Comparison of incretin immunoassays with or without plasma extraction: Incretin secretion in Japanese patients with type 2 diabetes

Daisuke Yabe1*, Koin Watanabe1, Kenji Sugawara1, Hitoshi Kuwata1, Yuka Kitamoto1, Kazu Sugizaki1, Shuichi Fujiwara1, Masahiro Hishizawa1, Takanori Hyo1, Kyoko Kuwabara1, Kayo Yokota1, Masahiro Iwasaki1, Takeshi Kurose1, Nobuya Inagaki2, Yutaka Seino1*

ABSTRACT
Aims/Introduction: The effectiveness of incretin-based therapies in Asian type 2 diabetes requires investigation of the secretion and metabolism of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1). Plasma extractions have been suggested to reduce variability in intact GLP-1 levels among individuals by removing interference that affects immunoassays, although no direct demonstration of this method has been reported. We have evaluated the effects of ethanol and solid-phase extractions on incretin immunoassays. We determined incretin levels during meal tolerance tests in Japanese patients with type 2 diabetes and characterized predictors for incretin secretion.

Materials and Methods: Japanese patients with type 2 diabetes (23 anti-diabetic drug-naı¨ve and 18 treated with sulfonylurea [SU] alone) were subjected to meal tolerance tests, and incretin levels were determined by immunoassays with or without extraction.

Results: Intact GLP-1 levels determined by an intact GLP-1 immunoassay with ethanol and solid-phase extractions were lower than those determined without extraction. Intact GLP-1 levels determined by the extractions were highly correlated with each other, much more so than the levels with and without extraction. Total GLP-1 was unaffected by extractions, showing that extractions remove interference only in the case of intact GLP-1. Incretin secretion after meal ingestion was similar between drug-naı¨ve and SU-treated patients. Fasting and postprandial GLP-1 levels were correlated positively with fasting free fatty acids and negatively with dipeptidyl peptidase-4 activity.

Conclusions: Ethanol and solid-phase extractions remove interference for intact GLP-1 immunoassay. SU showed little effect on incretin secretion. GLP-1 and GIP secretion were predicted by different factors. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2011.00141.x, 2012)

KEY WORDS: Extraction, Immunoassay, Incretin

INTRODUCTION
Beneficial effects of the incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulintropic polypeptide (GIP), on glucose homeostasis through its regulation of β-cell function suggest them as attractive therapeutic targets for diabetes1–3. On secretion from intestinal K- and L-cells, both GLP-1 and GIP undergo rapid degradation catalyzed by a serine protease, dipeptidyl peptidase-4 (DPP-4). GLP-1 and GIP digested by DPP-4 no longer act as incretin hormones. Therefore, there is a need for a reliable assay to measure intact, as well as total (i.e. intact plus DPP-4-digested) forms of GLP-1 and GIP in human subjects to evaluate both secretion and processing of incretins, and the effects of DPP-4 inhibitors, and to further develop novel incretin-related therapies, such as small compounds that enhance secretion of incretin hormones. Immunoassays for intact GLP-1 require specific antibodies that are not widely available. The large variability in intact GLP-1 levels determined by the various commercially available immunoassays leads to confusion and hampers our understanding of incretin biology. We found that intact GLP-1 levels in ethanol-extracted plasma of Japanese subjects were greatly reduced compared with previously determined values determined by the same immunoassay, except that the plasmas were measured without extraction4. Later, a similar observation was made when intact GLP-1 levels in ethanol-extracted plasma of Caucasian subjects were determined5. Considering these lines of evidence, it was suggested that plasma extractions before immunoassays for intact GLP-1 might remove interferences that cause large
variations in intact GLP-1 levels among human subjects. In addition, plasma extractions have been suggested to improve correlations across intact GLP-1 levels determined by various commercially available immunoassays.

Secretion of GLP-1 and GIP from intestinal K- and L-cells is enhanced by ingestion of various nutrients, hormones and neurotransmitters. Although the molecular mechanisms underlying enhancement of incretin secretion by such stimuli have been intensively studied in isolated K- and L-cells, as well as in cultured cell lines, the regulation of incretin secretion in human subjects is largely unknown. For example, K- and L-cells express components of K_{ATP} channels, Kir6.2 and SUR1, similarly to pancreatic β-cells, and sulfonylurea (SU) enhances secretion of GLP-1 and GIP from these cells. Enhancement of incretin hormones by SU has not been reported in humans. Furthermore, in some, but not all, patients with type 2 diabetes, reduced GLP-1 secretion or enhanced GIP secretion has been reported previously, but mechanistic explanations underlying such fluctuating results are missing. Knowledge of factors affecting secretion of incretin hormones in humans is required not only to understand such fluctuating results, but also to predict efficacy of the incretin-related anti-diabetic drugs, such as DPP-4 inhibitors and compounds enhancing incretin secretion. To date, several predictors for secretion of GLP-1 (fasting glucagon, fasting free fatty acid [FFA], age and bodyweight) and GIP (fasting FFA and age) have been reported in Caucasians, but data are lacking for Asians.

