Chiral symmetry breaking in continuum QCD

Mario Mitter

Ruprecht-Karls-Universität Heidelberg

Gießen, February 10, 2016
fQCD collaboration - QCD (phase diagram) with FRG:

J. Braun, A. K. Cyrol, L. Fister, W. J. Fu, T. K. Herbst, MM
N. Müller, J. M. Pawlowski, S. Rechenberger, F. Rennecke, N. Strodthoff
Table of Contents

1 Motivation

2 “Quenched” Landau gauge QCD with the FRG

3 YM correlation functions

4 A glimpse at unquenching

5 Phenomenological Application: \(\eta' \)-meson mass at chiral crossover

6 Conclusion
QCD phase diagram with functional methods

- works well at $\mu = 0$: agreement with lattice

[Herbst, MM, Pawlowski, Schaefer, Stiele, '13]

[Luecker, Fischer, Welzbacher, 2014]

[Luecker, Fischer, Fister, Pawlowski, '13]
QCD phase diagram with functional methods

- works well at \(\mu = 0 \): agreement with lattice
- different results at large \(\mu \)
 (possibly already at small \(\mu \))

[Herbst, Pawlowski, Schaefer, 2013]
[Braun, Haas, Pawlowski, unpublished]
QCD phase diagram with functional methods

- works well at $\mu = 0$: agreement with lattice
- different results at large μ
 (possibly already at small μ)

- calculations need model input:
 - Polyakov-quark-meson model with FRG:
 - initial values at $\Lambda \approx O(\Lambda_{\text{QCD}})$
 - input for Polyakov loop potential
 - quark propagator DSE:
 - IR quark-gluon vertex

[Herbst, Pawlowski, Schaefer, 2013]
[Braun, Haas, Pawlowski, unpublished]
QCD phase diagram with functional methods

- works well at $\mu = 0$: agreement with lattice
- different results at large μ
 (possibly already at small μ)
- calculations need model input:
 ▶ Polyakov-quark-meson model with FRG:
 ★ initial values at $\Lambda \approx O(\Lambda_{\text{QCD}})$
 ★ input for Polyakov loop potential
 ▶ quark propagator DSE:
 ★ IR quark-gluon vertex

possible explanation for disagreement:

- $\mu \neq 0$: relative importance of diagrams changes
 \Rightarrow summed contributions vs. individual contributions

\[\text{[Herbst, Pawlowski, Schaefer, 2013]}\]
\[\text{[Braun, Haas, Pawlowski, unpublished]}\]
Back to QCD in the vacuum (Wetterich equation)

- use only perturbative QCD input
 - $\alpha_s(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
Back to QCD in the vacuum (Wetterich equation)

- use only perturbative QCD input
 - $\alpha_S(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$

- Wetterich equation with initial condition $S[\Phi] = \Gamma_\Lambda[\Phi]$

$$\partial_k \Gamma_k[A, \bar{c}, c, \bar{q}, q] = \frac{1}{2} - - -$$

\Rightarrow effective action $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$
Back to QCD in the vacuum (Wetterich equation)

- use only perturbative QCD input
 - $\alpha_s(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$

- Wetterich equation with initial condition $S[\Phi] = \Gamma_\Lambda[\Phi]$

\[
\partial_k \Gamma_k[A, \bar{c}, c, \bar{q}, q] = \frac{1}{2} \quad - \quad - \quad -
\]

\Rightarrow effective action $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$

- ∂_k: integration of momentum shells controlled by regulator
- full field-dependent equation with $(\Gamma^{(2)}[\Phi])^{-1}$ on rhs
- gauge-fixed approach (Landau gauge): ghosts appear
Vertex Expansion

- approximation necessary - vertex expansion

\[\Gamma[\Phi] = \sum_n \int_{p_1, \ldots, p_{n-1}} \Gamma_{\phi_1 \cdots \phi_n}^{(n)} (p_1, \ldots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \cdots - p_{n-1}) \]
Vertex Expansion

- approximation necessary - vertex expansion

\[\Gamma[\Phi] = \sum_n \int_{p_1, \ldots, p_{n-1}} \Gamma^{(n)}_{\Phi_1 \cdots \Phi_n}(p_1, \ldots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \cdots - p_{n-1}) \]

