Pathogenesis of Crohn’s disease
Ray Boyapati¹,², Jack Satsangi¹,² and Gwo-Tzer Ho*¹,²

Addresses: ¹ Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK; ² Gastrointestinal Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK

* Corresponding author: Gwo-Tzer Ho (gho@ed.ac.uk)

F1000Prime Reports 2015, 7:44 (doi:10.12703/P7-44)

All F1000Prime Reports articles are distributed under the terms of the Creative Commons Attribution-Non Commercial License (http://creativecommons.org/licenses/by-nc/3.0/legalcode), which permits non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

The electronic version of this article is the complete one and can be found at: http://f1000.com/prime/reports/b/7/44

Abstract
Significant progress in our understanding of Crohn’s disease (CD), an archetypal common, complex disease, has now been achieved. Our ability to interrogate the deep complexities of the biological processes involved in maintaining gut mucosal homeostasis is a major over-riding factor underpinning this rapid progress. Key studies now offer many novel and expansive insights into the interacting roles of genetic susceptibility, immune function, and the gut microbiota in CD. Here, we provide overviews of these recent advances and new mechanistic themes, and address the challenges and prospects for translation from concept to clinic.

“I am on the edge of mysteries and the veil is getting thinner and thinner.”
Louis Pasteur

Introduction
CD is a debilitating and incurable chronic inflammatory bowel disease (IBD) affecting more than 2.5 million individuals in the Western world and has an increasing incidence in the developing world [1]. CD is characterized by mucosal ulceration and inflammation, which may occur anywhere along the gastrointestinal tract but most commonly affect the distal small intestine. Distinguishing features include discontinuous, transmural inflammation involving the whole thickness of the bowel wall, and an inflammatory response associated with lymphoid aggregates and granulomas [2]. Current treatments include traditional anti-inflammatory agents (corticosteroids), immunomodulators (thiopurines and methotrexate), biological agents with antibodies directed against tumor necrosis factor (anti-TNF), antibiotics, and surgery. Approximately half of CD individuals will require surgery within 10 years of diagnosis and most will experience a disabling course requiring frequent corticosteroids or escalation in immunosuppressive treatment [3,4]. As the most optimal current medical approach (combination of anti-TNF and thiopurines) is effective in only approximately 50% [5], there remains a significant unmet need for novel therapeutics to prevent, alter the natural history of, and ultimately cure CD.

Although the etiology is complex, the most widely accepted hypothesis purports CD as an immune-mediated condition in genetically susceptible individuals, where disease onset is triggered by environmental factors that perturb the mucosal barrier, alter the healthy balance of the gut microbiota, and abnormally stimulate gut immune responses. These three main factors (genetics, gut immune response, and the microbiota) are influenced by the individual’s environmental exposures or triggers (the ‘exposome’) to engage different submechanisms giving rise to ‘Crohn’s diseases’, a concept which is increasingly replacing the traditional paradigm of ‘Crohn’s disease’ as a singular clinical entity with one dominant mechanism (Figure 1). Advances in these fields have catalyzed a decade of spectacular progress in our understanding of CD: a vast and rapidly expanding field with over 18,000 publications in the last 10 years. Here, we provide overviews on CD genetics, immunology, and microbiology (each an enormous area on its own), focus on the key studies which have underpinned progress in our molecular understanding, set them into context, and discuss how these concepts and biological
pathways can be translated into direct clinical application in CD.

Genetics
The successful genome-wide association studies (GWASs) have provided a rational framework for new mechanistic insights and directions for research in CD. The most complete picture is from the recent meta-analysis of 15 IBD scans (including ulcerative colitis, UC), involving a combined total of more than 75,000 cases and controls [6]. Overall, 163 IBD loci that meet genome-wide significance thresholds were discovered; this is substantially more than other complex diseases. Most genetic associations are shared between CD and...
UC (110 loci), and 30 loci were specifically associated with CD (Figure 2A). These most strongly and consistently implicate themes involving defective intracellular bacteria killing and innate immunity (CARD15/NOD2, IRGM, IL23R, LRRK2, and ATG16L1) and de-regulated adaptive immune responses, namely the interleukin-23 (IL-23) and T helper 17 (Th17) cell pathway (IL23R, IL12B (encoding IL-12p40), STAT3, JAK2, and TYK2) [7]. Dendritic cells (DCs) followed by CD4 T, natural killer (NK), and NKT cells showed the highest enrichment of these susceptibility gene sets when tested in a panel of immune cell subsets, indicating a major role for these cells in CD pathogenesis [6]. It is noteworthy that these GWASs were based predominantly on North American and European populations; the International IBD genetics consortium is in the advanced stages of an expanded meta-analysis of association studies involving non-Caucasian populations together with the populations studied in Europe and North America [8].

On the basis of the GWAS data, the susceptible loci reported so far contribute only 14% of total disease variance [6], but this may be an underestimate. Targeted deep sequencing of key genetic loci has so far shown a negligible impact of rare genetic variants [9], although more detailed and larger-scale whole-genome sequencing studies will provide clearer insight. It is also pertinent that more sophisticated studies involving integrated multi-omics analysis (with profiling panels such as transcriptomics, metabolomics, and epigenomics) are in progress and are likely to provide new insights. Epigenetics is an emerging area of interest [10] in which genome-wide methylation-association studies have identified differential methylation in a number of GWAS-identified susceptibility genes, including TNF, MIR21, HLA, and NOD2, and the Th17 pathway [11,12]. The immediate challenge is to clarify how these genetic variants influence disease-causative mechanisms in CD. Here, we prioritize our review on NOD2, autophagy, and Th17 immune responses as the three areas most strongly implicated in CD pathogenesis.

NOD2

NOD2 is a cytosolic pattern recognition receptor (PRR) that controls immunity against intracellular bacteria. Pre-GWAS fine-mapping studies highlighted the NOD2 gene [13,14] as one of the ‘lowest-hanging fruits’ in terms of genetic susceptibility. Three polymorphisms in this gene (amino-acid substitutions Arg702Trp and Gly908Arg and the frameshift F1007insC) are present in 40% of Western patients with CD [15] and are all found within the leucine-rich repeat region responsible for the recognition of muramyl dipeptide (MDP), a peptidoglycan component of the bacterial cell wall [16]. However, they are absent in Eastern population groups and have a varied prevalence in different Caucasian populations. Of interest, mutations within the NOD2 gene are causative of Blau syndrome, a granulomatous inflammatory disorder affecting the eyes, skin, and joints [17].

NOD2 is expressed in a limited number of tissues that include intestinal epithelial cells (mainly Paneth cells) and monocyte-derived immune cells residing in the lamina propria [18,19]. In both human and murine studies, defects in NOD2 function can affect microbial sensing [20], Paneth cell function and anti-microbial peptide (AMP) production [21], antigen presentation [22], intracellular bacterial killing [23], and innate immune signaling, such as Toll-like receptor (TLR) function [24] and its regulatory role in turning off IL-23-driven Th17 responses [25]. In a recent study, NOD2 activated by microbiota-derived MDP could also promote intestinal stem cell viability and gut epithelial restitution, thus adding a further dimension to its complex role [26]. Overall, although the mechanisms by which NOD2 CD variants contribute to disease remain an enigmatic area, two major, non-mutually exclusive theories have emerged: (1) NOD2 provides critical host anti-bacterial defense and pro-inflammatory responses (Figure 2D), and (2) NOD2 acts to regulate innate immune responses (Figure 2E) [27]. NOD2 activation after recognition of MDP triggers nuclear factor-kappa-B (NF-κB)-dependent signaling [14] but is relatively weak in this respect compared with other PRRs, such as the TLRs [28]. NOD2 can synergize with other PRRs in differential gene regulation, and this synergy is lost in cells expressing CD variant NOD2 [28,29]. NOD2 plays a key role in amplifying the release of certain pro-inflammatory cytokines in this context, particularly IL-1β, IL-6, and IL-23, from DCs and macrophages [18,30]. In contrast, in its regulatory role, deficiency in NOD2 results in enhanced innate TLR signaling. In mice, TLR-mediated IL-12 production is increased in macrophages and DCs deficient in NOD2 [31]. MDP-mediated suppression of TLR-2 responses is enhanced with the normal NOD2 transgene compared with a frameshift polymorphism [32]. Furthermore, pretreatment of monocyte-derived macrophages with MDP leads to inhibition of pro-inflammatory responses to NOD2, IL-1β, and TLR2 and TLR4 in normal individuals but not of TLR-2- and TLR-4-induced responses in cells from CD patients with frameshift polymorphisms [33,34].

