Delineation of the GPR15 receptor-mediated Gα protein signalling profile in recombinant mammalian cells

Yufang Deng | Ee Von Moo | Claudia Victoria Pérez Almería | Patrick R. Gentry | Line Vedel | Jesper M. Mathiesen | Hans Bräuner-Osborne

1Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen
2Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
3Analytical Technology Department, FUJIFILM Diosynth Biotechnologies, Hillerød, Denmark

Correspondence
Hans Bräuner-Osborne, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Email: hbo@sund.ku.dk.

Funding information
Carlsbergfondet, Grant/Award Number: CF20-0248; China Scholarship Council, Grant/Award Number: 201907940002; Horizon 2020 Framework Programme, Grant/Award Number: 846827; Novo Nordisk Fonden, Grant/Award Numbers: NNF17OC0028412, NNF19OC0057730

Abstract
The GPR15 receptor is a G protein-coupled receptor (GPCR), which is activated by an endogenous peptide GPR15L(25–81) and a C-terminal peptide fragment GPR15L(71–81). GPR15 signals through the G_{i/o} pathway to decrease intracellular cyclic adenosine 3',5'-monophosphate (cAMP). However, the activation profiles of the GPR15 receptor within G_{i/o} subtypes have not been examined. Moreover, whether the receptor can also couple to G_s, G_{q/11} and G_{12/13} is unclear. Here, GPR15L(25–81) and GPR15L(71–81) are used as pharmacological tool compounds to delineate the GPR15 receptor-mediated Gα protein signalling using a G protein activation assay and second messenger assay conducted on living cells. The results show that the GPR15 receptor preferentially couples to G_{i/o} rather than other pathways in both assays. Within the G_{i/o} family, the GPR15 receptor activates all the subtypes (G_{i1}, G_{i2}, G_{i3}, G_{oA}, G_{oB} and G_z). The E_{max} and activation rates of G_{i1}, G_{i2}, G_{i3}, G_{oA} and G_{oB} are similar, whilst the E_{max} of G_z is smaller and the activation rate is significantly slower. The potencies of both peptides toward each G_{i/o} subtype have been determined. Furthermore, the GPR15 receptor signals through G_{i/o} to inhibit cAMP accumulation, which could be blocked by the application of the G_{i/o} inhibitor pertussis toxin.

KEYWORDS
BRET, GPR15, Gα protein, second messenger, signalling

INTRODUCTION
The G protein-coupled receptor 15 (GPR15) is a class A G protein-coupled receptor (GPCR), which was cloned in 1996^{1,2} and shown to be a co-receptor for human immunodeficiency virus and simian immunodeficiency virus infection.^{3–5} The GPR15 receptor is widely expressed in the human body, such as the colon,⁶ skin⁷ and peripheral blood.⁸ Published studies have shown that the GPR15 receptor plays an important role in immune disorders such as ulcerative colitis,⁹ dermatitis^{7,10} and multiple sclerosis.¹¹ In addition, the
GPR15 receptor has been identified as a robust biomarker for tobacco smoking.12-14 These findings indicate that the GPR15 receptor is a potential therapeutic target for multiple diseases.

The endogenous ligand of the GPR15 receptor, a 57mer peptide termed GPR15L(25–81), has recently been identified by our collaborative laboratory and two other independent research groups.8,15,16 The GPR15L(25–81) peptide is encoded by chromosome 10 open reading frame 99 (C10orf99) in humans. It is a soluble basic amphiphilic peptide that contains 57-amino acid residues (molecule weight 6.5 KD). It contains two intramolecular disulphide bridges (Cys40 to Cys63 and Cys41 to Cys60) and thus shows resemblance to the structure of chemokine peptides but not to their peptide sequence.8,15,16 The C-terminal of the GPR15L(25–81) peptide is highly conserved among species and is essential for agonist activity. When deleting the C-terminal region, the peptide is incapable of activating the receptor. However, when progressively deleting the N-terminal amino acids, all truncated constructs (e.g. GPR15L(71–81)) are still capable of activating the GPR15 receptor. The potencies of those truncated variants were positively correlated to their length.8,15,16 In this study, we used the GPR15L(25–81) and its C-terminal fragment GPR15L(71–81) as pharmacological tool compounds to probe the GPR15 receptor signalling.

