Sarcopaenia complicating heart failure

Guilherme Wesley Peixoto da Fonseca¹,² and Stephan von Haehling²,³*

¹Cardiovascular Rehabilitation and Exercise Physiology Unit, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44 - Cerqueira Cesar, 05403-900 São Paulo, Brazil; ²Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), Robert-Koch-Straße 40, 37075 Göttingen, Germany; and ³German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany

KEYWORDS
Heart failure; Sarcopaenia; Mechanisms; Clinical management

Sarcopaenia is defined as reduced skeletal muscle mass associated with either a decline in muscle strength or low physical performance.¹ As ageing becomes a global issue, reduced skeletal muscle mass has been found to affect 5–13% of elderly people aged 60–70 years and reach a prevalence of up to 50% in octogenarians or people older than this.² Exercise capability, however, is not only provided by skeletal muscle mass but also by functional components including mitochondrial function³–⁵ and iron supply⁶,⁷ to the cells of the reticuloendothelial system.

In a multicontinent study, the prevalence of sarcopaenia in the general population has been shown to be between 12.6% and 17.5%.⁸ In patients with heart failure (HF), prevalence values are much higher and reach values between 19.5% and 47.3%.⁹ Moreover, among patients with diabetes mellitus and obesity, sarcopaenia has been described as a common metabolic comorbidity in patients with HF¹⁰ with reduced or preserved ejection fraction, showing a prevalence of almost 20% in both conditions.¹¹,¹² Sarcopaenia may be a strong predictor of mortality in patients with HF, but evidence on this is still limited.¹³ In addition, these patients present lower peak oxygen consumption, reduced distance in 6-min walking test, frailty and poorer quality of life than their counterparts without sarcopenia.¹⁴,¹⁵ Altogether, skeletal muscle dysfunction is a crucial component not only in HF, but also in patients with other cardiovascular disorders including stroke,¹⁶ and even certain medications can have effects on exercise intolerance.¹⁷,¹⁸

The presence of one condition can probably exacerbate the progression of the other. Thus, HF, characterized by

Introduction

The current definition of sarcopaenia is based on reductions in skeletal muscle mass associated with either a decline in muscle strength or low physical performance.¹ As ageing becomes a global issue, reduced skeletal muscle mass has been found to affect 5–13% of elderly people aged 60–70 years and reach a prevalence of up to 50% in octogenarians or people older than this.² Exercise capability, however, is not only provided by skeletal muscle mass but also by functional components including mitochondrial function³–⁵ and iron supply⁶,⁷ to the cells of the reticuloendothelial system.

In a multicontinent study, the prevalence of sarcopaenia in the general population has been shown to be between 12.6% and 17.5%.⁸ In patients with heart failure (HF), prevalence values are much higher and reach values between 19.5% and 47.3%.⁹ Moreover, among patients with diabetes mellitus and obesity, sarcopaenia has been described as a common metabolic comorbidity in patients with HF¹⁰ with reduced or preserved ejection fraction, showing a prevalence of almost 20% in both conditions.¹¹,¹² Sarcopaenia may be a strong predictor of mortality in patients with HF, but evidence on this is still limited.¹³ In addition, these patients present lower peak oxygen consumption, reduced distance in 6-min walking test, frailty and poorer quality of life than their counterparts without sarcopenia.¹⁴,¹⁵ Altogether, skeletal muscle dysfunction is a crucial component not only in HF, but also in patients with other cardiovascular disorders including stroke,¹⁶ and even certain medications can have effects on exercise intolerance.¹⁷,¹⁸

The presence of one condition can probably exacerbate the progression of the other. Thus, HF, characterized by

*Corresponding author. Tel: +49 551 39 20911, Fax: +49 551 39 20918, Email: stephan.von.haehling@med.uni-goettingen.de

Published on behalf of the European Society of Cardiology. © The Author(s) 2019.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

European Heart Journal Supplements (2019) ²¹ (Supplement L), L20–L23
The Heart of the Matter
doi:10.1093/eurheartj/suz240

ESC European Society of Cardiology
insufficient oxygen supply to the periphery and possibly decreased cardiac output, may reduce the oxygen and nutrient supply to skeletal muscle. On the other hand, skeletal muscle, a highly adaptable tissue, can change its morphology to adjust body resting energy expenditure in favour of other body functions and also present increased sympathetic afferent drive via ergoreflex activation, which contributes to cardiac damage.20–22

Therefore, the aim of this brief review is to present the main mechanisms involved with sarcopenia in patients with HF and also give a clinical perspective about sarcopenia in these patients.

