Some invariant properties of quasi-Möbius maps

Lorenzo Heer

February 27, 2018

Abstract

We investigate properties which remain invariant under the action of quasi-Möbius maps of quasi-metric spaces. A metric space is called doubling with constant D if every ball of finite radius can be covered by at most D balls of half the radius. It is shown that the doubling property is an invariant property for (quasi-)Möbius maps. Additionally it is shown that the property of uniform disconnectedness is an invariant for (quasi-)Möbius maps as well.

Keywords Möbius structures, doubling property, quasi-Möbius maps, uniform disconnectedness

Mathematics Subject Classification 30C65, 53C23, 54F45

1 Introduction

Let (X, d) be a metric space. X is doubling if there exists a constant $D > 0$, such that every ball of finite radius can be covered by at most D balls of half the radius. X is uniformly disconnected if there exists a constant $\theta < 1$, such that X contains no θ-chain, i.e. a sequence of (at least 3 distinct) points (x_0, x_1, \ldots, x_n) such that

$$d(x_i, x_{i+1}) \leq \theta d(x_0, x_n).$$

A map $f : (X, d) \to (Y, d')$ is quasi-Möbius if it is a homeomorphism and there exists a homeomorphism $\nu : [0, \infty) \to [0, \infty]$, such that for all quadruples $Q = (x_1, x_2, x_3, x_4)$ of distinct points of X and $Q' := (f(x_1), f(x_2), f(x_3), f(x_4))$,

$$\text{cr}(Q', d') \leq \nu(\text{cr}(Q, d))$$

holds. Here the cross-ratio cr is given by

$$\text{cr}(Q, d) := \frac{d(x_1, x_3)d(x_2, x_4)}{d(x_1, x_4)d(x_2, x_3)}.$$

The aim of this paper is to prove the following two theorems:
Theorem 1 (Invariance of doubling under quasi-Möbius maps). Let \((X, d)\) be a doubling space. Let \(f : (X, d) \to (Y, d')\) be a quasi-Möbius homeomorphism. Then \((Y, d')\) is doubling.

Theorem 2 (Invariance of uniform disconnectedness under quasi-Möbius maps). Let \((X, d)\) be a metric uniformly disconnected space and let \(f : (X, d) \to (Y, d')\) be a quasi-Möbius homeomorphism. Then \((Y, d')\) is uniformly disconnected.

The results are related to results of Lang-Schlichenmaier [5] and Xie [11] who proved that quasi-symmetric maps respectively quasi-Möbius maps preserve the Nagata dimension of metric spaces. The present work has been inspired by the article of Xie [11] and the work of Väisälä [10]. We note that a space is doubling if and only if it has finite Assouad dimension [7]. However the Assouad dimension is not a quasi-symmetric (and therefore also not a quasi-Möbius) invariant [9].

We would like to note that we have been informed that Theorem 1 is also a consequence of a published result of Li-Shanmugalingam [6].

It is well known that uniform disconnectedness is invariant under quasi-symmetric maps [7, 4]. However its behaviour under quasi-Möbius maps has not been studied before.

The related property of uniform perfectness has been shown to be invariant under the metric inversion in [8]. It is therefore also invariant under quasi-Möbius maps.

In Appendix A we prove a slight generalization of Theorem 1 and Theorem 2 for \(K\)-quasi-metric spaces.

Acknowledgments

The author would like to thank Viktor Schroeder and Urs Lang for several helpful discussions.

2 Basic Definitions and Preparations

We introduce the necessary definitions which we will require later.

2.1 Extended Metrics

Let \(X\) be a set with cardinality at least 3. We call a map \(d : X \times X \to [0, \infty]\) an extended metric on \(X\) if there exists a set \(\Omega(d) \subset X\) with cardinality 0 or 1 and furthermore all of the following requirements are satisfied:

1. \(d_{|X\setminus\Omega(d) \times X\setminus\Omega(d)} : X\setminus\Omega(d) \times X\setminus\Omega(d) \to [0, \infty]\) is a metric;

2. \(d(x, \omega) = d(\omega, x) = \infty\) for all \(x \in X\setminus\Omega(d)\) and \(\omega \in \Omega(d)\);
3. \(d(\omega, \omega) = 0 \) for \(\omega \in \Omega(d) \).

If \(\Omega(d) \) is non empty we call \(\omega \in \Omega(d) \) the infinitely remote point of \(X \). By abuse of notation we may write \(\infty \) for the point \(\omega \).

