Sequential Quasi Monte Carlo

N. Chopin (CREST-ENSAE)

nicolas.chopin@ensae.fr

joint work with Mathieu Gerber (CREST, Université de Lausanne)
Particle filtering (a.k.a. Sequential Monte Carlo) is a set of Monte Carlo techniques for sequential inference in state-space models. The error rate of PF is therefore $O_P(N^{-1/2})$.
Outline

Particle filtering (a.k.a. Sequential Monte Carlo) is a set of Monte Carlo techniques for sequential inference in state-space models. The error rate of PF is therefore $O_P(N^{-1/2})$.

Quasi Monte Carlo (QMC) is a substitute for standard Monte Carlo (MC), which typically converges at the faster rate $O(N^{-1+\epsilon})$. However, standard QMC is usually defined for IID problems.
Particle filtering (a.k.a. Sequential Monte Carlo) is a set of Monte Carlo techniques for sequential inference in state-space models. The error rate of PF is therefore $O_P(N^{-1/2})$.

Quasi Monte Carlo (QMC) is a substitute for standard Monte Carlo (MC), which typically converges at the faster rate $O(N^{-1+\epsilon})$. However, standard QMC is usually defined for IID problems.

The purpose of this work is to derive a QMC version of PF, which we call SQMC (Sequential Quasi Monte Carlo).
Consider the standard MC approximation

\[\frac{1}{N} \sum_{n=1}^{N} \varphi(u^n) \approx \int_{[0,1]^d} \varphi(u) du \]

where the \(N \) vectors \(u^n \) are IID variables simulated from \(U([0,1]^d) \).
Consider the standard MC approximation

$$\frac{1}{N} \sum_{n=1}^{N} \varphi(u^n) \approx \int_{[0,1]^d} \varphi(u) du$$

where the N vectors u^n are IID variables simulated from $\mathcal{U}([0,1]^d)$.

QMC replaces $u^{1:N}$ by a set of N points that are more evenly distributed on the hyper-cube $[0,1]^d$. This idea is formalised through the notion of discrepancy.
QMC vs MC in one plot

QMC versus MC: \(N = 256 \) points sampled independently and uniformly in \([0, 1]^2\) (left); QMC sequence (Sobol) in \([0, 1]^2\) of the same length (right)
Discrepancy

Koksma–Hlawka inequality:

\[
\left| \frac{1}{N} \sum_{n=1}^{N} \varphi(u^n) - \int_{[0,1]^d} \varphi(u) \, du \right| \leq V(\varphi) D^*(u^{1:N})
\]

where \(V(\varphi) \) depends only on \(\varphi \), and the star discrepancy is defined as:

\[
D^*(u^{1:N}) = \sup_{[0,b]} \left| \frac{1}{N} \sum_{n=1}^{N} 1(u^n \in [0,b]) - \prod_{i=1}^{d} b_i \right|.
\]
Koksma–Hlawka inequality:

\[
\left| \frac{1}{N} \sum_{n=1}^{N} \varphi(u^n) - \int_{[0,1]^d} \varphi(u) \, du \right| \leq V(\varphi) D^*(u^{1:N})
\]

where \(V(\varphi) \) depends only on \(\varphi \), and the star discrepancy is defined as:

\[
D^*(u^{1:N}) = \sup_{[0,b]} \left| \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(u^n \in [0, b]) - \prod_{i=1}^{d} b_i \right|
\]

There are various ways to construct point sets \(P_N = \{u^{1:N}\} \) so that \(D^*(u^{1:N}) = O(N^{-1+\epsilon}) \). (Describing these different constructions is beyond the scope of this talk.)
RQMC (randomised QMC)

RQMC randomises QMC so that each $u^n \sim \mathcal{U}([0, 1]^d)$ marginally. In this way

$$E \left\{ \frac{1}{N} \sum_{n=1}^{N} \varphi(u^n) \right\} = \int_{[0,1]^d} \varphi(u) \, du$$

and one may evaluate the MSE through independent runs.
RQMC (randomised QMC)

RQMC randomises QMC so that each $u^n \sim U([0, 1]^d)$ marginally. In this way

$$\mathbb{E} \left\{ \frac{1}{N} \sum_{n=1}^{N} \varphi(u^n) \right\} = \int_{[0,1]^d} \varphi(u) \, du$$

and one may evaluate the MSE through independent runs.

