タイトル	Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops
著者	Miki, Yuka / Yoshida, Kentaro / Mizuno, Nobuyuki / Nasuda, Shuhei / Sato, Kazuhiro / Takumi, Shigeo
掲載誌・巻号・ページ	DNA Research, 26(2):171-182
刊行日	2019-04
資源タイプ	Journal Article / 学術雑誌論文
版区分	publisher
権利	© The Author(s) 2019. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
DOI	10.1093/dnares/dsy047
URL	http://www.lib.kobe-u.ac.jp/handle_kernel/90006503

PDF issue: 2020-05-07
Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops

Yuka Miki1, Kentaro Yoshida 1*, Nobuyuki Mizuno2, Shuhei Nasuda2, Kazuhiro Sato3, and Shigeo Takumi 1*

1Graduate School of Agricultural Science, Kobe University, Kobe, Japan, 2Graduate School of Agriculture, Kyoto University, Kyoto, Japan, and 3Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan

*To whom correspondence should be addressed. Tel. +81 78-803-5860. Fax. +81 78-803-5860.
Email: kentaro.yoshida@port.kobe-u.ac.jp; takumi@kobe-u.ac.jp

1. Introduction

Common wheat (Triticum aestivum L., genome constitution AABBDD), a major food crop, is an allohexaploid species derived via allopolyploid speciation through interspecific crossing between cultivated tetraploid wheat Triticum turgidum L. (AABB) and its diploid relative, Aegilops tauschii Coss. (DD).1–4 The cultivated tetraploid form was domesticated from the wild tetraploid wheat T. turgidum subspecies dicoccoides (AABB), which was thought to
be derived through interspecific hybridization between wild diploid progenitors of the A and B genomes. The A genome donor was the wild diploid wheat *T. urartu*, and the B genome could have been contributed by *Ae. speltoides* Tausch (SS). However, the origin of the B genome remains unclear, despite extensive research over the past few decades. The cytogenetic polymorphisms of allopolyploid wheat species were almost certainly transmitted from *Ae. speltoides*, indicating that at least *Ae. speltoides* contributed to establishment of the nuclear genome of allopolyploid wheat.

The indefinite origin of the wheat B genome is due to failure of homoeologous chromosome pairing between the B genome of allopolyploid wheat and the S genome of *Ae. speltoides* during meiosis in the respective interspecific hybrids. In addition, the section Sitopsis of *Aegilops* includes four wild diploid species, *Ae. bicornis* Jaub. et Spach. (S’S), *Ae. searsii* Feldman et Kislev ex Hamner (S’S), *Ae. sharonensis* Eig (S’S), and *Ae. longissima* Schweinf. & Muschl. (S’S), except *Ae. speltoides*. Of the five Sitopsis species that share the S genome, only *Ae. speltoides* of the subsection Truncata is cross-pollinating, whereas the other four subsection Emergina species are self-pollinating. Two subspecies of *Ae. speltoides* (ligustica and speltoides; syn. *Ae. acheri* Boiss.) have been defined to date, and they can be distinguished at least in part by a single locus, *Lig*, on chromosome 3S, which controls spike morphology. The two Emergina species, *Ae. longissima* and *Ae. sharonensis*, are quite closely related and recognized as forming one complex.

In the F3 hybrid plants among Sitopsis species show incomplete homoeologous pairing during meiosis, suggesting that differentiation to the modified S genome occurred during diversification of the Sitopsis species. Some chromosomal rearrangements in the S genome, including translocations, have been reported in Sitopsis species. In addition, the B and S genomes can exhibit differences in the patterns of B-genome chromosomes appear to differ from those of S-genome chromosomes of *Ae. speltoides*. Constitutive heterochromatic regions detected by chromosome staining are much more abundant in B-genome chromosomes than those of the A and D genomes, and the staining patterns of B-genome chromosomes appear to differ from those of S-genome chromosomes of *Ae. speltoides*. The difference in heterochromatin bands results in reduced pairing between B and S homoeologous chromosomes. These structural modifications and distinct heterochromatin distribution have made it difficult to elucidate the origin of the B genome and assess the relationship between the Sitopsis genomes and B genome.

Molecular phylogenetic studies based on nuclear DNA polymorphisms (e.g. restriction fragment length polymorphisms [RFLPs] and amplified fragment length polymorphisms [AFLPs]) have revealed that the two subsections of Sitopsis are extensively differentiated, and that the wheat B genome is much more closely related to the S genome of *Ae. speltoides* than to the other modified S genomes of subsection Emergina species. Analyses of nucleotide sequence polymorphisms in single-copy genes also supported the hypothesis that *Ae. speltoides* is the donor of the B genome in allopolyploid wheat. In contrast, a few reports have suggested a polyphyletic origin of the wheat B genome via the introgression of several parental Sitopsis species. For example, a low copy number, non-coding sequence located in the region comprising 19% of the distal portion of the long arm of chromosome 3B exists only in *Ae. searsii* among all Sitopsis species. Moreover, nucleotide sequence analyses have revealed increased divergence in the B genome of modern common wheat compared with *Ae. speltoides*, and this divergence is thought to be a result of polyploidyization events affecting B-genome evolution. Thus, the phylogenetic relationship between the B and S genomes of section Sitopsis should be reconsidered based on the polymorphisms of each limited chromosomal region as well as those covering the entire chromosomal regions of the B and S genomes.

