Transplantation of dedifferentiated fat cells combined with a biodegradable type I collagen-recombinant peptide scaffold for critical-size bone defects in rats

Atsushi Tateno1), Masatake Asano2,3), Daiuske Akita4), Taku Toriumi5), Niina Tsurumachi-Iwasaki6), Tomohiko Kazama7), Yoshinori Arai8), Taro Matsumoto9), Koichiro Kano9) and Masaki Honda5)

1) Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
2) Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
3) Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
4) Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
5) Department of Oral Anatomy, Aichi Gakuin University School of Dentistry, Nagoya, Japan
6) Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo, Japan
7) Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
8) Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo, Japan
9) Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan

Abstract: Tissue engineering is a promising approach to supplement existing treatment strategies for craniofacial bone regeneration. In this study, a type I collagen scaffold made from a recombinant peptide (RCP) with an Arg-Gly-Asp motif was developed, and its effect on regeneration in critical-size mandibular bone defects was evaluated. Additionally, the combined effect of the scaffold and lipid-free dedifferentiated fat (DFAT) cells was assessed. Briefly, DFAT cells were separated from mature adipocytes by using a ceiling culture technique based on buoyancy. A 3 cm × 4 cm critical-size bone defect was created in the rat mandible, and regeneration was evaluated using RCP with DFAT cells. Then, cultured DFAT cells and adipose-derived stem cells (ASCs) were seeded onto RCP scaffolds (DFAT/RCP and ASC/RCP) and implanted into the bone defects. Micro-computed tomography imaging at 8 weeks after implantation showed significantly greater bone regeneration in the DFAT/RCP group than in the ASC/RCP and RCP-alone groups. Similarily, histological analysis showed significantly greater bone width in the DFAT/RCP group than in the ASC/RCP and RCP-alone groups. These findings suggest that DFAT/RCP is effective for bone formation in critical-size bone defects and that DFAT cells are a promising source for bone regeneration.

Keywords: adipose-derived mesenchymal stem cells, bone regeneration, critical-size bone defect, dedifferentiated fat cells, recombinant peptide scaffold, type I collagen scaffold

Introduction

Successful repair of jawbone deficiencies is a major concern in dentistry. Such defects require operative transfer of substantial amounts of bone for reconstruction [1-4]. Autologous trabecular bone is widely regarded as the gold standard for bone augmentation, since it supplies growth factors, osteogenic cells, and mechanical support [5,6]. However, the transfer of autologous bone grafts is often inadequate for large defects [7,8], owing to the limited amount of bone available to be harvested. Therefore, dentists must identify a better approach for repairing large bony defects.

Several bone augmentation substitutes based on hydroxyapatite (HA) or beta-tricalcium phosphate are the primary candidates to replace autologous bone [9]. However, hydroxyapatite is often unstable for large defects, and beta-tricalcium phosphate is often inadequate for large defects. Therefore, it is necessary to develop a novel bioabsorbable recombinant protein (RCP) for medical use. An assessment of RCP on the alpha-1 sequence of human collagen type I confirmed the presence of 12 RGD motifs in a single molecule. RCP produced by the yeast Pichia pastoris differs from conventional animal collagen because there is no risk of infections such as bovine spongiform encephalopathy [20,21]. The effect of using RCP in combination with osteogenic cells for bone tissue engineering has not been evaluated.

The present authors hypothesized that incorporation of RGD into collagen scaffolds would synergistically enhance osteogenic differentiation of encapsulated DFAT cells and bone regeneration. To test this hypothesis, a most extensively used synthetic polymers in bone regeneration approaches. Collagen scaffold systems have advantages for bone tissue engineering, because artificial collagen scaffolds can support proliferation and ECM deposition of encapsulated MSCs. However, a suitable collagen scaffold for bone tissue engineering has not been developed. This can be explained by the lack of specific cell binding domains on the collagen surface and the high hydrophilicity and low protein adsorption of collagen, which limit cell-matrix interactions and diminish osteogenic cellular responses.

