Effect of Added Tetraalkylammonium Counterions on the Dilational Rheological Behaviors of N-Cocooyl Glycinate

Sana Ullah, Kaixin Yao, Pingping Zhang, Yuzhao Wang, Zhenghong Chen, Changyao Liu*, Ce Wang*, and Baocai Xu*

Department of Applied Chemistry, Beijing Key Laboratory of Flavor Chemistry, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People’s Republic of CHINA

Abstract: Ion specific effect, which is also known as Hofmeister effect, has been reported in numerous systems including ionic surfactant aggregates. Acyl amino acid surfactants have attracted growing attention in the field of novel surfactants research due to their environmentally benign characteristics. The objective of this study was to investigate the effect of different salts containing NH₄⁺ and tetraalkylammonium (TAA⁺), where alkyl = methyl (TMA⁺), ethyl (TEA⁺), and propyl (TPA⁺), cations on the dilational rheological properties of interfacial film are stabilized by potassium N-cocooyl glycinate (KCGl). The interfacial behaviors were studied using oscillating drop shape analysis method. The interfacial tensions (IFTs) and dilational rheological parameters results illustrate that KCGl in the presence of salts has better interfacial activity and stronger intermolecular interaction, indicating that added cations contribute to denser molecular packing at oil-water interface. Ion specific effects were observed in the system. Among the cations, KCGl shows highest dilational modulus in the presence of NH₄⁺. The overall interaction between cations and headgroups of KCGl decreases in the sequence NH₄⁺ > TMA⁺ > TEA⁺ ≈ TPA⁺, which follows Hofmeister series. The increasing hydrophobicity of TAA⁺ prevents the interaction between cations and KCGl's headgroup, and therefore prevent amphiphiles from packing closely at interface. The results present a theoretical origin for useful application of KCGl in cosmetics, petroleum and daily chemical industries.

Key words: tetraalkylammonium, amino acid-based surfactant, interfacial tension, interfacial dilational rheology, ion specific effects

1 Introduction

Ion specific effect, which was first reported by Hofmeister in 1888[1], has been reported in tons of systems with charged interfaces or surfaces, including surfactant aggregates, supramolecular structures, enzymes, and polymers over the past several decades[2-6]. Counterions in added salts are an important factor affecting the intermolecular interaction, surface activity, micellization, and aggregate morphological transition of ionic surfactants. Various organic and inorganic counterions are often used because they not only affect the interfacial behaviors of the surfactants, but also affect their self-aggregation structures[6-11].

Added salts affect the interfacial behaviors of ionic surfactants in different ways such as, electrolytes increase their oil-soluble nature and enhance their diffusion to oil-water interface from bulk or stabilize oil-water interface by increasing their adsorption through electrostatic interaction with counterions in added electrolytes[12]. Tetraalkylammonium ions are a class of kosmotropic cations, and their effects on surfactants are even more pronounced[13-17]. Interfacial tensions (IFTs) can be reduced to an ultralow value with added tetrabutylammonium bromide[18]. Yuan S. et al. have studied interfacial aggregations of different TAA⁺ counterions with sodium dodecyl sulfate (SDS) and found that mixed interfacial layers are formed with methyl groups of TAA⁺ penetrate into the monolayer[17]. Therefore, it is of great importance to study the specific effect of different TAA⁺ on the interfacial behaviors of ionic surfactants.

To study the adsorption progresses of surfactants, dynamic interfacial tensions are often used. Only the adsorption amounts cannot give a detail description about the interaction between the molecules at interface. Cur-
The potassium N-cocoyl glycinate (KCGl) molecule has been widely studied in foam and emulsion stability studies. Therefore, for the assessment of interfacial behaviors of amphiphile systems, like surfactants and proteins, interfacial dilational rheological experiments are used and have been widely studied in foam and emulsion stability studies.

Amino acids bearing both carboxyl and amine groups are excellent natural building blocks used for the preparation of surfactants\(^\text{31}\). Acyl amino acid surfactants are a class of environmentally friendly surfactants\(^\text{32-34}\). They have been widely applied to various industry, including personal care, cosmetics, and pharmaceutics\(^\text{32,35-41}\).

