Declining pattern of bilirubin in the first and second six hours of intensive versus double phototherapy in neonatal jaundice

Peymaneh Alizadeh Taheri¹, Negar Sajjadian²*, Mahdi Asadi³ and Peyman Salamati⁴

¹Associate Professor of Pediatrics, Neonatologist, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
²Associate Professor of Pediatrics, Neonatologist, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
³Pediatrician, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran.
⁴Associate Professor of Community Medicine, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Background: Although phototherapy has been used in clinical practice for 50 years, there is still much debate about how the most efficacious phototherapy application can be provided.

Objective: This study aimed to define the most effective hours of declining serum bilirubin in two types of phototherapy (double versus intensive phototherapy) in treatment of severe hyperbilirubinemia of neonates.

Materials and methods: A total of 100 healthy full-term neonates with no hemolytic hyperbilirubinemia (total serum bilirubin between 20 to 25 mg/dl) were compared in a historically controlled study. The first group received double phototherapy (DP) (8 lamps) and the second group received intensive phototherapy (IP) (12 lamps).

Results: The mean serum bilirubin decline in IP group was statistically significant in comparison with DP group in the first 6 hours of phototherapy (4.65 ± 2.02 mg/dl versus 3.59 ± 1.86 mg/dl, P=0.008). The mean serum bilirubin decline was not statistically significant (P=0.277) in the second 6 hours of phototherapy between two groups.

Conclusion: This study showed IP declined bilirubin level more than DP statistically in the first 6 hours of phototherapy. As there was no difference between DP and IP in the rate of bilirubin decline in the second 6 hours of phototherapy, DP can be used instead of IP if total bilirubin is high but under exchange transfusion level in the second 6 hours of phototherapy.

Background

Neonatal hyperbilirubinemia is one of the most common diseases worldwide and can be treated effectively by phototherapy [1,2]. Although it is usually benign in term and preterm neonates [3], severe hyperbilirubinemia is a medical emergency because bilirubin is a neurotoxic substance [4] that can cause neurologic defects [5]. Management of hyperbilirubinemia in neonates is still a critical issue. For several decades phototherapy has been known as a standard therapy for neonatal hyperbilirubinemia [6]. Some variables like wave length of light, energy output or irradiance, exposed surface area to the light, the distance between the body and the source of radiation may influence the efficacy of phototherapy [7]. Accordingly, several studies have been done to compare the efficacy of different modes of phototherapy [9].

The aim of this study was to compare the declining pattern of serum bilirubin in the first 6 hours and 12 hours after Intensive phototherapy (IP) versus double phototherapy (DP) in severe neonatal hyperbilirubinemia.

Materials and methods

This is a historically controlled study conducted in Neonatal ward of Bahrami Children Hospital (Tehran University of Medical Sciences), Tehran, Iran, between January 2012 to January 2013. The study group consisted of neonates admitted to our neonatal ward to be treated with IP during the study period. These neonates were compared with a historical control group who had been admitted between January 2011 to January 2012 and treated with conventional DP.

Infants who met the following inclusion criteria were assessed: healthy term newborns with birth weight equal to or more than 2500 gr, normal hemoglobin and hematocrit, normal reticulocyte count and total serum bilirubin level of 20-25 mg/dl. Exclusion criteria included any congenital malformations or infections, evidence of hemolysis or blood group incompatibility, history of exchange transfusion and presence of acidosis, hypoglycemia, hypoalbuminemia, sepsis and
Group in comparison with double group in the first 6 hours of phototherapy, the decline rate of serum bilirubin in the second 6 hours of phototherapy had no significant difference between the two groups (P = 0.27).

Discussion

In this study we compared the efficacy of IP and DP for declining rate of serum bilirubin in 6 and 12 hours of therapy. There was a significant difference in the speed of bilirubin decline rate between the two groups. The patients who received IP showed more decline rate of serum bilirubin after 6 hours in comparison with DP. The decline rate of serum bilirubin was statistically significant in the first 6 hours in IP group (P = 0.008) versus the second 6 hours (P = 0.277) in comparison with DP group.

Naderi’s study [10] compared the benefits, complications and length of hospitalization between double and triple phototherapy in term newborns with indirect hyperbilirubinemia. He showed triple phototherapy had no particular benefit to double phototherapy and had no significant difference in overall decline rate of serum bilirubin. In this study the third phototherapy set was placed in the line with width of the bassinette, and a 35 cm distance from the bed that obviously decreased the efficacy of phototherapy (2009).

Zahed Pasha [11] compared the efficacy of single, double and intensive phototherapy for declining of serum bilirubin. In spite of significant decrease of serum bilirubin in 3 types of phototherapy, intensive phototherapy was more effective than single and safer than double phototherapy in reduction of bilirubin. The change of body temperature as a complication phototherapy was significant in DP but not in IP (2006). His findings confirmed our results. [12,13] studies showed that double phototherapy reduced serum bilirubin concentration more rapidly than single. Nuntnarumit and Naka confirmed the same results (2002) [4].

Several studies like [14-16] studies have proven the rapid decline of bilirubin by different kinds of IP. In our study the overall bilirubin decline rate of 0.65 ± 0.25 mg/dl/h (2.74 ± 1.03 %/h) in DP was less than the overall decline rate of 0.78 ± 0.18 mg/dl/h (3.44 ± 0.78 %/h) in IP with p = 0.08 versus p < 0.01 (Table 2).

