Respiratory muscle training with enzyme replacement therapy improves muscle strength in late-onset Pompe disease

Jevnikar Mitja a, b, Kodric Metka b, Cantarutti Fabiana a, Rossella Cifaldi a, Cinzia Longo d, Della Porta Rossana a, Bembali Bruno b, Confalonieri Marco a

a Department of Pneumology, University Hospital of Cattinara, Trieste, Italy
b Rare Diseases Regional Centre, University Hospital “S. Maria della Misericordia”, Udine, Italy

crossMark

1. Background

Pompe disease is an inherited autosomal recessive disorder caused by the deficiency of the enzyme acid α-glucosidase (GAA), which leads to an intralysosomal accumulation of glycogen in various tissues, especially skeletal muscle [1]. The disease occurs in approximately 1 per 40,000 births and causes a progressive myopathy. Based on the time of symptom development, the disease is typically classified as early-infantile onset (IOPD) with absence or nearly loss of GAA activity resulting in cardiomyopathy and muscle hypotonia and poor prognosis without therapy or late-onset childhood, juvenile or adult form (LOPD).

The late-onset type usually involves the proximal muscles and the respiratory muscles with progressive respiratory muscle weakness, night-time respiratory difficulty, progressive hypoventilation, as well as abnormal laboratory data including polycythemia, rise of carbon dioxide (pCO₂) in blood, thus potentially leading to respiratory failure [2]. In some cases, respiratory insufficiency may be present without limb-girdle muscle weakness [3]. The degree of involvement of respiratory muscles is evaluated by pulmonary function tests (forced vital capacity [FVC], maximum inspiratory pressure [MIP], and maximum expiratory pressure [MEP]), sleep assessment, and blood gas analysis [4]. The main treatment option is enzyme replacement therapy (ERT) [5,6]. Guidelines for physiotherapeutic management of muscular respiratory weakness are not available; however, current recommendations suggest following the guidelines of other neuromuscular disorders [7] in order to maintain muscular and respiratory function, prevent complications and preserve the highest level of autonomy. Studies on muscle training and rehabilitation in patients with Pompe disease recommend aerobic and sub-maximal exercise to stimulate the degradation of the glycogen accumulation in the lysosomes of muscle tissue [8] (in the absence of GAA activity).

The effectiveness of respiratory muscle training was investigated using a specific appliance with adjustable resistance (Threshold). The primary endpoint was effect on respiratory muscular strength by measurements of MIP and MEP. Eight late-onset Pompe patients (aged 13 to 58 years; 4 female, 4 male) with respiratory muscle deficiency on functional respiratory tests were studied. All patients received ERT at the dosage of 20 mg/kg/every 2 weeks and underwent training with Threshold at specified pressures for 24 months.

Results: A significant increase in MIP was observed during the follow-up of 24 months: 39.6 cm H₂O (+25.0%) at month 3; 39.5 cm H₂O (+24.9%) at month 6; 39.1 cm H₂O (+23.7%) at month 9; 37.3 cm H₂O (+18.2%) at month 12; and 37.3 cm H₂O (+17.8%) at month 24. Median MEP values also showed a significant increase during the first 9 months: 29.8 cm H₂O, (+14.3%) at month 3; 31.0 cm H₂O (+18.6%) at month 6; and 29.5 cm H₂O (+12.9) at month 9. MEP was then shown to be decreased at months 12 and 24; median MEP was 27.2 cm H₂O (+4.3%) at 12 months and 26.6 cm H₂O (+1.9%) at 24 months. The FVC remain stable throughout the study.

Conclusion: An increase in respiratory muscular strength was demonstrated with Threshold training when used in combination with ERT.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
glycogen accumulated in cytosol [8]. Maximal muscular exercise is considered dangerous because it could lead to greater muscle degeneration [9]. Training protocols for neuromuscular diseases have been proposed since disease-specific programs are lacking. These procedures require the use of sub-maximal and aerobic exercise to avoid excessive work and to take advantage of functional activities; cardiopulmonary response should also be monitored [10]. The potential benefits of pulmonary rehabilitation or training of respiratory muscles in late onset Pompe disease are not yet known. There is only a single report available of respiratory muscle training showing an improvement in expiratory and inspiratory strength after a short training period [11].

