Comparative analysis of chloroplast genomes reveals phylogenetic relationships and intraspecific variation in the medicinal plant *Isodon rubescens*

Conglong Lian*, Hao Yang, Jinxu Lan, Xueyu Zhang, Fei Zhang, Jingfan Yang, Suiqing Chen*

School of Pharmacy, Henan Key Laboratory of Chinese Medicine Resources and Chinese Medicine Chemistry, Henan University of Traditional Chinese Medicine, Jinshui District, Zhengzhou, China

* 770379183@qq.com (CL); suiqingchen0371@163.com (SC)

Abstract

*Isodon rubescens* (Hemsley) H. Hara (Lamiaceae) is a traditional Chinese medicine plant that has been used to treat various human diseases and conditions such as inflammation, respiratory and gastrointestinal bacterial infections, and malignant tumors. However, the contents of the main active components of *I. rubescens* from different origins differ significantly, which greatly affected its quality. Therefore, a molecular method to identify and classify *I. rubescens* is needed. Here, we report the DNA sequence of the chloroplast genome of *I. rubescens* collected from Lushan, Henan province. The genome is 152,642 bp in length and has a conserved structure that includes a pair of IR regions (25,726 bp), a LSC region (83,527 bp) and a SSC region (17,663 bp). The chloroplast genome contains 113 unique genes, four rRNA genes, 30 tRNA genes, and 79 protein-coding genes, 23 of which contain introns. The protein-coding genes account for a total of 24,412 codons, and most of them are A/T biased usage. We identified 32 simple sequence repeats (SSRs) and 48 long repeats. Furthermore, we developed valuable chloroplast molecular resources by comparing chloroplast genomes from three *Isodon* species, and both mVISTA and DnaSP analyses showed that *rps16-trnQ*, *trnS-trnG*, and *ndhC-trnM* are candidate regions that will allow the identification of intraspecific differences within *I. rubescens*. Also 14 candidate fragments can be used to identify interspecific differences between species in *Isodon*. A phylogenetic analysis of the complete chloroplast genomes of 24 species in subfamily Nepetoideae was performed using the maximum likelihood method, and shows that *I. rubescens* clustered closer to *I. serra* than *I. lophanthoides*. Interestingly, our analysis showed that *I. rubescens* (MW018469.1) from Xianyang, Shaanxi Province (*IR*-X), is closer to *I. serra* than to the other two *I. rubescens* accessions. These results strongly indicate that intraspecific diversity is present in *I. rubescens*. Therefore, our results provide further insight into the phylogenetic relationships and interspecific diversity of species in the genus *Isodon*.
Introduction

*Isodon rubescens* (Hemsley) H. Hara is an important medical herbs classified in the tribe *Ocimeae* of the botanical family Lamiaceae [1]. *I. rubescens* possesses anti-cancer, anti-bacterial, anti-inflammatory, heat-clearing and detoxification activities. In addition, it activates blood circulation, and has traditionally been used to treat inflammation, respiratory and gastrointestinal bacterial infections, and malignant tumors [2]. The pharmacologically active ingredients known from *I. rubescens* consist of several diterpenoids such as oridonin and ponlicidin, that possess a broad spectrum of clinical antitumor activities [3]. Furthermore, with its vigor and well-developed root system, *I. rubescens* is both drought-resistant and cold-resistant. Plantings of *I. rubescens* can be used to prevent erosion, conserve water and soil, and are also highly ornamental [4]. Because of its important medicinal value and wide geographical distribution in China, *I. rubescens* is an attractive study subject. Previous studies have shown that the contents of the main active components in *I. rubescens* from different geographical regions are significantly different, and its quality as a traditional Chinese medicine can thus be greatly affected. Phylogenetic studies using nuclear markers (microsatellites) have shown that *I. rubescens* populations display geographical diversification, and intraspecific variation [5, 6]. Therefore, a way to effectively classify the intraspecific resources of *I. rubescens* is the key to ensuring the medicinal quality of this herb.

In recent years, the rapid development of massively high-throughput DNA sequencing technologies and the implementation of many whole genome sequencing projects have led to a huge increase in the amount of available genomic data, and genome sequences are frequently used to determine phylogenetic relationships, patterns of evolution, and genetic diversity [7]. Chloroplast genomes have many advantages for these types of analyses, such as a small size, low nucleotide substitution rate, uniparental inheritance, and a highly conserved genomic structure when compared with mitochondrial and nuclear genomes; thus, chloroplast DNA (cpDNA) is widely used for species identification and evolutionary analysis [8, 9].

Chloroplasts are organelles in plant cells that contain chlorophyll, and they convert light energy from the sun into chemical energy via photosynthesis, which supplies the energy necessary for all of the biochemical processes required for plant growth and development [10, 11]. Chloroplasts have circular genomes with highly conserved gene order and content, and they range from 120 to 160 kb in size [12]. Chloroplast genomes encode 110–130 unique genes that include many genes for photosynthetic proteins, transfer RNA, ribosomal proteins, and chloroplastic RNA polymerase [13]. The typical angiosperm chloroplast genome has a conserved quadripartite structure that consists of two copies of an inverted repeat region (IRA and IRB) separated by one small single copy region (SSC) and one large single copy region (LSC). Chloroplast genomes are highly conserved, have a low rate of evolution, and do not undergo recombination; therefore, cpDNA can reflect kinship and the evolutionary relationships between related species. For these reasons, chloroplast DNA has been widely used to explore phylogenetic relationships in many diverse plant groups. For example, four medicinal Salvia species were compared by analysis of their chloroplast genomes [14], and an updated tribal classification for the Lamiaceae was constructed based on plastome phylogenomics [15]. Therefore, a comparative analysis of the chloroplast genome of *I. rubescens* can provide further insight into the phylogenetic relationships and interspecific diversity of species in the genus *Isodon*.

In this study, we sequenced the chloroplast genome of *I. rubescens* from Lushan, Henan province (IR-L) using Illumina DNA sequencing technology followed by reference-guided assembly of the de novo contigs. Furthermore, the chloroplast genome sequences of *Isodon* species including *I. rubescens* (MW376483.1) from Jiyuan, Henan Province (IR-J), *I. rubescens*...
We compared these five chloroplast genomes and show how they relate to other species within the genus *Isodon*. In addition, the complete cpDNA sequences from an additional 19 species in the subfamily Nepetoideae and one cpDNA sequence from *Scutellaria baicalensis*, another species in the Lamiales used in Chinese traditional medicine as an outgroup, were selected to construct a phylogenetic tree which was then used to explore the genetic relationships among species in subfamily Nepetoideae.

