Shot noise in long conductors

Yehuda Naveh
Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800

(March 24, 2022)

Shot noise is the only fundamental type of current fluctuations which exists in current-carrying conductors at low temperatures. As was recently stressed by Landauer [1], it contains unique and important information about the correlations which affect the electronic transport in the conductor. It is generally accepted that shot noise is a 'mesoscopic' phenomenon in the sense that it vanishes when the length of the conductor is much larger than the electron-phonon thermalization length [2]. We show here that at least in one geometry this result is valid only when the observation frequency ω is strictly zero. At any finite frequency the shot noise, as measures in the electrodes connecting the conductor, resumes its value of the order of the 'full' shot noise 2eI (I is the average current in the conductor) provided that the sample is long enough, L > L0(ω). Since even 'zero frequency' measurements of shot noise are always done at RF, we claim here that for sufficiently long samples (typically longer than a few centimeters) such measurements should yield a large shot noise value.

The basis for the calculations leading to the above conclusion is the 'drift-diffusion-Langevin' theory developed in Refs. [3,4] and valid at ω ≪ 1/τ, eV/h with τ the elastic scattering time and V the applied voltage. According to this theory the noise spectral density as measured in the electrodes connecting the conductor (of length L centered around x = 0) can be presented as

\[S_1(\omega) = \frac{2G}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} |K(x;\omega)|^2 \mathcal{C}(x) \, dx \]

(1)

with G the dc conductance and \(\mathcal{C}(x) \) the correlator of local fluctuations. This correlator depends only on the local distribution function of electrons. For example, for an equilibrium Fermi-Dirac distribution with temperature T, \(\mathcal{C}(x) = 2T \), and the noise assumes the Johnson-Nyquist value. For typical non-equilibrium distributions \(\mathcal{C}(x) \) becomes much larger than the equilibrium correlator, and at T = 0 the noise given by Eq. (1) is the shot noise.

The response function \(K(x;\omega) \), which is solely responsible for the frequency dispersion of the noise, gives the current generated in the electrodes by a fluctuating unit current source at x. It is dependent upon the specific geometry of the conductor and its electrodynamic environment, but its integral over the sample length always equals 1. We will study here a simple geometry for which an analytical expression for \(K(x;\omega) \) can be obtained, namely, a thin and long conductor close to a ground plane. It is assumed that both thickness of the conductor (in the direction perpendicular to the ground plane) and its distance from the ground plane are much smaller than L [5]. Then the response function is given by

\[K(x;\omega) = \frac{\kappa L}{2} \frac{\cosh(\kappa x)}{\sinh(\kappa L/2)} \]

(2)

Here \(\kappa(\omega) = \sqrt{-\omega^2/D'} \) with \(D' = D + GL/C_0 \) where D is the diffusion coefficient and \(C_0 \) is the (dimensionless) linear capacitance between the conductor and the ground plane.

It is clear from Eq. (2) that the only current fluctuations in the conductor which are of importance in inducing noise in the electrodes are those which are within a distance \(\lambda_\omega = 1/|\kappa(\omega)| \) from the conductor-electrode interfaces. Therefore, at high enough frequencies, the measured noise is associated with the highly non-equilibrium distribution of electrons near the edges of the conductor, and not necessarily with the distribution at the bulk of the sample (in long samples, the latter can be very close to an equilibrium distribution, a fact which led to the common belief that the shot noise should vanish in long samples). This simple argument means that whenever \(\lambda_\omega \) is smaller than some length scale \(l_S \) (which gives the spatial extent of non-equilibrium electrons in the conductor – see Fig. 1), the shot noise value should remain significant even with increasing L.

