Clifford operators in $SU(N)_1$; N not odd prime

Howard J. Schnitzer

Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
E-mail: schnitzr@brandeis.edu

Abstract: Farinholt gives a characterization of Clifford operators for qudits; d both odd and even. In this comment it is shown that the necessary gates for the construction of Clifford operators; N both odd and even, are obtained directly from operations that appear in $SU(N)_1$. A witness for W_3 states in $SU(2)_1$ is discussed. See e.g. [1–4].
1 Introduction

In applications there is a strong preference for qudits with \(d\) prime, in the construction of the Pauli group and Clifford operators. This is exemplified by applications of \(SU(N)_1\); \(N\) prime and it’s level-rank dual \(U(1)_N\). We show, following Farinholt [1], that the restriction to \(N\) prime is not necessary for \(SU(N)_1\) in the construction of the Pauli group and Clifford operators. The necessary operators are obtained from \(SU(N)_1\).

2 \(SU(d)_1\) Pauli group

Representations of \(SU(d)_1\)\(^1\) can be described by a single column Young tableau, with zero, one, ..., \((d-1)\) boxes. The fusion tensor of the theory is

\[
N^c_{ab}; \quad a + b = c \mod d
\]

so that

\[
N|a\rangle|b\rangle = |a\rangle|a + b \mod d\rangle.
\]

The modular transformation matrix \(S_{ab}\) satisfies

\[
|a\rangle = \sum_{b=0}^{d-1} S_{ab}|b\rangle, \quad a = 0 \text{ to } d - 1.
\]

Let \(\omega\) be a primitive \(d\)-th root of unity

\[
\omega = \exp\left(\frac{2\pi i}{d}\right)
\]

\(^1\)In what follows we denote the group as \(SU(d)_1\) rather than \(SU(N)_1\) to describe qudits.
then it can be shown \[2, 5\]

\[
S^* = \frac{1}{\sqrt{d}} \sum_{a=0}^{d-1} \sum_{b=0}^{d-1} \omega^{ab} |a\rangle \langle b|
\]

(2.5)

which is the \(d\)-dimensional generalization of the Hadamard gate. Equation (2.5) can be rewritten as

\[
S^* |a\rangle = \frac{1}{\sqrt{d}} \sum_{b=0}^{d-1} \omega^{ab} |b\rangle
\]

(2.6)

which is the \(d\)-dimensional discrete Fourier transform (QFT). With these ingredients, one can construct the qudit Pauli group.

\(n = 1\) qudits

Let

\[
Z_{ae} = \sum_{a,b=0}^{d-1} S_{bc} N_{b,1}^c (S_c^\dagger)
\]

(2.7)

so that with (2.1)-(2.6),

\[
Z_{ac} = \sum_{b=0}^{d-1} S_{ab} (S_{b+1,a}^\dagger) \delta_{ac}
\]

(2.8)

or

\[
Z = \sum_{a,b=0}^{d-1} S_{ab} (S_{b+1,a}^\dagger) |a\rangle \langle a|,
\]

(2.9)

i.e.

\[
Z = \sum_{a=0}^{d-1} \omega^a |a\rangle \langle a|,
\]

(2.10)

and

\[
Z |a\rangle = \omega^a |a\rangle,
\]

(2.11)

which is the Pauli \(Z\). The modular transformation matrix is identical with the Pauli \(X\), since

\[
N_{a,1}^b |a\rangle = |a + 1, \; \text{mod} \; d\rangle,
\]

(2.12)

which is identical to

\[
X |a\rangle = |a + 1, \; \text{mod} \; d\rangle,
\]

(2.13)

or

\[
X = |a + 1\rangle \langle a| \; \text{mod} \; d
\]

(2.14)
Therefore (2.11) and (2.14) are the basic ingredients for the single qudit Pauli group. From (2.10) and (2.14)

\[(XZ)^r = \omega^r(r-1)XZ\] (2.15)

when \(d\) is odd \(XZ\) has order \(d\), and when \(d\) is even \(XZ\) has order \(2d\). Define [1] \(\hat{\omega}\) the primitive \(D\)-th root of unity where

\[D = d; \ d \text{ odd}\]
\[D = 2d; \ d \text{ even}\] (2.16)

The single qudit Pauli group is the collection of operators

\[\hat{\omega}^r X^a Z^b; \ r \in \mathbb{Z}_D, \ a, b \in \mathbb{Z}_d.\] (2.17)

\[(X^a Z^b)(X'^a Z'^b) = \omega^{ab'-ba'}(X'^a Z'^b)(X^a Z^b),\] (2.18)

where the exponent of \(\omega\) is identified with a symplectic product.

