Review Article

Chemistry and bioactivity of Gardenia jasminoides

Wenping Xiao a,b, Shiming Li a,* , Siyu Wang c, Chi-Tang Ho c,*

a Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, China
b Pharmacy of Faculty, Hubei University of Chinese Medicine, Wuhan, China
c Department of Food Science, Rutgers University, New Brunswick, NJ, USA

Article info
Article history:
Received 5 October 2016
Received in revised form
7 November 2016
Accepted 7 November 2016
Available online 8 December 2016

Keywords:
crocin
Gardenia jasminoides
geniposide
genipin
iridoid

Abstract
Gardenia jasminoides, grown in multiple regions in China, was commonly used as a natural yellow dye but has been one of the popular traditional Chinese medicines since the discovery of its biological property a few decades ago. It has been reported that G. jasminoides possess multiple biological activities, such as antioxidant properties, hypoglycemic effect, inhibition of inflammation, antidepressive activity, and improved sleeping quality. In this review, our aim was to have a comprehensive summary of its phytochemistry including the extraction, isolation, and characterization of volatiles and bioactive molecules in G. jasminoides, focusing on the two major phytochemicals, genipin and crocin, which possess potent medicinal properties. Furthermore, this study attempted to establish a structure–activity relationship between the two major series of molecules with two pharmacophores and their biological activities, which would serve further exploration of the properties of phytocompounds in G. jasminoides as potential functional foods and medicines.

1. Introduction

Gardenia jasminoides, an evergreen tree that belongs to the Rubiaceae family, is cultivated in multiple areas in China, with a Chinese name of Zhi Zi. It grows in many temperate regions and has fragrant white flowers [1]. It is not only used as natural yellow dyes for many years [2,3], but also has various biological activities, such as antidiabetic [4], anti-inflammatory [5], antidepressive [6], and antioxidant properties [7], and improvement of the quality of sleep [8]. It is commonly used in traditional Chinese medicine. The chemical analysis of G. jasminoides has been mainly focused on extraction technologies in recent years. Obtained extracts have exerted certain biological activities both in vitro and in vivo. Recent research showed that the oil extract from the G. jasminoides had antidepressant activity [6], and other new techniques to extract the oil and the complex biological activity have also been discussed. Herein, we reviewed the chemical components and biological activities of G. jasminoides as well as new techniques to extract and isolate the natural compounds from G. jasminoides.
2. Chemistry

A number of chemical components of *G. jasminoides* have been isolated and characterized, including iridoids, iridoid glucosides, triterpenoids, organic acids, and volatile compounds. Geniposide, genipin, gardenoside, crocin, and iridoid are the major bioactive compounds found in *G. jasminoides*. For instance, the yield of geniposide reached 10.9% under certain extraction conditions [9].

2.1. Volatiles in *G. jasminoides*

The major volatile compounds in essential oil of *G. jasminoides* are aliphatic acids, ketones, aldehydes, esters, alcohols, and aromatic derivatives [6,10]. Because of the different temperature and duration of processing, the essential oil from *G. jasminoides* contains varied contents and proportions of volatile compounds. In addition, unstable components such as iridoids may be partially converted to volatile components during high temperature processing [6].

Gas chromatography–mass spectrometry (GC/MS) was the major technique used to identify volatile components from *G. jasminoides* [6]. He et al [11] reported that the oil of the fruits of *G. jasminoides* was extracted by supercritical fluid CO₂, in which 16 major components of the oil extract were revealed by GC/MS. Myristic acid (15.3%) had the highest relative content, whereas the lowest one was caproic acid (0.24%) [12]. Because of the pharmacological activities exerted by *G. jasminoides* oil and the availability of modern extraction techniques, many efforts were invested in the extraction of the *G. jasminoides*, in order to find the optimal extraction method. The extraction methods of volatile oil from *G. jasminoides* are listed in Table 1.

2.2. Iridoids and iridoid glycoside

Iridoids and iridoid glycoside are rich in *G. jasminoides*. The iridoids and iridoid glycosides include genipin, geniposide, and gardenoside. Many researchers have found multiple positive health effect of geniposide, including anti-inflammatory [16], antidepress [16], antidiabetic properties [4], antithrombotic activities [18], as well as protection against lipopolysaccharide (LPS)-induced apoptotic liver damage [19]. The content of iridoid glycosides may vary from different regions at about 5–6% [20]. A study quantified the content of geniposide, gardenoside, geniposidic acid, and chlorogenic acid as 56.37 ± 26.24 µg/mg, 49.57 ± 18.78 µg/mg, 3.15 ± 3.27 µg/mg, and 0.69 ± 0.39 µg/mg, respectively, measured in 68 samples from different regions in China and Korea [21].

2.2.1. Extraction of iridoids

Because of the pharmacological effects of *G. jasminoides* and the application of modern extraction technology, many efforts have been invested in the preparation of different *G. jasminoides* extracts, in an attempt to find a potent ingredient that can have significant effects on diseases, such as high blood pressure, hyperglycemia, cancer, hyperlipidemia, and Alzheimer’s disease (AD) [22]. Certain positive results have been obtained with specified extracts, but in the future, further fractionation and evaluation of the active components of this plant should be a better direction. With the emergence of several new extraction methods, several minor components with potent biological activity may be found in *G. jasminoides*. Extraction methods such as solvent extraction, as well ultrasound- and microwave-assisted extraction (MAE) have been used to extract iridoids.

2.2.2. Solvent extraction method

Most solvent extraction methods require heating. The optimal solvent extraction parameters of *G. jasminoides* were 51.3% of ethanol/water mixture with an extraction temperature of 70.4°C for 28.6 minutes. Under this condition, the yield of geniposide and total phenolic compounds 10.9% and 2.497%, respectively [9].

2.2.3. Ultrasound- and microwave-assisted extraction

Many advanced extraction techniques have been introduced in recent years including ultrasound- and microwave-assisted extraction. Ultrasonic extraction was conducted by ultrasonic-assisted solvent extraction; with this technique,

Table 1 – Extraction method of volatile oil from *Gardenia jasminoides*.

Extraction method	Parameters of extraction	Results (%)	Refs
Supercritical fluid extraction (SFE)	Temperature: 65°C; CO₂ flow rate: 15 kg/h; Pressure: 30 MPa; Time: 28.6 min	Linoleic acid, 44.1; palmitic acid, 26.4; oleic acid, 24.6	[12]
Subcritical fluid extraction	Subcritical butane; Pressure: 12 MPa; Temperature: 45°C	Fatty acids, 77.6	[14]
Ultrasound-assisted extraction	28 kHz & 100 W; Material/solvent ratio: 1:10 (g/mL)	Oil yield, 16.49	[15]
Steam distillation	Distilled water	Oil yield, 0.12	[14]
Chapter 2. Isolation of Iridoids

2.2.4. Isolation of Iridoids

The isolation of iridoids includes solvent partition separation, classic column chromatography, preparative high-performance liquid chromatography (prep-HPLC), high-speed countercurrent chromatography (HSCCC), and other isolation methods. At least 15 iridoids were reported to be isolated and identified, including iridoids, iridoid glucosides, secoiridoids, and secoiridoid glucosides. Table 2 summarizes the reported iridoids isolated from G. jasminoides.

