Ultrastructural and morphometrical study of preimplantation endometrium in superovulated mice treated with progesterone or Sildenafil

Leila Roshangar, Ph.D., Jafar Soleimani-Rad, Ph.D., Bahman Rashidi, Ph.D., Hossein Mazochian, M.D., Student, Behzad Nikzad, M.D., Sara Soleimani Rad, M.D.

1. Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
2. Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
3. Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
4. Medical Education Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
5. Department of Neuroscience, Tabriz University, Tabriz, Iran.
6. Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.

Abstract

Background: Endometrial development has an important role in blastocyst adhesion and implantation. During IVF cycles, endometrial development is enhanced by progesterone.

Objective: The aim of this study was to compare ultrastructural and morphometrical characteristics of mice uterine endometrium in natural cycle with those in superovulated cycles received progesterone or Sildenafil.

Materials and Methods: In this study, 60 female bulb/c mice were divided into 4 groups: a control and 3 experimental; gonadotropin, gonadotropin+Sildenafil and gonadotropin+progesterone. In experimental groups the mice superovulated mated.

Results: Microscopy revealed that in control group the cells had numerous apical microvilli and the height of the cells was 20.52±2.43 μm. In gonadotropin+progesterone group, the granules were found in basal and apical portions and cellular height was 17.91±2.78 μm which were significantly shorter than in the control and gonadotropin groups (p<0.001). In this group, the apical membrane also contained pinopodes. In gonadotropin+Sildenafil group, the granules were found in both apical and basal portions and the height of the cells was 17.60±2.49 μm which were significantly shorter than in the control and gonadotropin groups (p<0.001). In this group, pinopodes appeared slightly extensive than the other groups.

Conclusion: It is concluded that superovulatory drugs in mice stimulate endometrial maturation but injection of Sildenafil is nearly more positive.

Key words: Implantation, Progesterone, Sildenafil, Mice, Uterine

Corresponding Author:
Jafar Soleimani Rad, Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Valiasr, Tavaneer Ave. No 7, Tabriz, Iran.
Email: SoleimaniJ@yahoo.com
Tel: (+98) 9143154736

Received: 19 May 2012
Revised: 13 January 2013
Accepted: 8 June 2013

Introduction

The low pregnancy rate in assisted reproductive technology (ART), is one of challenging issues which extensively is under investigation. Since the beginning of use of in vitro fertilization for treatment of infertility, the superovulatory methods and drugs and embryo culture media has progressed tremendously. However, the implantation rate in ART is still low (1, 2). It appears that low implantation rate is partly due to the interference of super ovulatory drugs with endometrial maturation and also lack of synchronicity between endometrial and blastocysts development (3-6).

In ART protocols, in addition to the use of superovulatory drugs, for acceleration of endometrial maturation, after oocyte collection, progesterone is also used. The effect of this hormone on endometrial receptivity is established and reported that progesterone could extends endometrial implantation period possibly by modulation of uterine cell proliferation and expression of genes involved in implantation (7-16). Sildenafil citrate (Viagra) is a drug that regarding to its balancing effect between contraction and relaxation, in smooth muscle,
is primarily used for erectile dysfunction (17-25).

There are evidence that Sildenafil citrate is a vasodilator which act by increasing intracellular nitric oxide (NO) and it also enhances vasodilatory effect of NO by inhibiting the degradation of cGMP (26-28). Similar actions are proposed for Viagra in the myometrium and it is shown that vaginal use of Sildenafil improves uterine artery blood flow (29-31). Therefore, it appears that Viagra by increasing endometrial circulations could facilitate endometrial development and receptivity (32). Morphological characteristics of endometrium, especially endometrial luminal epithelium at preimplantation period, are correlates well with its receptivity at implantation period (6).

Consequently, it could be used as valuable criteria for evaluating endometrial development. The aim of the present study was to compare morphological characteristics of endometrium such as extension of pinopods, height of endometrical epithelial cells and location of secretory granules as an induction of endometrical development in superovulated mice after receiving progesterone or Viagra and immediately before implantation.

