Transition Metal Ions in Methylammonium Chloride Perovskites

Chih Shan Tan*

ABSTRACT: Organic-inorganic perovskite materials have become star materials for future wide band gap optoelectronics due to their excellent optical and electrical properties. However, the lead ions inside perovskites have become a crucial environmental issue in the commercialization of wide band gap perovskite devices. This research tries to find the structure and properties of lead-free perovskite materials by screening Sn$^{2+}$ and transition-metal ions to replace Pb$^{2+}$ within the methylammonium (MA)-based chloride perovskite and find out a new two-dimensional structure of MA-based transition-metal ion chlorides. Overall, MAZnCl$_3$ may be a potential ultraviolet-C luminescent material with a stable two-dimensional structure with a wide band gap of 5.64 eV, which is suitable for ultraviolet-C luminescence applications.

INTRODUCTION

Organic–inorganic perovskite materials have advantages such as high flexibility and low formation temperature and are therefore suitable for wide band gap optoelectronics.$^{1-4}$ With the probability of pandemic outbreaks increasing year by year,5,6 research on convenient disinfection methods$^{7-10}$ and wide band gap devices and related materials deserves more attention. Due to their environmentally friendly nature and wide band gap applications, lead-free,$^{11-13}$ two-dimensional$^{14-17}$ perovskites merit more attention and investigation. Indeed, many transition metals are listed in the periodic table with the same positive divalent ion as Pb$^{2+}$, making researchers doubt their possibilities. In the past, the Goldschmidt tolerance factor was a primary perovskite method to identify the possible cation according to the ionic radius. The value of the Goldschmidt tolerance factor of the structures should be between 0.85 and 1, so that the perovskite could remain in the cubic system, or deformation might happen.18,19 However, the fine details of the possible structures and properties of the transition-metal ion perovskite need to be entirely investigated for the deformation of perovskite. The possible transition-metal ion perovskite could be revealed by the density functional theory calculation and the data of lead-free perovskite.

The structure or geometry optimization calculation of density functional theory is well known for estimating the possible crystal structures of unknown crystals and offering detailed information of the stable atom positions. Therefore, the DFT calculation is suitable for investigating the related electron$^{20-23}$ and phonon$^{24-26}$ properties from an optimized structure. This research figures out the phonon and electron properties of the unknown transition metals in methylammonium (MA) perovskite, with the halide set as chloride, through DFT, and elucidates the detailed information of crystals.

The phonon dispersion diagram and band structure were calculated to identify the optimized transition-metal ion perovskite structures with MA, stability, and semiconductor properties. Here, MA-based perovskites are chosen because of their better structure stability compared to the cesium (Cs$^+$) and formamidinium (FA$^+$) ions. The phonon dispersion diagram can reveal the dynamic crystal stability according to the number of imaginary phonon states, and dynamic stability relates to the phase stability. MAPbCl$_3$, Pn$	ext{3}$m, is a wide band gap perovskite (thin film with 3.17 eV27) with relatively stable property,7,8,29 and the crystal template of this research uses MA-based chloride perovskites for the screening of transition-metal ions. Sn$^{2+}$ and the stable same oxidation state ions of Pb$^{2+}$ (such as Cd$^{2+}$, Ni$^{2+}$, Cu$^{2+}$, Hg$^{2+}$, Fe$^{2+}$, Zn$^{2+}$, Mn$^{2+}$, and Co$^{2+}$) were screened by this research.

RESULTS AND DISCUSSION

The optimized structures of MAPbCl$_3$, MASnCl$_3$, and transition-metal ion perovskites, with the same stable oxidation state as that of the lead ion (MACdCl$_3$, MANiCl$_3$, MACuCl$_3$, MAHgCl$_3$, MAFeCl$_3$, MAZnCl$_3$, MAMnCl$_3$, and MACHgCl$_3$), are shown in Figure 1a–j. The diameter difference of different cations deforms the Pn3m structure of the MAPbCl$_3$ template shown in Figure 1a, and forms two-dimensional materials shown in Figure 1b (MASnCl$_3$), Figure 1d (MANiCl$_3$), Figure 1e
(MACuCl₃), Figure 1f (MAHgCl₃), Figure 1g (MAFeCl₃), Figure 1h (MAZnCl₃), Figure 1i (MAMnCl₃), and Figure 1j (MACoCl₃). Only MACdCl₃ in Figure 1c can retain the three-dimensional structure. This indicates that the MA molecular structure being too long for the Sn²⁺, Ni²⁺, Cu²⁺, Hg²⁺, Fe²⁺, Zn²⁺, Mn²⁺, and Co²⁺ ions undergoes deformation by breaking the three-dimensional structures at the (100) crystal plane and slicing the crystal into two-dimensional structures.

