Nonsense-mediated RNA decay (NMD) was originally discovered as a cellular surveillance pathway that safeguards the quality of mRNA transcripts in eukaryotic cells. In its canonical function, NMD prevents translation of mutant mRNAs harboring premature termination codons (PTCs) by targeting them for degradation. However, recent studies have shown that NMD has a much broader role in gene expression by regulating the stability of many normal transcripts. In this review, we discuss the function of NMD in normal physiological processes, its dynamic regulation by developmental and environmental cues, and its association with human disease.

Keywords: Nonsense-mediated decay, RNA surveillance, Gene expression, Human disease

Overview of the NMD pathway

First discovered in yeast and then extensively studied in Caenorhabditis elegans, Drosophila, mouse, human cells, and other model systems, NMD is a RNA surveillance pathway that acts at the interface between transcription and translation [10, 12–15]. NMD must accurately distinguish a PTC from a normal stop codon on an mRNA and then recruit and activate enzymes to destroy the transcript. There are two main models to explain how transcripts are identified as targets for NMD. The
exon-junction complex (EJC) model proposes that EJC—a large multi-protein assembly deposited ~20–24 bases upstream of an exon–exon junction as a result of pre-mRNA splicing—acts as a second signal to mark an upstream stop codon as a PTC [16–29]. During translation, ribosomes scan the mRNA and will pause at a stop codon. If an EJC is present more than 50–55 bases downstream of the stop codon, the protein kinase SMG1, its substrate Upf1, a ATPase/helicase, and eukaryotic polypeptide release factors eRF1 and eRF3 are then recruited to form a complex—the SURF complex—on the mRNA. Phosphorylation of UPF1 by SMG1 leads to the recruitment of SMG5, SMG6 and SMG7 via phospho-specific interactions [30, 31]. After recruitment, SMG5 and SMG7 promote RNA decapping and deadenylation by recruiting factors such as DCP1a and POP2, leading to the exposure of the transcript ends to cellular exonucleases [32–39]. SMG6, which has endonuclease activity, provides a second mechanism for initiation of mRNA decay by cleaving transcripts internally near the PTC, generating two unprotected RNA ends that are further degraded by cellular nucleases [40–43].

The second model for NMD posits that the abnormally long 3′ untranslated region (UTR) downstream of a PTC acts as a second signal to promote PTC recognition. While the molecular mechanism of this model is less well defined, it has been proposed that accumulation of UPF1 as well as other regulatory elements in the 3′ UTR mediates the recruitment of other NMD factors and the initiation of mRNA decay [44–47]. For additional information about the mechanisms of PTC recognition, readers are directed to a number of recent reviews [13, 48–50].

A debate remains about where NMD takes place in the cell. NMD inherently relies on the translation process, which normally occurs in the cytoplasm. However, some investigators have proposed that translation can also take place in the cell nucleus [51–53]. Several studies suggest that NMD is associated with the nucleus or nuclear fraction. For example, levels of PTC-containing triosephosphate isomerase (TPI) and mouse major urinary protein (MUP) transcripts were specifically reduced in the nuclear fraction [54–57]. NMD-mediated degradation of the TCRβ transcript can also take place in purified nuclei [58]. Several other nonsense reporter mRNAs also appear to be targeted by NMD in the nucleus [51, 59–64]. The idea of PTC recognition in the nucleus is also consistent with the existence of nonsense-associated altered splicing (NAS), a NMD-related nuclear pathway that also requires PTC recognition [65]. However, the claims of nuclear NMD and translation remain controversial as other lines of evidence suggest that NMD is primarily a cytoplasmic process [25]. Indeed, alternative interpretations of the nuclear NMD data are possible, including the possibility that NMD occurs during nuclear export, of which there is some evidence [66].

Role of NMD and its regulation in normal physiological processes

Bioinformatics analysis of EST databases and RNA sequencing data in cells where NMD is disrupted have clearly demonstrated that NMD has a widespread effect on gene expression [10, 67, 68]. This realization has led to the identification of numerous putative NMD target mRNAs, based on characteristics such as PTCs or long 3′ UTRs and an observed increase in the stability and/or levels of transcripts after NMD suppression [1, 4, 5, 11, 69–75].

Multiple mechanisms exist to generate PTCs in transcripts of normal genes (Fig. 1). Alternative splicing generates diversity in mRNA isoforms but can also lead to formation of PTCs that target transcripts for NMD. For instance, the RNA binding protein polypyrimidine tract binding protein 1 (PTBP1) can repress splicing of exon 11 of its own mRNA, leading to NMD of the transcript [76]. As such, PTBP1 negatively regulates its own expression. Human arginine–serine rich (SR) splicing factors have also been shown to be regulated by alternative splicing coupled to NMD [77, 78]. This so-called unproductive splicing and translation (RUST) represents an autoregulatory mechanism that controls the levels of splicing factors and other RNA binding proteins [77–81]. The use of alternative transcription initiation sites can also generate mRNA isoforms with a stop codon upstream of a splice junction, resulting in NMD [82]. Programmed ribosomal frameshifting (PRF)—which can potentially occur in up to 8–12% of genes—is another mechanism that can create a PTC, leading to NMD [83–86]. Stop codons that trigger NMD can also form if the primary coding region of an mRNA is preceded by an upstream open reading frame (uORF) [87, 88]. Transcriptome analysis indicates that long 3′ UTRs are among the most common features of NMD targets, although 3′ UTR length per se is not considered a reliable predictor of NMD of a given transcript [29, 44–46, 74, 88–91].

Transcripts encoding selenoproteins comprise another interesting class of NMD targets. A UGA codon normally signals a stop to translation but can be redefined to code for the amino acid selenocysteine in a high selenium environment [92]. If selenocysteine is incorporated in the last exon of a transcript it generally evades NMD, while if selenium is not abundant, these transcripts will be degraded via NMD if their stop codon resides upstream of an exon–exon junction [93, 94]. This regulatory mechanism enables cells to respond to alterations in levels of the essential trace element selenium. Therefore, while
some NMD targets—such as those encoding selenoproteins or splicing factors—have been well characterized, the validation of other putative NMD targets is ongoing, as is the understanding of the consequences of NMD-induced regulation of gene expression.

There are many examples where normal physiological processes employ NMD to regulate gene expression (Table 1). As an example of the essential nature of NMD for normal cellular processes, knockouts of Smg1, Smg6, Upf1, or Upf2 have been shown to cause embryonic lethality in mice [1–4, 6]. NMD has also been shown to play a central role in the development and differentiation of specific cell types through regulation of gene expression.