Materials and methods

Animals and treatment

In this experimental study, 60 adult female bulb/c mice with average weight of 25-30 gr and 30 adult male mice were used. The mice housed at room temperature under a standard condition, light cycle (12-h light/dark) and free access to food and water. The ethical committee of Tabriz University of Medical Sciences (TUMS) approved all aspects of this study following laboratory practice guidelines. The female mice were divided into 4 groups of 15 as: control, gonadotropin, gonadotropin+ progesterone and gonadotropin+ Sildenafil.

Gonadotropin was purchased from IBSA institute biochimique SA, Switzerland and Sildenafil was purchased from Roof Daroo Co. Tehran, IRAN. Except in control group, in other experimental groups the mice received 7.5 IU hCG as intraperitoneal injection and 48 hours later 7.5 IU hMG. Then in all groups, two female mice at their oestrous cycle were put with one male mouse in a cage for mating. The presence of vaginal plug in the next morning was designated as 0 day post coitum (d.p.c).

In the gonadotropin+ progesterone and gonadotropin+ Sildenafil groups, the mice respectively received 1mg progesterone and 3mg Sildenafil citrate at 24, 48 and 72 hours after HMG injection. 96 hours after HMG injection using 23 gauge needles, the mice in experimental groups together with control mice were sacrificed and uterine specimens were obtained and processed for microscopic evaluation.

Light microscopy

For having uterine specimens exactly at preimplantation stage, the specimens only from those that their uterine contained blastocyst were fixed in 10% formalin, embedded in paraffin and 5 µm thick sections were stained with H & E and PAS and studied with light microscope. For measurement of height of epithelial cells, the images were transferred to monitor, using Motic image analyzer system plus 2, and the measurement was carried out at higher magnifications which was shown in previous study (33).

Transmission electron microscopy

Uterus from both control and experimental group fixed in 2.5% glutaraldehyde (Proscitech, Thuringowa, Australia) in phosphate buffer and processed for transmission electron microscopy at Tabriz University of medical sciences, drug applied and research center, histology department EM facility.

Samples were postfixed in 1% OsO₄ (TAAB, Berkshire- Uk) dehydrated through an ethanol series, equilibrated in propylene oxide, and embedded in Araldite (Proscitech, Thuringowa, Australia). Thin sections were stained with uranyl acetate and lead citrate. The specimens were studied with LEO 906 transmission electron microscope for pinopodes morphology of nuclei and
localization of granules. The images recorded with AMT advantage plus CCD camera.

Statistical analysis
The values in every time point from control and treated groups were analyzed with ANOVA using SPSS 13 and the level of p<0.05 was considered significant.

Results
Light microscopic study revealed that the cells of endometrial luminal epithelium were tall columnar in both control and those that only received HMG and HCG. But the cells were low columnar in those groups that received progesterone or Viagra in addition to superovulatory drugs. On the other hand, in the first two groups, PAS positive granules were restricted to sub nuclear and supranuclear regions, while in the experimental groups which were received progesterone or Viagra, they were dispersed in the cytoplasm. Electron microscopy confirmed the light microscopic findings and showed that in control group the endometrial luminal cells contained euchromatic nuclei, several basal granules, numerous mitochondria and a well-developed rough endoplasmic reticulum (Figure 1, 2).

The cells had also several apical microvilli (Figure 2). The HMG-HCG group had euchromatic nuclei and granules were more localized at apical region and pinopodes were frequent at luminal surface (Figure 3). In the group that received progesterone, in addition to HMG+HCG, granular localization was similar to HMG-HCG group but apical microvilli were as in control group (Figure 4). In the group that received Viagra, instead of progesterone, the apical granules and pinopodes were much similar to those in superovulated group (Figure 5) and several phagolysosomes were present in the stromal cells (Figure 6). The results of morphometric study are summarized in table I.

