SRp55 regulates a splicing network that controls human pancreatic beta cell function and survival

Jonàs Juan-Mateu, Maria Inês Alvelos, Jean-Valéry Turatsinze, Olatz Villate, Esther Lizarraga-Mollinedo, Fabio Arturo Grieco, Laura Marroquín, Marco Bugliani, Piero Marchetti and Décio L. Eizirik

1ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, 1070, Belgium.
2Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126 Pisa, Italy.
3Welbio, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.

†Joint First Authors

*To whom correspondence should be addressed. Tel: +3225556242; Fax: +3225556239; Email: deizirik@ulb.ac.be. Correspondence may be also addressed to mjuanmat@ulb.ac.be.

Present address: Laura Marroquín, Cellular physiology and Nutrition Research Group, Bioengineering Institute, Miguel Hernández University, Elche, 03202, Spain.

KEY WORDS: alternative splicing, pancreatic beta cell, diabetes, apoptosis, insulin secretion
ABSTRACT
Progressive failure of insulin-producing beta cells is the central event leading to diabetes, but the signalling networks controlling beta cell fate remain poorly understood. Here we show that SRp55, a splicing factor regulated by the diabetes susceptibility gene GLIS3, has a major role in maintaining function and survival of human beta cells. RNA-seq analysis revealed that SRp55 regulates the splicing of genes involved in cell survival and death, insulin secretion and JNK signalling. Specifically, SRp55-mediated splicing changes modulate the function of the pro-apoptotic proteins BIM and BAX, JNK signalling and endoplasmic reticulum stress, explaining why SRp55 depletion triggers beta cell apoptosis. Furthermore, SRp55 depletion inhibits beta cell mitochondrial function, explaining the observed decrease in insulin release. These data unveil a novel layer of regulation of human beta cell function and survival, namely alternative splicing modulated by key splicing regulators such as SRp55 that may crosstalk with candidate genes for diabetes.

INTRODUCTION
Diabetes is caused by loss and/or functional impairment of insulin-producing pancreatic beta cells. Type 1 diabetes (T1D) and type 2 diabetes (T2D) differ in their genetic background, associated environmental factors and clinical history, but both forms of diabetes show loss of beta cell mass, which is near total in long-term T1D and in the range of 20-50% in T2D (1-3). The mechanisms leading to this decrease in functional beta cell mass remain elusive, which may explain why intervention trials aiming to halt or revert beta loss in diabetes have consistently failed.
Genetic variations in the transcription factor GLIS3 are associated with susceptibility to both T1D and T2D (4, 5). GLIS3 mutations also cause a neonatal diabetes syndrome characterized by neonatal diabetes, congenital hypothyroidism and polycystic kidney (6). Functional studies have shown that GLIS3 regulates beta cell differentiation and insulin transcription (7, 8). We have shown that GLIS3 is also required for adult beta cell survival, increasing basal apoptosis when depleted in rodent and human beta cells and sensitizing these cells to cytokine- and palmitate-induced apoptosis (9). Increased beta cell apoptosis in Glis3-depleted rat beta cells is associated with inhibition of the splicing factor SRp55 (also known as Srsf6), leading to a splicing shift in the pro-apoptotic protein Bim that favours the expression of the most pro-death splice variant Bim S (9).

Alternative splicing (AS) is a key post-transcriptional mechanism in which different combinations of splice sites in the pre-mRNA are selected to generate structurally and functionally distinct mRNA and protein variants. Functionally-related transcript populations are regulated by master splicing factors in coordinated “splicing networks” that modulate cell-, tissue-, or developmental-specific functions (10, 11). Little is known on the role of AS in diabetes, but recent findings from our group indicate that neuron-enriched splicing factors play important roles for beta cell function and survival (12, 13) and that inflammatory and metabolic stresses induce different “AS signatures” in human beta cells (14, 15).

The splicing factor SRp55 has been implicated in wound healing and oncogenesis, acting as an oncoprotein that promotes proliferation, survival and hyperplasia in cancer (16, 17). In the present study, we analysed the global role of SRp55 in beta cell function and survival using human pancreatic islets and the insulin-producing EndoC-βH1 human cell line. We found that SRp55 deficiency leads to increased
beta cell apoptosis, impaired mitochondrial respiration and defective insulin secretion. These findings indicate that SRp55 is a key down-stream mediator of GLIS3 function, suggesting that splicing networks regulated by the cross-talk between master splicing factors and candidate genes may contribute to beta cell dysfunction and death in diabetes.

RESEARCH DESIGN AND METHODS

Culture of human islets and EndoC-βH1 cells

Human islets from non-diabetic donors were isolated in Pisa, Italy, using collagenase digestion and density gradient purification. Islets were cultured at 6.1 mmol/liter glucose as described previously (14). Donor characteristics are described in Table S1. Human insulin-producing EndoC-βH1 cells kindly provided by Dr. R. Sharfmann (Institut Cochin, Université Paris Descartes, Paris, France) were grown on matrigel/fibronectin (100 and 2 µg/mL, respectively) coated plates and cultured in DMEM medium as previously described (18). EndoC-βH1 cells were exposed in some experiments to the human cytokines IL-1β (50 U/ml, R&D Systems, Abingdon, UK) and IFN-γ (1,000 U/ml, Peprotech, London, UK) for 48 h as described (14).

Gene/ splice variant silencing and overexpression

The small interfering RNAs targeting human genes/ splice variants used in this study are described in Table S2; Allstars Negative Control siRNA (Qiagen, Venlo, Netherlands) was used as a negative control (siCTL). Transient transfection was performed using 30nM siRNA and Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA). A pcDNA FLAG plasmid containing the human cDNA sequence of SRSF6 (SRp55), kindly provided by Prof. Hirokazu Hara (Gifu Pharmaceutical University, Japan), was used to exogenously express SRp55 in EndoC-βH1 cells.
Assessment of Cell Viability

Cell viability was determined using fluorescence microscopy after incubation with the DNA-binding dyes Hoechst 33342 and propidium iodide as described previously (19). Apoptosis was further confirmed in some experiments by immunostaining for cleaved caspase-3.

RNA sequencing

Total RNA was isolated from five independent preparations of EndoC-βH1 cells exposed to control (siCTL) or SRp55 (siSR#2) siRNAs using the RNeasy Mini kit (Qiagen, Venlo, Netherlands). RNA sequencing was performed on an Illumina HiSeq 2000 system as previously described (12, 20). The raw data generated are deposited in Gene Expression Omnibus (GEO) under submission number GSE98485.

RNA sequencing analysis

RNA-seq reads were mapped to the human reference genome GRCh37/hg19 using TopHat 2 (21) and the Gencode annotation dataset. Transcript abundance and differential expression was calculated using Flux Capacitor (22). All genes and transcripts have been assigned a relative expression level as measured in RPKM units (reads per kilobase per million mapped reads). A gene/isoform was considered as expressed if it had a RPKM greater or equal to 0.5. Identification of up- and down-regulated genes was performed by computing the Fisher’s exact test and corrected by the Benjamini-Hochberg method, as previously described (14). A minimum of 17% change (log2 fold change of ±0.23) in the expression level between SRp55 KD and control was considered as “modified expression”.

Alternative splicing events were analysed using rMATS (23). rMATS computes percentage splicing index (PSI) and the false discovery rate (FDR) for 5 different
splicing events: skipped exons, mutually exclusive exons, retained introns, 5’ and 3’ alternative splice site. To be considered significantly changed, the cut-off of 5% on ΔPSI and of 0.01% on FDR were used. Motif enrichment analysis in the vicinity of alternatively spliced exons was performed using rMAPS (24) by comparing the spatial occurrence of two SRp55 motifs (17, 25) between cassette exons whose inclusion is affected by SRp55 KD and non-modified exons showing a FDR ≥50%.

Functional annotation and pathway enrichment analysis of genes presenting splicing and/or gene expression alterations was performed using the DAVID and IPA (Ingenuity Pathway Analysis) platforms (26).

Validation of splicing changes by RT-PCR

The validation of selected alternative splicing changes identified by RNA-seq was performed by RT-PCR using exonic primers (Table S3) encompassing the predicted splicing event. The primers were designed against flanking constitutive exons, allowing to distinguish different splice variants based on fragment size. cDNA amplification was performed using MangoTaq DNA polymerase (Bioline), and PCR products separated using the LabChip electrophoretic Agilent 2100 Bioanalyzer system and the DNA 1000 LabChip kit (Agilent Technologies, Wokingham, UK). The molarity of each PCR band corresponding to a specific splice variant was quantified using the 2100 Expert Software (Agilent Technologies, Belgium), and used to calculate the ratio between inclusion and exclusion of the alternative event.

mRNA Extraction and Quantitative Real Time PCR

Poly(A)+ mRNA was isolated using the Dynabeads mRNA DIRECT kit (Invitrogen, Carlsbad, CA) and reverse transcribed as described (19). Quantitative real-time PCR was performed using SYBR and concentrations calculated as copies/µl using the
standard curve method (27). Gene expression was corrected for the reference gene β-Actin. The primers used are listed in Table S3.

Western Blot and Immunofluorescence

For Western blot, cells were washed with cold PBS and lysed in Laemmli buffer. Total proteins were resolved by 8-14% SDS-PAGE, transfected to a nitrocellulose membrane and immunoblotted using specific primary antibodies listed in Table S4. Densitometric values were corrected by the housekeeping protein α-tubulin as loading control, after background subtraction. Double immunostaining was performed as previously described (9).

Insulin secretion

EndoC-βH1 cells were pre-incubated with culture medium containing 2.8 mM glucose for 18 h. Cells were incubated in Krebs-Ringer buffer for 1 h and sequentially stimulated with 1 mM glucose, 20 mM glucose, or 20 mM glucose 10 µM forskolin for 40 min, as described (28). Insulin release and insulin content were measured using the human insulin ELISA kit (Mercodia, Uppsala, Sweden) in cell-free supernatants and acid-ethanol extracted cell lysates, respectively. Results were normalized by total protein content.

Mitochondrial respiration

Oxygen consumption rates (OCR) of EndoC-βH1 cells were measured using the XFp Extracellular Flux Analyzer (Seahorse Bioscience, North Billerica, MA) as previously described (28). Following transfection, cells were pre-incubated in assay medium containing 1 mM glucose for 1 h at 37°C in air. After that, respiration was measured following sequential injections of 20 mM glucose, 5 µM oligomycin, 4 µM carbonyl cyanide-p-trifluoromethoxy-phenylhydrazone (FCCP) and 1 µM rotenone plus 1 µM antimycin A. All data was normalized with total DNA content.
Statistical analysis

Data are show as means ± SD. Significant differences between experimental conditions were assessed by a paired Student’s t-test or by ANOVA followed by Bonferroni correction as indicated. P-values < 0.05 were considered statistically significant.

RESULTS

SRp55 regulates human beta cell survival

Fluorescence microscopy analysis indicates that SRp55 is highly expressed in pancreatic beta cells (Figure 1A). SRp55 mRNA expression is higher in human pancreatic islets and human insulin producing EndoC-βH1 cells as compared to eight other human tissues (Figure 1B). To study the functional impact of SRp55 depletion on human beta cell survival we silenced SRp55 by using two specific siRNAs in human islets and EndoC-βH1 cells, reaching ≥50% inhibition at both mRNA and protein levels (Figure 1C, 1E and 1F). SRp55 silencing significantly increased beta cell death in both dispersed human islets and in EndoC-βH1 cells (Figures 1D and 1G). The observed increase in cleaved caspase-3 expression in SRp55-depleted cells confirmed that beta cell loss is mediated by apoptosis (Figure 1H and 1I). Next, we analysed whether SRp55 expression is affected by pro-inflammatory cytokines. Exposure of EndoC-βH1 cells to IL-1β + IFN-γ significantly decreased SRp55 protein expression (Supplementary Figure S1A). Overexpression of SRp55 in EndoC-βH1 cells (Supplementary Figure S1B) protected these cells against cytokine-induced apoptosis (Supplementary Figure S1B), suggesting that decreased SRp55 expression may contribute to beta cell death during islet inflammation.
Identification of SRp55-regulated splicing events by RNA-seq

SRp55-regulated splicing events were detected by RNA sequencing of five independent EndoC-βH1 preparations under control conditions or following SRp55 knockdown (KD), obtaining an average coverage of 166 million reads. A total of 8769 AS events modified after SRp55 KD were detected (Figure 2A and Supplementary Table S5). The majority of modified AS events correspond to cassette exons (59%), followed by mutually exclusive exons (22%), alternative 5’ splice site (9%), alternative 3’ splice site (7%), and intron retention (3%) (Figure 2B).

Modified AS events affected 4055 different genes (Table S5). Functional enrichment analysis indicated that genes showing AS changes after SRp55 KD depletion are involved in diverse molecular and cellular functions, including cell cycle, DNA repair and replication, cell death and survival, and cellular function and maintenance (Figure 2C). Enriched pathways included several pathways involved in pancreatic beta cell function, dysfunction and death (Figure 2D), including genes related to type 2 diabetes and insulin secretion, regulation of apoptosis and JNK signalling (Figure 2D).

SRp55 KD had a less marked impact on gene transcription when compared to RNA splicing (Supplementary Figures S2A and S2B). Nevertheless, SRp55 KD modified the expression of 2981 genes, inducing predominantly gene up-regulation (Supplementary Figure S2C and Supplementary Table S6). Of note, 28% of differentially expressed genes also presented changes on alternative splicing (Supplementary Figure S2D). Up-regulated genes were enriched in pathways involved in cell cycle, DNA repair and replication, and MAPK signalling among others (Supplementary Table S6).
SRp55 binding-motif analysis

To study whether alternatively spliced genes are directly regulated by SRp55 and identify spatial patterns of SRp55 binding, we performed an enrichment analysis of the SRp55 binding-motifs. We compared the occurrence of SRp55 motifs between modified cassette exons and exons unaffected by SRp55 silencing. The enrichment of two SRp55 motifs were analyzed: a 6-mer motif identified by SELEX (25), and a 9-mer motif identified by de novo discovery in modified exons after SRp55 overexpression in mouse skin (17) (Supplementary Figure S3A). Significant enrichment for both motifs in exonic regions was found in down-regulated exons (Supplementary Figure S3C and S3D). These results support the notion that SRp55, like most SR proteins (29), acts as a splicing activator, promoting exon inclusion when bound to exonic splicing enhancers (ESE). In line with this, the majority of modified cassette exons (73%) displayed exon-skipping after SRp55 depletion (Supplementary Figure S2B), suggesting that a large proportion of modified splicing events are directly regulated by SRp55. Motif enrichment also indicated that up-regulated events were not directly regulated by SRp55, and probably result from the impact of SRp55 on other splicing regulators, as we previously observed following Nova1 KD (12).

Validation of splicing events

We next used independent EndoC-βH1 samples, different from the ones used for RNA-seq, to confirm SRp55-regulated events. Representative genes of pathways regulating beta cell function and survival were selected for further validation. We used RT-PCR followed by automated electrophoresis analysis, based on primers
that amplify isoforms presenting both inclusion and skipping of alternative fragments
and were able to validate 12 out of 12 AS events tested (Figure 3), indicating a good
reliability of the RNA-seq-generated data.

**SRp55 silencing impairs insulin release and leads to mitochondrial
dysfunction**

SRp55-depleted cells showed impaired insulin secretion at 20 mM glucose and in
the presence of glucose plus forskolin stimulation, but had no changes in insulin
content (Figure 4A and 4B). Insulin release is regulated by ATP generation, and we
next analysed mitochondrial respiration by assessing the oxygen consumption rate
using a Seahorse metabolic analyser. SRp55-depleted EndoC-βH1 cells showed
decreased mitochondrial respiration when compared to control cells, exhibiting lower
basal respiration, impaired ATP production (response to oligomycin) and decreased
maximal respiration (response to FCCP following oligomycin) (Figure 4C-4G),
suggesting that SRp55 silencing-induced mitochondrial dysfunction explains the
observed defective glucose-induced insulin release.

Interestingly, RNA-seq analysis indicated that several transcription factors that
regulate the beta cell phenotype and affect insulin secretion were modified after
SRp55 KD (Figure 4H). This includes up-regulation of **FOXO1** and **NEUROD1**,
genes expressed in poorly differentiated endocrine cells (30), and down-regulation of
PDX-1 and **NKX6.1**, key transcription factors for the maintenance of a differentiated
beta cell phenotype (31, 32).

**SRp55 contributes to beta cell apoptosis via regulation of the expression of
pro-apoptotic splice variants of BCL-2 proteins**
BCL-2 proteins are a family of apoptotic regulators that play a central role in beta cell survival (33). RNA-seq analysis indicated that SRp55 regulates splicing of the BCL-2 proteins BIM (BCL2L11), BAX and BOK, and related apoptotic proteins DIABLO and BCLAF1 (Figures 2 and 3). We have previously shown that SRp55 KD in rat beta cells increases the expression of the most pro-apoptotic isoform Bim S (contributing to beta cell apoptosis (9). Here we confirmed, at both mRNA and protein level, that SRp55 regulates BIM splicing also in human beta cells, increasing the proportion of BIM S over BIM L after SRp55 depletion (Figure 3B, Supplementary Figure S4A and S4B). There was also an overall increase of BIM isoforms following SRp55 silencing (Supplementary Figure S4A and S4C). To assess the functional role of BIM in SRp55 KD-induced apoptosis, we performed a double KD of SRp55 and BIM (Supplementary Figure S4D-S4F). BIM Inhibition decreased EndoC-βH1 apoptosis to basal levels (Supplementary Figure S4F), indicating that BIM plays a central role in regulating cell death in SRp55-depleted cells, and suggesting that SRp55 depletion triggers the intrinsic or mitochondrial pathway of apoptosis.

