Mathematical creative thinking ability in middle school students

M Sahliawati* and E Nurilaelah
Department of Mathematics Education, School of Postgraduate Studies, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 229, Bandung 40154, Indonesia

*mayasahliawati@upi.edu

Abstract. The mathematical creative thinking ability in this study is the ability to think which involves elements of fluency, flexibility, originality, or elaboration, in the process of solving mathematical problems. This study aims at determining the mathematical creative thinking ability of junior high school students in solving the problem of the plane figure. To do so, first, 28 students in the 7th grade (12-13-years-old) from a junior high school in Indonesia were given four plane figure problems. The problems were developed based on indicators of creative thinking ability. Then, three of the students were selected based on the prior mathematical ability to represent the creative thinking ability of all students. The interviews were conducted to confirm the students' answers. Finally, the results of student answers were analyzed based on indicators of creative thinking ability. The results of the study show that overall students were able to make new problems from the information presented, although the solution they wrote has not been systematically structured. In this case, the most visible students' creative thinking element is flexibility.

1. Introduction
In the 21st century, several abilities such as 4C skills (critical thinking, communication, collaboration, & creativity) are needed [1]. In this study, one of the skills elements examined was creativity, especially the creative thinking ability. One study in mathematics education which is an interesting topic to learn is about the relationship between creativity and high thinking ability [2]. Creativity is a product of one's creative thinking and an essential part of human culture [3,4]. A creative thinking will produce creativity. The creativity can be defined as the ability to create new, different products and unique ideas [5,6]. Creativity plays an important role in mathematics learning [7]. According to Pamilu, “Children shouldn’t be educated to be intelligent children, but must be educated to be creative children” [8]. For example, in solving mathematical problems, students are required to be able to see from a diverse perspective to solve problems in new ways. For this reason, creativity in mathematics ensures overall mathematical growth, because creative thinking means seeing things from different perspectives [5,9]. However, one of the challenges in examining mathematical creativity is the lack of a clear definition about the terms of mathematical creativity and creativity itself [10,11]. So, creativity needs to be explored more seriously to uncover the challenge. This is reinforced by the existence of clear boundaries about the indicators of creative thinking which have been developed by previous researchers.

One of the mathematics topics that can be used to measure mathematical creative thinking ability is geometry. In general, the topic of geometry is divided into two, plane figure and solid figure [12]. Geometry needs to be studied because it can train the ability to think logically, systematically, and turn
on creativity [13]. Why is creative thinking needed in geometry learning? Because increasing creative abilities contribute positively to children’s achievement [14]. Educating children to be creative will make learning more meaningful. This is supported by [3,15-17], that creative thinking is a mental activity related to the sensitivity to problems the discovery of new ideas for problem-solving through how to build, to synthesize and to apply new ideas. It is not surprising when Sriraman states that creative thinking is often associated with high-level thinking skills [2].

However, nowadays, more students are only able to solve simple problems, not used to solving non-routine problems or high order thinking skills problems (HOTS), such as creative thinking ability [18]. According to Siswono students in general are still having trouble to find a variety of ways to solve non-routine problems [19]. Most students solve the problem in the same way and tend to follow the example procedure [20]. This issue shows that geometry achievement at the student level in public secondary schools is still low [20]. As explained previously, creative thinking is the ability of humans to make things different, investigate, explore new things, and make things original [21]. For this reason, researchers analyzed students’ answers to measure their mathematical creative thinking ability in solving triangles and quadrilaterals. Because according to Nadjafikhah, through creative thinking in mathematics it will help to make reasonable guesses in developing mathematical theory [22]. The indicators to measure the mathematical creative thinking ability of students in this study are: fluency, flexibility, originality, and elaboration [22-27]. Based on the presentation, the importance of creative thinking ability in solving mathematical problems can be seen, especially in non-routine problems. This study focused on analyzing the students’ creative thinking ability at middle school level in Indonesia.

2. Method
This study analyzed students' mathematical creative thinking ability in the topic of triangles and quadrilaterals. This study is a part of descriptive study. The participants of this study were three junior high school students who have been obtained learning mathematics related to triangle and quadrilateral topics. Then, the prior students’ mathematical abilities in this study were grouped into the low, the medium and the high one. In order to do so, first, 28 students in the 7th grade (12-13- years-old) from a junior high school in Indonesia were given four geometry problems (see Table 1).

