Direct dioxygen evolution in collisions of carbon dioxide with surfaces

Yunxi Yao1,2, Philip Shushkov1,2, Thomas F. Miller III1 & Konstantinos P. Giapis1

The intramolecular conversion of CO\textsubscript{2} to molecular oxygen is an exotic reaction, rarely observed even with extreme optical or electronic excitation means. Here we show that this reaction occurs readily when CO\textsubscript{2} ions scatter from solid surfaces in a two-step sequential collision process at hyperthermal incidence energies. The produced O\textsubscript{2} is preferentially ionized by charge transfer from the surface over the predominant atomic oxygen product, leading to direct detection of both O\textsubscript{2}+ and O\textsubscript{2}−. First-principles simulations of the collisional dynamics reveal that O\textsubscript{2} production proceeds via strongly-bent CO\textsubscript{2} configurations, without visiting other intermediates. Bent CO\textsubscript{2} provides dynamic access to the symmetric dissociation of CO\textsubscript{2} to C+O\textsubscript{2} with a calculated yield of 1 to 2\% depending on molecular orientation. This unexpected collision-induced transformation of individual CO\textsubscript{2} molecules provides an accessible pathway for generating O\textsubscript{2} in astrophysical environments and may inspire plasma-driven electro- and photo-catalytic strategies for terrestrial CO\textsubscript{2} reduction.

1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA. 2These authors contributed equally: Yunxi Yao, Philip Shushkov. Correspondence and requests for materials should be addressed to K.P.G. (email: giapis@cheme.caltech.edu)
Although plentiful in modern Earth’s atmosphere, molecular oxygen is extremely rare in space. Only trace amounts have been found elsewhere in our solar system\(^{4-5}\) and in interstellar clouds.\(^{5,6}\) The recent discovery of abundant O\(_2\) in the coma of comet 67P/CG\(^8\) has rekindled interest in abiotic reactions, occurring in extreme environments, which release O\(_2\) from compounds, such as H\(_2\)O, CO\(_2\), CO, silicates, and metal oxides. Such reactions may offer competing explanations for the origin of O\(_2\) in comets, in the upper atmosphere of Mars, and in Earth’s prebiotic atmosphere.\(^{2-9}\) They may also present alternative ways for resource utilization related to space travel, such as generation of O\(_2\) from CO\(_2\) for making Mars habitable. Finally, new strategies for CO\(_2\) activation may be inspired by such reactions.

The dissociation of CO\(_2\) proceeds via multiple pathways depending on available energy. The partial dissociation reaction, CO\(_2\) → CO + O\(^{3}P\) or \(1D\)), has the lowest energy requirement (5.43 or 7.56 eV)\(^8\); it has been extensively studied in photochemistry and in heterogeneous catalysis under thermal activation conditions.\(^{11,12}\) Full dissociation to C + O + O involves the cleavage of both C=O bonds and requires 16.46 eV. Other pathways may be possible at intermediate energies, such as the exotic reaction: CO\(_2\) → C\(^{3}P\) + O\(^{1}Σ_\text{g}^{-}\), which entails extensive intramolecular rearrangement of the CO\(_2\) molecule. Calculations have suggested that this reaction proceeds on the ground-state potential energy surface, by first forming a cyclic CO\(_2\) intermediate [C-CO\(_2\)]\(^{3}A_{\nu}\), which then rearranges into a collinear COO\(^{1}Σ_\text{g}^{+}\) intermediate on its way to dissociation into C + O.\(^6\)

The first step in this channel involves bending of the CO\(_2\) molecule to bring the two O atoms in close proximity, which requires close to 6 eV of internal energy.\(^{15}\)

