Effect of Feeding *Moringa oleifera* Leaf Meal with Multienzyme on Performance, Carcass Characteristics and Economics of Production of Broiler Chicks

M.S. Meel, T. Sharma, Monika Joshi, M.L. Gurjar, S.K. Sharma, Mamta Kumari

ABSTRACT

Background: Moringa leaves have wide range of medicinal value including antimicrobial property. Therefore, it could be an alternative of antibiotic growth promoters in poultry but the presence of phytate and other anti-nutrients can reduce the bioavailability of certain nutrients. Enzymes may reduce anti-nutrients effect, break down non-starch polysaccharides (NSPs), reduce intestinal viscosity and ultimately improve digestibility of nutrients by improving gut performance. An experiment was conducted to assess the effect of supplementation of *Moringa oleifera* leaf meal with multienzyme on the performance, carcass characteristics and economics of broiler chicks.

Methods: Day-old, 150 broiler chicks (Vencobb-400) were randomly allotted to five treatment groups. The T_c, i.e. control group was fed on basal diet, while, T₁, T₂, T₃, and T₄, treatment groups were supplemented with 0.5%, 1.0%, 1.5% and 2.0% of moringa leaf meal in combination with multienzyme @ 50g/100kg feed in the basal broiler starter and finisher ration, respectively.

Result: Body weight gain was higher (P<0.01) in broilers fed diet supplemented with 1.5% *Moringa oleifera* leaf meal (MOLM) and multienzyme at 3 or 6 weeks of age. The best feed conversion ratio (FCR) at the starter phase was recorded in the T₄ group and over the entire period of the trial T₄ treatment group had the best FCR. Significant increase in dressing yield percent and relative weight of giblet was observed in broilers fed diet with 1.5% level of moringa leaf meal and multienzyme. Supplementation of MOLM with multienzyme was profitable in terms of reduction in feed cost per kg gain. It was concluded that supplementation of *Moringa oleifera* leaf meal @ 1.5% with multienzyme at 50g/100Kg dose in the diet was effective in improving the performance and net profit in broiler chicks.

Key words: Broiler chicks, Carcass characteristics, Economics, *Moringa oleifera*, Multienzyme.

INTRODUCTION

Among various agriculture and allied farming, poultry farming is one of the most important economic components of the farmer’s economy because it provides eggs, meat, feathers and manure with little capital investment and fewer workforces (Najeeb *et al.*, 2014). In India, the poultry population has increased from 729.2 million to 851.81 million, an increase of almost 17 per cent as per 20th Livestock Census (DAHD, 2019). Antibiotics, since their discovery in the 1920s, have played a critical role in contributing to the economic effectiveness of animal production as feed supplements at sub-therapeutic doses, to improve growth and feed conversion efficiency and to prevent infections (Castanon, 2007) but due to drug resistance problems associated with antibiotic use most researchers are seeking antibiotic alternatives and feed additives to promote growth and enhance the gut health of animals (Abbas, 2013). Moringa leaves have wide range of medicinal value including growth promotion and antimicrobial effect (Mbiakay, 2012). Several researches have showed Moringa leaf meal effects on broilers weight gain, feed conversion ratio and body weight (Olugbemi *et al.*, 2010) and egg production (Teteh *et al.*, 2016).

The price of feed ingredients is increasing consistently and now it has been a major constraint. As consequence cheaper and nonconventional feed ingredients have to be used which contain higher percentage of Non-Starch Polysaccharides (NPS) and antinutritive factors which reduced the efficiency of nutrient utilization. Enzymes break down NSPs, reduce intestinal viscosity and ultimately enhanced digestibility of nutrients by improving gut performance. The uses of a combination of various exogenous enzymes in broiler diets have shown a positive effect on the performance and economic production of broiler...
chicken (Yadava et al., 2009). Some enzymes have potential for use in the poultry feed include cellulase (β-glucanases), xylanases and associated enzymes, phytases, proteases, lipases and galactosidases. This alters the microflora profile in the small intestine, since enzymes affect the amount and form of the substrate present within the intestine, their use having a direct effect on the bacteria that make up the microfloral population. This leads to augmentation of endogenous digestive enzymes, which are either insufficient or absent in the bird, resulting in improved digestion. Kamble et al. (2007) observed that multienzymes with probiotic (0.75g/kg feed) supplementation results in better broiler performance and increased profit margin (Rs. 0.01-0.36 per bird). Therefore, the present study was carried out to evaluate the efficacy of supplementation of Moringa oleifera leaf meal with multienzyme on the growth performance, carcass characteristics and economics of production in broiler chicks.

