Phosphate solubilizing ability of two Arctic Aspergillus niger strains

Shiv Mohan Singh, Lal Sahab Yadav, Sanjay Kumar Singh, Purnima Singh, Paras Nath Singh & Rasik Ravindra

1 National Centre for Antarctic and Ocean Research, Vasco Da Gama, Goa 403804, India
2 Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India
3 Birla Institute of Technology & Science Pilani, K.K. Birla-Goa Campus, Zuari Nagar, Goa 403726, India

Keywords
Phosphate, Arctic; fungi; Aspergillus.

Abstract
Many filamentous fungi were isolated from the soils of Ny-Ålesund, Spitsbergen, Svalbard, and were screened in vitro for their phosphate solubilizing ability. Two strains of Aspergillus niger showed good tricalcium phosphate (TCP) solubilizing ability in Pikovskaya’s medium. The TCP solubilization index was calculated at varying levels of pH and temperatures. The ability of Aspergillus niger strain-1 to solubilize and release inorganic-P was 285 μg ml⁻¹, while Aspergillus niger strain-2 solubilized 262 μg ml⁻¹ from 0.5% TCP after seven days. This is the first report of TCP solubilization by Arctic strains that may serve as very good phosphate solubilizers in the form of biofertilizer.

Phosphorus is an important plant nutrient, playing a key role in the development and yield of crop plants. Phosphorus exists in nature in a variety of organic and inorganic forms. The majority of soils contain insoluble inorganic phosphates, which are of no use to plants unless they are solubilized. Soil contains organic phosphorus that can be used by plants only if it is mineralized. Phosphate solubilizing micro-organisms convert these insoluble phosphates into soluble form through the processes of acidification, chelation and exchange reaction (Earl et al. 1979; Starkanova et al. 1999; Narsian & Patel 2000; Reyes et al. 2002). A number of phosphate solubilizing bacteria, fungi and actinomycetes have been reported (Vassileva et al. 1998; Gaur 1990; Chabot et al. 1993; Khalil 1995; Subba Rao 1999). Filamentous fungi—particularly Aspergillus niger gr. and some species of Penicillium—from non-polar habitats have been tested for solubilization of inorganic phosphorus (Asea & Kucey 1988; Gaur 1990; Vassilev et al. 1996; Goenadi et al. 2000; Narsian & Patel 2000; Pandey et al. 2008).

The solubilization of inorganic phosphorus at low temperatures by cold adaptive bacteria has been tested (Trivedi & Pandey 2007). However, to our knowledge, the study reported here is the first investigation of phosphate solubilizing fungi from Arctic soils.

Materials and methods

Study sites and sampling
Ny-Ålesund (78° 55’ N, 11° 56’ E) is on the west coast of Spitsbergen, the largest island of the Svalbard Archipelago. Topographical features of Ny-Ålesund include nearby glaciers, terminal moraines and glacial streams flowing northerward to Kongsfjorden. Within the marine terraces, gravelly and stony plains predominate. The sampling sites were situated in different habitats, such as near a glacier, in a wetland and on plains (Fig. 1). The mean temperature in the coldest month (February) is −14 °C, while the warmest month (July) has a mean
temperature of + 5 °C (Nygaard 2009). The soils of the area are loose and poorly developed and support tundra vegetation (Klimowicz & Uziak 1988).

In the present study, soil samples were collected from the surface to 10 cm depth from vegetated and barren lands in the area of Ny-Ålesund during the 2007 Indian Arctic Expedition. The samples were placed in sterile ampules (Himedia, Mumbai, India) and stored at 4 °C until studied.

Collected from five different sites, nine soil samples were designated as F1 Veg, F1 Barr, F2 Veg, F3 Veg, F3 Barr, F4 Veg, F4 Barr, F5 Veg and F5 Barr (Table 1). “Veg” refers to a vegetated area and “Barr” refers to a barren area at the collection sites (F1–F5). Located in the near vicinity of the glacier Austre Brøggerbreen, F1 had fragmentary moss vegetation. F2 was at a comparatively higher altitude with high plant diversity. The moss Sanionia uncinata was dominant in the area along with healthy flowering plants such as Deschampsia alpina and Dryas octopetala. Sites F3 and F4 were low-lying plains with scanty moss and lichen vegetation. F5 was a coastal area with moss, lichen and Dryas sp.

For the isolation of fungi, 1 g of soil sample was taken and serially diluted up to 10⁻⁷ (Waksman 1916). Soil suspension (0.2 ml) was used as inoculum for the isolation of fungi on three different culture media: malt extract agar, corn meal agar and potato dextrose agar. The plates were initially incubated at 4 °C for 20 days and later at 15 °C for 7 days. The growing fungal colonies having different morphological features were purified and transferred onto potato dextrose agar slants for detailed study. Pure and well-sporulating cultures were identified on the basis of morphotaxonomy with the help of standard literature (Barnett 1960; Rapper & Fennell 1965; Von Arx 1974; Ellis 1971, 1976; Barron 1977; Pitt 1979; Carmichael et al. 1980; Gams et al. 1980; Kirk et al. 2008).