SRp55 depletion also affected the splicing of the apoptotic effector protein BAX, leading to increased intron 5 retention (Figures 3A and 5A). Unspliced intron 5 leads to the production of BAX β, a constitutively active isoform that may trigger cell death independent of up-stream signalling (34) (Figure 5B). To test whether alteration of BAX splicing by SRp55 KD contributes to the observed increase in apoptosis, we designed a specific BAX β siRNA and performed single and double knock-down experiments in combination with SRp55 siRNA (Figures 5C-5F). The up-regulation of BAX β following SRp55 KD (Figure 5E) correlated with increased BAX translocation to the mitochondria (Figure 5C) and increased apoptosis (Figure 5F). Prevention of BAX β increase by a specific siRNA in SRp55-depleted cells (Figure 5E) reduced
BAX translocation to the mitochondria (Figure 5C), and protected EndoC-βH1 cells (Figure 5F) and human islets (Figure 5G) against apoptosis, indicating a contributory role for BAX β in the observed phenotype.

SRp55 depletion affects the JNK signalling pathway leading to pathway hyper-activation and increased beta cell apoptosis

The JNK pathway has a pro-apoptotic role in pancreatic beta cells (35, 36). RNA-seq analysis indicated that SRp55 KD affects the splicing of several members of the JNK pathway (Figures 2D, 3E-3G and 6A). Moreover, several JNK signalling genes are up-regulated following SRp55 silencing (Supplementary Table S6). To understand how these alterations affect the JNK pathway activity, we first analysed the phosphorylation state of the kinases MKK7 and JNK1, and the target transcription factor c-JUN. We observed that MKK7, JNK1 and c-JUN are hyper-phosphorylated in SRp55-depleted cells, while no changes in total protein levels were observed for MKK7 and JNK1 (Figure 6B). We hypothesized that splicing alterations in JNK-related signalling genes alter the pathway activity contributing to increase beta cell death. To test this, we first performed a double KD of JNK1 and SRp55 KD. Inhibition of JNK1 in both EndoC-βH1 cells and human islets protected them against SRp55 KD-induced apoptosis (Figure 6C-F). Next, we mimicked the impact of SRp55 depletion on the splicing of three JNK signalling kinases (MAP3K7, JNK1 and JNK2) by using specific siRNAs against the SRp55-modified cassette exons in these genes. These siRNAs significantly increased the skipping of the cassette exons, recapitulating the effect of SRp55 KD (Figures 6G-I). Interestingly, increased exon skipping in all three JNK-related genes was associated with increased apoptosis (Figure 6J) and JNK hyper-phosphorylation (Figure 6K) in EndoC-βH1 cells. This
supports the hypothesis that splicing alterations induced by SRp55 KD lead to hyper-activation of the JNK-regulated pathway and contribute to beta cell death.

SRp55 depletion induces endoplasmic reticulum stress

RNA-seq analysis showed that several genes of the endoplasmic-reticulum-associated protein degradation (ERAD) pathway displayed alternative splicing alterations after SRp55 depletion, and that some ER stress markers were up-regulated at gene expression level (Figure 7A). These findings suggested that reduced SRp55 levels affect the ER function and may contribute to increase beta cell apoptosis. In order to test this hypothesis, we analysed the expression of several ER stress markers at protein and mRNA level. Increased levels of phosphorylated and total IRE1α (Figure 7B and 7C), and phospho-eIF2α (Figure 7B and 7E) were observed following SRp55 silencing. Moreover, induction of BIP (Figure 7F) and XBP1 spliced (Figure 7G) mRNAs was detected by qPCR, indicating that SRp55 deficiency may directly or indirectly lead to ER stress. No significant changes, however, were observed for phosphorylated and total PERK, and CHOP (Figure 7D and 7H). In order to determine whether ER stress indeed contributes to SRp55 KD-induced apoptosis, we performed a double knock down experiment of IRE1α and SRp55 (Figure 7I and 7J). IRE1α silencing protected EndoC-βH1 against cell death induced by SRp55 deficiency (Figure 7K), demonstrating that defects in ER homeostasis and consequent ER stress promote apoptosis in SRp55-depleted cells.

DISCUSSION

The present findings indicate that SRp55 drives a crucial splicing program for the preservation of human pancreatic beta cell survival and function. SRp55 is highly
expressed in human pancreatic beta cells, and its depletion leads to beta cell apoptosis and impaired insulin secretion. SRp55 levels are down-regulated by pro-inflammatory cytokines and may contribute to cytokine-induced beta cell apoptosis. These observations suggest that SRp55 acts as a master splicing regulator of beta cell survival under both basal and immune-induced stress conditions. In line with these observations, SRp55 regulates AS of multiple transcripts involved in cell death, JNK signalling, insulin secretion and ER stress, providing a mechanistic link between the observed phenotype and SRp55 targets.

Our group has previously shown that SRp55 is transcriptionally regulated by the transcription factor Glis3 (9). The GLIS3 locus is associated with T1D and T2D (4, 5), with glucose metabolism traits in non-diabetic subjects (37) and its inactivation leads to a severe form of monogenic diabetes in humans (6, 38). GLIS3 is also required for beta cell survival (9), and defective Glis3 expression affects the unfolded protein response promoting beta cell fragility (39). We presently observed that decreased SRp55 expression recapitulates many of the pathological features induced by GLIS3 deficiency, i.e. increased beta cell apoptosis, defective insulin release and ER stress, suggesting that SRp55 may acts as an important down-stream mediator of GLIS3 function.

The function of many BCL-2 proteins and other apoptotic regulators is modulated by AS, producing variants that differ in their localization, post-translation regulation or pro-apoptotic activity (40, 41). Our RNA-seq analysis revealed that SRp55 regulates several genes involved in pancreatic beta cell apoptosis, including several BCL-2 proteins. Importantly, SRp55 depletion affects the splicing of the apoptotic activator BAX, promoting the expression of the constitutively active isoform BAX β. The canonical isoform BAX α contains a C-terminal transmembrane domain tucked into
the dimerization pocket that maintains BAX α in an auto-inhibited monomeric conformation in the cytosol. Following pro-apoptotic signalling, BH3-only activators such as BIM and PUMA induce a conformational change on BAX α promoting its oligomerization, translocation to the mitochondria, permeabilization of the outer membrane, and activation of apoptosis (42). BAX β, on the other hand, retains intron 5, creating a distinct C-terminal domain that maintains it in a permanently activated conformation, leading to its spontaneous oligomerization and activation of apoptosis (34). In addition, BAX β can also act as a BH3-only activator, being able to activate BAX α (34). BAX α may also be activated by BIM S (43), presently shown to be induced by SRp55 KD. The fact that independent KD of BAX β or BIM nearly completely prevents the increase in beta cell apoptosis observed following SRp55 KD suggest that both mechanisms are required to trigger the intrinsic pathway of apoptosis under the present experimental conditions.

Interestingly, our data indicate that SRp55 regulates two other pathways potentially involved in beta cell death in cross-talk with BCL-2 proteins, namely the JNK signalling cascade and ER stress. The JNK pathway has a pivotal role in integrating different stress signals and in promoting beta cell death (33, 44, 45). JNK1 signalling stimulates transcription and activity of pro-apoptotic BCL-2 proteins through activation of the transcription factor c-JUN and via direct phosphorylation (33). Moreover, the JNK pathway is also activated by endoplasmic reticulum stress via the transmembrane protein IRE1α (46). Different JNK splice variants may differ in their enzymatic activities, substrates and activation/deactivation kinetics (47, 48). For instance, a single splice change in MKK7 is able to increase the JNK pathway activity in T-cells (49). SRp55 depletion affects the splicing of several kinases of the JNK signalling cascade (present data). These findings indicate that some of these
changes modify the basal activity of the pathway, leading to JNK hyper-activation and contributing to beta cell to apoptosis. JNK hyper-activation may also be secondary to the unfolded protein response (UPR) via IRE1α signalling (46). We presently observed that SRp55 silencing induces basal endoplasmic reticulum stress. The mechanisms by which SRp55 deficiency triggers ER stress remains to be clarified, but splicing alterations in ER-associated protein degradation genes suggest that the ER function may be compromised via defective disposal of terminally misfolded proteins.

Reduced SRp55 expression also leads to impaired insulin release. Insulin exocytosis is tightly coupled to glucose metabolism, requiring mitochondrial ATP production to induce the closure of K_{ATP} channels and the generation of Ca^{2+} influx that ultimately triggers the release of insulin (50). Our present findings suggest that impaired glucose-induced insulin release is related to mitochondrial dysfunction. Furthermore, SRp55 silencing modifies expression of genes and splice variants related to metabolic pathways, exocytosis and calcium signalling, all potentially impacting on the regulation of insulin secretion. The findings described above are, however, correlative and the precise mechanisms by which SRp55 depletion impairs beta cell function remain to be clarified.

In conclusion, the present observations indicate that SRp55 coordinates a splicing network of functionally interconnected genes in beta cells. These genes are required for beta cell survival and functional phenotype. This suggests that alterations in SRp55 – for instance downstream of polymorphisms that decrease activity of the diabetes candidate gene $GLIS3$ – may promote beta cell failure and loss in diabetes.

ACKNOWLEDGEMENTS
The authors are grateful to Isabelle Millard, Anyishaï Musuaya, Nathalie Pachera and Michaël Pangerl of the ULB Center for Diabetes Research for excellent technical support. We thank Professor Hirokazu Hara (Gifu Pharmaceutical University, Japan) for kindly providing the human SRp55 expression plasmid.

FUNDING
This work was supported by grants from the Fonds National de la Recherche Scientifique (FNRS), Welbio CR-2015A-06, Belgium; the Horizon 2020 Program, T2Dsystems (GA667191); the National Institutes of Health, NIH-NIDDK-HIRN Consortium 1UC4DK104166-01. D.L.E and P.M. have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 115797 (INNODIA). This Joint Undertaking receives support from the Union's Horizon 2020 research and innovation programme and “EFPIA”, ‘JDRF” and “The Leona M. and Harry B. Helmsley Charitable Trust”. J.J-M. was supported by a MSCA fellowship grant from the Horizons 2020 EU program (Project reference: 660449). M.I.A. was supported by a FRIA fellowship from the Fonds National de la Recherche Scientifique (FNRS, reference: 26410496).

DUALITY OF INTERESTS
The authors declare that they have no conflicts of interest with the contents of this article.

AUTHOR CONTRIBUTIONS
J.J-M., M.I.A. and D.L.E. conceived and designed the experiments. J.J-M., M.I.A., J.-V.T, O.V., E.L-M., F.A.G. and L.M. acquired data. M.B. and P.M. contributed with material and reagents. J.J-M, M.I.A and D.L.E. wrote the manuscript. All authors
revised the manuscript. J.J.M. and D.L.E. are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

REFERENCES

1. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL: Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: Many differences, few similarities. Diabetes. 54 Suppl 2:S97-107, 2005
2. Rahier J, Guiot Y, Goebbel RM, Sempoux C, Henquin JC: Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab. 10 Suppl 4:32-42, 2008
3. Campbell-Thompson M, Fu A, Kaddis JS, Wasserfall C, Schatz DA, Pugliese A, Atkinson MA: Insulitis and beta-cell mass in the natural history of type 1 diabetes. Diabetes. 65:719-731, 2016
4. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, Julien C, Morahan G, Nerup J, Nierras C, Plagnol V, Pociot F, Schulenburg H, Smyth DJ, Stevens H, Todd JA, Walker NM, Rich SS, Type 1 Diabetes Genetics Consortium: Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 41:703-707, 2009
5. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Boitnia-Naji N, Gloyan AL, Lindgren CM, Magi R, Morris AP, Randall J, Johnson T, Elliott P, Rybin D, Thorleifsson G, Steinthorsdottir V, Henneman P, Grallert H, Dehghan A, Hottenga JJ, Franklin CS, Navarro P, Song K, Goel A, Perry JR, Egan JM, Lajunen T, Grarup N, Sparso T, Doney A, Voight BF, Stringham HM, Li M, Kanoni S, Shrader P, Cavalcanti-Proenca C, Kumari M, Qi L, Timpson NJ, Gieger C, Zabena C, Rocheleau G, Ingelsson E, An P, O’Connor J, Luan J, Elliott A, McCarroll SA, Payne F, Roccanese RM, Pattou F, Sethupathy P, Ardlie K, Aruliyer Y, Balkau B, Barter P, Beilby JP, Ben-Shlomo Y, Benediktsson R, Bennett AJ, Bergmann S, Bochud M, Boerwinkle E, Bonnefond A, Bonnycastle LL, Borch-Johnsen K, Botthcher Y, Brunner E, Bumpstead SJ, Charpentier G, Chen YD, Chines P, Clarke R, Coin LJ, Cooper MN, Cornelis M, Crawford G, Crisponi L, Day IN, de Geus EJ, Delplanque J, Dina C, Erdos MR, Fedson AC, Fischer-Rosinsky A, Forouhi NG, Fox CS, Frants R, Franzosi MG, Galan P, Goodarzi MO, Graessler J, Groves CJ, Grundy S, Gwilliam R, Gyllensten U, Hadjadj S, Hallmans G, Hammond N, Han X, Hartikainen AL, Hassanali N, Hayward C, Heath SC, Hercberg S, Herder C, Hicks AA, Hillman DR, Hingorani AD, Hofman A, Hui J, Hung J, Iosomaa B, Johnson PR, Jorgensen T, Jula A, Kaakinen M, Kaprio J, Kesaniemi YA, Kivimaki M, Knight B, Koskinen S, Kovacs P, Kyvik KO, Lathrop GM, Lawlor DA, Le Bacquer O, Lecoeur C, Li Y, Lyssenko V, Mahley R, Mangino M, Manning AK, Martinez-Larrad MT, McAteer JB, McCulloch LJ, McPherson R, Meisinger C, Melzer D, Meyre D, Mitchell BD, Morken MA, Mukherjee S, Naitza S, Narisu N, Neville MJ, Oostra BA, Ortu M, Pakyz R, Palmer CN, Paolisso G, Pattaro C, Pearson D, Peden JF, Pedersen NL, Perola M, Pfeiffer AF, Pichler I, Polasek O, Posthumus D, Potter SC, Pouta A, Province MA, Psaty BM, Rathmann W, Rayner
NW, Rice K, Ripatti S, Rivadeneira F, Roden M, Rolandsson O, Sandbaek A, Sandhu M, Sanna S, Sayer AA, Scheet P, Scott LJ, Seedof U, Sharp SJ, Shields B, Sigurathsson G, Sijbrands EJ, Silveira A, Simpson L, Singleton A, Smith NL, Sovio U, Swift A, Syddall H, Syvanen AC, Tanaka T, Thorand B, Tichet J, Tonjes A, Tuomi T, Uitterlinden AG, van Dijk KW, van Hoek M, Varma D, Visvikis-Siest S, Vitart V, Vogelzangs N, Waeber G, Wagner PJ, Walley A, Walters GB, Ward KL, Watkins H, Weedon MN, Wild SH, Willemsen G, Witteman JC, Yarnell JW, Zeggini E, Zelenika D, Zethelius B, Zhao JH, Zillikens MC, DIAGRAM Consortium, GIANT Consortium, Global BPgen Consortium, Borecki IB, Loos RJ, Meneton P, Magnusson PK, Nathan DM, Williams GH, Hattersley AT, Silander K, Salomaa V, Smith GD, Bornstein SR, Schwarz P, Spranger J, Karpe F, Shuldiner AR, Cooper C, Dedoussis GV, Serrano-Rios M, Morris AD, Lind L, Palmer LJ, Hu FB, Franks PW, Ebrahim S, Marmot M, Kao WH, Pankow JS, Sampson MJ, Kuusisto J, Laakso M, Hansen T, Pedersen O, Orphal PP, Wichmann HE, Illig T, Rudan I, Wright AF, Stumvoll M, Campbell H, Wilson JF, Anders Hamsten on behalf of Procardis Consortium, MAGIC investigators, Bergman RN, Buchanan TA, Collins FS, Mohlke KL, Tuomilehto J, Valle TT, Altshuler D, Rotter JI, Siscovick DS, Penninx BW, Boomsma DI, Deloukas P, Spector TD, Frayling TM, Ferrucci L, Kong A, Thorsteinsdottir U, Stefansson K, van Duijn CM, Aulchenko YS, Cao A, Scuteri A, Schlessinger D, Uda M, Ruokonen J, Jarvelin MR, Green WM, Waterworth DM, Vollenweider P, Peltonen L, Mooser V, Abecasis GR, Wareham NJ, Sladek R, Frigou P, Watanabe RM, Meigs JB, Group L, Boehnke M, McCarthy MI, Florez JC, Barroso I: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 42:105-116, 2010

6. Senee V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC, Charon C, Nicolino M, Boileau P, Cavener DR, Bougneres P, Taha D, Julier C: Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet. 38:682-687, 2006

7. ZeRuth GT, Takeda Y, Jetten AM: The kruppel-like protein gli.similar 3 (Glis3) functions as a key regulator of insulin transcription. Mol Endocrinol. 27:1692-1705, 2013