Thus all elements of the one-qudit Pauli group are obtained from basic operators of \(SU(d)_1\)

n-qudits

Up to a global phase [1]

\[X^a Z^b = X^{a_1} Z^{b_1} \otimes X^{a_2} Z^{b_2} \otimes ... \otimes X^{a_n} Z^{b_n}\] (2.19)

where

\[a = (a_1, a_2, ..., a_n)\] (2.20)

and

\[a = (b_1, b_2, ..., a_n)\] (2.21)

so that

\[(X^a Z^b)(X'^a Z'^b) = \omega^{\sum_{i=1}^{n} a_i b'_i - a'_i b_i}(X'^a Z'^b)(X^a Z^b).\] (2.22)

Consider the operator \(X^a Z^b\) along with all scalar multiples there of, where

\[\{\hat{\omega}^c X^a Z^b | c \in \mathbb{Z}_D\}\] (2.23)

defines the n-qudit Pauli group. From (2.22) this is isomorphic to the \(2n\) commutative ring

\[M_R = \mathbb{Z}_D \times \mathbb{Z}_D \times ... \times \mathbb{Z}_D.\] (2.24)

Multiplication in the Pauli group then corresponds to ring multiplication in (2.24).

Again all elements of the \(n\) qudit Pauli group are obtained from direct products of basic operators of \(SU(d)_1\). There ingredients allow one to construct \(n\) qudit Clifford operators following Farinholt [1].
SU(d), Clifford operators

Single-qudit Clifford operators [1, 6]

The necessary gates are

i) The QFT gate (2.6)

$$\mathcal{P}|j\rangle = \omega^{\frac{(j-1)}{2}}|j\rangle, \quad j \text{ odd} \quad (2.25)$$

$$\mathcal{P}|j\rangle = \omega^{\frac{j^{2}}{2}}|j\rangle, \quad j \text{ even} \quad (2.26)$$

which alternatively can be written as

$$\mathcal{P}|j\rangle = Z^{\frac{(j-1)}{2}}|j\rangle, \quad j \text{ odd} \quad (2.27)$$

$$\mathcal{P}|j\rangle = \omega^{\frac{j^{2}}{2}}Z^{\frac{(j-1)}{2}}|j\rangle, \quad j \text{ even} \quad (2.28)$$

Multi-qudit Clifford operators [1, 6]

The QFT and phase-gate are obtained from the natural product generalization of (2.6) and (2.25) - (2.27). One also needs the sum gate for a n-qudit system, with i as the control and j as the target qudit. From (2.2) [1, 6]

$$C_{\text{sum}}|i\rangle|j\rangle = N|\bar{i}\rangle|\bar{j}\rangle, \quad d \text{ odd} \quad (2.29)$$

$$C_{\text{sum}}|i\rangle|j\rangle = |i\rangle|i+j, \mod d\rangle, \quad d \text{ odd} \quad (2.29)$$

$$C_{\text{sum}}|i\rangle|j\rangle = \omega^{\frac{i}{2}(i+j)}N|i\rangle|j\rangle, \quad d \text{ even} \quad (2.30)$$

$$C_{\text{sum}}|i\rangle|j\rangle = \omega^{\frac{i}{2}(i+j)}|i\rangle|i+j, \mod d\rangle, \quad d \text{ even} \quad (2.30)$$

