Menopause occurs by loss of ovarian function and subsequent deficiency of endogenous estrogens. Relationship between age at menopause and mortality is mainly explained by deficiency of endogenous estrogens. Many epidemiologic studies indicated that an early natural menopause increased the risk of ischemic heart disease. Furthermore, a vast amount of observational studies suggested that hormone replacement therapy (HRT) protected postmenopausal women from cardiovascular disease. Many basic studies also suggested that estrogen had protective effects on the cardiovascular system. However, randomized controlled trials did not show the effect of HRT on cardiovascular disease outcome. On the other hand, some epidemiologic studies reported that later menopause increased the risk of breast cancer and endometrial and ovarian cancer, and many studies reported that HRT also increased the risk of breast cancer.

There were some studies examining the relationship between age at menopause and all-cause mortality. Most previous reports have found inverse relationship between age at menopause and all-cause mortality. In other words, mortality of those with menopause at young age was higher than the mortality of those with menopause at old age. To our knowledge, all previous studies were conducted in Western countries, and there was no study...
The purpose of this study was to examine the relationship between age at menopause and all-cause mortality in the Japanese population.

METHODS

We used the data set of the Jichi Medical School Cohort Study, which is a population-based prospective study investigating risk factors for cardiovascular diseases starting in 1992. The baseline data were obtained between April 1992 and July 1995 in 12 rural areas in Japan. Mass screening examinations for cardiovascular diseases have been conducted since 1983 in accordance with the Health and Medical Service Law for the Aged of 1982, and we used this system to collect the data. The subjects for the mass screening examinations were residents aged 40-69 years in 8 areas, and were 30 years and older in one area. Subjects for other age groups were included in 3 areas. In each community, a local government office sent personal invitations to all the subjects by mail.

Health checkups were carried out in each community. Body mass index (BMI) was calculated as weight (kg) / height (m)². Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured with a fully automated sphygmomanometer, BP203RV-II (Nippon Colin, Komaki, Japan). Serum total cholesterol and high density lipoprotein (HDL) cholesterol were also measured with standard methods, as reported previously. Information about medical history and sociodemographic characteristics was obtained by trained interviewers using a standardized questionnaire. Smoking status was judged as current smoking, ex-smoking, or never smoking, and alcohol drinking status was judged as current drinking, ex-drinking, or never drinking. Females were asked about the age at menopause and the type of menopause (natural or surgical). We did not show the definition of the word of menopause, and we did not ask about HRT use.

A total of 12,490 subjects (4,911 males and 7,579 females) participated in the mass screening and the response rate for the residents who underwent a basic medical checkup was about 99%. The proportion of people who actually underwent a medical checkup for the total population was 65.4%. Written informed consent for the study was obtained individually for the responders who underwent a basic medical checkup. SBP, DBP, and serum total cholesterol level were measured at baseline data collection. There were 215 deaths (4.6%) during the study period. Of these, 93 died of malignant neoplasms, 29 of heart diseases, 29 of stroke, and 64 of other diseases. The mean age ± SD at menopause were 48.3 ± 4.8; 80% of females had their menopause between 45 and 54 years of age. Baseline characteristics in relation to each category of age at menopause are shown in Table 1. The mean age at baseline data collection, SBP, DBP, and serum total cholesterol level tended to be higher among those with old age at menopause. Females with early menopause were more likely to smoke and have surgical menopause.

Table 2 presents crude mortality rates and the two kinds of hazard ratios for all-cause mortality by age category at menopause. The crude mortality rate was the highest for the youngest group, and was the lowest for those with menopause during 40 to 44 years of age. Compared to females who were 45-49 years of age at menopause, the age-adjusted hazard ratio was not significantly but higher for females with a menopause at age younger than 40 years. There were 6 deaths among females who had natural menopause before 40 years. These causes of deaths were acute myocardial infarction, cerebral infarction, malignant lymphoma, gingival cancer, bile duct cancer, and pneumonia. After further adjustment for SBP, serum total cholesterol level, serum HDL cholesterol level, history of diabetes mellitus, BMI, smoking habits, alcohol drinking habit, marital status, study area, and type of menopause, the results remained essentially unaltered.
Table 1. Baseline characteristics according to age at menopause.