8. Yang Y, Chang BH, Yechoor V, Chen W, Li L, Tsai MJ, Chan L: The kruppel-like zinc finger protein GLIS3 transactivates neurogenin 3 for proper fetal pancreatic islet differentiation in mice. Diabetologia. 54:2595-2605, 2011

9. Nogueira TC, Paula FM, Villate O, Colli ML, Moura RF, Cunha DA, Marselli L, Marchetti P, Cnop M, Julier C, Eizirik DL: GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein bim. PLoS Genet. 9:e1003532, 2013

10. Calarco JA, Zhen M, Blencowe BJ: Networking in a global world: Establishing functional connections between neural splicing regulators and their target transcripts. RNA. 17:775-791, 2011

11. Papasaikas P, Rao A, Huggins P, Valcarcel J, Lopez A: Reconstruction of composite regulator-target splicing networks from high-throughput transcriptome data. BMC Genomics. 16 Suppl 10:S7:2164-16-S10-S7. Epub 2015 Oct 2, 2015

12. Villate O, Turatsinze JV, Mascalci LG, Grieco FA, Nogueira TC, Cunha DA, Nardelli TR, Sammethyl M, Salunkhe VA, Esguerra JL, Eliaison L, Marselli L, Marchetti P, Eizirik DL: Nova1 is a master regulator of alternative splicing in pancreatic beta cells. Nucleic Acids Res. 42:11818-11830, 2014
13. Juan-Mateu J, Rech TH, Villate O, Lizarraga-Mollinedo E, Wendt A, Turatsinze JV, Brondani LA, Nardelli TR, Nogueira TC, Esguerra JL, Alvelos MI, Marchetti P, Eliasson L, Eizirik DL: Neuron-enriched RNA-binding proteins regulate pancreatic beta cell function and survival. J Biol Chem. 292:3466-3480, 2017

14. Eizirik DL, Sammeth M, Bouckenooghe T, Bottu G, Sisino G, Igoillo-Esteve M, Ortis F, Santin I, Colli ML, Barthson J, Bouwens L, Hughes L, Gregory L, Lunter G, Marselli L, Marchetti P, McCarthy MI, Cnop M: The human pancreatic islet transcriptome: Expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 8:e1002552, 2012

15. Juan-Mateu J, Villate O, Eizirik DL: MECHANISMS IN ENDOCRINOLOGY: Alternative splicing: The new frontier in diabetes research. Eur J Endocrinol. 174:R225-38, 2016

16. Cohen-Eliav M, Golan-Gerstl R, Siegfried Z, Andersen CL, Thorsen K, Orntoft TF, Mu D, Karni R: The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers. J Pathol. 229:630-639, 2013

17. Jensen MA, Wilkinson JE, Krainer AR: Splicing factor SRSF6 promotes hyperplasia of sensitized skin. Nat Struct Mol Biol. 21:189-197, 2014

18. Brozzi F, Gerlo S, Grieco FA, Nardelli TR, Lievens S, Gysemans C, Marselli L, Marchetti P, Mathieu C, Tavernier J, Eizirik DL: A combined "omics" approach identifies N-myc interactor as a novel cytokine-induced regulator of IRE1 protein and c-jun N-terminal kinase in pancreatic beta cells. J Biol Chem. 289:20677-20693, 2014

19. Kutlu B, Cardozo AK, Darville MI, Kruhoffer M, Magnusson N, Orntoft T, Eizirik DL: Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes. 52:2701-2719, 2003

20. Eizirik DL, Sammeth M, Bouckenooghe T, Bottu G, Sisino G, Igoillo-Esteve M, Ortis F, Santin I, Colli ML, Barthson J, Bouwens L, Hughes L, Gregory L, Lunter G, Marselli L, Marchetti P, McCarthy MI, Cnop M: The human pancreatic islet transcriptome: Expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 8:e1002552, 2012

21. Trapnell C, Pachter L, Salzberg SL: TopHat: Discovering splice junctions with RNA-seq. Bioinformatics. 25:1105-1111, 2009

22. Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R, Dermitzakis ET: Transcriptome genetics using second generation sequencing in a caucasian population. Nature. 464:773-777, 2010

23. Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, Zhou Q, Xing Y: rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc Natl Acad Sci U S A. 111:E5593-601, 2014

24. Park JW, Jung S, Rouchka EC, Tseng YT, Xing Y: rMAPS: RNA map analysis and plotting server for alternative exon regulation. Nucleic Acids Res. 44:W333-8, 2016

25. Liu HX, Zhang M, Krainer AR: Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 12:1998-2012, 1998

26. Huang da W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1-13, 2009

27. Overbergh L, Valckx D, Waer M, Mathieu C: Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PCR. Cytokine. 11:305-312, 1999
28. Andersson LE, Valtat B, Bagge A, Sharoyko VV, Nicholls DG, Ravassard P, Scharfmann R, Spegel P, Mulder H: Characterization of stimulus-secretion coupling in the human pancreatic EndoC-betaH1 beta cell line. PLoS One. 10:e0120879, 2015
29. Jeong S: SR proteins: Binders, regulators, and connectors of RNA. Mol Cells. 40:1-9, 2017
30. Jiang Z, Tian J, Zhang W, Yan H, Liu L, Huang Z, Lou J, Ma X: Forkhead protein FoxO1 acts as a repressor to inhibit cell differentiation in human fetal pancreatic progenitor cells. J Diabetes Res. 2017:6726901, 2017
31. Schaffer AE, Taylor BL, Benthuysen JR, Liu J, Thorel F, Yuan W, Jiao Y, Kaestner KH, Herrera PL, Magnuson MA, May CL, Sander M: Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic beta cell identity. PLoS Genet. 9:e1003274, 2013
32. Dassaye R, Naidoo S, Cerf ME: Transcription factor regulation of pancreatic organogenesis, differentiation and maturation. Islets. 8:13-34, 2016
33. Gurzov EN, Eizirik DL: Bcl-2 proteins in diabetes: Mitochondrial pathways of beta-cell death and dysfunction. Trends Cell Biol. 21:424-431, 2011
34. Fu NY, Sukumaran SK, Kerk SY, Yu VC: Baxbeta: A constitutively active human bax isoform that is under tight regulatory control by the proteasomal degradation mechanism. Mol Cell. 33:15-29, 2009
35. Mokhtari D, Myers JW, Welsh N: The MAPK kinase kinase-1 is essential for stress-induced pancreatic islet cell death. Endocrinology. 149:3046-3053, 2008
36. Gurzov EN, Ortis F, Bakiri L, Wagner EF, Eizirik DL: JunB inhibits ER stress and apoptosis in pancreatic beta cells. PLoS One. 3:e3030, 2008
37. Boesgaard TW, Grarup N, Jorgensen T, Borch-Johnsen K, Meta.Analysis of Glucose and Insulin-Related Trait Consortium (MAGIC), Hansen T, Pedersen O: Variants at DGKB/TMEM195, ADRA2A, GLIS3 and C2CD4B loci are associated with reduced glucose-stimulated beta cell function in middle-aged danish people. Diabetologia. 53:1647-1655, 2010
38. Dimitri P, Habeb AM, Gurbuz F, Millward A, Wallis S, Moussa K, Akcay T, Taha D, Hogue J, Slavotinek A, Wales JK, Shetty A, Hawkes D, Hattersley AT, Ellard S, De Franco E: Expanding the clinical spectrum associated with GLIS3 mutations. J Clin Endocrinol Metab. 100:E1362-9, 2015
39. Dooley J, Tian L, Schonefeldt S, Delghingaro-Augusto V, Garcia-Perez JE, Pasciuto E, Di Marino D, Carr EJ, Osokolv N, Lyssenko V, Franckaert D, Lagou V, Overbergh L, Vandenbussche J, Allemersch J, Chabot-Roy G, Dahlstrom JE, Laybut DR, Petrovsky N, Socha L, Gevaert K, Jetten AM, Lambrechts D, Linterman MA, Goodnow CC, Nolan CJ, Lesage S, Schlenner SM, Liston A: Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nat Genet. 48:519-527, 2016
40. Akgul C, Moulding DA, Edwards SW: Alternative splicing of bcl-2-related genes: Functional consequences and potential therapeutic applications. Cell Mol Life Sci. 61:2189-2199, 2004
41. Schwerk C, Schulze-Osthoff K: Regulation of apoptosis by alternative pre-mRNA splicing. Mol Cell. 19:1-13, 2005
42. Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B, Andrews DW: Bax forms multispansing monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J. 24:2096-2103, 2005
43. Marani M, Tenev T, Hancock D, Downward J, Lemoine NR: Identification of novel isoforms of the BH3 domain protein bim which directly activate bax to trigger apoptosis. Mol Cell Biol. 22:3577-3589, 2002

44. Cunha DA, Hekerman P, Ladriere L, Bazarra-Castro A, Ortis F, Wakeham MC, Moore F, Rasschaert J, Cardozo AK, Bellomo E, Overbergh L, Mathieu C, Lupi R, Hai T, Herchuelz A, Marchetti P, Rutter GA, Eizirik DL, Cnop M: Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J Cell Sci. 121:2308-2318, 2008

45. Cunha DA, Igoillo-Esteve M, Gurzov EN, Germano CM, Naamane N, Marhfour I, Fukaya M, Vanderwinden JM, Gysemans C, Mathieu C, Marselli L, Marchetti P, Harding HP, Ron D, Eizirik DL, Cnop M: Death protein 5 and p53-upregulated modulator of apoptosis mediate the endoplasmic reticulum stress-mitochondrial dialog triggering lipotoxic rodent and human beta-cell apoptosis. Diabetes. 61:2763-2775, 2012

46. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 287:664-666, 2000

47. Figuera-Losada M, LoGrasso PV: Enzyme kinetics and interaction studies for human JNK1beta1 and substrates activating transcription factor 2 (ATF2) and c-jun N-terminal kinase (c-jun). J Biol Chem. 287:13291-13302, 2012

48. Zeke A, Misheva M, Remenyi A, Bogoyevitch MA: JNK signaling: Regulation and functions based on complex protein-protein partnerships. Microbiol Mol Biol Rev. 80:793-835, 2016

49. Martinez NM, Agosto L, Qiu J, Mallory MJ, Gazzara MR, Barash Y, Fu XD, Lynch KW: Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes Dev. 29:2054-2066, 2015

50. Henquin JC: The dual control of insulin secretion by glucose involves triggering and amplifying pathways in beta-cells. Diabetes Res Clin Pract. 93 Suppl 1:S27-31, 2011

FIGURE LEGENDS

Figure 1. SRp55 is highly expressed in human pancreatic beta cells and its depletion leads to increased beta cell apoptosis. **(A)** Fluorescence microscopy analysis of insulin and SRp55 in human islets (left panel) and in the human beta cell line EndoC-βH1 (right panel), showing staining of SRp55 in red, insulin in green and nuclei in blue. **(B)** mRNA expression of SRp55 in human islets, EndoC-βH1 cells and in a panel of normal human tissues was measured by qRT-PCR and normalized by the housekeeping gene β-actin. **(C-D)** Human islets were transfected with control (siCTL) or specific siRNAs against SRp55 (siSR#1 and siSR#2) for 48h. **(C)** SRp55 knock-down levels were assessed by qRT-PCR, and **(D)** apoptosis evaluated by
Hoechst/PI staining. (E-I) EndoC-βH1 cells were transfected with control or specific siRNAs against SRp55 for 48h. SRp55 knock-down levels were assessed by qRT-PCR (E) and by western blot (F). Apoptosis of EndoC-βH1 cells following SRp55 KD was evaluated by Hoechst/PI staining (G) and by cleaved caspase 3 immunofluorescence (H, I). Scale bars, 1 µm. Results are mean ± SEM of three to nine independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 vs. siCTL. Paired t-test.

Figure 2. RNA sequencing of EndoC-βH1 cells following SRp55 depletion. (A) Pairwise comparison of control versus SRp55 KD EndoC-βH1 cassette exons shown as a volcano plot. Alternative splicing events presenting a difference of percent spliced index (ΔPSI) higher than 5% and a FDR ≤0.01% were considered modified as indicated by doted lines. (B) Number and proportion of the different alternative splicing events modified after SRp55 silencing as identified by rMATS analysis. (C) Ingenuity pathway analysis of genes showing differential alternative splicing (enhanced or inhibited) subsequent to SRp55 depletion. (D) Heat-maps showing genes enriched with Gene Ontology terms involved in cell survival and beta cell function. PSI values are represented by gradient colours and shown for each individual control and SRp55 KD sample. Red, higher PSI; blue, lower PSI. Results are based on five RNA-seq samples.

Figure 3. Confirmation of SRp55-regulated splicing events. Representative RT-PCR validations of SRp55-regulated alternative splicing events. cDNAs were amplified by RT-PCR using primers located in the up-stream and down-stream exons of the modified splicing event. PCR fragments were analysed by automated
electrophoresis using a Bioanalyzer machine and quantified by comparison with a loading control. For each gene, representative gel images showing different splice variants affected by SRp55 KD and the corresponding inclusion/exclusion ratio are shown. The structure of each isoform is indicated with blocks representing exons and solid lines introns. Alternatively spliced regions are indicated in red, green or blue. Results are mean ± SEM of three to eight independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 vs. siCTL. Paired t-test.

Figure 4. SRp55 depletion impairs insulin secretion and mitochondrial respiration. A) Insulin secretion in EndoC-βH1 cells was evaluated by ELISA after 1 h stimulation with 1 mM glucose, 20 mM glucose or 20 mM glucose plus forskolin. Here and below, black bars indicate transfection with control siRNA and white bars with siRNA against SRp55. B) Insulin content after SRp55 KD was evaluated by ELISA. C-G) Analysis of mitochondrial respiration parameters in EndoC-βH1 cells using a Seahorse oximeter. C) Oxygen consumption rates (OCR) profiles of control and SRp55 KD cells in basal conditions (1 mM glucose) and after sequential treatment with glucose (20 mM), oligomycin (5 μM), FCCP (4 μM) and rotenone plus antimycin A (1 μM each). Injection of different compounds is indicated by arrows. D) Basal respiration (1 mM glucose), calculated by subtracting non-mitochondrial respiration to the last measurement before 20 mM glucose injection. E) Response to high glucose, calculated by subtracting the last basal respiration measurement to the last measurement after injection of 20 mM glucose. F) ATP production, calculated by subtracting the minimum measurement after oligomycin injection to the last measurement after glucose injection. G) Maximal respiration, calculated by subtracting non-mitochondrial respiration to the maximum measurement after FCCP
injection. **H** mRNA expression of transcription factors regulating beta cell identity and phenotype. In the upper panel RNA-seq expression values in RPKM are shown and in the lower panel confirmation by qRT-PCR normalized by the housekeeping gene β-actin are indicated. Results are means ± SEM of three to nine experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 vs. siCTL. **A** ANOVA followed by Bonferroni post hoc test. **B and D-H** Paired t-test.

Figure 5. SRp55 controls the expression of a constitutively active isoform of the apoptotic inducer BAX contributing to increased beta cell apoptosis. **A** Schematic representation of BAX isoforms α and β, and RNA-seq reads in control and SRp55 KD cells mapping to the distal part of the gene. Boxes represent exons; grey are untranslated regions and black are coding regions. Solid lines represent introns. **B** Model of activation of apoptosis by BAX α and BAX β isoforms proposed by Fu and colleagues (35). Upon apoptotic signalling, BH3-only molecules such as BIM activate BAX α to promote its translocation and oligomerization to the mitochondria outer membrane, leading to cytochrome c release and activation of apoptosis. On the other hand, BAX β spontaneously targets, oligomerizes, and permeabilizes mitochondria, behaving as a constitutively active isoform. Double KD of SRp55 and BAX β in EndoC-βH1 cells (C-F) and in human islets (G). Cells were transfected with siCTL, siSRp55#2, siBaxβ or siSRp55#2 + siBaxβ for 48 h. **C** Fluorescence microscopy analysis of BAX and the mitochondrial marker ATP synthase in EndoC-βH1 cells, showing that SRp55 KD leads to increased translocation of BAX to the mitochondria, a phenomenon prevented by BAX β silencing. Scale bars, 1 µm. mRNA expression of SRp55 (D) and BAX β (E) was measured by qRT-PCR and normalized by the housekeeping gene β-actin. mRNA
expression values were normalized by the highest value of each experiment, considered as 1. **F**) Proportion of apoptotic cells in EndoC-βH1 cells. **G**) Proportion of apoptotic cells in dispersed human islets. Results are mean ± SEM of four to five independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 vs. siCTL; #p < 0.05, ##p < 0.01 and ###p < 0.001 as indicated by bars. ANOVA followed by Bonferroni post hoc test.

