Efficacy of Chinese herbal medicine for stroke modifiable risk factors: a systematic review

Wenbo Peng¹, Romy Lauche¹, Caleb Ferguson², Jane Frawley¹, Jon Adams¹ and David Sibbritt¹,³*

Abstract

Background: The vast majority of stroke burden is attributable to its modifiable risk factors. This paper aimed to systematically summarise the evidence of Chinese herbal medicine (CHM) interventions on stroke modifiable risk factors for stroke prevention.

Methods: A literature search was conducted via the MEDLINE, CINAHL/EBSCO, SCOPUS, and Cochrane Database from 1996 to 2016. Randomised controlled trials or cross-over studies were included. Risk of bias was assessed according to the Cochrane Risk of Bias tool.

Results: A total of 46 trials (6895 participants) were identified regarding the use of CHM interventions in the management of stroke risk factors, including 12 trials for hypertension, 10 trials for diabetes, eight trials for hyperlipidemia, seven trials for impaired glucose tolerance, three trials for obesity, and six trials for combined risk factors. Amongst the included trials with diverse study design, an intervention of CHM as a supplement to biomedicine and/or a lifestyle intervention was found to be more effective in lowering blood pressure, decreasing blood glucose level, helping impaired glucose tolerance reverse to normal, and/or reducing body weight compared to CHM monotherapy. While no trial reported deaths amongst the CHM groups, some papers do report moderate adverse effects associated with CHM use. However, the findings of such beneficial effects of CHM should be interpreted with caution due to the heterogeneous set of complex CHM studied, the various control interventions employed, the use of different participants’ inclusion criteria, and low methodological quality across the published studies. The risk of bias of trials identified was largely unclear in the domains of selection bias and detection bias across the included studies.

Conclusion: This study showed substantial evidence of varied CHM interventions improving the stroke modifiable risk factors. More rigorous research examining the use of CHM products for sole or multiple major stroke risk factors are warranted.

Keywords: Chinese herbal medicine, Stroke, Risk factor, Prevention

Background

Stroke is the second foremost cause of mortality and a leading cause of serious disability worldwide [1]. The incidence of stroke continues to rise due to societal and lifestyle changes and an aging population [2]. More than 90% of the stroke burden is attributable to its modifiable risk factors such as high blood pressure, high fasting plasma glucose, and high total cholesterol [3]. These stroke risk factors are strongly inter-related and some of them are simultaneous shown as a combined risk factor in people with stroke with higher risk [4, 5]. Previous research has clearly demonstrated the benefits of treating risk factors such as hypertension, diabetes, hyperlipidemia, obesity, atrial fibrillation, or transient ischaemic attack (TIA) for reducing the prevalence of primary stroke [6, 7]. The treatments of major stroke modifiable risk factors are therefore crucial for informing stroke prevention.
strategies and helping achieve improved quality of life of people with those risk factors and lowered associated health care costs [3].

Chinese herbal medicine (CHM)—therapies and products made from any part of medicinal plants (e.g. leaves and roots) and some non-herb based components (e.g. shells and powdered fossil) [8]—has a history of more than 2500 years with a unique theory of diagnosis and treatment, and is considered a modality of complementary medicine in Western countries [9]. CHM has been increasingly used for a wide range of chronic diseases in China and elsewhere in the form of raw plant materials, powders, capsules, tablets and/or liquids [9–11].

Chinese herbal medicine is a field of health care that may offer potential for addressing related risk factors of stroke [12–14]. Many CHM interventions have long been used for the treatments of some stroke risk factors as individual diseases such as Type 2 diabetes [15], hypertension [8] and obesity [16]. However, the research evidence as to whether specific CHM therapies or products may be effective in reducing each individual or mixed major risk factors of stroke remains unclear. The aim of this systematic review is to assess and summarize the efficacy and safety of all relevant CHM interventions for people at greatest risk(s) of stroke.

Methods
Search strategy
Four key bibliographic databases—MEDLINE, CINAHL/EBSCO, SCOPUS, and Cochrane Database of Systematic Reviews—were searched in the systematic review. This review was designed and conducted in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The stroke modifiable risk factors identified in this systematic review refer to high blood pressure (hypertension), high cholesterol (hyperlipidemia), irregular pulse (atrial fibrillation), TIA, high blood glucose (diabetes and impaired glucose tolerance (IGT)), and overweight (obesity). The literature search employed keyword and MeSH term searches for terms relevant to ‘CHM’ and terms regarding stroke risk factors (Table 1). The combination of the search results of CHM and stroke risk factors were identified for screening. To obtain all relevant articles, reference lists of published review papers were also reviewed via Google Scholar.

Study selection
The inclusion criteria of literature in the systematic review were: peer-reviewed English-language journal articles focusing upon randomized controlled trials (RCTs) or cross-over studies published in the past 20 years (1996–2016), and articles reporting primary data findings examining the efficacy and safety of any type of CHM interventions (e.g. decoction, capsule, granule, powder) on one or more major modifiable risk factors of stroke. Exclusion criteria were (1) published RCT protocols of this research area; (2) quasi- or pseudo-RCTs (3) studies focusing upon the efficacy and safety of CHM for treating stroke or post-stroke symptoms; (4) studies focusing upon the efficacy and safety of CHM for treating the complications of the stroke risk factors;

Table 1 Search terms for the systematic review
Chinese herbal medicine OR Chinese herbal medicine [MeSH Term & Keyword] OR Chinese medicine [MeSH Term & Keyword] OR Chinese herbal* [Title/Abstract] OR Chinese herbal [Title/Abstract]

AND

Stroke risk factors	High blood pressure	Hypertension [MeSH Term & Keyword] OR Blood pressure [MeSH Terms & Keyword] OR Hypertens* [Title/Abstract] OR Prehypertens* [Title/Abstract] OR Systolic [Title/Abstract] OR Diastolic [Title/Abstract] OR
	High cholesterol	Cholesterol [MeSH Term & Keyword] OR Triglycerides [MeSH Term & Keyword] OR Dyslipidemia [MeSH Term & Keyword] OR Epicholesterol [Title/Abstract] OR HDL [Title/Abstract] OR LDL [Title/Abstract] OR Triglyceride* [Title/Abstract] OR Hyperlipidem* [Title/Abstract] OR Lipidem* [Title/Abstract] OR
	Irregular pulse	Cardiac arrhythmias [MeSH Terms & Keyword] OR Atrial fibrillation [MeSH Terms & Keyword] OR Dysrhythmia* [Title/Abstract] OR Cardiac arrhythmia* [Title/Abstract] OR
	Transient ischaemic attack	Transient ischaemic attack [MeSH Terms & Keyword] OR Transient ischaemic attack* [Title/Abstract] OR
	High blood glucose	Diabetes [MeSH Terms & Keyword] OR Mellitus [MeSH Terms & Keyword] OR Impaired glucose tolerance [MeSH Terms & Keyword] OR Diabet* [Title/Abstract] OR NIDDM [Title/Abstract] OR IDDM [Title/Abstract] OR T2DM [Title/Abstract] OR insulin* [Title/Abstract] OR Glucose [Title/Abstract] OR
	Overweight	Obesity [MeSH Terms & Keyword] OR Overweight [MeSH Terms & Keyword] OR Metabolic syndrome [MeSH Terms & Keyword] OR Obes* [Title/Abstract] OR Adiposity [Title/Abstract] OR Adipos* [Title/Abstract]

* Truncation, referring to all records that have those letters with any ending
(5) conference abstracts; and (6) publications without abstracts.

Data extraction

Titles and abstracts of all citations identified in the initial search were imported to Endnote (Version X7) and duplicates removed. Two of the authors screened all the titles/abstracts to identify articles meeting the inclusion and exclusion criteria independently. When consensus was not reached, the full texts of these unclear papers were retrieved and assessed by these two authors. Disagreements were discussed with a third author.

Data were extracted into a pre-determined table (Table 2) and checked for coverage and accuracy by two of the authors. Any differences in data extraction and interpretation were resolved through discussion amongst all authors. Table 2 includes detailed information on study recruitment, participant characteristics, intervention groups, results of primary outcome measures, study limitations, and CHM safety.

Quality assessment

Two authors independently assessed the methodological quality of the included studies using the Cochrane risk of bias criteria [17]. The characteristics of RCTs that might be related to selection bias (random sequence generation and allocation concealment), performance bias (blinding of participants and personnel), detection bias (blinding of outcome assessment), attrition bias (incomplete outcome data), reporting bias (selective outcome reporting), and other bias were evaluated. Disagreements regarding the risks of bias of some studies were resolved through discussion amongst these two authors (Table 3).

Results

The systematic review reported in this paper has been registered on the PROSPERO (International prospective register of systematic reviews, #CRD42017060107). The PRISMA flowchart of literature search and study/article selection has been shown in Fig. 1. A total of 2377 papers were identified (2374 via database searches and three additional papers via Google Scholar). After removing duplicates, a total of 2065 papers remained for review. From amongst these, 70 manuscripts were identified for full review following title and abstract screening. Further screening of the full texts identified 46 publications (reporting on 46 RCTs) as eligible for final inclusion in the systematic review. Twelve of the included articles report on the efficacy of CHM for hypertension (1340 participants), 10 for diabetes (2004 participants), eight for hyperlipidaemia (997 participants), seven for IGT (1805 participants), three for obesity (329 participants), and six for the combination of several stroke risk factors (420 participants). No manuscript reported on a trial investigating the efficacy of CHM interventions for the stroke risk factor of transient ischemic attack or atrial fibrillation as a primary outcome. The characteristics of included studies with regards to the CHM interventions for hypertension, diabetes, hyperlipidaemia, IGT, obesity, and combined stroke risk factors are summarized in Table 2.

