Chemical profile analysis and comparison of two versions of the classic TCM formula danggui buxue tang by HPLC-DAD-ESI-IT-TOF-MSn

Ya-Zhou Zhang
Hong Kong Baptist University

Feng Xu
Peking University

Tao Yi
Hong Kong Baptist University, yitao@hkbu.edu.hk

Jian-Ye Zhang
Hong Kong Baptist University

Jun Xu
Hong Kong Baptist University

Part of the Medicine and Health Sciences Commons

This document is the authors' final version of the published article.
Link to published article: http://dx.doi.org/10.3390/molecules19055650

APA Citation
Zhang, Y., Xu, F., Yi, T., Zhang, J., Xu, J., Tang, Y., He, X., Liu, J., & Chen, H. (2014). Chemical profile analysis and comparison of two versions of the classic TCM formula danggui buxue tang by HPLC-DAD-ESI-IT-TOF-MSn. *Molecules, 19* (5), 5650-5673.
https://doi.org/10.3390/molecules19055650

This Journal Article is brought to you for free and open access by HKBU Institutional Repository. It has been accepted for inclusion in HKBU Staff Publication by an authorized administrator of HKBU Institutional Repository. For more information, please contact repository@hkbu.edu.hk.
Authors
Ya-Zhou Zhang, Feng Xu, Tao Yi, Jian-Ye Zhang, Jun Xu, Yi-Na Tang, Xi-Chen He, Jing Liu, and Hu-Biao Chen

This journal article is available at HKBU Institutional Repository: https://repository.hkbu.edu.hk/hkbu_staff_publication/1759
Article

Chemical Profile Analysis and Comparison of Two Versions of the Classic TCM Formula Danggui Buxue Tang by HPLC-DAD-ESI-IT-TOF-MS

Ya-Zhou Zhang 1,2, Feng Xu 3, Tao Yi 1, Jian-Ye Zhang 1, Jun Xu 1, Yi-Na Tang 1, Xi-Chen He 1, Jing Liu 1 and Hu-Biao Chen 1,*

1 School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon, Hong Kong, China
2 Guizhou College of Technology, No.1 Caiguan Road, Guiyang 550003, China
3 State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China

* Author to whom correspondence should be addressed; E-Mail: hbchen@hkbu.edu.hk; Tel.: +852-3411-2060; Fax: +852-3411-2461.

Received: 5 March 2014; in revised form: 10 April 2014 / Accepted: 19 April 2014 / Published: 30 April 2014

Abstract: Danggui Buxue Tang (DBT) is a Traditional Chinese Medicine (TCM) formula primarily used to treat symptoms associated with menopause in women. Usually, DBT is composed of one portion of Radix Angelicae Sinensis (RAS) and five portions of Radix Astragali (RA). Clinically, Radix Hedysari (RH) is sometimes used by TCM physicians to replace RA in DBT. In order to verify whether the chemical constituents of the DBT1 (RA:RAS = 5:1, w/w) and DBT2 (RH:RAS = 5:1, w/w) share similarities the chemical profiles of the two DBTs crude extracts and urine samples were analyzed and compared with the aid of HPLC-DAD-ESI-IT-TOF-MS, which determines the total ion chromatogram (TIC) and multi-stage mass spectra (MSn). Then, the DBT1 and DBT2 were identified and compared on the basis of the TIC and the MSn. In the first experiment (with crude extracts), 69 compounds (C1–C69) were identified from the DBT1; 46 compounds (c1–c46) were identified from the DBT2. In the second experiment (with urine samples), 44 compounds (M1–M44) were identified from the urine samples of rats that had been administered DBT1, and 34 compounds (m1–m34) were identified from the urine samples of rats that had been administered DBT2. Identification and comparison of the chemical compositions were carried out between the DBT1 and DBT2 of the crude extracts and urine samples respectively. Our results showed that the two crude extracts of the DBTs have quite...
different chemical profiles. The reasons for their differences were that the special astragalosides in DBT1 and the isoflavonoid glycosides formed the malonic acid esters undergo single esterification and acetyl esters undergo acetylation in DBT1. In contrast, the urine from DBT1-treated rats strongly resembled that of DBT2-treated rats. These metabolites originate mainly from formononetin, calycosin and their related glycosides, and they were formed mainly by the metabolic process of reduction, deglycosylation, demethylation, hydrogenation and sulfation. The HPLC-DAD-ESI-IT-TOF-MS^n method was successfully applied for the rapid chemical profiles evaluation of two DBTs and their related urine samples.

Keywords: Radix Hedysari; Radix Astragali; Danggui Buxue Tang; HPLC-DAD-ESI-IT-TOF-MS^n; isoflavonoid; astragaloside

1. Introduction

Danggui Buxue Tang (DBT) is a Traditional Chinese Medicine (TCM) formula primarily used to treat symptoms associated with menopause in women. It is believed to invigorate ‘Qi’ (vital energy) and nourish the ‘Blood’ (body circulation) [1]. Nowadays, it is commonly used in China as an efficacious medicinal prescription and a healthy food supplement. Pharmacological studies have found that DBT promotes hematopoietic function [2,3], regulates blood lipid and anti-inflammatory activities in diabetic atherosclerosis [4,5], anti-fibrosis effects [6], prevents osteoporosis [7,8], and increases anti-oxidation activity as well as immune response [9]. According to its original formula, DBT comprises Radix Astragali (RA) and Radix Angelicae Sinensis (RAS) (5:1, w/w). More recently, Radix Hedysari (RH) has been used to replace RA. Thus, in current clinical applications, DBT is prescribed in two forms: RA:RAS (5:1) (called DBT1), and RH:RAS (5:1) (called DBT2) [1,10].

The plants RA and RH belong to the same botanical family but different genus, and have long been widely used as the same crude herb in DBT [1]. This is always a question of whether RH can replace RA in the DBT decoction. Chemically, RA-containing DBT showed higher amounts of calycosin-7-O-β-D-glucoside, ferulic acid, ononin, calycosin, astragaloside IV, astragaloside III, and Z-ligustilide. Only formononetin was higher in RH-containing DBT. In parallel, the estrogenic, osteogenic and erythropoietic effects of RA-containing DBT1 showed better activities than that of RA-containing DBT2 [1]. So far, the chemical differences between DBT1 and DBT2 has not been investigated. Therefore, we designed a systematic comparison of the chemical ingredients of DBT1 and DBT2.

Two experiments were designed, including thorough elucidation of the chemical profiles of DBT1 and DBT2 crude extracts and illumination of the metabolites of DBT1 and DBT2 after being administrated to rats. The chemical profiles of the two DBTs were compared by determining the total ion chromatogram(TIC) and the multistage mass spectra (MS^n) from HPLC-DAD-ESI-IT-TOF-MS^n. Subsequently, DBT1 and DBT2 were identified and compared on the basis of the TIC and the MS^n [11]. The results will be provide a solid evidence to understand the chemical profiles of the two different versions of DBT.
2. Results and Discussion

2.1. Optimization the Conditions of HPLC and Mass Spectrometry

In order to obtain desirable HPLC and mass spectrometry chromatograms, the procedures for preparation of the urine samples and crude extracted samples of the two DBTs were optimized in terms of the extraction solvents and extraction times. Methanol and acetonitrile were initially selected as the extraction solvents, but methanol is less poisonous and produced almost the same chromatograms as acetonitrile, so it was applied as the final extraction solvent. For comparison, different columns (Phenomenex RP C18, Agilent RP C18) were tested for sample separation, and Phenomenex RP C18 gave the best chromatographic resolution. The column was eluted with a gradient mobile phase that consisted of water-formic acid (100:0.1, v/v) (A), acetonitrile (B) and at a flow rate of 1.0000 mL/min, in addition, 0.1% (v/v) formic acid was added to improve the mass spectrometry ionization efficiency and enable symmetric peak shapes [12]. Both the positive ion (PI) and negative ion (NI) modes were tested for the experiment. Since MS and MSⁿ fragmentations gave more information about the isoflavones in PI mode but about saponins in NI mode, the analysis was simultaneously conducted in both PI and NI mode.

2.2. The Identification and Analysis of 19 Reference Compounds

Nineteen reference compounds which might represent the major structural types of the DBTs were analyzed. The characteristic fragment ions of 19 references are very useful for determining the structural skeleton and the substitution patterns of those related compounds in two DBTs. Their high resolution mass spectra (HRMS) data are summarized (see Table 1 and Supplementary: pages S2–S8). The base peak chromatograms (BPCs) detected in NI and PI mode were recorded (see Figure 1a). Furthermore, the structure of 19 reference compounds were shown (Figure 1b) [11,13].

