Pseudomonas syringae pv. tomato race 1 strains have evolved to overcome genetic resistance in tomato. Here, we present the draft genome sequences of two race 1 P. syringae pv. tomato strains, A9 and 407, isolated from diseased tomato plants in California.

Genomic DNA was sequenced using the Illumina HiSeq 2500 (2 × 150-bp paired-end reads) at the Genome Center at the UC Davis DNA Technologies Core Facility. After the raw sequences were trimmed and their quality filtered (>Q30), the remaining reads were assembled de novo using the SPAdes assembler and draft genomes were generated for each isolate (9). Each genome was annotated with PROKKA (10) and the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (http://www.ncbi.nlm.nih.gov/genome/annotation_prok).

The final draft assembly of the P. syringae pv. tomato A9 genome consists of 188 contigs (>200 bp) with 70-fold genome coverage. P. syringae pv. tomato A9 harbors a single circular genome of 6,264,873 bp with a G + C content of 55.8%. Among the 57 type III effectors present in the P. syringae pan-genome (11), 27 are present in both P. syringae pv. tomato A9 and P. syringae pv. tomato 407. Detailed comparisons of related Pseudomonas strains exhibiting variable virulence will facilitate insight into molecular mechanisms regulating virulence and adaptation.

Nucleotide sequence accession numbers. The sequences have been deposited as whole-genome shotgun projects in GenBank under the accession numbers LNKY00000000 for P. syringae pv. tomato A9 and LNKZ00000000 for P. syringae pv. tomato 407.

ACKNOWLEDGMENT
This work was supported by the California Tomato Research Institute, grant 196. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

FUNDING INFORMATION
This work, including the efforts of Shree P. Thapa and Gitta Coaker, was funded by California Tomato Research Institute (196).

REFERENCES

1. Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD. 1993. Map based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432–1436. dx.doi.org/10.1126/science.7902614.

2. Salmeron JM, Olsrodt GE, Rommens CM, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskiwicz BJ. 1996. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86: 23–133. dx.doi.org/10.1016/0092-8674(96)00083-5.

3. Lin NC, Martin GB. 2007. Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse Pseudomonas syringae pathogens to infect tomato. Mol Plant Microbe Interact 20: 806–815. dx.doi.org/10.1094/MPMI-20-7-0806.

4. Kunkeaw S, Tan S, Coaker G. 2010. Molecular and evolutionary analyses of Pseudomonas syringae pv. tomato race 1. Mol Plant Microbe Interact 23: 415–424. dx.doi.org/10.1094/MPMI-23-4-0415.

5. Cai R, Lewis J, Yan S, Liu H, Clarke CR, Campanile F, Almeida NF, Studholme DJ, Lindeberg M, Schneider D, Zaccardelli M, Setubal JC, Morales-Lizcano NP, Bernal A, Coaker G, Baker C, Bender CL, Leman
S, Vinatzer BA. 2011. The plant pathogen *Pseudomonas syringae pv. tomoato* is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog. 7:e1002130. http://dx.doi.org/10.1371/journal.ppat.1002130.

6. Lawton MB, MacNeill BH. 1986. Occurrence of race 1 of *Pseudomonas syringae* on field tomato in south western Ontario. Can J Plant Pathol 8:85–88. http://dx.doi.org/10.1080/07060668609501847.

7. Arredondo CR, Davis RM. 2000. First report of *Pseudomonas syringae pv. tomato* race 1 on tomato in California. Plant Dis 84:370–371. http://dx.doi.org/10.1094/PDIS.2000.84.3.371A.

8. Thapa SP, Miyao EM, Davis M, Coaker G. 2015. Identification of QTLs controlling resistance to *Pseudomonas syringae pv. tomato* race 1 strains from the wild tomato, *Solanum habrochaites* LA1777. Theor Appl Genet 128:681–692. http://dx.doi.org/10.1007/s00122-015-2463-7.

9. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembler and its applications to single cell sequencing. J Comput Biol 19:455–477. http://dx.doi.org/10.1089/cmb.2012.0021.

10. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. http://dx.doi.org/10.1093/bioinformatics/btu153.

11. Lindeberg M, Cunnac S, Collmer A. 2012. *Pseudomonas syringae* type III effector repertoires: last words in endless arguments. Trends Microbiol 20:199–208. http://dx.doi.org/10.1016/j.tim.2012.01.003.