Density fluctuations and compressibility matrix
for population or mass imbalanced Fermi-Fermi mixtures

Kangjun Seo and C. A. R. Sá de Melo
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
(Dated: October 19, 2011)

We describe the relation between the isothermal atomic compressibility and density fluctuations in mixtures of two-component fermions with population or mass imbalance. We derive a generalized version of the fluctuation-dissipation theorem which is valid for both balanced and imbalanced Fermi-Fermi mixtures. Furthermore, we show that the compressibility, its critical exponents, and phase boundaries can be extracted via an analysis of the density fluctuations as a function of population imbalance, interaction parameter or temperature. Lastly, we demonstrate that in the presence of trapping potentials, the local compressibility and local density-density correlations can be extracted via a generalized fluctuation-dissipation theorem valid within the local density approximation.

PACS numbers: 03.75.Ss, 03.75.Hh, 05.30.Fk

Very recent experimental advances in Bose and Fermi systems have allowed for studies of density fluctuations and the use of the fluctuation-dissipation theorem to obtain information about some thermodynamic properties of ultra-cold atoms. In the fermion case, the measurement of the density fluctuations and the atomic compressibility was extracted for non-interacting three-dimensional systems in harmonic traps [1, 2], while in the boson case, the connection between density fluctuations and compressibility was used to study superfluidity in a two-dimensional system, and extract critical exponents associated with the transition from a normal Bose gas to a Berezinskii-Kosterlitz-Thouless superfluid [3]. The experimental extraction of the isothermal compressibility from density-fluctuation measurements were suggested several years ago both in harmonically confined systems [4] and optical lattices [5], but only recently improvements in the detection schemes of density fluctuations became sufficiently sensitive to extract this information from experimental data [1–3].

In principle, there are no major technical impediments to use the same technique for the study of density fluctuations in population imbalanced Fermi-Fermi mixtures of equal masses [4, 5] or unequal masses [3], where the compressibility and spin susceptibility matrix elements could be directly extracted from the density and density fluctuation profiles as discussed below.

In this manuscript, we show that some local and global thermodynamic properties can be extracted through local measurements of densities and density fluctuations. We derive a generalized version of the fluctuation-dissipation theorem valid for any mixtures of atoms, and use it to analyze density fluctuations and the compressibility of mixtures of two-component fermions with and without population imbalance at low temperatures. For spatially uniform systems, we show that the global compressibility, phase boundaries and critical exponents can be extracted from measurements of the density and density fluctuations for each component as a function of population imbalance, interaction parameter or temperature. While for spatially non-uniform systems, we show that the local and global compressibility can be extracted from measurements of the local density and local density fluctuations for each component.

Hamiltonian: To investigate the physics described above, we start with the real space Hamiltonian $(\hbar = 1)$ density for three dimensional s-wave superfluids

$$H(r) = \sum_\alpha \psi_\alpha^\dagger(r) \left(-\frac{\nabla^2}{2m_\alpha} - \mu_\alpha + V_{\alpha}(r) \right) \psi_\alpha(r) + \hat{U}(r),$$

(1)

where $\hat{U}(r) = \int dr' V_{\text{int}}(r, r') \psi_\alpha^\dagger(r') \psi_\alpha^\dagger(r') \psi_\alpha(r') \psi_\alpha(r)$ contains the interaction potential $V_{\text{int}}(r, r') = -g \delta(r - r')$, and $\psi_\alpha^\dagger(r)$ creates fermions of mass m_α labeled by index α. In addition, $V_\alpha(r)$ and μ_α represent the trapping potential and the chemical potential for each fermion type, respectively. With the Hamiltonian $H = \int dr H(r)$, we can study Fermi systems of equal masses $m_1 = m_2 = m$ with population imbalance, or more generally we can study mixtures of fermions of unequal masses $m_1 \neq m_2$.

