Methyl α-L-sorboside monohydrate

Mao Matsumoto, a Natsumi Nagayama, a Ryo Hirose, a Kei Takeshita b and Tomohiko Ishii a*

a Department of Advanced Materials Science, Graduate School of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan, and b Fushimi Pharmaceutical Co Ltd, 307 Minatomachi, Marugame, Kagawa 763-8605, Japan. *Correspondence e-mail: ishii.tomohiko@kagawa-u.ac.jp

Methyl α-L-sorboside monohydrate, C7H14O6·H2O, was prepared from the rare sugar α-L-sorbose, C6H12O6, and crystallized. It was confirmed that methyl α-L-sorboside formed α-pyranose with a C5 conformation and crystallized with one water molecule of crystallization. In the crystal, molecules are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network. The unit-cell volume of the title compound, methyl α-L-sorboside monohydrate, is 481.13 (2) Å³ (Z = 2), which is about 108.16 Å³ (29.0%) greater than that of half the amount of the chemical α-L-sorbose [745.94 (2) Å³ (Z = 4)].

Structure description

The rare sugar α-L-sorbose was the first α-form hexose found in nature (Itoh et al., 1995; Khan et al., 1992; Nordenson et al., 1979). Methyl α-L-sorboside (Fig. 1) is an α-pyranose form in which the OH group located on the C-2 position in α-L-sorbose is converted into a methoxy group OCH3. The molecular weight of methyl α-L-sorboside, C7H14O6·H2O, is 212.20. On the other hand, that of α-L-sorbose, C6H12O6, is 180. The increase in molecular weight from sorbose to sorboside is thus about 18%. In this study, we aimed to produce a single crystal of methyl α-L-sorboside that contains sorbose molecules and water molecules in the ratio of 1 to 1 in the unit cell. The crystal system of ethyl α-L-sorboside (Nagayama et al., 2020), which we reported previously, is orthorhombic, while that of methyl α-L-sorboside is triclinic. The space group of ethyl α-L-sorboside is P212121 (Z = 4), while that of methyl α-L-sorboside is P1 (Z = 2). Furthermore, concerning the crystal solvent, ethyl α-L-sorboside contains no solvent molecules in the crystal, whereas crystals of methyl α-L-sorboside contain water molecules as crystallization water. Thus, methyl α-L-sorboside is only one molecule shorter in the alkyl-carbon chain length than ethyl
l-sorbose, but the crystal system, space group, and crystal solvent are significantly different.

It was confirmed that methyl l-sorbose formed an α-pyranose with a 6C$_3$ conformation and a water molecule of crystallization. Comparing these two independent methyl l-sorbose molecules, we found that the positions of the carbon and oxygen atoms are roughly the same. On the other hand, the positions of the hydrogen atoms determined from the X-ray diffraction measurement results are different, resulting in different orientations of the hydroxy groups.

Hydrogen bonds (Fig. 2, Table 1) occur between the hydroxy groups of the methyl l-sorbose molecules or through the water molecules of crystallization, and the overall network extends parallel to the ab plane. However, the hydrogen-bond network is weak in the c-axis direction because the hydrophobic methoxy group does not take part in any hydrogen bonds. Therefore, the three-dimensional hydrogen-bonding network has become a pseudo two-dimensional network.

Table 1

Hydrogen-bond geometry (Å, °).

D—H···A	D—H	H···A	D···A	D—H···A
O4—H4A···O3	0.85	1.94	2.729(7)	154
O11—H11···O211	1.00(8)	1.87(8)	2.799(4)	154(6)
O13—H13···O24	0.82	1.83	2.643(4)	169
O14—H14···O11ii	0.82	1.94	2.719(4)	159
O15—H15···O13iii	0.82	2.12	2.898(4)	158
O21—H21···O25iv	0.82	2.10	2.874(4)	157
O23—H23···O14v	0.82	1.84	2.653(4)	169
O24—H24···O4	0.82	1.83	2.650(5)	176
O25—H25···O23iii	0.82	1.97	2.709(5)	150

Symmetry codes: (i) $x+1, y-1, z$; (ii) $x, y+1, z$; (iii) $x+1, y, z$; (iv) $x-1, y+1, z$; (v) $x-1, y, z$.

