffusion system in the past decades. For an extensive body of literature devoted to this subject we refer to, e.g., the finite difference method [30, 39, 50, 55], the finite volume method [3, 4, 11–13], the standard finite element method (FEM) [35, 52, 62], and mixed FEM [36, 40]. Furthermore, there are many new models in which the drift-diffusion equation coupled with other PDEs; such as Stokes [41], Navier-Stokes [61] and Darcy flow [31]. However these extensions are outside the scope of this paper.

The product of the gradient of the electric potential, $\nabla \phi$ with electron concentration u in (1.1a) can cause a reduction in the convergence rate of the solution if the numerical schemes for the two equations are not properly devised. In [62], they obtained an optimal convergence rate in H^1 norm but a suboptimal in L^2 norm by the standard FEM. To overcome the convergence order reduction, a new method was proposed to discretize the system (1.1); mixed FEM for Poisson equation (1.1b) and standard FEM for (1.1a). This scheme provides optimal error estimates for u and ϕ in both H^1 or $H(div)$ as appropriate as well as in the L^2 norm. Very recently, the authors in [36] obtained an optimal convergence rate by using mixed FEM for both (1.1a) and (1.1b).

In the drift-diffusion model, typically, the magnitude of $\nabla \phi$ is huge (see [8]). Therefore, it is natural to consider the discontinuous Galerkin (DG) method to discretize the system (1.1). In [51], a local DG (LDG) method was used to study a 1D drift-diffusion equation, they obtained an optimal convergence rate by using an important relationship between the gradient and interface jump of the numerical solution with the independent numerical solution of the gradient in the LDG methods; see [64, Lemma 2.4] and [51, Lemma 4.3]. However, to the best of our knowledge, the inequality in [64, Lemma 2.4] is not straightforward to extend to high dimensions.

Moreover, the number of degrees of freedom for the DG or LDG methods is much larger compared to standard FEM; this is the main drawback of DG methods. Hybridizable discontinuous Galerkin (HDG) methods were originally proposed in [24] to remedy this issue. The global system of HDG methods only involve the degrees of freedom on the boundary face of the element. Therefore, HDG methods have a significantly smaller number of degrees of freedom in the global system compared to DG methods, LDG methods or mixed FEM. Moreover, HDG methods keep the advantages of DG methods, which are suitable for the drift term if $\nabla \phi$ is large. For more information of the HDG methods for convection diffusion problems; see, e.g., [16, 18, 32, 59].

There are many different HDG schemes, see for example [19, 24, 48]. Among all of these methods, two are most popular, following standard terminology we call them are HDG k and HDG(A) in the rest of the paper. The HDG k method uses polynomials of degree k to approximate the solution, the flux, and the trace on the boundary face together with a positive stabilization parameter is chosen to be $O(1)$. The HDG(A) method uses polynomial degree $k + 1$ to approximate the solution, polynomial degree k to approximate the flux and uses the so called Lehrenfeld-Schöberl stabilization function, see [48, Remark 1.2.4]. These two methods were used to study the Poisson equation in [26, 49, 57], the linear elasticity [21, 58], the convection diffusion equation in [17, 18, 59], the Stokes equation in [25, 37] and the Navier-Stokes equation in [10, 60].

The goal of this paper is to design an HDG scheme by the appropriate choice of HDG spaces such that the overall scheme is optimally convergent and to prove semi-discrete optimal convergence rates in d spatial dimensions ($d = 2, 3$). The result is a new HDG scheme for the drift-diffusion system with attractive convergence properties. We shall assume that a suitably regular solution of
the drift-diffusion system exists. For existence theory, see for example the book of Markowich [53].

To develop our HDG method, we write the drift-diffusion system as a first order system by introducing new variable \(\mathbf{q} \) and \(\mathbf{p} \) such that \(\mathbf{q} + \nabla u = 0, \mathbf{p} + \nabla \phi = 0 \). Then (1.1), becomes the problem of finding \((u, \mathbf{q}, \phi, \mathbf{p}) \) such that

\[
\begin{align*}
\mathbf{q} + \nabla u &= 0 \quad &\text{in } \Omega \times (0, T], \\
\mathbf{p} + \nabla \phi &= 0 \quad &\text{in } \Omega \times (0, T], \\
u_t + \nabla \cdot \mathbf{q} - \nabla \cdot (\mathbf{p} u) &= 0 \quad &\text{in } \Omega \times (0, T], \\
\nabla \cdot \mathbf{p} + u &= 0 \quad &\text{in } \Omega \times (0, T], \\
u &= g_u \quad &\text{on } \partial \Omega \times (0, T], \\
\phi &= g_\phi \quad &\text{on } \partial \Omega \times (0, T], \\
u(\cdot, 0) &= u_0 \quad &\text{in } \Omega.
\end{align*}
\]

We can now introduce our HDG formulation by first defining the mesh. Let \(\mathcal{T}_h \) denote a collection of disjoint simplexes \(K \) that partition \(\Omega \) and let \(\partial \mathcal{T}_h \) be the set \(\{ \partial K : K \in \mathcal{T}_h \} \). Here \(h \) denotes the maximum diameter of the simplices in \(\mathcal{T}_h \). Since we will need to use an inverse inequality in our analysis, we assume that the mesh is shape regular and quasi-uniform.

We denote by \(\mathcal{E}_h \) the set of all faces in the mesh. Then we define the set of interior and boundary faces (or edges when \(d = 2 \)) denoted \(\mathcal{E}_h^i \) and \(\mathcal{E}_h^b \) respectively. For each edge \(e \) we say \(e \in \mathcal{E}_h^i \) is an interior face if the Lebesgue measure of \(e = \partial K^+ \cap \partial K^- \) for some pair of elements \(K^+, K^- \in \mathcal{T}_h \) is non-zero, similarly, \(e \in \mathcal{E}_h^b \) is a boundary face if the Lebesgue measure of \(e = \partial K \cap \partial \Omega \) is non-zero.

We set

\[
(w, v)_{\mathcal{T}_h} := \sum_{K \in \mathcal{T}_h} (w, v)_K, \quad \langle \zeta, \rho \rangle_{\partial \mathcal{T}_h} := \sum_{K \in \partial \mathcal{T}_h} \langle \zeta, \rho \rangle_{\partial K},
\]

where \((\cdot, \cdot)_K \) denotes the \(L^2(K) \) inner product and \(\langle \cdot, \cdot \rangle_{\partial K} \) denotes the \(L^2 \) inner product on \(\partial K \).

The HDG method uses discontinuous finite element spaces \(Q_h, V_h, V_{h}, S_h, \Psi_h, \hat{\Psi}_h \) that we shall discuss shortly. Assuming these are given, the approximate solution of the mixed weak problem (1.2) by the HDG method seeks \((q_h, u_h, \hat{u}_h) \in Q_h \times V_h \times \hat{V}_h(g_u) \) and \((p_h, \phi_h, \hat{\phi}_h) \in S_h \times \Psi_h \times \hat{\Psi}_h(g_\phi) \) satisfying

\[
\begin{align*}
(q_h, r_1)_{\mathcal{T}_h} - (u_h, \nabla \cdot r_1)_{\mathcal{T}_h} + \langle \hat{u}_h, r_1 \cdot n \rangle_{\partial \mathcal{T}_h} &= 0, \\
(p_h, r_2)_{\mathcal{T}_h} - (\phi_h, \nabla \cdot r_2)_{\mathcal{T}_h} + \langle \hat{\phi}_h, r_2 \cdot n \rangle_{\partial \mathcal{T}_h} &= 0,
\end{align*}
\]

for all \((r_1, r_2) \in Q_h \times S_h \), together with

\[
\begin{align*}
(u_{ht}, w_1)_{\mathcal{T}_h} - (q_h, \nabla w_1)_{\mathcal{T}_h} + \langle \hat{q}_h \cdot n, w_1 \rangle_{\partial \mathcal{T}_h} + (p_h, u_h, \nabla w_1)_{\mathcal{T}_h} \\
- \langle \hat{p}_h \cdot n \hat{u}_h, w_1 \rangle_{\partial \mathcal{T}_h} &= 0, \\
- (p_h, \nabla w_2)_{\mathcal{T}_h} + \langle \hat{p}_h \cdot n, w_2 \rangle_{\partial \mathcal{T}_h} + (u_h, w_2)_{\mathcal{T}_h} &= 0
\end{align*}
\]

for all \((w_1, w_2) \in V_h \times \Psi_h \). The boundary fluxes must satisfy

\[
\begin{align*}
\langle \hat{q}_h \cdot n, \mu_1 \rangle_{\partial \mathcal{T}_h \setminus \partial \Omega} &= 0, \\
\langle \hat{p}_h \cdot n, \mu_2 \rangle_{\partial \mathcal{T}_h \setminus \partial \Omega} &= 0,
\end{align*}
\]

for all \((\mu_1, \mu_2) \in \hat{V}_h(0) \times \hat{\Psi}_h(0) \). The numerical fluxes \(\hat{q}_h \) and \(\hat{p}_h \) will be specified later.
As in \cite{10,51}, we shall need the following energy estimate

\begin{align}
\| \nabla u_h \|_{\mathcal{T}_h} + \| h_K^{-1/2} (u_h - \hat{u}_h) \|_{\mathcal{D}_{\mathcal{T}_h}}^2 \\
\leq C \left(\| q_h \|_{\mathcal{T}_h}^2 + \| h_K^{-1/2} (\Pi^0_k u_h - \hat{u}_h) \|_{\mathcal{D}_{\mathcal{T}_h}}^2 \right),
\end{align}

where \(\Pi^0_k \) is a \(L^2 \) projection defined in (\ref{1.6}). Inequality (\ref{1.4}) cannot hold for the HDG\(_k\) method unless we take the stabilization function to be \(h_K^{-1} \). However, in this case we only have a suboptimal convergence rate for the flux \(q \). Hence we need to use the HDG(A) method to approximate the equation (\ref{1.1a}), i.e., we choose

\begin{align}
Q_h := \{ v_h \in [L^2(\Omega)]^d : v_h|_K \in [\mathcal{P}^k(K)]^d, \forall K \in \mathcal{T}_h \}, \\
V_h := \{ v_h \in L^2(\Omega) : v_h|_K \in \mathcal{P}^{k+1}(K), \forall K \in \mathcal{T}_h \}, \\
\hat{V}_h(g) := \{ \hat{v}_h \in L^2(\mathcal{E}_h) : \hat{v}_h|_E \in \mathcal{P}^k(\mathcal{E}_h), \forall E \in \mathcal{E}_h, \hat{v}_h|_{\mathcal{E}_h} = \Pi^0_k g \},
\end{align}

where \(\mathcal{P}^k(K) \) denotes the set of polynomials of degree at most \(k \) on the element \(K \) (similarly \(\mathcal{P}^k(\mathcal{E}_h) \) denotes the set of polynomials of degree at most \(k \) on the faces in the mesh). Moreover, the numerical trace of the flux on \(\partial \mathcal{T}_h \) is defined as

\begin{align}
\hat{q}_h \cdot n = q_h \cdot n + h_K^{-1} (\Pi^0_k u_h - \hat{u}_h),
\end{align}

where \(\Pi^0_k \) denotes \(L^2 \) projection onto \(\mathcal{P}^k(\mathcal{E}_h) \) which can be done face by face.

