Utility of an improved model of amyloid-beta (Aβ1-42) toxicity in Caenorhabditis elegans for drug screening for Alzheimer’s disease

Gawain McColl1*, Blaine R Roberts1, Tara L Pukala2, Vijaya B Kenche1,3, Christine M Roberts4, Christopher D Link4, Timothy M Ryan1, Colin L Masters1, Kevin J Barnham1,3, Ashley I Bush1 and Robert A Cherny1

Abstract

Background: The definitive indicator of Alzheimer’s disease (AD) pathology is the profuse accumulation of amyloid-beta (Aβ) within the brain. Various in vitro and cell-based models have been proposed for high throughput drug screening for potential therapeutic benefit in diseases of protein misfolding. Caenorhabditis elegans offers a convenient in vivo system for examination of Aβ accumulation and toxicity in a complex multicellular organism. Ease of culturing and a short life cycle make this animal model well suited to rapid screening of candidate compounds.

Results: We have generated a new transgenic strain of C. elegans that expresses full length Aβ1-42. This strain differs from existing Aβ models that predominantly express amino-truncated Aβ3-42. The Aβ1-42 is expressed in body wall muscle cells, where it oligomerizes, aggregates and results in severe, and fully penetrant, age progressive paralysis. The in vivo accumulation of Aβ1-42 also stains positive for amyloid dyes, consistent with in vivo fibril formation. The utility of this model for identification of potential protective compounds was examined using the investigational Alzheimer’s therapeutic PBT2, shown to be neuroprotective in mouse models of AD and significantly improve cognition in AD patients. We observed that treatment with PBT2 provided rapid and significant protection against the Aβ-induced toxicity in C. elegans.

Conclusion: This C. elegans model of full length Aβ1-42 expression can now be adopted for use in screens to rapidly identify and assist in development of potential therapeutics and to study underlying toxic mechanism(s) of Aβ.

Keywords: Amyloid beta peptide, Alzheimer’s disease, Caenorhabditis elegans, 8-hydroxyquinoline, PBT2 and drug screen

Background

One barrier to the efficiency of drug discovery efforts in the area of Alzheimer’s disease (AD) therapeutics is the time and labour intensive nature of animal studies using transgenic mice. Cell based models for high throughput screening of candidate drugs have been proposed to attempt to bridge the gap between cell-free assays and whole animal studies. Caenorhabditis elegans offers an efficient in vivo system in which to examine the toxic outcomes of over-expression of proteins and peptides that are prone to pathological misfolding [1]. C. elegans can be further used as a cost-effective platform for discovering compounds that protect against the toxicity-associated with these misfolded proteins. Simple animal models, like C. elegans, do not need to recapitulate all pathological aspects of the respective diseases being modelled to be of use. Indeed, the simplicity of this model may be advantageous; the potentially confounding behavioural and cognitive responses typical of the higher vertebrate are absent. Instead, rapid and clear toxic phenotypes may be preferable for screening strategies, facilitating identification of structure-activity relationships.

* Correspondence: gmccoll@unimelb.edu.au
1The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3010, Australia
Full list of author information is available at the end of the article

© 2012 McColl et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The well-developed genetics and short life cycle of *C. elegans* allow it to be used in ways that are time and cost-prohibitive in vertebrate systems. As such *C. elegans* represents a complementary tool in drug discovery that may be employed before testing in vertebrate models, to expedite development of new therapeutics.

In order for this model to be useful for drug discovery it must be predictive of efficacy in traditional vertebrate models. In a recent large, unbiased yeast-based screen of over 200,000 compounds in clinical use, the 8-hydroxyquinoline chemical scaffold (8OHQ) was identified as having unique potential to reduce toxicity associated with the aggregation of several neurodegenerative disease-specific proteins [2].

Within the 8OHQs, we have identified PBT2 as a neuro-protective compound that provides rapid cognitive improvement in mouse models of AD [3] and effective in improving cognition and reducing Aβ in cerebrospinal fluid in a small Phase IIa trial in AD patients [4]. The exact mode of action of PBT2 is not yet fully defined, however its mechanism is believed to involve a combination of amyloid-beta (Aβ) detoxification and metal chaperone activity influencing intracellular homeostasis of biological metals (e.g. Fe, Cu and Zn) [3,5]. Here we describe a *C. elegans* model of AD that would facilitate more rapid testing of compounds to complement the traditional vertebrate (mouse) models for drug discovery.