2.2.5. Solvent partition

As an example of solvent extraction, dried fruit (8.0 kg) of G. jasminoides was powdered and extracted with 60% ethanol solution (64 L) for 2 hours under reflux. The extraction process was repeated three times. The combined extract (1000 g) after concentration under vacuum was suspended in 3 L of water and partitioned with cyclohexane, ethyl acetate, and n-butanol, respectively [25]. The compounds in cyclohexane fraction were dominated with volatile oil and some fat-soluble pigments. The major components in ethyl acetate fraction were iridoids and iridoid glycosides. The compounds found in n-butanol fraction are mostly iridoid glycosides. The substances in the water fraction were glycosides and water-soluble pigments.

2.2.6. Column chromatography

The different extract fractions from the plant can be subjected to different kinds of column chromatography. Column chromatography has been classified as normal phase (silica gel) column chromatography, reversed-phase (C₈, C₆, C₄, etc.) column chromatography, macroporous resin column chromatography, polyamide column chromatography, or Sephadex column chromatography, depending on the packing material used. The separation mechanism and the solvents used to elute the column are different for different packing materials. For example, the ethyl acetate fraction of G. jasminoides was subjected to silica gel column chromatography eluting with a gradient mixture of chloroform and methanol and yielded nine fractions, which were respectively subjected to different kinds of column and prep-HPLC when needed. The structures of the compounds were identified by nuclear magnetic resonance [25]. In another example, dried G. jasminoides (6.0 kg) were extracted by 95% ethanol/water (v/v), and the filtration was concentrated under reduced pressure. Then the extract (1.2 kg) was suspended in water and extracted with petroleum ether and chloroform. The chloroform fraction (210.3 g) was subjected to silica gel column chromatography eluting with petroleum ether—ethyl acetate mixture, and six fractions were obtained. The six fractions were respectively subjected to repeated silica gel column chromatography, C₁₈ column chromatography, macroporous resin (D101) column, and prep-HPLC eluting with methanol–water (v/v 25:75). The obtained compounds were iridoids and iridoid glucosides [26]. In some cases, there was no solvent extraction prior to the classical column chromatography. For example, G. jasminoides (8.0 kg) was refluxed with 60% of aqueous ethanol. The extract was concentrated, suspended with water, and subjected to macroporous resin (D101) column eluted with an ethanol/water gradient. The 50% ethanol elute was subjected to silica gel eluting with chloroform/methanol. The fraction was further subjected to prep-HPLC, to obtain two new compounds—a new lignan glucoside and a new iridoid glucoside [27]. In another example, six iridoid glycosides were isolated and purified from G. jasminoides by two-dimensional prep-HPLC [28].

2.2.7. High-speed countercurrent chromatography

HSCCC is a liquid–liquid separation technology. It has been reported that HSCCC successfully isolated geniposide from G. jasminoides. Zhou et al. [29] showed that 389 mg of geniposide was recovered from 1 g of partially purified sample from macroporous resin column. In another research, after HSCCC isolation, 151.1 mg of gardenoside, 52.2 mg of 6β-hydroxy geniposide, 24.5 mg of geniposidic acid, 587.2 mg of geniposide, 246.2 mg of crocin-1, 34.2 mg of crocin-2, 24.4 mg of crocin-3, and 24.7 mg of crocin-4 were extracted and isolated from 2 kg of G. jasminoides after macroporous resin (HPD-100) column separation and HSCCC with purities ranging from 91.7% to 98.9% [30]. Four new water-soluble iridoid glucosides were isolated by HSCCC. They are shanzhiside methyl ester (I), phloyoside (II), chlorotuberside (III), and penstemonoside (IV) [31].

2.2.8. Other isolation methods

It has been reported that water-soluble residue from G. jasminoides was treated with sodium carbonate and extracted with n-butanol several times. Then, the n-butanol extracts are treated with activated granular charcoal. At least 70 g of geniposide with 98% purity was obtained from 10 kg of G. jasminoides [32]. Another isolation method is matrix solid phase dispersion (MSPD); the optimal conditions that can isolate the geniposide by MSPD is 0.5 g of fruit of G. jasminoides, 0.75 g of Celite (diatomaceous earth) as the dispersing sorbent, and a volume of 25 mL of 70% of methanol solution as the elution solvent [33].

2.3. Crocin and its derivatives in G. jasminoides

Crocin and its derivatives extracted from G. jasminoides have been characterized as low toxicity, low allergy, and eco-friendly compared with saffron [3]. Crocin and crocetin were initially found in saffron, which was the dried stigma of the flower of Crocus sativus L. Saffron has a wide range of uses especially in the dye and pharmaceutical industry. It also has medicinal effects in certain conditions such as weight loss, sexual dysfunction, and premenstrual syndrome. These medicinal properties of saffron are likely attributable to a number of compounds it contains, including crocetin, crocins, and safrana [39].
No.	Name	Structure	Extraction & isolation	Refs
1	Geniposide	![Geniposide Structure](image)	Reflux with 50% ethanol, HSCCC, MSPD	[29]
				[30]
				[33]
2	6β-Hydroxy geniposide	![6β-Hydroxy Geniposide Structure](image)	Cold percolate with 40% ethanol, macroporous resin HSCCC	[30]
3	Geniposidic acid	![Geniposidic Acid Structure](image)	Cold percolate with 40% ethanol Macroporous resin HSCCC	[30]
4	Gardenoside	![Gardenoside Structure](image)	Cold percolate with 40% ethanol, macroporous resin, HSCCC	[25]
5	6α-Hydroxy geniposide	![6α-Hydroxy Geniposide Structure](image)	Reflux with 60% ethanol, Silica gel column, C₁₈ column, preparative HPLC	[25]
6	6-O-Methylscandoside methyl ester	![6-O-Methylscandoside Structure](image)		
7	6-O-Methyldeacetylasperulosidic acid methyl ester	![6-O-Methyldeacetylasperulosidic Structure](image)		
8	8-O-Methylmonotropein methyl ester	![8-O-Methylmonotropein Structure](image)		
9	Shanzhiside	![Shanzhiside Structure](image)		
No.	Name	Structure	Extraction & isolation	Refs
-----	-------------------------------------	-----------	------------------------	------
10	Gardoside	![Gardoside Structure](image)		
11	10-O-trans-Sinapoylgeniposide	![10-O-trans-Sinapoylgeniposide Structure](image)	R=sinapoyl	
12	6''-O-trans-Sinapoylgenipin gentiobioside	![6''-O-trans-Sinapoylgenipin gentiobioside Structure](image)	R=sinapoyl	
13	6''-O-trans-p-Coumaroylgenipin gentiobioside	![6''-O-trans-p-Coumaroylgenipin gentiobioside Structure](image)	R = p-coumaroyl	