**Materials and methods**

**Plant materials, DNA extraction, and DNA sequencing**

Fresh leaves were collected from *I. rubescens* plants grown in the medical plants garden, Henan University of Traditional Chinese Medicine, and this germplasm was collected from Lushan, Henan province, China (IR-L). Voucher specimens were deposited at the specimen room of the School of Pharmacy, Henan University of Traditional Chinese Medicine. Total genomic DNA was extracted from the 100 mg fresh leaves using the Rapid Plant Genomic DNA Isolation Kit (Sangon, China) according to the manufacturer’s instructions. DNA concentration was 57.6 ng/μl, the OD<sub>260/280</sub> was 1.93, and the DNA appeared as a discrete band when examined via agarose gel electrophoresis. Subsequently, the DNA samples were fragmented using a Covaris Ultrasonic Processor, and Hieff NGS™ DNA Selection Beads (Yeasen Biotechnology; catalog number 12601ES56) were used for fragment concentration and recovery. Illumina DNA sequencing libraries were than constructed after end repair, addition of dA to the 3’ ends of the fragments, ligating the sequencing adapters, and library amplification using the NEB Next<sup>™</sup> Ultra™ DNA Library Prep Kit for Illumina<sup>™</sup> (New England Biolabs; E7370). The library fragment sizes were determined by agarose gel electrophoresis, the DNA fragment concentrations were quantified with a Qubit 4.0 fluorometer (Thermo Fisher), and the library DNA fragment size distribution was determined using the 2100 Bioanalyzer System with a DNA 1000 kit (Agilent Technologies). Finally, the qualified library was sequenced in 150-bp paired-end (PE) reads on the Illumina Hiseq 2500 platform.

**Genome assembly, annotation, and analysis**

For quality control of the raw paired-end Illumina reads, FastQC was used to evaluate the quality of the raw data, and Trimmomatic was used to remove low quality reads and adapter sequences. Basic information such as read quality scores, sequence GC content, and adapter content were determined to assess the data quality. After obtaining high-quality sequencing data, referring to the published *I. serra* chloroplast genome (MT317099.1), we used the chloroplast DNA-like reads to assemble sequences with GetOrganelle v1.7.5 and NOVOPlasty to perform de novo assembly. NOVOPlasty, an program that assembles organellar genomes from whole-genome sequencing data, was able to assemble partial contigs and extend them until a circular genome became apparent [16]. PrInSeS-G (Version 1.0.0, beta) was used to correct base errors and insertional loss of small fragments that occurred during the assembly process [17]. Reverse BLAST searches were used to compare the assembled cpDNAs with reference genomes or built-in databases to optimize and extract assembly results. The chloroplast genomes were annotated using the Dual Organellar GenoMe Annotator (DOGMA) [18]. Putative start and stop codons together with intron positions were manually corrected based on comparisons with homologous genes from other sequenced chloroplast genomes. Hmmer v3.1b2 was used to predict tRNA genes, aragorn V1.2.38 was used to predict tRNAs, and all identified tRNAs were further verified by tRNAscan-SE [19]. The circular map of the *I. rubescens* chloroplast genome was drawn using the OGDRAW version 1.3.1 program [20].
Repeat sequences, SSRs, and codon usage analysis

The online, web-based version of REPuter (https://bibiserv.cebitec.uni-bielefeld.de/reputer/) was used to detect sequence repeats in the cpDNA assemblies including forward, palindromic, reverse, and complementary repeats. The minimal repeat size was set to 18 bp, and the sequence identity was > 90% [21]. Simple sequence repeats (SSRs) were identified by MISA-web (https://webblast.ipk-gatersleben.de/misa/) with the minimum number of mono-, di-, tri-, tetra-, penta- and hexanucleotide repeats set to 10, 6, 5, 5, 5, and 5, respectively [22]. To avoid sampling errors, protein-coding genes were selected for synonymous codon usage analysis using the program CodonW1.4.2 (http://downloads.fyxm.net/CodonW-76666.html). The overall codon usage and the relative synonymous codon usage (RSCU) were analyzed.

Comparative analysis of chloroplast genomes

The complete chloroplast genome of *I. rubescens* (IR-L) was compared with the chloroplast genomes of *I. rubescens* (MW376483.1) from Jiyuan, Henan Province (IR-J), *I. rubescens* (MW018469.1) from Xianyang, Shaanxi Province (IR-X), *I. serra* (MT317099.1), and *I. lophanthoides* (MT317098.1) in the Isodon genus using mVISTA (http://genome.lbl.gov/vista/index.shtml) with the LAGAN mode [23]. The annotation of *I. rubescens* cpDNA was used as the reference. The comparison of the LSC/IRB/SSC/IRA boundaries among the five *Isodon* chloroplast genome sequences was performed with IRSCOPE (https://irscope.shinyapps.io/irapp/) based on the annotations of the chloroplast genomes available in GenBank. The single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) were recorded separately as well as their locations by BWA SAMtools in the chloroplast genome [24].

Phylogenetic analysis

To determine the phylogenetic position of *I. rubescens*, the complete chloroplast genome sequences of 24 species in the subfamily Nepetoideae (Lamiaceae) and the *Scutellaria baicalensis* chloroplast genome as the outgroup were downloaded from GenBank. Sequences were aligned using the MAFFT algorithm on the MAFFT version 7 alignment server [25]. A maximum likelihood (ML) phylogenetic tree was generated with 1,000 bootstrap replicates using MEGA 6 software [26].

Results and discussion

Features of the *I. rubescens* chloroplast genome

Raw data consisting of 26.93 million total reads and 3.9 Gb total bases (90.06% with quality scores ≥Q30) was obtained from *I. rubescens* by paired-end sequencing (PE150) on an Illumina HiSeq platform (S1 Table). All of the read data was deposited in the NCBI Sequence Read Archive (SRA) under accession number MW940491.1. The size of the complete chloroplast genome assembly was 152,642 bp (Fig 1). The *I. rubescens* chloroplast genome has a typical quadripartite structure, including a pair of IRs (25,726 bp) separated by the LSC (83,527 bp) and SSC (17,663 bp) regions (Fig 1). Previous studies have shown that the GC content is predicted to significantly affect genome function and species ecology, and it can be an important indicator of species affinity [27]. Therefore, we analyzed the GC contents of the LSC, SSC, IR regions, and the whole genome and found them to be 35.6%, 31.0%, 43.1%, and 37.6%, respectively (S2 Table), which is similar to the GC contents reported for the chloroplast genomes of other *Isodon* species [28]. Our results also revealed that the GC contents of the IR region are higher than those of the LSC and SSC regions, which is similar to findings in other plants [29].
Plant chloroplast genomes contain between 110 and 130 unique genes, such as genes that encode photosynthetic proteins, self-replication expression-related genes, and some other protein-coding genes [30]. In the *I. rubescens* chloroplast genome, 113 unique genes out of a total of 133 predicted functional genes included four rRNA genes, 30 tRNA genes, and 79 protein-coding genes that were divided into four groups; photosynthetic genes (45 genes), self-replication expression-related genes (59 genes), other genes (five genes), and genes of unknown function (four genes) (Table 1). Of these, 18 genes are repeated in the IR regions (seven protein-coding, seven tRNA, and four rRNA genes). A total of 83 genes, 61 protein-coding and 22 tRNA genes, are present in the LSC region while 11 protein-coding genes and one tRNA gene
Table 1. List of genes in the chloroplast genome of *Isodon rubescens*.

