DISSECTING US RECOVERIES

Maria Dolores Gadea Rivas, Ana Gómez Loscos and Gabriel Pérez-Quirós

Discussion Paper DP11997
Published 25 April 2017
Submitted 25 April 2017

Centre for Economic Policy Research
33 Great Sutton Street, London EC1V 0DX, UK
Tel: +44 (0)20 7183 8801
www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research programme in MONETARY ECONOMICS AND FLUCTUATIONS. Any opinions expressed here are those of the author(s) and not those of the Centre for Economic Policy Research. Research disseminated by CEPR may include views on policy, but the Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to promote independent analysis and public discussion of open economies and the relations among them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage discussion and comment. Citation and use of such a paper should take account of its provisional character.

Copyright: Maria Dolores Gadea Rivas, Ana Gómez Loscos and Gabriel Pérez-Quirós
DISSECTING US RECOVERIES

Abstract

We propose a set of new quantitative measures to characterise more fully the features of economic recoveries. We apply these measures to postwar US expansions and use cluster analysis to determine that there are two different types of recoveries in recent US economic history, with most expansions before 1984 (Great Moderation) looking quite different from those after.

JEL Classification: C22, E32

Keywords: Business Cycles, recoveries

Maria Dolores Gadea Rivas - lgadea@unizar.es
University of Zaragoza

Ana Gómez Loscos - agomezloscos@bde.es
Banco de España

Gabriel Pérez-Quirós - gabriel.perez@bde.es
Banco de España and CEPR

Acknowledgements

M. Dolores Gadea acknowledges nancial support from the Ministerio de Ciencia y Tecnologia under grants ECO2014-58991-C3-1-R and ECO2014-58991-C3-2-R. The views expressed in this paper are the responsibility of the authors and do not necessarily represent those of the Banco de España or the Eurosystem.
Dissecting US recoveries

María Dolores Gadea † Ana Gómez-Loscos ‡
University of Zaragoza Banco de España

Gabriel Perez-Quiros §
Banco de España and CEPR

March 23, 2017

Abstract

We propose a set of new quantitative measures to characterise more fully the features of economic recoveries. We apply these measures to post-war US expansions and use cluster analysis to determine that there are two different types of recoveries in recent US economic history, with most expansions before 1984 (Great Moderation) looking quite different from those after.

JEL classification: C22, E32

Keywords: business cycles, recoveries

†Department of Applied Economics, University of Zaragoza. Gran Vía, 4, 50005 Zaragoza (Spain). Tel: +34 9767 61842, fax: +34 976 761840 and e-mail: lgadea@unizar.es

‡Banco de España, Alcalá, 48, 28014 Madrid (Spain). Tel: +34 91 3385817, fax: +34 915310059 and e-mail: agomezloscos@bde.es

§Banco de España, Alcalá, 48, 28014 Madrid (Spain). Tel: +34 91 3385333, fax: +34 915310059 and e-mail: gabriel.perez@bde.es

* M. Dolores Gadea acknowledges financial support from the Ministerio de Ciencia y Tecnología under grants ECO2014-58991-C3-1-R and ECO2014-58991-C3-2-R. The views expressed in this paper are the responsibility of the authors and do not necessarily represent those of the Banco de España or the Eurosystem.

†M. Dolores Gadea acknowledges financial support from the Ministerio de Ciencia y Tecnología under grants ECO2014-58991-C3-1-R and ECO2014-58991-C3-2-R. The views expressed in this paper are the responsibility of the authors and do not necessarily represent those of the Banco de España or the Eurosystem.
1 Introduction

The slow pace of the recovery in the US after the Great Recession is a concern for economists and policymakers [see e.g. Fernald (2014), Summers (2014) and Fischer (2014)]. GDP growth has been lower than expected and downward revisions of projections have become usual. To have a deep knowledge of the path and nature of recoveries is of great interest, as this has consequences on long-run economic activity and job creation capacity. However, since the seminal paper of Harding and Pagan (2002), in which they dissect the business cycle phases, little effort has been made to develop new measures of the features of the recoveries.\(^1\) In this paper, we propose some new quantitative measures that enrich the analysis of the nature of recoveries. While the measures of Harding and Pagan (2002) are global and do not take into account the dynamics of recoveries, our measures allow to capture these dynamics, thus obtaining information on the different stages of recoveries. In particular, the early quarters of a recovery are key for an economy to recover the output lost during the recession. By means of a cluster analysis, we provide a comparison of different US recovery patterns, distinguishing a different behavior since the beginning of the Great Moderation (1984).\(^2\) The results are of fundamental interest for policymakers and for macroeconomists since they allow to capture the business cycle accurately. The new measures are easily reproducible for different countries and so are expected to be useful to compare stylized facts of different expansions and relate them with other economic variables.