From the grand partition function $Z = \text{Tr} e^{-H/T}$, we can write the thermodynamic potential $\Omega = -T \ln Z$. First, we will ignore the trapping potential $V_\alpha(r)$ and discuss the spatially homogeneous case to simplify the discussion, but will return to the spatially inhomogeneous situation later. We set $V_\alpha(r) = 0$ in Eq. (1) and rewrite the Hamiltonian H as

$$H_1 = \int dr \left[\sum_\alpha \psi_\alpha^\dagger(r) \left(-\frac{\nabla^2}{2m_\alpha} \right) \psi_\alpha(r) + \hat{U}(r) \right],$$

and $N_\alpha = \int dr \psi_\alpha^\dagger(r) \psi_\alpha(r)$ is the number operator for hyperfine state α. The average number of particles $N_\alpha = \langle N_\alpha \rangle$ in hyperfine state α, defined by the thermodynamic average $\langle N_\alpha \rangle = Z^{-1} \text{Tr} \left[\hat{N}_\alpha e^{-H/T} \right]$, can be rewritten in terms of the thermodynamic potential as $N_\alpha = \langle \hat{N}_\alpha \rangle = -\partial \Omega / \partial \mu_\alpha |_{T}$.

Pseudo-compressibility matrix: Next, we define the...
results in \(\kappa \) of temperature \(\Omega + \mu \) and described in Refs. [1, 2], it may be possible to measure \(\kappa \) directly. Thus, it is important to identify the relation between the isothermal compressibility \(\kappa_T = -V(\partial P/\partial V)_T \) and the elements of the compressibility matrix \(\kappa_{\alpha\beta} \).

Isothermal compressibility: The relation between \(\kappa_T \) and \(\kappa_{\alpha\beta} \) can be established by recalling that the thermodynamic potential \(\Omega = -PV \), where \(P \) is the pressure and \(V \) is the volume of the system. Defining \(G = \Omega + PV = 0 \), and recalling that \(\Omega \) is a function of temperature \(T \), volume \(V \) and chemical potentials \(\mu \) results in \(dG = -SdT - N_\alpha d\mu_\alpha - N_\beta d\mu_\beta + VdP = 0 \). At constant temperature \(dT = 0 \), we can establish the relation \(-VdP|_T = N_\alpha d\mu_\alpha|_T + N_\beta d\mu_\beta|_T \).

This means that the inverse isothermal compressibility \(\kappa_T^{-1} = -V(\partial P/\partial V)_T \) can be written in terms of isothermal partial derivatives of \(\mu \) with respect to volume \(\kappa_T^{-1} = N_\alpha(\partial \mu_\alpha/\partial V)|_T + N_\beta(\partial \mu_\beta/\partial V)|_T \). But in turn the partial derivatives \(\partial \mu_\alpha/\partial V|_T \) can be expressed in terms \(\partial \mu_\alpha/\partial N_\beta|_T \) and \(\beta \), leading to

\[
\frac{1}{\kappa_T} = \frac{T}{V} \left[\frac{N_\alpha^2}{\kappa_{++}} + \frac{N_\beta N_\alpha}{\kappa_{+\beta}} + \frac{N_\alpha N_\beta}{\kappa_{\beta\alpha}} + \frac{N_\beta^2}{\kappa_{\beta\beta}} \right].
\]

This expression can be written in the compact form \(\kappa_T^{-1} = \sum_{\alpha\beta} [\kappa_{\alpha\beta}]^{-1} \), by using the definition \(\kappa_{\alpha\beta} = \tilde{\kappa}_{\alpha\beta}/(N_\alpha N_\beta) \). Therefore direct measurements of \(\kappa_{\alpha\beta} \) lead to the isothermal compressibility \(\kappa_T \) of the system.

