ON EDGE-PRIMITIVE AND 2-ARC-TRANSITIVE GRAPHS

ZAI PING LU

Abstract. A graph is edge-primitive if its automorphism group acts primitively on the edge set. In this short paper, we prove that a finite 2-arc-transitive edge-primitive graph has almost simple automorphism group if it is neither a cycle nor a complete bipartite graph. We also present two examples of such graphs, which are 3-arc-transitive and have faithful vertex-stabilizers.

Keywords. Primitive group, almost simple group, edge-primitive graph, 2-arc-transitive graph.

1. Introduction

All graphs and groups considered in this paper are assumed to be finite.

A graph in this paper is a pair $\Gamma = (V, E)$ of a nonempty set V and a set E of 2-subsets of V. The elements in V and E are called the vertices and edges of Γ, respectively. The number $|V|$ of vertices is called the order of Γ. For $v \in V$, the set $\Gamma(v) = \{ u \in V \mid \{u, v\} \in E \}$ is called the neighborhood of v in Γ, while $|\Gamma(v)|$ is the valency of v. We say that Γ has valency d or Γ is d-regular if its vertices all have equal valency d. For an integer $s \geq 1$, an s-arc in Γ is an $(s + 1)$-tuple (v_0, v_1, \ldots, v_s) of vertices such that $\{v_i, v_{i+1}\} \in E$ and $v_i \neq v_{i+2}$ for all possible i. A 1-arc is also called an arc.

Let $\Gamma = (V, E)$ be a graph. A permutation g on V is called an automorphism of Γ if $\{u^g, v^g\} \in E$ for all $\{u, v\} \in E$. Let $\text{Aut}\Gamma$ denote the set of all automorphisms of Γ. Then $\text{Aut}\Gamma$ is a subgroup of the symmetric group $\text{Sym}(V)$, and called the automorphism group of Γ. Note that the group $\text{Aut}\Gamma$ has a natural action on the edge set E (and also on the set of s-arcs). The graph Γ is called edge-transitive if $E \neq \emptyset$ and for each pair of edges there exists some $g \in \text{Aut}\Gamma$ mapping one of these two edges to the other one. (Similarly, we may define vertex-transitive, arc-transitive or s-arc-transitive graphs.) An edge-transitive graph is called edge-primitive if some (and hence every) edge-stabilizer, the subgroup of its automorphism group which fixes a given edge, is a maximal subgroup of the automorphism group.

It is well-known that edge-transitive graphs and hence edge-primitive graphs are either bipartite or vertex-transitive. As a subclass of the edge-transitive graphs, edge-primitive graphs posses more restrictions on their symmetries and automorphism groups. For example, a connected edge-primitive graph is necessarily arc-transitive provided that it is not a star graph. In [9], appealing to the O’Nan-Scott Theorem for (quasi)primitive...
groups [22], Giudici and Li investigated the structural properties of edge-primitive graphs, particularly, on their automorphism groups. Let $\Gamma = (V, E)$ be an arc-transitive and edge-primitive graph which is neither a cycle nor a complete bipartite graph. If Γ is bipartite then let $\text{Aut}^+ \Gamma$ be the subgroup of $\text{Aut} \Gamma$ preserving the bipartition. By [9], as a primitive group on E, only 4 of the eight O’Nan-Scott types for (quasi)primitive groups may occur for $\text{Aut}\Gamma$, say SD, CD, PA and AS. For the first two types, Γ is bipartite and $\text{Aut}^+ \Gamma$ is quasiprimitive of type CD on each bipartite half. For the last two types, with one exception case, $\text{Aut}\Gamma$ or $\text{Aut}^+ \Gamma$ is quasiprimitive on V or on each bipartite half respectively of the same type for $\text{Aut}\Gamma$ on E. In this paper, we will work on the types of $\text{Aut}\Gamma$ on E and on V under the further assumption that Γ is 2-arc-transitive.

The interests for edge-primitive graphs arises partially from the fact that many (almost) simple groups may be represented as the automorphism groups of edge-primitive graphs. Consulting the Atlas [3], one may get first-hand such examples. For example, the sporadic Higman-Sims group HS is the automorphism group of a rank 3 graph with order 100 and valency 22, which is in fact a 2-arc-transitive and edge-primitive graph; the sporadic Rudvalis group Ru is the automorphism group of a rank 3 graph with order 4060 and valency 2304, which is edge-primitive but not 2-arc-transitive. Besides, the almost groups $\text{PSU}(3,5):2$, $M_{22}:2$, $J_2:2$ and McL:2 all have representations on edge-primitive graphs. The reader may refer to [11, 12, 18, 21, 26] for more examples of edge-primitive graphs which have almost simple automorphism groups. Of course, using the constructions given in [9], one can easily construct examples of edge-primitive graphs with automorphism groups not almost simple.

We have a strong impression from the known examples for edge-primitive graphs in the literature that a 2-arc-transitive and edge-primitive graph has almost simple automorphism group unless it is a cycle or a complete bipartite graph. Yet could it be so? Yes, it is true! We shall prove the following result in Section 3.

Theorem 1.1. Let $\Gamma = (V, E)$ be an edge-primitive d-regular graph for some $d \geq 3$. If Γ is 2-arc-transitive, then either Γ is a complete bipartite graph, or Γ has almost simple automorphism group.

Remarks on Theorem 1.1.

1. Li and Zhang [18] proved that 4-arc-transitive and edge-primitive graphs have almost automorphism groups. Further, as a sequence of their classification on almost simple primitive groups with soluble point-stabilizers, they give a complete list for 4-arc-transitive and edge-primitive graphs.

2. By Theorem 1.1, appealing to the classification of almost simple groups with soluble maximal subgroups, it might be feasible to classify 2-arc-transitive and edge-primitive graphs with soluble edge-stabilizers.

2. **Preliminaries**

For the subgroups of (almost) simple groups, we sometimes follow the notation used in the Atlas [3], while we also use \mathbb{Z}_l and \mathbb{Z}_p^k to denote respectively the cyclic group of order l and the elementary abelian group of order p^k.
2.1. Primitive groups. In this subsection, Ω is nonempty finite set, and G is a transitive subgroup of the symmetric group $\text{Sym}(\Omega)$. Let $\text{soc}(G)$ be the socle of G, that is, $\text{soc}(G)$ is generated by all minimal normal subgroups of G.