MATERIALS AND METHODS

An experiment was conducted with broiler chicks during February - March, 2020 at the poultry farm of College of Veterinary and Animal Science, Navania, Vallabh Nagar, Udaipur. A total of 150, day old, unsexed and apparent healthy Vencobb-400 broilers chicks were procured from a commercial hatchery (Kewalramani Hatcheries Private Limited, Ajmer). The experimental broiler chicks were wing banded for identification and weighed individually before starting the experiment. The broiler chicks were divided randomly into 5 treatment groups (T1, T2, T3, T4 and T5) with three replicates under each treatment. Good quality Moringa oleifera leaf meal (MOLM) powder was procured from Sinhal Herbs, Neemuch, M.P. The commercially available multienzyme feed supplement i.e. ENZYCOMP HD was procured from GK Biochemical Corporation, Surat, Gujarat. Various enzymes were present in the product as reported by the manufacturer (Table 1).

The T1, i.e. control group was fed on basal diet while T2, T3, T4 and T5 treatment groups were supplemented with 0.5%, 1.0%, 1.5% and 2.0% of moringa leaf meal in combination with multi enzyme @ 50g/100kg feed in the basal broiler starter and finisher ration, respectively. Moringa leaf meal and multienzyme were mixed with the ISO certified basal feed (broiler starter and broiler finisher) of Godrej Agrovet Limited and used for feeding of experimental broiler chicks. The BIS (2007) feeding standard was followed for feeding of broilers during the experimental trial. Feed and water were supplied ad libitum. During the feeding trial, weekly feed intake and body weight gain were recorded. At the end of trial, two birds from each replicate were weighed individually and allowed to fast for 12 hour to empty gut contents before sacrifice and slaughtered to record the data on carcass characteristics and organ weights. The organs weight was expressed as gram and dressing yield and eviscerated yield were expressed in the percentage. The chemical compositions of broiler starter, broiler finisher and MOLM were analysed according to the standard methods of analysis (AOAC, 2016). Feed conversion ratio and economics of production were calculated from the primary data. The data on various parameters were subjected to ANOVA (Snedecor and Cochran, 1989) and means were tested for significant differences as per Duncan’s multiple range test (Duncan, 1955).

RESULTS AND DISCUSSION

The broiler starter feed contained 22.36% crude protein, 4.13% ether extract, 3.70% crude fiber, 6.75% total ash, 63.06% nitrogen free extract, 1.25% acid insoluble ash, 9.90% neutral detergent fiber, 3.33% acid detergent fiber, 1.16% calcium and 1.18% phosphorus. The broiler finisher feed contained 20.24% CP, 4.56% EE, 3.70% CF, 6.70% TA, 64.80% NFE, 1.35% AIA, 10.11% NDF, 3.53% ADF, 0.88% calcium and 0.93% phosphorus. Whereas, Moringa leaf meal contained 24.56%, 7.10%, 7.82%, 9.20%, 51.32%, 0.51%, 11.30%, 8.39%, 1.58% and 0.30% CP, EE, CF, TA, NFE, AIA, NDF, ADF, Ca and P, respectively. Metabolizable energy contained in starter and finisher ration was 3400.48 and 3418.64 kcal/ kg, respectively. Whereas, calorie protein ratio (E: P ratio) content in starter and finisher ration was 152.07:1 and 168.90:1, respectively.