(continued on next page)
No.	Name	Structure	Extraction & isolation	Refs
14	6′-O-Sinapoylgeniposide	![Structure](image1.png)	Reflux with 90%, 70% EtOH	
			Silica gel & Sephadex column	[34]
15	6″-O-Caffeoylgenin gentiobioside	![Structure](image2.png)	60% EtOH	
			Silica gel, & preparative HPLC	[35]
16	Genipin 1-O-β-α-apiofuranosyl (1→6) β-α-Glucopyranoside	![Structure](image3.png)		
17	Genipin 1-O-α-xylopyranosyl (1→6) β-α-glucopyranoside	![Structure](image4.png)		
18	6β-Hydroxy genipin	![Structure](image5.png)		
19	Genipin	![Structure](image6.png)		
20	Gardenoside	![Structure](image7.png)	HPLC–MS	[28]
No.	Name	Structure	Extraction & isolation	Refs
21	Deacetylasperulosidic acid methyl ester	![Structure](image1)	80% EtOH Silica gel column	[36]
22	Scandoside methyl ester	![Structure](image2)		
23	4'-O-[(E)-p-Coumaroyl] gentiobiosylgenipin	![Structure](image3)		
24	6'-O-[(E)-Sinapoyl]gardoside	![Structure](image4)		
25	Bartsioside	![Structure](image5)		
26	Gardenal-I	![Structure](image6)	EtOH/H$_2$O (9:1) at room temperature	[37]
27	Gardenal-II	![Structure](image7)		

(continued on next page)
No.	Name	Structure	Extraction & isolation	Refs
28	Gardenal-III	![Structure](structure_28.png)	Reflux with 50% aqueous ethanol	[38]
			Macroporous Resin column	
29	Ixoroside	![Structure](structure_29.png)	Reflux with 60% EtOH	[27]
			Prep-HPLC	
30	(+)-(7S,8R,8'R)-Lyoniresinol 9-O-β-D-(6'-O-trans-sinapoyl)glucopyranoside	![Structure](structure_30.png)		
31	10-O-trans-Sinapoylgeniposide	![Structure](structure_31.png)		
		R = sinapoyl		
32	Shanzhiside methyl ester (I)	![Structure](structure_32.png)	Reflux with 65% EtOH	[31]
			HSCCC	
33	Phloyoside (II)	![Structure](structure_33.png)		
34	Chlorotuberside (III)	![Structure](structure_34.png)		
35	Penstemonoside (IV)	![Structure](structure_35.png)		
2.3.1. Extraction and isolation of crocin and its derivatives

G. jasminoides was extracted using a homogenate extraction technology under the condition of 50% ethanol/water solution, with a liquid/material ratio of 15:1 (v/w), and particle size of material 1.7 mm with an extraction time of 41 seconds [40]. In another report, the extraction condition of G. jasminoides used the following conditions: ethanol/water (40:60, v/v) and cold percolation without damaging percolation [41]. By using the MAE system, the extraction yield of the edible yellow pigment from G. jasminoides was 50% higher than that obtained with the conventional extraction method [24].

The isolation of crocin and its chain derivatives is similar to that of iridoids (Table 3). However, the polarity of solvents in the isolation of crocin is slightly higher than that in iridoids (Table 4). The extracts can be suspended in water, then partitioned with ethyl acetate. The ethyl acetate extract was successively subjected to silica gel column, Sephadex (LH-20) column, and medium pressure preparative liquid chromatography, and yielded gardecin. The water extract was successively subjected to macroporous resin (HPD-100), silica gel, and C18 column, and crocin was obtained [41].

2.4. Terpenoids in G. jasminoides

Terpenoids in G. jasminoides include secoiridoids and monoterpenoid. Iridoids mentioned above belong to secoiridoids. Here, we summarize monoterpenoids and their glycosides. Some terpenoids, especially the small number of carbon atoms, exist in volatile oil. The extraction and isolation methods of terpenoids are mostly the same as in iridoids. In

Table 3 – Crocin and its chain derivatives in Gardenia jasminoides.

Name	Structure
Crocin	![Crocin Structure](image)
Crocin1	![Crocin1 Structure](image)
Crocin2	![Crocin2 Structure](image)
Crocin3	![Crocin3 Structure](image)
Crocin4	![Crocin4 Structure](image)
Crocetin	![Crocetin Structure](image)
cis-Crocin1	![cis-Crocin1 Structure](image)
Gardecin	![Gardecin Structure](image)
recent years, many terpenoids in *G. jasminoides* have been found. Their structures are listed in Table 5.

2.5. Phenolic compounds

Several phenolic acids have been identified in *G. jasminoides*, such as 3,5-di-O-caffeoyl-4-O-(3-hydroxy-3-methyl)glutarylquinic acid, 3,5-di-O-caffeoylquinic acid, 4-O-sinapoyl-5-O-caffeoyl-quinic acid [27], and chlorogenic acid [46]. One new lignin glucoside, (−)-(7S,8R,8'R)-lyoniresinol 9-O-β-D-(6′-O-trans-sinapoyl)glucopyranoside, has been found in *G. jasminoides*. The extraction and isolation of the new lignin glucoside were as follows: *G. jasminoides* (8 kg) was cut into small pieces and refluxed with 60% of EtOH (v/v). The 60% EtOH was concentrated and produced a dark brown residue, which was suspended with H$_2$O and subjected to column chromatography eluting with increasing proportions of EtOH and H$_2$O. The 50% EtOH elute (105 g) was subjected to column chromatography (silica gel), eluting with increasing MeOH in CHCl$_3$. Fraction G was further separated by column chromatography eluted with different proportions of EtOH and H$_2$O. The 60% EtOH was refluxed with 60% of EtOH (v/v). The 60% EtOH was concentrated and produced a dark brown residue, which was suspended with H$_2$O and subjected to column chromatography eluting with increasing proportions of EtOH and H$_2$O. The 50% EtOH elute (105 g) was subjected to column chromatography (silica gel), eluting with increasing MeOH in CHCl$_3$. Fraction G was further separated by column chromatography over octadecylsilyl (ODS), eluting with increasing MeOH in H$_2$O to give G1–G7. G5 was purified by Toyopearl HW-40 and prep RP-HPLC to obtain the new lignin glucoside [27]. Its structure is shown in Figure 1.

3. Biological activities

G. jasminoides has been reported to possess various biological activities and positive effects on human health, which are summarized in Table 6.

3.1. Antioxidant activity

Both water and ethanol extracts from the fruit of *G. jasminoides* had been found to exert antioxidant activity. The IC$_{50}$ (half-maximal inhibitory concentration) values of the water extracts from *G. jasminoides* for DPPH (1,1-diphenyl-2-picrylhydrazyl), ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt], hydroxyl, and superoxide radical-scavenging activities were 0.14 mg/mL, 0.21 mg/mL, 1.08 mg/mL, and 1.43 mg/mL, respectively, and those of ethanol extracts were 0.36 mg/mL, 0.39 mg/mL, 1.56 mg/mL, and 1.99 mg/mL, respectively. Hence, water extract had a higher antioxidant activity than the ethanol extract. Purified crocin at concentrations of up to 40 ppm showed potent antioxidant activity, which was evaluated using the thiocyanate method and the thiobarbituric acid method. At a concentration of 20 ppm, crocin’s antioxidant activity was comparable to that of butylated hydroxyanisole (BHA) [47].

