Covariance matrices for mean field variational Bayes

Ryan Giordano, Tamara Broderick, Michael I. Jordan
Berkeley ITT Career Development Assistant Professor, MIT Berkeley
Statistical/computational trade-offs
Statistical/computational trade-offs

• Bayesian inference
Statistical/computational trade-offs

- Bayesian inference
 - modular, complex models

[Broderick, Kulis, Jordan 2013]
Statistical/computational trade-offs

- Bayesian inference
 - modular, complex models
 - all information about the parameter in the posterior
Statistical/computational trade-offs

- Bayesian inference
 - modular, complex models
 - all information about the parameter in the posterior
- Approximating the posterior can be computationally expensive
Statistical/computational trade-offs

- Bayesian inference
 - modular, complex models
 - all information about the parameter in the posterior
- Approximating the posterior can be computationally expensive
- Computational/statistical gains for trading off some posterior knowledge

[Broderick, Kulis, Jordan 2013]
Statistical/computational trade-offs

- Bayesian inference
 - modular, complex models
 - all information about the parameter in the posterior
- Approximating the posterior can be computationally expensive
- Computational/statistical gains for trading off some posterior knowledge
 - point estimates: e.g., MAD-Bayes

[Broderick, Kulis, Jordan 2013]
Statistical/computational trade-offs

- Bayesian inference
 - modular, complex models
 - all information about the parameter in the posterior
- Approximating the posterior can be computationally expensive
- Computational/statistical gains for trading off some posterior knowledge
 - point estimates: e.g., MAD-Bayes
 - covariances, coherent estimates of uncertainty

[Broderick, Kulis, Jordan 2013]
What about uncertainty?

• Variational Bayes (VB)

• Approximation for posterior

• Minimize Kullback-Liebler (KL) divergence:

\[
p(✓ | x) \approx q(✓) \quad \text{minimize } KL(p(✓ | x) || q(✓))
\]

• VB practical success

• point estimates and prediction

• fast
What about uncertainty?

• Variational Bayes (VB)
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
What about uncertainty?

• Variational Bayes (VB)
 • Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
- Minimize Kullback-Liebler (KL) divergence:
 $$KL(q\|p(\cdot|x))$$
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
- Minimize Kullback-Liebler (KL) divergence:
 \[
 KL(q\|p(\cdot|x))
 \]
- VB practical success
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
- Minimize Kullback-Liebler (KL) divergence:
 \[
 KL(q\|p(\cdot|x))
 \]

- VB practical success
 - point estimates and prediction
What about uncertainty?

• Variational Bayes (VB)
• Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
• Minimize Kullback-Liebler (KL) divergence:

$$KL(q\|p(\cdot|x))$$

• VB practical success
 • point estimates and prediction
 • fast

[Broderick, Boyd, Wibisono, Wilson, Jordan 2013]
What about uncertainty?

- Variational Bayes (VB)
- Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
- Minimize Kullback-Liebler (KL) divergence:
 \[
 KL(q\|p(\cdot|x))
 \]
- VB practical success
 - point estimates and prediction
 - fast, streaming, distributed

[Broderick, Boyd, Wibisono, Wilson, Jordan 2013]
What about uncertainty?

\[q(\theta) = \prod_{j=1}^{J} q(\theta_j) \]

\[\text{KL}(q || p(x|\theta)) = \int q(\theta) \log q(\theta) p(\theta | x) d\theta \]
What about uncertainty?

- Variational Bayes
What about uncertainty?

- Variational Bayes

\[KL(q||p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta \]
What about uncertainty?

• Variational Bayes

\[KL(q||p(\cdot|x)) = \int_\theta q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta \]
What about uncertainty?

- Variational Bayes
 \[KL(q||p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} \, d\theta \]

- Mean-field variational Bayes (MFVB)
 \[q(\theta) = \prod_{j=1}^{J} q(\theta_j) \]
What about uncertainty?

- Variational Bayes

\[
KL(q||p(\cdot|x)) = \int q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta
\]

- Mean-field variational Bayes (MFVB)

\[
q(\theta) = \prod_{j=1}^{J} q(\theta_j)
\]
What about uncertainty?

- Variational Bayes

\[KL(q||p(\cdot|x)) = \int_\theta q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta \]

- Mean-field variational Bayes (MFVB)

\[q(\theta) = \prod_{j=1}^J q(\theta_j) \]

- Underestimates variance (sometimes severely)

[Bishop 2006]
What about uncertainty?

- Variational Bayes

\[KL(q || p(\cdot | x)) = \int_\theta q(\theta) \log \frac{q(\theta)}{p(\theta | x)} d\theta \]

- Mean-field variational Bayes (MFVB)

\[q(\theta) = \prod_{j=1}^{J} q(\theta_j) \]

- Underestimates variance (sometimes severely)

- No covariance estimates

[Bishop 2006]
What about uncertainty?

- Variational Bayes

\[KL(q || p(\cdot | x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta | x)} d\theta \]

- Mean-field variational Bayes (MFVB)

\[q(\theta) = \prod_{j=1}^{J} q(\theta_j) \]

- Underestimates variance (sometimes severely)

- No covariance estimates

[MacKay 2003; Bishop 2006; Wang, Titterington 2004; Turner, Sahani 2011]
What about uncertainty?