The transition-metal ions in perovskites might offer a potential research direction for discovering new 2D materials, and the optimized structure information is listed in Tables 1 and 2. The radius of transition-metal ions is listed in Table 3. Indeed, Pb²⁺ has the largest ionic radius of 1.33 Å (Table 3), compared to the lower ionic radii of Sn²⁺ (1.18 Å), Ni²⁺ (0.69 Å), Cu²⁺ (0.73 Å), Hg²⁺ (1.19 Å), Fe²⁺ (0.61 Å), Zn²⁺ (0.74 Å), Mn²⁺ (0.67 Å), and Co²⁺ (0.65 Å) cations, and so could not maintain the three-dimensional structures, thereby causing the MA molecule to break and slice the three-dimensional structures at the (100) surface to form two-dimensional structures. The dynamic stability of the phonon should identify the phase stability of each crystal. The phonon dispersion diagram and the phonon density of states (DOSs) could identify the dynamic crystal bonding vibration condition and indicate the phase stability. The fewer imaginary phonon states show better dynamic stability of the crystal, and the structure has less possibility to undergo phase transition to another phase. This is due to the bonding vibration within the crystal not giving out energy at a certain point but absorbing the heat energy outside. If suppose the bonding vibration keeps giving out energy at a certain point, then the bonding will break by the vibrational energy loss in a certain direction, and the phase transition happens toward a stabilized bonding arrangement. Phonon dispersion and phonon DOS diagrams of the structures are shown in Figure 2a–j, and the imaginary phonon rule of perovskites. These results could explain that the transition-metal ions could not be suitable doping elements, generally for high-efficiency perovskite solar cells and LED devices.

For MA-based transition-metal ion chlorides, the energy of the crystal system (free energy) is calculated with the same functional as that used for phonons, and the values are listed in Table 3. The free energies of the structures are MAPbCl₃ (−64.25 eV), MASnCl₃ (−54.22 eV), MACdCl₃ (−50.94 eV), MANiCl₃ (−53.22 eV), MACuCl₃ (−51.57 eV), MAHgCl₃ (−48.90 eV), MAFeCl₃ (−55.80 eV), MAZnCl₃ (−51.60 eV), MAMnCl₃ (−56.61 eV), and MACoCl₃ (−54.78 eV). MAPbCl₃ has the lowest free energy and becomes the most stable crystal in the structures. The dynamic stability of the phonon should identify the phase stability of each crystal. The phonon dispersion diagram and the phonon density of states (DOSs) could identify the dynamic crystal bonding vibration condition and indicate the phase stability. The fewer imaginary phonon states show better dynamic stability of the crystal, and the structure has less possibility to undergo phase transition to another phase. This is due to the bonding vibration within the crystal not giving out energy at a certain point but absorbing the heat energy outside. If suppose the bonding vibration keeps giving out energy at a certain point, then the bonding will break by the vibrational energy loss in a certain direction, and the phase transition happens toward a stabilized bonding arrangement. Phonon dispersion and phonon DOS diagrams of the structures are shown in Figure 2a–j, and the imaginary phonon

Table 1. Geometry-Optimized Crystal Parameters of the Structures given in Figure 1
Cell parameters
a (Å)
b (Å)
c (Å)
alpha (°)
beta (°)
gamma (°)
Volume (Å³)
Density (mg/m³)
The density of states (DOS) of the structures are listed in Table 3. Here, the imaginary part of phonon DOS, by counting the portion of imaginary phonon DOS in the whole phonon states, is used for the whole dynamic structure consideration. The Goldschmidt factors are also listed in Table 3 according to the radius of the MA⁺ cation as 2.62 Å and the Cl⁻ anion as 1.67 Å.

