Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident

Kazuya Yoshimura¹ *, Yuichi Onda¹ & Takehiko Fukushima²

1 Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan, *Faculty of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.

This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium (¹³⁷Cs) in four irrigation ponds, ~4–5 months after the Fukushima Dai–ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of ¹³⁷Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total ¹³⁷Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more ¹³⁷Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of ¹³⁷Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of ¹³⁷Cs in pond sediment, as well as the amount lost through hydraulic flushing.

Contamination of reservoir sediment with radiocesium has been thoroughly investigated, particularly since the accident at the Chernobyl nuclear power plant. Temporal changes in ¹³⁷Cs concentration, inventory¹–⁴, spatial/vertical distribution⁵–⁹, and physicochemical properties¹⁰–¹² have been well documented in reservoirs. However, few studies have documented the initial accumulation and flushing of ¹³⁷Cs from reservoirs exposed to the fallout of radioactive materials from nuclear power plant accidents.

Reservoir inputs of ¹³⁷Cs are removed from the water column mainly by direct adsorption to sediment¹,¹³,¹⁴, sedimentation with suspended particles¹²–¹⁵, and hydraulic flushing¹. Davison et al.¹ investigated the concentration of ¹³⁷Cs in the water and sediments of English lakes immediately following the Chernobyl nuclear power plant accident. They estimated, from the flow rate and concentration of radiocesium in the water, that 32–41% of the ¹³⁷Cs that was initially deposited had been hydraulically flushed from the lakes, and the remaining ¹³⁷Cs had accumulated in sediments. However, it is difficult to collect such data from many reservoirs immediately following a nuclear accident.

The concentration of ¹³⁷Cs in reservoir sediment can be affected by many factors, such as the initial amount of radiocesium deposition, organic matter content of the sediment, water depth, catchment area, pond volume, and hydraulic residence time².³. Additionally, it has been well established that sediment particle size can affect the concentration of ¹³⁷Cs in sediment¹⁶–¹⁸, and physicochemical properties¹⁰–¹² have been well documented in reservoirs. However, it is difficult to collect such data from many reservoirs immediately following a nuclear accident.

On March 12, 2011, an accident at the Fukushima Dai–ichi nuclear power plant (DNPP) released ~1–2 × 10¹⁶ Bq of ¹³⁷Cs into the atmosphere²⁰, contaminating a large proportion of the surrounding area²¹–²⁴, which included a forested area²². Fukushima Prefecture, the area most affected by the ¹³⁷Cs fallout, is a major rice-farming region where there are many artificial ponds used for irrigation, which are surrounded by forest. Since reservoirs accumulate soil eroded from the catchment and decrease the flux of sediment to downstream systems²⁵, it is also likely that they have an impact on the movement of sediment-sorbed radiocesium to downstream systems. It has been reported that the initial inventory of ¹³⁷Cs in lakes is related to the total ¹³⁷Cs directly deposited in/around the lakes, with a small contribution of ¹³⁷Cs from the catchment¹ⁱ,¹³. Thus, trap efficiency can be calculated as the proportion of ¹³⁷Cs inventory in pond sediment to the ¹³⁷Cs inventory in the soil.
surrounding the pond (i.e., total 137Cs inventory). Assessing the accumulation and flushing of 137Cs in ponds is important in understanding the initial contamination of sediment and the discharge of radiocesium to downstream systems. To our knowledge, no studies have investigated the initial dynamics of 137Cs in irrigation pond sediment following the Fukushima DNPP accident.

In this study, we assessed the concentrations of 137Cs in the sediments of four irrigation ponds (Fig. 1) 4–5 months after the Fukushima DNPP accident. We used sediment particle size analysis as a simplified estimation of 137Cs dynamics, to determine initial accumulation and hydraulic flushing of 137Cs in ponds exposed to nuclear fallout.

Results

The description of each pond, sampling dates, and 137Cs inventory in the soil surrounding the ponds, which was measured as part of the

Figure 1 | Location and plain views of irrigation ponds. Cross in plain view indicates sampling point. These maps were generated by ArcGIS 10 software and combined with the 137Cs distribution obtained from the Third Airborne Monitoring Survey (MEXT), provided in the Database on the Research of Radioactive Substances Distribution.
Third Airborne Monitoring Survey by MEXT on 2 July 2011 (calibrated with 2200 points of soil core samples21), are provided in Table 1. The inventory of 137Cs in the surrounding soil was estimated to be 206–360 kBq m$^{-2}$. While heterogeneity in the local distribution of radioactivity has been observed27, no hot particles derived from the fuel of nuclear reactor have been detected around our sites28.

