Associations of cardiorespiratory fitness and exercise with brain white matter in healthy adults: A systematic review and meta-analysis

Suzan Maleki1 · Joshua Hendrikse2 · Yann Chye1 · Karen Caeyenberghs3 · James P. Coxon2 · Stuart Oldham4,5 · Chao Suo1 · Murat Yücel1

Accepted: 31 May 2022 / Published online: 30 June 2022
© Crown 2022

Abstract
Magnetic resonance imaging (MRI) studies have revealed positive associations between brain structure and physical activity, cardiorespiratory fitness, and exercise (referred to here as PACE). While a considerable body of research has investigated the effects of PACE on grey matter, much less is known about effects on white matter (WM). Hence, we conducted a systematic review of peer-reviewed literature published prior to 5th July 2021 using online databases (PubMed and Scopus) and PRISMA guidelines to synthesise what is currently known about the relationship between PACE and WM in healthy adults. A total of 60 studies met inclusion criteria and were included in the review. Heterogeneity across studies was calculated using Qochran’s q test, and publication bias was assessed for each meta-analysis using Begg and Mazumdar rank correlation test. A meta-regression was also conducted to explore factors contributing to any observed heterogeneity. Overall, we observed evidence of positive associations between PACE and global WM volume (effect size (Hedges’s g) = 0.137, p < 0.001), global WM anomalies (effect size = 0.182, p < 0.001), and local microstructure integrity (i.e., corpus callosum: effect size = 0.345, p < 0.001, and anterior limb of internal capsule: effect size = 0.198, p < 0.001). These findings suggest that higher levels of PACE are associated with improved global WM volume and local integrity. We appraise the quality of evidence, and discuss the implications of these findings for the preservation of WM across the lifespan. We conclude by providing recommendations for future research in order to advance our understanding of the specific PACE parameters and neurobiological mechanisms underlying these effects.

Keywords Exercise · Physical activity (PA) · Physical fitness (PF) · Cardiorespiratory fitness (CRF) · White matter (WM) · Magnetic resonance imaging (MRI)

Introduction
Engaging in regular physical activity is associated with numerous health benefits, including reduced incidence of certain cancers, cardiovascular disease, and type-2 diabetes (U.S. Department of Health and Human Services, 2019; Australian Department of Health, 2021). Remarkably, the positive effects of exercise also extend to the brain, with large scale epidemiological studies demonstrating that higher levels of physical activity, cardiorespiratory fitness, and exercise (referred to here as ‘PACE’) are associated with a significant reduction in the risk of mild cognitive...
impaired cognitive performance and dementia in later life (Mandolese et al., 2018; Stigter et al., 2019). Underlying these effects, a considerable body of research has shown that exercise has profound, broad effects on neuroplasticity – the brain’s intrinsic ability to modify its structure and function in line with changing internal or environmental factors (Voss et al., 2013). For example, engaging in cardiovascular exercise promotes the release of growth hormones and neurotrophic factors (such as brain-derived neurotrophic factor) that mediate neuroplasticity and are directly implicated in learning and memory (Alkadhi, 2018; Hendrikse et al., 2017).

Here, we use the acronym PACE to encompass any form of physical activity (PA), physical fitness (PF) (i.e., cardiorespiratory fitness; CRF), and exercise intervention. These terms are interrelated and are sometimes used interchangeably, but in fact have distinct definitions. PA can be defined as any bodily movements produced by skeletal muscles and requires energy expenditure, with exercise being a subset of physical activity that has planned, structured, and repetitive movements with a goal of maintaining or improving fitness (Caspersen et al., 1985). While PF is multi-factorial, cardiorespiratory and muscular components are the most commonly assessed, and can be quantified with health or performance measures that index the efficiency of the cardiovascular and respiratory systems. The gold standard method to assess cardiorespiratory fitness (CRF) is to measure the highest rate of oxygen consumption by muscles (known as VO2 max) during exercise by maximal exercise test (Campbell et al., 2013; Bouchard et al., 2012).

Higher levels of physical activity, exercise, and cardiorespiratory fitness (i.e. PACE) have beneficial effects on brain volume and integrity (Firth et al., 2018; Sexton et al., 2016). For example, neuroimaging studies have reported positive associations between cardiorespiratory fitness (CRF) and gray matter volume in the hippocampus (Den Ouden et al., 2018), prefrontal cortex, anterior cingulate cortex, and striatum (Firth et al., 2018; Gujral et al., 2017). Similarly, exercise has been associated with improvements in white matter (WM), particularly in older adults (Sexton et al., 2016). WM is composed of myelinated axons, oligodendrocytes, and astrocytes and accounts for approximately half of total brain volume (Sampaio-Baptista & Johansen-Berg, 2017). The primary function of WM is to structurally connect cortical and subcortical regions into ensembles that support cognition. Therefore, optimal coordination, coherence, and conduction velocity of neural activities across different cortical regions are essential for proper cognitive function (Filley & Fields, 2016). WM health can be examined through structural MRI techniques by measuring WM volume (T1-weighted), WM anomalies (T2-weighted), and WM microstructure (e.g., diffusion weighted imaging).

WM anomalies observable as white matter hyperintensities (WMH) in T2-weighted (FLAIR) MRI scans indicate poor WM health. These WMH occur due to water accumulation, reflecting demyelination and axonal loss and are mainly caused by cerebral small vessel disease (Filley & Fields, 2016; Prins & Scheltens, 2015). Aging and poor cardiovascular health (e.g. chronic hypertension and high heart rate) are major risk factors for onset and severity of WMHs (Fuhrmann et al., 2019; Prins & Scheltens, 2015). Mounting evidence demonstrates that WMHs can increase the risk of cognitive impairment (Filley & Fields, 2016; Frey et al., 2019; Fuhrmann et al., 2019; Prins & Scheltens, 2015), dementia (Fuhrmann et al., 2019; Prins & Scheltens, 2015), stroke, and certain forms of mental illness, such as depression (Frey et al., 2019). Further, disruptions in WM integrity (e.g. white matter volume and plasticity) underlie a range of neurodevelopmental, psychiatric, and neurological conditions including autism, schizophrenia, obsessive compulsive disorder, depression, and Alzheimer’s disease (Filley & Fields, 2016). Hence, there is a critical need to investigate methods of maintaining/improving WM integrity throughout the lifespan. Increasing physical activity and/or exercise may provide a novel effective approach, though a comprehensive understanding of the corresponding effect on white matter is first required.

This review aims to provide a systematic review on MRI studies investigating the associations between WM and physical activity, cardiorespiratory fitness and exercise (PACE) in healthy populations. Again, to maintain a standard terminology throughout this review, we use the term PACE to encompass any form of physical activity (PA), physical fitness (PF) (i.e., cardiorespiratory fitness; CRF), and exercise intervention. A previous review by Sexton et al (2016) highlighted positive associations between higher CRF and WM volume and integrity in frontal and temporal brain regions. However, at the time of publication this review reported cautious support for a link between physical activity and WM outcomes due to the limited evidence base, and only included studies conducted on older adults above 60 years of age. Since then, many new studies featuring young and middle-aged adult samples have been published, warranting an updated review of this literature. Hence, we review the cross-sectional and longitudinal findings to date on each aspect of structural WM health, including WM volume, WM anomalies, and WM microstructure.

Methods

Data source and quality check

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework was used to extract data and report study outcomes (Page et al., 2021). Authors S.M and Y.C conducted a systematic search of the literature via PubMed and Scopus online databases. The search was conducted using the following keywords and
operands: “exercise” OR “physical activity” OR “physical fitness” OR “cardiorespiratory fitness” AND “white matter” AND “MRI”. Reference lists of included studies were also screened. Searches were limited to human studies published prior to the 5th July 2021 in the English language. The search strategy is depicted in Fig. 1. The quality of evidence was assessed for each of the included studies by authors S.M and Y.C (and C.S in the case of inter-rater differences) using NIH study quality assessment tools (see supplementary materials). All eligible studies were deemed to have sufficient quality of evidence for inclusion in this review.

Study selection

Authors S.M. and Y.C. conducted independent title and abstract screening. Inter-rater differences were resolved through consult of author C.S. Studies were required to meet the following criteria for inclusion in this review: (1) published in a peer-reviewed academic journal; (2) utilised either a cross-sectional or longitudinal study design; (3) assessed PACE using objective/quantifiable methodology that could be generalised to wider population (e.g. VO2max for CRF, and actigraphy/accelerometry or self-report measures for PA); (4) included MRI assessment of WM (i.e. volume, anomalies, hyperintensities, and/or microstructural integrity); (5) conducted with healthy participants above 15 years of age. Studies that did not meet these criteria, and/or were conducted with N<10, or utilised a multimodal intervention without considering a separate exercise group (e.g., exercise combined with cognitive training) were excluded.

Data extraction

For each study, the following data were extracted: (1) sample demographics (N, age, biological sex), (2) WM assessment, i.e., volume (WMV), hyperintensities (WMH), and/or WM microstructure (fractional anisotropy (FA), mean diffusivity (MD)); (3) study design (i.e., cross-sectional or longitudinal); (4) PACE assessment (e.g., PA/CRF measure, and where applicable exercise intervention parameters including length, frequency and individual session duration). Studies that employed an exercise intervention but only assessed WM at a single timepoint (i.e., pre- or post-intervention were considered cross-sectional). All measures/results are reported as per original study definitions, with the exception of CRF, which for simplicity refers to both VO2max and other related exercise tests of cardiovascular/respiratory function.

Meta-analysis

Global WM volume and WM anomalies data form cross-sectional studies were analysed using Comprehensive Meta-Analysis (CMA, version 3) (Borenstein et al., 2013). The statistical outcomes included in the meta-analysis were calculated from the original reports. For studies not providing the statistical results of the regions of interest, we contacted the corresponding authors to retrieve these data to maximum our sample size. Given that this meta-analysis was conducted on correlational outcomes, we computed the correlation coefficients and Fisher’s z scale (based on sample size, and p-values of correlational outcomes) for individual studies. These estimates were then used to calculate effect size estimates (Hedges’s g), which provides an unbiased measure of standardised mean differences. We then applied a random-effects model to calculate the total effect size for all the meta-analyses (Borenstein et al., 2010). Similarly, FA measures of WM microstructure from cross-sectional studies were analysed within the most frequently reported regions, namely the corpus callosum and internal capsule (implicated in >4 studies). Due to insufficient number of studies, a meta-analysis on longitudinal data and cross-sectional global WM microstructure was not performed.