For two-dimensional MA-based transition-metal ion chlorides, MANiCl₃ (Figure 2d) and MAMnCl₃ (Figure 2i) might be the two most dynamic unstable structures, with abundant imaginary phonon states. Indeed, the imaginary part of phonon DOS is listed in Table 3, and the values of MANiCl₃ and MAMnCl₃ are 14.63 and 10.94%, respectively. Even though MACdCl₃ has the three-dimensional structure, as shown in Figure 1c, 2.79% of imaginary phonon DOS indicates that the unstable dynamic conduction might decompose eventually. Two-dimensional MAZnCl₃ has 0.97% imaginary part of phonon DOS, lower than that of MAPbCl₃ (1.78%), as presented in Table 3, indicating that MAZnCl₃ has better dynamic structural stability and has the potential for the device application. The temperature-dependent diagram in Figure 2k is calculated as the same functional as phonon and used to find out the Debye temperature of each crystal. For a solid-state material, the Debye temperature has a square mathematical relationship.

Table 2. Geometry-Optimized Atomic Positions of the Structures in Figure 1, from Top to Down—x, y, and z

Atom	MAPbCl₃ (X = Pb)	MANiCl₃ (X = Ni)	MACdCl₃ (X = Cd)	MACuCl₃ (X = Cu)	MAMgCl₃ (X = Mg)	MAFeCl₃ (X = Fe)	MAZnCl₃ (X = Zn)	MAZnCl₃ (X = Mn)	MACoCl₃ (X = Co)	
H₁	0.23018	0.21698	0.21769	0.21647	0.21460	0.21260	0.21210	0.21213	0.20593	0.20796
H₂	0.81361	0.81047	0.78923	0.77525	0.77371	0.78606	0.81901	0.81620	0.81744	0.81055
H₃	0.17060	0.16678	0.10698	0.07539	0.08082	0.14581	0.06395	0.09638	0.06845	0.10572
H₄	0.88098	0.88631	0.93455	0.94182	0.94568	0.88205	0.96035	0.93888	0.95819	0.90279
X	0.47417	0.48460	0.68257	0.59524	0.59344	0.59528	0.56357	0.56515	0.55420	0.57847
C	0.89498	0.89493	0.89481	0.88649	0.88625	0.87950	0.91412	0.90852	0.91292	0.89626
N	0.93674	0.97614	0.94117	0.96380	0.95443	0.97129	0.95828	0.96501	0.96171	0.97416

Table 3. Metal Ion Radius, Energy of the System (E₀), Imaginary Part of Phonon DOS, and Debye Temperature (Θ_D) of Different Structures

Metal ion radius (Å)	Goldschmidt factor	Energy of the system, E₀ (eV)	Imaginary part of phonon DOS (%)	Debye temperature, Θ_D (K)	
MAPbCl₃	1.33	0.90	64.25	1.78	102
MANiCl₃	0.83	1.08	54.22	3.09	106
MACdCl₃	1.09	0.98	50.94	2.79	131
MANiCl₃	0.83	1.08	53.22	14.63	173
MACuCl₃	0.87	1.07	51.57	6.64	134
MAMgCl₃	1.16	0.96	48.90	3.44	93
MAFeCl₃	0.75	1.12	55.80	4.32	144
MAZnCl₃	0.88	1.06	51.60	0.97	106
MAZnCl₃	0.81	1.09	56.61	10.94	161
MACoCl₃	0.79	1.10	54.78	2.20	123
Figure 2. Phonon dispersion, phonon density of states, and temperature-dependent heat capacity diagrams of the structures. (a) MAPbCl₃, (b) MASnCl₃, (c) MACdCl₃, (d) MANiCl₃, (e) MACuCl₃, (f) MAHgCl₃, (g) MAFeCl₃, (h) MAZnCl₃, (i) MAMnCl₃, (j) MACoCl₃ and (k) temperature-dependent heat capacity diagram of the structures.

Figure 3. Band structure and density of states of the structures. (a) MAPbCl₃, (b) MASnCl₃, (c) MACdCl₃, (d) MANiCl₃, (e) MACuCl₃, (f) MAHgCl₃, (g) MAFeCl₃, (h) MAZnCl₃, (i) MAMnCl₃, and (j) MACoCl₃.
with the melting temperature, and a higher Debye temperature might accompany a higher melting temperature.

