Thermal Properties of 2D Dirac Materials MN₄ (M = Be and Mg): A First-Principles Study

Man Wang and Dan Han

ABSTRACT: Recently, a novel two-dimensional (2D) Dirac material BeN₄ monolayer has been fabricated experimentally through high-pressure synthesis. In this work, we investigate the thermal properties of a new class of 2D materials with a chemical formula of MN₄ (M = Be and Mg) using first-principles calculations. First, the cohesive energy and phonon dispersion curve confirm the dynamical stability of BeN₄ and MgN₄ monolayers. Besides, BeN₄ and MgN₄ monolayers have the anisotropic lattice thermal conductivities of 842.75 (615.97) W m⁻¹ K⁻¹ and 52.66 (21.76) W m⁻¹ K⁻¹ along the armchair (zigzag) direction, respectively. The main contribution of the lattice thermal conductivities of BeN₄ and MgN₄ monolayers are from the low frequency phonon branches. Moreover, the average phonon heat capacity, phonon group velocity, and phonon lifetime of BeN₄ monolayer are 3.54 × 10⁵ J K⁻¹ m⁻³, 3.61 km s⁻¹, and 13.64 ps, which are larger than those of MgN₄ monolayer (3.42 × 10⁵ J K⁻¹ m⁻³, 3.27 km s⁻¹, and 1.70 ps), indicating the larger lattice thermal conductivities of BeN₄ monolayer. Furthermore, the mode weighted accumulative Grüneisen parameters (MWGPs) of BeN₄ and MgN₄ monolayers are 2.84 and 5.62, which proves that MgN₄ monolayer has stronger phonon scattering. This investigation will enhance an understanding of thermal properties of MN₄ monolayers and drive the applications of MN₄ monolayers in nanoelectronic devices.

1. INTRODUCTION

The successful preparation of a one-atom-thick two-dimensional (2D) material graphene in 2004 breaks the conventional view that 2D crystal is regarded as an unstable structure in nature.¹ Meanwhile, graphene as a Dirac material has a feature of massless fermions, resulting in outstanding physical properties, such as ultrahigh carrier mobility,² half-integer/fractional quantum Hall effects,³⁻⁵ high thermal conductivity,⁶⁻⁸ large Young’s modulus,⁹ and other novel properties,¹⁰ which has triggered a great deal of attention from researchers. On the other hand, graphene arouses the explorations of other hundreds of 2D materials, including graphene-like 2D materials (graphitic carbon nitride, hexagonal boron nitride, transition metal dichalcogenides, layered metal oxides, and layered double hydroxides), black phosphorus, silicene, antimonene, transition metal carbides and/or nitride, noble metals, metal–organic frameworks, covalent-organic frameworks, and so on.¹¹⁻¹² However, in these materials, only silicene, germanene, stanene, tinene, graphynes (α-graphyne, β-graphyne, and 6,6,12-graphyne), rectangular carbon and boron allotropes (S-graphene, D-graphene, E-graphene, and Pmmn boron), and some other systems belong to 2D Dirac materials.¹³⁻¹⁵ These 2D Dirac materials generally have spatial inversion symmetry and possess the advantages of quantum Hall effect, large Fermi velocity, and high carrier mobility,¹⁵⁻¹⁷ making them a promising candidate for applications in nanoelectronic devices. Hence, there is the need to search the novel Dirac materials in the family of 2D materials.

Very recently, a novel nitrogen-rich Dirac material, beryllonitrene (BeN₄) monolayer has been synthesized successfully by employing high-pressure synthesis followed by decompression to ambient conditions.¹⁸ It has been reported that BeN₄ monolayer belongs to a Dirac semimetal, and the electronic band structure near the Fermi energy exhibits the linear dispersion with two overlapped Dirac points, which is similar to graphene monolayer. However, unlike graphene monolayer, BeN₄ monolayer is an oblique crystal system with a lower symmetry, which leads to the fact that the Dirac points are located at the Σ point along the Γ-A direction in the Brillouin zone. Besides, BeN₄ monolayer has essentially

Received: February 8, 2022
Accepted: March 2, 2022
Published: March 14, 2022
investigated the stability and the electronic nature of MN₄ monolayers. Meanwhile, a vacuum thickness of 20 Å along the direction is applied to avoid interactions between the atomic layers. The corresponding elastic moduli were 100(43) and 74(39) GPa along the armchair (zigzag) direction, respectively. The corresponding elastic moduli were 946(590) and 582(353) GPa, indicating high lattice thermal conductivities of BeN₄ monolayer, which has been proven also in other work. In practice, some materials with high lattice thermal conductivities are useful for enhancing the heat dissipation in miniaturized and high-power nanoelectronic devices, which plays a fundamental role in thermal management. Therefore, it is crucial to investigate the lattice thermal conductivity in BeN₄ and MgN₄ monolayers. However, to our knowledge, the thermal properties of BeN₄ and MgN₄ monolayers are yet to be broadly investigated. Hence, in the present work, we identify the lattice thermal conductivities and phonon behaviors of MN₄ monolayers.