During lymphocyte development, cells undergo a series of programmed genomic rearrangements to assemble immunoglobulin and T cell receptor (TCR) genes. Two-thirds of these rearrangement events yield unproductive gene products harboring PTCs, whose clearance requires NMD [5, 95, 96]. Consistent with this observation, conditional ablation of NMD in T-cells significantly increased the abundance of these nonsense TCR transcripts, resulting in apoptotic cell death [5]. Interestingly, thymocyte development could be restored by introducing a complete TCRβ sequence that prevents the accumulation of nonsense counterparts, indicating that removal of the mutant transcripts by NMD is key to the survival of these cells [97]. However, conditional knockout of Upf2 had minimal effects on mature T cells, perhaps because T cells naturally downregulate NMD as part of the differentiation process [5]. In the myeloid lineage, the LMNB1 mRNA is specifically downregulated by NMD during granulopoiesis due to programmed intron retention. Importantly, this regulation of LMNB1 mRNA is required for normal differentiation of granulocytes [98].

![Fig. 1 NMD functions both in RNA surveillance and in gene regulation. Several features of mRNA transcripts can mark the transcripts as substrates for degradation by NMD. Green boxes, exons; lines, introns; potential splicing events are shown by blue or purple lines; genetic mutations and transcriptional aberrations are denoted with stars. The translation start site (ATG) is marked by arrows and stop codons are marked by red circles.](image-url)
Cellular/molecular processes	NMD function and regulation	Target genes	References
Suppression of aberrant transcripts and transcriptional “noise”	Targets mis-spliced or aberrantly transcribed RNAs, and those derived from mutant genes, transposons and retroviral DNA, for degradation	Many [10, 49, 176]	
Lymphocyte development	Suppresses expression of unproductive rearrangements of immunoglobulin and Tcell receptor genes	Immunoglobulin, T-cell receptors	[5, 96, 97]
Embryonic stem cell differentiation	Promotes differentiation by regulating c-my c and the TGFβ/BMP pathways	C-Myc, Smad7	[6, 99, 100]
Neurogenesis	Facilitates expression of neuron-specific NMD targets in differentiating neuronal stem cells through miR-128-mediated downregulation of NMD	Many (e.g. Enpp2, Apoe, Abca1, Atpl2, Kcnj10, Kcnd2, Thy1, Ppp2rb2, Stat3, Smad5, Chrdl1, Myt1, Pla2g7, Cercam, Dmd, Slc6a13)	[90]
Myogenesis	Facilitates expression of the NMD target myogenin because increased SMD activity leads to reduced NMD function	Myogenin	[112]
Cellular viability	Suppresses expression of GADD45α, leading to inhibition of apoptosis	GADD45α	[140]
IncRNA regulation	May influence micropeptide expression from a subset of IncRNA transcripts	~17% of IncRNAs	[129, 130]
Granulocyte differentiation	Suppresses expression of genes that control granulocyte differentiation and morphology	Dozens (e.g. Lmb1)	[98]
Axon guidance	Guides axon migration by limiting the expression of Robo3.2 in commissural neurons	Robo3.2	[109]
Synaptic regulation	Impacts the expression of synaptic genes regulated by the RNA-binding protein NOVA, which is itself regulated by	Many (e.g. Dlg3, Dzip1, Ah1, Slc4a3, Slc4a10, Rasgrf1, Act16β, Scn9a, Stx2, Cdk5rap2, Stxbp2, Plekhα5, Lncr1)	[110]
Response to viral infection	Targets viral RNAs to reduce viral load, but also downregulated by specific RNA elements or protein products (e.g. Tax and Rex) to protect viral RNAs	Gag in RSV, HTLV-1 RNAs	[114–119]
Stress response (e.g. amino acid deprivation, hypoxia, ER stress)	Uregulates stress response genes as a consequence of downregulation of NMD activity by eIF2α phosphorylation	Many (e.g. ATF4, ATF3, CHOP, IRE1α)	[70, 73, 131–136]
Response to chemotherapeutics	Uregulates pro-apoptotic NMD target genes, as a consequence of UPF1 cleavage by caspases during early stages of apoptosis that downregulates NMD	GADD45α, GADD45β, BAK1, GASS, DAP3, DUSP2	[138, 139]
Similar to the hematopoietic system, embryonic stem cells (ESCs) rely on NMD for their proliferation, while their differentiation is associated with downregulation of NMD activity [99, 100]. NMD influences stem cell differentiation by regulating the signaling of two key growth factors, TGFβ and BMP [100]. Ablation of NMD by SMG6 knockout in mouse ESCs prevented cellular differentiation, and re-expression of wild type but not mutant SMG6 restored proper differentiation [6]. Knockdown of other NMD factors caused a similar phenotype [6]. Prolonged, elevated expression of NMD-regulated pluripotency genes, such as c-Myc, underlies the inability of NMD-deficient ESCs to differentiate [6].

A number of studies have also revealed connections between NMD and proper development of the nervous system [90, 101–109]. In mammals, UPF3B expression is altered during brain development, and UPF3B mutants with impaired NMD function inhibit proper neurite outgrowth [105, 107]. Neuronal development is also compromised when UPF3B is downregulated with shRNA or when NMD is inhibited with the compound Amlexanox [105, 107]. NMD also functions to limit the expression of Robo3.2 in commissural neurons, which is required for proper axonal migration during development [109]. NMD components such as SMG1, UPF1 and UPF2 can localize to axonal growth cones in neurons, consistent with the idea that NMD modulates gene expression locally in these structures [109]. During the process of neurogenesis, a regulatory circuit is activated in differentiating neurons whereby expression of miR-128 targets mRNAs of several NMD factors for translational repression [90]. This results in NMD attenuation and upregulation of NMD target genes, many of which foster proper neuronal development [90].

Nonsense-mediated RNA decay also can impact gene expression in mature neurons, however. Ablation of the EJC factor eIF4AIII in mature neurons results in altered expression of critical factors such as ARC, leading to increased synaptic strength [108]. During seizure, when neuronal activity is aberrant, the RNA splicing protein NOVA regulates insertion of cryptic exons into the mRNA of a number of neuronal factors, leading to NMD of these transcripts [110]. Together, these findings highlight the importance of NMD in the development and function of the nervous system.

In developing muscle cells, NMD activity is attenuated as myoblasts differentiate to myotubes. During myogenesis, gene expression can be downregulated by NMD or by a related pathway, Staufen-mediated mRNA decay (SMD). SMD is increased in myoblasts due to the upregulation of the STAU1 (Staufen homolog) protein, which binds its cognate sites in the 3′ UTR of target mRNAs [111]. STAU1 competes with UPF1 for binding to UPF2, which functions in both NMD and SMD [112, 113]. This competition leads to inhibition of UPF2-dependent NMD and increased expression of the NMD target myogenin that promotes myogenesis [112].