Here, we report the following: (i) comparison of incretin immunoassays with or without extractions; (ii) plasma levels of incretin hormones during meal tolerance tests; and (iii) predictors of fasting and postprandial incretin secretion in Japanese patients with type 2 diabetes.

MATERIALS AND METHODS

The protocol was approved by the ethics committee of Kansai Electric Power Hospital, and written informed consent was obtained from all participants. A total of 41 Japanese patients (79x70) participated in the current study. Of all the patients, 23 were anti-diabetic drug-naïve, 8 were on gliclazide and 10 were on glimepiride. Characteristics of patients are summarized in Table 1. Patients were subjected to a meal tolerance test in the morning after overnight fast. A Japanese standard meal (480 kcal; carbohydrate:protein:fat = 2.8:1:1) was ingested within 10 min. SU-treated patients took their regular doses of SU at 10 min. SU-treated patients took their regular doses of SU.

Table 1 | Characteristics of patients

	All	No drug	SU
n	41	23	18
Female (%)	27.9	21.7	36.8
Age (years)	62.5±8.1	59.1±6.1	66.7±8.0*
Duration (years)	7.8±7.4	5.3±7.8	11.0±6.1*
BMI (kg/m²)	22.9±2.8	22.9±3.3	23.0±2.4
Systolic BP (mmHg)	134.9±22.0	128.0±23.4	143.7±18.5*
Diastolic BP (mmHg)	79.4±9.4	79.5±9.7	79.3±9.4
HbA_c (%)	7.1±0.6	7.0±0.5	7.3±0.6
Fasting plasma glucose (mg/dL)	123.4±212.12	1213.2±286.128	1282.2±136.128
Fasting insulin (mU/L)	5.1±2.5	4.3±3.2	6.0±1.5*
Fasting CPR (ng/mL)	1.0±0.5	1.0±0.5	1.6±0.5
Fasting glucagon (pg/mL)	107.4±33.7	107.1±32.6	107.9±35.3
HOMA-IR	1.6±0.8	1.3±1.0	1.9±0.5*
HOMA-β	33.1±21.0	28.1±20.8	40.0±11.5*
SUIT	42.2±20.8	389±25.2	463±16.4

Each value represents the mean ± SD. All, both anti-diabetic drug-naïve patients and sulfonylurea-treated patients; BMI, body mass index; BP, blood pressure; HOMA, homeostatic model assessment; IR, insulin resistance; No drug, anti-diabetic drug-naïve patients; SU, sulfonylurea-treated patients; SUIT, secretory unit of islet in transplantation. *P < 0.05 (unpaired t-test vs No drug).

Extraction of Plasma Samples

Aliquots of plasma were subjected to no extraction, ethanol extraction or solid-phase extraction before incretin immunoassays. Ethanol extraction was carried out as described previously. Briefly, ethanol was added to plasma samples at the following plasma/ethanol volumes: total GLP-1 150 μL/350 μL, intact GLP-1 300 μL/700 μL, and dried extracts were reconstituted in solutions supplemented with commercial immunoassay kits of the following volumes: total GLP-1 150 μL and intact GLP-1 250 μL. Liquid phase extraction was carried out as follows: Oasis HLB Extraction Plates 30 mg/96-well (catalogue no. WAT058951; Waters Corporation, Milford, MA, USA) were equilibrated with 1 mL of methanol and, subsequently, 1 mL of distilled water. Aliquots of plasma samples were diluted with phosphate-buffered saline (PBS) at the following plasma/PBS volumes: total GLP-1 150 μL/450 μL, intact GLP-1 300 μL/900 μL and total GIP 300 μL/700 μL. The diluted plasma samples were applied to each well on the equilibrated plates. Samples were then washed twice with 1 mL of 10% methanol in distilled water and eluted twice with 0.5 mL of 0.5% NH₄OH (v/v) and 75% ethanol (v/v) in distilled water. Eluted samples were...
then dried under nitrogen gas, and reconstituted in solutions supplemented with commercial immunoassay kits of the following volumes: GLP-1 150 μL and intact GLP-1 250 μL. In case of total GIP, eluted samples were reconstituted in 300 μL of a 1:1 mixture of PBS with 0.05% Tween-20 (v/v) and a solution in a commercial immunoassay kit.

