Classical and SUSY solutions of the Boiti–Leon–Manna–Pempinelli equation

Laurent Delisle and Masoud Mosaddeghi
D´epartement de math´ematiques et de statistique, Universit´e de Montr´eal, CP 6128, Succ.
Centre-ville, Montr´eal, (QC) H3C 3J7, Canada
E-mail: delisle@dms.umontreal.ca

Received 6 November 2012, in final form 31 January 2013
Published 27 February 2013
Online at stacks.iop.org/JPhysA/46/115203

Abstract
In this paper, we propose the study of the Boiti–Leon–Manna–Pempinelli equation from two points of view: the classical and the supersymmetric. In the classical case, we construct new solutions of this equation from Wronskian formalism and the Hirota method. Then, we introduce an $\mathcal{N} = 1$ supersymmetric extension of the Boiti–Leon–Manna–Pempinelli equation. We thus produce a bilinear form and give multisolitons and superpartner solutions. As an application, we produce B¨acklund transformations.

PACS numbers: 02.30.Jr, 05.45.Yv, 11.30.Pb

1. Introduction

Soliton equations have been studied in the past largely in terms of integrability conditions and solutions [1–11]. These solutions have been discovered through numerous techniques such as B¨acklund transformations, inverse scattering methods, Lax pairs formulation, G'/G-expansions, Wronskian formulation and bilinear Hirota method. The later ones will be of interest in this paper. To this instance, the Hirota derivative is defined as

$$D^n_x(f \cdot g) = (\partial_{x_1} - \partial_{x_2})^n f(x_1)g(x_2)|_{x_1=x_2}.$$ (1)

In this paper, we consider the Boiti–Leon–Manna–Pempinelli (BLMP) equation

$$u_{yt} + u_{xxxy} - 3u_xu_{xy} - 3u_tu_{xx} = 0,$$ (2)

where $u = u(x, y, t)$ and subscripts represent partial differentiation with respect to the given variable. This equation has received some attention [11] and here we propose to give some new classical solutions through the Hirota and Wronskian methods. To do so, we note that the BLMP equation is strongly related to the Korteweg–de Vries (KdV) equation. Indeed, let us take

$$u(x, y, t) = p(z, t) = p(x + q(y), t),$$ (3)
where q is an arbitrary function of the variable y, then p satisfies

$$ p_{tt} + p_{zzzz} - 6p_p p_{zz} = 0. $$

Defining $h = p_z$, we see that h satisfies the KdV equation, which has the following bilinear form [4, 8, 9]:

$$ D_t \left(D_t^2 + D_x^2 \right) (f \cdot f) = 0, $$

(4)

using the change of variable $h = -2\bar{q}^2 \log f$. Thus, $p = -2\bar{q} \log f$ satisfies the BLMP equation for $f(z, t)$ a solution of the above bilinear equation associated with the KdV equation. This suggests that the BLMP equation possesses multisoliton and rational similarity solutions and many other solutions as we will demonstrate.

Without doing the reduction (3) in $u(x, y, t)$ but using the change of variable given above, we can bilinearize, in general, the BLMP equation (2) by casting

$$ u(x, y, t) = -2\bar{q} \log f(x, y, t) - m(y), $$

(5)

where $m = m(y)$ is an arbitrary function of y. One then obtains the bilinear equation

$$ \left(D_t \left(D_t^2 + D_x^2 \right) + 3m'(y) D_x^2 \right) (f \cdot f) = 0. $$

(6)

After considering the classical analysis of the BLMP equation, it is natural to ask what would be its supersymmetric (SUSY) counterpart. SUSY extensions of the nonlinear partial differential equation (PDE) has, in recent decades, been largely studied in terms of integrability and solutions, see for example [12–24, 27–30]. Here, we consider for the first time an $N = 1$ SUSY extension of the BLMP equation (2).

