Effects of heterogeneous reactions on global tropospheric chemistry

Phuc T. M. Ha1, Fumikazu Takesani2, Yugo Kanaya2, Ryoki Matsuda1, Kengo Sudo1,2

1 Graduate School of Environmental Studies, Nagoya University, Nagoya, 464-8601, Japan
2 Research Institute for Global Change, JAMSTEC, Yokohama, 236-0001, Japan

Correspondence to: Phuc T. M. Ha (ha.thi.minh.phuc@f.mbox.nagoya-u.ac.jp)

Abstract. This study uses a chemistry-climate model CHASER (MIROC) to explore the roles of heterogeneous reactions (HRs) in global tropospheric chemistry. Three distinct HRs of N2O5, HOx, and RO2 are considered for surfaces of aerosols and cloud particles. The model simulation is verified with EANET and EMEP stationary observations, R/V MIRAI ship-based data, ATOM1 aircraft measurements, satellite observations by OMI, ISCCP, and CALIPSO-GOCCP, and reanalysis data JRA55. The heterogeneous chemistry facilitates improvement of model performance with respect to observations for NO2, OH, CO, and O3, especially in the lower troposphere. The calculated effects of heterogeneous reactions cause marked changes in global abundances of O3 (-3%), NOx (-2.2%), CO (+3.3%), and global mean CH4 lifetime (+5.9%). These global effects were contributed mostly by N2O5 uptake onto aerosols in the middle troposphere. At the surface, HO2 uptake gives the largest contributions, with a particularly significant effect in the North Pacific region (-24% O3, +68% NOx, +8% CO, and -70% OH), mainly attributable to its uptake onto clouds. The RO2 reaction has a small contribution, but its global-mean negative effect on O3 is not negligible. In general, the uptakes onto ice crystals and cloud droplets that occur mainly by HO2 and RO2 radicals cause smaller global effects than the aerosol-uptake effects by N2O5 radicals (+1.34% CH4 lifetime, +1.71% NOx, -0.56% O3, +0.63% CO abundances). Nonlinear responses of tropospheric O3, NOx, and OH to the N2O5 and HO2 uptakes are found in the same modelling framework of this study ($R > 0.93$). Although all HRs showed negative tendencies for OH and O3 levels, the effects of HR(HO2) on the tropospheric abundance of O3 showed a small increment with an increasing loss rate. However, this positive tendency turns to reduction at higher rates (>5 times). Our results demonstrate that the HRs affect not only polluted areas but also remote areas such as the mid-latitude sea boundary layer and upper troposphere. Furthermore, HR(HO2) can bring challenges to pollution reduction efforts because it causes opposite effects between NOx (increase) and surface O3 (decrease).

1 Introduction

Heterogeneous reactions (HRs) on the surfaces of atmospheric aerosols and cloud droplets are regarded as playing crucial roles in atmospheric chemistry. They affect ozone (O3) concentrations in various pathways via the cycle of odd hydrogens (HOx) and nitrogen oxides (NOx) (Jacob, 2000). Tropospheric ozone, an important greenhouse gas, causes damage to human health,
crop, and ecosystem productivity (Monks et al., 2015). Although tropospheric O₃ was recognized as a critical oxidant species, its global distribution has not been adequately captured to date because of the limited number of observations. Whereas many sites in the heavily polluted regions of eastern Asia show ozone increases since 2000 (Liu and Wang, 2020), many sites in other regions show decreases (Gaudel et al., 2018). Moreover, O₃ responds to changes of multiple pollutants such as NOₓ and VOCs in different ways, which challenge the local pollutant control policy. For instance, since the Chinese government released the Air Pollution Prevention and Control Action Plan in 2010 (Zheng et al., 2018), the targets of SO₂, NOₓ, and particulate matter (PM) decreased drastically, but urban ozone pollution has been worsening (Liu and Wang, 2020). Indeed, the O₃ responses are controlled by several mechanisms including heterogeneous effects of HO₂ and N₂O₅ onto aerosols (Kanaya et al., 2009; Taketani et al., 2012; Li et al., 2019; Liu and Wang, 2020).

Stationary observations and laboratory experiments are important for enhancing the understanding of the tropospheric chemistry of O₃ and other essential components (NOₓ, HOₓ). However, direct observation of vertical O₃ distribution including upper tropospheric O₃ was not available before 1970. It has been deployed only at limited sites of the globe. Global atmospheric modelling is a useful method to reanalyze or to forecast the past and future changes in O₃ and their effects on human health and climate. To serve this task, atmospheric models use both laboratory and observational data to help achieve accurate simulations of O₃ and its precursors (HOₓ, NOₓ, hydrocarbons). To date, many modelling studies have suggested that heterogeneous chemistry be included in a standard model for tropospheric chemistry (Jacob, 2000; MacIntyre and Evans, 2010, 2011; de Reus et al., 2005).

One fundamentally important HR in the troposphere is the uptake of N₂O₅ onto aqueous aerosols, known as a removal pathway for NOₓ at night (Platt et al., 1984). Actually, NOₓ plays crucially important roles in the troposphere because it controls the cycle of HOₓ and the production rate of tropospheric O₃ (Logan et al., 1981; Riemer et al., 2003). The morning photochemistry can be affected by NOₓ and N₂O₅, which are important nocturnal oxidants. Since the early 1980s, the role of urban NOₓ chemistry in Los Angeles pollution (National Research Council, 1991) has been acknowledged, but the proclamation of nighttime radicals remained sparse. It was only recognized in the past decade that N₂O₅ radical chemistry could have a much more perceptible effect stemming from reasons counting a refined understanding of heterogeneous processes occurring at night (Brown and Stutz, 2012). The HR of N₂O₅ was revealed under different meteorological conditions in the US, Europe, and China (photosmog, high relative humidity (RH), or seasonal variation) for particles of various types: ice, aqueous aerosols with organic-coating, urban aerosols, dust, and soot (Apodaca et al., 2008; Lowe et al., 2015; Qu et al., 2019; Riemer et al., 2003, 2009; Wang et al., 2018; Wang et al., 2017; Xia et al., 2019). The uptake of N₂O₅ can markedly enhance nitrate concentration in nocturnal chemistry or PM₂.₅ explosive growth events in summer, decrease NOₓ, and either increase or decrease O₃ concentrations in different NOₓ conditions (Dentener and Crutzen, 1993; Qu et al., 2019; Riemer et al., 2003; Wang et al., 2017). Even during daytime, N₂O₅ in the marine boundary layers can enhance the NOₓ to HNO₃ conversion, and chemical destruction of O₃ (Osthoff et al., 2006). The 10–20 ppbv reduction of O₃ because of N₂O₅ uptake in the polluted regions of China has also been reported (Li et al., 2018). At mid- to high latitudes, N₂O₅ uptakes on sulfate aerosols
could engender 80% and 10% NOx reduction, respectively, in winter and summer, leading to approximate 10% reduction of O3 in both seasons (Li et al., 2018).

Another vital process taking place on particles is the HRs of peroxy radicals (HO2 and RO2). Peroxy radicals are the primary chain carriers driving O3 production in the troposphere. Moreover, it can drive the hydrocarbons and NOx concentration which are important for nocturnal radical chemistry (Geyer et al., 2003; Richard, 2000; Salisbury et al., 2001). In the past, the HR(HO2) effects have been well considered in the laboratory (Macintyre and Evans, 2011) and field observations (Kanaya et al., 2001, 2002a, 2002b, 2003, 2007; Taketani et al., 2012), but many technical problems (e.g., detecting HO2) have created difficulties that challenge its reported importance in the troposphere, as asserted from recent studies (Liao and Seinfeld, 2005; Martin et al., 2003; Tie et al., 2001). More recently, global modelling reports have described that the inclusion of HO2 uptake can affect atmospheric constituents strongly by the increment in tropospheric abundances for carbon monoxide (CO) and other trace gases because of reduced oxidation capacity (Lin et al., 2012; Macintyre and Evans, 2011). The HO2 loss on aerosols can reduce O3 concentrations by up to 33% in remote areas and up to 10% in a smog episode (Saathoff et al., 2001; Taketani et al., 2012). The HO2 loss on sea-salt, sulfate, and organic carbon in various environments can decrease respectively HO2 levels by 6–13%, 10–40%, and 40–70% (Martin et al., 2003; Taketani et al., 2008, 2009; Tie et al., 2001). For RO2 with a typical representative of CH3CO.O2 (peroxyacetyl radical, PA), it plays a big role in the long-range transport of pollution (VOC, NOx) (Richard, 2000; Villalta et al., 1996). It can bring NOx from polluted domains as PAN to remote regions in the ocean and higher altitudes (Qin et al., 2018; Richard, 2000). The concentrations of HO2 and RO2 at nighttime in the marine boundary layer were measured and confirmed (Geyer et al., 2003; Salisbury et al., 2001). Moreover, some evidence suggests uptake of HO2 and PA on clouds, aqueous aerosols, and other surfaces in high humidity conditions, although the mechanism is uncertain (Geyer et al., 2003; Jacob, 2000; Kanaya et al., 2002b; Liao and Seinfeld, 2005; Lin et al., 2012; Richard, 2000; Salisbury et al., 2001). The predominance of peroxy uptake to clouds results from the ubiquitous existence and larger SAD maxima of cloud droplets in the atmosphere. Indeed, aqueous-phase chemistry might represent an important sink for O3 (Lelieveld and Crutzen, 1990). Also, PA loss on aqueous particles can mediate the loss of PAN (CH3CO.O2NO) in fog (Villalta et al., 1996). Some modelling studies indicate that HO2 loss (including HO2 loss) on aqueous aerosols causes about 2% reduction, 7% and 0.5% increments, respectively, in the annual mean global burden of OH, CO, and O3 (Huijnen et al., 2014). However, in a coastal environment in the Northern Hemisphere it increases 15% OH and reduces 30% HO2 (Sommariva et al., 2006; Thornton et al., 2008).

Although the contributions of each uptake category to tropospheric chemistry differ and must be considered both separately and as a whole, few studies have provided a global overview of heterogeneous chemistry the comprehensively examines the uptakes of N2O5, HO3, and RO2 on widely various particles. For instance, both uptakes of N2O5 and HO2 tend to reduce O3 in particular environments (Li et al., 2018; Saathoff et al., 2001; Taketani et al., 2012), but the HO2 loss on clouds can increase the tropospheric O3 burden (Huijnen et al., 2014). The latter trend is not widely suggested yet because the cloud chemistry is still neglected in many O3 models (Stadtler et al., 2018; Thornton et al., 2008). The predominant effects of HO2 uptake on aerosols compared to the effect by N2O5 were reported during the summer smog condition (Saathoff et al., 2001),
but with lack of confirmation on a global scale. Moreover, the heterogeneous effects of RO$_2$ have been investigated only insufficiently (Jacob, 2000). In this study, we examine these uncertainties using the global model CHASER to perceive the respective and total effects of the HRs of N$_2$O$_5$, HO$_2$, and RO$_2$ on the tropospheric chemistry. For the interface of HRs in the atmosphere, we tentatively consider surfaces of cloud particles and those of aerosols and discuss details of its effects in this study. In the following text, the research method, including model description and configuration, is described in section 2. In section 3.1, our model is verified with available observations including ground stations, ship/aircraft and satellite measurements, particularly addressing the roles of the HRs. The global effects of N$_2$O$_5$, HO$_2$, and RO$_2$ uptake are discussed in section 3.2 to elucidate cloud-particles and aerosol effects. Section 3.3 will discuss sensitivities of tropospheric chemistry to the magnitudes of HRs. Section 4 presents a summary and concluding remarks.

