Appendix Table of Contents

1. Appendix References .. Page 2
2. Appendix Table 1 – Abstracted Data Page 7
3. Appendix Table 2 – Study Characteristics Page 8
4. Appendix Table 3 – Patient Characteristics Page 11
5. Appendix Figure 1 – Study Flow Page 14
6. Appendix Figure 2 – Treatment effect by OAD class at 12 weeks Page 15
7. Appendix Figure 3 – Treatment effect by OAD class at 19-24 weeks Page 17
8. Appendix Figure 4 – Treatment effect by OAD class at 25-39 weeks Page 19
9. Appendix Figure 5 – Treatment effect by OAD class at 40-47 weeks Page 21
10. Appendix Figure 6 – Treatment effect by OAD class at 48-55 weeks Page 22
11. Appendix Figure 7 – Treatment effect by OAD class at 56-104 weeks Page 23
Appendix References

1. Ahren B, Gomis R, Standl E, Mills D, Schweizer A: Twelve and 52 week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin treated patients with type 2 diabetes. Diabetes Care. 2004;27: 2874-80.
2. Barnett AH, Grant PJ, Hitman GA, Mather H, Pawa M, Robertson L, Trelfa A, for the Indo-Asian Trial Investigators: Rosiglitazone in type 2 diabetes mellitus: an evaluation in British Indo-Asian patients. Diabet Med. 2003;20: 387-93.
3. Bosi E, Camisasca RP, Collober C, Rochotte E, Garber AJ: Effects of vildagliptin on glucose control over 24 weeks in type 2 diabetes inadequately controlled with metformin. Diabetes Care. 2007;30: 890-95.
4. Coniff RF, Shapiro JA, Robbins D, Kleinfield R, Seaton TB, Beisswenger P, McGill JB: Reduction of glycosylated hemoglobin and postprandial hyperglycemia by acarbose inpatients with NIDDM. Diabetes Care. 1995;18: 817-24.
5. DeJager J, Kooy A, Lehert PH, Bets D, Wulffele G, Teerlink T, Scheffer PG, Schalkwijk CG, Donker AJM, Stehouwer CDA: Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized, placebo controlled trial. J Intern Med. 2005;257: 100-9.
6. Del Prato S, Erkelens DW, Leutenegger M: Six-month efficacy of benfluorex vs. placebo or metformin in diet failed type 2 diabetic patients. Acta Diabetol. 2003; 40: 20-7.
7. Fischer S, Hanefeld M, Spengler M, Boehme K, Temelkova-Kurttschiev T: European study on dose-response relationship of acarbose as a first-line drug in non-insulin dependent diabetes mellitus: efficacy and safety of low and high doses. Acta Diabetol. 1998;35: 34-40.
8. Fonseca V, Grunberger G, Gupta S, Shen S, Foley JE: Addition of nateglinide to rosiglitazone monotherapy suppresses mealtime hyperglycemia and improves overall glycemic control. Diabetes Care. 2003;26: 1685-90.
9. Fujioka K, Grazg RL, Raz I, Bruce S, Joyal S, Swanink R, Pans M: Efficacy, dose-response relationship and safety of one-daily extended-release metformin in type 2 diabetic patients with inadequate glycemic control despite prior treatment with diet and exercise: results from two double-blind, placebo-controlled studies. Diabetes Obes Metab. 2005;7: 28-39.
10. Garber AJ, Schweizer A, Baron MA, Rochotte E, Dejager S: Vildagliptin in combination with pioglitazone improves glycemic control in patients with type 2 diabetes failing thiazolidinedione monotherapy: a randomized, placebo controlled study. Diabetes Obes Metab. 2007;9: 166-74.
11. Halimi S, Le Berre MA, Grange V: Efficacy and safety of acarbose add-on therapy in the treatment of overweight patients with type 2 diabetes inadequately controlled with metformin: a double-blind, placebo-controlled study: Diabetes Res Clin Pract. 2000;50: 49-56.
12. Hanefeld M, Bouter KP, Dickinson S, Guitard C: Rapid and short-acting mealtime insulin secretion with nateglinide controls both prandial and mean glycemia. Diabetes Care. 2000;23: 202-7.
13. Hedblad B, Zanbanini A, Nilsson L, Janzon L, Berglund G: Rosiglitazone and carotid IMT progression rate in a mixed cohort of patients with type 2 diabetes and the insulin resistance syndrome: main results from the Rosiglitazone Atherosclerosis Study. J Intern Med. 2007;261: 293-305.
14. Herz M, Johns D, Reviriego J, Grossman LD, Godin C, Duran S: A randomized, double-blind, placebo-controlled clinical trial of the effects of pioglitazone on glycemic control and
dislipidemia in oral antihyperglycemic medication-naïve patients with type 2 diabetes mellitus. Clin Ther. 2003; 1074-1095.

15. Horton ES, Foley JE, Shen SG, Baron MA: Efficacy and tolerability of initial combination therapy with nateglinide and metformin in treatment-naïve patients with type 2 diabetes. Curr Med Res Opin. 2004;20: 883-9.

16. Hwu CM, Ho LT, Fuh MMT, Siu SC, Sutanegara D, Piliang S, Chan JCN, for the Asian Acarbose Study Group: Acarbose improved glycemic control in insulin-treated Asian type 2 diabetic patients: Results from a multinational, placebo controlled study. Diabetes Res Clin Pract. 2003;60: 111-118.

17. Johnston PS, Coniff RF, Hoogwerf BJ, Santiago JV, Pi-Sunyer FX, Krol A: Effects of the carbohydrase inhibitor miglitol in sulfonylurea-treated NIDDM patients. Diabetes Care. 1994;17: 20-9.

18. Johnston PS, Lebovitz HE, Coniff RF, Simonson DC, Raskin P, Munera CL: Advantages of alpha-glucosidase inhibition as monotherapy in elderly type 2 diabetic patients. J Clin Endocrinol Metab. 1998;83: 1515-22.

19. Kelley DE, Bidot P, Freedman Z, Haag B, Podlecki D, Rendell M: Efficacy and safety of acarbose in insulin-treated patients with type 2 diabetes. Diabetes Care. 1998;21: 2056-61.

20. Manzella D, Grella R, Esposito K, Giugliano D, Barbagallo M, Paolisso G: Blood pressure and cardiac autonomic nervous system in obese type 2 diabetic patients: effect of metformin administration. Am J Hypertens. 2004;17: 223-7.

