On the complexity of the theory of a computably presented metric structure

Caleb Camrud1 · Isaac Goldbring2 · Timothy H. McNicholl1

Received: 8 February 2022 / Accepted: 25 May 2023 / Published online: 9 June 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
We consider the complexity (in terms of the arithmetical hierarchy) of the various quantifier levels of the diagram of a computably presented metric structure. As the truth value of a sentence of continuous logic may be any real in [0, 1], we introduce two kinds of diagrams at each level: the closed diagram, which encapsulates weak inequalities of the form $\phi^M \leq r$, and the open diagram, which encapsulates strict inequalities of the form $\phi^M < r$. We show that the closed and open Σ^0_N diagrams are Π^0_{N+1} and Σ^0_N respectively, and that the closed and open Π^0_N diagrams are Π^0_N and Σ^0_{N+1} respectively. We then introduce effective infinitary formulas of continuous logic and extend our results to the hyperarithmetical hierarchy. Finally, we demonstrate that our results are optimal.

Keywords
Computable structure theory · Continuous logic · Computable analysis · Metric structures · Hyperarithmetical hierarchy

Mathematics Subject Classification
03C57 · 03D78 · 03C75 · 03B52

Caleb Camrud
ccamrud1@gmail.com

Isaac Goldbring
isaac@math.uci.edu

Timothy H. McNicholl
mcnichol@iastate.edu

1 Department of Mathematics, Iowa State University, Carver Hall, 411 Morill Rd., Ames, IA 50011, USA

2 Department of Mathematics, University of California, Irvine, 340 Rowland Hall (Bldg.# 400), Irvine, CA 92697, USA
1 Introduction

Suppose \mathcal{A} is a computably presented countable structure, that is, we have numbered the elements of its domain so that the resulting operations and relations on the natural numbers are computable. A longstanding and ongoing line of inquiry in computable model theory is to study the complexity of the elementary (i.e. complete) diagram of such models at the various quantifier levels. In particular, such a model is said to be N-decidable if the set of the Σ_N-sentences of its elementary diagram is computable. A seminal result in this direction is the theorem of Moses and Chisholm that there is a computable linear order that is n-decidable for all n yet not decidable [1]. More recently, Fokina et. al. have investigated index sets of n-decidable models; i.e. the complexity of classifying such models [2]. More results along these lines can be found in the survey by Fokina, Harizanov, and Melnikov [3].

Here, we wish to initiate a similar program for metric structures in the context of continuous logic as expounded in [4]. We use the framework for studying the computability of metric structures that has evolved over approximately the past decade (see e.g. [5], [6]). There are two difficulties that must be confronted at the outset. One difficulty is that for a sentence ϕ of continuous logic, the truth value of ϕ can be any real in $[0, 1]$, with 0 representing truth and 1 representing falsity. Another difficulty is that the domain of a typical metric structure is uncountable, hence the inclusion of parameters in our sentences would immediately pose complications for a computability-theoretic analysis. Our solution to the first difficulty is to study two kinds of diagrams: closed diagrams, corresponding to inequalities of the form $\phi^\mathcal{M} \leq r$, and open diagrams, corresponding to inequalities of the form $\phi^\mathcal{M} < r$.1 (Here $\phi^\mathcal{M}$ is the truth-value of ϕ in the model \mathcal{M}.) We leave consideration of possible solutions of the second obstacle for future work. Consequently, we only consider parameter-free sentences.

In the classical case, the complexity of the levels of a diagram of a computably presented model is very straightforward: the collection of true Σ_N sentences is Σ^0_N and the collection of true Π_N sentences is Π^0_N. True arithmetic demonstrates that these bound are optimal. We find, however, that in the context of continuous logic, the relation is not so straightforward. For example, in our first main result (Theorem 7), we show that the closed Σ_N diagram is Π^0_{N+1}, so that we obtain neither the expected quantifier nor the expected level of complexity. This result may seem surprising at first due to its dissonance with the classical case. However, some reflection on the nature of computation with real numbers will likely reveal it is the only answer possible. Nevertheless, in our second main result (Theorem 9), we show that our upper bounds in the finite case are indeed optimal.

We then extend our results to infinitary continuous logic. In this context, we use the hyperarithmetical hierarchy to gauge complexity. The theory of infinitary continuous logic has been previously studied in [7] and [8]. As might be expected, our results for infinitary logic (Theorems 10 and 11), parallel our findings for finitary logic. However, the availability of infinite disjunctions yields simpler demonstrations of the lower bounds.

1 Here, the term ‘open’ is derived from topological consideration rather than the absence of quantifiers.
The paper is organized as follows. Section 2 covers relevant background from computability theory, computable analysis, and continuous logic. Section 3 lays out the framework for effective infinitary continuous logic. In Sect. 4, we prove a novel and surprising combinatorial result which supports our work on finitary logic. Upper and lower bounds for the finitary case as presented in Sects. 5 and 6, respectively. The upper and lower bounds for the infinitary case are then demonstrated in Sect. 7. Finally, Sect. 8 mentions some applications, presents some avenues for further investigation, and summarizes our findings.

2 Background

2.1 Background from continuous logic

We generally follow the framework of [4]. However, we limit our connectives to \(\lnot, \frac{1}{2}, \text{ and } \cdot \). The universal and existential quantifiers are replaced by ‘sup’ and ‘inf’ respectively. In the following, by language, we mean a signature for a metric structure. A language in this sense includes a modulus of (uniform) continuity for each predicate symbol and each function symbol. When \(M \) is an \(L \)-structure, we denote the domain of \(M \) as \(|M| \).

The \(\Sigma_N \) and \(\Pi_N \) wff’s of a language \(L \) are defined as in the classical case. For example, if \(\phi \) is a quantifier-free wff of \(L \), then \(\inf_{x_1} \sup_{x_2} \phi \) is a \(\Sigma_2 \) wff of \(L \).

The language \(L_{\omega_1\omega} \) is considered in the sense of Eagle in [8] as opposed to the language given by Ben Yaacov and Iovino in [7]. The key distinction is that \(L_{\omega_1\omega} \) in [8] does not require every infinitary formula to have a modulus of continuity, while the language of [7] does. Adding this extra condition complicates the effective encoding of the computable infinitary formulas. However, as we shall see later, our results will hold in any reasonable effectivization of the framework of Ben Yaacov and Iovino.

A key terminological difference with classical infinitary logic is that \(\bigvee \) is used for infinite conjunction and \(\bigwedge \) for infinite disjunction. That is, \(\bigvee_n \) is interpreted as \(\sup_n \) and \(\bigwedge_n \) is interpreted as \(\inf_n \). The reasons for this are clear when considering the ordered set of real numbers as a lattice.

2.2 Background from computability theory

Familiarity with standard computability-theoretic concepts like computable enumerability, oracle computability, the arithmetical hierarchy, and the relationship between each of these is assumed. A thorough treatment of these subjects can be found in [9, 10]. For background on the hyperarithmetical hierarchy, see [11, 12].

Let \(O \) denote Kleene’s system of notations for the computable ordinals. If \(\alpha < \omega_1^\mathrm{CK} \), then \(\langle \alpha \rangle \) denotes the set of all notations for \(\alpha \).

A real number \(r \) is computable if there is an effective procedure which, given \(k \in \mathbb{N} \), produces a rational number \(q \) such that \(|r - q| < 2^{-k} \). A sequence \((r_n)_{n \in \mathbb{N}} \) of reals is computable if it is computable uniformly in \(n \). By an index of such a sequence we mean an index of a Turing machine that computes it.
Suppose \((M, d)\) and \((M', d')\) are metric spaces, and let \(\Gamma : M \rightarrow M'\). A map \(\Delta : \mathbb{N} \rightarrow \mathbb{N}\) is called a modulus of continuity for \(\Gamma\) if \(d(a, b) < 2^{-\Delta(k)}\) implies \(d'(\Gamma(a), \Gamma(b)) \leq 2^{-k}\). A map \(\Gamma : M \rightarrow M'\) is called effectively uniformly continuous if it has a computable modulus of continuity.