• Variational Bayes

\[KL(q||p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta \]

• Mean-field variational Bayes (MFVB)

\[q(\theta) = \prod_{j=1}^{J} q(\theta_j) \]

• Underestimates variance (sometimes severely)

• No covariance estimates

[MacKay 2003; Bishop 2006; Wang, Titterington 2004; Turner, Sahani 2011]

[Dunson 2014; Bardenet, Doucet, Holmes, 2015]
1. Derive *Linear Response Variational Bayes* (LRVB) variance/covariance correction

2. Accuracy experiments

3. Scalability experiments
Linear response
Linear response

• Cumulant-generating function
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{tT \theta} \]
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \quad \text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 \[\text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E}e^{t^T \theta} \]

\[\text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance

\[\Sigma := \left. \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \right|_{t=0} \]

[Bishop 2006]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 mean = \[\frac{d}{dt} C(t) \bigg|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \]
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \]

\[\text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance vs MFVB covariance

\[\Sigma := \left. \frac{d^2}{dt^T dt} C_{p(\theta|x)}(t) \right|_{t=0} \]

\[V := \left. \frac{d^2}{dt^T dt} C_{q^*(\theta)}(t) \right|_{t=0} \]

[Bishop 2006]
Linear response

• Cumulant-generating function

\[C(t) := \log \mathbb{E}e^{t^T \theta} \]
\[\text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

• True posterior covariance vs MFVB covariance

\[\Sigma := \frac{d^2}{dt^T dt} C_p(\cdot|x)(t) \bigg|_{t=0} \]
\[V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0} \]

• “Linear response”
Linear response

• Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \]

\[\text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

• True posterior covariance vs MFVB covariance

\[\Sigma := \left. \frac{d^2}{dt dt^T} C_{p(\cdot|x)}(t) \right|_{t=0} \]

\[V := \left. \frac{d^2}{dt dt^T} C_{q^*}(t) \right|_{t=0} \]

• “Linear response”

\[\log p(\theta|x) \]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 \[\text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \]
 \[V := \frac{d^2}{dt^T dt} C_{q^*(\cdot)}(t) \bigg|_{t=0} \]

- “Linear response”
 \[\log p(\theta|x) + t^T \theta \]

[Bishop 2006]
Linear response

• Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \quad \text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

• True posterior covariance vs MFVB covariance

\[\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \quad \text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

• “Linear response”

\[\log p_t(\theta) := \log p(\theta|x) + t^T \theta \]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 \[\text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \left. \frac{d^2}{dt^T dt} C_p(\cdot|\mathbf{x})(t) \right|_{t=0} \]
 \[V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0} \]

- “Linear response”
 \[\log p_t(\theta) := \log p(\theta|\mathbf{x}) + t^T \theta - C(t) \]
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \]

\[\text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

- True posterior covariance vs MFVB covariance

\[\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \]

\[V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0} \]

- “Linear response”

\[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q_t^* \]
Linear response

• Cumulant-generating function

\[C(t) := \log \mathbb{E}e^{t^T \theta} \]

mean = \(\frac{d}{dt} C(t) \bigg|_{t=0} \)

• True posterior covariance vs MFVB covariance

\[\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \]

\[V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0} \]

• “Linear response”

\[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q^*_t \]

• The LRVB approximation
Linear response

• Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \]

mean = \[\frac{d}{dt} C(t) \bigg|_{t=0} \]

• True posterior covariance vs MFVB covariance

\[\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \]

\[V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0} \]

• “Linear response”

\[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q^*_t \]

• The LRVB approximation

\[\Sigma = \frac{d}{dt^T} \left[\frac{d}{dt} C_{p(\cdot|x)}(t) \right] \bigg|_{t=0} \]

[Bishop 2006]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 \[\text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \left. \frac{d^2}{dt^T dt} C_p(\cdot|x)(t) \right|_{t=0} \]
 \[V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0} \]

- "Linear response"
 \[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q^*_t \]

- The LRVB approximation
 \[\Sigma = \left. \frac{d}{dt^T} \mathbb{E}_{p_t} \theta \right|_{t=0} \]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 \[\text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \left. \frac{d^2}{dt^T dt} C_p(\cdot|x)(t) \right|_{t=0} \]
 \[V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0} \]

- “Linear response”
 \[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q_t^* \]

- The LRVB approximation
 \[\Sigma = \left. \frac{d}{dt^T} \mathbb{E}_{p_t} \theta \right|_{t=0} \]

[Bishop 2006]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \quad \text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \frac{d^2}{dtT \, dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \quad V := \frac{d^2}{dtT \, dt} C_{q^*}(t) \bigg|_{t=0} \]

- "Linear response"
 \[\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q_t^* \]

- The LRVB approximation
 \[\Sigma = \frac{d}{dtT} \mathbb{E}_{p_t} \theta \bigg|_{t=0} \]
Linear response

- Cumulant-generating function

\[C(t) := \log \mathbb{E} e^{t^T \theta} \quad \text{mean} = \left. \frac{d}{dt} C(t) \right|_{t=0} \]

- True posterior covariance vs MFVB covariance

\[\Sigma := \left. \frac{d^2}{dt^T dt} C_p(\cdot | x)(t) \right|_{t=0} \quad V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0} \]

- “Linear response”

\[\log p_t(\theta) := \log p(\theta | x) + t^T \theta - C(t), \quad \text{MFVB } q^*_t \]

- The LRVB approximation

\[\Sigma = \left. \frac{d}{dt^T} \mathbb{E}_{p_t} \theta \right|_{t=0} \approx \left. \frac{d}{dt^T} \mathbb{E}_{q^*_t} \theta \right|_{t=0} \]

[Bishop 2006]
Linear response

- Cumulant-generating function
 \[C(t) := \log \mathbb{E} e^{t^T \theta} \]
 \[\text{mean} = \frac{d}{dt} C(t) \bigg|_{t=0} \]

