Delay-Tolerant Sensor Network (DTN) Implementation in Cloud Computing

Dharmesh Dhabliya
Research Analyst
Email: dharmeshdhabliya@gmail.com

Abstract
In this study’s scheme, the objective is to employ the robot to implement the location estimation process for sensor nodes with which it interacts relative to the radio messages’ signal strengths, having received the signals from the sensor nodes. The implication is that the central purpose of the study lies in the elimination of the static sensor nodes’ processing constraints. Imperative to highlight is that the study’s mathematical contribution lies in the utilization of the REKF-based state estimator to analyze the localization problem. Deviating from Kalman Filter, it is worth noting that REKF exhibits computational efficiency and robustness. Indeed, the localization scheme is implemented on a hybrid network test bed.

Key Words: DTN, Cloud Computing, Kalman Filter and Robat

1 Introduction
In the recent past, sensor network research has increased dramatically [1, 2]. In particular, the wide range of possible applications has motivated the research efforts, including the condition-based maintenance of aircrafts and environmental monitoring [3, 4]. Imperatively, the sensor networks involve extremely limited processing capability, memory, and end-node power, and are at large scale [5]. Indeed, some environmental monitoring applications do not necessarily call for the use of uniformly distributed and fully connected sensor networks [6]. Also, these applications do not necessarily call for the use of real-time sensor information [7, 8]. For scientific analyses, the majority rely on sensor data that has been obtained for a significant period, examples being long-term coastline monitoring and the monitoring of cane toads [9, 10].

In relation to the examples of applications mentioned above, many studies affirm that the DTN concept gains usage. In particular, the role of DTN lies in the monitoring of environments for a significant period, especially in environments with non-interactive sensor data traffic [8, 10]. In such environments, the DTN sensors are utilized by ensuring that they are scattered randomly before being organized to established clusters that are likely to be separated from each other, should the need arise. It is also notable that cluster heads are found on individual clusters and it is at these cluster heads that there is typical aggregation of sensor information [4]. Hence, the cluster heads are equipped with information and play the role of data command to the rest of the external world [5].
In relation to the case of wireless mobile robots, their role lies in roaming around the target networks while collecting relevant data gained from the cluster heads. Also, the robots reconfigure or reprogram the sensors dynamically [3]. Specific examples of DTNs that have gained increasing application include Data Mules, Zebranet, and Sammi [10]. In this study, the central purpose is to propose a technique through which, given a DTN, node localization could be performed by one or more mobile robots. The specific objective of the investigation lies in the development of a novel RKEF-based state estimation model for DTN-led node localization. Lastly, the study’s goal lies in the implementation and validation of the proposed scheme relative to a novel hybrid sensor network.

2 Methodology

To address the problem of node localization relative to a mobile robot’s RSSI measurements, the modeling assumes that the localization is in the form of an online application characterized by a non-linear dynamic design. The figure below illustrates the RKEF model that will be used in the experimental implementation.

Indeed, the receiver’s forward link received signal strength indication (RSSI) is used to observe distance between communicating entities within the chosen wireless network. Should there be multiple transmitters, the transmitter or source identifier will be used to determine measurement that comes from each transmitter precisely within the data packet. The modeling of RSSI in this study, which is found at the mobile robot and measured in decibels, is determined in terms of two effects. The effects include shadow fading and path loss.

It is also worth noting that the experimental set-up constitutes simulations aimed at discerning the degree to which RKEF might perform in a given sensor network, a procedure achieved via the simulation of a mobile robot with which a radio receiver is equipped while ensuring that it moves in a given sensor coverage area.

The study’s central assumption is that the network is capable of determining the position and acceleration of the mobile robot through accelerator readings, as well as GPS. Another assumption is that the network is not capable of gaining information about the sensors. Finally, the accuracy and precision of
the proposed framework is evaluated by simulating two scenarios. These scenarios include small sensors and large sensors.

3 Results and Discussion
One of the specific points under examination involved computational efficiency. Indeed, the computation time for RKEF was measured in relation to 10 sensors, with RSSI samples considered. Specific cases that were used in this implementation included Java implementation with Open-Wonka, Matlab implementation on a machine at Pentium IV 3GHz, and Java implementation on a machine with Pentium IV 3GHz. The table below shows the computation time in milliseconds.

Number of Samples	Pentium-IV (Java) (seconds)	Pentium-IV (MATLAB) (seconds)	STARGATE (Java) (seconds)
90	-	-	115
2000	4	70	-
8000	15	27	-
16000	27	56	-

From the table, there was no statistically significant difference between the performance of Java and Matlab running on a Pentium IV 3GHz machine. On the other hand, there was significant degradation in the performance of a Stargate with an increase in the sample number. Hence, it was evident that the Stargate exhibits very limited memory, yielding inefficiency in Open-Wonka’s garbage collector.