In this work, the thermal properties of BeN₄ and MgN₄ monolayers are investigated systematically by utilizing first-principles calculations. First, we calculate the cohesive energies and phonon dispersion curves of BeN₄ and MgN₄ monolayers to demonstrate the dynamical stabilities. Moreover, the lattice thermal conductivities of BeN₄ and MgN₄ monolayers and phonon contributions are calculated. Furthermore, the phonon behaviors including the phonon heat capacity, the phonon group velocity, the phonon lifetime, the phonon mean free path (MFP), and the cumulative lattice thermal conductivity are studied. Especially, the mode weighted accumulative Gruneisen parameter (MWGP) and the phonon scattering phase space (Pₛ) are applied to interpret the strength and number of phonon scattering channels. Our investigation can provide deep insights into thermal properties of MN₄ monolayers.

2. METHODOLOGY

In this investigation, all calculations are carried out by the Vienna Ab initio Simulation Package (VASP) within the framework of density functional theory (DFT). The electron–ion interaction is described by the projector augmented wave (PAW) method, and the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) is used to model the exchange-correlation functional. For both monolayers, we set an energy cutoff for the plane waves to 500 eV. During the structure optimization, the Hellman-Feynman force and energy drops are lower than 10⁻⁵ eV Å⁻¹ and 10⁻⁶ eV with a 15 × 13 × 1 Monkhorst–Pack k-point mesh, respectively. Meanwhile, a vacuum thickness of 20 Å along the z direction is applied to avoid interactions between the periodic images.

Thermal properties of BeN₄ and MgN₄ monolayers can be studied by utilizing the ShengBTE package, which is widely used in the investigation of thermal properties of 2D materials (As₂Te₃, WS₂, WSe₂, and AlP₃). After solving iteratively the Boltzmann transport equation (BTE), the lattice thermal conductivity can be expressed by the following formula:

\[k_{\text{ph}}^{\alpha} = \sum_j C_j k_{\lambda\alpha} \tau_j \]

where λ means phonon branch, α represents the Cartesian direction (x, y, and z), Cₗ is the phonon heat capacity, \(v_{\lambda\alpha} \) and \(\tau_{\lambda\alpha} \) are the phonon group velocity and phonon lifetime, respectively. The phonon heat capacity \(C_\lambda \) can be given by:

\[C_\lambda = k_B \left(\frac{\hbar \omega_\lambda / k_B T}{V (c_{\text{h}\lambda}/k_B T - 1)^2} \right) \]

where \(N \) is the total number of q points in a discretization of Brillouin zone, \(V \) means the system volume, \(\omega_\lambda \) represents the phonon angular frequency, and \(T \) is the temperature. The parameters of \(k_B \) and \(\hbar \) are the Boltzmann constant and reduced Planck constant, which are the physical constants. The phonon group velocity \(v_{\lambda\alpha} \) can be obtained from the following expression:

\[v_{\lambda\alpha} = \frac{\partial \omega_\lambda}{\partial q_\alpha} \]

where \(q \) is the wave vector. The phonon lifetime \(\tau_j \) describing the three-phonon processes can be calculated by using the following formula:

\[\frac{1}{\tau_j} = \frac{1}{N} \left\{ \sum_{\lambda'\lambda''} W_{\lambda'\lambda''}^+ + \frac{1}{2} \sum_{\lambda'\lambda''} W_{\lambda'\lambda''}^- \right\} \]

where \(W^+ \) and \(W^- \) are three-phonon scattering rates during the absorption and emission processes of phonons, respectively.

