Graph Hierarchy: A novel framework to analyse hierarchical structures in complex networks

Giannis Moutsinas (✉ giannis.moutsinas@gmail.com)
Coventry University

Choudhry Shuaib
University of Warwick

Weisi Guo
Cranfield University

Stephen Jarvis
University of Birmingham

Research Article

Keywords: Trophic Coherence, Basal Vertices, Incidence Rate, Epidemic Model

Posted Date: March 1st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-228903/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Scientific Reports on July 6th, 2021. See the published version at https://doi.org/10.1038/s41598-021-93161-4.
Graph Hierarchy: A novel framework to analyse hierarchical structures in complex networks

Giannis Moutsinas¹,*, Choudhry Shuaib²,*, Weisi Guo³, and Stephen Jarvis⁴

¹School of Computing, Electronics and Mathematics, Coventry University, Coventry, UK
²Department of Computer Science, University of Warwick, Coventry, UK
³Centre for Autonomous and Cyberphysical Systems, Cranfield University, Cranfield, UK
⁴College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK

ABSTRACT

Trophic coherence, a measure of a graph’s hierarchical organisation, has been shown to be linked to a graph’s structural and dynamical aspects such as cyclicity, stability and normality. Trophic levels of vertices can reveal their functional properties, partition and rank the vertices accordingly. Trophic levels and hence trophic coherence can only be defined on graphs with basal vertices, i.e. vertices with zero in-degree. Consequently, trophic analysis of graphs had been restricted until now. In this paper we introduce a hierarchical framework which can be defined on any simple graph. Within this general framework, we develop several metrics: hierarchical levels, a generalisation of the notion of trophic levels, influence centrality, a measure of a vertex’s ability to influence dynamics, and democracy coefficient, a measure of overall feedback in the system. We discuss how our generalisation relates to previous attempts and what new insights are illuminated on the topological and dynamical aspects of graphs. Finally, we show how the hierarchical structure of a network relates to the incidence rate in a SIS epidemic model.

1 Introduction

Patient zero is the start of an epidemic that spreads through a city. A rumour spreads like wildfire amongst a group of friends. An accident happens on the road and the associated disturbance spreads congestion throughout the road network in the vicinity of the incident. These are just a small number of examples of real life processes involving the directed flow of some quantity, whether it be information or physical, across a graph structure. Graphs are omnipresent and they constitute many of the complex systems that underlie much of our infrastructure and social interactions as well as ecological and biological systems that control and regulate life. Since the turn of the millennium there has been an explosion of research in network science¹,². Understanding how signals or processes percolate through a graph and what role topology and structure play, has been a key research aim³.

Hierarchical structure is pervasive across complex networks with examples spanning from neuroscience⁴, economics⁵, social organisations⁶, urban systems⁷, communications⁸, pharmaceuticals⁹ and biology¹⁰, particularly metabolic¹¹ and gene networks¹². Previous work, such as¹³,¹⁴,¹⁵,¹⁶,¹⁷ and¹⁸ attempt to further advance the study of hierarchical structures in complex graphs from various perspectives. These approaches typically cast hierarchy into a dichotomy; hierarchy in terms of a modular organisation known as nested hierarchy, an instance of community structure, or alternatively, a directed flow hierarchy. Our framework covers both the order and flow hierarchy approaches. Our work generalises directly the trophic approach and makes its topological connections explicit.

Graphs play a significant role in ecology where graph tools are used to understand the complex ecosystems and food webs that are present in our environment¹⁹,²⁰. Ecological networks are directed graphs representing biological interactions and exhibit a natural trophic structure. Researchers have defined the notion of trophic levels to illustrate the hierarchical nature of these graphs²¹. The trophic incoherence parameter was introduced as a measure of how neatly a graph can be partitioned in discrete trophic levels. Research has shown that trophic incoherence is a proxy for the stability of a food web²² and found that the lack of cycles in a graph is inherently linked with the trophic coherence of a graph²³. These ideas have been used to analyse the spread of infections on a graph²⁴, and to assess robustness and resilience of rail networks²⁵. This illustrates a link between the stability and dynamics of graph processes, and the underlying structure of the graph.

Trophic analysis can be conducted only for graphs where with basal vertices, i.e. vertices with no in-edges. In this paper we propose framework that generalises trophic analysis to any graph. We introduce two new centrality measures and two new graph coefficients:

- **Hierarchical levels** is a generalisation of the notion of trophic levels and describes each vertex’s rank with respect to “energy” or “information” flow.

- **Influence centrality** is a measure of a vertex’s ability to influence the long term state of the graph.
• The democracy coefficient measures the feedback that is present in the graph.

• The hierarchical incoherence parameter is a straightforward generalisation of trophic incoherence.

