Guanylate Binding Proteins promote anti-Leishmania Host Cell Defense

Arun Kumar Haldar*

Division of Biochemistry and Structural Biology, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow-226031, UP, India

*Correspondence should be addressed to Arun Kumar Haldar; arunnobel@gmail.com

Received date: April 05, 2021, Accepted date: August 11, 2021

Copyright: © 2021 Haldar AK. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

For their survival, many intracellular pathogens build and retain pathogen-containing vacuoles (PVs) to hide from the cytosolic host defense systems. Among the several PV-resident human pathogens are the obligate intracellular protozoa parasites Leishmania donovani and Toxoplasma gondii. The proinflammatory cytokine IFNγ, a key player in cellular immunity, can orchestrate a variety of defensive functions that destroy or prevent these intravacuolar pathogens from replicating inside host. While recent studies have shown that activating host cells with IFNγ causes the recruitment and accumulation of IFNγ-inducible GTPases, Immunity Related GTPases (IRGs), and Guanylate Binding Proteins (GBPs) around Toxoplasma PVs in order to destroy them, little is known about their function in destroying Leishmania containing vacuoles (LCVs). We recently reported that, in non-phagocytic mammalian cells without efficient targeting to LCVs, mouse and human GBPs play an important role as host protective factors against L. donovani infection, even in the absence of IFNγ stimulation. Despite the fact that IFNγ-inducible IRGs are required for GBP-mediated T. gondii PV destruction in murine cells, our findings showed that murine GBPs promote host defense against L. donovani from a distance, suggesting that the molecular machinery of this defense pathway is distinct from the IRG-dependent defense pathway active against T. gondii.

Keywords: Leishmania, Nonphagocytic cells, GTPases, Guanylate binding proteins (GBPs), immunity related GTPases (IRGs), LAMP, LC3

Commentary

Leishmania donovani is an obligatory intracellular protozoa pathogen that transmits by sand flies to mammalian hosts. L. donovani is the causative agent of the disease Visceral Leishmaniasis (VL), also known as Kala-azar, which causes hepatosplenomegaly i.e., enlargement of the spleen and liver in patients. The VL is regarded as one of the most devastating neglected infectious diseases in tropical and sub-tropical regions and can be fatal if the patients left untreated [1]. Professional phagocytic cells (e.g., macrophages, dendritic cells, neutrophils) are considered to be the most important host cells for L. donovani for its survival and replication [2-4]. However, several in vitro and in vivo studies have shown that non-phagocytic cell types like epithelial cells and fibroblasts [5-7] endocytose L. donovani. Despite the significance of these findings, little attempt has been made to address the questions: 1) How these non-phagocytic cells restrict parasite growth? 2) Does it depend on an interferon-induced pathway? 3) If not, then how do non-phagocytic cells control this pathogen? In a recent study, we discovered that non-phagocytic mammalian cells without efficient targeting to LCVs, mouse and human GBPs play an important role as host protective factors against L. donovani infection, even in the absence of IFNγ stimulation. Despite the fact that IFNγ-inducible IRGs are required for GBP-mediated T. gondii PV destruction in murine cells, our findings showed that murine GBPs promote host defense against L. donovani from a distance, suggesting that the molecular machinery of this defense pathway is distinct from the IRG-dependent defense pathway active against T. gondii.

The proinflammatory cytokine IFNγ plays a significant role in the host’s protection against several microbial infection. IFNγ triggers cell-autonomous immunity through the induction of more than one thousand IFN-regulated genes including GTPases. The IFNγ-inducible GTPases, immunity related GTPases (IRGs) and guanylate binding proteins (GBPs) are important intracellular effectors against protozoan pathogen T. gondii [8-10]. Mouse Guanylate-binding proteins (GBPs) act cooperatively with...
IRGs to form supramolecular complexes and associate with *T. gondii* PVs to assemble host defense responses including autophagy induction with the delivery of antimicrobial molecules [11-14]. The IRG protein family is divided into two subgroups: IRGM and GKS-IRG proteins. The GKS-IRGs are mostly present in the cytosol, while the IRGM proteins are mostly found in endomembranes. GKS-IRGs are known to specifically target PVs for destruction, while IRGM proteins protect self-organelles and aid in the coordination of GKS-IRG and GBP targeting of non-self PVs [10,15]. Both GKS-IRGs and IRGM proteins are essential for cell-autonomous resistance against *T. gondii* infection in mice [15,16]. We previously discovered that the absence of the IRGM proteins Irgm1 and Irgm3 or both resulted in defective targeting of GKS-IRGs and GBPs to *T. gondii* PVs, as well as impaired the ability to regulate *T. gondii* growth in *vitro* and in *vivo* [10,13,16]. *T. gondii* PVs targeting by mouse GKS-IRGs and GBPs has emerged as the epicenter of innate immunity to limit this pathogen in mice. As a PV residing pathogen, it was predicted that *L. donovani* will be subjected to these IFN-inducible GTPases mediated immune recognition and restriction by the host.