A simple way to generate a RQMC sequence is to take $u^n = w + v^n \equiv 1$, where $w \sim U([0,1]^d)$ and $v^{1:N}$ is a QMC point set.
RQMC (randomised QMC)

RQMC randomises QMC so that each $u^n \sim \mathcal{U}([0, 1]^d)$ marginally. In this way

$$\mathbb{E} \left\{ \frac{1}{N} \sum_{n=1}^{N} \varphi(u^n) \right\} = \int_{[0,1]^d} \varphi(u) \, du$$

and one may evaluate the MSE through independent runs.

A simple way to generate a RQMC sequence is to take $u^n = w + v^n \equiv 1$, where $w \sim \mathcal{U}([0, 1]^d)$ and $v^{1:N}$ is a QMC point set.

Owen (1995, 1997a, 1997b, 1998) developed RQMC strategies such that (for a certain class of smooth functions φ):

$$\text{Var} \left\{ \frac{1}{N} \sum_{n=1}^{N} \varphi(u^n) \right\} = O(N^{-3+\epsilon})$$
Consider an unobserved Markov chain \((x_t), x_0 \sim m_0(dx_0)\) and
\[
x_t|\mathbf{x}_{t-1} = x_{t-1} \sim m_t(x_{t-1}, dx_t)
\]
Taking values in \(\mathcal{X} \subset \mathbb{R}^d\), and an observed process \((y_t)\),
\[
y_t|x_t \sim g(y_t|x_t).
\]
Consider an unobserved Markov chain \((x_t), x_0 \sim m_0(dx_0)\) and
\[x_t|x_{t-1} = x_{t-1} \sim m_t(x_{t-1}, dx_t)\]
taking values in \(\mathcal{X} \subset \mathbb{R}^d\), and an observed process \((y_t)\),
\[y_t|x_t \sim g(y_t|x_t)\].

Sequential analysis of HMMs amounts to recover quantities such as
\(p(x_t|y_{0:t})\) (filtering), \(p(x_{t+1}|y_{0:t})\) (prediction), \(p(y_{0:t})\) (marginal likelihood), etc., recursively in time. Many applications in engineering (tracking), finance (stochastic volatility), epidemiology, ecology, neurosciences, etc.
Feynman-Kac formalism

Taking $G_t(x_{t-1}, x_t) := g_t(y_t|x_t)$, we see that sequential analysis of a HMM may be cast into a Feynman-Kac model. In particular, filtering amounts to computing

$$Q_t(\varphi) = \frac{1}{Z_t} \mathbb{E}\left[\varphi(x_t) G_0(x_0) \prod_{s=1}^{t} G_s(x_{s-1}, x_s) \right],$$

with $Z_t = \mathbb{E}\left[G_0(x_0) \prod_{s=1}^{t} G_s(x_{s-1}, x_s) \right]$ and expectations are wrt the law of the Markov chain (x_t).
Feynman-Kac formalism

Taking \(G_t(x_{t-1}, x_t) := g_t(y_t|x_t) \), we see that sequential analysis of a HMM may be cast into a Feynman-Kac model. In particular, filtering amounts to computing

\[
Q_t(\varphi) = \frac{1}{Z_t} \mathbb{E} \left[\varphi(x_t) G_0(x_0) \prod_{s=1}^{t} G_s(x_{s-1}, x_s) \right],
\]

with \(Z_t = \mathbb{E} \left[G_0(x_0) \prod_{s=1}^{t} G_s(x_{s-1}, x_s) \right] \)

and expectations are wrt the law of the Markov chain \((x_t)\).

Note: FK formalism has other applications that sequential analysis of HMM. In addition, for a given HMM, there is a more than one way to define a Feynman-Kac formulation of that model.
Particle filtering: the algorithm

Operations must be performed for all $n \in 1 : N$.

At time 0,

(a) Generate $x^n_0 \sim m_0(dx_0)$.

(b) Compute $W^n_0 = G_0(x^n_0)/\sum_{m=1}^N G_0(x^m_0)$ and $Z^N_0 = N^{-1} \sum_{n=1}^N G_0(x^n_0)$.

Recursively, for time $t = 1 : T$,

(a) Generate $a^n_{t-1} \sim \mathcal{M}(W_{t-1}^{1:N})$.

(b) Generate $x^n_t \sim m_t(x^a^n_{t-1}, dx_t)$.

