On measurability of Banach indicatrix

Nikita Evseev
Novosibirsk State University
E-mail: nikita@phys.nsu.ru

Abstract

We prove measurability of the multiplicity function for a measurable mapping of metric measure spaces.

1. Introduction. Given two metric measure spaces \(X, Y \). Let \(f : X \to Y \) be a measurable mapping and \(A \subset X \). The Banach indicatrix (multiplicity function) is defined as

\[
N(y, f, A) = \#\{ x \in A \mid f(x) = y \},
\]

i.e. the number of elements of \(f^{-1}(y) \) in \(A \) (possible \(\infty \)). In case \(A = X \) note \(N(y, f, X) = N(y, f) \). The question under our consideration is following: is the function \(N(y, f, A) \) measurable?

Let us briefly discuss some results and examples. The measurability of the multiplicity function for a continuous function \(f : [a, b] \to \mathbb{R} \) was proved by Banach in \([B, \text{Théorème 1.1}]\). Whereas \([B, \text{Théorème 1.2}]\) states that \(\int_a^b N(y, f) \, dy \) is equal to the total variation \(TV(f, [a, b]) \). Together Théorèmes 1.1 and 1.2 are named the Banach indicatrix theorem (see \([N, \text{p. 225–227}], [L, \text{p. 66–72}], [BC, 177-178]\)). There are further generalizations of this result, see for example \([TS, WS, RL]\) and the bibliography therein.

The Banach indicatrix play a role in the change of variables formula

\[
\int_A (u \circ f)|J(x, f)| \, dx = \int_{\mathbb{R}^n} u(y)N(y, f, A) \, dy.
\]

In \([H]\) the formula was obtained under minimal assumptions: the a.e. existence of approximative partial derivatives. In particular, the measurability of \(N(y, f, A) \) was proved.
In [RR] IV.1.2 the multiplicity function of a continuous transform was studied in detail. See also [GR] p. 272 for further investigation. The treatment in the setting of metric spaces is given in [F] 2.10.10–15.

This note aims to show the measurability of the Banach indicatrix for a measurable mapping (Theorem 2.1). The proof of Lemma 3.1 is based upon ideas of the original proof of [B] Théorème 1. While Lemma 3.2 is from author’s joint work with Professor S. K. Vodopyanov.

2. Assumptions and result. Let \((X, d_X, \mu_X)\) is a complete, separable metric space with a measure. Additionally \(X\) is supposed to be geometrically doubling: there is a constant \(\lambda \in \mathbb{N}\) such that every ball \(B(x, r) = \{z \in X \, | \, d_X(x, z) < r\}\) can be covered by at most \(\lambda\) balls \(B(x, r/2)\) of half radius. Measure \(\mu_X\) is a Borel regular measure such that each ball has finite measure. Assume \((Y, d_Y, \mu_Y)\) is a separable metric measurable space.

The mapping \(f : X \to Y\) is a \(\mu_X\)-measurable if and only if \(f\) is defined \(\mu_X\)-almost everywhere on \(X\) and \(f^{-1}(E)\) is \(\mu_X\)-measurable whenever \(E\) is open subset of \(Y\) [F, 2.3.2].

Theorem 2.1. Let \(f : X \to Y\) be a \(\mu_X\)-measurable mapping, and \(A \subset X\) be a Borel set. Then \(f\) can be redefined on a set of \(\mu_X\)-measure zero in such a way that the Banach indicatrix \(N(y, f, A)\) is a \(\mu_Y\)-measurable function.

Example 2.2. Let \(C \subset \mathbb{R}\) denotes the Cantor set and \(V \subset \mathbb{R}\) denotes the Vitaly non-measurable set. There is a bijection \(f : C \to V\). Define the function
\[
\tilde{f}(x) = \begin{cases} f(x), & \text{if } x \in C, \\ 0, & \text{if } x \notin C, \end{cases}
\]
which is measurable. But at the same time the multiplicity function \(N(y, \tilde{f}, A)\) can not be measurable as it coincides with characteristic function of the non-measurable set \(V\) on \(\mathbb{R} \setminus \{0\}\).

