Sequence and phylogeny of the complete mitochondrial genome of the Himalayan jungle crow (Corvidae: Corvus macrorhynchos intermedius) from Pakistan

Farheena Iqbal\(^{a,b}\), Qasim Ayub\(^c\), Beng Kah Song\(^a\), Robyn Wilson\(^a\), Muhammad Fahim\(^d\) \(^{e}\) and Sadeqr Rahman\(^{a,e}\)

\(^{a}\)School of Science, Monash University Malaysia, Bandar Sunway, Malaysia; \(^{b}\)Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan; \(^{c}\)Monash Genomic Facility, Monash University Malaysia, Bandar Sunway, Malaysia; \(^{d}\)Centre for Omic Sciences, Islamia College University, Peshawar, Pakistan; \(^{e}\)Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Malaysia

ABSTRACT

Corvus macrorhynchos formerly referred to as the jungle crow or the large-billed crow is a polytypic species with unresolved taxonomy, comprising various subspecies widespread across South, Southeast, and East Asia. In this study, we report the complete mitogenome of one of these subspecies, *Corvus macrorhynchos intermedius* (Himalaya crow), from Pakistan. The mitochondrial genome is circular, 16,927 bp and contains typical animal mitochondrial genes (13 protein-coding genes, 2 ribosomal RNA, and 22 transfer RNA) and one non-coding region (D-loop) with a nucleotide content of A (30.6%), T (24.8%), G (14.8%), and C (29.8%). Phylogenetic analysis using the whole mitochondrial genome showed that *C. m. intermedius* and only reported subspecies *Corvus macrorhynchos culminatus* (Indian Jungle crow) are genetically distinct and it supports the recognition of the latter as a separate biospecies.

Corvus macrorhynchos sensu lato (the jungle crow) is a species complex comprising 11–13 subspecies ranging in size, vocalization, and plumage (Dickinson et al. 2004; Clements et al. 2018; Del Hoyo et al. 2019). In the Indian subcontinent, three subspecies, *C. m. intermedius* (Adams, 1859), *C. m. culminatus* (Sykes, 1832), and *C. m. levaillantii* (Lesson, 1831) are recognized on the basis of their size, vocalization, and range. The comparatively larger sized *intermedius* (Himalayan crow) inhabits northwest Pakistan and Nepal along the Himalayas. The shorter sized *culminatus* (Indian jungle crow) resides in peninsular India and Sri Lanka, whereas *levaillantii* (Eastern jungle crow) is dispersed across Northeastern India, Bangladesh, and Southeast Asia (Burn and Madge 1999). Various ornithologists have suggested dividing these three regional subspecies into two or three species based on their interspecies differentiation. Martens et al. (2000) treated *culminatus* and *levaillantii* as distinct species splitting them from the *Corvus macrorhynchos* complex, while Rasmussen and Anderton (2005) proposed a further split into three correlating with their acoustic differences and morphology.

Recently, the IOC World Bird List granted a separate species status of monotypic *C. m. culminatus* and *C. m. levaillantii* while retaining all other subspecies including *C. m. intermedius* within *C. macrorhynchos* polytype (Gill and Donsker 2019). Thus, after this taxonomic upgradation, the previously reported mitogenome sequence from Sri Lanka (KR072661 and KR072661) may represent *C. culminatus* species (Krzeminska et al. 2016). This study would help in resolving the classification question and phylogeny within *C. macrorhynchos* s.l.

In this study, DNA was extracted from the feathers collected from a cull bird in Astor, Gilgit-Baltistan, Pakistan (35°33’N and 74°78’E) and stored in Monash University, Selangor, Malaysia (Accession No. Cmac-AS01). The whole mitochondrial genome was amplified as two overlapping PCR products that were sequenced using 250 bp paired-end Illumina MiSeq platform. The sequenced reads were assembled through MITObim (Hahn et al. 2013) and annotated by online MITOS software (Bernt et al. 2013).

The complete mitogenome of *C. m. intermedius* is 16,927 bp (GenBank Accession No. MN069302) comprising 37 genes (13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes) and a putative long noncoding region called the control (D-loop) region, agreeing with the other *Corvus* gene arrangements.

The phylogenetic analysis (Figure 1) of *C. m. intermedius* was conducted by applying all available complete mitochondrial genomes from genus *Corvus* along with eight species of the same family, Corvidae. *C. m. intermedius* showed 97.5% identity with two lineages of *C. m. culminatus* from Sri Lanka that is mutually 99.7% identical. The pairwise genetic distance among the two subspecies is 0.026 which is higher.
than distance (0.003) observed between the two C. m. culminatus mtDNA sequences and C. splendens subspecies and corresponds closely with the interspecies distance between Corvus corax and Corvus cryptoleucus (0.032). Irrespective of the small representation of all described subspecies, this genomics study supports the proposed species-level distinction of C. culminatus and also provides additional data for deducing intraspecific taxonomy, speciation, and phylogeography of C. macrorhynchos s.l. complex.

Acknowledgments
The authors thank Monash University Malaysia Genomic Facility for providing Illumina MiSeq sequencing services and Center for Applied Molecular Biology, University of The Punjab, Lahore, for providing facilities during sample collection and DNA extraction.

Disclosure statement
The authors alone are responsible for the content and writing of the article.

Funding
This research was supported by the School of Science and Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia.

ORCID
Muhammad Fahim http://orcid.org/0000-0002-5470-1641

References
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2): 313–319.
Burn H, Madge S. 1999. Crows and jays: a guide to the crows, jays and magpies of the world. London: Christopher Helm.
Clements JF, Schulenberg TS, Iliff MJ, Roberson D, Fredericks TA, Sullivan BL, Wood CL. 2018. The eBird/Clements checklist of birds of the world: v2018. http://www.birds.cornell.edu/clementschecklist/download/.
Del Hoyo J, Elliott A, Sargatal J, Christie D, de Juana E. 2019. Handbook of the birds of the world alive. Barcelona, Spain: Lynx Edicions. [updated 12/6/2019; accessed 12/6/2019]. http://www.hbw.com.
Dickinson E, Eck S, Martens J. 2004. Systematic notes on Asian birds. 44. A preliminary review of the Corvidae. Zool Verh Leiden. 350:85–109.

Gill F, Donsker DE. 2019. IOC world bird list (v9.1). http://www.worldbird-names.org.

Hahn C, Bachmann L, Chevreux B. 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 41(13):e129–e129.

Krzeminska U, Wilson R, Rahman S, Song BK, Seneviratne S, Gan HM, Austin CM. 2016. Mitochondrial genomes of the jungle crow Corvus macrorhynchos (Passeriformes: Corvidae) from shed feathers and a phylogenetic analysis of genus Corvus using mitochondrial protein-coding genes. Mitochondrial DNA Part A. 27(4):2668–2670.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):1870–1874.

Martens J, Böhner J, Hammerschmidt K. 2000. Calls of the jungle crow (Corvus macrorhynchos sl) as a taxonomic character. J Ornithol. 141(3):275–284.

Rasmussen PC, Anderton JC. 2005. Birds of south Asia: the Ripley guide. Washington (DC): Smithsonian Institution and Lynx Edicions.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.