Preparation and Studying the Optimum Performance for Both CuO and CeO₂ as A Metal Oxide Nanoparticles Catalyst for Synthesis of Glycerol Carbonate from Reaction of Glycerol with Carbon Dioxide Gas

Jassim Mohamed Hamed AL-Kurdhani 1,3, *; Huajun Wang 1,2 and Taha Seham Ismail 3

1 Key Laboratory for Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
2 Hubei Key Laboratory of Material Chemistry & Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
3 Industrial research and development directory - Ministry of sciences and technology, Baghdad - Iraq

* Corresponding author: E-mail: jas_khay@yahoo.com, Tel.: +86 13164696930.

Abstract:

Two important types of metal oxide nanoparticle catalysts Copper (II) oxide (CuO) and Cerium oxide (CeO₂) are prepared by a suitable method which was traditional precipitation (PT) method at calcination temperature of 400°C for 5h and used for the synthesis of glycerol carbonate GC (C₆H₁₂O₄) from the direct reaction by the carbonylation of Glycerol GL (C₃H₈O₃) with Carbon Dioxide. The precipitation (PT) was an important route for the preparation of nanoparticles catalyst. The effects of performance of (CuO and CeO₂) nanoparticle catalysts on the conversion of glycerol GL, yield of glycerol carbonate GC, selectivity of glycerol carbonate are researched. XRD, XPS, BET, FT-IR, CO₂-TPD, H₂-TPR are used for the characterization of the prepared catalysts. Comparing the optimal performance between them under reaction conditions were 150 ºC, 4MPa (40 bar.), 5h, and both CuO and CeO₂ catalyst amount 37.6 % (based on ratio of glycerol weight) by using 2-pyridinecarbonitrate (C₆H₄N₂) as dehydrating agent and dimethylformamide (DMF), (C₃H₇NO) as solvent. The glycerol conversion (XGL), glycerol carbonate yield (YGÇ) and glycerol carbonate selectivity (SGÇ) over 0.7g CuO are 57.151%, 47.524%, and 83.156%, respectively, and glycerol carbonate yield over 0.7 CeO₂ is 36.2185% or 35.076%, and the yield of GC could reach as high as 78.234% over 1.73g CeO₂, the both catalysts could be easily regenerated by washing with methanol and water after a reaction and then dried at 60 ºC overnight after that calcination at 400°C for 5h without loss of activity after five recycling times, In addition to, the (ICP- MS) results confirmed that the leaching of CuO and CeO₂ was below the detection limit.

Keywords: carbonylation of glycerol; glycerol carbonate; CO₂; nanoparticle catalyst; CuO; CeO₂
1. Introduction

Glycerol carbonate (GC) was a high value-added derivatives but Glycerol (GL) was by-product of biodiesel manufacture, is available in a great quantity, it is predicted that the global production capacity of biodiesel will reach 50 million tons a year in 2020. Because of rapidly increasing production of global biodiesel in a great quantity, it becomes a research and study focus to transform GL to value-added chemicals. One of the derivatives of GL is the glycerol carbonate (GC), GC has a number of science and industrials applications such as a polar high boiling solvent, chemical intermediates, a surfactant component, carrier in batteries, lubricating oils, monomer for polymers and as components for gas separation membranes.[1-5]

GL can be converted to GC by several routes, indirect and direct routes. For the direct route (GL converted to GC by carbonylation with CO$_2$ by using suitable catalyst), Among this method, the most suitable industrial process for producing GC is the carboxylation of GL with CO$_2$ due to the non-toxic raw material, mild operation condition, high selectivity of GC and simple purification of GC.[6-8]

The first work attempt was carried out by Vieville et al. [9] using GL and CO$_2$ gas under supercritical conditions as reactants in the presence of zeolites and basic ion-exchange resins as catalyst, when adding the co-reactant materials such as ethylene carbonate, could GC be formed. Even though the yield of GC could reach 32%, there was no evidence about the direct insertion of CO$_2$. Also the metal-impregnated zeolite [10] and Tin complexes [11] were reportedly for the carboxylation of glycerol with CO$_2$, but the conversion of glycerol was not high came to only 2.5% (180 °C, 5 MPa, 6 h) and 5.8% (180 °C, 10 MPa, 3 h), respectively. Thermodynamic calculations showed that the low conversion of GL to GC was because of the number of equilibrium limitations [12], so dehydrate should be used to change the thermodynamic limit. 13X type of zeolite and acetonitrile were employed for this purpose with both Cu/La$_2$O$_3$ [13], Bu$_2$SnO [14] and achieved to a good result. Despite of all these improvements, the conversion of GL is still relatively low and it is a challenge to improve and develop new effective catalytic system.

