RNA N6-methyladenosine: a promising molecular target in metabolic diseases

Yan Li¹, Jiawen Wang¹, Chunyan Huang², Meng Shen³, Huakui Zhan¹*† and Keyang Xu⁴*†

Abstract

N6-methyladenosine is a prevalent and abundant transcriptome modification, and its methylation regulates the various aspects of RNAs, including transcription, translation, processing and metabolism. The methylation of N6-methyladenosine is highly associated with numerous cellular processes, which plays important roles in the development of physiological process and diseases. The high prevalence of metabolic diseases poses a serious threat to human health, but its pathological mechanisms remain poorly understood. Recent studies have reported that the progression of metabolic diseases is closely related to the expression of RNA N6-methyladenosine modification. In this review, we aim to summarize the biological and clinical significance of RNA N6-methyladenosine modification in metabolic diseases, including obesity, type 2 diabetes, non-alcoholic fatty liver disease, hypertension, cardiovascular diseases, osteoporosis and immune-related metabolic diseases.

Keywords: N6-methyladenosine, Methylation, Methyltransferase, Demethylase, Adipogenesis, Metabolic diseases

Introduction

A total of 160 RNA modifications have been reported to participate in life activities and diseases progress, especially methylation [1]. In eukaryotic mRNA, there are several identified methylation modifications, such as N(7)-methylguanosine, N(6)-methyl-2'-O-methyladenosine, 2'-O-methylation, N(6)-methyladenosine (m6A) and 5-methylcytosine (m5C) [2]. Among them, m6A has been considered as the most abundant internal modification, since it was discovered from methylated nucleosides in mRNA of Novikoff hepatoma cells in the early 1970s [3]. m6A is enriched in stop codon and 3' untranslated terminal region (UTR) and translates near 5' UTR in a cap-independent manner [4–6], thereby regulating RNA transcription, translation, processing and metabolism [5, 6]. The process of m6A modification is reversible and can be regulated by three homologous factors jargonized as ‘writers’, ‘erasers’ and ‘readers’ [7, 8]. For example, ‘Writers’ are categorized as the components of that catalyze the formation of m6A methylation [7, 9]; ‘Erasers’ play an important role in m6A modification for their demethylated functions [10, 11]; ‘Readers’ are a group of molecules which can decode m6A methylation and generate functional signals [12, 13]. So far, m6A has been found not only in mRNAs, but also in a variety of non-coding RNAs including rRNA, tRNA, snRNA, miRNA, and lncRNA [14, 15]. For example, m6A methyltransferase-like 3 (METTL3) interacts with the microprocessor protein DGCR8 and modulates miR-873-5p mature process positively [16]. The expression of m6A demethylase fat mass and obesity-associated protein (FTO) can influence the steady state level of various miRNAs, including increased expression of hsa-miR-6505-5p, hsa-miR-651-5p and hsa-miR-493-5p, and decreased expression of hsa-miR-7-5p, hsa-miR-92a-1-5p and hsa-miR-6769a-3p [15]. In addition, m6A modification of lncRNAs can induce the proliferation, metastasis and apoptosis of cancer cells [17]. For example, alkB homolog 5 (ALKBH5) inhibits pancreatic cancer...
motility by demethylating IncRNA KCNK15-AS1 [18], and METTL16 can methylate diverse cellular RNAs in human embryonic kidney 293 cells, consisting of 8 premRNAs, 355mRNAs, 68 IncRNAs and other type of RNAs [19].

m6A RNA modification is a widespread and reversible process, which is highly associated with multiple diseases such as metabolic diseases (MDs), infertility, virus infection and cancers [20–23]. In this review, we aim to summarize the biological features and therapeutic potentials of m6A modifications in MDs.

Metabolic diseases
MDs refer to the pathological results of metabolic disorders of proteins, fats, carbohydrates and other substances in the human body [24], including obesity, type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), hypertension, osteoporosis, chronic kidney disease, cardiovascular disease and other related metabolic disorders [25]. Currently, there are over 1.9 billion adults and 340 million children and adolescents with overweight or obese [26], more than 415 million people with diabetes [27], and 6–35% (median 20%) of population with NAFLD [28] around the world. In the past decades, the various treatments were used to prevent and treat the aforementioned MDs but they are still limited [29]. For diabetes, the long term treatment is insufficient for controlling blood glucose by daily medicines take like metformin or subcutaneous injection of insulin, as blood glucose is easy fluctuated by the intake of food and physical activity [30]. For the treatment of NAFLD, although lifestyle modification, vitamin E, and clinical surgery as main methods are commonly used, there is no effective medicine to prevent the pathological development of it [31]. Recently, m6A RNA modification has been found to be involved in the development of MDs [32–34] (Table 1). Therefore, m6A modification might be potential targets for the therapy and early diagnosis of MDs.

m6A writers, erasers, readers
The regulators in m6A modification are categorized as ‘writers’ and ‘erasers’ (methylation and de-methylation, respectively) and ‘readers’ (recognition) [35–37] which were presented in Fig. 1. The m6A methylation begins to be installed by a large multiprotein writer complex, which includes the core METTL3 and METTL14 methyltransferase subunits and many other associated regulatory subunits [38]. METTL3 is a significant catalytic component [38, 39], and METTL14 as a homolog of METTL3 shares 43% identity with METTL3, which can help their RNA substrates recognize each other [39, 40]. These two proteins can form a stable heterodimeric complex that acts on the cellular m6A deposition of nuclear RNAs and increases the methyltransferase activities in mammals [38]. Meanwhile, Wilms’ tumor 1-associated protein (WTAP), Virilizer like m6A methyltransferase associated protein (VIRMA/KIAA1429), an E3 ubiquitin ligase for the E-cadherin complex (HAKAI), and zinc finger CCCH-type containing 13 (ZC3H13/KIAA0853) are adaptor proteins which may guide the METTL3–METTL14 heterodimer to its target mRNAs. Besides, RNA-binding protein 15 (RBM15) and RBM15B may participate in determining which sites can be methylated [9, 41–51].