In the following, \(L\) denotes an effectively numbered language with uniformly computable moduli of continuity. That is, there is an algorithm that given a number assigned to a predicate or function symbol \(\phi\) computes the modulus function of \(\phi\). Moreover, unless otherwise mentioned, every structure will be assumed to be an \(L\)-structure.

Our framework for the computability of metric structures is essentially that in [6]. Given a structure \(M\) and \(A \subseteq |M|\), we define the algebra generated by \(A\) to be the smallest subset of \(|M|\) containing \(A\) that is closed under every function of \(M\). A pair \((M, g)\) is called a presentation of \(M\) if \(g : \mathbb{N} \rightarrow |M|\) is a map such that the algebra generated by \(\text{ran}(g)\) is dense. We use \(M^\sharp\) to denote presentations of a structure \(M\). Given a presentation \(M^\sharp = (M, g)\), every \(a \in \text{ran}(g)\) is called a distinguished point of \(M^\sharp\), and each point in the algebra generated by the distinguished points is called a rational point of \(M^\sharp\). The set of all rational points of \(M^\sharp\) is denoted \(\mathbb{Q}(M^\sharp)\). By an open rational ball of \(M^\sharp\) we mean an open ball of \(M\) whose radius is rational and whose center is a rational point of \(M^\sharp\). By a rational cover of \(M^\sharp\) we mean a finite set of rational balls of \(M^\sharp\) that covers \(|M|\).

A presentation \(M^\sharp\) is computable if the predicates of \(M\) are uniformly computable on the rational points of \(M^\sharp\). Since the metric is a binary predicate on \(M\), this entails that the distance between any two rational points is uniformly computable. We say that a metric structure is computably presentable if it has a computable presentation. We say that a presentation \(M^\sharp\) is computably compact if the set of its rational covers is computably enumerable. Lastly, we define an index of a computable presentation \(M^\sharp\) to be a code of a Turing machine that computes the predicates of \(M\) on the rational points of \(M^\sharp\).

3 Preliminaries

3.1 Preliminaries from classical logic and computability

We begin with some relational notation which will facilitate the statements of many of our results and their proofs.

Definition 1 Let \(N \in \mathbb{N}\), and suppose \(R \subseteq \mathbb{N}^{N+1}\).

1. \(\neg R = \mathbb{N}^{N+1} - R\).
2. \(\exists R = \{ n \in \mathbb{N} \mid \exists x_1 \forall x_2 \ldots Q x_N R(n, x_1, \ldots, x_N)\}\).
3. \(\forall R = \{ n \in \mathbb{N} \mid \forall x_1 \exists x_2 \ldots Q x_N R(n, x_1, \ldots, x_N)\}\).

In Definition 1.2, \(Q\) denotes the quantifier \(\forall\) if \(N\) is even and \(\exists\) if \(N\) is odd. Similarly, in Definition 1.3, \(Q\) denotes the quantifier \(\forall\) if \(N\) is odd and \(\exists\) if \(N\) is even. We will follow these conventions in the sequel.
Given $R \subseteq \mathbb{N}^{N+1}$, we also set

$$R^\ast = \{(n, x_1, \ldots, x_N) \in \mathbb{N}^{N+1} : \forall x_1' \leq x_1 \exists x_2' \leq x_2 \ldots Qx_N' \leq x_N \ R(n, x_1', \ldots, x_N')\}.$$

Note that $R \equiv_T R^\ast$. Finally, let χ_R denote the characteristic (indicator) function of R.

We fix a uniformly computable family $(R_N)_{N \in \mathbb{N}}$ of relations so that for each $N \in \mathbb{N}$, $R_{2N} \cup R_{2N+1} \subseteq \mathbb{N}^{N+2}$, $\forall R_{2N}$ is Π^0_{N+1}-complete, and $\exists R_{2N+1}$ is Σ^0_{N+1}-complete.

3.2 Preliminaries from continuous logic

We begin by formally defining the open and closed diagrams of a metric structure.

Definition 2 Let \mathcal{M} be an L-structure. In the following, ϕ ranges over sentences of L and q ranges over $[0, 1] \cap \mathbb{Q}$.

1. The **closed** (resp. open) **quantifier-free diagram** of \mathcal{M} is the set of all pairs (ϕ, q) so that ϕ is quantifier-free and $\phi^\mathcal{M} \leq q$ (resp. $\phi^\mathcal{M} < q$).

2. For every positive integer N, the closed (resp. open) Π_N diagram of \mathcal{M} is the set of all pairs (ϕ, q) so that ϕ is Π_N and $\phi^\mathcal{M} \leq q$ (resp. $\phi^\mathcal{M} < q$). The closed and open Σ_N diagrams are defined similarly.

We now define the computable wff’s of $L_{\omega_1\omega}$ and their codes by effective transfinite induction. We follow the development of the classical case in [11]. We presume an effective enumeration of the quantifier-free wff’s of L. We also presume effective codings of the following.

1. All pairs of the form (j, \bar{z}), where $j \in \mathbb{N}$ and \bar{z} is a tuple of variables.

2. All quadruples of the form (X, a, \bar{x}, e), where $X \in \{\Sigma, \Pi\}, a, e \in \mathbb{N}$, and \bar{x} is a tuple of variables.

When \bar{z} is a tuple of either of the above types, we let \bar{E} denote the code of \bar{z}.

For every $X \in \{\Sigma, \Pi\}$ and $a \in \mathcal{O}$, we first define the index set S^X_a in such a way that if $a \in \langle X \rangle$, then every formula with indices in S^X_a will be X_α.

We begin by setting S^Σ_1 and S^Π_1 to be the set of codes of all quantifier-free, finitary formulas of \mathcal{L}. (Recall that 1 denotes 0 in Kleene’s \mathcal{O}.). For every $a \in \mathcal{O} - \{1\}$ and $X \in \{\Sigma, \Pi\}$, let S^X_a be the set of codes of all quadruples of the form (X, a, \bar{x}, e), where \bar{x} is a finite tuple of variable symbols, and $e \in \mathbb{N}$.

Now for every $a \in \mathcal{O}$, $X \in \{\Sigma, \Pi\}$, and tuple of variable symbols \bar{x}, we define $P(X, a, \bar{x})$ to be the set of all codes of pairs (j, \bar{z}), where j codes a quadruple (X, b, \bar{y}, e') with $b \ll <_\mathcal{O} a$ and \bar{z} is a finite sequence of variable symbols of \bar{y} not contained in \bar{x}.

For each $i \in S^\Sigma_a \cup S^\Pi_a$, we define an infinitary wff ϕ_i as follows:

1. If $a = 1$, then ϕ_i is the quantifier-free finitary wff indexed by i.

2. Suppose $a > 1$ and $i = (X, a, \bar{x}, e)$.
(a) If $X = \Sigma$, then
\[
\phi_i = \bigwedge_{(j, z) \in W_c \cap P(\Pi, a, x)} \inf_z \phi_j.
\]

(b) If $X = \Pi$, then
\[
\phi_i = \bigvee_{(j, z) \in W_c \cap P(\Sigma, a, x)} \sup_z \phi_j.
\]

For every computable ordinal α, we let Σ^c_α denote the set of all formulas ϕ_i where $i \in \bigcup_{a \in \langle \alpha \rangle} S_a$. Similarly, Π^c_α denotes the set of all formulas ϕ_i where $i \in \bigcup_{a \in \langle \alpha \rangle} P_a$. If $\psi = \phi_i$, then we say that i is a code of ψ. By a computable infinitary formula, we mean an element of $\Sigma^c_\alpha \cup \Pi^c_\alpha$ for some computable ordinal α.

It is fairly routine to verify that all logical operations can be performed effectively via this coding system. For example, from an i that codes an infinitary wff ϕ, it is possible to compute a code of $\sup_x \phi$.

