Studies on structural elucidation of delphinium alkaloids by using LC-ESI-MS technique.

Bilal Ahmad Dar, Mushtaq Ahmad Qurishi, Aijaz Hussain Kanth
University of Kashmir, Hazratbal, Srinagar, Kashmir, India.
darbital29@yahoo.in
University of Kashmir, Hazratbal, Srinagar, Kashmir, India.
quishi@gmail.com
Department of chemistry GDC Bemina, Srinagar, Kashmir.
Aijazkanth@rediffmail.com

ABSTRACT
1. A rapid, sensitive and specific liquid chromatography-electron spray-mass spectrometry (LC-ESI-MS) method to identify the different diester-diterpenoid and monoester type alkaloids from delphinium cashmerianum Collected from Sopi Kargil. Chromatographic separation were achieved on c-18 column and peaks determined by mass spectrometry in positive and negative modes. The validated method led to tentative identification of eight alkaloids on the basis of their retention times and fragmentation patterns. Results showed that the positive mode response was much higher than the negative ion mode. Chromatographic conditions were optimized to obtain high resolution and short run time.

Indexing terms/Keywords
delphinium cashmerianum, LC-ESI-MS, Sopi.

Academic Discipline and Sub-Disciplines
Applied material Sciences.

SUBJECT CLASSIFICATION
Phytochemistry subject classification.

TYPE (METHOD/APPROACH)
Experimental. Analytical liquid chromatographic and mass spectrometric method.
INTRODUCTION

It is the genus belonging to family renunculaceae comprising of more than 300 species of perennial flowering plants distributed in Asia, North America, Europe and tropical Africa. The members of this genus are toxic to humans and livestock. The perennial species of Delphinium along with the annual species of consolidate are commonly called as Larkspur. In the flowering season of June – July the plant has raceme of colored flowers varying from purple to blue and red and white. In most species the flower has five petal like sepals joined together with a spur (hence common name) enclosing four similarly colored petals. They possess small black and shiny seeds.

Delphinium cashmerianum Royle (Kashmir Larkspur) is a perennial herb in the Himalayas, from Pakistan to Uttarakhand, at altitudes of 2700-4500 m. It is characterized by woolly-haired, conspicuously veined bluish-purple flowers, 2-3 cm across clustered in a dense flat-topped head. Flowers have a stout spur 1.5 cm long. Leaves are rounded in outline, deeply lobed, 3-5 cm across. It is quite similar to Musk Larkspur which is found only above altitudes of 4500 m, and has larger, more inflated flowers.

The majority of phytochemical investigation on Delphinium species (Renunculaceae) have been carried out for diterpenoid alkaloid. Alkaloids like Neoline, Chasmanine, Homochasmanine and Delphiline were reported by Pelletier in Delphinium staphisagria in 1975. Warnock reported benzoylated quercetin glycosides from Delphinium carolinianum in 1982. Jong-C Park and S. W. Pelletier isolated hetanes type of alkaloids like davisinol, 18 benzoyldavisinol and davisin from Delphinium davisi. Gabriel De La Fuente reported isolation of six new norditerpenoid alkaloids Nudicaulidines from Delphinium cardiotelatum. Ayhan Ulubelen et al have reported norditerpenoid 8-acetyl condelphine, condelphine and sesbusine from Delphinium pyramidale Delavaine. deoxytocistine and methyllycaconitine from Delphinium disectum were reported by Nyamdaribatbayar et al. Werner Herz et al have reported flavonol glycosides from ethanolic extract of aerial parts of Delphinium staphisagria. Yang-Qing He et al have also reported flavanoids from Delphinium albocoeruleum along with diterpenoids and one triterpenoid.

MATERIALS AND METHODS

Plant Material

The root part of Delphinium cashmerianum (15 Kg) were collected from SOPI, Kargil Ladakh (J&K, India) in August 2010. The specimens were identified by Akhtar H, Malik, Curator, Centre for Biodiversity & Taxonomy, University of Kashmir (Specimen deposited under accession No. 341320 and Collection No. 1301 - Bilal, Kash).