The demethylated process of m6A ‘erasers’ are dominated by two members of the a-ketoglutarate-dependent dioxygenase protein family, including FTO and ALKBH5 [10, 11]. ALKBH5 and FTO as powerful m6A demethylases can effectively demethylate m6Am and m6A, but the demethylation capacity of FTO is stronger than ALKBH5 [37, 52]. FTO is a significant fat mass and obesity associated gene with a full length of 400 kp, including nine exons, which mainly locates in the 16q12-q24 of the human chromosome [53]. It is currently recognized as the most robust predictor of polygenic obesity [53, 54] as its capability of encoding for several important energy regulating proteins [55–58].

‘Readers’, YT521-B homology (YTH) family proteins, contain a YTH domain that can specifically recognize m6A methylation. YT4DF1, YT4DF2, YT4DF3, and YT4DHC2 are predominantly located in the cytoplasm, while YT4DHC1 is mainly found in the nucleus [12, 35, 59–62]. Among them, YT4DF1, YT4DFC2 can recognize and bind to the methyl tag on the RNA and influence the translation of the target RNA [60]. YT4DF2 can alter the distribution of various m6A-containing mRNAs in the cytoplasm and affect the stability of the target RNA [60]. A newly identified m6A reader family including insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1), IGF2BP2 and IGF2BP3 can regulate gene expression by enhancing the stability of its target RNA [63]. In addition, fragile X mental retardation protein (FMRP) has showed to promote nuclear export of methylated mRNA targets during neural differentiation by reading m6A [64]. Another novel m6A reader, proline rich coiled-coil 2A (PRRC2A), controls myelination and oligodendrocyte specification by stabilizing target mRNA [65].

m6A methylation and T2D
The global prevalence of diabetes in adults is about 8% and it may increase to 10% by 2040 [66]. More than 90% of diabetes is T2D, which is characterized by hyperglycemia and dyslipidemia. Recent released studies have suggested that the m6A modification may play a critical role in the regulation of T2D [32, 67, 68]. For example, m6A highly stimulates glucose oxidation in
Table 1 The functions of RNA m\(^6\)A methylation in metabolic diseases

| m\(^6\)A Regulators | Functions | Refs |
|---------------------|-----------|------|
| T2D                 | FTO       | Promoting the mRNA expression of FOXO1, G6PC, and DGAT2, which are associated with glucose and lipid metabolism |
|                     | METTL3    | Inhibiting hepatic insulin sensitivity via N6-methylation of FASN mRNA and promoting fatty acid metabolism |
|                     |           | Upregulating insulin/IGF1–AKT–PDX1 pathway in human \(\beta\)-cells |
|                     | METTL14   | Decreasing cell death and the changes of cell differentiation in \(\beta\)-cells, increasing \(\beta\)-cell mass and insulin secretion |
|                     |           | Upregulating insulin/IGF1–AKT–PDX1 pathway in human \(\beta\)-cells |
| Obesity             | FTO       | Promoting adipogenesis by inhibiting the Wnt/\(\beta\)-catenin signaling pathway |
|                     |           | Promoting autophagy and adipogenesis via increasing the expression of ATG5 and ATG7 |
|                     |           | Promoting adipocyte proliferation via enhancing the expression of the pro-adipogenic short isoform of RUNX1 |
|                     | WTAP      | Suppressing adipogenesis by promoting cell cycle transition in mitotic clonal expansion |
|                     | METTL3    | Suppressing adipogenesis by promoting cell cycle transition in mitotic clonal expansion |
|                     | METTL14   | Inhibiting adipogenesis via the depletion of ZFP217 and CCND1 |
|                     | YTHDF2    | Suppressing adipogenesis by increasing \(m^6A\) methylation of CCNA2 and CDK2 and reversing the methylation effect of FTO on CCNA2 and CDK2 |
|                     |           | Suppressing adipogenesis via the downregulation of CCND1 |
| NAFLD               | FTO       | Down-regulating mitochondrial content and up-regulating TG deposition |
|                     |           | Promoting hepatic fat accumulation by increasing the expression of lipogenic genes, including FASN, SCD and MOGAT1, and intracellular TG level in HepG2 cells |
|                     |           | Increasing oxidative stress and lipid deposition |
|                     | YTHDF2    | Increasing lipid accumulation by decreasing both PPAR\(\alpha\) mRNA lifetime and expression |
|                     | METTL3    | Increasing lipid accumulation by decreasing both PPAR\(\alpha\) mRNA lifetime and expression |
| Hypertension        | m\(^6\)A-SNPs | Encoding \(\beta\)1-adrenoreceptor, a hypertension-susceptibility candidate gene |
|                     |           | Altering BP-related gene expression, mRNA stability and homeostasis |
| Cardiovascular diseases | FTO    | Decreasing fibrosis and enhancing angiogenesis in mouse models of myocardial infarction |
|                     | METTL3    | Driving cardiomyocyte hypertrophy by catalyzing methylation of \(m^6A\) on certain subsets of mRNAs |
|                     |           | Decreasing eccentric cardiomyocyte remodeling and dysfunction |
|                     |           | Inhibiting cellular autophagic flux and promoting apoptosis in hypoxia/reoxygenation-treated cardiomyocytes |
| Osteoporosis        | METTL3    | Inhibiting adipogenesis and adipogenic differentiation via JAK1/STATS/C/EBP\(\beta\) pathway in bone marrow stem cells |
|                     |           | Inhibiting osteoporosis pathological phenotypes, consisting of decreased bone mass and increased marrow adiposity via PTH/PTH1R signaling axis |
|                     | FTO       | Promoting the differentiation of adipocyte and osteoblast by upregulating GDF11–FTO–PPARY signaling way |
|                     |           | Enhancing the stability of mRNA of proteins which function to protect osteoblasts from genotoxic damage through Hspa1a–NF-\(\kappa\)B signaling way |
| Immune-related MDs  | ALKBH5    | Expressing highly in organs enriched in immune cells with frequent immune reactions |
|                     | METTL3    | Stimulating T cell activation and the development of T lymphocytes in the thymus by regulating the translation of CD40, CD80 and TLR4 signaling adaptor TIRAP transcripts in dendritic cells |
|                     |           | Maintaining T cell homeostasis and differentiation by targeting the IL-7/STAT5/SOCS pathways |

