EXPLICIT AND ASYMPTOTIC FORMULAE FOR VASYUNIN–COTANGENT SUMS

Mouloud Goubi, Abdelmejid Bayad, and Mohand Ouamar Hernane

Abstract. For coprime numbers p and q, we consider the Vasyunin–cotangent sum

\[V(q, p) = \sum_{k=1}^{p-1} \left\{ \frac{kq}{p} \right\} \cot \left(\frac{\pi k}{p} \right). \]

First, we prove explicit formula for the symmetric sum $V(p, q) + V(q, p)$ which is a new reciprocity law for the sums (0.1). This formula can be seen as a complement to the Bettin–Conrey result [13, Theorem 1]. Second, we establish asymptotic formula for $V(p, q)$. Finally, by use of continued fraction theory, we give formula for $V(p, q)$ in terms of continued fraction of $\frac{p}{q}$.

1. Introduction and statement of results

1.1. Introduction. Let $H = L^2([0, \infty]; t^{-2}dt)$ be the Hilbert space with the inner product

\[\langle f, g \rangle = \int_0^\infty f(t)g(t)t^{-2}dt, \quad f, g \in H. \]

For any real number x, $\lfloor x \rfloor$ is the integer part of x, and $\{ x \} = x - \lfloor x \rfloor$ is the fractional part of x. Let p be a positive integer. Denote by e_p the function in H given by $e_p(t) = \{ t/p \}$. The properties of the subspace $H_n = \text{Vect}(e_1, \ldots, e_n)$ spanned by the functions e_1, \ldots, e_n is studied in [6, 8]. Consider the characteristic function

\[\chi(t) := \begin{cases} 1, & \text{if } t \in [1, \infty], \\ 0, & \text{otherwise}. \end{cases} \]

2010 Mathematics Subject Classification: Primary: 11B99, 11F67, 11E45; Secondary: 11M26, 11B68.

Key words and phrases: Vasyunin-cotangent sum, Estermann zeta function, fractional part function, Riemann Hypothesis.

Supported by Université d’Evry Val d’Essonne and PHC-Tassili program 14MDU914.

Communicated by Gradimir Milovanović.
The distance d_n from χ to the subspace H_n is given by $d_n = \text{dist}(\chi, H_n) = \inf_{h \in H_n} \|\chi - h\|$. In [7] it conjectured that

$$d_n^2 \sim \frac{2 + \gamma - \log 4\pi + o(1)}{\log n}, \quad n \to +\infty. \quad (1.2)$$

Balazard and Roton proved in [9] that

$$d_n^2 \geq \frac{2 + \gamma - \log 4\pi}{\log n}, \quad n \to +\infty.$$

It is well known that conjecture (1.2) implies the Riemann hypothesis [2–6, 8]. For computation aspects of d_n, we refer to Landreau et al [18].

For fixed $n > 1$, from [10], we quote the formula

$$d_n^2 = \frac{\text{Gram}(\chi, e_1, \ldots, e_n)}{\text{Gram}(e_1, \ldots, e_n)}.$$

To compute this quantity, we need to evaluate two types of inner products, namely, $\langle \chi, e_p \rangle$, $\langle e_p, e_q \rangle$. The first one is given in [6, §1] by

$$\langle \chi, e_p \rangle = \frac{\log p + 1 - \gamma}{p}.$$

On the other hand, for two coprime numbers p, q, the second inner product is given by Vasyunin formula [8, 28]

$$(1.3) \quad \langle e_p, e_q \rangle = \frac{\log 2\pi - \gamma}{2} \left(\frac{1}{p} + \frac{1}{q} \right) + \frac{p - q}{2pq} \log \frac{q}{p} - \frac{\pi}{2pq} [V(q, p) + V(p, q)]$$

where

$$(1.4) \quad V(q, p) = \sum_{k=1}^{p-1} \left\{ \frac{kq}{p} \right\} \cot \left(\frac{\pi k}{p} \right).$$

The Vasyunin–cotangent sum $V(p, q)$ still curious. Recently, Bettin and Conrey [13, Theorem 1] proved a formula for

$$\frac{q}{p} V(q, p) + V(\bar{p}, \bar{q})$$

where $p\bar{p} \equiv 1(q)$ and $q\bar{q} \equiv 1(p)$ with $1 \leq \bar{p} \leq q$, $1 \leq \bar{q} \leq p$.

For $q = 1$, the cotangent sum (1.4) is first studied by Vasyunin [28]. He proved the asymptotic formula (for large p)

$$V(1, p) = -\frac{p \log p}{\pi} + \frac{p}{\pi} (\log 2\pi - \gamma) + O(\log p).$$

This formula is improved by Rassias [26] and Maier and Rassias [20] as follows

$$V(1, p) = -\frac{p \log p}{\pi} + \frac{p}{\pi} (\log 2\pi - \gamma) + O(1).$$

Let $p, n \in \mathbb{N}$, $p > 6N$, with $N = \left\lfloor \frac{n}{4} \right\rfloor + 1$. Maier and Rassias [21, Theorem 1.7] proved that there exist absolute real constants $A_1, A_2 \geq 1$ and absolute real
constants E_l, $l \in \mathbb{N}$ with $|E_l| \leq (A_1 l)^{2l}$, such that for each n, we have

$$V(1, p) = -\frac{p \log p}{\pi} + \frac{p}{\pi} \left(\log 2\pi - \gamma \right) + \frac{1}{\pi} \sum_{l=1}^{n} \frac{E_l}{p^{-l}} - R_n^*(p)$$

where $|R_n^*(p)| \leq (n A_2)^{4n} p^{-(n+1)}$.

The sum $V(p, q)$ can be interpreted as the value of the Estermann zeta function $[13, 17]$ at $s = 0$

$$E_0\left(s, \frac{p}{q}\right) = \sum_{k \geq 1} \frac{\tau(k)}{n^s} \exp\left(\frac{2\pi ik p}{q}\right).$$

Recently, this sum is studied in $[12, 13]$ and it is proved that $V(p, q)$ satisfies the reciprocity formula for all positive coprime numbers p and q

$$\frac{q}{p} V(q, p) + V(\hat{p}, q) = -\frac{1}{\pi} g\left(\frac{q}{p}\right)$$

where g is an analytic function in $C \setminus \mathbb{R}_-$, which has the following asymptotic expansion of order $N > 2$

$$g(x) = -\log 2\pi x - \gamma - \frac{2}{\pi} \sum_{k=2}^{N} \frac{\zeta(k) B_k}{k} x^k + O(x^{N+1}),$$

B_k is the k^{th} Bernoulli number. Since $\zeta(2k) = (-1)^k 2^{-2k-1} \pi^{2k} B_{2k}/(2k)!$, we have

$$g(x) = -\log 2\pi x - \gamma - \left(\frac{N}{2}\right) \sum_{k=1}^{\lfloor N/2\rfloor} (-1)^k 4^k x^{2k-1} \frac{B_{2k}}{k(2k)!} x^k + O(x^{N+1}).$$

1.2. Statement of main results. Now consider the digamma function

$$\psi(z) = -\gamma - \frac{1}{z} + \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k + z} \right)$$

and the symmetric function

$$G(p, q) = \sum_{r=1}^{pq-1} (\psi\left(\frac{r}{pq}\right) - \psi\left(\frac{r}{pq}\right)) \binom{r}{p} \binom{r}{q}.$$

We state a new reciprocity formula $V(p, q)$.