The mass-depth distributions and inventories of 134Cs and 137Cs in the pond sediments are presented in Fig. 2. In all ponds, the radiocesium concentrations were highest in the surface layer of sediment and quickly decreased with depth. Concentrations of 137Cs in the surface layer were 17.9, 34.9, 6.4, and 10.9 kBq kg$^{-1}$ at Oyado, Takayashiki, Netsupami–ike, and Matsuzawakami–ike, respectively. Radiocesium was detected as far down as the fifth layer at Takayashiki, and the fourth layer in the other ponds. However, >80% of the total 134Cs and 137Cs inventories were in the top two surface layers (<16 kg m$^{-2}$). The accumulation of 137Cs in surface sediment (<3.5 cm) was simulated in laboratory experiments, using the kinetics of 137Cs sorption to and desorption from sediments29,30 and the vertical distribution of 137Cs in our sediment samples. The results indicate that downward migration or agitation of radiocesium in sediment was minimal in the ponds studied, and that most of the radiocesium was trapped in surface sediment.

Matsuzawakami-ike has a relatively large surface area compared to the other ponds (Fig. 1; Table 1), so there could be spatial variation in the inventory of radiocesium in sediment. Another investigation collected sediment core samples at three locations (inlet-side, middle, and outlet-side) in Matsuzawakami-ike at 30–40 m intervals in April 2013 (not published). The coefficient of variation for 137Cs-inventory was 7%; thus, the spatial variation in inventory was inferred to be small.

Radiocesium inventory was related to the concentrations of radiocesium in sediment; the highest radiocesium inventory was observed in Takayashiki, which showed the highest concentration of radiocesium in sediment. Radiocesium inventory in Oyado, which had the highest 137Cs concentration in the surface layer of sediment, was lower than that in Takayashiki, indicating a difference in radiocesium accumulation efficiency. To evaluate the efficiency of sediment in accumulating radiocesium, we compared the inventory of 137Cs in pond sediment to the total 137Cs inventory (Table 1), referred to hereafter as trap efficiency. Based on these results, the variation in trap efficiency was not the result of differences in the reservoir characteristics, the sediment characteristics, or pH among study ponds.

The inventories of radiocesium reflected the concentration of radiocesium in our study ponds. It has been established that sediment particle size can affect the concentration of radiocesium in sediment25,31–34. Therefore, we assessed the effect of particle size by comparing 137Cs-based weighted average values of D$_{50}$ and specific surface area to trap efficiency (Fig. 3). The D$_{50}$ and specific surface area of sediment in Takayashiki, which had the highest trap efficiency among our study ponds, were 15.1 µm and 0.41 m2 g$^{-1}$, respectively, representing the smallest particle size among ponds. Trap efficiency was correlated with sediment particle size, showing a negative correlation with D$_{50}$ ($r^2 = 0.69$; Fig. 3a) and a positive correlation with specific surface area ($r^2 = 0.66$; Fig. 3b).

Discussion

Davison et al.35 reported trap efficiencies between 59–68% for two English lakes, over an 18-month period after the Chernobyl nuclear power plant accident, and that 32–41% of the total 137Cs was hydraulically flushed from the system. It is likely then, for the ponds in this study that had trap efficiencies <100%, that some of the initial radiocesium inputs were removed through hydraulic flushing. Hydraulic flushing of 137Cs from a reservoir can be affected by precipitation, as large rain events will lead to shorter hydraulic residence times. Oyado and Takayashiki are very close to each other (<1 km apart) and likely experience similar rates of precipitation, but they had very different trap efficiencies (23 vs. 133%). While reservoir characteristics, such as water depth, catchment area, pond volume, and hydraulic residence time can also affect hydraulic flushing36 of 137Cs from ponds, we observed no correlation between these factors and trap efficiency. However, trap efficiency was correlated with sediment particle size, indicating that particle size can be an important factor in determining trap efficiency. Accumulation of 137Cs in sediment occurs through direct adsorption to sediment37,38 and sedimentation with suspended particles39,40. It is likely that the finer sediment in Takayashiki facilitated the accumulation of 137Cs, resulting in the highest trap efficiency. In contrast, ponds with coarser sediment and lower trap efficiencies may have lost 137Cs through

Table 1 | Descriptions of ponds, sampling dates, and inventories of 137Cs in soils surrounding ponds estimated from the Third Airborne Monitoring Survey, by MEXT.