2. Methods

We performed a longitudinal, observational study that was approved by the Ethics Committee of the Hospital of Cattinara (Trieste, Italy) and conducted between March 2007 and November 2011 all eight patients completed the study protocol of 24 months of training. This study aims at evaluating the effectiveness of inspiratory muscle training using a specific device with adjustable resistance (Threshold, RespirationInc, Inc.; below: threshold) in patients with late-onset Pompe disease (LOPD) receiving ERT. The study included 8 patients and the inclusion criteria were diagnosis with LOPD, determined by lack of GAA enzyme activity below:Threshold) in patients with late-onset Pompe disease (LOPD) receiving ERT. The study included 8 patients and the inclusion criteria were diagnosis with LOPD, determined by lack of GAA enzyme activity below:Threshold) in patients with late-onset Pompe disease (LOPD) receiving ERT. The study included 8 patients and the inclusion criteria were diagnosis with LOPD, determined by lack of GAA enzyme activity (Micro MPM 8 (Micro Medical Limited, Rochester, England). Forced vital capacity (FVC) in sitting position and clinical examination using the modified Gardner–Medwin–Walton scale to determine the grade of autonomy were also evaluated.

2.1. Training device

The threshold is a device that exerts training of the inspiratory muscles against fixed resistance based on the technique developed by Nickerson and Keens [12]. In this disease training with threshold has been recommended because of its ability to maintain a constant resistance regardless of breathing rate. The positive effects of inspiratory muscle training with threshold are recognized in obstructive pulmonary diseases [13,14,15], myasthenia gravis [16], amyotrophic lateral sclerosis [17], diaphragmatic dysfunction [18], congestive heart failure [19], as well as patients weaned from mechanical ventilation [20].

2.2. Training protocol

At the first visit, patients were instructed to perform the training protocol with medical and physiotherapy supervision. In the case of pediatric patients, the family and parents were also educated on the protocol. The following was used for the threshold training protocol:

Training cycle: 1' inspiratory load set at 30% of best MIP, followed by 2' deep slow breathing. The patient was instructed to perform 15 training cycles per day for 45 min (15' at 30% of MIP and 30' at rest with deep slow breathing) 7 days/week.

The inspiratory load varied according to the MIP percentage at each control visit. The load was adjusted according to the most recent, highest MIP measure. If 30% of best MIP was below the minimum load available for the threshold, the device was regulated at the minimum value. However, the patient was asked to initially maintain the training load for 30', with the same resting period. If the MIP increased during training, an increase in workload was added to obtain the 30% of the best MIP. Compliance with the training protocol was evaluated under medical supervision on each control visit with the presence of the physiotherapist. The patients were interviewed weekly between control visits to check and support the compliance at home. Furthermore, proper use of the threshold was evaluated during each administration of ERT. The primary end-point was to determine the efficacy of the training by improvement in MIP as well as pulmonary function tests at each control visit. Standard descriptive statistics were used to analyze the demographic and clinical characteristics of the patients at baseline. The One Way repeated measures ANOVA with the Sigma Stat program was used to compare MIP, MEP, and FVC from baseline to 3, 6, 9, 12 and 24 months. A two-tailed p value <0.05 was considered significant.

3. Results

Between March 2007 and November 2011 all eight patients completed the study protocol of 24 months of training. All patients were receiving ERT during the study and none were on ventilatory support or bedridden. The demographic and clinical characteristics of the 8 patients at baseline are shown in Table 1. show the values of MIP, MEP, and FVC measured at baseline and at follow-up visits for each patient.

3.1. Pulmonary function

At baseline, the mean (SD) MIP was 31.6 cm H2O (SD: ±17.7). The average improvement from baseline in MIP at 3 months (mean: 39.6 cm H2O [SD: ±20.5]) was +25.2%, at 6 months (mean: 39.5 cm H2O [SD: ±20.1]) was +24.9%, at 9 months (mean: 39.1 cm H2O [SD: ±20.1]) was +23.7%, at 12 months (mean 37.3 cm H2O; [SD: ±19.6]) was +18.2%, and at 24 months (mean: 37.2 cm H2O; [SD: ±19.3]) was +17.8% in our group of patients (Fig. 1).