Consider the point-stabilizer $G_\alpha := \{g \in G \mid \alpha^g = \alpha\}$, where $\alpha \in \Omega$. Then

1. G is primitive if G_α is a maximal subgroup of G;
2. G is $\frac{3}{2}$-transitive if G_α is $\frac{1}{2}$-transitive on $\Omega \setminus \{\alpha\}$, that is, all G_α-orbits on $\Omega \setminus \{\alpha\}$ have equal length > 1;
3. G is a Frobenius group if G_α is semiregular on $\Omega \setminus \{\alpha\}$;
4. G is 2-transitive if G_α is transitive on $\Omega \setminus \{\alpha\}$.

Note that (4) implies (1) and (2), and (2) implies (1) or (3) (refer to [29, Theorem 10.4]).

Let $1 \neq N \leq G$, a normal subgroup of G. Then N is $\frac{1}{2}$-transitive, and $N_\alpha = N \cap G_\alpha \leq G_\alpha$, and so G_α is contained in the normalizer $N_G(N_\alpha)$ of N_α in G. Thus, if G_α is maximal then either $N_\alpha \leq G$ or $N_G(N_\alpha) = G_\alpha$. The former case yields $N_\alpha = 1$, while the latter case gives

$$N_N(N_\alpha) = N \cap N_G(N_\alpha) = N \cap G_\alpha = N_\alpha.$$

Then we have following simple fact for primitive groups.

Lemma 2.1. If G is primitive and $N \neq 1$ then either N is regular on Ω or N_α is self-normalized; if G is 2-transitive and $N \neq 1$ then N is either regular or $\frac{3}{2}$-transitive on Ω.

For an almost simple 2-transitive group G, each non-trivial normal subgroup N of G is primitive, and in fact 2-transitive except for the case where $N = \text{soc}(G) = \text{PSL}(2,8)$ acting on 28 pionts, refer to [1, page 197, Table 7.4]. Next we consider the normal subgroups of affine 2-transitive groups. Refer to [1, page 195, Table 7.3] for a complete list of affine 2-transitive groups. We consider the affine 2-transitive groups in their natural actions.

Lemma 2.2. Let G be an affine 2-transitive group and $1 \neq N \leq G$. If N is imprimitive on Ω, then N is a soluble Frobenius group, N_0 is cyclic, and either $G_0 \leq \Gamma L(1,q)$ or $N_0 \leq \mathbb{Z}(G_0)$, where q is not a prime.

Proof. Assume that N is imprimitive. Then $N \neq G$, and so $N_0 \neq G_0$. Further, by Lemma 2.1 and [29, Theorem 10.4], N is a Frobenius group. Let $|\Omega| = p^k$ for a prime p. We may write $G_0 \leq \Gamma L(k,p)$, $G = \mathbb{Z}_p^k:G_0$ and $N = \mathbb{Z}_p^k:N_0$. Since N is imprimitive, N_0 is not maximal in N, and thus N_0 is a normal reducible subgroup of G_0. Then, by [13, Lemma 5.1], N_0 is cyclic and $|N_0|$ is a divisor of $p^l - 1$, where $l < k$ and $l \mid k$. Finally, the lemma follows from checking all affine 2-transitive groups one by one. \square

If every minimal normal subgroup of G is transitive on Ω, then G called a quasiprimitive group. Praeger [22, 24] generalized the O’Nan-Scott Theorem for primitive groups to quasiprimitive groups, which says that a quasiprimitive group has one of the following eight types: HA, HS, HC, TW, AS, SD, CD and PA. In particular, if G is quasiprimitive then G has at most two minimal normal subgroups, and if two (for HS and HC) then they are isomorphic and regular.

Suppose that G has a transitive insoluble minimal normal subgroup N. Then $G = NG_\alpha$ for $\alpha \in \Omega$. Write $N = T_1 \times \cdots \times T_k$ for isomorphic nonabelian simple groups T_i.
and integer $k \geq 1$. Then G_α acts transitively on $\{T_i \mid 1 \leq i \leq k\}$ by conjugation. Note that, for $g \in G_\alpha$ and $1 \leq i \leq k$,

$$(T_i)_\alpha^g = (T_i \cap G_\alpha)^g = T_i^g \cap G_\alpha^g = (T_j)_\alpha^g$$ for some j.

Then G_α acts transitively on $\{(T_i)_\alpha \mid 1 \leq i \leq k\}$ by conjugation. Clearly, $(T_1)_\alpha \times \cdots \times (T_k)_\alpha \leq N_\alpha$; however, the equality is not necessarily holds even if G is quasiprimitive. A sufficient condition for this equality is that G is primitive and of type AS or PA, refer to [4, Theorem 4.6] and its proof. In survey, we have the simple fact as follows.

Lemma 2.3. Assume that G has a transitive minimal normal subgroup $N = T_1 \times \cdots \times T_k$, where T_i are isomorphic nonabelian simple groups. Let $\alpha \in \Omega$. Then G_α acts transitively on $\{(T_i)_\alpha \mid 1 \leq i \leq k\}$ by conjugation. If further G is primitive and of type AS or PA, then $N_\alpha = (T_1)_\alpha \times \cdots \times (T_k)_\alpha$.

2.2. Locally-primitive graphs.

In this subsection, Γ is a connected d-regular graph for some $d \geq 3$, and $G \leq \text{Aut}\Gamma$. Assume further that the graph Γ is G-locally primitive, that is, G_α acts primitively on $\Gamma(v)$ for all $v \in V$.

Fix an edge $\{u, v\} \in E$. Note that G_v induces a primitive permutation group $G_v^\Gamma(v)$ (on $\Gamma(v)$). Let $G_v^{[1]}$ be the kernel of G_v acting on $\Gamma(v)$. Then $G_v^\Gamma(v) \cong G_v/G_v^{[1]}$. Set $G_v^{[1]} = G_v^{[1]} \cap G_v^{[2]}$. Then $G_v^{[1]}$ induces a normal subgroup of $(G_u^\Gamma(u))_v$ with the kernel $G_v^{[1]}$. Writing $G_v^{[1]}$ and G_v in group extensions,

$$G_v^{[1]} = (G_v^{[1]}(G_v^{[1]}))^{\Gamma(u)}, \quad G_v = (G_v^{[1]}(G_v^{[1]}))^{\Gamma(u)}G_v^{\Gamma(v)}, \quad G_{uv} = G_v^{[1]}(G_v^{\Gamma(v)})_u.$$

Assume that G is transitive on V. Then $G_v^{[1]}$ is a p-group for some prime p, refer to [6]. Note that G is transitive on the arcs of Γ. There is some element in G interchanging u and v. This implies that $(G_v^{[1]}(G_v^{[1]}))^{\Gamma(u)} \leq (G_v^{\Gamma(v)})_u \cong (G_v^{\Gamma(v)})_v$. Thus we have the following lemma.

