Institutional Fragmentation and Metropolitan Coordination in Latin American Cities
What Consequences for Productivity and Growth?

Juan C. Duque
Nancy Lozano-Gracia
Jorge E. Patino
Paula Restrepo
Abstract

This paper provides empirical evidence on the impact of institutional fragmentation and metropolitan coordination on urban productivity in Latin American cities. The use of night-time lights satellite imagery and high-resolution population data allow the use of a broader definition of metropolitan area. Thus, metropolitan area consists of the urban extent that results from the union between the formally defined metropolitan area and the contiguous patches of urbanized areas with more than 500,000 inhabitants. The initial results suggest that the presence of multiple local governments within metropolitan areas generates opposite effects on urban productivity. On the one hand, smaller governments tend to be more responsive and efficient, which increases productivity. But, on the other hand, multiple local governments face coordination costs that reduce productivity.
Institutional Fragmentation and Metropolitan Coordination in Latin American Cities: What Consequences for Productivity and Growth?

Juan C. Duque (✉)
Research in Spatial Economics (RiSE-group), Department of Economics, Universidad EAFIT, Medellin, Colombia. e-mail: jduquec1@eafit.edu.co

Nancy Lozano-Gracia, Social, Urban, Rural and Resilience. The World Bank. Washington, USA. e-mail: nlozano@worldbank.org

Jorge E. Patino, Research in Spatial Economics (RiSE-group), Department of Economics, Universidad EAFIT, Medellin, Colombia. e-mail: jpatinoq@eafit.edu.co

Paula Restrepo, Social, Urban, Rural and Resilience. The World Bank. Washington, USA. e-mail: prestrepocadavid@worldbank.org

Keywords: productivity · institutional fragmentation · metropolitan coordination

JEL Classification: R11 · R14 · R50 · H70
1 Introduction

Cities are central to the productivity and growth prospects of the Latin American and Caribbean region (LCR). The vast majority of the region’s output is generated in cities – Mexican cities generate 87 percent of gross value added (Kim and Zangerling, 2016), while Argentine cities contributed almost 80 percent of national GDP in 2007.¹ Yet it is unclear whether LCR’s cities are realizing their full potential – for the region’s major economies, GDP per capita levels are well below what one would predict based on their urbanization levels,² and recent policy reports by, for example, the McKinsey Global Institute have argued that cities in the region are being weighed-down by excessive diseconomies of agglomeration (Dobbs et al., 2011; Cadena et al., 2011).

According to the United Nations, Latin America and the Caribbean is the most urbanized region on the planet with 80% of its population living in cities (UN, 2012). The rapid urbanization of cities, together with the loss of density, has caused the expansion of cities beyond their administrative borders, absorbing surrounding urban areas and creating large urban extents (metropolitan areas) covering several administrative units. Since no local government has the tools to address all challenges and opportunities within a metropolitan area on its own, this form of urbanization poses new challenges to local authorities in terms of governance and integration. The way in which these large, multicity, urban extents manage aspects such as transportation, urban planning, infrastructure provision and other social and economic affairs, can make the difference between enjoying the benefits of prosperous economies of agglomeration or suffering the consequences of the diseconomies of agglomeration (Ahrend et al., 2014).

Unfortunately, there are two aspects that make it difficult for academics to make public policy recommendations for Latin American cities (LAC). First, the existing empirical evidence is mostly concentrated on metropolitan areas in developed countries; and second, there is supporting evidence in favor of the three models of metropolitan governance: The polycentrist model, which advocates

¹ McKinsey Global Institute Cityscape database, version 1.1 (http://www.mckinsey.com/insights/urbanization/urbanworld).
² This conclusion is based on GDP per capita data from WDI and urban population share data from the UN’s World Urbanization Prospects (2014 Revision) database (http://esa.un.org/unpd/wup/). One issue that arises with the urban population data from the WUP database, however, is that it is based on official national definitions of urban areas, which differ from country to country. An important question to address, therefore, is the extent to which the apparent under-performance of LCR countries is driven by this inconsistent measurement of urban population shares. This will be addressed in another of the report’s background papers.
for the coexistence of multiple small and coordinated local governments; the centrist model, which argues that a single governance body takes advantage of reduced transactions costs and economies of scale and scope in providing public goods and services; and the regionalist view which recognizes the benefits of local governments while highlighting the importance of coordinated governance.

This paper will examine the interaction between local governance and economic performance, looking specifically at the effects of the fragmentation of functional urban areas across administrative entities. It will empirically test whether the economic performance of LAC is affected by the degree of institutional fragmentation that they exhibit. The paper will also seek to explore which, if any, of the different forms of metropolitan coordination observed in the region leads to a reduction of the penalties/advantages imposed by institutional fragmentation on economic performance. Finally, the paper explores whether results vary across city sizes (i.e. is there a specific threshold after which fragmentation penalties appear?) and whether they depend on the level of population concentration in a city’s center or the overall spatial population distribution across administrative units (i.e., does it matter if most of the metropolitan population is concentrated in the city center?).

Understanding these links is also important from a policy perspective. Improving the understanding of the strength and direction of these links can suggest whether national governments should support or incentivize metropolitan coordination mechanisms or entities, or whether they should support the consolidation of local governments. Further, there is also the question of whether national governments should support the fragmentation of local governments, or on the contrary, whether there are specific sectors (i.e. transport, environment, local economic growth) for which it makes sense to align fragmented local governments.

The rest of the paper is organized as follows. Section 2 provides a literature review. Section 3 presents the empirical models. Section 4 describes the source data. Section 5 presents the empirical results. Finally, section 6 presents our conclusions and ideas of future work.

2 Literature review

As mentioned by Nelson and Foster (1999), there exist three lines of thought when looking at the links between the governance structures of cities and their economic performance: polycentrist, centrist and regionalist. The polycentrist view is in line with Fisher’s argument in favor of dividing a
region into sub-regions to facilitate the planning and distribution of resources (Fischer, 1980). At the city level, the polycentrist view argues that institutional fragmentation of cities is equivalent to creating additional layers of decentralization, which can, in fact, enhance economic growth. This is thought to be achieved through two mechanisms. First, decentralized authorities are better informed of local needs and, therefore, can be more efficient in the provision of public goods (Ostrom, 2010). Second, increased competition between individual local governments constrains their ability to extract monopoly rents, thereby enhancing economic efficiency and, hence, economic growth (Stansel, 2005).

The second line of thought, the centrist, argues that the presence of multiple local governments within metropolitan areas may generate coordination failures that reduce efficiency in the provision of transport infrastructure and land use planning, and therefore affect economic performance (see Ahrend et al., 2014). Fragmentation may also reduce the metropolitan area’s ease of doing business because of the additional bureaucracy (Kim et al., 2014). According to Cheshire and Gordon (1996) and Feiock (2009), the presence of administrative boundaries within the functional region generates higher transaction costs and barriers to the diffusion of growth-promoting policies. As additional evidence in favor of the centrist view, Foster (1993) found a negative association between the proportions of population unincorporated to the metropolitan area and income growth.

Finally, the regionalist view can be seen as a middle way between the polycentrist and the centrist views. The regionalist view recognizes the benefits of local governments while highlighting the importance of metropolitan coordination defined as the efforts of governmental institutions to manage and solve problems in common between municipalities. According to Grassmueck and Shields (2010), more important than the existence of multiple local governments is the way in which they interact and perceive each other. Ahrend et al. (2014) found that the presence of a governance body that coordinates municipalities halved the penalty associated with fragmentation. Foster (1993) and Nelson and Foster (1999) also found empirical support for the regionalist view as a positive association between income growth and the presence of overarching decision-making mechanisms such as multi-jurisdictional, multipurpose regional governments. Also, the existence of single-purpose districts associated with large-scale infrastructure provision (e.g. water and wastewater systems) fosters income growth.
Regarding the measure of institutional fragmentation and metropolitan coordination, Table 1 and Table 2 present a summary of the variables commonly used in empirical studies. In Table 1 we classify the variables using the five categories proposed by Hendrick and Shi (2015). Based on the conceptualization of fragmentation as those urban extents that spread out over several, and independent, administrative units, the most common variables are those that measure the number of local governments included in the urban extent (sometimes standardized by population or land area). Other measures focus on the degree of concentration, the dominance relationship between the central city and the periphery. As considered by the centralist view, the potential drawbacks of having institutional fragmentation can be mitigated through proper channels of metropolitan coordination. This coordination can be reached via institutions (governance), coordinated planning and infrastructure (land use planning and mobility), the presence of overlapping governments with special of general purpose (provision of public utilities), or can be the result of tight linkages between the administrative units, which intensifies human interactions, generates spatial dependence, and facilitates coordination (functional region). Table 2 classifies the potential variables according to those proposed channels of coordination.