2 Method

2.1 Global chemistry model

The global chemistry model used for this study is CHASER (MIROC-ESM) (Sudo et al., 2002, 2007; Watanabe et al., 2011), which considers detailed photochemistry in the troposphere and stratosphere. The chemistry component of the model, based on CHASER-V4.0, calculates the concentrations of 92 chemical species and 262 chemical reactions (58 photolytic, 183 kinetic, and 21 heterogeneous reactions including reactions on PSCs); more details on CHASER can be found in an earlier report of the literature (Morgenstern et al., 2017). Its tropospheric chemistry considers the fundamental chemical cycle of O$_x$–NO$_x$–HO$_x$–CH$_4$–CO along with oxidation of non-methane volatile organic compounds (NMVOCs). Its stratospheric chemistry simulates chlorine and bromine-containing compounds, CFCs, HFCs, OCS, NO$_2$, and the formation of polar stratospheric clouds (PSCs) and heterogeneous reactions on PSC surfaces. In the framework of MIROC-Chem, CHASER is coupled with the MIROC-AGCM atmospheric general circulation model (ver. 4; Watanabe et al., 2011). The meteorological fields simulated by MIROC-AGCM were nudged toward the six-hourly NCEP FNL data. For this study, the spatial resolution of the model was set as T42 (about 2.8° × 2.8° grid spacing) in horizontal and L36 (surface to approx. 50 km) in vertical. Anthropogenic emissions for O$_3$ and aerosol precursors like NO$_x$, CO, VOCs, and SO$_2$ are specified using the HTAP-II inventory for 2008 (http://edgar.jrc.ec.europa.eu/htap_v2/), with biomass burning emissions derived from the MAC reanalysis system.

In the model, the aerosol concentrations for BC/OC, sea-salt, and soil dust are handled by the SPRINTAR module, which is also based on the CCSR/NIES AGCM (Takemura et al., 2000). The bulk thermodynamics for aerosols are applied, including SO$_4^{2-}$ chemistry (SO$_2$ oxidation with OH, O$_3$/H$_2$O$_2$, cloud-pH dependent) SO$_4^{2-}$-NO$_3^-$-NH$_4^+$ and SO$_4^{2-}$-dust interaction.

2.2 Heterogeneous reactions in the chemistry–climate model (CHASER)

The CHASER-V4 model considers HRs in both the troposphere and stratosphere. In this work, we particularly examine HRs in the troposphere. In the current version of CHASER, tropospheric HRs are considered for N$_2$O$_5$, HO$_2$, and RO$_2$, using uptake coefficients for the distinct surfaces of aerosols (sulfate, sea-salt, dust, and organic carbons) and cloud particles (liquid/ice) as
listened in Table 2. Although some other views incorporate the catalysis of transition metal ions (TMI) Cu(I)/Cu(II) and Fe(II)/Fe(III) for the HO₂ conversion on aqueous aerosols (Li et al., 2018; Mao et al., 2013; Taketani et al., 2012), this mechanism remains uncertainties (Jacob, 2000). The TMI mechanism might lead to either H₂O₂ (Jacob, 2000) or H₂O product (Mao et al., 2018). However, this may not cause any significant difference since recycling HO₂ from H₂O₂ is ineffective (Li et al., 2019). For this study, the uptake of HO₂ is affirmed with H₂O₂ as the product (Loukhovitskaya et al., 2009; Taketani et al., 2009), generally used in many atmospheric models such that this is not counted as a terminal sink for HO₂ (Jacob, 2000; Lelieveld and Crutzen, 1990; Morita et al., 2004; Thornton et al., 2008). The RO₂ uptakes are assumed with inert products, as suggested by Jacob (2000). The heterogeneous pseudo-first-order loss rate β for the species i is given using the theory of Schwartz (Dentener and Crutzen, 1993; Jacob, 2000; Schwartz, 1986), in which it is simply treated with the mass transfer limitations operating two conductances represented free molecular and continuum regimes for tropospheric clouds and aerosols, in addition to using reactive uptake coefficient (γ) instead of the mass accommodation coefficient as

\[\beta_i = \sum_j \left(\frac{4}{v_i} \frac{D_{ij}}{D_{ij}} \right) A_j \]

Therein, \(v_i \) stands for the mean molecular speed (cm s⁻¹) of species i, \(D_{ij} \) is the gaseous mass transfer (diffusion) coefficient (cm² s⁻¹) of species i for particle type j, and \(A_j \) expresses the surface area density (cm² cm⁻³) for particle type j. In the model, the particle size and effective radius \(R_j \) for aerosols are calculated as a function of RH (Takemura et al., 2000). The aerosol concentrations are based on SPRINTAR for BC/OC, sea-salt, and dust (Takemura et al., 2000). The surface area density (SAD) for aerosols (\(A_j \)) is estimated using lognormal distributions of particle size (\(SF_j \)) with mode radii variable with the RH (Sudo et al., 2002) as

\[A_{i,ae} = C_N \times 4\pi R_j^2 \times SF_j \]

where \(C_N \) represents number density (cm⁻³), \(R_j \) signifies the effective radii (cm) of particle type j. To calculate SAD for cloud particles, the liquid water content (LWC) and ice water content (IWC) in the AGCM are converted using the cloud droplet distribution of Battan and Reitan (1957) and the relation between IWC and the surface area density for ice clouds (Lawrence and Crutzen, 1998; McFarquhar and Heymsfield, 1996).

\[A_c = 10^{-4} \times IWC^{0.9} \]

\[A_{i,ice} = 3 \times A_c \]

In those equations, \(A_c \) represents the cross-section area for ice crystals (cm² cm⁻³). For liquid clouds, the following holds.

\[A_{i,liq} = LWC \times 10^{-6} \times \frac{3}{R_j} \]

The uptake coefficient parameter (γ) is defined as the net probability that a molecule X undergoing a gas-kinetic collision with a surface is actually taken up onto the surface. Although several recent model studies that consider dependency of γ on RH and/or T, majorities of the earlier studies uses constant γ values which only vary with aerosol particle compositions (Chen et al., 2018; Evans and Jacob, 2005; Macintyre and Evans, 2010, 2011). For one study, \(\gamma_{HO_2} \) for the uptake onto aqueous aerosols is
considered with pH dependence (Thornton et al., 2008). However, another study demonstrated that the uptake is large, irrespective of the solubility in cloud water or pH (Morita et al., 2004). Therefore, we instead choose γ_{HO_2} as fix values depending on the type of particle. Indeed, from Eq. (1) it is apparent that uptake coefficients should be unimportant for uptake onto large particles such as cloud droplets. In this study, γ for cloud particles of liquid and ice phases are given based on suggestions from earlier reports (Dentener and Crutzen, 1993; Jacob, 2000). One study (Dentener and Crutzen, 1993) used a constant $\gamma_{N_2O_5}$ of 0.1 for uptake on seasalt, sulfate, and cloud particles. They also revealed that smaller $\gamma_{N_2O_5}$ of 0.01, which had been reported as laboratory measurements, has insensitivity to effects on tropospheric oxidant components. Results of another study (Jacob, 2000) indicated constants $\gamma_{N_2O_5} = 0.1$ and $\gamma_{HO_2} = 0.2$ for uptakes on both liquid clouds and aerosols, the later aims to involve the HO$_2$ scavenging by clouds without accounting for details of aqueous-phase chemistry. For ice crystals, Jacob suggested $\gamma_{HO_2} = 0.025$ based on a report by Cooper and Abbatt (1996). Jacob recommended using $\gamma_{RO_2} = 0.1$ for hydroxy-RO$_2$ group produced by oxidation of unsaturated hydrocarbons and $\gamma_{RO_2} = 4 \times 10^{-3}$ for PA. The γ values for aerosols are assumed to be fundamentally the same as those for liquid cloud particles in this study. It is noteworthy that the γ values for cloud particles are given tentatively in this study and are adjusted based on evaluation of the resulting species concentrations of O$_3$, NO$_x$, and OH with the observations.

2.3 Experiment setup

In this study, simulations of two types were conducted to isolate the distinct effects of each HR for the surface types considered in the model (Table 3 and Table S 1). Whereas a control simulation STD considers all HRs, noHR cases intentionally ignore one or all of the HRs to calculate effects of individual HRs. The sensitivity runs that turned off the separate HRs onto clouds (liquid and ice) and aerosols were also added to exploit the separate aerosol-heterogeneous and cloud-heterogeneous effects, as suggested in many earlier studies (Apodaca et al., 2008; Jacob, 2000; Lelieveld and Crutzen, 1990, 1991; Morita et al., 2004). The HR effects are determined as the differences between noHR cases and STD simulation as Eq. (5).

\[
Impact(i,j) = \frac{(STD_{i\rightarrow noHR(j)}) - (noHR(j))}{(noHR(j))} \times 100 \, (\%)
\] (5)

Therein, STD$_i$ stands for the concentration of investigated atmospheric component i in the STD run; and noHR(j)$_i$ denotes the concentration of component i in the sensitivity run in which the HRs of/onto j was ignored (j could be N$_2$O$_5$, HO$_2$, RO$_2$, clouds, aerosols).

An additional sensitivity test was run to examine the sensitivity of the troposphere’s responses with the amplified HRs magnitudes (Table S 1). These simulations only apply for HR(N$_2$O$_5$) and HR(HO$_2$) to verify some uncertainties that have been argued among earlier studies (Chen et al., 2018; Evans and Jacob, 2005; Macintyre and Evans, 2010, 2011).
Table 1: Computation packages in the chemistry-climate model “CHASER”

Base model	MIROC4.5 AGCM
Spatial resolution	Horizontal, T42 (2.8° × 2.8°); vertical, 36 layers (surfaces approx. 50 km)
Meteorology (u, v, T)	Nudged to the NCEP2 FNL reanalysis
Emission (anthropogenic, natural)	Industry traffic, Vegetation Ocean Biomass burning specified by MAC reanalysis
Aerosol	BC/OC, sea-salt, and dust BC aging with SO₄/SOA production
Chemical process	94 chemical species, 263 chemical reaction (gas phase, liquid phase, non-uniform O₃-NOₓ-HOₓ-CH₄-CO chemistry with VOCs SO₂, DMS oxidation (sulfate aerosol simulation) SO₄-NO₃-NH₄ system and nitrate formation Formation of SOA BC aging (+) Heterogeneous reactions: 8 reactions of N₂O₅, HO₂, RO₂; constant uptake coefficients (γ) on types of aerosols (Ice, Liquid, Sulfate, Sea salt, Dust, OC)

Table 2: Heterogeneous reactions in CHASER

No	Reactions	Y_{ice}	Y_{liq}	Y_{sulf}	Y_{salt}	Y_{dust}	Y_{oc}
1	HO₂ → 0.5H₂O₂ + 0.5O₂	0.02	0.1	0.1	0.1	0.1	0.1
2	N₂O₅ → 2HNO₃	0.01	0.08	0.1	0.1	0.1	0.1
3	RO₂ → products:						
4	HOC₃H₂O₂ → product*	0.02	0.2	0.2	0.2	0.2	0.2
5	MACRO₂ → product*	0.01	0.1	0.1	0.1	0.1	0.1
6	CH₃COO₂ → product*	0.01	0.1	0.1	0.1	0.1	0.1
7	CH₄COO₂ → product*	0.01	0.1	0.1	0.1	0.1	0.1

References and the mention of adjustments are given in the main text. The RO₂ uptakes are assumed with inert products as suggested by Jacob (2000).