Theorem 1.1. For p, q positive coprime numbers, we have

$$V(p, q) + V(q, p) = \frac{1}{\pi} \log p^{q-1} q^{p-1} - \frac{2}{\pi} - pq \left(\frac{1}{p} q - \frac{1}{q} p\right) - \frac{2}{pq} G(p, q).$$

Corollary 1.1. For p, q positive coprime numbers, we have

$$\langle e_p, e_q \rangle = \frac{2 + (\log 2\pi - \gamma)(p + q)}{2pq} - \frac{1}{2pq} \log p^{q-1} q^{p-1}$$

$$+ \frac{\pi}{2} \left(g\left(\frac{1}{p}\right) + g\left(\frac{1}{q}\right) \right) + \frac{1}{pq} G(p, q).$$

Next, we state an asymptotic formula for the sum $V(\hat{a}, pa + r)$.

Let \(p \) be large and \(a \) be an integer such that \((a, pa + r) = 1 \), \(a \equiv 1 \) (mod \(ap + r \)) and \(\bar{r} \equiv 1 \) (mod \(a \)). Then for large \(p \), we have

\[
V(\bar{a}, pa + r) = -\left(p - \frac{r}{a}\right)V(\bar{r}, a) - \frac{1}{\pi a} + \frac{1}{\pi} \left(p + \frac{r}{a}\right) \left(\log \frac{2\pi a}{pa + r} - \gamma\right) + \frac{1}{2} \sum_{k=1}^{\lfloor N/2 \rfloor} (-1)^k \frac{4^k \pi^{2k-1} B_{2k}}{k(2k)!} \left(\frac{a}{pa + r}\right)^{2k-1} + O\left(\frac{1}{p^N}\right).
\]

We get the following corollary.

Corollary 1.2. Let \(a \geq 1 \). For large \(p \), we have

\[
V(p + 1, ap + a - 1) = -\left(p - 1 - \frac{1}{a}\right)V(1, a) - \frac{1}{\pi a} + \frac{1}{\pi} \left(p + 1 - \frac{1}{a}\right) \left(\log \frac{2\pi a}{(p + 1)a - 1} - \gamma\right) + \frac{1}{2} \sum_{k=1}^{\lfloor N/2 \rfloor} (-1)^k \frac{4^k \pi^{2k-1} B_{2k}}{k(2k)!} \left(\frac{a}{(p + 1)a - 1}\right)^{2k-1} + O\left(\frac{1}{p^N}\right).
\]

In the particular case \(a = 1 \), we have

\[
V(1, p) = \frac{1}{\pi} \left(\log \frac{2\pi}{p} - \gamma\right) p - \frac{1}{\pi} - \frac{\pi}{144p} + \frac{1}{2} \sum_{k=2}^{\lfloor N/2 \rfloor} (-1)^k \frac{4^k \pi^{2k-1} B_{2k}}{k(2k)!} \left(\frac{1}{p}\right)^{2k-1} + O\left(\frac{1}{p^N}\right).
\]

Relation (1.12) improves asymptotic formula (1.5) proved by Maier and Rassias in [21, Theorem 1.7]. In what follows, we give a few examples.

Examples 1.1. For large \(p \) we have

\[
V(p + 1, 2p + 1) = -\frac{1}{2\pi} + \frac{1}{\pi} \left(p + \frac{1}{2}\right) \left(\log \frac{4\pi}{2p + 1} - \gamma\right) + \frac{1}{2} \sum_{k=1}^{\lfloor N/2 \rfloor} (-1)^k \frac{4^k \pi^{2k-1} B_{2k}}{k(2k)!} \left(\frac{2}{2p + 1}\right)^{2k-1} + O\left(\frac{1}{p^N}\right).
\]

\[
V(2p + 1, 3p + 1) = -\frac{p + \frac{1}{3}}{3\pi} - \frac{1}{3\pi} \left(p + \frac{1}{3}\right) \left(\log \frac{3\pi}{2} - \gamma\right) + \frac{1}{2} \sum_{k=1}^{\lfloor N/2 \rfloor} (-1)^k \frac{4^k \pi^{2k-1} B_{2k}}{k(2k)!} \left(\frac{3}{3p + 1}\right)^{2k-1} + O\left(\frac{1}{p^N}\right).
\]

\[
V(p + 1, 3p + 2) = \frac{p + \frac{2}{3}}{3\pi} - \frac{1}{3\pi} \left(p + \frac{2}{3}\right) \left(\log \frac{6\pi}{5} - \gamma\right) + \frac{1}{2} \sum_{k=1}^{\lfloor N/2 \rfloor} (-1)^k \frac{4^k \pi^{2k-1} B_{2k}}{k(2k)!} \left(\frac{3}{3p + 2}\right)^{2k-1} + O\left(\frac{1}{p^N}\right).
\]
Let \(28\) in \([1.14]\).

As a consequence of Theorem 1.1, we find a new expression for \(\langle V \rangle\). Moreover, we have

\[
\text{Corollary 1.3. Let } q = \lfloor b_0, \ldots, b_n \rfloor \text{ and } (q_k)_k \text{ the associated sequence: } q_{k-1} = b_{k-1}q_k + q_{k+1}, q_0 = q, q_1 = p, q_n = 1. \text{ Then we have}
\]

\[
(1.13) \quad V(q, p) = -\frac{1}{\pi} - p \left(\frac{1}{p}\right) - \frac{1}{\pi} \log p q + \frac{1}{\pi} \log q + (-1)^n \log q_{n-1}
\]

\[
- \frac{1}{\pi} \sum_{k=1}^{n-2} (-1)^k (q_k \log q_{k+1} + q_{k+1} \log q - 2G(q_k, q_{k+1})).
\]

Moreover, we have

\[
(1.14) \quad V(q, p) = -\frac{1}{\pi} (1 + \log f_1) - q \left(f_1 g \left(\frac{1}{q f_1}\right) - \frac{1}{\pi} \sum_{k=1}^{n-2} (-1)^k (f_k \log f_{k+1} + f_{k+1} \log f_k)\right)
\]

\[
+ \frac{(-1)^n}{\pi} \log f_{n-1} + \frac{(-1)^n - 1}{\pi} \log q + ((-1)^n f_{n-1} - f_1) \frac{\log q}{\pi}
\]

\[
+ \frac{2}{\pi} \sum_{k=1}^{n-2} (-1)^k G(q f_k, q f_{k+1}), \text{ where } f_k = \prod_{j=1}^{k} [0, b_{j-1}, \ldots, b_n].
\]

1.3. General case: \(p, q\) arbitrary. Let \(\omega = \gcd(p, q) \geq 1\). Vasyunin formula in [28] is given by

\[
\langle e_p, e_q \rangle = \frac{\log 2\pi - \gamma}{2} \left(\frac{1}{p} + \frac{1}{q}\right) + \frac{p - q}{2pq} \log \frac{q}{p} - \frac{\pi \omega}{2pq} \left(\left(\frac{p}{\omega}, \frac{q}{\omega}\right) + \left(\omega, \frac{p}{\omega}\right)\right).
\]

As a consequence of Theorem 1.1, we find a new expression for \(\langle e_p, e_q \rangle\):

\[
\langle e_p, e_q \rangle = \frac{2\omega + (\log 2\pi - \gamma)(p + q)}{2pq}
\]

\[
- \frac{1}{2pq} \left((p - \omega) \log p + (q - \omega) \log q - (p + q - 2\omega) \log \omega\right)
\]

\[
+ \frac{\pi}{2} \left(\frac{1}{p} \log \left(\frac{\omega}{q}\right) + \frac{1}{q} \log \left(\frac{\omega}{p}\right)\right) + \frac{\omega}{pq} G\left(\frac{p}{\omega}, \frac{q}{\omega}\right).
\]
2. Proof of Theorem 1.1 and Corollary 1.1

We start this section with some useful prelimaries results.