Toffeli gate [3, 4, 6–10]

$$T^{(3)}|i, j, k\rangle = N_{(ij+k)}^{(ij+k)} = |i, j; ij + k\rangle \mod d, \quad d \text{ odd} \quad (2.31)$$

from equation (2.2), while

$$T^{(3)}|i, j, k\rangle = \omega^{\frac{i}{2}(ij+k)}N_{(ij+k)}^{(ij+k)} \quad (2.32)$$
Multi-Toffeli gate

\[
T^{(n)}|a_1, a_2, ..., a_{n-1}, b\rangle = N^{(a_1,a_2,\ldots,a_{n-1}+b)}_{a_1,a_2,\ldots,a_{n-1},b} |a_1, a_2, ..., a_{n-1}; a_1, a_2, ..., a_{n-1} + b\rangle \mod d, \quad d \text{ odd}
\]

\[
T^{(n)}|a_1, a_2, ..., a_{n-1}, b\rangle = \omega^{\frac{1}{2}(a_1, a_2, \ldots, a_{n-1}+b)} N^{(a_1,a_2,\ldots,a_{n-1}+b)}_{a_1,a_2,\ldots,a_{n-1},b}, \quad d \text{ even}
\]

Equations (2.25)-(2.34) provide the resources for fault-tolerant computation for both \(d\) odd and even.

3 \(W_3\) states are magical

\(W_3\) is magical by definition, since it is not a stabilizer state. The discussion of magic states for qubits is limited by the absence of the discrete Wigner function for qubits. However, there exist entanglement witnesses \([11]\) with non-local stabilizing operators which can detect three qubits states which are close to a \(|W_3\rangle\) state,

\[
|W_3\rangle = \frac{1}{\sqrt{3}}(|100\rangle + |010\rangle + |001\rangle),
\]

which is not a stabilizer state. A witness for this state is \([11]\]

\[
\tilde{W}^{(W_3)} = \frac{2}{3}\mathbb{I} - |W_3\rangle\langle W_3|
\]

Any witness for a \(|W_3\rangle\) state has the property that

\[
\text{Tr}(\rho \mathcal{W}) < 0
\]

for a state which is close to \(|W_3\rangle\). Therefore from (3.2) one considers

\[
\text{Tr}(\rho \tilde{W}^{W_3}) = \frac{2}{3} - \text{Tr}(\rho \rho_{W_3}) < 0
\]

for states normalized to \(\text{Tr} \rho = 1\). In particular

\[
\text{Tr}(\rho_{W_3} \tilde{W}^{W_3}) = \frac{2}{3} - \text{Tr}(\rho_{W_3}^2) < 0
\]

or

\[
\text{Tr}(\rho_{W_3}^2) > \frac{2}{3}.
\]

Following Tóth and Gühne \([11]\), one can create \(|W_3\rangle\) from \(|000\rangle\) using unitary operator. The generators of the stabilizer for \(|000\rangle\) are

\[
S_k^{(000)} = Z^{(k)}; \quad k = 1, 2, 3.
\]
One can stabilize $|W_3\rangle$ by

$$S_k^{(W_3)} = U S_k^{(000)} U^\dagger \quad (3.8)$$

The U is not unique but one choice is [11]

$$U = \frac{1}{\sqrt{3}} [X^{(1)} Z^{(2)} + X^{(2)} Z^{(3)} + Z^{(1)} X^{(3)}] \quad (3.9)$$

In (3.7) and (3.9), the $X^{(i)}$ and $Z^{(i)}$ are the Pauli operators for 3-qubits, obtained as direct products of the Pauli operators (2.11) and (2.13), and are constructed as operations in $SU(2)_1$. The generators of stabilizing operators, based on (3.8) are [11]

$$S_1^{(W_3)} = \frac{1}{3} [Z^{(1)} + 2Y^{(1)} Y^{(2)} Z^{(3)} + 2X^{(1)} Z^{(2)} X^{(3)}]$$

$$S_2^{(W_3)} = \frac{1}{3} [Z^{(2)} + 2Z^{(1)} Y^{(2)} Y^{(3)} + 2X^{(1)} X^{(2)} Z^{(3)}] \quad (3.10)$$

$$S_3^{(W_3)} = \frac{1}{3} [Z^{(3)} + 2Y^{(1)} Z^{(2)} Y^{(3)} + 2Z^{(1)} X^{(2)} X^{(3)}]$$

which are non-local. Tóth and Gühne [11] present other witnesses for $|W_3\rangle$.

Magic states can be distilled by Toffeli gates, such as those presented above, as operations in $SU(2)_1$. Akers and Rath [12] have argued that holographic CFT states require a large amount of tripartite entanglement. Witnesses will be helpful in pursuing that issue.