Dyadic system. We involve a system of dyadic cubes. Namely a family
\[
\{Q^k_\alpha \mid k \in \mathbb{Z}, \alpha \in \mathcal{A}_k \subset \mathbb{N}\}
\]
of Borel sets with parameters \(\delta \in (0, 1), 0 < c \leq C < \infty\) and centres \(\{x^k_\alpha\}\), meeting the following properties:

1) If \(l \geq k\) then either \(Q^l_\beta \subset Q^k_\alpha\) or \(Q^l_\beta \cap Q^k_\alpha = \emptyset\);
2) For each \(k \in \mathbb{Z}\) \(X = \bigcup_{\alpha \in \mathcal{A}_k} Q^k_\alpha\) is a disjoint union;
3) \(B(x^k_\alpha, c\delta^k) \subset Q^k_\alpha \subset B(x^k_\alpha, C\delta^k) \);
4) If \(l \geq k \) and \(Q^l_\beta \subset Q^k_\alpha \) then \(B(x^l_\beta, C\delta^l) \subset B(x^k_\alpha, C\delta^k) \).

This specific dyadic system in doubling quasi-metric spaces was constructed in [HK] and generalize the dyadic cubes in the Euclidean space.

3. Measurability establishing. Before proceeding with the Theorem 2.1 we need following tow lemmas.

Lemma 3.1. Let \(A \subset X \) is a Borel set and \(f : X \to Y \) is a \(\mu_X \)-measurable mapping possessing the following property: \(f(B) \) is \(\mu_Y \)-measurable whenever \(B \subset A \) is a Borel set. Then \(N(y, f, A) \) is a \(\mu_Y \)-measurable function.

Proof. Take a system \(\{Q^k_\alpha\} \) of dyadic cubes on \(X \), and define a family of functions

\[
L^k_\alpha(y) = \chi_{f(Q^k_\alpha \cap A)}(y).
\]

Functions \(L^k_\alpha(y) \) are non-negative and \(\mu_Y \)-measurable (as characteristic functions of \(\mu_Y \)-measurable sets \(f(Q^k_\alpha \cap A) \)). Therefore the sum

\[
N_k(y) = \sum_{\alpha \in A_k} L^k_\alpha(y)
\]

is also measurable. Thus the sequence of measurable functions \(\{N_k(y)\} \) is non-decreasing and the pointwise limit

\[
N^*(y) = \lim_{k \to \infty} N_k(y)
\]
exists and is a \(\mu_Y \)-measurable function.

Note that \(N_k(y) \) counts on how many of the sets \(Q^k_\alpha \cap A \) the function \(f \) attains the value \(y \) at least once. So for each \(k \) \(N(y, f, A) \geq N_k(y) \) and

\[
N(y, f, A) \geq N^*(y).
\]

Prove the reverse inequality. Let \(q \) be an integer such that \(N(y, f, A) \geq q \). Then there exist \(q \) different points \(x_1, \ldots, x_q \subset A \) such that \(f(x_j) = y \). If \(k \) is large enough so that points \(x_1, \ldots, x_q \) are in separated cubes \(\{Q^k_{\alpha_j}\}, j = 1, \ldots, q \), then \(N_k(y) \geq q \). This shows \(N^*(y) \geq N(y, f, A) \) and

\[
N^*(y) = N(y, f, A).
\]

Lemma 3.2. Let \(f : X \to Y \) be a \(\mu_X \)-measurable mapping. Then there is an increasing sequence of closed sets \(\{T_k\} \subset X \) such that \(f \) is continuous on every \(T_k \) and \(\mu_X \left(X \setminus \bigcup_k T_k \right) = 0 \).
Proof. Let \(\{Q_\alpha\} \) be a collection of dyadic cubes of one generation and
\[
X = \bigcup_{\alpha=1}^{\infty} Q_\alpha \quad \text{disjoint union.}
\]

By Luzin’s theorem \([F, 2.3.5]\) there is a closed set \(C_1^\alpha \subset Q_\alpha \) such that \(f \) is continuous on \(C_1^\alpha \) and \(\mu_X(Q_\alpha \setminus C_1^\alpha) < 1 \). Similarly \(f \) continuous on \(C_2^\alpha \subset Q_\alpha \setminus C_1^\alpha \) and \(\mu_X((Q_\alpha \setminus C_1^\alpha) \setminus C_2^\alpha) < \frac{1}{2} \) and so on. This yields a sequence \(\{C_2^\alpha\} \) of closed sets.

