Complete mitochondrial DNA sequence of the yeast *Zygosaccharomyces siamensis* (Saccharomycetes: Saccharomycetales) from fermented honey of the *Apis cerana japonica* in Japan

Mao Chikano and Jun-ichi Takahashi

Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan

ABSTRACT

Japanese *Apis cerana* honey is believed to ferment due to the presence of some yeast. We analyzed the complete mitochondrial genome of *Zygosaccharomyces siamensis*, a yeast involved in fermenting honey. *Zygosaccharomyces siamensis* was obtained from the honey collected from *A. cerana* hives under traditional beekeeping in the forest of the Minabe-Tanabe Ume system in Wakayama Prefecture, Japan. Its mitochondrial genome was identified as a 23,184 bp circular molecule containing 8 protein-coding genes (PCGs), 24 tRNA genes, and 2 RNA genes. The PCGs contained a common set of genes encoding ATPase subunits (ATP6, ATP8, and ATP9), three subunits of cytochrome *C* oxidase (COX1, COX2, and COX3), apocytochrome b (CYTB), and ribosome-associated protein (RPS3). In addition, two open-reading frames coding for LAGLIDADG endonucleases were predicted to be about 1100 bps. The average GC content was found to be 48.6%. The heavy strand was predicted to have 7 PCGs, 22 tRNA genes, and 2 rRNA genes, while the light strand was predicted to contain one PCG and two tRNA genes. Molecular phylogenetic analyses of the mitochondrial DNA genes strongly supported the result obtained from the phylogenetic analysis of partial ITS region sequences, grouping the monophyletic species within the genus *Zygosaccharomyces*. The complete mitochondrial DNA genome of this honey-fermenting yeast will provide useful information for understanding the basis of the honey fermentation process.
ribosome-associated protein (RPS3). Two open-reading frames encoding LAGLIDAG endonucleases were predicted to be 1122 and 1143 bp, respectively. Among the eight PCGs, the initiation codon ATG was found in five, ATA in two, and TTA in one gene. Seven PCGs used TAA as the stop codon, whereas one PCG used CAT as the stop codon. Phylogenetic analysis was conducted using seven mitochondrial PCG sequences from 32 closely related taxa (Figure 1). Zygosaccharomyces siamensis was found to be most closely related to Z. mellis. We expect that the complete sequence data of yeast mitochondrial DNA will provide useful information for understanding the genetic and molecular basis of honey fermentation by yeasts.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work was supported by a grant from the Minabe-Tanabe Regional Association for GIABS Promotion and Ministry of Agriculture, Forestry
and Fisheries of Japan (Research project for Monitoring and enhancement of pollinators for crop production).

Data availability statement

The data that support the findings of this study are openly available in DDBJ/GenBank at https://www.ddbj.nig.ac.jp/index.html, accession number DRA009857.

References

Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69:313–319.

Chikano M, Takahasi J. 2019. Molecular phylogenetic analysis of yeast contained in fermented raw honey. The 40th Annual General Conference. Japanese Society of Food Microbiology. p. 28–29.

Crane E. 1999. The world history of beekeeping and honey hunting. London: Routledge.

Jobb G. 2011. Tree finder version of March 2011. Munich. http://www.treefinder.de.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649.

Kitagaki H, Shimoi H. 2007. Mitochondrial dynamics of yeast during sake brewing. J Biosci Bioeng. 104(3):227–230.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.

Sasaki M. 1999. Japanese honeybee-Norther Apis cerana. Tokyo, Japan: Kiyusya.

Sasaki M. 2001. Science of apiculture. Tokyo, Japan: Science house.

Sinacori M, Francesca N, Alfonzo A, Crucianti M, Sannino C, Settanni L, Moschetti G. 2014. Cultivable microorganisms associated with honeys of different geographical and botanical origin. Food Microbiol. 38: 284–294.

Xiao S, Nguyen DT, Wu B, Hao W. 2017. Genetic drift and indel mutation in the evolution of yeast mitochondrial genome size. Genome Biol Evol. 9(11):3088–3099.

Yoshida T. 2000. Rearing method and ecology of Japanese honeybee. Tokyo, Japan: Tamagawa University Press.

Yoshida T. 2005. Explore the Japanese honeybee society. Tokyo, Japan: Tamagawa University.