Cardiac MRI findings to differentiate athlete’s heart from hypertrophic (HCM), arrhythmogenic right ventricular (ARVC) and dilated (DCM) cardiomyopathy

J. Kübler1 · C. Burgstahler2 · J. M. Brendel1 · S. Gassenmaier1 · F. Hagen1 · K. Klingel3 · S.-C. Olthof4 · K. Blume4,5 · B. Wolfarth4,5 · K. A. L. Mueller6 · S. Greulich6 · P. Krumm1

Received: 27 March 2021 / Accepted: 5 May 2021 / Published online: 21 May 2021
© The Author(s) 2021

Abstract
To provide clinically relevant criteria for differentiation between the athlete’s heart and similar appearing hypertrophic (HCM), dilated (DCM), and arrhythmogenic right-ventricular cardiomyopathy (ARVC) in MRI. 40 top-level athletes were prospectively examined with cardiac MR (CMR) in two university centres and compared to retrospectively recruited patients diagnosed with HCM (n = 14), ARVC (n = 18), and DCM (n = 48). Analysed MR imaging parameters in the whole study cohort included morphology, functional parameters and late gadolinium enhancement (LGE). Mean left-ventricular end-diastolic volume index (LVEDVI) was high in athletes (105 ml/m²) but significantly lower compared to DCM (132 ml/m²; p = 0.001). Mean LV ejection fraction (EF) was 61% in athletes, below normal in 7 (18%) athletes vs. EF 29% in DCM, below normal in 46 (96%) patients (p < 0.0001). Mean RV-EF was 54% in athletes vs. 60% in HCM, 46% in ARVC, and 41% in DCM (p < 0.0001). Mean interventricular myocardial thickness was 10 mm in athletes vs. 12 mm in HCM (p = 0.0005), 9 mm in ARVC, and 9 mm in DCM. LGE was present in 1 (5%) athlete, 8 (57%) HCM, 10 (56%) ARVC, and 21 (44%) DCM patients (p < 0.0001). Healthy athletes’ hearts are characterized by both hypertrophy and dilation, low EF of both ventricles at rest, and increased interventricular septal thickness with a low prevalence of LGE. Differentiation of athlete’s heart from other non-ischemic cardiomyopathies in MRI can be challenging due to a significant overlap of characteristics also seen in HCM, ARVC, and DCM.

Keywords DCM · HCM · ARVC · Cardiac MRI · Athlete’s heart

Abbreviations
ARVC Arrhythmogenic right ventricular cardiomyopathy
CI Confidence interval
CMR Cardiac magnetic resonance imaging
DCM Dilated cardiomyopathy
ECG Electrocardiogram
EF Ejection fraction
EMB Endomyocardial biopsy
HCM Hypertrophic cardiomyopathy
ILW Infero-lateral wall
IRB Institutional review board
IVS Interventricular septum
LA Left atrium
LAI Left atrium index
LGE Late gadolinium enhancement
LV Left ventricle
LVEDD Left ventricular end-diastolic diameter
LVEDV Left ventricular end-diastolic volume
LVEDVI Left ventricular end-diastolic volume index
LVEF Left ventricular ejection fraction
LVESV Left ventricular end-systolic volume
LVGFI Left ventricular global function index
LVMM Left ventricular myocardial mass
LVMMI Left ventricular myocardial mass index
LVSV Left ventricular stroke volume
MRI Magnetic resonance imaging
RA Right atrium
RAI Right atrium index
RV Right ventricle
RVEDV Right ventricular end-diastolic volume
RVEDVI Right ventricular end-diastolic volume index
RVEF Right ventricular ejection fraction
Introduction

Highly trained athletes show morphological and functional changes of the cardiovascular system as a response to intensive exercise. The associated process of cardiac remodelling leads to the so called “athlete’s heart” and is considered a physiologic adaptation to repetitively increased volume load and blood pressure [1–3]. However, cardiomyopathies like hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy (ARVC) or dilated cardiomyopathy (DCM) have sometimes similar alterations. This makes a precise differentiation in individual cases difficult, especially in an early stage of the disease [2, 4, 5]. Since the cardiovascular abnormalities seen in cardiomyopathies are known to be the underlying causes for sudden cardiac death (SCD) it is crucial to differentiate between pathologic findings and physiologic remodelling as in athletes [6–8]. On the one hand, false negative diagnosis and cardiomyopathy patients can lead to progression of disease and delay in therapy. On the other hand, false positive diagnosis in athletes can lead to unnecessary restriction from participation in competitive sports and have significant impact on lifestyle. Cardiac magnetic resonance imaging (CMR) provides an excellent tool to visualize cardiac pathologies and assess morphological and functional parameters [9].

