Evidence that the Y(4660) is a $f_0(980)\psi'$ bound state

Feng-Kun Guo1, Christoph Hanhart1, and Ulf-G. Meißer1,2

1 Institut für Kernphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
2 Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 53115 Bonn, Germany

Abstract

We demonstrate that the experimental information currently available for the Y(4660) is consistent with its being a $f_0(980)\psi'$ molecule. Possible experimental tests of our hypothesis are presented.

PACS numbers: 14.40.Gx, 13.25.Gv

1. In recent years a large number of new hidden and open charm states were discovered experimentally above the first inelastic thresholds. For most of them the masses have in common that they deviate significantly from the predictions of the quark model [1] — which on the other hand works very well below the thresholds — and are positioned very close to a s-channel threshold [2]. For recent reviews see, e.g., Ref. [3].

The proximity of the thresholds initiated a lot of theoretical studies, in order to reveal a possible molecular structure of those states. E.g. in Refs. [4] the $D_s(2317)$, located just below the KD–threshold, was studied within the molecular model and the $X(3872)$, located right at the DD^* threshold, was investigated in Refs. [5]. However, so far no consensus exists on the true nature of those states and, e.g., four–quark interpretations [6] and even conventional $q\bar{q}$ states are still under discussion [7].

In Refs. [8] it was argued that there is a way to model independently identify hadronic molecules in the spectrum. The method is based on a time–honored analysis by Weinberg [9] and applies, if the pole is very close to an s–wave. The method relates the effective coupling constant of the bound state to its constituents, g, directly to the molecular admixture of the state. Especially, one may write for a pure molecule

$$
g^2 = \frac{(m_1 + m_2)^{5/2}}{(m_1 m_2)^{3/2}} \sqrt{32 \epsilon}, \tag{1}
$$

where m_1 and m_2 denote the masses of the constituents and ϵ the binding energy.

In this paper we discuss the nature of the Y(4660) as a candidate for a $f_0(980)\psi'$ bound state. So far the Y(4660) was seen only in the $\pi^+\pi^-\psi'$ invariant mass distribution in $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^-\psi'$ with a mass of $4664 \pm 11 \pm 5$ MeV and a width of $48 \pm 15 \pm 3$ MeV [10]. Such a structure was neither observed in $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^-\psi'$, nor in the exclusive $e^+e^- \rightarrow DD, DD^*, D^*D^*, DD\pi$ cross sections [12], nor in the process $e^+e^- \rightarrow J/\psi\psi'\bar{D}(\bar{D}^*)$ [13]. These facts would severely challenge any attempt explaining the state as a canonical $c\bar{c}$ charmonium, e.g. \bar{p}^3S_1 as in Ref. [14]. The Y(4660) is suggested to be a baryonium state in Ref. [15]. The difficulties in the canonical charmonium interpretation could be explained naturally, if the Y(4660) were a $f_0(980)\psi'$ bound state, because it would decay dominantly via the decay of the $f_0(980)$, i.e. $Y(4660) \rightarrow \psi'f_0(980) \rightarrow \psi'[\pi\pi]$ and $Y(4660) \rightarrow \psi'f_0(980) \rightarrow \psi'[K\bar{K}]$. The nominal threshold of the $f_0(980)\psi'$ system is at 4666 ± 10 MeV if we take the PDG value of the $f_0(980)$ mass [16]. Note that the interaction between a heavy quarkonium and a light hadron is expected to be dominated by the QCD van der Waals interaction which is attractive [17].

In the $\pi\pi$ invariant mass a clear $f_0(980)$ peak is visible. Clearly, if the Y(4660) were a conventional $f_0\psi'$ bound state, it could not decay to this channel. This is possible only because of the finite width of the $f_0(980)$, mainly due to its decay to the $\pi\pi$ channel. We will perform our analysis based on the following reasoning: if the f_0 were a stable particle, also the Y(4660) were stable. Then we could calculate the effective coupling constant of Y to $\psi'f_0$ using Eq. [14]. The central assumption is that this coupling constant does not change as the two pion channel is switched on — a similar ansatz lead to a successful phenomenology for the $f_0(980)$ treated as a KK molecule [18]. Under this assumption we can predict not only the prominent component of the width of the Y(4660) but also its spectral shape using the mass...
and the over all normalization as the only input. As additional non–trivial result we can also predict the strength and the shape of the decay to KK and $\gamma\gamma$. The possible decay chains are illustrated in Fig. 4. As we will see, the resulting spectra are in excellent agreement with the existing data. We interpret this as a strong support in favor of a molecular interpretation for the $Y(4660)$.

2. The $Y(4660)$ was observed as a structure in the $\psi\pi\pi$ invariant mass distribution. In addition, in Ref. [10], also the $\pi\pi$ invariant mass distribution is presented, which was found after applying an appropriate cut to the $\psi\pi\pi$ invariant mass. Both distributions can be derived from the same differential rate, under the assumption that the pion pair stems from the decay of a f_0. One gets

$$d^2\mathcal{W}(\psi^+\pi^-\psi^-\pi^+) = \mathcal{N} |G_Y(M)|^2 \frac{d\Gamma_{Y\pi\pi}}{dm^2_{\pi\pi}},$$

where $G_Y(M)$ denotes the physical Y–propagator, to be specified below and \mathcal{N} is a normalization constant, which contains, besides the electron–photon vertex and the photon propagator, both indeed constant to very high accuracy in the range of M of relevance here, also the detector acceptance. The decay $Y \to \psi\pi^+\pi^-$ is described by

$$\frac{d\Gamma_{Y\pi\pi}}{dm^2_{\pi\pi}} = \frac{g^2}{8\pi} \frac{\theta(M - M_{\psi\pi\pi})}{M^2} \frac{p}{M} \rho_{f_0}^{\pi^+\pi^-}.$$

Here p denotes the c.m.s momentum of the ψ' for given values of the $\pi\pi$ invariant mass, $m_{\pi\pi}$, and the $\psi\pi\pi$ invariant mass, M, and $M_{\psi\pi\pi} = m_{\pi\pi} + M_{\psi}$. The effective coupling constant g is not a free parameter, but can be determined for any given value of the mass of the Y from Eq. (1). The quantity $\rho_{f_0}^{\pi^+\pi^-}(m_{\pi\pi})$ denotes the $\pi^+\pi^-$ fraction of the f_0 spectral function. It is normalized according to

$$\int dm^2_{\pi\pi} \rho_{f_0}^{\pi^+\pi^-}(m_{\pi\pi}) = \Gamma_{f_0}^{\pi^+\pi^-}/\Gamma_{f_0}^{\text{tot}}.$$

With this normalization Eq. (3) goes to the standard expression for a two particle decay in the stable particle limit for the f_0.

A high quality data set for the f_0 was collected recently by KLOE [19] based on the reaction $\phi \to \gamma\pi\pi$. The data was analyzed using the so-called kaon loop model [20] and provided parameters for the f_0 with very little uncertainty. To be concrete, we use

$$\rho_{f_0}^{\pi^+\pi^-}(m) = \frac{1}{\pi} \frac{\text{Im} (\Pi_{f_0}^{\pi^+\pi^-}(m))}{m^2 - m_{f_0}^2 + \sum_{ab} \Pi_{f_0}^{ab}(m)^2},$$

where the $\Pi_{f_0}^{ab}(m)$ denote the renormalized self–energies of the f_0 with respect to the channel ab. Analytic expressions are given in Ref. [20] (see also [22]). The input parameters are taken from the fits provided in Ref. [19]. To be concrete, for all the curves shown below we used the central values of the various parameters of fit $K2$ shown in table 4 of that reference, thus we used $m_{f_0} = 0.9862$ GeV, $g_{f_0\pi\pi} = 3.87$ GeV, and $g_{f_0\pi\pi} = -2.03$ GeV, while the couplings for the neutral channels were fixed using the isospin relations. We checked that the other parameter sets give very similar results to the ones discussed in detail below.

The only missing piece is the physical Y propagator. In Eq. (3) an explicit expression is given for the partial width to $\psi'\pi^+\pi^-$. However, in order to derive the physical propagator, all relevant decay channels need to be included. Within our model we assume that the Y decays predominantly through the f_0, thus a consistent treatment requires that all decay channels of the f_0 also contribute to the width of the Y and thus to the propagator. It is straightforward to extend Eq. (3) also to the $\pi^0\pi^0$ channel as well as to the kaon channels without any additional free parameters — also for these channels we use the results of the fit to the KLOE data presented in Ref. [19]. Thus we get for the total width of the Y at a given value of M, under the assumption that it is saturated by the $\psi'f_0$ decay

$$\Gamma_Y^{\text{tot}}(M^2) = \sum_{ab} \theta (M - M_{\phi'}) \frac{p}{M^2} \rho_{f_0}^{\pi^+\pi^-} \frac{1}{\pi} \int dm^2_{ab} \frac{d\Gamma_{Y\pi\pi}^{ab}(M,m_{ab})}{dm^2_{m_{ab}}},$$

where $s_{m_{ab}} = (m_a + m_b)^2$. In order to get a Y propagator with the correct analytical properties we need to continue the contribution from the $KK\psi'$ channel also to below its threshold. For this we use a dispersion integral, which gives us an expression for the Y self–energy, $\Pi_Y(M)$, for arbitrary values of M

$$\Pi_Y(M) = \frac{1}{\pi} \int_{M_{thr}^2}^{\infty} ds \frac{M_Y \Gamma_Y^{\text{tot}}(s)}{s - M^2 - i\epsilon},$$

where $M_{thr} = M_{\phi'} + 2m_{\pi}$ denotes the lowest physical threshold of relevance here. Note, this treatment is completely consistent to what was done for the f_0 — one way to derive the self–energies $\Pi_{f_0}^{ab}(m)$ given above is through a dispersion integral with the two–body phase space as input. With the self energies at hand we may now give the expression for the physical propagator of the $Y(4660)$

$$G_Y(M) = \frac{1}{M^2 - M_Y^2 + \Pi_Y(M)},$$

where, as above, we defined $\Pi_Y(M) = \Pi_Y(M) - \text{Re}(\Pi_Y(M))$.

3. Our model has only 2 free parameters, namely, the mass of the Y, M_Y, and the normalization constant, N, introduced in Eq. (2). We now proceed as follows: the
count rate, R, in the $\psi'\pi^+\pi^-$ invariant mass spectrum is given by

$$R(M) = \int_{4m^2}^{M-M_{\psi'}} dm^2_{\pi^+\pi^-} \frac{d^2W(e^+e^- \rightarrow \psi'\pi^+\pi^-)}{dM^2 dm^2_{\pi^+\pi^-}} \quad (8)$$

using the expression for the differential rate W of Eq. (2). The range of parameters allowed by the data is then determined from a fit to the experimental data for the $\psi'\pi^+\pi^-$ spectrum — we remind the reader that the coupling constant g is fixed from Eq. (1) for any given value of M_ψ. We find

$$N = 10 \pm 2\text{ GeV}^3, \quad M_\psi = 4665_{-5}^{+3}\text{ MeV}. \quad (9)$$

This range of mass values corresponds to a range of $g = 11 \ldots 14$ GeV for the effective coupling constant. The best fit is shown as the solid line in Fig. 2 — the uncertainty that emerges from the fit is reflected by the grey band. For the best fit χ^2/d.o.f = 0.5. The first observation is that the resulting invariant mass distribution visibly deviates from a standard Breit–Wigner shape. This is a direct consequence of our starting assumption, namely that the $Y(4660)$ is predominantly composed of a f_0 and a ψ', not only since the mass of the Y is very close to the nominal $f_0\psi'$ threshold, but also because of the proximity of the kaon channels, which are very important for the structure of the f_0.

Since now all parameters of our model are fixed we can predict other channels. Recently high quality data was measured for $f_0 \rightarrow \gamma\gamma$ [21]. Within our approach we thus predict that the shape in the $\psi'\gamma\gamma$ invariant mass is identical to that measured for $\psi'\pi^+\pi^-$, however, down scaled by the relevant ratio of branching ratios. In addition we can also predict the signals for the spectra of $\pi\pi$ and $K\bar{K}$ as they emerge from the decay of the Y. The predicted rate, $R_{ab}(m_{ab})$, again follows directly from Eq. (2)

$$R_{ab}(m_{ab}) = \int_{(4.5 \text{ GeV})^2}^{(4.9 \text{ GeV})^2} \frac{dM^2}{dM^2 m_{ab}^2} \frac{d^2W(e^+e^- \rightarrow \psi'ab)}{dM^2 dm_{ab}^2}, \quad (10)$$

where the limits of integration are chosen identical to the cuts used to get the experimental rate [10]. The corresponding results are shown in Fig. 3. If a signal of the given shape and strength were found in the $\psi'K\bar{K}$ invariant mass distribution, it would provide strong support for the assumed prominent role of $f_0\psi'$ for the structure of the Y.

4. To summarize, we calculated the invariant mass spectrum for $\psi'\pi^+\pi^-$ as well as the corresponding $\pi\pi$ and
KK spectra in the mass range of the Y(4660) under the assumption that the Y(4660) is a $f_0(980)\psi'$ bound state and $f_0(980)\psi'$ is its only decay channel of relevance. A very good description of both spectra, where data exist, was achieved. Especially, we find a visible deviation from a Breit-Wigner shape for the $\psi'\pi\pi$ spectrum, consistent with the data, although data with better statistics would be very welcome to strengthen this point.

In principle our method also allows one to estimate the possible contribution of channels other than $f_0\psi'$ to the width of the Y(4660). One just needs to add the term $iM_Y \Gamma_{\text{add}}$ to the denominator of $G_Y(M)$, defined in Eq. (4) and repeat the fitting procedure. With this we get $\Gamma_{\text{add}} = (30 \pm 30)$ MeV — thus, before better data is available no reliable bound for the possible additional width can be deduced. However, it is important to observe that the value extracted from the current data is consistent with zero within the uncertainty.

We also checked what happens, if we do not fix the effective coupling g according to Eq. (1), but allow it to float as well. Then we find $M_Y = (4672 \pm 9)$ MeV and $g = (13 \pm 2)$ GeV with $\chi^2/\text{d.o.f.} = 0.4$. The result of the best fit is shown as the dashed line in Figs. 2 and 3. Thus the effective coupling constant extracted from this three parameter agrees to that found before, only that the three parameter fit prefers a larger value of the mass, partially due to the higher end the mass of the $Y(4660)$ is its only decay channel of relevance. A KK channels as well as an improvement of the existing data would allow for non–trivial tests of our hypothesis.

We take our results as a strong evidence for a molecular interpretation of the $Y(4660)$. We stress that a measurement of the $\psi'\bar{K}K$ channels as well as an improvement of the resolution of the existing data would allow for nontrivial tests of our hypothesis.

We thank N.N. Nikolaev and A. Nogga for useful discussions. We are very grateful to C.-Z. Yuan for providing us with the experimental data. This work is partially supported by the Helmholtz Association through funds provided to the virtual institute “Spin and strong QCD” (VH-VI-231) and by the EU Integrated Infrastructure Initiative Hadron Physics Project under contract number RII3-CT-2004-506078.

[1] T. Barnes, S. Godfrey and E. S. Swanson, Phys. Rev. D 72, 054026 (2005).

[2] J. L. Rosner, Phys. Rev. D 74, 076006 (2006); D. V. Bugg, arXiv:0802.0934 [hep-ph].

[3] E. S. Swanson, Phys. Rept. 429, 243 (2006); E. Klempt and A. Zaitsev, Phys. Rept. 454, 1 (2007); M. B. Voloshin, arXiv:0711.4556 [hep-ph]; S. L. Olsen, arXiv:0801.1153 [hep-ex]; S. Godfrey and S. L. Olsen, arXiv:0801.3867 [hep-ph].

[4] T. Barnes, F. E. Close and H. J. Lipkin, Phys. Rev. D 68, 054006 (2003); J. Hofmann and M. F. M. Lutz, Nucl. Phys. A 733 (2004) 142; F. K. Guo et al., Phys. Lett. B 641, 278 (2006); D. Gamermann, L. R. Dai and E. Oset, Phys. Rev. C 76 (2007) 055205; A. Faessler et al., Phys. Rev. D 76 (2007) 014005.

[5] N. A. Tönnvist, arXiv:hep-ph/0308277; F. E. Close and P. R. Page, Phys. Lett. B 578, 119 (2004); D. V. Bugg, Phys. Rev. D 71, 014006 (2005); C. Hanhart et al., Phys. Rev. D 76 (2007) 034007; D. Gamermann and E. Oset, Eur. Phys. J. A 33, 119 (2007); E. Braaten and M. Lu, Phys. Rev. D 76 (2007) 094028; Y. Dong et al., arXiv:0802.3610 [hep-ph].

[6] T. E. Browder, S. Pakvasa and A. A. Petrov, Phys. Lett. B 578, 365 (2004); L. Maiani et al., Phys. Rev. D 71, 014028 (2005); L. Maiani, A. D. Polosa and V. Riquer, Phys. Rev. Lett. 99 (2007) 182003.

[7] E. van Beveren and G. Rupp, Phys. Rev. Lett. 91 (2003) 012003; F. K. Guo, S. Krewald and U.-G. Meißner, arXiv:0712.2963 [hep-ph]; T. Barnes and S. Godfrey, Phys. Rev. D 69, 054008 (2004).

[8] V. Baru et al., Phys. Lett. B 586, 53 (2004).

[9] S. Weinberg, Phys. Rev. 130, 776 (1963); Phys. Rev. 131, 440 (1963); Phys. Rev. 137, B672 (1965).

[10] X. L. Wang et al. [Belle Collaboration], Phys. Rev. Lett. 99, 142002 (2007).

[11] C. Z. Yuan et al. [Belle Collaboration], Phys. Rev. Lett. 99, 182004 (2007).

[12] K. Abe et al. [Belle Collaboration], Phys. Rev. Lett. 98, 092001 (2007); G. Pakhlova et al. [Belle Collaboration], Phys. Rev. Lett. 100, 062001 (2008); G. Pakhlova et al. [Belle Collaboration], Phys. Rev. D 77, 011103 (2008); B. Aubert et al. [BABAR Collaboration], arXiv:0710.1371 [hep-ex].

[13] K. Abe et al. [Belle Collaboration], arXiv:0708.3812 [hep-ex].

[14] G. J. Ding, J. J. Zhu and M. L. Yan, Phys. Rev. D 77, 014033 (2008).

[15] C. F. Qiao, arXiv:0709.4066 [hep-ph].

[16] W. M. Yao et al. [Particle Data Group], J. Phys. G 33, 1 (2006).

[17] S. J. Brodsky and G. A. Miller, Phys. Lett. B 412, 125 (1997).

[18] Yu. S. Kalashnikova et al., Eur. Phys. J. A 24 (2005) 437; C. Hanhart et al., Phys. Rev. D 75 (2007) 074015.

[19] F. Ambrosino et al. [KLOE Collaboration], Eur. Phys. J. C 49 (2007) 473.

[20] N. N. Achasov and A. V. Kiselev, Phys. Rev. D 73 (2006) 054029 [Erratum-ibid. D 74 (2006) 059902].

[21] T. Mori et al. [Belle Collaboration], Phys. Rev. D 75 (2007) 051101.

[22] We only include the $\pi\pi$ and the $\bar{K}K$ channels, for the others give a negligible contribution.