Although inaccessible by thermal activation, transitions to electronically excited and anionic states of CO\(_2\) can bend the molecule as a first step to O\(_2\) production. Indeed, pioneering experiments employing VUV photo-excitation and electron attachment have shown that dissociation of CO\(_2\) into C\(^{3}P\) + O\(^{1}Σ_\text{g}^{-}\) is possible, as evidenced by the detection of the complementary atomic C\(^{+}\) or C\(^{-}\) fragment. Further confirmation of the exotic pathway, however, remained elusive as neutral or ionized O\(_2\) products were not detected. Using ion-beam scattering methods and numerical simulation techniques, we demonstrate here a different way to drive the direct reduction of CO\(_2\) to O\(_2\) with in situ detection of ionized O\(_2\) products. The process involves a previously unknown intramolecular reaction pathway, which occurs in energetic CO\(_2\) ion–surface collisions with a surprising lack of dependence on either the nature of the surface or the surface temperature. As such, the reaction may be relevant for astrophysical environments, such as comets, moons, and planets with CO\(_2\) atmospheres.

Results

Carbon dioxide scattering experiments and kinematic analysis

We first demonstrate the formation of O\(_2\) in hyperthermal CO\(_2\)^{±}/Au collisions by plotting kinetic energy distributions of three scattered molecular ion products: CO\(_2\)^{±}, O\(_2\)^{±}, and O\(^{−}\) for various CO\(_2\)^{±} incidence energies (\(E_0\)). Very weak signal of scattered CO\(_2\)^{+} is detected for \(E_0 < 80\) eV (Fig. 1a). The CO\(_2\)^{±} exit energy varies in proportion to \(E_0\), thus implying a ballistic or impulsive rebound from the surface and thereby precluding physical sputtering as its origin. Observation of this "dynamic" CO\(_2\)^{±} signal is important, not only for proving that some CO\(_2\) survives the surface encounter but also for unraveling the collision sequence of the constituent atoms. Strong signal of scattered O\(_2\) ions is also observed (Fig. 1b, c). The O\(_2\)^{±} and O\(_{2}\)^{−} exit energies represent a large fraction of the incidence energy (57%) and increase monotonically with \(E_0\) over a larger range than scattered CO\(_2\)^{±}. The O\(^{2}\) ion signal intensity exhibits a maximum at \(E_0 \sim 100\) eV. Above that, only the O\(_{2}\)^{−} distribution develops a shoulder (i.e., exit at ~30 eV) from physical sputtering.

The detection of fast O\(_2\) ion products is surprising. Neither sputtering of surface O\(_2\) nor O–O atom abstraction reactions (Eley–Rideal) can explain their formation, because both mechanisms would produce O\(_2\) at much lower exit energies (see the section "Methods"). A remaining possibility to be explored here is dynamic formation of O\(_2\) through dissociation of CO\(_2\). Dynamic partial and full dissociation of CO\(_2\) is in fact consistent with the other detected products, including CO\(^{+}\), O\(^{−}\), O\(_{2}\)^{−}, and C\(^{+}\) (Supplementary Fig. 1). The exit energy of the CO\(_{2}\), CO\(^{+}\), and O\(_{2}\)^{−} fragments varies linearly with incidence energy, consistent with dynamic formation during the surface collision. In contrast, the O\(^{−}\) and C\(^{+}\) peaks show little dependence on \(E_0\), suggesting a different origin, i.e., sputtering.\(^{19}\) Scattered C\(_2\) products appear at \(E_0 > 80\) eV, confirming full dissociation.

The presence of dynamically exiting CO\(_2\)^{±} ions enables use of kinematic analysis to clarify the scattering mechanism. Binary collision theory (BCT) allows calculation of the kinematic factor, defined as the fraction of incident energy retained by a scattered product exiting the surface. In the simplest possible model, CO\(_2\)^{±} scatters as a whole molecule, i.e., a hard sphere with atomic mass of 44 Da. Under this assumption, BCT predicts a kinematic factor of 0.6349, which fits the data poorly (Fig. 2a) as may be expected given the quasi-linear nature of the triatomic CO\(_2\)\(^{−}\) ion.\(^{21,22}\)