Previous, *in vitro* and *in vivo* studies of *L. major*-infected mouse bone marrow-derived macrophages (BMDMs) and different organ tissues indicated increased gene expression of mouse GBPs [17,18]. Another research found increased expression of hGBP1 and hGBP2 in dendritic cells (DCs) infected with *L. major*, as well as increased expression of hGBP1 in *L. donovani* infected DCs derived from healthy human blood [19]. In all these studies, increased gene expression of mouse and human GBPs in immune cells and tissues was observed during infection with various *Leishmania* spp. However, the GBPs’ potential function as host protective factors against *Leishmania* infection has never been studied. Intriguingly, we recently discovered that GBPs are induced in nonphagocytic cells by *L. donovani* infection in an IFNγ-independent manner and are involved in parasite growth restriction [6]. In contrast to its wildtype counterpart, *L. donovani* is more susceptible in *Gbp* knock-out mouse embryonic fibroblasts (MEFs), which lack the chromosome 3 Gbp gene cluster encoding Gbp1, Gbp2, Gbp3, Gbp5, and Gbp7. Surprisingly, even in the presence of IFNγ, we were unable to detect any association of mGBPs and GKS-IRG (Irgb10 to) with *L. donovani* containing vacuoles (LCVs) in comparison to *T. gondii* containing vacuoles [6,20]. Though the IFNγ is active and induces the coordination of GKS-IRG and GBP targeting of non-IRGs to form supramolecular complexes and associate with *T. gondii* PVs to assemble host defense responses including autophagy induction with the delivery of antimicrobial molecules [11-14]. The IRG protein family is divided into two subgroups: IRGM and GKS-IRG proteins. The GKS-IRGs are mostly present in the cytosol, while the IRGM proteins are mostly found in endomembranes. GKS-IRGs are known to specifically target PVs for destruction, while IRGM proteins protect self-organelles and aid in the coordination of GKS-IRG and GBP targeting of non-self PVs [10,15]. Both GKS-IRGs and IRGM proteins are essential for cell-autonomous resistance against *T. gondii* infection in mice [15,16]. We previously discovered that the absence of the IRGM proteins Irgm1 and Irgm3 or both resulted in defective targeting of GKS-IRGs and GBPs to *T. gondii* PVs, as well as impaired the ability to regulate *T. gondii* growth in *vitro* and in *vivo* [10,13,16]. *T. gondii* PVs targeting by mouse GKS-IRGs and GBPs has emerged as the epicenter of innate immunity to limit this pathogen in mice. As a PV residing pathogen, it was predicted that *L. donovani* will be subjected to these IFN-inducible GTPases mediated immune recognition and restriction by the host.

Previous, *in vitro* and *in vivo* studies of *L. major*-infected mouse bone marrow-derived macrophages (BMDMs) and different organ tissues indicated increased gene expression of mouse GBPs [17,18]. Another research found increased expression of hGBP1 and hGBP2 in dendritic cells (DCs) infected with *L. major*, as well as increased expression of hGBP1 in *L. donovani* infected DCs derived from healthy human blood [19]. In all these studies, increased gene expression of mouse and human GBPs in immune cells and tissues was observed during infection with various *Leishmania* spp. However, the GBPs’ potential function as host protective factors against *Leishmania* infection has never been studied. Intriguingly, we recently discovered that GBPs are induced in nonphagocytic cells by *L. donovani* infection in an IFNγ-independent manner and are involved in parasite growth restriction [6]. In contrast to its wildtype counterpart, *L. donovani* is more susceptible in *Gbp* knock-out mouse embryonic fibroblasts (MEFs), which lack the chromosome 3 Gbp gene cluster encoding Gbp1, Gbp2, Gbp3, Gbp5, and Gbp7. Surprisingly, even in the presence of IFNγ, we were unable to detect any association of mGBPs and GKS-IRG (Irgb10 to) with *L. donovani* containing vacuoles (LCVs) in comparison to *T. gondii* containing vacuoles [6,20]. Though the IFNγ is active and induces the coordination of GKS-IRG and GBP targeting of non-
non-phagocytic cells (Figure 1) [6]. Moreover, we discovered that autophagy-deficient fibroblasts (Atg3−/− MEFs), similar to Gbpchr3−/− MEFs, are highly susceptible to Leishmania, indicating that GBPs “acting from a distance” most likely operate as regulators of the antimicrobial autophagy (xenophagy) pathway. While this research demonstrates how GBPs restrict growth of Leishmania parasite in non-phagocytic cells via an autophagy mediated, non-canonical pathway that operates independent of detectable translocation to the parasitophorous vacuoles, a number of key questions remained unanswered. For instance, in future studies, it will be important to gain further insights into the mechanistic underpinnings of how GBPs instruct the delivery of LCVs to the autolysosome in infected cells. It remains to be determined if this non-canonical GBP mediated restriction is also effective against other Leishmania spp. It will also be interesting to investigate whether such a mechanism also operates in L. donovani infected phagocytic cells or not.

