Leveraging machine learning to assess market-level food safety and zoonotic disease risks in China

Qihua Gao, Retsef Levi* & Nicholas Renegar

While many have advocated for widespread closure of Chinese wet and wholesale markets due to numerous zoonotic disease outbreaks (e.g., SARS) and food safety risks, this is impractical due to their central role in China’s food system. This first-of-its-kind work offers a data science enabled approach to identify market-level risks. Using a massive, self-constructed dataset of food safety tests, market-level adulteration risk scores are created through machine learning techniques. Analysis shows that provinces with more high-risk markets also have more human cases of zoonotic flu, and specific markets associated with zoonotic disease have higher risk scores. Furthermore, it is shown that high-risk markets have management deficiencies (e.g., illegal wild animal sales), potentially indicating that increased and integrated regulation targeting high-risk markets could mitigate these risks.

Numerous twenty-first century pandemics, such as the 2003 severe acute respiratory syndrome (SARS-CoV) outbreak and repeated avian flu outbreaks (H5N1, H7N9), have raised public attention to human health risks of zoonotic diseases, which transmit from animals to humans. Other outbreaks such as Middle East Respiratory Syndrome (MERS-CoV), swine influenza virus (SIV), brucellosis, have all originated from zoonosis1–4. Notably, many of these outbreaks, including the 2003 SARS-CoV outbreak, were associated with large Chinese wholesale markets (WSMs) and smaller wet markets (WMs), both of which play a unique and prominent role as consolidation and distribution points in China’s agricultural supply chains9,10. While the origin of COVID-19 is debated, one hypothesis ties the first known cluster of COVID-19 to the Wuhan Huanan Seafood Market, and a later cluster to the Beijing Xinfadi Seafood Market11,12. Likewise, SARS-CoV was associated with markets in Foshan, brucellosis cases in 2005–2010 were linked to pork markets in Guangdong, and H7N9 cases in 2013–2017 were associated with poultry markets in Shanghai and Anhui13,14,15. Existing hypotheses suggest that illegal sale of exotic wild animals and sanitation issues at markets are potential causes of outbreaks14.

Concerns regarding WSMs and WMs are underscored by other human health risks associated with them, specifically, food safety and particularly food adulteration risks, such as illegal use of antibiotics and antimicrobials9,15,16. This high level of food adulteration risk is exacerbated by the combination of opaque supply sources, sales of fresh and live animal products, and inconsistent supply chain conditions (e.g., cold chain), logistics and management infrastructure. The Chinese government has invested substantial regulatory resources to address challenges related to food safety and adulteration with increasing focus on WSMs and WMs, including regular testing of food15.

Recently, there have been voices that call for fundamental reform of WSM/WM management and even suggestions for closure of all markets17,18. While closing markets could alleviate zoonotic disease and food adulteration risks, this proposal ignores the central role they play. For many agricultural products, WSMs consolidate 70–80% of national supply, while WMs serve as the primary sales channel to individuals and restaurants9,19. Thus, eliminating these markets from the food system in China is logistically challenging and perhaps infeasible10. Furthermore, closing markets would adversely affect the livelihood of millions of market vendors, farmers, and transporters19 and create social harm. This suggests a need for practical approaches that steer regulatory resources towards riskier markets and improve management at WSMs and WMs, to mitigate public health risks they pose. It is noteworthy that a recent article published on The Lancet Planetary Health also argues that “safe trade and consumption of wildlife could align with existing global food safety regulations in agreement with the precautionary principle and in support of the UN Sustainable Development Goals”, which also suggests to focus on enabling smarter and targeted regulation as opposed to shutting down the entire wildlife trade20.