There are 17 mammalian Gα proteins17 that together with Gβ and Gγ subunits form a functional trimeric G protein capable of coupling to GPCRs upon activation by agonists. They have been divided into four classes based on the evolutionary distance, which are G_{i/o} (G_{i1}, G_{i2}, G_{i3}, G_{oA}, G_{oB}, G_{z}, G_{s}, G_{q}, G_{11}, G_{15} and G_{13}) by conducting the NanoLuc bioluminescence resonance energy transfer (BRET) based G protein activation assay. Wherein the masGRK3ct-Nluc serves as BRET energy donor is anchored on the inside of the cell membrane, and the functional Venus tagged Gβγ dimmer serves as the acceptor is formed based on the bimolecular fluorescence complementation (BiFC) of Venus (155–239)-Gβ1 and Venus (1–155)-Gγ2. The BRET will happen when the Venus-Gβγ is released from the heterotrimer and subsequently interacts with the masGRK3ct-Nluc.19 We tested the downstream signalling of the GPR15 receptor among the G_{i/o}, G_{s} and G_{q/11} pathways, by conducting homogeneous time-resolved FRET (HTRF)-based cAMP and IP_{1} assays.20 Moreover, the potencies of the GPR15L(25–81) and GPR15L(71–81) peptides have been determined with both assay formats. The delineation of the GPR15 receptor signalling can contribute to future efforts of drug discovery.

2 | MATERIALS AND METHODS

The study was conducted in accordance with the Basic & Clinical Pharmacology & Toxicology policy for experimental and clinical studies.21

2.1 | Reagents and materials

Dulbecco’s Modified Eagle’s Medium (DMEM, Cat. No: 12077549), opti-MEM (Cat. No: 31985026), trypsin-ethylenediaminetetraacetic acid (Cat. No: 11590626), penicillin/streptomycin (Cat. No: 11548876), dialyzed foetal bovine serum (FBS, Cat. No: 26400036), Hanks’ balanced saline solution without Ca^{2+} and Mg^{2+} (Cat. No: 11540476), Dulbecco’s phosphate-buffered saline (Cat. No: 14190169), Lipofectamine™ LTX reagent with PLUS™ reagent (Cat. No: 15338100), Lipofectamine 2000 (Cat. No: 11668019), pertussis toxin (PTX, CAS#: 70323-44-3, Cat. No: PHZ1174), pluronic F-68 non-ionic surfactant (CAS#: 9003-11-6, Cat. No: 24040032), 6-well cell culture plate (Cat. No: 353046) and 10-cm tissue culture dish (Cat. No: 353003) were obtained from Thermo-Fisher Scientific (Waltham, MA, USA). The 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES, Cat. No: H4034-500G), antibiotic G418 (CAS#: 108321-42-2, Cat. No: G8168-50ML), bovine serum albumin (BSA, Cat. No: A2153-50G), cell dissociation solution (Cat. No: C5914-100ML), adenyl cyclase
activator forskolin (FSK, CAS#: 66575-29-9, Cat. No: F6886-10MG), broad-spectrum phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methyloxanthine (IBMX, CAS#: 28822-58-4, Cat. No: I5879-250MG), carbamoylcholine chloride (Carbachol, CAS#: 51-83-2, Cat. No: C4382-1G), isoproterenol bitartrate salt (Isoproterenol, CAS#: 54750-10-6, Cat. No: I2760-500MG), glucagon (CAS#: 16941-32-5, Cat. No.: G2044-5MG), and dimethyl sulfoxide (DMSO, CAS#: 67-68-5, Cat. No.: D2650-100ML) were obtained from Sigma Aldrich (St. Louis, MO, USA). The 384-well white opaque microplate for cAMP assay (Cat. No: 784075) was obtained from Greiner. The 384-well white opaque microplate for IP-one assay (Cat. No.: 6005688) for BRET assay were obtained from PerkinElmer. cAMP-Gγ2 dynamic kit (Cat. No: 62AM4PEC) and IP-One-Gγ kit (Cat. No: 62IAPAPEC) were obtained from Cisbio (Codolet, France). The 384-well white opaque microplate for cAMP assay (Cat. No: 784075) was obtained from PerkinElmer. cAMP-Gγ2 dynamic kit (Cat. No: 62AM4PEC) and IP-One-Gγ kit (Cat. No: 62IAPAPEC) were obtained from Cisbio (Codolet, France).