\(m^6A\) methylation plays crucial roles on the regulation of metabolic diseases, including obesity, type 2 diabetes, non-alcoholic fatty liver disease, hypertension, osteoporosis and immune-related metabolic diseases

Refs references
rat adipocytes, which indicates that the proper level of m6A may be required to maintain certain concentration of blood glucose [67]. Many studies demonstrate that the content of m6A is negatively associated with the risk of T2D, as a significant reduction of m6A contents can been found in T2D patients [32], while, the increased mRNA expression of demethylase FTO is responsible for the reduction of m6A content, which may induce the complications of T2D, including obesity, cardiovascular diseases [68]. Meanwhile, high glucose stimulation contributes to the increase of FTO expression [32], and then further promotes the mRNA expression of forkhead box O1 (FOXO1), glucose-6-phosphatase catalytic subunit (G6PC), and diacylglycerol O-acyltransferase 2 (DGAT2) to participate in glucose and lipid metabolism [32]. Intriguingly, the levels of m6A methyltransferases (METTL3, METTL14, WTAP) mRNA expression are also significantly elevated in patients with T2D, but the expression of METTL3, METTL14, and KIAA1429 are negatively correlated with m6A content [32]. In addition, METTL3 inhibits hepatic insulin sensitivity via N6-methylation of FASN (fatty acid synthetase) mRNA and promoting fatty acid metabolism, which eventually results in the development of T2D [69]. In addition, METTL14 is essential for β-survival, differentiation and insulin secretion, the deficiency of METTL14 in β-cells increases cell death, changes cell differentiation and decreases β-cell mass and insulin secretion, leading to glucose intolerance and T2D [70]. Furthermore, the increased expression of m6A methylation upregulates the insulin/insulin-like growth factor 1 (IGF1)–AKT-pancreatic and duodenal homeobox 1 (PDX1) pathway by targeting METTL14 or METTL3 in human β-cells, which ultimately inhibits cell-cycle arrest and protects insulin secretion [71]. Besides, single nucleotide polymorphisms (SNPs) in FTO are also strongly associated with T2D, such as variant rs9939609 and rs17817449 of FTO gene [72], which are important for the development of insulin resistance and occurrence of T2D [73]. Together, m6A modulators might be potential therapeutic targets for maintaining
glucose metabolism and preserving β-cell survival and insulin functions in T2D.

**m^6^A methylation and obesity**

Obesity is an increasing risk for its related chronic diseases like NAFLD, cardiovascular diseases, diabetes and cancers [74, 75]. Obesity or adipogenesis is usually characterized by increased cell size (hypertrophy) and fat cell numbers (hyperplasia) at the cellular level. Studies have suggested that FTO-mediated m^6^A demethylation is closely related with the upregulated ghrelin production, adipogenesis, fat mass and body weight [33, 76–79]. People with a high body mass index may commonly carry FTO risk alleles [80–82] and there are some SNPs of FTO positively associated with obesity. For instance, FTO (rs17817449) is positively correlated with obesity and plasma insulin, insulin resistance, percentage body fat and fat mass in a north Indian population [83]. FTO (rs3751812) can promote obesity by altering fat deposition and disturbing serum lipid profile [84]. FTO (rs9939609 T/A) is related to increased FTO expression, reduced m^6^A ghrelin mRNA methylation, and finally results in increased energy intake and obesity by upregulating the ghrelin expression [85]. m^6^A demethylase FTO can promote adipogenesis by inhibiting the Wnt/β-catenin signaling pathway in porcine intramuscular pre-adipocytes [86]. The knockdown of FTO decreases the expression of ATG5 (autophagy-related 5) and ATG7, leading to attenuation of autophagosome formation, thereby inhibiting autophagy and adipogenesis. Meanwhile, YTHDF2 decreases protein expression of ATG5 and ATG7 by shortening the lifespan of their m^6^A-modified mRNAs [87]. Furthermore, the effect of FTO on adipogenesis also appears to be regulated via enhanced expression of the pro-adipogenic short isoform of Runt-related transcription factor 1 (RUNX1), which can promote adipocyte proliferation [77]. In the contrast, WTAP, METTL3, METTL14 are negatively related with adipogenesis by promoting cell cycle transition in mitotic clonal expansion [88, 89]. Moreover, m^6^A-YTHDF2-FTO signaling way might be crucial for the development of obesity, m^6^A——binding protein YTHDF2 can methylate mRNAs of cyclin A2 (CCNA2) and cyclin dependent kinase 2 (CDK2), and then reduce their protein expression to prolong cell cycle progression and suppress adipogenesis [90]. The methylation effect of FTO on CCNA2 and CDK2 can be reversed by epigallocatechin gallate induced YTHDF2 expression [91]. The expression of METTL3 increases via the depletion of ZFP217 (zinc finger protein 217), reversely, METTL3 knockdown rescues the siZFP217-inhibited mitotic clonal expansion and promotes CCND1 (cyclin D1). Meanwhile, YTHDF2 recognizes and degrades the methylated CCND1 mRNA, leading to the downregulation of CCND1. Consequently, cell cycle progression is blocked, and adipogenesis is inhibited [92]. Taken together, m^6^A modification may be a novel potential biomarker of obesity.