Lemma 2.4. Assume that G is transitive on V, and $\{u, v\} \in E$. Then $G_{uv}^{[1]}$ is a p-group, and $(G_v^{[1]}(G_v^{[1]}))^{\Gamma(u)}$ is isomorphic to a normal subgroup of a point-stabilizer in $G_v^{\Gamma(v)}$. In particular, G_v is soluble if and only if $G_v^{\Gamma(v)}$ is soluble.

The graph $\Gamma = (V, E)$ is said to be (G, s)-arc-transitive if Γ has an s-arc and G acts transitively on the set of s-arcs of Γ, where $s \geq 1$. Note that Γ is $(G, 2)$-arc-transitive if and only if G is transitive on V, and $G_v^{\Gamma(v)}$ is a 2-transitive group for some (and hence every) $v \in V$. By [7, 27, 28], we have the following result.

Theorem 2.5. Assume that $\Gamma = (V, E)$ is $(G, 2)$-arc-transitive. Then Γ is not $(G, 8)$-arc-transitive. Further,

1. if $G_{uv}^{[1]} = 1$ then Γ is not $(G, 4)$-arc-transitive.
2. if $G_{uv}^{[1]} \neq 1$ then $G_{uv}^{[1]}$ is a nontrivial p-group, $O_p(G_v^{\Gamma(v)}) \neq 1$, $\text{PSL}(n, q) \leq G_v^{\Gamma(v)}$, and $|\Gamma(v)| = \frac{q^n - 1}{q - 1}$, where $n \geq 2$ and q is a power of p; in this case, Γ is $(G, 4)$-arc-transitive if and only if $n = 2$.

3. The proof of Theorem 1.1

In this section, we let \(\Gamma = (V,E) \) be a connected graph of valency \(d \geq 3 \), and \(G \leq \text{Aut}\Gamma \). Assume that \(\Gamma \) is \(G \)-edge-primitive, that is, \(G \) act primitively on \(E \). Then, by [9, Lemma 3.4], \(G \) acts transitively on the arc set of \(\Gamma \). Thus, for an edge \(\{u,v\} \in E \), \(d = |G_v : G_{uv}| \) and \(|G_{\{u,v\}} : G_{uv}| = 2 \).

Let \(1 \neq N \triangleleft G \). Then \(N \) is transitive on \(E \), and so either \(N \) is transitive on \(V \) or \(N \) has two orbits on \(V \); for the latter case, \(N_\nu \) is transitive on \(\Gamma(\nu) \). This implies that either \(G = NG_v \), or \(|G : (NG_v)| = 2 \) and \(N_{uv} = N_{\{u,v\}} \). Note that \(G = NG_{\{u,v\}} \) by the maximality of \(G_{\{u,v\}} \) or the transitivity of \(N \) on \(E \). We have

\[
|G| = \frac{|N||G_{\{u,v\}}|}{|NG_v|} = \frac{|N||G_{\{u,v\}}|}{|N_{\{u,v\}}|} = \frac{2|N||G_{uv}|}{2|N_u^2|} = \frac{2(N|G_v|)}{|dN_{\{u,v\}}|}.
\]

Then the next lemma follows.

Lemma 3.1. Let \(1 \neq N \triangleleft G \). If \(N \) is transitive on \(V \) then \(2|N_v| = d|N_{\{u,v\}}| \); if \(N \) is intransitive on \(V \) then \(|N_v| = d|N_{\{u,v\}}| = d|N_{uv}| \). In particular, \(N_v \neq 1 \) and \(N_v \neq N_{\{u,v\}} \).

Let \(K_{d,d} \) and \(K_{d+1} \) be the complete bipartite graph and complete graph of valency \(d \), respectively.

Corollary 3.2. Let \(1 \neq N \triangleleft G \). Then either \(\Gamma \cong K_{d,d} \), or \(N_{uv} \neq 1 \) and \(N_{\{u,v\}} \) is self-normalized in \(N \), where \(\{u,v\} \in E \).

Proof. Assume that \(\Gamma \not\cong K_{d,d} \). Then, by the O'Nan-Scott Theorem and [9, Lemmas 6.1, 6.2 and Propersition 6.13], \(G \) has no normal subgroup acting regularly on \(E \). Thus \(N_{\{u,v\}} \neq 1 \), and so \(N_{\{u,v\}} \) is self-normalized in \(N \) by Lemma 2.1.

Suppose that \(N_{uv} = 1 \). Then \(N_{\{u,v\}} \) has order 2, and so \(N_{\{u,v\}} \leq C_N(N_{\{u,v\}}) \leq N_N(N_{\{u,v\}}) = N_{\{u,v\}} \). This implies that \(C_N(N_{\{u,v\}}) = N_N(N_{\{u,v\}}) \), and then \(N_{\{u,v\}} \) is a Sylow 2-subgroup of \(N \). By Burnside’s transfer theorem (refer [14, IV.2.6]), \(N \) has normal 2'-Hall subgroup, say \(M \). Then this \(M \) is normal in \(G \) and regular on \(E \), a contradiction.

By [9], if \(\Gamma \not\cong K_{d,d} \) then \(G \) has type SD, CD, AS or PA on \(E \); in particular, \(G \) has a unique (of course, insoluble) minimal normal subgroup. Thus, if \(\Gamma \not\cong K_{d,d} \) then \(G \) is insoluble, and so \(G_{\{u,v\}} \) is not abelian by [14, IV.7.4]. If \(G_{uv} \) is abelian the following result says that \(\Gamma \cong K_{d,d} \) or \(K_{d+1} \).

Theorem 3.3. Assume that \(\Gamma \not\cong K_{d,d} \). Let \(1 \neq N \triangleleft G \).

1. If \(N_{\{u,v\}} \) has a normal Sylow subgroup \(P \neq 1 \) then \(P \) is also a Sylow subgroup of \(N \); in particular, \(N_{\{u,v\}} \) is not abelian.
2. If \(N_{uv} \) is abelian then \(N \) is transitive on the arc set of \(\Gamma \).
3. If \(N_{uv} \) is an abelian 2-group then \(\soc(G) = \PSL(2,q) \) and \(\Gamma \cong \operatorname{K}_{q+1} \), where \(q \) is a power of some prime with \(q - 1 \) a power of 2 greater than 8.
4. If \(G_{uv} \) is an abelian group then \(d = q \) and either \(\soc(G) \cong \PSL(2,q) \) and \(\Gamma \cong \operatorname{K}_{q+1} \), or \(\soc(G) = \operatorname{Sz}(q) \), \(\text{Aut}\Gamma = \text{Aut}(\operatorname{Sz}(q)) \) and \(\Gamma \) is \((\operatorname{Sz}(q), 2) \)-arc-transitive, where \(q \) is a power of some prime.

