Prevention of tuberculosis in household members: estimates of children eligible for treatment

Yohhei Hamada, Philippe Glaziou, Charalambos Sismanidis & Haileyesus Getahun

Introduction

The management of latent tuberculosis infection is a critical component of the World Health Organization’s (WHO’s) End TB Strategy. Given that between a quarter and a third of the global population is estimated to be infected with *Mycobacterium tuberculosis*, the Strategy’s ambitious targets and the United Nations’ Sustainable Development Goals cannot be achieved without tackling the reservoir of latent infection.

The risk of progression from tuberculosis infection to active disease is particularly high in young children, who are also at the greatest risk of severe and disseminated disease. As a result, treatment of tuberculosis infection (i.e. tuberculosis preventive treatment) is strongly recommended for children younger than 5 years who are household contacts of people with bacteriologically confirmed pulmonary tuberculosis. Accordingly, coverage of tuberculosis preventive treatment is one of the key indicators used to monitor the implementation of the End TB Strategy.

In 2018, world leaders committed to providing 4 million child household contacts younger than 5 years with tuberculosis preventive treatment by 2022.

A recent survey of policy and practice on latent tuberculosis infection in countries with a low tuberculosis burden and in African countries found that many lacked recording and reporting systems for infection. In 2016, WHO started collecting data on the number of children younger than 5 years globally who were household contacts of people with pulmonary tuberculosis and who had started tuberculosis preventive treatment. Although 118 countries, including 16 of the 30 countries with a high tuberculosis burden, reported data in 2017, there was a lack of clearly defined denominators for assessing coverage of preventive treatment, which makes planning and monitoring difficult.

Consequently, the aim of this study was to use tuberculosis notification data from 2017 to estimate of the number of children younger than 5 years in individual countries who were household contacts of people with pulmonary tuberculosis and who were eligible for tuberculosis preventive treatment. This information should help countries implement and monitor preventive treatment.

Methods

Countries with a low tuberculosis burden comprised the 113 high-income or upper-middle-income countries in which the estimated annual incidence of tuberculosis disease in 2015 was fewer than 100 cases per 100,000 population. WHO’s 2015 guidelines on the management of latent tuberculosis infection are intended primarily for these countries. Countries with 100 or more cases per 100,000 population were regarded as having a high tuberculosis burden.

In countries with a high tuberculosis burden, the number of children eligible for tuberculosis preventive treatment was defined as the number younger than 5 years who are household contacts (hereafter referred to as child household contacts) of people with bacteriologically confirmed pulmonary tuberculosis and who do not themselves have active tuberculosis, regardless of whether they have a confirmed tuberculosis infection (in accordance with WHO guidelines on the management of tuberculosis in children).

In countries with a low tuberculosis burden, the number of children eligible for tuberculosis preventive treatment was defined as the number of children younger than 5 years who are household contacts of people with bacteriologically confirmed pulmonary tuberculosis, who do not themselves have active tuberculosis and who have a confirmed tuberculosis infection, as indicated by...
a positive result on a standard tuberculin skin test or an interferon-gamma release assay. Consequently, the number of child household contacts eligible for tuberculosis preventive treatment, \(N \), was calculated using:

\[
N = \frac{n}{c} \cdot h \cdot (1 - T)
\] (1)

in countries with a high tuberculosis burden; and

\[
N = \frac{n}{c} \cdot h \cdot (1 - T) \cdot L
\] (2)

in countries with a low tuberculosis burden; where \(n \) was the number of notified cases of bacteriologically confirmed, pulmonary tuberculosis in the country, \(c \) was the average number of active tuberculosis cases per household with an index case, \(h \) was the average household size, \(p \) was the proportion of the national population that was younger than 5 years, \(T \) was the proportion of child household contacts who had active tuberculosis, and \(L \) was the prevalence of a confirmed latent tuberculosis infection among child household contacts. For countries with a high tuberculosis burden, \(L \) was not included in the calculation because eligibility for tuberculosis preventive treatment did not depend on confirmation of infection. We did not estimate numbers for countries or territories with a population under 300 000.

Table 1 details how we derived values for the parameters in these two equations. From the literature, we obtained country-specific values of \(n \) and \(p \) for 2017, country-specific values of \(h \) for different years and a global estimate of \(T \). To obtain a global value for \(L \), we updated a recent systematic review and meta-analysis, and to obtain a global value for \(c \), we carried out a new systematic review of the literature from 1 January 2005 to 11 November 2017.18 For both the updated and new systematic reviews, we used the reference list of Fox et al.'s systematic review,18 which included publications up until 1 October 2011, and supplemented it with papers subsequently published up until 11 November 2017. The new systematic review did not consider publications before 2005 because we judged that earlier publications would not reflect the current situation. The following search string was used in PubMed for both reviews: (tuberculosis[Title] OR "tuberculosis"[MeSH Terms] OR "mycobacterium tuberculosis"[MeSH Terms] OR "tuberculosis, pulmonary"[MeSH Terms]) AND (("contact$"[All Fields]) OR "contact tracing"[MeSH Terms]) OR "disease transmission"[All Fields] OR "case find$"[Title] OR (cluster[Title] AND analysis[Title]) OR "household$"[All Fields] OR "household contact$"[All Fields] OR ("case finding"[All Fields]) OR ("casefinding"[All Fields]) OR "case detection"[All Fields]).

For the updated and new systematic reviews: (i) household contacts were defined as people living in the same household or people who satisfied the definition of a household contact in the original publication; (ii) an index case was defined as the first identified case of new or recurrent tuberculosis disease in a person of any age in a specific household or as defined in the original publication; (iii) a person was defined as having a tuberculosis infection if the induration 48 to 72 hours after a tuberculin skin test was 10 mm or greater or, if this information was not available, the person satisfied the definition of a tuberculosis infection in the original publication; and (iv) a prevalent tuberculosis case was defined as a case of active disease that was diagnosed at the baseline visit during the study or within 3 months of diagnosis of the index case.

To obtain a global value for \(L \), we included studies in the updated systematic review that reported the prevalence of tuberculosis infection among child contacts in countries with an annual incidence of tuberculosis under 100 cases per 100 000 population at the time of the study, according to WHO estimates.19 If an appropriate WHO estimate was not available, we used estimates from the published literature. We also included studies that reported data on children up to 4 or 6 years of age. The reasons for excluding studies are listed in Fig. 1.

Parameter	Value, mean (95% CI)	Source
Number of notified cases of bacteriologically confirmed pulmonary tuberculosis in 2017 (n)	Country-specific values (Table 4)	WHO tuberculosis burden estimates^c
Number of active tuberculosis cases per household with an index case (C)	1.06 (1.04–1.07)	New systematic review of the literature from January 2005 to November 2017
Average household size (h)	Country-specific values^b	National censuses, national surveys (e.g. DHSs), statistical yearbooks and official websites of national statistical authorities
Proportion of the population aged < 5 years in 2017 (p)	Country-specific values^b	United Nations 2017 revision of world population prospects¹⁶
Proportion of child household contacts (age < 5 years) of a tuberculosis case who had active tuberculosis themselves (T)	6.1% (1.0–16.3)	Dodd et al., 2014¹⁷
Prevalence of a confirmed latent tuberculosis infection among children aged < 3 years who were household contacts of a tuberculosis case in countries with fewer than 100 cases per 100 000 population (L)	27.9% (18.8–39.4)	Updated systematic review of the literature from inception to November 2017

CI: confidence interval; DHS: demographic and health survey; WHO: World Health Organization.
^a The characters in parentheses represent the parameters in equations in the text.
^b Details available from the corresponding author on request.
^c Provided by the World Health Organization.
Fig. 1. Flowchart for the selection of studies on the prevalence of latent tuberculosis infection among child household contacts, countries with a low tuberculosis burden, worldwide, 1964–2017