To avoid a reduction in the convergence rate for the solution \(u_h \), the polynomial degree of the space \(V_h \) for \(u_h \) and the space \(S_h \) for \(p_h \) need to be the same, i.e.,

\begin{align}
S_h := \{ v_h \in [L^2(\Omega)]^d : v_h|_K \in [\mathcal{P}^{k+1}(K)]^d, \forall K \in \mathcal{T}_h \}.
\end{align}

If we choose the HDG(A) method to discretize (\ref{1.1b}) we would need to use polynomials of degree \(k + 2 \) to approximate \(\phi \), but in this case, we get a suboptimal convergence rate for \(\phi \). Therefore, we use HDG\(_{k+1}\) to discretize (\ref{1.1b}) and so choose

\begin{align}
\Psi_h := \{ v_h \in L^2(\Omega) : v_h|_K \in \mathcal{P}^{k+1}(K), \forall K \in \mathcal{T}_h \}, \\
\hat{\Psi}_h(g) := \{ \hat{v}_h \in L^2(\mathcal{E}_h) : \hat{v}_h|_E \in \mathcal{P}^{k+1}(\mathcal{E}_h), \forall E \in \mathcal{E}_h, \hat{v}_h|_{\mathcal{E}_h} = \Pi^0_{k+1} g \},
\end{align}

and the numerical trace of the flux on \(\partial \mathcal{T}_h \) is defined as

\begin{align}
\hat{p}_h \cdot n = p_h \cdot n + \tau (\phi_h - \hat{\phi}_h),
\end{align}

where \(\tau \) is a positive \(O(1) \) function and the initial condition \(u_h(0) \) will be specifically in Section 3.1. If needed, \(\tau \) can be chosen to provide upwind stabilization as in \cite{59}.

The organization of the paper is as follows. In Section 2 we present our main results and some useful projections. Then the proof of the main results is given in Section 3. In Section 4 we provide some numerical experiments to support our theoretical results.

In this paper we denote by \(\| \cdot \|_{s,D} \) the \(H^s(D) \) Sobolev norm. As we have already done, bold face quantities denote vectors. If \(s \) is not present, the \(L^2 \) norm is assumed so that, for example, \(\| w \|_{\mathcal{T}_h} = \sqrt{\langle w, w \rangle_{\mathcal{T}_h}} \).

G. Chen, P. Monk, Y. Zhang
2 Main result and preliminary material

In this section, we first present the main result in Section 2.1 for the semidiscrete HDG formulation \([1.3]\). Next, we provide preliminary material in Section 2.2, which are required for the analysis.

We use the standard notation \(W^{m,p}(D)\) for Sobolev spaces on \(D\) with norm \(\|\cdot\|_{m,p,D}\) and seminorm \(|\cdot|_{m,p,D}\). We also write \(H^m(D)\) instead of \(W^{m,2}(D)\), and we omit the index \(p\) in the corresponding norms and seminorms. Moreover, we omit the index \(m\) when \(m = 0\).

Throughout, we assume the data and the solution of (1.1) are smooth enough for our analysis.

2.1 Main result

The proof of our main error estimate relies on the use of duality arguments and requires sufficient regularity for the solution of the corresponding problem. In particular:

Assumption 1. Let \(\mathbf{p} \in H^1((0,T),W_1^\infty(\Omega))\) denote a given vector function of position and time.

Let \(M > 0\) such that for all time \(t \in (0,T)\)

\[
M \geq \|\nabla \cdot \mathbf{p}(t)\|_{0,\infty} + 2\|\partial_t \mathbf{p}(t)\|_{0,\infty}.
\] (2.1)

If \(\mathbf{p} = 0\), set \(M = 0\). Then, for \(\Theta \in L^2(\Omega \times (0,T))\), let \((\Psi, \Phi)\) be the solution of

\[
\begin{align*}
\Psi + \nabla \Phi &= 0 & \text{in } \Omega, \\
M \Phi + \nabla \cdot \Psi + \mathbf{p} \cdot \nabla \Phi &= \Theta & \text{in } \Omega, \\
\Phi &= 0 & \text{on } \partial \Omega.
\end{align*}
\] (2.2)

We assume the solution \((\Psi, \Phi)\) has the following regularity

\[
\|\Psi\|_{H^1(\Omega)} + \|\Phi\|_{H^2(\Omega)} \leq C_{\text{reg}} \|\Theta\|_{T_h}.
\] (2.3)

It is well known that the above regularity holds if the domain is convex, which is usually the case in solar cell applications.

We can now state our main result for the HDG method.

Theorem 1. Assume that (2.3) hold and that the mesh is quasi-uniform. Let

\[
\begin{align*}
(q, u) &\in H^2((0,T), H^{k+1}(\Omega)) \times H^2((0,T), H^{k+2}(\Omega)), \\
(p, \phi) &\in H^2((0,T), H^{k+2}(\Omega)) \times H^2((0,T), H^{k+3}(\Omega))
\end{align*}
\]

solve (1.2) and let \((q_h, u_h, p_h, \phi_h) \in Q_h \times V_h \times S_h \times \Psi_h\) be the solution of the semi-discrete HDG equations (1.3). Then we have

\[
\|u - u_h\|_{T_h} + \|\phi - \phi_h\|_{T_h} + \|p - p_h\|_{T_h} \leq C h^{k+2}
\]

for all \(t \in [0,T]\), and

\[
\sqrt{\int_0^T \|q - q_h\|_{T_h}^2 dt} \leq C h^{k+1}.
\]

Remark 1. The error estimates in Theorem 1 are optimal for the variables \(q, u, p\) and \(\phi\). Since the global degrees of freedom are the numerical traces, then from the point of view of global degrees of freedom, the error estimates for the variable \(u\) is superconvergent, which, to our knowledge, is the first time this has been proved in the literature.
2.2 Preliminary material

We first introduce the HDG \(k \) projection operator \(\Pi_k(p, \phi) := (\Pi_V p, \Pi_W \phi) \) defined in [26], where \(\Pi_V p \) and \(\Pi_W \phi \) denote components of the projection of \(p \) and \(\phi \) into \(S_h \) and \(\Psi_h \), respectively. For each element \(K \in \mathcal{T}_h \), the projection is determined by the equations

\[
\begin{align*}
(\Pi_V p, r)_K &= (p, r)_K, & \forall r \in [P_k(K)]^d, \tag{2.4a} \\
(\Pi_W \phi, w)_K &= (\phi, w)_K, & \forall w \in P_k(K), \tag{2.4b} \\
(\Pi_V p \cdot n + \tau \Pi_W \phi, \mu)_e &= (p \cdot n + \tau \phi, \mu)_e, & \forall \mu \in P_{k+1}(e) \tag{2.4c}
\end{align*}
\]

for all faces \(e \) of the simplex \(K \). The approximation properties of the HDG \(k \) projection (2.4) are given in the following result from [26]:

Lemma 1. Suppose \(k \geq 0 \), \(\tau|_{\partial K} \) is nonnegative and \(\tau_{\max}^k := \max \tau|_{\partial K} > 0 \). Then the system (2.4) is uniquely solvable for \(\Pi_V p \) and \(\Pi_W \phi \). Furthermore, there is a constant \(C \) independent of \(K \) and \(\tau \) such that

\[
\begin{align*}
\| \Pi_V p - p \|_K &\leq Ch_{k+1}^{\ell_k+1} |p|_{\ell_k+1,K} + Ch_{k+1}^{\ell_k+1} \tau_{\max}^{e^*} |\phi|_{e^*,1,K}, \tag{2.5a} \\
\| \Pi_W \phi - \phi \|_K &\leq Ch_{k+1}^{\ell_k+1} |\phi|_{e^*,1,K} + Ch_{k+1}^{\ell_k+1} \tau_{\max}^{e^*} |\nabla \cdot p|_{\ell_k,K}, \tag{2.5b}
\end{align*}
\]

for \(\ell_k, \ell_k \) in \([0, k + 1] \). Here \(\tau_{\max}^k := \max \tau|_{\partial K}^{e^*} \), where \(e^* \) is a face of \(K \) at which \(\tau|_{\partial K} \) is maximum.

We next define the standard \(L^2 \) projections \(\Pi^0_k : [L^2(\Omega)]^d \to Q_h \), \(\Pi_{k+1}^0 : L^2(\Omega) \to V_h \), and \(\Pi_k^2 : L^2(\mathcal{E}_h) \to \tilde{V}_h \), which satisfy

\[
\begin{align*}
(\Pi_k^0 q, r_1)_K &= (q, r_1)_K, & \forall r_1 \in [P_k(K)]^d, \tag{2.6a} \\
(\Pi_{k+1}^0 u, w)_K &= (u, w)_K, & \forall w \in P_{k+1}(K), \tag{2.6b} \\
(\Pi_k^2 u, \mu_1)_e &= (u, \mu_1)_e, & \forall \mu_1 \in P_k(e). \tag{2.6c}
\end{align*}
\]

In the analysis, we use the following classical results [15, Lemma 3.3]:

\[
\begin{align*}
\| q - \Pi_k^0 q \|_{T_h} &\leq Ch_{k+1}^{k+1} |q|_{k+1,\Omega}, & \| u - \Pi_{k+1}^0 u \|_{\partial T_h} &\leq Ch_{k+2} u_{k+2,\Omega} \tag{2.7a}, \\
\| u - \Pi_{k+1}^0 u \|_{\partial T_h} &\leq Ch_{k+2}^{k+2} |u|_{k+2,\Omega}, & \| w \|_{\partial T_h} &\leq Ch_{k+2}^{k+2} |w|_{T_h}, \forall w \in V_h. \tag{2.7b}
\end{align*}
\]

To shorten lengthy equations, we rewrite the HDG formulation (1.3) in the following compact form: find \((q_h, u_h, \tilde{u}_h) \in Q_h \times V_h \times \tilde{V}_h(g_u)\) and \((p_h, \phi_h, \hat{\phi}_h) \in S_h \times \Psi_h \times \hat{\Psi}_h(g_{\phi})\) such that

\[
\begin{align*}
(\partial_{t} u_h, w_1)_{T_h} + \mathcal{A}(q_h, u_h, \tilde{u}_h; r_1, w_1, \mu_1) + \mathcal{B}(p_h, \phi_h, \hat{\phi}_h; u_h, \tilde{u}_h; w_1) &= 0, \tag{2.8a} \\
\mathcal{B}(p_h, \phi_h, \hat{\phi}_h; r_2, w_2, \mu_2) + (u_h, w_2)_T_h &= 0 \tag{2.8b}
\end{align*}
\]

for all \((r_1, r_2, w_1, w_2, \mu_1, \mu_2) \in Q_h \times S_h \times V_h \times \Psi_h \times \tilde{V}_h(0) \times \hat{\Psi}_h(0)\), where the HDG bilinear forms \(\mathcal{A}, \mathcal{B} \) and the trilinear form \(\mathcal{C} \) are defined by

\[
\begin{align*}
\mathcal{A}(q_h, u_h, \tilde{u}_h; r_1, w_1, \mu_1) &= (q_h, r_1)_T_h - (u_h, \nabla \cdot r_1)_T_h + (\tilde{u}_h, r_1 \cdot n)_{\partial T_h} + (\nabla \cdot q_h, w_1)_T_h \\
&\quad - (q_h \cdot n, \mu_1)_{\partial T_h} + (h_K^{-1}(\Pi_k^0 u_h - \tilde{u}_h), \Pi_k^2 w_1 - \mu_1)_{\partial T_h}, \tag{2.8c}
\end{align*}
\]
for all \((q_h, u_h, \tilde{u}_h, r_1, w_1, \mu_1) \in Q_h \times V_h \times \hat{V}_h(g_u) \times Q_h \times V_h \times \hat{V}_h(0),\)

\[
B(p_h, \phi_h, \hat{\phi}_h; r_2, w_2, \mu_2) = (p_h, r_2)_{\lambda h} - (\hat{\phi}_h \nabla \cdot r_2)_{\lambda h} + \langle \hat{\phi}_h, r_2 \cdot n \rangle_{\partial \Omega h} + \langle \nabla \cdot p_h, w_2 \rangle_{\lambda h} \tag{2.8d}
- \langle p_h \cdot n, \mu_2 \rangle_{\partial \Omega h} + \langle \tau (\phi_h - \hat{\phi}_h), w_2 - \mu_2 \rangle_{\partial \Omega h}
\]

for all \((p_h, \phi_h, \hat{\phi}_h, r_2, w_2, \mu_2) \in S_h \times \Psi_h \times \hat{\Psi}_h(g_o) \times S_h \times \Psi_h \times \hat{\Psi}_h(0),\)

\[
\mathcal{C}(p, \tilde{p}; u_h, \tilde{u}_h; w_1) = (p u_h, \nabla w_1)_{\lambda h} - \langle \tilde{p} \cdot n \tilde{u}_h, w_1 \rangle_{\partial \Omega h} \tag{2.8e}
\]

for all \((u_h, \tilde{u}_h, w_1, \mu_1) \in V_h \times \hat{V}_h(g_u) \times V_h \times \hat{V}_h(0).\)

