Impacts of Temperature on the Performance of CdTe Based Thin-Film Solar Cell

Md. Asaduzzaman¹, Ali Newaz Bahar¹, *, Mohammad Maksudur Rahman Bhuiyan², Md. Ahsan Habib¹

¹ Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
²University Grant Commission of Bangladesh
*Corresponding Author: bahar_mitdu@yahoo.com

Abstract: In this investigation, the effect of temperature on the performance of CdTe based thin film solar cells has been studied. The parameters such as open circuit voltage (V_{oc}), short circuit current density (J_{sc}), fill factor (FF) and efficiency (η) determines the performance of solar cell. And an important diode parameter, reverse saturation current density, J_0 controls the impacts of temperature on the performance parameters. The reverse saturation current density of the CdTe photovoltaic cell, $J_0 = CT^3\exp\left(-\frac{qE_g}{kT}\right)$ was determined as optimum for $C = 17.90 \text{ mAc m}^{-2}\text{k}^{-3}$ yields $CT^3 = 4.74 \times 10^9\text{m.Acm}^{-2}\text{.}$ In this case, 298 K is considered to be more suitable temperature to achieve optimized V_{oc}, J_{sc}, FF, and η calculated for AM1.5G illumination spectra. The maximum attained values of performance parameters are compared with the experimental and theoretical results in the literature of CdTe solar cells. Moreover, the rate of change in performance parameters due to temperature are also measured and compared with the results available in the earlier published works.

Keywords: CdTe solar cell, efficiency, reverse saturation current, temperature effect.

1. INTRODUCTION

Solar cell is one of the most important optoelectronic devices that is used to convert the solar energy to electrical energy [1]. As the cell performances are mostly affected by the temperature (T), the temperature effect on solar cell disclosed to draw attention among the photovoltaic researchers. Recently, the CdTe based solar cell has attained the highest efficiency of 22.1% [2]. However, the temperature usually ranges from 288 K to 323 K in terrestrial applications [3], whereas the temperature grading in concentrator and space systems is typically higher than in terrestrial system [3]. Several previous works showed that the cell performance deteriorates with enhancing temperature [3]-[6]. The effect of temperature on solar cell performance parameters is controlled by two important diode parameters, ideality factor (n) and reverse saturation current density (J_0) [6]. Also the shunt resistance, R_{sh} and the series resistance, R_s along with those diode parameters contribute to control the effect of temperature on V_{oc}, J_{sc}, FF, and η [6].
It has been proved that the open circuit voltage, V_{oc} decreases and the short circuit current density, I_{sc} increases a bit when T increases [3-7]. Due to this degradation in V_{oc}, the FF and the efficiency, η decreases with the increasing temperature. The efficiency is slightly affected with the change in R_s and R_{sh} [8], when increasing the J_0 in an exponential manner with the increase in T degrades V_{oc} rapidly. That is why J_0 is considered as a vital material dependent parameter that affects the performance of a photovoltaic cell. And the band gap of the optoelectronic materials used in solar cell design affect this reverse saturation current density, J_0.

The direct band gap semiconductor materials, for example, CdTe and CdS have become more effective panoramas for using in thin-film technology [9]. The CdTe based solar cells generally form hetero junction with CdS buffer or another window layer materials [9]. In CdTe solar cell, germanium (Ge) is typically used as a substrate [9]. Besides thickness, doping concentration, band gap, mobility, effective density of states etc., the effect of temperature is an important factor to improve the performance of a solar cell.

In this study, we investigate the temperature effect on the performance parameters of CdTe based solar cells in the temperature range from 273 to 523 K. This study will be helpful to prefigure and utilize the further analysis of the performance of single junction and tandem solar cells with respect to temperature.

2. THEORETICAL BASIS

The equivalent electric circuit of an ideal photovoltaic cell has been shown in Figure 1. The current density vs. voltage characteristics also familiar as ‘J-V characteristics’ of a solar cell that forms a p-n junction under steady state illumination condition can simply be presented using a particular exponential model as,

$$J = -J_{ph} + J_0(e^{qV/kT} - 1)$$

where, J_{ph} is the photo-generated current density, V represents the terminal voltage, n is the ideality factor and k is the Boltzmann constant. As the efficiency of a solar cell is slightly affected with the change in R_s and R_{sh} with temperature [3-7], these two terms are disregarded in this study. And the ideality factor of the diode is considered to be 1 in this work.

