Response of Wheat Cultivars in Different Agricultural Practices Differed by Sowing Date

Ramesh Acharya1*, Santosh Marahatta1, and Lal P Amgain2

1Agriculture and Forestry University (AFU), Rampur, Chitwan, Nepal
2Institute of Agriculture and Animal Science, TU, Nepal

*Corresponding author’s email: acharya.afu@gmail.com; Telephone: +977 9845163589

Abstract
A field experiment with three wheat varieties at different sowing dates on two crop establishment methods was accomplished to identify the optimum sowing date at AFU Rampur during winter season of 2014/2015. Three wheat varieties namely: Tillotama, Danfe and Vijay sown on three dates: 14th November, 29th November, and 14th December under two crop establishment practices: Conservalional and conventional agriculture were evaluated with strip –split plot design in three replications. The field data on yield attributes and yields were collected. Earlier sowing on 14th November gave the highest yield (3427.15 kg ha-1), total dry matter (8154.44 kg ha-1), with longest days to crop maturation (133.11 days). In case of varieties, Vijay gave the highest grain yield (3458.61 kg ha-1) and total dry weight (4456.11 and 8832.42 kg ha-1 respectively) with earliest days to heading and maturity. The straw yield was the highest for 29th November sowing (5821 kg ha-1) and for Danfe variety (5756 kg ha-1). Vijay variety recorded the highest thousand grain weight (43.60 g) and highest harvest index (35.89%) even though with the lowest effective tillers per square meter (320.83), it proved to be the most promising variety.

Keywords: Wheat; date of planting; crop establishment; cultivars

Introduction
Wheat (Triticum aestivum L.) is one of the principal cereal crops of the world, growing in almost 215 million hectares of the land each year. It is the major staple food for the 2.5 billion people in 89 countries of the world and is the first in major three cereal crops for protein source in developing countries. The global wheat production for the year 2013 was 716 million tons, which was higher by 18.35% in comparison to the year 2007 (CIMMYT, 2013). China ranked the first among the wheat producers in the world with its share of 17.03% followed by India (FAO, 2013). Nearly US $50 billion-worth of wheat is traded globally each year (CIMMYT, 2013).

As wheat is the third important cereal crop after rice and maize in Nepal it plays a vital role in food security of the country. The area under wheat cultivation in Nepal is 0.7 million ha and the production is 1.8 million metric ton with the average productivity of 2.50 metric ton per hectare for the year 2013/14. This is mere 0.03% increase in area, but 9.01% increase in production comparing to the previous year (MoAD, 2015). The productivity of the wheat is far below than the world productivity i.e. 3.33 metric ton per hectare. The productivity of wheat in Nepal for the year 2015/16 was 2.59 tha-1, which include the wheat production of 1975625 tonnes in total area of 672373 ha.

The terai part of Nepal including the strip of Shivalik hills (0.6 million hectare) falls under the Indo-Gangetic plains (IGP) where rice-wheat is the major cropping system and 84% of the total wheat is cultivated after rice harvesting (Chauhan et al., 2012; Timsina and Conner, 2001). With the increasing population and purchasing power, demand on food has also increased which is impossible to meet with the present varieties, technologies and management practices. Use of resource-conserving technologies, innovations on residue use, use of suitable agronomic practices not only increase productivity and profitability but also reduce risk due to environmental and economic factors (Chauhan et al., 2012).
Conservation agriculture (CA) defined as the minimal soil disturbance (no-till or minimum till), and permanent soil cover (mulch or residue retention) combined with diversified rotations is a more sustainable cultivation system for the future (Hobbs et al., 2006). Adoptions of conservation agriculture based technology not only reduce the cost of cultivation and increased profit but also conserve the soil moisture for late stages of crops (Thierfelder and Wall, 2009). Wheat in case of Nepal is sown after rice and it grows and survives on the residual soil moisture, late monsoon rains and winter rain. Shrestha et al. (2013) simulated the rainfed yields of the wheat (1.7 t ha⁻¹) and showed that yields were predominantly constrained by water stress. Wheat in Nepal is generally sown from November to late December, and it is harvested in March-April (Joshi et al., 2007). The late planting is often due to difficulty in land preparation resulting by excess or lack of moisture, late maturing rice varieties or longer window period between rice harvesting and wheat sowing. So it is necessity to identify the optimum sowing dates for different varieties.