The difference in MIP between baseline and follow-up visits was statistically significant (p<0.008). At 3 and 24 months, MIP values were

Table 1

Patient	PFT 6–8 months before	Baseline	3 months	6 months	9 months	12 months	24 months
MIP	50	50	53	51	55	50	47
MEP	44	43	49	46	47	46	48
FVC	79	79	81	78	76	80	88
MIP	22	12	17	15	14	15	18
MEP	30	10	12	13	12	10	10
FVC	33	32	31	30	29	27	27
MIP	61	12	15	16	19	15	14
MEP	70	13	14	15	18	19	17
FVC	48	42	46	43	41	38	40
MIP	34	30	35	33	32	31	35
MEP	40	18	24	26	20	21	26
FVC	81	86	75	88	83	80	92
MIP	30	63	74	74	73	70	74
MEP	48	43	51	49	48	45	45
FVC	62	51	65	60	55	58	57
MIP	36	35	58	59	55	56	50
MEP	68	41	48	49	45	43	41
FVC	25	23	25	21	17	19	21
MIP	34	24	29	33	35	31	31
MEP	62	30	31	29	26	15	12
FVC	30	23	29	20	25	24	28
MIP	28	27	36	35	30	31	29
MEP	34	17	20	21	20	19	21
FVC	40	35	37	32	34	31	30
comparable, demonstrating that the improvement remained stable over the course of the study (p < 0.05; Table 5). MEP was also evaluated. At baseline, the mean (SD) were 26.1 cm H₂O (SD: ±14). There was a statistically significant increase in MEP from baseline at 3 months by +14.3% (mean: 29.8 cm H₂O; [SD: ±16.5]), 6 months (+18.6%; mean: 31 cm H₂O; [SD: ±15]), and 9 months +12.9% (mean: 29.5 cm H₂O; [SD: ±14.7]). However, there was no statistically significant improvement compared to baseline at 12 months +4.3% (mean: 27.2 cm H₂O [13.8]) and at 24 months +1.9% (mean: 26.6 175 cm H₂O; [SD: ±14.2]) (Fig. 2). To check the real benefit of Threshold training the MIP and MEP values were also taken in a period of 6 to 8 months before the beginning of the study. In this period the patient were only under enzyme treatment. The MIP mean was 33.2 cm H₂O instead of 31.6 cm H₂O of the baseline values. These data are not statistically different. This means that the MIP and MEP values are stable before the beginning of the study. FVC was also evaluated. At baseline, the percentage of the predicted value of FVC had a mean (SD) of 46.3%(SD: ±24.2). FVC remained stable at 3 months (48.6%), 6 months (46.5%), 9 months (45%), 12 months (44.6%) and 24 months (47.8%). There were no detectable improvements during the study. (Fig. 3). Patients were assessed for dyspnea grade and clinical examination using the modified Gardner–Medwin–Walton scale for the grade of autonomy at baseline and after each control visit. At baseline, the modified Gardner–Medwin–Walton scale was between Grades 4 and 5. No modification of dyspnea symptoms was observed. Grade values remained stable throughout the study.

4. Discussion

Our data show that respiratory muscle training with threshold preserves and improves inspiratory muscle strength in patients with LOPD. Some examples can be found in the literature for training rehabilitation with Threshold. In this study we observed that MIP significantly improved in our study population and this improvement appeared to remain stable in the subsequent follow-up period. At the beginning of the study some individual response are different, this can be explicate with the adapting in training program and procedure for monitoring pulmonary functional tests. This finding indicates that patient compliance was reliable.