The key pathological hallmark of AD is the cerebral deposition of plaques composed of Aβ peptide [6]. Aβ is produced by sequential proteolytic cleavage of the ubiquitously expressed type I transmembrane protein, amyloid β-protein precursor (APP). Cell and animal based models for AD typically overexpress either APP or its cleavage product Aβ. APP is cleaved first by β-secretase (BACE), and then by γ-secretase, in a heteromeric complex at either plasma or cellular membranes [7]. The Aβ released typically ranges from 38 to 43 amino acids in length due to imprecise γ-secretase cleavage, with the predominant species being 40 and 42 amino acids. The accumulation of Aβ is thought to lead to disease progression [8], however, the underlying mechanism of Aβ toxicity remains unclear.

C. elegans express an APP ortholog, APL-1 (Amyloid Precursor-Like-1), but it lacks BACE sites. In addition, the *C. elegans* genome does not appear to encode a BACE ortholog, and to date no Aβ-like peptide has been detected in the nematode. *In vivo* effects of transgenic human-Aβ can therefore be examined in isolation from APP processing, cleavage or breakdown in this model.

We determined that earlier models of human-Aβ expression in *C. elegans* accumulate Aβ3-42 due to mis-cleavage of a synthetic signal peptide [9]. The truncated Aβ3-42 has altered *in vitro* biophysical characteristics compared to full length Aβ1-42, including increased hydrophobicity and propensity to aggregate [9]. However Aβ1-42 does not significantly contribute to the Aβ found in human AD brain. A *C. elegans* model expressing a more disease relevant form of Aβ is required in order to more fully exploit this system for drug discovery. Here we describe a new *C. elegans* model that expresses and accumulates full-length Aβ1-42, and discuss the *in vivo* phenotype. To test the predictive value of this model for identifying protective compounds we then examined the ability of PBT2 to protect against rapid Aβ induced toxicity in this animal model.

Results

A *C. elegans* model of Aβ1-42 expression

To engineer a *C. elegans* strain expressing full length Aβ1-42 we modified the synthetic signal peptide to be cleaved from the transgenic Aβ used in the original expression construct [10]. An extra Asp-Ala (DA) was inserted N-terminal into the human-Aβ sequence in the expression vector pCL12 (unc-54:Aβ1-42) [10] (Additional file 1: Figure S1). Predicted processing of the new product, examined (data not shown) via SignalP 3.0 [11], suggested the position of signal peptide cleavage would yield full length Aβ1-42. Based on this prediction an integrated transgenic strain was engineered in *C. elegans*.

Transgene expression was targeted to the bodywall muscle cells, via use of the promoter of *unc-54* (which encodes a heavy chain muscle myosin). We then confirmed the molecular identity of the Aβ expressed in the *C. elegans* strain GMC101 via complementary techniques. Using immunocapture and ESI-MS we determined the mono-isotopic molecular weight of the expressed Aβ as 4511.2586 Da with an error of 2.5 ppm (Figure 1A). This mass is consistent with full length Aβ1-42 (expected mass 4511.2697 Da). An additional peak, shifted ~16 Da, was observed corresponding to Aβ1-42 plus a single oxygen (observed mass 4527.2710 Da). SELDI-TOF-MS incorporating antibody capture also confirmed the expression of Aβ1-42 (Additional file 2: Figure S2). In addition, bis/Bicine urea PAGE analysis also resolved a single species consistent with Aβ1-42 (Figure 1B). No additional truncated Aβ species were detected.

The amount of Aβ1-42 expressed in this new transgenic strain, GMC101, was then compared to that expressing Aβ3-42 (strain CL2120). Total protein was extracted via a urea-based buffer and the relative amount of Aβ was compared via immuno-blot analysis densitometry (Figure 1C-D). An equivalent amount of Aβ was detected between strains CL2120 (Aβ3-42) and GMC101 (Aβ1-42).

In situ-aggregation of Aβ

The cellular localization of the accumulated transgenic Aβ1-42 was then examined via immuno-histochemistry.
Transverse and longitudinal paraffin-embedded 5 μm sections confirmed Aβ localization within the bodywall muscle cells (Figure 2), consistent with the promoter activity of the unc-54 promoter. Fluorescence based immuno-histochemistry also confirmed accumulation of Aβ within the bodywall muscle of unsectioned individuals (Additional file 2: Figure S2). The expressed Aβ1-42 also appears to be at least partially aggregated as deposits stained positive for the amyloidogenic dye Thioflavin T (ThT) (Figure 3A). Aggregated Aβ1-42 could also be detected in vivo, via staining in live animals using the lipophillic-congo red derivative, X-34 [12] (Figure 3B). X-34 has brighter fluorescence than ThT and detects more Aβ aggregates than ThT, as has been previously shown [12]. Representative images of the head are shown in Figure 3A-B, as this is a region devoid of background fluorescence (including the GFP expressed in the intestine as a co-marker). We noted, however, that dye-binding aggregates are found throughout the entire length of the adult (Additional file 3: Figure S4).