Interactions of cells with external factors such as viruses can also be modulated by NMD. Robust NMD activity targets certain viral RNAs harboring NMD-inducing features to suppress expression of viral proteins and limit viral titer in host cells [114, 115]. However, some viruses possess mechanisms to co-opt the NMD process for their own benefit. For example, it has been found that the RNA-binding proteins tax and rex, expressed by the human T-cell leukemia virus type-1 (HTLV-1), stabilize both viral RNAs and host RNAs that would normally be targets for NMD [116, 117]. An element in the 3′ UTR of the Rous sarcoma virus also renders the viral RNA insensitive to host NMD, possibly by inhibiting the capacity of UPF1 to initiate NMD [118, 119]. As another example, hepatitis C infection triggers inactivation of NMD by binding and sequestering WIBG/PYM, a protein required for recycling of the EJC [120].

Recent studies suggest that NMD controls not only the levels of mRNAs, but also that of long non-coding RNAs (lncRNAs). While the majority of the genome is transcribed into RNA, only about 2% of the genome has been shown to code for proteins [121, 122]. LncRNAs are a prominent class of RNA molecules that have important roles in cellular processes, including modifying chromatin, regulating transcription, altering mRNA stability, and influencing translation [123, 124]. A subset of lncRNAs have been shown to be associated with the translation machinery—sometimes producing detectable micropeptides—and about 17% of lncRNAs were found to be targets of NMD [125–130]. While the biological significance of this regulation remains to be defined, the fact that so many lncRNA transcripts are targeted by NMD suggests that NMD plays a central role in regulating the functions of lncRNAs and their corresponding micropeptide products.

Dynamic regulation of NMD during cellular responses to stress

Cellular stress activates widespread changes in gene expression that allow cells to adapt to challenging conditions. One mechanism that enables this response is the inhibition of NMD (Table 1). Cellular stresses such as amino acid deprivation, hypoxia and endoplasmic reticulum (ER) stress induce phosphorylation of the translation initiation factor eIF2α, which in turn causes NMD repression and the stabilization and increased expression of critical stress response factors such as ATF4, ATF3, CHOP, and IRE1α [70, 73, 131–136]. NMD is also attenuated in response to an increase in intracellular calcium...
levels as well as persistent DNA damage [137 AN and ZY, unpublished]. By controlling the expression of specific genes, this dynamic regulation of NMD serves as an adaptive response to cope with cellular stress and promote survival. When the environmental insults are too severe, NMD also contributes to apoptosis. An early event during apoptosis is the cleavage of UPF1, which generates a dominant negative peptide fragment that stifles NMD activity [138]. The resulting reduction in NMD activity allows for the upregulation of several pro-apoptotic NMD target genes including GADD45α, GADD45β, BAK1, GAS5, DAP3, and DUSTP2, leading to cell death [138, 139]. GADD45α, which acts in the MAP kinase pathway, has also been proposed to be the key target that triggers apoptosis when NMD is disrupted in the absence of exogenous stress [140].

The observations that NMD is suppressed in response to a number of cellular stresses raises the question of how abnormal RNAs—which are often generated during gene expression—are dealt with during intervals of reduced NMD activity. One possibility is that the benefits of the expression of stress response genes after NMD attenuation outweigh the risks of the lack of RNA surveillance. It is also possible that cells retain residual NMD activity after stress, which is sufficient for RNA surveillance. During these intervals of low NMD activity, the activation of an autoregulatory circuit that leads to increased mRNA stability of NMD factors—which are normally targeted by NMD—rapidly restores NMD activity to appropriate levels once cellular conditions improve [74, 91, 141]. The discovery of alternative branches of the NMD pathway that are apparently independent of UPF2, UPF3, or the EJC introduces the possibility that when one branch of NMD is suppressed other branches still remain active and degrade aberrant transcripts [46, 142, 143]. In support of this idea, the activity of the UPF2-dependent branch of NMD is diminished during myogenesis but an alternative, UPF2-independent branch is stimulated, allowing both for increased expression of the NMD target myogenin and continued degradation of mutant mRNA transcripts [112]. An additional mechanism to cope with reduced NMD activity is autophagy, which purges cells of the mutated, misfolded, and aggregated proteins that accumulate in NMD-deficient cells [144].

NMD and human disease

Nonsense-mediated RNA decay and its regulation influence the development of human disease. While some disease phenotypes are exacerbated by the effects of NMD, others are suppressed by them, making NMD a “double-edged sword”. One example where NMD contributes to disease is β-thalassemia, which is often caused by mutations in the β-globin gene that generate a nonsense mRNA. Most recessive forms of β-thalassemia result from nonsense mutations in the first or second exon of the β-globin gene, with the corresponding mRNAs being targeted for degradation by NMD [145–147]. In these cases, the unaffected allele is still able to be expressed but the amount of protein produced is unable to compensate for loss of function of the mutant allele. Mutations

Table 2 Small molecules that inhibit NMD efficiency

Compound	Mechanism	References
NMD inhibitors		
PI3K-like kinase inhibitors (e.g. caffeine, wortmannin)	Inhibits SMG1 kinase activity	[171, 172]
NMDI1	Disrupts the interaction between SMG5 and Upf1	[174]
NMDI14	Disrupts the interaction between SMG7 and Upf1	[158]
Patemine A	Inhibits the NMD function of eIF4A3	[23]
5-azacytidine	Promotes expression of c-Myc, which represses NMD	[175]
Cardiac glycosides (e.g. digoxin, ouabain)	Increase cytoplasmic calcium, which represses NMD	[137]
Translation inhibitors		
Cyclohexamide	Inhibits translation	[95]
Emetine	Inhibits translation	[95]
Puromycin	Inhibits translation	[95]
Anisomycin	Inhibits translation	[95]
Translation modifiers		
Suppressor tRNAs	Change stop codons into amino acid-encoding codons	[164–166]
PTC-124	Promotes stop codon read-through	[167]
Aminoglycosides	Promotes stop codon read-through	[168, 169]
Amlexanox	Promotes stop codon read-through	[170]
that occur in the final exon of β-globin evade degradation and consequently are translated normally. However, the resulting truncated proteins have dominant negative activity that interferes with normal hemoglobin function [145].

