Bias-Aware Heapified Policy for Active Learning

1Wen-Yen Chang, 1Wen-Huan Chiang, 1Shao-Hao Lu, 2TingFan Wu, 1Min Sun
1Department of Electrical Engineering, National Tsing Hua University, Taiwan
{s0936100879, wynny8651599, rosyhoward1223}@gmail.com, sunmin@ee.nthu.edu.tw
2Umbo Computer Vision
tingfan.wu@umbocv.com

Abstract

The data efficiency of learning-based algorithms is more and more important since high-quality and clean data is expensive as well as hard to collect. In order to achieve high model performance with the least number of samples, active learning is a technique that queries the most important subset of data from the original dataset. In active learning domain, one of the mainstream research is the heuristic uncertainty-based method which is useful for the learning-based system. Recently, a few works propose to apply policy reinforcement learning (PRL) for querying important data. It seems more general than heuristic uncertainty-based method owing that PRL method depends on data feature which is reliable than human prior. However, there are two problems - sample inefficiency of policy learning and overconfidence, when applying PRL on active learning. To be more precise, sample inefficiency of policy learning occurs when sampling within a large action space, in the meanwhile, class imbalance can lead to the overconfidence. In this paper, we propose a bias-aware policy network called heapified active learning (HAL) which prevents overconfidence, and improves sample efficiency of policy learning by heapified structure without ignoring global information (overview of the whole unlabeled set). In our experiment, HAL outperforms other baseline methods on MNIST dataset and duplicated MNIST. Last but not least, we investigate the generalization of the HAL policy learned on MNIST dataset by directly applying it on MNIST-M. We show that the agent can generalize and outperform directly-learned policy under constrained labeled sets.

1 Introduction

Nowadays, deep learning has been widely used in several fields, like medical field or automatic driving. However, to reach the whole potential of deep learning, we still struggle to prepare tons of annotated data for training. The progress of collecting such amount of data is obviously a tedious and laborious work. Thus, it is a critical bottleneck to obtain adequate data for training an accurate model. To solve the problem, simply collecting more data may be the most intuitive idea, yet it is highly time-consuming and expensive in certain domains such as cancer detection, Natural Language Processing tasks, etc. Thus, active learning comes in handy to minimize the cost by querying important data in order to improve accuracy by labeling as few data as possible.

As to the methodology of active learning, there have been quite a few heuristic methods querying data according to uncertainty [Shannon 2001; Zhou and Sun 2014; Tang et al. 2017], diversity [Sener and Savarese 2018; Wang et al. 2017], etc. Additionally, some work carries out active learning by virtue of multi-heuristic methods such as RALF [Ebert, Fritz, and Schiele 2012] which tries to manage different methods with hybrid strategies according to the time, considering that exploration/exploitation criteria should be balanced in different moment.

Nevertheless, imbalanced data is the one that possesses stronger relation to the strategy rather than time, which brings about overconfidence, quite problematic as querying data. To cope with it, many works [Sener and Savarese 2018; Wang et al. 2019; Geirhos et al. 2019; Bachem, Lucic, and Krause 2017; Lakshminarayanan, Pritzel, and Blundell 2017; Pop and Fulop 2018] intend to eliminate the overconfidence effect. One of the approaches is to query by commit-
Our method across datasets. This demonstrates the great generalization of features which mimics properties in static surveillance videos. Moreover, our model outperforms other baseline methods in short, our HAL enables the agent to make use of features to other target domains and remain high performance. In this paper, we propose a bias-aware heapified active learning method for pooling labeled and unlabeled data and DFAL (Ducoffe and Precioso 2018) using adversarial image to build up an image decision boundary, finding its nearby unlabeled sample as uncertain data. However, those meta-heuristic strategies cannot be general enough. Our method uses data-driven policy to learn switching strategy for disagreement samples instead, which can be more general in other cases.