2.1. Computation of \(\langle v_p, v_q \rangle \).

Let \(p \) be a positive integer and \(v_p \) be the function given by \(v_p(t) = \{[t]/p\} \); \(v_p \) is defined on \(\mathbb{R}_+ \) and it can be seen as the restriction of \(e_p \) to \(\mathbb{N} \). Since \(v_p(x) = \begin{cases} 0, & \text{if } x \in [0, 1], \\ \{k/p\}, & x \in [k, k + 1] \end{cases} \)
we have the relation
\[
(2.1) \quad v_p = e_p - \frac{1}{p} e_1.
\]

Then, from the definition (1.1), we get
\[
\langle v_p, v_q \rangle = \sum_{k \geq 1} \frac{1}{k(k+1)} \{k/p\} \{k/q\}.
\]

Lemma 2.1. Let \(p, q \) coprime numbers. Then we have
\[
\frac{2pq}{\pi} \langle v_p, v_q \rangle = V(1, p) + V(1, q) - (V(p, q) + V(q, p)) + \frac{1}{\pi} \log p^{q-1} q^{p-1}.
\]

Proof. Using the expression (2.1), we get
\[
\langle v_p, v_q \rangle = \langle e_p - \frac{1}{p} e_1, e_q - \frac{1}{q} e_1 \rangle = \langle e_p, e_q \rangle + \frac{1}{pq} \langle e_1, e_q \rangle - \frac{1}{p} \langle e_1, e_q \rangle - \frac{1}{q} \langle e_1, e_p \rangle
\]

On the other hand, from the Vasyunin formula (1.3), we obtain
\[
\langle e_1, e_q \rangle = \frac{\log 2\pi - \gamma}{2} \left(1 + \frac{1}{q} \right) + \frac{1}{2q} \log q - \frac{\pi}{2q} V(1, q),
\]
\[
\langle e_1, e_p \rangle = \frac{\log 2\pi - \gamma}{2} \left(1 + \frac{1}{p} \right) + \frac{1}{2p} \log p - \frac{\pi}{2p} V(1, p),
\]
\[
\langle e_p, e_q \rangle = \frac{\log 2\pi - \gamma}{2} \left(1 + \frac{1}{p} \right) + \frac{p - q}{2pq} \log q - \frac{\pi}{2pq} \left[V(q, p) + V(p, q) \right].
\]

Therefore we deduce
\[
\frac{2pq}{\pi} \langle v_p, v_q \rangle = V(1, p) + V(1, q) - (V(p, q) + V(q, p)) + \frac{1}{\pi} (q \log p + p \log q - \log pq). \quad \Box
\]

The series
\[
(2.2) \quad \sum_{k \geq 1} \frac{1}{k(k+1)} \{k/p\} \{k/q\}
\]
is convergent. Let us rewrite it in another form. For integer \(k \) we set \(k \equiv r(pq) \), \(1 \leq r \leq pq - 1 \) and then \(\{k/p\} \{k/q\} = \{r/p\} \{r/q\} \). The series (2.2) is equal to
\[
(2.3) \quad \sum_{r=1}^{pq-1} \sum_{i \geq 0} \frac{1}{(ipq + r)(ipq + r + 1)} \{r/p\} \{r/q\}.
\]
Finally, to estimate $\langle v_p, v_q \rangle$ we need to compute the sums
\[\sum_{i \geq 0} \frac{1}{(ipq + r)(ipq + r + 1)}. \]

Lemma 2.2. For a, b two distinct positive numbers we have
\[\sum_{k=0}^\infty \frac{1}{(k+a)(k+b)} = \frac{\psi(a) - \psi(b)}{a-b}. \]

Proof. We write
\[(a/b) = \frac{1}{b} + \sum_{k \geq 1} \left(\frac{1}{k+b} - \frac{1}{k+a} \right) = (a-b) \sum_{k=0}^\infty \frac{1}{(k+a)(k+b)}. \]

Corollary 2.1. Let $\alpha > 0$. We have
\[\sum_{k=0}^\infty \frac{1}{(\alpha k + a)(\alpha k + b)} = \frac{\psi(\alpha/a) - \psi(\alpha/b)}{\alpha(a-b)}. \]

From [19], we have the integral representation
\[\psi(a) - \psi(b) = \int_0^\infty \frac{e^{-bt} - e^{-at}}{1-e^{-t}} \, dt. \]

Thus, we can get
\[\sum_{k=0}^\infty \frac{a-b}{(k+a)(k+b)} = \sum_{k=0}^\infty \left(\frac{1}{k+b} - \frac{1}{k+a} \right) = \sum_{k=0}^\infty \int_0^1 \left(x^{k+b-1} - x^{k+a-1} \right) \, dx \\
= \int_0^1 x^{b-1} - x^{a-1} \, dx = \int_0^\infty \frac{e^{-bt} - e^{-at}}{1-e^{-t}} \, dt. \]

Hence, the special case $\alpha = pq$ of relations (1.7), (2.3), and (2.4) gives the result.

Corollary 2.2. For p, q arbitrary, we have
\[\sum_{k \geq 1} \frac{pq}{k(k+1)} \left\{ \frac{k}{p} \right\} \left\{ \frac{k}{q} \right\} = G(p, q). \]

2.2. Proofs of Theorem 1.1 and Corollary 1.1. From Lemma 2.1 and Corollary 2.2, we deduce that
\[2G(p, q) = V(1, p) + V(1, q) - (V(p, q) + V(q, p)) + \frac{1}{\pi} \log p^q - q^{p-1}. \]

Therefore, we get (1.8) from the expression
\[V(1, p) = -\frac{1}{\pi} - pq \left(\frac{1}{p} \right). \]

We can obtain the formula (1.9) by use of the reciprocity formula (1.8) and the Vasyunin formula (1.3).
3. Proof of Theorem 1.2 and Corollary 1.2

From the reciprocity law (1.6), we have
\[\frac{a}{pa + r} V(\bar{a}, pa + r) + V(\bar{r}, a) = -\frac{1}{\pi (pa + r)} \cdot g(\frac{a}{pa + r}) \]
and then we obtain
\[V(\bar{a}, pa + r) = -\frac{pa + r}{a} V(\bar{r}, a) - \frac{1}{\pi a} \cdot \frac{pa + r}{a} \cdot g(\frac{a}{pa + r}). \]
Moreover, for large \(p \) we have
\[g(\frac{a}{pa + r}) = -\frac{1}{\pi} \left(\log \frac{2\pi a}{pa + r} - \gamma \right) - \frac{1}{2} \sum_{k=1}^{\lfloor N/2 \rfloor} (-1)^k \frac{4^k \pi^{2k-1} B_{2k}^2}{k(2k)!} \left(\frac{a}{pa + r} \right)^k + O\left(\frac{1}{p^N + 1} \right). \]
Taking \(r = a - 1 \), one remarks that for \(a \geq 1 \) \((p + 1)a \equiv 1 \pmod{pa + a - 1}\) and \((a - 1)^2 \equiv 1(a)\). Then \(\bar{a} = p + 1 \) and \(\bar{r} = r = a - 1 \). Since \(V(a - 1, a) = V(1, a) \) and thanks to relation (1.10) of Theorem 1.2, we obtain relation (1.11). Finally from relation (1.11) we can get (1.12).