Hypertension

Eight RCTs were focused upon primary (essential) hypertension [18–25], one with isolated systolic [26], one with elder polarized hypertension [27], and two with hypertension and related cardiovascular diseases [28, 29]. Of the 12 RCTs on CHM for hypertension, 11 RCTs originated from China [18–22, 24–29]. Amongst the hypertension-focused RCTs, one RCT compared ‘CHM, biomedicine plus lifestyle’ intervention with ‘biomedicine plus lifestyle’ intervention [27] and showed significant decreased systolic blood pressure (SBP) before and after treatment of both intervention groups and a similar effect on controlling SBP between these two groups after treatment. Another two RCTs compared two different CHM interventions using different inclusion criteria of people with hypertension [19, 21]—these studies both reported a significant decrease of SBP and diastolic blood pressure (DBP) via all the CHM interventions examined with higher effective rate of treatments in the CHM groups than those in the control groups. Another three RCTs compared ‘CHM’ interventions with ‘biomedicine’ interventions and employed consistent inclusion criteria regarding SBP (140–179 mmHg) and DBP (90–109 mmHg) of participants, reporting a statistically significant decrease of SBP and DBP before and after treatment of both groups and a similar effect on controlling SBP and DBP between these two groups after treatment. Another two RCTs compared two different CHM interventions using different inclusion criteria—these studies both reported a significant decrease of SBP and diastolic blood pressure (DBP) via all the CHM interventions examined with higher effective rate of treatments in the CHM groups than those in the control groups. Another three RCTs compared ‘CHM, biomedicine plus lifestyle’ intervention with ‘biomedicine alone’ or ‘biomedicine plus placebo’ interventions [20, 23, 25, 26, 28, 29]. It is noteworthy that two of these six trials [20, 28] examined the efficacy of the same CHM products (Xuezhikang capsule) at different dose levels, demonstrating a significant decrease of SBP and DBP before and after treatment of both intervention groups and a similar effect on controlling SBP and DBP between these two groups after treatment. Another six RCTs compared ‘CHM plus biomedicine’ interventions with ‘biomedicine alone’ or ‘biomedicine plus placebo’ interventions [20, 23, 25, 26, 28, 29]. It is noteworthy that two of these six trials [20, 28] examined the efficacy of the same CHM products (Xuezhikang capsule) at different dose levels, demonstrating a significant decrease of SBP and DBP before and after treatment of both intervention groups and a similar effect on controlling SBP and DBP between these two groups after treatment. Also amongst these six RCTs, three were three-armed RCTs which compared either ‘CHM plus biomedicine’ intervention versus ‘biomedicine/no intervention,’ ‘CHM’ interventions versus ‘CHM plus biomedicine’ or ‘placebo plus biomedicine’ interventions, or two types of preparations of a ‘CHM plus biomedicine’ intervention versus ‘placebo plus biomedicine’ intervention [25, 26, 28], showing inconsistent findings.
Author	Country	Stroke risk factor	Study period	Participants	Intervention groups	Results	Side effects	Limitations
Lin et al. [18]	China	Hypertension	Sep 2001–Sep 2002	Sample size n = 102. CHM group n = 52, 41 males and 11 females; mean age: 55 years. Control group n = 50, 41 males and 9 females; mean age: 54 years. Inclusion criteria: SBP: 140–179 mmHg or DBP: 90–109 mmHg; TCM diagnosed for hyperactivity of the liver-yang syndrome.	Tianma gouteng decoction 150 ml/time, twice daily, 4 weeks. Nifedipine 10 mg/time, 3 times daily, 4 weeks.	Baseline balance Yes. Significantly decreased SBP and DBP of both CHM and control groups before and after treatment, without significant difference between these two groups after treatment.	No side effects	N/A
Li [19]	China	Hypertension	No information on study period	Sample size n = 72. CHM group n = 46, 18 males and 28 females; mean age: 54 years. Control group n = 26; 11 males and 15 females; mean age: 53 years. Both groups have cases with coronary heart disease, hyperlipemia, and diabetes. Inclusion criteria: SBP: 140–179 mmHg or DBP: 90–109 mmHg; TCM diagnosed for flaming-up of the liver-fire syndrome.	Huanglian fire-purging mixture 30 ml/time, twice daily, 4 weeks. Niuhuang Bolus 1–2 bolus/time, 2–3 times daily, 4 weeks.	Baseline balance Yes. An effective rate (return to the normal range of BP or ≥20 mmHg but not in the normal range) at 60.9% of hypertension in the CHM group and 15.4% in the control group. Significantly decreased cholesterol, TG, blood sugar of the CHM group before and after treatment, without significant difference compared to the control group after treatment.	No/CHM group: Vomiting and distension (n = 1), Slight abdominal pain and diarrhea (n = 3)	N/A
Ye et al. [20]	China	Hypertension	Feb 2004–Dec 2004	Sample size n = 55. CHM group n = 28. Control group n = 27. Inclusion criteria: SBP: 140–179 mmHg or DBP: 90–109 mmHg; normal LDL-C level; currently no antihypertensive medications or using antihypertensive medications for at least 16 months before screening.	Xuezhikang with Nifedipine 120 mg daily, 72 weeks. Placebo with Nifedipine 120 mg daily, 72 weeks.	Baseline balance Yes. No significant differences in BP between the CHM and placebo groups after treatment. 92.8% of the CHM group and 88.9% of the placebo group reached the target BP (<140/90 mmHg).	N/A	N/A
Author	Country	Stroke risk factor	Study period	Participants	Intervention groups	Results	Side effects	Limitations
-----------------	---------	--------------------	-------------------------------	--	---	---	--------------	----------------------
Zhao et al.	China	Hypertension	No information on study period	Sample size n = 79, CHM group n = 40, 17 males and 23 females; mean age: 52 years				
Control group n = 39, 18 males and 21 females; mean age: 52 years								
Inclusion criteria: SBP 140–159 mmHg or DBP 90–99 mmHg; no antihypertensive drugs or stopped taking antihypertensive drugs for 2 weeks; TCM diagnosed for stagnation of phlegm, blood stasis and hyperactivity of the liver-yang syndrome; age: 40–60 years	Yinyin Jiangya Yin 100 ml/time, twice daily, 15 days							
Formulas: Gouteng, Shijeming, Yimucao, Guija, Banxia, Zhike, et al.								
Tianma Gouteng Yin 100 ml/time, twice daily, 15 days								
Formulas: Tianma, Gouteng, Huangqin, Yejiaoteng, Fushen, Duzhong, et al.	Baseline balance							
Yes								
Significantly decreased SBP and DBP of both CHM and control groups before and after treatment; Significantly decreased SBP and DBP in the CHM group than those in the control group after treatment; The total effective rate at 95.0% of BP control in the CHM group, while 87.2% in the control group	No side effects	N/A						
Zhong et al.	China	Hypertension	Jan 2006–Dec 2008	Sample size n = 57, CHM group n = 31, Control group n = 26				
Inclusion criteria: SBP 140–179 mmHg or DBP 90–109 mmHg; daytime BP > 135/85 mmHg or night-time BP > 120/70 mmHg; age: 18 years and older	Jiangya capsule with Nimodipine simulation (1 capsule simulation/time, 3 times daily) 4 capsules/time, 3 times daily, 4 weeks							
Formulas: Dilong, Nuxi, Hzzao, Tianma, Chuanxiong								
Control group 1: Integrative medicine 4 Jiangya capsule with 1 nimodipine capsule 3 times daily, 4 weeks								
Control group 2: Western medicine 4 Jiangya capsule simulation with 1 nimodipine capsule 3 times daily, 4 weeks	Baseline balance							
Yes								
Significantly decreased SBP and DBP in both CHM and control groups before and after treatment, without significant difference between these two groups after treatment	N/A	N/A						
Yang et al.	Taiwan	Hypertension	Sept 2008–Aug 2009	Sample size n = 55, CHM group n = 30, Control group n = 25				
Inclusion criteria: sitting SBP ≥ 140 mmHg or sitting DBP ≥ 90 mmHg despite the conventional antihypertensive treatment; TCM diagnosed for hyperactivity of the liver-yang syndrome; age: 18–80 years | Fuling Danshen capsule 1000 mg/time, twice daily, 12 weeks
Formulas: Gegen, Juhua, Danshen, Hongjingtian
Placebo 12 weeks | Baseline balance
Yes
BP control rate (SBP < 140 mmHg and DBP < 90 mmHg) at 23.5% in the CHM group and 7.3% in the placebo group, More significant decrease of SBP in the CHM group than that of the placebo group after treatment | Mild side effects (e.g. diarrhea, fatigue, common cold) (CHM n = 13, Control n = 15) | Small sample size; Short study period |
Table 2 continued