**Materials and Methods**

**Location**

The experiment was conducted at Agronomy Farm of the Agriculture and Forestry University (AFU), Rampur starting from November 2014 to April 2015. The average maximum temperature and the average minimum temperature for the cropping duration were 24.99°C and 13.09°C. The total rainfall during the cropping period was 119.70 mm. The maximum relative humidity for the cropping period was 69.24% and minimum was 17.15%.

**Experimental Details**

The experiment was laid out in Strip-split block design with the combination of 18 treatments comprising of two crop establishment methods in horizontal factor (conservation agriculture and conventional agriculture), three dates of sowing as vertical factor (November 14, November 29 and December 14, 2014) and three varieties as subplot factors (Tillotama, Danfe and Vijay). Each treatment was replicated thrice. Each individual subplot had 25 rows with spacing of 20 cm apart and total area of 4 m x 5 m. The central 10 rows with 8 m² area (10 x 0.2 m x 4 m) was treated as the net plot whereas inner 5 rows on the both sides of the plot were used for biometrical and phenological observations leaving single rows on both sides as the check boarder.

**Crop Management Practices**

The fertilizer was applied on the crops with the dose of 120:50:50 kg NPK ha⁻¹ through Urea, Di-Ammonium Phosphate and Muriate of Potash, respectively. The seeds were sown continuously in the rows spaced at 20 cm. Seed sowing was done on three dates. First sowing was done on November 14 supposed to be early sowing. The second sowing was conducted on 29th November for normal sowing whereas late planting was done on 14th December, 2014. Weed management was done by spraying 2,4-D at 1.4 kg a.i ha⁻¹ at 30 days after sowing for each dates.

**Yield and Yield Attributing Characters**

(i) Before harvesting, effective tillers per square meter was determined by counting the number of tillers from 2 entire lines of 4 m length from the net harvest area. These effective tillers were later worked out to express the number of effective tillers per meter square. (ii) Total number of grains were counted from twenty spikes and they were weighed in g. The mean was derived for weight and number of grains per spike. (iii) Total number of florets of twenty spikes of net plot was counted. The mean was derived for the number of florets per spike. (iv) Thousand kernels from each bulk of each net plot were separated and they were weighed in g with the help of electronic balance. (v) Total number of florets and number of grains per spike were counted from twenty randomly selected spikes from each plot before harvest, averaged and then sterility percentage were estimated using Lunde method as mentioned by Subedi et al., (1996) as follows.

\[
\text{Sterility Percentage} = \frac{\text{Number of florets per spike} - \text{Number of grains per spike}}{\text{Number of florets per spike}}
\]

**Grain and Straw Yield**

The net plot consisting of 10 rows each 4 m length was harvested for the record of grain yield. The net crop was dried, threshed, cleaned and sundried for 2 days to maintain moisture percentage. The yield obtained was computed for each treatment to obtain the yield per hectare. The straw yield was obtained by deducting the grain yield from total biomass yield. The grain yield from each net plot was checked for moisture percentage using moisture meter and then the grain yield from all the plots were adjusted at 12% moisture.

\[
\text{Grain yield (Kg ha}^{-1}) \text{ at 12\% moisture} = \frac{(100-MC)x \text{plot yield (kg)} \times 10000}{(100-12)x \text{net plot area}}
\]

Where MC = moisture content of the grain

**Harvest Index**

The harvest index (HI) was obtained by dividing the grain yield with the biological yield.

\[
\text{HI} = \frac{\text{grain yield} \times 100}{\text{grain yield} + \text{straw yield}}
\]

**Statistical Analysis**

All the collected data were entered into MS- Excel and further subjected to analysis of variance. GenStat and MSTAT-C package were used for the data analysis. All the data analyzed were put to DMRT for mean comparison by selecting 5% level of significance.
Results and Discussion

Yield Attributing Characters

Number of Effective Tillers per Square Meter

The number of effective tillers per meter square was also found insignificant for crop establishment methods and date of sowing. But it was higher in conservational agriculture than conventional one. The early sowing of wheat on 14\textsuperscript{th} November produced higher numbers of effective tillers than sowing at 29\textsuperscript{th} November and 14\textsuperscript{th} December. Variety Tillotama produced significantly higher effective tillers (344.15) than Vijay (307.58) but at par with Danfe (332.63). The average number of effective tillers per meter square was 328.12 (Table 1).