- True posterior covariance vs MFVB covariance
 \[\Sigma := \frac{d^2}{dt^T dt} C_p(\cdot|x)(t) \bigg|_{t=0} \]
 \[V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0} \]

- “Linear response”
 \[\log \rho_t(\theta) := \log \rho(\theta|x) + t^T \theta - C(t), \text{ MFVB } q_t^* \]

- The LRVB approximation
 \[\Sigma = \frac{d}{dt^T} \mathbb{E}_{\rho_t} \theta \bigg|_{t=0} \approx \frac{d}{dt^T} \mathbb{E}_{q^*_t} \theta \bigg|_{t=0} =: \hat{\Sigma} \]
• LRVB covariance estimate \(\hat{\Sigma} := \left. \frac{d}{dt} \mathbf{E}_{q_t^*} \theta \right|_{t=0} \)
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt} \mathbb{E}_{q^*_t} \theta \right|_{t=0}$
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \bigg|_{t=0}$

- Suppose q_t exponential family
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \frac{d}{dt} t E q_t^* \theta \bigg|_{t=0}$

- Suppose q_t exponential family with mean parametrization m_t
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \bigg|_{t=0}$

- Suppose q_t exponential family with mean parametrization m_t
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} m^*_t \right|_{t=0}$

- Suppose q_t exponential family with mean parametrization m_t
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \frac{d}{dt^T} m_t^* \Bigg|_{t=0}$

- Suppose q_t exponential family with mean parametrization m_t

- KL optimization: fixed point equation in the mean params

\[0 = \frac{\partial}{\partial m_t} KL_t \Bigg|_{m_t=m_t^*} \]
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} m_t^* \right|_{t=0}$

- Suppose q_t exponential family with mean parametrization m_t

- KL optimization: fixed point equation in the mean params

$$m_t^* = \left. \frac{\partial}{\partial m_t} KL_t \right|_{m_t = m_t^*} + m_t^*$$
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} m_t^* \right|_{t=0}$

- Suppose q_t exponential family with mean parametrization m_t

- KL optimization: fixed point equation in the mean params

$$m_t^* = \left. \frac{\partial}{\partial m_t} KL_t \right|_{m_t=m_t^*} + m_t^*$$

$$\hat{\Sigma} = \left(\left. \frac{\partial^2 KL}{\partial m \partial m^T} \right|_{m=m_t^*} \right)^{-1}$$
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \frac{d}{dt^T}m_t^* \bigg|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t
- KL optimization: fixed point equation in the mean params
 $$m_t^* = \frac{\partial}{\partial m_t} KL_t \bigg|_{m_t=m_t^*} + m_t^*$$
 $$\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1}$$
- KL decomposition: $KL = \mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\theta|x) =: S - L$
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} m_t^* \right|_{t=0}$

- Suppose q_t exponential family with mean parametrization m_t

- KL optimization: fixed point equation in the mean params

$$m_t^* = \left. \frac{\partial}{\partial m_t} KL_t \right|_{m_t=m_t^*} + m_t^*$$

$$\hat{\Sigma} = \left(\left. \frac{\partial^2 KL}{\partial m \partial m^T} \right|_{m=m^*} \right)^{-1}$$

- KL decomposition: $KL = \mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\theta|x) =: S - L$

$$\hat{\Sigma} = (V^{-1} - H)^{-1}$$
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \frac{d}{dt^T} m_t^* \bigg|_{t=0}

- Suppose q_t exponential family with mean parametrization m_t

- KL optimization: fixed point equation in the mean params

$$m_t^* = \frac{\partial}{\partial m_t} KL_t \bigg|_{m_t=m_t^*} + m_t^*$$

$$\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1}$$

- KL decomposition: $KL = \mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\theta|x) =: S - L$

$$\hat{\Sigma} = (V^{-1} - H)^{-1} = (I - VH)^{-1} V$$
Getting rid of t

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} m_t^* \right|_{t=0}$

- Suppose q_t exponential family with mean parametrization m_t

- KL optimization: fixed point equation in the mean params

$$m_t^* = \left. \frac{\partial}{\partial m_t} KL_t \right|_{m_t=m_t^*} + m_t^*$$

$$\hat{\Sigma} = \left(\left. \frac{\partial^2 KL}{\partial m \partial m^T} \right|_{m=m^*} \right)^{-1}$$

- KL decomposition: $KL = \mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\theta|x) =: S - L$

$$\hat{\Sigma} = \left(V^{-1} - H \right)^{-1} = (I - VH)^{-1} V \quad \text{for} \quad \left. \frac{\partial^2 L}{\partial m \partial m^T} \right|_{m=m^*}$$
LRVB estimator

- LRVB covariance estimate
 \[\hat{\Sigma} := \frac{d}{dt} E q_t^* \theta \bigg|_{t=0} \]

- Suppose \(q_t \) exponential family with mean parametrization \(m_t \)

- KL optimization: fixed point equation in the mean params
 \[m_t^* = \frac{\partial}{\partial m_t} KL_t \bigg|_{m_t=m_t^*} + m_t^* \]
 \[\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} \]

- KL decomposition: \(KL = E_q \log q(\theta) - E_q \log p(\theta|x) =: S - L \)
 \[\hat{\Sigma} = (V^{-1} - H)^{-1} = (I - VH)^{-1} V \quad \text{for} \quad H := \frac{\partial^2 L}{\partial m \partial m^T} \bigg|_{m=m^*} \]
LRVB estimator

- LRVB covariance estimate
 \[
 \hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \bigg|_{t=0}
 \]