(c) Compute $W^n_t = G_t(x^n_{t-1}, x^n_t)/\sum_{m=1}^N G_t(x^a^n_{t-1}, x^m_t)$ and $Z^N_t = Z^N_{t-1} \left\{ N^{-1} \sum_{n=1}^N G_t(x^a^n_{t-1}, x^n_t) \right\}$.
At iteration t, compute

$$Q_t^N(\varphi) = \sum_{n=1}^{N} W_t^n \varphi(x_t^n)$$

to approximate $Q_t(\varphi)$ (the filtering expectation of φ). In addition, compute

$$Z_t^N$$

as an approximation of Z_t (the likelihood of the data).
Cartoon representation

Source for image: some dark corner of the Internet.
We can formalise the succession of the resampling step (a) and the mutation step (b) at iteration t as an importance sampling step from random probability measure Q_N^t:

$$Q_N^t (d(\tilde{x}_{t-1}, x_t)) = \sum_{n=1}^{N} W_{t-1}^n \delta_{x_{t-1}^n} (d\tilde{x}_{t-1}) m_t (\tilde{x}_{t-1}, dx_t)$$

to

$$Q_N^t (d(\tilde{x}_{t-1}, x_t)) \propto \bar{Q}_t^N (d(\tilde{x}_{t-1}, x_t)) G_t (\tilde{x}_{t-1}, x_t).$$
We can formalise the succession of the resampling step (a) and the mutation step (b) at iteration t as an importance sampling step from random probability measure

$$
\overline{Q}_t^N (\text{d}(\tilde{x}_{t-1}, x_t)) = \sum_{n=1}^{N} W_{t-1}^n \delta_{x_{t-1}^n} (\text{d}\tilde{x}_{t-1}) m_t (\tilde{x}_{t-1}, \text{d}x_t)
$$

to

$$
Q_t^N (\text{d}(\tilde{x}_{t-1}, x_t)) \propto \overline{Q}_t^N (\text{d}(\tilde{x}_{t-1}, x_t)) G_t (\tilde{x}_{t-1}, x_t).
$$

\textbf{Idea:} use QMC instead of MC to sample N points from $\overline{Q}_t^N (\text{d}(\tilde{x}_{t-1}, x_t))$. The main difficulty is that this distribution is partly discrete, partly continuous.
Case $d = 1$

Let $u^n_t = (v^n_t, w^n_t)$ be uniform variates in $[0, 1]^2$. Then

1. Use the inverse transform to obtain $\tilde{x}^n_{t-1} = \tilde{F}^{-1}(v^n_t)$, where \tilde{F} is the empirical cdf of $\sum_{n=1}^{N} W^n_{t-1} \delta_{x^n_{t-1}}(dx_{t-1})$.

2. Sample $x^n_t \sim m_t(\tilde{x}^n_{t-1}, dx_t)$ as: $x^n_t = \Gamma_t(\tilde{x}^n_{t-1}, w^n_t)$, where Γ_t is e.g. the inverse CDF of $m_t(\tilde{x}^n_{t-1}, dx_t)$ (or some other appropriate deterministic function)
From $d = 1$ to $d > 1$

When $d > 1$, we cannot use the inverse CDF method to sample from the empirical distribution

$$\sum_{n=1}^{N} W_{t-1}^{n} \delta_{x_{t-1}^{n}} (d\tilde{x}_{t-1}).$$

Idea: we “project” the x_{t-1}^{n}’s into $[0, 1]$ through the (generalised) inverse of the Hilbert curve, which is a fractal, space-filling curve $H : [0, 1] \rightarrow [0, 1]^d$.
From $d = 1$ to $d > 1$

When $d > 1$, we cannot use the inverse CDF method to sample from the empirical distribution

$$\sum_{n=1}^{N} W_{t-1}^{n} \delta_{x_{t-1}^{n}} (d\tilde{x}_{t-1}).$$

Idea: we “project” the x_{t-1}^{n}’s into $[0, 1]$ through the (generalised) inverse of the Hilbert curve, which is a fractal, space-filling curve $H : [0, 1] \rightarrow [0, 1]^d$.

More precisely, we transform X into $[0, 1]^d$ through some function ψ, then we transform $[0, 1]^d$ into $[0, 1]$ through $h = H^{-1}$.