The scarcity of empirical studies, in addition to the differences found when taking different approaches and using different economic performance indicators, suggests that there is a need to further test the empirical links between the institutional fragmentation of cities and their productivity/economic growth. This paper makes multiple contributions to the literature. First, and foremost, it will allow for testing of whether existing findings for the US and other selected OECD countries also carry-over to countries in LAC. Second, the paper will allow for the testing of the robustness of results to different institutional fragmentation and institutional coordination measures. Third, it will allow for an assessment of whether existing metropolitan coordination measures are effective in helping to produce better economic outcomes. Finally, contrary to existing literature, most of the analysis will be supported by spatial data that are readily available at the global scale and for developing countries. This will allow the paper to contribute to the development of a methodology that can be easily replicated for other regions of the world.
Table 1. Measures of institutional fragmentation.

Representation	Fragmentation Index (metro level)	Authors
I. Size of region	Total number of local governments	Hendrick and Shi (2015); Hill (1974)
	Differences in population and area of municipalities	Barlow (1991)
II. Political fragmentation	Total local governments per capita	Hendrick and Shi (2015); Hill (1974)
	Total number of governments per 10,000	Oakerson (1987); Post and Stein (2000)
	Number of administrative units per 50,000 persons	Ahrend et al. (2014)
	Proportion of unincorporated population	Foster (1993)
	Government per 100,000 persons	Hawkins (1971); Ahrend et al. (2014); Schneider (1989)
	Cities > 10,000 persons per 1 million MSA population	Morgan and Mareschal (1999)
	Number of suburban units with more than 10,000 persons, per 100,000 persons in the MSA.	Bollens (1986).
	Percent of Metro residents in suburbs with more than 10,000 people	Bollens (1986).
III. Spatial fragmentation	Total local governments per square mile	Hendrick and Shi (2015)
IV. Range of local governments	HH Index of percent of different types of local government	Hendrick and Shi (2015)
V. Suburban domination (or central city domination)	Percent of population not in central city	Hendrick and Shi (2015)
	Ratio of population in the city core to that in the periphery	Ahrend et al. (2014)
	Central-city population share	Morgan and Mareschal (1999)
	Percent of metropolitan population held within the borders of a central city	Savitch et al. (1993)
	Central-city area growth	Morgan and Mareschal (1999)
	Central-city elasticity	Rusk (1993); Blair et al. (1996)
Table 2. Measures of metropolitan coordination.

Representation	Fragmentation Index (metro level)	Authors
I. Governance	Governance Body	Ahrend et al. (2014)
	Age of the metropolitan area	Nelson and Foster (1999)
	Number of municipalities with the same political party	Pradenas (2006)
II. Land use plan and mobility	Percent of municipalities covered by integrated transport systems between municipalities and central city	Kim et al. (2014)
III. Coordination for special purpose	Percent of special purpose to general purpose governments	Hendrick and Shi (2015)
	Number of general purpose units	Goodman (1980)
	Number of special purpose units	Goodman (1980)
IV. Functional region	Percent of people working in the central city	Feria and Susino (2005)
	Number of commuting from the municipalities to the central city	De Esteban (2009).
	Percent of student population that go to the central city	Pradenas (2006)
	Percent resident-job in central city	Pradenas (2006)
	Number of telephone calls per month from the municipality to the central city must be four times greater.	Pradenas (2006)

3 The Model

To estimate the relationship between institutional fragmentation and economic performance of cities, measured through city productivity, we follow the two-step empirical approach devised by Ahrend et al. (2014). The authors warn about the importance of accounting for individual sorting of highly skilled individuals into cities when estimating productivity differentials across urban areas (Combes et al., 2011). This is necessary in order to account for the tendency of more talented individuals to co-locate in cities that may lead to confounding agglomeration benefits with productivity increases from a more skilled workforce. Thus, in the first step, we use data from the Defense Meteorological Satellite Programs – Operational Linescan System (DSMP-OLS) nighttime lights (NTL) imagery to identify urban areas as well as survey-based micro-data for the period 2000-2014 to estimate productivity differentials across urban areas, net of individual and employment characteristics observables. The estimation on this first stage is then:

\[
\ln w_{it} = \lambda_0 + \sum_j \lambda_j L_j + \sum_e \eta_e \text{Dem}_{ie} + \sum_b \psi_b \text{Job}_{ib} + \varepsilon_{it},
\]

(1)
where w_{it} is the real wage for individual i at time t; L_j are municipalities fixed effects; Dem_{ie} is a vector of demographic characteristics, indexed by e, that include indicators of education; Job_{ib} is a vector of job characteristic, indexed by b, that includes industry code and indicators of formality and job benefits; and ε is an error term. The coefficient λ_j captures the productivity differential across cities, after controlling by individual and employment characteristics.

In the second stage, we use the estimated productivity differentials, $\hat{\lambda}_j$, as the dependent variable in the following expression:

$$\hat{\lambda}_a = \delta a + \phi_c + \psi a + \varepsilon_a,$$

where F is a vector of variables for institutional fragmentation; C is a vector of variables for metropolitan coordination; X is a vector of control variables, included the intercept; and ε is the error term.

4 Data

4.1 Study region

In this work, we analyze Latin American and Caribbean metropolitan areas with more than 500,000 people in 2010 (Figure 1).
Figure 1. Location of identified metropolitan areas with more than 500,000 people in 2010 in Latin America and the Caribbean. The blue areas are the urban extent of the larger conurbation within each metropolitan area.

4.2 Metropolitan areas delineation from DMSP-OLS images

We use data from the Defense Meteorological Satellite Programs – Operational Linescan System (DMSP-OLS) nighttime lights (NTL) imagery to identify urban areas and metropolitan conurbations. The NTL data are based on nighttime imagery recorded by the Defense Meteorological Satellite Programs - Operational Linescan System (DMSP-OLS), and reports the recorded intensity of Earth’s
Nighttime lights products have high correlation to human activities (Hsu et al., 2015), and have been previously used for regional and global analysis of population modeling (Anderson et al., 2010; Lo, 2001), economic performance (Cao et al., 2016; Forbes, 2013), and urbanization (Cheng et al., 2016; Pandey et al., 2013; Sutton et al., 2006; Zhang and Seto, 2011; N. Zhou et al., 2015; Zhou et al., 2015).

There are two different nighttime light products from DMSP-OLS that can be used to delineate urban areas: the stable or ordinary product (NTL), and the radiance-calibrated (NTL RC) product. We decided to use the latter, since it is aimed to correct the saturation issue in bright areas such as city centers, where the NTL might be brighter, but the recorded digital number (DN) values are truncated at 63; and the RC product gives better correlations with socioeconomic variables than the stable products (Hsu et al., 2015; Ma et al., 2014). Another known issue of the DMSP-OLS products is the “overglow” effect: dim lighting detected from light in surrounding areas of cities because of the scattering of lights in the atmosphere (Wu et al., 2014). A novel deblurring process was applied to address the issue of over glow in the radiance-calibrated products. This process involves the use of two sequential filters, a standard deconvolution and the frequency of illumination maxima, to withdraw the light from the surroundings back and restacking it vertically on its source pixels at city centers (Abrahams et al., 2016).