Furthermore, a higher melting temperature is accompanied by a higher phase formation temperature, and the Debye temperature calculation could offer the essential estimation of the crystal formation temperature. The Debye temperatures \(\Theta_D \) of each structure are MAPbCl\(_3\) (\(\Theta_D = 102 \) K), MA\(\text{SnCl}_3 \) (\(\Theta_D = 106 \) K), MACdCl\(_3\) (\(\Theta_D = 131 \) K), MA\(\text{NiCl}_3 \) (\(\Theta_D = 173 \) K), MA\(\text{CuCl}_3 \) (\(\Theta_D = 134 \) K), MA\(\text{HgCl}_3 \) (\(\Theta_D = 93 \) K), MA\(\text{FeCl}_3 \) (\(\Theta_D = 144 \) K), MA\(\text{ZnCl}_3 \) (\(\Theta_D = 106 \) K), MA\(\text{MnCl}_3 \) (\(\Theta_D = 161 \) K), and MAC\(\text{OCl}_3 \) (\(\Theta_D = 123 \) K), which are listed in Table 3. The 2D MA\(\text{ZnCl}_3 \) structure, with comparable dynamic stable property, has a Debye temperature (106 K) nearly the same value as MAPbCl\(_3\) (102 K). In addition, the slight difference in the Debye temperature between MA\(\text{ZnCl}_3 \) and MAPbCl\(_3\) reveals that MA\(\text{ZnCl}_3 \) could be synthesized at the same temperature as MAPbCl\(_3\). The information could be helpful for future MA\(\text{ZnCl}_3 \) device applications.

The band structures and densities of states (DOS) of MAPbCl\(_3\), MA\(\text{SnCl}_3 \), and transition-metal ion MA chlorides are shown in Figure 3, and the exchange–correlation functional of DFT is chosen as meta-GGA-MBJLDA. It is not only that meta-GGA-MBJLDA needs less expensive computational requirement with an accuracy similar to those of hybrid functionals or GW methods but also that the calculation result of MAPbCl\(_3\) by meta-GGA-MBJLDA is 3.17 eV, as shown in Figure 3a, which is the same as the MAPbCl\(_3\) thin-film experimental value of 3.17 eV.\(^{27}\) Therefore, meta-GGA-MBJLDA is a suitable exchange–correlation functional of DFT for screening and estimating the band structures of MA\(\text{SnCl}_3 \) and the chemical composition of transition-metal MA chlorides is similar to that of MAPbCl\(_3\). Figure 3 shows the DFT band structures of MAPbCl\(_3\) (\(E_g = 3.17 \) eV, direct), MA\(\text{SnCl}_3 \) (\(E_g = 2.45 \) eV, direct), MACdCl\(_3\) (\(E_g = 3.70 \) eV, indirect), MA\(\text{NiCl}_3 \) (\(E_g = 0.45 \) eV, indirect), MA\(\text{CuCl}_3 \) (\(E_g = 0 \) eV), MA\(\text{HgCl}_3 \) (\(E_g = 2.98 \) eV, indirect), MA\(\text{FeCl}_3 \) (\(E_g = 2.28 \) eV, indirect), MA\(\text{ZnCl}_3 \) (\(E_g = 5.64 \) eV, direct), MA\(\text{MnCl}_3 \) (\(E_g = 0 \) eV), and MAC\(\text{OCl}_3 \) (\(E_g = 0 \) eV). For MA\(\text{CuCl}_3 \), MA\(\text{MnCl}_3 \), and MAC\(\text{OCl}_3 \) shown in Figure 3e,i,j, bands cross the Fermi level, and the electron can easily move up and down across the Fermi level. The three structures have semimetal-like band structures, and even using a different functional, GGA-PBEsol, the three structures still have the same semimetal band structures, as shown in Figure S1e,j.j.

