Effect of Buzhong Yiqi decoction on anti-acetylcholine receptor antibody and clinical status in juvenile ocular myasthenia gravis

Jiaduo Li, MSa, Guoyan Qi, MSa,*, Yaling Liu, MDb

Abstract

Ocular myasthenia gravis (MG) is the mainly widespread type of MG among juveniles. Buzhong Yiqi decoction (BZ) is a well-known traditional Chinese medicine prescription for treating MG. It has rarely been discussed whether the concentration of anti-acetylcholine receptor (AChR) antibodies is related to the clinical status of juvenile ocular myasthenia gravis (JOMG) treated with BZ.

The patients with JOMG who had more than once AChR-antibody (ab) test and treated with BZ were retrospectively identified from June 2013 to January 2020 in the first hospital in Shijiazhuang. The presence or absence of ocular symptoms was used to grade the effectiveness of treatment. Generalized estimating equations logistic regression analysis was used to evaluate the effect of AChR ab concentration on the clinical status of MG.

A total of 549 AChR-ab tests were performed in 135 patients, and the corresponding clinical status was recorded. One hundred two patients received treatment with BZ only and 33 combined with immunosuppressive drugs. In the group receiving only BZ treatment, the anti-acetylcholine receptor ab concentration was positively correlated with the clinical score after treatment.

The results suggest that BZ could affect the AChR-ab. Repeated AChR-ab assays can provide information about the clinical status. For JOMG patients who only receive Buzhong Yiqi Decoction treatment, this can support treatment decisions.

Abbreviations: ab = antibody, AChR = anti-acetylcholine receptor, BZ = Buzhong Yiqi decoction, JOMG = juvenile ocular myasthenia gravis, MG = myasthenia gravis.

Keywords: acetylcholine receptor, decoction, juvenile, myasthenia gravis, ocular

1. Introduction

Juvenile ocular myasthenia gravis (JOMG) is an autoimmune disease with ocular muscle involvement as the main symptom and affecting the postsynaptic membrane of neuromuscular junction.[1,2] Ptosis and diplopia are common symptoms.[3,4]

Juveniles are at the peak of the disease in China and Japan, and a large proportion of them develop ocular symptoms before the age of 14.[5–7] Prednisone is considered to be the first-line drug for the treatment of JOMG.[8] Fear of side effects or ineffective treatment has led some parents and juveniles to reject or give up prednisone treatment. Buzhong Yiqi decoction (BZ) is a safe and effective traditional Chinese medicine for the treatment of myasthenia gravis (MG).[9,10] Although some JOMG patients in Chinese hospitals have been treated with Buzhong Yiqi decoction for many years, there is still a lack of a prognostic marker to support the treatment decision of BZ. Anti-acetylcholine receptor (AChR) antibodies can be detected in 80% of MG patients.[2,11] Repeated tests of the AChR-antibody (ab) can provide information on the clinical progress of immunosuppressive therapy in patients with MG.[12] Therefore, ab testing has a potential correlation in patient follow-up, which may contribute to future management and treatment decisions of BZ.[13]

The purpose of this study was to determine whether there was a correlation between individual AChR-ab concentration and clinical status in patients treated with BZ.

2. Methods

2.1. Patients selection

Patients under 18 years of age diagnosed with JOMG from June 2013 to January 2020 in First Hospital of Shijiazhuang, which is a MG diagnosis and treatment center, were retrospectively reviewed by medical records. The study was approved by the Ethical Committee of First Hospital of Shijiazhuang. Ocular myasthenia gravis (OMG) was diagnosed according to the
generalized estimating equation logistic model was used to perform a linear regression (link of identity) of AChR-ab on the JOMG score over BZ treatment time. The results are reported in the form of odds ratio (OR) and 95% confidence interval. SPSS 21 and STATA were used for statistical analyses.