- KL decomposition: \(KL = \mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\theta|x) =: S - L \)
 \[
 \hat{\Sigma} = \left(V^{-1} - H \right)^{-1} = (I - VH)^{-1} V \quad \text{for} \quad H := \frac{\partial^2 L}{\partial m \partial m^T} \bigg|_{m=m^*}
 \]
LRVB estimator

- LRVB covariance estimate
 \[\hat{\Sigma} := \left. \frac{d}{dt^T} E_{q_t^*} \theta \right|_{t=0} \]

- KL decomposition:
 \[KL = E_q \log q(\theta) - E_q \log p(\theta|x) =: S - L \]
 \[\hat{\Sigma} = (V^{-1} - H)^{-1} = (I - VH)^{-1}V \]
 for \[H := \left. \frac{\partial^2 L}{\partial m \partial m^T} \right|_{m=m^*} \]
LRVB estimator

- LRVB covariance estimate

\[
\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q^*} \theta \bigg|_{t=0}
\]

\[
\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1}
\]

\[
\hat{\Sigma} = (I - VH)^{-1} V
\]
LRVB estimator

- LRVB covariance estimate

\[\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q^*_t} \theta \bigg|_{t=0} \]

\[\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} \]

\[\hat{\Sigma} = (I - VH)^{-1}V \]
LRVB estimator

- LRVB covariance estimate \(\hat{\Sigma} := \left. \frac{d}{dt} \mathbb{E}_{q_t^*} \theta \right|_{t=0} \)

\[
\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1}
\]

\[
\hat{\Sigma} = (I - VH)^{-1} V
\]
LRVB estimator

• LRVB covariance estimate
 \[\hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0} \]
 \[\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \right)_{m=m^*}^{-1} \]
 \[\hat{\Sigma} = (I - VH)^{-1}V \]

• Symmetric and positive definite at local min of KL
LRVB estimator

• LRVB covariance estimate
\[\hat{\Sigma} := \frac{d}{dt^T} \mathbb{E}_{q^*_t} \theta \bigg|_{t=0} \]

\[\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} \]

\[\hat{\Sigma} = (I - VH)^{-1} V \]

• Symmetric and positive definite at local min of KL

• The LRVB assumption: \(\mathbb{E}_{p_t} \theta \approx \mathbb{E}_{q^*_t} \theta \)
LRVB estimator

- LRVB covariance estimate \(\hat{\Sigma} := \left. \frac{d}{d t^T} \mathbb{E}_{q^*_t} \theta \right|_{t=0} \)

\[
\hat{\Sigma} = \left(\left. \frac{\partial^2 KL}{\partial m \partial m^T} \right|_{m=m^*} \right)^{-1}
\]

\[
\hat{\Sigma} = (I - VH)^{-1} V
\]

- Symmetric and positive definite at local min of KL

- The LRVB assumption: \(\mathbb{E}_{p_t} \theta \approx \mathbb{E}_{q^*_t} \theta \)

[Bishop 2006]
LRVB estimator

- LRVB covariance estimate \(\hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t} \theta \right|_{t=0} \)

\[
\hat{\Sigma} = \left(\left. \frac{\partial^2 K L}{\partial m \partial m^T} \right|_{m=m^*} \right)^{-1}
\]

\[
\hat{\Sigma} = (I - VH)^{-1} V
\]

- Symmetric and positive definite at local min of KL

- The LRVB assumption: \(\mathbb{E}_{p_t} \theta \approx \mathbb{E}_{q_t^*} \theta \)

[Bishop 2006]
LRVB estimator

• LRVB covariance estimate \(\hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t} \theta \right|_{t=0} \)

\[
\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1}
\]

\[
\hat{\Sigma} = (I - VH)^{-1} V
\]

• Symmetric and positive definite at local min of KL

• The LRVB assumption: \(\mathbb{E}_{p_t} \theta \approx \mathbb{E}_{q_t^*} \theta \)

• LRVB estimate is exact when VB gives exact mean (e.g. multivariate normal)

[Bishop 2006]
Scaling the matrix inverse
Scaling the matrix inverse

- LRVB estimate $\hat{\Sigma} = (I - VH)^{-1}V$
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1} V \)
- Decomposition of parameter vector
Scaling the matrix inverse

- LRVB estimate: \(\hat{\Sigma} = (I - VH)^{-1} V \)

- Decomposition of parameter vector

\[
\theta = (\alpha^T, z^T)^T
\]
Scaling the matrix inverse

- LRVB estimate: \(\hat{\Sigma} = (I - VH)^{-1} V \)
- Decomposition of parameter vector:
 \[
 \theta = (\alpha^T, z^T)^T
 \]

\[
H = \begin{pmatrix}
H_\alpha & H_{\alpha z} \\
H_{z \alpha} & H_z
\end{pmatrix}
\]
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

- Decomposition of parameter vector
 \[\theta = (\alpha^T, z^T)^T \]

- Schur complement

\[
\begin{bmatrix}
 H_{\alpha} & H_{\alpha z} \\
 H_{z\alpha} & H_z
\end{bmatrix}
\]
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

- Decomposition of parameter vector

\[
\theta = (\alpha^T, z^T)^T
\]

- Schur complement

\[
\hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1} V_z H_{z \alpha})^{-1} V_\alpha
\]
Scaling the matrix inverse

• LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

• Decomposition of parameter vector

\[\theta = (\alpha^T, z^T)^T \]

\[H = \begin{pmatrix} H_\alpha & H_{\alpha z} \\ H_{z \alpha} & H_z \end{pmatrix} \]