In addition to the direct role in innate immunity, several studies show that NOD2 indirectly modulates the gut microbiota, perhaps linked to defective AMP production by Paneth cells [21,35–38]. In mice, NOD2 deficiency does not result in colitis but in defective
processing of intracellular bacteria such as *Listeria monocytogenes* [18]. In humans, a cohort study found a significant association between NOD2 risk alleles and increased abundance of Enterobacteriaceae [39]. In mice, NOD2 deficiency is also associated with ileal dysbiosis [40–42] but this is not consistently replicated [43,44]. NOD2 facilitates autophagic targeting of bacterial pathogens via binding to the autophagy protein ATG16L1, to be discussed later [22,45].

The NOD2 interactome is incredibly complex (Table 1), and all respective network functions and interactions are potentially important in CD, as they are potential novel therapeutic or ‘druggable’ targets [12,27,46–50]. Overall,
Table 1. NOD2 interactome and functional networks

| Activation |
|-----------------|-----------------|-----------------|-----------------|
| ○ Muramyl dipeptide entry into cells (bacterial secretion systems and direct transportation into cytosol) |
| ○ Ligand-NOD2 interaction |
| ○ Cellular localization (for example, recruitment to the plasma membrane) |
| ○ Signaling (for example, RIPK2 interaction and nuclear factor-kappa-B signaling) |
| ○ Regulation (for example, cytoskeleton regulation, epistatic interactions, autoinhibition, and degradation) |
| ○ Effects |
| □ Inflammatory responses |
| □ Adaptive immune responses |
| □ Antimicrobial functions |
| □ Facilitating autophagy and xenophagy |
| □ Gut homeostasis (barrier function, microbiota, and gut epithelial restitution) |

NOD2, nucleotide-binding oligomerization domain containing 2; RIPK2, Receptor-interacting serine/threonine-protein kinase 2

NOD2 occupies a strategic hub at the host-microbial level involving autophagy, IL-23/Th17 responses, and gut homeostasis. Current data show that NOD2 CD variants disrupt these pathways, although we still need to understand their relative importance (for example, which pathway is dominant) in order to rationalize the translational potential of this knowledge.

Autophagy

Following on from NOD2, the discovery of polymorphisms in the autophagy genes (ATG16L1, IRGM, and LRRK2) from GWASs in CD has triggered significant research in this hitherto unknown area in IBD. Autophagy is a lysosomal degradation pathway that is essential for cellular survival, differentiation, development, and homeostasis [51]. Autophagy principally serves an adaptive role to protect organisms against diverse pathologies, including infections, cancer, neurodegeneration, and aging. During macroautophagy (herein autophagy), cytoplasmic material, including organelles, protein aggregates, and bacteria (xenophagy), is sequestered into double membrane-coated autophagosomes that subsequently fuse with endosomes and lysosomes where degradation can occur.

Loss of autophagy function appears to be a fundamental driver (Figure 2H), and, of the autophagy genes [52], studies into ATG16L1 provide the clearest insight into the pathogenic sequelae. The ATG16L1 protein plays an essential role in triggering all forms of autophagy involving the recruitment of microtubule-associated protein 1 light chain 3 (LC3) to membranes. Complex formation of ATG16L1 with ATG12-ATG5 defines the site of LC3 PE conjugation during autophagosome formation. Virtually all the risk of this locus is exerted by the rs2241880 single-nucleotide polymorphism (SNP) coding for a T300A substitution (present in approximately 50% of the general population with twofold increased risk). Recently, Murthy and colleagues [53] showed that amino acids 296 to 299 constitute a caspase cleavage motif in ATG16L1, and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. Here, death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased the degradation of the T300A or T316A variants of ATG16L1, resulting in diminished autophagy [53].

Two recent complementary studies demonstrate how a defective autophagic response to bacteria can contribute to CD. Cooney and colleagues [22] showed that autophagy cooperates with NOD2: in response to MDP, NOD2 induces autophagy via receptor-interacting serine/threonine-protein kinase 2 (RIPK2), ATG5, ATG7, and ATG16L1 in DCs. This initiates bacterial handling by direct engulfment and subsequent generation of major histocompatibility complex (MHC) class II for antigen-specific CD4+ T-cell responses in DCs [22]. In the second study, by Travassos and colleagues [45], NOD2 (and NOD1) was shown to recruit ATG16L1 to the plasma membrane at the bacterial entry site to initiate xenophagy. In mice, genetic knock-in of the T300A mutation results in altered cytokine signaling and decreased anti-bacterial response [54]. In a more recent study, ATG16L1 has been shown to negatively regulate NOD1 and NOD2 inflammatory signaling; interestingly, this occurs independently of its role in autophagy [55]. Hence, ATG16L1 may yet have a more complex role in gut inflammatory response.

In the case of another autophagy gene IRGM, a 20-kb deletion polymorphism immediately upstream is associated with CD [56]. Its mouse ortholog Irgm1 contributes to bacterial killing, and Irgm1-deficient mice exhibit increased susceptibility to infections with *Toxoplasma gondii*, *Salmonella typhimurium*, *L. monocytogenes*, and *Mycobacterium tuberculosis* [57–59]. Human macrophages infected with mycobacteria show increased bacterial survival when transfected with IRGM small interfering RNA (siRNA), indicating a role in the control of intracellular mycobacteria [60]. Interestingly, another variant associated with CD (c.313C>T) results in stronger microRNA-196 binding to IRGM and concomitant decrease in IRGM expression, leading to defective autophagy-mediated control of intracellular replication of CD-associated adherent-invasive *Escherichia coli* (AIEC) [61]. Irgm1 knockout leads to exaggerated colonic and ileal inflammation after dextran sulfate sodium (DSS) administration [62]. Of interest, ileitis is not usually a feature of DSS colitis, which suggests a selective function for Irgm1 here [63]. A role for Irgm1 in interferon (IFN)-dependent cellular homeostasis has been proposed by which Irgm1 provides a feedback signal to protect CD4+...
lymphocytes from IFN-γ-mediated death [64], and similar mechanisms may apply to other IFN-γ-responsive cell lineages [65]. Collectively, these findings implicate mouse Irgm1 in the regulation of intracellular pathogens or cellular homeostasis; understanding how human IRGM is regulated will be important in order to apply these findings to CD because IRGM is not known to be IFN-γ-responsive [66].

Of note, the role of hypoxia in autophagy (and indeed other mucosal homeostatic systems) has received much interest. Hypoxia is of particular relevance at the gut epithelium-luminal interface, where a unique steep oxygen gradient from the anaerobic lumen to the richly perfused mucosal layer exists. Hypoxia-inducible factors (HIFs) are transcription factors which regulate the induction of genes responsible for cellular adaptation and survival during hypoxia (reviewed in depth by Colgan and Taylor [67]). Pertinently, gut inflammation is associated with increased levels of hypoxia [68] and with high levels of HIFs in murine colitis [69] and IBD [70]. The HIF response is generally considered protective and recently was shown to drive autophagy via HIF1α [71] and increase xenophagic degradation of AIECs [72]. However, there are complexities as HIF1α has a key role in CEACAM6 expression and thus AIEC invasion has a key role in CEACAM6 expression and thus AIEC invasion (discussed in detail later), suggesting that these CD-associated bacteria may take advantage of hypoxic conditions to colonize the intestinal mucosa [73]. HIF1α regulates many genes involved in epithelial barrier function [74–76], including involvement in mucous [77] and AMP production [78]. In murine colitis models, loss of HIF1α expression had a more severe phenotype whereas increased HIF1α levels were protective [69]. The hypoxia response can be modulated by hydroxylase inhibitors (via activation of HIF) [79–81], hyperbaric oxygen [82], and potentially adjustments of lifestyle factors (for example, cigarette smoking). However, this area is complex as heme oxygenase-1 (HO-1) and its metabolic by-product, carbon monoxide, are protective against inflammation and are induced by gut microbiota [83,84].

Beyond xenophagy, autophagy regulates quality-control apparatus, including those involved in control of cell growth, the cell cycle, DNA and membrane repair, and intracellular organelles, such as mitochondria [85]. Defective autophagy can influence cellular homeostasis at the epithelial barrier level in particular and therefore represents a crucial component of disease initiation. Loss of autophagy leading to Paneth cell dysfunction has been a strong focus [86]; these cells are highly metabolically active and specialized enterocytes in the small bowel responsible for AMP production. Individuals with T300A mutation and mice with knocked down/out ATG16L1 and Irgm1 have abnormal Paneth cell morphology lacking in AMP-containing secretory granules [62,86]. The persistence of apoptotic stimuli in the form of metabolic stress, death-receptor activation, or pathogen infection significantly enhances ATG16L1 cleavage, thereby diminishing basal autophagy. Cadwell and colleagues [87] conceptually demonstrated, in this setting and downstream from this, how ‘triggers’ (in this case, murine norovirus infection) may provoke Paneth cell dysfunction and alter response to DSS colitis toward a CD-like phenotype in mice with hypomorphic ATG16L1 function, exemplifying the host-environment interaction in CD.