Author	Country	Stroke risk factor	Participants	Intervention groups	Results	Side effects	Limitations						
Tong et al.	China	(Mild to moderate) Hypertension	Sample size n = 219	CHM group n = 106; 61 males and 45 females; mean age: 52 years	Jiang huo jing gan 1.70 ml/time, twice daily, 4 weeks	Baseline balance Yes	N/A	Short study period; No placebo group; Small sample size					
China Mar 2010–Sep 2010				Control group n = 113; 62 males and 51 females; mean age: 52 years	Irbesartan 150 mg/time, once daily, 4 weeks								
				Inclusion criteria: SBP 140–180 mmHg or DBP 90–110 mmHg; age: 18–65 years; WC ≥ 85 cm (male)/80 cm (female); plus one of the following: (1) TG ≥ 1.7 mmol/l or have received antidyslipidemia treatment; (2) HDL-C < 0.9 mmol/l (male)/1.1 mmol/l (female), or have received the related treatment; (3) FPG ≥ 5.6 mmol/l, diagnosed Type 2 diabetes, or have received glycemic control treatment; (4) TCM diagnosed for liver and stomach damp-heat syndrome	Baseline balance Yes								
				Treatment group(s)									
				Control group(s)									
Wu et al.	China	Primary Hypertension	Sample size n = 137	CHM group 1 n = 45; 31 males and 14 females; mean age: 50 years	CHM group 1: Bushen Qinggan granule with amlodipine (5 mg/time, twice daily) Twice daily, 8 weeks	Baseline balance Yes	N/A	N/A					
China Jan 2010–May 2012				CHM group 2 n = 47; 33 males and 14 females; mean age: 48 years	CHM group 2: Bushen Qinggan decoction with amlodipine (5 mg/time, twice daily) Twice daily, 8 weeks								
				Control group n = 45; 29 males and 16 females; mean age: 48 years	Placebo with amlodipine (5 mg/time, twice daily) Twice daily, 8 weeks								
				Inclusion criteria: diagnosed primary hypertension for at least 3 months prior to screening; age: 18–75 years; 24 h MBP ≥ 130/80 mmHg, MBP ≥ 135/85 mmHg during waking hours, or MBP ≥ 120/70 mmHg during sleeping hours, or SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg									
Author	Country	Stroke risk factor	Participants	Intervention groups	Results	Side effects							
-----------------	------------------	--------------------	---	---	--	--							
Li et al. [26]	China	(Isolated systolic) Hypertension	Sample size n = 241; 98 males and 143 females; mean age 67 years	During the intervention, no other antihypertensive drugs were used. Control group 1: Jiangya capsule with Nimodipine; Control group 2: CHM capsule with 1 nimodipine capsule 3 times daily.	Baseline balance Yes; Significantly decreased SBP in all three groups before and after treatment; More significant decrease of SBP in the control group 1 than that in the CHM group and control group 2, without significant difference between the CHM group and control group 2 after treatment	Stomach discomfort (CHM: n = 2; Control 2: n = 2); Facial flush and dizziness (Control 2: n = 1)							
Chen et al. [27]	China	Hypertension	Sample size n = 125; CHM group n = 66; Control group n = 59	Diet, exercise, smoking/alcohol advices were provided; no other Western medicine affecting BP	Baseline balance Yes; Significantly decreased SBP and pulse pressure in the CHM group before and after treatment; Significantly decreased SBP in the control group before and after treatment; No significant difference of DBP between the two CHM capsule groups after treatment	Dizziness and weakness (CHM: n = 5; Control n = 4); Pretibial edema (CHM: n = 4; Control: n = 4); Facial flushing and headache (CHM: n = 4; Control: n = 4); Severe side effects (Control: n = 21)							
Gong et al. [28]	China	Hypertension with cardiac damage	Sample size n = 90; CHM group n = 32; 19 males and 13 females; mean age 59 years	Co-administered medications: aspirin, β-blockers, calcium antagonists, diuretics	Baseline balance Yes; Significantly decreased SBP, DBP in all three groups before and after treatment; More significant decrease of SBP, DBP, TO, LVMI in the CHM group and control group 1 than those in the control group 2 after treatment	Nausea and gastric discomfort (CHM: n = 3; Control 1: n = 1; Control 2: n = 2); Skin rash (Control: n = 1)							
Author	Country	Study period	Stroke risk factor	Participants	Intervention groups	Control group(s)	Results	Side effects	Limitations				
-----------------	---------	--------------	--	--------------	--------------------	------------------	--	---	-------------				
Xu et al.	China	Jan 2006–Apr 2006	Hypertension, hypertension with diabetes, hypertension with coronary heart disease	Sample size n = 108; CHM group n = 55; Control group n = 53	Qian Yang He Ji with antihypertensive angiotensin II receptor blocker therapy 35 ml/time, twice daily, 6 months	Antihypertensive angiotensin II receptor blocker No information of usage	Baseline balance Yes; Significantly decreased SBP, DBP, pulse pressure, cardioankle vascular index of both CHM and control groups before and after treatment; More significant decrease of SBP, DBP, cardioankle vascular index in the CHM group than those in the control group after treatment	CHM group serious side effects (n = 5)	N/A				
Chao et al.	China	Sep 2006–Nov 2007	Type 2 diabetes	Sample size n = 43; age range 18–70; Inclusion criteria newly diagnosed Type 2 diabetes; FPG ≥ 7 mmol/l and/or OGTT 2hPG ≥ 11.1 mmol/l; BMI: 23–35 kg/m² with poor glucose level after a 1-month diet control (i.e., FPG: 7–10 mmol/l); no antidiabetic medications before	Diet and exercise advices were provided. During the intervention, no antidiabetic medications	Baseline balance Yes; Significantly decreased FPG, PPG, HbA1c, BMI in the CHM group before and after treatment, without significant difference between these two groups after treatment	Moderate constipation (CHM: n = 2; Placebo: n = 2)	N/A					
Ji et al. [31]	China	Dec 2007–Oct 2008	Type 2 diabetes	Sample size n = 627; (1) Drug naïve group, mean age: 54 years; CHM group n = 153; Control group n = 150; (2) Metformin group; mean age: 55 years; CHM group n = 164; Control group n = 160; Inclusion criteria diagnosed Type 2 diabetes; age: 21–70 years; BMI: 18–28 or 18–35 kg/m² using metformin at 750 mg/day (or more) for at least 3 months before screening; stable body weight within at least 3 months before screening; FPG: 7.0–13.0 mmol/l and HbA1c >7%	Diet and exercise advices were provided	Baseline balance Yes; In drug naïve group: Significant 38% lower any hypoglycemia rate and 4.1% lower mild hypoglycemic episode in the CHM group than those in the control group after treatment; In Metformin group: Significant 24% lower hypoglycemia rate in the CHM group than that in the control group, without significant difference between these two groups in the mild hypoglycemic episode after treatment; In both drug naïve group and Metformin groups, no significant difference of the rate of reducing HbA1c <6.5% between the CHM and control groups	Urinary tract infection; Upper respiratory tract infection; Elevated ALT/AST; Dyslipidemia	N/A					
Author	Country	Stroke risk factor	Participants	Intervention groups	Results	Side effects	Limitations						
-------------------	---------	--------------------	--------------	---------------------	---------	--------------	----------------------------						
Tong et al. [32]	China	Type 2 diabetes	Sample size n = 480 CHM group n = 360 Control group n = 120 Inclusion criteria early diabetic status; BMI ≥ 24 kg/m²; HbA1c ≥ 7.0%; FPG 7.0–13.9 mmol/l or 2hPG > 11.1 mmol/l; age: 35–65 years	During the intervention, antihyperlipidaemia or antihypertensive drugs remain stable Tong-Bing-Ling-Wan 6 g/time, 3 times daily, 12 weeks Formulas Huangqin, Huangqian, Baishao, Chenpi, Dahuang	Baseline balance statistically different in HbA1c and 2hPG between groups Significantly decreased HbA1c, FPG, 2hPG and increased HOMA-β in both CHM and placebo groups before and after treatment; Significant higher proportion of the HbA1c reversed to normal (HbA1c ≤ 6.5%) in the CHM group (47.6%) than that in the placebo group (35.5%) after treatment; More significant decrease of HbA1c, FPG, 2hPG, body weight, BMI, WC and increase of HOMA-β in the CHM group than those in the placebo group after treatment	Mild side effects (CHM: n = 24; Placebo: n = 9); Transient slight ALT elevation (CHM: n = 2); Transient slight AST elevation (CHM: n = 2)	Short study period; No follow-up						
Tu et al. [33]	China	No information on study period	Sample size n = 80 CHM group n = 41 Control group n = 39 Inclusion criteria diagnosed Type 2 diabetes; FPG 7.0–13.3 mmol/l or 2hPG 11.1–22.9 mmol/l; age: 18–70 years; normal renal function	Diet and exercise advices were provided Wumei Wan 3 packages daily, 12 weeks Formulas Huanglian, Huangbai, Ganjiang, Ginseng, Danggui, Huajiao, et al.	Baseline balance statistically different in gender between groups No significant difference of FPG, PPG, HbA1c between the CHM and control groups after treatment	Side effects (CHM: n = 1)	Short study period; Not double blind trial						
Wu and Fan [34]	China	Type 2 diabetes	Sample size n = 152 CHM group n = 76; 48 males and 28 females; age: 48–66 years Control group n = 76; 35 males and 41 females; age: 47–68 years Inclusion criteria diabetes symptoms and any plasma glucose ≥ 11.1 mmol/l; FPG ≥ 7.0 mmol/l; 2hPG ≥ 11.1 mmol/l during OGTT	Self-proposed Chinese herbal medicines with insulin 1 dose daily, 2 weeks Formulas Guijianyu, Zhimu, Gegen, Jineijin, Zexie, Ginseng, et al.	Baseline balance Yes Significant more 20% decrease of insulin use in the CHM group than that in the control group after treatment; Significant less treatment days and frequency of hypoglycaemia in the CHM group than those in the control group after treatment	N/A	N/A						
Cai et al. [35]	China	No information on study period	Sample size n = 67 CHM group n = 37 Control group n = 30 Inclusion criteria diabetes course < 5 years, fasting serum glucose > 7.0 mmol/l and/or 11.1 mmol/l after meal	Diet and exercise advices were provided Lycium barbarum Polysaccharide capsule 300 mg/day, twice daily, 3 months Formulas Gouqi	Baseline balance Yes Significantly decreased serum glucose and increased insulinogenic index in the CHM group before and after treatment; Significantly increased HDL in the CHM group than that in the control group after treatment	No side effects	Small sample size; Short follow-up						
Author	Country	Type 2 diabetes	Study period	Sample size n	CHM group n	Control group n	Intervention groups	Results	Side effects	Limitations			
-----------------	---------	------------------	--------------	---------------	-------------	------------------	---------------------	---------	--------------	-------------			
Lian et al.	China	Type 2 diabetes	Apr 2013–Oct 2013	186	92	94	Diet and exercise advices were provided	Jintaid with metformin (1500 mg/kg/day) 1 granule/time, 3 times daily, 12 weeks	Formulas Shuweicao, Yinyangghuo, Ginseng, Huangjing, Cangzhis, Kushen, et al.	Placebo with metformin (1500 mg/kg/day) 1 granule/time, 3 times daily, 12 weeks	Baseline balance Yes	N/A	Short study period; Small sample size
Zhang et al.	China	Type 2 diabetes	Jan 2011–Dec 2013	219; 112 males and 107 females; age 38–74 years	109	110	Shen-Qi-Formula with insulin injection (300 IU, twice daily before breakfast and dinner) 100 ml/time, 3 times daily, 12 weeks	Formulas Shengdi Huang, ZhiDahuang, Ginseng, Shanzhuyu, Shuweicao, et al.	Insulin injection 300 IU, twice daily before breakfast and dinner, 12 weeks	Baseline balance Yes	N/A	Transient hypoglycemia (Control: n = 1)	
Hu et al.	China	Type 2 diabetes	No information on study period	112	59	53	Diet and exercise advices were provided	Jianyutangkong tablet with Metformin (1.5 g/time, 3 times daily, 26 weeks	Formulas Cuiwujia, Zhimu, Guijiayu	Placebo with Metformin 1.5 g/time, 3 times daily, 26 weeks	Baseline balance Yes	No side effects	Small sample size; No group without lifestyle intervention; Almost 25% participants lost from both groups
Author	Country	Stroke risk factor	Participants	Intervention groups	Results	Side effects	Limitations						
--------	---------	-------------------	-------------	---------------------	---------	------------	-------------						
Li et al. [39]	China	Type 2 diabetes	Sample size n = 38	During the intervention, metformin remains stable	Baseline balance; Yes	Gastrointestinal side effects; Lower in the CHM group than control group	Short study period; Small sample size; Missing data of BMI in follow-up period						
	Jun 2014–Dec 2014		CHM group n = 23; Control group n = 15	Mulberry twig alkaloid tablet with Acarbose placebo (50 mg/time, 3 times daily); 50 mg-100 mg/time, 3 times daily; 24 weeks									
			Inclusion criteria diagnosed Type 2 diabetes; not on a regimen of antidiabetic medical treatment at least 3 months before screening or on a regimen of antidiabetic treatment no more than 3 months at any time in the past, or on a stable regimen of metformin monotherapy for at least 8 weeks; age: 18–70 years; HbA1c: 7.0–10.0%; FPG ≤ 13 mmol/l; BMI: 19–30 kg/m²	Formulas: Sangshi									
Wang et al. [40]	China	Hyperlipidemia	Sample size n = 446	During the intervention, no medications affecting serum lipids	Baseline balance; Yes	CHM group: Heartburn; Flatulence; Dizziness; Exacerbation of preexisting stomachache	N/A						
No information on study period			CHM group n = 324; 188 males and 136 females; mean age: 56 years; Control group n = 122; 73 males and 49 females; mean age: 56 years	Monascus purpureus rice preparation 3 tablets (600 mg)/time; twice daily, 8 weeks									
			Inclusion criteria: serum TC ≥ 5.95 mmol/l; LDL-C ≥ 3.41 mmol/l, or TG: 2.26-4.52 mmol/l; HDL-C ≤ 1.04 mmol/l (male)/1.16 mmol/l (female); no medication for hyperlipidemia for more than 4 weeks and received dietary advice for 2–4 weeks	Formulas: Red yeast rice; Jiaogulan 3 tablets (600 mg)/time; twice daily, 8 weeks; Formulas: Jiaogulan									
			Formulas: Sangshen, Sangshen, Jiaogulan										
Author	Country	Stroke risk factor	Participants	Intervention groups	Results	Side effects	Limitations						
--------------	---------	-------------------	---	--	--	-----------------------------------	-------------						
Yang et al.	China	Hyperlipidemia	Sample size n = 96 CHM group n = 56; 31 males and 25 females; mean age: 69 years	During the intervention, no other drugs Dangshen Jueming granules 24 g/time, twice daily, Xuezhikang capsules 0.8 g/time, 3 times daily	Baseline balance Yes Significantly decreased TC, LDL-C in both CHM and control groups before and after treatment; Significantly decreased TG in the CHM group before and after treatment; More significant decrease of TC, LDL-C in the CHM group than those in the control group after treatment	No side effects	N/A						
Ai et al.	China	Hyperlipidemia	Sample size n = 60 CHM group n = 30 Control group n = 30 Inclusion criteria BMI < 35 kg/m²; TC ≥ 5.72 mmol/l and TG > 4.52 mmol/l; age: 18 years and older	During the intervention, no other lipid-modulating drugs Danshen Jueming granules twice daily, Pravastatin 10 mg/time, once daily, 6 weeks	Baseline balance statistically different in the serum TG level between groups Significantly decreased in the TC, LDL-C in both CHM and control groups before and after treatment; More significant decrease of TC, LDL-C in the control group than those in the CHM group after treatment	Diarrhea (CHM n = 8); Myalgia and epigastric discomfort (Control n = 2)	N/A						
Xu et al.	China	Hyperlipidemia	Sample size n = 77 CHM group n = 37; 17 males and 20 females; mean age: 59 years	During the intervention, no drugs affecting the blood lipid metabolism Antihyperlipidemic decoction 150 ml/time, twice daily, 8 weeks, Zhinbiticose 1030 mg/time, 3 times daily, 8 weeks	Baseline balance Yes Significantly decreased TC, TG, LDL-C, BMI in the CHM group and significantly decreased LDL-C, BMI in the control group, before and after treatment; More significant decrease of TC, TG in the CHM group than those in the control group after treatment; Significantly lower recurrence rate in the CHM group than that in the control group after treatment	No side effects	N/A						