• Schur complement

\[\hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1} V_z H_{z \alpha})^{-1} V_\alpha \]
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

- Decomposition of parameter vector
 \[\theta = (\alpha^T, z^T)^T \]

- Schur complement
 \[\hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1}V_z H_{z \alpha})^{-1} V_\alpha \]
Scaling the matrix inverse

• LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

• Decomposition of parameter vector
 \[\theta = (\alpha^T, z^T)^T \]

\[
\begin{bmatrix}
H_\alpha & H_{\alpha z} \\
H_{z\alpha} & H_z
\end{bmatrix}
\]

• Schur complement
 \[
\hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1} V_z H_{z\alpha})^{-1} V_\alpha
\]

• Sparsity patterns
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

- Decomposition of parameter vector
 \[
 \theta = (\alpha^T, z^T)^T
 \]

- Schur complement
 \[
 \hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1} V_z H_{z\alpha})^{-1} V_\alpha
 \]

- Sparsity patterns
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

- Decomposition of parameter vector
 \[
 \theta = (\alpha^T, z^T)^T
 \]

- Schur complement
 \[
 \hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1} V_z H_{z \alpha})^{-1} V_\alpha
 \]

- Sparsity patterns
Scaling the matrix inverse

- LRVB estimate \(\hat{\Sigma} = (I - VH)^{-1}V \)

- Decomposition of parameter vector
 \[
 \theta = (\alpha^T, z^T)^T
 \]

- Schur complement
 \[
 \hat{\Sigma}_\alpha = (I_\alpha - V_\alpha H_\alpha - V_\alpha H_{\alpha z} (I_z - V_z H_z)^{-1}V_z H_{z\alpha})^{-1} V_\alpha
 \]

- Sparsity patterns
 \[
 V \quad H \quad I - VH
 \]
1. Derive *Linear Response Variational Bayes* (LRVB) variance/covariance correction

2. Accuracy experiments

3. Scalability experiments
Experiments
Experiments

• Non-conjugate normal-Poisson generalized linear mixed model
Experiments

• Non-conjugate normal-Poisson generalized linear mixed model

\[z_n | \beta, \tau \overset{indep}{\sim} \mathcal{N} (z_n | \beta x_n, \tau^{-1}) , \quad y_n | z_n \overset{indep}{\sim} \text{Poisson} (y_n | \exp(z_n)) , \]

\[\beta \sim \mathcal{N} (\beta | 0, \sigma^2_{\beta}) , \quad \tau \sim \text{Gamma} (\tau | \alpha_\tau, \beta_\tau) \]
Experiments

• Non-conjugate normal-Poisson generalized linear mixed model

\[z_n|\beta, \tau \overset{\text{indep}}{\sim} \mathcal{N}(z_n|\beta x_n, \tau^{-1}), \quad y_n|z_n \overset{\text{indep}}{\sim} \text{Poisson}(y_n|\exp(z_n)), \]

\[\beta \sim \mathcal{N}(\beta|0, \sigma_\beta^2), \quad \tau \sim \text{Gamma}(\tau|\alpha_\tau, \beta_\tau) \]

• MFVB assumption:

\[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n) \]
Experiments

• Non-conjugate normal-Poisson generalized linear mixed model

\[z_n \mid \beta, \tau \overset{\text{indep}}{\sim} \mathcal{N}(z_n \mid \beta x_n, \tau^{-1}), \quad y_n \mid z_n \overset{\text{indep}}{\sim} \text{Poisson}(y_n \mid \exp(z_n)), \]

\[\beta \sim \mathcal{N}(\beta \mid 0, \sigma_\beta^2), \quad \tau \sim \text{Gamma}(\tau \mid \alpha_\tau, \beta_\tau) \]

• MFVB assumption:

\[q(\beta, \tau, z) = q(\beta) q(\tau) \prod_{n=1}^{N} q(z_n), \quad q(z_n) = \mathcal{N}(z_n) \]
Experiments

- Non-conjugate normal-Poisson generalized linear mixed model

\[z_n | \beta, \tau \sim \text{indep } \mathcal{N} (z_n | \beta x_n, \tau^{-1}), \quad y_n | z_n \sim \text{indep } \text{Poisson} (y_n | \exp(z_n)), \]

\[\beta \sim \mathcal{N} (\beta | 0, \sigma^2_\beta), \quad \tau \sim \text{Gamma} (\tau | \alpha_\tau, \beta_\tau) \]

- MFVB assumption:

\[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n), \quad q(z_n) = \mathcal{N} (z_n) \]

- 100 simulated data sets, 500 data points each, R MCMCglmm package (20,000 samples)
Experiments

• Non-conjugate normal-Poisson generalized linear mixed model
\[z_n | \beta, \tau \overset{\text{indep}}{\sim} N(z_n | \beta x_n, \tau^{-1}), \quad y_n | z_n \overset{\text{indep}}{\sim} \text{Poisson}(y_n | \exp(z_n)), \]
\[\beta \sim N(\beta | 0, \sigma_{\beta}^2), \quad \tau \sim \text{Gamma}(\tau | \alpha_{\tau}, \beta_{\tau}) \]

• MFVB assumption:
\[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n), \quad q(z_n) = N(z_n) \]

• 100 simulated data sets, 500 data points each, R MCMCglmm package (20,000 samples)
Experiments