2.4 | Transient transfection for BRET G protein activation assay

At 20–24 h before the BRET assay, 2 × 10^5 per well of HEK293A cells were seeded into a 6-well plate. The cells were transfected with 1.26 μg GPR15 receptor DNA, 0.21 μg Venus (155–239)-Gβ1 DNA, 0.21 μg Venus (1–155)-Gγ2 DNA, 0.21 μg masGRK3ct-Nluc DNA and an optimized amount of Gα protein DNA (supporting information Table S1). For the successful expression of Gγ15, co-transfection with the chaperone Flg-Ric-8A (0.21 μg) is necessary. To avoid the positive BRET signal induced by endogenous Gαi/o, the G proteins from the non-Gαi/o family (i.e. Gαq, G11, G15, Gγ and G13) were co-transfected with 0.21 μg PTX-S1 DNA. The transfection reagents used were Lipofectamine LTX reagent with PLUS reagent and/or Lipofectamine.
2.6 | HTRF G\textsubscript{i} cAMP assay

The assays were performed in a 384-well microplate, suspension format as previously described in detail23 GPR15L(25–81) and GPR15L(71–81) were threefold diluted in ligand buffer (Hanks’ balanced saline solution supplemented with 20 mM HEPES, 1 mM CaCl\textsubscript{2}, 1 mM MgCl\textsubscript{2}, 3 μM forskolin, and 0.01% freshly added pluronic acid, pH adjusted to 7.4 with NaOH). The highest concentration (2 × final concentration) of the GPR15L(25–81) and GPR15L(71–81) peptides were 2 μM and 60 μM, respectively. The 5 μl/well of peptide solution was transferred to a 384-well microplate and put aside for later use. HEK293A-GPR15 cells with 80–90% growth confluence were harvested with the non-enzymatic cell dissociation solution. The cells were suspended in 37°C preheated cell suspension buffer (Hanks’ balanced saline solution supplemented with 20 mM HEPES, 1 mM CaCl\textsubscript{2}, 1 mM MgCl\textsubscript{2}, and 100 μM of freshly added IBMX, pH adjusted to 7.4 with NaOH) with a concentration of 8 × 105 cells/ml. Whereafter 5 μl/well (i.e. 4000 cells/well) of cell suspension was added to the 384-well plate. The plate was centrifuged for 10 s at 500 rpm and incubated at room temperature for 30 min. Afterwards, 10 μl/well of freshly made detection solution (Lysis buffer supplemented with 2.5% cAMP-cryptate and 2.5% anti-cAMP-d2) was added to the plate in a dim light environment. The plate was incubated for 1 h in the dark at room temperature. Whereafter the plate was read in an Envision plate reader to detect emission at 665 nm and 615 nm simultaneously.

2.7 | HTRF G\textsubscript{s} cAMP assay

The assay protocol was performed as described previously.23 The G\textsubscript{s} cAMP assay procedure was very similar to the G\textsubscript{i} cAMP assay procedure with the only difference being that the ligand buffer used in the G\textsubscript{s} cAMP assay was without forskolin.

2.8 | HTRF G\textsubscript{q} IP\textsubscript{1} assay

The assay protocol was performed as described previously.23 The 5 μl/well of agonists (GPR15L(25–81), GPR15L(71–81), isoproterenol and carbachol) prepared in ligand buffer (Hanks’ balanced saline solution supplemented with 20 mM HEPES, 1 mM CaCl\textsubscript{2}, 1 mM MgCl\textsubscript{2}, and 0.01% freshly added pluronic acid, pH adjusted to 7.4 with NaOH) with 2 × final concentration was added to the 384-well microplate. The 5 μl of cell suspensions supplemented with 30 mM LiCl and 20 000 HEK293A-GPR15 recombinant cells was added to the agonist-containing plate. The plate was incubated for 30 min at 37°C. Whereafter 10 μl of IP\textsubscript{1} detection solution (IP\textsubscript{1}-cryptate: anti-IP\textsubscript{1}-d2: lysis buffer = 1: 1: 38) was added and followed by incubating the plate in the dark for 1 h at room temperature. The emissions at 665 nm and 615 nm were then recorded simultaneously with the Envision plate reader.

2.9 | Data analysis

All statistical analysis was performed with Prism 8 (GraphPad Software, San Diego, CA, USA). Data are presented as the standard error of the mean of at least three independent experiments. Concentration-response curves were fitted with a log (agonist) vs. response-variable slope (four parameters) model to determine the EC\textsubscript{50} value. The kinetic parameter comparisons between the G\textsubscript{z} and other G\textsubscript{i/o} subunits were performed with a one-way analysis of variance test followed by Dunnett’s multiple comparison test. The kinetic parameter comparisons between the GPR15L(25–81) and the GPR15L(71–81) were performed with Student’s t test. All statistical analysis was performed with Prism 8 (GraphPad Software, San Diego, CA, USA). Data are presented as the standard error of the mean of at least three independent experiments. Concentration-response curves were fitted with a log (agonist) vs. response-variable slope (four parameters) model to determine the EC\textsubscript{50} value. The kinetic parameter comparisons between the G\textsubscript{z} and other G\textsubscript{i/o} subunits were performed with a one-way analysis of variance test followed by Dunnett’s multiple comparison test. The kinetic parameter comparisons between the GPR15L(25–81) and the GPR15L(71–81) were performed with Student’s t test.