Soluble Aβ oligomers

Soluble oligomers of Aβ have been proposed to be the toxic form of Aβ [13]. To explore this further in our C. elegans model we used size-exclusion chromatography under native conditions to separate soluble proteins on the basis of size. The expressed Aβ1-42 in our C. elegans model elutes, almost exclusively, as high molecular weight material (>100KDa). Only minor amounts of Aβ were detected that eluted in fractions consistent with monomer. These data are consistent with the Aβ forming soluble oligomers and/or heteromeric complexes with other cellular macromolecules (e.g. proteins etc).

Aβ1-42 toxicity in C. elegans

Differences in transgene array copy number and the genomic insertion sites of the transgenic arrays limits the ability to directly compare phenotypes between strains. However, we observed similar yet distinct toxic effects from Aβ42 versus Aβ3-42. The expression of Aβ1-42 had no adverse effects on motility if adults were cultured.
and maintained at 20°C over 4 days post adulthood (Figure 4B). In contrast, *C. elegans* expressing Aβ3-42 show an age-dependent paralysis phenotype when cultured at 20°C. However, when Aβ1-42 expressing adults, developed at 20°C, were shifted to 25°C we observed severe and fully penetrant paralysis within 48 h. The paralysis at 25°C appeared more severe for those expressing Aβ1-42 compared to Aβ3-42.

Protection against Aβ-induced paralysis by an investigational drug

The rapid paralysis from Aβ1-42 expression in this *C. elegans* strain is well suited for assessing drug effects. To explore the utility of this nematode model of Aβ toxicity to identify protective compounds we examined the effect of PBT2. We exposed L4 (the final larval stage) to a range of PBT2 concentrations for 24 h prior to a shift to 25°C (Figure 5A). A dose of 10 μg/ml was found to offer significant protection against the Aβ-induced paralysis. A protective effect of PBT2 was observed after one day at 25°C with significantly fewer individuals exhibiting paralysis (*p* < 0.001). To examine how quickly PBT2 could act we then minimized the exposure time of cultures prior to the temperature shift to 25°C. When young adults (3 days post egg lay) were exposed to PBT2 and at the same time were shifted to 25°C, significant protection was still observed (*p* < 0.001, Figure 5B). PBT2 effects on Aβ toxicity therefore appear to be rapid and are unlikely to be due to indirect effects on development. Treatment for with PBT2 for 24 h did not affect total Aβ levels (Figure 5C), or *in vivo* aggregated Aβ as determined by X-34 staining (data not shown).

Reduction of insulin-like signalling (ILS) in *C. elegans* is known to protect against Aβ toxicity [14]. To explore whether PBT2 acts via modulation of the ILS pathway in *C. elegans* we used a GFP-based reporter strain. Under conditions of lowered ILS or stress (e.g. starvation, heat shock, etc) DAF-16 (a FOXO transcription factor) translocates from the cytoplasm to the nucleus [15]. Exposure to PBT2 did not alter DAF-16 localization (Figure 5D), suggesting its effects are not via modulation of ILS. We also observed that exposure to PBT2 produced no detectable induction of small heat shock proteins (data not shown), as measured by a *hsp-16.2*::GFP reporter strain [16]. This data are consistent with the protective effects of PBT2 being derived by a mechanism other than a generalized stress response.

Discussion

Previously, we demonstrated that the existing Aβ models in *C. elegans* accumulate amino truncated Aβ3-42 instead of Aβ1-42 [9]. The Aβ3-42 peptide has different physicochemical properties to Aβ1-42; Aβ3-42 is more hydrophobic and aggregates more rapidly *in vitro*. In human AD brain Aβ1-42 is a predominant Aβ species [17], along with additional various N- and C-terminal variants [6,18,19]. We generated a new transgenic model of *C. elegans* that accumulates full-length hu-Aβ1-42 peptide.
To achieve correct signal peptide cleavage from the Aß1-42, we inserted two additional amino acids (-DA-) between the synthetic signal peptide and the Aß peptide, correcting the cleavage, resulting in expression of full-length Aß1-42. A similar approach was used to correct signal peptide cleavage from Aß1-42 in an expression construct stably transfected into COS7 cells line [20].

In our model, the Aß1-42 is expressed in body wall muscle cells, where it aggregates and results in severe and fully penetrant age progressive-paralysis (Figure 4) at 25°C. Anecdotal observations suggest that paralysis from Aß1-42 is more rapid than that caused from Aß3-42 expression. Previous studies have reported a related phenotype of reduced motility in liquid for the Aß3-42 expressing strain [21].