Vertices with high influence centrality have different functions in different contexts. In ecology, these are the basal species at the bottom of the food web; in epidemiology, they form the outbreak zone; and in morning transportation, the commuter towns. This is intimately tied with the study of the controllability of complex systems.26

The democracy coefficient is intimately related to the source subgraphs of the graph, which are subgraphs that are not influenced by the rest of the graph. We explore the effect that the democracy coefficient and the hierarchical incoherence parameter have on the spread of an infection by modelling a contagion dynamics.

2 Preliminaries

In this article we follow the convention of flow networks and we will call a vertex with no in-neighbours a source. We note that such vertices in the context of food webs are called basal. Similarly, a vertex with no out-neighbours will be called a sink.

We will consider weighted simple directed graphs and we will use \(G \) to denote them. If a graph is undirected, it can be turned into a directed graph by replacing each undirected edge by a pair of directed edges. We will denote by \(G^T \) the transpose graph of \(G \), i.e. the graph we get if we reverse the direction of all edges in \(G \). We will denote by \(\text{So}(G) \) and \(\text{Si}(G) \) the set of all source and sink vertices, respectively. Moreover, if \(H \) is a subgraph of \(G \), we will denote by \(G \setminus H \) the graph that we get by removing from \(G \) all vertices in \(H \) with all the edges that are adjacent to them. We will call the “graph” \(G \setminus G \) the empty graph.

We will shift our point of view from energy flow to information flow and we consider the following dynamics on a weighted graph. We assign a colour to each vertex. Then, at each time step a vertex chooses at random a vertex between itself and its in-neighbours with a probability proportional to the weighted in-degree. Its own weight is always 1. Then all vertices update their colour to the colour of their chosen vertex simultaneously. We will call this forward influence dynamics. In this dynamics, source vertices are important because they stay in their original colour forever.

We define backward influence dynamics to be the same process on the transpose graph, i.e. the colour of a vertex is updated by considering the out-neighbours instead of the in-neighbours. Similarly to the forward influence dynamics, a sink vertex will remain in its original colour for ever.

Definition 2.1. A graph \(G \) is called simply forward influenced if \(\text{So}(G) \) and \(G \setminus \text{So}(G) \) are not empty and for any \(v \in G \setminus \text{So}(G) \) there exists \(u \in \text{So}(G) \) such that there is a directed path from \(u \) to \(v \). Similarly, \(G \) will be called simply backward influenced if its transpose graph \(G^T \) is simply forward influenced.

Food webs are typically simply forward influenced. We prove in Supplemental Material (SM) that trophic levels can be defined on a graph if and only if it is simply forward influenced.

Sources in a graph do not have to be single vertices, they can also be subgraphs. This leads us to the following definition.

Definition 2.2. Let \(G \) be a weakly connected graph and \(\Gamma \) a subgraph of \(G \). Then \(\Gamma \) is called a minimal source subgraph of \(G \) if there is no edge from \(G \setminus \Gamma \) to \(\Gamma \) and this property fails if we remove any vertex from \(\Gamma \). A subgraph \(\Gamma \) is called minimal sink subgraph if it is a minimal source subgraph for the transpose graph, \(G^T \).

Definition 2.3. For a weakly connected graph \(G \), let \(\Gamma_1, \ldots, \Gamma_l \) be its minimal source subgraphs and let \(\Delta_1, \ldots, \Delta_l \) be its minimal sink subgraphs.

The subgraph \(F_j \) (resp. \(F_h \)) that we get if we remove all edges that belong to \(\Gamma_j \)’s (resp. \(\Delta_i \)’s) from \(G \) and delete all isolated vertices is called the simply forward (resp. backward) influenced subgraph of \(G \).

We call the set \(\{ \Gamma_1, \ldots, \Gamma_l, F_j \} \) (resp. \(\{ \Delta_1, \ldots, \Delta_l, F_h \} \)) the forward (resp. backward) hierarchical decomposition of \(G \).

The subgraph \(C \) that we get if we remove all edges that belong to \(\Gamma_j \)’s and \(\Delta_i \)’s from \(G \) and delete all isolated vertices is called core subgraph of \(G \) and the set \(\{ \Gamma_1, \ldots, \Gamma_l, C, \Delta_1, \ldots, \Delta_l \} \) is called the hierarchical decomposition of \(G \).

If the hierarchical decomposition of \(G \) is non-trivial, i.e. \(\Gamma_1 = \Delta_1 = G \), we call \(G \) hierarchically decomposable.

If a graph \(G \) is strongly connected, its hierarchical decomposition is trivial. We prove in SM that a graph is not hierarchically decomposable if and only if it is strongly connected. Notice that if \(G \) is hierarchically decomposable, then \(G^T \) is also hierarchically decomposable. An example of a hierarchically decomposable graph, its maximal simply influenced subgraphs and its core subgraph can be seen in Figure 1.

