Native cyclase-associated protein and actin from *Xenopus laevis* oocytes form a 4:4 complex with a tripartite structure

Noriyuki Kodera\(^1\), Hiroshi Abe\(^2\), and Shoichiro Ono\(^3,4^*\)

\(^1\)WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
\(^2\)Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
\(^3\)Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
\(^4\)Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA

*To whom correspondence should be addressed: E-mail: sono@emory.edu

Running title: CAP-actin complex

Keywords: Actin, cyclase-associated protein, atomic force microscopy (AFM), cytoskeleton, *Xenopus*, protein complex
Abstract

Cyclase-associated protein (CAP) is a conserved actin-binding protein that regulates multiple aspects of actin filament dynamics, including polymerization, depolymerization, filament severing, and nucleotide exchange. Intriguingly, CAP has been isolated from different cells and tissues as an equimolar complex with actin, and previous studies have shown that a CAP-actin complex contains six molecules each of CAP and actin. Here, we successfully isolated a complex of Xenopus cyclase-associated protein 1 (XCAP1) and actin from oocyte extracts and demonstrated that the complex contained four molecules each of XCAP1 and actin. The XCAP1-actin complex remained stable as a single population of 340 kDa in hydrodynamic analysis using gel filtration or analytical ultracentrifugation. Examination of the XCAP1-actin complex by high-speed atomic force microscopy revealed a tripartite structure: a middle globular domain and two globular arms. The two arms were connected with the middle globular domain by a flexible linker and observed in two states with different heights, presumably representing the presence or absence of G-actin. We hypothesize that the middle globular domain corresponds to a tetramer of the N-terminal helical-folded domain of XCAP1, and that each arm in the high state corresponds to a hetero-tetramer containing a dimer of the C-terminal CARP domain of XCAP1 and two G-actin molecules. This novel configuration of a CAP-actin complex may represent a functionally important aspect of this complex.

Introduction

Regulated assembly and disassembly of actin filaments are vital to the diverse function of the actin cytoskeleton (1). Cyclase-associated protein (CAP) is one of the actin-regulatory proteins that control multiple key aspects of actin filament dynamics (2,3). CAP was originally identified in yeast as a protein that binds to adenyl cyclase and is involved in the Ras signaling pathway (4,5). However, CAP was later recognized as an actin-binding protein in a variety of eukaryotes. CAP binds to actin monomers and inhibits polymerization (6). CAP also promotes exchange of actin-bound nucleotides in competition with coflin and increases ATP-bound actin monomers that are readily available for polymerization (7-9). In addition, CAP and coflin interact with actin filaments to enhance severing (10,11) and monomer dissociation from the pointed ends (12,13). A combination of CAP and twinfilin also enhances actin monomer dissociation from filament ends (14). CAP is involved in a number of cellular events that require actin remodeling in various cell types and tissues. For example, CAP is essential for muscle sarcomere organization in Caenorhabditis elegans (15) and mice (16), and deficiency of CAP2, a mammalian CAP isoform, causes cardiomyopathy in mice (17,18) and humans (19).

Intriguingly, when non-recombinant native CAP is isolated from tissues or cells, actin is associated with CAP in a multimeric complex at an equimolar ratio and cannot be dissociated without harsh conditions. Porcine CAP (originally reported as ASP-56) was isolated from platelets as a complex with actin, and actin was finally dissociated from CAP by 3M urea (20). Similar CAP-actin complex has been isolated from yeast (8), bovine thymus (11), and mouse brain (21). The CAP-actin complex promotes actin filament disassembly in the presence of coflin (8,11). In addition, recent studies have shown that the CAP-actin complex containing acetylated actin is an inhibitor of inverted formin 2 (INF2) (21,22). Thus, the
CAP and actin have biological functions as a complex, but how the complex is assembled and why the complex formation is important for its functions remain unknown.

The native complex of yeast CAP (also known as Srv2) and actin is a 6:6 complex of ~600 kDa (8), which can be reconstituted from purified components (23). The CAP-actin complex from mouse brain is also in a similar size (21). The N-terminal half of yeast and mouse CAPs form a hexameric “shuriken” structure, which is mediated by oligomerization of a putative coiled-coil region at the most N-terminus (10,24) and dimerization of the helical-folded domain (HFD) (12,25,26). The C-terminal half of CAP contains a CAP and X-linked retinitis pigmentosa 2 protein (CARP) domain that dimerizes through the most C-terminal dimerization motif (27,28). The CAP domain of CAP binds to actin monomer (6,29-31), and a CARP dimer and two actin molecules form a compact globular structure (32). Although we know structures of parts of the CAP-actin complex, we still have limited knowledge on the structure of the entire complex. Furthermore, a recent study has demonstrated that the N-terminal regions of human CAP1 and CAP2 primarily form tetramers instead of hexamers (33). Therefore, whether the 6:6 configuration is conserved among CAP-actin complexes from different sources remains unknown. In this study, we purified a complex of *Xenopus* CAP1 and actin and demonstrated that the complex contained the two proteins in a 4:4 stoichiometric ratio, which is a novel configuration of the CAP-actin complex.

