Early experience on using Knights Landing processors for Lattice Boltzmann applications

Enrico Calore1,2, Alessandro Gabbana1,2, Sebastiano Fabio Schifano1,2, and Raffaele Tripiccione1,2

Universit\`a di Ferrara, Ferrara, ITALY
INFN Ferrara, ITALY

Abstract. Knights Landing (KNL) is the second generation of Intel processors based on Many Integrated Cores (MIC) architecture targeting HPC application segment. It delivers massive thread and data parallelism together with high-speed on-chip memory bandwidth in a standalone processor that can boot an off-the-shelf Linux operating system. KNL provides more than 3 TFlops of computing power for double-precision computation, doubling to 6 TFlops for single-precision. In this work we assess the performance of this new processor for Lattice Boltzmann codes widely used in computational fluid-dynamics. We design and implement an OpenMP code, and evaluate the impact of several data memory layouts to meet the different computing requirements of distinct parts of the application, aiming to exploit a large fraction of available peak computing throughput. We also perform a preliminary analysis of energy efficiency, evaluating the time-to-solution and average-power consumption for each memory layout, and make some comparison with other processors and accelerators.

1 Introduction

Hi-end processors, the building blocks of HPC computer systems, have seen a steady increase in the number of processing cores, with cores able to perform more and more operations per clock-cycle. This trend has been further pushed forward in accelerators, such as GPUs and Many Integrated Cores (MIC) processors, offering large computing power together with a significant computing efficiency, e.g. a high ratio of computing power per Watt. However, the use of accelerated systems is not without problems. The link between host CPU and accelerator, usually based on PCIe interface, creates a data bottleneck that reduces the sustained performances of most applications. Reducing the impact of this bottleneck in heterogeneous systems requires complex implementations \cite{12} with a non negligible impact on development and maintenance efforts.

The latest generation Intel MIC accelerator, the Knights Landing (KNL) Xeon-Phi processor, offers a way out of this problem: it is a self-hosted system, running a standard Linux operating system, so it can be used alone to assemble homogeneous clusters.
In this work we present an early assessment of the performance of the KNL processor, using as test-case a state-of-the-art Lattice Boltzmann (LB) code. This application is very interesting for benchmarking purposes, as its two main critical compute-intensive kernels, *propagate* and *collide*, are respectively strongly memory bound and compute bound. For regular applications like LB codes, task parallelism is easily done by assigning tiles of the physical lattice to different cores. However, exploiting data-parallelism through vectorization requires additional care, and in particular a careful design of the data layout is critical to allow an efficient use of vector instructions. Our code uses OpenMP to manage task parallelism, and we experiment with different data-layouts trying to find a compromise between the conflicting requirements of the *propagate* and *collide* kernels. We then assess the impact of several layout choices in terms of computing and energy performances.

Recent works have studied the performances of KNL [3,4,5] with several applications, but as far as we know none of these investigate the impact of data layouts on performance and energy efficiency.

The rest of this paper is organized as following: section 2 gives a short overview of the KNL architecture, highlighting the main features relevant for this work; section 3 briefly sketches an outline of the Lattice Boltzmann method, while section 4 presents the various options for data-layout that we have studied; section 5 analyzes our results and ends with some concluding remarks.