The ShengBTE package requires interatomic force constants (IFCs) as input files. The second order and third order interatomic force constants (IFCs) are obtained by using DFT calculations, which are also known as harmonic and anharmonic IFCs. For harmonic IFCs, the dynamical matrix is calculated by using the density functional perturbation theory (DFPT). The phonon harmonic properties can be extracted using Phononpy package with a 3 × 3 × 1 supercell and a 5 × 4 × 1 q mesh. The anharmonic IFCs are obtained by using the thirdorder.py script with the same 3 × 3 × 1 supercell and 5 × 4 × 1 q mesh. Herein, we consider the interaction cutoff up to ten-nearest-neighbor atoms. Meanwhile, a long-range correction is introduced by calculating the Born effective charge and dielectric tensor, and the isotope scattering has been considered in the calculation of lattice thermal conductivity. A q point grid of 100 × 100 × 1 is selected to study the lattice thermal conductivity. Both thicknesses of BeN₄ and MgN₄ monolayers are set to 3.06 Å.

3. RESULTS AND DISCUSSION

3.1. Crystal Features and Dynamic Stabilities of MN₄ Monolayers.

In this section, we first optimize the MN₄ monolayers and measure the crystal features. As shown in Figure 1, the honeycomb-like monolayers exhibit the space group of P2/m (No. 10) and point group of C2h. In both monolayers, each M atom is connected with four N atoms, and each N atom is connected with one M atom and two N atoms. For BeN₄ monolayer, the lattice constants of BeN₄ are 3.66 Å, 4.27 Å, and 66.69 Å, respectively. The corresponding values of MgN₄ monolayer are 3.86 Å, 4.88 Å, and 66.69 Å. These results are in agreement with other DFT results (BeN₄: 3.66 Å, 4.27 Å, and 66.63 Å; MgN₄: 3.86 Å, 4.88 Å, and 66.69 Å).
the Be–N bond length is determined to be 1.746 Å. For MgN4 monolayer, three bond lengths are equal to 1.356 Å, 1.349 Å, and 2.055 Å, respectively. These data are consistent with that from previous work.19,30 Besides, the electron localization functions (ELF) of two monolayers are calculated to further analyze the bonding nature. The ELF results with an isovalue of 0.7 are shown in Figure 2 and are similar to other DFT results.19 ELF takes a value from 0 to 1 at each point. MN4 monolayers consist of armchair-shaped polymeric nitrogen chains (N∞). From Figure 2, we can observe that electrons are strongly localized on N∞ and on each N pointing toward the M atoms. In BeN4 and MgN4 monolayers, the electron cloud of anionic N∞ is strongly pulled to the Be and Mg atoms, which leads Be–N and Mg–N bonds to have higher covalent character. As shown in Figure 3, we obtain the electronic band structures of BeN4 and MgN4 monolayers by using the PBE functional. The electronic band structures of BeN4 and MgN4 monolayers are in good agreement with that from previous work,19 indicating our DFT calculations are correct.

To evaluate the dynamic stability, we evaluate the cohesive energies and phonon dispersion curves of two monolayers. The cohesive energy can be calculated by the following expression:

\[E_{\text{coh}} = \left(E_M + 4 \times E_N - E_{\text{MN}} \right)/5, \]

where \(E_M \) is the energy of an isolated M atom, \(E_N \) means the energy of an isolated N atom, and \(E_{\text{MN}} \) represents the total energy of MN4 monolayer. The calculated cohesive energies of BeN4 and MgN4 monolayers are 4.78 eV/atom and 4.32 eV/atom, respectively. The higher cohesive energy indicates a more stable structure, indicating that the BeN4 monolayer has a more stable structure. The values of BeN4 and MgN4 monolayers are higher than those of phosphorene (3.3 eV/atom), GaP3 (3.34 eV/atom), and InP3 (3.19 eV/atom).31,32 Moreover, the phonon dispersion curves of BeN4 and MgN4 monolayers are calculated to evaluate the dynamic stability, which is depicted in Figure 4. Unlike graphene monolayer, both Brillouin zone paths of two monolayers are along Γ-X-M-A-Y-F owing to the special monoclinic crystal. The atom numbers in MN4 unit cells are five, leading to three acoustic phonon branches and 12 optical phonon branches. It can be observed from Figure 4 that at the Γ point, the transverse acoustic (TA) and longitudinal acoustic (LA) phonon branches exhibit linear relations, whereas the flexural acoustic (ZA) phonon branch has a parabolic relation. This phenomenon is also reported in other 2D materials.33–35 Furthermore, the phonon dispersion curves of BeN4 and MgN4 monolayers are free of imaginary frequencies, which proves their dynamic stabilities. The cutoff frequency of optical phonon branches of BeN4 and MgN4 monolayers can reach up to 41.70 THz and 39.71 THz, which are higher than those of other 2D materials (silicene: ~16.6 THz; WS2: ~13 THz; and WSe2: ~9 THz).36–38 In addition, the acoustic phonon frequency region of BeN4 monolayer is larger than that of MgN4 monolayer, which gives rise to a larger phonon group velocity. It should be noted that for MN4 monolayers, acoustic phonon branches are coupled with optical phonon branches. The couple region of MgN4 monolayer (~8 THz) is smaller than that of BeN4 monolayer (~12 THz), which promotes a stronger phonon scattering and a lower phonon lifetime. Hence, we can deduce that the order of lattice thermal conductivity is BeN4 > MgN4 (detailed interpretation can be found in the following section).