Learning to Active Learning. Instead of designing the algorithm for selecting unlabeled data heuristically, some adopt stream-based learning (Fang, Li, and Cohn 2017) by considering it as a decision process with Reinforcement Learning
Figure 2: Pipeline overview. First we extract features of every data in D_u by $F(x; D_l, \phi)$ and randomly pair all the data together for comparison. (E_L, E_u is labeled/unlabeled set embedding feature $\in \mathbb{R}^{f_n}$) In every single comparison with heapified policy, π_θ, the agent will choose a preferable data. After a series of comparison, the data which is estimated as the most valuable will be annotated and added to the training set D_l. By training the prediction model f_ϕ with the new labeled set D_l and evaluating by validation set, D_{val}, we can obtain the performance growth of f_ϕ which can be used as the reward for the agent π_θ.

Through training on Deep Q Network (DQN), it can learn the selecting policy and choose informative data that enable the model to be more robust to certain types of errors. As the number of selected data reaches the budget, the Markov Decision Process (MDP) terminates. The state for the agent is composed of the content, marginals and the confidence of prediction. By doing so, the agent can give consideration to both the uncertainty of every word class prediction and the architecture of every sentence which can avoid the bias in the prediction model. At last, taking the performance growth as reward can enable the model to predict the reward of every selection precisely as to make great progress on the performance of the prediction model.

3 Method

In the following, first, we overview our active learning pipeline in Sec. 3.1. Second, we describe the design of the observation features for policy learning and introduce each of them individually in Sec. 3.2. Third, in Sec. 3.3, we propose a new structure of policy which is "heapified" as querying data, and each policy is learned with offline policy gradient. Before that, we define some common notations below.

Notation: We have three sets, labeled set, validation set, and unlabeled set, which are denoted as $\{D_l, D_{val}\}$ and $\{D_u\}$, respectively, where $x_i \in \mathbb{R}^{C \times H \times W}$ is image, we assume there are L classes and denote $y_i \in \{1, 2, ..., L\}$ as labels. Besides, we have two models; one is a classification model f_ϕ with parameter ϕ, and the other is an agent π_θ with parameter θ. In the classification model, we extract embedding feature which is denoted as $f_E^E(.) \in \mathbb{R}^{f_n}$.

3.1 Overview

As illustrated in Fig. 2 in our active learning procedure we have a prediction model f_ϕ supervised by D_l. Next, our agent π_θ will repeatedly pick two random samples from D_u and compare which unlabeled data has more impact on classification model f_ϕ until the whole D_u has already been compared. After iterating the comparisons, a final image will be determined and annotated by annotators, and then we add it to D_l for the training of the prediction model f_ϕ. Finally, the reward can be calculated by evaluating the marginal performance of the task with the evaluation set D_{val}, offering the agent π_θ to learn. Through the steps mentioned above, the agent π_θ is able to learn a querying policy from the data.

3.2 Observation Feature Designing

As the objective of active learning, we aim to find out the hard samples and the disagreement samples. The disagree-
ment samples include unseen samples and the in-class potential uncertain samples. The unseen samples are the data far from labeled set distribution. The in-class potential uncertain samples are predicted incorrectly but possess high confidence from the classification model. Therefore, feature design can be divided into three parts, bias-aware feature, uncertainty to deal with hard samples, and the disagreement sample learning, respectively.

Bias-aware: maximum component suppression During query procedure, imbalanced data usually results in overconfidence of certain labels, which introduces bias on them. Thus, we design bias-aware feature, enabling the agent to observe the distribution of each class for the query policy.

As shown in Fig. 3 overconfidence usually occurs as the real data distribution is non-continuous. Additionally, the blue region in Fig. 3 is where some samples are predicted incorrectly but possess high confidence from the classification model, we called that in-class potential uncertainty sample. Therefore, in this case, selecting samples with high uncertainty is not an optimal policy. In contrast, if the data distribution is continuous, selecting samples located at the boundary area benefits the training of the classification model.