Results

Xenopus CAP1 (XCAP1) and actin form a 4:4 complex

We purified a native complex of CAP and actin from *Xenopus* oocyte extracts (Fig. 1). When *Xenopus* oocyte extracts were applied to a column in which glutathione S-transferase (GST)-fused *Xenopus* ADF/cofilin (XAC) was immobilized, several proteins specifically bound to the column as described previously (34) (Fig. 1A). We reported that the 65-kDa, 42-kDa, and 19-kDa proteins were *Xenopus* actin-interacting protein 1 (XAIP1), actin, and XAC, respectively (34). Peptide sequencing identified that the 94-kDa and 60-kDa proteins were gelsolin (35) and cyclase-associated protein 1 (XCAP1) (36), respectively. We attempted to isolate XCAP1 using anion-exchange chromatography followed by hydroxyapatite chromatography, but XCAP1 and actin were not separated during these procedures, and were instead purified together in an equimolar ratio (Fig. 1B). Further gel filtration chromatography using Sephadex G-200 also resulted in co-elution of XCAP1 and actin in a single peak at ~390 kDa (our unpublished observation), which is much larger than XCAP1 or actin alone, or a 1:1 complex, indicating that they form a stable multimeric complex.

Native molecular mass of the XCAP1-actin complex was determined more accurately by two different methods: size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) and analytical ultracentrifugation. In SEC-MALS, the XCAP1-actin complex was resolved as a single peak with a molecular mass of 340 kDa (Fig. 1C). There were no detectable peaks that corresponded to dissociated XCAP1 or actin, indicating that the XCAP1-actin complex was stable during the SEC-MALS analysis. Likewise, in analytical ultracentrifugation, the XCAP1-actin complex was resolved as a single peak of 337 kDa (S = 10) (Fig. 1D), which agrees with the result of SEC-MALS. Considering
the molecular masses of individual XCAP1 (52 kDa) and actin (42 kDa), the native molecular mass of the XCAP1-actin complex most closely matched with that of a 4:4 complex (calculated molecular mass of 376 kDa). Since CAPs are known to bind to actin monomers, the XCAP1-actin complex most likely contains G-actin. Therefore, these results indicate that the native XCAP1 and G-actin form a stable complex at a 4:4 stoichiometric ratio.

XCAP1-actin complex has a tripartite structure as revealed by high-speed atomic force microscopy

Structure of the XCAP1-actin complex in its native state was examined by high-speed atomic force microscopy (Fig. 2 and 3). Typical images on mica surfaces showed that the complex consisted of three globular domains (Fig. 2A), which we designated as the middle globular domain (MGD, shown in red in Fig. 2A cartoons) and two arms (Arm 1 and Arm 2, shown in green or blue in Fig. 2A cartoons). The height of MGD was 3.6 ± 0.9 nm (n = 107) (Fig. 2B, C) and remained relatively stable during time-lapse imaging (Fig. 2A and G, Supplementary Movie S1). By contrast, the two arms were observed in two different states: a high state (Arm-HS, shown in blue in Fig. 2A cartoons) and a low state (Arm-LS, shown in green in Fig. 2A cartoons, also see Fig. 3). The height of Arm-HS was 7.5 ± 0.5 nm (n = 855) (Fig. 2D and E), while that of Arm-LS was 3.3 ± 0.3 nm (n = 1078) (Fig. 2F and Fig. 3C and D). In some cases, the arms transitioned either from Arm-LS to Arm-HS (Fig. 2A and G, blue line at ~0.9 s) or from Arm-HS to Arm-LS (Fig. 2A and G, green line at 4.5 s), suggesting that association or dissociation of a component, presumably G-actin, occurred during observations. Over the periods of HS-AFM observations, Arm-HS gradually decreased, while Arm-LS predominated, suggesting that Arm-HS was converted to Arm-LS by dissociation of actin over time likely due to repeated tapping by the AFM probe and adsorption of the complex on the surface (see below). Some of the complexes had Arm-LS throughout the observations (Fig. 2A, indicated by dashed line, Fig. 3A, Supplementary Movie S2), and the height of Arm-LS was 3.3 ± 0.3 nm (n = 1078) (Fig. 3B-D).