Numerous other genetic diseases, including cystic fibrosis, polycystic kidney disease, and muscular dystrophy, are also caused by PTGs that trigger NMD of target mRNAs [145, 147]. Interestingly, different subtypes of muscular dystrophy can result from mis-expression of distinct genes that are associated with NMD. Duchenne’s muscular dystrophy results from loss of function of dystrophin, which can occur when mutations in the gene generate a PTC that targets the transcript for NMD. Facioscapulohumeral muscular dystrophy results from the misexpression of the DUX4 transcription factor in muscle. DUX4 is normally a substrate for NMD, but its misexpression in muscle leads to the inhibition of NMD, resulting in a regulatory feedback loop that further stabilizes the DUX4 transcript, leading to cellular toxicity [148].

Certain neurodevelopmental disorders are closely connected with dysregulation of NMD. Mutations in the NMD factor UPF3B have been found to cause syndromic and nonsyndromic intellectual disability (ID) [101, 102, 104, 106]. UPF3B mutations are also associated with a spectrum of disorders including attention-deficit hyperactivity disorder, autism and schizophrenia [102–104]. Dysregulation of other NMD factors such as UPF2 and SMG6 is also associated with various forms of ID [102].

Aberrant NMD also is associated with inflammation and cancer. Deletion of one allele of the NMD kinase SMG1 in a mouse model results in chronic inflammation as well as cancer predisposition [3]. Mutations in UPF1 have been identified in inflammatory myofibroblastic tumors (IMT) [149]. In IMT, decreased NMD function leads to increased expression of the transcript for the NIK protein kinase, which activates the NFκB pathway and promotes cytokine expression and inflammatory infiltrates [149]. Inhibition of NMD can cause chronic activation of the immune response, leading to autoimmunity [150]. Loss of function or overexpression of NMD factors have also been found to be associated with several other cancer types, including pancreatic cancer and neuroblastoma [151–154]. Deregulation of NMD contributes to tumorigenesis likely due to aberrant expression of oncogenes and tumor suppressor genes with PTCs [151, 155, 156].

Although decreased NMD efficiency can cause human disease and contribute to the severity of disease phenotypes, NMD inhibition can also be a strategy for disease treatment. Inhibiting NMD may alleviate the symptoms of certain genetic diseases caused by PTGs in a single gene—e.g., β-thalassemia, cystic fibrosis, Hurler’s syndrome, and Duchenne muscular dystrophy—by allowing expression of a mutant protein product that is partially functional [145]. However, this therapeutic strategy is limited by the ability of the truncated proteins to provide sufficient activity to compensate for the loss of function. A more promising solution may be to restore expression of full-length, functional proteins by combined treatment of NMD inhibitors (to stabilize nonsense transcripts) with drugs that allow stop-codon read-through. This strategy has been successfully used to restore full-length, functional proteins in a model of Hurler’s syndrome and in cancer cells with nonsense mutations in the p53 gene [157, 158]. A recent modification of this potential therapeutic strategy uses antisense oligonucleotides (ASOs), which are showing increasing promise in clinical trials, rather than small-molecule drugs to repress NMD activity, thereby expanding the repertoire of potential NMD-targeted therapeutic strategies [159]. Interestingly, increasing NMD activity, such as by overexpressing UPF1, can alleviate the phenotypes of amyotrophic lateral sclerosis (ALS) in both in vitro and in vivo models. A large fraction of ALS is caused by aberrant expression of TDP43, which deregulates splicing and generates many NMD targets [160, 161]. The observed effects of UPF1 overexpression suggest that NMD enhancers may be effective in treating certain forms of ALS and raise the possibility that a similar principle may apply to other disorders caused by aberrant RNA processing.

Due to the presence of a higher level of nonsense mRNAs caused by mutations and genomic instability in cancer cells, inhibition of NMD may cause accumulation of mutant proteins and activation of the unfolded protein response, leading to heightened cell death. Inhibition of NMD can also promote the expression of novel antigens on tumor cells, due to the translation of nonsense mRNAs generated by frameshift mutations or aberrant splicing [162, 163]. For these reasons, there has been a strong interest in developing small molecules to inhibit NMD activity (Table 2). Compounds such as cycloheximide and puromycin abrogate NMD by inhibiting translation, and other reagents that modify the specificity or efficacy of translation termination—suppressor tRNAs, aminoglycosides, PTC124, amlexanox—are also capable of stabilizing nonsense transcripts [95, 164–170]. Wortmannin and caffeine also inhibit NMD by decreasing SMG1 enzymatic activity, but these inhibitors are limited as tools because they also affect other PI3K family members such as ATM, ATR and DNA-PK [171, 172]. Inhibitors of SMG1 kinase activity with improved potency and selectivity, such as pyrimidine derivatives, have been identified and shown to substantially diminish UPF1 phosphorylation in vitro and in cells [173].
Recently, other potent small molecule inhibitors selective for SMG1 kinase have been identified to inhibit UPF1 phosphorylation in cells and in mouse tumor xenograft models, where they promote anti-tumor efficacy (JMB, unpublished). Inhibitors to NMD factors other than SMG1 have also been reported. For example, paternine A was found to repress NMD activity by inhibiting the NMD function of eIF4AIII, whereas NMDI-1 blocks NMD by preventing the interaction between SMG5 and UPF1 [23, 174]. NMDI-14 was identified in a computational screen for molecules that physically prevent the interaction of SMG7 with UPF1 [158]. Promisingly, NMDI-1 and particularly NMDI-14 potently repress NMD at low concentrations with minimal cellular toxicity [158, 174]. In addition, the approved drugs 5-aza-2'-cytidine and cardiac glycosides such as ouabain and digitoxin were recently found to inhibit NMD by upregulating Myc or by increasing intracellular calcium, respectively [137, 175]. These findings point to the potential of NMD-based therapeutic intervention by directly inhibiting NMD factors, or indirectly affecting the cellular microenvironment.

Perspectives

Nonsense-mediated RNA decay, initially discovered as a quality control mechanism that targeted mutant transcripts for degradation, is now widely appreciated as a key mechanism that regulates gene expression. NMD plays a crucial role in multiple cellular processes, including development, differentiation and disease physiology. While the main factors that drive NMD have been identified, many opportunities remain to fill gaps in our understanding of NMD target selection and its impact on cell biology. A major area of ongoing NMD research will concern the complex regulatory networks that govern NMD activity in developmental and tissue-specific contexts. In addition to uncovering new pathways or processes where NMD is dynamically regulated, putative NMD transcripts must be validated and their effects on cell biology elucidated. Work discussed in this review has begun to address this challenge. The contribution of NMD to disease states, particularly neurological disorders and cancer will constitute another major direction of NMD research. The discovery of novel inhibitors—and potentially also enhancers—of the NMD pathway provide the possibility for therapeutic intervention with genetic diseases, neurological disorders, and cancer. NMD inhibition by chemical or genetic means has been demonstrated to restore expression of proteins in vitro, but the viability of these strategies in vivo—including in humans—remains to be tested. Furthering this promising work is paramount to applying our ever-expanding understanding of NMD to the treatment of human disease.