• Non-conjugate normal-Poisson generalized linear mixed model

\[z_n | \beta, \tau \sim \text{indep } \mathcal{N}(z_n | \beta x_n, \tau^{-1}), \quad y_n | z_n \sim \text{indep } \text{Poisson}(y_n | \exp(z_n)) , \]

\[\beta \sim \mathcal{N}(\beta | 0, \sigma_\beta^2), \quad \tau \sim \text{Gamma}(\tau | \alpha_\tau, \beta_\tau) \]

• MFVB assumption:

\[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n), \quad q(z_n) = \mathcal{N}(z_n) \]

• 100 simulated data sets, 500 data points each, R MCMCglm package (20,000 samples)

LRVB, MFVB
Experiments

- Non-conjugate normal-Poisson generalized linear mixed model
 \[z_n | \beta, \tau \overset{\text{indep}}{\sim} \mathcal{N}(z_n | \beta x_n, \tau^{-1}), \quad y_n | z_n \overset{\text{indep}}{\sim} \text{Poisson}(y_n | \exp(z_n)) \]
 \[\beta \sim \mathcal{N}(\beta | 0, \sigma^2_\beta), \quad \tau \sim \text{Gamma}(\tau | \alpha_\tau, \beta_\tau) \]

- MFVB assumption:
 \[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n), \quad q(z_n) = \mathcal{N}(z_n) \]

- 100 simulated data sets, 500 data points each, R MCMCglmm package (20,000 samples)
Experiments

- Non-conjugate normal-Poisson generalized linear mixed model
 \[z_n | \beta, \tau \sim \text{indep} \, \mathcal{N} \left(z_n | \beta x_n, \tau^{-1} \right), \quad y_n | z_n \sim \text{Poisson} \left(y_n | \exp(z_n) \right), \]
 \[\beta \sim \mathcal{N}(\beta | 0, \sigma^2_\beta), \quad \tau \sim \text{Gamma}(\tau | \alpha_\tau, \beta_\tau) \]

- MFVB assumption:
 \[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n), \quad q(z_n) = \mathcal{N}(z_n) \]

- 100 simulated data sets, 500 data points each, R \textit{MCMCglmm} package (20,000 samples)
Experiments

- Non-conjugate normal-Poisson generalized linear mixed model
 \[z_n \mid \beta, \tau \ind \mathcal{N} (z_n \mid \beta x_n, \tau^{-1}) , \quad y_n \mid z_n \ind \text{Poisson} (y_n \mid \exp(z_n)) , \]
 \[\beta \sim \mathcal{N}(\beta \mid 0, \sigma^2_\beta) , \quad \tau \sim \text{Gamma}(\tau \mid \alpha_\tau, \beta_\tau) \]

- MFVB assumption:
 \[q(\beta, \tau, z) = q(\beta)q(\tau) \prod_{n=1}^{N} q(z_n) , \quad q(z_n) = \mathcal{N}(z_n) \]

- 100 simulated data sets, 500 data points each, R `MCMCglmm` package (20,000 samples)
Experiments
Experiments

- Linear model with random effects
Experiments

- Linear model with random effects

\[y_n | \beta, z, \tau \overset{\text{indep}}{\sim} \mathcal{N} \left(y_n | \beta^T x_n + r_n z_k(n), \tau^{-1} \right), \quad z_k | \nu \overset{\text{iid}}{\sim} \mathcal{N} \left(z_k | 0, \nu^{-1} \right) \]
\[\beta \sim \mathcal{N}(\beta | 0, \Sigma_\beta), \quad \nu \sim \Gamma(\nu | \alpha_\nu, \beta_\nu), \quad \tau \sim \Gamma(\tau | \alpha_\tau, \beta_\tau) \]
Experiments

• Linear model with random effects

\[y_n | \beta, z, \tau \sim \text{indep } \mathcal{N} \left(y_n | \beta^T x_n + r_n z_k(n), \tau^{-1} \right), \quad z_k | \nu \sim \text{iid } \mathcal{N} \left(z_k | 0, \nu^{-1} \right) \]

\[\beta \sim \mathcal{N}(\beta | 0, \Sigma_\beta), \quad \nu \sim \Gamma(\nu | \alpha_\nu, \beta_\nu), \quad \tau \sim \Gamma(\tau | \alpha_\tau, \beta_\tau) \]

• MFVB assumption:

\[q(\beta, \nu, \tau, z) = q(\beta)q(\tau)q(\nu) \prod_{k=1}^{K} q(z_n) \]
Experiments

- Linear model with random effects
 \(y_n | \beta, z, \tau \overset{\text{indep}}{\sim} \mathcal{N} (y_n | \beta^T x_n + r_n z_{k(n)}, \tau^{-1}) \), \(z_k | \nu \overset{iid}{\sim} \mathcal{N} (z_k | 0, \nu^{-1}) \)
 \(\beta \sim \mathcal{N}(\beta | 0, \Sigma_\beta), \quad \nu \sim \Gamma(\nu | \alpha_\nu, \beta_\nu), \quad \tau \sim \Gamma(\tau | \alpha_\tau, \beta_\tau) \)

- MFVB assumption: \(q(\beta, \nu, \tau, z) = q(\beta)q(\tau)q(\nu) \prod_{k=1}^{K} q(z_n) \)

- 100 simulated data sets, 300 data points each, R MCMCglmm package (20,000 samples)
Experiments

• Linear model with random effects

\[y_n | \beta, z, \tau \overset{\text{indep}}{\sim} \mathcal{N} (y_n | \beta^T x_n + r_n z_k(n), \tau^{-1}) , \quad z_k | \nu \overset{iid}{\sim} \mathcal{N} (z_k | 0, \nu^{-1}) \]

\[\beta \sim \mathcal{N}(\beta|0, \Sigma_{\beta}), \quad \nu \sim \Gamma(\nu|\alpha_{\nu}, \beta_{\nu}), \quad \tau \sim \Gamma(\tau|\alpha_{\tau}, \beta_{\tau}) \]