Here, we study the interfacial dilational rheological properties of acyl amino acid surfactant potassium N-cocoyl glycinate (KCGl) in the presence of different salts, namely ammonium chloride (NH\(_4\)Cl), tetramethylammonium bromide, where alkyl = methyl (TMAB), ethyl (TEAB), and propyl (TPABr), are investigated respectively by the oscillating drop method. By analyzing the results of the above salts, the influences of ammonium and tetraalkylammonium ion on the interfacial behaviors of KCGl are revealed.

### 2 Experimental

Table 1 lists the chemicals used in the experiments. The chemicals are used as received without further purification. The potassium N-cocoyl glycinate (average molecular weight = 522.82 g/mol) is bought as a 30 wt% surfactant solution. Water used in these experiments was ultrapure water (resistivity = 18.2 MΩ cm). n-Decane with purity of 99.0% was used as oil phase.

| Chemical                        | CAS registry number | Grade (purity) | Supplier                        |
|---------------------------------|--------------------|----------------|---------------------------------|
| n-Decane                        | 124-18-5           | 99.0%          | Sigma Chemical Company (Germany) |
| N-cocoyl glycinate (KCGl)       | 301341-58-2        | 30% aqueous solution | Ajinomoto Company (Japan)       |
| Ammonium Chloride (NH\(_4\)Cl)  | 26650328           | 98.0%          | Hushi Company (Shanghai, China)  |
| Tetramethylammonium (C\(_4\)H\(_8\)NBr) | 71-91-0         | 99.0%          | Shanghai Macklin Biochemical Company (China) |
| Tetraethylammonium (C\(_4\)H\(_{10}\)NBr) | 64-20-0         | 98.0%          | Shanghai Macklin Biochemical Company (China) |
| Tetrapropylammonium (C\(_3\)H\(_{12}\)NBr) | 1941-30-6       | 98.0%          | Shanghai Macklin Biochemical Company (China) |

A response in interfacial tension (IFT) is observed when the interfacial area is disturbed by a periodic compression and expansion. Gibbs has defined the interfacial dilational modulus, \(\varepsilon\), to depict the IFT response with the changes of area, which can be expressed by Equation 1:

\[
\varepsilon = \frac{dy}{d\Delta A}
\]

Where \(y\) represents IFT, and \(A\) denotes the interfacial area. Dilational modulus, \(\varepsilon\), reveals the capability to oppose the deformation of the interface.

The IFT and interfacial dilational rheology data are all measured by the oscillating drop shape analysis method, with ODG-20 from Data Physics Instruments GmbH, as we described elsewhere\(^\text{42}\). An oil drop injected from a syringe into an optical glass cuvette containing surfactant aqueous solution was captured by a CCD camera and digitized by Fourier transform analysis. The glass cuvette was always thermo stated at 25 ± 0.1°C. The profile of the oil droplet was fitted to the Laplace equation to determine the IFT. The accessible frequencies between 0.005 and 0.1 Hz for the drop oscillations were carried out in sinusoidal mode and the oscillations amplitude was 10% (\(\Delta A/A\)).

### 3 Results and Discussion

#### 3.1 Dynamic IFT and dilational moduli of KCGl in the presence of different salts containing tetraalkylammonium cations (MR\(_4^+\), R = 1-3) and NH\(_4^+\)

Figure 1 shows the results of dynamic IFTs and dilational moduli of KCGl with added \(5 \times 10^{-2}\) mol/L NH\(_4\)Cl, or tetraalkylammonium bromide (TAABr), where alkyl denotes methyl (TMABr), ethyl (TEABr), and propyl (TPABr). The concentration of KCGl varies from \(10^{-7}\) to \(10^{-1}\) mol/L. The interfacial adsorption of KCGl molecules increases over time as soon as an oil-water interface was created, resulting in the gradual decrease in the values of IFT. The intermolecular interactions become stronger with the enhanced interfacial coverage and cause higher IFT gradient when the interface deforms. Therefore, the interfacial dilational
Fig. 1 Dynamic IFT (A, C, E, G) and dilational modulus (B, D, F, H) of KCGl in the present of $5 \times 10^{-2}$ mol/L NH$_4$Cl (A, B), TMABr (C, D), TEABr (E, F) and TPABr (G, H) salts.
modulus increases correspondingly. When the interface achieves equilibrium adsorption, both IFT and dilational modulus finally reach constant values. This is consistent with the general characteristics of surfactants.

