Galea, G. L., Meakin, L. B., Sugiyama, T., Zebda, N., Sunters, A., Taipaleenmaki, H., ... Price, J. S. (2013). Estrogen Receptor Mediates Proliferation of Osteoblastic Cells Stimulated by Estrogen and Mechanical Strain, but Their Acute Down-regulation of the Wnt Antagonist Sost is Mediated by Estrogen Receptor. *Journal of Biological Chemistry*, 288(13), 9035-9048. https://doi.org/10.1074/jbc.M112.405456

Publisher's PDF, also known as Version of record

Link to published version (if available):
10.1074/jbc.M112.405456

Link to publication record in Explore Bristol Research

PDF-document

"This research was originally published in THE JOURNAL OF BIOLOGICAL CHEMISTRY. Author (Gabriel L. Galea, Lee B. Meakin, Toshihiro Sugiyama, Noureddine Zebda, Andrew Sunters, Hanna Taipaleenmaki, Gary S. Stein, Andre J. van Wijnen, Lance E. Lanyon and Joanna S. Price). Title. Estrogen Receptor Mediates Proliferation of Osteoblastic Cells Stimulated by Estrogen and Mechanical Strain, but Their Acute Down-regulation of the Wnt Antagonist Sost Is Mediated by Estrogen Receptor. Journal Name (THE JOURNAL OF BIOLOGICAL CHEMISTRY) . Year. 2013 Vol:288, 9035-9048. © the American Society for Biochemistry and Molecular Biology"

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Estrogen Receptor α Mediates Proliferation of Osteoblastic Cells Stimulated by Estrogen and Mechanical Strain, but Their Acute Down-regulation of the Wnt Antagonist Sost Is Mediated by Estrogen Receptor β

Received for publication, August 14, 2012, and in revised form, January 13, 2013 Published, JBC Papers in Press, January 29, 2013, DOI 10.1074/jbc.M112.405456

Gabriel L. Galea1,2, Lee B. Meakin1,†, Toshihiro Sugiyama3,†, Noureddine Zebda4, Andrew Sunters5, Hanna Tai paleennaki6,4, Gary S. Stein6,†, Andre J. van Wijnen6,‡, Lance E. Lanyon6,‡, and Joanna S. Price6

From the 1School of Veterinary Sciences, University of Bristol, Bristol BS40 5DU, United Kingdom, the 2Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London NW1 0TU, United Kingdom, and the 4Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655

Mechanical strain and estrogens both stimulate osteoblast proliferation through estrogen receptor (ER)-mediated effects, and both down-regulate the Wnt antagonist Sost/sclerostin. Here, we investigate the differential effects of ERα and ERβ in these processes in mouse long bone-derived osteoblastic cells and human Saos-2 cells. Recruitment to the cell cycle following strain or 17β-estradiol occurs within 30 min, as determined by Ki-67 staining, and is preceded by the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride. ERβ inhibition with 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-β]pyrimidin-3-yl] phenol (PTHP) increases basal proliferation similarly to strain or estradiol. Both strain and estradiol down-regulate Sost expression, as does in vitro inhibition or in vivo deletion of ERα. The ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile and ERB041 also down-regulated Sost expression in vitro, whereas the ERα agonist 4A,4′-[4-propyl-(1H)-pyrazol-1,3,5-triyl]tris-phenol or the ERβ antagonist PTHPP has no effect.

Tamo xifen, a non-steroidal ERβ agonist, down-regulates Sost expression in vitro and in bones in vivo. Inhibition of both ERs with fulvestrant or selective antagonism of ERβ, but not ERα, prevents Sost down-regulation by strain or estradiol. Sost down-regulation by strain or ERβ activation is prevented by MEK/ERK blockade. Exogenous sclerostin has no effect on estradiol-induced proliferation but prevents that following strain. Thus, in osteoblastic cells the acute proliferative effects of both estradiol and strain are ERα-mediated. Basal Sost down-regulation follows decreased activity of ERα and increased activity of ERβ. Sost down-regulation by strain or increased estrogens is mediated by ERβ, not ERα. ER-targeting therapy may facilitate structurally appropriate bone formation by enhancing the distinct ligand-independent, strain-related contributions to proliferation of both ERα and ERβ.

Bone architecture is adjusted to be functionally appropriate for load-bearing through processes in which the strains engendered by loading initiate cascades of responses in resident bone cells that in turn influence the activity of cells responsible for bone formation and resorption. The activity of these cells is also influenced by estrogens. Loss of estrogens following menopause is associated with the development of osteoporosis, a widespread condition of skeletal inadequacy that has been hypothesized to reflect a failure of the homeostatic mechanisms by which bone adapts to its functional load-bearing environment, commonly referred to as the mechanostat (1). The cellular mechanisms of the mechanostat are locally influenced by the estrogen receptors ERα7 and ERβ acting ligand-indepen-

© 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
ER-mediated Regulation of Osteoblast Proliferation and Sost

ERβ has been suggested to be the dominant regulator of estrogen receptor signaling, in part due to its ability to form heterodimers with ERα (34). However, the outcomes of ERβ signaling depend on the cellular context in which it operates; whereas ERβ largely inhibits transcriptomic changes caused by estrogen treatment when ERα is present, it promotes expression of a subset of genes when ERα is deleted (35). In osteoblastic cells, ERα activation increases ERβ expression (36) and has been shown to directly bind the ERβ promoter in other cell types (37). In contrast, ERβ can repress ERα expression (38), and mice lacking ERβ have increased ERα in their bones (39). The outcomes of ERα and ERβ signaling are therefore closely linked in what has been described as a “ying yang” relationship determined by a subtle balance between them (35, 40). Compensation for the absence of ERα activity by ERβ, and vice versa, is demonstrated by the mild effect of loss of either receptor alone compared with deletion of both ERs in bone and other tissues (41–43).

Having originally reported the involvement of the ERs in bones’ adaptive response to loading (30, 32), and more recently ERK’s involvement in Sost down-regulation by mechanical strain in vitro (17), we hypothesized that these commonalities between estrogen and strain signaling meant that ERα and ERβ could both contribute to the ligand-independent mechanisms by which loading down-regulates Sost expression and in turn regulates proliferation of osteoblasts in response to strain. The studies reported here used subtype-selective receptor agonists and antagonists against the ERs to establish the contributions of ERα and ERβ to the regulation of Sost and proliferation by both estradiol and strain in osteoblasts.

MATERIALS AND METHODS

Reagents and Cell Culture—17β-Estradiol (E2) was from Sigma and dissolved in molecular grade ethanol (EOH). Selective estrogen receptor modulators used were the ERα-selective agonist 4,4′,4″-[4-propyl-(1H)-pyrazol-1,3,5-triyl]tris-phenol (PPT, 0.1 μM) (44) or antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP, 0.1 μM) (45), the ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN, 0.1 μM) (46) or antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-][1,5]pyrimidin-3-yl] phenol (PTHPP, 0.1 μM) (47), the context-dependent agonist/antagonist tamoxifen (0.1 μM), and the nonselective ERα/ERβ antagonist fulvestrant (0.1 μM, ICI 182780). The mitogen-activated protein kinase (MAPK)/ERK inhibitor PD98059 was used at a final concentration of 10 μM. All were from Tocris Bioscience (Bristol, UK). Fulvestrant was dissolved in EOH, and all other compounds were dissolved in dimethyl sulfoxide (DMSO). Cells were pretreated with the selective antagonists MPP, PTHPP, and PD98059 30 min before strain or E2 treatment, whereas fulvestrant was added 16 h before as described previously (27).

Wnt3a and recombinant human sclerostin were from R&D Systems (Abingdon, UK). Sclerostin was dissolved in phosphate-buffered saline (PBS) and added 1 h before strain or E2 treatment. The diluents never reached concentrations greater than 0.1% in the culture medium.
Cell Culture—All cells were maintained in phenoL red-free DMEM containing 10% heat-inactivated FCS (PAA, Somerset, UK), 2 mM l-glutamine, 100 IU/ml penicillin, and 100 IU/ml streptomycin (Invitrogen) (complete medium) in a 37 °C incubator at 5% CO₂, 95% humidity as described previously (17).

