HIV-associated cognitive performance and psychomotor impairment in a Thai cohort on long-term cART

Tanya C Do1*, Stephen J Kerr1, Anchalee Avihingsanan1, Saowaluk Suksaew1, Supalak Klungkang1, Taweesak Channgam2, Christoph C Odermatt1, Wirach Maek-a-nantawat3, Kiat Ruxtungtham1, Jintanat Ananworanich1,4,5, Victor Valcour6, Peter Reiss5,7 and Ferdinand W Wit8,9 on behalf of the HIV-NAT 006 and SEARCH 002 Study Teams.

Abstract

Objectives: To assess cognitive performance and psychomotor impairment in an HIV-positive cohort, well-suppressed on combination antiretroviral therapy (cART), in an Asian resource-limited setting.

Methods: Cross-sectional sociodemographic and cognitive data were collected in 329 HIV-positive and 510 HIV-negative participants. Cognitive performance was assessed using the International HIV Dementia Scale (IHDS), Montreal Cognitive Assessment (MoCA), WAIS-III Digit Symbol, Trail Making A, and Grooved Pegboard (both hands). Psychomotor test scores in the HIV-positive participants were converted to Z-scores using scores of the HIV-negative participants as normative data. Psychomotor impairment was defined as performance on two tests more than 1 standard deviation (SD) from controls or more than 2 SD on one test. Multivariate linear and logistic regression analyses were used to investigate associations between HIV and non-HIV-related covariates and poorer cognitive performance and psychomotor impairment.

Results: HIV-positive participants, mean age 45 (SD 7.69) years received cART for a median of 12.1 years (interquartile range [IQR] 9.1–14.4). Median CD4 cell count was 563 cells/mm³ (IQR 435–725), and 92.77% had plasma HIV RNA <40 copies/mL. The adjusted mean differences between HIV-positive versus HIV-negative cohorts indicated significantly inferior cognitive performance (tests all P < 0.001) with increasing age and lower income, independently associated. Psychomotor impairment was found (P < 0.02) in all tests except the Grooved Pegboard non-dominant hand (P = 0.48). Psychomotor impairment prevalence was 43% in the HIV-positive cohort, associated with male gender and lower income.

Conclusions: In this study, in individuals with viral suppression rates >90% on long-term cART, we found that inferior cognitive performance and psychomotor impairment were primarily associated with non-HIV-related factors.

Keywords: cognitive performance, psychomotor impairment, Asia, HIV-infection, HAND

Introduction

The introduction of combination antiretroviral therapy (cART) in the late 1990s has had a strong impact on morbidity and mortality [1], including a decreasing prevalence of the most severe forms of HIV-associated neurocognitive disorders (HAND) [2]. The reported prevalence of HAND in settings with access to treatment, but not necessarily with suppression of plasma HIV RNA, ranges from 15% to 69% [3–10].

HAND is an umbrella term that categorises cognitive disorders by severity including two forms of milder impairment: asymptomatic neurocognitive impairment (ANI), mild deficits occur in the absence of participants reporting an impact on daily functioning; and mild neurocognitive disorder where a similar degree of impairment is seen on testing, but participants endorse functional consequences. The most severe form of impairment continues to be HIV-associated dementia (HAD). The time and capacity required is often a barrier to gold standard diagnostic work-up in resource-limited settings.

Because of the global scale-up of HIV care and treatment programmes, the number of individuals receiving cART was expected to rise above 15 million in 2015 [11,12]. Successfully treated patients may presume a life expectancy approaching that of the general population [13]. However, ageing patients on cART appear disproportionally predisposed to developing chronic comorbidities associated with ageing. This is attributed to a complex milieu of ongoing inflammation, immune activation, cART-related toxicities, a higher prevalence of traditional risk behaviours such as tobacco and alcohol use, as well as psychological and socioeconomic factors [14–17]. Poor cognitive performance is a comorbidity [18,19], to which additional comorbidities (for example, depression, cardiovascular disease, and diabetes) may confound or contribute to a patients’ clinical presentation [15,20–23]. A better understanding of prevalence, severity, determinants, and prognosis is needed to inform prevention and treatment strategies for resilient ageing in this expanding and vulnerable patient population [17,24,25].