The aim of this multicentre study was to provide clinically relevant criteria to help differentiate between the athlete’s heart and cardiomyopathies.

Material and methods

Athletes

We included 40 German Caucasian top-level athletes participating in top national and international competitions, mainly endurance athletes, who were prospectively examined for this multicentre trial. In 19 athletes CMR was performed at the University Hospital Tübingen (Tübingen Germany), and in 21 CMR was performed at the University Hospital of the Technical University Munich (Munich, Germany).

The study protocol was designed according to ethical standards in Sport and Exercise Science Research.

Patients

Patients who underwent a CMR between 2008 and 2019 and were diagnosed with HCM (n = 14), ARVC (n = 18) or DCM (n = 48) were included retrospectively. Diagnosis of DCM was proven by endomyocardial biopsy in all patients, the diagnosis of ARVC in nine patients respectively. Endomyocardial biopsies (EMB) and histopathologic workup was performed as previously described [10].

HCM patients were clinically diagnosed with HCM in the Sports Medicine Clinic in Tübingen. Patients with additional alternative cardiac diagnosis in CMR or EMB were excluded.

Ethics approval

The study protocol was approved by the Institutional Review Board (IRB) of the University of Tübingen (reference centre; 315/2011BO2).
(RVEDD), and RV myocardial thickness were measured at the inferior wall in the same image. Left and right atrial sizes were quantified using planimetry in 4CV as previously described [13].

For functional analysis of left and right ventricle, endocardial (both ventricles) and epicardial (only LV) contours were semi-automatically drawn and carefully adjusted manually: Left and right ventricular end-diastolic volume (LVEDV, RVEDV), end-systolic volume (LVESV, RVESV), stroke volume (LVSV, RSVS), ejection fraction (LVEF, RVEF), and myocardial mass (LVMM). Left ventricular global function index (LVGFI) in % was calculated according to the equation introduced by Mewton et al., and myocardial density is defined as 1.05 g/ml [14]:

\[
LVGFI = \frac{LVSV}{\frac{(LVEDV+LVESV)}{2}} + \frac{LVMM}{\text{Myocardial density}} \times 100
\]

LV-remodelling index was calculated as the ratio between indexed LV myocardial mass and indexed LV end-diastolic volume [15].

Body surface normalization was applied to determine index values and calculated on the basis of height and weight by using the Mosteller method. Assessed morphological and functional parameters were compared to normal reference values as published by Kawel-Boehm et al. and Hergan et al. [16, 17].

LGE imaging was evaluated visually according to the recommendations of the Society for Cardiovascular Magnetic Resonance task force [18]. Image contrast and brightness was modified to minimize background signal.

Results

Athletes’ characteristics and CMR

Athlete’s characteristics are summarized in Tables 1 and 2, morphological and functional parameters of athletes and patients in Table 3. ECG abnormalities were analysed according to Seattle Criteria [20]. Athletes were young (age 24 ± 4 years) and predominantly male (68%). Most athletes were endurance athletes performing triathlon (22.5%), athletics (22.5%), and cycling (15%). Mean BMI was 21.9 ± 1.2 kg/m². Most athletes (82%) had normal LVEF (61% ± 5). LVSVI was within reference range in all subjects (63 ± 9 ml/m²). LVEDVI and RVEDVI were elevated in 58% and 50% of athletes (105 ± 17 ml/m² and 118 ± 21 ml/m², respectively). RVEF was reduced in 40% of athletes (54 ± 5 ml). The majority of athletes (68%) showed increased RVEDD (49 ± 8 mm). Indexed LV myocardial mass was elevated in 40% of athletes (84 ± 22 g/m²). Interventricular myocardial thickness was elevated beyond normal range in one athlete (10 ± 2 mm) and inferolateral wall thickness was elevated in 2 athletes (8 ± 2 mm). Cine-sequences demonstrated no kinetic disorders. Septal linear mid-myocardial LGE was present in one athlete. A representative example of an athlete’s heart is demonstrated in Fig. 1.

HCM

Athletic HCM patients were 44 ± 17 years, all male. Reduced left ventricular function was observed in 36% of HCM patients, compared to healthy athletes there was no statistically significant difference (59 ± 9% vs. 61 ± 5%, p = 0.6). LVMMI was similar (77 ± 12 vs. 84 ± 22 g/m², p = 0.47) but thickness of the interventricular septum was significantly higher in HCM patients compared to athletes (12 ± 2 mm vs. 10 ± 2 mm, p = 0.0005; representative example in Fig. 1) whereas the thickness of the right ventricular myocardium was significantly higher in athletes (4 ± 0.6 vs. 2 ± 0.8 mm, p < 0.0001). LV-remodelling index was higher than in all other groups, but not significantly different from athletes (0.83 ± 0.14 vs. 0.8 ± 0.16, p = 0.73). Wall motion abnormalities could be observed in 36% of HCM patients, predominantly showing hypokinesia. LGE was present in 57% of HCM patients, mainly subepicardial (29%) and mid-myocardial (29%, Fig. 2).