Figure 6. SRp55 modifies the splicing of JNK signalling cascade genes leading to JNK1 hyper-activation and beta cell apoptosis. A) Schematic representation of the JNK signalling pathway. In blue, proteins showing splicing alterations detected by RNA-seq following SRp55 KD are shown. In red, proteins exhibiting overphosphorylation upon SRp55 depletion are shown. **B**) Representative western blots and densitometric measurements of total and phosphorylated forms of MKK7, JNK1 and c-JUN in EndoC-βH1 cells in control conditions and after SRp55 KD. Double KD of SRp55 and JNK1 in EndoC-βH1 cells (C-E) and in human islets (F). Cells were transfected with siCTL, siSRp55#2, siJNK1 or siSRp55#2 + siJNK1 for 48 h. mRNA expression of SRp55 (C) and JNK1 (D) was measured by qRT-PCR and normalized by the housekeeping gene β-actin. mRNA expression values were normalized by the highest value of each experiment, considered as 1. **E**) Proportion of apoptotic cells in EndoC-βH1 cells. **F**) Proportion of apoptotic cells in dispersed human islets. **G-K**) Specific KD of three SRp55-regulated spliced variants of the JNK cascade. EndoC-βH1 cells were transfected with siCTL, siSRp55#2 or specific siRNAs targeting cassette exons of MAP3K7 (exon 12, siMAP3K7e12), JNK1 (exon 3, siJNK1e3) and JNK2 (exon 2, siJNK2e2). **(G-I**) Representative RT-PCR validations showing increased exon skipping in MAP3K7 (G), JNK1 (H) and JNK2 (I).
J) Percentage of apoptotic cells, and (K) JNK phosphorylation after SRp55 KD or skipping of MAP3K7, JNK1 and JNK2 cassette exons. Results are mean ± SEM of four to five independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 vs. siCTL; ##p < 0.01 and ###p < 0.001 as indicated by bars. B, G-K) Paired t-test. C-F) ANOVA followed by Bonferroni post hoc test.

Figure 7. SRp55 KD-induced endoplasmic reticulum stress contributes to beta cell demise. A) Heat map showing alternative splicing and gene expression changes in genes involved in ER-associated protein degradation process (upper panel) and markers of the unfolded protein response (lower panel). Red, higher and blue, lower expression. B-E) Representative western blots and densitometric measurements of total and phosphorylated forms of IRE1α (C), PERK (D) and eIF2α (E). mRNA expression of BIP (F), XBP1 spliced (G) and CHOP (H) after SRp55 KD was measured by qRT-PCR and normalized by the housekeeping gene β-actin. I-K) Double KD of SRp55 and IRE1α in EndoC.βH1 cells. Cells were transfected with siCTL, siSRp55#2, siIRE1α or siSRp55#2 + siIRE1α for 48 h. mRNA expression of SRp55 (I) and IRE1α (J) was measured by qRT-PCR and normalized by the housekeeping gene β-actin. mRNA expression values were normalized by the highest value of each experiment, considered as 1. K) The proportion of apoptotic cells was evaluated by Hoechst/PI staining. Results are mean ± SEM of four to nine independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 vs. siCTL; #p < 0.05 and ###p < 0.001 as indicated by bars. C-H) Paired t-test. I-K) ANOVA followed by Bonferroni post hoc test.
FIGURE 1

A

Human islets EndoC-βH1

SRp55
Insulin
Hoechst
Merge

C

SRp55/β-actin

siCTL
siSR#1
siSR#2

% apoptosis

D

SRp55/β-actin

% apoptosis

E

SRp55/tubulin

% C-casp3 positive cells

F

G

H

Cleaved Caspase 3 Merge

siCTL
sSR#2

I

% C-casp3 positive cells
FIGURE 2

A

-\log_{10} p-value

\Delta PSI

-log10 p-value

0.5

0

-0.5

-1.0

B

Alternative 5' ss, 781, 9%

Alternative 3' ss, 665, 7%

Cassette exons, 5269, 59%

Intron retention, 278, 3%

Mutually exclusive exons, 1970, 22%

C

Molecular and Cellular Functions	P-value range	# Genes
Cellular Assembly and Organization	5.28E-03 – 8.07E-12	754
Cellular Function and Maintenance	4.94E-03 – 1.08E-11	723
Cell Cycle	5.47E-03 – 5.17E-09	582
DNA Replication, Recombination and Repair	4.14E-03 – 5.17E-09	368
Cell Death and Survival	5.47E-03 – 3.45E-08	580

D

Type 2 diabetes

Positive regulation of apoptotic process

Insulin secretion

JNK signalling cascade
FIGURE 3

A. BAX

B. BCL2L11

C. DIABLO

D. INSR

E. JNK2

F. MAP3K7

G. JNK1

H. SMARCC2

I. DNM2

J. SNAP25

K. CACNA2C

L. CACNA1D

[Diagrams showing various gene expression levels for different conditions and controls.]
FIGURE 5

A

BAX α
BAX β

B

C

siCTL siSR#2 siBaxβ siSR#2 + siBaxβ

BAX

ATP synthase

MERGE

D

E

F

G

SRp55/β-actin

Bax/β-actin

% apoptosis

% apoptosis

Diabetes
FIGURE 7

A

Alternative splicing

Log PSI

-3 0 3

Gene expression

Log RPKMI

-3 0 3

B

siCTL siSR#2

p-IRE1α

IRE1α

tubulin

siCTL siSR#2

p-PERK

PERK

tubulin

siCTL siSR#2

p-eIF2α

eIF2α

tubulin

C

p-IRE1α / IRE1α

siCTL

siSR#2

D

p-PERK / PERK

PERK / tubulin

E

p-eIF2α / eIF2α

eIF2α / tubulin

F

BIP / β-actin

G

XBP1 spl / β-actin

H

CHOP / β-actin

I

SRp55 / β-actin

J

IRE1α / β-actin

K

% apoptosis

siCTL

siSR#2

siIRE1α #1

siSR#2+siIRE1α #1
SUPPLEMENTARY FIGURE S2

A. Scatter plot showing the relationship between siCTL and siSR#2 log2 RPKM.

B. Scatter plot showing the relationship between siCTL and siSR#2 log2 RPKM.

C. Bar chart showing the number of differentially spliced genes.

D. Venn diagram illustrating the overlap of differentially spliced and expressed genes.

- 4055 differentially spliced genes
- 841 differentially expressed genes
- 2981 genes co-expressed and spliced

Diabetes
SUPPLEMENTARY FIGURE S3

A

B

C

D

SUPPLEMENTARY FIGURE S3

A

B

C

D
SUPPLEMENTARY FIGURE S4

A

siCTL siSR#2
BIM L
BIM S
tubulin

B

siCTL siSR#2

Bim S/Bim L

C

siCTL siSR#2

total Bim/tubulin

D

SRp55/β-actin

0.0 0.4 0.8 1.2

F

Bim S/β-actin

0.0 0.4 0.8 1.2

G

% apoptosis

0 5 10 15 20 25

- siCTL- siSR#2- siBim- siSR#2 + siBim

* *** ### ###
SUPPLEMENTAL DATA

SUPPLEMENTARY TABLE AND FIGURE LEGENDS

Supplementary Table S1. Characteristics of the organ donors and human islet preparations used.

ID	Gender	Age (years)	BMI (kg/m²)	Cause of death	Purity (%)
ID1	M	69	25	CVD	85
ID2	M	85	25.5	CH	39
ID3	M	59	27.7	TR	56
ID4	F	76	19.5	CH	35
ID5	F	64	23.4	CH	76
ID6	M	42	32.6	TR	36
ID7	M	78	23.4	TR	43
ID8	F	63	27.3	ST	58
ID9	F	63	26	CH	45

The abbreviations used are as follows: F, female; M, male; BMI, body mass index; CVD, cardiovascular disease; CH, cerebral hemorrhage; TR, trauma; ST, stroke. Purity indicates the percentage of beta cells in the human islet preparations as determined by immunostaining for insulin.

Supplementary Table S2. Sequences of siRNAs used to knock down gene expression.

Name	Supplier	Sequence
siCTL (Allstars Negative Control siRNA)	Qiagen, Venlo, Netherlands	Not provided
siSRp55#1 Silencer Select siRNAi	Invitrogen, Pasley, UK	5’GCGUCUACAUAGGACGCUGACUA 3’
siSRp55#2 Silencer Select siRNAi	Invitrogen, Pasley, UK	5’CCUGUUCGUACAGAAUCAGCCGCUUA3’
siBAXβ Custom designed	Dharmacon, Lafayette, USA	Sense 5’ UCGCUAUGUGUCGAGCAGUUU 3’ Antisense 5’ AACCUGGGCAACAUAGCGAUU 3’
siBIM Silencer Select
siRNAi Invitrogen, Pasley, UK 5’ ACGAAUGGUUAUCUUACGACUGUU 3’
siJNK1 Silencer Select siRNAi Invitrogen, Pasley, UK 5’GGGCCUACAGAGCUAGUUCUUAU3’
siRE1α Silencer Select siRNAi Invitrogen, Pasley, UK 5’CCCACCACCGUGGACACUUU3’
siMAP3K7e12 Custom designed Dharmacon Sense 5’ UGGAUGUCCUGAGAUCGUU 3’
Antisense 5’ ACAGUCUCAGGGACACAGUAAU 3’
siJNK1e3 Custom designed Dharmacon Sense 5’ UCACAGAGGAAGCAUCAUU 3’
Antisense 5’ UGAUGCUUUACCUCUGGAU 3’
siJNK2e2 Custom designed Lafayette, USA Sense 5’ AGUGUCUCAGGGACACAGUAAU 3’
Antisense 5’ UAACGUUCAAGGGUCAAGACUUAU 3’

Supplementary Table S3. Sequences of primers used for splicing analyses and real time.

Gene	Target	Application	Forward (5’-3’)	Reverse (5’-3’)
BAX	SPL	AGCAAACTGGTGCTCAAGG	CGTCCAAAGTAGAGAGAGGA	
BIM	SPL	ATGGCAAAGCAACCTTCTG	CTCCTGCAATAGTAAGCGT	
SMARCC2	SPL	CGACTGAAACCCCAAGAGTA	CCTCGTCTGCCCATCAGA	
DNM2	SPL	CCCCGGACTTGGCATTCGAG	CTGGTACACTGCTAAGCTG	
SNAP25	SPL	CGTGTGGAAGAGCAGAACC	GAACATTGAAAAGGCCACACG	
CACNA2D1	SPL	GTGTGATGGGAGTAGATGTGC	CATTCTCTAACTCGCATC	
CACNA1D	SPL	GCCTCAGAGAAGGTTCCAGTG	AGTGGGGGTTCCCTGAATAAG	
MAPK9	SPL	GCAAGTGGCGACTCAACTT	TTTGTTGTTAACACATTTACAAAA	
MAP3K7	SPL	GTGGGAGCAGTGTTGAGAG	TGGACAGTTTCTGTCTTACGTT	
MAPK8	SPL	CGCTCTTCTGGTAGATTTT	CTTTGAGCTCTGACGGCTAT	
DIABLO	SPL	CGCTCTGGAAGAGTTGGCTG	CTCCTGAATTCTTTTCCAAG	
INSR	SPL	TGAAGATTACCTGCACAGC	GAGAAGTGTGGGGAAGAC	
ACTB	qRT	CTGTACGCAAACGACAGT	GCTAGAGGAGGACATGATC	
SRSF6	qRT	CATAGAGCAGTGGCTACA	TGCCCTACGACTCTAGAAAC	
FOXO1	qRT	CGTGCGCTACTTTGAGAT	CAGAATGAAAATTGCGTAG	
NEUROD1	qRT	CATACCTGCTAGGACTACT	CCACTCCTCGCTAGATTT	
The abbreviations used are as follows: SPL, primers used to analyse splicing variants; qRT, primers used for real time qRT-PCR;

Supplementary Table S4. Antibodies used for Western blotting and immunofluorescence are listed.

Antibodies	Source	Identifier	Dilution
Insulin (mouse)	Sigma-Aldrich, Bornem, Belgium	I2018	IHC: 1:500
SRSF6/ SRp55 (rabbit)	LifeSpan Bioscience	LS-B5712	IHC: 1:500
SAPK/JNK (mouse)	Cell Signaling Technology	9251S	WB: 1:1000
JNK1 (mouse)	Cell Signaling Technology	3708S	WB: 1:1000
Phospho-JNK (rabbit)	Cell Signaling Technology	#9251	WB: 1:1000
MKK7 (rabbit)	Cell Signaling Technology	#4172	WB: 1:1000
Phospho-MKK7 (rabbit)	Merck Millipore	36-013	WB: 1:1000
c-JUN (rabbit)	Cell Signaling Technology	#9165	WB: 1:1000
Phospho-c-JUN (rabbit)	Cell Signaling Technology	#9164	WB: 1:1000
eIF2α (rabbit)	Cell Signaling Technology	#5324	WB: 1:1000
Phospho-eIF2α (rabbit)	Cell Signaling Technology	#3597	WB: 1:1000
PERK (rabbit)	Cell Signaling Technology	#3192	WB: 1:1000
Phospho-PERK (rabbit)	Cell Signaling Technology	#3179	WB: 1:1000
Phospho-IRE1α (rabbit)	Novusbio, Littleton, USA	NB100-2323	WB: 1:500
Supplementary Table S5. Alternative splicing events modified by SRp55 depletion in EndoC-βH1 cells. List of modified cassette exons (S5.1), mutually exclusive exons (S5.2), alternative 3’ splice sites (S5.3), alternative 5’ splice sites (S5.4) and retained introns (S5.5). For each event the genomic coordinates, gene name and difference in PSI (ΔPSI) are indicated. S5.6) List of gene ontology (biological process) enriched terms in all alternatively-spliced genes. S5.7) List of KEGG enriched pathways in all alternatively-spliced genes.

Supplementary Table S6. Genes modified by SRp55 depletion in EndoC-βH1 cells. S6.1) List of down-regulated genes. Median RPKM expression for each condition and log2 fold change are indicated. S6.2) List of gene ontology (biological process) enriched terms in down-regulated genes. S6.3) List of KEGG enriched pathways in down-regulated genes. S6.4) List of up-regulated genes. Median RPKM expression for each condition and log2 fold change are indicated. S6.5) List of gene ontology (biological process) enriched terms in up-regulated genes. S6.6) List of KEGG enriched pathways in up-regulated genes.
Supplementary Figure 1. SRp55 is down-regulated by pro-inflammatory cytokines and this contributes to cytokine-induced beta cell death. A) Representative western blot and densitometric measurements showing the expression of SRp55 in EndoC-βH1 cells non-treated (NT) or following a 48 h exposure to IL-1β + IFN-γ (cytokines). B and C) EndoC-βH1 cells were transfected with an empty vector (pFLAG) or a vector expressing SRp55 (pSRp55). After transfection, cells were left untreated or exposed to IL-1β plus IFN-γ for 48 h. B) SRp55 protein expression was evaluated by Western-blot. Expression values were normalized by the highest value of each experiment, considered as 1. C) Apoptosis was evaluated by Hoechst/PI staining. Results are mean ± SEM of three to six independent experiments. A) *p < 0.05 non-treated (NT) vs cytokines by paired t test. B and C) **p < 0.01 pFLAG vs pSRp55 under non-treated conditions, ###p<0.001 pFLAG vs pSRp55 under cytokines exposure, and &&&p<0.001 as indicated by a bar by ANOVA followed by Bonferroni post hoc test.

Supplementary Figure 2. Impact of SRp55 depletion on alternative splicing as compared to gene expression. A) Expression profiles of splice variants in control versus SRp55-KD cells. B) Expression profiles of genes in control versus SRp55-KD cells. C) Number of up- and down-regulated genes following SRp55 silencing. D) Venn diagram showing the overlap between differentially spliced and differentially expressed genes. Results are based on five independent experiments.

Supplementary Figure 3. Enrichment analysis of SRp55 binding-motifs in modified cassette exons. A) Position weight matrices of SRp55 binding-motifs identified by SELEX (6-mer on the upper side) and by de novo prediction after SRp55 overexpression (9-mer on the lower side). B) Distribution of ΔPSI values in
modified cassette exons, showing a clear predominance of exon skipping. (C-D) Representation of the spatial distribution of SRp55 binding-motifs in the vicinity of alternatively spliced cassette exons. The position weigh matrices shown in (A) were used to scan the occurrence of binding motifs in respectively 1,449 and 3,820 up-regulated or down-regulated exons whose inclusion is impacted by SRp55 KD, and compared against 134,507 non-modified cassette exons (FDR ≥50%). The solid lines indicate the mean SRp55 binding motif score for each nucleotide position. Doted lines indicate log10 p-values obtained by statistical comparison of motif scores between modified exons (down- or up-regulated) against non-modified background exons, showing significant enrichment of the SRp55 binding motif in exonic sequences of down-regulated exons. The green box represents an average cassette exon, while solid lines and grey boxes represent neighbouring introns and up- and down-stream exons respectively. The numbers shown above indicate the relative nucleotide position from exon-intron junctions. Enrichment of the 6-mer motif is shown in (C), while enrichment of the 9-mer motif is shown in (D). Results are based on five independent RNA-seq experiments.

