SUPPLEMENTARY MATERIAL

Volatile profile of Echinacea purpurea plants after in vitro endophyte infection
Valentina Maggini1,2,3*, Rose Vanessa Bandeira Reidel4, Marinella De Leo4, Alessio Mengoni1, Eugenia Rosaria Gallo2,3, Elisangela Miceli1, Sauro Biffi5, Renato Fani1, Fabio Firenzuoli3, Patrizia Bogani1§ and Luisa Pistelli4§

1Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; 2Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; 3Research and Innovation Center in Phytotherapy and Integrated Medicine - CERFIT Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy; 4Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; 5Botanical Garden Casola Valsenio, Via del Corso 6, 48010 Ravenna, Italy

§co-last author

Email: valentina.maggini@unifi.it

The differences in volatile profile of Echinacea purpurea plants not-inoculated (EpC) and inoculated with their endophytes from roots (EpR) and stem/leaves (EpS/L) were analysed and compared by GC-FID/GC–MS in an in vitro model. Non-terpenes and sesquiterpene hydrocarbons were the most abundant classes with an opposite behaviour of EpS/L showing a decreased emission of sesquiterpenes and an increase of non-terpene derivatives. The main compounds obtained from EpS/L were (Z)-8-dodecen-1-ol and 1-pentadecene, while germacrene D and β-caryophyllene were the key compounds in EpC and EpR. For the first time, this work indicates that bacterial endophytes modify the aroma profiles of infected and non-infected in vitro plants of the important medicinal plant E. purpurea. Therefore, our model of infection could permit to select endophytic strains to use as biotechnological tool in the production of medicinal plants enriched in volatile bioactive compounds.

Keywords: volatile organic compounds; Echinacea purpurea; endophytes; plant-bacteria interaction
Experimental

Bacterial cultures and plant material

Bacterial endophytes were separately isolated from the roots (R) and the aerial compartment (stem and leaves, S/L) of *E. purpurea* plants grown at the “Il Giardino delle Erbe”, Casola Valsenio, Italy, as previously reported (Chiellini et al. 2014). Stock cultures were grown at 30°C on tryptone soy agar (TSA; Bio-Rad, USA) solid medium or tryptone soy broth (TSB, Bio-Rad, USA) liquid medium. *E. purpurea* seeds were provided by the “Il Giardino delle Erbe”, Casola Valsenio, Italy. Seeds were surface sterilized in order to prevent any microorganism growth and then dark germinated at 24±1°C in De Wit Culture tubes (LAB Associates BV, The Netherlands) containing 5 ml of Linsmaier & Skoog Medium (LS) including vitamins (Duchefa Biochemie, The Netherlands) (Maggini et al. 2017). After root formation, the seedlings were transferred in sterile capped glass flasks, containing 30 ml of LS solid medium, supplemented with 3% sucrose, and placed in a growth chamber at 24±1°C with a photoperiod of 16 h light a day.

Plant-bacteria interaction model

In this work, we used a modified version of the *in vitro* model developed in Maggini et al. (2017). *Inocula* of bacterial endophytes, isolated from R and S/L compartment of *E. purpurea* plants, were respectively incubated for one and three days at 30 °C. The bacterial suspensions were then adjusted to 8x10⁸ CFU/ml (OD₆₀₀=1). The R and S/L pools generated from 100 μl of each diluted 1:10 OD₆₀₀ suspension cultures were then centrifuged at 4000 rpm for 20 minutes and the pellet suspended in a correspondent volume of 0.9% saline solution. Three 2-months old *E. purpurea* plants were infected with 100 μl of each bacterial pool. Three plants (control) were infected with 100 μl of sterilized saline solution. Plants were then incubated in the growth chamber at 24±1 °C for 30 days. The experiment was performed in triplicate.
Sample preparation for VOC analysis

The phytochemical analysis of E. purpurea volatiles was focused only on echinacea leaves (from control plants, plants infected with root endophytes and plants infected with stem/leaf endophytes) since it is known that E. purpurea leaves contain higher amount of terpenoids in comparison with the roots. The analyses of the volatile organic compounds (VOCs) were performed using Supelco SPME device coated with polydimethylsiloxane (PDMS, 100 μm). All samples of *E. purpurea in vitro* plants were analysed immediately after harvesting. The fresh plant material was introduced separately into a glass vial (5 ml, filled up with 1.5 ml of sample) covered with aluminium foil and left to equilibrate for 30 min at room temperature. Multiple experiments were done to find the best condition of SPME analysis and then a double measurement was performed. Fibers were conditioned before analysis, following the manufacturer indications. After the equilibration time, the fibre was inserted into the vial with sample and exposed to the headspace for 20 min at room temperature. Then, the fibre was withdrawn into the needle and transferred to the injector of the GC–MS instrument where the fibre was desorbed for 30 min. All the plant samples were analyzed without culture medium, using leaves of the same size and with similar weight. The time of contact between SPME fiber (PDMS) and each sample was always the same.