The two arms were very dynamic when they were in Arm-HS (Fig. 2A, Supplementary Movie S1), but restricted within 14.8 ± 4.9 nm (n = 214) of MGD (Fig. 2H and I) as if the arms were connected to MGD by flexible linkers. The distance between the highest points of the two arms in Arm-HS fluctuated in a wide range with an average of 17.4 ± 7.6 nm (n = 427) (Fig. 2H and J), further supporting the presence of flexible linkers between MGD and each arm. However, once arms were converted from Arm-HS to Arm-LS, they were stabilized in Arm-LS (Fig. 3A-D, Supplementary Movie S2), while MGD remained unchanged (Fig. 3B, E, and F). The distance between two arms became wider [22.9 ± 5.7 nm (n = 539)], whereas that between each arm and MGD became narrower [13.0 ± 3.7 nm (n = 1078)]. These results suggest that Arm-LS was physically stabilized by adsorption to the mica surface.

To test how surface adsorption affects the molecular features of the XCAP1-actin complex, we used a mica surface that was treated with APTES, which adds positive charges to the surface and causes non-specific strong adsorption of proteins. On APTES-treated mica, the two arms were almost always detected in the low state (Arm-LS) with the height of 3.0 ± 0.4 nm (n = 2293) (Fig. 4A-D, Supplementary Movie S3). The height and shape of MGD were indistinguishable between normal and APTES-treated mica surfaces (Fig. 4A, B, E,
and F). The distance between the two arms remained relatively constant at 25.4 ± 5.6 nm (n = 1331) (Fig. 4G and H), which is much wider than that of two arms in Arm-HS on normal mica surfaces (Fig. 2I), suggesting that the two arms were strongly immobilized on the surface and spread apart. By contrast, the distance between MGD and an arm remained constant on the APTES-treated surface (Fig. 4G and I) in a similar manner to MGD and Arm-LS on the normal surface (Fig. 3I). These observations suggest that strong adsorption of the XCAP1-actin complex onto a solid surface artificially converts Arm-HS to Arm-LS by causing dissociation of an arm-bound component, which we hypothesize to be G-actin.

Discussion

Based on known biochemical and biophysical properties of CAP from other species, we propose a model for the structure of the XCAP1-actin complex, which is in the appearance of two “butterflies” (CARP/G-actin) and a “flower” (HFD) (Fig. 5). We hypothesize that MGD corresponds to a tetramer of the HFD of XCAP1, and that each arm domain in the high state (Arm-HS) corresponds to a hetero-tetramer containing a dimer of the CARP domain of XCAP1 and two G-actin molecules (Fig. 5). The HFD of CAP by itself forms a dimer (12,25,26), and the N-terminal oligomerization motif forms a putative coiled-coil and mediates formation of a tetramer (33) or hexamer (10,23,24) of the HFD. The height of MGD (Fig. 2C, 3F, 4F) matches with that of the diameter of one HFD (12,25), suggesting that each HFD is laterally attached to the substrate. By contrast, the C-terminal dimerization motif mediates rigid dimerization of the CARP domain through strand-exchange β-sheet formation (27), which then binds to two G-actin molecules (32). Again, the height of Arm-HS (Fig. 2E) matches with the diameter of the hetero-tetramer of CARP and G-actin (32). Proline-rich regions and Wiskott Aldrich Syndrome protein-homology 2 (WH2) can serve as a flexible linker between HFD and CARP (Fig. 5). WH2 of CAP binds to G-actin (31,37), but transient dissociation of WH2 from G-actin can allow full extension of the linker with structural flexibility. WH2 of CAP also binds to the N-terminal diaphanos inhibitory domain of INF2 (22). Therefore, flexibility of WH2 in the CAP-actin complex should keep it accessible with INF2. This hypothetical architecture of the XCAP1-actin complex needs to be tested by additional structural analysis at higher resolutions or localization of components using specific probes.

The configuration of the XCAP1-actin complex in a 4:4 stoichiometric ratio is different from other reported configurations of CAP-actin complexes from different organisms in a 6:6 molar ratio (8,23). It is worth noting that the tripartite structure of the XCAP1-actin complex is very similar to one of the electron microscopy images of yeast Srv2/CAP-actin complex (see Fig. 1 of Ref. (8)). However, the yeast Srv2/CAP-actin complex is a 600-kDa complex containing Srv2/CAP and actin in a molar ratio of 6:6 (8). It remains unclear whether such a difference represents an inherent structural variety of the complex assembly or technical artifacts in the analyses or preparation methods. Further studies are needed to test whether the XCAP1-actin complex with a similar configuration can be reconstituted from purified XCAP1 and G-actin, which should allow dissection of domains and residues that are required for assembly of the XCAP1-actin complex.

Our structural model of the CAP-actin complex places the actin-binding site of HFD outward, suggesting that any two of
the four HFDs can interact with two actin subunits at the pointed end of a filament to accelerate depolymerization (12,13). It allows two remaining free HFD to interact with newly exposed actin subunits at the pointed end, such that CAP can stay bound to a filament and processively depolymerize actin filaments from the pointed end.

