Defining the Optimal Total Number of Chemotherapy Courses in Younger Patients With Acute Myeloid Leukemia: A Comparison of Three Versus Four Courses

Burnett, A. K., Russell, N. H., Hills, R. K., Knapper, S., Freeman, S., Huntly, B., Clark, R. E., Thomas, I. F., Kjeldsen, L., McMullin, M. F., Drummond, M., Kell, J., & Spearing, R. (2020). Defining the Optimal Total Number of Chemotherapy Courses in Younger Patients With Acute Myeloid Leukemia: A Comparison of Three Versus Four Courses. Journal of Clinical Oncology: official journal of the American Society of Clinical Oncology, JCO2001170. https://doi.org/10.1200/JCO.20.01170

Published in:
Journal of Clinical Oncology: official journal of the American Society of Clinical Oncology

Document Version:
Publisher’s PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2020 American Society of Clinical Oncology. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Defining the Optimal Total Number of Chemotherapy Courses in Younger Patients With Acute Myeloid Leukemia: A Comparison of Three Versus Four Courses

Alan K. Burnett, MD1; Nigel H. Russell, MD2; Robert K. Hills, DPhil3; Stephen Knapper, DM4; Sylvie Freeman, PhD5; Brian Huntly, PhD6; Richard E. Clark, MD7; Ian F. Thomas, MSc8; Lars Kjeldsen, MD, PhD9; Mary Frances McMullin, MD10; Mark Drummond, PhD11; Jonathan Kell, MD12; and Ruth Spearing, MD13; on behalf of the United Kingdom NCRI AML Study Group

abstract

PURPOSE The optimum number of treatment courses for younger patients with acute myeloid leukemia (AML) is uncertain. The United Kingdom National Cancer Research Institute AML17 trial randomly assigned patients who were not high risk to a total of three versus four courses.

PATIENTS AND METHODS Patients received two induction courses based on daunorubicin and cytarabine (Ara-C), usually with gemtuzumab ozogamicin. Following remission, 1,017 patients were randomly assigned to a third course, MACE (amsacrine, etoposide, and Ara-C), plus a fourth course of MidAc (mitoxantrone and Ara-C) and following an amendment to one or two courses of high-dose Ara-C. Primary end points were cumulative incidence of relapse (CIR), relapse-free survival (RFS), and overall survival (OS). Outcomes were correlated with patient characteristics, mutations, cytogenetics, induction treatments, and measurable residual disease (MRD) postinduction.

RESULTS In logrank analyses, CIR and RFS at 5 years were improved in recipients of four courses (50% vs 58%; hazard ratio [HR] 0.81 [0.69-0.97], P = .02 and 43% vs 36%; HR 0.83 [0.71-0.98], P = .03, respectively). While OS was not significantly better (63% vs 57%; HR 0.84 [0.69-1.03], P = .09), the noninferiority of three courses to four courses was not established. The impact on relapse was only significant when the fourth course was Ara-C. In exploratory analyses, although MRD impacted survival, a fourth course had no effect in either MRD-positive or MRD-negative patients. A fourth course was beneficial in patients who lacked a mutation of FLT3 or NPM1, had 3 mutations in other genes, or had a presenting WBC of < 10 × 10^9 L^-1.

CONCLUSION Although a fourth course of high-dose Ara-C reduced CIR and improved RFS, it did not result in a significant OS benefit. Subsets including those with favorable cytogenetics, those lacking a mutation of FLT3 or NPM1, or those with < 3 other mutations may derive survival benefit.

J Clin Oncol 00. © 2020 by American Society of Clinical Oncology

INTRODUCTION

A number of different induction schedules and combinations given to patients with acute myeloid leukemia (AML) will achieve morphological marrow blast clearance in 75%-85% of younger patients, arbitrarily defined as < 60 years of age. More intensive combinations often only require a single induction course. In remission, the risk of relapse is based on several factors including presenting WBC count, age, secondary disease, morphological response of the bone marrow if not in remission, cytogenetics, and mutation analysis. More recently, estimates of minimal residual disease (MRD) assessed after the first or second induction course have also been shown to be important for relapse risk, although further data are required to establish when the MRD status is predictive of what the optimal treatment should be. From the combined prognostic information, patients will be regarded as at high, intermediate, or low risk of relapse. Usually, the issue requiring clarification is whether a stem cell transplant should be recommended. Prospective studies have now demonstrated that for patients who have FLT3 mutation type 1 inhibitors, midostaurin10 but not lestaurtinib11 will reduce relapse risk and improve survival. Other recently approved drugs may deliver further reductions in relapse for particular subgroups.

High-dose cytarabine (Ara-C) has been an established standard of care for consolidation following the
CONTEXT

Key Objective
After two courses of induction treatment, patients who were in remission and not high risk were randomly assigned to one or two more courses of treatment.

Knowledge Generated
Patients given two courses of high-dose cytarabine (ie, a total of four courses) had a reduced cumulative incidence of relapse and an improved relapse-free survival but did not result in a significant benefit in overall survival.

The trial did not establish that three courses of chemotherapy were noninferior to the standard of care of four courses. Although measurable residual disease (MRD) predicted the risk of relapse, overall administration of a fourth course had no survival benefit on either MRD-positive or MRD-negative patients.

Relevance
This study contributes information to the question of how much chemotherapy is required for younger patients with acute myeloid leukemia.

PATIENTS AND METHODS

The AML17 Trial
The United Kingdom MRC AML17 trial (ISRCTN5675535) tested a number of interventions for induction, which have already been reported.11,16-18 Briefly, patients of age from 18 years usually up to 60 years were initially randomly assigned to receive ADE (Ara-C, daunorubicin, and etoposide) or DA (daunorubicin and Ara-C) for the first two courses combined with gemtuzumab ozogamicin as a single dose of 3 mg/m² or 6 mg/m² in course 1, in which neither the addition of etoposide nor dosing of gemtuzumab ozogamicin at 6 mg/m² improved the result.18 In a subsequent amendment, induction treatment was DA treatment where the daunorubicin dose in course 1 was either 60 mg/m² or 90 mg/m². In this comparison, no overall difference was found,4 but it later emerged that patients with a FLT3 mutation benefited from the dose of 90 mg/m².19 Patients with high-risk myelodysplastic syndrome (defined as >10% marrow blasts), with de novo or secondary AML, with any WHO performance score could be included, but the blast transformation of chronic myeloid leukemia and acute promyelocytic leukemia was excluded. After the first course of induction treatment, patients were designated as high-, intermediate-, or low-risk based on our validated weighted risk score,5,6 which is based on the presenting WBC count, age, cytogenetics, and secondary disease and is presented in detail in the Protocol (online only).