Growth performance

Body weight gain (BWG) was highest (P<0.01) in broilers fed diet supplemented with 1.5% MOLM with multi enzyme @ 50g/100 kg feed at starter and finisher phase (Table 2). This result is akin to Egu (2019) who found that the inclusion of MOLM in diet of broilers significantly (P<0.05) enhanced the weight gain at 3 and 6 week age. Swian et al., 2014 observed significantly (P<0.05) higher body weight gain in broilers fed with enzyme supplemented ration than control during starter (0-21 days) and finisher (22-42 days) phase. However, Zakaria et al. (2010) observed no difference in BWG in broilers at 3 weeks of age but increased BWG at 6 week due to addition of multienzyme at different levels (0.25, 0.50 and 0.75g/kg diet). Broilers fed diet supplemented moringa leaf meal at 0.5, 1.0 and 2.0 % with multienzyme diet consumed significantly less feed compared to those

Table 1: Composition of multi enzyme.

Enzyme	Quantity
Xylanase	2500000 IU/Kg
Beta-glucanase	225000 IU/Kg
Cellulase	290000 IU/Kg
Beta-mannanase	120000 IU/Kg
Alpha amylase	32000000 IU/Kg
Amyloglucosidase	60000 IU/Kg
Phytase	100000 IU/Kg
Protease	700000 IU/Kg
Lipase	50000 IU/Kg
Pectinase	7000 IU/Kg
fed control diet and diet supplemented with MOLM at 1.5% and multienzyme @ 50g/100kg diet at 6 weeks of age, whereas there was no change in feed consumption due to dietary treatment at 3 weeks of age. Tekeli et al. (2011) also reported no significant effect (P>0.05) on feed consumption of Moringa oleifera leaf meal. Amerah et al. (2016) reported that feed intake was not influenced (P>0.05) by dietary enzymes during the starter phase. The reduction in feed intake with MOLM supplementation could be due to reduced palatability of the diet (Kakengi et al., 2003) but improvement in feed consumption due to enzyme supplementation may be attributed to overcome the adverse effects of anti-nutritional factors and improve digestion of fibre and non-starch polysaccharides (Sharifi et al., 2013). Significant (P<0.01) improvement in feed conversion ratio (FCR) was reported in broilers fed MOLM and multienzyme supplemented diet as compared to control at 3 or 6 weeks of age. These results are similar to the findings of Nikam et al., (2016) who reported that supplementation of NSP hydrolyzing enzymes at 1X and 2X concentration did favorably influenced the FCR (P<0.05) during starter and finisher phases. Contrary to this, Haribhau et al., (2020) reported that supplementation of multiple enzymes at 1X and 2X did not influence FCR (P>0.05) during 0-42 days of age.

Carcass characteristics

There was highly significant (P<0.01) effect of supplementation of Moringa oleifera leaf meal with multienzyme on dressing yield and eviscerated yield per cent. The highest values of dressing yield and eviscerated yield percentage were recorded to be 75.15% and 70.15%, respectively in T4 group containing 1.5 % MOLM with multienzyme at 50g/100kg feed and the lowest carcass yield was recorded in control group (Table 2). Sarker et al., (2017) also observed significantly higher dressing percentages for the broilers fed moringa leaf meal (0.5%, 1.0%, 1.5% and 2.0%) than the broilers fed nutritional feed alone. Rambabu et al., (2012) observed significant difference for dressing and eviscerated weight percentage in broilers fed with enzyme supplemented ration than control. However, Sanglilimadan et al., (2012) and Verma et al., (2012) observed dressing and eviscerated weight percentage differs non-significantly in broilers fed with enzyme supplemented ration than control.

