Pseudo-Octahedral Iron(II) Complexes with Near-Degenerate Charge Transfer and Ligand Field States at the Franck-Condon Geometry

Johannes Moll,[a] Robert Naumann,[a] Lukas Sorge,[a] Christoph Förster,[a] Niklas Gessner,[b] Lukas Burkhardt,[c] Naz Ugur,[d] Patrick Nuernberger,[b] Wolfram Seidel,[e] Charusheela Ramanan,[d, f] Matthias Bauer,[c] and Katja Heinze*[a]

Abstract: Increasing the metal-to-ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand’s π* orbital energy and by increasing the ligand field splitting. In the homo- and heteroleptic complexes [Fe(cpmp)]2+ (1^{2+}) and [Fe(cpmp)(ddpd)]3+ (2^{2+}) with the tridentate ligands 6,2''-carboxypyridyl-2,2'-methylene-pyridyl-pyridine (cpmp) and N,N'-dimethyl-N,N'-di-pyridin-2-ylpyridine-2,6-diamine (ddpd) two or one dipyridyl ketone moieties provide low energy π* acceptor orbitals. A good metal-ligand orbital overlap to increase the ligand field splitting is achieved by optimizing the octahedrality through CO and NMe units between the coordinating pyridines which enable the formation of six-membered chelate rings. The push-pull ligand cpmp provides intra-ligand and ligand-to-ligand charge transfer (ILCT, LL’CT) excited states in addition to MLCT excited states. Ground and excited state properties of 1^{2+} and 2^{2+} were accessed by X-ray diffraction analyses, resonance Raman spectroscopy, (spectro)electrochemistry, EPR spectroscopy, X-ray emission spectroscopy, static and time-resolved IR and UV/Vis/NIR absorption spectroscopy as well as quantum chemical calculations.

Introduction

Polypyridine ruthenium(II) complexes like the prototypical complex [Ru(bpy)]3+ (bpy = 2,2'-bipyridine) are used as light harvesters in dye sensitized solar cells, as emitters in light emitting electrochemical cells and as photocatalysts thanks to their favorable redox and optical properties.[1–13] These properties encompass reversible ligand-centered reduction and metal-centered oxidation, strong visible light absorption via singlet metal-to-ligand charge transfer (MLCT) states, efficient intersystem crossing (ISC) to the 1MLCT state and a sufficiently high lifetime of the 3MLCT state enabled by high energy metal-centered (MC) states.[14–16] Replacing the rare and expensive ruthenium by the earth abundant homologue iron is an attractive but challenging research target.[14–16] The ligand field splitting in 3d metal ions like iron is generally significantly smaller than in homologous 4d metal ions (primogenic effect),[17] which leads to a rapid non-radiative decay of the potentially photoactive 3MLCT excited states to the singlet ground state (1GS) via low-energy 3/5MC states.[14–16] While ruthenium(II) complexes usually exhibit phosphorescence from 3MLCT states as lowest energy excited states with lifetimes in the ns to μs range, non-emissive 3/5MC states are the lowest excited states in iron(II) complexes.[1,14–16] This results in ultrafast internal conversion from 3MLCT to 3MC states followed by ISC to the 3MC state and finally non-radiative relaxation to the ground state. The efficient MLCT—MC cascade decreases the 3MLCT lifetime to typically below 0.2 ps.[14–16]

For example, [Fe(tpy)]3+ A^{2+} (Scheme 1) populates the 1MC state within 0.7 ps after 3MLCT excitation,[18] while the lifetime...
of its lowest \(^3\)MC state amounts to \(\tau_{3\text{MC}} = 5350 \text{ ps} \) in acetonitrile.\[19\] Replacing terpyridine ligands in A\(^{2+}\) by amido donors yields iron(II) complexes B\(^+\) with panchromatic absorption (Scheme 1).\[20\] A nanosecond excited state lifetime was assigned by the authors to a \(^3\)MLCT state, yet no emission has been reported for the complexes.\[20\] While a single cyclometalating ligand in C\(^+\) is not yet competent to sufficiently increase the \(^3\)MC state energies,\[21\] two rigidified cyclometalating ligands with low \(\pi^* \) energies in D achieve a luminescent

Results and Discussion

Syntheses and ground state structures

The blue homooleptic complex \([\text{Fe(cpmp)}]^{2+} (1^{2+})\) is the sole product of the reaction of \(\text{Fe}([\text{BF}_4]_2) \cdot 6\text{H}_2\text{O} \) with the ligand cpmp and can be straightforwardly purified by crystallization (Scheme 2a). In the presence of both ligands cpmp and ddpd in a
1:1 ratio, Fe(OTf)$_2$ forms both homo- and heteroleptic complexes (Scheme 2). The green heteroleptic complex [Fe-(cppm)(ddpd)]$^{2+}$ can be separated by column chromatography (Scheme 2b). However, ligand scrambling is observed for 2^+ over longer timescales in solution additionally forming the homoleptic complexes [Fe(ddpd)$_2$]$^{2+}$ and 1^+. The combination of the py$^-$–py$^-$–py$^-$ ligand nature and the helical arrangement of the meridional coordinated ligands (either P,P, or M,M34,44) furnishes both 1^+ and 2^+ as diastereomers with only one isomer depicted in Scheme 2 each. Flipping a cpmp ligand – formally exchanging C\equivO with N–Me and vice versa – yields the respective other diastereomer while maintaining the ligand helicity. The 1H and 13C NMR resonances (400 MHz, 100 MHz) of the diastereomers appear indistinguishable the diastereomers show up in the solid state structures (Figure 1). It is expected that these diastereomers form in an approximately 1:1 ratio (see below).

The compositions of [PF$_6$]$_2$ and 2[PF$_6$]$_2$ are confirmed by (high resolution) ESI mass spectrometry (Supporting Information, Figures S1–S2) and elemental analyses as well as multinuclear and correlation NMR spectroscopy (Supporting Information, Figures S3–S17). The NMR spectra display only a single set of 1H and 13C NMR resonances for the isomers. The sharp NMR resonances indicate low-spin 3d6 electron configurations in both cases.

The meridional coordination of the tridentate ligands is confirmed by single crystal X-ray diffraction analyses (Figure 1, Table 1). The unit cells of 1[PF$_6$]$_2$×CH$_3$CN and 2[PF$_6$]$_2$×1.5CH$_3$CN contain the two diastereomers $1A^+/1B^-$ and $2A^+/2B^+$. In the solid state, the second coordination sphere of the complexes is formed by hexafluorophosphate ions, co-crystallized acetonitrile and the carbonyl group of a neighboring complex with closest contacts of Fe–(F[PF$_6$])$^-$, Fe–NCCH$_3$ and Fe–O ranging from 4.36 to 5.00 Å ($1A^+$), 4.59 to 5.56 Å (1B^-) and 4.42 to 6.11 Å (2A^+), 4.22 to 5.29 Å (2B^+) (Table 1).