The effective tillers per meter square meter is not affected significantly by crop establishment methods as for the first season the difference between conservational and conventional agriculture was not drastic. The establishment methods means followed by common letter (s) are not significantly different among each other based on DMRT at 5\% level of significance which had also seen here with varieties Tillotama and Danfe producing significantly higher number of tillers than Vijay.

Number of Grains per Spike

The number of grains per spike was insignificant to establishment methods and sowing dates but varieties had significant influence. Comparatively higher number of grains per spike was recorded under conservation agriculture and delaying on sowing reduced the grains per spike. Vijay (43.60) had significantly higher number of grains per spike than Tillotama (34.59) and Danfe (34.85) (Table 1).

Number of grains per spike is one of the yield components which determine the grain yield. The decreasing number of grains per ears with delay in sowing date could be explained by the decreasing number of days from booting to ear emergence available for them due to change in weather conditions. As Bradley et al., (2008) mentioned number of grains per spike are determined before flowering, the temperature plays crucial role on prolonging the ear formation period. Fischer (2011) and Hochman (1982) also reported that 10-15 days prior to anthesis is crucial for the grain number formation and Dolferus (2011) revealed that abiotic stress like increasing temperature minimizes the grain number. The less number of days avail for grain number formation could also be evident by significant difference in days to heading for 3\textsuperscript{rd} date of sowing than earlier sowing. The variation in number of grains per spike for varieties is controlled by the genetic factors as Tillotama showed better performance than Danfe and Vijay.

Table 1: Number of effective tillers per square meter, number of grains per panicle, thousand grain weight (g) and sterility percentage (%) as influenced by establishment methods, sowing dates and varieties of wheat in 2014-15 at AFU, Rampur, Chitwan, Nepal

| Treatments        | Number of effective tillers per square | Number of grains per spike | Thousand grain weight (g) | Sterility percentage |
|-------------------|----------------------------------------|-----------------------------|---------------------------|----------------------|
| Establishment methods |                                        |                             |                           |                      |
| CA                | 329.35                                 | 30.38                       | 36.66                     | 42.23                |
| ConA              | 326.88                                 | 28.98                       | 38.71                     | 41.17                |
| SEm (±)           | 7.86                                   | 0.81                        | 0.83                      | 1.36                 |
| LSD(±),0.05       | ns                                     | ns                          | ns                        | ns                   |
| Sowing dates      |                                        |                             |                           |                      |
| 14\textsuperscript{th} Nov | 343.87                                 | 31.88                       | 38.06                     | 39.54                |
| 29\textsuperscript{th} Nov | 330.45                                 | 30.57                       | 38.02                     | 43.44                |
| 14\textsuperscript{th} Dec | 310.04                                 | 26.59                       | 36.96                     | 42.11                |
| SEm(±)            | 9.78                                   | 0.18                        | 0.95                      | 1.55                 |
| LSD(±),0.05       | ns                                     | 0.70                        | ns                        | ns                   |
| Varieties         |                                        |                             |                           |                      |
| Tillotama         | 344.15\textsuperscript{a}              | 32.51                       | 34.59\textsuperscript{b}  | 38.51\textsuperscript{a} |
| Danfe             | 332.63\textsuperscript{a}              | 27.45                       | 34.85\textsuperscript{b}  | 43.44\textsuperscript{b} |
| Vijay             | 307.58\textsuperscript{b}              | 29.07                       | 43.60 \textsuperscript{a} | 42.46\textsuperscript{b} |
| SEm (±)           | 14.13                                  | 0.98                        | 1.34                      | 1.09                 |
| LSD (=0.05)       | 25.16                                  | 2.87                        | 3.90                      | 3.18                 |
| CV, %             | 8.62                                   | 14.00                       | 15.10                     | 11.10                |
| Grand Mean        | 328.12                                 | 29.68                       | 37.68                     | 41.70                |

Note: CA, Conservation agriculture; ConA, conventional agriculture; ns, non-significance. Treatments means followed by common letter (s) are not significantly different among each other based on DMRT at 5\% level of significance.