Unfolded protein response and endoplasmic reticulum stress

Following on from autophagy-related epithelial dysfunc-
tion, unresolved endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) has also emerged as an important factor that initiates gut inflammation relevant to CD (Figure 2I). ER stress-related genes have been implicated by both GWAS (ORMDL3 [88]) and candidate (XBP1 [89] and AGR2 [90]) gene approaches. ER stress is induced by the accumulation of unfolded proteins, and cellular adaptation to ER stress is achieved by the activation of the unfolded protein response (UPR), which is an integrated signal transduction pathway that modulates many aspects of ER physiology [91]. Unresolved ER stress is a hallmark of many chronic diseases, and, at the mucosal interphase, UPR is particularly important for highly secretory cells such as Paneth and goblet cells for AMP and secreted mucous barrier, respectively. Kaser and colleagues [89] showed that genetic deletion of UPR transcription factor XBP1 in the intestinal epithelium resulted in loss of Paneth cell function and, interestingly, the development of small-bowel inflammation in mice. This was associated with substantial ER stress and increased inflammatory responsiveness toward microbial and cytokine stimuli. IECs in IBD generally experience unresolved ER stress, even in the absence of overt mucosal inflammation [92]. Of note, UPR is under the influence of primary (genetic) and secondary (environmental) factors and therefore is pivotal in regulating cellular homeostasis [93].

Interestingly, autophagy also cooperates very closely with UPR: autophagy is induced to counter ER stress [94,95] and thus defective autophagy can similarly result in ER stress [96]. The precise interplay between autophagy and ER stress is complex [97,98] and yet to be fully elucidated. Impairment in either of these processes in IECs results in each other’s compensatory engagement and in severe spontaneous CD-like transmural ileitis if
both mechanisms are compromised in mice [99]. Overall, distinct factors can impair autophagy (increased cleavage of ATG16L1) or overwhelm autophagy (ER stress), and subsequent secondary triggers initiate gut inflammation. These data linking three closely related pathways (NOD2, autophagy, and ER stress) clearly demonstrate how disease causation requires specific and critical interaction(s) between host defects and distinct triggers. Independently, these factors may confer only limited risk.

Immune response: IL-23/Th17 pathway and IL-10

The dynamic crosstalk between the gut microbiota, IECs, and mucosal immune cells is essential to maintain intestinal homeostasis [100,101]. In CD, the CD4+ T-cell compartment is the most influential and includes Th1, Th17, and Foxp3+ regulatory T (Treg) cells [102]. The first IBD GWAS shifted the focus from the traditional Th1 paradigm to IL-23/Th17 responses in CD. Here, Duerr and colleagues [103] demonstrated that carriage of the glutamine allele of Arg381Gln variant of the IL23R gene confers protection against CD, and associations with several SNPs in IL-23/Th17 genes have been consistently shown.

IL-23 has a key role in both innate and T cell-dependent experimental mouse models of colitis [104,105]. IL-23R signaling in T cells leads to enhanced Th17 response, reduced differentiation of Treg cells, and anti-inflammatory IL-10 production [106] (Figure 2F). IL-23 is not indispensable to Th17 differentiation but rather modulates Th17 effector function and pathogenicity [106–108]. IL-23 signaling is mediated through the engagement of heterodimeric IL-23 (composed of the p19 and shared IL-12p40 subunits) with its heterodimeric receptor (comprising IL-23R and IL-12Rβ1), and signals predominantly through JAK2-STAT3 (both with genetic associations with CD) but can also weakly activate STAT1, STAT4, and STAT5 [109]. IL-12 and IL-23 drive differentiation of CD4+ T cells into Th1 and Th17 cells, respectively. IL-23, secreted by macrophages and DCs, together with IL-6 and transforming growth factor-beta (TGFβ) sustains Th17 responses [110].

The gut microbiota regulates both Th17 and Treg cell responses, which appear to be reciprocally related. Th17 cells are absent in germ-free mice, and human fecal transplant into germ-free mice triggers a Th17 response but not with killed-bacteria extracts [111–113]. In health, intestinal Th17 cells are abundant and likely are important components of mucosal host defense. However, the Th17 signature cytokines (IL-17A, IL-17F, IL-22, and IL-26) [114] are particularly elevated in the intestine and serum of patients with IBD, and Th17 cells with an activated phenotype are present in the gut mucosa and blood of patients with CD [115–118]. Therefore, an unrestrained rather than a primarily pathogenic function for Th17 cells is the likely mediator of CD inflammation.

Recently, two discoveries provided further insights into IL-23-Th17 signaling in CD. Firstly, Buonocore and colleagues [119] described a new subset of innate lymphoid cells (ILCs), which rely on IL-23 to induce Th17 responses and colitis [120]. ILCs are important effectors of innate mucosal immunity and tissue remodeling. These previously unknown cells have a lymphoid morphology but lack antigen receptors and myeloid or DC markers. This subset of ILCs (group 3) is defined by their capacity to produce the cytokines IL-17A or IL-22 or both [120]. ILCs possess the ability to regulate CD4+ T cell responses [121]. Secondly, a previously uncultivable organism, segmental filamentous bacteria (SFB), was found to markedly induce a small-bowel Th17 response and promote Th17-dependent autoimmune disease in mice [122]. These studies are exciting as they demonstrate how other immune cells can contribute to Th17 responses. Although the case for SFB in humans is not clearly established, it is a cogent example of how specific microbial stimuli (in this case, a singular microbe) can preferentially induce a Th17 response and immune-mediated pathology.

On the other hand, Treg cells are constitutively present (mostly in gut-associated lymphoid tissue) and maintain mucosal homeostasis predominantly via IL-10. IL-10-deficient mice develop spontaneous colitis in contact with gut commensal microbiota with a Th1/17 pattern but not in germ-free conditions [123]. Genetic variants of the IL-10 gene are associated with IBD, and, intriguingly, rare mutations resulting in complete loss of function in the IL-10 receptor in humans result in extensive clinical manifestations of CD [124]. Several lines of evidence demonstrate the essential role for the microbiota in regulating mucosal Treg cells relevant to CD (Figure 2G). Specific clusters of the genus Clostridium, subsets of which are reduced in CD and include Faecalibacterium prausnitzii [125,126], are potent inducers of mucosal and systemic Treg cell responses [127]. Metabolic products of the microbiota, specifically short chain fatty acids [128] (including from F. prausnitzii) and polysaccharide A (PSA; from Bacteroides fragilis), can also promote Treg cells and limit the Th17 response [129,130]. Recently, T-cell immunology has indeed taken center stage, although the upstream roles for IECs and antigen-presenting cells (DCs and macrophages) converging on the dialogue between the innate and adaptive immune systems are clearly as important (reviewed in depth [101,131]). Inclusively, the gut microbiota is indispensable in educating and shaping the host immune system.
Defining the role of microbiota in Crohn’s disease: recent progress and emerging challenges

Advances in culture-free techniques, next-generation high-throughput sequencing platforms, and the use of larger and more sophisticated human cohorts have ushered in a dramatic era in understanding the role of the gut microbiota in IBD [132,133]. Progression from shallow small-subunit rRNA gene analysis to whole-genome shotgun sequencing and deep functional characterization has been stimulated by a progressive reduction in the cost of high-throughput technologies and provided unique insights into the community structure, genetic repertoire, metabolic products, and function of the complex gut microbiota (total of 10^{12}, which outnumbers somatic cells 10-fold and is an approximately 150-fold larger gene set than the human complement; reviewed in depth [131,134]). The importance of the gut microbiota in the pathogenesis of CD is strikingly demonstrated clinically where the diversion of fecal stream treats and prevents recurrence of CD [135,136]. Several specific mechanistic hypotheses are broadly based on the microbiota’s effects (both general and specific) on mucosal health (for example, epithelial barrier function) and immune system (as antigenic stimuli, regulators of innate immune function (for example, TLR signaling), and balance of Th17/Treg cell function). Furthermore, mechanisms sustaining a healthy microbial composition (for example, fucosylation [137,138]) and host-microbial symbiosis and containment (barrier function, for example, AMP and mucus; bacterial killing and mucosal immune response - NOD2, autophagy) are increasingly understood as pathogenic factors in CD.