Proof. (1) Assume that \(P \neq 1 \) is a normal Sylow \(p \)-subgroup of \(N_{\{u,v\}} \). Then \(P \) is a characteristic subgroup of \(N_{\{u,v\}} \), and so \(P \trianglelefteq G_{\{u,v\}} \) as \(N_{\{u,v\}} \trianglelefteq G_{\{u,v\}} \). Thus \(N_G(P) \geq \)}
are isomorphic nonabelian simple groups. This gives \(N_G(P) = N \cap N_G(P) = N \cap G_{\{u,v\}} = N_{\{u,v\}} \). Choose a Sylow \(p \)-subgroup \(Q \) of \(N \) with \(P \leq Q \). Then \(N_Q(P) \leq Q \cap N_G(P) = Q \cap N_{\{u,v\}} = P \). This yields \(P = Q \), so \(P \) is a Sylow \(p \)-subgroup of \(N \).

Suppose that \(N_{\{u,v\}} \) is abelian. Then \(N_{\{u,v\}} \leq C_N(P) \leq N_G(P) = N_{\{u,v\}} \), yielding \(C_N(P) = N_G(P) \). By Burnside’s transfer theorem, \(P \) has a normal complement \(H \) in \(N \), that is \(N = PH \) with \(P \cap H = 1 \) and \(H \leq N \). Note that \(H \) is a Hall subgroup of \(N \). It follows that \(H \) is characteristic in \(N \), and hence \(H \leq G \). Let \(P \) runs over the Sylow subgroup of \(N_{\{u,v\}} \). Then the resulting normal complements intersect at a normal complement of \(N_{\{u,v\}} \) in \(N \), which is normal in \(G \) and regular on \(E \). This contradicts Corollary 3.2. Therefore, \(N_{\{u,v\}} \) is nonabelian, and \((1) \) of this theorem follows.

(2) Assume that \(N_{uv} \) is abelian. Then \(N_{uv} \neq N_{\{u,v\}} \) by \((1) \), and thus \((u, v) = (v, u)^x \) for some \(X \in N_{\{u,v\}} \). Since \(\Gamma \) is \(N \)-edge-transitive, \(\Gamma \) is \(N \)-arc-transitive.

(3) Assume that \(N_{uv} \) is an abelian 2-group. Recall that \(G \) has a unique minimal normal subgroup, say \(M \). Then \(M \leq N \), and \((1) \) and \((2) \) hold for \(M \). Then, since \(M_{uv} \) is an abelian 2-group, \(M_{\{u,v\}} \) is a Sylow 2-subgroup of \(M \), and \(M_{\{u,v\}} \) is not abelian.

Write \(M = T_1 \times \cdots \times T_k \), where \(T_i \) are isomorphic nonabelian simple groups. Recall that \(M_{\{u,v\}} \) is a Sylow \(q \)-subgroup of \(M \). For each \(i \), choose a Sylow \(2 \)-subgroup of \(T_i \) with \(Q_i \leq M_{\{u,v\}} \). Then \(M_{\{u,v\}} = Q_1 \times \cdots \times Q_k \). Noting that \(Q_i \) are all isomorphic, every \(Q_i \) is nonabelian; otherwise, \(M_{\{u,v\}} \) is abelian, a contradiction. In particular, \(Q_1 \not\leq M_{uv} \).

Then \(M_{\{u,v\}} = M_{uv}Q_1 \), and so

\[
Q_2 \times \cdots \times Q_k \cong M_{\{u,v\}}/Q_1 = M_{uv}Q_1/Q_1 \cong M_{uv}/(M_{uv} \cap Q_1).
\]

Since \(M_{uv} \) is abelian, the only possibility is \(k = 1 \). Thus \(M = \text{soc}(G) \) is simple.

By [10, Corollary 5], \(M_{\{u,v\}} \) has cyclic commutator subgroup. Since \(M_{\{u,v\}} \) is nonabelian, by [2], \(M \) is isomorphic to one of the Mathieu group \(M_{11} \), \(\text{PSL}(2, q) \) (with \(q^2 - 1 \) divisible by 16), \(\text{PSL}(3, q) \) (with \(q \) odd) and \(\text{PSU}(3, q) \) (with \(q \) odd). If \(M \cong M_{11} \), then \(G = M \), and so \(M_{\{u,v\}} \) is maximal in \(M \); however, by the Atlas [3], a Sylow \(2 \)-subgroup of \(M_{11} \) is not a maximal subgroup, a contradiction. Thus we next let \(M \cong \text{PSL}(2, q) \), \(\text{PSL}(3, q) \) or \(\text{PSU}(3, q) \).

Since \(M \) is transitive on \(E \), we know that \(|E| = |M : M_{\{u,v\}}| \) is odd. Thus \(G \) is an almost simple primitive group (on \(E \)) of odd degree. Noting that \(M_{\{u,v\}} = M \cap G_{\{u,v\}} \), by [20], \(M_{\{u,v\}} \) is known. Notice that the isomorphisms among simple groups (refer to [15, Proposition 2.9.1 and Theorem 5.1.1]). Since \(M_{\{u,v\}} \) is a Sylow \(2 \)-subgroup of \(M \), the only possibility is that \(M \cong \text{PSL}(2, q) \), and \(M_{\{u,v\}} \) is the stabilizer of some orthogonal decomposition of a natural projective module associated with \(M \) into 1-dimensional subspaces. It follows that \(M_{\{u,v\}} \cong D_{q-1} \) or \(D_{q+1} \), and so \(M_{uv} \cong \mathbb{Z}_{q-1} \) or \(\mathbb{Z}_{q+1} \), respectively. Since \(M \) is transitive on the arcs of \(\Gamma \), we have \(|M_v : M_{uv}| = d \geq 3 \).

Checking the subgroups of \(\text{PSL}(2, q) \) (refer to [14, II.8.27]), we conclude that \(M_{uv} \cong \mathbb{Z}_{q-1} \), \(d = q \), \(V = |M : M_v| = q + 1 \) and \(M \) is 2-transitive on \(V \). Thus \(\Gamma \cong K_{q+1} \).

(4) Assume that \(G_{uv} \) is abelian. Let \(M \) be the unique minimal normal subgroup of \(G \). If \(M_{uv} \) is a 2-group, then \((4) \) of this theorem follows from \((3) \).