2.2 Doubling Property

We call a metric space doubling with constant \(D \) if every ball of finite radius can be covered by at most \(D \) balls of half the radius.

2.3 Uniform Disconnectedness

For \(\theta < 1 \) we call a sequence of (at least 3 distinct) points \((x_0, x_1, \ldots, x_n)\) in a metric space \((X, d)\) a \(\theta \)-chain if

\[
d(x_i, x_{i+1}) \leq \theta d(x_0, x_n)
\]

holds for all \(i \in \{0, 1, \ldots, n - 1\} \). A metric space is called uniformly disconnected with constant \(\theta \) if it contains no \(\theta \)-chains.

2.4 Quasi-Möbius and Quasi-Symmetric Maps

We call a homeomorphism \(f : (X, d) \to (Y, d') \) \(\nu \)-quasi-symmetric if for all pairwise distinct \(x_1, x_2, x_3 \in X \) we have

\[
\frac{d'(f(x_1), f(x_2))}{d'(f(x_1), f(x_3))} \leq \nu \left(\frac{d(x_1, x_2)}{d(x_1, x_3)} \right).
\]

A homeomorphism \(f : (X, d) \to (Y, d') \) is called quasi-symmetric if it is \(\nu \)-quasi-symmetric for some homeomorphism \(\nu : [0, \infty[\to [0, \infty[\). It is called symmetric if for all pairwise distinct \(x_1, x_2, x_3 \in X \) we have

\[
\frac{d'(f(x_1), f(x_2))}{d'(f(x_1), f(x_3))} = \frac{d(x_1, x_2)}{d(x_1, x_3)}.
\]

3 Invariance of Doubling Property

3.1 Preparations for the Proof

For the proof we need the following proposition of Xie and a result of Väisälä which we cite verbatim

Proposition 1 (Proposition 3.6 in [11]). Let \(f : (X_1, d_1) \to (X_2, d_2) \) be a quasi-Möbius homeomorphism. Then \(f \) can be written as \(f = f_2^{-1} \circ f' \circ f_1 \), where \(f' \) is a quasi-symmetric map, and \(f_i \) for \(i \in \{1, 2\} \) is either a metric inversion or the identity map on the metric space \((X_i, d_i)\).

\[1\] And therefore also no \(\theta' \)-chains for any \(\theta' \leq \theta \).
Proposition 2 (Theorem 3.10 in [10]). Let \((X, d)\) be an unbounded metric space and let \(f : X \to Y\) be a quasi-Möbius map. Then \(f\) is quasi-symmetric if and only if \(f(x) \to \infty\) as \(x \to \infty\). If \(X\) is any metric space and if \(f : X \cup \{\infty\} \to Y \cup \{\infty\}\) is quasi-Möbius with \(f(\infty) = \infty\), then \(f|_X\) is quasi-symmetric.

Remark 1. Let \((X, d)\) be an unbounded space. Then we can build the completed space with respect to the infinitely remote point \(\bar{X} := X \cup \{\infty\}\) together with an extended metric \(\bar{d}\). Let \(d(x, y) := d(x, y)\) and \(d(\infty, x) := \bar{d}(x, \infty) = \infty\) for all \(x, y \in X\). Furthermore let \(\bar{d}(\infty, \infty) = 0\). Then clearly \((X, d)\) is doubling if and only if \((\bar{X}, \bar{d})\) is doubling.

Theorem 3. Let \((X, d)\) be an metric doubling space with doubling constant \(D\), where \(d\) is an extended metric [3] and denote by \(\infty \in X\) the infinitely remote point in \((X, d)\). Furthermore let \(p \in X\) with \(p \neq \infty\) and let \(i_p\) be given by \(i_p(x, y) := \frac{d(x, y)}{d(p, x)d(p, y)}\) for all \(x, y \in X \setminus \{\infty\}\) and \(i_p(\infty, x) := i_p(x, \infty) := \frac{1}{d(p, x)}\). Define \(d_p(x, y) := \inf\{\sum_{i=1}^{k} i_p(x_i, x_{i-1}) \mid x = x_0, \ldots, x_k = y \in X \setminus \{p\}\}. \(\bar{X}, d_p\) is doubling with constant at most \(D^{10} + 1\).

