A perspective on DNA damage-induced potentiation of the pentose phosphate shunt and reductive stress in chemoresistance

Chiara Milanese and Pier G. Mastroberardino

ABSTRACT

Metabolic rearrangements and genome instability are two hallmarks of cancer. Recent evidence from our laboratory demonstrates that persistent DNA lesions hampering transcription may cause glucose rerouting through the pentose phosphate shunt and reductive stress. Here, we highlight the relevance of these findings for cancer and chemoresistance development.

Cancer cells display distinctive biological features – for instance, extremely high rates of nucleic acid synthesis – that may be sustainable only under certain specific metabolic conditions. Consistently, alterations in metabolism are hallmarks of cancer, as notably exemplified by the Warburg effect. Genome instability is another distinctive feature of cancer; increased DNA damage burden and defects in DNA repair are fundamental causative elements in carcinogenesis, underlie the extreme clonal variability in tumors, and are major determinant of chemoresistance.

Genome instability and metabolic alterations are inter-twisted characteristics of cancer and evidence principally gained at transcriptional level revealed differences in the metabolic layout of organisms with defective DNA repair. Changes in mRNA levels, however, are not sufficient to provide an accurate depiction of the metabolic landscape, which is largely modulated by allosteric regulation, independently from both transcription and translation.

In a recent study, we characterized metabolic rearrangements occurring in mouse models and patients’ specimen with impaired transcription-coupled- and global-genome-nucleotide excision repair (TC-NER and GG-NER, respectively). Here, we described a mechanism connecting transcription stalling caused by defective DNA repair with augmented intracellular ATP levels, which in turn allosterically inhibit the glycolytic enzyme ATP-dependent 6-phosphofructokinase (Pfk, best known as phosphofructokinase) to reroute glucose through the pentose phosphate pathway (PPP). Potentiation of the PPP is intrinsically associated with increased production of NADPH reducing equivalents – which are generated in the oxidative branch of the pathway – that in our experimental system is not paralleled by proportionate production of oxidant species and/or endogenous oxidoreductase activity, and therefore culminates in reductive stress1 (Figure 1A).

GG-NER defects cause cancer and imperfect TC-NER promotes aging – i.e. the major risk factor for cancer; moreover, the ATP surplus is unlikely to occur under these circumstances. In cancer, however, there are cases that could conceivably be associated with macromolecular synthesis reduction. For instance, at

KEYWORDS

DNA damage; DNA repair; metabolism; pentose phosphate pathway; redox

ARTICLE HISTORY

Received 27 January 2020
Revised 7 February 2020
Accepted 10 February 2020

CONTACT

Pier G. Mastroberardino p.g.mastroberardino@erasusmc.nl Erasmus University Medical Center, Department of Molecular Genetics, Rotterdam, the Netherlands; Department of Life, Health, and Environmental Sciences, University of L’Aquila, L’Aquila, Italy

© 2020 The Author(s). Published by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
very initial stages of carcinogenesis, when replication is not yet rampant, transcription stalling DNA damage caused by intrinsic genome instability may be associated with ATP level sufficient to inhibit glycolysis. A further possibility stems from recent evidence supporting the concept that development of chemoresistance may parallel development of antibiotic resistance in bacteria. Here, in initial phases, growth – and thus macromolecular synthesis – is highly reduced in resistant cells. These circumstances may promote transient high levels of ATP that could temporarily potentiate the PPP and oxidant defenses in those clones that will resist treatment. Consistently, recent studies based on ultra-short 13C tracing experiments indicate that glucose rerouting through the PPP represents an immediate and necessary response to oxidant-stress in skin fibroblasts and suggest that PPP activation may participate in development of resistance to therapies based on stimulation of toxic reactive oxygen species (ROS) production. Intervention on these processes to halt PPP potentiation may therefore offer interesting therapeutic perspectives to improve current chemotherapy approaches.

Our study reveals that glucose rerouting through the PPP in TC-NER and GG-NER defective specimens culminates in reductive stress. The latter deserves special mention because – differently than oxidative stress – it has not received adequate investigative attention. Thus, despite unambiguous evidence demonstrating that excessive reducing capacity is detrimental, our understanding of reductive stress is still highly rudimentary. It is only very recently that redox biology has been approached more holistically – beyond the traditional oxidative stress concept – recognizing the importance of alterations in redox couples caused not only by excess of oxidants, but also by a reducing equivalent surplus. While further investigative efforts are required to characterize the biological impact of reductive stress, some consequences may be envisaged to be very relevant for...
cancer. For instance, reduction in the NAD(P)H/NAD(P)⁺ redox couple – similarly to what we detected upon persistent transcription stalling – occurs also during hypoxia,¹⁰ which is a major complication of cancer that severely aggravates prognosis. It is tempting to hypothesize that – during DNA damage-based chemotherapy – persistent transcription stalling in slow-growing, potentially resistant clones may cause a detrimental metabolic phenotype that parallels hypoxia.

Overall, we believe that our findings provide novel hints on the possible consequences of DNA-repair-driven metabolic redesign on cancer. Obviously, further studies are warranted to verify the relevance of our model for cancer and to test whether interventions targeting glucose rerouting, PPP activation, and excessive reductive capacity may constitute amenable strategies to treat cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

ORCID
Chiara Milanese http://orcid.org/0000-0001-8696-2603

References
1. Milanese C, Bombardieri CR, Sepe S, Barnhoorn S, Payán-Goméz C, Caruso D, Audano M, Pedretti S, Vermeij WP, Brandt RMC, et al. DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering. Nat Commun. 2019;10:4887. doi:10.1038/s41467-019-12640-5.
2. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39:347–354. doi:10.1016/j.tibs.2014.06.005.
3. Boros LG, Puigjaner J, Cascante M, Lee WN, Brandes JL, Basillian S, Yusuf PI, Williams RD, Muscarella P, Melvin WS, et al. Onxyhiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res. 1997;57:4242–4248.
4. Cosentino C, Griceco D, Costanzo V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. Embo J. 2011;30:546–555. doi:10.1038/emboj.2010.330.
5. Hitosugi T, Zhou L, Elf S, Fan J, Kang H-B, Seo J, Shan C, Dai Q, Zhang L, Xie J, et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell. 2012;22:585–600. doi:10.1016/j.ccr.2012.09.020.
6. Sukhatme VP, Chan B. Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence. FEBS Lett. 2012;586:2389–2395. doi:10.1016/j.febslet.2012.05.052.
7. Russo M, Crisafulli G, Sogari A, Reilly NM, Arena S, Lamba S, Bartolini A, Amadio V, Magri A, Novara L, et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science. 2019;366:1473–1480. doi:10.1126/science.aav4474.
8. Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, Gallinat S, Terstegen L, Licius R, Hildebrandt J, et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell. 2015;59:359–371. doi:10.1016/j.molcel.2015.06.017.
9. Xiao W, Loscalzo J. Metabolic responses to reductive stress. Antioxid Redox Signal. 2019. doi:10.1089/ars.2019.7803.
10. Samanta D, Semenza GL. Maintenance of redox homeostasis by hypoxia-inducible factors. Redox Biol. 2017;13:331–335. doi:10.1016/j.redox.2017.05.022.