We next assume that \(|M_{uv}| \) has an odd prime divisor \(p \). By \((1) \), the unique Sylow \(p \)-subgroup of \(M_{uv} \) is also a Sylow \(p \)-subgroup of \(M \). Write \(M = T_1 \times \cdots \times T_k \), where \(T_i \) are isomorphic nonabelian simple groups. By \((1) \) of this theorem, \(M_{\{u,v\}} \) is not abelian,
so $M_{\{u,v\}} \not< G_{uv}$, and then $G_{\{u,v\}} = M_{\{u,v\}}G_{uv}$. Thus $G = MG_{uv}$, and hence G_{uv} acts transitively on $\{T_1, \ldots , T_k\}$ by conjugation. Choose, for each i, a Sylow p-subgroup P_i of T_i such that $P_1 \times \cdots \times P_k$ is the unique Sylow subgroup M_{uv}. Since G_{uv} is abelian, we have $P_i = P_i^x \leq T_i^x$ for $x \in G_{uv}$. It follows that $P_i \leq T_i$ for all i. The only possibility is that $k = 1$, and so M is simple.

Note that G is an almost simple group with a soluble maximal subgroup $G_{\{u,v\}}$. Then, by [18], both $M = soc(G)$ and $M_{\{u,v\}} = M \cap G_{\{u,v\}}$ are known. Since $M_{\{u,v\}}$ has an abelian subgroup of index 2, it follows that either $M \cong PSL(2,q)$ and $M_{\{u,v\}} \cong D_{2(q+1)}$, or $M = Sz(q)$ and $M_{\{u,v\}} \cong D_{2(q-1)}$. Check the subgroups of M, refer to [25] for $Sz(q)$. The former case yields that $M_v \cong [q]:\mathbb{Z}_{q-1}$ and $\Gamma \cong K_{q+1}$. Assume that $M = Sz(q)$ and $M_{\{u,v\}} \cong D_{2(q-1)}$. Then $M_v \cong [q]:\mathbb{Z}_{q-1}$ and $d = q$; in this case, Γ is $(M,2)$-arc-transitive. By [5], we have that $\text{Aut}\Gamma = \text{Aut}(Sz(q))$ and Γ is unique up to isomorphism. Thus (4) of this theorem follows. \hfill \Box

Lemma 3.4. Assume that G has type PA on E. Let $soc(G) = T_1 \times \cdots \times T_k$. Then $(T_i)_{uv} \neq 1$ for each i and $(u, v) \in E$; in particular, every T_i is not semiregular.

Proof. Let $M = soc(G)$. By Lemma 2.3, $M_{\{u,v\}} = (T_1)_{\{u,v\}} \times \cdots \times (T_k)_{\{u,v\}}$, and $(T_i)_{\{u,v\}}$ all have equal order. By Theorem 3.3, $M_{\{u,v\}}$ is nonabelian. Thus $(T_i)_{\{u,v\}}$ is nonabelian for all i. Then the lemma follows. \hfill \Box

For the case where Γ is a bipartite graph, we let G^+ be the subgroup of G preserving the bipartition of Γ. Then $|G : G^+| = 2$, and each bipartite half of Γ is a G^+-orbit on V.

Lemma 3.5. Assume that the graph $\Gamma = (V,E)$ is $(G,2)$-arc-transitive, and G has type PA on E. Then either $\Gamma \cong K_{d,d}$, or one of the following holds:

(1) G is quasiprimitive on V;

(2) Γ is bipartite, and G^+ is faithful and quasiprimitive on each bipartite half of Γ.

Proof. Since G is primitive on E, every minimal normal subgroup of G is transitive on E, and so has at most two orbits on V. If Γ is not bipartite then quasiprimitive on V.

Now let Γ be bipartite with bipartition say $V = V_1 \cup V_2$. Note that $G_v \leq G^+$ for each $v \in V$. Then G^+ is locally-primitive on Γ. Suppose that $\Gamma \not\cong K_{d,d}$. Then, by [23], G^+ is faithful on both V_1 and V_2, and either (2) of this lemma holds, or the unique minimal normal subgroup of G is a direct product $M_1 \times M_2$, where M_1 and M_2 are normal in G^+ and conjugate in G, and M_i is intransitive on V_i for $i = 1, 2$. For the latter case, if M_1 is intransitive on V_2 then M_1 is semiregular on V by [8, Lemma 5.1]; if M_1 is transitive on V_2 then M_2 is semiregular on V_2. These two cases all contradict Lemma 3.4. Thus G^+ is quasiprimitive on both V_1 and V_2. \hfill \Box

As permutation groups on V and on E, the types of G (and G^+) have been determined in [9]. Then by Lemma 3.5 and combining with the reduction theorems for 2-arc-transitive graphs given by Preager [22, 23], we get the following result.

Lemma 3.6. Assume that the graph $\Gamma = (V,E)$ is $(G,2)$-arc-transitive. Suppose that $\Gamma \not\cong K_{d,d}$. If G is not almost simple, then G has type PA on E and either

(1) G is quasiprimitive and of type PA on V; or

(2) Γ is bipartite, G^+ is faithful and quasiprimitive on each bipartite half of Γ with type PA.
Now we are ready to give a proof of Theorem 1.1.

Theorem 3.7. Let $\Gamma = (V, E)$ be a connected d-regular graph for some $d \geq 3$, and let $G \leq \text{Aut}\Gamma$. Assume that Γ is both G-edge-primitive and $(G, 2)$-arc-transitive. Then either $\Gamma \cong K_{d,d}$, or G is almost simple.

Proof. Assume that $\Gamma \not\cong K_{d,d}$, and let $\{u, v\} \in E$. By the 2-arc-transitivity of G on Γ, we know that G^Γ_v is a 2-transitive permutation group of degree d.

Let $M = \text{soc}(G) = T_1 \times \cdots \times T_k$, where T_i are isomorphic nonabelian simple groups. Then $M_s \leq G_v$, and $M_v \neq 1$ by Lemma 3.1 or 3.4. Thus G^Γ_v is a transitive normal subgroup of G^Γ_v.

Assume that M^Γ_v is primitive on $\Gamma(v)$. Noting that G is transitive on V, we conclude that M^Γ_w is primitive for every $w \in V$. Thus Γ is M-locally primitive. Then, byLemma 3.4 and [8, Lemma 5.1], we conclude that $k = 1$, and so G is almost simple.

Next assume that M^Γ_v is imprimitive on $\Gamma(v)$.

Note that every non-trivial normal subgroup of an almost simple 2-transitive group is primitive. Then G^Γ_v is an affine 2-transitive group, and by Lemma 2.2, M^Γ_v is a soluble Frobenius group and $(M^\Gamma_v)_u$ is cyclic. Set $(M^\Gamma_v)_u \cong \mathbb{Z}_d$ and $\text{soc}(G^\Gamma_v) \cong \mathbb{Z}_r^l$ for a prime r and integer $l \geq 1$ with $d = r^l$. Then e is a divisor of $r^l - 1$, and $e < r^l - 1$.