Table 3: Main sensitivity simulations for HRs in this work

No	Simulation ID	HR: N₂O₅	HR: HO₂	HR: RO₂	HRs on clouds	HRs on aerosols
1	STD	x	x			x
2	noHR					x
3	noHR.n2o5			x		x
4	noHR.ho2	x				x
5	noHR.ro2	x				x
6	noHR.Cld					x
7	noHR.Ae					x
2.4 Observation data for model evaluation

Model simulations with and without HRs are evaluated distinctively with stationary, ship-based, aircraft-based, and satellite-based measurements. The observational information and locations of the surface site and ship/aircraft tracks for the observations used for this study are summarized in Table 4 and Fig. 1.

EANET is well known as the Acid Deposition Monitoring Network in eastern Asia. The monthly data from 45 stations over 13 countries during 2010–2016 were used to verify surface concentrations of aerosols (sulfate, nitrate) and trace gases (HNO_3, NO_x, O_3) in eastern Asia. We also used data of the European Monitoring and Evaluation Programme (EMEP), which compile observations over 245 European stations.

Additionally, we exploited ship-based observational data from R/V MIRAI cruise (http://www.godac.jamstec.go.jp/darwin/e) undertaken by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). This study used data for surface CO and O_3 concentrations in summer 2015–2017 along the Japan–Alaska, Japan–Indonesia–Australia routes (Kanaya et al., 2019). The model data were compiled in hourly time-steps and were interpolated corresponding with the MIRAI time step and coordinates. For verification of the vertical tropospheric profiles, we used Atmospheric Tomography (ATom1) aircraft measurements (https://espo.nasa.gov/atom/content/ATom) for NO_2, OH, CO, and O_3.

The simulated tropospheric ozone was also evaluated using the tropospheric column O_3 (TCO) derived from the OMI satellite data (https://daac.gsfc.nasa.gov/). For distribution of the cloud fraction, satellite data from International Satellite Cloud Climatology Project (ISCCP, https://isccp.giss.nasa.gov/), GCM-Oriented CALIPSO Cloud Products (CALIPSO-GOCCP, https://eosweb.larc.nasa.gov/project/calipso/calipso_table), and Japanese 55-year reanalysis (JRA-55 - https://doi.org/10.5065/D6HH6H41) were used.

Model bias and normalized root mean squared error (NRMSE) for each species were calculated as shown below, where \(n \) is the number of available data (number of stations \(\times \) time-step).

\[
\text{bias} = \frac{\sum_{i=1}^{n} (\text{Model}_{i} - \text{Observation}_{i})}{n} \\
\text{NRMSE} = \sqrt{\frac{\sum_{i=1}^{n} (\text{Model}_{i} - \text{Observation}_{i})^2}{n \times \text{Observation}}}
\]
Figure 1: Locations of EANET stations (a), EMEP stations (b), MIRAI cruises (c), and ATom1 flights (d).

Source: (a) https://monitoring.eanet.asia/document/overview.pdf; (b) https://projects.nilu.no/CCC/

Table 4: Datasets used for verification in this study

Verified species	Regions	Data	Time series	Time-step
Sulfate, nitrate, NO₃, O₃, HNO₃	Eastern Asia	EANET	2010–2016	Daily to 2-weekly
Sulfate, nitrate, NO₃, O₃, CO, O₃	Europe	EMEP	2010–2016	Hourly
CO₂, O₃	Surface of the Pacific Ocean (Australia – Indonesia – Japan – Alaska)	MIRAI	8,9/2015, 1,8,9/2016, 7,8,9/2017	30 min
NO₂, OH, CO, O₃	Various altitudes above the Pacific and Atlantic Ocean	ATOM1	8/2016	30 min
TCO	60S–60N (Satellite)	OMI	2010–2016	Daily
Cloud fraction	Global (Satellite)	ISCCP	2000–2009	Monthly
	Global (Satellite)	CALIPSO-GOCCP	2007–2017	Monthly
	Global (Reanalysis)	JRA55	2000–2015	6-hourly
3 Results and Discussion

3.1 Model verifications

Cloud verification

For this study, we tentatively consider HRs on the cloud particle surface. Given the great uncertainties related to the reaction coefficient (γ) (Macintyre and Evans, 2010, 2011), the cloud distributions must be examined adequately in the model to the greatest extent possible. The model-calculated cloud distributions were verified using satellite observation data ISCCP D2, CALIPSO-GOCCP, and reanalysis data JRA55.

For the entire troposphere, the calculated cloud fraction was generally underestimated against the satellite observations and reanalysis data (Fig. 2, the first row). At the North Pacific region in JJA (Fig. 2, the second row), when the cloud fraction peaked in the region, the model was able to reproduce the satellite observations (ISCCP and CALIPSO). However, for the lower troposphere over the region, the cloud fraction calculated using CHASER in JJA appears to be overestimated (Fig. 2, the fourth row), suggesting that the resulting HR effects would also be exaggerated to some extent.

Figure 2: Comparisons for cloud fraction in the whole troposphere (first and second rows) and lower troposphere (third and fourth rows). ANN denotes annual mean; JJA denotes June + July + August mean. First column for ISCCP (2000–2009), second column for CALIPSO/GOCCP (2007–2017), and third and fourth columns for JRA55 and CHASER (2000–2015). Color-bars are the same for all panels. In ISCCP and CALIPSO data, the pressure boundary layer of the low troposphere is > 680 hPa. In JRA55, the low troposphere was defined as 850–1100 hPa of pressure.
Verification with stationary observations

Verifications with EANET and EMEP stationary observations were conducted to assess the model performance on land domains of eastern Asia and Europe, particularly addressing the roles of the heterogeneous reactions considered for this study. The mass concentrations of particulate matter (PM$_{2.5}$), sulfate (SO$_{4}^{2-}$), nitrate (NO$_{3}^{-}$), aerosols and gaseous HNO$_{3}$, NO$_x$, O$_3$, and CO (CO only for EMEP) of 2010–2016 were evaluated (see Fig. S3 to S10 for monthly concentrations and Fig. S12: for correlations). In general, the model can moderately reproduce the PM$_{2.5}$, SO$_{4}^{2-}$, and NO$_3^{-}$ aerosol concentrations at these locations ($R = 0.3–0.7$, Table 5), although PM$_{2.5}$ was underestimated, sulfate was overestimated slightly. Nitrate was underestimated for EANET and overestimated for EMEP. It is noteworthy that the model performance for EMEP stations was better than that for EANET. The PM$_{2.5}$ concentration was better estimated with the inclusion of N$_2$O$_5$ and HO$_2$ uptakes (bias reduction in Table 5). The high negative biases for NO$_3^{-}$ are significant at urban sites, e.g. at Tokyo (Fig. 3), which can be associated with undervaluation for NO$_x$ and which can thereby lessen the effects of N$_2$O$_5$ uptake.

Nitric acid in both regions was overestimated. The correlations, biases, and normalized root mean square error (NRMSE) of the model for SO$_4$, NO$_3$, and HNO$_3$ are in the ranges as reported in a multi-model study by Bian et al. (2017) (Table 6).

The NO$_x$ concentration for eastern Asia and Europe was underestimated, with significant bias for Asian polluted locations. The increasing effects of NO$_x$ attributable to heterogeneous reactions, although minor, mitigated these underestimations. In Fig. 3, although NO$_x$ was partly reduced via uptake of N$_2$O$_5$, the NO$_x$ level was mostly increased because of HO$_2$ and RO$_2$ uptake. CO for EMEP was underestimated by the model. This undervalue was mitigated by increasing effects because of HRs of N$_2$O$_5$ and HO$_2$. The uptakes of RO$_2$, in contrast, minorly reduced CO levels so that the model bias was worsened slightly. For O$_3$, whereas the model tends to overestimate this tracer for both regions, O$_3$ reduction effects of all HRs also alleviated the model overestimates, especially in June, July, and August (JJA). In December, January, and February (DJF), the model tended to underestimate O$_3$ levels at some stations. The reduction effects on O$_3$ extended this undervalue. In general, STD simulation with coupled HRs partly improved the agreement related to the particulate and gaseous species, showing less bias than that of simulations without HRs (Table 5).
Figure 3: Observations and sensitivity simulations at represented EMEP and EANET stations: first row – PM$_{2.5}$, SO$_4^{2-}$, and NO$_x$ for EMEP; second row – same as first row but for EANET; third row – NO$_x$, O$_3$, CO for EMEP; fourth row – NO$_x$ and O$_3$ for EANET.

Table 5: Model correlations and biases with EANET/EMEP observations: three-sigma-rule outlier detection is applied for each station before calculating all data. For NO$_x$, all data were filtered once more using the two-sigma-rule. Bias of the sensitivity run is shown as bold if it is higher than the bias of the STD run.

	EANET		EMEP										
	PM$_{2.5}$	SO$_4^{2-}$	NO$_x$	HNO$_3$	NO$_x$	O$_3$	PM$_{2.5}$	SO$_4^{2-}$	NO$_x$	HNO$_3$	NO$_x$	O$_3$	CO
R(STD)	0.37	0.56	0.379	0.177	0.233	0.6	0.475	0.633	0.715	0.116	0.698	0.651	0.534
bias (STD)	-7.526	1.048	-0.395	0.311	-3.929	3.927	-2.966	0.784	0.273	0.081	-0.773	4.071	-3.439
bias (noHR)	-7.442	0.971	**-0.452**	0.292	**-4.011**	6.808	**-3.262**	0.603	0.106	0.067	**-0.895**	7.189	**-9.062**
bias (noHR_n2o5)	**-7.575**	**1.05**	-0.46	0.295	-3.869	**4.93**	**-3.223**	0.774	0.042	0.07	-0.707	**5.013**	**-6.822**
bias (noHR_ho2)	**-7.607**	0.925	-0.37	**0.312**	**-4.02**	**5.126**	**-3.136**	0.55	**0.335**	0.078	**-0.895**	5.489	**-6.896**
bias (noHRs_ro2)	-7.38	1.021	**-0.427**	0.305	**-4.008**	4.931	-2.858	**0.839**	**0.275**	0.079	**-0.833**	**4.893**	-2.276
Table 6: Comparisons between EANET and EMEP observations with atmospheric models. Outlier detection follows in Table 5. The model result is shown as bold if it is better than or agreed with Bian’s report.

	EANET		
	SO₂ [µg m⁻³]	NO₃ [µg m⁻³]	HNO₃ [ppb]
This study	r = 0.56	r = 0.379	r = 0.177
	bias = 1.048	bias = -0.395	bias = 0.311
	nrmse = 0.954	nrmse = 1.58	nrmse = 2.491
Bian et al., 2017	r = 0.449–0.640	r = 0.226–0.448	r = 0.098–0.370
	bias = 0.358–1.353	bias = 0.338–1.920	bias = 0.347–3.596
	nrmse = 0.840–0.968	nrmse = 1.494–2.080	nrmse = 0.980–2.880
EMEP	SO₂ [µg m⁻³]	NO₃ [µg m⁻³]	HNO₃ [µg m⁻³]
This study	r = 0.633	r = 0.715	r = 0.116
	bias = 0.784	bias = 0.273	bias = 0.886
	nrmse = 0.961	nrmse = 0.91	nrmse = 3.33
Bian et al., 2017	r = 0.230–0.463	r = 0.393–0.585	r = 0.157–0.502
	bias = 0.452–1.699	bias = 0.539–1.421	bias = 0.570–3.836
	nrmse = 0.514–0.818	nrmse = 0.745–1.031	nrmse = 0.908–2.542

Verification with ship-based measurements

The model simulations were also verified with O₃ and CO observations from the Research Vessel (R/V) MIRAI for the Pacific Ocean region. This study specifically examines data from the four cruises of R/V MIRAI for the Japan–Alaska region (40° N–75° N, 140° E–150° W) in summer, designated as Track 1 (2015/8/28–9/29), Track 4 (2016/8/22–9/14), Track 5 (2017/7/11–7/29), and Track 6 (2017/8/24–9/8), and cruises during DJF for the Indonesia–Australia region (5°–25° S, 105°–115° E) designated as Track 2 (2015/12/23–2016/1/10) and for the Indonesia–Japan region (10°–35° N, 129°–140° E) designated as Track 3 (2016/1/17–1/24). Data for the North Pacific region (40°–60° N) are addressed for analysis in Sect. 3.2.