Disease severity of AD correlates with soluble (i.e. soluble in an aqueous buffer such as phosphate- or tris-buffered saline) but not aggregated (plaque)-Aß [22]. Several studies suggest that soluble oligomers are likely to be the toxic form of Aß [13]. However, the extent to which soluble Aß-oligomers exist in vivo is not clear. Observation of Aß-oligomers in extracts resolved via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) has questionable relevance due to Aß self-interaction induced by SDS [23,24]. As an alternative approach we have used liquid chromatography under...
native conditions to size exclude proteins and have observed that Aβ1-42 in C. elegans elutes as high-molecular-weight species (>100 KDa) consistent with high order oligomers. Previous studies using Aβ3-42 expressing C. elegans also suggest soluble Aβ-oligomers form and correlate with toxicity, rather than aggregated Aβ [14]. The precise molecular identity of the toxic Aβ species in AD brain or animal models of Aβ toxicity, and their cellular target(s) are yet to be established [25].

Treatment with ThT of C. elegans expressing Aβ3-42 suppresses Aβ-toxicity [26]. As ThT binds fibrils this suggests that aggregation may influence Aβ toxicity. However, the ThT effects on additional stress phenotypes are dependent on HSF-1 and SKN-1, both of which are stress response transcription factors. This suggests that ThT may lessen Aβ-toxicity indirectly via off-target stress response pathways. Expression of A6 in C. elegans increases oxidative stress, which occurs prior to detection of Aβ fibril formation [27]. This is consistent with the idea that the molecular species responsible for Aβ toxicity is pre-fibrillar. Furthermore, single amino acid substitutions (e.g. Leu17Pro and Met35Cys) blocked fibril formation in C. elegans but do not reduce toxicity [28], suggesting that fibrillar-Aβ itself is not the toxic species.

This whole-animal model of Aβ1-42 toxicity is well suited to studies of drug intervention. Assays of paralysis are rapid (approximately 4 days in total), with a clear and robust phenotype. PBT2, a drug undergoing clinical investigation for AD, was found to protect C. elegans against Aβ1-42 toxicity. This effect is consistent with neuro-protection reported in AD patients [4] and mouse AD models [3] and supports the utility of this nematode model for drug discovery. This model can also provide useful information on mechanism of action of candidate drugs. For example, previous cell culture experiments reported that PBT2 lowered total Aβ via up-regulated matrix metalloproteases [29]. In contrast, we observed that Aβ levels were not affected despite suppression of Aβ-toxicity, suggesting that this animal model has identified additional modes of drug action.

Conclusions
This new C. elegans model of Aβ1-42 toxicity has utility for screening of compound libraries, serving as a bridge between high throughput in vitro assays and time and labour intensive transgenic mouse trials. The turnaround time of 4 days compared with weeks to months for the typical mouse study (excluding the months of maintenance and husbandry while the animals reach the appropriate age) favours this model as a cost effective method of identifying lead compounds for more intensive investigation. This model also provides a useful tool to explore the mechanism(s) of Aβ1-42 toxicity.

Methods
Strains
The strains N2, wild type; CL2120, dvl14(pCL12(unc-54:: hu-Aβ1-42) + pCL26(ntl-2:: GFP)), CL2122; dvl15(ntl-2:: GFP) [28], CL2070, dvl70(pCL25(hsp16.2:: GFP) + pRF4...
inserted residues are underlined and Aß 1-42 sequence HHQKLVFFAEDVGSNKGAIIGLMVGGVVIA.

Aß1 or 8P media [31] with aged at 20 or 25°C as indicated. On the first day of adulthood (3-days-old), populations were grown in S-basal [34] in triplicate, then frozen in liquid-N2. Samples were then extracted in 3 volumes of urea and 5% acetic acid at room temperature. The lysate was centrifuged at 16,500 ×g for 4 hrs at room temperature. The resulting plasmid, called pCL354 (unc-54:DA-Aß1,42) shown in Additional file 1: Figure S1, encodes: MHKVLLALFFIFLAPAGTDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA, where the inserted residues are underlined and Aß1,42 sequence shown in italics. A transgenic strain was generated via gonad micro-injection and a stable integrant derived following y-irradiation as previously described [28]. This strain was then back crossed to wild type four times to give GMC101, dvlIs100 [pCL354(unc-54:DA-Aß1,42) + pCL26 (mtl-2: GFP)]. All strains were cultured at 20°C on NGM [30] or 8P media [31] with E. coli (strain OP50) as indicated. On the first day of adulthood (3-days-old), populations were aged at 20 or 25°C as indicated.

