Identification of a KIR antisense IncRNA expressed by progenitor cells

PW Wright, A Huehn, F Cichocki, H Li, N Sharma, H Dang, TR Lenvik, P Woll, D Kaufman, JS Miller and SK Anderson

Human NK cells express cell surface class I MHC receptors (killer cell immunoglobulin-like receptor, KIR) in a probabilistic manner. Previous studies have shown that a distal promoter acts in conjunction with a proximal bidirectional promoter to control the selective activation of KIR genes. We report here the presence of an intron 2 promoter in several KIR genes that produce a spliced antisense transcript. This long noncoding RNA (IncRNA) transcript contains antisense sequence complementary to KIR-coding exons 1 and 2 as well as the proximal promoter region of the KIR genes. The antisense promoter contains myeloid zinc finger 1 (MZF-1)-binding sites, a transcription factor found in hematopoietic progenitors and myeloid precursors. The KIR antisense IncRNA was detected only in progenitor cells or pluripotent cell lines, suggesting a function that is specific for stem cells. Overexpression of MZF-1 in developing NK cells led to decreased KIR expression, consistent with a role for the KIR antisense IncRNA in silencing KIR gene expression early in development.

INTRODUCTION

Natural killer (NK) cells are an important component of the innate immune system wherein resides the ability to eliminate virally infected and tumor cells without prior sensitization. The cytolytic activity of NK cells is modulated by the presence or absence of class I MHC molecules on target cells. The interplay between activating and inhibitory receptors present on NK cells and their respective ligands on potential targets determines if cells are killed or spared. NK cells use cell-surface receptors for class I MHC to evaluate the status of target cells. The major type of class I receptor expressed by human NK cells is the killer cell immunoglobulin-like receptor (KIR) family. In contrast, the functionally analogous murine inhibitory receptors are members of the C-type lectin receptor (KIR) family. In the proximal promoter region of the murine Ly49 receptor family, the expression of Ly49 genes is determined by a stochastic switch operating in the promoter region. In developing NK cells leads to reduced KIR expression, and the expression of Ly49 genes is dependent on distal transcription, as Pro1 deletion abrogates Ly49 transcription. In contrast, the human KIR genes possess a proximal promoter with bidirectional transcriptional activity, whereas an upstream distal promoter is unidirectional. Similar to the Ly49 genes, the distal KIR promoter is active in committed NK progenitors, and distal transcription is associated with activation of the proximal promoter. The location of the bidirectional promoter downstream of the distal promoter leads to the generation of opposing transcripts if antisense transcription is initiated from the proximal promoter. The presence of dsRNA leads to the production of a 28-base antisense RNA with the properties of a Piwi RNA. The Piwi class of small RNAs has been associated with gene silencing in germ cells, and recent studies have demonstrated the presence of these RNAs in somatic cell types as well. Forced expression of proximal promoter antisense transcripts in developing NK cells leads to reduced KIR expression, and the 28-base element is essential for this suppression.

The data presented in the current study reveal the presence of an additional antisense transcript in the 2DL1/S1 and 3DL1/S1 genes. The transcript is generated from a promoter in the second intron, and represents a spliced, polyadenylated RNA that appears to be noncoding. Overlap of this transcript with the proximal antisense transcript leads to the production of the previously characterized 28-base piRNA from this long noncoding RNA (IncRNA), and enforced expression of the distal antisense also leads to suppressed KIR expression. Our characterization of the promoter and transcript indicates activity only in pluripotent cells, suggesting a functional role for the antisense transcript in the initial silencing of the KIR loci.
RESULTS

Our previous reports demonstrated that human KIR genes all contain a proximal promoter that is bidirectional in nature.12 Experiments designed to determine the 5' start site for the proximal KIR2DL1 antisense transcript were conducted with RNA from the HEK293 cell line as a non-NK control. However, when HEK293 RNA was used, a transcript was identified that originated within intron 2 of the KIR2DL1/S1 gene. To determine if the antisense was also found in the 3D class of KIR, primers specific for the KIR3DL1 gene were also used to isolate antisense transcripts from the KIR3DL1/S1 genes. This novel antisense transcript is referred to as the KIR distal antisense in order to distinguish it from the proximal promoter-derived antisense transcripts that we have previously described.12 The transcriptional start site for the KIR2DL1 distal antisense is located within the second intron, 181 nucleotides downstream of the second KIR-coding exon (Figure 1a). The KIR3DL1 distal antisense transcript starts 81 nucleotides downstream of exon 2. Two distinct alternatively spliced distal antisense transcripts of 710 and 781 nucleotides, each consisting of three exons, were cloned for the KIR2DL1 gene (GenBank accession numbers GQ422372 and GQ422373), whereas only one 825-nucleotide transcript consisting of two exons was cloned for the KIR3DL1 gene (GenBank accession number GQ422374). The distal antisense transcript has a complete overlap with exons 1 and 2 of the KIR-coding transcript as well as the proximal antisense transcript (Figure 1a). Interestingly, the splice acceptor for the final antisense exon is only 7 bp downstream of the exon 1 splice donor of the sense KIR transcript, suggesting that the splice site definition signals or splicing enhancers are shared (Figure 1b). In addition, although the distal antisense transcripts have their respective start sites in intron 2, the polyadenylation signals are shared with the proximal antisense transcript.12

