Transcriptomic Analysis of *Listeria monocytogenes* in Response to Bile Under Aerobic and Anaerobic Conditions

Damayanti Chakravarty¹, **Gyan Sahukhal**¹, **Mark Arick II**², **Morgan L. Davis**³ and **Janet R. Donaldson**¹*

¹ Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, United States, ² Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, United States, ³ Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States

Listeria monocytogenes is a gram-positive facultative anaerobic bacterium that causes the foodborne illness listeriosis. The pathogenesis of this bacterium depends on its survival in anaerobic, acidic, and bile conditions encountered throughout the gastrointestinal (GI) tract. This transcriptomics study was conducted to analyze the differences in transcript levels produced under conditions mimicking the GI tract. Changes in transcript levels were analyzed using RNA isolated from *L. monocytogenes* strain F2365 at both aerobic and anaerobic conditions, upon exposure to 0 and 1% bile at acidic and neutral pH. Transcripts corresponding to genes responsible for pathogenesis, cell wall associated proteins, DNA repair, transcription factors, and stress responses had variations in levels under the conditions tested. Upon exposure to anaerobiosis in acidic conditions, there were variations in the transcript levels for the virulence factors internalins, listeriolysin O, etc., as well as many histidine sensory kinases. These data indicate that the response to anaerobiosis differentially influences the transcription of several genes related to the survival of *L. monocytogenes* under acidic and bile conditions. Though further research is needed to decipher the role of oxygen in pathogenesis of *L. monocytogenes*, these data provide comprehensive information on how this pathogen responds to the GI tract.

Keywords: *Listeria monocytogenes*, transcriptomics, anaerobiosis, bile, stress response, anaerobic

INTRODUCTION

Listeria monocytogenes is a gram-positive foodborne pathogen that is responsible for the disease listeriosis (Scallan et al., 2011). Pregnant women, infants, elderly, and immunocompromised individuals are more susceptible to listeriosis, with meningitis, septicemia, and spontaneous abortions being possible manifestations of the disease (Thigpen et al., 2011). Being a foodborne pathogen, this bacterium must be able to respond to the stressors encountered following ingestion of contaminated food. Low pH, bile, and hypoxic/anoxic environments are some of the key stressors that are encountered by *L. monocytogenes* within the gastrointestinal (GI) tract (Davis et al., 1996).
Low pH of the stomach is one of the initial stressors encountered by *L. monocytogenes* upon ingestion (White et al., 2015). The low pH of the gastric secretion is a roadblock to invasion by the bacteria. *Listeria*‘s acid response involves the SOS response, LisRK (a two-component regulatory system that regulates listerial osmotolerance), components of sigma B regulon, ATPase proton pump, and enzymatic systems that regulate internal hydrogen ion concentration (Sleator and Hill, 2005). A transcriptomic study that was performed on *Listeria* grown in the presence of organic acids revealed an increase in the transcript levels of sigma B and *prfA* regulated genes, which included internalins, phospholipases, and other virulence genes. This previous study also indicated an up-regulation of oxidative stress defenses, DNA repair, intermediary metabolism, cell wall modification, and cofactor and fatty acid biosynthesis (Tessema et al., 2012). A proteomic study performed on *Listeria* grown in the presence of organic salts demonstrated an up-regulation of oxidoreductases and lipoproteins. Upon exposure to hydrochloric acid, it was also observed that proteins involved in respiration (enzyme dehydrogenases and reductases), osomyte transport, protein folding and repair, general stress resistance, flagella synthesis and metabolism were expressed in the response to the acidic conditions (Bowman et al., 2012).

Listeria is also exposed to bile within the GI tract (White et al., 2015). Bile is synthesized by the liver and stored in the gall bladder. It is released into the duodenum during digestion (Monte et al., 2009). The bile acids are the antibacterial component of bile; bile acids induce damage to the cell wall and DNA (Coleman et al., 1979; Bernstein et al., 1999; Prieto et al., 2004, 2006). Within the gall bladder, bile is found at a nearly neutral pH (7.5), while in the duodenum it is more acidic (pH 5.5) (White et al., 2015). Bile is more bactericidal at acidic pH than at a neutral pH, as indicated in a study that showed a decrease in survival in bile under pH 5.5 in comparison to a pH of 7.5 (Dowd et al., 2011). Many studies have been conducted to determine the global response of *L. monocytogenes* to bile encountered within the GI tract. For instance, the transcription factor *brtA*, which senses cholic acid and regulates efflux pumps (MdrM and MdrT) is involved in bile tolerance (Quillin et al., 2011). Bile salt hydrolases neutralize conjugated bile acids, thereby providing protection against the bactericidal properties of bile (Dowd et al., 2011). The *bile* gene is also involved in detoxifying bile acids (Dowd et al., 2011).

In addition to changes in pH and bile, *L. monocytogenes* is also exposed to changes in oxygen concentrations. The duodenum is considered microaerophilic in nature, while the gall bladder is anaerobic (Zheng et al., 2015). Oxygen availability has been found to influence bile resistance. A proteomics study performed under anaerobic conditions in the presence of bile observed notable alterations in cell wall associated proteins, DNA repair proteins and oxidative stress response proteins. Under anaerobic conditions the *Listeria* adhesion protein has been observed to have a significant role in intestinal infection (Burkholder et al., 2009). Additionally, oxygen deprivation has been found to affect the survival of *L. monocytogenes in vitro* (Payne et al., 2013; Wright et al., 2016), as well as in cell cultures, guinea pigs (Bo Andersen et al., 2007), and gerbils (Harris et al., 2019). These studies highlight the importance of oxygen in regulation of virulence. However, it is not known what the transcriptomic response of *L. monocytogenes* is to conditions that mimic the GI tract under physiologically relevant anaerobic conditions. Therefore, the goal of this study was to determine the impact of oxygen on the transcriptomic response of *L. monocytogenes* to bile in conditions that mimic the duodenum (pH 5.5) and the gall bladder (pH 7.5).

RESULTS

Survival of *L. monocytogenes* in Conditions Mimicking Gastrointestinal Tract

Listeria monocytogenes exhibits slightly slower growth rates under anaerobic conditions (*Figures 1A* vs. *1B*). Bile also impacted the viability of *L. monocytogenes* strain F2365 differently under anaerobic conditions. Under neutral pH, bile did not have a significant impact on survival of *L. monocytogenes* strain F2365 under either aerobic (*Figure 1A*) or anaerobic conditions (*Figure 1B*).

At acidic pH in the presence of bile, which mimics the exposure to bile in the duodenum, the percentage of *L. monocytogenes* that survived significantly declined (*Figure 2A; p < 0.05*). This further demonstrates the increase in toxicity exhibited by bile when in aerobic conditions. Survival also declined under anaerobic conditions in comparison to time 0 h (*Figure 2B; p < 0.05*). However, the decrease in viability was not as severe under anaerobic conditions (*Figure 2B*) in comparison to aerobic conditions (*Figure 2A; p < 0.05*). This indicates that anaerobic conditions improve the survival of *L. monocytogenes* to the toxic effects of bile.

Overall Changes in Transcript Levels in Response to Conditions Mimicking the Gastrointestinal Tract

As significant alterations in survival were observed following 1 h of bile exposure under acidic conditions, this time point was selected to compare the impact that oxygen had on the transcriptome. *Table 1* shows the overall changes in transcripts detected. Under anaerobic conditions, a total of 190 transcripts in media at pH 7.5 and 268 at pH of 5.5 were identified to be differentially expressed in comparison to aerobic conditions.