**m^6^A methylation and NAFLD**

NAFLD is the most common cause of chronic liver disease among children and adults all over the world [93–95], which is characterized by steatosis, ballooning degeneration, and fatty retention of liver parenchyma cells with no history of excessive alcohol intake or other known liver disease [96]. The pathological character of NAFLD is caused by metabolic dysregulation of de novo lipogenesis, fatty acid uptake, fatty acid oxidation, and triglycerides export [97, 98]. Previous studies have found that m^6^A alteration is highly related to the development of NAFLD [34, 99, 100]. The level of FTO is elevated in hepatic tissue at NAFLD patients with hyperglycemic and hyper-insulinemic [34], which can down-regulate mitochondrial content and up-regulate triglyceride (TG) deposition, while FTO (R316A) mutant lacking demethylation activity and could not regulate mitochondria and TG content. These indicate that FTO can affect mitochondrial content and fat metabolism by modulating m^6^A levels in hepatocytes [101]. In addition, the activation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway may improve the development of NAFLD by suppressing FTO mediated hepatocyte regeneration [102]. Enhanced FTO expression can increase expression of lipogenic genes, containing fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD) and monoacylglycerol O-acyltransferase 1 (MOGAT1), and intracellular TG level in HepG2 cells [101], which finally promotes hepatic fat accumulation. Meanwhile, these effects can be effectively reversed by betaine (a methyl donor) [101, 103]. Increased FTO levels are also highly involved in hepatic oxidative stress and lipid deposition which participate in the process of NAFLD [99]. Currently, dietary curcumin can affect the expression of METTL3, METTL14, ALKBH5, FTO, and YTHDF2 mRNAs, and finally improve lipopolysaccharide-induced liver injury and hepatic lipid metabolism disruption by increasing m^6^A methylation level in the liver of piglets [104]. In addition, the knockdown of METTL3 or YTHDF2 can increase the lifetime and expression of peroxisome proliferator activated receptor alpha (PPARα) mRNA, resulting in a reduction of lipid accumulation [105]. In summary, m^6^A modulators have potentials in the therapeutic function of NAFLD.
m<sup>6</sup>A methylation in hypertension and cardiovascular diseases

Recent studies show that m<sup>6</sup>A modification is closely related to blood pressure (BP) and cardiovascular diseases [106]. For example, the m<sup>6</sup>A-SNP (Lys67Arg, rs197922) in golgi SNAP receptor complex member 2 gene is positively associated with hypertension in white individuals [107]. In addition, the m<sup>6</sup>A-SNPs (Arg389Gly, rs1801253; Ser49Gly, rs1801253) can develop hypertension as they can encode β1-adrenoreceptor, a hypertension-susceptibility candidate gene [108, 109]. rs9847953 and rs197922 have regulatory potentials to alter BP related gene expression, mRNA stability and homeostasis [110]. The m<sup>6</sup>A RNA modifications also involve in various mechanisms of cardiovascular diseases. For example, FTO overexpression in mouse models of myocardial infarction decreases fibrosis and enhanced angiogenesis [111]. In addition, cardiovascular growth is controlled by METTL3, which drives cardiomyocyte hypertrophy by catalyzing methylation of m<sup>6</sup>A on certain subsets of mRNAs. Whereas, diminished METTL3 promotes eccentric cardiomyocyte remodeling and dysfunction [112]. Moreover, METTL3 upregulation inhibits cellular autophagic flux and promotes apoptosis in hypoxia/reoxygenation-treated cardiomyocytes [113]. In summary, targeting m<sup>6</sup>A through its relative enzymes may be used as a potential diagnostic or a novel therapeutic strategy for hypertension and cardiovascular diseases in the future.

m<sup>6</sup>A methylation and osteoporosis

Osteoporosis is one of the most significant bone metabolic diseases, especially aged-related osteoporosis. The low bone mass and excessive accumulation of adipose tissue in bone marrow milieu can result in architectural deterioration of the skeleton, the decrease of bone strength and an increased risk of fragility fractures [114, 115]. Recent released studies has suggested that m<sup>6</sup>A modification and its regulatory enzymes such as FTO, METTL3 are the key factors for osteoporosis [116–118]. The deletion of METTL3 in porcine bone marrow stem cells could promote adipogenesis and adipogenic differentiation via janus kinase 1 (JAK1)/signal transducer and activator of transcription 5 (STAT5)/CCAAT/enhancer binding protein β (C/EBPβ) pathway [119]. Also, the deletion of METTL3 in bone marrow mesenchymal stem cells disrupts cell fate and promotes osteoporosis pathological phenotypes (decreasing bone mass with incompetent osteogenic potential and increasing marrow adiposity with enhanced adipogenic potential) by reducing m<sup>6</sup>A methylation level in mice via parathyroid hormone (PTH)/parathyroid hormone 1 receptor (PTH1R) signaling axis [118]. In addition, the abundance of FTO can promote the differentiation of adipocyte and osteoblast from bone marrow mesenchymal stem cells by growth differentiation factor 11 (GDF11) and peroxisome proliferator-activated receptor gamma (PPARγ) in a C/EBPα-dependent manner [116]. Interestingly, FTO expression in the bone is up-regulated during aging and osteoporosis, while the expression of METTL3 is not affected by age [116]. In the contrast, FTO in osteoblasts can enhance the stability of mRNAs which protect osteoblasts from genotoxic damage through Hspa1α–NF-κB signaling way [120]. Besides, bone mineral density-associated m<sup>6</sup>A-SNPs may also play significant roles in the pathology of osteoporosis, including m<sup>6</sup>A-SNP rs17787930. rs1110720 and rs11614913 [117]. All in all, the levels of m<sup>6</sup>A methylation or regulators are strongly associated with osteoporosis.