Deblurred DMSP-OLS RC annual composites for the years 1996, 2000 and 2010 were previously inter-calibrated and corrected for a multi-temporal analysis of urban form and city productivity in Latin America (Duque et al., 2017). In that work, the three nighttime images were used to delineate urban extents in each year for most of the Latin American and Caribbean cities that had more than 50,000 people in 2010. We used those delineated urban extents for the year 2010 to identify the metropolitan areas in the region. We consider the presence of a metropolitan area when more than one municipality or equivalent administrative unit intersects a single urban extent with more than 500,000 people in 2010. We use the administrative unit boundaries from the World Bank Latin American and the Caribbean Spatial Framework Database (Branson et al., 2016) for this purpose. Metropolitan area boundaries were obtained by aggregation of all of the administrative units that intersected the same urban extent. We verified each obtained metropolitan area with ancillary information from official sources to include those municipalities that are part of the official metropolitan area denomination but were not intersected by the urban extent. Figure 2 presents some
examples of identified functional areas: Mexico City (Mexico), Rio de Janeiro (Brazil), and Buenos Aires (Argentina).

Figure 2. Examples of functional areas. Urban extents extracted from 2010 nighttime images (in red), over the GHSL Built-up layer for 2014 (Freire and Pesaresi, 2015), with administrative boundaries (light purple). From left to right: Mexico City (Mexico), Rio de Janeiro (Brazil), and Buenos Aires (Argentina).

4.3 Estimated productivity differentials, λ_j

As presented in section 3, the first step to estimate the relationship between institutional fragmentation and economic performance of cities consists of extracting the productivity differentials between functional areas by extracting first the sorting effect that causes that more skilled workforce have a tendency to live in larger cities (Ahrend et al., 2014; Combes et al., 2011). The vector of coefficients λ_j in equation 1, which becomes the dependent variable in the second stage (equation 2), was provided by Quintero and Roberts (2017) who studied the spatial variations in productivity premiums in 16 LAC countries. In their study, the authors use micro data on real hourly wage in the main occupation. As independent variables the authors use: (1) a vector of observable characteristics per worker (age, gender, marital status, years of education completed, and hours worked in the main occupation); (2) a vector of job characteristics that each worker occupies (sector, formal/informal status, and type of company –large private, small private, and public-); and (3) municipality fixed effects, which is our dependent variable, λ_j, in equation 2. All the collected data cover the period 2000-2014. We report the results with two types of λ_j that we are calling λ_j^{broad} and λ_j^{narrow}: λ_j^{broad} controls for the effects of sorting including all employed wage-workers aged from 14 to 65; λ_j^{narrow} controls for the effects of sorting including male wage-workers employed in the private sector and aged from 20 to 55.
4.4 Measuring institutional fragmentation and metropolitan coordination

Based on the literature desk review and the available data, we construct a database with a series of variables to characterize the functional areas included in this study, in terms of institutional fragmentation and metropolitan coordination. We use the administrative boundaries of local governments that conform the metropolitan areas and distributed population data to calculate institutional fragmentation measures using geoprocessing tools in ArcGIS. Administrative boundaries were obtained from OpenStreetMap\(^3\) (April 25\(^{th}\) 2017) and the World Bank LAC Spatial Database (Branson et al., 2016). We projected the administrative boundaries and the urban extents to the UTM coordinate system to calculate areas in square kilometers. Population counts at the administrative unit and urban extent levels were estimated using the Global Human Settlement Layer (GHS) distributed population grids produced by the Joint Research Centre (JRC) of the European Union (Freire and Pesaresi, 2015; Pesaresi et al., 2016). These layers show population counts for each pixel at 250 meters of spatial resolution, and were produced for the years 1975, 1990, 2000 and 2015. We used the 2000 layer to account for the population in that same year, and the 2015 layer as proxy for the population in year 2010.

Metropolitan coordination variables were obtained through a number of official information sources to account for the presence of a metropolitan governance body and public services single purpose districts (see Table A1). Tables 3 and 4 present the list of available variables for institutional fragmentation and metropolitan coordination respectively. The descriptive statistics are presented in Table A2.

4.5 Control variables

In order to isolate the predictive power of the variables describing urban form and to reduce omitted-variable bias, we include in the model a number of control variables including city size, locational variables, natural and urban amenities, as well as country fixed effects. A number of different data sources are used to compute control variables. Population data in gridded format for 2010 were

\(^3\) http://www.openstreetmap.org/copyright
obtained from the GHS layers. Natural amenities were calculated using several GIS layers: Water bodies were used to calculate dummy variables for location near the sea (coast). We used the 250 meters resolution raster MODIS Water Mask (Carroll et al., 2009) for this purpose. Finally, we used the Lloyd’s lists of maritime and fluvial ports to account for the presence of ports. Table 5 presents the control variables.
Table 3. Institutional fragmentation variables (vector F).

Dimension	Variable	Description	Data source for calculation
I. Size of region	no_adminunits	Number of administrative units_2010	OpenStreetMap boundaries data (20170420) and the World Bank LAC Spatial Database (integrated in a new vector layer: administrative unit boundaries)
II. Political fragmentation	no_au_100th_2010	Number of administrative units per 100,000 inhabitants_2010	Administrative unit boundaries and population count at pixel level from GHS (GHS_POP_PW42015_GLOBE_R2015A_54009_250_v1_0 at 250 meters of spatial resolution).
III. Central city domination	cc_pop_2010	Central-city population share_2010	Administrative unit boundaries and population count at pixel level from GHS (GHS_POP_GP42015_GLOBE_R2015A_54009_250_v1_0)

Table 4. Metropolitan coordination variables (vector C).

Dimension	Variable	Description	Data source for calculation
I. Governance	gov_body	Presence of a governance body	See Table A1
II. Land use plan and mobility	its_cov	Percent of municipalities covered by integrated transport systems between municipalities and central city (metro, bus)	See Table A1
III. Coordination for single purpose districts	spd_water	Existence of a single-purpose districts for water collection	See Table A1
	spd_energy	Existence of a single-purpose districts for energy	See Table A1
	spd_waste	Existence of a single-purpose districts for waste collection	See Table A1
	spd_sum	spd_water + spd_energy + spd_waste	See Table A1
Table 5. Control variables (vector X).

Dimension	Variable	Description	Data source for calculation
I. Size	pop_2010	Sum of population count within the urban extent	Urban extents 2010 and population count at pixel level from GHS for 2015 (GHS_POP_
	density	pop_2010/ areac_ue2010_km2	GPW42015_GLOBE_R2015A_54009_250_v1_0)
II. Location	pop_radio300km	Inhabitants in other FUAs within a 300 km radius	Urban extents 2010 and population count at pixel level from GHS for 2015 (GHS_POP_
		of a city/1,000,000	GPW42015_GLOBE_R2015A_54009_250_v1_0)
III. Natural Amenities	coast_2010	Dummy for location at the coast	MODIS Water Mask (Carroll et al., 2009) and urban extents from deblurred and corrected DMSP-
			OLS NTL RC 2010 data.
VI. Urban Amenities	port	Dummy for port	Lloyd’s List (http://directories.lloydslist.com)
5 Empirical results

Table 6 and Table 7 present the estimates of the relationship between metropolitan fragmentation/coordination and city productivity premium. The results are pretty similar in both cases. Following Ahrend et al. (2014) we report in the first column the positive and significant impact of population on productivity premium, which implies that productivity is higher in larger cities. In this regard Ahrend et al. (2014) reported estimated elasticities that range from 0.016 (for the United Kingdom) to 0.063 (for the United States). In our study, we obtained an estimated elasticity of 0.08 for LAC cities. We also report the coefficients associated to the logged population density (i.e., elasticity of productivity with respect to population) and surface (i.e., elasticity of productivity with respect to area). The results show that an increase in population, while holding the area constant, and an increase in area, while holding population density constant, both have a positive and statistically significant impact on productivity. Finally, the difference between these two coefficients indicates that an increase in area, while holding the total population constant, generates elasticities from 0.04 to 0.07. This range is 0.02 higher than the elasticity range reported by Ahrend et al. (2014), 0.02 to 0.05.