Connection to pseudo-spin susceptibility: We can also work with the total number of particles \(N_+ = N_\uparrow + N_\downarrow \), the particle number difference \(N_- = N_\uparrow - N_\downarrow \), and their corresponding chemical potentials \(\mu_\pm = (\mu_\uparrow \pm \mu_\downarrow)/2 \), respectively. In this case, we can define a similar pseudo-compressibility tensor \(\tilde{\kappa}_{ij} = T\partial\langle N_i \rangle/\partial\mu_j|_T = -T\partial\Omega/\partial\mu_j|_T \), leading to \(\kappa_{ij} = \langle \Delta N_i\Delta N_j \rangle \), where the indices \(i, j \) each can take \(\pm \) values. The corresponding expression for \(\kappa_T \) has exactly the same form as before:

\[
\frac{1}{\kappa_T} = \frac{T}{V} \left[\frac{N_+^2}{\tilde{\kappa}_{++}} + \frac{N_+ N_-}{\tilde{\kappa}_{+-}} + \frac{N_- N_+}{\tilde{\kappa}_{-+}} + \frac{N_-^2}{\tilde{\kappa}_{--}} \right].
\]

It is clear that \(\kappa_T \) reduces to the standard result for balanced populations where \(N_+ = 0 \) and \(N_\alpha = N, \kappa_T^{-1} = TV^{-1}N_\alpha^2/\tilde{\kappa}_{++}, \) leading to the standard form of the fluctuation-dissipation theorem: \(\kappa_T = TV^{-1} \left(\langle N^2 \rangle - \langle N \rangle^2 /\langle N \rangle^2 \right) \). The connection between the two representations is simple. The first diagonal term is \(\tilde{\kappa}_{++} = \tilde{\kappa}_{\uparrow\uparrow} + \tilde{\kappa}_{\downarrow\downarrow} + 2\tilde{\kappa}_{\uparrow\downarrow}, \) the second diagonal term is \(\tilde{\kappa}_{--} = \tilde{\kappa}_{\uparrow\uparrow} + \tilde{\kappa}_{\downarrow\downarrow} - 2\tilde{\kappa}_{\uparrow\downarrow}, \) while the off-diagonal terms \(\tilde{\kappa}_{+-} = \tilde{\kappa}_{-+} = \tilde{\kappa}_{\uparrow\downarrow} - \tilde{\kappa}_{\downarrow\uparrow} \) are identical by symmetry.

The pseudo-spin susceptibility \(\chi_{zz} \) of the system can also be extracted from the pseudo-compressibility matrix \(\tilde{\kappa}_{ij} \), since \(\mu_\alpha \) plays the role of an effective magnetic field \(h_z \) along the quantization axis \(z \), and \(N_- \) plays the role of the magnetization \(m_z \). For imbalanced Fermi systems this implies that

\[
\tilde{\kappa}_{zz} = T\frac{\partial N_-}{\partial h_z}|_T = T\frac{\partial m_\downarrow}{\partial h_z} = TM_{zz},
\]

and generalizes the results obtained for ultra-cold fermions interacting via p-wave interactions [4].

Compressibility matrix in a trap: In the presence of a trapping potential \(V(r) \), we define the local chemical potential as \(\mu_\alpha(r) = \mu_\alpha - V_\alpha(r) \), and rewrite the Hamiltonian explicitly as \(H = H_1 - \int d^3r \bar{n}_\alpha(r) \hat{n}_\alpha(r) \), where \(\bar{n}_\alpha(r) = \psi^\dagger(r)\psi(r) \) corresponds to the particle density operator. In this case, the grand partition function is \(Z[T, V, \mu_\alpha(r)] = \text{Tr}e^{-[H_1 - \int d^3r \bar{n}_\alpha(r)]/T} \). The thermodynamic potential \(\Omega[T, V, \mu_\alpha(r)] \) is also a functional of \(\mu_\alpha(r) \), such that local and even non-local quantities can be extracted. For instance the local density \(\bar{n}_\alpha(r) = \langle \hat{n}_\alpha(r) \rangle \) is simply written as the functional derivative \(V_\alpha(r) = \partial \Omega/\partial \mu_\alpha(r) \), where \(\bar{n}_\alpha(r) \) is the local number of particles. Correspondingly the non-local pseudo-compressibility matrix is \(\tilde{\kappa}_{\alpha\beta}(r, r') = -\frac{T}{V} \partial^2 \Omega/\partial \mu_\alpha(r)\partial \mu_\beta(r') \), which in terms of the local particle number operators \(\hat{N}_\alpha(r) = \hat{\bar{n}}_\alpha(r) \) becomes

\[
\tilde{\kappa}_{\alpha\beta}(r, r') = \langle \hat{N}_\alpha(r) \hat{N}_\beta(r') \rangle - \langle \hat{\bar{n}}_\alpha(r) \rangle \langle \hat{\bar{n}}_\beta(r') \rangle.
\]