3 | RESULTS

3.1 | GPR15 receptor preferentially couples to G\textsubscript{i/o} family

We examined the coupling profiles of GPR15 toward 11 representative Gα proteins spanning the four Gα protein families with the NanoLuc BRET G protein activation assay.19 At 20–24 h before the experiment, we co-transfected the GPR15 receptor, a specific Gα protein and the BRET sensors (Venus(155–239)-Gβ\textsubscript{1}, Venus (1–155)-Gγ\textsubscript{2} and masGRK3ct-Nluc-HA) into wild-type HEK293A cells with optimized DNA amounts (supporting information Table S1). We found that both
FIGURE 1 Real-time measurement of G protein coupling profiles of the GPR15 receptor activated by GPR15L (25–81) peptide. (A, B) GPR15, Gα, Venus 155–239 Gp1, Venus 1–155 Gγ2 and masGRK3ct-Nluc-HA transfected HEK293A cells treated with 1 μM of GPR15L(25–81) peptide and activated heterotrimeric Gαi proteins (G11, G12, G13, GαA, GαB and Gz) to release the Gβγ subunits leading to BRET signal increase. Note the difference in scale of Y axis. (C–E) No response was detected when the cells were treated with 1 μM of GPR15L(25–81) peptide toward G proteins from Gs, Gq/11 and G12/13 families. The arrow indicates the administration of the agonist. Data plotted as mean ± SEM (error bars) of 3–5 grouped independent experiments performed in duplicates. BRET: Bioluminescence resonance energy transfer; SEM: standard error of the mean.

FIGURE 2 The E_{max} and activation rate of the Gαi6 activation induced by GPR15L(25–81) and GPR15L(71–81). (A) the E_{max} and (B) the activation rates of G1, G12, G13, GαA, GαB and Gz induced by 1 μM GPR15L(25–81) and 10 μM GPR15L(71–81). The E_{max} of Gz is significantly (p < 0.01) smaller than G11, G12, G13, GαA and GαB. The activation rate of Gz is significantly slower than G11, G12, G13, GαA and GαB (p < 0.001). No significant difference was detected between the GPR15L(25–81) and the GPR15L(71–81) triggered response. The comparisons between the Gz and other Gαi6 subunits were performed with Dunnett’s multiple comparison test (*p < 0.05, **p < 0.01, ***p < 0.001). The comparisons between the GPR15L(25–81) and the GPR15L(71–81) were performed with the students t test. Data plot as mean ± SEM (error bars) of 3–5 grouped independent experiments performed in duplicates. BRET: Bioluminescence resonance energy transfer; SEM: standard error of the mean.
the GPR15L(25–81) (Figure 1A, B) and the GPR15L (71–81) (supporting information Figure S1A, B) peptides led to effective activation of all the members of the G_{i/o} family (G_{i1}, G_{i2}, G_{i3}, G_{oA}, G_{oB} and G_{z}). No response to either peptide was detected when the cells were treated with the BRET buffer (supporting information Figure S2), or when cells were only transfected with the G_{o} protein and the BRET sensors (i.e. no GPR15 receptor present) (supporting information Figure S3A, B). The negative control results demonstrate that the BRET signals in Figure 1A, B, and supporting information Figure 1A, 1B were specifically mediated by the GPR15 receptor and its cognate GPR15L peptides. No response was detected when testing the peptides on cells transfected with the GPR15 receptor and G_{o} proteins (G_{s}, G_{q}, G_{11}, G_{15} and G_{13}) representing the G_{s}, G_{q/11} and G_{12/13} families, indicating that the GPR15 receptor does not interact with the G_{s}, G_{q/11} and G_{12/13} Proteins (Figure 1C, D, E; supporting information Figure S1C, D, E). To ensure assay validity, we included the GCGR that promiscuously couples to all four G_{o} protein families as a positive control. Our results show that when GCGR was stimulated with 10 μM glucagon, GCGR indeed coupled to the G_{s}, G_{q}, G_{11}, G_{15} and G_{13} (supporting information Figure S4). Taken together, our results show that among the four G_{o} protein families (G_{i/o}, G_{s}, G_{q/11} and G_{12/13}), the GPR15 receptor preferentially couples to the G_{i/o} signalling pathway and activates all the members of this family effectively.