Even in its mildest form, HAND can negatively impact cART adherence, quality of life, ability to perform activities of daily living and working capacity [5,25–28]. Increasing evidence describes cognitive performance as a changeable condition suggesting fluctuations, and possible decline may occur over time [2,29]. The current hypothesis is that the central nervous system harbours an HIV reservoir that may intermittently switch from a latent to replicative state, resulting in inflammation that exacerbates neurocognitive symptoms although the patient’s plasma viraemia is suppressed [30].

Findings on poor cognitive performance from resource-rich countries may not be generalisable to resource-limited settings where the majority of patients reside. Inappropriate application of normative data captured from resource-rich settings, or use of unvalidated assessment tools in resource-limited settings may result in unreliable estimates of cognitive performance. Socio-economic,
cultural and regional diversity as well as factors related to ethnicity may influence cognitive performance, negatively impacting sensitivity and specificity of unvalidated tools [31–33].

Owing to time constraints we were unable to assess participants with the full battery of testing necessary for the diagnosis of HAND according to Frascati criteria. Instead, we investigated factors associated with an inferior cognitive performance, with several tests specific to the psychomotor domain. Our cohort consists of long-term-treated HIV-positive participants located in Thailand. We employed tests from the WHO/NIMH International battery designed to minimise cultural biases and compared the testing performance of the HIV-positive participants to appropriate HIV-negative control data captured in Thailand among individuals with similar sociodemographic backgrounds [34].

Methods
Participants
The 329 HIV-positive participants enrolled consisted of individuals who presented for routine HIV-related follow-up appointments between January 2011 and December 2014. These participants were, at the time of enrolment, participating in the HIV-NAT 006 cohort (clinicaltrials.gov NCT00411983) at the Thai Red Cross AIDS Research Center (TRCARC), an urban care centre in Bangkok, Thailand. The 006 cohort comprises 1114 individuals who were previously enrolled in various clinical trial protocols. The cohort participants receive combination antiretroviral therapy (cART) and are followed for long-term health outcomes. Sociodemographic and clinical data were extracted from the electronic health records or other source documents: age, gender, income, education, smoking status, CD4 cell counts (nadir and current), current plasma HIV RNA levels, CDC classification stage at treatment initiation, and cART regimens (previous and current). Participants with documented evidence of hepatitis B virus surface antigen or hepatitis C virus antibody either at, or prior to, baseline were assumed to have that condition at the time of their cognitive evaluation as HBV DNA and HCV RNA data were unavailable.

The 510 HIV-negative participants were recruited at the TRCARC between August 2006 and June 2013 as part of the SEARCH 002 study (clinicaltrials.gov NCT00713752) [35]. HIV-negative status was confirmed through serology testing at baseline and all were evaluated by a study physician. These normative cases were recruited from the same geographical area, had a similar sociodemographic background, and had a wide age and education range allowing for the development of normative tables for this study. Although individual income data was not obtained in the HIV-negative cohort, it was believed to correspond to Thai national statistics reporting an average individual monthly income of US$311.54 in 2012 and US$370.75 in 2014 [36], and it corresponds well with the reported monthly income in our HIV-positive cohort. Educational attainment was categorised as: primary school or less, secondary, high school, vocational, bachelor degree and higher. Current smoking status, hepatitis B and hepatitis C virus serology were not collected in the HIV-negative cohort.

Inclusion criteria for both cohorts included an age of 20 to 70 years and the ability to provide written informed consent. Exclusion criteria were the presence of any factors that could compromise cognitive functioning (i.e. a history of cerebral toxoplasmosis, CMV encephalitis, head injury with loss of consciousness >30 minutes, stroke, and current illicit substance use) as judged by the clinical investigators. The presence of depression was screened for using the Thai Depression Inventory (TDI). Self-reported data on current alcohol and illicit substance use were collected. Alcohol use was defined as the consumption of alcohol on more than 5 days per week. A participant’s history of illicit substance use was defined as ever or never.