3. Results
Five hundred forty-nine AChR-ab tests were performed in 135 JOMG patients in total, and the corresponding clinical status was recorded. Eighty-three female and fifty-two male patients were included, with an average age of 4.8 years (10 months-16.5 years). The average number of AChR-ab tests was 4.1 (2-9). The mean serum AChR-ab concentration before BZ treatment was 2.32 nmol/L (0.5-9.4). The average duration of onset before BZ treatment was 1.3 years (0-12 years), and the average follow-up time after BZ treatment was 1.3 years (0.1-5.7 years). In the BZ-only group, there were 32 female and 41 male patients with an average age of 4.3 years. The average concentration of serum AChR-ab before BZ treatment was 1.58 nmol/L. The interval between the onset of JOMG and BZ treatment was 0.61 years. In the BZ-Prednison group, there were 20 female and 13 male patients with an average age of 4.8 years. The average concentration of serum AChR-ab before BZ treatment was 1.36 nmol/L. The interval between the onset of JOMG and BZ treatment was 1.41 years. In the BZ-instead group, there were 22 female and 7 male patients with an average age of 5.8 years. The average concentration of serum AChR-ab before BZ treatment was 2.36 nmol/L. The interval between the onset of JOMG and BZ treatment was 2.62 years. Statistically significant differences between differentially treated groups are indicated in the interval between the onset of JOMG and BZ treatment, \(P < 0.05 \) (Tables 1 and 2).

The 4 intervals of BZ treatment time was 0 to 0.25 year (0-3 months), 0.25 to 0.58 years (3-7 months), 0.58 to 1 year (7-12 months), and the rest (12 months-5.67 years). One hundred thirty, ninety-seven, eighty-four, and one hundred three AChR-ab tests were carried out at these 4 intervals, respectively. The overall mean JOMG-score decreased from 0.9 to 0.2, while AChR-ab concentration decreased from 2.33 to 1.21 nmol/L as the treatment time increased (Table 3). With each increase of the mean serum AChR-ab concentration before BZ treatment was 1.32 nmol/L (0.5-9.4). The average duration of onset before BZ treatment was 1.3 years (0-12 years), and the average follow-up time after BZ treatment was 1.3 years (0.1-5.7 years). In the BZ-only group, there were 32 female and 41 male patients with an average age of 4.3 years. The average concentration of serum AChR-ab before BZ treatment was 1.58 nmol/L. The interval between the onset of JOMG and BZ treatment was 0.61 years. In the BZ-Prednison group, there were 20 female and 13 male patients with an average age of 4.8 years. The average concentration of serum AChR-ab before BZ treatment was 1.36 nmol/L. The interval between the onset of JOMG and BZ treatment was 1.41 years. In the BZ-instead group, there were 22 female and 7 male patients with an average age of 5.8 years. The average concentration of serum AChR-ab before BZ treatment was 2.36 nmol/L. The interval between the onset of JOMG and BZ treatment was 2.62 years. Statistically significant differences between differentially treated groups are indicated in the interval between the onset of JOMG and BZ treatment, \(P < 0.05 \) (Tables 1 and 2).

The 4 intervals of BZ treatment time was 0 to 0.25 year (0-3 months), 0.25 to 0.58 years (3-7 months), 0.58 to 1 year (7-12 months), and the rest (12 months-5.67 years). One hundred thirty, ninety-seven, eighty-four, and one hundred three AChR-ab tests were carried out at these 4 intervals, respectively. The overall mean JOMG-score decreased from 0.9 to 0.2, while AChR-ab concentration decreased from 2.33 to 1.21 nmol/L as the treatment time increased (Table 3). With each increase of

| Variables | BZ-only (73) | BZ-Prednison (33) | BZ-instead (29) | \(P \) value | \(\text{Gender, n (%)} \) yrs | \(\text{Female} \) | \(\text{Male} \) | \(\text{AChR-ab concentration, median (IQR)(nmol/L)} \) | \(\text{Age at MG onset yrs} \) | Interval between disease onset and initiate BZ yrs | \(\text{History of prior treatment} \) Non-ab = antibody, AChR = acetylcholine receptor, BZ = Buzhong Yiqi decoction, IQR = interquartile range, MG = Myasthenia gravis, SD = standard deviation. * Analysis of variance. \(\text{ab} \) = antibody, AChR = acetylcholine receptor, BZ = Buzhong Yiqi decoction, IQR = interquartile range, MG = Myasthenia gravis, SD = standard deviation. ** Exact chi-square test. **
BZ treatment time of 1 interval, there was an associated decrease in average AChR-ab of about 0.19 nmol/L. With 1 increased of the JOMG score, there was an associated increase in average AChR-ab of about 0.69 nmol/L, as exhibited in Table 4.

The estimated odds ratio for AChR-ab was about 1.4, with the interpretation that the odds of a JOMG score as 1 increased by 40% with each nmol/L grew in AChR-ab. The estimated odds ratio for treatment time was about 0.47, with the interpretation that the odds of a JOMG score as 1 decreased by 53% with each increased in treatment interval. The above results were similar in all patients and groups of patients. Tables 5 and 6 display the results.