4 Coding quantifiers via series inequalities

We introduce here some results that will support our demonstration of lower bounds. Among these, our main combinatorial result (Theorem 2) is a principle for representing Σ^0_N and Π^0_N sets as solutions of inequalities involving infinite series. We believe this connection is sufficiently novel to merit consideration on its own.

We begin with the following lemma which is easily verified by simultaneous induction on N. Note that the suprema and infima range over \mathbb{N}.

Lemma 1 For $R \subseteq \mathbb{N}^{N+1}$ and $n \in \mathbb{N}$, we have:

1. $n \in \exists^* R$ if and only if $\inf_{x_1} \sup_{x_2} \ldots Q_{x_N} \chi_R(n, x_1, \ldots, x_N) = 1$.
2. $n \in \forall^* R$ if and only if $\sup_{x_1} \inf_{x_2} \ldots Q_{x_N} \chi_R(n, x_1, \ldots, x_N) = 1$.

To state our main theorem of this section, we need the following.

Definition 3 For $K, N \in \mathbb{N}$ and $f : \mathbb{N}^{N+1} \to \mathbb{R}$ a bounded function, set:

\[
\Gamma_K(f ; x_1, \ldots, x_N) = \sum_{x_0=0}^{K} 2^{-(x_0+1)} f(x_0, \ldots, x_N)
\]

\[
\Gamma(f ; x_1, \ldots, x_N) = \sum_{x_0=0}^{\infty} 2^{-(x_0+1)} f(x_0, \ldots, x_N).
\]

We define $\Gamma(f) : \mathbb{N}^{N} \to \mathbb{R}$ by setting $\Gamma(f)(x_1, \ldots, x_N) = \Gamma(f; x_1, \ldots, x_N)$. We note that $\Gamma(f)$ is computable if f is computable and, in this case, an index of $\Gamma(f)$ can be computed from an index of f and a bound on f.

We are now ready to state and prove the key result of this section. In what follows, we view elements of \mathbb{N}^{N+2} as being of the form $(x_0, x_1, \ldots, x_N, n)$.
Theorem 2 Let $R \subseteq \mathbb{N}^{N+2}$, and let $n \in \mathbb{N}$.

1. $n \in \exists R$ if and only if

$$\inf_{x_1} \sup_{x_2} \ldots Q_{x_N} \Gamma \left(1 - \frac{1}{2} \chi_{R^*}; x_1, \ldots, x_N, n \right) \leq \frac{1}{2}.$$

2. $n \in \exists R$ if and only if

$$\sup_{x_1} \inf_{x_2} \ldots Q_{x_N} \Gamma \left(\frac{1}{2} \chi_{(-R)^*}; x_1, \ldots, x_N, n \right) < \frac{1}{2}.$$

The proof of the previous theorem requires a few preparatory lemmas. For the first lemma, note that if $f : \mathbb{N} \to \mathbb{R}$ is a bounded function, then $\Gamma_K(f)$ is simply a real number (i.e. a constant).

Lemma 3 If $f : \mathbb{N} \to \{\frac{1}{2}, 1\}$, then for every $K \in \mathbb{N}$, $\Gamma_K(f) \leq \frac{1}{2}$ if and only if $f(m) = \frac{1}{2}$ for all $m < K$.

Proof sketch Fix $K \in \mathbb{N}$. Consider the given sum in base 2. Any $m < K$ for which $f(m) = 1$ leads to a ‘carry’ operation so that the $\frac{1}{2}$-position becomes 1. Adding $f(K)$ would then force the value to be greater than $\frac{1}{2}$. □

Lemma 4 Suppose $R \subseteq \mathbb{N}^{N+1}$. Then $\forall(R^*) = \forall R$.

Proof sketch The proof that $\forall(R^*) \subseteq \forall R$ is straightforward. The other inclusion is demonstrated via Skolemization. □

Lemma 5 Fix $R \subseteq \mathbb{N}^{N+2}$ and $1 \leq J \leq N$. Then for every $x_1, \ldots, x_{J-1}, n \in \mathbb{N}$ and every $K \in \mathbb{N}$, we have:

1. $\sup_{x_J} \inf_{x_{J+1}} \ldots Q_{x_N} \Gamma_K \left(1 - \frac{1}{2} \chi_{R^*}; x_1, \ldots, x_N, n \right) \leq \frac{1}{2}$ if and only if

$$\Gamma_K(\sup_{x_J} \inf_{x_{J+1}} \ldots Q_{x_N} (1 - \frac{1}{2} \chi_{R^*}); x_1, \ldots, x_{J-1}, n) \leq \frac{1}{2}.$$

2. $\inf_{x_J} \sup_{x_{J+1}} \ldots Q_{x_N} \Gamma_K \left(1 - \frac{1}{2} \chi_{R^*}; x_1, \ldots, x_N, n \right) \leq \frac{1}{2}$ if and only if

$$\Gamma_K(\inf_{x_J} \sup_{x_{J+1}} \ldots Q_{x_N} (1 - \frac{1}{2} \chi_{R^*}); x_1, \ldots, x_{J-1}, n) \leq \frac{1}{2}.$$

Proof Set $G = 1 - \frac{1}{2} \chi_{R^*}$ and note that $\text{ran}(G) \subseteq \{\frac{1}{2}, 1\}$. Thus, in what follows, all suprema are maxima and all infima are minima. Also, we may assume $K > 0$.

We proceed by induction on $N - J$. We begin with the base case for (1), that is, $J = N - 1$. Without loss of generality, we may assume that one of the two quantities in (1) is no larger than $\frac{1}{2}$. Since $\Gamma_K(\sup_{x_N} G; x_1, \ldots, x_{N-1}, n) \geq \sup_{x_N} \Gamma_K(G; x_1, \ldots, x_N, n)$, we may assume $\sup_{x_N} \Gamma_K(G; x_1, \ldots, x_N, n) \leq \frac{1}{2}$. By Lemma 3, we have that $G(x_0, x_1, \ldots, x_N) = \frac{1}{2}$ for all $x_N \in \mathbb{N}$ and all $x_0 < K$.

By Lemma 3 again, $\Gamma_K(\sup_{x_N} G; x_1, \ldots, x_{N-1}, n) \leq \frac{1}{2}$.

We now consider the base case for (2). Again, we may assume one of the two quantities in (2) is no larger than $\frac{1}{2}$. Since $\Gamma_K(\inf_{x_N} G; x_1, \ldots, x_{N-1}, n) \leq \inf_{x_N} \Gamma_K(G; x_1, \ldots, x_N, n)$, we assume $\Gamma_K(\inf_{x_N} G; x_1, \ldots, x_{N-1}, n) \leq \frac{1}{2}$. By
Lemma 3, \(\inf_{x_N} G(x_0, \ldots, x_N, n) = \frac{1}{2} \) for all \(x_0 < K \). Consequently, for each \(x_0 < K \), there exists \(\xi_{x_0} \in \mathbb{N} \) so that \(G(x_0, \ldots, x_{N-1}, \xi_{x_0}, n) = \frac{1}{2} \). Let

\[
\xi = \begin{cases}
\max_{0 < x_0 < K} \xi_{x_0} & \text{if } N \text{ odd} \\
0 & \text{otherwise.}
\end{cases}
\]

By the definition of \(R^* \), it follows that \(G(x_0, \ldots, x_{N-1}, \xi, n) = \frac{1}{2} \) for all \(x_0 < K \). By Lemma 3 again, \(\inf_{x_N} \Gamma_K(G; x_1, \ldots, x_N, n) \leq \frac{1}{2} \).

We now perform the inductive step for (1). Suppose that \(N - J > 1 \) and set \(H = \inf_{x_{J+1}} \ldots Q_{x_N} G \). By the inductive hypothesis, it suffices to show that \(\sup_{x_J} \Gamma_K(H; x_1, \ldots, x_J, n) \leq \frac{1}{2} \) if and only if \(\Gamma_K(\sup_{x_J} H; x_1, \ldots, x_{J-1}, n) \leq \frac{1}{2} \).