Inclusion criteria
- TC > 5.7 mmol/l and/or TG > 1.7 mmol/l; TCM diagnosed for phlegm-damp and blood stasis syndrome
- **Baseline balance**
- **Side effects**
- **Limitations**
Table 2 continued

Author and Country	Stroke risk factor	Study period	Participants	Intervention groups	Results	Side effects	Limitations	
Hu et al. [44]	Hyperlipidemia	Hong Kong	No information on study period	CHM group n = 20; 6 males and 14 females; mean age: 58 years; Control group n = 20; 10 males and 10 females; mean age: 55 years	A multiherb formula 4 capsules in the morning and 4 capsules in the evening, 12 weeks	Baseline balance statistically different in the LDL-C level between groups; More significant decrease of LDL-C in the CHM group than that in the placebo group after treatment; No significant difference of LDL-C in the CHM group before and after treatment	CHM group n = 11, including one stomach upset; Placebo group n = 12, including one acid reflux	Not balanced baseline data of the two groups; Small sample size; Lack of consideration of the different types of dyslipidemia
Moriarty et al. [45]	Hyperlipidemia	USA and China	Apr 2011–Aug 2012	CHM group 1 n = 36; 6 males and 30 females; mean age: 58 years; CHM group 2 n = 42; 13 males and 29 females; mean age: 56 years; Control group n = 38; 11 males and 27 females; mean age: 56 years	During the intervention, no lipid-lowering drugs, investigational agent, medications promoting weight loss, agents affecting lipid metabolism	Baseline balance Yes; Significantly decreased LDL-C in both two CHM groups before and after treatment, without significant difference between these two groups after treatment; The total effective rates at about 48% of LDL-C by ≥ 30% in the two CHM groups before and after treatment, without significant difference between these two groups	CHM groups 1, 2 n = 5, not CHM-related side effects (thyroid cancer, pulmonary embolism, fractured leg); Placebo group n = 3	Not representative data; More females than males; Short treatment period
Heber et al. [46]	Hyperlipidemia	USA	No information on study period	CHM group n = 83; 46 males and 37 females; age: 34–78 years	Diet advice were provided	Baseline balance Yes; Significantly decreased TC, TG, LDL-C in the CHM group before and after treatment; More significant decrease of TC, LDL-C in the CHM group than those in the placebo-group after treatment	Placebo group; Rash (n = 1); Concurrent development of pneumonia (n = 1)	N/A
Author	Country	Study period	Stroke risk factor	Participants	Intervention groups	Results	Side effects	Limitations
-----------------	------------------	-------------------------------	--------------------	--	---	---	--	---
Lin et al.	Taiwan	Dec 2001–Jan 2003	Hyperlipidemia	CHM group n = 39; 23 males and 16 females; mean age: 46 years	Diet advices were provided: *Monascus purpureus* Went rice 1 capsule (600 mg)/time, twice daily, 8 weeks	Baseline balance: Yes; Significantly decreased TC, TG, LDL-C in the CHM group before and after treatment; More significant decrease of TC, TG, LDL-C in the CHM group than those in the placebo group after treatment	CHM group: Drug-related side effects (n = 6)	No record of diets of the participants
Wei et al.	China	Mar 2006–Sep 2007	Impaired glucose	CHM group n = 70; 31 males and 39 females; mean age: 51 years	Tang No. 1 granule with IGT knowledge education 2 packets/time, twice daily, 6 months	Baseline balance: Yes; Significantly decreased FPG, 2hPG, HbA1c, HOMA-IR in the CHM group before and after treatment; More significant decrease of FPG, 2hPG, HbA1c, TG, HOMA-IR in the CHM group than those in the control group after treatment; More patients with IGT reversed to normal in the CHM group (19.1%) than that in the control group (3.1%)	No side effects	N/A
Gao et al.	China	No information on study period	Impaired glucose	CHM group n = 255; 110 males and 145 females; mean age: 49 years	Co-administered medications: calcium antagonists, a blockers or ACE antagonists, or β-blockers or thiazide for hypertension control	Baseline balance: Yes; Significantly decreased 2hPG, HbA1c, BMI, FIN, HOMA-IR in the CHM group before and after treatment; More significant decrease of FPG, 2hPG, HbA1c, FIN, HOMA-IR in the CHM group than those in the control group after treatment; More patients with IGT reversed to normal in the CHM group (29.1%) than those in the control group (13.6%) after treatment; Lower risk of IGT patients progressing to Type 2 diabetes in the CHM group (22.2%) than that in the placebo group (43.9%)	Mild abdominal distension (CHM: n = 4; Control: n = 3)	Small sample size; Short follow-up
Table 2 continued