The hierarchical decomposition of a graph can be compared to the bow-tie structure of graphs.27 The input comprises of the source subgraphs and the output comprises of the sink subgraph. Finally, the core is comprised of the vertices that cannot reach the input and cannot be reached by the output. The difference is that in our case we do not impose the restriction that the core has to be strongly connected.
Figure 1. An example of a hierarchically decomposable graph. (a) The original graph. Its source subgraph is marked blue and its sink subgraph is marked green. If we apply the forward influence dynamics on the graph, then in finite time all vertices will become blue. On the other hand if we apply the backward influence dynamics, then in finite time all vertices will become green. In both cases, red vertices do not affect the asymptotic state. (b) The simply forward influenced subgraph. (c) The simply backward influenced subgraph. (d) The core subgraph.

Definition 2.4. Let G be a hierarchically decomposable graph and H_1, \ldots, H_l be its minimal source (resp. sink) subgraphs. A vertex $v \in G$ is called a forward (resp. backward) influencer if $v \in \bigcup_i H_i$ and v is called forward (resp. backward) influenced if $v \in G \setminus \bigcup_i H_i$.

Notation

We will use A to represent the weighted adjacency matrix of a simple positively weighted graph and we will denote its entries by a_{ij}. If there is no directed edge between i and j then we have $a_{ij} = 0$ and if there is a directed edge from i to j, then a_{ij} is positive and represents the edge's weight.

We define $d_i = \sum_j a_{ij}$ to be the weighted in-degree of vertex i and $d = (d_1, \ldots, d_n)$ to be the weighted in-degree vector. The weighted in-degree Laplacian of a graph is defined to be the matrix $L = \text{diag}(d) - A$. For notational convenience we define $M = L^T$, where L^T is the transpose of L. Similarly we define δ to be the weighted out-degree vector and the out-degree Laplacian of a graph is the matrix $\Lambda = \text{diag}(\delta) - A$.

3 Hierarchical Levels and Hierarchical Differences

In this section we introduce several, local and global, graph metrics. The notions of hierarchical levels and influence centrality are local metrics that can be used as vertex centrality/ranking measures. Forward hierarchical levels are a direct generalisation of trophic levels. We discuss the relation between trophic levels and hierarchical levels further in SM. Hierarchical levels can be computed on any positively weighted simple directed graph. The notions of democracy coefficient and hierarchical incoherence are global metrics that characterise the graph. The notions of influence centrality and democracy coefficient have explicit connections with the topology of the graph. In both cases we define two versions of the metrics, forward and backward, capturing the different notions of control and dependence. The backward metrics are equivalent to the forward versions applied to the transposed graph.

3.1 Hierarchical levels

We now define the notions of hierarchical levels. Forward hierarchical levels are defined through the matrix M and backward hierarchical levels are defined through the matrix Λ. We will call the difference of forward and backward hierarchical levels simply hierarchical levels.

Definition 3.1. Let G be a directed graph, d and δ be its in-degree and out-degree vectors respectively, L and Λ be its in-degree and out-degree Laplacian matrix respectively and $M = L^T$. The vector of forward hierarchical levels, g, is

$$g := \arg \min_{x \in \mathcal{F}} \|x\|_2,$$

where

$$\mathcal{F} := \arg \min_{x \in \mathbb{R}^n} \|Mx - d\|_2.$$

Similarly the vector of backward hierarchical levels, γ, is

$$\gamma := \arg \min_{x \in \mathcal{G}} \|x\|_2,$$

where

$$\mathcal{G} := \arg \min_{x \in \mathbb{R}^n} \|\Lambda x - \delta\|_2.$$

Finally, we define the vector of hierarchical levels of G to be

$$h = \frac{1}{2}(g - \gamma).$$
We note that by this definition we obtain $g = M^+ d$ and $\gamma = \Lambda^+ \delta$, where M^+ denotes the Moore-Penrose inverse of the matrix M, see29. Intuitively, forward hierarchical levels grade the vertices based on their distance from source subgraphs. Backward hierarchical levels rank the vertices based on their distance from sink subgraphs. They provide the perspectives of control and dependence respectively. Hierarchical levels take into account both perspectives and can be used to layout a graph in a way that reveals its overall hierarchical structure.

The computation of the varying hierarchical levels boils down to minimizing a sum of squares, for which we have reliable and efficient algorithms available29. By definition it is easy to see that the forward (resp. backward) hierarchical levels of a graph G are equal to the backward (resp. forward hierarchical) levels of G^T, respectively. This means that the vector of hierarchical levels of G^T is $-h$, where h is the vector of hierarchical levels of G.

Some simple examples are illustrated in Figure 2. The y coordinate of a vertex corresponds to its hierarchical level. In Figure 2a a directed 3-chain is shown. The forward and backward hierarchical levels of the vertices are $(-1, 0, 1)$ and $(1, 0, -1)$, respectively. The hierarchical levels are $(-1, 0, 1)$, which agrees with our intuition.