The exit velocities of scattered CO\(_2\)^{±} ions are also plotted in Fig. 2a. Potential origins for such species include partial or full dissociation of CO\(_2\) and surface sputtering of adsorbed CO\(_2\) fragments. While some sputtering is indeed observed at high \(E_0\) (>140 eV), kinematic analysis of the exit energy data provides strong evidence for impulsive dissociation of the CO\(_2\) molecule.\(^{24}\) Assuming delayed fragmentation of the CO\(_2\) parent, the kinematic factors of the CO, O, and (possibly) O\(_2\) daughter products can be calculated from energy conservation to be 0.5724, 0.5008, and 0.2862, respectively. These factors are used as fixed slopes in one-parameter fittings of the respective data points (adjustable intercept). We find that the calculated slopes fit the O\(_2\)^{±}, CO\(_{2}\)^{−}, and O\(^{−}\) ion exit data very well (Fig. 2a lines), indicating that the latter ions are all dissociation products of CO\(_2\). On the contrary, the O\(^{−}\) and C\(_{2}\) data are not linear with respect to \(E_0\), suggesting formation by other processes.

Velocity analysis for the observed scattered species provides further evidence regarding the collision mechanism. Figure 2b compares the ion distributions of various peaks for \(E_0 = 56.4\) eV. The exit velocities of scattered CO\(_{2}\)^{±}, O\(_{2}\)^{±}, O\(^{−}\), and the slower part of the O\(^{−}\) distributions overlap, suggesting a common origin. However, the O\(^{−}\) distribution is noticeably broader, extending to higher exit velocities, which suggests alternative formation channels. The O\(_2\) ion products exit with velocities lower than CO\(_2\)^{±} owing to inelasticity from breaking of chemical bonds and non-resonant surface ionization.

Although the kinematic analysis indicates conclusively that some CO\(_2\) scatters intact after a two-step sequential collision of the O and CO moieties, it leaves various aspects of the O\(_2\) formation mechanism unresolved. In particular, since the experiment is limited to observing ions, we are unable to assess how much neutral O\(_2\) is produced. Moreover, the kinematic
Fig. 1 Dynamic production of O$_2^+$ in CO$_2^+$ collisions on Au. Scattered product kinetic energy distributions of a CO$_2^+$, b O$_2^+$, and c O$_2^-$ ion exits from CO$_2^+/Au$ for various CO$_2^+$ beam energies (E_0) as annotated on each panel. Signal intensities in b and c cannot be compared to each other due to differences in detector bias.

Fig. 2 Kinematics and velocity analysis of CO$_2^+$ scattering on Au. a Experimental exit energies of CO$_2^+$, O$_2^+$, O$_2^-$, CO$_2^+$, CO$_2^-$, and O$^-$ ions from CO$_2$/Au collisions as a function of CO$_2^+$ incidence energy. All points represent the peak of the respective energy distribution obtained from Gaussian fitting of the experimental data. All solid lines represent one-parameter linear fittings with BCT-derived slopes. No fittings are shown for O$_2^+$ and CO$_2^+$ data because of overlap with their negative ion counterparts. b Experimental velocity distributions of select scattered product ions for E_0 = 56.4 ± 2.5 eV. c Calculated exit energies of CO$_2^+$, O$_2^+$, O$_2^-$, CO$_2^+$, CO$_2^-$, and O$^-$ ions from MD simulations of CO$_2$/Au collisions as a function of CO$_2^+$ incidence energy; slopes and intercepts listed in the inset are two-parameter best-fittings. The error bars represent one standard deviation across 10 samples of 2000 trajectories each from the ensemble of molecular dynamics trajectories. d Calculated velocity distributions from MD simulations for select scattered ion products at E_0 = 56.4 eV. Vertical dashed lines in (b) and (d) indicate alignment with respect to the CO$_2^+$ (dashed black line) and O$_2^-$ (dashed blue line) peaks.
analysis cannot shed light on whether O₂ is formed via an electronically adiabatic or non-adiabatic mechanism, nor can it disentangle the collision-induced pathways that underlie the exit velocity distributions of the ionic fragments. To address these questions, we next turn to first-principles molecular dynamics (MD) simulations.