Characteristics in ARVC

Of the 18 ARVC patients, mean aged 37 ± 15 years, 61% were male. LVEF was reduced in 11 patients of this group (61%) and significantly lower than in athletes (54 ± 11% vs. 61 ± 5%, p = 0.001). LVSVI was reduced in 39% (47 ± 13 ml/
m², p < 0.0001). RVEF was reduced in 72% of ARVC patients and significantly lower than in athletes (46 ± 10% vs. 54 ± 5%, p = 0.0015). RVEDVI was elevated beyond reference range in 33%, but lower in ARVC patients than in athletes (103 ± 26 vs. 118 ± 21 ml/m², p = 0.036). LVEDD/RVEDV ratio was very similar to athletes (0.89 ± 0.22 vs. 0.89 ± 0.08). Kinetic disorders, especially hypokinesia, were common in ARVC patients affecting both the right and left ventricle (61% and 39%, respectively). The majority of ARVC patients (56%) showed LGE, mostly involving the right ventricle (39%, Fig. 2).

Characteristics in DCM

Patients with biopsy proven DCM (mean age 55 ± 12 years, 81% male) were almost all (96%) characterized by reduced LVEF (29 ± 13%). 71% showed increased LVEDVI (132 ± 41 ml/m², p = 0.001) and 96% increased LVESVI (96 ± 40 ml/m²), both significantly higher compared to athletes (p = 0.001 and p < 0.0001, respectively). LVEDD was elevated in 79% and significantly larger than in athletes (LVEDD: 67 ± 8 vs. 53 ± 5 mm, p < 0.0001). RVEDV was normal in most DCM patients (90 ± 25 ml/m²), but RVEF was reduced in 75% (41 ± 14%). The ratio of LVEDD/RVEDV was significantly higher compared to athletes (1.5 ± 0.42 vs. 0.89 ± 0.08, p < 0.0001). LVGFI and LV-remodelling index were both lowest among all groups and significantly different from athletes (LVGFI: 22 ± 9 vs. 42 ± 7, p < 0.0001; LV-remodelling index: 0.55 ± 0.14 vs. 0.8 ± 0.16, p < 0.0001). 75% showed kinetic disorders of the left ventricle and some patients (6%) also dyskinesia of the right ventricle. LGE was present in almost half of patients and predominantly subepicardial in a linear or patchy pattern (42%, Fig. 2).
Athlete no.	Age	Sex	LV enlargement	LV-EF reduced	RV enlargement	RV-EF reduced	Spetal myocardial thickness elevated	kinetic disorder	LGE presence	Intraindividual sum of criteria
1	30 M	Yes	Yes	No	No	Yes	Yes	No	No	6
2	29 F	No	No	No	No	Yes	Yes	No	No	4
3	30 M	No	Yes	No	No	No	Yes	No	No	3
4	32 M	Yes	Yes	No	No	Yes	Yes	No	No	5
5	24 F	Yes	Yes	No	No	Yes	Yes	No	No	5
6	22 M	Yes	Yes	Yes	No	Yes	Yes	No	No	5
7	29 F	No	No	No	No	Yes	Yes	No	No	3
8	27 F	Yes	Yes	Yes	No	Yes	Yes	No	No	6
9	23 F	Yes	Yes	Yes	No	Yes	Yes	No	No	6
10	18 M	No	No	No	No	Yes	Yes	No	No	3
11	19 M	Yes	Yes	No	Yes	Yes	Yes	No	No	6
12	27 M	Yes	Yes	No	Yes	Yes	Yes	No	No	5
13	26 M	Yes	Yes	Yes	No	Yes	Yes	No	No	7
14	23 M	Yes	No	No	No	Yes	No	No	No	1
15	21 M	No	Yes	No	No	Yes	Yes	No	No	4
16	21 M	Yes	No	No	No	Yes	Yes	No	No	2
17	18 F	No	No	No	No	Yes	Yes	No	No	Yes
18	19 M	No	No	No	No	No	No	No	No	0
19	21 M	Yes	Yes	No	Yes	Yes	Yes	No	No	4
20	24 M	Yes	Yes	No	No	Yes	Yes	No	No	5
21	20 F	No	No	No	No	Yes	No	No	No	1
22	23 M	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	7
23	25 M	Yes	Yes	No	Yes	Yes	Yes	Yes	No	5
24	20 F	No	No	No	No	No	Yes	No	No	2
25	22 M	Yes	Yes	No	Yes	Yes	Yes	Yes	No	7
26	20 F	No	No	No	No	Yes	Yes	Yes	No	3
27	20 M	Yes	Yes	No	No	Yes	No	No	No	4
28	26 M	Yes	No	No	Yes	Yes	Yes	Yes	No	5
29	29 M	Yes	Yes	No	Yes	Yes	Yes	No	No	6
30	33 M	Yes	No	No	Yes	Yes	Yes	No	No	5
31	29 M	Yes	Yes	No	Yes	Yes	Yes	Yes	No	8
32	26 M	Yes	Yes	No	Yes	Yes	Yes	Yes	No	7
33	31 M	Yes	Yes	No	Yes	Yes	Yes	Yes	No	8
34	31 M	Yes	Yes	No	Yes	Yes	Yes	No	No	5
Functional LV and RV parameters of all groups are plotted for comparison in Fig. 3. Characteristics and overlaps of groups are visualized in Fig. 4. Exemplary histopathological images of endomyocardial biopsies in ARVC and DCM are presented in Fig. 5 (Supplemental).