Saos-2 cells were a kind gift of Dr. S. Allen (Royal Veterinary College, London, UK). Mouse cortical long bone osteoblastic cells (cLBOb) were derived from explants of young adult female C57BL/6 mice as described previously (26, 28, 30). In brief, cLBOb were explanted by harvesting the diaphyses of long bones under sterile conditions in PBS containing 1× solution of antibiotic/antimycotic (PAA, Somerset, UK). All surface tissues were removed, and marrow contamination was eliminated by repeated flushing with PBS. The bones were subsequently chipped into fragments and cultured in complete medium until cell outgrowth was observed. Like similarly derived cells from rat bone (48), mouse cLBOb express markers of osteoblastic differentiation (Runx2, collagen I A1, and osteocalcin) (4) and form mineralized nodules (supplemental Fig. 1 supplemental Methods), however, they do not express Sost under the conditions required for in vitro strain experiments (4).

Cell Culture for Proliferation Studies—Cells were seeded at an initial density of 5000 cells/cm² (Saos-2) or 10,000 cells/cm² (cLBOb) on sterile custom-made plastic strips and allowed to adhere and grow for 24 h. Cells were then serum-depleted overnight in 2% charcoal/dextran-stripped serum to reduce the presence of steroids and their basal proliferation, before being subjected to strain or other treatments the next morning (i.e. cells were cultured for 2 full days before treatment). Cells were cultured in the same medium they were strained in for the duration of each experiment.

Cell Culture for Studies of Sost Regulation—Markers of osteoblastic differentiation, including Sost, increase in Saos-2 cells with time in culture (18, 49). Therefore, for studies of Sost regulation, we used over-confluent cultures that express Sost at a significantly higher level than subconfluent, proliferative cultures (supplemental Fig. 2). Sclerostin protein is readily detectable in confluent Saos-2 cells by Western blotting, and sclerostin levels in the cell culture supernatant are comparable with previously reported levels in human serum (supplemental Fig. 3).

Using a previously described protocol (17), cells were seeded at an initial density of 40,000 cells/cm², allowed to grow for 72 h before being serum-depleted in 2% charcoal/dextran serum overnight, and then subjected to strain or other treatment(s) (4 full days in culture before treatment). As was the case for proliferation studies, cells were always cultured in the same medium they were strained in until they were harvested at the appropriate time point for quantitative RT-PCR studies.

Straining Cells in Vitro—Strain was applied to the plastic strips on which cells were adherent using a well established protocol (17, 26, 27). This involves a brief period (~17 min) of 600 cycles of four-point bending engendering a peak strain on the surface of the strip of 3400 micro-strain (unless otherwise stated). A testing machine was used (Zwick Testing Machines Ltd., Leominster, UK) to achieve peak strain rates on and off of ~24,000 micro-strain/s, dwell times on and off of 0.7 s, and a frequency of 0.6 Hz.

Ki-67 Staining to Assess Proliferation—Anti-Ki-67 antibodies were from Santa Cruz Biotechnology (mouse anti-human, sc-23900; goat anti-mouse, sc-7846). Ki-67 staining in human Saos-2 cells was performed essentially as described previously (50). However, for anti-mouse Ki-67 staining, the antigen was retrieved by heating in PBS with 0.5% v/v Triton™ X-100 (Sigma), blocked in 1% BSA solution for 30 min, 10% rabbit serum for 1 h and then 10% horse serum for 1 h at room temperature. In both cases the primary antibody was used at a 1:100 dilution overnight at 4 °C. NorthernLight™-conjugated donkey secondary antibodies were from R&D Systems (Abingdon, UK) and used at a concentration of 1:100. Slides were mounted in Fluoroshield™ containing DAPI counter-stain (Sigma) and imaged on a Leica DMRB microscope. All slides in each experiment were imaged under identical conditions.

To assess proliferation by Ki-67 staining, the percentage of cells stained positive was analyzed under ×20 magnification in four randomly chosen fields per slide. In each case, representative proliferation results are shown as the proportion of all cells in each field stained positive for Ki-67.

The nuclear distribution of Ki-67 antigen is cell cycle stage-specific, as documented previously (50–53). Cell cycle stages were analyzed under ×40 magnification using the pattern of Ki-67 nuclear distribution in individual cells. In each case, the proportion of actively replicating (Ki-67 positive) cells in G1, G1/S, S, G2, or M phase are shown. For this, 213 ± 12 Ki-67-positive nuclei were analyzed in 10 randomly chosen high power fields per slide. Key results were independently confirmed by the author G. L. Galea and L. B. Meakin.

Quantitative RT-PCR—RNeasy™ Plus mini kits (Qiagen, Sussex, UK) were used to eliminate DNA and extract RNA. First strand cDNA synthesis was performed using SuperScriptII™ (Invitrogen). Product copy numbers quantified against standard curves were normalized relative to β2-microglobulin (β2-MG). PCR primers were designed using Primer3 Plus (54). Other primer sets were also described previously (17), ERβ primers were also described previously (55). Other primers were as follows: mouse Sost sense TGCCGGAGCT-GCACTACAC and antisense CACCACTTCACGCGCCCGGAT; mouse β2-MG sense ATGGCTCGCTCGGTGACCCT and antisense TTCTCCGGTGGGTGCGTG; and mouse OPG sense TGGGTGCTCCCCTTGCCCCG-ACAT; mouse β2-MG sense ATGGCTCGCTCGGTGACCCT and antisense TTCTCCGGTGGGTGCGTG; mouse OPG sense TGGGTGCTCCCCTTGCCCCG-ACAT; mouse Sost sense GCCTCAGACCTCCAGCATC.

Quantitative RT-PCR data are presented as pooled results from two to four independent experiments with n = 4–6 in each experiment. In each case, the control group was set at 100%.

In Vivo Studies—Adult female mice (7 months) were bred from a previously described ERα−/− colony (26, 42). Mice were housed up to five per cage and provided standard mouse chow and water ad libitum throughout the study. For RNA extraction from bone, the surrounding muscle was dissected, the epiphyses were removed, and the marrow was flushed with sterile PBS. Bones were pulverized in QIAzol™ using a TissueLyser LT™.
RNA was extracted, and genomic DNA was eliminated using RNeasy™ Plus Universal kits (Qiagen, Sussex, UK). To evaluate the effect of tamoxifen (2 mg/kg/day), mice were treated using a regimen that we have previously shown synergistically enhanced loading-related bone gain (6). At 16 weeks of age (day 1), virgin female C57BL/6 mice were sham-ovariectomized (Sham, n = 8) or ovariectomized (n = 16). Ten days after the operation (day 11), the ovariectomized mice were randomly subdivided into two groups (n = 8) and received either vehicle (peanut oil, 5 ml/kg; Sigma) or tamoxifen citrate (Tocris Cookson Inc., Ellisville, MO) by s.c. injection on days 11, 13, 15, 18, and 21 and were then sacrificed on day 25. All procedures were in accordance with the Institutional Animal Care and Home Office, UK, guidelines and approved by the ethics committee of the University of Bristol or of the Royal Veterinary College, London, UK.

Statistical Analysis—Statistical analysis was carried out on SPSS version 17 for Windows. Comparisons of two groups were by independent sample t tests, and more than two groups were compared by analysis of variance with Bonferroni or Games Howell post hoc adjustments. Data are presented as the mean ± S.E. p < 0.05 was considered significant.

RESULTS

Both Estrogens and Strain Rapidly Stimulate Osteoblastic Proliferation—Exposure to 1 μM E2, or a short period of mechanical strain, increased the proportion of cLBObs staining...
positive for the proliferating cell marker Ki-67 24 h later (Fig. 1A). No significant differences were detected between the proportions of Ki-67-positive cells in different stages of the cell cycle following either treatment (Fig. 1B). A similar proliferative response to both E2 and strain was observed in Saos-2 cells (Fig. 1D), with no change observed in the proportion of replicating cells in different stages of the cell cycle 24 h following treatment (Fig. 1E). This indicates that both estradiol and strain recruit otherwise Ki-67-negative quiescent cells to the cell cycle. Pretreatment with E2 for 30 min before exposure to strain did not significantly change the proportion of cells staining positive in these asynchronous cultures relative to treatment with strain or E2 alone (Fig. 1F). Thus, strain and estradiol similarly recruit a cohort of Ki-67-negative cLBObs or Saos-2 cells to the cell cycle without altering their progression through it.