3.2 The kinetic parameters of the G_{i/o} activation mediated by the GPR15 receptor

Based on data obtained from the kinetic assay, we quantified the E_{max} and activation rate kinetic parameters. Our results showed that there were no significant (p > 0.05) kinetic parameter differences between the GPR15L (25–81) and the GPR15L(71–81) toward all G_{i/o} proteins (i.e. G_{i1}, G_{i2}, G_{i3}, G_{oA}, G_{oB} and G_{z}) (Figure 2A, B). The activation kinetics among the G_{i1}, G_{i2}, G_{i3}, G_{oA} and G_{oB} were quite similar. However, regarding the G_{z} activation, when stimulated with the GPR15L(25–81), G_{z} produced a much lower E_{max} and slower activation rate for both versions of peptides (Figure 2A, B). Taken together, the GPR15 receptor showed similar selectivity preference among the G_{i1}, G_{i2}, G_{i3}, G_{oA} and G_{oB} with much lower preference for G_{z}. Moreover, the GPR15L(25–81) and the

G_{i/o}	GPR15L(71–81) pEC_{50}	GPR15L(71–81) EC_{50} (nM)	GPR15L(25–81) pEC_{50}	GPR15L(25–81) EC_{50} (nM)	Potency ratio
G_{i1}	6.14 ± 0.05	724	7.79 ± 0.06	16	45
G_{i2}	5.77 ± 0.04	1700	7.14 ± 0.04	72	23
G_{i3}	6.04 ± 0.12	912	7.69 ± 0.10	20	45
G_{oA}	5.52 ± 0.09	3020	7.28 ± 0.03	52	58
G_{oB}	5.60 ± 0.10	2510	7.54 ± 0.02	28	89
Potency ratio	45	23	45	58	40

F I G U R E 3 Concentration-response curves of GPR15L(25–81) peptide toward distinct G protein from G_{i/o} family. Concentration-response curves of the GPR15L(25–81) peptide on G_{i1}, G_{i2}, G_{i3}, G_{oA} and G_{oB} proteins were determined by conducting the BRET G protein activation assay on HEK293A cells transiently expressing the GPR15 receptor, the G_{o} protein and the BRET pair. The E_{max} of each concentration was buffer corrected and normalized to the max dose-response (100%). Data plotted as mean ± SEM (error bars) of 3–5 grouped independent experiments performed in two to three replicates. BRET: Bioluminescence resonance energy transfer; SEM: standard error of the mean.
GPR15L(71–81) induced similar G protein coupling profiles.

3.3 GPR15L peptides activate each G_{i/o} subtype in a concentration-dependent manner

To gain further insight, we determined the potency of the GPR15L(25–81) and its C-terminal fragment GPR15L (71–81) toward activation of the G_{i1}, G_{i2}, G_{i3}, G<sub,oA</sub> and G<sub,oB</sub> proteins with the BRET G protein activation assay (Table 1). HEK293A cells transiently expressing the GPR15 receptor, the G_{i/o} protein and the BRET pair were stimulated with increasing concentrations of the GPR15L peptides. The <i>E_{max}</i> of each concentration was recorded to determine the concentration-response curve. Our results showed that both GPR15L(25–81) (Figure 3) and GPR15L (71–81) (supporting information Figure S5) activated each G_{i/o} protein in a concentration-dependent manner. The GPR15L(25–81) was more potent than the GPR15L (71–81) on each G_{i/o} protein. The potency ratio (i.e. EC₅₀ of GPR15L(71–81)/EC₅₀ of GPR15L(25–81)) was 45, 23, 45, 58 and 89 toward G_{i1}, G_{i2}, G_{i3}, G<sub,oA</sub> and G<sub,oB</sub>, respectively (Table 1).