The block of indicators for institutional fragmentation is reported in column (3) of Table 6 and Table 7. The results show opposite effects from fragmentation: on the one hand, the negative and statistically significant coefficient for the logged number of administrative units indicates that the presence of multiple local governments affects economic performance because of factors such as higher transactions costs, barriers to the diffusion of growth promoting policies, and other coordination failures (which is consistent with the centralist view). But, on the other hand, the positive and statistically significant coefficient for political fragmentation (no_{au_{100th_{2010}}}) indicates that the presence of multiple local governments may lead to more responsive government to public needs (Nelson and Foster, 1999). Also, “smaller [local governments] make participation easier, make citizens feel more empowered and interested in their communities, and bring neighbors together” (Oliver, 2010, 65). Finally, the negative and statistically significant coefficient for cc_{pop2010_{ue}}, indicates that an increase in central city domination may affect economic performance.
The fourth column in Table 6 and Table 7 includes the block of variables for metropolitan coordination. None of the coordination variables appears significant, which does not provide evidence in favor of the convenience of the regionalist model. It is important to note that these results are conditioned to the variables used to measure the degree of metropolitan coordination. Finally, column five shows that the above conclusions remain the same after including a series of control variables.
Table 6: Estimates of the relationship between metropolitan fragmentation/coordination and city productivity premium (OLS).

\[
Y = \text{City productivity premium (}\lambda_j^{broad}\text{)}
\]

Variable	(1)	(2)	(3)	(4)	(5)
ln(pop 2010)	0.087***				
	(0.0274)				
ln(density)	0.070**	0.223***	0.230***	0.190***	
	(0.0289)	(0.0591)	(0.0595)	(0.0521)	
ln(area_km2)	0.112***	0.285***	0.281***	0.270***	
	(0.0310)	(0.0644)	(0.0647)	(0.0577)	
ln(no_admunits)	-0.202***	-0.198***	-0.180***		
	(0.0666)	(0.0671)	(0.0589)		
no_au_100th_2010	0.197**	0.196**	0.168**		
	(0.0776)	(0.0777)	(0.0701)		
cc_pop2010_ue	-0.369***	-0.329**	-0.214*		
	(0.1305)	(0.1362)	(0.1222)		
gov_body	-0.043	-0.050			
	(0.0502)	(0.0451)			
its_cov	0.000	0.001			
	(0.0006)	(0.0005)			
spd_sum	0.036	0.038			
	(0.0272)	(0.0242)			
pop_radio300km	0.007***				
	(0.0017)				
coast_2010	0.062				
	(0.0681)				
Port	-0.082				
	(0.0603)				
Constant	0.049	-0.073	-1.974**	-2.067**	-1.909***
	(0.3812)	(0.3829)	(0.7885)	(0.7918)	(0.6988)
Country dummies	Y	Y	Y	Y	Y
Observations	73	73	73	73	73
Adjusted R-squared	0.630	0.641	0.692	0.692	0.768

Note: Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Table 7. Estimates of the relationship between metropolitan fragmentation/coordination and city productivity premium (OLS).

\[Y = \text{City productivity premium (} \lambda \text{narrow}) \]

Variable	(1)	(2)	(3)	(4)	(5)	
ln(pop 2010)	0.086***					
ln(density)	0.066**	0.229***	0.236***	0.202***	(0.0322) (0.0649) (0.0656) (0.0568)	
ln(area_km2)	0.115***	0.301***	0.295***	0.276***	(0.0345) (0.0707) (0.0713) (0.0629)	
ln(no_adminunits)	-0.220***	-0.214***	-0.191***		(0.0733) (0.0739) (0.0642)	
no_a100th_2010	0.204**	0.203**	0.171**		(0.0853) (0.0856) (0.0764)	
cc_pop2010_ue	-0.470***	-0.423***	-0.284**		(0.1435) (0.1501) (0.1331)	
gov_body		-0.046	-0.056		(0.0553) (0.0491)	
its_cov	0.000	0.000			(0.0007) (0.0006)	
spd_sum	0.035	0.036			(0.0299) (0.0263)	
pop_radio300km					(0.0019)	
coast_2010					0.062	
Port					-0.119*	
Constant	-0.025	-0.164	-2.142**	-2.233**	-1.995**	(0.4251) (0.4264) (0.8666) (0.8724) (0.7613)
Country dummies	Y	Y	Y	Y	Y	
Observations	73	73	73	73	73	
Adjusted R-squared	0.685	0.694	0.745	0.743	0.811	

Note: Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

6. Conclusions

This paper studies the impact of metropolitan fragmentation/coordination on economic performance of 73 metropolitan areas in the Latin America and Caribbean region. This contribution offers complementary evidence on the relationship between institutional fragmentation/coordination and economic performance, since most of the available literature in this topic is concentrated on developed countries.
Following the latest contributions in the literature, we implemented a two-step econometric approach in which we control for individual sorting of highly skilled individuals into cities. We also take advantage of recent developments in remote sensing science and free geospatial libraries to delineate urban extents and identify metropolitan areas in an automatic and highly standardized way, which guarantees comparability across LAC cities.

The available literature has not arrived to a definitive answer on this topic, and there is evidence in favor of the three potential models: polycentric, centralist and regionalist. Our results show that there may exist an optimal level of fragmentation in which the benefits of more responsive government are in balance with the higher costs associated to the presence of multiple local governments within the same functional area. This may indicate that in LAC cities the right model is somewhere in between the polycentric and the centralist governance structures. We found no evidence in favor of the regionalist view, since our results show that the presence of a governance body or integrated public services does not necessarily foster increased productivity.

In line with previous contributions we found that economic performance increases with city size. While evidence for OECD countries indicates that doubling city size may increase economic performance between 2% and 5% (Ahrend et al., 2014); for LAC cities, we found an impact that ranges from 4% to 7%.

7. References

Abrahams, A; Oram, C, Lozano-Gracia, N; (2018). Deblurring DSMP Nighttime Lights: A new method using Gaussian filters and frequencies of illumination. Remote Sensing of Environment. June 2018, 210, pp242-258.

Anderson, S. J., Tuttle, B. T., Powell, R. L., & Sutton, P. C. (2010). Characterizing relationships between population density and nighttime imagery for Denver, Colorado: issues of scale and representation. International Journal of Remote Sensing, 31(21), 5733-5746.
Ahrend, R., Farchy, E., Kaplanis, I., & Lembcke, A. C. (2014). What makes cities more productive? Evidence on the role of urban governance from five OECD countries. OECD Regional Development Working Papers, 2014(5), 0_1.

Barlow, I. M. (1991). Metropolitan Government. London; New York: Routledge.

Blair, J. P., Staley, S. R., & Zhang, Z. (1996). The central city elasticity hypothesis: A critical appraisal of Rusk's theory of urban development. Journal of the American Planning Association, 62(3), 345-353.

Bollens, S. A. (1986). A political-ecological analysis of income inequality in the metropolitan area. Urban Affairs Quarterly, 22(2), 221-241.

Branson, J., Campbell-Sutton, A., Hornby, G. M., Hornby, D. D., & Hill, C. (2016). A geospatial database for Latin America and the Caribbean (draft version 1). Geodata, University of Southampton.

Cadena, A., Remes, J., Manyika, J., Dobbs, R., Roxburgh, C., Elstrodt, H. P., ... & Restrepo, A. (2011). Building globally competitive cities: The key to Latin American growth. McKinsey Global Institute.

Cao, Z., Wu, Z., Kuang, Y., Huang, N., & Wang, M. (2016). Coupling an intercalibration of radiance-calibrated nighttime light images and land use/cover data for modeling and analyzing the distribution of GDP in Guangdong, China. Sustainability, 8(2), 108.

Carroll, M. L., Townshend, J. R., DiMiceli, C. M., Noojipady, P., & Sohlberg, R. A. (2009a). A new global raster water mask at 250 m resolution. International Journal of Digital Earth, 2(4), 291-308.
Cheng, Y., Zhao, L., Wan, W., Li, L., Yu, T., & Gu, X. (2016). Extracting urban areas in China using DMSP/OLS nighttime light data integrated with biophysical composition information. Journal of Geographical Sciences, 26(3), 325-338.

Cheshire, P. C., & Gordon, I. R. (1996). Territorial competition and the predictability of collective (in) action. International Journal of Urban and Regional Research, 20(3), 383-399.