Age at menopause (year)	<40	40-44	45-49	50-54	55+	P-value
N (%)	227 (5)	467 (10)	1629 (35)	2124 (45)	236 (5)	
Age at baseline data collection (year)	56.5 (9.6)	60.0 (7.7)	60.9 (6.6)	61.6 (6.0)	62.9 (4.7)	< 0.001*
Systolic blood pressure (mmHg)	128.7 (21.3)	130.5 (21.5)	130.6 (21.0)	133.1 (20.6)	134.8 (19.0)	< 0.001*
Diastolic blood pressure (mmHg)	77.5 (12.0)	77.5 (12.2)	77.2 (11.9)	78.6 (11.7)	79.3 (10.8)	0.003*
Total cholesterol (mg/dL)	199.7 (34.8)	201.9 (35.5)	202.7 (33.0)	205.0 (32.6)	209.4 (35.0)	0.003*
High density lipoprotein cholesterol (mg/dL)	50.6 (11.5)	52.1 (12.5)	52.3 (12.2)	52.4 (12.8)	51.6 (12.8)	0.275*
Body mass index (kg/m²)	23.6 (3.7)	23.3 (3.2)	23.2 (3.2)	23.3 (3.1)	24.0 (3.4)	0.014*
History of hypertension(%)	18.5	20.3	20.6	21.1	23.3	0.764
History of diabetes mellitus(%)	6.4	4.8	4.5	3.1	2.6	< 0.001*
Current smokers (%)	21.4	21.8	19.2	20.6	21.4	0.702*
Current alcohol drinkers (%)	93.8	89.4	90.7	91.2	91.5	0.403*
Having a spouse(%)	18.9	57.4	82.6	90.5	91.9	
Type of menopause(%)	Natural	Surgical	No answer			
All	18.9	77.1	4.0			
	57.4	38.8	3.9			
	82.6	12.3	5.1			
	90.5	3.1	6.4			
	91.9	2.1	5.9			

Mean values (standard deviation) for quantitative data and proportion in percentage for qualitative data are shown.

* : Analysis of variance (ANOVA)

† : Chi-square test (degree of freedom = 4)

Table 2. Association between age at menopause and all-cause mortality according to type of menopause: crude mortality rate and adjusted hazard ratios.

Type of menopause	Age at menopause (year)	Number of death (death/total (%))	Crude mortality rate	All subjects	Aged 55+ years
				CR (% 95 CI)	CR (% 95 CI)
				HR-age (95% CI)	HR-all (95% CI)
				HR-age (95% CI)	HR-all (95% CI)
				HR-age (95% CI)	HR-all (95% CI)
All	< 40	14 / 227 (6.2)	6.8	1.72 (0.97-3.03)	2.10 (1.07-4.11)
	40-44	15 / 467 (3.2)	3.5	0.67 (0.39-1.17)	0.68 (0.36-1.26)
	45-49	78 / 1629 (4.8)	5.2	1.00 (reference)	1.00 (reference)
	50-54	96 / 2124 (4.5)	4.9	0.87 (0.65-1.18)	0.94 (0.68-1.30)
	55+	12 / 236 (5.1)	5.5	0.98 (0.54-1.80)	1.17 (0.63-2.20)
Natural	< 40	6 / 43 (14.0)	16.3	2.75 (1.19-6.36)	2.77 (1.16-6.58)
	40-44	10 / 268 (3.7)	4.0	0.67 (0.34-1.30)	0.53 (0.24-1.17)
	45-49	63 / 1346 (4.7)	5.1	1.00 (reference)	1.00 (reference)
	50-54	89 / 1923 (4.6)	5.0	0.91 (0.66-1.25)	0.94 (0.67-1.33)
	55+	12 / 217 (5.5)	6.0	1.16 (0.63-2.16)	1.39 (0.73-2.63)
Surgical	< 40	7 / 175 (4.0)	4.4	0.92 (0.35-2.41)	1.58 (0.46-5.39)
	40-44	4 / 181 (2.2)	2.4	0.48 (0.15-1.53)	1.04 (0.27-4.06)
	45-49	10 / 200 (5.0)	5.5	1.00 (reference)	1.00 (reference)
	50-54	1 / 66 (1.5)	1.6	0.27 (0.04-2.14)	0.46 (0.05-4.26)
	55+	0 / 5 (0.0)	-	-	-

HR-age: hazard ratios adjusted for age.