Table 7 also gives an overall test of whether the JOMG score varies with treatment time, group, and AChR-ab. The time intervals after all treatments were statistically different from those before BZ treatment. This shows that the concentration of AChR-antibodies has an effect on the JOMG score during the whole study period. Although the impact of groups on the JOMG score was not statistically significant, there was a statistical difference between the BZ-only and BZ-Prednisone group, but no statistical difference between the BZ-only and BZ-instead group.

4. Discussion

The concentration of the AChR-antibodies in patients with JOMG treated with Buzhong Yiqi decoction was positively correlated with the JOMG score. It is suggested that Buzhong Yiqi decoction can reduce the concentration of AChR-antibodies and improve the clinical state at the same time. The clinical status of patients with JOMG improved over time in this study, consistent with previous studies.\[9,10]\ The clinical status of patients with JOMG treated with Buzhong Yiqi decoction can be predicted by repeated determination of AChR-ab concentration. As a valid biomarker, the AChR-ab can reveal the reaction degree of Buzhong Yiqi decoction and help clinicians to modify or retain the treatment of Buzhong Yiqi decoction. The subjective symptoms and objective signs of patients with MG are very complex. It is challenging to evaluate and compare the clinical status of patients with multiple MG types at the same time. JOMG patients with positive AChR-ab were selected as the object of our study, which simplified the complexity of scoring.

We analyzed the effects of AChR-ab, treatment time and group on JOMG score, the results are shown in Table 7. The BZ-only group was used as the control group. The statistical results showed that there was a difference in the effect on JOMG score between the BZ-Prednisone group and the BZ-only group. Compared with the BZ-only group, the BZ-Prednisone therapy reduced the probability of JOMG score 1. The 2 groups should be treated differently in terms of the frequency and concentration of AChR-antibodies detection. However, there was no difference in the effect on JOMG score between the BZ-instead group and the BZ-only group. This suggests that for patients treated with BZ alone, the previous use of prednisone therapy will not affect the

Table 2

Distribution of anti-acetylcholine receptor antibody tests.

Number of tests	Number of patients
2	35
3	19
4	28
5	29
6	11
7	8
8	2
9	3

Table 3

Descriptive statistics for myasthenia gravis score (0-1) and anti-acetylcholine receptor antibody concentration (nmol/L).

Time	MG-score	AChR-antibody concentration									
	Median	Mean	SD	Min	Max	Median	Mean	SD	Min	Max	
Before BZ	135	1	0.9	0.3	0	1	1.55	2.33	1.92	0.5	9.4
0-3 mo	130	1	0.6	0.5	0	1	1.86	2.28	1.92	0.01	8.18
3-7 mo	97	0	0.3	0.5	0	1	1.08	1.54	1.68	0.01	6.32
7-12 mo	84	0	0.2	0.4	0	1	0.74	1.35	1.49	0.01	5.77
12-68 mo	103	0	0.3	0.5	0	1	0.52	1.21	1.55	0.01	6.62

AChR = anti-acetylcholine receptor, BZ = Buzhong Yiqi decoction, MG = myasthenia gravis, No. = number, SD = standard deviation.

Table 4

The effects of juvenile ocular myasthenia gravis score (0-1), treatment time (mo) and group on anti-acetylcholine receptor antibody (nmol/L).

AChR-antibody	Coef.	Std. err.	z	P >	[95% conf. interval]	
Treatment time	-0.1898567	0.0529193	-3.59	.000	-0.2935766	-0.0861368
Group	0.187442	0.1644233	1.14	.254	-0.1348218	0.5097059
JOMG score	0.6686138	0.1030997	6.49	.000	0.4665421	0.8706855
_Cons	1.655803	0.3410855	4.85	.000	0.9872874	2.324318

Wald ch2 (3) = 108.44; Prob > ch2 = .0000.

AChR = anti-acetylcholine receptor, Coef. = coefficient, JOMG = juvenile ocular myasthenia gravis score, Std. err. = standard error.
Corticosteroids are widely used as first-line immunosuppressants in the treatment of MG. Many serious side effects of long-term steroid use, such as Cushing syndrome, osteoporosis, weight gain, hyperglycemia, hypertension, gastritis or ulcers, anxiety/depression/insomnia (steroid psychosis), no vascular necrosis of joints. There are insufficient studies on the pharmacological effects of Buzhong Yiqi decoction in the treatment of MG and need to be further studied. Buzhong Yiqi decoction has few adverse reactions, and the main adverse reactions are gastrointestinal reactions, which can be improved after symptomatic treatment. In China, more than half of MG patients are juveniles, and not all youths respond well to corticosteroids. Liu et al. reported that oral tacrolimus alone could improve the symptoms of children with MG who are ineffective to prednisone treatment. Still, the safety and efficacy of long-term use need to be further confirmed.

