Combination of CDF and D0 W-Boson mass measurements

T. Aaltonen, V. M. Abazov, B. Abbott, B. S. Acharya, M. Adams, T. Adams, J. P. Agnew, G. D. Alexeev, G. Alkhazov, A. Alton, S. Amerio, D. Amidei, A. Anastassov, A. Annovi, J. Antos, A. Apollinari, J. A. Appel, T. Arisawa, A. Artikov, J. A. Asaadi, W. Ashmanskas, A. Askew, S. Atkins, B. Auerbach, K. Augsten, A. Aurisano, C. Avila, F. Azfar, F. Badaud, W. Badgett, T. Bae, L. Bagby, B. Baldin, D. V. Bandurin, S. Banerjee, A. Barbaro-Gallietti, E. Barberis, P. Barret, V. E. Barnes, A. Bazzini, R. Baumgartner, J. F. Bartlett, P. Bartos, U. Bassler, M. Baur, A. Bazzini, B. Beecher, M. Begalli, S. Behari, L. Bellantoni, G. Bellettini, J. Bellinger, A. Benetvas, S. B. Beri, G. Bernardi, R. Bernhard, I. Bertram, M. Besançon, R. Beuselinck, P. C. Bhat, S. Bhatia, V. Bhatnagar, A. Bock, A. Boekholt, D. Boline, E. Boos, G. Borissov, D. Bortoletto, J. Boudreau, A. Branch, O. Brandt, L. Brigliadori, R. Brock, C. Bromberg, A. Bross, D. Brown, E. Bruennke, X. B. Bu, J. Budagov, M. Buehler, V. Buescher, V. Bunichek, S. Burdin, K. Burkett, M. Bussey, C. Buszello, P. Butti, S. Buzatu, A. Calamba, E. Camacho-Pérez, S. Camarda, M. Campanelli, F. Canelli, B. Carls, D. Carlsmith, E. De La Cruz-Burelo, F. Delió, R. Demina, L. Demortier, M. Deninno, D. Denisov, V. Cavaliere, M. Cavalli-Sforza, A. Cerri, S. Chakrabarti, K. M. Chan, A. Chandra, E. Chapon, G. Chen, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Cho, S. W. Cho, S. Chakrabarti, K. M. Chan, A. Chandra, E. Chapon, G. Chen, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Cho, S. W. Cho, S. Chakrabarti, K. M. Chan, A. Chandra, E. Chapon, G. Chen, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Cho, S. W. Cho, S. Chakrabarti, K. M. Chan, A. Chandra, E. Chapon, G. Chen, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Cho, S. W. Cho, S. Chakrabarti, K. M. Chan, A. Chandra, E. Chapon, G. Chen, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Cho, S. W. Cho, S. Chakrabarti, K. M. Chan, A. Chandra, E. Chapon, G. Chen, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Cho, S. W. Cho, S. Chakrabarti, K. M. Chan, A. Chandra, E. Chapon, G. Chen, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Cho, S. W. Cho, S. Chakrabarti, K. M. Chan, A. Chandra, E. Chapon, G. Chen, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Cho, S. W. Cho, S. Chakrabarti, K. M. Chan, A. Chandra, E. Chapon, G. Chen, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Cho, S. W. Cho. This is a list of authors, likely for a scientific publication, with emphasis on the collaboration of physicists. The page references and publication details indicate a specific paper from 2013, available in Physical Review D, 88, 052018.
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Argonne National Laboratory, Argonne, Illinois 60439, USA
3University of Athens, 157 71 Athens, Greece
4Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
5Baylor University, Waco, Texas 76798, USA
6Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6bUniversity of Bologna, I-40127 Bologna, Italy
7University of California, Davis, Davis, California 95616, USA
8University of California, Los Angeles, Los Angeles, California 90024, USA
9Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
10Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
11Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
12Comenius University, 842 48 Bratislava, Slovakia and Institute of Experimental Physics, 040 01 Kosice, Slovakia
13Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14Duke University, Durham, North Carolina 27708, USA
15Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
16University of Florida, Gainesville, Florida 32611, USA
17Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18University of Geneva, Geneva CH-1211 Geneva 4, Switzerland
19Glasgow University, Glasgow G12 8QQ, United Kingdom
20Harvard University, Cambridge, Massachusetts 02138, USA
21Department of Physics, Division of High Energy Physics, University of Helsinki, FIN-00014, Helsinki, Finland
22University of Illinois, Urbana, Illinois 61801, USA
23The Johns Hopkins University, Baltimore, Maryland 21218, USA
24Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
25Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea;
26Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea;
27Korea Institute of Science and Technology Information, Daejeon 305-806, Korea;
28Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea;