Discussion

In this multicentre study, we compared morphologic and functional CMR parameters of national top-level athletes and patients with HCM, ARVC, and DCM to establish relevant diagnostic imaging criteria for disease differentiation.

While recognition of pathologic findings can be obvious in untrained individuals, differentiation of cardiomyopathies from trained athletes’ hearts may be much more challenging due to considerable overlap between physiologic and pathologic remodelling. Notwithstanding, classifying the athlete’s heart as a “healthy” condition is still at dispute and the positive effects of moderate exercise on cardiovascular risk in general community cannot be transferred to top-level athletes [21].

Functional parameters

The process of remodelling in athletes is caused by repetitive increased volume and pressure load which eventually leads to hypertrophy and enlargement of all cavities [12]. This circumstance limits the use of mere dimension based parameters for differentiation between the other cardiac impairments [22].

In our study, both indexed EDV of the left and right ventricle were increased in more than half of athletes. Enlarged EDVI could also be observed in DCM patients but was more distinctive and in the majority of patients (78%) linked with significantly increased LVEDD above average.

Enlargement of the right ventricle was common in ARVC patients. RVEDVI > 110 ml/m² (male) or > 100 ml/m² (female) in CMR are major ARVC task force criteria when combined with wall motion abnormalities [23]. However, most athletes showed increase in RVEDVI with values even larger than in ARVC. The dilatation of the right ventricle is also represented by increased RVEDD similarly in athletes and ARVC patients. Yet, in contrast to athletes, enlargement of ventricles was mostly asymmetric in cardiomyopathies with predominantly large LV-volumes in DCM patients and large RV-volumes in ARVC patients. In DCM patients, this fact was respectively mirrored by increased LVEDV/RVEDV-ratio greater than one and significantly higher than in athletes as a helpful parameter for DCM diagnosis. Likewise, LVGFI was relevantly reduced in DCM without overlaps to the other groups, to further flag DCM.
Table 3 Morphological and functional parameters of athletes and patients