- functional derivatives with respect to \(\Phi_i = A, \bar{c}, c, \bar{q}, q \):

 \[\Rightarrow \text{equations for 1PI } n\text{-point functions, e.g. gluon propagator:} \]

\[\partial_t \begin{array}{c} -1 \\ \end{array} = -2 \begin{array}{c} \text{propagator} \\ \end{array} + \frac{1}{2} \]
Vertex Expansion

- approximation necessary - vertex expansion

\[\Gamma[\Phi] = \sum_n \int_{p_1, \ldots, p_{n-1}} \Gamma^{(n)}_{\Phi_1 \cdots \Phi_n}(p_1, \ldots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \cdots - p_{n-1}) \]

- functional derivatives with respect to \(\Phi_i = A, \bar{c}, c, \bar{q}, q \):
 \(\Rightarrow \) equations for 1PI \(n \)-point functions, e.g. gluon propagator:

\[\partial_t \left(\begin{array}{c}
 1 \\
 -2 \\
 + \frac{1}{2}
\end{array} \right) = \begin{array}{c}
 \begin{array}{c}
 \text{Diagram 1}
 \end{array} \\
 \begin{array}{c}
 \text{Diagram 2}
 \end{array}
\end{array} \]

- want “apparent convergence” of \(\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi] \)
“Quenched” Landau gauge QCD

- two crucial phenomena: \(S\chiSB \) and confinement
- similar scales - hard to disentangle
- quenched QCD: allows separate investigation:

see e.g. [Williams, Fischer, Heupel, 2015]
“Quenched” Landau gauge QCD

- two crucial phenomena: $S\chi_{SB}$ and confinement
- similar scales - hard to disentangle see e.g. [Williams, Fischer, Heupel, 2015]
- quenched QCD: allows separate investigation:
 - matter part [MM, Strodthoff, Pawlowski, 2014]
 (with FRG-YM propagators from [Fischer, Maas, Pawlowski, 2009], [Fister, Pawlowski, unpublished])
 - recent results for YM propagators [Cyrol, Fister, MM, Pawlowski, Strodthoff, to be published]
Chiral symmetry breaking

- $\chi_{SB} \Leftrightarrow$ resonance in 4-Fermi interaction λ (pion pole):
Chiral symmetry breaking

- $\chi_{SB} \Leftrightarrow$ resonance in 4-Fermi interaction λ (pion pole):
- resonance \Rightarrow singularity without momentum dependency

$$\partial_t \lambda = a \lambda^2 + b \lambda \alpha + c \alpha^2, \quad b > 0, \ a, c \leq 0$$

[Braun, 2011]
Effective running couplings

- agreement in perturbative regime required by gauge symmetry
- non-degenerate in nonperturbative regime: reflects gluon mass gap
- $\alpha_{\bar{q}Aq} > \alpha_{cr}$: necessary for chiral symmetry breaking
- area above α_{cr} very sensitive to errors

[MM, Pawlowski, Strodthoff, 2014]
4-Fermi vertex via dynamical hadronization [Gies, Wetterich, 2002]

- change of variables: particular 4-Fermi channels \rightarrow meson exchange
- efficient inclusion of momentum dependence \Rightarrow no singularities
- identifies relevant effective low-energy dofs from QCD

\[\partial_k \Gamma_k = \frac{1}{2} \]

\[\frac{h^2}{2 m^2} \]

\[\lambda_\pi \]

\[Y_{\text{Yukawa}} \]

\[Y_{\text{Yukawa}} \]

\[\frac{h^2}{2 m^2} \]

\[\lambda_\pi \]

[MM, Strodthoff, Pawlowski, 2014]

[Braun, Fister, Haas, Pawlowski, Rennecke, 2014]

[MM, Strodthoff, Pawlowski, 2014]
Vertex Expansion in the matter system

FRG Yang-Mills results

-1

Mom. dep.

Classical tensor structure

Mom. dep.

Classical tensor structure

-1

Mom. dep.

Full mom. dep.

All tensor structures

STI-consistent dressing

-1

Mom. dep.

Full effective potential

Fierz-complete basis at $p = 0$ and mom. dep.

Mom. dep.

Mom. dep.

Mom. dep.

