EXCEPTIONAL DISCRETE MAPPING CLASS GROUP ORBITS IN MODULI SPACES

JOSEPH P. PREVITE AND EUGENE Z. XIA

ABSTRACT. Let M be a four-holed sphere and Γ the mapping class group of M fixing ∂M. The group Γ acts on the space $M_B(SU(2))$ of $SU(2)$-gauge equivalence classes of flat $SU(2)$-connections on M with fixed holonomy on ∂M. We give examples of flat $SU(2)$-connections whose holonomy groups are dense in $SU(2)$, but whose Γ-orbits are discrete in $M_B(SU(2))$. This phenomenon does not occur for surfaces with genus greater than zero.

1. Introduction

Let M be a Riemann surface of genus g with n boundary components (circles). Let

$$\{\gamma_1, \gamma_2, ..., \gamma_n\} \subset \pi_1(M)$$

be the elements in the fundamental group corresponding to these n boundary components. Assign each γ_i a conjugacy class $B_i \subset SU(2)$ and let

$$B = \{B_1, B_2, ..., B_n\},$$

$$H_B = \{\rho \in \text{Hom}(\pi_1(M), SU(2)) : \rho(\gamma_i) \in B_i, 1 \leq i \leq n\}.$$

A conjugacy class in $SU(2)$ is determined by its trace which is in $[-2, 2]$. Hence we might consider B as an element in $[-2, 2]^n$. The group $SU(2)$ acts on H_B by conjugation.

Definition 1.1. The moduli space with fixed holonomy B is

$$M_B = H_B / SU(2).$$

Denote by $[\rho]$ the image of $\rho \in H_B$ in M_B. The set of smooth points of M_B possesses a natural symplectic structure which gives rise to a finite measure μ on M_B (see [4, 5]).

Date: November 8, 2018.

1991 Mathematics Subject Classification. 57M05 (Low-dimensional topology), 54H20 (Topological Dynamics).

Key words and phrases. Fundamental group of a surface, mapping class group, Dehn twist, topological dynamics, character variety, moduli spaces.
Let $\text{Diff}(M, \partial M)$ be the group of diffeomorphisms of M fixing ∂M. The mapping class group Γ is $\pi_0(\text{Diff}(M, \partial M))$. The group Γ acts on $\pi_1(M)$ fixing the B_i’s. This action induces a Γ-action on \mathcal{M}_B.

Theorem 1.2 (Goldman). *The mapping class group Γ acts ergodically on \mathcal{M}_B with respect to the measure μ.***

Since \mathcal{M}_B has a natural topology, one may also study the topological dynamics of the mapping class group action and we have [4, 5]:

Theorem 1.3. *Suppose M is an orientable surface with boundary and $g > 0$. Let $\rho \in \mathcal{H}_B$ such that $\rho(\pi_1(M))$ is dense in $\text{SU}(2)$. Then the Γ-orbit of the conjugacy class $[\rho] \in \mathcal{M}_B$ is dense in \mathcal{M}_B.***

In this paper we show:

Theorem 1.4. *Let M be a four-holed sphere. Then there exists a subset $F \subset [-2, 2]^4$ of two real dimensions with the following property: Suppose $B \in F$. Then there exists $\rho \in \mathcal{H}_B$ with $\rho(\pi_1(M))$ dense in $\text{SU}(2)$, but the Γ-orbit of the conjugacy class $[\rho]$ is discrete in \mathcal{M}_B.***

Let G be a subgroup of $\text{SU}(2)$. We say that a representation ρ is a G-representation if $\rho(\pi_1(M)) \subset G$ up to conjugation by $\text{SU}(2)$. The group $\text{SU}(2)$ is a double cover of $\text{SO}(3)$:

$$p : \text{SU}(2) \longrightarrow \text{SO}(3).$$

The group $\text{SO}(3)$ contains $\text{O}(2)$, and the symmetry groups of the regular polyhedra: T' (the tetrahedron), C' (the cube), and D' (the dodecahedron). Let $\text{Pin}(2)$, \mathcal{T}, \mathcal{C}, and \mathcal{D} denote the groups $p^{-1}(\text{O}(2))$, $p^{-1}(T')$, $p^{-1}(C')$, and $p^{-1}(D')$, respectively. The proper closed subgroups of $\text{SU}(2)$ consist of \mathcal{T}, \mathcal{C}, \mathcal{D}, and the closed subgroups of $\text{Pin}(2)$. The group $\text{Pin}(2)$ has two components, and we write

$$\text{Pin}(2) = \text{Spin}(2) \cup \text{Spin}_-(2),$$

where $\text{Spin}(2)$ is the identity component of $\text{Pin}(2)$.

