Bleomycin sclerotherapy for lymphatic malformation after unsuccessful surgical excision: case report

Scleroterapia con bleomicina per malformazioni linfatiche dopo fallimento dell’escissione chirurgica: caso clinico

A. VLAHOVIC1, A. GAZIKALOVIC2, O. ADJIC3
1 Department of Plastic and Reconstructive Surgery and Burns, 2 Department of Radiology, Institute for Mother and Child Health Care of Republic Serbia, New Belgrade, Serbia; 3 Center for Diagnostic Imaging, Oncology Institute of Sremska Kamenica

SUMMARY

Lymphatic malformations (LMs) are benign cystic masses resulting from the abnormal development of lymphatic channels. Lymphatic malformations occur primarily in the head and neck region. Surgical excision of lymphatic malformation is followed by high rate of recurrence and a high risk of complications. Bleomycin is an established antineoplastic drug. It can be used as a sclerosing agent in vascular anomalies. We present a child who was unsuccessfully treated with four surgical resections, with peripheral palsy of facial nerve as complication. The lymphatic malformation was successfully treated in our institution with intralesional administration of bleomycin.

KEY WORDS: Lymphatic malformation • Bleomycin • Sclerotherapy

INTRODUCTION

Lymphatic malformations (LMs) are developmental anomalies of lymphatic system consisting of abnormally-formed lymphatic channels and cystic spaces. Lymphatic malformations occur primarily in the head and neck, accounting for 75% of all cases. They are typically detected at birth, and 90% is clinically apparent by the age of 2 years. There are three morphologic types of LMs: microcystic, macrocystic and combined (combination of microcystic and macrocystic components). LMs in head and neck region cause pain, bleeding, infection, muscular atrophy, malocclusion, speech difficulties, feeding problems, airway obstruction and cosmetic deformities. Several methods have been used to treat LMs including surgical excision, sclerotherapy, laser therapy and radiofrequency ablation. Historically, first-line therapy for LM has been surgical excision. However, complete excision is usually not possible, and there is a high rate of recurrence.

There are also postoperative complications such as nerve injury (up to 45%), airway obstruction caused by swelling, haematoma formation and wound infection. Sclerotherapy has emerged as a promising alternative to surgical management for LMs in children. Several different sclerosing agents and injection protocols have been documented in the literature, with varying amounts of success (OK-432, bleomycin, doxycycline, sodium tetradecyl sulfate 3%, alcoholic solution of zein, ethanol). Bleomycin was first developed as an antineoplastic antibiotic, and its sclerosing effect was discovered later. Bleomycin is an established antineoplastic drug. It can be used as a sclerosing agent in vascular anomalies. We present a child who was unsuccessfully treated with four surgical resections, with peripheral palsy of facial nerve as complication. The lymphatic malformation was successfully treated in our institution with intralesional administration of bleomycin.
Case report

A 6-year-old boy with left-sided swelling of the face and neck was brought to our department. He was previously treated at different institutions when he was 4.5 years old. The child had had four partial resections during a 1.5 year period by different surgical teams. There were no exact data on previous diagnostic and treatment procedures. One month before he was admitted to our institution, after the last surgical resection and drainage, and the swelling had increased followed by intense pain. The child had breathing and feeding difficulties. Local status revealed peripheral palsy of facial nerve (mandible branch of facial nerve) (Fig. 1). Several scars at left side of the neck and submandibular region from previous surgical interventions were also noticed. At our department, laboratory findings were within normal range. MRI was as follows: expansive, multilocular cystic lesion at left parotid region expanding to pterygopalatinal fossa, parapharyngeal space, submandibular and carotid space on left side, surrounded by large vessels. Cranio-caudal diameter of single unilocular lesion was 45 mm. Distal border of lesion was at level 12 mm below mandibular margin. Cysts fluid was T2W/T1W hyperintense, with proteinic or haemorrhagic characteristics (T1W not shown). Conclusion: LM of parotid region and pterygopalatinal fossa (Fig. 2).

Under general anaesthesia, excision of scar at the left parotid region was performed. Intralesional injection of two cysts with 20 G needle was performed, followed by aspiration of 7.5 ml and 1 ml of haemorrhagic fluid (infection and intralesional haemorrhage). The dose of bleomycin administered was 1 mg/kg body weight, 8.5 ml in total (15 mg bleomycin dissolved in 15 ml normal saline). After injection, the patient was given a course of antibiotics and analgesics. Postoperatively, side effects were minimal (transient local swelling). Eight months after bleomycin sclerosation, MRI revealed that there was nearly complete regression of LM with single cyst at parotid region 10 mm in size (Fig. 3). The child had no functional symptoms, with good aesthetic appearance (Fig. 4).