MD simulations of carbon dioxide collisions with gold. MD trajectories for the scattering of CO₂ on Au(111) are performed in the experimental scattering geometry, with CO₂ evolving on the ground singlet potential energy surface under the assumption that incoming CO₂ ions are neutralized before the hard collision. Facile neutralization occurs via resonant electron tunneling from the metal surface to the molecular cation because the molecular level of CO₂ (−13.8 eV) lies well within the occupied band of Au (−5.3 to −15.3 eV). Electron transfer from and to the surface is explicitly included in the simulations to also account for ionization of neutral collision products. The calculated exit energies of the products are plotted in Fig. 2c along with linear two-parameter fits. The slopes obtained from this fitting procedure compare very well to those determined from BCT (Fig. 2a). For example, the exiting CO₂⁺ has a calculated slope of 0.713 vs. the experimental value of 0.787. Negligible CO₂ is found to survive for E₀ > 80 eV, consistent with the lack of experimental signal at these energies. All other calculated slopes agree well with the experimental values; for instance, compare the slope of 0.54 ± 0.02 vs. the experimental value of 0.57 for the O₂⁻ line. These results indicate broad agreement between the simulations and the scattering kinematics.

The formation of ions detected in the experiment requires surface ionization, which influences the yields of the ionic products. The MD simulations demonstrate a substantial enrichment of O₂⁻ ions over O⁻, resulting from the exponential dependence of the ionization probability on the coupling to the metal surface (Supplementary Fig. 2, red curve), which can reach ~30%, comparable to the experimentally derived yield of 33% (Supplementary Fig. 2, blue curve).

The agreement between experiment and simulations is further demonstrated by comparing the ion exit velocity distributions at E₀ = 56.4 eV (Fig. 2d). Although the experimental peak positions appear systematically at somewhat larger velocities than the calculated ones, the distributions agree very well with respect to relative position of the peaks. In particular, both simulations and experiment find the CO⁺ and O⁻ velocity distributions to be broadened, both find the O₂⁺ and O₂⁻ distributions to be similar with the cation exiting slower than the anion, and both find CO₂⁻ to exit with higher velocity than the ionized O₂ products. The agreement suggests that the simulations provide a strong foundation for analyzing the reaction mechanism of the direct CO₂ conversion to O₂.

An ensemble of 20,000 CO₂-on-Au collision trajectories were performed for each incidence energy, resulting in a variety of dissociation products, including O₂ (Fig. 3a). Prior to the mechanistic ensemble analysis, it is instructive to review one representative trajectory that leads to collisional O₂ formation (Fig. 3b). Select configurations are shown as insets, along with the CO₂–Au interaction energy, E_{CO₂–Au} and the CO₂ internal energy, E_{CO₂}, as a function of time. The incoming CO₂ molecule is vibrationally excited (inset I). As the center-of-mass distance to the surface, Z_{CO₂}, decreases, the molecule penetrates the repulsive potential wall of the surface and E_{CO₂–Au} increases steeply. During this encounter, one of the O atoms of CO₂ strikes a surface Au atom, giving rise to the first peak in the E_{CO₂–Au} curve (inset II). This collision occurs before Z_{CO₂} reaches a minimum at the apsis point. As the O atom rebounds, the CO moiety collides with a different Au atom, causing a second peak in the E_{CO₂–Au} curve (inset III), which occurs after the apsis. As a result of the impulsive energy transfer during the collision, the rebounding CO₂ undergoes substantial intramolecular rearrangement portrayed by the bond distance evolution in Fig. 3b. The O–O distance, r_{O₂}, decreases while the C–O distances, r_{CO}, simultaneously increase, reaching a point along the trajectory where CO₂ acquires a triangular configuration with nearly equal bond lengths (vertical dashed line). This strongly bent CO₂ intermediate (inset IV) has a significant amount of internal energy, E_{CO₂}, and promptly dissociates to give a free C atom and a vibrationally hot O₂ molecule (inset V). The complete CO₂ collision trajectory discussed in Fig. 3b can be viewed in the Supplementary Video. The formation of O₂ depicted by this representative trajectory proceeds by delayed fragmentation following the two-step
sequential collision of CO₂ with the surface. This mechanism is consistent with the assumptions of the kinematic model used earlier to explain the experimental data in Fig. 2a, b.