21. Marre M, Van Gaal, L, Usadel K-H, Ball M, Whatmough J, Guitard C: Nateglinide improves glycemic control when added to metformin monotherapy; results of a randomized trial with type 2 diabetes patients. Diabetes Obes Metab. 2002;4: 177-186.

22. Moses RG, Gomis R, Frandsen KB, Schlienger J, Dedov I: Flexible meal-related dosing with repaglinide facilitates glycemic control in therapy-naïve type 2 diabetes. Diabetes Care. 2001;24: 11-5.

23. Rosenstock J, Chou HS, Matthaei S, Seidel DK, Hamann A: Potential benefits of early addition of rosiglitazone in combination with glimepiride in the treatment of type 2 diabetes. Diabetes Obes Metab. 2008;10: 862-73.

24. Scherbaum WA, Goke B and the German Pioglitazone Study Group: Metabolic efficacy and safety of once-daily pioglitazone monotherapy in patients with type 2 diabetes: a double-blind, placebo-controlled study. Horm Metab Res. 2002;34: 589-95.

25. Scherbaum WA, Schweizer A, Mari A, Nilsson PM, Lalanne G, Wang Y, Dunning BE, Foley JE: Evidence that vildagliptin attenuates deterioration of glycemic control during 2-year treatment of patients with type 2 diabetes and mild hyperglycemia. Diabetes Obes Metab. 2008;10: 1114-24.

26. Scherbaum WA, Schweizer A, Mari A, Nilsson PM, Lalanne G, Jauffret, Foley JE: Efficacy and tolerability of vildagliptin in drug-naïve patients with type 2 diabetes and mild hyperglycemia. Diabetes Obes Metab. 2008;10: 675-82.

27. Scott R, Lintott CJ, Zimmet P, Campbell L, Bowen K, Welborn T: Will acarbose improve the metabolic abnormalities of insulin-resistant type 2 diabetes mellitus? Diabetes Res Clin Pract. 1999;43: 179-85.

28. Scott R, Wu M, Sanchez M, Stein P: Efficacy and tolerability of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy over 12 weeks in patients with type 2 diabetes. Int J Clin Pract. 2007;61: 171-80.
29. Scott R, Loeys T, Davies MJ, Engel SS, for the Sitagliptin Study 801 Group: Efficacy and safety of sitagliptin when added to ongoing metformin therapy in patients with type 2 diabetes. Diabetes Obes Metab. 2008;10: 959-69.
30. van Gaal L, Maislos M, Scherthaner G, Rybka J, Segal P: Miglitol combined with metformin improves glycemic control in type 2 diabetes. Diabetes Obes Metab. 2001;3: 326-31.
31. Aschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C, Williams-Herman DE: Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 2006;12: 2632-37.
32. Berhanu P, Perez A, Yu S: Effect of pioglitazone in combination with insulin therapy on glycemic control, insulin dose requirement and lipid profile in patients with type 2 diabetes previously poorly controlled with combination therapy. Diabetes Obes Metab. 2007;9: 512-20.
33. Charbonnel B, Karasik A, Liu J, Wu M, Meininger G: Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care. 2006;29: 2638-43.
34. Coniff RF, Shapiro JA, Seaton TB: Long-term efficacy and safety of acarbose in the treatment of obese subjects with non-insulin-dependent diabetes mellitus. Arch Intern Med. 1994;154: 2442-8.
35. Coniff RF, Shapiro JA, Seaton TB, Bray GA: Multicentre, placebo-controlled trial comparing acarbose (BAY g 5421) with placebo, tolbutamide and tobutamide-plus-acarbose in non-insulin-dependent diabetes mellitus. Am J Med. 1995;98: 443-51.
36. Dargie HJ, Hildebrant, PR, Rieger GAJ, McMurray JJV, McMorn SO, Roberts JN, Zambanini A, Wilding JPH: A randomized, placebo controlled trial assessing the effects of rosiglitazone on echocardiographic function and cardiac status in type 2 diabetic patients with New York Heart Association functional class I or II heart failure. J Am Coll Cardiol. 2007;49: 1696-704.
37. Davidson JA, McMorn SO, Waterhouse BR, Corbitz AR: A 24-week, multicentre, randomized, double-blind, placebo-controlled, parallel-group study of the efficacy and tolerability of combination therapy with rosiglitazone and sulfonylurea in African American and Hispanic American patients with type 2 diabetes inadequately controlled with sulfonylurea monotherapy. Clin Thera. 2007;29: 1900-14.
38. Einhorn D, Rendell M, Rosenzweig J, Egan JW, Mathisen AL, Schneider RL, for the Pioglitazone 027 Study Group: Rosiglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. Clin Thera. 2000;22: 1395-409.
39. Fonseca V, Rosenstock J, Patwardhan R, Salzman A: Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus. JAMA. 2000;283: 1695-702.
40. Goldstein BJ, Feinglos MN, Lunceford JK, Johnson J, Williams-Herman DE: Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care. 2007;30: 1979-87.
41. Gonzalez-Clemente JM, for the Spanish Nateglinide Study Group: Improvement of glycemic control by nateglinide decreases systolic blood pressure in drug-naive patients with type 2 diabetes. Eur J Clin Invest. 2007;38: 174-9.
42. Hanefeld M, Herman GA, Wu M, Mickel, C, Sanchez, M, Stein P, for the Sitagliptin Study 014 Investigators: Once-daily sitagliptin, a dipeptidyl peptidase-4 inhibitor, for the treatment of patients with type 2 diabetes. Curr Med Res Opin. 2007;23: 1329-39.
43. Hermansen K, Kipnes M, Luo E, Fanurik D, Khatami H, Stein P, for the Sitagliptin Study 035 Group: Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, in patients with type 2 diabetes mellitus inadequately controlled on glimepiride alone or on glimepiride and metformin. Diabetes Obes Metab. 2007;9: 733-45.
44. Hollander P, Yu D, Chou H: Low-dose rosiglitazone in patients with insulin-requiring type 2 diabetes. Arch Intern Med. 2007;167: 1284-90.
45. Mitrakou A, Tountas N, Raptis AE, Bauer RJ, Schulz H, Raptis SA: Long-term effectiveness of a new alpha-glucosidase inhibitor (BAY m1099-Miglitol) in insulin-treated type 2 diabetes mellitus. Diabet Med. 1998;15: 657-60.
46. Nonaka K, Kakikawa T, Sato A, Okuyama K, Fujimoto G, Kato N, Suzuki H, Hirayama Y, Ahmed T, Davies MJ, Stein PP: Efficacy and safety of sitagliptin monotherapy in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract. 2008; 79: 291-8.
47. Patel J, Anderson RJ, Rappaport EB: Rosiglitazone monotherapy improves glycemic control in patients with type 2 diabetes: a twelve-week, randomized, placebo-controlled study. Diabetes Obes Metab. 1999;1: 165-172.
48. Raz I, Chen Y, Wu M, Hussain S, Kaufman K, Amatruda JM: Efficacy and safety of sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes. Curr Med Res Opin. 2008;24: 537-50.
49. Roberts VL, Stewart J, Issa M, Lake B, Melis R: Triple therapy with glimepiride in patients with type 2 diabetes mellitus inadequately controlled by metformin and a thiazolidinedione: results of a 30-week, randomized, double-blind, placebo-controlled, parallel-group study. Clin Thera. 2005;27: 1537-47.
50. Rosenstock J, Brazg R, Andryuk PJ, Kaifeng L, Stein P, for the Sitagliptin Study 019 Group: Efficacy and safety of a dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicentre, randomized, double-blind, placebo-controlled, parallel-group study. Clin Thera. 2006;28: 1556-68.
51. Testa MA, Simonson DC: Health economic benefits and quality of life during improved glycemic control in patients with type 2 diabetes mellitus. JAMA. 1998;280: 1490-6.
52. Chiasson J, Naditch L, for the Miglitol Canadian University Investigator Group: The synergistic effect of miglitol plus metformin combination therapy in the treatment of type 2 diabetes. Diabetes Care. 2001;24: 989-94.
53. Chan JCN, Chan KWA, Ho LLT, Fuh MMC, Horn LC, Sheaves R: An Asian multicentre clinic trial to assess the efficacy and tolerability of acarbose compared with placebo in type 2 diabetic patients previously treated with diet. Diabetes Care. 1998;21: 1058-61.
54. Dormandy JA, Charbonnel B, Eckland DJA, Erdmann E, Massi-Benedetti M, Moules M, Skene AM, Tan MH, Lefebvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Korajyi L, Laakso M, Mokan M, Norkus A, Pirags V, Poder T, Scheen A, Scherbaum W, Schemtheiner G, Schmitz O, Skrha J, Smith U, Taton J, for the PROactive investigators: Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events); a randomized controlled trial. Lancet. 2005;366: 1279-89.
55. Feinglos M, Dailey G, Cefalu W, Osei K Tayek J, Canovatchel W: Effect of glycemic control of the addition of 2.5mg glipizide GITS to metformin in patients with T2DM. Diabetes Res Clin Pract. 2005;68:167-75.
56. Holman RR, Cull CA, Turner RC, for the UKPDS Study Group: A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (UKPDS 44). Diabetes Care. 1999;22: 960-4.
57. Kipnes MS, Krosnick A, Rendel MS, Egan JW, Mathisen AL, Schneider RL: Pioglitazone hydrochloride in combination with sulfonylurea therapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Am J Med. 2001;111: 10-7.
58. Mattoo V, Eckland D, Widel M, Duran S, Fajardo C, Strand J: Metabolic effects of pioglitazone in combination with insulin in patients with type 2 diabetes mellitus whose disease is not adequately controlled with insulin therapy: results of a six-month, randomized, double-blind, prospective, multicentre, parallel-group study. Clin Ther. 2005;27: 554-67.
59. Raskin P, Rendell M, Riddle MC, Dole JF, Freed MI, Rosenstock J, for the Rosiglitazone Clinical Trials Study Group: A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care. 2001;24: 1226-32.
60. Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H, for the Sitagliptin Study 023 Group: Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia. 2006;49: 2564-71.
61. Riddle MC, Schneider J, for the Glimepiride Combination Group: Beginning insulin treatment of obese patients with evening 70/30 insulin plus glimepiride versus insulin alone. Diabetes Care. 1998;21: 1052-7.
Appendix Table 1: Abstracted data for each manuscript.