m<sup>6</sup>A methylation and immune-related MDs

The interactions between immune and metabolic responses play an important role in pathological development and chronic inflammation [121], including insulin resistance, insulin unresponsiveness, hepatic fat deposition and excessive adipose tissue development [122]. m<sup>6</sup>A methylation emerges as a significant role in immune-related MDs, for example, ALKBH5 is highly up-expressed in organs enriched in immune cells with frequent immune reactions, including thymus, spleen and thyroid [10, 123]. Also, METTL3-mediated m<sup>6</sup>A of CD40, CD80 and toll-like receptors 4 (TLR4) signaling adaptor TIR domain containing adaptor protein (TIRAP) transcripts enhance their translation in dendritic cells for stimulating T cell activation and the development of T lymphocytes in the thymus [124, 125]. Furthermore, the deletion of METTL3 in mouse T cells disrupts T cell homeostasis and differentiation by targeting the interleukin 7 (IL-7)/STAT5/cytokine inducible SH2 containing protein (SOCS) pathways [126]. In addition, m<sup>6</sup>A modification prevents TLRs activation upon binding of native mRNAs such as mRNAs with m<sup>5</sup>C, 5-methyluridine, 2-thiouridine substrate, m<sup>6</sup>A, which cannot active TLR3, TLR7 or TLR8, while unmodified RNA could activate all these human TLRs [127]. Thus, the study of m<sup>6</sup>A methylation on immune response may provide a new insight for the treatment of immune-related MDs, and more related mechanisms need to be clarified.

Conclusions and perspectives

m<sup>6</sup>A modification is highly involved in RNA stability, localization, turnover and translation efficiency, which is crucial for the biological functions [128]. The mRNA m<sup>6</sup>A methylation has a wide range of effects on MDs. The researches can be conducted by many experimental methods such as m<sup>6</sup>A-seq (m<sup>6</sup>A-specific methylated RNA immunoprecipitation with next-generation
compounds by utilizing a modular approach [137].

Apart from the expensive experimental screening of m^6^A sites in RNAs, some bioinformatics tools have been developed for large-scale identification of m^6^A modification sites, including SCARLET (site-specific cleavage and radioactive-labeling followed by ligation-assisted extraction and thin-layer chromatography), TargetM6A, RNA-methylPred, iRNA-Methyl and pRNAm-PC [131–135]. This m^6^A related regulatory system will promote targeted therapy for MDs.

Strategies for m^6^A-targeted drugs design are on the following: Firstly, virtual screening can be used to discover the potential compounds for experimental validation by using the drug-like SPECS database which contains about 100,000 compounds [136]; Secondly, the mechanistic study and kinetics analysis can be used to select the best m^6^A inhibitor or methyl donor [136]; In addition, differential scanning fluorometry- and liquid chromatography-based assays are applied to screen related compounds [55]; Furthermore, we can also synthetize m^6^A related compounds by utilizing a modular approach [137].

Currently, several promising agents may have potentials to treat MDs by targeting m^6^A, such as m^6^A inhibitors. It is known that FTO negatively regulated m^6^A levels and positively regulated adipogenesis, thus we can use FTO inhibitors (rhein, radicicol, epigallocatechin gallate, entacapone and meclofenamic acid) [91, 136, 138–140] to remove the potential effect of FTO. In addition, ALKBH5 is positively related to the frequent immune reactions [123], if we rule out the effects of ALKBH5 on immune cells via using ALKBH5 inhibitor (IOX3) [141], the immune-related MDs will be improved. Also, cycloleucine (a methylation inhibitor), S-adenosylhomocysteine (a competitive inhibitor for some adenosylmethionine-dependent methyltransferases) can be applied to downregulate m^6^A methylation directly [88, 101, 142]. In the contrast, many m^6^A regulators are useful for the improvement of MDs, for instance, METTL3, METTL14, YTHDF2 are negatively correlated with adipogenesis [87, 89]. Therefore, betaine, a methyl donor [88, 101], could be employed to upregulate m^6^A methylation directly. All in all, it’s still a long journey for the special m^6^A-targeted drugs for MDs, but the development and application of more m^6^A inhibitors or methyl donors will provide important clues to the development of m^6^A special drugs for MDs.

So far, the studies on mRNA m^6^A methylation remain poorly understood. For example, almost all the known demethylases belong to the AlkB family, and whether other proteins in or out the AlkB family are also involved in mRNA demethylation needs to be further studied. Variations in methylated and demethylated genes need to be further explored. The functions of m^6^A modification on non-coding RNAs, such as miRNA, circRNA, piRNA and IncRNA need to be unveiled in the metabolic processing. Accordingly, m^6^A—as one of the abundant basic modifications of circRNAs, IncRNA and miRNA [143–145], may have a promising future in early diagnosis on MDs through identifying downregulated or upregulated m^6^A methylation levels or mediators levels. The RNA m^6^A methyltransferases and demethylases can selectively methylate or demethylate the MDs-related genes [146, 147]. The immune cell responses play an important role in the pathological development of MDs, however, the roles of m^6^A modifications in immune-related MDs are poorly understood. Based on the functions of m^6^A modifications in immune responses, thus we speculated that m^6^A modifications in immune-related MDs might be important.

There are many problems in the m^6^A dominated diagnosis and therapies of MDs. Firstly, the biological functions of m^6^A modification in MDs needs to be further clarified. Secondly, the functions of m^6^A modification on risk factors of MDs such as aging, infection and cancers are still a tip of the iceberg. Finally, the m^6^A related treatment of MDs merely focus on FTO inhibitors, so the novel therapeutics targeting m^6^A related potents and specific small-molecule m^6^A modification inhibitors need to be further identified or developed through small-molecule compound library screening or chemical synthesis.