Author	Country	Stroke risk factor	Participants	Intervention groups	Results	Side effects	Limitations		
Fang et al.	China	No information on study period	Sample size n = 514	CHM group n = 257; 136 males and 121 females; mean age: 55 years	Baseline balance	Gastrointestinal reactions were the most common side effects	Short follow-up; No consensus about efficacy of the CHM approach		
Lian et al.	China	Impaired glucose tolerance	Sample size n = 420	CHM group n = 210; 98 males and 112 females; mean age: 53 years	More patients with IGT reversed to normal in the CHM group (63.1%) than that in the control group (46.6%); Lower risk of IGT patients progressing to Type 2 diabetes in the CHM group (18.2%) than that in the placebo group (29.3%)	Short study period; No data on plasma insulin and HbA1c; Small sample size			
Huang et al.	China	Impaired glucose tolerance	Sample size n = 120	CHM group n = 60; 31 males and 29 females; mean age: 52 years	Significantly decreased 2hPG, HbA1c, HOMA-IR, TG in the CHM group before and after treatment; More significant decrease of 2hPG, HbA1c, HOMA-IR, TG in the CHM group than those in the control group after treatment; More patients with IGT reversed to normal in the CHM group (58.3%) than that in the control group (26.7%); Lower risk of IGT patients progressing to Type 2 diabetes in the CHM group (16.7%) than that in the placebo group (31.7%)	No severe side effects	Small sample size; Short follow-up; Insufficient outcome measures		
Author	Country	Stroke risk factor	Study period	Participants	Intervention groups	Results	Side effects	Limitations	
-----------------	---------	--------------------	--------------	--------------	---------------------	---------	--------------	-------------------------------------	
Shi et al.	China	Impaired glucose tolerance	Apr 2014–Oct 2014	Sample size: n = 61	CHM group: n = 32; 17 males and 15 females; mean age: 47 years	Diet, exercise, smoking/alcohol consumption advices were provided; no other CHM products with similar function	Baseline balance Yes	Gastrointestinal reactions (n = 2)	Short study period; Small sample size
Grant et al.	Australia	Impaired glucose tolerance	Jun 2007–Dec 2009	Sample size: n = 71	CHM group: n = 39; 15 males and 24 females; mean age: 58 years	Jingtang Xiaozhi 3 capsules/time, 3 times daily, 16 weeks	Baseline balance Yes	CHM group moderate dizziness (n = 1)	Short study period; Small sample size
Pan et al.	China	Obesity	Jul 2003–Aug 2003	Sample size: n = 78	CHM group: n = 40, 18 males and 22 females; mean age: 41 years	Dietary powder 1 package (9 g)/time, twice daily, 7 weeks	Baseline balance Yes	Irritability (CHM: n = 1; Placebo: n = 1); Nausea (CHM: n = 2; Placebo: n = 1); Constipation (Placebo: n = 2)	N/A
Zhou et al.	China	Obesity	May 2010–Feb 2011	Sample size: n = 134	CHM group: n = 70, 31 males and 39 females; mean age: 40 years	Xin-Ju-Xiao-Gao-Fang (full-dose) 170 ml decoction/time, twice daily, 24 weeks	Baseline balance Yes	Minor side effects (e.g. skin rash) (CHM: n = 4; Control: n = 3)	Short study period; No follow-up; No true placebo group
Author	Country	Study period	Stroke risk factor	Participants	Intervention groups	Results	Side effects	Limitations	
-----------------	---------	--------------	----------------------------------	---	--	---	-------------	-------------	
Lenon et al. [57]	Australia	No information on study period	Obesity	Sample size n = 117; CHM group n = 59; 10 males and 49 females; mean age: 39 years; Control group n = 58; 10 males and 48 females; mean age: 40 years	During the intervention, no other medications for obesity management	Chinese herbal medicine formula RCM-104; 4 capsules/time, 3 times daily, 12 weeks	Baseline balance	Nausea (CHM: n = 4); Headache (CHM: n = 9); Decrease of appetite (Placebo: n = 2)	N/A
Hioki et al. [58]	Japan	No information on study period	Obesity and impaired glucose tolerance	Sample size n = 81; mean age: 54 years; CHM group n = 41; Control group n = 40	Diet and exercise advice were provided	Bofu-tsusho-san 3 times daily, 24 weeks	Baseline balance	N/A	
Gao & Hu [59]	China	No information on study period	Type 2 diabetes and hyperlipidemia	Sample size n = 80; CHM group n = 40; 22 males and 18 females; mean age: 59 years; Control group n = 40; 20 males and 20 females; mean age: 59 years	During the intervention, hypoglycemic agents remained stable	Taizhi’an capsule with Simvastatin 10 mg daily, 0.9 g/time, 3 times daily, 12 weeks	Baseline balance	CHM group: Loose bowels (n = 3)	N/A
Poppel et al. [60]	Netherlands	May 2012 – Mar 2013	Hyperlipidemia and hypertension	Sample size n = 20; 14 males and 6 females; mean age: 58 years; CHM group n = 9; Control group n = 11	During the intervention, no other medications for hypertension management	Danshen capsules 4 capsules (500 mg)/time, 3 time daily, 4 weeks	Baseline balance	CHM group: Headache (n = 5); Dizziness (n = 3); Change in stool frequency (n = 3); Flatulence (n = 2); Peripheral facial nerve paralysis (n = 1)	N/A
Author	Country	Stroke risk factor	Participants	Intervention groups	Results	Side effects	Limitations		
-------------	---------	-------------------------------------	--	---	---	-------------	-------------		
Chu et al.	China	Metabolic syndrome	Sample size n = 90. CHM group n = 60, 28 males and 32 females, mean age: 51 years; Control group n = 30, 13 males and 17 females, mean age: 50 years	Diet and exercise advices were provided; During the intervention, no other CHM with hypoglycemic, lipid-lowering and antihypertensive effects	Baseline balance: Yes Significant decrease of BMI, waist-to-hip ratio, TC, TG, LDL-C, 2hPG and increased HDL-C in the CHM group before and after treatment; More significant decrease of BMI, TG, TC, LDL-C, 2hPG and increase of HDL-C in the CHM group than those in the placebo group after treatment	CHM group: Diarrhea (n = 1)	N/A		
Chen et al.	China	Hypertension and metabolic syndrome	Sample size n = 43. CHM group n = 22, 14 males and 8 females, mean age: 49 years; Control group n = 21, 14 males and 7 females, mean age: 49 years	Diet and exercise intervention were provided	Baseline balance: Yes Significantly decreased body weight, WC, BMI, FPG, 2hPG, FIN, HOMA-IR, SBP, DBP, daytime SBP, daytime DBP, nighttime SBP in the CHM group before and after treatment; More significant decrease of WC, waist-to-hip ratio, 2hPG, HOMA-IR, FIN, SBP, DBP, daytime SBP and DBP than those in the placebo group after treatment	CHM group: Skin allergy (n = 2)	N/A		
Author	Country	Stroke risk factor	Participants	Intervention groups	Results	Side effects	Limitations		
-----------------	---------	--------------------	--------------	---------------------	---------	--------------	----------------------------------		
Azushima et al.	Japan	Hypertension and obesity	Sample size: n = 106 CHM group n = 54; 28 males and 26 females; mean age: 59 years	Diet and exercise advice were provided	Baseline balance: Yes.	CHM group: Gastric irritation (n = 1); Constipation (n = 1); Elevation of serum hepatic enzyme level (n = 1)	Not a double-blinded placebo-controlled study; Short study period		
				Bofu-tusho-san with Antihypertensive therapy 2.5 g/time, once daily, 24 weeks	Antihypertensive therapy No further information	More significant decrease of daytime SBP, body weight, BMI in the CHM group than those in the control group after treatment			

Notes: 2hPG: 2-hour postprandial glucose, BP: blood pressure, BMI: body mass index, DBP: diastolic blood pressure, FIN: fasting plasma insulin, FPG: fasting plasma glucose, HbA1c: glycated hemoglobin, HC: hip circumferences, HDL: high-density lipoprotein, HDL-C: high-density lipoprotein cholesterol, HOMA-β: homeostatic model assessment β-cell function, HOMA-IR: homeostatic model assessment insulin resistance, IGT: impaired glucose tolerance, LDL-C: low-density lipoprotein cholesterol, LVMI: left ventricular mass index, MBP: mean blood pressure, OGTT: oral glucose tolerance test, PPG: postprandial plasma glucose, SBP: systolic blood pressure, TC: total cholesterol, TG: triglyceride, TO: original heart rate, WC: waist circumference.
Author, Country, Publication year	Stroke risk factor	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Lin et al. [18], China, 2004	(Primary) Hypertension	Unclear	Unclear	High risk	Unclear	Low risk	Unclear	Unclear
Li [19], China, 2005	(Primary) Hypertension	Unclear	Unclear	High risk	Unclear	Unclear	Unclear	Unclear
Ye et al. [20], China, 2009	(Primary) Hypertension	Unclear	Unclear	Low risk	Low risk	Unclear	Low risk	Unclear
Zhao et al. [21], China, 2010	(Primary) Hypertension	Unclear	Unclear	Low risk	Unclear	Low risk	Unclear	Unclear
Zhong et al. [22], China, 2011	(Primary) Hypertension	Low risk	High risk	High risk	Unclear	Low risk	Low risk	Unclear
Yang et al. [23], Taiwan, 2012	(Uncontrolled primary) Hypertension	Low risk	Unclear	High risk	Low risk	Unclear	Low risk	High risk
Tong et al. [24], China, 2013	Hypertension	Low risk	High risk	High risk	Low risk	Unclear	Low risk	Unclear
Wu et al. [25], China, 2014	(Primary) Hypertension	Low risk	Low risk	Unclear	Low risk	Low risk	Low risk	Unclear
Li et al. [26], China, 2010	(Isolated systolic) Hypertension	Low risk	Unclear	Low risk	Unclear	High risk	Unclear	Unclear
Chen et al. [27], China, 2012	(Polarized) Hypertension	Low risk	Unclear	High risk	Unclear	Unclear	Unclear	High risk
Gong et al. [28], China, 2010	Hypertension with cardiac damage	Unclear	Unclear	High risk	Unclear	Low risk	Unclear	Unclear
Xu et al. [29], China, 2013	Hypertension, hypertension with diabetes, hypertension with coronary heart disease	Unclear	Unclear	High risk	Unclear	Unclear	Unclear	Low risk
Chao et al. [30], China, 2009	Type 2 diabetes	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear	Unclear
Ji et al. [31], China, 2013	Type 2 diabetes	Low risk	Low risk	High risk	Low risk	Low risk	Unclear	Unclear
Tong et al. [32], China, 2013	Type 2 diabetes	Low risk	Low risk	Unclear	Low risk	High risk	Unclear	Unclear
Tu et al. [33], China, 2013	Type 2 diabetes	Low risk	Low risk	High risk	Unclear	Low risk	Unclear	Unclear
Wu & Fan [34], China, 2014	Type 2 diabetes	Unclear	High risk	Unclear	Unclear	Unclear	Unclear	Unclear
Table 3 continued

Author, Country, Publication year	Stroke risk factor	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Cai et al. [35], China, 2015	Type 2 diabetes	Low risk	Unclear	Low risk	Unclear	Low risk	Low risk	Unclear
Lian et al. [36], China, 2015	Type 2 diabetes	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
Zhang et al. [37], China, 2015	Type 2 diabetes	Low risk	Low risk	High risk	Unclear	Low risk	Low risk	Unclear
Hu et al. [38], China, 2016	Type 2 diabetes	Low risk	High risk	Low risk	Low risk	High risk	Low risk	Unclear
Li et al. [39], China, 2016	Type 2 diabetes	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
Wang et al. [40], China, 1997	Hyperlipidemia	Low risk	Unclear	High risk	Low risk	Low risk	Low risk	Unclear
Yang et al. [41], China, 2006	Hyperlipidemia	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	High risk
Ai et al. [42], China, 2009	Hyperlipidemia	High risk	High risk	High risk	High risk	Unclear	Low risk	High risk
Xu et al. [43], China, 2009	Hyperlipidemia	Unclear	High risk	Unclear	Unclear	Unclear	Unclear	Unclear
Hu et al. [44], Hong Kong, 2014	Hyperlipidemia	Low risk	Low risk	Low risk	Unclear	Low risk	Low risk	High risk
Moriarty et al. [45], USA & China, 2014	Hyperlipidemia	Low risk	Low risk	Low risk	Unclear	Low risk	Low risk	Unclear
Heber et al. [46], USA, 1999	Hyperlipidemia	Unclear	Low risk	Unclear	Unclear	Low risk	Low risk	High risk
Lin et al. [47], Taiwan, 2005	Hyperlipidemia	High risk	Unclear	Low risk	Low risk	Low risk	Low risk	High risk
Wei et al. [48], China, 2008	Impaired glucose tolerance	High risk	Unclear	High risk	Unclear	Low risk	Unclear	Unclear
Gao et al. [49], China, 2013	Impaired glucose tolerance	Low risk	Unclear	High risk	Unclear	Low risk	Low risk	Unclear
Fang et al. [50], China, 2014	Impaired glucose tolerance	Unclear	High risk	Unclear	Unclear	Low risk	Low risk	Unclear
Lian et al. [51], China, 2014	Impaired glucose tolerance	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
Huang et al. [52], China, 2016	Impaired glucose tolerance	Low risk	High risk	Unclear	Unclear	Low risk	Low risk	Unclear
Shi et al. [53], China, 2016	Impaired glucose tolerance	Low risk	High risk	Unclear	High risk	Low risk	Low risk	Unclear
Author, Country, Publication year	Stroke risk factor	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
----------------------------------	---	----------------------------	------------------------	--	-------------------------------	------------------------	---------------------	------------
Grant et al. [54], Australia, 2013	Impaired glucose tolerance	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear	High risk
Pan et al. [55], China, 2005	Obesity	Low risk	Unclear	Low risk	Unclear	Low risk	Unclear	High risk
Zhou et al. [56], China, 2014	Obesity	Low risk	Unclear	Low risk	Unclear	Unclear	Low risk	Unclear
Lenon et al. [57], Australia, 2012	Obesity	Unclear	Low risk	Low risk	Unclear	Low risk	Unclear	Unclear
Hioki et al. [58], Japan, 2004	Obesity and impaired glucose tolerance	Low risk	High risk	Low risk	Unclear	Unclear	Low risk	High risk
Gao & Hu [59], China, 2006	Type 2 diabetes and hyperlipidemia	Unclear	High risk	Unclear	Low risk	Low risk	Unclear	Unclear
Poppel et al. [60], Netherlands, 2015	Hyperlipidemia and hypertension	High risk	Unclear	Low risk	Unclear	Low risk	Low risk	High risk
Chu et al. [61], China, 2011	Metabolic syndrome	High risk	Unclear	Low risk	Unclear	Low risk	Unclear	
Chen et al. [62], China, 2013	Hypertension and metabolic syndrome	Low risk	Unclear	Low risk	Unclear	High risk	Low risk	Unclear
Azushima et al. [63], Japan, 2015	Hypertension and obesity	Low risk	Unclear	High risk	Low risk	Low risk	Low risk	High risk
Peng et al. Chin Med (2017) 12:25