Study Characteristics	Patient Characteristics	Clinical Outcomes
Multicentre trial (y/n)	Mean age (years)	Baseline A1C by placebo and treatment group(s)
Sample size (total and each study arm)	% Male	End of study A1C by placebo and treatment group(s)
Duration (weeks)	Ethnicity (as listed by authors)	Absolute change in A1C by placebo and treatment group(s)
Run in period (using a placebo – in weeks)	Duration of Diabetes (years)	
Follow up % (≥ 70%)	Weight (kg)	
Drug	BMI	
Dose (fixed or titrated)	Baseline A1C (%)	
Background OAD use	Type of analysis (all patients treated, efficacy/per protocol or intention to treat analysis)	
Funding source (Government, private non-profit, private for profit, not funded or not reported)		
Appendix Table 2: Study characteristics

Study/Year	Duration (weeks)	Intervention Follow up	Drug and Dose	Control Follow up	Background Drug
Ahren, 2004 ‡ (10)	12	56 89	Vildagliptin 50 mg OD	51 92	Metformin
Aschner, 2006 * (40)	24	238 87.8	Sitagliptin 100 mg OD	253 85.3	OAD Discontinued
Barnett, 2003 * (11)	26	84 94	Rosiglitazone 8 mg OD	87 79	Sulphonylurea
Berhanu, 2007 * (11)	20	110 87.3	Pioglitazone 45 mg OD	112 87.3	Insulin +/- OAD
Bosi, 2007 * (12)	24	177 86.4	Vildagliptin 50 mg OD	182 83.5	Metformin
Charbonnel, 2006 * (42)	24	464 89.7	Sitagliptin 100 mg OD	237 81	Metformin
Chiasson, 2006 * (61)	36	82 86.6	Miglitol 100 mg TID	83 97.6	OAD Discontinued
Chan, 2005 * (62)	24	63 82.5	Acarbose 100 mg TID	63 90.5	Drug Naive
Coniff, 1994 * (43)	24	105 86.7	Acarbose 300 mg TID	107 91.6	OAD Discontinued
Coniff, 1995 * (44)	24	76 96	Acarbose 200 mg TID	72 83	OAD Discontinued
Coniff, 1995 § (13)	16	73 79.5	Acarbose 100 mg TID	73 87.7	Drug Naive
Dargie, 2005 § (14)	16	196 87.2	Metformin 2550 mg/day	194 93.8	Insulin, Metformin
De Jager, 2003 * (15)	29	144 84	Metformin 2550 mg/day	284 75	Any OAD
Dormandy, 2005 § (15)	138	2633 93.2	Pioglitazone 45 mg OD	2605 92.9	Any OAD
Einhorn, 2005 § (17)	16	168 83	Pioglitazone 30 mg OD	160 70	Metformin
Feingros, 2005 * (64)	16	61 91.8	Glipizide 2.5 mg OD	61 91.8	Metformin
Fischer, 1999 § (16)	24	102 84.3	Acarbose 25 mg TID	97 83.5	Drug Naive
Fonseca, 2000 * (48)	26	119 84.9	Rosiglitazone 4 mg OD	116 81.03	Metformin
Fonseca, 2003 * (17)	24	200 85	Nateglinide 120 mg TID	202 80	Rosiglitazone
Fujio, 2000 § (18)	16	128 78.9	Metformin XR 500 mg OD	117 76.1	Drug Naive
Garber, 2006 * (19)	24	147 84.4	Vildagliptin 50 mg OD	158 81	TZD
Goldstein, 2007 * (49)	24	179 97.8	Sitagliptin 100 mg OD	176 93.8	OAD Discontinued
Gonzalez-Clemente, 2008 * (50)	12	55 96.4	Nateglinide 120 mg TID	54 94.4	Drug Naive
Halimi, 2000 * (20)	24	78 89.7	Acarbose 100 mg TID	74 79.7	Metformin
Hanefeld, 2000 * (21)	12	51 86.3	Nateglinide 30 mg TID	60 90	OAD Discontinued
Hanefeld, 2000 * (22)	12	58 93.1	Nateglinide 60 mg TID	57 93	Metformin