- 2508 publications between October 2011 and November 2017 identified in PubMed
- 240 publications up to October 2011 from the reference list of a systematic review by Fox et al.
- 2501 publications excluded on screening of titles and abstracts
- 230 publications excluded on full text review:
 - 32 articles had no data on tuberculosis infection
 - 28 articles had no data on household contacts
 - 137 articles had no data on children aged <5 years
 - 3 articles had insufficient data for calculating prevalence
 - 2 articles had same data as reported in another publication
 - 10 articles were reporting from a country with a high tuberculosis burden
 - 16 articles not in English
 - 2 articles full text not available

Fig. 2. Flowchart for the selection of studies on active tuberculosis cases in households with an index case, worldwide, 2005–2017

- 2508 publications between October 2011 and November 2017 identified in PubMed
- 247 publications full text review
- 17 studies included in updated systematic review

Notes: We defined a child household contact as a child younger than 5 years living in the same household as a person with active tuberculosis disease. A low tuberculosis burden was defined as fewer than 100 cases per 100,000 population.

To obtain a global value for \(C \), we included studies in the new systematic review that reported the number of index tuberculosis cases, the number of household contacts and the number of prevalent active tuberculosis cases among household contacts. We excluded studies if: (i) data on contacts other than household contacts were included; (ii) the number of cases or household contacts was less than 10; (iii) only child contacts were included (this would have led to an underestimate of the number of active tuberculosis cases in the household); or (iv) the study was not published in English (Fig. 2).

One author screened all titles and abstracts for relevance and then reviewed the full text of all potentially eligible articles. For both reviews, we extracted information on the country’s name, the year of the study, the definitions of index cases and household contacts, and the number of household contacts. For the updated systematic review, we obtained information about the number of child household contacts with a confirmed latent tuberculosis infection, the tuberculin skin test cut-off criterion for infection in a child contact, the child’s bacillus Calmette–Guérin (BCG) vaccination status and the age of index cases. For the new systematic review, we extracted information on the age and number of index cases and the number of active tuberculosis cases among household contacts. In evaluating the quality of individual studies, we used a checklist modified from an existing tool to assess issues related to contact investigations and tuberculosis infection.19

Data analysis

The meta-analysis of the prevalence of a confirmed latent tuberculosis infection among child household contacts (L) was conducted using a logistic-normal random-effects model.20 In the primary analysis, we did not consider the different definitions of tuberculosis infection used in the studies. The heterogeneity of study findings was assessed by visual inspection of forest plots and from the results of likelihood-ratio tests. Potential sources of heterogeneity were investigated in subgroup analyses that considered the following factors: (i) whether the index case tested positive or negative on smear microscopy; (ii) the tuberculin skin test cut-off value (i.e. 10 mm or more versus other values); (iii) the year of study publication (i.e. before 2000 or later); (iv) the country’s income status (i.e. whether high- or upper-middle-income);21 and (v) BCG vaccination coverage.

The average number of active tuberculosis cases per household with an index case (C) was estimated as follows. For each study, the average number of active tuberculosis cases among contacts in each household was calculated by dividing the number of prevalent active tuberculosis cases among household contacts by the number of index cases, which was assumed to be equal to the number of households. Data were pooled using mixed-effects, Poisson regression models. Subsequently, the
Research
Tuberculosis preventive treatment for child contacts

Yohhei Hamada et al.

Table 2. Systematic review of the prevalence of latent tuberculosis infection among child household contacts, \(^a\) countries with a low tuberculosis burden, \(^b\) worldwide, 1964–2017

Study reference	Country	Year of study enrolment	Definition of index tuberculosis case	Prevalence of latent tuberculosis infection among child household contacts aged < 5 years, no. infected children/no. all children (%)	Criterion for tuberculosis infection	BCG vaccination status
Chapman et al., 1964	United States	NA	Pulmonary tuberculosis (no information on bacteriological status)	200/414 (48.3)	Not defined	Unknown
Grzybowski et al., 1975	Canada	1966–1971	Pulmonary or extrapulmonary tuberculosis	209/1012 (20.7)	Tuberculin skin test induration ≥ 6 mm or ≥ 10 mm, depending on study site	Unknown
Zaki et al., 1976	United States	1965–1972	Pulmonary tuberculosis (no information on bacteriological status)	254/1122 (22.8)	Tuberculin skin test induration ≥ 10 mm	Unknown
Payne, 1978	United Kingdom	1968–1974	Pulmonary or extrapulmonary tuberculosis	9/85 (10.6)	Heaf grade 2, 3 or 4	No children vaccinated
Almeida et al., 2001	Brazil	1998	Smear-positive pulmonary tuberculosis	18/40 (45.0)	Tuberculin skin test induration ≥ 10 mm	No specific data for children aged < 5 years; 81% of the study population vaccinated
Canvalho et al., 2001	Brazil	1995–1997	Smear-positive pulmonary tuberculosis	7/33 (21.2)	Tuberculin skin test induration ≥ 10 mm	No specific data for children aged < 5 years; 75% of the study population vaccinated
Lobo et al., 2003	United States	1994	Pulmonary tuberculosis (smear-positive or -negative)	45/93 (48.4)	Tuberculin skin test induration ≥ 5 mm	Unknown
Militão de Albuquerque et al., 2004	Brazil	1997–1999	Pulmonary tuberculosis (including clinically diagnosed disease)	21/74 (28.4)	Tuberculin skin test induration ≥ 10 mm	No specific data for children aged < 5 years; 8% of the study population vaccinated
Soysal et al., 2005	Turkey	2002–2003	Smear-positive pulmonary tuberculosis	171/405 (42.2)	Tuberculin skin test induration ≥ 10 mm	No specific data for children aged < 5 years; 75% of the study population vaccinated
Aissa et al., 2008	France	2004–2005	Culture-positive pulmonary tuberculosis	18/164 (11.0)	Tuberculin skin test induration ≥ 10 mm for BCG-vaccinated people; ≥ 15 mm or conversion from negative (i.e. < 5 mm) to positive (i.e. ≥ 10 mm) for non-vaccinated people	No specific data for children aged < 5 years; 98% of the study population vaccinated
Alavi, 2008	Iran (Islamic Republic of)	2003–2005	Pulmonary tuberculosis (smear-positive or -negative)	36/43 (83.7)	Tuberculin skin test induration ≥ 10 mm	No specific data for children aged < 5 years; 51% of the study population vaccinated
Diel et al., 2008	Germany	2005–2006	Smear-positive pulmonary tuberculosis	1/18 (5.6)	Tuberculin skin test induration ≥ 10 mm	No specific data for children aged < 5 years; 86% of the study population vaccinated

(continues . .)
Results

Our systematic review of the prevalence of a latent tuberculosis infection among child household contacts younger than 5 years (L) in countries with a low tuberculosis burden included 17 studies (Fig. 1 and Table 2).23–41 Nine of the 17 (52.9%) were conducted in high-income countries. The presence of a tuberculosis infection was defined as an induration of 10 mm or more on the tuberculin skin test in 11 studies, whereas the other six used different criteria: (i) one used an induration cut-off of 5 mm; (ii) three used multiple induration cut-offs, ranging from 5 to 15 mm depending on BCG vaccination status, the infectiousness of the index case or the study site; (iii) one used a Heaf grade of 2, 3 or 4; and (iv) one did not specify the criterion. The median prevalence of latent tuberculosis infection among child contacts was 26.4% (interquar-
tile range: 11.1–42.2). Twelve studies included children who had received a BCG vaccination, one included only unvaccinated children and BCG vaccination status was not specified in four studies. There was substantial heterogeneity across the studies. The pooled prevalence of latent tuberculosis infection among child contacts younger than 5 years was 27.9% (95% confidence interval, CI: 18.8–39.4; Fig. 3). None of the subgroup analyses found significant differences between subgroups.