Assume that $e = 1$. Then $M^\Gamma_v = \text{soc}(G^\Gamma_v) \cong \mathbb{Z}_r^l$, and so M^Γ_v is regular on $\Gamma(v)$. By [17, Lemma 2.3], M_e is faithful and hence regular on $\Gamma(v)$, and thus $M^\Gamma_v = 1$, which contradicts Corollary 3.2. Thus $e \neq 1$.

Note that e is a proper divisor of $d - 1 = r^l - 1$. Neither d nor $d - 1$ is a prime, in particular, $l > 1$ and $d = r^l \geq 9$. Thus G^Γ_v has no normal subgroup isomorphic to a projective special linear group of dimension ≥ 2. By Theorem 2.5, $G^\Gamma_v = 1$, and so $M^\Gamma_v = 1$.

Let $x \in G_{\{u,v\}} \setminus G_{uv}$. Then $(u, v)^x = (v, u)$, this implies that M^Γ_v and M^Γ_u are permutation isomorphic. In particular, $(M^\Gamma_u)_v \cong (M^\Gamma_v)_u \cong \mathbb{Z}_e$. Since $M^\Gamma_v \cap M^\Gamma_u = M^\Gamma_{uv} = 1$, we know that M_{uv} is isomorphic to a subgroup of $(M^\Gamma_v/M^\Gamma_u) \times (M^\Gamma_u/M^\Gamma_v)$. Note that $M_{uv}/M^\Gamma_v \cong (M^\Gamma_u)_v$ and $M_{uv}/M^\Gamma_u \cong (M^\Gamma_v)_v$. Then M_{uv} is isomorphic to a subgroup of $\mathbb{Z}_e \times \mathbb{Z}_e$. In particular, M_{uv} is abelian. Then, by Theorem 3.3, M is transitive on the arcs of Γ, and so $M_{\{u,v\}} = M_{uv} \cdot 2$.

If e is a power of 2 then, by Theorem 3.3, $M \cong \text{PSL}(2, r^l)$, $\Gamma \cong K_{r^l + 1}$; however, in this case, M is locally primitive on Γ, a contradiction. Thus e has odd prime divisors. Let s be an odd prime divisor of e, and S be a Sylow s-subgroup of M_{uv}. Then, noting that $M_{\{u,v\}} = M_{uv} \cdot 2$, we know that S is also a Sylow s-subgroup of M by Theorem 3.3. Thus $S = S_1 \times \cdots \times S_k$, where S_i is a Sylow s-subgroup of T_i for $1 \leq i \leq k$. Since M_{uv} is isomorphic to a subgroup of $\mathbb{Z}_e \times \mathbb{Z}_e$, we know that M_{uv} has no subgroup isomorphic to \mathbb{Z}_e^3. It follows that $k \leq 2$.

Now we deduce a contradiction by supposing that $k = 2$.

Let $k = 2$. Since $G \leq (\text{Aut}(T_1) \times \text{Aut}(T_1)) \cdot 2$, we have

$$G_{\{u,v\}}/M_{\{u,v\}} = G_{\{u,v\}}/(M \cap G_{\{u,v\}}) \cong MG_{\{u,v\}}/M = G/M \leq (\text{Out}(T_1) \times \text{Out}(T_1)) \cdot 2.$$
It follows that $G_{\{u,v\}}/M_{\{u,v\}}$ is soluble, and so $G_{\{u,v\}}$ is soluble as $M_{\{u,v\}}$ is soluble. Thus $(G_v^{\Gamma(v)})_u$ is soluble, and $G_v^{\Gamma(v)} = \text{soc}(G_v^{\Gamma(v)}):(G_v^{\Gamma(v)})_u$ is also soluble. Checking the soluble affine 2-transitive groups, by Lemma 2.2, $(G_v^{\Gamma(v)})_u \leq \Gamma L(1, r^i)$ or $Z_u \cong (M_v^{\Gamma(v)})_u \leq Z((G_v^{\Gamma(v)})_u \cong Z_2$. Note that $(M_v^{\Gamma(v)})_u$ is a reducible subgroup of $(G_v^{\Gamma(v)})_u$. Recalling that e is not a power of 2, the latter case does not occur.

Since $|M_{\{u,v\}}| = 2$, we have $M_{\{u,v\}} \not\cong G_{uv}$, and so $G_{uv} \neq M_{\{u,v\}}G_{uv} \leq G_{\{u,v\}}$. Then $M_{\{u,v\}}G_{uv} = G_{\{u,v\}}$, and $G = MG_{\{u,v\}} = MG_{uv}$. Recalling that $M = T_1 \times T_2$, it follows that G_{uv} acts transitively on $\{T_1, T_2\}$ by conjugation. Let H be the kernel of this action. Then $|G_{uv} : H| = 2$, and each T_i is normalized by H. For $h \in H$, $((T_i)_v)^h = (T_i \cap G_v)^h = T_i^h \cap (G_v)^h = T_i \cap G_v = (T_i)_v$, $i = 1, 2$.

This implies that H normalizes each $(T_i)_v$. Then $(T_i)^{\Gamma(v)}_v$ is normalized by $H^{\Gamma(v)}$. Let $(T_i)^{\Gamma(v)}_v$ be a connected irreducible on $(G_v^{\Gamma(v)})_u$ and $e = |(M_v^{\Gamma(v)})_u|$ is a proper divisor of $r^i - 1$. Let K_i be the Sylow r-subgroup of $(T_i)^{\Gamma(v)}_v$. Then K_i is normalized by $H^{\Gamma(v)}$, of course, $K_i \leq \text{soc}(G_v^{\Gamma(v)})$ and $K_1 \cap K_2 = 1$.

Recalling that $|G_{uv} : H| = 2$, we have $|(G_v^{\Gamma(v)})_u : H^{\Gamma(v)}| \leq 2$. Since $G_v^{\Gamma(v)}$ is 2-transitive, $|(G_v^{\Gamma(v)})_u|$ is divisible by $r^i - 1$, and so $|H^{\Gamma(v)}|$ is divisible by $\frac{r^i - 1}{2}$. Note that $\frac{r^i - 1}{2} > \frac{r^i}{2} - 1 > r^{i-1} - 1$. Then $|H^{\Gamma(v)}|$ is not a divisor of $r^b - 1$ for all $1 \leq b < l$. Then, by [13, Lemma 5.1], $H^{\Gamma(v)}$ is irreducible on $\text{soc}(G_v^{\Gamma(v)})$. It implies that $K_1 = K_2 = 1$, and thus $(T_i)^{\Gamma(v)}_v \leq (M_v^{\Gamma(v)})_u$ for $i = 1, 2$. Let u run over $\Gamma(v)$. It follows that $(T_i)^{\Gamma(v)}_v = 1$, and hence $(T_i)_v \leq M_v^{[1]}$, $i = 1, 2$. Since M is transitive on V, by [17, Lemma 2.3], we have $(T_1)_v = (T_2)_v = 1$, which contradicts Lemma 3.4. This completes the proof.