29and Ewha Womans University, Seoul, 120-750, Korea
30Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
31University of Liverpool, Liverpool L69 7ZE, United Kingdom
32University College London, London WC1E 6BT, United Kingdom
33Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
34Institute of Particle Physics: McGill University, Montréal, Québec H3A 2T8, Canada; Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; University of Toronto, Toronto, Ontario M5S 1A7, Canada;
35University of New Mexico, Albuquerque, New Mexico 87131, USA
36The Ohio State University, Columbus, Ohio 43210, USA
37Okayama University, Okayama 700-8530, Japan
38Osaka City University, Osaka 558-8585, Japan
39 University of Oxford, Oxford OX1 3RH, United Kingdom
40a Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
40b University of Padova, I-35131 Padova, Italy
41 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
42a Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
42b University of Pisa, I-56127 Pisa, Italy
42c University of Siena, I-56127 Pisa, Italy
42d Scuola Normale Superiore, I-56127 Pisa, Italy
42e INFN Pavia, I-27100 Pavia, Italy
42f University of Pavia, I-27100 Pavia, Italy
43 University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
44 Purdue University, West Lafayette, Indiana 47907, USA
45 University of Rochester, Rochester, New York 14627, USA
46 The Rockefeller University, New York, New York 10065, USA
47a Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy
47b Sapienza Universita` di Roma, I-00185 Roma, Italy
48 Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
49a Istituto Nazionale di Fisica Nucleare Trieste, I-34127 Trieste, Italy
49b Gruppo Collegato di Udine, I-34127 Trieste, Italy
49c University of Udine, I-33100 Udine, Italy
49d University of Trieste, I-34127 Trieste, Italy
50 University of Tsukuba, Tsukuba, Ibaraki 305, Japan
51 Tufts University, Medford, Massachusetts 02155, USA
52 University of Virginia, Charlottesville, Virginia 22906, USA
53 Waseda University, Tokyo 169, Japan
54 Wayne State University, Detroit, Michigan 48201, USA
55 University of Wisconsin, Madison, Wisconsin 53706, USA
56 Yale University, New Haven, Connecticut 06520, USA
57 LAFEX, Centro Brasileiro de Pesquisas Fısıkas, Rio de Janeiro, Brazil
58 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
59 Universidade Federal do ABC, Santo Andre`, Brazil
60 University of Science and Technology of China, Hefei, People’s Republic of China
61 Universidad de los Andes, Bogotá, Colombia
62 Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
63 Czech Technical University in Prague, Prague, Czech Republic
64 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
65 Universidad San Francisco de Quito, Quito, Ecuador
66 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
67 LPSC, Université Joseph Fourier Grenoble I, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
68 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
69 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
70 LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
71 CEA, Ifju, SPP, Saclay, France
72 IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
73 IPNL, Université Lyon I, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
74 III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
75 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
76 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
77 Institut für Physik, Universität Mainz, Mainz, Germany
78 Ludwig-Maximilians-Universität München, München, Germany
79 Panjab University, Chandigarh, India
80 Delhi University, Delhi, India
81 Tata Institute of Fundamental Research, Mumbai, India
82 University College Dublin, Dublin, Ireland
83 Korea Detector Laboratory, Korea University, Seoul, Korea
84 CINVESTAV, Mexico City, Mexico
85 Nikhef, Science Park, Amsterdam, The Netherlands
86 Radboud University Nijmegen, Nijmegen, The Netherlands
87 Moscow State University, Moscow, Russia
88 Institute for High Energy Physics, Protvino, Russia
89 Petersburg Nuclear Physics Institute, St. Petersburg, Russia
We summarize and combine direct measurements of the mass of the W boson in $\sqrt{s} = 1.96$ TeV proton-antiproton collision data collected by CDF and D0 experiments at the Fermilab Tevatron Collider. Earlier measurements from CDF and D0 are combined with the two latest, more precise measurements: a CDF measurement in the electron and muon channels using data corresponding to $22 fb^{-1}$ of integrated
I. INTRODUCTION