Proof. If \((X, d)\) is bounded, consider the space \((\bar{X}, \bar{d})\), with \(\bar{X} := X \cup \{\infty\}\) and \(\bar{d}(x, y) := d(x, y)\) for all \(x, y \in X\) and \(d(\infty, \infty) := \infty\). \((\bar{X}, \bar{d})\) is doubling. Furthermore if \((\bar{X}, \bar{d})\) is doubling, then so is \((X, d_p)\). We therefore only need to show the theorem for unbounded \(X\).

We have the following relation for all \(x, y \in X \setminus \{p\}\) [2]:

\[
\frac{1}{4} i_p(x, y) \leq d_p(x, y) \leq i_p(x, y) \leq \frac{1}{d(x, p)} + \frac{1}{d(y, p)}.
\]

Let \(x_0 \in X \setminus \{p\}\) and \(r > 0\). Let \(B' := B'_r(x_0) := \{x \in X \mid d_p(x_0, x) \leq r\}\) be the ball of radius \(r\) in the space \((X, d_p)\). We consider the following two cases

1. If \(B' \cap B'_r(\infty) \neq \emptyset\), then \(A' := B'_r(x_0) \setminus B_{\frac{r}{2}}(\infty)\). Take \(y_0 \in A'\).

For any two points \(x, y \in A'\) we have by definition of the metric \(d_p\) and the above relation that

\[
i_p(x, y) = \frac{d(x, y)}{d(p, x)d(p, y)} \leq 4d_p(x, y) \leq 8r,
\]

and \(\frac{1}{d(y, p)} = i_p(\infty, y) \geq d_p(\infty, y) > \frac{1}{2}r\). From this it follows that

\[
d(x, y) \leq 8rd(p, x)d(p, y) \leq \frac{32}{r}.
\]

In particular we know that \(A' \subseteq B_{\frac{32}{r}}(y_0) := \{x \in X \mid d(y_0, x) \leq \frac{32}{r}\}\).

By the assumption we furthermore have for all \(x \in B'\) that

\[
d_p(x, \infty) \leq 2r + \frac{1}{2}r = \frac{5}{2}r.
\]
and therefore also
\[\frac{1}{d(p, x)} \leq \frac{5}{2} r, \]
from which it follows that
\[d(p, x) \geq \frac{2}{5r}. \]

The space \((X, d)\) is doubling and we can find \(D^N\) balls \(b_i\) of radius \(\frac{4}{5} 2^{-N}\) with centerpoints \(x_i\) covering \(B_{\frac{4}{5}}(y_0)\). Let \(\tilde{b}_i := b_i \cap A'\) then we have for all \(x, y \in \tilde{b}_i:\)
\[d_p(x, y) \leq i_p(x, y) = \frac{d(x, y)}{d(p, x) d(p, y)} \leq \frac{\frac{64}{2} 2^{-N}}{\frac{2}{5r} \frac{2}{5r}} = \frac{64 \cdot 5^2 \cdot r^2}{2^2 2^N r} = \frac{400}{2^N} r. \]

In particular for \(N := 10\) we know that we have constructed a cover of \(B' \subseteq A' \cup B_\frac{1}{2r}(\infty)\) by \(D^{10} + 1\) balls of radius \(\frac{1}{2r}\).

2. In case that \(B' \cap B_\frac{1}{2r}(\infty) = \emptyset\), we know that \(d_p(x_0, \infty) > r\) and also \(d_p(B', \infty) := \inf_{x \in B'} d_p(x, \infty) \geq \frac{1}{2} r\). For all \(y \in B'\) we have
\[i_p(x_0, y) = \frac{d(x_0, y)}{d(p, x_0) d(p, y)} \leq 4d_p(x_0, y) \leq 4r, \]
from which it follows that
\[d(x_0, y) \leq 4rd(p(x_0) d(p, y) \leq \frac{4r}{d_p(\infty, x_0) d_p(\infty, y)} \leq \frac{4r}{d_p(\infty, B')^2}. \]

We therefore have \(B' \subseteq B_{\frac{4r}{d_p(\infty, B')^2}}(x_0)\) and by the doubling property of \((X, d)\) we can cover by \(D^N\) balls \(b_i\) of radius \(\frac{4r}{d_p(\infty, B')^2} 2^{-N}\) with center points \(x_i\). Let \(\tilde{b}_i := b_i \cap B'\), then we have for any two \(x, y \in \tilde{b}_i:\)
\[d_p(x, y) \leq i_p(x, y) = \frac{d(x, y)}{d(p, x) d(p, y)} \leq \frac{\frac{8r}{d_p(\infty, B')^2} 2^{-N}}{d_p(\infty, B')^2 d_p(\infty, x) d_p(\infty, y)} = \frac{2^{-N+4} d_p(\infty, x) d_p(\infty, y)}{d_p(\infty, B')^2 r}. \]