Laboratory Determinations

Total GLP-1 was measured using the Human Total GLP-1 kit (catalogue no. K111-FC1; Meso Scale Discovery, Gaithersburg, MD, USA) that recognizes several GLP-1 isoforms at the following cross-reactivity: GLP-1 (1–37) 26%, GLP-1 (7–37) 29%, GLP-1 (9–37) unknown, GLP-1 (1–36)amide 48%, GLP-1 (7–36)amide 100% and GLP-1 (9–36)amide 77%. Intact GLP-1 was measured using the Glucagon Like Peptide-1 (Active) ELISA (catalogue no. EGL-35K; Millipore, Billerica, MA, USA) that recognizes GLP-1 isoforms at the following cross-reactivity: GLP-1 (1–37) 0.2%, GLP-1 (7–37) 99.5%, GLP-1 (9–37) not detected, GLP-1 (1–36)amide 0.2%, GLP-1 (7–36)amide 100%; GLP-1 (9–36)amide not detected. Total GIP was measured using the Human Total GIP kit (catalogue no. EZHGIP-54K; Millipore) that recognizes GIP isoforms at the following cross-reactivity: GIP (1–42) 100% and GLP-1 (3–42) 100%. Volumes of the reconstituted extracts or plasma samples used to measure incretins were as follows: total GLP-1 25 μL, intact GLP-1 100 μL and total GIP 20 μL. All samples were measured in duplicate. The intra- and interassay coefficients of variations (CV), detection limits, and recoveries of the expected concentrations for GLP-1 and GIP added to plasmas are summarized in Table 2.

Calculations and Statistical Analysis

Patient characteristics and results are reported as mean ± standard deviation (SD). Area under the curve (AUC) of each measurement was calculated according to the trapezoidal rule. Homeostatic model assessment of insulin resistance (HOMA-IR) and β-cell function (HOMA-β) were calculated as described20. Secretory units of islets in transplantation (SUIT) were calculated as described21. All statistical calculations were carried out using JMP for Windows ver. 8.0 (SAS Institute Inc., Cary, NC, USA) including linear regression analysis to determine the relationship between incretin secretion (AUC-GLP-1 and AUC-GIP) and various parameters, as well as two-way ANOVA for repeated measures with post-hoc analysis to analyze time-course curves. Values at single time-points or AUC were compared by paired and unpaired t-test. A P-value <0.05 was taken to show significant differences.

RESULTS

Immunosassays for GLP-1 and GIP, especially those to measure their intact forms, require careful sample handling and specific antibodies, and have not been widely available. Recent studies,
including the present study, have suggested the importance of ethanol and solid-phase extractions before intact GLP-1 immunoassays to remove interferences that generate the large variations in intact GLP-1 levels measured among various individuals. In Figure 1a, fasting and postprandial plasma samples from Japanese subjects: 23 drug-naive and 18 sulfonylurea-treated patients with type 2 diabetes during meal tolerance tests were subjected to either no extraction (none), ethanol extraction (ethanol) or solid-phase extraction (solid phase) before immunoassays for (a) intact GLP-1, (b) total GLP-1 and (c) total GIP. Values determined by different extraction methods were analyzed by linear regression analyses to calculate the correlation coefficient (r) and P-values. Ethanol extraction was not carried out before the immunoassay for total GIP, because ethanol and solid phase extraction showed a strong correlation for total and intact GLP-1, and the effects on immunoassays for intact GIP were not evaluated, as no commercial immunoassays were available.

Figure 1 | Effects of ethanol and solid-phase extractions on immunoassays for glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Fasting and postprandial plasma samples from Japanese subjects: 23 drug-naive and 18 sulfonylurea-treated patients with type 2 diabetes during meal tolerance tests were subjected to either no extraction (none), ethanol extraction (ethanol) or solid-phase extraction (solid phase) before immunoassays for (a) intact GLP-1, (b) total GLP-1 and (c) total GIP. Values determined by different extraction methods were analyzed by linear regression analyses to calculate the correlation coefficient (r) and P-values. Ethanol extraction was not carried out before the immunoassay for total GIP, because ethanol and solid phase extraction showed a strong correlation for total and intact GLP-1, and the effects on immunoassays for intact GIP were not evaluated, as no commercial immunoassays were available.

(a)
(b)
(c)

Levels of intact GLP-1, total GLP-1 and total GIP during meal-tolerance tests were studied in Japanese type 2 diabetic patients that were drug-naive or treated with SU alone (Figure 2). Plasma glucose levels at 120 min after meal ingestion were significantly higher in patients treated with SU than those...
of drug-naïve patients; although other factors, such as serum insulin and C-peptide, did not show a significant difference between the two groups. Levels of intact GLP-1, total GLP-1 and total GIP, as well as their AUC during meal-tolerance tests, did not differ between the two groups, suggesting that SU largely did not affect secretion of GLP-1 and GIP in Japanese patients with type 2 diabetes.