3.2. Improving insulin sensitivity and antidiabetes

Insulin resistance leads to type 2 diabetes. Water extracts from *G. jasminoides* improve insulin sensitivity in steroid-induced insulin-resistant rats with an optimal dose of *G. jasminoides* water extract of 200 mg/kg [48]. Genipin ameliorated age-related insulin resistance, which had a close relationship with the improvement of hepatic oxidative stress and mitochondrial dysfunction and insulin signal impairment [49]. Geniposide alleviated abnormal glucose tolerance and hyperinsulinemia, which are recognized in genetic type 2 diabetes patients caused by visceral fat accumulation [50]. Geniposide (200 mg/kg and 400 mg/kg) was shown to be an effective hypoglycemic agent in diabetic mice that significantly decreased blood glucose, insulin, and triglyceride levels in diabetic mice in a dose-dependent manner [4]. Geniposide also demonstrated beneficial effects on diabetic vascular injury by inhibiting the adhesion of monocytes to human umbilical vein endothelial cells and the expression of cell adhesion molecules induced by high glucose [51]. It was suggested that crocetin might prevent dexamethasone-induced insulin resistance by lowering serum insulin, free fatty acids, and blood triglyceride [52].

3.3. Anti-inflammatory activity

Water extracts of *G. jasminoides* exhibited anti-inflammatory properties by significantly reducing JNK2/1 (c-Jun N-terminal protein kinase) and p38 MAPKs (mitogen-activated protein kinase) phosphorylation, and decreasing COX-2 (cyclooxygenase-2) expression in LPS-induced BV-2 cells. When the water extracts of *G. jasminoides* was used on LPS-induced hepatic injury of rats, the liver pathology was substantially reduced [53]. Geniposide was shown to alleviate inflammation.
Table 5 – Structures of monoterpenoids in *Gardenia jasminoides*.

No.	Name	Structures	Refs
1	6’-O-trans-Sinapoyljasminoside C	![Structure](image1)	[25,27]
2	6’-O-trans-Sinapoyljasminoside A	![Structure](image2)	
3	Rehmapicrogenin	![Structure](image3)	[25]
4	Jasminoside C	![Structure](image4)	
5	Jasminoside B	![Structure](image5)	
6	Jasminoside G	![Structure](image6)	
7	Jasminoside K	![Structure](image7)	[25,44]

(continued on next page)
No.	Name	Structures	Refs
8	Jasminoside I	![Structure](image_url)	
9	Jasminoside H	![Structure](image_url)	
10	Epi-jasminoside H	![Structure](image_url)	
11	6'-O-trans-Sinapoyljasminoside L	![Structure](image_url)	
12	Jasminoside S	![Structure](image_url)	[35]
13	Jasminoside J	![Structure](image_url)	[44]
14	6'-O-trans-Sinapoyljasminoside B	![Structure](image_url)	
No.	Name	Structures	Refs
-----	---------------------------	---	------
15	6’-O-trans-Sinapoyljasminoside L	![Structure](image1)	
16	Jasminoside M	![Structure](image2)	
17	Jasminoside N	![Structure](image3)	
18	6-O-β-D-Xylopyranosyl-β-D-glucopyranosyl (2E)-3, 7-dimethylocta-2,6-dienoate	![Structure](image4)	
19	6-O-β-D-Glucopyranosyl-β-D-glucopyranosyl (2E)-3, 7-Dimethylocta-2,6-dienoate	![Structure](image5)	
20	Jasminoside C	![Structure](image6)	
21	Jasminoside E	![Structure](image7)	
22	Sacranoside B	![Structure](image8)	

(continued on next page)
by suppressing MeCP2 (methyl cytosine binding protein-2) in mice with CCl₄-induced acute liver injury and LPS-treated THP-1 cells [54]. Geniposide had an anti-inflammatory effect by reducing the expression of Toll-like receptor 4 upregulated by LPS, which inactivated the downstream NF-κB (nuclear factor-κB) and MAPK signaling pathways. Geniposide may be a potential anti-inflammatory drug to treat acute liver injury, acute lung injury, and mastitis [55]. Crocin could inhibit COX-1 and COX-2 activities, and production of prostaglandin E₂, and inhibited xylene-induced ear edema in mice and carrageenan-induced paw edema in rats [56].

3.4. **Antidepressant activity**

The oil extracted from *G. jasminoides* by supercritical fluid extraction and geniposide showed antidepressant activity, which was evaluated by tail suspension test and forced swim test [6]. *G. jasminoides* showed an antidepressant effect in the tail suspension test at 24 hours [57]. Genipin play an antidepressant role through regulating the glycolysis/gluconeogenesis TCA cycle and lipid metabolism of liver [58]. The mechanism of antidepressive in geniposide may be linked to the increase of serotonin level in the striatum and hippocampus of mice and monoamine oxidase B [17,59].

3.5. **Effects of blood circulation**

The hot water extracts of *G. jasminoides* did not stimulate the proliferation of cultured vascular smooth muscle cells, but selectively stimulated the endothelial cell proliferation, which might prevent arteriosclerosis and thrombosis [60]. The n-butanol fraction of 70% ethanol extract of *G. jasminoides* showed effective antiangiogenic activity by using CAM (chick chorioallantoic membrane) assay [61]. Geniposide was also an active antiangiogenic agent that inhibited the growth of the transformed N1H3T3 cell line in the range of 25–100 μM [62].