Our systematic review of the number of active tuberculosis cases per household with an index case (C) included 58 studies (Fig. 2 and Table 3). Of the 58, 16 (27.6%) were conducted in countries with a low tuberculosis burden. The number of active tuberculosis cases among contacts in each household ranged from 0 to 0.33, except for one study that reported a value of 0.93. The pooled number of active tuberculosis cases among contacts in each household was 0.06 (95% CI: 0.04–0.07). Consequently, the average number of active tuberculosis cases per household was 1.06 once the index case had been included. There was no significant difference between countries with a low or high tuberculosis burden (P = 0.33). Furthermore, excluding the one outlier reduced the average number of cases per household by only 0.002.

Using the values we obtained for L and C with the values of other parameters from the literature (Table 1), we estimated that the number of child household contacts younger than 5 years who were eligible for tuberculosis preventive treatment in 2017 ranged from less than one in four countries (i.e. Bahamas, Iceland, Luxembourg and Malta) to 350 000 (95% uncertainty interval, UI: 320 000–380 000) in India (Table 4; available at: http://www.who.int/bulletin/volumes/96/8/18-218651). Globally, the estimated number of child contacts eligible for preventive treatment was 1.27 million (95% UI: 1.24 to 1.31). Viewed regionally, the highest estimate was for the WHO South-East Asia Region: 510 000 (95% UI: 450 000–580 000; Table 5).

Discussion

We estimated that 1.27 million children younger than 5 years who were household contacts of people with bacteriologically confirmed pulmonary tuberculosis were eligible for preventive treatment globally in 2017. According to the WHO Global tuberculosis report 2018, countries reported that 292 182 child contacts received preventive treatment in 2017, which makes the best estimate of the global coverage of preventive treatment in children only 23%.

Our study has several limitations. First, our estimate of the number of child household contacts was based on the number of notified bacteriologically confirmed tuberculosis cases. However, 3.6 million of the estimated 10.0 million people with incident tuberculosis globally in 2017 were neither reported nor enrolled in tuberculosis care. Consequently, our estimates are conservative, there would be substantially more eligible child contacts if all incident tuberculosis cases were considered. Second, we used national values for the average household size and for the proportion of the population younger than 5 years to estimate the number of child contacts. It is possible that the composition of households with a tuberculosis case may have differed from the national average and thus people with tuberculosis may have lived with a different number of children younger than 5 years from the national average. Furthermore, we did not consider people with tuberculosis who lived in a prison or nursing home. Doing so would have reduced the estimated number of child contacts, especially in countries where where number of tuberculosis cases among the prison and nursing home populations was high. The prison and nursing home populations were high. Third, we used the value for the average number of tuberculosis cases per household from our new systematic review for all countries, even though it may have varied between countries.

Fourth, in our updated systematic review, we observed substantial heterogeneity across studies in the prevalence of a latent tuberculosis infection among child household contacts in countries with a low tuberculosis burden.

Table 3: Forest plot of the prevalence of latent tuberculosis infection among child household contacts, countries with a low tuberculosis burden, worldwide, 1964–2017

Study	Prevalence, % (95% CI)	Prevalence, % (95% CI)
Chapman et al., 1964	48.3 (43.4–53.2)	48.3 (43.4–53.2)
Gryboswolski et al., 1975	20.7 (18.2–22.3)	20.7 (18.2–22.3)
Zale et al., 1976	22.6 (20.2–25.2)	22.6 (20.2–25.2)
Payne 1978	10.6 (8.5–12.7)	10.6 (8.5–12.7)
Almeida et al., 2001	45.0 (32.3–61.5)	45.0 (32.3–61.5)
Canahano et al., 2001	21.2 (9.9–38.9)	21.2 (9.9–38.9)
Lobato et al., 2003	48.4 (37.3–59.8)	48.4 (37.3–59.8)
Militão de Albuquerque et al., 2004	28.4 (18.5–40.1)	28.4 (18.5–40.1)
Soykal et al., 2005	42.2 (37.4–47.2)	42.2 (37.4–47.2)
Assa et al., 2008	11.0 (6.6–16.8)	11.0 (6.6–16.8)
Ali et al., 2008	8.37 (6.9–9.2)	8.37 (6.9–9.2)
Del et al., 2008	5.68 (0.01–37.3)	5.68 (0.01–37.3)
Lin et al., 2008	0.86 (0.35–1.78)	0.86 (0.35–1.78)
Pax et al., 2011	26.4 (17.4–37.8)	26.4 (17.4–37.8)
Verhagen et al., 2014	11.1 (4.2–22.6)	11.1 (4.2–22.6)
Rose et al., 2015	28.6 (14.6–46.3)	28.6 (14.6–46.3)
Perez-Perez et al., 2016	45.0 (31.3–75.3)	45.0 (31.3–75.3)
Pooled value	27.9 (18.8–39.4)	27.9 (18.8–39.4)

CI: confidence interval.

Notes: We defined a child household contact as a child younger than 5 years living in the same household as a person with active tuberculosis disease. A low tuberculosis burden was defined as fewer than 100 cases per 100 000 population.
Table 3. Systematic review of active tuberculosis cases in households with an index case, worldwide, 2005–2017

Study reference	Country	Year of study enrolment	Definition of index tuberculosis case	Eligible age group	No. of index cases	No. of tuberculosis cases among household contacts	No. of tuberculosis cases among contacts per household	Total no. of tuberculosis cases per household, including the index case
Becerra et al., 2005	Peru	1996–1998	Culture-positive pulmonary tuberculosis	All ages	192	10	0.05	1.05
Chee et al., 2005	Singapore	2000	Culture-positive pulmonary tuberculosis	All ages	679	20	0.03	1.03
Khalidzadeh et al., 2006	Iran (Islamic Republic of)	2002–2004	Smear-positive pulmonary tuberculosis	All ages	68	17	0.25	1.25
Yeo et al., 2006	Canada	1996–2000	Pulmonary or extrapulmonary tuberculosis	All ages	39	4	0.10	1.10
Hussain et al., 2007	Pakistan	2001–2003	Smear-positive pulmonary tuberculosis	All ages	20	0	0.00	1.00
Alavi, 2008	Iran (Islamic Republic of)	2007	Pulmonary tuberculosis (smear-positive or -negative)	All ages	69	64	0.93	1.93
Hill et al., 2008	Gambia	2002–2004	Smear-positive pulmonary tuberculosis	≥ 6 months	317	33	0.10	1.10
Lee et al., 2008	China, Hong Kong SAR	2000	Pulmonary or extrapulmonary tuberculosis	All ages	1 635	29	0.02	1.02
Lin et al., 2008	China	2006–2007	Pulmonary or extrapulmonary tuberculosis	All ages	393	5	0.01	1.01
Borrell et al., 2009	Spain	2003–2004	Pulmonary or extrapulmonary tuberculosis	All ages	717	46	0.06	1.06
del Corral et al., 2009	Colombia	2005–2006	Smear-positive pulmonary tuberculosis	All ages	366	8	0.02	1.02
Klicislan et al., 2009	Turkey	1997–2000	Smear-positive pulmonary tuberculosis	All ages	1 570	92	0.06	1.06
Machado et al., 2009	Brazil	2006–2007	Pulmonary tuberculosis (including clinically diagnosed disease)	All ages	76	2	0.03	1.03
Nguyen et al., 2009	Lao People’s Democratic Republic	2006	Smear-positive pulmonary tuberculosis	All ages	72	4	0.06	1.06
Ottmani et al., 2009	Morocco	1993–2004	Smear-positive pulmonary tuberculosis or clinically diagnosed disease	All ages	20 902	44 110	0.22	1.22
Pai et al., 2009	India	2006	Smear-positive pulmonary tuberculosis	All ages	54	1	0.02	1.02
Gavalcante et al., 2010	Brazil	1999–2004	Pulmonary or extrapulmonary tuberculosis	All ages	311	26	0.08	1.08
Lienhardt et al., 2010	Senegal	2004–2006	Smear-positive or culture-positive pulmonary tuberculosis	All ages	206	14	0.07	1.07
Rakotosamimanana et al., 2010	Madagascar	2004–2005	Smear-positive pulmonary tuberculosis	≥ 1 year	85	12	0.14	1.14
Sia et al., 2010	Philippines	2001–2008	Smear-positive pulmonary tuberculosis	All ages	218	20	0.09	1.09
Becerra et al., 2011	Peru	1996–2003	Multidrug- or extensively drug-resistant tuberculosis	All ages	693	117	0.17	1.17
Grandjean et al., 2011	Peru	2005–2008	Multidrug-resistant tuberculosis	All ages	358	0	0.00	1.00
(continues . . .)
Tuberculosis preventive treatment for child contacts