Predictors of fasting GLP-1 levels are shown in Table 3 and Figure 3. There was a strong positive association between fasting levels of total GLP-1 and FFA, and a negative association with DPP-4 activity. These associations were also observed in drug-naïve patients, but were not seen in SU-treated patients. Predictors of postprandial GLP-1 secretion after meal ingestion are shown in Table 4 and Figure 4. There was a strong positive association of GLP-1 secretion (as assessed by AUC-total GLP-1) with fasting FFA, HbA1c, and fasting GLP-1. GLP-1 secretion showed a negative association with DPP-4 activity. These associations were also observed in drug-naïve patients, but were not
Table 3 | Predictors of fasting glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) levels

Fasting GLP-1 (pmol/L)	Fasting GIP (pmol/L)
All No drug SU	All No drug SU
r P r P r P	r P r P r P
Age (years)	–0.107 0.506 0.089 0.687 0.121 0.632 0.049 0.759
Duration of diabetes (years)	–0.125 0.437 –0.087 0.692 0.177 0.482
BMI (kg/m²)	0.295 0.061 0.436 0.037 0.222 0.377
HbA1c (%)	0.175 0.274 –0.409 0.053 –0.014 0.956
HOMA-IR	0.091 0.506 0.059 0.788 0.000 0.999
HOMA-β	0.268 0.090 –0.368 0.084 –0.160 0.526
SUIT	–0.129 0.423 –0.174 0.426 0.062 0.808
Fasting plasma glucose (mg/dL)	0.114 0.479 0.425 0.043 0.028 0.914
AUC-plasma glucose (mg/dL x min)	0.006 0.968 0.236 0.279 0.010 0.968
Fasting glucagon (pg/mL)	0.263 0.097 0.260 0.099 0.403 0.097
AUC-glucagon (pg/mL x min)	0.278 0.079 0.277 0.201 0.519 0.027
Fasting insulin (mU/L x min)	–0.147 0.360 –0.097 0.660 –0.021 0.934
AUC-insulin (mU/L x min)	0.163 0.309 –0.167 0.447 –0.003 0.992
Fasting C-peptide (ng/mL)	0.141 0.379 0.103 0.641 0.538 0.021
AUC-C-peptide (ng/mL x min)	0.041 0.798 0.013 0.954 0.315 0.203
Fasting FFA (mEq/L)	0.594 <0.001 0.639 <0.001 0.251 0.314
DPP-4 (nmol/min/mL)	–0.0548 <0.001 –0.085 <0.001 –0.104 0.680
SUIT	–0.548 <0.001 –0.685 <0.001 –0.104 0.680
Fasting GP (pmol/L)	–0.106 0.508 –0.094 0.696 0.125 0.620

*p-values were calculated by linear regression analysis; r; correlation coefficient. All, both anti-diabetic drug-naïve patients and sulfonylurea-treated patients; AUC, area under curve; BMI, body mass index; CPR, C-peptide reactivity; DPP, dipeptidyl peptidase; FFA, free fatty acid; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon like polypeptide-1; HOMA, homeostatic model assessment; IR, insulin resistance; No drug, anti-diabetic drug-naïve patients; SU, sulfonylurea-treated patients; SUIT, secretory unit of islet in transplantation.

Figure 3 | Linear regression analysis of glucagon-like peptide 1 (GLP-1) secretion with (a) fasting free fatty acid levels and (b) DPP-4 activities in Japanese patients with type 2 diabetes. Linear regression analyses were carried out to calculate the correlation coefficient (r) and P-values. All, both anti-diabetic drug-naïve patients and sulfonylurea-treated patients; No drug, anti-diabetic drug-naïve patients; SU, sulfonylurea-treated patients.
seen in SU-treated patients. Unlike a previous report by Vollmer et al., postprandial GLP-1 secretion did not show significant associations with fasting glucagon, age or body mass index (BMI; Table 4). Incremental AUC-total GLP-1 did not show a significant association with fasting glucagon levels, age or BMI in the current study (data not shown). Postprandial GLP-1 secretion did not show significant associations with indices for β-cell function (e.g. HOMA-β and SUIT) or insulin sensitivity (e.g. HOMA-IR) (Table 4). Postprandial GLP-1 secretion showed a strong correlation with fasting GLP-1 levels, but it did not show significant associations with postprandial GIP secretion and fasting GIP (Table 4).