In the proposed design, another parameter that was evaluated concerned estimation accuracy. Particularly, four sensors were used. The choice of four sensors was necessitated by affirmations that when a smaller number of sensors are used, there is likely to be a clearer visualization of estimation convergence. From the results, with 1m being the approximate error, the outcomes were very close to actual positions. The figure below summarizes the study’s findings that were obtained relative to the examination and evaluation of the parameter of estimation accuracy.
In the figure above, the left section illustrates sensor localization while the second figure demonstrates the real system’s localization error. Based on the results of this experimental evaluation, this study inferred that it is essential to determine the right parameters regarding weighting matrices. Also, the results demonstrate that when DTN-based mobile robots are used, with sensor localization implemented, path profiles or topological maps could be created. Upon optimizing these maps, the mobile robot-collected data can follow the resultant path to ensure that the shortest possible time is used to collect data. Also, the optimization would aid in meeting the power and storage requirements of the designed system. It is also notable that this study’s findings suggest that mobile robots are worth utilizing to act as relays between a network’s disconnected portions, hence yielding a relay network. Lastly, it is evident that a mobile robot’s trajectory could be recalculated dynamically to ensure that it slows down when there is a need to download much data.

Enterprise Resource Planning (ERP) architecture incorporates and defines a multitude of business processes and facilitates information transfer between them. An ERP system prevents duplication of information and ensures data integrity by gathering shared transactional shared data from multiple sources of an enterprise. Such divisions are modeled by industrial ERP into application modules and implemented to provide a complete solution for SMEs. In this paper a cloud-based ERP system is designed using new technologies and systems that provide an easy-to-use and user-friendly platform for SMEs. The developed ERP system’s graphical and tabular reports will assist the company’s owner to monitor its company’s activities and make better decisions.

The layout of the developed cloud-based ERP for the SME industry shows the hierarchical view of the four main modules our cloud-based ERP which are Finance and accounting, Sales and distribution, Material and planning, and Production. Finance & accounting module have master data, types of Accounts, transaction type, Reporting, Dashboard and to do list. In Master data, a form is shown in which master data about
financial detail is collected like financial years, financial terms and etc. In types of accounts, accounts and its types are selected. In types of transaction, the whole financial transaction is defined. Reporting will show all reports related to financial transaction. Dashboard will show centralize data so that this data can be helpful for decision makers. To do list will show today’s task to do list for finance user. In sales & distribution, add company option is a form for collecting data about company like its name, contact details and etc. Add customer is a form for adding the customer. Add product type is a form for adding products and its types. Add order is a form for recording orders from the customer. Add Make to stock is the form to save record for making stock on demand. Order status shows the status of orders. Sales invoice is a form to save order details. Sales invoice report shows the all placed orders. Sales invoice receipt shows the status payment receipt from the customer. In material & Planning, add purchasing requisition is a form which saves the record for purchasing material. Add goods receipt is a form which collects record for all goods receipt. Add goods issue is a form which collects record for issuing of material to production department. Show purchasing requisition displays all purchasing requisition. Show goods receipt displays all records of good receipt. Show goods issue displays all record for goods issue.
In production, the production order is a form in which all material and other information are stored for certain sales order. The production report shows all production activities reports. Production inventory handles all inventory processes. The interface of the cloud-based ERP home page.

For cloud implementation of the developed ERP, a commercial virtual private server (VPS) was purchased. Linux, JDK, SQL database and apache server was installed on VPS Server. The J2EE code of ERP system was converted to WAR File. The WAR file of project was uploaded on Apache Server by using FTP. After successful uploading on server we were able to access the ERP on cloud virtual private server. Fig. 9 depicts the cloud based ERP working. When the user of ERP requests for data from the cloud, the data is
downloaded from the cloud and saved in XML file. Then XML file is parsed through 'XML generator' and send to the application in required form. The data can be seen in table or form as per requirement. If an event is triggered in ERP like changes in the journal or another related operation, the related data is uploaded. This data is converted in XML and send through outgoing request. Then the file connector uploads this data on the cloud and vice versa.

In summary, information technology plays a vital role in the world's business digitalization. Companies now want to simplify their business processes. Enterprise resource management programs therefore matter greatly to them. Existing ERP solutions such as SAP, ORACLE are far too expensive to use for such companies, so there is a need for SMEs to have an ERP system. Our proposed cloud-based ERP focuses specifically on SMEs businesses and has four main modules which provide an integrated solution to companies. The developed ERP system delivers a solution to SMEs in real time, including voucher types of transactions, placing orders, shipping them, etc. The system has both graphical and tabular reports that help the company's owner to monitor its company's growth remotely through the internet. Sales and orders are better understood by visual coverage which enables managers make better decisions. The results of performance testing are also depicting satisfactory response time and throughput.

4 Conclusion

In summary, this study has offered a scheme through which node localization could be achieved via the use of mobile robots. The target context of the experimental set up has been the case of a DTN network. The objective has been to employ the robot to implement the location estimation process for sensor nodes with which it interacts relative to the radio messages’ signal strengths, having received the signals from the sensor nodes. The implication is that the central purpose of the study lies in the elimination of the static sensor nodes’ processing constraints. Imperative to highlight is that the study’s mathematical contribution lies in the utilization of the REKF-based state estimator to analyze the localization problem. Deviating from Kalman Filter, it is worth noting that REKF exhibits computational efficiency and robustness. Indeed, the localization scheme is implemented on a hybrid network test bed. Findings demonstrate that the proposed design is accurate relative to the node localization process, especially within large indoor settings, as well as 1m.