In the case of a directed 3-cycle, because of its symmetry we expect that all vertices will have the same hierarchical level 0. We break the symmetry of the 3-cycle in two ways. In Figure 2b we set the weight of the edge $3 \to 1$ to be $1/2$ and the rest of the weights equal to 1. This is halfway between a 3-chain and a 3-cycle. Intuitively, we expect that in this case vertex 1 should be lower than the rest. We find that the forward and backward hierarchical levels of the vertices are $(-0.5, 0, 0.5)$ and $(0.5, 0, -0.5)$ respectively, which implies that the hierarchical levels are $(-0.5, 0, 0.5)$.

The other way we break the 3-cycle’s symmetry is by adding another vertex, Figure 2c. In this case the forward hierarchical differences of the 3-cycle do not change, only the hierarchical levels change. The forward hierarchical levels are $(-0.25, -0.25, -0.25, 0.75)$. However when we look at the backward hierarchical levels, we see that the vertices of the 3-cycle are not equivalent. The backward hierarchical levels are $(2.25, 1.25, 0.25, -3.75)$, so the hierarchical levels are $(-1.25, -0.75, -0.25, 2.25)$.

The final example, Figure 2d, is a strongly connected graph. Intuitively we expect that in a strongly connected graph, vertices with low in-degree and high out-degree will tend to have low hierarchical levels. However, the hierarchical level of a vertex is not a local property and it depends also on the closed paths that start and finish on the vertex. The forward hierarchical levels are $(-0.783, -0.0333, -0.117, 0.3, 0.633)$ and the backward hierarchical levels are $(0.725, 0.607, 0.336, -0.868, -0.8)$. The hierarchical levels of this graph are approximately $(-0.754, -0.32, -0.226, 0.584, 0.717)$.

Additionally, because our measure can be applied to strongly connected graphs, this means it is applicable to undirected graphs but with a caveat. In the case of undirected graphs the adjacency matrix is symmetric and so the forward and backward hierarchical levels would be equal to each other. Consequently, the hierarchical levels would be zero. For an undirected graph we need to utilise only the forward hierarchical levels. Initial exploration shows that in the undirected scenario, where the density of the graph are greatest, the forward (resp. backward) hierarchical levels of vertices is greatest, compartmentalising the graph into core, gateway and peripheral divisions. Thus offers a potential method of detection of said structure30.

3.2 Hierarchical differences

Hierarchical levels assign a numerical label to each vertex. We can use their differences to assign a numerical label to each edge. We will see that the weighted mean of hierarchical differences is an important metric. This leads us to the following definition.

Definition 3.2. The forward, respectively backward, democracy coefficients of a positively weighted simple directed graph G are defined to be

\[
\eta_f(G) := 1 - \text{Mean}(\text{FHD}(G)) \quad \text{respectively} \quad \eta_b(G) := 1 - \text{Mean}(\text{BHD}(G)),
\]
where $\text{FHD}(G) = \{g_j - g_i | a_{ij} > 0, i, j \in G\}$, are the forward hierarchical differences and $\text{BHD}(G) = \{\gamma_j - \gamma_i | a_{ij} > 0, i, j \in G\}$, are the backward hierarchical differences. The mean is taken with respect to the edge weights.

Intuitively the democracy coefficient is a measure of how much the influencers of a graph are being influenced themselves. A low democracy coefficient means that there is minimal feedback between the influencer vertices, the vertices driving the dynamics, and the influenced vertices. Similarly to the trophic incoherence parameter we define the hierarchical incoherence parameter.

Definition 3.3. The forward, respectively backward, hierarchical incoherence parameters, or just forward (resp. backward) hierarchical incoherences, of a directed graph G are defined to be

$$
\rho_f(G) = \sqrt{\text{Var}(\text{FHD}(G))}
$$

respectively

$$
\rho_b(G) = \sqrt{\text{Var}(\text{BHD}(G))},
$$

where the variance is computed with respect to the edge weights.

The democracy coefficient together with the hierarchical incoherence for a given graph, give an insight to its topology. For a graph, high democracy coefficient and low hierarchical incoherence means that all its vertices have approximately the same hierarchical level; the graph is influenced by a large percentage of its vertices. On the other hand, low democracy coefficient and low hierarchical incoherence means that there are distinct hierarchical levels; the graph is controlled by a small percentage of its vertices. A graph is maximally hierarchical if both the democracy coefficient and the hierarchical incoherence are 0. This implies the vertices can be grouped in “layers”. All vertices in a layer have the same hierarchical level and hierarchical levels of two layers differ by an integer. Moreover, there can only be edges from one preceding layer to the layer succeeding it. Figure 2a, a directed chain, illustrates a prime example. This compares more favourably against other measures which need to alter the graphs in order to quantify hierarchy.

We refer back to Figure 2 to give an intuitive feeling for how these global graph metrics characterise graph structures. In Figure 2a both the forward and backward democracy coefficients and hierarchical incoherence parameters are 0. For Figure 2b both the forward and backward democracy coefficients are 0.8 and hierarchical incoherence parameters are 0.6. In Figure 2c the forward democracy coefficient is 0.75 and forward hierarchical incoherence parameter is 0.433. The backward democracy coefficient is 0 and backward hierarchical incoherence parameter is 2.12. Finally, in Figure 2d the forward democracy coefficient is 0.729 and forward hierarchical incoherence parameter is 0.693. The backward democracy coefficient is 0.667 and backward hierarchical incoherence parameter is 0.885.