3.2 Concentration dependence of IFT and interfacial dilational properties of KCGl in the present of different salts containing tetraalkylammonium cations (MR₄⁺, R=1-3) and NH₄⁺

The equilibrium IFTs at different concentrations of KCGl in the presence of different salts (NH₄Cl, TMABr, TEABr and TPABr) are summarized in Fig. 2. As expected, IFTs decrease gradually with the increase of surfactant concentration. The oil-water IFT versus KCGl concentration curve in pure water is presented as a dotted line. Interestingly, the IFTs for KCGl in electrolyte solutions are clearly lower than that in pure water, demonstrating that salts have improved the interfacial activity of KCGl and contribute to denser molecular packing at oil-water interface. As reported in previous researches, this may be attributed to the screening electrostatic repulsion between anionic headgroups of KCGl molecules by the counterions, which increases the interfacial concentration of the surfactants.

However, as shown in Fig. 2, the ability of KCGl to reduce IFT varies significantly in the presence of different salts, suggesting the hydrophobicity and size of the cations may have significant influence on the interfacial behaviors of KCGl. Ammonium ion, NH₄⁺, as the most hydrophilic cation, performs differently at low and high KCGl concentrations. At low KCGl concentrations, the effect of NH₄⁺ on the IFT is less obvious than other cations because it has less tendency to adsorb to the interface compared to other hydrophobic cations bearing methyl and methylene groups. Above 5 × 10⁻⁵ mol/L KCGl concentrations, NH₄⁺ is mixed adsorbed with anionic headgroups of KCGl at interface. The electrostatic repulsion between headgroups of surfactant is screened by NH₄⁺, which contributes to a denser adsorption of the KCGl molecules at interface. The IFT values for KCGl in the presence of TMA⁺ and TEA⁺ are higher than those in the presence of NH₄⁺. Although this can be explained by the increasing of cation size, to some extent, prevent surfactant molecules from packing closely, there are other possibilities, Scheme 1. First, based on Collins’ concept, the strongly hydrated carboxylate headgroup tends to interact strongly, and form possibly ion-pairs, with strongly hydrated cations, than weakly hydrated cations. Therefore, the interaction between KCGl headgroup and NH₄⁺ is stronger than other hydrophobic cations. Second, possible hydrogen bonding between NH₄⁺ and amino acid headgroups may also contribute to the packing between amphiphiles with added NH₄⁺. Thus, the IFT at high surfactant concentration is lower for ammonium ions compared to TMA⁺ and TEA⁺. However, TPA⁺, with longer alkyls, itself has certain interfacial activity. To some extent, TPA⁺ behaves as co-surfactant and mixed adsorb together with KCGl. Therefore, TPA⁺ also decreases the IFT to a very low value.

Even though very low IFT was observed for KCGl in the

---

**Scheme 1** Cartoon of the adsorbed layers of KCGl in the presence of NH₄⁺, TMA⁺ and TEA⁺ at the oil-water interface.
presence of either NH$_4^+$ or TPA$^-$, the interfacial arrangement of KCGl is essentially different, which can be further demonstrated by the interfacial dilational moduli. Figure 3 shows the changes of the equilibrium dilational moduli with increasing KCGl concentration. Generally, with increasing surfactant concentration, the interfacial dilational modulus increases to a maximum followed by decreases. The initial increase of interfacial surfactant concentration results in the deformation of interface and stronger interactions between molecules at interfaces, thus the IFT values increase at first. However, the diffusion exchange of surfactant molecules between interfacial region and bulk region also increases with increasing bulk surfactant molarities. As a result, the rapid diffusion of surfactant molecules to the interface can reduce the IFT gradient and leads to a decrease of the dilational modulus at high surfactant concentrations. Thus, as surfactant concentration increases, the modulus runs through a maximum$^{42,50}$.