3.2. Lattice Thermal Conductivities of MN4 Monolayers. Lattice thermal conductivities of BeN4 and MgN4 monolayers along the armchair (x) and zigzag (y) directions are shown in Figure 5. On one hand, it can be clearly seen that the thermal properties of BeN4 and MgN4 monolayers are anisotropic. For BeN4 monolayer, at 300 K, the lattice thermal conductivities along the armchair and zigzag directions are equal to 842.75 W m⁻¹ K⁻¹ and 615.97 W m⁻¹ K⁻¹, respectively. The corresponding values of MgN4 monolayer are 52.66 W m⁻¹ K⁻¹ and 21.76 W m⁻¹ K⁻¹. On the basis of our previous work, the isotropic lattice thermal conductivity of graphene at 300 K is 3544.41 W m⁻¹ K⁻¹, which is much larger than the values of BeN4 and MgN4 monolayers.39 On the other hand, high temperature will monotonically decline the lattice thermal conductivities of these monolayers. As the temperature
increases from 300 to 900 K, the lattice thermal conductivities of BeN\textsubscript{4} and MgN\textsubscript{4} monolayers along the armchair and zigzag directions are reduced to 236.47 W m−1 K−1 and 171.66 W m−1 K−1, 26.27 W m−1 K−1 and 7.96 W m−1 K−1, respectively. The corresponding reductions are 71.94% and 72.13%, 50.11% and 63.43%, respectively. High temperature will activate high frequency phonons and strengthen the Umklapp phonon scattering, generating the lower lattice thermal conductivity. A similar trend can be observed in other 2D materials, such as transition metal dichalcogenide and triphosphides.

3.3. Phonon Behaviors of MN\textsubscript{4} Monolayers. To gain a deeper understanding of thermal transport mechanism of BeN\textsubscript{4} and MgN\textsubscript{4} monolayers, the phonon behaviors are evaluated in this section, which includes the phonon heat capacity, the phonon group velocity, the phonon lifetime, the mode weighted accumulative Grüneisen parameter (MWGP), the phonon scattering phase space (P_3), the phonon mean free path (MFP), and the cumulative lattice thermal conductivity. We first calculate phonon heat capacities of BeN\textsubscript{4} and MgN\textsubscript{4} monolayers, which are equal to 3.54×10^5 JK−1 m−3 and 3.42×10^5 JK−1 m−3, respectively. The higher phonon heat capacity of BeN\textsubscript{4} monolayer contributes to the larger lattice thermal conductivity in comparison with the MgN\textsubscript{4} monolayer. Besides, the phonon group velocities of BeN\textsubscript{4} and MgN\textsubscript{4} monolayers, which are obtained from the phonon dispersion curves in Figure 4. It can be obviously seen from Figure 7 that the phonon group velocity of BeN\textsubscript{4} monolayer is much larger than that of MgN\textsubscript{4} monolayer. In both BeN\textsubscript{4} and MgN\textsubscript{4} monolayers, this tendency has been proven in a previous study.

![Figure 3](https://example.com/f3.png)
Figure 3. Electronic band structures of (a) BeN\textsubscript{4} and (b) MgN\textsubscript{4} monolayers. Black squares and red circles are from ref 19.

![Figure 4](https://example.com/f4.png)
Figure 4. Phonon dispersion curves of (a) BeN\textsubscript{4} and (b) MgN\textsubscript{4} monolayers.

![Figure 5](https://example.com/f5.png)
Figure 5. Lattice thermal conductivities of BeN\textsubscript{4} and MgN\textsubscript{4} monolayers along the armchair and zigzag directions as a function of the temperature.