Supplementary Figure 4. SRp55 KD affects splicing and expression of the pro-apoptotic protein BIM contributing to beta cell apoptosis. A) Representative western blot showing the expression of BIM isoforms in control and SRp55 KD EndoC-βH1 cells. B) Ratio between BIM small (S) and BIM large (L) isoforms was calculated by densitometry. C) Protein expression of total BIM was measured by densitometry of all BIM isoforms and normalized by α-tubulin as loading control. Protein expression values were normalized by the highest value of each experiment, considered as 1. D-F) Double KD of SRp55 and BIM in EndoC-βH1 cells. Cells were
transfected with siCTL, siSRp55#2, siBim or siSRp55#2 + siBim for 48 h. mRNA expression of SRp55 (D) and BIM S (E) was measured by qRT-PCR and normalized by the housekeeping gene β-actin. mRNA expression values were normalized by the highest value of each experiment, considered as 1. F) Proportion of apoptotic cells was evaluated by Hoechst/PI staining. Results are mean ± SEM of four to five independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 vs. siCTL; ##p < 0.01 and ###p < 0.001 as indicated by bars. B, C) Paired t-test. D-F) ANOVA followed by Bonferroni post hoc test.
KEGG term	Gene count	%	P-Value																																																								
Metabolic pathways	286	7.2	3.40E-06																																																								
Ubiquitin mediated proteolysis	48	1.2	7.00E-06																																																								
Glucagon signaling pathway	34	0.9	2.90E-04																																																								
Shigellosis	24	0.6	7.30E-04																																																								
Insulin resistance	35	0.9	7.80E-04																																																								
Fructose and mannose metabolism	15	0.4	8.80E-04																																																								
Insulin secretion	29	0.7	1.00E-03																																																								
AMPK signaling pathway	38	1	1.00E-03																																																								
Lysosome	37	0.9	1.70E-03																																																								
Fanconi anemia pathway	20	0.5	2.10E-03																																																								
RNA degradation	26	0.7	2.30E-03																																																								
Phosphatidylinositol signaling system	31	0.8	2.50E-03																																																								
Adherens junction	24	0.6	3.50E-03																																																								
Homologous recombination	13	0.3	3.60E-03																																																								
Oocyte meiosis	33	0.8	3.80E-03																																																								
Amino sugar and nucleotide sugar metabolism	18	0.5	4.20E-03																																																								
Biosynthesis of antibiotics	55	1.4	6.90E-03																																																								
Dopaminergic synapse	36	0.9	8.90E-03																																																								
Aldosterone synthesis and secretion	25	0.6	1.00E-02																																																								
Lysine degradation	18	0.5	1.00E-02																																																								
Type II diabetes mellitus	17	0.4	1.00E-02																																																								
Pyrimidine metabolism	30	0.8	1.20E-02																																																								
Bacterial invasion of epithelial cells	24	0.6	1.20E-02																																																								
GnRH signaling pathway	27	0.7	1.30E-02																																																								
Inositol phosphate metabolism	22	0.6	1.60E-02																																																								
Endocytosis	62	1.6	2.20E-02																																																								
Protein processing in endoplasmic reticulum	43	1.1	2.40E-02																																																								
Insulin signaling pathway	36	0.9	2.80E-02																																																								
N-Glycan biosynthesis	16	0.4	2.80E-02																																																								
Base excision repair	12	0.3	3.10E-02																																																								
Glycerophospholipid metabolism	26	0.7	3.80E-02																																																								
Citrate cycle (TCA cycle)	11	0.3	3.90E-02																																																								
Nucleotide excision repair	15	0.4	4.20E-02																																																								
Tight junction	34	0.9	6.10E-02																																																								
Purine metabolism	42	1.1	6.50E-02																																																								
Thyroid hormone signaling pathway	29	0.7	6.50E-02																																																								
Regulation of actin cytoskeleton	49	1.2	6.90E-02																																																								
Central carbon metabolism in cancer	18	0.5	7.20E-02																																																								
Non-homologous end-joining	6	0.2	7.60E-02																																																								
Glycosylphosphatidylinositol(GPI)-anchor biosynthesis	9	0.2	7.60E-02																																																								
Pancreatic cancer	18	0.5	8.10E-02																																																								
Adipocytokine signaling pathway	19	0.5	8.50E-02																																																								
Adrenergic signaling in cardiomyocytes	35	0.9	8.60E-02																																																								
Axon guidance	31	0.8	8.80E-02																																																								
Gene ID	Gene Symbol	siCTL Median RPKM	siSR#2 Median RPKM	Log2 Fold Change																																																							
-------------------	-------------	-------------------	--------------------	-----------------																																																							
ENSG00000124193	SRSF6	99.52	23.78	-2.065																																																							
ENSG00000264527	WI2-1959D15.1	1.09	0.29	-1.910																																																							
ENSG00000239697	TNFSF12	1.20	0.48	-1.785																																																							
ENSG00000196337	CGB7	1.03	0.39	-1.749																																																							
ENSG00000230454	U73166.2	0.59	0.18	-1.743																																																							
ENSG00000188011	CXXC11	3.94	1.29	-1.613																																																							
ENSG00000117289	TXNIP	1.65	0.50	-1.594																																																							
ENSG00000165272	AQP3	15.79	6.26	-1.571																																																							
ENSG00000116661	FBXO2	6.03	2.18	-1.468																																																							
ENSG00000075089	ACTR6	10.36	3.82	-1.459																																																							
ENSG00000140623	SEPT12	0.72	0.41	-1.455																																																							
ENSG00000113048	MRPS27	23.74	9.54	-1.447																																																							
ENSG00000104883	PEX11G	1.09	0.41	-1.442																																																							
ENSG00000184481	FOXO4	3.02	1.13	-1.422																																																							
ENSG00000163754	GYG1	12.05	5.17	-1.353																																																							
ENSG00000126903	SLCL0A3	5.18	2.12	-1.315																																																							
ENSG00000214736	TOMM6	59.56	42.60	-1.304																																																							
ENSG00000108576	SLC6A4	1.58	0.60	-1.282																																																							
ENSG00000070985	TRPM5	1.04	0.41	-1.276																																																							
ENSG00000104951	IL4I1	5.23	3.39	-1.258																																																							
ENSG00000261720	RP11-161M6.5	5.81	2.52	-1.250																																																							
ENSG00000140465	CYP1A1	2.63	1.47	-1.241																																																							
ENSG00000181004	BBS12	3.34	1.48	-1.230																																																							
ENSG00000145337	PYURF	53.87	24.73	-1.214																																																							
ENSG00000131374	TBC1D5	38.25	26.37	-1.214																																																							
ENSG00000171867	PRNP	57.97	24.23	-1.205																																																							
ENSG00000088386	SLC15A1	3.51	1.64	-1.203																																																							
ENSG00000261713	SSTR5-AS1	15.87	6.11	-1.199																																																							
ENSG00000089157	RPLP0	390.91	209.63	-1.182																																																							
ENSG00000152672	CLEC4F	0.53	0.20	-1.157																																																							
ENSG00000143162	CREG1	36.23	16.73	-1.151																																																							
ENSG00000196358	NTNG2	2.53	1.50	-1.125																																																							
ENSG00000170271	FAXDC2	3.41	1.57	-1.123																																																							
ENSG00000260539	RP11-252A24.7	8.86	4.36	-1.108																																																							
ENSG00000260588	RP11-930P14.2	0.71	0.42	-1.094																																																							
ENSG00000258839	MC1R	4.45	2.06	-1.081																																																							
ENSG00000189157	FAM47E	14.61	8.29	-1.070																																																							
ENSG00000121351	IAPP	29.71	12.53	-1.066																																																							
ENSG00000152700	SAR1B	46.26	22.81	-1.065																																																							
ENSG00000103671	TRIP4	10.79	5.73	-1.059																																																							
ENSG00000084110	HAL	2.79	1.23	-1.058																																																							
ENSG00000114779	ABHD14B	29.84	15.43	-1.052																																																							
ENSG00000091317	CMTM6	46.74	22.82	-1.045																																																							
ENSG00000157654	PALM2-AKAP2	1.35	0.54	-1.041																																																							
ENSG00000067955	CBFB	48.54	30.84	-1.028																																																							
ENSG00000105419	MEIS3	7.02	3.35	-1.012																																																							
ENSG00000065243	PKN2	14.33	6.68	-1.012																																																							
ENSG00000165923	AGBL2	1.45	0.83	-1.011																																																							
ENSG00000115107	STEAP3	0.66	0.33	-1.004																																																							
ENSG00000166866	MYO1A	1.51	1.23	-1.004																																																							
Gene Symbol	Gene Name	Fold Change	ΔCt	Log2 Ratios																																																							
-------------	-----------	-------------	-----	-------------																																																							
ENSG00000176928	GCNT4	3.89	1.97	-1.003																																																							
ENSG00000187266	EPOR	20.17	11.50	-1.002																																																							
ENSG00000188677	PARVB	37.58	17.12	-1.000																																																							
ENSG00000267954	AP000349.1	1.75	0.90	-1.000																																																							
ENSG00000140481	CCDC33	1.07	0.63	-0.986																																																							
ENSG00000150977	RILPL2	0.76	0.40	-0.932																																																							
ENSG00000133101	CCNA1	1.80	0.80	-0.846																																																							
ENSG00000110906	KCTD10	11.58	8.35	-0.837																																																							
ENSG0000008441	NFIX	6.76	3.32	-0.837																																																							
ENSG00000267143	RP11-677O4.6	2.35	1.49	-0.835																																																							
ENSG00000138641	HERC3	57.02	32.83	-0.857																																																							
ENSG00000170526	APOBEC3G	3.83	2.14	-0.858																																																							
ENSG00000137642	SORL1	8.38	5.45	-0.861																																																							
ENSG00000182718	ANXA2	10.45	5.17	-0.859																																																							
ENSG00000138018	EPT1	55.40	33.24	-0.865																																																							
ENSG00000138623	SEMA7A	1.27	0.77	-0.826																																																							
ENSG00000142273	CBLC	0.55	0.24	-0.825																																																							
Gene ID	Gene Symbol	Log2 FC	Log2 pVal	Log2 fold Change																																																							
-----------	-------------	---------	-----------	-----------------																																																							
ENSG00000162461	SLC25A34	0.51	0.32	-0.820																																																							
ENSG00000105227	PRX	0.50	0.28	-0.818																																																							
ENSG00000160781	PAQR6	0.96	0.56	-0.817																																																							
ENSG00000116957	TBCE	16.60	9.19	-0.816																																																							
ENSG00000064999	ANKS1A	7.43	4.23	-0.815																																																							
ENSG00000136144	RCBTB1	19.84	11.26	-0.812																																																							
ENSG00000100439	ABHD4	26.21	14.92	-0.812																																																							
ENSG00000271643	RP11-10C24.3	2.09	1.19	-0.812																																																							
ENSG00000157600	TMEM164	22.54	13.11	-0.811																																																							
ENSG00000163703	CRELD1	35.49	18.46	-0.809																																																							
ENSG00000205730	ITPRIPL2	1.14	0.74	-0.808																																																							
ENSG00000205436	EXOC3L4	0.99	0.51	-0.805																																																							
ENSG00000112164	GLP1R	4.37	2.73	-0.799																																																							
ENSG00000105639	JAK3	1.98	1.14	-0.797																																																							
ENSG00000181392	SYNE4	14.11	9.38	-0.793																																																							
ENSG00000076344	RGS11	0.82	0.37	-0.793																																																							
ENSG00000119946	CNNM1	22.81	11.63	-0.792																																																							
ENSG00000077713	SLC25A43	4.89	2.94	-0.788																																																							
ENSG00000166037	CEP57	36.41	22.48	-0.782																																																							
ENSG00000140682	TGFB1I1	0.40	0.50	-0.781																																																							
ENSG00000137449	CPEB2	8.72	5.66	-0.780																																																							
ENSG00000172382	PRSS27	1.15	0.59	-0.779																																																							
ENSG00000106524	ANKMY2	3.01	2.15	-0.769																																																							
ENSG00000144674	GOLGA4	30.89	19.11	-0.769																																																							
ENSG00000110628	SLC22A18	1.45	0.86	-0.767																																																							
ENSG00000183762	KREMEN1	2.78	1.57	-0.765																																																							
ENSG00000060642	PIGV	6.99	4.11	-0.765																																																							
ENSG00000105887	MTPN	82.04	46.33	-0.762																																																							
ENSG00000171109	MFN1	20.17	13.83	-0.760																																																							
ENSG00000169570	DTWD2	2.71	1.69	-0.759																																																							
ENSG00000099953	MMP11	3.44	2.07	-0.755																																																							
ENSG00000169621	APLF	0.52	0.30	-0.754																																																							
ENSG00000104381	GDAP1	22.18	11.94	-0.753																																																							
ENSG00000105829	BET1	9.57	4.92	-0.751																																																							
ENSG00000124587	PEX6	6.83	4.06	-0.749																																																							
ENSG00000203727	SAMD5	71.61	42.10	-0.749																																																							
ENSG00000179965	ZNF771	3.57	2.09	-0.746																																																							
ENSG00000039523	FAM65A	10.29	6.56	-0.745																																																							
ENSG00000090863	GLG1	47.84	28.80	-0.744																																																							
ENSG00000215915	ATAD3C	16.15	10.83	-0.744																																																							
ENSG00000124098	FAM210B	21.38	12.47	-0.743																																																							
ENSG00000177042	TMEM80	17.02	10.17	-0.743																																																							
ENSG00000101194	SLC17A9	5.94	3.22	-0.741																																																							
ENSG00000167711	SERPINF2	4.35	2.80	-0.740																																																							
ENSG00000166340	TPP1	68.31	42.97	-0.733																																																							
ENSG00000163626	COX18	7.68	4.63	-0.732																																																							
ENSG00000118276	B4GALT6	16.62	10.38	-0.731																																																							
ENSG00000114446	IFT57	19.59	15.35	-0.728																																																							
ENSG00000169962	TAS1R3	2.08	1.37	-0.728																																																							
ENSG00000139209	SLC38A4	6.65	3.89	-0.725																																																							
ENSG0000004776	HSPB6	1.38	0.84	-0.719																																																							
ENSG00000198911	SREBF2	92.69	62.77	-0.719																																																							
Gene	Symbol	Log2 FC	Z score	p value																																																							
------------	--------	---------	---------	---------																																																							
RGS14	ENSG00000169220	6.89	4.17	-0.714																																																							
LARP4	ENSG00000189067	56.64	30.14	-0.713																																																							
LITAF	ENSG00000139988	4.45	2.95	-0.713																																																							
RH12	ENSG00000147041	0.63	0.44	-0.706																																																							
SYTL5	ENSG00000169507	0.98	0.59	-0.705																																																							
SLC38A11	ENSG0000011638	4.48	2.88	-0.705																																																							
BMF	ENSG00000104081	8.88	4.93	-0.703																																																							
VMA21	ENSG00000160131	13.94	8.41	-0.703																																																							
TMLHE	ENSG00000187994	4.45	2.95	-0.703																																																							
AMT	ENSG00000134352	3.23	1.87	-0.698																																																							
P4HA1	ENSG00000122884	7.90	4.87	-0.698																																																							
RINL	ENSG00000187994	11.00	6.85	-0.697																																																							
BNIP3L	ENSG00000104765	46.76	30.73	-0.696																																																							
LMO2	ENSG00000135363	9.69	5.81	-0.692																																																							
RXFP3	ENSG00000182631	2.08	1.29	-0.691																																																							
ACSF3	ENSG00000176715	15.17	8.53	-0.689																																																							
AGER	ENSG00000204305	1.47	0.97	-0.687																																																							
LAMP5	ENSG00000125869	1.69	1.03	-0.683																																																							
RP11-10C24.1	ENSG00000271020	2.01	1.40	-0.683																																																							
EFNA2	ENSG00000099617	2.16	1.73	-0.682																																																							
C15orf38	ENSG00000242498	3.97	2.92	-0.681																																																							
SLC32A1	ENSG00000101438	1.01	0.58	-0.676																																																							
NADK2	ENSG00000152620	8.26	5.26	-0.675																																																							
PRKAA1	ENSG00000132356	41.68	26.18	-0.675																																																							
CYP2D6	ENSG00000100197	1.32	0.84	-0.674																																																							
UCN3	ENSG00000178473	19.52	13.26	-0.671																																																							
MTDH	ENSG00000147649	51.30	34.35	-0.669																																																							
FSBP	ENSG00000265817	0.79	0.35	-0.665																																																							
SLC45A2	ENSG00000164175	3.69	2.13	-0.664																																																							
BATF2	ENSG00000168062	0.93	0.64	-0.661																																																							
TMEM194B	ENSG00000189362	2.12	1.17	-0.660																																																							
DNAJB11	ENSG00000090520	65.82	39.35	-0.660																																																							
CYS1	ENSG00000205795	7.03	4.64	-0.659																																																							
MON2	ENSG00000061987	19.70	12.50	-0.657																																																							
FGD1	ENSG00000102302	5.30	3.59	-0.656																																																							
NPC1L1	ENSG0000015520	2.65	1.80	-0.653																																																							
IGFALS	ENSG00000099769	4.29	2.30	-0.651																																																							
PACRG	ENSG00000112530	1.69	1.23	-0.651																																																							
LINC00858	ENSG00000229404	0.54	0.33	-0.647																																																							
PPP1R3B	ENSG00000173281	4.09	2.67	-0.646																																																							
SLC22A11	ENSG00000168065	1.01	0.64	-0.646																																																							
LRC73	ENSG00000204052	1.04	0.63	-0.645																																																							
FGFI8	ENSG00000156427	5.77	4.04	-0.642																																																							