According to our preliminary research, there three main types of isoflavonoids are found in Radix Astragali which were named as a: isoflavone (T1, T2, T5, T6, and T8), b: isoflavan (T4, T7, and T10) and c: pterocarpan (T3, and T9) [11,13–15]. To facilitate the structural identification of the isoflavonoids in the DBTs, the fragmentation behaviors of the three types of isoflavonoids were analyzed, which might represent the major structural types. We first studied the MSⁿ fragmentation behaviors in PI and NI mode, and found that the fragmentation behaviors in PI mode could give more information about the structure than in NI modes. Then we elucidated the structure of the three types of isoflavonoids mostly from the PI mass spectra.

Isoflavone had the characteristic fragment ions 5B⁺-2H, 0,3B⁺-2H, 5A⁺-2H, 1,3A⁺-2H, 3,4A⁺-2H, etc., isoflavan had the characteristic fragment ions 5B⁺-2H, 5A⁺-2H, 1,3A⁺-2H, etc., and pterocarpan had the characteristic fragment ions 6,7B⁺-2H, 1,4B⁺-2H, 3,4A⁺-2H, 5,6A⁺-2H, etc., based on MS² and MS³ spectra by HPLC-DAD-ESI-IT-TOF-MSⁿ (see Figure 2).

For example, we identified the characteristic malonate-glucose-, acetyl-glucose- and glucose-binding ingredients with a neutral loss of 248 Da, 204 Da, and 162 Da, otherwise, glucuronide metabolites with a neutral loss of (−176 Da) and sulfated metabolites with a neutral loss of (−80 Da) from the molecular ion peaka in the MS² spectra [13,16,17].
NO.	TR (min)	[M+H]+	[M−H]−	Predicted Formula	Fragment Ions Da	Error (ppm)	The Name of the Reference Compounds
1(T1)	28.595	447.1290	447,285,270,225	0.89	Calycosin-7-O-β-D-glucopyranoside		
2(AW)	29.162	193.0501	193,178,134	-2.59	Ferulic acid		
3(T2)	34.545	431.1326	431,269,253,237,213,197,163,134,107	-2.55	Ononin		
4(T3)	36.038	485.1400	485,463,323,301	-3.71	Astrapterocarpan-7-O-β-D-glucopyranoside		
5(T4)	36.785	487.1574	487,303,167	-0.21	Astraisoflavan-7-O-β-D-glucopyranoside		
6(T5)	38.055	285.0754	285,270,253,225,197,137	-1.40	Calycosin		
7(T6)	40.123	473.1432	473,269	-2.11	6″-O-acetyl-ononin		
8(T7)	41.942	529.1691	529,507,303	2.08	6″-O-acetyl-astraisoflavan-7-O-β-D-glucopyranoside		
9(T8)	45.410	269.0795	269,270,237	-4.83	Formononetin		
10(T9)	46.062	301.1076	301,271,251,167,151,134	1.66	(6aR,11aR)-3-hydroxy-9,10-dimethoxypterocarpan; Astrapterocarpan		
11(T10)	46.655	303.1213	303,181,167,149,123	-4.62	(3R)-7,2′-dihydroxy-3′,4′-dimethoxyisoflavan; Astraisoflavan		
12(G V)	41.110	[M+HCOO]−	991,783,397	3.73	Astragaloside V		
13(GIV)	42.775	[M+HCOO]−	829,783,621,489,383	2.89	Astragaloside IV		
14(GIII)	43.410	[M+HCOO]−	829,783,651,489	-0.72	Astragaloside III		
15(G II)	44.628	[M+HCOO]−	871,765,717	-0.46	Astragaloside II		
16(G I)	50.525	[M+HCOO]−	913,867,807	0.00	Astragaloside I		
17(HHQC)	51.855	513.3550	513,515,405,229	0.00	Cycloastragenol(HHQC)		
18(ZL)	55.477	191.1056	191,173,117	-5.76	Z-ligustilide		
19(EL)	58.102	191.1066	191,173	-0.52	E-ligustilide		

Table 1. The fragment ions of 19 kinds of reference compounds by HPLC-DAD-ESI-IT-TOF-MS^n.
Figure 1. (a) LC-MS chromatogram of 19 reference compounds in PI (1BPC) and NI (4BPC) mode. (b) The chemical structures of 19 reference compounds.
Figure 2. The bond cleavage pathways of the three types of isoflavonoids in RA.

2.3. Profiling and Identifying Chemical Compounds of the Two Crude Extracts (DBT1, and DBT2) by HPLC-DAD-ESI-IT-TOF-MS^n

2.3.1. Identification of the Chemical Profiles of DBT1 by HPLC-DAD-ESI-IT-TOF-MS^n

The HRMS data of these identified compounds are summarized (see Table 2 and Supplementary: pages S9–S35). The BPCs detected in PI (1BPC) and NI (4BPC) mode were also recorded (Figure 3a) [17–19].

By comparing the fragment ions and retention times and based on the high resolution mass spectra software predicted formulas with the reference compounds from the MS and MS^n, the compounds C23, C33, C36, C37, C38, C44, C46, C56, C58, C59, C49, C53, C60, C64, and C68 were identified as the reference compounds [11,13].

C27 has a RT at 30.773 min, [M+HCOO]− at m/z 671.2155 in MS (predicted formula: C29H38O15: ppm error: −5.66), and characteristic fragment ions at m/z 625.2079 (−46 Da) [M-H], m/z 463.1589 [M-162-H], and m/z 301.1108 [M-162-162-H] in MS^2. The neutral loss is mass 46 Da (CH2O2; identified as HCOOH), 162 Da*2 (C6H10O5; identified as glucopyranoside), and the fragment ion m/z 301.1108 [M-162-162-H] in MS^2. Then C27 was identified as astraisoflavan-di-7-O-β-D-glucoside or its isomer. The [M+H]^+ or [M-H]^− of C24, C29, C30, and C41 shows the same neutral loss of −162 Da (C6H10O5; glucoside) in them MS^2, so both of them were identified as the glycosides [17–19]. The characteristic fragment ions of C31, C35, C43, C42, and C51 have a neutral loss of −248 Da (C9H12O8; identified as the 6''-O-malonate-glucoside) in them MS^2, so both of them were identified as glycosides of 6''-O-malonate-glucoside [13]. The HRM software predicted [M+H]^+ or [M-H]^− of C32, C40, C34, C47, and C18, whose formulas have the same characteristic fragment loss (−204 Da; C9H12O8) which was identified as 6''-O-acetylglucosides. In addition, C32, C40, C34, C47, and C18 were identified as glycosides of 6''-O-acetylglucoside [16].

For the predicted formulas of [M+H]^+ or [M-H]^−, we tentatively identified C39, C50, C62, C30, and C41 as the isoflavonoid-related constituents by referring to the literature [18,19], and C45, C55, C48, C52, C54, C61, and C65 were tentatively identified as being related to saponins [13,17–19].

Using the [M+H]^+, [M-H]^− or [M+Na]^+ data of C7, C8, C10, C12, C13, C14, C21, C25, C26, and C28, we predicted their formulas, which indicates that they are the ingredients of the samples. However, at this point, their exact structures could not be identified.
Table 2. The identified proposed compounds of the crude extract samples from Danggui Buxue Tang 1 and Danggui Buxue Tang 2 by HPLC-DAD-ESI-IT-TOF-MSn.