Combes, P. P., Duranton, G., & Gobillon, L. (2010). The identification of agglomeration economies. Journal of Economic Geography, 11(2), 253-266.

Duque, J. C., Lozano-Gracia, Patino, J. E., and Restrepo, P. 2017. Urban form and productivity: in what shape are Latin American cities? LCR Flagship Report on Cities and Productivity. World Bank (forthcoming).

De Esteban, A. (2009). Área metropolitana. Diccionario Crítico de Ciencias Sociales.

Dobbs, R., Smit, S., Remes, J., Manyika, J., Roxburgh, C., & Restrepo, A. (2011). Urban world: Mapping the economic power of cities. McKinsey Global Institute.

Feiock, R. C. (2009). Metropolitan governance and institutional collective action. Urban Affairs Review, 44(3), 356-377.

Feria, J. M. & Susino, J. (2005). Movilidad por razón de trabajo en Andalucía. Dimensiones básicas y organización espacial. Instituto de Estadística de Andalucía.

Fischer, M. M. (1980). Regional taxonomy: A comparison of some hierarchic and non-hierarchic strategies. Regional Science and Urban Economics, 10(4), 503-537.

Forbes, D. J. (2013). Multi-scale analysis of the relationship between economic statistics and DMSP-OLS night light images. GIScience & Remote Sensing, 50(5), 483-499.
Foster, K. A. (1993). Exploring the links between political structure and metropolitan growth. Political Geography, 12(6), 523-547.

Freire, S., & Pesaresi, M. (2015). GHS population grid, derived from GPW4, multitemporal (1975, 1990, 2000, 2015). European Commission, Joint Research Centre (JRC) [Dataset] PID: http://data.europa.eu/89h/jrc-ghsl-ghs_pop_gpw4_globe_r2015a.

Goodman, J. S. (1980). The Dynamics of Urban Growth and Politics. New York: Macmillan.

Grassmueck, G., & Shields, M. (2010). Does government fragmentation enhance or hinder metropolitan economic growth?. Papers in Regional Science, 89(3), 641-657.

Hawkins, B. W. (1971). The environmental base of urban government reforms. Politics and urban policies, 44-47.

Hendrick, R., & Shi, Y. (2015). Macro-level determinants of local government interaction: How metropolitan regions in the United States compare. Urban Affairs Review, 51(3), 414-438.

Hill, R. C. (1974). Separate and unequal: governmental inequality in the metropolis. American Political Science Review, 68(4), 1557-1568.

Hsu, F. C., Baugh, K. E., Ghosh, T., Zhizhin, M., & Elvidge, C. D. (2015). DMSP-OLS radiance calibrated nighttime lights time series with intercalibration. Remote Sensing, 7(2), 1855-1876.

Kim, S. J., Schumann, A., & Ahrend, R. (2014). What Governance for Metropolitan Areas? OECD Regional Development Working Papers.

Kim, Yoonhee, and Bontje Zangerling, eds (2016). Mexico Urbanization Review: Managing Spatial Growth for Productive and Livable Cities in Mexico. Directions in Development. Washington, DC: World Bank. doi:10.1596/978-1-4648-0916-3. License: Creative Commons Attribution CC BY 3.0 IGO
Lo, C. P. (2001). Modeling the population of China using DMSP operational linescan system nighttime data. Photogrammetric engineering and remote sensing, 67(9), 1037-1047.

Ma, L., Wu, J., Li, W., Peng, J., & Liu, H. (2014). Evaluating saturation correction methods for DMSP/OLS nighttime light data: A case study from China’s cities. Remote Sensing, 6(10), 9853-9872.

Morgan, D. R., & Mareschal, P. (1999). Central-city/suburban inequality and metropolitan political fragmentation. Urban Affairs Review, 34(4), 578-595.

Nelson, A. C., & Foster, K. A. (1999). Metropolitan governance structure and income growth. Journal of Urban Affairs, 21(3), 309-324.

Oakerson, R. J. (1987). Local public economies: Provision, production, and governance. Intergovernmental Perspective, 13(3/4), 20-25.

Oliver, J. E. (2001). Democracy in suburbia. Princeton University Press.

Ostrom, E. (2010). Beyond markets and states: polycentric governance of complex economic systems. Transnational Corporations Review, 2(2), 1-12.

Pandey, B., Joshi, P. K., & Seto, K. C. (2013). Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data. International Journal of Applied Earth Observation and Geoinformation, 23, 49-61.

Pesaresi, M., Ehrlich, D., Ferri, S., Florczyk, A., Freire, S., Halkia, M., ... & Syrris, V. (2016). Operating procedure for the production of the Global Human Settlement Layer from Landsat data of the epochs 1975, 1990, 2000, and 2014. Publ. Off. Eur. Union.
Post, S. S., & Stein, R. M. (2000). State economies, metropolitan governance, and urban-suburban economic dependence. Urban Affairs Review, 36(1), 46-60.

Pradenas, J. (2006). Delimitación Funcional Del Área Metropolitana De Santiago. Un Territorio En Busca De Gobierno. Universidad de Chile.

Quintero and Roberts (2017)

Rusk, D. (1993). Cities without suburbs. Washington, DC: Woodrow Wilson Center Press.

Savitch, H. V., Collins, D., Sanders, D., & Markham, J. P. (1993). Ties that bind: Central cities, suburbs, and the new metropolitan region. Economic Development Quarterly, 7(4), 341-357.

Schneider, M. (1989). The competitive city: The political economy of suburbia. University of Pittsburgh Pre.

Sutton, P. C., Cova, T. J., & Elvidge, C. D. (2006). Mapping “Exurbia” in the conterminous United States using nighttime satellite imagery. Geocarto International, 21(2), 39-45.

Stansel, D. (2005). Local decentralization and local economic growth: A cross-sectional examination of US metropolitan areas. Journal of Urban Economics, 57(1), 55-72.

UN-Habitat (2012). The State of Latin American and Caribbean Cities 2012 Towards a new urban transition. Nairobi, Kenia.

Wu, J., Ma, L., Li, W., Peng, J., & Liu, H. (2014). Dynamics of urban density in China: Estimations based on DMSP/OLS nighttime light data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10), 4266-4275.
Zhang, Q., & Seto, K. C. (2011). Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sensing of Environment, 115(9), 2320-2329.

Zhou, Y., Smith, S. J., Zhao, K., Imhoff, M., Thomson, A., Bond-Lamberty, B., ... & Elvidge, C. D. (2015). A global map of urban extent from nightlights. Environmental Research Letters, 10(5), 054011.

Zhou, N., Hubacek, K., & Roberts, M. (2015). Analysis of spatial patterns of urban growth across South Asia using DMSP-OLS nighttime lights data. Applied Geography, 63, 292-303.
Appendix

Table A1. Data sources.