In the presence of bile and absence of oxygen, 304 and 434 transcripts were differentially produced at pH 7.5 and 268 at pH of 5.5 were identified to be differentially expressed in comparison to aerobic conditions. Under anaerobic conditions, upon exposure to bile, variations in the transcript levels of 200 genes were identified at pH 7.5 and 419 at pH 5.5. For all conditions tested, there were globally more transcripts identified to be up-regulated than down-regulated, except for acidic bile conditions under anaerobic growth.
Changes in Transcript Levels in Response to Anaerobic Conditions

Transcripts representative of five genes were found to be increased in expression levels under exposure to anaerobic conditions regardless of whether the cultivation was conducted under either neutral or acidic pH (Table 2 and Supplementary Figure 1). These included genes involved in membrane transport, protein folding, and stress response. Of these transcripts the amino acid transporter (LMOf2365_2333) had nearly a 9-fold increase in levels at neutral pH in comparison to acidic pH. Transcripts representative of the dnaJ (LMOf2365_1491) and dnaK (LMOf2365_1492) genes, which encode for molecular chaperones and have roles in phagocytosis and protein homeostasis, were also increased under anaerobic conditions at both pH conditions tested. The transcript representative of the cadA (LMOf2365_0672) gene, which encodes for a heavy metal translocating P-type ATPase and is a component of the CadAC efflux cassette, was also increased 6.1-fold at pH 7.5 and 3.8 at pH 5.5 under oxygen depleted conditions (Table 2).

Changes in Transcript Levels in Response to Anaerobic Acidic Conditions

In acidic conditions, transcript levels of 140 genes were increased (Table 4 and Supplementary Figure 1) and 104 were decreased under anaerobiosis (Table 5). Analyzing these transcripts up-regulated in response to acidic conditions under anaerobiosis...
revealed that several biological pathways related to pathogenesis, stress response, membrane associated proteins, transcription factors and DNA repair mechanisms influenced the survival of *L. monocytogenes* (Table 4). Transcripts representative of genes involved in metabolism, transcription factor and pathogenesis were down-regulated (Table 5). Certain transcripts encoding for glycolytic enzymes increased under acidic anaerobic conditions as well (Table 4). These included the glyceraldehyde-3-phosphate dehydrogenase (5.4-fold increase), phosphoglycerate mutase (4.7-fold increase), and pyruvate kinase (6.7-fold increase).

Changes in Transcript Levels in Response to Bile Under Anaerobic Conditions

Transcripts representative of 53 genes were found to be up-regulated in response to exposure to bile under anaerobic conditions (Table 6 and Supplementary Figure 3). Transcripts encoding for transcription regulators of virulence, antibiotic resistance, metabolism, and membrane associated proteins were also observed to increase in their levels of expression (Table 6). Transcripts representative of nine genes were down-regulated under anaerobic conditions in presence of bile at both pH 7.5 and 5.5 (Table 7 and Supplementary Figure 4). Fold changes of the transcript levels of genes associated with metabolism, translation, pathogenesis, and transcription were down-regulated (Table 7).

DISCUSSION

Anaerobiosis Improves Survival of *L. monocytogenes* in Conditions Mimicking the Gastrointestinal Tract

Survival of *L. monocytogenes* strain F2365 was analyzed under conditions mimicking the GI tract. This strain was chosen as it...
TABLE 4 | Transcript levels increased for select genes in response to anaerobiosis at pH 5.5.

Gene ID	Gene product	Transcript fold changes
hemL	Glutamate-1-semialdehyde-2,1-aminomutase	3.1
nrdD	Anaerobic ribonucleoside-triphosphate reductase	3.1
LMO2365_1386	Phosphate acetylbutyryltransferase family protein	3.1
panD	Aspartate 1-decarboxylase	3.1
pepQ	Proline dipeptidase	3.1
lth-2	L-lactate dehydrogenase	3.2
LMO2365_2670	N-acetyltauramoyl-L-alanine amidase, family 4	3.3
LMO2365_1275	Hydrolase, alpha/beta fold family	3.4
LMO2365_2200	Putative lactoylglutathione lyase	3.4
LMO2365_0846	Pyruvate flavodoxin/ferredoxin oxidoreductase	3.4
LMO2365_0277	Glycosyl hydrolase, family 1	3.7
asnB	Asparagine synthase (glutamine-hydrolyzing)	3.8
pf1-1	Formate acetyltransferase	3.8
LMO2365_2673	Orn/Lys/Arg decarboxylase	3.9
LMO2365_0330	Threonine aldolase family protein	4.1
mvaS	Hydroxymethylglutaryl-CoA synthase	4.2
LMO2365_1633	Putative glutamyl-aminopeptidase	4.3
LMO2365_1642	Dippeptidase	4.3
LMO2365_0693	Glycosyl hydrolase, family 1	4.4
LMO2365_0550	Glycosyl hydrolase, family 4	4.6
pnp	Polypurinucleotide	4.6
Gpm	Phosphoglycerate mutase	4.7
LMO2365_1226	Putative peptidase	5.2
LMO2365_2528	Putative fructose-bisphosphate aldolase	5.3
gap	Glycerolaldehyde-3-phosphate dehydrogenase, type I	5.4
LMO2365_1083	Inositol monophosphatase family protein	5.5
LMO2365_2199	Metallo-beta-lactamase family protein	5.6
LMO2365_1400	Putative acylphosphatase	5.7
LMO2365_1299	4-hydroxybenzoyl-CoA thioesterase family protein	6.2
Pyk	Pyruvate kinase	6.7
idh-1	L-lactate dehydrogenase	7.5
pflA	Pyruvate formate-lyase activating enzyme	7.6
gaU	UTP-glucose-1-phosphate uridylyltransferase	7.7
LMO2365_0582	CBS domain protein	8.5
LMO2365_2144	Nitroreductase family protein	9.3

TABLE 4 | (Continued)

Gene ID	Gene product	Transcript fold changes
LMO2365_0802	Putative acyl-carrier protein phosphodieserase	9.4
ald	Alanine dehydrogenase	11.9
manA	Mannose-6-phosphate isomerase, class I	13.6
LMO2365_1608	Putative inorganic polyphosphate/ATP-NAD kinase	13.6
LMO2365_2308	Aminopeptidase C	13.9
phl-2	Formate acetyltransferase	40.3
mrd	Glutamate racemase	68

Transcription factors

Gene ID	Gene product	Transcript fold changes
LMO2365_2140	Transcriptional regulator, DeoR family	3.1
argR	Arginine repressor	3.2
LMO2365_1526	DNA-binding response regulator	4.1
LMO2365_1907	Iron-dependent repressor family protein	4.3
LMO2365_0755	Transcriptional regulator, PdcR family	4.6
LMO2365_0480	Putative transcriptional regulator	4.8
LMO2365_1986	Transcriptional regulator, Fur family	4.8
LMO2365_0814	Transcriptional regulator, MarR family	7.8
LMO2365_1707	Peroxide operon transcriptional regulator	8.6

Pathogenesis

Gene ID	Gene product	Transcript fold changes
LMO2365_1812	Internalin family protein	5.4
hly	Listerialysin O	10.2

Motility

Gene ID	Gene product	Transcript fold changes
LMO2365_1723	Methyl-accepting chemotaxis protein	4.4

DNA repair

Gene ID	Gene product	Transcript fold changes
topA	DNA topoisomerase I	3.3
nrd	Endonuclease III	3.5
exoA	Exodeoxyribonuclease	4.2
LMO2365_1643	MutT/nudix family protein	4.4
ung-2	Uraci-DNA glycosylase	5.3

Stress response

Gene ID	Gene product	Transcript fold changes
LMO2365_1997	Putative tellurite resistance protein	3.1
LMO2365_0783	Glyoxalase family protein	3.4
LMO2365_0963	Peroxide resistance protein Dpr	3.5
LMO2365_2735	General stress protein 26	5.1
LMO2365_1121	Glyoxalase family protein	5.2

Protein folding

Gene ID	Gene product	Transcript fold changes
groEL	Chaperone protein GroEL	4.0
atpB	ATP synthase F0, A subunit	4.1

is a serotype 4b strain, which represents the serotype of a large portion of outbreak strains. F2365 was isolated from one of the deadliest outbreaks of *L. monocytogenes* (Linnan et al., 1988). F2365 has been sequenced (Nelson et al., 2004) and has been extensively studied for genomic analyses (Chatterjee et al., 2006; Liu and Ream, 2008; Payne et al., 2013), making it an ideal strain to analyze transcriptomic responses.
TABLE 5 | Transcript levels decreased for select genes in response to anaerobiosis at pH 5.5.