Remark 1.5. *Suppose $\rho \in \text{Hom}(\pi_1(M), \text{SU}(2))$. If $\rho(\pi_1(M))$ is not contained in any of the aforementioned closed subgroups, then it is dense in $\text{SU}(2)$.***

We adopt the following notational conventions: For a fixed representation ρ, $X \in \pi_1(M)$, we write X for $\rho(X)$ when there is no ambiguity. A small letter denotes the trace of the matrix represented by the corresponding capital letter.
2. The moduli space of the four-holed sphere

We first review some results that appear in [1, 2, 5]. Suppose M is a three-holed sphere. Then $\pi_1(M)$ has a presentation:

$$\langle A, B, C : ABC = I \rangle,$$

where $A, B, \text{ and } C$ represent the homotopy classes of the three boundaries of M.

Proposition 2.1.

1. A representation ρ on a three-holed sphere is a $\text{Spin}(2)$-representation if and only if

 $$a^2 + b^2 + c^2 - abc - 4 = 0.$$

2. A representation ρ on a three-holed sphere is a $\text{Pin}(2)$-representation and not a $\text{Spin}(2)$-representation if and only if

 $$a^2 + b^2 + c^2 - abc - 4 \neq 0 \quad \text{and at least two of the three: } A, B, AB, \text{ have zero trace.}$$

Proof. See [2, 5].

Suppose M is a four-holed sphere. Then the fundamental group $\pi_1(M)$ admits a presentation

$$\langle A, B, C, D : ABCD = I \rangle.$$

Set $X = AB, Y = BC,$ and $Z = CA$. Let $\kappa = (a, b, c, d) \in [-2, 2]^4$ be the holonomies on the boundary. Then the moduli space \mathcal{M}_κ is the subspace of $[-2, 2]^3$ given by the equation

$$x^2 + y^2 + z^2 + xyz = (ab + cd)x + (ad + bc)y + (ac + bd)z -(a^2 + b^2 + c^2 + d^2 + abcd - 4).$$

Remark 2.2. If two representations in \mathcal{M}_κ share (x, y, z), then they are conjugate.

Let

$$I_{a,b} = \left[\frac{ab - \sqrt{(a^2 - 4)(b^2 - 4)}}{2}, \frac{ab + \sqrt{(a^2 - 4)(b^2 - 4)}}{2}\right].$$

If $I_{a,b} \cap I_{c,d} \neq \emptyset$, then \mathcal{M}_κ is a (possibly degenerate) topological sphere (see Figure 1).

The mapping class group Γ of the 4-holed sphere is generated by three Dehn twists τ_X, τ_Y, τ_Z. In local coordinates, the actions are

$$\tau_X \begin{bmatrix} y \\ z \end{bmatrix} \rightarrow \begin{bmatrix} ad + bc - x(ac + bd - xy - z) - y \\ ac + bd - xy - z \end{bmatrix},$$

$$\tau_Y \begin{bmatrix} z \\ x \end{bmatrix} \rightarrow \begin{bmatrix} bd + ca - y(ba + cd - yz - x) - z \\ ba + cd - yz - x \end{bmatrix},$$

$$\tau_Z \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} cd + ab - z(cb + ad - zx - y) - x \\ cb + ad - zx - y \end{bmatrix}.$$
Consider
\[e^{i\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}, \quad \lambda = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \]
in Pin(2).

Proposition 3.1. Suppose \(\rho \in \mathcal{H}(a,b,c,d) \) with \(a, b, c, d \not\in \{\pm 2\} \) and \([\rho] = (x, y, z) \in \mathcal{M}_\kappa \). Then the representation \(\rho \) is a Spin(2)-representation if and only if \(x \) is an endpoint of both \(I_{a,b} \) and \(I_{c,d} \), \(y \) is an endpoint of both \(I_{b,c} \) and \(I_{a,d} \), and \(z \) is an endpoint of both \(I_{a,c} \) and \(I_{b,d} \).