Yohhei Hamada et al. (continue)

Study reference	Country	Year of study enrolment	Definition of index tuberculosis case	Eligible age group	No. of index cases^a	No. of tuberculosis cases among household contacts^b	No. of tuberculosis cases among contacts per household^b	Total no. of tuberculosis cases per household, including the index case
Hussain et al., 2011⁶²	Pakistan	unknown	Smear-positive pulmonary tuberculosis	All ages	18	0	0.00	1.00
Singla et al., 2011⁶³	India	2005–2008	Multidrug-resistant tuberculosis	All ages	58	16	0.28	1.28
Vella et al., 2011⁶⁴	South Africa	2005–2008	Multidrug- or extensively drug-resistant tuberculosis	≥ 13 years	508	64	0.13	1.13
Whalen et al., 2011⁶⁵	Uganda	1995–2004	Smear-positive pulmonary tuberculosis	All ages	497	49	0.10	1.10
Zhang et al., 2011⁶⁶	China	2007	Smear-positive pulmonary tuberculosis	All ages	4 695	40	0.01	1.01
Fox et al., 2011⁶⁷	Viet Nam	2009–2011	Smear-positive pulmonary tuberculosis	All ages	167	8	0.05	1.05
Gyawali et al., 2012⁶⁸	Nepal	2009–2010	Smear-positive pulmonary tuberculosis	≥ 5 years	184	13	0.07	1.07
Ntinginya et al., 2012⁶⁹	United Republic of Tanzania	2010–2011	Smear-positive pulmonary tuberculosis	≥ 5 years	80	5	0.06	1.06
Shaprio et al., 2012⁷⁰	South Africa	2009–2009	Tuberculosis based on clinical evaluation (with or without sputum smear test or sputum culture)	All ages	749	169	0.23	1.23
Third et al., 2012⁷¹	South Africa	2009–2010	Smear-positive pulmonary tuberculosis	All ages	732	127	0.17	1.17
Chamie et al., 2013⁷²	Uganda	Unknown	Pulmonary tuberculosis (with or without sputum smear test)	All ages	61	13	0.21	1.21
Jones-López et al., 2013⁷³	Uganda	2009–2011	Smear-positive pulmonary tuberculosis	All ages	96	1	0.01	1.01
Leung et al., 2013⁷⁴	China, Hong Kong SAR	1997–2006	Multidrug-resistant tuberculosis	All ages	256	12	0.05	1.05
Puryear et al., 2013⁷⁵	Botswana	2009–2011	Paediatrician-diagnosed tuberculosis	All ages	163	12	0.07	1.07
Shah et al., 2013⁷⁶	Pakistan	2010–2011	Smear-positive pulmonary tuberculosis	All ages	3 037	490	0.16	1.16
Singh et al., 2013⁷⁷	India	2007–2011	Smear-positive pulmonary tuberculosis	All ages	450	52	0.12	1.12
Tao et al., 2013⁷⁸	Uganda	2002–2006	Culture-positive pulmonary tuberculosis	All ages	277	19	0.07	1.07
Yassin et al., 2013⁷⁹	Ethiopia	2010–2011	Multidrug-resistant pulmonary tuberculosis	All ages	2 906	69	0.02	1.02
Ja et al., 2014⁸⁰	China	2008–2008	Smear-positive pulmonary tuberculosis	All ages	1 575	92	0.06	1.06
Jones-López et al., 2014⁸¹	Brazil	2008–2012	Smear-positive pulmonary tuberculosis	All ages	124	2	0.02	1.02
Loredo et al., 2014⁸²	Brazil	2001–2008	Pulmonary tuberculosis (smear-positive or -negative)	≥ 15 years	626	51	0.08	1.08
Thanh et al., 2014⁸³	Viet Nam	2008–2008	Smear-positive pulmonary tuberculosis	All ages	1 091	27	0.02	1.02
Zelner et al., 2014⁸⁴	Peru	2009–2012	Pulmonary tuberculosis (including clinically diagnosed disease)	All ages	3 466	229	0.07	1.07
Chamie et al., 2015⁸⁵	Uganda	2012–2013	Pulmonary or extrapulmonary tuberculosis	≥ 18 years	54	1	0.02	1.02
Grandjean et al., 2015⁸⁶	Peru	2010–2013	Multidrug-resistant tuberculosis	All ages	213	5	0.02	1.02

(continues...)

^aNumber of index cases

^bNumber of tuberculosis cases among household contacts

^cNumber of tuberculosis cases among contacts per household

^dTotal no. of tuberculosis cases per household, including the index case

Notes:

- **Smear-positive pulmonary tuberculosis**: Positive result on a sputum smear microscopy test for Mycobacterium tuberculosis
- **Multidrug-resistant tuberculosis**: Resistance to at least two first-line anti-tuberculosis drugs
- **Multidrug- or extensively drug-resistant tuberculosis**: Resistance to any number of first-line anti-tuberculosis drugs
- **Pulmonary tuberculosis**: Involvement of the lungs
- **Culture-positive pulmonary tuberculosis**: Positive result on a culture test for Mycobacterium tuberculosis
- **Paediatrician-diagnosed tuberculosis**: Diagnosis made by a paediatrician
- **Clinically diagnosed disease**: Disease diagnosed based on clinical symptoms
- **≥ 15 years**: Age of at least 15 years
- **≥ 5 years**: Age of at least 5 years
- **≥ 18 years**: Age of at least 18 years

Sources:

- Hussain, S. A., \(\ldots\) (2011)
- Singla, R., \(\ldots\) (2011)
- Vella, J. \(\ldots\) (2011)
- Whalen, M. \(\ldots\) (2011)
- Zhang, W., \(\ldots\) (2011)
- Fox, P., \(\ldots\) (2011)
- Gyawali, R., \(\ldots\) (2012)
- Ntinginya, A., \(\ldots\) (2012)
- Shapiro, A., \(\ldots\) (2012)
- Third, J., \(\ldots\) (2012)
- Chamie, Y., \(\ldots\) (2013)
- Jones-López, M., \(\ldots\) (2013)
- Leung, M., \(\ldots\) (2013)
- Puryear, S., \(\ldots\) (2013)
- Shah, Z., \(\ldots\) (2013)
- Singh, S., \(\ldots\) (2013)
- Tao, P., \(\ldots\) (2013)
- Yassin, A., \(\ldots\) (2013)
- Ja, Y., \(\ldots\) (2014)
- Jones-López, M., \(\ldots\) (2014)
- Loredo, A., \(\ldots\) (2014)
- Thanh, L., \(\ldots\) (2014)
- Zelner, A., \(\ldots\) (2014)
- Chamie, Y., \(\ldots\) (2015)
- Grandjean, P., \(\ldots\) (2015)