with regards to the decrease of SBP or DBP amongst the three groups after treatment. Gouteng (钩藤) [18, 19, 21, 24, 25, 29] and Tianma (天麻) [18, 22, 25–27] were the most frequently used Chinese herbs in the hypertension-focused RCTs included, and all the CHM interventions using Gouteng and/or Tianma reported significant pre-post effectiveness regarding the decrease of SBP (and/or DBP) level. Also, Gouteng was the principal CHM formula constituent amongst four out of six hypertension-focused RCTs presenting between-group effectiveness of the investigated CHM interventions on the decrease of SBP (and/or DBP) levels compared to control interventions [21, 24, 25, 29]. In addition, the sample size of hypertension-focused RCTs ranged from 55 to 219. Six hypertension-focused RCTs did not provide the age and gender profile of the participants in either CHM group or control group [20, 22, 23, 26, 27, 29]. The duration of the hypertension-focused trials ranged from 2 weeks to 24 months, with the majority of trials conducted between 4 and 12 weeks.

Eight hypertension-focused RCTs reported safety-related information and no deaths were noted [18, 19, 21, 23, 26–29]. One trial reported five cases of serious side effects of the ‘CHM plus biomedicine’ intervention group [29]. One trial (sample: 55) reported 13 mild side effects in the ‘placebo plus biomedicine’ control group [23]. Only two of the papers reporting results from hypertension-focused RCTs listed any study limitations including small sample size and short study period [23, 24]. As for risk of bias in the hypertension-focused RCTs, three papers provided information on the allocation concealment [22, 24,
25] and four on the blinding of outcome assessment [20, 23–25]. Additionally, only three trials reported double-blinding of participants and personnel involved [20, 21, 26].

Diabetes
All of the 10 included diabetes-focused RCTs were focusing upon patients diagnosed with Type 2 diabetes mellitus and all these RCTs were conducted in China [30–39]. Amongst the 10 RCTs examining the efficacy of CHM on controlling the glucose level of patients with diabetes, four RCTs compared ‘CHM’ intervention to ‘placebo’ [32], ‘CHM plus biomedicine’ intervention to ‘placebo plus biomedicine’ intervention [39], and further, ‘CHM plus lifestyle’ intervention to ‘placebo plus lifestyle’ intervention [30, 35]. These four trials indicated more significant decreased glucose level [e.g. fasting plasma glucose (FPG), 2-hour postprandial glucose (2hPG), glycated hemoglobin (HbA1c)] by using CHM products when compared to the placebos after treatment, while this significant between-group variance in the decrease of glucose level showed no statistical significance when both CHM interventions and placebos were used concurrently with biomedicine or lifestyle intervention. Also amongst these 10 diabetes-focused RCTs, ‘CHM plus biomedicine’ intervention was compared to ‘biomedicine’ intervention, showing a more significant decrease of insulin usage by the CHM plus biomedicine treatment after treatment [34]. Also, after treatment, ‘CHM, biomedicine plus lifestyle’ interventions were found to achieve a more significant decrease of FPG, HbA1c, or hypoglycemia when compared to either ‘biomedicine plus lifestyle’ intervention [31, 37] or ‘placebo, biomedicine plus lifestyle’ intervention [36, 38]. Of the nine diabetes-focused RCTs providing CHM formulas, Huanglian (黄连) was the most common Chinese herb [30, 32–34, 36], followed by Ginseng (人参) [33, 34, 36, 37], Shanzhuyu (山茱萸) [34, 36, 37], Dahuang (大黄) [32, 34, 37], and Huangqi (黄芪) [30, 34, 37]. The CHM interventions examined in three out of five diabetes-focused RCTs, showing significant between-group effectiveness on the decrease of glucose level, indicated that the combination of these five commonly used Chinese herbs played a vital role for the efficacy of type 2 diabetes management [34, 36, 37]. All diabetes-focused RCTs defined inclusion criteria of diabetes based on different FPG, 2hPG, and/or HbA1c levels, and all the tested CHM products used in these RCTs were different. The sample size of the diabetes-focused RCTs ranged from 43 to 627. Only one RCT provided the age and gender profile of participants in the CHM and control groups [35]. The duration of the trials ranged from 2 weeks to 12 months, with the majority of trials conducted between 3–12 months.

Hyperlipidemia
Half of the eight RCTs on CHM for the treatment of hyperlipidemia originated from China [40–43]. Amongst the hyperlipidemia-focused RCTs, two compared ‘CHM’ interventions with ‘biomedicine’ interventions [42, 43], two compared different ‘CHM’ interventions [40, 41], two compared ‘CHM’ interventions with ‘placebos’ [44, 45] and two compared ‘CHM plus lifestyle’ interventions with ‘placebo plus lifestyle’ interventions [46, 47]. Although the inclusion criteria of people with hyperlipidemia shown in the included hyperlipidemia-focused RCTs are limited to the total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and/or body mass index (BMI) levels, the threshold value of these indices are diverse across the RCTs. It is worth noting that Monascus purpureus rice preparation (Xuezhi-kang capsule in Chinese) of which the main ingredient is red yeast rice, was tested in four hyperlipidemia-focused RCTs [40, 45–47]. The effects of the red yeast rice products are not consistent across these four RCTs. When the ‘red yeast rice product plus lifestyle’ intervention was compared with ‘placebo plus lifestyle’ intervention, a more significant decrease of TC and LDL-C was found in the red yeast rice product group after treatment. However, there was no significant improvement in TC or LDL-C amongst those receiving the red yeast rice product alone when compared to placebo alone. Amongst the rest four hyperlipidemia-focused RCTs, Danshen (丹参) [41–43], Juemingzi (沢明子) [41–43], Zexie (澤泄) [41, 43, 44], and/or Shanzha (山楂) [41, 43, 44] were the main constituents of the CHM formulas examined and three of these trials reported the significant between-group
The effects of CHM interventions are consistent through the inclusion criteria and CHM products, the results on IGT-focused RCTs are different. Despite the variation in the age and gender profile of the participants in CHM and control groups [42, 46]. The duration of the trials ranged from 6 weeks to 12 months while one trial did not specify the study period.

All hyperlipidemia-focused RCTs reported safety-related information and no deaths were noted. Three trials specified their side effects in the CHM intervention groups, including heartburn/flatulence [40], diarrhea [42], and stomach upset [40, 44]. Three hyperlipidemia-focused RCTs reported their study limitations including small sample size, lack of balanced baseline data between the CHM and control groups and no record of the participants’ dietary control [44, 45, 47]. As for risk of bias of the hyperlipidemia-focused RCTs, five trials did not use the random sequence generation method [41–43, 46, 47], only two trials specified the appropriate allocation concealment [44, 45], and six trials failed to employ the blinding of outcome assessment [41–46].

Impaired glucose tolerance

The seven RCTs on CHM for the treatment of IGT originated from China (n = 6) [48–53] and Australia (n = 1) [54]. Amongst the IGT-focused RCTs, one compared ‘CHM’ with ‘placebo’ [54], five compared ‘CHM plus lifestyle’ interventions with ‘lifestyle’ interventions alone [48–50, 52, 53], and one compared ‘CHM plus lifestyle’ intervention with ‘placebo plus lifestyle’ intervention [51]. The inclusion criteria regarding the 2hPG level remain stable (7.8–11.0 mmol/l) while the FPG level is either <7.0 or >7.0 mmol/l across all the IGT-focused RCTs. As for risk of bias of the hyperlipidemia-focused RCTs, five trials did not use the random sequence generation method [41–43, 46, 47], only two trials specified the appropriate allocation concealment [44, 45], and six trials failed to employ the blinding of outcome assessment [41–46].

Obesity

Two RCTs on CHM for the treatment of obesity originated from China [55, 56] and one from Australia [57]. The three obesity-focused trials compared different CHM products with their placebos. BMI is the key indicator of the inclusion criteria of all obesity-focused RCTs included. However, the threshold value of BMI was set differently across these trials. Amongst the obesity-focused RCTs, CHM products all showed more decrease of body weight than placebos after treatment. *Green tea* (绿茶) [55, 57] and *Juemingzi* (決明子) [56, 57] were the Chinese herbs included in two CHM formulas amongst these three obesity-focused trials. The sample size of the obesity-focused RCTs ranged from 78 to 134 and all these RCTs provided the age and gender profile of participants in the CHM and placebo groups. There were 115 males and 214 females across all the obesity-focused RCTs with a mean age of 40 years, ranging from 39 to 41 years. The duration of the obesity-focused trials ranged from 7 weeks to 6 months.

All obesity-focused RCTs reported safety-related information and no death were noted. CHM interventions were reported more side effects than the placebos, including nausea, headache, and skin rash. One obesity-focused RCT indicated the study limitations including short study period, no follow-up period, and no true placebo group [56]. As for risk of bias of the obesity-focused RCTs, all trials reported the double-blinding of participants and personnel while these trials failed to provide any details of the blinding of outcome assessment.

Combined stroke risk factors

Six RCTs exploring the efficacy of CHM on one or more of the stroke risk factors were identified in the systematic review. Specifically, one trial examined the ‘CHM
plus lifestyle’ intervention for the treatment of ‘IGT and obesity’ compared to ‘placebo plus lifestyle’ intervention, showing significant efficacy on both IGT and obesity before and after treatment and a significant effect on obesity control between groups after treatment [58]; Two trials examined the ‘CHM plus biomedicine’ interventions for the treatment of ‘diabetes and hyperlipidemia’ and ‘hypertension and hyperlipidemia’ compared to the ‘biomedicine’ intervention [59] and ‘placebo plus biomedicine’ intervention [60], respectively—both of these studies found similar effect on the combined stroke risk factors between groups after treatment. Moreover, three trials examined the ‘CHM, biomedicine plus lifestyle’ interventions for the treatment of ‘metabolic syndrome’ [61], ‘hypertension and metabolic syndrome’ [62], and ‘hypertension and obesity’ [63] compared to the ‘biomedicine plus lifestyle’ interventions with or without placebo, respectively, indicating significant effects on all included stroke risk factors by the CHM interventions compared to the control groups after treatment. Except the Bofu-tsusho-san (防风通圣散) used in two trials, all the other CHM interventions involved exploring a combination of multiple stroke risk factors were different and therefore it is unable to report the commonly used Chinese herbs which are vital for the efficacy of combined stroke risk factors across these six RCTs. The sample size of the RCTs focused upon combined stroke risk factors ranged from 20 to 106, and two of these RCTs failed to provide the age and gender profile of participants in the CHM and control groups [58, 60]. The duration of the RCTs exploring the combined stroke risk factors ranged from 4 to 6 months.