Because it is not currently known when osteoblast-like cells are first stimulated to proliferate following a brief episode of strain, a time course of proliferation was undertaken. This showed a significant increase in the proportion of Saos-2 cells staining positive for Ki-67 within 30 min following strain (Fig. 1G). A similarly rapid response was observed in cLBOBs (Fig. 1H). E2 also initiated Saos-2 proliferation within 30 min (Fig. 1I). This increase in Ki-67-positive cells was associated with a transient increase in the proportion of cells in the G1/S phase of the cell cycle (Fig. 1J). Taken together, these data show that strain and estradiol both recruit a cohort of osteoblast-like cells to the cell cycle within 30 min of stimulation.

Strain and E2-induced Proliferation Requires ERα—Osteoblast proliferation following strain (28) or estradiol treatment (56, 57) has previously been reported to involve ERα. Blockade of ERα with methyl-piperidino-pyrazole (MPP) prevented the increase in Ki-67-positive cells 8 h following either strain (Fig. 2A) or 1 μM E2 (Fig. 2B) and was associated with a significant reduction in basal proliferation after 24 h (49 ± 4% decrease, p < 0.01 versus vehicle-treated controls). In contrast, blockade of ERβ with PTHPP was associated with a significant increase in basal proliferation with no significant further increase observed following strain or E2 treatment (Fig. 2, C and D). The decrease in basal proliferation following ERβ blockade was prevented by pretreatment with the ERα antagonist (Fig. 2E). Thus, strain and estradiol involve ERα to stimulate proliferation of osteoblast-like cells, although basal proliferation of these cells is inhibited by ERβ.

Proliferation Following Strain and Wnt3a, but not E2, Is Inhibited by Exogenous Sclerostin—Osteocyte-derived sclerostin is presumed to exert its potent anti-osteogenic effect through inhibition of the Wnt pathway in neighboring osteoblasts (12). Consistent with this, pretreatment with 10 ng/ml recombinant human sclerostin (rhSOST), while not significantly changing the proportion of Saos-2 cells stained positive for Ki-67, prevented the increase in proliferation observed following treatment with 10 ng/ml Wnt3a (Fig. 3A). Similarly, pretreatment with rhSOST prevented the increase in Ki-67-positive cells 8 h following strain (Fig. 3B). However, rhSOST pretreatment did not prevent the increase in Ki-67-positive cells 8 h following treatment with 1 μM E2 (Fig. 3C). Thus, although both strain and estradiol stimulate rapid proliferation in osteoblastic cells, they do so by different mechanisms. Only proliferation caused by strain is prevented by the inhibitor of Wnt signaling, sclerostin.

Down-regulation of Sost Expression by E2, Activation of ERβ, and Inhibition of ERα—Both strain and estradiol trigger ER-dependent regulation of transcription in osteoblastic cells (25) and both down-regulate Sost. E2, at doses equal to or greater than 10 nM, down-regulated Sost expression within 8 h (Fig. 4A). Selective activation of ERα with 0.1 μM propyl pyrazole triol (PPT) had no effect on Sost expression after 8 h (Fig. 4B), whereas activation of ERβ with the agonists diarylpropionitrile

FIGURE 2. Blockade of ERα prevents increases in osteoblast-like cell proliferation stimulated by strain and estradiol, whereas blockade of ERβ increases basal cell proliferation. Saos-2 cells were subjected to strain (A) or treatment with 1 μM E2 (B) with or without pretreatment with 0.1 μM of the ERα inhibitor MPP and fixed 8 h later. Cells were subjected to strain (C) or treated with 1 μM E2 (D) with or without pretreatment with 0.1 μM PTHPP and fixed 8 h later. Cells were treated with 0.1 μM MPP 30 min before treatment with 0.1 μM PTHPP and harvested 8 h later (E). Bars represent means ± S.E., n = 4, *p < 0.05; **p < 0.01 relative to vehicle or static controls.
ER-mediated Regulation of Osteoblast Proliferation and Sost

FIGURE 3. Proliferation triggered by strain or Wnt3a, but not by estradiol, is prevented by exogenous sclerostin. Saos-2 cells were treated with 10 ng/ml Wnt3a (A), subjected to strain (B), or treated with 1 μM E2 (C) with or without 1 h pretreatment with 10 ng/ml or the indicated concentration of recombinant human sclerostin (rhSOST) and fixed 8 h later. The percentage of cells staining positive for Ki-67 was determined. Bars represent means ± S.E., n = 4. *, p < 0.05; **, p < 0.01 relative to vehicle or static controls.

FIGURE 4. Estradiol down-regulates Sost expression, as does activation of ERβ or inhibition of ERα. Saos-2 cells were treated with the indicated doses of E2 and harvested 8 h later (A). Cells were treated with 0.1 μM E2, the ERα agonist PPT, or the ERβ agonist DPN and harvested 8 h later, and Sost levels were quantified (B). Cells were treated with 0.1 μM of the ERα agonist PPT (C) or the ERα antagonist MPP (D) and harvested 8 h later to quantify ERβ expression. To evaluate the effect of ER antagonists on Sost levels, cells were treated with the ERα antagonist MPP (E) or the ERβ antagonist PTHPP (F) and harvested 8 h later. Long bones were harvested from ERα−/− and wild type (WT) mice, and Sost levels were quantified (G). Bars represent the mean ± S.E. *, p < 0.05; **, p < 0.01; ***, p < 0.001 versus the relevant controls.

(DPN, Fig. 4B) or ERB041 (ERB, supplemental Fig. 4) down-regulated Sost levels within 8 h.

Because ERα activation with PPT has previously been reported to up-regulate ERβ expression in osteoblastic cells (36), we quantified ERβ expression as a positive control of PPT action and found it to be elevated at this time point (Fig. 4C). Conversely, inhibition of ERα with 0.1 μM MPP significantly down-regulated ERβ (Fig. 4D).

ERα blockade with MPP also down-regulated Sost expression 8 h following treatment (Fig. 4E), whereas antagonizing ERβ with PTHPP had no effect on basal expression of Sost (Fig. 4F). This suggests that, in cells not exposed to strain or estradiol, ERα ligand-independently maintains Sost expression. Loss of ERα function also resulted in lower Sost levels in bones from female ERα−/− mice compared with WT controls (Fig. 4G).

ERα Not ERα Mediates Sost Down-regulation by Strain or E2—Having established that ER signaling regulates basal Sost expression, we next investigated whether this is relevant to the regulation of Sost by strain. As reported previously (17), Sost expression was down-regulated in Saos-2 cells within 8 h following exposure to strains equal to or greater than 2000 micro-strain (Fig. 5A). Nonselective blockade of both ERα and ERβ with fulvestrant had no effect on basal expression of Sost, but prevented its down-regulation 8 h following strain (Fig. 5B) or estradiol (supplemental Fig. 5). Blockade of ERα with the selective antagonist MPP did not prevent significant Sost down-regulation by strain (Fig. 5C) or E2 (Fig. 5D), irrespective of its reduction in basal levels. In contrast, selective blockade of ERβ with PTHPP prevented Sost down-regulation following exposure to strain (Fig. 5E) or E2 (Fig. 5F).

ERK Mediates Sost Down-regulation by Strain or E2—Both ERα and ERβ mediate rapid activation of ERK signaling in osteoblastic cells subjected to strain (24). In Saos-2 cells ERK activation is required for Sost down-regulation by strain (17). Treatment of Saos-2 cells for 24 h with 10 μM of the ERK inhibitor PD98059 did not significantly change cell number or viability (supplemental Fig. 6, a and b), but significantly reduced ERK phosphorylation (supplemental Fig. 6, c and d). Inhibition of ERK activation also prevented Sost down-regulation by strain.
tamoxifen was confirmed in bones in vivo (Fig. 7A) and was associated with increased expression of cyclin D1 (CCND1, Fig. 7B) and osteoprotegerin (OPG, Fig. 7C), known Wnt target genes (61, 62).