Indicators	No.	The items of tests
Fluency: trigger many ways of solving problems	1	A rectangle has length is \(2y + 6\) cm and the width are \((y - 1)\) cm. The area of the rectangle is equal to the area of a rectangle whose length is \(y + 3\) cm. In the various ways, find the rectangle size possibility!
Flexibility: generates problems were varied.	2	A room has a rectangular floor with a size of \(9 \times 5\) m. The floor will be installed with each tile size \(30 \times 30\) cm. The price of one ceramic is IDR 48,000,00 (with 11 pieces). Based on the data, create some questions related to the problem and then solve it!
Originality: make a combination of problems independently	3	Given the surface of an equilateral triangle-shaped park, with each side length of \(25\) m. create problems from the data, and solve the problem in your own way!
Elaboration: Make details of the problem in the form of problems	4	Given ABCD rectangle with the size are \(6x\) cm for the length and \((4x + 2)\) cm for the width, and the circumference is \(84\) cm. The midpoint of each rectangular side forms an EFGH rhombus. If the T point is the diagonal intersection point of the EFGH rhombus, then, create some questions related to the problem and then solve it!

(Modified from Sahliawati [28])

3. Results and discussion
Research participants in this study were divided into 3 criteria based on prior students' mathematical abilities, which consisted of high (S-1), moderate (S-2), and low (S-3). Based on the results of data
analysis, we found students' creative thinking ability category, for S-1 and S-2 were in the low category, while S-3 was in the very low category. If the average value of the three scores is taken, the ability of the three students is in the very low category. However, if analyzed in more detail, it was found that students with moderate ability (S-2) showed higher creative thinking ability compared to students with high ability (S-1).

3.1. Students’ answer on item 1

From Figure 1(a) show that S-1 did not structured in working on the problem. So, the students were given a score of 1. After an interview, S-1 did not really understand how to solve this problem and looked doubt. In this case, S-1 are not yet eligible fluency. According to Yahya “there were other psychological factors noted as we such as carelessness and participants’ lack of confidence in answering the questions” [29].

In Figure 1(b), it can be seen that S-2’s answer was more structured than S-1. S-2 almost shows the fluency aspect of creative thinking ability. But there are errors when applying broad concepts and algebraic calculations. Even though the S-2 did not show the correct answer, he tried to the problem in his own way [20]. So, S-2 is given a score of 2. Based on the interview, S-2 forgot how to operate algebra.

Figure 1(c) shows that S-3 answer was not clear. When interviewed, S-3 did not understand the problem. So, S-3 was given a score of 1. Actually, in item 1, students were expected to be able to identify the broad formula of a rectangle for finding the circumference of a rectangle. However, they still had difficulties in algebraic operations. Hence, based on students’ answers and the results of interviews, they had not been able to demonstrate the fluency aspects of mathematical creative thinking as a whole.

3.2. Students answer on item 2

Figure 2(a) shows that S-1 can explain the answer. Based on the interview, S-1 understood what he had to do and what he wanted, but was confused in writing down the answer. In item 2, he could already show the flexibility aspect. So, S-1 is given a score of 3. The figure 2(b) shows that the answer of S-2 was more structured than S-1’s answer. It means that the S-2 had been able to demonstrate the flexibility aspect. Based on the interview, the S-2 was able and confident to make problems. But he was hesitant to write correct and systematic answers [30]. So, the S-2 was given a score of 4.

Figure 2(c) shows that the S-3’s answers were not structured and were still unclear. When
interviewed, the S-3 did not understand what to do with the item 2. So, the S-3 was given a score of 1. In item 2, the students were expected to produce varied problems. Based on students’ answers, the S-1 and S-2 were able to make diverse problems from the information obtained in the questions, so that the flexibility aspect arose from the work of item 2.

3.3. Students’ answer on item 3

The student’s answers on problem 3, can be seen in Figure 3. Figure 3(a) shows that the S-1 was able to make a combination of problems, but the process was still not structured. Based on the interview, when asked why she answered the area of a triangle that way, the S-1 said that the side was 25 cm. When asked for the triangle area formula, the S-1 said that he forgot to find the medium height known in the problem was the side. In this case, the S-1 was able to show aspects of originality in working on the problem. The score given to S-1 in this item was 1 because the S-1 was still trying to answer the question even though she had not produced the correct answer, this is according to Guzel [20].

Figure 3. Students’ answer on item 3.