Both studies were approved by the Institutional Review Board of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

Data collection
Cognitive evaluation tests were administered by trained nurses. In the HIV-positive group, sociodemographic and clinical care data were extracted from the electronic health records or source documents.

Assessment tools were selected based on (1) screening feasibility in a time- and resource-constrained environment; (2) frequency of application in previous studies to aid comparability of our findings; and (3) results from previous studies demonstrating that cultural and educational influences on the assessment tool outcomes may be less pronounced. The following tests (and corresponding cognitive areas or domains) were evaluated:

- International HIV Dementia Scale (IHDS, global cognition);
- Montreal Cognitive Assessment (MoCA, global cognition);
- WAIS-III Digit Symbol (psychomotor speed);
- Trail Making Test A (psychomotor speed); and
- Grooved Pegboard Test (both hands, manual dexterity and fine motor functioning) [37–41].

Evaluations took approximately 1 hour per participant. Grooved Pegboard data was not collected in 63 (19%) of the HIV-positive participants owing to time constraints and other logistical barriers. MoCA data was not collected until later in the HIV-negative participants, being available only for the last 158 participants enrolled who did not differ socio-economically from the main group, and enrolment strategies remained consistent.

Statistical analysis
Statistical analyses were conducted with Stata 12 (College Station, TX, USA). Group differences between categorical characteristics were compared using chi-squared tests. An independent samples t-test was used to compare continuous variables between groups.

Cognitive performance differences were first assessed by calculating the difference in the mean of all tool scores (IHDS, MoCA, WAIS-III Digit Symbol, Trail Making Test A, and Grooved Pegboard tests) between the HIV-positive and HIV-negative cohorts using univariate and multivariate linear regression models adjusting for the predefined confounders of age, education, and gender.

Linear regression univariate models were then used to identify sociodemographic and HIV-related covariates potentially associated with inferior cognitive performance. Covariates included age, sex, income, education, hepatitis C status, CD4 nadir, current CD4 cell count, viral load and efavirenz use. Covariates with a P-value <0.2 were included in adjusted multivariate models. Separate models were constructed for each test.

A separate analysis was performed to determine the presence of significant impairment of the psychomotor domain as a sufficient number of tests results were available. Significant impairment of the psychomotor domain was defined as having test scores at least 1 standard deviation (SD) on two tests or a single test score of at least 2 SD below the mean score from the control group. Raw psychomotor test scores of the WAIS-III Digit Symbol, Trail Making Test A, and Grooved Pegboard tests were used to calculate Z-scores in the HIV-positive participants, employing the test scores in the
appropriate age and education strata from HIV-negative controls as the normative data. The MoCA and IHDS do not focus strictly on the psychomotor domain and were not designed as diagnostic but rather screening tests, and were, therefore, not included in the analysis of significant psychomotor impairment. Logistic regression models were used to determine contributions of HIV-related and unrelated covariates. When modelling continuous covariates, the linearity of the variable against the logit function was assessed and in the case of non-linearity, the covariate was grouped into quartiles. Adjacent categories were collapsed together if the odds ratio (OR) and 95% confidence intervals (95% CI) were similar. All covariates with a \( P \)-value < 0.2 in the univariate model and previously identified co-infections and HIV-related factors were selected for inclusion in the multivariate adjusted model. Covariates with \( P \)-values < 0.05 in the multivariate models for all tests were considered to be statistically significant independent associations.

**Results**

The mean age was 45 years in both cohorts, the SD was wider in the HIV-negative than the HIV positive cohort (7.7 vs 15.8) (Table 1). The HIV-positive cohort contained more men than the HIV-negative group (57.1% vs 44.3%, \( P < 0.001 \)). No significant differences between cohorts with regard to education, depression screening outcomes, current alcohol use or history of substance use were observed.