Gene ID	Gene product	Transcript fold changes
Metabolism		
pheA LMO2365_1555	Prephenate dehydratase	−18.8
LMO2365_2263	Putative arsenate reductase	−14.8
LMO2365_1556	GTP-binding protein, GTP1/OG family	−13.4
LMO2365_0148	Ser/Thr protein phosphatase family protein	−13.2
LMO2365_2831	Sucrose phosphorylase	−9.3
LMO2365_0128	Lipase	−8.9
cal LMO2365_0287	Carbonic anhydrase	−8.9
LMO2365_2647	Galactitol PTS system Elia component	−8.5
ttk-3 LMO2365_2640	Transketolase	−6.2
arca LMO2365_0052	Arginine deiminase, zinc-dependent	−6.1
LMO2365_2443	Alcohol dehydrogenase, zinc-dependent	−5.7
qoxA LMO2365_0016	Cytochrome aa3-600 menaquinol oxidase subunit II, Oxidative phosphorylation	−5.5
gabD LMO2365_0935	Succinate-semialdehyde dehydrogenase	−5.4
LMO2365_2364	Ferredoxin/flavodoxin—NADP+ reductase	−5.3
LMO2365_0209	UDP-N-acetylglucosamine pyrophosphorylase	−4.9
guaB LMO2365_2746	Inosine-5’-monophosphate dehydrogenase	−4.3
LMO2365_0566	Putative N-carbamoyl-L-amine acid amidohydrolase	−4.1
ctaB LMO2365_2088	Heme o synthase	−4.1
prs-1 LMO2365_0210	Ribose-phosphate pyrophosphokinase	−3.9
LMO2365_1048	Metallo-beta-lactamase family protein	−3.6
LMO2365_2576	Acetamidase/formamidase family protein	−3.4
LMO2365_2824	Glycosyl transferase, family 65	−3.0
Transcription Factors		
ada, LMO2365_0093	AraC family transcriptional regulator	−9.4
LMO2365_0127	Transcriptional regulator, AraC family	−7.2
purr LMO2365_0203	Pur operon transcriptional repressor	−4.3
LMO2365_1683	Phosphosugar-binding transcriptional regulator, RpiR family	−4.2
LMO2365_0023	Transcriptional regulator, GntR family	−4.0
LMO2365_2467	Phosphate transport system protein PhoU	−4.0
LMO2365_2217	Laci family transcriptional regulator	−3.3
LMO2365_2224	ArcA family protein, regulatory protein spx	−3.3
LMO2365_1010	Transcriptional regulator, MarR family	−3.1

Membrane Transport

(Continued)

TABLE 5 | (Continued)

Gene ID	Gene product	Transcript fold changes
LMO2365_1428	MFS transporter, ACDE family, multidrug resistance protein	−7.9
LMO2365_2542	Peptide/nickel transport system substrate-binding protein; bacterial extracellular solute-binding protein, family 5	−7.7
LMO2365_2575	Putative Mg2+ transporter-C (MgtC) family protein	−5.4
LMO2365_0759	Methyl-accepting chemotaxis protein	−4.2
LMO2365_0267	Sugar ABC transporter, sugar-binding protein	−4.0
LMO2365_0167	Peptide/nickel transport system substrate-binding protein	−3.9
LMO2365_2351	Multicomponent Na+ · H+ antiporter subunit A	−3.3
LMO2365_0876	Sugar ABC transporter, sugar-binding protein	−3.1
LMO2365_2732	ATP-binding cassette, subfamily B, bacterial Abca/BmrA	−3.1

Pathogenesis

Gene ID	Gene product	Transcript fold changes
LMO2365_0128	Lipase	−8.9
inE LMO2365_0283	Internalin E	−6.7
LMO2365_2467	Phosphate transport system protein PhoU	−4.0

Bile is made in the liver, stored in the gall bladder, and released to the duodenum upon ingestion. The environment in the gall bladder is anaerobic and neutral pH, while the duodenum is acidic and microaerophilic (Zheng et al., 2015). The alterations in oxygen availability within the GI tract are essential to developing the redox relationship between microbes and host (He et al., 1999; Espey, 2013). Therefore, we tested how oxygen influenced the survival of L. monocytogenes under either acidic (mimicking the duodenum) or neutral (mimicking the gall bladder) bile conditions.

Since variations in transcript levels were observed due to alterations in oxygen availability, we wanted to determine which genes were commonly expressed under anaerobiosis. Transcript levels of five genes were found to be up-regulated under exposure to anaerobic conditions regardless of whether the cultivation was conducted under either neutral or acidic pH (Table 2), though there were differential expressions between the two conditions. Transcripts common to both conditions included two membrane transporters LMO2365_2333 and cadA (LMO2365_0672), two chaperones, and the stress response related gene gadG (LMO2365_2405). CadA has been previously shown to be involved in formation of biofilms at 25°C by L. monocytogenes (Parsons et al., 2017). CadA also has been implicated in having roles in virulence and pathogenesis (Parsons et al., 2017). Therefore, it is possible that CadA is involved in stress response mechanisms related to anaerobic survival and that the formation of biofilms may be a critical component to survival. Previous studies have also shown that various stressors...
TABLE 6 | Transcript levels increased for select genes in response to anaerobiosis at pH of 7.5 and 5.5.

Gene ID	Gene product	Transcription factors	Transcript fold changes
		pH 7.5	**pH 5.5**
LMO2365_0641	Transcriptional regulator, MarR family	6.5	13.7
prfA LMO2365_0211	Listeriolysin regulatory protein	11.5	3.7
LMO2365_1986	Fur family transcriptional regulator, ferric uptake regulator	12.7	18.8
glnR LMO2365_1316	Transcriptional repressor GlnR	13.6	13.9
Metabolism			
LMO2365_2358	Thioesterase family protein	4.2	6.4
LMO2365_0884	ATP-dependent RNA helicase DeaD	4.4	3.1
LMO2365_1433	Acetyl-CoA acetyltransferase	4.5	6.6
LMO2365_1729	Deoxynucleoside kinase family protein	4.6	10.5
LMO2365_1680	Muramoylpeptide carboxypeptidase	5.1	4.4
cysK LMO2365_0234	Cysteine synthase A	6.1	6.2
LMO2365_1038	Putative PTS system, glucose-specific, IIA component	6.3	4.4
LMO2365_2371	NifU family protein	6.9	27.1
Cah			
LMO2365_0827	Carbonic anhydrase	7.1	7.2
LMO2365_1419	Acetylttransferase, GNAT family	7.3	3.7
tnxB LMO2365_2451	Selenocompound metabolism	8.7	5.0
glnA LMO2365_1317	Glutamine synthetase, type I	9.9	3.3
LMO2365_2364	Pyridine nucleotide-disulfide oxidoreductase family protein	10.1	5.1
LMO2365_0861	Putative endonuclease L-PSP	10.6	4.2
LMO2365_0391	Messenger RNA biogenesis	10.7	7.8
Membrane transport			
LMO2365_0761	Putative membrane protein	4.0	6.0
LMO2365_2229	Oligopeptide ABC transporter, oligopeptide-binding protein	4.3	3.6
LMO2365_1443	Transporter, NRAMP family	5.7	6.3
LMO2365_0168	Zinc ABC transporter, zinc-binding protein	6.9	52.5
LMO2365_1435	Putative transporter	8.2	7.4
LMO2365_1012	Membrane protein, TerC family	9.6	257.7
LMO2365_2330	Putative membrane protein	18.9	46.3

TABLE 7 | Transcript levels decreased for select genes in response to anaerobiosis at pH 7.5 and 5.5.