Intermediate-risk patients with a FLT3 mutation could enter a random assignment of the addition of FLT3 inhibitor, lestaurtinib, or not, while other intermediate-risk patients without the FLT3 mutation could be randomly assigned to the addition of the mammalian target of Rapamicin inhibitor, everolimus, or not. The results of both interventions have previously been reported with neither addition showing overall benefit.11,17 After the two induction courses, all intermediate- and good-risk patients, whether receiving lestaurtinib or everolimus or not, were eligible to be randomly assigned to have one or two consolidation courses following the confirmation of remission (ie, three or four courses of treatment in total). This random assignment helped in recruiting patients from April 2009 to December 2014. Initially, until June 2010, the consolidation treatment random assignment for the third and fourth courses was between MACE (amsacrine, Ara-C, and etoposide) and MACE plus MidAc (mitoxantrone and Ara-C) (n = 120). In light of the results of the previous MRC AML15 trial, which
compared MACE/MidAc with two courses of Ara-C, a subsequent protocol amendment changed the random assignment to one versus two courses of high-dose Ara-C (3 g/m² twice a day days 1, 3, and 5) (n = 897). Random assignment took place after count recovery following the second induction course. The aim of the three versus four random assignment was to define if a fourth treatment course was necessary and whether the treatments involved were relevant. The trial flow diagram and details of drugs used are shown in Fig 1.

Correlative Studies

Cytogenetic analyses were undertaken locally in laboratories that participate in the national quality assurance scheme, centrally reviewed, and classified according to our established criteria. Mutation analysis of the FLT3 and NPM1 status was performed in a single reference lab. Although not integral to therapeutic decisions in the trial, samples for MRD, which were not disclosed to investigators, were collected after each induction course and undertaken by flow cytometry in one of the two reference labs by methods previously described and whole genome sequencing (Sanger sequencing) as described elsewhere of additional 82 genes was undertaken on 443 stored samples from participants in this random assignment at the Sanger Centre (Cambridge, United Kingdom). The FLT3 mutation status was provided during the trial to enable entry to the lestaurtinib random assignment.

Patients were randomly assigned in 110 centers in the United Kingdom, five in Denmark, and five in New Zealand. The trial was sponsored by Cardiff University and approved by the All Wales Research Ethics Committee on behalf of all UK investigators, by the Danish Medicines Agency for sites in Denmark, and by the New Zealand Medicines and Medical Devices Safety Agency for sites in New Zealand.

Written consent was obtained for each random assignment and for the storage of diagnostic samples. The trial was conducted in accordance with the Declaration of Helsinki.

Statistical Considerations and End Points

The primary outcome measure for this random assignment was overall survival (OS) at 5 years. It was anticipated that about 55% of patients who entered the whole AML17 trial would be available for the consolidation chemotherapy random assignment. The trial was anticipated to detect, with 90% power, a difference in survival from 55% to 65%, equivalent to a hazard ratio (HR) of 0.71; a critical number of 370 events was required to evaluate this difference. The primary question was whether three courses were non-inferior to four courses, at a one-sided significance of 0.025; consequently, effect sizes are reported with 95% two-sided CIs throughout. Noninferiority would be concluded if the lower 95% CI bound was above 0.71. Toxicity (hematologic recovery times and nonhematologic toxicity) was scored using the National Cancer Institute Common Toxicity Criteria, Version 3, and resource use data (blood product support, days on antibiotics, and hospitalization) were collected. All end points were defined according to the revised International Working Group criteria, where OS and relapse-free survival (RFS) were measured from the point of random assignment.

The analyses are by intention to treat. Categorical end points (eg, OS) were compared using Mantel-Haenszel tests, giving Peto odds ratios (ORs) and CIs. Continuous/scale variables were analyzed by nonparametric (Wilcoxon rank-sum) tests. Time-to-event outcomes were analyzed using the logrank test, with Kaplan-Meier survival curves. Analyses adjusted for random assignment parameters are performed using the Cox regression and given in parallel to the assumption-free logrank approach. ORs/HRs < 1 indicate benefit for the extra course of chemotherapy. All survival percentages are at 5 years unless otherwise stated. The median follow-up at the time of final analysis was 55.1 months (range, 1.2-99.4 months).

In addition to overall analyses, exploratory analyses were performed stratified by the random assignment stratification parameters and other important variables, including correlations with MRD, with suitable tests for interaction. Because of the well-known dangers of subgroup analysis, these were interpreted cautiously.

RESULTS

Patient Characteristics

Between April 2009 and December 2014, a total of 1,709 patients, on recovery from induction course 2, were eligible for this random assignment of whom 1,017 (60%) were randomly assigned. The reasons for not being randomly assigned were only listed as patient or clinician preference. The interval between diagnosis and random assignment was 2.6 months (range, 1.4-5.2 months). Patients not entering the random assignment were generally similar but were less likely to be de novo AML, to have worse cytogenetics, and to have received DA60 in induction (Protocol); however, the OS at 5 years of those eligible who reached the median time of random assignment but did not enter the random assignment was 60%, which was the same for those who were randomly assigned (60%; P = .4). The characteristics and treatments of the randomly assigned patients are shown in Table 1. There were no differences between those randomly assigned with respect to age, sex, performance score, presenting WBC count, cytogenetic risk group, NPM1 status, induction treatments, and risk score or number given stem cell transplant overall or in CR1. There was a modest difference in 479 patients whose MRD status was known after course 1 or in 365 randomly assigned patients whose MRD status was known after course 2, with fewer patients allocated to three courses to be MRD-negative. As previously stated, the MRD status of patients was not made available to investigators. There was no difference in the frequency of mutations or in the
FIG 1. Protocol flow diagram. *Following closure of the CEP-701 randomly assigned, patients were guided by risk score to either poor risk or nonpoor risk options. **Following closure of the mTOR inhibition random assignment, patients in this group received DA 50mg alone. ***Following closure of the D Clofarabine arm, patients were recommended to receive FLAG-Ida (which was also the case if renal criteria were not met). 1Following closure of the high-dose daunorubicin arm, patients were allocated DA60. ADE, Ara-C, daunorubicin, and etoposide; APL, acute promyelocytic leukemia; CBF, core binding factor; DA, daunorubicin and Ara-C; FLAG-Ida, fludarabine, Ara-C, granulocyte colony-stimulating factor, and idarubicin; GO, gemtuzumab ozogamicin; MACE, amsacrine, etoposide, and Ara-C; MidAc, mitoxantrone and Ara-C; mTor, mammalian target of Rapamycin.
TABLE 1. Patient Characteristics