DISCUSSION

The ability of a bone to withstand loading without fracture critically depends upon the ongoing (re)modeling within its constituent tissue. The amount of bone formed as a result of the various stimuli responsible for (re)modeling is dependent upon the strength of the stimuli themselves and the responsiveness of the cells they influence. Two major regulators of bone (re)modeling are mechanical strain and estrogens. The experiments reported here demonstrate that exposure to either estradiol or a short period of dynamic strain stimulate proliferation, as indicated by an increased proportion of Ki-67-positive cells, in osteoblast-like cells derived from the weight-bearing cortical bones of female mice, and in the female human osteoblastic Saos-2 cell line. Increases in both estradiol and strain initiate this effect within 30 min, far earlier than we had assumed. Other early strain-related events in osteoblastic cells include; increased ligand-independent ERα phosphorylation within 5 min (23), ERK activation, also within 5 min (23), and an increase in β-catenin translocation to the nucleus within 30 min (26).

One potential pathway by which both strain and estrogen could exert their effects on osteoblast proliferation, and thus bone formation, is via the Wnt pathway. There are now numerous in vivo studies demonstrating a role for the Wnt pathway in mediating bones’ response to mechanical loading (63–65). Deletion of the LRP-5 co-receptor reduces the osteogenic effects of loading (63). Conversely, mice harboring mutations in LRP-5, which make it insensitive to the antagonistic effects of sclerostin (66), show enhanced osteogenic responses to mechanical loading (64, 65). We have previously shown that Wnt activation in osteoblastic cells subjected to strain is facilitated by ERα and that activation of β-catenin and its translocation to the nucleus in response to mechanical strain is abrogated in osteoblastic cells lacking ERα (26, 27).

The finding that exogenous sclerostin prevents proliferation of osteoblastic cells stimulated by strain suggests that, in the natural situation, sclerostin down-regulation following mechanical loading relieves its inhibition of proliferation stimulated by Wnt proteins present in the local microenvironment. The parallel finding that exogenous sclerostin has no effect on estrogen-related proliferation suggests that the pathway from estrogen to osteoblast proliferation is by a different route in which Sost down-regulation is either not a rate-limiting step or is not involved at all. Possible Sost-independent mechanisms by which estrogens have their effect include ER-mediated effects on AP-1 transcription (67) or the physical association of ERα with TCF-4 independently of β-catenin (68). We have no evidence from this study to suggest a specific role for Sost down-regulation in the multiple responses of bone cells to estrogens, except that lower levels of extracellular sclerostin would be expected to increase the sensitivity to Wnt of any cells sharing this extracellular environment, given that sclerostin also inhibits proliferation following Wnt3a. The observation that down-regulation of Sost can be associated with different biological outcomes is not novel; both intermittent and continuous PTH down-regulate Sost in vivo, however one is anabolic and the other is catabolic (69, 70).
The finding that the increase in proliferation stimulated by strain and estradiol is mediated by ERα, is consistent with a previous report that nonselective ER blockade with fulvestrant (ICI 182780) prevents proliferation in rat osteoblasts in response to the same stimuli (71). In contrast, selective inhibition of ERβ increases proliferation, an increase that can be prevented by selectively blocking ERα. Thus, ERα and ERβ have opposite effects on basal osteoblastic cell proliferation, a situation that is well established in various other cell models (72–75).

The two ER subtypes also have different effects on Sost/sclerostin expression. Sclerostin is naturally produced primarily by osteocytes, and ideally, we would have wished to investigate its regulation in primary osteocyte cultures, but obtaining cultures of sufficient purity for large scale in vitro loading experiments is not currently possible. Unfortunately, the well-established MLO-Y4 and MLO-Y5 osteocyte-like cell lines have been found to express very low to undetectable levels of Sost (76, 77). The recently reported IDG-SW3 cell line that replicates osteoblast to osteocyte differentiation does synthesize Sost; however, this requires at least 14 days of treatment with osteogenic differentiation medium that promotes mineralization (77) and mineralized cultures cannot be used for experiments involving strain. We therefore used the human osteoblastic Saos-2 cell line for our experiments because these cells secrete sclerostin when highly confluent (16, 17), and in this model exposure to strain causes down-regulation of Sost expression over a time course consistent with that observed in vivo (18).

In cultures of these cells, both estradiol and strain down-regulate Sost/sclerostin expression through either ERα and/or ERβ as evidenced by its blockade with fulvestrant. However, whereas the ERα agonist PPT has no effect on basal Sost levels, the ERα antagonist MPP causes down-regulation. Thus, increased ERα activity does not increase basal levels of Sost, decreased ERα activity causes Sost down-regulation. Consistent with this, loss of ERα also results in lower Sost levels in bones from female ERα−/− mice compared with WT controls.
In contrast, the ERβ agonist DPN and the partial ERβ agonist tamoxifen both cause down-regulation of Sost, whereas the ERβ antagonist PTHPP has no effect. This shows that although increased ERβ activity down-regulates basal Sost, the decreased ERβ activity does not increase it. Selective antagonism of ERβ rather than ERα also prevents the down-regulation of Sost by acute increases in either estradiol or strain.

The differences we report on the effects of ERα and ERβ on Sost expression were unexpected; we had anticipated that ERα would mediate strain-related down-regulation of Sost because the absence of ERα in female (but not male) mice has been repeatedly associated with a lower adaptive response to applied loading than in their WT background (30–32). This has been assumed to be the result of ERα’s ligand-independent involvement in a number of the early stages of bones’ osteogenic/anti-resorptive response to loading. ERα’s strain-related functions include its association with ERK in the signalsome (24), with the IGF receptor’s response to IGF (27), and its role in the translocation of β-catenin from cytoplasm to nucleus (26). Instead, these findings notwithstanding, our present data suggest that, in human female osteoblastic cells at least, the effects of acute changes in strain or estradiol are mediated primarily by ERβ. This inference is based on a number of elements in our present study as follows. (i) Selective activation of ERβ imitates the ERK-mediated down-regulation of Sost by strain or estradiol. (ii) Tamoxifen, which acts as a nongenomic ERβ agonist while, at least in other cell types, antagonizing ERα (59, 60), also imitates Sost down-regulation by strain or estradiol. (iii) Prevention of Sost down-regulation by strain or estradiol. (iii) Prevention of Sost down-regulation by strain or estradiol.

The finding that MAPK/ERK blockade prevents ERβ-mediated Sost down-regulation is consistent with the report that ERβ, like ERα, is involved in the rapid strain-related activation of ERK signaling in osteoblastic cells (24). The potential involvement of ERK signaling suggests a nongenomic mode of action of ERβ, at least in the context of strain, although the involvement of this signaling pathway in a wide range of cellular processes limits interpretation of this result. Nongenomic activation of ERK signaling by either ERβ or ERα in a variety of cell types is increasingly being associated with diverse biological outcomes (78, 79). That ERβ activation may regulate Sost expression and activate ERK signaling has recently been suggested by the report that feeding rats soy isoflavones, which act as potent and relatively selective ERβ agonists (80, 81), increases ERK phosphorylation in bone and down-regulates Sost/sclerostin levels similarly to E2 treatment in vivo (15). The potential use of soy isoflavones for the treatment of osteoporosis is currently being investigated (82). We also demonstrate that tamoxifen reduces Sost expression in vivo, a finding consistent with an effect through ERα. The potential for ERβ to mediate the therapeutic effects of tamoxifen treatment has been proposed elsewhere in the context of breast cancer (60), and tamoxifen administration has a profound osteogenic effect in cancellous regions of mouse bones, where ERβ is intensely expressed in osteocytes (83). A role for ERβ in mediating bone’s response to loading is consistent with tamoxifen synergistically enhancing bone gain in the tibiae of female mice subjected to mechanical loading (6). In this regard, the effects of tamoxifen are similar to those of parathyroid hormone and EP4 targeting compounds, both of which have been reported to down-regulate Sost (17, 76) and synergistically enhance bone gain following loading (84–86).