Volatile analysis (GC-FID/GC–MS) and compound identification

All the analyses were performed following the method previously described (Bandeira Reidel et al. 2016; Giovanelli et al. 2017).

In planta bacterial growth analysis

In order to evaluate endophytes multiplication into host tissues, 1.0 g of each sample was homogenized and serially diluted up to 10^{-7}/ml cells as previously described (Maggini et al.
Five replications of each dilution were plated on TSA medium. Bacterial growth was scored after two, three and four days of incubation of the plates at 30 °C.

Statistical data analysis

To evaluate whether the VOCs identified were useful in reflecting the chemical relationships between samples, a principal component analysis (PCA) was conducted (Cserhati 2010). Differences between control and infected plants were compared by Kruskall-Wallis test, followed by individual Mann-Whitney U Tests (MWU). Bonferroni corrected P values were reported: \(P < 0.05 \) was considered significant. The analyses were performed by using the modules present in the PAST program, version 3.15 (Hammer et al. 2001).
References

Bandeira Reidel RV, Melai B, Cioni P, Flamini G, Pistelli L. 2016. Aroma profile of Rubus ulmifolius flowers and fruits during different ontogenetic phases. Chemistry & biodiversity. 13(12):1776-1784.

Chiellini C, Maida I, Emiliani G, Mengoni A, Mocali S, Fabiani A, Biffi S, Maggini V, Gori L, Vannacci A et al. 2014. Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia. International microbiology: the official journal of the Spanish Society for Microbiology. 17(3):165-174.

Cserhati T. 2010. Data evaluation in chromatography by principal component analysis. Biomedical chromatography: BMC. 24(1):20-28.

Giovanelli S, Giusti G, Cioni PL, Minissale P, Ciccarelli D, Pistelli L. 2017. Aroma profile and essential oil composition of Rhus coriaria fruits from four Sicilian sites of collection. Industrial Crop Products. 97:166-174.

Hammer Ø, Harper DAT, Ryan PD. 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 4:19-20.

Maggini V, De Leo M, Mengoni A, Gallo ER, Miceli E, Reidel RVB, Biffi S, Pistelli L, Fani R, Firenzuoli F et al. 2017. Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea (L.) Moench: an in vitro model. Scientific reports. 7(1):16924.
Table S1. Bacterial strains from *E. purpurea* stem/leaf (S/L; Maggini et al., 2017) and roots (R) used in this work.