Sloan School of Management, Massachusetts Institute of Technology, 100 Main Street, E62, Cambridge, MA 02142, USA. *email: retsef@mit.edu
Contributions. This paper contributes to such an approach by leveraging machine learning to generate WSM/WM market-level food adulteration risk scores from public data and demonstrating their correlation with zoonotic disease in China. In particular, the paper provides empirical support to the hypothesis that these two types of risks (i.e., food adulteration and zoonotic disease risks) are correlated, potentially because they are both affected by common system-level environmental and management deficiencies in WSMs and WMs. Moreover, this suggests that assessment of food adulteration risks can meaningfully inform the assessment of zoonotic disease risks at the market level. This observed correlation stands in contrast to the fact that zoonotic disease and food safety risks are currently regulated by different Chinese government organizations.

To accomplish this, the paper leverages a self-constructed dataset of 4.0 million public (passing and failing) records of food adulteration tests conducted by China’s state (central), provincial and prefecture-level Administrations for Market Regulation (AMRs), which are the primary organizations responsible for testing food products in WSMs/WMs. This dataset integrates all tests conducted between 2014 and 2020 and posted by the national AMR, all 31 provincial AMRs, and 273 of 333 prefecture AMRs, covering nearly all major cities and important agricultural areas. Data integrity was ensured through extensive pre-processing of the raw data, including deduplication of records to avoid double counting of food safety test records, assessing the reporting rates per location with respect to the population size, and more generally checking for other potential data anomalies, such as missing values (Full details about dataset creation can be found in the Supplementary Materials and our previous paper). Furthermore, this dataset is quite representative of true food adulteration risks throughout China, as the AMR agencies are legally required to publicly post all food test results on their respective websites. Moreover, AMR’s policy instructs a random sampling approach within each product category, which implies that the number of tests at each market is roughly proportional to the volume of products per respective category sold in the market. Finally, all AMR food safety tests conform to the same technical testing methods and standards defined in China’s national testing plan.

This dataset includes 79,177 test records of animal products associated with WSMs/WMs, and an innovative unsupervised clustering methodology is developed to associate each test record with its respective market. This methodology yields a list of WSMs/WMs in China, as well as a food adulteration risk score, for each market, which is equal to its respective failure rate in the AMR food safety test dataset. The high-risk markets are defined as the markets with top highest 20% food adulteration risk score (equals to the failure rate of AMR testing records associated with this market) among all markets. The total volume of animal products sold through high-risk markets in each province provides province-level risk scores. While these risk scores are not intended to capture all nuances of food safety tests, such as adjustments for specific types of animals tested, they create significant decision support information for regulators. Notably, there previously existed no publicly available and comprehensive list of WSMs/WMs in China, let alone a method for curating all AMR tests at each market. This motivates the creation of an operational tool to communicate information to regulators, policy makers, and academics.

The association of food adulteration risk scores to zoonotic disease risks is validated through two analyses. First, a carefully designed linear regression indicates that province-level risk scores correlate positively with respective number of zoonotic influenza isolates (cases) in humans identified from the OpenFlu database. This association holds when controlling for covariates, such as livestock production/slaughter, and distribution of markets in each province. An overview of the analysis is shown in Fig. 1. Second, specific markets associated with zoonotic outbreaks have higher risk scores than expected by chance. These analyses provide evidence that constructed risk scores give a single interpretable measure able to capture important aspects of both food adulteration and zoonotic disease risks at the market and province levels.

Materials and methods
Data. To assess food adulteration risk, the paper relies on a self-constructed dataset of food safety tests records conducted by China’s AMR. The AMR is the primary regulatory organization responsible for testing food products at WSMs and WMs. The state/province/prefecture AMRs are also required to publicly post all food test results on their respective websites by the State Council of China. Furthermore, the AMR follows a random sampling approach, meaning that the number of tests at each market is roughly proportional to the volume of products sold at the market, and that when AMR inspectors visit markets, they randomly select products for food safety testing. Additionally, all AMR food safety tests conform to the methods and standards defined in China’s national testing plan, including which adulterants to test for and what legal limits define a failing test. We have conducted several robustness checks and verified that there are actually slight decreases in the failure rate over time, which are statistically significant given the large amount of random sampling done by the AMR. Thus, these AMR food safety tests are comparable, and public postings offer an unbiased glimpse into food adulteration risks at various markets.