Characterization of the KIR intron 2 promoter elements

In order to gain insight into the observed preferential expression of KIR distal antisense in stem cell populations, the putative intron 2 promoter regions of the KIR2DL1 and KIR3DL1 genes were investigated. A large series of PCR-generated DNA segments in the vicinity of the observed transcriptional start sites was analyzed by cloning into the pGL3-basic luciferase reporter vector. Constructs KIR distal antisense transcripts are not present in differentiated cells.

The presence of spliced distal antisense transcript was determined by RT-PCR with forward primers from regions not contained in sense or proximal antisense KIR2DL1 or KIR3DL1 transcripts (see Materials and Methods). The non-spliced, proximal antisense transcripts were detected using the 3' rapid amplification of cDNA ends (3'-RACE) technique previously described.12 This technique produced positive signals in the cell types containing distal antisense due to the complete overlap of the distal antisense with the proximal transcript. However, the antisense transcripts were confirmed to originate only from the distal promoter by 5'-RACE analysis. Table 1 shows the results of a survey of various human tissues and cell lines for the presence of KIR2DL1 and KIR3DL1 distal antisense (first column, both genes detected when positive) or antisense derived from the proximal promoter (second column, KIR gene of origin is indicated). Spliced KIR2DL1 and KIR3DL1 distal antisense transcripts were detected in RNA from several cell lines, including U937 (promonocytic leukemia), HEK293T (human embryonic kidney), Ntera2 (human embryonic carcinoma) and H9 (human embryonic stem cell). The only freshly isolated tissue found to contain distal antisense was cord blood, possibly due to the presence of a small population of pluripotent cells. RNA from peripheral blood NK cells, monocytes, CD34-positive cord blood or H9 ES cells differentiated into CD34+ cells did not express the distal antisense. Furthermore, cell lines representing differentiated lymphoid cell types such as YT (NK), Daudi (B) and Jurkat (T) did not contain distal antisense RNA. Interestingly, the NK3.3 cell line contained KIR2DL2 proximal antisense, whereas the Daudi and Jurkat lines contained an unusual proximal antisense transcript of the KIR3DP1 pseudogene that originated in intron 1 as determined by 5'-RACE analysis. The cell lines where the distal antisense transcript was detected represent early developmental stages. The distal antisense transcript was not detected in mature NK-like, B and T cell lines indicating that it may be present only in early progenitor cell types.

Cell line/tissue	Distala	Proximala
KIR - ve NK	–	+ (all KIR)
KIR - ve NK	–	–
YT	–	–
NK02	–	–
NK3.3	–	+ (2DL2)
Daudi (B)	–	+ (3DP1)
Jurkat (T)	–	+ (3DP1)
Monocytes	–	–
Ntera2 (EC)	+	–
H9 (ESC)	+	–
CD34 - ve from H9 ESC	–	–
CD34 - ve cord blood	–	–
Cord blood	+	–
HEK293	+	–
U937	+	–

aKIR2DL1 and KIR3DL1 transcripts detected with primers listed in Materials and Methods. bKIR proximal antisense transcripts detected as previously described.12 The identity of the KIR gene detected is listed in parentheses.
were evaluated by transfection into the HEK293, Ntera2 and YT cell lines. None of the fragments tested showed any activity in the YT cell line, consistent with the lack of antisense transcripts in these cells (data not shown). Figure 2a shows the results of transfection of KIR2DL1 promoter constructs into HEK293. The highest promoter activity was detected in fragments that contained a central binding site for the myeloid zinc finger 1 (MZF-1) transcription factor together with putative C/EBP and MYC sites located downstream (constructs 7–9). Addition of a S′ sequence containing additional putative combined AML-1/MZF-1 or NF-κB/AML-1 elements resulted in decreased activity (constructs 1–5). MZF-1 is a transcription factor belonging to the Krüppel family of zinc finger proteins, and it possesses two DNA-binding domains.20,21 The first domain binds to the core sequence 5′-AGTGGGGA-3′, and the second domain binds to the core sequence 5′-CGGGNGAGGGGGAAA-3′. MZF-1 is expressed by totipotent hematopoietic cells as well as by myeloid progenitors, and therefore may contribute to the preferential activity of the distal antisense promoter in stem cells. Constructs lacking the central MZF-1 site (constructs 4 and 12) did not demonstrate significant promoter activity, indicating a key role for MZF-1. Core promoter activity was localized to a 135-bp region containing a putative binding site for the MZF-1 protein at the S′ end, a MZF-1 half-site in the middle, and potential C/EBP and MYC-binding sites at the 3′ end (construct 9). Mutation of the MZF-1 site produced a 30% decrease in promoter activity (construct 10). Although deletion of the 3′ region containing the C/EBP and MYC sites significantly decreased promoter activity, a core construct with mutations in the 3′ C/EBP and MYC site did not decrease promoter activity (construct 11), indicating that MZF-1 is likely the major transcription factor driving promoter activity. The specificity of the promoter for pluripotent cell types was examined by transfection of construct 7 into the following additional cell lines: Ntera2, H9 ES, MCF7, PC3, YT and Hela (Figure 2b). As expected, promoter activity was detected only in the cell lines that were shown to express KIR distal antisense transcripts by RT-PCR.