Furthermore we have
\[d_p(x, \infty) \leq d_p(x_0, x) + d_p(x_0, \infty) \leq r + d_p(B', \infty) + r \leq 5d_p(B', \infty). \]

In conclusion we get that
\[
2^{-N+4} \frac{d_p(\infty, x) d_p(\infty, y)}{d_p(\infty, B')^2} \leq 2^{-N+4} \frac{5^2 d_p(\infty, B')^2}{d_p(\infty, B')^2} = \frac{8 \cdot 5^2}{2^N}.
\]

It therefore follows that if we take \(N := 9\), then we have a covering of \(B'\) by \(D^9\) balls of radius \(\frac{1}{2r}\).

\[\square \]

Remark 2. Note that if in addition \(d \in \mathcal{M}\) where \((X, \mathcal{M})\) is Ptolemy Möbius, then \(i_p = d_p\) and in particular \((X, d_p)\) is doubling with constant at most \(D^8 + 1\).
3.2 Proof of Theorem 1

Proof of Theorem 1. It remains to show the theorem for \((X, d)\) being a doubling metric space, \(f : (X, d) \to (X, d')\) a metric inversion and we have the following cases to check:

1. \((X, d)\) unbounded, \((X, d')\) bounded;

2. \((X, d)\) and \((X, d)\) both unbounded but with different points at infinity.

Case 2 follows directly from Theorem 3. In the situation of 1, \(d'\) is a metric inversion \(d_p\) where \(p\) is an isolated point in \(X\). That is there exists a \(\epsilon > 0\) such that \(d(p, x) > \epsilon\) for all \(x \in X \setminus \{p\}\). The proof of Theorem 3 still holds.

4 Invariance of Uniform Disconnectedness

The proof of Theorem 2 will again make use of some of the propositions from the previous sections. In the following let \((X, d)\) be a metric space, \(p \in X\) and \(\theta \leq \frac{1}{32}\). We assume that \((X, d_p)\) is not \(\theta\)-uniformly disconnected, in particular there is some \(\theta\)-chain \((x_0, x_1, \ldots, x_n)\) in \((X \setminus \{p\}, d_p)\). We keep this notation for the rest of this section. In addition we introduce the following notation for convenience: Let \(r_i := d(p, x_i), \ l := d(x_0, x_n)\) and \(l_i := d(x_i, x_{i+1})\). This is illustrated in Figure 1. Without loss of generality we can assume \(r_n \geq r_0\).
Remark 3. The condition for \((x_0, x_1, \ldots, x_n)\) being a \(\theta\)-chain in \((X, d_p)\) implies that
\[
\frac{l_i}{r_i r_{i+1}} \leq \frac{4\theta l}{r_n r_0} \quad \forall i \in \{0, \ldots, n-1\}.
\]

On the other hand if
\[
\frac{l_i}{r_i r_{i+1}} \leq \frac{\theta l}{4 r_n r_0} \quad \forall i \in \{0, \ldots, n-1\}
\]
holds, then \((x_0, x_1, \ldots, x_n)\) is a \(\theta\)-chain in \((X, d_p)\).

Lemma 1. Assume that \((X, d)\) contains no \(\sqrt[3]{4\theta}\)-chains. Then there is an index \(s \in \{0, \ldots, n-1\}\) such that
\[
l_s > l \sqrt[3]{4\theta}
\]
and
\[
\max\{r_s, r_{s+1}\} \sqrt[3]{4\theta} \geq r_0.
\]

Proof. Assume for a contradiction that \(r_s \sqrt[3]{4\theta} < r_0\) and \(r_{s+1} \sqrt[3]{4\theta} < r_0\). Then from the condition in the remark above it follows
\[
\frac{l_s}{r_s r_{s+1}} < \frac{4\theta l}{r_n r_0} < \frac{4\theta l_s}{\sqrt[3]{4\theta} r_n r_0 r_{s+1}} = \frac{l_s}{r_s r_{s+1}}
\]
which is a contradiction.

Proposition 3. \((X, d)\) contains a \(\sqrt[3]{4\theta}\)-chain.