Decline in respiratory strength is the most important prognostic factor in patients with LOPD. Natural progression of respiratory muscle weakness in Pompe disease in the absence of treatment has been estimated at a decrease of 3.2% in MIP per year [21]. ERT may itself stabilize respiratory function [22,23]. However, we cannot assess the effect of the training alone since all the patients were treated with ERT. Furthermore, evaluation of MEP showed a positive trend even though the patients did not undergo specific training for these muscles. Our data confirm a previous observation of two case reports by Jones et al. [11] who demonstrated a favorable effect of specific individual respiratory muscle training for several weeks in two patients. However, the patients in this study were followed up to 24 months and the observed benefits did not persist during this period. MIP and MEP were chosen as the primary end-
Late-onset Pompe disease. We observed a significant increase in inspiratory muscle strength in patients with LOPD disease showed a favorable pattern of response in muscle strength, including respiratory parameters, but further studies are needed to confirm these results.

5. Conclusion

Respiratory muscle training with threshold in combination with ERT showed a positive effect on inspiratory muscle strength in patients with late-onset Pompe disease. We observed a significant increase in respiratory muscle strength in the first year in our study population and this improvement appeared to remain stable in the subsequent follow-up period. A larger randomized controlled trial is needed to confirm these results.

5.1. Consent

Written informed consent was obtained from the patients and patient's parents (in one case of non-adult patient) of kin for the publication of this report.

Abbreviations

ERT enzyme replacement therapy
FVC forced vital capacity
GAA glucosidase acid alpha
LOPD late-onset Pompe disease
MEP maximal expiratory pressure
MIP maximal inspiratory pressure
pCO2 partial pressure carbon dioxide
SD standard deviation
cm H2O centimeter of water
l/s liters per second
Micro MPM 8 Micro Medical Limited, Rochester, England

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Study concept and design: MJ, MC. Acquisition of data: MJ, FC, MK, RC, CL, RDP, GA.
Analysis and interpretation of data: MJ, MK, FC, RC, CL, BB, MC.
Drafting of the manuscript: MJ, MK, BB, MC. Critical revision of the manuscript: all authors. Statistical analysis: MJ, MK, MC. Study supervision: BB, MC. All authors read and approved the final manuscript.

Acknowledgments

The authors would like to thank the patients and their families for the collaboration.

References

[1] N Raben, P Plotz, B.J. Byrne, Acid a-glucosidase deficiency (glycogenosis type II, Pompe disease), Curr. Mol. Med. 2 (2002) 145–166.
[2] P.S. Kishnani, R.D. Steiner, D. Bali, K. Berger, B.J. Byrne, L.E. Case, et al., Pompe disease diagnosis and management guideline, Genet. Med. 8 (2006) 267–288.
[3] N. Pellegrini, P. Lafont, D. Orlikowski, M. Pellegrini, C. Caillaud, B. Eymard, J.C. Raphael, F. Lefaso, Respiratory insufficiency and limb muscle weakness in adults with Pompe’s disease, Eur. Respir. J. 26 (6) (2005 Dec) 1024–1031.

[4] A.T. Van der Ploeg, Monitoring of pulmonary function in Pompe disease: a muscle disease with new therapeutic perspectives, Eur. Respir. J. 26 (2005) 984–985.

[5] P.S. Kishnani, M. Nicolino, T. Voit, R.C. Rogers, A.C. Tsai, J. Waterston, et al., Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease, J. Pediatr. 149 (2006) 89–97.

[6] A.T. Van der Ploeg, P. Clemens, D. Corzo, D. Escolar, J. Florence, G. Groeneveld, et al., A randomized study of alglucosidase alfa in late-onset Pompe’s disease, N. Engl. J. Med. 362 (2010) 1396–1406.

[7] E.J. Cupler, K.I. Berger, R.T. Leshner, G.I. Wolfe, J.J. Han, R.J. Barohn, J.T. Kissel, AANEM consensus committee on late-onset Pompe disease. Consensus treatment recommendations for late-onset Pompe disease, Muscle Nerve 45 (3) (2012 Mar) 319–333.

[8] L.E. Case, P.S. Kishnani, Physical therapy management of Pompe disease, Genet. Med. 8 (2006) 318–327.

[9] L.E. Case, P.S. Kishnani, Physical therapy management of Pompe disease, Genet. Med. (2006).