Since \(\bar{n}_\alpha(r) = \langle \hat{\bar{n}}_\alpha(r) \rangle \) is a local thermodynamic average, we rewrite \(\tilde{\kappa}_{\alpha\beta}(r, r') = \delta \bar{n}_\alpha(r) \delta \bar{n}_\beta(r') \), where \(\delta \bar{n}_\alpha(r) = \bar{n}_\alpha(r) - N_\alpha(r) \) is the local fluctuation in the number of particles of type \(\alpha \). The local pseudo-compressibility matrix is simply \(\tilde{\kappa}_{\alpha\beta}(r) = \tilde{\kappa}_{\alpha\beta}(r) \).

Within the local density approximation (LDA) the local isothermal compressibility \(\kappa_T(r) \) can be derived from the local pressure \(P(r) \) as \(\kappa_T(r) = -V\partial P(r)/\partial V|_T \). Following the steps leading to Eq. (8), we obtain

\[
\frac{1}{\kappa_T(r)} = \frac{T}{V} \sum_{\alpha\beta} \frac{1}{\kappa_{\alpha\beta}(r)},
\]

which is the local generalization of the fluctuation-dissipation theorem within LDA. Here, \(\kappa_{\alpha\beta}(r) = \tilde{\kappa}_{\alpha\beta}(r)/[\bar{n}_\alpha(r)\bar{n}_\beta(r)] \).
Imbalanced Fermi-Fermi mixtures: As an example of the general relations just derived we discuss the case of imbalanced Fermi-Fermi mixtures with equal masses, which has attracted a lot of interest \cite{16,17}.

The resulting action corresponding to the Hamiltonian given in Eq. \cite{16} has been successfully calculated for the case of a uniform superfluid \cite{18} in the Gaussian approximation as \(S_G = S_0 + \frac{i}{\hbar} \sum_q A(q) F_1^{-1} A(q) \), where \(q = (q, \nu \tau) \), with \(\nu \tau = 2\pi T q^2 \) being the bosonic Matsubara frequency at temperature \(T \). Here, \(A(q) \) is the order parameter fluctuation field and the matrix \(F^{-1}(q) \) is the inverse fluctuation propagator. Furthermore,

\[
S_0 = \frac{\Delta_0^2}{g} + 1 \sum_k (\xi_{k,\uparrow} - E_{k,\downarrow}) + \sum_{\alpha} \ln [n_F (-E_{k,\alpha})],
\]

is the saddle point action, where \(E_{k,\alpha} = \sqrt{\xi_{k,\alpha}^2 + \Delta_{k}^2} \) is the quasiparticle energy when \(s_\uparrow = 1 \) and is the negative of the quasihole energy when \(s_\uparrow = -1 \). We also use the notation \(E_{k,\pm} = (E_{k,\uparrow} \pm E_{k,\downarrow})/2 \). In addition, \(\Delta_k = \Delta_0 \Gamma_k \) is the order parameter for superfluidity for pairing with zero center of mass momentum, \(\Gamma_k = 1 \) for \(s \)-wave pairing, \(n_F (E_{k,\alpha}) \) is the Fermi distribution, and \(\xi_{k,\pm} = (\xi_{k,\uparrow} \pm \xi_{k,\downarrow})/2 = k^2/2(m_{\pm} + \mu_\pm) \), where \(m_\pm = 2m_\uparrow m_\downarrow / (m_\downarrow \pm m_\uparrow) \). Notice that \(m_\pm \) is twice the reduced mass of the \(\uparrow \) and \(\downarrow \) fermions, and that the equal mass case \((m_\uparrow = m_\downarrow) \) corresponds to \(|m_-| \to \infty \).