All RCTs focusing upon combined stroke risk factors reported safety-related information and no deaths were noted. Five out of these six RCTs reported that side effects only occurred in the CHM group [58, 60–63] including headache, dizziness, gastrointestinal reactions, and skin allergy. Only two RCTs focusing upon combined stroke risk factors identified their study limitations [60, 63], including failure to double-blind the RCT, short study period and carry-over effect. As for risk of bias of the RCTs focusing upon combined stroke risk factors, no trial reported appropriate allocation concealment and blinding of outcome assessment, and two trials were found to have a high risk of bias regarding the random sequence generation [60, 61].

Discussion

This paper reports the first comprehensive systematic review of the literature concerning the use of CHM amongst people at greatest risk(s) of stroke. A number of significant findings from our review are important for future evidence-based planning and priority setting for research in stroke prevention.

Our analyses show some positive efficacy and safety evidence of varied CHM interventions in lowering high blood pressure, high blood glucose, high cholesterol, high body BMI and a combination of multiple stroke risk factors. Importantly, our findings indicate that, compared to biomedicine alone/lifestyle modification alone/biomedicine plus lifestyle intervention, CHM monotherapy may be not sufficient enough for people to obtain their treatment goals when treating hypertension, diabetes, and hyperlipidemia, while an intervention of CHM as a supplement to biomedicine and/or a lifestyle intervention is more effective in lowering the levels of SBP/DBP, glucose, BMI, TC, 2hPG, and/or HbA1c. These findings from our review are in line with previous systematic reviews on CHM for cardiovascular diseases [12–14]. In addition, the evidence reported in the papers included with regards to the successful reversion from elevated blood glucose level to normal by using CHM interventions suggests that some CHM products, in combination with a lifestyle intervention, could be considered a potential effective therapeutic regimen for IGT, and these findings are consistent with a Cochrane review on CHM for IGT published in 2009 [13]. Although many RCTs identified in our review demonstrate the therapeutic benefits of CHM in people with a number of stroke risk factors, there is a lack of replicable evidence on CHM use in combined stroke risk factors. It is worth noting that a CHM product (red yeast rice preparation), a medicinal food [64], has been used several times not only for the management of hypertension but also for hyperlipidemia. However, the control interventions of all RCTs examining the efficacy of this rice preparation are different. Therefore, no trial included in our review paper has tested exactly the same CHM and control interventions for the treatment of any stroke risk factor(s).

Our findings show a large variation in the sample size and study period across the included RCTs. The potential risks of bias have been reported in the domains of allocation concealment, the blinding of participants and personnel, and/or the blinding of outcome assessment in the included RCTs. Most included trials have reported their safety information. No serious adverse events were noted although some studies showed some moderate side effects in the CHM groups.

Stroke risk factors vary by ethnic groups and such disparities may influence the etiology of stroke and the implementation of stroke prevention programs [65]. Nevertheless, the majority of studies on CHM use for stroke risk factors included in this review were conducted in China on Chinese populations. As such, the results shown in our review paper may not always be directly
applicable to populations at risk of stroke in other countries beyond China. Furthermore, CHM is often composed of a number of herbs and is prescribed based on the unique Chinese medicine theory—syndrome differentiation. The replicability of these trial designs without Chinese medicine practitioners is therefore difficult.

There are some limitations to our systematic review that should be mentioned. Generalisability of the results from this systematic review is limited. Meanwhile, the overall ‘unclear’ reporting of research methodology in the included RCTs may limit the quality of the results reported in this review. In addition, our review was restricted to English peer-reviewed journal articles.

Conclusion
Although the findings in this systematic review with regards to the effect of CHM for stroke modifiable risk factors should be interpreted with caution, the potential therapeutic benefits of CHM as a treatment—particularly in combination with biomedicine and/or lifestyle intervention—for different stroke risk factors needs to be further examined by conducting rigorous trials. Future research should be designed and implemented with adequate sample size, detailed reporting of the allocation concealment method, sufficient application of double-blinding with an adequate placebo and blinding of outcome assessment, and long-term follow-up in different countries. Moreover, it is important for future research on this topic to pay attention to potential drug-herb interactions as a major safety issue in trial design when participants need to take one or more co-administered biomedicine as well as CHM products.

Abbreviations
2hPG: 2-hour postprandial glucose; BMI: body mass index; BP: blood pressure; CHM: Chinese herbal medicine; DBP: diastolic blood pressure; FPG: fasting plasma glucose; HbA1c: glycated hemoglobin; HC: hip circumference; HDL: high-density lipoprotein; HDL-C: high-density lipoprotein cholesterol; HOMA-β: homeostatic model assessment β-cell function; HOMA-IR: homeostatic model assessment insulin resistance; IGT: impaired glucose tolerance; LDL-C: low-density lipoprotein cholesterol; LVMi: left ventricular mass index; MBP: mean blood pressure; OGTT: oral glucose tolerance test; PPG: postprandial plasma glucose; RCT: randomized controlled trial; SBP: systolic blood pressure; TC: total cholesterol; TG: triglyceride; TIA: transient ischaemic attack; TO: original heart rate; WC: waist circumference.

Authors’ contributions
DS designed the study. WP, CF and JF conducted the literature search. WP and RL extracted and interpreted the data. WP drafted the manuscript and prepared tables and figures. JA and DS contributed to the critical revisions of the manuscript. All authors read and approved the final manuscript.

Author details
1 Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Ultimo, NSW, Australia. 2 Centre for Cardiovascular and Chronic Care, University of Technology Sydney, Ultimo, NSW, Australia. 3 Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), Faculty of Health, University of Technology Sydney, Level 8, Building 10, 235–253 Jones St, Ultimo, NSW 2007, Australia.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All data used in this systematic review are fully available in the public domain.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This systematic review was funded by the Nancy and Vic Allen Stroke Prevention Fund.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 July 2017 Accepted: 30 August 2017 Published online: 05 September 2017

References
1. Kim J, Fann DY, Seet RC, Jo DG, Mattson MP, Arumugam TV. Phytochemicals in ischemic stroke. Neuronomol Med. 2016;8:283–305.
2. Mukherjee D, Patil CG. Epidemiology and the global burden of stroke. World Neurosurg. 2011;76:585–90.
3. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, et al. Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 2016;15:913–24.
4. Holloway RG, Benesch C, Rush SR. Stroke prevention: narrowing the evidence-practice gap. Neurology. 2000;54:1899–906.
5. Straus SE, Majumdar SR, McAlister FA. New evidence for stroke prevention: scientific review. JAMA. 2002;288:1388–95.
6. Collaboration Blood Pressure Lowering Treatment Trialists’ Effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomised trials. Lancet. 2000;356:1955–64.
7. Goldstein LB, Adams R, Alberts MJ, Appel LJ, Brass LM, Bushnell CD, et al. Primary prevention of ischemic stroke: a guideline from the American heart association/American stroke association stroke council: cosponsored by the atherosclerotic peripheral vascular disease interdisciplinary working group; cardiovascular nursing council; clinical cardiology council; nutrition, physical activity, and metabolism council; and the quality of care and outcomes research interdisciplinary working group: The American academy of neurology affirms the value of this guideline. Stroke. 2006;37:1583–633.
8. Wang J, Xiong X. Outcome measures of Chinese herbal medicine for hypertension: an overview of systematic reviews. Evid Based Complement Alternat Med. 2012;2012:7.
9. Hu J, Zhang J, Zhao W, Zhang L, Zhang H. Cochrane systematic reviews of Chinese herbal medicines: an overview. PLoS ONE. 2011;6:e28696.
10. National Center for Complementary and Integrative Health. Traditional Chinese medicine: in depth. 2013. https://nccih.nih.gov/health/whatiscam/chinesemed.htm. Accessed Oct 2013.
11. Tachjian A, Maria V, Jahangir A. Use of herbal products and potential interactions in patients with cardiovascular diseases. J Am Coll Cardiol. 2010;55:515–25.
12. Liu JP, Zhang M, Wang WY, Grimsgaard S. Chinese herbal medicines for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2004;4:CD003642.
13. Grant SJ, Bensoussan A, Chang D, Klat K, Klupp NL, Liu JP, et al. Chinese herbal medicines for people with impaired glucose tolerance or impaired fasting blood glucose. Cochrane Database Syst Rev. 2009;4:CD006690.
14. Liu ZL, Li GQ, Bensoussan A, Kiat H, Chan K, Liu JP. Chinese herbal medicines for hyperglycemia. Cochrane Database Syst Rev. 2013;6:CD009560.

15. Tong X, Dong L, Chen L, Zhen Z. Treatment of diabetes using traditional Chinese medicine: past, present and future. Am J Chin Med. 2012;40:877–86.

16. Sui Y, Zhao H, Wong V, Brown N, Li X, Kwan A, et al. A systematic review on use of Chinese medicine and acupuncture for treatment of obesity. Obes Rev. 2012;13:409–30.

17. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

18. Lin Z, Xing Z, Cai C, Tan H, Zhang C. Effects of tiamn gouteng decoction on the plasma endothelin of patients with primary hypertension of hyperactivity of the liver yang. Chin J Clin Rehabil. 2004;27:5992–3.

19. Li Y. A clinical study on haunglian fire-purging mixture in treatment of 46 cases of primary hypertension. J Tradit Chin Med. 2005;25:29–33.

20. Ye P, Wu C, Sheng L, Li H. Potential protective effect of long-term therapy with Xuezhikang on left ventricular diastolic function in patients with essential hypertension. J Altern Complement Med. 2009;15:719–25.

21. Zhao Y, Liu Y, Guan Y, Liu N. Effect of Yinian Jiangya Yin on primary hypertension in early stage—a clinical observations on 40 patients. J Tradit Chin Med. 2010;30:171–5.

22. Zhong G, Chen M, Luo Y, Xiang L, Xie Q, Li Y, et al. Effect of Chinese herbal medicine for calming Gan (肝) and suppressing hyperactive yang on arterial elasticity function and circadian rhythm of blood pressure in patients with essential hypertension. Chin J Integr Med. 2011;17:414–20.

23. Yang T, Wei J, Lee M, Chen C, Ueng K. A randomized, double-blind, placebo-controlled study to evaluate the efficacy and tolerability of Fufang Danshen (Salvia miltiorrhiza) as add-on antihypertensive therapy in Taiwanese patients with uncontrolled hypertension. Phytother Res. 2012;26:291–8.