[10] W.M. Fowler, Role of physical activity and exercise training in neuromuscular diseases, Am. J. Phys. Med. Rehabil. 81 (2002) S187–S195.

[11] H.N. Jones, T. Moss, L. Edwards, P.S. Kishnani, Increased inspiratory and expiratory muscle strength following inspiratory muscle strength training (RMST) in two patients with late-onset Pompe disease, Mol. Genet. Metab. 104 (2011) 417–420.

[12] B.G. Nickerson, T.G. Keens, Measuring ventilatory muscle endurance in humans as sustainable inspiratory pressure, J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 52 (3) (1982) 768–772.

[13] M.A. Nield, Inspiratory muscle training protocol using a pressure threshold device: effect on dyspnea in chronic obstructive pulmonary disease, Arch. Phys. Med. Rehabil. 80 (1) (Jan 1999) 100–102.

[14] A. Dornelas de Andrade, T.N.S. Silva, H. Vasconcelos, M. Marcelino, M.G. Rodrigues-Machado, V.C. Galindo Filho, N.H. Moraes, P.E.M. Marino, C.F. Amorim, Inspiratory muscular activation during threshold® therapy in elderly healthy and patients with COPD, J. Electromyogr. Kinesiol. 15 (2005) 31–639.

[15] T.A. Scherer, C.M. Spengler, D. Owaasianap, E. Imhof, U. Boutellier, Respiratory muscle endurance training in chronic obstructive pulmonary disease: impact on exercise capacity, dyspnea, and quality of life, Am. J. Respir. Crit. Care Med. 162 (5) (Nov 2000) 1709–1714.

[16] P. Weiner, D. Gross, Z. Meiner, R. Ganem, M. Weiner, D. Zamir, M. Rahner, Respiratory muscle training in patients with moderate to severe myasthenia gravis, Can. J. Neurol. Sci. 25 (3) (Aug 1998) 236–241.

[17] B.C. Cheah, R.A. Boland, N.E. Brodaty, M.C. Zoing, S.E. Jeffery, D.K. McKenzie, M.C. Kiernan, Inspirational—inspiratory muscle training in amyotrophic lateral sclerosis, Amyotroph. Later. Scler. 10 (5–6) (Oct-Dec 2009) 384–392.

[18] M. Kodric, R. Trevisan, C. Torreggiani, R. Cifaldi, C. Longo, F. Cantarutti, M. Conflalonieri, Inspiratory muscle training for diaphragm dysfunction after cardiac surgery, J. Thorac. Cardiovasc. Surg. 145 (2013) 819–823.

[19] P. Weiner, J. Waizman, R. Magadle, N. Berar-Yanay, B. Pelled. The effect of specific inspiratory muscle training on the sensation of dyspnea and exercise tolerance in patients with congestive heart failure, Clin. Cardiol. 22 (11) (Nov 1999) 727–732.

[20] A.D. Martin, B.K. Smith, P.D. Davenport, E. Harman, R.J. Gonzalez-Rothi, M. Baz, A.J. Layon, M.J. Banner, L.J. Caruso, H. Denehrage, T.T. Huang, A. Gabrielli: Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial, Crit. Care 15 (2) (2011) R84.

[21] N.A. Van der Beek, C.I. Van Capelle, K.I. Van der Velden-van Ettik, W.C. Hop, B. Van den Berg, A.J. Reuser, P.A. an Doorn, A.T. van der Ploeg, H. Stam, Rate of progression and predictive factors for pulmonary outcome in children and adults with Pompe disease, Mol. Genet. Metab. 104 (1–2) (2011 Sep-Oct) 129–136.

[22] W.M. Wochenschr, I. Schneider, F. Hanisch, T. Müller, B. Schmidt, S. Zierz, Respiratory function in late-onset Pompe disease patients receiving long-term enzyme replacement therapy for more than 48 months, Jan 2013 1 (Epub 2012 Nov 19).

[23] B. Bembi, et al., Long-term observational, non-randomized study of enzyme replacement therapy in late-onset glycogenosis type II, J. Inherit. Metab. Dis. (24 August 2010).