Proof. By the previous lemma we know that there must be some index \(q\) such that \(r_q \sqrt[3]{4\theta} \geq r_0\) and for all \(i \in \{0, \ldots, q-1\}\) we have that \(r_i \sqrt[3]{4\theta} < r_0\).
We claim that \((x_q, x_{q-1}, \ldots, x_1, x_0, p)\) is a \(\sqrt[3]{4\theta}\)-chain in \((X, d)\). If this were not so, there would be some \(i \in \{0, \ldots, q-1\}\) for which \(r_q \sqrt[3]{4\theta} < l_i\). But then
\[
\frac{r_q \sqrt[3]{4\theta}^2}{r_0 r_q} < \frac{r_q \sqrt[3]{4\theta}}{r_i r_q} \leq \frac{r_q \sqrt[3]{4\theta}}{r_i r_{i+1}} < \frac{l_i}{r_i r_{i+1}} \leq \frac{4\theta l}{r_n r_0}
\]
implies
\[
r_n < \sqrt[3]{4\theta} l \leq \frac{1}{2} l
\]
which is a contradiction to the triangle inequality of the metric space \((X, d)\).

Proof of Theorem 2. The proof of the theorem now follows directly from Proposition 1.
5 Applications of the Theorems

For the following we need a short definition [4]: Let F be a finite set with $k \geq 2$ elements and let F^∞ denote the set of sequences $\{x_i\}_{i=1}^\infty$ with $x_i \in F$. For two elements $x = \{x_i\}, y = \{y_i\} \in F^\infty$ let

$$L(x, y) = \sup \{I \in \mathbb{N} | \forall 1 \leq i \leq I : x_i = y_i\}.$$

In particular we have $L(x, x) = \infty$ and $L(x, y) = 0$ if $x_1 \neq y_1$. Given $0 < a < 1$ set $\rho_a(x, y) = a^{L(x, y)}$. This defines an ultrametric on F^∞. We call (F^∞, ρ_a) the symbolic k-Cantor set with parameter a.

As an application of the theorems we provide a generalization of the following result by David and Semmes:

Proposition 4 (Proposition 15.11 (Uniformization) in [4]). Suppose that (M, d) is a compact metric space which is bounded, complete, doubling, uniformly disconnected, and uniformly perfect. Then M is quasi-symmetrically equivalent to the symbolic Cantor set F^∞, where we take $F = \{0, 1\}$ and we use the metric ρ_a on F^∞ with parameter $a = \frac{1}{2}$.

We can generalize this result as follows:

Theorem 4. Suppose that (M, d) is a complete, doubling, uniformly perfect and uniformly disconnected metric space. Then M is quasi-Möbius equivalent to the symbolic Cantor set as given above.

Proof. Let $p \in M$ be some point and let $s_p(x, y) = \frac{d(x, y)}{(d(x, p) + 1)(d(y, p) + 1)}$. Let
$$\hat{d}_p(x,y) = \inf \{ \sum_{i=1}^{k} s_p(x_i, x_{i-1}) : x = x_0, \ldots, x_k = y \in X \}. \text{ We have } [2]$$

$$\frac{1}{4} s_p(x, y) \leq \hat{d}_p(x, y) \leq s_p(x, y) \leq \frac{1}{1+d(x, p)} + \frac{1}{1+d(y, p)}.$$

Then the space \((M, \hat{d}_p)\) is bounded and satisfies all the properties of the above proposition: The map \(f : (X, d) \to (X, \hat{d}_p)\) given by \(d \mapsto \hat{d}_p\) is Möbius. By [Theorem 2] and [Theorem 1] doubling and uniformly disconnectedness are invariant under Möbius maps. The invariance of uniformly perfectness follows from [8], and the invariance of completeness follows from [1]. Totally boundedness follows from the doubling property and therefore the space \((X, \hat{d}_p)\) is compact.

We can apply the same idea to Proposition 16.9 in [4] and we get:

Corollary 1. Let \((M,d)\) be a complete Ahlfors regular metric space of dimension \(\gamma\) which is uniformly disconnected. Then there exists a doubling measure \(\mu\) on \(F^\infty\), and \((M, d)\) is quasi-Möbius equivalent to \((F^\infty, D)\), where \(D\) is given by

$$D(x, y) = \left(\mu(\bar{B}(x, d_a(x, y))) + \mu(\bar{B}(y, d_a(x, y))) \right)^{\frac{1}{\gamma}},$$

and \(0 < a < 1\).