The inference that Sost regulation by strain is mediated by ERβ is also consistent with the original report by Lee et al. (32) that mice with incomplete ablation of ERβ activity show an impaired increase in cortical bone formation following loading of the ulna. However, subsequent reports in mice with more complete ERβ ablation (32) have shown a greater cortical osteogenic response to loading (2, 33). It is only possible to speculate on the inconsistencies between these studies because of potential compensatory up-regulation of ERα (39) and opposite global transcriptomic influences of ERβ with or without ERα (35). What is clear is that the role of ERβ in the bone’s adaptation to loading remains controversial and, compared with ERα, under-studied. It is also becoming increasingly apparent that the functions of ERα and ERβ in determining the osteoregulatory effects of loading are dependent not only on the systemic biochemical/hormonal systemic context but also on the region of the bone involved (2).

Although this study investigates the role of the ERs in differentiated osteoblasts, ERs also play an active role during osteoblast lineage progression. Both ERα and ERβ are expressed in stromal pre-osteoblasts (83, 87, 88), which either proliferate to maintain the progenitor pool or differentiate into osteoblasts (as schematically represented in Fig. 8). Mechanical loading and E2 both increase osteoblast differentiation (89–91), and the mechanism by which strain promotes osteoblast differentiation involves LRP-independent activation of β-catenin (89, 92, 93). However, the role of the ERs in these processes is not clearly understood. Both ERs may mediate osteoblast differentiation following E2 treatment (94), although ERα inhibits mineralization (95) and bone morphogenetic protein-induced differentiation (96). Marrow stromal cells from individuals with a hypomorphic ERα have lower estradiol responsiveness but enhanced intrinsic differentiation (97). ERα also inhibits the transcriptional activity of the master regulator of the osteoblast lineage, Runx2 (98).

Loading and estrogen both promote proliferation of pre-osteoblasts (99–102), more differentiated osteoblastic cells (as used in the present study), and bone-lining cells (7, 8, 16). The proliferative effects of strain on osteoblastic cells have repeatedly been found to require ligand-independent activation of ERα (28, 29, 71). Similarly, estrogen promotes proliferation through a nongenomic function of ERα (56). In this study, ERα promotes proliferation following strain or estradiol treatment, whereas ERβ suppresses basal proliferation. Intriguingly, in MG63 cells, estrogen acting through ERβ has also been reported to suppress proliferation (103).

In mature osteoblasts in vivo, the osteogenic effects of estradiol requires a fully functional ERα (104), whereas the osteogenic effects of loading do not require the ligand-binding AF2 domain of this receptor (4). Ligand-independent functions of ERα activated in osteoblastic cells by strain include its potentiation of the IGF receptor (27) and the translocation of...
ER-mediated Regulation of Osteoblast Proliferation and Sost

FIGURE 8. Schematic illustrating the roles of ERα and ERβ at different stages of the osteoblastic lineage. Early osteoblasts can proliferate or differentiate, and although ERα promotes their proliferation (28, 56, 114) and suppresses differentiation (94–96), there is evidence that ERβ promotes differentiation (94, 103) while inhibiting proliferation (103). In more mature osteoblasts, ERα promotes proliferation and ERβ inhibits it, as we have shown in this study. ERβ and ERα both contribute to matrix production (103, 115, 116), and ERβ also selectively regulates genes associated with cell migration (105). In osteoblastic cells exposed to mechanical strain, ERα facilitates other osteogenic signaling pathways, specifically IGF (27) and Wnt/β-catenin signaling (26). ERα and ERβ also contribute to anti-apoptotic signaling (55, 107, 110), and in osteocyte-like cells subjected to strain this involves ERK activation (24). Both ERs may also influence osteoclastogenic cytokine expression by osteoblastic cells (55, 95, 117–119). Both receptors regulate Sost expression, as described here; ERβ mediates its acute down-regulation by strain and estradiol, and ERα maintains its basal expression. However, understanding the physiological context in which this complex interaction operates requires further investigation. β-catenin, β-catenin.

β-catenin to the nucleus (26). Although roles for ERβ in the responses of these cells to strain are largely unknown, in MG63 cells ERβ is required for estradiol to up-regulate expression of matrix components (103). ERβ also selectively regulates the expression of genes related to migration (105), a process that is likely to be involved in matrix secretion.

Following secretion of matrix, osteoblasts become quiescent, terminally differentiate into osteocytes, or become apoptotic. Loading and estrogen both reduce apoptosis (24, 106–109), and estradiol has been shown to contribute to anti-apoptotic processes by activation of either ERα or ERβ through nongenomic mechanisms in a variety of cell models (55, 107, 110). In osteocytic MLO-Y4 cells, mechanical strain exerts anti-apoptotic effects through ERK activation that requires nongenomic signaling through both ERs (24). Apoptosis, especially of osteocytes, promotes osteoclast recruitment (108, 111), and ERα expression in osteoclasts is required for maintaining trabecular bone mass in female mice (113). ERα also suppresses the expression of osteoclastogenic cytokines in osteoblastic cells (117–119).

Together, these data suggest that ERα plays key roles early on in the osteoblast lineage through its enhancement of proliferation, which is consistent with the recent finding that in mice selective deletion of ERα in pre-osteoblast mesenchymal cells using Prx-cre or Osterix1-cre is associated with reduced cortical thickness due to reduced bone formation. In contrast, its deletion later in the lineage using Col1a1-cre has no such effect (112). Conversely, as has previously been suggested by Cao et al. (103), the functions of ERβ may relate to the formation of post-proliferative matrix-secreting cells.

Although it is difficult to reconcile in vitro data with those from studies in mice in vivo, the additional step of relating the data to human patients is even more problematic. However, with age there is a reduction in circulating estrogens in both men and women that is accompanied by an increase in serum sclerostin (113). Reduced Wnt signaling due to elevated sclerostin levels, impairing the proliferative context in which loading acts, could partially explain the reduced ability of bone to adapt to its mechanical loading environment post-menopausally and in later life. Any attempt to explain this in terms of the activity of either ERα or ERβ would at this stage be speculative.

In conclusion, ERα and ERβ differentially regulate the responses of osteoblastic cells to acute changes in their ligand (estrogens) and to mechanical strain, thus influencing the context in which these proliferative stimuli act (schematically represented in Fig. 8). Exposure of osteoblastic cells in vitro to either a short period of mechanical strain or to an acute increase in the estradiol concentration in their environment stimulates proliferation mediated at least in part through ERα. Such exposure to changes in estradiol concentration and to short exposure to dynamic strain also down-regulates the expression of the Wnt antagonist Sost/sclerostin. Whereas ERα maintains basal expression of Sost, ERβ activity inhibits basal proliferation. However, it is ERβ and not ERα that mediates acute reduction in Sost in response to either changes in estrogens or strain. The (re)modeling response of bones to either strain or estrogens involves control of targeted formation and resorption. The extent of this osteogenic/anti-resorptive response will depend inter alia upon both the “proliferative context” in which it operates and the strength/duration of the stimulus to which the responsive cells are subjected. The data presented here suggest that the contribution of ERα is primarily to the proliferative context, although the contribution of ERβ is to the acute response of the resident bone cells to their mechanical and hormonal environment. In the case of exposure to...
strain, this response involves reduced expression of the Wnt antagonist Sost.

Acknowledgments—We are grateful to Dr. P. Babij and Dr. A. Yu (Amgen) for measuring sclerostin protein in Saos-2 cell lysates and cell culture supernatants.