This paper can be downloaded online at http://ijasbt.org&http://nepjol.info/index.php/IJASBT
**Thousand Grain Weight**

The thousand grain weight showed no influence by the difference crop establishment techniques and date of sowing but only by the cultivars. The thousand grain weight was higher for conventional agriculture than conservational agriculture and in case of sowing date the thousand grain weight decreased gradually with delay in seeding. The varieties showed significant effect on thousand grain weight and Vijay had highest thousand grain weight measured 43.60 g followed by Danfe and Tillotama while they are at par with each other weighing 34.85 and 34.59 g. The average thousand grain weight was found to be 37.68 g (Table 1).

The thousand grain weight is not significant for date of sowing and establishment methods. The thousand grain weight depends upon number of days available for grain filling and varietal genetic makeup. The thousand grain weight is not significantly different though delayed sown wheat varieties get less number of grain filling days and that might be due to differential grain filling rate which nullified the effect. In case of varieties, Vijay produced grains with significantly higher thousand grain weight was due to genetic reasons. Moreover, Bradley et al., (2008) reported that a crop with sparse shoot density produce more grains per ear and heavier grains than thick crop which is evident in case of Vijay as it had significantly lower number of effective tillers per square meter than two other varieties.

**Grain and Straw Yield and Harvest Index**

**Grain Yield**

Among the two tillage practices comprising conservational and conventional, no any significant difference was seen on yield. However, Wheat sown on 14th Nov had significantly higher yield of 3427.15 kg per hectare followed by 29th Nov and 14th Dec date of sowing with recorded yield of 3134.68 and 2544.78 kg per hectare respectively. Variety Vijay proved to be the highest yielder with yield 3458.61 kg per hectare which was at par with Tillotama with 3173.96 kg per hectare yield. Variety Danfe was significantly lower for yield than both of the varieties with the lowest recorded yield of 2474.02 kg per hectare (Table 2).

**Straw Yield**

The two different tillage systems showed no any significant difference for straw yield but conservational tillage had greater straw yield of 5494 kg per hectare. Wheat sown at 29th Nov had highest straw yield of 5821 kg per hectare which was at par with wheat sown on 14th Nov and significantly higher than wheat sown on 14th Dec. No varietal effect was seen significant for the straw yield though variety Danfe had highest straw yield of 5756 kg per hectare.

**Harvest Index**

The mean harvest index was found 32.32 percent and the tillage system had no effect on harvest index. The harvest index was seen maximum for the wheat sown on 14th Nov (35.02) which were significantly higher than wheat sown on 29th Nov (31.74). The harvest index of wheat on late planted condition, 14th Dec was found to be the lower significantly (30.21). Variety Vijay had significantly higher harvest index than variety Danfe but Tillotama was at par with it. (Table 3)

**Table 2: Grain yield (kg ha⁻¹) as influenced by establishment methods, sowing dates and varieties of wheat in 2014-15 at AFU, Rampur, Chitwan, Nepal**

| Treatments | Sowing date | Percent reduction in yield due to change in sowing dates |
|------------|-------------|--------------------------------------------------------|
|            | November 14 | November 29 | December 14 | Nov. 14 vs Nov. 29 | Nov. 29 vs Dec. 14 |
| CA         |             |             |             |                      |                      |
| Tillotama  | 3297.19     | 3573.26     | 2326.66     | -8.37                | 34.89                |
| Danfe      | 2983.94     | 2706.25     | 2259.6      | 9.31                 | 16.50                |
| Vijay      | 3995.63     | 3542.26     | 2756.37     | 11.35                | 22.19                |
| Mean       | 3425.59     | 3273.92     | 2447.54     | 4.43                 | 25.24                |
| ConA       |             |             |             |                      |                      |
| Tillotama  | 3974.65     | 2976.66     | 2895.36     | 25.11                | 2.73                 |
| Danfe      | 2670.91     | 2430.59     | 1792.84     | 9.00                 | 26.24                |
| Vijay      | 3640.56     | 3579.03     | 3237.83     | 1.69                 | 9.53                 |
| Mean       | 3428.71     | 2995.43     | 2642.01     | 12.64                | 11.80                |
| GrandMean  | 3427.15     | 3134.68     | 2544.78     | 8.53                 | 18.82                |