Mom. dep.
Derivation of equations

VertEXPand
Mathematica package for the derivation of vertices from a given action using FORM
(Denz, Held, Rodigast; unpub.)

DoFun
Mathematica package for the derivation of functional equations
(Braun, Huber; Comput. Phys. Commun. 183 (2012) 1290-1320)

Action

Vertices/Feynman Rules

DoFun
VertEXPand

Symbolic Flow Equations

ERGE

FORMTracer
high-performance, easy-to-use Mathematica tracing tool using FORM
(Cyrol, Mitter, Pawlowski, Strodthoff; in prep.)

CreateKernels
Mathematica package for the automatic generation of compilable C++ kernels for use in connection with the frgsolver
(Cyrol, Mitter, Pawlowski, Strodthoff; unpub.)

Compilable Kernels

frgsolver
Flexible, high-performance, parallelized C++ OOP framework for the numerical solution of functional equations
(Cyrol, Mitter, Pawlowski, Strodthoff; unpub.)

Numerical solution

[Cyrol, MM, Pawlowski, Strodthoff, 2013-2016]
Equations in the matter system

[MM, Strodthoff, Pawlowski, 2014]

\[\partial_t^{-1} = \left(\begin{array}{c} \text{diagram 1} \\ \text{diagram 2} \\ \text{diagram 3} \end{array} \right) \]

\[\partial_t = \left(\begin{array}{c} \text{diagram 1} \\ \text{diagram 2} \\ \text{diagram 3} \end{array} \right) \]

\[\partial_t = \left(\begin{array}{c} \text{diagram 1} \\ \text{diagram 2} \\ \text{diagram 3} \end{array} \right) \]
Equations in the matter system

\[\partial_t \chi_{SB} = -2 \chi_{SB} + \chi_{SB} - \chi_{SB} + \text{perm.} \]
Equations in the matter system

\[\partial_t \chi_{SB} = \sum \text{perm.} \]

\[\partial_t \chi_{SB} = \sum \text{perm.} \]

\[\partial_t \chi_{SB} = \sum \text{perm.} \]

\[\partial_t \chi_{SB} = \sum \text{perm.} \]
Gluon FRG input

- \(\Gamma^{(2)}_{AA}(p) \propto Z_A(p) p^2 \left(\delta^{\mu\nu} - p^\mu p^\nu / p^2 \right) \)

- FRG result \(\Rightarrow \) self-consistent calculation within FRG approach
- sets the scale in comparison to lattice QCD
Quark propagator

\[\Gamma_{qq}^{(2)}(p) \propto Z_q(p) \not p + M(p) \]

- FRG vs. lattice: bare mass, quenched, scale

Bowman et al., '05

1/Z\(_q\)

M\(_q\)
Quark propagator

- $\Gamma_{qq}^{(2)}(p) \propto Z_q(p) \not p + M(p)$

FRG vs. lattice: bare mass, quenched, scale
agreement not sufficient: need apparent convergence at $\mu \neq 0$
other 4-Fermi channels (mesons)

(bosonized) 4-fermi-interactions

\[\frac{h^2\pi^2}{2m^2} \]

\[\lambda_{\eta'} \]

\[\lambda_{(S+P)^{adj}} \]

\[\lambda_{V-A} \]

\[\lambda_{V+A} \]

\[\lambda_{(V-A)^{adj}} \]

\[\lambda_{(S-P)^{adj}} \]

\[\lambda_{(S-P)} \]

\[\lambda_{(S+P)^{adj}} \]

\[\lambda_{(S+P)} \]

- bosonized only $\sigma-\pi$-channel \Rightarrow sufficient
diquark momentum configuration more important

- other channels: quantitatively not important in loops
Quark-gluon interactions I

- Quark-gluon interaction most crucial for chiral symmetry breaking
- Full tensor basis ⇒ sufficient chiral symmetry breaking strength?
Quark-gluon interactions I

- Quark-gluon interaction most crucial for chiral symmetry breaking
- Full tensor basis \Rightarrow sufficient chiral symmetry breaking strength?

\[p \text{ [GeV]} \]

- Vertex strength: reflects gluon gap
- 8 tensors (transversally projected):
 - Classical tensor
 - Chirally symmetric
 - Break chiral symmetry

\[Z_{qAq}^{(1)} \quad Z_{qAq}^{(4)} \quad Z_{qAq}^{(7)} \quad Z_{qAq}^{(5)} \quad Z_{qAq}^{(6)} \quad Z_{qAq}^{(8)} \]
Quark-gluon interactions I

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis \Rightarrow sufficient chiral symmetry breaking strength?