The fluctuation term in the action leads to a correction to the thermodynamic potential, which can be written as \(\Omega_G = \Omega_0 + \Omega_{\text{fluct}} \), where \(\Omega_0 = T S_0 \) and \(\Omega_{\text{fluct}} = T \sum_k \ln \det \left(TF^{-1}(q) \right) \). The saddle point condition \(\delta\Omega_0 / \delta\Delta_0 \) leads to the order parameter equation

\[
\frac{1}{g} = \frac{\sum_k |\Gamma_k|^2}{2k_{\text{F},\uparrow}} X_{k,\uparrow},
\]

where \(X_{k,\pm} = (X_{k,\uparrow} \pm X_{k,\downarrow})/2 \), with \(X_{k,\alpha} = \tanh (E_{k,\alpha}/2T) \). As usual, we eliminate \(g \) in favor of the scattering length \(a_s \) via the relation \(1/g = -m_+ V/(4\pi a_s) + \sum_k |\Gamma_k|^2 / (2k_{\text{F},\uparrow}) \), where \(\epsilon_{k,\pm} = (\epsilon_{k,\uparrow} \pm \epsilon_{k,\downarrow})/2 = k^2/2m_\pm \). The order parameter equation needs to be solved self-consistently with the number equations \(N_\alpha = -\partial \Omega / \partial \mu_\alpha \big|_T \), which has two contributions

\[
N_\alpha = N_{0,\alpha} + N_{\text{fluct},\alpha},
\]

where \(N_{0,\alpha} = -\partial \Omega / \partial \mu_\alpha \big|_T \) is the saddle point number equation given by

\[
N_{0,\alpha} = \sum_k \left(1 - s_\alpha X_{k,-} - \frac{\xi_{k,+}}{2E_{k,+}} X_{k,+} \right),
\]

and \(N_{\text{fluct},\alpha} = -\partial \Omega_{\text{fluct}} / \partial \mu_\alpha \big|_T \) is the fluctuation contribution to \(N_\alpha \) given by \(N_{\text{fluct},\alpha} = -T \sum_q \partial \left(\det F^{-1}(q) \right) / \partial \mu_\alpha / \det F^{-1}(q) \).

To calculate \(\kappa_{\alpha\beta} \) and \(\kappa_T \) from the thermodynamic potential \(\Omega \), we note that \(\Omega \left[\mu_\alpha, \mu_\beta, T \right] \to \Omega \left[\mu_\alpha, \mu_\beta, T \right] \) because of the implicit dependence of \(\Delta_0 \) on \(\mu_\alpha \) and \(\mu_\beta \), the calculation of \(\kappa_{\alpha\beta} \) requires

\[
\kappa_{\alpha\beta} = T \frac{\partial N_\alpha}{\partial \mu_\beta} \big|_{T,e} + T \frac{\partial N_\beta}{\partial \mu_\alpha} \big|_{T,e} + \frac{\partial |\Delta|^2}{\partial \mu_\alpha} \big|_{T,i},
\]

where the label "e" ("i") means explicit (implicit) derivative. The mechanical stability of the uniform superfluid and normal phases is guaranteed if all eigenvalues of \(\kappa_{\alpha\beta} \) (or \(\kappa_{ij} \)) are positive. This is achieved when \(T\kappa > 0 \) and \(\det \kappa > 0 \). When the lowest eigenvalue of \(\kappa \) reaches zero then the system becomes mechanically unstable.