The relative weight of liver, heart, gizzard and giblet was significantly higher (P<0.01) in broilers fed Moringa oleifera leaf meal with multienzyme as feed additive in the ration. Highest weight of liver, heart, gizzard and giblet was recorded to be 76.98, 12.90, 37.12, 127.00g respectively in T5 group containing 1.5 % MOLM with multienzyme (Table 2). Similarly, Abousekken (2015) reported significant (P<0.05) higher values of organ weight (%) of gizzard, liver and heart of birds fed moringa leaves extracts. Voemesse et al., (2018) observed that gizzard weight was significantly increased (P<0.05) in chickens fed 0, 1 and 3% MOLM as compared to control. In contrast, Mikhail et al., (2020) found non-significant effect on gillet, liver and gizzard weight of broilers fed MOLM at 0, 2.5, 5 and 7.5% level. Hamid and Mukhtar (2016) reported that feeding of broiler chicks on different level of moringa leaf meal with or without enzyme on heart, liver and gizzard showed no significantly (P>0.05) difference among treated groups. This might be due to efficient digestion and absorption of nutrients leading to better growth and development of the gut.

Cost benefit analysis

Results indicated that addition of Moringa oleifera leaf meal with multienzyme reduce the overall cost (Rs) of feed per kg gain as compared to control but maximum reduction in

Table 2: Effect of multienzyme supplementation on growth performance, carcass characteristics and organs weight.

Parameters	Treatment groups	T₁	T₂	T₃	T₄	T₅	SEM
Body wt. gain (g)	3rd week	612.79^a	679.14^b	677.22^a	726.05^c	675.07^d	7.124
	6th week	1836.00^a	2149.62^b	2201.05^c	2267.02^a	2200.34^d	22.995
Feed intake (g)	0-3 week	1190.72	1178.93	1164.78	1246.33	1191.55	8.029
	0-6 week	3923.20^c	3826.99^b	3905.88^{ab}	3938.80^a	3822.29^d	17.282
FCR	0-3 week	1.81^a	1.60^b	1.63^b	1.62^a	1.65^b	0.015
	0-6 week	2.03^b	1.71^{ab}	1.74^{ab}	1.70^b	1.70^{ab}	0.018
Dressing yield (%)	72.45^{ab}	74.85^{cd}	74.98^{cd}	75.15^d	75.10^{cd}	0.164	
Eviscerated yield (%)	67.24^{ab}	69.82^{cd}	70.00^{cd}	70.15^d	70.04^{cd}	0.169	
Liver (g)	53.14^b	70.19^b	72.86^a	76.98^a	75.89^b	1.024	
Heart (g)	10.23^a	11.85^a	12.34^a	12.90^a	12.01^a	0.106	
Giblet (g)	34.45^a	35.89^a	36.02^a	37.12^a	36.89^a	0.117	
Gizzard (g)	97.82^a	117.93^a	121.22^a	127.00^a	124.79^a	1.236	

Means with different superscripts in a row differ significantly.
Table 3: Overall feed cost (Rs) and percentage reduction in feed cost per unit weight gain in various treatment groups.

Treatment groups	T_1	T_2	T_3	T_4	T_5
Starter feed cost/kg gain	81.61	75.85	75.66	76.99	80.68
Finisher feed cost/kg gain	92.93	81.04	78.41	77.67	78.15
Overall cost/kg gain	89.15	79.35	77.56	77.45	78.93
% Overall reduction in feed cost/kg gain	0	10.99	13.00	13.13	11.47

The overall cost of feed per kg gain was obtained in T_4 group (Basal diet + 1.5% MOLM + multienzyme 50g/100kg) i.e. 13.13% reduction (Table 3). Increased meat yields are required for better profitability and increased dressing percentage in broilers was observed in *Moringa oleifera* leaf meal with multienzyme supplemented groups. It might be attributed to better FCR on supplementation of *Moringa oleifera* leaf meal and multienzyme. Similarly, higher (P<0.05) net profit has been recorded by the earlier workers on supplementation of mixture of probiotics and enzymes (Swain et al., 2009) in poultry.

CONCLUSION

The results of the study showed that 1.5% *Moringa oleifera* leaf meal (MOLM) could be included into the diet of broiler chickens with multienzyme @ 50g/100kg feed for beneficial effects in terms of improved overall performance of broilers and increased margin of profit in broiler production. The feeding of moringa leaf meal with multienzyme is beneficial as a growth promoter or feed supplement in commercial broiler production.