Immunoprecipitation
To a ~100 mg liquid-N2 frozen pellet of 5-day-old GMC101 adults 2:1 (v/w) of 70% formic acid was added and incubated for 4 hrs at room temperature. The lysate was centrifuged at 16,500 × g for 15 min, and the supernatant retained and neutralized with 1:20 (v/v) 1 M Tris pH 8.0 and then diluted again 1:10 (v/v) in H2O. For immunoprecipitation W0-2 (epitope: Aß5-8) [32] antibody (50 μg) was bound to 2 mg of dynabeads as per manufacturers instructions (Invitrogen). Subsequent immunoprecipitation, washing and elution steps were performed following the manufacturer's instructions. The eluted material was vacuum-centrifuged to dryness then resuspended in 10 μL of 6 M urea and 5% acetic acid at room temperature for 10 min, and then desalted and concentrated through a C4 ZipTip (Millipore) for mass spectrometry.

Mass spectrometry
MS measurements were performed on a LTQ-Orbitrap (Thermo Scientific) operated in the positive ion mode, with the sample introduced by nano-electrospray from borosilicate capillaries (New Objective). Typical instrumental parameters included: ionisation spray voltage, 1.5 kV; capillary voltage, 40 V; tube lens voltage, 60 V; capillary temperature; 300°C; maximum injection time, 100 ms; orbitrap mass resolution, 100000 (at m/z 400); acquisition time, 1-2 min. Spectra were deconvoluted and analysed using Qual Browser v.2.0 software (Thermo Scientific).

SELDI-TOF-MS analysis was also performed on TBS soluble material as previously described [9]. Immunocapture was performed using affinity-purified W0-2 (epitope: Aß5-8) [32] antibody coupled to ProteinChip PS10 arrays (Bio-Rad).

Immunoblot analysis
For separation of Aß based on peptide hydrophobicity [33] bis/bicine urea-PAGE analysis was performed as previously described [9] but modified for a 20 × 20 cm Protein II xi system (BioRad). Affinity purified 4G8 (epitope: Aß18–22, Signet Laboratories) primary antibody was used at 1 μg/ml.

For comparison of Aß levels ~1000 adults were collected in S-basal [34] in triplicate, then frozen in liquid-N2. Samples were then extracted in 3 volumes of urea buffer (7 M urea, 2 M Thiourea, 4% w/v CHAPS, 1.5% w/v dithiothreitol and 50 mM Tris pH 8.0) disrupted via sonication, and then centrifuged at 16,500 × g for 10 min. A 10 μl sample of the supernatant was added to 3 μl of loading buffer (10% v/v glycerol, 250 mM Tris pH 8.5, 2% w/v SDS, 0.5 mM EDTA and 0.2 mM Orange-G) and reduced with 1/10 volumes of 0.5 M dithiothreitol. Samples were then heated at 70°C for 10 min, mixed and centrifuged at 13,000 g for 1 min. Material was resolved via Tricine-SDS-PAGE (16%/6M Urea) [35] then transferred to nitrocellulose membranes, boiled for 3 min (via a microwave oven) in PBS pH 7.4 and blocked for 1 h at room temperature in 0.5% (w/v) skim milk. Membranes were probed overnight at 4°C with or 6E10 (epitope: Aß4–9, Sigma) at 1 μg/ml as indicated. Blots were re-probed with anti-α-tubulin (Sigma T6074, 1:10000) to standardize total protein loading. Standard enhanced chemiluminescence was then performed [9].

Immunohistochemistry
C. elegans were washed in S-basal [34], fixed overnight in 10% (v/v) Neutral Buffered Formalin (NBF) at 4°C, embedded in agar (2% w/v in phosphate buffered saline) blocks and then fixed again in 10% NBF overnight. Following processing of the agar blocks into paraffin, 5 μm sections were prepared, deparaffinised and treated with 90% formic acid (FA) prior to Aß immunohistochemistry with a 1:200 dilution of 1E8 mouse monoclonal (SmithKline Beecham) antibody (epitope: Aß18–22). Antibody binding sites were detected with a peroxidase labelled streptavidin biotin system (Dako K0675) with a 3,3'-diaminobenzidine tetrahydrochloride (DAB) chromogen (Dako) resulting in a brown reaction product. Samples were counter stained with Harris Haematoxylin solution (Amber Scientific).

McColl et al. Molecular Neurodegeneration 2012, 7:57
http://www.molecularneurodegeneration.com/content/7/1/57
Page 7 of 9
Size exclusion chromatography
To a frozen pellet of *C. elegans* 1:1 (w/v) volumes of PBS (pH7.4) with proteinase inhibitors added (Roche Applied Science) was added, then disrupted by sonication using 6 cycles of 6 sec ‘on’, 10 sec ‘off’ with a 40% duty cycle. Following centrifugation at 10000 x g for 30 min at 4°C the soluble fraction was collected and then diluted to 10mg/ml. A single 100 μl injection of 1 mg total protein into a Superdex 75 10/300 GL gel filtration column was size excluded in PBS pH7.4 at a flow rate of 0.75 ml/min using an Agilent 1200 HPLC. Fractions of 1 ml were collected and subsequently analysed by 4-12% BisTris SDS-PAGE and immunoblot as above using affinity purified 6E10 antibody as above.

