A VARIATION OF CONTINUITY IN \(n \)-NORMED SPACES

SIBEL ERSAN
MALTEPE UNIVERSITY
TURKEY
SIBELERSAN@MALTEPE.EDU.TR

ABSTRACT. The \(s \)-th forward difference sequence that tends to zero, inspired by the consecutive terms of a sequence approaching zero, is examined in this study. Functions that take sequences satisfying this condition to sequences satisfying the same condition are called \(s \)-ward continuous. Inclusion theorems that are related to this kind of uniform continuity and continuity are also considered. Additionally, the concept of \(s \)-ward compactness of a subset of \(X \) via \(s \)-quasi-Cauchy sequences are investigated. One finds out that the uniform limit of any sequence of \(s \)-ward continuous function is \(s \)-ward continuous and the set of \(s \)-ward continuous functions is a closed subset of the set of continuous functions.

1. Introduction and Preliminaries

Although some evaluations was first made about the axioms of an abstract \(n \)-dimensional metric, the main developments regarding the definition of the 2-metric, 2-normed spaces and their topological properties were described by Gähler [22] then the results of these concepts were extended to the most generalized case \(n \)-metric and \(n \)-normed spaces where \(n \) is a natural number by Gähler[23]. Shortly after the concept of \(n \)-normed space is introduced, the concept of 2-inner product space is also defined in [3]. Afterwards many authors have done lots of impressive improvements in \(n \)-normed spaces or in 2-inner product spaces ([2, 20, 19, 13, 15, 11, 16]).

Firstly we recall the notion of \(n \)-normed space:

Definition 1.1. An \(n \)-norm on a real vector space \(X \) of dimension \(d \), where \(2 \leq n \leq d \) is a real valued function \(\| \cdot, \ldots, \cdot \| \) on \(X^n \) which satisfies the properties:

1. \(\| \zeta_1, \zeta_2, \ldots, \zeta_n \| = 0 \) if and only if \(\zeta_1, \zeta_2, \ldots, \zeta_n \) are linearly dependent,
2. \(\| \zeta_1, \zeta_2, \ldots, \zeta_n \| = \| \zeta_{k_1}, \ldots, \zeta_{k_n} \| \) for every permutation \((k_1, \ldots, k_n)\) of \((1, \ldots, n)\),
3. \(\| \zeta_1, \zeta_2, \ldots, \delta \zeta_n \| = \| \zeta_1, \zeta_2, \ldots, \zeta_n \| \) for any real number \(\delta \),
4. \(\| m + n, \zeta_1, \ldots, \zeta_{n-1} \| \leq \| m, \zeta_1, \ldots, \zeta_{n-1} \| + \| n, \zeta_1, \ldots, \zeta_{n-1} \|. \)

A set \(X \) is an \(n \)-normed space with an \(n \)-norm \(\| \cdot, \ldots, \cdot \| \).

In [12],

\[
\| \zeta_1, \ldots, \zeta_n \|_p = \left[\frac{1}{n!} \sum_{t_1} \ldots \sum_{t_n} \det(\zeta_{it_k})^p \right]^{1/p}.
\]

2020 Mathematics Subject Classification. 40A05, 40A25, 40A30, 54C35.

Key words and phrases. compactness, continuity, \(n \)-normed space.
is given as an example of an \(n \)-norm on \(l^p \times \ldots \times l^p \) space for \(1 \leq p < \infty \). Also if \(p = \infty \), the \(n \)-norm on \(l^\infty \times \ldots \times l^\infty \) is given as \([1]\)

\[
\|\zeta_1, \ldots, \zeta_n\|_\infty = \sup_{t_1} \ldots \sup_{t_n} \det(x_{it_k}).
\]

Definition 1.2. A sequence \((x_k)\) converges to an \(\zeta \in X \) in an \(n \)-normed space \(X \) if for each \(\epsilon > 0 \), there exists a positive integer \(\tilde{k} \) such that for every \(k \geq \tilde{k} \)

\[
\|x_k - \zeta, \mu_1, \ldots, \mu_{n-1}\| < \epsilon, \quad \forall \mu_1, \ldots, \mu_{n-1} \in X.
\]

Definition 1.3. A sequence \((x_k)\) is a Cauchy sequence if for each \(\epsilon > 0 \), there exists a positive integer \(t_0 \) such that for every \(k, m \geq t_0 \)

\[
\|x_k - x_m, \mu_1, \ldots, \mu_{n-1}\| < \epsilon, \quad \forall \mu_1, \ldots, \mu_{n-1} \in X.
\]

If each Cauchy sequence in \(X \) converges to an element of \(X \), we call \(X \) is complete and if \(X \) is complete, then it is called an \(n \)-Banach space.