• MFVB assumption:

\[q(\beta, \nu, \tau, z) = q(\beta)q(\tau)q(\nu) \prod_{k=1}^{K} q(z_n) \]

• 100 simulated data sets, 300 data points each, R MCMC\texttt{glm}m package (20,000 samples)

LRVB, MFVB
Experiments

• Linear model with random effects
 \[y_n | \beta, z, \tau \overset{\text{indep}}{\sim} \mathcal{N}(y_n | \beta^T x_n + r_n z_k(n), \tau^{-1}) \, , \, z_k | \nu \overset{iid}{\sim} \mathcal{N}(z_k | 0, \nu^{-1}) \]
 \[\beta \sim \mathcal{N}((\beta | 0, \Sigma_\beta) \, , \, \nu \sim \Gamma(\nu | \alpha_\nu, \beta_\nu) \, , \, \tau \sim \Gamma(\tau | \alpha_\tau, \beta_\tau) \]

• MFVB assumption:
 \[q(\beta, \nu, \tau, z) = q(\beta)q(\tau)q(\nu) \prod_{k=1}^{K} q(z_n) \]

• 100 simulated data sets, 300 data points each, R MCMCglmm package (20,000 samples)
Experiments

- Linear model with random effects
 \[y_n | \beta, z, \tau \overset{\text{indep}}{\sim} \mathcal{N} \left(y_n | \beta^T x_n + r_n z_k(n), \tau^{-1} \right), \quad z_k | \nu \overset{iid}{\sim} \mathcal{N} \left(z_k | 0, \nu^{-1} \right) \]
 \[\beta \sim \mathcal{N}(\beta | 0, \Sigma_\beta), \quad \nu \sim \Gamma(\nu | \alpha_\nu, \beta_\nu), \quad \tau \sim \Gamma(\tau | \alpha_\tau, \beta_\tau) \]

- MFVB assumption:
 \[q(\beta, \nu, \tau, z) = q(\beta)q(\tau)q(\nu) \prod_{k=1}^{K} q(z_n) \]

- 100 simulated data sets, 300 data points each, R MCMCglmm package (20,000 samples)
Experiments

- Linear model with random effects

$$y_n | \beta, z, \tau \overset{\text{indep}}{\sim} N \left(y_n | \beta^T x_n + r_n z_k(n), \tau^{-1} \right), \quad z_k | \nu \overset{iid}{\sim} N \left(z_k | 0, \nu^{-1} \right)$$

$$\beta \sim N(\beta | 0, \Sigma_{\beta}), \quad \nu \sim \Gamma(\nu | \alpha_{\nu}, \beta_{\nu}), \quad \tau \sim \Gamma(\tau | \alpha_{\tau}, \beta_{\tau})$$

- MFVB assumption:

$$q(\beta, \nu, \tau, z) = q(\beta)q(\tau)q(\nu) \prod_{k=1}^{K} q(z_n)$$

- 100 simulated data sets, 300 data points each, R MCMCglmm package (20,000 samples)
Experiments
Experiments

- Gaussian mixture model
Experiments

- Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1:N} \prod_{k=1:K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]

 with conjugate priors on \(\pi, \mu, \Lambda \)
Experiments

• Gaussian mixture model

\[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1:N} \prod_{k=1:K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]

with conjugate priors on π, μ, Λ

• MFVB assumption:

\[
\left[\prod_{k=1}^{K} q(\mu_k)q(\Lambda_k)q(\pi_k) \right] \prod_{n=1}^{N} q(z_n)
\]
Experiments

- Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1:N} \prod_{k=1:K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

- MFVB assumption:
 \[
 \left[\prod_{k=1}^{K} q(\mu_k)q(\Lambda_k)q(\pi_k) \right] \prod_{n=1}^{N} q(z_n)
 \]

- 68 simulated data sets (2 components, 2 dimensions), 10,000 data points each, \(\text{R \ bayesm} \) package (function \(\text{rnmixGibbs} \); at least 500 effective samples)
Experiments

• Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1:N} \prod_{k=1:K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

• MFVB assumption:
 \[\prod_{k=1}^{K} q(\mu_k)q(\Lambda_k)q(\pi_k) \prod_{n=1}^{N} q(z_n) \]

• 68 simulated data sets (2 components, 2 dimensions), 10,000 data points each, \texttt{R bayesm} package (function \texttt{rnmixGibbs}; at least 500 effective samples)

• MNIST digits: 12,665 0s and 1s; PCA for 25 dimensions
Experiments

- Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1:N} \prod_{k=1:K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

- MFVB assumption:
 \[\left[\prod_{k=1}^{K} q(\mu_k)q(\Lambda_k)q(\pi_k) \right] \prod_{n=1}^{N} q(z_n) \]

- 68 simulated data sets (2 components, 2 dimensions), 10,000 data points each, R \texttt{bayesm} package (function \texttt{rnmixGibbs}; at least 500 effective samples)

- MNIST digits: 12,665 0s and 1s; PCA for 25 dimensions
Experiments

- Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1:N} \prod_{k=1:K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

- MFVB assumption:
 \[\left[\prod_{k=1}^{K} q(\mu_k) q(\Lambda_k) q(\pi_k) \right] \prod_{n=1}^{N} q(z_n) \]