This follows from the above remarks and the invariance of Ahlfors regularity under \(d \mapsto \hat{d}_p\) as shown in [6].
A Appendix

Proposition 5. Let \((X, d)\) be a \(K\)-quasi-metric space \([3]\). Let \(X_\infty\) denote the infinite remote set and let \(\infty \in X_\infty\), i.e. the space satisfies the relations

1. \(d(x, y) = 0 \iff x = y\),
2. \(d(x, y) = d(y, x)\),
3. \(d(x, y) \leq K \max\{d(x, z), d(z, y)\}\) for all \(x, y, z \in X\) for which all distances are defined,
4. \(d(x, y) < \infty \iff x, y \in X \setminus X_\infty\).

Let \(\lambda : X \to [0, \infty], L > 0\) and \(K' \geq K\) be such that \(X_\infty = \lambda^{-1}(\infty)\) and

1. \(d(x, y) \leq K' \max\{L\lambda(x), L\lambda(y)\}\),
2. \(L\lambda(x) \leq K' \max\{d(x, y), L\lambda(y)\}\).

Denote by \(X'_\infty := \{\lambda^{-1}(0)\}\). Define a new metric \(d_\lambda : (X \times X) \setminus (X'_\infty \times X'_\infty) \to [0, \infty]\) by

1. \(d_\lambda(x, y) := \frac{d(x, y)}{\lambda(x)\lambda(y)}\) for \(x, y \in X \setminus X'_\infty\),
2. \(d_\lambda(x, \infty) := d_\lambda(\infty, x) := \frac{L}{\lambda(x)}\) for \(\infty \in X_\infty\),
3. \(d_\lambda(\infty, \infty) = 0\) for \(\infty \in X_\infty\),
4. \(d_\lambda(x, p) := d_\lambda(p, x) := \infty\) for \(p \in X'_\infty\).

If \((X, d)\) is doubling with constant \(D\) then \((X, d_\lambda)\) is doubling with constant at most \(D^{\log_2(8K'^2 K) + 1}\).

Proof. By Prop 5.3.6 in \([3]\), \(d_\lambda\) is a \(K'^2\)-quasi-metric. In particular we have for all \(x, y, z \in X\) for which all distances are defined, that:

\[d_\lambda(x, y) \leq K'^2 \max\{d(d, z), d(z, y)\}. \]

Let \(x_0 \in X, x_0 \neq p \in X'_\infty\) and \(r > 0\) and let \(B' := B'_r(x_0) := \{x \in X \mid d_\lambda(x_0, x) \leq r\}\). Consider the following cases

1. If \(B' \cap B'_r(\infty) \neq \emptyset\), then let \(A' := B' \setminus B'_r(\infty)\). For all \(x, y \in B'\) we have

\[d_\lambda(x, y) = \frac{d(x, y)}{\lambda(x)\lambda(y)} \leq K'^2 r, \]

from which it follows that

\[d(x, y) \leq K'^2 r \lambda(x)\lambda(y). \]
Furthermore we have for all \(x \in A' \) that \(d_\lambda(\infty, x) = \frac{L}{\lambda(x)} > \frac{1}{2}r \) and therefore also \(\lambda(x) < \frac{2r}{L} \). Combining both equations we get that for all \(x, y \in A' \) we have

\[
d(x, y) \leq K^{\ell_2} \frac{2L}{r} 2L \frac{2L}{r} = K^{\ell_4} L^2 / r.
\]

Without loss of generality assume \(x_0 \in A' \). By the doubling property of \((X, d)\) we can cover \(B_{K^{\ell_4} L^2}(x_0) \) by at most \(D^N \) balls \(b_i \) of radius \(\frac{K^{\ell_4} L^2}{r} 2^{-N} \). Let \(\tilde{b}_i := b_i \cap A' \) then we have for all \(x, y \in \tilde{b}_i \):

\[
d_\lambda(x, y) \leq \frac{K^{\ell_4} L^2}{\lambda(x) \lambda(y)}.
\]

By the assumption there is a \(\tilde{x} \in B' \cap B'_{\frac{r}{2}}(\infty) \) and we have for \(x \in B' \) that \(d_\lambda(x, \tilde{x}) \leq K^{\ell_2} r \), therefore we also have \(\frac{L}{\lambda(x)} = d_\lambda(x, \infty) \leq K^{\ell_4} r \) and \(\lambda(x) \geq \frac{r}{K^{\ell_4} r} \). In conclusion we get for all \(x, y \in \tilde{b}_i \):

\[
d_\lambda(x, y) \leq \frac{K^{\ell_4} L^2}{\lambda(x) \lambda(y)} \leq \frac{K^{\ell_4} L^2}{K^{\ell_4} r} \frac{K^{\ell_4} L^2}{K^{\ell_4} r} = \frac{K^{\ell_4} L^2}{K^{\ell_4} r} 2^{-N}.
\]

In particular for \(N := \lceil \log_2(8K^{\ell_4} K) \rceil \) we get a cover of \(B' \) by at most \(D^N + 1 \) balls of half the radius.