![Diagram showing quark-gluon couplings vs. p [GeV]]

- vertex strength: reflects gluon gap
- 8 tensors (transversally projected):
 - classical tensor
 - chirally symmetric
 - break chiral symmetry

- important non-classical tensors: c.f., [Hopfer et al., 2012], [Williams, 2014], [Aguilar et al., 2014]
 - $\bar{q}\gamma_5\gamma_\mu\epsilon_\mu\nu\rho\sigma\{F_{\nu\rho}, D_\sigma\}q \left(\frac{1}{2} T^{(5)}_{\bar{q}Aq} + T^{(7)}_{\bar{q}Aq} \right)$: increases Z_q decreases M_q considerably
 - anom. chromomagn. momentum ($T^{(4)}_{\bar{q}Aq}$) increases M_q moderately
Quark-gluon interactions I

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis ⇒ sufficient chiral symmetry breaking strength?

- vertex strength: reflects gluon gap
- 8 tensors (transversally projected):
 - classical tensor
 - chirally symmetric
 - break chiral symmetry

- important non-classical tensors: c.f., [Hopfer et al., 2012], [Williams, 2014], [Aguilar et al., 2014]
 - $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_\sigma\}q \left(\frac{1}{2} T_{\bar{q}Aq}^{(5)} + T_{\bar{q}Aq}^{(7)} \right)$: increases Z_q/decreases M_q considerably
 - anom. chromomagn. momentum ($T_{\bar{q}Aq}^{(4)}$) increases M_q moderately

⇒ considerably less chiral symmetry breaking with full tensor basis
Quark-gluon interactions I

- quark-gluon interaction most crucial for chiral symmetry breaking
- full tensor basis \Rightarrow sufficient chiral symmetry breaking strength?

Graph: quark-gluon couplings vs. p [GeV]

- vertex strength: reflects gluon gap
- 8 tensors (transversally projected):
 - classical tensor
 - chirally symmetric
 - break chiral symmetry

- important non-classical tensors: c.f., [Hopfer et al., 2012], [Williams, 2014], [Aguilar et al., 2014]
 - $\bar{q}\gamma_5\gamma_\mu\epsilon_{\mu\nu\rho\sigma}\{F_{\nu\rho}, D_\sigma\}q\left(\frac{1}{2}T_{\bar{q}Aq}^{(5)} + T_{\bar{q}Aq}^{(7)}\right)$: increases Z_q/decreases M_q considerably
 - anom. chromomagn. momentum ($T_{\bar{q}Aq}^{(4)}$) increases M_q moderately

\Rightarrow considerably less chiral symmetry breaking with full tensor basis
- also important ingredient for bound-state equations
Quark-gluon interactions II

- missing strength?

\[\psi / D \nabla \psi\]

- [MM, Pawlowski, Strodthoff, 2014]

- In particular

\[\bar{q} \gamma^5 \gamma^\mu \epsilon_{\mu\nu\rho\sigma} \begin{pmatrix} F_{\nu\rho} \cr D_{\sigma} \end{pmatrix} q: \]

- Thus contributes to \[\bar{q}Aq, \bar{q}Aq^2 q\]

- Contains important non-classical tensors (\[\bar{q}Aq\])

- Considerable contribution to quark-gluon vertex (\[\bar{q}Aq^2\])

- Contribution to \[\bar{q}Aq^3\] seems unimportant

- Explicit calculations of \[AA\bar{qq}-vertex: \]

\[\bar{q}A\bar{q}q, \bar{q}Aq^2, \bar{q}Aq^3\] 15 chirally symmetric tensor elements (\[\bar{\psi} / D^3 \psi\]):

- \[\bar{\psi} / D^3 \psi\]: All seem important

- Order of effect similar to \[\bar{q} \gamma^5 \gamma^\mu \epsilon_{\mu\nu\rho\sigma} \begin{pmatrix} F_{\nu\rho} \cr D_{\sigma} \end{pmatrix} q\]