REFERENCES
1. Lanyon, L., and Skerry, T. (2001) Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J. Bone Miner. Res. 16, 1937–1947
2. Saxon, L. K., Galea, G., Meakin, L., Price, J., and Lanyon, L. E. (2012) Estrogen receptors α and β have different gender-dependent effects on the adaptive responses to load bearing in cancellous and cortical bone. Endocrinology 153, 2254–2266
3. Lanyon, L., Armstrong, V., Saxon, L., Sunters, A., Sugiyama, T., Zaman, G., and Price, J. (2007) Estrogen receptors critically regulate bones’ adaptive responses to loading. Clin. Rev. Bone Miner. Metab. 5, 234–248
4. Windahl, S. H., Saxon, L., Börjesson, A. E., Lagerquist, M. K., Frenkel, B., Henning, P., Lerner, U. H., Galea, G. L., Meakin, L. B., Engdalbi, C., Sjögren, K., Antal, M. C., Krust, A., Chambon, P., Lanyon, L. E., Price, J. S., and Ohlsson, C. (2013) Estrogen receptor-α is required for the osteogenic response to mechanical loading in a ligand-independent manner involving its activation function 1 but not 2. J. Bone Miner. Res. 28, 291–301
5. Cooke, A. L., Metge, C., Lix, L., Prior, H. J., and Leslie, W. D. (2008) Tamoxifen use and osteoporotic fracture risk: a population-based analysis. J. Clin. Oncol. 26, 5227–5232
6. Sugiyama, T., Galea, G. L., Lanyon, L. E., and Price, J. S. (2010) Mechanical loading-related bone gain is enhanced by tamoxifen but unaffected by fulvestrant in female mice. Endocrinology 151, 5582–5590
7. Pead, M. J., Saxon, L., and Lanyon, L. E. (1988) Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading. J. Bone Miner. Res. 3, 647–656
8. Bakker, A., Schrooten, J., Van Meerbeek, B., Verhoeven, S., and Callewaert, F. (2008) Mechanical strain activates estrogen response elements in bone in vivo. J. Biol. Chem. 283, 5866–5875
9. Moustafa, A., Sugiyama, T., Prasad, J., Zaman, G., Gross, T. S., Lanyon, L. E., and Price, J. S. (2012) Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos. Int. 23, 1225–1234
10. Tu, X., Rhee, Y., Yoon, K. W., Kwon, K. W., Bivi, N., Allen, M. R., Dwyer, D., Stolina, M., Turner, C., H., Robling, A. G., Piotkin, L. L., and Bellido, T. (2012) Sost down-regulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50, 209–217
11. Krause, C., Korchynskyi, O., de Rooij, K., Weidauer, S. E., de Gorter, D. J., van Bezooijen, R. L., Hatsell, S., Economides, A. N., Mueller, T. D., Löwik, C. W., and ten Dijke, P. (2010) Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. J. Biol. Chem. 285, 41614–41626
12. Padhi, D., Jang, G., Stouch, B., Fang, L., and Posvar, E. (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J. Bone Miner. Res. 26, 19–26
13. Mödder, U. I., Cloewes, J. A., Hoey, K., Peterson, J. M., McCready, L., Oursler, M. J., Riggs, B. L., and Khosla, S. (2011) Regulation of circulating sclerostin levels by sex steroids in women and in men. J. Bone Miner. Res. 26, 27–34
14. Zhang, J., Lazarenko, O. P., Wu, X., Tong, Y., Blackburn, M. L., Gomez-Acevedo, H., Shankar, K., Badger, T. M., Ronix, M. J., and Chen, J. R. (2012) Differential effects of short term feeding of a soy protein isolate diet and estrogen treatment on bone in the pre-pubertal rat. PLoS One 7, e35736
15. Ogita, M., Rached, M. T., Dvorakowski, E., Bilezikjian, J. P., and Kounteni, S. (2008) Differentiation and proliferation of periosteal osteoblast progenitors are differently regulated by estrogens and intermittent parathyroid hormone administration. Endocrinology 149, 5713–5723
16. Galea, G. L., Sunters, A., Meakin, L. B., Zaman, G., Sugiyama, T., Lanyon, L. E., and Price, J. S. (2011) Sost down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Lett. 585, 2450–2454
17. Yu, L., van der Valk, M., Cao, J., Han, C. Y., Juan, T., Bass, M. B., Despande, C., Damore, M. A., Stanton, R., and Babij, P. (2011) Sclerostin expression is induced by BMPs in human Saos-2 osteosarcoma cells but not via direct effects on the sclerostin gene promoter or ECR5 element. Bone 49, 1131–1140
18. Zaman, G., Saxon, L. K., Sunters, A., Hilton, H., Underhill, P., Williams, D., Price, J. S., and Lanyon, L. E. (2010) Loading-related regulation of gene expression in bone in the contexts of estrogen deficiency, lack of estrogen receptor α, and disuse. Bone 46, 628–642
19. Mantila Roosa, S. M., Liu, Y., and Turner, C. H. (2011) Gene expression patterns in bone following mechanical loading. J. Bone Miner. Res. 26, 100–112
20. Li, Y., Ge, C., Long, J. P., Begun, D. L., Rodriguez, J. A., Goldstein, S. A., and Franceschi, R. T. (2012) Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor. J. Bone Miner. Res. 27, 1263–1274
21. Jessop, H. L., Rawlinson, S. C., Pittsildies, A. A., and Lanyon, L. E. (2002) Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 31, 186–194
22. Jessop, H. L., Sjöberg, M., Cheng, M. Z., Zaman, G., Wheeler-Jones, C. P., and Lanyon, L. E. (2001) Mechanical strain and estrogen activate estrogen receptor α in bone cells. J. Bone Miner. Res. 16, 1045–1055
23. Aguirre, I. J., Piotkin, L. I., Gortazar, A. R., Millan, M. M., O’Brien, C. A., Manolagas, S. C., and Bellido, T. (2007) A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J. Biol. Chem. 282, 25501–25508
24. Zaman, G., Cheng, M. Z., Jessop, H. L., White, R., and Lanyon, L. E. (2000) Mechanical strain activates estrogen response elements in bone cells. Bone 27, 233–239
25. Armstrong, V. I., Muzylyak, M., Sunters, A., Zaman, G., Saxon, L. K., Price, J. S., and Lanyon, L. E. (2007) Wnt/β-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor α. J. Biol. Chem. 282, 20715–20727
26. Sunters, A., Armstrong, V. J., Zaman, G., Kypria, R. M., Kawanou, Y., Lanyon, L. E., and Price, J. S. (2010) Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor α-mediated control of insulin-like growth factor (IGF) 1 receptor sensitivity to ambient IGF, leading to phosphatidylinositol 3-kinase/akt-dependent Wnt/LRP5 receptor-independent activation of β-catenin signaling. J. Biol. Chem. 285, 8743–8758
27. Jessop, H. L., Suswillo, R. F., Rawlinson, S. C., Zaman, G., Lee, K., Das-Gupta, V., Pittsildies, A. A., and Lanyon, L. E. (2004) Osteoblast-like cells from estrogen receptor α knockout mice have deficient responses to mechanical strain. J. Bone Miner. Res. 19, 938–946
28. Damen, E., Price, J. S., and Lanyon, L. E. (2000) Mechanical strain stimulates osteoblast proliferation through the estrogen receptor in males as well as females. J. Bone Miner. Res. 15, 2169–2177
29. Lee, K. J., Jessop, H., Suswillo, R., Zaman, G., and Lanyon, L. (2003) Endocrinology: bone adaptation requires oestrogen receptor-α. Nature 424, 389
30. Callewaert, F., Bakker, A., Schroten, J., Van Meerbeek, B., Verhoeven, G., Boonen, S., and Vanderschueren, D. (2010) Androgen receptor disruption increases the osteogenic response to mechanical loading in male mice. J. Bone Miner. Res. 25, 124–131
31. Lee, K. J., Jessop, H., Suswillo, R., Zaman, G., and Lanyon, L. E. (2004)
ER-mediated Regulation of Osteoblast Proliferation and Sost

The adaptive response of bone to mechanical loading in female transgenic mice is deficient in the absence of oestrogen receptor-α and -β. J. Endocrinol. 182, 193–201

33. Saxon, L. K., Robling, A. G., Castillo, A. B., Mohan, S., and Turner, C. H. (2007) The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-β. Am. J. Physiol. Endocrinol. Metab. 293, E484–E491