4. Proofs of Theorem 1.3 and Corollary 1.3

4.1. Continued fractions – an overview. In this subsection we quote some facts about continued fractions, that will be useful later. For more details we refer to [25, §7]. For real number \(x \) let
\[x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ldots}}} = [a_0, a_1, a_2, \ldots] \]
be its continued fraction expansion with partial quotients \(a_0 \in \mathbb{Z}, a_k \in \mathbb{N} \setminus \{0\}, k \geq 1 \). In fact, we can determine \(a_0, a_1, \ldots, a_n \) via the algorithm:

- \(x = [x] + \{x\}, a_0 = [x], \xi_0 = \{x\}, \) if \(\xi_0 = 0 \), then \(x \) is represented by \(x = [a_0]. \)
- if \(\xi_0 \neq 0 \) then \(\left\lfloor \frac{1}{\xi_0} \right\rfloor > 1, r_1 = \frac{1}{\xi_0} \) we obtain \(x = [a_0, r_1], a_1 = [r_1] \) and \(\xi_1 = r_1 - a_1 \); if \(\xi_1 = 0 \) then \(x = a_0 + \frac{1}{r_1} = a_0 + \frac{1}{a_1} = [a_0, a_1]. \)
- Otherwise we take \(r_2 = \frac{1}{\xi_1} \) and iterate the process.

We then get the sequence \(a_0, a_1, a_2, \ldots \). This sequence is finite if and only if \(x \) is a rational number. In the rational case, this algorithm is the Euclidian algorithm. Let us express \(a/b \) as a continued fraction of the form \(a/b = [a_0, a_1, \ldots, a_n], \) with \(a_{n+1} = 0 \). We can determine \(a_0, a_1, \ldots, a_n \) by the Euclidean algorithm
\[p_{k-1} = a_{k-1}p_k + p_{k+1}, \quad p_0 = a, \quad p_1 = b, \quad p_{n+1} = 0. \]
Then \(p_n = \gcd(p, q) = 1 \). We quote from [25, §7] the following elementary properties of continued fractions which are needed in this paper. We omit their proofs.
Lemma 4.1. Let \([a_0, a_1, \ldots, a_n]\) be continued fraction. Then
\[
[a_0, a_1, \ldots, a_n] = [a_0, a_1, \ldots, a_{n-1} + \frac{1}{a_n}],
\]
\[
[a_0, a_1, \ldots, a_n] = a_0 + \frac{1}{[a_1, \ldots, a_n]}.
\]
We get this lemma from the continued fraction definition. Let \(s_k, t_k\) be two sequences of integers
\[
s_k = \begin{cases}
0, & \text{if } k = -2 \\
1, & \text{if } k = -1 \\
a_k s_{k-1} + s_{k-2}, & \text{if } k \geq 0
\end{cases}
\]
\[
t_k = \begin{cases}
1, & \text{if } k = -2 \\
0, & \text{if } k = -1 \\
a_k t_{k-1} + t_{k-2}, & \text{if } k \geq 0
\end{cases}
\]
The sequences \(p_k, s_k\) and \(t_k\) have the following properties.

Lemma 4.2.
\[
[a_0, a_1, \ldots, a_k] = \frac{s_k}{t_k}, \quad k \geq 0,
\]
\[
[a_k, a_{k-1}, \ldots, a_1] = \frac{t_k}{t_{k-1}}, \quad k \geq 1,
\]
\[
[0, a_{k-1}, \ldots, a_0] = \frac{p_k}{p_{k-1}}, \quad k \geq 0,
\]
\[
[a_k, a_{k-1}, \ldots, a_n] = \frac{s_k}{s_{k-1}}, \quad k \geq 0.
\]
This lemma represents the classical properties of the continued fractions. The quotient \(\frac{s_k}{t_k}\) is called the \(k\)-th convergent of the continued fraction of \(\frac{a}{b}\).

Corollary 4.1. Let \(\frac{a}{b} = [a_0, a_1, \ldots, a_n]\); then
\[
p_k = b \prod_{j=2}^{k} [0, a_{j-1}, \ldots, a_n], \quad k \geq 2,
\]
\[
b = p_k t_{k-1} + p_{k+1} t_{k-2}, \quad k \geq 1.
\]

Lemma 4.3. The sequences \(s_k, t_k\) and \(p_k\) satisfy
\[
t_k s_{k-1} - t_{k-1} s_k = (-1)^k,
\]
\[
p_k = (-1)^k (a t_{k-2} - b s_{k-2}).
\]

Proposition 4.1. Under the hypothesis of Corollary 4.1, we have
\[
\sum_{k=1}^{n-1} \frac{(-1)^k}{p_k p_{k+1}} = \frac{1}{b^2 [a_0, a_1, \ldots, a_{n-2}] - ab},
\]

Proof. We have from Lemma 4.3
\[
\sum_{k=1}^{n-1} \frac{(-1)^k}{p_k p_{k+1}} = \frac{1}{b} \sum_{k=1}^{n-1} \left(\frac{(-1)^k t_{k-1}}{p_{k+1}} + \frac{(-1)^k t_{k-2}}{p_k} \right)
\]
\[= \frac{1}{b} \sum_{k=1}^{n-1} \frac{(-1)^k t_{k-1}}{p_{k+1}} + \frac{1}{b} \sum_{k=1}^{n-1} \frac{(-1)^k t_{k-2}}{p_k}\]

\[= \frac{1}{b} \sum_{k=2}^{n} \frac{(-1)^{k-1} t_{k-2}}{p_k} + \frac{1}{b} \sum_{k=1}^{n-1} \frac{(-1)^k t_{k-2}}{p_k}\]

\[= \frac{(-1)^{n-1} t_{n-2}}{p_n b} = \frac{t_{n-2}}{b p_1} = \frac{(-1)^{n-1} t_{n-2}}{p_n b}.\]

From (4.5) we deduce \(p_n = (-1)^n(at_{n-2} - bs_{n-2})\) and then

\[(4.7) \quad \frac{(-1)^{n-1} p_n}{t_{n-2}} = \left(b s_{n-2} - a\right).\]

The relation (4.2) implies that

\[(4.8) \quad \frac{s_{n-2}}{t_{n-2}} = [a_0, a_1, \ldots, a_{n-2}]\]

From the relations (4.7) and (4.8) we have

\[
\frac{(-1)^{n-1} t_{n-2}}{p_n b} = \frac{1}{b^2[a_0, a_1, \ldots, a_{n-2}] - ab}
\]

Therefore we obtain

\[
\sum_{k=1}^{n-1} \frac{(-1)^k}{p_k p_{k+1}} = \frac{1}{b^2[a_0, a_1, \ldots, a_{n-2}] - ab}. \quad \square
\]

4.2. Application: Computation of \(V(p, q)\).

Using reciprocity formula (1.6) and continued fractions properties, we can get an explicit formula for \(V(p, q)\).

Lemma 4.4. Let \(p\) and \(q\) coprime positive numbers. We have

\[(4.9) \quad V(p, q) = \sum_{k=1}^{n-1} \frac{(-1)^k}{p_k p_{k+1}} - q \sum_{k=2}^{n} \frac{(-1)^k}{p_k} g\left(\frac{p_k}{n-1}\right).\]

Proof. From the reciprocity law (1.6), with \(p = a\), \(q = b\) and the sequence \((p_k)_k\) defined in the relation (4.1), we have

\[(4.10) \quad \frac{1}{p_{k-1}} V(\hat{p}_k, p_{k-1}) + \frac{1}{p_k} V(\hat{p}_{k-1}, p_k) = \frac{1}{p_k} \left(\frac{1}{\pi p_{k-1}} + g\left(\frac{p_k}{p_{k-1}}\right)\right).\]

Observe that

\[p_{k-1} = a_{k-1} p_k + p_{k+1}, \quad \hat{p}_{k-1} = \hat{p}_{k+1}, \quad V(\hat{p}_{k-1}, p_k) = V(\hat{p}_{k+1}, p_k),\]

then the relation (4.10) becomes

\[
\frac{1}{p_{k-1}} V(\hat{p}_k, p_{k-1}) + \frac{1}{p_k} V(\hat{p}_{k+1}, p_k) = -\frac{1}{p_k} \left(\frac{1}{\pi p_{k-1}} + g\left(\frac{p_k}{p_{k-1}}\right)\right).
\]