The calculated reaction yields of the various collision-induced dissociation channels of CO₂ at E₀ = 56.4 eV are shown in Fig. 3a. As expected for this low incidence energy, the partial dissociation channel dominates the reaction yield with 73% of all MD trajectories taking that pathway. The complete dissociation channel is second at 16%. A small fraction of the incoming CO₂ (6%) survives the collision in correspondence with experimental detection. Approximately 5% of all trajectories lead to the strongly bent intermediate state—the precursor to O₂ formation—which is characterized by C–O and O–O bond orders exceeding 0.7. This intermediate state fragments primarily via partial dissociation (51%) followed again by complete dissociation exceeding 0.7. This intermediate state fragments primarily via partial dissociation (51%) followed again by complete dissociation exceeding 0.7. This intermediate state fragments primarily via partial dissociation (51%) followed again by complete dissociation exceeding 0.7. This intermediate state fragments primarily via partial dissociation (51%) followed again by complete dissociation exceeding 0.7.

As expected for this low incidence energy, the partial dissociation channel is second at 16%. A small fraction of the incoming CO₂ (6%) survives the collision in correspondence with experimental detection. Approximately 5% of all trajectories lead to the strongly bent intermediate state—the precursor to O₂ formation—which is characterized by C–O and O–O bond orders exceeding 0.7. This intermediate state fragments primarily via partial dissociation (51%) followed again by complete dissociation exceeding 0.7. This intermediate state fragments primarily via partial dissociation (51%) followed again by complete dissociation exceeding 0.7. This intermediate state fragments primarily via partial dissociation (51%) followed again by complete dissociation exceeding 0.7. This intermediate state fragments primarily via partial dissociation (51%) followed again by complete dissociation exceeding 0.7.

The convergent analysis and agreement among experiment, kinematics, and first-principles MD simulations presented in this work support a collision-induced mechanism for direct intramolecular conversion of CO₂ to O₂. Specifically, with the dynamics evolving on the ground electronic state of neutral CO₂, we find that O₂ is formed via delayed fragmentation, where the delay results from atomic rearrangement of the colliding CO₂ molecules into a strongly bent geometry. This geometry provides access to the O₂ dissociation product, without visiting other intermediates. Alternative mechanisms were also theoretically investigated, including the possibility of a collision-induced, nonadiabatic transition of the neutral CO₂ molecules to electronically excited states (Supplementary Fig. 4), as well as collisional dissociation on the anionic CO₂⁻ surface following double electron transfer from the Au surface. Although these more complicated processes offer intriguing and potentially exploitable alternative avenues to O₂ formation, they were not necessary for explaining the experimental observables and were calculated to be less likely under the current experimental conditions.