Diversity indices for the fungi at different localities were calculated using PAST software (Hammer et al. 2001) and statistical calculators available online (http://biome.sdsu.edu/fastgroup/cal_tools.htm).

Screening for TCP solubilizing ability

All fungal isolates were screened for their phosphate solubilizing activity on Pikovskaya’s medium (Himedia) by spot inoculation and incubated at 10, 15, 20, 25 and 30 °C for seven days (Pikovskaya 1948). A clear zone around a growing colony indicated phosphate solubilization. After primary screening the positive isolates were
Taken for detailed study at different pH and temperature regimes. Phosphate solubilization index was calculated using the following formula (Edi-Premono et al. 1996):

\[
\text{Solubilizing index} = \frac{\text{Colony diameter}}{\text{Colony diameter}} + \frac{\text{clearing zone}}{\text{Colony diameter}}
\]

Table 1 Screening of isolates for tricalcium phosphate solubilization (TCP) properties and the presence of each fungus in different soil samples from vegetated (Veg) and barren (Barr) collection sites in the vicinity of Ny-Ålesund, Spitsbergen, Svalbard.

Isolated fungi	TCP solubilization	Sampling site					
		F1	F2	F3	F4	F5	
		Veg	Barr	Veg	Barr	Veg	Barr
Aspergillus aculeatus	–	+					
Aspergillus nidulans	–	+					
Aspergillus flavus gr.	–	+					
Aspergillus niger strain-1	+						
Aspergillus niger strain-2	+						
Acremonium sp.	–						
Arthrinium sp.	–	+					
Cladosporium	–						
Cladosporium cladosporioides	+						
Cladosporium sp.	–						
Corynespora sp.	–						
Chrysosporium panorum	–						
Epicoccum sp.	–						
Hypoxylon sp.	–	+					
Mortierella sp.	–	+					
Mucor sp.	–						
Myrothecium sp.	–						
Paeclomyces roseolus	–	+					
Penicillium sp.	–	+					
Phialophora sp. 1	–	+					
Phialophora sp. 2	–	+					
Non-sporulating	–	+	+	+	+	+	

*Clearing zone formed around colony.

Quantitative estimation of phosphate solubilization in broth culture

Pikovskaya’s broth medium (pH 7.2) was prepared and 100 ml of the medium was dispensed in 250 ml conical flasks. Insoluble phosphate in the form of TCP (500 mg) was added to each flask and was then sterilized at 15 lb pressure for 20 min. Ten-day-old culture grown on PDA medium was used as an inoculum source and 1.0 ml of spore suspension of the isolates was inoculated in triplicate. A set that was not inoculated was maintained as a control. Flasks were kept on an incubator shaker for seven days at 20 °C and 140 rpm. After incubation, the contents of each flask were filtered through grade 42 filter paper (Whatman, Maidstone, Kent, UK). Water-soluble phosphorus was measured using the chlorostannous-reduced molybdophosphoric acid blue method (Jackson 1973).

Result and discussion

During the course of isolation of fungi from the soil samples collected in Ny-Ålesund, 21 fungal taxa belonging to 14 different genera were isolated (Table 1). Screening of these isolates for their TCP solubilizing ability revealed that among different groups of fungi only two strains of *A. niger* group (Fig. 2) were found to be TCP solubilizers in Pikovskaya’s medium. Both *A. niger* strains were grown at different temperatures and pH for TCP solubilization. Both the isolates showed maximum clearing zones at pH 7.2 and 20 °C (Figs. 3–5). The maximum solubilization index was observed in strain-1 (2.2) followed by strain-2 (1.12).

Phosphate solubilization in Pikovskaya’s broth medium for both isolates was analysed quantitatively. The culture
was sampled daily to determine the change in pH (Fig. 6) of the liquid broth. The pH of the culture broth dropped significantly as compared to the control, where it remained constant at 7.2. *A. niger* strain-1 (NFCCI-2140) decreased the pH from 7.2 to 4, while strain-2 (NFCCI-2141) decreased the pH from 7.2 to 3.4 (Fig. 6). The differences in drop in pH by the two strains indicates the varying diffusion rates of different organic acids secreted by these two tested strains of fungi. The drop in pH during the experiment reported here resembles results from non-polar areas (Alam et al. 2002; El-Katatny 2004; Pradhan & Shukla 2005; Nopparat et al. 2007). After seven days incubation in Pikovskaya liquid medium, it was observed that strain-1 solubilized and released 285 µg P ml⁻¹ whereas strain-2 produced 262 µg P ml⁻¹.