Figure 2. In vitro analysis of the KIR distal antisense promoter. (a) The left panel is a schematic representation of KIR2DL1 intron 2 fragments shown in an antisense orientation. Potential transcription factor-binding sites are indicated by the labeled shaded rectangles. The central MZF-1 site is indicated by the bold arrow. Rectangles containing an ‘X’ represent constructs wherein the respective site has been mutated. The position of the KIR2DL1 and KIR3DL1 distal antisense transcription start sites are indicated by vertical lines labeled with an asterisk. The MYC-binding site indicated at the 3′ end of the distal antisense promoter region overlaps with the exon 2/intron 2 junction on the sense strand. The boundaries of the first KIR2DL1 antisense intron are indicated by vertical lines labeled D (splice donor) and A (splice acceptor). The right panel shows the luciferase activity of pGL3 constructs containing the fragments depicted on the left. Constructs were transfected into HEK293 cells and relative luciferase activity was determined 48 h post-transfection. Values represent the mean and error bars indicate the standard deviation of at least three independent experiments. (b) Analysis of KIR2DL1 distal promoter activity (construct 7 in a) in various cell lines is shown. Values represent the mean and error bars indicate the standard deviation of at least three independent experiments.

DNA-binding domains.20,21 The first domain binds to the core sequence 5′-AGTGGGGA-3′, and the second domain binds to the core sequence 5′-CGGGNGAGGGGGAAA-3′. MZF-1 is expressed by totipotent hematopoietic cells as well as by myeloid progenitors, and therefore may contribute to the preferential activity of the distal antisense promoter in stem cells. Constructs lacking the central MZF-1 site (constructs 4 and 12) did not demonstrate significant promoter activity, indicating a key role for MZF-1. Core promoter activity was localized to a 135-bp region containing a putative binding site for the MZF-1 protein at the S′ end, a MZF-1 half-site in the middle, and potential C/EBP and MYC-binding sites at the 3′ end (construct 9). Mutation of the MZF-1 site produced a 30% decrease in promoter activity (construct 10). Although deletion of the 3′ region containing the C/EBP and MYC sites significantly decreased promoter activity, a core construct with mutations in the 3′ C/EBP and MYC site did not decrease promoter activity (construct 11), indicating that MZF-1 is likely the major transcription factor driving promoter activity. The specificity of the promoter for pluripotent cell types was examined by transfection of construct 7 into the following additional cell lines: Ntera2, H9 ES, MCF7, PC3, YT and Hela (Figure 2b). As expected, promoter activity was detected only in the cell lines that were shown to express KIR distal antisense transcripts by RT-PCR.

Figure 2. In vitro analysis of the KIR distal antisense promoter. (a) The left panel is a schematic representation of KIR2DL1 intron 2 fragments shown in an antisense orientation. Potential transcription factor-binding sites are indicated by the labeled shaded rectangles. The central MZF-1 site is indicated by the bold arrow. Rectangles containing an ‘X’ represent constructs wherein the respective site has been mutated. The position of the KIR2DL1 and KIR3DL1 distal antisense transcription start sites are indicated by vertical lines labeled with an asterisk. The MYC-binding site indicated at the 3′ end of the distal antisense promoter region overlaps with the exon 2/intron 2 junction on the sense strand. The boundaries of the first KIR2DL1 antisense intron are indicated by vertical lines labeled D (splice donor) and A (splice acceptor). The right panel shows the luciferase activity of pGL3 constructs containing the fragments depicted on the left. Constructs were transfected into HEK293 cells and relative luciferase activity was determined 48 h post-transfection. Values represent the mean and error bars indicate the standard deviation of at least three independent experiments. (b) Analysis of KIR2DL1 distal promoter activity (construct 7 in a) in various cell lines is shown. Values represent the mean and error bars indicate the standard deviation of at least three independent experiments.