| Category for genes | Group of genes | Name of genes |
|--------------------|----------------|---------------|
| Photosynthesis     | psA, psB, psaC, psaI, ycf3\(^a\), ycf4 |  |
|                    | psA, psB, psbC, psbD, psbE, psbF, psbH, psbl, psbJ, psbK, psbL, psbM, psbT, psbZ |  |
|                    | petA, petB\(^b\), petD\(^b\), petG, petL, petN |  |
|                    | rbcL |  |
|                    | atpA, atpB, atpE, atpF1, atpH, atpI |  |
|                    | ndhA\(^b\), ndhB\(^b\), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK |  |
| Self-replication   | trnA-UGC\(^a\), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC, trnH-GUG, trnI-CAU\(^a\), trnL-GAU\(^b\), trnK-UUUb, trnL-CAA\(^a\), trnL-UAAk, trnL-UAG, trnM-CAU, trnM-GUL\(^a\), trnP-UGG, trnQ-UUG, trnR-AGG\(^a\), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UUG, trnV-GAC\(^b\), trnV-UAC\(^a\), trnW-CCA, trnY-GUA |  |
|                    | rps2, rps3, rps4, rps7\(^a\), rps8, rps11, rps12\(^a\), rps14, rps15, rps16\(^a\), rps18, rps19 |  |
|                    | spl2\(^a\), spl14, spl16\(^b\), spl20, spl22, spl23\(^a\), spl32, spl33, spl36 |  |
|                    | rpoA, rpoB, rpoC\(^a\), rpoC2 |  |
| Other genes        | matK |  |
|                    | cemA |  |
|                    | accD |  |
|                    | ccsA |  |
|                    | clpPb |  |
| unknown function   | Conserved Open reading frames | ycf1\(^a\), ycf2\(^a\), infA, pbf1 |

\(^a\) Two gene copies.
\(^b\) Genes containing introns.
\(^c\) Genes divided into two independent transcription units.

https://doi.org/10.1371/journal.pone.0266546.0001

are present in the SSC region. Specifically, one *ycf1* pseudogene and one *rps19* pseudogene are located in the two IR boundary regions (Fig 1). This phenomenon is very similar to findings in other plant species [31].

Introns play a crucial role in “intron-mediated enhancement”, which increases gene expression and enhances the efficiency of mRNA translation [32]. Introns are also present in some other plants species [31].

Intron is located in the two IR boundary regions (Fig 1). This phenomenon is very similar to findings in other plant species [31].

Intraspecific sequence diversity in the chloroplast genome of *Isodon rubescens*. Nineteen chloroplast genes and play an important role in the regulation of gene expression [33]. A total of 23 genes containing introns were identified in the chloroplast genome. Nineteen of these genes contain one intron and four of them contain two introns (S3 Table). The intron in the *trnK-UUU* gene is the longest having 2,504 bp, and contains the *matK* gene. The 5’ end of the *rps12* gene is located in the LSC region, while the 3’ end is located in the IR regions, making it a trans-spliced gene. This is a general phenomenon of intron distribution in chloroplast genomes [14]. In addition, intron lengths range from is 459–1,032 bp, except for the longest intron (2,504 bp), and the average intron length was 797 bp in the chloroplast genome of *I. rubescens* (S3 Table).

**Codon usage**

The genetic code plays an important role in the transmission of genetic information and is the link between the nucleic acids and the proteins they encode in all organisms [34]. Different
genomes show synonymous codon usage bias (SCUB) in which synonymous codons are not used equally in translation [35]. In the chloroplast genome, codon usage plays an important role in evolution [36]. Thus, we measured the codon usage frequency and relative synonymous codon usage (RSCU) frequency for all the protein-coding genes in the Isodon rubescens chloroplast genome (Table 2). A total of 73,242 bp in all the protein-coding genes accounted for 24,412 codons. Of these codons, 2,571 (10.53%) encoded leucine, whereas only 268 (1.10%) encoded cysteine, representing the most and the least frequently used amino acids in proteins encoded in the Isodon rubescens chloroplast genome, similar to what is found in other chloroplast genomes [37]. When comparing the 30 tRNAs genes in the Isodon rubescens chloroplast genome, the codon-anticodon recognition patterns showed that these 30 tRNAs correspond to all 20 amino acids.

| Amino Acid | Codon | No. | RSCU | tRNA | Amino Acid | Codon | No. | RSCU | tRNA |
|------------|-------|-----|------|------|------------|-------|-----|------|------|
| Ala        | GCU   | 598 | 1.77 |      | Arg        | CGU   | 325 | 1.32 | trnR-ACG |
| Ala        | GCC   | 219 | 0.65 |      | Arg        | CGC   | 112 | 0.46 |      |
| Ala        | GCA   | 382 | 1.13 | trnA-UGC | Arg | CGA | 330 | 1.34 |      |
| Ala        | GCG   | 150 | 0.44 |      | Arg        | CGG   | 118 | 0.48 |      |
| Ile        | AUU   | 1055 | 1.5 |      | Arg        | AGA   | 454 | 1.85 | trnR-UCU |
| Ile        | AUC   | 424 | 0.6 | trnI-GAU | Arg | AGG | 137 | 0.56 |      |
| Ile        | AUA   | 627 | 0.89 |      | Asn        | AUA   | 894 | 1.54 |      |
| Leu        | UUA   | 844 | 1.97 | trnL-UAA | Asn | AAC | 265 | 0.46 | trnN-GUU |
| Leu        | UUG   | 502 | 1.17 | trnL-CAA | Asp | GAU | 754 | 1.62 |      |
| Leu        | CUU   | 537 | 1.25 |      | Asp        | GAC   | 179 | 0.38 | trnD-GUC |
| Leu        | CUC   | 160 | 0.37 |      | Cys        | UGU   | 207 | 1.54 |      |
| Leu        | CUA   | 369 | 0.86 | trnL-UAG | Cys | UGC | 61 | 0.46 | trnC-GCA |
| Leu        | CUG   | 159 | 0.37 |      | Gln        | CAA   | 653 | 1.53 | trnQ-UUG |
| Met        | AUG   | 586 | 1   | trnI-CAU, trnM-CAU, trnM-CAU | Gln | CAG | 199 | 0.47 |      |
| Pro        | CUC   | 388 | 1.51 |      | Glu        | GAA   | 977 | 1.56 | trnE-UUC |
| Pro        | CCC   | 212 | 0.82 |      | Glu        | GAG   | 278 | 0.44 |      |
| Pro        | CCA   | 284 | 1.1 | trnP-UGG | Gly | GGU | 528 | 1.25 |      |
| Pro        | CCG   | 145 | 0.56 |      | Gly        | GGC   | 188 | 0.44 | trnG-GCC |
| Ser        | UCU   | 537 | 1.73 |      | Gly        | GGA   | 690 | 1.39 | trnG-UCC |
| Ser        | UCC   | 294 | 0.95 | trnS-GGA | Gly | GGG | 290 | 0.68 |      |
| Ser        | UCA   | 364 | 1.18 | trnS-UGA | His | CAU | 437 | 1.53 |      |
| Ser        | UCG   | 166 | 0.54 |      | His        |CAC     | 134 | 0.47 | trnH-GUG |
| Ser        | AGU   | 390 | 1.26 |      | Lys        | AAA   | 1005 | 1.51 | trnK-UUU |
| Ser        | AGC   | 107 | 0.35 | trnS-GCU | Lys | AAG | 326 | 0.49 |      |
| Thr        | ACU   | 503 | 1.61 |      | Phe        | UUU   | 945 | 1.38 |      |
| Thr        | ACC   | 243 | 0.78 | trnT-GGU | Phe | UUC | 428 | 0.62 | trnF-GAA |
| Thr        | ACA   | 375 | 1.2 | trnT-UGU | TER | UAA | 46 | 1.06 |      |
| Thr        | ACG   | 129 | 0.41 |      | TER        | UAG | 24 | 0.84 |      |
| Val        | GUU   | 504 | 1.48 |      | TER        | UGA | 16 | 0.56 |      |
| Val        | GUC   | 157 | 0.46 | trnV-GAC | Trp | UGG | 421 | 1 | trnW-CCA |
| Val        | GUA   | 543 | 1.59 | trnV-UAC | Tyr | UAU | 714 | 1.63 |      |
| Val        | GUG   | 161 | 0.47 |      | Tyr        | UAC | 163 | 0.37 | trnY-GUA |