©2010 American Diabetes Association. Published online at http://care.diabetesjournals.org/cgi/content/full/dc09-1727/DC1.
Study/Year	Duration (weeks)	Intervention Follow up	Control Follow up	Drug and Dose	Background Drug
Hanefeld, 2007 * (51)	12	N=111	111	Sitagliptin 25 mg OD	OAD Discontinued
		N=112	95.5	Sitagliptin 50 mg OD	
		N=110	96.4	Sitagliptin 100 mg OD	
		N=111	97.3	Sitagliptin 50 mg BID	
Hedblad, 2007 * (52)	52	N=99	78.8	Rosiglitazone 4 mg BID	Any OAD Except TZD
Hermansen, 2007 * (53)	24	N=222	83.3	Sitagliptin 100 mg OD	Glimepiride +/- Metformin
Herz, 2003 * (54)	16	N=99	92.9	Pioglitazone 30 mg OD	Drug Naive
		N=99	92.9	Pioglitazone 45 mg OD	
Hollander, 2007 * (55)	24	N=209	75.6	Rosiglitazone 2 mg OD	
		N=209	70.3	Rosiglitazone 4 mg OD	
Holman, 1999 * (56)	156	N=973	83.3	Acarbose 100 mg TID	OAD +/- Insulin
Horton, 2004 * (57)	24	N=104	97.1	Nateglinide 120 mg TID	Drug Naive
		N=104	97.1	Metformin 500 mg TID	
Hwu, 2003 * (58)	18	N=56	96.4	Acarbose 100 mg TID	Insulin
Johnston, 1994 * (59)	14	N=61	93.4	Miglitol 50 mg TID	Sulphonylurea
		N=68	85.3	Miglitol 100 mg TID	
Johnston, 1998 § (60)	56	N=104	91	Miglitol 25 mg TID	Drug Naive
		N=102	83	Miglitol 50 mg TID	
		N=104	88.4	Glyburide 20 mg/day	
Kelley, 1998 * (61)	24	N=98	73.5	Acarbose 100 mg TID	Insulin
Kipnes, 2001 § (62)	16	N=184	95.7	Pioglitazone 15 mg OD	Sulphonylurea
		N=189	96.3	Pioglitazone 30 mg OD	
Manzella, 2004 † (63)	16	N=60	100	Metformin 850 mg BID	Drug Naive
Marre, 2002 * (64)	24	N=155	88.4	Nateglinide 60 mg TID	Metformin
		N=160	90.1	Nateglinide 120 mg TID	
Mattoo, 2005 * (65)	24	N=142	90.1	Pioglitazone 30 mg OD	Any OAD +/- Insulin
Mitrakou, 1998 † (66)	24	N=60	96.7	Miglitol 100 mg TID	Insulin
Moses, 2001 * (67)	16	N=138	81.1	Repaglinide 1 mg TID	Drug Naive
Nonaka, 2008 * (68)	12	N=76	98.7	Sitagliptin 100 mg OD	OAD Discontinued
Patel, 1999 § (69)	12	N=74	78	Rosiglitazone 0.05 mg BID	Drug Naive
		N=72	76	Rosiglitazone 0.25 mg BID	
		N=79	82	Rosiglitazone 1 mg BID	
		N=80	86	Rosiglitazone 2 mg BID	
Raskin, 2001 § (70)	26	N=106	81	Rosiglitazone 2 mg BID	Insulin
		N=103	77	Rosiglitazone 4 mg BID	
Raz, 2006 * (71)	18	N=205	91.2	Sitagliptin 100 mg OD	OAD Discontinued
Raz, 2008 * (72)	30	N=96	82.3	Sitagliptin 100 mg OD	Metformin
Riddle, 1998 * (73)	24	N=72	97.2	Glimepiride 8 mg BID	Insulin
Roberts, 2005 * (74)	26	N=85	83.3	Glimepiride 8 mg OD	Metformin, TZD
Rosenstock, 2006 * (75)	24	N=175	85.1	Sitagliptin 100 mg OD	Pioglitazone
Rosenstock, 2008 * (76)	26	N=56	96.4	Rosiglitazone 4 mg OD	Glimepiride
Scherbaum, 2002 * (77)	26	N=83	73.5	Pioglitazone 15 mg OD	Drug Naive
		N=72	88.9	Pioglitazone 30 mg OD	
Scherbaum, 2008 * (78)	108	N=68	76.1	Vildagliptin 50 mg OD	Drug Naive
Scherbaum, 2008 * (79)	52	N=156	88.5	Vildagliptin 50 mg OD	Drug Naive
Study/Year	Duration (weeks)	Intervention Follow up	Drug and Dose	Control Follow up	Background Drug
-------------------------	------------------	------------------------	------------------------	-------------------	-----------------
Scott, 1999 § (36)	16	53 77.4	Acarbose 100 mg TID	52 80.8	Drug Naïve
Scott, 2007 * (37)	12	125 81.3	Glipizide 20 mg/day	125 86.4	OAD Discontinued
		123 94.3	Sitagliptin 5mg BID		
		123 87.8	Sitagliptin 12.5 mg BID		
		124 90.3	Sitagliptin 25 mg BID		
Scott, 2008 * (38)	18	94 90	Sitagliptin 100 mg OD	92 91	Metformin
		87 98	Rosiglitazone 8 mg OD		
Testa, 1998 *†‡ (60)	12	377 90.2	Glipizide 20 mg/day	192 84.4	Drug Naïve
Van Gaal, 2001 * (39)	32	77 72.7	Miglitol 100 mg TID	75 84	Metformin