Discussion

Lymphatic malformations are developmental anomalies of the lymphatic system that occur most commonly in the head and neck region followed by axilla and mediastinum. The precise aetiology of LMs is still unknown. In 50% of cases they are present at birth with 80% to 90% diagnosed within the first two years of life. Initially they usually present as a painless, soft mass with wide variations in the growth rate. Rapid growth can occur as a result of trauma, intralesional haemorrhage and thrombosis. Spontaneous regression is very rare. The management of LM is challenging because of the infiltrative nature of this lesion especially in the head and neck region. The treatment success of LM depends on the type of the lesion, ana-
Successful treatment of complicated lymphatic malformation with bleomycin

Conclusions
A number of treatment methods are available for LMs of the head and neck region. Surgical treatment of LMs can be associated with significant morbidity. Intralesional injection of bleomycin has minimal and controllable local and systemic adverse effects. Sclerosation of LMs with bleomycin in our case was highly effective compared to several surgical resections.

References
1. Zhou Q, Zheng JW, Mai HM, et al. Treatment guidelines of lymphatic malformations of the head and neck. Oral Oncology 2011;47:1105-9.
2. Churchill P, Oult D, Pemberton J, et al. Sclerotherapy for lymphatic malformations in children: a review. J Ped Surg 2011;46:912-22.
3. Yang Y, Sun M, Ma Q, et al. Bleomycin A5 sclerotherapy for cervicofacial lymphatic malformations. J Vasc Surg 2011;53:150-5.
4. Perkins JA, Manning SC, Tempero RM, et al. Lymphatic malformations: review of current treatment. Otolaryngol Head Neck Surg 2010;142:795-803.
5. Muir T, Kirsten M, Fourie P, et al. Intralesional bleomycin injection (IBI) treatment for haemangiomas and congenital vascular malformations. Am Pediatr Surg Int 2004;19:766-73.
6. Sung MW, Chang SO, Choi JH, et al. Bleomycin sclerotherapy in patients with congenital lymphatic malformation in the head and neck. Am J Otolaryngol 1995;16:236-41.
7. Atwa K, Abubhasma S, Shihab Z, et al. Acute pulmonary toxicity following intralesional administration of bleomycin for a lymphoheinous malformation. Pediatr Pulm 2010;45:192-6.
8. Shen CY, Wu MC, Tyan YS, et al. Preliminary experience of percutaneous intralesional bleomycin injection for the treatment of orbital lymphoheinous malformation refractory to surgery. Clin. Radiol 2012;67:182-4.
9. Karavelioğlu A, Temuçin CM, Tanyel FC, et al. Sclerotherapy with bleomycin does not adversely affect facial nerve function in children with cervicofacial cystic lymphatic malformation. J Pediatr Surg 2010;45:1627-32.
10. Mathur NN, Rana I, Bothra R, et al. Bleomycin sclerotherapy in congenital lymphatic and vascular malformations of head and neck. Int J Pediatr Otolaryngol 2005;69:75-80.
11. Sainsbury CGD, Kessell G, Fall AJ, et al. Intralesional bleomycin injection treatment for vascular birthmarks: a 5-year experience at a single United Kingdom Unit. Plast Reconstr Surg 2011;127:2031-44.
12. Pdwa BL, Hayward PG, Ferraro NF, et al. Cervicofacial lymphatic malformation: clinical course, surgical intervention, and pathogenesis of skeletal hypertrophy. Plast Reconstr Surg 1995;95:951-60.
13. Fliegelman LJ, Friedland D, Brandwein M, et al. Lymphatic malformation: predictive factor for recurrence. Otolaryngol Head Neck Surg 2000;123:706-10.

Address for correspondence: Aleksandar Vlahovic, Department of Plastic and Reconstructive Surgery and Burns, Institute for Mother and Child Health Care of Republic Serbia, Radoja Dukica 6-8 street, 11070, New Belgrade, Serbia. E-mail: aleksandarvlahovic@yahoo.com

Received: May 23, 2013- Accepted: December 1, 2014