Stylet angulation for routine endotracheal intubation with McGrath videolaryngoscope

Jiyoung Lee, MD∗, Jong Yeop Kim, MD, Se Yoon Kang, MD, Hyun Jeong Kwak, MD, Dongchul Lee, MD, Sook Young Lee, MD

Abstract

Background: The McGrath videolaryngoscope (VL) provides excellent laryngoscopic views, but directing an endotracheal tube can be difficult, and thus the routine use of a stylet is recommended. The goal of this study is to determine the appropriate angle (60° vs 90°) of the stylet when using the McGrath VL by comparing the time to intubation (TTI).

Methods: One hundred and forty patients aged 19 to 70 years (American Society of Anesthesiologists classification I or II) who required tracheal intubation for elective surgery were randomly allocated to 1 of 2 groups, at the 60° angle (n=70) or the 90° angle (n=70). Anesthesia was induced with propofol, fentanyl, and rocuronium. The primary outcome was TTI assessed by a blinded observer. Glottic grade, use of optimal external laryngeal manipulation, failed intubation at first attempt, ease of intubation, and severity of oropharyngeal bleeding were also recorded.

Results: The mean TTI was significantly shorter in the 60° group than in the 90° group (29.3 ± 6.4 vs 32.5 ± 9.4 s, P=0.022). The glottic grade and degree of intubation difficulty were not significantly different between the 2 groups.

Conclusions: When intubating the patients with the McGrath videolaryngoscope, the 60° angled stylet allowed for faster orotracheal intubation than did the 90° angled stylet.

Abbreviations: ASA = American Society of Anesthesiologists, BIS = bispectral index, ETT = endotracheal tube, TTI = time to intubation, VL = videolaryngoscope.

Keywords: anesthetic technique, McGrath videolaryngoscope, stylet

1. Introduction

Videolaryngoscopes (VLs) were developed by integrating features of classic laryngoscopes and fiber-optic bronchoscopes. These VLs can facilitate tracheal intubation by providing an improved view of the larynx without aligning the oral-pharyngeal-laryngeal axes.[11–13] VLs decrease intubation difficulties, increase the overall success rates of intubation,[11,14–16] and can be used to educate novice practitioners.[17]

The McGrath VL (Aircraft Medical, Edinburgh, UK) is a portable VL that has an angled single-use blade of adjustable length with a liquid crystal display monitor attached to the top of the handle. As with other VLs, the McGrath VL provides a better laryngeal view and also provides an advantage in airway management in patients for whom difficult or failed intubation is anticipated.[4,7,10–12] However, this good view does not always guarantee faster or successful intubation because these axes are not aligned,[10,12] and therefore, the tip of the endotracheal tube (ETT) must pass around an acute angle to enter the larynx. Manufacturers recommend using a stylet angled between 45° and 90° to overcome these problems.[12] For the GlideScope VL (Verathon Medical, Inc., Bothell, WA), using a 90° angulated stylet provided more successful endotracheal intubation and reduced intubating time compared with the 60° angulated stylet in 2 previous randomized controlled trials,[13,14] but to date, no studies have been conducted regarding the optimal stylet angulation for the McGrath VL. Therefore, we conducted a prospective, randomized comparison of intubation time for the McGrath VL between the 60° and 90° angulated styles (Fig. 1).

2. Methods

This study was approved by the institutional review board (Ajou University Hospital, Suwon, Korea) and registered at ClinicalTrials.gov (NCT 03000088). We obtained written informed consent from all patients who participated in the study. We prospectively included 140 patients between the ages of 19 and 70 with an American Society of Anesthesiologists physical status I or II who were scheduled for elective surgery that required orotracheal intubation. The Mallampati score, weight, height, inter-incisor distance with maximal mouth opening, thyromental distance, movement of cervical spine (normal, reduced, fixed), and upper incisor status (normal, absent, prominent) were assessed preoperatively. Our exclusion criteria were a suspected difficult airway (Mallampati score 4), known cervical spine

Editor: Kazuo Hanaoka

The authors have no funding and conflicts of interest to disclose.

∗Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, †Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Korea.

† Correspondence: Sook Young Lee, Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, San 5, Wonchon-dong, Yeongtong-gu, Suwon, Korea (e-mail: aneslee@naver.com).