Every data in the dataset can be represented by their own embedding features $f^E(.)$ which is extracted from the classification model, indicating that they can be mapped to a multidimensional space. In each class, through the calculation of the eigenvalues, we can observe the degree of the dominance of each vector. By taking the largest eigenvalue, the bias-aware feature offers information about the degree of how simply a certain class of data are described. In our design, we select the value oppositely as the feature $BA(.)$ shown in Eq. 1 we called it as maximum component suppression. Lower value implies the oversimplification of feature description, causing overconfidence on the unlabeled set D_u. As a result, the bias-aware feature can be served as a signal enabling the agent to observe the distribution of labeled data D_l for switching different strategies. Here, we define bias-aware feature as follow:

$$BA(\phi, D_l) = 1 - \max \lambda f^E(x_w^l_{y=\hat{y}_i})$$

where $BA(.) \in \mathbb{R}^2$ is the feature of bias aware, $\lambda f^E(x_w^l_{y=\hat{y}_i})$ is the set of class-wise eigenvalues of labeled set’s embedding features and this criterion describes how confident can the embedding feature represent the data without main eigenvector.

Uncertainty In order to boost the performance of the classification model f_θ trained on rough data at the beginning of selecting data, we need to find out hard samples located in ambiguous regions near the decision boundary. Here, we model it by MC-dropout (Gal, Islam, and Ghahramani 2017) which outperforms Shannon entropy. We perturb the model by dropout and compare it with the unperturbed model so as to find out how uncertain is the data. That is, the higher the uncertainty of the data, the more it is worth to be selected. The MC-dropout method is formulated as follow:

$$I(x; \phi) \approx H(x; \phi) - \frac{1}{n} \sum_{i=1}^{n} H(x; \phi^i)$$

where the $H(x; \phi) = -\sum_{i=1}^{L} P(\hat{y}_i|x; \phi)log(P(\hat{y}_i|x; \phi))$, \hat{y}_i is the probability distribution, ϕ is the parameters of active model and ϕ^i is the parameters with noise by dropout which is done n times.

However, depending merely on information of uncertainty limits the growth of performance resulting by over-confidence, so we need to solve it by disagreement samples.

Disagreement sample learning In order to solve the overconfidence samples, we try to use the concept of QBD to learn from disagreement samples, which are unseen samples and in-class potential uncertain samples clearly defined in Sec. 3.2. To find out unseen sample, inspiring by DAL (Gissin and Shalev-Shwartz 2019), we query samples that far from class-wise labeled set distribution. We formulate the calculation of the distance shown as follow:

$$D(x; \phi, D_l) = \bigcup_{i=1}^{L} Dist(x; \phi, D_{y\neq i})$$

where the diversity feature is defined as the distance between unlabeled data and the labeled set representation of each class distribution. The $Dist(.)$ is defined as follow:

$$Dist(x; \phi, D_{y\neq i}) = \text{norm1}(\frac{(f^E_{\phi}(x) - f^E_{\phi}(x^D_{y=\hat{y}_i}))^2}{2\sigma^2 f^E_{\phi}(x^D_{y=\hat{y}_i})})$$

where the x is input image sample, ϕ is model parameters, $f^E_{\phi}(x^D_{y=\hat{y}_i}) \in \mathbb{R}^{L_n}$ is the mean of embedding features in each class of labeled set and f_n is the length of the embedding feature. We have ablation study about labeled set representation in table 1. In Eq. 4 we calculate the distance between the unlabeled data D_u and the labeled data D_l to represent whether data is seen or not for the classification

Figure 4: Off-policy Heapified(compare) policy single selection transition: Here we use memory replay to achieve reward collection efficiently. In every single episode, the agent is required to choose only K images as budget for labeling to the training set D_l. In each data query, the agent will go through unlabeled set D_u which have M images, and the certain path of the final winner of the whole comparison (dark blue path shown above in the figure) is the most related reward’s experience. Policy learns from the path and we show up detail of the decision process with agent network in double box.

model f_ϕ. In addition, we normalize the distance for each class owing that every class distribution is quite different.