Natural type I collagen enhances cellular attachment, because of its abundant Arg-Gly-Asp (RGD) residues, and induces osteogenic differentiation [12-14]. The RGD motif is generally present in ECM components, such as vitronectin, fibronection, and thrombospondin, and is recognized and bound by integrin receptors expressed on the cell surface [15-18]. Several studies have focused on the use of cell adhesion motifs containing RGD to enhance cell-matrix interactions [14]. In addition, incorporation of RGD-containing peptides on the biomaterial surface has been shown to reinforce cell adhesion and osteogenic differentiation [19]. Fujifilm Corp. (Tokyo, Japan) developed a novel bioabsorbable recombinant protein (RCP) for medical use. An assessment of RCP on the alpha-1 sequence of human collagen type I confirmed the presence of 12 RGD motifs in a single molecule. RCP produced by the yeast Pichia pastoris differs from conventional animal collagen because there is no risk of infections such as bovine spongiform encephalopathy [20,21]. The effect of using RCP in combination with osteogenic cells for bone tissue engineering has not been evaluated.

Dedifferentiated fat (DFAT) cells are established by asymmetrical division of mature adipocytes from adipose tissue with a ceiling culture technique, which relies on the inherent buoyancy of adipocytes [22-25]. Unlike terminally differentiated adipocytes, DFAT cells have the potential to actively proliferate and have the characteristics of MSCs, i.e., multiple differentiation into osteoblasts [26,27], adipocytes [26,27], chondrocytes [26], skeletal myocytes [28], smooth muscle cell lineages [29,30], cardiomyocytes [31], and endothelial cells [32,33] in vitro.

Two types of adipose-derived stem cells (ASCs), identified as MSCs and DFAT cells, can be isolated from subcutaneous adipose tissues or buccal fat pads [22-27]. Several studies reported that DFAT cells and ASCs potentially contribute to regeneration of periodontal tissue in animal models [22,24,27]. However, previous results suggest that osteoblastic differentiation potential is greater for DFAT cells than for ASCs [22], which is consistent with data from other studies [34]. Existing evidence indicates that DFAT cells are a particularly promising cell source for bone and periodontal tissue regeneration; however, clinical use of DFAT cells has not been reported. In the context of a clinical need for a more effective approach, it may be feasible to regenerate critical-size bone defects with DFAT cells and RCP scaffolds. However, the combination of DFAT cells and RCP scaffolds has not been evaluated.

Correspondence to Dr. Masaki Honda, Department of Oral Anatomy, Aichi Gakuin University School of Dentistry, 1-100 Kasumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
Fax: +81-52-752-5988 E-mail: honda-m@dpc.agu.ac.jp

Color figures can be viewed in the online issue at J-STAGE. doi.org/10.2334/josnusd.18-0458

DN/JST.JSTAGE/josnusd/18-0458
Isolated adipocytes were placed in culture flasks (BD obtained from 10-week-old rats was processed to isolate adipocytes. Cells. Briefly, approximately 1 g of inguinal subcutaneous adipose tissue purchased from CLEA Japan, Inc. (Tokyo, Japan) for isolation of DFAT Eight-week-old male F344 rats (= 5, body weight 190 ± 10 g) were Care Committee at the Nihon University School of Dentistry (AP17D020).

Materials and Methods

All animal studies were reviewed and approved by the Animal Research and Care Committee at the Nihon University School of Dentistry (AP17D020).

Preparation of dedifferentiated fat cells

Eight-week-old male F344 rats (n = 5, body weight 190 ± 10 g) were purchased from CLEA Japan, Inc. (Tokyo, Japan) for isolation of DFAT cells. Briefly, approximately 1 g of inguinal subcutaneous adipose tissue obtained from 10-week-old rats was processed to isolate adipocytes. Isolated adipocytes were placed in culture flasks (BD Falcon; Becton, Dickinson and Company, Franklin Lakes, NJ, USA) filled with Dulbecco’s modified Eagle’s medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA) supplemented with 20% fetal bovine serum (FBS; 13B103, Sigma-Aldrich) as growth media. Mature adipocytes floated up and adhered to the top inner surface of the culture flasks. After about 1 week, the medium was replaced with growth media, and the flask was re-inverted so that the cells were on the bottom of the culture flasks (Fig. 1) [22-25]. The initial DFAT cells, referred to as passage 0 (P0), were passaged at 80% confluence.