Proof. First, suppose that \(\rho \) is a Spin(2)-representation. Then, up to conjugation,
\[\rho(A) = e^{i\theta_a}, \rho(B) = e^{i\theta_b}, \rho(C) = e^{i\theta_c}, \rho(D) = e^{i\theta_d}, \]
where \(\theta_a + \theta_b + \theta_c + \theta_d = 0 \). The endpoints of \(I_{a,b} \) are given by
\[\frac{1}{2} (ab \pm \sqrt{(4 - a^2)(4 - b^2)}) \]
\[= \cos(\theta_a + \theta_b) + \cos(\theta_a - \theta_b) \pm \frac{1}{2} \sqrt{(4 - 4 \cos^2(\theta_a))(4 - 4 \cos^2(\theta_b))} \]
\[= \cos(\theta_a + \theta_b) + \cos(\theta_a - \theta_b) \pm 2|\sin(\theta_a)\sin(\theta_b)| \]
\[= \cos(\theta_a + \theta_b) + \cos(\theta_a - \theta_b) \pm |\cos(\theta_a - \theta_b) - \cos(\theta_a + \theta_b)|. \]

This implies that an endpoint of \(I_{a,b} \) is equal to \(2\cos(\theta_a + \theta_b) \).

Similarly, an endpoint of \(I_{c,d} \) is equal to \(2\cos(\theta_c + \theta_d) \) which is equal to \(2\cos(\theta_a + \theta_b) \).

Thus \(x \) is equal to an endpoint of both \(I_{a,b} \) and \(I_{c,d} \). A similar argument shows that \(y \) must be an endpoint of \(I_{b,c} \) and \(I_{a,d} \), and also \(z \) must be an endpoint of \(I_{a,c} \) and \(I_{b,d} \).

To prove the converse, suppose that \(\rho \) is such that \(x \) is an endpoint
of both \(I_{a,b} \) and \(I_{c,d} \), \(y \) is an endpoint of both \(I_{b,c} \) and \(I_{a,d} \), and \(z \) is an endpoint of both \(I_{a,c} \) and \(I_{b,d} \).

Then \(2x = ab \pm \sqrt{(4 - a^2)(4 - b^2)} \) which implies that
\[4x^2 = a^2b^2 + 16 - 4a^2 - 4b^2 + a^2b^2 \pm 2ab\sqrt{(4 - a^2)(4 - b^2)} \]
\[= a^2b^2 + 16 - 4a^2 - 4b^2 + a^2b^2 \pm 2ab(\pm(2x - ab)). \]

Hence
\[x^2 + a^2 + b^2 - xab = 4 \]
which implies that \(\rho \) is a Spin(2)-representation on the three-holed sphere \((A, B, X)\) by Proposition 2.1. Similarly, \((C, D, X)\), \((A, C, Z)\), \((B, D, Z)\), \((A, D, Y)\), and \((B, C, Y)\) are all Spin(2)-representations. As \(A, B, C, \) and \(D \) all pairwise commute, we have that \(\rho \) is a Spin(2)-representation on the entire four-holed sphere.

Proposition 3.2. Let \(\rho \in \mathcal{H}_\kappa \) and \([\rho] = (x, y, z) \in \mathcal{M}_\kappa \). Suppose \(\rho \)
is a Pin(2)-representation but not a Spin(2)-representation then one of
the following two conditions holds:

1. \(\kappa = (0, 0, 0, 0) \),
2. \(\kappa = (0, 0, c, d) \), where \(y = 0 \) and \(z = 0 \), along with the five other
symmetric cases.

If \(\rho \) satisfies one of the two conditions above, then \(\rho \) is a Pin(2)-representation.

Proof. Let \(\rho \) be a Pin(2)-representation but not a Spin(2)-representation.
Then at least one of \(A, B, C, \) or \(D \) must be in Spin\(_{-}(2)\). However, since \(ABCD = I \), at least two of \(A, B, C, \) or \(D \) must be in Spin\(_{-}(2)\).
Suppose \(A, B \in \text{Spin}_{-}(2) \). If \(C \in \text{Spin}_{-}(2) \), then \(D \in \text{Spin}_{-}(2) \), then we obtain \(\kappa = (0, 0, 0, 0) \). If \(C \in \text{Spin}(2) \), then \(D \in \text{Spin}(2) \), which implies that \(AC, BC \in \text{Spin}_{-}(2) \), i.e., \(y = z = 0 \).