![Figure 6](https://example.com/f6.png)
Figure 6. Phonon contributions to the total lattice thermal conductivities of BeN\textsubscript{4} and MgN\textsubscript{4} monolayers as a function of the frequency at 300 K.
the LA phonon branches possess the largest phonon group velocity. Near the Γ point, for BeN$_4$ monolayer, the maximum phonon group velocities of TA and LA phonon branches are 16.77 km s$^{-1}$ and 19.41 km s$^{-1}$, while the corresponding values of MgN$_4$ monolayer are 10.33 km s$^{-1}$ and 15.30 km s$^{-1}$, respectively. For a more intuitive comparison, the average phonon group velocities of BeN$_4$ and MgN$_4$ monolayers are calculated, which are 3.61 km s$^{-1}$ and 3.27 km s$^{-1}$ in the whole frequency region, respectively, which are lower than that of graphene monolayer (7.09 km s$^{-1}$). Particularly, the average phonon group velocities of high frequency phonons of BeN$_4$ and MgN$_4$ monolayers are 3.04 km s$^{-1}$ and 2.89 km s$^{-1}$, which are smaller than the values of low frequency phonons (6.05 km s$^{-1}$ and 4.16 km s$^{-1}$), indicating that the low frequency phonons have a large contribution to lattice thermal conductivity. According to eq 1, in comparison with MgN$_4$ monolayer, BeN$_4$ monolayer has a higher lattice thermal conductivity because of the higher phonon group velocity.

Apart from phonon heat capacity and phonon group velocity, phonon lifetime is another important factor that affects lattice thermal conductivity. The phonon lifetimes of BeN$_4$ and MgN$_4$ monolayers are plotted in Figure 8. For BeN$_4$ monolayer, the phonon lifetimes of acoustic phonon branches decline with the increasing phonon frequency, which are larger than those of optical phonon branches. This phenomenon can demonstrate that the high frequency optical phonon branches make a small contribution to lattice thermal conductivity. Besides, the ZA phonon branch has the largest phonon lifetime. However, for MgN$_4$ monolayer, the phonon lifetimes of acoustic phonon branches and optical phonon branches are in the same magnitude. It is noticed that the phonon lifetime of the TA phonon branch is slightly higher than those of other acoustic phonon branches. We can further observe from Figure 8 that the phonon lifetime of BeN$_4$ monolayer is much higher than that of MgN$_4$ monolayer, of which the average values are 13.64 and 1.70 ps, respectively. The larger phonon lifetime can
lead to a higher lattice thermal conductivity of BeN$_4$ monolayer. To reveal the phonon anharmonic properties of BeN$_4$ and MgN$_4$ monolayers, the MWGP and P_3 are analyzed. The MWGP can describe the strength of the phonon scattering channel, which depends on the anharmonicity of the phonon branch. The MWGP of BeN$_4$ and MgN$_4$ monolayers are 2.84 and 5.62, respectively. The larger MWGP means the stronger anharmonicity of the phonon branch, resulting in stronger phonon scattering and lower phonon lifetime.41 Meanwhile, P_3 will reflect the number of phonon scattering channels, and the larger P_3 indicates stronger phonon scattering. Figure 9 exhibits the P_3 of BeN$_4$ and MgN$_4$ monolayers. It can be seen that in the whole frequency region, the P_3 of BeN$_4$ and MgN$_4$ monolayers are comparable with each other. The total P_3 of BeN$_4$ monolayer is 1.94×10^{-3}, which is slightly smaller than that of MgN$_4$ monolayer (2.07×10^{-3}). The discrepancy of P_3 between BeN$_4$ and MgN$_4$ monolayers is negligible, thus the enhancing phonon scattering of MgN$_4$ monolayer is only ascribed to the strength of the phonon scattering channel. Hence, compared that of to MgN$_4$ monolayer, the higher lattice thermal conductivity of BeN$_4$ monolayer can be attributed to the following aspects: (1) the higher phonon heat capacity, (2) the larger phonon group velocity, (3) the longer phonon lifetime due to the stronger phonon scattering.

In addition, the phonon MFP plays a crucial role in phonon thermal transport. We calculate the phonon MFP (l_λ) based on the phonon group velocity and phonon lifetime, that is, $l_\lambda = v_\lambda \tau_\lambda$. As displayed in Figure 10, for BeN$_4$ monolayer, the phonon MFP generally drops as the frequency increases. The acoustic phonon MFPs of BeN$_4$ monolayer are larger than those of optical phonon MFPs. Especially, when the frequency is less than 3 THz, the MFP of ZA phonon branch is much higher than those of TA and LA phonon branches. However, for the MgN$_4$ monolayer, the acoustic phonon MFPs show little deviation from the optical phonon MFPs. At a frequency below 5 THz, the MFP of the ZA phonon branch is 1 order of magnitude higher than those of the other two phonon branches. The average phonon MFPs of BeN$_4$ and MgN$_4$ monolayers are 39.30 and 4.25 nm, which demonstrates that BeN$_4$ monolayer has the higher lattice thermal conductivity. Typically, when the system length is smaller than l_λ, phonon transport belongs to the ballistic regime without scattering. When the system length is larger than l_λ, the phonon moves diffusively with collision. Thus, the cumulative lattice thermal conductivity should be analyzed to exhibit the phonon MFP distribution. The lattice thermal conductivity as a function of phonon MFP can be given by:

$$k_{ph}(L) = k_{ph}^{az}(L) = \sum_{\lambda} C_{\lambda} v_{\lambda}^2 r_{\lambda}$$

(5)

The calculated cumulative lattice thermal conductivities of BeN$_4$ and MgN$_4$ monolayers are shown in Figure 11. As the phonon MFP increases, the cumulative lattice thermal conductivities of BeN$_4$ and MgN$_4$ monolayers increase until reaching the maximum values, and the corresponding phonon MFP can be defined as the longest phonon MFP (L_{max}). For BeN$_4$ monolayer, the phonons with large MFP have a significant contribution to lattice thermal conductivity. Nevertheless, the phonons with the small MFP of MgN$_4$ monolayer dominate lattice thermal conductivity. The L_{max} of BeN$_4$ monolayer is longer than 10 μm, and the corresponding value of MgN$_4$ monolayer is smaller than 1 μm, which reveals that the lattice thermal conductivity of BeN$_4$ monolayer has stronger size effect.

Figure 10. Phonon mean free path (MFP) of (a) BeN$_4$ and (b) MgN$_4$ monolayers as a function of frequency at 300 K.

Figure 11. Cumulative thermal conductivities of (a) BeN$_4$ and (b) MgN$_4$ monolayers as a function of phonon MFP at 300 K.
4. CONCLUSIONS

We investigate systematically the thermal properties of MN₄ monolayers using first-principles calculations. The lattice thermal conductivities of BeN₄ and MgN₄ monolayers are anisotropic at 300 K, which are equal to 842.75 (615.97) W m⁻¹ K⁻¹ and 52.66 (21.76) W m⁻¹ K⁻¹ along the armchair (zigzag) direction, respectively. The lattice thermal conductivity of BeN₄ monolayer is much larger than that of MgN₄ monolayer. When the temperature rises to 900 K, the corresponding reduction along the armchair zigzag directions are 71.94% and 72.13%, 50.11% and 63.43%, respectively. Meanwhile, the low frequency phonon branches have a major contribution to the total lattice thermal conductivities of BeN₄ and MgN₄ monolayers, which includes acoustic phonon branches and low frequency optical phonon branches. Moreover, the phonon behaviors are investigated, such as phonon heat capacity, phonon group velocity, phonon lifetime, MWGP, Pₒ, MFP, and cumulative lattice thermal conductivity. For BeN₄ monolayer, the average phonon heat capacity, phonon group velocity, and phonon lifetime are 3.54 × 10⁷ J K⁻¹ m⁻³, 3.61 km s⁻¹, and 13.64 ps. The corresponding values of MgN₄ monolayer are 3.42 × 10⁷ J K⁻¹ m⁻³, 3.27 km s⁻¹, and 1.70 ps, respectively. Hence, we attribute the higher lattice thermal conductivity of BeN₄ monolayer to the larger phonon heat capacity, phonon group velocity, and phonon lifetime. Furthermore, the MWGP and Pₒ of BeN₄ monolayer (2.84 and 1.94 × 10⁻³) are lower than those of MgN₄ monolayer (5.62 and 2.07 × 10⁻³), which reveals that stronger phonon scattering is present in MgN₄ monolayer. Subsequently, the phonon MFPs of BeN₄ and MgN₄ monolayers are evaluated, of which the average values are 39.30 and 4.25 nm, respectively. The cumulative lattice thermal conductivities of two monolayers increase gradually until reaching saturation values with the increasing phonon MFP. The L_max of BeN₄ monolayer is much longer than that of MgN₄ monolayer, indicating that the lattice thermal conductivity of BeN₄ monolayer exhibits a stronger size dependence. The study explores the thermal properties of novel 2D Dirac materials MN₄ monolayer, which will contribute to a better understanding of thermal management in 2D MN₄ based nanoelectronic devices.

AUTHOR INFORMATION

Corresponding Author
Dan Han – College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China; orcid.org/0000-0002-0736-4718; Email: han@yzu.edu.cn

Author
Man Wang – Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China; orcid.org/0000-0003-3979-287X

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c00785

Notes
The authors declare no competing financial interest.