Table 2

Experimental details.

Crystal data	Chemical formula	$C_7H_{14}O_6$·H_2O
Crystal system, space group	Triclinic, $P1$	$C_7H_{14}O_6·H_2O$
Temperature (K)	296	$a = 6.7320$ (5), 7.7574 (5), 10.6128 (8)
α, β, γ ($^\circ$)	67.596 (5), 65.476 (5)	82.458 (6), 72.596 (5), 65.476 (5)
β, γ, δ ($^\circ$)	111.162 (6)	111.162 (6)
V (\AA^3)	481.13 (6)	481.13 (6)
Z	2	2
Radiation type	Cu $K\alpha$	Cu $K\alpha$
μ (mm$^{-1}$)	1.15	1.15
Crystal size (mm)	$0.1 \times 0.1 \times 0.1$	$0.1 \times 0.1 \times 0.1$

Data collection

Rigaku R-Axis Rapid	Rigaku R-Axis Rapid		
T_{min}, T_{max}	0.098, 1.000		
No. of measured, independent and observed $	F	> 2\sigma(F)$	5541, 2880, 2751
R_{int} (sin θ/λ)$_{max}$ (\AA^{-1})	0.045	0.045	
0.602	0.602		

Refinement

$R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S	0.048, 0.125, 1.13
No. of reflections	2880
No. of parameters	272
No. of restraints	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement

Synthesis and crystallization

Methyl l-sorbose, α-sorbusyranoside form, was prepared by Fischer glycosidation from l-sorbose and methanol (Taguchi et al., 2016).
The Fisher method produces isomers such as α-, β-, and furanose. Therefore, chromatographic separation using an ion-exchange resin was performed. The reaction mixture was evaporated under vacuum at 40°C to remove the solvent and dissolved in water. Then the mixture was applied to a column of ion-exchange resins (Dowex 50W-X2, Ca²⁺ form) and was eluted with deionized water. After separation, each fraction was analysed by HPLC, and fractions containing the α-pyranoside type were collected and concentrated to syrup. Small single crystals were obtained by placing the syrup in a Petri dish and keeping it at 4°C. It is obvious that the synthesized methyl α-L-sorbose is still in the L-form after dehydrative condensation, because L-sorbose is used as the starting material. The absolute structure was also confirmed by the Flack parameter (Flack, 1983).

Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements
The authors are sincerely grateful to Professor Genta Sakane (Okayama University of Science) for excellent discussions and useful technical advice. The authors are grateful to Grants-in-Aid for Rare Sugar Research from Kagawa University and to the Strategic Foundational Technology Improvement Support Operation (Supporting Industry Program) for support.

Funding information
Funding for this research was provided by: Kagawa University; Strategic Foundational Technology Improvement Support Operation.

References
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
Flack, H. D. (1983). Acta Cryst. A39, 876–881.
Itoh, H., Sato, T., Takeuchi, T., Khan, A. R. & Izumori, K. (1995). J. Ferment. Bioeng. 79, 184–185.
Khan, A. R., Takahata, S., Okaya, H., Tsumura, T. & Izumori, K. (1992). J. Ferment. Bioeng. 74, 149–152.
Nagayama, N., Taniguchi, N., Matsumoto, M., Takeshita, K. & Ishii, T. (2020). IUCrData, 3, x201625.
Nordenson, S., Takagi, S. & Jeffrey, G. A. (1979). Acta Cryst. B35, 1005–1007.
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Taguchi, H., Sogo, K., Ishii, T., Yoshihara, A. & Fukada, K. (2018). IUCrData, 3, x180114.
full crystallographic data

Methyl \(\alpha\)-l-sorboside monohydrate

Mao Matsumoto, Natsumi Nagayama, Ryo Hirose, Kei Takeshita and Tomohiko Ishii

Crystal data

\[\text{C}_7\text{H}_{14}\text{O}_6\cdot\text{H}_2\text{O}\]