Characteristic	3 Courses (n = 510)	4 Courses (n = 507)
Treatment		
MACE/MidAc	58 (11%)	62 (12%)
Ara-C	452 (89%)	445 (88%)
Age		
16-29	68 (13%)	66 (13%)
30-39	70 (14%)	71 (14%)
40-49	150 (29%)	148 (29%)
50-59	162 (32%)	164 (32%)
60+	60 (12%)	58 (11%)
Median	47	48
Range	16-70	16-72
Sex		
Female	274 (54%)	282 (56%)
Male	236 (46%)	225 (44%)
Diagnosis		
De novo	488 (96%)	486 (96%)
Secondary	6 (1%)	8 (2%)
MDS	16 (3%)	13 (3%)
WHO PS		
0	364 (71%)	365 (72%)
1	124 (24%)	124 (24%)
2	12 (2%)	12 (2%)
3	10 (2%)	5 (1%)
4	0	1 (<0.5%)
WBC		
0-9.9	258 (51%)	247 (49%)
10-49.9	192 (38%)	180 (36%)
50-99.9	43 (8%)	52 (10%)
100+	17 (3%)	28 (6%)
Median	9.4	10.4
Range	0.6-306.0	0.6-395.0
Cytogenetics		
Favorable	119 (24%)	115 (24%)
Intermediate	369 (75%)	371 (76%)
Adverse	1 (<0.5%)	1 (<0.5%)
Unknown	21	20
FLT3 TKD		
WT	397 (83%)	399 (83%)
Mutant	79 (17%)	83 (17%)
Unknown	34	25
NPM1c		
WT	289 (62%)	288 (60%)
Mutant	178 (38%)	190 (40%)
Unknown	43	29

(continued in next column)

TABLE 1. Patient Characteristics (continued)

Characteristic	3 Courses (n = 510)	4 Courses (n = 507)
FLT3 TKD		
WT	422 (89%)	443 (92%)
Mutant	51 (11%)	37 (8%)
Unknown	37	27
Induction chemotherapy ADE (nonrandomized)	18 (4%)	16 (3%)
ADE	42 (8%)	45 (9%)
ADE+GO3	33 (6%)	31 (6%)
ADE+GO6	35 (7%)	33 (7%)
DA+GO3	35 (7%)	34 (7%)
DA+GO6	34 (7%)	35 (7%)
DA 90 mg	94 (18%)	96 (19%)
DA 60 mg	91 (18%)	90 (18%)
DA 60 mg (nonrandomized)	128 (25%)	127 (25%)
Lestaurtinib random assignment	68 (13%)	68 (13%)
Lestaurtinib	45	45
No lestaurtinib	23	23
Everolimus random assignment	114 (22%)	113 (22%)
Everolimus	76	77
No everolimus	38	36
Post Course 1 Risk Score		
Good risk	130 (26%)	136 (27%)
Standard risk	377 (74%)	369 (73%)
Unknown	3	2
MRD status post course 1		
CR, MRD-negative	95 (40%)	117 (48%)
CR, MRD-positive	128 (54%)	116 (48%)
No CR	12 (5%)	11 (5%)
Unknown	275	263
MRD status post C2		
MRD-negative	113 (64%)	139 (74%)
MRD-positive	64 (36%)	49 (26%)
Not known	333	319
Transplanted	191 (37%)	164 (32%)
Any allograft	153 (30%)	142 (28%)
Any transplant in CR1	37 (7%)	42 (8%)
Allograft in CR1	29 (6%)	39 (8%)

Abbreviations: ADE, Ara-C, daunorubicin, and etoposide; CR, complete remission; DA, daunorubicin and Ara-C; GO, gemtuzumab ozogamicin; ITD, internal tandem duplication; MACE, amsacrine, Ara-C, and etoposide; MDS, myelodysplastic syndrome; MidAc, mitoxantrone and Ara-C; MRD, measurable residual disease; PS, performance score; TKD, tyrosine kinase domain; WT, wild type.

Journal of Clinical Oncology
Although there appears to be a significant difference in favor of four courses (63% vs 56%) with respect to survival (Fig 4A). Considering the question of whether three courses were noninferior to four courses, the CI in both unadjusted and adjusted analyses crosses the threshold of 0.71, meaning that there is no evidence to conclude noninferiority at this threshold. In spite of the reduced CIR, there was no detectable survival difference in patients treated in the MACE/MidAc arm (Fig 4B), but there were nonsignificant differences in favor of four courses in patients treated in the Ara-C arms in both risk groups (Figs 4C-4E). If the 79 patients who received a transplant in CR1 were censored at transplant, the survival rates are 63% for three courses and 72% for four courses. The overall outcomes are summarized in the Protocol.

Exploratory Subgroup Analyses

The outcome was not affected by any of the patients’ characteristics or induction treatments (Protocol), although those presenting with a low WBC < 10.0 × 10⁹/L had a significant benefit from four courses. MRD information was obtained after course 1 in 456 patients and in 365 patients after course 2. The OS at 5 years in patients who were MRD-negative after the first or second induction courses (n = 464) at 73% was better than that in the MRD-positive patients (n = 357) at 50%. In patients who were assessed after course 1 of induction, the OS was not significantly different between the treatment arms, irrespective of the MRD status (Figs 5A-5B).

In patients with MRD information after course 2, the OS was 69% if MRD-negative and 37% if MRD-positive, but again there was no significant difference in either groups if allocated to three or four courses (Figs 5C-5D).

Although there appears to be a significant advantage of four courses in patients who received daunorubicin 90 mg/m² in induction (Protocol), the test for heterogeneity was not significant, suggesting that any apparent heterogeneity was not conclusive.

Four courses were significantly beneficial in patients without an FLT3 internal tandem duplication or tyrosine kinase domain or NPM1 mutation or in 92 of the 433 patients with < 3 mutations as detected using Sanger sequencing (Fig 6). The benefit appeared greatest in patients with FLT3/NPM1 wild type, although there was no significant interaction. For the purpose of assessing the prognostic value of the mutations detected using Sanger sequencing, only mutations that occurred in more than 20 of the 433 patients were considered, but no correlations were observed (Protocol).
FIG 3. Cumulative incidence of relapse. AML, acute myeloid leukemia; HR, hazard ratio; MidAc, mitoxantrone and Ara-C.
FIG 4. Overall survival. AML, acute myeloid leukemia; HR, hazard ratio; MidAc, mitoxantrone and Ara-C.
FIG 5. Effect of measurable residual disease (MRD). MRD, measurable residual disease; HR, hazard ratio.