NO.	TR (min)	[M+H]+	[M−H]−	Predicted Formula	Fragment Ions Da	Error ppm	Identification	DBT1	DBT2
1	2.395	173.1044		C\textsubscript{6}H\textsubscript{14}N\textsubscript{4}O\textsubscript{2}	191,173	0.00	Arginine	C1	c1
2	2.692	195.0502		C\textsubscript{6}H\textsubscript{12}O\textsubscript{7}		−4.10	Gluconic acid	C2	c2
3	2.695	341.1074		C\textsubscript{12}H\textsubscript{22}O\textsubscript{11}		−4.40	D(+)sucrose	C3	c3
4	3.643	191.0187	191,173	C\textsubscript{6}H\textsubscript{12}O\textsubscript{7}		−5.24	Citric acid	C4	c4
5	4.477	328.0427		C\textsubscript{11}H\textsubscript{12}N\textsubscript{3}O\textsubscript{9}		1.22	--	C5	c5
6	6.480	346.0529		C\textsubscript{11}H\textsubscript{11}N\textsubscript{3}O\textsubscript{10}		3.47	--	C6	c6
7	9.063	433.1364	301,191	C\textsubscript{14}H\textsubscript{22}O\textsubscript{12}		4.91	--	C7	--
8	9.120	443.1146		C\textsubscript{14}H\textsubscript{22}O\textsubscript{12}		−3.16	--	C8	--
9	9.345	267.1369	267,225	C\textsubscript{10}H\textsubscript{11}NO\textsubscript{2}		−4.12	Magnolol	--	c8
10	9.398	433.1364	433,351,301,223	C\textsubscript{16}H\textsubscript{22}O\textsubscript{12}		2.77	--	--	--
11	10.773	188.0688	146	C\textsubscript{9}H\textsubscript{11}NO\textsubscript{2}		3.19	L-phenylalanine	C9	c9
12	11.125	431.1192	431,299	C\textsubscript{14}H\textsubscript{22}O\textsubscript{12}		−0.70	--	C10	--
13	12.653	384.1127		C\textsubscript{16}H\textsubscript{22}O\textsubscript{12}		−2.60	--	C11	c10
14	13.840	461.1283	461,167	C\textsubscript{16}H\textsubscript{22}O\textsubscript{13}		−3.90	--	C12	--
15	13.847	485.1224	485,317	C\textsubscript{20}H\textsubscript{22}O\textsubscript{8}		3.50	--	C13	--
16	17.807	205.0701		C\textsubscript{3}H\textsubscript{4}O\textsubscript{6}		−8.29	--	C14	--
17	21.147	315.2004		C\textsubscript{20}H\textsubscript{22}O\textsubscript{3}		12.06	--	C15	c14
18	21.207	433.1129	433,285	C\textsubscript{22}H\textsubscript{22}O\textsubscript{10}		−2.54	--	C16	c16
19	21.322	433.1121	433,285,241	C\textsubscript{22}H\textsubscript{22}O\textsubscript{10}		−4.39	--	C17	c15
20	22.020	417.1017	417,285,152	C\textsubscript{18}H\textsubscript{22}O\textsubscript{12}		−5.03	--	C18	--
21	23.080	389.2325	0.51	C\textsubscript{20}H\textsubscript{22}O\textsubscript{3}		--	--	C19	--
22	23.018	401.1445	401,269,161	C\textsubscript{16}H\textsubscript{22}O\textsubscript{10}		−1.99	--	--	--
23	23.590	503.1175	503,443,299	C\textsubscript{22}H\textsubscript{22}O\textsubscript{12}		−3.98	6''-O-acetyl-pratensein-7-O-β-D-glucoside	C18	--
24	24.347	239.0568	2.93	C\textsubscript{14}H\textsubscript{22}O\textsubscript{6}		--	--	--	--
NO.	T_R (min)	[M+H]$^+$	[M−H]$^−$	Predicted Formula	Fragment Ions Da	Error ppm	Identification	DBT1	DBT2
-----	------------	------------	------------	------------------	-----------------	-----------	---------------	------	------
25	25.662	331.2296		$C_{21}H_{30}O_3$	331,299	8.45	--	C20	--
26	26.743	470.1534		$C_{18}H_{23}N_5O_{10}$	3.40	--	C21	--	--
27	26.967	289.1747		$C_{13}H_{22}N_5O_3$	289,272,152	−3.80	--	C22	c17
28	30.653	479.1492	479,317	$C_{20}H_{23}O_6$	3.67	--	C26	--	--
29	30.773	$[M+HCOO]^- $	671.625,463,301	$C_{29}H_{38}O_{15}$	6.61	--	Astraisoflavan-di-7-O-β-D-glucoside	C27	--
30	31.005	579.2062	579,417,387	$C_{22}H_{24}O_{10}$	2.85	--	C28	--	--
31	31.348	445.1123	445,283	$C_{22}H_{24}O_{10}$	3.82	--	Glycetein-4'-O-β-D-glucoside	C29	--
32	32.078	463.1203		$C_{22}H_{24}O_{11}$	6.91	--	Kaempferide-7-O-β-D-glucoside	C30	--
33	32.662	533.1267		$C_{22}H_{24}O_{13}$	4.31	--	6''-O-malonate-kaempferide-7-O-β-D-glucoside	C31	--
34	34.207	489.1398	489,285	$C_{22}H_{24}O_{11}$	1.43	--	6''-O-acetyl-calyosin-7-O-β-D-glucoside	C32	--
35	34.517	431.1322	431,269,237,118	$C_{22}H_{24}O_{9}$	−3.48	--	Ononin	C33	c18
36	35.348	489.1340	489,285,271,159	$C_{23}H_{26}O_{11}$	12.68	--	6''-O-acetyl-isosakuranetin-7-O-β-D-glucoside	C34	--
37	35.580	549.1174	549,301	$C_{23}H_{28}O_{14}$	11.84	--	6''-O-malonate-kaempferide-7-O-β-D-glucoside	C35	--
38	36.027	463.1615	485(+Na$^+$),463,301	$C_{23}H_{28}O_{10}$	3.45	--	Astrapterocarpan-7-O-β-D-glucopyranoside	C36	--
39	36.773	463.1577	463,301	$C_{23}H_{28}O_{10}$	−7.13	--	Astrapterocarpan-7-O-β-D-glucopyranoside	C37	--
40	37.480	255.0657	255,135	$C_{19}H_{28}O_{4}$	−2.35	--	Isoliquiritigenin	c19	--
41	38.035	285.0744	285,270,225,137	$C_{19}H_{28}O_{3}$	−4.91	--	Calycosin	C38	c20
42	39.917	269.0807	269,253,227	$C_{19}H_{18}O_{4}$	−4.46	--	Isomer of alpinetin	c21	--
43	39.977	255.0657	255,237	$C_{19}H_{28}O_{4}$	−2.35	--	Liquiritigenin	c22	--
44	38.653	315.0844		$C_{19}H_{18}O_{6}$	−6.03	--	4-methoxy-maackiain or the isomer	C39	--
45	38.653	473.1445		$C_{20}H_{24}O_{10}$	0.63	--	The isomer of 6''-O-acetyl-ononin	C40	--
46	38.773	447.1264		$C_{20}H_{24}O_{10}$	−4.92	--	Glycetein-7-O-β-D-glucoside	C41	--
47	38.977	549.1545	549,301	$C_{20}H_{24}O_{13}$	10.56	--	6''-O-malonate-astrapterocarpan-glucoside	C42	--
48	39.452	517.1301	517,269	$C_{20}H_{24}O_{12}$	−7.73	--	6''-O-malonate-ononin	C43	--
49	39.683	505.1699	505,301	$C_{20}H_{24}O_{11}$	−3.17	--	6''-O-acetyl-astrapterocarpan-7-O-β-D-glucoside	C44	--
Table 2. Cont.