For a complete list of references, please consult the original publication.
probably reflects differences between studies in characteristic, such as the study population, setting, incidence of tuberculosis, the tuberculin skin test cut-off used and BCG status. We were unable to identify the source of the heterogeneity because the number of studies included in our subgroup analyses was small. Moreover, our estimates of the number of child household contacts eligible for preventive treatment in these countries were derived using an average value for the prevalence of a confirmed tuberculosis infection among child contacts, whereas the prevalence may have varied between countries. Using country-specific values would have given more accurate estimates. Nevertheless, as countries with a low tuberculosis burden accounted for only 14% of notified tuberculosis cases globally in 2017, their impact on our global estimate was small.

Fifth, we assumed that children were judged eligible for tuberculosis preventive treatment according to WHO guidelines. However, eligibility criteria may have varied between countries according to national policy. Sixth, we used a value for the proportion of child household contacts of a tuberculosis case who had active tuberculosis themselves (T) that was derived from a modelling study in 22 countries with a high tuberculosis burden, which together accounted for 80% of the global burden. However, the prevalence of active disease among household contacts in these countries was likely to have been higher than in others. Consequently, by using this proportion, we may have underestimated the number of child household contacts without active tuberculosis disease who were, therefore, eligible for preventive treatment. Our estimates of the number of children eligible for preventive treatment need to be validated using national data on the number of child contacts from well-functioning surveillance systems or surveys. These data could also be used to assess the coverage of preventive treatment directly, which should give more accurate figures than our modelling estimates with their inherent limitations. Nevertheless, in the absence of such data, our estimates should help galvanize efforts to implement, and monitor the progress.

Study reference	Country / Year of study enrolment	Eligible age group	Definition of index tuberculosis case	No. of index casesa	No. of tuberculosis cases among household contactsb	No. of tuberculosis cases among contacts per householdc	Total no. of tuberculosis cases per householdd	No. of tuberculosis cases among contacts per household, including the index case
Jerene et al., 2015	Ethiopia 2013–2014	All ages	Smear-positive pulmonary tuberculosis	6	0.06	1.06		
Zellweger et al., 2015	Ten European countries 2009–2013	All ages	Not defined	1	0.01	1.01		
Gupata et al., 2016	India 2013–2014	All ages	Smear-positive pulmonary tuberculosis	133	0.05	1.05		
Javaid et al., 2016	Pakistan 2012–2015	All ages	Multidrug-resistant tuberculosis	154	0.33	1.33		
Nair et al., 2016	India 2007–2014	All ages	Smear-positive pulmonary tuberculosis	280	0.10	1.10		
Wysocki et al., 2016	Brazil 2012–2013	All ages	Pulmonary tuberculosis (microbiological confirmation was required for patients aged ≥ 25 years)	213	0.04	1.04		
Armstrong-Hough et al., 2017	Uganda 2011–2013	All ages	Pulmonary tuberculosis (microbiological confirmation was required for patients aged ≥ 25 years)	293	0.02	1.02		
Datiko et al., 2017	Ethiopia 2011–2013	All ages	Smear-positive pulmonary tuberculosis	169	0.03	1.03		
Fox et al., 2017	Viet Nam 2014	All ages	Initiation of antituberculosis treatment	354	0.10	1.10		
Mandalakas et al., 2017	Eswatini 2013–2015	All ages	Initiation of antituberculosis treatment	258	0.02	1.02		
Muyoyeta et al., 2017	Zambia 2013–2014	All ages	Bacteriologically confirmed tuberculosis	196	0.06	1.06		
Mandalakas et al., 2017	Eswatini 2013–2015	All ages	Initiation of antituberculosis treatment	354	0.10	1.10		
Mandalakas et al., 2017	Eswatini 2013–2015	All ages	Bacteriologically confirmed tuberculosis	258	0.02	1.02		
Mandalakas et al., 2017	Eswatini 2013–2015	All ages	Initiation of antituberculosis treatment	196	0.06	1.06		
of tuberculosis preventive treatment among child contacts.

In conclusion, using our estimate of the number of children younger than 5 years eligible for tuberculosis preventive treatment, we calculated that the coverage of preventive treatment in children in 2017 was only 23%. Despite its proven efficacy, tuberculosis preventive treatment is still being underutilized. As the End TB Strategy targets can only be achieved by addressing the pool of tuberculosis infection, urgent action is needed to scale up the implementation of preventive treatment.

Table 5. Child household contacts\(^a\) eligible for tuberculosis preventive treatment, by region, 2017

WHO Region	No. of notified, bacteriologically confirmed, pulmonary tuberculosis cases\(^b\)	Estimated number of child household contacts\(^a\) eligible for tuberculosis preventive treatment, no. (95% UI)
African	713,693	470,000 (440,000–490,000)
Of the Americas	152,730	25,000 (22,000–28,000)
South-East Asia	1,414,408	510,000 (450,000–580,000)
European	129,110	16,000 (14,000–18,000)
Eastern	210,073	150,000 (130,000–170,000)
Mediterranean		
Western Pacific	487,089	95,000 (83,000–110,000)
Global	3,107,103	1,270,000 (1,240,000–1,310,000)

UI: uncertainty interval; WHO: World Health Organization.

\(\text{a}\) We defined a child household contact as a child younger than 5 years living in the same household as a person with active tuberculosis disease.

In conclusion, using our estimate of the number of children younger than 5 years eligible for tuberculosis preventive treatment, we calculated that the coverage of preventive treatment in children in 2017 was only 23%. Despite its proven efficacy, tuberculosis preventive treatment is still being underutilized. As the End TB Strategy targets can only be achieved by addressing the pool of tuberculosis infection, urgent action is needed to scale up the implementation of preventive treatment.

MLC

The number of children under 5 years of age is 31,310,751 (95% UI 29,010,000–34,010,000), which is lower than the estimated number of children under 5 years of age in the world. However, the proportion of children under 5 years of age who are eligible for tuberculosis preventive treatment is 23% (95% UI 22%–24%).

Competing interests: None declared.
Профилактика туберкулеза у членов семей: оценка количества детей, нуждающихся в лечении

Цель Оценка по состоянию на 2017 год количества детей младше пяти лет, проживающих в одной семье с больным туберкулезом и нуждающихся в профилактическом лечении.

Методы Для оценки количества детей, нуждающихся в лечении, авторы получили из опубликованных источников национальные показатели по состоянию на 2017 год о количестве поставленных на диспансерный учет случаев бактериологически подтвержденного туберкулеза легких, сведения о количестве детей младше 5 лет в 2017 году и средние оценки размера семьи. По результатам систематических обзоров, метаанализа и регрессионных моделей популяционных данных были получены глобальные сведения о количестве случаев активной формы туберкулеза у детей, проживающих в одной семье с больным туберкулезом.

Результаты По предварительным оценкам, во всем мире количество детей младше 5 лет, нуждающихся в профилактическом лечении от туберкулеза, составило в 2017 году 1,27 миллиона человек (95%-й интервал неопределенности, ИН: 1,24–1,31), что в лучшем случае соответствует условной потребности в профилактическом лечении приблизительно на 23%.