We assessed evidence of heterogeneity across study outcomes using Cochran’s Q method (CMA software) for each performed meta-analysis. Similarly, CMA was used to explore evidence of publication bias using Begg and Mazumdar rand correlations test (Begg & Mazumdar, 1994). We also performed meta-regression analyses to assess the influence of primary subject characteristics (i.e. age and gender) on observed associations between PACE and WM (Hedges’s g). Mean Age and Biological Sex ratios (i.e. % Female) from each individual study sample were extracted and entered as covariates across each meta-analysis model.

Results

Overview on selected studies

According to the flow chart (Fig. 1), 60 studies out of 441 articles will be reviewed in this paper. 57 studies were deemed to have good evidence quality, and 3 were fair evidence quality (see supplementary Material). All studies provided a detailed description of their primary study aim(s) and sample demographics, and utilised reliable and valid measures of PACE. Across studies, there was considerable heterogeneity in sample size (longitudinal N=21 – 352; cross-sectional N=15—7148), and exercise intervention parameters. For example, studies utilised different exercise modalities (e.g., walking, cycling, resistance, etc.), intervention durations (i.e., 1-13 months), frequencies (i.e., 1 – 4 sessions per week), and session durations (20—90 min). MRI scanner field strength also varied across studies (i.e., 1.5 or 3 Tesla). Also, studies varied in their reporting of experimenter blinding and statistical parameters (e.g., p-value specificity), and PACE methodology (e.g., objective vs subjective methods).
PACE and white matter volume

Narrative synthesis

Longitudinal studies Seven studies measured the effects of PACE on WM volume. Five demonstrated significant positive influence of PACE on WM volume (Rehfeld et al., 2018; Tabei et al., 2017; Arnardottir et al., 2016; Best et al., 2015; Stanley J. Colcombe et al., 2006), and two studies did not observe significant effects (Sexton et al., 2020; Smith et al., 2014). Four out of five studies with positive results featured exercise interventions of a minimum six-month duration. However, different types of physical fitness measurements were utilised across studies (e.g., VO₂max vs self-report measure), and thus it is difficult to conclude whether these effects were directly related to improvements in CRF (please refer to Table 1 for details of longitudinal studies).

Cross sectional studies Seventeen studies have investigated the associations between PACE and WM volume. Nine studies reported significant positive associations (Balbim et al., 2016; Best et al., 2015; Stanley J. Colcombe et al., 2006; Tabei et al., 2017; Arnardottir et al., 2016; Sexton et al., 2020; Smith et al., 2014).
did not observe any significant effect between PACE and WMH (Palta et al., 2021; Balbim et al., 2021; Gu et al., 2020; Frederiksen et al., 2015; Fleischman et al., 2015; Tian et al., 2014a). In summary, while longitudinal evidence is preliminary, the majority of existing cross-sectional studies suggest that greater PACE is associated with a reduced occurrence of WM anomalies.

Meta-analysis

A meta-analysis of fifteen cross-sectional studies examining the relationship between PACE and global WMV volume showed an overall small mean effect size of -0.182 (95% confidence interval (CI) = -0.262 to -0.102, p < 0.001) (Fig. 4). There was significant heterogeneity among the included studies (Q = 35.44, p = 0.001, I² = 60.50). The funnel plot (Fig. 5) was not symmetric and the Begg and Mazumdar rank correlation was non-significant (Tau = -0.36, two-tailed p = 0.06). The covariates of Age and Biological Sex were entered into the regression model to assess their influence on the observed heterogeneity, however, this was not significant (Q = 0.52, df = 2, p = 0.769).

PACE and white matter microstructural changes

Narrative synthesis

Longitudinal studies Nine studies investigated the effect of PACE on WM microstructure, with the majority utilising DTI outcome measures (Table 1). Basic standard metrics of diffusion analysis are fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). The two most frequently reported metrics are FA and MD which generally reflect WM integrity and average diffusivity respectively (Curran et al., 2016). Also, increased AD (diffusivity along principal axis) has been linked to axonal damage and increased RD (average of diffusivity along perpendicular axes) has been associated with demyelination (Curran et al., 2016; Mayo et al., 2019).

Three studies found significant FA increase following exercise intervention, while four studies did not find significant effects (Best et al., 2017; Lehmann et al., 2020; Maltai et al., 2020; Sexton et al., 2020). Of those studies reporting positive effects, FA increases were observed across a number of brain regions including prefrontal, parietal, and temporal cortices (Voss et al., 2013), as well as specific WM tracts including the fornix (Burzynska et al., 2017), and left corticospinal tract (CST) (Palmer et al., 2013). Interestingly, one study reported a decrease in whole brain mean FA following 6 months aerobic exercise intervention, but these results may have been influenced by demographic differences which were not controlled for between groups (Clark et al., 2019).
Author	Age (female %)	Sample Size	Intervention Design	Duration (months)	Frequency (times pw)	Session (minutes)	Assessment (MRI and PACE)	Results
Colmenares et al. (2021)	60 – 79 (69.3)	86	Walking	6	3	60	T1and TP2: T1/T2 ratio, DTI	WMH: ns
			Dance				CRF (treadmill)	Microstructural changes:
			Active control					Increase total WM (T1/T2 ratio) in genu and splenium of CC ($p=0.02$), forceps minor ($p=0.04$), and cingulum ($p=0.02$) in walking group, relative to controls
								Increased total WM (T1/T2 ratio) and increased WM in the genu of CC ($p=0.05$)
								CRF~T1/T2 ratio: ns
								↑ FA in fornix and forceps minor in dance group relative to controls
								Cognition: increase in T1/T2 ratio was associated with higher cognitive function in the walking group
Sexton et al. (2020)	60 – 85 (63)	23	Cycling	3	3	30	T1and TP2: T1, DTI	WMV: ns
			Control				CRF	Microstructural changes:
							PA (questionnaire)	No significant group differences in FA, AD, and RD
Lehmann et al. (2020)	18 – 35 (64.5)	15	Cycling	0.5	7 sessions in total	20	T1and TP2: T1, DTI	Cognition: ns
			Balance learning				CRF (bicycle ergometer)	Microstructural changes:
							PA (questionnaire)	FA: ns
								MD ↓ in exercise group ($p_{FWE}<0.05$) in the bilateral superior longitudinal fasciculus, bilateral anterior thalamic radiation, bilateral uncinate fasciculus, bilateral inferior fronto-occipital fasciculus, forceps minor, and right corticospinal tract
								RD: ↓ in exercise group ($p_{FWE}<0.05$) in the right superior longitudinal fasciculus, right inferior fronto-occipital fasciculus, right anterior thalamic radiation, right uncinate fasciculus, right corticospinal tract, and forceps minor
								Cognition: improved performance of complex motor tasks post intervention
Maltais et al. (2020)	>70 (60)	106	Assessed exercise patterns associated with regular lifestyle	60	–	–	T1, TP-mid, TP2: T1, DTI	Microstructural changes:
							PA (questionnaire)	FA: ns
								MD: ↑ in participants with lower PA level in uncinate fasciculus
Clark et al. (2019)	57 – 86 (44)	25	Aerobic	6	3	20—45	T1and TP2: T1, DTI	Microstructural changes:
							CRF	Cognition: NA
								Microstructural changes:
							FA: ↓ mean global FA across post intervention	Cognition: NA
								MD: ns
Rehfeld et al. (2018)	63 – 80 (51.9)	20	Dance training	6	2	90	T1and TP2: T1	WMV: ↑ in both groups ($p=0.001$ uncorrected). Specifially, higher WMV in the truncus and splenium of CC in the dance group, and higher WMV in the right occipital and temporal regions
			Endurance training				CRF (bicycle ergometer)	Cognition: ns
Author	Age (female %)	Sample Size	Intervention Design	Duration (months)	Frequency (times pw)	Session (minutes)	Assessment (MRI and PACE)	Results
------------------------	----------------	-------------	---------------------	-------------------	----------------------	-------------------	---	--
Moon et al. (2018)	> 70 (63.8)	152	Assessed exercise patterns associated with regular lifestyle	36	_	_	T1land TP2: T1, FLAIR PA (questionnaire)	WMH: ns Reduced PA level over three years was associated with WMH progression
Best et al. (2017)	70 – 79 (60)	141	Assessed exercise patterns associated with regular lifestyle	36	_	_	T1land TP2 (after 10 and 13 years) T1, T2, DTI PA (questionnaire)	Microstructural changes: FA: ns AD: Higher PA over 10-year period associated with smaller increase in AD in the inferior longitudinal fasciculus, and parahippocampal and dorsal regions of the cingulum Cognition: ↑ PA predicted better global cognitive performance (p = 0.01)
Tabei et al. (2017)	> 65 (86.3)	61	Aerobic + Music Control	12	1	60	T1land TP2: T1 PA (interviewed)	WMV: ↑ in both exercise groups compared to controls in the right anterior corona radiata (p = 0.001 uncorrected) ↓ WMV in control group post intervention Cognition: Improved performance following exercise + music intervention, relative to exercise alone
Burzynska et al. (2017)	60 – 79 (68.7)	49	Dance Walking + Nutrition active control	6	3	60	T1land TP2: DTI CRF PA (accelerometer)	Microstructural changes: Significant changes reported in the Fornix, specifically: FA: ↑ in dance group, while ↓ in walking and control (p = 0.001) MD and RD: dance group showed smaller increase relative to other groups (p = 0.023 and p = 0.007 respectively) Cognition: ns
Arnardottir et al. (2016)	~ 79.1 (61)	352	Assessed exercise patterns associated with regular lifestyle	60	_	_	T1land TP2: T1, T2 PA (accelerometer)	WMV: At both time-points, ↑ WMV was associated with ↑ total PA (p = 0.03) Cognition: NA
Bolandzadeh et al. (2015)	65 – 75 (100)	18	Light resistance Moderate resistance Balance and toning	12	1	60	T1land TP2: T2, PD PA (questionnaire)	WML: ↓ WML in moderate resistance group relative to the balance and toning condition (p = 0.03) ns difference between light resistance training and balance and toning condition Cognition: ns
Author	Age (female %)	Sample Size	Intervention Design	Duration (months)	Frequency (times pw)	Session (minutes)	Assessment (MRI and PACE)	Results
------------------------	----------------	-------------	---	-------------------	----------------------	-------------------	---------------------------	---
Best et al. (2015)	65 – 75 (100)	41	Resistance training twice per week	13	2	60	TP1, TP-mid, TP2: T1 PA	WMV: ↓ WMV over 2 years in all groups (p = 0.009): 0.8% in twice-weekly resistance training, 1.5% in weekly resistance training, 2% in balance and toning condition Cognition: improved memory and executive functions after 2-year follow-up
		37	Resistance training once per week					
		41	Balance and toning					
Smith et al. (2014)	65 – 89	97	Assessed exercise patterns associated with regular lifestyle	18	_	_	TP1 and TP2: T1 PA	WMV: ns Cognition: NA
Palmer et al. (2013)	24 + (2), (61)	12	Unilateral strength training lower limb	1	4	_	TP1 and TP2: T1 FLAIR, DTI PA (questionnaire)	Microstructural changes: Significant changes in left cortico-spinal tract: MD: ↓ in strength training group (p = 0.02) FA: ↑ in strength training group relative to control (p = 0.01) Cognition: NA
		9	Control					
Voss et al. (2013)	55 – 80 (64)	35	Walking Stretching	12	3	40	TP1 and TP2: T2, DTI CRF	WMV: ↑ CRF was associated with ↑ FA only in walking group in prefrontal (p = 0.001), parietal (p = 0.005), and temporal regions (p = 0.03) AD: ns RD: ns Cognition: ↑ CRF ~ improved short-term memory
		35	Stretching					
Colcombe et al. (2006)	60 –79 (55)	29	Aerobic Stretching	6	3	60	TP1 and TP2: T1 CRF	WMV: ↑ WMV in aerobic compared to control group in anterior WM tracts including CC (p = 0.05) Cognition: NA
		30	Stretching					