Next, we present basic properties of the operators \(\mathcal{A}\) and \(B.\)

Lemma 2. For any \((q_h, u_h, \tilde{u}_h, r_1, w_1, \mu_1) \in Q_h \times V_h \times \hat{V}_h(0) \times Q_h \times V_h \times \hat{V}_h(0)\) and \((p_h, \phi_h, \hat{\phi}_h, r_2, w_2, \mu_2) \in S_h \times \Psi_h \times \hat{\Psi}_h(0) \times S_h \times \Psi_h \times \hat{\Psi}_h(0),\) we have

\[
\mathcal{A}(q_h, u_h, \tilde{u}_h; -r_1, w_1, \mu_1) = \mathcal{A}(r_1, w_1, \mu_1; -q_h, u_h, \tilde{u}_h),
\]

\[
B(p_h, \phi_h, \hat{\phi}_h; -r_2, w_2, \mu_2) = B(r_2, w_2, \mu_2; -p_h, \phi_h, \hat{\phi}_h),
\]

and

\[
\mathcal{A}(q_h, u_h, \tilde{u}_h; q_h, u_h, \tilde{u}_h) = \|q_h\|_{\lambda h}^2 + \|h_K^{-1/2}(\Pi_k^0 u_h - \tilde{u}_h)\|_{\partial \Omega h}^2,
\]

\[
B(p_h, \phi_h, \hat{\phi}_h; p_h, \phi_h, \hat{\phi}_h) = \|p_h\|_{\lambda h}^2 + \|\tau (\phi_h - \hat{\phi}_h)\|_{\partial \Omega h}^2.
\]

The proof of **Lemma 2** is straightforward, hence we omit it here.

The proof of the following two lemmas are found in [59] Lemma 3.2 and [7] Equation (1.3), respectively.

Lemma 3. If \((q_h, u_h, \tilde{u}_h)\) satisfies the equation (1.3a), then we have

\[
\|\nabla u_h\|_{\lambda h} + \|h_K^{-1/2}(u_h - \tilde{u}_h)\|_{\partial \Omega h} \leq C \left(\|q_h\|_{\lambda h} + \|h_K^{-1/2}(\Pi_k^0 u_h - \tilde{u}_h)\|_{\partial \Omega h} \right).
\]

Lemma 4 (Piecewise Poincaré-Friedrichs’ inequality). Let \(v_h \in H^1(\Omega_h),\) then we have

\[
\|v_h\|_{\lambda h}^2 \leq C \left(\|\nabla v_h\|_{\lambda h}^2 + \|v_h, 1\|_{\partial \Omega}^2 + \sum_{e \in \mathcal{E}_h^\partial} |e|^{d/(1-d)} \left(\int_e \|v_h\| ds \right)^2 \right),
\]

where \(|e|\) denotes the measure of \(e.\)

By **Lemma 4**, we immediately have the following lemma.

Lemma 5 (HDG Poincaré inequality). If \((v_h, \tilde{v}_h) \in V_h \times \hat{V}_h(0),\) then we have

\[
\|v_h\|_{\lambda h}^2 \leq C \left(\|\nabla v_h\|_{\lambda h}^2 + \|h_K^{-1/2}(\Pi_k^0 v_h - \tilde{v}_h)\|_{\partial \Omega h}^2 \right).
\]

Proof. By **Lemma 5**, \(\tilde{v}_h\) is zero on \(\partial \Omega\) and is single valued on interior faces. We have

\[
\|v_h\|_{\lambda h}^2 \leq C \left(\|\nabla v_h\|_{\lambda h}^2 + \|h_K^{-1/2}\|_{\lambda h} \right)
= C \left(\|\nabla v_h\|_{\lambda h}^2 + \|h_K^{-1/2}(v_h - \Pi_k^0 v_h + \Pi_k^0 v_h - \tilde{v}_h)\|_{\lambda h}^2 \right)
\leq C \left(\|\nabla v_h\|_{\lambda h}^2 + \|h_K^{-1/2}(v_h - \Pi_k^0 v_h)\|_{\partial \Omega h}^2 + \|h_K^{-1/2}(\Pi_k^0 v_h - \tilde{v}_h)\|_{\partial \Omega h}^2 \right)
\leq C \left(\|\nabla v_h\|_{\lambda h}^2 + \|h_K^{-1/2}(\Pi_k^0 v_h - \tilde{v}_h)\|_{\partial \Omega h}^2 \right).
\]

\[\square\]
3 Proof of Theorem 1

To prove Theorem 1, we follow a similar strategy to that in [14]. We first bound the error between the solution of an HDG elliptic projection defined in (3.1) and the solution of the system (1.1a). Then we bound the error between the solution of the HDG elliptic projection (3.1) and the HDG formulation (2.8a) and the error between the solution of the system (1.1b) and the solution of the HDG formulation (2.8b). A simple application of the triangle inequality then gives a bound on the error between the solution of the HDG formulation (2.8) and the system (1.1). First, we present the HDG elliptic projection.

3.1 HDG elliptic projection and basic estimates

For \(t \in [0, T] \), let \((q_{Ih}, u_{Ih}, \hat{u}_{Ih}) \in Q_h \times V_h \times \hat{V}_h(g_u) \) be the solution of

\[
M(u_{Ih}, w_1)_{T_h} + \mathcal{A}(q_{Ih}, u_{Ih}, \hat{u}_{Ih}; r_1, w_1, \mu_1) + \mathcal{C}(p, p; u_{Ih}, \hat{u}_{Ih}; w_1)
= (Mu - u_t, w_1)_{T_h}
\]

(3.1)

for all \((r_1, w_1, \mu_1) \in Q_h \times V_h \times \hat{V}_h(\partial_t g_u)\) where \(M \) is a given constant such that (2.1) holds.

Take the partial derivative of (3.1) with respect to \(t \), hence, \((\partial_t q_{Ih}, \partial_t u_{Ih}, \partial_t \hat{u}_{Ih}) \in Q_h \times V_h \times \hat{V}_h(\partial_t g_u)\) is the solution of

\[
M(\partial_t u_{Ih}, w_1)_{T_h} + \mathcal{A}(\partial_t q_{Ih}, \partial_t u_{Ih}, \partial_t \hat{u}_{Ih}; r_1, w_1, \mu_1)
+ \mathcal{C}(\partial_t p, \partial_t p; u_{Ih}, \hat{u}_{Ih}; w_1)
= (M\partial_t u - \partial_t u_t, w_1)_{T_h}
\]

(3.2)

for all \((r_1, w_1, \mu_1) \in Q_h \times V_h \times \hat{V}_h(\partial_t g_u(0))\).

We choose the initial condition \(u_{Ih}(0) = u_{Ih}(0) \) for the purposes of analysis. In fact, the initial condition \(u_{Ih}(0) \) can be chosen to be the \(L^2 \) projection of \(u_0 \), i.e., \(\Pi_k u_0 \).

The following result, Theorem 2, gives the error between the solution of an HDG elliptic projection (3.1) and the solution of the system (1.1a) and the proofs are given in Appendix A.

Theorem 2. For any \(t \in [0, T] \), if the elliptic regularity inequality (2.3) holds and \(h \) is small enough, then we have the following error estimates

\[
\|u - u_{Ih}\|_{T_h} \leq C h^{k+2} \|u\|_{k+2},
\]

(3.3a)

\[
\|q - q_{Ih}\|_{T_h} + \|h^{-1/2}(\Pi_k^\partial u_{Ih} - \hat{u}_{Ih})\|_{\partial T_h} \leq C h^{k+1} \|u\|_{k+2}.
\]

(3.3b)

In addition, we have

\[
\|\partial_t u - \partial_t u_{Ih}\|_{T_h} \leq C h^{k+2} \|\partial_t u\|_{k+2}.
\]

(3.3c)

3.2 Error equation between the HDG formulation (2.8) and the HDG elliptic projection (3.1)

To bound the error between the solution of the HDG elliptic projection (3.1) and the system (2.8a), and the error between the solution of the HDG formulation (2.8b) and the system (1.1b). We first derive the error equation summarized in the next lemma. To simplify notation, we define

\[
\zeta_h^q = q_{Ih} - q_h, \quad \zeta_h^u = u_{Ih} - u_h, \quad \zeta_h^\hat{u} = \hat{u}_{Ih} - \hat{u}_h,
\]

\[
\zeta_h^p = \Pi_V p - p_h, \quad \zeta_h^\phi = \Pi_W \phi - \phi_h, \quad \zeta_h^\hat{\phi} = \Pi_k^{\partial \phi} - \hat{\phi}_h.
\]
Lemma 6. For any \((r_1, w_1, \mu_1, r_2, w_2, \mu_2) \in Q_h \times V_h \times V_h(0) \times S_h \times \Psi_h \times \Psi_h(0),\) we have the following error equation

\[
(\partial_t \xi^u_h, w_1)_T + \mathcal{A}(\xi^q_h, \xi^u_h, \xi^\mu_h; r_1, w_1, \mu_1) - C(p, p; \xi^u_h, w_1) - C(p - p_h, p - \hat{p}_h; u_h, \hat{u}_h; w_1),
\]

(3.4a)

\[
\mathcal{B}(\xi^q_h, \xi^u_h, \xi^\mu_h; r_2, w_2, \mu_2) = (\Pi_V p - p, r_2)_T - (u - u_h, w_2)_T.
\]

(3.4b)

Proof. We first prove (3.4a). Subtracting equation (2.8a) from (3.1) and using the definition of \(\mathcal{A}\) and \(C\) we get

\[
M(u_{Ih}, w_1)_T + \mathcal{A}(\xi^q_h, \xi^u_h, \xi^\mu_h; r_1, w_1, \mu_1) - (\partial_t u_{Ih}, w_1)_T - \mathcal{C}(p, p; u_{Ih}, \hat{u}_{Ih}; w_1).
\]