Study funding is indicated as the following: * - private for profit; † - private non-profit; ‡ - governmental; and § - not reported.
Appendix Table 3: Patient characteristics

Study	Intervention		Control									
	Age (y)	% Male	% White	Duration of DM (y)	BMI	Initial A1C (%)	Age (y)	% Male	% White	Duration of DM (y)	BMI	Initial A1C (%)
Ahren, 2004 (10)	57.9	69.6	N/R	5.6	29.4	7.2	55.7	66.7	N/R	5.5	30.2	7.8
Aschner, 2006 (40)	53.4	57.1	51.3	4.3	30.3	8	54.3	51.4	50.2	4.6	30.8	8
Barnett, 2003 (11)	54.9	46.8	52.8	4.3	30.3	8.1	54.1	75	N/R	6.5	26.4	9.1
Berhanu, 2007 (41)	52.9	43.6	34.9	7.7	30.7	8.4	52.5	41.1	25.9	8.5	31.8	8.6
Bosi, 2007 (12)	54.3	57.3	74.1	6.8	32.1	8.4	54.5	53.1	73.1	6.2	33.2	8.3
Charbonnel, 2006 (42)	53.9	61.5	74.1	5.8	32.9	8.4	53.9	61.5	74.1	5.8	32.9	8.4
Chiasson, 2001 (61)	57.3	78.1	89	5.2	31.1	8.2	57.7	67.5	91.6	5.1	31.1	8.1
Chan, 1998 (62)	57.9	73.5	88	7.5	30.7	8.2	57.9	73.5	88	7.5	30.7	8.2
Coniff, 1994 (43)	52.8	50.8	N/R	2.7	25.4	8.2	54	50.8	N/R	2.1	25.6	8.6
Coniff, 1995 (44)	56	45	59	N/R	N/R	6.8	55.6	54	60	N/R	N/R	6.7
Coniff, 1995 (43)	56.2	39	51	5.1	29.7	6.9	56.3	52	45	5.5	29.9	7.1
Dargie, 2007 (45)	55	52	74	6	31	8.7	54	58	81	5	32	8.7
Dargie, 2007 (45)	56	59	74	5	31	9.0	56	59	74	5	31	9.0
Davidson, 2007 (46)	64.3	84.3	99.1	4.5	28.8	7.8	63.9	79.1	99.1	4	28.6	7.8
De Jager, 2005 (14)	52	45.3	0	6	31.3	9.2	53	48.3	0	6	31.9	9.4
Del Prato, 2003 (15)	56	59	N/R	N/R	29.7	7.8	56	63	N/R	N/R	29.9	7.4
Dermady, 2005 (63)	61.9	67	98	8*	30.7	7.8*	61.6	66	99	8*	31	7.9*
Einhorn, 2000 (47)	55.5	54.8	81	N/R	32.1	9.9	55.7	60	86.9	N/R	32.1	9.8
Feinglos, 2005 (64)	57.7	45.9	78.7	6.5	31.7	7.5	58.8	41.0	68.9	4.6	32.1	7.6
Fischer, 1998 (16)	58.5	53	N/R	2.2	27.3	7.4	52.7	53	N/R	2	26.9	7.3
Fonseca, 2000 (48)	55.5	49	N/R	1.7	27.6	7.5	56.8	59	N/R	1.4	27.6	7.4
Fonseca, 2003 (17)	59.4	51	N/R	1.8	27.2	7.5	59.4	51	N/R	1.8	27.2	7.5
Fujioka, 2005 (18)	57.5	62.1	80.2	7.5	30.2	8.9	58.8	74.3	81.4	7.3	30.3	8.6
Garber, 2006 (19)	56.5	68.2	77.3	8.3	29.8	8.9	56.6	58.2	77.3	8.3	29.8	8.9
Table 3 cont’d:

Study	Intervention	Control										
	Age (y)	% Male	% White	Duration of DM (y)	BMI	Initial A1C (%)	Age (y)	% Male	% White	Duration of DM (y)	BMI	Initial A1C (%)
Goldstein, 2007 (43)	53.3	52	52	4.4	31.2	8.9	53.6	52.8	46	4.6	32.5	8.7
	53.4	48.9	47.8	4.5	32.1	8.9	53.2	45.1	58.2	4.4	32.2	8.7
Gonzalez-Clemente, 2008 (50)	59.9	56.4		28.9	7.2	57.2	63		28.7	7.1		
Halimi, 2000 (20)	56	47.5	N/R	9.5	30.1	8.6	55	62.9	N/R	9	29.7	8.5
Hanefeld, 2000 (21)	58	70.6	N/R	4.5	29	8.4	57.4	60	N/R	5.4	28.3	8.5
	56.1	70.7	N/R	6.2	28.1	8.3	54.4	69.8	N/R	4.4	28.6	8.3
Hanefeld, 2007 (51)	55	51.4	88.3	3.6	31.9	7.7	55.9	63.1	78.4	3.3	31.4	7.6
	55.3	45.5	85.7	3.3	31.6	7.6	56	55.5	88.2	3.6	31.3	7.8
	55.2	44.1	81.1	4.5	32.7	7.8	56.5	63.2	N/R	3.7	28.8	8.5
Hedblad, 2007 (22)	67	51	N/R	3.7	30	6.9	66	59	N/R	4.5	29	6.9
Hermansen, 2007 (52)	55.6	52.7	61.3	8.3	31.2	8.3	56.5	53.4	63.9	9.3	30.7	8.3
Herz, 2003 (23)	59	59.6	98	1.9	31.7	7.5	58	49.5	97	1.5	31.7	7.5
Hollander, 2007 (53)	58.1	52.5	94	1.8	30.8	7.6	56	55.5	88.2	3.6	31.3	7.8
Holman, 1999 (65)	60	N/R	N/R	7.9	29.8	8.7 *	60	8	29.6	8.7 *		
Horton, 2004 (24)	57.9	56.7	N/R	4.7	29.9	8.1	59	64.4	N/R	4.2	29.5	8.2
Hwu, 2003 (25)	58.1	50	N/R	13.4	24.1	9.1	54.7	49.1	N/R	10.2	23.9	9.5
Johnston, 1994 (26)	58	67	63	10	31	8.8	59	48	66	8	30	8.9
Johnston, 1998 (27)	67.2	60	86	7.5	29.7	8.3	68.5	66	89	7	30.4	8.4
	67.8	61	78	6.8	29.4	8.4	67.7	59	90	7.2	29.3	8.4
Kelley, 1998 (28)	61.5	59	88	12.4	31.5	8.8	61.2	49	86	12.5	31.1	8.7
Kipnes, 2001 (66)	56.5	59	79	N/R	31.4	10	56.9	58	75	N/R	32	9.9
Manzella, 2004 (29)	N/R	51.7	N/R	N/R	29.5	8	N/R	55	N/R	N/R	29.2	8.1
Marre, 2002 (30)	57.9	61.3	90.3	6.5	29.6	8.3	56.4	55.3	90.8	6.5	29.6	8.3
	57.3	61.3	91.3	6.8	29.3	8.2						
Table 3 cont’d:

Study	Intervention	Control										
	Age (y)	% Male	% White	Duration of DM (y)	BMI	Initial A1C (%)	Age (y)	% Male	% White	Duration of DM (y)	BMI	Initial A1C (%)
Mattoo, 2005 (67)	58.8	43.7	96.5	13.6	32.5	8.9	58.9	42.9	96.6	13.4	31.8	8.8
Mitrakou, 1998 (54)	57.4	48.3	N/R	8.5	24.4	9.9	57.4	61	N/R	7.9	24.5	9.9
Moses, 2001 (31)	57.5	53.5	98.8	3.0	30	7.8	57.4	57.5	98.5	3.07	30.9	7.6
Nonaka, 2008 (55)	55.6	60	4	25.2	7.5		55	66	4.1	25.1	7.7	
Patel, 1999 (56)	56.7	66.2	74.3	4.9	29.4	9.1	56.8	69.3	73.3	4.2	28.9	9.1
Raskin, 2001 (58)	57.1	56.6	66.0	12.7	32.1	9.1	55.6	55.8	68.3	11.7	32.7	8.9
Raz, 2006 (60)	54.5	53.7	69.3	4.5	31.8	8	55.5	62.7	61.8	4.7	32.5	8
Raz, 2008 (57)	53.6	51	42	8.4	30.1	9.3	56.1	41.5	47	7.3	30.4	9.1
Riddle, 1998 (50)	58	62.5	79.2	7	32.2	9.7	58	54.8	79.5	7	33.7	9.9
Roberts, 2005 (58)	56.5	61	67.1	7.9	34.0	8.2	56.4	62.3	72.7	8.7	32.8	8.2
Rosenstock, 2006 (59)	55.6	53.1	72.6	6.1	32	8.1	56.9	57.9	72.5	6.1	31	8
Rosenstock, 2008 (32)	61	57	100	7.1	28.8	8.2	65	60	100	6.6	29.1	7.9
Scherbaum, 2002 (33)	58	62.9	N/R	5.4	29.9	9.3	59.1	56	N/R	5.6	29.2	8.8
Scherbaum, 2008 (34)	63.1	60.3	100	2.1	30.4	6.6	63.2	58.7	100	2.5	30.1	6.7
Scherbaum, 2008 (33)	63.3	59.6	99.4	2.5	30.4	6.7	62.8	59.3	99.3	2.7	30	6.8
Scott, 1999 (36)	56	62	N/R	1.8	31	7	57	65	N/R	2.2	29	6.9
Scott, 2007 (35)	54.7	56.9	61	4.7	30.6	7.8	55.3	62.4	66.4	4.8	31.6	7.9
	55.1	49.6	68.8	4.3	30.8	7.9	56.2	48	63.4	4.9	30.5	7.9
	55.6	57.7	61	5	31.4	7.9	55.1	52.4	69.4	4.2	30.4	7.8
	55.2	55	61	4.9	30.3	7.8	55.3	59	61	5.4	30	7.7
	54.8	63	59	4.6	30.4	7.7	58.7	54.9	71.9	5.6	30.1	8.5
Testa, 1998 (60)	58.7	54.9	71.9	5.6	30.1	8.5	58.4	58.9	72.9	4.7	30	8.7
Van Gaal, 2001 (39)	57.9	41.6	N/R	6*	30	8.5	57.9	49.3	N/R	6*	29.7	8.4

Mean values presented. *Median values.
Appendix Figure 1: Study flow diagram. Studies may have been excluded base on more than one criterion (*). DM-diabetes mellitus; OAD-oral antidiabetic agent; RCT-randomized controlled trial.

Searched:
1) Electronic Databases (Medline, EMBASE and Cochrane Database of Randomized Controlled Trials);
2) Reference lists of key citations and meta analyses; and
3) References from clinical practice guidelines and standards of care documents.

4319 citations reviewed by title

1294 citations excluded:
- Duplicates – 1257 (97.1%)
- Non-English – 96 (7.4%)

3025 abstracts reviewed

2819 citations excluded:
- Not Type 2 DM – 706 (24.1%)
- Not an OAD – 1300 (49.3%)
- No placebo arm – 1164 (41.4%)
- A1C not reported – 1148 (40.8%)
- Not a double-blind RCT – 1180 (41.9%)
- < 12 weeks duration – 420 (14.9%)
- < 50 subjects in each arm – 802 (28.5%)
- < 70% follow-up observed – 1 (0.0%)

211 full manuscripts reviewed

128 manuscripts excluded:
- Not English – 4 (0.8%)
- Not Type 2 DM – 2 (1.6%)
- Not an OAD – 10 (7.8%)
- Missing placebo arm – 40 (31.3%)
- A1C not reported – 16 (12.5%)
- Not a double-blind RCT – 64 (50%)
- < 12 weeks duration – 6 (4.7%)
- < 50 subjects in each arm – 34 (26.6%)
- < 70% follow-up observed – 13 (10.2%)

17 manuscripts excluded:
- Unable to provide follow up observed % at 12 weeks - 3 (18%)
- Incomplete follow up observed % data (authors contacted) - 14 (82%)