No.	Name	Structures	Refs	
23	Jasminodiol	![Structure](image1.png)	[45]	
24	Jasminoside H	![Structure](image2.png)		
25	6′-O-Sinapoyljasminoside A	![Structure](image3.png)		
26	6′-O-Sinapoyljasminoside C	![Structure](image4.png)		
27	Jasminoside I	![Structure](image5.png)		
Water extracts	Antioxidant activity	In vitro	Exert a peroxisome proliferator activated receptor	[7]
--	----------------------	----------	--	-----
	Improvement of insulin sensitivity	In vivo mouse		[48]
Anti-inflammation	In vitro	Reduce JNK1/2, & p38 MAPKs phosphorylation, & slightly reduce cyclooxygenase (COX)-2 expression in BV-2 cells	[53]	
Prevention of arteriosclerosis & thrombosis	In vivo	The hot water extracts of *G. jasminoides* did not stimulate the proliferation of cultured vascular smooth muscle cells	[60]	
Oil	Antidepressant activity	In vivo	Associated with the elevated expression of brain-derived neurotrophic factor in the hippocampus	[54]
Ethanol extract	Antidepressant activity	In vivo		[57]
n-Butanol fraction	Antigastric activity	In vivo	A close relationship with the improvement of hepatic oxidative stress, mitochondrial dysfunction & insulin signal impairment	[65]
Genipin	Antiangiogenic activity	In vivo		[49]
Geniposide	Reduce insulin resistance	In vivo		[49]
Geniposide	Antidiabetes	In vivo	Inhibited the adhesion of monocytes to HUVECs & the expression of CAMs induced by high glucose	[78]
Geniposide	Antithrombotic effect	In vivo	Inhibition of PLA2 activity	[18]
Geniposide	Genotoxicity	In vivo	Damage of DNA in rec assay using V79 cells	[51]
Geniposide	Antidepressant activity	In vivo		[49]
Geniposide	Protection of liver damage	In vivo	Antioxidative, antiapoptotic activities, & inhibition of NF-κB nuclear translocation & nuclear p-c-Jun expression	[19]
Geniposide	Inhibit gastric damage	In vivo	Was relevant with the antioxidant activities, acid-neutralizing capacities, & anti-Helicobacter pylori action	[65]
Geniposide	Antithrombotic & antiangiogenic	In vivo	Inhibited collagen-induced, but did not inhibit arachidonate-induced, mouse platelet aggregation	[62]
Crocin	Anti-inflammatory	In vivo	Reducing the expression of TLR4 by LPS	[16,55]
Crocetin	Antiarthritis	In vivo	Downregulated the expression of p-JNK.	[68]
Crocetin	Protecting the injured liver	In vivo	Decreased the expression level of TNF-α, IL-1, & IL-6, increasing the production of IL-10 & inhibiting the expression of phospho-p38 (p-p38) related proteins in FLS	[69]
Crocetin	Antithrombotic & antiangiogenic	In vivo	Increased the levels of serotonin in striatum & hippocampus in mice	[17]
Crocetin	Antidepressant activity	In vivo	Monooamine oxidase-B	[59]
Crocetin	Effects on AD & PD	In vivo	Increased growth factor signaling & decreases apoptosis	[71]
Crocetin	Antioxidant	In vivo	Selectively inhibited the activity of pancreatic lipase	[47]
Crocetin	Anti-inflammatory	In vivo	Inhibited COX-1 & COX-2 enzymes	[56]
Crocetin	Protective of the injured liver	In vivo		[56]
Crocetin	Antihyperlipidemic	In vivo	Selectively inhibited the activity of pancreatic lipase	[67]
Crocetin	Antihypertensive & antithrombotic effects	In vivo	Related to the increase in bioavailable NO	[73]
Crocetin	Prevent insulin resistance	In vivo	Inhibited increase in caspase-3 & -9 activities	[63]
Crocetin	Inhibit retinal damage	In vivo		[64]
Crocetin	Alleviate renal dysfunction	In vivo		[52]
Crocetin	Improve the quality of sleep	In vivo		[76]
Crocetin	AD = Alzheimer’s disease; CAMs = cell adhesion molecules; FLS = Fixed lag; HUVECs = human umbilical vein endothelial cells; IL = interleukin; JNK1/2 = c-Jun N-terminal protein kinase 1 and 2; LPS = lipopolysaccharide; MAPK = mitogen-activated protein kinase; NF-κB = nuclear factor-kappa B; NO = nitric oxide; PD = Parkinson’s disease; PLA2 = phospholipase A2; TCA = tricarboxylic acid; TLR4 = Toll-like receptor 4; TNF-α = tumor necrosis factor alpha.			
Both genipin and geniposide had antithrombotic effect in vivo via the suppression of platelet aggregation by inhibiting of PLA₂ activity, which is different from that of aspirin (which exerts its effect by inhibiting arachidonate-induced platelet aggregation) [18].

Crocetin (25 mg/kg/d and 50 mg/kg/d, 3 weeks) significantly moderated the systolic blood pressure, decreasing thrombogenesis and increasing antioxidant activity and urinary nitric oxide (NO) metabolite levels. It was concluded that crocetin had anti-inflammatory and antithrombotic effects, which might be related to the increase in bioavailable NO [63]. Because crocetin can increase endothelial NO synthase activity, it was believed to have an antihypercholesterolemic effect [64].

3.6. Other biological activities

3.6.1. Antigastritic activity

G. jasminoides-ethanolic extracts had a protective effect against potential gastric diseases. This action may attributable to the unsaturated acid and genipin in G. jasminoides-ethanolic extracts, which inhibit AGS and SUN638 gastric cancer cells [65].

3.6.2. Effects on liver

Genipin (25 mg/kg, 50 mg/kg, 100 mg/kg, and 200 mg/kg) was injected on mice 1 hour prior to D-galactosamine N (GalN) (700 mg/kg)/LPS (10 μg/kg) administration. The death rate in the genipin ingestion group was significantly reduced. Therefore, genipin offered remarkable hepatoprotection against damage induced by GalN/LPS because of its antioxidative and antiapoptotic activities, and inhibition of NF-κB nuclear translocation and nuclear p-c-Jun expression [19]. The level of malondialdehyde decreased remarkably when diazinon and 25 mg crocin were used in male Wistar rats (n = 6) for 4 weeks, which led to the conclusion that crocin might reduce diazinon-induced hepatotoxicity [66]. In another study, male Wistar rats were given a control diet, high fat diet, or high fat diet plus crocin (25 mg/kg/d, 50 mg/kg/d, and 100 mg/kg/d) for 4 weeks. In the crocin treatment group, it was shown to reduce liver injury caused by hepatic steatosis in rats fed with high fat diet [67].

3.6.3. Antiarthritis

Geniposide had positive effects on rats with adjuvant arthritis by downregulating the expression of p-JNK (phosphorylated c-Jun N-terminal kinases) [68]. Geniposide also suppressed arthritis in adjuvant-induced arthritis rats by decreasing the expression levels of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, increasing the production of IL-10, and inhibiting the expression of phospho-p38 (p-p38) related proteins in FLS (Fixed lag) [69].

3.6.4. AD and PD

Geniposide and its derivatives, which improved the short-term memory capacity at varying extent, might be a potential drug for AD [70]. Geniposide exhibits neuroprotective property by inhibiting alpha-synuclein expression, a common pathological symptom in Parkinson’s disease (PD) [79]. Geniposide has a neuroprotective effect in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of PD [71].

3.6.5. Antihyperlipidemia

Crocin obtained from the water extracts of G. jasminoides was found to exhibit antihyperlipidemic effect. When crocin and crocetin were given to the tested mice, the triglyceride and total cholesterol were significantly decreased, and the high-density lipoprotein-cholesterol levels were significantly increased. Thus, it can be concluded that crocin has antihyperlipidemic effect [72]. The mechanism of crocin’s hypolipidemic effect in rats was that crocin could selectively inhibit the activity of pancreatic lipase [73]. The hypolipidemic effect of crocin fermented with lactic acid bacteria can be improved [74].