2 Overview of Knights Landing Architecture

The *Knights Landing* (KNL) is the second generation of Intel processors based on the MIC architecture, and the first self-bootable processor in this family. It has an array of 64, 68 or 72 cores and four high speed memory banks based on the *Multi-Channel DRAM* (MCDRAM) technology providing an aggregate bandwidth of more than 450 GB/s [6]; it also integrates 6 DDR4 channels supporting up to 384 GB of memory with a peak raw bandwidth of 115.2 GB/s. Two processors form a tile and share an L2-cache of 1 MB; tiles are connected by a 2D-mesh of rings and can be clustered in several NUMA configurations. In this work we only consider the *Quadrant* cluster configuration in which tiles are divided in four quadrants, each directly connected to one MCDRAM bank. This configurations is the recommended one to use the KNL as a symmetric multi-processor, as it reduces the latency of L2-cache misses, and the 4 block of MCDRAM appears as contiguous block of addresses. For more details on clustering see [7]. MCDRAM on a KNL can be configured at boot time in Flat, Cache or Hybrid mode. The Flat mode defines the whole MCDRAM as addressable memory allowing explicit data allocation, whereas Cache mode uses the MCDRAM as a last-level cache between the L2-caches and the on-platform DDR4 memory. In Hybrid mode, the MCDRAM is used partly as addressable memory and partly as cache. For more details on memory configuration see [8]. In this work we only consider Flat and Cache modes. Parallelism is exploited at two levels on the KNL: *task parallelism* builds onto the large number of integrated cores, while *data parallelism* uses the
AVX 512-bit vector (SIMD) instructions. Each core has two out-of-order vector processing units (VPUs) and supports the execution of up to 4 threads. The KNL has a peak theoretical performance of 6 TFlops in single precision and 3 TFlops in double precision. Typical thermal design power (TDP) is 215 W including MCDRAM memories (but not the Omni-Path interface). For more details on KNL architecture see [9].

3 Lattice Boltzmann Methods

Lattice Boltzmann methods [10] (LB) are widely used in computational fluid-dynamics, to describe fluid flows. LB methods are widely used in science and engineering to accurately model single and multi-phase flows and can be easily accommodate irregular boundary conditions. This is why they are usually used in the oil&gas industry to study the dynamics of oil and shale-gas reservoirs and to maximize their yield.

This class of applications, discrete in time and momenta and living on a discrete and regular grid of points, offers a large amount of available parallelism, so they are an ideal target for multi- and many-core processors. They are based on the synthetic dynamics of populations sitting at the sites of a discrete lattice. At each time step, populations propagate from lattice-sites to lattice-sites, and then collide mixing and changing their values accordingly. In these processes, there is no data dependency between different lattice points, so both the propagate and collide steps can be performed in parallel on all grid points following any convenient schedule.

A model describing flows in x dimensions and using y populations is labeled as $DxQy$. In this work we study a D2Q37 model, a 2-dimensional system with 37 population associated to each lattice-site, corresponding to (pseudo-)particles moving up to three lattice points away, as shown in figure 1. This recently developed [11,12] LB model automatically enforces the equation of state of a perfect gas ($p = \rho T$); it has been recently used to perform large scale simulations of convective turbulence in several physics regimes [13,14]. The D2Q37 model is computationally more demanding than earlier methods; indeed, propagate implies accessing 37 neighbor cells to gather all populations, while collide executes ≈ 6600 double-precision floating point operations per lattice point.
4 Implementation and Optimization of D2Q37 LB model

In all LB methods *propagate* and *collide* use most of compute cycles of the whole application so optimization efforts have to focus largely on these two kernels. Data allocation policies and memory-layout decisions are becoming more and more important for performance on recent many-core processors; this is even more so, as we have to find a data layout that matches the conflicting requirements of these two kernels. In this section we focus mostly on this point, discussing several possible choices and showing that they have very large effects on the obtained performance (and energy-performance) for the KNL processor; here, we extend previous works [15,2], where additional details on other aspects of the code structure are available.

Array of Structures (AoS) or Structure of Arrays (SoA) offer a starting point to consider more complex data memory organizations. In the AoS scheme, population data associated to each lattice site are stored one after the other at contiguous memory addresses. In this arrangement all data associated to one lattice point are at close memory locations, but same index populations of different lattice sites are stored in memory at non-unit strided addresses; this makes it more difficult to process them using vector SIMD instructions. Conversely, the SoA scheme stores same index populations of all sites one after the other; this is appropriate for vector SIMD instructions, as it allows to move several lattice sites – 8 for the KNL – in parallel. Figure 2 – first two designs at the top – visualize the AoS and SoA layouts, for a sample case of a lattice of 2×8 sites with only two populations (red and blue). This layout has a potential inefficiency associated to unaligned memory accesses; in fact, the read-address for population values is computed as the sum of the address of the current site plus an offset, and the resulting address is in general not aligned to a 64 Byte boundary, preventing direct memory copies to vector registers.