Parameters	Athletes n=40	HCM n=14	ARVC n=18	DCM n=48	p-value athletes vs. HCM	p-value athletes vs. ARVC	p-value athletes vs. DCM
Age—years	24 ± 4	44 ± 17	37 ± 15	55 ± 12	< 0.0001	< 0.0009	< 0.0001
Sex male—n (%)	27 (68%)	14 (100%)	11 (61%)	39 (81%)			
LV-parameters							
LVEDVI [ml/m²]	105 ± 17	94 ± 13	89 ± 22	132 ± 41	0.024	0.009	0.001
Elevated—n (%)	23 (58%)	4 (29%)	5 (28%)	34 (71%)			
LVESVI [ml/m²]	41 ± 9	39 ± 9	42 ± 17	96 ± 40	0.37	0.6	< 0.0001
Elevated—n (%)	29 (73%)	7 (50%)	11 (61%)	46 (96%)			
LVSVI [ml/m²]	63 ± 9	55 ± 11	47 ± 13	36 ± 13	0.017	< 0.0001	< 0.0001
Reduced—n (%)	0	2 (14%)	7 (39%)	33 (69%)			
LVEF [%]	61 ± 5	59 ± 9	54 ± 11	29 ± 13	0.61	0.53	< 0.0001
Reduced—n (%)	7 (18%)	5 (36%)	11 (61%)	46 (96%)			
LVMMI [g/m²]	84 ± 22	77 ± 12	57 ± 14	70 ± 21	0.47	< 0.0001	0.005
Elevated—n (%)	16 (40%)	3 (21%)	0	9 (19%)			
LVEDD [mm]	53 ± 5	54 ± 5	52 ± 8	67 ± 8	0.37	0.6	< 0.0001
Elevated—n (%)	29 (73%)	7 (50%)	11 (61%)	46 (96%)			
LVGFI	42 ± 7	40 ± 9	41 ± 12	22 ± 9	0.08	< 0.0001	< 0.0001
LV-Remodelling Index	0.8 ± 0.16	0.83 ± 0.14	0.66 ± 0.17	0.55 ± 0.14	0.73	0.002	< 0.0001
RV-parameters							
RVEDVI [ml/m²]	118 ± 21	98 ± 16	103 ± 26	90 ± 25	0.0014	0.036	< 0.0001
Elevated—n (%)	20 (50%)	1 (7%)	6 (33%)	6 (13%)			
RVESVI [ml/m²]	55 ± 15	39 ± 11	56 ± 23	54 ± 24	0.0007	0.71	0.35
Elevated—n (%)	18 (45%)	1 (7%)	8 (44%)	17 (35%)			
RVSVI [ml/m²]	63 ± 9	58 ± 8	47 ± 13	36 ± 13	0.08	< 0.0001	< 0.0001
Reduced—n (%)	0	1 (7%)	6 (33%)	33 (69%)			
RVEF [%]	54 ± 5	60 ± 6	46 ± 10	41 ± 14	0.0013	0.0015	< 0.0001
Reduced—n (%)	16 (40%)	2 (14%)	13 (72%)	36 (75%)			
RVEDD [mm]	49 ± 8	51 ± 6	48 ± 15	46 ± 8	0.32	0.75	0.08
Elevated—n (%)	27 (68%)	10 (71%)	13 (72%)	21 (44%)			
LVEDV/RVEDV-ratio	0.89 ± 0.08	0.99 ± 0.18	0.89 ± 0.22	1.5 ± 0.42	0.03	0.27	< 0.0001
Myocardial thickness IVS (mm)	9.7 ± 1.7	12.4 ± 2.4	9.2 ± 1.8	8.8 ± 1.8	0.0005	0.35	0.044
Elevated—n (%)	1 (4%)	6 (43%)	0	0			
Myocardial thickness ILW (mm)	8.4 ± 1.6	8.4 ± 1.4	7.2 ± 2.6	6.5 ± 1.6	0.9	0.037	< 0.0001
Elevated—n (%)	2 (5%)	0	1 (6%)	1 (2%)			
Myocardial thickness RV (mm)	3.7 ± 0.6	2.4 ± 0.8	2.0 ± 0.8	2.0 ± 0.6	0.8	< 0.0001	< 0.0001
Elevated—n (%)	0	0	0	0			
LAI (cm²)	13 ± 2	12 ± 2	9 ± 2	13 ± 3	0.53	0.0002	0.38
Elevated—n (%)	7 (18%)	0	0	11 (23%)			
RAI (cm²)	14 ± 4	13 ± 2	11 ± 3	12 ± 3	0.8	0.021	0.036
Elevated—n (%)	6 (15%)	2 (14%)	1 (6%)	7 (15%)			
LV kinetic disorder—n (%)	0	5 (36%)	7 (39%)	36 (75%)			
LV dyssynchrony	0	1 (7%)	1 (6%)	7 (14%)			
LV hypokinesia	0	5 (36%)	7 (39%)	33 (69%)			
LV akinesia	0	1 (7%)	0	12 (25%)			
RV kinetic disorder—n (%)	0	0	11 (61%)	3 (6%)			
RV dyssynchrony	0	0	3 (17%)	1 (2%)			
RV hypokinesia	0	0	11 (61%)	4 (4%)			
RV akinesia	0	0	3 (17%)	0			
LGE presence—n (%)	1 (5%)	8 (57%)	10 (56%)	21 (44%)			
In contrast LVGFI and LV-remodelling index were not helpful to differentiate athlete’s hearts from HCM or ARVC. LVGFI had previously failed in differentiation of cardiac function in different groups of chronic coronary syndrome with and without myocardial infarction but seems to be most sensitive to detect DCM in our study [24]. The inclusion of myocardial mass in LVGFI seems to intermingle volumetric results with morphology in a scale with only small differences between physiologic and pathologic. Thus, clinical use of LVGFI is rather unusual.

Balanced enlargement of the left and right ventricle, which can be observed in most athletes, had already been described previously as a physiologic adaptation attributed to symmetric volume load in endurance sports [1, 25]. Ejection fraction of the left ventricle was low-normal in most athletes but some showed mildly reduced RVEF. Both slight reduction in left and right ventricular function are not uncommon among highly trained endurance athletes [26, 27].