TMEM101	ENSG00000091947	15.46	9.23	-0.641																																																							
ZMAT3	ENSG00000172667	4.00	2.35	-0.641																																																							
AC004840.9	ENSG00000175873	0.53	0.35	-0.639																																																							
S100A4	ENSG00000196154	10.04	10.04	-0.639																																																							
CPEB1	ENSG00000214575	1.61	0.98	-0.638																																																							
Ensembl ID	Gene Symbol	log2 Fitted	log2 Control	log2 Fitted/Control	log2 Fold Change	Ensembl ID	Gene Symbol	log2 Fitted	log2 Control	log2 Fitted/Control	log2 Fold Change																																																
------------	--------------	-------------	--------------	---------------------	-----------------	------------	--------------	-------------	--------------	-------------------	-----------------																																																
ENSG00000165507	C10orf10	26.64	20.57	-0.637																																																							
ENSG00000174358	SLC6A19	21.92	13.89	-0.637																																																							
ENSG00000175832	ETV4	9.30	6.40	-0.637																																																							
ENSG00000196850	PPTC7	8.90	6.24	-0.636																																																							
ENSG00000153551	CMTM7	5.16	4.00	-0.633																																																							
ENSG00000065361	ERBB3	37.01	26.31	-0.632																																																							
ENSG00000205084	TMEM231	1.91	0.72	-0.629																																																							
ENSG00000116971	AKTIP	8.15	6.69	-0.628																																																							
ENSG00000131725	WDR44	4.73	4.06	-0.628																																																							
ENSG00000143473	KCHN1	1.69	1.09	-0.627																																																							
ENSG00000120063	GNA13	21.85	14.62	-0.627																																																							
ENSG00000154928	EPHB1	10.55	6.40	-0.625																																																							
ENSG00000166192	SENP8	2.45	1.64	-0.623																																																							
ENSG00000157184	CPT2	11.90	7.54	-0.622																																																							
ENSG00000137825	ITPKA	3.79	2.59	-0.621																																																							
ENSG00000085063	CD59	132.62	95.02	-0.620																																																							
ENSG00000144191	CNGA3	24.18	15.68	-0.620																																																							
ENSG00000267950	AC136297.1	12.44	7.68	-0.617																																																							
ENSG00000163083	INHBB	0.83	0.54	-0.617																																																							
ENSG00000185924	RTN4RL1	0.60	0.42	-0.617																																																							
ENSG00000106772	PRUNE2	28.04	14.18	-0.616																																																							
ENSG00000179119	SPTY2D1	14.23	9.25	-0.615																																																							
ENSG00000185561	TLC2	0.79	0.55	-0.614																																																							
ENSG00000134330	IAH1	56.61	46.14	-0.613																																																							
ENSG00000176853	FAM91A1	32.53	20.66	-0.612																																																							
ENSG00000268397	ACO08443.1	4.20	2.74	-0.609																																																							
ENSG00000129187	DCTD	43.87	29.31	-0.608																																																							
ENSG00000108784	NAGLU	29.44	19.33	-0.607																																																							
ENSG00000089818	NECAP1	30.66	21.37	-0.606																																																							
ENSG00000197444	OGDHL	7.69	5.75	-0.606																																																							
ENSG00000101384	JAG1	1.14	0.74	-0.603																																																							
ENSG00000169446	MMGT1	11.13	7.32	-0.603																																																							
ENSG00000125845	BMP2	2.93	2.11	-0.602																																																							
ENSG00000137575	SDCBP	55.96	33.34	-0.600																																																							
ENSG00000141756	FKB10	11.55	5.96	-0.599																																																							
ENSG00000186998	EMID1	43.85	29.92	-0.598																																																							
ENSG00000168394	TAP1	2.07	1.35	-0.597																																																							
ENSG00000107201	DDX58	2.53	1.74	-0.595																																																							
ENSG00000136271	DDX56	24.61	15.71	-0.594																																																							
ENSG0000014919	COX15	16.05	10.96	-0.593																																																							
ENSG00000156671	SAMD8	6.81	4.52	-0.592																																																							
ENSG00000162923	WDR26	18.83	13.10	-0.591																																																							
ENSG00000163623	NXX6-1	23.03	15.30	-0.591																																																							
ENSG00000213888	AC005003.1	2.88	1.83	-0.589																																																							
ENSG00000232434	C9orf172	2.62	1.75	-0.587																																																							
ENSG00000242282	AC108488.4	1.32	0.98	-0.587																																																							
ENSG00000183780	SLC35F3	10.36	7.20	-0.587																																																							
ENSG00000182795	C1orf116	7.84	4.77	-0.586																																																							
ENSG00000226479	TME185B	8.40	5.59	-0.584																																																							
ENSG00000170379	FAM115C	1.66	1.20	-0.584																																																							
ENSG00000110931	CAMKK2	7.03	4.10	-0.583																																																							
Gene ID	Gene Symbol	Fold Change	Expression	z-Score																																																							
------------	-------------	-------------	------------	---------																																																							
ENSG00000066926	FECH	9.80	5.95	-0.582																																																							
ENSG00000125457	MIF4GD	9.66	7.28	-0.582																																																							
ENSG00000123342	MMP19	0.57	0.40	-0.581																																																							
ENSG00000167968	DNASE1L2	2.32	1.56	-0.581																																																							
ENSG00000140406	MESDC1	7.34	5.53	-0.580																																																							
ENSG00000139318	DUSP6	12.70	9.25	-0.578																																																							
ENSG00000131910	NR0B2	6.05	4.19	-0.578																																																							
ENSG00000239264	TXNDC5	25.37	18.13	-0.578																																																							
ENSG00000139410	SDSL	2.98	1.89	-0.577																																																							
ENSG00000182749	PAQR7	2.78	1.95	-0.576																																																							
ENSG00000175414	ARL10	7.30	4.96	-0.574																																																							
ENSG00000262445	CTD-2545H1.2	1.23	0.87	-0.574																																																							
ENSG00000162391	FAM151A	0.85	0.57	-0.573																																																							
ENSG00000214039	RP11-474D1.3	2.80	1.89	-0.573																																																							
ENSG00000123080	CDKN2C	91.59	64.94	-0.572																																																							
ENSG00000162881	OXER1	4.83	3.25	-0.570																																																							
ENSG00000134070	IRAK2	0.79	0.55	-0.569																																																							
ENSG00000243477	NAT6	9.14	3.38	-0.568																																																							
ENSG00000245468	RP11-367J11.3	0.72	0.44	-0.568																																																							
ENSG00000197775	DHR54-AS1	6.63	4.25	-0.567																																																							
ENSG00000117054	ACADM	51.55	30.72	-0.562																																																							
ENSG00000167977	KCTD5	34.45	26.60	-0.562																																																							
ENSG00000271912	RP11-661A12.14	1.95	1.44	-0.561																																																							
ENSG00000260359	RP11-4F5.2	4.45	3.19	-0.559																																																							
ENSG00000066135	KDM4A	26.32	17.47	-0.558																																																							
ENSG00000177791	MYOZ1	1.20	0.83	-0.558																																																							
ENSG00000116147	TNR	9.10	6.25	-0.557																																																							
ENSG00000145476	CYP4V2	11.36	7.90	-0.557																																																							
ENSG00000164742	ADCY1	25.16	17.77	-0.556																																																							
ENSG00000271303	SRXN1	20.15	14.08	-0.556																																																							
ENSG00000171227	TMEM37	109.22	74.46	-0.556																																																							
ENSG00000155016	CYP2U1	20.75	13.64	-0.555																																																							
ENSG00000153560	UBP1	19.93	15.54	-0.555																																																							
ENSG00000114812	VIPR1	0.93	0.48	-0.555																																																							
ENSG00000164708	PGAM2	1.70	1.06	-0.555																																																							
ENSG00000163462	TRIM46	5.43	3.95	-0.552																																																							
ENSG00000171714	ANOS5	7.60	5.19	-0.552																																																							
ENSG00000175938	ORAI3	9.41	6.53	-0.552																																																							
ENSG00000114378	HYAL1	1.77	1.30	-0.551																																																							
ENSG00000176393	RNPEP	30.73	20.98	-0.551																																																							
ENSG00000234155	RP11-30P6.6	0.62	0.48	-0.549																																																							
ENSG0000014914	MTRMR11	4.48	3.03	-0.549																																																							
ENSG00000100426	ZBED4	8.09	5.94	-0.549																																																							
ENSG00000259040	BLOC155-TXNDC5	22.71	16.57	-0.548																																																							
ENSG00000172830	SSH3	8.77	5.47	-0.548																																																							
ENSG00000160844	GATS	6.22	4.58	-0.547																																																							
ENSG00000204442	FAM155A	0.81	0.52	-0.547																																																							
ENSG00000177000	MTHFR	9.54	6.82	-0.547																																																							
ENSG00000176402	GJC3	1.26	0.94	-0.546																																																							
ENSG00000185250	PPI6	0.96	0.68	-0.546																																																							
ENSG00000120256	LRP11	92.14	66.35	-0.545																																																							
Gene ID	Description	Log2 Fold	Log2 Fold	p-value																																																							
------------	-------------	-----------	-----------	---------																																																							
ENSG00000204390	HSPA1L	0.64	0.45	-0.544																																																							
ENSG00000123427	METTL21B	1.27	0.93	-0.543																																																							
ENSG00000179546	HTR1D	10.80	6.24	-0.541																																																							
ENSG00000160683	CXCR5	2.11	1.45	-0.541																																																							
ENSG00000161664	ASB16	1.01	0.83	-0.540																																																							
ENSG00000166260	COX11	98.01	66.89	-0.540																																																							
ENSG00000010318	PHF7	2.12	1.50	-0.538																																																							
ENSG00000138760	SCARB2	175.04	122.03	-0.537																																																							
ENSG00000166128	RAB8B	12.38	8.56	-0.536																																																							
ENSG00000179403	VWA1	82.63	63.48	-0.536																																																							
ENSG00000156735	BAG4	7.00	4.75	-0.535																																																							
ENSG00000167780	SOAT2	1.09	0.77	-0.534																																																							
ENSG0000007866	TEAD3	2.80	1.96	-0.533																																																							
ENSG00000213057	C1orf220	0.70	0.35	-0.532																																																							
ENSG00000147459	DOCK5	0.90	0.60	-0.531																																																							
ENSG00000140057	AK7	9.42	7.00	-0.531																																																							
ENSG0000020129	NCDN	7.29	5.05	-0.530																																																							
ENSG00000162068	NTN3	7.40	5.32	-0.529																																																							
ENSG00000162852	CNST	8.15	5.63	-0.529																																																							
ENSG0000025796	SEC63	113.07	88.80	-0.528																																																							
ENSG0000056998	GYG2	14.75	9.88	-0.527																																																							
ENSG00000159403	C1R	1.01	0.70	-0.526																																																							
ENSG00000130184	SEC14L5	1.78	1.35	-0.524																																																							
ENSG00000136122	BORA	5.88	4.10	-0.524																																																							
ENSG00000177674	AGTRAP	6.30	4.33	-0.523																																																							
ENSG00000127831	VIL1	471.16	320.05	-0.521																																																							
ENSG00000228133	AC099684.1	0.79	0.63	-0.521																																																							
ENSG00000116035	VAX2	10.71	7.11	-0.520																																																							
ENSG00000130513	GDF15	0.53	0.32	-0.520																																																							
ENSG00000167588	GPD1	27.34	22.18	-0.520																																																							
ENSG00000267034	RP11-38408.1	1.88	1.42	-0.519																																																							
ENSG00000117115	PADI2	0.60	0.39	-0.519																																																							
ENSG00000102595	UGGT2	22.68	16.05	-0.518																																																							
ENSG00000162496	DHR53	4.56	3.14	-0.517																																																							
ENSG00000166589	CDH16	20.36	13.55	-0.516																																																							
ENSG0000006459	JHDM1D	8.83	6.16	-0.516																																																							
ENSG00000197943	PLCG2	21.69	15.98	-0.516																																																							
ENSG00000150776	C11orf57	16.89	12.11	-0.516																																																							
ENSG00000135124	P2RX4	24.08	17.16	-0.512																																																							
ENSG00000197461	PDGFA	2.71	1.81	-0.512																																																							
ENSG00000103150	MLYCD	15.50	10.53	-0.510																																																							
ENSG00000071564	TCF3	21.18	18.18	-0.510																																																							
ENSG00000198053	SIRPA	9.83	6.92	-0.506																																																							
ENSG00000084674	APOB	10.58	7.67	-0.505																																																							
ENSG00000248866	USP46-AS1	1.08	0.72	-0.504																																																							
ENSG00000170558	CDH2	57.83	40.79	-0.504																																																							
ENSG00000105971	CAV2	1.64	1.28	-0.503																																																							
ENSG00000145779	TNFAIP8	5.52	4.08	-0.503																																																							
ENSG00000080561	MID2	4.76	3.40	-0.503																																																							
ENSG00000140398	NEIL1	6.76	4.45	-0.503																																																							
ENSG00000103067	ESRP2	12.56	7.93	-0.502																																																							
ENSG00000112378	PERP	38.48	27.49	-0.502																																																							
Gene ID	Gene Symbol	Fold Change 1	Fold Change 2																																																								
------------------	-------------	---------------	---------------	---------																																																							
ENSG00000186529	CYP4F3	3.93	2.88	-0.501																																																							
ENSG00000071205	ARHGAP10	5.72	3.88	-0.501																																																							
ENSG00000146833	TRIM4	17.67	14.27	-0.500																																																							
ENSG00000140332	TLE3	2.83	2.10	-0.498																																																							
ENSG00000270011	ZNF177	17.80	10.93	-0.497																																																							
ENSG00000171116	HSFX1	0.57	0.42	-0.497																																																							
ENSG00000168246	UBDT2	23.19	17.02	-0.496																																																							
ENSG00000075785	RAB7A	117.92	93.71	-0.495																																																							
ENSG00000182890	GLUD2	0.63	0.45	-0.494																																																							
ENSG00000184665	WDR27	6.83	5.00	-0.493																																																							
ENSG00000185745	IFIT1	1.16	0.98	-0.492																																																							
ENSG00000075785	FAM117B	4.88	3.47	-0.491																																																							
ENSG00000148356	LRSAM1	4.80	3.55	-0.491																																																							
ENSG00000162999	DUSP19	1.38	1.09	-0.490																																																							
ENSG00000101150	TPDS5L2	43.34	29.81	-0.489																																																							
ENSG00000170881	RNF139	19.33	13.78	-0.489																																																							
ENSG00000103269	RHBDL1	1.70	1.21	-0.488																																																							
ENSG00000147162	OGT	35.20	26.43	-0.488																																																							
ENSG00000226137	BAIAP2-AS1	8.03	5.47	-0.488																																																							
ENSG00000116406	EDEM3	15.54	12.01	-0.487																																																							
ENSG00000152128	TMEM163	11.29	8.29	-0.487																																																							
ENSG00000159733	ZFYVE28	4.39	3.14	-0.486																																																							
ENSG00000158604	TMED4	50.37	34.73	-0.485																																																							
ENSG00000084444	KIAA1467	8.01	5.88	-0.485																																																							
ENSG00000185043	CIB1	16.17	11.89	-0.484																																																							
ENSG00000182957	SPATA13	16.96	12.30	-0.484																																																							
ENSG00000102890	ELMO3	7.63	5.46	-0.484																																																							
ENSG00000250021	C15orf38-AP3S2	10.32	7.67	-0.483																																																							
ENSG00000140093	SERPINA10	13.98	10.78	-0.483																																																							
ENSG00000184014	DENND5A	16.46	14.34	-0.479																																																							
ENSG00000168917	SLC35G2	24.03	17.70	-0.478																																																							
ENSG00000165171	WBSCR27	4.73	3.71	-0.478																																																							
ENSG00000105664	COMP	3.04	2.08	-0.477																																																							
ENSG00000229180	GS1-124K5.11	0.53	0.37	-0.477																																																							
ENSG00000120029	C10orf76	11.23	8.44	-0.476																																																							
ENSG00000156232	WHAMM	5.84	3.94	-0.474																																																							
ENSG00000167972	ABCA3	30.53	22.11	-0.474																																																							
ENSG00000197635	DPP4	66.48	44.94	-0.474																																																							
ENSG0000114670	NEK11	1.44	1.00	-0.472																																																							
ENSG00000198743	SLC5A3	6.64	5.84	-0.472																																																							
ENSG00000078487	ZCWPW1	1.68	1.42	-0.471																																																							
ENSG00000164535	DAGL8	4.86	3.66	-0.470																																																							
ENSG00000126562	WNK4	9.97	7.14	-0.470																																																							
ENSG00000072133	RPS6KA6	11.67	8.89	-0.469																																																							
ENSG00000184454	NCMAP	0.92	0.66	-0.469																																																							
ENSG00000260065	CTA-445C9.15	2.56	1.93	-0.469																																																							
ENSG00000138041	SMEK2	30.53	21.32	-0.467																																																							
ENSG00000109079	TNFAIP1	17.36	12.38	-0.465																																																							
ENSG00000109705	NKX3-2	1.03	0.74	-0.464																																																							
ENSG00000099957	P2RX6	0.96	0.50	-0.464																																																							
ENSG00000029534	ANK1	19.82	15.02	-0.464																																																							
ENSG00000185736	ADARB2	2.27	2.01	-0.464																																																							
Gene ID	Gene Symbol	Fold Change	Expression Level	Expression Level																																																							
-------------	-------------	-------------	------------------	------------------																																																							
ENSG00000172890	NADSYN1	11.36	10.18	-0.464																																																							
ENSG00000155903	RASA2	4.83	3.28	-0.464																																																							
ENSG00000126945	HNRNPH2	55.08	39.88	-0.463																																																							
ENSG00000102100	SLC35A2	26.93	19.63	-0.463																																																							