We have the computation

\[
\sum_{k=1}^{n} \left[\frac{(-1)^k}{p_{k-1}} V(\hat{p}_k, p_{k-1}) + \frac{(-1)^k}{p_k} V(\hat{p}_{k+1}, p_k)\right]
\]
\[\begin{align*}
&= \sum_{k=1}^{n} \frac{(-1)^k}{p_{k-1}} V(p_k, p_{k-1}) + \sum_{k=1}^{n} \frac{(-1)^k}{p_k} V(p_{k+1}, p_k) \\
&= \sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{p_k} V(p_{k+1}, p_k) + \sum_{k=1}^{n} \frac{(-1)^k}{p_k} V(p_{k+1}, p_k) \\
&= -\frac{1}{p_0} V(p_1, p_0) + \frac{(-1)^n}{p_n} V(p_{n+1}, p_n).
\end{align*}\]

Since \(p_{n+1} = 0\), the relation \(V(p_{n+1}, p_n) = 0\) implies
\[\sum_{k=1}^{n} \left[\frac{(-1)^k}{p_{k-1}} V(p_k, p_{k-1}) + \frac{(-1)^k}{p_k} V(p_{k+1}, p_k) \right] = -\frac{1}{p} V(q, \bar{p})\]
\[= -\frac{1}{p} V(q, \bar{p}) - \frac{1}{q} V(p, q) + \sum_{k=2}^{n} \left[\frac{(-1)^k}{p_{k-1}} V(p_k, p_{k-1}) + \frac{(-1)^k}{p_k} V(p_{k+1}, p_k) \right].\]

Moreover,
\[\frac{1}{q} V(p, q) = \sum_{k=2}^{n} \left[\frac{(-1)^k}{p_{k-1}} V(p_k, p_{k-1}) + \frac{(-1)^k}{p_k} V(p_{k+1}, p_k) \right]\]
then we deduce
\[\frac{1}{q} V(p, q) = -\frac{1}{q} V(p, q) + \sum_{k=2}^{n} \left[\frac{(-1)^k}{p_{k-1}} V(p_k, p_{k-1}) + \frac{(-1)^k}{p_k} V(p_{k+1}, p_k) \right].\]

4.3. Proof of Theorem 1.3 and Corollary 1.3. First, we prove Theorem 1.3. Taking \(a = \bar{p}\) and \(b = q\), by virtue of relation (4.6) we obtain
\[\begin{align*}
\frac{q}{\pi} \sum_{k=1}^{n} \frac{(-1)^k}{p_{k+1}} = \frac{1}{q[a_0, a_1, \ldots, a_{n-2}] - \bar{p}}.
\end{align*}\]

From (4.4) we get
\[\frac{1}{p_k} = \frac{1}{q} \prod_{j=2}^{k} [a_j-1, \ldots, a_n], \quad k \geq 2,
\]
and from (4.3) we obtain
\[\begin{align*}
\sum_{k=2}^{n} \frac{(-1)^k}{p_k} g\left(\frac{p_k}{p_{k+1}}\right) = \sum_{k=2}^{n} \frac{1}{q} g([a_{k-1}, \ldots, a_n]) \prod_{j=2}^{k} [a_{j-1}, \ldots, a_n].
\end{align*}\]

Substituting the quantities (4.11) and (4.12) into (4.9) we get Theorem 1.3.

To prove Corollary 1.3, notice that for \(p \equiv r(q)\) we have
\[\begin{align*}
V(p, q) &= \begin{cases} 0, & \text{if } r = 0 \\ V(r, q), & \text{otherwise.} \end{cases}
\end{align*}\]
We have also

\[\sum_{k=1}^{n-1} (-1)^k \theta(q_{k-1}, q_k) = \sum_{k=1}^{n-1} (-1)^k [V(q_{k-1}, q_k) + V(q_k, q_{k-1})] \]

where

\[\theta(q_{k-1}, q_k) = \frac{1}{\pi} (q_{k-1} \log q_k + q_k \log q_{k-1} - \log q_k - \log q_{k-1}) \]

- \frac{2}{\pi} - q_k - g \left(\frac{1}{q_k} \right) - g \left(\frac{1}{q_k} \right) - \frac{2}{\pi} G(q_{k-1}, q_k). \]

From (4.13) we have \(V(q_{k+1}, q_k) = V(q_{k-1}, q_k) \) and \(V(q_{n-1}, q_n) = 0 \), and then

\[\sum_{k=1}^{n-1} (-1)^k \theta(q_{k-1}, q_k) = \sum_{k=1}^{n-1} (-1)^k V(q_{k-1}, q_k) + \sum_{k=1}^{n-1} (-1)^k V(q_k, q_{k-1}) \]

\[= \sum_{k=0}^{n-2} (-1)^k V(q_{k+1}, q_k) + \sum_{k=1}^{n-2} (-1)^{k+1} V(q_{k+1}, q_k) \]

\[= -V(p, q) - (-1)^n V(q_n, q_{n-1}). \]

In addition we have

\[\sum_{k=1}^{n-1} (-1)^k \theta(q_{k-1}, q_k) = \frac{1}{\pi} \sum_{k=1}^{n-1} (-1)^k \left[q_{k-1} \log q_k + q_k \log q_{k-1} - \log q_k - \log q_{k-1} \right] \]

\[= -\frac{2}{\pi} \sum_{k=1}^{n-1} (-1)^k \left[1 + G(q_{k-1}, q_k) \right] \]

\[- \sum_{k=1}^{n-1} (-1)^k \left[q_{k-1} \log \left(\frac{1}{q_{k-1}} \right) + q_k \log \left(\frac{1}{q_k} \right) \right] \]

and we push this computation we arrive to

\[\sum_{k=1}^{n-1} (-1)^k \left[q_{k-1} \log \left(\frac{1}{q_{k-1}} \right) + q_k \log \left(\frac{1}{q_k} \right) \right] \]

\[= \sum_{k=1}^{n-1} (-1)^k q_{k-1} \log \left(\frac{1}{q_{k-1}} \right) + \sum_{k=1}^{n-1} (-1)^k q_k \log \left(\frac{1}{q_k} \right) \]

\[= \sum_{k=0}^{n-2} (-1)^{k+1} q_k \log \left(\frac{1}{q_k} \right) + \sum_{k=1}^{n-1} (-1)^k q_k \log \left(\frac{1}{q_k} \right) \]

\[= -q \log \left(\frac{1}{q} \right) + (-1)^{n-1} q_{n-1} \log \left(\frac{1}{q_{n-1}} \right). \]

We have also

\[\sum_{k=1}^{n-1} (-1)^k \log q_{k-1} q_k = \sum_{k=1}^{n-1} (-1)^k \log q_{k-1} + \log q_k \]

\[= \sum_{k=1}^{n-1} (-1)^k \log q_{k-1} + \sum_{k=1}^{n-1} (-1)^k \log q_k \]
\[= \sum_{k=0}^{n-2} (-1)^{k+1} \log q_k + \sum_{k=1}^{n-1} (-1)^k \log q_k \]
\[= - \log q - (-1)^n \log q_{n-1}. \]