References
1. A. Savkin and I. Petersen, “Recursive State Estimation for Uncertain Systems with an Integral Quadratic Constraint,” IEEE Trans. Automatic Control, vol. 40, no. 6, pp. 1080-1083, 1995.
2. A. Savkin and R. Evans, Hybrid Dynamical Systems: Controller and Sensor Switching Problems. Boston: Birkha¨user, 2002.
3. A. Savkin, P. Pathirana, and F. Faruqi, “The Problem of Precision Missile Guidance: LQR and H1 Control Frameworks,” IEEE Trans. Aerospace and Electronic Systems, vol. 39, no. 3, pp. 901-910, July 2003.
4. G. Sibley, M.H. Rahimi, and G.S. Sukhatme, “Robomote: A Tiny Mobile Robot Platform for Large-Scale Ad-Hoc Sensor Networks,” Proc. Int’l Conf. Robotics
5. H. Xia, “An Analytical Model for Predicting Path Loss in Urban And Suburban Environments,” Proc. Personal Indoor Radio Comm. (PIRMC ’96), 1996.
6. K. Fall, “A Delay-Tolerant Network Architecture for Challenged Internets,” Technical Report IRB-TR-03-003, Intel Research Berkeley, Feb. 2003.
7. K. Joanna, R. Heinzelman, and H. Balakrishnan, “Negotiation-Based Protocols for Disseminating Information in Wireless Sensor Networks,” Wireless Networks, 1999.
8. M. James and I. Petersen, “Nonlinear State Estimation for Uncertain Systems with an Integral Constraint,” IEEE Trans.
9. P. Bahl and V.N. Padmanabhan, “Radar: An In-Building User Location and Tracking System,” Proc. IEEE Conf. Computer Comm. (Infocom ’00), vol. 2, pp. 775-784, Mar. 2000.
10. P. Pathirana and A. Savkin, “Precision Missile Guidance with Angle Only Measurements,” Proc. Information Decision and Control Conf., Feb. 2002.
11. Dhabliya, M., & Sharma, M. (2012). Efficient Cluster Formation Protocol in WSN. International Journal of New Practices in Management and Engineering, 1(03), 08–17.
12. Mr. Dharmesh Dhabliya, M. (2019). CLOUD COMPUTING BASED MOBILE DEVICES FOR DISTRIBUTED COMPUTING. International Journal of Control and Automation, 12(6s), 01–04.
13. Mr. Dharmesh Dhabliya, M. (2019). Key Characteristics and Components of Cloud Computing. International Journal of Control and Automation, 12(6s), 12–18.
14. Dhabliya, M., & Ghodkande, O. (2016). Prevention of Emulation Attack in Cognitive Radio Networks Using Integrated Authentication. International Journal of New Practices in Management and Engineering, 5(04), 06–11.
15. Mr. Rahul Sharma. (2018). Monitoring of Drainage System in Urban Using Device Free Localization Neural Networks and Cloud computing. International Journal of New Practices in Management and Engineering, 7(04), 08 - 14.
16. Natarajan, B., Obaidat, M.S., Sadoun, B., Manoharan, R., Ramachandran, S. and Velusamy, N., 2020. New Clustering-Based Semantic Service Selection and User Preferential Model. IEEE Systems Journal. DOI: 10.1109/JSYST.2020.3025407.
17. Nataraj, S.K., Al-Turjman, F., Adom, A.H., Sitharthan, R., Rajesh, M. and Kumar, R., 2020. Intelligent Robotic Chair with Thought Control and Communication Aid Using Higher Order Spectra Band Features. IEEE Sensors Journal, DOI: 10.1109/JSEN.2020.3020971.
18. Babu, R.G., Obaidat, M.S., Amudha, V., Manoharan, R. and Sitharthan, R., 2020. Comparative analysis of distributive linear and non-linear optimised spectrum sensing clustering techniques in cognitive radio network systems. IET Networks, DOI: 10.1049/iet-net.2020.0122.
19. Sitharthan, R., Yuvaraj, S., Padmanabhan, S., Holm-Nielsen, J.B., Sujith, M., Rajesh, M., Prabaharan, N. and Vengatesan, K., 2021. Piezoelectric energy harvester converting wind aerodynamic energy into electrical energy for microelectronic application. IET Renewable Power Generation, DOI: 10.1049/rg2.12119.
20. Sitharthan, R., Sujatha Krishnamoorthy, Padmanaban Sanjeevikumar, Jens Bo Holm-Nielsen, R. Raja Singh, and M. Rajesh. "Torque ripple minimization of PMSM using an adaptive Elman neural network-controlled feedback linearization-based direct torque control strategy." International Transactions on Electrical Energy Systems 31, no. 1 (2021): e12685. DOI: 10.1002/2050-7038.12685.