Copyright © 2017 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and build upon the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

Medicine (2017) 96(7):e6152

Received: 8 January 2017 / Received in final form: 24 January 2017 / Accepted: 26 January 2017

http://dx.doi.org/10.1097/MD.0000000000006152
injury, required rapid sequence induction, and required an emergency operation. The eligible 140 patients were randomly allocated to the 60° (n = 70) or 90° (n = 70) groups, and our randomization (1:1) was based on a computer-generated random number table. Patients received no premedication before surgery. In the operating room, all patients received standard monitoring including pulse oximetry, electrocardiography, noninvasive blood pressure monitoring, and the bispectral index (BIS) with a BIS Quattro sensor (Covidien LLC, Mansfield, MA). Three minutes after preoxygenation, anesthesia was induced with fentanyl 0.5 to 1.5 μg/kg, propofol 1.5 to 2.0 mg/kg, and rocuronium 0.6 mg/kg; after induction, the patients’ lungs were ventilated with 100% oxygen. Orotracheal intubation was performed about 2 minutes after rocuronium injection with adequate neuromuscular blockade; the intubations were performed by 1 of 2 anesthesiologists who had more than 10 years of clinical experience and who had each performed at least 20 successful intubations using the McGrath VL. The vocal cords and ETT insertions were visualized using the McGrath VL’s video.
screen, and the ETTs were 8.0 mm for men and 7.0 mm for women. We angulated the styles (Mallinckrodt intubating stylet, Covidien, Ireland) by bending them 6.5 cm above the ETT tip. The primary outcome variable was the time to intubation (TTI), which we defined as the time from inserting the blade between the patient’s incisors to see the first end-tidal carbon dioxide tracing on the capnograph. A blind observer who was unaware of the patient group and intubation procedure continuously watched a monitor positioned behind each patient and measured the TTI, and optimal external laryngeal manipulation (OELM) was performed by another investigator to facilitate intubation if the operator requested it. When the intubation attempt took more than 60 seconds or oxygen saturation (SpO₂) decreased below 95%, we considered the intubation failed. For the second trial, we applied mask ventilation again; we allowed a maximum of 2
third intubation attempts. The operator recorded the Cormack—Lehane glottic view classifications and the ease of intubation (easy, moderate, difficult). Oropharyngeal bleeding was checked if blood was tinged on the VL blade or if the patient had mucosal bleeding right after intubation and was graded as none, trace, moderate, or severe. Mean arterial pressure, heart rate, SpO₂, and BIS were checked before anesthesia induction, 1 minute after induction, before attempt of intubation, and 1 minute after intubation.

3. Statistical analysis

To estimate the sample size, we assumed a between-group difference of 10 seconds in TTI to be clinically significant; we estimated the TTI mean and SD from previous studies as between 24.7 and 37 seconds and 20.4 seconds, respectively. We calculated the sample size to be 67 per each group, but we increased the size to 140 patients to compensate for potential dropouts and missing data. We performed all statistical analyses using IBM SPSS version 21.0 for Windows; we used the chi-square or Fisher’s exact tests to analyze the categorical data and the independent t-test to analyze the continuous data between the groups. We showed the data as mean ± SD or number of patients, and we considered results statistically significant when P < 0.05.

4. Results

A total of 140 patients completed this study (Fig. 2), and the baseline clinical characteristics and airway assessment findings were similar between the 2 groups (Table 1).

Table 1
Patient characteristics.

	All (n = 140)	60° (n = 70)	90° (n = 70)	P
Men	111 (79)	54 (77)	57 (81)	0.532
Age, y	41 ± 14	41 ± 14	41 ± 14	0.824
Weight, kg	70 ± 12	71 ± 12	70 ± 13	0.679
Height, cm	169 ± 9	170 ± 8	169 ± 9	0.457
ASA physical status, 1/2	117/23	59/11	58/12	0.820
TMD, cm	9.2 ± 1.3	9.2 ± 1.3	9.2 ± 1.4	0.975
Mouth opening, cm	5.3 ± 1.0	5.4 ± 1.1	5.2 ± 0.9	0.318
ROM of cervical spine, normal/reduced/ixed	139 /1/0	69/1/0	70/0/0	1.000
Upper incisors, normal/absent/prominent	138/1/1	68/1/1	70/0/0	0.406
Mallampatiscore, 1/2/3	82/42/16	41/22/7	41/20/9	0.841

Values are presented as mean ± SD or number of patients.
ASA = American Society of Anesthesiologists, TMD = thyromental distance, ROM = range of motion.

Table 2
Intubation profiles.

	60° (n = 70)	90° (n = 70)	P
Time to intubation, s	29.3 ± 6.4	32.5 ± 9.4	0.022
Glottic grade, 1/2a/2b/3/4	59/10/1/0/0	56/11/3/0/0	0.058
OELM, --/+	69/1	64/6	0.116
First attempt failure, --/+	70/0	67/3	0.245
Ease of intubation, easy/moderate/difficult	65/5/0	58/12/0	0.070
Bleeding, none/trace/moderate/severe	67/30/0	65/5/0	0.718

Values are presented as mean ± SD or number of patients.
OELM = optimal external laryngeal manipulation.