Strain code	Genus	GenBank accession of partial 16S rRNA gene sequence				
EpS/L1	Curtobacterium sp.	KJ642423				
EpS/L2	Curtobacterium sp.	KJ642424				
EpS/L4	Microbacterium sp.	KJ642438				
EpS/L5	Bacillus sp.	KJ642422				
EpS/L16	Arthrobacter sp.	KJ642432				
EpS/L17	Staphylococcus sp.	KJ642469				
EpS/L18	Arthrobacter sp.	KJ642419				
EpS/L20	Pseudomonas sp.	KJ642444				
EpS/L22	Staphylococcus sp.	KJ642476				
EpS/L25	Pseudomonas sp.	KJ642442				
EpS/L27	Arthrobacter sp.	KJ642420				
EpS/L31	Rhodobacter sp.	KJ642453				
EpS/L32	Sphingomonas sp.	KJ642455				
EpS/L34	Staphylococcus sp.	KJ642465				
EpS/L35	Arthrobacter sp.	KJ642421				
EpS/L37	Pseudomonas sp.	KJ642443				
EpS/L39	Pseudomonas sp.	KJ642336				
EpS/L40	Staphylococcus sp.	KJ642466				
EpS/L43	Pseudomonas sp.	KJ642443				
EpS/L50	Sphingomonas sp.	KJ642457				
EpS/L54	Frigoribacterium sp.	KJ642425				
EpS/L59	Frigoribacterium sp.	KJ642426				
EpS/L62	Staphylococcus sp.	KJ642472				
EpS/L64	Frigoribacterium sp.	KJ642427				
EpS/L65	Microbacterium sp.	KJ642440				
EpS/L70	Sphingomonas sp.	KJ642460				
EpS/L80	Frigoribacterium sp.	KJ642428				
EpS/L81	Agrococcus sp.	KJ642418				
EpS/L82	Methylobacterium sp.	KJ642437				
EpS/L83	Sphingomonas sp.	KJ642462				
EpS/L84	Frigoribacterium sp.	KJ642430				
EpS/L87	Kineococcus sp.	KJ778698				
EpS/L89	Staphylococcus sp.	KJ642473				
EpS/L91	Frigoribacterium sp.	KJ642429				
EpS/L95	Staphylococcus sp.	KJ642470				
EpS/L96	Staphylococcus sp.	KJ642474				
Sample Code	Species	Accession Number				
-------------	----------------	------------------				
EpS/L102	*Staphylococcus* sp.	KJ642464				
EpR1	*Pseudomonas* sp.	KJ642508				
EpR2	*Pseudomonas* sp.	KJ642504				
EpR5	*Pseudomonas* sp.	KJ642499				
EpR9	*Agrobacterium* sp	KJ642533				
EpR10	*Agrobacterium* sp	KJ642528				
EpR11	*Agrobacterium* sp	KJ642484				
EpR12	*Agrobacterium* sp	KJ642529				
EpR14	*Agrobacterium* sp	KJ642531				
EpR15	*Agrobacterium* sp	KJ642530				
EpR16	*Agrobacterium* sp	KJ642532				
EpR17	*Pseudomonas* sp.	KJ642498				
EpR18	*Agrobacterium*	KJ642487				
EpR19	*Pseudomonas* sp.	KJ642512				
EpR21	*Pseudomonas* sp.	KJ642524				
EpR23	*Rhizobium* sp.	KJ642527				
EpR24	*Pseudomonas* sp.	KJ642503				
EpR25	*Pseudomonas* sp.	KJ642505				
EpR28	*Pseudomonas* sp.	KJ642513				
EpR29	*Pseudomonas* sp.	KJ642511				
EpR32	*Pseudomonas* sp.	KJ642502				
EpR34	*Pseudomonas* sp.	KJ642497				
EpR36	*Pseudomonas* sp.	KJ642510				
EpR37	*Pseudomonas* sp.	KJ642522				
EpR39	*Pseudomonas* sp.	KJ642497				
EpR41	*Pseudomonas* sp.	KJ642519				
EpR45	*Rhizobium* sp.	KJ778700				
EpR58	*Pseudomonas* sp.	KJ642491				
EpR61	*Pseudomonas* sp.	KJ642509				
EpR67	*Achromobacter* sp.	KJ642479				
EpR68	*Achromobacter* sp.	KJ642477				
EpR69	*Achromobacter* sp.	KJ642482				
EpR70	*Achromobacter* sp.	KJ642478				
EpR73	*Pseudomonas* sp.	KJ642494				
EpR74	*Pseudomonas* sp.	KJ642495				
EpR76	*Pseudomonas* sp.	KJ642525				
EpR77	*Pseudomonas* sp.	KJ778699				
EpR81	*Pseudomonas* sp.	KJ642492				
EpR84	*Pseudomonas* sp.	KJ642509				
	Microbacterium sp.	Pseudomonas sp.	Achromobacter sp.	Pseudomonas sp.	Pseudomonas sp.	Microbacterium sp.
-----	-------------------	-----------------	------------------	-----------------	-----------------	-------------------
EpR85	KJ642489	KJ642516	KJ778696	KJ642518	KJ642517	KJ642490

Table S2. Total viable count (TVC) as Colony Forming Units (CFU)/g into the host root (R) and stem/leaf (S/L) plant tissues.

Host	TVC (log CFU/g)	
	R	S/L
EpR	6.40 ± 5.27	5.60 ± 4.35
EpS/L	6.01 ± 5.64	6.97 ± 5.05

Table S3. Chemical classes of aroma profile from *E. purpurea* control and infected plants.

Class of Components	Class°	Samples (%)		
	EpC	EpR	EpS/L	
Non terpenes	NT	29.25	21.80	44.20
Monoterpene hydrocarbons	MH	--	1.9	--
Sesquiterpene hydrocarbons	SH	66.00	73.70	53.15
Oxygenated sesquiterpenes	OS	0.35	--	--
Apocarotenoids	AC	0.30	--	--
Total	95.90	97.40	97.35	

EpC = control plants; EpR = plants infected with endophytes from roots; EpS/L = plants infected with endophytes from stem/leaves