Gene ID	Gene product	Transcript fold changes	
		pH 7.5	**pH 5.5**
LMO2365_1656	Acetaldehyde dehydrogenase/alcohol dehydrogenase	−48.1	−71.2
LMO2365_0250	Serine O-acetyltransferase	−5.8	−4.4
murE LMO2365_2070	UDP-N-acetylpeptide–lysyl–alanine–diaminopimelate ligase	−5.7	−4.5
Translation			
LMO2365_2879	tRNA-Glu	−25.3	−4.8
LMO2365_2913	tRNA Leu	−11.5	−4.1
hly LMO2365_0213	Listeriolysin O	−70.0	−3.7
Transcription factors			
LMO2365_2205	Sigma-54 dependent transcriptional regulator	−10.7	−5.5

(i.e., heat shock, nutrient limitation, acidic condition, etc.) cause an increase in the expression of chaperones (Wright et al., 2016). Indeed, the data showed an increase in the transcript levels of two chaperones (dnaK and dnaJ) under anaerobic conditions at both pH 7.5 and 5.5. Therefore, it is possible that L. monocytogenes uses molecular chaperones to combat anaerobic stress, which in
turn assists with phagocytosis. The gadG encodes for an amino acid antiporter that is part of the glutamate decarboxylase system, which is a defense mechanism up-regulated by \textit{L. monocytogenes} under acid stress and anaerobiosis. This system alleviates the acidification of the cytoplasm by consuming a proton (Cotter et al., 2001; Jydegaard-Axelsen et al., 2004; Paudyal et al., 2020). The fact that this transcript was up-regulated in response to anaerobic conditions suggests that there may be overlapping functions of the GAD system in both acid resistance and anaerobiosis. The transcript level of the \textit{LMOf2365_2333} gene was increased by nearly 9-fold in comparison to acidic pH. There is a possibility that this amino acid anti-transporter may function with gadG in response to bile. This should be further explored in future studies.

Transcript levels of eighteen genes were down-regulated under anaerobic conditions regardless of the pH, including histidine kinase, metabolic genes, a universal stress response gene, and genes coding for hypothetical proteins. As histidine kinases are involved in two-component systems, it is possible that suppression of this sensor is responsible for the response to oxygen availability. One of the metabolic genes, the phosphoglycerate mutase, has been shown in \textit{Bacillus subtilis} to be responsible for the control of the two-component system required for sensing and responding to aerobic and anaerobic respiration (Nakano et al., 1999). The fact that the transcript level of this gene was down-regulated suggests that the accumulation of the product 1,3-bisphosphoglycerate, which is the intermediate in the reaction catalyzed by phosphoglycerate mutase, might impact the regulation of the histidine kinase \textit{LMOf2365_2554}. The impact of this precursor on regulation of two-component systems needs to be explored in further detail. The transcript level of the gene \textit{acpP} was also down-regulated. This gene product is involved in biosynthesis of fatty acids as a lipid transporter. This gene has been found to be differentially regulated under anaerobic conditions in many other bacteria, including \textit{Escherichia coli} and \textit{Neisseria gonorrhoeae} (Isabella and Clark, 2011). This indicates that the regulation of the fatty acid synthesis is necessary for the adaptability to anaerobiosis.

Differential Transcript Levels in Response to Anaerobic Acidic Conditions

An increase in the transcript levels of \textit{nrdD} (\textit{LMOf2365_0299}), which is an anaerobic ribonucleoside-triphosphate reductase that catalyzes the synthesis of dNTPs required for DNA replication, was observed under anaerobic conditions at acidic pH. NrdD is an essential enzyme required by \textit{L. monocytogenes} and other GI pathogens, such as \textit{E. coli}, to survive under anaerobic conditions (Garriga et al., 1996; Ofer et al., 2011). Since our study showed acidic conditions influence the up-regulation of this gene under anaerobic conditions, there is a possibility that this enzyme is involved in growth under acidic conditions. This may be required to stabilize the redox potential of the cell under acidic conditions. Ribonucleotide reductases have been explored as potential biomedical targets for bacterial infections (Torrents, 2014). Since the ribonucleotide reductase was up-regulated under anaerobic acidic conditions, it will be necessary for future studies to analyze the activity of antibacterial compounds under these conditions to effectively target the protein expressed.

Transcript levels of genes coding for a glycosyl hydrolases, which are involved in hydrolyzing the glycosidic linkages in sugars, were also up-regulated. Certain glycosyl hydrolases have been previously identified as virulence factors in gram positive pathogenic bacteria, including \textit{Streptococcus pneumoniae} (Niu et al., 2013). Glycosyl hydrolase \textit{PssZ} has been observed to degrade extracellular polymeric substance, thereby disrupting biofilm formation by \textit{L. monocytogenes} (Wu et al., 2019). \textit{L. monocytogenes}, which is an intracellular bacterium, may synthesize glycosyl hydrolases upon exposure to acidic pH under anaerobic conditions, which thereby hinders formation of biofilms and facilitates the bacterium’s entry into the host cells.

One of the virulence factors of \textit{L. monocytogenes} is metalloproteases. Few such proteases were identified to have an increase in transcript levels at pH 5.5 in anaerobic conditions, including the aminopeptidase (\textit{LMOf2365_2308}) (Table 4). It has been shown that the bacterial burden of \textit{L. monocytogenes} EGDe strain in host cells decreased significantly when the aminopeptidase T of family M29 was deleted (Cheng et al., 2015). Thus, at anaerobic conditions under acidic pH, aminopeptidases may be up-regulated and function as virulence factors.

