Intracardiac Leakage of Cement During Kyphoplasty and Vertebroplasty: A Case Report

Ziad A. Audat
Mohammad D. Alfawareh
Fayeq T. Darwish
Ali A. Alomari

Corresponding Author: Ziad A Audat, e-mail: ziaaudat@hotmail.com
Conflict of interest: None declared

Patient: Male, 28
Final Diagnosis: Intracardial cortoss leak
Symptoms: Back pain
Medication: —
Clinical Procedure: Kyphoplasty
Specialty: Orthopedics and Traumatology

Objective: Diagnostic/therapeutic accidents
Background: Intracardiac leakage of bone cement after kyphoplasty and vertebroplasty is a rare and life-threatening complication. Cortoss, which is an injectable, non-absorbable, polymer composite that is designed to mimic cortical bone, can be used instead of cement. Here, we present the case of a patient with right intra-cardiac Cortoss embolization.

Case Report: A 28-year-old man known to have ulcerative colitis since the age of 15 and treated with corticosteroids for more than 4 years and with anti-immune drugs presented to our hospital complaining of back pain and decreased body height due to osteomalacia with failed conservative treatment. Kyphoplasty and vertebroplasty of the thoracic 10–12 and first lumbar vertebrae were done with any complications. Three months later, the patient underwent kyphoplasty and vertebroplasty of lumbar 2–5 vertebrae by injecting Cortoss instead of cement, which was complicated with paravertebral intravascular leakage. We stopped surgery and transferred him to the recovery room, where he had slight chest pain that resolved spontaneously without neurological deficit. Two days later he developed severe chest pain and chest X-ray showed a large white shadow at the right side of the heart and another 2 small shadows just lateral to it. Sudden deterioration of patient status necessitated an emergency echocardiogram, which showed pericardial tamponade and a perforated right ventricle. Aspiration of pericardial blood and emergency open heart surgery were done. He was discharged 4 days later and was followed up at an outpatient clinic.

Conclusions: Cardiac embolism is a serious condition that can complicate vertebral kyphoplasty; it requires a high level of suspicion and immediate action, and may need open heart surgery to save the patient’s life.

MeSH Keywords: Cardiac Tamponade • Kyphoplasty • Polymethyl Methacrylate • Vertebroplasty

Full-text PDF: http://www.amjcaserep.com/abstract/index/idArt/897719
Background

Percutaneous vertebroplasty is a minimally invasive procedure used to treat back pain and prevent deformity secondary to osteoporotic fractures or destructive lesions [1,2]. In rare cases, the cement leaks anterior and lateral to the vertebral body; this leakage can be intra-disc, intraspinal, or intravascular [3,4]. Cement inside the vessels can reach the heart, pulmonary circulation, or even cerebral circulation [5,6]. Intracardiac cement leakage is very rare and few cases are found in the literature. Cortoss is an injectable, non-resorbable, polymer composite that is designed to mimic cortical bone material instead of bone cement. Cortoss is the best artificial material for this use; it has nearly the same compressive and tensile strength as cortical bone and it enhances formation of bone on its surface [7–10]. Here, we describe a case of intra-cardiac embolism of Cortoss 2 days after surgery.

Case Report

We report the case of a 28-year-old male patient who was diagnosed with ulcerative colitis at age 15 years. He had been treated conservatively with corticosteroids for over 4 years, and had also received anti-immune drugs. Over time he developed hip pain (due to avascular necrosis of the femoral head), back pain, and back deformity. He was treated surgically with percutaneous vertebroplasty for the vertebrae T10-L1 with bone cement augmentation using the cement mixture of Cortoss. Two days after surgery, the patient developed intra-cardiac embolism of Cortoss, which was confirmed by X-ray and MRI. Here, we describe this case and discuss the potential risks and benefits of using Cortoss in vertebral augmentation procedures.
pain, and loss of trunk height due to adverse drug effects. Bone Dexa-scan, X-rays, and MRI of the spine revealed osteomalacia without spinal canal or nerve root canal stenosis, multilevel biconcave vertebrae, and multilevel vertebral compression fractures (Figures 1, 2). Conservative treatment with alendronate, vitamin D, and Calcium for more than 3 years failed to control back symptoms and gradual shortening of stature. We discussed with the patient performance of kyphoplasty and vertebroplasty of thoracic 10–12 and first lumbar vertebrae. This was performed in a single session by injecting methyl methacrylate, without complications.

