Determination of Value-at-Risk in UNVR Stocks Using ARIMA-GJR-GARCH Model

Rizki Apriva Hidayana1*, Herlina Napitupulu2, Sukono3

1 Master's Program of Mathematics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jatinangor, West Java, Indonesia

2,3 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jatinangor, West Java, Indonesia

*Corresponding author email: rizki20011@mail.unpad.ac.id

Abstract

Stocks are investment instruments that are in great demand by investors as a basis for storing finances. The most important thing in investing is the return and risk of loss obtained from investing in stocks. Risk measurement is carried out using Value-at-Risk and Conditional Value-at-Risk. The stock movements used are historical data and in the form of time series, so that a model can be formed to predict the next movement of stocks and risk measurements can be carried out. The purpose of this study is to determine the value of risk obtained by investors using time series analysis. The data used in this study is the daily closing price of stocks for 3 years. The stages of the analysis carried out to predict stock movements are to determine the ARIMA model for the mean model and the GJR-GARCH model for the volatility model. The mean value and variance are used to calculate the risk value of VaR. Based on the results of the Value-at-Risk calculation obtained, UNVR shares have a risk value of 0.01217. This means that if an investment is made in UNVR shares of IDR 100,000,000.00, the estimated maximum loss of potential loss that occurs is estimated to reach IDR 1,217,000.

Keywords: Risk, ARIMA, GJR-GARCH, Value-at-Risk

1. Introduction

Investment is an activity of placing funds that are carried out at this time in the hope of obtaining benefits in the future. Investing money in various alternative assets, one of which is stocks is one of the activities related to investment (Tandelilin, 2010). Stocks are the most popular securities today to trade. In investing, an investor must often monitor the movement of stocks on the exchange as a whole (Ali, 2022).

Every investment has several important things, namely risk and rate of return. Return is the level of profit obtained by investors in investing. Risks in investing are sometimes unavoidable. There are several types of investment risks, namely business risk, financial risk, inflation risk, liquidity risk, country risk, currency risk, market risk, and interest risk (Sulistianingsih, et al., 2021). There are various ways to estimate risks such as Value-at-Risk and Conditional Value-at-Risk. In this study, risk measurement was carried out using Value-at-Risk using a time series model.

Time series models are widely used to analyze time series with different types of data. Some of the previous studies used the ARIMA-GJR-GARCH time series model. Xu et al. (2015) used the ARIMA-GJR-GARCH model to forecast the exchange rate of the Renminbi (Chinese currency) against the Hong Kong dollar. The GJR-GARCH model can be used for asymmetric data in the variance equation. Based on the analysis of the paper, the ARIMA model (1,1,1)-GJR-GARCH (1,1) is the best model for exchange rates and forecasting. Su & Lin (2011) determines Value-at-Risk using the GJR-GARCH model against financial ownership. The result obtained is that Model GJR-GARCH is good for VaR forecasting.
There are some flaws in the models that have been carried out by some previous researchers. Among others Xu et al. (2015) have not linked their research to the determination of VaR values, Su & Lin (2011) have not determined the value of risk using Conditional Value-at-Risk (CVaR).

Based on these deficiencies, the study used the ARIMA-GJR-GARCH model and the Genetic Algorithm to estimate the size of the risk. The purpose of this study was to apply the ARIMA-GJR-GARCH model to estimate the risk of UNVR shares. This study used the help of Excel software, Eviews 10.

2. Literature Review

2.1. Return

Return is the amount of profit made by investors in investing. According to Tsay (2005), there are several definitions of returns including assuming that the selected shares do not pay dividends. The return formula used is:

\[r_t = \frac{P_t - P_{(t-1)}}{P_{(t-1)}} \]

(1)

where \(r_t \) represents the value of the time return to-\(t \), \(P_t \) represents the value of the time return to-\(t \), and \(P_{(t-1)} \) represents the time stock price–(\(t – 1 \)) or the share price one period before the time-\(t \).

2.2. Mean Model

Model ARIMA (\(p, d, q \)) introduced by Box and Jenkins, where \(p \) is an AR operator, \(d \) is an order differencing, and \(q \) is an MA operator. In general, the ARIMA model (\(p, d, q \)) is as follows:

\[\phi_p(B)(1-B)^dZ_t = \theta_0 + \theta_q(B)\alpha \]

(2)

where \(\phi_p \) is the coefficient of the AR model parameter that depends on lag, \(\theta_q \) is the coefficient of the parameters of the MA model that depends on lag, \((1-B)^d \) is operator differencing, \(Z_t \) is data at the time to \(t \), \(B \) is the operator step back, and \(d \) is a differencing rate for the process to be stationary.