Mr = 212.20

Triclinic, \(P\bar{1}\)

\(a = 6.7320 (5)\) Å

\(b = 7.7574 (5)\) Å

\(c = 10.6128 (8)\) Å

\(\alpha = 82.458 (6)°\)

\(\beta = 72.596 (5)°\)

\(\gamma = 65.476 (5)°\)

\(V = 481.13 (6)\) Å³

Z = 2

\(F(000) = 228\)

\(D_\text{x} = 1.465\) Mg m\(^{-3}\)

\(\lambda = 1.54187\) Å

Cell parameters from 5608 reflections

\(\theta = 4.4–68.4°\)

\(\mu = 1.15\) mm\(^{-1}\)

\(T = 296\) K

Block, clear light colourless

0.1 × 0.1 × 0.1 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

\(\omega\) scans

Absorption correction: multi-scan

(ABSCOR; Rigaku, 1995)

\(T_{\text{min}} = 0.698, T_{\text{max}} = 1.000\)

5541 measured reflections

2880 independent reflections

2751 reflections with \(I > 2\sigma(I)\)

\(R_{\text{int}} = 0.045\)

\(\theta_{\text{max}} = 68.2°, \theta_{\text{min}} = 4.4°\)

\(h = -8\rightarrow8\)

\(k = -9\rightarrow9\)

\(l = -12\rightarrow12\)

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\(R[F^2 > 2\sigma(F^2)] = 0.048\)

\(wR(F^2) = 0.125\)

\(S = 1.13\)

2880 reflections

272 parameters

3 restraints

Primary atom site location: iterative

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

\(w = 1/\left[\sigma^2(F_c^2) + (0.0704P)^2 + 0.106P\right]\)

where \(P = (F_c^2 + 2F_s^2)/3\)

\((\Delta\sigma/\sigma)_{\text{max}} < 0.001\)

\(\Delta\rho_{\text{max}} = 0.26\) e Å\(^{-3}\)

\(\Delta\rho_{\text{min}} = -0.44\) e Å\(^{-3}\)

Absolute structure: Flack \(x\) determined using

1053 quotients [(\(I^+\)−\(I^−\))/(\(I^+\)+\(I^−\))] (Parsons et al., 2013)