Вывод По состоянию на 2017 год во всемире профилактическое лечение от туберкулеза у детей применяется в недостаточной мере. Необходимо наращивать масштабы лечения, чтобы содействовать исключению резервуаров туберкулезной инфекции и достижению целей стратегии по прекращению эпидемии туберкулеза.

Resumen

Prevención de la tuberculosis en los miembros de la familia: estimaciones de niños elegibles para el tratamiento

Objetivo Estimar el número de niños menores de cinco años que tuvieron contacto con personas infectadas en sus hogares y que eran elegibles para el tratamiento preventivo de la tuberculosis en 2017.

Métodos Para estimar el número de niños elegibles, se obtuvieron valores nacionales para el número de casos notificados de tuberculosis pulmonar bacteriológicamente confirmado en 2017, la proporción de la población menor de 5 años en 2017 y el tamaño promedio del hogar de fuentes publicadas. Se obtuvieron valores globales para el número de casos de tuberculosis activa por hogar con un caso índice y para la prevalencia de infección de tuberculosis latente entre los niños menores de 5 años que estaban en contacto con un caso de tuberculosis en el hogar mediante las revisiones sistemáticas, el metanálisis y los modelos de regresión de Poisson.

Resultados El número estimado de niños menores de 5 años elegibles para el tratamiento preventivo de la tuberculosis en 2017 a nivel mundial fue de 1,27 millones (intervalo de incertidumbre del 95 %, IU: 1,24–1,31), lo que corresponde a una cobertura mundial estimada de tratamiento preventivo en niños del 23 % en el mejor de los casos. Por país, el número estimado oscila entre menos de uno en las Bahamas, Islandia, Luxemburgo y Malta y 350 000 (95 % UI: 320 000–380 000) en la India. A nivel regional, las estimaciones más elevadas correspondieron a la Región de Asia Sudoriental de la Organización Mundial de la Salud (OMS) (510 000; IC del 95 %: 450 000–580 000) y a la Región Africana de la OMS (470 000; IC del 95 %: 440 000–490 000).

Conclusión El tratamiento preventivo de la tuberculosis en los niños fue utilizado muy poco a nivel mundial en 2017. El tratamiento debe ampliarse para ayudar a eliminar el conjunto de infecciones de tuberculosis y alcanzar los objetivos de la Estrategia de Fin a la Tuberculosis.
38. Pavl I, Topci RZ, Raos M, Abele N, Dodg S. Interferon-gamma release assay for the diagnosis of latent tuberculosis in children younger than 5 years of age. Pediatr Infect Dis J. 2011 Oct;30(10):866–70. doi: http://dx.doi.org/10.1097/INF.0b013e318220c5a2 PMID: 21527371

39. Verhagen LM, Maes M, Villalba JA, d’Alessandro A, Rodriguez MF, et al. Agreement between Quantiferon®-TB Gold In-Tube and the tuberculin skin test and predictors of positive test results in Warao Amerindian pediatric tuberculosis contacts. BMC Infect Dis. 2014 Oct 7;14:1383. doi: http://dx.doi.org/10.1186/1471-2334-14-1383 PMID: 25012075

40. Rose W, Read SE, Bittrum A, Rea E, Stephens D, Pongsamart W, et al. Relating tuberculosis (TB) contact characteristics to Quantiferon-TB Gold and tuberculin skin test results in the Toronto pediatric TB clinic. J Pediatric Infect Dis Soc. 2015 Jun;6(2):96–103. doi: http://dx.doi.org/10.1093/jpids/pu524 PMID: 26407408

41. Perez-Porcuna TM, Pereira-da-Silva HD, Ascasso C, Malheiro A, Ruiser S, Martinez-Espinoza F, et al. Prevalence and diagnosis of latent tuberculosis infection in young children in the absence of a gold standard. PLoS One. 2016 10 26;11(10):e0161481. doi: http://dx.doi.org/10.1371/journal.pone.0161481 PMID: 27783642

42. Becerra MC, Pachao-Toresblanca IF, Bayona J, Celis R, Shih SS, KimJY, et al. Expanding tuberculosis case detection by screening household contacts. Public Health Rep. 2005 May-Jun;120(3):271–7. doi: http://dx.doi.org/10.1177/003335490512000309 PMID: 16134567

43. Chee CB, Teleman MD, Boudville IC, Wang YT. Contact screening and latent TB infection testing in Singapore correctional facilities. Int J Tuberc Lung Dis. 2008 Mar;12(3):281–7. PMID: 18284833

44. Khalilzadeh S, Masjedi H, Hosseini M, Safavi A, Masjedi MR. Transmission of Mycobacterium tuberculosis to households of tuberculosis patients: a comprehensive continuous contact tracing study. Arch Iran Med. 2006 Jul;9(3):208–12. PMID: 16859052

45. Yeo IK, Tannenbaum T, Scott AN, Kozak R, Behr MA, Thibert LT, et al. Contact investigation and genotyping to identify tuberculosis transmission to children. Pediatr Infect Dis J. 2006 Nov;25(11):1307–43. doi: http://dx.doi.org/10.1097/INF.00002401.101.125.10.3c PMID: 17072127

46. Hussain R, Talat N, Shaffi F, Dawood G. Longitudinal tracking of cytokines after acute exposure to tuberculosis: association of distinct cytokine patterns with protection and disease development. Clin Vaccine Immunol. 2007 Dec;14(12):1578–86. doi: http://dx.doi.org/10.1128/CVI.00289-07 PMID: 17928427

47. Hill PC, Jackson-Sillah DJ, Fox A, Brookes RH, de Jong BC, Lugos MD, et al. Risk of active tuberculosis in adult household contacts of smear-positive tuberculosis patients in rural India. Int J Tuberc Lung Dis. 2009 Dec;14(12):1579–86. doi: http://dx.doi.org/10.1128/CVI.00289-07 PMID: 17928427

48. Lee MS, Leung CC, Kam KM, Wong MY, Leung MC, Tam CM, et al. Analysis of discordance between the tuberculin skin test and the interferon-gamma release assay. Int J Tuberc Lung Dis. 2009 Apr;13(4):446–52. PMID: 19333993

49. del Corral H, Paris SC, Marin ND, Marin OM, Lopez L, Henoa HM, et al. IFN-gamma response to Mycobacterium tuberculosis, risk of infection and disease in household contacts of tuberculosis patients in Colombia. PLoS One. 2009 12 14;4(12):e8257. doi: http://dx.doi.org/10.1371/journal.pone.0008257 PMID: 20015892

50. Kilicarslan Z, Kiyon E, Kucuk C, Kumbeliti S, Sarmanur N, Ozurtk F, et al. Risk of active tuberculosis in adult household contacts of smear-positive pulmonary tuberculosis cases. Int J Tuberc Lung Dis. 2009 Jan;13(1):93–8. PMID: 19105885

51. Machado A Jr, Emoik K, Takenami I, Finkmore BC, Barbosa T, Carvalho J, et al. Analysis of discordance between the tuberculin skin test and the interferon-gamma release assay. Int J Tuberc Lung Dis. 2009 Apr;13(4):446–53. PMID: 19333994

52. Nguyen TH, Dordet F, Slrak S, Barennes H. Risk of latent tuberculosis infection in children living in households with tuberculosis patients: a cross sectional survey in remote northern Lao Peoples Democratic Republic. BMC Infect Dis. 2009 06 17;9(1):1. doi: http://dx.doi.org/10.1186/1471-2334-9-1 PMID: 19346769

53. Ottamia S, Zignol M, Bencheikh N, Laski L, Blanc L, Mahjour J. TB contact investigations: 12 years of experience in the National TB Programme, Morocco 1993–2004. East Mediterr Health J. 2009 May-Jun;15(3):494–503. doi: http://dx.doi.org/10.26719/2009.15.3.494 PMID: 19731765