Importantly, previous studies have shown that autophagy has only moderate or no anti-Leishmania activity in macrophages but instead has been identified in at least one study as a host pathway that promotes Leishmania replication in macrophages [26-30]. In phagocytes, however, other anti-Leishmania host defense mechanisms such as the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), have been discovered [31] which are not effective in non-phagocytic cells like fibroblasts [32]. These previous studies, together with our new findings, suggest that the most important Leishmania-targeting host defense pathways in phagocytes and non-phagocytes may be distinct.

In summary, our recent study showed a unique role of mGbps and hGBP1 that promotes cell autonomous host defense against L. donovani infection in non-phagocytic cells without efficient targeting to parasitophorous vacuoles [6]. Previous studies have shown non-phagocytic cells endocytose Leishmania spp [5-7], but less is known about how these cells limit the parasite growth. We demonstrated that in non-phagocytic cells, GBPs showed their defense activity against L. donovani infections, most likely by interacting with and/or activating host autophagy machinery to deliver LCVs to the autolysosomal compartments [6]. The specific molecular mechanism underlying this signaling will require further exploration. It is also noticeable that Leishmania interacts with non-phagocytic cells using different mechanisms from those observed with macrophages. Thus, these interactions between Leishmania and non-phagocytic cells need to be studied more closely in order to learn more about their function in the pathogenesis of leishmaniasis.
Acknowledgement

This research was supported by the Department of Biotechnology (DBT), Ministry of Science & Technology, Government of India, under Ramalingaswami Fellowship Award to A.K.H. (BT/RLF/Re-entry/03/2015). I want to thank Director, CSIR-CDRI for providing necessary facilities for conducting this research. This article has CSIR-Central Drug Research Institute communication number 10276.

References

1. Dedet JP. 2002. Current status of epidemiology of leishmaniases, p 1–10. In Farrell JP (ed), Leishmania series: world class parasites, vol 4. Kluwer Academic Press, London, United Kingdom.

2. Pearson RD, Steigbigel RT. Phagocytosis and killing of the protozoan Leishmania donovani by human polymorphonuclear leukocytes. The Journal of Immunology. 1981 Oct 1;127(4):1438-43.

3. Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008 Aug 15;321(5891):970-4.

4. Haldar AK, Yadav V, Singhal E, Bisht KK, Singh A, Bhaumik S, et al. Leishmania donovani isolates with antimony-resistant but not-sensitive phenotype inhibit sodium antimony gluconate-induced dendritic cell activation. PLoS Pathogens. 2010 May 20;6(5):e1000907.

5. Belle EA. Cultivation of Leishmania donovani in human amnion epithelial cell tissue cultures: a preliminary report. Canadian Medical Association Journal. 1958 Nov 1;79(9):726.

6. Haldar AK, Nigam U, Yamamoto M, Coers J, Goyal N. Guanylate binding proteins restrict Leishmania donovani growth in nonphagocytic cells independent of parasitophorous vacuolar targeting. Mbio. 2020 Jul 28;11(4):e01464-20.

7. Schwartzman JD, Pearson RD. The interaction of Leishmania donovani promastigotes and human fibroblasts in vitro. The American Journal of Tropical Medicine and Hygiene. 1985 Sep 1;34(5):850-5.

8. Martens S, Parvanova I, Zerrahn J, Griffiths G, Schell G, Reichmann G, et al. Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathogens. 2005 Nov;1(3):e24.

9. Hunn JP, Koenen-Waisman S, Papic N, Schroeder N, Pawlowski N, Lange R, et al. Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii. The EMBO Journal. 2008 Oct 8;27(19):2495-509.

10. Haldar AK, Saka HA, Piro AS, Dunn JD, Henry SC, Taylor GA, et al. IRG and GBP host resistance factors target aberrant,”non-self” vacuoles characterized by the missing of “self” IRGM proteins. PLoS Pathogens. 2013 Jun 13;9(6):e1003414.

11. Kim BH, Shenoy AR, Kumar P, Das R, Tiwari S, MacMicking JD. A family of IFN-γ–inducible 65-kD GTPases protects against bacterial infection. Science. 2011 May 6;332(6030):717-21.

12. Yamamoto M, Okuyama M, Ma JS, Kimura T, Kamiyama N, Saiga H, et al. A cluster of interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii. Immunity. 2012 Aug 24;37(2):302-13.