Absolute structure parameter: 0.10 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. H atoms were positioned geometrically (C—H = 0.98, 0.97 or 0.96 Å, and O—H = 0.82 Å) and refined using as riding with $U_{	ext{iso}}(H) = 1.2U_{eq}(\text{C(H)) or C(H,H) groups, or } U_{\text{iso}}(H) = 1.5U_{eq}(\text{C(H,H,H) or O), allowing for free rotation of the OH groups and crystallization water molecules (O3(H3A,H3B) and O4(H4A,H4B)).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	$U_{\text{iso}}*/U_{eq}$
O3	0.3171 (6)	−0.0810 (5)	0.6471 (5)	0.0640 (11)
H3A	0.382215	−0.200873	0.640005	0.096*
H3B	0.176598	−0.058481	0.675652	0.096*
O4	0.3946 (9)	0.0979 (7)	0.4096 (5)	0.0750 (13)
H4A	0.330101	0.051068	0.478141	0.113*
H4B	0.327723	0.101353	0.352282	0.113*
O11	0.8495 (5)	−0.0155 (4)	0.6286 (3)	0.0423 (7)
H11	0.842 (12)	0.045 (11)	0.540 (8)	0.06 (2)*
O12	0.4941 (5)	0.3476 (4)	0.8818 (3)	0.0373 (7)
H13	0.4864 (4)	0.5035 (4)	0.6457 (3)	0.0361 (6)
O14	0.8089 (5)	0.6575 (4)	0.6023 (3)	0.0394 (7)
H14	0.841401	0.738990	0.622566	0.059*
O15	1.0305 (5)	0.5731 (5)	0.8089 (4)	0.0514 (9)
H15	1.166424	0.550381	0.782309	0.077*
O16	0.8842 (5)	0.1669 (4)	0.8198 (3)	0.0382 (7)
C11	0.6562 (7)	0.0918 (6)	0.7280 (5)	0.0398 (10)
H11A	0.627277	0.008418	0.801180	0.048*
H11B	0.525403	0.144048	0.692746	0.048*
C12	0.6836 (6)	0.2508 (5)	0.7784 (4)	0.0287 (8)
C13	0.7011 (6)	0.4015 (5)	0.6724 (4)	0.0285 (8)
H13A	0.812148	0.338344	0.591341	0.034*
C14	0.7743 (6)	0.5397 (5)	0.7129 (4)	0.0279 (8)
H14A	0.652616	0.617405	0.785360	0.033*
C15	0.9857 (7)	0.4371 (6)	0.7581 (5)	0.0360 (9)
H15A	1.113508	0.370500	0.683889	0.043*
C16	0.9460 (8)	0.2978 (7)	0.8656 (5)	0.0433 (10)
H16A	1.082904	0.228958	0.894020	0.052*
H16B	0.826033	0.365798	0.940980	0.052*
C17	0.4524 (9)	0.2445 (8)	1.0017 (5)	0.0505 (12)
H17A	0.432290	0.135576	0.983637	0.076*
H17B	0.317821	0.324424	1.063570	0.076*
H17C	0.579122	0.204193	1.038288	0.076*
O21	−0.0310 (5)	1.0841 (4)	0.3619 (3)	0.0416 (7)
H21	−0.088305	1.198374	0.348118	0.062*
O22	0.2120 (5)	0.7111 (4)	0.1172 (3)	0.0358 (6)
O23	0.0693 (5)	0.5868 (5)	0.3561 (3)	0.0382 (7)