https://doi.org/10.1371/journal.pone.0266546.t002
54.28%, 61.65%, and 70.76%, respectively. In addition, the RSCU values of 30 codons were >1, indicating that these codons show biased usage. Except for the leucine TTG codon that ends in G, all the biased usage codons had A/T at the third position. The use of ATG for methionine and TGG for tryptophan showed no biased usage (RSCU = 1) (Table 2).

SSRs and long-repeat analysis

Simple sequence repeats (SSRs), also known as microsatellites, have a relatively high rate of mutation and copy number polymorphisms, making them valuable molecular markers for genetic diversity studies, polymorphism investigations, evolutionary studies, and plant breeding. Compound SSRs also can provide insight into the evolution of microsatellites [39, 40]. In the *I. rubescens* chloroplast genome, a total of 32 SSRs, including 29 mononucleotides, one dinucleotide, and two compound SSRs with a length of at least 10 bp, were identified, and no trinucleotide repeats were found (Table 3). In our results, all mononucleotides SSRs were

| SSR nr. | SSR type | SSR | size | start | end | Region | Position |
|---------|----------|-----|------|-------|------|--------|----------|
| 1       | p1       | (A)11 | 11   | 4444  | 4454 | LSC    | IGS      |
| 2       | p1       | (A)10 | 10   | 6668  | 6677 | LSC    | IGS      |
| 3       | p1       | (A)10 | 10   | 8147  | 8156 | LSC    | IGS      |
| 4       | c        | (T)12gaaaaagaaaaaaaatagcttttttaag(T)10 | 54   | 11734 | 11787 | LSC    | IGS      |
| 5       | c        | (T)10c(A)12 | 23   | 16305 | 16327 | LSC    | IGS      |
| 6       | p1       | (T)11 | 11   | 18536 | 18546 | LSC    | rpoC2    |
| 7       | p1       | (T)11 | 11   | 28760 | 28770 | LSC    | IGS      |
| 8       | p1       | (T)12 | 12   | 35002 | 35013 | LSC    | IGS      |
| 9       | p1       | (A)14 | 14   | 36248 | 36261 | LSC    | trnH-AUG(intron) |
| 10      | p1       | (T)12 | 12   | 41884 | 41895 | LSC    | IGS      |
| 11      | p1       | (A)10 | 10   | 44220 | 44229 | LSC    | IGS      |
| 12      | p1       | (T)13 | 13   | 46005 | 46017 | LSC    | IGS      |
| 13      | p2       | (TA)7 | 14   | 46164 | 46177 | LSC    | IGS      |
| 14      | p1       | (T)10 | 10   | 46693 | 46702 | LSC    | IGS      |
| 15      | p1       | (A)11 | 11   | 46869 | 46879 | LSC    | IGS      |
| 16      | p1       | (T)10 | 10   | 54295 | 54304 | LSC    | atpB     |
| 17      | p1       | (T)10 | 10   | 58922 | 58931 | LSC    | IGS      |
| 18      | p1       | (T)13 | 13   | 59595 | 59607 | LSC    | IGS      |
| 19      | p1       | (T)10 | 10   | 60808 | 60817 | LSC    | IGS      |
| 20      | p1       | (T)10 | 10   | 63527 | 63536 | LSC    | IGS      |
| 21      | p1       | (T)11 | 11   | 67056 | 67066 | LSC    | IGS      |
| 22      | p1       | (T)13 | 13   | 69185 | 69197 | LSC    | IGS      |
| 23      | p1       | (T)10 | 10   | 70138 | 70147 | LSC    | clpP1(intron) |
| 24      | p1       | (A)11 | 11   | 70426 | 70436 | LSC    | clpP1(intron) |
| 25      | p1       | (T)11 | 11   | 71303 | 71313 | LSC    | clpP1(intron) |
| 26      | p1       | (A)10 | 10   | 73740 | 73749 | LSC    | IGS      |
| 27      | p1       | (T)12 | 12   | 79583 | 79594 | LSC    | IGS      |
| 28      | p1       | (T)10 | 10   | 98083 | 98092 | IRB    | IGS      |
| 29      | p1       | (T)10 | 10   | 112297 | 112306 | SSC    | IGS      |
| 30      | p1       | (T)10 | 10   | 117749 | 117758 | SSC    | IGS      |
| 31      | p1       | (T)11 | 11   | 125193 | 125203 | SSC    | ycfI     |
| 32      | p1       | (A)10 | 10   | 138158 | 138167 | IRA    | IGS      |

https://doi.org/10.1371/journal.pone.0266546.t003
either poly A or poly T, and all dinucleotides were made up of AT/TA. This result agrees with a previous finding that the most abundant SSRs consist of short polyadenine (polyA) or polythymine (polyT) repeats in chloroplast genomes [41], and the two compound SSRs had lengths of 54 bp and 23 bp. Most of the identified SSRs were within noncoding DNA regions; 25 were located in the intergenic regions, four were located in introns, and three were located in the rpoC2, atpB, and ycf1 genes (Table 3).