ISO	Central City	gov_body	spd_Water
ARG	Salta	Ministerio del Interior	Aguas del Norte
ARG	Buenos Aires	Región Metropolitana de Buenos Aires y del Conurbano Bonaerense	Águas Bonaerenses
ARG	Cordoba	Gobierno de la Provincia de Córdoba	Aguas Cordobesas
ARG	Mendoza	Mendoza Gobierno	
ARG	Rosario	Gobierno de Rosario	Gobierno de Santa Fe
ARG	Tucuman	Observatorio de Fenómenos Urbanos y Territoriales	Ministerio del Interior
BOL	Cochabamba	Gaceta Oficial del Estado Plurinacional de Bolivia	Servicio municipal de agua potable y alcantarillado sanitario (SEMAPA)
BOL	La Paz	Ministerio de Autonomías	Empresa Pública Social del Agua y Saneamiento S.A. (EPSAS)
BOL	Santa Cruz		Autoridad de Agua Potable y Saneamiento Basico
BRA	Aracaju		
BRA	Belém	Procuraduría General del Estado de Pará	Agência Reguladora Municipal de Água e Esgoto de Belém
BRA	Belo Horizonte	Agencia Região Metropolitana de Belo Horizonte	Companhia de Saneamento de Minas Gerais – COPASA
BRA	Brasilia		Companhia de Saneamento Ambiental do Distrito Federal
BRA	Campinas	Gobierno de Sao Paulo	Sociedade de Abastecimento de Agua S/A - Sanasa
BRA	Cuiaba	Portal Transparencia	Departamento de Água e Esgoto de Várzea Grande -DAE.
BRA	Curitiba	Coordenacao da Regiao Metropolitana de Curitiba (COMEC)	Companhia de Saneamento do Paraná -Sanepar-
BRA	Florianopolis	Gobierno de Estado de Amazonas	Companhia Catarinense de Águas e Saneamento -Casan-
BRA	Fortaleza	Secretaria do Desenvolvimento Local e Regional	Companhia de Água e Esgoto do Ceará -CAGECE-
BRA	Joao Pessoa	Estado do Paraiba	Companhia de Água e Esgotos da Paraíba -CAGEPA-
BRA	Joinville		
BRA	Londrina	Empresa Paulista de Planejamento Metropolitano (EMPLASA)	Companhia de Saneamento do Paraná -Sanepar-
BRA	Maceio	Empresa Paulista de Planejamento Metropolitano (EMPLASA)	Companhia de Saneamento de Alagoas
BRA	Manaus	Gobierno de Estado de Amazonas	Grupo Aguas do Brasil
BRA	Natal		Companhia de Saneamento de Minas Gerais – COPASA
BRA	Porto Alegre	Associação dos Municípios da Região Metropolitana de Porto Alegre - Granpal	Companhia Riograndense de Saneamento -Corsan-
BRA	Recife	Consejo de Recife	Companhia Pernambucana de Saneamento -Compesa-
BRA	Ribeirao Preto		GS Inima Brasil
BRA	Rio de Janeiro	Asamblea Legislativa de Rio de Janeiro	Companhia Estadual de Águas e Esgotos -CEDAE-
BRA	Salvador Bahia		Companhia de Águas e Esgotos de Rondônia -Caerd-
BRA	Santos	Agência Metropolitana da Baixada Santista (AGEM)	Companhia de Saneamento Básico do Estado de São Paulo S.A. -Sabesp-
BRA	Sao Jose Dos Campos	Consejo Metropolitano de San José de los Campos	Portal Saneamento Basico
BRA	Sao Luis		Companhia de Saneamento Ambiental do Maranhão -CAEMA-
BRA	Sao Paulo	Empresa Paulista de Planejamento Metropolitano (EMPLASA)	Companhia Estadual de Águas e Esgotos do Rio de Janeiro (CEDAE)
BRA	Sorocaba	Empresa Paulista de Planejamento Metropolitano (EMPLASA)	Prefeitura de Sorocaba
BRA	Teresina	Instituto Brasileiro de Geografia e Estatistica	Águas e Esgotos do Piauí S.A. -Agespia-
BRA	Vitoria	Instituto Jones dos Santos Neves (IJSN)	Companhia Espírito Santense de Saneamento -Cesan-

Continue next page
Table A1. Data sources (cont.)

ISO	Central City	gov_body	spd_Water
CHL	Santiago	Biblioteca del Congreso Nacional de Chile	Aguas Andinas
COL	Barranquilla	Área Metropolitana de Barranquilla	Triple A S.A.
COL	Bogotá	Supervisoria de Servicios Públicos Domiciliarios	
COL	Bucaramanga	Área Metropolitana de Bucaramanga	Supervisoria de Servicios Públicos Domiciliarios
COL	Cali		Aguas de Palmira S.A.
COL	Cucuta	Área Metropolitana de Cucuta	Plan Departamental de Agua de Norte de Santander
COL	Medellín	Área Metropolitana Valle de Aburrá	Empresas Publicas de Medellín (EPM) Aguas
COL	Pereira	Área Metropolitana Centro Occidente	Supervisoria de Servicios Públicos Domiciliarios
CRI	San José	Ministerio de Viviendas y Acountamientos Urbanos	Instituto Costarricense de Acueductos y Alcantarillados
DOM	Santo Domingo		Coordinación de Agua y Alcantarillado (CAASD)
ECU	Guayaquil		Interagua
GTM	Guatemala		Municipalidad de Guatemala
GTM	Quetzaltenango		Empresa Municipal de Agua y Alcantarillado "Virgen Guadalupe del Sur" (EMAPAVIGS)
MEX	Chihuahua		Junta Municipal de Agua y Saneamiento de Chihuahua
MEX	Cuernavaca		Sistema de conservación, agua potable y saneamiento de agua de Temixco, Morelos (SACPSATM)
MEX	Tuxtla Gutiérrez		Sistema Municipal de Agua Potable y Alcantarillado (SMAPA)
MEX	Aguascalientes		Compañía de servicios públicos de agua en Aguaasclientes (CAASA)
MEX	Cancún		Aguakan S.A. de C.V.
MEX	Ciudad de México		Comisión Nacional del Agua (CONAGUA)
MEX	Guadalajara		Sistema Intermunicipal de los Servicios de Agua Potable y Alcantarillado (SIAPA)
MEX	Mérida		Junta de Agua Potable y Alcantarillado de Yucatán
MEX	Monterrey		Servicios de Agua y Drenaje de Monterrey -SADAM-
MEX	Morelia		Comité de Agua Potable y Alcantarillado del Municipio de Tarimbaro - Comapat-
MEX	Puebla		Concesiones Integrales Puebla
MEX	Querétaro		Comisión Estatal de Aguas Querétaro
MEX	Saltillo		Aguas de Saltillo
MEX	San Luis Potosí		Compañía de servicios públicos de Agua -INTERAPAS-
MEX	Tampico		Comisión Municipal de Agua Potable y Alcantarillado -COMAPA-
MEX	Toluca		Secretaria de Desarrollo Metropolitano Valle de Toluca
MEX	Torreon		Sistema Municipal de Agua y Saneamiento -SIMAS -
MEX	Veracruz		Comisión del Agua del Estado de Veracruz (CAEV)
PAN	Ciudad de Pánama		Autoridad Nacional de Servicios Públicos -ASEP-
PER	Arequipa	Municipalidad distrital de Pucusana	Servicio de agua potable y Alcantarillado de Arequipa S.A. (SEDAPAR)
PER	Lima	Municipalidad distrital de Pucusana	Servicio de agua potable y Alcantarillado de Lima S.A. (SEDAPAL)
PER	Trujillo	Plan de Desarrollo Territorial de Trujillo (PLANDET)	Servicio de agua potable y Alcantarillado de la Libertad -SEDALIB S.A-
PRY	Asunción		Empresa de Servicios Sanitarios del Paraguay S.A. (ESSAP)
SLV	San Salvador	Oficina de la Administración de El Salvador (OPAMSS)	Administración Nacional de Acueductos y Alcantarillados (ANDA)

Continue next page
Table A1. Data sources (cont.)