RNA sequencing is an effective approach for surveying large numbers of genome-wide polymorphisms derived only from the exon sequences in *Aegilops* species. In RNA sequencing of *Aegilops* species, polymorphisms identified without any reference genome information can be efficiently anchored to the homoeologous chromosomes of related species, such as common wheat and barley, based on conserved chromosomal synteny. Here, we conducted RNA sequencing analyses of leaf transcripts from section Sitopsis species to avoid the intergenic and repetitive sequences of wheat chromosomes. The objectives of the present study were to (i) identify genome-wide polymorphisms in the Sitopsis genomes, (ii) elucidate the phylogenetic relationship among Sitopsis species, and (iii) determine the wheat B-genome origin based on genome-wide polymorphisms anchored putatively to each chromosome of the B genome.

2. Materials and methods

2.1. Plant materials

Three accessions of *Ae. speltoides* ssp. *ligustica* (SS genome), four accessions of *Ae. speltoides* ssp. *speltoides* (SS genome), two accessions of *Ae. bicornis* (S’S’ genome), three accessions of *Ae. longissima* (S’S’ genome), three accessions of *Ae. sharonensis* (S’S’ genome), and four accessions of *Ae. searsii* (S’S’ genome) were chosen as representatives of each species from the collection of the section Sitopsis at the National Bio Resource Project–Wheat, Japan (Table 1). These accessions of Sitopsis species were originally collected in the Middle East (Supplementary Fig. S1). A tetraploid wheat (*T. turgidum*) cultivar Langdon (AABB genome) was also used in this study. *Triticum urartu* KU-199-5 (AA genome), *Ae. umbellulata* KU-4017 (UU genome), and *Ae. tauschii* KU-2075 (DD genome) were used as outgroup species.

2.2. RNA sequencing

Total RNA was extracted using Sepasol-RNA I Super G (Nacalai Tesque, Kyoto, Japan) from leaves of 2- to 3-month-old plants grown in a glass house. The extracted RNA was treated with DNase I at 37°C for 20 min, after which paired-end libraries for RNA sequencing were constructed from 6 to 10 μg of total RNA using a TrueSeq RNA Library Preparation kit v2 (Illumina, San Diego, CA, USA) according to a previously reported protocol and then sequenced with 300-bp paired-end reads on an Illumina MiSeq sequencer. The obtained reads were deposited in the DDBJ Sequence Read Archive under accession number DRA007097. RNA sequencing data for the outgroup species (300-bp paired-end reads) were obtained from the DDBJ Sequence Read Archives: BioProject PRJDB4683 for *Ae. tauschii* KU-2075 and DRA006404 for *Ae. umbellulata* KU-4017.

2.3. Quality control, alignment of paired-end reads, de novo transcriptome assembly, and single-nucleotide polymorphism (SNP)/insertion-deletion (indel) calling
sequencing quality of the reads from each of the sequenced samples. Adapter sequences, low-quality bases with an average quality score per 4 bp of <30, and reads of less than 100 bp were removed using Trimmomatic software, version 0.33,42 and only filtered paired reads were retained for subsequent analyses. The filtered reads were aligned to the reference B genome sequences of *T. aestivum* cv. Chinese Spring43 using HISAT2 software, version 2.1.0.44 To select uniquely mapped reads for SNP and indel calling, reads with a mapping quality of <40 were filtered out using SAMtools.45 SNPs and indels were called using Coval46 under the same criterion reported by Nishijima et al.38; the depth of read coverage was ≥10, and >95% of the mapped reads designated different nucleotide sequences from the reference sequences. To obtain non-redundant SNPs, we selected the positions of SNPs at which the read depth was ≥10 and there were no ambiguous nucleotides in any of the samples. We prepared two sets of non-redundant SNPs for construction of phylogenetic trees for intra- and interspecific comparisons of nucleotide variations. One was estimated in all of the samples, including A, D, U genome species, and the other was in the section Sitopsis species and the wheat B genome. The distribution of SNPs/indels was visualized on the physical map of the B genome using CIRCOS47 and R statistical software.

2.4. Construction of phylogenetic trees

Neighbour-joining (NJ) and maximum-likelihood (ML) phylogenetic trees were constructed using Molecular Evolutionary Genetics Analysis (MEGA) software, version 5.05. A Kimura 2-parameter model was used as the substitution model for tree construction. To assess node reliability in the trees, bootstrap probability was calculated from 1,000 bootstrap replicates. To construct phylogenetic trees for each chromosomal segment, the chromosomal regions of the B genome were divided into ranges of 60 Mbp each, generating a total of 86 segments that included 124–931 non-redundant SNPs and 79–442 informative polymorphic sites (Supplementary Table S1). NJ trees for each subset of non-redundant SNPs were constructed using MEGA software. Phylogenetic network trees were constructed using SplitsTree4.52

2.5. Nucleotide divergence between Sitopsis species/subspecies

To estimate nucleotide divergence between Sitopsis species/subspecies, two distance parameters were calculated: fixed substitutions between species53 and average number of nucleotide differences between species. To clarify positional changes in nucleotide divergence between Sitopsis species and the B genome of *T. aestivum*, the chromosomal regions of the B genome were divided into ranges of 20 Mbp each. A total of 262 segments of subsets of non-redundant SNPs in Sitopsis species and the B genome of *T. aestivum* cv. Chinese Spring were obtained. The fixed nucleotide differences and average number of nucleotide differences between Sitopsis species and the B genome were estimated for each subset of non-redundant SNPs. Non-synonymous fixed nucleotide differences were estimated using the variant annotation and effect prediction tool SnpEff.55 The number of genes per 20 Mbp was counted based on the Chinese Spring annotation.43