Repeat sequences are widely distributed in the genome, and play an important part in genome rearrangements [42]. A total of 48 repeats were found in the I. rubescens chloroplast genome, including 15 forward, 20 palindromic, 11 reverse repeats and two complementary repeats (Table 4). Of the 48 repeats, 32 were 20–29 bp in length and 16 were 18–19 bp in length. In addition, 26 of the repeats were concentrated in the LSC region, six repeats were located in the IRs, and three were located in IRA, IRB, and the SSC, respectively. These SSRs and the repeats identified in the I. rubescens chloroplast genome can be used as a significant molecular markers to explore the genetic diversity and species differentiation in I. rubescens and related species in future research.

Inter- and intra-specific comparative analysis of genomic structure

Chloroplast DNA sequences are often used in phylogenetic studies and to measure the genetic diversity within a species [43]. Previous studies have shown that I. rubescens has intraspecific variation [5]. Thus, it is necessary to understand the interspecific and intraspecific differences between the chloroplast genomes in I. rubescens. The sequences of the chloroplast genomes from two other collections of I. rubescens, IR-X (MW018469.1) and IR-J (MW376483.1), I. lophanthoides (MT317098.1), and I. serra (MT317099.1) were obtained from NCBI. The results of comparisons showed that I. lophanthoides has the smallest chloroplast genome with the largest SSC region (17,699 bp) and the smallest LSC (83,095 bp) and IR regions (17,699 bp), and IR-X has the largest chloroplast genome with the largest LSC region (83,656 bp) (Table 5). These results indicate that there are significant interspecific sequence differences in the cpDNA of Isodon species. In addition, comparative analysis of the three I. rubescens cp genome sequences showed that the number of genes and the genome sizes including the lengths of the LSC, SSC, and IR regions are all different. These results indicate that there is also intraspecific variation in the cpDNA sequence I. rubescens.

To further analyze the potential divergence of these genome sequences, sequence identity was calculated by using the program mVISTA with I. rubescens IR-L as the reference (Fig 2). The results of this comparison revealed that the LSC regions are more divergent than are the SSC and IR regions, and that higher levels of sequence divergence are found in noncoding compared to coding regions. In the comparative analysis of three I. rubescens chloroplast genomes, relatively higher levels of variation were found in the rpoC1, clpP1, ccsA, ndhF, and ycf1. The highest divergence in noncoding regions was found in the intergenic regions rps16-trnQ, trnS-trnG, and ndhC-trnM regions (S1 Fig). Comparison of five chloroplast genome sequences from species of Isodon showed that I. lophanthoides is significantly different from the other fours, while the differences between the cpDNA sequences of I. rubescens (IR-L) and I. serra were small. Of the five chloroplast genomes, higher levels of variation were found in the coding regions of some genes, including rpoC1, clpP1, ccsA, ndhF, and ycf1. The highest divergence in noncoding regions was found in the intergenic regions rps16-trnQ, trnS-trnG, atpH-atpI, trnE-trnT, psaA-ycf3, ndhC-trnM, petA-psbL, rpl20-clpP1, and rpl32-trnL. These results are mostly consistent with those reported for the chloroplast genomes of other plant species [44].

Furthermore, the results of the sliding window analysis using DnaSP6 indicated that the nucleotide variation in the Isodon chloroplast genomes is mainly present in the LSC and SSC regions (Fig 3). There were nine mutational hotspots detected that showed remarkably higher
Table 4. Long repeat sequences identified in the chloroplast genome of *Isodon rubescens*.

| No. | Repeat size (bp) | Type | Repeat 1 start | Repeat 2 start | Mismatch(bp) | E-Value | Region  |
|-----|-----------------|------|----------------|----------------|--------------|---------|---------|
| 1   | 29              | P    | 8217           | 45035          | 0            | 2.27×10⁻⁸ | LSC     |
| 2   | 26              | P    | 87192          | 87192          | 0            | 1.46×10⁻⁶ | IRB     |
| 3   | 26              | F    | 87192          | 149031         | 0            | 1.46×10⁻⁶ | IRB;IRA |
| 4   | 26              | F    | 125658         | 125676         | 0            | 1.46×10⁻⁶ | SSC     |
| 5   | 26              | P    | 149031         | 149031         | 0            | 1.46×10⁻⁶ | IRA     |
| 6   | 24              | P    | 74746          | 74746          | 0            | 2.33×10⁻⁵ | LSC     |
| 7   | 24              | P    | 114085         | 114132         | 0            | 2.33×10⁻⁵ | SSC     |
| 8   | 23              | P    | 29238          | 29263          | 0            | 9.31×10⁻⁵ | LSC     |
| 9   | 22              | F    | 9802           | 36047          | 0            | 3.72×10⁻⁴ | LSC     |
| 10  | 22              | P    | 30490          | 30490          | 0            | 3.72×10⁻⁴ | LSC     |
| 11  | 22              | F    | 45998          | 59588          | 0            | 3.72×10⁻⁴ | LSC     |
| 12  | 22              | F    | 46185          | 46215          | 0            | 3.72×10⁻⁴ | LSC     |
| 13  | 22              | P    | 46808          | 46808          | 0            | 3.72×10⁻⁴ | LSC     |
| 14  | 22              | F    | 90824          | 90842          | 0            | 3.72×10⁻⁴ | IRB     |
| 15  | 22              | P    | 90824          | 145385         | 0            | 3.72×10⁻⁴ | IRB,IRA |
| 16  | 22              | P    | 90842          | 145403         | 0            | 3.72×10⁻⁴ | IRB,IRA |
| 17  | 22              | F    | 97710          | 118963         | 0            | 3.72×10⁻⁴ | IRB,IRA |
| 18  | 22              | P    | 118963         | 138517         | 0            | 3.72×10⁻⁴ | IRA,SSC |
| 19  | 22              | F    | 145385         | 145403         | 0            | 3.72×10⁻⁴ | IRA     |
| 20  | 21              | F    | 8222           | 35143          | 0            | 1.49×10⁻³ | LSC     |
| 21  | 21              | C    | 18527          | 46860          | 0            | 1.49×10⁻³ | LSC     |
| 22  | 21              | R    | 31283          | 31283          | 0            | 1.49×10⁻³ | LSC     |
| 23  | 21              | P    | 35143          | 45038          | 0            | 1.49×10⁻³ | LSC     |
| 24  | 21              | F    | 36272          | 66485          | 0            | 1.49×10⁻³ | LSC     |
| 25  | 20              | P    | 8649           | 8649           | 0            | 5.96×10⁻³ | LSC     |
| 26  | 20              | R    | 8853           | 8853           | 0            | 5.96×10⁻³ | LSC     |
| 27  | 20              | R    | 11769          | 117746         | 0            | 5.96×10⁻³ | LSC     |
| 28  | 20              | F    | 38272          | 40496          | 0            | 5.96×10⁻³ | LSC     |
| 29  | 20              | R    | 50182          | 50182          | 0            | 5.96×10⁻³ | LSC     |
| 30  | 20              | P    | 51977          | 102498         | 0            | 5.96×10⁻³ | LSC,IRB |
| 31  | 20              | F    | 51977          | 133731         | 0            | 5.96×10⁻³ | IRB,IRA |
| 32  | 20              | P    | 73915          | 73939          | 0            | 5.96×10⁻³ | LSC     |
| 33  | 19              | R    | 1790           | 14187          | 0            | 2.38×10⁻² | LSC     |
| 34  | 19              | C    | 7309           | 47088          | 0            | 2.38×10⁻² | LSC     |
| 35  | 19              | R    | 15030          | 15030          | 0            | 2.38×10⁻² | LSC     |
| 36  | 19              | P    | 30326          | 115836         | 0            | 2.38×10⁻² | LSC,SSC |
| 37  | 19              | R    | 46864          | 46864          | 0            | 2.38×10⁻² | LSC     |
| 38  | 19              | P    | 73723          | 122022         | 0            | 2.38×10⁻² | LSC,SSC |
| 39  | 19              | F    | 90786          | 90804          | 0            | 2.38×10⁻² | IRB     |
| 40  | 19              | P    | 90786          | 145426         | 0            | 2.38×10⁻² | IRB,IRA |
| 41  | 19              | P    | 90804          | 145444         | 0            | 2.38×10⁻² | IRB,IRA |
| 42  | 19              | R    | 118508         | 118508         | 0            | 2.38×10⁻² | SSC     |
| 43  | 19              | F    | 145426         | 145444         | 0            | 2.38×10⁻² | IRA     |
| 44  | 18              | R    | 148            | 69617          | 0            | 9.54×10⁻² | LSC     |
| 45  | 18              | R    | 4515           | 112976         | 0            | 9.54×10⁻² | LSC,SSC |
| 46  | 18              | F    | 6222           | 27249          | 0            | 9.54×10⁻² | LSC     |
| 47  | 18              | R    | 6251           | 6251           | 0            | 9.54×10⁻² | LSC     |