To produce an $N = 1$ SUSY extension of the BLMP equation, we extend, as usual, the space (x, y, t) to the superspace $(x, y, t; \theta)$ [25] where θ is a Grassmann variable which satisfies $\theta^2 = 0$. As usual, we consider a fermionic superfield $\Phi(x, y, t; \theta)$ to get non-trivial SUSY extensions [12, 13, 15, 16, 18]. An $N = 1$ SUSY extension of the BLMP equation (2) is given as

$$ D_y^2 \Phi_t + D_x^2 D_y \Phi - 3D_x D_t \left(D_x^2 \Phi D_t D_x^2 \Phi \right) = 0, $$

(7)

where D_x and D_t denote the supercovariant derivatives defined as

$$ D_x = \partial_0 + \theta \partial_x, \quad D_t = \partial_0 + \theta \partial_t, \quad D_x^2 = \partial_x, \quad D_y^2 = \partial_y. $$

(8)

Using the finite Taylor expansion

$$ \Phi(x, y, t; \theta) = \xi(x, y, t) + \theta u(x, y, t), $$

(9)

where ξ is a complex-valued fermionic (odd) function and u is a complex-valued bosonic (even) function, we obtain a set of two equations

$$ u_{tt} + u_{xxxx} - 3u_u u_t - 3u_x u_{xy} + 3\xi_x \xi_{xxxx} = 0, $$

(10)

$$ \xi_{tt} + \xi_{xxxx} - 3u_x \xi_t - 3u_x \xi_{xy} = 0. $$

(11)

In the fermionic limit where ξ is set to zero, we retrieve the classical BLMP equation as expected.

As in the classical case, the SUSY BLMP equation is related to the SUSY KdV equation. Indeed, supposing that $\xi(x, y, t) = \sqrt{q(y)} \chi(z, t)$ and $u(x, y, t) = v(z, t)$ where $z = x + q(y)$, then the above set of equations leads to

$$ v_{tt} + v_{zzzz} - 6v_z v_{zz} + 3\chi_z \chi_{zzzz} = 0, $$

(12)

$$ \chi_t + \chi_{zzzz} - 3\chi_z v_z = 0. $$

(13)
In the fermionic limit, we obtain the classical KdV equation for the variable v. Equations (12) and (13) become the SUSY KdV equation first proposed by Manin and Radul [31] after identifying $\chi_c = \varphi$. We thus get a series of solutions of the SUSY BLMP equation using this procedure.

In section 2, we give new classical solutions of the BLMP equation using the Wronskian and Hirota bilinear formulation. In section 3, we introduce the SUSY Bell polynomials which will be the key ingredient of our analysis. In section 4, we give solutions of the SUSY BLMP equation, e.g. soliton and periodic solutions. An attempt has been made to find the superpartner solutions of the given classical solutions u of the BLMP equation. In section 5, we produce bilinear Bäcklund transformations using the SUSY Bell polynomials described in section 3.

2. New classical solutions

In the introduction, we have shown a link between the BLMP equation and the KdV equation. It means that, for example, we can produce rational similarity solutions for the BLMP equation based on the corresponding ones for KdV. Indeed, for the rational similarity solutions \[1, 2, 4, 5, 7, 10\], we obtain rational, positon, negaton and complexiton solutions of the BLMP equation. To this instance, we look for solutions of the given classical solutions f of the BLMP equation, e.g. soliton and periodic solutions. An attempt has been made to find the superpartner solutions of the corresponding ones for KdV.

Using a Wronskian formulation for the KdV equation \[3, 6, 8\], we obtain rational, positon, negaton and complexiton solutions of the BLMP equation. To this instance, we look for solutions of the following form:

\[f = \det(H^{(0)}, H^{(1)}, \ldots, H^{(N-1)}), \]

where $H = H^{(0)} = (h_1, h_2, \ldots, h_N)^T$ and $H^{(i)} = \frac{\partial^i}{\partial t^i}H$ for $i = 1, 2, \ldots, N - 1$. The resulting function $u = -2\delta t \log f$ is called a Wronskian solution of order N. The Wronskian solution requires \[3, 6, 8, 11\] that the functions h_i satisfy the following linear PDEs:

\[-h_{i,zz} = \lambda_i h_i, \quad -h_{i,t} = -4h_{i,zzz}, \]

for $i = 1, 2, \ldots, N$. When λ_i is real, we obtain three cases of solutions: rational ($\lambda_i = 0$), positon ($\lambda_i > 0$) and negaton ($\lambda_i < 0$). For the complexiton solution, the eigenvalues λ_i are supposed to be complex.
Figure 1. From left to right, a two-soliton solution (14) for \(N = 2 (\kappa_1 = \frac{1}{2}, \kappa_2 = 1) \) and \(t = 20 \), a negaton of second order (17) \((\gamma_1 = 1)\) and a positon of second order (18) \((\gamma_1 = 1)\) for \(z = x + q(y) \) and \(t = 2 \).