Then we have
\[-V(p, q) - (-1)^n V(q_n, q_{n-1}) = \frac{1}{n} \sum_{k=1}^{n-1} (-1)^k (q_{k-1} \log q_k + q_k \log q_{k-1}) + qg \left(\frac{1}{q} \right) \]
\[+ (-1)^n q_{n-1} g \left(\frac{1}{q_{n-1}} \right) - \frac{2}{n} \sum_{k=1}^{n-1} (-1)^k [1 + G(q_{k-1}, q_k)] + \frac{1}{n} (\log q + (-1)^n \log q_{n-1}) \]
and
\[-V(p, q) = (-1)^n V(q_n, q_{n-1}) + (-1)^n q_{n-1} g \left(\frac{1}{q_{n-1}} \right) - \frac{1}{n} (\log p + p \log q) \]
\[+ g \left(\frac{1}{q} \right) + \frac{2}{n} (1 + G(q, p)) + \frac{1}{n} (\log q + (-1)^n \log q_{n-1}) \]
\[- \frac{1}{n} \sum_{k=1}^{n-2} (-1)^k [q_k \log q_{k+1} + q_{k+1} \log q_k - 2G(q_k, q_{k+1}) - 2] \]
\[= \frac{(-1)^{n+1}}{n} - V(p, q) - V(q, p) - \frac{1}{n} \log pq - pg \left(\frac{1}{p} \right) \]
\[+ \frac{1}{n} (\log q + (-1)^n \log q_{n-1}) \]
\[- \frac{1}{n} \sum_{k=1}^{n-2} (-1)^k [q_k \log q_{k+1} + q_{k+1} \log q_k - 2G(q_k, q_{k+1}) - 2]. \]

Then we complete the proof of the relation (1.13)
\[V(q, p) = - \frac{1}{n} - pg \left(\frac{1}{p} \right) - \frac{1}{n} \log pq + \frac{1}{n} (\log q + (-1)^n \log q_{n-1}) \]
\[- \frac{1}{n} \sum_{k=1}^{n-2} (-1)^k [q_k \log q_{k+1} + q_{k+1} \log q_k - 2G(q_k, q_{k+1})]. \]

We observe that for any integer \(1 \leq k \leq n \) we have
\[q_k = q \prod_{j=1}^{k} [b_{j-1}, \ldots, b_n], \]
so that we can get (1.14) from (1.13).

5. Further identities on \(V(p, q) \) and computation

In this section we relate the sums \(V(p, q) \) to some interesting and well-known convergent series. The functions \(\psi \) and cotangent are related by the reflection formula [1, §6.3.7]
\[\psi(1 - z) - \psi(z) = \pi \cot(\pi z). \]
Moreover, ψ can be written in terms of harmonic function $H_n(z) = \sum_{k=0}^{n} \frac{1}{k+z}$ and the n-th harmonic number $H_n = \sum_{k=1}^{n} \frac{1}{k}$ as follows.

Lemma 5.1. Let $z \in \mathbb{C}$ such that $\text{Re}(z) > 0$. Then we have

$$\psi(z) = \lim_{n \to \infty} (\log n - H_n(z))$$

at $z = n$ positive integer we have

(5.2) $$\psi(n+1) = -\gamma + H_n.$$

Proof. It is is easy to see that

$$\psi(z) = -\gamma - \frac{1}{z} + \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+z} \right) = \lim_{n \to \infty} \left(\log n - \sum_{k=0}^{n} \frac{1}{k+z} \right).$$

Then

$$\psi(n+1) = \lim_{m \to \infty} \left(\log m - \sum_{k=0}^{m} \frac{1}{k+n+1} \right) = \lim_{m \to \infty} \left(\log m - \sum_{k=n}^{m+n} \frac{1}{k+1} \right)$$

$$= \lim_{m \to \infty} \left(\log m - \sum_{k=0}^{m+n} \frac{1}{k+1} + \sum_{k=0}^{n-1} \frac{1}{k+1} \right)$$

$$= \lim_{m \to \infty} \left(\log(m+n) - \sum_{k=0}^{m+n} \frac{1}{k+1} \right) + H_n = -\gamma + H_n. \quad \Box$$

Proposition 5.1. For $x = \frac{p}{q}$ with $(p, q) = 1$, we have

(5.3) $$V(p, q) = \frac{1}{\pi q} \sum_{k \geq 0} \sum_{r=1}^{q-1} \frac{r(1-2rx)}{(k+1-rx)(k+rx)}. $$

Proof. We have

$$V(p, q) = \sum_{r=1}^{q-1} \left\{ \frac{r\bar{p}}{q} \right\} \cot \left(\frac{\pi r}{q} \right) = \sum_{r=1}^{q-1} \frac{r}{q} \cot \left(\frac{\pi r\bar{p}}{q} \right).$$

By reflection formula (5.1) we have

$$\cot \left(\frac{\pi r\bar{p}}{q} \right) = \frac{1}{\pi} \left(\psi \left(\frac{q-r\bar{p}}{q} \right) - \psi \left(\frac{r\bar{p}}{q} \right) \right).$$

From relations (1.7) and (2.5) we have

$$\psi \left(\frac{q-r\bar{p}}{q} \right) - \psi \left(\frac{r\bar{p}}{q} \right) = q \sum_{k \geq 0} \frac{q-2r\bar{p}}{(q(k+1)-r\bar{p})(qk+r\bar{p})}.$$

Then

$$V(p, q) = \frac{1}{\pi} \sum_{r=1}^{q-1} \sum_{k \geq 0} \frac{r(q-2r\bar{p})}{(q(k+1)-r\bar{p})(qk+r\bar{p})}.$$
and we obtain
\[V(p, q) = \frac{1}{\pi q} \sum_{r=1}^{q-1} \sum_{k \geq 0} \frac{r(1 - 2rx)}{(k + 1 - rx)(k + rx)}. \]

As an immediate consequence we derive

Corollary 5.1. Let \(q \) be a positive integer; we have

\[
V(1, q) = -\frac{q(\psi(q) + \gamma - 2) + 2}{\pi} + \frac{1}{\pi} \sum_{k \geq 1} \sum_{r=1}^{q-1} \frac{r(q - 2r)}{(q(k + 1) - r)(qk + r)},
\]

\[
V(1, q) = -\frac{q(\psi(q) + \gamma - 2) + 2}{\pi} - \frac{1}{\pi} \sum_{k \geq 1} \sum_{r=1}^{\lfloor q/2 \rfloor} \frac{(q - 2r)^2}{(q(k + 1) - r)(qk + r)}.
\]

Proof. From (5.3), special case \(p = 1 \), we can get

\[
V(1, q) = \frac{1}{\pi q} \sum_{r=0}^{q-1} \frac{r(1 - 2r/q)}{(k + 1 - r/q)(k + r/q)}
\]

then we have

\[
V(1, q) = \frac{1}{\pi} \sum_{r=0}^{q-1} \sum_{k \geq 0} \frac{r(q - 2r)}{(q(k + 1) - r)(qk + r)}
\]

and

\[
V(1, q) = \frac{1}{\pi} \sum_{r=0}^{q-1} \frac{q - 2r}{q - r} - \frac{1}{\pi} \sum_{k \geq 1} \sum_{r=1}^{q-1} \frac{r(q - 2r)}{(q(k + 1) - r)(qk + r)}
\]

\[
= \frac{1}{\pi} (q(2 - H_{q-1}) - 2) + \frac{1}{\pi} \sum_{k \geq 1} \sum_{r=1}^{q-1} \frac{r(q - 2r)}{(q(k + 1) - r)(qk + r)}.
\]

From (5.2) we obtain (5.4). To end the proof we use that for \(t + r = q \), we have

\[
\frac{1}{(q(k + 1) - r)(qk + r)} = \frac{1}{(q(k + 1) - t)(qk + t)}.
\]

\[
r(q - 2r) + t(q - 2t) = (q - 2r)^2.
\]

Proposition 5.2. The sum \(V(1, q) \) has the following integral representation.