Note: According to the Chinese central government announcement (http://www.samr.gov.cn), the SAMR failure rate is very slowly declining over the last 5 years (2021 failure rate: 2.69%, 2020 failure rate: 2.31%, 2019 failure rate: 2.4%, 2018 failure rate: 2.42%; 2017 failure rate: 2.29%). This AMR dataset integrates and structures 4.0 million food safety tests conducted between 2014 and 2020 and collected from postings by the state AMR, all 31 provincial AMRs, and 273 of 333 prefecture AMRs, covering nearly all major cities and important agricultural areas. This constitutes the largest and most representative set of Chinese food safety tests anywhere in the literature. See Additional Details A for more details, including data fields used in the analysis.

To map zoonotic disease outbreaks, the OpenFlu database was used to measure the number of unique zoonotic (i.e., avian and swine influenza) influenza isolates (cases) found in humans in China. Limiting the OpenFlu database to human cases in China, between Jan 1, 2016 and Dec 31, 2019, there are 553 such isolates, including 366 linked to a specific province. Several other prominent zoonotic disease and influenza databases
were considered for analysis, including NIH’s Influenza Virus Resources, WHO's FluNet, and the Influenza Research Database, however other databases included either no Chinese data, insufficient geographic information for analysis (i.e., Chinese province), or insufficient data points for a statistical analysis of all provinces in China37–39.

\textit{Notes:} “The OpenFluDB isolates correspond to a unique "sample of a zoonotic flu virus sequence isolated from a human patient". Additionally, the data used in this analysis was reviewed in order to ensure each isolate also corresponded to a unique patient/case (although not necessarily a unique strain of virus).

To understand potential risks for zoonotic disease outbreaks, at markets with high food adulteration risk scores, Baidu searches (see details in Additional Details D1) are used to collect news stories related to system-level deficiencies at markets, such as illegal wild animal sales, sanitation, and lack of quarantine inspection for slaughtered animals. These deficiencies are unlikely to have direct effect on the food adulteration risk scores (i.e., AMR test failures due to adulteration).

Market-level food adulteration risk scores. To develop market-level food adulteration risk scores, 79,177 test records of animal products (e.g., poultry, pork) related to WSMs/WMs are extracted from the AMR dataset (see Additional Details A for details).

Associating each record with a specific market requires development of a new machine learning clustering algorithm. The challenge stems from several reasons. One is the lack of a publicly available, comprehensive list of markets, requiring unsupervised clustering of ‘similar’ records (i.e., from the same market). AMR records are also inconsistent in how they specify names(addresses of the respective businesses. A third challenge is that common string distance metrics (e.g., Levenshtein distance) used by unsupervised text clustering algorithms work poorly on Chinese text30. More specifically, traditional machine learning methods and existing packages designed for text in Chinese (e.g., the Python package Jieba) are already widely available. However, Jieba is more focused on tokenizing sentences into vocabularies (nouns, verbs, etc.) and doesn’t work well for clustering different groups of nouns. This presents a challenge for the task of associating test records with specific market, since both the records and the market names often consist of a collection of nouns and do not constitute sentences. In particular, the accuracy obtained by existing clustering packages was well below 50%. Addressing this challenge required the development of technical approaches complementary to the existing machine learning methodologies and packages (Jieba, Jaccard similarity scores, etc.). Specifically, an entirely new machine learning tokenization approach was developed, specifically designed for this problem, allowing the application of traditional clustering algorithms.
The new tokenization methodology relies on the specific structure of market names in Chinese text. Market names follow two conventions. The first convention is: "geographic keyword" + "proper name" + "market keyword" (e.g., 'Wuhan Huanan Seafood Market', with proper name 'Huanan'). The second convention is the same without "proper name" (e.g., 'Wuhan Vegetable Wholesale Market').

