SUPPLEMENTARY MATERIAL

A new thiodiketopiperzaine from the marine sponge *Tedania* sp.

Hua Zhang, Wei Lai, Zhuo-Bin Guan, Xiao-Jian Liao, Bing-Xin Zhao* and Shi-Hai Xu*

*Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China

*Corresponding authors
E-mail addresses: zbx840622@163.com; txush@jnu.edu.cn.

Abstract: A new thiodiketopiperzaine, tedanizaine A (1), together with six known ones, were isolated from the marine sponge *Tedania* sp.. Their structures were determined by spectroscopic analyses. The absolute configuration of 1 was established by ECD calculation. Compound 1 was the second example of thiodiketopiperazine bearing a thiazolidine unit. Cytotoxic activities of 1 were also evaluated.

Keywords: sponge; *Tedania* sp.; thiodiketopiperzaine
Contents

Quantum chemical ECD calculations of 1 .. 3

Table S2. 1H and 13C NMR spectral data of 1 (in CDCl$_3$) .. 4

Figure S2. Key 1H-1H COSY and HMBC correlations of 1 4

Figure S3. Key NOE correlations of 1 .. 4

Figure S4. UV spectrum of 1 .. 5

Figure S5. IR spectrum of 1 ... 5

Figure S6. HR-ESI-MS spectrum of 1 ... 6

Figure S7. 1H NMR spectrum of 1 ... 6

Figure S8. 13C NMR spectrum of 1 ... 7

Figure S9. 1H-1H COSY spectrum of 1 ... 7

Figure S10. HSQC spectrum of 1 .. 8

Figure S11. HMBC spectrum of 1 .. 8

Figure S12. NOESY spectrum of 1 ... 9
Quantum chemical ECD calculations of 1

The molecules of (2S, 5S, 11R)-1 and (2R, 5R, 11S)-1 were converted into SMILES codes before their initial 3D structures were generated with CORINA version 3.4. Conformer databases were generated in CONFLEX version 7.0 using the MMFF94s force-field, with an energy window for acceptable conformers (ewindow) of 10 kcal mol\(^{-1}\) above the ground state, a maximum number of conformations per molecule (maxconfs) of 100, and an RMSD cutoff (rmsd) of 0.5 Å. Then each conformer of the acceptable conformers was optimized with HF/6-31G(d) method in Gaussian09. Further optimization at the APFD/6-31G(d) level led the dihedral angles to be got. After that, four stable conformers were obtained. The optimized conformers were taken for the ECD calculations, which were performed with Gaussian09 (APFD/6-311++G(2d,p)). The solvent effect was taken into account by the polarizable-conductor calculation model (IEFPCM, methanol as the solvent). Comparisons of the experimental and calculated spectra were done with the software SpecDis. It was also used to apply a UV shift to the ECD spectra, Gaussian broadening of the excitations, and Boltzmann weighting of the spectra.

Table S1. Conformers distribution of (2S, 5S, 11R)-1 at the APFD/6-31G(d) level with solvated model

Conformers	Population %	Conformers	Population %
1	52.82	3	11.95
2	33.40	4	1.83

Figure S1. Experimental ECD spectrum of 1 and calculated ECD spectra of (2S, 5S, 11R)-1 and (2R, 5R, 11S)-1 (UV correction = 0 nm, band width $\sigma = 0.3$ eV)
Table S2. 1H and 13C NMR spectral data of 1 (in CDCl$_3$, δ, J in Hz)a

No.	$\delta$$_H$	$\delta$$_C$
2	5.47 q (6.3)	59.2
4	-	164.7
5	4.19 t (8.1)	60.4
6	a 2.31-2.42	28.0
	b 1.97-2.21	
7	1.87-2.20, 2H	23.0
8	3.55-3.67, 2H	45.4
10	-	164.1
11	4.51 t (6.6)	62.0
12	a 3.49	31.9
	b 3.45 dd (19.2, 7.2)	
13	1.57 d (6.3)	22.4

a Overlapped signals are reported without designating multiplicity.

Figure S2. Key 1H-1H COSY and HMBC correlations of 1.

Figure S3. Key NOE correlations of 1.
Figure S4. UV spectrum of 1

Figure S5. IR spectrum of 1
Summary

Compound Name (Library #)	Formula	Intensity	Threshold	Expected p.p.m.	Found at p.p.m.	Error (p.p.m.)	Expected RT (min)	Found RT (min)	RT Delta (min)	Isotope (wt%)	Purity (%)

- Spectrum from sample with (sample 1) - Sampled: 01, Experiment 1, +TOF MS (100–1000) from 0.167 to 0.200 min
- C10H14NO2S + H

Figure S6. HR-ESI-MS spectrum of 1

Figure S7. 1H NMR spectrum of 1 (300 MHz in CDCl$_3$)
Figure S8. 13C NMR spectrum of 1 (75 MHz in CDCl$_3$)

Figure S9. 1H-1H COSY spectrum of 1
Figure S10. HSQC spectrum of 1

Figure S11. HMBC spectrum of 1
Figure S12. NOESY spectrum of 1