The median (IQR) duration HIV-positive participants were receiving cART was 12.1 (9.1–14.4) years. At the time of assessment 28% of cART regimens included efavirenz. The median CD4 nadir cell count and current CD4 cell count were 175 (69–241) and 563 (435–725) cells/mm\(^3\), respectively. The majority of patients (93%) had undetectable plasma HIV RNA (<40 copies/mL) (Table 1). US$ personal monthly income categorisation and corresponding percentages were as follows: <US$138.60 (<฿5000, 21.38%), 5000–<15,000 (47.7%), 15,000–<20,000 (13.8%), and ≥20,000 (17.1%).

**Cognitive performance and psychomotor impairment comparisons by HIV status**

The HIV-positive cohort’s overall cognitive performance including the psychomotor subset tests were significantly inferior to the HIV-negative reference group across all but one (Grooved Pegboard Test non-dominant) tool in the multivariate linear models after adjusting for age, education and gender (Table 2). In the sensitivity analyses, which

| Table 1. Sociodemographic characteristics of study participants | HIV-positive (Total = 329) | HIV-negative (Total = 510) | \( P \)-value |
|-------------------|-------------------------|--------------------------|-------------|
| Characteristic    | \( n \)                  | \( n \)                   |             |
| Mean age (years ± SD) | 45.69 ± 7.69            | 45.29 ± 15.79            | 0.67        |
| Male gender       | 188(57.14%)              | 226(44.31%)              | <0.001      |
| Educational level |                         |                          |             |
| Primary or less   | 76(25%)                  | 121(23.73%)              | 0.55        |
| Secondary         | 50(16.45%)               | 96(18.82%)               |             |
| High school       | 37(12.17%)               | 79(15.49%)               |             |
| Vocational        | 58(19.08%)               | 88(17.25%)               |             |
| Bachelor degree and higher | 83(27.3%) | 126(24.71%) |             |
| Missing data      | 25                       |                          |             |
| Mild-to-moderate depression | 23(7.03%) | 26(5.12%) | 0.25        |
| Alcohol use ≥5 times/week | 9(2.96%) | 9(1.76%) | 0.26        |
| History of drug use | 4(4/200, 2%) | 12(2.35%) | 0.78        |
| Monthly income (Thai baht) | | | |
| <5000             | 65(21.38%)               |                          |             |
| 5000–<15,000      | 145(47.7%)               |                          |             |
| 15,000–<20,000    | 42(13.82%)               |                          |             |
| ≥20,000           | 52(17.11%)               |                          |             |
| Missing data      | 25                       |                          |             |
| CDC stage         |                         |                          |             |
| A                 | 140(45.9%)               |                          |             |
| B                 | 115(37.7%)               |                          |             |
| C                 | 50(16.39%)               |                          |             |
| Missing data      | 29                       |                          |             |
| CD4 nadir (cells/mm\(^3\)) | | | |
| Median (IQR)      | 175 (69–241)             |                          |             |
| ≤100              | 96(30.67%)               |                          |             |
| 101–200           | 92(29.39%)               |                          |             |
| ≥201              | 125(39.94%)              |                          |             |
| Missing data      | 16                       |                          |             |
| Plasma HIV RNA (copies/mL) | | | |
| ≤40               | 295(92.77%)              |                          |             |
| 41–400            | 14(4.40%)                |                          |             |
| >400              | 9(2.83%)                 |                          |             |
| Missing data      | 11                       |                          |             |
| CD4 cell count (cells/mm\(^3\)) | | | |
| Median (IQR)      | 563 (435–725)            |                          |             |
| ≥500              | 124(37.69%)              |                          |             |
| EFV-containing regimen | 93 (28.26%) | | |
| Smoking           |                         |                          |             |
| Current smoker    | 58 (19.02%)              |                          |             |
| Missing data      | 25                       |                          |             |
| Chronic hepatitis B |                         |                          |             |
| HBSAg positive   | 40(12.31%)               |                          |             |
| Missing data      | 4                        |                          |             |
| Chronic hepatitis C |                   |                          |             |
| Anti-HCV positive | 43(14.1%)                |                          |             |
| Missing data      | 25                       |                          |             |
 included only cases with suppressed plasma HIV RNA, the magnitude and direction of almost all findings were the same and remained statistically significant, except for the Grooved Pegboard dominant hand, the effect of which maintained direction but with decreased magnitude and lost statistical significance.

