Acquired idiopathic thrombotic thrombocytopenic purpura successfully treated with intravenous immunoglobulin and glucocorticoid

A case report

Hiro Nakao, MDa,b,∗, Akira Ishiguro, MD, PhDb,c, Nahoko Ikoma, MDa,b, Kentaro Nishi, MDa,b, Chemin Su, MDa,b, Hisaya Nakadate, MD, PhDa,b,c, Mitsuru Kubota, MD, PhDa, Masaki Hayakawa, MD, PhDb, Masanori Matsumoto, MD, PhDd

Abstract

Rationale: Plasma exchange is the principal treatment for acquired thrombotic thrombocytopenic purpura (TTP) but is invasive and may have adverse effects. Reports of immunoglobulin therapy for acquired TTP without plasma exchange are rare.

Patient concerns: A 14-year-old girl was admitted because of hemolytic anemia and thrombocytopenia. This case report was approved by the Ethical Review Board of National Center for Child Health and Development.

Diagnosis: Acquired TTP was diagnosed based on low ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type 1 motif, 13) activity and a high ADAMTS13 inhibitor level.

Interventions & Outcomes: Fresh frozen plasma was initially effective. Prednisolone and immunoglobulin resolved the condition with no adverse effects and rendered plasma exchange unnecessary.

Lessons: Compared with biological agents, immunoglobulin is cost-effective, readily available, and has a proven long-term safety record, making it a possible treatment option for acquired thrombotic thrombocytopenic purpura.

Abbreviations: ADAMTS13 = a disintegrin-like and metalloproteinase with thrombospondin type 1 motif, 13, HMW-VWFM = high-molecular-weight von Willebrand factor multimers, TTP = thrombotic thrombocytopenic purpura, UL-VWFM = ultra large von Willebrand factor multimers, VWF = von Willebrand factor.

Keywords: ADAMTS13, ADAMTS13 inhibitor, intravenous immunoglobulin, plasmapheresis, thrombotic thrombocytopenic purpura

1. Introduction

Acquired thrombotic thrombocytopenic purpura (TTP) is caused by ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type 1 motif, 13) inhibitor.[1,2] Plasma exchange, used to remove the ADAMTS13 inhibitor and replenish ADAMTS13, is the principal treatment for acquired TTP and has reportedly reduced mortality from ∼90% to 10% to 20%. The British Society for Haematology guidelines recommend starting plasma exchange immediately after the diagnosis of TTP.[3] Plasma exchange, however, is invasive and may have adverse effects such as bleeding or thrombosis, especially in patients with hemostatic or thrombotic problems such as TTP. For these reasons, TTP treatments not using plasma exchange should be considered.

We report herein a case of acquired idiopathic TTP treated with immunoglobulin, glucocorticoid, and plasma infusion without plasma exchange.

2. Case

A 14-year-old girl was admitted to our hospital with a 1-week history of fever, purpura, hemolytic anemia, and thrombocytopenia. Her past medical history and family history were unremarkable.

A fever, bloody sputum with macrohematuria, and purpura in the lower legs developed 1 week, 5 days, and 2 days before admission, respectively. On the day of admission, the patient complained of dyspnea during a tennis game and visited another hospital where hemolytic anemia and thrombocytopenia were diagnosed. The patient was later transferred to our hospital. A physical examination on admission revealed icteric conjunctiva, purpura of the lower legs, and no neurological abnormalities.
Laboratory findings revealed hemolytic anemia (hemoglobin level: 78 g/L; hematocrit: 22.7%; reticulocyte count: 54 × 10^9/L; total bilirubin: 66 mg/L; indirect bilirubin: 51 mg/L; aspartate aminotransferase: 50 U/L; lactate dehydrogenase: 1142 U/L; and haptoglobin: undetectable), thrombocytopenia (platelet count: 6.0 × 10^9/L), and renal damage (urinary protein: 2.3 g/L; serum creatinine: 5.0 mg/L).

Emergency treatment was started immediately after admission with platelet transfusion and intravenous immunoglobulin 1 g/kg for refractory epistaxis. Nonetheless, the hemolytic anemia worsened and the platelets failed to increase. On hospital day 2, fresh frozen plasma (FFP) was started. After a FFP transfusion, the hemolytic anemia improved (Fig. 1), and the patient received repeated transfusions of FFP and additional examinations. On hospital day 4, the fever resolved and the urinary protein disappeared.

Additional laboratory findings demonstrated that ADAMTS13 activity was <0.5% of that of the control and that the ADAMTS13 inhibitor level was 2.1 Bethesda U/mL. There was no suggestion of an underlying malignancy or collagen vascular disease. The verotoxin test was negative. Based on these findings, acquired idiopathic TTP was diagnosed (Fig. 1), and the patient received repeated transfusions of FFP and additional examinations. On hospital day 4, the fever resolved and the urinary protein disappeared.