STROBE guidelines were followed in the reporting of the study. There were several limitations in the retrospective study. The main limitation is that the study was a retrospective study with no placebo control for comparison, and selection bias.

Table 5

| JOMG-score | Coef. | Std. err. | z | P>|z| | [95% conf. interval] |
|------------|-------------|-----------|--------|------|------------------------|
| AChR-antibody | 1.398973 | 0.1243215 | 3.78 | .000 | 1.175347 |
| Treatment time | 0.4661513 | 0.044437 | –8.01 | .000 | 0.3867088 |
| Group | 0.9272061 | 0.1555725 | –0.45 | .652 | 0.6673541 |
| _Cons | 6.297531 | 2.216395 | 5.23 | .000 | 3.195314 |

Wald chi² (3) = 108.44; Prob > chi² = .0000.

AChR = anti-acetylcholine receptor, Coef. = coefficient, JOMG = juvenile ocular myasthenia gravis score, Std. err. = standard error.

Table 6

| JOMG-score | Coef. | Std. err. | z | P>|z| | [95% conf. interval] |
|------------|-------------|-----------|--------|------|------------------------|
| AChR-antibody | 1.412813 | 0.2075739 | 2.35 | .019 | 1.059313 |
| Treatment time | 0.4002334 | 0.0635234 | –5.77 | .000 | 0.2932338 |
| _Cons | 9.692181 | 3.957526 | 5.53 | .000 | 4.3298 |
| BZ-instead group | 1.476053 | 0.2827234 | 2.03 | .042 | 1.014058 |
| Treatment time | 0.4638466 | 0.0848107 | –4.20 | .000 | 0.324146 |
| _Cons | 6.366616 | 2.870175 | 4.10 | .000 | 2.623534 |
| BZ-Prednison group | 1.289943 | 0.1502552 | 2.15 | .032 | 1.022292 |
| Treatment time | 0.553719 | 0.0995817 | –3.29 | .001 | 0.3889015 |
| _Cons | 2.350253 | 1.312963 | 1.53 | .126 | 0.786389 |

AChR = anti-acetylcholine receptor, BZ = Buzhong Yiqi decoction, Coef. = coefficient, JOMG = juvenile ocular myasthenia gravis, Std. err. = standard error.

* Patients treated with BZ only.
† Patients treated with BZ instead Prednison.
‡ Patients treated with BZ and Prednison.

Table 7

| JOMG-score | Coef. | Std. err. | z | P>|z| | [95% conf. interval] |
|------------|-------------|-----------|--------|------|------------------------|
| 0-3 mo | 0.1290985 | 0.0467159 | –5.66 | .000 | 0.063519 |
| 3-7 mo | 0.0439733 | 0.016618 | –8.27 | .000 | 0.0209658 |
| 7-12 mo | 0.0224996 | 0.0092087 | –9.27 | .000 | 0.0100677 |
| 12-60 mo | 0.0392968 | 0.0151449 | –8.40 | .000 | 0.0184631 |
| BZ-instead group | 1.010356 | 0.3811385 | 0.03 | .976 | 0.5132695 |
| BZ-Prednison group | 0.4874544 | 0.157574 | –2.22 | .026 | 0.2586875 |
| AChR-antibody | 1.344579 | 0.1014235 | 3.93 | .000 | 1.159789 |
| _Cons | 9.337175 | 3.61715 | 5.77 | .000 | 4.369964 |

Wald chi² (7) = 139.91; Prob > chi² = .0000.

AChR = anti-acetylcholine receptor, BZ = Buzhong Yiqi decoction, Coef. = coefficient, JOMG = juvenile ocular myasthenia gravis, Std. err. = standard error.

* Patients treated with BZ only.
† Patients treated with BZ instead Prednison.
‡ Patients treated with BZ and Prednison.
could not be ruled out. The timing of AChR-ab testing varies from patient to patient, which may have an impact on the interpretation of the results. Only patients who have undergone more than once AChR-ab concentration tests are involved in this study, which may have a selection bias. Some patients were in stable condition after treatment with Buzhong Yiqi decoction, so they did not test the AChR-ab again or had an unstable state and changed to other therapies. The follow-up time for some patients is too short. The JOMG score based on more robust and longer-term clinical observation can better reflect the therapeutic effect of Buzhong Yiqi decoction.