PA: Physical activity; CRF: Cardiorespiratory fitness; WMV: White matter volume; WMHI: White matter hyperintensity; WML: White matter lesion. NA = not applicable (i.e. not measured or only assessed for screening). TP1 = time point at baseline, TP2 = time point at completion of intervention, TP-mid = middle time point (36 months for Maltais et al., 2020, and 12 months for Best et al., 2015). Symbol “−” means association/correlation. All p-values are corrected unless otherwise stated. MRI Scanner field strength is 3 T, apart from two studies conducted at 1.5 T (Tabei et al., 2017 and Arnardottir et al., 2016). Regarding biological sex ratios, we averaged across sub-groups in five studies (Colmenares et al., 2021; Tabei et al., 2017; Burzynska et al., 2017; Palmer et al., 2013; Voss et al., 2013; and Colcombe et al., 2006). Non-significant outcomes are denoted as “ns”
Table 2 Summary of studies with cross-sectional designs

Author	Sample Size	Age	Female Rate	MRI Protocol	Scanner Field Strength	PA/ CRF Assessment	Results
Palta et al. (2021)	1604	45—64	61	T1 T2 DTI	3 T	PA (questionnaire)	WMH: ns
Microstructural changes:							
↑ MVPA at midlife – ↑ FA \((p=0.021) \) and ↓ MD \((p=0.019) \) at late life (after 25 years)							
Cognition: NA							
Balbim et al. (2021)	34	>65	56	T1 T2 DTI	3 T	PA (questionnaire)	WMH: ns
WMV: ↑ MVPA – ↑ WMV in posterior cingulate \((p=0.047) \) and isthmus cingulate \((p=0.044) \)							
Microstructural changes:							
PA – FA: ns							
Cognition: NA							
d’Arbeloff et al. (2021)	801	At 45	48	T1 DTI	3 T	CRF (cycle ergometer)	Microstructural changes:
FA – CRF: ns							
Cognition: NA							
Koblinsky et al. (2021)	66	65—85	62	T1	3 T	PA (questionnaire)	WMV: ns
Cognition: ns							
WMV: ns							
Microstructural changes:							
Global FA and AD was significantly higher in aerobic group. Regional TBSS results:							
↑ FA in the genu of CC, cingulum, fornix, SLF, fronto-occipital fasciculus, uncinate fasciculus, anterior and superior corona radiata, anterior limb of internal capsule, \((p=0.042) \)							
↑ CRF – ↑ FA and AD in same regions							
↑ CRF – ↑ RD in brainstem; ↓ RD in the external capsule							
Cognition: NA							
Tarumi et al. (2021)	30 aerobic						
30 sedentary	45—64	50	T1 DTI	3 T	CRF	Microstructural changes:	
Global FA and AD was significantly higher in aerobic group. Regional TBSS results:							
↑ FA in the genu of CC, cingulum, fornix, SLF, fronto-occipital fasciculus, uncinate fasciculus, anterior and superior corona radiata, anterior limb of internal capsule, \((p=0.042) \)							
↑ CRF – ↑ FA and AD in same regions							
↑ CRF – ↑ RD in brainstem; ↓ RD in the external capsule							
Cognition: NA							
Gu et al. (2020)	1443	>65	63.8	T1 T2	1.5 T	PA (questionnaire)	WMH: ns
WMV: ↑ leisure time PA – ↑ total WM and hippocampal volume \((p=0.03) \)							
Cognition: NA							
Kim et al. (2020)	35 super agers						
55 typical agers	> 60	83	T1 DTI	3 T	PA (FitBit for a week)	Microstructural changes:	
↑ PA – ↑ FA in the body of CC \((p=0.04) \) and ↓ MD \((p=0.03) \) and RD \((p=0.01) \) in left inferior longitudinal fasciculus							
AD: ns							
Cognition: NA							
Author	Sample Size	Age	Female Rate%	MRI Protocol	Scanner Field Strength	PA/CRF Assessment	Results
---	---	---	---	---	---	---	---
Johnson et al. (2020)	76	59—77	61.8	T1 T2	3 T	CRF	WMH: ↑CRF− ↓WMH volume in older participants (p=0.04)
							Cognition: NA
Strömmer et al. (2020)	399	18—87	55.4	T1 DTI	3 T	PA (questionnaire)	Microstructural changes: ↑PA−↑FA preservation in 4 out of 21 ROIs including the genu of CC, uncinate fasciculus, external capsule, anterior limb of internal capsule
							Cognition: ↑FA in the genu of CC − less age-related slowing of cognitive processing
Wittfeld et al. (2020)	2103	21 – 84	52.4	T1	1.5 T	CRF	WMV: ns
							Cognition: NA
Raichlen et al. (2019)	7148	40 – 69	57.1	T1 T2	3 T	CRF	WMH: ↑CRF− ↓WMH loads (p=0.002)
							↑MV-PA − ↓WMH loads (p=0.02)
							MV: moderate-to-vigorous
							Cognition: NA
Opel et al. (2019)	1050	28.8	54.5	T1 DTI	3 T	PF (walking endurance test)	Microstructural changes: ↑PF−↑FA in widespread clusters including the genu of CC, bilateral SLF, bilateral uncinate fasciculus, bilateral internal and external capsule, CST, and cerebellar peduncles
							Cognition: ↑PF − increased global cognitive function
Williamson et al. (2018)	52	18—40	49	T1 T2 DTI	3 T	PA (VO2)	WMH: ↑CRF associated with ↓WMH anomalies and ↑Blood flow & vessel density
							Cognition: NA
Vesperman et al. (2018)	107	40–65	65.4	T1 T2	3 T	CRF	WMH: ↑CRF− ↓WMH volumes
							Cognition: NA
Gujral et al. (2018)	105	60—80	63	T1 DTI	3 T	PA (questionnaire)	Microstructural changes: ↑FA in CC, anterior thalamic radiation, and superior longitudinal fasciculus predicted higher adherence to PA over 12 months aerobic intervention (p = 0.05)
							Cognition: NA
Author	Sample Size	Age	Female Rate	MRI Protocol	Scanner Field Strength	PA/ CRF Assessment	Results
------------------------	-------------	---------	-------------	--------------	------------------------	--------------------	---
Jochem et al. (2017)	834	25—83	53.5	T1	1.5 T	PA (questionnaire)	WMV; ns
							MRI after 6 years
Pentikäinen et al. (2017)	68	61-75	42.6	T1	1.5 T	CRF	WMV; ns
Bracht et al. (2016)	30	25.5(4.2)	57.5	T1	3 T	PA (actigraphy)	Microstructural changes:
				DTI			FA: ns; MD: ns; AD: ns; RD: ns
				mcDESPOT			↑ PA ~ ↑ MWF (p = 0.007) in the right parahippocampal cingulum (with positive ns trend in fornix)
							Cognition: NA
Smith et al. (2016)	88	65—89	73.8	T1	3 T	PA (Questionnaire)	Microstructural changes:
				DTI			DTI after 18 months
							↓ PA ~ ↑ FA in the left fornix and stria terminals
							MD: ns; AD: ns; RD: ns
							Cognition: NA
Oberlin et al. (2016)	113 (Group 1)	60—81	–	T2	3 T	CRF	Microstructural changes:
	154 (Group 2)	60—80		DTI-G1 (12)			Group 1:
				DTI-G2 (30)			↑ CRF = ↑ FA in the CC, fornix, bilateral ACR and anterior internal capsule
							Group 2:
							↑ CRF = ↑ FA in the CC, left Cingulum, bilateral internal capsule, anterior and superior corona radiata, bilateral superior longitudinal fasciculus
							↑ CRF ~ ↓ FA in the bilateral posterior limb of internal capsule (all p < 0.05)
							Cognition: ↑ CRF associated with ↑ FA and this in turn was associated with better memory performance
							WML: ns
							Cognition: ↑ CRF ~ higher global cognitive function
							WMV: ↑ CRF ~ ↑ WMV in temporal and parietal at baseline (p = 0.05)
							Cognition: NA
Author	Sample Size	Age	Female Rate	MRI Protocol	Scanner Field Strength	PA/ CRF Assessment	Results
------------------------	-------------	--------------	-------------	--------------	------------------------	-------------------------	--
Hayes et al. (2015)	32 young	18—31	53.1	T1	3 T	CRF	Microstructural changes: ↑ FA in young and higher fit old adults compared to lower fit old adults in splenium of CC, posterior corona radiata, sagittal stratum, and right superior parietal regions
	27 old	55—82	55.5	DTI			Cognition: NA
Zhu et al. (2015)	565	18—30	54.3	T1		CRF	WMV: ↑ CRF ~ ↑ WMV Microstructural changes: ↑ CRF ~ ↑ FA Cognition: NA
				T2		MRI after 5 years	WMH: ↑ CRF ~ ↓ WMH volume, ($p=0.001$) Cognition: ↑ CRF ~ better cognitive function
Boots et al. (2015)	315	40—65	67.9	T1	3 T	CRF (questionnaire)	WMH: ns Cognition: ↑ PA ~ higher executive function, but not memory
				T2		85 subsets (VO2)	WMH: ns Cognition: NA
Frederiksen et al. (2015)	282	64—85	58.1	T2		PA (questionnaire)	WMH: ns Cognition: NA
Fleischman et al. (2015)	167	60—96	79	T1	1.5 T	PA (actigraphy)	WMH: ns Cognition: NA
				T2			
Burzynska et al. (2014)	88	60—78	66.2	T2	3 T	PA (accelerometer)	
				DTI			
Herting et al. (2014)	34	15—18	0	T1	3 T	CRF	Microstructural changes: ↑ CRF ~ ↓ FA in left CST ($p<0.05$) Cognition: NA
				DTI		PA (actigraphy)	CRF ~ AD: ns CRF ~ RD: ns Cognition: NA
Tian et al. (2014a)	39: Sedentary	70—79	58.7	T1	3 T	PA (self-report time spent walking)	WMH: ns Microstructural changes: ↑ PA ~ ↓ MD in the medial temporal lobe ($p=0.023$) and cingulate cortex ($p=0.006$) Cognition: NA
	148: Life activity			DTI			
	89: Exercise						
Author	Sample Size	Age	Female	Rate	MRI Protocol	Scanner Field	PA/ CRF Assessment
------------------------	-------------	-----------	--------	------	--------------	----------------	--------------------
Tian et al. (2014b)	164	> 80	51.8	TI	FLAIR	3 T	CRF based on 400 m walk as fast as possible
Wirth et al. (2014)	92	60-90	63	TI	FLAIR	1.5 T	PA (questionnaire)
Demirakca et al. (2014)	95	19-82	53.6	T1	T1	3 T	PA (questionnaire)
Liu et al. (2012)	9 actives	60—76	46.6	DTI	DTI	3 T	CRF (self-report time spent walking)
Johnson et al. (2012)	26	60—69	53.8	T1	T1	3 T	CRF
Benedict et al. (2013)	331	At 75	49.5	T1	PET	1.5 T	PA (questionnaire)
Gow et al. (2012)	638	At 70	47.3	T1	T2, T2*	1.5 T	PA (questionnaire)
Marks et al. (2011)	8 actives	60—76	46.6	T1	DTI	3 T	CRF
Bugg and Head (2011)	52	55—79	71.1	T1	FLAIR	1.5 T	PA (questionnaire) over the past 10 years
The effect of PACE on MD has been analysed in five studies. Four studies reported significant associations between PACE and MD (Burzynska et al., 2017; Lehmann et al., 2020; Maltais et al., 2020; Palmer et al., 2013), while one study reported no significant effects (Clark et al., 2019). Three studies reported changes in MD following exercise interventions across a number of tracts including superior longitudinal fasciculus, anterior thalamic radiation, uncinate fasciculus, inferior fronto-occipital fasciculus, forceps minor, and the corticospinal tract (Burzynska et al., 2017; Lehmann et al., 2020; Palmer et al., 2013). However, the direction of MD change was inconsistent across studies, with studies reporting both increased (Burzynska et al., 2017) and decreased MD (Lehmann et al., 2020; Palmer et al., 2013) following exercise. One observational study reported greater decrease in MD over a five year period in individuals engaging in lower PACE (Maltais et al., 2020).