DNA-binding domains.20,21 The first domain binds to the core sequence 5′-AGTGGGGA-3′, and the second domain binds to the core sequence 5′-CGGGNGAGGGGGAAA-3′. MZF-1 is expressed by totipotent hematopoietic cells as well as by myeloid progenitors, and therefore may contribute to the preferential activity of the distal antisense promoter in stem cells. Constructs lacking the central MZF-1 site (constructs 4 and 12) did not demonstrate significant promoter activity, indicating a key role for MZF-1. Core promoter activity was localized to a 135-bp region containing a putative binding site for the MZF-1 protein at the S′ end, a MZF-1 half-site in the middle, and potential C/EBP and MYC-binding sites at the 3′ end (construct 9). Mutation of the MZF-1 site produced a 30% decrease in promoter activity (construct 10). Although deletion of the 3′ region containing the C/EBP and MYC sites significantly decreased promoter activity, a core construct with mutations in the 3′ C/EBP and MYC site did not decrease promoter activity (construct 11), indicating that MZF-1 is likely the major transcription factor driving promoter activity. The specificity of the promoter for pluripotent cell types was examined by transfection of construct 7 into the following additional cell lines: Ntera2, H9 ES, MCF7, PC3, YT and Hela (Figure 2b). As expected, promoter activity was detected only in the cell lines that were shown to express KIR distal antisense transcripts by RT-PCR.

EMSA analysis of the core MZF-1 site in YT and HEK293 cell extracts

In order to investigate whether the putative MZF-1-binding site could account for the tissue specificity of the distal antisense core promoter element, EMSA analysis of the putative MZF-1 site was performed with YT and HEK293 nuclear extracts. The previously characterized MZF-1-binding site from the CD34 promoter was used as a positive control.22 Figure 3a shows the sequence of the oligonucleotide probes containing the predicted MZF-1 site in the KIR2DL1 and KIR3DL1 genes aligned with the functional MZF-1 site found in the human CD34 gene, as well as the consensus domain 1 and domain 2 sequences determined by oligonucleotide selection experiments.21 Both of the MZF-1-binding domains contain central tracts of four cytidine residues, therefore mutated oligos contained disruptions of both domain 1 and domain 2 C-tracts. The KIR3DL1 element possesses several nucleotide differences that weaken the consensus domain 1 binding region, whereas KIR2DL1 has substitutions in the domain 2 consensus. Figure 3b shows that a distinct complex is formed in the HEK293 cell line with the CD34 and KIR probes, and this complex is absent from the YT cell nuclear extract. This complex was not generated when the mutated oligonucleotide probes were used. The higher intensity of the complex generated by the KIR2DL1 binding site may be due to the contiguous arrangement of the domain 1 and 2 consensus sequences, whereas there is an additional nucleotide separating these sites in the CD34 sequence. The reduced intensity of the complex formed by the KIR3DL1 probe is likely due to the significant disruption of the domain 1 binding consensus. Competition of the CD34 MZF-1 probe with unlabeled KIR2DL1 oligonucleotide resulted in the complete loss of the complex, whereas KIR2DL1 oligonucleotide with a mutated MZF-1-binding sequence had no effect. In addition, wild-type, but not mutated, CD34 oligonucleotide inhibited KIR2DL1 and KIR3DL1 complex formation, demonstrating the ability of this region to bind to MZF-1. The lack of a detectable complex in YT cells is consistent with this binding site contributing to the observed promoter activity in HEK293 but not YT cells. The band detected with the KIR2DL1 probes in YT cells likely represents the slightly higher molecular weight band that is also present in HEK293 cells. However, this band is not affected by disruption of the MZF-1 consensus in the mutant oligonucleotides, and it is not competed by the wild-type MZF-1 probe, and thus represents a non-MZF-1-binding protein.
Enforced expression of MZF-1 decreases KIR expression in developing NK cells

The complete overlap of the 3’ end of the distal antisense with the proximal antisense suggests that the distal transcript should also be capable of producing the 28-base piRNA, and mediate a similar KIR silencing activity. However, as distal antisense transcription is limited to very early progenitor cells, it might function to prevent premature opening of the KIR loci by distal antisense with the 28-base element MZF-1. Nucleotide substitutions present in mutated KIR2DL1 and KIR3DL1 MZF-1-binding sites compared with the known MZF-1-binding sites are shown below (Consen). Brackets indicate the sequences bound by the first and second DNA-binding domains of MZF-1. Nucleotide substitutions present in mutated KIR2DL1 (2DL1m) and CD34 (2DL1m) probes are shown below the respective sequences. (b) EMSA analysis of HEK293 (left panel) and YT (right panel) nuclear extracts using the oligonucleotide probes shown in (a). Unlabeled oligonucleotides used for cold competition are indicated (Comp), as are the labeled probes (Probe). The position of a HEK293 cell-specific MZF-1 complex (MZF-1(-)) is indicated next to the left panel, and a non-specific complex formed in YT cells is indicated next to the right panel (nonspecific).