3. Results and discussion

3.1. RNA sequencing detected numerous SNPs in Sitopsis species and the common wheat B genome

To identify genome-wide SNPs and indels in Sitopsis species and the wheat B genome, RNA sequencing of 19 representative accessions of the five Sitopsis species was performed, generating 2–3 million filtered paired reads for each species (Table 2). Of these short reads, 67–81% were uniquely aligned to the B genome sequences of Chinese Spring, and 32,836–130,687 SNPs and 323–1,890 indels were identified. The fewest SNPs and indels were found in *Ae.*
bicornis, whereas the other four species had similar numbers (Fig. 1). High within-species variance in the number of SNPs and indels was detected but considered a potential artifact because the number of filtered reads differed among the tested accessions (Table 2). To examine this possibility, the correlation between the number of filtered reads and SNPs/indels was determined. However, no correlation was observed between the number of SNPs and indels and the number of filtered reads, suggesting that the high variance is a genetic characteristic of section Sitopsis (Supplementary Fig. S2).

To confirm that RNA sequencing could identify genome-wide SNPs and indels, the chromosomal distribution of SNPs and indels was examined (Fig. 2). SNPs and indels identified in all of the tested accessions of Sitopsis species and the B genome entirely covered all of the chromosomes, with no clear difference in the distribution of SNPs and indels among Sitopsis species. Regions with scant or abundant SNPs on the chromosomes were quite consistent between species. For each chromosome, the number of SNPs ranged from 4,194 to 21,175, and the number of indels ranged from 34 to 317, with the high variance reflecting differences in SNP and indels numbers within species but not between species (Supplementary Fig. S3).

3.2. Phylogenetic relationship between Sitopsis species and B genome of bread wheat
To clarify the phylogenetic relationship and nucleotide divergence between species, we estimated sets of non-redundant SNPs anchored to each chromosome of the B genome in the 19 tested accessions of Sitopsis species and the B genome of Chinese Spring, with/without three outgroup species: T. urartu, Ae. umbellulata, and Ae. tauschii. Without the outgroup species, 30,589 non-redundant SNPs were

![Figure 1](https://academic.oup.com/dnaresearch/article-abstract/26/2/171/5304673)
obtained. When the outgroup species were included, 39,148 non-redundant SNPs were identified. These sets of non-redundant SNPs covered all of the chromosomes of the B genome (Supplementary Fig. S4), allowing evolutionary analyses of section Sitopsis based on genome-wide polymorphisms.

NJ and ML phylogenetic trees and a phylogenetic network tree were constructed based on the set of non-redundant SNPs with the outgroup species (Fig. 3 and Supplementary Fig. S5). The Sitopsis species were clearly divided into two clades. One clade included *Ae. speltoides* ssp. *speltoides* and *Ae. speltoides* ssp. *ligustica*, and the other clade included *Ae. longissima*, *Ae. sharonensis*, *Ae. bicornis*, and *Ae. searsii*; the two clades corresponded to subsections Truncata and Emarginata, respectively. This result was consistent with the results of previous studies based on RFLPs and AFLPs.7,21,30 The Emarginata clade was more closely related to *Ae. tauschii* and *Ae. umbellulata* than the Truncata clade. The B genomes of *T. aestivum* and *T. turgidum* were closely related to *Ae. speltoides* ssp. *speltoides* and *Ae. speltoides* ssp. *ligustica* in the Truncata clade. The average number of nucleotide differences and fixed nucleotide differences between *Ae. speltoides* ssp. and the B genome were the lowest in pairwise comparisons between species of section Sitopsis and the B genome (Table 3). These results supported the previous hypothesis that the B genome originated from the S genome of *Ae. speltoides*. Considering that the wheat B genome was not nested within the Truncata clade, the most recent common ancestor of *Ae. speltoides* ssp. *speltoides* and *Ae. speltoides* ssp. *ligustica* is likely the direct donor of the wheat B genome.

The two subspecies of *Ae. speltoides* were not clearly divided in the Truncata clade (Fig. 3 and Supplementary Fig. S5). The Truncata clade had longer external branches than the Emarginata clade. This observation could be explained by differences in the mating systems of the two clades: species of the Truncata clade are outcrossing, whereas species of the Emarginata clade are self-pollinating. The mating system of *Ae. speltoides* is highly outcrossing.16,21 RFLP analyses indicated that *Ae. speltoides* contained a higher proportion of heterozygous loci compared with other self-pollinating species of *Sitopsis*.56 Natural populations of *Ae. speltoides* would harbour nucleotide variations as heterozygous states. The tested accessions of *Ae. speltoides* had been maintained by self-pollinating for several decades in the Japanese gene bank, which could have led to fixation of one of the alleles in heterozygous sites, increasing the number of singletons within the *Ae. speltoides* accessions. This resulted in detection of a relatively large number of SNPs in the *Ae. speltoides* accessions (Fig. 1). In the Emarginata clade, *Ae. searsii* was monophyletic and separated from the other three species, whereas *Ae. bicornis* nested within *Ae. sharonensis* and *Ae. longissima*. *Aegilops longissima* diverged from *Ae. sharonensis*. The close relationship between *Ae. sharonensis* and *Ae. longissima* was consistent with previous reports21 and not inconsistent with a recent proposal that *Ae. sharonensis* is a subspecies of *Ae. longissima*.77