**HIV-related factors associated with cognitive performance**

Multivariate linear regression models explored the contribution of covariates related to cognitive testing performance (Table 3). Older age was significantly related to worse cognitive performance across all tests (P<0.05). Lower income was also associated with worse performance across all tests (P<0.05), with the exception of the Grooved Pegboard tests (both hands). The only HIV-related covariate that was associated with worse cognitive performance was current efavirenz use in the Grooved Pegboard non-dominant hand (P=0.02). However, despite the lack of association of HIV-related characteristics (i.e. nadir CD4 cell count), HIV-positive status was independently associated with inferior performance in all but one of the cognitive tests after adjusting for age, education and gender (Table 3).

**HIV-related factors associated with psychomotor impairment**

Utilising the Z-scores of the tests of the psychomotor domain, 140/329 (43%) HIV-positive participants met the criteria for impairment. Impairment was driven predominantly by low scores in WAIS-III Digit Symbol (70% of patients scored more than 1 SD below the mean of the HIV-negative control group), Trail Making Test A (69%) and to a lesser degree by the Grooved Pegboard tests (both hands). In a sensitivity analysis among participants with undetectable plasma HIV RNA, 41% met criteria for psychomotor impairment. Covariates associated with psychomotor impairment in HIV-positive patients in the univariate and multivariate logistic regression models are shown in Table 4: male gender and lower incomes were independent risk factors.

**Discussion**

Our key findings are first that cognitive performance and psychomotor impairment in an HIV-positive cohort treated with cART for an extended duration with viral suppression rates >90% in a resource-limited setting, were inferior to that of the HIV-negative control cohort from a similar socio-economic background and second that HIV-related covariates did not predict cognitive performance and psychomotor impairment. Our study is strengthened by sensitivity analyses showing, that limiting the group to those with viral suppression, our findings remain statistically significant. Moreover, 43% of HIV-positive participants met the criteria for significant impairment criteria in the psychomotor domain. Correlates of inferior cognitive performance and of significant psychomotor impairment included older age, male gender and lower income highlighting vulnerable groups.

Other studies have assessed cognitive performance in cohorts receiving cART and observed associations highlighting vulnerable sub-populations as opposed to HIV-related covariates. For example, Robertson et al. prospectively assessed HAND across multiple resources-limited settings over 192 weeks finding variations in cognitive performance improvement by country. However as the plasma viral load detection limit in this study was 400 copies/mL while in our study it was 40 copies/mL, it is difficult to directly compare their findings with ours [33]. Winston et al. found that black ethnicity, among virally suppressed HIV-positive participants residing in the UK, was associated with worse cognitive performance [7].

The number of studies addressing cognitive performance in resource-limited countries has increased over the last decade. However, sample sizes are often small, a limited testing battery is employed and normative comparison data is often not available, thereby precluding a formal diagnosis of HAND [42,43]. The strengths of our study were the larger sample size and the inclusion of an appropriate HIV-negative reference group. We were also bolstered by the long-term follow-up of these individuals within our clinic who have assured continued access and information regarding their long-term treatment. However, our study has limitations that may affect its generalisability. Our inability to formally diagnose HAND due to the insufficient number of domains assessed allows for the possibility that our findings may have been different if a full battery of tests had been utilised. Furthermore, missing data may have also led to under representation of outcomes.

Assessing cognitive performance can be challenging. Application of a comprehensive battery of neuropsychological tests, or referral to a neuropsychologist is often unfeasible due to time constraints, competing priorities and the limited human resource capacity available to assess, as well as interpret, neuropsychological testing results [43,44]. Furthermore, not all commonly used tests have been validated across cultures or languages [38]. Consensus on a consistent screening approach has not been reached, nor is there clarity regarding the most important risk factors in the era of cART, particularly among patients with suppressed plasma HIV RNA [37,38,45]. At present, there are no validated screening tools that can be uniformly applied across populations [21]. When used in isolation, cognitive screening tools exhibit low sensitivity for detecting HAND [37–39,46,47].