- Why? Underlying principle?
Quark-gluon interactions II

- missing strength?
- expansion in tensor structures → expansion in operators $\bar{\psi} D^n \psi$

[MM, Pawlowski, Strodthoff, 2014]
Quark-gluon interactions II

- missing strength?
- expansion in tensor structures → expansion in operators $\bar{\psi} \Phi^n \psi$

[MM, Pawlowski, Strodthoff, 2014]

in particular $\bar{q} \gamma_5 \gamma_\mu \epsilon_{\mu\nu\rho\sigma} \{F_{\nu\rho}, D_\sigma\} q$:
 - contributes to $\bar{q}Aq$, $\bar{q}A^2 q$ and $\bar{q}A^3 q$
 - contains important non-classical tensors ($\bar{q}Aq$)
 - considerable contribution to quark-gluon vertex ($\bar{q}A^2 q$)
 - contribution to $\bar{q}A^3 q$ seems unimportant
Quark-gluon interactions II

- missing strength?
- expansion in tensor structures \rightarrow expansion in operators $\bar{\psi} \slashed{D}^n \psi$

[MM, Pawlowski, Strodthoff, 2014]

in particular $\bar{q} \gamma_5 \gamma_\mu \epsilon_{\mu \nu \rho \sigma} \{ F_{\nu \rho}, D_{\sigma} \} q$:

- contributes to $\bar{q}Aq$, $\bar{q}A^2 q$ and $\bar{q}A^3 q$
- contains important non-classical tensors ($\bar{q}Aq$)
- considerable contribution to quark-gluon vertex ($\bar{q}A^2 q$)
- contribution to $\bar{q}A^3 q$ seems unimportant
Quark-gluon interactions II

- missing strength?

- expansion in tensor structures \(\rightarrow \) expansion in operators \(\bar{\psi} D^n \psi \)

[MM, Pawlowski, Strodthoff, 2014]

in particular \(\bar{q} \gamma_5 \gamma_\mu \epsilon_{\mu\nu\rho\sigma} \{ F_{\nu\rho}, D_\sigma \} q \):

- contributes to \(\bar{q} A q, \bar{q} A^2 q \) and \(\bar{q} A^3 q \)
- contains important non-classical tensors (\(\bar{q} A q \))
- considerable contribution to quark-gluon vertex (\(\bar{q} A^2 q \))
- contribution to \(\bar{q} A^3 q \) seems unimportant

- explicit calculations of \(AA\bar{q}q \)-vertex:

 - full basis: 63 chirally symmetric tensor elements
 - 15 chirally symmetric tensor elements (\(\bar{\psi} D^3 \psi \)):
 - all seem important
 - order of effect similar to \(\bar{q} \gamma_5 \gamma_\mu \epsilon_{\mu\nu\rho\sigma} \{ F_{\nu\rho}, D_\sigma \} q \)
 - why? underlying principle?
Stability of truncation (apparent convergence)

Expansion of effective action in 1PI correlators

- Full mom. dep.
- Classical tensor structure
- Mom. dep. (sym. channel)
- Full tensor structure
- Full mom. dep.

Under investigation:
- Full tensor structure
- Mom. dep. (sym. channel)

- Full tensor structure
- Partial tensor structure
- Mom. dep. (sym. channel)
- Full tensor structure
- Mom. dep. (single channel)

- Full mom. dep.
- Via effective potential
- Full tensor structure
- Mom. dep. (sym. channel)
Vertex Expansion in YM theory [Cyrol, Fister, MM, Strodthoff, Pawlowski, to be published]

full. mom. dep.

full. mom. dep.

tadpole config.

sym. point and tadpole config.
Equations in YM theory

\[\partial_t - 1 = \text{diagram} + \text{diagram} \]

\[\partial_t - 1 = \text{diagram} - 2 \text{diagram} + \frac{1}{2} \text{diagram} \]

\[\partial_t = - \text{diagram} - \text{diagram} + \text{perm.} \]

\[\partial_t = - \text{diagram} + 2 \text{diagram} - \text{diagram} + \text{perm.} \]

\[\partial_t = - \text{diagram} - \text{diagram} + 2 \text{diagram} - \text{diagram} + \text{perm.} \]
YM propagators

\[\Gamma^{(2)}_{AA}(p) \propto Z_A(p) \, p^2 \left(\delta^{\mu\nu} - p^\mu p^\nu / p^2 \right) \]

\[\Gamma^{(2)}_{cc}(p) \propto Z_c(p) \, p^2 \]