Notes: "geographic keyword" means geographic location, such as province/prefecture/county name, "proper name" stands for the unique part of the market name representing the specific market, "market keyword" is a keyword indicating the record relates to a market.

The clustering algorithm leverages this as follows. First, the 'geographic keyword' and 'market keyword' are identified through substring matching. Then, the substring between these, referred to as the 'potential proper name', is extracted. If there is no such substring, the assumption is that the record relates to a market without a proper name. Figure 2 visualizes this process.

Records are clustered within each prefecture, leveraging Jaccard similarity scores, with final clusters corresponding to unique markets (see Additional Details B for full details of the Jaccard similarity score calculations). Clustering accuracy is evaluated out-of-sample for all 10,270 market-related records from Zhejiang, Hunan, and Guangdong, marking an entire cluster and all associated records are marked as incorrect if there is a single identification mistake. Finally, risk scores for each market are calculated as the failure rates of the respective AMR tests. This is done for all markets with 20+ AMR tests, to ensure robustness of the failure rates. An additional check shows that risk scores are robust to potentially biased reporting in the AMR dataset (see Additional Details C for details).

Association between risk scores and zoonotic disease risks. The paper presents three analyses to establish the association between the food adulteration risk scores and zoonotic disease related risks.

First, a linear regression model is used to evaluate the association of the food adulteration risk scores with province-level risk of zoonotic disease outbreaks. Specifically, the dependent variable is defined as the province-level number of human isolates of zoonotic flu from the OpenFlu database (see "Materials and methods" section). The key independent variable is the total province-level number of AMR tests at high-risk markets (top 20% of risk scores). Because the AMR follows a random sampling approach, this is a proxy for the volume of animals sold through high-risk markets. Multiple control variables are included, most notably production/slaughter volumes by province, as well as the number of AMR tests of animals conducted at all markets in the province. Because OpenFlu isolates are related to avian/swine influenza, these variables should control against known transmission vectors. All model variables and descriptions are shown in Table 1.

Linear regression models are estimated in-sample using variables from Table 1. First, best-fit model is identified minimizing Akaike information criterion (AIC) across all combinations of variables. The benchmark model is identified likewise but excluding the key independent variable. AIC difference is compared, to heuristically evaluate model improvement. See Additional Details E for details related to linear regression data assumptions.

Second, risk scores of all specific markets associated with zoonotic disease outbreaks are considered. Under the null hypothesis (i.e., market risk scores are not associated with outbreaks), the market risk score percentiles for these markets distribute uniformly between 0 and 100%. The probability (one-sided test) that the two markets are in the top $x\%$ of risk scores, under the null hypothesis, is $p = \left(\frac{x}{100} \right)^2$.

Third, the paper evaluates association of market risk scores with existence of negative news related to system-level environmental and management deficiencies that are risk factors for zoonotic disease outbreaks (e.g., allowing sale of illegal wild animals—see Sect. 2a). The 40 highest-risk markets are each paired with a lower-risk market, from the same geography and with approximately the same number of AMR tests (see details in...
Additional Details D2). This results in 31 market pairs within the same prefecture, and the remaining within the same province. The 40 highest-risk markets have 2094 corresponding AMR tests, while low-risk markets have 2095 tests. Under the null hypothesis (i.e., market risk scores are not associated with incidence of news stories), the number of high-risk and low-risk markets with such news stories would respectively be drawn from an i.i.d. binomial distribution. Proportions can then be compared with a two-sample binomial test, to evaluate whether high-risk markets are more likely to have such negative news (one-sided test).

Results

Clustering results. The results of the clustering algorithm (assigning AMR records to specific markets) are shown in Table 2 below. Note that the 853 high-volume markets (i.e., 20+ AMR tests) cover 54% of all tests at markets and we chose those markets for our analysis. Because large markets consolidate 70–80% of the supply for most agricultural products, it follows from Table 2 that high-volume markets distribute a substantial amount of the animal supply.