Synthesis of X-34 (1,4-bis(3-carboxy-4-hydroxyphenylethenyl)-benzene)
A modified procedure of Styren et al [12] was used, where a mixture of 5-formylsalicylic acid (2.2 mmol), p-xylendenediphasonic acid tetraethylester (1 mmol) and potassium tert-butoxide (10 mmol) in anhydrous dimethylformamide (10 mL) was stirred at 40°C for 16 h. The reaction mixture was cooled to room temperature and poured into ice-water to give yellow precipitate which was isolated by filtration. The yellow solid was further washed with di-ethyl ether and dried to give 265 mg of the required product. 1H NMR (500 MHz, d6-DMSO): δ 7.97 (d, J = 2 Hz, 2H), 7.79 (dd, J = 8.5, 2 Hz, 2H), 7.56 (s, 4H), 7.25 (d, J = 16 Hz, 2H), 7.11 (d, J = 16 Hz, 2H), 6.96 (d, J = 8.5 Hz, 2H). MS/El-403 (M + 1).

The differential changes in X-34 fluorescence between freshly refolded and fibrillar Aβ1-42 was confirmed by obtaining emission (excitation: 350 nm) and excitation (emission: 490 nm) spectra with a Flexstation 3 plate reader (Molecular Devices) equipped with monochromators, using an average of 15 reads and an integration time of 2 seconds (Additional file 4: Figure S3).

Microscopy
Thioflavin T (ThT) staining of 10% Neutral Buffer Formalin-fixed samples [28] and X-34 in vivo staining in live *C. elegans* samples [36] were previously described, using a Leica DM2500. Immunohistochemistry on whole *C. elegans* was performed using 6E10 (epitope: Aβ4–9) antibody and counter staining of nuclei using 4’,6-diamidino-2-phenylindole (DAPI) was performed using standard protocols [10].

Paralysis assay
All populations were cultured at 20°C and developmentally synchronized from a 4 h egg-lay. At 64–72 h post egg-lay (time zero) individuals were shifted to 20°C or 25°C, and body movement assessed over time as indicated. Nematodes were scored as paralysed if they failed to complete full body movement (i.e a point of inflection traversing the entire body length) either spontaneously or touch-provoked. Proportion of individuals not paralysed were analysed by a correction for continuity [37]. Comparisons of proportions were made using a 2-tailed Z-test. Experiments were replicated as indicated.

Compound effects
PBT-2 (Prana Biotechnology, Australia) was dissolved in ethanol (<1 ml) and added to molten NGM (at 55°C) at the concentrations described, no compound controls included a corresponding volume of ethanol. In addition all media (control and compound) contained 50 μg/ml Ampicillin (Sigma) to suppress bacteriological activity. All media was stored at 4°C and used within one-week. *C. elegans* cultures were transferred onto media with compound as l4 larvae (48 h post egg lay) for 24 h at 20°C. Cultures were then transferred to 25°C as young adults (time zero) and scored for paralysis as described above.

Additional files

Additional file 1: Figure S1. A DNA sequence (4982 bp) of plasmid pCL354(unc-54DA-Aβ1-42). Shown is the DA-insert codons in red and Aβ1-42 ORF in green.

Additional file 2: Figure S2. A SELDI-TOF MS analysis of TBS lysate from *C. elegans* expressing Aβ1-42. A peptide species with an average m/z of 4511.6 Da (775 ppm error) corresponds to Aβ1-42 (calculated average M + H + 4515.1). This estimate is within the typical error associated with SELDI-TOF-MS. B Epifluorescence micrograph of adult GMC101 head showing immunolocalization of Aβ1-42 (red) with DAPI stained nuclei (blue).

Additional file 3: Figure S3. Excitation properties of X-34. Fluorescence intensity in the presence of fibrillar Aβ1-42. A: Live imaging of aggregated Aβ using X-34. Dye-binding aggregates (arrowheads) can be seen throughout the entire body length. Scale bar= 25µm. B: ThT also binds Aβ aggregates (arrowheads) throughout adult *C. elegans*.

Additional file 4: Figure S3. Fluorescence properties of X-34. Excitation (emission wavelength of 490 nm) and emission spectra (using excitation wavelength of 350nm) were acquired for X-34 in the presence of freshly refolded (black) and fibrillar Aβ1-42 (blue) with a step size of 2 nm. This analysis indicates a greater than 1000 fold increase in fluorescence intensity in the presence of fibrillar Aβ1-42.