Note: CA, Conservation agriculture; ConA, conventional agriculture; ns, non-significance.
### Table 3: Grain and straw yield (kg ha⁻¹) and harvest index (%) as influenced by establishment methods, sowing dates and varieties of wheat in 2014-15 at AFU, Rampur, Chitwan, Nepal

| Treatments          | Grain yield (kg ha⁻¹) | Straw yield (kg ha⁻¹) | Harvest index (%) |
|---------------------|-----------------------|-----------------------|-------------------|
| Establishment methods |                       |                       |                   |
| CA                  | 3049.02               | 5427.00               | 32.63             |
| ConA                | 3022.05               | 5494.00               | 32.02             |
| SEm (±)             | 25.00                 | 160.90                | 0.90              |
| LSD(≥0.05)          | ns                    | ns                    | ns                |
| Sowing dates        |                       |                       |                   |
| 14th Nov            | 3427.15*a             | 5442.00*ab            | 35.02*c           |
| 29th Nov            | 3134.68*b            | 5821.00*             | 31.74*b           |
| 14th Dec            | 2544.78*c            | 5118.00*b            | 30.21*a           |
| SEm(±)              | 53.40                 | 97.20                 | 0.22              |
| LSD(≥0.05)          | 209.8                 | 381.80                | 0.87              |
| Varieties           |                       |                       |                   |
| Tillotama           | 3173.96*b            | 5314.00*b            | 33.94*b           |
| Danfe               | 2474.02*c            | 5756.00*             | 27.15*a           |
| Vijay               | 3458.61*a            | 5312.00*b            | 35.89*b           |
| SEm (±)             | 103.10                | 192.20                | 1.21              |
| LSD (≤0.05)         | 301.00                | ns                    | 3.54              |
| CV, %               | 14.40                 | 14.90                 | 15.90             |
| Grand Mean          | 3035.53               | 5461.00               | 32.32             |

Note: CA, Conservation agriculture; ConA, conventional agriculture; ns, non-significance. Treatments means followed by common letter (s) are not significantly different among each other based on DMRT at 5% level of significance.

The grain yield had been higher for conventional agriculture, which might be attributed by higher number of effective tillers per panicle produced and higher number of grains per spikes. The effects of CA on crop yield were variable (Farooq et al., 2011). In some instances, CA increased yield by improving soil fertility through soil and water conservation and sequestering organic carbon (Holland, 2004 and Govaerts et al., 2007). While under some instances, CA may have detrimental impacts on crop yield by altering soil physicochemical and biological conditions, such as decreasing soil temperatures in high latitude areas and seasons with low temperature and higher insect and disease incidence (Boomsma et al., 2010; Kaschuk et al., 2010 and Deubel et al., 2011). As all the yield attributing characters as number of effective tillers per square meter, number of grains per spike and thousand grain weight is higher for earlier sowing at 14th November, it is obvious and logically correct to have significantly greater grain yield than sowing at 29th November followed by 14th December. The longer crop duration and chance of escaping from terminal stress due to early sowing had been another reason for significant variation in grain yield. The variation within the varieties is purely genetic which showed Vijay is high yielder followed by Tillotama and Danfe.

The straw yield showed almost no difference for tillage differences whereas significant difference is seen for sowing date and varieties. The difference for straw yield for sowing date might be due to shorter vegetative period for delayed sowing, which resulted in less number of leaves, less tillers and less growth and development for delayed on sowing that resulted less straw yield. The varieties also showed the variation for straw yield. The variety Danfe had greater straw yield, significantly greater than Tillotama and Vijay could be the controlled by inbuilt genetic character. Moreover, the less harvest index of variety Danfe (27.15%) is evident enough to know that it had less photosynthates redistribution efficiency from stem and leaves to straw than two other variety (Table 3).

**Conclusion**

Wheat variety Vijay can be grown in conservation agriculture with higher yield and can also be sown up to 1st week of December. Earlier planting of the wheat in November 14 yield the highest production for the sowing date. Variety Vijay exceed the two other varieties for the wheat grain production but Danfe variety had highest straw production. The establishment method had no any influence on wheat yield and straw yield.