We define the Fermi momentum \(k_{F,\pm}^3 = k^3_{F,\uparrow} + k^3_{F,\downarrow} \), where \(k_{F,\alpha} \) is the Fermi momentum of each species, and the Fermi energy \(\epsilon_{F,\pm} = (k_{F,\pm}^2)/2m_\pm \). For a mixture of fermions of equal masses, different hyperfine states and no trapping potential, the zero temperature phase diagram of population imbalance \(P = (N_\uparrow - N_\downarrow)/(N_\uparrow + N_\downarrow) \) is shown in Fig. \ref{fig:1}, where the normal (N), non-uniform (NU) and uniform (U) superfluid regions are indicated. The isothermal compressibility \(\kappa_T \) is shown in Fig. \ref{fig:2} for \(1/(k_{F,\alpha} a_s) = 2.16 \) and changing \(P \). Notice that as \(P \) increases, the dimensionless compressibility \(\kappa_T \epsilon_{F,\pm} / V \) diverges at a critical population imbalance \(P_c = 0.77 \), and becomes negative for \(P > P_c \), signaling a quantum phase transition from uniform superfluidity with coexistence of excess unbound fermions and paired fermions in the same spatial region to a phase separated regime where excess unbound fermions and paired fermions tend to avoid being in the same region of space.

![FIG. 1](image1.png)

In Fig. \ref{fig:2}a, we show the dimensionless matrix elements \(\tilde{\kappa}_{\alpha\beta} \epsilon_{F,\pm} / T \) as a function of \(1/(k_{F,\alpha} a_s) \) on the BEC side \(1/(k_{F,\alpha} a_s) > 0 \) for fixed population imbalance \(P = 0.5 \). Notice that \(\tilde{\kappa}_{\alpha\beta} \) diverges as \((\lambda - \lambda_c)^{-1} \), where \(\lambda = 1/(k_{F,\alpha} a_s) \), and \(\lambda_c = 1.9 \) is the critical interaction parameter. As seen in Fig. \ref{fig:2}b, when population imbalance is changed in the BEC regime, e.g. \(1/(k_{F,\alpha} a_s) = 2.16 \), the dimensionless pseudo-spin susceptibility \(\chi_{zz} \epsilon_{F,\pm} = \tilde{\kappa}_{zz} \epsilon_{F,\pm} / T \) diverges at the phase...
boundary between the uniform superfluid and the non-uniform phases as \(\chi_{zz}(r) \sim (P - P_c)^{-1} \). The negative values of the matrix elements \(\tilde{\kappa}_{\alpha\beta} / T \) and \(\chi_{zz}(r) \) just indicate the region of non-uniform superfluidity, i.e., the region where uniform superfluidity is not mechanically stable. Thus, the generalized fluctuation-dissipation theorem described in Eq. [3] allows for the extraction of critical exponents of density-density and pseudospin-pseudospin correlations across phase boundaries.

In the case of a non-zero trapping potential \(V_0(r) \), we make use of LDA and obtain the local thermodynamic potential \(\Omega(r) = \Omega[\mu_1(r), \mu_2(r)] \) from the thermodynamic potential in the absence of a trap \(\Omega[\mu_1, \mu_2] \), via the substitution \(\mu_\alpha \rightarrow \mu_\alpha(r) = \mu_\alpha - V_0(r) \). This implies that in Eqs. [10] and [11] the order parameter \(\Delta_0(r) \) and the number of particles \(N_\alpha \) become functions of position \(r \) via the position dependent chemical potentials \(\mu_\alpha(r) \). As a result we have \(\Delta_0(r) = \Delta_0[\mu_1(r), \mu_2(r)] \) and \(N_\alpha(r) = N_\alpha[\mu_1(r), \mu_2(r)] \).

We consider harmonic trapping potentials \(V_0(r) = \gamma_0 r^2 / 2 \), where \(\gamma_0 = m_\alpha \omega_\alpha^2 \), with \(\omega_\alpha \) being the trapping frequencies of fermion of type \(\alpha \). For the equal mass case, we show in Fig. 3a, the particle number profiles \(N_\alpha(r) \) and the order parameter \(\Delta_0(r) \) as a function of dimensionless position \(r/r_{TF} \), where \(r_{TF} \) is the Thomas-Fermi radius defined through the condition \(\epsilon_{F+} = \gamma_+ r_{TF}^2 / 2 \), where \(\gamma_+ = \gamma_1 + \gamma_2 \). These spatial profiles show that superfluidity coexists with excess unpaired fermions, but the majority of excess unpaired fermions are pushed away from the center of the trap. In Fig. 3b, we show the spatial dependence of \(\tilde{\kappa}_{\alpha\beta}(r) \), from which the local correlation functions \(\langle N_\alpha(r) N_\beta(r) \rangle \) and the pseudo-spin susceptibility \(\chi_{zz}(r) \) = \(\tilde{\kappa}_{zz} / T \) can also be easily extracted. Within LDA, \(\tilde{\kappa}_{\alpha\beta}(r) \) exhibit a discontinuous jump at the position \(r_c \), where \(\Delta_0(r_c) = 0 \). In the superfluid region, local particle fluctuations reveal the extra correlations brought in by full pairing such that \(\chi_{zz}(r) = 0 \). Outside the superfluid region local particle fluctuations show a decrease in particle-particle correlations, as the excess unpaired fermions are pushed away from the center of the trap, leading to \(\chi_{zz}(r) \neq 0 \).