ACKNOWLEDGEMENT

The authors are thankful to authorities of the RAJUVAS, Bikaner and Dean, College of Veterinary and Animal Science, Navania, Vallabh Nagar, Udaipur for providing necessary facilities and financial support to carry the Ph.D. research work.

REFERENCES

Abbas, T.E. (2013). The use of *Moringa oleifera* in poultry diets. Turk. J. Vet. Anim. Sci. 37: 492-496.

Abousekken, M.S.M. (2015). Performance, Immune Response and carcass quality of broilers fed low protein diets contained either *Moringa oleifera* leaves meal or its extract. Journal of American Science. 11(6): 153-164.

Amerah, A.M., Romero, L.F., Awati, A. and Ravindran, V. (2016). Effect of exogenous xylanase, amylase and protease as single or combined activities on nutrient digestibility and growth performance of broilers fed corn/soy diets. Poultry Science. 96(4): 807-816.

AOAC. (2016). Official method of analysis, 20th edition. Association of Official Analytical Chemists, Washington, D.C.

BIS (2007). Bureau of Indian Standards, Poultry Feeds Specification. (5th Revision), Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi-11.

Castanon, J.I.R. (2007). History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci. 86: 2466-2471.

DAHD (2019). 20th Livestock Census, Animal Husbandry Statistics Division, Department of Animal Husbandry and Dairying, Ministry of Fisheries, Animal Husbandry and Dairying, Govt of India.

Duncan, D.B. (1955). Multiple range and multiple F test. Biometrics. 11: 1-42.

Egu, U.N. (2019). Effect of graded levels of *Moringa oleifera* leaf meal on performance and serum biochemical parameters of broiler chickens. J. Anim. Sci. Vet. Med. 4(1): 1-8.

Hamid, M.A.H. and Mukhtar, A.M. (2016). Effect of feeding moringa leaf meal with or without enzyme on the performance and carcass characteristic of broiler chicks. World Journal of Pharmaceutical and Pharmaceutical Sciences. 5(9): 26-37.

Haribhau, G.A., Lakshmi, K.V., Alexander, G. and Gurram, S. (2020). Effect of supplementation of multiple enzymes to the diets containing variable protein sources on performance and nutrient utilization in commercial broilers. Tropical Animal Health and Production. 52: 1739-1744.

Kakengi, A.M.V., Shem, M.N., Sarwatt, S.V. and Fujihara, T. (2003). Can *Moringa oleifera* be used as a protein supplement to ruminants? Asian-Australasian Journal of Animal Sciences. 18(1): 42-47.

Kamble, R.S., Kukude, R.J., Ramteke, B.N., Zanzad, A. and Gawande, T.R. (2007). Effect of multienzymes with probiotics on production efficiency in broilers. Royal Veterinary Journal of India. 3: 16-19.

Mboikay, M. (2012). Therapeutic potential of *Moringa oleifera* leaves in chronic hyperglycemia and dyslipidemia. Pharmacol. 3: 1-2.

Mikhail, W.Z.A., El-Samee, M.O.A., El-Afifi, T.M. and Mohammed, A.R. (2020). Effect of feeding *Moringa oleifera* leaf meal with or without enzyme on the performance and carcass characteristics of broiler chicks. Plant Archives. 20(1): 3381-3388.

Najeeb, A.P., Mandal, P. K. and Pal, U.K. (2014). Efficacy of fruits (red grapes, gooseberry and tomato) powder as natural preservatives in restructured chicken slices. International Food Research Journal. 21(6): 2431-2436.

Nikam, M.G. and Reddy, V., Raju, M.V.L.N., Reddy, K. and Narasimha, J. (2016). Effect of dietary supplementation of non-starch polysaccharide hydrolyzing enzymes on broilers. International Journal of Agricultural Science and Research. 6(3): 389-396.