Abbreviations
Aβ: amyloid beta peptide; AD: Alzheimer’s disease; 8OHQ: 8-Hydroxy quinoline; ES-MS: electrospray ionization-mass spectrometry; ThT: Thioflavin-T; X-34: 1,4-Bis(3-carboxy-4-hydroxyphenylethenyl)-benzene; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Competing interests
CLM, KJB and RAC are consultants for Prana Biotechnology Ltd.

Authors’ contributions
GM conceived and designed the research; GM, BRR, TLP, TMR, CMR, CDL and VBK performed research; GM, TLP and CDL analysed data; CLM, KJB, AIB and RAC provided material support; GM wrote the paper. All authors read and approved the final manuscript.
Acknowledgements
We thank Leanne Taylor and Ian Birchall (FNIMH) for assistance with histology, Monica Lind (FNIMH) for technical assistance and Nicole Jenkins for comments. Nematode strains used include some provided by the Caenorhabditis Genetics Center funded by the U.S. National Institutes of Health National Center for Research Resources. We acknowledge support by the Victorian Government Operational Infrastructure Support Program.

Author details
1The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3010, Australia. 2University of Adelaide, Adelaide, South Australia, Australia. 3Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia. 4Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.

Received: 16 April 2012 Accepted: 15 November 2012 Published: 21 November 2012

References
1. Teschendorf D, Link CD: What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases? Mol Neurodegener 2009, 4:34.
2. Tardiff DF, Tucci ML, Caldwell KA, Caldwell GA, Lindquist S: Distinguishing different β-hydroxyquinolines protect models of TDP-43 protein, α-synuclein, and polyglutamine proteotoxicity through distinct mechanisms. J Biol Chem 2012, 287:4107–4120.
3. Adlard PA, Cherny RA, Finkelstein DJ, Gautier E, Robb E, Cortes M, Volkattik I, Liu X, Smith J, Perez K, et al: Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased intestinal Abeta. Neuron 2008, 59:53–55.
4. Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, Masters CL, Targum S, Bush AI, Murdoch R, et al: Safety, efficacy, and biomarker findings of PTZ2 in targeting Abeta as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial. The Anser Neurol 2008, 2779–786.
5. Crouch PJ, Savva MS, Hung LW, Donnelly PS, Mot AI, Parker SJ, Greenough MA, Volkattik I, Adlard PA, Cherny RA, et al: The Alzheimer's therapeutic PTZ2 promotes amyloid-beta degradation and GS3K phosphorylation via a metal chaperone activity. J Neurochem 2011, 119:2220–230.
6. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K: Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 1985, 82:4245–4249.
7. Haass C, Selkoe DJ: Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 1993, 75:1039–1042.
8. Hardy JA, Higgins GA: Alzheimer's disease: the amyloid cascade hypothesis. Science 1992, 256:184–185.
9. McColl G, Roberts BR, Gunn AP, Perez KA, Tew DJ, Masters CL, Barnham KJ, Cherny RA, Bush AI, Masters CL, Duce JA: The Caenorhabditis elegans elegans Aβ-st model of Alzheimer disease predominantly expresses Aβ3-4. J Biol Chem 2009, 284:22697–22702.
10. Link CD: Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 1995, 92:9568–9572.
11. Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340:723–795.
12. Styren SD, Hamilton RL, Styren GC, Kunk LE: X-34, a fluorescent derivative of Congo red: a novel histochimical stain for Alzheimer's disease pathology. J Histochem Cytochem 2000, 48:1223–1232.
13. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, et al: Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 2008, 14:837–842.
14. Cohen E, Bieschke J, Pericavalle RM, Kelly JW, Dilllin A: Opposing activities protect against age-onset proteotoxicity. Science 2006, 313:1604–1610.
15. Henderson ST, Johnson TE: Das1 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 2001, 11:1975–1980.
16. Link CD, Cyprcek JR, Johnson CJ, Johnson TE: Direct observation of stress response in Caenorhabditis elegans using a reporter transgene. Cell Stress Chaperones 1999, 4:235–242.
17. Portellus E, Bogdancic N, Gustavsson MK, Vollmann I, Brinkmalm G, Zetterberg H, Winblad B, Blennow K: Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer's disease. Acta Neuropathol 2010, 120:185–193.