Preparation of adipose-derived stem cells

Cultured ASCs were prepared as described previously [27]. Briefly, the stromal vascular fraction (SVF) was isolated by centrifugation as the pellet fraction from collagenase-digested adipose tissue, after collecting the floating uppermost layer, as described above. These cells are referred to as SVF cells and were cultured and were cultured in DMEM supplemented with 10% FBS (Fig. 1). ASCs and DFAT cells at the second and third passages obtained from the same rat were used for in vivo experiments.

Complex of biodegradable scaffolds and cells

The recombinant peptide (RCP, Cellnest; Fujifilm Corp., Tokyo, Japan) from human type I collagen α chain was prepared as previously described [20,21]. The biodegradable RCP porous block scaffolds were resized to approximately 3 × 4 × 0.5 mm, and sterilized biodegradable RCP block scaffolds were purchased from Fujifilm Corp. To prepare the complex of RCP-block scaffold and cells, 500-μL aliquots of the cell suspension (2 × 10^6 cells/mL, 1 × 10^6 cells/RCP) were seeded onto the tops of RCP, centrifuged at 600 × g for 5 min, and then incubated for 6 h before implantation.

To analyze pore size, RCP-block scaffolds were vaporized with an approximately 30-nm layer of carbon by using a vacuum evaporator (JEE-420T; JEOL, Tokyo, Japan) and then evaluated with a field-emission electron probe microanalyzer (JXA-8530FA, JEOL).

Cell transplantation

Fifteen male F344 rats (age, 10 weeks; weight, 200 ± 10 g) were used for the in vivo experiment. Under isoflurane (Narcobit-E; KN-1071, Natsume Seisakusho Co. Ltd., Tokyo, Japan) inhalation, critical-size mandibular defects were created as previously described [35]. Briefly, a skin incision was made along the inferior border of the right mandible, and the masseter muscle and periosteum covering the buccal surface of the mandible were elevated as a flap. After measuring 4 × 3 × 1 mm of mandible, a low-speed inverted corn bur was used to grind the bone tissue posterior to the incisor and contiguous to the inferior border of the mandible (Fig. 2). Appropriately sized RCP-block scaffolds were placed in the defects and covered with a membrane (Bio-Gide, Geistlich Pharma, Wolhusen, Switzerland). The masseter muscles were repositioned and the skin was closed with nonresorbable sutures. To prevent infection, Dolmycin ointment (Zeria Pharmaceutical, Tokyo, Japan) was applied to the sutured area for postoperative care. The following four groups were established: (1) blank scaffolds, regarded as the control group (bone defect without any scaffold and cells) (n = 5), (2) RCP-block scaffolds covered with the membrane, but without cells (RCP-alone group) (n = 4), (3) ASC-loaded RCP-block scaffolds covered with the membrane (ASC/RCP group) (n = 5), and (4) DFAT cell-loaded RCP-block scaffolds covered with the membrane (DFAT/RCP group) (n = 5). The left side of the mandible was not manipulated, to maintain oral function.

In vivo x-ray micro-computed tomography imaging and analysis

An X-ray micro-computed tomography (CT) device (Rigaku Corp., Akishima, Japan) was used as previously described [22,24]. The exposure parameters were 17 s, 90 kV, and 100 μA. The isotropic voxel size was 30 μm. Briefly, images were obtained from individual rats immediately after the operation and each week thereafter, until 8 weeks after the operation. The images were reconstructed into 3D images with i-View (J. Morita Co., Kyoto, Japan). Bone volume was measured in regions of interest (ROIs) from voxel images by using the bone volume-measuring software package 3 by 4 Viewer 2012 (Kitasenju Radist Dental Clinic I-View Image Center, Tokyo, Japan). The ROI size was 2.4 × 1.8 × 2.1 mm, which covered the surgically created critical-size bone defects. The increase in bone volume in each rat was then calculated by subtracting bone volume on day 0 from
each of the subsequent values.

Histological analysis

Eight weeks after the operation, all animals were sacrificed, and right mandibles were harvested for histological analysis as previously described. Briefly, the mandibles were fixed in 10% neutral-buffered paraformaldehyde, decalcified in 10% ethylenediaminetetraacetic acid (EDTA), dehydrated through a graded series of ethanol solutions, and then embedded in paraffin. The paraffin sections were stained with hematoxylin and eosin (H&E).