Olugbemi, T.S., Mutayoba, S.K. and Lekule, F.P. (2010). Effect of moringa (*Moringa oleifera*) inclusion in cassava based diets fed to broiler chickens. Int. J. Poult. Sci. 9 (4): 363-367.
Effect of Feeding *Moringa oleifera* Leaf Meal with Multienzyme on Performance, Carcass Characteristics and Economics...

Rambabu, D., Reddy, V.R., Qudratullah, S., Reddy, M.R. and Reddy, K.K. (2012). Evaluation of Fibre Degrading Enzymes in High and Low Fibre Diets and their Impacts on Broiler performance. XXIX Annual Conference and National Symposium of Indian Poultry Science Association (IPSACON-2012) on Commercial and Rural Poultry Production: Novel Concepts and Strategies to Meet Growing Demand and Changing Consumer’s Needs on 5th-7th December at Hyderabad. pp: 112.

Sangilimadan, K., Omprakash, A.V., Pandian, P.C. and Curchill, R.R. (2012). Effect of supplementation of multienzyme and antibiotic on growth performance of Nandanam broiler chicken. XXIX Annual conference and national symposium of Indian poultry science association (IPSACON-2012) on commercial and rural poultry production: Novel concepts and strategies to meet growing demand and changing consumer’s needs on 5th-7th December at Hyderabad. pp: 59.

Sarker, M.S.K., Rana, M.M., Khatun, H., Faruque, S., Sarker, N.R., Sharmin, F. and Islam, M.N. (2017). Moringa leaf meal as natural feed additives on the growth performance and meat quality of commercial broiler chicken. Asian J. Med. Biol. Res. 3(2): 240-244.

Sharifi, S.D., Golestani, G., Yaghobfar, A., Khadem, A. and Pashazanussi, H. (2013). Effect of supplementing a multienzyme to broiler diets containing a high level of wheat or canola meal on intestinal morphology and performance of chicks. J. Applied Poult. Res. 22: 671-679.

Snedecor, G.W. and Cochrane, W.G. (1989). Statistical Methods. Oxford and IBH Publishing Company, New Delhi.

Swain, B.K. and Chakurkar, E.B. (2009). Assessment of probblend supplementation on the performance and economics of production of vanaraja chickens. Journal of Applied Animal Research. 36: 203-06.

Swain, B.K., Naik, P.K. and Singh, N.P. (2014). Performance, carcass characteristics and economics of production of broiler chickens fed diet supplemented with multienzyme. Indian Journal of Poultry Science. 49(2): 163-166.

Tekeli, A., Celi, L. and Kutlu, H.R. (2011). Effects of *Z. officinale* and *propolis* extracts on the performance, carcass and some blood parameters of broiler chicks. Poult. Sci. 1: 12-23.

Teteh, A., Gbeassor, M., Decuytere, E. and Tona, K. (2016). Effects of *Moringa oleifera* leaf on laying rate, egg quality and blood parameters. Int. J. Poult. Sci. 15: 277-282.

Veit, A., Vijayakumar, M., Mathela, C. and Rao, C. (2009). *In vitro* and *in vivo* antioxidant properties of different fractions of *Moringa oleifera* leaves. Food and Chemical Toxicology. 9: 2196-2201.

Voemesse, K., Teteh, A., Nideou, D., Nnanle, O., Gbeassor, M., Decuytere, E. and Tona, K. (2018). Effect of *Moringa oleifera* leaf meal on growth performance and blood parameters of egg type chicken during juvenile growth. Int. J. Poult. Sci. 17: 154-159.

Yadava, P.K., Niranjan, P.S., Udeybir, S.K. and Verma, D.N. (2009). Performance of broiler chicken as affected by varying levels of multi enzyme supplementation. Animal Nutrition and Feed Technology. 9: 103-08.

Zakaria, H.A.H., Jalai, M.A.R. and Ishmais, M.A.A. (2010). The influence of supplemental multienzyme feed additive on the performance, carcass characteristics and meat quality of broiler chickens. International Journal of Poultry Science. 9: 126-33.