REFERENCES
(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666–669.
(2) Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146 (9), 351–355.
(3) Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438 (7065), 201–204.
(4) Bolotin, K. I.; Ghahari, F.; Shulman, M. D.; Stormer, H. L.; Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 2009, 462 (7270), 196–199.
(5) Ponomarenko, L. A.; Gorbachev, R. V.; Yu, G. L.; Elias, D. C.; Jalil, R.; Patel, A. A.; Mishchenko, A.;Mayorov, A. S.; Woods, C. R.; Wallbank, J. R.; Mucha-Kruczynski, M.; Piot, B. A.; Potemski, M.; Grigorieva, I. V.; Novoselov, K. S.; Guinea, F.; Fal’ko, V. I.; Geim, A. K. Cloning of Dirac fermions in graphene superlattices. Nature 2013, 497 (7451), 594–597.
(6) Han, D.; Fan, H.; Wang, X.; Cheng, L. Atomistic simulations of phonon behaviors in isotopically doped graphene with Sierpinski carpet fractal structure. Mater. Res. Express 2020, 7 (3), 035020.
(7) Liu, C.; Lu, P.; Chen, W.; Zhao, Y.; Chen, Y. Phonon transport in graphene based materials. Phys. Chem. Chem. Phys. 2021, 23 (46), 26030–26060.
(8) Han, D.; Wang, X.; Ding, W.; Chen, Y.; Zhang, J.; Xin, G.; Cheng, L. Phonon thermal conduction in a graphene–C₃N heterobilayer using molecular dynamics simulations. Nanotechnology 2019, 30 (7), 075403.
(9) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321 (5887), 385–388.
(10) Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81 (1), 109–162.
(11) Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; Sindoro, M.; Zhang, H. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117 (9), 6225–6331.
(12) Zhang, H. Ultrathin Two-Dimensional Nanomaterials. ACS Nano 2015, 9 (10), 9451–9461.
(13) Liu, C.-C.; Jiang, H.; Yao, Y. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 2011, 84 (19), 195430.
(14) Cai, B.; Zhang, S.; Hu, Z.; Hu, Y.; Zou, Y.; Zeng, H. Tinene: a two-dimensional Dirac material with a 72 meV band gap. Phys. Chem. Chem. Phys. 2015, 17 (19), 12634–12638.
(15) Wang, J.; Deng, S.; Liu, Z.; Liu, Z. The rare two-dimensional materials with Dirac cones. Natl. Sci. Rev. 2015, 2 (1), 22–39.
(16) Young, S. M.; Wieder, B. J. Filling-Enforced Magnetic Dirac Semimetals in Two Dimensions. Phys. Rev. Lett. 2017, 118 (18), 186401.
(17) Qi, M.; An, C.; Zhou, Y.; Wu, H.; Zhang, B.; Chen, C.; Yuan, Y.; Wang, S.; Zhou, Y.; Chen, X.; Zhang, R.; Yang, Z. Pressure-driven Lifshitz transition in type-II Dirac semimetal NiTe₂. Phys. Rev. B 2020, 101 (11), 115124.
(18) Bykov, M.; Fedotenko, T.; Chariton, S.; Laniel, D.; Glazyn, K.; Hanfland, M.; Smith, J. S.; Prakapenka, V. B.; Mahmood, M. F.; Goncharov, A. F.; Ponomareva, A. V.; Tasnádi, F.; Abrivko, A. I.; Bin Masood, T.; Hotz, I.; Rudenko, A. N.; Katsnelson, M. I.; Dubrovinskaia, N.; Dubrovinsky, L.; Abrivko, A. I. A High-pressure synthesis of Dirac materials: layered van der Waals bonded BeN₄ polymorph. Phys. Rev. Lett. 2021, 126 (17), 175501.
(19) Mortazavi, B.; Shojaei, F.; Zhuang, X. Ultrahigh stiffness and anisotropic Dirac cones in BeN₄ and MgN₄ monolayers: a first-principles study. Mater. Today Nano 2021, 15, 100125.
(20) Tong, Z.; Pechia, A.; Yam, C.; Bao, H.; Dumitrić, T.; Frauenheim, T. Significant Increase of Electron Thermal Conductivity in Dirac Semimetal Beryllonitride by Dop ing Beyond Van Hove Singularity. Adv. Funct. Mater. 2022, 32 (15), 22011556.
(21) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54 (16), 11169–11186.
(22) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868.