Currently, the broad and suitable availability of glycerol at low prices, together with the need of new and good economic synthetic routes for chemicals starting from non-petrochemical sources, have created a huge interest in glycerol molecule as a building block, mainly because of the very broad spectrum of its valuable derivatives [7].
To produce GC from GL with dimethyl carbonate (DMC) by transesterification of GL process can be obtained high conversion and high yield by using a suitable catalyst such as alkali metal or carbonate or hydroxide (for example, K₂CO₃, KOH, NaOH), Ma/Al/Zr mixed oxide, Mg/Al hydrotalcite, calcium diglyceroxide, alkaline earth metal oxide (CaO) and others [7, 15-19].

Nano metal oxide heterogeneous catalysts are a technologically very important as acid-base and unique redox properties such as (La₂O₃, CeO₂, NiO, CuO and Co₃O₄ and others).[20]

As the heterogeneous catalysts, Nano metal oxide catalysts performance showed excellent in some catalytic reactions, such as CeO₂ in reduction of carboxylic acid [21], dehydration of alcohols [22] and in alkylation of aromatic compounds [23], Honda et al. 2014 used CeO₂ as the catalyst for the production of various cyclic carbonates from diols and CO₂ with 2-pyridincarbonitrite as dehydrating agent [24]. Recently, Jiaxiong Liu et al. 2016 used CeO₂ as the Nano catalyst for the production GC from GL and CO₂ by carboxylation reaction [25].

Kankanit Phiwdang, et al. 2013 [26], reported that the Catalyst preparation CuO nanostructures catalysts by traditional Precipitation (PT) method using copper chloride (CuCl₂) and copper nitrate (Cu(NO₃)₂.3H₂O). First, each precursor was dissolved in 100 ml deionized water to form 0.1M concentration. NaOH solution (0.1 M) was slowly dropped under vigorous stirring until pH reached to 14. Black precipitates were obtained and repeatedly washed by deionized water and absolute ethanol for several times till pH reached 7. Subsequently, the washed precipitates were dried at 80 °C for 16 h. Finally, the precursors were calcined at (400-500) °C for (4-5) h.

In our present work, we prepared and employed two type of metal oxide nanoparticle (CuO and CeO₂) as the catalyst for the synthesis of GC from GL and CO₂ in the presence of (2-pyridinecarbonitrate) which was used as a dehydration agent to pull water from the middle of the chemical reaction as side product and shift the chemical equilibrium to the GC production side and solvent of CO₂ (Dimethylformamide (DMF)). The important objective of this work was to compare the optimal performance among them (CeO₂ and CuO) as a best of optimal performance, and develop a new effective catalytic system (carbonylation system) to increase the reaction rate and selectivity of the carbonylation of GL. The stability and activity of the suitable catalysts were studied in detail. From our knowledge, this is the first work of the application of (CuO-PT) prepared (Nano particles metal oxide)-based catalyst for using in the GL carbonylation for GC production.
2. Experimental Section.

2.1. Chemicals.

Cerium nitrate hex hydrate \([\text{Ce(NO}_3\text{)}_2\cdot6\text{H}_2\text{O}] \geq 90\%\) purity, Copper(II) nitrate trihydrate \([\text{Cu(NO}_3\text{)}_2\cdot3\text{H}_2\text{O}] 99\%\) purity, \((25\ \text{wt.\%})\) ammonia solution \((\text{NH}_3)\), Glycerol GL \((\text{C}_3\text{H}_8\text{O}_3) 99\%\) purity and N,N-Dimethylformamide(DMF) \((\text{C}_3\text{H}_7\text{NO}) 99\%\) purity were bought from Sinopharm Chemical Reagent Co., Ltd., Beijing-China. 2-pyridinecarbonitrate \((\text{C}_6\text{H}_4\text{N}_2)\) was purchased from Aladdin Industrial Corporation Co., Shanghai-China. Carbon dioxide \((\text{CO}_2) 99.9\%\) purity was supplied by Sichuan Tianyi Science & Technology Co., Ltd., Sichuan-China. All these chemicals were used without further purification.