A significantly reduced LV and RV function were observed both in ARVC and DCM. Reduction of RVEF below 45 or 40% is an alternative ARVC task criterion to RV dilatation in CMR when combined with wall motion abnormalities [23]. As expected, in HCM, we did not observe a significant reduction of LV or RV function. [28]. Even in athletes with reduced EF, indexed stroke volume was within reference range. Especially in subjects with large EDV and borderline EF, normal SV might help unmask physiologic remodelling.

Cine sequences in CMR allow sensitive detection and precise localization of kinetic disorders. Wall motion abnormalities, mainly hypokinesia and akinesia, were common in all cardiomyopathies, but not present in any of the athletes. Morphology and viability

An increase in LV myocardial mass was observed in athletes, HCM, and DCM patients.

Athletes show LV hypertrophy as a physiologic response to training [1]. HCM patients may mimic this feature, demonstrating increased LV wall thickness with preponderance of the insertion points. Yet, only one athlete showed hypertrophy of the interventricular septum above 12 mm. Thickness of the septal wall up to 15 mm may be present in up to 2% of highly trained athletes [25, 29–32]. Increase of LV myocardial mass in DCM seems contradictory initially, but ventricular dilatation results in cardiomegaly and increased LV myocardial mass.

LGE is a valuable but non-specific imaging technique for identification of myocardial damage [33] which was present in the majority of our patients. DCM and HCM patients predominantly showed subepicardial or mid-myocardial LGE pattern, whereas ARVC patients were characterized by involvement of the RV. Allocation was therefore dependent on the character of cardiomyopathy exposing fibrotic tissue caused by pathologic remodelling. One athlete showed septal mid-myocardial LGE of the septum, rather suggesting DCM initially. However, CMR follow-up after two years demonstrated stable intramural LGE, without progressive enlargement of ventricles. Therefore, the diagnosis of DCM was rejected and the LGE was attributed to myocarditis. The overall prevalence of focal LGE confined to the hinge points in highly trained endurance athletes has recently been reported relevantly higher compared to control subjects due to focal fibrosis [34]. In our athletes’ cohort, we could not find any LGE at the RV insertions. Generally, LGE is considered as a pathologic finding both in athletes and patients with cardiomyopathies.
The detection of LGE in cardiomyopathies is known to be associated with increased risk for sudden cardiac death [35]. Therefore, a lack of LGE and normal wall motion favours athlete’s heart, whereas presence of LGE and wall motion abnormalities suggests an underlying pathology.

Our study has several limitations. Only Caucasian national top-level athletes were examined. Whereas athletes were investigated prospectively, cardiomyopathy patients were retrospectively enrolled. There is a significant difference in age between athletes and cardiomyopathy patients, with most patients being older than athletes. We addressed this issue in applying age-adjusted reference values for comparison between groups. Furthermore, this study investigates only one time point in athletes and dynamic changes could not be included as parameters for differentiation. Clinically, in indistinct cases repetition of a scan after a period of time

![Figure 1](image)

Fig. 1 a Characteristic CMR examples of an athlete’s heart and cardiomyopathies. Typical elliptic LV shape of an athlete’s heart in SA. b CMR examples of athlete’s heart and cardiomyopathies with less distinctive imaging features. HCM hypertrophic cardiomyopathy; ARVC arrhythmogenic right ventricular cardiomyopathy; DCM dilated cardiomyopathy; 4C-D enddiastolic four chamber view; 4C-S endsystolic four chamber view; SA-D enddiastolic short axis view; SA-S endsystolic short axis view
may provide further information. Whereas cardiomyopathies show deterioration without treatment, detraining effects can be a characteristic feature in athletes [36]. In addition, no clinical data or ECG findings or family history would be included in the evaluation, which is standard in clinical routine. However, this information is often not available to the
Conclusion

Healthy highly-trained athlete hearts are characterized by: (1) a balanced hypertrophy and dilation, and (2) low EF of both ventricles, (3) (slightly) increased interventricular septal thickness, and (4) increased LV-remodelling index. Differentiation of athlete’s heart from other cardiomyopathies can be challenging due to significant overlap in features of HCM, ARVC, and DCM.

However, both absences of kinetic disorders or LGE as well as normal indexed SV are representative for athlete hearts.
Fig. 3 Functional LV and RV parameters of all groups. HCM hypertrophic cardiomyopathy; ARVC arrhythmogenic right ventricular cardiomyopathy; DCM dilated cardiomyopathy; LVEDVI left ventricular end-diastolic volume index; RVEDVI right ventricular end-diastolic volume index; RVEF right ventricular ejection fraction; LVEF left ventricular ejection fraction
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10554-021-02280-6.