5. Conclusions

In summary, this study observed that there was a correlation between the decrease of AChR-ab concentration and the improvement of clinical status in JOMG patients treated with Buzhong Yiqi decoction. Repeated determination of the AChR-ab can help monitor the response of JOMG patients to Buzhong Yiqi decoction treatment, thus supporting clinical decision-making.

Acknowledgments

The authors would like to thank all patients and their families for their support of this research.

Author contributions

GQ and JL were responsible for the study design. JL and YL analyzed the data and drafted the manuscript. YL and JL contributed to the data collection. GQ, JL, and YL critically reviewed the manuscript and contributed intellectual content. All authors read and approved the final manuscript.

Data curation: Yaling Liu.
Investigation: Yaling Liu.
Writing – original draft: Jiaduo Li.
Writing – review & editing: Guoyan Qi.

References

[1] Nishimura T, Inaba Y, Nakazawa Y, et al. Reduction in peripheral regulatory T cell population in childhood ocular type myasthenia gravis. Brain Dev 2015;37:808–16.
[2] Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol 2015;14:1023–36.
[3] Verschuuren JJGM, Palace J, Gilhus NE. Clinical aspects of myasthenia explained. Autoimmunity 2010;43:344–52.
[4] Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol 2009;8:475–90.
[5] Matsuki K, Juji T, Tokunaga K, et al. HLA antigens in Japanese patients with myasthenia gravis. J Clin Invest 1990;86:392–9.
[6] Matsuki K, Maeda H, Nomura Y, Sagawa M. Distortion of HLA gene transmission in childhood-onset myasthenia gravis. Lancet 1992;340:796.
[7] Huang X, Liu WB, Men LN, et al. Clinical features of myasthenia gravis in southern China: a retrospective review of 2,154 cases over 22 years. Neurol Sci 2013;34:911–7.
[8] Gui M, Luo X, Lin J, et al. Long-term outcome of 424 childhood-onset myasthenia gravis patients. J Neurol 2015;262:823–30.
[9] Qi G, Gu S, Liu P, Yang H, Dong H. Effects of combined traditional Chinese medicine with immunosuppressive agents for patients with myasthenia gravis. Int J Clin Exp Med 2015;8:19044–50.
[10] Jiang X, Chen G, Huang J, et al. Modified Buzhong Yiqi decoction for myasthenia gravis: a systematic review protocol. Medicine (Baltimore) 2018;97:e13677 doi:10.1097/MD.0000000000013677.
[11] Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJGM. Myasthenia gravis. Nat Rev Dis Primers 2019;5:30 doi:10.1038/s41572-019-0079-y.
[12] Heldal AT, Eide GE, Romi F, Owe JF, Gilhus NE. Repeated acetylcholine receptor antibody-concentrations and association to clinical myasthenia gravis development. PLoS One 2014;9:e114060 doi:10.1371/journal.pone.0114060.
[13] Leite MI, Waters P, Vincent A. Diagnostic use of autoantibodies in myasthenia gravis. Autoimmunity 2010;43:371–9.
[14] Jaretzki 3rd A, Barohn RJ, Ernstoff RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology 2000;55:16–23.
[15] Ferrero B, Aimo G, Pagni R, et al. Modified and improved anti-acetylcholine receptor (AchR) antibody assay: comparison of analytical and clinical performance with conventional anti-AChR antibody assay. Clin Chem 1997;43:824–31.
[16] Vittinghoff E. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models. New York: Springer; 2005.
[17] Kim JY, Park KD, Richman DP. Treatment of myasthenia gravis based on its immunopathogenesis. J Clin Neurol 2011;7:173–83.
[18] Zhu M, Liu Z, Gao M, et al. The effect of Bu Zhong Yi Qi decoction on simulated weightlessness-induced muscle atrophy and its mechanisms. Mol Med Rep 2017;16:5163–74.
[19] Yang X-Q, Liu L, Yang W-Y, Dong H-H, Yang Y-R, Li Y. Efficacy and safety of the TCM Qi-supplementing therapy in patients with myasthenia gravis: a systematic review and meta-analysis. Evid Based Complement Alternat Med 2017;2017:6512572 doi:10.1155/2017/6512572.
[20] Liu C, Gui M, Cao Y, et al. Tacrolimus improves symptoms of children with myasthenia gravis refractory to prednisone. Pediatr Neurol 2017;77:42–7.
[21] von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. STROBE Initiative: The strengthening of reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 2008;61:344–9. PMID: 18313558.