(23) Li, W.; Carrete, J.; A. Katcho, N.; Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185 (6), 1747–1758.

(24) Gao, Z.; Zhu, T.; Sun, K.; Wang, J.-S. Highly Anisotropic Thermoelectric Properties of Two-Dimensional As₃Te₃. ACS Appl. Electron. Ma. 2021, 3 (4), 1610–1620.

(25) Han, D.; Yang, X.; Du, M.; Xin, G.; Zhang, L.; Wang, X.; Cheng, L. Improved thermoelectric properties of WS₂–WSe₂ phononic crystals: insights from first-principles calculations. Nanoscale 2021, 13 (15), 7176–7192.

(26) Yang, X.; Han, D.; Wang, M.; Du, M.; Wang, X. Extraordinary thermoelectric performance in 2D group IV monolayer XPh₃ (X = Al, Ga, and In). J. Phys. D Appl. Phys. 2021, 54, 435501.

(27) Yuan, K.; Zhang, X.; Li, L.; Tang, D. Effects of tensile strain and finite size on thermal conductivity in monolayer WSe₂. Phys. Chem. Chem. Phys. 2019, 21 (1), 468–477.

(28) Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73 (2), 515–562.

(29) Togo, A.; Obá, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl₂-type SiO₂ at high pressures. Phys. Rev. B 2008, 78 (13), 134106.

(30) Bafekry, A.; Stampfl, C.; Faraji, M.; Yagmurcukardes, M.; Fadlallah, M. M.; Jappor, H. R.; Ghergherehchi, M.; Feghhi, S. A. H. A Dirac-semimetal two-dimensional BeN₄: thickness-dependent electronic and optical properties. Appl. Phys. Lett. 2021, 118 (20), 203105.

(31) Guan, J.; Zhu, Z.; Tománek, D. Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 2014, 113 (4), 046804.

(32) Yao, S.; Zhang, X.; Zhang, Z.; Chen, A.; Zhou, Z. 2D Triphosphides: SbP₃ and GaP₃ monolayer as promising photocatalysts for water splitting. Int. J. Hydrogen Energy 2019, 44 (12), 5948–5954.

(33) Han, D.; Ding, W.; Wang, X.; Cheng, L. Tunable thermal transport in a WS₂ monolayer with isotopic doping and fractal structure. Nanoscale 2019, 11 (42), 19763–19771.

(34) Sun, Z.; Yuan, K.; Chang, Z.; Bi, S.; Zhang, X.; Tang, D. Ultralow thermal conductivity and high thermoelectric performance of two-dimensional triphosphides (InP₃, GaP₃, SbP₃, and SnP₃): a comprehensive first-principles study. Nanoscale 2020, 12 (5), 3330–3342.

(35) Ouyang, T.; Jiang, E.; Tang, C.; Li, J.; He, C.; Zhong, J. Thermal and thermoelectric properties of monolayer indium triphosphide (InP₃): a first-principles study. J. Mater. Chem. A 2018, 6 (43), 21532–21541.

(36) Gupta, N.; Verma, R. First-principles study of thermoelectric transport properties in low-buckled monolayer silicene. Physica B 2021, 606, 412715.

(37) Hu, Y.; Yang, T.; Li, D.; Ding, G.; Dun, C.; Wu, D.; Wang, X. Origins of minimized lattice thermal conductivity and enhanced thermoelectric performance in WS₂/WSe₂ lateral superlattice. ACS Omega 2021, 6 (11), 7879–7886.

(38) Mobaraki, A.; Kandemir, A.; Yapiçioğlu, H.; Gülseren, Ö.; Sevik, C. Validation of inter-atomic potential for WS₂ and WSe₂ crystals through assessment of thermal transport properties. Comput. Mater. Sci. 2018, 144, 92–98.

(39) Yang, X.; Han, D.; Fan, H.; Wang, M.; Du, M.; Wang, X. First-principles calculations of phonon behaviors in graphether: a comparative study with graphene. Phys. Chem. Chem. Phys. 2021, 23 (1), 123–130.

(40) Han, D.; Sun, H.; Ding, W.; Chen, Y.; Wang, X.; Cheng, L. Effect of biaxial strain on thermal transport in WS₂ monolayer from first principles calculations. Physica E 2020, 124, 114312.

(41) Peng, B.; Zhang, H.; Shao, H.; Xu, Y.; Ni, G.; Zhang, R.; Zhu, H. Phonon transport properties of two-dimensional group-IV materials from ab initio calculations. Phys. Rev. B 2016, 94 (24), 245420.