In the standard model (SM), quantum corrections to the mass of the W boson \((M_W) \) are dominated by contributions dependent on the mass of the top quark \((m_t) \), the mass of the Higgs boson \((M_H) \), the mass of the Z boson \((M_Z) \), and the fine-structure constant \(\alpha \). A precise measurement of \(M_W \) and \(m_t \) thus constrains \(M_H \), once \(M_Z \) and \(\alpha \) are known. Comparing this constraint with the mass of the Higgs boson recently discovered at the LHC [1] is a critical test of its nature and the consistency of the SM. Details of the experimental methods used in measurements of \(M_W \) are discussed in Ref. [2]. Prior to the combination reported here, the uncertainty on the world average \(M_W \) was 23 MeV [3,4]. Direct measurements of \(m_t \) at the Fermilab Tevatron collider have a combined uncertainty of 0.94 GeV [5], and the uncertainty on \(M_W \) would have to be 6 MeV [6] to provide equally constraining information on \(M_H \). The experimental precision on the measured \(M_W \) is therefore currently the limiting factor on the constraints.

The CDF and D0 experiments at the Fermilab Tevatron proton-antiproton collider reported several direct measurements of the natural width [7] and mass [8–18] of the W boson, using the \(e\nu_e \) and \(\mu\nu_\mu \) decay modes of the W boson. Measurements of \(M_W \) have been reported by CDF with data sets collected during 1988–1989 [8], 1992–1993 [9], 1994–1995 [10], and 2001–2004 [11] and by D0 using data taken during 1992–1995 [12–15] and 2002–2006 [16]. This article describes a combination of \(M_W \) measurements including recent measurements from CDF using the 2002–2007 data set [17] and D0 using the 2006–2009 data set [18] denoted below as CDF (2012) and D0 (2012), respectively. The recent CDF (2012) measurement supersedes the previous measurement [11], which was based on an integrated luminosity of 200 pb\(^{-1}\) and was used in previous combinations [3,19]. The combination takes into account the statistical and systematic uncertainties as well as correlations among systematic uncertainties and supersedes the previous combinations [3,19,20]. All the combinations presented in this article are done using the best linear unbiased estimator (BLUE) method [21], which prescribes the construction of a covariance matrix from partially correlated measurements.

II. W-BOSON MASS MEASUREMENT STRATEGY AT THE TEVATRON

At the Tevatron, W bosons are primarily produced in quark-antiquark annihilation, \(q\bar{q}' \rightarrow W + X \), where \(X \) can include QCD radiation, such as initial-state gluon
radiation, that results in measurable hadronic-recoil energy. The W-boson mass is measured using low-background samples of $W \rightarrow \ell \nu_\ell$ decays ($\ell = e, \mu$ at CDF and $\ell = e$ at D0) that are reconstructed using the CDF [22] and D0 [23] detectors. The mass is determined using three kinematic variables measured in the plane perpendicular to the beam direction: the transverse momentum of the charged lepton (p_T^ℓ), the transverse momentum of the neutrino (p_T^{ν}), and the transverse mass $m_T^2 = 2p_T^\ell p_T^{\nu}(1 - \cos \Delta \phi)$, where $\Delta \phi$ is the opening angle between the lepton and neutrino momenta in the plane transverse to the beam. The magnitude and direction of p_T^ℓ is inferred from the vector of the missing transverse energy E_T^m [24]. The W-boson mass is extracted from maximum-likelihood fits to the binned distributions of the observed p_T^ℓ, E_T^m, and m_T^2 values using a parametrized simulation of these distributions as a function of M_W. These simulations depend on the kinematic distributions of the W-boson decay products and also on detector effects that are constrained using theoretical calculations and control samples. The kinematic distributions are determined by several effects including the W-boson transverse momentum $p_T(W)$ and the parton distribution functions (PDFs) of the interacting protons and antiprotons. Major detector effects include energy response to leptons, hadronic recoil, the response to QED radiation, and multiple-interaction pileup, together with calorimeter acceptance effects and lepton-identification efficiencies. The detailed simulations developed at CDF and D0 enable the study of these effects to better than 1 part in 10^4 precision on the observed value of M_W.

In the CDF (2012) and D0 (2012) measurements, the kinematic properties of W-boson production and decay are simulated using RESBOS [25], which is a next-to-leading order generator that includes next-to-next-to-leading logarithm resummation of soft gluons at low boson p_T [26]. The momenta of interacting partons in RESBOS are calculated as fractions of the colliding (anti)proton momenta using the CTEQ6.6 [27] PDFs. The radiation of photons from final-state leptons is simulated using PHOTOS [28].