Authors’ contributions

All authors read and approved the final manuscript.

Author details

1 Department of Cell Biology & Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110, USA.

2 Department of Oncology Research, Amgen, South San Francisco, CA 94080, USA.

Acknowledgements

We apologize to colleagues whose work is not cited due to space limitation. Z.Y. is supported by an NIH Grant (R01GM089533), an American Cancer Society Research Scholar Grant (RSG-13-212-01-DMC) and a Siteman Investment Program Grant (4036) from the Siteman Cancer Center of Washington University.

Competing interests

The authors declare that they have no competing interests. JMB. is an employee of Amgen, Inc.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 5 January 2017 Accepted: 12 May 2017

Published online: 19 May 2017

References

1. McLlwain DR, Pan Q, Reilly PT, Elia AJ, McCracken S, Wakeham AC, Itie-Youten A, Blencowe BJ, Mak TW. SMG1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proc Natl Acad Sci USA. 2010;107:12186–91.

2. Medghalchi SM, Frischmeyer PA, Mendell JT, Kelly AG, Lawler AM, Dietz HC. Ren 1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum Mol Genet. 2001;10:99–105.

3. Roberts TL, Ho U, Luff J, Lee CS, Apte SH, MacDonald KP, Raggat LJ, Petrit AR, Morrow CA, Waters MJ, et al. SMG1 haploinsufficiency predisposes to tumor formation and inflammation. Proc Natl Acad Sci USA. 2013;110:E285–94.

4. Thoren LA, Nørgaard GA, Weischenfeldt J, Waage J, Jakobsen JS, Darminga I, Bergstrøm FC, Blom AM, Borup R, Bisgaard HC, et al. UPF2 is a critical regulator of liver development, function and regeneration. PLoS ONE. 2010;5(7):e11650.

5. Weischenfeldt J, Daminga I, Bryder D, Theilgaard-Monch K, Thoren LA, Nielsen FC, Jacobsen SE, Nerlov C, Porse BT. NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev. 2008;22:1381–96.

6. Li T, Shi Y, Wang P, Guachalla LM, Sun B, Jørsøt T, Chen YS, Groth M, Krueger A, Platerz M, et al. Smg6/Est11 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay. EMBO J. 2015;34:1630–47.

7. Shum EY, Jones SH, Shao A, Dumide J, Krause MD, Chan WK, Lou CH, Espinoza JL, Song HW, Phan MH, et al. The antagonistic gene paralogs UPF3a and UPF3b govern nonsense-mediated RNA decay. Cell. 2016;165:382–95.

8. Anastasakis C, Longman D, Capper A, Patton EE, Caceres JF, Doh34 and Nbas function in the NMD pathway and are required for embryonic development in zebrafish. Nucleic Acids Res. 2011;39:3686–94.

9. Wittkopp N, Huntzinger E, Weiler C, Saulière J, Schmidt S, Sonawane M, Izaurrelde E. Nonsense-mediated mRNA decay effectors are essential for zebrafish embryonic development and survival. Mol Cell Biol. 2009;29:3517.
10. Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcripts. Nat Rev Mol Cell Biol. 2015;16:665–77.

11. Weischenfeldt J, Waage J, Tian G, Zhao J, Damsgaard J, Jakobsen JS, Kristiansen K, Kroug A, Wang J, Porre BT. Mammalian tissues defective in nonsense-mediated mRNA decay display highly aberrant splicing patterns. Genome Biol. 2012;13:R35.

12. Lejeune F. Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. BMB Rep. 2017;50:175–85.

13. He F, Jacobson A. Nonsense-mediated mRNA decay: degradation of defective transcripts is only part of the story. Annu Rev Genet. 2015;49:339–66.

14. Losson R, Lacroute F. Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc Natl Acad Sci USA. 1979;76:1795–8.

15. Pulak R, Anderson P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 1993;7:1885–97.

16. Le Hir H, Izaurralde E, Moore MJ. The exon–exon junction complex provides a binding platform for factors involved in exon splicing and nonsense-mediated mRNA decay. EMBO J. 2000;19:6860–9.

17. Gehring NH, Neu-Yilik G, Schell T, Hentze MW, Kulozik AE. Y14 and MAGOH genes contribute to exon junction complex composition and nonsense-mediated decay. RNA Biol. 2013;10:1291–8.

18. Steckelberg A, Boehm V, Gromadzka AM, Gehring NH. CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Rep. 2012;2:454–61.

19. Kim WK, Yong J, Kataoka N, Abel L, Diem MD, Dreyfuss G. The Y14 protein communicates to the cytoplasm the position of exon–exon junctions. EMBO J. 2001;20:2062–8.

20. Dang Y, Low WK, Xu J, Gehring NH, Dietz HC, Schell T, Limb JA. Inhibition of nonsense-mediated mRNA decay by the natural product pateamine A through eukaryotic initiation factor 4AIII. J Biol Chem. 2002;277:25119–66.

21. Palacios IM, Gehring NH, Neu-Yilik G, Schell T, Hentze MW, Kulozik AE. An elf4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature. 2004;427:737–57.

22. Singh G, Jakob S, Kleeden MG, Lykke-Andersen J. Communication with the exon-junction complex and activation of nonsense-mediated decay by human Upf proteins occur in the cytoplasm. Mol Cell. 2007;27:390–92.

23. Bono E, Ebert B, Unterholzner L, Guttler T, Izaurralde E, Conti E. Molecular insights into the interaction of PYYM with the Mago-Y14 core of the exon junction complex. EMBO Rep. 2004;5:304–10.

24. Lykke-Andersen J, Mei-De S, Steitz JA. Communication of the position of exon–exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science. 2001;293:1836–9.

25. Krol E, Maquat LE. Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact. Wiley Interdiscip Rev RNA. 2016;7:661–82.

26. Apcher S, Millot G, Daskalogianni C, Scherl A, Manoury B, Fahraeus R. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol. 2005;12:1054–63.

27. Singha K, Yoon HY, Ohno S. N- and C-terminal UPF1 phosphorylations create binding platforms for the MHC class I pathway. Proc Natl Acad Sci USA. 2001;98:17951–6.

28. Chen CY, Shyu AB. Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol Cell Biol. 2003;23:4805–13.

29. Coulter P, Grange T. Premature termination codons enhance mRNA decapping in human cells. Nucleic Acids Res. 2004;32:488–94.