In Figure 3b,f,g, the Sn\(^{2+}\), Hg\(^{2+}\), and Fe\(^{2+}\) ion replacements of the Pb\(^{2+}\) ion will reduce the band gap, even though Hg\(^{2+}\) is not environmentally friendly, and the Sn\(^{2+}\) and Fe\(^{2+}\) ions could be good candidates for reducing the perovskite band gap in future two-dimensional optoelectronic device applications. In Figure 3c, the three-dimensional MACdCl\(_3\) structure has a slightly wider band gap of 3.70 eV, indicating that the Cd\(^{2+}\) cation replaces Pb\(^{2+}\) within MA-based perovskites, which might increase the band gap. In Figure 3d, two-dimensional MA\(\text{NiCl}_3 \) has a 0.45 eV band gap with a near-infrared range spectrum, emitting 2756 nm wavelength as an indirect band gap. The ultra-small band gap might be due to the isolated low conduction band structure above the Fermi level. This research might find a near-infrared material during 2D perovskite material screening and indicated that MA\(\text{NiCl}_3 \) could be used for making the near-infrared detector device. The two-dimensional structures of MA\(\text{CuCl}_3 \), MA\(\text{MnCl}_3 \), and MA\(\text{CoCl}_3 \) have zero band gap, exhibiting metal-like properties, as shown in Figure 3e,i,j. The DOS diagrams in Figure 3e,i,j also show many states crossing the Fermi levels for MA\(\text{CuCl}_3 \), MA\(\text{MnCl}_3 \), and MA\(\text{CoCl}_3 \), and the crossing bunch of states at the Fermi level are interesting electrical structures. It is a kind of bridge between the electron and hole states, exhibiting metal-like properties. Finally, MA\(\text{ZnCl}_3 \) might be the good predictable ultraviolet-C luminescent material with a wide direct band gap, 5.64 eV, at the gamma point, as shown in Figure 2h. Table 4 lists the detailed band structure information, and N/A means no electron transition between the valence and conduction bands in two-dimensional MA\(\text{CuCl}_3 \), MA\(\text{MnCl}_3 \), and MA\(\text{CoCl}_3 \). Due to the uncommon ultrawide band gap and near-infrared properties, the electrical properties and stabilities of two-dimensional MA\(\text{ZnCl}_3 \) and MA\(\text{NiCl}_3 \) need to be investigated further for ultraviolet-C and near-infrared device reference.

The whole temperature range of temperature-dependent electrical conductivity and carrier mobility of the structures is shown in Figure 4a–c. The calculation is performed by the GGA-PBEsol exchange–correlation functional in DFT. The optimum device working temperature is found to be in the range of 280–380 K, as shown in Figure 4d–f. The electrical conductivity and carrier mobility values are listed in Tables 5 and 6. The experimental electrical conductivity and carrier mobility of thin-film MAPbCl\(_3\) are 1.8 \(\times \) 10\(^{-6} \) (\(\Omega \) m\(^{-1} \) s\(^{-1} \)) and 4.14 (cm\(^2\) V\(^{-1}\) s\(^{-1}\)), respectively, and the calculation results from this research of MAPbCl\(_3\) are 1.22 \(\times \) 10\(^{-6} \) (\(\Omega \) m\(^{-1} \) s\(^{-1} \)) and 3,132 (cm\(^2\) V\(^{-1}\) s\(^{-1}\)), listed in Tables 5 and 6. The experimental measurements of electrical conductivity and carrier mobility of MAPbCl\(_3\) are conducted at room temperature, and the material screening calculation is set at room temperature. Therefore, the calculation result of MAPbCl\(_3\) is similar to the experimental measurement result and offers a relatively referable value of electrical conductivity and carrier mobility for the unknown perovskite-related structure screening. In Figure 4a, MA\(\text{CuCl}_3 \), MA\(\text{MnCl}_3 \), and MA\(\text{CoCl}_3 \) have higher temperature-dependent electrical conductivities than other screening materials, around 10,000 to 100 times, and need a separate demonstration. In Figure 4b, the whole temperature ranges of temperature-dependent electrical conductivity of the semiconductor ranges, such as MAPbCl\(_3\), MA\(\text{SnCl}_3 \), MACdCl\(_3\), MA\(\text{NiCl}_3 \), MA\(\text{HgCl}_3 \), MA\(\text{FeCl}_3 \), and MA\(\text{ZnCl}_3 \), are shown. Indeed, the electrical conductivities of semiconductors will increase with the increase in temperature, and the carrier mobility values show a direct value jump when the temperature is higher than the activation temperature, and different screening materials have different activation temperatures. However, the whole temperature range diagram of electrical conductivities and carrier mobilities is not