The relation between the drop in the pH of the medium and TCP solubilization was examined in detail in this study. However, no significant relationship could be established. Similar observations have been made by those working with fungi from tropical habitats in India (Das 1963; Ahmad & Jha 1968; Sethi & Subba-Rao 1968; Narsian & Patel 2000).

We found that the diversity of fungi varied in the different soils tested. Soil sample F2 showed significant diversity (Shannon diversity index = 2.1) while other localities had less fungal diversity (Table 2). The two strains of *A. niger* that we found to be good phosphate

![Fig. 2](a) Aspergillus niger strain-1 (NFCCI-2140). (b) Aspergillus niger strain-2 (NFCCI-2141).

![Fig. 3](Clearing zones around colonies of (a) Aspergillus niger strain-1 and (b) strain-2.)
Solubilizers were from site F2, a location with very good plant diversity. It is well known that many plants benefit from their association with soil microbes that promote plant growth (Glick 1995; Illmer et al. 1995; Richardson 2001). Among them, phosphate solubilizing microbes increase the availability of phosphate to plants, resulting in higher plant growth and, in the case of crops, higher yield (Kueey et al. 1989). It is possible that the presence of good phosphate solubilizing fungi may be one of the reasons that the plant community in the F2 area is so well developed.

To the best of our knowledge, this is the first report of phosphate solubilizing fungi from the Arctic tundra. Isolating filamentous fungi from the soils of Ny-Ålesund, we documented 21 fungal taxa including non-sporulating forms. Two strains of *A. niger* were found to be good phosphate solubilizers at 20°C. In the future, these promising strains may be utilized as biofertilizers to increase agricultural yields in colder regions around the world, such as the Himalayas and other mountainous areas.

Acknowledgements

We are highly indebted to Dr Shailesh Nayak, Secretary of the Ministry of Earth Sciences, for encouragement and facilities. We are also thankful to the directors of the Agharkar Research Institute and the Birla Institute of Technology and Science for facilities. SKS and PS are thankful to the Department of Science and Technology.

Table 2 Diversity indices of filamentous fungi in soil samples from vegetated (Veg) and barren (Barr) collection sites in the vicinity of Ny-Ålesund, Spitsbergen, Svalbard.

Indices	F1 Veg	F1 Barr	F2 Veg	F3 Veg	F3 Barr	F4 Veg	F4 Barr	F5 Veg	F5 Barr
Distinct fungal taxa	2	7	10	3	2	1	1	1	2
Individuals	14	34	60	22	2	5	7	9	13
Shannon diversity index	0.5983	1.83	2.18	1.09	0.6931	0	0	0.6172	
Simpson’s diversity index	0.4082	0.8235	0.8761	0.6612	0.5	0	0	0	0.426

Fig. 4 Effect of pH on the phosphate solubilization index for the two *Aspergillus niger* strains tested.

Fig. 5 Effect of temperature on tricalcium phosphate (TCP) solubilization by the two *Aspergillus niger* strains tested.

Fig. 6 Decrease in pH of media during incubation of the two tested *Aspergillus niger* strains.
Government of India, for financial support. Thanks are also due to Dr Nikolay Vassilev and anonymous reviewer for their valuable suggestions to improve the quality of the manuscript.

References

Ahmad N. & Jha K.K. 1968. Solubilization of rock phosphate by microorganism isolated from Bihar soil. Journal of General and Applied Microbiology 14, 89–95.

Alam S., Khalil S., Ayub N. & Rashid M. 2002. In vitro solubilization of inorganic phosphate solubilizing microorganisms (PSM) from maize rhizosphere. International Journal of Agriculture & Biology 4, 454–458.

Asea P.E.A. & Kucey R.M.N. 1988. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry 20, 459–464.

Barnett H.L. 1960. Illustrated genera of imperfect fungi. 2nd edn. Minneapolis, MN: Burgess Publishing Company.

Barron G.L. 1977. The genera of hyphomycetes from soil. Huntington, NY: Robert E. Krieger Publishing Company.

Carmichael J.W., Bryce Kendrick W., Conners I.L. & Sigler L. 2008. The genus Penicillium and its teleomorphic states. Kew, Surrey: Commonwealth Mycological Institute.

Chabot R., Antoun H. & Cescas M.P. 1993. Stimulation of growth of maize and lettuce by inorganic phosphorus solubilising microorganisms. Canadian Journal of Microbiology 39, 941–947.

Das A.C. 1963. Utilization of insoluble phosphate by soil fungi. Journal of the Indian Society of Soil Science 11, 195–207.

Earl K., Syers J. & McLaughlin R.M. 1979. Origin of the effect of citrate, tartrate, and acetate on sorption of phosphorus by soils and synthetic gels. Soil Science Society of America Journal 43, 674–678.