Extraction

The air dried, finely powdered root material (5Kg) was extracted for 72 hours with methanol to afford the respective extract, which was concentrated under reduced pressure and was coded as DEL.

Reagents and chemicals

HPLC grade acetonitrile, methanol and formic acid were purchased from Sigma Aldrich. HPLC grade water (18.2MQ) was procured from Milli-Q water system (USA). other chemicals were of analytical grade and are available commercially.

LC System

LC analysis was carried out with an Agilent1260 infinity series consisting of a pump, detector, an auto sampler and a column component. The samples were separated on chromolith RP-18e column (4.6 mm ID, 50mm length) Merck at room temperature. The mobile phase consisted of (A) aqueous formic acid(0.1%) and (B) methanol and the elution gradient was set as follows : 0–8 min, linear gradient from 12% to 25% of B; 8–12 min, isocratic conditions at 25% of B; 12–16 min, linear gradient from 25% to 40% of B; 16–40 min, linear gradient from 40 to 50% of B, 40–50 min, linear gradient from 50 to 100% of B. Flow rate: 1 ml/min.

LIQUID-CROMATOGRAPHY TANDEM-MASS-SPECTROMETRY (LC–ESI-MSMS)

For LC-ESI-MS experiments, LC-MS Qqq-6410B equipment (Agilent Technologies) comprising a chromatographic system 1260 Infinity (Agilent Technologies) coupled with an Agilent Triple Quad mass spectrometer fitted with an ESI source was used. The conditions of ESI source were set as follows: sheath and auxiliary gases flow, 25 and 3 arbitrary units, respectively; spray voltage, 4KV; capillary temperature 325°C and tube length voltage: 120 V. The samples were analysed in both positive and negative modes and full scan mass range was set between m/z 100-1200 with the aquisition of centroided-type mass spectra. Accurate mass analyses were calibrated according to manufacturers guidelines. In the MS experiments, data dependent MS scanning was performed to minimize total analysis time as it can trigger fragmentation spectra of target ions and prevent repetition by dynamic exclusion settings. The software of the Agilent technologies was used for data analysis. After the automated removal of noise and baseline signals, the theoretical extract chromatogram of main alkaloids was shown in the plot (fig 3).
RESULTS AND DISCUSSION

For LC-MS experiments different fragmentation measurements were conducted in independent LC-MS experiments. In the first measurement the survey scan was performed in analyser at (R=30,000) followed by MS2 scan at (R=15,000). The accurate tandem mass spectra can provide strong evidences for identification of fragments and neutral loss. In the separate measurement in which ESI MS2 and MS3 experiments using dynode detection provided more fragment ions and order of fragmentation could be determined to show evidence of structural identification. Fifteen alkaloids were picked from the chromatogram at the retention times from 2-20 min. Among them nine compounds were identified as 14-2-methylbutynudicaudiline, 14-cis cinnamoyl nudicaudiline, Davisinol, uncinitine, condelphine, Peregrine, Karakoline and 10- hydroxy methyllyoaconitine. by comparing their retention times and on the basis of their fragmentation patterns in MS-MS data. The other compounds were tentatively identified by comparing their mass data with those reported in literature. The Retention time values and mass data of deduced compounds from peaks are summarised in table 3. The fragmentation patterns of the identified compounds is shown in (fig 4).