After 3 months the patient was readmitted for vertebroplasty and kyphoplasty of lumbar spine 2–5. At that time, we discussed with the patient the use of Cortoss because it is designed to mimic cortical bone material and enhance bone formation on its surface. The procedure was aborted and injection of Cortoss was ceased because of paraspinal intravascular leakage (Figure 3). In the recovery room, the patient did not have any neurological deficit or dyspnea, just non-significant chest pain that resolved after full recovery with simple analgesia.

Two days later, he developed progressive chest pain, dyspnea, and tachycardia. A chest X-ray showed a white shadow (about 5 centimeter) at the right side of the heart and 2 small shadows at the right lung hilum, and an echocardiogram showed pericardial effusion (Figure 4). Suddenly, he deteriorated and went into shocked, requiring aspiration of pericardial effusion, as recommended by the cardiologist to save the patient’s life. Later, patient underwent urgent open heart surgery to remove the Cortoss from the right side of the heart and right pulmonary artery (Figure 5). The patient had an uneventful recovery. His condition improved and he was discharged on the 4th post-operative day and was followed up at an outpatient clinic.
Intracardiac cement embolism is a rare complication after vertebroplasty or kyphoplasty. We reviewed the literature and found only 15 case reports of intra-cardiac cement embolism [11–25]. Most of the cases were diagnosed during or within a short period after surgery, except for 1 diagnosed 2.5 years after kyphoplasty because of pericardial perforation [23]; cement reached the heart and lodged inside the right atrium or ventricle and in 1 case cement lodged in the ventricular septum [17].

The sequelae of the cardiac embolism are: perforation, pericardial tamponade, or pericardial perforation, which may cause chest pain, dyspnea, and shock [13,14,16,17,20,23]. All patients underwent open-heart surgery except for 1 in whom cement was removed by catheterization [12].

Our patient developed chest pain immediately after surgery. The pain was relieved by simple analgesia. At 2 days post-surgery, the pain suddenly increased, with sweating and severe hypotension due to ventricular wall perforation by myocardial contraction on the sharp ends of the Cortoss, which resulted in pericardial tamponade demonstrated by echocardiogram and pericardial aspiration.

Emergency life-saving surgery was done to remove the Cortoss pieces and repair the heart wall. To the best of our knowledge, this is the first case of Cortoss (rather than regular cement) cardiac embolism as a complication of kyphoplasty and vertebroplasty. This shows that both cement and Cortoss can cause heart embolism after it changes from paste during injection into a hard substance.

Conclusions
Cardiac embolism is a serious condition that can complicate vertebral kyphoplasty. It needs a high level of suspicion, and requires immediate actions, including open heart surgery, to save the patient’s life.