This gives

\[
(\partial_t \xi^u_h, w_1)_T + \mathcal{A}(\xi^q_h, \xi^u_h, \xi^\mu_h; r_1, w_1, \mu_1) + \mathcal{C}(p, p; u_{Ih}, \hat{u}_{Ih}; w_1) - \mathcal{C}(p, p; u_h, \hat{u}_h; w_1)
\]

\[
= (\partial_t u_{Ih}, w_1)_T - (u, w_1)_T + M(u - u_{Ih}, w_1)_T.
\]

We note that the nonlinear operator \(\mathcal{C}\) is linear for each variable, hence we have

\[
\mathcal{C}(p, p; u_{Ih}, \hat{u}_{Ih}; w_1) - \mathcal{C}(p, p; u_h, \hat{u}_h; w_1)
\]

\[
= \mathcal{C}(p, p; u_{Ih}, \hat{u}_{Ih}; w_1) - \mathcal{C}(p, p; u_h, \hat{u}_h; w_1)
\]

\[
+ \mathcal{C}(p, p; u_h, \hat{u}_h; w_1) - \mathcal{C}(p, p; u_h, \hat{u}_h; w_1)
\]

\[
= \mathcal{C}(p, p; \xi^u_h, \xi^\mu_h; w_1) + \mathcal{C}(p - p_h, p - \hat{p}_h; u_h, \hat{u}_h; w_1).
\]

This implies

\[
(\partial_t \xi^u_h, w_1)_T + \mathcal{A}(\xi^q_h, \xi^u_h, \xi^\mu_h; r_1, w_1, \mu_1)
\]

\[
= (\partial_t u_{Ih}, w_1)_T + M(u - u_{Ih}, w_1)_T
\]

\[
- \mathcal{C}(p, p; \xi^u_h, \xi^\mu_h; w_1) - \mathcal{C}(p - p_h, p - \hat{p}_h; u_h, \hat{u}_h; w_1).
\]

Next, we prove (3.4b). By the definition of \(\mathcal{B}\) in (2.8d), we have

\[
\mathcal{B}(\Pi_V p, \Pi_W \phi, \Pi_{k+1}^\phi; r_2, w_2, \mu_2)
\]

\[
= (\Pi_V p, r_2)_T - (\Pi_W \phi, \nabla \cdot r_2)_T + (\Pi_{k+1}^\phi, r_2 \cdot n)_{\partial T_h}
\]

\[
+ (\nabla \cdot \Pi_V p, w_2)_T - (\Pi_V p \cdot n, \mu_2)_{\partial T_h}
\]

\[
+ (\tau (\Pi_W \phi - \Pi_{k+1}^\phi), w_2 - \mu_2)_{\partial T_h} - (p \cdot n, \mu_2)_{\partial T_h}.
\]

By the definition of \(\Pi_V\) and \(\Pi_W\) in (2.4) we get

\[
\mathcal{B}(\Pi_V p, \Pi_W \phi, \Pi_{k+1}^\phi; r_2, w_2, \mu_2)
\]

\[
= (\Pi_V p - p, r_2)_T + (p, r_2)_T - (\phi, \nabla \cdot r_2)_T + (\phi, r_2 \cdot n)_{\partial T_h}
\]

\[
+ (\nabla \cdot (\Pi_V p - p), w_2)_T + (\nabla \cdot p, w_2)_T + ((p - \Pi_V p) \cdot n, \mu_2)_{\partial T_h}
\]

\[
+ (\tau (\Pi_W \phi - \Pi_{k+1}^\phi), w_2 - \mu_2)_{\partial T_h}
\]

\[
= \mathcal{B}(p, \phi, \phi; r_2, w_2, \mu_2) + (\Pi_V p - p, r_2)_T + (\nabla \cdot (\Pi_V p - p), w_2)_T
\]

\[
+ ((p - \Pi_V p) \cdot n, \mu_2)_{\partial T_h} + (\tau (\Pi_W \phi - \Pi_{k+1}^\phi), w_2 - \mu_2)_{\partial T_h}.
\]
On the other hand, by Lemma 2 we have

\[(\nabla \cdot (\Pi_V p - p), w_2)_{\mathcal{T}_h} = (\Pi_V p - p, w_2)_{\mathcal{T}_h} - (\nabla w_2, \Pi_V p - p)_{\mathcal{T}_h}. \]

We have

\[\mathcal{B}(\Pi_V p, \Pi_W \phi, \Pi_{k+1} \phi; r_2, w_2, \mu_2) = \mathcal{B}(p, \phi; r_2, w_2, \mu_2) + (\Pi_V p - p, r_2)_{\mathcal{T}_h} \]

Using the analogue of Equation (2.8b) for the exact solution, and (2.4) we get

\[\mathcal{B}(\Pi_V p, \Pi_W \phi, \Pi_{k+1} \phi; r_2, w_2, \mu_2) = (\Pi_V p - p, r_2)_{\mathcal{T}_h} - (u, w_2)_{\mathcal{T}_h}. \]

Therefore, subtracting Equation (2.8b) we have the following error equation

\[\mathcal{B}(\xi_h^p, \xi_h^\phi, \xi_h^\phi; r_2, w_2, \mu_2) = (\Pi_V p - p, r_2)_{\mathcal{T}_h} - (u - u_h, w_2)_{\mathcal{T}_h}. \]

\[\square \]

3.2.1 \(L^2 \) Error estimates for \(p \) and \(\phi \).

Lemma 7. We have the following estimate

\[\| \xi_h^p \|^2_{\mathcal{T}_h} + \| \sqrt{\tau} (\Pi_{k+1}^h \xi_h^\phi - \xi_h^\phi) \|^2_{\partial \mathcal{T}_h} \leq \| u - u_h \|_{\mathcal{T}_h} \| \xi_h^\phi \|_{\mathcal{T}_h}. \]

Proof. We take \((r_2, w_2, \mu_2) = (\xi_h^p, \xi_h^\phi, \xi_h^\phi)\) in (3.4b) to get

\[\mathcal{B}(\xi_h^p, \xi_h^\phi, \xi_h^\phi, \xi_h^\phi) = -(u - u_h, \xi_h^\phi)_{\mathcal{T}_h} \leq \| u - u_h \|_{\mathcal{T}_h} \| \xi_h^\phi \|_{\mathcal{T}_h}. \]

On the other hand, by Lemma 2 we have

\[\| \xi_h^p \|^2_{\mathcal{T}_h} + \| \sqrt{\tau} (\xi_h^\phi - \xi_h^\phi) \|^2_{\partial \mathcal{T}_h} \leq \| u - u_h \|_{\mathcal{T}_h} \| \xi_h^\phi \|_{\mathcal{T}_h}. \]

\[\square \]

If we directly apply Lemma 5 to get the estimate of \(\| \xi_h^\phi \|_{\mathcal{T}_h} \), we will obtain only suboptimal convergence rates. To obtain optimal rates we use the dual problem introduced in equation (2.2) with \(p = 0 \) and \(M = 0 \) and assume the regularity estimate (2.3).

We follow the proof of Lemma 6 to get the following lemma.

Lemma 8. Let \((\Phi, \Psi)\) solve (2.2) with \(p = 0 \) and \(M = 0 \) having data \(\Theta \). Then for any \((r_2, w_2, \mu_2) \in \mathcal{S}_h \times \Psi_h \times \hat{\Psi}_h(0)\), we have the following equation

\[\mathcal{B}(\Pi_V \Phi, \Pi_W \Psi, \Pi_{k+1} \Psi; r_2, w_2, \mu_2) = (\Pi_V \Phi - \Phi, r_2)_{\mathcal{T}_h} + (\Theta, w_2)_{\mathcal{T}_h}. \]

Using this lemma we can now estimate \(\xi_h^\phi \) in terms of \(u - u_h \) and other consistency terms.

Lemma 9. For any \(t \in [0, T] \), if the elliptic regularity inequality (2.3) holds, then we have the following error estimates

\[\| \xi_h^\phi \|^2_{\mathcal{T}_h} \leq Ch^2 \| \Pi_V p - p \|^2_{\mathcal{T}_h} + C \| u - u_h \|^2_{\mathcal{T}_h}. \]
Proof. Consider the dual problem (2.2) with \(p = 0 \) and \(M = 0 \) and \(\Theta = \xi_h^\phi \). We take \((r_2, w_2, \mu_2) = (-\Pi_V \Phi, \Pi_W \Psi, \Pi_{k+1} \Psi)\) in Equation (3.4b) of Lemma 6 to get

\[
\mathcal{B}(\xi_h^p, \xi_h^\phi, \xi_h^\phi; -\Pi_V \Phi, \Pi_W \Psi, \Pi_{k+1} \Psi) = -(\Pi_V p - p, \Pi_V \Phi)_{T_h} - (u - u_h, \xi_h^\phi)_{T_h}. \tag{3.5}
\]

On the other hand, by Lemmas 2 and 8 we have

\[
\mathcal{B}(\xi_h^p, \xi_h^\phi, \xi_h^\phi; -\Pi_V \Phi, \Pi_W \Psi, \Pi_{k+1} \Psi) = \mathcal{B}(\Pi_V \Phi - \Phi, \xi_h^\phi)_{T_h} + \|\xi_h^\phi\|^2_{T_h}.
\tag{3.6}
\]

Comparing the above two equalities (3.5) and (3.6) gives

\[
\|\xi_h^\phi\|^2_{T_h} = \mathcal{B}(\Pi_V \Phi - \Phi, \xi_h^\phi)_{T_h} - (\Pi_V p - p, \Pi_V \Phi)_{T_h} - (u - u_h, \xi_h^\phi)_{T_h}
\]

\[
= (\Pi_V \Phi - \Phi, \xi_h^\phi)_{T_h} - (\Pi_V p - p, \Pi_V \Phi)_{T_h} + (\Pi_V p - p, \nabla \Psi)_{T_h} - (u - u_h, \xi_h^\phi)_{T_h}
\]

\[
= (\Pi_V \Phi - \Phi, \xi_h^\phi)_{T_h} - (\Pi_V p - p, \Pi_V \Phi - \Phi)_{T_h} + (\Pi_V p - p, \nabla (\Psi - \Pi_W \Psi))_{T_h} - (u - u_h, \xi_h^\phi)_{T_h}
\]

\[
\leq Ch^2\|\xi_h^\phi\|^2_{T_h} + Ch^2\|\Pi_V p - p\|^2_{T_h} + C\|u - u_h\|^2_{T_h} + \frac{1}{2}\|\xi_h^\phi\|^2_{T_h}.
\]

By Lemma 7 and the Cauchy-Schwarz inequality we obtain the result of the lemma:

\[
\|\xi_h^\phi\|^2_{T_h} \leq Ch^2\|\Pi_V p - p\|^2_{T_h} + C\|u - u_h\|^2_{T_h}.
\]

As a consequence of the above result, a simple application of the triangle inequality and Lemmas 7 and 9 give the following bounds of \(\|\phi - \phi_h\|_{T_h} \) and \(\|p - p_h\|_{T_h} \):

Lemma 10. Let \((p, \phi)\) and \((p_h, \phi_h)\) be the solution of (1.2) and (1.3), respectively. For any \(t \in [0, T] \), if the elliptic regularity inequality (2.3) holds, then we have the following error estimates

\[
\|\phi - \phi_h\|_{T_t} + \|p - p_h\|_{T_t} \leq C_1 h^{k+2} + C\|u - u_h\|_{T_t}
\]

where \(C_1 \) depends on the \(H^{k+1}(\Omega) \) norm of \(p \) at each time.

3.3 \(L^2 \) Error estimates for \(u \).

Having the result of Lemma 10 it remains to estimate \(u - u_h \). The fundamental estimate is contained in the next lemma.

Lemma 11. If \(h \) small enough, then there exists \(t_h^* \in [0, T] \) such that for all \(t \in [0, t_h^*] \) we have

\[
\|\xi_h^u\|^2_{T_h} + \int_0^t \left(\|\xi_h^u\|^2_{T_h} + hK^{-1/2} (\Pi_k \xi_h - \xi_h^\phi) \right) dt \leq Ch^{2k+4}.
\]
Proof. We take \((r_1, w_1, \mu_1) = (\xi^g_h, \xi^u_h, \xi^\theta_h)\) in (3.4a) to get

\[
\begin{align*}
(\partial_t \xi^u_h, \xi^u_h)_{\mathcal{T}_h} + & ||\xi^q_h||^2_{\mathcal{R}_h} + ||h_k^{-1/2}(\Pi^0_k \xi^u_h - \xi^\theta_h)||^2_{\partial \mathcal{T}_h} \\
= & (\partial_t (u_{Ih} - u), \xi^u_h)_{\mathcal{T}_h} + M (u - u_{Ih}, \xi^u_h)_{\mathcal{T}_h} \\
- & ((p - p_h) u_h, \nabla \xi^u_h)_{\mathcal{T}_h} + ((p - \hat{p}_h) \cdot \n u_h, \xi^u_h - \xi^\theta_h)_{\partial \mathcal{T}_h} \\
- & (p \xi^u_h, \nabla \xi^u_h)_{\mathcal{T}_h} + (p \cdot n \xi^\theta_h, \xi^u_h)_{\partial \mathcal{T}_h} \\
=: & R_1 + R_2 + R_3 + R_4 + R_5 + R_6.
\end{align*}
\]

We note that \(\xi^u_h(0) = u_h(0) - u_{Ih}(0) = 0.\) Let \(t = 0\) in (3.7) to get

\[
||\xi^q_h(0)||^2_{\mathcal{R}_h} + ||h_k^{-1/2}(\Pi^0_k \xi^u_h(0) - \xi^\theta_h(0))||^2_{\partial \mathcal{T}_h} = 0.
\]

This implies \(\xi^q_h(0) = \xi^u_h(0) = 0.\) Hence we have \(\hat{u}_h(0) = \hat{u}_{Ih}(0).\) By Theorem 2 we have

\[
\begin{align*}
||\Pi^0_{k+1} u(0) - u_h(0)||_{\mathcal{T}_h} = & ||\Pi^0_{k+1} u(0) - u_{Ih}(0)||_{\mathcal{T}_h} \leq Ch^{k+2}, \\
||\Pi^0_k u(0) - \hat{u}_h(0)||_{\partial \mathcal{T}_h} = & ||\Pi^0_k u(0) - \hat{u}_{Ih}(0)||_{\partial \mathcal{T}_h} \leq Ch^{k+3/2}.
\end{align*}
\]

For \(h\) small enough these estimates imply that

\[
||u(t) - \Pi^0_{k+1} u(t)||_{L^\infty(\Omega)} \leq 1/2 \quad \text{and} \quad ||u(t) - \Pi^0_k u(t)||_{L^\infty(\Omega)} \leq 1/2 \quad \text{for all} \quad t \in [0, T]. \tag{3.8}
\]

Let \(M = \max_{(t, x) \in [0, T] \times \Omega} ||u(t, x)||\), then the inverse inequality gives

\[
\begin{align*}
||u_h(0)||_{L^\infty(\Omega)} \leq Ch^{-d/2} ||\Pi^0_{k+1} u(0) - u_h(0)||_{\mathcal{T}_h} \\
+ & ||\Pi^0_{k+1} u(0) - u(0)||_{L^\infty(\Omega)} + ||u(0)||_{L^\infty(\Omega)} \\
\leq & Ch^{k+2-d/2} + M + 1/2, \\
||\hat{u}_h(0)||_{L^\infty(\Omega)} \leq & Ch^{1/2-d/2} ||\Pi^0_k u(0) - \hat{u}_h(0)||_{\mathcal{T}_h} \\
+ & ||\Pi^0_k u(0) - u(0)||_{L^\infty(\Omega)} + ||u(0)||_{L^\infty(\Omega)} \\
\leq & Ch^{k+2-d/2} + M + 1/2.
\end{align*}
\]

Also, since the error equation (3.4a) is continuous with respect to the time \(t\), then there exists \(t^*_h \in [0, T]\) such that for \(h\) small enough,

\[
||u_h||_{L^\infty(\Omega)} + ||\hat{u}_h||_{L^\infty(\Omega)} \leq 2M + 2. \tag{3.9}
\]

By the Cauchy-Schwarz inequality, Theorem 2 and Lemma 3 we get

\[
R_1 + R_2 \leq Ch^{k+2} ||\xi^u_h||_{\mathcal{T}_h} \\
\leq Ch^{2k+4} + \frac{1}{8} \left(||\xi^q_h||^2_{\mathcal{R}_h} + ||h_k^{-1/2}(\Pi^0_k \xi^u_h - \xi^\theta_h)||^2_{\partial \mathcal{T}_h}\right).
\]

For the term \(R_3\), by the Cauchy-Schwarz, Lemma 10, Lemma 5 and Lemma 3 we get

\[
R_3 \leq C||p - p_h||_{\mathcal{T}_h} ||\nabla \xi^u_h||_{\mathcal{T}_h} \\
\leq C||p - p_h||^2_{\mathcal{T}_h} + \frac{1}{C} ||\nabla \xi^u_h||^2_{\mathcal{T}_h} \\
\leq Ch^{2k+4} + C||u - u_h||^2_{\mathcal{T}_h} + \frac{1}{C} ||\nabla \xi^u_h||^2_{\mathcal{T}_h} \\
\leq Ch^{2k+4} + C||\xi^u_h||^2_{\mathcal{T}_h} + \frac{1}{8} \left(||\xi^q_h||^2_{\mathcal{R}_h} + ||h_k^{-1/2}(\Pi^0_k \xi^u_h - \xi^\theta_h)||^2_{\partial \mathcal{T}_h}\right).
\]
Also, applying Lemma 3 again to obtain

\[R_4 = \langle (p - \tilde{p}_h) \cdot n \tilde{u}_h, \xi_h^u - \xi_h^\tilde{u} \rangle_{\partial \Omega_h} \]

\[\leq C \| h^{1/2}_K (p - \tilde{p}_h) \|_{\partial \Omega_h} \| h^{1/2}_K (\xi_h^u - \xi_h^\tilde{u}) \|_{\partial \Omega_h} \]

\[\leq C h^{2k+4} + C \| q_h \|_{T_h}^2 + \frac{1}{8} \left(\| \xi_h^u \|_{T_h}^2 + \| h^{1/2}_K (\Pi_k^\partial \xi_h^u - \xi_h^\tilde{u}) \|_{\partial \Omega_h}^2 \right). \]

For the last two terms \(R_5 + R_6 \), integration by parts to get

\[R_5 + R_6 = - \langle p \xi_h^u, \nabla \xi_h^u \rangle_{T_h} + \langle p \cdot n \tilde{u}_h^\tilde{u}, \xi_h^u \rangle_{\partial \Omega_h} \]

\[\leq \frac{1}{2} \left(\| p \cdot n (\xi_h^u - \xi_h^\tilde{u}), \xi_h^u - \xi_h^\tilde{u} \|_{\partial \Omega_h} - (\nabla \cdot p) \xi_h^u, \xi_h^u \rangle_{T_h} \]

\[\leq \frac{1}{8} \| h^{1/2}_K (\Pi_k^\partial \xi_h^u - \xi_h^\tilde{u}) \|_{\partial \Omega_h}^2 + \| \nabla \cdot p \|_{L^\infty(\Omega)} \| \xi_h^u \|_{T_h}^2. \]

Sum the above estimates of \(\{ R_i \}_{i=1}^6 \) to get

\[(\partial_t \xi_h^u, \xi_h^u)_{T_h} + \| \xi_h^u \|_{T_h}^2 + \| h^{1/2}_K (\Pi_k^\partial \xi_h^u - \xi_h^\tilde{u}) \|_{\partial \Omega_h}^2 \leq C h^{2k+4} + C \| \xi_h^u \|_{T_h}^2. \] \hspace{1cm} (3.10)

Integrating both sides of (3.10) on \([0, t_h^*] \) we finally obtain

\[\| \xi_h^u(t_h^*) \|_{T_h}^2 + \int_0^{t_h^*} \left(\| \xi_h^u \|_{T_h}^2 + \| h^{1/2}_K (\Pi_k^\partial \xi_h^u - \xi_h^\tilde{u}) \|_{\partial \Omega_h}^2 \right) dt \]

\[\leq C h^{2k+4} + C \int_0^{t_h^*} \| \xi_h^u \|_{T_h}^2 dt. \]

The use of Gronwall’s inequality gives the desired result. \(\square \)

Lemma 12. For \(h \) small enough, the result in Lemma 11 holds on the whole time interval \([0, T] \).

Proof. Fix \(h^* > 0 \) so that Lemma 11 is true for all \(h \leq h^* \), and assume \(t_h^* \) is the largest value for which (3.9) is true for all \(h \leq h^* \). Define the set \(A = \{ h \in [0, h^*] : t_h^* \neq T \} \). If the result is not true, then \(A \) is nonempty, \(\inf \{ h : h \in A \} = 0 \), and also

\[\| u_h \|_{L^\infty(\Omega)} + \| \tilde{u}_h \|_{L^\infty(\xi_h)} = 2M + 2 \quad \text{for all } h \in A. \] \hspace{1cm} (3.11)

However, by the inverse inequality and since Lemma 11 holds, we have

\[\| u_h \|_{L^\infty(\Omega)} + \| \tilde{u}_h \|_{L^\infty(\xi_h)} \leq C h^{2-d/2} + 2M + 1 \quad \text{for all } h \in A. \]

Since \(C \) does not depend on \(h \), there exists \(h_1^* \leq h^* \) such that \(\| u_h \|_{L^\infty(\Omega)} + \| \tilde{u}_h \|_{L^\infty(\xi_h)} < 2M + 2 \) for all \(h \in A \) such that \(h \leq h_1^* \). This contradicts (3.11), and therefore \(t_h^* = T \) for all \(h \) small enough. \(\square \)

The above lemma, the triangle inequality, and Lemma 7 complete the proof of Theorem 1.

4 Numerical Results

In this section we present some numerical results in two spatial dimensions.
Example 1. We begin with an example with an exact solution in order to illustrate the convergence theory. The domain is the unit square $\Omega = [0, 1] \times [0, 1] \subset \mathbb{R}^2$ and homogeneous Dirichlet boundary conditions are applied on the boundary. The source terms f_1, f_2 and the initial condition are chosen so that $\varepsilon = 0.1$ and the exact solution $u = \cos(t) \sin(x) \cos(y)$ and $\phi = \sin(t) \cos(x) \sin(y)$. The second order backward differentiation formula (BDF2) is applied for the time discretization and for the space discretization we choose polynomial degrees $k = 0$ or $k = 1$ (used in the definition of the discrete spaces in Section 1). The time step is chosen to be $\Delta t = h$ when $k = 0$ and $\Delta t = h^{3/2}$ when $k = 1$. We report the errors at the final time $T = 1$. The observed convergence rates match our theory.

Next, we test an example without a convergence rate but that show the performance of the HDG method. We take $\varepsilon = 10^{-2}$ and the domain is also the unit square $\Omega = [0, 1] \times [0, 1] \subset \mathbb{R}^2$ and partition into 20000 triangles, i.e., $h = \sqrt{2}/100$. BDF2 is applied for time discretization and the time step $\Delta t = 1/1000$.

Example 2. This example has non-homogeneous Dirichlet data and demonstrates that our HDG scheme can handle this case. We take $\varepsilon = 10^{-2}$ and the source terms $f_1 = 0$ and

$$f_2 = \begin{cases} -0.8 & (0,0.5) \times (1/2,1), \\ 0.8 & \text{else}. \end{cases}$$

The Dirichlet boundary condition $g_u = 0.9, g_\phi = 1.1$ on $\{y = 0\}$, and $g_u = 0.1, g_\phi = -1.1$ on $\{y = 1, 0 \leq x \leq 0.25\}$. Elsewhere we impose homogeneous Neumann boundary conditions. Initial
An HDG Method for Time-dependent Drift-Diffusion Model of Semiconductor Devices

Figure 1: From left to right, from top to bottom are the contour plots of u_h at time: $T = 0.01, 0.4, 0.7, 1$ for Example 2.

condition $u_0 = (1 + f_2)/2$. A similar example was studied in [3] by a finite volume method. We plot the solutions u_h and ϕ_h at different final time T; see Figures 1 and 2.

5 Conclusion

In this work, we proposed an HDG method for the drift-diffusion equation. We proved optimal semi-discrete error estimates for all variables; moreover, from the point view of degrees of freedom, we obtained a superconvergent convergence rate for the variable u. As far as we are aware, this is the first such result in the literature.

Clearly it would be desirable to prove convergence without the need to assume an inverse assumption. Equally, it would be useful to prove fully discrete estimates using, for example BDF2 in time.

This is the first of a series of papers in which we develop efficient HDG methods for drift-diffusion equation, including devising HDG methods when ε approaches to zero. We have a great interest in the numerical solution of steady state drift-diffusion equation, and we will explore this problem in our future papers.

Acknowledgements

G. Chen is supported by National natural science Foundation of China (NSFC) under grant number 11801063 and China Postdoctoral Science Foundation under grant number 2018M633339. The
Figure 2: From left to right, from top to bottom are the contour plots of ϕ_h at time: $T = 0.01, 0.4, 0.7, 1$ for Example 2.
This implies that and completes the proof of the lemma.

Lemma 13. Let \((\Pi_k u, \Pi_k^0 u; r_1, w_1, \mu_1)\) be components of the solution of \((1.2)\), then we have

\[
M(\Pi_{k+1}^0 u, w_1)_{T_h} + \mathcal{A}(\Pi_k^0 q, \Pi_k^0 u, \Pi_k^0 u; r_1, w_1, \mu_1) + \mathcal{C}(p, p; \Pi_{k+1}^0 u, \Pi_k^0 u; w_1) \\
= (M u - u_t, w_1)_{T_h} + (\langle \Pi_k^0 q - q \cdot n, w_1 - \mu_1 \rangle_{\partial T_h} + (\nabla \cdot q, w_1)_{T_h} \\
- \langle p \cdot n (\Pi_k^0 u - u), w_1 - \mu_1 \rangle_{\partial T_h} + \langle h_K^{-1}(\Pi_k^0 u - u), \Pi_k^0 w_1 - \mu_1 \rangle_{\partial T_h}.
\]

holds for all \((r_1, w_1, \mu_1) \in Q_h \times V_h \times \hat{V}_h(0).

Proof. By the definition of \(\mathcal{A}\) and \(\mathcal{C}\) in \((2.8c)\) and \((2.8e)\) respectively, the projections and integrating by parts, we get

\[
\mathcal{A}(\Pi_k^0 q, \Pi_k^0 u, \Pi_k^0 u; r_1, w_1, \mu_1) \\
= \langle \langle \Pi_k^0 q - q \cdot n, w_1 - \mu_1 \rangle_{\partial T_h} + (\nabla \cdot q, w_1)_{T_h} \\
+ \langle h_K^{-1}(\Pi_k^0 u - u), \Pi_k^0 w_1 - \mu_1 \rangle_{\partial T_h},
\]

where we have also used \((1.2a)\). In addition,

\[
\mathcal{C}(p, p; \Pi_{k+1}^0 u, \Pi_k^0 u; w_1) = (p \Pi_{k+1}^0 u, \nabla w_1)_{T_h} - \langle p \cdot n \Pi_k^0 u, w_1 \rangle_{\partial T_h}.
\]

Hence, again using the projections, we have

\[
M(\Pi_{k+1}^0 u, w_1)_{T_h} + \mathcal{A}(\Pi_k^0 q, \Pi_k^0 u, \Pi_k^0 u; r_1, w_1, \mu_1) + \mathcal{C}(p, p; \Pi_{k+1}^0 u, \Pi_k^0 u; w_1) \\
= (M u - u_t, w_1)_{T_h} + (\langle \Pi_k^0 q - q \cdot n, w_1 - \mu_1 \rangle_{\partial T_h} + (\nabla \cdot q, w_1)_{T_h} \\
+ \langle h_K^{-1}(\Pi_k^0 u - u), \Pi_k^0 w_1 - \mu_1 \rangle_{\partial T_h} + (p \Pi_{k+1}^0 u, \nabla w_1)_{T_h} - \langle p \cdot n \Pi_k^0 u, w_1 \rangle_{\partial T_h}.
\]

Since, using \((1.2c)\), \(\nabla \cdot q = \nabla \cdot (p u) - u_t\), then we have

\[
(\nabla \cdot q, w_1)_{T_h} = -(u_t, w_1)_{T_h} + \langle p \cdot n u, w_1 \rangle_{\partial T_h} - (p u, \nabla u)_{T_h}.
\]

This implies that

\[
M(\Pi_{k+1}^0 u, w_1)_{T_h} + \mathcal{A}(\Pi_k^0 q, \Pi_k^0 u, \Pi_k^0 u; r_1, w_1, \mu_1) + \mathcal{C}(p, p; \Pi_{k+1}^0 u, \Pi_k^0 u; w_1) \\
= (M u - u_t, w_1)_{T_h} + (\langle \Pi_k^0 q - q \cdot n, w_1 - \mu_1 \rangle_{\partial T_h} + (p \Pi_{k+1}^0 u - u), \nabla w_1)_{T_h} \\
- \langle p \cdot n (\Pi_k^0 u - u), w_1 - \mu_1 \rangle_{\partial T_h} + \langle h_K^{-1}(\Pi_k^0 u - u), \Pi_k^0 w_1 - \mu_1 \rangle_{\partial T_h},
\]

and completes the proof of the lemma.
To simplify notation, we define
\[\eta_h^q := \Pi_k^q q - q_{Ih}, \quad \eta_h^u := \Pi_{k+1}^u u - u_{Ih}, \quad \eta_h^g := \Pi_k^g u - \hat{u}_{Ih}. \]
We then subtract the equation in Lemma 13 from (3.1) to get the following lemma.

Lemma 14. Under the conditions of Lemma 13, we have the error equation
\[
\begin{aligned}
M(\eta_h^q, \eta_h^u, \eta_h^g; r_1, w_1, \mu_1) + \mathcal{C}(\eta_h^u, \eta_h^g; \eta_h^u; \eta_h^u) &-
= ((\Pi_k^q q - q) \cdot \nabla w_1 + \frac{1}{2} (p(\Pi_{k+1}^u u - u), \nabla w_1), \eta_h^u; \eta_h^g) \\
&= (M - \frac{1}{2} \nabla \cdot p, \eta_h^u, \eta_h^g)_{\partial \Omega} + \frac{1}{2} \langle p \cdot n, \eta_h^u, \eta_h^g \rangle_{\partial \Omega}
\end{aligned}
\]
holds for all \((r_1, w_1, \mu_1) \in Q_h \times V_h \times \hat{V}_h(0)\).

A.2 Main error estimate

We can now prove (3.3b).

Lemma 15. For \(h\) small enough, we have the error estimates
\[
\|q - q_{Ih}\|_{\partial \Omega} + \|\Pi_{k+1}^u u - \hat{u}_{Ih}\|_{\partial \Omega} \leq Ch^{k+1} \|u\|_{k+2}.
\]

Proof. We take \((r_1, w_1, \mu_1) = (\eta_h^q, \eta_h^u, \eta_h^g)\) in (A.1). First
\[
\mathcal{A}(\eta_h^q, \eta_h^u, \eta_h^g; \eta_h^q, \eta_h^u, \eta_h^g) = \|\eta_h^q\|_{\partial \Omega}^2 + \|\Pi_{k+1}^u u - \hat{u}_{Ih}\|_{\partial \Omega}^2.
\]
Next
\[
M(\eta_h^q, \eta_h^u, \eta_h^g)_{\partial \Omega} + \mathcal{C}(\eta_h^u, \eta_h^g; \eta_h^u; \eta_h^u) \\
= (M - \frac{1}{2} \nabla \cdot p, \eta_h^u, \eta_h^g)_{\partial \Omega} + \frac{1}{2} \langle p \cdot n, \eta_h^u, \eta_h^g \rangle_{\partial \Omega}
\]
holds for all \((r_1, w_1, \mu_1) \in Q_h \times V_h \times \hat{V}_h(0)\).

For \(h\) small enough, we obtain
\[
M(\eta_h^q, \eta_h^u, \eta_h^g)_{\partial \Omega} + \mathcal{A}(\eta_h^q, \eta_h^u, \eta_h^g; \eta_h^q, \eta_h^u, \eta_h^g) + \mathcal{C}(\eta_h^u, \eta_h^g; \eta_h^u; \eta_h^u) \\
\geq \frac{1}{2} \left(M\|\eta_h^q\|_{\partial \Omega}^2 + \|\eta_h^q\|_{\partial \Omega}^2 + \|\Pi_{k+1}^u u - \hat{u}_{Ih}\|_{\partial \Omega}^2 \right).
\]

On the other hand,
\[
M(\eta_h^q, \eta_h^u, \eta_h^g)_{\partial \Omega} + \mathcal{A}(\eta_h^q, \eta_h^u, \eta_h^g; \eta_h^q, \eta_h^u, \eta_h^g) + \mathcal{C}(\eta_h^u, \eta_h^g; \eta_h^u; \eta_h^u) \\
= (\Pi_k^q q - q) \cdot \nabla \eta_h^u - \eta_h^g)_{\partial \Omega} + \langle p(\Pi_{k+1}^u u - u), \nabla \eta_h^u \rangle_{\partial \Omega}
\]
holds for all \((r_1, w_1, \mu_1) \in Q_h \times V_h \times \hat{V}_h(0)\).

\[
= R_1 + R_2 + R_3 + R_4.
\]
Next, we estimate \(\{R_i\}_{i=1}^4 \) term by term. For the first term \(R_1 \), Lemma 3 gives

\[
R_1 \leq Ch^{k+1}|q|_{k+1} h_K^{-1/2} (\eta_h^u - \eta_h^\tilde{u}) \| \partial \Omega_h,
\]
\[
\leq Ch^{k+1} |q|_{k+1} \left(\| \eta_h^p \|_{\Omega_h} + h_K^{-1/2} (\Pi_k^0 \eta_h^u - \eta_h^\tilde{u}) \| \partial \Omega_h \right).
\]