Table 7 shows correlation coefficients (plotted in Fig. S15), indicating that the CHASER simulations for CO and O₃ are in good agreement with MIRAI observations (R = approx. 0.6). However, the model still shows some discrepancies for both CO and O₃ concentrations. In general, the estimated CO and O₃ are both reduced for T1, T4-6 as compared to observations whereas superior for the data located in 20° S–20° N during T2-3. Overestimations for CO and O₃ occurring in the region with considerably low levels of these species might be attributed to the lack of halogen chemistry in the model, as also discussed for the nearby region in a past report (Kanaya et al., 2019). Undervalues for CO and O₃ levels in the higher latitudes (T1, T4–6) are ascribable to the insufficient downward mixing process of stratosphere O₃ in the model (Kanaya et al., 2019).

The negative biases in the noHR simulations for CO are lower in the STD run for all cruises, as they are for the North Pacific region (second versus third/fourth/fifth data rows for CO, Table 7). The CO-increasing effects by N₂O₃ and HO₂ uptakes are consistent with the comparison for EMEP. So are CO-reduction effects because of HRs(RO₂). Whereas the effects by N₂O₃ and HO₂ reduce the model bias, the CO-reducing effects by HRs(RO₂) exaggerated the CO bias (second versus sixth data rows for CO in Table 7), which is already apparent for comparison with EMEP (last column, Table 5).

For O₃ level, the model undervalues (Table 7) are in the opposite direction to the O₃ overestimates for EANET and EMEP stations (Table 5). The lower panels presented in Fig. 4 show marked O₃ reduction with all HRs, mostly contributed from the HO₂ uptake onto cloud particles (gaps between red and green lines). This marked reduction of the O₃ level is evident at some
points during the cruises, especially in the North Pacific region (the shaded areas), especially for T4. Unlike comparisons for land-domain data (Table 5), \(\text{O}_3 \) reduction because of HRs extends the model underestimates during the MIRAI cruises. It is noteworthy that one cannot necessarily confirm whether the STD run better simulates these species than the noHR does because tropospheric CO and \(\text{O}_3 \) levels are controlled by a complicated chemical mechanism and an interplay of emission, transport, deposition, and local mixing in the boundary layers. As discussed later in Sect. 3.2, the surface aerosols concentration in the West Pacific Ocean mostly dominated by liquid clouds (exceed 50,000 \(\mu \text{m}^2 \text{cm}^{-3} \) during JJA) and sulfate aerosols (approximately 75 \(\mu \text{m}^2 \text{cm}^{-3} \) in JJA). The model improvements in reproducing CO by adding \(\text{N}_2\text{O}_5 \) and \(\text{HO}_2 \) uptake indicate that the appropriate mechanisms of these processes onto cloud droplets and sulfate aerosols are well-established in the model. For HRs(\(\text{RO}_2 \)), which induce the smallest and opposite effects on CO compared with the effects of \(\text{N}_2\text{O}_5 \) and \(\text{HO}_2 \) uptakes, it can be stated in general for the total HR effects that including all three HRs partially improves the model during MIRAI cruises.

Table 7: Model correlations and biases for MIRAI. No outlier filtration is applied. The bias of the sensitivity run is shown as bold if it is higher than the bias of STD run. The unit for the biases is ppb.

	CO	\(\text{O}_3 \)	CO (40–60° N)	\(\text{O}_3 \) (40–60° N)
R(STD)	0.689	0.617	0.58	0.665
bias (STD)	-4.988	-4.996	-11.668	-3.493
bias (noHR)	-10.324	-2.388	-17.625	1.211
bias (noHR,\(\text{N}_2\text{O}_5 \))	-8.127	-4.362	-14.804	-2.738
bias (noHR,\(\text{HO}_2 \))	-9.036	-3.358	-16.358	-0.226
bias (noHR,\(\text{RO}_2 \))	-3.433	-4.431	-10.035	-2.526
bias (noHR,CLD)	-6.821	-3.199	-14.005	0.025

Figure 4: Sensitivity simulations for CO (upper panels) and \(\text{O}_3 \) (lower panels) during MIRAI cruises. The left axis shows concentrations. Dashed lines show latitudes of cruises scaled with the right axis. The horizontal axis shows cruise travel times. Shaded areas show data in the North Pacific region (140–240° E, 40–60° N). Brown dashed lines representing the noHR_CLD run are discussed in Sect. 3.2.
Verification using aircraft measurements

To verify the model performance in the free troposphere, we used ATom1 aircraft measurements in August of 2016 (for NO₂, OH, CO, and O₃). The spatial and temporal concentrations are available in Fig. S11. Correlations are shown in Fig. S14.

In general, the model simulations for NO₂, OH, CO, and O₃ adequately agree with aircraft measurements with \(R > 0.5 \) (Fig. S14). However, NO₂ and CO still tend to be underestimated by the model, which is consistent with comparisons for EANET/EMEP and MIRAI observations. In Fig. 5, the CO-increasing effects, mostly by the uptake of N₂O₃ and HO₂, mitigated the negative bias of the model. This CO bias reduction was visible for all flight altitudes, the lower troposphere, and the North Pacific region (Table 8). Both N₂O₃ and HO₂ uptakes show improvements for CO reproduction of the model. However, RO₂ uptake seems to worsen the model’s CO bias, which is consistent with the MIRAI comparison.

For the O₃ level, the model generally overestimates O₃ when calculating for all altitudes or lower troposphere, which is similar to the EANET/EMEP observations. In the North Pacific region with \(P > 600 \) hPa (40°–60° N, 198°–210° W), the model bias for O₃ in STD run turns to underestimate (second data row – second column from the right, Table 8), which might be similar with MIRAI data verification for the western North Pacific (143° E–193° W). However, for the underlayers (>700 hPa) show overestimation again (second data row – last column, Table 8). As MIRAI and ATom1 data show, the underestimates for O₃ exist at the marine boundary layer in the western North Pacific and extend to the upper troposphere (<700 hPa) of the east side, might be ascribed to the insufficient downward mixing process of stratosphere O₃ in the model as discussed previously.

The HR effects on O₃ are generally negative effects (all-flight mean concentration is 78.17 ppb by STD and 80.178 ppb by noHR runs), although they are small and barely recognizable in Fig. 5, which mitigates the model bias in the noHR run. This model improvement is consistent for all flight altitudes, the low troposphere, and the North Pacific region (second versus third data rows in Table 8). Both HR(N₂O₃) and HR(RO₂) typically contribute to this improvement (second versus fourth, fifth data rows in Table 8). In contrast, HR(HO₂) seems only to reduce the model bias in the ground layer, which is > 800 hPa for all flights and > 700 hPa for the North Pacific region (second versus sixth rows in Table 8). At the bottommost layers in this region, the model’s overestimates for O₃ are reduced by the negative effects of HO₂ uptake. The extension of model bias because of HO₂ uptake above 800 hPa is attributable to its increasing effect on O₃ level: the all-flight mean concentration is 78.17 ppb by STD and 77.96 ppb by noHR_ho2 runs. We recognize that this O₃ increase effect is opposite to the effects for EANET/EMEP and MIRAI comparisons, which is discussed in Sect. 3.2 for HO₂ uptake effects.

The vertical means of model biases for all four species (NO₂, OH, CO, O₃) are presented in Fig. 6. In general, the STD run reduces model biases for all four species, with better performance for broader regions (all flight-pressures and Northern Hemisphere) than for the smaller region (North Pacific). In the North Pacific region, the negative bias for O₃ is observed only for the 500–900 hPa layers (right-bottom panel of Fig. 6). The model bias is apparently extended in this region. However, the inclusion of HR(HO₂) reduces O₃ bias in this region (red line versus green line in the same panel), which might indicate that the O₃ increase effect by HR(HO₂) is verified particularly in 500–900 hPa layers during ATom1.
We also verify the total uptake of N$_2$O$_5$, HO$_2$, and RO$_2$ onto ice and liquid clouds using data obtained from ATom1 flights within the free troposphere. As Table 8 and Fig. 6 show, the inclusion of HRs onto clouds reduces the model biases for CO and O$_3$ in all calculations. The vertical-mean biases for NO$_2$, OH, CO, and O$_3$ species are all reduced by the inclusion of HRs onto clouds. However, Fig. 6 shows model worsening at 500–900 hPa, which coincides with the area in which O$_3$ is underestimated as described above. This result might prove that cloud overestimation for the North Pacific, as revealed at the beginning of this section, affects the model bias in this region.

Table 8: Model correlations and biases with ATom1: three-sigma-rule was applied for CO and O$_3$. NP denotes North Pacific region (140–240$^\circ$ E, 40–60$^\circ$ N). The bias of sensitivity run, which is higher than the bias of STD run, is presented as bold.

	CO (>600 hPa)	O$_3$ (>600 hPa)	O$_3$ (>800 hPa)	CO (NP, >600 hPa)	O$_3$ (NP, >600 hPa)	O$_3$ (NP, >700 hPa)
R (STD)	0.642	0.742	0.805	0.679	0.659	0.918
Bias (STD)	-4.462	15.337	-9.42	2.162	1.257	-16.548
Bias (noHR)	-8.581	17.345	-13.589	3.266	2.365	-21.025
Bias (noHR_n2o5)	-7.583	16.697	-12.477	2.925	1.829	-19.44
Bias (noHR_ho2)	-6.101	15.127	-11.278	2.095	1.312	-18.247
Bias (noHR_ro2)	-3.359	16.412	-8.241	2.55	1.537	-15.741
Bias (noHR_cld)	-4.978	16.141	-10.023	2.403	1.596	-17.199

Figure 5: Sensitivity simulations for CO and O$_3$ during Atom1 flight 2 (198–210$^\circ$ E, 20–62$^\circ$ N). Blue shaded areas show data for $P > 600$ hPa.
Figure 6: Vertical bias against ATOM1. Data for each pressure level P are calculated within the range of $P\pm50$ hPa, with the applied three-sigma-rule for outlier detection. First, second, and third rows respectively show calculations for all flight domains, Northern Hemisphere, and North Pacific region. The horizontal axis shows model bias with units written in each panel. The vertical axis shows pressure (hPa). Brown dashed lines representing the noHR_cld run.

Verification with OMI satellite observation for TCO

We also tested STD and noHR simulations using the tropospheric column ozone (TCO) derived from the OMI satellite instrument (Fig. S1 and Fig. 7). In a large area of the Northern Hemisphere, the inclusion of HRs (STD run) generally improved the consistency with the OMI TCO (Fig. 7), particularly enhancing the winter minima (first and second panels in Fig. S1). This improvement in DJF is attributed mostly to the reductive effects of HR(N_2O_5) and HR(RO$_2$) in the lower (800 hPa) and middle troposphere (500 hPa), respectively (see Fig. 10 for vertical profiles of HR(N_2O_5) on O$_3$ and Fig. 14 for vertical profiles of HR(RO$_2$)). In the North Pacific, HRs appeared to extend O$_3$ underestimates, especially for latitudes higher than 40° N (Fig. 7) during the first half of the year (third panel, Fig. S1). However, such a discrepancy, which was also observed from comparison for R/V MIRAI observations (Fig. 4), might result from other factors such as deposition or vertical mixing rather than by HRs.
Figure 7: Tropospheric column ozone (TCO) by CHASER (first and second rows) and OMI (third row): ANN is annual; JJA is June, July, and August.