ISO	Central City	spd_Energy	spd_Waste_e
ARG	Salta	Empresa Distribuidora de Electricidad de Salta S.A. (EDESA)	Ministerio del Interior
ARG	Buenos Aires	Compañía Administradora del Mercado Mayorista Eléctrico (CAMMESA)	Coordinación Ecológica Área Metropolitana Sociedad del Estado (CEAMSE)
ARG	Cordoba	Empresa Provincial de Energía de Córdoba	Logística Urbana S.A. (LUSA)
ARG	Mendoza	Empresa Mendocina de Energía -Emesa-	Limpieza Metropolitana S.A. E.S.P. (LIME)
ARG	Rosario	Empresa Provincial de la Energía de Santa Fe	Limp AR Rosario S.A.
ARG	Tucuman	Ministerio del Interior	Ministerio del Interior
BOL	Cochabamba	Empresa de Luz y Fuerza Electrica Cochabamba (ELFEC)	Servicio Municipal de Agua Potable y Alcantarillado COCHABAMBA
BOL	La Paz	Distribuidora de Electricidad La Paz (DELAPAZ)	Empresas pública social de Agua y Saneamiento EPSAS
BOL	Santa Cruz	Compañía Eléctrica Central Bulo Bulo S.A.	Autoridad de Fiscalización y Control Social de Agua Potable y Saneamiento Básico AAPS
BRA	Aracaju	Grupo Energisa	Prefectura de Rio de Janeiro
BRA	Belém	BELEM BIOENERGIA BRASIL	Prefectura Municipal de Belém
BRA	Belo Horizonte	Compañía Energética de Minas Gerais	Agencia Região Metropolitana de Belo Horizonte -RMBH-
BRA	Brasilia	Compañía Energética de Brasilia	Gobierno de Brasilia
BRA	Campinas	Compañía Paulista de Força e Luz	MB Ingeniería y Medio Ambiente
BRA	Cuiaba	Centrais Elétricas Matogrossenses (CEMAT)	Prefectura Cuiabá
BRA	Curitiba	Compañía Paranaense de Energia	Ares do Paraná
BRA	Florianopolis	Centrais Elétricas de Santa Catarina S.A. (Celesc)	Prefectura de Florianópolis
BRA	Fortaleza	Compañía de energía sostenible- Ener Brasil	Grupo Taborda
BRA	Joao Pessoa	Energisa	Marquesi Ambiental
BRA	Joinville	Centrais Elétricas de Santa Catarina S.A. (Celesc)	Ambiental
BRA	Londrina	Compañía Paranaense de Energia	Colecta e destinacao do resíduos BIOACCESS
BRA	Maceio	Eletrobras	Consorcio público de saneamento básico da bacia hidrográfica do Rio Dos Santos
BRA	Manaus	Eletrobras Amazonas Energia	Manaus Limpia
BRA	Natal	Biomassa BR	Banco de Brasil
BRA	Porto Alegre	Energia Proyectos e Investigación	Prefectura de Porto Alegre
BRA	Recife	Grupo privado electrico do Brasil- Neoenergia	Grupo recolección de residuos sólidos (RELIMA SOLVÍ)
BRA	Ribeirao Preto	Compañía Paulista de Força e Luz	Koleta Ambiental S.A.
BRA	Rio de Janeiro	Enel Green Power Brasil	Compañía Municipal de Limpieza Urbana
BRA	Salvador Bahia	Compañía de Eléctricidade do Estado da Bahia	Koleta Ambiental S.A.
BRA	Santos	Compañía Paulista de Força e Luz	Total Waste Management AMBIENTAL BRASIL
BRA	Sao Jose Dos Campos	EDP Energias do Brasil	Urbanizadora Municipal -URBAM-
BRA	Sao Luis	Novus Energia Sao Luis	Coleta de Oleo de Frita Indama
BRA	Sao Paulo	Enel distribuciao S.A	Resíduos e gestão ambiental Utresas
BRA	Sorocaba	Votorantim Energia	Prefectura de Sorocaba
BRA	Teresina	Electrobras Distribuição Plaui	Prefectura Municipal de Teresina
BRA	Vitoria	Interconexión Eléctrica S.A. E.S.P. - ISA -	Vitoria Ambiental

Continue next page
Table A1. Data sources (cont.)

| ISO | Central City | spd_Energy | spd_Waste | c |
|-----|------------------|--|-----------|
| CHL | Santiago | Enel Distribución Chile S.A. | Sistema Nacional de Información Ambiental de Chile (SINIA) |
| COL | Barranquilla | Comisión de Regulación de Energía y Gas | Edumas |
| COL | Bogotá | Grupo Energía de Bogotá | ASEO Internacional S.A. |
| COL | Bucaramanga | Comisión de Regulación de Energía y Gas | Proactiva |
| COL | Cali | Celsia S.A. E.S.P | Proactiva |
| COL | Cucuta | Centrales Eléctricas del Norte de Santander S.A E.S.P (CENS) | Grupo Sala |
| COL | Medellín | Empresas Publicas de Medellín (EPM) | Emvarias |
| COL | Pereira | Superintendencia de Servicios Públicos Domiciliarios | Asopereira |
| CRI | San José | Instituto Costarricense de Electricidad (ICE) | Empresas Berthier EBI de Costa Rica S.A. |
| DOM | Santo Domingo | Comisión Nacional de Energía | Ecoservis Dominicana |
| ECU | Guayaquil | Empresa Energía Publica | Puerto Limpio |
| GTM | Guatemala | Empresa Eléctrico de Guatemala S.A. (EEGSA) | Info Ciudad |
| MEX | Chihuahua | Comisión Federal de Electricidad | Naciones Unidas |
| MEX | Cuernavaca | Comisión Federal de Electricidad | Aseca S.A. |
| MEX | Tuxtla Gutiérrez | Comisión Federal de Electricidad | Limpia y Aseo Público Municipal Tuxtla |
| MEX | Aguascalientes | Comisión Federal de Electricidad | Aguascalientes Gobierno de Estado |
| MEX | Cancún | Comisión Federal de Electricidad | Solución integral de residuos sólidos cancún (SIRESOL) |
| MEX | Ciudad de México | Comisión Federal de Electricidad | Dirección General de Servicios Urbanos |
| MEX | Guadalajara | Comisión Federal de Electricidad | Ayuntamiento de Merida |
| MEX | Mérida | Comisión Federal de Electricidad | General Ambiental |
| MEX | Monterrey | Comisión Federal de Electricidad | Biosistem Mexico S.A de C.V. |
| MEX | Morelia | Comisión Federal de Electricidad | Biosistem Mexico S.A de C.V. |
| MEX | Puebla | Comisión Federal de Electricidad | Gen Industrial S.A. de C.V. |
| MEX | Querétaro | Comisión Federal de Electricidad | Gobierno Saltillo |
| MEX | Saltillo | Comisión Federal de Electricidad | Promotora Ambiental |
| MEX | San Luis Potosi | Comisión Federal de Electricidad | Desechos Basuras y Servicios SA |
| MEX | Tampico | Comisión Federal de Electricidad | General Ambiental |
| MEX | Toluca | Comisión Federal de Electricidad | Recicladora Siderúrgica de la Laguna S.A. de C.V. (RESILASA) |
| MEX | Torreon | Comisión Federal de Electricidad | Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT) |
| PAN | Ciudad de Pánama | Empresa de Transmisión Eléctrica S.A. | Panama Waste Management (PWM) |
| PER | Arequipa | Sociedad Electrica del Sur Oeste S.A. (SEAL) | Relima Solvi |
| PER | Lima | Responsabilidad Social y Desarrollo Sostenible | Municipalidad metropolitana de Lima |
| PER | Trujillo | Distribuzione S.A. | PROMAS Servicios Ambientales |
| PRY | Asunción | Administracion Nacional de Electricidad (ANDE) | Dirección Nacional de Contrataciones Públicas |
| SLV | San Salvador | AES El Salvador Energia | Ministerio de Medio Ambiente y Recursos Naturales |
Table A1. Data sources (cont.)