The democracy coefficient has more interesting connections with the topology of the graph. An useful property of the democracy coefficients is that if G is weakly connected, then we can calculate its forward (resp. backward) democracy coefficients by calculating only the hierarchical levels of its minimal source (resp. sink) subgraphs. This is stated and proven in SM.

Lemma 3.4. For a weakly connected directed graph G, $\eta_f(G) \geq 0$ and $\eta_b(G) \geq 0$. Moreover, G is a simply forward influenced graph if and only if $\eta_f(G) = 0$. Similarly, G is a simply backward influenced graph if and only if $\eta_b(G) = 0$.

Lemma 3.5. If G is a balanced graph, i.e. for any vertex its in-degree equals its out-degree, then $\eta_f(G) = \eta_b(G) = 1$.

By consequence of the above definition, the democracy coefficient of an undirected graph is 1. We conjecture that the democracy coefficient has also the following properties.

Conjecture 3.6. Let G be a weakly connected directed graph. Then the following are true:

- $\eta_f(G) \leq 1$ and $\eta_b(G) \leq 1$.
- $\eta_f(G) = \eta_b(G) = 1$ if and only if the graph is balanced.

If the above upper bounds are correct, then the total weight of edges in the forward (resp. backward) influenced subgraph bounds the forward (resp. backward) democracy coefficient and the converse. We would get $\eta(G) \leq 1 - m/n$ and $m \leq n(1 - \eta(G))$, where m is the sum of weights of all edges in the simply forward (resp. backward) influenced subgraph and n is the total weight of all edges in G.

Furthermore, the hierarchical differences can be used to define a new graph centrality measure.

Definition 3.7. The forward respectively backward influence centrality of vertex j of a positively weighted simple directed graph G are respectively defined to be

$$
\eta_f(G, j) = 1 - \text{Mean}(\text{FHD}(G, j))
$$

respectively

$$
\eta_b(G, j) = 1 - \text{Mean}(\text{BHD}(G, j)),
$$

where $\text{FHD}(G, j) = \{g_j - g_i | a_{ij} > 0, i \in G\}$, $\text{BHD}(G, j) = \{\gamma_j - \gamma_i | a_{ij} > 0, i \in G\}$ and the mean was taken with respect to the edge weights with the convention that the mean of the empty set is 0.
As we will see below, a vertex is an influencer if and only if its influence centrality is positive. We will also see that there is a relation between influence centrality and the stationary distribution of a random walk on the graph.

Lemma 3.8. Let \(G \) be a positively weighted, weakly connected, directed graph and \(i \in G \). Then for any vertex \(i \), \(\eta_f(G, i) \geq 0 \), \(\eta_b(G, i) \geq 0 \) and \(i \) is forward (resp. backward) influenced if and only if \(\eta_f(G, i) = 0 \) (resp. \(\eta_b(G, i) = 0 \)).

Moreover, there exist \(i \in G \) such that \(\eta_f(G, i) > 0 \) and \(\eta_b(G, i) > 0 \), if and only if \(G \) is strongly connected.

Lemma 3.9. Let \(G \) be a strongly connected graph, \(\Delta \) be its weighted out-degree diagonal matrix, \(\varepsilon \) be the vector of backward influence centrality of \(G \) and let \(\pi \) be the stationary distribution of a random walk on \(G \). Then there exists \(c > 0 \) such that \(c\pi = \Delta^2\varepsilon \).

In the above lemma we assumed that at each step the random walker chooses randomly an out-edge with probability proportional to that edge’s weight. If the graph is weakly connected, then a random walker on it will eventually be trapped in a minimal sink subgraph. This means that we can apply Lemma 3.9 on the minimal sink subgraph and get the stationary distribution of the random walk there. Moreover, it is easy to see that all vertices with 0 backward influence centrality are transient states for the random walk.

This new graph centrality measure is able to determine the vertices with non-zero influence centrality and hence those that drive the asymptotic dynamics of all vertices in the graph. We note that the hierarchical levels of influencer vertices differ depending on their position and their connection to the rest of graph.

By further studying the profile of influence centralities and the democracy coefficient one could develop a control profile/signature for graphs and use it as a comparison of controllability across different graph structures. Ruths et al\(^{31}\) have answered this by using the degree distribution of a graph and degree properties of a vertex. We believe that influence centrality and hierarchical levels could produce a more accurate representation of the control properties of a complex network.

3.3 Related work

There has been prior research which attempted to tackle the hierarchical nature of complex graphs as mentioned in the introduction. Some attempts can treat only unweighted graphs\(^6,15\). Others define only a global hierarchical coefficient\(^{32}\).