Table 2. Summary of RNA sequencing data for the 19 accessions in the section Sitopsis

Species	Accession number	Read pairs	Filtered read pairs	Alignment rate (%)
Aegilops speltoides ssp. *speltoides*	KU-2208A	4,317,201	2,721,855 (63.05%)	74.77
	KU-14601	5,279,430	3,088,916 (58.51%)	78.29
	KU-14605	4,005,919	2,480,301 (61.92%)	77.17
	KU-12963a	4,779,168	3,041,573 (63.64%)	70.94
Ae. searsii	KU-2236	4,378,445	2,313,014 (52.83%)	74.40
	KU-7716	4,036,660	2,553,962 (62.27%)	67.92
	KU-7848	4,962,422	2,843,436 (57.30%)	77.83
Ae. bicornis	KU-5784	4,470,520	2,713,658 (60.70%)	80.71
	KU-14613	4,567,698	2,881,072 (60.07%)	81.04
Ae. longissima	KU-5752	4,371,287	2,490,621 (56.98%)	78.48
	KU-14624	5,012,064	2,865,373 (57.17%)	73.05
	KU-14635	4,623,166	2,660,230 (55.74%)	75.52
Ae. searsii	KU-5755	5,240,442	3,150,732 (60.12%)	81.23
	KU-6142	5,024,725	3,108,286 (61.86%)	77.75
	KU-6143	4,852,741	2,776,399 (57.21%)	78.16
	KU-6151	5,345,759	3,178,031 (59.45%)	77.87
Ae. sharonensis	KU-14661	6,500,270	3,241,926 (49.87%)	75.55
	KU-14663	8,544,460	4,157,728 (48.66%)	78.27
	KU-14668	10,079,695	4,891,456 (48.53%)	75.25

*The aliment rate against the B genome of *T. aestivum* cv. Chinese Spring was calculated with HISAT2 version 2.1.0.*

3.3. Identification of SNPs distinguishing subspecies *ligustica/speltoides* and *Ae. sharonensis*/*Ae. longissima*

The phylogenetic tree did not discriminate well between subspecies of *Ae. speltoides* ssp. *speltoides* and *Ae. speltoides* ssp. *ligustica*, whereas the subspecies of *Ae. longissima* and *Ae. sharonensis* were distinguished. These subspecies are morphologically classified. Notably, differences in spike morphology between *Ae. longissima* and *Ae. speltoides* can be explained by a single locus, *Lig*, located on chromosome 3S.18 If there are SNPs that would distinguish these subspecies (fixed nucleotide differences between subspecies), they could be related to the morphologic differences between the subspecies. Between *Ae. speltoides* ssp. *speltoides* and *Ae. speltoides* ssp. *ligustica*, 99 fixed nucleotide differences were detected (Table 3). The positions of these fixed nucleotide differences were scattered over the chromosomes (Fig. 4A). Ten of the fixed nucleotide differences caused amino acid substitutions between the two subspecies (Supplementary Table S2).

Between *Ae. longissima* and *Ae. sharonensis*, 121 fixed nucleotide differences were found (Table 3). All of the chromosomes had fixed nucleotide differences (Fig. 4B), and they were most densely located...
control the morphologic and physiologic differences between *Ae. sharonensis* and *Ae. longissima*. Identification of the causal genes is a focus for future research.

3.4. Contrasting pattern of nucleotide divergence in the distal and proximal regions of the chromosomes

Some previous studies suggested the possibility of introgression from several parental Sitopsis species, supporting a polyphyletic origin of the wheat B genome. If introgression contributed to the origin of the wheat B genome, the phylogenetic relationship between species could possibly be verified based on chromosomal positions. To test this hypothesis, NJ trees were constructed for 60-Mbp regions on each chromosome (Fig. 5). Of a total of 86 phylogenetic trees, 83 exhibited a similar topology to that of trees based on entire chromosomes, in which the B genome of Chinese Spring was closely related to the Truncata clade including *Ae. speltoides* (Fig. 3). Two trees indicated that the B genome was closely related to the Emarginata clade (Fig. 5). These irregular trees were detected at the end of the long arm of chromosomes 1B and 3B. In the other tree, the B genome at the end of the short arm of chromosome 3B was located outside the Sitopsis species.

We estimated the average number of nucleotide differences between the B genome of Chinese Spring and each of the Truncata and Emarginata clades as a parameter of genetic divergence between the B genome and each clade (Fig. 6). In the distal regions of the chromosomes, genetic divergence between the B genome and Emarginata clade was slightly less than that between the B genome and Truncata clade, whereas in the proximal regions of the chromosomes, genetic divergence between the B genome and Emarginata clade was greater than that between the B genome and Truncata clade. The proximal chromosomal regions tended to exhibit conspicuous disparity in terms of genetic divergence (\(\Delta D_{T-B} - \Delta D_{F-B} \times 100 > 0 \)) in Fig. 6), but the range of this disparity differed among the chromosomes. Almost the entire region (~660 Mbp) of chromosome 3B exhibited clear disparity. In contrast, on chromosome 5B, the region exhibiting disparity was limited to within about 360 Mb of the long arm. Except for chromosome 7B, the disparity appeared to be negatively correlated with the total number of non-redundant SNPs in Sitopsis species and the B genome. In chromosomal regions with larger number of non-redundant SNPs, genetic divergence between the B genome and Emarginata clade increased to the same extent as that between the B genome and Truncata clade. In addition, the disparity also reflected the number of genes; regions with fewer genes were found to exhibit greater disparity. Interestingly, this contrasting pattern of genetic divergence between the proximal and distal chromosomal regions corresponded to the gradient recombination rate along the chromosomes.