On the other hand, searching in-class potential uncertain samples for sampling is quite tricky unless we provide hand-craft features (e.g. SIFT (Lowe 2004), SURF (Bay et al. 2008), HOG (Dalal and Triggs 2005), BoVW (Chandra, Kumar, and Jawahar 2012)) as prior and information of labeled data. To explore unseen case in labeled set D_l, we use Eq. 5 to model it. In addition, as to in-class potential uncertain sample which provides a conditional prior, we add a hand-craft feature to describe the image statistic information for the active model f_ϕ to explore more efficiently. Finally, we express the bias-aware feature with D_t by Eq. 6 in order to prevent overconfidence which means that in a few classes, misclassification occurs which is caused by low complexity of class features description.

3.3 Heapified Policy

Our policy π_θ is a maximum-heap like pooling based query method, so the action space A is quite large. Thus, to learn experience more efficiently, we adopt off-policy policy gradient method. As shown in Fig. 4, our single episode is limited by budget K and our heapified policy will select the most valuable image from M unlabeled set images. Then, we break the task into as many sub-policies, which only compare two features of images, and the better one advances to the next round. We analyze the time complexity of Monte Carlo experience collection and maximum heapified like sub-policies. The time complexity of maximum heapified collection is $O(logM)$ less than Monte Carlo collection which is $O(M)$. In Monte Carlo sampling method, in order to select the best item, we need to compare pair item $M - 1$ times. On the other hands, maximum heapified collection uses $logM$ times to achieve the goal of the most influential of classification model performance unlabeled data selection. In this setting, even if the action space is reduced, the global information (overview of the whole unlabeled set) still remains.

Sub-Policy model. Our sub policy agent $a = \pi_\theta(s)$ tries to compare which one is better based on two image’s features, O define in Eq. 3 where $a \in \{0, 1\}, s = (O_1, O_2)$. After two comparisons are done, the two winner data will form the next state, noted as the sub transition $T(s_{t+1}|d_{t}^{top}, d_{t}^{bot}, s_{t}^{top}, s_{t}^{bot})$ as shown in Fig. 4. After we find out the best image, it will merge the sub transitions of the winner into a trajectory. Finally, The agent shall maximize their reward. In our application, we will maximize reward of the marginal accuracy (Acc) of classification.

In every single episode, the agent is required to choose only K images as budget for labeling to the training set D_l. In each data query, the agent will go through unlabeled set D_u which have M images, and the certain path of the final winner of the whole comparison is the most related reward’s experience. Policy learns from the path and we show up detail of the decision process with agent network in double box.
tion task with prediction model ϕ as $r = Acc(D_{\text{val}}, \phi') - Acc(D_{\text{val}}, \phi)$, where ϕ' is trained model parameters and the ϕ is original parameters before training.

Offline policy gradient. The reward collection is not efficient and single collection cost much time by reward designed as the increase of performance. Therefore, we learn from previous sampling reward and decision. Then we compute offline-policy gradient to update model as follow:

$$\nabla_{\theta} \frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{K} \sum_{t=1}^{M} \log \pi_{\theta}(s_{i,j,t}) * r * \text{corr} \quad . \tag{6}$$

where N is episode of game and the K is limited of budget, M is the number of totally unlabeled set images. $\pi_{\theta}(.)$ is now noted as probability estimate. The corr term is to correct the reward which remained from previous policy action probability. The correction term of reward is noted as $\pi_{\theta}(s_{i,j,t} | a_{i,j,t})$, it will maintain the present behavior if identical to previous experience, where $\pi_{\theta}(.)$ is previous probability estimate, and the $\pi_{\theta}(.)$ is nowstaged probability estimate. The agent will update their gradient direction more stably with previous experience.