3.4 GPR15 receptor signals through G_{i/o} rather than G_s and G_{q/11} in the downstream signalling pathway

The results described above were obtained from the BRET G protein activation assay, which reflects the proximity of the GPCR and G protein, upstream of the signal cascade. Next, we also investigated the downstream signalling pathway by measuring second messenger molecules cAMP and IP₁. We measured cAMP accumulation in G_{i/o} and G_s mode by including/excluding the adenylate cyclase activator forskolin, respectively. The pan-phosphodiesterase inhibitor IBMX was applied to prevent the cAMP degradation in the

FIGURE 4 Concentration-response curves of the GPR15L peptides in three HTRF based assays of G_i, G_s and G_q downstream pathways. (A) Concentration-response curves of full-length GPR15L(25–81) and C-terminal peptide GPR15L(71–81) with a G_i cAMP assay conducted on the HEK293A-GPR15 recombinant cells. The activation effect of the GPR15L peptides could be blocked by the G_{i/o} inhibitor PTX. (B) Concentration-response curves of the GPR15L peptides in the G_s cAMP assay. The endogenously expressed β₂-adrenergic receptor and its agonist isoproterenol was used as positive control. (C) Concentration-response curves of the GPR15L peptides in the G_q IP₁ assay. The endogenously expressed muscarinic acetylcholine receptor (mAChR1, mAChR3 and mAChR5) and its agonist carbachol was used as positive control. Data were buffer corrected and then normalized to the maximal response of FSK (forskolin), isoproterenol and carbachol, respectively. Data plotted as mean ± S.E.M. (error bars) of 3–5 grouped independent experiments performed in three replicates. HTRF: homogenous time-resolved Förster resonance energy transfer; PTX: pertussis toxin; FSK: forskolin; Iso: isoproterenol; carb.: carbachol; SEM: standard error of the mean.
cAMP assay. The G_q pathway was assessed by measurement of IP_1 accumulation in the presence of LiCl to prevent further breakdown to inositol monophosphate. All three pathways were endpoint assays based on HTRF technology.23,24

In the G_i cAMP assay, both GPR15L peptides led to decreased intracellular cAMP concentrations in a concentration-dependent manner (Figure 4A). The GPR15L(25–81) peptide was 40-fold more potent than its C-terminal fragment GPR15L(71–81) (Table 1). Moreover, the inhibition could be eliminated by the G_i/o inhibitor PTX (Figure 4A) demonstrating that the negative regulation of cAMP production was mediated by G_i/o proteins.

In the G_s cAMP assay, no cAMP response was detected by either GPR15L peptide. To ensure assay validity, the G_s coupled β_2-adrenergic receptor, which is endogenously expressed in the parental HEK293A cells, was used as a positive control.25 We detected a robust cAMP level increase when stimulating with the cells with the β_2-adrenergic receptor agonist isoproterenol (Figure 4B).

In the G_q IP_1 assay, no IP_1 response was detected by either GPR15L peptide. To ensure assay validity, we used endogenously expressed G_q coupled muscarinic acetylcholine receptors as a positive control. We detected a robust IP_1 level increase when stimulating the HEK293A cells with the muscarinic receptor agonist carbachol (Figure 4C).

4 | DISCUSSION

In this study, by combining the upstream G protein activation assay and the canonical downstream assays, we demonstrated that, among the four G protein families (G_i/o, G_s/oif, G_q/11 and G_12/13), the GPR15 receptor preferentially couples to the G_i/o family. Moreover, the GPR15 receptor couples to all members of the G_i/o protein subtypes (G_i1, G_i2, G_i3, G_oA, G_oB and G_o) and with the least preference to the G_o subtype. The endogenous peptide ligand GPR15L(25–81) is more potent than its C-terminal peptide GPR15L(71–81). Except for this, both versions of peptides display the same overall signalling profiles.

We thus validate former studies which have shown that the GPR15 receptor signals through G_i/o.8,15,16 However, those results were all obtained from the distal part of the signal cascades, where accuracy may be affected due to potential signalling crosstalk. To gain further insight, we conducted a BRET-based G protein activation assay, which enables the direct examination of the GPR15 receptor-mediated Ga protein activation. Our results show that the GPR15 receptor coupling profiles are highly consistent between the upstream and downstream assays. Recently, it has been shown that some GPCRs paradoxically recruit/activate G proteins without activating the downstream signalling pathways.26,27 Our results clearly show that this behaviour is not observed for GPR15.

Suply et al. observed calcium signalling when the GPR15 receptor co-expressed with G_16 in CHO-K1 cells was stimulated by GPR15L peptides,15 which suggests that GPR15 can activate the promiscuous G_16 protein and putatively also other members of the G_q/11 family. However, we did not detect activation of G_q, G_11 or G_15, or IP_1 accumulation in HEK293A cells.28 This discrepancy could either be caused by differences in cell background, in assay sensitivity, or in assay formats.