In common wheat, the recombination rate and chromosomal gene density increase as the centromeric region recedes. Multiple genes created by gene duplication are more frequently located in the distal regions of the chromosomes, where they potentially drive increases in gene density and the recombination rate. This observation coincides with the observed positive correlation between the disparity of genetic divergence and number of genes (Fig. 6). Incomplete lineage sorting (ILS) is known to generate gene trees in which the topology is discordant with that of species trees and tends to more frequently occur in rapid successions of speciation events. If speciation events in section Sitopsis had occurred over a relatively short time, ILS in the ancestral population of Sitopsis represents a potential factor blurring the phylogenetic
relationship between Sitopsis species and the B genome. ILS is positively correlated with recombination. Indeed, distal chromosomal regions with an irregular phylogenetic topology (Fig. 5) exhibited more complex reticulate structures in the network tree compared with whole-chromosomal regions (Fig. 3B and Supplementary Fig. S6). In the interspecies comparisons, the internal reticulate structures represent data conflicts caused by phenomena such as ILS. Therefore, ILS could explain the irregular topology of phylogenetic trees in Sitopsis species (Fig. 5) and the unclear disparity of genetic divergence (Fig. 6) that were prominent in the distal chromosomal regions with a higher recombination rate.

In the present study, a large number of SNPs and indels were discovered in the wheat B genome and five Sitopsis species based on RNA sequencing of leaf-derived transcripts. The polymorphic data would be useful for developing genome-wide markers on the S-genome chromosomes as performed for the wild diploid relatives, Ae. tauschii and Ae. umbellulata.

Figure 3. Phylogenetic relationship among the 19 accessions of section Sitopsis species (S genome), the B genomes of T. aestivum cv. Chinese Spring and T. turgidum ssp. durum cv. Langdon, T. urartu (A genome), Ae. tauschii (D genome), and Ae. umbellulata (U genome). NJ tree (A) and phylogenetic network (B) are shown. Bootstrap probabilities are shown on the branches (number of bootstrap replications = 1000). The scale bar is shown below each phylogenetic tree.
In conclusion, the present phylogenetic analyses based on genome-wide polymorphisms suggest that the B genome of common wheat was derived from the S genome of *Ae. speltoides*. A few chromosomal regions demonstrated the clearly exceptional relationship between the B genome and *Sitopsis* species, whereas the irregular topology observed could be explained by higher recombination rates in the distal regions of wheat chromosomes. Therefore, based on genome-wide polymorphisms identified from the RNA sequencing data, all of the chromosomal regions of the wheat B genome could have originated from the S genome of *Ae. speltoides*. Moreover, the failure of pairing between homoeologous chromosomes between the B and S genomes during meiosis could be due to factors associated with highly evolved regions or intergenic regions. The alignment rate to B genome of *Ae. speltoides* was not as high as those of *Ae. bicornis* and *Ae. searsii* (Table 2). Of the transcripts that were entirely covered with unaligned RNA sequencing reads, 18% encoded F-box proteins and disease resistance proteins such as NBS-LRR (Supplementary data S1). Positive selection is known to act on these protein genes and increase nucleotide substitutions between species.64–66 After separation of the B genome from the S genome, the different selective pressure between B and S genomes may contribute to enhancing their genetic differentiation. In addition, distinct

Subspecies	lig/spel	lon/sha
B-genome	9,654	12,183
Ae. speltoides ssp. ligustica	5,411.4	4,587.4
Ae. speltoides ssp. speltoides	12,785.5	12,241.1
Ae. bicornis	12,412.1	12,666
Ae. longissima	12,412.1	12,313.5
Ae. searsii	12,052.8	11,971.9
Ae. sharonensis	12,070	11,965.5
B-genome	9,654	9,507.8

Figure 4. Distributions of the positions of fixed nucleotide differences between subspecies of *Aegilops speltoides* ssp. ligustica and *Ae. spletoides* ssp. speltoides (A) and between *Ae. sharonensis* and *Ae. longissima* (B) on the physical map of the B genome of *T. aestivum* cv. Chinese Spring from chromosomes 1B to 7B.
Figure 5. Irregular topologies of the phylogenetic trees in the distal chromosomal regions. The chromosomal regions were divided into 86 segments of 60 Mbp each. NJ trees were constructed based on non-redundant SNPs located in each segment. Squares on the chromosomes in panel (A) correspond to the 86 segments. Phylogenetic trees of the white squares showed that the B genome of *T. aestivum* cv. Chinese Spring was the most closely related to *Ae. speltoides* in the section Sitopsis. This observation was consistent with those for trees constructed based on all non-redundant SNPs (Fig. 5). Phylogenetic trees of the black squares showed that the B genome was closely related to Emarginata clades. A phylogenetic tree of the grey square showed that the B genome was located outside of Sitopsis species. Trees with irregular topologies at the end of the long arm of chromosome 1B (B) and the short arm (C) and long arm (D) of chromosome 3B are shown. Bootstrap probabilities with over 50% and scale bars are shown for each tree.
Figure 6. Contrasting pattern of nucleotide divergence in the distal and proximal regions of B-genome chromosomes. Average number of nucleotide differences per 20 Mbp between species in Truncata (Ae. speltoides spp.) and the B genome of T. aestivum cv. Chinese Spring (DT-B) and between Emarginata species and the B genome (DE-B) are plotted on each chromosome. The distributions of these differences are shown by line graphs (orange and green) in the top panels. Area charts in grey colour in the top panels denote the distribution of the total number of non-redundant SNPs per 20 Mbp in Sitopsis species and the B genome. Middle panels show the distribution of the ratio expressing disparity between the two genetic divergences \(\frac{DE-B}{DT-B} \times 100 \) along each chromosome using bar charts. Area charts in blue colour indicate the distribution of the number of genes along each chromosome.
patterns of accumulation of repetitive sequences could have led to the differential distribution of heterochromatic regions between the B and S genomes. To elucidate the molecular nature of the differentiation of the B and S genomes, future studies should compare the repetitive sequences over all chromosomal regions.