4 Experiments

We conduct experiments to validate the proposed bias-aware learning to learn policy in cross modalities setting and image duplicated setting. Firstly, in Sec. 4.1, the result of ablation study shows that our method using bias aware feature and mean representation of labeled set as diversity hint obtain the best result with a few labeled data in the beginning and the experiment is in train model from scratch setting. Secondly, in Sec. 4.2, we get better result comparing with other baselines in finetune setting. Finally, we validate the transferability of our query policy across datasets in Sec. 4.3. We report average (15 times) performance of all experiments.

Implementation detail. We train classification model LeNet5 (Lecun et al. 1998) with two datasets. One is MNIST (LeCun and Cortes 2010), and the other one is MNIST-M (Ganin and Lempitsky 2015) which blend background with color photos from BSDS500. Firstly, we split MNIST, MNIST-M in three subset - labeled, unlabeled and validation set (D_t, D_u, D_{val}), which amounts to (50, 60000, 10000) training pairs with balanced number of class. Secondly, we use Adam optimizer (Kingma and Ba 2015) with learning rate 0.001 to train our policy agent in 800 episodes. Each episode has 10 steps and each step samples 10 images. The discount factor of policy gradient is set as 0.9998. Finally, we use the accuracy to plot a learning curve with the size of images and $\text{mALC}_{\text{norm}} = \frac{\text{ALC}_{\text{norm}} - \text{A}_{\text{rand}}} {\text{A}_{\text{max}} - \text{A}_{\text{rand}}}$, which is mentioned in the active learning challenge (Guyon et al. 2011). Moreover, ALC is the performance of the classification model by proposed query method. A_{rand} is performance of the classification model by random query. A_{max} is performance of the classification model by fully D_u with label which will be used in table 1.

Labeled set Representation	Mean	Median	Mode	Max	Min
mALC_{\text{norm}}	0.207	0.139	0.148	0.058	0.079

4.1 Ablation Study

Diversity feature. In the design of the diversity feature, we calculate the distance between the representation of unlabeled set and the labeled set. There are different kinds of statistic method to represent the diversity feature. We compare these methods, including mean, median, mode, minimum and maximum on MNIST with average ALC_{norm}. We find that mean is best representation of labeled set in feature space.

Bias aware feature. We design the bias aware feature to avoid overconfidence condition in query data procedure. In order to simulate the dilemma, we train classification model from scratch with little labeled data. Because of imbalanced data (mode collapse (Pop and Fulop 2018) have mentioned), the effect is more extreme on a small dataset, resulting in overconfidence. As Fig. 5 shown, we can see that heapified active learning w/ bias feature can get better performance than w/o bias feature in the interval from 50 to 100 images. The uncertainty approach-DBAL, due to incomplete data understanding, faces overconfidence in the beginning. Thus, we know the importance of bias aware feature to avoid overconfidence at the beginning of the query procedure.

4.2 Compare Previous Works

Here, we compare different types of query methods on MNIST and duplicated MNIST which has many redundant and noise information. From the results, we show that our HAL is outstanding both dataset. Before that, we introduce the baseline methods as following:

![Figure 5: The ablation study of bias aware feature: w/, w/o bias aware comparison. Bias is easily be generated while training from scratch, resulting in uncertainty approach-DBAL will not be useful. Thus, with bias aware feature, overconfidence can be prevented.](image-url)
Figure 6: Figures above are the average performance of our method and other baselines. On the left figure, we can find out that our HAL only needs less than 100 images to achieve over 85% of accuracy compared to other methods on average. On the right figure, even in a repeated and noised dataset, HAL can achieve over 85% of accuracy with less than 75 images; on the contrast, other methods need over 100 images to reach this criterion.