\[
V(1, q) = -\frac{1}{\pi} \int_0^1 \left(\frac{(q - 2)x^q - qx^{q-1} + qx - q + 2}{(x - 1)^2(x^q - 1)} - 1 \right) dx.
\]

Remark 5.1. Note that from (5.5) and (2.6) we deduce that

\[
g\left(\frac{1}{q}\right) = \frac{1}{\pi q} \int_0^1 \left(\frac{(q - 2)x^q - qx^{q-1} + qx - q + 2}{(x - 1)^2(x^q - 1)} - 1 \right) dx.
\]
Proof. From the relation (5.4) we have
\[V(1;q) = \frac{1}{\pi} \sum_{r=1}^{q-1} q \sum_{k \geq 0} \frac{q - 2r}{(q(k + 1) - r)(qk + r)} \]
and
\[\frac{q - 2r}{(q(k + 1) - r)(qk + r)} = \frac{1}{qk + r} - \frac{1}{qk + q - r} = \int_0^1 (x^{qk+r-1} - x^{qk+q-r-1}) \, dx. \]
Then
\[\sum_{k \geq 0} \frac{q - 2r}{(q(k + 1) - r)(qk + r)} = \int_0^1 \frac{x^{r-1} - x^{q-r-1}}{1 - x^q} \, dx \]
which gives
\[V(1;q) = -\frac{1}{\pi} \int_0^1 \sum_{r=1}^{q-1} \frac{r(x^{r-1} - x^{q-r-1})}{x^q - 1} \, dx. \]
On the other hand
\[\sum_{r=1}^{q-1} r x^{r-1} = \left(\frac{x^q - 1}{x - 1} \right)' = \frac{(q - 1)x^q - qx^{q-1} + 1}{(x - 1)^2} \]
this completes the proof of the desired proposition. \(\square\)

Thanks to the Proposition 5.2 we give few values of \(V(1;p)\)

Example 5.1.
\[
V(1, 2) = 0, \\
V(1, 3) = -\frac{1}{\pi} \int_0^1 \frac{dx}{x^2 + x + 1} = -\frac{1}{3\sqrt{3}}, \\
V(1, 4) = -\frac{2}{\pi} \int_0^1 \frac{dx}{x^2 + 1} = -\frac{1}{2}, \\
V(1, 6) = -\frac{1}{\pi} \int_0^1 \left(\frac{3}{x^2 - x + 1} + \frac{1}{x^2 + x + 1} \right) \, dx = -\frac{7}{3\sqrt{3}}.
\]

6. Another estimation of \(V(p,q) + V(q,p)\)

In this section we establish another asymptotic formula for the sum \(V(p,q) + V(q,p)\). For this we prove the lemma

Lemma 6.1. Let \(p\) be a positive integer. We have
\[
\frac{\log p}{p} = \sum_{k \geq 1} \frac{1}{k(k+1)} \left(\frac{k}{p} \right), \\
\sum_{r=1}^{pq-1} \left(\frac{r}{p} \right) \left(\frac{r}{q} \right) = \frac{(p-1)(q-1)}{4}.
\]
Proof. We have

\[
\sum_{k \geq 1} \frac{1}{k(k+1)} \left(\frac{k}{p} \right) = \sum_{k \geq 1} \left(\frac{k}{p} \right) \int_0^1 (x^{k-1} - x^k) dx
\]

\[= \sum_{r=1}^{p-1} \sum_{i \geq 0} \left(\frac{r}{p} \right) \int_0^1 (x^{ip+r-1} - x^{ip+r}) dx
\]

\[= \frac{1}{q} \int_0^1 \frac{\sum_{r=1}^{p-1} r x^{r-1}}{1 + x + \cdots + x^{p-1}} dx = \frac{\log p}{p}.
\]

Thus we obtain (6.1). Let us write

\[
\sum_{r=1}^{pq-1} \left(\frac{r}{p} \right) \left(\frac{r}{q} \right) = \sum_{i=0}^{p-1} \sum_{t=1}^{q-1} \left(\frac{iq + t}{p} \right) \left(\frac{t}{q} \right) = \frac{1}{p q} \sum_{t=1}^{q-1} \sum_{i=0}^{p-1} \left(\frac{iq + t}{p} \right)
\]

and we take \(r = p\left(\frac{iq + t}{p} \right) \), observe that \(r \) is integer and runs from 1 to \(p - 1 \). Then, we have

\[
\sum_{r=1}^{pq-1} \left(\frac{r}{p} \right) \left(\frac{r}{q} \right) = \frac{1}{p q} \sum_{t=1}^{q-1} \sum_{r=1}^{p-1} tr = \frac{(p-1)(q-1)}{4}.
\]

Remark 6.1. Another proof of the relation (6.1) is given in [10].

The geometry of \((r/p) \) is studied in [14, 24]. In next corollary we write \(\log p \) as linear combination of \((r/p) \) for \(1 \leq r \leq p - 1 \).

Corollary 6.1. Let \(p \) a positive integer. Then we have

\[
\log p = \frac{1}{p} \sum_{r=1}^{p-1} r \left(\psi \left(\frac{r+1}{p} \right) - \psi \left(\frac{r}{p} \right) \right).
\]

Proof. We start with the equalities

\[
\frac{\log p}{p} = \sum_{k \geq 1} \frac{1}{k(k+1)} \left(\frac{k}{p} \right) = \sum_{r=1}^{p-1} \left(\sum_{i \geq 0} \frac{1}{(ip+r)(ip+r+1)} \right) \left(\frac{r}{p} \right)
\]

and from (2.4) we have

\[
\sum_{i=0}^{\infty} \frac{1}{(pi+r)(pi+r+1)} = \frac{\psi(r+1)/p - \psi(r/p)}{p}
\]

thus the result follows.

Proposition 6.1. Let \(p, q \) two coprime integers and put

\[
\Delta(p, q) = 2 \pi \left(1 + \max \left\{ \frac{(p-1)(q-1)}{4} \psi \left(\frac{1}{pq} \right), \min\{q - \gamma - \psi(q), p - \gamma - \psi(p)\} \right\} \right).
\]

Then we have

\[
\Delta(p, q) < \frac{1}{\pi} \log p^{q-1} q^{p-1} - pg \left(\frac{1}{p} \right) - qg \left(\frac{1}{q} \right) - V(p, q) - V(q, p)
\]

(6.2)
\[\langle v_p, v_q \rangle \leq \frac{2 + 2\sqrt{pq \log p \log q}}{\pi}. \]

Proof. From the equality (6.1) we remark that

\[
\langle v_p, v_q \rangle \leq \sum_{k \geq 1} \frac{1}{k(k+1)} \left\{ \frac{k}{p} \right\} = \frac{\log p}{p} \quad \text{and} \quad \langle v_p, v_q \rangle \leq \sum_{k \geq 1} \frac{1}{k(k+1)} \left\{ \frac{k}{q} \right\} = \frac{\log q}{q}
\]

we deduce that \(\langle v_p, v_q \rangle \leq \sqrt{\log p \log q / pq} \). For \(q < p \) we have

\[
\langle v_p, v_q \rangle > \frac{1}{pq} \sum_{k=1}^{q-1} \frac{k}{k+1}.
\]

Similarly if \(p < q \) we have \(\langle v_p, v_q \rangle > \frac{1}{pq} \sum_{k=1}^{p-1} \frac{k}{k+1} \). Therefore we have

\[
\langle v_p, v_q \rangle > \frac{1}{pq} \left(q - \sum_{k=1}^{q-1} \frac{1}{k+1} \right) \quad \text{or} \quad \langle v_p, v_q \rangle > \frac{1}{pq} \left(p - \sum_{k=1}^{p-1} \frac{1}{k+1} \right).
\]