(Continued)
K values (total values > 0.04), including three regions (petN-psbM, rps16-trnQ, and psaA-ycf3) in the LSC and six regions (ndhF, ccsA, rpl32-trnL, and three regions in ycf1) in the SSC of the chloroplast genomes. These regions may be undergoing more rapid nucleotide substitution at the species level, indicating the potential application of molecular markers for phylogenetic analyses and plant identification in the genus *Isodon*. In addition, the average nucleotide diversity (K value) of IR-L compared with IR-X, IR-J, *I. serra* (MT317099.1), and *I. lophanthoides* (MT317098.1) was 0.00155, 0.00161, 0.00174, and 0.00856, respectively, and the total average value of nucleotide diversity was 0.00337. These results show that the intra-specific cpDNA
sequence diversity in *I. rubescens* was the lowest, the interspecific cpDNA diversity between *I. rubescens* and *I. serra* was also small, but the interspecific nucleotide diversity between the chloroplast genomes of *I. rubescens* and *I. lophanthoides* was relatively large.

Previous studies have shown that there are variable patterns in the expansion and contraction of the IR region in the chloroplast genomes which can lead to size variation and rearrangement at the LSC/IRB/SSC/IRA boundaries [45]. In this study, detailed comparisons of the genes adjacent to the LSC/IRB/SSC/IRA boundaries were compared among the five *Isodon* chloroplast genomes (Fig 4). In the LSC/IRB boundary, there is a fragment of the rps19 pseudogene, and there were no differences between the five genomes. In the IRB/SSC boundary, overlaps between the ycf1 pseudogene and ndhF gene were detected, but the only differences were found in *I. serra*. In the chloroplast genome of *I. serra*, the ndhF gene terminates prematurely, which reduces its length by 28 bp, while the ycf1 gene increased in length by 42 bp. In the SSC/IRA boundary, the ycf1 pseudogene is present in all five cp genomes, and the only difference was that the ycf1 gene increased in length by 42 bp in the SSC region of the *I. lophanthoides* cp genome. There were no differences detected in the IRA/SSC boundary regions. In conclusion, there were no differences detected in the boundary regions in the three *I. rubescens* chloroplast genomes, but there were differences in the IRB/SSC and IRA/SSC boundaries between the *I. serra* and *I. lophanthoides* cp genomes. These results also show that there was expansion and contraction in the cpDNA boundary regions among the different *Isodon* species examined.

Fig 3. Sliding window analysis of five complete *Isodon* chloroplast genomes. Window length: 800 bp; step size: 200 bp. X-axis: nucleotide positions in the chloroplast genomes. Y-axis: K values of nucleotide diversity. A: *I. rubescens* from Lushan, Henan province (IR-L), B: *I. rubescens* (MW018469.1) from Xiaoyang, Shaanxi Province (IR-X), C: *I. rubescens* (MW376483.1) from Jiyuan, Henan Province (IR-J), D: *I. serra* (MT317099.1), E: *I. lophanthoides* (MT317098.1). Total: the total nucleotide diversity values for the A vs. B, A vs. C, A vs. D, and A vs. E comparisons.

https://doi.org/10.1371/journal.pone.0266546.g003
In addition, to detect the differences between *I. rubescens* and the two other *Isodon* species *I. serra* and *I. lophanthoides* at the cpDNA level, SNP and Indel analyses were also performed with the cpDNA sequence of *IR-L* as the reference. There were 102, 133, 201, and 654 SNPs in the cpDNA identified when *IR-L* was compared to the *IR-X*, *IR-J*, *I. serra*, and *I. lophanthoides* cp genomes, respectively. And there were 30, 62, 149, and 493 indels in the cpDNA identified when compared to *IR-X*, *IR-J*, *I. serra*, and *I. lophanthoides*, respectively (S5 Table). These SNPs and Indels will be very useful resources for phylogenetic analysis and species identification in the genus *Isodon*.

**Phylogenetic analysis**

Chloroplast genomes are widely used for phylogeny reconstruction and population analyses because of their ease of use and the abundant phylogenetic information they contain [37]. To better determine the phylogenetic position of *I. rubescens* and further clarify the evolutionary relationships within the subfamily Nepetoideae, we performed a phylogenetic analyses based on the complete chloroplast genome sequences of 24 Nepetoideae species using the chloroplast genome of *Scutellaria baicalensis* (subfamily Scutellarioideae) as the outgroup. In the resulting phylogenetic tree bootstrap (BS) analysis showed that 18 nodes were strongly supported with BS values ≥95%, and 16 nodes had BS values of 100% (Fig 5). The 24 species of Nepetoideae formed two major clades; the 10 species in tribe *Mentheae* comprised the smaller clade, and the 14 species/accessions from tribes *Ocimeae*, *Lavanduleae*, and *Elsholtzieae* grouped together in the larger clade. This result shows that species in tribes *Ocimeae*, *Lavanduleae*, and *Elsholtzieae* are more closely related evolutionarily to one another than they are to the species in tribe *Mentheae*. In the *Ocimeae*, there are two subclades, the smallest contains the single species in the genus *Hanceola*, and the largest contains all species in the genera *Isodon*, *Plectranthus*, *Platostoma*, and *Ocimum*. Furthermore, the three species in the genus *Isodon* define a well-supported clade that is separate from species in *Plectranthus*, *Platostoma*, and *Ocimum*. In addition, the *Isodon* clade, contains three accessions of *I. rubescens* and one each of *I. serra*, and *I. lophanthoides*. It is clear from this phylogenetic analysis that *I. lophanthoides* is evolutionarily distant from both *I. rubescens* and *I. serra* and that *I. rubescens* is more closely related
to *I. serra* than to *I. lophanthoides*. It is interesting that in the phylogenetic analysis, the three *I. rubescens* accessions are divided into two small branches, and one accession, *IR-X* (MW018469.1), shows a closer affinity to *I. serra* than it does to *IR-J* and *IR-L*. This result indicates that there could be considerable intraspecific variation present in *I. rubescens*, at least as determined by cpDNA analysis. Our results also show that the phylogenetic analysis of chloroplast genomes also can provide a reliable method for intraspecific identification and classification of geographical collections of *I. rubescens*.