![FIG. 2: a) Pseudo-compressibility matrix elements \(\tilde{\kappa}_{\alpha\beta}(r) \) as a function of \(1/(k_F a_s) \) for population imbalance \(P = 0.6 \) and interaction parameter \(1/(k_F a_s) = 2.16 \).](image1)

![FIG. 3: a) Particle number profiles \(N_\alpha(r) / N_+ \), and order parameter \(\Delta_0(r) / \epsilon_{F+} \); b) Matrix elements \(\tilde{\kappa}_{\alpha\beta} / T \) as a function of \(r/r_{TF} \), for population imbalance of equal or unequal masses. We discussed continuum systems with and without trapping potentials. Using the local density approximation, we obtained expressions relating the local compressibility and local spin susceptibility to the local fluctuations in particle numbers. Lastly, we applied our results to the case of population imbalanced Fermi systems of equal masses.](image2)

Summary: We derived a generalized fluctuation-dissipation theorem for Fermi-Fermi mixtures, which was used to extract thermodynamic information (compressibility, spin-susceptibility, phase diagrams and critical exponents) from density and density-fluctuation profiles of imbalanced mixtures of equal or unequal masses. We discussed continuum systems with and without trapping potentials. Using the local density approximation, we obtained expressions relating the local compressibility and local spin susceptibility to the local fluctuations in particle numbers. Lastly, we applied our results to the case of population imbalanced Fermi systems of equal masses.

We would like to thank the Army Research Office (Contract No. W911NF-09-1-0220) for support.

[1] C. Sanner et al., Phys. Rev. Lett. **105**, 040402 (2010).
[2] T. Müller et al., Phys. Rev. Lett. **105**, 040401 (2010).
[3] C. L. Hung et al. arXiv:1009.0016v2 (unpublished).
[4] M. Iskin and C. A. R. Sá de Melo, Phys. Rev. B **72**, 224513 (2005).
[5] M. Iskin and C. A. R. Sá de Melo, Phys. Rev. A **74**, 013608 (2006).
[6] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science **311**, 492 (2006).
[7] G. B. Partridge et al., Science **311**, 503 (2006).
[8] F. M. Spiegelhalder et al., Phys. Rev. A **81**, 043637 (2010).
[9] S. S. Botelho and C. A. R. Sá de Melo, J. Low Temp. Phys. **140**, 409 (2005).
[10] C. H. Pao, S.-T. Wu, and S. K. Yip, Phys. Rev. B **73**, 132506 (2006).
[11] T. N. De Silva and E. J. Mueller, Phys. Rev. A **73**, 051602(R) (2006).
[12] M. Iskin and C. A. R. Sá de Melo, Phys. Rev. Lett. **97**, 100404 (2006).
[13] M. Haque and H. T. C. Stoof, Phys. Rev. A **74**, 011602(R) (2006).
[14] P. Pieri and G. C. Strinati, Phys. Rev. Lett. **96**, 150404 (2006).
[15] J. Tempere, M. Wouters, and J. T. Devreese, Phys. Rev. B **75**, 184526 (2007).
[16] M. Iskin and C. A. R. Sá de Melo, Phys. Rev. A 76, 013601 (2007).