The mechanism reported here is distinct from previously proposed mechanisms for CO₂ → C + O₂ conversion. Specifically, the mechanism differs from that of photochemical interconversion not only in terms of activation (collisional vs. photochemical) but also because the collisional mechanism occurs via a delayed fragmentation of a single CO₂ intermediate, i.e., without visiting the linear COO state. The collisional mechanism also differs fundamentally from that taking place in electron-attachment experiments, where the CO₂ bends spontaneously on the anionic potential energy surface. Instead, the bent CO₂ state is accessed on the neutral surface via collisional energy transfer. Furthermore, while the collisional interconversion of CO₂ to O₂ has comparable efficiency to activation via high-energy photons and higher efficiency than via electron attachment, it is a much simpler process. Importantly, our mechanism is independent of surface temperature and generic to
surface composition (tested on Au, Pt, SiO₂, In₂O₃, SnO₂) as long as: (i) the surface contains atoms heavier than the constituents of CO₂ and (ii) surface charging is mitigated when CO₂ ions are used. Finally, we note that an analogous dissociation reaction: OCS → C + SO, previously reported²⁷ for OCS⁻ collisions on Ag (111), was speculated to occur via a sharply bent excited state, such as the OCS(3A), activated either by neutralization prior to impact or by the energetic collision with the surface. However, the basic mechanistic features of the latter process—including whether it involves unimolecular collisions or Eley–Rideal reactions with surface-absorbed O or S atoms—were not addressed.

The intramolecular CO₂ reaction may be relevant in astrochemical environments with abundant CO₂ and prevalent solar wind. Solar ultraviolet light photo-ionsize CO₂ molecules readily, producing ions which are then picked up by the solar wind and accelerated to hyperthermal energies²⁸²⁹. Collisions of these fast ions with the surfaces of dust particles or other astrophysical bodies can activate the dissociation. Such interactions may affect dynamically the composition of cometary coma, contributing to the abundance of the super-volatiles O₂ and CO. Production of O₂ from CO₂ was explicitly disregarded in the coma of comet 67P/C-G as a low abundance of CO₂ and poor correlation between O₂ and CO₂ fluxes⁶. However, the situation may warrant reexamination in the post-perihelion phase, when CO₂ can reach abundances as high as 32% relative to H₂O, a 10-fold increase versus pre-perihelion⁹⁰. The precise level of contribution to the O₂ abundance in the coma cannot be determined without CO₂ ion energy and flux data. Nevertheless, the number is likely small for collisional encounters on dust and cometary surfaces. Even at low yield, however, contribution to the measured O₂ abundance may be disproportionate if the CO₂ reaction occurs close to the point of measurement. For example, we have verified experimentally that the reaction takes place on indium–tin oxide (ITO), a man-made material found on Rosetta’s thermal insulation and solar panels. Thus, CO₂ collisions on the spacecraft’s exposed surfaces can change the composition of the surrounding gaseous halo with unknown repercussions for mass spectrometric measurements³¹.

Similar collisional processes may have occurred in early Earth when projectiles, such as meteorites, traversed through its CO₂-dominated atmosphere; likewise, orbiting satellites/spacecraft or high-speed space debris³² will encounter neutral or photoionized CO₂ in Mars’ upper ionosphere. In these situations, the target surface is moving against a stagnant CO₂ atmosphere with correspondingly high velocities, driving the partial transformation of CO₂ into O₂. Indeed, O₂ abundances in the 1000’s of parts per million measured at Mars³³ may contain significant contributions from such processes.

Finally, although the yield of O₂ is relatively small in the current study, a combination of collisional activation with photoexcitation, electron attachment, and Eley–Rideal reactions in a plasma reactor may result in a process that could be promising for CO₂ reduction strategies, as well as plasma-driven continuous O₂ production in CO₂ atmospheres.