III. CDF (2012) AND D0 (2012) MEASUREMENTS

A. CDF measurement

The CDF (2012) measurement uses data corresponding to an integrated luminosity of 2.2 fb$^{-1}$, collected between 2002 and 2007. Both the muon ($W \rightarrow \mu \nu_\mu$) and electron ($W \rightarrow e \nu_e$) channels are considered. Decays of J/ψ and Y mesons into muon pairs are reconstructed in a central tracking system to establish the absolute momentum scale. A measurement of the Z-boson mass (M_Z) in $Z \rightarrow \mu \mu$ decays is performed as a consistency check. This measurement, which uses the tracking detector, yields $M_Z = 91180 \pm 12(\text{stat}) \pm 10(\text{syst})$ MeV, consistent with the world average mass of 91188 \pm 2 MeV [29], and is therefore also used as an additional constraint on the momentum scale. The electromagnetic calorimeter energy scale and nonlinearity are determined by fitting the peak of the E/p distribution of electrons from $W \rightarrow e\nu$ and $Z \rightarrow ee$ decays, where E is the energy measured in the calorimeter and p is the momentum of the associated charged particle. The lower tail of the E/p distribution is used to determine the amount of material in the tracking detector. The Z-boson mass measured in $Z \rightarrow ee$ decays is used as a consistency check and to constrain the energy scale. The value of $M_Z = 91230 \pm 30(\text{stat}) \pm 14(\text{syst})$ MeV from the calorimetric measurement is also consistent with the world average.

The CDF (2012) measurement of M_W is obtained from the combination of six observables: p_T^ℓ, E_T^m, p_T^{ν}, p_T^ℓ, E_T^m, and m_T^2. The combined result is $M_W = 80387 \pm 12(\text{stat}) \pm 15(\text{syst})$ MeV. Table I summarizes the sources of uncertainty in the CDF measurement.

B. D0 measurement

The D0 (2012) measurement uses data corresponding to 4.3 fb$^{-1}$ of integrated luminosity recorded between 2006 and 2009. D0 calibrates the calorimeter energy scale using $Z \rightarrow ee$ decays. Corrections for energy lost in uninstrumented regions are based on a comparison between the shower-development profiles from data and from a detailed GEANT-based simulation [30] of the D0 detector. The world average value for M_Z [29] is used to determine the absolute energy scale of the calorimeter, which is thereafter used to correct the measurement of the electron energy from the W-boson decay. This M_W measurement is therefore equivalent to a measurement of the ratio of W- and Z-boson masses. This calibration method eliminates many systematic uncertainties common to the W- and Z-boson mass measurements, but its precision is limited by the size of the available Z-boson data set.

The results obtained with the two most sensitive observables m_T^2 and p_T^ℓ are combined to determine the W-boson mass of $M_W = 80367 \pm 13(\text{stat}) \pm 22(\text{syst})$ MeV. A summary of the uncertainties is presented in Table II.

Source	Uncertainty (MeV)
Lepton energy scale and resolution	7
Recoil energy scale and resolution	6
Lepton removal from recoil	2
Backgrounds	3
Experimental subtotal	10
Parton distribution functions	10
QED radiation	4
$p_T(W)$ model	5
Production subtotal	12
Total systematic uncertainty	15
W-boson event yield	12
Total uncertainty	19

TABLE I. Uncertainties of the CDF (2012) M_W measurement determined from the combination of the six measurements.
This D0 (2012) measurement is combined with a previous D0 measurement [16] corresponding to an integrated luminosity of 1.0 fb$^{-1}$, which uses data recorded between 2002 and 2006, to yield $M_W = 80375 \pm 11\text{(stat)} \pm 20\text{(syst)}$ MeV.