As it is shown in the table the height of the endometrial epithelial cells in the control group was 20.52±2.43µm and in gonadotropin group was 22.64±1.64. In gonadotropin+ progesterone group, the heights of the cells were 17.91±2.78 µm and in gonadotropin+ sildenafil was 18.23±0.71. The differences were statisticsaly significant (p<0.001).

Table I. The height of the endometrial epithelial cells (μm) in control and experimental groups

Groups	Control	Gonadotropin	Gonadotropin + progesterone	Gonadotropin+ Sildenafil
height of the endometrial cells	20.52±2.43	22.64±1.64	17.91±2.78 *	18.23±0.71 *

*: The values indicated with mean±SD were significantly (p<0.001) different from control group.

Figure 1. Electron micrograph from epithelial cell of endometrium in control mouse. Note basal lamina (BL), Nucleus (N), mitochondrion (M), granules (G), smooth endoplasmic reticulum (SER). 13700 X.
Figure 2. Electron micrograph from endometrial epithelial cells from control mouse. Note, Junctional complex (JC), mitochondria (M), microvilli (MV). 13500X.

Figure 3. Electron micrograph from endometrial epithelial cells from the group received gonadotropin. The micrograph shows Pinopods (P), mitochondria (M), and numerous apical granules (G). 6646X.

Figure 4. Electron micrograph from endometrial epithelial cells from experimental group received gonadotropin+progestrone. Note, Junctional complex (JC), several mitochondria (M), Nucleus (N) and numerous supranuclear granules (G). 13500X.
Discussion

The results of the present study showed that the height of the endometrial luminal epithelium in control and HMG-HCG groups were higher than the height of cells in gonadotropin+ progesterone or Viagra groups. This is probably due to the stimulatory effect of gonadotropin on folliculogenesis which could result in higher estrogen level. The hypothesis of progesterone injection in IVF cycles is that, endometrial epithelial maturation is facilitated by progesterone secretion during secretory phase. However, it appears that early progesterone injection interfere with the effect of estrogen and affect the height of the cells.

In the support of our finding it is shown that estrogen results in hyperplasia, hypertrophy and increasing of cell height (34). On the other hands high level of progesterone is accompanied by decreased cellular height in endometrial luminal epithelium (35-40). Ultrastructural studies showed that apical granules and pinopodes on luminal surface of endometrial epithelium were more frequent in
gonadotropin and gonadotropin+ Viagra groups in comparison to control and progesterone groups. Taking the above morphological features as indications of endometrial maturation, it is indicated that gonadotropin accelerates the endometrial maturation and receptivity.

While progesterone slightly suppresses the stimulatory effect of gonadotropins (41). Viagra has almost not any negative effect on gonadotropin-induced changes in endometrial epithelium. Similarly it is shown that superovulation protocol accelerates development of implantation window (42). The results of the present study are unique in that, the morphological changes of the endometrium are studied immediately, before implantation.

A condition that its study in human is impossible (43-45). To make sure that all the samples are from the same stage of development. The uterine was flashed and specimens was obtained only from those that blastocyst could be collected.

Conclusion

It is concluded that administration of Sildenafil rather than progesterone in superovulation protocol may have positive effect on implantation. However further studies and detection of molecules, involved in endometrial receptivity and implantation, would be needed to come to a definite conclusion.

Acknowledgments

The authors are grateful to research department of Tabriz University of Medical Sciences for their financial support.

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. Keye W Chang R. Infertility evaluation and treatment. W.B. Saunders company, Philadelphia; 1995: 115-126.

2. Landgren B, Johannisson E. A new method to study the process of implantation of a human blastocyst is in vitro. Fertil Steril 1996; 65: 1967-1970.

3. Can A, Tekebioglu M, Biberoglu K. Structure of premenstrual endometrium in HMG/HCG induced an ovulatory women. Eur J Obstet Gynecol Reprod Biol 1991; 42: 119-124.

4. Csemiczky G, Wramsly H, Johannisson E. Importance of endometrial quality in women with tubal infertility during a natural menstrual cycle for the outcome of IVF treatment. J Assist Reprod Genet 1998; 15: 55-61.