![Figure 1. Equivalent circuit diagram of an ideal photovoltaic solar cell](image-url)
2.1. Basic Formulation

The mathematical equations described in this section are taken from the literature [3, 11-13]. The simulation results are analyzed by a one-dimensional online photovoltaic simulator, ADEPT 2.1 [10]. However, when the photons have an energy higher than the energy band gap \(E_g \) of the semiconductor materials, then those photons are absorbed and make electron-hole pairs [1]. Moreover, the cut-off wavelength of any photons is useful for carrier generation. And this band gap dependent cut-off wavelength and temperature dependent band gap are defined by Equation (2) and (3) [11, 12].

\[
\lambda_g = \frac{1240}{E_g(eV)} \text{ (nm)}
\]
\[
E_g(T) = E_g(0) - \frac{\alpha r^2}{(T+\beta)}
\]

Here, \(E_g(T) \) represents the band gap energy at some temperatures \(T \), \(E_g(0) \) is the band gap of the semiconductor at \(T \approx 0 \) \(K \), \(\alpha \) and \(\beta \) are two constants. The band gap parameters of the semiconductor materials, ZnO, CdS, CdTe, and Ge are listed in Table 1.

\[
\begin{align*}
\text{ZnO [14]} & : 3.516 \quad 2.00 \quad 325 \\
\text{CdS [12]} & : 2.583 \quad 4.02 \quad 147 \\
\text{CdTe [12]} & : 1.608 \quad 3.10 \quad 108 \\
\text{Ge [11]} & : 0.741 \quad 4.56 \quad 210
\end{align*}
\]

The short circuit current density, \(J_{sc} \) is defined by Equation (4) which shows that the \(J_{sc} \) depends on the solar spectral irradiance and on the initial photon flux, \(N_{ph} \).

\[
J_{sc} = q \int_{h_v=E_g}^{E_{max}} \frac{dN_{ph}}{dh_v} dh_v
\]
\[
\text{To calculate the } FF \text{ of the solar cell more accurately, Green [13] has given an expression as shown by Equation (6),}
\]

\[
FF = \frac{v_{oc}-\ln(v_{oc}+0.72)}{v_{oc}+1}
\]

Where, \(v_{oc} = (V_{oc}/V_{th}) \), also known as ‘normalized \(V_{oc} \)’ and \(V_{th} = kT/q \).

Additionally, the efficiency measurement of a solar cell can be done using Equation (7),
\[\eta = \frac{V_{oc}J_{sc}FF}{P_{in}} \quad (7) \]

Where, \(P_{in} \) is the solar irradiance on earth under AM1.5G illumination spectra.

Finally, the temperature dependent performance parameters, such as \(dJ_{sc}/dT \), \(dV_{oc}/dT \), \(dFF/dT \), and \(d\eta/dT \) are estimated by fitting the available data.

2.2 Device Simulation

The global AM1.5 (1000 Wm\(^{-2}\), AM1.5G) is the solar spectrum for incident light on the earth. It includes direct as well as diffuse rays of light from the sun and used as a standard in the photovoltaic (PV) industries [15]. The performance measurements of the cells depend mainly on the distribution of the solar spectra that are used to compare their performance. However, as mentioned earlier, ADEPT 2.1 has been used in this work to simulate the numerical data correspond to the different semiconductor materials constituting CdTe based thin-film solar cell. Table 2 shows the most essential values of the device parameters of CdTe solar cell needed to conduct the simulation [3, 9, 16-19].

Properties	CdTe	CdS	ZnO
Thickness, \(\tau \) [nm]	1600	50	200
Band gap, \(E_g \) [eV]	1.50	2.42	3.40
Electron affinity, \(\chi_e \) [eV]	3.90	4.40	4.55
Donor concentration, \(N_d \) [cm\(^{-3}\)]	-	1×10\(^{17}\)	3×10\(^{17}\)
Acceptor concentration, \(N_a \) [cm\(^{-3}\)]	5×10\(^{16}\)	-	-
Hole mobility, \(\mu_p \) [cm\(^2\)V\(^{-1}\)s\(^{-1}\)]	40	25	30
Electron mobility, \(\mu_e \) [cm\(^2\)V\(^{-1}\)s\(^{-1}\)]	320	100	70