From Figure 3(b), it was shown that that the S-2 was able to make problems from the information. Based on interview, the S-2 claimed that he had forgotten the triangle formula. In addition, he realized that he was mistaken in finding the area of a triangle using the square area formula. In this item, the S-2 was able to show aspects of originality but was still mistaken in giving answers. So, the S-2 was given a score of 1.

Based on Figure 3(c), it was shown that the S-3 was able to solve problem. When confirmed, the S-3 said that he would look for an area from the park. Then "when asked broadly, how to do it?" he said that he was mistaken about the size of the park by counting around the park. Based on interviews, the S-3 was actually able to provide originality arguments from the answer to question item 3. So, the S-3 was given a score of 1. According to Guzel [20], students have attempted to solve problems in the same ways or they tried to adapt the same incorrect solving method to the problems. In item 3, the students were expected to be able to make a combination of problems independently. Their mistake was calculating the area of a triangle using a square formula. It caused concept errors, i.e. the students did not master the concept of area, circumference, and numbers [30].

3.4. Students’ answer on item 4

Figure 4(a) shows that the S-1’s answer had not been structured and was wrong in the algebraic calculation process. Based on the interviews, the S-1 forgot writing information from the question and the S-1 was not able to show solving details it asked. So, the score of S-1 in this question was 1. Figure 4(b) and 4(c) show that the S-2 and the S-3 had the same answers in solving item 4. They did not show
details in their answers. Based on the interview, the S-2 panicked when he answered the question. Meanwhile, it was found that the S-3 admitted that he cheated, because he saw the S-2’s answer. Thus, the aspect of elaboration from their answers was still not visible. So, the score given for their answers was 1.

In item 4, the students were expected to be more detailed in giving answers. Overall, it was found that the problem was too difficult to solve by the students. The students’ difficulties in solving problems may be due to the type of question given which was the type of non-routine problems. This finding, according to [19] is that one of problems in junior high school mathematics learning is the ability of students to solve problem in the form of story problems, especially non-routine or open-ended problems.

4. Conclusion
Based on the results of the study, we have made two conclusions. The first, we found that the students of the mathematical creative thinking ability in solved the non-routine problems on the topics of triangular and quadrilateral were still low. The last, the element of creative thinking that is most visible from students in this study is flexibility. The lowly mathematical creative thinking ability of the students who are shown in this study requires further research to find the factor of the cause. However, the results of this study can be used as basic information to facilitate teachers in applying learning methods and developing problems that can build and enhance students' creative mathematical thinking ability.

Acknowledgement
We thank all students and schools who involved to be volunteers in this study. Then, Mr. Achmad Salido and Ms. Neni Maulidah for helping in writing this paper. Especially Mr. Sahli has provided funding for this research.

References
[1] Nilsson P and Gro J 2015 Skills for the 21st Century: What Should Students Learn? (Boston: Center for Curriculum Redesign)
[2] Sriraman B 2017 Mathematical creativity: psychology, progress and caveats. ZDM Mathematics Education p 2
[3] Siswono T Y E 2004 Identifikasi proses berpikir kreatif siswa dalam pengajuan masalah (problem posing) matematika berpandu dengan model wallas dan creative problem solving (CPS) Buletin Pendidikan Matematika 6 pp 1-16 (Program Studi Pendidikan Matematika FKIP UNPATTI)
[4] Finney G R 2010 Images of healing and learning: images of the creative brain. Virtual mentor American Medical Association Journal of Ethics 12 pp 889–892
[5] Berryessa Union School District Education Services (t.t.) 21st Century Learning and the 4Cs [Online] accessed from https://www.berryessa.k12.ca.us
[6] Abraham A 2016 Gender and creativity: an overview of psychological and neuroscientific literature. Brain Imaging and Behavior 10(2) 609–618.
[7] Vale I, & Barbosa A 2015 Mathematics Creativity in Elementary Teacher Training Journal of the European Teacher Education Network 10 pp 101–109
[8] Pamiliu A 2007 Mengembangkan Kreativitas & Kecerdasan Anak (Jakarta: Citra Media) p 11
[9] Sriraman B 2004 The Characteristics of Mathematical Creativity ZDM Mathematics Education. 14 pp 19–34
[10] Sriraman B, Haavold P, and Lee K 2013 Mathematical creativity and giftedness: a commentary on and review of theory, new operational views, and ways forward ZDM Mathematics Education pp 215–225
[11] Leikin R 2009 Multiple proof tasks: Teacher practice and teacher education. In the Proceedings of ICMI study-19: Proof and proving.
[12] Palah S 2017 Pengaruh pendekatan open-ended berstrategi m-nte terhadap kemampuan berpikir kreatif matematis siswa pada materi persegi panjang Mimbar Sekolah Dasar 4(2) pp 139-149.
[13] Fiqri C I A, Muhsetyo G, and Qohar A 2016 Studi kasus kesalahan siswa dalam menyelesaikan soal luas permukaan dan volume bangun ruang sisi datar di SMP Prosidings Seminar Matematika dan Pendidikan Matematika FKIP UNS pp 280-290