Table 4. Photon Behavior of the Structures in Figure 3
Carrier transfer \((V_B^\text{max} \to C_B^\text{min}) \)
MAPbCl\(_3\)
MA\(\text{SnCl}_3 \)
MACdCl\(_3\)
MA\(\text{NiCl}_3 \)
MA\(\text{CuCl}_3 \)
MA\(\text{HgCl}_3 \)
MA\(\text{FeCl}_3 \)
MA\(\text{ZnCl}_3 \)
MA\(\text{MnCl}_3 \)
MA\(\text{CoCl}_3 \)
easy to compare. In Table 5, two-dimensional MACuCl₃ and MACoCl₃ have the highest two electrical conductivities as 4.68×10^4 ($\Omega^{-1} \text{m}^{-1}$) and 1.83×10^4 ($\Omega^{-1} \text{m}^{-1}$) at room temperature, much higher than the typical semiconductors. As a result, two-dimensional MAMnCl₃ has an electrical conductivity of 110 ($\Omega^{-1} \text{m}^{-1}$) at room temperature, higher than the standard semiconductor value. For the potential ultraviolet-C luminescent material, MAZnCl₃ has an electrical conductivity of 3.01×10^{-8} ($\Omega^{-1} \text{m}^{-1}$) in Table 5, which is lower than that of MAPbCl₃, which is 1.22×10^{-6} ($\Omega^{-1} \text{m}^{-1}$). MAZnCl₃ has a carrier mobility of 0.0396 (cm2 V$^{-1}$ S$^{-1}$), which is lower than that of MAPbCl₃, which is 3.1322 (cm2 V$^{-1}$ S$^{-1}$). As a result, the two-dimensional MAZnCl₃ is transformed to MAPbCl₃, with Zn$^{2+}$ replacing Pb$^{2+}$, which has a band gap property of 5.64 eV and an luminescence emission wavelength of 220 nm, with an electrical conductivity and a carrier mobility of 3.01×10^{-8} ($\Omega^{-1} \text{m}^{-1}$) and 0.03961 (cm2 V$^{-1}$ S$^{-1}$), respectively.

CONCLUSIONS

In summary, in this research, MAPbCl₃ was chosen as a screening template and the Pb$^{2+}$ ion was replaced with Sn$^{2+}$ and transition-metal ions with the same stable oxidation state as Cd$^{2+}$, Ni$^{2+}$, Cu$^{2+}$, Hg$^{2+}$, Fe$^{2+}$, Zn$^{2+}$, Mn$^{2+}$, and Co$^{2+}$. The MA molecular became too long under lower ionic radius conditions, and the structures deformed to two-dimensional structures, except MACdCl₃. Indeed, the DFT calculation shows that
MAPbCl3 has a band gap of 3.17 eV, with an electrical conductivity of 1.22×10^{-8} ($\Omega^{-1} \text{m}^{-1}$) and a carrier mobility of 3.1322 (cm2 V$^{-1}$ S$^{-1}$), which are very close to the actual experimental values and show that the calculated values of this study could be taken as the reference. According to the lower imaginary states of two-dimensional MAZnCl3 phonon DOS with an ultra-wide band gap (5.64 eV), MAZnCl3 is a stable structure for future ultraviolet-C luminescence applications. The calculated electrical conductivity and carrier mobility of MAZnCl3 are 3.01 × 10$^{-8}$ ($\Omega^{-1} \text{m}^{-1}$) and 0.0396 (cm2 V$^{-1}$ S$^{-1}$), respectively. Finally, this research points out that MAZnCl3 is a stable structure and has the potential for ultraviolet-C optoelectronic applications.