3. Result and Discussions

The performance, essentially, the efficiency of a solar cell has been calculated as a function of temperature and band gap under the AM1.5G illumination condition. It is also to be noted that an optimum value of \(C \) as mentioned in the abstract section has been used by Nell [20]. This value has been used to compute the performance parameters of the photovoltaic cells. The performance variation in the cell due to varying temperature from 273 to 523 K has been plotted in Figure 2. The changes in performance parameters, \(dJ_{sc}/dT \), \(dV_{oc}/dT \), \(dFF/dT \), and \(d\eta/dT \) have been figured out in Figure 2(a), Figure 2(b), Figure 2(c), and Figure 2(d) respectively.
Figure 2. (a) Short circuit current versus temperature, dJ_{sc}/dT; (b) Open circuit voltage versus temperature, dV_{oc}/dT; (c) Fill factor versus temperature, dFF/dT; (d) Efficiency versus temperature, $d\eta/dT$.

The J-V characteristic curve for optimized CdTe solar cell is shown in Figure 3. It is obvious that when temperature increases, the efficiency decreases.

Figure 3. J-V characteristic curve of optimized CdTe solar cell
Table 3 shows the comparison between the performance of calculated result in this work with the experimental work [2].

Description	V_{oc} (mV)	J_{sc} (mA/cm2)	FF (%)	η (%)
Reference work [2]	887.20	31.69	78.50	22.10
Proposed study	980.91	36.57	81.03	29.07

4. CONCLUSIONS

The temperature dependent performance parameters V_{oc}, J_{sc}, FF, and η of CdTe based solar cell has been analyzed with the temperature change ranges from 273 to 523 K. The impact of J_0 on these cell performance parameters has also been discussed. Under AM1.5G illumination spectra, it has been seen that with increasing temperature, J_0 increases, and thus, V_{oc} decreases. And therefore, the fill factor and the efficiency of the cell also decrease. Concurrently, increasing temperature results in decreasing the band gap and hence J_{sc} increases. The increased J_{sc} contributes to make the efficiency better. Thus, this trend of J_{sc} to increase V_{oc} to decreasewith temperature increase in the cell yields a decrease in the energy conversion efficiency, η. At 298 K temperature, the cell performance appears to be more appropriate and allows the best agreement between the computed data and experimental values available in the literature for CdTe based solar cells. The estimated rate of change of parameters of the cell performance with temperature, such as dJ_{sc}/dT, dV_{oc}/dT, dFF/dT, and $d\eta/dT$ are well matched with the available experimental data. The performance analysis from the numerical simulation using ADEPT 2.1 substantiates that the theoretical efficiency of the CdTe based cell has been improved to 29.07% with a FF of 81.03%.

ACKNOWLEDGEMENT

The authors would like to acknowledge the use of ADEPT 2.1 photovoltaic simulation tool developed by Purdue University, USA.

REFERENCES

[1] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures, 1 edition. Cambridge; New York: Cambridge University Press, 2007.
[2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt: Res. Appl., vol. 24, no. 7, pp. 905–913, Jul. 2016.
[3] P. Singh and N.M.Ravindra, “Temperature dependence of solar cell performance - An analysis,” Solar Energy Materials and Solar Cells, vol. 101, pp. 36–45, Jun. 2012.
[4] J. J. Wysocki and P. Rappaport, “Effect of Temperature on Photovoltaic Solar Energy Conversion,”, Journal of Applied Physics, vol. 31, no. 3, pp. 571–578, Mar. 1960.
[5] J. C. C. Fan, “Theoretical temperature dependence of solar cell parameters,” Solar Cells, vol. 17, no. 2, pp. 309–315, Apr. 1986.
[6] P. Singh, S. N. Singh, M. Lal, and M. Husain, “Temperature dependence of I–V characteristics and performance parameters of silicon solar cell,” Solar Energy Materials and Solar Cells, vol. 92, no. 12, pp. 1611–1616, Dec. 2008.

[7] A. Mahfoud, F. Mohamed, S. Mekhilef, and F. Djahli, “Effect of Temperature on the GaInP/GaAs Tandem Solar Cell Performances,” International Journal of Renewable Energy Research (IJRER), vol. 5, no. 2, pp. 629–634, Jun. 2015.

[8] M.-J. Jeng, Y.-L. Lee, and L.-B. Chang, “Temperature dependences of In\(_x\)Ga\(_{1-x}\)N multiple quantum well solar cells,” J. Phys. D: Appl. Phys., vol. 42, no. 10, p. 105101, 2009.

[9] X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells,” Solar Energy, vol. 77, no. 6, pp. 803–814, Dec. 2004.