- **Random**: Sample data uniformly from \(D_u \).
- **Entropy** (Shannon 2001): Sample maximum value of chaotic prediction from \(D_u \).
- **DBAL** (Gal, Islam, and Ghahramani 2017): Apply MC-dropout in the model to produce noises, and then query data with Eq. 2 from \(D_u \) with maximum value.
- **K-center** (Sener and Savarese 2018): It will compute the minimum Euclidean distance \(d \) of an unlabeled data by \(k_{center}(x_i) = \min(x_i, x_j) \), where \(x_j \in D_l \). Then, it will query data with the maximum distance.
- **Stream-based policy network** (Fang, Li, and Cohn 2017): Through Deep Q Learning (DQN), the agent learns the strategy of choosing images. With the arrival of every batch of images, the agent will decide if the batch of data is necessary to be added to the training set by observing the feature of the batch with the length of action space \(\text{len}(A) = 2 \). As the budget is exhausted, the selection process will be terminated.

As shown in Fig. 5, our method queries data more efficiently than the other method in the whole training procedure. Instead of the uncertainty based method, they are unstable in the beginning and fall in the overconfidence condition. Specifically, we outperform the stream-based agent on average that it misses many important data in early steps. On the other hand, we create a special dataset to test the ability to perform generally among repeated and noised images.

Synthetic dataset: In real world application, there may be a lot of redundant data and make the model bias easily. For example, image data from surveillance camera, it may completely capture the same street view for hours. In this scenario, the capability to avoid duplicate information is essential. Therefore, we create a synthetic dataset - **Duplicate MNIST** with 60000 images. In the set, we have 48000 class-uniformly repeated image (80 percent of the total dataset) with random Gaussian noise. In the right figure of Fig. 6, our method is general enough that it is able to achieve high performance in few amounts of data when encountering repeated and noised images.

4.3 Generalization

Our method learns how to query from meta-experience with image spatial texture structure as prior by HoG, so we can adopt the experience in cross-domain setting which is Gray(MNIST) v.s. RGB(MNIST-M) scale and outperform with 5% through querying procedure on average. In this setting, we train the agent in MNIST and directly apply as a query method in MNIST-M. We obtain a better result than training from scratch randomly shown in Fig. 7. In this setting, we realize that our HAL is a general method can adopt query experience to other works that have similar prior.

5 Conclusion

We proposed a bias-aware policy network called heapi-fied active learning (HAL), which prevents data sample bias due to overly confident model prediction. Moreover, our policy model trades off the query time complexity and global information by heapified structure in pooling based active learning setting. In addition, in our experiment, HAL outperforms other baseline methods on MNIST dataset and duplicated MNIST. From the results, we can show that our method is able to reach high generalization on different dataset which share similar features.
References

[Bachem, Lucic, and Krause 2017] Bachem, O.; Lucic, M.; and Krause, A. 2017. Practical coreset constructions for machine learning. ArXiv.

[Bachman, Sordoni, and Trischler 2017] Bachman, P.; Sordoni, A.; and Trischler, A. 2017. Learning Algorithms for Active Learning. ArXiv.

[Bay et al. 2008] Bay, H.; Ess, A.; Tuytelaars, T.; and Van Gool, L. 2008. Speeded-up robust features (surf). Comput. Vis. Image Underst.

[Chandra, Kumar, and Jawahar 2012] Chandra, S.; Kumar, S.; and Jawahar, C. V. 2012. Learning Hierarchical Bag of Words Using Naive Bayes Clustering. In Asian Conference on Computer Vision.

[Chen et al. 2018] Chen, Y.-T.; Chang, W.-Y.; Lu, H.-L.; Wu, T.; and Sun, M. 2018. Leveraging motion priors in videos for improving human segmentation. In The European Conference on Computer Vision.

[Dalal and Triggs 2005] Dalal, N., and Triggs, B. 2005. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05).

[Ducoffe and Precioso 2018] Ducoffe, M., and Precioso, F. 2018. Adversarial active learning for deep networks: a margin based approach. ArXiv.

[Ebert, Fritz, and Schiele 2012] Ebert, S.; Fritz, M.; and Schiele, B. 2012. RALF: A reinforced active learning formulation for object class recognition. In In: IEEE Conf. on Computer Vision and Pattern Recognition.