IV. COMBINATION WITH PREVIOUS TEVATRON MEASUREMENTS

The CDF measurements from Ref. [8] (1988–1989) and Ref. [9] (1992–1993) were made using superseded PDF sets and have been corrected [19] using recent PDF sets. The previous results are also adjusted to use the same combination technique (the BLUE method) as in later combinations. The templates for fitting M_W assume the Breit-Wigner running-width scheme propagator, $1/(\hat{s} - M_W^2 + i\hat{s}\Gamma_W/M_W)$, which makes the value of M_W determined by the fit dependent on Γ_W. Here, \hat{s} is the square of the center-of-mass energy in the parton reference frame and Γ_W is the total width of the W boson. Different measurements have used different values of Γ_W, yielding a shift in measured values of the W-boson mass [19], $\Delta M_W = -0.25 \pm 0.05 \Delta \Gamma_W$, where $\Delta \Gamma_W$ is the difference between the value of Γ_W predicted by the SM, $\Gamma_W = 2092.2 \pm 1.5$ MeV [31], and that used in a particular analysis. The prediction of Γ_W assumes $M_W = 80385 \pm 15$ MeV, which is a preliminary world-average combination result [32] of this article. The impact of the corrections on the final M_W combination reported in this article is found to be less than 0.2 MeV. Table III summarizes all inputs to the combination and the corrections made to ensure consistency across measurements.

V. CORRELATIONS IN THE CDF AND D0 M_W MEASUREMENTS

The increased statistical power of CDF (2012) and D0 (2012) M_W measurements necessitates a more detailed treatment of the systematic uncertainties due to the W-boson production and decay model that are independent of the data-sample size. We assume that for each uncertainty category, the smallest uncertainty across measurements is fully correlated while excesses above that level are generally assumed to be due to uncorrelated differences between measurements. One exception corresponds to the two D0 measurements that use very similar models and are treated as fully correlated [16,18].

The experimental systematic uncertainties of the D0 measurement are dominated by the uncertainty in the

TABLE III. The input data used in the M_W combination. All entries are in units of MeV.

Source	CDF [8] (1988–1989)	CDF [9] (1992–1993)	CDF [10] (1994–1995)	D0 [12–15] (1992–1995)	D0 [16] (2002–2006)	CDF [17] (2002–2007)	D0 [18] (2006–2009)
Mass and width	4.4 pb$^{-1}$	18.2 pb$^{-1}$	84 pb$^{-1}$	95 pb$^{-1}$	1.0 pb$^{-1}$	2.2 pb$^{-1}$	4.3 pb$^{-1}$
M_W	79 910	80 410	80 470	80 483	80 400	80 387	80 367
Γ_W	2 100	2 064	2 096	2 062	2 099	2 094	2 100
M_W uncertainties							
PDF	60	50	15	8	10	10	11
Radiative corrections	10	20	5	12	7	4	7
Γ_W	0.5	1.4	0.3	1.5	0.4	0.2	0.5
Total	390	181	89	84	43	19	26
M_W corrections							
$\Delta \Gamma_W$	+1.2	-4.2	+0.6	-4.5	+1.1	+0.3	+1.2
PDF	+20	-25	0	0	0	0	0
Fit method	-3.5	-3.5	-0.1	0	0	0	0
Total	+17.7	-32.7	+0.5	-4.5	+1.1	+0.3	+1.2
M_W corrected	79 927.7	80 377.3	80 470.5	80 478.5	80 401.8	80 387.3	80 368.6
energy scale for electrons and are nearly purely of statistical origin, as they are derived from the limited sample of \(Z \rightarrow ee \) decays. CDF uses independent data from the central tracker to set the muon and electron energy scales. Thus, we assume no correlations between the experimental uncertainties of CDF and D0, or between independent measurements by either experiment.

Three sources of systematic uncertainty due to modeling of the production and decay of W and Z bosons are assumed to be at least partially correlated across all Tevatron measurements: (1) the choice of PDF sets, (2) the assumed \(\Gamma_W \) value, and (3) the electroweak radiative corrections.

A. PDF sets

Both experiments use the CTEQ6.6 [27] PDF set in their W-boson production model. D0 uses the CTEQ6.1 [33] uncertainty set to estimate the PDF uncertainties, while CDF uses MSTW2008 [34] and checks consistency with the CTEQ6.6 uncertainty set. Since these PDF sets are similar and rely on common inputs, the uncertainties introduced by PDFs in the recent measurements are assumed to be correlated and treated using the prescription for partial correlations described above.

B. Assumed \(\Gamma_W \) value

We assume that the small uncertainty due to \(\Gamma_W \) is fully correlated across all measurements.

C. QED radiative corrections

Current estimates of the uncertainties due to electroweak radiative corrections include a significant statistical component due to the size of the simulated data sets used in the uncertainty-propagation studies. The PHOTOS [28] radiative correction model is used in the recent measurements with consistency checks from W/ZGRAD [35] and HORACE [36]. These studies yield model differences consistent within statistical uncertainties. We assume that uncertainties from purely theoretical sources, totaling 3.5 MeV, are correlated while remaining uncertainties, partially dependent on detector geometry, are uncorrelated.