There are some approaches with a similar stratagem that have attempted to quantify hierarchy by generalising trophic analysis, see\(^{33,34}\). These approaches however cannot differentiate vertices in the same strongly connected component and they do not have any explicit links to the topology of the graph.

There is definite scope for further study and an initial direction to explore is shown in\(^{35}\). Additionally, random walk has been used to provide a hierarchical analysis of complex graphs, further strengthening the connection between random walk theory and Graph Hierarchy\(^{36}\).

The pseudoinverse of the Laplacian matrix has been used to calculate nodal spreading capacity\(^{37}\) and topological centrality\(^{38}\). A significant computational complexity advantage is present in our approach as the underlying computational algorithm does not calculate the pseudoinverse, but rather the product of the pseudoinverse with the degree vector. This makes the algorithm more memory efficient as well as offering a significant time complexity advantage by utilising efficient convex optimisation algorithms. This also compares favourably with other approaches quantifying the hierarchical nature of graphs which provide less information, see\(^{34,36}\) and\(^{18}\).

Additionally, graph study is typically classified into three levels:

1. **Microscopic** - constitutes the study of individual vertices to understand their behaviour. Degree or centrality measures are typically used. Hierarchical level and influence centrality provide this level of granular analysis.

2. **Mesoscopic** - concerns the study of groups or community structure. At this level it is interesting to study the interaction of vertices over short distances or classification of vertices. Hierarchical differences could provide this classification via a functional clustering algorithm. Vertices within an integer hierarchical difference of each other belong to the same functional module in the graph, simultaneously addressing the order hierarchy question.

3. **Macroscopic** - classifies the global structure of the graph. Typically relevant parameters are average degree, average path length and average clustering coefficient. Hierarchical incoherence and democracy coefficient provide relevant parameters characterising the graph on the global scale.

Graph Hierarchy provides all this analysis within one coherent and comprehensive framework, a huge advantage over other approaches attempting to quantify hierarchy within complex graphs. Furthermore, within this construct we have laid the groundwork for a novel approach to controllability of complex graphs with the new metrics of influence centrality and democracy coefficient.

Graph Hierarchy generates an intriguing relationship with normality\(^{39}\). In the case of an undirected graph, the adjacency matrix is symmetric and hence no deviation from normality, but this is not true for a directed graph. There is clearly
strong correlation between trophic incoherence and the non-normality of the adjacency matrix \(\rho_f(G) \) and so the relationship with hierarchical incoherence requires further investigation. How these two impact the dynamics of a graph process and hence the stability requires further study. We note that the advantage of the hierarchical approach is that it has both a microscopic lens as well as a macroscopic one.

4 Contagion dynamics

As an application, we look at contagion dynamics on directed graphs. We used a simple Susceptible-Infected-Susceptible epidemic model. Following, we define the probability that vertex \(i \) is infected at time \(t + 1 \) to be

\[
P(i \text{ is infected at time } t + 1) = f_i(t)^\alpha,
\]

where \(f_i(t) \) is the fraction of \(i \)'s in-neighbours which are infected at time \(t \) and \(\alpha \) is a positive parameter that controls the infection rate. The smaller \(\alpha \) is, the easier it is for a vertex to be infected. We show that the forward hierarchical incoherence parameter has the same predicting ability as the trophic incoherence parameter on graphs whenever both can be defined, however the new generalisation can be used in more general settings.

4.1 Graph generation

We generate graphs using a version of the preferential preying model (PPM), introduced in, modified to not have source vertices. We call this model non-source preferential preying model (NSPPM). This modification creates graphs which are not simply forward influenced because they lack source vertices, but which are similar to PPM graphs. In SM we give the algorithms for generating both PPM and NSPPM graphs. Both models have a temperature parameter, \(T \), which controls how hierarchical they are. Low temperature creates graphs with low hierarchical incoherence. High temperature creates graphs which have high hierarchical incoherence, that are similar to Erdös-Rényi graphs. In SM we also show that on PPM graphs the trophic incoherence parameter and the forward hierarchical incoherence parameter agree.

4.2 Monte Carlo simulations

We ran Monte Carlo simulations using NSPPM graphs with 500 total vertices and 2500 edges with varying \(T \). We start the simulation by infecting the 25 vertices with the lowest hierarchical levels and measure the incidence of the infection, i.e. the proportion of vertices that have been infected at least once. Then we run the simulation until either incidence becomes 1 or there is no infected vertex left or time step 1000 has been reached.

We observed that NSPPM graphs can be broken down into two categories based on the democracy coefficient. Graphs with democracy coefficient less than \(20/2500 \) have a few small forward influencing subgraphs which start infected and stay...
infected forever. This means that depending on α either everything becomes infected or the algorithm times out. Graphs with democracy coefficient greater than $20/2500$ tend to have bigger forward influencing subgraphs which do not stay infected. The two types of graphs exhibit different dynamical behaviour and we are able to identify this based on the democracy coefficient. We discuss this in more detail in SM.