The Hilbert curve is the limit of this sequence. Note the locality property of the Hilbert curve: if two points are close in $[0, 1]$, then the corresponding transformed points remains close in $[0, 1]^d$. (Source for the plot: Wikipedia)
SQMC Algorithm

At time 0,

(a) Generate a QMC point set $\mathbf{u}^{1:N}_0$ in $[0, 1]^d$, and compute $\mathbf{x}^n_0 = \Gamma_0(\mathbf{u}^n_0)$. (e.g. $\Gamma_0 = F_{m_0}^{-1}$)

(b) Compute $W^n_0 = G_0(\mathbf{x}^n_0) / \sum_{m=1}^N G_0(\mathbf{x}^m_0)$.

Recursively, for time $t = 1 : T$,

(a) Generate a QMC point set $\mathbf{u}^{1:N}_t$ in $[0, 1]^{d+1}$; let $\mathbf{u}^n_t = (u^n_t, v^n_t)$.

(b) Hilbert sort: find permutation σ such that $h \circ \psi(\mathbf{x}^{\sigma(1)}_{t-1}) \leq \ldots \leq h \circ \psi(\mathbf{x}^{\sigma(N)}_{t-1})$.

(c) Generate $a^{1:N}_{t-1}$ using inverse CDF Algorithm, with inputs $\text{sort}(\mathbf{u}^{1:N}_t)$ and $W^{\sigma(1:N)}_{t-1}$, and compute $\mathbf{x}^n_t = \Gamma_t(\mathbf{x}^{\sigma(a^n_{t-1})}_{t-1}, v^{\sigma(n)}_t)$. (e.g. $\Gamma_t = F_{m_t}^{-1}$)

(e) Compute

$$W^n_t = G_t(\mathbf{x}^{\sigma(a^n_{t-1})}_{t-1}, \mathbf{x}^n_t) / \sum_{m=1}^N G_t(\mathbf{x}^{\sigma(a^m_{t-1})}_{t-1}, \mathbf{x}^m_t).$$
• Because two sort operations are performed, the complexity of SQMC is $O(N \log N)$. (Compare with $O(N)$ for SMC.)
Some remarks

- Because two sort operations are performed, the complexity of SQMC is $O(N \log N)$. (Compare with $O(N)$ for SMC.)
- The main requirement to implement SQMC is that one may simulate from Markov kernel $m_t(x_{t-1}, dx_t)$ by computing $x_t = \Gamma_t(x_{t-1}, u_t)$, where $u_t \sim \mathcal{U}[0, 1]^d$, for some deterministic function Γ_t (e.g. multivariate inverse CDF).
Some remarks

- Because two sort operations are performed, the complexity of SQMC is $O(N \log N)$. (Compare with $O(N)$ for SMC.)
- The main requirement to implement SQMC is that one may simulate from Markov kernel $m_t(x_{t-1}, dx_t)$ by computing $x_t = \Gamma_t(x_{t-1}, u_t)$, where $u_t \sim U[0, 1]^d$, for some deterministic function Γ_t (e.g. multivariate inverse CDF).
- The dimension of the point sets $u_{t}^{1:N}$ is $1 + d$: first component is for selecting the parent particle, the d remaining components is for sampling x^n_t given x^n_{t-1}.
Extensions

• If we use RQMC (randomised QMC) point sets $u_{1:t}$, then SQMC generates an unbiased estimate of the marginal likelihood Z_t.
• If we use RQMC (randomised QMC) point sets $u_t^{1:N}$, then SQMC generates an unbiased estimate of the marginal likelihood Z_t.

• This means we can use SQMC within the PMCMC framework. (More precisely, we can run e.g. a PMMH algorithm, where the likelihood of the data is computed via SQMC instead of SMC.)
• If we use RQMC (randomised QMC) point sets \(u_t^{1:N} \), then SQMC generates an unbiased estimate of the marginal likelihood \(Z_t \).

• This means we can use SQMC within the PMCMC framework. (More precisely, we can run e.g. a PMMH algorithm, where the likelihood of the data is computed via SQMC instead of SMC.)