As a consequence of Theorems 3.3 and 3.7, an edge-primitive graph of prime valency is 2-arc-transitive, and then it has almost simple automorphism group if it is not a complete bipartite graph. See also [21].

Corollary 3.8. Assume that d is a prime and $\Gamma \not\cong K_{d,d}$. Then G is almost simple, and either $G = \text{PSL}(2, d)$ with $d > 11$ and $\Gamma \cong K_{d+1}$ or G is transitive on the 2-arcs of Γ.

Proof. Note that G is transitive on the arc set of Γ. Let $\{u, v\} \in E$. By Theorem 3.7, it suffices to deal with the case where $G_v^{\Gamma(v)}$ is not 2-transitive.

Suppose that $G_v^{\Gamma(v)}$ is not 2-transitive. Then $G_v^{\Gamma(v)} \cong \mathbb{Z}_d: \mathbb{Z}_l$ with $l < d - 1$ and l a divisor of $d - 1$. If $l = 1$ then $G_v \cong \mathbb{Z}_d$ by [17, Lemma 2.3], and so $G_{uv} = 1$, which contradicts Corollary 3.2. Then $l > 1$, and so $d \geq 5$. By Theorem 2.5, $G_v^{[1]} = 1$. Then G_{uv} is isomorphic to a subgroup of $((G_v^{\Gamma(v)})_u \times (G_v^{\Gamma(v)})_u \cong \mathbb{Z}_l \times \mathbb{Z}_l$. Thus G_{uv} is abelian. By Theorem 3.3, $\Gamma \cong K_{d+1}$, $\text{soc}(G) \cong \text{PSL}(2, d)$, $\text{soc}(G)_v \cong \mathbb{Z}_d: \mathbb{Z}_{d-1}$ and $\text{soc}(G)_{\{u,v\}} \cong D_{d-1}$. If $G \cong \text{PGL}(2, d)$ then G is transitive on the 2-arcs of Γ, which is not the case. Thus $G \cong \text{PSL}(2, d)$, and so $d > 11$ by the maximality of $G_{\{u,v\}}$. \qed

4. Examples

Let $\Gamma = (V, E)$ be a connected d-regular graph, where $d \geq 3$. Let $v \in V$ and $G \leq \text{Aut}\Gamma$. Assume that Γ is $(G, 2)$-arc-transitive. Choose an integer $s \geq 2$ such that Γ
Lemma 4.3. Let $\Gamma = (G, s)$-arc-transitive but not $(G, s+1)$-arc-transitive; in this case, we call Γ a (G, s)-transitive graph. Then $s \leq 7$ by [28]. If G_v is faithful on $\Gamma(v)$ then $s \leq 3$ by Theorem 2.5, and $s = 3$ yields that $d = 7$ and $G_v \cong A_7$ or S_7, see [16, Proposition 2.6]. This leads to the following interesting problem: Do there exist 3-arc-transitive graphs with faithful stabilizers? We next answer this problem by giving several examples of edge-primitive graphs which are 3-transitive and have faithful stabilizers.

The first example is the Hoffman-Singleton graph, which has valency 7, order 50 and automorphism group $G = T.2$, where $T = \text{PSU}(3, 5)$. Let $X = T$ or G. For an edge $\{u, v\}$ of this graph, $X_v \cong A_7$ or S_7 and $X^{(u,v)} \cong M_{10}$ or $\text{PGL}(2,9)$, which are maximal subgroups of X. Thus the Hoffman-Singleton graph is both X-edge-primitive and $(X, 2)$-arc-transitive. To see the 3-arc-transitivity, we fix an edge $\{u, v\}$ and consider the action of the arc-stabilizer $X_{uv} \cong A_6$ or S_6 on $\Gamma(u) \cup \Gamma(v)$. By the 2-arc-transitivity of X, we have two faithful transitive actions of X_{uv} on $\Gamma(u)$ and $\Gamma(v)$, respectively. Let $v_1 \in \Gamma(v) \setminus \{u\}$ and $x \in X^{(u,v)} \setminus X_{uv}$. Then $u_1 := v_1^x \in \Gamma(u) \setminus \{v\}$, and

\[(X_{uv})_{u_1} = (X^{(u,v)})_{u_1} = (X^{(u,v)})_{v_1} = ((X^{(u,v)})_{v_1})^x = ((X_{uv})_{v_1})^x.\]

By the choice of x, we know that $(X_{uv})_{v_1}$ and $((X_{uv})_{v_1})^x$ are not conjugate in X_{uv}, and so do for $(X_{uv})_{u_1}$ and $(X_{uv})_{v_1}$. This implies that the actions of X_{uv} on $\Gamma(u)$ and $\Gamma(v)$ are not equivalent. Thus $(X_{uv})_{v_1}$ acts on $\Gamma(u) \setminus \{v\}$ without fixed-points, this yields that $(X_{uv})_{v_1}$ is transitive on $\Gamma(u) \setminus \{v\}$. It follows that the Hoffman-Singleton graph is $(X, 3)$-arc-transitive.

In general, combining with [16, Proposition 2.6], a similar argument as above yields the following result.

Lemma 4.1. Let $\Gamma = (V, E)$ be a connected d-regular graph for $d \geq 3$, $\{u, v\} \in E$ and $G \leq \text{Aut}\Gamma$. If Γ is $(G, 2)$-arc-transitive and G_v is faithful on $\Gamma(v)$, then Γ is $(G, 3)$-arc-transitive if and only if $d = 7$, $\text{soc}(G_v) \cong A_7$ and $G^{(u,v)} \not\cong S_6$, i.e. $G^{(u,v)} \cong \text{PGL}(2,9)$, M_{10} or $\text{Aut}(A_6)$.

We next give another example.