This study reflects the challenges in assessing cognitive performance and psychomotor impairment in a resource-limited, time constrained HIV treatment centre. Assessment tools were selected based on expected implementation feasibility; however,
in practice, the application of the Grooved Pegboard tool was not completed in 19% of HIV-positive participants, suggesting it may not be an ideal tool in a resource-constrained setting due to the length of time needed for setting up the test, patient instruction and test completion. Although there were missing data in the electronic health records (Table 1) as no pattern or selection biases were noted, it is unlikely to have compromised outcomes.

In summary, we observed a worse cognitive performance and a high prevalence of significant psychomotor impairment in Thai HIV-infected participants on long-term cART with a high rate of plasma HIV RNA suppression compared to an appropriate HIV-negative control group. Significant determinants included older age, lower income, and male gender, but not HIV-related parameters.

### Table 3. Multivariate linear regression analysis of covariates associated with cognitive performance in HIV-positive participants

| Test                | Covariate               | Coefficient (95%CI)     | P-value | Group P-value |
|---------------------|-------------------------|-------------------------|---------|---------------|
| WAIS-III Digit Symbol | Age (per year)          | -0.59 (-0.78 to -0.40) | <0.001  |               |
|                     | Male gender             | -2.88 (-5.8 to -0.09)  | 0.06    |               |
|                     | Income (Thai bhat)      | <0.001                  |         |               |
|                     | <5000                   | (ref)                   |         |               |
|                     | 5000–14,999             | 2.81 (-1.07 to 6.69)   | 0.16    |               |
|                     | 15,000–19,999           | 11.0 (5.88–16.1)        | <0.001  |               |
|                     | ≥20,000                 | 16.3 (11.5–21.1)        | <0.001  |               |
| IHDS                | Age (per year)          | -0.03 (-0.05 to -0.01) | 0.01    |               |
|                     | Male gender             | -0.11 (-0.44–0.23)     | 0.53    |               |
|                     | Income (Thai bhat)      | <0.001                  |         |               |
|                     | <5000                   | (ref)                   | 0.012   |               |
|                     | 5000–14,999             | -0.02 (-0.47–0.42)     | 0.91    |               |
|                     | 15,000–19,999           | 0.54 (-0.04–1.11)      | 0.07    |               |
|                     | ≥20,000                 | 0.51 (-0.03–1.05)      | 0.06    |               |
|                     | Chronic HCV             | -0.42 (-0.92–0.09)     | 0.10    |               |
| MoCA                | Age (per year)          | -0.09 (-0.14 to -0.04) | <0.001  |               |
|                     | Male gender             | -0.05 (-0.85–0.76)     | 0.91    |               |
|                     | Income (Thai bhat)      | <0.001                  |         |               |
|                     | <5000                   | (ref)                   |         |               |
|                     | 5000–14,999             | 1.48 (0.41–2.55)       | 0.01    |               |
|                     | 15,000–19,999           | 3.43 (2.04–4.82)       | <0.001  |               |
|                     | ≥20,000                 | 3.41 (2.11–4.71)       | <0.001  |               |
|                     | CD4 ≥500 (cells/mm³)    | 1.20 (-1.32–3.73)      | 0.35    |               |
|                     | Viral load ≥401 (copies/mL) | 0.76 (-0.09–1.62) | 0.08    |               |
| Trail Making A      | Age (per year)          | 0.36 (0.14–0.58)       | <0.001  |               |
|                     | Male gender             | 0.44 (-2.90–3.79)      | 0.79    |               |
|                     | Income (Thai bhat)      | <0.001                  |         |               |
|                     | <5000                   | (ref)                   |         |               |
|                     | 5000–14,999             | -3.47 (-7.88–0.93)     | 0.12    |               |
|                     | 15,000–19,999           | -6.14 (-11.9 to -0.40) | 0.04    |               |
|                     | ≥20,000                 | -11.7 (-17.0 to -6.28) | <0.001  |               |
|                     | Chronic HCV             | 4.57 (-0.43–9.58)      | 0.07    |               |
| Grooved Peg          | Age (per year)          | 0.79 (0.50–1.07)       | <0.001  |               |
| dominant hand        | Male gender             | 2.64 (-1.44–6.73)      | 0.20    |               |
|                     | Income (Thai bhat)      | 0.039                   |         |               |
|                     | <5000                   | (ref)                   |         |               |
|                     | 5000–14,999             | -2.18 (-7.56–3.19)     | 0.42    |               |
|                     | 15,000–19,999           | -6.79 (-13.89–0.30)    | 0.06    |               |
|                     | ≥20,000                 | -5.72 (-12.28–0.84)    | 0.09    |               |
| non-dominant hand    | Age (per year)          | 0.88 (0.57–1.18)       | <0.001  |               |
|                     | Male gender             | -0.24 (-4.77–4.30)     | 0.92    |               |
|                     | Use of EFV              | -5.92 (-10.88–0.96)    | 0.02    |               |