30. Gekakis N, Laub M, Dreyfuss G. The Y14 protein communicates to the cytoplasm the position of exon–exon junctions. EMBO J. 2001;20:4987–97.

31. Ohno S, Gekakis N, Laub M, Dreyfuss G. The Y14 protein contains multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions. EMBO J. 2000;19:6860–9.

32. Lykke-Andersen J, Mei-De S, Steitz JA. Communication of the position of exon–exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science. 2001;293:1836–9.

33. Unterholzner L, Izaurralde E. SMG7 acts as a molecular link between the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoans. RNA. 2008;14:2609–17.

34. Eberle AB, Lykke-Andersen S, Muhlemann O, Jensen TH. SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat Struct Mol Biol. 2009;16:49–55.

35. Lykke-Andersen S, Chen Y, Ardal BR, Lilje B, Waage J, Sandelin A, Jensen TH. Human nonsense-mediated RNA decay initiates widely by endonucleolyis and targets snoRNA host genes. Genes Dev. 2014;28:2498–517.

36. Schmidt SA, Foley PL, Jeong DH, Rymarquis LA, Doyle F, Tenenbaum SA, Belasco JG, Green PF. Identification of SMG6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Res. 2015;43:309–23.

37. Lykke-Andersen S, Chen Y, Ardal BR, Lilje B, Waage J, Sandelin A, Jensen TH. Human nonsense-mediated RNA decay initiates widely by endonucleolyis and targets snoRNA host genes. Genes Dev. 2014;28:2498–517.

38. Schmidt SA, Foley PL, Jeong DH, Rymarquis LA, Doyle F, Tenenbaum SA, Belasco JG, Green PF. Identification of SMG6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Res. 2015;43:309–23.

39. Hogg JR, Goff SP. UPF1 senses 3′ UTR length to potentiate mRNA decay. Cell. 2010;143:379–89.

40. Amrani N, Ganesan R, Kervestin S, Mangus DA, Gisho S, Jacobson A, Most human proteins made in both nucleus and cytoplasm turn over in minutes. Proc Natl Acad Sci USA. 2013;110:17951–6.

41. Baboo S, Bhushan B, Jiang H, Groenov CR, Pierre P, Davis BG, Cook PR. Most human proteins made in both nucleus and cytoplasm turn over in minutes. Proc Natl Acad Sci USA. 2013;110:17951–6.

42. Apcher S, Militto G, Daskalogianni C, Scherl A, Manoury B, Fahraeus R. Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway. Proc Natl Acad Sci USA. 2013;110:17951–6.

43. Iborra FJ, Jackson DA, Cook PR. Coupled transcription and translation as a glance. J Cell Sci. 2016;129:461–7.

44. Cheng J, Maquat LE. Nonsense codons can reduce the abundance of functional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol. 2008;6:e92.

45. Buhrer M, Steiner S, Mohn F, Paulusson A, Muhlemann O. EXC-independent degradation of nonsense immunoglobulin-μ mRNA depends on 3′ UTR length. Nat Struct Mol Biol. 2006;13:462–4.

46. Belgrader P, Cheng J, Zhou X, Stephenson LS, Maquat LE. Mammalian nonsense-mediated decay pathway. Nat Struct Mol Biol. 2003;10:1291–8.

47. Amrani N, Ganesan R, Kervestin S, Mangus DA, Gisho S, Jacobson A. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated RNA decay. Nature. 2004;432:112–8.

48. Karousis ED, Nasif S, Muhlemann O. Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact. Wiley Interdiscip Rev RNA. 2016;7:661–82.

49. Hug N, Longman D, Caceres JF. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 2016;44:1483–95.

50. Apcher S, Militto G, Daskalogianni C, Scherl A, Manoury B, Fahraeus R. Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway. Proc Natl Acad Sci USA. 2013;110:17951–6.

51. Baboo S, Bhushan B, Jiang H, Groenov CR, Pierre P, Davis BG, Cook PR. Most human proteins made in both nucleus and cytoplasm turn over in minutes. Proc Natl Acad Sci USA. 2013;110:17951–6.

52. Apcher S, Militto G, Daskalogianni C, Scherl A, Manoury B, Fahraeus R. Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway. Proc Natl Acad Sci USA. 2013;110:17951–6.
Cheng J, Belgrader P, Zhou X, Maquat LE. Introns are cis effectors of the nonsense-codon-mediated reduction in nuclear mRNA abundance. Mol Cell Biol. 1994;14:6317–25.

Bhalla AD, Gudikote JP, Wang J, Chan WK, Chang YF, Olivas OR, Wilkinson MF. Nonsense codons trigger an RNA partitioning shift. J Biol Chem. 2009;284:4062–72.

Lozano F, Maertzdorf B, Pannell R, Milstein C. Low cytoplasmic mRNA levels of immunoglobulin kappa light chain genes containing nonsense codons correlate with inefficient splicing. EMBO J. 1994;13:4617–22.

Gersappe A, Pintel DJ. A premature termination codon interferes with the nuclear function of an exon splicing enhancer in an open reading frame-dependent manner. Mol Cell Biol. 1999;19:1640–50.

Muhlemann O, Mock-Casagrande CS, Wang J, Li S, Custodio N, Carmo-Fonseca M, Wilkinson MF, Moore MJ. Precursor RNAs harboring nonsense codons accumulate near the site of transcription. Mol Cell. 2008;13:34–43.

Buhrer M, Wilkinson MF, Muhlemann O. Intranuclear degradation of nonsense codon-containing mRNA. EMBO Rep. 2002;3:646–51.

Kessler O, Chasin LA. Effects of nonsense mutations on nuclear and cytoplasmic adenosine phosphoribosyltransferase RNA. Mol Cell Biol. 1996;16:4426–35.

Takeshita K, Forget BG, Scarpa A, Benz EJ. Intranuclear defect in beta-casein mRNA decay. EMBO J. 1994;13:4–12.

Wang J, Chang YF, Hamilton JJ, Wilkinson MF. Nonsense-associated altered splicing: a frame-dependent response distinct from nonsense-mediated decay. Mol Cell. 2002;10:951–7.

Treck T, Sato H, Singer RH, Maquat LE. Temporal and spatial characterization of nonsense-mediated mRNA decay. Genes Dev. 2013;27:541–51.

Lewis BP, Green RE, Brenner SE. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA. 2003;100:189–92.

Cao D, Parker R. Computational modeling and experimental analysis of nonsense-codon-mediated reduction in nuclear mRNA abundance. Mol Cell. 2009;28:4320–30.

Sureau A, Gattoni R, Dooghe Y, Stevenin J, Soret J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J. 2001;20:1785–96.