DISCUSSION

Global transcriptome analysis has revealed that the majority (75%) of the human genome is transcribed into RNA, of which only ~1% codes for protein. There is an abundance of lncRNA, and it has been shown to function in many aspects of gene regulation such as genomic imprinting, gene silencing and gene activation. The novel KIR antisense transcript identified in this study belongs to the gene body-associated class of lncRNA. A recent study of lncRNA expressed by human embryonic stem cells (hESCs) revealed that the majority of lncRNA (89%) are associated with the promoters, enhancers and bodies of protein-coding genes. Furthermore, 5% of the lncRNAs were antisense transcripts originating within protein-coding genes like the KIR distal promoter. It is also of interest to note that the distal antisense transcript contains the 28-base element predicted to mediate silencing initiated by the proximal antisense, predicting a similar silencing activity for the distal transcript.

The expression of the KIR antisense transcripts in developing NK cells leading to the production of the 28-base piRNA and KIR gene silencing, as previously shown for the proximal antisense transcript.26

The distal antisense transcript contains the 28-base element previously shown to mediate silencing in progenitor cells. As predicted, a similar silencing activity for the distal transcript. Enforced expression of MZF-1 during in vitro NK cell differentiation resulted in detectable levels of distal antisense and reduced levels of KIR expression consistent with a gene-silencing activity of the distal transcript. Therefore, the distal antisense may be generated in progenitor cells to ensure that the locus is silenced, ensuring that KIR are not expressed in other cell lineages during development, whereas the proximal antisense controls the probabilistic expression of KIR in mature NK. The presumed transient role of the KIR lncRNA in hESCs may not be a general phenomenon of gene body-associated antisense lncRNAs, as differentiation of hESCs into CD34-expressing cells resulted in a loss of distal antisense transcription. It is of interest to note that the MZF-1 transcript is not specifically expressed in stem cells, but is instead expressed in mature NK cells.

As in vitro analysis of the distal antisense promoter indicated a possible role for the MZF-1 transcription factor in progenitor cell-specific expression, we reasoned that enforced expression of MZF-1 would maintain distal antisense promoter activity in committed NK precursors and keep the KIR loci in their silent state. To address this hypothesis, we transduced primary CD34+ hematopoietic progenitor cells with a retroviral vector expressing MZF-1 and differentiated these cells into mature CD56+ NK cells in vitro. The expression of KIR on the surface of mature NK cells was analyzed by FACS after 21 days in culture. Overexpression of MZF-1 resulted in a 75% reduction in KIR expression compared with eGFP control cells or GFP-negative cells present in the culture system (Figure 4a). This effect was consistent and statistically significant in all donors tested (Figure 4c). Total RNA was harvested from eGFP control or MZF-1-overexpressing cells and used for RT-PCR with primer sets that specifically amplify either MZF-1 mRNA or distal antisense transcripts. As expected, MZF-1 mRNA levels were increased in cultures transduced with the MZF-1-expressing virus (Figure 4a), Distal antisense was detectable in MZF-1-containing cultures but absent from control populations, as previously observed (Figure 4d). The silencing effect of enforced MZF-1 expression is likely due to the continued presence of distal antisense transcripts in developing NK cells leading to the production of the 28-base piRNA and KIR gene silencing, as previously shown for the proximal antisense transcript.26

The complete overlap of the 3’ end of the distal antisense with the proximal antisense suggests that the distal transcript should also be capable of producing the 28-base piRNA, and mediate a similar KIR silencing activity. However, as distal antisense transcription is limited to very early progenitor cells, it might function to prevent premature opening of the KIR loci by distal forward transcript in stem cells. Previous studies have demonstrated that the KIR loci are heavily methylated at the NK progenitor stage, consistent with enforced silencing occurring in precursor populations. As in vitro analysis of the distal antisense promoter indicated a possible role for the MZF-1 transcription factor in progenitor cell-specific expression, we reasoned that enforced expression of MZF-1 would maintain distal antisense promoter activity in committed NK precursors and keep the KIR loci in their silent state. To address
enforced expression of MZF-1 decreases KIR expression in developing NK cells. (a) FACS analysis of day 21 in vitro differentiated cord blood NK cells transduced with either a control GFP-expressing lentiviral vector or a lentiviral vector expressing GFP-ires-MZF-1. Cells gated on the GFP-negative subset are shown on the left, and cells gated on the GFP-positive subset are shown on the right. Cells were stained with a cocktail of APC-conjugated NCAM16.2 (CD56) and PE-conjugated DX9 (KIR3DL1), EB6 (KIR2DL1/S1) and GL183 (KIR2DL2/S2/L3). (b) The average fold increase in MZF-1 mRNA expression in cells overexpressing MZF-1 relative to control GFP cells calculated from three independent donors. Differences in MZF-1 mRNA expression were statistically significant (*P = 0.0189), as determined by two-tailed Student's t-test, and indicated by the asterisk above the MZF-1 bar. (c) The average fold reduction of KIR expression in cells overexpressing MZF-1 relative to control GFP cells calculated from three independent donors. Differences in KIR expression were statistically significant (*P = 0.0274), as determined by two-tailed Student's t-test, and indicated by the asterisk above the MZF-1 bar. (d) PCR analysis of GAPDH (Lanes 3 & 4), KIR2DL1 distal antisense transcript (Lanes 6 & 7) and KIR3DL1 distal antisense transcript (Lanes 9 & 10) in sorted GFP and MZF-1-overexpressing day 21 in vitro-derived NK cells. Data is representative of three donors tested.