Statistical analysis

Data are expressed as means and standard deviation (SD) for each group. Statistical analyses were performed by using GraphPad Prism 5 software (GraphPad Inc, La Jolla, CA, USA). Normality was analyzed with the Kolmogorov-Smirnov test, and homoscedasticity was confirmed with the Bartlett test. One-way analysis of variance (ANOVA) and the Tukey multiple comparisons test were used for intergroup comparisons. Values of ***$P < 0.001$ and ****$P < 0.0001$ were considered statistically significant.

Results

Pore size of the RCP-block scaffold

Six pores were randomly selected (Fig. 3). On the basis of measurements of diameters, pore size in the RCP-block scaffold was $100.3 \pm 24.2 \mu m$ (mean \pm SD) (Fig. 3).

Implantation of DFAT/RCP enhanced bone regeneration

After large bone defect formation at the inferior border of the mandible, the rats were divided into four groups, as described in the Materials and Methods. A slight loss of body weight (-8.6%) was observed in rats in all groups at the time of sacrifice, but there were no statistically significant differences among groups. No severe inflammation or swelling was seen at any evaluated site during the experimental period. Newly formed bone was clearly observed at the defect sites in all groups at 4 weeks after implantation. At this time point, the range of new bone formation was greater in the DFAT/RCP group than in the ASC/RCP group and RCP-alone group (Fig. 4). In addition, the newly formed cortical bone-like tissue was connected to the native cortical bone at the mesial side at 6 weeks, and at both mesial and distal sides at 8 weeks, in the DFAT/RCP group, but the bone defect was still not occupied by new bone-like tissue in the control, RCP-alone, or ASC/RCP groups at 8 weeks.

The amount of newly formed bone was measured by using micro-CT images. As shown in Figure 5, the amount of newly formed bone was substantial in the DFAT/RCP group (hatched bars) and was significantly greater than in the ASC/RCP group and RCP-alone group (Fig. 4). In addition, the newly formed cortical bone-like tissue was connected to the native cortical bone at the mesial side at 6 weeks, and at both mesial and distal sides at 8 weeks, in the DFAT/RCP group, but the bone defect was still not occupied by new bone-like tissue in the control, RCP-alone, or ASC/RCP groups at 8 weeks.

The amount of newly formed bone was measured by using micro-CT images. As shown in Figure 5, the amount of newly formed bone was substantial in the DFAT/RCP group (hatched bars) and was significantly greater than in the ASC/RCP group and RCP-alone group (Fig. 4). In addition, the newly formed cortical bone-like tissue was connected to the native cortical bone at the mesial side at 6 weeks, and at both mesial and distal sides at 8 weeks, in the DFAT/RCP group, but the bone defect was still not occupied by new bone-like tissue in the control, RCP-alone, or ASC/RCP groups at 8 weeks.

Histological examination

At 8 weeks after implantation, H&E staining and histological analyses were performed. At low magnification, the whole bone defect area was filled with newly formed bone in the DFAT/RCP group (Fig. 6A). Although new bone was generated in the ASC/RCP (Fig. 6B), RCP-alone (Fig. 6C),
addition, incorporation of RGD-containing peptides on biomaterial surfaces and a repeat of the RGD peptide. Numerous studies have used cell adhesion growth of transplanted cells [41]. The new bioabsorbable biomaterial RCP, or osteogenic cells to bone defects and to provide initial support for the regeneration that it can eventually be replaced by regenerated bone tissue [40]. In addition, several bone matrix proteins, such as natural collagen and osteopontin, have been used [39]. However, a standard method of surgical harvesting of bone, and the amount of bone available for harvesting is limited [37,38]. Therefore, several bone-graft substitutes, such as HA and calcium phosphate, have been used [39]. However, a standard method using bone substitutes has not been developed for large bone defects.