2.2. Catalyst preparation method.

The precipitation (PT) method was a suitable route for the preparation of metal oxide nanoparticles catalysts, the amounts of materials depended on the stoichiometric of materials to prepared the metal oxide nanoparticles catalysts:

Metal oxide nanoparticle catalysts, CuO, and CeO\(_2\), were prepared by the precipitation (PT) method. CuO is used as the example to introduce the method. 7.55 g of copper nitrate \((\text{Cu(NO}_3\text{)}_2\cdot3\text{H}_2\text{O})\) was firstly dissolved in 250 mL of deionized water in a 500mL round bottom 3-neck glass flask (the molar concentration for copper nitrate was 0.125 mol/L), then, the solution was heated to 80 °C by using oil bath and held about 1 h with vigorous stirring. After an appropriate amount of ammonia solution \((1.0\ \text{mol/L})\) was added into the mixture, keeping the pH value \((10 \pm 1)\), a nanoparticle suspension was formed. The precursor was aged at 60 °C for 1 h, filtered and washed with deionized water for five times, and after that dried at 60°C in vacuum dryer for 2 h, and then grinded to 100 mesh scale, followed by calcination at 400°C for 5 h in air. The obtained product was denoted as CuO-PT-400. Other metal oxide nanoparticle catalysts were also prepared by the same procedure using corresponding salt such as Cerium nitrate hex hydrate \([\text{Ce(NO}_3\text{)}_2\cdot6\text{H}_2\text{O}]\) depend on the stoichiometric amount of materials . The samples of metal oxide calcined at 400°C temperatures were named as \(\text{M}_x\text{O}_y\)-PT-400 \((400\ means\ the\ calcination\ temperature)\).

2.3. Catalyst characterization

X-ray diffraction (XRD) patterns of the catalysts were measured on a X’Pert PRO using Cu K\(\alpha\) radiation at 30 kV and 15 mA, over a 2θ range of 5-90° with a step size of 0.0167° at a scanning speed of 8min\(^{-1}\).
A Bruker VERTEX 70 FT-IR spectrometer was used to obtain the FT-IR spectra of samples using KBr pellet technique, with 2 cm\(^{-1}\) resolution over the wavenumber range 4000-400 cm\(^{-1}\).

The morphology of the particles was observed by use of a scanning electron microscope (SEM, TESCAN VEGA3) with 20.0 kV of an accelerating voltage.

Nitrogen adsorption-desorption isotherms were determined by a volumetric adsorption apparatus (Micrometrics ASAP 2420) at 77K. The surface areas of samples were calculated by using the Brunauer-Emmett-Teller (BET) method. The pore volume was given at \(p/p_0 = 0.99\). The pore size distribution was calculated by the Barrett-Joyner-Halenda (BJH) method.

Also, the basicity studies of the prepared catalysts were conducted with temperature-programmed desorption of CO\(_2\) as probe molecule (CO\(_2\)-TPD) using Huasi DAS-7000 apparatus equipped with thermal conductivity detector (TCD). The analysis was performed by heating 100 mg of the catalyst sample under a He flow from room temperature to 800 °C for 2 h (10 °C/min, 50 mL/min). Then, the temperature was decreased to 90 °C, and a flow of pure CO\(_2\) (50 mL/min) was subsequently introduced into the reactor during 1 h. After the catalyst was swept with (He) for 1 h to remove the physisorbed CO\(_2\) from catalyst surface, the TPD of CO\(_2\) was carried out between 90 °C and 900 °C under a He flow (10 °C/min, 30 mL/min) and the detection of the desorbed CO\(_2\) was by an on-line gas chromatograph provided with a TCD.

H\(_2\) temperature programmed reduction (H\(_2\)-TPR) measurements were carried out on the CHEMBET 3000 TPR/TPD instrument. Before the reduction, a sample was preheated in a gas (30 mL/min) at 400 °C for 30 min to remove surface contaminants. After the sample cooled down to 50 °C, a mixture of 5.01% H\(_2\)/Ar was flowing through the reactor and the temperature was increased from 30 °C to 920 °C. The hydrogen consumption was monitored by a TCD detector.

Inductively coupled plasma mass spectrometry (ICP-MS): Is a type of mass spectrometer capable of detecting minerals and many minerals that are not present at low concentrations such as one part in \(10^{15}\) (part of quadrillion, ppq) on non-overlapping low-contrast isotopes. This is achieved by ionizing the sample using a coupled plasma and then using the mass spectrometer to separate and quantify these ions. For most clinical methods using ICP-MS, there is a relatively simple and rapid preparation process for preparation by acid digestion using HNO\(_3\)/ H\(_2\)O\(_2\).
mixture to identify metal oxide in sediments using the (ICP-MS) (Varian company production) acid Digestion.