Based on manual review, the out-of-sample clustering accuracy for all 10,270 market-related records from Zhejiang, Hunan, and Guangdong provinces is between 89.02 and 93.44% at the record-level, and 91.7% to 94.9% at the cluster-level (see Supplementary Materials for additional details).

After clustering, markets are assigned food adulteration risk scores equal to their respective failure rates in the AMR database. These risk scores were used to create an operational tool for regulators, communicating the results of this market risk score analysis. See Fig. 3 below for an overview of the market risk score tool.

Table 1. Predicting zoonotic outbreaks—dependent, independent, and control variables. The China Statistical Yearbook data is taken from the last available year (http://www.stats.gov.cn/english/).

Variable name	Description
Dependent variable	Total unique zoonotic influenza isolates reported in humans from 2016-01-01 to 2019-12-31 in the OpenFluDB
Independent variable	Total number of tests in the AMR database conducted at markets in the top 20% of risk scores
Control variables	Total number of tests in the AMR database conducted at markets
AMR failures at all markets	Total number of failures in the AMR database conducted at markets
AMR failure rate at all markets	Total failure rate of tests in the AMR database conducted at markets
AMR tests at all markets	Annual meat production in the China Statistical Yearbook (2019)
AMR tests at high-risk markets	Annual pork production in the China Statistical Yearbook (2019)
AMR tests at all markets	Annual poultry production in the China Statistical Yearbook (2018)
AMR tests at all markets	Annual slaughtered cattle in the China Statistical Yearbook (2018)
AMR tests at all markets	Annual slaughtered pigs in the China Statistical Yearbook (2018)
AMR tests at all markets	Annual slaughtered poultry in the China Statistical Yearbook (2018)
AMR tests at all markets	Annual slaughtered sheep and goats in the China Statistical Yearbook (2018)
AMR tests at all markets	From the China Meteorological Data Service Center (https://data.cma.cn/en)

Table 2. Clustering results: number of markets identified and distribution of tests per market. The first column represents different inclusion thresholds for markets to be included in the analysis as per the number of tests associated with the respective market. The 2nd to 5th columns provide statistics on the markets included in the group: number of markets in the group, the fraction these markets out of all markets, the total number of tests associated with markets in the group, the fraction these tests out of all tests and the average risk score of the markets in the group. For example, if we choose markets that have at least 100 tests (first row), then only 0.6% of all markets and 17% of all tests will be covered in our analysis. Selected markets are in bold.

Number of tests per market (n)	Number of markets with n+ tests (%)	Percent of markets covered (%)	Total number of tests at all markets with n+ tests	Percent of tests covered (%)	Average risk score
≥100	60	0.6	13,405	17.0	0.0435
≥20	853	9.1	42,664	54.0	0.0367
≥10	1908	20.4	56,766	71.8	0.0371
≥5	3533	37.8	67,544	85.5	0.0409
≥2	6818	72.8	76,481	96.8	0.0468
≥1	9354	100.0	79,022	100.0	0.0500
Association between provincial food adulteration risk scores and zoonotic disease risk. The correlation between province-level risk scores and respective zoonotic flu isolates (cases) in humans is shown in Fig. 4. A linear regression model is used to evaluate association of province-level risk scores with zoonotic influenza cases in humans, while controlling for covariates, such as livestock production, slaughter, and the distribution of markets in each province. All model variables and descriptions and the best-fit linear regression model are shown in Tables 1 and 3, respectively.

The best-fit model achieves an AIC of 268.59, and the benchmark model (only using control variables) an AIC of 275.33. This AIC improvement exceeds the common heuristic of 2.0 used to show model improvement. The in-sample coefficient of determination (R^2) improves from 0.421 to 0.534 with the addition of the key independent variable (number of AMR tests at high-risk markets). Furthermore, as observed in Table 3, the model coefficient for AMR tests at high-risk markets is significant ($p < 1 \times 10^{-5}$).