Predictors of fasting GIP and postprandial GIP secretion were also studied (Tables 3 and 4). There was a strong positive association between postprandial GIP secretion (as assessed by AUC-total GIP) and fasting GIP. Unlike the Vollmer study, GIP secretion did not show a significant association with fasting FFA levels. In drug-naïve patients, GIP secretion showed negative associations with indices for fasting insulin levels and β-cell function (e.g. HOMA-β and SUIT), but these associations were not seen in SU-treated patients. GIP secretion did not show a significant association with insulin sensitivity (HOMA-IR).

DISCUSSION
Measuring circulating hormones by immunoassay is sometimes difficult as a result of the presence of interferences in the blood samples. For example, circulating somatostatin levels determined by immunoassay differ with or without extractions before the assay, and the values of somatostatin levels are much decreased by extractions that remove such interference. This was also the case with intact GLP-1. Ethanol and solid-phase extractions have recently been suggested to improve variability of intact GLP-1 levels among individual human subjects. Similar to immunoassays for somatostatin, the levels of intact GLP-1 were much decreased by extraction procedures that remove interference of unknown identity. In our preliminary experiments, a solid-phase extraction significantly improved variability in intact GLP-1 levels among Japanese subjects; fasting plasma levels of intact GLP-1 were reduced by extraction of more than 10 pmol/L in 5 out of 29 healthy volunteers, and the difference between values of intact GLP-1 in extracted- and non-extracted samples was as large as 50 pmol/L (data not shown). There was a striking correlation between intact GLP-1 levels in ethanol and solid-phase extracted samples, whereas no such correlations were found between intact GLP-1 levels in non-extracted and

Table 4 Predictors of glucagon like polypeptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) secretion (area under the curve total glucagon like polypeptide-1 and area under the curve total glucose-dependent insulinotropic polypeptide) after meal ingestion

| Predictors of glucagon like polypeptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) secretion (area under the curve total glucagon like polypeptide-1 and area under the curve total glucose-dependent insulinotropic polypeptide) after meal ingestion |
|-----------------|-----------------|-----------------|-----------------|
| AUC-GLP-1 (pmol/L × min) | AUC-GIP (pmol/L × min) |
| All | No drug | SU | All | No drug | SU |
| **r** | **P** |
| Age (years) | −0.168 | 0.294 | −0.181 | 0.409 | 0.344 | 0.163 | 0.274 | 0.083 | 0.021 | 0.925 | 0.374 | 0.127 |
| Duration of diabetes (years) | −0.291 | 0.065 | −0.221 | 0.302 | −0.223 | 0.373 | 0.060 | 0.708 | 0.179 | 0.798 | −0.327 | 0.185 |
| BMI (kg/m²) | −0.04 | 0.806 | 0.096 | 0.660 | −0.241 | 0.336 | 0.058 | 0.720 | −0.191 | 0.384 | 0.008 | 0.993 |
| HbA1c (%) | 0.425 | 0.006 | 0.682 | <0.001 | −0.285 | 0.251 | 0.256 | 0.109 | 0.257 | 0.237 | 0.150 | 0.553 |
| HOMA-IR | −0.107 | 0.505 | 0.221 | 0.311 | −0.098 | 0.698 | −0.073 | 0.650 | −0.342 | 0.110 | −0.132 | 0.601 |
| HOMA-β | −0.278 | 0.078 | −0.228 | 0.295 | −0.090 | 0.722 | −0.006 | 0.969 | −0.564 | 0.005 | 0.068 | 0.787 |
| SUIT | −0.089 | 0.582 | −0.174 | 0.428 | −0.032 | 0.899 | −0.004 | 0.981 | −0.051 | 0.011 | 0.190 | 0.451 |
| Fasting plasma glucose (mg/dL) | 0.001 | 0.993 | 0.437 | 0.037 | −0.044 | 0.863 | 0.003 | 0.983 | 0.331 | 0.122 | −0.176 | 0.486 |
| AUC-plasma glucose (mg/dL × min) | 0.032 | 0.845 | 0.643 | 0.001 | 0.231 | 0.357 | 0.308 | 0.050 | 0.538 | 0.008 | 0.107 | 0.674 |
| Fasting glucagon (pg/mL) | 0.111 | 0.491 | −0.001 | 0.911 | 0.345 | 0.160 | −0.079 | 0.622 | −0.317 | 0.140 | 0.107 | 0.671 |
| AUC-glucagon (pg/mL × min) | 0.056 | 0.726 | −0.065 | 0.770 | 0.361 | 0.141 | 0.052 | 0.747 | −0.244 | 0.263 | 0.244 | 0.330 |
| Fasting insulin (mU/L) | −0.193 | 0.227 | 0.001 | 0.746 | −0.062 | 0.808 | −0.061 | 0.704 | −0.457 | 0.028 | −0.054 | 0.832 |
| AUC-insulin (mU/L × min) | 0.147 | 0.359 | −0.070 | 0.749 | 0.225 | 0.216 | 0.037 | 0.819 | −0.269 | 0.214 | 0.067 | 0.790 |
| Fasting C-peptide (ng/mL) | 0.078 | 0.628 | 0.071 | 0.747 | 0.103 | 0.683 | −0.127 | 0.427 | −0.400 | 0.059 | −0.012 | 0.961 |
| AUC-C-peptide (ng/mL × min) | 0.049 | 0.761 | −0.021 | 0.925 | 0.544 | 0.020 | −0.026 | 0.874 | −0.304 | 0.159 | 0.135 | 0.593 |
| Fasting FFA (mEq/L) | 0.526 | <0.001 | 0.598 | 0.003 | −0.233 | 0.352 | −0.096 | 0.550 | 0.111 | 0.614 | −0.310 | 0.211 |
| DPP-4 (pmol/min/mL) | −0.422 | 0.006 | −0.547 | 0.007 | −0.030 | 0.906 | 0.162 | 0.311 | 0.132 | 0.549 | 0.080 | 0.752 |
| Fasting GLP-1 (pmol/L) | 0.633 | 0.001 | 0.654 | <0.001 | 0.579 | 0.008 | 0.087 | 0.588 | 0.035 | 0.873 | −0.143 | 0.579 |
| Fasting GIP (pmol/L) | −0.008 | 0.962 | −0.054 | 0.807 | −0.324 | 0.164 | 0.538 | <0.001 | 0.284 | 0.179 | 0.326 | 0.548 |
| AUC-GIP (pmol/L × min) | 0.128 | 0.426 | −0.205 | 0.3484 | −0.287 | 0.248 | − | − | − | − | − | − |
extracted samples (Figure 1a), suggesting that both ethanol and solid-phase extractions remove the same interference from plasma samples. In addition, such extractions show little effect on values of total GLP-1 levels that were only three to fourfold higher than those of intact GLP-1 levels (Figure 1b). These lines of evidence suggest that extractions simply remove interference irrelevant to GLP-1 and do not exclude GLP-1 forming a complex with unknown GLP-1-binding proteins. Therefore, extractions are recommended to measure intact GLP-1 levels in human plasma samples.