**Abbreviations**

- N6-Methyladenosine, m^6^A
- S-Methylcytosine
- UTR: Untranslated terminal region
- METTL3, METTL14, YTHDF2: m^6^A methyltransferase-like 3, 14, YTH domain-containing 2
- FTO: Fat mass and obesity-associated protein
- ALKBH5: alkB homolog 5
- MDs: Metabolic diseases
- T2D: Type 2 diabetes
- NAFLD: Non-alcoholic fatty liver disease
- WTAP: Wilms’ tumor 1-associated protein
- FTO: Fat mass and obesity-associated protein
- ALKBH5: alkB homolog 5
- MDs: Metabolic diseases
- T2D: Type 2 diabetes
- NAFLD: Non-alcoholic fatty liver disease
- WTAP: Wilms’ tumor 1-associated protein
- VIMRMA/XIAA1429: Virilizer like m^6^A methyltransferase-associated protein
- HAKAI: An E3 ubiquitin ligase for the C-cadherin complex
- ZC3H13/KIAA0853: Zinc finger CCCH-type containing 13
- RMB15: RNA-binding protein 15
- YTHDF2: YT521-B homology 2
- FTH1: Fatty acid synthetase
- IGF1: Insulin-like growth factor 1
- PDX1: Pancreatic and duodenal homeobox 1
- SOCS: Cytokine inducible SH2 containing protein
- TLR4: Toll-like receptors 4
- TIRAP: TIR domain containing adaptor protein
- IL-7: Interleukin 7
- PRRC2A: Proline rich coiled-coil 2A
- FOXO1: Forkhead box O1
- G6PC: Glucose-6-phosphatase catalytic subunit
- DGAT2: Diacylglycerol O-acyltransferase 2
- FASN: Fatty acid synthetase
- PPARγ: Peroxisome proliferator-activated receptor gamma
- CDKN1B: cyclin dependent kinase 2
- PI3K: Phosphatidylinositol 3-kinase
- FASN: Fatty acid synthetase
- PDX1: Pancreatic and duodenal homeobox 1
- SOCS: Cytokine inducible SH2 containing protein
- TLR4: Toll-like receptors 4
- TIRAP: TIR domain containing adaptor protein
- IL-7: Interleukin 7
- SCOS: Cytokine inducible SH2 containing protein
- m^6^A-seq: m^6^A-specific methylated RNA immunoprecipitation with next-generation sequencing
- PA-m^6^A-seq: Photo-crosslinking-assisted m^6^A-sequencing.
References
1. Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303–7.
2. Liu J, Jia G. Methylation modifications in eukaryotic messenger RNA. J Genet Genomics Yi chuan xue bao. 2014;41(1):21–33.
3. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(2):838–46.
4. Warde AS, Kretschmer J, Hacker P, et al. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18(11):2004–14.
5. Wei W, Ji X, Guo X, Ji S. Regulatory role of N6-methyladenosine (m6A) methylation in mRNA processing and human diseases. J Cell Biochem. 2017;118(9):2534–43.
6. Lichinchi G, Gao S, Saletore Y, et al. Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol. 2016;1:601.
7. Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m6A(methyl)transferase METTL3 promotes translation in human cancer cells. Mol Cell. 2016;62(3):335–45.
8. Yang Y, Huang W, Huang JT, et al. Increased N6-methyladenosine in human sperm RNA as a risk factor for asthenozoospermia. Sci Rep. 2016;6:24345.
9. Shi S, Kong N, Feng C, et al. Drug delivery strategies for the treatment of metabolic diseases. Adv Healthc Mater. 2018;8:e1801655.
10. Hotamisligil GS, Ertay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol. 2008;8(12):923–34.
11. WHCO. WHO obesity and overweight: key facts, 2018. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 16 Feb 2018.
12. Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.
13. Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017;37(Suppl 1):81–4.
14. Dohrmann CE. Target discovery in metabolic disease. Drug Discov Today. 2009;14(18):785–94.
15. Polimeni G, Trafiro G, Ingrasciotta Y, Caputi AP. The advent of biosimilars for the treatment of diabetes: current status and future directions. Acta Diabetol. 2015;52(3):423–31.
16. Neuschwander-Tetri BA. Non-alcoholic fatty liver disease. BMC Med. 2017;15(1):45.
17. Yang Y, Shen F, Huang W, et al. Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes. J Clin Endocrinol Metab. 2019;104(3):665–73.
18. Dina C, Meye D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39(6):724–6.
19. Guo J, Ren W, Li X, et al. Altering of FTO in the serum and livers of NALFD patients: a correlation analysis. Int J Clin Exp Med. 2018;11:6046–53.
20. Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27(3):315–28.
21. Wang X, Feng J, Xue Y, et al. Corrigendum: structural basis of N(6)-adenosine methylation by the METTL3–METTL14 complex. Nature. 2017;542(7640):260.
37. Wei J, Liu F, Lu Z, et al. Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 2018;1(6):973–985.e975.

38. Liu J, Yue Y, Han D, et al. METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–5.

39. Wang X, Feng J, Yue Y, et al. Structural basis of N(6)-adenosine methylation by the METTL3–METTL14 complex. Nature. 2016;534(7608):575–8.

40. Slodz P, Jinek M. Structural insights into the molecular mechanism of the m(6)A writer complex. eLife. 2016;5:e18434.

41. Knuckles P, Lence T, Haussmann IU, et al. Zc3h13/Flacc is required for adenosine methylation by bridging the m(6)A-binding factor Rbm15/Spinteto with the m(6)A machinery component Wtap/Flcd. Genes Dev. 2018;32(5–6):415–29.

42. Wen J, Lv R, Ma H, et al. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 2018;69(6):1028–1038.e1026.

43. Yue Y, Liu J, Cui X, et al. VIRMA mediates preferential m(6)A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 2018;4:10.

44. Geula S, Moshtich-Moshkovitz S, Dominissini D, et al. Stem cells m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science (New York, NY). 2015;347(6225):1002–6.

45. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187–200.