The $\text{[FeN}_6\text{]}$ local coordination sphere is close to octahedral for all diacids as shown by the shape parameter $S(\text{OC}(6))^{45}$ being close to zero (Table 1). The Fe–N bond lengths of the central pyridyne rings are only slightly shorter than of the terminal pyridyne rings (Table 1), which is typically observed for complexes with py\cdotspy\cdotspy\cdots ligands, for example [M(ddpd)$_2$]$^{2+}$, [M(dcpp)]$^{2+}$ or [M(dcpp)(ddpd)]$^{2+}$ complexes41,19,36,44.

The N–Fe–N bond angles are very close to 90° for the dipyrindketone moieties and slightly smaller for the methyl(dipyrindyl)amine moieties of the ccpp and dcpp ligands (Table 1). The degree of planarization PL $= 100 \times (\Sigma X-A-Y)/3 \times 109.5°$ of 95–98% for the dipyrindketone moieties and 88–91% for the methyl(dipyrindyl)amine moieties correlates inversely to the steric strain of the respective bridging groups. The torsion angles between the central pyridines of the two tridentate ligands are around 14° which should allow for LL$'$CT transitions. The geometries of $1A^+/1B^+$ and $2A^+/2B^+$ calculated by DFT methods on the CPCM(acetonitrile)-B3LYP-D3BJ-ZORA/def2-TZVP level of theory (Supporting Information, and Table 1) match the experimentally determined ones sufficiently well.

31P NMR spectra of 1[PF$_6$]$_2$ and 2[PF$_6$]$_2$ show the typical multiplet of the [PF$_6$]$^-$ counter ions at -144.7 ppm (Supporting Information, Figures S8, S17) confirming the successful counter ion exchange which is also consistent with the characteristic PF vibrations of the counter ions around 831/557 cm$^{-1}$ in the IR.

Scheme 2. Synthesis of the a) homoleptic and b) heteroleptic iron(III) complexes 1[PF$_6$]$_2$ and 2[PF$_6$]$_2$ with the push-pull ligand cppm. Accepting CO and donating NMe units colored red and blue, respectively.

Figure 1. Molecular structures of a) 1^+ (1A^+, 1B^-) and b) 2^+ (2A^+, 2B^+) determined by single crystal XRD analyses. Thermal ellipsoids set at 50% probability. Hydrogen atoms are omitted for clarity. Atom numbering differs from cif file numbering but fits to Table 1 for better comparability.
spectra of \([\text{PF}_6]_2\) and \([\text{PF}_6]_2\) (Supporting Information, Figures S18–S19). The uncoordinated \text{cpmp} ligand displays a band of the C=O stretching vibration at 1679 cm\(^{-1}\). In the iron(II) complexes \([\text{PF}_6]_2\) and \([\text{PF}_6]_2\), this band shifts to 1669 and 1672 cm\(^{-1}\) (calculated as 1672 and 1667 cm\(^{-1}\); scaled by 0.973), respectively, suggesting some π donation from the low-spin d\(^6\) iron(II) center into the π*(CO) orbitals. The helomelopic complex \([\text{PF}_6]_2\) with two \text{cpmp} ligands shows only a single CO stretching vibration indicating no coupling of the two C=O oscillators. The DFT calculated splitting of these bands of 1\(^+\) is indeed below 3 cm\(^{-1}\). The calculated energy differences between the isomers 1A\(^+\)/1B\(^+\) and 2A\(^+\)/2B\(^+\) are very small (\(<3 \text{ kJ mol}^{-1}\) and the respective calculated CO IR frequencies are essentially indistinguishable so that we consider only the A isomers in most parts of the following discussions. This is consistent with the experimental NMR and IR data.

Characterization of the electronic ground states

UV/Vis/NIR absorption spectra of \([\text{PF}_6]_2\) and \([\text{PF}_6]_2\) were measured in acetonitrile (Figure 2; Supporting Information, Figure S20 for full spectra). Time-dependent DFT and charge transfer number analyses served to assign the character of the absorption bands (Supporting Information, Figures S21–S24). The band at 270 nm with a shoulder at 300 nm in the absorption spectrum of \([\text{PF}_6]_2\) is assigned to mainly ligand centered ππ* transitions. For the heteroleptic complex \([\text{PF}_6]_2\) these bands shift to 276 and 326 nm, respectively, with 1ππ* and 1LL’CT character. The 350 nm band of \([\text{PF}_6]_2\) can be assigned to mainly MLCT transitions, while the shoulder at 410 nm is caused by 1ILCT/1LC and 1LL’CT transitions. \([\text{PF}_6]_2\) shows the MLCT band at 365 nm with a shoulder at 420 nm assigned to 1ILCT/1LC transitions. In both cases, 1ILCT and 1LL’CT states are higher in energy than the lowest 1MLCT transitions.

The characteristic low-energy 1MLCT bands of \([\text{PF}_6]_2\) and \([\text{PF}_6]_2\) appear at 610 and 616 nm, respectively (Figure 2). The dipyridyl ketone moieties act as the acceptor in the 1MLCT transitions as seen in the difference densities (Supporting Information, Figures S22, S24). The 1MLCT extinction coefficient of 1\(^+\) is nearly twice as large for 2\(^+\) due to the presence of two acceptor sites instead of only one in 1\(^+\). The even higher extinction coefficient of \([\text{Fe(dcpp)}_2]_2\)\(^{2+}\) with four dipyridyl ketone acceptor units fits to this trend. [19,38] An analogous intensity change had been observed for the homologous ruthenium(II) complexes \([\text{Ru(cpmp)}]_2\)\(^{2+}\) and \([\text{Ru(cpmp)}(dpdp)]_2\)\(^{2+}\). [41] The number of donating methylamine units increases from \([\text{Fe(dcpp)}]_2\)\(^{2+}\) (Scheme 1) to 1\(^+\) and 2\(^+\), which manifests itself in a bathochromic shift of the 1MLCT absorption maximum from 606 nm over 610 nm to 619 nm. [19,38]

Table 1. Selected bond lengths (Å), angles (°), planarization PL (%) and continuous shape parameter S(OC-6)\(^{+}\) of 1\(^+\) and 2\(^+\) determined by XRD analyses (as \([\text{PF}_6]_2\) salts) and by DFT calculations.