In the current study, fasting and postprandial levels of incretins in Japanese patients with type 2 diabetes were determined (Figure 2). Little enhancement of meal-induced GLP-1 response in Japanese patients with type 2 diabetes, which we reported previously,[4,25], was confirmed in the present study, although absolute values of GLP-1 and GIP were not directly compared in our previous report as a result of the usage of different assays. As the meal-induced GIP response was maintained, understanding the mechanisms underlying the reduced postprandial GLP-1 response in Japanese patients might reveal the regulatory machinery of incretin secretion in intestinal K- and L-cells. Regarding such regulatory machinery in K- and L-cells, a potential action of SU on incretin secretion has been investigated intensively in cultured cells.[8] Recent studies have confirmed expression of the K_{ATP} channel subunits Kir6.2 and SUR1 in purified mouse K- and L-cells, and SU-stimulated secretion of GLP-1 and GIP from primary cultures.[9,10] Expression of Kir6.2 was also detected in human K- and L-cells, suggesting that SU might stimulate secretion of GLP-1 and GIP in humans.[26] As shown in Figure 2, fasting and postprandial incretin levels did not differ with or without SU treatment. Multiple regression analysis taking SU usage as a nominal variable also did not show significant associations of SU usage with GLP-1 and GIP levels (Supplemental Table S1). Although further studies are definitely needed to evaluate the effects of SU on incretin secretion in humans, the current study suggests that SU has little effect on incretin secretion in Japanese patients with type 2 diabetes.