- band: family of decoupling solutions bounded by scaling solution
YM vertices I

- comparison to Sternbeck ’06
- comparison to Cucchieri, Maas, Mendes, ’08
 Blum, Huber, MM, von Smekal ’14

- band: family of decoupling solutions bounded by scaling solution
Outlook: unquenched gluon propagator

- self-consistent solution of classical propagators and vertices (1D)
- massless quarks

[Gießen, February 2016 26 / 29]
\(\eta' \)-meson (screening) mass at chiral crossover

- small \(\eta' \)-meson mass above chiral crossover? [Kapusta, Kharzeev, McLerran, 1998]
- drop in \(\eta' \) mass at chiral crossover? [Csörgo et al., 2010]
$$\eta'$$-meson (screening) mass at chiral crossover

- small $$\eta'$$-meson mass above chiral crossover?
- drop in $$\eta'$$ mass at chiral crossover?

[Kapusta, Kharzeev, McLerran, 1998]

[Csörgó et al., 2010]

chiral crossover: Polyakov-Quark-Meson model (extended mean-field)

- $$N_f = 2$$ quark and meson degrees of freedom
- describes chiral crossover
- (de-)confinement via Polyakov loop potential
- $$U(1)_A$$-anomaly: mesonic ’t Hooft determinant
\(\eta' \)-meson (screening) mass at chiral crossover

- small \(\eta' \)-meson mass above chiral crossover? [Kapusta, Kharzeev, McLerran, 1998]
- drop in \(\eta' \) mass at chiral crossover? [Csörgo et al., 2010]

Chiral Crossover: Polyakov-Quark-Meson Model (Extended Mean-Field)

- 2 quark and meson degrees of freedom
- describes chiral crossover
- (de-)confinement via Polyakov loop potential
- \(U(1)_A \)-anomaly: mesonic ’t Hooft determinant

\[N_f = 2 \]

\(\Phi \)

\(\sigma \)

\(f_{\pi} \)

\(S \)

\(P \)

\(A \)

\(\lambda(S-P)_\perp \), \(f_{\text{QCD}}(T) \equiv \lambda(S-P)_\perp,PQM(T) \)

’t Hooft Determinant

- RG-scale dependence from \(f_{\text{QCD}} \)
- temperature dependence \(k(T) \):
 \[\lambda(S-P)_\perp,f_{\text{QCD}}(k) \equiv \lambda(S-P)_\perp,PQM(T) \]
η'-meson (screening) mass at chiral crossover: result

Masses as function of temperature with Polyakov-Loop

[Heller, MM, 2015]

screening masses!
\(\eta' \)-meson (screening) mass at chiral crossover: result

- screening masses!
- QM-Model \(N_f = 2 + 1 \):

 - chiral symmetry restoration:
 \[\Rightarrow \text{drop in } m_{\eta'} \]
Summary and Outlook

(quenched) QCD with functional RG

- QCD phase diagram: need for quantitative precision
- vacuum:
 - sole input $\alpha_S(\Lambda = \mathcal{O}(10) \text{ GeV})$ and $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - good agreement with lattice simulations (sufficient?)
 - (non-perturbative) results:
 - quark-propagator
 - quark-gluon vertex
 - 4-Fermi interaction channels
 - YM-system
 - phenomenology: η'-meson and pion mass splitting
Summary and Outlook

(quenched) QCD with functional RG

- QCD phase diagram: need for quantitative precision
- vacuum:
 - sole input $\alpha_s(\Lambda = \mathcal{O}(10) \text{ GeV})$ and $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - good agreement with lattice simulations (sufficient?)
 - (non-perturbative) results:
 - quark-propagator
 - quark-gluon vertex
 - 4-Fermi interaction channels
 - YM-system
 - phenomenology: η'-meson and pion mass splitting

- unquenching (first results)
- finite temperature/chemical potential
- more checks on convergence of vertex expansion
- bound-state properties (form factor, PDA...)