Hydration shells are formed around the headgroups of KCGl that adsorbs at interface. Consequently, the molecules organize with long distance and the intermolecular interaction of the surfactant molecules is not significant. In the absence of salts, the maximum dilational modulus of pure KCGl determined by us is only 18.5 mN/m. Prominent maximum increase in dilational modulus is observed in the presence of NH$_4^+$ and TMA$^+$ with KCGl. As discussed above, the cations that have smaller size and less hydrophobicity have stronger interaction with the KCGl and cause surfactant molecules to pack tightly at interface by screening the electrostatic repulsion between the headgroups. As a result, the interactions of the molecules at interface, namely the Van der Waals interaction between hydrophobic tails and hydrogen bonds between amidos, are enhanced, which results in higher dilational modulus. However, as for TEA$^-$ and TPA$^-$, the interactions between added cations and headgroups are weak. Hence, the relaxation processes, such as diffusion exchange, play more significant roles in determining the interfacial properties and dilational modulus begins to decrease. Therefore, KCGl with added TEA$^-$ and TPA$^-$ shows lower dilational modulus than other counterions which can be further proved from the viscoelasticity of the adsorption films.

3.3 Frequency dependence of the interfacial dilational properties for KCGl in the presence of added salts

The interfacial dilational moduli versus oscillation frequency for KCGl with NH$_4^+$, TMA$^+$, TEA$^-$ and TPA$^-$ are characterized in Fig. 4, because the changes of dilational moduli with oscillating frequency further characterize the viscoelasticity of interfacial film$^{20}$. The experiments were carried out by varying the frequency in the range of 0.005 - 0.1 Hz. The salt concentration was fixed at 5 $\times$ 10$^{-2}$ mol/L, and the KCGl concentration varies from 10$^{-5}$ to 10$^{-3}$ mol/L.

As increasing frequency, the dilational moduli of all systems increase as shown in Fig. 4. At low frequencies, the dilational modulus is small, indicating the time for surfactants to eliminate the IFT gradient caused by the deformation in area is sufficient. But at higher frequencies, the dilational modulus is also higher. The interfacial deformation is much faster and there is no enough time for the recovery of interfacial film. As oscillating frequency increases at moderate rate, change in interfacial area becomes faster than the relaxation progresses, making the IFT gradient become increasingly difficult to eliminate.

3.4 Interfacial dilational modulus as a function of interfacial pressure for KCGl in the presence of added salts

To determine the interfacial behaviors of amphiphiles, the changes of interfacial dilational modulus with interfacial pressure are usually evaluated$^{28,42,51}$. Therefore, the interfacial dilational moduli versus interfacial pressure for the KCGl/salts systems have been illustrated in Fig. 5.

Usually, under fixed interfacial pressure, the interfacial dilational moduli of amphiphiles decrease as their concentrations increase. At high surfactant concentration, the strong diffusion exchange between interfacial region and bulk region decreases the dilational modulus value. In the presence of salts, the characteristics of KCGl’s dilational modulus versus interfacial pressure profiles are divided into two notable regions. At low KCGl concentrations, dilational modulus vs. interfacial pressure coincide on a single curve, representing the interfacial properties are primarily decided by the interactions between molecules, but not the diffusion-exchange process. As increasing surfactant concentration, the diffusion exchanges of surfactant molecules between interfacial region and bulk region becomes more and more significant. Thus, the dilational modulus versus
Fig. 4  Oscillation frequency dependence of dilational moduli of KCGl in the presence of $5 \times 10^{-2}$ mol/L NH$_4$Cl (A), TMAB (B), TEAB (C), and TPAB (D).