3.6.6. Inhibition of retinal damage

Crocetin (100 mg/kg, p.o.) alleviated retinal damage though their antioxidant properties and by downregulating caspase-3 and -9 activities after retinal damage [75,76].

3.6.7. Improvement of the quality of sleep

Crocetin was used on healthy adult men with mild sleep complaints by reducing the number of wakening episodes compared to that of the placebo (p = 0.025), which potentially improved the quality of sleep [8].

3.6.8. Renal dysfunction

Crocetin (50 mg/kg) at 2 hours after resuscitation significantly alleviated renal dysfunction caused by hemorrhage shock and resuscitation [77].

3.6.9. Genotoxicity

“Gardenia yellow,” containing crocetin, crocin geniposide, and genipin, was a natural colorant extracted by ethanol from G. jasminoides. It was reported that genipin possesses genotoxicity. Genipin caused damage of DNA in rec assay [78].

4. Conclusion

G. jasminoides is commonly used as herbal medicine in Asia. This review summarized the extraction and isolation methods of four major constituents in G. jasminoides—genipin, geniposide, crocin, and crocetin—and discussed their bioactivities. The main extraction methods of G. jasminoides are solvent
extractions, and ultrasound- and microwave-assisted extraction. The isolation methods of G. Jasminoides are solvent partition, column chromatography, and HSCCC. Genipin reduces insulin resistance, demonstrates antidepressive and antithrombotic effects, provides protection against liver damage, and inhibits gastric lesions. Geniposide possesses anti-diabetes, anti-inflammatory, antiarthritis, anti-thrombotic, and antiangiogenic properties, demonstrates antidepressant activity, and has beneficial effects on AD and PD. Crocin has many medicinal effects such as antioxidant and anti-inflammatory activities, is antihyperlipidemic, and is protective of the injured liver. Crocetin has antiinflammatory and antithrombotic effects, prevents insulin resistance, inhibits retinal damage, alleviates renal dysfunction, and improves sleep quality. Most importantly, oil extract from G. Jasminoides demonstrates antidepressant activity. It is hoped that, in the near future, oil from G. Jasminoides could be developed as a kind of therapeutic agent in fighting depression.

Conflicts of interest

We declare that there is no conflict of interest with any parties involved in this article.

Acknowledgments

This work was supported by Enterprise project for young teachers in Hubei Province Education Department (XD2014310) and Program of studying abroad for young teachers in Hubei Province Education Department.