Figure 4 | Linear regression analysis of glucagon-like peptide 1 (GLP-1) secretion with (a) fasting free fatty acid levels, (b) HbA_{1c}, and (c) DPP-4 activities in Japanese patients with type 2 diabetes. GLP-1 secretion was assessed by area under curve of total GLP-1 levels in Figure 2. Linear regression analyses were carried out to calculate the correlation coefficient (r) and P-values. All, both anti-diabetic drug-naïve patients and sulfonylurea-treated patients; No drug, anti-diabetic drug-naïve patients; SU, sulfonylurea-treated patients.
Characterization of predictors for GLP-1 secretion showed that postprandial GLP-1 levels positively correlate with fasting FFA and HbA1c, and negatively correlate with DPP-4 activity in Japanese patients with type 2 diabetes (Table 4 and Figure 4). Although fasting GLP-1 also showed strong associations with fasting FFA and DPP-4 (Table 3), incremental AUC-total GLP-1 did not show a significant correlation with fasting FFA ($r = 0.106$ and $P = 0.196$) and DPP-4 activity ($r = -0.100$ and $P = 0.535$), suggesting that fasting FFA and DPP-4 activity could predict basal, but not meal-induced, GLP-1 secretion in Japanese patients with type 2 diabetes. In contrast, incremental AUC-total GLP-1 show a significant correlation with HbA1c ($r = 0.406$ and $P = 0.008$), whereas fasting GLP-1 did not (Table 3), suggesting that HbA1c levels could predict meal-induced GLP-1 secretion in Japanese patients with type 2 diabetes. Further studies are, of course, needed to understand the physiological processes underlying associations of GLP-1 secretion with fasting FFA, HbA1c, and DPP-4 activity.

Regarding hormonal regulation of postprandial GLP-1 secretion, it was previously suggested that GLP-1 secretion was enhanced by GIP\(^2\). However, the present study in Japanese patients with type 2 diabetes does not support the notion that GIP enhances GLP-1 secretion, as no significant association was observed. Glucagon is another potential regulator of postprandial GLP-1 secretion. In Caucasians, not only does administration of exogenous GLP-1 increase fasting plasma glucagon levels\(^3\), but administration of exendin (9–39)amide, a potent GLP-1 antagonist, elevates fasting plasma glucagon levels\(^3\). Thus, GLP-1 at physiological levels has glucagonostatic actions, and a reverse relationship between GLP-1 and glucagon might exist. However, it has been recently shown that administration of glucagon does not affect postprandial GLP-1 secretion\(^4\), and, thus, the mechanism underlying the association of fasting glucagon with postprandial GLP-1 secretion observed by Vollmer et al. is still unknown. Unlike the Vollmer study, the current study did not show strong associations of fasting and postprandial glucagon with postprandial GLP-1 secretion, suggesting some difference in regulation of GLP-1 secretion between Japanese and Caucasian patients with type 2 diabetes.

Characterization of predictors for GIP secretion showed that postprandial GIP secretion, in drug-naïve patients but not in SU-treated patients, positively correlated with fasting glucose and negatively correlated with fasting insulin, HOMA-β and SUIT (Table 4). Other parameters, including fasting FFA, did not show significant associations with pre- and postprandial GIP secretion, unlike the Vollmer study\(^5\). The Japanese patients in the present study had much lower BMI, but their age and HbA1c were similar to those of Caucasian patients with type 2 diabetes in the Vollmer study. Further studies are needed to understand the differences in predictors of GLP-1 and GIP secretion between Japanese and Caucasian patients; unequal dependency of postprandial GIP and GLP-1 secretion in the current study confirms that secretion of the two incretin hormones is regulated by separate factors.

In conclusion, the present study has shown the effects of extractions on immunoassays to measure GLP-1 and GIP. Using incretin immunoassays with solid-phase extraction, we have shown that SU-treatment has little effect on pre- and postprandial secretion of GLP-1 and GIP in Japanese patients. Furthermore, we found that secretion of GLP-1 and GIP is predicted by different factors.

ACKNOWLEDGEMENTS

No potential conflicts of interest relevant to this article were reported. The authors thank Tsutomu Hashimoto and Ino Yukari of Mitsubishi Chemical Medience Corporation (Tokyo, Japan) and Takeshi Murakami and Takuro Yamaguchi of Kansai Electric Power Hospital for technical support. We also thank Aya Sanagi at Kansai Electric Power Hospital for secretarial assistance. The present study was partly supported by grants from the Japan Diabetes Foundation and the Diabetes Masters Conference.