Data availability
All read sequences were deposited into the DDBJ/GenBank/MBL database with accession number DRA007097. RNA sequencing data for the outgroup species were used in the DDBJ/GenBank/MBL database: BioProject PRJDB4683 for *Ae. tauschii* KU-2075 and DRA006404 for *Ae. umbellata* KU-4017.

Acknowledgements
Seeds of section Sitopsis species used in this study were supplied by the National BioResource Project–Wheat, Japan (www.nbrp.jp). This work was supported by Grant-in-Aid for Scientific Research (B) No. 16H04862 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan to ST, by Grant-in-Aid for Scientific Research on Innovative Areas No. 17H05842 from MEXT to ST, and by MEXT as part of a Joint Research National BioResource Project–Wheat, Japan (www.nbrp.jp). This work was supported by JST, PRESTO (No. 17H05842 from MEXT to ST, and by MEXT as part of a Joint Research National BioResource Project–Wheat, Japan (www.nbrp.jp). This work was supported by JST, PRESTO (No. 17H05842 from MEXT to ST, and by MEXT as part of a Joint Research National BioResource Project–Wheat, Japan (www.nbrp.jp). This work was supported by JST, PRESTO (No. 17H05842 from MEXT to ST, and by MEXT as part of a Joint Research National BioResource Project–Wheat, Japan (www.nbrp.jp). This work was supported by JST, PRESTO (No. 17H05842 from MEXT to ST, and by MEXT as part of a Joint Research National BioResource Project–Wheat, Japan (www.nbrp.jp).

Accession number
DRA007097

Conflict of interest
None declared.

Supplementary data
Supplementary data are available at DNARES online.