46. Patel DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537(7620):369–73.

47. Meyer KD, Jaffrey SR. Rethinking m(6)A readers, writers, and erasers. Annu Rev Cell Dev Biol. 2017;33:319–42.

48. Ma H, Wang X, Cai J, et al. N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol. 2019;15(1):88–94.

49. Lente C, Akhtar J, Bayer M, et al. m(6)A modulates neuronal functions and sex determination in Drosophila. Nature. 2016;540(7632):242–7.

50. Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–89.

51. He C. Grand challenge commentary: RNA epigenetics? Nat Chem Biol. 2018;14(1):E1–8.

52. Mauer J, Luo X, Blanjoie A, et al. Reversible methylation of m(6)Am in the 5′UTR and near stop codon and associates with alternative polyadenylation. BMC Biochem. 2007;8:23.

53. Fischer J, Koch L, Emmerling C, et al. Inactivation of the Fto gene protects from obesity. Nature. 2009;458(7240):894–8.

54. Haupt A, Thamer C, Staiger H, et al. Variation in the FTO gene influences adult obesity and beyond? Biochem Biophys Acta. 2014;1842(10):2039–47.

55. Ronkainen J, Mondini E, Cinti F, et al. Fto-deficiency affects the gene and MicroRNA expression involved in brown adipogenesis and browning of white adipose tissue in mice. Int J Mol Sci. 2016;17(1):1851.

56. Prakash J, Srivastava N, Awasthi S, et al. Association of FTO rs17817449 with type 2 diabetes in Palestine. BMC Med Genet. 2018;19(1):156.

57. Younus LA, Algenabi AHA, Abdul-Zhara MS, Hussein MK. FTO gene polymorphisms (rs9939609 and rs17817449) as predictors of type 2 diabetes mellitus in obese Iraqi population. Gene. 2017;627:79–84.

58. Zheng YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and metabolic effects of early short-term exercise in the offspring of obese mothers are accompanied by alterations in the hypothalamic gene expression of appetite regulators and FTO expression rather than ALKBH5. J Clin Endocrinol Metab. 2015;100(1):E148–54.

59. Hinnouho GM, Czernichow S, Dugravot A, et al. Metabolically healthy diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6(11):69–80.

60. Souness JE, Stouffer JE, Chagoya de Sanchez V. Effect of N6-methyladenosine on fat-cell glucose metabolism. Evidence for two modes of action. Biochem Pharmacol. 1982;31(24):3961–71.

61. Shen F, Huang W, Huang JT, et al. Decreased N6-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5. J Clin Endocrinol Metab. 2015;100(1):E148–54.

62. Hsu PI, Zhu Y, Ma H, et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 2017;27(9):1115–27.

63. Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–95.

64. Edens BM, Vissers C, Su J, et al. FMRP modulates neural differentiation through m(6)A-dependent mRNA nuclear export. Cell Rep. 2019;28(4):845–854.e845.

65. WU R, Li A, Sun B, et al. A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res. 2019;29(1):23–41.

66. Lascar N, Brown J, Patterson H, Barnett AH, Bailey CI, Bellary S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6(11):69–80.

67. Roundtree IA, Luo GZ, Zhang Z, et al. YTHDC1 mediates nuclear export of m(6)A methylated mRNAs. Life. 2017;6:e31311.

68. Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20.

69. Jain D, Puno MR, Meydan C, et al. Ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2. eLife. 2018;7:e30919.
85. Karra E, O’Daly OG, Choudhury AI, et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. J Clin Investig. 2013;123(8):3539–31.

86. Chen X, Loo Y, Jia G, Liu G, Zhao H, Huang Z. FTO promotes adipogenesis through inhibition of the Wnt/beta-catenin signaling pathway in porcine intramuscular adipocytes. Anim Biotechnol. 2017;28(4):268–74.

87. Wang X, Wu R, Liu Y, et al. m(6)A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg9. Autophagy. 2019;1–15. https://doi.org/10.1080/15548627.2019.1659617.

88. Wang X, Zhu L, Chen J, Wang Y. mRNA m(6)A methylation downregulates adipogenesis in porcine adipocytes. Biochem Biophys Res Commun. 2015;459(2):201–7.

89. Kobayashi M, Ohsugi M, Sasako T, et al. The RNA methyltransferase complex of WTAP, METTL3, and METTL14 regulates mitotic clonal expansion in adipogenesis. Mol Cell Biol. 2018;38(16):e00116-18.

90. Wu R, Liu Y, Yao Y, et al. FTO regulates adipogenesis by controlling cell cycle progression via m(6)A-YTHDF2 dependent mechanism. Biochim Biophys Acta. 2018;1863(10):1323–30.

91. Wu R, Yao Y, Jiang Q, et al. Epigallocatechin gallate targets FTO and inhibits adipogenesis in an mRNA m(6)A-YTHDF2-dependent manner. Int J Obes (2005). 2018;42(7):1378–88.

92. Liu Q, Zhao Y, Wu R, et al. ZFP217 regulates adipogenesis by controlling mitotic clonal expansion in a METTL3-m(6)A-dependent manner. RNA Biol. 2019;16:1–9.

93. Anderson EL, Howe LD, Fraser A, et al. Weight trajectories through infancy and childhood and risk of non-alcoholic fatty liver disease in adolescence: the ALSPAC study. J Hepatol. 2014;61(3):626–32.

94. Cobbina E, Aluo Z, Liu S, Zhang Z, Zhou L. Betaine increases mitochondrial content and improves hepatic lipid metabolism disorder by modulation of m(6)A RNA methylation. Food Funct. 2012;3(2):141–7.

95. Li S, Wang X, Zhang J, et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m(6)A RNA methylation in piglets. Lipids. 2018;53(1):53–63.

96. Zhong X, Yu J, Frazier K, et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m(6)A RNA methylation. Cell Rep. 2018;25(7):1816–1828.e1814.