However, whether CAP can depolymerize actin filaments processively remains to be determined. In addition, the CARP domain, which has nucleotide exchange activity, is in proximity and available to capture newly depolymerized ADP-actin and promote rapid conversion to ATP-actin. It would be interesting to determine whether binding of other proteins to WH2 or proline-rich region in the flexible linker (22,38-40) or phosphorylation of CAP (41,42) alters the structure and function of the CAP-actin complex. Thus, our structural model provides mechanistic insight in the function of CAP in the regulation of actin turnover.

Experimental procedures

Purification of XCAP1-actin complex from Xenopus laevis oocytes

Extracts from Xenopus laevis oocytes were prepared and applied to an affinity column in which GST-fused Xenopus ADF/cofilin (XAC) had been immobilized as described (34). Proteins bound to the column were eluted with 1 M NaCl, 2 mM MgCl₂, 1 mM dithiothreitol (DTT), 0.01% NaN₃, and 20 mM HEPES-KOH, pH 7.2. The eluate was fractionated with ammonium sulfate at 45% saturation. The precipitates obtained by centrifugation was dissolved and dialyzed against 60 mM NaCl buffer (60 mM NaCl, 0.5 mM DTT, 0.01% NaN₃, and 20 mM Tris-HCl, pH 8.0), applied to a DE52 column pre-equilibrated with the same buffer, and then eluted with a linear gradient of 60-300 mM NaCl. The fractions containing XCAP1-actin complex was directly applied to a hydroxyapatite column pre-equilibrated with 60 mM NaCl buffer and washed thoroughly with the same buffer. XCAP1-actin complex was eluted with a linear gradient of 0-300 mM potassium phosphate buffer at pH 8.0.

Purified XCAP1-actin complex was concentrated by ultrafiltration with UltraCel-30K (Millipore) and dialyzed against 0.1 M KCl, 2 mM MgCl₂, 1 mM DTT, 0.01% NaN₃, and 20 mM HEPES-KOH, pH 7.2.

Size exclusion chromatography - multi-angle light scattering

Samples were analyzed by a Malvern OmniSEC integrated system (Malvern Pananalytical, MA) with a SRT SEC-300 (Sepax, Newark, DE) analytical SEC column. Samples were loaded from an autoinjector sample tray that was kept at 20 °C. Phosphate-buffered saline (pH 7.2) containing 0.02 % NaN₃ was used in a mobile phase. Calibration was done using a bovine serum albumin standard. Data from a refractive index, right angle light scattering (RALS), low angle light scattering (LALS), viscosimeter and a UV PDA detector were collected. The resulting chromatograms were analyzed using triple detection (RI, RALS and viscosimeter) and the dn/dc from sample concentration were used to calculate molecular weight of the peaks as well as hydrodynamic radius. Molecular weights were calculated with Malvern OmniSEC software version 10.41.

Analytical ultracentrifugation

Sedimentation velocity data were collected using a Beckman Optima AUC analytical ultracentrifuge using a rotor speed of 40,000 rpm (128794 g) at 20 °C. Data were recorded by monitoring the
sedimentation of the absorbance at 280 nm using a radial step size of 0.001 cm. Set parameters included a partial specific volume (Vbar) of 0.73, a buffer viscosity of 1.002 Poise, and density of 1.00 g/ml. Sedimentation velocity data were analyzed using both SEDFIT (www.analyticalultracentrifugation.com) (43) and UltraScan (www.ultrascan.uthscsa.edu) (44). Continuous sedimentation coefficient distribution c(s) analyses were restrained by maximum entropy regularization at P = 0.95 confidence interval. The baseline, meniscus, frictional coefficient, systematic time-invariant and radial invariant noise were fit.

High-speed atomic force microscopy

HS-AFM imaging was performed in solution at room temperature using a laboratory-built HS-AFM setup (45,46), as described previously (47). In brief, a glass sample stage (diameter, 2 mm; height, 2 mm) with a thin mica disc (1.5 mm in diameter and ~0.05 mm in thickness) glued to the top by epoxy was attached onto the top of a Z-scanner by a drop of nail polish. Either bare mica surface or APTES ((3-aminopropyl)triethoxysilane) treated mica surface (48) was used as a substrate. Onto either substrate, a drop (2 μl) of diluted protein sample (ca. 1 nM) with buffer A (100 mM KCl, 20 mM HEPES–KOH, pH 7.2, 2 mM MgCl₂) was deposited for 3 min. For the observation using bare mica surface, the surface was rinsed with 20 μl of buffer B (30 mM KCl, 20 mM HEPES–NaOH, pH 7.0, 2 mM MgCl₂) and imaged in buffer B. For the observation using APTES treated mica surface, the surface was rinsed with 20 μl of buffer A and imaged in buffer A. AFM imaging was carried out in a tapping mode using small cantilevers (BLAC10DS-A2, Olympus) (resonant frequency, ~0.5 MHz in water; quality factor, ~1.5 in water; spring constant, ~0.1 N m⁻¹). The probe tip was grown on the original tip end of a cantilever through electron beam deposition using ferrocene and was further sharpened using a radio frequency plasma etcher (Tergeo, PIE Scientific LLC., USA) under an argon gas atmosphere (Direct mode, 10 sccm and 20 W for 1.5 min). The cantilever’s free oscillation amplitude A₀ and set-point amplitude Aₛ were set at ~2 nm and ~0.9 × A₀, respectively. The imaging rate, scan size, and pixel size for each AFM image are described in the figure legends.