Four studies investigated the effect of PACE on RD. Two studies reported non-significant results (Sexton et al., 2020; Voss et al., 2013), and two studies reported significant outcomes (Burzynska et al., 2017; Lehmann et al., 2020), though the direction of these effects differed between studies. Specifically, one study reported decreased RD in right frontotemporal fiber tracts following exercise (Lehmann et al., 2020), while another study found that a dance-based intervention ameliorated the increase in RD observed over a 6-month period in older adults (Burzynska et al., 2017).

Three studies measured the effects of PACE on AD. One study found that higher PACE offset an increase in AD across inferior longitudinal fasciculus, parahippocampal, and dorsal regions of the cingulum in individuals over a 10-year period (Best et al., 2017). Two other studies reported no change in AD following an exercise intervention (Sexton et al., 2020; Voss et al., 2013).

One study utilised the T1/T2 ratio (a measure of WM integrity derived by dividing the T1-weighted image by the T2-weighted image) to investigate the effect of a 6-month aerobic exercise on WM integrity. Significant differences in total WM were observed in a walking group relative to controls, with increases observed in the genu and splenium of CC, cingulum, and forceps minor in the walking group. Similarly, significant differences in total WM were also observed in a dance group relative to controls, with increases observed in the genu of CC following a dance intervention (Colmenares et al., 2021).

Cross sectional studies The association between PACE and WM microstructure has been explored in 21 studies to date. Of these, fifteen studies reported significant associations between PACE and FA (Table 2), while four studies did not observe significant associations (Baibim et al., 2021; d’Arbeloff et al., 2021; Bracht et al., 2016; Tian et al., 2014a). Of the studies reporting significant associations,
Fig. 2 Effect sizes for global white matter volume within cross-sectional studies. Higher PACE is correlated with higher WM volumes.

Study name	Statistics for each study	Hedges's g and 95% CI			
	Hedges's g	Standard error	Lower limit	Upper limit	p-Value
Koblinsky 2021	0.455	0.256	-0.046	0.956	0.075
Gu 2020	0.136	0.053	0.032	0.239	0.010
Wittfeld 2020	0.010	0.044	-0.075	0.096	0.810
Jochem 2017	0.111	0.069	-0.025	0.247	0.113
Pentikainen 2017	0.202	0.247	-0.281	0.685	0.413
Zhu 2015	0.183	0.085	0.017	0.349	0.030
Benedict 2013	0.289	0.111	0.071	0.507	0.009
Gow 2012	0.205	0.080	0.048	0.361	0.010
Bugg 2011	0.179	0.283	-0.375	0.733	0.526

Fig. 3 Funnel plot of standard errors plotted against effect sizes (Hedges's g) for studies in Fig. 2 to visualise publication bias.

Fig. 4 Effect sizes for WM anomalies within cross-sectional studies. Higher PACE is correlated with a reduced occurrence of WM anomalies (hyperintensities).

Study name	Statistics for each study	Hedges's g and 95% CI			
	Hedges's g	Standard error	Lower limit	Upper limit	p-Value
Palta 2021	-0.017	0.050	-0.115	0.081	0.730
Balbim 2021	-0.108	0.351	-0.797	0.580	0.758
Johnson 2020	-0.401	0.238	-0.948	-0.014	0.044
Gu 2020	-0.022	0.053	-0.126	0.081	0.869
Raichlen 2019	-0.073	0.024	-0.120	-0.027	0.002
Vesperman 2018	-0.479	0.200	-0.872	-0.087	0.017
Williamson 2018	-0.800	0.304	-1.395	-0.204	0.008
Frederiksen 2016	-0.177	0.068	-0.310	-0.044	0.009
Fleischman 2015	-0.214	0.156	-0.521	0.092	0.171
Boots 2015	-0.375	0.115	-0.600	-0.149	0.001
Wirth 2014	-0.491	0.217	-0.916	-0.067	0.023
Burzynska 2014	-0.632	0.226	-1.075	-0.190	0.005
Tian 2014-a	-0.243	0.216	-0.685	0.160	0.233
Gow 2012	-0.174	0.080	-0.330	-0.018	0.028

- Springer
greater engagement in PACE was correlated with higher FA across numerous regions, particularly the CC (Hayes et al., 2015; Johnson et al., 2012; Kim et al., 2020; Liu, 2012; Oberlin et al., 2016; Opel et al., 2019; Strömmer et al., 2020; Tarumi et al., 2021), anterior limb of internal capsule (Liu et al., 2012; Oberlin et al., 2016; Opel et al., 2019; Strömer et al., 2020; Tarumi et al., 2021), cingulum (Tarumi et al., 2021; Oberlin et al., 2016; Tian et al., 2014b; Marks et al., 2011), uncinate fasciculus (Opel et al., 2019; Strömer et al., 2020; Tarumi et al., 2021), and superior longitudinal fasciculus (Oberlin et al., 2016; Opel et al., 2019; Tarumi et al., 2021). However, three studies have reported that higher PACE was associated with reduced FA across the bilateral posterior limb of internal capsule (Oberlin et al., 2016), left fornix and stria terminals (Smith et al., 2016), and left CST (Herting et al., 2014).