VI. COMBINATION OF TEVATRON \(M_W \) MEASUREMENTS

The measurements of \(M_W \) obtained at Tevatron experiments included in this combination are given in Table III and include both the latest measurements [17,18] discussed above, but exclude the superseded 0.2 fb\(^{-1}\) CDF measurement [11]. Table IV shows the relative weight of each measurement in the combination. The combined value of the W-boson mass obtained from measurements performed at Tevatron experiments is

\[
M_W = 80387 \pm 16 \text{ MeV}. \quad (1)
\]

The \(\chi^2 \) for the combination is 4.2 for 6 degrees of freedom, with a probability of 64%. The global correlation matrix for the seven measurements is shown in Table V.

VII. WORLD AVERAGE

We also combine the Tevatron measurements with the value \(M_W = 80376 \pm 33 \text{ MeV} \) determined from \(e^+e^- \rightarrow W^+W^- \) production at LEP [29]. Assuming no correlations, this yields the currently most precise value of the W boson mass of

\[
M_W = 80385 \pm 15 \text{ MeV}. \quad (2)
\]

The combination of the seven statistically independent Tevatron measurements and the LEP measurement yields a \(\chi^2 \) of 4.3 for 7 degrees of freedom with a probability of 74%. Figure 1 shows the individual measurements and the most recent combined world average of \(M_W \).

VIII. SUMMARY

The latest high-precision measurements of \(M_W \) performed at the CDF and D0 experiments, combined with

Measurement	Relative weight in %
CDF [8]	0.1
CDF [9]	0.5
CDF [10]	1.9
D0 [12–15]	2.8
D0 [16]	7.9
CDF [17]	60.3
D0 [18]	26.5

CDF [8]	CDF [9]	CDF [10]	D0 [12–15]	D0 [16]	CDF [17]	D0 [18]	
CDF [8]	1	0.002	0.003	0.002	0.007	0.015	0.011
CDF [9]	1	0.007		0.005	0.014	0.033	0.024
CDF [10]	1			0.009	0.029	0.066	0.049
D0 [12–15]	1			0.019	0.044	0.032	
D0 [16]	1	0.013			0.137	0.137	
CDF [17]	1				0.230		
D0 [18]						1	

052018-9
previous measurements by the Tevatron experiments, improve the uncertainty on the combined Tevatron \(M_W \) value to 16 MeV. The combination of this measurement with the LEP average for \(M_W \) further reduces the uncertainty to 15 MeV. The substantial improvement in the experimental precision on \(M_W \) leads to tightened indirect constraints on the mass of the SM Higgs boson. The direct measurements of the mass of the Higgs boson at the LHC [1] agree, at the level of 1.3 standard deviations, with these tightened indirect constraints [37]. This remarkable success of the standard model is also shown in Fig. 2, which includes the new world average \(W \)-boson mass, the Tevatron average top-quark mass [5], and shows consistency among these with the calculation of \(M_W \) [6], assuming Higgs-boson mass determinations from the ATLAS and CMS experiments [1].

Fig. 1 (color online). \(W \)-boson mass determinations from the CDF and D0 Run I (1989 to 1996) and Run II (2001 to 2009) measurements, the new Tevatron average, the LEP combined result [29], and the world average obtained by combining the Tevatron and LEP averages assuming no correlations between them. The world-average uncertainty (15 MeV) is indicated by the shaded band.

Fig. 2 (color online). The most recent world average of \(M_W \) is displayed along with the mass of the top quark \(m_t \) [5] at 68% C.L. by area. The diagonal line is the indirect prediction of \(M_W \) as a function of \(m_t \), in the SM given by Ref. [6], assuming the measurements of the ATLAS and CMS [1] experiments of the candidate Higgs-boson masses of 126.0 GeV and 125.3 GeV respectively.

Acknowledgments

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions and acknowledge support from the DOE and NSF (U.S.A.); ARC (Australia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); NSERC (Canada); CAS and CNSF (China); Colciencias (Colombia); MSMT and GACR (Czech Republic); the Academy of Finland; CEA and CNRS/IN2P3 (France); BMBF and DFG (Germany); DAE and DST (India); SFI (Ireland); INFN (Italy); MEXT (Japan); the Korean World Class University Program and NRF (Korea); CONACyT (Mexico); FOM (The Netherlands); MON, NRC KI, and RFBR (Russia); the Slovak R&D Agency (Slovakia); the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010 (Spain); the Swedish Research Council (Sweden); SNSF (Switzerland); STFC and the Royal Society (United Kingdom); and the A. P. Sloan Foundation (U.S.A.).