In recent times, the notion of quasi-Cauchy sequences is given in \([4]\). The distance between consecutive terms of a sequence tending to zero is expressed by Burton and Coleman with the idea of quasi-Cauchy sequence. Then using this idea, different types of continuities were defined for real functions in \([6, 7]\) as ward continuity, statistically ward continuity, lacunary ward continuity and etc. They were also studied in 2-normed space in \([24, 9, 10]\).

The aim of this research is to give a generalization of the notions of a quasi-Cauchy sequence and ward continuity of a function to the notions of an \(s \)-quasi-Cauchy sequence and \(s \)-ward continuity of a function in an \(n \)-normed space for any fixed positive integer \(s \). Also interesting theorems related to ordinary continuity, uniform continuity, compactness and \(s \)-ward continuity are proved. This paper contains not only an extension of results of \([24]\) to an \(n \)-normed space, but also includes new results in 2-normed spaces as a special case for \(n = 2 \).

2. Main results

In this paper \(X, \mathbb{R} \) and \(s \) will denote a first countable \(n \)-normed space with an \(n \)-norm \(\|., \ldots, .\| \), the set of all real numbers and a fixed positive integer, respectively. Now we give the notion of \(s \)-quasi Cauchyness of a sequence in \(X \):

Definition 2.1. A sequence \((x_k)\) of points in \(X \) is said to be \(s \)-quasi-Cauchy if for all \(\mu_1, \mu_2, \ldots, \mu_{n-1} \in X \) it satisfies

\[
\lim_{k \to \infty} \|\Delta_s x_k, \mu_1, \mu_2, \ldots, \mu_{n-1}\| = 0
\]

where \(\Delta_s x_k = x_{k+s} - x_k \) for each positive integer \(k \).

If one chooses \(s = 1 \), the sequences returns to the ordinary quasi-Cauchy sequences and also using the equality

\[
x_{k+s} - x_k = x_{k+s} - x_{k+s-1} + x_{k+s-1} - x_{k+s-2} - x_{k+2} + x_{k+2} - x_{k+1} + x_{k+1} - x_k,
\]

we see that any quasi-Cauchy sequence is \(s \)-quasi-Cauchy, however the converse is not true.

Any Cauchy sequence is \(s \)-quasi-Cauchy, so is any convergent sequence. A sequence of partial sums of a convergent series is \(s \)-quasi-Cauchy. One notes that the
set $\Delta_s(X)$, the set of s-quasi-Cauchy sequences in X, is a vector space. If $(x_k), (y_k)$ are s-quasi-Cauchy sequences in X so

\begin{align}
\lim_{k \to \infty} ||\Delta_s x_k, \mu_1, \mu_2, ..., \mu_{n-1}|| &= 0 \quad \text{and} \\
\lim_{k \to \infty} ||\Delta_s y_k, \mu_1, \mu_2, ..., \mu_{n-1}|| &= 0.
\end{align}

for all $\mu_1, \mu_2, ..., \mu_{n-1} \in X$. Therefore

\begin{equation}
\lim_{k \to \infty} ||\Delta_s (x_k + y_k), \mu_1, \mu_2, ..., \mu_{n-1}|| \leq \lim_{k \to \infty} ||\Delta_s x_k, \mu_1, \mu_2, ..., \mu_{n-1}|| + \lim_{k \to \infty} ||\Delta_s y_k, \mu_1, \mu_2, ..., \mu_{n-1}|| = 0.
\end{equation}

So the sum of two s-quasi-Cauchy sequences is again s-quasi-Cauchy, it is clear that (ax_k) is an s-quasi-Cauchy sequence in X for any constant $a \in \mathbb{R}$.