Fig. 5  Interfacial dilational modulus as a function of interfacial pressure for the mixtures of KCGl and added NH$_4$Cl (A), TMABr (B), TEABr (C), and TPABr (D).
interfacial pressure curves starts to disperse from the main branch at higher concentrations. For KCGl in the presence of different counterions, the dispersion degree of the curves increases with the length of the alkyl/hydrogen arms on the counterions, suggesting the diffusion of surfactant monomers between interfacial region and bulk region becomes more significant, and the interfacial film becomes more viscoelastic.

4 Conclusions
In the current work, effects of different salts (NH₄Cl, TMABr, TEABr and TPABr) on the interfacial dilational rheological properties of KCGl have been investigated. The results demonstrate that the participations of salts in KCGl solutions have strongly decreased the IFTs and increased the dilational moduli of the system, due to the interaction between the added cations and surfactant headgroups. Interestingly, various cations bearing various sizes and hydrophilicities behave differently. In case of relatively small and hydrophilic cations, e.g., NH₄⁺, KCGl packs closer at interface, and decreases the diffusion between interfacial region and bulk region. However, those relatively large and hydrophobic cations, such as, TEA⁺, interact weakly with surfactant headgroups and fail to induce a closer arrangement of molecules at interface. Relaxation processes are easy to take places and thus play an important role in determine interfacial properties. Therefore, viscoelastic films are formed in the presence of TEABr and TPABr. The experimental data of KCGl with salts may provide a hypothetical basis for its useful application in detergents, pharmaceutical, cosmetic, petroleum and daily chemical industries.

Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (21902004, 21676003), Beijing Natural Science Foundation (2204076), Science and Technology Plan of Beijing Municipal Education Commission (KM202010011003), Youth Foundation of Beijing Technology and Business University (PXM2019_014213_000007).