Descriptions	Oyado	Takayashiki	Neppami-ike	Matsuzawakami-ike
Surface area (m2)	804	673	2400	8720
Maximum depth (m)	0.7	0.3	1.4	2.0
Catchment area (ha)	3.6	1.6	20	9.8
Sampling date	8 Jul. 2011	8 Jul. 2011	4 Aug. 2011	4 Aug. 2011
Total inventory of 137Cs (kBq m$^{-2}$)	360	318	349	206
hydraulic flushing of finer sediment. Thus, sediment particle size is one of important factors in estimating the amount of 137Cs lost through hydraulic flushing, in addition to its accumulation in pond sediment. More research and data are needed to determine the strength of the correlation between radiocesium trap efficiency and sediment particle size.

Methods

Sample collection. We selected four irrigation ponds, located ~40–50 km from the Fukushima DNPP (Fig. 1), to investigate initial 137Cs accumulation from the fallout of the Fukushima DNPP accident. Oyado and Takayashiki are located in the city of Nihonmatsu, and Netsupami–ike and Matsuzawakami–ike are located in the town of Kawamata. The ponds were artificially constructed (i.e., reservoirs) and receive water inputs from precipitation and streams within the

Figure 2 | Mass depth distributions of concentrations of radiocesium in sediment (gray line for 134Cs and black line for 137Cs) and D_{50} of sediment (broken line). Inventories are also shown.

Table 2 | Elemental composition of surface (0–2 cm layer) sediments (%). The value was obtained as weight composition

Site	Fe	Mn	Ti	Ca	K	Al	Si
Takayashiki	29	1	3	6	9	10	42
Oyado	34	0	4	6	7	8	41
Netsupami–ike	35	1	2	6	11	6	39
Matsuzawakami–ike	36	1	4	8	8	8	36
catchment. As the ponds all have relatively flat bottoms, water depths were similar for large areas in all of the ponds.

Sediments were collected at Oyado and Takayashiki on 8 July 2011, and at Netsupami–ike and Matsuawakami–ike on 4 August 2011. Four sediment cores (core depths: >12 cm) were taken from approximately the center of each pond using a gravity corer (i.d.: 4 cm). Each core was sampled at a distance of 1–3 m from other core-sampling points to avoid the influence of sediment agitation on samples. Core samples were sliced into 2-cm layers, for a total of five layers for each core. Across replicate cores, sliced samples were combined at each depth. The samples were then dried at 105°C for 24 h. The dried samples were homogenized, using a mortar and pestle, and used for measurements.

Sample analysis. Concentrations of 133Cs and 134Cs were measured using a high-purity n-type germanium coaxial gamma–ray detector (EGG25–195, R, Canberra–Eurisys, Meriden, U.S.A.), equipped with an amplifier (PSC822, Canberra, Meriden, U.S.A.) and multichannel analyzer (DSPA1000, Canberra, Meriden, U.S.A.). Instruments were calibrated using standard gamma sources: 210Pb and 137Cs (EG–CUSTOM; Isotope Products Laboratories, USA), 241Am, 106Cd, and 137Cs (EG–CUSTOM; Eckert and Ziegler Isotopes Products, USA). The samples were placed on top of the detector head and radioactivity was measured for 5 min to 12 h, depending on the activity of the sample. The activities of 133Cs and 134Cs were corrected for decay, based on when the samples were collected. The counting error was less than 10%, and the measurement accuracy satisfied the IAEA–CUC–2006–03 World–Wide Proficiency Test on the Determination of Gamma Emitting Radionuclides. Further details can be found in Kato et al.20.

Samples were then analyzed using a laser diffraction particle size analyzer (SALD–3100, Shimadzu Co., Ltd., Kyoto, Japan) to determine the median-diameters (D50) and specific surface areas of sediment particles, for each layer of sediment. To evaluate the effect of particle size on the accumulation of 137Cs in sediment, 137Cs-based weighted average values of D50 and specific surface area were calculated according to the following equation:

\[
V = \sum_{i} I_{i} V_{i}
\]

where \(V \) is \(D_{50} \) or specific surface area, \(I \) is the inventory of 137Cs in layer \(i \), and \(I_{\text{total}} \) is the total inventory of 137Cs in a given sediment core.

After radioesium analysis, the elemental composition of each surface layer of sediment (0–2 cm) was determined using an X-ray fluorescence analyzer (Niton XL3t, Thermo Scientific) with a helium gas-purging system. To measure the organic content, ~1 g of sample was subdivided from three surface layers (0–2, 2–4, and 4–6 cm layers). The subdivided samples were weighed, and then combusted at 500°C for 24 h. The mass lost upon ignition represented the organic content.