Our concentration-response experiments show that the endogenous peptide ligand GPR15L(25–81) (EC_50 = 10 nM) is 40-fold more potent than its C-terminal peptide GPR15L(71–81) (EC_50 = 407 nM) in the G_i cAMP assay. The GPR15L(25–81) is also more potent (23- to 89-fold) than GPR15L(71–81) in the BRET G_i/o protein activation assay. This potency difference agrees well with our previous findings. Wherein the C-terminal fragments of GPR15L(25–81), peptides were tested with the same G_i cAMP assay as we did here, but using T-REx 293 cells which need doxycycline to induce GPR15 expression, and where we found that the ability of GPR15L peptides to activate GPR15 are positively correlating to their lengths.16 We were incapable of determining concentration-response curves for G_s in the BRET G protein activation assay due to the very small E_max of G_s. To boost the signal, co-transfection with regulators of G_s signalling proteins may be necessary.

In conclusion, our results demonstrate that the GPR15 receptor shows a high preference for G_i/o signalling when expressed in HEK293A. So far, no such studies have been performed on cells with native GPR15 expressions such as the colon colorectal adenocarcinoma cell lines SW48 and HT29, or some lymphoblast cells such as PM1, Hut78 and NC37,5,29,30 which will be important in future studies to determine if the signalling profile in recombinant systems is translatable to the ex vivo situation. To this end, it will also be important to develop better tool ligands such as the first antagonists and small molecule ligands as the current pharmacological toolbox is very limited and not suitable for in vivo studies.