Figure 4. Enforced expression of MZF-1 decreases KIR expression in developing NK cells. (a) FACS analysis of day 21 in vitro differentiated cord blood NK cells transduced with either a control GFP-expressing lentiviral vector or a lentiviral vector expressing GFP-ires-MZF-1. Cells gated on the GFP-negative subset are shown on the left, and cells gated on the GFP-positive subset are shown on the right. Cells were stained with a cocktail of APC-conjugated NCAM16.2 (CD56) and PE-conjugated DX9 (KIR3DL1), EB6 (KIR2DL1/S1) and GL183 (KIR2DL2/S2/L3). (b) The average fold increase in MZF-1 mRNA expression in cells overexpressing MZF-1 relative to control GFP cells calculated from three independent donors. Differences in MZF-1 mRNA expression were statistically significant (*P = 0.0189), as determined by two-tailed Student's t-test, and indicated by the asterisk above the MZF-1 bar. (c) The average fold reduction of KIR expression in cells overexpressing MZF-1 relative to control GFP cells calculated from three independent donors. Differences in KIR expression were statistically significant (*P = 0.0274), as determined by two-tailed Student's t-test, and indicated by the asterisk above the MZF-1 bar. (d) PCR analysis of GAPDH (Lanes 3 & 4), KIR2DL1 distal antisense transcript (Lanes 6 & 7) and KIR3DL1 distal antisense transcript (Lanes 9 & 10) in sorted GFP and MZF-1-overexpressing day 21 in vitro-derived NK cells. Data is representative of three donors tested.

Figure 4. Enforced expression of MZF-1 decreases KIR expression in developing NK cells. (a) FACS analysis of day 21 in vitro differentiated cord blood NK cells transduced with either a control GFP-expressing lentiviral vector or a lentiviral vector expressing GFP-ires-MZF-1. Cells gated on the GFP-negative subset are shown on the left, and cells gated on the GFP-positive subset are shown on the right. Cells were stained with a cocktail of APC-conjugated NCAM16.2 (CD56) and PE-conjugated DX9 (KIR3DL1), EB6 (KIR2DL1/S1) and GL183 (KIR2DL2/S2/L3). (b) The average fold increase in MZF-1 mRNA expression in cells overexpressing MZF-1 relative to control GFP cells calculated from three independent donors. Differences in MZF-1 mRNA expression were statistically significant (*P = 0.0189), as determined by two-tailed Student's t-test, and indicated by the asterisk above the MZF-1 bar. (c) The average fold reduction of KIR expression in cells overexpressing MZF-1 relative to control GFP cells calculated from three independent donors. Differences in KIR expression were statistically significant (*P = 0.0274), as determined by two-tailed Student's t-test, and indicated by the asterisk above the MZF-1 bar. (d) PCR analysis of GAPDH (Lanes 3 & 4), KIR2DL1 distal antisense transcript (Lanes 6 & 7) and KIR3DL1 distal antisense transcript (Lanes 9 & 10) in sorted GFP and MZF-1-overexpressing day 21 in vitro-derived NK cells. Data is representative of three donors tested.

unspliced antisense transcript derived from a promoter in intron 1 of the KIR3DP1 pseudogene that was detected in Daudi and Jurkat cells (Table 1), was also found in NK cells of the intermediate CD56-bright phenotype (data not shown). CD56-bright NK cells represent the immediate precursor of mature CD56-dim NK cells. Perhaps KIR3DP1 antisense transcripts are generated at this later point in development to ensure that the pseudogene remains in a silent state.

In summary, we have shown that KIR antisense IncRNAs are highly expressed in CD56-bright NK, but was undetectable in mature NK cells. Perhaps KIR3DP1 antisense transcripts are generated at this later point in development to ensure that the pseudogene remains in a silent state.

In summary, we have shown that KIR antisense IncRNAs derived from a promoter in intron 2 are only expressed at the earliest stages of cell differentiation, and represent a distinct class of IncRNA capable of silencing genes in stem cells.

MATERIALS AND METHODS

Cell lines

H9 hESCs were obtained from WiCell (Madison, WI, USA). Ntera2 cells were kindly provided by Dr Peter Andrews (University of Sheffield, UK). HEK293T, Hela and Ntera2 cells were cultured in Dulbecco’s modified Eagle medium containing 10% fetal bovine serum, 100 U ml⁻¹ penicillin, 100 U ml⁻¹ streptomycin (P/S), sodium pyruvate and L-glutamine. MCF7 cells were cultured in Dulbecco’s modified Eagle medium as above with the addition of 0.01 mg ml⁻¹ human recombinant insulin. YT, Daudi, Jurkat, PC3 and U937 cells were cultured in RPMI 1640 media containing 10% fetal bovine serum, P/S and L-glutamine.