Pathogenesis of sarcopenia in heart failure

Patients with chronic HF have increased muscle loss due to an imbalance between anabolic and catabolic pathways.14 Increased sympathetic drive and decreased parasympathetic activity is a hallmark in HF.20,21 In a recent study, patients with sarcopenia demonstrated a higher muscle sympathetic nerve activity (MSNA) and impaired heart rate recovery (HRR) compared to patients without sarcopenia, and MSNA was negatively correlated with appendicular lean mass (ALM), whereas HRR at 1st and 2nd minutes after maximal exercise showed a positive correlation with ALM.22

Moreover, patients with sarcopenia also present lower resting and peak forearm blood flow, correlated with a short distance covered in a 6-min walking test, suggesting an impairment in endothelial-dependent vasodilation.23 In addition, another mechanism that can play a role in endothelial dysfunction and muscle damage is increased low-grade inflammation, a common feature in patients with sarcopenia and HF, and rises in tumour necrosis factor-alpha, interleukin-6, and C-reactive protein levels have been associated with decline in muscle mass and strength.24

Furthermore, reactive oxygen species, also called free radicals, may lead to mitochondrial dysfunction and cause muscle degradation though the activation of ubiquitin protein system.25 Increased apoptosis is another mechanism that has been described to cause damage in skeletal muscle myocytes.26 Additionally, in a model of cancer cachexia-induced cardiomyopathy, muscle wasting was attenuated with megestrol acetate by down-regulation of autophagy in skeletal and heart muscle.27 However, to elucidate the role of apoptosis and autophagy in the degradation of muscle mass in patients with HF and sarcopenia further studies need to be conducted.

Hormonal changes have been shown to occur in patients with HF, decreases in the levels of testosterone with insulin-like growth factor-1 and growth hormone resistance have been described in these patients, showing a strong association with reduced functional capacity.28 Moreover, myostatin, a negative regulator of muscle cells growth and differentiation, has been shown to be increased in patients with HF and to be correlated with important circulating neurohormonal biomarkers related to HF progression.29 To date, despite large trials assessing the pharmacological applicability of myostatin inhibitors, there is no data available to indicate the administration of such drugs in patients with sarcopenia.30

Clinical management

The development of sarcopenia is multifactorial and so is its management. Despite reported anorexia in patients with HF,31 nutritional protein supplementation alone has been shown to produce significant improvement in body composition and inflammatory markers.32 However, resistance training combined with nutritional protein intake seems to promote greater improvements in muscle mass and has recently been recommended in the treatment of sarcopenia.33 Altogether, any form of exercise, rehabilitation programmes, or even dancing may have beneficial effects.34–37 Although testosterone administration has shown positive impact on muscle mass and function, its application may lead to undesirable side effects and cardiovascular outcomes which are still being debated.38

In spite of optimal HF pharmacotherapy,39 new pharmacological agents to treat sarcopenia have been extensively studied in the past two decades, including selective androgen receptor modulators, ghrelin receptor antagonists, myostatin inhibitors, growth hormone, and insulin-like growth factor-1.

Conclusion

In summary, sarcopenia is interwoven with HF and leads to worse functional outcomes in these patients. Moreover, the mechanisms associated with this bilateral relationship between sarcopenia and HF are still to be elucidated, leading to effective treatment, not only for the heart, but also for the skeletal muscle.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brazil (CAPES)—Finance Code 001. Also, this paper is part of a supplement funded by the Heart Failure Association of the European Society of Cardiology.

Conflict of interest: none declared.

References

1. Cruz-Jentoft AJ, Bahat G, Bauer J, Bruïère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M, Baumbans I, Baeyens J-P, Cesari M, Cherubini A, Kanis J, Maggio M, Martin F, Michel J-P, Pilkala K, Reginer J-Y, Rizzoli R, Sánchez-Rodríguez D, Schols J; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48:16–31.
2. von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle 2010;1:129–133.
3. Tsuda M, Fukushima A, Matsumoto J, Takada S, Kakutani N, Nambu H, Yamanashi K, Furihata T, Yokota T, Okita K, Kinugawa S, Anzai T. Protein acetylation in skeletal muscle mitochondria is involved in
Effects of functional electrical stimulation of lower limb muscles on circulating endothelial progenitor cells, CD34+ cells and vascular endothelial growth factor-A in heart failure with reduced ejection fraction. Eur J Heart Fail 2018;20:1162-1163.

37. Chan DD, Tsou HH, Chang CB, Yang RS, Tsauo JY, Chen CY, Hsiao CF, Hsu YT, Chen CH, Chang SF, Hsiung CA, Kuo KN. Integrated care for geriatric frailty and sarcopenia: a randomized control trial. J Cachexia Sarcopenia Muscle 2017;8:78-88.

38. Suzuki T, Palus S, Springer J. Skeletal muscle wasting in chronic heart failure. ESC Heart Fail 2018;5:1099-1107.

39. Ponikowski P, Voors AA, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parisi JT, Pieske B, Riley JP, Rosano GM, Ruijbroek LA, Ruschitzka F, Rutten FH, van der Meer P; Authors/Task Force Members, Document Reviewers. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016;18:891-975.