Why was an RCP-block scaffold used as a scaffold to repair large bone defects in this study? Successful bone regeneration requires a suitable 3D scaffold that maintains space for cell growth and differentiation. The appropriate scaffold for bone regeneration should be bioabsorbable, so that it can eventually be replaced by regenerated bone tissue [40]. In addition, a 3D bioabsorbable scaffold is necessary in order to deliver MSCs or osteogenic cells to bone defects and to provide initial support for the growth of transplanted cells [41]. The new bioabsorbable biomaterial RCP, developed by Fujifilm Corp., is based on the alpha-1 sequence of human collagen type I and has 12 RGD (Arg-Gly-Asp) motifs in a single molecule and a repeat of the RGD peptide. Numerous studies have used cell adhesion motifs containing RGD motifs to increase cell-matrix interactions [14]. In addition, incorporation of RGD-containing peptides on biomaterial surfaces increases cell adhesion and osteogenic differentiation [19] because RGD-peptides facilitate interaction of cellular integrin receptors with bone matrix proteins [42]. For example, coating HA surfaces with an RGD-containing peptide increased attachment and differentiation of osteoblasts [43,44]. In sum, existing evidence suggests that the RCP-block scaffold with RGD peptide may be useful for treatment of large bone defects.

Several bone matrix proteins, such as natural collagen and osteopontin, contain the RGD sequence. In particular, natural type I collagen enhances cellular attachment, because of its abundant RGD residues, and induces osteogenic differentiation [12-14]. However, use of natural type I collagen as a scaffold is limited by its potential immune and pathogenic effects. The RCP-block scaffolds produced by recombinant peptides in this study carry no risk of rejection or infection and can be fabricated into custom-designed shapes and sizes. To the best of the authors’ knowledge, no studies have evaluated the bone regeneration potential of RCP-block scaffolds.

When an RCP-block scaffold alone was implanted into a critical-size bone defect in this study, the defect space was mainly occupied by connective tissue with some bone at 8 weeks after implantation. This result suggests that the RCP-block scaffold helps maintain space for tissue regeneration in critical-size bone defects and supports the use of the RCP-block as a bone substitute to repair defects. However, the bone defect was completely occupied by newly formed connective and bone tissues. Accordingly, additional external interventions, such as the use of osteogenic cells, may be necessary in order to compensate for inadequate bone regeneration with the RCP-block scaffold alone for large bone defects.

Why were DFAT cells combined with the RCP-block scaffold for repairing critical-size bone defects in this study? Several recent studies using a ceiling culture technique showed that adipocytes could be converted into mesenchymal stem cell-like cells, known as DFAT cells [26]. Additionally, ASCs have been widely investigated as potential MSCs in regenerative medicine. In previous studies, DFAT cells exhibited relevant MSC characteristics at frequencies higher than those of ASCs produced from a given amount of the same adipose tissue [22,45]. In addition, compared with ASCs, DFAT cells were a more homogeneous cell population [26]. Furthermore, the capacity for osteoblastic differentiation is greater for DFAT cells than for ASCs [22,34]. The present authors’ previous in vivo study showed that implantation of DFAT cells with 3D scaffolds was a more effective approach for enhancing periodontal tissue regeneration, as compared with using ASCs in a fenestration defect, and in three-wall intrabony periodontal defect models [22,24]. The results suggest that the DFAT/RCP complex strongly induces bone regeneration. The present study compared the in vivo effects of the DFAT/RCP complex and ASC/RCP in critical-size bone defects.

To determine the regeneration potential in critical-size bone defects, reconstituted micro-CT images were prepared until week 8, when the artificially created defect area was nearly filled with newly generated bone in the DFAT/RCP group. The quantity of new bone was calculated at 6 and 8 weeks. Although bone volume at 6 weeks did not significantly differ between the RCP-alone and DFAT/RCP groups, it was significantly higher in the DFAT/RCP group than in the ASC/RCP group at week 8.

By week 8, the created defect sites were easily identifiable histologically in the RCP-alone and ASC/RCP groups because the remaining bone defect was clearly visible. In the DFAT/RCP group, bone regeneration was promoted by increasing bone volume, as evidenced by micro-CT analyses. As predicted, implantation of the RCP scaffold carrying DFAT cells enhanced bone regeneration, thus demonstrating potential for healing.
critical-size bone defects [14]. However, the precise mechanism by which implanted cells enhance bone regeneration was not investigated in this study. In addition, the present study was limited by the very short duration of the analysis, which was not sufficient to predict differences over time, and the limited number of rats in each study group. To confirm the present conclusions, future studies should use a larger number of animals.