	1A\(^+\) (DFT)	1A\(^+\) (XRD)	1B\(^+\) (XRD)	2A\(^+\) (DFT)	2A\(^+\) (XRD)	2B\(^+\) (XRD)
Fe1–N1	2.009	1.999(6)	1.985(5)	2.012	1.993(4)	1.997(3)
Fe1–N2	1.978	1.963(5)	1.947(6)	1.972	1.953(4)	1.953(3)
Fe1–N3	1.997	1.999(6)	1.973(6)	2.002	1.984(3)	1.964(3)
Fe1–N4	2.005	1.974(6)	1.981(6)	2.003	1.983(3)	1.979(3)
Fe1–N5	1.976	1.949(6)	1.950(6)	1.980	1.959(3)	1.964(3)
Fe1–N6	2.002	1.984(6)	2.011(6)	2.002	1.986(3)	1.987(3)
N1–Fe1–N2	87.9	88.2(2)	87.7(2)	87.6	88.27(15)	87.76(13)
N2–Fe1–N3	90.5	90.3(2)	90.9(2)	90.9	90.19(14)	90.59(13)
N4–Fe1–N5	90.4	90.1(2)	90.5(2)	88.8	88.23(14)	88.74(14)
N5–Fe1–N6	87.6	89.1(3)	88.0(2)	88.8	89.15(14)	88.13(14)
PL(N7)	87.8	90.5	89.8	91.0	87.9	90.5
PL(C9)	98.0	95.2	97.8	–	95.6	98.1
PL(C10)	97.7	97.1	97.8	–	–	–
PL(NB)	90.3	87.6	89.2	87.8	87.6	89.2
S(OC-6)	0.04	0.04	0.04	0.06	0.05	0.06
Fe1–F1	–	4.36	4.72	–	4.42	4.42
Fe1–F2	–	4.73	4.84	–	6.11	4.22
Fe1–N1(CSCN)	–	5.00	–	–	5.09	5.29
Fe1–O1(neighborig molecule)	–	4.76	4.59	–	4.78	4.62
Fe1–O2(neighborig molecule)	–	5.56	–	–	–	–

![Figure 2. UV/Vis/NIR absorption spectra of \([\text{PF}_6]_2\) (blue) and \([\text{PF}_6]_2\) (red) in acetonitrile at 298 K.](image-url)
This effect mainly arises from an increased energy of the highest occupied orbitals (HOMO) by 0.26 eV and weaker increase in the LUMO energy (HOMO-LUMO gap) by 0.17 eV in 22+.

The nature of the low-energy band of 1[PF$_6$]$_2$ was experimentally probed by resonance Raman spectroscopy in CH$_3$CN solution and in the solid state with excitation at 633, 532 and 473 nm, respectively, in comparison to the off-resonance Raman spectrum with excitation at 785 nm (Supporting Information, Figures S25–S27). The spectra in solution normalized to the CN stretching band of the CH$_3$CN solvent allow for qualitative comparison of the different resonance enhanced Raman intensities of 12+. The most prominent enhancement is achieved with 633 nm excitation in particular at 1674 and 1198 cm$^{-1}$ corresponding to the C=O stretching and py-C-py deformation modes, respectively. Further bands with increased intensity at 1593, 1574, 1564, 1472, 1454, 1435 and 1416 cm$^{-1}$ belong to skeletal deformation modes of the pyridines (data given for the solid state; Supporting Information, Figures S26–S27). At higher excitation energies the enhancements are less pronounced suggesting less charge transfer character to the dipyrindyl ketone unit at these excitation energies which qualitatively agrees with the TD-DFT calculations and charge transfer number analysis (Supporting Information, Figures S21, S23), which predict decreasing MLCT character at the high energy tail of the absorption band.

Both complexes 1[PF$_6$]$_2$ and 2[PF$_6$]$_2$ are reversibly oxidized to the trication in their cyclic voltammograms at +0.79 and +0.55 V vs. ferrocene, respectively (Figure 3a). A DFT calculation on 12+ confirms the metal centered nature of the oxidation (Figure 3b). The 12+/3+ oxidation potential is higher by 0.24 V than that of 22+/3+ due to the electron withdrawing effect of two carbonyl groups instead of a single one in 22+ and the diminished donating effect of only two NMe groups in 12+ instead of three in 22+. The even higher oxidation potential of Fe(dcpp)$_2$$^{3+/2+}$ in 12+/3+ (+1.29 V vs. ferrocene) with four CO groups is consistent with this trend.

When compared to the ruthenium(II) homologues, the 12+/3+ and 22+/3+ potentials are lowered by 0.12 and 0.13 V, respectively.

The homoleptic complex 12+ exhibits two reversible reduction waves at −1.28 and −1.46 V that are assigned to the reduction of the individual cpmp ligands (Figure 3a, blue). The reduction wave of the single cpmp ligand in 22+ appears at −1.36 V (Figure 3a, red). A second (irreversible) reduction appears at −2.03 V. On the timescale of the CV experiments, the 12++/3+ and 22++/3+ reductions are reversible, although the electron occupies π*$_{CO}$ orbitals according to the spin densities obtained by DFT calculations on 12+ (Figure 3c).

The chemical reversibility and stability of the redox products were explored by IR and UV/Vis/NIR spectroelectrochemistry, respectively (Figure 4; Supporting Information, Figure S28). 22+ appeared less stable so the following experiments were only discussed for 12+ derived redox products. The FeIII oxidation of 12+ is perfectly reversible on the timescale of IR and UV/Vis/NIR spectroelectrochemistry in CH$_3$CN/[Bu$_4$N][PF$_6$] (Figure 4; Supporting Information, Figures S29–S30). The (unresolved) CO

![Figure 3](https://example.com/figure3)

Figure 3. a) Cyclic voltammograms of 1[PF$_6$]$_2$ (blue) and 2[PF$_6$]$_2$ (red), 1 mM in acetonitrile, 0.1 m [Bu$_4$N][PF$_6$], 100 mV s$^{-1}$ and DFT optimized geometries and spin densities (isosurface at 0.012 a.u.) of b) the iron(III) complex 12+ and c) the radical ion 12++.

Figure 4. a) IR absorption spectra and b) UV/Vis/NIR absorption spectra of 1[PF$_6$]$_2$ in acetonitrile with 0.1 m [Bu$_4$N][PF$_6$] at 298 K collected during electrochemical oxidation.
stretching bands of the Fe(II) complex 1^+ (Figure 3b) are shifted to higher energy by 18 cm$^{-1}$ compared to 2^+ (1684→1702 cm$^{-1}$; Figure 4a) suggesting a weaker π backbonding in the ion(III) complex than in the dication. This shift is excellently reproduced by the DFT calculations on 1^+ (18 cm$^{-1}$). Similarly, the evolution of the UV/Vis/NIR spectra during the $1^+→2^+$ oxidation displays several isosbestic points (Figure 4b). Characteristically, the low-energy 1MLCT band at 610 nm bleaches while a band at 962 nm appears. The latter band is assigned to 2LMCT transitions of the NMe moieties to low-spin iron(III) according to TD-DFT calculations on 1^+ (Supporting Information, Figures S31–S32). Chemical oxidation of 1^+ to 2^+ using one equivalent [NH$_4$]$_2$[Ce(NO$_3$)$_6$] yields a superimposable UV/Vis/NIR spectrum (Supporting Information, Figure S33).