18. Miller DL, Papavasilepoulos IA, Styles J, Bobin SA, Lin YY, Biermann K, Iqbal K: Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease. Arch Biochem Biophys 1993, 301:1–52.
19. Prelli F, Castano E, Gendler GN, Frangini B: Differences between vascular and plaque core amyloid in Alzheimer's disease. J Neurochem 1988, 51:648–651.
20. Lichtenhafner SF, Multhaup G, Masters CL, Beyreuther K: A novel substrate for analyzing Alzheimer's disease gamma-secretase. FEBS Lett 1999, 453:288–292.
21. Minniti AN, Rebollored DL, Grez PM, Farb D, Aldunate R, Voltattik I, Cherny RA, Opazo C, Masters C, Bush AI, Intrresta NC: Intracellular amyloid formation in muscle cells of Abeta-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification. Mol Neurodegener 2009, 4:2.
22. McLean CA, Cherny RA, Fraser RW, Fuller SJ, Smith ML, Beyreuther K, Bush AI, Masters CL: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 1999, 46:860–866.
23. Tew DJ, Bottomley SP, Smith DP, Coccotiusto GB, Babon J, Hinds MA, Masters CL, Cappai R, Barnham KJ: Stabilization of neurototoxic soluble beta-sheet-rich conformations of the Alzheimer's disease amyloid-beta peptide: Biophys J 2008, 94:2752–2766.
24. Hepler RW, Grimm KM, Nahas DD, Breece R, Dodson EC, Acton P, Keller PM, Yeager M, Wang H, Shughrue P, et al: Solution state characterization of amyloid beta-derived diffusible ligands. Biochemistry 2006, 45:15157–15167.
25. Roberts BR, Ryan TM, Bush AI, Masters CL, Duce JA: The role of metallohydrogen and amyloid-beta peptides in Alzheimer's disease. J Neurochem 2012, 120(Suppl 1):149–166.
26. Alavez S, Vantipalli MC, Zucker DJ, Kang LM, Lithgow GJ: Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 2011, 472:226–229.
27. Drake J, Link CD, Butterfield DA: Oxidative stress precedes fibrillar deposition of Alzheimer's disease amyloid beta-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 2007, 28:415–420.
28. Fay DS, Puet A, Johnson CJ, Link CD: In vivo aggregation of beta-amyloid peptide variants. J Neurochem 1998, 91:1616–1625.
29. White AR, Du T, Laughton KM, Voltattik I, Sharples RA, Xillinas ME, Hoke DE, Holsinger RM, Evin G, Cherny RA, et al: Degradation of the Alzheimer disease amyloid beta-peptide by metal-dependent up-regulation of metalloproteinase activity. J Biol Chem 2006, 281:17670–17680.
30. Wood W, The Nematocheirid Caenorhabditis elegans, Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press; 1988.
31. Bianchi L, Dr isolato D: Culture of embryonic C. elegans cells for electrophysiological and pharmacological analyses. In Wormbook. Edited by The C. elegans Research Community; 2006. doi:10.1895/ wormbook.1.122.1. http://www.wormbook.org.
32. Duff K, Erkenk C, Zeh C, Yu X, Prada CA, Perez-Tur J, Hutton M, Buer L, Hangaya Y, Yager D, et al: Increased amyloid-beta(43) in brains of mice expressing mutant presenilin 1. Nature 1996, 383:710–713.
33. Kaffi H, Wilffang J, Staufenbien M: Electropropertic separation of beta-A4 peptides (1-40) and (1-42), Anal Biochem 1996, 237:24–29.
34. Brenner S: The genetics of Caenorhabditis elegans. Genetics 1974, 77:71–94.
35. Schagger H, Tricine-SDS-PAGE, Nat Protoc 2006, 1:16–22.
36. Link CD, Johnson CJ, Fonte V, Paupard M, Hall DH, Styren S, Mathis CA, Kunk LE: Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiol Aging 2001, 22:17–226.
37. Newcombe RG: Two-sided confidence intervals for the single proportion: Comparison of seven methods. Stat Med 1998, 17:857–872.

doi:10.1186/1750-1326-7-57

Cite this article as: McColl et al.: Utility of an improved model of amyloid-beta (Aβ42) toxicity in Caenorhabditis elegans for drug screening for Alzheimer's disease. Molecular Neurodegeneration 2012 7:57.
Author/s:
McColl, G; Roberts, BR; Pukala, TL; Kenche, VB; Roberts, CM; Link, CD; Ryan, TM; Masters, CL; Barnham, KJ; Bush, AI; Cherny, RA

Title:
Utility of an improved model of amyloid-beta (A beta(1-42)) toxicity in Caenorhabditis elegans for drug screening for Alzheimer's disease

Date:
2012-11-21

Citation:
McColl, G; Roberts, BR; Pukala, TL; Kenche, VB; Roberts, CM; Link, CD; Ryan, TM; Masters, CL; Barnham, KJ; Bush, AI; Cherny, RA, Utility of an improved model of amyloid-beta (A beta(1-42)) toxicity in Caenorhabditis elegans for drug screening for Alzheimer's disease, MOLECULAR NEURODEGENERATION, 2012, 7

Persistent Link:
http://hdl.handle.net/11343/58815