Figure 2. From left to right, a complexiton (19) \((\alpha = \beta = 1)\), a rational-soliton (20) and a rational-positon (21) solutions for \(z = x + q(y), t = 2 \) and \(\gamma_1 = 1 \).

Here we give some examples and refer the interested readers to [3, 6, 8, 11] for further discussions on the Wronskian solutions.

A negaton solution of second order

\[
\begin{align*}
\mu_n(z, t, \gamma_1) &= \frac{8\gamma_1 \cosh^2 \left(\gamma_1 \left(z - 4\gamma_2^2 t \right) \right)}{2\gamma_1 \left(12\gamma_2^2 t - z \right) - \sinh \left(2\gamma_1 \left(z - 4\gamma_2^2 t \right) \right)} \\
&= \frac{8\gamma_1 \sinh^2 \left(\gamma_1 \left(z - 4\gamma_2^2 t \right) \right)}{2\gamma_1 \left(12\gamma_2^2 t + z \right) + \cosh \left(2\gamma_1 \left(z + 4\gamma_2^2 t \right) \right)} \\
&= \frac{-2\gamma_2^2 z}{\gamma_1 z \tanh \left(\gamma_1 \left(z - 4\gamma_2^2 t \right) \right) - 1} \\
&= \frac{-2\gamma_2^2 z}{\gamma_1 z \tanh \left(\gamma_1 \left(z + 4\gamma_2^2 t \right) \right) + 1}.
\end{align*}
\]

In figures 1 and 2, we can enjoy the behaviour of the above solutions.
In the general case, one could be interested in solving the bilinear equation (6) and retrieve, for example, a general travelling wave solution. Indeed, if the following constraints are supposed:

\[f = f(w) = f \left(ax + \frac{1}{a} m(y) - 4a^2 t \right), \quad f_{ww} = \alpha f_w + \frac{1}{4} (1 - \alpha^2) f, \]

where \(\alpha \) is an arbitrary complex constant, then the bilinear form (6) is automatically satisfied and we obtain a solution of the BLMP equation

\[u = -2a \partial_w \log \left(c_1 e^{\frac{1}{2} (1+\alpha) w} + c_2 e^{\frac{1}{2} (1-\alpha) w} \right) - m(y), \]

where \(c_1 \) and \(c_2 \) are integration constants and \(m = m(y) \) is an arbitrary function of the variable \(y \) used in (5) to bilinearize the BLMP equation. To our knowledge, the above solution is new. Here, we give an example for \(\alpha = 0 \) and \(c_1 = c_2 = 1 \); one obtains the kink-type solution

\[u(x, y, t) = -a \tanh \left(\frac{w}{2} \right) - m(y). \]

Most of the above solutions are new and will be useful in subsequent sections to construct superpartners of the SUSY BLMP equation.

3. SUSY extension of the Bell polynomials

The Bell polynomials are known as an alternative to tedious calculations of finding a bilinear form of an equation [11, 22]. Indeed, we are able to rewrite the equation in terms of the Bell polynomials and to obtain simultaneously the change of variable and the bilinear form of the studied equation. For more details, we refer the reader to [22].

For our present analysis, we introduce a particular case of the SUSY Bell polynomials. We refer the interested reader to [22] for a more general introduction to the SUSY Bell polynomials.

Let \(A(X; \theta) \) be a superdifferentiable bosonic superfield [25] where \(X = (x, y, t) \). The super Bell polynomials are defined as

\[Y_{l X, (k, k)}(A) = Y_{l X, (k, k)}(A_{l X, (k, k)}) = e^{-A} D^{l}_X \partial_Y^k \partial_Y^k \partial_Y^k \partial_Y^k A^k, \]

where \(l \cdot X = (l_x, l_y, l_t) \) and \(D_x \) and \(D_y \) are the supercovariant derivatives defined in (8).