Example 4.2. By the information given in the Atlas [3] for the O’Nan simple group O’N, there exactly two conjugacy classes C_1 and C_2 of (maximal) subgroups isomorphic to A_7, which are merged into one class in O’N.2. Further, there are $H \in C_1$ and involutions $x_1, x_2 \in \text{O’N.2} \setminus \text{O’N}$ such that $(H \cap H^{x_1}) \langle x_1 \rangle$ are maximal subgroups of O’N.2 with $(H \cap H^{x_2}) \langle x_2 \rangle \cong \text{PGL}(2,9)$ and $(H \cap H^{x_2}) \langle x_2 \rangle \cong \text{PSL}(2,7)$. Define two bipartite graphs $\Gamma_1 = (V, E_1)$ and $\Gamma_2 = (V, E_2)$ with vertex set $V = C_1 \cup C_2$ and edge sets

\[E_1 = \{\{H_1, H_2\} : H_1 \in C_1, H_2 \in C_2, H_1 \cap H_2 \cong A_6\};\]
\[E_2 = \{\{H_1, H_2\} : H_1 \in C_1, H_2 \in C_2, H_1 \cap H_2 \cong \text{PSL}(2,7)\}.\]

Then Γ_1 and Γ_2 are both O’N.2-edge-primitive and (O’N.2, 2)-arc-transitive, which have valency 7 and 15 respectively. By Lemma 4.1, only Γ_1 is (O’N.2, 3)-arc-transitive. □

Lemma 4.3. Let Γ_1 be as in Example 4.2. Then $\text{Aut}\Gamma_1 = \text{O’N.2}$.

Proof. Let $G = \text{Aut}\Gamma_1$. Then $G \geq \text{O’N.2}$. By Theorem 1.1, G is almost simple, and so $\text{O’N} \leq \text{soc}(G)$. Let $\{u, v\}$ be an edge of Γ_1. Then $G^{(u,v)} \cong A_7$ or S_7, and $G^{(u,v)} = 1$ by Theorem 2.5. Thus, by the group extensions $\langle \ast \rangle$ in Section 2, we conclude that $|G_v|$ has no prime divisor other than 2, 3, 5 and 7. Since O’N.2 is transitive on the vertices
of I_1, we have $G = (O'N.2)G_v$. It follows that $|O'N|$ and $|\text{soc}(G)|$ have the same prime divisors. Using [19, Corollary 5], we get $\text{soc}(G) = O'N$, and so $G = O'N.2$. □

References

[1] P.J. Cameron, *Permutation Groups*, Cambridge University Press, Cambridge, 1999.
[2] P. Chabot, Groups whose Sylow 2-groups have cyclic commutator groups. III, *J. Algebra* 29 (1974), 455-458.
[3] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, *Atlas of Finite Groups*, Clarendon Press, Oxford, 1985.
[4] D.J. Dixon and B. Mortimer, *Permutation Groups*, Springer-Verlag, New York, 1996.
[5] X.G. Fang and C.E. Praeger, Finite two-arc-transitive graphs admitting a Suzuki simple group, *Comm. Algebra* 27(8) (1999), 3727-3754.
[6] A. Gardiner, Arc transitivity in graphs, *Quart. J. Math. Oxford* 24 (1973), 399-407.
[7] A. Gardiner, Doubly primitive vertex stabilizers in graphs, *Math. Z.* 135 (1974), 157-166.
[8] M. Giudici, C. H. Li and C. E. Praeger, Analysing finite locally s-arc transitive graphs, *Trans. Amer. Math. Soc.* 365 (2004), 291-317.
[9] M. Giudici and C.H. Li, On finite edge-primitive and edge-quasiprimitive graphs, *J. Combin. Theory Ser. B* 100 (2010), 275-298.
[10] D.M. Goldschmidt, 2-Fusion in finite groups, *Ann. Math. (2)* 99 (1974), 70-117.
[11] S.T. Guo, Y.Q. Feng, C.H. Li, The finite edge-primitive pentavalent graphs, *J. Algebraic Combin.* 38 (2013), 491-497.
[12] S.T. Guo, Y.Q. Feng, C.H. Li, Edge-primitive tetravalent graphs, *J. Combin. Theory Ser. B* 112 (2015), 124-137.
[13] Christoph Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order, *Geometriae Dedicata* 2 (1974), 425-460.
[14] B. Huppert, *Endliche gruppen I*, Springer-Verlag, Berlin, 1967.
[15] P. Kleidman and M. Liebeck, *The subgroup structure of the finite classical groups*, Cambridge University Press, 1990.
[16] C.H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective planes, *Proc. American Math. Soc.* 133 (2004), 31-41.
[17] C.H. Li, Z.P. Lu and G.X. Wang, Arc-transitive graphs of square-free order and small valency, *Discrete Math.* 339 (2016), 2907-2918.
[18] C.H. Li and H. Zhang, The finite primitive groups with soluble stabilizers, and the edge-primitive s-arc transitive graphs, *Proc. Lond. Math. Soc.* 103 (2011), 441-472.
[19] M. Liebeck, C. E. Praeger and J. Saxl, Transitive subgroups of primitive permutation groups, *J. Algebra* 234 (2000), 291-361.
[20] M.W. Liebeck and J. Saxl, The primitive permutation groups of odd degree, *J. London Math. Soc. (2)* 31 (1985), 250-264.
[21] J.M. Pan, C.X. Wu and F.G. Yin, Finite edge-primitive graphs of prime valency, *European J. Combin.* 73 (2018), 61-71.
[22] C.E. Praeger, An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, *J. London Math. Soc.* 47(1992), 227-239.
[23] C.E. Praeger, On a reduction theorem for finite, bipartite 2-arc-transitive graphs, *Australasian J. Combin.* 7 (1993), 21-36.
[24] C.E. Praeger, Finite quasiprimitive graphs, *Surveys in combinatorics*. 1997. Proceedings of the 16th British combinatorial conference, London, UK, July 1997 (R. A. Bailey, ed.), *Lond. Math. Soc. Lect. Note Ser.*, no. 241, Cambridge University Press, 1997, pp. 65-85.
[25] M. Suzuki, On a class of doubly transitive groups, *Ann. of Math.* 75 (1962), 105-145.
[26] R.M. Weiss, Kantenprimitive Graphen vom Grad drei, *J. Combin. Theory Ser. B* **15**(1973), 269-288.

[27] R. Weiss, s-transitive graphs, Algebraic methods in graph theory, *Colloq. Soc. Janos Bolyai* **25**(1981), 827-847.

[28] R. Weiss, The nonexistence of 8-transitive graphs, *Combinatorica* **1** (1981), 309-311.

[29] H. Wielandt, *Finite permutation groups*, Translated from the German by R. Bercov, Academic Press, New York, 1964.

ZAI Ping Lu, CENTER FOR COMBINATORICS, LPMC, NANKAI UNIVERSITY, TIANJIN 300071, CHINA

E-mail address: lu@nankai.edu.cn