2. If \(B' \cap B'_{\frac{r}{2}}(\infty) = \emptyset \), then we have \(d_\lambda(x_0, \infty) > r \) and \(d_\lambda(B', \infty) > \frac{1}{2}r \).

For all \(y \in B' \) we have \(d_\lambda(x_0, y) = \frac{d(x_0, y)}{\lambda(x_0) \lambda(y)} \leq r \) and therefore also

\[
d(x_0, y) \leq r \lambda(x_0) \lambda(y) \leq \frac{rL^2}{d_\lambda(\infty, x_0) d_\lambda(\infty, y)} = \frac{rL^2}{d_\lambda(B', \infty)^2}.
\]

By the doubling property of \((X, d)\) we can find \(D^N \) balls \(b_i \) of radius \(\frac{rL^2}{d_\lambda(B', \infty)^2} 2^{\ell_4} \) covering \(B' \). Let \(\tilde{b}_i := b_i \cap B' \), then we have for any \(x, y \in \tilde{b}_i \):

\[
d_\lambda(x, y) = \frac{d(x, y)}{\lambda(x) \lambda(y)} \leq \frac{K^{\ell_4} L^2 2^{-N}}{d_\lambda(B', \infty)^2} = \frac{K^{\ell_4} L^2 2^{-N} d_\lambda(\infty, x) d_\lambda(\infty, y)}{d_\lambda(B', \infty)^2}.
\]

Furthermore for any \(x \in B' \) we have

\[
d_\lambda(x, \infty) \leq K^{\ell_2} \max\{d_\lambda(x_0, x), d_\lambda(x_0, \infty)\} \leq K^{\ell_2} r \leq K^{\ell_2} d_\lambda(B', \infty).
\]

We can combine the estimates to get

\[
d_\lambda(x, y) \leq \frac{K^2 r 2^{-N} d_\lambda(B', \infty)^2}{d_\lambda(B', \infty)^2} = K^2 r 2^{-N} K^{\ell_4} 4.
\]

In particular for \(N := \lceil \log_2(8K^{\ell_4}) \rceil \) we have constructed a covering by \(D^N \) balls of radius at most \(\frac{1}{2}r \).
Proposition 6. Let \((X, d)\) be a \(K\)-quasi-metric space \([3]\). Let \(X_{\infty}\) denote the infinite remote set and let \(\infty \in X_{\infty}\), i.e. the space satisfies the relations

1. \(d(x, y) = 0 \iff x = y\),
2. \(d(x, y) = d(y, x)\),
3. \(d(x, y) \leq K \max\{d(x, z), d(z, y)\}\) for all \(x, y, z \in X\) for which all distances are defined,
4. \(d(x, y) < \infty \iff x, y \in X \setminus X_{\infty}\).

Let \(\lambda : X \to [0, \infty]\), \(L > 0\) and \(K' \geq K\) be such that \(X_{\infty} = \lambda^{-1}(\infty)\) and

1. \(d(x, y) \leq K' \max\{L\lambda(x), L\lambda(y)\}\),
2. \(L\lambda(x) \leq K' \max\{d(x, y), L\lambda(y)\}\).

Denote by \(X'_{\infty} := \{\lambda^{-1}(0)\}\). Define a new metric \(d_{\lambda} : (X \times X) \setminus (X'_{\infty} \times X'_{\infty}) \to [0, \infty]\) by

1. \(d_{\lambda}(x, y) := \frac{d(x, y)}{\lambda(x)\lambda(y)}\) for \(x, y \in X \setminus X'_{\infty}\),
2. \(d_{\lambda}(x, \infty) := d_{\lambda}(\infty, x) := \frac{L}{\lambda(x)}\) for \(\infty \in X_{\infty}\),
3. \(d_{\lambda}(\infty, \infty) = 0\) for \(\infty \in X_{\infty}\),
4. \(d_{\lambda}(x, p) := d_{\lambda}(p, x) := \infty\) for \(p \in X'_{\infty}\).