\textit{GalU} (\textit{LMOf2365_1099}), \textit{UTP-glucose-1-phosphate uridylyltransferase}, which catalyzes cell wall teichoic acid glycosylation, had an increase in transcript levels under anaerobic conditions at pH 5.5 (Table 4; Kuenemann et al., 2018). \textit{In silico} design of \textit{GalU} inhibitors attenuated virulence of \textit{L. monocytogenes}, proving \textit{GalU} to be an instrumental part in virulence pathways (Kuenemann et al., 2018). Various transcription factors were up-regulated under anaerobic conditions at pH 5.5 (Table 4), including the \textit{fur} regulator that controls virulence of various pathogenic bacteria. We also observed that transcripts coding for virulence genes, such as listeriolysin O and internalin family proteins, were also up-regulated under these conditions. The transcript level of a methyl accepting chemotaxis protein was also increased. In \textit{L. monocytogenes} chemotaxis genes \textit{cheA} and \textit{cheY} have been shown to facilitate to adhesion and thereby invasion into the host epithelial cells. As \textit{L. monocytogenes} is an intracellular pathogen, it may be possible that along with the CheA and CheY system, it is using the methyl accepting chemotaxis proteins to attach to epithelial cells under anaerobic conditions at pH 5.5 (Dons et al., 2004). Internalins A and B are required by \textit{L. monocytogenes} for facilitating entry inside host cells. Transcript levels for genes encoding internalin proteins were found to be up-regulated under the acidic environment in absence of oxygen. Interestingly, the transcript level of \textit{inlE} (\textit{LMOf2365_0283}), which is a gene coding for the secreted protein Internalin E, was decreased. Internalins A and B are involved in adhesion and invasion by \textit{Listeria}, but Internalin E is not involved in invasion (Dramsi et al., 1997). This indicates anaerobiosis influences the invasive potential of \textit{L. monocytogenes}. The impact of anaerobiosis on invasion has been shown in \textit{vitro} and \textit{in vivo}, but the exact
TABLE 8 | Transcript levels increased for select genes in response to bile in anaerobic conditions at pH 5.5.

Gene ID	Gene product	Transcript levels
Metabolism		
LMO2365_0638	Rhodanese-like domain protein	3.4
LMO2365_0688	Serine/threonine protein phosphatase family protein	4.1
mvaS LMO2365_1434	Hydroxymethylglutaryl-CoA synthase	4.8
LMO2365_1406	Putative pyrroline-5-carboxylate reductase	38
Pathogenesis		
iniE LMO2365_0283	Internalin E	3.6
LMO2365_0508	Putative antigen	4.4
LMO2365_2725	CBS domain protein	5.2
hyl-H LMO2365_1893	Hemolysin III	6.2
LMO2365_0726	Flagellin	29.2
LMO2365_1503	DNA-binding protein, ComEA family	130.5
Cell Signaling		
LMO2365_0628	Cyclic nucleotide-binding protein	6.8
Protein Folding		
LMO2365_1018	ATP-dependent Clp protease, ATP-binding subunit E	3.9
clpP LMO2365_2441	ATP-dependent Clp protease, protease subunit	5.2
tox-1 LMO2365_1242	Thioredoxin	6.2
clpP-1 LMO2365_1146	ATP-dependent Clp protease, proteolytic subunit P	25.0
Membrane Transport		
LMO2365_0153	Oligopeptide ABC transporter	3.0
LMO2365_0288	Putative transporter	3.1
LMO2365_2265	CBS domain protein	3.1
LMO2365_0295	Competence protein	3.3
LMO2365_1088	ComEC/Rec2-related protein	3.3
LMO2365_1219	Cell division protein, FtsW/RodA/SpoVE family	3.3
acaA LMO2365_2700	Acetyl-coenzyme A synthetase	3.6
LMO2365_2554	Sensor histidine kinase	3.7
LMO2365_2835	Major facilitator family transporter	3.7
LMO2365_2647	PTS system, IIA component	3.8
zurM-2 LMO2365_1465	Zinc ABC transporter, permease protein	4.0
LMO2365_0622	Formate/nitrite transporter family protein	4.0
LMO2365_1002	Drug resistance transporter, EmrB/OacA family	4.7
LMO2365_0930	Putative membrane protein	5.0
LMO2365_0967	Putative transporter	5.1
LMO2365_0810	Putative membrane protein	5.6
LMO2365_1721	Cation efflux family protein	6.4
LMO2365_0588	Magnesium transporter, CorA family	6.5
LMO2365_0701	ABC transporter, ATP-binding protein	7.1
LmoB-2 LMO2365_2560	Lincomycin resistance protein LmrB	7.3
LMO2365_1695	Putative lamin-binding surface protein	8.2
LMO2365_2119	MATE efflux family protein	8.5
LMO2365_2222	CofA-like family protein	10.6
LMO2365_0570	ABC transporter, substrate-binding family protein	12.0
LMO2365_0812	RasD protein	13.6
LMO2365_0941	ABC transporter, ATP-binding protein	18.1

(Continued)
is up-regulated independent of pH. We have also observed conditions (that were decreased (Boonmee et al., 2019); however these prfA regulated in anaerobiosis in presence of bile (phospholipase C and metalloproteases, all of which were up-regulated in anaerobiosis in presence of bile (Table 6). Following bile exposure, the transcript levels of the virulence regulator prfA were decreased (Boonmee et al., 2019); however these data show that under anaerobic conditions in presence of bile, prfA is up-regulated independent of pH. We have also observed that L. monocytogenes survives bile better under anaerobic conditions (Figure 2).

Previous transcriptomics studies in L. monocytogenes 10403S (Boonmee et al., 2019) have found that following exposure to bile, the house keeping sigma factor σA has a significant role in survival. marR [multiple antibiotic resistance regulator (LMOf2365_0641)] is a transcriptional regulator that was up-regulated in response to bile in anaerobic conditions regardless of the pH tested (Table 6). In pathogens such as Salmonella and Staphylococcus, marR homologs slyA and sarZ regulate virulence gene expression. marR homologs have also been found to regulate genes involved in stress response, degradation or efflux of harmful substances and metabolic pathways (Grove, 2013). Bile exposure under anaerobic environments may trigger the up-regulation of marR to export bile out of the bacterial cell, thereby contributing to the bile resistance of L. monocytogenes along with other factors. The role of marR in bile resistance needs to be further explored.

Glutamine synthetase catalyzes the condensation of ammonia and glutamate to form glutamine. The transcript level of the glutamine synthetase repressor, glmR (LMOf2365_1316) was increased following exposure to bile in anaerobic conditions. It is a central nitrogen metabolism regulator which is activated in presence of glutamine. When glutamine is in excess, GlnR represses the synthesis of glutamine synthetase (Kaspar et al., 2014). Another probable transcriptional regulator (tnrA or codY) represses glutamine synthetase and its activation have been found to be essential in replication Listeria intracellularly (Kaspar et al., 2014). Interestingly glutamine synthetase was also up-regulated

Table 8 (Continued)

Gene ID	Gene product	Transcript levels
LMO2365_1010	Transcriptional regulator, MarR family	18.4
LMO2365_2233	Transcriptional regulator, MarR family	19.1
LMO2365_0755	Transcriptional regulator, PadR family	19.5
LMO2365_0387	GntR family transcriptional regulator	25.7
LMO2365_0326	DNA-binding protein	41.2