In Figure 3 we show the average incidence for graphs with democracy coefficient $20/2500$. Since we cannot choose values for the hierarchical incoherence, the average is taken over small intervals. We see that if $\alpha \leq 1$ or smaller then the average incidence is almost 1, which means that every vertex becomes infected at least once. When $\alpha > 1$, then incidence depends on the hierarchical incoherence of the graph. As expected, lower hierarchical incoherence corresponds to higher incidence.

5 Conclusion & Future Work

We have generalised the previous notions of trophic levels and coherence such that a trophic analysis can be applied to any simple graph, whether it be directed or undirected. The trophic approach has been previously applied to complex systems, particularly ecology, but with enforced restrictions that trophic analysis induces. Examples beyond the list given in the introduction, where our newly developed generalisation could advance previous work, include financial markets and water distribution networks. This now enables some key questions concerning graph dynamics to be answered in a novel way: What is the resilience and robustness of a graph and how does it adapt under failure or attack? How does the topology of a graph affects its dynamics? How is the critical component of a graph determined when a flow is spreading across the structure and how does it rewire or redistribute flow under changing conditions?

Finally, we have developed an open source python module named GraphHierarchy and a Julia package named GraphHierarchy for researchers to easily apply these methods to a myriad of domains. We see this being extensively applicable as the graph abstraction is widespread in the analysis of complex systems. As such the potential of this approach to advance the study of the interplay between graph topology and dynamics is immense and leaves plenty of room for future work and collaboration.

Acknowledgements
The authors would like to express their gratitude to Robert MacKay for his invaluable advice and showing their approach to the subject. CS also gratefully acknowledges funding from the UK Engineering and Physical Sciences Research Council under the EPSRC Centre for Doctoral Training in Urban Science (EPSRC grant no. EP/L016400/1).

Author contributions statement
The idea of hierarchical levels was conceived by CS and developed by GM & CS. The claims were proved by GM. The dynamics was simulated by GM. GM & CS wrote the paper. WG & SJ provided guidance.