![Total chromatogram of Delphinium cashmerianum.](image-url)
Table-3

S No	Time minutes	m/z	Adduct peaks	Fragmentation peaks	Identification
1	2.0-2.10	507[C₂₈H₄₅NO₇]	[M+2]509, [M+2H+Na]533	MS²[533]428, 365	14-Isobutylnudicaudiline
2	2.29-2.36	521[C₂₈H₄₇NO₇]	[M+2]523, [M+3]524	MS²[523]443,365	14-(2-methylbutyl)nudicaudiline
3	10.80-11.13	313[C₂₉H₈₇NO₇]	[M+1]314,[M+2]315, [M+3]316, [M-1]312	MS²[315]271	Davisinol
4	12.24-12.63	359[C₂₉H₄₇NO₃]	[M-1]358,[M+2H+Na]386	MS²[359]341,297	Uncinoline
5	13.26-13.37	445[C₂₉H₃₃NO₃]	[M+H+Na]469,[M+CAN+Na]510	MS²[448]360,342,308	Peregrine
6	13.42-13.55	449[C₂₉H₃₃NO₃]	[M+19]468	MS²[449]359,341,314	Condelphine
7	17.06-17.53	374[C₂₉H₃₃NO₄]	[M+2]376,[M-18]356	MS²[374]356,324	Karakoline
8	19.21-19.50	698[C₃₇H₅₀N₂O₁]	[M+1]699,[M+2]700,[M+24]723	MS²[700]683,587	10-Hydroxymethyllyoaconitine
Fragmentation pattern of 14-(2-methylbutyl nudicaudiline)
Fragmentation pattern of Davisinol

m/z=316

-\text{OH}

\text{m/z}=271

\begin{align*}
\text{Fragmentation pattern of Davisinol}
\end{align*}
Fragmentation pattern of uncinitine
Fragmentation pattern of condelphine
Fragmentation pattern of karakoline

m/z = 374

- H₂O

m/z = 356

- OH

m/z = 324
Peak List

m/z	Abund
370.1	375
587.2	729.1
683.1	236.9
684.3	247.5
699.1	370.7
701.2	26960.6
702.2	10527.9
703.2	2835.8
704.2	451.5
723.1	302
Fragmentation pattern of 10-hydroxymethyllycaconitine
CONCLUSION

In this study a simple and efficient LC-ESI-MS+ method has been developed to identify alkaloids from roots of Delphinium cashmerianum. Moreover the LC-ESI-Mass spectrometry has been demonstrated to be an effective tool for analysis of the components and searching of novel compounds in plant extracts. It also provided the essential data for further pharmacological and toxicological studies on Delphinium plants.

REFERENCES

1) Flora of North America: Delphinium
2) Sierra Nevada Wildflowers, Karen Wiese, 2013, p. 52
3) RHS A-Z encyclopedia of garden plants. United Kingdom: Dorling Kindersley. 2008. p. 1136. ISBN 1405332964
4) Jabbour, F., and S. S. Renner. 2011. Consolida and Aconitella are an annual clade of Delphinium (Ranunculaceae) that diversified in the Mediterranean basin and the Irano-Turanian region. Taxon 60(4): 1029-1040.
5) S. W. Pelletier, Z. Djarmati, S. Lasjic and Wilson, H. De Camp. University of Georgia, Athens, Georgia 30602, 1975.
6) Michael J. Warnock, Yong-Long Liu and Tom J. Mabry. Phytochemistry, 22, 1834-1835, 1983.
7) Ayhan Ulubelen, Jong C. Park, Ali H Mericili and Filiz Mercili, Resit Ilarslan. J. Nat. Prod. 1996, 96. 360-366.
8) Martias Reina, Alberto Madinaveitia and Gabriel De La Fuente. Phytochemistry, 45, 1707-1711, 1997.
9) Ayhan Ulubelen, Muhammad arfan, Ufuk sonmez, Ali H Mercili, Filiz Mercili. Phytochemistry, 48, 385-388, 1998.
10) Nyamdari Batbayar, Shiler Enkhzaya, Jigidsuren Tusag, Dulamjav Batsuren, David S, Rycroft, Sussane Sproll, Franz Bracher. Phytochemistry, 62, 543-550, 2003.
11) Jesus G. Diaz, , Armando J. Camona, Pedro Perez de Paz, Werner Herz. Phytochemistry letters 1, 125-129, 2008.
12) Yang-Qing He, Zhan-Ying Ma, Qian Yang, Bao-Zhong Du, Zhan-Xin Jing, Bing-Hua Yao, Mark T. Hmann, Biochemical systematics and ecology 38, 554-556, 2010.