Under reductive electrolysis $1^+→1^-$, no clear isosbestic points are observed in the UV/Vis/NIR and IR spectra suggesting that follow-up reactions occur on this timescale (Supporting Information, Figures S34–S35). Possibly pinacol coupling can occur at the reduced CO units after ligand dissociation on longer time scales. Similarly to the quasi-reversible reduction of cpmp to cpmp* at -1.99 V. Consequently, we resorted to faster chemical reduction using decamethylcobaltocene (Δg = -1.91 V in CH$_3$CN vs. ferrocene) as reductant followed by immediate spectroscopic analysis. On this time scale, the band of the remaining C=O moiety shifts to lower energy from 1684 to 1681 cm$^{-1}$, while the band of the reduced CO unit has shifted into the fingerprint region. As a consequence, the CO band loses half its intensity (Supporting Information, Figure S36). A small shift of the remaining C=O band to lower energy is also predicted for 1^+ calculated by DFT (Figure 3c). The IR absorption of the reduced CO moiety of DFT-optimized 1^+ has shifted into the fingerprint region, which results in a reduction of the original CO band intensity. This is fully consistent with the ligand centered reduction at a single dipyridyl ketone unit (Figure 3c).

To confirm the ligand and metal centered reduction and oxidation, we measured X-band EPR spectra of the ions 1^+ and $1^−$ in frozen solution. The redox products were prepared by chemical reduction of 1^+ with decamethylcobaltocene and oxidation of 1^+ with [NH$_4$]$_2$[Ce(NO$_3$)$_6$], respectively. The highly isotropic EPR resonance of 1^+ at $g = 2.0075$ clearly confirms the ligand centered radical (Figure 5a). The EPR pattern of 1^+ is highly anisotropic with clearly discernible g_1, g_2, and g_3 values diagnostic for low-spin iron(III) complexes. Interestingly, a double signal set is observed in a 1:1 intensity ratio (Figure 5b). We assign the two signal sets to the diastereomers $1A^+$ and $1B^+$, respectively. This illustrates that EPR spectroscopy is the only spectroscopic method, that we employed, which can distinguish the A and B diastereomers (in the iron(III) state). However, assigning the individual resonances to $1A^+$ and $1B^+$ is impossible. The g_1 values are very similar, while g_2 and g_3 values differ significantly. The anisotropy $\Delta g = g_1 - g_3$ of $1A^+$ and $1B^+$ hence ranges between 0.990 and 1.139. This is larger than that of the more symmetric complex $[\text{Fe(dcpp)}]$+$^+$ (Δg = 0.675) but smaller than that of the heteroleptic complex $[\text{Fe(dcpp)}(dppd)]^+$ (Δg = 1.26). This suggests that the g tensor is a very sensitive measure of the local symmetry around the low-spin iron(III) center.

Core-to-core X-ray emission spectroscopy at 20 K in the solid state confirms the low-spin states of the 3d6 iron(II) and 3d5 iron(III) complexes 1^+ and 1^+ with main line maxima at 7057.9 eV and 7058.1 eV, respectively, and a slightly increased Kβ satellite intensity for the d5 complex 1^+ (Supporting Information, Figure S37). Fe K-edge HERFD-XANES measurements yield two pre-edge features for 1^+ at 7113.3 eV (shoulder) and 7114.8 eV, while 1^+ shows four features at 7111.9, 7113.7, 7116.8 and 7115.4 eV (Supporting Information, Figures S38–S40). These features could be well reproduced by DFT calculations on low-spin 1^+ and 1^+ confirming the low-spin character of both ions similar to previous studies on carbene pyridine iron(I,II) complexes (Supporting Information, Figures S39–S40). Valence-to-core X-ray emission spectra are also in agreement with the ones reported for carbene pyridine iron(II) complexes (Supporting Information, Figure S41).

Excited state properties and dynamics

Ultrafast VIS-pump/IR-probe spectra of $[\text{PF}_6]^-$ in acetonitrile in the CO spectral region were obtained after optical excitation at 610 nm (1MLCT absorption; Supporting Information, Figure S42).
A negative transient absorption signal associated with the ground state bleach (GSB) is observed in the region around 1674 cm$^{-1}$ and a positive signal around 1685 cm$^{-1}$ from the CO stretch of an electronically excited state. Both features decay monoexponentially with a time constant $\tau_{IR} = (495 \pm 16)$ ps and an isosbestic point at 1681.5 cm$^{-1}$ (Supporting Information, Figure S42). The time constant τ_{IR} is assigned to the lifetime of the MC^+ state, while the time constant τ_{EX} is assigned to the MC^- state. The difference spectrum at 0.25 ps with the simulated MLCT spectrum obtained from spectroelectrochemical measurements supports this assignment (Supporting Information, Figure S47). The short-lived positive band tails far into the NIR (Supporting Information, Figures S45–S46). Figure 6b depicts the corresponding decay traces at three wavelengths. A global lifetime analysis was performed for a quantitative analysis of the TA data. The entire dataset can be adequately fitted with three exponentials with lifetimes of $\tau_1 < 200$ fs, $\tau_2 = 33$ ps, and $\tau_3 = 516$ ps. The decay associated difference spectra as well as the evolution associated difference spectra and corresponding decay curves are shown in the Supporting Information, Figure S48. We attribute the ultrafast component τ_1 to the MC^+ lifetime. The $\tau_2 = 33$ ps component most likely originates from cooling and reorganization of the solvent cage as the dipole moment during the transition from MC to MC^+ changes significantly. According to DFT calculations (see below) the dipole moment indeed decreases from 16.9/16.7 D (MC^+) to 6.1/6.6 D (MC^+) and 6.4/6.9 D (MC^+) for the isomers A/B, respectively. Finally, the $\tau_3 = 516$ ps component can be assigned to the MC^- lifetime as it shows no additional spectral features besides the GSB. This lifetime τ_3 matches the lifetime τ_{IR} determined by fs VIS-pump/IR-probe spectroscopy. On the sub-ps timescale, the low-energy absorption assigned to the MLCT state narrows and shifts to higher energy suggesting a sub-ps relaxation within the MLCT state (Supporting Information, Figure S49).

Excitation at 630 nm (direct excitation to the MC^+ state) yields qualitatively similar TA spectra, except for some artefacts such as scattered pump light (Supporting Information, Figure S43–S44). Global analysis delivers three components with very similar lifetimes ($\tau_1 < 200$ fs, $\tau_2 = 45$ ps, $\tau_3 = 517$ ps). Hence, there is no branching at higher energies and the evolution from the state(s) populated with 350 nm excitation to the MC^+ state is completed in less than 200 fs. Global analysis reveals that the intermediate component is slightly more long-lived in the case of 630 nm excitation. The observation of characteristic absorption bands of the MLCT state and the more detailed excited state dynamics of such highly symmetric FeN_4Me_2 complexes seems unprecedented, as for the FeN_4Me_2 complexes $\text{Fe}([\text{dcpp}])^2^-\text{I}^+$ and $\text{Fe}([\text{dcpp}][\text{ddpd}])^2^-\text{I}^+$ with high octahedrality merely the ground state recovery had been detected so far.$^{[19,38]}$
To obtain deeper insight into the assignments of the states and dynamics\(^{22,25}\) we resorted to DFT calculations of the \(^1\)GS, the \(^3\)MLCT, \(^1\)MC and \(^3\)MC states along a single symmetric Fe–N stretching mode (\(A_{x3}\)) to describe the expansion of the coordination sphere in the \(^1\)MC state for \(^1\)\(^2\)+ (Figure 7a; for \(^2\)\(^2\)+ see Supporting Information, Figure S50). The experimental \(^3\)MLCT energy is indicated by a blue \(\triangle\) in the diagram for illustration. Additionally, the \(^1\)GS, the \(^3\)MLCT, \(^1\)MC and \(^3\)MC states were optimized without any constraints (Figure 7b–d; indicated in Figure 7a by black, green, orange and red \(\triangle\), respectively). The description of the dynamics along a single breathing mode is highly simplified and the density of states in the relevant region is likely higher than only the reported optimized \(^3\)MLCT, \(^1\)MC and \(^3\)MC states. Sophisticated calculations on the singlet-triplet dynamics of \(^1\)\(^2\)+ with optimized functionals and including more degrees of freedom will be reported elsewhere.\(^{54}\)