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Number 16K20519, the MEXT-supported Program for the Strategic Research Foundation at Private Universities (S1411018), Nihon University School of Dentistry Sato Funds (2016-2017), and Nihon University President’s Grant for Multidisciplinary Studies (2015-2017), and Nihon University Chairman of the Board of Trustees Grant (2018-2020).

Conflict of interest

The authors declare that they have no competing interests.

References

1. Mercier P, Huang H, Cholewa J, Dykovics S (1992) A comparative study of the efficacy and morbidity of five techniques for ridge augmentation of the mandible. J Oral Maxillofac Surg 50, 210-217.
2. Davis RE, Tellesch FF (1995) Traumatic facial nerve injuries: review of diagnosis and treatment. J Craniomaxillofac Trauma 1, 30-41.
3. Curtis DA, Plesh O, Miller AJ, Curtis TA, Sharma A, Schweitzer R et al. (1997) A comparison of masticatory function in patients with or without reconstruction of the mandible. Head Neck 19, 287-296.
4. Izuka T, Snooka W, Hallermann W, Mericske-Stern R (1997) Extensive augmentation of the alveolar ridge using autogenous calvarial split bone grafts for dental rehabilitation. Clin Oral Implants Res 15, 607-615.
5. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 329, 300-309.
6. Buchowetz RW (2002) Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res 395, 44-52.
7. Mannon PN, Cawley WA, Hoopes JE (1986) Frontal cranialplasty: risk factors and choice of cranial vault reconstructive material. Plast Reconstr Surg 77, 888-904.
8. Kübler N, Michel C, Zöller J, Bill J, Mühling J, Reuther J (1995) Repair of human skull defects using osteoinductive bone alloimplants. J Craniomaxillofac Surg 23, 337-346.
9. van Goel AV (1985) Preformed polymethylmethacrylate cranioplasties: report of 45 cases. J Maxillofac Surg 13, 2-8.
10. Kiyokawa K, Hayakawa K, Tanabe HY, Inoue Y, Tai Y, Shigemori M et al. (1998) Cranioplasty with split lateral skull plate segments for reconstruction of skull defects. J Craniomaxillofac Surg 26, 379-385.
11. Moreira-Gonzalez A, Jackson JE, Miyawaki T, Barakat K, DiNick V (2003) Clinical outcome in cranioplasty: critical review in long-term follow-up. J Craniofac Surg 14, 144-153.
12. Schaffner P, Dard MM (2003) Structure and function of RGD peptides involved in bone biology. Cell Mol Life Sc 60, 119-132.
13. Durrieu MC, Pallu S, Guillenmot P, Barreille R, Amédée J, Baraque CH et al. (2004) Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. J Mater Sci Mater Med 15, 779-786.
14. Visser R, Arrabal PM, Santos-Ruiz L, Fernandez-Barranco R, Becerra J, Cifuentes M (2016) Use of mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration. Front Physiol 7, 50.
15. Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T et al. (2016) Small buccal fat pad cells convert to osteoprogenitor phenotype and repair injured cardiac tissue in rats. J Mol Cell Cardiol 47, 565-575.
16. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbemik L, Tamarat R et al. (2004) Plasminogen activation of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109, 656-663.
17. Poloni A, Maurizi G, Anastasi S, Mondoni E, Mattiucci D, Discipolo G et al. (2015) Plasticity of human dedifferentiated adipocytes toward endothelial cells. Exp Hematol 43, 146.
18. Kishimoto N, Momota Y, Hashimoto Y, Tatsuno S, Ando K, Omasa T et al. (2014) The osteoblastic differentiation ability of human dedifferentiated fat cells is higher than that of adipose stem cells from the buccal fat pad. Clin Oral Investig 18, 1893-1900.
19. Pan J, Park H, Lee MK, Bezouglia O, Farzand A, Kim J et al. (2014) Adipose-derived stem cells and BMP-2 delivery in chitosan-based 3D constructs to enhance bone regeneration in a rat mandibular defect model. Tissue Eng Part A 20, 2169-2179.