\(^1\) Bec et al. (2015) are an exception, but they work in a parametric framework.

\(^2\) See Kim and Nelson (1999) and McConnell and Perez-Quiros (2000).
2 Measures

Harding and Pagan (2002) propose four measures to examine the business cycle phases once turning points have been established by dating methods. These are (i) duration (in quarters), (ii) amplitude (which compares the log level of GDP at the turning points), (iii) cumulation (the cumulated gain or loss and consists of the sum of the amplitudes of each cyclical phase or total area described by the GDP in logs) and (iv) excess (the difference between the real area drawn by the path of the GDP growth in logs and the hypothetical triangle which would have formed with a linear growth rate throughout the whole phase).

A positive excess (concave path) means that the recovery starts with a high growth rate that subsequently slows down, whereas a negative excess (convex path) is produced when the opposite happens. If the growth is uniform over the expansion period, then the excess is zero. See Figure 1 for an illustration.

Excess would be a good measure to characterize the shape of expansions if they had a clear concave, convex or linear form but, in practice, cyclical phases are not always so stylized, as can be seen in Figure 2, so that this measure is not completely accurate.

To solve the difficulty in capturing the cycles depicted by the data, we propose a set of indicators that identify the evolution of the pattern of the expansions more comprehensively. If a recovery is quick (a V-shaped recovery), the effect of the recession is transitory and the economy continues its long-run growth trend but, if the improvement occurs slowly, it may have permanent effects on the economy (a L-shaped recovery). Specifically, we propose four indicators to measure...

3Sichel (1993) suggests steepness and deepness and McQueen and Thorley (1993) introduce sharpness. However, these measures are calculated on filtered data, while ours are based on original data and therefore are invariant to future observations.
types of measures: the first one captures the evolution over time of the shape of expansion. The second one captures the early stages of expansions, the third one focuses on the middle of the expansionary path. Finally, the fourth one shows the long-run consequences of the recoveries for future economic growth.

1. Time varying measures:

 (a) Pointwise excess during the expansion \((E_t)\), being the excess at each point in time \(t = 1, 2, \ldots, \tau, \ldots, T\) defined as:\(^4\)

 \[
 E_t(\tau) = \tau \int_0^\tau f(t)dt - (0*0l(\tau))/2
 \]

 (b) Acceleration of excesses: difference of pointwise excess between two consecutive periods \((\Delta E_t)\).

 \[
 \Delta E_t(\tau) = E_t(\tau) - E_t(\tau - 1)
 \]

2. Early stages measures:

 (a) Early shape: the number of consecutive positive excesses at the beginning of the expansion or minus the number of consecutive negative excesses at the beginning of the expansion, in relation to the total duration of the expansion.

 \[
 \text{Early shape} = \frac{\tau^{ES}}{0T},
 \]

\(^4\)Notice that \(E_t\) is computed until each \(t\), that means \(E_{t+i}\) can be positive despite the shape turns to convex in \(t + i\).
where τ^{ES} is “i” such that $E_t(i) > 0 \forall i$ and “$-i$” such that $E_t(i) < 0 \forall i$.

(b) \textit{Inshape}: the number of consecutive periods with E_t positive and ΔE_t positive or minus the number of consecutive periods with E_t negative and ΔE_t negative. This measure captures changes in the shape, from concave to convex or from convex to concave.

$$\text{Inshape} = \frac{\tau^I}{0T},$$

3. Middle of expansion measures:

(a) \textit{Half life}: number of periods τ needed to obtain half of the cumulation, relative to the total duration. A value of $\frac{1}{\sqrt{2}}$ is equivalent to a triangular path. A higher value means that it has taken longer to recover the total area, while a smaller value corresponds to fast expansions.

$$\text{Half life} = \frac{\tau^{HL}}{0T},$$

so that $C(\tau^{HL}) = C(T)/2$.

(b) \textit{Medium area}: area obtained in the middle of the duration of the expansion in relation to the hypothetical triangle. We normalize the measure so that a value of 1 is equivalent to a linear path, a value below (above) 1 means a growth slower (quicker) than linear.
\[Medium Area = 4 \frac{\text{Area}(0T/2)}{0T \ast 0P/2} \]

(6)

4. Long-run trend measures:

(a) Welfare: number of periods to recover the level of GDP previous to the recession in relation to the total duration of the expansion. Notice that this measure takes into account the depth of the recession.

\[\text{Welfare} = \frac{\tau^W}{0T}, \]

(7)

where \(\tau^W \), so that \(f_t(\tau^W) = f_tP_{-1} \), where \(P_{-1} \) is the peak of the previous expansion.