Definition 2.2. A subset A of X is called s-ward compact if any sequence in the set A has an s-quasi-Cauchy subsequence.

If a set A is an s-ward compact subset of X, then any subset of A is s-ward compact. Moreover any ward compact subset of X is s-ward compact. Union of finite number of s-ward compact subset of X is s-ward compact. Any sequentially compact subset of X is s-ward compact.

For each real number $\alpha > 0$, an α-ball with center a in X is defined as

\begin{equation} B_\alpha(a, x_1, ..., x_{n-1}) = \{ x \in X : ||a - x, x_1 - x, ..., x_{n-1} - x|| < \alpha \}
\end{equation}

for $x_1, ..., x_{n-1} \in X$. The family of all sets $W_i(a) = B_\alpha(a, x_{i_1}, ..., x_{i_{n-1}})$ where $i = 1, 2, ..., \text{is an open basis in} \ a$. Let β_{n-1} be the collection of linearly independent sets B with $n - 1$ elements. For $B \in \beta_{n-1}$, the mapping

\begin{equation} p_B(x) = ||x, x_1, ..., x_{n-1}||, \quad \text{for} \ x \in X, \ x_1, ..., x_{n-1} \in B
\end{equation}

defines a seminorm on X and the collection $\{p_B : B \in \beta_{n-1}\}$ of seminorms makes X a locally convex topological vector space. For each $x \in X$, different from zero, there exists $x_1, ..., x_{n-1} \in B$ such that $x, x_1, x_2, ..., x_{n-1}$ are linearly independent so $||x, x_1, ..., x_{n-1}|| \neq 0$, which makes X a Hausdorff space. A neighborhood of origin for this topology is in a form of a finite intersection

\begin{equation} \bigcap_{i=1}^{n} \{ x \in X : ||x, x_{i_1} - x, ..., x_{i_{n-1}} - x|| < \epsilon \}
\end{equation}

where $\epsilon > 0$.

Now the following theorem characterizes totally boundedness not only valid for n-normed spaces but also valid for the 2-normed spaces. It extends the results for quasi-Cauchy sequences given in [24] for 2-normed valued sequences to n-normed valued s-quasi-Cauchy sequences in which $s = 1$ gives earlier results given for 2-normed spaces. It should be noted that Theorem 3 in [8] can not be obtained just by putting $n = 1$ in the n-normed space to get in a normed space, which is awkward, whereas the following theorem is interesting as a point of studying a new space.

Lemma 2.1. If a subset of X is totally bounded then every sequence in A contains an s-quasi-Cauchy subsequence.
Proof. Let A be totally bounded. Let (x_n) be any sequence in A. Since A is covered by a finite number of balls of X of diameter less than 1. One of these sets, which we denote by A_1, must contain x_n for infinitely many values of n. Choose a positive integer n_1 such that $x_{n_1} \in A_1$. Since A_1 is totally bounded, it is covered by a finite number of balls of diameter less than $1/2$. One of these balls, which we denote by A_2, must contain x_{n_2} for infinitely many n. Let n_2 be a positive integer such that $n_2 > n_1$ and $x_{n_2} \in A_2$. Since $A_2 \subset A_1$, it follows that $x_{n_2} \in A_1$. Continuing in this way, a ball A_k of A_{k-1} of diameter less than $1/k$ and a term $x_{n_k} \in A_k$ of the sequence (x_n), where $n_k > n_{k-1}$ for any positive integer k. Since $x_{n_k}, x_{n_{k+1}}, ..., x_{n_k+s}, ...$ lie in A_k and diameter (A_k) less than $1/k$, then x_{n_k} is an s-quasi-Cauchy subsequence of (x_n).

Theorem 2.2. A subset of X is totally bounded if and only if it is s-ward compact for any positive integer s.