HR-all: hazard ratios adjusted for age, systolic blood pressure, total cholesterol, high density lipoprotein cholesterol, history of diabetes mellitus, body mass index, smoking habits, alcohol drinking habits, marital status, study area, and type of menopause.

- : no death in the category.

*: per 1000 person-year

†: Subjects excluded whose baseline ages were before 55 years.
highest hazard ratio for the youngest age group became significant. The crude mortality rate and the two kinds of hazard ratios were essentially same as above among who had a natural menopause. The multivariate-adjusted hazard ratios of those with surgical menopause at younger age were higher than those with surgical menopause at older age, in spite of the lack of significance. We analyzed in the same way in those who were age of 55 years and older at baseline, then the results were not so different.

To eliminate the influence of potentially preexisting subclinical diseases, we repeated analyses excluding those who died within 2 years after the baseline examination, and the results were essentially unchanged (data not shown).

DISCUSSION

We investigated the association between reported age at menopause and all-cause mortality using data from the Jichi Medical School Cohort Study, a population-based cardiovascular cohort study. The present study did not show an inverse relationship between age at menopause and all-cause mortality, but comparing females with early menopause (<40 years) with those who experience menopause when they were 45-49 years old, the former group has significantly higher all-cause mortality.

There were several epidemiologic studies examining the relationship between age at menopause and all-cause mortality. According to Ossewaarde et al18 studying in a breast cancer Epidemiologic Follow-up Study followed up 3,191 postmenopausal Dutch females followed for average of 17 years, a later menopause was associated with a decreased all-cause mortality risk, showing a linear trend. Jacobsen et al21 reported there was a weak inverse relationship between age at natural menopause and all-cause mortality in a cohort of 19,731 Norwegian postmenopausal females followed for average of 37 years. Cooper et al23 also reported an inverse relationship between age at natural menopause and all-cause mortality in the National Health and Examination Survey Epidemiologic Follow-up Study followed up 3,191 postmenopausal females during a 4-year period. Jacobsen et al24 studied the relationship between age at natural menopause and all-cause mortality in a cohort of 6,182 California Seventh-Day Adventist females who reported a natural menopause followed for average of 13 years. The result was same as above.

The average age for menopause is approximately 49 years in previous studies in Western countries.18-21 Premature ovarian failure (POF) or premature menopause refers to development of amenorrhea due to cessation of ovarian function before the age of 40 years. POF occurs in 1% of females.25-28 In our study, limiting natural menopause, 1.1% of females reported to menopause <40 years, same as former studies, and they had significantly higher risk of death than those reported to menopause 45-49 years. A wide spectrum of pathogenic mechanisms may lead to the development of POF including chromosomal,26 genetic,27,28 autoimmune,29,30 metabolic,31 infectious,32-34 and iatrogenic causes.35,36 It may result in the higher mortality on early menopausal females.

Observational studies have shown a reduced risk of cardiovascular disease,14 fewer calcifications in the aorta,37 and less extensive atherosclerosis38 in females with later menopause. In contrast, later menopause has been related to increased risk of breast cancer,11,14 endometrial and ovarian cancer.15,16 We analyzed cause specific mortality, but no significant relationship was seen in any category. That was because the number of deaths in our analysis was too small to draw firm conclusions about specific causes of death. We cannot explain why our result did not show an inverse relationship between age at menopause and all-cause mortality, especially why females who had menopause 40-44 years had lower mortality, though it was not significant, than those who had menopause 45-49. All the previous studies were conducted in Western countries in which major cause of death is cardiovascular disease. On the other hand, major cause of death was malignant neoplasms in Japan. It may influence our result. To clarify these questions, cause specific mortality will be useful. We are going to analyze cause specific mortality after extending the follow-up period.

In our study, the multivariate-adjusted hazard ratios of those with surgical menopause at younger age were higher (though not significantly) than those with surgical menopause at older age. Although we did not ask whether both ovaries were still present or not, we excluded those who had a history of malignant neoplasms from the subject of our study. Therefore, many females who had surgical menopause may have both ovaries. We did not know why the younger group had higher mortality. The subjects of many previous studies were limited only natural menopause, the relationship between surgical menopause and mortality in not well known.18-21 Ossewaarde et al22 reported type of menopause (natural menopause or not) did not affect the associations between age at menopause and cause specific mortality. Some other factors except ovarian function may influence the association between age at menopause and mortality.