The super Bell polynomials enjoy a remarkable property given by

\[Y_{l X, (k, k)}(A) |_{A = \ln f} = \frac{f_{l X, (k, k)}}{f} := \frac{D^{l}_X \partial_Y^k \partial_Y^k \partial_Y^k \partial_Y^k f(X; \theta)}{f(X; \theta)}. \]

The super binary polynomials are defined, using the super Bell polynomials, as

\[Y_{l X, (k, k)}(v, w) = Y_{l X, (k, k)}(A_{l X, (n, n)}), \]

where the different derivatives of \(A \) are replaced by the superfields \(v \) and \(w \) using the following procedure:

\[A_{l X, (n, n)} = \begin{cases} v_{l X, (n, n)}, & s_x + s_y + s_t + n_x + n_y \text{ is odd} \\ w_{l X, (n, n)}, & s_x + s_y + s_t + n_x + n_y \text{ is even}. \end{cases} \]

As an example, we have that

\[Y_{(3x, 0),0,0}(A) = A_{vxx} + 3A_{vxx} + A^3_v, \]

\[Y_{(3x, 0),0,0}(v, w) = v_{vxx} + 3v_{vxx} + v^3. \]

The super binary Bell polynomials are related to the SUSY Hirota derivative [22]. Indeed, we have the following relation:

\[Y_{l X, (k, k)} \left(v = \ln \frac{f}{g}, w = \ln fg \right) = (fg)^{-1} S^{l}_v S^{k}_w D^{l}_v D^{k}_w (f \cdot g), \]

where

\[\tilde{S}_x = \frac{1}{2} (X_1 - X_2), \tilde{S}_y = \frac{1}{4} (X_2 - X_1), \tilde{S}_t = \frac{1}{4} (X_1 + X_2), \tilde{S}_{vx} = \frac{1}{4} (X_1 X_2 - X_1 X_2), \tilde{S}_{vy} = \frac{1}{8} (X_2 X_2 - X_1 X_2), \tilde{S}_{vt} = \frac{1}{16} (X_1 X_2 - X_1 X_2), \tilde{S}_{vxv} = \frac{1}{16} (X_1 X_2 - X_1 X_2). \]
where the super Hirota derivative is defined as
\[
S_μ(f \cdot g) = (D_μ - D_ν)f(X, θ)g(X', θ')|_{X=X', θ=θ}.
\] (27)

The super \(P\)-polynomials [22] are a particular class of (26) where we take \(f = g\). We have that
\[
P_{iX,(k, k_2)}(w) = \mathcal{Y}_{iX,(k, k_2)}(0, w = 2 \ln g) = g^{-2}S^0_kS^0_fD^f_0D^f_1D^f_1(\theta \cdot g).
\] (28)

A direct consequence of (26) is that \(P_{iX,(k, k_2)}(w) = 0\) whenever \(l_1 + l_2 + l_3 + k_3\) is odd.

4. Bilinear form, multisolitons and superpartners

In this section, we propose a bilinear form of the SUSY BLMP equation (7) and give multisolitons and superpartner solutions. In order to get this form, let us cast the change of variable \(\Phi = D_yF + Λ(y; θ)\) where \(F\) is a bosonic superfield, \(Λ\) is a fermionic superfield and integrate with respect to \(D_x\) and secondly by \(D_y\). We thus obtain the fermionic equation
\[
D_x(F + D^2_yF) - 3(D^2_yF)D_xD^2_yF - 3(D_yD_xΛ)F_{xx} = 0,
\] (29)

where the constants of integration have been set to zero and we recall that \(D^2_y = \partial_y\). Using the following \(P\)-polynomials:
\[
P_{0(0,0),(0,1)}(w) = D_xw_3, \quad P_{3(0,0),(0,1)}(w) = D_xw_{xxx} + 3w_{xx}D_xw_3,
\]
equation (29) can be rewritten as the polynomial equation
\[
P_{0(0,0),(0,1)}(-F) + P_{3(0,0),(0,1)}(-F) - 3(D_yD_xΛ)P_{(2x,0),(0,0)}(-F) = 0.
\]