DISCUSSION

The recent approvals of new drugs for AML may move the treatment algorithm in the relevant subgroups. However, it is yet to be established for some of these new drugs whether combination with standard chemotherapy may be their optimal use.25 It therefore remains important to define the optimal total treatment with chemotherapy that is required. There has been extensive effort to establish the best agents and doses for induction, but less attention to the dose and number of courses of postinduction treatment. Recruiting sufficiently large numbers to reliably answer questions at this stage of treatment is a logistical challenge. Definitive studies 25 years ago established high-dose Ara-C as the standard of care for up to four courses at a dose level of 3 g/m2. The MRC AML15 trial (ISRCTN17161961) established that our previous standard of care (MACE plus MidAc) was superior to high-dose Ara-C in adverse-risk patients.15 There was little survival difference between 3 g/m2 and 1.5 g/m2 Ara-C dose levels. The addition of a fifth course was tested in the MRC AML12 and 15 trials14,15 with no evidence of benefit for a fifth course. A number of collaborative group trials have assessed the number of courses without providing a universally accepted conclusion.25-27

In this trial, random assignment took place after the completion of two induction courses and 1,709 (53\%) of the original trial entrants were eligible. In the intent-to-treat analysis of the 1,017 patients randomly assigned, it emerged that the addition of the fourth course significantly reduced the CIR and significantly improved the RFS, but neither of which reached statistical significance. Although the numbers become too small for conventional (CIR and RFS) of the original trial entrants were eligible. In the intent-to-treat analysis of the 1,017 patients randomly assigned, it emerged that the addition of the fourth course significantly reduced the CIR and significantly improved the RFS, but neither of which reached statistical significance. Although the numbers become too small for conventional statistical significance. Although the numbers become too small for conventional statistical significance. Although the numbers become too small for conventional statistical significance.
there is a strong trend for benefit in the recipients of Ara-C, but not for the recipients of MACE/MidAC.

Among the several subgroups examined where a significant difference was observed in conjunction with a test for heterogeneity, which reached significance, were patients who lacked a FLT3 or NPM1 mutation, patients with one or two mutations compared with >2, and patients with presenting WBCs of <10 × 10^9/L. Patients who were MRD-negative (at a level of 1 in 10^4) after course 1 or 2 had a significantly better survival than those who were positive at either time point, but the addition of a fourth course was not beneficial in either group. In general, patients with more favorable characteristics appear to benefit from a fourth course, but only when high dose Ara-C consolidation is used, whereas those with intermediate-risk characteristics do not, although these were only trends for benefit.

There was a price to pay for the fourth course with respect to days in hospital, days on antibiotics, and blood product.
support although there were no excessive deaths in remission. However, as a consequence of the greater number of relapses, more salvage transplants were required in patients receiving just three courses (Table 1). It could be speculated that the most useful interaction will eventually be the initial discrimination based on the MRD status after the first or second induction course, where there may be little benefit in a fourth course for those who are MRD-positive, but benefit for those who are negative, or vice versa.

REFERENCES

1. Bishop JF, Matthews JP, Young GA, et al: A randomized study of high-dose cytarabine in induction in acute myeloid leukemia. Blood 87:1710-1717, 1996
2. Holowec JI, Grosicki S, Gebel S, et al: Cladribine, but not fludarabine, added to daunorubicin and cytarabine during induction prolongs survival of patients with acute myeloid leukemia: a multicenter, randomized phase III study. J Clin Oncol 30:2441-2448, 2012
3. Lee JH, Joo YD, Kim H, et al: A randomized trial comparing standard versus high-dose daunorubicin induction in patients with acute myeloid leukemia. Blood 118:3832-3841, 2011
4. Burnett AK, Russell NH, Hills RK, et al: A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction: Results from the UK NCRI AML17 trial in 1206 patients. Blood 125:3878-3885, 2015
5. Burnett AK, Hills RK, Wheatley K, et al: A sensitive risk score for directing treatment in younger patients with AML. Blood 108:10a, 2006
6. Lung V, Burnett AK, Bradstock K, et al: Utility of a clinical risk score to identify high-risk patients with de novo acute myeloid leukemia in first remission after high-dose cytarabine (HiDAC) based induction chemotherapy. Br J Haematol 160:861-863, 2013
7. Ravandi F, Walter RB, Freeman SD: Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv 2:1356-1366, 2018
8. Freeman SD, Hills RK, Virgo P, et al: Measurable residual disease at induction redefines partial response in acute myeloid leukemia and stratifies outcomes in patients at standard risk without NPM1 mutations. J Clin Oncol 36:1486-1497, 2018
9. Schuurhuis GJ, Heuser M, Freeman S, et al: Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 131:1275-1291, 2018
10. Stone RM, Mandrekar SJ, Sanford BL, et al: Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 377:454-464, 2017

AFFILIATIONS

1Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
2Department of Haematology, Nottingham University Hospital NHS Trust, Nottingham, United Kingdom
3Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
4Department of Haematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
5Department of Clinical Immunology, University of Birmingham, Birmingham, United Kingdom
6Department of Haematology, and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
7Department of Haematology, Royal Liverpool University Hospital, Liverpool, United Kingdom
8Centre for Trials Research, Cardiff University School of Medicine, Cardiff, United Kingdom
9Department of Haematology, Rigshospitalet, Copenhagen, Denmark
10Department of Haematology, Centre for Medical Education, Queen’s University, Belfast City Hospital, Belfast, United Kingdom
11Department of Haematology, Beatson Cancer Centre, Glasgow, United Kingdom
12Department of Haematology, University Hospital of Wales, Cardiff, United Kingdom
13Canterbury District Health Board, Canterbury, New Zealand

CORRESPONDING AUTHOR

Alan K. Burnett, MD, Paul O’Gorman Leukaemia Centre, Glasgow University, Glasgow, United Kingdom; Ty Mawr, Blackwaterfoot, Isle of Arran, United Kingdom; e-mail: AKBurnett719@gmail.com.

CLINICAL TRIAL INFORMATION

ISRCTN55675555 (AML17)

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.20.01170.

AUTHOR CONTRIBUTIONS

Conception and design: Alan K. Burnett, Nigel H. Russell, Robert K. Hills
Administrative support: Ian F. Thomas
Provision of study materials or patients: Nigel H. Russell, Stephen Knapper, Brian Huntly, Richard E. Clark, Lars Kjeldsen, Mary Frances McMullin, Mark Drummond, Jonathan Kell, Ruth Spearing
Collection and assembly of data: Robert K. Hills, Ian F. Thomas
Data analysis and interpretation: Alan K. Burnett, Nigel H. Russell, Robert K. Hills, Sylvie Freeman
Manuscript writing: Alan K. Burnett, Nigel H. Russell
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT

We would like to thank Cancer Research UK for research support and the Cardiff University Haematology Clinical Trials Unit staff for supervision of the trial and the staff of the Sanger Centre, Cambridge, for undertaking sequencing under contract with the sponsor.
11. Knapper S, Russell N, Gilkes A, et al: A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML. Blood 129:1143-1154, 2017
12. Mayer RJ, Davis RB, Schiffer CA, et al: Intensive post-remission therapy in adults with acute myeloid leukemia. N Engl J Med 331:896-903, 1994
13. Rees JKH, Gray R, Swirsky D, et al: The treatment of 1127 patients with acute myeloid leukaemia; principal results of the Medical Research Council’s 8th AML trial. Lancet 2:1236-1231, 1986
14. Burnett AK, Hills RK, Milligan DW, et al: Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: Results of the MRC AML12 trial. J Clin Oncol 28:586-595, 2010
15. Burnett AK, Russell NH, Hills RK, et al: Optimization of chemotherapy for younger patients with acute myeloid leukemia: Results of the Medical Research Council AML15 trial. J Clin Oncol 31:3360-3368, 2013
16. Burnett AK, Hills RK, Nielsen OJ, et al: A comparison of FLAG-Ida and daunorubicin combined with clofarabine in high-risk acute myeloid leukaemia: Data from the UK NCRI AML17 Trial. Leukemia 32:2693-2697, 2018
17. Burnett AK, Das Gupta E, Knapper S, et al: Addition of the mammalian target of rapamycin inhibitor, everolimus, to consolidation therapy in acute myeloid leukemia: Experience from the UK NCRI AML17 trial. Haematologica 103:1654-1661, 2018
18. Burnett A, Cavenagh J, Russell N, et al: Defining the dose of emtuzumab oogamicin in combination with induction chemotherapy in acute myeloid leukemia: A comparison of 3 mg/m² with 6 mg/m² in the NCRI AML 17 trial. Haematologica 101:724-731, 2016
19. Burnett AK, Russell NH, Hills RK, et al: Higher daunorubicin exposure benefits FLT3mutated acute myeloid leukemia. Blood 128:449-452, 2016
20. Grimwade D, Hills RK, Moorman AV, et al: Refinement of cytogenetic classification in acute myeloid leukemia: Determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116:354-365, 2010
21. Freeman SD, Virgo P, Couzens S, et al: Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J Clin Oncol 31:4123-4131, 2013
22. Basheer F, Giotopoulos G, Meduri E, et al: Contrasting requirements during disease evolution identify EZH2 as a therapeutic target in AML. J Exp Med 216:966-981, 2019
23. BD Cheson, JM Bennett, KJ Kopecky, et al: Revised recommendation of the International Working Group for diagnosis standardisation, of response criteria treatment outcomes and reporting standards for therapeutic trials in acute myeloid leukaemia. J Clin Oncol 21:4642-4649, 2003
24. Burnett AK, Stone RM: AML: New drugs but new challenges. Clin Lymphoma Myeloma Leuk 20:341-350, 2020
25. Elenen E, Almqvist A, Hanninen A, et al: Comparison between four and eight cycles of intensive chemotherapy in adult acute myeloid leukemia: A randomised trial of the Finnish Leukemia Group. Leukemia 12:1041-1048, 1998
26. Preisler H, Davis RB, Krishna J, et al: Comparison of three induction regimens and two postinduction strategies for the treatmen of acute nonlymphocytic leukemia: A Cancer and Leukemia Group B study. Blood 5:1441-1449, 1987
27. Lowenberg B: Sense and nonsense of high-dose cytarabine for acute myeloid leukemia. Blood 121:26-28, 2013
Authors' Disclosures of Potential Conflicts of Interest

Defining the Optimal Total Number of Chemotherapy Courses in Younger Patients With Acute Myeloid Leukemia: A Comparison of Three Versus Four Courses

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Nigel H. Russell
Honoraria: Jazz Pharmaceuticals, Pfizer, Astellas Pharma
Research Funding: Jazz Pharmaceuticals
Travel, Accommodations, Expenses: Jazz Pharmaceuticals

Stephen Knapper
Honoraria: Novartis, Jazz Pharmaceuticals
Consulting or Advisory Role: Novartis, Jazz Pharmaceuticals, Astellas Pharma, Pfizer, Eurocept
Research Funding: Novartis
Travel, Accommodations, Expenses: Jazz Pharmaceuticals

Sylvie Freeman
Speakers' Bureau: Jazz Pharmaceuticals
Patents, Royalties, Other Intellectual Property: Vyas, P., Goardon, N., & Freeman, S. (2011). U.S. Patent Application 13/995,347. Title: Detection of Acute Myeloid Leukaemia. Granted 2018
Travel, Accommodations, Expenses: BD Biosciences

Brian Huntly
Honoraria: Novartis
Speakers' Bureau: Novartis, Pfizer

Richard E. Clark
Honoraria: Novartis, Pfizer
Consulting or Advisory Role: Novartis, Pfizer
Research Funding: Pfizer

Ian F. Thomas
Research Funding: Celgene, BCTI, Jazz Pharmaceuticals
Travel, Accommodations, Expenses: CTI, Daiichi Sankyo, Pfizer
Stock and Other Ownership Interests: Novo Nordisk, Abbvie
Honoraria: Celgene, Daiichi Sankyo
Research Funding: Novartis
Travel, Accommodations, Expenses: Novartis

Lars Kjeldsen
Stock and Other Ownership Interests: Novo Nordisk, Abbvie
Honoraria: Celgene, Daiichi Sankyo
Research Funding: Novartis
Travel, Accommodations, Expenses: Novartis

Mary Frances McMullin
Consulting or Advisory Role: Novartis
Speakers' Bureau: Celgene, Jazz Pharmaceuticals

Mark Drummond
Honoraria: Novartis, Pfizer, Jazz Pharmaceuticals, Astellas Pharma
Speakers' Bureau: Novartis, Jazz Pharmaceuticals
Travel, Accommodations, Expenses: Novartis, Celgene