ISO	Central City	**its cov**	port
ARG	Salta	Sociedad Anónima del Estado de Transporte Automotor - SAETA	Lloyd's List
ARG	Buenos Aires	Ferrocarriles Metropolitanos Area Metropolitana de Buenos Aires	Lloyd's List
ARG	Cordoba	Transporte automotor municipal sociedad del estado	Lloyd's List
ARG	Mendoza	Mendoza Gobierno	Lloyd's List
ARG	Rosario	Instituto Nacional de Estadística y Censos de la República Argentina (INDEC)	Lloyd's List
ARG	Tucuman	Ministerio del Interior	Lloyd's List
BOL	Cochabamba	Banco Interamericano de Desarrollo	Lloyd's List
BOL	La Paz	La Paz Bus	Lloyd's List
BOL	Santa Cruz	Centro de Estudios para el Desarrollo Urbano y Regional (CEDURE)	Lloyd's List
BRA	Aracaju	Grupo Parvi	Lloyd's List
BRA	Belém	Instituto de Pesquisa Econômica Aplicada (IPEA)	Lloyd's List
BRA	Belo Horizonte	Compañía Brasileira de Trens Urbanos	Lloyd's List
BRA	Brasilia	Secretaria de Estado de Distrito Federal	Lloyd's List
BRA	Campinas	Empresa Metropolitana de Transportes Urbanos de São Paulo	Lloyd's List
BRA	Cuiaba	República Federativad Brasil	Lloyd's List
BRA	Curitiba	Urbanização de Curitiba URBS	Lloyd's List
BRA	Florianopolis	Consórcio Fénix	Lloyd's List
BRA	Fortaleza	Omnibus do Fortaleza Fortalbus	Lloyd's List
BRA	Joao Pessoa	Companhia Brasileira de Trens Urbanos	Lloyd's List
BRA	Joinville	Gidion Transporte e Turismo Ltda y Transtusa	Lloyd's List
BRA	Londrina	Encontro Nacional da Anpege	Lloyd's List
BRA	Maceio	Companhia Brasileira de Trens Urbanos	Lloyd's List
BRA	Manaus	Departamento Nacional de Infraestrutura de Transportes	Lloyd's List
BRA	Natal	Companhia Ferroviaria del Nordeste, CFN	Lloyd's List
BRA	Porto Alegre	A Fundação Estadual de Planejamento Metropolitano e Regional - Metropplan	Lloyd's List
BRA	Recife	Companhia Brasileira de Trens Urbanos CBTU	Lloyd's List
BRA	Ribeirao Preto	Red Ferroviaria Federal Sociedad Anónima	Lloyd's List
BRA	Rio de Janeiro	Metrorio	Lloyd's List
BRA	Salvador Bahia	Empresa Metropolitana de Transportes Urbanos	Lloyd's List
BRA	Santos	Empresa Metropolitana de Transportes Urbanos	Lloyd's List
BRA	Sao Jose Dos Campos	Universidade de Taubaté - UNITAU	Lloyd's List
BRA	Sao Luis	Secretaria Municipal de Trânsito e Transporte Sao Luis	Lloyd's List
BRA	Sao Paulo	Companhia Brasileira de Trens Urbanos	Lloyd's List
BRA	Sorocaba	Empresa Metropolitana de Transportes Urbanos	Lloyd's List
BRA	Teresina	Mobilitade Urbana Sustentável (Mobilize)	Lloyd's List
BRA	Vitoria	Instituto de Pesquisa Econômica Aplicada (IPEA)	Lloyd's List
Table A1. Data sources (cont.)

ISO	Central City	its cov	port
CHL	Santiago	Empresa de los Ferrocarriles del Estado (EFE)	Lloyd's List
COL	Barranquilla	Departamento Nacional de Planeación	Lloyd's List
COL	Bogotá	Sistema Integrado de Transporte Bogotá	Lloyd's List
COL	Bucaramanga	Metrolínea	Lloyd's List
COL	Cali	Metrocali	Lloyd's List
COL	Cucuta	Área Metropolitana de Cúcuta	Lloyd's List
COL	Medellín	Metro de Medellín	Lloyd's List
COL	Pereira	Área Metropolitana Centro Occidente	Lloyd's List
CRI	San José	Instituto Costarricense de Ferrocarriles (Incofer)	Lloyd's List
DOM	Santo Domingo	Metro Santo Domingo	Lloyd's List
ECU	Guayaquil	Metrovia	Lloyd's List
GTM	Guatemala	Municipalidad de Guatemala	Lloyd's List
GTM	Quetzaltenango	Sistema de Registro Fiscal de Vehículos	Lloyd's List
MEX	Chihuahua	Gobierno de Chihuahua	Lloyd's List
MEX	Cuemavaca	Secretaría de Movilidad y Transporte	Lloyd's List
MEX	Tuxtla Gutiérrez		Lloyd's List
MEX	Aguascalientes	Gobierno de Aguascalientes	Lloyd's List
MEX	Cancún	Marítima Isla Mujeres S.A.	Lloyd's List
MEX	Ciudad de México	Ferrocarriles Suburbanos	Lloyd's List
MEX	Guadalajara	Sistema de Tren Eléctrico urbano (SITEUR)	Lloyd's List
MEX	Mérida	Yucatan-Sistema Integral de Transporte Urbano	Lloyd's List
MEX	Monterrey	Transmetro Monterrey	Lloyd's List
MEX	Morelia		Lloyd's List
MEX	Puebla	Rutapuebla	Lloyd's List
MEX	Querétaro		Lloyd's List
MEX	Saltillo	Gobierno de Coahuila	Lloyd's List
MEX	San Luis Potosi	Secretaría de comunicaciones y transporte	Lloyd's List
MEX	Tampico	Turutadirecta	Lloyd's List
MEX	Toluca		Lloyd's List
MEX	Torreón	El Siglo de Torreón	Lloyd's List
MEX	Veracruz	Gobierno de Veracruz	Lloyd's List
PAN	Ciudad de Pánama	Metro de Panamá	Lloyd's List
PER	Arequipa	Municipalidad Provincial de Arequipa	Lloyd's List
PER	Lima	Protransporte	Lloyd's List
PER	Trujillo	Transporte Metropolitano de Trujillo	Lloyd's List
PRY	Asunción	Ministerio de Obras Publicas y Comunicación	Lloyd's List
SLV	San Salvador	SUBES El Salvador	Lloyd's List
Table A2. Descriptive statistics.

Variable	n	p25	Median	p75	Mean	Std. Dev.	Min	Max
λ^broad_j	73	0.84	1.02	1.28	1.05	0.30	0.12	1.65
λ^narrow_j	73	0.91	1.12	1.43	1.16	0.36	0.17	1.88
pop_2010	73	902,390.50	1,573,563.00	2,922,544.00	2,699,436.00	3,698,464.00	203,131.10	21,200,000.00
density	73	276.17	506.37	905.83	819.88	902.17	18.08	4217.76
no_adminunits	73	4.00	7.00	15.00	12.26	12.41	2.00	76.00
no_au_100th_2010	73	0.30	0.49	0.77	0.66	0.59	0.02	3.29
cc_pop2010_ue	73	0.31	0.50	0.63	0.48	0.20	0.07	0.87
gov_body	73	0.00	1.00	1.00	0.53	0.50	0.00	1.00
its_cov	73	0.00	57.89	100.00	50.51	44.11	0.00	100.00
sd_p_sum	73	1.00	1.00	2.00	1.34	0.85	0.00	3.00
pop_radio300km	73	1.10	5.00	12.97	9.64	11.72	0.00	43.55
coast_2010	73	0.00	0.00	1.00	0.40	0.49	0.00	1.00
port	73	0.00	0.00	1.00	0.40	0.49	0.00	1.00

Table A3. Correlation matrix

Variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
λ^broad_j													
λ^narrow_j	0.9635*	1											
pop_2010	0.2702*	0.2535*	1										
density	-0.2407*	-0.2453*	0.5129*	1									
no_adminunits	0.3112*	0.3383*	0.6523*	0.1673	1								
no_au_100th_2010	0.099	0.1064	-0.2613*	-0.2811*	0.3111*	1							
cc_pop2010_ue	-0.0931	-0.1423	0.024	-0.0375	-0.2978*	-0.3172*	1						
gov_body	0.2411*	0.2446*	0.2475*	0.1643	0.3095*	0.0848	-0.0765	1					

*Indicates significance at the 0.05 level.
Variable	its_cov (9)	sdp_sum (10)	pop_radio300km (11)	coast_2010 (12)	port (13)
	0.4804*	0.4951*	0.0562	-0.0561	0.138
			0.138	-0.1966	0.0683
					0.2482*
					1
	0.1662	0.075	-0.0893	-0.1575	0.0531
			0.0531	0.1306	-0.0905
					0.0533
					0.1031
					1
	0.227	0.2252	0.0914	0.0192	0.1659
				0.0825	-0.1059
					0.0813
					-0.0544
					0.0352
					1
	0.1255	0.1678	0.0871	0.1957	-0.0285
					-0.1038
					-0.0021
					-0.0277
					0.1957
					-0.1629
					-0.0777
					1
	0.0384	0.0513	-0.0698	0.133	-0.1035
					0.0913
					-0.0067
					0.0284
					0.1455
					-0.0308
					-0.1197
					0.7712*
					1