Risk scores at specific markets implicated in spreading zoonotic disease. Zoonotic disease outbreaks have been tied to specific markets twice per literature review. Specifically, the Wuhan Huanan Seafood Market, associated with the first COVID-19 cluster, is among the top 6% of risky markets. Likewise, the Beijing
Negative news was found for 27 out of 40 high-risk markets and 13 of 40 lower-risk markets, indicating statistical significance at the 90% and 99% level, respectively.

Published media news related to high-risk markets. Finally, the association of market risk scores with news related to system-level environmental and management deficiencies was analyzed, through a paired analysis of the 40 highest risk markets, and 40 lower risk markets normalized on geography and market size. Negative news was found for 27 out of 40 high-risk markets, and 40 lower risk markets normalized on geography and market size. Notably, two of the high-risk markets had news stories related to illegal sale of wild animals, which is especially risky for zoonotic disease.

Discussion and conclusion

While many researchers have noted the link between Chinese WSMs/WMs and zoonotic disease outbreaks, this has not led to many actionable recommendations. In fact, the only such recommendation identified in the literature was calls for closure of all WSMs and WMIs. However, this approach lacks practicality and would have serious secondary consequences because of the centrality of these markets in China’s food system. As noted in the introduction, these markets are major distribution points in the Chinese agricultural supply chain, consolidating 70–80% of supply for many agricultural products. Closing all markets would adversely affect the livelihood of millions of market vendors, farmers, and transporters.

Addressing an important need, this research provides an important foundation to a new and more targeted risk management approach to address zoonotic disease and food adulteration risks posed by WSMs and WMIs. Specifically, the paper develops individual market-level food adulteration risk scores based on publicly posted AMR data. Empirical analyses show that these risk scores correlate with zoonotic disease risks. First, it is shown that province-level risk scores are significantly associated with the respective number of zoonotic flu isolates identified in the province. It is also shown that market-level risk scores are significantly higher at markets associated with zoonotic disease outbreaks. These analyses support the hypothesis that food adulteration and zoonotic disease related risks are driven, at least partially, by common system-level environmental and management deficiencies in WSMs and WMIs. A media news analysis provides additional evidence that markets with high risk-scores are significantly more likely to have negative news related to sanitation or management deficiencies that directly drive zoonotic disease risk (e.g., allowing the illegal sales of wild animals), further supporting the hypothesis.

The methodology developed in this paper is also aligned with China’s current policy approach to food safety management and regulation. In recent years, the Chinese government has invested substantial efforts into improving food safety, notably by publishing food inspection results, and increasing transparency for both public complaints about food safety and media reporting, all with the goal of increasing access to relevant information. The analyses in this paper illustrate how this data could enable market-level risk assessment.

China has already acknowledged the strategic importance of WSMs and WMIs and has emphasized the need for improved food safety, notably by publishing food inspection results, and increasing transparency for both public complaints about food safety and media reporting, all with the goal of increasing access to relevant information. The analyses in this paper illustrate how this data could enable market-level risk assessment.

The work in this paper is not only a first-of-its-kind approach to use advanced data analytics for the identification of specific risky supply chain nodes (markets), but it also provides empirical evidence for the hypothesis that food adulteration and zoonotic diseases risks share common drivers, which can directly inform public health policies. While more research is needed to better understand this association and identify the specific risk drivers, this approach has the potential to offer entirely new ways of understanding why zoonotic disease outbreaks occur, as well as complementary regulatory approaches to reducing pandemic risks.

Table 3. Linear regression—model coefficients. Standard errors are reported in parentheses. *, ** indicate significance at the 90% and 99% level, respectively.
Data availability
All data, code, and materials used in the analysis are available upon request by the corresponding author. The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability
The code used for the analysis is also available from the corresponding author on reasonable request.