References
1) Hofmeister, F. Zur lehre von der wirkung der salze. *Naunyn-Schmiedeberg's Arch. Pharmacol.* 25, 1-30 (1888).
2) Lo Nostro, P.; Ninham, B.W. Hofmeister phenomena: An update on ion specificity in biology. *Chem. Rev.* 112, 2286-2322 (2012).
3) Islam, M.S.; Shortall, S.M.; Mekhail, G.M.; Callender, S.P.; Madkhali, O.; Bhawrani, Z.; Ayyash, D.; Kobernyk, K.; Wettig, S. Effect of counterions on the micellization and monolayer behaviour of cationic gemini surfactants. *Phys. Chem. Chem. Phys.* 19, 10825-10834 (2017).
4) Bastos-González, D.; Pérez-Fuentes, L.; Drummond, C.; Faraudo, J. Ions at interfaces: The central role of hydration and hydrophobicity. *Curr. Opin. Colloid Interface Sci.* 23, 19-28 (2016).
5) Zhang, J.; Cai, H. T.; Tang, L.; Liu, G.M. Tuning the pH response of weak polyelectrolyte brushes with specific anion effects. *Langmuir* 34, 12419-12427 (2018).
6) Mukhim, T.; Dey, J.; Das, S.; Ismail, K. Aggregation and adsorption behavior of cetylpyridinium chloride in aqueous sodium salicylate and sodium benzoate solutions. *J. Colloid Interface Sci.* 350, 511-515 (2010).
7) Sultan, N.; Ismail, K. Specific ion effects of chloride vis-à-vis acetate, propionate and butyrate counterions on the cetylpyridinium headgroup at the micelle–solution and air–solution interfaces. *J. Mol. Liq.* 213, 145-152 (2016).
8) McCoy, T.M.; King, J.P.; Moore, J.E.; Kelleppan, V.T.; Sokolova, A.V.; de Campo, L.; Manohar, M.; Darwish, T.A.; Tabor, R.F. The effects of small molecule organic additives on the self-assembly and rheology of betaine wormlike micellar fluids. *J. Colloid Interface Sci.* 534, 518-532 (2019).
9) Xu, H.; Li, P.; Ma, K.; Welbourn, R.J.; Penfold, J.; Thomas, R.K.; Roberts, D.W.; Petkov, J.T. The role of competitive counterion adsorption on the electrolyte induced surface ordering in methyl ester sulfonate surfactants at the air-water interface. *J. Colloid Interface Sci.* 533, 154-160 (2019).
10) Mahjoub, H.F.; Aouissi, Z.; Othman, T. Influence of carboxymethylcellulose (NaCMC) on the aggregation and micellization behaviors in aqueous cetylpyridinium chloride solutions: Thermodynamic study and effect of polymer concentration. *J. Mol. Liq.* 265, 473-486 (2018).
11) Niraula, T.P.; Chatterjee, S.K.; Bhattachai, A. Micellization of sodium dodecyl sulphate in presence and absence of alkali metal halides at different temperatures in water and methanol-water mixtures. *J. Mol. Liq.* 250, 287-294 (2018).
12) Zhang, Q.; Zhou, Z.-H.; Dong, L.-F.; Wang, H.-Z.; Cai, H.-Y.; Zhang, F.; Zhang, L.; Zhang, L.; Zhao, S. Dilational rheological properties of sulphobetaines at the water–decane interface: Effect of hydrophobic group. *Colloids Surf. A* 455, 97-103 (2014).
13) Mata, J.; Varade, D.; Ghosh, G.; Bahadur, P. Effect of tetrabutylammonium bromide on the micelles of sodium dodecyl sulfate. *Colloids Surf. A* 245, 69-73.
(2004).
14) Abdel-Rahem, R. The influence of hydrophobic counterions on micellar growth of ionic surfactants. *Adv. Colloid Interface Sci.* **141**, 24-36 (2008).
15) Bales, B.L.; Zana, R. Cloud point of aqueous solutions of tetrabutylammonium dodecyl sulfate is a function of the concentration of counterions in the aqueous phase. *Langmuir* **20**, 1579-1581 (2004).
16) Sein, A.; Engberts, J.B. Micelle to lamellar aggregate transition of an anionic surfactant in dilute aqueous solution induced by alkali metal chloride and tetraalkylammonium chloride salts. *Langmuir* **11**, 455-465 (1995).
17) Liu, G.K.; Li, R.X.; Wei, Y.Y.; Gao, F.F.; Wang, H.L.; Yuan, S.L.; Liu, C.B. Molecular dynamics simulations on tetraalkylammonium interactions with dodecyl sulfate micelles at the air/water interface. *J. Mol. Liq.* **222**, 1085-1090 (2016).
18) Dan, A.; Wüstneck, R.; Krägel, J.R.; Aksenenko, E.V.; Fainerman, V.B.; Miller, R. Adsorption and dilational rheology of mixed β-casein/DoTAB layers formed by sequential and simultaneous adsorption at the water/hexane interface. *Langmuir* **29**, 2233-2241 (2013).
19) Yazghur, P.; Noskov, B.; Liggieri, L.; Lin, S.-Y.; Loglio, G.; Miller, R.; Ravera, F. Dynamic properties of mixed nanoparticle/surfactant adsorption layers. *Soft Matter* **9**, 3305-3314 (2013).