H23	−0.000861	0.594835	0.434404	0.057*
O24	0.4907 (6)	0.3936 (4)	0.4191 (3)	0.0407 (7)
H24	0.461466	0.303180	0.412308	0.061*
O25	0.8573 (5)	0.4521 (5)	0.2383 (4)	0.0505 (9)
Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O3	0.0457 (19)	0.048 (2)	0.090 (3)	−0.0091 (17)	−0.0201 (19)	−0.004 (2)
O4	0.098 (3)	0.062 (3)	0.098 (3)	−0.054 (3)	−0.047 (3)	0.016 (3)
O11	0.0536 (18)	0.0270 (15)	0.0462 (17)	−0.0171 (13)	−0.0100 (14)	−0.0037 (13)
O12	0.0428 (15)	0.0325 (15)	0.0320 (14)	−0.0159 (12)	−0.0030 (12)	0.0017 (12)
O13	0.0333 (14)	0.0382 (16)	0.0424 (15)	−0.0142 (12)	−0.0193 (12)	0.0026 (12)
O14	0.0534 (18)	0.0294 (15)	0.0389 (15)	−0.0254 (14)	−0.0056 (13)	0.0026 (12)
O15	0.0384 (15)	0.0462 (19)	0.082 (2)	−0.0216 (14)	−0.0207 (16)	−0.0160 (17)
O16	0.0411 (15)	0.0254 (14)	0.0507 (17)	−0.0103 (12)	−0.0219 (13)	0.0033 (12)
C11	0.043 (2)	0.030 (2)	0.050 (2)	−0.0201 (18)	−0.0071 (19)	−0.0055 (19)
C12	0.0268 (17)	0.0219 (17)	0.0372 (19)	−0.0091 (14)	−0.0091 (15)	−0.0007 (15)
C13	0.0302 (18)	0.0288 (19)	0.0299 (17)	−0.0135 (16)	−0.0102 (14)	−0.0007 (15)
C14	0.0286 (17)	0.0256 (18)	0.0302 (18)	−0.0129 (15)	−0.0048 (15)	−0.0033 (15)
C15	0.0282 (17)	0.031 (2)	0.051 (2)	−0.0111 (16)	−0.0104 (17)	−0.0108 (18)
C16	0.049 (2)	0.040 (2)	0.054 (3)	−0.020 (2)	−0.031 (2)	0.003 (2)
C17	0.063 (3)	0.053 (3)	0.039 (2)	−0.031 (2)	−0.009 (2)	0.005 (2)
O21	0.0458 (16)	0.0250 (14)	0.0488 (18)	−0.0019 (13)	−0.0207 (13)	−0.0058 (13)
O22	0.0518 (16)	0.0281 (14)	0.0327 (14)	−0.0150 (13)	−0.0201 (12)	0.0003 (11)
O23	0.0395 (15)	0.0497 (17)	0.0363 (14)	−0.0298 (14)	−0.0083 (12)	0.0002 (13)
O24	0.0595 (18)	0.0286 (15)	0.0457 (16)	−0.0187 (14)	−0.0329 (14)	0.0089 (13)
O25	0.0264 (14)	0.0376 (17)	0.086 (2)	−0.0052 (12)	−0.0183 (15)	−0.0139 (17)
O26	0.0357 (15)	0.0260 (14)	0.0492 (17)	−0.0154 (12)	−0.0142 (13)	0.0061 (12)
C21	0.035 (2)	0.029 (2)	0.052 (3)	−0.0013 (17)	−0.0217 (18)	−0.0054 (18)
C22	0.0272 (18)	0.028 (2)	0.036 (2)	−0.0089 (15)	−0.0130 (16)	−0.0019 (16)
C23	0.0271 (17)	0.0285 (19)	0.0293 (18)	−0.0117 (15)	−0.0100 (14)	−0.0002 (15)
C24	0.0337 (18)	0.0232 (18)	0.0335 (19)	−0.0082 (15)	−0.0157 (15)	−0.0015 (15)