NO.	TR (min)	[M+H]^+	[M−H]−	Predicted Formula	Fragment Ions Da	Error ppm	Identification	DBT1	DBT2	
50	39.745	957.5030	957,541,453	C_{48}H_{78}O_{19}	-3.66	Soyasaponin Ba	C45	c23		
51	40.138	473.1424	473,269	C_{24}H_{24}O_{10}	-3.80	6"-O-acetyl-ononin	C46	--		
52	40.903	927.4915	-4.74	Akebia saponin D	--	--	c24			
53	40.430	503.1154	503,299	C_{24}H_{24}O_{12}	-8.15	6"-O-acetyl-kaempferide-7-O-β-D-glucoside	C47	--		
54	40.825	785.4629	-8.15	Cycloanthoside E	--	--	C48			
55	41.108	991.5086	-3.33	Astragaloside V	--	--	C49			
56	41.273	285.0751	285,194,109	C_{18}H_{14}O_{3}	-5.96	Isomer of isosakuranetin	--	c25		
57	41.772	269.0456	269,237	C_{18}H_{16}O_{3}	0.37	Genistein	--	c26		
58	41.778	315.0868	315,253	C_{18}H_{16}O_{6}	-1.90	Astragalolquinone or isomer	C50	--		
59	41.950	533.1243	533,285	C_{25}H_{20}O_{13}	-8.82	6"-O-malonate-glycetein-7-O-β-D-glucoside	C51	--		
60	42.062	867.4635	871,825	C_{18}H_{20}O_{15}	-13.33	Isoastragaloside I	C52	--		
61	42.243	283.0602	283,268,224	C_{18}H_{16}O_{4}	-3.53	Glycetein	--	c27		
62	42.612	829.4572	825,4532	C_{18}H_{20}O_{14}	-2.29	Astragaloside IV	C53	--		
63	42.560	825.4532	871,825	C_{18}H_{20}O_{13}	-13.33	Isoastragaloside II	C54	--		
64	42.965	329.2319	329,319	C_{18}H_{16}O_{4}	-4.25	--	--	c28		
65	43.197	955.4857	955,4857	C_{48}H_{36}O_{19}	-5.34	--	--	c29		
66	44.690	287.0577	287,057	C_{18}H_{12}O_{6}	5.57	Dihydro-kaempferol	--	c30		
67	44.982	255.0649	256,135	C_{18}H_{12}O_{4}	-5.49	Isomer of Liquiritigenin	--	c31		
68	45.315	269.0791	269,254,237,118	C_{18}H_{20}O_{4}	-6.32	Formononetin	C56	c32		
69	44.190	941.5081	941,525,437	C_{48}H_{36}O_{13}	-3.61	Soyasaponin Bb	C55	c35		
70	45.745	299.0911	299,284,166	C_{18}H_{12}O_{3}	10.33	Pterocarpan	--	c33		
71	45.935	329.2299	329,2299	C_{18}H_{12}O_{3}	-10.33	--	--	C57		
72	46.080	283.0599	283,255,240	C_{18}H_{12}O_{3}	-4.59	The isomer of glycetein	--	c34		
73	46.158	301.1052	301,1052	C_{18}H_{12}O_{3}	-6.31	Astraoptercarpan	C58	--		
NO.	T_R (min)	[M+H]⁺	[M−H][−]	Predicted Formula	Fragment ions Da	Error ppm	Identification	DBT₁	DBT₂	
-----	-----------------	-----------------	-----------------	------------------	------------------	-----------	----------------	-------------	-------------	
74	46.708	303.1181								
75	46.768	[M+HCOO][−]	871.4656	C₄₃H₇₀O₁₅	871,825,603	−4.70	Astragaloside II	C60	--	
76	47.172	[M+HCOO][−]	911.4668	C₄₅H₇₀O₁₆	955,911	2.41		C61	--	
77	47.772		299.0552	C₁₀H₁₂O₆		−3.01	Kaempferide or isomer	--	c36	
78	47.943		909.4836	C₄₃H₇₀O₁₇		−1.87	Acetylastragaloside	--	c37	
79	48.347	[M+HCOO][−]	911.5011	C₄₆H₇₄O₁₅			Castaraleside H	--	c38	
80	49.432		285.0423	C₁₃H₁₀O₆	285,163	6.31	Kaempferol or isomer	C62	--	
81	50.065		939.4925	C₄₈H₇₈O₁₈		−3.62		--	c39	
82	50.435	285.0748		C₁₃H₁₂O₃	285,253,152	−3.51	Isomer of calycosin	--	c40	
83	50.667	335.2180	[M+Na]⁺	C₁₃H₂₂O₄		−3.88		--	C63	c41
84	50.713	[M+HCOO][−]	913.4777	C₄₆H₇₂O₁₆		−2.74	Astragaloside I	C64	--	
85	51.560		193.1212	C₁₃H₁₂O₂		−5.70	Senkyunolide A	--	c42	
86	51.607	[M+HCOO][−]	953.4637	C₄₆H₇₂O₁₇	953,909	−12.06		--	C65	--
87	52.363	437.3374	[M+Na]⁺	C₂₈H₄₆O₂		−3.66		--	C66	--
88	55.212	191.1043		C₁₃H₁₄O₂		−12.56	n-butyl-phthalide	--	c43	
89	59.250	213.0876	[M+Na]⁺	C₁₃H₁₄O₂	403,213	−4.69	Z-ligustilide	C67	c44	
90	61.708	403.1867	[2M+Na]⁺	C₁₆H₂₄O₂	403,381,191	−3.22	E-ligustilide	C68	c45	
91	69.093	283.0257		C₁₃H₁₆O₆	283,203,147	3.18		C69	c46	
2.3.2. Identification of the Chemical Profiles of DBT2 by HPLC-DAD-ESI-IT-TOF-MSn

The HRMS data of these identified compounds are summarized (see Table 2 and Supplementary: pages S36–S51). The BPCs detected in NI and PI modes were recorded (see Figure 3b).

Using their fragment ions and retention times in MS data, c18, c20, c32, c44, and c45 were identified as the reference compounds [11,13].

Based the MS data, c12 shows RT at 21.207 min, [M-H]\(^-\) at m/z 433.1129 in MS (predicted the formula: C\(_{21}\)H\(_{22}\)O\(_{10}\); ppm error: –2.54), and characteristic fragment ions at m/z 285.0744 (–148 Da; C\(_{5}\)H\(_{8}\)O\(_{5}\); identified as the ribonic acid) and predicted as C\(_{16}\)H\(_{14}\)O. Compound c12 was identified as the isomer of isosakuranetin-ribonic acid. Moreover, c13 shows a characteristic neutral loss at –148 Da (C\(_{16}\)H\(_{14}\)O) with the same as c12 [16].

By the formulas predicted of [M-H]\(^-\) or [M+H]\(^+\) and referring to literature [13,17–19], c23, c24, c29, c35, c38, and c39 were tentatively identified as saponin-related constituents, and c7, c8, c11, c19, c21, c22, c25, c26, c27, c31, c33, c34, c36, c40, and c43 were tentatively identified (see in Table 2).

By using the HRMS data (RT, Predicted the formulas and characteristic fragment ions) compared with the BDT1 crude extract samples, C1, c1, C2, c2; C3, c3; C4, c4; and C9, c9 were identified as the same constituents [17–19].

Figure 3. (a) The BPC in NI and PI mode of the crude extracts of Danggui Buxue Tang 1 (RA:RAS = 5:1). (b) The BPC in NI and PI mode of the crude extracts of Danggui Buxue Tang2 (RH:RAS = 5:1). (c) The BPC in NI and PI mode of the urine samples of rats that had been administrated the Danggui Buxue Tang 1 (RA:RAS = 5:1) and (d) The BPC in NI and PI mode of the urine samples of rats had been administrated the Danggui Buxue Tang 2 (RH:RAS = 5:1).
The groups of C5, c5; C6, c6; C11, c10; C15, c14; C16, c16; C17, c15; C22, c17; C57, c28; C63, c41; and C69, c46 between DBT1 and DBT2 were tentatively identified as the same compounds with uncertain structures.

From the analysis based on the comparison of TIC and MS: 69 compounds (C1–C69) were identified from the crude extracts of DBT1, 46 compounds (c1–c46) were identified from the crude extracts of DBT2. The isoflavonoids glycosides had experienced acetylation (seven compounds, C18, C32, C34, C40, C44, C46, and C47), formed the malonate acid esters (five compounds, C31, C35, C42, C43, and C51) and with special astragalosides (six compounds, C49, C52, C53, C54, C60, and C64) in DBT1. Thus, the number of identified components in DBT1 was significantly more than in DBT2 (the chemical structural diversity of isoflavonoids which were detected in DBT1 more than in DBT2 are shown in Figure 4). Among these, the 24 common chemical constituents accounted for approximately 27% to the total 91 identified compounds. However, and the proportion of the total isoflavonoids and saponins to the total identified ingredients accounted for nearly 62% (see Table 3).

Figure 4. The chemical structures of the main proposed different isoflavonoids in Danggui Buxue Tang 1 more than Danggui Buxue Tang 2.
Table 3. The number comparison of the identified compounds between Danggui Buxue Tang 1 and Danggui Buxue Tang 2.

	N.	ID.	S-ID.	T.ID.	S%	H + S	S%
DBT1		69	24	115–24 = 91	26.37	56	61.54
DBT2		46					
DBT1-U		44	19	78–19 = 59	32.20	48	81.35
DBT2-U		34					

ID. Total identified proposed compounds number; S-ID. Identified the common proposed compounds number between two Danggui Buxue Tangs; T.ID. Identified the unfamiliar proposed compounds number between two Danggui Buxue Tangs; H + S: The total isoflavones and the total saponins number; S% The ratio about the selective compounds in the total identified proposed compounds number.

2.4. Profiling and Identifying Chemical Profiles of the Urine Samples after Administration of the DBT1 and DBT2 Performed by HPLC-DAD-ESI-IT-TOF-MS

In the study of the existing literature, ingredients such as isoflavones, saponins in the two DBTs had no obvious differences in chemical profiles between the serum and bile samples collected from enterohepatic circulation. In addition, they had a lower concentration in serum samples, even when giving at dosages of 60–120 g/kg (w/w) several times to rats within 24 h [13,17,20]. Thus, this approach is not conducive to tracing these minor components. This study chose the normal usage of 10 g/kg (w/w) by comparing the urine samples of rats that were administrated two different DBTs, so as to improve the detection through enrichment of the treatments.