We thus cast \(F = -2 \ln g\) and we obtain the bilinear form of the SUSY BLMP equation (7) given by
\[
(S^3_3D^3_x + S^1_3D^3_x - 3(D_yD_xΛ)D^3_x)(g \cdot g) = 0.
\] (30)

Note that if \(Λ(y; θ) = η(y) + θc(y)\), then we obtain \(D_yD_xΛ = θc(y)\) and, in terms of components, if \(g = g^θ + θg^c\), then the bilinear equation (30) becomes
\[
Q_1(D_x, D_y, D_3)(g^θ \cdot g^θ) = (D_x(D_y + D^3_x) - 3c(y)D^2_x)(g^θ \cdot g^θ) = 0,
\]
\[
Q_2(D_x, D_y, D_3)(g^θ \cdot g^c) = (D_y + D^3_x)(g^θ \cdot g^c) = 0.
\]

In order to find the dispersion relations of \(g^θ\) and \(g^c\), one has to solve the set of equations
\[
Q_1(κ, ρ, ω) = 0, \quad Q_2(κ, ρ, ω) = 0,
\]
which is equivalent to
\[
ρ(ω + κ^3) - 3c(y)κ^2 = 0, \quad ω + κ^3 = 0.
\]

Thus, we obtain \(c(y) = 0\). This shows that to obtain non-trivial multisoliton solutions, one has to consider the super bilinear form
\[
S_3(D_x + D^3_x)(g \cdot g) = 0.
\] (31)

4.1. Multisolitons

As usual, in order to obtain super multisolitons of the SUSY BLMP equation (7), we use the \(ε\)-expansion of \(g\),
\[
g = 1 + εg_1 + ε^2g_2 + \cdots = \sum_{k=0}^{∞} ε^k g_k
\]
and substitute this expansion in the super bilinear form (31). For the super travelling wave or one super soliton solution, we take
\[g_1 = e^{\phi_1}, \quad \phi_1 = \kappa_1 x + \rho_1 y + \omega_1 t + \theta \zeta_1 = \varphi_1 + \theta \zeta_1 \]
and \(g_1 = 0 \) for all \(i \geq 2 \). Introducing \(g \) in the super bilinear form (31), we obtain the dispersive relation \(\omega_1 = -\kappa_1^2 \). For the two super soliton solutions, we take
\[g_1 = e^{\phi_1} + e^{\phi_2}, \quad g_2 = A_{12} \left(1 + 2 \frac{\zeta_1 \zeta_2}{\rho_2 - \rho_1} \right) e^{\rho_1 + \rho_2 - \theta (\zeta_{12} + \zeta_{222})} \]
and \(g_1 = 0 \) for all \(i \geq 3 \). In this case, we obtain the even relations for \(i = 1, 2 \)
\[\omega_i = -\kappa_i^2, \quad A_{12} = \frac{(\kappa_1 - \kappa_2) (\rho_1 - \rho_2)}{(\kappa_1 + \kappa_2) (\rho_1 + \rho_2)}, \quad \alpha_{ij} = \frac{\rho_i + \rho_j}{\rho_i - \rho_j}. \]
The generalization to super multisoliton solutions is direct following the procedure described in [16]. An interesting feature of the above solution is the absence of fermionic constraints.

We refer the readers to [12, 13, 15–19, 21, 23, 24] for more details on the construction of SUSY multisoliton solutions.

4.2. Superpartners

In section 2, we have presented numerous classical solutions of the BLMP equation (2). Here, we obtain for some of them the superpartner \(\xi = \xi k \), where \(\xi \) is an odd constant and \(k = k(x, y, t) \) using \(\Phi = \xi + \theta u \).

Let us consider solution (22) which takes the form
\[u_{(d_1, d_2)} = -a (1 + a) + \frac{2a(d_1 - d_2)}{d_1 - d_2 + (d_1 + d_2)e^w} - m(y), \]
where \(d_1 = c_1 + c_2 \) and \(d_2 = c_1 - c_2 \). In this case, defining \(\psi = \xi \varphi \), we see that \(\psi = \psi (w) \) satisfies the time-independent Schrödinger equation [4, 8, 9]
\[\psi_{ww} = \left(4 - \frac{3(d_1^2 - d_2^2)}{2 (d_1 \cosh (\frac{w}{2}) + d_2 \sinh (\frac{w}{2}))^2} \right) \psi. \]