REFERENCES

[1] Gilam EF. Gardenia Jasminoides. Dissertation. Gainesville, Florida, USA: University of Florida; 1999.
[2] Zhou Y, Zhang J, Tang R, Zhang J. Simultaneous dyeing and functionalization of silk with three natural yellow dyes. Indus Crops Prod 2015;64:224–32.
[3] Hong IK, Jeon H, Lee SB. Extraction of natural dye from Gardenia and chromaticity analysis according to chi parameter. J Ind Eng Chem 2015;24:326–32.
[4] Wu S, Wang G, Liu Z, Rao J, Lv L, Xu W, Wu S, Zhang J. Effect of geniposide, a hypoglycemic glucoside, on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Acta Pharmacol Sin 2009;30:202–8.
[5] Lim H, Park KR, Lee DU, Kim YS, Kim HP. Effects of the constituents of Gardenia Fructus on prostaglandin and NO reduction. Biomol Ther 2008;16:82–6.
[6] Tao W, Zhang H, Xue W, Ren L, Xia B, Zhou X, Wu H, Duan J, Chen G. Optimization of supercritical fluid extraction of oil from the Gardenia Jasminoides and its antidepressant activity. Molecules 2014;19:9350–60.
[7] Debnath T, Park PJ, Nath NCD, Samad NB, Park HW, Lim BO. Antioxidant activity of Gardenia jasminoides Ellis fruit extracts. Food Chem 2011;128:697–703.
[8] Kuratsune H, Umigai N, Takeno R, Kajimoto Y, Nakano T. Effect of crocetin from Gardenia Jasminoides Ellis on sleep: a pilot study. Phytotherapy 2010;17:840–3.
[9] Yang B, Liu X, Gao Y. Extraction optimization of bioactive compounds (crocin, geniposide and total phenolic compounds) from Gardenia (Gardenia jasminoides Ellis) fruits with response surface methodology. Innov Food Sci Emerg Technol 2009;10:610–5.
[10] Liu H, Yao L, Chen J, Gu X, Ma Y, Chen Y, Li P, Zhang C. Analysis of volatile ingredients in Gardeniae Fructus and its processed products by GC-MS. J Tradit Chin Med 2015;40:1732–7.
[11] He W, Gao Y, Yuan F, Bao Y, Liu F, Dong J. Optimization of supercritical carbon dioxide extraction of Gardenia fruit oil and the analysis of functional components. J Am Oil Chem Soc 2010;87:1071–9.
[12] Bao Y, Dong J, Yuan F. Effect of supercritical carbon dioxide extraction conditions on fatty acid composition and antidepressant activity of Gardenia fruit oil. Food Sci 2011;32:12–7.
[13] Li B, Liu Y, Yuan B. Study of supercritical CO2 extraction technology on Gardenia oil. Med Theory Pract 2008;6:232–3.
[14] Li H, Wang F, Liu H, Wang Z, Yu W, Wang K, Han S. Chemical characteristics and compositions of gardenia fruit oils by using various extraction methods. Proceedings of The Third Henan Province Conference on Chemistry, Pingdingshan, Henan Province, China. 2015. p. 1–5.
[15] Yang J, Xu S, Hu L. Study on ultrasound-assisted extraction of gardenia jasminoides seed oil and its analysis of fatty acid composition. Food Sci 2008;29:246–9.
[16] Fu Y, Liu B, Liu J, Liu Z, Liang D, Li F, Li D, Cao Y, Zhang X, Zhang N, Yang Z. Geniposide, from Gardenia jasminoides Ellis, inhibits the inflammatory response in the primary mouse macrophages and mouse models. Int Immunopharmacol 2012;14:792–8.
[17] Liu S, Lin Y, Huang T, Huang S, Peng WH. Anti-depressive activity of Gardeniae fructus and geniposide in mouse models of depression. Afr J Pharm Pharmacol 2011;5:1580–8.
[18] Suzuki Y, Konda K, Ikeda Y, Umemura K. Antithrombotic effect of geniposide and genipin in the mouse thrombosis model. Planta Med 2001;67:807–10.
[19] Kim SJ, Kim JK, Lee DJ, Kwak JH, Lee SM. Genipin protects lipopolysaccharide-induced apoptotic liver damage in d-galactosamine-sensitized mice. Eur J Pharmacol 2010;63:188–93.
[20] Zhao S, Yang Y, Liang D. Quantitative analysis of genioside in fructus gardenia and its different processed products. Chin J Chin Mater Med 1994;19:601–2.
[21] Lee EJ, Hong JK, Whang WK. Simultaneous determination of bioactive marker compounds from Gardenae fructus by high performance liquid chromatography. Arch Pharm Res 2014;37:992–1000.
[22] Jhansri LB, Jaganmohan RK. Phytochemical studies of Gardenia jasminoides. Int J BioSci Technol 2012;5:54–8.
[23] Wang X, Wu Y, Dai S, Chen R, Shao Y. Ultrasound-assisted extraction of geniposide from Gardenia jasminoides. Ultrasens Techon 2012;19:1155–9.
[24] Jun SJ, Chun JK. Design of U-column microwave-assisted extraction system and its application to pigment extraction from food. Bio Prod Proc 1998;76:231–6.
[25] Yang L, Peng K, Zhao S, Chen L, Qiu F. Monoterpenoids from the fruit of Gardenia jasminoides Ellis (Rubiaeaceae). Biochem Syst Ecol 2013;50:435–7.
[26] Jia L, Wang R, Ren P, Qi H. Iridoids from the flowers of Gardenia jasminoides Ellis and their chemotaxonomic significance. Biochem Syst Ecol 2014;56:267–70.
[27] Yang Y, Xiao L, Gao H, Xie Z, Dai Y, Xiao J, Kurihara H, Ye W, Zhong Y, Xin S. Chemical constituents from the fruits of Gardenia jasminoides Ellis. Fitoterapia 2012;83:563–7.
[28] Zhou T, Zhao W, Fan G, Chai Y, Wu Y. Isolation and purification of iridoid glycosides from Gardenia jasminoides Ellis by isocratic reversed-phase two-dimensional preparative high-performance liquid chromatography with
column switch technology. J Chromatogr B 2007;858:296–301.
[29] Zhou T, Fan GR, Hong Z, Chai Y, Wu Y. Large-scale isolation and purification of geniposide from the fruit of Gardenia jasminoides Ellis by high-speed counter-current chromatography. J Chromatogr A 2005;1090:76–80.
[30] Wang Y, Chen Y, Deng L, Cai S, Liu J, Li W, Du L, Cui G, Xu X, Lu T, Chen P, Zhang H. Systematic separation and purification of iridoid glycosides and crocetin derivatives from Gardenia jasminoides Ellis by high-speed counter-current chromatography. Phytochem Anal 2015;26:202–8.
[31] Yue H, Zhao X, Wang Q, Tao Y. Separation and purification of water-soluble iridoid glucosides by high speed counter-current chromatography combined with macroporous resin column separation. J Chromatogr B 2013;93:57–62.
[32] Zhou M, Zhuo J, Wei W, Zhu J, Ling X. Simple and effective large-scale preparation of geniposide from fruit of Gardenia jasminoides Ellis using a liquid–liquid two-phase extraction. Fitoterapia 2012;83:1558–61.
[33] Gao Y, Sun Y, Wang Y, Zhang J, Xu B, Zhang H, Song D. A practical and rapid method for the simultaneous isolation, purification and quantification of geniposide from the fruit of Gardenia jasminoides Ellis by MSPD extraction and UFLC analysis. Anal Methods 2013;5:4112–8.
[34] Zhou X, Bi Z, Li P, Tang D, Cai H. A new iridoid glycoside from Gardenia jasminoides. Chin Chem Lett 2007;18:1221–3.
[35] Peng K, Yang L, Zhao Z, Chen L, Zhao F, Qiu F. Chemical constituents from the fruit of Gardenia jasminoides and their inhibitory effects on nitric oxide production. Bioorg Med Chem Lett 2013;23:1127–31.
[36] Xiao M, Gui X, Wang Z. Iridoid glycosides from Gardenia jasminoides E. Helv Chim Acta 2008;91:646–52.
[37] Sridhar RA, Shankara CJ, Merugu R. Iridoids from Gardenia jasminoides Ellis. Int J Chem Tech Res 2013;5:418–21.
[38] Wang Y, Liu H, Shen LF, Yao L, Ma Y, Yu D, Chen J, Li P, Chen Y, Zhang C. Isolation and purification of six iridoid glycosides from Gardenia jasminoides fruit by medium-pressure liquid chromatography combined with macroporous resin chromatography. J Sep Sci 2015;38:4119–26.
[39] Hausenblas HA, Heekin K, Mitchie HL, Stephen Anton. A systematic review of randomized controlled trials examining the effectiveness of saffron (Crocus sativus L.) on psychological and behavioral outcomes. J Integr Med 2015;13:231–40.
[40] Zhu X, Mang Y, Shen F, Su J. Homogenate extraction of gardenia yellow pigment from Gardenia jasminoides Ellis fruit using response surface methodology. Food Sci Technol 2014;51:1575–81.
[41] Chen Y, Cai L, Zhao C, Xu H, Gao C, Liu Y, Lin J, Hong X, Chen C, Zhang H. Spectroscopic, stability and radical-scavenging properties of a novel pigment from gardenia. Food Chem 2013;139:269–72.
[42] Chen Y, Zhang H, Xi T, Zhao C, Cai L, Liu Y, Jia L, Hong X, Chen C. Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides Ellis and Crocus sativus L.: a relationship investigation between antioxidant activity and crocin contents. Food Chem 2008;109:484–92.
[43] Pfister S, Meyer P, Steck A, Fander PF. Isolation and structure elucidation of carotenoid-glycosyl esters in Gardenia fruits (Gardenia jasminoides Ellis) and saffron (Crocus sativus Linne). Agric Food Chem 1996;44:2612–5.
[44] Yang Y, Gao H, Dai Y, Wang Y, Chen HR, Yao XS. Monoterpenoids from the fruit of Gardenia jasminoides. Hely Chim Acta 2010;93:763–71.
[45] Chen Q, Youn UJ, Min B, Bae KH. Pyrone monoterpenoids from the fruit of Gardenia jasminoides. J Nat Prod 2008;71:995–9.
[46] He M, Cheng X, Chen J, Zhou T. Simultaneous determination of five major biologically active ingredients in different parts of Gardenia jasminoides fruits by HPLC with diode-array detection. Chromatographia 2006;64:713–7.
[47] Pham TQ, Cormier F, Farnworth E, Tong VH, Van Calsteren MR. Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. J Agric Food Chem 2006;54:1455–61.
[48] Chen YL, Cheng YW, Tzeng CY, Lee YC, Chang YN, Lee SC, Tsai CC, Chen JC, Cheng Tzen JZ, Chang SL. Peroxisome proliferator-activated receptor activating hypoglycemic effect of Gardenia jasminoides Ellis aqueous extract and improvement of insulin sensitivity in steroid induced insulin resistant rats. BMC Complement Altern Med 2014;14:30.
[49] Guan L, Peng H, Gong D, Zhao X, Cai L, Wu Q, Yuan B, Yang Y, Zhao J, Zou Y. Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. Exp Gerontol 2013;48:1387–94.
[50] Kojima K, Tsutomu ST, Yasuhiro NY, Watanabe M, Junko I, Shizaki J, Yoshimichi SY, Miymoto KI, Aburada M. Preventive effect of geniposide on metabolic disease status in spontaneously obese type 2 diabetic mice and free fatty acid-treated HepG2 cells. Biol Pharm Bull 2011;34:1613–8.
[51] Wang G, Wu S, Xu W, Jin H, Zheng G, Li Z, Yuan X, Zhang J, Rao J, Wu S. Geniposide inhibits high glucose-induced cell adhesion through the NF-κB signaling pathway in human umbilical vein endothelial cells. Acta Pharmacol Sin 2010;31:953–62.
[52] Xi L, Qian Z, Shen X, Wen N, Zhang Y. Crocetin prevent dexamethasone-induced insulin resistance in rats. Planta Med 2005;71:917–22.
[53] Lin W, Kuo HH, Ho LH, Tseng ML, Siao AC, Hung CT, Jeng KC, Hou CW. Gardenia jasminoides extracts and gallic acid inhibit lipopolysaccharide-induced inflammation by suppression of JNK2/1 signaling pathways in BV-2 cells. Iranian J Basic Med Sci 2015;18:555–62.
[54] Ma T, Li X, Li W, Yang Y, Huang C, Meng X, Zhang L, Li J. Geniposide alleviates inflammation by suppressing MeCP2 in mice with carbon tetrachloride-induced acute liver injury and LPS-treated THP-1 cells. Int Immunopharmacol 2015;29:739–47.
[55] Xiao J, Zhang W, Wang T, Jiang H, Zhang Z, Fu Y, Yang Z, Cao Y, Zhang N. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide-induced mastitis in mice. Inflammation 2014;37:1588–98.
[56] Xu G, Li G, Ma H, Zhong H, Liu F, Ao G. Preventive effect of crocin in inflamed animals and in LPS-challenged RAW 264.7 cells. J Agric Food Chem 2008;57:8325–30.
[57] Zhang H, Xue W, Wu R, Gong T, Tao W, Zhou X, Jiang J, Zhang J, Zhang N, Cui Y, Chen C, Chen G. Rapid antidepressant activity of ethanol extract of Gardenia jasminoides Ellis is associated with upregulation of BDNF expression in the hippocampus. J Evid Based Complement Altern Med 2015:1–8.
[58] Chen J, Shi B, Xiang H, Hou W, Qin X, Tian J, Du G. 1H NMR-based metabolic profiling of liver in chronic unpredictable mild stress rats with genipin treatment. J Pharm Biomed Anal 2015;115:150–8.
[59] Ho KJ, Hee KG, Hee HK. Monoamine oxidase and dopamine b-hydroxylase inhibitors from the fruits of Gardenia jasminoides. Biomed Ther 2012;23:214–9.
[60] Kaji T, Hayashi T, Nisimba M, Kaga K, Eiji N, Sakuragawa N. Gardenia fruit extracts does not stimulate the proliferation of cultured vascular smooth muscle cells, A10. Chem Pharm Bull 1991;39:1312–4.
[61] Park EH, Joo MH, Kim SH, Lim CJ. Antiangiogenic activity of Gardenia jasminoides fruit. Phytother Res 2003;17:961–2.