20) Cao, C.; Zhang, L.; Zhang, X.-X.; Du, F.-P. Effect of gum arabic on the surface tension and surface dilational rheology of trisiloxane surfactant. *Food Hydrocoll.* **30**, 456-462 (2013).
21) Cao, X.-L.; Feng, J.; Guo, L.-L.; Zhu, Y.-w.; Zhang, L.; Zhang, L.; Luo, L.; Zhao, S. Dynamic surface dilational properties of anionic Gemini surfactants with polyoxyethylene spacers. *Colloids Surf. A* **490**, 41-48 (2016).
22) Wang, C.; Zhao, L.; Xu, B.C.; Cao, X.-L.; Guo, L.L.; Zhang, L.; Zhang, L.; Zhao, S. Effect of dynamic interfacial dilational properties on the foam stability of catanionic surfactant mixtures in the presence of oil. *Colloids Surf. A* **541**, 78-86 (2018).
23) Wang, C.; Cao, X.-L.; Zhu, Y.W.; Xu, Z.C.; Gong, Q.T.; Zhang, L.; Zhang, L.; Zhao, S. Interfacial rheological behaviors of inclusion complexes of cyclodextrin and alkanes. *Soft Matter* **13**, 8636-8643 (2017).
24) Sun, H.-Q.; Zhang, L.; Li, Z.-Q.; Zhang, L.; Luo, L.; Zhao, S. Interfacial dilational rheology related to enhanced oil recovery. *Soft Matter* **7**, 7601-7611 (2011).
25) Maldonado-Valderrama, J.; Patino, J.M.R. Interfacial rheology of protein–surfactant mixtures. *Curr. Opin. Colloid Interface Sci.* **15**, 271-282 (2010).
26) Kotsmar, C.; Pradines, V.; Alahverdijeva, V.; Aksenenko, E.; Fainerman, V.; Kovalchuk, V.; Krägel, J.; Leser, M.; Noskov, B.; Miller, R. Thermodynamics, adsorption kinetics and rheology of mixed protein–surfactant interfacial layers. *Adv. Colloid Interface Sci.* **150**, 41-54 (2009).
27) Zhang, L.; Wang, X.-C.; Gong, Q.-T.; Zhang, L.; Luo, L.; Zhao, S.; Yu, J.-Y. Interfacial dilational properties of trisubstituted alkyl benzene sulfonates at air/water and decane/water interfaces. *J. Colloid Interface Sci.* **327**, 451-458 (2008).
28) Cao, C.; Lei, J.; Huang, T.; Du, F.-P. Impact of ionic liquid-type imidazolium surfactant addition on dynamic properties of BSA adsorption layers at different pH. *Soft Matter* **10**, 8896-8904 (2014).
29) Wang, C.; Fang, H.; Gong, Q.; Xu, Z.; Liu, Z.; Zhang, L.; Zhang, L.; Zhao, S. Roles of catanionic surfactant mixtures on the stability of foams in the presence of oil. *Energy Fuels* **30**, 6555-6564 (2016).
30) Zhu, Q.; Wang, C.; Khalid, N.; Qiu, S.; Yin, L. Effect of protein molecules and MgCl₂ in the water phase on the dilational rheology of polyglycerol polyricinoleate molecules adsorbed at the soy oil-water interface. *Food Hydrocoll.* **73**, 194-202 (2017).
31) Bordes, R.; Holmberg, K. Amino acid-based surfactants – do they deserve more attention? *Adv. Colloid Interface Sci.* **222**, 79-91 (2015).
32) Xia, J.; Xia, Y.; Nnanna, I. A. Structure-function relationship of acyl amino acid surfactants: Surface activity and antimicrobial properties. *J. Agric. Food Chem.* **43**, 867-871 (1995).
33) Husmann, M.; Menting, K.; Rieckert, H.; Ring, H.; Weise, J.; Zinser, W. Secondary fatty acid amide derivatives: Amino-acid based surfactants for household, industrial and personal care applications. *SOFJ Journ.* **130**, 22-29 (2004).
34) Yea, D.; Lee, S.; Jo, S.; Yu, H.; Lim, J. Preparation of environmentally friendly amino acid · based anionic surfactants and characterization of their interfacial properties for detergent products formulation. *J. Surf. Deterg.* **21**, 541-552 (2018).
35) Takehara, M. Properties and applications of amino acid based surfactants. *Colloids Surf.* **38**, 149-167 (1989).
36) Reznik, G.O.; Vishwanath, P.; Pynn, M.A.; Sitiuk, J.M.; Todd, J.J.; Wu, J.; Jiang, Y.; Keenan, B.G.; Castle, A.B.; Haskell, R.F. Use of sustainable chemistry to produce an acyl amino acid surfactant. *Appl. Microbiol. Biotechnol.* **86**, 1387-1397 (2010).
37) Oztürk, B.; Argın, S.; Ozilgen, M.; McClements, D.J. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. *Food Chem.* **188**, 256-263 (2015).
38) Kaltsas, O.; Paximada, P.; Mandala, I.; Scholten, E. Physical characteristics of submicron emulsions upon partial displacement of whey protein by a small molecular weight surfactant and pectin addition. *Food Res. Int.* **66**, 401-408 (2014).
The Effects of Tetraalkylammonium on Acyl Amino Acid Surfactants