Without loss of generality, we assume \(\sup_{x_J} \Gamma_K(H; x_1, \ldots, x_J, n) \leq \frac{1}{2} \) By Lemma 3, for all \(x_J \in N \) and all \(x_0 < K, H(x_0, x_1, \ldots, x_J, n) = \frac{1}{2} \). By Lemma 3 again, \(\Gamma_K(\sup_{x_J} H; x_1, \ldots, x_{J-1}, n) \leq \frac{1}{2} \).

We now carry out the inductive step for (2). In this case, we consider the function \(H = \sup_{x_{J+1}} \ldots Q_{x_N} G \). It suffices to show that \(\inf_{x_J} \Gamma_K(H; x_1, \ldots, x_J, n) \leq \frac{1}{2} \) if and only if \(\Gamma_K(\inf_{x_J} H; x_1, \ldots, x_{J-1}, n) \leq \frac{1}{2} \).

Without loss of generality, we assume \(\Gamma_K(\inf_{x_J} H; x_1, \ldots, x_{J-1}, n) \leq \frac{1}{2} \) By Lemma 3, for every \(x_0 < K, \inf_{x_J} H(x_0, \ldots, x_J, n) = \frac{1}{2} \), whence, for every \(x_0 < K \), there exists \(\xi_{x_0} \in \mathbb{N} \) so that \(H(x_0, \ldots, x_{J-1}, \xi_{x_0}, n) = \frac{1}{2} \). Let

\[
\xi = \begin{cases}
\max_{x_0 < K} \xi_{x_0} & J \text{ odd} \\
0 & \text{otherwise.}
\end{cases}
\]

By the definition of \(R^* \), \(H(x_0, x_1, \ldots, x_{J-1}, \xi, n) = \frac{1}{2} \) for all \(x_0 < K \). By Lemma 3, \(\Gamma_K(\inf_{x_J} H; x_0, \ldots, x_{J-1}, n) = \frac{1}{2} \). \(\square \)

We note that while Lemma 5 is hardly the key result of this section, it is nevertheless somewhat surprising. In general, one does not expect to be able to interchange summation with sup or inf. It is here that the use of \(R^* \) comes in to consideration and provides a path to a weaker conclusion but one that is just strong enough to effect the rest of the proof.

Proof of Theorem 2 It suffices to prove (1); part (2) follows by considering complements. Once again, set \(G = 1 - \frac{1}{2} R^* \).

Suppose \(n \in \mathbb{N} \). It follows from Lemmas 1 and 4 that

\[
\sup \inf_{x_0} \ldots Q_{x_N} G(x_0, \ldots, x_N, n) = \frac{1}{2}.
\]

Thus, by Lemma 3, \(\Gamma_K(\inf_{x_1} \ldots Q_{x_N} G; n) \leq \frac{1}{2} \). By Lemma 5, we have that

\[
\inf_{x_1} \ldots Q_{x_N} \Gamma_K(G; x_1, \ldots, x_N, n) \leq \frac{1}{2}.
\]
Since $G \leq 1$, it follows that
\[\inf_{x_1} \ldots Q_{x_N} \Gamma(G; x_1, \ldots, x_N, n) \leq \frac{1}{2} + 2^{-(K+1)} \]
for all $K \in \mathbb{N}$. Hence, $\inf_{x_1} \ldots Q_{x_N} \Gamma(G; x_1, \ldots, x_N, n) \leq \frac{1}{2}$.

Conversely, suppose $\inf_{x_1} \sup_{x_2} \ldots Q_{x_N} \Gamma(G; x_1, \ldots, x_N, n) \leq \frac{1}{2}$. Since $G > 0$, for every $K \in \mathbb{N}$, $\inf_{x_1} \sup_{x_2} \ldots Q_{x_N} \Gamma_K(G; x_1, \ldots, x_N, n) \leq \frac{1}{2}$. By Lemmas 3 and 5, for every $x_0 < K$, $\inf_{x_1} \sup_{x_2} \ldots Q_{x_N} G(x_0, \ldots, x_N, n) = \frac{1}{2}$. Thus, $\sup_{x_0} \inf_{x_1} \sup_{x_2} \ldots Q_{x_N} G(x_0, \ldots, x_N, n) = \frac{1}{2}$. It follows from Lemma 1 that $n \in \forall R^*$. Thus, by Lemma 4, $n \in \exists R$. \hfill \Box

5 Finitary diagram results—upper bounds

We begin by considering the quantifier-free diagrams.

Proposition 6 If \mathcal{M} is a computably presentable L-structure, then the closed quantifier-free diagram of \mathcal{M} is Π^0_1 and the open quantifier-free diagram of \mathcal{M} is Σ^0_1.

Proof The proposition follows from the observation that if \mathcal{M} is computably presentable, then the map $\phi \mapsto \phi^\mathcal{M}$ is computable on the set of quantifier-free sentences of L. \hfill \Box

We note that the proof of Proposition 6 is uniform; that is, from an index of a presentation of \mathcal{M}, it is possible to compute a Π^0_1 index of the closed quantifier-free diagram of \mathcal{M} and a Σ^0_1 index of the open quantifier-free diagram of \mathcal{M}.

We now consider the higher-level diagrams.

Theorem 7 Let \mathcal{M} be a computably presentable L-structure, and let N be a positive integer.

1. The closed Π^N_N diagram of \mathcal{M} is Π^0_N, and the open Π^N_N diagram of \mathcal{M} is Σ^0_{N+1}.
2. The closed Σ^N_N diagram of \mathcal{M} is Π^0_{N+1}, and the open Σ^N_N diagram of \mathcal{M} is Σ^0_{N}.

Moreover, the results of (1) and (2) hold uniformly in the sense that from N and an index for a computable presentation for \mathcal{M}, one can compute an index for any of the above diagrams.

Proof Throughout this proof, we fix a computable presentation \mathcal{M}^\sharp of \mathcal{M}. We proceed by induction on N, the base case being true by Proposition 6. We now fix a positive integer N and assume that (1) and (2) hold uniformly for every $M < N$.

Fix a Π_N sentence ϕ and a rational number q. Note that ϕ has the form $\sup_{\overline{x}} \psi$, where ψ is a Σ^N_{N-1} wff of L and \overline{x} is a tuple of variables. Since the rational points of \mathcal{M}^\sharp are dense, $\sup_{\overline{a} \in \mathbb{Q}(\mathcal{M}^\sharp)} \psi^{\mathcal{M}^\sharp}(\overline{a}) = \sup_{\overline{a} \in \mathcal{M}^\sharp} \psi^{\mathcal{M}^\sharp}(\overline{a})$. Thus,

\[\phi^{\mathcal{M}} \leq q \iff (\forall k \in \mathbb{N}) (\forall \overline{a} \in \mathbb{Q}(\mathcal{M}^\sharp)) \psi^{\mathcal{M}^\sharp}(\overline{a}) \leq q + 2^{-k}. \]
If $N = 1$, then by the uniformity of Proposition 6, the statement $\psi^{\mathcal{M}}(\vec{a}) \leq q + 2^{-k}$ is a Π_1^0 condition on ϕ, \vec{a}, k. If $N > 1$, then this statement is a Π_N^0 condition since (2) is assumed to hold uniformly for $M < N$. In either case it then follows that $\phi^{\mathcal{M}} \leq q$ is a Π_N^0 condition on ϕ, q.

Furthermore,

$$\phi^{\mathcal{M}} < q \iff (\exists k \in \mathbb{N}) \ (\forall \vec{a} \in \mathbb{Q}(\mathcal{M}^\sharp)) \ \psi^{\mathcal{M}}(\vec{a}) \leq q - 2^{-k}.$$

As before, if $N = 1$, then the statement $\psi^{\mathcal{M}}(\vec{a}) \leq q - 2^{-k}$ is a Π_1^0 condition on ϕ, \vec{a}, k. If $N > 1$, then this statement is a Π_N^0 condition since (2) is assumed to hold uniformly for $M < N$. In either case, it follows that $\phi^{\mathcal{M}} < q$ is a Σ_{N+1}^0 condition on ϕ, q.