- 68 simulated data sets (2 components, 2 dimensions), 10,000 data points each, \(R \) \texttt{bayesm} package (function \texttt{rnmixGibbs}; at least 500 effective samples)

- MNIST digits: 12,665 0s and 1s; PCA for 25 dimensions
Experiments

- Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

- MFVB assumption:
 \[\prod_{k=1}^{K} q(\mu_k)q(\Lambda_k)q(\pi_k) \prod_{n=1}^{N} q(z_n) \]

- 68 simulated data sets (2 components, 2 dimensions), 10,000 data points each, R \texttt{bayesm} package (function \texttt{rnmixGibbs}; at least 500 effective samples)

- MNIST digits: 12,665 0s and 1s; PCA for 25 dimensions
Experiments

- Gaussian mixture model
 \[P(z_{nk} = 1) = \pi_k, \quad p(x|\pi, \mu, \Lambda, z) = \prod_{n=1: N} \prod_{k=1: K} \mathcal{N}(x_n|\mu_k, \Lambda_k^{-1})^{z_{nk}} \]
 with conjugate priors on \(\pi, \mu, \Lambda \)

- MFVB assumption:
 \[\left[\prod_{k=1}^{K} q(\mu_k)q(\Lambda_k)q(\pi_k) \right] \prod_{n=1}^{N} q(z_n) \]

- 68 simulated data sets (2 components, 2 dimensions), 10,000 data points each, R \texttt{bayesm} package (function \texttt{rnmixGibbs}; at least 500 effective samples)

- MNIST digits: 12,665 0s and 1s; PCA for 25 dimensions
1. Derive *Linear Response Variational Bayes* (LRVB) variance/covariance correction

2. Accuracy experiments

3. Scalability experiments
Experiments
Experiments

• Scaling: Gaussian mixture model (K components, P dimensions, N data points)
Experiments

• Scaling: Gaussian mixture model (K components, P dimensions, N data points)
• The number of parameters in μ, π, Λ grows as $O(KP^2)$
Experiments

• Scaling: Gaussian mixture model (K components, P dimensions, N data points)
• The number of parameters in μ, π, Λ grows as $O(KP^2)$
• The number of parameters in z grows as $O(KN)$
Experiments

- Scaling: Gaussian mixture model (K components, P dimensions, N data points)
- The number of parameters in μ, π, Λ grows as $O(KP^2)$
- The number of parameters in z grows as $O(KN)$
- Worst case scaling: $O(K^3), O(P^6), O(N)$
Experiments

• Scaling: Gaussian mixture model (K components, P dimensions, N data points)
• The number of parameters in μ, π, Λ grows as $O(KP^2)$
• The number of parameters in z grows as $O(KN)$
• Worst case scaling: $O(K^3), O(P^6), O(N)$
Experiments

• Scaling: Gaussian mixture model (K components, P dimensions, N data points)
• The number of parameters in μ, π, Λ grows as $O(KP^2)$
• The number of parameters in z grows as $O(KN)$
• Worst case scaling: $O(K^3), O(P^6), O(N)$

Experiments
Experiments

- Scaling: Gaussian mixture model (K components, P dimensions, N data points)
- The number of parameters in μ, π, Λ grows as $O(KP^2)$
- The number of parameters in z grows as $O(KN)$
- Worst case scaling: $O(K^3), O(P^6), O(N)$

LRVB, Gibbs
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB

• Next steps:
 • Scaling in parameter cardinality
 • Mean correction
 • Bayesian nonparametrics
 • MFVB q not in exponential family

• Targeting other posterior statistics besides point estimates and covariance
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB
Conclusions, etc

- LRVB covariance correction: in many cases, accurate covariance estimates for VB

- Next steps:
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB

• Next steps:
 • Scaling in parameter cardinality
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB

• Next steps:
 • Scaling in parameter cardinality
 • Mean correction
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB

• Next steps:
 • Scaling in parameter cardinality
 • Mean correction
 • Bayesian nonparametrics
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB

• Next steps:
 • Scaling in parameter cardinality
 • Mean correction
 • Bayesian nonparametrics
 • MFVB q not in exponential family
Conclusions, etc

• LRVB covariance correction: in many cases, accurate covariance estimates for VB

• Next steps:
 • Scaling in parameter cardinality
 • Mean correction
 • Bayesian nonparametrics
 • MFVB q not in exponential family
 • Targeting other posterior statistics besides point estimates and covariance
References

R Bardenet, A Doucet, and C Holmes. On Markov chain Monte Carlo methods for tall data. arXiv:1505.02827 (v1), 2015.

CM Bishop. *Pattern Recognition and Machine Learning*. Springer, 2010.

T Broderick, B Kulis, and MI Jordan. MAD-Bayes: MAP-based asymptotic derivations from Bayes. In *ICML*, 2013.

T Broderick, N Boyd, A Wibisono, AC Wilson, and MI Jordan. Streaming variational Bayes. In *NIPS*, 2013.

D Dunson. Robust and scalable approach to Bayesian inference. Talk at *ISBA* 2014.

R Giordano, T Broderick, and MI Jordan. Linear response methods for accurate covariance estimates from mean field variational Bayes. Submitted, http://arxiv.org/abs/1506.04088, 2015.

DJC MacKay. *Information Theory, Inference, and Learning Algorithms*. Cambridge University Press, 2003.

RE Turner and M Sahani. Two problems with variational expectation maximisation for time-series models. In D Barber, AT Cemgil, and S Chiappa, editors, *Bayesian Time Series Models*, 2011.

B Wang and M Titterington. Inadequacy of interval estimates corresponding to variational Bayesian approximations. In *AISTATS*, 2004.