References
1. Kihara, H. 1944, Discovery of the DD-analyser, one of the ancestors of *Triticum vulgare*, *Agric. Hortic.*, 19, 889–90 [in Japanese].
2. McFadden, E.S. and Sears, E.R. 1946, The origin of *Triticum spelta* and its free-threshing hexaploid relatives, *J. Hered.*, 37, 107–16.
3. Matsuoka, Y. 2011, Evolution of polyploid *Triticum* wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification, *Plant Cell Physiol.*, 52, 730–64.
4. Dvořák, J., Deal, K.R., Luo, M.-C., You, F.-M., von Borstel, K. and Dehghani, H. 2012, The origin of spelt and free-threshing hexaploid wheat, *J. Hered.*, 103, 426–41.
5. Dvořák, J., McGuire, P.E. and Cassidy, B. 1988, Apparent sources of the A genome of wheat inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences, *Genome*, 30, 680–9.
6. Takuma, S., Nasuda, S., Liu, Y.G. and Tsenewaki, K. 1993, Wheat phylogeny determined by RFLP analysis of nuclear DNA. 1. Enkorn wheat, *Jpn. J. Genet.*, 68, 73–9.
7. Sasamura, T., Miyashita, N.T. and Tsenewaki, K. 1996, Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra- and interspecific variations of five *Aegilops Sitopsis* species, *Theor. Appl. Genetics*, 92, 928–34.
8. Daud, H.M. and Gustafson, J.P. 1996, Molecular evidence for *Triticum speltoides* as a B-genome progenitor of wheat (*Triticum aestivum*), *Genome*, 39, 543–8.
9. Maestra, B. and Naranjo, T. 1998, Homoeologous relationships of *Aegilops speltoides* chromosomes to bread wheat, *Theor. Appl. Genet.*, 97, 181–6.
10. Haider, N. 2013, The origin of the B-genome of bread wheat (*Triticum aestivum* L.), *Russ. J. Genet.*, 49, 263–74.
11. Terachi, T., Oghara, Y. and Tsenewaki, K. 1990, The nuclear basis of genetic diversity amyoncytoplasts of *Triticum* and *Aegilops*. 7. Restriction endonuclease analysis of mitochondrial DNA from polyplody wheats and their ancestral species, *Theor. Appl. Genetics*, 80, 366–73.
12. Wang, G.-Z., Miyashita, N.T. and Tsenewaki, K. 1997, Plasmom analyses of *wheat* and *Aegilops*: PCR-single-strand conformational polymorphism (PCR-SSCP) analyses of organeller DNAs, *Proc. Natl. Acad. Sci. USA*, 94, 14570–7.
13. Jenkins, J.A. 1929, Chromosome homologies in wheat and *Aegilops*, *Am. J. Bot.*, 16, 238–45.
14. Sarkar, P. and Stebbins, G. L. 1956, Morphological evidence concerning the origin of the B genome, *Am. J. Bot.*, 43, 297–304.
15. van Slageren, M.W. 1994, Wild Wheats: A Monograph of *Aegilops* L. and *Amblyopyrum* (Jaub. and Spach) Eich (Poaceae): A Revision of All Taxa Closely Related to Wheat, Excluding Wild *Triticum* Species, with Notes on Other Genera in the Tribe Triticaceae, Especially *Triticum*. Wageningen Agric. Univ., Wageningen.
16. Eig, A. 1929, Monographisch-kritische Übersicht derGattung *Aegilops*, *Repertorium Specierum Novarum Regni Vegetabilis*. Verlag des Repertoriums, Dälem.
17. Zohary, D. and Imber, D. 1963, Genetic dimorphism in fruit types in *Aegilops speltoides*, *Hereditas*, 18, 223–31.
18. Luo, M.C., Deal, K.R., Yang, Z.L. and Dvorák, J. 2005, Comparative genetic maps reveal extreme crossover localization in the chromosomes, *Theor. Appl. Genet.*, 111, 1098–106.
19. Hammer, K. 2008, Zur Taxonomie und Nomenklatur der Gattung *Aegilops* L., *Feddes Rep.*, 91, 225–58.
20. Zhang, H., Reader, S.M., Liu, X., Jia, J.Z., Gale, M.D. and Devos, K.M. 2001, Comparative genetic analysis of the *Aegilops longissima* and *Ae. sharonensis* genomes with common wheat, *Theor. Appl. Genet.*, 103, 318–25.
21. Kilian, B., Orkan, H., Deusch, O., et al. 2007, Independent wheat B and G genome origins in outcrossing *Aegilops* progenitor haplotypes, *Mol. Biol. Evol.*, 24, 217–27.
22. Ohba, A., Yamane, K. and Kawahara, T. 2017, Relationship between spike morphology and habitat of four *Aegilops* species of section Sitopsis, *Genet. Resour. Crop Evol.*, 64, 889–99.
23. Kihara, H. 1949, Genomanalyse bei *Triticum* und *Aegilops*. IX. Systematischer Aufbau der Gattung *Aegilops* auf genomenalytischer Grundlage, *Cytologia*, 14, 135–44.
24. Friebe, B., Tuleen, N., Jiang, J. and Gill, B.S. 1993, Standard karyotype of *Triticum longissimum* and its cytogenetic relationship with *T. aestivum*, *Genome*, 36, 731–42.
25. Salse, J., Chagüé, V., Bolot, S., et al. 2008, New insights into the origin of the B genome of hexaploid wheat: evolutionary relationships at the SPA genomic regions with the S genome of the diploid relative *Aegilops speltoides*, *BMC Genomics*, 9, 333.
26. Salina, E.A., Sergeeva, E.M., Adonina, L.G., et al. 2011, The impact of Ty3-gypsy group LTR retrotransposons *Fatima* on B-genome specificity of polyplody wheat, *BMC Plant Biol.*, 11, 99.
27. Gill, B.S. and Kimber, G. 1974, Genesa C-banding and the evolution of wheat, *Proc. Natl. Acad. Sci. USA*, 71, 4086–90.
28. Endo, T.R. and Gill, B.S. 1984, Somatic karyotype, heterochromatin distribution, and nature of chromosome differentiation in common wheat, *Triticum aestivum* L. em Thell, *Chromosoma*, 89, 361–9.
29. Dvořák, J. and McGuire, P.E. 1981, Nonstructural chromosome differentiation among wheat cultivars, with special reference to differentiation of chromosomes in related species, *Genetics*, 97, 391–414.
30. Sasanauma, T., Chabane, K., Endo, T.R. and Valkoun, J. 2004, Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruence of chloroplast and nuclear data, *Theor. Appl. Genet.*, 108, 612–8.

31. Petersen, G., Seberg, O., Yde, M. and Berthelsen, K. 2006, Phylogenetic relationships of *Triticum* and *Aegilops* and evidence for the origin of the A, B, and D genomes of common wheat, *Mol. Phylogenet. Evol.*, 39, 70–82.

32. Wang, J.-R., Zhang, L., Wei, Y.-M., Yan, Z.-H., Baum, B.R., Nevo, E. and Zheng, Y.-L. 2007, Sequence polymorphisms and relationships of dimorphic α-amylase inhibitor genes in the B genomes of *Triticum* and S genomes of *Aegilops*, *Plant Sci.*, 173, 1–11.

33. Liu, B., Segal, G., Veyssiere, M., et al. 2017, Reconciling the evolutionary origin of bread wheat (*Triticum aestivum*), *New Phytol.*, 213, 1477–86.

34. Zhang, W., Zhang, M., Zhu, X., et al. 2018, Molecular cytogenetic and genomic analyses reveal new insights into the wheat B genome, *Theor. Appl. Genet.*, 131, 365–75.

35. El Baidouri, M., Murat, F., Veyssiere, M., et al. 2017, Coval: improving assembly of diverse wheat progenitor genomes of *Aegilops tauschii*, *Plant Syst. Evol.*, 288, 33–66.