Let \(\theta \leq \frac{1}{K'4}\). If \((X, d_{\lambda})\) has a \(\theta\)-chain, then \((X, d)\) has a \(\sqrt[\theta]{K'^4}\)-chain.

Proof. Using the same notation as before in section 4 we note that for all \(i \in \{0, \ldots, n - 1\}\) the following relation holds:

\[
\frac{l_i}{K'^2r_{i}r_{i+1}} \leq \frac{l_i}{\lambda(x_i)\lambda(x_{i+1})} \leq \frac{l\theta}{\lambda(x_0)\lambda(x_n)} \leq \frac{l\theta}{K'Lr_0r_n}.
\]

We can apply a similar argument as in Lemma 1 to get an index \(q\) for which

\[r_0 \leq \sqrt[\theta]{K'^4r_q},\]

and such that for all \(i \in \{0, \ldots, q - 1\}\) we have

\[r_0 > \sqrt[\theta]{K'^4r_i}.\]
Assume again for a contradiction that \((x_q, x_{q-1}, \ldots, x_0, p)\) is not a \(\sqrt{\theta K^2}l\)-chain. Then for some \(i \in \{0, \ldots, q-1\}:

\[
\frac{\sqrt[3]{\theta K^2 r_q}}{L^2 r_0 r_q} \leq \frac{\sqrt[3]{\theta K^2 r_q}}{L^2 r_i r_{i+1}} \leq \frac{\sqrt[3]{\theta K^2 r_q}}{L^2 r_i r_{i+1}} \leq \frac{\sqrt[3]{\theta K^2 r_q}}{L^2 r_i r_{i+1}} \leq \frac{l_i}{\lambda(x_i) \lambda(x_{i+1})} \leq \frac{l_i}{\lambda(x_i) \lambda(x_{i+1})} \leq \frac{l_i}{\lambda(x_i) \lambda(x_{i+1})} \leq \frac{l_i}{\lambda(x_i) \lambda(x_{i+1})} (4)
\]

From this it follows that

\[r_n < \sqrt[3]{\theta K^2 K^2 l} \leq K^{-1} l. \]

\[\square \]

References

[1] Jonas Beyrer and Viktor Schroeder. Trees and ultrametric Möbius structures. \textit{arXiv:1508.03257 [math]}, August 2015.

[2] Stephen Buckley, David Herron, and Xiangdong Xie. Metric space inversions, quasihyperbolic distance, and uniform spaces. \textit{Indiana University Mathematics Journal}, 2008. 00016.

[3] Sergei Buyalo and Viktor Schroeder. \textit{Elements of Asymptotic Geometry}. EMS monographs in mathematics. European Mathematical Society, Zürich, 2007.

[4] Guy David and Stephen Semmes. \textit{Fractured Fractals and Broken Dreams: Self-Similar Geometry through Metric and Measure}. Number 7 in Oxford lecture series in mathematics and its applications. Clarendon Press ; Oxford University Press, Oxford : New York, 1997. 00295.

[5] Urs Lang and Thilo Schlichenmaier. Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. \textit{International Mathematics Research Notices}, 2005(58):3625–3655, January 2005. 00098.

[6] Xining Li and Nageswari Shanmugalingam. Preservation of bounded geometry under sphericalization and flattening. \textit{Indiana University Mathematics Journal}, 64(5):1303–1341, 2015.

[7] John M. Mackay and Jeremy T. Tyson. \textit{Conformal Dimension: Theory and Application}. Number v. 54 in University lecture series. American Mathematical Society, Providence, R.I, 2010.

[8] Johannes Bjørn Thomas Meyer. \textit{Uniformly Perfect Boundaries of Gromov Hyperbolic Spaces}. PhD thesis, University of Zurich, Zürich, 2009.
[9] Jeremy T. Tyson and others. Lowering the Assouad dimension by quasidisymmetric mappings. *Illinois Journal of Mathematics*, 45(2):641–656, 2001.

[10] Jussi Väisälä. Quasimöbius maps. *Journal d’Analyse Mathematique*, 44(1):218–234, 1984.

[11] Xiangdong Xie. Nagata dimension and quasi-Möbius maps. *Conformal geometry and dynamics: An electronic journal of the AMS*, 12(1):1–9, 2008.

Loreno Heer
Institut für Mathematik
Universität Zürich
Winterthurerstrasse 190
CH-8057 Zürich
loreno.heer@math.uzh.ch