Methods

Experimental. All experiments were carried out in a custom-made low-energy ion scattering apparatus³⁴. The CO₂⁺ ion beam was extracted from an inductively coupled plasma, struck in a reactor held at 2 mTorr using a CO₂/Ar/Ne gas mixture supplied with 500 W RF power at 13.56 MHz. Ions were delivered to a grounded surface at 45° incidence angle; typical beam currents of 5–15 μA were spread over a ~3 mm spot. Beam energy was varied between 40 and 200 eV by externally adjusting the plasma potential. The beam energy distribution had a Gaussian shape—indeed, there is some evidence of sputtering in the O₂⁺ energy distributions for E_b > 100 eV, forming a low-energy shoulder to the main peak (Fig. 1b) and (b) the sputtering peak position varies little with E_f—indeed, the main O₂⁺ peak separates from the low-energy shoulder entirely for E_f > 180 eV (Fig. 1b). Moreover, there is no evidence of sputtering in the O₂⁻ energy distributions (Fig. 1c). Similarly, formation of O₂⁺ by Eley–Rideal reactions likely does not occur, owing to low sticking probability for O on Au. In addition, abstraction reactions slow down the exiting product molecule and would result in O₂⁺ exit energies much lower than those measured⁷⁷. Isotopic scattering experiments with C¹³O₂⁺ on 3H₂O-covered Pt surfaces have confirmed that an Eley–Rideal reaction is possible and that it yields slower O¹³O⁻ than the simultaneously observed O¹³O²⁻ products (Supplementary Figs. 5 and 6). The energy peaks from CO₂⁺ sputtering on Au show no such contribution at lower energies—the peaks are much narrower. Therefore, neither O₂⁺ sputtering nor O⁻ atom ablation by CO₂ on Au surfaces occurs to a degree that would affect the conclusions of our study.

Data availability

All relevant raw data, experimental and computational, are available from the authors upon request.

Code availability

The computational code is available from the authors upon request.

Received: 9 December 2018 Accepted: 29 April 2019
Published online: 24 May 2019

References

1. Hall, D. T., Strobel, D. F., Feldman, P. D., Mcgrath, M. A. & Weaver, H. A. Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 373, 677 (1995).
2. Johnson, R. E. et al. Production, ionization and redistribution of O₂ in Saturn’s ring atmosphere. Icarus 180, 393–402 (2006).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10342-6 | www.nature.com/naturecommunications
3. Barker, E. S. Detection of molecular oxygen in the martian atmosphere. Nature 238, 447–448 (1972).

4. Goldsmith, P. et al. Herschel measurements of molecular oxygen in Orion. Astrophys. J. 737, 96 (2011).

5. Larsson, B. et al. Molecular oxygen in the p Ophiuchi cloud. Nature 526, 678–681 (2015).

6. Bieler, A. et al. Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko. Nature 526, 678–681 (2015).

7. Falkowski, P. G. & Isozaki, Y. The story of O2. Science 322, 540 (2008).

8. Kasting, J. F., Liu, S. C. & Donahue, T. M. Oxygen levels in the prebiological atmosphere. J. Geophys. Res. 84, 3097–3107 (1979).

9. Segura, A., Measows, V. S., Kasting, J. F., Crisp, D. & Cohen, M. Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres. Astron. Astrophys. 472, 665–679 (2007).

10. Hwang, D.-Y. & Mebel, A. M. Ab initio study of spin-forbidden unimolecular decomposition of carbon dioxide. Chem. Phys. 256, 169–176 (2000).

11. Rosen, B. A. et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

12. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

13. Xantheas, S. S. & Ruedenberg, K. Potential energy surfaces of carbon dioxide. Int. J. Quantum Chem. 49, 409–427 (1994).

14. Lu, Z., Zhang, Y. C., Yin, Q. Z., Ng, C. Y. & Jackson, W. M. Evidence for direct molecular oxygen production in CO2 photodissociation. Science 346, 61–64 (2014).

15. Suits, A. G. & Parker, D. H. Hot molecules–off the beaten path. Annu. Rev. Phys. Chem. 52, 537–580 (2001).

16. Larimian, S. et al. Molecular oxygen observed by direct photoproduction from molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko. Nature 526, 678–681 (2015).

17. Spence, D. & Schulz, G. J. Cross sections for production of O2 and O3 in high-CO2 terrestrial atmospheres. J. Atmos. Chem. 8, 241–260 (1989).