In spite of significant decline rate of serum bilirubin in intensive

Variable	Intensive phototherapy	Double phototherapy (n=50)	P
Mean serum bilirubin (mg/dl)	22.67 ± 1.91	23.63 ± 2.1	0.09
Decrease of serum bilirubin after the first 6 hours (mg/dl)	4.65 ± 2.02	3.59 ± 1.86	0.008
Decrease of serum bilirubin after the second 6 hours (mg/dl)	4.47 ± 1.86	4.32 ± 1.79	0.277
Decrease of serum bilirubin after 12 hours (mg/dl)	9.36 ± 2.22	7.86 ± 3.02	0.008
Overall decline rate of bilirubin (mg/dl/h)	0.7 ± 0.18	0.65 ± 0.25	0.008
Overall decline rate of bilirubin (percent/h)	3.44 ± 0.78	2.74 ± 1.03	<0.001

Table 2. The response of groups to phototherapy (Value are given as mean ± SD).
There are different overall decline rate of bilirubin (mg/dl/h and %/h) between DP and IP in various studies because of different kinds of DP and IP devices, phototherapy lamps and distances from the patients.

Our results show that IP (12 phototherapy lamps divided equally above and below the baby) is more effective than DP (8 phototherapy lamps all above the baby) for declining of serum bilirubin level especially in the first 6 hours of phototherapy in apposite to the second 6 hours of phototherapy.

Conclusion

This study showed IP declined bilirubin level more than DP statistically in the first 6 hours of phototherapy. As there was no difference between DP and IP in the decline rate of bilirubin in the second 6 hours of phototherapy, DP can be used instead of IP if total bilirubin is high but under exchange transfusion level in the second 6 hours of phototherapy.

Acknowledgment

The authors wish to thank the nursing and laboratory staff of Bahrami Children hospital. We also express our gratitude to Research Development Center of Bahrami Children hospital.

Funding information

We received no financial support and the costs of this research were paid by the researchers.

Competing interest

The authors declare that they have no competing interests.

References

1. Muchowski KE (2014) Evaluation and treatment of neonatal hyperbilirubinemia. Am Fam Physician 89: 873-878. [Crossref]
2. Porter ML, Dennis BL (2002) Hyperbilirubinemia in the term newborn. Am Fam Physician 65: 599-606. [Crossref]
3. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia (2004) Management of hyperbilirubinemia in the new born infant 35 or more weeks of gestation. Pediatrics 114: 297-316. [Crossref]
4. Nuntanarumit P, Naka C (2002) Comparison of the effectiveness between the adapted-double phototherapy versus conventional-single phototherapy. J Med Assoc Thai 85: 1159-1166.
5. Provisional committee for quality improvement and subcommittee on hyperbilirubinemia, American Academy of Pediatrics (1994) Practice parameter: Management of hyperbilirubinemia in the healthy term newborn. Pediatrics 94: 558-565.
6. Denney PA, Seidman DS, Stevenson DK (2001) Neonatal hyperbilirubinemia. N Engl J Med 344: 581-590. [Crossref]
7. Barrington KJ, Sankaran K. Guidelines for detection, management and prevention of hyperbilirubinemia in term and late preterm new born infants. Canadian Paediatric Society.
8. Fetus and Newborn Committee (2007) Paediatr Child Health 12: 1B-12B.
9. Keren R, Luan X, Friedman S, Suttle, M, Cnaan A, et al. (2008) A comparison of alternative risk-assessment strategies for predicting significant neonatal hyperbilirubinemia in term and near-term infants. Pediatrics 121: e170-179. [Crossref]
10. Naderi S, Safdarian F, Mazloomi D, Bushehri E, Hamidian R (2009) Efficacy of double and triple phototherapy in term newborns with hyperbilirubinemia: the first clinical trial. Pediatr Neonatol 50: 266-269. [Crossref]
11. Zahedpasha Y, Ahmadvai M, Fuladinjad M, Alizadeh R, Mazlomi A, et al. (2006) Single and double versus intensive phototherapy in term new borns with severe hyperbilirubinemia. Iran J Pediatr 16: 19-24.
12. Kang JH, Shankaran S (1995) Double phototherapy with high irradiance compared with single phototherapy in neonates with hyperbilirubinemia. Am J Perinatol 12: 178-180. [Crossref]
13. Miyanara NS, Tjipota GD, Ali M, Azlin E, Lubis BM, et al. (2011) Effectiveness of single and double phototherapy on indirect hyperbilirubinemia in neonates. Paediatr Indones 51: 316-321.
14. Boonyarittipong P, Kriangsupan W, Booranavanich K (2008) Effectiveness of double-surface intensive phototherapy versus single-surface intensive phototherapy for neonatal hyperbilirubinemia. J Med Assoc Thai 91: 50-55.
15. Abd-Elattif MA, Abd-Elattif DA (2012) The use of intensive phototherapy in severe neonatal hyperbilirubinemia. J Egypt Soc Parasitol 42: 483-494. [Crossref]
16. TakeA S, YiAyi S, Bayram G, Korkmaz A, YurdakA M (2013) Comparison of intensive light-emitting diode and intensive compact fluorescent phototherapy in non-hemolytic jaundice. Turk J Pediatr 55: 29-34. [Crossref]