Correlation between PACE and MD have been reported in nine studies. Overall, four studies reported significant outcomes, while five studies did not observe any significant results (Bracht et al., 2016; Gow et al., 2012; Johnson et al., 2012; Marks et al., 2011; Smith et al., 2016). Of the studies reporting positive outcomes, one study reported significantly lower MD in middle-aged subjects engaging in moderate to vigorous PA, compared to controls (Palta et al., 2021). Two studies observed significant negative correlations between PACE and MD with associations observed across the hippocampus and entorhinal cortex (Tian et al., 2014b), and left inferior longitudinal fasciculus (Kim et al., 2020). One study compared MD between sedentary individuals and those who engaged in PACE.
Fig. 7 Funnel plot of standard errors plotted against effect sizes (Hedges’s g) for studies in Fig. 6 to visualise publication bias

Fig. 8 Effect sizes for local WM microstructural findings in anterior limb of internal capsule. Higher FA values were positively associated with PACE level

Study name	Statistics for each study	Hedges’s g and 95% CI
Tarumi 2021	0.519 0.270 -0.011 1.049 0.055	
Balbim 2021	0.222 0.353 -0.469 0.914 0.529	
Strommer 2020	0.214 0.101 0.017 0.412 0.034	
Opel 2019	0.121 0.062 -0.003 0.242 0.050	
Oberlin 2016	0.319 0.164 -0.003 0.640 0.052	
Liu 2012	1.128 0.633 -0.114 2.369 0.075	
	0.198 0.058 0.084 0.311 0.001	

Fig. 9 Funnel plot of standard errors plotted against effect sizes (Hedges’s g) for studies in Fig. 8 to visualise publication bias
engaging in regular exercise. Significant differences in MD were observed between groups, with lower MD observed in the medial temporal lobe and cingulate cortex in individuals engaging in regular exercise (Tian et al., 2014a).

The association between PACE and AD was examined in six studies. One study reported higher AD in a sample of physically active subjects, relative to controls, across several regions including CC, SLF, uncinate fasciculus, and fornix (Tarumi et al., 2021). However, five studies reported non-significant results (Bracht et al., 2016; Herting et al., 2014; Johnson et al., 2012; Kim et al., 2020; Smith et al., 2016).

Six studies examined the relationship between PACE and RD. Two studies reported significant negative correlations between PACE and RD in corpus callosum (Johnson et al., 2012), and left inferior longitudinal fasciculus (Kim et al., 2020). Of these, however, one study reported inconsistent effects, whereby increased RD was observed in the brainstem and decreased RD in external capsule in physically active subjects (Tarumi et al., 2021). Three studies reported non-significant findings (Bracht et al., 2016; Herting et al., 2014; Smith et al., 2016).

One study employed a multicomponent-driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) sequence to investigate the relationship between PACE and WM integrity. They observed a positive association between PACE and myelin water fraction in right parahippocampal cingulum and a positive trend in the fornix (Bracht et al., 2016).

Meta-analysis

A meta-analysis of nine cross sectional studies reporting region-of-interest analysis of FA in corpus callosum was conducted. We observed a small positive effect size of 0.345 in the corpus callosum (95% confidence interval (CI) = 0.164 to 0.525, $p < 0.001$, Fig. 6). Studies were not significantly heterogeneous ($Q = 15.399$, $p = 0.052$, $I^2 = 48.05$). The funnel plot was partially asymmetric (Fig. 7) and the Begg and Mazumdar rank correlation was significant (Tau = 0.583, two-tailed $p = 0.028$). The meta-regression showed no significant relationship between Hedges’s g and both covariates ($Q = 4.18$, df = 2, $p = 0.124$).

A meta-analysis of six cross sectional studies reporting FA changes at anterior limb of internal capsule was performed and a small positive effect size of 0.198 was observed (95% confidence interval (CI) = 0.084 to 0.311, $p < 0.001$) (Fig. 8). Studies were not significantly heterogeneous ($Q = 5.562$, $p = 0.351$, $I^2 = 10.102$). The funnel plot (Fig. 9) is symmetric and there was no evidence of significant bias (Tau = 0.53, two-tailed $p = 0.132$).

Discussion

We conducted a systematic review of the literature investigating interactions between PACE and WM. We found that majority of cross-sectional and longitudinal studies reported that greater engagement in PACE was associated with greater WM volume and integrity. Similarly, across studies higher PACE was also associated with reduced WM anomalies. This pattern of results was also supported by meta-analysis of the data, which indicated a significant positive effect of PACE on WM volume and integrity, although the size of this effect was small. However, we note that within the sampled literature, several studies reported null results, suggesting that the effects of PACE on WM are likely variable, and quite plausibly influenced by certain methodological considerations and/or PACE parameters. Overall, despite considerable heterogeneity in study methodology and outcomes, we provide evidence of positive correlation between greater engagement in PACE and several aspects of WM. The following sections will provide a detailed discussion of our findings in relation to past evaluations of this evidence, and outline possible methodological variables that may moderate the effects of PACE on WM.

Evidence of regionally specific effects of PACE on WM

Across the sampled literature, there was some indication of regionally specific interactions between PACE and WM. Specifically, associations between PACE and WM...
integrity were observed primarily in the corpus callosum (Colmenares et al., 2021; Hayes et al., 2015; Johnson et al., 2012; Kim et al., 2020; Liu et al., 2012; Oberlin et al., 2016; Opel et al., 2019; Strömmer et al., 2020; Tarumi et al., 2021), uncinate fasciculus (Lehmann et al., 2020; Maltais et al., 2020; Opel et al., 2019; Strömmer et al., 2020; Tarumi et al., 2021), internal capsule (Liu et al., 2012; Oberlin et al., 2016; Opel et al., 2019; Strömmer et al., 2020; Tarumi et al., 2021), cingulum (Balbim et al., 2021; Tarumi et al., 2021; Oberlin et al., 2016; Tian et al., 2014a, 2014b; Marks et al., 2011), and fornix (Burzynska et al., 2017; Oberlin et al., 2016; Smith et al., 2016; Tarumi et al., 2021) (see Fig. 10). These findings are largely consistent with those of a previous review by Sexton et al. (2016), which reported some evidence of an association between PACE and WM volume and microstructure (particularly in frontal regions) in older adults. We extend on these findings by demonstrating that these effects are observed across all age cohorts, suggesting that the beneficial effects of PACE are observable across the lifespan.

We also note certain differences between our findings and those of Sexton et al. (2016). Our analysis indicates associations between PACE and WM in temporal regions. Comparatively, Sexton et al. provided some evidence of localised effects within frontal cortex. The cause of these topologically distinct findings is unclear, though it is possible that this may be partially attributable to differences in the age range of sampled literature. The previous review by Sexton et al. (2016) restricted their analysis to studies with a mean sample age > 60 years. Comparatively, we included all studies conducted with healthy adults (i.e., > 18 years of age). While our meta-regression analyses did not show clear evidence of associations between age and primary outcome measures, it remains possible that differences in our sampling approach and inclusion criteria have contributed to these inconsistencies. Frontal and temporal regions are particularly susceptible to age-related structural decline (Bennett & Madden, 2014; Sullivan & Pfefferbaum, 2006), and may therefore be differentially impacted by PACE at different life stages. We aimed to provide a comprehensive assessment of the associations between PACE and WM across the healthy adult lifespan, but future studies are required to elucidate the interactions between PACE, age, and white matter.

The relationship between exercise ‘dose’ and WM

The optimal exercise parameters for improving WM structure and integrity are yet to be elucidated. It is quite likely that associations between PACE and WM may vary according to the particular exercise parameters under investigation (i.e., modality, frequency, intensity, and duration). While the majority of the literature has investigated the effects of moderate intensity cardiovascular exercise (e.g., moderate intensity walking/cycling), it remains unclear whether these parameters are most effective for improving WM in the healthy population. Similarly, the ideal exercise frequency and duration (e.g., that balance potency and tolerability) are also yet to be established, and thus it is difficult to estimate an ideal ‘dose’ of exercise in this context. Differences in PACE measurement has also likely introduced the consistency in study outcomes. For instance, studies that measured PACE level based on subjective methods (e.g., self-report questionnaires) may have introduced systematic bias into their outcomes compared to studies that employed objective methods (e.g., VO₂max test). However, given that the links between PACE and WM have been observed across a range of exercise protocols, it is possible that these associations may not relate to the specific nature of the activity per se, but rather depend on the individual’s physiological response to the regimen. In this sense, in developing effective exercise programs to improve WM it may be important to focus on parameters that elicit a certain physiological response (e.g., achieving a certain cardiorespiratory response), to modulate the relevant mechanisms (e.g., brain derived neurotrophic factor (BDNF)) that may mediate these effects. Interestingly, there is some evidence of a positive association between the heart rate response to exercise and BDNF circulation (Marquez et al., 2015). While speculative, focussing on the physiological response to exercise in this manner may offer a means of individualising exercise prescription to maximise associated benefits. Such a framework may also be beneficial in identifying factors which have contributed to the observed variability in study outcomes to date. Future studies are encouraged to report physiological outcomes in response to exercise (e.g., achieved heart rate, VO₂max, perceived level of exertion) to assess the validity/utility of this perspective.

Mechanisms mediating the effects of PACE on WM

The underlying mechanisms mediating the effects of PACE on WM remain unclear (Sexton et al., 2016). One plausible hypothesis implicates the known effects of PACE on several cellular and molecular mechanisms mediating aspects of neuroplasticity. For example, both animal and human studies have shown that exercise influences the expression and circulation of key neurotrophins and growth factors (i.e. BDNF, vascular endothelial growth factor (VEGF), and insulin like growth factor (IGF-1)), which modulate a range of microscale structural and synaptic plasticity processes (e.g. synaptogenesis and angiogenesis) (Cotman et al., 2007; Maass et al., 2016). To date, few studies have evaluated the relationship between PACE, WM, and these mechanisms. However, there is preliminary evidence to suggest interactions between expression of these factors and WM (Weinstock-Guttman et al., 2007). Despite the limitations of available
measurement techniques in vivo in humans (i.e., reliance on indirect peripheral estimates), future studies are encouraged to investigate the possible mediating role of these factors in the relationship between PACE and WM.

The effects of PACE on WM may also occur via activity-dependent myelination. There is evidence that action potentials trigger the sequence of events underlying myelination (Zatorre et al., 2012). Physical activity and exercise inherently rely upon movement and the distributed brain networks that underpin interlimb coordination (Byblow et al., 2007; Caeyenberghs et al., 2011; Coxon et al., 2010; Swinnen, 2002; Swinnen & Wenderoth, 2004). As such, it is plausible that the neural activity supporting interlimb coordination during physical activity/exercise stimulates myelination processes, which may over time manifest as an overall increase in WM volume and integrity across distributed networks. On a functional level, an increase in myelination in this manner may serve to increase conduction speed across networks supporting interlimb coordination to increase the efficiency/accuracy of movement intrinsic to specific forms of physical activity/exercise. This perspective may also help to explain the regionally specific effects of PACE on WM. Namely, the consistent relationships observed between PACE and certain tracts, such as the corpus callosum and anterior internal capsule, may reflect increased communication across brain networks involving these tracts to support motor coordination, or possibly other cognitive demands during exercise/physical activity (e.g., spatial memory, decision making). While speculative, future studies may also consider this potential relationship between the functional demands inherent to exercise, and associated influence on white matter.

