Top-quark flavor-changing \(tqZ \) couplings and rare \(\Delta F = 1 \) processes

Chuan-Hung Chen\(^1\) and Takaaki Nomura\(^2\)

\(^1\)Department of Physics, National Cheng-Kung University, Tainan 70101, Taiwan
\(^2\)School of Physics, KIAS, Seoul 02455, Korea

(Dated: December 17, 2018)

Abstract

We model-independently study the impacts of anomalous \(tqZ \) couplings (\(q = u, c \)), which lead to the \(t \to qZ \) decays, on low energy flavor physics. It is found that the \(tuZ \)-coupling effect can significantly affect the rare \(K \) and \(B \) decays, whereas the \(tcZ \)-coupling effect is small. Using the ATLAS’s branching ratio (BR) upper bound of \(\text{BR}(t \to uZ) < 1.7 \times 10^{-4} \), the influence of the anomalous \(tuZ \)-coupling on the rare decays can be found as follows: (a) The contribution to the Kaon direct CP violation can be up to \(\text{Re}(\epsilon'/\epsilon) \lesssim 0.8 \times 10^{-3} \); (b) \(\text{BR}(K^+ \to \pi^+\nu\bar{\nu}) \lesssim 12 \times 10^{-11} \) and \(\text{BR}(K_L \to \pi^0\nu\bar{\nu}) \lesssim 7.9 \times 10^{-11} \); (c) the BR for \(K_S \to \mu^+\mu^- \) including the long-distance effect can be enhanced by 11\% with respect to the standard model result, and (d) \(\text{BR}(B_d \to \mu^+\mu^-) \lesssim 1.97 \times 10^{-10} \). In addition, although \(\text{Re}(\epsilon'/\epsilon) \) cannot be synchronously enhanced with \(\text{BR}(K_L \to \pi^0\nu\bar{\nu}) \) and \(\text{BR}(K_S \to \mu^+\mu^-) \) in the same region of the CP-violating phase, the values of \(\text{Re}(\epsilon'/\epsilon) \), \(\text{BR}(K^+ \to \pi^+\nu\bar{\nu}) \), and \(\text{BR}(B_d \to \mu^+\mu^-) \) can be simultaneously increased.

*Electronic address: physchen@mail.ncku.edu.tw
†Electronic address: nomura@kias.re.kr
I. INTRODUCTION

Top-quark flavor changing neutral currents (FCNCs) are extremely suppressed in the standard model (SM) due to the Glashow-Iliopoulos-Maiani (GIM) mechanism \cite{1}. The branching ratios (BRs) for the $t \rightarrow q(g, \gamma, Z, h)$ decays with $q = u, c$ in the SM are of order $10^{-12} - 10^{-17}$ \cite{2, 3}, and these results are far below the detection limits of LHC, where the expected sensitivity in the high luminosity (HL) LHC for an integrated luminosity of 3000 fb$^{-1}$ at $\sqrt{s} = 14$ TeV is in the range $10^{-5} - 10^{-4}$ \cite{4, 5}. Thus, the top-quark flavor-changing processes can serve as good candidates for investigating the new physics effects. Extensions of the SM, which can reach the HL-LHC sensitivity, can be found in \cite{6 – 10}.

Using the data collected with an integrated luminosity of 36.1 fb$^{-1}$ at $\sqrt{s} = 13$ TeV, ATLAS reported the current strictest upper limits on the BRs for $t \rightarrow qZ$ as \cite{11}:

$$BR(t \rightarrow uZ) < 1.7 \times 10^{-4},$$
$$BR(t \rightarrow cZ) < 2.4 \times 10^{-4}.$$ (1)

Based on the current upper bounds, we model-independently study the implications of anomalous tqZ couplings in the low energy flavor physics. It is found that the tqZ couplings through the Z-penguin diagram can significantly affect the rare decays in K and B systems, such as ϵ'/ϵ, $K \rightarrow \pi \nu \bar{\nu}$, $K_S \rightarrow \mu^+ \mu^-$, and $B_d \rightarrow \mu^+ \mu^-$. Since the gluon and photon in the top-FCNC decays are on-shell, the contributions from the dipole-operator transition currents are small. In this study we thus focus on the $t \rightarrow qZ$ decays, especially the $t \rightarrow uZ$ decay.

From a phenomenological perspective, the importance of investigating the influence of these rare decays are stated as follows: The inconsistency in ϵ'/ϵ between theoretical calculations and experimental data was recently found based on two analyses: (i) The RBC-UKQCD collaboration obtained the lattice QCD result with \cite{12, 13}:

$$Re(\epsilon'/\epsilon) = 1.38(5.15)(4.59) \times 10^{-4},$$ (2)

where the numbers in brackets denote the errors. (ii) Using a large N_c dual QCD \cite{14 – 18}, the authors in \cite{19, 20} obtained:

$$Re(\epsilon'/\epsilon)_{SM} = (1.9 \pm 4.5) \times 10^{-4}.$$ (3)
Both results show that the theoretical calculations exhibit an over 2σ deviation from the experimental data of $Re(e'/\epsilon)_{\text{exp}} = (16.6 \pm 2.3) \times 10^{-4}$, measured by NA48 [21] and KTeV [22, 23]. Various extensions of the SM proposed to resolve the anomaly can be found in [24–48]. We find that the direct Kaon CP violation arisen from the tuZ-coupling can be $e'/\epsilon \lesssim 0.8 \times 10^{-8}$ when the bound of $BR(t \to uZ) < 1.7 \times 10^{-4}$ is satisfied.

Unlike e'/ϵ, which strongly depends on the hadronic matrix elements, the calculations of $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ are theoretically clean and the SM results can be found as [32]:

$$\begin{align*}
BR(K^+ \to \pi^+ \nu \bar{\nu}) &= (8.5^{+1.0}_{-1.2}) \times 10^{-11}, \\
BR(K_L \to \pi^0 \nu \bar{\nu}) &= (3.2^{+1.1}_{-0.7}) \times 10^{-11},
\end{align*}$$

where the QCD corrections at the next-to-leading-order (NLO) [54–56] and NNLO [57–59] and the electroweak corrections at the NLO [60–62] have been calculated. In addition to their sensitivity to new physics, $K_L \to \pi^0 \nu \bar{\nu}$ is a CP-violating process and its BR indicates the CP-violation effect. The current experimental situations are $BR(K^+ \to \pi^+ \nu \bar{\nu})_{\text{exp}} = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ [63] and $BR(K_L \to \pi^0 \nu \bar{\nu})_{\text{exp}} < 2.6 \times 10^{-8}$ [64]. The NA62 experiment at CERN is intended to measure the BR for $K^+ \to \pi^+ \nu \bar{\nu}$ with a 10% precision [49, 50], and the KOTO experiment at J-PARC will observe the $K_L \to \pi^0 \nu \bar{\nu}$ decay [51, 52]. In addition, the KLEVER experiment at CERN starting in Run-4 could observe the BR of $K_L \to \pi^0 \nu \bar{\nu}$ to 20% precision [53]. Recently, NA62 reported its first result using the 2016 taken data and found that one candidate event of $K^+ \to \pi^+ \nu \bar{\nu}$ could be observed, where the corresponding BR upper bound is given by $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10}$ at a 95% confidence level (CL) [65]. We will show that the anomalous tuZ-coupling can lead to $BR(K^+ \to \pi^+ \nu \bar{\nu}) \lesssim 12 \times 10^{-11}$ and $BR(K_L \to \pi^0 \nu \bar{\nu}) \lesssim 7.9 \times 10^{-11}$. It can be seen that NA62, KOTO, and KLEVER experiments can further constrain the tuZ-coupling using the designed sensitivities.

Another important CP violating process is $K_S \to \mu^+ \mu^-$, where the SM prediction including the long-distance (LD) and short-distance (SD) effects is given as $BR(K_S \to \mu^+ \mu^-) = (5.2 \pm 1.5) \times 10^{-12}$ [66–68]. The current upper limit from LHCb is $BR(K_S \to \mu^+ \mu^-) < 0.8(1.0) \times 10^{-9}$ at a 90%(95%) CL. It is expected that using the LHC Run-2 data, the LHCb sensitivity can be improved to $[4, 200] \times 10^{-12}$ with 23 fb$^{-1}$ and to $[1, 100] \times 10^{-12}$ with 100 fb$^{-1}$ [69]. Although the tuZ-coupling can significantly enhance the SD contribution of
$K_S \rightarrow \mu^+\mu^-$, due to LD dominance, the increase of $BR(K_S \rightarrow \mu^+\mu^-)_{LD+SD}$ can be up to 11%.

It has been found that the tuZ-coupling-induced Z-penguin can significantly enhance the $B_d \rightarrow \mu^+\mu^-$ decay, where the SM prediction is given by $BR(B_d \rightarrow \mu^+\mu^-) = (1.06 \pm 0.09) \times 10^{-10}$. From the data, which combine the full Run I data with the results of 26.3 fb$^{-1}$ at $\sqrt{s} = 13$ TeV, ATLAS reported the upper limit as $BR(B_d \rightarrow \mu^+\mu^-) < 2.1 \times 10^{-10}$ [71]. In addition, the result combined CMS and LHCb was reported as $BR(B_d \rightarrow \mu^+\mu^-) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$ [72]. It can be seen that the measured sensitivity is close to the SM result.

We find that using the current upper limit of $BR(t \rightarrow uZ)$, the $BR(B_d \rightarrow \mu^+\mu^-)$ can be enhanced up to 1.97×10^{-10}, which is close to the ATLAS upper bound.

The paper is organized as follows: In Sec. II, we introduce the effective interactions for $t \rightarrow qZ$ and derive the relationship between the tqZ-coupling and $BR(t \rightarrow qZ)$. The Z-penguin FCNC processes induced via the anomalous tqZ couplings are given in Sec. III. The influence on ϵ'/ϵ is shown in the same section. The tqZ-coupling contribution to the other rare K and B decays is shown in Sec. IV. A summary is given in Sec. V.

II. ANOMALOUS tqZ COUPLINGS AND THEIR CONSTRAINTS

We write the anomalous tqZ interactions as [2]:

$$-\mathcal{L}_{tqZ} = \frac{g}{2c_W} \bar{q} \left(\xi^L_q P_L + \xi^R_q P_R \right) t Z^\mu + \frac{g}{2c_W} \bar{q} \left(\xi^u_q + \xi^a_q \gamma_5 \right) \frac{i\sigma_{\mu\nu} k^\nu}{m_t} t Z^\mu + H.c.,$$

where g is the $SU(2)_L$ gauge coupling; $c_W = \cos \theta_W$ and θ_W is the Weinberg angle; $P_{L(R)} = (1 \mp \gamma_5)/2$, and ξ^L_q and ξ^a_q denote the dimensionless effective couplings and represent the new physics effects. In this study, we mainly concentrate the impacts of the tqZ couplings on the low energy flavor physics, in which the rare K and B decays are induced through the penguin diagram. Thus, because of the $m_{K(B)}/m_t$ suppression factor, which arises from $k^\nu \sim O(m_{K(B)})$, the contributions of the dipole operators in Eq. (6) are both small and negligible. Hence, in the following analysis, we ignore the ξ^a_q effects and only investigate the ξ^L_q effects. In order to study the influence on the Kaon CP violation, we take ξ^L_q as complex parameters, and the new CP violating phases are defined as $\zeta_q^\chi = |\zeta_q^\chi|e^{-i\phi_q^\chi}$ with $\chi = L, R$.

Using the interactions in Eq. (6), we can calculate the BR for $t \rightarrow qZ$ decay. Since our
purpose is to examine whether the anomalous \(tqZ \)-coupling can give sizable contributions to the rare \(K \) and \(B \) decays when the current upper bound of \(BR(t \to qZ) \) is satisfied, we express the parameters \(\zeta^L_R \) as a function of \(BR(t \to qZ) \) to be:

\[
\sqrt{\left| \zeta^L_q \right|^2 + \left| \zeta^R_q \right|^2} = \left(\frac{BR(t \to qZ)}{C_{tqZ}} \right)^{1/2},
\]

\[
C_{tqZ} = \frac{G_F m_t^3}{16\sqrt{2}\pi\Gamma_t} \left(1 - \frac{m_Z^2}{m_t^2} \right)^2 \left(1 + 2\frac{m_Z^2}{m_t^2} \right).
\]

(7)

For the numerical analysis, the relevant input values are shown in Table I. Using the numerical inputs, we obtain \(C_{tqZ} \approx 0.40 \). When \(BR(t \to u(c)Z) < 1.7(2.3) \times 10^{-4} \) measured by ATLAS are applied, the upper limits on \(\sqrt{\left| \zeta^L_u \right|^2 + \left| \zeta^R_u \right|^2} \) can be respectively obtained as:

\[
\sqrt{\left| \zeta^L_u \right|^2 + \left| \zeta^R_u \right|^2} < 0.019,
\]

\[
\sqrt{\left| \zeta^L_c \right|^2 + \left| \zeta^R_c \right|^2} < 0.022.
\]

(8)

Since the current measured results of the \(t \to (u, c)Z \) decays are close each other, the bounds on \(\zeta^u \) and \(\zeta^c \) are very similar. We note that BR cannot determine the CP phase; therefore, \(\theta^u \) and \(\theta^c \) are free parameters.

TABLE I: Inputs for the numerical estimates.

\(m_s \) = 1.09 GeV	\(m_d \) = 5.10 MeV	\(m_c \) = 1.3 GeV	\(m_t(m_t) = 165 \text{ GeV} \)		
\(m_t^{\text{pole}} \) = 172 GeV	\(m_W \) = 80.38 GeV	\(\Gamma_t \) = 1.43 GeV	\(m_K \) = 0.498 GeV		
\(m_{B_d} \) = 5.28 GeV	\(V_{ud, tb, cs} \approx 1 \)	\(V_{td} = 0.0088e^{-123^\circ} \)	\(V_{ts} = -0.041 \)		
\(V_{us} = 0.225 \)	\(V_{cd} = -0.225 \)	\(\sin^2 \theta_W = 0.23 \)	\(f_\pi = 0.13 \text{ GeV} \)		
\(f_K = 0.16 \text{ GeV} \)	\(f_B = 0.191 \text{ GeV} \)	\(\epsilon_K	= 2.228 \times 10^{-3} \)	\(\tau_{K_S(B)} = 89.5(1.52) \times 10^{-12} \text{ s} \)

III. ANOMALOUS \(tqZ \) EFFECTS ON \(\epsilon'/\epsilon \)

In this section, we discuss the \(tqZ \)-coupling contribution to the Kaon direct CP violation. The associated Feynman diagram is shown in Fig. I where \(q = u, c; q' \) and \(q'' \) are down type quarks, and \(f \) denotes any possible fermions. That is, the involved rare \(K \) and \(B \) processes in this study are the decays, such as \(K \to \pi\pi, K \to \pi\nu\bar{\nu}, \) and \(K_S(B_d) \to \ell^+\ell^- \). It is found that the contributions to \(K_L \to \pi\ell^+\ell^- \) and \(B \to \pi\ell^+\ell^- \) are not significant; therefore, we do not discuss the decays in this work.
FIG. 1: Sketched Feynman diagram for $q' \rightarrow q'' f \bar{f}$ induced by the tqZ coupling, where q' and q'' denote the down-type quarks; $q = u, c,$ and f can be any possible fermion.

Based on the tqZ couplings shown in Eq. (6), the effective Hamiltonian induced by the Z-penguin diagram for the $K \rightarrow \pi\pi$ decays at $\mu = m_W$ can be derived as:

$$
\mathcal{H}_{tqZ} = -\frac{G_F \lambda_t}{\sqrt{2}} \left(y_Z^3 Q_3 + y_Z^7 Q_7 + y_Z^9 Q_9 \right),
$$

where $\lambda_t = V_{ts}^* V_{td};$ the operators $Q_{3,7,9}$ are the same as the SM operators and are defined as:

$$
Q_3 = (\bar{s}d)_{V-A} \sum_{q'} (\bar{q}' q')_{V-A},
$$

$$
Q_7 = \frac{3}{2} (\bar{s}d)_{V-A} \sum_{q'} e_{q'} (\bar{q}' q')_{V+A},
$$

$$
Q_9 = \frac{3}{2} (\bar{s}d)_{V-A} \sum_{q'} e_{q'} (\bar{q}' q')_{V-A},
$$

with $e_{q'}$ being the electric charge of q'-quark, and the effective Wilson coefficients are expressed as:

$$
y_Z^3 = -\frac{\alpha}{24\pi s_W^2} I_Z(x_t) \eta_Z, \quad y_Z^7 = -\frac{\alpha}{6\pi} \eta_Z, \quad y_Z^9 = \left(1 - \frac{1}{s_W^2} \right) y_Z^7, \quad \eta_Z = \sum_{q=u,c} \left(\frac{V_{qd}^* V_{qL}^L}{V_{td}} + \frac{V_{qs}^* V_{sL}^L}{V_{ts}} \right),
$$

with $\alpha = e^2/4\pi,$ $x_t = m_t^2/m_W^2,$ and $s_W = \sin \theta_W.$ The penguin-loop integral function is given as:

$$
I_Z(x_t) = -\frac{1}{4} + \frac{x_t \ln x_t}{2(x_t - 1)} \approx 0.693.
$$

Since W-boson can only couple to the left-handed quarks, the right-handed couplings $\zeta_{u,c}^R$ in the diagram have to appear with $m_{u(c)}$ and $m_t,$ in which the mass factors are from the mass insertion in the quark propagators inside the loop. When we drop the small factors
$m_{c,u}/m_W$, the effective Hamiltonian for $K \to \pi\pi$ only depends on $\zeta^{L}_{u,c}$. Since $|V_{ud}/V_{td}|$ is larger than $|V_{cs}/V_{ts}|$ by a factor of 4.67, the dominant contribution to the $\Delta S = 1$ processes is from the first term of η_Z defined in Eq. (11). In addition, V_{ud} is larger than $|V_{cd}|$ by a factor of $1/\lambda \sim 4.44$; therefore, the main contribution in the first term of η_Z comes from the $V_{ud}\zeta^{L_u}/V_{td}$ effect. That is, the anomalous tuZ-coupling is the main effect in our study.

Using the isospin amplitudes, the Kaon direct CP violating parameter from new physics can be estimated using [20]:

$$Re \left(\frac{\epsilon'}{\epsilon} \right) \approx -\frac{\omega}{\sqrt{2}|\epsilon_K|} \left[\frac{Im A_1}{Re A_0} - \frac{Im A_2}{Re A_2} \right],$$

where $\omega = Re A_2/Re A_0 \approx 1/22.35$ denotes the $\Delta I = 1/2$ rule, and $|\epsilon_K| \approx 2.228 \times 10^{-3}$ is the Kaon indirect CP violating parameter. It can be seen that in addition to the hadronic matrix element ratios, ϵ'/ϵ also strongly depends on the Wilson coefficients at the $\mu = m_c$ scale. It is known that the main new physics contributions to ϵ'/ϵ are from the $Q_6^{(0)}$ and $Q_8^{(0)}$ operators [25, 73]. Although these operators are not generated through the tqZ couplings at $\mu = m_W$ in our case, they can be induced via the QCD radiative corrections. The Wilson coefficients at the $\mu = m_c$ scale can be obtained using the renormalization group (RG) evolution [74]. Thus, the induced effective Wilson coefficients for $Q_{6,8}$ operators at $\mu = m_c$ can be obtained as:

$$y_6^Z(m_c) \approx -0.08y_3^Z - 0.01y_7^Z + 0.07y_9^Z,$$

$$y_8^Z(m_c) \approx 0.63y_7^Z.$$ \hspace{1cm} (14)

It can be seen that $y_6^Z(m_c)$ is much smaller than $y_8^Z(m_c)$; that is, we can simply consider the Q_8 operator contribution.

According to the $K \to \pi\pi$ matrix elements and the formulation of $Re(\epsilon'/\epsilon)$ provided in [20], the O_8 contribution can be written as:

$$Re \left(\frac{\epsilon'}{\epsilon} \right)_p^Z \approx -a_8^{(3/2)} B_8^{(3/2)},$$

$$a_8^{(3/2)} = Im \left(\lambda_t y_8^Z(m_c) \right) \frac{r_2\langle Q_8\rangle_2}{B_8^{(3/2)} Re A_2}, \hspace{1cm} (15)$$

where $r_2 = \omega G_F/(2|\epsilon_K|) \approx 1.17 \times 10^{-4}$ GeV$^{-2}$, $B_8^{(3/2)} \approx 0.76$; $Re A_{2(0)}^{\exp} \approx 1.21(27.04) \times 10^{-8}$ GeV [75], and the matrix element of $\langle Q_8\rangle_2$ is defined as:

$$\langle Q_8\rangle_2 = \sqrt{2} \left(\frac{m_K^2}{m_s(\mu) + m_d(\mu)} \right)^2 f_{\pi} B_8^{3/2}. \hspace{1cm} (16)$$
Although the Q_8 operator can contribute to the isospin $I = 0$ state of $\pi\pi$, because its effect is a factor of 15 smaller than the isospin $I = 2$ state, we thus neglect its contribution.

Since the $t \to (u, c)Z$ decays have not yet been observed, in order to simplify their correlation to ϵ'/ϵ, we use $BR(t \to qZ) \equiv \text{Min}(BR(t \to cZ), BR(t \to uZ))$ instead of $BR(t \to u(c)Z)$ as the upper limit. The contours for $Re(\epsilon'/\epsilon)^Z_P$ (in units of 10^{-3}) as a function of $BR(t \to qZ)$ and θ_L^u are shown in Fig. 2, where the solid and dashed lines denote the results with $\theta_L^c = -\theta_L^u$ and $\zeta_L^c = 0$, respectively, and the horizontal dashed line is the current upper limit of $BR(t \to qZ)$. It can be seen that the Kaon direct CP violation arisen from the anomalous tuZ-coupling can reach 0.8×10^{-3}, and the contribution from tcZ-coupling is only a minor effect. When the limit of $t \to qZ$ approaches $BR(t \to qZ) \sim 0.5 \times 10^{-4}$, the induced ϵ'/ϵ can be as large as $Re(\epsilon'/\epsilon)^Z_P \sim 0.4 \times 10^{-3}$.

![FIG. 2: Contours for $Re(\epsilon'/\epsilon)^Z_P$ (in units of 10^{-3}) as a function of $BR(t \to qZ)$ and θ_L^u, where the solid and dashed lines denote the $\theta_L^c = -\theta_L^u$ and $\zeta_L^c = 0$ results, respectively. The $BR(t \to qZ)$ is defined as the minimal one between $BR(t \to uZ)$ and $BR(t \to cZ)$. The horizontal dashed line (red) is the current upper limit of $BR(t \to qZ)$.](image-url)
IV. Z-PENGUIN INDUCED (SEMI)-LEPTONIC K AND B DECAYS AND NUMERICAL ANALYSIS

The same Feynman diagram as that in Fig. 1 can be also applied to the rare leptonic and semi-leptonic \(K(B)\) decays when \(f\) is a neutrino or a charged lepton. Because \(|V_{us}/V_{ts}| \ll |V_{cs}/V_{ts}| \sim |V_{us}/V_{td}| \ll |V_{cd}/V_{td}|\), it can be found that the anomalous \(tu(c)Z\)-coupling contributions to the \(b \to s\ell\ell\) (\(\ell = \nu, \ell^-\)) processes can deviate from the SM result being less than 7\% in terms of amplitude. However, the influence of the \(tuZ\) coupling on \(d \to s\ell\ell\) and \(b \to d\ell\ell\) can be over 20\% at the amplitude level. Accordingly, in the following analysis, we concentrate the study on the rare decays, such as \(K \to \pi\nu\bar{\nu}\), \(K_S \to \mu^+\mu^-\), and \(B_d \to \mu^+\mu^-\), in which the channels are sensitive to the new physics effects and are theoretically clean.

According to the formulations in \[34\], we write the effective Hamiltonian for \(d_i \to d_j\ell\ell\) induced by the \(tuZ\) coupling as:

\[
\mathcal{H}_{d_i \to d_j\ell\ell} = -\frac{G_F V_{tdi}^* V_{tdj}}{\sqrt{2}} \alpha \pi C_L^Z \left[\bar{d}_j \gamma_\mu P_L d_i \right] \left[\bar{\nu}\gamma^\mu (1 - \gamma_5) \nu \right] - \frac{G_F V_{tdi}^* V_{tdj}}{\sqrt{2}} \alpha \pi \bar{d}_j \gamma_\mu P_L d_i \left[C_9^Z \bar{\nu}\gamma^\mu + C_{10}^Z \bar{\nu}\gamma^\mu \gamma_5 \ell \right],
\]

(17)

where we have ignored the small contributions from the \(tcZ\)-coupling; \(d_i \to d_j\) could be the \(s \to d\) or \(b \to d\) transition, and the effective Wilson coefficients are given as:

\[
C_L^Z = C_{10}^Z \approx \frac{I_Z(x_t) c_{W}^Z V_{tdi}^* V_{tdj}}{4 s_W^2}, \quad C_9^Z \approx C_L^Z \left(-1 + 4 s_W^2 \right).
\]

(18)

Because \(-1 + 4 s_W^2 \approx -0.08\), the \(C_9^Z\) effect can indeed be neglected.

Based on the interactions in Eq. (17), the BRs for the \(K_L \to \pi^0\nu\bar{\nu}\) and \(K^+ \to \pi^+\nu\bar{\nu}\) decays can be formulated as \[25\]:

\[
BR(K_L \to \pi^0\nu\bar{\nu}) = \kappa_L \left| \frac{Im X_{\text{eff}}}{\lambda_5} \right|^2,
\]

\[
BR(K^+ \to \pi^+\nu\bar{\nu}) = \kappa_+ (1 + \Delta_{\text{EM}}) \left[\left| \frac{Im X_{\text{eff}}}{\lambda_5} \right|^2 + \left| \frac{Re \lambda_{c}}{\lambda} P_c(X) + \frac{Re X_{\text{eff}}}{\lambda_5} \right|^2 \right],
\]

(19)

where \(\lambda_{c} = V_{cs}^* V_{cd}, \Delta_{\text{EM}} = -0.003; P_c(X) = 0.404 \pm 0.024\) denotes the charm-quark contribution \[76, 77\]; the values of \(\kappa_{L,+}\) are respectively given as \(\kappa_L = (2.231 \pm 0.013) \times 10^{-10}\) and \(\kappa_+ = (5.173 \pm 0.025) \times 10^{-11}\), and \(X_{\text{eff}}\) is defined as:

\[
X_{\text{eff}} = \lambda_t \left(X_{L}^{SM} - s_W^2 C_L^Z \right),
\]

(20)
with $X^\text{SM}_L = 1.481 \pm 0.009 \ [25]$. Since $K_L \to \pi^0 \nu \bar{\nu}$ is a CP violating process, its BR only depends on the imaginary part of X_{eff}. Another important CP violating process in K decay is $K_S \to \mu^+ \mu^-$, where its BR from the SD contribution can be expressed as $[37]$:

$$BR(K_S \to \mu^+ \mu^-)_{\text{SD}} = \tau_{K_S} \frac{G_F^2 \alpha^2}{8\pi^3} m_K f_K^2 m_{\mu}^2 \left(1 - \frac{4m_{\mu}^2}{m_K^2} \right) \left| Im[\lambda_t (C^\text{SM}_{10} + C^Z_{10})] \right|^2,$$ \(21\)

with $C^\text{SM}_{10} \approx -4.21$. Including the LD effect $[66, 67]$, the BR for $K_S \to \mu^+ \mu^-$ can be estimated using $BR(K_S \to \mu^+ \mu^-)_{\text{LD+SD}} \approx 4.99_{\text{LD}} \times 10^{-12} + BR(K_S \to \mu^+ \mu^-)_{\text{SD}} [68]$. Moreover, it is found that the effective interactions in Eq. (17) can significantly affect the $B_d \to \mu^+ \mu^-$ decay, where its BR can be derived as:

$$BR(B_d \to \mu^+ \mu^-) = \tau_B \frac{G_F^2 \alpha^2}{16\pi^3} m_B f_B m_{\mu}^2 \left(1 - \frac{2m^2_{\mu}}{m_B^2} \right) \sqrt{1 - \frac{4m^2_{\mu}}{m_B^2}} \times \left| V_{td}^* V_{tb} (C^\text{SM}_{10} + C^Z_{10}) \right|^2.$$ \(22\)

Because $B_d \to \mu^+ \mu^-$ is not a pure CP violating process, the BR involves both the real and imaginary part of $V_{td}^* V_{tb} (C^\text{SM}_{10} + C^Z_{10})$. Note that the associated Wilson coefficient in $B_d \to \mu^+ \mu^-$ is C^Z_{10}, whereas it is C^Z_{10} in the K decays.

After formulating the BRs for the investigated processes, we now numerically analyze the tuZ-coupling effect on these decays. Since the involved parameter is the complex $\zeta^L_u = |\zeta^L_u| e^{-i\theta^L_u}$, we take $BR(t \to uZ)$ instead of $|\zeta^L_u|$. Thus, we show $BR(K_L \to \pi^0 \nu \bar{\nu})$ (in units of 10^{-11}) as a function of $BR(t \to uZ)$ and θ^L_u in Fig. 3(a), where the CP phase is taken in the range of $\theta^L_u = [-\pi, \pi]$; the SM result is shown in the plot, and the horizontal line denotes the current upper limit of $BR(t \to uZ)$. It can be clearly seen that $BR(K_L \to \pi^0 \nu \bar{\nu})$ can be enhanced to 7×10^{-11} in $\theta^L_u > 0$ when $BR(t \to uZ) < 1.7 \times 10^{-4}$ is satisfied. Moreover, the result of $BR(K_L \to \pi^0 \nu \bar{\nu}) \approx 5.3 \times 10^{-11}$ can be achieved when $BR(t \to uZ) = 0.5 \times 10^{-4}$ and $\theta^L_u = 2.1$ are used. Similarly, the influence of ζ^L_u on $BR(K^+ \to \pi^+ \nu \bar{\nu})$ is shown in Fig. 3(b). Since $BR(K^+ \to \pi^+ \nu \bar{\nu})$ involves the real and imaginary parts of X_{eff}, unlike the $K_L \to \pi^0 \nu \bar{\nu}$ decay, its BR cannot be enhanced manyfold due to the dominance of the real part. Nevertheless, the BR of $K^+ \to \pi^+ \nu \bar{\nu}$ can be maximally enhanced by 38%; even, with $BR(t \to uZ) = 0.5 \times 10^{-4}$ and $\theta^u = 2.1$, the $BR(K^+ \to \pi^+ \nu \bar{\nu})$ can still exhibit an increase of 15%. It can be also found that in addition to $|\zeta^L_u|$, the BRs of $K \to \pi \nu \bar{\nu}$ are also sensitive to the θ^L_u CP-phase. Although the observed $BR(K \to \pi \nu \bar{\nu})$ cannot constrain $BR(t \to uZ)$, the allowed range of θ^L_u can be further limited.
For the $K_s \to \mu^+\mu^-$ decay, in addition to the SD effect, the LD effect, which arises from the absorptive part of $K_s \to \gamma\gamma \to \mu^+\mu^-$, predominantly contributes to the $BR(K_s \to \mu^+\mu^-)$. Thus, if the new physics contribution is much smaller than the LD effect, the influence on $BR(K_s \to \mu^+\mu^-)_{LD+SD} = BR(K_s \to \mu^+\mu^-)_{LD} + BR(K_s \to \mu^+\mu^-)_{SD}$ from new physics may not be so significant. In order to show the tuZ-coupling effect, we plot the contours for $BR(K_s \to \mu^+\mu^-)_{LD+SD}$ (in units of 10^{-12}) in Fig. 3(c). From the result, it can be clearly seen that $BR(K_s \to \mu^+\mu^-)_{LD+SD}$ can be at most enhanced by 11% with respect to the SM result, whereas the BR can be enhanced only $\sim 4.3\%$ when $BR(t \to uZ) = 0.5 \times 10^{-4}$ and $\theta_u^L = 2.1$.

As discussed earlier that the tcZ-coupling contribution to the $B_s \to \mu^+\mu^-$ process is small; however, similar to the case in $K^+ \to \pi^+\nu\bar{\nu}$ decay, the BR of $B_d \to \mu^+\mu^-$ can be significantly enhanced through the anomalous tuZ-coupling. We show the contours of $BR(B_d \to \mu^+\mu^-)$ (in units of 10^{-10}) as a function of $BR(t \to uZ)$ and θ_u^L in Fig. 3(d). It can be seen that the maximum of the allowed $BR(B_d \to \mu^+\mu^-)$ can reach 1.97×10^{-10}, which is a factor of 1.8 larger than the SM result of $BR(B_d \to \mu^+\mu^-)_{SM} \approx 1.06 \times 10^{-10}$. Using $BR(t \to uZ) = 0.5 \times 10^{-4}$ and $\theta_u^L = 2.1$, the enhancement factor to $BR(B_d \to \mu^+\mu^-)_{SM}$ becomes 1.38. Since the maximum of $BR(B_d \to \mu^+\mu^-)$ has been close to the ATLAS upper bound of 2.1×10^{-10}, the constraint from the rare B decay measured in the LHC could further constrain the allowed range of θ_u^L.

V. SUMMARY

We studied the impacts of the anomalous tqZ couplings in the low energy physics, especially the tuZ coupling. It was found that the anomalous coupling can have significant contributions to ϵ'/ϵ, $BR(K \to \pi\nu\bar{\nu})$, $K_S \to \mu^+\mu^-$, and $B_d \to \mu^+\mu^-$. Although these decays have not yet been observed in experiments, with the exception of ϵ'/ϵ, their designed experiment sensitivities are good enough to test the SM. It was found that using the sensitivity of $BR(t \to uZ) \sim 5 \times 10^{-5}$ designed in HL-LHC, the resulted $BR(K \to \pi\nu\bar{\nu})$ and $BR(B_d \to \mu^+\mu^-)$ can be examined by the NA62, KOTO, KELVER, and LHC experiments.

According to our study, it was found that we cannot simultaneously enhance $Re(\epsilon'/\epsilon)$, $BR(K_L \to \pi^0\nu\bar{\nu})$, and $BR(K_S \to \mu^+\mu^-)$ in the same region of the CP violating phase, where the positive $Re(\epsilon'/\epsilon)$ requires $\theta_u^L < 0$, but the large $BR(K_L \to \pi^0\nu\bar{\nu})$ and $BR(K_S \to \mu^+\mu^-)$
FIG. 3: Contours of the branching ratio as a function of $BR(t \to uZ)$ and θ_u^L for (a) $K_L \to \pi^0 \nu \bar{\nu}$, (b) $K^+ \to \pi^+ \nu \bar{\nu}$, (c) $K_S \to \mu^+ \mu^-$, and (d) $B_d \to \mu^+ \mu^-$, where the corresponding SM result is also shown in each plot. The long-distance effect has been included in the $K_S \to \mu^+ \mu^-$ decay.

have to rely on $\theta_u^L > 0$. Since $BR(K^+ \to \pi^+ \nu \bar{\nu})$ and $BR(B_d \to \mu^+ \mu^-)$ involve both real and imaginary parts of Wilson coefficients, their BRs are not sensitive to the sign of θ_u^L. Hence, $Re(\epsilon'/\epsilon)$, $BR(K^+ \to \pi^+ \nu \bar{\nu})$ and $BR(B_d \to \mu^+ \mu^-)$ can be enhanced at the same time.

Acknowledgments

This work was partially supported by the Ministry of Science and Technology of Taiwan, under grants MOST-106-2112-M-006-010-MY2 (CHC).

[1] S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2, 1285 (1970).
[2] J. A. Aguilar-Saavedra, Acta Phys. Polon. B 35, 2695 (2004) [hep-ph/0409342].
[3] G. Abbas, A. Celis, X. Q. Li, J. Lu and A. Pich, JHEP 1506, 005 (2015) [arXiv:1503.06423 [hep-ph]].

[4] [ATLAS Collaboration], arXiv:1307.7292 [hep-ex].

[5] ATLAS Collaboration, ATL-PHYS-PUB-2016-019.

[6] K. J. Abraham, K. Whisnant, J. M. Yang and B. L. Young, Phys. Rev. D 63, 034011 (2001) [hep-ph/0007280].

[7] G. Eilam, A. Gemintern, T. Han, J. M. Yang and X. Zhang, Phys. Lett. B 510, 227 (2001) [hep-ph/0102037].

[8] J. A. Aguilar-Saavedra, Phys. Rev. D 67, 035003 (2003) Erratum: [Phys. Rev. D 69, 099901 (2004)] [hep-ph/0210112].

[9] R. Gaitan, R. Martinez, J. H. M. de Oca and E. A. Garces, Phys. Rev. D 98, no. 3, 035031 (2018) [arXiv:1710.04262 [hep-ph]].

[10] P. Mandrik [CMS Collaboration], EPJ Web Conf. 191, 02009 (2018) [arXiv:1808.09915 [hep-ex]].

[11] M. Aaboud et al. [ATLAS Collaboration], JHEP 1807, 176 (2018) [arXiv:1803.09923 [hep-ex]].

[12] T. Blum et al., Phys. Rev. D 91, no. 7, 074502 (2015) [arXiv:1502.00263 [hep-lat]].

[13] Z. Bai et al. [RBC and UKQCD Collaborations], Phys. Rev. Lett. 115, no. 21, 212001 (2015) [arXiv:1505.07863 [hep-lat]].

[14] A. J. Buras and J. M. Gerard, Nucl. Phys. B 264, 371 (1986).

[15] W. A. Bardeen, A. J. Buras and J. M. Gerard, Phys. Lett. B 180, 133 (1986).

[16] W. A. Bardeen, A. J. Buras and J. M. Gerard, Nucl. Phys. B 293, 787 (1987).

[17] W. A. Bardeen, A. J. Buras and J. M. Gerard, Phys. Lett. B 192, 138 (1987).

[18] W. A. Bardeen, A. J. Buras and J. M. Gerard, Phys. Lett. B 211, 343 (1988).

[19] A. J. Buras and J. M. Gerard, JHEP 1512, 008 (2015) [arXiv:1507.06326 [hep-ph]].

[20] A. J. Buras, M. Gorbahn, S. Jäger and M. Jamin, JHEP 1511, 202 (2015) [arXiv:1507.06345 [hep-ph]].

[21] J. R. Batley et al. [NA48 Collaboration], Phys. Lett. B 544, 97 (2002) [hep-ex/0208009].

[22] A. Alavi-Harati et al. [KTeV Collaboration], Phys. Rev. D 67, 012005 (2003) Erratum: [Phys. Rev. D 70, 079904 (2004)] [hep-ex/0208007].

[23] E. Abouzaid et al. [KTeV Collaboration], Phys. Rev. D 83, 092001 (2011) [arXiv:1011.0127 [hep-ex]].
[24] A. J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens, JHEP 1511, 033 (2015) [arXiv:1503.02693 [hep-ph]].
[25] A. J. Buras, D. Buttazzo and R. Knegjens, JHEP 1511, 166 (2015) [arXiv:1507.08672 [hep-ph]].
[26] A. J. Buras and F. De Fazio, JHEP 1603, 010 (2016) [arXiv:1512.02869 [hep-ph]].
[27] A. J. Buras, JHEP 1604, 071 (2016) [arXiv:1601.00005 [hep-ph]].
[28] M. Tanimoto and K. Yamamoto, PTEP 2016, no. 12, 123B02 (2016) [arXiv:1603.07960 [hep-ph]].
[29] A. J. Buras and F. De Fazio, JHEP 1608, 115 (2016) [arXiv:1604.02344 [hep-ph]].
[30] T. Kitahara, U. Nierste and P. Tremper, Phys. Rev. Lett. 117, no. 9, 091802 (2016) [arXiv:1604.07400 [hep-ph]].
[31] M. Endo, S. Mishima, D. Ueda and K. Yamamoto, Phys. Lett. B 762, 493 (2016) [arXiv:1608.01444 [hep-ph]].
[32] C. Bobeth, A. J. Buras, A. Celis and M. Jung, JHEP 1704, 079 (2017) [arXiv:1609.04783 [hep-ph]].
[33] V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Phys. Lett. B 767, 1 (2017) [arXiv:1612.03914 [hep-ph]].
[34] M. Endo, T. Kitahara, S. Mishima and K. Yamamoto, Phys. Lett. B 771, 37 (2017) [arXiv:1612.08839 [hep-ph]].
[35] C. Bobeth, A. J. Buras, A. Celis and M. Jung, JHEP 1707, 124 (2017) [arXiv:1703.04753 [hep-ph]].
[36] A. Crivellin, G. D’Ambrosio, T. Kitahara and U. Nierste, Phys. Rev. D 96, no. 1, 015023 (2017) [arXiv:1703.05786 [hep-ph]].
[37] C. Bobeth and A. J. Buras, JHEP 1802, 101 (2018) [arXiv:1712.01295 [hep-ph]].
[38] N. Haba, H. Umeeda and T. Yamada, arXiv:1802.09903 [hep-ph].
[39] A. J. Buras and J. M. Gérard, arXiv:1804.02401 [hep-ph].
[40] C. H. Chen and T. Nomura, arXiv:1804.06017 [hep-ph].
[41] C. H. Chen and T. Nomura, arXiv:1805.07522 [hep-ph].
[42] S. Matsuzaki, K. Nishiwaki and K. Yamamoto, arXiv:1806.02312 [hep-ph].
[43] N. Haba, H. Umeeda and T. Yamada, arXiv:1806.03424 [hep-ph].
[44] J. Aebischer, A. J. Buras and J. M. Gérard, arXiv:1807.01709 [hep-ph].
[45] J. Aebischer, C. Bobeth, A. J. Buras, J. M. Gérard and D. M. Straub, arXiv:1807.02520 [hep-ph].

[46] J. Aebischer, C. Bobeth, A. J. Buras and D. M. Straub, arXiv:1808.00466 [hep-ph].

[47] C. H. Chen and T. Nomura, arXiv:1808.04097 [hep-ph].

[48] C. H. Chen and T. Nomura, arXiv:1811.02315 [hep-ph].

[49] F. Newson et al., arXiv:1411.0109 [hep-ex].

[50] M. Moulson [NA62 Collaboration], PoS ICHEP 2016, 581 (2016) arXiv:1611.04979 [hep-ex].

[51] T. K. Komatsubara, Prog. Part. Nucl. Phys. 67, 995 (2012) arXiv:1203.6437 [hep-ex].

[52] B. Beckford [KOTO Collaboration], arXiv:1710.01412 [hep-ex].

[53] M. Moulson, arXiv:1812.01896 [physics.ins-det].

[54] G. Buchalla and A. J. Buras, Nucl. Phys. B 400, 225 (1993).

[55] M. Misiak and J. Urban, Phys. Lett. B 451, 161 (1999) hep-ph/9901278.

[56] G. Buchalla and A. J. Buras, Nucl. Phys. B 548, 309 (1999) hep-ph/9901288.

[57] M. Gorbahn and U. Haisch, Nucl. Phys. B 713, 291 (2005) hep-ph/0411071.

[58] A. J. Buras, M. Gorbahn, U. Haisch and U. Nierste, Phys. Rev. Lett. 95, 261805 (2005) hep-ph/0508165.

[59] A. J. Buras, M. Gorbahn, U. Haisch and U. Nierste, JHEP 0611, 002 (2006) Erratum: [JHEP 1211, 167 (2012) hep-ph/0603079].

[60] G. Buchalla and A. J. Buras, Phys. Rev. D 57, 216 (1998) hep-ph/9707243.

[61] J. Brod and M. Gorbahn, Phys. Rev. D 78, 034006 (2008) arXiv:0805.4119 [hep-ph].

[62] J. Brod, M. Gorbahn and E. Stamou, Phys. Rev. D 83, 034030 (2011) arXiv:1009.0947 [hep-ph].

[63] A. V. Artamonov et al. [E949 Collaboration], Phys. Rev. Lett. 101, 191802 (2008) arXiv:0808.2459 [hep-ex].

[64] J. K. Ahn et al. [E391a Collaboration], Phys. Rev. D 81, 072004 (2010) arXiv:0911.4789 [hep-ex].

[65] B. Velghe [NA62 Collaboration], arXiv:1810.06424 [hep-ex].

[66] G. Ecker and A. Pich, Nucl. Phys. B 366, 189 (1991).

[67] G. Isidori and R. Unterdorfer, JHEP 0401, 009 (2004) hep-ph/0311084.

[68] G. D’Ambrosio and T. Kitahara, Phys. Rev. Lett. 119, no. 20, 201802 (2017) arXiv:1707.06999 [hep-ph].
[69] F. Dettori, on behalf of the LHCb collaboration, a talk given in UK Flavour 2017: https://conference.ippp.dur.ac.uk/event/573/contributions/3286.

[70] C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, Phys. Rev. Lett. 112, 101801 (2014) [arXiv:1311.0903 [hep-ph]].

[71] M. Aaboud et al. [ATLAS Collaboration], arXiv:1812.03017 [hep-ex].

[72] V. Khachatryan et al. [CMS and LHCb Collaborations], Nature 522, 68 (2015) [arXiv:1411.4413 [hep-ex]].

[73] A. J. Buras, F. De Fazio and J. Girrbach, Eur. Phys. J. C 74, no. 7, 2950 (2014) [arXiv:1404.3824 [hep-ph]].

[74] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996) [hep-ph/9512380].

[75] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).

[76] G. Isidori, F. Mescia and C. Smith, Nucl. Phys. B 718, 319 (2005) [hep-ph/0503107].

[77] F. Mescia and C. Smith, Phys. Rev. D 76, 034017 (2007) [arXiv:0705.2025 [hep-ph]].

[78] F. Mescia, C. Smith and S. Trine, JHEP 0608, 088 (2006) [hep-ph/0606081].