HCV: hepatitis C virus; EFV: efavirenz; IHDS: International HIV Dementia Scale; MoCA: Montreal Cognitive Assessment.
References

1. Palella FJ, Jr., Delaney KM, Moorman AC et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998; 338: 853–860.

2. Heaton R, Deutsch R, Franklin D, et al.; and the CHARTER Group. Prevalence and predictors of neurocognitive decline over 18 to 42 months: A CHARTER longitudinal study. Conference on Retroviruses and Opportunistic Infections. March 2012, Seattle, WA, USA. Abstract 474.

3. Gannon P, Khan MZ, Kolson DL. Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neuro 2011; 24: 275–283.

4. Heaton RK, Franklin DR, Ellis RJ et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 2011; 17: 3–16.

5. Simons S, Cavassim M, Annoni JM et al. Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 2010; 24: 1243–1250.

6. Schouwen J, Cinque P, Cosin M et al. HIV-1 infection and cognitive impairment in the CART era: a review. AIDS 2011; 25: 561–575.

7. Winston A, Areans-Pinto A, Stohr W et al. Neurocognitive function in HIV infected patients on antiretroviral therapy. PLoS One 2013; 8: e61949.

8. Yakasai AM, Gudaji MI, Muhammad H et al. Prevalence and correlates of HIV-associated neurocognitive disorders (HAND) in Northwestern Nigeria. Neurol Res Int 2015; 2015: 486906.

9. Deng C, Wei B, Long J et al. Validity of the International HIV Dementia Scale as assessed in a socioeconomically underdeveloped region of Southern China: assessing the influence of educational attainment. Int J Infect Dis 2015; 33: 56–61.

10. Zhang Y, Qiao L, Ding W et al. An initial screening for HIV-associated neurocognitive disorders of HIV-1 infected patients in China. J Neurovirol 2012; 18: 120–126.

11. World Health Organization. Global update on the health sector response to HIV, 2014. Geneva, Switzerland 2014. Available at: apps.who.int/iris/bitstream/10665/128196/1/WHO_HIV_2014_15_eng.pdf?ua=1 (accessed December 2017).

12. UNAIDS. Fact sheet: 2014 statistics. Available at: www.unaids.org/en/resources/campaigns/HowAIDSchangedeverything/factsheet (accessed December 2017).

13. Sithinamsuwan P, Hutchings N, Ananworanich J et al. Practice effect and normative data of an HIV-specific neuropsychological testing battery among healthy Thais. J AIDS Clin Res 2014; 28: 1193–1202.

14. Wada NI, Jacobson LP, Margolick JB et al. The effect of HAART-induced HIV-1-associated neurocognitive disorders: a qualitative review and call to action. Neuropsychology 2013; 23: 81–98.

15. Robertson K, Jiang H, Kumwenda J et al. Improved neuropsychological and neurological functioning across three antiretroviral regimens in diverse resource-limited settings: AIDS Clinical Trials Group study a5199, the International Neurological Study. Clin Infect Dis 2012; 55: 868–876.

16. Heaps J, Valcour V, Chalermsri T et al. Development of normative neuropsychological performance in Thailand for the assessment of HIV-associated neurocognitive disorders. J Clin Exp Neuropsychol 2013; 35: 1–8.