IUCrData (2021). 6, x211325 data-3
C25 0.0250 (17) 0.025 (2) 0.053 (2) −0.0048 (15) −0.0132 (17) −0.0078 (17)
C26 0.030 (2) 0.040 (2) 0.055 (3) −0.0174 (18) −0.0025 (19) 0.001 (2)
C27 0.064 (3) 0.048 (3) 0.033 (2) −0.018 (2) −0.022 (2) 0.007 (2)

Geometric parameters (Å, °)

Bond	Length (Å)		Length (Å)	Angle (°)	
O3—H3A	0.8500	C17—H17B	0.9600		
O3—H3B	0.8500	C17—H17C	0.9600		
O4—H4A	0.8502	O21—H21	0.8200		
O4—H4B	0.8500	O21—C21	1.409 (5)		
O11—H11	1.00 (8)	O22—C22	1.405 (5)		
O11—C11	1.417 (5)	O22—C27	1.423 (5)		
O12—C12	1.407 (5)	O23—H23	0.8200		
O12—C17	1.429 (5)	O23—C23	1.413 (5)		
O13—H13	0.8200	O24—H24	0.8200		
O13—C13	1.425 (5)	O24—C24	1.429 (5)		
O14—H14	0.8200	O25—H25	0.8200		
O14—C14	1.414 (4)	O25—C25	1.417 (5)		
O15—H15	0.8200	O26—C22	1.413 (5)		
O15—C15	1.416 (5)	O26—C26	1.420 (5)		
O16—C12	1.411 (5)	C21—H21A	0.9700		
O16—C16	1.429 (6)	C21—H21B	0.9700		
C11—H11A	0.9700	C21—C22	1.519 (5)		
C11—H11B	0.9700	C22—C23	1.528 (5)		
C11—C12	1.505 (6)	C23—H23A	0.9800		
C12—C13	1.529 (5)	C23—C24	1.512 (5)		
C13—H13A	0.9800	C24—H24A	0.9800		
C13—C14	1.505 (5)	C24—C25	1.493 (6)		
C14—H14A	0.9800	C25—H25A	0.9800		
C14—C15	1.503 (5)	C25—C26	1.514 (6)		
C15—H15A	0.9800	C26—H26A	0.9700		
C15—C16	1.508 (6)	C26—H26B	0.9700		
C16—H16A	0.9700	C27—H27A	0.9600		
C16—H16B	0.9700	C27—H27B	0.9600		
C17—H17A	0.9600	C27—H27C	0.9600		
H3A—O3—H3B	104.5	H17B—C17—H17C	109.5		
H4A—O4—H4B	104.5	C21—O21—H21	109.5		
C11—O11—H11	111 (4)	C22—O22—C27	117.3 (3)		
C12—O12—C17	117.3 (3)	C23—O23—H23	109.5		
C13—O13—H13	109.5	C24—O24—H24	109.5		
C14—O14—H14	109.5	C25—O25—H25	109.5		
C15—O15—H15	109.5	C22—O26—C26	114.6 (3)		
C12—O16—C16	114.6 (3)	O21—C21—H21A	109.5		
O11—C11—H11A	109.0	O21—C21—H21B	109.5		
O11—C11—H11B	109.0	O21—C21—C22	110.9 (3)		
O11—C11—C12	112.8 (3)	H21A—C21—H21B	108.1		
H11A—C11—H11B	107.8	C22—C21—H21A	109.5		
Bond	Angle (°)	Bond	Angle (°)		
----------------------	-----------	----------------------	-----------		
C12—C11—H11A	109.0	C22—C21—H21B	109.5		
C12—C11—H11B	109.0	O22—C22—O26	112.4 (3)		
O12—C12—O16	111.9 (3)	O22—C22—C21	111.3 (3)		
O12—C12—C11	111.3 (3)	O22—C22—C23	104.6 (3)		
O12—C12—C13	105.2 (3)	O26—C22—C21	106.0 (3)		
O16—C12—C11	106.1 (3)	O26—C22—C23	110.0 (3)		
O16—C12—C13	110.3 (3)	C21—C22—C23	112.7 (3)		
C11—C12—C13	112.2 (3)	O23—C23—C22	109.2 (3)		
O13—C13—C12	109.5 (3)	O23—C23—H23A	108.8		
O13—C13—H13A	108.7	O23—C23—C24	109.6 (3)		
O13—C13—C14	108.8 (3)	C22—C23—H23A	108.8		
C12—C13—H13A	108.7	C24—C23—C22	111.5 (3)		
C14—C13—C12	112.4 (3)	C24—C23—H23A	108.8		
C14—C13—H13A	108.7	O24—C24—C23	109.4 (3)		
O14—C14—C13	107.0 (3)	O24—C24—H24A	109.3		
O14—C14—H14A	109.1	O24—C24—C25	109.4 (3)		
O14—C14—C15	111.6 (3)	C23—C24—H24A	109.3		
C13—C14—H14A	109.1	C25—C24—C23	110.1 (3)		