Put
\[
P_k^\alpha = \bigcup_{i=1}^{k} C_i^\alpha,
\]
then \(P_k^\alpha \subset P_{k+1}^\alpha \) and the mapping \(f \) is continuous on each \(P_k^\alpha \). Furthermore \(\mu_X(Q_\alpha \setminus P_k^\alpha) < 1/k \) and hence \(\mu_X(Q_\alpha \setminus \bigcup_k P_k^\alpha) = 0 \).

Now defining
\[
T_j = \bigcup_{\alpha=1}^{j} P_j^\alpha,
\]
we get an increasing sequence of closed sets. In particular, \(\mu_X(Q_\alpha \setminus \bigcup_j T_j) = 0 \) since \(\bigcup_j P_j^\alpha \subset \bigcup_j T_j \). Then
\[
X \setminus \bigcup_{j=1}^{\infty} T_j = \bigcup_{\alpha=1}^{\infty} (Q_\alpha \setminus \bigcup_{j=1}^{\infty} T_j).
\]
Consequently the set \(X \setminus \bigcup_j T_j \) is of \(\mu_X \)-measure zero as a countable union of negligible sets.

Proof of Theorem 2.1. Let \(\{T_k\} \) be a sequence of closed sets from Lemma 3.2. Observe that an image of each Borel set \(B \subset T_k \) is \(\mu_Y \)-measurable since \(f \) is continuous on \(T_k \) \([F, 2.2.13]\). This puts us in a position to apply Lemma 3.1 to deduce that \(N(y, f, A \cap T_k) \) is a \(\mu_Y \)-measurable function. The sequence \(N(y, f, A \cap T_k) \) is non-decreasing and hence
\[
N\left(y, f, A \cap A \cap \bigcup_k T_k\right) = \lim_{k \to \infty} N(y, f, A \cap T_k)
\]
is a \(\mu_Y \)-measurable function.

Take a point \(y_0 \in Y \) and redefine \(f(x) = y_0 \) for \(x \in X \setminus \bigcup_k T_k \).

\(\square \)
Remark 3.3. Note that Theorem 2.1 requires that the set A be a Borel set. On the other hand one can prove an analogous assertion for measurable set A however assuming that mapping f satisfies the Luzin N-property (because in this case the continuous image of every measurable set is measurable and Lemma 3.1 is applicable).

References

[B] S. Banach, *Sur les lignes rectifiables et les surfaces dont l’aire est finie*, Fund. Math. 7 (1925), 225–236.

[N] I. P. Natanson, *Theory of functions of a real variable*, Ungar, New York, 1961.

[L] G. Leoni, *A First Course in Sobolev Spaces*, American Mathematical Society, Providence, Rhode Island, 2009.

[BC] J. J. Benedetto and W. Czaja, *Integration and Modern Analysis*, Birkhäuser Advanced Texts, Birkhäuser, Boston, 2009.

[TS] T. Šalát, *Generalization of the notion of the Banach indicatrix*, Fund. Math. 73 (1971/72), no 1, 29–36.

[WS] W. Stadje, *On functions with derivative of bounded variation: an analogue of Banach’s indicatrix theorem*, Proc. Edinburgh Math. Soc. 29 (1986), no 1, 61–68.

[RL] R. Łochowski, *On a generalisation of the Banach indicatrix theorem*, arXiv:1503.01746

[H] P. Hajłasz, *Change-of-variables formula under the minimal assumptions*, Colloq. Math. 64 (1993), no 1, 93–101.

[RR] T. Rado and P. V. Reichelderfer, *Continuous Transformations in Analysis*, Springer, 1955.

[GR] V. M. Gol’dshtein and Yu. G. Reshetnyak, *Quasiconformal mappings and Sobolev spaces*, Kluwer Academic Publishers Group, Dordrecht, 1990.

[F] H. Federer, *Geometric Measure Theory*, Springer, 1969.

[HK] T. Hytönen and A. Kairema, *Systems of dyadic cubes in a doubling metric space.*, Colloq. Math. 126 (2012), no 1, 1–33.