![FIG. 1. Schematic description of the relevant length scales in the problem: The upper curve shows the response function for the two cases of relatively low (brown) and high (green) frequencies. The lower panel shows the spatial extent of non-equilibrium electrons near the edges of the conductor.](image-url)

In order to give a quantitative description of the above effect, one should solve the Boltzmann equation for the non-equilibrium distribution \(f \). To this end, we follow the prescription of Ref. [6], where \(f \) was calculated under
the assumption of longitudinal acoustic phonon scattering. It was shown in that work that the width of the layer in which the electron distribution is far from equilibrium is \(l_S \approx \sqrt{D_t/\omega} \), with \(l_{ph} \) the inelastic scattering length of an electron due to emission of a phonon of energy \(eV \). Therefore, one should expect large shot noise if \(\lambda_\omega \approx \sqrt{D_t/\omega} < \sqrt{L/l_{ph}} \), or \(L > L_0(\omega) \) with

\[
L_0(\omega) = \frac{D'}{l_{ph}\omega}. \tag{3}
\]

In what follows we would be interested in relatively long samples and low frequencies. Therefore we assume here that the electron-electron scattering length is much shorter than \(L \) and \(\lambda_\omega \). Having numerical results for \(f \) (and thus for \(C \)) in this situation \(\text{[6]} \), we can find the noise spectral density by combining Equations (1) and (2).

Results for the noise spectral density \(S_f(\omega) \) are presented in Fig. 2 for a specific set of experimental parameters. The upper curves in the figure show the total noise. The lower curves show, on the same scale, the thermal noise. Since the latter is smaller by an order of magnitude than the former, the upper curves actually depict the shot noise.

![FIG. 2. Noise spectral density as a function of sample's length. Lower curves show the thermal noise and upper curves the full noise which is dominated by the shot noise. Material parameters are \(l_{ph} = 10^{-3} \) cm and \(D' = 1000 \) cm\(^2\)/s. Temperature-to-voltage ratio is \(T/eV = 10^{-5} \). Arrows indicate the positions of \(\lambda_\omega \) and \(L_0 \) for each of the depicted frequencies (at zero frequency these lengths tend to infinity).](image)

The physical discussion presented above is fully supported by the results shown in Fig. 2. One sees that at each of the three frequencies depicted, the noise initially decreases with \(L \) up to \(L \approx \lambda_\omega \), whereupon it increases, and reaches its mesoscopic value again at \(L \approx L_0(\omega) \). The initial decrease of the noise with increasing \(L \) is due to the electrons being increasingly thermalized in the bulk of the sample, while the subsequent increase is due to the widening of the non-equilibrium surface layer as \(\sqrt{L/l_{ph}} \), and therefore the increasing distance from equilibrium of the noise-inducing electrons within the layer of distance \(\lambda_\omega \) from the interfaces (see Fig. 1). As expected, at strictly zero frequency the noise reduces monotonically to the thermal value at \(L \to \infty \).

The unusual result of shot noise increasing with increasing sample length is essentially due to a competition between two independent physical processes: screening and equilibration. The importance of screening in affecting shot noise was first discussed by Landauer in qualitative terms \(\text{[7,8]} \), and was later studied quantitatively in Refs. \(\text{[3,4]} \). Its outcome effect is summarized by Eq. (2) and by the upper panel of Fig. 1. Equilibration, on the other hand (lower panel of Fig. 1) is responsible for the surface layers of non-equilibrium electrons. The fact that the width \(l_S \) of this layer grows with \(L \) is readily understood \(\text{[6]} \): since the electron-phonon relaxation time decreases strongly with the energy of the emitted phonon, at large \(L \), when the electric field in the conductor is small, an electron entering the sample from the electrode must diffuse elastically for a long distance before it is able to emit a phonon.

Parameters chosen in obtaining Fig. 2 (except, possibly, the temperature) correspond to typical experimental situations (c.f. Ref. \(\text{[6]} \)). In fact, many ‘zero frequency’ experiments are performed at an actual frequency of 10 KHz or higher. A different choice of the effective diffusion coefficient \(D' \) would leave the results unaltered only if accompanied by a similar change of the frequency (in other words, the only dependence of \(S_f \) on \(\omega \) and on \(D' \) is through \(\omega/D' \)).