18. Spence, D. & Schulz, G. J. Dissociative recombination of excited 2O2 in molecular oxygen. Rev. Sci. Instrum. 57, 2427–2437 (1986).

19. Cyriac, J., Pradeep, T., Kang, H., Souda, R. & Cooks, R. G. Low energy ionic reagent concentration. Chem. Phys. Lett. 259, 379–383 (1996).

20. Yao, Y. & Giapis, K. P. Kinematics of Eley–Rideal reactions at hyperthermal energies. Phys. Rev. Lett. 116, 253022 (2016).

21. Walsh, A. D. The electronic orbitals, shapes, and spectra of polyatomic molecules. Part II. Non-hydrate A2B and BAC molecules. J. Chem. Soc., Faraday Trans. 4, 2266–2288 (1953).

22. Grimm, F. A. & Larsson, M. A theoretical investigation of the low-lying electronic states of CO2+ in both linear and bent configurations. Phys. Scr. 29, 337–343 (1984).

23. Yao, Y. & Giapis, K. P. Direct hydrogenation of dinitrogen and dioxygen via Eley–Rideal reactions. Angew. Chem. Int. Ed. 55, 11595–11599 (2016).

24. Jacobs, D. C. Reactive collision of hyperthermal energy ions with material in this article are included in the article

25. Lorente, N., Teilette-Billy, D. & Gauyacq, J.-P. Charge transfer as responsible for H+ dissociation on aluminium surfaces. Surf. Sci. 402–404, 197–201 (1998).

26. Lorente, N., Teilette-Billy, D. & Gauyacq, J.-P. Theoretical studies of charge transfer in molecular ion–metal surface collisions. Nucl. Instrum. Methods Phys. Res. B 157, 1–10 (1999).

27. Morris, J. R., Kim, G., Barstis, T. L. O., Mitra, R. & Jacobs, D. C. Dynamics of dissociative scattering: hyperthermal energy collisions of state-selected OCS+ on Ag(111). J. Chem. Phys. 107, 6448–6459 (1997).

28. Fuselier, S. A. et al. Rosina/DFMS and IES observations of 67P: ion-neutral chemistry in the coma of a weakly outgassing comet. Astron. Astrophys. 583, A2 (2015).

29. Coates, A. J. Pickup particle acceleration at comets, moons and magnetospheres. J. Phys.: Conf. Ser. 900, 012002 (2017).

30. Roccafora-Morvan et al. Evolution of CO2, CH4, and OCS abundances relative to H2O in the coma of comet 67P around perihelion from Rosetta/VIRTIS-H observations. Mon. Not. R. Astron. Soc. 462, S170–S183 (2016).

31. Yao, Y. & Giapis, K. P. Reply to: “On the origin of molecular oxygen in cometary coma”. Nat. Commun. 5, 2581 (2018).

32. Tricarico, P. High-velocity cometary dust enters the atmosphere of Mars. Geophys. Res. Lett. 42, 4752–4754 (2015).

33. Hartogh et al. Herschel/HIFI observations of Mars: first detection of O2 at submillimetre wavelengths and upper limits on HCl and H2O2. Astron. Astrophys. 521, L49 (2010).

34. Gordon, M. J. & Giapis, K. P. Low-energy ion beam line scattering apparatus for surface science investigations. Rev. Sci. Instrum. 76, 083302 (2005).

Acknowledgements
This report was based on work funded by NSF (Award no. 1202567) and by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy (Award no. DE-SC0004993). P.S. is grateful for a postdoctoral fellowship funded by the Deutsche Forschungsgemeinschaft.

Author contributions
Y.Y. and K.P.G. designed the experiments. P.S. and T.F.M. designed the simulations. Y.Y. conducted experimental measurements, while P.S. performed the computations. All authors participated in analyzing the results and writing the paper.

Additional information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41467-019-10342-6.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.