Author contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JK, PK, JMB, and CB. PK, SG and KK made substantial contributions to data acquisition and interpretation. The first draft of the manuscript was written by JK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. This research was supported by a grant of the German Federal Institute for Sports Medicine (Bundesinstitut für Sportwissenschaft) process number IIA1-080101/10-14.

Availability of data and materials The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Ethical approval This study was approved by the Institutional Review Board (IRB) of the University of Tübingen (reference centre; 315/2011BO2) and has been performed in accordance with the ethical standards in Sport and Exercise Science Research.

Informed consent Written informed consent was waived by the Institutional Review Board.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes

Fig. 4 Parameters in favour of athlete’s heart, cardiomyopathies or both. LV left ventricle; RV right ventricle; SVI indexed stroke volume; EF ejection fraction; LGE late gadolinium enhancement; LVGFI left ventricular global functional index; ARVC arrhythmogenic right ventricular cardiomyopathy; HCM hypertrophic cardiomyopathy; DCM dilated cardiomyopathy

ventricular global functional index; ARVC arrhythmogenic right ventricular cardiomyopathy; HCM hypertrophic cardiomyopathy; DCM dilated cardiomyopathy
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Fagard R (2002) Athlete’s heart. J Am Coll Cardiol. https://doi.org/10.1016/S0735-1097(02)02478-6
2. Zandrino F, Molinari G, Smeraldi A, Odaglia G, Masperone MA, Sardanelli F (2000) Magnetic resonance imaging of athlete’s heart: myocardial mass, left ventricular function, and cross-sectional area of the coronary arteries. Eur Radiol 10:319–325. https://doi.org/10.1007/s003300050051
3. Equi PL, Knotenbelt DC (2011) Cardiac response to exercise— the athlete’s heart, are hoop disorder. Dermatological Not Orthop. Challenges? http://www.ivis.org/proceedings/weva/2011/84.pdf?LA=1
4. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després J-P, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, Moy CS, Munter P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sordle PD, Steen J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee, Stroke Statistics Subcommittee (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133:e38–e60. https://doi.org/10.1161/CIR.0000000000000350
5. D’Ascenzi F, Solaris M, Corrado D, Zorzi A, Mondillo S (2018) Diagnostic differentiation between arrhythmogenic cardiomyopathy and athlete’s heart by using imaging. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2018.04.031
6. Lauschke J, Maisch B (2009) Athlete’s heart or hypertrophic cardiomyopathy? Clin Res Cardiol 98:80–88. https://doi.org/10.1007/s00392-008-0721-2
7. Caruso MR, Garg L, Martinez MW (2020) Cardiac imaging in the athlete: shrinking the “Gray Zone.” Curr Treat Opt Cardiovasc Med. https://doi.org/10.1007/s11936-020-0802-8
8. Mavrogeni SI, Bazcopoulou F, Apostolaki D, Chrrousos GP (2018) Sudden cardiac death in athletes and the value of cardiovascular magnetic resonance. Eur J Clin Invest. https://doi.org/10.1111/eci.12955
9. Achenbach S, Barkhausen J, Beer M, Beerbaum P, Dill T, Eichhorn J, Fratz S, Guterme L, Hoffmann M, Huber A, Hunold P, Klein C, Krombach G, Kreitner KF, Kühne T, Lotz J, Maintz MA, Höher M, Gawaz MP, Hombach V, Merkle N (2007) Magnetic resonance imaging—a novel marker for assessment of cardiac performance for the prediction of cardiovascular events: the multi-ethnic study of atherosclerosis. Hypertension 61:770–778. https://doi.org/10.1161/HYPERTENSIONAHA.111.198028
10. Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab. https://doi.org/10.5812/ijem.3505
11. Krumm P, Krauss S, Mangold S, Zitzelsberger T, Klumpp BD, Nikolau K, Niess AM, Kramer U, Burgstahler C (2018) Mid-term development of the right ventricle in competitive athletes. Acta Radiol 59:1422–1430. https://doi.org/10.1177/0284185118764203
12. Mangold S, Kramer U, Franzen E, Erz G, Breitescneider C, Seeger A, Clausen CD, Niess AM, Burgstahler C (2013) Detection of cardiovascular disease in elite athletes using cardiac magnetic resonance imaging. RoFo 185:1167–1174. https://doi.org/10.1055/s-0033-1350130
13. Burgstahler C, Wölhe J, Kochs M, Nusser T, Löfler C, Kunze M, Höher M, Gawaz MP, Hombach V, Merkle N (2007) Magnetic resonance imaging to assess acute changes in atrial and ventricular parameters after transcatheter closure of atrial septal defects. J Mag Reson Imaging. https://doi.org/10.1002/jmri.20911
14. Mewton N, Opdahl A, Choi E-Y, Almeida ALC, Kowel N, Wu CO, Burke GL, Liu S, Liu K, Bluemke DA, Lima JAC (2013) Left ventricular global function index by magnetic resonance imaging—a novel marker for assessment of cardiac performance for the prediction of cardiovascular events: the multi-ethnic study of atherosclerosis. Hypertension 61:770–778. https://doi.org/10.1161/HYPERTENSIONAHA.111.198028
15. De Castro S, Caselli S, Maron M, Pelliccia A, Cavarretta E, Madukuri P, Cartoni D, Di Angelantonio E, Kuviv JT, Patel AR, Pannig ND (2007) Left ventricular remodelling index (LVRM) in various pathophysiological conditions: a real-time three-dimensional echocardiographic study. Heart 93:205–209. https://doi.org/10.1136/hrt.2006.093997
16. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkby EB, Williams R, Plein S, Töpfer M, Eng J, Bluemke DA (2015) Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-015-0111-7
17. Hergan K, Schuster A, Mair M, Burger R, Töpfer M (2004) Normal cardiac diameters in cine-MRI of the heart. RoFo 176:1599–1606. https://doi.org/10.1055/s-0025-106720
18. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, Von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ, Plein S, Nagel E (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing. J Cardiovasc Magn Reson. https://doi.org/10.1186/1532-429X-15-35
19. Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab. https://doi.org/10.5812/ijem.3505
20. Drezner JA, Ackerman MJ, Anderson J, Ashley E, Asplund CA, Baggish AL, Börjesson M, Cannon BC, Corrado D, DiFilip JP, Fischbach P, Froelicher V, Harmon KG, Heidbuchel H, Marè JL, Owens DS, Paul S, Peltolli A, Prutkin JM, Salerno JC, Schmied CM, Sharma SS, Steen R, Vetter VL, Wilson MG (2013) Electrocardiographic interpretation in athletes: the “Seattle Criteria.” Br J Sports Med. https://doi.org/10.1136/bjsports-2012-092067
21. La Gerche A, Taylor AJ, Prior DL (2009) Athlete’s heart: the potential for multimodality imaging to address the critical remaining questions. JACC Cardiovasc Imaging 2:350–363. https://doi.org/10.1016/j.jcmg.2008.12.011
22. Kim JH, Baggish AL (2016) Differentiating exercise-induced cardiac adaptations from cardiac pathology: the “Grey Zone” of clinical uncertainty. Can J Cardiol. https://doi.org/10.1016/j.jcja.2015.11.025
23. Marcus FI, McKenna WJ, Sherrill D, Basso C, Buechele DA, Calkins H, Corrado D, Cox MGJP, Daubert JP, Fontaine G, Gear K, Hauer R, Nava A, Picard MH, Protonotarios N, Saffitz JE, Yoerger Sanborn DM, Steinberg JS, Tandri H, Thiene G, Toubin
Authors and Affiliations

