OPEN CONDITIONS FOR INFINITE MULTIPLICITY EIGENVALUES ON ELLIPTIC CURVES

BO-HAE IM AND MICHAEL LARSEN

Abstract. Let E be an elliptic curve defined over a number field K. We show that for each root of unity ζ, the set Σ_ζ of $\sigma \in \text{Gal}(\overline{K}/K)$ such that ζ is an eigenvalue of infinite multiplicity for σ acting on $E(\overline{K}) \otimes \mathbb{C}$ has non-empty interior.

For the eigenvalue -1, we can show more: for any σ in $\text{Gal}(\overline{K}/K)$, the multiplicity of the eigenvalue -1 is either 0 or ∞. It follows that Σ_{-1} is open.

1. Introduction

Let K be a number field, \overline{K} an algebraic closure of K, and $G_K := \text{Gal}(\overline{K}/K)$ the absolute Galois group of \overline{K} over K. Let E be an elliptic curve defined over K. There is a natural continuous action of G_K on the countably infinite-dimensional complex vector space $V_E := E(\overline{K}) \otimes \mathbb{C}$. The resulting representation decomposes as a direct sum of finite-dimensional irreducible representations in each of which G_K acts through a finite quotient group.

In particular, the action of every $\sigma \in G_K$ on V_E is diagonalizable, with all eigenvalues roots of unity. In [3], the first-named author showed that for generic σ, every root of unity appears as an eigenvalue of countably infinite multiplicity. This is true both in terms of measure and of Baire category. However, there exist σ for which the spectrum is quite different: trivially, the identity and complex conjugation elements; less trivially, examples which can be constructed for an arbitrary set S of primes, such that ζ is an eigenvalue if and only if every prime factor of its order lies in S.

Throughout this paper, we will write Σ_ζ for the subset of G_K consisting of elements σ acting as ζ on an infinite-dimensional subspace of V_E (E and K being fixed). For $\zeta = 1$, a good deal is known. In [2], it is proved that whenever 1 appears as an eigenvalue of σ at all, we have $\sigma \in \Sigma_1$. It follows that Σ_1 is open. By [4], when $K = \mathbb{Q}$, Σ_1 is all of G_K, and

Date: February 8, 2022.

2000 Mathematics Subject Classification. Primary 11G05.
quite possibly this may be true without restriction on K. We have already observed that $\Sigma_\zeta \neq G_K$ for $\zeta \neq 1$. We can still hope for positive answers to the following progression of increasingly optimistic questions:

Question 1.1. Does Σ_ζ have non-empty interior for all ζ?

Question 1.2. Is Σ_ζ open for all ζ?

Question 1.3. Do all eigenvalues of σ acting on V_E appear with infinite multiplicity?

In this paper, we give an affirmative answer to Question 1.1 for all ζ and an affirmative answer to all three questions for $\zeta = -1$.

The difficulty in proving such theorems is that placing σ in a basic open subset U of G_K amounts to specifying the action of σ on a finite Galois extension L of K. By the Mordell-Weil theorem, $E(L) \otimes \mathbb{C}$ cannot provide an infinite eigenspace for ζ. Thus, the intersection of eigenspaces

$$\bigcap_{\sigma \in U} V_E^{\sigma-\zeta}$$

is finite-dimensional. Thus, the behavior of a finite collection of rational points must be enough to guarantee the existence of infinitely many linearly independent points on the curve with specified σ-action.

We would like to thank L. Moret-Bailly and the referee for correcting versions of Proposition 3.1 appearing in earlier drafts of this manuscript.

2. **Multiplicity of the eigenvalue -1**

In this section, we answer Questions 1.2 and 1.3 for $\zeta = -1$.

Proposition 2.1. Let E/K be an elliptic curve over K. Suppose -1 is an eigenvalue of the action of $\sigma \in G_K$ on V_E. Then the -1-eigenspace of σ is infinite-dimensional.

Proof. As -1 is an eigenvalue of σ acting on V_E, it is an eigenvalue of σ acting on $E(K) \otimes \mathbb{Q}$. Clearing denominators, there exists a non-torsion $P \in E(K)$ such that $\sigma(P) + P \in E(K)_{\text{tor}}$. Replacing P by a suitable positive integral multiple, $\sigma(P) = -P$.

Let $y^2 = f(x)$ be a fixed Weierstrass equation of E/K. Let $P = (\alpha, \sqrt{f(\alpha)})$. As $\sigma(P) = -P$, we have $\alpha \in K'$ but $\sigma(\sqrt{f(\alpha)}) = -\sqrt{f(\alpha)}$ so $\sqrt{f(\alpha)} \notin K'$. Then, $\sqrt{f(\alpha)} \notin K(\alpha)$, since $K(\alpha) \subseteq K'$.

Note that $f(\alpha) \in K(\alpha) \subseteq \overline{K'}$. Let $c = f(\alpha) \in K(\alpha)$. We still have $\sigma \in \text{Gal}(\overline{K}/K(\alpha))$ and $\sigma(\sqrt{c}) = -\sqrt{c}$.

Let $E'/K(\alpha)$ denote the twist $y^2 = cf(x)$. Then, E' has a rational point $P' = (\alpha, f(\alpha))$ over $K(\alpha)$. The \overline{K}-isomorphism $\phi: E \rightarrow E'$ mapping $(x,y) \mapsto (x, \sqrt{f(x)y})$ sends P to P', so P' is of infinite order on E'. By (2, Theorem 5.3), $E'(\overline{K'})$ has infinite rank.

Let $\{P'_i = (x_i, \sqrt{cf(x_i)})\}_{i=1}^{\infty}$ be an infinite sequence of linearly independent points of E' generating the infinite dimensional eigenspace of 1 of σ in $E'(\overline{K}) \otimes \C$. Then, $\sigma(x_i) = x_i$ and $\sigma(\sqrt{f(x_i)}) = -\sqrt{f(x_i)}$ for all i, since $\sigma(\sqrt{c}) = -\sqrt{c}$.

Let $P_i = \phi^{-1}(P'_i) = (x_i, \sqrt{f(x_i)})$. These are points of the given elliptic curve E such that $\sigma(P_i) = -P_i$ for all i, since $\sigma(x_i) = x_i$ and $\sigma(\sqrt{f(x_i)}) = -\sqrt{f(x_i)}$.

The points P_i are linearly independent because the P'_i are so. Therefore, $\{P_i \otimes 1\}_{i=1}^{\infty}$ generates an infinite dimensional subspace of the -1-eigenspace of σ on V_E. This completes the proof. \hfill \square

Theorem 2.2. Let E/K be an elliptic curve over K. Then, Σ_{-1} is open.

Proof. We have already seen that if $\sigma \in \Sigma_{-1}$, we can choose a point $P \in E(\overline{K})$ of infinite order such that $\sigma(P) = -P$. By Proposition 2.1, $\tau(P) = -P$ implies $\tau \in \Sigma_{-1}$. It follows that Σ_{-1} contains the open neighborhood $\{\tau \in G_K \mid \tau(P) = \sigma(P)\}$ of σ. \hfill \square

Remark 2.3. The same argument shows that Questions 1.2 and 1.3 have an affirmative answer for $\zeta = \omega$ (resp. $\zeta = i$) when E has complex multiplication by $\Z[\omega]$ (resp. $\Z[i]$).

3. Interior Points

In this section, we show that for every root of unity ζ, the set Σ_{ζ} contains a non-empty open subset. We assume that the order of ζ is $n \geq 3$, the case $n = 1$ having been treated in [2], and the case $n = 2$ in Theorem 2.2.

Our strategy will be to find points $Q_i \in E(\overline{K})$ such that the σ-orbit of Q_i has length n. For each such point Q_i, we set

$$R_i := \sum_{j=0}^{n-1} \sigma^j(Q_i) \otimes \zeta^{-j}$$

and observe that R_i is a ζ-eigenvector of σ provided that it is non-zero.
We therefore begin with the following proposition:

Proposition 3.1. Let X be a Riemann surface of genus $g \geq 3$ with an automorphism σ of order $n \geq 3$. Then X contains a non-empty open set U such that $x \in U$ implies that

$$\sum_{i=0}^{n-1} [\sigma^i x] \otimes \zeta^{-i} \neq 0$$

in $\text{Pic} X \otimes \mathbb{C}$.

Proof. We can regard X as the group of complex points of a non-singular projective curve whose Picard scheme has complex locus $\text{Pic} X$. Then $\text{Pic} X \otimes \mathbb{Z}[\zeta]$ is the group of complex points of a group scheme whose identity component $\text{Pic}^0 X \otimes \mathbb{Z}[\zeta]$ is isomorphic to the $\phi(n)$th power of the Jacobian variety of this curve. The action of σ on X defines an action on $\text{Pic} X$, and the map $\psi: \text{Pic} X \to \text{Pic} X \otimes \mathbb{Z}[\zeta]$ given by

$$\psi(y) = \sum_{i=0}^{n-1} \sigma^i y \otimes \zeta^{-i}$$

then comes from a morphism of group schemes. The image of ψ actually lies in $\text{Pic}^0 X \otimes \mathbb{Z}[\zeta]$, and its kernel P^0_{ζ} is Zariski-closed in $\text{Pic} X$.

The set P_{ζ} of y such that $\psi(y)$ maps to 0 in $\text{Pic} X \otimes \mathbb{C}$ is the union of all translates of P^0_{ζ} by torsion points of $\text{Pic} X$. Applying Raynaud’s theorem \[7\] (i.e., the proof of the Manin-Mumford conjecture) to the image of X in $\text{Pic} X / P^0_{\zeta}$, the intersection $X \cap P_{\zeta}$ is finite whenever dim $\text{Pic} X / P^0_{\zeta} \geq 2$. It therefore suffices to prove that the Lie algebra of P^0_{ζ} is a subspace of the Lie algebra of $\text{Pic} X$ of codimension ≥ 2 or, equivalently, that the rank of the map ψ_* of Lie algebras is at least 2. We identify the Lie algebra of $\text{Pic} X$ in the usual way \[1\] Ch. 2, §6] with $H^1(X, \mathcal{O}_X) = H^{0,1}(X)$. Likewise, the Lie algebra of $\text{Pic} X \otimes \mathbb{Z}[\zeta]$ is isomorphic to $H^{0,1}(X) \otimes \mathbb{Z}[\zeta]$. For every k prime to n, there exists a morphism

$$\phi_k: H^{0,1}(X) \otimes \mathbb{Z}[\zeta] \to H^{0,1}(X)$$

obtained from the embedding of $\mathbb{Z}[\zeta]$ into \mathbb{C} mapping ζ to ζ^k:

$$\phi_k(v \otimes \zeta^i) = \zeta^{ik} v.$$

The composition of this map with ψ_* is $\sum_{i=0}^{n-1} \zeta^{-ik} \sigma^i$.

\[4\] BO-HAE IM AND MICHAEL LARSEN

\[7\] Raynaud’s theorem

\[1\] Ch. 2, §6

\[7\] Manin-Mumford conjecture

\[1\] Ch. 2, §6

\[7\] The Lie algebra

\[1\] A morphism
Let $H_{\text{prim}}^{0,1}$ (resp. $H_{\text{prim}}^{1}(X(\mathbb{C}),\mathbb{C})$) denote the subspace of $H^{0,1}$ (resp. $H^{1}(X(\mathbb{C}),\mathbb{C})$) spanned by eigenvectors of σ whose eigenvalues are primitive nth roots of unity. If v is an eigenvector of σ in $H^{0,1}$ whose eigenvalue is a primitive nth root of unity ζ^k, then $\phi_k(\psi_*(v)) = nv \neq 0$, while $\phi_j(\phi_*(v)) = 0$ for all $j \neq k$. It follows that $\ker \psi_* \cap H_{\text{prim}}^{0,1} = \{0\}$, so the rank of ψ_* is at least $\dim H_{\text{prim}}^{0,1}$. The Hodge decomposition $H^{1}(X(\mathbb{C}),\mathbb{C}) = H^{0,1} \oplus \overline{H^{0,1}}$ implies

$$\dim H_{\text{prim}}^{1}(X(\mathbb{C}),\mathbb{C}) = 2 \dim H_{\text{prim}}^{0,1}.$$

It suffices, therefore, to prove $\dim H_{\text{prim}}^{1}(X(\mathbb{C}),\mathbb{C}) \geq 4$.

Let $R_{G}(G)$ denote the ring of complex (virtual) representations of G. For any subgroup H of $G := \langle \sigma \rangle$, let $R_{G/H}$ denote the regular representation of G/H regarded as an element of $R_{G}(G)$, and let $I_{H} := R_{G} - R_{G/H}$. In particular, $I_{\{1\}} = 0$. Regarded as an element of $R_{G}(G)$, the G-representation $H^{1}(X(\mathbb{C}),\mathbb{C})$ is

$$2g + (2h - 2)I_{G} + \sum_{[x] \in X/G} I_{\text{Stab}_{G}(x)},$$

where h is the genus of X/G, and $\text{Stab}_{G}(x)$ is the stabilizer of any element of X representing the G-orbit $[x]$. This is worked out in the case that $h = 0$ in [6, Prop. 2.2], but the method (in which the character of $H^{1}(X(\mathbb{C}),\mathbb{C})$ as a representation of G is deduced from the Hurwitz formula and the Lefschetz trace formula) works in general.

The dimension of $H_{\text{prim}}^{1}(X(\mathbb{C}),\mathbb{C})$ is therefore $(2h - 2 + r)\phi(n)$, where r is the number of ramification points of the cover $X \to X/G$. This is positive except in two cases: the cyclic cover $\mathbb{P}^{1} \to \mathbb{P}^{1}$ of degree n (necessarily ramified over two points) and a degree n isogeny of elliptic curves; these have genus 0 and 1 respectively. Otherwise, it is at least 4 unless $2h - 2 + r = 1$ and $\phi(n) = 2$. The triples (h, r, n) for which this happens are $(0, 3, 3)$, $(0, 3, 4)$, $(1, 1, 3)$, and $(1, 1, 4)$. None of these is consistent with the condition $g \geq 3$.

\[\square\]

Theorem 3.2. Let E/K be an elliptic curve over a number field K. For each root of unity ζ, there exists a nonempty open subset Σ_{ζ} of $\text{Gal}(\overline{K}/K)$ such that the multiplicity of the eigenvalue ζ for $\sigma \in \Sigma_{\zeta}$ acting on $E(\overline{K}) \otimes \mathbb{C}$ is infinite.
Proof. Let ζ be an nth root of unity. Let $\lambda_1, \lambda_2, \lambda_3, \infty$ be the ramification points of a double cover $E \to \mathbb{P}^1$, and let λ denote the cross-ratio of $(\lambda_1, \lambda_2, \lambda_3, \infty)$. Choose $a, b \in \overline{K}$ such that the ordered quadruple $(a, b, \zeta a, \zeta b)$ satisfies
\[
\frac{(\zeta a - a)(\zeta b - b)}{(\zeta b - a)(\zeta a - b)} = \lambda
\]
This is always possible; for instance, setting $a = 1$, we get a non-trivial quadratic equation for b, and since λ is not 1 or ∞, we have $b, \zeta b \not\in \{a, \zeta a\}$. Thus the elliptic curves
\[
X_i : y^2 = (x - \zeta^{i-1}a)(x - \zeta^{i-1}b)(x - \zeta a)(x - \zeta b), \quad \text{for } i = 1, \ldots, n.
\]
all have the same j-invariant as E.

Let $L = K(a, b, \zeta)$. Fix $q \in K$ such that $L(\sqrt[n]{q})$ is a Galois $\mathbb{Z}/n\mathbb{Z}$-extension of L. We claim that Σ_ζ contains the open set $U_\zeta := \{\sigma \in \text{Gal}(\overline{K}/L) \mid \sigma(\sqrt[n]{q}) = \zeta^{n}\sqrt[n]{q}\}$.

Let $M = L(\sqrt[n]{q})$. For N any number field containing M, let C_N denote the affine curve over N
\[
\text{Spec } N[x, y_1, \ldots, y_n]/(P_1(x, y_1), \ldots, P_n(x, y_n), y_1 \cdots y_n - (x^n - a^n)(x^n - b^n))
\]
where
\[
P_i(x, y) = y^2 - (x - \zeta^{i-1}a)(x - \zeta a)(x - \zeta^{i-1}b)(x - \zeta b).
\]
Note that the equation $y_1 \cdots y_n - (x^n - a^n)(x^n - b^n) = 0$ merely selects one of the two irreducible components of the 1-dimensional affine scheme cut out by the other equations.

Let X denote the compact Riemann surface which is the compactification of $C_N(\mathbb{C})$. By the Hurwitz genus formula, the genus of X is $(n - 2)2^{n-2} + 1$, which is ≥ 3 since $n \geq 3$. For any n-tuple $(k_1, \ldots, k_n) \in \{0, 1\}^n$ with even sum, the map
\[
(2) \quad (x, y_1, \ldots, y_n) \mapsto (\zeta x, (-1)^{k_1}\zeta^2 y_n, (-1)^{k_2}\zeta^2 y_1, (-1)^{k_3}\zeta^2 y_2, \ldots, (-1)^{k_n}\zeta^2 y_{n-1})
\]
defines an automorphism σ of C_N and therefore of X. As the k_i have even sum, σ is of order n. If $x \in \sqrt[n]{q}L^*$ and $\sigma \in U_\zeta$, then $\sigma(x) = \zeta x$, so
\[
\sigma(y_i)^2 = \zeta^4 y_{i-1}^2,
\]
and so there exists an \(n \)-tuple \((k_1, \ldots, k_n)\) with even coordinate sum such that \(\sigma \) acts on \(Q := (x, y_1, \ldots, y_n) \) by \((\mathbb{I})\). By Proposition 3.1 for all but finitely many values of \(x \),

\[
R := \sum_{i=0}^{n-1} \sigma^i(Q) \otimes \zeta^{-i}
\]

is a non-zero eigenvector of \(\sigma \) with eigenvalue \(\zeta \).

Assume now that \(N \) is a finite Galois extension of \(M \). Consider the morphism from \(C_N \) to the affine line over \(M \) given by \((x, y_1, \ldots, y_n) \mapsto x\). This is a branched Galois cover with Galois group \(\text{Gal}(N/M) \times (\mathbb{Z}/2\mathbb{Z})^{n-1} \). There exists a Hilbert set of values \(t \in M \) such that the geometric points lying over \(x = \sqrt[1]{q}t \) in \(C_M \) consists of a single \(\text{Gal}(\overline{K}/M) \)-orbit or, equivalently, \(\text{Gal}(M(y_1, \ldots, y_n)/M) \cong (\mathbb{Z}/2\mathbb{Z})^{n-1} \) and \(M(y_1, \ldots, y_n) \) is linearly disjoint from \(N \) over \(M \). As a Hilbert set of a finite extension of \(L \) always contains some Hilbert set of \(L \) \([5, \text{Ch. 9, Prop. 3.3}]\), it follows that there exists \(t \in L \) such that setting \(x = \sqrt[1]{q}t \), relative to \(M \), the extension \(M(y_1, \ldots, y_n) \) is linearly disjoint from \(N \) and has Galois group \((\mathbb{Z}/2\mathbb{Z})^{n-1} \).

We can therefore iteratively construct a sequence \(t_1, t_2, \ldots \in L^* \) such that the extensions

\[
M_i := M\left(\sqrt{\left(\sqrt[1]{q}t_i - a\right)\left(\sqrt[1]{q}t_i - b\right)\left(\sqrt[1]{q}t_i - \zeta a\right)\left(\sqrt[1]{q}t_i - \zeta b\right)}\cdots, \right.
\]

are all linearly disjoint over \(M \). Let \(Q_i \) be a point with \(x \)-coordinate \(\sqrt[1]{q}t_i \), and \(R_i \) the corresponding \(\zeta \)-eigenvector of \(\sigma \) given by \((\mathbb{I})\). We claim that the \(R_i \) span a space of infinite dimension. The \(Q_i \) do so by \([2, \text{Lemma 3.12}]\), and as the \(\zeta^{-j} \) are linearly independent over \(\mathbb{Q} \), it follows that the \(R_i \) do so as well.

\[\square\]

We conclude with a question that does not seem to be directly amenable to the methods of this paper:

Question 3.3. Does the set \(\bigcap_{\zeta \in C^*_{\text{tor}}} \sum_{\zeta} \) of elements of \(G_K \) having generic spectrum on \(V_E \) always have an interior point?
References

[1] P. Griffiths and J. Harris: *Principles of Algebraic Geometry*, John Wiley & Sons, New York, 1978.

[2] B. Im: Mordell-Weil groups and the rank over large fields of elliptic curves over large fields, arXiv: math.NT/0411533 to appear in *Canadian J. Math.*

[3] B. Im: Infinite multiplicity of roots of unity of the Galois group in the representation on elliptic curves, preprint, 2003.

[4] B. Im: Heegner points and Mordell-Weil groups of elliptic curves over large fields, preprint, arXiv: math.NT/0411534

[5] S. Lang: *Fundamentals of Diophantine Geometry*, Springer-Verlag, New York, 1983.

[6] M. Larsen: *Rigid lattices are Mordell-Weil*, preprint, arXiv: math.NT/0401209

[7] M. Raynaud: Courbes sur une variété abélienne et points de torsion. *Invent. Math.* 71 (1983), no. 1, 207–233.

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
E-mail address: im@math.utah.edu

Department of Mathematics, Indiana University, Bloomington, Indiana 47405, USA
E-mail address: larsen@math.indiana.edu