**Acknowledgement**

I would like to acknowledge Nepal Agriculture and Research development Fund (NARDF) for providing the research grant, Scientist Mahendra Tripati for his critical suggestions, and Dinesh, Naran, Nirip and Sudha for their support on field.
References

Boomsma CR, Santini JB, West TD, Brewer JC, McIntyre LM and Vyn TJ (2010) Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in long-term experiment. *Soil Till Res* **106**: 227–240 DOI: 10.1016/j.still.2009.12.006

Bradley S, Berry P, Blake J, Kindred D, Spink J, Bingham I, McVittie J and Foulkes J (2008) *The wheat growth guide*, HGCA

CBS. (2013) Central Beaura of Statistics, *Statistical Year Book of Nepal 2013*

Chauhan BS, Mahajan G, Sardana V, Timsina J and Jat ML (2012) Productivity and sustainability of the rice-wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies. *Advances in Agronomy* **117**(1): 315-369. DOI: 10.1016/B978-0-12-394278-4.00006-4

CIMMYT (2013) Wheat the vital grain of civilization and food security. *Wheat Annual report*

Deubel A, Hofmann B and Orzessek D (2011) Long-term effects of tillage on stratification and plant availability of phosphate and potassium in a loess chernozem. *Soil Till Res* **117**: 85–92. DOI: 10.1016/j.still.2011.09.001

Dolferus R, Ji X, and Richards RA (2011) Abiotic stress and control of grain number in cereals. *Plant Science* **181**(4): 331-341. DOI: 10.1016/j.plantsci.2011.05.015

FAO(2013). Food and Agriculture Organization of the United Nations, 2012. Available online at [http://www.fao.org/ag/ca/6c.html](http://www.fao.org/ag/ca/6c.html)

Farooq M, Siddique KHM, Rehman H, Aziz T, Dong-Jin L and Wahid A (2011) Rice direct seeding: Experiences, challenges and opportunities. *Soil Till. Res 111*: 87–98. DOI: 10.1016/j.still.2010.10.008

Fischer RA (2011). Wheat physiology: a review of recent developments. *Crop and Pasture Science* **62**(2):95-114. DOI: 10.1071/CP10344

Govaerts M, Siddique K, Lichter K, Dendooven Land Deckers J (2007) Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. *Plant Soil* **291**:39-54. DOI: 10.1007/s11104-006-9172-6

Hobbs P, Gupta R and Meisner C(2006). *Conservation agriculture and its applications in South Asia*. Cornell University. DOI: 10.1201/9781420017113.ch24

Hochman ZVI (1982) Effect of water stress with phasic development on yield of wheat grown in a semi-arid environment. *Field Crops Research* **5**:55-67. DOI: 10.1016/0378-4290(82)90006-5

Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. *Agriculture, Ecosystems and Environment* **103**: 1–25. DOI: 10.1016/j.agee.2003.12.018

Joshi A K, Mishra B, Chatrath R, Ferrara GO, and Singh RP (2007) Wheat improvement in India: present status, emerging challenges and future prospects. *Euphytica* **157**(3): 431-446. DOI: 10.1007/s10681-007-9385-7

Kaschuk G, Alberton O and Hungria M (2010) Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. *Soil Biol. Biochem* **42**: 1-13. DOI: 10.1016/j.soilbio.2009.08.020

MoAD (2015). Ministry of Agriculture and Development, Agribusiness Promotion and Statistics Division, Kathmandu, Nepal, *Statistical information on Nepalese Agriculture 2015*

Reddy TY and SankaraReddi GH (2005) *Principles of agronomy* Kalyani Publishers, Ludhiana, India.

Shrestha N, Raes D, Vanuytrecht E, & Sah SK (2013). Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling. *Agricultural water management* **122**: 53-62. DOI: 10.1016/j.agwat.2013.03.003

Subedi KD, Budhathoki CB, Subedi M and Sthapit BR (1996) Overview of wheat sterility problems and research findings to date in the western hills of Nepal. In *ACIAR PROCEEDINGS* 119-126.

Thierfelder C and Wall PC (2009) Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. *Soil and tillage research* **105**(2): 217-227. DOI: 10.1016/j.still.2009.07.007

Timsina J and Connor DJ (2001) Productivity and management of rice–wheat cropping systems: issues and challenges *Field crops research* **69**(2): 93-132. DOI: 10.1016/S0378-4290(00)00143-X