Our current data suggested that those with menopause at young age have a high risk of mortality. Although the cause-specific analyses are required, health management, such as an intensive health check-up system, may be useful for such females.

The strong points of our research are as follows. First, to our knowledge, our report was the first in Japan. Second, we adjusted for possible confounding factors such as sex, BMI, smoking habits, alcohol drinking habits, marital status, and study area, and conducted this research with an adequately accurate method of measurement. Accordingly, we aimed at thorough unification of the methodology, such as blood pressure measurement and blood testing. In order to eliminate variation arising from individual techniques, the same automatic sphygmomanometer was used in all the areas. Furthermore, the blood samples were analyzed at a single trusted laboratory using the same method of measurement.

There are three limitations in our study. First, this study makes
biased reporting of age at menopause unlikely. However, as demonstrated in previous reports, self-reported age at menopause and type of menopause are reasonably valid and reproducible.29,40 Second, we did not ask about HRT use. However, there are few females who take HRT in Japan, and we think the influence of HRT was small.

The final limitation is that those who were before menopause at the baseline data collection were excluded from our data analyses. This restriction might lead a selection bias, which is that we observed only those whose age at menopause was relatively younger. However, the results were not so different in the analyses with subjects aged 55 years and older; most of them were considered menopausal condition.

In conclusion, our data indicated that menopause aged younger than 40 years increases the risk of death from all causes among Japanese.