Wilson GM, Sun Y, Sellers J, Lu H, Penkner N, Dillard G, Brewer G. Regulation of AUF1 expression via conserved alternatively spliced elements in the 3′ untranslated region. Mol Cell Biol. 1999;19:4056–64.

Malabat C, Feuerbach F, Ma L, Saveaun C, Jacquier A. Quality control of transcription start site selection by nonsense-mediated mRNA decay. SciLife. 2015;4:e06722.

Belev AT, Hepler NL, Jacobs JL, Dinndan JD. PRFdb: a database of computationally predicted eukaryotic programmed-1 ribosomal frameshift signals. BMC Genom. 2008;9:339.

Belev AT, Advani VM, Dinndan JD. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast. Nucleic Acids Res. 2011;39:2799–808.

Advanced TM, Meisakauskas A, Musalgaonkar S, Advani VM, Sulima SO, Kasprzak WK, Shapiro EA, Dinndan JD. Ribosomal frameshifting in the CCR5 mRNA is regulated by mRNAs and the NMD pathway. Nature. 2014;512:265–9.

Adwani VM, Belev AT, Dinndan JD. Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the nonsense-mediated mRNA decay pathway. Translation. 2013;1:e24418.

Barbosa C, Pexier L, Remlo L. Gene expression regulation by upstream open reading frames and human disease. PLoS Genet. 2013;9:e1003529.

Hurt JA, Robertson AD, Burge CB. Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res. 2013;23:1636–50.

Toma KG, Reppabragada I, Durand S, Lykke-Andersen J. Identification of elements in human long 3′ UTRs that inhibit nonsense-mediated decay. RNA. 2015;21:887–97.

Bruno IG, Karam R, Huang L, Bhardwaj A, Lou CH, Shum EM, Song HW, Cebert MA, Gifford WD, Gecz J, et al. Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol Cell. 2011;42:500–10.

Huang L, Lou CH, Chan W, Shum EM, Aho, Stone E, Karam R, Song HW, Wilkinson MF. RNA homeostasis governed by cell type-specific and branched feedback loops acting on NMD. Mol Cell. 2011;43:950–61.

Shetty SP, Copeland PR. Selenocysteine incorporation: a trump card in the game of mRNA decay. Biochimie. 2015;114:97–101.

Usuki F, Yamashita A, Fujimura M. Post-transcriptional defects of anti-oxidant selenoenzymes cause oxidative stress under methylmercury exposure. J Biol Chem. 2011;286:6641–9.

Carter MS, Dosew J, Morris P, Li S, Nihm RP, Sandstedt S, Wilkinson MF. A regulatory mechanism that detects premature nonsense codons in T-cell receptor transcripts in vivo is reversed by protein synthesis inhibitors in vitro. J Biol Chem. 1995;270:28995–9003.

Gudikote JP, Wilkinson MF. T-cell receptor sequences that elicit strong downregulation of premature termination codon-bearing transcripts. EMBO J. 2002;21:125–34.

Frischknecht-Reuwer PA, Montgomery RA, Warren DS, Cooke SK, Lutz J, Sonnenday CJ, Guerrerio AL, Dietz HC. Perturbation of thymocyte development in nonsense-mediated decay (NMD)-deficient mice. Proc Natl Acad Sci USA. 2011;108:6038–43.

Wong JJ, Ritchie W, Ebner DA, Seibach M, Wong JW, Huang Y, Gao D, Pinello N, Gonzalez M, Baidya K, et al. Orchestrated intron retention regulates normal granulocyte differentiation. Cell. 2013;154:583–95.

Lou CH, Shao A, Shum EM, Espinoza JL, Huang L, Karam R, Wilkinson MF. Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated RNA decay pathway. Cell Rep. 2014;6:748–64.

Lou CH, Durnle J, Goertz A, Shum EM, Braftman D, Liao X, Mora-Castilla S, Ramaiah M, Cook-Andersen H, Laurent L, et al. Nonsense-mediated RNA decay influences human embryonic stem cell fate. Stem Cell Rep. 2016;6:844–57.
101. Tarpey PS, Raymond FL, Nguyen LS, Rodriguez J, Hackett A, Vande-leur L, Smith R, Shoubridge C, Edkins S, Stevens C, et al. Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic neurodevelopmental retardation. Nat Genet. 2007;39:1127–33.

102. Nguyen LS, Kim HG, Rosenfeld JA, Shen Y, Gusella JF, Lacassee Y, Layman LC, Shaffer LG, Gecz J. Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Hum Mol Genet. 2013;22:1816–25.

103. Addington AM, Gauthier J, Piton A, Hamdan FF, Raymond A, Gogtay LC, Shoubridge C, Antar C, Nguyen LS, Van Esch H, Kleefstra T, Xu X, Zhang L, Tong P, Xun G, Su W, Xiong Z, Zhu T, Zheng Y, Luo S, Pan Y, et al. Exome sequencing identifies UPF3B as the causative gene for a Chinese non-syndrome mental retardation pedigree. Mol Psychiatry. 2011;16:238–9.

104. Laumonnier F, Shoubridge C, Antar C, Nguyen LS, Van Esch H, Kleefstra T, Briault S, Frisyn JP, Hamel B, Chey J, et al. Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonsyndromal mental retardation with or without autism. Mol Psychiatry. 2010;15:767–76.

105. Jolly LA, Homan CC, Jacob R, Barry S, Gecz J. The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Hum Mol Genet. 2013;22:4673–87.

106. Xu X, Zhang L, Tong P, Xun G, Su W, Xiong Z, Zhu T, Zheng Y, Luo S, Pan Y, et al. Competitive pathways that contribute to myogenesis: effects on PAX3 protein expression. Cell. 2007;130:179–91.

107. Colistreri G, Yeo GW, Stone ME, Katz DB, Burge C, Turrigiano G, Moore MJ. The EJC factor eIF4AIII modulates synaptic strength and neuronal mRNA decay. Cell. 2007;130:179–91.

108. van Heesch S, van Itersom M, Jacobij J, Boymans S, Essers PB, de Bruijn E, Hao W, Macinnnes AV, Cuppen E, Simonis M. Extensive localization of long non-coding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol. 2014;15:86.

109. Smith JE, Alvarez-Dominguez JR, Kline N, Huynh NY, Geisler S, Hu W, Coller J, Baker KE. Translation of small open reading frames within unannotated RNA transcripts in Saccharomyces cerevisiae. Cell Rep. 2014;7:1858–66.

110. Wery M, Deschemes M, Vogt N, Daalvongsevich A, Gautheret D, Morillon A. Nonsense-mediated decay restricts IncRNA levels in yeast unless blocked by double-stranded RNA structure. Mol Cell. 2016;61:379–92.