Jonathan Kell
Honoraria: Novartis
Consulting or Advisory Role: Novartis

Ruth Spearing
Travel, Accommodations, Expenses: Roche New Zealand

No other potential conflicts of interest were reported.
APPENDIX

The following investigators recruited patients: Aalborg Hospital: Maria Kallenbach; Aarhus University Hospital: Hans Beier Ommen, Ingolf Mølle; Jan Maxwell Norgaard, Mette Holm; Arrowe Park Hospital: Ranjit Dasgupta; Auckland City Hospital: Leanne Berkhahn, Lucy Pemberton, Nigel Patton, Richard Doocyee, Sophie Lee, Timothy Hawkins; Ayr Hospital: Fiona Cutler, Paul Eynaud; Barnet General Hospital: Andrés Vircis, Sylvia Berney; Barts and the London NHS Trust: James Cavenagh, Matthew Smith, Simon Hallam, Heather Oakeree; Basingstoke and North Hampshire Foundation NHS Trust: Ashok Roy, Sylvia Simpson; Beatson West of Scotland Cancer Center: Anne Parker, Mark Drummond, Mike Leach, Pam McKay, Richard Soutar; Belford City Hospital: Claire Arnold, Daniel Finnegan, Mary Frances McMillum, Robert Cuthbert, Victoria Pecche; Birmingham Heartlands Hospital: Donald Milligan, Guy Pratt, Manos Nikolaou, Matthew Lumley, Neil Smith, Richard Lovell, Shankara Panesaha; Blackpool Victoria Hospital NHS Foundation Trust: Paul Cahalin; Borders General Hospital: John Tucker; Bradford Royal Infirmary: Adrian Williams, Anita Hill, Lisa Newton, Nitin Sood, Sam Ackroyd; Bristol Haematology and Oncology Centre: David Marks, Graham Standen, Jenny Bird, Priyanka Mehta, Roger Evelyn; Cambridge University Hospitals NHS Foundation Trust: Charles Crawley, George Follows, Jenny Craig, Pramila Krishnamurthy; Cheltenham General Hospital: Adam Rye, Richard Lush; Chesterfield Royal Hospital: Andrew Fletcher, Mark Wodzinski, Peter Toth, Robert Cutting; Christchurch Hospital: Andrew Butler, Mark Smith, Peter Ganly, Ruth Spearing, Steve Gibbons; Christie Hospital NHS Trust: Mike Dennis; Countess of Chester hospital: Sahal Teguar; Crosshouse Hospital: Julie Gillies; Mark McColl, Peter Maclean; Darent Valley Hospital: Anil Kamat, Raphael Ezekwesili; Derby Hospitals NHS Foundation Trust: Christopher Millar, David Allotey, Juhanah Addada; Derriford Hospital: Kamiran Saied, Christopher Pocock, Vijay Ratnayake; Doncaster Royal Infirmary: Joe Joseph, Robert Cutting, Stuti Kaul, Youssef Sorour; Dorset County Hospital NHS Foundation Trust: Akeel Moosa; Dunedin Hospital: Annette Nleyon, Hilda Mangos; East Kent Hospitals University NHS Foundation Trust: Jindriska Lindsay, Kamiran Saied, Christopher Pocock, Vijay Ratnayake; East Sussex Hospitals NHS Trust: Judy Beard, Satayuj Sahu; Epsom and St Helier University NHS Trust: Jane Mercieca; Falkirk and District Royal Infirmary: Christopher Brammer, Marie Hughes, Roderick Nelson; Glen Cwyd Hospital: Christine Hoyle, Earnest Heartin, Margaret Goodrick; Gloucestershire Royal Hospital: Adam Rye, Eye Blundell, Rebecca Frewin, Sally Chown; Great Western Hospital: Alex Sternberg, Atherton Gray, Norbert Blessing; Guys and St Thomas’ Foundation Trust: Kavita Raj, Robert Carr; Hammersmith Hospital: Jiri Pavlu; Heathwood Hospital: Wexham Park NHS Foundation Trust: Mark Offer, Nicola Bienz, Nicola Philpott, Simon Moule; Hereford County Hospital: Lisa Robinson, Sara Willoughby; Herlev Hospital: Morten Krogh Jensen, Peter Miller, Ulik Overgaard; Hillingdon Hospital: Riaz Jammohamed, Richard Kaczmarski; Hull Royal Infirmary: Christopher Carter, Saha Ali; Ipswich University Hospital: Andrew Hodson, Debo Ademokun, James Cook University Hospital: Angela Wood, Ray邓; James Paget University Hospital: Cesar Gomez, Manzoor Mangi, Shala Sadullah; John Radcliffe Hospital: Paresh Vyas; Kettering General hospital: Isaac Wilson-Morke, Karyn Longmuir, Mark Kwan, Matthew Lyttelton; Leicester Royal Infirmary: Ann Hunter, Kajit Bhuller, Murray Martin; Lincoln County Hospital: Kandeepan Saravanamuthu; Maidstone Hospital: Evangelia Dimitriadou, Richard Gale; Manchester Royal Infirmary: Eleni Tholouli, Guy Lucas, John Yin, Sarah Burns; Medway Maritime Hospital: Maad Aldouri, Vivienne Andrews; Milton Keynes Hospital NHS Foundation Trust: Moeg Dungrawalla; Monklands Hospital: Aaladina Raafat, Charlotte Thomas, Jane Laird, John Murphy, Pamela Paterson; NHS Grampian: Dominic Culligan, Jane Tighe; New Cross Hospital: Abraham Jacob, Alan MacWhanell, Sunil Hada, Supratik Basu; Ninewells Hospital and Medical Center: Keith Gelly, Sudhir Tauro; Norwich and Norwich University Hospital NHS Foundation Trust: Matthew Lawes; North Middlesex University Hospital: Neil Rabin; Northampton General Hospital: Angela Bowen, Sajaj Mittal, Suchitra Krishnamurthy; Northwick Park Hospital: Nicki Panoskalsitis, Robert Ayto; Nottingham University Hospitals NHS Trust: Emma Dasgupta, Jenny Byrne, Nigel Russell, Simone Stokley; Odense University Hospital: Claus Marcher, Lone Friis, Paul Gram Hansen; Palmerston North Hospital: Barry Baker, Paul Harper; Peterborough District Hospital: Kanonan Raji, Jian; Grantham Sivaprasad; Saleesha Nagumonyar; Pinderfield General Hospital: David Wright, Kavita Patil, Mary Chapple, Paul Morleten; Poole General Hospital: Fergus Jack, Ram Jayaparakash; Princess Royal University Hospital: Bipin Vadhir; Queen Alexandra Hospital: Christopher Jones, Helen Dignum, Mary Ganczakowski, Robert Corser, Tanya Cranfield; Queen Elizabeth Hospital: Charles Caddock, Jim Murray; Queen Elizabeth Hospital Woolwich: Ana Duran; Queen Elizabeth Hospital, Norfolk: Jane Keidan, Lisa Cooke; Queens Hospital: Claire Hemmaway, Jane Stevens; Raigmore Hospital NHS Highland: Chris Lush, Joanne Craig, Peter Forsyth; Rigshospitalet: Carsten Niemann, Lars Kjeldsen, Ole Wei Bjerrum; Owe Juul Nielsen, Peter Kampmann; Rotherham General Hospital: Arun Alfred, Richard Wente; Royal Berkshire Hospital: Henri Groch, Rebecca Sampson, Stuart Mucklow; Royal Bournemouth Hospital: Joseph Chacko, Rachel Hall; Royal Cornwall Hospital: Bryson Pottinger; Royal Devon and Exeter Hospital: Anthony Todd, Claudius Rudin, Loretta Ngu, Malcolm Hamilton; Royal Free Hospital: Archie Prentice, Panos Kottaridis; Royal Hallamshire Hospital: Chris Dailey, Harpreet Kaur, John Snowden, Sameer Tulipule; Royal Marsden Hospital: David Tausig, Mark Ethell, Royal Oldham: Allamedicine; David Osborne, Hayley Greenfield, Sumaya ElHanash, Vivek Sen; Royal Shrewsbury Hospital: Andrea Concor; Royal Surrey County Hospital: Elisabeth Grey-Davies, Johannes DeVoos, Louise Hendry; Royal United Hospital: Charles Singer, Christopher Knechtle, Josephine Crowe; Russells Hall Hospital: Jeff Neilson, Savio Fernandes, Stephen Jenkins; Salford Royal Hospital: John Houghton, Rowena Thomas-Dewing, Simon Jowitt, Sonya Zaman; Salisbury Hospital NHS Foundation: Effie Grand, Jonathan Cullis, Louise Fraser, Tamara Everington; Sandwell Hospital: Farooq Wando, Yasmin Hasan; Singleton Hospital: Hamdi Sal, Saad Ismail; South Devon Healthcare NHS Foundation Trust: Deborah Turner, Nicholas Rymes, Patrick Roberts, Steve Smith; Southampton University Hospital NHS Trust: Deborah Richardson, Kim Orchard, Matthew Jenner; Southern General Hospital: Anne Morrison, Ian Macdonald; St Helens and Knowsley NHS Trust: Toby Nicholson; St James University Hospital: David Bowen; St Richard’s Hospital: Phillip Bevan, Sarah Janes; Stafford Hospital: Andrew Amos, Aurangzeb Razzak; Stoke Mandeville Hospital: Anne-Marie O’Shea, Jonathan Patterson, Robin Atchison; Sunderland Royal Hospital: Annette Nicole, Scott Marshall, Yogesh Upadhye; Taunton and Somerset Foundation Trust: Sarah Alford, Simon Bolam; The Newcastle upon Tyne NHS Foundation Trust: Anne Connolly, Jones, Williams, Gillian Grand, Jonathan Cullis; University Hospital of Wales: Andres Virchis, Asim Khwaja, Kwee Yong, Nishal Patel; University Hospital Aintree: Arpad Toth, Barbara Hammer, Barrie Woodcock, Lynny Yung, Waldad Sadiq; University Hospital Coventry and Warwickshire NHS Trust: Anand Lokare, Anton Borg, Beth Harrison, Mekkali Narayan, Nicholas Jackson, Oliver Chapman, Sarah Nicolle, Shailesh Jobanputra, Syed Bokhari; University Hospital Lewisham: Naheed Mir; University Hospital of North Staffordshire NHS Trust: Deepak Chandra, Kamaraj Karunanithi, Neil Phillips, Richard Chastey, Srinivas Pillai; University Hospital of Wales: Caroline Alvares, Jonathan Kell, Steve Knapper; University Hospital of North Tees: Philip Mounter, Philip Goodacre, Zoe Maung; University of Liverpool and Royal Liverpool University Hospital: Rahnum Salim, Richard Clark; Victoria Hospital NHS Fife: Kerri Davidson, Peter Williamson, Stephen Rogers; Waikato Hospital: Gillian Corbett, Humphrey Pullon, Shahid Islam; Wellington Hospital: Alwyn D’Souza, Huib Buyck, John Carter, Kenneth Romenil; Western General Hospital: PH Roddie, Peter Johnson; Wishaw General Hospital: Aniriiue Hing, Gita Helenglass; Worcestershire Royal Hospital: Elizabeth Maughan, Juliet Mills, Salim Shafeek; Worthing Hospital: Santosh Narat; York Hospital: Laura Munro, Lee Bond, Martin Howard, Ysbyt Gwynedd: David Edwards, James Seale.
FIG A1. Patients’ score derived from multiplying each relevant characteristic by the value derived from the Cox model: 0.01325*age (in years) + 0.16994*sex (1 = male, 0 = female) + 0.22131*diagnosis (1 = de novo, 2 secondary) + 0.65082*cytogenetics (1 = favorable, 2 = intermediate, 3 adverse) + 0.19529*status post C1 (1 = complete remission, 2 = partial remission, 3 = no response) + 0.00169* WBC (x109/l). Distribution of patients in MRC AML 10,12 trials by index: Taking into account the apparent bimodality of the curve, patients with an index of 2 or below were deemed good risk, and the data were arbitrarily divided at the 75th centile between standard and poor risk. Survival index from complete remission in AML10,12 according to the risk groups was validated on data from MRC AML15 Trial.5
FIG A2. Relapse-free survival (RFS). CR, complete remission.
AML13: Consolidation Randomisation
Relapse-Free Survival