Now fix a Σ_N sentence ϕ and a rational number q. Then ϕ has the form $\inf_{\vec{x}} \psi$, where ψ is a Π_{N-1} wff of L and \vec{x} is a tuple of variables. Again, since the rational points of \mathcal{M}^\sharp are dense, $\inf_{\vec{x} \in \mathbb{Q}(\mathcal{M}^\sharp)} \psi^{\mathcal{M}}(\vec{a}) = \inf_{\vec{a} \in \mathcal{M}} \psi^{\mathcal{M}}(\vec{a})$. Thus,

$$\phi^{\mathcal{M}} \leq q \iff (\forall k \in \mathbb{N}) \ (\exists \vec{a} \in \mathbb{Q}(\mathcal{M}^\sharp)) \ \psi^{\mathcal{M}}(\vec{a}) < q + 2^{-k}.$$

If $N = 1$, then the statement $\psi^{\mathcal{M}}(\vec{a}) < q + 2^{-k}$ is a Σ_1^0 condition on ϕ, \vec{a}, k. If $N > 1$, then this statement is a Σ_N^0 condition since (1) is assumed to hold uniformly for $M < N$. In either case, it then follows that $\phi^{\mathcal{M}} \leq q$ is a Σ_{N+1}^0 condition on ϕ, q.

Finally,

$$\phi^{\mathcal{M}} < q \iff (\exists k \in \mathbb{N}) \ (\exists \vec{a} \in \mathbb{Q}(\mathcal{M}^\sharp)) \ \psi^{\mathcal{M}}(\vec{a}) < q - 2^{-k}.$$

If $N = 1$, then the statement $\psi^{\mathcal{M}}(\vec{a}) < q - 2^{-k}$ is a Σ_1^0 condition on ϕ, \vec{a}, k. If $N > 1$, then this statement is a Σ_N^0 condition since (1) is assumed to hold uniformly for $M < N$. In either case, it then follows that $\phi^{\mathcal{M}} < q$ is a Σ_N^0 condition on ϕ, q.

Finally, we note that these arguments are uniform in the sense described above. □

6 Finitary diagram results—lower bounds

We will now show that the results in Sect. 5 are the best possible, which is not as trivial as intuition may grant. Since structures in continuous logic must be bounded, it might seem that the unit interval is a natural setting in which to construct these lower bounds. The following, however, prevents this from being the case.

Proposition 8 Let \mathcal{M}^\sharp be a computably compact computable presentation of an L-structure \mathcal{M}. Then the open diagram of \mathcal{M} is Σ_1^0 and the closed diagram of \mathcal{M} is Π_0^0.

Proof Since \mathcal{M} is computably presentable, the map $(a_0, \ldots, a_N) \mapsto \theta^{\mathcal{M}}(a_0, \ldots, a_N)$ is computable, uniformly in a predicate θ. It now follows from a standard result in computable analysis (see [13] and Corollary 6.2.5 of [14]) that since \mathcal{M}^\sharp is computably compact, the map $\theta \mapsto (Q_{x_0} \ldots Q_{x_N} \theta)^{\mathcal{M}}$ is also computable. The result follows. □
On the other hand, one may notice that true arithmetic, translated into continuous
logic via the discrete metric, would provide some lower bounds. While this is the case,
it fails to capture the lower bounds on the open Π_N diagrams and closed Σ_N diagrams.
We thus attain our optimal bounds by constructing a nontrivial structure which extends
the natural numbers under the discrete metric, applying our combinatorial results.

\textbf{Theorem 9} There is a language L' and a computably presentable L'-structure M
with the following properties:

1. The closed quantifier-free diagram of M is Π^0_1-complete, and the open quantifier-
 free diagram of M is Σ^0_1-complete.
2. For every positive integer N, the closed Π_N diagram of M is Π^0_N-complete, and
 the open Π_N diagram of M is Σ^0_{N+1}-complete.
3. For every positive integer N, the closed Σ_N diagram of M is Π^0_{N+1}-complete,
 and the open Σ_N diagram of M is Σ^0_N-complete.

\textbf{Proof} Let L' be the metric language that consists of the following.

1. A constant symbol 0.
2. A family of unary predicate symbols $(C_n)_{n \in \mathbb{N}}$.
3. A family of predicate symbols $(P^N_n, n \in \mathbb{N})$, where P^N_{2N}, n and P^N_{2N+1}, n
 are $(N+1)$-ary.

Here, each predicate symbol is assumed to have modulus of continuity equal to the
constant function 1.

We now define our L'-structure M. The underlying metric space of M is the set
\mathbb{N} of natural numbers equipped with its discrete metric. We also set $0^M = 0$. In order
to define the interpretations of the other symbols, we first set

$$f_N = \begin{cases} \Gamma(1 - \frac{1}{2} \chi R_N^\ast) & N \text{ even} \\ \Gamma(\frac{1}{2} \chi (\neg R_N)^\ast) & \text{otherwise}. \end{cases}$$

Also, for every $a \in \mathbb{N}$, set

$$C^M_n(a) = \begin{cases} f_0(n/2) & n \text{ even} \\ f_1((n-1)/2) & \text{otherwise}. \end{cases}$$

That is, for every $n \in \mathbb{N}$, C^M_n is a constant unary predicate of the given truth value. Finally, set $P^M_{2N}(a_0, \ldots, a_N) = f_{2N+2}(a_0, \ldots, a_N, n)$, and let

$$P^M_{2N+1}(a_0, \ldots, a_N) = f_{2N+3}(a_0, \ldots, a_N, n).$$

It is clear that M has a computable presentation. In fact, one may simply take the
n-th distinguished point to be n.

We first note that the closed atomic diagram of M is Π^0_1-complete. To see this, let
ϕ_n be the sentence $C_{2n}(0)$. Then, by Theorem 2, $\phi^M_n \leq \frac{1}{2}$ if and only if $n \in \forall R_0$.

Similarly, the open atomic diagram of M is Σ^0_1-complete. This time, let ϕ_n be the
sentence $C_{2n+1}(0)$. Then, by Theorem 2, $\phi^M_n < \frac{1}{2}$ if and only if $n \in \exists R_0$.

\textcopyright Springer
Next fix a positive integer N. For each $n \in \mathbb{N}$, let ϕ_n be the sentence

$$\inf_{x_1} \ldots Q_{x_N} P_{2N,n}(x_1, \ldots, x_N),$$

and let ψ_n be the sentence

$$\sup_{x_1} \ldots Q_{x_N} P_{2N+1,n}(x_1, \ldots, x_N).$$

By Theorem 2, $\phi_n^\mathcal{M} \leq \frac{1}{2}$ if and only if $n \in \vec{\forall} R_{2N}$. Thus, the closed Σ_N diagram of \mathcal{M} is Π_{N+1}^0-complete. Also by Theorem 2, $\psi_n^\mathcal{M} < \frac{1}{2}$ if and only if $n \in \vec{\exists} R_{2N+1}$. Thus, the open Π_N diagram of \mathcal{M} is Σ_{N+1}^0-complete.