Expectedly, the \(^3\)MLCT geometry is very similar to the GS geometry. The symmetric Fe–N stretch fits well to the expansion of the coordination sphere in the DFT optimized \(^3\)MC state (\(d(\text{Fe–N}) = 2.193, 2.147, 2.164/2.194, 2.146, 2.161 \text{ Å}\)). Yet, this symmetric mode does not perfectly describe the Jahn-Teller distorted \(^1\)MC state (\(d(\text{Fe–N}) = 2.226, 2.099, 2.192/1.993, 2.018, 1.999 \text{ Å}\)). In this \(^1\)MC state, the Fe–N bonds to the terminal pyridines of a single ccpp ligand are elongated, which defines the Jahn-Teller axis due to the population of the \(d_{z2}\) orbital. Nevertheless, we used the simplified reaction coordinate along the symmetric \(A_{x3}\) Fe–N stretching mode to describe the overall process from the MLCT to the final \(^1\)MC state. At the Franck-Condon geometry (\(d(\text{Fe–N}) \approx 2 \text{ Å}\)), the \(^1\)MLCT, \(^1\)MC and \(^3\)MC states are very similar in energy on this level of theory (Figure 7a). The proclivity of \(^1\)MLCT and \(^1\)MC can lead to efficient non-radiative decay through coupling of states at conical intersections. Furthermore, this state ordering at the Franck-Condon geometry/GS geometry suggests that indeed \(^1\)MC and \(^3\)MC are nearly degenerate which had been suggested for [Fe(dppe)]\(^{1+}\)\(^++\) before,\(^{19}\) yet the finally populated relaxed state of \(^1\)MC is the \(^1\)MC state as shown by time-resolved \(K_\beta\) and \(K_\gamma\) X-ray emission spectroscopies.\(^{50}\) Along the \(A_{x3}\) Fe–N mode, the energies of the \(^1\)MC and \(^3\)MC states drop significantly in the relevant regions from ca. 2.0 to 2.1 Å and 2.0 to 2.2 Å, respectively. Consequently, the \(^1\)MC state is lower than the \(^3\)MC state at their respective optimized geometries. Within this model, we assign \(\tau_1 < 200 \text{ fs}\) to the \(^1\)MLCT\(^+\)\(^1\)MC population transfer, \(\tau_\text{2} = 33/45 \text{ ps}\) to vibrational cooling and solvent reorganization within the \(^1\)MC states and \(\tau_3 = 516 \text{ ps}\) to the \(^3\)MC\(^--\)\(^1\)GS spin crossover.

The excited state landscape of the heteroleptic complex \(^2\)\(^2\)+ is quite similar to that of \(^1\)\(^2\)+ (Supporting Information, Figure S50; Figure 7a). The \(^1\)MC state of \(^2\)\(^2\)+ is calculated a bit higher than in \(^1\)\(^2\)+ so that \(^3\)MC/\(^1\)MC inversion has occurred at the Franck-Condon geometry at this level of theory. The fully optimized \(^1\)MC state is Jahn-Teller distorted with elongated Fe–N bonds to the terminal pyridines of the ddpd ligand (2.292/2.194 Å) as well as to the central pyridine of ddpd (2.100 Å), while in the \(^1\)GS all Fe–N bonds are close to 2 Å (Table 1). Expectedly, the \(^1\)MC state shows six elongated Fe–N bonds (ddpd: 2.154, 2.140, 2.157 Å; ccpp: 2.167, 2.150, 2.196 Å). At the respective optimized geometries the level ordering is \(^1\)MLCT > \(^3\)MC > \(^1\)MC. This ordering enables an efficient decay cascade \(^1\)MLCT\(^+\)\(^1\)MC\(^--\)\(^3\)MC with concomitant expansion of the coordination sphere preventing a long-lived \(^1\)MLCT state similar to the situation in \(^1\)\(^2\)+:

Conclusions

The push-pull ligand 6,2’-carboxypyridyl-2,2’-methylamine-pyridyl-pyridine (ccmp) was coordinated to iron(II) in the homo- and heteroleptic low-spin complexes \(^1\)\(^2\)+ and \(^2\)\(^2\)+ with the aim to increase the ligand field splitting by a high octahedricity and thus lifting the \(^1\)MC excited state energies and to decrease the \(^3\)MLCT states by low-energy \(\pi^*\) orbitals at the dipyridyl ketone units. The presence of accepting and donating units in ccmp
additionally give rise to 1LLCT and 1LCT excited states to increase the absorption cross section. These states appear at comparably high energy (350/410 nm) so they do not seem to play a role for the excited state dynamics while the 1MLCT states are at low energy ($\lambda_{\text{max}} = 610, 616$ nm for 1* and 2*, respectively). The 1MLCT states are the lowest excited states at the Franck-Condon geometry while the 1MC and 1MC states lower in energy upon Fe–N bond elongation. At the respective relaxed geometries, the 1MC state is the lowest state in 1* and 2*. The lifetime of the 1MC state of 1* has been determined by fs VIS-pump/IR-probe and fs UV/VIS-pump-VIS/NIR-super-continuum probe spectroscopies to 495 ps and 516 ps, respectively, identical within error. Clear signatures of the 1MLCT state of 1* were observed in fs-transient absorption spectra in the sub-picosecond regime at wavelengths above 650 nm, which are assigned to LMCT transitions from the NMe groups to the CO stretching bands significantly shift upon reduction or oxidation. Analogous strong CO shifts should occur in the MLCT states as predicted by DFT calculations. On the other hand, the CO stretching vibration in the ligand periphery is essentially unaffected by the spin state of 1* (1CS, MC, 1MC) and thus gives no handle to probe the spin state in a time-resolved manner. As vibrational probes for changes in the different spin states, Fe–N vibrations are the most suited ones but these are very challenging to observe by ultrafast IR or Raman spectroscopy.

Experimental Section

General Procedures: CH$_3$CN and Et$_2$O were distilled under argon atmosphere from CaH$_2$ and sodium, respectively. The ligands cpmq$^{[41]}$ and ddpd$^{[42,55]}$ were synthesized according to literature. All other solvents and reagents were used as received from commercial suppliers (Acros, Alfa Aesar, Fischer and Sigma-Aldrich).