References
1. Newman, M. E. The structure and function of complex networks. *SIAM review* **45**, 167–256 (2003).
2. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. *Nature* **393**, 440 (1998).
3. Barrat, A., Barthelemy, M. & Vespignani, A. *Dynamical processes on complex networks* (Cambridge university press, 2008).
4. Bassett, D. S. & Sporns, O. Network neuroscience. *Nat. neuroscience* **20**, 353 (2017).
5. Antràs, P., Chor, D., Fally, T. & Hillberry, R. Measuring the upstreamness of production and trade flows. *Am. Econ. Rev.* **102**, 412–16 (2012).
6. Krackhardt, D. Graph theoretical dimensions of informal organizations. In *Computational organization theory*, 107–130 (Psychology Press, 2014).
7. Batty, M. & Longley, P. A. *Fractal cities: a geometry of form and function* (Academic press, 1994).
8. Vázquez, A., Pastor-Satorras, R. & Vespignani, A. Large-scale topological and dynamical properties of the internet. *Phys. Rev. E* **65**, 066130 (2002).
9. Csermely, P., Korcsmáros, T., Kiss, H. J., London, G. & Nussinov, R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. *Pharmacol. & therapeutics* **138**, 333–408 (2013).
10. Cheng, C. *et al.* An approach for determining and measuring network hierarchy applied to comparing the phosphorylome and the regulome. *Genome biology* **16**, 63 (2015).
11. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A.-L. Hierarchical organization of modularity in metabolic networks. *Science* **297**, 1551–1555 (2002).
12. Gerstein, M. B. *et al.* Architecture of the human regulatory network derived from encode data. *Nature* **489**, 91–100 (2012).
13. Ravasz, E. & Barabási, A.-L. Hierarchical organization in complex networks. *Phys. review E* **67**, 026112 (2003).
14. Crofts, J. J. & Higham, D. J. Googling the brain: Discovering hierarchical and asymmetric network structures, with applications in neuroscience. *Internet Math.* **7**, 233–254 (2011).
15. Corominas-Murtra, B., Goñi, J., Solé, R. V. & Rodríguez-Caso, C. On the origins of hierarchy in complex networks. *Proc. Natl. Acad. Sci.* **110**, 13316–13321 (2013).
16. Mones, E., Vicsek, L. & Vicsek, T. Hierarchy measure for complex networks. *PloS one* **7** (2012).
17. Trusina, A., Maslov, S., Minnhagen, P. & Sneppen, K. Hierarchy measures in complex networks. *Phys. review letters* **92**, 178702 (2004).
18. Coscia, M. Using arborescences to estimate hierarchicalness in directed complex networks. *PloS one* **13**, e0190825 (2018).
19. Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and robustness of marine food webs. *Mar. Ecol. Prog. Ser.* **273**, 291–302 (2004).
20. Ings, T. C. *et al.* Ecological networks–beyond food webs. *J. Animal Ecol.* **78**, 253–269 (2009).
21. Levine, S. Several measures of trophic structure applicable to complex food webs. *J. Theor. Biol.* **83**, 195–207 (1980).
22. Johnson, S., Domínguez-García, V., Donetti, L. & Muñoz, M. A. Trophic coherence determines food-web stability. *Proc. Natl. Acad. Sci.* **111**, 17923–17928 (2014).
23. Johnson, S. & Jones, N. S. Looplessness in networks is linked to trophic coherence. *Proc. Natl. Acad. Sci.* **114**, 5618–5623 (2017).
24. Klaise, J. & Johnson, S. From neurons to epidemics: How trophic coherence affects spreading processes. *Chaos: An Interdiscip. J. Nonlinear Sci.* **26**, 065310 (2016).
25. Pagani, A. *et al.* Resilience or robustness: identifying topological vulnerabilities in rail networks. *Royal Soc. open science* **6**, 181301 (2019).
26. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks. *nature* **473**, 167–173 (2011).
27. Wright, E. A., Yoon, S., Ferreira, A. L., Mendes, J. F. & Golstev, A. V. The central role of peripheral nodes in directed network dynamics. *Sci. reports* **9**, 1–11 (2019).
28. Penrose, R. On best approximate solutions of linear matrix equations. In *Mathematical Proceedings of the Cambridge Philosophical Society*, vol. 52, 17–19 (Cambridge University Press, 1956).
29. Nesterov, Y. & Nemirovskii, A. *Interior-point polynomial algorithms in convex programming* (SIAM, 1994).
30. Rombach, M. P., Porter, M. A., Fowler, J. H. & Mucha, P. J. Core-periphery structure in networks. *SIAM J. on Appl. mathematics* **74**, 167–190 (2014).
31. Ruths, J. & Ruths, D. Control profiles of complex networks. *Science* **343**, 1373–1376 (2014).
32. Luo, J. & Magee, C. L. Detecting evolving patterns of self-organizing networks by flow hierarchy measurement. *Complexity* **16**, 53–61 (2011).
33. MacKay, R., Johnson, S. & Sansom, B. How directed is a directed network? *arXiv preprint arXiv:2001.05173* (2020).
34. Kichikawa, Y., Iyetomi, H., Iino, T. & Inoue, H. Community structure based on circular flow in a large-scale transaction network. *Appl. Netw. Sci.* **4**, 92 (2019).
35. Li, Y. & Zhang, Z.-L. Digraph laplacian and the degree of asymmetry. *Internet Math.* **8**, 381–401 (2012).
36. Czégel, D. & Palla, G. Random walk hierarchy measure: What is more hierarchical, a chain, a tree or a star? *Sci. reports* **5**, 17994 (2015).
37. Van Mieghem, P., Devriendt, K. & Cetinay, H. Pseudoinverse of the laplacian and best spreader node in a network. *Phys. Rev. E* **96**, 032311 (2017).
38. Ranjan, G. & Zhang, Z.-L. Geometry of complex networks and topological centrality. *Phys. A: Stat. Mech. its Appl.* **392**, 3833–3845 (2013).
39. Asllani, M., Lambiotte, R. & Carletti, T. Structure and dynamical behavior of non-normal networks. *Sci. advances* **4**, eaau9403 (2018).
40. Johnson, S. Digraphs are different: Why directionality matters in complex systems. *J. Physics: Complex.* **1**, 015003 (2020).

41. Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. *Rev. modern physics* **87**, 925 (2015).

42. Moran, J. & Bouchaud, J.-P. May’s instability in large economies. *Phys. Rev. E* **100**, 032307 (2019).

43. Pagani, A., Meng, F., Fu, G., Musolesi, M. & Guo, W. Quantifying resilience via multiscale feedback loops in water distribution networks. *J. Water Resour. Plan. Manag.* **146**, 04020039 (2020).
Figures

Figure 1

An example of a hierarchically decomposable graph. (a) The original graph. Its source subgraph is marked blue and its sink subgraph is marked green. If we apply the forward influence dynamics on the graph, then in finite time all vertices will become blue. On the other hand if we apply the backward influence dynamics, then in finite time all vertices will become green. In both cases, red vertices do not affect the asymptotic state. (b) The simply forward influenced subgraph. (c) The simply backward influenced subgraph. (d) The core subgraph.

Figure 2
Examples of hierarchical layout of graphs: The y coordinate of a vertex corresponds to its hierarchical level. In (b) the edge 3 → 1 has smaller weight than the other two edges.

Figure 3

Scatter plot of average incidence values from Monte Carlo simulations of the infection spreading with varying hierarchical incoherence $\rho_f(G)$ and infection parameter α. The average is taken over an interval of hierarchical incoherence values. (a) Incidence against α for different values of $\rho_f(G)$. (b) Incidence against $\rho_f(G)$ for different values of α.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SI.pdf