References:
1. Kim HT, Kim YN, Shin HW et al: Intracardiac foreign body caused by cement leakage as a late complication of percutaneous vertebroplasty. Korean J Intern Med, 2013; 28(2): 247–50
2. Jensen ME, Evans AJ, Mathis JM et al: Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. Am J Neuroradiol, 1997; 18: 1897–904
3. Mathis JM: Percutaneous vertebroplasty: complication avoidance and technique optimization. Am J Neuroradiol, 2003; 24(8): 1697–706
4. Mathis JM, Barr JB, Belkoff SM et al: Percutaneous vertebroplasty: A developing standard of care for vertebral compression fractures. Am J Neuroradiol, 2001; 22: 373–81
5. Al-Nakshabandi NA: Percutaneous vertebroplasty complications. Ann Saudi Med, 2011; 31(3): 294–97
6. Laredo JD, Hanze B: Complications of percutaneous vertebroplasty and their prevention. Skeletal Radiol, 2004, 33(9): 493–505
7. Bae H, Shen M, Maurer P et al: Clinical experience using Cortoss for treating vertebral compression fractures with vertebroplasty and kyphoplasty: twenty-four-month follow-up. Spine (Phila Pa 1976), 2010; 35(20): E1030–36
8. Boyd D, Towler MR, Wren A, Clarkin OM: Comparison of an experimental bone cement with surgical Simplex P, Spineplex and Cortoss. J Mater Sci Mater Med, 2008; 19(4): 1745–52
9. Middleton ET, Rajaraman CJ, O’Brien DP et al: The safety and efficacy of vertebroplasty using Cortoss cement in a newly established vertebroplasty service. Br J Neurosurg, 2008; 22(2): 252–56
10. Bae H, Hatlen HP Jr, Linovitz R et al: A prospective randomized FDA-IDE trial comparing Cortoss with PMMA for vertebroplasty: A comparative effectiveness research study with 24-month follow-up. Spine (Phila Pa 1976), 2012; 37(7): 544–50
11. George KM, Campbell M: Embolized methyl methacrylate to the right atrium after kyphoplasty. Ann Thorac Surg, 2015; 99(1): 337
12. Griffka RG, Tapio J, Lee KI: Transcatheter retrieval of an embolized methylmethacrylate glue fragment adherent to the right atrium using bidirectional snare catheters. Catheter Cardiovasc Interv, 2013; 81(4): 648–50
13. Dreger H, Treskatsch S, Lembcke A et al: Perforation of the right ventricle by bone cement: A rare complication of kyphoplasty. Eur Heart J, 2013; 34(16): 1203
14. Mattis T, Knox M, Mammen L: Intracardiac methylmethacrylate embolism resulting in right atrial wall perforation and pericarditis following percutaneous vertebroplasty. J Vasc Interv Radiol, 2012; 23(5): 719–20
15. Cohen JB: Bone cement embolism. Anesthesiology, 2012; 117(2): 407
16. Gosev I, Nascimben L, Huang PH et al: Right ventricular perforation and pulmonary embolism with polymethylmethacrylate cement after percutaneous kyphoplasty. Circulation, 2013; 127(11): 1251–53
17. Kim MN, Jung JS, Kim SW et al: A sword-like foreign body lodged in the ventricular septum: A rare complication of percutaneous vertebroplasty. J Vasc Interv Radiol, 2013; 24(16): 1203
18. Farahvar A, Dubensky D, Bakos R: Perforation of the right cardiac ventricular wall by polymethylmethacrylate after lumbar kyphoplasty. J Neurosurg Spine, 2009; 11(4): 487–91
19. Kim HT, Kim YN, Shin HW et al: Intracardiac foreign body caused by cement leakage as a late complication of percutaneous vertebroplasty. Korean J Intern Med, 2013; 28(2): 247–50
20. Tran I, Gerckens U, Remig J et al: First report of a life-threatening cardiac complication after percutaneous balloon kyphoplasty. Spine (Phila Pa 1976), 2013; 38(5): E316–18
21. García-Fontán E, Blanco Ramos M, Obeso Carillo GA: Cement embolism during a kyphoplasty. Eur J Cardiothorac Surg, 2013; 44(1): 183
22. Cohen J, Lane T: Right intra-atrial and ventricular polymethylmethacrylate embolus after balloon kyphoplasty. Am J Med, 2010; 123(10): e5-6
23. Prokop A, Hägele M, Pfeilsticker U et al: [Pericardial perforation 2.5 years after kyphoplasty. A rare complication after cement extravasation]. Unfallchirurg, 2013; 116(1): 80–84 [in German]
24. Lee JS, Jeong YS, Ahn SG: Intracardiac bone cement embolism. Heart, 2010; 96(5): 387
25. Dash A, Brinster DR: Open heart surgery for removal of polymethylmethacrylate after percutaneous vertebroplasty. Ann Thorac Surg, 2011; 91(1): 276–78