Elemental analyses were performed by the microanalytical laboratory of the Department of Chemistry of the University of Mainz. Most NMR spectra were recorded on a Bruker Avance DRX 400 spectrometer. A Bruker Avance III HD 400 spectrometer was used for 1H COSY, 1H–1C HSQC and 1H–1C HMBC spectra of 2[PF$_6$]. The measurements were performed at 400.31 MHz (1H), 100.05 MHz (13C), and 162.05 MHz (19F). [CD$_3$]CN (1H, $\delta = 1.94$; 13C, $\delta = 1.24$ ppm)$^{[56]}$ or versus external H$_2$PO$_4$, (85 %) (1P, $\delta = 0$ ppm); (s) = singlet, (d) = doublet, (t) = triplet, (sept) = septet, (m) = multiplet. Atom numbering is shown in the Supporting Information at the respective NMR spectra. **ATR-IR spectra** were recorded with a Bruker ALPHA II FTIR spectrometer with a Platinum Di-ATR module. **ESI mass spectra** were recorded on a Micromass Q-TOF-Ultima spectrometer. **EPR spectra** were collected on a Miniscope MS 300 (Magnettech GmbH, Germany) at a microwave frequency of 9.39 GHz with a frequency counter HP 5340 A (Hewlett Packard) (in frozen butyronitrile, 77 K, 1*). and a frequency counter FC 400 (Magnettech GmbH, Germany) (frozen acetonitrile, 77 K, 1*, 2*).

Chemical experiments were carried out on a BioLogic SP-200 voltammetric analyzer using platinum wires as counter and working electrodes and 0.01 m Ag/AgNO$_3$ as the reference electrode. The measurements were carried out at a scan rate of 100 mV s$^{-1}$ for cyclic voltammetry experiments using 0.1 M [Bu$_4$N][PF$_6$] as the supporting electrolyte in CH$_3$CN. Potentials are referenced to the ferrocene/ferrocenium couple ($E_0 = 85 \pm 5$ mV under experimental conditions). UV/Vis/NIR spectroelectrochemical experiments were performed using a BioLogic SP-50 voltammetric analyzer and a Specac omni-cell liquid transmission cell with CaF$_2$ windows equipped with a Pt-gauze working electrode, a Pt-gauze counter electrode and a Ag wire as pseudo reference electrode, melt-sealed in a polyethylene spacer (approximate path length 1 mm) in CH$_3$CN (0.3 mM and 0.9 mM for oxidation and reduction, respectively) containing 0.1 M [Bu$_4$N][PF$_6$].$^{[56]}$ IR spectroelectrochemical experiments were performed using a BioLogic SP-200 voltammetric analyzer with the same cell, electrodes and electrolyte as above (12 mW). UV/Vis/NIR spectra were recorded on a Varian Cary 5000 spectrometer using 1.0 cm cells (Hellma, Suprasil). A Horiba LabRAM HR Raman microscope was used for resonance Raman measurements with an object lens (10x NA 0.25) from Olympus. Samples were optically excited with a NIR laser (785 nm, 100 mW, air-cooled diode laser), a red laser (633 nm, 17 mW, HeNe laser), a green laser (532 nm, 50 mW, air-cooled frequency-doubled Nd:YAG solid state laser), or a blue laser (473 nm, 20 mW, air-cooled solid state laser). Samples were measured in the solid state and in CH$_3$CN solution. HERFD-XANES (high energy resolution fluorescence detected X-ray absorption near edge structure) and CtxC-XES (core-to-core X-ray emission spectroscopy) experiments were conducted at beamline ID26 of the ESRF (European Synchrotron Radiation Facility).$^{[56]}$ During the experiments, the electron energy of the synchrotron was at 6.0 GeV, and its ring current varied between 180 and 200 mA. All measurements were carried out using the first harmonic of two u35 undulators. The incident photon energy was selected via the (311) reflection from a double Si crystal monochromator, leading to a photon flux of approximately 2 x 1013 photons s$^{-1}$ on the sample position. The monochromator was calibrated using a Fe foil. All experiments were conducted with a Johann type spectrometer$^{[62,63]}$ in a vertical Rowland geometry, using the (620) reflection of five spherically bent Ge crystal analyzers (with $R = 1$ m). The emission was monitored by a photo-diode installed at about 90° scattering angle and at 45° to the sample surface. Fe K-edge HERFD-XANES were obtained by recording the intensity of the Fe CIC XES maximum as a function of the incident energy. During each HERFD-XANES scan, the undulator gap was kept at a fixed position and only the monochromator angle was changed. To minimize radiation damage, all measurements were carried out at 20 K using a He cryostat under vacuum conditions. Each HERFD-XANES measurement was carried out in 60 seconds. To achieve a satisfying signal to noise ratio four spectra were averaged, each measured at a different spot of the homogeneous sample. Each sample is tested for radiation damage in the beginning by ten fast HERFD-XANES scans over the pre-edge and whiteine with a scan time of 10 seconds on one spot, starting with a 100-times attenuated beam and ending with an unattenuated beam. Within these time frames, no radiation damage could be detected. CtxC-XES spectra were recorded off resonance at an excitation energy of 7300 eV in the range of 7030—7080 eV, with a step width of 0.2 eV. To observe reasonable data, three spectra (60 second per scan) were recorded, utilizing a different sample spot for each scan. **Ultrafast Vis-pump/IR-probe spectra** were measured
using a flow cell (Specac Omni Cell with CaF\textsubscript{2} windows and 200 µm spacer) with a 8.6-mL acetonitrile solution at 295 K. A CPA laser system (Spectra-Physics Spitfire Ace) with 100 fs pulses spectrally centered at 800 nm was used as laser source. The pump pulses centered at 610 nm were generated using a NOPA (Light Conversion TOPAS-White). Every second pump pulse was blocked using a chopper to generate the difference spectra from two sequent spectra. The probe pulses were generated using a collinear OPA (Light Conversion TOPAS-Prime with DFG extension) and detected using CPU[22,23] and a CCD camera (Princeton Instruments PIXIS 2 K) connected to a spectrometer (Princeton Instruments Acton SpectraPro SP-2500i). The lifetime was obtained from Global Target Analysis with TIMP.[24] Ultrafast pump-VIS/NIR-probe experiments were conducted using a Helios-Fire pump-probe setup (Ultrafast Systems) paired with a regeneratively amplified 1030 nm laser (Pharos, Light Conversion, 1030 nm, 200 fs, 200 µJ). The effective laser repetition rate of 1 kHz was set via an internal pulse picker. A small portion of the 1030 nm fundamental was directed to the optical delay line and was subsequently used to generate broadband probe light by focusing the beam onto a sapphire (visible range) or YAG (NIR range) crystal. The pump pulse was generated with a optical parametric amplifier (Orpheus-F, Light Conversion). The samples were measured in a 1 mm quartz cuvette. For global analysis of the TA data the software Glotaran 1.5.1 was employed.[25] Intensity data for crystal structure determinations were collected with a Bruker AXS Smart1000 CCD diffractometer with an APEX II detector using Mo–Kα radiation (λ = 0.71073 Å). The diffraction frames were integrated using the SAINT software package[26–28] and were corrected for absorption with MULABS[29] of the PLATON software package.[30] The structures were solved with SHELX[31] and refined by the full-matrix method based on F2 using SHELXL[32] of the SHELX[33] software package and the ShelXle[34] graphical interface. All non-hydrogen atoms were refined anisotropically while the positions of all hydrogen atoms were generated with appropriate geometric constraints and allowed to ride on their respective parent atoms with fixed isotropic thermal parameters.