24. Tong X, Lian F, Zhou Q, Xu L, Ji H, Xu G, et al. A prospective multicenter clinical trial of Chinese herbal formula JZQG (Jiangzhuoqinggan) for hypertension. Am J Chin Med. 2013;41:33–42.

25. Wu C, Zhang J, Zhao Y, Chen J, Liu Y. Chinese herbal medicine bushen qinggan formula for blood pressure variability and endothelial injury in hypertensive patients: a randomized controlled pilot clinical trial. Evid Based Complement Alternat Med. 2014;2014:7.

26. Li H, Liu L, Zhao W, Liu J, Yao M, Han Y, et al. Traditional Chinese versus integrative treatment in elderly patients with isolated systolic hypertension: a multicenter, randomized, double-blind controlled trial. J Integr Med. 2010;8:410–5.

27. Chen SL, Liu XY, Xu WM, Mei WY, Chen XL. Clinical study of Western medicine combined with Chinese medicine based on syndrome differentiation in the patients with polarized hypertension. Chin J Integr Med. 2012;18:746–51.

28. Gong C, Huang SL, Huang JF, Zhang ZF, Luo M, Zhao Y, et al. Effects of combined therapy of Xuezhikang Capsule and Walsartan on hypertension and hyperlipidemia in children. Chin J Integr Med. 2010;16:114–8.

29. Xu Y, Yan H, Yao MJ, Ma J, Jia JM, Ruan FX, et al. Cardioanlge vascular index evaluations revealed that cotreatment of ARB Antihypertension medication and traditional Chinese medicine improved arterial functionality. J Cardiovasc Pharmacol. 2013;61:355–60.

30. Chao M, Zou D, Zhang Y, Chen Y, Wang M, Wu H, et al. Improving insulin resistance with traditional Chinese medicine in type 2 diabetic patients. Endocrinol. 2009;36:268–74.

31. Ji L, Tong X, Wang H, Tian H, Zhou H, Zhang L, et al. Efficacy and safety of traditional Chinese medicine for diabetes: a double-blind, randomised, controlled trial. PLoS ONE. 2013;8:e56703.

32. Tong XL, Wu ST, Lian FW, Mao Z, Zhou SP, Chen XY, et al. The safety and effectiveness of TM81, a Chinese herbal medicine, in the treatment of type 2 diabetes: a randomized double-blind placebo-controlled trial. Diabetes Obes Metab. 2013;15:448–54.

33. Tu X, Xie C, Wang F, Chen Q, Zuo Z, Zhang Q, et al. Fructus Mume formula in the treatment of type 2 diabetes mellitus: A randomized controlled pilot trial. Evid Based Complement Alternat Med. 2013;2013:8.

34. Wu Q, Fan H. The research for the clinical curative effect through combining traditional Chinese medicine with insulin to cure diabetes. Pak J Pharm Sci. 2014;27:1057–61.

35. Cai H, Liu F, Zou P, Huang G, Song Z, Wang T, et al. Practical application of antidiabetic efficacy of Lycium barbarum polysaccharide in patients with type 2 diabetes. Med Chem. 2015;11:383–90.

36. Lian F, Tian J, Chen X, Li Z, Piao C, Guo J, et al. The efficacy and safety of Chinese herbal medicine Jinlida as add-on medication in type 2 diabetes patients ineffectively managed by metformin monotherapy: a double-blind, randomized, placebo-controlled, multicenter trial. PLoS ONE. 2015;10:e0130550.

37. Zhang X, Liu Y, Xiong D, Xie C. Insulin combined with Chinese medicine improves glycemic outcome through multiple pathways in patients with type 2 diabetes mellitus. J Diabetes Investig. 2015;6:708–15.

38. Hu Y, Zhou X, Liu P, Wang B, Duan D, Guo D. A comparison study of metformin only therapy and metformin combined with Chinese medicine jianyutangkang therapy in patients with type 2 diabetes: a randomized placebo-controlled double-blind study. Complement Ther Med. 2016;24:13–8.

39. Li M, Huang X, Ye H, Chen Y, Yu J, Yang J, et al. Randomized, double-blinded, double-dummy, active-controlled, and multiple-dose clinical study comparing the efficacy and safety of Mulberry Twig (Ramulus Mori, Sangzhig) Alkaloid Tablet and Acardose in individuals with type 2 diabetes mellitus. Evid Based Complement Alternat Med. 2016;2016:8.

40. Wang J, Lu Z, Chi J, Wang W, Su M, Kou W, et al. Multicenter clinical trial of the serum lipid-lowering effects of a Monascus purpureus (red yeast) rice preparation from traditional Chinese medicine. Curr Ther Res. 1997;58:964–78.

41. Yang H, Han L, Sheng T, He Q, Liang J. Effects of replenishing qi, promoting blood circulation and resolving phlegm on vascular endothelial function and blood coagulation system in senile patients with hyperlipidaemia. J Tradit Chin Med. 2006;26:120–4.

42. Ai J, Zhao L, Lu Y, Cai B, Zhang Y, Yang B. A randomized, multicentre, open-label, parallel-group trial to compare the efficacy and safety profile of dasmae capsule in patients with hypercholesterolemia. Phytother Res. 2009;23:1039–42.

43. Xu CF, Lin XR, Wang YK. Clinical observation on hyperlipemia treated with antihyperlipidemic decoction. J Tradit Chin Med. 2009;29:121–4.

44. Hu M, Zeng W, Tomlinson B. Evaluation of a Catacaeus-based multitherb formula for dyslipidemia: a randomized, double-blind, placebo-controlled clinical trial. Evid Based Complement Alternat Med. 2014;2014:365742.

45. Moriarty PM, Roth EM, Karns A, Ye P, Zhao SP, Luo Y, et al. Effects of Xuezhikang in patients with dyslipidemia: a multicenter, randomized, placebo-controlled study. J Clin Lipidol. 2014;8:568–75.

46. Deber D, Higginbotham JL, Eneman J, Elashoff DA, Elashoff RM, Go VL. Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice dietary supplement. Am J Clin Nutr. 1999;69:231–6.

47. Lin C, Li T, Lai M. Efficacy and safety of Monascus purpureus Went rice in subjects with hyperlipidemia. Eur J Endocrinol. 2005;153:679–86.

48. Wei Y, Hong YZ, Ye X. Effect of Tang No.1 granule in treating patients with impaired glucose tolerance. Chin J Integr Med. 2008;14:298–302.

49. Gao Y, Zhou H, Zhao H, Feng X, Feng J, Li Y, et al. Clinical research of traditional Chinese medical intervention on impaired glucose tolerance. Am J Chin Med. 2013;41:32–1.

50. Fang Z, Zhao J, Shi G, Shu Y, Ni Y, Wang H, et al. Shenzhu Tiaopi granule combined with lifestyle intervention therapy for impaired glucose tolerance: a randomized controlled trial. Complement Ther Med. 2014;22:842–50.

51. Lian F, Li G, Chen X, Wang X, Piao C, Wang J, et al. Chinese herbal medicine Tianqi reduces progression from impaired glucose tolerance to diabetes: a double-blind, randomized, placebo-controlled, multicenter trial. J Clin Endocrinol Metab. 2014;99:648–55.

52. Huang Y, Yang Q, Wang H, Xu Y, Peng W, Jiang Y. Long-term clinical effect of Tangyiyu Granules (糖衣平脉颗粒) on patients with impaired glucose tolerance. Chin J Integr Med. 2016;22:653–9.

53. Shi Y, Liu W, Zhang X, Su W, Chen N, Lu S, et al. Effect of Chinese herbal medicine Jinlida granule in treatment of patients with impaired glucose tolerance. Chin Med J. 2016;129:2281–6.

54. Grant SJ, Chang DH, Liu J, Wong V, Kiat H, Bensoussan A. Chinese herbal medicine for impaired glucose tolerance: a randomized placebo-controlled trial. BMC Complement Altern Med. 2013;13:104.

55. Pan L, Li D, Lei M, Zhang J, Zhou L. Preparation-containing node of Lotus Rhizome, green tea and Panax notoginseng for obese adults. Chin J Clin Rehabil. 2005;15:231–3.
56. Zhou Q, Chang B, Chen X, Zhou S, Zhen Z, Zhang L, et al. Chinese herbal medicine for obesity: a randomized, double-blinded, multicenter, prospective trial. Am J Chin Med. 2014;42:1345–56.

57. Lenon GB, Li X, Chang Y-H, Yang AW, Da Costa C, Li CG, et al. Efficacy and safety of a Chinese herbal medicine formula (RCM-104) in the management of simple obesity: a randomized, placebo-controlled clinical trial. Evid Based Complement Alternat Med. 2012;2012:435702.

58. Hioki C, Yoshimoto K, Yoshida T. Efficacy of bofu-tsusho-san, an oriental herbal medicine, in obese Japanese women with impaired glucose tolerance. Clin Exp Pharmacol Physiol. 2004;31:614–9.

59. Gao F, Hu X. Effect of TaiChi’ an capsule combined with Simvastatin on hyperlipidemia in diabetic patients. Chin J Integr Med. 2006;12:24–8.

60. Poppel PC, Breedveld P, Abbink EJ, Roelofs H, Heerde W, Smits P, et al. Salvia miltiorrhiza root water-extract (Danshen) has no beneficial effect on cardiovascular risk factors: a randomized double-blind cross-over trial. PLoS ONE. 2015;10:e0128695.

61. Chu SL, Fu H, Yang JX, Liu GX, Dou P, Zhang L, et al. A randomized double-blind placebo-controlled study of Pu’er tea extract on the regulation of metabolic syndrome. Chin J Integr Med. 2011;17:492–8.

62. Chen Y, Fu DY, He YM, Fu XD, Xu YQ, Liu Y, et al. Effects of Chinese herbal medicine Yiqi Huaju Formula on hypertensive patients with metabolic syndrome: a randomized, placebo-controlled trial. J Integr Med. 2013;11:184–9.

63. Azushima K, Tamura K, Haku S, Waku H, Kanaoka T, Ohsawa M, et al. Effects of the oriental herbal medicine Bofu-tsusho-san in obesity hypertension: a multicenter, randomized, parallel-group controlled trial (ATH-D-14-01021.R2). Atherosclerosis. 2015;240:297–304.

64. Lee C, Jan M, Yu M, Lin C, Wei J, Shih H. Relationship between adiponectin and leptin, and blood lipids in hyperlipidemia patients treated with red yeast rice. Forsch Komplementmed. 2013;20:197–203.

65. Heuschmann PU, Grieve AP, Toschke AM, Rudd AG, Wolfe CD. Ethnic group disparities in 10-year trends in stroke incidence and vascular risk factors. Stroke. 2008;39:2204–10.