Table 3
Hemodynamic changes during anesthesia induction.

	Group	T0	T1	T2	T3
MAP, mm Hg	60°	99.0 ± 12.3	83.6 ± 13.9	78.1 ± 12.3	114.0 ± 23.2
	90°	97.5 ± 14.1	82.6 ± 15.3	78.0 ± 13.3	114.6 ± 22.6
HR, beats/min	60°	72.1 ± 13.8	70.9 ± 13.0	67.9 ± 13.2	89.8 ± 15.9
	90°	72.1 ± 12.8	69.5 ± 11.8	66.9 ± 11.1	89.6 ± 14.5
SpO₂, %	60°	98.1 ± 1.6	99.6 ± 0.4	99.6 ± 0.6	99.5 ± 0.7
	90°	98.2 ± 1.3	99.6 ± 0.7	99.5 ± 0.7	99.5 ± 0.7
BIS	60°	98.5 ± 0.7	46.7 ± 11.6	44.5 ± 9.8	47.3 ± 12.2
	90°	98.3 ± 0.6	45.4 ± 14.3	43.9 ± 10.6	47.8 ± 10.3

Values represent as mean ± SD.
BIS = bispectral index, HR = heart rate, MAP = mean arterial pressure, SpO₂ = oxygen saturation, T0 = baseline, T1 = 1 min after induction, T2 = prior to intubation, T3 = 1 min after intubation.
All patients in the 60° group were successfully intubated within 60 seconds on the first attempt, but there were 3 intubation failures in the 90° group (4.3%). The TTI was significantly shorter in the 60° group than in the 90° group (29.3 ± 6.4 s vs 32.5 ± 9.4 s, P = 0.022), although the Cormack–Lehane glottis view grade did not differ between the 2 groups. In terms of intubation difficulty, there was more moderate intubation in the 90° group (12/70, 17.1%) than in the 60° group (57/70, 7.1%), but it did not reach statistical significance (P = 0.07) (Table 2).

Hemodynamic changes and BIS values during anesthesia induction are listed in Table 3; there were no significant differences in hemodynamic changes over time between the groups.

5. Discussion

To our knowledge, this is the first randomized controlled clinical trial to compare the efficacy of 60° vs 90° angled malleable stylets with standard ETT loading using a McGrath VL. The results of this study showed that a 60° styletted tube with the McGrath VL provided significantly shorter intubation time, a tendency toward lower failure rates, and improved ease of intubation than did a 90° styletted tube.

Previous studies have reported that a McGrath VL with a 60° styletted tube is an effective aid to airway management considering the high intubation success rates and the ability to rapidly secure the airway.[4,12] In this study, mean TTI in the 60° group was significantly shorter than that in the 90° group, and there is a likely explanation: Ergonomically, it was easier to use the 60° than the 90° angle to deliver the tube to the glottic opening through the oral cavity. Additionally, the distal tip of the 90° styletted tube had a tendency to veer toward the anterior commissure, and it was difficult to advance the tube into the trachea at the vocal cord. In the open airway model during GlideScope VL intubation, it was easier to advance the tube and TTI was shorter using the 60° styletted tube rather than the 90° tube.[17] In addition, despite the application of lubricant, removing the stylet and advancing the tube into the trachea were more difficult in the 90° group than in the 60° group.

Intubation failure in this study involved failed intubation in the 90° group. A successful intubation rate of 90° was reported in the previous study, and the stylet was bent to improve the glottic view.[18,19] It was difficult to advance the tube into the glottis opening through the oral cavity. Additionally, the distal tip of the 90° styletted tube had a tendency to veer toward the anterior commissure, and it was difficult to advance the tube into the trachea at the vocal cord. In the open airway model during GlideScope VL intubation, it was easier to advance the tube and TTI was shorter using the 60° styletted tube rather than the 90° tube.[17] In addition, despite the application of lubricant, removing the stylet and advancing the tube into the trachea were more difficult in the 90° group than in the 60° group.

In conclusion, bending an ETT with a distal 60° angled malleable stylet decreased the average TTI with the McGrath VL by 3.2 seconds compared with the 90° angled stylet.