From (5.2) we have

\[
\langle v_p, v_q \rangle > \frac{1}{pq} (q - \gamma - \psi(q)) \quad \text{or} \quad \langle v_p, v_q \rangle > \frac{1}{pq} (p - \gamma - \psi(p))
\]

and then \(\langle v_p, v_q \rangle > \frac{1}{pq} \min \{ q - \gamma - \psi(q), p - \gamma - \psi(p) \} \). Finally we obtain

\[
\frac{1}{\pi pq} \min \{ q - \gamma - \psi(q), p - \gamma - \psi(p) \} < \frac{1}{\pi} \langle v_p, v_q \rangle \leq \sqrt{\log p \log q / pq}.
\]

In addition we have

\[
pq \langle v_p, v_q \rangle = G(p, q) = \sum_{r=1}^{pq-1} \left(\psi \left(\frac{r+1}{pq} \right) - \psi \left(\frac{r}{pq} \right) \right) \left\{ \frac{r}{p} \right\} \left\{ \frac{r}{q} \right\}
\]

and for \(x > 0 \) and \(0 < y < 1 \), from Sulaiman [27, Theorem 2.2] we have the inequality \(\psi(x + y) - \psi(x) \geq \psi(y) \). Taking \(x = \frac{r}{pq} \) and \(y = \frac{1}{pq} \), from above inequalities we obtain

\[
G(p, q) \geq \psi \left(\frac{1}{pq} \right) \sum_{r=1}^{pq-1} \left\{ \frac{r}{p} \right\} \left\{ \frac{r}{q} \right\} \geq \frac{(p-1)(q-1)}{4} \psi \left(\frac{1}{pq} \right).
\]

Furthermore

\[
\frac{1}{pq} \max \left\{ \frac{(p-1)(q-1)}{4} \psi \left(\frac{1}{pq} \right), \min \{ q - \gamma - \psi(q), p - \gamma - \psi(p) \} \right\}
\]

\[< \langle v_p, v_q \rangle \leq \sqrt{\log p \log q / pq}.
\]

Then we have

\[
\frac{2}{\pi} \max \left\{ \frac{(p-1)(q-1)}{4} \psi \left(\frac{1}{pq} \right), \min \{ q - \gamma - \psi(q), p - \gamma - \psi(p) \} \right\}
\]

\[< \frac{2}{\pi} G(p, q) \leq \frac{2}{\pi} \sqrt{pq \log p \log q}.
\]
From the formula (1.8) we obtain
\[\frac{2}{\pi} G(p, q) + \frac{2}{\pi} = \frac{1}{\pi} \log p^q q^{p-1} - (V(p, q) + V(q, p)) - pg\left(\frac{1}{p}\right) - qg\left(\frac{1}{q}\right). \]
This implies the relation (6.2). \(\square\)

References
1. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Function with Formula, Graphs and Mathematical Tables, tenth printing with corrections, US Department of Commerce, New York, 1972.
2. L. Báez-Duarte, On Beurling real variable reformulation for the Riemann hypothesis, Adv. Math. 101 (1993), 10–30.
3. , News versions of the Nyman–Beurling criterion for the Riemann hypothesis, Int. J. Math. Math. Sci. 31(7) (2002), 387–406.
4. , A strengthening of the Nyman–Beurling criterion for the a Riemann hypothesis, Rend. Mat. Acc. Lincei (9) 14 (2003), 5–11.
5. , A general strong Nyman–Beurling criterion for the Riemann hypothesis, Publ. Inst. Math., Nouv. Sér. 78(92) (2005), 117–125.
6. L. Báez-Duarte, M. Balazard, B. Landreau, E. Saias, Etude de l’autocorrélations multiplicative de la fonction partie fractionnaire, Ramanujan J. 9(1–2) (2005), 215–240.
7. , Notes sur la fonction ζ de Riemann, 3, Adv. Math. 149(1) (2000), 130–144.
8. M. Balazard, Sur les dilatations entières de la fonction partie fractionnaire, Funct. Approximatio, Comment. Math. 35 (2006), 37–49.
9. M. Balazard, A. de Roton, Sur un critère de Báez-Duarte pour l’hypothèse de Riemann, Int. J. Number Theory 6(4) (2010), 883–903.
10. A. Bayad, M. Goubi, Proof of the Möbius conjecture revisited, Proc. Jangjeon Math. Soc. 16(2) (2013), 237–243.
11. P. Barrucand, M. Dehoué, Fraction continues, sommes de Dedekind et formes quadratiques, Rend. Circ. Mat. Palermo (2) 33(1) (1984), 62–84.
12. S. Bettin, J. B. Conrey, Period functions and cotangent sums, Algebra Number Theory 7(1) (2013), 215–242.
13. A reciprocity formula for a cotangent sum, Int. Math. Res. Not. 2013(24) (2013), 5709–5726.
14. S. Gun, M. Ram Murty, P. Rath, Linear independence of digamma function and a variant of a conjecture of Rohrlich, J. Number Theory 129(8) (2009), 1858–1873.
15. D. Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113–116.
16. K. Girstmair, Continued fractions and Dedekind sums: three term relations and distribution, J. Number Theory 119(1) (2006), 66–85.
17. M. Ishibashi, The value of the Estermann zeta function at s = 0, Acta Arith. 73(4) (1995), 357–361.
18. B. Landreau, F. Richard, Le critère de Beurling et Nyman pour l’hypothèse de Riemann: aspects numériques, Exp. Math. 11(3) (2002), 349–360.
19. L. A. Medina, V. H. Moll, The integrals in Gradshteyn and Ryzhik. Part 10: The digamma function, Sci., Ser. A, Math. Sci. (N.S.) 17 (2009), 45–66.
20. H. Maier, M. Th. Rassias, The order of magnitude for moments for certain cotangent sums, J. Math. Anal. Appl. 429(1) (2015), 576–590.
21. Generalizations of a cotangent sum associated to the Estermann zeta function, Commun. Contemp. Math. 18 (2016), 1550078, 89 pp.
22. The rate of growth of moments of certain cotangent sums, Aequationes Math. (2015), DOI 10.1007/s00010-015-0361-3.
23. Asymptotics and equidistribution of cotangent sums associated to the Estermann and Riemann zeta functions, in: J. Sander, J. Steuding, R. Steuding (Eds.), From Arithmetic
to Zeta-Functions. Number Theory in Memory of Wolfgang Schwarz, Springer, Basel (to appear).

24. M. Ram Murty, N. Saradha, Transcendental values of the digamma function, J. Number Theory 125(2) (2007), 298–318.

25. I. Niven, H. S. Zuckerman, An Introduction to the Theory of Numbers, 3rd ed., New York, (1972)

26. M. Th. Rassias, A cotangent sum related to the zeros of the Estermann zeta function, Appl. Math. Comput. 240 (2014), 161–167.

27. W. T. Sulaiman, Turan inequalities for the digamma and polygamma functions, South Asian J. Math. 1(2) (2011), 49–55.

28. V. I. Vasyunin, On a biorthogonal system associated with the Riemann hypothesis, Algebra Anal. 7(3) (1995), 118-135.

Laboratoire d’Algèbre et Théorie des Nombres
Department of Mathematics
University of UMMTO
Tizi-ouzou
Algeria
mouloud.ummtot@hotmail.fr

Département de mathématiques
Université d’Evry Val d’Essonne
Evry Cedex
France
abayad@math.univ-evry.fr

Département d’Algèbre et Théorie des Nombres
Faculté de Mathématiques
Université des Sciences et de la technologie Houari-Boumediène (USTHB)
Alger
Algérie
mhernane@usthb.dz