3.2 HR effects

This section presents a discussion of the global effects of HRs calculated using CHASER with their spatial distributions in the troposphere using standard (STD) and sensitivity simulations (noHR_n2o5, noHR_ho2, noHRs_ro2, noHR) for the meteorological year of 2011. Aside from the main simulations described in Table 3, additional runs that separately turned off the uptakes onto clouds or aerosols for each HR are also conducted to exploit the contributions of effects to the troposphere.

Distribution of clouds and aerosols surface aerosol density (SAD)

To obtain the parameters for uptake to clouds and aerosols, SAD estimations are used together with cloud fraction and aerosols concentration. Hereinafter, we discuss SAD distributions for total aerosol, ice clouds, and cloud droplets, which are estimated for the model using Eqs. (2), (3), and (4), respectively.

In Fig. 8, total surface area concentrations of liquid clouds and aerosols are both much lower aloft than at the surface (as counted on the dry and wet depositions). The liquid cloud SAD results are two orders of magnitude larger than ice cloud SAD and total aerosol SAD. The ice cloud SAD, distributed at the middle and upper troposphere, is enhanced for N/S middle latitudes in wintertime. Liquid cloud SAD concentrates mainly at the surface with distributions extending to 500 hPa, and
maximized at approx. 800 hPa over the mid-latitude storm tracks and in tropical convective systems, especially at 60° N in JJA. Total aerosol SAD was derived mainly from pollution sources at 40° N during both seasons with higher concentrations apparent for DJF, with a greater spatial spread observed for JJA. Sulfate aerosols are becoming the dominant source of aerosol surface area in the model above 600 hPa (approx. 20 μm² cm⁻³) in addition with organic carbons and soil dust (both are approx. 10 μm² cm⁻³ in JJA) for the Northern Hemisphere.

In Fig. S2, showing the SAD distribution at the surface, the SAD for liquid clouds is dominant in JJA reaching approx. 50,000 μm² cm⁻³ for middle-latitude and high-latitude ocean regions. Liquid clouds are the most contribution to the SAD at the surface. Our model performance for aerosols SAD shows agreement with that presented in an earlier report (Thornton et al., 2008). Sulfate aerosols are prevalent in the northern mid-latitudes near industrial bases, maximize at the surface in DJF for the Chinese region (exceeding 1,000 μm² cm⁻³), NE U.S. (approx. 500 μm² cm⁻³), western Europe, and transport to the North Pacific region in JJA (approx. 250 μm² cm⁻³). Soil dust aerosol SAD dominate in the regions of the Sahara and Gobi deserts, reaching annual average values exceeding 100 μm² cm⁻³. Organic carbon (OC) is a dominant source of aerosol SAD over biomass burning regions in China (up to 1,000 μm² cm⁻³ in DJF), South Africa (up to 800 μm² cm⁻³ in JJA), West Europe, and South America. The black carbon (BC) surface area can reach values exceeding 600 μm² cm⁻³ in DJF for the region of China or other significant industrial areas (India reaches 75 μm² cm⁻³, NE U.S., Europe) or over tropical forests, primarily in Africa. Sea salt aerosols are most important in high-latitude oceans during winter. However, the maximum contributions only reach 2 μm² cm⁻³ in our model, which is much underestimated compared to Thornton’s work (75 μm² cm⁻³) (Thornton et al., 2008). In brief, SAD for aerosols of all types contributes the most during DJF, whereas during JJA, the SAD for liquid clouds and sulfate aerosols are dominant, particularly for the northern high-latitude and mid-latitude oceans. The total aerosols SAD in this region are approx. 75 μm² cm⁻³, which is consistent with estimation by Thornton (2008).

Figure 8: Zonal, seasonal mean (upper and middle), and annual mean (lower) distribution of cloud droplet surface aerosol density (SAD), cloud ice SAD, total aerosol SAD, sulfate aerosol SAD, and organic carbon SAD (from left to right).
Effects of N₂O₅ heterogeneous reaction (HR(N₂O₅))

The inclusion of HR(N₂O₅) in the model increases global methane lifetime by +4.48% and changes NOₓ, O₃ and CO abundances respectively by -5.51%, -2.12%, and +3.42% (Table 9).

In Fig. 9, the changes in OH, NOₓ, O₃, and CO are most significant in the middle troposphere (400–600 hPa). These changes are attributed mostly to uptakes of N₂O₅ onto aerosols, preferably onto clouds (apparent through correlation among effects by all HR(N₂O₅) and that by the HR(N₂O₅) onto total aerosols, Fig. 9). Marked negative effects on NOₓ concentration are apparent for DJF in the middle troposphere (600–700 hPa) of the 60° N and the Arctic region (>20% at 700 hPa). The effects are probably associated with high concentrations of sulfate aerosols, organic carbons or soil dusts in the middle troposphere (see the paragraph above) and are also related to a long chemical lifetime of NOₓ in the middle-upper troposphere in winter. When it comes to JJA, these negative effects become significant at higher altitudes around the 30°N/S (>10% at 400 hPa). At the surface, HR(N₂O₅) causes negative effects on NOₓ, O₃, OH concentrations (up to -23%, -4.5% and -7.5% respectively) and positive effects on CO concentration (up to +4.1%), also mainly attributable to the N₂O₅ uptake on aerosols.

In Fig. 10, the latitude–longitude means of HR(N₂O₅) effects are calculated for each pressure range (pressure ranges are defined as in Fig. 6). The global NOₓ decrease is up to -8.5% at 300–400 hPa. This decrease causes correspondent reductions in O₃ and OH which are calculated as about -3% and -7% at 400–600 hPa, respectively, for global mean O₃ and OH. About 3.5–4% global mean CO increment throughout the entire troposphere responds to decreased OH.

The small effects of HR(N₂O₅) on O₃ in the lower troposphere are consistent with findings from an earlier study (Riemer et al., 2003). Reductions in O₃ and NOₓ concentrations also well agree with the collective knowledge summarized in work reported by Brown and Stutz (2012). Despite a considerable HR(N₂O₅) effect calculated in the middle troposphere, its effect in the whole troposphere is apparently not as great as reported to date. Another study assessed HR(N₂O₅) effects on annual burdens of NOₓ, O₃, and OH, respectively as -11%, -5%, and -7% when using a similar γ_N₂O₅ value (0.1) (Macintyre and Evans, 2010). Although the effects of magnitude estimated in our work (Table 9) are almost half less than this earlier study (probably because of differences in NOₓ emissions, estimation of SAD, and chemical mechanism), the effect tendencies are similar. A strong increase of ozone attributed to N₂O₅ uptake under high-NOₓ conditions calculated using box models was reported from an earlier study (Riemer et al., 2003), but this is only slightly apparent in our global model. Our results revealed that the HR(N₂O₅) effect might help clean up NOₓ pollutant. However, it increases the concentration of other pollutants (such as CO) because of the effects of reducing oxidizing agents in the atmosphere.
Figure 9: Effects of HR(N2O5) in zonal-mean and at surface.

a–b: Effects by N2O5 uptake onto both clouds and aerosols. c–d: Effects by N2O5 uptake onto aerosols. Positive effects are presented in shades of red. Negative effects are in shades of blue. The contour interval is 2% in the plots for zonal mean.
Effects of HO$_2$ heterogeneous reaction (HR(HO$_2$))

Regarding the effects of HR(HO$_2$), the tropospheric methane lifetime increases by approx. 1.5%. Abundances in NO$_x$, O$_3$, and CO change, respectively, by +3.3%, +0.05%, and +1.9% (Table 9). In the entire troposphere, the influences of HR(HO$_2$) are not as large as that of HR(N$_2$O$_5$).

As Fig. 11 shows, the zonal-mean effects of HR(HO$_2$) on NO$_x$, OH, and O$_3$ are more widespread in DJF, but are more concentrated at the surface in JJA because of the high level of HO$_2$. The most substantial effects by HR(HO$_2$) are calculated in JJA at the surface of North Pacific (140–240° E, 40–60° N) by as much as +68.7% (NO$_x$), +7.29% (CO), -70% (OH), and -21% (O$_3$), which are more significant than those of HR(N$_2$O$_5$) at the surface. These effects are primarily attributable to HR(HO$_2$) in clouds rather than to aerosols (which is opposite to N$_2$O$_5$ uptake). These OH and O$_3$ reduction effects go along with past studies in which approx. 50% OH and approx. 10% O$_3$ reductions are calculated for the low troposphere of northern mid-latitude region ascribed to aqueous-phase HO$_2$ sink in clouds (Lelieveld and Crutzen, 1990, 1991). The efficient scavenging of HO$_2$ radical by cloud droplets might associate with acid–base dissociation HO$_2$/O$_2^-$ and electron transfer of O$_2^-$ to HO$_2$ to produce H$_2$O$_2$ (Jacob, 2000). Furthermore, cloud droplets SAD in our model are two orders of magnitude higher than total aerosol SAD (Fig. 8), which also contributes to the preference of the aqueous-phase HO$_2$ sink. Our large calculated effects for
the North Pacific region are new findings from other models, which have considered only aqueous aerosols (Stadtlar et al., 2018; Thornton et al., 2008), because cloud particles are dominant at remote marine areas in addition to sulfate and aqueous sea salt particles (discussed at the beginning of Sect. 3.2). The HO\textsubscript{2} uptake onto aerosols is minor; it is observed only in DJF at the Arctic region and polluted areas (China and US), with apparent changes of up to +17\% NO\textsubscript{x}, -40\% OH, and -14\% O\textsubscript{3} at the local surface (panel b, Fig. 11). The aerosol negative-effect of HR(HO\textsubscript{2}) on surface O\textsubscript{3} concentration is significant at the Chinese area, which might be in line with other studies of the Chinese O\textsubscript{3} trend (Kanaya et al., 2009; Li et al., 2019; Liu and Wang, 2020; Taketani et al., 2012), which suggests that the observed recent O\textsubscript{3} increases can be attributed to reduced HO\textsubscript{2} uptake under aerosol (PM) decreases brought about by the new Chinese Air Pollution policy.