61 manuscripts included, with 103 comparisons
* studies may have been excluded for more than one criteria
Appendix Figures 2-7: Treatment effect by OAD class at 12 (Figure 2), 19-24 (Figure 3), 25-39 (Figure 4), 40-47 (Figure 5), 48-55 (Figure 6) and 56-104 weeks (Figure 7). Each line represents a treatment effect (circle) and 95% confidence intervals (ends of the line). The diamond shape represents a meta-analyzed mean difference for a particular OAD class and dose. * illustrates the generally accepted maximum daily dose. Abbreviations include: A-Acarbose; DPP-4-Dipeptidyl Peptidase-4; Gm-Glimepiride; Gp-Glipizide; Gy-Glyburide; M-Miglitol; Me-Metformin; Mi-Metformin (long-acting); N-Nateglinide; P-Pioglitazone; R-Rosiglitazone; Re-Repaglinide; S-Sitagliptin; TZDs-Thiazolidinediones; and V-Vildagliptin

Appendix Figure 2
Appendix Figure 2, cont’d.

TZDs	WMD (95% CI)	% Weight
0.1 mg	0.30 (-0.80, 0.60)	100.00
	0.30 (-0.80, 0.60)	100.00
0.5 mg	0.30 (-0.97, 0.67)	100.00
	0.30 (-0.97, 0.67)	100.00
2 mg	-0.30 (-0.56, 0.00)	100.00
	-0.30 (-0.56, 0.00)	100.00
4 mg	-0.30 (-0.75, 0.04)	100.00
	-0.30 (-0.75, 0.04)	100.00
8 mg	-0.30 (-0.71, 0.13)	100.00
	-0.30 (-0.71, 0.13)	100.00
15 mg	-0.30 (-1.38, 0.81)	100.00
	-0.30 (-1.38, 0.81)	100.00
90 mg	-0.30 (-2.10, 0.80)	100.00
	-0.30 (-2.10, 0.80)	100.00

Note: Weights are from random effects analysis.

©2010 American Diabetes Association. Published online at http://care.diabetesjournals.org/cgi/content/full/dc09-1727/DC1
Appendix Figure 3.

Alpha Glucosidase Inhibitors

Dose (mg)	Study	Authors	I-squared (%)	WMD (95% CI)	Weight %
75 mg	Johnston (09)	Fischer (08)	-0.62 (-1.01, -0.23)	41.13	
	Fischer (08)	-0.44 (-0.74, -0.12)	100.00		
150 mg	Johnston (09)	Fischer (08)	-0.66 (-1.32, 0.01)	100.00	
	Fischer (08)	-0.03 (-0.62, -0.04)	51.80		
	Chin (06)	Mittrakou (06)	-1.01 (-1.40, -0.62)	19.19	
	Halim (00)	I-squared = 86.6%	-0.63 (-1.00, -0.26)	19.94	
	Fischer (08)	-0.43 (-0.84, -0.02)	18.93		
	Chin (06)	Mittrakou (06)	-1.30 (-1.54, -1.00)	23.28	
	Halim (00)	I-squared = 86.6%	-0.90 (-1.32, -0.48)	18.74	
	Fischer (08)	-0.87 (-1.21, -0.54)	100.00		
300 mg	Johnston (09)	Fischer (08)	-1.29 (-1.68, -0.90)	49.57	
	Fischer (08)	-0.58 (-0.97, -0.19)	50.03		
	Chin (06)	Mittrakou (06)	-0.93 (-1.63, -0.24)	100.00	
	Halim (00)	I-squared = 86.6%	-0.76 (-1.08, -0.44)	100.00	
	Fischer (08)	-0.76 (-1.08, -0.44)	100.00		

Note: Weights are from random effects analysis

Biguanides

Dose (mg)	Study	Authors	I-squared (%)	WMD (95% CI)	Weight %
1000 mg	Goldstein (07)	-0.98 (-1.30, -0.68)	100.00		
	Horton (06)	-1.30 (-1.60, -1.00)	100.00		
1500 mg	Goldstein (07)	-1.10 (-1.38, -0.82)	100.00		
	Horton (06)	-1.10 (-1.38, -0.82)	100.00		
2000 mg	Goldstein (07)	-1.30 (-1.60, -1.00)	100.00		

Note: Weights are from random effects analysis

DPP-4 Inhibitors

Dose (mg)	Study	Authors	I-squared (%)	WMD (95% CI)	Weight %
50 mg	Scherbaum (08)	Bosi (07)	-0.28 (-0.53, -0.03)	25.25	
	Scherbaum (08)	-1.10 (-1.36, -0.82)	24.76		
	Garber (07)	I-squared = 89.4%	-0.56 (-0.97, -0.16)	100.00	
100 mg	Bosi (07)	Asher (06)	-1.10 (-1.38, -0.82)	11.63	
	Goldstene (07)	-0.79 (-1.06, -0.54)	12.42		
	Charbent (09)	-0.83 (-1.15, -0.51)	10.55		
	Garber (07)	-0.65 (-0.82, -0.48)	14.44		
	Reau (08)	Hermanen (07)	-1.20 (-1.58, -1.02)	11.55	
	Rosenstock (06)	-1.23 (-1.51, -0.95)	11.43		
	I-squared = 76.3%	-0.73 (-0.86, -0.58)	14.86		
	I-squared = 76.3%	-0.70 (-0.92, -0.48)	13.05		
200 mg	Asher (06)	-0.90 (-1.07, -0.73)	100.00		

Note: Weights are from random effects analysis

Meglitinides

Dose (mg)	Study	Authors	I-squared (%)	WMD (95% CI)	Weight %
120 mg	Marre (02)	-0.29 (-0.56, -0.02)	100.00		
	Horton (04)	-0.44 (-0.71, -0.17)	33.72		
	Fonseca (03)	-0.80 (-1.06, -0.52)	33.29		
360 mg	Marre (02)	-0.29 (-0.56, -0.02)	100.00		
	Horton (04)	-1.10 (-1.38, -0.82)	32.98		
	Fonseca (03)	-0.78 (-1.15, -0.40)	100.00		

Note: Weights are from random effects analysis

©2010 American Diabetes Association. Published online at http://care.diabetesjournals.org/cgi/content/full/dc09-1727/DC1.
Appendix Figure 3, cont’d.