34. Pettersson, K., Delaunay, F., and Gustafsson, J. A. (2000) Estrogen receptor β acts as a dominant regulator of estrogen signaling. Oncogene 19, 4970–4978

35. Lindberg, M. K., Movérale, S., Skritic, S., Gao, H., Dahlman-Wright, K., Gustafsson, J. A., and Ohlsén, C. (2003) Estrogen receptor (ER) β reduces ERα-regulated gene transcription, supporting a “ying yang” relationship between ERα and ERβ in mice. Mol. Endocrinol. 17, 203–208

36. Somjen, D., Katzburg, S., Sharon, O., Knoll, E., Hendel, D., and Stern, N. (2011) Sex-specific response of cultured human bone cells to ERα and ERβ-specific agonists by modulation of cell proliferation and creatine kinase-specific activity. J. Steroid Biochem. Mol. Biol. 125, 226–230

37. Kietz, S., Thomsen, J. S., Matthews, J., Pettersson, K., Ström, A., and Andò, S. (2012) Estrogen receptor β binds Sp1 and recruits a corepressor complex to the estrogen receptor α gene promoter. Breast Cancer Res. Treat. 134, 569–581

38. Windahl, S. H., Hollberg, K., Vidal, O., Gustafsson, J. A., Ohlsson, C., and Andersson, G. (2001) Female estrogen receptor β-α mice are partially protected against age-related trabecular bone loss. J. Bone Miner. Res. 16, 1388–1398

39. Matthews, J., and Gustafsson, J. A. (2003) Estrogen signaling: a subtle relationship between ERα and ERβ. Mol. Interv. 3, 281–292

40. Sims, N. A., Dupont, S., Krust, A., Clement-Lacroix, P., Minet, D., Re sche-Rigon, M., Gaillard-Kelly, M., and Baron, R. (2002) Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-α and β expressing U2OS cells. Mol. Cell. Endocrinol. 289, 38–48

41. Xie, H., Sun, M., Liao, X. B., Yuan, L. Q., Sheng, Z. F., Meng, J. C., Wang, D., Yu, Z. Y., Zhang, L. Y., Zhou, H. D., Luo, X. H., Li, H., Wu, X. P., Wei, Q. Y., Tang, S. Y., Wang, Z. Y., and Liao, E. Y. (2011) Estrogen receptor α36 mediates a bone-sparing effect of 17ß-estradiol in postmenopausal women. J. Bone Miner. Res. 26, 156–168

42. Zhao, Y. Y., Guo, L., Zhao, X. J., Liu, H., Lei, T., Ma, D. J., and Gao, X. Y. (2009) Transcriptional activation of insulin-like growth factor binding protein 6 by 17ß-estradiol in SaOS-2 cells. Exp. Mol. Med. 41, 478–486

43. Zhao, L., and Brinton, R. D. (2007) estrogen receptor α and β differentially regulate intracellular Ca2+ dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Res. 1172, 48–59

44. Ivanova, M. M., Luken, K. H., Zimmer, A. S., Lenzo, F. L., Smith, R. J., Artele, M. W., Kollenberg, T. J., Mattingly, K. A., and Klinge, C. M. (2011) Taron155 increases nuclear respiratory factor 1 transcription by activating estrogen receptor β and AP-1 recruitment to adjacent promoter binding sites. FASEB J. 25, 1402–1416

45. Lindberg, K., Helguero, L. A., Omo, Y., Gustafsson, J. Ò., and Haldosén, L. A. (2011) estrogen receptor β represses Akt signaling in breast cancer cells via down-regulation of HER2/HER3 and up-regulation of PTEN: implications for tamoxifen sensitivity. Breast Cancer Res. 13, R43

46. Shuttan, M., Zhurinsky, J., Simcha, I., Albanece, C.´D´Amico, M., Pest, R., and Ban-Ze´ev, A. (1999) The cyclin D1 gene is a target of the β-catenin/LEF1 pathway. Proc. Natl. Acad. Sci. U.S.A. 96, 5522–5527

47. Glass, D. A., 2nd, Bialek, P., Ahn, J. D., Starbuck, M., Patel, M. S., Clevers, H., Taketo, M. M., Long, F., McMahon, A. P., Lang, R. A., and Karsenty, G. (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751–764

48. Sawakami, K., Robling, A. G., Ai, M., Pittner, N. D., Liu, D., Warden, S. J., Li, J., Maye, P., Rowe, D. W., Duncan, R. L., Warman, M. L., and Turner, C. H. (2006) The Wnt co-receptor LRPS is essential for skeletal mecha-notransduction but not for the anabolic bone response to parathyroid hormone treatment. J. Biol. Chem. 281, 23698–23711

49. Xiong, L. K., Jackson, B. F., Sugiyama, T., Lanyon, L. E., and Price, J. S. (2011) Analysis of multiple bone responses to graded strains above functional levels, and to disuse, in mice in vivo show that the human Lrp5 G171V high bone mass mutation increases the osteogenic response to loading but that lack of Lrp5 activity reduces it. Bone 49, 184–193

50. Nizolek, P. J., Warman, M. L., and Robling, A. G. (2012) Mechanotransduction in bone tissue: The A214V and G171V mutations in LRP5 enhance load-induced osteogenesis in a surface-selective manner. Bone 51, 459–465

51. Ellis, D. L., Viviano, B., McCarthy, J., Rey, J. P., Itasaki, N., Saunders, S., and Krumlauf, R. (2006) Bone density ligand, Sclerostin, directly interacts with LRPS but not LRP5G171V to modulate Wnt activity. J. Bone Miner.
ER-mediated Regulation of Osteoblast Proliferation and Sost

67. Kushner, P. J., Agard, D. A., Greene, G. L., Scanlan, T. S., Shiu, A. K., Uht, R. M., and Webb, P. (2000) Estrogen receptor pathways to AP-1. J. Steroid Biochem. Mol. Biol. 74, 311–317

68. McCarthy, T. L., Kalten, C. B., and Centrella, M. (2011) β-Catenin independent cross-control between the estradiol and Wnt pathways in osteoblasts. Gene 479, 16–28

69. Ardawi, M. S., Al-Sibiany, A. M., Bakhsh, T. M., Rouzi, A. A., and Qari, M. H. (2012) Decreased serum sclerostin levels in patients with primary hyperparathyroidism: a cross-sectional and a longitudinal study. Osteoporos. Int. 23, 1789–1797

70. Silvestrini, G., Ballanti, P., Leopizzi, M., Sebastiani, M., Berni, S., Di Vito, M., and Bonucci, E. (2007) Effects of intermittent parathyroid hormone (PTH) administration on SOST mRNA and protein in rat bone. J. Mol. Histol. 38, 261–269

71. Cheng, M. Z., Rawlinson, S. C., Pitsillides, A. A., Zaman, G., Mohan, S., Baylink, D. J., and Lanyon, L. E. (2002) Human osteoblasts’ proliferative responses to strain and 17β-estradiol are mediated by the estrogen receptor and the receptor for insulin-like growth factor 1. J. Bone Miner. Res. 17, 593–602

72. Williams, C., Edvardsson, S., and Gustafsson, J. A. (2008) A genome-wide study of the repressive effects of estrogen receptor β on estrogen receptor α signaling in breast cancer cells. Oncogene 27, 1019–1032

73. Chang, E. C., Frasar, J., Koom, B., and Katzenellenbogen, B. S. (2006) Impact of estrogen receptor β on gene networks regulated by estrogen receptor α in breast cancer cells. Endocrinology 147, 4831–4842

74. Omoto, Y., Eguchi, H., Yamamoto-Yamaguchi, Y., and Hayashi, S. (2003) Estrogen receptor (ER) β1 and ERβα/β2 inhibit ERα function differently in breast cancer cell line MCF7. Oncogene 22, 5011–5020

75. Zhao, C., Dahlman-Wright, K., and Gustafsson, J. Å. (2010) Estrogen signaling via estrogen receptor β. J. Biol. Chem. 285, 39575–39579

76. Keller, H., and Kneissel, M. (2005) SOST is a target gene for PTH in bone. J. Mol. Histol. 36, 283–286

77. Sun, J., Seng, J., and Sun, Q. Y. (2010) ER-β/α mediates estrogen-stimulated proliferation of endometrial carcinoma cells via the PKCε/ERK pathway. PLoS One 5, e15408