13. Haldar AK, Foltz C, Finethy R, Piro AS, Feeley EM, Pilla-Moffett DM, et al. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins. Proceedings of the National Academy of Sciences. 2015 Oct 13;112(41):E5628-37.

14. Kravets E, Degrandi D, Ma Q, Peulen TO, Klümpers V, Felekyan S, et al. Guanylate binding proteins directly attack Toxoplasma gondii via supramolecular complexes. Elife. 2016 Jan 27;5:e11479.

15. Howard JC, Hunn JP, Steinfeldt T. The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii. Current Opinion in Microbiology. 2011 Aug 1;14(4):414-21.

16. Henry SC, Daniell XG, Burroughs AR, Indaram M, Howell DN, Coers J, et al. Balance of Irgm protein activities determines IFN-γ-induced host defense. Journal of Leukocyte Biology. 2009 May;85(5):877-85.

17. Frank B, Marcu A, Petersen AL, Weber H, Stigloher C, Mottram JC, et al. Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210. Parasites & Vectors. 2015 Dec;8(1):1-31.

18. Sohrabi Y, Volkova V, Kobets T, Havelková H, Krayem I, Slapničková M, et al. Genetic regulation of guanylate-binding proteins 2b and 5 during leishmaniasis in mice. Frontiers in Immunology. 2018 Feb 7;9:130.

19. Jayakumar A, Donovan MJ, Tripathi V, Ramalho-Ortigao M, McDowell MA. Leishmania major infection activates NF-κB and interferon regulatory factors 1 and 8.
in human dendritic cells. Infection and Immunity. 2008 May;76(5):2138-48.

20. Haldar AK, Piro AS, Pilla DM, Yamamoto M, Coers J. The E2-like conjugation enzyme Atg3 promotes binding of IRG and Gbp proteins to Chlamydia-and Toxoplasma-containing vacuoles and host resistance. PloS One. 2014 Jan 17;9(1):e86684.

21. Johnston AC, Piro A, Clough B, Siew M, Virreira Winter S, Coers J, et al. Human GBP1 does not localize to pathogen vacuoles but restricts Toxoplasma gondii. Cellular Microbiology. 2016 Aug;18(8):1056-64.

22. Scianimanico S, Desrosiers M, Derminé JF, Méresse S, Descoteaux A, Dejardins M. Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes. Cellular Microbiology. 1999 Jul;1(1):19-32.

23. Vinet AF, Fukuda M, Turco SJ, Descoteaux A. The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V. PLoS Pathogens. 2009 Oct 16;5(10):e1000628.

24. Verma JK, Rastogi R, Mukhopadhyay A. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494. PLoS Pathogens. 2017 Jun 26;13(6):e1006459.

25. Coers J, Brown HM, Hwang S, Taylor GA. Partners in anti-crime: how interferon-inducible GTPases and autophagy proteins team up in cell-intrinsic host defense. Current Opinion in Immunology. 2018 Oct 1;54:93-101.

26. Pinheiro RO, Nunes MP, Pinheiro CS, D’Avila H, Bozza PT, Takiya CM, et al. Induction of autophagy correlates with increased parasite load of Leishmania amazonensis in BALB/c but not C57BL/6 macrophages. Microbes and Infection. 2009 Feb 1;11(2):181-90.

27. Cyrino LT, Araújo AP, Joazeiro CP, Vicente CP, Giorgio S. In vivo and in vitro Leishmania amazonensis infection induces autophagy in macrophages. Tissue and Cell. 2012 Dec 1;44(6):401-8.

28. Franco LH, Fleuri AK, Pellison NC, Quirino GF, Horta CV, de Carvalho RV, et al. Autophagy downstream of endosomal Toll-like receptor signaling in macrophages is a key mechanism for resistance to Leishmania major infection. Journal of Biological Chemistry. 2017 Aug 11;292(32):13087-96.

29. Thomas SA, Nandan D, Kass J, Reiner NE. Countervailing, time-dependent effects on host autophagy promote intracellular survival of Leishmania. Journal of Biological Chemistry. 2018 Feb 16;293(7):2617-30.

30. Dias BR, de Souza CS, Almeida ND, Lima JG, Fukutani KF, dos Santos T, et al. Autophagic induction greatly enhances Leishmania major intracellular survival compared to Leishmania amazonensis in CBA/j-infected macrophages. Frontiers in microbiology. 2018 Aug 15;9:1890.

31. Rossi M, Fasel N. How to master the host immune system? Leishmania parasites have the solutions!. International Immunology. 2018 Mar;30(3):103-11.

32. Bogdan C, Donhauser N, Döring R, Röllinghoff M, Diefenbach A, Rüttig MG. Fibroblasts as host cells in latent leishmaniosis. The Journal of Experimental Medicine. 2000 Jun 19;191(12):2121-30.