17. Kimminga J, Cycka LA, Lu G et al. Validity of cognitive screens for HIV-associated neurocognitive disorder: a systematic review and an informed screen selection guide.Curr HIV/AIDS Rep 2013; 10: 342–355.

18. Valcour V, Paul R, Chiao S et al. Screening for cognitive impairment in human immunodeficiency virus. Clin Infect Dis 2011; 53: 636–642.

19. Haboub R, Erazo J, Ramireddy S et al. Screening for neurocognitive impairment in HIV individuals: the utility of the Montreal Cognitive Assessment test. J AIDS Clin Res 2012; 3: 186.

20. Chan DC, Tsou HH, Yang RS et al. A pilot randomized controlled trial to improve geriatric frailty. BMC Geriatr 2012; 12: 58.

Table 4. Univariate and multivariate logistic regression analysis of covariates associated with psychomotor impairment in HIV-positive subjects utilising Z-scores

| Covariate                  | Univariate model* | Multivariate model** |
|----------------------------|-------------------|----------------------|
|                           | Coefficient (95% CI) | P-value | Coefficient (95% CI) | P-value |
| Sex (male)                | 1.96 (1.25–3.08)   | <0.001   | 2.16 (1.31–3.55)    | <0.001  |
| Income (Thai baht)        |                   |          |                     |         |
| <5000                     | Ref               | 0.05     | Ref                 | 0.05    |
| 5000–<15,000              | 0.72 (0.40–1.30)   | 0.28     | 0.80 (0.44–1.49)    | 0.49    |
| 15,000–<20,000            | 0.43 (0.19–0.98)   | 0.045    | 0.42 (0.18–0.98)    | 0.045   |
| >20,000                   | 0.32 (0.15–0.72)   | 0.005    | 0.28 (0.12–0.65)    | 0.003   |
| HCV                       | 1.86 (0.97–3.57)   | 0.06     | 1.40 (0.66–2.95)    | 0.38    |
| Efavirenz (EFV)           | 1.23 (0.76–2.00)   | 0.4      | 1.62 (0.94–2.80)    | 0.08    |
| CD4 cell count (cells/mm³) | >350               | Ref      |                     |         |
| <350                      | 1.26 (0.65–2.44)   | 0.5      |                     |         |
| CD4 cell count (cells/mm³) | <400               | Ref      |                     |         |
| Viral load (copies/mL)    | >400               | 0.71 (0.17–2.88)   | 0.63    | 0.68    |

* Univariate models adjusting for age and education. ** Multivariate model adjusting for factors significant in univariate analysis at P<0.2 and known confounders (HCV and EFV use).

EFV: efavirenz; HCV: hepatitis C virus.
41. Sacktor NC, Wong M, Nakasuja N et al. The International HIV Dementia Scale: a new rapid screening test for HIV dementia. AIDS 2005; 19: 1367–1374.

42. Sanmarti M, Ibanez L, Huertas S et al. HIV-associated neurocognitive disorders. J Mol Psychiatry 2014; 2: 2.

43. Nightingale S, Winston A, Letendre S et al. Controversies in HIV-associated neurocognitive disorders. Lancet Neurol 2014; 13: 1139–1151.

44. Cysique LA, Bain MP, Lane TA, Brew BJ. Management issues in HIV-associated neurocognitive disorders. Neurobehav HIV Med 2012; 4: 63–73

45. Joska JA, Westgarth-Taylor J, Myer L et al. Characterization of HIV-associated neurocognitive disorders among individuals starting antiretroviral therapy in South Africa. AIDS Behav 2011; 15: 1197–1203.

46. Haddow LJ, Floyd S, Copas A, Gilson RJ. A systematic review of the screening accuracy of the HIV Dementia Scale and International HIV Dementia Scale. PLoS One 2013; 8: e61826.

47. Schouten J, Su T, van Zester RA et al. Performance of four tools to screen for HIV-associated cognitive impairment. Conference on Retroviruses and Opportunistic Infections. February 2015. Seattle, WA, USA.