In Fig. 10, vertical profiles show that the latitude–longitude (lat-long) averaged effect of HR(HO\textsubscript{2}) on OH is -9\% in the lower troposphere. As a result, the lat-long mean CO level increases +2.5\% at the surface. Additionally, the daytime NO\textsubscript{x} oxidation by OH is suppressed. Also, NO\textsubscript{x} might be preserved in clouds (Dentener, 1993), which increases the lat-long averaged NO\textsubscript{x} level by +6\% at 900 hPa. The lat-long mean O\textsubscript{3} is reduced by -1\% at the surface, but it is increased at higher altitudes (about +0.2\% at 300 hPa). The reduction of O\textsubscript{3} associates with HO\textsubscript{2} depletion in clouds and aqueous aerosols as described above, coupled with the NO\textsubscript{x} preservation in clouds, which enhance the NO/NO\textsubscript{x} ratio. The preserved NO\textsubscript{x} in clouds might remain available for O\textsubscript{3} production after the cloud evaporates (Dentener, 1993), along with the low SAD for both liquid clouds and aerosols at higher altitudes (Fig. 8), thereby increasing O\textsubscript{3} in places other than aqueous phase. The O\textsubscript{3} increment might be trivial in DJF, but enhanced in JJA. As a result, the Northern Hemisphere-mean O\textsubscript{3} in JJA exhibits only positive effects. In contrast, for the North Pacific region in JJA, because of its large cloud fraction, an O\textsubscript{3} reduction effect is apparent in this region. The effects in JJA for this region show changes of -25\% OH, +35\% NO\textsubscript{x}, -12\% O\textsubscript{3}, and +5\% CO at 900–100 hPa as the most remarkable HR(HO\textsubscript{2}) effects as described above. In general, the regional mean effects of HR(HO\textsubscript{2}) in the North Pacific region are enhanced in JJA, but the mean global effects of HR(HO\textsubscript{2}) are slightly favored in DJF because of the additional effects of aerosols during this season.

Macintyre and Evans (2011) also found a similar contrast between the behaviors of HR(N\textsubscript{2}O\textsubscript{3}) and HR(HO\textsubscript{2}): the uptake of N\textsubscript{2}O\textsubscript{3} produces both regional and global effects on O\textsubscript{3}, whereas the uptake of HO\textsubscript{2} affects O\textsubscript{3} at regional scales more strongly than on a global scale (Macintyre and Evans, 2011). Such features are generally consistent with our results.
Figure 11: Effects of HR(HO$_2$) in zonal mean and at the surface layer. a-b: Effects of HR(HO$_2$) onto both clouds and aerosols. c-d: Effects of HR(HO$_2$) onto clouds. The contour interval is 2% in the plots for zonal mean.

Effects of RO$_2$ heterogeneous reactions (HRs(RO$_2$))

Effects of HR(RO$_2$) increase the global mean methane lifetime by +0.15% and change tropospheric abundances of NO$_x$ (+0.52%), O$_3$ (-0.93%), and CO (-1.78%) (Table 9). In Fig. 12, significant latitudinal contrasts exist in the NO$_x$ changes: large NO$_x$ increases at high latitudes with decreases at lower latitudes. These NO$_x$ changes probably reflect the reduced formation of PANs which decreases NO$_x$ transport from source regions to remote areas and from the surface to the upper troposphere (Villalta et al., 1996). The model calculated especially large NO$_x$ increases (>50%) for high latitudes around the Arctic sea in JJA, indicating reduction in the formation of PANs (NO$_2$ + RO$_2$ \rightarrow PANs), which is linked tightly to the enhanced biogenic emissions of VOCs such as isoprene and terpenes in summer. The corresponding changes in OH concentration (because of the reduced NO$_x$ levels) at the surface are in the range of -4.6% to +20.4%. The effects of HR(RO$_2$) are primarily attributed to the heterogeneous reaction on clouds rather than on aerosols, although this cloud-effect is far smaller than the cloud-effect to the HO$_2$ uptake. Although it is proper to expect the high solubility of RO$_2$ (e.g. CH$_3$O$_2$) from its peroxy substituent (Betterton,
1992; Shepson et al., 1996), it is much less soluble than HO$_2$ because of its lower polarity, therefore the lower Henry law constant (Jacob, 2000). Consequently, the possible accumulation of CH$_3$O$_2$ in the cloud is rather attributable to suppression of its gas-phase sink with HO$_2$ (Jacob, 1996).

Fig. 14 a–c show latitude–longitude means of HR(RO$_2$) effects calculated for the respective pressure ranges: the latitude–longitude are constrained for the entire globe, the Northern Hemisphere, and North Pacific region. For the entire globe, the contrast effects of HR(RO$_2$) between the lower and higher troposphere on NO$_x$ and OH are shown clearly (+3.5% NO$_x$ and +0.55% OH at 900 hPa, but -2.5% NO$_x$ and -0.75% OH at 400–500 hPa annually). As a result, the annual mean O$_3$ and CO levels decreased throughout the troposphere, reaching their lowest at -1.6% O$_3$ and -1.5% CO at the surface. In JJA, the global effects by HR(RO$_2$) are more concentrated in the lower troposphere, especially in the North Pacific (+3% OH, +10% NO$_x$, -3% O$_3$, -2% CO at 900–1000 hPa). In DJF, the HR(RO$_2$) effects are observed mostly in the middle and higher troposphere, especially when considering the Northern Hemisphere (-1.25% OH, -4% NO$_x$, -2% O$_3$ at 500–800 hPa).

Figure 12: Effects of HR(RO$_2$) in the zonal mean and at the surface layer. a-b show effects of the uptake onto both clouds and aerosols. c-d show separate effects of the uptake onto clouds. The contour interval is 2% in the plots for zonal mean.
Total effects of all HRs

As discussed above, different heterogeneous reactions affect tropospheric chemistry differently. However, their effects can either augment or negate others in performing for the atmospheric chemistry. HR(N₂O₅) is the greatest contributor to reduction of tropospheric OH, O₃, and NOₓ abundances, which is more active in the middle troposphere. HR(HO₂) reduces OH, but increases the abundances of O₃ and NOₓ globally, whereas it exposes a negative effect on O₃ level at the surface of the North Pacific region. HR(RO₂), similarly, has a smaller distribution to the total heterogeneous effects but its global-mean negative effects for O₃ are not negligible. The uptake of N₂O₅ mainly takes place to aerosols, whereas the uptakes of HO₂ and RO₂ occur more to liquid and ice clouds. Overall, the total effects of all HRs for the whole troposphere are +5.9% for global mean CH₄ lifetime, -2.2% for NOₓ (tropospheric abundance), -2.96% for O₃, and +3.3% for CO (Table 9). At the surface, the annual effects ranged from -52.7 to +2.3% for OH, -13.1 to +51.1% for NOₓ, -13.1 to -1.5 for O₃, and -0.3 to +5.8% for CO (Fig. 13).

As Fig. 14 d–f show for the vertical profiles of HR effects, the change of OH largely concentrated in the lower troposphere (-10% OH at 900 hPa, calculated for the entire globe) is associated with the HO₂ uptake. By contrast, the NOₓ change is more intensive at higher altitudes (-9% NOₓ at 400 hPa, calculated for the entire globe), associated with N₂O₅ and RO₂ uptakes. The global-mean HR effects on O₃ and CO are vertically even, with the highest effects reaching -4.5% O₃ and +3.8% CO at the surface. Globally, HR effects on atmospheric oxidants (OH and O₃) are enhanced in DJF because of the higher pollution in the Northern Hemisphere. However, the largest HR effects are apparent for JJA at the surface of the North Pacific (-25% OH, +38% NOₓ, -14% O₃, +6% CO as calculated for the 950–1000 hPa layer). These effects are mostly ascribed to HO₂ uptake onto clouds. This finding is also apparent from Fig. S15-c: these effects reach -66% for OH, +120% for NOₓ, -23% for O₃, and +4.4% for CO at the surface. They were able to extend up to 400 hPa in the atmosphere. These substantial effects are readily apparent for the large reduction of O₃ level during MIRAI observation (red line versus green line in T5 bottom panel, Fig. 4). However, the major contribution of HR(HO₂) to these effects is only partially verified by the ATom1 measurements in this study (red versus green lines in the bottom-right panel, Fig. 6). Because of model overestimates of cloud fraction in JJA for the North Pacific region, these effects of HR(HO₂) should have existed at some smaller magnitude. For HR effects in the middle to upper troposphere, the N₂O₅ uptake on aerosols are mostly ascribed, which is intensive in both DJF and JJA.
Figure 13: Annual zonal-mean and surface total-HR effects.

Figure 14: Effects of RO₂ uptakes (a-c) and all HRs (d-f) averaged for each air pressure range. Calculations are for global (a,d), Northern hemisphere (b,e), and North Pacific region (c,f).
Table 9: Tropospheric abundances changes by HR(N$_2$O$_5$), HR(HO$_2$), HR(RO$_2$), and all HRs onto clouds and aerosols

	CH$_4$ (year)	lifetime	Tropospheric abundances	\(\text{NO}_x\) (TgN)	\(\text{O}_3\) (TgO$_3$)	CO (TgCO)
STD	9.44	0.115	402.29	337.12		
noHR.n2o5	9.04	0.122	410.99	325.98		
noHR.n2o5-Cld	9.41	0.116	402.81	336.43		
noHR.n2o5-Ae	9.09	0.121	409.81	327.46		
noHR.ho2	9.30	0.111	402.09	330.67		
noHR.ho2-Cld	9.35	0.113	402.25	332.97		
noHR.ho2-Ae	9.40	0.114	402.17	335.29		
noHRs.ro2	9.43	0.114	406.06	343.23		
noHR.ro2-Cld	9.42	0.115	403.96	339.06		
noHR.ro2-Ae	9.45	0.115	404.03	340.76		
noHR	8.91	0.118	414.55	326.43		
noHR.Cld	9.32	0.113	404.55	335.03		
noHR.Ae	9.06	0.119	411.38	329.20		
STD – noHR.n2o5	+4.48%	-5.51%	-2.12%	+3.42%		
STD – noHR.n2o5-Cld	+0.30%	-0.43%	-0.13%	+0.21%		
STD – noHR.n2o5-Ae	+3.87%	-4.56%	-1.83%	+2.95%		
STD – noHR.ho2	+1.51%	+3.26%	+0.05%	+1.95%		
STD – noHR.ho2-Ae	+0.41%	+1.11%	+0.03%	+0.55%		
STD – noHR.ho2-Cld	+1.00%	+1.87%	+0.01%	+1.25%		
STD – noHRs.ro2	+0.15%	+0.52%	-0.93%	-1.78%		
STD – noHRs.ro2-Cld	+0.23%	+0.39%	-0.41%	-0.57%		
STD – noHRs.ro2-Ae	-0.12%	+0.09%	-0.43%	-1.07%		
STD – noHR	+5.91%	-2.19%	-2.96%	+3.28%		
STD – noHR.Cld	+1.34%	+1.71%	-0.56%	+0.63%		
STD – noHR.Ae	+4.15%	-3.44%	-2.21%	+2.41%		
3.3 Sensitivities of tropospheric chemistry respond to heterogeneous reactions

From the discussion presented above, marked effects of HRs on global tropospheric chemistry are apparent. Here we examine how the tropospheric chemistry responds to the magnitude of HRs. To do this, we introduced a factor \(F \) for application to the first-order loss rate shown in Eq. (1) for artificially manipulating the HR magnitude.

\[
\beta_i = \sum_j \left(\frac{4}{\nu_{ij}^*} + \frac{R_i}{\nu_{ij}^*} \right)^{-1} A_j \times F \tag{8}
\]

For this sensitivity test, we only specifically examine HR(HO\(_2\)) and HR(N\(_2\)O\(_3\)) and consider factors of 0–10 to the STD (Table S 1). This test might help to show the effective-oxidation sensitivity of the troposphere because future pollution and climate change might enhance the activities of these HRs.