REFERENCES

1. Drucker DJ. The biology of incretin hormones. *Cell Metab* 2006; 3: 153–165.
2. Holst JJ. The physiology of glucagon-like peptide 1. *Physiol Rev* 2007; 87: 1409–1439.
3. Seino Y, Fukushima M, Yabe D. GIP and GLP-1, the two incretin hormones: similarities and differences. *J Diabetes Invest* 2010; 1: 9–23.
4. Yabe D, Kuroe A, Lee S, et al. Little enhancement of meal-induced GLP-1 secretion in Japanese: comparison of type 2 diabetes and healthy controls. *J Diabetes Invest* 2010; 1: 56–59.
5. Aaboe K, Knop FK, Vilsboll T, et al. Twelve weeks treatment with the DPP-4 inhibitor, sitagliptin, prevents degradation of peptide YY and improves glucose and non-glucose induced insulin secretion in patients with type 2 diabetes mellitus. *Diabetes Obes Metab* 2010; 12: 323–333.
6. Deacon CF, Holst JJ. Immunoassays for the incretin hormones GIP and GLP-1. *Best Pract Res Clin Endocrinol Metab* 2009; 23: 425–432.
7. LaMarca CJ, Perregaux DG, Preston GM, et al. Comparison and validation of multiple commercially available methods for active GLP-1 quantification: sample extraction is a ubiquitous requirement. In: ENDD2009. Washington, D.C. 2009.
8. Parker HE, Reimann F, Gribble FM. Molecular mechanisms underlying nutrient-stimulated incretin secretion. *Expert Rev Mol Med* 2010; 12: e1.
9. Parker HE, Habib AM, Rogers GJ, et al. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. *Diabetologia* 2009; 52: 289–298.
10. Reimann F, Habib AM, Tolhurst G, et al. Glucose sensing in L-cells: a primary cell study. *Cell Metab* 2008; 8: 532–539.
11. Ross SA, Brown JC, Dupre J. Hypersecretion of gastric inhibitory polypeptide following oral glucose in diabetes mellitus. *Diabetes* 1977; 26: 525–529.
12. Takemura J, Seino Y, Tsuda K, et al. Hypersecretion of gastric inhibitory polypeptide induced by glucose ingestion in diabetes mellitus. Endocrinol Jpn 1981; 28: 17–21.
13. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001; 86: 3717–3723.
14. Vilsboll T, Krakup T, Deacon CF, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001; 50: 609–613.
15. Vollmer K, Holst JJ, Baller B, et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 2008; 57: 678–687.
16. Nauck MA, Vardarli I, Deacon CF, et al. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia 2010; 54: 10–18.
17. Seino Y, Nanjo K, Tajima N, et al. Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus. J Diabetes Invest 2010; 1: 212–228.
18. Seino Y, Nanjo K, Tajima N, et al. Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus. Diabetol Int 2010; 1: 2–20.
19. Zhu L, Tamakopoulos C, Xie D, et al. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1-38). J Biol Chem 2003; 278: 22418–22423.
20. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.
21. Yamada Y, Fukuda K, Fujimoto S, et al. SUIT, secretory units of islets in transplantation: an index for therapeutic management of islet transplanted patients and its application to type 2 diabetes. Diabetes Res Clin Pract 2006; 74: 222–226.
22. Dai H, Gustavson SM, Preston GM, et al. Non-linear increase in GLP-1 levels in response to DPP-IV inhibition in healthy adult subjects. Diabetes Obes Metab 2008; 10: 506–513.
23. Conlon JM, Bridgeman M, Alberti KG. The nature of big plasma somatostatin: implications for the measurement of somatostatin-like immunoreactivity in human plasma. Anal Biochem 1982; 125: 243–252.
24. Tsuda K, Sakurai H, Seino Y, et al. Somatostatin-like immunoreactivity in human peripheral plasma measured by radioimmunoassay following affinity chromatography. Diabetes 1981; 30: 471–474.
25. Lee S, Yabe D, Nohtomi K, et al. Intact glucagon-like peptide-1 levels are not decreased in Japanese patients with type 2 diabetes. Endocr J 2010, 57: 119–126.
26. Nielsen LB, Ploug KB, Swift P, et al. Co-localisation of the Kir6.2/SUR1 channel complex with glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide expression in human ileal cells and implications for glycaemic control in new onset type 1 diabetes. Eur J Endocrinol 2007; 156: 663–671.
27. Roberge JN, Brubaker PL. Regulation of intestinal proglucagon-derived peptide secretion by glucose-dependent insulinogetic peptide in a novel enteroendocrine loop. Endocrinology 1993; 133: 233–240.
28. Ritzel R, Orskov C, Holst JJ, et al. Pharmacokinetic, insulino-tropic, and glucagonostatic properties of GLP-1 [7-36 amide] after subcutaneous injection in healthy volunteers. Dose-response relationships. Diabetologia 1995; 38: 720–725.
29. Schirra J, Sturm K, Leicht P, et al. Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans. J Clin Invest 1998; 101: 1421–1430.
30. Meier JJ, Ueberberg S, Korbas S, et al. Diminished glucagon suppression after beta-cell reduction is due to impaired alpha-cell function rather than an expansion of alpha-cell mass. Am J Physiol Endocrinol Metab 2011; 300: E717–723.

SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article:

Table S1 | Multiple regression analysis of potential predictors of fasting GLP-1 and GIP levels in Japanese patients with type 2 diabetes

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.