Deposition Numbers 2125265 (for [PF\textsubscript{6}]2 and [PF\textsubscript{6}]3 cpmp in acetonitrile (4 mL) was added to a solution of 116 mg Fe[BF\textsubscript{4}]\textsubscript{2}·6H\textsubscript{2}O (0.34 mmol) in acetonitrile (1 mL). The blue solution was stirred for 16 h at room temperature. Addition of diethyl ether (200 mL) yielded a blue precipitate that was washed with diethyl ether (200 mL). The product was collected by filtration and dissolved in acetonitrile (1 mL). Addition of an aqueous solution of [NH\textsubscript{2}][PF\textsubscript{6}] (978 mg, 6 mmol, in 100 mL of H\textsubscript{2}O) resulted in precipitation of a blue solid, which was collected by filtration and purified by slow diffusion of diethyl ether into a solution of 1[PF\textsubscript{6}] in acetonitrile to yield crystals suitable for single-crystal X-ray diffraction. The blue crystals were dried under reduced pressure. Yield: 131 mg (0.14 mmol, 47%). Elem. anal. calcd. for C\textsubscript{2}H\textsubscript{4}F\textsubscript{6}N\textsubscript{2}O\textsubscript{4}·0.33 H\textsubscript{2}O: C, 43.80; H, 3.10; N, 12.02. Found: C, 43.77; H, 3.22; N, 11.97. 1H NMR (CD\textsubscript{3}CN): δ = 8.26 (dd, J = 7.9 Hz, 2 H, H\textsubscript{2}), 8.07 (m, 4 H, H\textsubscript{2}), 8.01 (d, J = 7.3 Hz, 2 H, H\textsubscript{2}), 7.87 (dd, J = 8.4, 8.4 Hz, 2 H, H\textsubscript{4}), 7.56 (d, J = 8.5 Hz, 2 H, H\textsubscript{2}), 7.45 (d, J = 5.9 Hz, 2 H, H\textsubscript{2}), 7.21 (dd, J = 7.5, J = 4.0 Hz, 2 H, H\textsubscript{2}), 7.10 (d, J = 8.8 Hz, 2 H, H\textsubscript{2}), 6.83 (d, J = 5.8 Hz, 2 H, H\textsubscript{2}), 6.77 (d, J = 6.8 Hz, 2 H, H\textsubscript{2}), 2.91 (s, 6 H, H\textsubscript{2}). 1C{[Fe(cpmp)F]} NMR (CD\textsubscript{3}CN): δ = 179.9 (C\textsubscript{1}), 159.3 (C\textsubscript{3}), 158.6 (C\textsubscript{2}), 157.3 (C\textsubscript{5}), 156.8 (C\textsubscript{6}), 154.4 (C\textsubscript{4}), 154.0 (C\textsubscript{3}), 139.4 (C\textsubscript{4}), 138.4 (C\textsubscript{2}), 126.2 (C\textsubscript{6}), 126.1 (C\textsubscript{5}), 124.4 (C\textsubscript{4}), 120.2 (C\textsubscript{3}), 117.5 (C\textsubscript{5}), 112.0 (C\textsubscript{2}), 37.4 (C\textsubscript{1}). 19P NMR (CD\textsubscript{3}CN): δ = −144.7 (sep., J\textsubscript{PP} = 707 Hz). MS (ESI+): m/z = 318.05 (76, [Fe(cpmp)\textsubscript{2}]+), 365.05 (86, [Fe(cpmp)F]+), 655.16 (100, [Fe(cpmp)F\textsubscript{2}]+), 781.18 (13, ([Fe(cpmp)([PF\textsubscript{6}])]+), 1245.74 (23, ([H\textsubscript{2}Fe(cpmp)([PF\textsubscript{6}])]+), 1709.65 (25, ([H\textsubscript{2}Fe(cpmp)([PF\textsubscript{6}])]+), [PF\textsubscript{6}]). MS (HR-ESI+): calc. for C\textsubscript{2}H\textsubscript{4}F\textsubscript{6}N\textsubscript{2}O\textsubscript{4}·0.33 H\textsubscript{2}O: m/z = 781.1326, found: m/z = 781.1309. IR (ATR): ν = 1669 (m), 1558(m), 1573 (m), 1482 (m), 1453 (m), 1355 (m), 1320 (w), 1294 (vw), 1270 (w), 1244 (w), 1198 (vw), 1175 (w), 1154 (w), 1139 (w) 1122 (vvv), 1090 (vvv), 1067 (wv), 1020 (w), 972 (w), 833 (vs, PF), 793 (s), 754 (s), 713 (s), 673 (s), 649 (m), 633 (m), 578 (m), 559 (vs, PF\textsubscript{3}), 516 (m), 448 (w), 434 (w), 414 (w) cm−1. CV (CH\textsubscript{3}CN): E = −1.46 (rev.), −1.28 (rev.), +0.78 (rev.) V vs. FeCl\textsubscript{3}/Fe\textsubscript{2}+. UV/Vis/NIR (CH\textsubscript{3}CN): λ\textsubscript{max} (ε) = 247 (20900, sh), 270 (28700), 300 (16500, sh), 350 (12200), 410 (5640, sh), 610 nm (3980 cm−1).