**Conclusions**

In this study, the chloroplast genome of *I. rubescens* from Lushan, Henan province (*IR-L*) was sequenced, annotated, and analyzed. We found that it has the typical cpDNA quadripartite structure and contains 113 unique genes; four rRNA genes, 30 tRNA genes, and 79 protein-coding genes. Furthermore, the SSRs and sequence repeats identified in the *I. rubescens* chloroplast genome can be useful molecular markers to examine genetic diversity and species differentiation in *I. rubescens* and related species in future research. In addition, a phylogenetic analysis showed that the chloroplast genomes of the *I. rubescens* collections from three different geographical
regions did not all group together; one of them was closer to the single accession of *I. serra* included in this study. This result revealed that there is intraspecific genetic variation present in *I. rubescens* and implies that there is a regional component to this variation. Above all, our data provides a molecular basis for the further exploration of genetic variation in *Isodon* populations.

**Supporting information**

S1 Fig. Sequence alignment of chloroplast genomes from three accessions of *I. rubescens* by mVISTA. Gray arrows above the alignment indicate the position and direction of transcription of each gene. The scale on the vertical axis shows the percent sequence identity between 50% and 100%. *IR-J, IR-X, and IR-L* are the three accessions of *I. rubescens*.

(TIF)

S1 Table. Raw data quality information for the *I. rubescens* chloroplast genome.

(DOCX)

S2 Table. Base composition of the *I. rubescens* chloroplast genome.

(DOCX)

S3 Table. The intron and exon analysis of intron-containing genes in the chloroplast genome of *I. rubescens*.

(DOCX)

S4 Table. Summary of the features of five chloroplast genomes from three species of *Isodon*.

(DOCX)

S5 Table. SNPs and indels present in the *I. rubescens* chloroplast genomes. *IR-J, IR-X, and IR-L* are the three accessions of *I. rubescens*.

(XLS)

**Acknowledgments**

We are grateful to the members of the lab for their assistance and helpful discussions.

**Author Contributions**

**Conceptualization:** Conglong Lian, Suiqing Chen.

**Data curation:** Conglong Lian, Jinxu Lan, Xueyu Zhang.

**Funding acquisition:** Suiqing Chen.

**Investigation:** Hao Yang, Xueyu Zhang.

**Software:** Hao Yang, Fei Zhang.

**Visualization:** Conglong Lian, Hao Yang, Jinxu Lan, Fei Zhang, Jingfan Yang.

**Writing – original draft:** Conglong Lian.

**Writing – review & editing:** Conglong Lian.

**References**

1. Neelamkavil SV, Thoppil JE. Chromosome Complements of *Isodon* (Family: Lamiaceae–Subfamily: Nepetoideae): Trends in Karyotype Evolution. Proc Natl Acad Sci, India, Sect B Biol Sci. 2017; 87:267–72. https://doi.org/10.1007/s40011-015-0657-z
2. Xie T, Yang Q, Xu WW, Zheng DY, Yu DH, Wei Li, et al. Research progress on chemical constituents, pharmacological effects and clinical application of Rabdosia rubescens. Chinese Traditional and Herbal Drugs. 2022; 53(1):317–325. 2022.01.036 (In Chinese).

3. Sun HD, Huang SX, Han QB. Diterpenoids from Isodon species and their biological activities. Natural Product Reports. 2006; 23(5):673–98. https://doi.org/10.1039/b604174d PMID: 17003905

4. Wei YJ, He DL, Wei YL, Liang XH. Study on Soil and Water Conservation Benefits of Herba Rubescen- tis. Journal of Soil Water Conservation. 2000; 14(1):24–7. (In Chinese).

5. Chen SQ, Yin L, Song J, Cui C, Meng C. Molecular Analysis of Different Origin of Rabdosia Rubescens Germplasm Resources. Asia-Pacific Traditional Medicine. 2016; 12(16):5–9. (In Chinese).

6. Yang H, Liu D. Current Situation and Prospective on Resource Evaluation and Sustainable Utilization of Rabdosiae Rubescens Herba. Traditional Chinese Medicine. 2020; 09(6):506–14. https://doi.org/10.1093/molbev/msa282 PMID: 25873589

7. Jose CC, Roberto A, Victoria I, Javier T, Manuel T, Joaquin D. A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the Genus Citrus. Molecular Biology & Evolution. 2015; 32(8):2015–35. https://doi.org/10.1093/molbev/msv082 PMID: 25215394

8. Wicke S, Schneeweiss GM, De Pamphilis CW, Kai FM, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Molecular Biology. 2011; 76:273–97. https://doi.org/10.1007/s11103-011-9762-4 PMID: 21424877

9. Roy SD. Mutation Rates in Plastid Genomes: They Are Lower than You Might Think. Genome Biology & Evolution. 2015; 7(5):1227–34. https://doi.org/10.1093/gbe/evv069 PMID: 25869308

10. Neuhaus HE, Emes MJ. NONPHOTOSYNTHETIC METABOLISM IN PLASTIDS. Annu Rev Plant Physiol Plant Mol Biol. 2000; 51:111–40. https://doi.org/10.1146/annurev.arplant.51.1.111 PMID: 15012188

11. Rodriguez-Ezepeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, et al. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Current Biology. 2005; 15(14):1325–30. https://doi.org/10.1016/j.cub.2005.06.040 PMID: 16051178

12. Jones MC. Isolation of Wheat Chloroplasts and Chloroplast DNA. New Nucleic Acid Techniques. 1988, 1093/nar/29.22.4633 PMID: 11713313

13. Palmer JD. Comparative Organization of Chloroplast Genomes. Annual Review of Genetics. 1985; 19(1):325–54. https://doi.org/10.1146/annurev.ge.19.120185.001545 PMID: 3936406

14. Liang C, Wang L, Lei J, Duan B, Ma W, Xiao S, et al. A Comparative Analysis of the Chloroplast Genomes of Four Salvia Medicinal Plants. Engineering. 2019; 5(5):907–15. https://doi.org/10.1016/j. eng.2019.01.017