Data analyses of HS-AFM images

HS-AFM images were viewed and analyzed using the laboratory built software, Kodec4.4.7.39 (49). In brief, a low-pass filter to remove spike noise and a flattening filter to make the xy-plane flat were applied to individual images. The position and height of the peak within each domain were determined semi-automatically using the following steps. First, the most probable highest point was selected manually. Second, the actual highest point was automatically determined by searching a 5 × 5 pixel area (typically 6.25 × 6.25 nm²) around the selected point.

Molecular graphics

A model of the CAP-actin complex was generated using PyMol (Schrödinger, LLC) and annotated using Adobe Illustrator CS2 (Adobe).

Data availability

All data are contained in the manuscript. Raw data are available from S. O. upon request.
Acknowledgements

We thank Dr. Toshio Ando for support in HS-AFM. We wish to acknowledge the core facilities at the Parker H. Petit Institute for Bioengineering and Bioscience at the Georgia Institute of Technology for the use of their shared equipment, services and expertise. We thank Dr. Bettina Bommarius for performing SEC-MALS and AUC analyses at the Biopolymer Characterization Core.

Funding and other information

This work was supported by grants from JST CREST (JPMJCR1762) to N. K., JSPS KAKENHI Grant (20H00327) to N. K., and the National Institutes of Health (R01AR048615) to S. O. S. O. is a recipient of a JSPS Bridge Award. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors declare no conflict of interest.

Abbreviations

APTES, (3-aminopropyl) triethoxysilane; Arm-HS, arm in a high state; Arm-LS, arm in a low state; CAP, cyclase-associated protein; CARP, CAP and X-linked retinitis pigmentosa 2 protein; HS-AFM, high-speed atomic force microscopy; HFD, helical folded domain; INF2, inverted formin 2; MGD, middle globular domain; SEC-MALS, size exclusion chromatography-multi angle light scattering; WH2, Wiskott Aldrich Syndrome Protein homology 2; XAC, Xenopus actin depolymerizing factor/cofilin; XCAP1, Xenopus cyclase-associated protein 1