Since the open Π_{N-1} diagram of \mathcal{M} is Σ_{N}^0-complete, it follows that the open Σ_N diagram of \mathcal{M} is Σ_{N}^0-complete. It similarly follows that the closed Π_N diagram of \mathcal{M} is Π_{N}^0-complete. \square

7 Infinitary results

When formulating our diagram complexity results for infinitary logic, we actually must eschew the terminology of diagrams. The reason for this is that, because of the coding of the computable infinitary formulae, these diagrams are capable of computing \mathcal{O}, which itself is Π_1^1-complete. In order to avoid this pitfall, we focus on the complexity of the right Dedekind cuts of reals of the form $\phi^\mathcal{M}$ where ϕ is infinitary. To this end, for $x \in \mathbb{R}$, we let $D^>(x)$ denote the right Dedekind cut of x, that is,

$$D^>(x) = \{q \in \mathbb{Q} : q > x\}.$$

We also set

$$D^\geq(x) = \{q \in \mathbb{Q} : q \geq x\}.$$

Of course, if x is irrational, then $D^>(x) = D^\geq(x)$. In terms of evaluating complexity, differences only arise when considering uniformity.

We first prove our infinitary upper bound result which generalizes our bounds in the finitary case.

Theorem 10 Let \mathcal{M} be a computably presentable L-structure and let ϕ be a computable infinitary sentence of L.

1. If ϕ is $\Pi_\alpha^\mathcal{L}$, then $D^>(\phi^\mathcal{M})$ is $\Sigma_{\alpha+1}^0$ uniformly in a code of ϕ, and $D^\geq(\phi^\mathcal{M})$ is Π_{α}^0 uniformly in a code of ϕ.

2. If ϕ is $\Sigma_\alpha^\mathcal{L}$, then $D^>(\phi^\mathcal{M})$ is Σ_{α}^0 uniformly in a code of ϕ, and $D^\geq(\phi^\mathcal{M})$ is $\Pi_{\alpha+1}^0$ uniformly in a code of ϕ.
Proof Fix a computable presentation \mathcal{M}^2 of \mathcal{M}. Let ϕ be a computable infinitary sentence of L.

Suppose $\phi \in \Sigma^c_\alpha \cup \Pi^c_\alpha$. A code for ϕ yields a notation a for α. In the following, all other ordinals considered are less than $\beta \leq \alpha$.

We proceed by effective transfinite recursion. Thus, we assume the following hold uniformly in an index of $\mathcal{M}^\#$.

1. From a $\beta < \alpha$ and a code of a Π^c_β sentence ψ, it is possible to compute a Π_β^0 index of $D^\geq(\psi^\mathcal{M})$ and a Σ_β^{0+1} index of $D^\geq(\psi^\mathcal{M})$.

2. From a $\beta < \alpha$ and a code of a Σ^c_β sentence ψ, it is possible to compute a Π_β^0 index of $D^\geq(\psi)$ and a Σ_β^0 index of $D^\geq(\psi)$.

First suppose that ϕ is a Π^c_α sentence. Thus, ϕ has the form $\exists_{i \in I} \sup_x \phi_i$ where I is c.e. and ϕ_i is $\Sigma^c_{\beta_i}$ for some $\beta_i < \alpha$. Furthermore, we may assume $(\beta_i)_{i \in I}$ is computable. For $q \in \mathbb{Q}$, we have

$$q \in D^\geq(\phi^\mathcal{M}) \iff (\forall k \in \mathbb{N})(\forall i \in I)(\forall r \in \mathbb{Q}(\mathcal{M}^\#)) q + 2^{-k} \in D^\geq(\phi_i^\mathcal{M}(\bar{r})).$$

As $\vartheta(\alpha)$ computes $D^\geq(\Phi^\mathcal{M}_i(\bar{r}))$ uniformly in i, $D^\geq(\phi^\mathcal{M})$ is co-c.e. in $\vartheta(\alpha)$, that is, $D^\geq(\phi^\mathcal{M})$ is Π^0_α. At the same time,

$$q \in D^\geq(\phi^\mathcal{M}) \iff (\exists k \in \mathbb{N})(\forall i \in I)(\forall r \in \mathbb{Q}(\mathcal{M}^\#)) q - 2^{-k} \notin D^\geq(\phi_i^\mathcal{M}(\bar{r})).$$

Thus, $D^\geq(\phi^\mathcal{M})$ is $\Sigma^0_{\alpha+1}(\vartheta(\alpha)) = \Sigma^0_{\alpha+1}$.

Now suppose ϕ is a Σ^c_α sentence. Thus, ϕ has the form $\bigwedge_{i \in I} \inf_x \phi_i$ where I is c.e. and ϕ_i is $\Pi^c_{\beta_i}$ for some $\beta_i < \alpha$ uniformly in i. Let $q \in \mathbb{Q}$. Then,

$$q \in D^\geq(\phi^\mathcal{M}) \iff (\forall k \in \mathbb{N})(\exists i \in I)(\exists r \in \mathbb{Q}(\mathcal{M}^\#)) q + 2^{-k} \in D^\geq(\phi_i^\mathcal{M}(\bar{r})).$$

Thus, $D^\geq(\phi^\mathcal{M})$ is $\Sigma^0_{\alpha+1}(\vartheta(\alpha)) = \Sigma^0_{\alpha+1}$. In addition,

$$q \in D^\geq(\phi_{1_\alpha}^\mathcal{M}) \iff (\exists k \in \mathbb{N})(\exists i \in I)(\exists r \in \mathbb{Q}(\mathcal{M}^\#)) q - 2^{-k} \notin D^\geq(\phi_i^\mathcal{M}(\bar{r})).$$

Thus, $D^\geq(\phi^\mathcal{M})$ is $\Sigma^0_{\alpha+1}(\vartheta(\alpha)) = \Sigma^0_{\alpha+1}$.

As these arguments are all uniform in an index of $\mathcal{M}^\#$ and a code for ϕ, the theorem is proven. \hfill \Box

We now demonstrate the optimality of Theorem 10 by means of the following.

Theorem 11 There is a language L'' and an L''-structure \mathcal{M} so that the following hold for every computable ordinal α.

1. There is a computable sequence $(\psi_i)_{i \in \mathbb{N}}$ of Π^c_α sentences of L'' so that $(i \frac{1}{2} \in D^\geq(\psi_i^\mathcal{M}))$ is $\Pi^0_{\alpha+1}$-complete.
2. There is a computable sequence \((\psi_i)_{i \in \mathbb{N}}\) of \(\Sigma^c_\alpha\) sentences of \(L''\) so that \(\{i : \frac{1}{2} \in D^\geq(\psi_i^\mathcal{M})\}\) is \(\Sigma^0_\alpha\)-complete.

3. There is a computable sequence \((\psi_i)_{i \in \mathbb{N}}\) of \(\Pi^c_\alpha\) sentences of \(L''\) so that \(\{i : \frac{1}{2} \in D^\geq(\psi_i^\mathcal{M})\}\) is \(\Pi^0_{\alpha+1}\)-complete.

4. There is a computable sequence \((\psi_i)_{i \in \mathbb{N}}\) of \(\Sigma^c_\alpha\) sentences of \(L''\) so that \(\{i : \frac{1}{2} \in D^\geq(\psi_i^\mathcal{M})\}\) is \(\Pi^0_{\alpha+1}\)-complete.

The remainder of this section is dedicated to the proof of Theorem 11. We begin with the construction of \(L''\) and \(M''\).

Let \(L_0\) be a language consisting of one constant symbol \(q\) for every \(q \in \mathbb{Q} \cap [0, 1]\) and let \(\mathcal{M}_0\) be the \(L_0\)-structure whose underlying metric space is \([0, 1]\) with its usual metric and which interprets each \(q\) as \(q\). Let \(L''\) be the expansion of \(L_0\) obtained by adding a family \((c_N,n,x_1,..,x_{N+1})_{N,n,x_1,..,x_{N+1} \in \mathbb{N}}\) of constant symbols.

Let \(\mathcal{M}\) be the expansion of \(\mathcal{M}_0\) obtained by setting \(c_N^\mathcal{M}(n,x_1,..,x_{N+1}) = \frac{1}{2}(1 - \chi_{R_{2N+1}}(n,x_1,..,x_{N+1}))\). Since \((R_N)_{N \in \mathbb{N}}\) is computable, it follows that \(\mathcal{M}\) is computably presentable.