[Fang, Li, and Cohn 2017] Fang, M.; Li, Y.; and Cohn, T. 2017. Learning how to active learn: A deep reinforcement learning approach. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.

[Gal, Islam, and Ghahramani 2017] Gal, Y.; Islam, R.; and Ghahramani, Z. 2017. Deep bayesian active learning with image data. In Proceedings of the 34th International Conference on Machine Learning.

[Ganin and Lempitsky 2015] Ganin, Y., and Lempitsky, V. 2015. Unsupervised domain adaptation by backpropagation. In Proceedings of the 32nd International Conference on Machine Learning.

[Geirhos et al. 2019] Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F. A.; and Brendel, W. 2019. Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In International Conference on Learning Representations.

[Gissin and Shalev-Shwartz 2019] Gissin, D., and Shalev-Shwartz, S. 2019. Discriminative active learning.

[Guyon et al. 2011] Guyon, I.; Cawley, G. C.; Dror, G.; and Lemaire, V. 2011. Results of the active learning challenge. In Active Learning and Experimental Design workshop In conjunction with AISTATS 2010.

[Kane et al. 2017] Kane, D. M.; Lovett, S.; Moran, S.; and Zhang, J. 2017. Active classification with comparison queries. In FOCS.

[Kingma and Ba 2015] Kingma, D. P., and Ba, J. 2015. Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations.

[Konyushkova, Szitnman, and Fua 2017] Konyushkova, K.; Szitnman, R.; and Fua, P. 2017. Learning active learning from data. Advances in Neural Information Processing Systems 30.

[Lakshminarayanan, Pritzel, and Blundell 2017] Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017. Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in Neural Information Processing Systems 30.

[LeCun and Cortes 2010] LeCun, Y., and Cortes, C. 2010. MNIST handwritten digit database. Proceedings of the IEEE 86(11):2278–2282.

[Lecun et al. 1998] Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-based learning applied to document recognition. In Proceedings of the IEEE.

[Lowe 2004] Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision.

[Pang et al. 2018] Pang, K.; Dong, M.; Wu, Y.; and Hospedales, T. M. 2018. Meta-Learning Transferable Active Learning Policies by Deep Reinforcement Learning. ArXiv.

[Pop and Fulop 2018] Pop, R., and Fulop, P. 2018. Deep ensemble bayesian active learning : Addressing the model collapse issue in monte carlo dropout via ensemble. ArXiv.

[Rosales, Krishnamurthy, and Bharat Rao 2008] Rosales, R.; Krishnamurthy, P.; and Bharat Rao, R. 2008. Semi-supervised active learning for modeling medical concepts from free text. In: Proceedings of the Sixth International Conference on Machine Learning and Applications.

[Sener and Savarese 2018] Sener, O., and Savarese, S. 2018. Active learning for convolutional neural networks: a core-set approach. In International Conference on Learning Representations.

[Shannon 2001] Shannon, C. E. 2001. A mathematical theory of communication. SIGMOBILE Mob. Comput. Comm. Rev.

[Su et al. 2019] Su, J. C.; Tsai, Y. H.; Sohn, K.; Liu, B.; Maji, S.; and Chandraker, M. 2019. Active adversarial domain adaptation. In CVPR Workshops.

[Tang et al. 2017] Tang, B.; Xu, J.; He, H.; and Man, H. 2017. ADL: Active dictionary learning for sparse representation. In IJCNN.

[Wang et al. 2017] Wang, G.; Hwang, J.; Rose, C.; and Wallace, F. 2017. Uncertainty sampling based active learning with diversity constraint by sparse selection. In MMSP.

[Wang et al. 2019] Wang, T.; Zhu, X.; Torralba, A.; and Efros, A. A. 2019. Dataset distillation. ArXiv.

[Zhang and Chaudhuri 2014] Zhang, C., and Chaudhuri, K. 2014. Beyond disagreement-based agnostic active learning. ArXiv.

[Zhou and Sun 2014] Zhou, J., and Sun, S. 2014. Improved margin sampling for active learning. In CCPR.