Conclusion

In summary, following our systematic review of the literature, we report evidence of a significant positive association between PACE and WM within the healthy population. Interestingly, there was evidence of a regionally specific relationship between PACE and WM, with medial temporal regions/tracts commonly reported in study outcomes. Future studies are encouraged to consider/report the physiological response to exercise (e.g., heart rate, and BDNF) to help elucidate potential factors contributing to the heterogeneity in study outcomes and plausibly optimise the prescription of exercise. Future work in this field may also consider the relevance of particular neurotrophic growth factors in mediating neuroplasticity and the relationship between PACE and WM. In regard to MRI methodology, the majority of studies have employed diffusion imaging to investigate correlations between PACE and WM microstructure. Moving forward, studies are recommended to employ multi-modal methods to gain a more nuanced understanding of the specific WM components influenced by PACE. For example, future may employ MRI modalities that are sensitive to changes in myelination, such as the T1/T2 ratio, magnetisation transfer ratio, or mcDESPOT (Sampaio-Baptista & Johansen-Berg, 2017). It is hoped that improving our understanding of the influence of PACE on WM may yield novel, effective lifestyle-based interventions to optimise brain health across the lifespan.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11682-022-00693-y.

Author contribution Author contribution included study design (MY, KC, CS and SM), conducting systematic review (SM and YC), reviewing literature (SM, CS, and YC), performing meta-analysis (SM, CS, SO), interpreting the results (SM, CS, and JH), writing the manuscript (SM, JH, MY, KC, JC, CS, YC, and SO), and approval of final version to be published (all authors).

Funding Open Access funding enabled and organized by CAUL and its Member Institutions There was no direct funding for the development of this systematic review. MY has received funding from Monash University, and Australian Government funding bodies such as the National Health and Medical Research Council (NHMRC; including Fellowship #APP1117188), the Australian Research Council (ARC), and the Department of Industry, Innovation and Science. He has also received philanthropic donations from the David Winston Turner Endowment Fund, Wilson Foundation, as well as payment from law firms in relation to court and/or expert witness reports. The funding sources had no role in the design, management, data analysis, or interpretation and write-up of the data. KC is supported by a National Health and Medical Research Council Career Development Fellowship (APP1143816). JH and JPC are supported by an ARC Discovery project grant (DP200100234). JH is supported by a Turner Institute for Brain and Mental Health Postdoctoral Bridging Fellowship.

Availability of data and material Not applicable.

Code availability Not applicable.

Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflicts of interest Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
References

Alkadhi, K. A. (2018). Exercise as a positive modulator of brain function. Molecular Neurobiology, 55(4), 3112–3130. https://doi.org/10.1007/s12051-017-0516-4

Arnardtov, N. Y., Koster, A., Van Donkelaar, D. R., Brychta, R. J., Caserotti, P., Eiriksdottir, G., … Svinness, T. (2016). Association of change in brain structure to objectively measured physical activity and sedentary behavior in older adults: Age. Gene/Environment Susceptibility- Reykjavik Study. Behavioural Brain Research, 296, 118–124. https://doi.org/10.1016/j.bbr.2015.09.005

Australian Department of Health. (2021). Australia’s Physical Activity Guidelines. Retrieved from https://www.health.gov.au/health-topics/physical-activity-and-exercise/physical-activity-and-exercise-guidelines-for-all-australians/for-adults-18-to-64-years

Balbim, G. M., Erickson, K. I., Ajilore, O. A., Aguiñaga, S., Bustamante, E. E., Lamar, M., & Marquez, D. X. (2021). Association of physical activity levels and brain white matter in older Latino adults. Ethnicity and Health. https://doi.org/10.1080/13557858.2021.1913484

Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics. https://doi.org/10.2307/2533446

Benedict, C., Brooks, S. J., Kullberg, J., Nordenskjöld, R., Burgos, J., Le Grevès, M., … Schióth, H. B. (2013). Association between physical activity and brain health in older adults. Neurobiology of Aging, 34(1), 83–90. https://doi.org/10.1016/j.neurobiolaging.2012.04.013

Bennett, I. J., & Madden, D. J. (2014). Disconnected aging: Cerebral white matter integrity and age-related differences in cognition. Neuroscience, 276, 187–205.

Best, J. R., Chiu, B. K., Liang Hsu, C., Nagamatsu, L. S., & Liu-Ambrose, T. (2015). Long-term effects of resistance exercise training on cognition and brain volume in older women: Results from a randomized controlled trial. Journal of the International Neuropsychological Society, 21(10), 745–756. https://doi.org/10.1017/S1355617715006673

Best, J. R., Rosano, C., Aizenstein, H. J., Tian, Q., Boudreau, R. M., Ayonayon, H. N., … Liu-Ambrose, T. (2017). Long-term changes in time spent walking and subsequent cognitive and structural brain changes in older adults. Neurobiology of Aging, 57, 153–161. https://doi.org/10.1016/j.neurobiolaging.2017.05.023

Bolandzadeh, N., Tam, R., Handy, T. C., Nagamatsu, L. S., Hsu, C. L., Davis, J. C., … Liu-Ambrose, T. (2015). Resistance training and white matter lesion progression in older women: Exploratory analysis of a 12-month randomized controlled trial. Journal of the American Geriatrics Society, 63(10), 2052–2060. https://doi.org/10.1111/jgs.13644

Boots, E. A., Schultz, S. A., Oh, J. M., Larson, J., Edwards, D., Cook, D., … Okonkwo, O. C. (2015). Cardiorespiratory fitness is associated with brain structure, cognition, and mood in a middle-aged cohort at risk for Alzheimer’s disease. Brain Imaging and Behavior, 9(3), 639–649. https://doi.org/10.1007/s11682-014-9325-9

Borenstein, M., Hedges, L., Higgins, J., & Rothstein, H. (2013). Comprehensive Meta-Analysis Version 3. Biostat, Englewood, NJ 2013.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods. https://doi.org/10.1002/jrsm.12

Bracht, T., Jones, D. K., Bells, S., Walther, S., Drakesmith, M., & Linden, D. (2016). Myelination of the right parahippocampal cingulum is associated with physical activity in young healthy adults. Brain Structure and Function, 221(9), 4537–4548. https://doi.org/10.1007/s00429-016-1183-3

Bugg, J. M., & Head, D. (2011). Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiology of Aging, 32(3), 506–514. https://doi.org/10.1016/j.neurobiolaging.2009.03.008

Burzynska, A. Z., Chaddock-Heyman, L., Voss, M. W., Wong, C. N., Gothe, N. P., Olson, E. A., … Kramer, A. F. (2014). Physical activity and cardiorespiratory fitness are beneficial for white matter in low-fit older adults. PLoS One, 9(9). https://doi.org/10.1371/journal.pone.0107413

Burzynska, A. Z., Jiao, Y., Knecht, A. M., Fanning, J., Awick, E. A., Chen, T., … Kramer, A. F. (2017). White matter integrity declined over 6-months, but dance intervention improved integrity of the Fornix of older adults. Frontiers in Aging Neuroscience, 9. https://doi.org/10.3389/fnagi.2017.00059

Byblov, W. D., Coxon, J. P., Stinear, C. M., Fleming, M. K., Williams, G., Müller, J. F. M., & Ziemann, U. (2007). Functional connectivity between secondary and primary motor areas underlying hand-foot coordination. Journal of Neurophysiology. https://doi.org/10.1152/jn.00325.2007

Caeyenberghs, K., Leemans, A., Coxon, J., Leunissen, I., Drijkoningen, D., Geurts, M., … Swinnen, S. P. (2011). Binmanual coordination and corpus callosum microstructure in young adults with traumatic brain injury: A diffusion tensor imaging study. Journal of Neurotrauma. https://doi.org/10.1089/neu.2010.1721

Campbell N., De Jesus S., P. H. (2013). Encyclopedia of Behavioral Medicine. In T. J. R. Gellman M.D. (Ed.), Encyclopedia of Behavioral Medicine (3rd ed.). New York: Springer. https://doi.org/10.1007/978-1-4419-1005-9_1167

Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise and physical fitness definitions for health-related research. Public Health Reports, 100(2), 126–131.

Clark, C. M., Guadagni, V., Mazerolle, E. L., Hill, M., Hogan, D. B., Pike, G. B., & Poulin, M. J. (2019). Effect of aerobic exercise on white matter microstructure in the aging brain. Behavioural Brain Research. https://doi.org/10.1016/j.bbr.2019.112042

Bouchard, C., Blair S. N., L. H. (2012). Physical Activity and Health (2nd ed.). Human Kinetics.

Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., & Kramer, A. F. (2003). Aerobic fitness reduces brain tissue loss in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 58(2). https://doi.org/10.1093/gerona/58.2.m176

Colcombe, S. J., Erickson, K. I., Scaife, P. E., Kim, J. S., Prakash, R., McAuley, E., … Kramer, A. F. (2006). Aerobic exercise training increases brain volume in aging humans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 61(11), 1166–1170. https://doi.org/10.1093/gerona/fjl.11.1166

Colmanares, A. M., Voss, M. W., Fanning, J., Salerno, E. A., Gothe, N. P., Thomas, M. L., … Burzynska, A. Z. (2021). White matter plasticity in healthy older adults: The effects of aerobic exercise. NeuroImage. https://doi.org/10.1016/j.neuroimage.2021.118305

Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences. https://doi.org/10.1016/j.tins.2007.06.011

Coxon, I. P., Goble, D. J., Van Impe, A., De Vos, J., Wenderoth, N., & Swinnen, S. P. (2010). Reduced basal ganglia function when elderly switch between coordinated movement patterns. Cerebral Cortex. https://doi.org/10.1093/cercor/bhp306

Curran, K. M., Emsell, L., & Leemans, A. (2016). Quantitative DTI measures. In Diffusion Tensor Imaging: A Practical Handbook. https://doi.org/10.1007/978-1-4939-3118-7_5
Filrey, C. M., & Fields, R. D. (2016). White matter and cognition: A psychometric and hormone treatment on brain health in postmenopausal women. *Neurobiology of Aging, 28*(2), 179–185. https://doi.org/10.1016/j.neurobiolaging.2005.11.016

Filley, C. M., & Fields, R. D. (2016). White matter and cognition: Making the connection. *Journal of Neurophysiology, 116*(5), 2093–2104. https://doi.org/10.1152/jn.00221.2016

Firth, J., Stubbs, B., Vancampfort, D., Schuch, F., Lagopoulos, J., Rosenbaum, S., & Ward, P. B. (2018). Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. *Neurolmage, 166*, 230–238. https://doi.org/10.1016/j.neuroimage.2017.11.007

Fleischman, D. A., Yang, J., Arfanakis, K., Arvanitakis, Z., Leurgans, S. E., Turner, A. D., … Buchman, A. S. (2015). Physical activity, motor function, and white matter hyperintensity burden in healthy older adults. *Neurology, 84*(13), 1294–1300. https://doi.org/10.1212/WNL.0000000000001417

Frederiksen, K. S., Verdelho, A., Madureira, S., Bänzler, H., O’Brien, J. T., Fazekas, F., … Waldemar, G. (2015). Physical activity in the elderly is associated with improved executive function and processing speed: The LADIS Study. *International Journal of Geriatric Psychology, 30*(7), 744–750. https://doi.org/10.1002/gps.4220

Freudenberg, P., Petrovic, K., Sen, A., Töglihofer, A. M., Fixa, A., Hofer, E., … Schmidt, H. (2016). Fitness and cognition in the elderly: The Austrian Stroke Prevention Study. *Neurology, 86*(5), 421–424. https://doi.org/10.1212/WNL.0000000000002329

Frey, B. M., Petersen, M., Mayer, C., Schulz, M., Cheng, B., & Thomalla, G. (2019). Characterization of white matter hyperintensities in large-scale MRI-studies. *Frontiers in Neurology, 10*. https://doi.org/10.3389/fneur.2019.00238

Fuhrmann, D., Nesbitt, D., Shafto, M., Rowe, J. B., Price, D., Gadie, A., … Kievit, R. A. (2019). Strong and specific associations between cardiovascular risk factors and white matter macrostructure in healthy aging. *Neurobiology of Aging, 74*, 46–55. https://doi.org/10.1016/j.neurobiolaging.2018.10.005

Gordon, B. A., Rykhlevskaia, E. I., Brumback, C. R., Lee, Y., Elavsky, S., Konopack, J. P., … Fabiani, M. (2008). Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. *Psychophysiology, 45*(5), 825–838. https://doi.org/10.1111/j.1469-8986.2008.00676.x

Gow, A. J., Bastin, M. E., Muñoz Maniega, S., Valdés Hernández, M. C., Morris, Z., Murray, C., … Wardlaw, J. M. (2012). Neuroprotective lifestyles and the aging brain. *Neurology, 79*(17), 1802–1808. https://doi.org/10.1212/WNL.0b013e3182703d02

Gu, Y., Beato, J. M., Amarante, E., Chesebro, A. G., Manly, J. J., Schupf, N., … Brickman, A. M. (2020). Assessment of leisure time physical activity and brain health in a multiethnic cohort of older adults. *JAMA Network Open*. https://doi.org/10.1001/jamanetworkopen.2020.26506

Gujrwal, S., Aizenstein, H., Reynolds, C. F., Butters, M. A., & Erickson, K. I. (2017). Exercise effects on depression: Possible neural mechanisms. *General Hospital Psychiatry*. https://doi.org/10.1016/j.genhosppsych.2017.04.012

Gujrwal, S., McCauley, E., Oberlin, L. E., Kramer, A. F., & Erickson, K. I. (2018). The role of brain structure in predicting adherence to a physical activity regimen. *Psychosomatic Medicine, 80*(1), 69–77. https://doi.org/10.1097/PSY.0000000000000526.

Hayes, S. M., Salat, D. H., Forman, D. E., Sperling, R. A., & Verfaellie, M. (2015). Cardiorespiratory fitness is associated with white matter integrity in aging. *Annals of Clinical and Translational Neurology, 2*(6), 688–698. https://doi.org/10.1002/acn3.204

Hendriks, J., Kandola, A., Coxon, J., Rogasch, N., & Yücel, M. (2017). Combining aerobic exercise and repetitive transcranial magnetic stimulation to improve brain function in health and disease. *Neuroscience and Biobehavioral Reviews*. https://doi.org/10.1016/j.neubiorev.2017.09.023

Herting, M. M., Colby, J. B., Sowell, E. R., & Nagel, B. J. (2014). White matter connectivity and aerobic fitness in male adolescents. *Developmental Cognitive Neuroscience, 7*, 65–75. https://doi.org/10.1016/j.dcn.2013.11.003

Ho, A. J., Raji, C. A., Becker, J. T., Lopez, O. L., Kuller, L. H., Hua, X., … Thompson, P. M. (2011). The effects of physical activity, education, and body mass index on the aging brain. *Human Brain Mapping, 32*(9), 1371–1382. https://doi.org/10.1002/hbm.21113

Jochem, C., Baumeister, S. E., Wittfeld, K., Leitzmann, M. F., Bahls, M., Schminke, U., … Jörgen Grabe, H. (2017). Domains of physical activity and brain volumes: A population-based study. *Neurolmage, 156*(101–108). https://doi.org/10.1016/j.neuroimage.2017.05.020

Johnson, N. F., Bahrami, A. A., Powell, D. K., Jicha, G. A., & Gold, B. T. (2020). Cardiorespiratory fitness diminishes the effects of age on white matter hyperintensity volume. *PLoS ONE*. https://doi.org/10.1371/journal.pone.0236986

Johnson, N. F., Kim, C., Clasey, J. L., Bailey, A., & Gold, B. T. (2012). Cardiorespiratory fitness is positively correlated with cerebral white matter integrity in healthy seniors. *Neurolmage, 59*(2), 1514–1523. https://doi.org/10.1016/j.neuroimage.2011.08.032

Kim, B. R., Kwon, H., Chun, M. Y., Park, K. D., Lim, S. M., Jeong, J. H., & Kim, G. H. (2020). White Matter Integrity Is Associated With the Amount of Physical Activity in Older Adults With Super-aging. *Frontiers in Aging Neuroscience*. https://doi.org/10.3389/fnagi.2020.549983

Koblinsky, N. D., Meusel, L. A. C., Greenwood, C. E., & Anderson, N. D. (2021). Household physical activity is positively associated with gray matter volume in older adults. *BMC Geriatrics*. https://doi.org/10.1186/s12877-021-02054-8

Lehmann, N., Villringer, A., & Taubert, M. (2020). Colocalized white matter plasticity and increased cerebral blood flow mediates the beneficial effect of cardiovascular exercise on long-term motor learning. *Journal of Neuroscience, 40*(12), 2416–2429. https://doi.org/10.1523/JNEUROSCI.2310-19.2020

Liu, Z. (2012). Automated voxel-wise brain DTI analysis of fitness and aging. *The Open Medical Imaging Journal*. https://doi.org/10.2174/1874347101206010080

Liu, Z., Farzinfar, M., Katz, L. M., Zhu, H., Goodlett, C. B., Gerig, G., … Marks, B. L. (2012). Automated voxel-wise brain DTI analysis of fitness and aging. *Open Medical Imaging Journal*. https://doi.org/10.2174/1874347101206010080

Maass, A., Düssel, S., Brigadsky, T., Goerke, M., Becke, A., Sobieray, U., … Düssel, E. (2016). Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. *Neurolmage, 131*, 142–154. https://doi.org/10.1016/j.neuroimage.2015.10.084
Maltais, M., Rolland, Y., Boisvert-Vigneault, K., Perus, L., Mangin, J. F., Grigis, A., … de Souto Barreto, P. (2020). Prospective associations between physical activity levels and white matter integrity in older adults: results from the MAPT study. *Maturitas*. https://doi.org/10.1016/j.maturitas.2020.04.012

Mandolesi, L., Polverino, A., Montuori, S., Foti, F., Ferriaillo, G., Sorrentino, P., & Sorrentino, G. (2018). Effects of physical exercise on cognitive functioning and wellbeing: Biological and psychological benefits. *Frontiers in Psychology*, 9. https://doi.org/10.3389/fpsyg.2018.00509

Marks, B. L., Katz, L. M., Styner, M., & Smith, J. K. (2011). Aerobic fitness and obesity: Relationship to cerebral white matter integrity in the brain of active and sedentary older adults. *British Journal of Sports Medicine*, 45(15), 1208–1215. https://doi.org/10.1136/bjsm.2009.068114

Marquez, C. M. S., Vanaudenaerde, B., Troosters, T., & Wenderoth, N. (2015). High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. *Journal of Applied Physiology*. https://doi.org/10.1152/japplphysiol.00126.2015

Mayo, C. D., Garcia-Barrera, M. A., Mazerolle, E. L., Ritchie, L. J., Fisk, J. D., & Gawryluk, J. R. (2019). Relationship between DTI metrics and cognitive function in Alzheimer’s disease. *Frontiers in Aging Neuroscience*. https://doi.org/10.3389/fnagi.2018.00436

Moon, S. Y., de Souto Barreto, P., Cesari, M., Chupin, M., Mangin, J. F., Bouyahia, A., … Vellas, B. (2018). Physical Activity and Changes in White Matter Hyperintensities over Three Years. *Journal of Nutrition, Health and Aging*, 22(3), 425–430. https://doi.org/10.1007/s12603-017-0959-3

Oberlin, L. E., Verstynen, T. D., Burzynska, A. Z., Voss, M. W., Prakash, R. S., Chaddock-Heyman, L., … Ericsson, K. I. (2016). White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults. *NeuroImage*, 131, 91–101. https://doi.org/10.1016/j.neuroimage.2015.09.053