In order to circumvent this problem, we start from the SoA layout and, for a lattice of size $L_X \times L_Y$, we cluster together V_L elements of each population at a distance L_Y/V_L, with V_L a multiple of the KNL vector size. We call this
define LYOVL (LY / VL)
typedef struct { double c[VL]; } vdata_t;
typedef struct { vdata_t s[LX*LYOVL]; } vpop_csoa_t;
vpop_csoa_t prv[NPOP], xrt[NPOP];
#pragma omp parallel for num_threads(NTHREAD) schedule(dynamic)
for (ix = startX; ix < endX; ix++) {
 idx = (NYOVL*ix) + HYOVL;
 for (p = 0; p < NPOP; p++){
 for (iy = 0; iy < SIZEYOVL; iy++) {
 #pragma unroll
 #pragma vector aligned nontemporal
 for (k = 0 ; k < VL; k++)
 nxt->p[p][idx+iy].c[k] = prv->p[p][idx+iy+OFF[p]].c[k]
 } }
 }

Fig. 3. Source code of propagate kernel for using the CSoA data layouts. OFF is a vector containing memory-address offsets associated to each population hop. VL is the size of a cluster.

data layout a Cluster Structure of Array (CSoA), see Figure 2 – third design from top – for the case of VL = 2 corresponding to an hypothetical processor using vectors of length 2. Using CSoA, propagate, whose main task is to read the same population elements at all sites and move them to different sites, is able to use vector instructions to process clusters of properly memory-aligned items. Figure 3 shows the corresponding C type definitions and code implementation for propagate. The loop on X is parallelized among the threads using the OpenMP pragma parallel loop, making each thread to work on a slice of the lattice; the inner loop, copying elements of a cluster into another cluster, can be unrolled and vectorized since both read and write pointers are now properly aligned. A further optimization can in this case be applied with the use of non-temporal write operations saving time and reducing the overall memory traffic by 1/3. We instruct the compiler to use these optimizations using pragmas unroll and (vector aligned nontemporal). Figure 4 shows measured bandwidth for our data structures, using the FLAT memory mode, and using both off-chip or MCDRAM memory, and the CACHE memory mode. Data refer to a 64 core Xeon-Phi 7230 running at 1.4 GHz.

The collide kernel can be vectorized using the same strategy as of propagate, so one expects the CSoA layout should be an efficient choice; however, profiling the execution of this kernel, we found that a large number of TLB misses are generated. These happens because different populations associated to each lattice site are stored at memory addresses far from each other, and several non-unit stride reads are necessary to load all population values necessary to compute the collisional operator. We then introduce yet another data layout, in order to reduce this penalty. We start again from the SoA layout, and for each population array, we divide each Y-column in VL partitions each of size LY/VL; all elements sitting at the ith position of each partition are then packed together into an array of VL elements called cluster. For each index i we then store in memory one after the other the 37 clusters – one for each population – associated to it. This defines the Clustered Array of Structure of Arrays (CAoSoA); the main improvement on
Fig. 4. Performance of *propagate* (top) and *collide* (bottom) using the *AoS*, *SoA*, *CSoA* and *CAoS* data layouts. Performance for *propagate* is shown in MLUPS, defined in the text. All data for a 64 core Xeon-Phi 7230 running at 1.4 GHz. For the FLAT configuration we use a 2304×8192 lattice that fits into MCDRAM; for the CACHE configuration, the lattice is 4608×12288, twice the size of MCDRAM. For each layout, 3 groups of 4 bars correspond respectively to FLAT-DDR4, FLAT-MCDRAM and CACHE. Within each group, bars correspond respectively to 1, 2, 3 and 4 threads per core.