NK cell and CD34⁺ HPC isolation

The use of all human tissue was approved by the Committee on the Use of Human Subjects in Research at the University of Minnesota, and informed consent was secured in accordance with the Declaration of Helsinki. Umbilical cord blood was obtained from full-term consenting mothers at the New York Blood Center (New York, NY, USA), Saint Louis Cord Blood Bank (St Louis, MO, USA) or local obstetric units. Total mononuclear cells were separated from the peripheral blood of healthy donors by Histopaque (Sigma-Aldrich, St Louis, MO, USA) gradient centrifugation. CD56⁺ NK cells were column-isolated by negative selection using magnetic beads (Miltenyi Biotech, Auburn, CA, USA). CD34⁺ HPCs were isolated from umbilical cord blood donors by Histopaque gradient centrifugation followed by a double-column positive selection using anti-CD34 microbeads (Miltenyi).
RT-PCR of antisense KIR transcripts

Total RNA was purified from 1×10⁷ cells with the RNeasy kit (Qiagen, Valencia, CA, USA). The SuperScript First Strand cDNA Synthesis Kit (Invitrogen, Carlsbad, CA, USA) was used to generate cDNA from 0.5 μg of total cellular RNA. For PCR reactions, 35 cycles of 94°C for 30 s, 60°C for 30 s, 73°C for 20 s were performed on 2 μl of cDNA using Hot-Start Taq Mastermix (Denville, South Plainfield, NJ, USA). For KIR2DL1-derived transcripts, the forward primer was: 5’-AGAGACCGTGCTGAGGGAATG-3’. For KIR3DL1 antisense, the forward primer was: 5’-ATCCCCCGAGGACCTTCTTCCTC-3’. A common reverse primer was used for both genes: 5’-TGGATTGTCATAGGGAGGC-3’. All PCR products were cloned into the pCR2.1-topo vector (Invitrogen) and sequenced in order to verify the identity of the cDNA and the KIR gene responsible for the product.

Generation of luciferase reporter constructs

Promoter fragments were generated by PCR using oligonucleotide primers and cloned into the pcR2.1-Topo vector (Invitrogen). Inserts were excised with Sall/Xhol enzymes and cloned into the corresponding sites in the pGL3-basic firefly luciferase vector (Promega, Madison, WI, USA).

Cell transfection and luciferase assays

YT cells were transfected by electroporation using a BTX ECM 830 BTX electroporator (Berkshire, MA, USA) following the manufacturer’s protocol. Luciferase activity was assayed at 48 h (YT, HEK293 T and Ntera2) using the Dual-Luciferase Reporter Assay System (Promega) according to the manufacturer’s instructions. Firefly luciferase activity was normalized relative to the Renilla luciferase activity for each transfection.

Electrophoretic mobility shift assay (EMSA)

Nuclear extracts were prepared from HEK293T and YT cells using the Celllytic NuCLEAR extraction kit (Sigma-Aldrich). Protein concentration was measured with a Bio-Rad protein assay (Hercules, CA, USA), and samples were stored at −70°C until use. DNA oligonucleotide probes corresponding to the proximal MZF-1 binding sequences of the KIR2DL1 and KIR3DL1 core antisense promoters and the previously characterized CD34 MZF-1 site were synthesized. Probes were labeled with [32P]deoxyctydine triphosphate (3000 Ci mmol⁻¹; PerkinElmer Life and Analytical Sciences, Waltham, MA, USA) by fill-in using the Klenow fragment of DNA polymerase I (Invitrogen). 32P-labeled double-stranded oligonucleotides were purified using mini Quick Spin Oligo Columns (Roche Diagnostics, Mannheim, Germany). DNA–protein binding reactions were performed in a 10-μl mixture containing 5 μg nuclear protein and 1 μg poly(dI-dC) (Sigma-Aldrich) in 4% glycerol, 1 mM MgCl₂, 0.5 mM ethylenediaminetetraacetic acid, 0.5 μM dihydrothiouril, 50 mM NaCl and 10 mM Tris-HCl (pH 7.5). Nuclear extracts were incubated with 1 μl 32P-labeled oligonucleotide probe (10 000 c.p.m.) at room temperature for 20 min and then loaded on a 5% polyacrylamide gel (37:1:3). Electrophoresis was performed in 0.5 X TBE for 2 h at 130 V, and the gel was visualized by autoradiography.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This project has been funded in whole or in part with federal funds from the National Cancer Institute (NCI), NIH, under contract HSN261200800001E and NCI grant P01 111412 (JSM, SKA). This research was supported in part by the Intramural Research Program of the NIH, NCI, Center for Cancer Research.

