Abstract

Developmental defects can occur during the morphogenesis stage of tooth development. Enamel hypoplasia encompasses all deviations from normal enamel in its various degrees of absence. Here we present two cases of linear enamel hypoplasia. In the first case, a 14-year-old girl reported with a white line present on the both upper and lower arches of front and back teeth. Esthetics is a main concern for her; hence, teeth were restored with composite restoration and she was satisfied with treatment. In the second case, a 12-year-old girl came for routine dental checkup along with her mother, who presented with linear enamel hypoplasia on both maxillary and mandibular anterior teeth including all the first premolars. The parent was not willing for the treatment and preventive measures were done. Also, we discussed about the etiological factors, possible complications anticipated and different treatment options were discussed.

Keywords: Anterior teeth; Linear enamel hypoplasia; Maxilla; Mandible; Premolars

Introduction

Zsigmondy in 1894 coined the term Enamel Hypoplasia. It is defined as an incomplete or defective formation of organic enamel matrix of the teeth [1] which is associated with hypo calcification and hypo maturation. Basically, ameloblasts produce enamel and these ameloblasts are cells particularly sensitive to changes in their environment. Whenever there is a change in the environment during enamel formation like infection, trauma, nutritional deficiencies, especially vitamins like A, C and D, exanthematous diseases, hypocalcaemia, ingestion of chemicals and idiopathic causes [2], all can lead to the occurrence of enamel hypoplasia.

Case 1

A 14-year-old girl presented to a pediatric dentistry department with a chief complaint of white line present in her teeth which was noticed by her mother one month back. Her prenatal, natal and post-natal histories were unremarkable and she has not visited a dentist before. None of the family members had this problem and she is the only child in the family, parents are daily workers and she hails from a poor socioeconomic background. Past medical history revealed that she had recurrent episodes of fever and hospitalization. No abnormalities were detected upon extra oral and intra oral examination. She was in a permanent dentition period without carious teeth with Angle’s class I molar relationship with normal overjet and overbite. One of the interesting findings was that a horizontal line was seen on both maxillary and mandibular anterior teeth as well as premolars in a bilaterally symmetrical pattern. Line started from cervical one third of all the anterior teeth and premolars only on the labial aspect. Based on the natal history and configuration it was diagnosed as enamel hypoplasia (Figure 1). Preventive measures were done and the involved teeth were restored with composite resin restoration to reestablish esthetics (Figure 2).

Case 2

A 12-year-old girl comes to the department for routine dental checkup. Past medical history revealed that the patient was...
frequently admitted in hospital in the first 3 years of her life and the patient was subjected to parenteral and systemic antibiotics every time. Neither the patient nor the parents were aware of the particulars of antibiotics administered. She belongs to low socioeconomic status and father is a driver. No abnormality detected on extra oral examination. Upon intraoral examination, horizontal line was present in both maxillary and mandibular anterior teeth and pre molars (Figure 3). Explanation regarding treatment and complications of enamel hypoplasia to the parents was done but mother was not interested regarding treatment and so preventive measures were rendered.

In order to determine the age of the individual when these lesions developed, their distance from the cementum-enamel junction was measured. These measurements were converted to a half-year period by reference to the chronology of enamel-crown development [6] later it was modified by Swardsted [7]. This method involves the division of the incisor crown into 9 (birth to 4.5 years) and the canine crown into 12 9 (birth to 6.0 years) half-year developmental periods [7]. The uniqueness of our cases is that all the first four premolars were involved with enamel hypoplasia which is not reported in the literature.

Management

Prevention is always better than cure; linear enamel hypoplasia can be prevented through identification of risk factors, early diagnosis and anticipation of caries. Most of these lesions occur during prenatal and early postnatal periods. This can be minimized by educating the pregnant women through dental home. If the teeth are affected by hypoplasia it can be treated by using remineralizing agents like tooth mouse, CPP-ACP. Fluoride application further stop the caries process. Diet counseling followed by establishment of good brushing habits can further prevent caries process. If hypoplasia occurs only in molars there will be attrition of the particular tooth and vertical height will be reduced and this can be prevented by giving acrylic jigs and custom made bite blocks. In the present case molars were not affected, diet counseling was done, oral hygiene instructions were given and the affected teeth were restored with composite resin. Other treatment options include Glass Ionomer cements, stainless steel crowns, full veneer- metal ceramic crowns, fixed, removable partial dentures and implants. If teeth are non restorable, extraction is the only treatment of choice and in such cases, interdisciplinary approach should be more appropriate for young children to restore function.

Conclusion

It is very essential to diagnose these developmental defects early because it is mainly concerned with esthetics. Pediatric dentist has an opportunity to prevent these defects through anticipatory guidance. If it is already present, proper diagnosis is important to differentiate other conditions and also conservative treatment plan. Recognizing this condition will facilitate the establishment of appropriate treatment plan with multidisciplinary approach in young children to restore esthetics and improve masticatory efficiency.

References

1. Langlais RP, Langland OE, Nortje CJ (1995) Diagnostic imaging of the jaws. (1st edn). Williams and Wilkins, Baltimore, USA.
2. Rajendran R (2006) Shafer’s Textbook of Oral Pathology. (5th edn), Elsevier, India, pp. 904.
3. White SC, Pharoah MJ (2009) Oral radiology: principles and interpretation. (6th edn), St. Louis, Mo: Mosby Elsevier, USA.
4. Geiser I, Hunt EE (1955) The permanent mandibular first molar: its calcification, eruption and decay. Am J Phys Anthropol 13(2): 253-283.
5. Moorees CF, Fanning EA, Hunt EE (1963) Age variation of formation stages for ten permanent teeth. J Dent Res 42: 1490-1502.
6. Massler M, Schour I, Poncher HG (1941) Developmental pattern of the child as reflected in the calcification pattern of teeth. Am J Dis Child
62(1): 33-67.

7. Swaardstedt T, Universitet S (1966) Odontological aspects of a medieval population in the province of Jamtland Mid-Sweden. Doctoral University of Stockholm, Sweden.