Determining the ‘high risk’ microbiota in CD thus represents a major research priority. Reduced complexity and diversity of the commensal gut microbiota are consistently demonstrated in CD (and UC) [125,139–142], although a causal effect for this is not yet clear (Figure 2B). In health, shifts in gut microbial composition can be influenced by a number of factors, including host genetics [143]. In CD, earlier studies have shown that host genetic factors (NOD2 and ATG16L1) and disease location (ileal) are associated with mucosal dysbiosis [144], where there is a decrease in Firmicutes, in particular Faecalibacterium prausnitzii, and an increase in Enterobacteriaceae, especially Escherichia coli. Of the phylum Firmicutes, as discussed earlier, Clostridium subsets (including F. prausnitzii) directly induce colonic Treg cells. Reduced F. prausnitzii levels are found in CD and are associated with risk of post-resection recurrence of ileal CD [126], although a separate study in pediatric CD found increased numbers [145]. E. coli, which has acquired specific virulence or pathogenic factors leading to increased adherence and invasive capability (AIEC, is more prevalent in CD [146–149]. In one study, AIECs were isolated in ileal specimens of 36.4% of CD and 6% of controls [146]. Most AIEC strains associated with CD express type 1 pili variants that increase the interaction between AIEC and ileal epithelial cells via CEACAM6 (150) acting as a receptor (Figure 2B). AIECs induce an epithelial inflammatory response and, when phagocytosed by macrophages, are more resistant to xenophagy and induce a persistent inflammatory response by releasing large amounts of TNF-α [151,152]. Several factors control AIEC-epithelial interaction: CEACAM6 expression is associated with inflammation, smoking [153], and epigenetic regulation [73].

More recently, there has been considerable interest in the relatively unexplored fields of the mycobiota (fungal community) and virome in CD. Ott and colleagues [154] found an altered fungal profile in the intestinal mucosa of patients with CD and UC compared with healthy controls; interestingly, in contrast to the microbiome, diversity was increased in CD. Analysis of a de novo pediatric IBD cohort by using next-generation sequencing found a distinct difference in mycobiota composition compared with controls with a Basidiomycota dominance [155]. The potential importance of the virome in CD pathogenesis was shown in animal models, whereby viruses in association with gut bacteria affect intestinal biology, leading to inflammation in genetically susceptible hosts [87]. Recent metagenomic sequencing of virus-like particle preparations from fecal samples demonstrated disease-specific viromes for CD and UC [156]. Fascinatingly, this study found CD to be associated with significant expansion of Caudovirales bacteriophages and a reduction in the relative abundance of bacterial taxa, suggesting a potential role for the virome leading to bacterial dysbiosis.

With powerful molecular tools now at our disposal, a number of challenges have emerged in study design and its potential confounders (fecal versus mucosal microbiome, the effects of host genetics, disease activity/duration/location, and drug treatment). Recent studies have focused on combined approaches encompassing all of these factors, including twin studies (to dissect the relative importance of genetics versus environment) [142,157]. Gevers and colleagues [158] analyzed the mucosal and lumen-associated microbiota in treatment-naïve CD. In this largest study to date (approximately 450 patients with CD), analysis of the mucosal-associated microbiome confirmed previous findings [126,159,160] of increases in Enterobacteriaceae and decreases in Bacteroidales, Faecalibacterium, and Clostridiales as well as novel associations with other bacterial species. In contrast to an earlier study [159], fecal analysis was less useful and this will impact on how future studies are conducted [158]. Ileal microbiome signatures were
predictive of CD and were observed even in the absence of overt inflammation [161]. Palm and colleagues [162] adopted a creative approach by using the host immune system (IgA-coated sorting followed by 16sRNA sequencing) to home in on the ‘colitogenic’ microbiota. When a smaller cohort of IBD patients and controls was used, IgA sorting revealed 35 species of bacteria that were abundantly coated with IgA in the IBD samples. Several species were found in both healthy and IBD patients but were only highly coated by IgA in patients with IBD. Of interest, gnotobiotic mice colonized with highly coated IgA+ *B. fragilis* elicited more severe colitis compared with those colonized with a *B. fragilis* strain that was IgA-.

Conceptually, mouse studies show that colitogenic microbiota ‘caused’ or induced by host genetic defects (in these cases, NLRP6 and T-bet deficiency, respectively) can be transmissible in co-housing or cross-fostering experiments, leading to increased susceptibility to induced colitis in genetically intact mice [163,164]. It is conceivable that shared environmental factors—notably diet, smoking, and antibiotic use—can result in a ‘high risk’ microbiota that influences susceptibility to CD, although this has not yet been shown in humans [165–167]. This brings in a new dimension, the ‘exposome’, as a factor in modulating the gut microbiota (Figures 1 and 2C).

Clinical translation

In this concluding section, we discuss prospects and challenges in clinical translation in CD, where there is a rich seam of creative opportunities from multiple angles. We briefly discuss mechanistic themes, targets, and potential strategies for translation, which are highlighted in detail in Figure 3.

There is an inexorable shift toward mechanistic and molecular stratification that is likely to change current historic clinical classification and eventually lead to better personalized treatment (Figure 1). Rapid improvements in technology now provide the scale, economy, and computational power to allow multi-layered integrative profiling at a metagenomic level (genomic, epigenomic, microbiomic, metabolomic, and proteomic), and a number of studies are already in progress. Furthermore, previously poorly characterized factors such as time and the exposome will now be incorporated [168]. This will provide further novel insights into variability in major clinical phenotypes (for example, early versus adult-onset

Figure 3. Summary of therapeutic targets, underlying mechanisms, and opportunities for translation in Crohn’s disease

Mechanistic themes	Target	Potential strategies for translation	
• Specific microbial stimuli/triggers (e.g. AIECs)	Microbiota	• Targeting specific groups of bacteria, e.g. AIECs with antibiotics	
• Loss of key microbial factors regulating epithelial function; APC and T-cell function		• Identifying the ‘high risk’ microbiota	
		• Restoring the ‘healthy’ microbiota – Probiotics, FMT	
		• Correcting factors regulating microbiota, e.g. Diet	
• Loss of epithelial health and barrier function	Intestinal Epithelium	• Identifying triggers and biomarkers of epithelial dysfunction (e.g. ER- and metabolic stress, HIF	1α)
• Switch to innate pro-inflammatory epithelial response		• Correcting epithelial barrier dysfunction (e.g. mucus, AMP)	
• Endogenous DAMP release and immunogenic triggers		• Addressing abnormal epithelial-microbial interactions (e.g. CAECAM6)	
• Defective bacterial killing	NOD2/Autophagy	• Stratification of patients based on NOD2/autophagy function	
• Loss of bacterial tolerance		• Re-balancing autophagy function, e.g. mTOR inhibitors	
• Abnormal bacterial handling		• Novel interacting pathways with NOD2 and autophagy	
• Breakdown in innate-adaptive immune crosstalk			
• Unrestricted Th17 activation	Immune Response	• Direct mucosal immune-profiling in CD (+ in clinical trials)	
• Loss of immunoregulatory response		• Targeting specific cytokines, signalling pathways and immune-trafficking	
• Specific mucosal milieu favouring pro- vs. resolution of inflammation		• Mucosal immune-modulation (helminth proteins, retinoic acid) and targeting resolution pathways	
		• Cell-based therapy to reset the immune response (autologous stem cell transplantation)	
• Understanding variability in drug response, disease progress and clinical course	Personalised medicine	• Metagenomic profiling based on immune signatures, genomics, epigenomics, microbiomics, metabolomics and proteomics	
• New biological pathways in disease causation		• Pharmacogenetic stratification: AEs & response to medication	
• Identifying clinical vs. molecular phenotypes of CD (e.g. early vs. adult onset disease, extensive vs. limited, inflammatory vs. stricture)		• Advances in endoscopy and imaging techniques for better stratification	
• Forward prospective cohorts and studying shared gene-environment factors		• Forward prospective cohorts and studying shared gene-environment factors	

AE, adverse effect; AIEC, adherent invasive *Escherichia coli*; AMP, anti-microbial peptide; APC, antigen-presenting cell; DAMP, damage-associated molecular pattern; ER, endoplasmic reticulum; FMT, fecal microbiota transplantation; HIF1α, hypoxia-inducible factor 1α; NOD2, nucleotide-binding oligomerization domain containing 2; Th17, T helper 17 (cells).
target of rapamycin (mTOR) inhibitor and autophagy inducer, is not efficacious in CD, again highlighting the case for stratification [185]. Paneth cell dysfunction as a focal point provides targets for both upstream (for example, ER stress and autophagy) and downstream (for example, AMP production) factors. Such a platform is highlighted by a recent study using histologic analysis of Paneth cell phenotypes to divide patients with CD into subgroups with distinct pathognomonic and clinical features [36].