1. Davison, W. et al. The transport of Chernobyl-derived radioesium through two freshwater lakes in Cumbria, UK. J. Environ. Radioact. 19, 125–133 (1993).
2. Särkä, J., Keskitalo, A. & Luukko, A. Temporal changes in concentration of radioesium in lake sediments and fish of southern Finland as related to environmental factors. Sci. Total. Environ. 191, 123–136 (1996).
3. Ilus, E. & Saxén, R. Accumulation of Chernobyl-derived 137Cs in bottom sediments of some Finnish lakes. J. Environ. Radioact. 82, 199–221 (2005).
4. Saxén, R. & Ilus, E. Transfer and behaviour of 137Cs in two Finnish lakes and their catchments. Sci. Total. Environ. 394, 349–360 (2008).
5. Kansanen, P. H., Jaakkola, T., Kulmala, S. & Suutarinen, R. Sedimentation and distribution of gamma-emitting radionuclides in bottom sediments of southern Lake Päijänne, Finland, after the Chernobyl accident. Hydrobiologia. 222, 121–140 (1991).
6. Michel, H., Barci-Funè, G., Barci, V. & Ardisson, G. Input contribution and vertical migration of plutonium, americium and cesium in lake sediments (Belham Tarn, Cumbria, UK). Radiochimica Acta. 90, 747–752 (2002).
7. Solecki, J., Reszka, M. & Chibowski, S. Studies on concentration of some heavy metals and strontium 89Sr and cesium 137Cs isotopes in bottom sediments of selected lakes of Łęczycki-Wojsławski Pojezierze. Nukleonika. 51, 333–337 (2006).
8. Erlinger, C. H., Lettner, H., Hubmer, A., Hofmann, W. & Steinhausler, F. Determining the Chernobyl impact on sediments of a pre-Alpine lake with a very comprehensive set of data. J. Environ. Radioact. 99, 1294–1301 (2008).
9. Puttervaya, V., Klenet, E. & Röllin, E. Migration of 137Cs in tributaries, lake water and sediment of Lago Maggiore (Italy, Switzerland) – analysis and comparison with Lago di Lugano and other lakes. J. Environ. Radioact. 100, 35–48 (2009).
10. He, Q. & Walling, D. E. Interpreting particle size effects in the adsorption of 137Cs and unsupported 136Pb by mineral soils and sediments. J. Environ. Radioact. 30, 117–137 (1996).
11. Comans, R. N. I. et al. Comparative study of radioesium mobility measurements in soils and sediments from the catchment of a small, upland oligotrophic lake (Devoke Water, UK). Water Res. 32, 2846–2855 (1998).
12. Smith, J. T., Comans, R. N. J., Ireland, D. G., Nolan, L. & Hilton, J. Experimental and in situ study of radioesium transfer across the sediment–water interface and mobility in lake sediments. Appl. Geochem. 15, 833–848 (2000).
13. Santschi, P. H. et al. Chernobyl radionuclides in the environment: tracers for the tight coupling of atmospheric, terrestrial, and aquatic geochemical processes. Environ. Sci. Technol. 22, 510–516 (1988).
14. Santschi, P. H., Bollhader, S., Zingg, S., Luck, A. & Farbenkothen, K. The self-cleaning capacity of surface waters after radioactive fallout. Evidence from European waters after Chernobyl, 1986-1988. Environ. Sci. Tech. 24, 519–527 (1990).
15. Smith, J. T., Comans, R. N. J. & Ireland, D. G. Radioesium removal from European lakes and reservoirs: key processes determined from 16 Chernobyl-contaminated lakes. Water Res. 33, 3762–3774 (1999).
16. Livers, F. R. & Baxter, M. S. Particle size and radionuclide levels in some west Cumbrian soils. Sci. Total. Environ. 70, 1–17 (1988).
17. Walling, D. E. & Quine, T. A. Use of 137Cs measurements to investigate soil erosion on arable fields in the UK: potential applications and limitations. J. Soil Sci. 42, 147–165 (1991).
18. Walling, D. E. & Woodward, J. C. Use of radiometric fingerprints to derive information on suspended sediment sources, in Erosion and Sediment Transport Monitoring Programmes in River Basins (Proceedings of the International Symposium held at Oslo, Norway, 24–28 August 1982). (eds Bogen, J., Walling, D.E. & Day, T.T.) 210–215 (1984 (International Association of Hydrological Sciences Publications, UK, 1992).