20. Almquist BS, Hughlait K (2007) Bone augmentation techniques. J Periodontol 78, 377-396.
21. Hak DJ (2007) The use of osteoconductive bone graft substitutes in orthopaedic trauma. J Am Acad Orthop Surg 15, 525-536.
22. Chiappasco M, Casamenti P, Zaniboni M (2009) Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants 24, 237-259.
23. Taylor GI (1982) Reconstruction of the mandible with free composite iliac bone grafts. Ann Plast Surg, 9, 361-376.
24. Rungsiyanont S, Dhanesuan N, Swasdison S, Kasugai S (2012) Evaluation of biomimetic collagenase concentration on the isolation of small adipocytes from human buccal fat pad. J Biomed Mater Res A 22, 250-259.
25. Suzuki D, Akita D, Tsuchimachi N, Kano K, Yamakawa K, Kanoke T et al. (2017) Transplantation of mature adipocyte-derived dedifferentiated fat cells into three-wall defects in the rat periodontium induces tissue regeneration. J Oral Sci 59, 611-620.
26. Tsuchimachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T et al. (2018) Effect of collagenase concentration on the isolation of small adipocytes from human buccal fat pad. J Biomed Mater Res A 106, 14-23.
27. Matsumoto T, Kano, Kondo D, Fukuda N, Iribe Y, Tanaka N et al. (2008) Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 215, 210-222.
28. Akita D, Morokuma S, Saito Y, Yamakawa K, Akiyama Y, Sato M et al. (2014) Periodontal tissue regeneration by transplantation of rat adipose-derived stromal cells in combination with PGA-based solid scaffolds. Biomol Res 35, 91-103.
29. Karaz T, Fujie M, Suganuma K, Iribe Y, Yamauchi T, Suzuki A et al. (2010) Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro. Biochem Biophys Res Commun 377, 780-785.
30. Obinata D, Matsumoto T, Kano K, Fukuda N, Obinata D, Yamaguchi K et al. (2009) Mature, adipocyte derived, dedifferentiated fat cells can differentiate into smooth muscle-like cells and contribute to bladder tissue regeneration. J Urol 182, 355-365.
31. Obinata D, Matsumoto T, Ikkado Y, Sakuma T, Kazama K, Fukuda N et al. (2011) Transplantation of mature adipocyte-derived dedifferentiated fat (DFA) cells improves ureteral sphincter contractility in a rat model. Int J Urol 18, 827-834.
32. Jamhary M, Matsumoto T, Yokoyama S, Kano K, Kasumi Y, Masuko T et al. (2009) Dedifferentiation of fat cells converts to osteoprogenitor phenotype and repair injured cardiac tissue in rats. J Mol Cell Cardiol 47, 565-575.
33. Plantat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbemik L, Tamarat R et al. (2004) Plasminogen activation of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109, 656-663.
34. Poloni A, Maurizi G, Anastasi S, Mondoni E, Mattiucci D, Discipolo G et al. (2015) Plasticity of human dedifferentiated adipocytes toward endothelial cells. Exp Hematol 43, 146.
35. Rungsiyanont S, Dhanesuan N, Swasdison S, Kasugai S (2012) Evaluation of biomimetic collagenase concentration on the isolation of small adipocytes from human buccal fat pad. J Biomed Mater Res A 22, 250-259.
36. McAllister BS, Haghighat K (2007) Bone augmentation techniques. J Periodontol 78, 377-396.
37. Hak DJ (2007) The use of osteoconductive bone graft substitutes in orthopaedic trauma. J Am Acad Orthop Surg 15, 525-536.
38. Chiappasco M, Casamenti P, Zaniboni M (2009) Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants 24, 237-259.
39. Taylor GI (1982) Reconstruction of the mandible with free composite iliac bone grafts. Ann Plast Surg, 9, 361-376.
40. Rungsiyanont S, Dhanesuan N, Swasdison S, Kasugai S (2012) Evaluation of biomimetic collagenase concentration on the isolation of small adipocytes from human buccal fat pad. J Biomed Mater Res A 22, 250-259.
41. Wang DA, Williams CG, Yang F, Cher N, Lee H, Elisseeff JH (2005) Bioresponsive phospho-ester peptide homologues. J Biol Chem 266, 3579-3585.