4 Comments

For d prime, only a linear number of gates are needed to implement a Clifford operation in d-dimensional Hilbert space, while in general $O(D \log D)$ are needed to implement a Clifford operator for d even [1]. A strong preference for d prime emerges in terms of the number of resources required to construct gates, using Clifford operations and stabilizer states, and for magic state models [13–20].

The comments of this note apply to Chern-Simons $SU(d)_1$ as well as its level-rank dual $U(1)_d$ [21], which then extends Theorem 1 of [22] to d even.

Acknowledgments

We are grateful to Isaac Cohen and Jonathan Harper for their aid in preparing the manuscript.
References

[1] J.M. Farinholt, *An ideal characterization of the clifford operators*, Journal of Physics A: Mathematical and Theoretical 47 (2014) 305303 [1307.5087].

[2] H.J. Schnitzer, *Clifford group and stabilizer states from Chern-Simons theory*, [1903.06789].

[3] B. Eastin, *Distilling one-qubit magic states into toffoli states*, Physical Review A 87 (2013) [1212.4872].

[4] J. O’Gorman and E.T. Campbell, *Quantum computation with realistic magic-state factories*, Physical Review A 95 (2017) [1605.07197].

[5] H.J. Schnitzer, *SU(N) Chern-Simons theory, the Clifford group, and Entropy Cone*, [2008.02406].

[6] D. Gottesman, *Fault-Tolerant Quantum Computation with Higher-Dimensional Systems*, Chaos, Solitons and Fractals 10 (1999) 1749 [quant-ph/9802007].

[7] R. Ionicioiu, T.P. Spiller and W.J. Munro, *Generalized toffoli gates using qudit catalysis*, Physical Review A 80 (2009) [0903.4123].

[8] C. Jones, *Low-overhead constructions for the fault-tolerant toffoli gate*, Physical Review A 87 (2013) [1212.5069].

[9] L. Biswal, D. Bhattacharjee, A. Chattopadhyay and H. Rahaman, *Techniques for fault-tolerant decomposition of a multicontrolled toffoli gate*, Physical Review A 100 (2019) [1904.06920].

[10] L.E. Heyfron and E. Campbell, *A quantum compiler for qudits of prime dimension greater than 3*, [1902.05634].

[11] G. Tóth and O. Gühne, *Entanglement detection in the stabilizer formalism*, Physical Review A 72 (2005) 022340 [quant-ph/0501020].

[12] C. Akers and P. Rath, *Entanglement Wedge Cross Sections Require Tripartite Entanglement*, JHEP 04 (2020) 208 [1911.07852].

[13] C.D. White, C. Cao and B. Swingle, *Conformal field theories are magical*, [2007.01303].

[14] S. Bravyi and A. Kitaev, *Universal quantum computation with ideal clifford gates and noisy ancillas*, Physical Review A 71 (2005) [quant-ph/040325].

[15] M. Howard and J. Vala, *Qudit versions of the qubit pi-over-eight gate*, Physical Review A 86 (2012) [1206.1598].

[16] E.T. Campbell, H. Anwar and D.E. Browne, *Magic-state distillation in all prime dimensions using quantum reed-muller codes*, Physical Review X 2 (2012) [1205.3104].
[17] V. Veitch, S.A.H. Mousavian, D. Gottesman and J. Emerson, *The resource theory of stabilizer quantum computation*, *New Journal of Physics* 16 (2014) 013009 [1307.7171].

[18] G. Vallone, R. Ceccarelli, F. De Martini and P. Mataloni, *Hyperentanglement witness*, *Physical Review A* 78 (2008) 062305 [0809.2155].

[19] C. Ritz, C. Spee and O. Gühne, *Characterizing multipartite entanglement classes via higher-dimensional embeddings*, *Journal of Physics A: Mathematical and Theoretical* 52 (2019) 335302 [1901.08847].

[20] Z.-W. Liu and A. Winter, *Many-body quantum magic*, [2010.13817].

[21] E. Mlawer, S.G. Naculich, H. Riggs and H. Schnitzer, *Group level duality of WZW fusion coefficients and Chern-Simons link observables*, *Nucl. Phys. B* 352 (1991) 863.

[22] G. Salton, B. Swingle and M. Walter, *Entanglement from Topology in Chern-Simons Theory*, *Phys. Rev. D* 95 (2017) 105007 [1611.01516].