For both effects, we performed nonlinear function fitting with their uptake loss rates, which yielded correlation coefficients higher than 0.93 (Fig. 15). Although both HRs showed negative tendencies for OH and O\(_3\) levels, the effect of HR(HO\(_2\)) on the tropospheric abundance of O\(_3\) showed only a small increment with an increasing loss rate (maxima at around \(F = 3 \)), and turned to reduction at higher rates (\(F > 5 \)). As discussed along with HR(HO\(_2\)) effects, the O\(_3\) level is expected to be reduced primarily only in JJA at the surface of the North Pacific region. At the same time, O\(_3\) will be increased gradually elsewhere because of the persistent NO\(_x\) increment. This behavior produces a positive global mean effect. Fig. 10 (dashed lines) shows that manipulation of the HR(HO\(_2\)) loss rate ten factors higher will effectively increase the negative HR(HO\(_2\)) effects on O\(_3\) in DJF (blue dashed versus solid blue lines, third row – fourth column panel), which results in a higher tendency of negative values for global-mean effects. This sensitivity in DJF might be attributable to the HO\(_2\) uptake to aerosols rather than to clouds during this polluted period, which is apparent through comparison of Fig. 11 and Fig. S16 for notable events. In DJF, as amplifying a factor of 10 to HO\(_2\) uptake loss rate, the effects for the polluted Chinese area (because of HO\(_2\) uptake onto aerosols) significantly magnify from -18% (third row – first column in panel b, Fig. 11) to -47% (third row – first column in panel b, Fig. S16). In contrast, effects at the surface O\(_3\) level in JJA for the North Pacific region (because of HO\(_2\) uptake onto clouds) only enhance from -21% (third row-second column in panel b, Fig. 11) to -29% (third row – second column in panel b, Fig. S16).

As amplifying a factor of 10 to HR(N\(_2\)O\(_3\)), the sensitivities of global effects show no seasonal variation. The HR(N\(_2\)O\(_3\)) effects are more sensitive in DJF for the North Pacific region, which link to the higher concentration of aerosol in this season. Otherwise, the HR(N\(_2\)O\(_3\)) effects for the generic Northern Hemisphere tend to be more sensitive in JJA as a result of pollutant transportation to the higher troposphere.

Consequently, we suggest that the sensitivity of tropospheric chemistry to HR(N\(_2\)O\(_3\)) and HR(HO\(_2\)) might be attributable to loss activities to aerosols rather than to clouds. The sharp-curved effect on O\(_3\) because of amplification of HR(HO\(_2\)) makes sense in plans for ozone pollution control when increased pollution or climate change factors cause the rate of HRs in the future to increase by 3–5 times or more.
Conclusion

The “CHASER” chemistry–climate model was used to investigate global effects of N$_2$O$_5$, HO$_2$, and RO$_2$ uptake. Verification of the model with observations from inland and ocean domains showed adequate agreement for PM$_{2.5}$, SO$_4^{2-}$, NO$_3^-$ particles, gaseous HNO$_3$, NO$_x$, OH, CO, and O$_3$ concentrations. R, bias, and NRMSE values for SO$_4^{2-}$, NO$_3^-$, and HNO$_3$ at EANET and EMEP stations are comparable with other models. Inclusion of HR reduced model bias for OH, NO$_2$, CO, and O$_3$, especially in the low troposphere. However, verification with satellite and reanalysis data showed deterioration by HRs for TCO, and an overestimate for cloud fraction in the North Pacific region.

The total effects of HRs are important for the tropospheric chemistry that might change +5.9% CH$_4$ lifetime, -2.19% NO$_x$, -2.96% O$_3$, and +3.3% CO abundances. Global effects are -9% NO$_x$ at 400 hPa, -10% OH at 900 hPa, -4.5% O$_3$ and +3.8% CO at the surface. Global HR effects tend to be enhanced in DJF because of greater amounts of pollution in the Northern Hemisphere.

Total HR effects are contributed mainly by HR(N$_2$O$_5$) onto aerosols in the middle troposphere. At the surface, HR(HO$_2$) is more active and leaves a remarkable disturbance in JJA at the North Pacific region with changes of -70% for OH, -24% for O$_3$, +68% for NO$_x$, and +8% for CO. These effects were attributed to the uptake of HO$_2$ on cloud particles, which were partially
verified with ATOM1 observations. However, the effect magnitude requires further investigation because of model overestimates for cloud fractions in this region.

The sensitivity of tropospheric chemistry with the HR magnitude was determined as nonlinear functions. The increasing effect for the global O₃ abundance by HR(HO₂) will sharply change to a decreasing effect when the uptake rate is amplified by more than three times. This turning is ascribed to the uptake onto aerosols in DJF. In general, uptake to aerosols is more responsive to the heterogeneous loss rate than uptake to clouds.

Overall, the N₂O₅ and HO₂ uptakes will sweep away atmospheric oxidants, thereby enhancing concentrations of pollutants. Our results reveal that although HRs are reported to be associated with polluted regions, the global effects of HRs reach further remote regions such as the marine boundary layer at the middle latitude and the upper troposphere. For ground-based studies of polluted regions such as China, it should be considered that HR(HO₂) and HR(RO₂) were able to contribute respectively to the NOₓ increment in DJF and JJA. Moreover, the HR(HO₂) effect might hinder efforts at reducing environmental pollution in urban areas because it increases NOₓ but decreases O₃ at the surface. Therefore, if this reaction is minimized because of a decrease in particulate matter, then the surface ozone level might increase.

Code availability

The source code for CHASER V4.0 and input data to reproduce results in this work can be obtained from the repository at http://doi.org/10.5281/zenodo.4153452 (Ha et al., 2020).

Author contribution

Ha T.M.P. performed all simulations (except simulations for the cloud-fraction validation), interpreted the results and wrote the manuscript. Sudo K. developed the model code, conceived of the presented idea, supervised the findings of this work and the manuscript preparation. Matsuda R. carried out the simulations and plots for the validation of cloud fraction. Kanaya Y. and Takehani F. provided the R / V MIRAI ship data as well as contributed to the discussion of the work's findings.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgments

This research was supported by the Global Environment Research Fund (S–12) of the Ministry of the Environment (MOE), Japan, and by JSPS KAKENHI Grant Numbers: JP20H04320, JP19H05669, and JP19H04235. We are grateful to the NASA scientists and staffs for providing ATom data (https://espo.nasa.gov/atom/content/ATom). The simulations were completed...
using the supercomputer (NEC SX-Ace and SX-Aurora TSUBASA) at NIES, Japan. The surface observational data for the model validation were taken from the monitoring networks EANET (https://www.eanet.asia/) and EMEP (https://www.emep.int/).

625 References

Apodaca, R. L., Huff, D. M., and Simpson, W. R.: The role of ice in N₂O₅ heterogeneous hydrolysis at high latitudes, Atmos. Chem. Phys., 8, 7451–7463, 2008.

Battan, L. J. and Reitan, C. H.: Droplet size measurements in convective clouds, in Artificial simulation of Rain. Pergamon Press, 184–191, 1957.

Betterton, E. A.: Henry’s Law constants of soluble and moderately soluble organic gases: effects on aqueous-phase chemistry, in: Gaseous pollutants : Characterization and cycling, 24, Wiley, 1-50, 1992.

Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, M. T., Karydis, V. A., Kucsera, T. L., Pan, X. et al.: Investigation of global particulate nitrate from the AeroCom phase III experiment, Atmos. Chem. Phys., 2017.

Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chem. Soc. Rev., 41, 6405–6447, 2012.

Chen, Y., Wolke, R., Ran, L., Birmili, W., Spindler, G., Schröder, W., Su, H., Cheng, Y., Tegen, I., and Wiedensohler, A.: A parameterization of the heterogeneous hydrolysis of N₂O₅ mass-based aerosol models: improvement of particulate nitrate prediction, Atmos. Chem. Phys., 18, 673–689, 2018.

Cooper, P. L. and Abbatt, J. P. D.: Heterogeneous interactions of OH and HO₂ radicals with surfaces characteristic of atmospheric particulate matter. J. Phys. Chem., 100, 2249–2254, 1996.

Dentener, F. J.: Heterogeneous chemistry in the troposphere, Ph.D. Thesis, U. of Utrecht, Netherlands, 1993.

Dentener, F. J. and Crutzen, P. J.: Reaction of N₂O₅ on tropospheric aerosols: Impact on the global distributions of NOₓ, O₃, and OH, J. Geophys. Res. Atmos., 98, 7149–7163, 1993.

Evans, M. J. and Jacob, D. J.: Impact of new laboratory studies of N₂O₅ hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH, Geophys. Res. Lett., 32, 1–4, 2005.

Gaudel, A., Cooper, O. R., Ancialet, G., Barret, B., Boynard, A., Burrows, J. P., Clerbaux, C., Coheur, P.-F., Cuesta, J., Cuevas, E. et al.: Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem. Sci. Anth., 6(1), p.39, 2018.

Geyer, A., Bächmann, K., Hofzumahaus, A., Holland, F., Konrad, S., Klüpfel, T., Pätz, H.-W., Perner, D., Mihelcic, D., Schäfer, H.-J. et al.: Nighttime formation of peroxy and hydroxyl radicals during the BERLIOZ campaign: Observations and modeling studies, J. Geophys. Res. D Atmos., 108, 5–1, 2003.

Ha, T. M. P., Taketani, F., Kanaya, Y., Matsuda, R., Sudo, K.: Effects of heterogeneous reactions on global tropospheric chemistry (Version CHASER-V4.0), Zenodo, http://doi.org/10.5281/zenodo.4153452, 2020.
Huijnen, V., Williams, J. E., and Flemming, J.: Modeling global impacts of heterogeneous loss of HO2 on cloud droplets, ice particles and aerosols, Atmos. Chem. Phys. Discuss., 14, 8575–8632, 2014.

Jacob, D. J.: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91, 1986.

Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmospheric Environment, 34, Elsevier Science Ltd., 2000.

Kanaya, Y., Kajii, Y., and Akimoto, H.: Solar actinic flux and photolysis frequency determinations by radiometers and a radiative transfer model at Rishiri Island: Comparisons, cloud effects, and detection of an aerosol plume from Russian forest fires, Atmos. Environ., 37, 2463–2475, 2003.

Kanaya, Y., Sadanaga, Y., Hirokawa, J. U. N., Kajii, Y., and Akimoto, H.: Development of a Ground-Based LIF Instrument for Measuring HO2 Radicals: Instrumentation and Calibrations, J. Atmos. Chem., 38, 73–110, 2001.

Kanaya, Y., Nakamura, K., Kato, S., Matsumoto, J., Tanimoto, H., Akimoto, H.: Nighttime variations in HO2 radical mixing ratios at Rishiri Island observed with elevated monoterpene mixing ratios, Atmos. Environ. 36(31), 4929–4940, 2002a.

Kanaya, Y., Yokouchi, Y., Matsumoto, J., Nakamura, K., Kato, S., Tanimoto, H., Furutani, H., Toyota, K., Akimoto, H.: Implications of iodine chemistry for daytime HO2 levels at Rishiri Island, Geophys. Res. Lett., 29(8), 2002b.

Kanaya, Y., Cao, R., Kato, S., Miyakawa, Y., Kajii, Y., Tanimoto, H., Yokouchi, Y., Mochida, M., Kawamura, K., and Akimoto, H.: Chemistry of OH and HO2 radicals observed at Rishiri Island, Japan, in September 2003: Missing daytime sink of HO2 and positive nighttime correlations with monoterpenes, J. Geophys. Res., 112, D11308, 2007.

Kanaya, Y., Pochanart, P., Liu, Y., Li, J., Tanimoto, H., Kato, S., Suthawaree, J., Inomata, S., Taketani, F., Okuzawa, K. et al.: Rates and regimes of photochemical ozone production over Central East China in June 2006: a box model analysis using comprehensive measurements of ozone precursors, Atmos. Chem. Phys., 9, 7711–7723, 2009.