Sulfonylureas

16 mg
Riddle (08)
-0.10 (-0.44, 0.24)
-0.10 (-0.44, 0.24)

20 mg (*Gy)
Johnston (08)
-1.08 (-1.39, -0.77)
-1.08 (-1.39, -0.77)

TZDs

2 mg
Hellander (07)
1.07 (0.79, 1.35)
1.07 (0.79, 1.35)

4 mg
Hellander (07)
-0.33 (-0.63, -0.03)
-0.33 (-0.63, -0.03)

8 mg (*R)
Davi (09)
-1.34 (1.71, -0.57)
-1.34 (1.71, -0.57)

16 mg
Barrett (03)
-1.47 (1.73, -1.26)
-1.47 (1.73, -1.26)

30 mg
Mattio (03)
-0.66 (0.05, -0.43)
-0.66 (0.05, -0.43)

42 mg (*F)
Bonham (07)
-0.20 (0.52, 0.12)
-0.20 (0.52, 0.12)

Note: Weights are from random effects analysis.

©2010 American Diabetes Association. Published online at http://care.diabetesjournals.org/cgi/content/full/dc09-1727/DC1.
Appendix Figure 4.

Alpha Glucosidase Inhibitors

Dose	Study	Weight %	WMD (95% CI)
75 mg	Johnston (98)	100.00	-0.19 (-0.48, 0.10)
150 mg	Johnston (98)	100.00	-0.19 (-0.48, 0.10)
300 mg	Van Gaal (01), Chiasson (01)	100.00	-0.32 (-0.61, -0.03)

I-squared = 0.0%, p = 0.785

Note: Weights are from random effects analysis.

Biguanides

Dose	Study	Weight %	WMD (95% CI)
1500 mg	Chiasson (01)	100.00	-1.23 (-1.56, -0.90)
2550 mg	Del Prato (08)	100.00	-1.23 (-1.56, -0.90)

Note: Weights are from random effects analysis.

DPP-4 Inhibitors

Dose	Study	Weight %	WMD (95% CI)
50 mg	Scherbaum (08)	51.29	-0.29 (-0.52, -0.06)
100 mg	Raz (08)	100.00	-1.15 (-1.41, -0.89)

I-squared = 0.0%, p = 0.769

Note: Weights are from random effects analysis.

Sulfonylureas

Dose	Study	Weight %	WMD (95% CI)
8 mg	Roberts (05)	100.00	-0.98 (-1.20, -0.76)
10 mg	Johnston (98)	100.00	-0.52 (-1.21, -0.63)

Note: Weights are from random effects analysis.

©2010 American Diabetes Association. Published online at http://care.diabetesjournals.org/cgi/content/full/dc09-1727/DC1.
TZDs

4 mg
Fonseca (09)
Rosin (01)
Rozendal (08)
I-squared = 19.4%, p = 0.289

WMD (95% CI) % Weight
-1.01 (-1.58, -0.44) 39.16
-0.70 (-1.02, -0.38) 44.66
-0.55 (-1.06, -0.03) 35.72
-0.78 (-1.03, -0.54) 100.00

8 mg (*s)
Fonseca (09)
Rozendal (08)
Bertion (03)
Rosin (01)
I-squared = 0.0%, p = 0.777

WMD (95% CI) % Weight
-1.23 (-1.63, -0.83) 23.58
-1.00 (-1.42, -0.56) 13.25
-1.42 (-2.19, -0.65) 37.45
-1.29 (-1.63, -0.95) 160.00

15 mg
Schebaun (02)

WMD (95% CI) % Weight
-0.58 (-1.03, -0.13) 100.00
-0.58 (-1.03, -0.13) 100.00

30 mg
Schebaun (02)

WMD (95% CI) % Weight
-0.71 (-1.11, -0.31) 100.00
-0.71 (-1.11, -0.31) 100.00

Note: Weights are from random effects analysis.
Appendix Figure 5.

Alpha Glucosidase Inhibitors

- **75 mg**
 - Johnston (98)
 - WMD (95% CI): -0.31 (-0.60, -0.02) Weight %: 100.00

- **150 mg**
 - Johnston (98)
 - WMD (95% CI): -0.48 (-0.77, -0.19) Weight %: 100.00

DPP-4 Inhibitors

- **50 mg**
 - Scherbaum (08)
 - WMD (95% CI): -0.32 (-0.55, -0.09) Weight %: 73.13

- **Scherbaum (08)**
 - WMD (95% CI): -0.25 (-0.62, 0.12) Weight %: 26.87

- **f squared = 0.0%, p = 0.754**
 - WMD (95% CI): -0.30 (-0.50, -0.11) Weight %: 100.00

Sulfonylureas

- **20 mg**
 - Johnston (98)
 - WMD (95% CI): -1.04 (-1.33, -0.75) Weight %: 100.00

Note: Weights are from random effects analysis.
Appendix Figure 6.

Alpha Glucosidase Inhibitors

Dose	Authors	WMD (95% CI)	Weight %
75 mg	Johnston	-0.36 (-0.65, -0.07)	100.00
150 mg	Johnston	-0.36 (-0.65, -0.07)	100.00
300 mg	Holman	-0.30 (-0.35, -0.21)	100.00

DPP-4 Inhibitors

Dose	Authors	WMD (95% CI)	Weight %
50 mg	Scherbaum	-0.20 (-0.48, 0.08)	50.00
50 mg	Scherbaum	-0.30 (-0.58, -0.02)	50.00

TZDs

Dose	Authors	WMD (95% CI)	% Weight
8 mg	Hedblad	-0.63 (-0.87, -0.39)	59.51
8 mg	Dargie	-0.70 (-0.93, -0.48)	40.49

Sulfonylureas

Dose	Authors	WMD (95% CI)	Weight %
20 mg	Johnston	-0.84 (-1.23, -0.65)	100.00

Note: Weights are from random effects analysis.

©2010 American Diabetes Association. Published online at http://care.diabetesjournals.org/cgi/content/full/dc09-1727/DC1.
Appendix Figure 7.

Alpha Glucosidase Inhibitors

Dosage	Weight %	JMD (95% CI)
75 mg	100.00	-0.49 (-0.69, -0.29)
150 mg	100.00	-0.49 (-0.69, -0.29)
300 mg	100.00	-0.23 (-0.30, -0.16)

Note: Weights are from random effects analysis

Sulfonylureas

Dosage	Weight %	WMD (95% CI)
20 mg	100.00	-0.92 (-1.12, -0.72)

Note: Weights are from random effects analysis