3 Illustration: US recoveries

We apply the new measures to establish the features of post-war US expansions and distinguish some patterns among them. We use the business cycle dating provided by the NBER to identify turning points. Since 1949, there have been 11 expansions in the US economy. We include the recovery after the Great Recession, although it has not finished yet.

We begin by computing the measures suggested by Harding and Pagan (2002) for each of the US expansions (Table 1). It seems that expansions after 1984 (Great Moderation) tend to be longer than previous expansions. Regarding excess, we observe that the shape of expansions deviates substantially from a triangular path in most cases. However, we do not identify any pattern of excesses over time.
These measures are very useful but do not take into account the dynamics of expansion, as they do not pay attention to the different stages of recoveries and, in particular, to the early quarters.

The results of applying the new measures offer a more precise picture. The time-varying measures for each of the 11 expansions are shown in Figure 3. We observe that the Pointwise excess shows a very smooth path for expansions after 1984, with excesses being negative or very small. On the contrary, almost all the expansions prior to 1984 show positive E_t, which are very persistent, as displayed by Acceleration of excesses.

The scalar measures are shown in Table 2. Firstly, we present the measures that focus on the beginning of the phase. Before the Great Moderation, most of the expansions show positive excesses at the beginning, which continuously accelerate (Inshape). Early shape is 1 except for one expansion, whereas it is closer to 0 after 1984. The 90s expansion is always below the linear trend. Actually, it is a perfectly concave expansion (Early shape is -1 even though it is a 40 quarter expansion).\(^5\) The 2000s expansion does not have a clear stylized form. It is convex at the beginning and then it turns into concave.\(^6\) From Table 1 we can only say that it is a concave expansion, thus missing important features in our analysis.

Secondly, we introduce the measures that give us information about the middle path of the phase. Results of Half life and Medium area show that recoveries before the Great Moderation were quick, whereas those after it are slower.

\(^5\)The size of these negative excesses increases during almost its whole duration and it only gains momentum close to the end (Inshape).

\(^6\)It has just three positive pointwise excesses at the beginning and then, it decelerates. Early shape represents just 0.1 of its total duration.
Thirdly, we compute Welfare and obtain that after the 90s and the 2000s expansions, the GDP recovered its previous level very quickly; while after the Great Recession, it took 9 quarters to recover the GDP level of the previous peak due both to a very deep recession and a slow recovery.

In order to identify common patterns from our proposed scalar measures, we carry out a cluster analysis, using the K-means procedure.7 We find that expansions can be classified into 3 clusters. As shown in panel A of Figure 4, the first group comprises expansions up to 1984; while the second includes the last three expansions, as well as that of 1975.8 Finally, the third cluster consists of a single expansion, that of 1980.9 The main difference between the two first clusters lies in the behavior during the first quarters of the recoveries.10 The early stages of an expansion are known as the high growth recovery phase and its disappearance is recognized as one of the features characterizing the Great Moderation.11

Panel B of Figure 4 shows the cluster analysis using the standard Harding and Pagan (2002) measures. We identify no clear lesson from this classification that allows to relate each group with some macroeconomic events. On the con-

7This method creates a single level of clusters and assigns each expansion to a specific cluster. The algorithm finds a partition in which expansions within each cluster are as close to each other as possible and as far from the expansions in other clusters as possible. Each cluster is defined by its centroid, which is the point at which the sum of the distances from all the objects in the cluster is minimized. The number of groups has been selected considering the Silhouette value that indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters.

8The dynamic of the early stages of the 1975 expansion is more similar to those of expansions after the beginning of the Great Moderation.

9It has the quickest cumulated recovery in the middle of expansion (Half life and Medium area), although it took several quarters to recover the GDP level previous to the recession (Welfare).

10In the first type of expansions, the averages of Early shape, Inshape, Half life, Medium area and Welfare are 0.67, 6.5, 0.61, 1.35, 0.11, respectively. In the second type, the figures are -0.26, -7.50, 0.67, 1.05 and 0.40, respectively.

11See Gadea et al. (2014), Camacho et al. (2011), and Gali et al. (2012).
trary, the new measures clearly contribute to understanding expansion features behind the Great Moderation.

4 Conclusions

We propose a set of measures to identify the features of expansions. We observe an increase in precision with respect to the very valuable measures proposed by Harding and Pagan (2002), as we consider the dynamics of recoveries. We find that the path of expansions is different in terms of evolution over time, speed of recoveries and welfare consequences. According to the new measures, we identify that expansions before and after the beginning of the Great Moderation (1984) are clearly different.
References

Bec, F., Bouabdallah, O., and Ferrara, L. (2015). “Comparing the shape of recoveries: France, the UK and the US.” Economic Modelling, 44(C), 327–334.