CSoA is that it still allows vectorization of clusters of size VL, and at the same time improves locality of populations, keeping all population data associated to each lattice site at close and aligned addresses; see again Figure 2 for a visual description. This data layout combines the benefits of the *CSoA* scheme, allowing aligned memory accesses and vectorization (relevant for the *propagate* kernel) and at the same providing population locality (together relevant for the *collide* kernel). Figure 4 shows measured performances for the *collide* kernel – expressed in Million Lattice UPdates per Second, a common figure of performance for these codes – for all data-layouts considered so far. For a lattice of 2560×8192 sites, using *CAoS* we have reduced to zero the number of TLB misses of *collide* measured using the hardware counter `PAGE_WALKS.D_SIDE_WALKS` w.r.t. almost 2 billions misses for *CSoA*; correspondingly, the number of clock ticks (counter `CPU_CLK_UNHALTED.REF_TSC`) decreases by approximately 25%. The picture also shows that the performance of the *propagate* kernel is unchanged using the *CSoA* and *CAoS* layouts.

5 Analysis of Results and Conclusions

We start summarizing our performance data. See again Figure 4 showing results for *propagate* and *collide*, using the FLAT and CACHE memory configurations. For the *propagate* kernel, performance is almost independent from the number
of threads per core, while the impact of the various data layouts is large; indeed, using a FLAT MCDRAM configuration the measured bandwidth increases from 138 GB/s of AoS to 314 GB/s of SoA and to 433 GB/s of CSoA. This trend is similar using the DDR4 memory banks but performance is much lower, ranging from 54 GB/s of AoS to 56 GB/s of SoA and to 81 GB/s of CSoA. We have a similar behavior also with the CACHE configuration, measuring in this case a bandwidth of 59, 60 and 62 GB/s for the AoS, SoA and CSoA memory layouts for a lattice size that does not fit into MCDRAM. Using the CAoSSoA layout, performance does not further improves, both for FLAT and CACHE configurations.

For collide kernel, using a FLAT MCDRAM configuration we obtain a good level of performance, 114 MLUPS, using the AoS layout with 4 threads per core; the SoA layout performance does not allow efficient vectorization, so performance goes down to 62 MLUPS with one thread per core, further decreasing if we use 2, 3 and 4 threads per core. Enforcing memory alignment with the CSoA layout, we obtain again a properly vectorized code and performance increases up to 135 MLUPS using 4 threads per core. Performances further improve with the CAoSSoA layout as we remove the overhead associated to TLB misses and we reach the level of 165 MLUPS with 4 threads per core, corresponding to a factor 1.4X and 1.2X w.r.t. the AoS and CSoA layouts. As the collide kernels performs approximately 6600 floating-point operations per lattice size, our KNL processor, using the CAoSSoA layout, delivers a sustained performance of approximately 1 TFlops, that is about 30% of the available raw peak. If one used DDR4 memory performances are harmed by memory bandwidth, but results follows the same trend as in the MCDRAM case, reaching 89 MLUPS with the CAoSSoA layout. The same is true with the CACHE configuration where collide reaches a peak of 98 MLUPS for the CAoSSoA layout.

We now consider energy efficiency for our code; we use data from the RAPL (Running Average Power Limit) registers available in the KNL processor, for both Package and DRAM counters, that we read using the custom library described in [16]. Results are shown in Figure 5 for both FLAT memory configurations, highlighting the impact of data-layouts on energy consumption. All figures refer to Energy-to-Solution (E_S) and are the sum of Package (in-chip) and DRAM (off-chip memory) contributions. For propagate, we see that using MCDRAM increases the average power drain ($\approx 35\%$) compared to the use of off-chip DDR4, but E_S is lower since a slightly higher power gets integrated over a much shorter ($\approx 4\times$) time. Also, the CSoA and CAoSSoA data-layouts halve E_S w.r.t. the AoS and SoA layouts as a result of their shorter execution times and slightly lower power drain. For the collide kernel the SoA layout has a rather low power drain ($\approx 30\%$ less than CSoA and CAoSSoA) because vector units are not used; however, the code runs also much slower ($\approx 3\times$), translating into the worst performance figure in terms of E_S. Conversely, the CAoSSoA layout gives the best result in term of energy efficiency, with energy-to-solution decreasing while increasing the number of threads per core, thanks to a constant power drain and an increasing performance. Using CACHE configurations, the average
power drain is in between the values recorded for the DDR4 and MCDRAM cases. As shown in Figure 4, performances are similar to the case of DDR4, with a slightly performance decrease for `propagate` and a slightly increase for `collide` when using `CSoA` and `CAoSoA` data-layouts. Thus, from the energy consumption point of view, using cache configuration leads to similar energy behaviors as using DDR4.