We now verify that \(L''\) and \(\mathcal{M}\) satisfy the conclusions of Theorem 11. We will need a little additional terminology and two lemmas.

Suppose \((\psi_i)_{i \in \mathbb{N}}\) is a sequence of \(\Pi^c_\alpha\) sentences of \(L''\). We say that a set \(S\) is encoded by \((\psi_i)_{i \in \mathbb{N}}\) if \(\psi_i^\mathcal{M} = 1 - \frac{1}{2}\chi_S(i)\) for all \(i\).

Similarly, if \((\psi_i)_{i \in \mathbb{N}}\) is a sequence of \(\Sigma^c_\alpha\) sentences of \(L''\), we say that a set \(S\) is encoded by \((\psi_i)_{i \in \mathbb{N}}\) if \(\psi_i^\mathcal{M} = \frac{1}{2}(1 - \chi_S(i))\) for all \(i\).

Lemma 12 Let \(\alpha\) be a computable ordinal.

1. Every \(\Sigma^0_\alpha\) set is encoded by a computable sequence of \(\Sigma^c_\alpha\) sentences.
2. Every \(\Pi^0_\alpha\) set is encoded by a computable sequence of \(\Pi^c_\alpha\) sentences.

Proof We prove (1). Part (2) then follows by considering complements. Suppose \(S\) is \(\Sigma^0_\alpha\).

If \(\alpha = 0\), then we let

\[
\psi_i = \begin{cases}
 d(0,0) & i \in S \\
 d(0,\frac{1}{2}) & \text{otherwise.}
\end{cases}
\]

Next suppose \(\alpha = N + 1\) where \(N \in \mathbb{N}\). Let

\[
\psi_n = \bigwedge_{x_1} \bigvee_{x_2} \ldots \bigwedge_{x_{N+1}} d(c_N,n,x_1,..,x_{N+1},0).
\]

Here, \(\bigwedge\) if \(N\) is even and \(\bigvee\) if \(N\) is odd.

It follows from Lemma 1 that \((\psi_n)_{n \in \mathbb{N}}\) encodes \(\bar{\exists}R_{2N+1}\). Since \(\bar{\exists}R_{2N+1}\) is \(\Sigma^0_{N+1}\)-complete, it follows that every \(\Sigma^0_{N+1}\) set is encoded by a sequence of computable \(\Sigma^c_{N+1}\) sentences. Furthermore, the construction of such a sequence from a \(\Sigma^0_{N+1}\) index is uniform.

Suppose \(\alpha \geq \omega\). Similar to the proof of Theorem 7.9 of [11], we construct a sequence \((\phi_n)_{n \in \mathbb{N}}\) of \(\Sigma^0_\alpha\) sentences so that \(\phi_n^\mathcal{M} = 1 - \chi_S(n)\). In particular, we replace...
∀ and ⊥ with \(d(0, 0)\) and \(d(0, 1)\) respectively. Setting \(\psi_n = \frac{1}{2}\phi_n\) yields the desired formulae.

\[\text{Lemma 13} \quad \text{If } (\psi_n)_{n \in \mathbb{N}} \text{ is a computable sequence of } \Pi^c_{\alpha} \text{ sentences of } L'', \text{ then there is a computable } \Pi^c_{\alpha} \text{ sentence } \phi \text{ of } L'' \text{ so that}
\]

\[\phi^\mathcal{M} = \sum_{n=0}^{\infty} 2^{-(n+1)} \psi_n^\mathcal{M}.
\]

Furthermore, a code of \(\phi\) can be computed from an index of \((\psi_n)_{n \in \mathbb{N}}\).

\[\text{Proof} \quad \text{For } a, b \in [0, 1], \text{ let } \text{avg}(a, b) = \frac{1}{2}(a + b). \text{ By inspection,}
\]

\[\text{avg}(a, b) = \max \left\{ a - \frac{1}{2}(a - b), b - \frac{1}{2}(b - a) \right\}.
\]

Thus, we may regard \(\text{avg}\) as a connective. If \(\phi, \psi\) are quantifier-free, then so is \(\text{avg}(\phi, \psi)\).

Since \(\text{avg}\) is increasing in each variable and continuous, it follows that

\[\text{avg}(\sup_j a_j, \sup_k b_k) = \sup_{j,k} \text{avg}(a_j, b_k) \quad \text{and} \quad \text{avg}(\inf_j a_j, \inf_k b_k) = \inf_{j,k} \text{avg}(a_j, b_k).
\]

From this it follows that \(\text{avg}(\phi, \psi)\) is equivalent to a \(\Pi^c_{\alpha}\) (resp. \(\Sigma^c_{\alpha}\)) sentence if \(\phi\) and \(\psi\) are \(\Pi^c_{\alpha}\) (resp. \(\Sigma^c_{\alpha}\)) sentences.

When \(a_0, \ldots, a_{K+1} \in [0, 1]\), note that

\[\sum_{n=0}^{K+1} 2^{-(n+1)} a_n = \text{avg}(\phi_0, \sum_{n=0}^{K} 2^{-(n+1)} \phi_{n+1}).
\]

Thus, we may regard inner product with \(2^{-(n+1)}\) as a connective. Furthermore, a code of \(\sum_{n=0}^{K} 2^{-(n+1)} \phi_n\) can be computed from codes of \(\phi_0, \ldots, \phi_K\).

Finally, when \(a_n \in [0, 1]\), we have

\[\sum_{n=0}^{\infty} a_n = \sup_{K} \sum_{n=0}^{K} a_n.
\]

The conclusion of the lemma follows.

\[\text{Proof of Theorem 11} \quad \text{Parts (1) and (2) follow directly from Lemma 12.}
\]

Now suppose \(S\) is \(\Sigma^0_{\alpha+1}\)-complete. Take a \(\Pi^0_{\alpha}\) binary relation \(R\) so that \(S = \exists R\). By Lemma 12, there is a computable family \((\psi_{n,x_1})_{n,x_1 \in \mathbb{N}}\) of \(\Pi^c_{\alpha}\) sentences so that for all \(n, x_1 \in \mathbb{N}\), \(\psi_{n,x_1}^\mathcal{M} = 1 - \frac{1}{2} R(n, x_1)\). By Lemma 13, there is a computable sequence \((\phi_n)_{n \in \mathbb{N}}\) of \(\Pi^c_{\alpha}\) sentences so that

\[\phi_n^\mathcal{M} = \sum_{x_1=0}^{\infty} 2^{-(x_1+2)} \psi_{n,x_1}^\mathcal{M}.
\]
It then follows that $n \in S$ if and only if $\frac{1}{2} \in D^>(\phi_n^M)$, establishing (3). Part (4) follows by considering complements. \hfill \Box

Returning to an earlier point, we note that the closed and open quantifier-free diagrams of M are Π^0_1-complete and Σ^0_1-complete respectively. To see this, fix a Σ^0_1 complete set C, and let $(c_s)_{s=0}^\infty$ be an effective enumeration of C. Since C is infinite, we may assume this enumeration is one-to-one. Let

$$p_n = \begin{cases} \frac{1}{2} - 2^{-s} & \text{if } n = c_s \\ \frac{1}{2} & \text{otherwise.} \end{cases}$$

It is fairly straightforward to show that $(p_n)_{n \in \mathbb{N}}$ is computable as a sequence of reals. Furthermore, $p_n < \frac{1}{2}$ if and only if $n \in C$. Since L'' contains a constant symbol for each rational number, it follows that the open quantifier-free diagram of M is Σ^0_1-complete. The Π^0_1-completeness of the closed quantifier-free diagram follows by considering complements.

We also note that while computably compact domains are insufficient for demonstrating lower bounds in the finitary case, $[0, 1]$ works swimmingly in the infinitary case. This is because we can build up all the required infinitary sentences without variables, so the computability of extrema plays no role.