It can be solved using the change of variable \(\mu = \tanh (\frac{w}{2}) \). We obtain the solution \(\xi = \xi k \) where \(\xi^2 = 0 \) and
\[k_{(d_1, d_2)}(w) = \beta_1 \left(4d_1d_2(11d_1^2 + d_2^2) \cosh \frac{w}{2} + 15d_1d_2(d_1^2 - d_2^2) \cosh \frac{3w}{2} \right. \\
+ 5d_1d_2(d_1^2 - d_2^2) \cosh \frac{5w}{2} + 4d_2^2 (11d_1^2 + d_2^2) \sinh \frac{w}{2} \\
\left. - 5(\frac{d_1^2 - d_2^2}{2})(4d_1^2 - d_2^2) \sinh \frac{3w}{2} - (d_1^2 - d_2^2)(4d_1^2 + d_2^2) \sinh \frac{5w}{2} \right) \]
\[\left/ \left(d_1 \cosh \frac{w}{2} + d_2 \sinh \frac{w}{2} \right) + \beta_2 \right(4d_1(5d_1^2 - d_2^2)(d_1^2 + d_2^2) \cosh \frac{w}{2} \right. \\
+ 5d_1(d_1^2 - d_2^2)(5d_1^2 - 3d_2^2) \cosh \frac{3w}{2} + 5d_1(d_1^2 - d_2^2) \cosh \frac{5w}{2} \right. \\
+ 4d_2(5d_1^2 - d_2^2)(d_1^2 + d_2^2) \sinh \frac{w}{2} + 5d_2(d_1^2 - d_2^2) \sinh \frac{3w}{2} \right. \\
\left. + d_2(d_1^2 - d_2^2)(9d_1^2 + d_2^2) \sinh \frac{5w}{2} \right) \right/ \left(d_1 \cosh \frac{w}{2} + d_2 \sinh \frac{w}{2} \right) + \beta_3, \]
where the \(\beta_3 \) are constants of integration.
Let us give some relevant special solutions. For the case \((d_1, d_2) = (1, 0)\) (corresponding to the Pöschl–Teller potential [26] in the Schrödinger equation), we obtain the kink-type (soliton) solution

\[u_{(1,0)} = -a \tanh \left(\frac{w}{2} \right) - a \alpha - m(y) \]

and the corresponding superpartner \(\xi_{(1,0)} = \xi k_{(1,0)} \) where

\[k_{(1,0)}(w) = \beta_3 - 8 \beta_1 \left(4 \sinh(w) + \sinh(2w) - 2 \tanh \left(\frac{w}{2} \right) \right) + 10 \beta_2 (4 \cosh(w) + \cosh(2w)). \]

The case \((d_1, d_2) = (0, 1)\) leads to

\[u_{(0,1)} = -a \coth \left(\frac{w}{2} \right) - a \alpha - m(y) \]

with the corresponding superpartner \(\xi_{(0,1)} = \xi k_{(0,1)} \) where

\[k_{(0,1)}(w) = \beta_3 + 2(\beta_1 - \beta_2)(-4 \cosh(w) + \cosh(2w)). \]

The above solutions have never been considered and we want to insist on the novelty which is due to a new approach of solving SUSY models.

5. Bilinear Bäcklund transformations

Bäcklund transformations [3, 4, 8, 9, 11, 20, 27–29] have been shown to be useful in constructing new solutions from known ones and give nonlinear superposition formulas.

The above sections have exhibited new solutions of the classical and SUSY BLMP equation. Here, we propose a nice application of the SUSY Bell polynomials applied to the SUSY case. Indeed, we propose to find bilinear Bäcklund transformations. To achieve this, we define

\[L(\Phi) = D_\tau \Phi_{\tau} + D_x \Phi_{xxx} - 3D_x D_y (\Phi x D_\tau \Phi_x + \Phi_{xxx} D_\tau D_x \Lambda) \]

and we suppose that \(\psi = -2 \ln \tau \) and \(\eta = -2 \ln \mu \) are such that \(L(\psi) = L(\eta) = 0 \). In order to use the super binary Bell polynomials, we define new variables

\[v = -\frac{\psi - \eta}{2} = \ln \left(\frac{\tau}{\mu} \right), \quad w = -\frac{\psi + \eta}{2} = \ln(\tau \mu) \]

and, in terms of \(v \) and \(w \), we have the following equation:

\[L(\psi) - L(\eta) = -2 D_x v_{\tau} + D_x v_{xxx} - 6 D_x D_y (v_x D_x w_x + w_x D_x v_x - v_x^2 D_x^2 \Lambda) = 0. \]