It is unsurprising that targeting or inhibition of the immune/inflammatory response has seen the strongest interest in drug development in CD. The success of anti-TNF agents has provided the primer, although this is likely to be the ‘high water mark’ in this area. Following on closely from IBD genetic discoveries, targeting the IL-23/Th17 pathway (and indeed activated T cells) has had mixed success. Ustekinumab, a humanized immunoglobulin G1 monoclonal antibody against the shared p40 subunit of IL-12 and IL-23, had modest efficacy [186,187], and briakinumab, another anti-IL-12/23 antibody, failed to show benefit. Targeting Th17 responses via secukinumab (anti-IL-17A) and brodalumab (anti-IL-17 receptor) resulted in worse outcomes [188]. Equally unsuccessful in CD were tofacitinib [189] (a JAK inhibitor that is efficacious in UC [190]), fontolizumab (anti-IFNγ [191]), and abatacept (a CTL4 inhibitor [192]). A number of potential explanations are offered, although more simply the heterogeneity of immune response in CD may confound these ‘general’ clinical trials. It is clear that a re-evaluation is required. Incorporating in-depth immunological analyses during early-phase clinical development should be exploited to gain important insights and this has been discussed in some detail in the IBD research community [193–195]. Beyond this, major immune themes such as resetting the mucosal immune response (autologous stem cell transplantation or more specific cell-based therapies), exploiting mucosal regulatory factors (for example, microbial, helminthic proteins, and dietary factors), and correcting the mucosal milieu, which favors the resolution of inflammation, are likely to feature more prominently.

Conclusions

In the next 10 years, we envisage major progress in (1) stratifying and addressing disease heterogeneity in CD on the basis of dominant molecular mechanism(s); (2) re-design of clinical trials that will follow from (1), where the ‘one size fits all’ approach to new therapeutics requires major re-thinking [193]; and (3) a shift of focus to the causative factors to prevent disease onset and maintain long-term remission in addition to inhibiting
the abnormal immune/inflammatory response in CD. This will almost certainly rely on simultaneous targeting of genetic, environmental, microbial, and immune factors. In this review, we have focused on the known/established disease mechanisms, which are framed by recent landmark studies in genetics, immunology, and microbiology in CD. As discussed earlier, it is beyond the scope of this review to cover CD pathogenesis in its entirety. Pertinently, there remain many virtually unexplored concepts and scientific questions. We are at a fascinating inflection point of discovery in CD research. Ambitious goals, including long-term remission, permanent alteration of natural history, and, indeed, curing CD, are not inconceivable for all patients with CD.

Abbreviations
AIEC, adherent-invasive Escherichia coli; AMP, antimicrobial peptide; ATG16L1, autophagy-related 16-like 1 gene; CD, Crohn’s disease; CEACAM6, carinoembryonic antigen-related cell adhesion molecule 6 (non-specific cross-reacting antigen); DC, dendritic cell; DSS, dextran sulfate sodium; ER, endoplasmic reticulum; GWAS, genome-wide association study; HIF, hypoxia-inducible factor; IBD, inflammatory bowel disease; IEC, intestinal epithelial cell; IFN-γ, interferon-gamma; IL, interleukin; ILC, innate lymphoid cell; IRGM, immunity-intestinal epithelial cell; IFN inducible factor; IBD, inflammatory bowel disease; IEC, GWAS, genome-wide association study; HIF, hypoxia-dextran sulfate sodium; ER, endoplasmic reticulum; specific cross-reacting antigen); DC, dendritic cell; DSS, bryonic antigen-related cell adhesion molecule 6 (non-epithelial cell); GC, germinal center; GFF, germ-free; GFF, germ-free; glycocalyx; GPR109A, G protein-coupled receptor 109A; HLA, human leukocyte antigen; IBD, inflammatory bowel disease; IFN, interferon; IL, interleukin; ILC, innate lymphoid cell; IRGM, immunity-related GTPase family M; LC3, light chain 3; MDP, muramyl dipeptide; NOD2, nucleotide-binding oligomerization domain containing 2; PRR, pattern recognition receptor; SFB, segmental filamentous bacteria; SNP, single-nucleotide polymorphism; TLR, Toll-receptor; SFB, segmental filamentous bacteria; SNP, single-nucleotide polymorphism; Th17, T helper 17; TLR, Toll-like receptor; TNF, tumor necrosis factor; Treg, regulatory T; UC, ulcerative colitis; UPR, unfolded protein response.

Disclosures
The authors declare that they have no disclosures.

References
1. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG: Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012, 142:46-54. e42; quiz e30.
2. Abraham C, Cho JH: Inflammatory bowel disease. N Engl J Med 2009, 361:2066-78.
3. Peyrin-Biroulet L, Loftus EV, Colombel J, Sandborn WJ: The natural history of adult Crohn’s disease in population-based cohorts. Am J Gastroenterol 2010, 105:289-97.
4. Beaugerie L, Selsk P, Nion-Larmurier I, Gendre J, Cosnes J: Predictors of Crohn’s disease. Gastroenterology 2006, 130:650-6.
5. Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, Lichtiger S, D’Haens G, Diamond RH, Broussard DL, Tang KL, van der Woude, C Janneke, Rutgeerts P. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med 2010, 362:1383-95.
6. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar J, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balchun T, Bampton PA, Bitton A, et al: Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012, 491:119-24.
7. Franke A, McGovern, Dermot PB, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, Anderson CA, Bis JC, Bumptstead S, Ellinghaus D, Festen EM, Georges M, Green T, Haritunians T, Jostins L, Latiano A, Mathew CG, Montgomery GW, Prescott NJ, Raychaudhuri S, Rotter JI, Schumm P, Sharma Y, Simms LA, Taylor KD, Whiteman D, et al: Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 2010, 42:1118-25.
8. van Limbergen J, Radford-Smith G, Satsangi J: Advances in IBD genetics. Nat Rev Gastroenterol Hepatol 2014, 11:372-85.
9. Hunt KA, Mistry V, Bockett NA, Ahmad T, Ban M, Barker JN, Barrett JC, Blackburn H, Brand O, Burren O, Capon F, Compston A, Gough, Stephen CL, Jostins L, Kong Y, Lee JC, Lek M, MacArthur DD, Mansfield JC, Mathew CG, Mein CA, Mirza M, Nutland S, Onengut-Gumuscu S, Papoulil E, Parkes M, Rich SS, Sawcer S, Satsangi J, Simmonds MJ, et al: Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature 2013, 498:232-5.
10. Ventham NT, Kennedy NA, Nimmo ER, Satsangi J: Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology 2013, 145:293-308.
11. Adams AT, Kennedy NA, Hansen R, Ventham NT, O’Leary KR, Drummond HE, Noble CL, El-Omar E, Russell RK, Wilson DC, Nimmo ER, Hold GL, Satsangi J: Two-stage genome-wide methylation profiling in childhood-onset Crohn’s Disease implicates epigenetic alterations at the VMP1/MIR21 and HLA loci. Inflamm Bowel Dis 2014, 20:1784-93.
12. Nimmo ER, Stevens C, Phillips AM, Smith A, Drummond HE, Noble CL, Quail M, Davies G, Aldous MC, Wilson DC, Satsangi J: TLE1 modifies the effects of NOD2 in the pathogenesis of Crohn’s disease. Gastroenterology 2011, 141:972-981.e1-2.
13. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O Morain CA, Gassull M, Binder V, Finkel Y, Corrot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahibzadeh M, Thomas G: Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001, 411:599-603.
14. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaulisukas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nuñez G, Cho JH: A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001, 411:603-6.
15. Cuthbert AP, Fisher SA, Mirza MM, King K, Hanpej J, Croucher, Peter JP, Mascheretti S, Sanderson J, Forbes A, Mansfield J, Schreiber S,

Page 11 of 18
Lewis CM, Mathew CG: The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. *Gastroenterology* 2002, 122:867-74.

16. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fuks K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna J.L, Nunez G: Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. *J Biol Chem* 2003, 278:5509-12.

17. Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S, Häfner R, Chamaliard M, Zouali H, Thomas G, Hugot JP: CARD15 mutations in Blau syndrome. *Nat Genet* 2001, 29:19-20.

18. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nigro G, Rossi R, Commere P, Jay P, Sansonetti PJ: Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. *Science* 2005, 307:731-4.

19. Ogura Y, Lala S, Xin W, Smith E, Dowds TA, Chen FF, Zimmermann E, Tretiakovs M, Cho JH, Hart J, Grenzken JK, Keshav S, Nunez G: Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis. *Gut* 2003, 52:1591-7.