[10] J. Gray, X. Wang, R. V. K. Chavali, X. Sun, A. Kanti, and J. R. Wilcox, “ADEPT 2.1,” 2015.

[11] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, no. 1, pp. 149–154, Jan. 1967.

[12] R. Pässler, “Parameter Sets Due to Fittings of the Temperature Dependencies of Fundamental Bandgaps in Semiconductors,” phys. stat. sol. (b), vol. 216, no. 2, pp. 975–1007, Dec. 1999.

[13] M. A. Green, Solar cells: operating principles, technology, and system applications / Martin A. Green. Englewood Cliffs, N.J: Prentice-Hall, Englewood Cliffs, N.J. : Prentice-Hall, c1982.

[14] R. C. Rai, M. Guminiak, S. Wilser, B. Cai, and M. L. Nakarmi, “Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition,” Journal of Applied Physics, vol. 111, no. 7, p. 073511, Apr. 2012.

[15] C. Riordan and R. Hulstron, “What is an air mass 1.5 spectrum? [solar cell performance calculations],” in IEEE Conference on Photovoltaic Specialists, 1990, pp. 1085–1088 vol.2.

[16] J.M. Burst, J.N. Duenow, D.S. Albin, E. Colegrove, M.O. Reese, J.A. Aguiar, C.-S. Jiang, M.K. Patel, M.M. Al-Jassim, D. Kuciauskas, S. Swain, T. Ablekim, K.G. Lynn, W.K. Metzger, “CdTe solar cells with open-circuit voltage breaking the 1 V barrier,” Nature Energy, vol. 1, p. 16015, Feb. 2016.

[17] T. Aramoto, S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J. Nakajima, M. Tsuji, A. Hanafusa, T. Hibino, K. Omura, H. Ohyama, M. Murozono, “16.0% Efficient Thin-Film CdS/CdTe Solar Cells,” Jpn. J. Appl. Phys., vol. 36, no. 10R, p. 6304, Oct. 1997.

[18] M. Asaduzzaman, M. Hasan, and A. N. Bahar, “An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se\(_2\) solar cell efficiency,” SpringerPlus, vol. 5, no. 1, p. 578, Dec. 2016.

[19] M. Asaduzzaman, M. B. Hosen, M. K. Ali, & A. N. Bahar, “Non-toxic buffer layers in flexible Cu (In, Ga) Se\(_2\) photovoltaic cell applications with optimized absorber thickness”, International Journal of Photoenergy, 2017.

[20] M. E. Nell and A. M. Barnett, “The spectral p-n junction model for tandem solar-cell design,” IEEE Transactions on Electron Devices, vol. 34, no. 2, pp. 257–266, Feb. 1987.
Md. Asaduzzaman received the Bachelor of Science (Engineering) degree in Information and Communication Technology (ICT) from Mawlana Bhashani Science and Technology University (MBSTU) in 2016. His research interests focus on numerical modeling, characterization, simulation, and performance analysis of photovoltaic devices. He has contributed to several research works. One of the works has already been published in an ISI indexed journal, SpringerPlus and others are under reviewed in some renowned journals.

Mr. Ali Newaz Bahar received his M.Sc. (Engineering) in Information and Communication Technology from Mawlana Bhashani Science and Technology University (MBSTU), Tangail-1902, Bangladesh in 2015. He is currently an Assistant Professor in the Department of Information and Communication Technology of Mawlana Bhashani Science and Technology University. His research area includes Quantum-dot Cellular Automation, Thin Film Solar Cell, Big Data Analysis, WSN and Fuzzy Set.

Dr. Mohammad Maksudur Rahman Bhuiyan received his Ph.D. from the University of New England, Armidale, Australia. Currently, he is on deputation in Higher Education Quality Enhancement Project (HEQEP), ICT Unit, World Bank Finance Project. He works on Routing and switching system design, Cloud computing, Computer voice network, Nano-communication network and Quantum-dot Cellular Automation.

Md. Ahsan Habib received B.Sc. in Computer Science & IT and M.Sc. in Computer Science & Engineering from Islamic University of Technology, Bangladesh. He is an Associate Professor in the Department of Information and Communication Technology in Mawlana Bhashani Science and Technology University, Bangladesh. His research interests include wireless sensor network, QCA gates, bio-informatics, data mining etc. He is a member of IEB, IEEE, ACM, Bangladesh Physical Society, Bangladesh Computer Society and Lions Club International.