Received: 6 December 2021; Accepted: 5 December 2022
Published online: 15 December 2022

References
1. Zilberman, D., Goetz, R. & Alberto, G. Health and Animal Agriculture in Developing Countries (Springer, 2012).
2. Liu, Q., Cao, L. & Zhu, X. Q. Major emerging and re-emerging zoonoses in China: A matter of global health and socioeconomic development for 1.3 billion. Int. J. Infect. Dis. 25, 65–72 (2014).
3. Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302(5643), 276–278 (2003).
4. Zhang, N. S. et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 362(9933), 1353–1358 (2003).
5. Chen, J. D. et al. Brucellosis in Guangdong Province, People’s Republic of China, 2005–2010. Emerg. Infect. Dis. 19(5), 817–818 (2013).
6. Lam, T. T. et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 502(7470), 241–244 (2013).
7. Lee, S. S., Wong, N. S. & Leung, C. C. Exposure to avian influenza H7N9 in farms and wet markets. Lancet 381(9880), 1815 (2013).
8. Yu, H. et al. Effect of closure of live poultry markets on poultry-to-person transmission of avian influenza A H7N9 virus: An ecological study. Lancet 383(9916), 541–548 (2013).
9. Jin, C. et al. Testing at the source: Analytics-enabled risk-based sampling of food supply chains in China. Manag. Sci. 67(5), 2657–3320 (2021).
10. Exploring wet markets. Nat. Food 1, 241. https://doi.org/10.1038/s43016-020-0090-1 (2020).
11. Huaxia. China detects large quantity of novel coronavirus at Wuhan seafood market. http://www.xinhuanet.com/english/2020-01/21/c_138735677.htm (Xinhua Net, 2019).
12. Beijing Headline Client. 45 people and 40 environmental samples in Beijing Xinfadi Market tested positive for COVID19. https://7.com/2020-02-09/content_5364511.html (The State Administration for Market Regulation, 2020) (in Chinese).
13. Woo, P. C., Lau, S. K. & Yuen, K. Y. Infectious diseases emerging from Chinese wet-markets: Zoonotic origins of severe respiratory viral infections. Curr. Opin. Infect. Dis. 19(5), 401–407 (2006).
14. Mallapaty, S. China set to clamp down permanently on wildlife trade in wake of coronavirus https://www.nature.com/articles/d41586-020-00499-2 (2020).
15. State Administration for Market Regulation. Notice of the 2019 food safety sampling inspection plan. http://www.gov.cn/xinwen/2019-02/09/content_5364511.htm (The State Administration for Market Regulation, 2019) (in Chinese).
16. China Fishery Channel. Antibiotics were detected at the retail stalls despite all the random inspections at the wholesale market were passed. http://www.fishfirst.cn/article-115897-1.html (The China Fishery Channel, 2019) (in Chinese).
17. Webster, R. G. Wet markets—A continuing source of severe acute respiratory syndrome and influenza. Lancet 363(9404), 234–236 (2004).
18. Webster, R. G. Wet markets—A continuing source of severe acute respiratory syndrome and influenza. Lancet 363(9404), 234–236 (2004).
19. Neuman S. U.S. Pressures China to close wet markets thought to be source of COVID-19. https://www.npr.org/sections/coronavirus-live-updates/2020/04/23/842178810/u-s-pressures-china-to-close-wet-markets-thought-to-be-source-of-covid-19 (2020).
20. Chen, B., An, Y. & Liu, Y. Target model and priority in upgrading China’s agro-food wholesale market. Agric. Econ. 5, 107–110 (2006).
21. Duan, B., Hernandez, C., Richard, K., Gavin, T. & James, C. Extend existing food safety systems to the global wildlife trade. Lancet Planet. Health. 5(7), E402–E403 (2021).
22. Kuhlmann, K., Wang, M. & Zhou, Y. China food safety legal and regulatory assessment. https://www.synsategroup.org/sites/g/files/zhg576/f/china_food_safety-_legal_framework_2.pdf (Foundation for Sustainable Agriculture, 2019).
23. Ministry of Agriculture. Response to No. 3636 suggestion from the National People’s Congress. http://www.moa.cn/govpublic/ncpdaa/201708/20170803_5768512.htm (The Ministry of Agriculture of China, 2017) (in Chinese).