19. Walling, D. E., Woodward, J. C. & Nicholas, A. P. A multi-parameter approach to fingerprinting suspended-sediment sources, in Tracers in Hydrology (of a Symposium Held at Yokohama, Japan, July 1993). (eds Peters, N. E., Hoehn, E.,
Leibundgut, Ch., Tase, N. & Walling, D. E.) 215 (ISBN 0-947571-68-X), 329–338
(International Association of Hydrological Sciences Publications, UK.; 1993).
20. IAEA. Additional Report of Japanese Government to IAEA - Accident at TEPCO’s Fukushima Nuclear Power Stations (transmitted by nuclear emergency response headquarters, Government of Japan, 15 September 2011). International Atomic Energy Agency (IAEA), Vienna, (2011). http://www.iaea.org/newscenter/ focus/fukushima/japan-report2/ (Date accessed: Oct./2013).
21. MEXT. Results of the Third Airborne Monitoring Survey by MEXT (July 8, 2011). Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (2011). http://radioactivity.mext.go.jp/en/contents/5000/4182/24/1304797_0708e.pdf (Date accessed: Dec/2013).
22. Morino, Y., Ohara, T. & Nishizawa, M. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophys. Res. Lett. 38, L00G11 (2011).
23. Katata, G., Ota, M., Terada, H., Chino, M. & Nagai, H. Atmospheric discharge and dispersion of radionuclides during the Fukushima Daiichi nuclear power plant accident. Part I: source term estimation and local-scale atmospheric dispersion in early phase of the accident. J. Environ. Radioact. 109, 103–113 (2012).
24. Zheng, J. et al. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci. Rep. 2, 304 (2012).
25. Kato, H., Onda, Y. & Gomi, T. Interception of the Fukushima reactor accident-derived 137Cs, 134Cs and 131I by coniferous forest canopies. Geophys. Res. Lett. 39, (2012). doi:10.1029/2012GL052928.
26. Chu, Z. X. et al. Quantitative assessment of human impacts on decrease in sediment flux from major Chinese rivers entering the western Pacific Ocean. Geophys. Res. Lett. 36, L19603 (2009).
27. Tanaka, K. et al. Heterogeneous distribution of radiocesium in aerosols, soil and particulate matters emitted by the Fukushima Daiichi Nuclear Power Plant accident: retention of micro-scale heterogeneity during the migration of radiocesium from the air into ground and river systems. J. Radioanal. Nucl. Chem. 295, 1927–1937 (2013).
28. Yamamoto, M. et al. An early survey of the radioactive contamination of soil due to the Fukushima Dai-ichi Nuclear Power Plant accident, with emphasis on plutonium analysis. Geochem. J. 46, 341–353 (2012).
29. Kirikopoulos, I. L. et al. Kinetics of radiocesium sorption in lake sediments. Health Phys. 66, 36–42 (1994).
30. Ioannides, K. G., Mertzimekis, T. J., Karamanis, D. T., Stamoulis, K. C. & Kirikopoylos, I. Radiocesium sorption-desorption processes in lake sediments. J. Radioanal. Nucl. Chem. 208, 549–555 (1996).
31. Database in Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology. https://gbank.gsj.jp/seamless/maps.html (Date accessed: Feb./2014), in Japanese.
32. IAEA. Report on the IAEA-CU-2006-03 World-Wide Proficiency Test on the Determination of Gamma Emitting Radionuclides, May 2007 (IAEA/AL/171). International Atomic Energy Agency (IAEA), Vienna, (2007).
33. Kato, H., Onda, Y. & Teramage, M. Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi Nuclear Power Plant Accident. J. Environ. Radioact. 111, 59–64 (2012).
34. Nuclear Regulation Authority. Database on the Research of Radioactive Substances Distribution. http://radb.iaea.go.jp/mapdb_prev/en/ (Date accessed: Oct/2013).

Acknowledgments
This work was supported by FMWSE (Fukushima Radiation Monitoring of Water, Soil and Entrainment) of MEXT.

Author contributions
K.Y. and T.F. carried out the sampling. K.Y. performed measurement and analysis. K.Y. and Y.O. discussed the results and contributed to the manuscript preparation.

Additional information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Yoshimura, K., Onda, Y. & Fukushima, T. Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident. Sci. Rep. 4, 4514; DOI:10.1038/srep04514 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0