2.4.1. Identification of the Chemical Profiles of Urine Sample after Administration of the DBT1 by HPLC-DAD-ESI-IT-TOF-MS

The HRMS data of these identified metabolites are summarized (see Table 4 and Supplementary: pages S52–S66). The BPCs detected in NI mode were recorded (see Figure 3c). In addition, the main proposed structures of these metabolites identified from the urine samples of rats that had been administrated DBT1 were showed (see Figure 5).

Using MS data with the reference compounds, M15 was identified as calycosin, and M23 was identified as formononetin [11,13].

With the predictions of [M-H]− or [M+HCOO]−, and the characteristic fragment ions, M9, M7, M19, M8, M10, M11, M13, M14, M22, M16, M18, M20, M21, M24, M32, and M36 were tentatively identified as the metabolites of isoflavonoids [13,17–19,21].

M25 shows RT at 46.290 min, [M+H]+ at m/z 335.0201 in MS (predicted formula: C15H10O7S: ppm error: −5.67), and characteristic fragment ions at m/z 255.0637 (−80 Da; SO3; identified as the sulfonyl hydroxide) and predicted as C15H10O4. Then M25 was identified as daidzein after sulfation. M27, M26, M34, M28, M29, M30, M31, M33, M35, M37, M38, M43, and M44 have the same neutral loss of −80 Da, which was identified as the sulfonyl hydroxide (SO3), so they were identified as the sulfated products [13,16].

When predicting their formulas, M39, M41, and M42 were identified as related metabolites of saponins [13,17].
Table 4. The identified proposed metabolites from the urine samples of rats that had been administrated Danggui Buxue Tang 1 and Danggui Buxue Tang 2.

NO.	T_R (min)	[M+H]$^+$	[M-H]$^-$	Predicted Formula	Fragment Ions	Error ppm	Identification	DBT1	DBT2
1	4.132	287.0065	286.0065	C$_{10}$H$_{8}$O$_{10}$	6.97	--	--	M1	m1
2	28.200	231.0768	230.0768	C$_{12}$H$_{12}$N$_{2}$O$_{3}$	63.231	-3.03	--	M2	m2
3	29.298	233.0115	232.0115	C$_{12}$H$_{12}$N$_{2}$O$_{2}$	233,169	4.29	--	M3	m3
4	29.298	337.1408	336.1408	C$_{16}$H$_{12}$N$_{2}$O$_{6}$	337,253	0.89	--	M4	m4
5	31.083	268.1164	267.1164	C$_{13}$H$_{17}$NO$_{5}$	-4.89	--	--	m5	
6	31.338	275.0209	274.0209	C$_{13}$H$_{19}$O$_{7}$	275,195	4.36	--	M5	m6
7	32.927	273.0056	273.0056	C$_{13}$H$_{20}$O$_{7}$	273,193	5.49	--	M6	m7
8	33.038	271.0585	270.0585	C$_{13}$H$_{10}$O$_{3}$	-5.90	--	Hydroxydaidzein	M7	--
9	34.518	475.1244	474.1244	C$_{22}$H$_{22}$O$_{15}$	475,267	-0.42	Isomer of ononin	--	m8
10	36.155	303.0863	302.0863	C$_{13}$H$_{19}$O$_{6}$	303,151	-3.63	Hydroxycalycosin, direduction(C$_2$=C$_3$; C$_4$=O)	M8	--
11	36.705	253.0492	252.0492	C$_{13}$H$_{19}$O$_{4}$	-5.53	--	Daidzein	M9	m9
12	36.808	477.1372	476.1372	C$_{23}$H$_{26}$O$_{12}$	477,301	-6.29	Astraisoflavan, glucuronidation	M10	--
13	36.868	255.0662	254.0662	C$_{13}$H$_{12}$O$_{4}$	255,194	-0.39	Daidzein, reduction(C$_2$=C$_3$)	M11	m10
14	37.255	385.1478	384.1478	C$_{13}$H$_{12}$O$_{4}$	-3.89	--	Hydrodiguistilide, glucuronidation	M12	--
15	37.442	255.0655	254.0655	C$_{13}$H$_{12}$O$_{4}$	-3.14	--	Daidzein, reduction(C$_4$=O)	--	m11
16	37.502	285.0751	284.0751	C$_{13}$H$_{12}$O$_{4}$	285,269,149	-5.96	Calycosin, reduction(C$_2$=C$_3$)	M13	m12
17	37.195	257.0809	256.0809	C$_{13}$H$_{12}$O$_{4}$	-3.89	--	Daidzein, direduction(C$_2$=C$_3$; C$_4$=O)	M14	--
18	38.033	283.0608	282.0608	C$_{13}$H$_{12}$O$_{3}$	283,268	-1.41	Calycosin	M15	m13
19	38.362	285.0751	285.0751	C$_{13}$H$_{12}$O$_{4}$	285,270	-5.96	Calycosin, reduction(C$_4$=O)	M16	--
20	39.047	273.0761	272.0761	C$_{13}$H$_{12}$O$_{4}$	273,240,109	-2.56	Hydroxydaidzein, direduction (C$_2$=C$_3$; C$_4$=O)	--	m14
21	39.367	233.0098	232.0098	C$_{13}$H$_{12}$N$_{2}$O$_{2}$	-3.00	--	--	M17	m15
22	40.260	363.0748	362.0748	C$_{13}$H$_{12}$O$_{4}$	7.16	--	Dihydroxycalycosin, reduction(C$_2$=C$_3$)	M18	--
NO.	\(T_R\) (min)	\([\text{M+H}]^+\)	\([\text{M-H}]^-\)	Predicted Formula	Fragment Ions	Error ppm	Identification	DBT1	DBT2
-----	----------------	-----------------	-----------------	-----------------	---------------	----------	----------------	------	------
23	41.630	283.0609	283,268,224	-1.06	Isomer of calycosin	m16			
24	41.755	269.0441	283,268,224	-5.20	Hydroxydaidzein	M19	--		
25	42.180	283.0603	283,268,224	-3.18	Isomer of calycosin	-- m17			
26	42.365	299.0554	299,284	-2.34	Hydroxycalycosin, or isomer	M20	--		
27	42.923	299.0556	299,284	-1.67	Hydroxycalycosin	M21	--		
28	44.315	257.0819	16H14O4	0.00	Isoliquiritigenin, reduction(C=C)	M20 m18			
29	45.322	269.0796	269,253,237	-4.46	Formononetin	M23	m19		
30	45.733	269.0804	269,254,135	-5.57	Formononetin, reduction(C\(^2\)=C\(^3\))	M24 m20			
31	46.290	335.0201	C16H12O7S	335,257	Daidzein, sulfation	M25 m21			
32	47.775	299.0556	299,256	-1.67	Hydroxycalycosin	-- m22			
33	47.862	363.0174	363,268	-1.65	Calycosin, sulfation	M26	--		
34	47.922	333.0059	333,253,225	-4.50	Daidzein, sulfation	M27	--		
35	48.747	365.0347	365,285	2.74	Calycosin, reduction(C\(^2\)=C\(^3\)), sulfation	M29	--		
36	49.072	333.0056	333,253,208	-5.41	Daidzein, sulfation	-- m23			
37	49.543	333.0059	333,253	-4.50	Isomer of daidzein, sulfation	-- m24			
38	49.193	365.0360	365,285	6.30	Calycosin, reduction(C\(^2\)=C\(^3\)), sulfation	M30	--		
39	49.810	349.0033	349,269,225	2.58	Hydroxydaidzein, sulfation	M28 m25			
40	49.623	351.0187	351,271,149	1.99	Hydroxydaidzein, reduction(C\(^2\)=C\(^3\)), sulfation	M31	--		
41	50.325	337.0395	337,257	2.37	Daidzein, direduction(C\(^2\)=C\(^3\); C\(^4\)=O), sulfation	-- m27			
42	50.467	283.0595	283,268	-6.01	Isomer of calycosin	M32	--		
43	50.973	367.0483	367,272,150	-2.72	Calycosin, direduction(C\(^2\)=C\(^3\); C\(^4\)=O), sulfation	M33	--		
44	51.515	363.0180	363,283	0.00	Calycosin, sulfation	M34 m26			
45	52.563	335.0250	335,255,135	5.67	Daidzein, reduction(C\(^2\)=C\(^3\)), sulfation	M35	--		
Table 4. Cont.