ENSG00000188158	NHS	1.04	0.72	-0.463																																																							
ENSG00000235169	SMIM1	2.71	2.07	-0.462																																																							
ENSG00000162949	CAPN13	13.96	10.06	-0.462																																																							
ENSG00000170099	SERPINA6	46.16	29.11	-0.459																																																							
ENSG00000143882	ATP6V1C2	43.07	28.42	-0.458																																																							
ENSG00000110871	COQ5	22.50	15.72	-0.458																																																							
ENSG00000114738	MAPKAPK3	22.82	15.50	-0.457																																																							
ENSG00000138751	NP5S1	1.53	1.11	-0.457																																																							
ENSG00000118902	SHISA7	1.79	1.32	-0.457																																																							
ENSG00000244405	ETV5	5.73	4.84	-0.456																																																							
ENSG00000108671	PSMD11	54.36	42.86	-0.455																																																							
ENSG00000123384	LRP1	11.07	8.17	-0.454																																																							
ENSG00000130940	CASZ1	6.47	4.67	-0.454																																																							
ENSG00000135926	TMBIM1	3.79	2.67	-0.453																																																							
ENSG00000158195	WASF2	19.93	14.88	-0.452																																																							
ENSG00000272214	AC079602.1	3.73	2.68	-0.451																																																							
ENSG00000174628	IQCK	3.19	2.62	-0.450																																																							
ENSG00000120693	SMAD9	8.22	5.81	-0.448																																																							
ENSG00000172955	ADH6	6.02	4.41	-0.447																																																							
ENSG00000111961	SASH1	9.40	7.70	-0.446																																																							
ENSG00000175262	C1orf127	1.86	1.49	-0.446																																																							
ENSG00000079112	CDH17	151.04	111.13	-0.445																																																							
ENSG00000172794	RAB37	21.06	10.52	-0.445																																																							
ENSG00000108091	CCDC6	13.69	11.16	-0.444																																																							
ENSG00000171129	HSFX2	0.67	0.47	-0.442																																																							
ENSG000000214300	SPDY3	1.97	1.48	-0.442																																																							
ENSG00000261589	CTC-462L7.1	3.77	2.78	-0.441																																																							
ENSG000000224201	PNMA6A	3.24	2.52	-0.440																																																							
ENSG00000174939	ASPH1D1	14.44	10.85	-0.440																																																							
ENSG00000173083	HPSE	20.65	14.96	-0.439																																																							
ENSG00000135272	MDFIC	10.06	8.15	-0.439																																																							
ENSG00000179598	PLD6	0.60	0.51	-0.439																																																							
ENSG00000186204	CYP4F12	3.46	2.64	-0.437																																																							
ENSG00000183798	EMILIN3	9.77	7.89	-0.437																																																							
ENSG00000149577	SITD2	22.95	14.10	-0.436																																																							
ENSG00000175895	PLEKHF2	12.05	9.65	-0.436																																																							
ENSG00000134193	REG4	1.68	1.27	-0.435																																																							
ENSG00000179833	SERTAD2	6.25	4.71	-0.435																																																							
ENSG00000073969	NSF	58.51	42.58	-0.434																																																							
ENSG00000171885	AQP4	2.90	2.33	-0.434																																																							
ENSG00000187678	SPRY4	4.51	3.23	-0.433																																																							
ENSG00000139163	ETNK1	76.51	61.99	-0.433																																																							
ENSG00000182400	TRAPPC6B	9.55	7.14	-0.432																																																							
ENSG00000174013	FBXO45	11.92	9.27	-0.431																																																							
ENSG00000118508	RAB32	21.05	16.12	-0.431																																																							
ENSG00000116711	PLA2G4A	34.43	25.62	-0.429																																																							
ENSG00000257088	PNMA6D	3.33	2.70	-0.429																																																							
ENSG00000160058	BSDC1	23.22	16.93	-0.429																																																							
Gene	Fold Change	Expression	Expression Ratio																																																								
------------------	-------------	------------	------------------																																																								
ENSEMBL000125650	PSNP	1.29	0.92																																																								
ENSEMBL000257335	MGAM	18.81	15.77																																																								
ENSEMBL000241839	PLEKHO2	2.34	1.69																																																								
ENSEMBL000141753	IGFBP4	12.78	9.59																																																								
ENSEMBL000171475	WIPF2	10.59	7.90																																																								
ENSEMBL000165152	TEMEM246	7.70	5.60																																																								
ENSEMBL000183049	CAMK1D	1.53	1.34																																																								
ENSEMBL000081177	EXD2	14.86	10.79																																																								
ENSEMBL000184678	HIST2H2BE	8.13	6.05																																																								
ENSEMBL000131389	SLCA6	43.82	32.84																																																								
ENSEMBL000254087	LYN	1.20	0.92																																																								
ENSEMBL00017261	KIAA0319	4.66	3.49																																																								
ENSEMBL000141569	TRIM65	1.80	1.34																																																								
ENSEMBL000157518	TSC2D3	49.76	37.16																																																								
ENSEMBL000261088	RP11-61A14.3	4.76	3.79																																																								
ENSEMBL000015452	INPP4B	3.97	2.97																																																								
ENSEMBL000176125	UFSP1	1.35	1.02																																																								
ENSEMBL000269486	CTC-360G5.9	1.77	1.08																																																								
ENSEMBL000070019	GUCY2C	73.88	55.23																																																								
ENSEMBL000102316	MAGED2	131.73	97.64																																																								
ENSEMBL000178031	ADAMTS1	22.87	17.87																																																								
ENSEMBL000005513	SOX8	0.62	0.48																																																								
ENSEMBL000166959	MS4A8	16.66	10.95																																																								
ENSEMBL000174721	FGFBP3	1.33	1.04																																																								
ENSEMBL000213889	PPM1N	2.93	2.43																																																								
ENSEMBL000171150	SOC55	9.12	7.01																																																								
ENSEMBL000259959	RP11-121C2.2	0.71	0.52																																																								
ENSEMBL000119711	ALDHA1	4.64	3.49																																																								
ENSEMBL000198435	NRARP	0.68	0.63																																																								
ENSEMBL000104435	STMN2	132.81	101.18																																																								
ENSEMBL000143147	GPR161	4.20	2.92																																																								
ENSEMBL000172824	CES4A	6.61	5.68																																																								
ENSEMBL000152315	KCNK13	0.76	0.54																																																								
ENSEMBL000141744	PNMT	3.13	2.53																																																								
ENSEMBL000015532	XYL2	3.24	2.31																																																								
ENSEMBL00006432	MAP3K9	5.98	4.32																																																								
ENSEMBL000164010	ERMAP	5.42	4.25																																																								
ENSEMBL000268573	RP11-158H5.7	1.69	1.04																																																								
ENSEMBL000100228	RAB36	6.79	5.24																																																								
ENSEMBL000164949	GEM	4.06	3.33																																																								
ENSEMBL000163945	UVSSA	2.60	1.84																																																								
ENSEMBL000130779	CLIP1	9.58	7.35																																																								
ENSEMBL000262468	RP11-95P2.1	0.66	0.40																																																								
ENSEMBL000119630	PGF	35.10	26.84																																																								
ENSEMBL000168610	STAT3	30.93	24.99																																																								
ENSEMBL000102401	ARMCX3	40.31	30.25																																																								
ENSEMBL000160233	LRR3C	2.37	1.71																																																								
ENSEMBL000120526	NUDCD1	8.01	6.23																																																								
ENSEMBL000163162	RNF149	13.92	10.44																																																								
ENSEMBL000031003	FAM13B	24.72	18.01																																																								
ENSEMBL000170540	ARL6IP1	255.44	207.05																																																								
Gene	Expression 1	Expression 2	Log2 Fold Change																																																								
--------------	--------------	--------------	-----------------																																																								
ENSG00000129625	36.19	26.41	-0.404																																																								
ENSG00000182575	3.25	2.33	-0.404																																																								
ENSG00000105939	12.38	9.62	-0.404																																																								
ENSG00000082516	6.46	4.73	-0.403																																																								
ENSG00000165066	273.17	206.69	-0.402																																																								
ENSG00000105357	33.69	25.52	-0.401																																																								
ENSG00000162390	2.74	2.02	-0.400																																																								
ENSG00000185112	0.55	0.43	-0.399																																																								
ENSG00000110665	1.66	1.26	-0.398																																																								
ENSG00000259439	1.96	1.44	-0.397																																																								
ENSG00000176485	6.57	4.41	-0.397																																																								
ENSG00000089876	13.55	9.12	-0.397																																																								
ENSG00000250067	2.18	1.88	-0.396																																																								
ENSG00000139200	1.59	1.17	-0.395																																																								
ENSG00000165637	79.20	63.61	-0.395																																																								
ENSG00000179163	39.69	32.68	-0.395																																																								
ENSG00000159761	1.45	1.44	-0.393																																																								
ENSG00000188976	31.67	26.40	-0.393																																																								
ENSG00000144802	8.17	5.53	-0.393																																																								
ENSG00000188580	4.67	3.23	-0.392																																																								
ENSG00000100767	1.33	0.94	-0.392																																																								
ENSG00000223768	4.09	2.96	-0.392																																																								
ENSG00000198719	2.32	1.87	-0.392																																																								
ENSG00000157259	13.96	10.47	-0.392																																																								
ENSG00000173726	48.89	38.95	-0.391																																																								
ENSG00000197930	46.81	37.66	-0.390																																																								
ENSG00000177034	5.47	4.45	-0.390																																																								
ENSG00000198707	4.79	3.76	-0.390																																																								
ENSG00000260804	3.65	3.53	-0.389																																																								
ENSG00000179918	60.82	47.56	-0.389																																																								
ENSG00000205808	10.14	8.24	-0.388																																																								
ENSG00000165943	19.81	14.81	-0.387																																																								
ENSG00000175073	2.89	2.23	-0.387																																																								
ENSG00000180398	41.17	31.74	-0.387																																																								
ENSG00000146007	59.21	49.19	-0.387																																																								
ENSG00000186350	40.13	31.51	-0.385																																																								
ENSG00000169762	21.83	18.18	-0.385																																																								
ENSG00000174928	2.72	2.33	-0.384																																																								
ENSG00000146151	52.24	40.16	-0.384																																																								
ENSG00000164169	4.88	3.85	-0.384																																																								
ENSG00000153208	0.91	0.73	-0.383																																																								
ENSG00000126226	18.16	12.51	-0.383																																																								
ENSG00000162817	4.93	3.43	-0.382																																																								
ENSG00000176438	1.42	1.00	-0.381																																																								
ENSG00000164096	19.74	14.97	-0.381																																																								
ENSG00000029153	10.04	8.25	-0.379																																																								
ENSG00000133597	19.05	15.48	-0.378																																																								
ENSG00000111271	34.48	24.72	-0.378																																																								
ENSG00000110911	28.98	23.00	-0.378																																																								
ENSG00000178796	15.81	12.18	-0.377																																																								
ENSG00000203772	1.86	1.43	-0.377																																																								
Ensembl ID	Gene Symbol	Fold Change	Expression	Log2 Fold																																																							
---------------	-------------	-------------	------------	-----------																																																							
ENSG00000167703	SLC43A2	20.51	15.12	-0.376																																																							
ENSG00000230761	RP11-342C24.8	1.48	1.20	-0.376																																																							
ENSG00000189007	ADAT2	1.23	0.95	-0.375																																																							
ENSG00000175264	CHST1	2.90	2.09	-0.375																																																							
ENSG00000175662	TOM1L2	10.41	8.09	-0.375																																																							
ENSG00000121297	TSH3	2.20	1.72	-0.375																																																							
ENSG00000181284	TMEM102	3.14	2.58	-0.375																																																							
ENSG00000067248	DHX29	12.84	10.56	-0.374																																																							
ENSG00000182534	MXRA7	162.15	125.38	-0.374																																																							
ENSG00000188636	LDOC1L	25.98	20.50	-0.373																																																							
ENSG00000148672	GLUD1	41.11	32.09	-0.371																																																							
ENSG00000181444	IVNS1ABP	29.40	21.68	-0.371																																																							
ENSG00000251169	AC005355.2	3.50	2.61	-0.370																																																							
ENSG00000121297	TSH3	2.20	1.72	-0.375																																																							
ENSG00000181284	TMEM102	3.14	2.58	-0.375																																																							
ENSG00000067248	DHX29	12.84	10.56	-0.374																																																							
ENSG00000182534	MXRA7	162.15	125.38	-0.374																																																							
ENSG00000188636	LDOC1L	25.98	20.50	-0.373																																																							
ENSG00000148672	GLUD1	41.11	32.09	-0.371																																																							
ENSG00000181444	IVNS1ABP	29.40	21.68	-0.371																																																							
ENSG00000251169	AC005355.2	3.50	2.61	-0.370																																																							
ENSG00000121297	TSH3	2.20	1.72	-0.375																																																							
ENSG00000181284	TMEM102	3.14	2.58	-0.375																																																							
ENSG00000067248	DHX29	12.84	10.56	-0.374																																																							
Gene ID	Gene Symbol	Log2FoldChange	Log2FoldChange	Log2FoldChange																																																							
-----------------	-------------	----------------	----------------	----------------																																																							
ENSG00000085377	PREP	13.39	10.45	-0.356																																																							
ENSG00000122971	ACADS	9.99	7.85	-0.356																																																							
ENSG00000255455	RP11-890B15.3	1.75	1.63	-0.356																																																							
ENSG00000269430	LRR3C3DN	1.36	1.06	-0.356																																																							
ENSG00000152291	TGOLN2	74.19	62.59	-0.355																																																							
ENSG00000105270	CLIP3	11.75	8.98	-0.355																																																							
ENSG00000261211	RP1-80N2.3	1.17	0.91	-0.354																																																							
ENSG00000118454	ANKRD13C	11.57	9.62	-0.354																																																							
ENSG00000171448	ZBTB26	4.92	4.07	-0.354																																																							
ENSG00000090971	NAT14	33.58	32.76	-0.354																																																							
ENSG00000272514	C6orf165	1.11	0.84	-0.353																																																							
ENSG00000168056	LTBP3	2.94	2.39	-0.353																																																							
ENSG00000272447	RP11-182L21.6	4.82	3.51	-0.352																																																							
ENSG00000124140	SLC12A5	1.52	1.19	-0.352																																																							
ENSG00000162836	ACN6	5.81	4.83	-0.352																																																							
ENSG00000166946	CCND1P1	20.17	15.74	-0.351																																																							
ENSG00000188707	ZBED6C1	7.81	6.12	-0.351																																																							
ENSG00000113719	ERGIC1	30.73	24.08	-0.351																																																							
ENSG00000171303	KCN3	3.27	2.56	-0.351																																																							
ENSG00000168994	PXDC1	2.03	1.66	-0.350																																																							
ENSG00000148082	SHC3	2.84	2.68	-0.350																																																							
ENSG00000166886	NAB2	4.04	3.03	-0.350																																																							
ENSG00000156150	ALX3	1.36	1.17	-0.350																																																							
ENSG00000198863	RUNDC1	10.83	8.92	-0.350																																																							
ENSG00000143870	PDIA6	219.87	174.21	-0.349																																																							
ENSG00000128829	EIF2AK4	7.69	6.20	-0.349																																																							
ENSG00000266753	RP11-690G19.3	1.20	0.92	-0.348																																																							
ENSG00000118564	FBXL5	21.74	19.27	-0.348																																																							
ENSG00000136045	PWP1	16.42	11.87	-0.348																																																							
ENSG00000148943	LIN7C	14.70	12.55	-0.348																																																							
ENSG00000269996	RP11-343N15.5	5.33	4.40	-0.347																																																							
ENSG00000196878	LAMB3	7.82	5.79	-0.346																																																							
ENSG00000146282	RAR52	11.66	9.12	-0.346																																																							
ENSG00000129195	FAM64A	9.93	7.73	-0.346																																																							
ENSG00000163082	SGPP2	10.90	7.94	-0.346																																																							
ENSG00000204271	SPIN3	4.71	3.72	-0.346																																																							
ENSG00000197926	FITM2	17.56	14.11	-0.346																																																							
ENSG00000144468	RHBDD1	12.05	7.32	-0.346																																																							
ENSG00000230567	FAM203B	12.13	8.40	-0.345																																																							
ENSG00000167113	COQ4	16.11	12.67	-0.345																																																							
ENSG00000204174	NPY4R	1.76	1.15	-0.344																																																							
ENSG00000135587	SMPD2	7.32	6.13	-0.344																																																							
ENSG00000197177	GPR123	5.71	4.52	-0.344																																																							
ENSG00000181830	SLC35C1	6.81	5.44	-0.344																																																							
ENSG00000126259	KIRREL2	20.75	16.89	-0.343																																																							
ENSG00000118855	MFSD1	24.32	19.27	-0.343																																																							
ENSG00000241399	CD302	30.24	24.95	-0.343																																																							
ENSG00000261128	RP11-18F14.2	5.79	4.94	-0.343																																																							
ENSG00000029333	TMEM176A	2.45	1.98	-0.341																																																							
ENSG00000160539	PPAPDC3	2.57	2.15	-0.341																																																							
ENSG00000119396	RAB14	50.23	39.17	-0.341																																																							