Kanaya, Y., Miyazaki, K., Taketani, F., Miyakawa, T., Takashima, H., Komazaki, Y., Pan, X., Kato, S., Sudo, K., Sekiya, T. et al.: Ozone and carbon monoxide observations over open oceans on R/V Mirai from 67°S to 75° N during 2012 to 2017: testing global chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport, Atmos. Chem. Phys., 19, 7233–7254, 2019.

Lawrence, M. G. and Crutzen, P. J.: The impact of cloud particle gravitational settling on soluble trace gas distributions, Tellus, Ser. B Chem. Phys. Meteorol., 50B, 1998.

Lelieveld, J. and Crutzen, P. J.: Influences of cloud photochemical processes on tropospheric ozone, Nature, 343, 227–233, 1990.

Lelieveld, J. and Crutzen, P. J.: The role of clouds in tropospheric photochemistry, J. Atmosp. Chem., 12, 1991.

Li, J., Chen, X., Wang, Z., Du, H., Yang, W., Sun, Y., Hu, B., Li, J., Wang, W., Wang, T., et al.: Radiative and heterogeneous chemical effects of aerosols on ozone and inorganic aerosols over East Asia, Sci. Total Environ., 622–623, 1327–1342, 2018.

Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China, Proc. Natl. Acad. Sci. U. S. A., 116, 422-427, 2019.
Liao, H. and Seinfeld, J. H.: Global impacts of gas-phase chemistry-aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone, J. Geophys. Res. D Atmos., 2005.

Lin, J.-T., Liu, Z., Zhang, Q., Liu, H., Mao, J., and Zhuang, G.: Modeling uncertainties for tropospheric nitrogen dioxide columns affecting satellite-based inverse modeling of nitrogen oxides emissions, Atmos. Chem. Phys., 12, 12255–12275, 2012.

Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 – Part 2: The effects of emission changes and implications for multi-pollutant control, Atmos. Chem. Phys., 2020.

Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Tropospheric chemistry: a global perspective, J. Geophys. Res., 86, 7210–7254, 1981.

Loukhovitskaya, E., Bedjanian, Y., Morozov, I., and Le Bras, G.: Laboratory study of the interaction of HO2 radicals with the NaCl, NaBr, MgCl2·6H2O and sea salt surfaces, Phys. Chem. Chem. Phys., 11, 2009.

Lowe, D., Archer-Nicholls, S., Morgan, W., Allan, J., Utembe, S., Ouyang, B., Aruffo, E., Le Breton, M., Zaveri, R. A., Di Carlo, P. et al.: WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe, Atmos. Chem. Phys., 15, 1385–1409, 2015.

Macintyre, H. L. and Evans, M. J.: Sensitivity of a global model to the uptake of N2O5 by tropospheric aerosol, Atmos. Chem. Phys., 10, 7409–7414, 2010.

Macintyre, H. L. and Evans, M. J.: Parameterisation and impact of aerosol uptake of HO2 on a global tropospheric model, Atmos. Chem. Phys., 11, 10965–10974, 2011.

Mao, J., Fan, S., Jacob, D. J., and Travis, K. R.: Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols, Atmos. Chem. Phys., 13, 509–519, 2013.

Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P.: Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols, J. Geophys. Res. D Atmos., 2003.

Mcfarquhar, G. M. and Heymsfield, A. J.: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment, J. Atmos. Sci., 53, 1996.

Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E. et al.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, 2015.

Morgenstern, O., Hegglin, M. I., Rozanov, E., O’Connor, F. M., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Butchart, N., Chipperfield, M. P. et al.: Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639–671, 2017.

Morita, A., Kanaya, Y., and Francisco, J. S.: Uptake of the HO2 radical by water: Molecular dynamics calculations and their implications for atmospheric modeling, J. Geophys. Res. D Atmos., 2004.

National Research Council: Rethinking the Ozone Problem in Urban and Regional Air Pollution, Washington, DC: The National Academies Press, 1991.
Osthoff, H. D., Sommariva, R., Baynard, T., Pettersson, A., Williams, E. J., Lerner, B. M., Roberts, J. M., Stark, H., Goldan, P. D., Kuster, W. C. et al.: Observation of daytime N₂O₅ in the marine boundary layer during New England Air Quality Study – Intercontinental Transport and Chemical Transformation 2004, J. Geophys. Res., Atmos., 111, D23S14, 2006.

Platt, U. F., Winer, A. M., Biermann, H. W., Atkinson, R., and Pitts, J. N.: Measurement of Nitrate Radical Concentrations in Continental Air, Environ. Sci. Technol., 18, 365–369, 1984.

Qin, M., Zhongming, C., Hengqing, S., Huan, L., Huihui, W., Yin, W.: Impacts of heterogeneous reactions to atmospheric peroxides: Observations and budget analysis study, Atmos. Environ., 183, 144–153, 2018.

Qu, Y., Chen, Y., Liu, X., Zhang, J., Guo, Y., An, J.: Seasonal effects of additional HONO sources and the heterogeneous reactions of N₂O₅ on nitrate in the North China Plain, Sci. Total Environ., 690, 97–107, 2019.

Remorov, R. G., Gershenzon, Y. M., Molina, L. T., and Molina, M. J.: Kinetics and Mechanism of HO₂ uptake on solid NaCl, J. Phys. Chem. A, 106, 4558–4565, 2002.

der Reus, M., Fischer, H., Sander, R., Gros, V., Kormann, R., Salisbury, G., Van Dingenen, R., Williams, J., Zöllner, M., and Lelieveld, J.: Observations and model calculations of trace gas scavenging in a dense Saharan dust plume during MINATROC, Atmos. Chem. Phys., 5, 1787–1803, 2005.

Richard, W. P.: Chemistry of Atmosphere, Oxford University Press, 2000.

Riemer, N., Vogel, H., Vogel, B., Schell, B., Ackermann, I., Kessler, C., and Hass, H.: Impact of the heterogeneous hydrolysis of N₂O₅ on chemistry and nitrate aerosol formation in the lower troposphere under photosmog conditions, J. Geophys. Res., 108(D4), 4144, 2003.

Riemer, N., Vogel, H., Vogel, B., Anttila, T., Kiendler-Scharr, A., and Mentel, T. F.: Relative importance of organic coatings for the heterogeneous hydrolysis of N₂O₅ during summer in Europe, J. Geophys. Res., 114, D17307, 2009.

Saathoff, H., Naumann, K.-H., Riemer, N., Kamm, S., Mohler, O., Schurath, U., Vogel, H., and Vogel, B.: The loss of NO₂, HNO₃, NO₃/N₂O₅, and HO₂/HOONO₂ on soot aerosol: A chamber and modeling study, Geophys. Res. Lett., 28, 1957–1960, 2001.

Salisbury, G., Rickard, A. R., Monks, P. S., Allan, B. J., Bauguitte, S., Penkett, S. A., Carslaw, N., Lewis, A. C., Creasey, D. J., Heard, D. E. et al.: Production of peroxy radicals at night via reactions of ozone and the nitrate radical in the marine boundary layer, J. Geophys. Res., Atmos., 106(D12), 12669–12687, 2001.

Schwartz, S. E.: Mass-Transport Considerations Pertinent to Aqueous Phase Reactions of Gases in Liquid-Water Clouds: in Chemistry of Multiphase Atmospheric Systems, 415–471, Springer Berlin Heidelberg, 1986.

Shepson, P. B., Mackay, E., and Muthuramu, K.: Henry’s law constants and removal processes for several atmospheric β-hydroxy alkyl nitrates, Environ. Sci. Technol., 30, 1996.

Sommariva, R., Bloss, W. J., Brough, N., Carslaw, N., Flynn, M., Haggerstone, A.-L., Heard, D. E., Hopkins, J. R., Lee, J. D., Lewis, A. C. et al.: OH and HO₂ chemistry during NAMBLEX: roles of oxygenates, halogen oxides and heterogeneous uptake, Atmos. Chem. Phys., 6, 1135–1153, 2006.

Sudo, K. and Akimoto, H.: Global source attribution of tropospheric ozone: Long-range transport from various source regions,
J. Geophys. Res. Atmos., 2007.
Sudo, K., Takahashi, M., Kurokawa, J. I., and Akimoto, H.: CHASER: A global chemical model of the troposphere 1. Model description, J. Geophys. Res. Atmos., 107, ACH 7-1–ACH 7-20, 2002.
Stadtler, S., Simpson, D., Schröder, S., Taraborrelli, D., Bott, A., and Schultz, M.: Ozone impacts of gas–aerosol uptake in global chemistry transport models, Atmos. Chem. Phys., 18, 3147–3171, 2018.
Takemura, T., Okamoto, H., Maruyama, Y., Numaguti, A., Higurashi, A., and Nakajima, T.: Global three-dimensional simulation of aerosol optical thickness distribution of various origins, J. Geophys. Res., 105(D14), 17853–17873, 2000.
Taketani, F., Kanaya, Y., and Akimoto, H.: Kinetics of heterogeneous reactions of HO$_2$ radical at ambient concentration levels with (NH$_4$)$_2$SO$_4$ and NaCl aerosol particles, J. Phys. Chem. A, 112, 2370–2377, 2008.
Taketani, F., Kanaya, Y., and Akimoto, H.: Heterogeneous loss of HO$_2$ by KCl, synthetic sea salt, and natural seawater aerosol particles, Atmos. Environ., 43, 1660–1665, 2009.
Taketani, F., Kanaya, Y., Pochanart, P., Liu, Y., Li1, J., Okuzawa, K., Kawamura, K., Wang, Z., and Akimoto, H.: Measurement of overall uptake coefficients for HO$_2$ radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang (China), Atmos. Chem. Phys., 2012.
Thornton, J. and Abbatt, J. P. D.: Measurements of HO$_2$ uptake to aqueous aerosol: Mass accommodation coefficients and net reactive loss. J. Geophys. Res. D Atmos., 110, 1–12, 2005.
Thornton, J. A., Jaeglé, L., and McNeill, V. F.: Assessing known pathways for HO$_2$ loss in aqueous atmospheric aerosols: Regional and global impacts on tropospheric oxidants. J. Geophys. Res. Atmos., 2008.
Tie, X., Brasseur, G., Emmons, L., Horowitz, L., and Kinnison, D.: Effects of aerosols on tropospheric oxidants: A global model study, J. Geophys. Res. Atmos., 106, 22931–22964, 2001.
Villalta, P. W., Lovejoy, E. R., and Hanson, D. R.: Reaction probability of peroxyacetyl radical on aqueous surfaces, Geophys. Res. Lett., 23, 1765–1768, 1996.
Wang, H., Lu, K., Guo, S., Wu, Z., Shang, D., Tan, Z., Wang, Y., Le Breton, M., Lou, S., Tang, M. et al.: Efficient N$_2$O$_5$ uptake and NO$_3$ oxidation in the outflow of urban Beijing, Atmos. Chem. Phys., 18, 9705–9721, 2018.
Wang, Z., Wang, W., Tham, Y. J., Li, Q., Wang, H., Wen, L., Wang, X., and Wang, T.: Fast heterogeneous N$_2$O$_5$ uptake and ClNO$_2$ production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain, Atmos. Chem. Phys., 17, 12361–12378, 2017.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T. et al.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, 2011.
Xia, M., Wang, W.; Wang, Z.; Gao, J.; Li, H.; Liang, Y.; Yu, C.; Zhang, Y.; Wang, P.; Zhang, Y. et al.: Heterogeneous Uptake of N$_2$O$_5$ in Sand Dust and Urban Aerosols Observed during the Dry Season in Beijing. Atmosphere 2019, 10, 204, 2019.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J. et al.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, 2018.