We finally compare our performance results with that of other recent multi- and many-core processors [17,18,19]. Our comparison is shown in Table 1 for both critical kernels and also for the complete code; we adopt the `CAoSoA` layout throughout, as it offers the best performance. Let first discuss the case of lattice size 1024×8192 requiring a memory footprint of ≈ 4.6 GB fitting the 16 GB on-chip MCDRAM. The data size also fits most other accelerator boards, so we can perform a meaningful comparison. Comparing the KNL in FLAT mode with the KNC 7120P, the previous generation MIC processor, we see that performances for `propagate` and `collide` are respectively $\approx 4X$ and $\approx 3.5X$ faster. Comparing with NVIDIA GPUs, the execution time for `propagate` is $\approx 2.5X$ faster than on a GK2010 GPU (hosted on a K80 board), and the same as a P100 Pascal board. The execution time of `collide` is 1.4X faster than a GK210, and approximately 50% slower than a P100. Comparing performances with a more traditional Intel E5-2697v4 CPU, based on Broadwell micro-architecture, `propagate` is 7.8X faster and `collide` is 3.5X faster. Using the KNL in CACHE mode with a lattice that does not fit into MCDRAM, the performance of the processor are much slower.

In the last column at right of Table 1, we see the results for a lattice using a
Table 1. Performance comparison among several processors. We consider the propagate and collide kernels and the full code (Global), using the CAoSoA data layout. We compare the KNL against the MIC KNC, the NVIDIA GK210 and P100 GPUs, and the Intel E52697v4 CPU. The row labeled with Global report the performance of the full code.

	1024 × 8192	≈ 4.6	4608 × 12288	≈ 30
Lattice size	KNC 7120P	506.64	KNL 7230	253
Memory footprint [GB]	4608	≈ 4.6	KNL 7230	67
Propagate [ms]	49.9	32.3	12.5	19.65
Collide [ms]	180.9	71.1	24.1	50.3
Propagate [GB/s]	100	155	396	398
Collide [GF/s]	307	764	2253	1100
Collide [MLUPS]	46	115	340	166
Global [MLUPS]	35	73	232	119

memory footprint twice the size of MCDRAM. In this case, comparing with CPU E5-2697v4 for which the lattice 1024 × 8192 does not fit in the last-level cache, performances of propagate are more or less the same, and that of collide are ≈ 2X faster.

In summary, based on our experience related to our application, some concluding remarks are in order: i) the KNL architecture makes it easy to port and run codes previously developed for X86 standard CPUs; however performance is strongly affected by the massive level of parallelism that must necessarily be exploited on the processor, lest the level of performance drops to the value of standard multi-core CPUs or even worst; ii) for this reason data layouts play a relevant role in allowing to use an efficient level of vectorization; at least for LB applications, appropriate data structures are necessary to allow the different vectorization strategies necessary in different parts of the application; iii) the KNL processor improves on the KNC – the previous generation MIC processors – by a factor ≈ 3 – 4X; iv) if application data fits within the MCDRAM, performances are very competitive with that of GPU accelerators; however, if this is not the case, performance drops to levels similar to those of multi-core CPUs, with the further drawback that codes and operations (editing, compilations, IO, etc.) not exploiting task and data parallelism run much slower.