111. Gardner LB. Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response. Mol Cell Biol. 2008;28:3729–41.

112. Gardner LB. Stress-induced inhibition of nonsense-mediated RNA decay facilitates the response to chemotherapeutics. Nat Commun. 2015;6:6632.

113. Popp MW, Macquat LE. Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics. Nat Commun. 2015;6:6632.

114. Tani H, Torimura M, Akimitsu N. The RNA degradation pathway regulates endogenous RNA targets in human cells, zebrafish and Caenorhabditis elegans. Nucleic Acids Res. 2013;41:8319–31.

115. Alrahbeni T, Sartor F, Anderson J, Miedzybrodzka Z, McCaig C, Muller B. Giorgi C, Yeo GW, Stone ME, Katz DB, Burge C, Turrigiano G, Moore MJ. The EJC factor eIF4AIII modulates synaptic strength and neuronal mRNA decay. Cell. 2007;130:179–91.

116. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Nekrutenko A, Sertic D, Willing A, et al. The human genome reference assembly GRCh38. Nature. 2012;489:1038–73.
143. Gehring NH, Kunz JB, Neu-Yilik G, Breit S, Viegas MH, Hentze MW, Kulozik AE. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol Cell. 2005;20:65–75.

144. Wengprod J, Martin L, Wang D, Frischmeyer-Guerreiro P, Dietz HC, Gardner LB. Inhibition of nonsense-mediated RNA decay activates autophagy. Mol Cell. 2013;53:21–32.

145. Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinical. Nat Genet. 2004;34:801–2.

146. Maquat LE, Kinniburgh AJ, Rachmilewitz EA, Ross J. Unstable β-globin mRNA in mRNA-deficient β0 thalassemia. Cell. 1981;27:543–53.

147. Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet. 1999;8:1893–900.

148. Feng Q, Snider L, Jagannathan S, Tawil R, van der Maarel SM, Tapscott SJ, Rigby RE, Rehwinkel J. RNA degradation in antiviral immunity and autophagy. Mol Cell Biol. 2013;33:2128–35.

149. El-Bchiri J, Guilloux A, Dartigues P, Loire E, Mercier D, Buhard O, Sobhani P, Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, Beheshti B, Braude I, Marrano P, Throner P, Zielenska M, Squire JA. Chromosomal localization of DNA amplifications in neuroblastoma tumors. J Cell Biol. 2000;20:3116–24.

150. Liu C, Karam R, Zhou Y, Su F, Shi X, Liu J, Li J, Huyh A, Shi C, Zhu B, et al. The nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors. J Clin Invest. 2016;13;12:3058–62.

151. Rigby RE, Rehwinkel J. RNA degradation in antisense and autophagy. Trends Immunol. 2013;36:179–88.

152. El-Bchiri J, Guilloux A, Dartigues P, Loire E, Mercier D, Buhard O, Sobhani P, I, de la Grange P, Auboeuf D, et al. Nonsense-mediated mRNA decay impacts MSI-driven carcinogenesis and anti-tumor immunity in colorectal cancers. PLoS ONE. 2008;3:e2583.

153. Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, Beheshti B, Braude I, Marrano P, Throner P, Zielenska M, Squire JA. Nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors. J Clin Invest. 2016;13;12:3058–62.

154. Jackson KL, Dayton RD, Orchard EA, Ju S, Ringe D, Petsko GA, Maquat LE, Klein RL. Preservation of forelimb function by UPF1 gene therapy in a rat model of TDP-43-induced motor paralysis. Gene Ther. 2015;22:20–8.

155. Gilboa E. Expression of new antigens on tumor cells by inhibiting nonsense-mediated mRNA decay. Immunol Res. 2013;57:44–51.

156. Pastor F, Kolonias D, Giangrande PH, Gilboa E. Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature. 2010;465:227–30.

157. Temple GF, Dozy AM, Roy KL, Kan YW. Construction of a functional human suppressor tRNA gene: an approach to gene therapy for beta-thalassaemia. Nature. 1982;296:537–40.

158. Kiselev AV, Ostapenko OV, Rogozhnikova EV, Kholod NS, Sei Nebi AS, Baranov AN, Lesina EA, Ivashchenko TE, Sabetskii VA, Shavlovskii MM, et al. Suppression of nonsense mutations in the Dystrophin gene by a suppressor tRNA gene. Mol Biol (Mosk). 2002;36:43–7.

159. Buvoli M, Buvoli A, Leinwand LA. Suppression of nonsense mutations in cell culture and mice by multimerized suppressor tRNA genes. Mol Cell Biol. 2000;20:3116–24.

160. Welch EM, Barton ER, Zhui J, Tomizawa Y, Friesen W, Trifillis P, Paushkin S, Patel M, Trota CR, Hwang S, et al. PTCT124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447:87–91.

161. Burke JF, Mogg AE. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and puromycin. Nucleic Acids Res. 1985;13:6265–72.

162. Keeling KM, Bedwell DM. Clinically relevant aminoglycosides can suppress disease-associated premature stop mutations in the IDUA and p53 cDNAs in a mammalian translation system. J Mol Biol (Berl). 2002;28:367–76.

163. Gonzalez-Hilarion S, Berghyn T, Jia J, Bebreuck N, Berte G, Mamchaoui K, Moul Y, Gruenert DC, Drefez B, Lejeune F. Rescue of nonsense mutations by amlexanox in human cells. Orphanet J Rare Dis. 2012;7:58.

164. Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S. Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated decay. Genes Dev. 2001;15:2215–28.

165. Denning G, Jameson L, Maquat LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol 3-kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem. 2001;276:22709–14.

166. Gopalasamy A, Bennett EM, Shi M, Zhang WG, Bard J, Yu K. Identification of pyrimidine derivatives as hSMG-1 inhibitors. Bioorg Med Chem Lett. 2012;22:6636–41.

167. Durand S, Cogout N, Mahuteau-Betzner F, Nguyen CH, Grierson DS, Bertrand E, Tazi J, Lejeune F. Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies. J Cell Biol. 2007;178:1145–60.

168. Bhuvanagiri M, Lewis J, Putzer K, Becker JP, Leicht S, Kriegsvedl J, Batra R, Turnwald B, Jovanovic B, Hauer C, et al. S-acetylated inhibits nonsense-mediated decay in a MYC-dependent fashion. EMBO Mol Med. 2014;6:1593–609.

169. Peccarelli M, Kebarra BW. Regulation of natural mRNAs by the nonsense-mediated mRNA decay pathway. Eukaryot Cell. 2014;13:1126–35.