For the term \(R_2 \), by Lemma 5 and Lemma 3 to get

\[
R_2 \leq Ch^{k+1} |u|_{k+2} \| \nabla \eta_h^u \|_{\Omega_h},
\]
\[
\leq Ch^{k+1} |u|_{k+2} \left(\| \eta_h^p \|_{\Omega_h} + h_K^{-1/2} (\Pi_k^0 \eta_h^u - \eta_h^\tilde{u}) \| \partial \Omega_h \right).
\]

For the term \(R_3 \), we use Lemma 3 to get

\[
R_3 = \langle p \cdot n (\Pi_k^0 u - u), \eta_h^u - \eta_h^\tilde{u} \rangle \| \partial \Omega_h
\]
\[
\leq Ch^{k+1} |u|_{k+1} \| h_K^{-1/2} (\eta_h^u - \eta_h^\tilde{u}) \| \partial \Omega_h,
\]
\[
\leq Ch^{k+1} |u|_{k+1} \left(\| \eta_h^p \|_{\Omega_h} + h_K^{-1/2} (\Pi_k^0 \eta_h^u - \eta_h^\tilde{u}) \| \partial \Omega_h \right).
\]

Moreover, for the last term we have

\[
R_4 \leq Ch^{k+1} |u|_{k+1} (\Pi_k^0 \eta_h^u - \eta_h^\tilde{u}) \| \partial \Omega_h.
\]

Use the Cauchy-Schwarz inequality for the above estimates of \(\{R_i\}_{i=1}^4 \), we get

\[
\| \eta_h^q \|_{\Omega_h} + h_K^{-1/2} (\Pi_k^0 \eta_h^u - \eta_h^\tilde{u}) \| \partial \Omega_h \leq Ch^{k+1} |u|_{k+2}.
\]

Use of the triangle inequality and estimates \((2.7a)\) and \((2.7b)\) completes the estimate.

\section*{A.3 Duality arguments}

To obtain a \(L^2 \) norm estimate of \(\| \eta_h^u \|_{\Omega_h} \), we use the dual problem \((2.2)\) with corresponding a priori estimate \((2.3)\). To perform the error analysis, the main difficulty is to deal with the nonlinearity. We define a new form \(\mathcal{C}^* \) which is related to the trilinear form \(\mathcal{C} \):

\[
\mathcal{C}^*(p, p; u_h, \tilde{u}_h; w_1) = -(pu_h, \nabla w_1)_{\Omega_h} + \langle p \cdot n, w_1 \rangle_{\partial \Omega_h} - (\nabla \cdot pu_h, w_1)_{\Omega_h}.
\]

Next, we give a property of the operators \(\mathcal{C} \) and \(\mathcal{C}^* \). We omit the proof since it is very straightforward.

\begin{lemma}
For all \((u_h, \tilde{u}_h, w_1, \mu_1) \in V_h \times \tilde{V}_h(0) \times V_h \times \tilde{V}_h(0)\), we have

\[
\mathcal{C}(p, p; u_h, \tilde{u}_h; w_1) + \mathcal{C}^*(p, p; w_1, \mu_1; -u_h) = \langle p \cdot n (u_h - \tilde{u}_h), w_1 - \mu_1 \rangle_{\partial \Omega_h}.
\]

Similarly to Lemma 13, we have the following lemma.

\begin{lemma}
Assuming \(M \) is chosen sufficiently large, let \((\Phi, \Psi)\) solve \((2.2)\) then we have the equation

\[
M(\Pi_k^0 \Phi, w_1)_{\Omega_h} + \mathcal{A}(\Pi_k^0 \Psi, \Pi_k^0 \Phi, \Pi_k^0 \Phi; r_1, w_1, \mu_1) + \mathcal{C}^*(p, p; \Pi_k^0 \Phi, \Pi_k^0 \Phi; w_1)
\]

\[
= (\Theta, w_1) + \langle (\Pi_k^0 \Phi - \Phi) \cdot n, w_1 - \mu_1 \rangle_{\partial \Omega_h} + \langle h_K^{-1} (\Pi_k^0 \Phi - \Phi), \Pi_k^0 w_1 - \mu_1 \rangle_{\partial \Omega_h}
\]

\[
- \langle p (\Pi_k^0 \Phi - \Phi), \nabla w_1 \rangle_{\Omega_h} + \langle p \cdot n (\Pi_k^0 \Phi - \Phi), w_1 \rangle_{\partial \Omega_h}
\]

holds for all \((r_1, w_1, \mu_1) \in Q_h \times V_h \times \tilde{V}_h(0)\).
Proof. We take \((r_1, w_1, \mu_1) = (\eta_h^u, -\eta_h^w, -\eta_h^p)\) and \(\Theta = -\eta_h^w\) in Lemma 17 to get

\[
- M(\Pi_{k+1}^o, \Pi_{k+1}^u)_{\Omega_h} + \langle \Pi_{k+1}^u, \Pi_{k+1}^o, \Pi_{k+1}^o; \eta_h^q, -\eta_h^w, -\eta_h^p \rangle = -\langle p \cdot n(\Pi_{k+1}^o - \Pi_{k+1}^o), \Pi_{k+1}^o \rangle_{\Omega_h}.
\]

By Lemma 16 we have

\[
\mathcal{C}(p, p; \eta_h^u, \eta_h^w, \Pi_{k+1}^o) + \mathcal{C}^*(p, p; \Pi_{k+1}^o, \Pi_{k+1}^o; -\eta_h^u) = \langle p \cdot n(\Pi_{k+1}^o - \Pi_{k-1}^o), \Pi_{k+1}^o \rangle_{\Omega_h}.
\]

This implies

\[
- M(\Pi_{k+1}^o, \Pi_{k+1}^u)_{\Omega_h} + \langle \Pi_{k+1}^u, \Pi_{k+1}^o, \Pi_{k+1}^o; \eta_h^q, -\eta_h^w, -\eta_h^p \rangle + \mathcal{C}^*(p, p; \Pi_{k+1}^o, \Pi_{k+1}^o; -\eta_h^u) = \langle p \cdot n(\Pi_{k+1}^o - \Pi_{k-1}^o), \Pi_{k+1}^o \rangle_{\Omega_h}.
\]

On the other hand, we have

\[
- M(\Pi_{k+1}^o, \Pi_{k+1}^u)_{\Omega_h} + \langle \Pi_{k+1}^u, \Pi_{k+1}^o, \Pi_{k+1}^o; \eta_h^q, -\eta_h^w, -\eta_h^p \rangle + \mathcal{C}^*(p, p; \Pi_{k+1}^o, \Pi_{k+1}^o; -\eta_h^u) = \langle p \cdot n(\Pi_{k+1}^o - \Pi_{k-1}^o), \Pi_{k+1}^o \rangle_{\Omega_h}.
\]

Comparing the above two equations, we get

\[
\|\eta_h^w\|_{\Omega_h}^2 = \langle p \cdot n - q \cdot n, \Pi_{k+1}^o \rangle_{\Omega_h} - \langle h_{K-1}^o(\Pi_{k+1}^o - \Pi_{k-1}^o), \Pi_{k+1}^o \rangle_{\Omega_h} + \langle p \cdot n(\Pi_{k+1}^o - \Pi_{k-1}^o), \Pi_{k+1}^o \rangle_{\Omega_h}.
\]
We estimate $\{S_i\}_{i=1}^{10}$ as follows (we omit some of the details):

\[
\begin{align*}
S_1 &= -(\Pi_k^o q \cdot n - q \cdot n, \Phi - \Pi_k^o \Phi)_{\partial \Gamma_h} \leq Ch^{k+2} |q|_{k+1} \|\Phi\|_2, \\
S_2 &= -(h^{-1}_k (\Pi_k^o u - u), \Pi_k^o \Phi - \Phi)_{\partial \Gamma_h} \leq Ch^{k+2} |u|_{k+2} \|\Phi\|_2, \\
S_3 &= -(p (\Pi_k^o u - u), \nabla \Pi_k^o \Phi)_{\partial \Gamma_h} \leq Ch^{k+2} |u|_{k+2} \|\Phi\|_1, \\
S_4 &= \langle p \cdot n (\Pi_k^o u - u), \Pi_k^o \Phi - \Phi \rangle_{\partial \Gamma_h} \leq Ch^{k+2} |u|_{k+1} \|\Phi\|_2, \\
S_5 &\leq C \|h^{-1/2}_k (\eta^u_h - \eta^0_h)\|_{\partial \Gamma_h} |\Phi|_1 \leq Ch^{k+2} |u|_{k+2} \|\Phi\|_1, \\
S_6 &\leq Ch \|h^{-1/2}_k (\eta^u_h - \eta^0_h)\|_{\partial \Gamma_h} \|\Psi\|_1 \leq Ch^{k+2} \|\Psi\|_1, \\
S_7 &\leq ch \|h^{-1/2}_k (\eta^u_h - \eta^0_h)\|_{\partial \Gamma_h} \|\Phi\|_2 \leq Ch^{k+2} |u|_{k+2} \|\Phi\|_2, \\
S_8 &\leq Ch^2 \|\Phi\|_2 \|\nabla \eta^u_h\|_{\Gamma_h} \leq Ch^{k+2} \|\Phi\|_2 |u|_{k+2}, \\
S_9 &= -(p \cdot n (\Pi_k^o \Phi - \Phi), \eta^u_h - \eta^0_h)_{\partial \Gamma_h} \leq Ch^{k+2} |\Phi|_1 |u|_{k+2}, \\
S_{10} &\leq Ch^2 \|\Phi\|_2 \|\eta^u_h\|_{\Gamma_h}.
\end{align*}
\]

Summing the above estimates, we get

\[
\|\eta^u_h\|_{\Gamma_h} \leq Ch^{k+2} |u|_{k+2} \|\eta^h_h\|_{\Gamma_h} + Ch^2 \|\eta^u_h\|_{\Gamma_h}.
\]

Let h be small enough, we have

\[
\|\eta^h_h\|_{\Gamma_h} \leq Ch^{k+2} \|u\|_{k+2}.
\]

A simple application of the triangle inequality finishes the proof. \qed

References

[1] Henry P Baltes and Radivoje S Popovic. Integrated semiconductor magnetic field sensors. *Proceedings of the IEEE*, 74(8):1107–1132, 1986.

[2] Randolph E. Bank, Donald J. Rose, and Wolfgang Fichtner. Numerical methods for semiconductor device simulation. *SIAM J. Sci. Statist. Comput.*, 4(3):416–435, 1983.

[3] M. Bessemoulin-Chatard, C. Chainais-Hillairet, and M.-H. Vignal. Study of a finite volume scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit. *SIAM J. Numer. Anal.*, 52(4):1666–1691, 2014.

[4] Marianne Bessemoulin-Chatard. A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme. *Numer. Math.*, 121(4):637–670, 2012.

[5] Piotr Biler and Jean Dolbeault. Long time behavior of solutions of Nernst-Planck and Debye-Hückel drift-diffusion systems. *Ann. Henri Poincaré*, 1(3):461–472, 2000.

[6] Piotr Biler, Waldemar Hebisch, and Tadeusz Nadzieja. The Debye system: existence and large time behavior of solutions. *Nonlinear Anal.*, 23(9):1189–1209, 1994.