Now consider
\[A = \iota, B = -\iota e^{i\theta} \]
which are contained in a Pin(2) subgroup.
Case 1: Let $\rho \in H_\kappa$ with $\kappa = (0, 0, 0, 0)$ with x, y, z satisfying the equation $x^2 + y^2 + z^2 + xyz = 4$. We construct a Pin(2)-representation conjugate to ρ by setting $x = 2\cos\theta$ (in A and B above) and setting C equal to one of $e^{\pm i\psi}$, where $z = -2\cos\psi$. As $CA = -e^{\pm i\psi}$ and $Y = BC$ is either $e^{i(\theta + \psi)}$ or $e^{i(\theta - \psi)}$ whose traces are the two solutions of $x^2 + y^2 + z^2 + xyz = 4$ for fixed x and z. Therefore, this Pin(2)-representation is conjugate to ρ.

Case 2: Let $\rho \in H_\kappa$ with $\kappa = (0, 0, c, d)$ with $y = z = 0$. Thus x, c, d satisfy: $x^2 = cdx - c^2 - d^2 + 4$ implying that ρ restricted to (X, C, D) is a Spin(2)-representation by Proposition 2.1. We construct a Pin(2)-representation conjugate to ρ by setting $x = 2\cos\theta$ (in A and B above) and setting C to be $e^{i\psi}$ and $D = e^{-i(\psi + \theta)}$. As the traces of $Y = BC$ and $Z = AC$ are zero, this Pin(2)-representation is conjugate to ρ.

Propositions 3.1 and 3.2 provide a complete characterization of the Pin(2)-representation classes.

4. Examples

A direct computation shows that the traces of elements in the groups C, D are in the set $S = \{0, \pm 1, \pm \sqrt{2}, \pm \frac{\sqrt{5} + 1}{2}, \pm \frac{\sqrt{5} - 1}{2}, \pm 2\}$.

Let F be the set of $\kappa = (a, a, c, -c) \in [-2, 2]^4$ satisfying the following conditions:

1. $a^2 + c^2 < 4$,
2. $a \neq 0$ and $c \neq 0$,
3. $a \notin S$ or $c \notin S$.

Consider the space \mathcal{M}_κ with $\kappa \in F$. A direct computation shows

$$\mathcal{O} = \{(a^2 - 2, 0, 0), (2 - c^2, 0, 0)\} \subset \mathcal{M}_\kappa$$

is Γ-invariant. By condition 1,

$$I_{a,a} \cap I_{c,-c} = [a^2 - 2, 2] \cap [-2, 2 - c^2] = [a^2 - 2, 2 - c^2]$$

is a closed interval. Again by condition 1, $a, c \neq \pm 2$. Hence Proposition 3.1 implies that elements in \mathcal{O} do not correspond to Spin(2)-representations. By condition 2, $a, c \neq 0$, so the elements in \mathcal{O} do not correspond to Pin(2)-representations by Proposition 3.2. Finally, by condition 3, they do not correspond to C, D-representations. Thus, by Remark 1.3, the elements in the discrete orbit \mathcal{O} correspond to representations with dense images in SU(2). This proves Theorem 1.4.

Figure 1 shows one such case with $\kappa = (\sqrt{2}, \sqrt{2}, \frac{1}{2}, -\frac{1}{2})$. The special orbit \mathcal{O} consists of the two points that are intersections of the x-axis
with \mathcal{M}_κ, i.e. $\mathcal{O} = \{(0, 0, 0), (\frac{7}{4}, 0, 0)\}$. Below is a representation in the conjugacy class $(0, 0, 0) \in \mathcal{O} \subset \mathcal{M}_\kappa$:

$$A = B = \begin{bmatrix} \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i & 0 \\ 0 & \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \end{bmatrix} \quad \text{and} \quad C = -D = \begin{bmatrix} \frac{1}{4} + \frac{1}{4}i & \frac{\sqrt{13}}{4} \\ -\frac{\sqrt{13}}{4} & \frac{1}{4} - \frac{1}{4}i \end{bmatrix}.$$