References

1. Pollard, T. D., and Cooper, J. A. (2009) Actin, a central player in cell shape and movement. Science 326, 1208-1212
2. Ono, S. (2013) The role of cyclase-associated protein in regulating actin filament dynamics - more than a monomer-sequestration factor. J. Cell Sci. 126, 3249-3258
3. Rust, M. B., Khudayberdiev, S., Pelucchi, S., and Marcello, E. (2020) CAP’t’n of actin dynamics: Recent advances in the molecular, developmental and physiological functions of Cyclase-Associated Protein (CAP). Front. Cell Dev. Biol. 8, 586631
4. Field, J., Vojtek, A., Ballester, R., Bolger, G., Colicelli, J., Ferguson, K., Gerst, J., Kataoka, T., Michaeli, T., Powers, S., Riggs, M., Rodgers, L., Wieland, I., Wheland, B., and Wigler, M. (1990) Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kd adenyl cyclase-associated protein. Cell 61, 319-327
5. Fedor-Chaiken, M., Deschenes, R. J., and Broach, J. R. (1990) SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell 61, 329-340
6. Freeman, N. L., Chen, Z., Horenstein, J., Weber, A., and Field, J. (1995) An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein. J. Biol. Chem. 270, 5680-5685
7. Moriyama, K., and Yahara, I. (2002) Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J. Cell Sci. 115, 1591-1601.
8. Balcer, H. I., Goodman, A. L., Rodal, A. A., Smith, E., Kugler, J., Heuser, J. E., and Goode, B. L. (2003) Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1. Curr. Biol. 13, 2159-2169.
9. Nomura, K., and Ono, S. (2013) ATP-dependent regulation of actin monomer-filament equilibrium by cyclase-associated protein and ADF/cofilin. Biochem. J. 453, 249-259.
10. Chaudhry, F., Breitsprecher, D., Little, K., Sharov, G., Sokolova, O., and Goode, B. L. (2013) Srv2/cyclase-associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin. Mol. Biol. Cell 24, 31-41.
11. Normoyle, K. P., and Brieher, W. M. (2012) Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH. J. Biol. Chem. 287, 35722-35732.
12. Kotila, T., Wioland, H., Enkavi, G., Kogan, K., Vattulainen, I., Jegou, A., Romet-Lemonne, G., and Lappalainen, P. (2019) Mechanism of synergistic actin filament pointed end depolymerization by cyclase-associated protein and cofilin. Nat. Comm. 10, 5320.
13. Shekhar, S., Chung, J., Kondev, J., Gelles, J., and Goode, B. L. (2019) Synergy between Cyclase-associated protein and Cofilin accelerates actin filament depolymerization by two orders of magnitude. Nat. Comm. 10, 5319.
14. Johnston, A. B., Collins, A., and Goode, B. L. (2015) High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP. Nat. Cell Biol. 17, 1504-1511.
15. Nomura, K., Ono, K., and Ono, S. (2012) CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle. J. Cell Sci. 125, 4077-4089.
16. Kepser, L. J., Damar, F., De Cicco, T., Chaponnier, C., Proszynski, T. J., Pagenstecher, A., and Rust, M. B. (2019) CAP2 deficiency delays myofibril actin cytoskeleton differentiation and disturbs skeletal muscle architecture and function. Proc. Natl. Acad. Sci. U S A 116, 8397-8402.
17. Peche, V., Shekar, S., Leichter, M., Korte, H., Schroder, R., Schleicher, M., Holak, T. A., Clemen, C. S., Ramanath, Y. B., Pfitzer, G., Karakesisoglou, I., and Noegel, A. A. (2007) CAP2, cyclase-associated protein 2, is a dual compartment protein. Cell Mol. Life Sci. 64, 2702-2715.
18. Field, J., Ye, D. Z., Shinde, M., Liu, F., Schillinger, K. J., Lu, M., Wang, T., Skettini, M., Xiong, Y., Brice, A. K., Chung, D. C., and Patel, V. V. (2015) CAP2 in cardiac conduction, sudden cardiac death and eye development. Sci. Rep. 5, 17256.
19. Aspit, L., Levitas, A., Etzion, S., Krymko, H., Slanovic, L., Zarivach, R., Etzion, Y., and Parvari, R. (2019) CAP2 mutation leads to impaired actin dynamics and associates with supraventricular tachycardia and dilated cardiomyopathy. J. Med. Genet. 56, 228-235.
20. Gieselmann, R., and Mann, K. (1992) ASP-56, a new actin sequestering protein from pig platelets with homology to CAP, an adenylate cyclase-associated protein from yeast. FEBS Lett. 298, 149-153.
21. A, M., Fung, T. S., Kettenbach, A. N., Chakrabarti, R., and Higgs, H. N. (2019) A complex containing lysine-acetylated actin inhibits the formin INF2. Nat. Cell Biol. 21, 592-602.
22. A, M., Fung, T. S., Francomacaro, L. M., Huynh, T., Kotila, T., Svindrych, Z., and Higgs, H. N. (2020) Regulation of INF2-mediated actin polymerization through site-specific lysine acetylation of actin itself. *Proc. Natl. Acad. Sci. USA* **117**, 439-447

23. Quintero-Monzon, O., Jonasson, E. M., Bertling, E., Talarico, L., Chaudhry, F., Sihvo, M., Lappalainen, P., and Goode, B. L. (2009) Reconstitution and dissection of the 600-kDa Srv2/CAP complex: roles for oligomerization and cofilin-actin binding in driving actin turnover. *J. Biol. Chem.* **284**, 10923-10934

24. Jansen, S., Collins, A., Golden, L., Sokolova, O., and Goode, B. L. (2014) Structure and mechanism of mouse cyclase-associated protein (CAP1) in regulating actin dynamics. *J. Biol. Chem.* **289**, 30732-30742

25. Yusof, A. M., Hu, N. J., Wlodawer, A., and Hofmann, A. (2005) Structural evidence for variable oligomerization of the N-terminal domain of cyclase-associated protein (CAP). *Protein Sci.* **58**, 255-262

26. Yusof, A. M., Jaenicke, E., Pedersen, J. S., Noegel, A. A., Schleicher, M., and Hofmann, A. (2006) Mechanism of oligomerisation of cyclase-associated protein from *Dictyostelium discoideum* in solution. *J. Mol. Biol.* **362**, 1072-1081