Table 9

Gene ID	Gene name	Transcript levels
LMO2365_2610	Putative lipoprotein	−29.9
LMO2365_0802	FMN-dependent NADH-azoreductase	−21.6
LMO2365_1226	Putative peptidase	−18.2
LMO2365_0565	6-phospho-beta-glucoisidase	−18.2
prfA LMO2365_1426	Pyruvate formate lyase activating enzyme	−11.1
LMO2365_1975	Riboflavin transporter	−10.2
pyrH LMO2365_1330	Uridylate kinase	−8.7
LMO2365_1597	Bifunctional oligoribonuclease and PAP phosphatase NraA	−8.5
LMO2365_0277	Glycosyl hydrolase, family 1	8.5
LMO2365_0776	Hydrolase, alpha/beta fold family	8.2
ph-2 LMO2365_1946	Formate C-acetyltransferase	8.2
rpsL LMO2365_1914	Large subunit ribosomal protein L19	7.7
pepQ LMO2365_1600	Proline dipeptidase	−7.6
cadA LMO2365_0672	Zn2+/Cd2+-exporting ATPase	−7.6
LMO2365_2066	Cell division protein, FtsW/RodA/SpoVE family	−7.3
LMO2365_0021	Glycosyl hydrolase, family 1	−6.9
LMO2365_2146	Hydrogen peroxide-dependent heme synthase	−6.5
glmS LMO2365_0762	Glutamine−fructose-6-phosphate transaminase	−6.3
LMO2365_1093	N-acetylmyramoyl-L-alanine amidase	−6.3
LMO2365_0057	Accessory gene regulator B	−5.9
LMO2365_1386	Phosphate butyryltransferase	−5.7
thr LMO2365_1614	tRNA uracil 4-sulfurtransferase	−5.7
gatU LMO2365_1099	UTP−glucose−1-phosphate uridylyltransferase	−5.6
LMO2365_1702	Methionine synthase/methylenetetrahydrofolate reductase (NADPH)	−5.6
LMO2365_2609	FAD:protein FMN transferase	−5.6
eno LMO2365_2428	Enolase	−5.5
LMO2365_2670	N-acetylmyramoyl-L-alanine amidase, family 4	−5.3
fabL LMO2365_0990	Enol−[acyl-carrier-protein] reductase I	−5.2
LMO2365_1880	Copper chaperone, heavy metal binding protein	−5.1
LMO2365_2711	PfB protein	−5.1
LMO2365_2673	Orn/Lys/Arg decarboxylase	−5.1
LMO2365_1368	Rhodanese-like domain protein	−5.0
LMO2365_2510	UDP-N-acetylglucosamine 2-epimerase	−4.8
mraY LMO2365_2069	Phospho-N-acetylmyramoyl-pentapeptide transferase	−4.7
purA LMO2365_0065	Adenylosuccinate synthase	−4.7
ald LMO2365_1801	Alanine dehydrogenase	−4.7
ptaL LMO2365_0212	1-phosphatidinolinositol phosphodiesterase	−4.6
menE LMO2365_1696	O-succinylbenzoate-CoA ligase	−4.6
marG LMO2365_1627	UDP-N-acetylmyramate-alanine ligase	−4.5
LMO2365_2743	Hydroxase, CoeC/NonD family	−4.4
gpmA LMO2365_2429	2,3-bisphosphoglycerate-independent phosphoglycerate mutase	−4.4
LMO2365_0434	Peptidoglycan-N-acetylglucosamine deacetylase	−4.1

(Continued)
under the same conditions, which indicates the possibility of a feedback loop.

Metalloenzyme carbonic acid catalyzes hydration of carbon dioxide into bicarbonate and proton (Supuran, 2016). The infection cycle of Legionella has similarities with that of L. monocytogenes, such as invasion and escaping the phagosome. Legionella has been shown to evade the destruction by maintaining neutral pH (Supuran, 2016). One of the enzymes involved in regulating the pH is carbonic anhydrase; the maintaining neutral pH (Supuran, 2016).
Differential Transcript Levels in Response to Bile Under Acidic and Anaerobic Conditions

There was an increase in transcript levels for the myosin cross reactive antigen (McrA) (LMOf2365_0508; Table 8). Although its function in L. monocytogenes is yet unknown, in Streptococcus pyogenes McrA is a fatty acid double bond hydrolase that adds water to double bonds of fatty acids. Upon deletion of this gene, decreased oleic acid resistance and reduced adherence and internalization in the host cell was observed in S. pyogenes (Volkov et al., 2010). Conditions encountered within the duodenum may directly or indirectly contribute to up-regulation of mcrA, which may regulate the pathogen's resistance to bile.

Intestinal E and hemolysin III are both virulence factors responsible for internalization and invasion for L. monocytogenes. Both had an increase in transcript levels, indicating that bile exposure at acidic and anaerobic conditions, which mimics the duodenum, is conducive to the pathogenesis of the bacteria. The transcript level of the LPXTG-motif cell wall anchor domain (LMOf2365_1144) was also up-regulated. In the L. monocytogenes EGDe strain, it has been shown that a LPXTG protein encoded by the Listeria mucin binding invasion A gene, or LmiA, has roles in promoting bacterial adhesion and entry into the host cell (Mariscotti et al., 2014). MucBP domain present in LPXTG was observed to bind to mucin. Thus, up-regulation of LPXTG gene under conditions mimicking the duodenum indicates that these conditions may facilitate invasion of host cells by the bacteria.

The level of transcripts representing flagellin also increased. It has been shown that flagellin helps in motility soon after ingestion in vivo (O’Neil and Marquis, 2006) and invasion (Dons et al., 2004). A previous study has also observed up-regulation of motility under exposure to bile at pH 5.5 (Guariglia-Oropesa et al., 2018). The fact that expression increased in conditions that would be encountered soon after ingestion suggests that the flagellin are important for the motility of the bacteria to the location in the GI tract where they will invade the intestinal lining.

The transcript level of the histidine kinase LMOf2365_2554 was also up-regulated under conditions mimicking the duodenum. Histidine kinase is the signal receiver a two-component regulatory system. Its counterpart in the system is the response regulator (Chang and Stewart, 1998; Stock et al., 2000; West and Stock, 2001; Krell et al., 2010). Response regulators in L. monocytogenes have been proven to have roles in virulence and pathogenesis. Sensor histidine kinase, ChiS, regulates the chitin utilization pathway required by Vibrio cholera, which is needed to survive in aquatic environments. Chourashi et al. (2016) observed that ChiS has an important role in adherence and intracellular survival of V. cholerae in HT-29 cell cultures. They also showed that the sensor histidine kinase ChiS was activated in the presence of intestinal mucin (Chourashi et al., 2016). In the case of L. monocytogenes, it could be possible that the conditions in the duodenum are favorable for activation of the sensor histidine kinase, which could in turn relay information that would result in the activation of transcription factors responsible for adhesion and invasion.

Transcript levels representative of replication and repair genes were also up-regulated. In L. monocytogenes strain EGDe, RecA has been shown to have roles in bile and acid resistance, as well as in adhesion and invasion to Caco-2 cell cultures (van der Veen and Abeel, 2011). Our data indicate that in the pathogenic strain F2365, RecA has the similar role of bile and acid resistance.
resistance. In our study, we have also found that under anaerobic conditions (along with bile and acidic) the transcript level of recA changed, indicating absence of oxygen may have impact on activation of RecA.

The transcript level for a gene encoding for the transcriptional regulator padR was up-regulated (Table 8). In L. monocytogenes EGDe, LfTR, which is a PadR like transcriptional regulator, has been shown to influence invasion of human host cells (Kaval et al., 2015). It is already known that Listeria uses intracellular proteins for adhering and internalizing into the cell. Kaval et al. (2015) found that LfTR, which is an uncharacterized protein, is required for invasion.

Transcript level of the gene encoding for ctsR, (LMO2365_0241) a class III stress gene repressor that negatively regulates clp, was up-regulated under these conditions (Table 8). CtsR has been shown to be required for virulence in mice. PrfA which regulates many virulence genes of L. monocytogenes has been shown to down-regulate ClpC production (Karatzas et al., 2003). Although Karatzas et al. (2003) could not find any relationship between clp and prfA, there is still a possibility that there is a connection between the regulation of Clp by CtsR under anaerobic conditions in exposure to bile at acidic pH (Cui et al., 2018).