2.3. Volatility Model

The GARCH model is a generalization of the ARCH model developed by Bollerslev in 1986. Based on its development, the GARCH model is a supporter of time series analysis of the capital market by providing volatility estimators. Model GARCH (\(p,q \)) is as follows:

\[\sigma_t^2 = \omega + \sum_{i=1}^{p} \theta_i \sigma_{t-i}^2 + \sum_{j=1}^{q} \beta_j \sigma_{t-j}^2 + \alpha \varepsilon_{t-i} \]

(3)

The GARCH equation above shows that the conditional si variant is volatility (ARCH) and the previous variance (GARCH) is seen from residual squares (\(p \)) and the previous residual variant (\(q \)) (Olowe, 2010). The things that are nature of the GARCH model are the GARCH model in its low-accuracy volatility forecasting and on many stock data, stock returns have an asymmetric influence that is not detected by the GARCH model (Dwipa, 2016).

This GJR model (Glosten, Jagannathan, and Runkle) is another asymmetric GARCH model that is a common form of the GJR-GARCH model (\(p,q \)). Model GJR-GARCH (\(p,q \)) defined as follows (Hidayana et al., 2022):

\[\sigma_t^2 = \omega + \sum_{i=1}^{p} \theta_i \sigma_{t-i}^2 + \sum_{j=1}^{q} \beta_j \sigma_{t-j}^2 + \gamma \varepsilon_{t-i} \varepsilon_{t-i}^2 \]

(4)

\[l_{t-i} = \begin{cases} 1, & \varepsilon_{t-i} < 0 \\ 0, & \varepsilon_{t-i} \geq 0 \end{cases} \]

where \(l_{t-i} \) is a dummy variable which means \(l_{t-i} \) is a functional index of value 0 ketika \(\varepsilon_{t-i} \) positive and worth 1 when \(\varepsilon_{t-i} \) negative. If the parameter \(\gamma \) > 0 then the negative error does not work which means that the influence of bad news is greater than the influence of good news (Dritsaki, 2017).

2.4. VaR

Value-at-Risk (VaR) is one of the instruments for measuring risk. So that the equation becomes (Dokov et al., 2008):

\[\text{VaR} = \inf \{ x | F(x) \geq \alpha \} \]

The standard method assumes that the return on univariate-distributed assets is normal, having two parameters namely the average (mean) \(\mu \) and standard deviation \(\sigma \). VaR estimation is performed using the following equation:

\[\text{VaR} = -1 \cdot \left(\mu + \sigma F^{-1}(\alpha) \right) \]

(5)
3. Result and Discussion

In this section, data analysis is carried out using the mean model and volatility models. Then the Value-at-Risk calculation is carried out using the average value and variance that has been obtained.

3.1. Data

The data used in this study is daily historical data on stock closures starting in the period from December 17, 2018 to December 14, 2021. The data is obtained from the website https://finance.yahoo.com/. Data analysis is carried out with the help of Eviews and Excel software.

3.2. Statistic Descriptive

The descriptive statistics of the data used based on the value of stock returns that can be calculated using equation (1) are shown in Table 1.

Kode	Samples	Mean	Median	Maximum	Minimum	Standard deviation
UNVR	746	-0.0007	-0.00056	0.19383	-0.0692	0.02056

Then a stationary test was carried out based on the return value using the Eviews software, it was obtained that the original data was stationary. So, it can be concluded that the model used is the ARMA model (p, q) or the ARIMA model (p, d, q) with the order d in the model is worth 1.

3.3. Mean Model Estimation

After stationary data, it further determines the average model. Based on section 2.2, the best average model was obtained, namely ARMA (2,0,3). The model has a white noise diagnostic test result with a Ljung-Box value (44.958991) less than $\chi^2_{a,k-2}$ (44.98534) and residual is normal. Therefore, the ARIMA model (2,0,3) is said to be significant. The UNVR stock model estimates according to equation (2) which is as follows

\[Z_t = -0.248710Z_{t-1} - 0.782618Z_{t-2} - 0.839945a_{t-1} + 0.551698a_{t-2} - 0.709946a_{t-3} + a_t. \]