DISCLAIMER

The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations implicate endorsement by the US Government.

REFERENCES

1 Trinchieri G. Biology of natural killer cells. Adv Immunol 1989; 47: 187–376.
2 Lanier LL. NK cell recognition. Annu Rev Immunol 2005; 23: 225–274.
3 Carrington M, Norman P. The KIR Gene Cluster. National Library of Medicine (US), NCBI: Bethesda, MD, USA, 2001.
4 Anderson SK, Ortaoldo Jr, McVicar DW. The ever-expanding Ly49 family gene: repertoire and signaling. Immunol Rev 2001; 171: 89–95.
5 Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005; 5: 201–214.
6 Vallante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D’Andrea A et al. Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 1997; 7: 729–751.
7 Held W, Kuru B. An allele-specific, stochastic gene expression process controls the expression of multiple Ly49 family genes and generates a diverse, MHC-specific NK cell receptor repertoire. Eur J Immunol 1999; 28: 2407–2416.
8 Santoulidis S, Trompetter HI, Weinhold S, Eisermann B, Meyer KL, Wernet P et al. Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J Immunol 2002; 169: 4253–4261.
9 Chan HW, Kurago ZB, Stewart CA, Wilson MJ, Martin MP, Mace BE et al. DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J Exp Med 2003; 197: 245–255.
10 Björkström NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 2010; 116: 3853–3864.
11 Saleh A, Davies GE, Pascal V, Wright PW, Hodge DL, Cho EH et al. Identification of probabilistic transcriptional switches in the Ly49 gene cluster: a eukaryotic mechanism for selective gene activation. Immunity 2004; 21: 55–66.
12 Davies GE, Locke SM, Wright PW, Li H, Hanson RJ, Miller JS et al. Identification of bidirectional promoters in the human KIR genes. Genes Immun 2007; 8: 245–253.
13 Li H, Pascal V, Martin MP, Carrington M, Anderson SK. Genetic control of variable KIR gene expression: polymorphisms of the bi-directional KIR3DL1 promoter are associated with distinct frequencies of gene expression. PLoS Genet 2008; 4: e1000254.
14 Tanamachi DM, Moniot DC, Cado D, Liu SD, Hsia JK, Raulet DH. Genomic Ly49a transgenes: basis of variaged Ly49a gene expression and identification of a critical regulatory element. J Immunol 2004; 172: 1074–1082.
15 Stubbinger MJ, Wright PW, Dang H, Hanson RJ, Miller JS, Anderson SK. Identification of distal KIR promoters and transcripts. Genes Immun 2007; 8: 124–130.
16 Cichocki F, Hanson RJ, Lenvik T, Pitt M, McCullar V, Li H et al. The transcription factor c-Myc enhances KIR gene transcription through direct binding to an upstream distal promoter element. Blood 2009; 113: 3245–3253.
17 Cichocki F, Miller JS, Anderson SK. Killer immunoglobulin-like receptor transcriptional regulation: a fascinating dance of multiple promoters. J Innate Immun 2011; 3: 242–248.
18 Cichocki F, Lenvik T, Sharma N, Yun G, Anderson SK, Miller JS. Cutting edge: KIR antisense transcripts are processed into a 28-base PIWI-like RNA in human NK cells. J Immunol 2010; 185: 2009–2012.

19 Bamezai S, Rawat VPS, Buske C. Concise review: the Piwi-piRNA axis: pivotal beyond transposon silencing. Stem Cells 2012; 30: 2603–2611.

20 Hromas R, Davis B, Rauscher 3rd FJ, Klemsz M, Tenen D, Hoffman S et al. Hematopoietic transcriptional regulation by the myeloid zinc finger gene, MZF-1. Curr Top Microbiol Immunol 1996; 211: 159–164.

21 Morris JF, Hromas R, Rauscher 3rd FJ. Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core. Mol Cell Biol 1994; 14: 1786–1795.

22 Morris JF, Rauscher 3rd FJ, Davis B, Klemsz M, Xu D, Tenen D et al. The myeloid zinc finger gene, MZF-1, regulates the CD34 promoter in vitro. Blood 1995; 86: 3640–3647.

23 Chan HW, Miller JS, Moore MB, Lutz CT. Epigenetic control of highly homologous killer immunoglobulin-like receptor gene alleles. J Immunol 2005; 175: 5966–5974.

24 Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A et al. Landscape of transcription in human cells. Nature 2012; 489: 101–108.

25 Lee JT. Epigenetic regulation by long noncoding RNAs. Science 2012; 338: 1435–1439.

26 Sigova AA, Mullen AC, Molinie B, Gupta S, Orlando DA, Guenther MG et al. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc Natl Acad Sci USA 2013; 110: 2876–2881.

27 Oostendorp RA, Harvey KN, Kusadasi N, de Bruijn MF, Saris C, Ploemacher RE et al. Stromal cell lines from mouse aorta-gonads-mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood 2002; 99: 1183–1189.