Edi-Premono M., Moawad A.M. & Vlek P.L.G. 1996. Effect of phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indonesian Journal of Crop Science 11, 13–23.

El-Katatny M.S. 2004. Inorganic phosphate solubilization by free or immobilized Trichoderma harzianum cells in comparison with some other soil fungi. Egyptian Journal of Biotechnology 17, 138–153.

Ellis M.B. 1971. Dematiaceous hyphomycetes. Kew, Surrey: Commonwealth Mycological Institute.

Ellis M.B. 1976. More dematiaceous hyphomycetes. Kew, Surrey: Commonwealth Mycological Institute.

Gams W., Domsch K.H. & Anderson T.H. 1980. Compendium of soil fungi. London: Academic Press.

Gaur A.C. 1990. Phosphate solubilizing microorganisms as biofertilizer. New Delhi: Omega Scientific Publishers.

Glick B.R. 1995. The enhancement of plant growth by free living bacteria. Canadian Journal of Microbiology 41, 109–117.

Goenadi D.H., Siswanto R. & Sugianto Y. 2000. Bioactivation of poorly soluble phosphate rocks with phosphorus-solubilizing fungus. Soil Science Society of America Journal 64, 927–932.

Hammer Ø., Harper D.A.T. & Ryan P.D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, article no. 4.

Illmer R., Barbato A. & Schinner F. 1995. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biology and Biochemistry 27, 265–270.

Jackson M.L. 1973. Soil chemical analysis. New Delhi: Prentice-Hall of India.

Khalil S. 1995. Direct application of phosphate rock and appropriate technology fertilizers in Pakistan. In K. Dahanayake et al. (eds.): Direct application of phosphate rock and appropriate technology fertilizers in Asia: what bounds acceptance and growth. Pp. 231–236. Kandy, Sri Lanka: Institute of Fundamental Studies.

Kirk P.M., Cannon P.F., Minter D.W. & Stalpers J.A. 2008. Ainsworth and Bisby’s dictionary of the fungi. 10th edn. Wallingford, Oxfordshire: CABI Publishing.

Klimowicz Z. & Uziak S. 1988. Soil-forming processes and soil properties in Calypsostranda, Spitsbergen. Polish Polar Research 9, 61–71.

Kucey R.M.N., Tanzen H.H. & Leggett M.E. 1989. Microbi ally mediated increase in plant available phosphorus. Advances in Agronomy 42, 199–228.

Narsian V. & Patel H.H. 2000. Aspergillus aculeatus as rock phosphate solubilizers. Soil Biology and Biochemistry 32, 559–565.

Nopparat C., Jatupoenpipat M. & Rittiboon A. 2007. Isolation of phosphate solubilizing fungi in soil from Kanchanaburi, Thailand. KMITL Science and Technology Journal 7, 137–146.

Nygaard E.J. 2009. Ny-Ålesund, international Arctic research and monitoring station at 79°N. Ny-Ålesund: Kings Bay AS.

Pandey A., Das N., Kumar B., Rinu K. & Trivedi P. 2008. Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World Journal of Microbiology & Biotechnology 24, 97–102.

Pikovskaya R.I. 1948. Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya 17, 362–370.

Pitt J.J. 1979. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. London: Academic Press.

Pradhan N. & Shukla L.B. 2005. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African Journal of Biotechnology 5, 850–854.

Rapper K.B. & Fennell D.I. 1965. The Aspergillus. Baltimore, MD: Williams & Wilkins Company.

Reyes L. Bernier L. & Antoun H. 2002. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugosum. Microbial Ecology 44, 39–48.

Richardson A.E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology 28, 896–906.
Sethi R.P. & Subba-Rao N.S. 1968. Solubilization of tricalcium phosphates and calcium phosphate by soil fungi. *Journal of General and Applied Microbiology* 14, 329–331.

Subba Rao N.S. 1999. *Soil microbiology*. Enfield, NH: Science Publishers.

Starkanova G., Vorisek K., Mikanova O. & Randova D. 1999. P solubilisation activity of Rhizobium species strains. *Rostlinna Vyroba* 45, 403–406.

Trivedi P. & Pandey A. 2007. Low temperature phosphate solubilization and plant growth promotion by psychrotrophic bacteria, isolated from Indian Himalayan region. *Research Journal of Microbiology* 2, 454–461.

Vassileva M., Azcon R., Barea J.M. & Vassilev N. 1998. Application of an encapsulated filamentous fungus in solubilization of inorganic phosphate. *Journal of Biotechnology* 63, 67–72.

Von Arx J.A. 1974. *The genera of fungi sporulating in pure culture*. Lehre, Germany: J. Cramer.

Waksman S.A. 1916. Do fungi live and produce mycelium in the soil? *Science New Series* 44, 320–322.