54. Pai M, Jordi R, Doega S, Zwerver AA, Gajalakshmi D, Goswami K, et al. T-cell assay conversions and reversions among household contacts of tuberculosis patients in rural India. Int J Tuberc Lung Dis. 2009 Jan;13(1):84–92. PMID: 19105884

55. Cavalcante SC, Duobon B, Barnes GL, Souza FB, Silva RF, Barroso FP, et al. Community-randomized trial of enhanced DOTS for tuberculosis control in Rio de Janeiro, Brazil. Int J Tuberc Lung Dis. 2010 Feb;14(2):203–9. PMID: 20074412

56. Lienhardt C, Fielding K, Hane AA, Niao A, Niao CT, Karam F, et al. Evaluation of the prognostic value of IFN-gamma release assay and tuberculin skin test in household contacts of infectious tuberculosis cases in Senegal. PLoS One. 2010 05 05;e10508. doi: http://dx.doi.org/10.1371/journal.pone.0010508 PMID: 20463900

57. Rakotosamimanana N, Raharimanga V, Andramandidy SF, Soares J, Doherty TM, Ristorahorina M, et al. VACSILVACS Study Group. Variation in gamma interferon responses to different infecting strains of Mycobacterium tuberculosis in acid-fast bacillus smear-positive patients and household contacts in Antananarivo, Madagascar. Clin Vaccine Immunol. 2010 Jul;17(7):1094–103. doi: http://dx.doi.org/10.1128/CVI.00049-10 PMID: 20463103

58. Sia IG, Orrilla RB, ST Sauver JL, Quelapio ID, Lahr BD, Alcañeses RS, et al. Tuberculosis attributed to household contacts in the Philippines. Int J Tuberc Lung Dis. 2010 Jan;14(1):122–5. PMID: 20033706

59. Verhagen LM, Maes M, Villalba JA, d’Alessandro A, Rodriguez LP, España MJ, et al. Prevalence and diagnosis of latent tuberculosis infection in children younger than 5 years of age. PLoS One. 2019;97:534–547D

60. Cavalcante SC, Duobon B, Barnes GL, Souza FB, Silva RF, Barroso FP, et al. Contact screening and latent tuberculosis infection in young children in the absence of a gold standard. PLoS One. 2016 10 26;11(10):e0161481. doi: http://dx.doi.org/10.1371/journal.pone.0161481 PMID: 27783642
A comprehensive review of tuberculosis burden in different regions and populations, highlighting the effectiveness of various interventions. The study emphasizes the importance of multidrug-resistant and extensively drug-resistant tuberculosis in metropolitan cities. It underscores the significance of cough and Mycobacterium tuberculosis strain type in increased transmission within households. The research also examines the role of Bacillus Calmette-Guérin and isoniazid preventive therapy in protecting positive tuberculosis patients in Vietnam. Furthermore, it discusses the importance of family history for the prevalence of tuberculosis among household contacts of pulmonary tuberculosis index cases in Kampala, Uganda. The study concludes with innovative community-based approaches to doubling tuberculosis case screening in primary health care in a city of Sao Paulo State, Brazil, and the evaluation of 'Ribolola': a household tuberculosis contact tracing programme in North West Province, South Africa. The efficacy of interferon-γ production in response to Mycobacterium tuberculosis antigens in an Ugandan population and the tuberculosis diagnosis among household contacts and impact of tuberculosis preventive treatment for child contacts in Swaziland are also explored. The research underscores the importance of household ventilation and tuberculosis transmission in Kampala, Uganda. It also discusses the yield of a household contact tracing study in Cambodia, and the screening of newly diagnosed sputum smear positive tuberculosis patients in Vietnam. The study further examines the risks for increased transmission within households. The importance of cough and M. tuberculosis strain type as risks for increased transmission within households is highlighted. The research also highlights the potential of cough and M. tuberculosis strain type as risks for increased transmission within households, and the genetic and shared environmental influences on interferon-γ production in response to Mycobacterium tuberculosis antigens in an Ugandan population. The yield of a household contact tracing study and the impact of tuberculosis preventive treatment for child contacts in Swaziland are also explored. The research underscores the importance of household ventilation and tuberculosis transmission in Kampala, Uganda. It also discusses the yield of a household contact tracing study in Cambodia, and the screening of newly diagnosed sputum smear positive tuberculosis patients in Vietnam. The study further examines the risks for increased transmission within households.
| Country | No. of notified, bacteriologically confirmed, pulmonary tuberculosis cases | Estimated number of child household contacts eligible for tuberculosis preventive treatment, no. (95% UI) |
|-----------------------------|---|---|
| Afghanistan | 20,946 | 20,000 (19,000–22,000) |
| Albania | 210 | 12 (8–17) |
| Algeria | 6,575 | 1,100 (720–1,600) |
| Angola | 27,086 | 25,000 (23,000–27,000) |
| Argentina | 6,042 | 430 (270–590) |
| Armenia | 369 | 80 (73–87) |
| Australia | 780 | 33 (21–46) |
| Austria | 379 | 10 (6.5–14) |
| Azerbaijan | 3,125 | 340 (220–470) |
| Bahamas | 16 | 1.0 (0.6–1.3) |
| Bahrain | 80 | 8 (5–11) |
| Bangladesh | 144,817 | 55,000 (50,000–59,000) |
| Belarus | 2,171 | 81 (51–110) |
| Belgium | 563 | 19 (12–26) |
| Belize | 71 | 8.2 (5.2–11) |
| Benin | 2,947 | 2,100 (1,900–2,300) |
| Bhutan | 440 | 160 (140–170) |
| Bolivia (Plurinational State of) | 5,412 | 1,800 (1,700–2,000) |
| Bosnia and Herzegovina | 479 | 18 (11–24) |
| Botswana | 2,098 | 780 (720–850) |
| Brazil | 49,922 | 3,000 (1,900–4,100) |
| Brunei Darussalam | 179 | 21 (13–29) |
| Bulgaria | 694 | 19 (12–26) |
| Burkina Faso | 3,841 | 3,300 (3,000–3,600) |
| Burundi | 4,728 | 3,600 (3,300–3,900) |
| Cambodia | 12,049 | 5,600 (5,100–6,000) |
| Cameroon | 14,515 | 10,000 (9,500–11,000) |
| Canada | 1,144 | 39 (24–53) |
| Cabo Verde | 178 | 67 (61–73) |
| Central African Republic | 5,146 | 3,500 (3,200–3,800) |
| Chad | 5,162 | 4,500 (4,100–4,900) |
| Chile | 2,028 | 120 (77–170) |
| China | 235,547 | 11,000 (6,900–15,000) |
| China, Hong Kong SAR | 2,486 | 74 (47–100) |
| China, Macao SAR | 279 | 13 (8–17) |
| Colombia | 8,627 | 630 (400–860) |
| Comoros | 53 | 38 (35–41) |
| Congo | 3,997 | 2,400 (2,200–2,600) |
| Costa Rica | 313 | 20 (12–27) |
| Côte d'Ivoire | 14,311 | 11,000 (10,000–12,000) |
| Croatia | 287 | 9 (6–13) |
| Cuba | 517 | 21 (13–28) |
| Cyprus | 39 | 1.5 (1.0–2.1) |
| Czechia | 366 | 12 (7–16) |
| Democratic People's Republic of Korea | 40,233 | 9,500 (8,700–10,000) |
| Democratic Republic of the Congo | 98,516 | 85,000 (77,000–92,000) |
| Denmark | 159 | 4.3 (2.7–5.8) |
| Djibouti | 1,072 | 610 (550–660) |
| Dominican Republic | 2,076 | 180 (120–250) |
| Ecuador | 4,299 | 400 (260–550) |
| Egypt | 3,660 | 1,800 (1,600–1,900) |

(continues . . .)
Research
Tuberculosis preventive treatment for child contacts
Yohhei Hamada et al.