78. Kim, J. H., Jeong, I. Y., Lim, Y. H., and Shin, S. Y. (2011) Estrogen receptor β stimulates Erγ-1 transcription via MEK1/Erk/Elk-1 cascade in C6 glioma cells. BMB Rep. 44, 452–457

79. Setchell, K. D., Clerici, C., Lephart, E. D., Cole, S. J., Heenan, C., Castellani, D., Wolfe, B. E., Nechemias-Zimmer, L., Brown, N. M., Lund, T. D., Handa, R. J., and Heubi, J. E. (2005) S-equol, a potent ligand for estrogen receptor β, is the exclusive entaniomer form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am. J. Clin. Nutr. 81, 1072–1079

80. Kuiper, G. G., Lemmen, J. G., Carlsson, B., Corton, J. C., Safe, S. H., van den Saag, P. T., van der Burg, B., and Gustafsson, J. A. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139, 4252–4263

81. Taku, K., Melby, M. K., Nishi, N., Omori, T., and Kurzer, M. S. (2011) Soy isoflavones for osteoporosis: an evidence-based approach. Maturitas 70, 333–338

82. Borgan, S., Horn, K., Beaven, S., and Compston, J. (2001) Estrogen receptors α and β are differentially expressed in developing human bone. J. Clin. Endocrinol. Metab. 86, 2309–2314

83. Sugiyama, T., Saxon, L. K., Zaman, G., Moustaqa, A., Sunters, A., Price, J. S., and Lanyon, L. E. (2008) Mechanical loading enhances the anabolic effects of intermittent parathyroid hormone (1–34) on trabecular and cortical bone in mice. Bone 43, 238–248

84. Chung, C. J., Baik, H. S., and Soma, K. (2007) Bone formation and tooth movement are synergistically enhanced by administration of EP4 agonist. Am. J. Orthod. Dentofacial. Orthop. 132, 427

85. Hagino, H., Kuraoka, M., Kameyama, Y., Okano, T., and Teshima, R. (2005) Effect of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the cortical bone response to mechanical loading. Bone 36, 444–453
ER-mediated Regulation of Osteoblast Proliferation and Sost

104. Börjesson, A. E., Windahl, S. H., Lagerquist, M. K., Engdahl, C., Frenkel, B., Movérare-Skrtic, S., Sjögren, K., Kindblom, J. M., Stibelius, A., Islander, U., Antal, M. C., Krust, A., Chambon, P., and Ohlsson, C. (2011) Roles of transactivating functions 1 and 2 of estrogen receptor-α in bone. Proc. Natl. Acad. Sci. U.S.A. 108, 6288–6293

105. Stossi, F., Barnett, D. H., Frasor, J., Komm, B., Lyttle, C. R., and Katzenellenbogen, B. S. (2004) Transcriptional profiling of estrogen-regulated gene expression via estrogen receptor (ER) α or ERβ in human osteosarcoma cells: distinct and common target genes for these receptors. Endocrinology 145, 3473–3486

106. Noble, B. S., Peet, N., Stevens, H. Y., Brabbs, A., Mosley, J. R., Reilly, G. C., Reeve, J., Skerry, T. M., and Lanyon, L. E. (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am. J. Physiol. Cell Physiol. 284, C934–C943

107. Kousteni, S., Bellido, T., Plotkin, L. I., O’Brien, C. A., Bodenner, D. L., Han, L., Han, K., DiGregorio, G. B., Katzenellenbogen, J. A., Katzenellenbogen, B. S., Roberson, P. K., Weinstein, R. S., Jilka, R. L., and Manolagas, S. C. (2001) Nongenotrophic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730

108. Emerton, K. B., Hu, B., Woo, A. A., Sinofsky, A., Hernandez, C., Majeska, R. J., Jepsen, K. J., and Schaffler, M. B. (2010) Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. Bone 46, 577–583

109. Bradford, P. G., Gerace, K. V., Roland, R. L., and Chrzan, B. G. (2010) Estrogen regulation of apoptosis in osteoblasts. Physiol Behav. 99, 181–185

110. Hawse, J. R., Subramaniam, M., Monroe, D. G., Hemmingsen, A. H., Ingle, J. N., Khosla, S., Oursler, M. J., and Spelsberg, T. C. (2008) Estrogen receptor β isoform-specific induction of transforming growth factor β-inducible early gene-1 in human osteoblast cells: an essential role for the activation function 1 domain. Mol. Endocrinol. 22, 1579–1595

111. Cardoso, L., Herman, B. C., Verborgt, O., Laudier, D., Majeska, R. J., and Schaffler, M. B. (2009) Osteocyte apoptosis controls activation of intra-cortical resorption in response to bone fatigue. J. Bone Miner. Res. 24, 597–605

112. Almeida, M., Iyer, S., Martin-Millan, M., Bartell, S. M., Han, L., Ambrogini, E., Onal, M., Xiong, J., Weinstein, R. S., Jilka, R. L., O’Brien, C. A., and Manolagas, S. C. (2013) Estrogen receptor-α signaling in osteoblast progenitors stimulates cortical bone accrual. J. Clin. Invest. 123, 394–404

113. Mödder, U. I., Hoey, K. A., Amin, S., McCready, L. K., Achenbach, S. J., Riggs, B. L., Melton, L. J., 3rd, and Khosla, S. (2011) Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J. Bone Miner. Res. 26, 373–379

114. Damien, E., Price, J. S., and Lanyon, L. E. (1998) The estrogen receptor’s involvement in osteoblasts’ adaptive response to mechanical strain. J. Bone Miner. Res. 13, 1275–1282

115. Maran, A., Shogren, K., Zhang, M., Yaszemski, M. J., Heffernan, T. E., Spelsberg, T. C., Klosterboer, H. J., and Turner, R. T. (2006) Effects of stable transfection of human fetal osteoblast cells with estrogen receptor-α on regulation of gene expression by tibolone. Bone 39, 523–529

116. Monroe, D. G., Getz, B. J., Johnsen, S. A., Riggs, B. L., Khosla, S., and Spelsberg, T. C. (2003) Estrogen receptor isoform-specific regulation of endogenous gene expression in human osteoblastic cell lines expressing either ERα or ERβ. J. Cell. Biochem. 90, 315–326

117. Saika, M., Inoue, D., Kido, S., and Matsumoto, T. (2001) 17β-Estradiol stimulates expression of osteoprotegerin by a mouse stromal cell line, ST-2, via estrogen receptor-α. Endocrinology 142, 2205–2212

118. Krum, S. A., Miranda-Carboni, G. A., Hauschka, P. V., Carroll, J. S., Lane, T. F., Freedman, L. P., and Brown, M. (2008) Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J. 27, 535–545

119. Quaedackers, M. E., Van Den Brink, C. E., Wissink, S., Schreurs, R. H., Gustafsson, J. A., Van Der Saag, P. T., and Van Der Burg, B. B. (2001) 4-Hydroxytamoxifen trans-represses nuclear factor-κB activity in human osteoblastic U2-OS cells through estrogen receptor (ER) α, and not through ER β. Endocrinology 142, 1156–1166
Signal Transduction:
Estrogen Receptor α Mediates Proliferation of Osteoblastic Cells Stimulated by Estrogen and Mechanical Strain, but Their Acute Down-regulation of the Wnt Antagonist Sost Is Mediated by Estrogen Receptor β

Gabriel L. Galea, Lee B. Meakin, Toshihiro Sugiyama, Noureddine Zebda, Andrew Sunters, Hanna Taipaleenmaki, Gary S. Stein, Andre J. van Wijnen, Lance E. Lanyon and Joanna S. Price

J. Biol. Chem. 2013, 288:9035-9048.
doi: 10.1074/jbc.M112.405456 originally published online January 29, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M112.405456

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2013/01/29/M112.405456.DC1.html

This article cites 118 references, 20 of which can be accessed free at http://www.jbc.org/content/288/13/9035.full.html#ref-list-1