24. Chen, J. China food safety regulatory framework. https://www.raps.org/regulatory-focus%2E84%2A2/news-articles/2016/8/china-food-safety-regulatory-framework (Regulatory Affairs Professionals Society, 2016).
25. The Central People’s Government of the People’s Republic of China. Guidance on 2011 Food Safety Regulatory Focus from the State Council. http://www.gov.cn/zwgk/2011-03/25/content_1831345.htm (The Central People’s Government of the People’s Republic of China, 2011) (in Chinese).
26. Website of the State Administration of Market Supervision. Circular of the General Administration of Market Supervision on the comprehensive promotion of the “double random and one open” supervision work. http://www.gov.cn/xinwen/2019-02/15/content_5363318.htm (The State Administration of Market Supervision, 2019) (in Chinese).
27. Liechti, R. et al. OpenFluDB, a database for human and animal influenza virus. Database 2010, baq004. https://doi.org/10.1093/database/baq004 (2010).
28. Bao, Y. et al. The influenza virus resource at the National Center for Biotechnology Information. J. Virol. 82(2), 596–601 (2008).
29. FluNet (http://www.who.int/flunet), Global Influenza Surveillance and Response System (GISRS) https://apps.who.int/flumart/Default.aspx?ReportNo=12.
30. Influenza Research Database. Human Surveillance Data. https://www.fludb.org (2021).
31. Levenstein, V. I. Binary codes capable of correcting deletions, insertions, and reversals. Dokl. Akad. Nauk SSSR 163(4), 845–848 (1965).
32. Iaccard, P. Distribution de la Flore Alpine dans le Bassin des Dranes et dans quelques régions voisines. Bull. Soc. Vaud. Sci. Nat. 37, 241–272 (1901).
33. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
34. State Food and Drug Administration. Implementation opinions of the general administration of food and drug administration on promoting the openness of food and drug administration http://www.gov.cn/zhengce/2017-11/24/content_5242031.htm (The State Food and Drug Administration, 2017) (in Chinese).
Acknowledgements
We would like to thank Prof. Yasheng Huang, Prof. Yanchong Zheng, Dr. Stacy Springs, Prof. Anthony J Sinskey, and members in the MIT China Food Safety Research Group for their constructive comments on the paper. We also thank undergraduate researchers (Zhaorui Huang, Yaxin Liu, Ziyue Qian, Wenqi Yu) for their diligent efforts on the manual review process, MIT China Food Safety collaborators (Prof. Xiaowei Wen from South China Agricultural University and Prof. Jiehong Zhou from Zhejiang University) for providing background knowledge about wholesale market and wet market in China, MIT EAPS research scientist (Dr. Janusz J. Petkowski) for his help on understanding the OpenFlu database, MIT Food Safety researcher Yuze Sui for his excellent research assistance on literature review, Dr. Lu Chen for providing materials for literature validation, and the MIT Food Safety data engineers (Ben Batorsky, David Byun, Tuyen Duc Do) for their work on the AMR dataset. Finally, we would like to thank the anonymous refereeing team for their questions and constructive comments that improved the manuscript. This work was partially supported by a grant award from the Walmart Foundation.

Author contributions
Q.G., R.L., and N.R. collaborated on all aspects to propose the research question, design the research methods, conduct the empirical and statistical analysis, and write the manuscript. Author names are listed alphabetically.

Funding
This work was partially supported by a grant award from the Walmart Foundation.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-25817-8.

Correspondence and requests for materials should be addressed to R.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022