• We can also adapt quite easily the different particle smoothing algorithms: forward smoothing, backward smoothing, two-filter smoothing.
• If we use RQMC (randomised QMC) point sets $u_1^{1:N}$, then
SQMC generates an unbiased estimate of the marginal likelihood Z_t.
• This means we can use SQMC within the PMCMC framework.
 (More precisely, we can run e.g. a PMMH algorithm, where the
 likelihood of the data is computed via SQMC instead of SMC.)
• We can also adapt quite easily the different particle smoothing
 algorithms: forward smoothing, backward smoothing, two-filter
 smoothing.
Main results

We were able to establish the following types of results: consistency

\[Q_t^N(\varphi) - Q_t(\varphi) \to 0, \quad \text{as } N \to +\infty \]

for certain functions \(\varphi \), and rate of convergence

\[\text{MSE} \left[Q_t^N(\varphi) \right] = o(N^{-1}) \]

(under technical conditions, and for certain types of RQMC point sets).

Theory is non-standard and borrows heavily from QMC concepts.
Some concepts used in the proofs

Let $\mathcal{X} = [0, 1]^d$. Consistency results are expressed in terms of the star norm

$$\|Q_t^N - Q_t\|_* = \sup_{[0,b] \subset [0,1)^d} \left| \left(Q_t^N - Q_t \right)(B) \right| \to 0.$$

This implies consistency for bounded functions φ,

$$Q_t^N(\varphi) - Q_t(\varphi) \to 0.$$

The Hilbert curve conserves discrepancy:

$$\|\pi^N - \pi\|_* \to 0 \implies \|\pi^N_h - \pi_h\|_* \to 0$$

where $\pi \in \mathcal{P}([0, 1]^d)$, $h : [0, 1]^d \to [0, 1]$ is the (pseudo-)inverse of the Hilbert curve, and π_h is the image of π through π.
Examples: Kitagawa \((d = 1) \)

Well known toy example (Kitagawa, 1998):

\[
\begin{align*}
 y_t &= \frac{x_t^2}{a} + \epsilon_t \\
 x_t &= b_1 x_{t-1} + b_2 \frac{x_{t-1}}{1+x_{t-1}^2} + b_3 \cos(b_4 t) + \sigma \nu_t
\end{align*}
\]

No parameter estimation (parameters are set to their true value). We compare SQMC with SMC (based on systematic resampling) both in terms of \(N \), and in terms of CPU time.
Log-likelihood evaluation (based on $T = 100$ data point and 500 independent SMC and SQMC runs).
Examples: Kitagawa ($d = 1$)

Filtering: computing $\mathbb{E}(x_t | y_{0:t})$ at each iteration t. Gain factor is $\text{MSE(SMC)} / \text{MSE(SQMC)}$.
Model is

\[
\begin{align*}
y_t &= S_t^{\frac{1}{2}} \epsilon_t \\
x_t &= \mu + \Phi(x_{t-1} - \mu) + \Psi^{\frac{1}{2}} \nu_t
\end{align*}
\]

with possibly correlated noise terms: \((\epsilon_t, \nu_t) \sim N_{2d}(0, C)\).

We shall focus on \(d = 2\) and \(d = 4\).
Examples: Multivariate Stochastic Volatility ($d = 2$)

Log-likelihood evaluation (based on $T = 400$ data points and 200 independent SMC and SQMC runs).
Examples: Multivariate Stochastic Volatility \((d = 2)\)

Filtering.
Examples: Multivariate Stochastic Volatility \((d = 4)\)

Log-likelihood estimation.
• Only requirement to replace SMC with SQMC is that the simulation of $x^n_t | x^n_{t-1}$ may be written as a $x^n_t = \Gamma_t(x^n_{t-1}, u^n_t)$ where $u^n_t \sim U[0, 1]^d$.

• We observe very impressive gains in performance (even for small N or $d = 6$).

• Supporting theory.
Further work

- Adaptive resampling (triggers resampling steps when weight degeneracy is too high).
- Adapt SQMC to situations where sampling from $m_t(x^n_{t-1}, dx_t)$ involves some accept/reject mechanism (e.g. Metropolis). In this way, we could develop SQMC counterparts of SMC samplers (Del Moral et al, 2006).
- SQMC2 (QMC version of SMC2, C. et al, 2013)?
Further work

• Adaptive resampling (triggers resampling steps when weight degeneracy is too high).

• Adapt SQMC to situations where sampling from \(m_t(x_{t-1}^n, dx_t) \) involves some accept/reject mechanism (e.g. Metropolis). In this way, we could develop SQMC counterparts of SMC samplers (Del Moral et al, 2006).

• SQMC\(^2\) (QMC version of SMC\(^2\), C. et al, 2013)?

Paper is on Arxiv.