[14] Nurlita M 2015 Pengembangan soal terbuka (open-ended problem) pada mata pelajaran matematika SMP kelas VIII PYTHAGORAS: Jurnal Pendidikan Matematika 10(1) pp 38-49

[15] Moma L 2015 Pengembangan instrumen kemampuan berpikir kreatif matematis untuk siswa SMP Delta-Pi: Jurnal Matematika dan Pendidikan Matematika 4 pp 27-41

[16] Siswono T Y E 2007 Konstruksi Teoretik tentang Tingkat Berpikir Kreatif Siswa dalam Matematika Jurnal Pendidikan Forum Pendidikan Ilmu Pengetahuan 2 pp 1-10.

[17] Treffinger, Donald J, et. al. 2006 Creative Problem Solving: An Introduction: 4th Edition (Waco: Prufrock Press Inc)

[18] Santoso H RW, Ratu N, and Yunianta T N H 2014 Deskripsi Tingkat Kemampuan Berpikir Kreatif (TKBK) pada Materi Segiempat Siswa Kelas VIII SMP Negeri 1 Pabelan Kabupaten Semarang Satya Widya 30 pp 82-95

[19] Siswono T Y E 2005 Upaya meningkatkan kemampuan berpikir kreatif siswa melalui pengajuan masalah Jurnal Pendidikan Matematika dan Sains FPMIPA Universitas Negeri Yogyakarta 10(1) pp 1-9

[20] Guzel N, & Sener E 2009 High schools students’ spatial ability and creativity in geometry Procedia - Social and Behavioral Science 1 (2009) 1763-1766

[21] Panaoura G 2014 Teachers’ awareness of creativity in mathematical teaching and their practice JUMPST: The Journal 4 (Curriculum) June 2014 [www.k12prep.math.ttu.edu]

[22] Nadjafikhah M, & Yaftian N 2013 The frontage of creativity and mathematical creativity Procedia - Social and Behavioral Sciences 90 pp 344–350

[23] Silver E A 1997 Fostering creativity through instruction rich in mathematical problem solving and problem posing Zentralblatt Für Didaktik Der Mathematik 29 pp 75–80

[24] Almeida L S, Prieto L P, Ferrando M, Oliveira E, and Ferrandiz C 2008 Torrance Test of Creative Thinking: The question of its construct validity Thinking Skills and Creativity 3 pp 53–58

[25] Sheffield L J 2013 Creativity and school mathematics: Some modest observations ZDM – International Journal on Mathematics Education 45 pp 325–332

[26] Ayllón M F, Gómez I A, and Ballesta-Claver J 2016 Mathematical thinking and creativity through mathematical problem posing and solving Journal of Educational Psychology 4(1) pp 195-218

[27] Kattou M, Kontoyianni K, Pitta-Pantazi D, and Christou C 2013 Connecting mathematical creativity to mathematical ability ZDM - International Journal on Mathematics Education, 45(2) pp 167–181

[28] Sahliawati M 2016 Perbandingan Kemampuan Berpikir Kreatif Matematik Peserta Didik antara Penggunaan Strategi Mind Map dan Concept Map dengan Model Think Pair Share (TPS) Skripsi Jurusan Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan. Universitas Siliwangi, Unpublished

[29] Yahya N and Shahrill M 2015 Strategies used in solving algebra by secondary school repeating students Procedia – Social and Behavioral Sciences 186 (2015) pp 1192-1200

[30] Darmawati, Irawan E B & Chandra T D 2017 Kesalahan Siswa SMP dalam Menyelesaikan Soal Bangun Datar Segiempat Berdasarkan Teori Nolting [Online] accessed from http://pasca.um.ac.id/conferences/index.php/gtk/article/viewFile/194/183