Additional laboratory findings demonstrated that ADAMTS13 activity was <0.5% of that of the control and that the ADAMTS13 inhibitor level was 2.1 Bethesda U/mL. There was no suggestion of an underlying malignancy or collagen vascular disease. The verotoxin test was negative. Based on these findings, acquired idiopathic TTP was diagnosed (Fig. 1), and the patient received repeated transfusions of FFP and additional examinations. On hospital day 4, the fever resolved and the urinary protein disappeared.

3. Discussion

We reported a case of acquired idiopathic TTP treated with immunoglobulin, glucocorticoid, and FFP transfusion without plasma exchange. The pathophysiology was confirmed by VWF multimer analysis.

The second dose of immunoglobulin evidently resolved our patient’s symptoms. However, reports of immunoglobulin therapy for TTP without plasma exchange are rare. Immunoglobulin therapy for TTP, most of which included plasma exchange, was mainly reported in the early 1990s. From 2000, rituximab emerged as an effective treatment option for TTP, and reports of immunoglobulin therapy markedly
In conclusion, immunoglobulin may be a viable treatment option against acquired TTP although further studies are needed to ascertain its exact effects against this disease.

Acknowledgments

The authors thank Mr. James Valera and Ms. Emma Barber, who have given their permission to be named here, for their professional assistance in editing this manuscript.

References

[1] Furlan M, Robles R, Solenthaler M, et al. Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura. Blood 1998;91:2839–46.
[2] Tsai HM, Lian EYC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998;339:1583–94.
[3] Scully M, Hunt BJ, Benjamin S, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol 2012;158:323–35.
[4] Finn NG, Wang JC, Hong KJ. High-dose intravenous gamma-immunoglobulin infusion in the treatment of thrombotic thrombocytopenic purpura. Arch Intern Med 1987;147:2165–7.
[5] Staszewski H, Colbourn D, Donovan V, et al. Thrombotic thrombocytopenic purpura: report of a case with a possible response to high-dose gamma globulin. Acta Haematol 1989;82:201–4.
[6] Heyman MR, Sweet T. Thrombotic thrombocytopenic purpura treated with high-dose intravenous gamma globulin. South Med J 1990;83:1471–4.
[7] Castaman G, Rodeghiero F, Ruggeri M, et al. Long-lasting remission after high-dose intravenous immunoglobulins in a case of relapsing thrombotic thrombocytopenic purpura. Haematologica 1991;76:511–2.
[8] Kolodziei M. Case report: high-dose intravenous immunoglobulin as therapy for thrombotic thrombocytopenic purpura. Am J Med Sci 1993;305:101–2.
[9] Nosari A, Muti G, Busnach G, et al. Intravenous gamma globulin in refractory thrombotic thrombocytopenic purpura. Acta Haematol 1996;96:255–7.
[10] Park SJ, Kim SJ, Seo HY, et al. High-dose immunoglobulin infusion for thrombotic thrombocytopenic purpura refractory to plasma exchange and steroid therapy. Korean J Intern Med 2008;23:161–4.
[11] Centurioni R, Bobbio-Pallavicini E, Porta C, et al. Treatment of thrombotic thrombocytopenic purpura with high-dose immunoglobulins, results in 17 patients. Haematologica 1995;80:325–31.
[12] Scully M, McDonald V, Cavenagh J, et al. A phase 2 study of the safety and efficacy of rituximab with plasma exchange in acute acquired thrombotic thrombocytopenic purpura. Blood 2011;118:1746–53.
[13] Tun NM, Villani GM. Efficacy of rituximab in acute refractory or chronic relapsing non-familial idiopathic thrombotic thrombocytopenic purpura: a systematic review with pooled data analysis. J Thromb Thrombolysis 2012;34:347–59.
[14] Lim W, Vesely SK, George JN. The role of rituximab in the management of patients with acquired thrombotic thrombocytopenic purpura. Blood 2013;122:1526–31.
[15] Kawano N, Yokota N, Yoshida S, et al. Therapeutic modality of 11 patients with TTP in a single institution in Miyazaki from 2000 to 2011. Intern Med 2015;52:1883–91.
[16] Peyvandi F, Scully M, Kremer Hovinga JA, et al. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2016;374:511–22.
[17] Schwab I, Nimmerjahn F: Intravenous immunoglobulin therapy: how dose IgG modulate the immune system? Nat Rev Immunol 2013;13:176–89.

Figure 2. Changes in multimers by agarose gel electrophoresis and von Willebrand factor (VWF) antigen, activity of ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13), and ADAMTS13 inhibitor. ADAMTS13 = a disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13, NC = normal control, VWF = von Willebrand factor.