Camacho, M., Perez Quiros, G., and Rodriguez Mendizabal, H. (2011). “High-growth recoveries, inventories and the Great Moderation.” Journal of Economic Dynamics and Control, 35(8), 1322–1339.

Fernald, J. (2014). “Productivity and potential output before, during, and after the Great Recession.” NBER Macroeconomics Annual 2014, 29, 1–51.

Fischer, S. (2014). “The Great Recession: Moving Ahead.” Conference Sponsored by the Swedish Ministry of Finance, Stockholm, Sweden, August 11. https://www.federalreserve.gov/newsevents/speech/fischer20140811a.pdf.

Gadea, M. D., Gomez-Loscos, A., and Perez-Quiros, G. (2014). “The Two Greatest. Great Recession vs. Great Moderation.” CEPR Discussion Paper Series, 10092.

Gali, J., Smets, F., and Wouters, R. (2012). “Slow Recoveries: A Structural Interpretation.” Journal of Money, Credit and Banking, 44, 9–30.

Harding, D., and Pagan, A. (2002). “Dissecting the cycle: a methodological investigation.” Journal of Monetary Economics, 49(2), 365–381.

Kim, C.-J., and Nelson, C. R. (1999). “Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle.” The Review of Economics and Statistics, 81(4), 608–616.

McConnell, M. M., and Perez-Quiros, G. (2000). “Output Fluctuations in the United States: What Has Changed since the Early 1980’s?” American Economic Review, 90(5), 1464–1476.

McQueen, G., and Thorley, S. (1993). “Asymmetric Business Cycle Turning Points.” Journal of Monetary Economics, 31, 341–362.

Sichel, D. E. (1993). “Business Cycle Asymmetry.” Economic Inquiry, 31, 224–236.

Summers, L. H. (2014). “U.S. Economic Prospects: Secular Stagnation, Hysteresis, and the Zero Lower Bound.” Business Economics, 49(2), 65–73.
5 Tables

Table 1: Harding and Pagan measures

Measure	Duration	Amplitude	Cumulation	Excess
1949.4-1953.2	14.00	0.26	2.18	0.38
1954.2-1957.3	13.00	0.13	1.06	0.23
1958.2-1960.2	8.00	0.11	0.57	0.13
1961.1-1969.4	35.00	0.42	8.32	0.99
1970.4-1973.4	12.00	0.15	0.98	0.09
1975.1-1980.1	20.00	0.21	2.39	0.30
1980.3-1981.3	4.00	0.04	0.11	0.02
1982.4-1990.3	31.00	0.32	6.01	0.98
1991.1-2001.1	40.00	0.35	6.92	-0.18
2001.4-2007.4	24.00	0.17	2.12	0.14
2009.2-2016.2	28.00	0.14	2.09	0.08

Table 2: New measures

Measure	Early shape	Inshape	Half life	Medium area	Welfare
1949.4-1953.2	1.00	13.00	0.57	1.61	0.07
1954.2-1957.3	1.00	12.00	0.56	1.72	0.15
1958.2-1960.2	1.00	7.00	0.53	1.63	0.25
1961.1-1969.4	1.00	34.00	0.66	1.19	0.03
1970.4-1973.4	1.00	3.00	0.62	1.09	0.08
1975.1-1980.1	-0.10	-1.00	0.65	1.18	0.15
1980.3-1981.3	1.00	3.00	0.37	1.76	0.50
1982.4-1990.3	1.00	30.00	0.64	1.45	0.06
1991.1-2001.1	-1.00	-30.00	0.70	0.88	0.07
2001.4-2007.4	0.13	2.00	0.66	1.03	0.00
2009.2-2016.2	-0.07	-1.00	0.67	1.09	0.32
6 Figures

Figure 1: Shape of recoveries

Notes: Duration: $\bar{0}T$; Amplitude: $\bar{0}P$; Cumulation: $\int_0^T f(t)dt$; and Excess: $\int_0^T f(t)dt - (\bar{0}T * \bar{0}P)/2.$
Dissecting US recoveries

Figure 2: Shapes of US expansions

Note: This figure displays the evolution of log real GDP from trough to peak for each of the postwar US expansions and a line representing linear growth between troughs and peaks.
Figure 3: Time varying measures
Figure 4: Clusters of US recoveries by measures

Note: Expansions in chronological order are displayed over the X axis. Intra-cluster distance is represented over the Y axis. The size of the ball represents the size of the corresponding centroid of each cluster, which is built from the Euclidean distance of all the characteristics included in the analysis.