20. Jiang W, Wang X, Zeng B, Liu L, Tardivel A, Wei H, Han J, MacDonald HR, Tschopp J, Tian Z, Zhou R: Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. *J Exp Med* 2013, 210:2465-76.

21. Bevins CL, Stange EF, Wehkamp J: Decreased Paneth cell defensin expression in ileal Crohn’s disease is independent of inflammation, but linked to the NOD2 1007fs genotype. *Gut* 2009, 58:882-3; discussion 883-4.

22. Cooney R, Baker J, Brain O, Dans B, Pichulik T, Allan P, Ferguson, David JP, Campbell BJ, Jewell D, Simmons A: NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. *Nat Med* 2010, 16:90-7.

23. Lapaquette P, Bringer M, Darfeuille-Michaud A: Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response. *Cell Microbiol* 2013, 15:291-303.

24. van Heel, DA, Ghosh S, Hunt KA, Lundberg, Anna MC, Ahmad T, McGovern Dermot PB, Onnie C, Negoro K, Goldthorpe S, Foxwell, Brian MJ, Mathew CG, Forbes A, Jewell DP, Playford RJ: Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn’s disease. *Lancet* 2005, 365:1794-6.

25. van Beelen, Astrid J, Zelinkova Z, Taanman-Kueter EW, Muller Fj, Hommes DW, Zaat, Sebastian AJ, Kapsenberg ML, de Jong, Esther C: Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. *Immunity* 2007, 27:660-9.

26. Lewis CM, Mathew CG: The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. *Gastroenterology* 2002, 122:867-74.

27. van Heel, David A, Ghosh S, Butler M, Hunt KA, Lundberg, Anna MC, Ahmad T, McGovern Dermot PB, Onnie C, Negoro K, Goldthorpe S, Foxwell, Brian MJ, Mathew CG, Forbes A, Jewell DP, Playford RJ: Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn’s disease. *Lancet* 2005, 365:1794-6.

28. Nakamura Y, Ogura Y, Inohara N, Nishimura K, Nunez G, Nogawa E, Tsuchiya K, Inohara N: Recognition of bacterial muramyl dipeptide by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. *J Exp Med* 2013, 210:2465-76.

29. Bevins CL, Stange EF, Wehkamp J: Decreased Paneth cell defensin expression in ileal Crohn’s disease is independent of inflammation, but linked to the NOD2 1007fs genotype. *Gut* 2009, 58:882-3; discussion 883-4.

30. Cooney R, Baker J, Brain O, Dans B, Pichulik T, Allan P, Ferguson, David JP, Campbell BJ, Jewell D, Simmons A: NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. *Nat Med* 2010, 16:90-7.

31. Lapaquette P, Bringer M, Darfeuille-Michaud A: Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response. *Cell Microbiol* 2013, 15:291-303.

32. VanDussen KL, Liu T, Li D, Towfic F, Modiano N, Winter R, Haritunians T, Taylor KD, Dhall D, Targan SR, Xavier RJ, McGovern, Dermot PB, Stappenbeck TS: Genetic variants synthesize to produce paneth cell phenotypes that define subtypes of Crohn’s disease. *Gastroenterology* 2014, 146:200-9.

33. Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL: Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. *Gut* 2008, 57:903-10.

34. VanDussen KL, Liu T, Li D, Towfic F, Modiano N, Winter R, Haritunians T, Taylor KD, Dhall D, Targan SR, Xavier RJ, McGovern, Dermot PB, Stappenbeck TS: Genetic variants synthesize to produce paneth cell phenotypes that define subtypes of Crohn’s disease. *Gastroenterology* 2014, 146:200-9.

35. Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL: Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. *Gut* 2008, 57:903-10.

36. VanDussen KL, Liu T, Li D, Towfic F, Modiano N, Winter R, Haritunians T, Taylor KD, Dhall D, Targan SR, Xavier RJ, McGovern, Dermot PB, Stappenbeck TS: Genetic variants synthesize to produce paneth cell phenotypes that define subtypes of Crohn’s disease. *Gastroenterology* 2014, 146:200-9.

37. Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL: Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. *Gut* 2008, 57:903-10.

38. VanDussen KL, Liu T, Li D, Towfic F, Modiano N, Winter R, Haritunians T, Taylor KD, Dhall D, Targan SR, Xavier RJ, McGovern, Dermot PB, Stappenbeck TS: Genetic variants synthesize to produce paneth cell phenotypes that define subtypes of Crohn’s disease. *Gastroenterology* 2014, 146:200-9.

39. Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL: Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. *Gut* 2008, 57:903-10.
of commensal microbiota in the intestine. Proc Natl Acad Sci USA 2009, 106:15813-8.

41. Rehman A, Sina C, Gavrilova O, Hasler R, Ott S, Baines JF, Schreiber S, Rosenstiel P: Nod2 is essential for temporal development of intestinal microbial communities. Gut 2011, 60:1354-62.

42. Ramanan D, Tang MS, Bowcutt R, Loke P, Cadwell K: Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity 2014, 41:311-24.

43. Robertson SJ, Zhou JY, Geddes K, Rubino SJ, Cho JH, Girardin SE, Philpott DJ: Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis. Gut Microbes 2013, 4:222-31.

44. Shanahan MT, Carroll IM, Grossniklaus E, White A, von Furstenberg, Richard J, Barner R, Fodor AA, Henning SJ, Boneca IG, Allsou A, Jones NL, Nunez G, Girardin SE, Philpott DJ: Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010, 11:55-62.

45. Travassos LH, Carneiro Leticia AM, Ramjeet M, Hussey S, Kim Y, Magalhães JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allsou A, Jones NL, Nunez G. Girardin SE, Philpott DJ: Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis. Gut Microbes 2013, 4:222-31.

46. Caruso R, Warner N, Inohara N, Núñez G: NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 2014, 41:899-908.

47. Boyle JP, Parkhouse R, Monie TP: Insights into the molecular basis of the NOD2 signaling pathway. Biol Open 2014, 4.

48. Salem M, Seidelin JB, Rogler G, Nielsen OH: Muramyl dipeptide responsive pathways in Crohn’s disease: from NOD2 and beyond. Cell Mol Life Sci 2013, 70:3391-404.

49. Travassos LH, Carneiro Leticia AM, Ramjeet M, Hussey S, Kim Y, Magalhães JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allsou A, Jones NL, Nunez G, Girardin SE, Philpott DJ: Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010, 11:55-62.

50. Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE: NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol 2014, 14:9-23.

51. Levine B, Kroemer G: Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.

52. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega, Francisco M, Briggs J, Gunther S, Prescott NJ, Omnie CM, Hasler R, Sipos B, Fölsch UR, Lengauer T, Platter Z, Mathew CG, Krawczak M, Schreiber S: A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007, 39:207-11.

53. Murphy A, Li Y, Feng I, Reichelt M, Takazak AK, Noubade R, Roose-Girma M, Devos J, Diehl L, Graham RR, van Looikeren Campagne Menno: A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 2014, 506:456-62.

54. Lassen KG, Kuballa P, Conway KL, Patel KK, Becker CE, Peloquin JM, Villablancia EJ, Norman JM, Liu T, Heath RJ, Becker ML, Fagamli L, Horn H, Mercier J, Yilmaz OH, Jaffe JD, Shanji AF, Bhui AK, Carr SA, Daly MJ, Virgin HW, Schreiber SL, Steppenbeck TS, Xavier RJ: Atg16l1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased anti-bacterial defense. Proc Natl Acad Sci U S A 2014, 111:7741-6.

55. Sorbara MT, Ellison LK, Ramjeet M, Travassos LH, Jones NL, Girardin SE, Philpott DJ: The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 2013, 39:858-73.

56. McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemes J, Wysoker A, Shapero MH, de Bakker, Pu LiW, Maller JB, Kirby A, Elliott AL, Parkin M, Hubbell E, Webster T, Mei R, Veltch J, Collins P, Handsaker R, Lincoln S, Nizzari M, Blume J, Jones KW, Rava R, Daly MJ, Gabriel SB, Altshuler D: Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 2008, 40:1166-74.

57. MacMicking JD, Taylor GA, McKinney JD: Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 2003, 302:654-9.

58. Henry SC, Daniell X, Indaram M, Whitesides JF, Sempowski GD, Howell D, Oliver T, Taylor GA: Impaired macrophage function underscores susceptibility to Salmonella in mice lacking Irgm1 (LRG-47). J Immunol 2007, 179:6963-72.

59. Collazo CM, Yap GS, Sempowski GD, Lusby KC, Teszarollo L, Vande Woude GF, Sher A, Taylor GA: Inactivation of LRG-47 and Irgm-47 reveals a family of interferon gamma-inducible genes with essential, pathogen-specific roles in resistance to infection. J Exp Med 2001, 194:181-8.