Proof. If A is totally bounded, then every sequence of A has an s-quasi-Cauchy subsequence by Lemma 2.1. So the set A is s-ward compact for any fixed positive integer s. For the converse, think A is not a totally bounded set. Choose any $x_1 \in A$ and $\alpha > 0$. Since A is not totally bounded, the neighborhood of a point x_1 in A which is defined by $B_\alpha(x_1, \mu_1^1, ..., \mu_{n-1}^1) = \{ y \in A : ||x_1 - y, \mu_1^1 - y, ..., \mu_{n-1}^1 - y|| < \alpha \}$ is not equal to A. There is an $x_2 \in A$ such that $x_2 \notin B_\alpha(x_1, \mu_1^1, ..., \mu_{n-1}^1)$, that is, $||x_2 - x_1, \mu_1^1 - x_1, ..., \mu_{n-1}^1 - x_1|| \geq \alpha$. Since A is not totally bounded $B_\alpha(x_2, \mu_1^1, ..., \mu_{n-1}^1) \cup B_\alpha(x_2, \mu_1^{i^2}, ..., \mu_{n-1}^{i^2}) \neq A$ where $B_\alpha(x_2, \mu_1^{i^2}, ..., \mu_{n-1}^{i^2})$ is the neighborhood of a point x_2 in A. Continuing the procedure, a sequence (x_k) of points in A can be obtained as $x_{k+s} - x_k, \mu_1^1 - x_k, ..., \mu_{n-1}^1 - x_k|| \geq \alpha$ and all nonzero $\mu_1^1, ..., \mu_{n-1}^1 \in A$ where $i = 1, ..., k + s - 1$. So the sequence (x_k) has not any s-quasi-Cauchy subsequence. Therefore A is not s-ward compact.

Definition 2.3. A function f is called s-ward continuous on a subset A of X if

$$\lim_{k \to \infty} ||\Delta_s x_k, \mu_1, \mu_2, ..., \mu_{n-1}|| = 0$$

is satisfied for all $\mu_1, \mu_2, ..., \mu_{n-1} \in X$, then

$$\lim_{k \to \infty} ||\Delta_s f(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})|| = 0.$$

In the following we give that any s-ward continuous function is continuous.

Theorem 2.3. Any s-ward continuous function on a subset A of X is continuous on A.

Proof. Let the function f be s-ward continuous on $A \subset X$ and any sequence (x_k) in A converge to ζ, that is

$$\lim_{k \to \infty} ||x_k - \zeta, \mu_1, \mu_2, ..., \mu_{n-1}|| = 0$$

for all $\mu_1, \mu_2, ..., \mu_{n-1} \in X$. Let us write a new sequence using some terms of the sequence (x_k) as

$$(t_m) = (x_1, ..., x_1, \zeta, ..., \zeta, x_2, ..., x_2, \zeta, ..., \zeta, x_n, ..., x_n, \zeta, ..., \zeta, ...).$$

where same terms repeated s-times. Every convergent sequences is Cauchy and moreover any Cauchy sequence is s-quasi-Cauchy, then it follows that

$$\lim_{m \to \infty} ||\Delta_s t_m, \mu_1, \mu_2, ..., \mu_{n-1}|| = \lim_{m \to \infty} ||t_m - t_m, \mu_1, \mu_2, ..., \mu_{n-1}|| = 0.$$
in which either
\[\lim_{m \to \infty} \| t_{m+s} - \zeta, \mu_1, \mu_2, \ldots, \mu_{n-1} \| = 0 \]
or
\[\lim_{m \to \infty} \| \zeta - t_m, \mu_1, \mu_2, \ldots, \mu_{n-1} \| = 0 \]
for every \(\mu_1, \mu_2, \ldots, \mu_{n-1} \). This result implies \((t_m)\) is an \(s\)-quasi Cauchy sequence. Since the function \(f\) is assumed to be \(s\)-ward continuous, using this assumption we get
\[\lim_{m \to \infty} \| \Delta_s f(t_m), f(\mu_1), f(\mu_2), \ldots, f(\mu_{n-1}) \| = 0 \]
in which either
\[\lim_{m \to \infty} \| f(t_{m+s}) - f(t_m), f(\mu_1), f(\mu_2), \ldots, f(\mu_{n-1}) \| = 0 \]
or
\[\lim_{m \to \infty} \| f(\zeta) - f(t_m), f(\mu_1), f(\mu_2), \ldots, f(\mu_{n-1}) \| = 0 \]
So \((f(x_k))\) converges to \(f(\zeta)\).