METHODS

The calculations were processed by VASP (Vienna ab initio simulation package)\(^{31,32}\) with different exchange–correlation functionals, GGA-PBEsol\(^33\) and meta-GGA-MBJLDA,\(^{34,35}\) for determining their semiconductor and thermodynamic properties. After processing, structure optimization was performed for new structures based on the GGA-PBE\(^36\) with 520 eV plane-wave cut-off energy, k-spacing with a 5 × 5 × 5 mesh, and first-order Methfessel–Paxton smearing with a width of 0.2 eV. GGA-PBE calculated the phonon behaviors of the atomic models with a plane-wave cut-off energy of 500 eV, k-spacing as 5 × 5 × 5 mesh, and a linear tetrahedron method with Bloch corrections to the energy. For the electronic property (electrical conductivity, carrier mobility, and carrier density) calculations, GGA-PBEsol was set a plane-wave cut-off energy of 400 eV and k-spacing with a 3 × 3 × 3 mesh and used with the chemical potential of 12 mu in total 30 mu. For electronic band structure results, meta-GGA-MBJLDA was used with a plane-wave cut-off energy of 500 eV, a k-spacing of 3 × 3 × 3 mesh, and a linear tetrahedron method.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c06088.

Additional band structures and temperature-dependent carrier densities (PDF)

AUTHOR INFORMATION

Corresponding Author

Chih Shan Tan – Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; orcid.org/0000-0001-9043-3237; Email: cstan@nycu.edu.tw

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c06088

Author Contributions

Chih Shan Tan initiated all the research ideas, performed the calculations, and completed the paper writing independently.

Notes

The author declares no competing financial interest.

ACKNOWLEDGMENTS

This work was funded by the Ministry of Science and Technology of Taiwan (Grants MOST 110-2636-E-009-020).

REFERENCES

1. Cai, P.; Huang, Y.; Seo, H. J. Anti-Stokes Ultraviolet Luminescence and Exciton Detrapping in the Two-Dimensional Perovskite (C6H5C2H4NH3)2PbCl4. *J. Phys. Chem. Lett.* 2017, 8, 4095–4102 Published Online: Jul. 9, 2019.
2. Tan, C. S.; Hou, Y.; Saidaminov, M. I.; Proppe, A.; Huang, Y. S.; Zhao, Y.; Wei, M.; Walters, G.; Wang, Z.; Zhao, Y.; Todorovic, P.; Kelley, S. O.; Chen, L. J.; Sargent, E. H. Heterogeneous Supersaturation in Mixed Perovskites. *Adv. Sci.* 2020, 7, 1903166 Published Online: Feb. 8, 2020.
3. Wang, W.; Zhao, D.; Zhang, F.; Li, L.; Du, M.; Wang, C.; Yu, Y.; Huang, Q.; Zhang, M.; Li, L.; Miao, J.; Lou, Z.; Shen, G.; Fang, Y.; Yan, Y. Highly Sensitive Low-Bandgap Perovskite Photodetectors with Respons to Ultraviolet to the Near-Infrared Region. *Adv. Funct. Mater.* 2017, 27, 1703953.
4. Zhang, Y.; Cheng, X.; Tu, D.; Gong, Z.; Li, R.; Yang, Y.; Zheng, W.; Xu, J.; Deng, S.; Chen, X. Engineering the Bandgap and Surface Structure of CsPbCl3 Nanocrystals to Achieve Efficient Ultraviolet Luminescence. *Angew. Chem., Int. Ed. Engl.* 2021, 60, 9693–9698 Published Online: Mar. 10, 2021.
5. Earm, D. J. D.; Ma, J.; Poinar, H.; Dushoff, J.; Bolker, B. M. Acceleration of plague outbreaks in the second pandemic. *Proc. Natl. Acad. Sci. U.S.A.* 2020, 117, 27703–27711 Published Online: Oct. 19, 2020.
6. Francke, M.; Korevaar, M. Housing markets in a pandemic: Evidence from historical outbreaks. *J. Urban Econ.* 2021, 123, 103333.
(7) Ding, W.; Zhou, J.; Cheng, J.; Wang, Z.; Guo, H.; Wu, C.; Xu, S.; Wu, Z.; Xie, X.; Wang, Z. L. TriboPump: A Low-Cost, Hand-Powered Water Disinfection System. Adv. Energy Mater. 2019, 9, 1901320.

(8) Li, X.-F.; Mitich, W. A. Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary Challenges and Opportunities. Environ. Sci. Technol. 2018, 52, 1681–1689 Published Online: Jan. 21, 2018.