97. Paramasivam A, Vijayashree Priyadharsini J, Raghuhanthakumar S. N6-adenosine methylation (m6A): a promising new molecular target in hypertension and cardiovascular diseases. Hypertens Res. 2019;43:153–4.

98. Lawlor DA, Callaway M, Macdonald-Wallis C, et al. Nonalcoholic fatty liver disease, liver fibrosis, and cardiometabolic risk factors in adolescence: the ALSPAC study. J Hepatol. 2014;61(3):626–32.

99. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology (Baltimore, MD). 2005;41(6):1313–21.

100. Li S, Wang X, Zhang J, et al. Exenatide ameliorates hepatic steatosis and inflammation in piglets. Lipids. 2018;53(1):782–91.

101. Shen GS, Zhou HB, Zhang H, et al. The GDF11-FTO-PPARgamma pathway in nonalcoholic fatty liver disease. Braz J Med Biol Res Revista Brasileira de Pesquisas Medicas e Biologicas. 2018;51(8):e7299.

102. Zhang L, Qi Y, Aluo Z, Liu S, Zhang Z, Zhou L. Betaine increases mitochondrial content and improves hepatic lipid metabolism. Food Funct. 2019;10(1):216–23.

103. Wang H, Li X, Zhang S, Guo S, Niu W. The beta1-adrenoceptor gene Arg389Gly and Ser49Gly polymorphisms and hypertension: a meta-analysis. Mol Biol Rep. 2013;40(6):4047–53.

104. Song H, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFE3 mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy. 2019;15(8):1419–37.

105. Mathiyalagan P, Adamiak M, Mayourian J, et al. FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation. 2019;139(4):518–32.

106. Dorn LE, Lasman L, Chen J, et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. 2019;139(4):533–45.

107. Meyer TE, Shiffman D, Morrison AC, et al. G552R Lyn67Arg is associated with hypertension in whites. Am J Hypertens. 2009;22(2):163–8.

108. Kong H, Li X, Zhang S, Guo S, Niu W. The beta1-adrenoceptor gene Arg389Gly and Ser49Gly polymorphisms and hypertension: a meta-analysis. Mol Biol Rep. 2013;40(6):4047–53.

109. Wang H, Liu J, Liu K, et al. beta1-adrenoceptor gene Arg389Gly polymorphism and essential hypertension risk in general population: a meta-analysis. Mol Biol Rep. 2013;40(6):4055–63.

110. Mo XB, Lei SF, Zhang YH, Zhang H. Examination of the associations between m(6)A-associated single-nucleotide polymorphisms and blood pressure. Hypertens Res. 2019;42(2):1582–9.

111. Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357(9):905–16.

112. Dorn LE, Lasman L, Chen J, et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. 2019;139(4):533–45.

113. Mo XB, Lei YH, Lei SF. Genome-wide identification of m(6)A-associated SNPs as potential functional variants for bone mineral density. Osteoporos Int. 2018;29(9):2029–39.

114. Yao Y, Bi Z, Wu R, et al. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK/STATS/C/EBPbeta pathway via an m(6)A-YTHDF2-dependent manner. FASEB J. 2019;33(6):7529–44.

115. Burcelin R, Garidou L, Pomie C. Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin Immunol. 2012;24(1):67–74.

116. Mathiyalagan P, Adamiak M, Mayourian J, et al. FTO-dependent N(6)-adenosine methylation (m6A): a promising new molecular target in hypertension and cardiovascular diseases. Hypertens Res. 2019;42(2):1582–9.
and characterisation of foetal exposure in France. Environ Res. 2014;132:311–20.

131. Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44(10):e91.

132. Li GQ, Liu Z, Shen HB, Yu DJ. Target M6A: identifying N(6)-methyladenosine sites from RNA sequences via position-specific nucleotide propensities and a support vector machine. IEEE Trans Nanobiosci. 2016;15(7):674–82.

133. Jia CZ, Zhang J, Gu WZ. RNA-MethylPred: a high-accuracy predictor to identify N6-methyladenosine in RNA. Anal Biochem. 2016;510:72–5.

134. Chen W, Feng P, Ding H, Lin H, Chou KC. iRNA-Methyl: identifying N(6)-methyladenosine sites using pseudo nucleotide composition. Anal Biochem. 2015;490:26–33.

135. Liu Z, Xiao X, Yu DJ, Jia J, Qu W, Chou KC. pRNAm-PC: predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties. Anal Biochem. 2016;497:60–7.

136. Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc. 2012;134(43):17963–71.

137. Zheng G, Cox T, Tribbey L, et al. Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem Neurosci. 2014;5(4):658–65.

138. Wang R, Han Z, Liu B, et al. Identification of natural compound radicicol as a potent FTO inhibitor. Mol Pharm. 2018;15(9):4092–8.

139. Peng S, Xiao W, Ju D, et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci Transl Med. 2019;11(488):eaau7116.

140. Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015;43(1):373–84.

141. Aik W, Scotti JS, Choi H, et al. Structure of human RNA N(6)-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. 2014;42(7):4741–54.

142. Kloor D, Osswald H. S-Adenosylhomocysteine hydrolase as a target for intracellular adenosine action. Trends Pharmacol Sci. 2004;25(6):294–7.

143. Zhou C, Molinie B, Daneshvar K, et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 2017;20(9):2262–76.

144. Chhabra R. miRNA and methylation: a multifaceted liaison. Chembiochem. 2015;16(2):195–203.

145. Patil DP, Pickering BF, Jaffrey SR. Reading m(6)A in the transcriptome: m(6)A-binding proteins. Trends Cell Biol. 2018;28(2):113–27.

146. Berulava T, Buchholz E, Elerdashvili V, et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail. 2019;21:2254–66.

147. Zhou J, Wan J, Shu XE, et al. N(6)-methyladenosine guides mRNA alternative translation during integrated stress response. Mol Cell. 2018;69(4):636–647.e637.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.