The transcript level of the transcription elongation factor greA (LMO2365_1515) also increased under anaerobic conditions with acidic bile. Grea has been found to have roles in affecting functions of virulence gene expression in the pathogen Francisella tularensis subsp. Novicida (Cui et al., 2018). In F. tularensis, GreA was found to be required for invasion and intracellular growth of bacteria. Cui et al. (2018) also observed suppression of virulence of the greA mutant in mouse model. Transcriptomics analysis of the greA mutant revealed down-regulation of various genes responsible for virulence. Thus, with respect to our work, conditions in the duodenum are favorable for induction of the transcription elongation factor greA, which may in turn regulate genes responsible for invasion and multiplication of L. monocytogenes.

This study indicates that not only one stressor, but combinations of different stressors impact the transcription of various virulence genes. Transcriptomic and phenotypic studies in absence of these genes under mimicking physiological condition could give us an insight into this mechanism. A better understanding of how these biological processes help the survival of L. monocytogenes will lead us to understand how the physiological conditions contribute to the pathogenesis.

MATERIALS AND METHODS

Bacterial Strain and Culture Conditions

Listeria monocytogenes str. 4b F2365 was used for this study. Overnight cultures of L. monocytogenes str. 4b F2365 were grown at 37°C aerobically in Brain Heart Infusion (BHI) media at pH 7.5. Next day, inoculum (1:100) from the overnight culture was used to grow the cells to mid exponential phase in fresh BHI media (OD600 = 0.3 to 0.5) under either aerobic or anaerobic conditions in 5 mL aliquots. Anaerobic culture conditions were obtained using an incubator shaker set at 37°C inside a Coy Anaerobic Chamber with a gas mixture of 95% N₂ and 5% H₂ (Coy Laboratory Products, United States). Cells were then pelleted at 8000 × g at 23°C and resuspended in fresh BHI at a pH of either 7.5 or 5.5; pH was adjusted with either HCl or NaOH. For bile treated cells, mid exponential phase cells were resuspended in BHI at a pH of either 7.5 or 5.5 supplemented with 1% porcine bile extract (Sigma Aldrich, United States). Cells were then grown under either aerobic or anaerobic conditions at 37°C. This study had eight different conditions that mimicked parts of the GI tract. The conditions tested were: (1) aerobic at pH 5.5; (2) anaerobic at pH 5.5; (3) aerobic at pH 7.5; (4) anaerobic at pH 7.5; (5) aerobic at pH 5.5 with 1% porcine bile; (6) anaerobic at pH 5.5 with 1% porcine bile; (7) aerobic at pH 7.5 with 1% porcine bile; and (8) anaerobic at pH 7.5 with 1% porcine bile. For each time point during a 7 h incubation period, aliquots were serially diluted in phosphate buffered saline (PBS) and plated onto BHI agar plates. Plates were incubated overnight at 37°C prior to enumeration. Three independent replicates were performed in parallel for each individual condition tested.

RNA Extraction, Library Preparation and RNA Sequencing

To isolate the RNA for analysis of the transcript level expression, cells were collected after 1 h of incubation in the eight culture conditions described above. Three biological replicates were assayed. Briefly, 5 mL of culture was pelleted by centrifugation at 8,000 × g for 5 min at room temperature. Cell pellets were then treated with RNA Protect Bacterial Reagent (Qiagen, Germany). Total RNA was isolated using the RNeasy® Mini Kit (Qiagen, Germany) per manufacturer’s instructions. The extracted RNA was quantitated using Qubit 3 Fluorometer (Thermo Fisher, United States). Extracted samples with values of A260/280 ∼ 2.0 were selected for sequencing. Illumina HiSeq™ 2500 paired-end 50 bp sequencer (PE50) was used. Ribosomal RNA was reduced with Epicentre RiboMinus kit (Illumina, United States) coupled with Directional RNA-Seq library prep with TruSeq indexes (Illumina, United States) per manufacturer’s instructions.

Data Analysis

Differences in survival were determined using a student’s t-test (Prism 8). Tophat-2.0.8.b (Trapnell et al., 2009) was used to align the RNA-Seq data to the reference genome, AE017262.2 L. monocytogenes str. 4b F2365. Transcript level calculation and FPKM normalization were performed using Cufflinks-2.1.1 (Trapnell et al., 2010). FPKM filtering cutoff of 1.0 was maintained to determine expressed transcripts. Differential transcript levels of the genes were determined using Cuffdiff (Trapnell et al., 2013). Differential transcript levels which had a greater than 3-fold expression and were statistically significant (p < 0.01 and q < 0.01) were subjected to Gene Ontology (GO) enrichment analysis using Blast2GO (Conesa et al., 2005). In this software, the up- and down-regulated transcripts were selected, and BLAST was performed against the L. monocytogenes
nucleotide database in NCBI. The BLAST results were then mapped and annotated.

DATA AVAILABILITY STATEMENT

SRA IDs of the submitted data: SRR13859772, SRR13859774, and SRR13859773: F2365 pH 5.5 Aerobic, SRR13859144, SRR13859143, and SRR13859142: F2365 pH 5.5 Anaerobic, SRR13859527, SRR13859526, and SRR13859525: F2365 pH 5.5+ Bile Anaerobic, SRR13859600, SRR13859599, and SRR13859598: F2365 pH 7.5+ Bile aerobic, SRR13858938, SRR13858937, and SRR13858936: F2365 pH 7.5+ Bile Anaerobic, SRR13858765, SRR13858767, and SRR13858766: F2365 pH 7.5 Anaerobic, SRR13853432, SRR13853433, and SRR13853431: F2365 pH 5.5+ Bile Aerobic, SRR13849951, SRR13849952, and SRR13849950: F2365 pH 7.5 aerobic.

AUTHOR CONTRIBUTIONS

JD: conceptualization, supervision, and project administration. MA, MD, JD, GS, and DC: methodology. GS and DC: software. GS, DC, and JD: validation and visualization. DC and JD: investigation and writing—review and editing. MA and GS: resources. DC: data curation and writing—original draft preparation. All authors have read and agreed to the published version of the manuscript.

FUNDING

This research was funded by the National Institutes of Health, Mississippi INBRE grant number P20GM103476 and MSU-COBRE grant number P20GM103646.

ACKNOWLEDGMENTS

We would like to extend our acknowledgment to Christopher Bryson and Trevor Perry for helping us with analyzing the data set.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2021.754748/full#supplementary-material
He, G., Shankar, R. A., Chzhan, M., Samouilov, A., Kuppusamy, A., and Zweier, J. L. (1999). Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc. Natl. Acad. Sci. U.S.A. 96, 4586–4591. doi:10.1073/pnas.96.8.4586

Isabella, V. M., and Clark, V. L. (2011). Identification of a conserved protein motif for motility, not as adhesins, to increase host cell invasion. Infect. Immun. 74, 6675–6681. doi: 10.1128/IAI.00886-14

Karatzas, K. A., Sleator, R. D., and Hill, C. (2005). A novel role for the LisRK two-component system required for motility. J. Bacteriol. 187, 4355–4364. doi:10.1128/JB.187.10.4355-4364.2005

Krementz, K. A., Wouters, J. A., Gahan, C. G., Hill, C., Abee, T., and Bennik, M. H. (2008). The nuc genes of Listeria monocytogenes are characterized by strain-specific patterns and the upregulation of motility. Mol. Microbiol. 69, 1112–1123. doi: 10.1111/j.1365-2958.2008.06042.x

Kreft, T., Lacal, J., Busch, A., Silva-Jimenez, H., Guzzarone, M. E., and Ramos, J. L. (2010). Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu. Rev. Microbiol. 64, 539–559. doi:10.1146/annurev.micro.092408.100231