[7] Susanne C. Brenner. Poincaré-Friedrichs inequalities for piecewise H^1 functions. *SIAM J. Numer. Anal.*, 41(1):306–324, 2003.
[8] Franco Brezzi, Luisa Donatella Marini, and Paola Pietra. Two-dimensional exponential fitting and applications to drift-diffusion models. *SIAM J. Numer. Anal.*, 26(6):1342–1355, 1989.

[9] Josef F Burgler, Randolph E Bank, Wolfgang Fichtner, and R Kent Smith. A new discretization scheme for the semiconductor current continuity equations. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 8(5):479–489, 1989.

[10] Aycil Cesmelioglu, Bernardo Cockburn, and Weifeng Qiu. Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations. *Math. Comp.*, 86(306):1643–1670, 2017.

[11] Claire Chainais-Hillairet, Jian-Guo Liu, and Yue-Jun Peng. Finite volume scheme for multidimensional drift-diffusion equations and convergence analysis. *M2AN Math. Model. Numer. Anal.*, 37(2):319–338, 2003.

[12] Claire Chainais-Hillairet and Yue-Jun Peng. Convergence of a finite-volume scheme for the drift-diffusion equations in 1D. *IMA J. Numer. Anal.*, 23(1):81–108, 2003.

[13] Claire Chainais-Hillairet and Yue-Jun Peng. Finite volume approximation for degenerate drift-diffusion system in several space dimensions. *Math. Models Methods Appl. Sci.*, 14(3):461–481, 2004.

[14] G. Chen, B. Cockburn, J. R. Singler, and Y. Zhang. Superconvergent Interpolatory HDG methods for reaction diffusion equations. Part I: HDG-k methods. In preparation.

[15] Gang Chen, John Singler, and Yangwen Zhang. An HDG Method For Dirichlet Boundary Control of Convection Dominated Diffusion PDEs. Submitted to SIAM Journal on Numerical Analysis.

[16] Huangxin Chen, Jingzhi Li, and Weifeng Qiu. Robust *a posteriori* error estimates for HDG method for convection-diffusion equations. *IMA J. Numer. Anal.*, 36(1):437–462, 2016.

[17] Yanlai Chen and Bernardo Cockburn. Analysis of variable-degree HDG methods for convection-diffusion equations. Part I: general nonconforming meshes. *IMA J. Numer. Anal.*, 32(4):1267–1293, 2012.

[18] Yanlai Chen and Bernardo Cockburn. Analysis of variable-degree HDG methods for convection-diffusion equations. Part II: Semimatching nonconforming meshes. *Math. Comp.*, 83(285):87–111, 2014.

[19] Bernardo Cockburn and Guosheng Fu. Superconvergence by M-decompositions. Part II: Construction of two-dimensional finite elements. *ESAIM Math. Model. Numer. Anal.*, 51(1):165–186, 2017.

[20] Bernardo Cockburn and Guosheng Fu. Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements. *ESAIM Math. Model. Numer. Anal.*, 51(1):365–398, 2017.

[21] Bernardo Cockburn and Guosheng Fu. Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by M-decompositions. *IMA J. Numer. Anal.*, 38(2):566–604, 2018.
An HDG Method for Time-dependent Drift-Diffusion Model of Semiconductor Devices

[22] Bernardo Cockburn, Guosheng Fu, and Weifeng Qiu. A note on the devising of superconvergent HDG methods for Stokes flow by M-decompositions. *IMA J. Numer. Anal.*, 37(2):730–749, 2017.

[23] Bernardo Cockburn, Guosheng Fu, and Francisco Javier Sayas. Superconvergence by M-decompositions. Part I: General theory for HDG methods for diffusion. *Math. Comp.*, 86(306):1609–1641, 2017.

[24] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. *SIAM J. Numer. Anal.*, 47(2):1319–1365, 2009.

[25] Bernardo Cockburn, Jayadeep Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, and Francisco-Javier Sayas. Analysis of HDG methods for Stokes flow. *Math. Comp.*, 80(274):723–760, 2011.

[26] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Francisco-Javier Sayas. A projection-based error analysis of HDG methods. *Math. Comp.*, 79(271):1351–1367, 2010.

[27] Supriyo Datta. *Electronic transport in mesoscopic systems*. Cambridge university press, 1997.

[28] A De Mari. An accurate numerical steady-state one-dimensional solution of the pn junction. *Solid-State Electronics*, 11(1):33–58, 1968.

[29] Bob Eisenberg, Yunkyong Hyon, and Chun Liu. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. *The Journal of Chemical Physics*, 133(10):104104, 2010.

[30] Allen Flavell, Michael Machen, Bob Eisenberg, Julienne Kabre, Chun Liu, and Xiaofan Li. A conservative finite difference scheme for Poisson-Nernst-Planck equations. *Journal of Computational Electronics*, 13(1):235–249, 2014.

[31] Florian Frank and Peter Knabner. Convergence analysis of a BDF2/mixed finite element discretization of a Darcy-Nernst-Planck-Poisson system. *ESAIM Math. Model. Numer. Anal.*, 51(5):1883–1902, 2017.

[32] Guosheng Fu, Weifeng Qiu, and Wujun Zhang. An analysis of HDG methods for convection-dominated diffusion problems. *ESAIM Math. Model. Numer. Anal.*, 49(1):225–256, 2015.

[33] H. Gajewski. On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. *Z. Angew. Math. Mech.*, 65(2):101–108, 1985.

[34] H. Gajewski and K. Gröger. On the basic equations for carrier transport in semiconductors. *J. Math. Anal. Appl.*, 113(1):12–35, 1986.

[35] Huadong Gao and Dongdong He. Linearized conservative finite element methods for the Nernst-Planck-Poisson equations. *J. Sci. Comput.*, 72(3):1269–1289, 2017.

[36] Huadong Gao and Pengtao Sun. A Linearized Local Conservative Mixed Finite Element Method for Poisson-Nernst-Planck Equations. *Journal of Scientific Computing*, pages 1–25, 2018.
[37] W. Gong, W. Hu, M. Mateos, J. R. Singler, and Y. Zhang. An HDG Method for Tangential Dirichlet Boundary Control of Stokes Equations I: High Regularity. submitted to Numerische Mathematik.

[38] Hermann K Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor calculations. *IEEE Transactions on electron devices*, 11(10):455–465, 1964.

[39] Dongdong He and Kejia Pan. An energy preserving finite difference scheme for the Poisson-Nernst-Planck system. *Appl. Math. Comput.*, 287/288:214–223, 2016.

[40] Mingyan He and Pengtao Sun. Error analysis of mixed finite element method for Poisson-Nernst-Planck system. *Numer. Methods Partial Differential Equations*, 33(6):1924–1948, 2017.

[41] Mingyan He and Pengtao Sun. Mixed finite element analysis for the Poisson-Nernst-Planck/Stokes coupling. *J. Comput. Appl. Math.*, 341:61–79, 2018.

[42] Tzyy-Leng Horng, Tai-Chia Lin, Chun Liu, and Bob Eisenberg. Pnp equations with steric effects: a model of ion flow through channels. *The Journal of Physical Chemistry B*, 116(37):11422–11441, 2012.

[43] Chia-Yu Hsieh, YunKyong Hyon, Hijin Lee, Tai-Chia Lin, and Chun Liu. Transport of charged particles: entropy production and maximum dissipation principle. *Journal of Mathematical Analysis and Applications*, 422(1):309–336, 2015.

[44] Joseph W. Jerome. Consistency of semiconductor modeling: an existence/stability analysis for the stationary Van Roosbroeck system. *SIAM J. Appl. Math.*, 45(4):565–590, 1985.

[45] Joseph W. Jerome. *Analysis of charge transport*. Springer-Verlag, Berlin, 1996. A mathematical study of semiconductor devices.

[46] Joseph W. Jerome. *Analysis of charge transport*. Springer-Verlag, Berlin, 1996. A mathematical study of semiconductor devices.

[47] Joseph W Jerome. *Analysis of charge transport: a mathematical study of semiconductor devices*. Springer Science & Business Media, 2012.

[48] C. Lehrenfeld. Hybrid Discontinuous Galerkin methods for solving incompressible flow problems. 2010. PhD Thesis.

[49] Binjie Li and Xiaoping Xie. Analysis of a family of HDG methods for second order elliptic problems. *J. Comput. Appl. Math.*, 307:37–51, 2016.

[50] Hailiang Liu and Zhongming Wang. A free energy satisfying finite difference method for Poisson-Nernst-Planck equations. *J. Comput. Phys.*, 268:363–376, 2014.

[51] YunXian Liu and Chi-Wang Shu. Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices. *Sci. China Math.*, 59(1):115–140, 2016.

[52] Benzhuo Lu, Michael J. Holst, J. Andrew McCammon, and Y. C. Zhou. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: finite element solutions. *J. Comput. Phys.*, 229(19):6979–6994, 2010.

[53] Peter A. Markowich. *The stationary semiconductor device equations*. Computational Microelectronics. Springer-Verlag, Vienna, 1986.
[54] Da Meng, Bin Zheng, Guang Lin, and Maria L. Sushko. Numerical solution of 3D Poisson-Nernst-Planck equations coupled with classical density functional theory for modeling ion and electron transport in a confined environment. *Commun. Comput. Phys.*, 16(5):1298–1322, 2014.

[55] Mohammad Mirzadeh and Frédéric Gibou. A conservative discretization of the Poisson-Nernst-Planck equations on adaptive Cartesian grids. *J. Comput. Phys.*, 274:633–653, 2014.

[56] M. S. Mock. An initial value problem from semiconductor device theory. *SIAM J. Math. Anal.*, 5:597–612, 1974.

[57] Issei Oikawa. A hybridized discontinuous Galerkin method with reduced stabilization. *J. Sci. Comput.*, 65(1):327–340, 2015.

[58] Weifeng Qiu, Jiguang Shen, and Ke Shi. An HDG method for linear elasticity with strong symmetric stresses. *Math. Comp.*, 87(309):69–93, 2018.

[59] Weifeng Qiu and Ke Shi. An HDG method for convection diffusion equation. *J. Sci. Comput.*, 66(1):346–357, 2016.

[60] Weifeng Qiu and Ke Shi. A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes. *IMA J. Numer. Anal.*, 36(4):1943–1967, 2016.

[61] Markus Schmuck. Analysis of the Navier-Stokes-Nernst-Planck-Poisson system. *Math. Models Methods Appl. Sci.*, 19(6):993–1015, 2009.

[62] Yuzhou Sun, Pengtao Sun, Bin Zheng, and Guang Lin. Error analysis of finite element method for Poisson-Nernst-Planck equations. *J. Comput. Appl. Math.*, 301:28–43, 2016.

[63] Bin Tu, Minxin Chen, Yan Xie, Linbo Zhang, Bob Eisenberg, and Benzhuo Lu. A parallel finite element simulator for ion transport through three-dimensional ion channel systems. *Journal of computational chemistry*, 34(24):2065–2078, 2013.

[64] Haijin Wang, Chi-Wang Shu, and Qiang Zhang. Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. *SIAM J. Numer. Anal.*, 53(1):206–227, 2015.

[65] J Wu, Venkat Srinivasan, Jinchao Xu, and CY Wang. Newton-krylov-multigrid algorithms for battery simulation. *Journal of the electrochemical society*, 149(10):A1342–A1348, 2002.

[66] Shixin Xu, Minxin Chen, Sheereen Majd, Xingye Yue, and Chun Liu. Modeling and simulating asymmetrical conductance changes in gramicidin pores. *Molecular Based Mathematical Biology*, 2(1), 2014.