Opel, N., Martin, S., Meinert, S., Redlich, R., Enneking, V., Richer, T., … Repple, J. (2019). White matter microstructure mediates the association between physical fitness and cognition in healthy, young adults. *Scientific Reports*. https://doi.org/10.1038/s41598-019-49301-y

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The *BMJ*. https://doi.org/10.1136/bmj.n71

Palmer, H. S., Häger, A. K., Finland, M. S., Solstad, G. M., Moe Iversen, V., Hoff, J., … Eikenes, L. (2013). Structural brain changes after 4 wk of unilateral strength training of the lower limb. *Journal of Applied Physiology*, 115(2), 167–175. https://doi.org/10.1152/japplphysiol.00277.2012

Palta, P., Sharrett, A. R., Gabriel, K. P., Gottesman, R. F., Folsom, A. R., Power, M. C., … Heiss, G. (2021). Prospective analysis of leisure-time physical activity in midlife and beyond and brain damage on MRI in older adults. *Neurology*. https://doi.org/10.1212/wnl.0000000000011375

Pentikäinen, H., Ngandu, T., Liu, Y., Savonen, K., Komulainen, P., Hallikainen, M., … Soininen, H. (2017). Cardiorespiratory fitness and brain volumes in men and women in the FINGER study. *Age and Ageing*, 46(2), 310–313. https://doi.org/10.1093/ageing/afw191

Prins, N. D., & Scheltens, P. (2015). White matter hyperintensities, cognitive impairment and dementia: An update. *Nature Reviews Neurology*, 11(3), 157–165. https://doi.org/10.1038/nrneurol.2015.10

Raichlen, D. A., Klimentidis, Y. C., Bharadwaj, P. K., & Alexander, G. E. (2019). Differential associations of engagement in physical activity and estimated cardiorespiratory fitness with brain volume in middle-aged to older adults. *Brain Imaging and Behavior*. https://doi.org/10.1007/s11862-019-00148-x

Rehfeld, K., Lüders, A., Hökelmann, A., Lessmann, V., Kaufmann, J., Brigadski, T., … Müller, N. G. (2018). Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly. *PLoS One*, 13(7). https://doi.org/10.1371/journal.pone.0196636

Sampaio-Baptista, C., & Johansen-Berg, H. (2017). White Matter Plasticity in the Adult Brain. *Neuron*, 96(6), 1239–1251. https://doi.org/10.1016/j.neuron.2017.11.026

Sexton, C. E., Betts, J. F., Demniz, N., Dawes, H., Ebmeier, K. P., & Johansen-Berg, H. (2016). A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. *NeuroImage*, 131, 81–90. https://doi.org/10.1016/j.neuroimage.2015.09.071

Sexton, C. E., Betts, J. F., Dennis, A., Doherty, A., Leeson, P., Holoway, C., … Johansen-Berg, H. (2020). The effects of an aerobic training intervention on cognition, grey matter volumes and white matter microstructure. *Physiology and Behavior*, 223. https://doi.org/10.1016/j.physbeh.2020.112923

Smith, J. C., Lancaster, M. A., Nelson, K. A., Woodard, J. L., Seidenberg, M., Durgerian, S., … Rao, S. M. (2016). Interactive effects of physical activity and APOE-e4 on white matter tract diffusivity in healthy elders. *NeuroImage*, 131, 102–112. https://doi.org/10.1016/j.neuroimage.2015.08.007

Smith, J. C., Nelson, K. A., Woodard, J. L., Seidenberg, M., Durgerian, S., Hazlett, K. E., … Rao, S. M. (2014). Physical activity reduces hippocampal atrophy in elders at genetic risk for Alzheimer’s disease. *Frontiers in Aging Neuroscience*, 6. https://doi.org/10.3389/fnagi.2014.00061

Stigger, F. S., ZagoMarcolino, M. A., Portela, K. M., & Della Mepientz, R. (2019). Effects of exercise on inflammatory, oxidative, and neurotrophic biomarkers on cognitively impaired individuals diagnosed with dementia or mild cognitive impairment: A systematic review and meta-analysis. *Journals of Gerontology - Series A Biological Sciences and Medical Sciences*. https://doi.org/10.1093/gerona/gly173

Sullivan, E. V., & Pfefferbaum, A. (2006). Diffusion tensor imaging and aging. *Neuroscience & Biobehavioral Reviews*, 30(6), 749–761.

Strümpmer, J. M., Davis, S. W., Henson, R. N., Tyler, L. K., & Campbell, K. L. (2020). Physical activity predicts population-level age-related differences in frontal white matter. *Journals of Gerontology - Series A Biological Sciences and Medical Sciences*. https://doi.org/10.1093/gerona/gly220

Swinnen, S. P. (2002). Intermanual coordination: From behavioural principles to neural-network interactions. *Nature Reviews Neuroscience*. https://doi.org/10.1038/nrn7671

Swinnen, S. P., & Wenderoth, N. (2004). Two hands, one brain: Cognitive neuroscience of bimanual skill. *Trends in Cognitive Sciences*. https://doi.org/10.1016/j.tics.2003.10.017

Tabei, K. I., Satoh, M., Ogawa, J. I., Tokita, T., Nakaguchi, N., Nakao, K., … Tomimoto, H. (2017). Physical exercise with music reduces gray and white matter loss in the frontal cortex of elderly people: The mihama-kiho scan project. *Frontiers in Aging Neuroscience*, 9. https://doi.org/10.3389/fnagi.2017.00174

Tarumi, T., Tomoto, T., Rispens, J., Wang, C., Hynan, L. S., Cullum, C. M., … Zhang, R. (2021). Midlife aerobic exercise and brain structural integrity: Associations with age and cardiorespiratory fitness. *NeuroImage*. https://doi.org/10.1016/j.neuroimage.2020.117512

Tian, Q., Erickson, K. I., Simonsick, E. M., Aizenstein, H. J., Glynn, N. W., Boudreau, R. M., … Rosano, C. (2014a). Physical activity predicts microstructural integrity in memory-related networks in very old adults. *Journals of Gerontology - Series A Biological Sciences and Medical Sciences*, 69(10), 1284–1290. https://doi.org/10.1093/gerona/glt287

Tian, Q., Simonsick, E. M., Erickson, K. I., Aizenstein, H. J., Glynn, N. W., Boudreau, R. M., … Rosano, C. (2014b). Cardiorespiratory fitness and brain diffusion tensor imaging in adults over 80 years of age. *Brain Research*, 1588, 63–72. https://doi.org/10.1016/j.brainres.2014.09.003
Tian, Q., Studenski, S. A., Resnick, S. M., Davatzikos, C., & Ferrucci, L. (2015). Midlife and Late-Life Cardiorespiratory Fitness and Brain Volume Changes in Late Adulthood: Results from the Baltimore Longitudinal Study of Aging. *Journals of Gerontology - Series A Biological Sciences and Medical Sciences*, 71(1), 124–130. https://doi.org/10.1093/gerona/glv041

U.S. Department of Health and Human Services. (2019). Physical Activity Guidelines for Americans. Retrieved from https://health.gov/sites/default/files/2019-09/Physical_Activity_Guidelines_2nd_edition.pdf

Vesperman, C. J., Pozorski, V., Dougherty, R. J., Law, L. L., Boots, E., Oh, J. M., … Okonkwo, O. C. (2018). Cardiorespiratory fitness attenuates age-associated aggregation of white matter hyperintensities in an at-risk cohort. *Alzheimer’s Research & Therapy*, 10(1). https://doi.org/10.1186/s13195-018-0429-0

Voss, M. W., Heo, S., Prakash, R. S., Erickson, K. I., Alves, H., Chadwick, L., … Kramer, A. F. (2013a). The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention. *Human Brain Mapping*, 34(11), 2972–2985. https://doi.org/10.1002/hbm.22119

Voss, M. W., Vivar, C., Kramer, A. F., & van Praag, H. (2013b). Bridging animal and human models of exercise-induced brain plasticity. *Trends in Cognitive Sciences*, 17(10), 525–544. https://doi.org/10.1016/j.tics.2013.08.001

Weinstock-Guttman, B., Zivadinov, R., Tamaño-Blanco, M., Abdelrahman, N., Badgett, D., Durfee, J., … Ramanathan, M. (2007). Immune cell BDNF secretion is associated with white matter volume in multiple sclerosis. *Journal of Neuroimmunology*. https://doi.org/10.1016/j.jneuroim.2007.06.003

Williamson, W., Lewandowski, A. J., Forkert, N. D., Griffanti, L., Okell, T. W., Betts, J., … Leeson, P. (2018). Association of cardiovascular risk factors with MRI indices of cerebrovascular structure and function and white matter hyperintensities in young adults. *JAMA - Journal of the American Medical Association*, 320(7), 665–673. https://doi.org/10.1001/jama.2018.11498

Wirth, M., Haase, C. M., Villeneuve, S., Vogel, J., & Jagust, W. J. (2014). Neuroprotective pathways: Lifestyle activity, brain pathology, and cognition in cognitively normal older adults. *Neurobiology of Aging*, 35(8), 1873–1882. https://doi.org/10.1016/j.neurobiolaging.2014.02.015

Wittfeld, K., Jochem, C., Dörr, M., Schminke, U., Gläser, S., Bahls, M., … Grabe, H. J. (2020). Cardiorespiratory Fitness and Gray Matter Volume in the Temporal, Frontal, and Cerebellar Regions in the General Population. *Mayo Clinic Proceedings*, 95(1), 44–56. https://doi.org/10.1016/j.mayocp.2019.05.030

Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: Neuroimaging changes in brain structure during learning. *Nature Neuroscience*. https://doi.org/10.1038/nn.3045

Zhu, N., Jacobs, D. R., Schreiner, P. J., Launer, L. J., Whitmer, R. A., Sidney, S., … Bryan, R. N. (2015). Cardiorespiratory fitness and brain volume and white matter integrity: The CARDIA Study. *Neurology*, 84(23), 2347–2353. https://doi.org/10.1212/WNL.000000000001658

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.