[62] Koo HJ, Lee S, Shin KH, Kim BC, Lim CJ, Park EH. Geniposide, an anti-angiogenic compound from the fruit of Gardenia jasminoides. Lett Planta Med 2004;70:467–9.

[63] Higashino S, Sasaki Y, Giddings JC, Hyodo K, Sakata SF, Matsuda K, Horikawa Y, Yamamoto J. Crocetin, a carotenoid from Gardenia jasminoides Ellis, protects against hypertension and cerebral thrombogenesis in stroke-prone spontaneously hypertensive rats. Phytother Res 2014;28:1315–9.

[64] Tang FT, Qian ZY, Liu PQ, Zheng SG, He SY, Bao LP, Huang HQ. Crocetin improves endothelium-dependent relaxation of thoracic aorta in hypercholesterolemic rabbit by increasing eNOS activity. Biochem Pharmacol 2006;72:558–65.

[65] Lee JH, Lee DU, Jeong CS. Gardenia jasminoides Ellis ethanol extract and its constituents reduce the risks of gastritis and reverse gastric lesions in rats. Food Chem Toxicol 2009;47:1127–31.

[66] Lari P, Abnous K, Imenshahidi M, Rashedinia M, Razavi M, Hosseinzadeh H. Evaluation of diazinon-induced hepatotoxicity and protective effects of crocin. Toxicol Ind Health 2015;31:367–74.

[67] Mohajeri D, Nazeri M. Inhibitory effect of crocin on hepatic steatosis in the rats fed with high fat diet. J Anim Vet Adv 2012;11:2079–379.

[68] Dai M, Wu H, Li H, Chen J, Chen J, Hu S, Shen C. Effects and mechanisms of geniposide on rats with adjuvant arthritis. Int Immunopharmacol 2014;20:46–53.

[69] Chen J, Wu H, Li H, Hu S, Dai M, Chen J. Anti-inflammatory effects and pharmacokinetics study of geniposide on rats with adjuvant arthritis. Int Immunopharmacol 2015;24:102–9.

[70] Yu Y, Xie Z, Gao H, Ma W, Dai Y, Wang Y, Zhong Y, Yao X. Bioactive iridoid glucosides from the fruit of Gardenia jasminoides. J Nat Prod 2009;72:1459–64.

[71] Chen Y, Zhang Y, Li L, Holscher C. Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson’s disease. Eur J Pharmacol 2015;768:21–7.

[72] Lee IA, Lee JH, Baek NJ, Kim DH. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull 2005;28:2106–10.

[73] Sheng L, Qian Z, Zheng S, Xi L. Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. Eur J Pharmacol 2006;543:116–22.

[74] Lee IA, Min SW, Kim DH. Lactic acid bacteria increases hypolipidemic effect of crocin isolated from fructus of Gardenia jasminoides. Microbiol Biotechnol 2006;16:1084–9.

[75] Yamauchi M, Tsuruma K, Imai S, Nakaniishi T, Umigai N, Shimazawa M, Hara H. Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity. Eur J Pharmacol 2011;650:110–9.

[76] Ishizuka F, Shimazawa M, Umigai N, Ogishima H, Nakamura S, Tsuruma K, Hara H. Crocetin, a carotenoid derivative, inhibits retinal ischemic damage in mice. Eur J Pharmacol 2013;703:1–10.

[77] Wang Y, Yan J, Xi L, Qian Z, Wang Z, Yang L. Protective effect of crocin on hemorrhagic shock-induced acute renal failure in rats. Shock 2012;38:63–7.

[78] Ozaki A, Kitano M, Furusawa N, Yamaguchi H, Kuroda K, Endo G. Genotoxicity of gardenia yellow and its components. Food Chem Toxicol 2002;40:1603–10.

[79] Su C, Yang X, Lou J. Geniposide reduces-synuclein by blocking microRNA-21/lysosome-associated membrane protein 2A interaction in Parkinson disease models. Brain Res 2016;1644:98–106.