ENSG00000146085	MUT	30.16	25.28	-0.340																																																							
Ensembl ID	Gene	MESDC2	ASMTL	LIN9	IFNGR2	TRAPPC9	HPS6	AGAP10	GM2A	CDH6	CYB5D2	TMC4	KIAA1430	CTPS2	WDR25	KBLN3	SLC4A11	RP11-44F14.8	KCTD11	EPS8L2	KIAA2026	ELP3	DDX18	KCNK17	ACTR1B	CDH22	PHF2	UTP3	GOT2	AKR1C2	PTGES3	CHMP7	SMAD5	PGR	SERPINA1	PIFO	SLC26A1	SLC39A8	TMEM9	PCDH17	ZBTB42	GLYCTK	RBM6	VPS54	TIAL1	BCL2L13	ARMCX6	NBEA	STRN3										
------------------	--------	--------	-------	------	--------	---------	------	--------	------	------	--------	------	-----------	-------	-------	-------	--------	-----------------	-------	-------	--------	-------	-------	-------	------	------	------	-------	--------	-------	------	-------	-----	-------	-------	-------	-------	-------	------	-------	-------	-------	-------	-------	-----	------	-------	------	-------	-------	-------	------	-------	-------	-------	-------	-------	-----	------
Gene	RETSAT	12.13	9.42	-0.319																																																							
------------------	----------	-------	------	--------																																																							
ENSG00000156687	UNC5D	4.22	3.52	-0.318																																																							
ENSG00000229645	LINC00341	0.95	0.72	-0.318																																																							
ENSG00000154035	C17orf103	0.94	0.78	-0.318																																																							
ENSG00000197979	CRIPAK	1.42	1.07	-0.318																																																							
ENSG0000011897	SERINC1	167.88	136.19	-0.318																																																							
ENSG00000111186	WNT5B	5.13	4.64	-0.316																																																							
ENSG00000160226	C21orf2	6.16	4.95	-0.316																																																							
ENSG0000021890	NPTXR	13.36	11.29	-0.315																																																							
ENSG00000250742	RP11-834C11.4	19.78	16.01	-0.315																																																							
ENSG00000271738	RP11-137H2.6	24.15	19.42	-0.314																																																							
ENSG00000069535	MAOB	23.96	19.28	-0.314																																																							
ENSG00000134871	COL4A2	5.09	4.38	-0.313																																																							
ENSG00000168286	THAP11	16.62	13.50	-0.313																																																							
ENSG00000176055	MBLAC2	2.36	1.80	-0.313																																																							
ENSG00000113916	BCL6	7.55	7.65	-0.313																																																							
ENSG00000122687	FTSJ2	12.47	10.24	-0.312																																																							
ENSG00000196865	NHLRC2	2.14	1.76	-0.311																																																							
ENSG00000151208	DLG5	20.06	15.92	-0.311																																																							
ENSG00000079387	SENP1	12.81	10.68	-0.310																																																							
ENSG00000135002	RFK	58.59	48.97	-0.310																																																							
ENSG00000172943	PHF8	7.38	6.04	-0.310																																																							
ENSG00000116237	ICMT	85.10	72.01	-0.310																																																							
ENSG00000198035	AGAP9	5.03	4.55	-0.310																																																							
ENSG00000143367	TUFT1	10.01	8.18	-0.309																																																							
ENSG00000164347	GFM2	12.41	10.02	-0.308																																																							
ENSG00000107816	LZTS2	3.26	3.05	-0.308																																																							
ENSG00000064115	TM7SF3	34.34	28.76	-0.307																																																							
ENSG00000065154	OAT	26.16	22.89	-0.307																																																							
ENSG00000172057	ORMDL3	17.94	15.86	-0.307																																																							
ENSG00000182158	CREB3L2	14.78	11.84	-0.307																																																							
ENSG00000231925	TAPBP	12.23	8.81	-0.307																																																							
ENSG00000196151	WDSUB1	5.81	4.70	-0.306																																																							
ENSG00000143627	PKLR	3.85	3.11	-0.306																																																							
ENSG00000272005	RP11-91J19.4	4.15	3.58	-0.306																																																							
ENSG00000105953	OGDH	23.21	18.69	-0.305																																																							
ENSG00000163050	ADCK3	21.93	20.01	-0.303																																																							
ENSG00000119227	PIGZ	1.23	1.14	-0.303																																																							
ENSG00000101346	POFUT1	32.05	26.43	-0.303																																																							
ENSG00000185340	GAS2L1	1.32	1.07	-0.303																																																							
ENSG00000112078	KCTD20	19.25	13.91	-0.303																																																							
ENSG00000196569	LAMA2	1.10	1.02	-0.302																																																							
ENSG00000104936	DMPK	10.79	8.75	-0.302																																																							
ENSG00000149571	KIRREL3	4.60	3.45	-0.302																																																							
ENSG00000269337	ALS91479.1	1.53	1.23	-0.302																																																							
ENSG00000198018	ENTPD7	7.15	5.84	-0.302																																																							
ENSG00000163624	CDS1	18.39	15.27	-0.301																																																							
ENSG00000165586	UBTD1	4.10	3.45	-0.301																																																							
ENSG0000006377	DLX6	3.81	2.88	-0.301																																																							
ENSG00000157911	PEX10	11.55	9.61	-0.300																																																							
ENSG00000127540	UQCR11	57.07	49.47	-0.300																																																							
ENSG00000100906	NFKBIA	10.90	8.85	-0.300																																																							
Gene Symbol	Gene Name	Log2 Fold Change	Log10 Fold Change	P-Value																																																							
-------------	-----------	-----------------	------------------	---------																																																							
ENSG00000151835	SACS	2.41	1.96	-0.300																																																							
ENSG00000123575	FAM199X	15.40	13.76	-0.299																																																							
ENSG00000203499	FAM83H-AS1	1.47	1.07	-0.299																																																							
ENSG00000164850	GPER	10.95	8.48	-0.298																																																							
ENSG00000006555	TTC22	7.11	5.38	-0.298																																																							
ENSG00000114988	LMAN2L	13.85	11.26	-0.298																																																							
ENSG00000006210	CX3CL1	7.04	5.58	-0.297																																																							
ENSG00000137700	SLC37A4	117.59	93.47	-0.296																																																							
ENSG00000063180	CA11	4.91	3.19	-0.296																																																							
ENSG00000198876	DCAF12	37.55	31.11	-0.295																																																							
ENSG00000072682	P4HA2	23.51	19.03	-0.295																																																							
ENSG00000161243	FBXO27	5.07	4.05	-0.295																																																							
ENSG00000137218	FRS3	2.23	1.77	-0.295																																																							
ENSG00000112033	PPARD	7.43	5.83	-0.294																																																							
ENSG00000197324	LRP10	37.57	30.64	-0.294																																																							
ENSG00000171160	MORN4	3.58	2.93	-0.293																																																							
ENSG00000164414	SLC35A1	18.50	16.31	-0.293																																																							
ENSG00000089289	IGBP1	16.14	13.18	-0.292																																																							
ENSG00000125945	ZNF436	4.95	4.28	-0.292																																																							
ENSG00000004660	CAMKK1	9.34	7.26	-0.292																																																							
ENSG0000013725	TTC4	8.32	6.92	-0.291																																																							
ENSG00000136059	VILL	2.81	2.30	-0.291																																																							
ENSG00000157500	APPL1	25.61	23.28	-0.291																																																							
ENSG000001118231	CRYGD	3.62	3.17	-0.290																																																							
ENSG00000140986	RPL3L	0.62	0.55	-0.290																																																							
ENSG00000099330	OCEL1	15.53	12.10	-0.289																																																							
ENSG00000029725	RABEP1	44.76	36.65	-0.289																																																							
ENSG00000144655	CSRNP1	7.69	6.29	-0.288																																																							
ENSG00000175265	GOLGA8A	30.24	21.72	-0.288																																																							
ENSG00000173114	LLRN3	1.01	0.83	-0.287																																																							
ENSG00000214046	SMIM7	50.05	50.50	-0.287																																																							
ENSG00000106404	CLDN15	5.28	4.32	-0.286																																																							
ENSG00000178988	MRFAP1L1	53.38	45.51	-0.286																																																							
ENSG00000198589	LRBA	26.97	22.36	-0.286																																																							
ENSG00000187498	COL4A1	1.64	1.28	-0.286																																																							
ENSG00000115275	MOGS	24.96	20.99	-0.286																																																							
ENSG00000171467	ZNF318	9.07	7.58	-0.285																																																							
ENSG00000099139	PCSK5	1.92	1.65	-0.285																																																							
ENSG00000020181	GPR124	1.64	1.35	-0.285																																																							
ENSG00000085449	WDFY1	23.58	20.02	-0.285																																																							
ENSG00000111725	PRKAB1	12.16	10.87	-0.285																																																							
ENSG00000119681	LTBP2	0.52	0.45	-0.284																																																							
ENSG00000133466	C1QTNF6	17.54	16.29	-0.284																																																							
ENSG00000132793	LPIN3	18.50	15.29	-0.283																																																							
ENSG00000198408	MGEA5	24.30	17.45	-0.283																																																							
ENSG00000250506	CDK3	4.13	3.27	-0.283																																																							
ENSG0000008083	JARID2	7.10	5.86	-0.283																																																							
ENSG00000099834	CDHR5	51.33	43.11	-0.282																																																							
ENSG00000175573	C11orf68	6.58	5.38	-0.282																																																							
ENSG00000138448	ITGA7	15.38	12.73	-0.282																																																							
ENSG00000156521	TYSND1	4.57	3.66	-0.282																																																							
ENSG00000172269	DPAGT1	18.07	15.36	-0.282																																																							
Gene Symbol	Description	Log2 Fold Change	p-Value																																																								
-------------	-------------	-----------------	---------																																																								
ENSG00000188554	NBR1	34.99	29.47	-0.282																																																							
ENSG00000159479	MED8	15.93	13.19	-0.281																																																							
ENSG00000204128	C2orf72	24.04	19.67	-0.281																																																							
ENSG00000104419	NDRG1	41.69	28.47	-0.281																																																							
ENSG00000053108	FSTL4	0.87	0.76	-0.281																																																							
ENSG00000179104	TMTC2	4.48	3.34	-0.280																																																							
ENSG00000198585	NUDT16	11.75	9.67	-0.280																																																							
ENSG00000161328	LRRC56	1.90	1.61	-0.280																																																							
ENSG00000163702	IL17RC	5.57	5.16	-0.280																																																							
ENSG00000144043	TEX261	49.43	41.75	-0.279																																																							
ENSG00000213463	SYNJ2BP	18.85	15.54	-0.278																																																							
ENSG00000175130	MARCKSL1	133.82	113.02	-0.278																																																							
ENSG00000008735	MAPK8IP2	27.26	23.00	-0.277																																																							
ENSG00000184949	FAM227A	2.48	2.00	-0.276																																																							
ENSG00000056558	TRAF1	1.09	0.92	-0.275																																																							
ENSG00000067167	TRAM1	79.62	65.82	-0.275																																																							
ENSG00000121104	FAM117A	10.88	9.62	-0.275																																																							
ENSG00000249158	PCDHA11	5.18	4.58	-0.274																																																							
ENSG00000132128	LRRC41	19.58	16.22	-0.274																																																							
ENSG00000186094	AGBL4	1.40	1.01	-0.274																																																							
ENSG00000059588	TARBP1	7.64	6.53	-0.272																																																							
ENSG00000182934	SRPR	70.77	56.94	-0.272																																																							
ENSG00000148396	SEC16A	27.26	22.48	-0.272																																																							
ENSG00000119004	CYP20A1	8.31	7.08	-0.271																																																							
ENSG00000136828	RALGPS1	21.95	18.95	-0.271																																																							
ENSG00000136169	SETDB2	3.33	2.85	-0.271																																																							
ENSG00000130723	PRRC2B	35.82	29.29	-0.271																																																							
ENSG00000102978	POLR2C	36.83	31.29	-0.269																																																							
ENSG00000247400	DNAJC3-AS1	3.56	2.70	-0.269																																																							
ENSG00000078177	N4BP2	9.55	9.19	-0.268																																																							
ENSG00000083223	ZCCHC6	6.13	5.04	-0.268																																																							
ENSG00000198130	HIBCH	10.59	8.80	-0.267																																																							
ENSG00000148090	AUH	10.84	8.74	-0.267																																																							
ENSG00000183919	FAM53B	2.81	2.46	-0.267																																																							
ENSG0000005100	DHX33	5.29	4.20	-0.267																																																							
ENSG00000150760	DOCK1	10.81	9.05	-0.266																																																							
ENSG00000100220	RTCB	41.44	34.43	-0.265																																																							
ENSG00000204592	HLA-E	69.48	57.84	-0.264																																																							
ENSG00000152256	PDK1	4.09	3.41	-0.264																																																							
ENSG00000114450	GNB4	5.40	4.50	-0.264																																																							
ENSG00000158435	CNOT11	31.58	26.90	-0.264																																																							
ENSG00000057704	TMCC3	25.77	22.79	-0.263																																																							
ENSG00000178537	SLC25A20	13.77	10.89	-0.263																																																							
ENSG00000126882	FAM78A	0.58	0.60	-0.262																																																							
ENSG00000247596	TWF2	15.48	12.91	-0.262																																																							
ENSG00000143811	PYCR2	20.28	16.62	-0.262																																																							
ENSG00000187650	VMAC	1.38	1.01	-0.262																																																							
ENSG00000155792	DEPTOR	2.56	2.14	-0.261																																																							
ENSG00000197681	TBC1D3	8.73	6.92	-0.259																																																							
Gene ID	Gene Symbol	Expression1	Expression2	log2 Fold Change																																																							
----------------	-------------	-------------	-------------	-----------------																																																							
ENSG00000145990	GFOD1	2.39	2.00	-0.259																																																							
ENSG00000138293	NCOA4	94.51	79.26	-0.259																																																							
ENSG00000101350	KIF3B	44.03	38.08	-0.258																																																							
ENSG00000070214	SLC44A1	23.18	21.36	-0.257																																																							
ENSG00000255545	RP11-627G23.1	3.92	3.09	-0.257																																																							
ENSG00000213199	ASIC3	1.62	1.21	-0.257																																																							
ENSG00000089053	ANAPC5	59.67	48.07	-0.256																																																							
ENSG00000189652	TMEM232	1.58	1.33	-0.256																																																							
ENSG00000182809	CRIP2	76.49	52.42	-0.256																																																							
ENSG00000154310	TNK	5.93	4.84	-0.256																																																							
ENSG00000079482	OPHN1	1.95	1.64	-0.255																																																							
ENSG00000160113	NR2F6	24.85	22.39	-0.255																																																							
ENSG00000149485	FADS1	105.14	85.14	-0.255																																																							
ENSG00000129595	EPB41L14A	1.60	1.48	-0.254																																																							
ENSG00000197111	PCBP2	458.47	412.26	-0.253																																																							
ENSG00000070214	SLC44A1	23.18	21.36	-0.257																																																							
ENSG00000182809	CRIP2	76.49	52.42	-0.256																																																							
ENSG00000154310	TNK	5.93	4.84	-0.256																																																							
ENSG00000079482	OPHN1	1.95	1.64	-0.255																																																							
ENSG00000160113	NR2F6	24.85	22.39	-0.255																																																							
ENSG00000149485	FADS1	105.14	85.14	-0.255																																																							
ENSG00000129595	EPB41L14A	1.60	1.48	-0.254																																																							
ENSG00000100183	PKM	59.67	48.07	-0.256																																																							
ENSG00000182809	CRIP2	76.49	52.42	-0.256																																																							
ENSG00000154310	TNK	5.93	4.84	-0.256																																																							
ENSG00000079482	OPHN1	1.95	1.64	-0.255																																																							
ENSG00000160113	NR2F6	24.85	22.39	-0.255																																																							
ENSG00000149485	FADS1	105.14	85.14	-0.255																																																							
ENSG00000129595	EPB41L14A	1.60	1.48	-0.254																																																							
ENSG00000197111	PCBP2	458.47	412.26	-0.253																																																							
ENSG00000070214	SLC44A1	23.18	21.36	-0.257																																																							
ENSG00000182809	CRIP2	76.49	52.42	-0.256																																																							
ENSG00000154310	TNK	5.93	4.84	-0.256																																																							
ENSG00000079482	OPHN1	1.95	1.64	-0.255																																																							
ENSG00000160113	NR2F6	24.85	22.39	-0.255																																																							
ENSG00000149485	FADS1	105.14	85.14	-0.255																																																							
ENSG00000129595	EPB41L14A	1.60	1.48	-0.254																																																							
ENSG00000070214	SLC44A1	23.18	21.36	-0.257																																																							
ENSG00000182809	CRIP2	76.49	52.42	-0.256																																																							
ENSG00000154310	TNK	5.93	4.84	-0.256																																																							
ENSG00000079482	OPHN1	1.95	1.64	-0.255																																																							
ENSG00000160113	NR2F6	24.85	22.39	-0.255																																																							
ENSG00000149485	FADS1	105.14	85.14	-0.255																																																							
ENSG00000129595	EPB41L14A	1.60	1.48	-0.254																																																							
Ensembl ID	Gene Symbol	Allotype 1	Allotype 2	Log2 (Ratio)																																																							
---------------	-------------	------------	------------	--------------																																																							
ENSG00000117868	ESYT2	22.86	19.00	-0.235																																																							
ENSG00000106348	IMPDH1	14.54	12.36	-0.235																																																							
ENSG00000112624	GLTSCR1L	5.91	5.24	-0.235																																																							
ENSG00000159346	ADIPOR1	74.75	62.29	-0.235																																																							
ENSG00000085511	MAP3K4	32.18	27.75	-0.235																																																							
ENSG00000162729	IGSF8	11.50	9.12	-0.235																																																							
ENSG00000244045	TMEM199	24.10	22.29	-0.235																																																							
ENSG00000071994	PDCD2	27.13	23.46	-0.235																																																							
ENSG00000145349	CAMK2D	19.48	15.76	-0.234																																																							
ENSG00000091536	MYO15A	1.23	0.75	-0.234																																																							
ENSG00000122203	KIAA1191	28.43	24.17	-0.234																																																							
ENSG00000198689	SLC9A6	10.36	9.68	-0.234																																																							