[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012); S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012).
[2] A. V. Kotwal and J. Stark, Annu. Rev. Nucl. Part. Sci. 58, 147 (2008).
[3] CDF and D0 Collaborations, and Tevatron Electroweak Working Group, arXiv:0908.1374.
[4] We use units where \(c = 1 \) throughout this article.
[5] T. Aaltonen et al. (CDF and D0 Collaborations), Phys. Rev. D 86, 092003 (2012).
[6] M. Awramik, M. Czakon, A. Freitas, and G. Weiglein, Phys. Rev. D 69, 053006 (2004).
[7] CDF and D0 Collaborations, and Tevatron Electroweak Working Group, arXiv:1003.2826.
[8] F. Abe et al. (CDF Collaboration), Phys. Rev. D 43, 2070 (1991).
[9] F. Abe et al. (CDF Collaboration), Phys. Rev. D 52, 4784 (1995).
[10] T. Affolder et al. (CDF Collaboration), Phys. Rev. D 64, 052001 (2001).
[11] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 99, 151801 (2007); Phys. Rev. D 77, 112001 (2008).
[12] S. Abachi et al. (D0 Collaboration), Phys. Rev. Lett. 77, 3309 (1996).
[13] B. Abbott et al. (D0 Collaboration), Phys. Rev. D 58, 012002 (1998).
[14] B. Abbott et al. (D0 Collaboration), Phys. Rev. D 62, 092006 (2000).
[15] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 66, 012001 (2002).
[16] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 103, 141801 (2009).
[17] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 108, 151803 (2012).
[18] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 108, 151804 (2012).
[19] CDF and D0 Collaborations, and Tevatron Electroweak Working Group, arXiv:0808.0147.
[20] V. M. Abazov et al. (CDF and D0 Collaborations), Phys. Rev. D 70, 092008 (2004).
[21] L. Lyons, D. Gibaut, and P. Clifford, Nucl. Instrum. Methods Phys. Res., Sect. A 270, 110 (1988); A. Valassi, Nucl. Instrum. Methods Phys. Res., Sect. A 500, 391 (2003).
[22] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 77, 112001 (2008).
[23] V. M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 565, 463 (2006).
[24] $E_T' = - (\vec{p}_T' + \vec{u}_T)$, where \vec{u}_T is the vector sum of calorimetric \vec{p}_T excluding the charged lepton(s).
[25] N. A. Abazov et al. (CDF Collaboration), Phys. Rev. D 75, 092001 (2007).
[26] F. Landry, R. Brock, P. M. Nadolsky, and C.-P. Yuan, Phys. Rev. D 70, 073009 (2004).
[27] P. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan, Phys. Rev. D 78, 013004 (2008).
[28] P. Golonka and Z. Was, Eur. J. Phys. C 45, 97 (2006).
[29] S. Schael et al. (ALEPH, DELPHI, L3 and OPAL, SLD Collaborations, and LEP Electroweak Working Group, SLD Electroweak, and Heavy Flavor Groups), Phys. Rep. 427, 257 (2006); ALEPH, DELPHI, L3, OPAL Collaborations, and LEP Electroweak Working Group, Report No. CERN-PH-EP/2013-022, arXiv:1302.3415.
[30] R. Brun and F. Carminati, CERN Program Library Long Writeup No. W5013, 1993.
[31] P. Renton, arXiv:0804.4779; (private communication).
[32] CDF and D0 Collaborations, and Tevatron Electroweak Working Group, arXiv:1204.0042.
[33] D. Stump, J. Huston, J. Pumplin, W. K. Tung, H.-L. Lai, S. Kuhlmann, and J. F. Owens, J. High Energy Phys. 10 (2003) 046.
[34] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009).
[35] U. Baur, S. Keller, and D. Wackeroth, Phys. Rev. D 59, 013002 (1999).
[36] C. M. Carlone Calame, G. Montagna, O. Nicrosini, and A. Vicini, J. High Energy Phys. 10 (2007) 109.
[37] M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy, R. Kogler, K. Mönig, M. Schott, and J. Stefzer (GFitter Collaboration), Eur. Phys. J. C 72, 2205 (2012).