5. Bourgain C, Smitz J, Camus M. Human endometrial maturation is markedly improved after luteal supplementation of GnRH/ HMG stimulated cycles. Hum Reprod 1994; 9: 32-40.

6. Narkar M, Kholkute S, Chitlange S, Nandedkar T. Expression of hormone receptors, proliferation and apoptotic markers in primate endometrium. Mol Cell Endocrinol 2006; 246: 107-113.

7. Hewitt SC, Korach KS. Progesterone action and responses in the ERKO mouse. Steroid 2000; 65: 551-557.

8. Sengupa J, Ghosh D. Role of peri-implanation stage endometrium-embryo interaction in the primate. Steroid 2000; 45: 753-762.

9. Bourgain C, Devroye P. The endometrium in stimulated cycles for IVF. Hum Reprod Update 2003; 9: 515-522.

10. Fossum GT, Davidson A, Paulson RJ. Ovarian hyperstimulation inhibits embryo implantation in the mouse. In vitro Fert Embryo Transfer 1989; 6: 7-10.

11. Basir GH, Wai-sum Q, Hung yu, Ng E, Chung Ho P. Morphometric analysis of pre-implantation endometrium in patients having excessively high oestriadiol concentration after ovarian stimulation. Hum Reprod 2002; 16: 435-440.

12. Ertzeid GStoreng R. The impact of ovarian stimulation on implantation and fetal development in mice. Hum Reprod 2001; 16: 221-225.

13. Haengseok S, Kyuyong H, Hyunjung L. Progesterone supplementation extends uterine receptivity for blastocyst implantation in mice. Reproduction 2007; 133: 487-493.

14. Lindhard A, Bentin-Ley U, Ravn Vislin H. Biochemical evaluation of endometrial function at the time implantation. Fertil Steril 2002; 78: 221-233.

15. Jelink J, Ylikorkala O, Jarvinen PA, Alapiessa U. Effect of endogenous and exogenous progesterone on human endometrial enzymes. Int J Fertil 1978; 23: 23-37.
Ultrastructure of endometrium with treated progesterone or Sildenafil

16. Bussi M, Murphy CR. Hormonal control of enzyme activity during the plasma membrane transformation of uterine epithelial cell. Cell Biol Int 2001; 25: 859-871.

17. Harrold LR, Gurwitz JH, Field TS. The diffusion of a novel therapy into clinical practice: The case of Sildenafil. Arch Intern Med 2000; 160: 340-3405.

18. Bivalacqua J, Champion HC, Hellstrom WJ, Kadowitz PJ. Pharmacotherapy for erectile dysfunction. Trends Pharmacol Sci 2000; 21: 484-489.

19. Wallis RM, Corbin JD, Francis SH, Ellis P. Tissue distribution of phosphodiesterase families and the effects of Sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carnaeae and aortic rings in vitro. Am J Cardiol 1999; 83: 3-12.

20. Andersson KE, Wanger G. Physiology of erection. Physiol Rev 1995; 75: 191-236.

21. Burnett A. Nitric oxide in the penis: physiology and pathology. J Urol 1997; 157: 320-324.

22. Christ DJ, Richards S, Winkler A. Integrative erectile biology: the role of signal transduction and cell-to-cell communication in coordinating corporal smooth muscle tone and penile erection. Int J Impot Res 1997; 9: 69-84.

23. Giuliano FA, Rampin O, Benoit G, Jardin A. Neural control of penile erection. Urol Clin North Am 1995; 22: 747-766.

24. Porst H. The rational for prostaglandin E1 in erectile failure: a survey of worldwide experience. J Urol 1996; 155: 802-815.

25. Saenz de Tejada I. In the physiology of erection, signposts to impotence. Contemp Urol 1992; 7: 52-68.

26. Ballard SA, Gingell CJ, Tang K. Effects of Sildenafil on the relaxation of human corpus cavernosum tissue in vitro and on the activities of cyclic nucleotide phosphodiesterase isoyhetes. J Urol 1998; 159: 2164-2171.

