Searching for doubly σ- and π-aromaticity in borazine derivatives

Ricardo Pino-Rios*, Alejandro Vásquez-Espinal, Osvaldo Yañezb,c and William Tiznado* b

aLaboratorio de Química Teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins 3363, Santiago, Estación Central, Región Metropolitana, Chile

bComputational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile.

cCenter for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. Republica 330, Santiago 8370146, Chile
Figure S1.- Structures, symmetry point group and relative energy of the 23 lowest energy singlet state structures (within the range of 0-135 kcal·mol⁻¹ with respect to the putative global minimum structure) of the B₃N₃H₆⁺ system at the PBE0-D3/def2-TZVP level. Relative energies are listed in kcal·mol⁻¹, with zero-point energy (ZPE) corrections. *AUTOMATON did not identify the structure.
Figure S2. Structures, symmetry point group and relative energy of the 19 lowest energy singlet state structures within the range of 0-69 kcal·mol$^{-1}$ with respect to the putative global minimum structure of the B$_3$N$_3$(TeH)$_6^{2+}$ system at the PBE0-D3/def2-TZVP level. Relative energies are listed in kcal·mol$^{-1}$, with zero-point energy (ZPE) corrections.
Figure S3. Structures, symmetry point group and relative energy of the 10 lowest energy singlet state structures (within the range of 0-30 kcal·mol$^{-1}$ with respect to the putative global minimum structure) of the B$_3$N$_3$I$_6^{2+}$ system at the PBE0-D3/def2-TZVP level. Relative energies are listed in kcal·mol$^{-1}$, with zero-point energy (ZPE) corrections.
Figure S4. Structures, symmetry point group and relative energy of the 4 lowest energy triplet state structures within the range of 0-30 kcal·mol$^{-1}$ with respect to the putative global minimum structure of the B$_3$N$_3$I$_6^{2+}$ system at the PBE0-D3/def2-TZVP level. Relative energies are listed in kcal·mol$^{-1}$, with zero-point energy (ZPE) corrections.
Figure S5. AdNDP bonding pattern of $B_3N_3(\text{TeH})_6^{2+}$

- $6 \times 1c\text{-}2e$ Te-LPs
 - ON = 1.98 – 1.99 |e|

- $6 \times 2c\text{-}2e$ Te-H σ-bonds
 - ON = 1.97 – 2.00 |e|

- $6 \times 2c\text{-}2e$ B-N σ-bonds
 - ON = 1.98 |e|

- $6 \times 2c\text{-}2e$ B(N)-Te σ-bonds
 - ON = 1.97 – 1.98 |e|

- $3 \times 6c\text{-}2e$ π-bonds
 - ON = 1.98 – 1.99 |e|

- $5 \times 6c\text{-}2e$ σ-bonds
 - ON = 1.92 – 1.97 |e|
Figure S6. Vector maps of dissected Magnetically induced current density (MICD) at 1 a_0 above the molecular plane of $B_3N_3(\text{TeH})_6^{2+}$

(a) $B_3N_3(\text{TeH})_6^{2+}$ outer-σ current density map

8.5 nA.T$^{-1}$

(b) $B_3N_3(\text{TeH})_6^{2+}$ inner-π current density map

3.6 nA.T$^{-1}$
Table S1. Extra cyclic resonance energies (kcal/mol) and RCSs values (nA/T) of five member rings C₄XH₄.

Compound	ECRE	RCS (X1-C2)	RCS (C3-C4)
AlH	-3.5	-3.0	-2.8
CH⁻	19.1	13.1	13.1
CH₂	3.4	5.6	5.7
NH	17.9	11.6	12.0
O	12.8	10.2	10.5
PH	17.9	12.5	12.8
S	12.7	11.9	12.1
SiH⁺	-15.5	-10.4	-10.1
SiH⁻	17.2	12.5	12.4
SiH₂	-0.8	1.7	1.8

Scheme S1. Resonance energy definitions of five membered rings and their acyclic counterparts according to ref. 60.

E⁰_R(1)
Table S2.- Cartesian coordinates at the PBE0/def2-TZVP level of the global minimum of B₃N₃H₃⁺, B₃N₃(TeH)₆²⁺ and B₃N₃I₆²⁺. Coordinates for the doubly aromatic local minimum (B₃N₃H₃⁺, and B₃N₃(TeH)₆²⁺) and lowest triplet of B₃N₃I₆²⁺ are also included. Relative energies are listed in kcal·mol⁻¹.

	B₃N₃H₃⁺ (0.00) singlet state	B₃N₃H₃⁺ (49.30) singlet state	B₃N₃I₆²⁺ (0.00) singlet state	B₃N₃I₆²⁺ (2.00) triplet state	B₃N₃(TeH)₆²⁺ (0.00) singlet state	B₃N₃(TeH)₆²⁺ (68.69) singlet state
	H 4.595360000 -0.000687000 -0.000422000	B -0.962163000 0.000000000 0.000000000	B -1.126786000 -0.713673000 0.000000000	B -1.126786000 -0.713673000 0.000000000	Te -3.312911000 -1.496944000 -0.095722000	Te -3.312911000 -1.496944000 -0.095722000
	H -3.647992000 -0.849144000 0.000226000	B 0.481083000 0.833258000 0.000000000	B -1.245264000 0.715413000 0.000000000	B -1.245264000 0.715413000 0.000000000	Te 3.154792000 1.425438000 0.999906000	Te 3.154792000 1.425438000 0.999906000
	B 3.424898000 -0.000474000 -0.000187000	B 0.481083000 -0.833258000 0.000000000	N 2.158522000 -0.000007000 0.000600000	N -0.804731000 -1.393893900 0.000000000	N 2.158522000 -0.000007000 0.000600000	N -0.804731000 -1.393893900 0.000000000
	H -3.648940000 0.847917000 0.000221000	N 0.000000000 3.076241000 0.000000000	N 0.000000000 3.076241000 0.000000000	N 0.000000000 3.076241000 0.000000000	I 2.990960000 -1.977917000 0.000000000	I 2.990960000 -1.977917000 0.000000000
	N 3.100004000 -0.000443000 0.000154000	N 0.000000000 3.076241000 0.000000000	N 0.000000000 3.076241000 0.000000000	N 0.000000000 3.076241000 0.000000000	1.161433000 -0.804731000 0.000000000	1.161433000 -0.804731000 0.000000000
	B 0.835464000 0.000471000 -0.000077000	B 2.091598000 0.000000000 0.000000000	B 1.269102000 -0.714011000 0.000000000	B 1.269102000 -0.714011000 0.000000000	1.375691000 0.000000000 0.000000000	1.375691000 0.000000000 0.000000000
	B -1.755249000 0.000371000 -0.000151000	N 2.986723000 1.425438000 0.099906000	N 2.986723000 1.425438000 0.099906000	N 2.986723000 1.425438000 0.099906000	2.903897000 -1.019116000 0.000000000	2.903897000 -1.019116000 0.000000000
	N -0.461945000 0.000498000 -0.000461000	B 3.647992000 1.425438000 0.099906000	B 3.647992000 1.425438000 0.099906000	B 3.647992000 1.425438000 0.099906000	0.019841000 -1.019116000 0.000000000	0.019841000 -1.019116000 0.000000000

- (TeH) is also included. Relative energies are listed in kcal·mol⁻¹.