27. Dodahtko, T., Fedorov, A. A., Grynberg, M., Patskovsky, Y., Rozwarski, D. A., Jaroszewski, L., Aronoff-Spencer, E., Kondraskina, E., Irving, T., Godzik, A., and Almo, S. C. (2004) Crystal structure of the actin binding domain of the cyclase-associated protein. *Biochemistry* **43**, 10628-10641

28. Iwase, S., and Ono, S. (2016) The C-terminal dimerization motif of cyclase-associated protein is essential for actin monomer regulation. *Biochem. J.* **473**, 4427-4441

29. Mattila, P. K., Quintero-Monzon, O., Kugler, J., Moseley, J. B., Almo, S. C., Lappalainen, P., and Goode, B. L. (2004) A high-affinity interaction with ADP-actin monomers underlies the mechanism and *in vivo* function of Srv2/cyclase-associated protein. *Mol. Biol. Cell* **15**, 5158-5171

30. Iwase, S., and Ono, S. (2017) Conserved hydrophobic residues in the CARP/β-sheet domain of cyclase-associated protein are involved in actin monomer regulation. *Cytoskeleton* **74**, 343-355

31. Makkonen, M., Bertling, E., Chebotareva, N. A., Baum, J., and Lappalainen, P. (2013) Mammalian and malaria parasite cyclase-associated proteins catalyze nucleotide exchange on G-actin through a conserved mechanism. *J. Biol. Chem.* **288**, 984-994

32. Kotila, T., Kogan, K., Enkavi, G., Guo, S., Vattulainen, I., Goode, B. L., and Lappalainen, P. (2018) Structural basis of actin monomer re-charging by cyclase-associated protein. *Nat. Comm.* **9**, 1892

33. Purde, V., Busch, F., Kudryashova, E., Wysocki, V. H., and Kudryashov, D. S. (2019) Oligomerization affects the ability of human cyclase-associated proteins 1 and 2 to promote actin severing by cofilins. *Int. J. Mol. Sci.* **20**, 5647

34. Okada, K., Obinata, T., and Abe, H. (1999) XAIP1: a *Xenopus* homologue of yeast actin interacting protein 1 (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins. *J. Cell Sci.* **112**, 1553-1565

35. Ankenbauer, T., Kleinschmidt, J. A., Vandeerkhove, J., and Franke, W. W. (1988) Proteins regulating actin assembly in oogenesis and early embryogenesis of *Xenopus laevis*: gelsolin is the major cytoplasmic actin-binding protein. *J. Cell Biol.* **107**, 1489-1498
36. KhosrowShahian, F., Hubberstey, A. V., and Crawford, M. J. (2002) CAP1 expression is developmentally regulated in Xenopus. Mech. Dev. 113, 211-214
37. Chaudhry, F., Little, K., Talarico, L., Quintero-Monzon, O., and Goode, B. L. (2010) A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover in vitro and in vivo. Cytoskeleton (Hoboken) 67, 120-133
38. Bertling, E., Quintero-Monzon, O., Mattila, P. K., Goode, B. L., and Lappalainen, P. (2007) Mechanism and biological role of profilin-Srv2/CAP interaction. J. Cell Sci. 120, 1225-1234
39. Freeman, N. L., Lila, T., Mintzer, K. A., Chen, Z., Pahk, A. J., Ren, R., Drubin, D. G., and Field, J. (1996) A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization. Mol. Cell Biol. 16, 548-556
40. Lila, T., and Drubin, D. G. (1997) Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton. Mol. Biol. Cell 8, 367-385
41. Zhou, G. L., Zhang, H., Wu, H., Ghai, P., and Field, J. (2014) Phosphorylation of the cytoskeletal protein CAP1 controls its association with coflin and actin. J. Cell Sci. 127, 5052-5065
42. Zhang, H., Ramsey, A., Xiao, Y., Karki, U., Xie, J. Y., Xu, J., Kelly, T., Ono, S., and Zhou, G. L. (2020) Dynamic phosphorylation and dephosphorylation of cyclase-associated protein 1 by antagonistic signaling through cyclin-dependent kinase 5 and cAMP are critical for the protein functions in actin filament disassembly and cell adhesion. Mol. Cell Biol. 40, e00282-19
43. Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamell equation modeling. Biophys. J. 78, 1606-1619
44. Demeler, B. (2010) Methods for the design and analysis of sedimentation velocity and sedimentation equilibrium experiments with proteins. Curr. Prot. Prot. Sci. Chapter 7, Unit 7 13
45. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., and Toda, A. (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl. Acad. Sci. U S A 98, 12468-12472
46. Ando, T., Uchihashi, T., and Fukuma, T. (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog. Surf. Sci. 83, 337-437
47. Uchihashi, T., Kodera, N., and Ando, T. (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat. Protoc. 7, 1193-1206
48. Shibata, M., Nishimasu, H., Kodera, N., Hirano, S., Ando, T., Uchihashi, T., and Nureki, O. (2017) Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy. Nat. Comm. 8, 1430
49. Ngo, K. X., Kodera, N., Katayama, E., Ando, T., and Uyeda, T. Q. (2015) Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy. eLife 4, e04806
Figure legends