On a related note, the infinitary sentences in the above proof are built up from quantifier-free sentences. Thus, they do not require moduli of continuity. Therefore, although we have framed our work in an effectivization of the infinitary continuous logic of Eagle, our results will hold in any reasonable effectivization of the infinitary continuous logic of Ben Yaacov and Iovino.

8 Applications and further research

We provide a few examples of applications of our main results. We first note that the theory of a metric structure is not a set (as is it in the discrete setting), but a function. Namely, the theory of an L-structure M is the function that maps each L-sentence ϕ to ϕ^M.

Corollary 14 Let M be an L-structure with a computably compact computable presentation. Then the theory of M is Δ^0_2.

Corollary 15 Let M be an L-structure with a hyperarithmetic presentation. Then the theory of M is also hyperarithmetic.

Corollary 14 follows directly from Proposition 8 and Corollary 15 from Theorem 7. An application of the former may be made to computable Stone spaces. Notably, in [15], it was shown that any computable Stone space has a computably compact presentation. We thus attain the following.

Corollary 16 Let \mathcal{X} be a computable Stone space. Then the (continuous) theory of \mathcal{X} is Δ^0_2. \(\Box \)
Meanwhile, Corollary 15 has already been applied in [16] in the proof of the following.

Theorem 17 (Theorem 1.1, [16]) *The following operator algebras have hyperarithmetic theory.*

1. The hyperfinite II_1 factor \mathcal{R}.
2. $L(\Gamma)$ for Γ a finitely generated group with solvable word problem.
3. $C^*(\Gamma)$ for Γ a finitely presented group.
4. $C^*_\lambda(\Gamma)$ for Γ a finitely generated group with solvable word problem.

In their manuscript, Goldbring and Hart show, via the results of [17], that each of the above have hyperarithmetic presentations. They then apply Corollary 15 to conclude that each of the above have hyperarithmetic theory. By carefully analyzing the complexity of model-theoretic forcing in continuous logic, they also show that the Cuntz algebra has an arithmetic presentation and hence a hyperarithmetic presentation. In fact, their work shows that $0^{(\omega)}$ computes the theory of each of these algebras.

An area for future research is that of relatively intrinsically computably enumerable (r.i.c.e.) relations and the possibility of their definability in $L_{\omega_1^{(\omega)}}$. It is a well-known result, due to [18] and [19], that in classical computable structure theory a relation is r.i.c.e. in a structure \mathcal{A} if and only if it is Σ^c_1 definable in \mathcal{A} with parameters. Whether such a syntactic characterization of similar relations (predicates) exists in this setting of continuous logic is currently unknown. There have been in recent years, however, some related results which may be applicable to this future study.

In Theorem 11 of [20], Moody proved that in the particular continuous first-order language $L^c_{\Omega}(\sigma, v)$, the Σ^c_1 relations over a given computable continuous structure are precisely the 1-Lipschitz uniformly r.i.c.e. relations. Moreover, in Theorem 20 of that dissertation, Moody showed that a computable σ-structure is effectively Σ^c_1-atomic if and only if it is uniformly relatively computably categorical, extending the classical result of Ventsov [21]. Closely related to this is Theorem 1.1 of [22], in which Greenberg et al. proved that a computable Polish metric space is relatively computably categorical if and only if it possesses a c.e. approximate Scott family with stable parameters. While the former results work in a continuous language slightly removed from the one presented here, and the latter eschews a continuous language in preference for a classical one, the techniques used may prove promising to extending many of the results given in [18] and [19] to the continuous setting.

9 Conclusion

We have introduced a framework for examining the complexity of the quantifier levels of the finitary and infinitary theory of a computably presented metric structure, and we have pinned down the complexity at each level in terms of the hyperarithmetic hierarchy. Our demonstration of the lower bounds in the finitary case introduces a uniform process for encoding existential and universal quantifiers via series inequalities. Our demonstration of the lower bounds in the infinitary case is mostly straightforward, but introduces the novel fact that computable infinitary logic can represent the inner
product with \((2^{-(n+1)})_{n=0}^{\infty} \) from the connectives \(\neg, \cdot, 1/2 \). Notably, there are many other connectives based on series available in the computable infinitary logic which can be constructed similarly.

Acknowledgements Isaac Goldbring was partially supported by the National Science Foundation, grant DMS-2054477. We thank the referees for their helpful suggestions and corrections.

References

1. Chisholm, J., Moses, M.: An undecidable linear order that is \(n \)-decidable for all \(n \). Notre Dame J. Formal Logic 39(4), 519–526 (1998)
2. Fokina, E.B., Goncharov, S.S., Kharizanova, V., Kudinov, O.V., Turetski, D.: Index sets of \(n \)-decidable structures that are categorical with respect to \(m \)-decidable representations. Algebra Logika 54(4), 520–52854455547548 (2015)
3. Fokina, E.B., Harizanov, V., Melnikov, A.G.: Computable model theory. In: Downey, R. (ed.) Turing’s Legacy: Developments from Turing’s Ideas in Logic. Cambridge University Press, Cambridge (2014)
4. Ben Yaacov, I., Berenstein, A., Henson, C.W., Usvyatsov, A.: Model theory for metric structures. In: Model Theory with Applications to Algebra and Analysis. Vol. 2. London Math. Soc. Lecture Note Ser., vol. 350, pp. 315–427. Cambridge Univ. Press, Cambridge (2008)
5. Melnikov, A.G.: Computably isometric spaces. J. Symb. Logic 78(4), 1055–1085 (2013)
6. Franklin, J.N.Y., McNicholl, T.H.: Degrees of and lowness for isometric isomorphism. J. Log. Anal. 12, 6–23 (2020)
7. Ben Yaacov, I., Iovino, J.: Model theoretic forcing in analysis. Ann. Pure Appl. Logic 158(3), 163–174 (2009)
8. Eagle, C.J.: Expressive power of infinitary \([0, 1]\)-valued logics. In: Beyond First Order Model Theory, pp. 3–22, CRC Press, Boca Raton, FL (2017)
9. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)
10. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC, Boca Raton (2004)
11. Ash, C.J., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, vol. 144, p. 346. North-Holland Publishing Co., Amsterdam (2000)
12. Sacks, G.E.: Higher Recursion. Theory Perspectives in Mathematical Logic, p. 344. Springer, Berlin (1990). https://doi.org/10.1007/BFb0086109
13. Specker, E.: Der satz vom maximum in der rekursiven analysis. In: Ernst Specker Selecta, pp. 148–159. Springer, Berlin (1990)
14. Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2000)
15. Harrison-Trainor, M., Melnikov, A., Meng Ng, K.: Computability of polish spaces up to homeomorphism. J. Symb. Logic 85(4), 1664–1686 (2020). https://doi.org/10.1017/jsl.2020.67
16. Goldbring, I., Hart, B.: Operator algebras with hyperarithmetic theory. J. Logic Comput. 31(2), 612–629 (2020). https://doi.org/10.1093/logcom/exaa059
17. Fritz, T., Netzer, T., Thom, A.: Can you compute the operator norm? Proc. Am. Math. Soc. 142(12), 4265–4276 (2014)
18. Ash, C., Knight, J., Manasse, M., Slaman, T.: Generic copies of countable structures. Ann. Pure Appl. Logic 42(3), 195–205 (1989). https://doi.org/10.1016/0168-0072(89)90015-8
19. Chisholm, J.: Effective model theory vs. recursive model theory. J. Symb. Logic 55(3), 1168–1191 (1990)
20. Moody, J.G.: Computable Continuous Structure Theory, p. 116. ProQuest LLC, Ann Arbor, MI (2019). Thesis (Ph.D.)–University of California, Berkeley
21. Ventsov, Y.: Effective choice for relations and reducibilities in classes of constructive and positive models. Algebra and Logic 31, 63–73 (1992)
22. Greenberg, N., Melnikov, A.G., Knight, J.F., Turetsky, D.: Uniform procedures in uncountable structures. J. Symb. Log. 83(2), 529–550 (2018). https://doi.org/10.1017/jsl.2017.91
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.