NO.	T_r (min)	[M+H]⁺	[M-H][−]	Predicted Formula	Fragment Ions	Error ppm	Identification	DBT1	DBT2
46	53.637	343.0835		C₁₈H₁₆O₇	351,271	3.50	--	M36	--
47	55.693	351.0172		C₁₅H₁₂O₈S	351,271	−2.28	Hydroxydaidzein, reduction(C²=C³), sulfation	--	m28
48	55.165	321.0417		C₁₅H₁₂O₇S	321,241	−6.54	Equol, sulfation	M37	m29
49	59.468	337.0388		C₁₅H₁₄O₆S	337,257,243	0.30	Daidzein, direduction(C²=C³; C⁴=O), sulfation	M38	--
50	59.728	619.3669	[M+Na]⁺	C₁₆H₁₅O₇		10.33	Related to astragaloside	--	m30
51	61.838	683.4277		C₁₆H₁₄O₁₁		−9.57	Related to astragaloside	M39	--
52	62.002	639.4061		C₁₆H₁₅O₁₀		−6.57	Related to astragaloside	M40	--
53	62.113	595.3742		C₁₆H₁₄O₈		−16.63	Related to astragaloside	M41	m31
54	63.292	509.3599		C₁₆H₁₃O₈		−7.26	Related to astragaloside	--	m32
55	62.414	507.3296		C₁₆H₁₄O₇		−3.94	Related to astragaloside	M42	--
56	71.557	353.0324		C₁₆H₁₄O₈S	353,273	−3.68	Hydroxydaidzein, direduction(C²=C³; C⁴=O) sulfation	M43	--
57	71.557	397.0250		C₁₆H₁₄O₁₀S	397,317	3.78	Dihydroxycalycosin, reduction(C²=C³) sulfation	M44	--
58	72.797	363.0197		C₁₆H₁₄O₈S	363,283	4.68	Calycosin, sulfation	--	m33
59	73.543	347.0213		C₁₆H₁₄O₇S	347,267	−5.19	Formononetin, sulfation	--	m34
Figure 5. The main proposed metabolites identified from the urine samples of rats that had been administrated Danggui Buxue Tang 1.

2.4.2. Identification of the Chemical Profiles of Urine Sample after Administration of the DBT2 by HPLC-DAD-ESI-IT-TOF-MS

The HRMS data of these identified metabolites are summarized (see Table 4 and Supplementary: pages S67–S77). The BPCs detected in NI model were recorded (see in Figure 3d). The main proposed structures of metabolites identified from the urine samples of rats that had been administrated DBT2 were showed (see Figure 6).

The MS data of m_{13}, and m_{19} show that they are the reference compounds. In addition, m_{13} was identified as calycosin, and m_{19} was identified as formononetin [11,13].

Moreover, m_{8} has a RT at 34.518 min, [M+HCOO] at m/z 475.1244 in MS (predicted formula: C$_{22}$H$_{22}$O$_{9}$; ppm error: −0.42), and characteristic fragment ions at m/z 267.0656 that are predicted as C$_{16}$H$_{12}$O$_{4}$, the neutral loss is 46 Da (HCOOH) + 162 Da (C$_{6}$H$_{10}$O$_{5}$; identified as glucoside). Thus, m_{8} was identified as the isomer of ononin [13].

In their MS and MS2 Data, m_{21}, m_{23}, m_{22}, m_{24}, m_{25}, m_{26}, m_{33}, m_{27}, m_{28}, m_{29}, and m_{34} have the same neutral loss of −80 Da, which was predicted as the sulfonyl hydroxide (SO$_{3}$), so they were identified as the sulfated products [13,16].
Figure 6. The main proposed metabolites identified from the urine samples of rats that had been administrated Danggui Buxue Tang 2.

By the MS data of [M-H]− or [M+HCOO]− and the characteristic fragment ions, m9, m10, m11, m12, m14, m16, m17, m18, and m20 were identified as the metabolites of isoflavonoids [13–15,17,18,21]. Using their predictions of [M+Na] + or [M+H] +, m30, m31, and m32 were tentatively identified as saponin-related metabolites [13,17].

Between DBT1 and DBT2, the groups M1, m1; M2, m2; M3, m3; M4, m4; M5, m6; M6, m7; and M15, m17 were identified as the same compounds, respectively.

In this part of the experiment, decoctions of DBT1 and DBT2 were administered to rats, and an analysis was conducted on the rats’ urine for metabolites: 44 compounds (M1–M44) were identified from the urine samples after DBT1 was administrated, 34 compounds (m1–m34) were identified from the urine samples after DBT2 was administrated. The number of the chemical components in the urine samples from DBT1 was administrated to rats are slightly more than these of DBT2. The proportion of the 19 common constituents to the total 59 identified compounds accounted for approximately 33%. The proportion of 48 total isoflavonoids and saponins to the total identified compounds, however, reached approximately 82% (See Table 3).

The phase II metabolites from the urine samples of DBT1 and DBT2 were dominantly sulfated products, with rare or no glucuronide metabolites. This result still requires further research as the literature reports the chief presence of mainly glucuronide metabolites [13–16]. Metabolites that originated from RAS are relatively rare or not detected. This is likely due to the low proportion of RAS in DBT and even the low dosage that was given to rats in this study, those chemical constituents of RAS being easy to volatilize, or a loss when sampling was conducted by concentrated processes [22,23]. At this normal dosage of DBT and due to poor absorption, the content levels of astragalosides are
much lower. In addition, saponins and their metabolites that originated from astragalosides are rarely detected [24–27].

The HPLC-DAD-ESI-IT-TOF-MS method adopted in our research was confirmed to be a powerful method to evaluate the chemical profiles of the crude extracts and the related urine samples. As we know, the chemical composition found in a Chinese herbal decoction is rather complicated. In this study, the chemical profile analysis of DBT1 and DBT2 was conducted, which provided a comprehensive understanding of that those isoflavonoids that play an important role in the main common chemical basis when they are used in clinical practice. Some identified metabolites are known to have many bioactivities, such as calycosin, formononetin, daidzein and equol (which are well-known phytoestrogens), and most of them displayed many beneficial effects to humans [28–30].

Through the comparison of chemical profiles of two DBTs at our used normal dosage, the similarity of urine samples is higher than that of the crude extract samples. This leads us to believe that the main chemical basis of the chemical constituents is almost the same. Whether the DBT2 of RH:RAS can replace the DBT1 of RA:RAS, we need to further investigate different ratios of RH:RAS with the RA:RAS (5:1) when using equivalent pharmacological research.

3. Experimental

3.1. Materials and Reagents

Radix Astragali was collected from Shanxi Province (Voucher No. 130401, Specimen No. 1167), Radix Hedysari was collected from Neimeng Province (Voucher No. 130401, Specimen No. 1168) and Radix Angelica sinensis was collected from Gansu Province (Voucher No. 130401, Specimen No. 1169). All of those medicinal materials were purchased from Guangzhou Zixing Herbal Company in Guangzhou at June in 2013 by Liu Jing and they are identified by Prof. Chen Hu-Biao. The following reference compounds: (6αR,11αR)-3-hydroxy-9,10-dimethoxypterocarpan (astrapterocarpan), ononin, formononetin, 6''-O-acetyl-ononin, calycosin, ferulic acid, (3R)-7,2'-dihydroxy-3',4'-dimethoxyisoflavan (astraisolavan), calycosin-7-O-β-D-glucoside, astrappterocarpan-7-O-β-D-glucoside, Z-ligustilide, E-ligustilide, astrapaloside I, astrapaloside II, astrapaloside III, astrapaloside IV, astrapaloside V, astraisolavan-7-O-β-D-glucoside and 6''-O-acetyl-astraisolavan-7-O-β-D-glucoside were prepared and identified in our preliminary work [10–14]. Acetonitrile (Merck Co., Darmstadt, Germany) and formic acid (Mreda Technology Inc., Beijing, China) were of HPLC grade. Ultra-pure water was prepared by a Milli-Q water purification system (Millipore, Billerica, MA, USA).

3.2. Sample Preparation

In clinical use, DBT is typically boiled with water twice, then the two decoctions are combined and applied [1]. Therefore, in our study, DBT1, consisting of RA 100 g and RAS 20 g was boiled in 1,000 mL of water (w:v) for 45 min, and then the decoction was filtered. The residue was again boiled in 700 mL of water (w:v) for 30 min. The two decoctions were evaporated to dryness under reduced pressure at 50 °C to 100 mL volume. Samples of DBT2, consisting of RH 100 g and RAS 20 g, were prepared in the same way.
3.3. Animals and Administration

12 male Sprague-Dawley (SD) rats (220–250 g) were provided by the Experimental Animal Center of Peking University Health Science Center (Beijing, China) and divided into two groups. They were housed in metabolic cages (Type: DXL-DL, Suzhou Fengshi Laboratory Animal Equipment Co. Ltd., Suzhou, China), and kept in an environmentally controlled breeding room for one-week acclimation. Throughout the experiments, rats had unrestricted access to laboratory chow and water. The DBT1 and DBT2 were administrated by oral at a dose of raw medicinal material 10 g/kg body weight once a day (at 17:30 pm) respectively. Totally for 2 days. All procedures used in the animal experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals of the US National Institute of Health. The experiments were reviewed by the Biomedical Ethical Committee of Peking University (Approval No. LA2013-193).