As the sum of two \(s\)-ward continuous function on \(A\) is \(s\)-ward continuous and \(cf\) is \(s\)-ward continuous for any constant real number \(c\), the set of \(s\)-ward continuous functions on \(A\) is a vector subspace of vector space of all continuous function on \(A\).

Theorem 2.4. Every \(s\)-ward continuous function on \(A \subset X\) is \(s\)-ward continuous on \(A\).

Proof. Assume that \((x_k)\) is a quasi-Cauchy sequence in \(A\) and \(f\) is any \(s\)-ward continuous function on \(A\). If \(s = 1\), the result is obvious. Let \(s > 1\) and a sequence
\[(t_m) = (x_1, x_1, \ldots, x_1, x_2, x_2, \ldots, x_2, \ldots, x_n, x_n, \ldots, x_n, \ldots) \]
be \(s\)-quasi-Cauchy, i.e.
\[\lim_{m \to \infty} \| \Delta_s t_m, \mu_1, \mu_2, \ldots, \mu_{n-1} \| = 0. \]
We have
\[\lim_{m \to \infty} \| \Delta_s f(t_m), f(\mu_1), f(\mu_2), \ldots, f(\mu_{n-1}) \| = 0 \]
by using the \(s\)-ward continuity of the function \(f\). Therefore
\[\lim_{m \to \infty} \| \Delta f(t_m), f(\mu_1), f(\mu_2), \ldots, f(\mu_{n-1}) \| = 0 \]
So \(s\)-ward continuity of the function \(f\) implies that the \(s\)-ward continuity of \(f\) on \(A \subset X\).

Theorem 2.5. The image of an \(s\)-ward compact subset of \(X\) by an \(s\)-ward continuous function is \(s\)-ward compact.

Proof. Assume that \(f\) is an \(s\)-ward continuous function and \(A\) is an \(s\)-ward compact subset of \(X\). Choose a sequence \(t\) as \(t = (t_k) \in f(A)\) and say \((t_k) = f(x_k)\) where \(x_k \in A\). \(A\) is \(s\)-ward compact so there is a subsequence \((x_m)\) of \((x_k)\) with
\[\lim_{m \to \infty} \| \Delta_s x_m, \mu_1, \mu_2, \ldots, \mu_{n-1} \| = 0 \]
for all \(\mu_1, \mu_2, \ldots, \mu_{n-1} \in X\). Using the \(s\)-ward continuity of \(f\) we have
\[\lim_{m \to \infty} \| \Delta_s f(x_m), f(\mu_1), f(\mu_2), \ldots, f(\mu_{n-1}) \| = 0, \]
so there is an s-quasi-Cauchy subsequence \((f(x_m))\) of \(t\). The result implies that the subset \(f(A) \subset X\) is s-ward compact. \(\Box\)

s-ward continuous image of any compact subset of \(X\) is compact. It is easily evaluated from Theorem 2.8.

Theorem 2.6. If \(f\) is uniformly continuous on \(A \subset X\), then it is s-ward continuous on \(A\).

Proof. Let \(f\) be a uniformly continuous function on \(A\), and the sequence \((x_k)\) be an s-quasi-Cauchy sequence in \(A\). Our aim is to prove the sequence \((f(x_k))\) is also an s-quasi-Cauchy sequence in \(A\). Take any \(\varepsilon > 0\). There exists a \(\delta > 0\) such that if
\[
\|x - y, \mu_1, \mu_2, ..., \mu_{n-1}\| < \delta \quad \text{then} \quad \|f(x) - f(y), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})\| < \varepsilon.
\]

There exists an \(\bar{k} = \bar{k}(\delta)\) for this \(\delta > 0\) such that
\[
\|\Delta_s f_k(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})\| < \delta
\]
for every \(\mu_1, \mu_2, ..., \mu_{n-1} \in X\) whenever \(k > \bar{k}\). Uniform continuity of \(f\) on \(A\) for every \(k > \bar{k}\) implies
\[
\|\Delta_s f_k(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})\| < \varepsilon
\]
for every \(f(\mu_1), f(\mu_2), ..., f(\mu_{n-1}) \in X\). The sequence \((f(x_k))\) is s-quasi-Cauchy so the function \(f\) is s-ward continuous. \(\Box\)

Theorem 2.7. Uniform limit of a sequence of s-ward continuous function is s-ward continuous.