Country	No. of notified, bacteriologically confirmed, pulmonary tuberculosis cases³	Estimated number of child household contacts² eligible for tuberculosis preventive treatment, no. (95% UI)
El Salvador	3 029	950 (860–1 000)
Equatorial Guinea	893	550 (500–600)
Eritrea	770	490 (440–530)
Estonia	141	3.9 (2.5–5.4)
Eswatini	2 171	1 200 (1 100–1 300)
Ethiopia	46 148	28 000 (25 000–30 000)
Fiji	141	16 (10–22)
Finland	146	4.1 (2.6–5.6)
France	2 494	85 (54–120)
Gabon	2 301	1 100 (1 000–1 200)
Gambia	1 429	1 800 (1 700–2 000)
Georgia	1 780	390 (360–430)
Germany	3 262	74 (46–100)
Ghana	8 359	3 700 (3 400–4 000)
Greece	313	8 (5–12)
Guatemala	2 760	1 400 (1 300–1 500)
Guinea	7 737	6 900 (6 300–7 500)
Guinea-Bissau	1 769	2 100 (1 900–2 300)
Guyana	342	110 (99–120)
Haiti	10 633	4 700 (4 300–5 100)
Honduras	2 190	880 (800–960)
Hungary	333	9 (6–12)
Iceland	8	0.35 (0.22–0.48)
India	905 513	350 000 (320 000–380 000)
Indonesia	215 586	72 000 (66 000–78 000)
Iran (Islamic Republic of)	4 785	360 (230–490)
Iraq	2 676	700 (440–960)
Ireland	165	8 (5–11)
Israel	131	11 (7–15)
Italy	2 160	55 (35–75)
Jamaica	69	4 (3–5)
Japan	11 227	290 (180–400)
Jordan	179	30 (19–41)
Kazakhstan	9 489	3 300 (3 000–3 600)
Kenya	46 875	25 000 (23 000–27 000)
Kiribati	189	130 (120–140)
Kuwait	373	42 (27–58)
Kyrgyzstan	3 171	1 500 (1 400–1 700)
Lao People’s Democratic Republic	3 876	2 000 (1 900–2 200)
Latvia	443	13 (8.5–18)
Lebanon	325	28 (18–39)
Lesotho	3 670	1 800 (1 600–1 900)
Liberia	3 382	2 300 (2 100–2 500)
Libya	514	68 (43–94)
Lithuania	1 004	32 (20–44)
Luxembourg	21	0.7 (0.5–1.0)
Madagascar	21 773	13 000 (12 000–15 000)
Malawi	6 984	4 600 (4 300–4 900)
Malaysia	15 888	1 400 (900–2 000)
Maldives	98	14 (9–20)
Mali	4 420	6 100 (5 500–6 600)
Malta	25	0.9 (0.6–1.2)

(continues...)
Country	No. of notified, bacteriologically confirmed, pulmonary tuberculosis cases	Estimated number of child household contacts’ eligible for tuberculosis preventive treatment, no. (95% UI)
Mauritania	1 376	1 100 (1 000–1 200)
Mauritius	109	5.2 (3.3–7.1)
Mexico	14 883	1 300 (840–1 800)
Mongolia	1 861	690 (630–750)
Montenegro	58	2.7 (1.7–3.7)
Morocco	13 635	5 500 (5 000–5 900)
Mozambique	31 606	21 000 (19 000–23 000)
Myanmar	48 088	16 000 (15 000–17 000)
Namibia	5 867	3 200 (2 900–3 400)
Nepal	16 966	6 900 (6 300–7 500)
Netherlands	367	11 (7–15)
New Zealand	167	8 (5–10)
Nicaragua	1 676	650 (600–710)
Niger	8 288	8 800 (8 100–9 600)
Nigeria	75 980	53 000 (48 000–57 000)
North Macedonia	152	8 (5–11)
Norway	137	4.5 (2.8–6.2)
Oman	193	33 (21–45)
Pakistan	138 818	110 000 (98 000–120 000)
Panama	1 012	96 (61–130)
Papua New Guinea	3 944	2 400 (2 200–2 700)
Paraguay	1 823	740 (670–800)
Peru	19 956	6 200 (5 600–6 700)
Philippines	119 712	55 000 (51 000–60 000)
Poland	3 944	130 (81–180)
Portugal	1 112	30 (19–41)
Puerto Rico	30	1.1 (0.7–1.5)
Qatar	335	23 (14–31)
Republic of Korea	19 972	600 (380–820)
Republic of Moldova	1 880	220 (200–240)
Romania	8 686	280 (180–380)
Russian Federation	40 254	1 800 (1 100–2 400)
Rwanda	4 175	2 300 (2 100–2 500)
Sao Tome and Principe	46	25 (23–27)
Saudi Arabia	1 802	230 (150–320)
Senegal	10 117	13 000 (12 000–14 000)
Serbia	781	31 (19–42)
Sierra Leone	9 674	7 700 (7 100–8 400)
Singapore	1 238	51 (32–69)
Slovakia	134	4.6 (2.9–6.3)
Slovenia	89	2.9 (1.8–3.9)
Solomon Islands	126	84 (76–91)
Somalia	7 691	7 400 (6 700–8 000)
South Africa	127 187	41 000 (37 000–45 000)
South Sudan	4 333	3 600 (3 300–3 900)
Spain	2 735	77 (48–100)
Sri Lanka	4 243	1 100 (1 000–1 200)
Sudan	7 419	6 000 (5 500–6 500)
Suriname	90	8 (5–11)
Sweden	273	9 (6–13)
Switzerland	348	10 (7–14)

(continues. . .)
Research

Tuberculosis preventive treatment for child contacts

Yohhei Hamada et al.

Country	No. of notified, bacteriologically confirmed, pulmonary tuberculosis cases	Estimated number of child household contacts eligible for tuberculosis preventive treatment, no. (95% UI)
Syrian Arab Republic	1 080	560 (510–610)
Tajikistan	2 820	2 100 (1 900–2 300)
Thailand	36 470	5 500 (5 100–6 000)
Timor-Leste	1 954	1 600 (1 500–1 800)
Togo	2 142	1 300 (1 200–1 400)
Trinidad and Tobago	120	6.9 (4.4–9.4)
Tunisia	956	91 (57–120)
Turkey	6 162	470 (300–650)
Turkmenistan	693	110 (69–150)
Uganda	27 039	21 000 (19 000–23 000)
Ukraine	16 561	1 900 (1 800–2 100)
United Arab Emirates	47	2.8 (1.8–3.8)
United Kingdom	2 245	82 (52–110)
United Republic of Tanzania	28 542	21 000 (19 000–23 000)
United States	5 848	230 (150–320)
Uruguay	613	30 (19–42)
Uzbekistan	5 705	2 600 (2 400–2 900)
Vanuatu	47	26 (24–28)
Venezuela (Bolivarian Republic of)	7 189	670 (420–910)
Viet Nam	57 246	16 000 (14 000–17 000)
Yemen	3 487	3 000 (2 800–3 300)
Zambia	16 115	11 000 (9 700–12 000)
Zimbabwe	13 263	7 600 (7 000–8 300)

SAR: Special Administrative Region; UI: uncertainty interval.

* We defined a child household contact as a child younger than 5 years living in the same household as a person with active tuberculosis disease.