3.4. Volatility Model Estimation

Before determining the volatility model, the first thing to do is to check the effect of ARCH on the selected average model. After testing ARCH-LM using Eviews software, it was obtained that the average model had an ARCH effect. The selected model is said to be significant after validating normally distributed white noise and residual diagnostic tests. GARCH model estimation is as follows

\[\sigma_t^2 = 1.40 \times 10^{-5} + 0.155901a_{t-1}^{2} + 0.814572\sigma_{t-1}^{2} + u_t. \]

Furthermore, checking the symmetrical effect on the GARCH model was carried out, and it was found that the GARCH model had an asymmetric effect. Therefore, an estimate of the GJR-GARCH model for the volatility model was carried out. So, a significant model was obtained, namely GJR-GARCH (1,1). Based on section 2.3 the volatility model estimates are as follows

\[\sigma_t^2 = 1.05 \times 10^{-5} + 0.092302a_{t-1}^{2} + 0.151156a_{t-1}^{2}I_{t-1} + 0.707198\sigma_{t-1}^{2} + \varepsilon_t. \]

3.5. VaR Estimation

The value-at-Risk calculation is based on the results of estimated averages and variances. There are several parameters used to calculate VaR, namely the average $\hat{\mu}$ and standard deviation $\hat{\sigma}$ which refers to section 2.4. Then a Backtesting calculation is carried out to determine VaR performance where the value obtained is no more than the range [0, 2]. VaR results can be seen in Table 2.

Kode	$\hat{\mu}$	$\hat{\sigma}^2$	$\hat{\sigma}$	VaR_t	QPS
UNVR	0.002266	0.000077	0.008781	0.012177	0.328758
4. Conclusions and Suggestions

The conclusion obtained is the average model, namely ARIMA (2,0,3), while the volatility model for UNVR stocks is GJR-GARCH (1,1). Then the results of the Value-at-Risk calculation obtained using the ARIMA(2,0,3)-GJR-GARCH(1,1) model were 0.01217. This means that if an investment is made in UNVR shares of IDR 100,000,000.00, the estimated maximum loss of potential loss that occurs is estimated to reach IDR 1,217,000. The suggestion proposed for further research is to be able to use other time series models to improve the average and volatility models.

Reference

Ali, A. (2022). Risk Analysis And Stock Return Of Multiple Sector Manufacturing Industry On The Indonesia Stock Exchange For The 2017-2022 Period. Asia Pacific Journal of Business Economics and Technology, 2(05), 48-62.

Dokov, S., Stoyanov, S. V., & Rachev, S. 2008. Computing VaR and AVaR of skewed-t distribution. Journal of Applied Functional Analysis, 3, 189-209.

Dritosaki, C. 2017. An empirical evaluation in GARCH volatility modeling: Evidence from the Stockholm stock exchange. Journal of Mathematical Finance, 7(2), 366-390.

Dwipa, N. M. S. 2016. Identifikasi Model I-Garch (Integrated Generalized Autoregressive Conditionally Heterocedastic) Untuk Peramalan Value-at-Risk. Jurnal Derivat: Jurnal Matematika dan Pendidikan Matematika, 3(1), 25-38.

Hidayana, R., Napitupulu, H., & Sukono, S. (2022). An investment decision-making model to predict the risk and return in stock market: An Application of ARIMA-GJR-GARCH. Decision Science Letters, 11(3), 235-246.

Olowe, R. A. 2010. Oil price volatility, global financial crisis and the month-of-the-year effect. International Journal of Business and Management, 5(11), 156.

Su, Y. C., Huang, H. C., & Lin, Y. J. 2011. GJR-GARCH model in value-at-risk of financial holdings. Applied Financial Economics, 21(24), 1819-1829.

Sulistianingsih, E., & Rosadi, D. (2021, June). Risk analysis of five stocks indexed by LQ45 using credible value at risk and credible expected tail loss. In Journal of Physics: Conference Series (Vol. 1918, No. 4, p. 042023). IOP Publishing.

Tandelilin, E. 2010. Portofolio and investment. Edisi Pertama. Yogyakarta: BPFE.

Tsay, R. S. 2005. Analysis of financial time series (Vol. 543). Chicago: John Wiley & Sons.

Xu, S. N., Zhao, K., & Sun, J. J. 2015. An empirical analysis of exchange rates based on ARIMA-GJR-GARCH model. In Applied Engineering Sciences: Proceedings of the 2014 AASRI International Conference on Applied Engineering Sciences, Hollywood, LA, USA (Vol. 1, p. 83). CRC Press.