Figure 1. Determination of native molecular weight of the XCAP1-actin complex. (A, B) Purification of XCAP1-actin complex from *Xenopus* oocyte extracts. (A) Proteins that bound to the XAC-affinity column were eluted, separated by SDS-PAGE, and stained with Coomassie Brilliant Blue. Each band was identified by peptide sequencing as shown on the right of the gel. (B) A complex of XCAP1 and actin was isolated after anion exchange chromatography and hydroxyapatite chromatography. Positions of molecular mass markers in kDa are shown on the left. (C) SEC-MALS analysis of the XCAP1-actin complex. Purified XCAP1-actin complex was applied to size-exclusion chromatography, and refractive index (mV, red), right angle light scattering (mV, dark green), low angle light scattering (mV, black), MALS signal at 90° (mV, light green) were monitored. (D) Analytical ultracentrifugation analysis of the XCAP1-actin complex. A single peak of 10S was detected indicating that the XCAP1-actin complex was stable.

Figure 2. High-speed atomic force microscopy reveals a tripartite structure of the XCAP1-actin complex. (A) Time-lapse HS-AFM images of the XCAP1-actin complex on a mica surface (see Supplementary Movie S1). Scanning area was 80 x 64 nm² with 64 x 48 pixels. Imaging rate was 66 ms/frame (~15 fps). Bar, 20 nm. Schematic representation of molecular features is shown in the bottom panels: middle globular domain (MGD, red), arm in the low state (Arm-LS, green), and arm in the high state (Arm-HS, blue). The complex indicated by dashed lines in the second frame had both arms in Arm-LS throughout the observation (see Fig. 3 for quantitative analysis). (B-F) Cross-section analyses of MGD (B, red), Arm-HS (D, blue), and Arm-LS (F, green) at the straight colored lines drawn on the images in A. Height distributions of MGD (C) and Arm-HS (E) and single Gaussian fitting yielded average heights of MGD and Arm-HS as indicated in the figure. (G) Time course of the heights of three globular domains. Green-shaded areas indicate periods when one of the arms were in the low state. (H-J) Time course of the distances between the domains at their highest points (H). Distribution of the distance between two arms (I), and between MGD and one of the arms (J) and single Gaussian fitting yielded average distances as indicated in the figure. Arm-HS was selected in these analyses.

Figure 3. The XCAP1-actin complex with both arms in a low state is stable. (A) Time-lapse HS-AFM images of the XCAP1-actin complex containing both arms in Arm-LS on a mica surface (see Supplementary Movie S2). Scanning area was 80 x 64 nm² with 64 x 48 pixels. Imaging rate was 66 ms/frame (~15 fps). Bar, 20 nm. (B) Time course of the heights of three globular domains. (C-F) Cross-section analyses of Arm-LS (C, green) and MGD (E, red) at the straight colored lines drawn on the image in A. Height distributions of Arm-LS (D) and MGD (F) and single Gaussian fitting yielded average heights of Arm-LS and MGD as indicated in the figure. (G-I) Time course of the distances between the domains at their highest points (G). Distribution of the distance between two arms (H), and between MGD and one of the arms (I) and single Gaussian fitting yielded average distances as indicated in the figure.
Figure 4. Strong adsorption of the XCAP1-actin complex to a charged surface stabilizes two arms in a low state. Time-lapse HS-AFM images of the XCAP1-actin complex on an APTES-treated mica surface (see Supplementary Movie S3). Scanning area was 100 x 100 nm2 with 80 x 80 pixels. Imaging rate was 100 ms/frame (10 fps). Bar, 20 nm. (B) Time course of the heights of three globular domains. (C-F) Cross-section analyses of Arm-LS (C, red) and Arm-LS (E, green) at the straight colored lines drawn on the image in A. Height distributions of Arm-LS (D) and MGD (F) and single Gaussian fitting yielded average heights of MGD and Arm-HS as indicated in the figure. (G-I) Time course of the distances between the domains at their highest points (G). Distribution of the distance between two arms (H), and between MGD and one of the arms (I) and single Gaussian fitting yielded average distances as indicated in the figure.

Figure 5. Model of the CAP-actin complex. Crystal structures of HFD of mouse CAP1 (Protein Data Bank accession ID: 6RSQ) and CARP domain of mouse CAP1 bound to actin (Protein Data Bank accession ID: 6FM2) were used to reconstruct a CAP-actin complex at a 4:4 stoichiometric ratio. Putative locations of oligomerization motif and flexible linkers are indicated by dashed lines.