39) Pang, Z.; Deeth, H.; Bansal, N. Effect of polysaccharides with different ionic charge on the rheological, microstructural and textural properties of acid milk gels. Food Res. Int. 72, 62-73 (2015).

40) Liu, C.; Wang, Y.; Chai, C.; Ullah, S.; Zhang, G.; Xu, B.; Liu, H.; Zhao, L. Interfacial activities and aggregation behaviors of N-acyl amino acid surfactants derived from vegetable oils. Colloids Surf. A 559, 54-59 (2018).

41) Wang, N.; Yao, K.; Wang, Y.; Ti, J.; Tan, J.; Liu, C.; Zhang, G.; Wang, C.; Xu, B. Green synthesis, characterization, and properties of acyl lysine, serine, threonine, and methionine derived from three types of natural oils. J. Surfact. Deterg. 23, 239-250 (2020).

42) Wang, C.; Chen, Z.; Dong, J.; Ullah, S.; Zhao, L.; Zhang, G.; Xu, B. Interfacial rheological behaviors of amphiphilic sodium cholesteryl glycyglycine. Soft Matter 15, 699-708 (2019).

43) Cao, X.-L.; Feng, J.; Guo, L.-L.; Zhu, Y.-w.; Zhang, L.; Zhang, L.; Luo, L.; Zhao, S. Dynamic surface dilational properties of anionic Gemini surfactants with polyoxyethylene spacers. Colloids Surf. A 490, 41-48 (2016).

44) Kumar, S.; Mandal, A. Studies on interfacial behavior and wettability change phenomena by ionic and non-ionic surfactants in presence of alkalis and salt for enhanced oil recovery. Appl. Surf. Sci. 372, 42-51 (2016).

45) Bera, A.; Mandal, A.; Guha, B.B. Synergistic effect of surfactant and salt mixture on interfacial tension reduction between crude oil and water in enhanced oil recovery. J. Chem. Eng. Data 59, 89-96 (2014).

46) Pal, N.; Saxena, N.; Laxmi, K.V.D.; Mandal, A. Interfacial behaviour, wettability alteration and emulsification characteristics of a novel surfactant: Implications for enhanced oil recovery. Chem. Eng. Sci. 187, 200-212 (2018).

47) Collins, K.D.; Neilson, G.W.; Enderby, J.E. Ions in water: Characterizing the forces that control chemical processes and biological structure. Biophys. Chem. 128, 95-104 (2007).

48) Vlachy, N.; Jagoda-Cwiklik, B.; Vácha, R.; Touraud, D.; Jungwirth, P.; Kunz, W. Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv. Colloid Interface Sci. 146, 42-47 (2009).

49) Liu, C.; Wang, Y.; Gao, Y.; Zhang, Y.; Zhao, L.; Xu, B.; Romsted, L.S. Effects of interfacial specific cations and water molarities on AOT micelle-to-vesicle transitions by chemical trapping: the specific ion-pair/hydration model. Phys. Chem. Chem. Phys. 21, 8633-8644, (2019).

50) Chen, Z.H.; Zhang, P.P.; Sun, Y.M.; Wang, C.; Xu, B.C. Interfacial dilational rheology of sodium lauryl glycin and mixtures with conventional surfactants. J. Surfact. Deterg. 22, 1477-1485 (2019).

51) Yan, F.; Zhang, L.; Zhao, R.-H.; Huang, H.-Y.; Dong, L.-F.; Zhang, L.; Zhao, S.; Yu, J.-Y. Surface dilational rheological and foam properties of aromatic side chained N-acyltaurate amphiphiles. Colloids Surf. A 396, 317-327 (2012).