While \(D = 1000 \) cm\(^2\)/s is easy to achieve experimentally, the electrostatic term in \(D' \), \(GL/C_0 \approx D(td/\lambda_\omega^2) \), dominates if the thickness \(t \) of the conductor or its distance \(d \) from the ground plane are larger than the static screening length \(\lambda_\omega \). Thus, the most promising geometry for the observation of the results depicted in Fig. 2 is within a thin layer, possibly a two-dimensional electron gas. With thicker conductors, the macroscopic shot noise would be large only at higher frequencies, or longer samples [see Eq. (3)].

In order to keep \(L_0 \) reasonably small \(l_{ph} \) must be large. To maintain \(l_{ph} = 10^{-3} \) cm, \(V \) cannot be larger than 100 mV. It is therefore likely that in an actual experiment \(T/eV \) would not be smaller than \(10^{-3} \). Then, at large \(L \) and \(\omega \), the thermal noise may be as large as the shot noise, and a subtraction scheme should be deployed in order to extract the shot noise values from the measurements.

The response function \(\text{[6]} \), and thus the results presented in this work, are not necessarily valid for geometries different from the one studied here. The question of whether any specific geometry exhibits shot noise when the conductor is long enough reduces to the question whether finite-frequency fluctuations in the bulk of the conductor are sufficiently screened as to not induce current in the electrodes. Theoretically, a detailed answer to this question may involve difficult solutions of
the Poisson equation. However, in a charged Fermi system finite-frequency currents are known to be screened beyond some typical length scale λ'_ω which does not depend on L \cite{10}. On the other hand, the ‘hot-electron’ length scale $l_S = \sqrt{\hbar \nu_{ph}}$ is independent of the specific geometry. Therefore, it is argued that in sufficiently long samples of an arbitrary geometry l_S is larger than λ'_ω, so the only important sources of noise are from the nonequilibrium regions near the electrodes. Following the physical discussion below Eq. (2), this implies that the qualitative features of the results presented here may be of a general nature.

I am indebted to D. V. Averin and K. K. Likharev for many fruitful discussions. The work was supported in part by DOE’s Grant #DE-FG02-95ER14575.

\begin{thebibliography}{99}
\bibitem{1} R. Landauer, Nature, \textbf{392}, 658 (1998). This work includes a description of the most recent experimental advancements related to condensed-matter shot noise.
\bibitem{2} For a general review of this and other aspects of shot noise in condensed matter systems see M. J. M. de Jong and C. W. J. Beenakker, in \textit{Mesoscopic Electron Transport}, edited by L.L. Sohn, L.P. Kouwenhoven, and G. Schoen, NATO ASI Series Vol. 345 (Kluwer Academic Publishers, Dordrecht, 1997).
\bibitem{3} Y. Naveh, D.V. Averin, and K.K. Likharev, Phys. Rev. Lett. \textbf{79}, 3482 (1997).
\bibitem{4} Y. Naveh, D.V. Averin, and K.K. Likharev, cond-mat/9801188; submitted to Phys. Rev. B.
\bibitem{5} Y. Naveh, D.V. Averin, and K.K. Likharev, cond-mat/9803335; submitted to Phys. Rev. B.
\bibitem{6} R. Landauer, Ann. New York Acad. Sci. \textbf{755}, 417 (1995).
\bibitem{7} R. Landauer, Physica B \textbf{227}, 156 (1996).
\bibitem{8} F. Liefrink, J. I. Dijkhuis, M. J. M. de Jong, L. W. Molenkamp, and H. van Houten Phys. Rev. B \textbf{49}, 14066 (1994).
\bibitem{9} D. Pines and P. Noziéres, The Theory of Quantum Liquids (Benjamin, New York, 1966), Sec. 3.5.
\end{thebibliography}