27. Chuan AT, Strauss JD, Murphy RA, steers WD. Sildenafil, a type Cgmp Phosphodiesterase inhibitor, specifically amplifies endogenous Gmp-dependent relaxation in vitro. J Urol 1998; 160: 257-61.

28. Watanabe N Kabasawa Y. 4-Benzylamino 1-chloro 6-substituted phthalazines: Synthesis and inhibitory activity toward phosphodiesterase-5. J Med Chem 1998; 41: 3367-3372.

29. March D. Viagra (Sildenafil) effectively treats enlarged hearts, mouse study show. Johns Hopkins Medical Institutions. Medical Video News 2005. Available at: http://www.hopkinsmedicine.org/Press_releases/2005/01_23_05.htm.

30. Wareing M, Myers JE, Ohara M, Baker PN. Sildenafil citrate (Viagra) enhances vasodilatation in fetal growth restriction. J Clin Endocrinol Metab 2007; 90: 2550-2555.

31. Khan RN, Hamoud H, Warren A, Wong LF, Alamkuman S. Relaxant action of Sildenafil citrate (Viagra) on human myometrium of pregnancy. Am J Obstet Gynecol 2004; 191: 315-321.

32. Paulus WE, Streher E, Zhang M, Jelinkova L. Danasouri E, I Sterzik K. Benefits of vaginal Sildenafil citrate in assisted reproduction therapy. Fertil Steril 2002; 77: 856-857.

33. Roshangar L, Soleimani Rad J, Nikpoo P, Sayyah Melli E. Effect of oxytocin injection on folliculogenesis, ovulation and endometrial growth in mice. Iran J Reprod Med 2009; 7: 91-95.

34. Hosi J, Murphy CR. A scanning and light microscope study comparing the effect of clomiphene citrate. Estradiol 17beta and progesterone on the structure of uterine junctional epithelial cell. Eur J Morphol 1995; 33: 39-50.

35. Li T, Rogers A, Dockery P. A new method of histologic dating of human endometrium in the luteal phase. Fertil Steril 1988; 50: 52-60.

36. Sarani S, Ghaffari-Novin M, Warren M. Morphological evidence for the "implantation window" in human laminar endometrium. Hum Reprod 1999; 14: 3101-3106.

37. Dockery P, Rogers A. The effect of steroids on the fine structure of the endometrium. Bailliere's Clin Obstet Gynecol 1989; 3: 227-247.

38. Gunian A. Realization of estradiol effects in the uterus of ovariectomized rats under acute stress. Eur J Obstet Gynecol Reprod Biol 1995; 60: 69-74.

39. Karmer B, Wet GD. Exogenous gonadotropin administration affects the glycoalxy of rat endometrial epithelium cell during the period of implantation. J Assist Reprod Genet 1994; 11: 405-509.

40. Rissik B, Klier FG, Phillips A, Hahn W, Gilula NB. Gap junction regulation in the uterus and ovaries of immature rats by estrogen and progesterone. J Cell Sci 1995; 108: 1017-1032.

41. Tavaniotou A, Smitz J, Bougain C, Devroey P. Ovulation induction disrupts luteal phase function. Ann N Y Acad Sci 2001; 943: 55-63.

42. Stein B, Kramer B. The effect of exogenous gonadotropin hormones on the endometrium of the rat. H Ant 1989; 164: 123-140.

43. Kramer B, Magan A, DevWet G. Hyperstimulation affect vascular permeability at implantation site in the rat endometrium. J Assist Reprod Genet 1993; 10: 163-168.

44. Dursun A, Sendag F, Terek MC. Morphometric changes in the endometrium and serum leptin levels during the implantation period of the embryo in the rat in response to exogenous ovarian stimulation. Fertil Steril 2004; 82: 1121-1126.
45. Salehnia M, Arianmanesh M, Beigi M. The impact of ovarian stimulation on mouse endometrium: a morphometrical study. Iran J Reprod Med 2006; 4: 7-11.