REFERENCES

1. de Kleijn MJ, van der Schouw YT, Verbeek AL, Peeters PH, Banga JD, van der Graaf Y. Endogenous estrogen exposure and cardiovascular mortality risk in postmenopausal women. Am J Epidemiol 2002; 155: 339-45.
2. van der Schouw YT, van der Graaf Y, Steyerberg EW, Eijkemans JC, Banga JD. Age at menopause as a risk factor for cardiovascular mortality. Lancet 1996; 347: 714-8.
3. Jacobsen BK, Nilsson S, Heuch I, Kvåle G. Does age at natural menopause affect mortality from ischemic heart disease? J Clin Epidemiol 1997; 50: 475-9.
4. Hu FB, Grodstein F, Hennekens CH, Colditz GA, Johnson M, Manson JE, et al. Age at natural menopause and risk of cardiovascular disease. Arch Intern Med 1999; 159: 1061-6.
5. Stampfer MJ, Colditz GA. Estrogen replacement therapy and coronary heart disease: a quantitative assessment of the epidemiologic evidence. Prev Med 1991; 20: 47-63.
6. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med 1999; 340: 1801-11.
7. Krasinski K, Spyridopoulos I, Asahara T, van der Zee R, Isner JM, Losordo DW. Estradiol accelerates functional endothelial recovery after arterial injury. Circulation 1997; 95: 1768-72.
8. Spyridopoulos I, Sullivan AB, Kearney M, Isner JM, Losordo DW. Estrogen-receptor-mediated inhibition of human endothelial cell apoptosis. Estradiol as a survival factor. Circulation 1997; 95: 1505-14.
9. Pare G, Krust A, Karas RH, Dupont S, Aronovitz M, Chambon P, et al. Estrogen receptor-alpha mediates the protective effects of estrogen against vascular injury. Circ Res 2002; 90: 1087-92.
10. Hulley S, Grady D, Bush T, Furbeg C, Herrington D, Riggs B, et al. Randomized trial of estrogen plus progesterin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 1998; 280: 605-13.
11. Grady D, Herrington D, Bittner V, Blumenthal R, Davidson M, Hlatky M, et al. Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II). JAMA 2002; 288: 49-57.
12. Rossonou JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Risks and benefits of estrogen plus progesterin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 2002; 288: 321-33.
13. Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Lancet 1997;350: 1047-59.
14. Monninkhof EM, van der Schouw YT, Peeters PH. Early age at menopause and breast cancer: are leaner women more protected? A prospective analysis of the Dutch DOM cohort. Breast Cancer Res Treat 1999; 55: 285-91.
15. de Graaff J, Stolte LA. Age at menarche and menopause of uterine cancer patients. Eur J Obstet Gynecol Reprod Biol 1978; 8: 187-93.
16. Franceschi S, La Vecchia C, Booth M, Tzonou A, Negri E, Parazzini F, et al. Pooled analysis of 3 European case-control studies of ovarian cancer: II. Age at menarche and at menopause. Int J Cancer 1991; 49: 57-60.
17. Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD. Postmenopausal hormone replacement therapy: scientific review. JAMA 2002; 288: 872-81.
18. Ossewaarde ME, Bots ML, Verbeek AL, Peeters PH, van der Graaf Y, Grobbee DE, et al. Age at menopause, cause-specific mortality and total life expectancy. Epidemiology 2005; 16: 556-62.
19. Jacobsen BK, Heuch I, Kvåle G. Age at natural menopause and all-cause mortality: a 37-year follow-up of 19,731 Norwegian women. Am J Epidemiol 2003; 157: 923-9.
20. Cooper GS, Sandler DP. Age at natural menopause and mortality. Ann Epidemiol 1998; 8: 229-35.
21. Jacobsen BK, Knutsen SF, Fraser GE. Age at natural menopause and total mortality and mortality from ischemic heart disease: the Adventist Health Study. J Clin Epidemiol 1999; 52: 303-7.
22. Ishikawa S, Gotoh T, Nago N, Kayaba K. The Jichi Medical School (JMS) Cohort Study: design, baseline data and standardized mortality ratios. J Epidemiol 2002; 12: 408-17.
23. Conway GS. Premature ovarian failure. Br Med Bull 2000; 56: 643-9.
24. Anasti JN. Premature ovarian failure: an update. Fertil Steril 1998; 70: 1-15.
25. Coulam CB, Adamson SC, Angegner JF. Incidence of prema-
tive ovarian failure. Obstet Gynecol 1986; 67: 604-6.
26. Zinn AR. The X chromosome and the ovary. J Soc Gynecol
Investig 2001; 8(1 Suppl Proceedings): S34-6.
27. Conway GS. Premature ovarian failure. Curr Opin Obstet
Gynecol 1997; 9: 202-6.
28. Tibiletti MG, Testa G, Veggetti W, Alagna F, Taborelli M,
Dalpra L, et al. The idiopathic forms of premature menopause
and early menopause show the same genetic pattern. Hum
Reprod 1999; 14: 2731-4.
29. Conway GS, Kaltsas G, Patel A, Davies MC, Jacobs HS.
Characterization of idiopathic premature ovarian failure.
Fertil Steril 1996; 65: 337-41.
30. Hoek A, Schoemaker J, Drexhage HA. Premature ovarian
failure and ovarian autoimmunity. Endocr Rev 1997; 18: 107-
34.
31. Waggoner DD, Buist NR, Donnell GN. Long-term prognosis
in galactosaemia: results of a survey of 350 cases. J Inherit
Metab Dis 1990; 13: 802-18.
32. Wood C. Mumps and the menopause. Br J Sex Med 1975; 2:
19.
33. Fox H. The pathology of premature ovarian failure. J Pathol
1992; 167: 357-63.
34. Morrison JC, Givens JR, Wiser WL, Fish SA. Mumps
oophoritis: a cause of premature menopause. Fertil Steril
1975; 26: 655-9.
35. Koyama H, Wada T, Nishizawa Y, Iwanaga T, Aoki Y.
Cyclophosphamide-induced ovarian failure and its therapeu-
tic significance in patients with breast cancer. Cancer 1977;
39: 1403-9.
36. Howell S, Shalet S. Gonadal damage from chemotherapy and
radiotherapy. Endocrinol Metab Clin North Am 1998; 27:
927-43.
37. Witteman JC, Grobbee DE, Kok FJ, Hofman A, Valkenburg
HA. Increased risk of atherosclerosis in women after the
menopause. BMJ 1989; 298: 642-4.
38. Joakimsen O, Bonaa KH, Stensland-Bugge E, Jacobsen BK.
Population-based study of age at menopause and ultrasound
assessed carotid atherosclerosis: The Tromso Study. J Clin
Epidemiol 2000; 53: 525-30.
39. den Tonkelaar I. Validity and reproducibility of self-reported
age at menopause in women participating in the DOM-pro-
ject. Maturitas 1997; 27: 117-23.
40. Colditz GA, Stampfer MJ, Willett WC, Stason WB, Rosner
B, Hennekens CH, et al. Reproducibility and validity of self-
reported menopausal status in a prospective cohort study. Am
J Epidemiol 1987; 126: 319-25.