ACKNOWLEDGEMENTS

This project was funded by the China Scholarship Council (Grant #201907940002 to Y.D.), the Novo Nordisk Foundation (Grants NNF17OC0028412 and NNF19OC0057730 to H.B.-O.), the Carlsberg Foundation
REFERENCES
1. Heiber M, Marchese A, Nguyen T, Heng HH, George SR, O’Dowd BF. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3. Genomics. 1996;32(3):462-465. doi:10.1006/geno.1996.0143
2. Prêtet JL, Brussel A, Guillet JG, Butor C. Two alleles for rhesus macaque GPR15 (BOB). AIDS Res Hum Retroviruses. 1999;15(10):945-947. doi:10.1089/088922999310665
3. Blaak H, Boers PH, Gruters RA, Schuitemaker H, van der Ende ME, CCR5 OAD. GPR15, and CXCR6 are major coreceptors of human immunodeficiency virus type 2 variants isolated from individuals with and without plasma viremia. J Virol. 2005;79(3):1686-1700. doi:10.1128/JVI.79.3.1686-1700.2005
4. Kiene M, Marzi A, Urbanczyk A, et al. The role of the alternative coreceptor GPR15 in SIV tropism for human cells. Virolology. 2012;433(1):73-84. doi:10.1016/j.virol.2012.07.012
5. Clayton F, Kotler DP, Kuwada SK, et al. Gp120-induced Bob/GPR15 activation: a possible cause of human immunodeficiency virus enteropathy. Am J Pathol. 2001;159(5):1933-1939. doi:10.1016/s0002-9440(00)60340-4
6. Nguyen LP, Pan J, Dinh TT, et al. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat Immunol. 2015;16(2):207-213. doi:10.1038/ni.3079
7. Lahl K, Sweere J, Pan J, Butcher E. Orphan chemokine receptor GPR15 mediates dendritic epidermal T-cell recruitment to the skin. Eur J Immunol. 2014;44(9):2577-2581. doi:10.1002/eji.201444628
8. Ocón B, Pan J, Dinh TT, et al. A mucosal and cutaneous chemokine ligand for the lymphocyte chemotactant receptor GPR15. Front Immunol. 2017;8:1111. doi:10.3389/fimmu.2017.01111
9. Adamczyk A, Gageik D, Frede A, et al. Differential expression of GPR15 on T cells during ulcerative colitis. JCI Insight. 2017;2(8):e90585. doi:10.1172/jci.insight.90585
10. Jegodzinski L, Sezin T, Louser K, Mousavi S, Zillikens D, Sadik CD. The G protein-coupled receptor (GPR) 15 counteracts antibody-mediated skin inflammation. Front Immunol. 2020;11:1858. Published 2020 Aug 14 doi:10.3389/fimmu.2020.01858
11. Ammitzbøll C, van Essen MR, Børnsen L, et al. GPR15+ T cells are Th17 like, increased in smokers and associated with multiple sclerosis. J Autoimmun. 2019;97:114-121. doi:10.1016/j.jaut.2018.09.005
12. Köks G, Uudelepp ML, Limbach M, Peterson P, Reimann E, Köks S. Smoking-induced expression of the GPR15 gene indicates its potential role in chronic inflammatory pathologies. Am J Pathol. 2015;185(11):2898-2906. doi:10.1016/j.ajpath.2015.07.006
13. Bauer M, Fink B, Seyfarth HJ, Writz H, Frille A. Tobacco-smoking induced GPR15-expressing T cells in blood do not indicate pulmonary damage. BMC Pulm Med. 2017;17(1):159. doi:10.1186/s12890-017-0509-0
14. Köks S, Köks G. Activation of GPR15 and its involvement in the biological effects of smoking. Exp Biol Med (Maywood). 2017;242(11):1207-1212. doi:10.1177/1535370217703977
15. Suply T, Hannedouche S, Carte N, et al. A natural ligand for the orphan receptor GPR15 modulates lymphocyte recruitment to epithelia. Sci Signal. 2017;10(496):eaal0180. doi:10.1126/scisignal.aal0180
16. Foster SR, Hauser AS, Vedel L, et al. Discovery of human signaling systems: Pairing peptides to G protein-coupled receptors. Cell. 2019;179(4):e21-908. doi:10.1016/j.cell.2019.10.010
17. Syrovatkina V, Alegre KO, Dey R, Huang XY. Regulation, signaling, and physiological functions of G-proteins. J Mol Biol. 2016;428(19):3850-3868. doi:10.1016/j.jmb.2016.08.002
18. Neves SR, Ram PT, Iyengar R. G protein pathways. Science. 2002;296(5573):1636-1639. doi:10.1126/science.1071550
19. Masuho I, Ostrovskaya O, Kramer GM, Jones CD, Xie K, Martemyanov KA. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci Signal. 2015;8(405):ra123. doi:10.1126/scisignal.aab4068
20. Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev. 2012;64(2):299-336. doi:10.1124/pr.110.004309
21. Tveden-Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev. 2012;64(2):299-336. doi:10.1124/pr.110.004309
22. Tveden-Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev. 2012;64(2):299-336. doi:10.1124/pr.110.004309
23. Nørskov-Lauritsen L, Thomsen AR, Bräuner-Osborne H. G protein-coupled receptor signaling analysis using homogenous time-resolved Förster resonance energy transfer (HTRF®) technology. Int J Mol Sci. 2014;15(2):2554-2572. doi:10.3390/ijms15022554
24. Degorce F, Card A, Soh S, Trinquet E, Knapik GP, Xie B. HTRF: a technology tailored for drug discovery—a review of theoretical aspects and recent applications. Curr Chem Genomics. 2009;3(1):22-32. doi:10.2174/1875397300903010022
25. Schmitt JM, Stork PJ. beta 2-adrenergic receptor activates extracellular signal-regulated kinases (ERKs) via the small G protein rap1 and the serine/threonine kinase B-Raf. *J Biol Chem.* 2000;275(33):25342-25350. doi:10.1074/jbc.M003213200

26. Okashah N, Wright SC, Kawakami K, et al. Agonist-induced formation of unproductive receptor-G12 complexes. *Proc Natl Acad Sci U S A.* 2020;117(35):21723-21730. doi:10.1073/pnas.2003787117

27. Stoveken HM, Zucca S, Masuho I, Grill B, Martemyanov KA. The orphan receptor GPR139 signals via Gq/11 to oppose opioid effects. *J Biol Chem.* 2020;295(31):10822-10830. doi:10.1074/jbc.AC120.014770

28. Atwood BK, Lopez J, Wager-Miller J, Mackie K, Straiker A. Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. *BMC Genomics.* 2011;12(1):14. doi:10.1186/1471-2164-12-14

29. Bassilana F, Baumgarten BU, Carte NMT, et al. Organic Compounds. US Patent 10,203,327 B2. Feb. 12, 2019.

30. Okamoto Y, Shikano S. Differential phosphorylation signals control endocytosis of GPR15. *Mol Biol Cell.* 2017;28(17):2267-2281. doi:10.1091/mbc.E16-09-0627

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Deng Y, Moo EV, Almería CVP, et al. Delineation of the GPR15 receptor-mediated Gα protein signalling profile in recombinant mammalian cells. *Basic Clin Pharmacol Toxicol.* 2022;131(2):104-113. doi:10.1111/bcpt.13738