In the future, we plan to further analyze the energy performances of KNL comparing with other processors, and to design and develop a parallel hybrid MPI+OpenMP code able to run on a cluster of KNLs, in order to investigate scalability.

Acknowledgements. This work was done in the framework of the COKA, COSA and SUMA projects of INFN. We would like to thank CINECA (Italy) for access to their HPC systems. AG has been supported by the EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 642069.
References

1. Tang, P., et al.: An implementation and optimization of lattice boltzmann method based on the multi-node cpu+mic heterogeneous architecture. Int. Conf. on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC) (2016) 315–320 doi:10.1109/CyberC.2016.67

2. Calore, E., et al.: Optimization of lattice boltzmann simulations on heterogeneous computers. The International Journal of High Performance Computing Applications (2017) 1–16 doi:10.1177/1094342017703771

3. Rosales, C., et al.: In: A Comparative Study of Application Performance and Scalability on the Intel Knights Landing Processor. LNCS (2016) 307–318 doi:10.1007/978-3-319-46079-6_22

4. Li, S., et al.: Enhancing application performance using heterogeneous memory architectures on a many-core platform. Int. Conf. on High Performance Computing Simulation (HPCS) (2016) 1035–1042 doi:10.1109/HPCSim.2016.7568455

5. Rucci, E., et al.: First Experiences Optimizing Smith-Waterman on Intel’s Knights Landing Processor. ArXiv e-prints (February 2017)

6. John D. McCalpin, P.: Stream: Sustainable memory bandwidth in high performance computers (2017)

7. Colfax: Clustering modes in knights landing processors (2017)

8. Colfax: Medram as high-bandwidth memory (hbm) in knights landing processors: Developers guide (2017)

9. Sodani, A., et al.: Knights landing: Second-generation intel xeon phi product. IEEE Micro 36(2) (Mar 2016) 34–46 doi:10.1109/MM.2016.25

10. Succi, S.: The Lattice-Boltzmann Equation. Oxford university press, Oxford (2001)

11. Sbragaglia, M., et al.: Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria. Journal of Fluid Mechanics 628 (2009) 299–309 doi:10.1017/S002211200900665X

12. Scagliarini, A., et al.: Lattice Boltzmann methods for thermal flows: Continuum limit and applications to compressible Rayleigh–Taylor systems. Physics of Fluids 22(5) (2010) 055101 doi:10.1063/1.3392774

13. Biferale, L., et al.: Second-order closure in stratified turbulence: Simulations and modeling of bulk and entrainment regions. Physical Review E 84(1) (2011) 016305 doi:10.1103/PhysRevE.84.016305

14. Biferale, L., et al.: Reactive Rayleigh-Taylor systems: Front propagation and non-stationarity. EPL 94(5) (2011) 54004 doi:10.1209/0295-5075/94/54004

15. Calore, E., et al.: Experience on vectorizing lattice boltzmann kernels for multi- and many-core architectures. LNCS Part I (2016) 53–62 doi:10.1007/978-3-319-32149-3_6

16. Calore, E., et al.: Evaluation of dvfs techniques on modern hpc processors and accelerators for energy-aware applications. Concurrency Computation: Practice and Experience (2017) doi:10.1002/cpe.4143

17. Mantovani, F., et al.: Performance issues on many-core processors: A D2Q37 lattice boltzmann scheme as a test-case. Computers & Fluids 88 (2013) 743 – 752 doi:10.1016/j.compfluid.2013.05.014

18. Biferale, L., et al.: An optimized D2Q37 lattice boltzmann code on GP-GPUs. Computers & Fluids 80 (2013) 55 – 62 doi:10.1016/j.compfluid.2012.06.003

19. Calore, E., et al.: Massively parallel lattice boltzmann codes on large GPU clusters. Parallel Computing 58 (2016) 1 – 24 doi:10.1016/j.parco.2016.08.005