3.4. Urine Sample Collection and Pretreatment

Urine samples in each group (n = 6) were collected during the first 48 h after administration of the drugs began (Blank urine collected by self-control); Finally, all urine samples from the same group were merged into one sample, then dried under vacuum at 50 °C using a Heidolph Laborota 4001 rotary evaporator (Heidolph Instruments GmbH & Co., Schwabach, Germany), and then 1.00 g of the dried samples were reconstituted in 10 mL methanol, followed by 30 min ultrasonic extraction and 15 min centrifugation at 5,000 rpm. Afterward, the supernatant was collected for detection.

3.5. Instrumentations and Conditions

HPLC analysis was performed on a Shimadzu HPLC (Shimadzu, Kyoto, Japan) equipped with two LC-20AD pumps, aCTO-20A column oven, an SIL-20AC autosampler, an SPD-M20A PDA detector and a CBM-20A system controller. The chromatographic separation was carried out on a Phenomenex Gemini C18 column (250 × 4.6 mm, 5 μM) protected with a Phenomenex Security Guard column (4 × 3.0 mm, 5 μM) (Phenomenex, Torrance, CA, USA). For each sample, an aliquot of 20 μL was injected with needle wash. The thermostatted auto-sampler was maintained at 15 °C; column oven temperature was kept at 30 °C. The column was eluted with a gradient mobile phase consisted of water-formic acid (100:0.1, v/v) (A) and acetonitrile (B) at the flow rate of 1.0000 mL/min. Gradient program was adopted in the following manner: 5% B at 0–10 min, 5%–15% B at 10–20 min, 15%–40% B at 20–40 min, 40%–65% B at 40–55 min, 65%–100% B at 55–65 min, 100% B at 65–75 min, 5% B at 75–85 min.

High resolution mass spectra were recorded on an IT-TOF mass spectrometer (Shimadzu). The ESI source was operated both in negative and positive ion mode. The mass spectrometry was programmed to carry out full scan over m/z 100–1000 Da (MS1), m/z 50–1000 Da (MS2 and MS3). A trifluoroacetic acid sodium solution (2.5 mM) was used to calibrate the mass range from 50 to 1000 Da. The other parameters were set as follows: flow rate, 0.20 mL/min (split from 1.00 mL/min HPLC effluent); heat block and curved desolvation line temperature, 200 °C; nebulizing nitrogen gas flow, 1.5 L/min; interface voltage: (+), 4.5 kV; (−), −3.5 kV; detector voltage, 1.70 kV; relative collision-induced dissociation energy (50%) [15].
3.6. Data Analysis

All data were recorded and processed by Shimadzu software LCMS solution version 3.60, Formula Predictor version 1.2 and Accurate Mass Calculator (Shimadzu).

4. Conclusions

A comparison was conducted on the similarities and differences of crude extracts and urine samples of DBT1 and DBT2. The chemical profiles of the crude extracts comprised a total of 115 proposed chemical components. There were 24 common ingredients, which was accounted for 27% in the total 91 identified components. There were a total of 56 isoflavonoids and saponins identified, which accounted for nearly 62% in the total identified components. Since isoflavonoid glycosides had acetylation (C18, C32, C34, C40, C44, C46, and C47), the formation of malonate acid esters (C31, C35, C43, C42, and C51) and special astragalosides (C49, C52, C53, C54, C60, and C64) in DBT1, the identified compounds from DBT1 were significantly greater than DBT2. Of these, C18, C34, C35, C42, C47, and C51 were identified from DBT for the first time.

In total, 78 proposed chemical components in the urine samples of rats that had been administrated DBT1 and DBT2, respectively, were found. These included 19 common ingredients, which accounted for approximately 33% in the total identified constituents. In addition, 48 of total isoflavonoids and saponins were found, which accounted for nearly 82% of the total 59 identified components. The differences between those metabolites in the urine samples were revealed to be less than the crude extracts. These identified metabolites are mainly originated from formononetin, calycosin and their related glycosides, which are formed mainly through the metabolic processes of reduction, deglycosylation, demethylation, hydrogenation and sulfation. Through the comparison of chemical profiles of two DBTs at our used doses, the similarity of urine samples is higher than that of the crude extract samples, one can think the main chemical constituents are almost the same as when administrated to rats.

The HPLC-DAD-ESI-IT-TOF-MS method was successfully applied for the chemical profile comparison of two different DBTs and its related medicinal materials. The proposed assay provides an important reference and can be a suitable method for the rapid and accurate chemical basis evaluation of TCM or their related prescriptions.

Supplementary Materials

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/19/5/5650/s1.

Acknowledgements

This study was financially supported by Hong Kong Baptist University Faculty Research Foundation (Grant No. FRG2/12-13/058). We thank to Li Jun for HPLC-MS analysis in this work.
Authors Contributions

Ya-Zhou Zhang, who presided the research work, finished the data analysis, and written this paper; Feng Xu, The main works by the writer are the data analysis, and participated in the writing of this paper; Tao Yi, who participated in the design of research and modified the paper; Jian-Ye Zhang, who participated the research design, and the data analysis; Jun Xu, who participated in the research design, and modified the paper; Yi-Na Tang, who participated in the research design and data analysis; Xi-Chen He, who participated in the data analysis of LC-MS; Jing Liu, who participated in the experiment work; Hu-Biao Chen, who is providing fund for this research work, the design of the work and modified the paper.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Zhang, W.L.; Choi, R.C.; Zhan, J.Y.; Chen, J.P.; Luk, W.K.; Yao, P.; Dong, T.T.; Tsim, K.W. Can Hedysari Radix replace Astragali Radix in Danggui Buxue Tang, a Chinese herbal decoction for woman alment? *Phytomedicine* 2013, 20, 1076–1081.
2. Zheng, K.Y.Z.; Choi, R.C.Y.; Xie, H.Q.H.; Cheung, A.W.H.; Guo, A.J.Y.; Leung, K.W.; Chen, V.P.; Bi, C.W.C.; Zhu, K.Y.; Chan, G.K.L.; et al. The expression of erythropoietin triggered by Danggui Buxue Tang, a Chinese herbal decoction prepared from Radix Astragali and Radix Angelicae Sinensis, is mediated by the hypoxia-inducible factor in cultured HEK293T cells. *J. Ethnopharmacol.* 2010, 132, 259–267.
3. Yang, M.; Chan, G.C.F.; Deng, R.X.; Margaret, H.N.; Cheng, S.W.; Lau, C.P.; Ye J.Y.; Wang, L.J.; Liu, C. An herbal decoction of *Radix astragali* and *Radix angelicae sinensis* promotes hematopoiesis and thrombopoiesis. *J. Ethnopharmacol.* 2009, 124, 87–97.
4. Zhang, H.M.; Chen, S.W.; Deng, X.F.; Yang, X.G.; Huang, X. The effects of Danggui-Buxue-Tang on blood lipid and expression of genes related to foam cell formation in the early stage of atherosclerosis in diabetic GK rats. *Diabetes Res. Clin. Pr.* 2007, 77, 479–481.
5. Zhang, H.M.; Chen, S.W.; Deng, X.F.; Yang, X.G.; Huang, X. Danggui–Buxue–Tang decoction has an anti-inflammatory effect in diabetic atherosclerosis rat model. *Diabetes Res. Clin. Pr.* 2006, 74, 194–196.
6. Gao, J.; Huang, Y.; Li, P.; Xu, D.J.; Li, J.; Liu, Y.; Huang, Z.G.; Wu, Q.; Shao, X. Antifibrosis effects of total glucosides of Danggui-Buxue-Tang in a rat model of bleomycin-induced pulmonary fibrosis. *J. Ethnopharmacol.* 2011, 136, 21–26.
7. Xie, Q.F.; Xie, J.H.; Dong, T.T.X.; Su, J.Y.; Cai, D.K.; Chen, J.P.; Liu, L.F.; Li, Y.C.; Lai, X.P.; Tsim, K.W.K.; et al. Effect of a derived herbal recipe from an ancient Chinese formula, Danggui BuxueTang, on ovariectomized rats. *J. Ethnopharmacol.* 2012, 144, 567–575.
8. Gao, Q.T.; Choi, R.C.Y.; Cheung, A.W.H.; Zhu, J.T.T.; Li, J.; Chu, G.K.Y.; Duan, R.; Cheung, J.K.H.; Jiang, Z.Y.; Dong, X.B.; *et al*.. Danggui Buxue Tang-A Chinese herbal decoction
activates the phosphorylations of extracellular signal-regulated kinase and estrogen receptor a in cultured MCF-7 cells. *FEBS Lett.* **2007**, *581*, 233–240.