36. Chen, Q., Han, Z., Jiang, H., Tian, D. and Yang, S. 2010, Strong positive selection and divergence in the genomic regions of high and low recombinant self-fertilizing and cross-fertilizing *Aegilops* species, *Genetics*, 148, 423–34.

37. Clark, R.M., Schweikert, D., Shu, X., et al. 2007, Detection of recombination events associated with the wheat-A genome in the bread wheat–*Aegilops* subgenus *Abbottii*, *Proc. Natl. Acad. Sci. USA*, 104, 15603–8.

38. Guo, S.W., Thompson, W.F., Sackton, J.B., et al. 2008, A framework for association mapping with multiple reference genomes, *Genetics*, 178, 2547–63.

39. Li, H., Handsaker, B., Wysoker, A., et al. 2009, The Sequence Alignment/Map Format and SAMtools, *Bioinformatics*, 25, 2078–9.

40. Kosugi, S., Natsume, S., Yoshida, K., et al. 2013, Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data, *PLoS One*, 8, e75402.

41. Krywinski, M., Schein, J., Birol, I., et al. 2009, Circos: an information aesthetic for comparative genomics, *Genome Res.*, 19, 1639–45.

42. Langmead, B., Trapnell, C., Pop, M. and Salzberg, S.L. 2009, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, *Genome Biol.*, 10, R25.

43. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990, Basic local alignment search tool, *J. Mol. Biol.*, 215, 403–10.

44. Chang, Z., Li, G., Liu, J., et al. 2015, Bridge: a new framework for de novo transcriptome assembly using RNA-seq data, *Genome Biol.*, 16, 30.

45. The International Wheat Genome Sequencing Consortium (IWGSC). 2018, A resource for functional genomics in wheat, *PLoS Genet.*, 14(5), e1007338.

46. McDonald, J.H. and Kreitman, M. 1991, Adaptive protein evolution at the Adh locus in Drosophila, *Nature*, 351, 652–4.

47. Nei, M. 1987, *Molecular Evolutionary Genetics*, Columbia University Press, New York.

48. Cingolani, P., Platitsky, J., Wang, L., et al. 2012, A program for annotating and predicting the effects of single nucleotide polymorphisms, *Snpeff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3; Fly, 6, 80–92.

49. Dvořák, J., Luo, M.C. and Yang, Z.L. 1998, Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing *Aegilops* species, *Genetics*, 148, 705–14.

50. Olivera, P.D. and Steffenson, B.J. 2009, *Aegilops sharonensis* origin, genic, diversity, and potential for wheat improvement, *Botany*, 87, 740–56.

51. Akhunov, E.D., Goodyear, A.W., Geng, S., et al. 2003, The organization and polymorphism and divergence in the genomic regions of high and low recombination among *Diploid wheats*. The International Wheat Genome Sequencing Consortium (IWGSC). 2018, The reference sequence of bread wheat, *IWGSC RefSeq v1.0*, https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies.

52. Kim, D., Langmead, B. and Salzberg, S.L. 2015, HISAT: a fast spliced alignment tool with low memory requirements, *Nat. Methods.*, 12, 357–60.

53. Li, H., Handsaker, B., Wysoker, A., et al. 2009, Subgroup 1000 Genome Project Data Processing. The sequence alignment/map format and SAMtools, *Bioinformatics*, 25, 2078–9.

54. Kosugi, S., Natsume, S., Yoshida, K., et al. 2013, Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data, *PLoS One*, 8, e75402.

55. Cingolani, P., Platts, A., Wang, L., et al. 2012, A program for annotating and predicting the effects of single nucleotide polymorphisms, *Snpeff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3; Fly, 6, 80–92.

56. Dvořák, J., Luo, M.C. and Yang, Z.L. 1998, Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing *Aegilops* species, *Genetics*, 148, 423–34.

57. Olivera, P.D. and Steffenson, B.J. 2009, *Aegilops sharonensis* origin, genic, diversity, and potential for wheat improvement, *Botany*, 87, 740–56.

58. Akhunov, E.D., Goodyear, A.W., Geng, S., et al. 2003, The organization and polymorphism and divergence in the genomic regions of high and low recombination among *Diploid wheats*. The International Wheat Genome Sequencing Consortium (IWGSC). 2018, The reference sequence of bread wheat, *IWGSC RefSeq v1.0*, https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies.

59. Kim, D., Langmead, B. and Salzberg, S.L. 2015, HISAT: a fast spliced alignment tool with low memory requirements, *Nat. Methods.*, 12, 357–60.

60. Degnan, J.H. and Rosenberg, N.A. 2009, Gene tree discordance, phylogenetic relationships of *Aegilops* species, *PLoS Genet.*, 13, e1002472.

61. Nei, M. 1987, *Molecular Evolutionary Genetics*, Columbia University Press, New York.

62. Clark, R.M., Schweikert, D., Shu, X., et al. 2007, Common sequence polymorphisms shaping genetic diversity in *Arabidopsis thaliana*, Science, 317, 338–42.

63. Chen, Q., Han, Z., Jiang, H., Tian, D. and Yang, S. 2010, Strong positive selection drives rapid diversification of R-genes in *Arabidopsis* relatives, *J. Mol. Evol.*, 70, 137–48.

64. Schumann, N., Navarro-Quezada, A., Ulrich, K., Kuhl, C. and Quinz, M. 2011, Molecular evolution and selection patterns of plant F-box proteins with C-terminal kelch repeats, *Plant Physiol.*, 155, 835–39.