Proof. Let \((f_t)\) be a sequence of s-ward continuous functions and it be uniformly convergent sequence to a function \(f\). Pick an s-quasi-Cauchy sequence \((x_k)\) in \(A\) and choose any \(\varepsilon > 0\). There is an integer \(N \in \mathbb{Z}^+\) such that
\[
\|f_t(x) - f(x), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})\| < \frac{\varepsilon}{3}
\]
for every \(x \in A\), for all \(f(\mu_1), f(\mu_2), ..., f(\mu_{n-1}) \in X\) whenever \(t \geq N\). Using the s-ward continuity of \(f_N\), there is a positive integer \(N_1(\varepsilon) > N\) such that
\[
\|\Delta_s f_t(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})\| < \frac{\varepsilon}{3}
\]
for every \(t \geq N_1\). Now for \(t \geq N_1\) we have
\[
\|\Delta_s f(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})\|
\leq \|f(x_{k+s}) - f(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})\|
\leq \|f(x_{k+s}) - f_N(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})\|
+\|\Delta_s f_N(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})\|
+\|f_N(x_k) - f(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})\| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.
\]
So the function \(f\) is s-ward continuous on \(A\). \(\Box\)

Theorem 2.8. The collection of the s-ward continuous functions on \(A \subset X\) is a closed subset of the collection of every continuous functions on \(A\).
Proof. Let E be a collection of all s-ward continuous functions on $A \subset X$ and \bar{E} is the closure of E. \bar{E} is defined as for every $x \in X$ there exists $x_k \in E$ with $\lim_{k \to \infty} x_k = x$ and E is closed if $E = \bar{E}$. It is obvious that $E \subseteq \bar{E}$. Let f be any element of the set of all closure points of E which means there exists a sequence of points f_t in E as

$$\lim_{t \to \infty} ||f_t - f, f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})|| = 0$$

for all $f(\mu_1), f(\mu_2), ..., f(\mu_{n-1}) \in X$ and also f_t is a s-ward continuous function. Choose the sequence (x_k) as any s-quasi-Cauchy sequence. Since (f_t) converges to f, for every $\varepsilon > 0$ and $x \in E$, there is any N_0 such that for every $t \geq N_0$,

$$||f(x) - f_t(x), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})|| < \frac{\varepsilon}{3}.$$

As f_N is p-ward continuous, $N_1 > N_0$ exists such that for all $t \geq N_1$,

$$||\Delta_s f_N(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})|| < \frac{\varepsilon}{3}.$$

Hence for all $t \geq N_1$,

$$||\Delta_s f(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})||$$

$$= ||f(x_{k+s}) - f(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})||$$

$$\leq ||f(x_{k+s}) - f_N(x_{k+s}), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})||$$

$$+ ||f(x_k) - f_N(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})||$$

$$+ ||\Delta_s f_N(x_k), f(\mu_1), f(\mu_2), ..., f(\mu_{n-1})|| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Since the function f is s-ward continuous in E then $E = \bar{E}$, using Theorem 2.3 it ends the proof.

\[\square\]

3. Conclusion

The notion of an n-normed space was given by thinking if there is a problem where n-norm topology works however norm topology doesn’t. As an application of the notion of n-norm, we can examine that if a term in the definition of n-norm shows the change of shape then the n-norm stands for the associated volume of this surface. Suppose that for any particular output one needs n-inputs but with one main input and other (n-1)-inputs as dummy inputs required which accomplish the operation, so this concept may be used as an application in many areas of science. The generalization of the notions of quasi-Cauchy sequences and s-ward continuous functions to the notions of n-quasi-Cauchy sequences and s-ward continuous functions in n-normed spaces are investigated in this paper. Also we find out some interesting inclusion theorems related to the concepts of ordinary continuity, uniform continuity, s-ward continuity, and s-ward compactness. We prove that the uniform limit of a sequence of s-ward continuous function is s-ward continuous and the set of s-ward continuous functions is a closed subset of the set of continuous functions. We recommend research n-quasi-Cauchy sequences of points and fuzzy functions in an n-normed fuzzy space as a further study. However, due to the different structure of the methods of proof will not be similar to the one in this study (see [13], [21]). Also we recommend investigate s-quasi-Cauchy sequences of double sequences in n-normed spaces as another further study (see [17], [18]).
Declarations