60. Singh SB, Davis AS, Taylor GA, Deretic V: Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006, 313:1438-41.
66. Belknap C, Hunn JP, Rohde C, Parvanova I, Guethlein L, Dunn DM, Glovalla E, Leptin M, Howard JC. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol 2005, 6:92R.

67. Colgan SP, Taylor CT: Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol 2010, 7:281-7.

68. Glover LE, Colgan SP. Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology 2011, 140:1748-55.

69. Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH: Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J Clin Invest 2004, 114:1098-106.

70. Giartromanolaki A, Swidi M, Maltezos E, Papazoglou D, Simopoulos C, Gaster KC, Harris AL, Koulourakis MI: Hypoxia-inducible factor alpha and zalpha overexpression in inflammatory bowel disease. J Clin Pathol 2003, 56:209-13.

71. Bellocq G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazeur NM: Hypoxia-induced autophagy is mediated through hypoxia-inducible factor binding of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 2009, 29:2570-81.

72. Minouina S, Bazin M, Mognabi B, Darfeuille-Michaud A, Brest P, Hofman P, Vouret-Craviati V: HIFIA regulates xenophagic degradation of adherent and invasive Escherichia coli (AIEC). Autophagy 2014, 10:2333-45.

73. Denizot J, Desrichard A, Agus A, Uhrhammer N, Dreux N, Vouret-Craviati V, Hofman P, Darfeuille-Michaud A, Bannich N. Diet-induced hypoxia responsive element demethylation increases CEACAM6 expression, favouring Crohn’s disease-associated Escherichia coli colonisation. Gut 2015, 64:428-37.

74. Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eitzschig HK, Hansen KR, Thompson LF, Colgan SP. Ecto-5’-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 2002, 110:993-1002.

75. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDRI) gene. Cancer Res 2002, 62:3387-94.

76. Furuta GT, Turner JR, Taylor CT, Hershberg RM, Comerford K, Narravula S, Podolsky DK, Colgan SP: Hypoxia-inducible factor-1-dependent induction of intestinal trefoil factor protects against barrier dysfunction during hypoxia. J Exp Med 2001, 193:1027-34.

77. Louis NA, Hamilton KE, Canny G, Shekels LL, Ho SB, Colgan SP: Selective induction of mucin-3 by hypoxia in intestinal epithelia. J Cell Biochem 2006, 99:1616-27.

78. Nizet V, Johnson RS: Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 2009, 9:609-17.

79. Gupta R, Chaudhary AR, Shah BN, Jadhav AV, Zambad SP, Gupta RC, Kaur JS, Latha S, Sangwan R, Komanduri B, Dasgupta R, Samuelson Z, Kaur S, Verma S. Carbon monoxide and heme oxygenase-1 prevent intestinal inflammation in mice by promoting bacterial clearance. Gastroenterology 2013, 144:789-98.

80. Onyiah JC, Sheikh SZ, Maharshak N, Otterbein LE, Plevy SE. Heme oxygenase-1 and carbon monoxide regulate intestinal homoeostasis and mucosal immune responses to the enteric microbiota. Gut Microbes 2014, 5:220-4.

81. Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ, Head RD, Xavier R, Stappenbeck TS, Virgin HW: A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 2008, 456:259-63.

82. Megvold Dermott PB, Gardner A, Torkvist L, Goyette P, Essers J, Taylor KD, Neale BM, Ong, Rick TH, Lagace C, Li C, Green T, Stevens CR, Beauchamp C, Fleshner PR, Carlson M, D’Amato M, Halfvarson J, Hibiya ML, Lordal M, Padyukov L, Andreelli U, Comolbe E, Laurino A, Palmieri O, Bernard E, Delandres C, Hommes DW, de Jong J, Stark PC, Weissmann R, et al: Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nature Genet 2010, 42:332-7.

83. Kaser A, Lee A, Franke A, Glickman JN, Zeissig S, Tilg H, Nieuwenhuis Edward ES, Higgs DE, Schreiber S, Glimcher LH, Blumberg RS: XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008, 134:743-56.

84. Zheng W, Rosenstiel P, Huse K, Sina C, Valentonyte R, Mah N, Hommes DW, de Jong J, Dirk J, Stokkers PC, Weersma RK et al: Human ER stress gene AGR2 interacts with the Atg16l1 autophagy gene and confers susceptibility to ulcerative colitis. Nat Genet 2009, 41:450-6.

85. Kaser A, Blumberg RS: Autophagy, microbial sensing, endoplasmic reticulum stress, and epithelial function in inflammatory bowel disease. Gastroenterology 2011, 140:1738-47.

86. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imazumi K: Autophagy is activated for cell survival after endoplasmic reticulum stress. Cell Metab 2006, 6:9220-31.

87. Ding W, Ni H, Gao W, Yoshimori T, Stolz DB, Ron D, Yin X: Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 2007, 171:513-24.
96. Yang L, Li P, Fu S, Calay ES. Hotamisligil GS: Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell metabolism 2010, 11:467-78.

97. Fritz T, Niederreiter L, Adolph T, Blumberg RS, Kaser A. Crohn's disease: NOD2, autophagy and ER stress converge. Gut 2011, 60:1380-8.

98. Deegen S, Saveljeva S, Gorman AM, Samali A. Stress-induced self-cannibalism on the regulation of autophagy by endoplasmic reticulum stress. Cell Mol Life Sci 2013, 70:2425-41.

99. Adolph TS, Tomczak MF, Niederreiter L, Ko H, Böck J, Martinez-Naves E, Glickman JN, Tschurtschenbaler M, Hartwig J, Hosomi S, Flak MB, Cusick JL, Kohno K, Iwaiwaki T, Billmann-Born S, Raine T, Bharti R, Lucius R, Kweon M, Marciakin SJ, Choi A, Hagen SJ, Schreiber S, Rosenstiel P, Kaser A, Blumberg RS. Paneth cells as a site of origin for intestinal inflammation. Nature 2013, 503:272-6.

100. Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011, 474:298-306.

101. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 2011, 14:141-53.

102. Izuie A, Hase S, Buonocore S, Arancibia-Cárcamo CV, Ahern PP, Iwaiwaki Y, Maloy KJ, Powrie F. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunology 2008, 128:559-70.

103. Duer R, Taylor KD, Brant SM, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulou T, Bitton A, Yang H, Targan S, Datta LW, Kisner EO, Schumm LP, Lee AT, Gregersen PK, Barnard MM, Rotter JI, Nicolae DL, Cho JH: A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science (New York, NY) 2006, 314:1461-3.

104. Uhlig HH, McKenzie BS, Hase S, Thompson C, Joyce-Shaib K, Stepanova R, Robinson N, Buonocore S, Tatskalou-Hogenova H, Cua DJ, Powrie F. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 2006, 25:309-18.

105. Yen D, Cheung J, Scheeren H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelein RA, Rennick D: IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006, 116:1310-6.

106. Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, Powrie F. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 2010, 33:279-88.

107. McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaib K, Blumenschein WM, McClanahan TK, O'Shea JJ, Cua DJ: The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 2009, 10:314-24.

108. Ghoreschi K, Laurence A, Yang X, Tato CM, McGeachy MJ, Konkel JE, Ramos HL, Wei L, Davidson TS, Bouladoux N, Grainger JA, Chen Q, Kamada Y, Wastford WT, Sun H, Eber G, Shen SH, Belliard Y, Cua DJ, Chen W, O'Shea JJ: Generation of pathogenic T(H)17 cells in the absence of TGF-ß signalling. Nature 2010, 467:967-71.

109. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F, To W, Wagner J, O'Farrell A, McClanahan T, Zurawski S, Hannum C, Corman D, Rennick D, Kastelein RA, de Waal Malefyt R, Rene, Moore KW. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 2002, 168:5699-708.

110. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421:744-8.

111. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamashiki S, Saito T, Ohtsuka Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331:331-43.
119. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Litman DR, Maloy JK, Powrie F. *Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology*. Nature 2010, 464:1371-5.

120. Geremia A, Arancibia-Cárdenas CV, Fleming, Myles PP, Rust N, Singh B, Mortensen NJ, Travis, Simon PL, Powrie F. *IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease*. J Exp Med 2011, 208:127-33.

121. Hepworth MR, Monticelli LA, Fung TC, Ziegler, Carly GK, Grunberg S, Sinha R, Mantegazza AR, Ma H, Crawford A, Angelosanto JM, Wherry EJ, Koni PJ, Bushman FD, Elson CO, Ebert G, Artis D, Sonnenberg GF. *Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria*. Nature 2013, 498:113-7.

122. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Buderus S, Snapper SB, Grimbacher B, Klein C. *The microbiome identified by gut microbiota analysis of Crohn disease patients*.

123. Davidson NJ, Leach MW, Fort MM, Thompson-Snipes L, Kühn R, Müller W, Berg DJ, Rennick DM. *T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice*. J Exp Med 1996, 184:241-51.

124. Glocker E, Kotlarz D, Boztug K, Gertz EM, Schäffer AA, Noyan F, McVey SJ, Elsenbeer H, Bach F, Bäuerle P, Schmidlin S. *Reduced diversity of faecal microbiota in Crohn’s disease caused by infusion of intestinal contents in excluded ileum*. J Exp Med 2011, 208:199-211.

125. Frank DN, St Amand, Allison L, Feldman RA, Boedecker EC, Harpaz N, Pace NR. *Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel disease*. Proc Natl Acad Sci U S A 2007, 104:13780-5.

126. Sokol H, Pigneur B, Wattez L, Lakhdiri O, Bermúdez-Humárin LG, Grataudoux J, Blugeon S, Bach, H, Schier, S, Miquel, M, Tarrak, M, Cruc, P, Ramírez, J, Llopis, J, Martín, M, Sanz, M, All, P, Bungener, J, Wolf, R, Schaller, M, Hamel, A, Franke, J, Azcarate, E, Quevauviller, P, Head, M, Frank, D, Pasquini, F, Rottner, J, Buts, J, Koletzko, S, Shah, N, Segal, AW, Saubrey, B, Buderus, S, Snapper, SB, Grimbacher, B, Klein, C. *Inflammatory bowel disease and mutations affecting the interleukin-10 receptor*. N Engl J Med 2009, 361:2033-45.

127. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661-78.

128. Smith PM, Howitz MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS. *The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis*. Science 2013, 341:569-72.

129. Plazmanian SK, Round JL, Kasper DL. *A microbial symbiosis factor prevents inflammatory intestinal disease*. Nature 2008, 453:620-5.

130. Furusawa Y, Obata Y, Fukuda, E, Endo TA, Nakato G, Takahashi D, Nakashin Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyazaki E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett, T, Clarke JM, Topping DL, Tomita M, Mori T, Kozei K, Kikuchi J, Honda K, Hase K, Ohno H. *Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells*. Nature 2013, 504:466-50.

131. Belkaid Y, Hand TW. *Role of the microbiota in immunity and inflammation*. Cell 2014, 157:121-41.

132. Huttenhower C, Kostic AD, Xavier RJ. *Inflammatory bowel disease as a model for translating the microbiome*. Immunity 2014, 40:843-54.

133. Kostic AD, Xavier RJ, Gevers D. *The microbiome in inflammatory bowel disease: current status and the future ahead*. Gastroenterology 2014, 146:489-99.

134. Sartor RB. *Microbial influences in inflammatory bowel diseases*. Gastroenterology 2008, 134:577-94.

135. D’Haens GR, Geboes K, Peeters M, Baert F, Penninginkx F, Rutgeerts P. *Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum*. Gastroenterology 1998, 114:262-7.

136. Rutgeerts P, Geboes K, Peeters M, Hiele M, Penninginkx F, Aerts R, Kerremans R, Vantrappen G. *Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum*. Lancet 1991, 338:771-4.

137. McGovern Dermot PB, Jones MR, Taylor KD, Marciniak K, Yan X, Dubinsky M, Ippoliti A, Vassilauskas E, Berel D, Derkowski C, Drisdige D, Flesher P, Shih DQ, Melmed G, Mengesha E, King L, Pressman S, Harfitanians T, Guo X, Targan SR, Rotter JL. *Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease*. Hum Mol Genet 2010, 19:3468-76.

138. Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV, Bogatyrev SR, Ismagilov RF, Pamer EG, Turnbaugh PJ, Chervonsky AV. *Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness*. Nature 2014, 514:638-41.

139. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loeing-Baucke V, Butschke-Peter M, Weber J, Hoffmann U, Schreiber S, Dietel M, Locs H. *Mucosal flora in inflammatory bowel disease*. Gastroenterology 2002, 122:44-54.

140. Mondot S, Kars A, Furet JP, Aguirre de Carcer, D, McSweeney C, Morrison M, Marteau P, Doré J, Leclerc M. *Highlighting new phylogenetic specifities of Crohn’s disease microbiota*. Inflamm Bowel Dis 2011, 17:185-92.

141. Manichanh C, Riguet-Gois L, Bonnau E, Glouj X, Pelleiter E, Franguel L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Doré J. *Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach*. Gut 2006, 55:205-11.

142. Willing BP, Dicksved J, Halvorsen J, Andersson AF, Lucia M, Zheng Z, Jarnerot G, Tysk C, Jansson JK, Engstrand L. *A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes*. Gastroenterology 2010, 139:1844-1854.e1.

143. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, van Treuren W, Knight R, Bell JT, Spector TD, Clark AG, Ley HE. *Human genetics shape the gut microbiome*. Cell 2014, 159:789-99.

144. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, Zhu W, Sartor RB, Boedecker EC, Harpaz N, Pace NR, Li E. *Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases*. Inflamm Bowel Dis 2011, 17:179-84.
145. Hansen R, Russell RK, Reiff C, Louis P, McIntosh F, Berry SH, Mukhopadhyay I, Hansen R, Russell RK, Berry SH, El-Omar EM, Hold GL. The fungal microbiota of de novo paediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am J Gastroenterol 2012, 107:1913-22.

146. Darfeuille-Michaud A, Bouteau J, Bulois P, Neut C, Glasser A, Barnich N, Bringier M, Swidsinski A, Beaugerie L, Colombel J. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 2004, 127:412-21.

147. Martin HM, Campbell BJ, Hart CA, Mpufo C, Nayar M, Singh R, Englyst H, Williams HF, Rhodes JM. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 2004, 127:80-93.

148. Martinez-Medina M, Aldeguer X, Lopez-Siles M, Gonzalez-Huix F, Lopez-Olivo C, Dahlb I, Blanco JE, Blanco J, Garcia-Gil Lj, Darfeuille-Michaud A. Molecular diversity of Escherichia coli in the human gut: new ecological understanding supporting the role of adherent-invasive E. coli (AIEC) in Crohn’s disease. Inflamm Bowel Dis 2009, 15:872-82.

149. Baumgart M, Dogan B, Rishnii M, Weitzman G, Bosworth B, Yantiss R, Orsi RH, Wiedmann M, McDonough P, Kim SG, Berg D, Schukken Y, Scherl E, Simpson KW. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 2007, 1:403-18.

150. Barnich N, Carvalho FA, Glasser A, Darcha C, Jantschek P, Allez M, Peeters H, Bommelmaier G, Desreumaux P, Colombel J, Darfeuille-Michaud A. CEA-CAM acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest 2007, 117:1566-74.

151. Glasser AL, Bouteau J, Barnich N, Perruchot MH, Colombel JF, Darfeuille-Michaud A. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun 2001, 69:5529-37.

152. Bringier M, Glasser A, Tung C, Mieres S, Darfeuille-Michaud A. The Crohn’s disease-associated adherent-invasive Escherichia coli strain LF82 replicates in mature phagolysosomes within J774 macrophages. Cell Microbiol 2006, 8:471-84.

153. Carvalho FA, Barnich N, Sivignon A, Darcha C, Chan, Carlos Hf, Stanners CP, Darfeuille-Michaud A. Crohn’s disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEA-CAM. J Exp Med 2009, 206:2179-89.

154. Ott SJ, Kühbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, Drews O, Weichert W, Timmis KN, Schreiber S. Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scand J Gastroenterol 2008, 43:831-41.

155. Mukhopadhyay I, Hansen R, Meharg C, Thomson JM, Russell RK, Berry SH, El-Omar EM, Hold GL. The fungal microbiota of de novo paediatric inflammatory bowel disease. Microbes Infect 2014, 16:

156. Norman JM, Handley SA, Baldridge MT, Drot K, Liu CY, Yassour M, Morgan XC, Kostic AD, Luo C, Gonzalez A, McDonald D, Haberman Y, Walters T, Baker S, Ross J, Stephens M, Heyman M, Markowitz J, Baldassano R, Griffiths A, Sylvester F, Mack D, Kim S, Crandall W, Hyams J, Huttenhower C, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014, 15:382-92.

157. Willing B, Halfvarson J, Dicksveld J, Rosengquist M, Järnerot G, Engstrand L, Tysk C, Jansson Jc. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis 2009, 15:653-60.