J. Kübler1 · C. Burgstahler2 · J. M. Brendel1 · S. Gassenmaier1 · F. Hagen1 · K. Klingel3 · S.-C. Olthof1 · K. Blume4,5 · B. Wolfarth4,5 · K. A. L. Mueller6 · S. Greulich6 · P. Krumm7

J. Kübler
jen.kuebler@med.uni-tuebingen.de

J. M. Brendel
jan-michael.brendel@student.uni-tuebingen.de

S. Gassenmaier
sebastian.gassenmaier@med.uni-tuebingen.de

F. Hagen
florian.hagen@med.uni-tuebingen.de

K. Klingel
karin.klingel@med.uni-tuebingen.de

S.-C. Olthof
susann-cathrin.olthof@med.uni-tuebingen.de

K. Blume
katharina.blume@charite.de

B. Wolfarth
bernd.wolfarth@charite.de

K. A. L. Mueller
k.mueller@med.uni-tuebingen.de

S. Greulich
simon.greulich@med.uni-tuebingen.de

P. Krumm
patrick.krumm@med.uni-tuebingen.de

1 Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
2 Department of Internal Medicine V, Sports Medicine, University of Tübingen, Tübingen, Germany
3 Cardiopathology, Molecular Pathology, University of Tübingen, Tübingen, Germany
4 Department of Preventive and Rehabilitative Sports Medicine, Technical University Munich (TUM), Munich, Germany
5 Department of Internal Medicine III, Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany