The Universal Tutte Polynomial

Olivier Bernardi (Brandeis University)
- Joint work with -
Tamás Kálmán (Tokyo IT) & Alex Postnikov (MIT)
1. Generalizing the Tutte polynomial to polymatroids.

\[T_P(x, y) \]
Outline

1. Generalizing the Tutte polynomial to polymatroids.

\[T_P(x, y) \]

matroids

polymatroids

hypergraphs

graphs

new

known
1. Generalizing the Tutte polynomial to polymatroids.

\[T_P(x, y) \]

2. Universal Tutte polynomial

\[T_n(x, y; z) \]
Tutte polynomial of polymatroids
Tutte polynomial of a graph

Def: For a connected graph $G = (V, E)$, the **Tutte polynomial** is

$$T_G(x, y) = \sum_{S \subseteq E} (x - 1)^{\text{cork}(S)}(y - 1)^{\text{null}(S)},$$

where

- $\text{cork}(S) = \#$ edges to add in order to get a connected subgraph,
- $\text{null}(S) = \#$ edges to delete to in order to get an acyclic subgraph.
Def: For a connected graph \(G = (V, E) \), the **Tutte polynomial** is

\[
T_G(x, y) = \sum_{S \subseteq E} (x - 1)^{\text{cork}(S)} (y - 1)^{\text{null}(S)},
\]

where

- \(\text{cork}(S) = \# \) edges to add in order to get a connected subgraph,
- \(\text{null}(S) = \# \) edges to delete to in order to get an acyclic subgraph.

Example:

\[
T_G(x, y) = x^3 + 2x^2 + 2xy + y^2 + x + y.
\]
Tutte polynomial of a graph

\[T_G(x, y) \] captures a lot of enumerative information about \(G \).

spanning trees, # forests, # connected subgraphs,
acyclic orientations, # totally cyclic orientations,
Chromatic polynomial, Potts polynomial,
\(G \)-parking functions by degree, Reliability polynomial...

(Tutte polynomial is “universal for linear graph invariants.”)
Tutte polynomial of a graph

Def. Internal/External activities:
Fix a total order \prec on E. For a spanning tree $T \subseteq E$,

$$IA(T) = \{ e \in T \mid \not\exists e' \prec e \text{ such that } T - e + e' \text{ is a tree} \}$$

$$EA(T) = \{ e \notin T \mid \not\exists e' \prec e \text{ such that } T + e - e' \text{ is a tree} \}$$
Tutte polynomial of a graph

Def. **Internal/External activities:**
Fix a total order \prec on E. For a spanning tree $T \subseteq E$,

$$IA(T) = \{ e \in T \mid \nexists e' \prec e \text{ such that } T - e + e' \text{ is a tree} \}$$

$$EA(T) = \{ e \notin T \mid \nexists e' \prec e \text{ such that } T + e - e' \text{ is a tree} \}$$

Example:

T

IA(T) = {1}
EA(T) = {3}
Tutte polynomial of a graph

Thm [Tutte/Crapo 47/67].

\[T_G(x, y) = \sum_{T \text{ spanning tree}} x^{|IA(T)|} y^{|EA(T)|}. \]
Tutte polynomial of a graph

Thm [Tutte/Crapo 47/67].

\[T_G(x, y) = \sum_{T \text{ spanning tree}} x^{|\text{IA}(T)|} y^{|\text{EA}(T)|}. \]

Example:

\[T_G(x, y) = x^3 + 2x^2 + 2xy + y^2 + x + y. \]
Relation between the two expressions of $T_G(x, y)$?

Example:
Relation between the two expressions of $T_G(x, y)$?

Example:

G

“Crapo’s interval partition”

$T_G(x, y) = x^2 + x + y.$
Matroids are abstraction of a graph: the matroid tells you which subsets of edges form a spanning tree.
Matroids

Def. A **matroid** on a set \(E \) is a set \(M \subseteq 2^E \) of **bases** satisfying:

Exchange Axiom: \(\forall A, B \in M, \forall i \in A \setminus B, \exists j \in B \setminus A \) such that

\[
A \cup \{j\} \setminus \{i\} \in M \quad \text{and} \quad B \cup \{i\} \setminus \{j\} \in M.
\]
Matroids

Def. A matroid on a set E is a set $M \subseteq 2^E$ of bases satisfying:

Exchange Axiom: $\forall A, B \in M, \forall i \in A \setminus B, \exists j \in B \setminus A$ such that $A \cup \{j\} \setminus \{i\} \in M$ and $B \cup \{i\} \setminus \{j\} \in M$.

Example. The following is a matroid on $E = [5]$: $M = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 3, 5\}, \{1, 4, 5\}, \{2, 3, 5\}, \{2, 4, 5\}\}$
Matroids

Def. A matroid on a set \(E \) is a set \(M \subseteq 2^E \) of bases satisfying:

Exchange Axiom: \(\forall A, B \in M, \forall i \in A \setminus B, \exists j \in B \setminus A \) such that
\[
A \cup \{j\} \setminus \{i\} \in M \quad \text{and} \quad B \cup \{i\} \setminus \{j\} \in M.
\]

Prop. For any connected graph \(G = (V, E) \),
\[
M_G := \{T \subseteq E \text{ spanning tree}\}
\]
is a matroid on \(E \).
Matroids

Def. A **matroid** on a set E is a set $M \subseteq 2^E$ of bases satisfying:

Exchange Axiom: \(\forall A, B \in M, \forall i \in A \setminus B, \exists j \in B \setminus A \) such that

\[
A \cup \{j\} \setminus \{i\} \in M \quad \text{and} \quad B \cup \{i\} \setminus \{j\} \in M.
\]

Prop. For any connected graph $G = (V, E)$,

\[
M_G := \{T \subseteq E \text{ spanning tree}\}
\]

is a matroid on E.

Example.

\[
M_G = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 3, 5\}, \{1, 4, 5\}, \{2, 3, 5\}, \{2, 4, 5\}\}
\]
Tutte polynomial of matroids

Def: For a matroid M on E,

$$T_M(x, y) = \sum_{S \subseteq E} (x - 1)^{\text{cork}(S)} (y - 1)^{\text{null}(S)}$$

where

$\text{cork}(S) = \#$ elements to add in order to contain a basis,
$\text{null}(S) = \#$ elements to delete in order to be contained in a basis.
Tutte polynomial of matroids

Def: For a matroid M on E,

$$T_M(x, y) = \sum_{S \subseteq E} (x - 1)^{\text{cork}(S)}(y - 1)^{\text{null}(S)},$$

where

- $\text{cork}(S) = \# \text{ elements to add in order to contain a basis},$
- $\text{null}(S) = \# \text{ elements to delete in order to be contained in a basis}.$

Thm [Tutte/Crapo]

$$T_M(x, y) = \sum_{A \text{ basis}} x^{\lvert \text{IA}(A) \rvert} y^{\lvert \text{EA}(A) \rvert},$$

where

- $\text{IA}(A) = \{ e \in A \mid \not\exists e' \prec e \text{ such that } A - e + e' \text{ is a basis} \}$
- $\text{EA}(A) = \{ e \notin A \mid \not\exists e' \prec e \text{ such that } A + e - e' \text{ is a basis} \}$
Polymatroids

\[P \subseteq \mathbb{Z}^n \]

\[M \subseteq \{0,1\}^n \]

matroids

polymatroids

hypergraphs

graphs
Polymatroids

Notation. \(\{e_1, \ldots, e_n\} \) canonical basis of \(\mathbb{Z}^n \).
\(a \in \mathbb{Z}^n \) has coordinates \(a = (a_1, \ldots, a_n) \).
Polymatroids

Notation. \(\{e_1, \ldots, e_n\} \) canonical basis of \(\mathbb{Z}^n \).
\(a \in \mathbb{Z}^n \) has coordinates \(a = (a_1, \ldots, a_n) \).

Def. A polymatroid on \(E = [n] \) is a finite set \(P \subseteq \mathbb{Z}^n \) satisfying

Exchange Axiom: \(\forall a, b \in P, \forall i \text{ s.t. } a_i > b_i, \exists j \text{ s.t. } b_j > a_j \) and
\(a + e_j - e_i \in P \) and \(b + e_i - e_j \in P \).
Polymatroids

Notation. \(\{e_1, \ldots, e_n\} \) canonical basis of \(\mathbb{Z}^n \).
\(a \in \mathbb{Z}^n \) has coordinates \(a = (a_1, \ldots, a_n) \).

Def. A polymatroid on \(E = [n] \) is a finite set \(P \subseteq \mathbb{Z}^n \) satisfying

Exchange Axiom: \(\forall a, b \in P, \forall i \text{ s.t. } a_i > b_i, \exists j \text{ s.t. } b_j > a_j \text{ and } a + e_j - e_i \in P \text{ and } b + e_i - e_j \in P. \)

Example. The following is a polymatroid on \(E = [3] \):

\[
\begin{align*}
a_1 + a_2 + a_3 & = 4 \\
1 & \quad 2 \\
3 & \quad \uparrow
\end{align*}
\]
Polymatroids

Notation. \(\{e_1, \ldots, e_n\} \) canonical basis of \(\mathbb{Z}^n \).
\(a \in \mathbb{Z}^n \) has coordinates \(a = (a_1, \ldots, a_n) \).

Def. A polymatroid on \(E = [n] \) is a finite set \(P \subseteq \mathbb{Z}^n \) satisfying

Exchange Axiom: \(\forall a, b \in P, \forall i \text{ s.t. } a_i > b_i, \exists j \text{ s.t. } b_j > a_j \text{ and } a + e_j - e_i \in P \) and \(b + e_i - e_j \in P \).

Remark. For any matroid \(M \) on \(E = [n] \),

\[
P(M) := \left\{ a = \sum_{i \in A} e_i \mid A \in M \right\} \subseteq \{0, 1\}^n
\]

is a polymatroid. "Base polytope"

In fact, matroids \(\iff \) polymatroids contained in \(\{0, 1\}^n \).
Polymatroids from hypergraphs

Def: A hypergraph on a set V, is a multiset E of subsets of V.

Example:
Polymatroids from hypergraphs

Def: A hypergraph on a set V, is a multiset E of subsets of V.

Example:

![Hypergraph Diagram]

Remark: Graphs correspond to hypergraphs where every hyperedge $e \in E$ has size 2.
Polymatroids from hypergraphs

Def: Let $H = (V, E)$ be a hypergraph. Let B_H be the corresponding bipartite graph. A **spanning hypertree** of H is a function $\delta : E \rightarrow \mathbb{Z}_{\geq 0}$ such that there exists a spanning tree T of B_H such that

$\forall e \in E, \quad \delta(e) = \deg_T(e) - 1$.
Polymatroids from hypergraphs

Def: Let $H = (V, E)$ be a hypergraph. Let B_H be the corresponding bipartite graph.

A **spanning hypertree** of H is a function $\delta : E \to \mathbb{Z}_{\geq 0}$ such that there exists a spanning tree T of B_H such that

$$\forall e \in E, \quad \delta(e) = \deg_T(e) - 1.$$

Example:

\[
\begin{array}{ccc}
\text{H} & \text{has 3 hypertrees} \\
\begin{array}{c}
\text{2} \\
\text{0} \\
\text{1} \\
\text{1} \\
\text{0} \\
\text{2}
\end{array}
\end{array}
\]
Polymatroids from hypergraphs

Def: Let $H = (V, E)$ be a hypergraph. Let B_H be the corresponding bipartite graph. A **spanning hypertree** of H is a function $\delta : E \to \mathbb{Z}_{\geq 0}$ such that there exists a spanning tree T of B_H such that

$$\forall e \in E, \quad \delta(e) = \deg_T(e) - 1.$$

Remark: If a hypergraph H corresponds to a graph G, then the spanning hypertrees of H are in bijection with the spanning trees of G.

G B_H
Polymatroids from hypergraphs

Def: Let $H = (V, E)$ be a hypergraph. Let B_H be the corresponding bipartite graph.

A spanning hypertree of H is a function $\delta : E \to \mathbb{Z}_{\geq 0}$ such that there exists a spanning tree T of B_H such that

$$\forall e \in E, \quad \delta(e) = \operatorname{deg}_T(e) - 1.$$

Remark: If a hypergraph H corresponds to a graph G, then the spanning hypertrees of H are in bijection with the spanning trees of G.

Diagram:

- G
- T
- B_H
- δ
Polymatroids from hypergraphs

Prop: For any hypergraph $H = (V, E)$, the set of spanning hypertrees of H forms a polymatroid P_H on E.

Example:

\[H = \]

\[P_H \]
Tutte polynomial of polymatroids?
Tutte polynomial of polymatroids?

Tentative definition: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $a \in P$, let

- $IA(a) = \{i \in [n] \mid \forall j < i \text{ such that } a - e_i + e_j \in P\}$,
- $EA(a) = \{i \in [n] \mid \forall j < i \text{ such that } a + e_i - e_j \in P\}$.

Then

$$TP(x, y) = \sum_{\text{a basis}} x^{|IA(a)|} y^{|EA(a)|}.$$
Tutte polynomial of polymatroids?

Tentative definition: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $a \in P$, let

\begin{align*}
IA(a) &= \{i \in [n] \mid \not\exists j < i \text{ such that } a - e_i + e_j \in P\}, \\
EA(a) &= \{i \in [n] \mid \not\exists j < i \text{ such that } a + e_i - e_j \in P\}.
\end{align*}

$$TP(x, y) = \sum_{a \text{ basis}} x^{|IA(a)|} y^{|EA(a)|}.$$

Does not work! Not invariant under reordering of $[n]$.

However $TP(x, 1)$ and $TP(1, y)$ are invariant under reordering of $[n]$. [Kalman 13, Kalman & Postnikov 17]
Tutte polynomial of polymatroids.

Definition: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid.
For $a \in P$

$IA(a) = \{ i \in [n] \mid \nexists j < i \text{ such that } a - e_i + e_j \in P \}$

$EA(a) = \{ i \in [n] \mid \nexists j < i \text{ such that } a + e_i - e_j \in P \}$

$T_P(x, y) = \sum_{a \text{ basis}} x^{|IA(a) \setminus EA(a)|} y^{|EA(a) \setminus IA(a)|} (x + y - 1)^{|IA(a) \cap EA(a)|}$.
Tutte polynomial of polymatroids?

Definition: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid.
For $a \in P$

\[
IA(a) = \{i \in [n] | \not\exists j < i \text{ such that } a - e_i + e_j \in P\}
\]

\[
EA(a) = \{i \in [n] | \not\exists j < i \text{ such that } a + e_i - e_j \in P\}
\]

\[
T_P(x, y) = \sum_{a \text{ basis}} x^{|IA(a) \setminus EA(a)|} y^{|EA(a) \setminus IA(a)|} (x + y - 1)^{|IA(a) \cap EA(a)|}.
\]

Example:

\[
T_P(x, y) = (x + y - 1)(x^2 + 2xy + y^2 + 2y + 3x + 2y + 2)
\]
Tutte polynomial of polymatroids?

Definition: Let \(P \subseteq \mathbb{Z}^n \) be a polymatroid.

For \(a \in P \)
\[
\begin{align*}
\text{IA}(a) & = \{ i \in [n] \mid \nexists j < i \text{ such that } a - e_i + e_j \in P \} \\
\text{EA}(a) & = \{ i \in [n] \mid \nexists j < i \text{ such that } a + e_i - e_j \in P \}
\end{align*}
\]

\[
T_P(x, y) = \sum_{a \text{ basis}} x^{\text{IA}(a) \setminus \text{EA}(a)} y^{\text{EA}(a) \setminus \text{IA}(a)} (x + y - 1)^{\text{IA}(a) \cap \text{EA}(a)}.
\]

Example:

\[
T_P(x, y) = (x + y - 1)(x^2 + 2xy + y^2 + 2y + 3x + 2y + 2)
\]
Tutte polynomial of polymatroids?

Definition: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $a \in P$

\[
\begin{align*}
\text{IA}(a) &= \{ i \in [n] \mid \forall j < i \text{ such that } a - e_i + e_j \in P \} \\
\text{EA}(a) &= \{ i \in [n] \mid \forall j < i \text{ such that } a + e_i - e_j \in P \}
\end{align*}
\]

\[
T_P(x, y) = \sum_{a \text{ basis}} x^{|\text{IA}(a)\setminus\text{EA}(a)|} y^{|\text{EA}(a)\setminus\text{IA}(a)|} (x + y - 1)^{|\text{IA}(a)\cap\text{EA}(a)|}.
\]

Thm [BKP] This polynomial is invariant under reordering of $[n]$.

Tutte polynomial of polymatroids.

Definition: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $a \in P$
\[
\begin{align*}
\text{IA}(a) &= \{ i \in [n] \mid \nexists j < i \text{ such that } a - e_i + e_j \in P \} \\
\text{EA}(a) &= \{ i \in [n] \mid \nexists j < i \text{ such that } a + e_i - e_j \in P \}
\end{align*}
\]

\[
T_P(x, y) = \sum_{a \text{ basis}} x^{|\text{IA}(a) \setminus \text{EA}(a)|} y^{|\text{EA}(a) \setminus \text{IA}(a)|} (x + y - 1)^{|\text{IA}(a) \cap \text{EA}(a)|}.
\]

Thm [BKP] This polynomial is invariant under reordering of $[n]$.

Moreover, for any matroid M of rank d on $E = [n]$,
\[
T_{P(M)}(x, y) = x^{n-d} y^d T_M \left(\frac{x + y - 1}{y}, \frac{x + y - 1}{x} \right).
\]
Tutte polynomial of polymatroids.

\[T_P(x, y) = \sum_{a \in \mathbb{Z}^b} ??? \]

Interval partition?
Tutte polynomial of polymatroids.

Def. Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $a \in P$ we define the cone

$$C(a) = a + \sum_{i \in IA(a) \setminus EA(a)} \mathbb{Z}_{\leq 0} e_i + \sum_{i \in EA(a) \setminus IA(a)} \mathbb{Z}_{\geq 0} e_i + \sum_{i \in IA(a) \cap EA(a)} \mathbb{Z} e_i.$$
Tutte polynomial of polymatroids.

Def. Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $a \in P$ we define the cone

$$C(a) = a + \sum_{i \in IA(a) \setminus EA(a)} \mathbb{Z}_{\leq 0} e_i + \sum_{i \in EA(a) \setminus IA(a)} \mathbb{Z}_{\geq 0} e_i + \sum_{i \in IA(a) \cap EA(a)} \mathbb{Z} e_i.$$

Example:
Tutte polynomial of polymatroids.

Def. Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $a \in P$ we define the cone

$$C(a) = a + \sum_{i \in IA(a) \setminus EA(a)} \mathbb{Z}_{\leq 0} e_i + \sum_{i \in EA(a) \setminus IA(a)} \mathbb{Z}_{\geq 0} e_i + \sum_{i \in IA(a) \cap EA(a)} \mathbb{Z} e_i.$$

Thm [BKP] For any polymatroid $P \subseteq \mathbb{Z}^n$,

$$\bigcup_{a \in P} C(a) = \mathbb{Z}^n.$$

Moreover,

$$T_P \left(\frac{1}{1-u}, \frac{1}{1-v} \right) = \sum_{c \in \mathbb{Z}^n} u^{\text{cork}(c)} v^{\text{null}(c)},$$

where $\text{cork}(c) = \min(|b| | c + b \geq a \in P)$, $\text{null}(c) = \min(|b| | c - b \leq c \in P)$.

Relation with Cameron-Fink’s invariant

Def: The **Cameron-Fink invariant** for a polymatroid $P \subseteq \mathbb{Z}^n$ is the unique polynomial $Q_P(x, y)$ such that $\forall k, \ell \in \mathbb{Z}_{\geq 0}$,

$$Q_P(k, \ell) = |(P + k\nabla + \ell\Delta) \cap \mathbb{Z}^n|,$$

where $\Delta = \text{conv}(e_i, i \in [n])$ and $\nabla = \text{conv}(-e_i, i \in [n])$.
Relation with Cameron-Fink’s invariant

Def: The **Cameron-Fink invariant** for a polymatroid \(P \subseteq \mathbb{Z}^n \) is the unique polynomial \(Q_P(x, y) \) such that \(\forall k, \ell \in \mathbb{Z}_{\geq 0}, \)

\[
Q_P(k, \ell) = |(P + k \nabla + \ell \Delta) \cap \mathbb{Z}^n|,
\]

where \(\Delta = \text{conv}(e_i, \ i \in [n]) \) and \(\nabla = \text{conv}(-e_i, \ i \in [n]) \).

Example:
Relation with Cameron-Fink’s invariant

Def: The Cameron-Fink invariant for a polymatroid $P \subseteq \mathbb{Z}^n$ is the unique polynomial $Q_P(x, y)$ such that $\forall k, \ell \in \mathbb{Z}_{\geq 0}$,

$$Q_P(k, \ell) = |(P + k \nabla + \ell \Delta) \cap \mathbb{Z}^n|,$$

where $\Delta = \text{conv}(e_i, \ i \in [n])$ and $\nabla = \text{conv}(-e_i, \ i \in [n])$.

Prop [BKP]:

$$Q_P(x, y) = \sum_{i,j} c_{i,j} \binom{x}{i} \binom{y}{j},$$

where $c_{i,j} = [x^i y^j] \frac{T_P(x + 1, y + 1)}{x + y + 1}$.
Universal Tutte Polynomial
Polymatroids as generalized permutahedra

Def. A polytope $P \subseteq \mathbb{R}^n$ is a **generalized permutahedron** if every edge has direction of the form $e_i - e_j$ for some $i, j \in [n]$.

Example.
Polymatroids as generalized permutahedra

Def. A polytope $P \subseteq \mathbb{R}^n$ is a **generalized permutahedron** if every edge has direction of the form $e_i - e_j$ for some $i, j \in [n]$.

Example.

Prop. $P \subseteq \mathbb{Z}^n$ is a polymatroid if and only if $P = P \cap \mathbb{Z}^n$ for some generalized permutahedron P with vertices in \mathbb{Z}^n.
The space of polymatroids

Def. A function $f : 2^{[n]} \to \mathbb{R}$ is submodular if $f(\emptyset) = 0$ and

$$\forall A, B \subseteq [n], \quad f(A) + f(B) \geq f(A \cup B) + f(A \cap B).$$
The space of polymatroids

Def. A function $f : 2^{[n]} \rightarrow \mathbb{R}$ is **submodular** if $f(\emptyset) = 0$ and

$$\forall A, B \subseteq [n], \quad f(A) + f(B) \geq f(A \cup B) + f(A \cap B).$$

Prop [Edmonds 70]. For a submodular function $f : 2^{[n]} \rightarrow \mathbb{Z}$, the set

$$P_f := \{a \in \mathbb{Z}^n \mid \sum_{i \in [n]} a_i = f([n]) \text{ and } \forall I \subseteq [n], \sum_{i \in I} a_i \leq f(I)\}$$

is a polymatroid.
The space of polymatroids

Def. A function $f : 2^{[n]} \to \mathbb{R}$ is **submodular** if $f(\emptyset) = 0$ and

$$\forall A, B \subseteq [n], \quad f(A) + f(B) \geq f(A \cup B) + f(A \cap B).$$

Prop [Edmonds 70]. For a submodular function $f : 2^{[n]} \to \mathbb{Z}$, the set

$$P_f := \{ a \in \mathbb{Z}^n \mid \sum_{i \in [n]} a_i = f([n]) \text{ and } \forall I \subseteq [n], \sum_{i \in I} a_i \leq f(I) \}$$

is a polymatroid.
The space of polymatroids

Def. A function $f : 2^{[n]} \to \mathbb{R}$ is **submodular** if $f(\emptyset) = 0$ and
\[
\forall A, B \subseteq [n], \quad f(A) + f(B) \geq f(A \cup B) + f(A \cap B).
\]

Prop [Edmonds 70]. For a submodular function $f : 2^{[n]} \to \mathbb{Z}$, the set
\[
P_f := \{ a \in \mathbb{Z}^n \mid \sum_{i \in [n]} a_i = f([n]) \text{ and } \forall I \subseteq [n], \sum_{i \in I} a_i \leq f(I) \}
\]
is a polymatroid.

Conversely, for any polymatroid $P \subseteq \mathbb{Z}^n$ there exists a unique
submodular function $f : 2^{[n]} \to \mathbb{Z}$ such that $P = P_f$.

We call f the **rank function** of P.
The space of polymatroids

Def. A function $f : 2^{[n]} \to \mathbb{R}$ is **submodular** if $f(\emptyset) = 0$ and
\[
\forall A, B \subseteq [n], \quad f(A) + f(B) \geq f(A \cup B) + f(A \cap B).
\]

Prop [Edmonds 70]. For a submodular function $f : 2^{[n]} \to \mathbb{Z}$, the set
\[
P_f := \{a \in \mathbb{Z}^n \mid \sum_{i \in [n]} a_i = f([n]) \text{ and } \forall I \subseteq [n], \sum_{i \in I} a_i \leq f(I)\}
\]
is a polymatroid.

Conversely, for any polymatroid $P \subseteq \mathbb{Z}^n$ there exists a unique submodular function $f : 2^{[n]} \to \mathbb{Z}$ such that $P = P_f$.

We call f the **rank function** of P.

Conclusion. The set of polymatroids on $[n]$ is indexed by the lattice points in the following polyhedron of dimension 2^{n-1}:
\[
\{(f_I)_{I \subseteq [n]} \in \mathbb{R}^{2^{[n]}} \mid f_{\emptyset} = 0 \text{ and } \forall A, B \subseteq [n], \quad f_A + f_B \geq f_{A \cup B} + f_{A \cap B}\}
\]
Universal Tutte polynomial

Thm [BKP]. The Tutte polynomial is polynomial in the rank function.
Universal Tutte polynomial

Thm [BKP]. Let $n \in \mathbb{Z}_{>0}$, and let $z = (z_I)_{\emptyset \neq I \subseteq [n]}$ be variables. There exists a unique polynomial $T_n(x, y; z)$ such that for all submodular function $f : 2^{[n]} \to \mathbb{Z}$,

$$T_{Pf}(x, y) = T_n(x, y; z)|_{z_I = f(I)}.$$
Universal Tutte polynomial

Thm [BKP]. Let \(n \in \mathbb{Z}_{>0} \), and let \(z = (z_I)_{\emptyset \neq I \subseteq [n]} \) be variables. There exists a unique polynomial \(T_n(x, y; z) \) such that for all submodular function \(f : \mathcal{P}[n] \to \mathbb{Z} \),

\[
T_{Pf}(x, y) = T_n(x, y; z)|_{z_I = f(I)}.
\]

Example.

\[
\frac{T_3(x, y; z)}{x + y - 1} = x^2 + 2xy + y^2 \\
+ (z_1 + z_2 + z_3 - z_{123} - 2) x \\
+ (z_{12} + z_{13} + z_{23} - 2z_{123} - 2) y \\
+ \frac{1}{2} (z_{123}^2 - z_{12}^2 - z_{13}^2 - z_{23}^2 - z_1^2 - z_2^2 - z_3^2) \\
- z_{123}(z_1 + z_2 + z_3) \\
+ (z_1z_{12} + z_1z_{13} + z_2z_{12} + z_2z_{23} + z_3z_{13} + z_3z_{23}) \\
+ \frac{1}{2} (3z_{123} - z_{12} - z_{13} - z_{23} - z_1 - z_2 - z_3) + 1.
\]
Proof:
Proof:

Uniqueness:
Space Ω of polymatroids contains a cone of dimension 2^{n-1}.
Proof:

Uniqueness:
Space Ω of polymatroids contains a cone of dimension 2^{n-1}.

Existence:
- In the bulk of Ω: activity constant in the interior of each face, and number of points in each face is polynomial in the z_I.

![Diagram showing the space Ω with arrows indicating directions and labels for $z_1, z_2, z_3, z_{1,2}, z_{1,3}, z_{2,3}, z_{1,2,3}$]
Proof:

Uniqueness:
Space Ω of polymatroids contains a cone of dimension 2^{n-1}.

Existence:
- In the bulk of Ω: activity constant in the interior of each face, and number of points in each face is polynomial in the z_I.
- At the boundary of Ω the contribution of “collapsing” faces behaves polynomially.

$$T_2(x, y; z) = (x + y - 1)x + (x + y - 1)y + (z_1 + z_2 - z_{1,2} - 1)(x + y - 1)$$
Application: Brylawsky’s identities

Easy consequence: For any polymatroid $P \subseteq \mathbb{Z}^n$,

$$[x^i y^{n-i}] T_P(x, y) = [x^i y^{n-i}] T_n(x, y; 0) = \binom{n}{i}.$$
Application: Brylawsky’s identities

Easy consequence: For any polymatroid $P \subseteq \mathbb{Z}^n$,

$$[x^i y^{n-i}] T_P(x, y) = [x^i y^{n-i}] T_n(x, y; 0) = \binom{n}{i}.$$

Cor:[Brylawski 72] For any matroid $M \subseteq 2^{[n]}$ the coefficients $t_{i,j} = [x^i y^j] T_M(x, y)$ satisfy

$$\forall p < n, \quad \sum_{i=0}^p \sum_{j=0}^i \binom{p-i}{j} (-1)^j t_{i,j} = 0.$$
Explicit formula for T_n

Def:[Postnikov] $(d_I)_{\emptyset \neq I \subseteq [n]} \in \mathbb{Z}_{\geq 0}^{2^n}$ is draconian if

$$\forall I_1, \ldots, I_k \subseteq [n], \quad d_{I_1} + \cdots + d_{I_k} \leq |I_1 \cup \cdots \cup I_k| - 1,$$

and

$$\sum_{I \subseteq [n]} d_I = n - 1.$$
Explicit formula for T_n

Def: [Postnikov] $(d_I)_{\emptyset \neq I \subseteq [n]} \in \mathbb{Z}^2_{\geq 0}$ is **draconian** if

$$\forall I_1, \ldots, I_k \subseteq [n], \quad d_{I_1} + \cdots + d_{I_k} \leq |I_1 \cup \cdots \cup I_k| - 1,$$

and

$$\sum_{I \subseteq [n]} d_I = n - 1.$$

The **dragon polynomial** is the following polynomial in $t = (t_I)_{\emptyset \neq I \subseteq [n]}$

$$D_n(t) = \sum_{(d_I) \text{ draconian}} \binom{t_{[n]} - 1}{d_{[n]}} \prod_{\emptyset \neq I \subseteq [n]} \binom{t_I}{d_I},$$

where $\binom{t}{d} := \frac{t(t-1) \cdots (t-d+1)}{d!}$.

Explicit formula for T_n

Thm [BKP]: Let $\hat{T}_n(x, y; t) = T_n(x, y; z)|_{z_I=\sum J \subseteq [n], \ J \cap I \neq \emptyset} t_J$.

Then

$$\hat{T}_n(x, y; t) = (x + y - 1) \sum_{B=(B_1, \ldots, B_{\ell})} (-1)^{\ell-1} D_n(t^B) x^{lr(B)-1} y^{rl(B)-1},$$

where

- $t^B = (t^B_I)$ with $t^B_I = \sum_{J \subseteq \bigcup_{i<k} B_i} t_{I \cup J}$ if $I \subseteq B_k$ for some k, 0 otherwise,

- $lr(B)$ is the number of left-to-right minima of B,
- $rl(B)$ is the number of right-to-left minima of B.
Some explanation/intuition for the formula:

\[\hat{T}_n(x, y; t) = (x + y - 1) \sum_{B=(B_1, \ldots, B_\ell)} (-1)^{\ell-1} D_n(t^B) x^{lr(B)-1} y^{rl(B)-1}, \]

\[\mathcal{P} = \sum_{I \subseteq [n]} t_I \Delta_I, \]

- Change of variables \(z \rightarrow t \):
 The tuple \(z = (z_I) \) given by \(z_I = \sum_{J \subseteq [n] : J \cap I \neq \emptyset} t_J \) is the rank function of \(P = \sum_{I \subseteq [n]} t_I \Delta_I \), where \(\Delta_I = \text{conv}(e_i, i \in I) \).
Some explanation/intuition for the formula:

\[\hat{T}_n(x, y; t) = (x + y - 1) \sum_{B=(B_1, \ldots, B_\ell)} (-1)^{\ell-1} D_n(t^B) x^{lr(B)-1} y^{rl(B)-1}, \]

where \(B = \{B_1, \ldots, B_\ell\} \) \(\cup B_k = [n] \).

- Change of variables \(z \rightarrow t \):
The tuple \(z = (z_I) \) given by \(z_I = \sum_{J \subseteq [n] : J \cap I \neq \emptyset} t_J \) is the rank function of \(\mathcal{P} = \sum_{I \subseteq [n]} t_I \Delta_I \), where \(\Delta_I = \text{conv}(e_i, i \in I) \).

- The partitions \(B \) index the faces of a generic permutahedron. The tuple \(t^B \) gives the rank function of the face.
Some explanation/intuition for the formula:

$$\widehat{T}_n(x, y; t) = (x + y - 1) \sum_{B = (B_1, \ldots, B_{\ell}) \cup B_k = [n]} (-1)^{\ell - 1} D_n(t^B) x^{lr(B) - 1} y^{rl(B) - 1},$$

- Change of variables $z \rightarrow t$:
The tuple $z = (z_I)$ given by $z_I = \sum_{J \subseteq [n] : J \cap I \neq \emptyset} t_J$ is the rank function of $P = \sum_{I \subseteq [n]} t_I \Delta_I$, where $\Delta_I = \text{conv}(e_i, i \in I)$.

- The partitions B index the faces of a generic permutahedron. The tuple t^B gives the rank function of the face.

- The dragon polynomial $D_n(t)$ gives the number of lattice points in the interior of a permutahedron [Postnikov 06].
The draconian sequences correspond to the hypertrees of the complete hypergraph H_n on $[n]$ having one hyperedge for each $I \subseteq [n]$.

̂$T_n(x, y; t) = (x+ y−1) \sum_{B=(B_1,\ldots,B_{\ell}) \cup B_k=[n]} (-1)^{\ell−1} D_n(t^B) x^{lr(B)−1} y^{rl(B)−1},$
Cor [BKP]: The classical permutahedron

\[P_n = \text{conv}\{(\pi(1), \pi(2), \ldots, \pi(n)), \pi \in S_n\} \cap \mathbb{Z}^n \]

has Tutte polynomial

\[T_{P_n}(x, y) = \sum_{F \text{ forest on } [n]} (x + y - 1)^\# \text{ connected components}. \]

Example.

\[T_{P_3}(x, y) = (x + y - 1)^3 + 3(x + y - 1)^2 + 3(x + y - 1). \]
Thanks.