In order to get bilinear Bäcklund transformations of the SUSY BLMP equation, we fix the suitable constraint

\[\mathcal{V}_{(x,0),(0,1)}(v, w) - D_x D_x \Lambda = D_x w_x + v_x D_x v - D_x D_x \Lambda = 0. \]

Then one can show, using the above constraint, that

\[L(\psi) - L(\eta) = -2 D_x (\mathcal{V}_{(x,0),(0,1)}(v, w) + \mathcal{V}_{(x,0),(0,0)}(v, w)) \]

and thus we impose the polynomial constraints

\[\mathcal{V}_{(x,0),(0,1)}(v, w) - D_x D_x \Lambda = 0, \quad \mathcal{V}_{(0,0),(1,0)}(v, w) + \mathcal{V}_{(x,0),(0,0)}(v, w) = 0, \]

which leads, together with the change of variables (36), to a set of bilinear transformations

\[(S_x D_x - D_x D_x \Lambda)(\tau \cdot \mu) = 0, \quad (D_x + D_x^3)(\tau \cdot \mu) = 0. \]
The above transformation is similar to the bilinear form of the SUSY mKdV equation proposed in [29] identifying the variable y with the variable x. It can be viewed as a SUSY generalization of a bilinear Miura transformation. Furthermore, taking $\tau(x, y; t; \theta) = f(x, y, t)$ and $\mu(x, y; t; \theta) = g(x, y, t)$ in (37), one obtains the set of bilinear transformations obtained in [11] for the classical BLMP equation given by

$$
(D_y D_x - c'(y))(f \cdot g) = 0, \quad (D_t + D^3_x)(f \cdot g) = 0.
$$

We thus use this transformation to get a set of bilinear Bäcklund transformations of the SUSY BLMP equation. Indeed, we have the following proposition:

Proposition. Suppose that (τ, μ) is a solution of the bilinear equations (37), then (τ', μ') satisfying the following bilinear relations:

$$
\mathcal{D}_x (\tau \cdot \mu') - \alpha \mathcal{D}_x (\mu \cdot \tau') = \beta \tau \mu' - \alpha \beta \tau' \mu,
$$

$$
\mathcal{S}_x (\tau \cdot \mu') + \alpha \mathcal{S}_x (\mu \cdot \tau') = \gamma \tau \mu' + \alpha \gamma \tau' \mu,
$$

$$
(D_t + D^3_x - 3\beta D^2_x + 3\beta^2 D_x)(\tau \cdot \tau') = 0,
$$

$$
(D_t + D^3_x - 3\beta D^2_x + 3\beta^2 D_x)(\mu \cdot \mu') = 0,
$$

solves the bilinear equations (37), where α and β are even constants and γ is an odd constant.

Proof 1. The proof of this proposition is similar to the one presented in [29]. Indeed, we take

$$
\mathcal{P}_1 = 2(\tau' \mu' (\mathcal{S}_x D_x - D_x D_x \Lambda)(\tau \cdot \mu) - \tau \mu (\mathcal{S}_x D_x - D_x D_x \Lambda)(\tau' \cdot \mu')) = 0,
$$

$$
\mathcal{P}_2 = \tau' \mu' (D_t + D^3_x)(\tau \cdot \mu) + \tau \mu (D_t + D^3_x)(\tau' \cdot \mu') = 0,
$$

and show that $\mathcal{P}_1 = \mathcal{P}_2 = 0$ using the above bilinear relations. The proof follows noting that \mathcal{P}_1 is equivalent to

$$
\mathcal{P}_1 = 2(\tau' \mu' \mathcal{S}_x D_x (\tau \cdot \mu) - \tau \mu \mathcal{S}_x D_x (\tau' \cdot \mu')).
$$

The above Bäcklund transformations associated with the SUSY BLMP equation are related to the ones for the SUSY mKdV equation [29] and the $N = 2$ SUSY KdV equation [20] when one identifies the variable y with the variable x.