C15—C14—C13	110.8 (3)	C25—C24—H24A	109.3		
C15—C14—H14A	109.1	O25—C25—C24	108.6 (3)		
O15—C15—C14	107.9 (3)	O25—C25—H25A	109.6		
O15—C15—H15A	110.1	O25—C25—C26	110.9 (3)		
O15—C15—C16	109.7 (4)	C24—C25—H25A	109.6		
C14—C15—H15A	110.1	C24—C25—C26	108.5 (3)		
C14—C15—C16	108.9 (3)	C26—C25—H25A	109.6		
C16—C15—H15A	110.1	O26—C26—C25	111.7 (3)		
O16—C16—C15	110.9 (4)	O26—C26—H26A	109.3		
O16—C16—H16A	109.5	O26—C26—H26B	109.3		
O16—C16—H16B	109.5	C25—C26—H26A	109.3		
C15—C16—H16A	109.5	C25—C26—H26B	109.3		
C15—C16—H16B	109.5	H26A—C26—H26B	108.0		
H16A—C16—H16B	108.1	O22—C27—H27A	109.5		
O12—C17—H17A	109.5	O22—C27—H27B	109.5		
O12—C17—H17B	109.5	H27A—C27—H27B	109.5		
O12—C17—H17C	109.5	H27A—C27—H27C	109.5		
H17A—C17—H17B	109.5	H27B—C27—H27C	109.5		
H17A—C17—H17C	109.5	H27B—C27—H27C	109.5		
O11—C11—C12—O12	−176.7 (3)	O21—C21—C22—O22	179.4 (3)		
O11—C11—C12—O16	−54.8 (4)	O21—C21—C22—O26	−58.1 (4)		
O11—C11—C12—C13	65.6 (4)	O21—C21—C22—C23	62.3 (5)		
O12—C12—C13—O13	−50.8 (4)	O22—C22—C23—O23	−52.9 (4)		
O12—C12—C13—C14	70.2 (4)	O22—C22—C23—C24	68.4 (4)		
O13—C13—C14—O14	−65.1 (3)	O23—C23—C24—O24	−64.1 (4)		
O13—C13—C14—C15	173.1 (3)	O23—C23—C24—C25	175.6 (3)		
O14—C14—C15—O15	67.4 (4)	O24—C24—C25—O25	63.4 (4)		
O14—C14—C15—C16	−173.6 (3)	O24—C24—C25—C26	−176.0 (3)		
O15—C15—C16—O16	175.8 (3)	O25—C25—C26—O26	176.8 (3)		
--------	--------	--------	--------	--------	--------
O16—C12—C13—O13	−171.6 (3)	O26—C22—C23—O23	−173.8 (3)		
O16—C12—C13—C14	−50.6 (4)	O26—C22—C23—C24	−52.5 (4)		
C11—C12—C13—O13	70.4 (4)	C21—C22—C23—O23	68.1 (4)		
C11—C12—C13—C14	−168.6 (3)	C21—C22—C23—C24	−170.6 (3)		
C12—O16—C16—C15	−60.5 (5)	C22—O26—C26—C25	−59.1 (5)		
C12—C13—C14—O14	173.5 (3)	C22—C23—C24—O24	174.8 (3)		
C12—C13—C14—C15	51.7 (4)	C22—C23—C24—C25	54.6 (4)		
C13—C14—C15—O15	−173.4 (3)	C23—C24—C25—O25	−176.3 (3)		
C13—C14—C15—C16	−54.4 (4)	C23—C24—C25—C26	−55.8 (4)		
C14—C15—C16—O16	57.9 (5)	C24—C25—C26—O26	57.6 (5)		
C16—O16—C12—O12	−61.3 (4)	C26—O26—C22—O22	−60.8 (4)		
C16—O16—C12—C11	177.1 (4)	C26—O26—C22—C21	177.4 (4)		
C16—O16—C12—C13	55.4 (4)	C26—O26—C22—C23	55.3 (4)		
C17—O12—C12—O16	−53.3 (5)	C27—O22—C22—O26	−58.5 (4)		
C17—O12—C12—C11	65.2 (5)	C27—O22—C22—C21	60.3 (5)		
C17—O12—C12—C13	−173.1 (4)	C27—O22—C22—C23	−177.8 (3)		

Hydrogen-bond geometry (Å, †)

D—H···A	D⋅⋅⋅A	D—H	H···A
O4—H4..O3	2.729 (7)	0.85	1.94
O11—H11..O21i	2.799 (4)	1.00 (8)	1.87 (8)
O13—H13..O24	2.643 (4)	0.82	1.83
O14—H14..O11ii	2.719 (4)	0.82	1.94
O15—H15..O13iii	2.898 (4)	0.82	2.12
O21—H21..O25iv	2.874 (4)	0.82	2.10
O23—H23..O14v	2.653 (4)	0.82	1.84
O24—H24..O4	2.650 (5)	0.82	1.83
O25—H25..O23iii	2.709 (5)	0.82	1.97

Symmetry codes: (i) x+1, y−1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x−1, y+1, z; (v) x−1, y, z.