Kuenen, M. A., Spears, P. A., Orndorff, P. E., and Fourches, D. (2018). In silico predicted glucose-1-phosphate uridylyltransferase (GalU) inhibitors block a key pathway required for Listeria virulence. Mol. Inform. 37:e1800004. doi: 10.1002/minf.201800004

Linnan, M. J., Mascolini, L., Lou, X. D., Goulet, V., May, S., Salminen, C., et al. (1988). Epidemic listeriosis associated with Mexican-style cheese. J. Med. Microbiol. 28, 103–112. doi: 10.1111/j.1469-0691.2005.01176.x

Monte, M. J., Marin, J. J., Antelo, A., and Vazquez-Tato, J. (2009). Bile acids: chemical, physiology, and pathophysiology. World J. Gastroenterol. 15, 804–816. doi:10.3748/wjg.15.8.104

Nakano, M. M., Zhu, Y., Haga, K., Yoshikawa, H., Sonenschein, A. L., and Zuber, P. (1999). A mutation in the 3-phosphoglycerate kinase gene allows anaerobic growth of Bacillus subtilis in the absence of ResE kinase. J. Bacteriol. 181, 7087–7097. doi:10.1128/JB.181.22.7087-7097.1999

Ofer, A., Kreft, J., Logan, D. T., Cohen, G., Borovok, I., and Aharonowitz, Y. (2011). Implications of the inability of Listeria monocytogenes EGD-e to grow anaerobically due to a deletion in the class III NrdD ribonucleotide reductase for its use as a model laboratory strain. J. Bacteriol. 193, 2931–2940. doi: 10.1128/JB.01405-10

O’Neill, H. S., and Marquis, H. (2006). Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion. Infect. Immun. 74, 6675–6681. doi: 10.1128/IAI.00886-06

Paruthiyil, S., Pinochet-Barros, A., Huang, X., and Helmann, J. D. (2020). Bacillus subtilis TerC family proteins help prevent manganese intoxication. J. Bacteriol. 202:e00624-19. doi:10.1128/JB.00624-19

Paudyal, R., O’Byrne, C. P., and Karatzas, K. A. (2020). Amino acids other than glutamate affect the expression of the GAD system in Listeria monocytogenes enhancing acid resistance. Food Microbiol. 90:103481. doi: 10.1016/j.fm.2020.103481

Payne, A., Schmidt, T. B., Nanduri, B., Pendarvis, K., Pittman, J. R., Thornton, J. A., et al. (2013). Proteomic analysis of the response of Listeria monocytogenes to bile salts under anaerobic conditions. J. Med. Microbiol. 62(Pt 1), 25–35. doi:10.1099/jmm.0.049742-0

Prietó, A. I., Ramos-Morales, F., and Casadesús, J. (2004). Whole genome comparisons of serotype 4b and 1/2a strains of Listeria monocytogenes. J. Med. Microbiol. 53, 131–141. doi: 10.1111/j.1469-0691.2005.01176.x

Quillin, S. J., Schwartz, K. T., and Leber, J. H. (2011). The novel bacterial drug targets. Annu. Rev. Biochem. 80, 1119–1148. doi:10.1146/annurev.biochem.092408.100231

Roller, T. W., Jani, L., and May, S. (2007). Novel cadmium resistance pathway required for motility. J. Bacteriol. 189, 7406–7415. doi:10.1128/JB.01405-10

Sleator, R. D., and Hill, C. (2005). A novel role for the LisRK two-component system required for motility. J. Bacteriol. 187, 4355–4364. doi:10.1128/JB.187.10.4355-4364.2005

Smith, K. A., Wouters, J. A., Donaldson, M. L., Aharonowitz, Y., and Vazquez-Boland, J. A. (2007). The PrfA virulence regulon. Microbes Infect. 9, 1196–1207. doi:10.1016/j.micinf.2007.05.007

Slami, L., and Lereclus, D. (2019). The oligopeptide ABC- importers are essential communication channels in Gram-positive bacteria. Res. Microbiol. 170, 338–344. doi:10.1016/j.resmic.2019.07.004

Sletar, R. D., and Hill, C. (2005). A novel role for the LisRK two-component regulatory system in listerial osmotolerance. Clin. Microbiol. Infect. 11, 599–601. doi:10.1111/j.1469-0691.2005.01176.x

Stock, A. M., Robinson, V. L., and Goudreau, P. N. (2008). Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215. doi:10.1146/annurev.biochem.69.11.183

Supuran, C. T. (2016). Legionella pneumophila carbonic anhydrases: underexplored antibacterial drug targets. Pathogens 5:44. doi:10.3390/pathogens5020044

Tessema, G. T., Moretto, T., Snipen, L., Heir, E., Holck, A., Naterstad, K., et al. (2012). Microarray-based transcriptome of Listeria monocytogenes adapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid. Can. J. Microbiol. 58, 1112–1123. doi:10.1139/w12-091

Thigpen, M. C., Whitney, C. G., Messonnier, N. E., Zell, E. R., Lynfield, R., Hadler, J. L., et al. (2011). Bacterial meningitis in the United States, 1998-2007. N. Engl. J. Med. 364, 216–225. doi:10.1056/NEJMc1005384

Torrents, E. (2014). Ribonucleotide reductases: essential enzymes for bacterial life. Front. Cell Infect. Microbiol. 4:52. doi: 10.3389/fcimb.2014.00052
Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L., and Pachter, L. (2013). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53. doi: 10.1038/nbt.2450

Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111. doi: 10.1093/bioinformatics/btp120

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Watanabe, M. J., et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515. doi: 10.1038/nbt.1621

Turner, A. G., Ong, C. L., Gillen, C. M., Davies, M. R., West, N. P., McEwan, A. G., et al. (2015). Manganese homeostasis in group A Streptococcus is critical for resistance to oxidative stress and virulence. mBio 6:e00278-15. doi: 10.1128/mBio.00278-15

van der Veen, S., and Abee, T. (2011). Contribution of Listeria monocytogenes RecA to acid and bile survival and invasion of human intestinal Caco-2 cells. Int. J. Med. Microbiol. 301, 334–340. doi: 10.1016/j.ijmm.2010.11.006

Volkov, A., Liavonchanka, A., Kamneva, O., Fiedler, T., Goebel, C., Kreikemeyer, B., et al. (2010). Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J. Biol. Chem. 285, 10353–10361. doi: 10.1074/jbc.M109.081851

West, A. H., and Stock, A. M. (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26, 369–376. doi: 10.1016/s0968-0004(01)01852-7

White, S. J., McClung, D. M., Wilson, J. G., Roberts, B. N., and Donaldson, J. R. (2015). Influence of pH on bile sensitivity amongst various strains of Listeria monocytogenes under aerobic and anaerobic conditions. J. Med. Microbiol. 64, 1287–1296. doi: 10.1099/jmm.0.000160

Wright, M. L., Pendarvis, K., Nanduri, B., Edelmann, M. J., Jenkins, H. N., Reddy, J. S., et al. (2016). The effect of oxygen on bile resistance in Listeria monocytogenes. J. Proteomics Bioinform. 9, 107–119. doi: 10.4172/jpb.1000396

Wu, H., Qiao, S., Li, D., Guo, L., Zhu, M., and Ma, L. Z. (2019). Crystal structure of the glycoside hydrolase PssZ from Listeria monocytogenes. Acta Crystallogr. F Struct. Biol. Commun. 75(Pt 7), 801–806. doi: 10.1107/S2053230X19001800

Zheng, L., Kelly, C. J., and Colgan, S. P. (2015). Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am. J. Physiol. Cell. Physiol. 309, C350–C360. doi: 10.1152/ajpcell.00191.2015

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.