References

[1] Zaouter C, Calderon J, Hemmerling TM. Videolaryngoscopy as a new standard of care. Br J Anaesth 2015;114:181–3.
[2] Paolini JB, Donati F, Drolet P. Review article: video-laryngoscopy: another tool for difficult intubation or a new paradigm in airway management? Can J Anaesth 2013;60:184–91.
[3] Ferck C, Mitchell VS, McNarry AF, et al. Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults. Br J Anaesth 2013;115:827–48.
[4] Taylor AM, Peck M, Launcelott S, et al. The McGrath® Series 5 videolaryngoscope vs the Macintosh laryngoscope: a randomised, controlled trial in patients with a simulated difficult airway. Anaesthesia 2015;68:142–7.
[5] Choi GS, Lee EH, Lim CS, et al. A comparative study on the usefulness of the GlideScope or Macintosh laryngoscope when intubating normal airways. Korean J Anesthesiol 2011;60:339–43.
[6] Serocki G, Neumann T, Scharf E, et al. Indirect videolaryngoscopy with C-MAC® D-Blade and GlideScope®: a randomized, controlled comparison in patients with suspected difficult airways. Minerva Anestesiol 2013;79:121–9.
[7] Shippey B, Ray D, McKeown D. Use of the McGrath videolaryngoscope in the management of difficult and failed tracheal intubation. Br J Anaesth 2008;100:116–9.
[8] Sakles JC, Mosier JM, Patawala AE, et al. The C-MAC® video laryngoscope is superior to the direct laryngoscope for the rescue of failed first-attempt intubations in the emergency department. J Emerg Med 2015;48:280–6.
[9] Asai T, Murao K, Shingu K. Training method of applying pressure on the neck for laryngoscopy: use of a videolaryngoscope. Anaesthesia 2003;58:602–3.
[10] Noppen RR, Möbus S, Heid F, et al. Evaluation of the McGrath® Series 5 videolaryngoscope after failed direct laryngoscopy. Anaesthesia 2010;65:716–20.
Hughes CG, Mathews L, Easdown J, et al. The McGrath video laryngoscope in unstable cervical spine surgery: a case series. J Clin Anesth 2010;22:575–6.

Shippey B, Ray D, McKeown D. Case series: the McGrath video laryngoscope—an initial clinical evaluation. Can J Anaesth 2007;54:307–13.

Dupanović M, Isaacson SA, Borovcanin Z, et al. Clinical comparison of two stylet angles for orotracheal intubation with the GlideScope video laryngoscope. J Clin Anesth 2010;22:332–9.

Jones PM, Turkstra TP, Armstrong KP, et al. Effect of stylet angulation and endotracheal tube camber on time to intubation with the GlideScope. Can J Anaesth 2007;54:21–7.

Cormack RS, Lehane J. Difficult tracheal intubation in obstetrics. Anaesthesia 1984;39:1105–11.

Wallace CD, Foulds LT, McLeod GA, et al. A comparison of the ease of tracheal intubation using a McGrath MAC® laryngoscope and a standard Macintosh laryngoscope. Anaesthesia 2015;70:1281–5.

Dupanović M, Jensen R. Optimizing GlideScope laryngoscopy: an in vitro study on an airway model. Anesthesiology 2007;106:886–8.

Lafferty BD, Ball DR, Williams D. Videolaryngoscopy as a new standard of care. Br J Anaesth 2015;115:136–7.

Larsson A, Dhonneur G. Videolaryngoscopy: towards a new standard method for tracheal intubation in the ICU? Intensive Care Med 2013;39:2220–2.

Maassen R, Lee R, Hermans B, et al. A comparison of three videolaryngoscopes: the Macintosh laryngoscope blade reduces, but does not replace, routine stylet use for intubation in morbidly obese patients. Anaesth Analg, 2009;109:1560–5.

McElwain J, Malik MA, Harte BH, et al. Determination of the optimal stylet strategy for the C-MAC videolaryngoscope. Anaesthesia 2010;65:369–78.

Walker L, Brampton W, Halaj M, et al. Randomized controlled trial of intubation with the McGrath® Series 5 videolaryngoscope by inexperienced anaesthetists. Br J Anaesth 2009;103:440–5.

Kleine-Brueggeney M, Greif R, Schoettker P, et al. Evaluation of six videolaryngoscopes in 720 patients with a simulated difficult airway: a multicentre randomized controlled trial. Br J Anaesth 2016;116:670–9.

Foulds LT, McGuire BE, Shippey BJ. A randomised cross-over trial comparing the McGrath® Series 3 videolaryngoscope with the Macintosh laryngoscope in patients with cervical spine immobilisation. Anaesthesia 2016;71:437–42.

Holden JD. Hawthorne effects and research into professional practice. J Eval Clin Pract 2001;7:65–70.