15. Zhao F, Chen YP, Salmaki Y, Drew BT, Wilson TC, Scheen AC, et al. An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC biology. 2021; 19(1):2. https://doi.org/10.1016/j.bmcymed.2020.12677/TCM-2020.96076

16. Nicolas D, Patrick M, Guillaume S. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research. 2017; 45(4):e18. https://doi.org/10.1093/nar/gkw955 PMID: 28204566

17. Wang Q, Liu YD, Liu Q, Liu X, Yang F, Wang M, et al. Isolation and Complete Genome of the Marine Pseudoalteromonas Phage C7 from Coastal Seawater of Yellow Sea, China Curr Microbiol.2020; 77:279–285. https://doi.org/10.1007/s00284-019-01815-4 PMID: 31760453

18. Wyman SK, Jansen RK, Boore JL. Automatic annotation of organelar genomes with DOGMA. Bioinformatics. 2004; 20(17):3252–5. https://doi.org/10.1093/bioinformatics/bth352 PMID: 15180927

19. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005; 33(suppl_2):W686–W9. https://doi.org/10.1093/nar/gkj366 PMID: 15980563

20. Lohe M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Current Genetics. 2007; 52:267–74. https://doi.org/10.1007/s00294-007-0161-y PMID: 17957369

21. Stefan K, Choudhuri JV, Enno O, Chris S, Jens S, Robert G. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research. 2001; 29(22):4633–42. https://doi.org/10.1093/nar/28.22.4633 PMID: 11713313

22. Sebastian B, Thomas T, Thomas M, Uwe S, Martin M. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017; 33(16):2583–5. https://doi.org/10.1093/bioinformatics/btx198 PMID: 28398459

23. Frazer KA, Lior P, Alexander P, Rubin EM, Inna D. VISTA: computational tools for comparative genomics. Nucleic Acids Research. 2004; 32(suppl_2):W273–W9. https://doi.org/10.1093/nar/gkh458 PMID: 15215394
24. Cui HN, Ding Z, Zhu QL, Wu Y, Gao P. Population structure and genetic diversity of watermelon (Citrus lanatus) based on SNP of chloroplast genome. 3 Biotech 10.2020; 374. https://doi.org/10.1007/s13205-020-02357-6 PMID: 32832334

25. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics. 2019; 20(4):1160–6. https://doi.org/10.1093/bib/bbx108 PMID: 28968734

26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology & Evolution. 2013; 30(12):2725–9. https://doi.org/10.1093/molbev/ms3197 PMID: 24132122

27. Smarda P, Bures P, Horova L, Leitch IJ, Mucina L, Pacini E, et al. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences of the United States of America. 2014; 111(39):E4096–102. https://doi.org/10.1073/pnas.1321152111 PMID: 25225383

28. Zhang HY, Ma WZ, Yan HF, Wang DQ. Characterization of the complete plastid genome of Chinese medicinal plant Isodon serra (Lamiaceae). Mitochondrial DNA Part B, Resources. 2020; 5(3):2111–2. https://doi.org/10.1080/23802359.2020.1765429 PMID: 33369397

29. Xu J, Shen X, Liao B, Xu J, Hou D. Comparing and phylogenetic analysis chloroplast genome of three Achyranthes species. Scientific reports. 2020; 10(1):10818. https://doi.org/10.1038/s41598-020-67679-y PMID: 32616875

30. Jansen RK, Raubeson LA, Boore JL, Depamphilis CW, Cui L. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods in Enzymology. 2005; 395:348–48. https://doi.org/10.1016/S0076-6879(05)9020-9 PMID: 15865976

31. Wei F, Tang D, Wei K, Qin F, Li L, Lin Y, et al. The complete chloroplast genome sequence of the medicinal plant Sophora tonkinensis. Scientific reports. 2020; 10(1):12473. https://doi.org/10.1038/s41598-020-69549-z PMID: 32719421

32. Orit S. How introns enhance gene expression. International Journal of Biochemistry & Cell Biology. 2017; 91:145–55. https://doi.org/10.1016/j.biocel.2017.06.016 PMID: 28673892

33. Brouard JS, Turmel M, Otis C, Lemieux C. Proliferation of group II introns in the chloroplast genome of the green alga Chlorophyceae. Trends in Genetics. 2018; 34(8):572–4. https://doi.org/10.1016/j.tig.2018.05.003 PMID: 29554674

34. Liu Q, Xue Q. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. Journal of Genetics. 2005; 84(1):56–62. https://doi.org/10.1007/BF02715890 PMID: 15876584

35. Sun J, Wang Y, Liu Y, Xu C, Yuan Q, Guo L, et al. Evolutionary and phylogenetic aspects of the chloroplast genome of Chaenomeles species. Scientific reports. 2020; 10(1):11466. https://doi.org/10.1038/s41598-020-67943-1 PMID: 32651417

36. Wang WB, Yu H, Lei WJ, Gao JH, Qin F, Lin Y, et al. The complete chloroplast genome sequence of the medicinal plant Forsythia suspensa (Oleaceae). Int J Mol Sci. 2017; 18(11):2288. https://doi.org/10.3390/ijms18112288 PMID: 29088105

37. Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proceedings of the National Academy of Sciences. 1995; 92(17):7759–63. https://doi.org/10.1073/pnas.92.17.7759 PMID: 7644491

38. Meng LZ, Chao X, Liu HW, Li Y, Mai CY, Yu LQ, et al. The impact of modern plant breeding on dominant Chinese wheat cultivars (Triticum aestivum L.) revealed by SSR and functional markers. Genetic resources and crop evolution. 2018; 65:55–65. https://doi.org/10.1007/s10722-017-0508-2

39. Kuang DY, Wu H, Wang YL, Gao LM, Lu L. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome. 2011; 54(8):663–73. https://doi.org/10.1139/g11-026 PMID: 21793699

40. Maria ME, Kaul T, Deininger P. Long-Distance Relationships: Suppression of Repeat-Mediated Deletions. TRENDS IN GENETICS. 2018; 34(8):572–4. https://doi.org/10.1016/j.tig.2018.05.003 PMID: 29804746

41. Alzahrani D, Albokhari E, Yaradua S, Abba A. Complete Chloroplast Genome Sequence of Dipterygium glaucum and Cleome chrysanta and Other Cleome species, Comparative Analysis and
Phylogenetic Relationships. Saudi Journal of Biological Sciences. 2021; 28(4):2476–90. https://doi.org/10.1016/j.sjbs.2021.01.049 PMID: 33911961

44. Li B, Lin F, Huang P, Guo W, Zheng Y. Complete Chloroplast Genome Sequence of Decaisnea insignis: Genome Organization, Genomic Resources and Comparative Analysis. Scientific reports. 2017; 7 (1):10073. https://doi.org/10.1038/s41598-017-10409-8 PMID: 28855603

45. Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. Bmc Evolutionary Biology. 2008; 8. https://doi.org/10.1186/1471-2148-8-36 PMID: 18237435