Synthesis of 1[PF\textsubscript{6}]3 ([Fe(cpmp)(ddpd)]+). A solution of 100 mg (0.34 mmol) cpmp in acetonitrile (2 mL) was added to a suspension of 143 mg Fe[OTf\textsubscript{3}] in dry acetonitrile (5 mL) under argon atmosphere. The yellow-green solution was stirred for 30 minutes at room temperature. Addition of dry diethyl ether (200 mL) yielded in a green precipitate – containing [Fe(ddpd)]2+ and [Fe(cpmp)(ddpd)]2+. The product was purified by column chromatography on silica gel with acetonitrile/saturated aqueous solution of potassium nitrate (8:1) as eluent. The solvents were removed by freeze drying. The product was collected by filtration and dissolved in acetonitrile (1 mL). Addition of an aqueous solution of [NH\textsubscript{2}][PF\textsubscript{6}] (978 mg, 6 mmol, in 100 mL of H\textsubscript{2}O) precipitated a green solid, which was collected by filtration. The green crystals were dried under reduced pressure. Crystals suitable for single-crystal X-ray diffraction were yielded by
slow diffusion of diethyl ether into a solution of 2[PF₆]₂ in acetonitrile. Yield: 67.1 mg (0.07 mmol, 18%). Elem. anal. calcld. for C₃₄H₃₅Fe₂F₄N₈O₈P₂: C 42.99; H 3.55; N 13.27. Found: C, 42.52; H, 3.04; N, 13.29. ¹H NMR (CD₃CN): δ = 8.17 (t, J = 7.9 Hz, 1 H), 8.04 (m, 4 H), 7.92 (d, J = 7.4 Hz, 1 H), 7.83 (m, 3 H), 7.44 (m, 2 H), 7.14 (m, 5 H), 7.03 (d, J = 8.3 Hz, 1 H), 6.98 (d, J = 5.8 Hz, 1 H), 6.78 (m, 2 H), 6.69 (m, 1 H), 6.63 (d, J = 5.4 Hz, 2 H), 3.04 (s, 3 H), 3.02 (s, 3 H), 2.83 (s, 3 H). ¹³C NMR (CD₃CN): δ = 181.5, 162.4, 161.6, 161.4, 161.0, 159.5, 158.7, 158.3, 156.5, 156.0, 155.2, 146.4, 143.0, 137.8, 127.8, 127.2, 126.1, 125.7, 121.4, 121.0, 117.9, 113.7, 113.5, 113.1, 113.0, 112.4, 40.0, 39.9, 39.2.

The number of H and ¹³C resonances, their intensity and multiplicity fit to the structure, yet the two ligand nuclei feature too similar chemical shifts to allow a detailed assignment. ¹P NMR (CD₃CN): δ = −144.6 (sep, J₉P = 706 Hz). MS (ESI⁻) m/z = 318.57 (96, [Fe(cppd)(ddpd)]⁻), 366.08 (100, [Fe(ddpd)F]⁻), 565.20 (57, [Fe(cppd)(cppd)F]⁻), 782.82 (13, [Fe(cppd)(cppdp)(OPF₆)]⁻), 1246.75 (26, [H₂Fe(cppd)(cppdp)(PF₆)₂]⁻). MS (HR-ESI⁻): calcld. for C₃₄H₃₅Fe₂F₄NO₈P₂: m/z = 782.1643, found: 782.1642. IR (ATR): ν = 2022, 2020, 1681 (CO) cm⁻¹, 1981 (CN). P NMR (CD₃CN): δ = 782.1642. IR (ATR): ν = 2022, 2020, 1681 (CO) cm⁻¹, 1981 (CN). P NMR (CD₃CN): δ = 782.1642. IR (ATR): ν = 2022, 2020, 1681 (CO) cm⁻¹, 1981 (CN).

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft (DFG, Priority Program SPP 2102 “Light-controlled reactivity of metal complexes” (HE 2778/14-1; NU 263/4-1, BA 4467/7-1)) is gratefully acknowledged. Parts of this research were conducted using the supercomputer MÖGON and advisory services offered by Johannes Gutenberg University Mainz (http://www.hpc.uni-mainz.de) and the supercomputer Elwetratisch and advisory services offered by the TU Kaiserslautern (https://elwe.rhr.ukl.de), which are members of the AHRP and the Gauss Alliance e.V. We thank Regina Jung-Pothmann (UGU) for collection of the diffraction data. Provision of beamtime by the ESRF on beamline ID26 is kindly acknowledged. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: iron · photophysics · polypyradioid ligands · time-resolved spectroscopy · tridentate ligands

1. S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, V. Balzani, Top. Curr. Chem. 2007, 280, 117–214.
2. J. P. Sauvage, J. P. Collin, J. C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. de Cola, L. Flamini, Chem. Rev. 1994, 94, 993–1019.
3. B. Durham, J. V. Caspar, J. K. Nagle, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 4803–4810.
4. B. O’Regan, M. Grätzel, Nature 1991, 353, 737–740.
5. J. F. Yin, M. Velayudhan, D. Bhattacharya, H.-C. Lin, K.-L. Lu, Coord. Chem. Rev. 2012, 256, 3008–3035.
6. P. G. Bomken, C. K. D. Robson, B. D. Koivisto, C. P. Berlinguette, Coord. Chem. Rev. 2012, 256, 1438–1450.
7. R. D. Costa, E. Orti, H. J. Bolink, M. Fantoni, G. Accorsi, N. Armaroli, Angew. Chem. Int. Ed. 2012, 51, 8178–8211; Angew. Chem. 2012, 124, 8300–8334.
8. P. Dreyse, B. Loeb, M. Soto-Ariazza, D. Tordera, E. Orti, J. J. Serrano-Pérez, H. J. Bolink, Dalton Trans. 2013, 42, 15502–15513.
9. H. J. Bolink, E. Coronado, R. D. Costa, P. Gavila, E. Orti, S. Tanay, Inorg. Chem. 2009, 48, 3907–3909.
10. C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363.
11. K. A. Maness, R. H. Terrill, T. J. Meyer, R. W. Wightman, J. Am. Chem. Soc. 1996, 118, 10609–10616.
12. A. Inagaki, M. Akita, Coord. Chem. Rev. 2010, 254, 1220–1239.
13. C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363.
14. a) O. S. Wenger, Chem. Eur. J. 2019, 25, 6043–6052; b) C. Cebrían, M. Pastore, A. Monari, X. Assfeld, P. C. Gros, S. Haacke, ChemPhysChem 2022, 23, e202100659.
15. S. Kaufhold, K. Wärnmark, Catalysis 2020, 10, 132.
16. C. Försör, K. Heinze, Chem. Soc. Rev. 2020, 49, 1057–1070.
17. J. K. McCusker, Science 2019, 363, 484–488.
18. J. K. McCusker, K. N. Walda, R. C. Dunn, J. D. Simon, D. Magde, D. N. Hendrickson, J. Am. Chem. Soc. 1993, 115, 298–307.
19. L. L. Jamula, A. M. Brown, D. Guo, J. K. McCusker, Inorg. Chem. 2014, 53, 15–17.
20. J. D. Braun, I. B. Lozada, C. Kolodziej, C. Burda, K. M. E. Newman, J. van Lierop, R. L. Davis, D. E. Herbert, Inorg. Chem. 2014, 53, 15–17.
21. W. Leis, M. A. A. Cordero, S. Lochbrunner, H. Schubert, A. Berkefeld, J. Am. Chem. Soc. 2022, 144, 1169–1173.
22. M. Darai, E. Domenichini, A. Francés-Monerris, C. Cebrían, K. Magra, M. Beley, M. Pastore, A. Monari, X. Assfeld, H. C. Gros, Dalton Trans. 2018, 49, 10915–10926.
23. D. Leshchev, T. C. B. Harlang, L. A. Fredin, D. Khakhulin, Y. Liu, E. Biasin, M. G. Laursen, G. E. Newby, K. Haldrup, M. M. Nielsen, K. Wärnmark, V. Wölper, K. Heinze, S. Lochbrunner, M. Bauer, Chem. Eur. J. 2020, 26, 15022–15032.