Stratified analysis

	Events/Patients	Statistics	OR & 95% CI	
	4 courses	3 courses	(O−E) Var.	(4 courses : 3 courses)
By comparison:				
MACE/MidAc	33/62	36/57	−3.1	17.2
ara-C	237/438	269/447	−22.9	126.2
Subtotal:	270/500	305/504	−26.0	143.3
				0.83 (0.71, 0.98)

Test for heterogeneity between subgroups: $\chi^2 = 0.0; P = 1.0; NS$

By cytogenetics:

	Events/Patients	Statistics	OR & 95% CI	
	4 courses	3 courses	(O−E) Var.	(4 courses : 3 courses)
Favorable	39/113	55/118	−9.0	23.4
Intermediate	222/368	233/365	−10.5	113.5
Subtotal:	261/481	288/483	−19.4	136.9
				0.87 (0.73, 1.03)

Test for heterogeneity between subgroups: $\chi^2 = 1.6; P = 2; NS$

By MRD post course 1:

	Events/Patients	Statistics	OR & 95% CI	
	4 courses	3 courses	(O−E) Var.	(4 courses : 3 courses)
MRD −ve	47/117	45/94	−5.2	22.5
MRD +ve	77/115	85/128	−4.4	40.4
Not in CR	7/9	4/11	3.4	2.3
Subtotal:	131/241	134/233	−6.1	65.2
				0.91 (0.71, 1.16)

Test for heterogeneity between subgroups: $\chi^2 = 3.6; P = .04$

Test for trend between subgroups: $\chi^2 = 2.4; P = .1; NS$

By MRD post course 2:

	Events/Patients	Statistics	OR & 95% CI	
	4 courses	3 courses	(O−E) Var.	(4 courses : 3 courses)
MRD −ve	65/138	60/111	−5.9	30.6
MRD +ve	38/49	46/64	1.0	20.7
Subtotal:	103/187	106/175	−4.9	51.3
				0.91 (0.69, 1.19)

Test for heterogeneity between subgroups: $\chi^2 = 0.7; P = .4; NS$

Unsatified

	Events/Patients	Statistics	OR & 95% CI	
	270/500	305/504	−26.0	143.3
				0.83 (0.71, 0.98)

Effect $2P = 0.03$

FIG A3. Stratified analysis of relapse-free survival. CR, complete remission; MRD, measurable residual disease.
AML17: Consolidation Randomisation
Overall Survival
Stratified analysis

	Events/Patients	Statistics	OR & 95% CI		
	4 courses	3 courses	(O−E) Var.	(4 courses : 3 courses)	
By comparison:					
MACE/MidAc					
ara−C					
Subtotal:					
By age:					
Age 15−29	25/62	25/58	0.3	12.4	1.02 (0.59, 1.78)
Age 30−39	147/444	177/452	−17.1	80.9	0.81 (0.65, 1.01)
Age 40−49	42/148	58/150	−10.3	24.9	0.94 (0.65, 1.38)
Age 50−59	68/164	73/162	−2.1	35.1	0.94 (0.68, 1.31)
Age 60−69	25/58	28/60	−1.1	13.2	0.92 (0.54, 1.58)
Subtotal:	172/506	202/510	−16.8	93.3	0.84 (0.68, 1.02)
Test for heterogeneity between subgroups: $\chi^2 = 0.6; P = .4$; NS					
By sex:					
Female					
Male					
Subtotal:					
By WBC:					
WBC 0−9.9					
WBC 10−49.9					
WBC 50−99.9					
WBC 100+					
Subtotal:					
By WHO performance status:					
Performance Status 0					
Performance Status 1					
Performance Status 2					
Performance Status 3+					
Subtotal:					
By diagnosis:					
de Novo					
Secondary					
High risk myelodysplastic syndrome					
Subtotal:					
By cytogenetics:					
Favorable					
Intermediate					
Subtotal:					
Unstratified					
Test for heterogeneity between subgroups: $\chi^2 = 0.4; P = .5$; NS					