(9) Wang, J.; Shen, J.; Ye, D.; Yan, X.; Zhang, Y.; Yang, W.; Li, X.; Wang, J.; Zhang, L.; Pan, L. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China. Environ. Pollut. 2020, 262, 114665 Published Online: Apr. 24, 2020.

(10) Xu, B.; Wang, H.; Wang, W.; Gao, L.; Li, S.; Pan, X.; Wang, H.; Yang, H.; Meng, X.; Wu, Q.; Zheng, L.; Chen, S.; Shi, X.; Fan, K.; Yan, X.; Liu, H. A Single-Atom Nanzyme for Wound Disinfection Applications. Angew. Chem. 2019, 131, 4965–4970.

(11) Pazoki, M.; Jacobsson, T. J.; Hagfeldt, A.; Boscolo, G.; Edvinsson, T. Effect of metal cation replacement on the electronic structure of metallocrystalline halide perovskites: Replacement of lead with alkaline-earth metals. Phys. Rev. B 2016, 93, 144105.

(12) Giustino, F.; Snaith, H. J. Toward Lead-Free Perovskite Solar Cells. ACS Energy Lett. 2016, 1, 1233–1240.

(13) Yang, S.; Fu, W.; Zhang, Z.; Chen, H.; Li, C.-Z. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A 2017, 5, 11462–11482.

(14) Chen, S.; Shi, G. Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices. Adv. Mater. 2017, 29, 1605447 Published Online: Mar. 3, 2017.

(15) Fracarollo, A.; Cantatore, V.; Boschetto, G.; Marchese, L.; Cossi, M. Ab initio modeling of 2D layered organohalide lead perovskites. Energies 2019, 13, 2.

(16) Gai, C.; Wang, J.; Wang, Y.; Li, J. The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance. Energies 2019, 13, 2.

(17) Han, X.; Zheng, Y.; Chai, S.; Chen, S.; Xu, J. 2D organic-inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics 2020, 9, 1787–1810.

(18) Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, No. eaav0693, Published Online: Feb. 8, 2019.

(19) Qiao, H. W.; Yang, S.; Wang, Y.; Chen, X.; Wen, T. Y.; Tang, L. J.; Chen, G.; Hou, Y.; Zhao, H.; Yang, H. G. A Gradient Heterostructure Based on Tolerance Factor in High-Performance Perovskite Solar Cells with 0.84 Fill Factor. Adv. Mater. 2019, 31, 1804217 Published Online: Nov. 28, 2018.

(20) Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Face-dependent Electrical Conductivity Properties of Pb6 Nanocrystals. Chem. Mater. 2016, 28, 1574–1580.

(21) Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. H. Face-dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem. - Asian J. 2017, 12, 293–297 Published Online: Jan. 10, 2017.

(22) Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Face-dependent electrical conductivity properties of Cu2O crystals. Nano Lett. 2015, 15, 2155–2160 Published Online: Feb. 25, 2015.

(23) Tan, C.-S.; Lu, Y.-J.; Chen, C.-C.; Liu, P.-H.; Gwo, S.; Guo, G.-Y.; Chen, L.-J. Magnetic MoS2 Interface Monolayer on a CdS Nanowire by Cation Exchange. J. Phys. Chem. C 2016, 120, 23055–23060.

(24) Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5.

(25) Woloch, M.; Gruner, M. E.; Keune, W.; Mohn, P.; Redinger, J.; Hofer, F.; Suess, D.; Podloucky, R.; Landers, J.; Salamon, S.; Scheibl, F.; Spoddi, D.; Witte, R.; Cuenya, B. R.; Gutleisch, O.; Hu, M. Y.; Zhao, J.; Toelner, T.; Alp, E. E.; Siewert, M.; Entel, P.; Pentcheva, R.; Wende, H. Impact of lattice dynamics on the phase stability of metamagnetic FeRh: Bulk and thin films. Phys. Rev. B 2016, 94, 174435.

(26) Leonov, I.; Poteryaev, A. I.; Anisimov, V. I.; Vollhardt, D. Calculated phonon spectra of paramagnetic iron at the α − γ phase transition. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 020401.