Ethical Approval Not applicable
Competing interests Not applicable
Authors’ contributions Not applicable
Funding Not applicable
Availability of data and materials Not applicable

References

[1] A. Malceski, l^∞ as n-normed space, Mat. Bilten., 21, (1997), 103-110.
[2] A. Misiak, n-inner product spaces, Mathematische Nachrichten, 140, (1989), 299-319.
[3] C. Diminnie, S. Gähler and A. White, 2-inner product spaces, Demonstratio Math., 6, (1973), 525-536.
[4] D. Burton, J. Coleman, Quasi-Cauchy sequences, Amer. Math. Monthly, 117 4 (2010), 328-333.
[5] F. Lael, K. Nourouzi, Compact Operators Defined on 2-Normed and 2-Probabilistic Normed Spaces, Mathematical Problems in Engineering, 2009, (2009), Article Number: 950234.
[6] H. Cakalli, Forward continuity, J. Comput. Anal. Appl., 13, 2, (2011), 225-230. MR 2012c:26004
[7] H. Cakalli, Variations on Quasi-Cauchy Sequences, Filomat, 29:1, (2015), 13-19.
[8] H. Cakalli, Statistical quasi-Cauchy Sequences, Mathematical and Computer Modelling, 54, (2011), 1620-1624.
[9] H. Cakalli, S. Ersan, Strongly lacunary ward continuity in 2-normed spaces, The Scientific World Journal, 2014 (2014), 5 pages, Article ID 479679.
[10] H. Cakalli, S. Ersan, Lacunary ward continuity in 2-normed spaces, Filomat, 29 (10) (2015), 2257-2263.
[11] H. Dutta, On some n-normed linear space valued difference sequences, Journal of the Franklin Institute, 348, (2011), 2876-2883.
[12] H. Gunawan, The space of p-summable sequences and its natural n-norm, Bull. Austral. Math. Soc., 64, (2001), 137-147.
[13] H. Gunawan, M. Mashadi, On n-normed spaces, International Journal of Mathematics and Mathematical Sciences, 27(10), (2001), 631-639.
[14] Lj D. R., Kocinac, V. A., Khan, K. M. A. S., Alshloul and H., Altaf, On some topological properties of intuitionistic 2-fuzzy n-normed linear spaces Hacetette Journal of Mathematics and Statistics, 49 1, (2020), 208-220.
[15] M. Gurdal, A. Sahnier, Ideal convergence in n-norm spaces and some new sequence spaces via n-norm, Malaysian Journal of Fundamental and Applied Sciences, 4(1), (2014).
[16] M. Gurdal, N. Sari and E. Savas, A-statistically localized sequences in n-normed spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69, 2, (2020), 1484-1497.
[17] M. Mursaleen and SK, Sharma, Riesz Lacunary Almost Convergent Double Sequence Spaces Defined By Sequence Of Orlicz Functions Over N-Normed Spaces, TWMS Journal Of Pure And Applied Mathematics, 8 1, (2017),43-63.
[18] N. Khan, Classes of I-Convergent Double Sequences over n-Normed Spaces, Journal of Function Spaces, (2016), Article Number7594031.
[19] R. Malceski, Strong n-convex n-normed spaces, Mat. Bilten, 21, (1997), 81-102.
[20] S.S. Kim and Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math., 29 4, (1996),739-744.
[21] S. Altundag and E. Kamber, Lacunary Delta-statistical convergence in intuitionistic fuzzy n-normed space, Journal Of Inequalities And Applications, 40, (2014).
[22] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr., 26, (1963), 115-148.
[23] S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume I, Math. Nachr., 40, (1969), 165-189.
[24] S. Ersan and H. Cakalli, Ward continuity in 2-normed Spaces, Filomat, 29:7, (2015), 1507-1513.
Sibel Ersan, Faculty of Engineering and Natural Sciences, Maltepe University, Istanbul, Turkey

Email address: sibelersan@maltepe.edu.tr