![FIG A4. Stratified analysis of overall survival.](image-url)
AML17: Consolidation Randomisation

Overall Survival

	Events/Patients	Statistics	OR & 95% CI
	4 courses	3 courses	(O−E) Var.
ADE alone (not rand)	7/16	8/18	−0.2 3.7
ADE Alone	18/45	18/42	−0.7 9.0
ADE + GO 3mg	9/31	14/33	−2.5 5.7
ADE + GO 6mg	13/33	19/35	−2.9 8.0
DA + GO 3mg	17/34	16/35	1.2 8.2
DA + GO 6mg	14/35	18/34	−2.6 7.7
DA (60mg) − protocol 7	33/95	27/94	3.4 15.0
DA (90mg) − protocol 7	25/90	38/91	−8.0 15.7
DA 60mg − not rand.	36/126	43/128	−2.9 19.4
	Subtotal:	**201/510**	**−15.3 92.3**
Test for heterogeneity between subgroups: $\chi^2 = 6.0; P = .6; NS$			
By course 1 status:			
Confirmed CR MRD−	28/117	27/95	−3.5 13.4
Confirmed CR MRD +	50/116	60/128	−3.2 27.2
Not in remission	6/11	4/12	2.1 2.3
	Subtotal:	**91/235**	**−4.7 43.0**
Test for trend between subgroups: $\chi^2 = 1.5; P = .2; NS$			
By course 2 status:			
MRD −ve	38/139	37/113	−4.5 18.4
MRD +ve	28/49	36/64	0.3 15.6
	Subtotal:	**73/177**	**−4.1 34.0**
Test for heterogeneity between subgroups: $\chi^2 = 0.6; P = .4; NS$			

Test for stratification

	Effect	2P	2P
Unstratified	0.84	0.68	1.02

FIG A5. Analysis stratified by prior treatment and MRD status. CR, complete remission; MRD, measurable residual disease.
FIG A6. Sanger sequencing.
FIG A7. Analysis stratified by Sanger sequencing.
Characteristic	Randomly Assigned (n = 1017)	Not Randomly Assigned (n = 692)	P
Treatment*			.08
MACE/MidAc	120 (12%)	63 (9%)	
Ara-C	897 (88%)	629 (91%)	
Age			.2
16-29	134 (13%)	100 (14%)	
30-39	141 (14%)	104 (15%)	
40-49	298 (29%)	154 (22%)	
50-59	326 (32%)	207 (30%)	
60 +	118 (12%)	127 (18%)	
Median Range			
Sex			> .95
Female	556 (55%)	378 (55%)	
Male	461 (45%)	314 (45%)	
Diagnosis			< .001
De novo	974 (96%)	618 (89%)	
Secondary	14 (1%)	33 (5%)	
MDS	29 (3%)	41 (6%)	
WHO PS			.9
0	729 (72%)	480 (69%)	
1	248 (24%)	193 (28%)	
2	24 (2%)	12 (2%)	
3	15 (1%)	7 (1%)	
4	1 (< 0.5%)	0	
WBC			.7
0-9.9	505 (50%)	381 (55%)	
10-49.9	372 (37%)	204 (29%)	
50-99.9	95 (9%)	62 (9%)	
100 +	45 (4%)	45 (7%)	
Median Range			
Cytogenetics			< .0001
Favourable	234 (24%)	94 (15%)	
Intermediate	740 (76%)	498 (80%)	
Adverse	2 (< 0.5%)	27 (4%)	
Unknown	41	73	
FLT3 ITD			.01
WT	796 (83%)	485 (78%)	
Mutant	162 (17%)	137 (22%)	
Unknown	59	70	
NPM1c			.5
WT	577 (61%)	388 (63%)	
Mutant	368 (39%)	229 (37%)	
Unknown	72	75	

(continued on following page)
TABLE A1. Patient Characteristics of Those Eligible by Entry to Random Assignment (n = 1017) or Not (n = 692)\(^\text{back}\) (continued)

Characteristic	Randomly Assigned (n = 1017)	Not Randomly Assigned (n = 692)	\(P\)
FLT3 TKD			
WT	865 (91%)	575 (93%)	.2
Mutant	88 (9%)	45 (7%)	
Unknown	64	72	
Induction chemotherapy			.006
ADE (not randomly assigned)	34 (3%)	22 (3%)	
ADE	87 (9%)	39 (6%)	
ADE + GO3	64 (6%)	48 (7%)	
ADE + GO6	68 (7%)	31 (4%)	
DA + GO3	69 (7%)	39 (6%)	
DA + GO6	69 (7%)	43 (6%)	
DA 90 mg	190 (19%)	111 (16%)	
DA 60 mg	181 (18%)	128 (19%)	
DA 60 mg (not randomly assigned)	255 (25%)	231 (33%)	

Abbreviations: ADE, Ara-C, daunorubicin, and etoposide; DA, daunorubicin and Ara-C; MACE, amsacrine, Ara-C, and etoposide; ITD, internal tandem duplication; MDS, myelodysplastic syndrome; TKD, tyrosine kinase domain; WT, wild type.

\(^\text{a}\)Treatment is imputed for those not entering the random assignment based on entry to trial (what would have been the option at that stage).

TABLE A2. Clinical Outcomes by Treatment Armback

End Point	3 Courses, %	4 Courses, %	Unadjusted HR and CI	\(P\)	Adjusted HR and CI	Adjusted \(P\)
5-year cumulative incidence of relapse	58	50	0.81 (0.69 to 0.97)	.02	0.82 (0.69 to 0.97)	.02
5-year cumulative incidence of death in CR	6	6	1.04 (0.62 to 1.75)	.9	1.03 (0.61 to 1.73)	.9
5-year RFS	36	43	0.83 (0.71 to 0.98)	.03	0.84 (0.71 to 0.99)	.03
5-year OS	57	63	0.84 (0.69 to 1.03)	.09	0.84 (0.69 to 1.03)	.10
5-year survival postrelapse	31	34	0.93 (0.74 to 1.16)	.5	0.92 (0.74 to 1.15)	.5
5-year OS censored at SCT	63	72	0.85 (0.66 to 1.10)	.2	0.86 (0.66 to 1.12)	.3

Abbreviations: CR, complete remission; OS, overall survival; RFS, relapse-free survival; SCT, stem-cell transplantation.