9. Gao, Q.T.; Cheung, J.K.H.; Li, J.; Jiang, Z.Y.; Chu, G.K.Y.; Duan, R.; Cheung, A.W.H.; Zhao, K.J.; Choi, R.C.Y.; Dong, T.T.X.; *et al.* A Chinese herbal decoction, Danggui Buxue Tang, activates extracellular signal-regulated kinase in cultured T-lymphocytes. *FEBS Lett.* **2007**, *581*, 5087–5093.

10. Li, W.Z.; Li, J.; Bi, C.W.; Cheung, A.W.; Huang, W.; Duan, R.; Choi, R.C.; Chen, I.S.; Zhao, K.J.; Dong, T.T.; *et al.* Can rhizoma chuanxiong replace Radix Angelica Sinensis in the traditional chinese herbal decoction Danggui Buxue Tang? *Planta Med.* **2009**, *75*, 602–606.

11. Zhang, Y.Z.; Xu, F.; Liang, J.; Tang, J.S.; Shang, M.Y.; Wang, X.; Cai, S.Q. Isoflavonoids from the roots of *Astragalus membranaceus* var. *Mongholicus*. Zhongguo Zhong Yao Za Zhi **2012**, *37*, 3243–3248.

12. Fan, L.L.; Yi, T.; Xu, F.; Zhang, Y.Z.; Zhang, J.Y.; Li, D.P.; Xie, Y.J.; Qin, S.D.; Chen, H.B. Characterization of flavonoids in the ethedicine fordiae cauliflorae radix and its adulterant milletiae pulchrae radix by HPLC-DAD-ESI-IT-TOF-MS. *Molecules* **2013**, *18*, 15134–15152.

13. Li, C.Y.; Qi, L.W.; Li, P. Correlative analysis of metabolite profiling of Danggui Buxue Tang in rat biological fluids by rapid resolution LC-TOF/MS. *J. Pharm. Biomed. Anal.* **2011**, *55*, 146–160.

14. Yi, L.Z.; Liang, Y.Z.; Wu, H.; Yuan, D.L. The analysis of Radix Angelicae Sinensis (Danggui). *J. Chromatogr. A* **2009**, *1216*, 1991–2001.

15. Polat, E.; Bedir, E.; Perrone, A.; Piacente, S.; Alankus-Caliskan, O. Triterpenoid saponins from *Astragalus wiedemannianus* Fischer. *Phytochemistry* **2010**, *71*, 658–662.

16. Zhang, Y.Z.; Xu, F.; Dong, J.; Liang, J.; Hashi, Y.; Shang, M.Y.; Yang, D.H.; Wang, X.; Cai, S.Q. Profiling and identification of the metabolites of calycosin in rat hepatic 9000 × g supernatant incubation system and the metabolites of calycosin-7-0-β-D-glucoside in rat urine by HPLC–DAD–ESI–IT–TOF–MS technique. *J. Pharm. Biomed. Anal.* **2012**, *70*, 425–439.

17. Wen, X.D.; Liu, E.H.; Yang, J.; Li, C.Y.; Gao, W.; Qi, L.W.; Wang, C.Z.; Yuan, C.S.; Li, P. Identification of metabolites of Buyang Huawu decoction in rat urine using liquid chromatography–quadrupole time-of-flight mass spectrometry. *J. Pharm. Biomed. Anal.* **2012**, *67*, 114–122.

18. Qi, L.W.; Cao, J.; Li, P.; Yu, Q.T.; Wen, X.D.; Wang, Y.X.; Li, C.Y.; Bao, K.D.; Ge, X.X.; Cheng, X.L. Qualitative and quantitative analysis of Radix Astragali products by fast high-performance liquid chromatography-diode array detection coupled with time-of-flight mass spectrometry through dynamic adjustment of fragmentor voltage. *J. Chromatogr. A* **2008**, *1203*, 27–35.

19. Liu, M.H.; Tong, X.; Wang, J.X.; Zou, W.; Cao, H.; Sua, W.W. Rapid separation and identification of multiple constituents in traditional Chinese medicine formula Shenqi Fuzheng Injection by ultra-fast liquid chromatography combined with quadrupole-time-of-flight mass spectrometry. *J. Pharm. Biomed. Anal.* **2013**, *74*, 141–155.

20. Liu, C.F.; Qiao, X.; Liu, K.D.; Miao, W.J.; Li, Y.J.; Liu, Y.; Jiang, Y.Y.; Bo, T.; Shi, R.B.; Guo, D.A.; *et al.* *In vivo* metabolites and plasma exposure of TongMai Keli analyzed by UHPLC/DAD/qTOF-MS and LC/MS/MS. *J. Ethnopharmacol.* **2013**, *145*, 509–516.
21. Qi, L.W.; Wen, X.D.; Cao, J.; Li, C.Y.; Li, P.; Yi, L.; Wang, Y.X.; Cheng, X.L.; Ge, X.X. Rapid and sensitive screening and characterization of phenolic acids, phthalides, saponins and isoflavonoids in Danggui Buxue Tang by rapid resolution liquid chromatography/diode-array detection coupled with time-of-flight mass spectrometry. *Rapid Commun. Mass Sp.* **2008**, *16*, 2493–509.

22. Wu, W.N.; McKown, L.A. *Optimization in Drug Discovery*; Humana Press: Totowa, NJ, USA, 2004; pp. 163–184.

23. Williams, C.A. Flavonoids: Chemistry, Biochemistry and Applications; Andersen, O.M., Markham, K.R., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 757–761.

24. Zuo, A.H.; Wang, L.; Xiao, H.B.; Li, L.M.; Liu, Y.H.; Yi, J.H. Identification of the absorbed components and metabolites in rat plasma after oral administration of Rhizoma Chuanxiong decoction by HPLC-ESI-MS/MS. *J. Pharm. Biomed. Anal.* **2011**, *56*, 1046–1056.

25. Lao, S.C.; Li, S.P.; Kelvin, K.W.; Kan, Li P.; Wan, J.B.; Wang, Y.T.; Dong, T.T.; Tsim, K.W. Identification and quantification of 13 components in *Angelica sinensis* (Danggui) by gas chromatography–mass spectrometry coupled with pressurized liquid extraction. *Anal. Chim. Acta* **2004**, *526*, 131–137.

26. Tanaka, K.; Tamura, T.; Fukuda, S.; Batkhuu, J.; Sanchir, C.; Komatsu, K. Quality evaluation of Astragali Radix using a multivariate statistical approach. *Phytochemistry* **2008**, *69*, 2081–2087.

27. Napolitano, A.; Akay, S.; Maria, A.; Bedir, E.; Pizza, C.; Piacente, S. An analytical approach based on ESI-MS, LC–MS and PCA for the quali-quantitative analysis of cycloartane derivatives in Astragalus spp. *J. Pharm. Biomed. Anal.* **2013**, *85*, 46–54.

28. Wen, X.D.; Qi, L.W.; Li, P.; Bao, K.D.; Yan, X.W.; Yi, L.; Li, C.Y. Simultaneous determination of calycosin-7-O-β-D-glucoside, ononin, astragaloside IV, astragaloside I and ferulic acid in rat plasma after oral administration of Danggui Buxue Tang extract for their pharmacokinetic studies by liquid chromatography-mass spectrometry. *J. Chromatogr. B* **2008**, *865*, 99–105.

29. Xu, F.; Zhang, Y.; Xiao, S.; Lu, X.; Yang, D.H.; Yang, X.; Li, C.; Shang, M.; Tu, P.; Cai, S. Absorption and metabolism of Astragali Radix decoction: *In silico*, *in vitro*, and a case study *in vivo*. *Drug Metab. Dispos.* **2006**, *34*, 913–924.

30. Yu, D.; Duan, Y.; Bao, Y.; Wei, C.; An, L. Isoflavonoids from Astragalus mongholicus protect PC12 cells from toxicity induced by L-glutamate. *J. Ethnopharmacol.* **2005**, *98*, 89–94.

Sample Availability: Samples of the compounds are available from the authors.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).