6. Conclusion

We started this paper with an extensive presentation of new solutions of the BLMP equation. Indeed, we produced using Hirota and Wronskian methods numerous solutions, e.g. rational, soliton, positon, negaton solutions. Most solutions have been introduced for the first time.

We also presented a new SUSY BLMP equation. We studied the SUSY BLMP equation from different viewpoints using the beauty of the SUSY Bell polynomials. The novelty of this paper is the new approach consisting of finding the superpartners based on solving the linear equation (35).

Future work should turn to the application of the super Bell polynomials to $N = 2$ extensions of nonlinear partial differential equations e.g. the SUSY KdV equation [30].
Acknowledgments

LD acknowledges the support of a FQRNT doctoral research scholarship. The authors would like to give special thanks to Véronique Hussin for helpful discussions. LD would also like to thank the department of mathematical sciences of Durham University for its hospitality during the last stage of this paper. The authors would like to give special thanks to the referees for constructive remarks.

References

[1] Ablowitz M J and Satsuma J 1978 Solitons and rational solutions of nonlinear evolution equations J. Math. Phys. 19 2180–6
[2] Kametaka Y 1983 On rational similarity solutions of KdV and mKdV equations Proc. Japan Acad. 59 407–9
[3] Nimmo J J C and Freeman N C 1984 The use of Bäcklund transformations in obtaining N-soliton solutions in Wronskian form J. Phys. A: Math. Gen. 17 1415–24
[4] Drazin P G and Johnson R S 1989 Solitons: An Introduction (Cambridge: Cambridge University Press)
[5] Fukutani S, Okamoto K and Umemura H 2000 Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations Nagoya Math. J. 159 179–200
[6] Ma W X 2002 Complextion solutions to the Korteweg-de Vries equation Phys. Lett. A 301 35–44
[7] Clarkson P A 2003 Remarks on the Yablonskii-vorob’ev polynomials Phys. Lett. A 319 337–44
[8] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[9] Mikhailov A V 2009 Integrability (Lecture Notes in Physics vol 767) (Berlin: Springer)
[10] Zhang M-X, Liu Q P, Shen Y and Wu K 2008 Bilinear approach to \(N = 2 \) supersymmetric KdV equations Sci. China A 52 189–93
[11] Ghosh S and Sarma D 2003 Bilinearization of \(N = 1 \) supersymmetric modified KdV equations Nonlinearity 16 411–8
[12] Ghosh S and Sarma D 2003 Soliton solutions of the \(N = 2 \) supersymmetric KdV equation Phys. Lett. B 522 189–93
[13] Ghosh S and Sarma D 2003 New solution of the \(N = 2 \) supersymmetric KdV equation via Hirota methods J. Phys.: Conf. Ser. 343 012030
[14] Delisle L and Hussin V 2012 Soliton and similarity solutions of \(N = 2, 4 \) supersymmetric equations Symmetry 4 441–51
[15] Delisle L and Hussin V 2012 New solution of the \(N = 2 \) supersymmetric KdV equation via Hirota methods J. Phys.: Conf. Ser. 343 012030
[16] Conwell J F 1989 Group Theory in Physics: Supersymmetries and Infinite-Dimensional Algebras (Techniques of Physics vol 3) (New York: Academic)
[17] Popowicz Z 1990 The fully supersymmetric AKNS equations J. Phys. A: Math. Gen. 23 1127–36
[28] Liu Q P and Xie Y F 2004 Nonlinear superposition formula for $N = 1$ supersymmetric KdV equation Phys. Lett. A 325 139–43
[29] Liu Q P, Hu X-B and Zhang M-X 2005 Supersymmetric modified Korteweg–de Vries equation: bilinear approach Nonlinearity 18 1597–603
[30] Labelle P and Mathieu P 1991 A new supersymmetric Korteweg–de Vries equation J. Math. Phys. 32 923–7
[31] Manin Y I and Radul A O 1985 A supersymmetric extension of the Kadomtsev–petviashvili hierarchy Commun. Math. Phys. 98 65–77