2.4. Reaction procedure.

Glycerol carbonate (GC) was obtained from the carbonylation of glycerol (GL) with CO$_2$ over nanoparticles catalysts. As shown in scheme 1.

Scheme1. Carboxylation of glycerol with CO$_2$ over nanoparticles metal oxide catalysts.

The tests of the catalytic activities of the nanoparticles metal oxide catalysts were carried out in a stainless-steel autoclave reactor system with an inner volume of 200ml and it has thermostat with an electric heating jacket, pressure gauge and agitator, the autoclave reactor was one of the most important chemical engineering equipment and its operation is not easy, it requires attention and caution when operating, because it works under conditions of high temperature and high pressure. After ascertaining the validity of the autoclave system (fig.1.), the typical procedure is as follows: 40mmol glycerol (GL), 37mmol% Cat./GL, 16 g of Dimethylformamide (DMF) 6 g of 2-pyridinecarbonitrate, were added into the autoclave together, and then the reactor was sealed, purged with N$_2$ or CO$_2$ for 3 times and then pressurized with CO$_2$ to 4 MPa. Subsequently, the autoclave was heated to the reaction temperature (150 °C) and maintained for certain reaction time (5h) under vigorous stirring. After reaction, the reactor was cooled to room temperature and depressurized, the product mixture was taken out from the autoclave reactor to centrifugal filtration 5000 rpm for 6 min to separation the solid catalyst and liquid products, after that take all liquid product to analyzing.
2.5. Liquid product analysis.

All the components in liquid product were analyzed by the gas chromatograph (Fuli 9790-II) equipped with a flame ionization detector (FID) and a capillary column DM-FFAP (30 m long, 0.25 mm id). The internal standard method was used. Hydrogen (H₂) nitrogen (N₂) (99.999% pure) and air (20.8% O₂, 79.2% N₂), were supplied by (Sichuan Tianyi Science & Technology Co., Ltd., Sichuan, China), air and N₂ were used as the carrier gas with a flow rate of 30 mL/min at 0.4 MPa and H₂ at 0.25MPa. The temperatures of the injector and the detector were 250 °C and 270 °C, respectively. The temperature of the column was programmed to have a 2min initial hold at 70 °C, a 15 °C/min ramp from 70 °C to 250 °C and a 15 min hold at 250 °C. A good peak separation was achieved under these conditions for all components. n- Butanol was used as the internal standard to determine Methanol, while tetra ethylene glycol was used as the internal standard to determine GL and GC. Added about 1g methanol to liquid product sample for diluting before injecting into gas chromatograph (Fuli 9790-II), the mass of all sample was (mass of sample + mass of methanol) to determining the mass of GL and GC output with product.

The conversion of GL, \(X_{GL}\), and the yield of GC, \(Y_{GC}\), and selectivity of GC, \(S_{GC}\) were calculated according to the following equations:

\[
Conversion(X_{GL}) = \frac{n_{GL_{in}}-n_{GL_{out}}}{n_{GL_{in}}} \times 100 \%
\]

\[
yield (Y_{GC}) = \frac{n_{GC_{out}}}{n_{GL_{in}}} \times 100 \%
\]

\[
Selectivity (S_{GC}) = \frac{Y_{GC}}{X_{GL}} \times 100 \%
\]
Where \(n_{GL,in} \) is the number of initial moles of GL, \(n_{GL,out} \) is the number of moles of GL output (unreacted), \(n_{GC,out} \) is the number of moles of GC product.

3. Result and discussion.

The synthesis of GC from GL and \(\text{CO}_2 \) by carbonylation reaction over metal oxide nanoparticles catalyst in the presence of (2-pyridincarbonitrate), which was used as a dehydration agent to pull water from the middle of the chemical reaction as byproduct to produced 2-picolinamide (\(\text{C}_6\text{H}_6\text{N}_2\text{O} \)) and shift the chemical equilibrium to the GC production side and solvent of \(\text{CO}_2 \) Dimethylformamide (DMF). As shown in mechanism of carboxylation reaction in scheme.2. The conditions of reaction were (150 \(^\circ \text{C} \) temperature, 5h time, and 4MPa initial pressure of \(\text{CO}_2 \) and 500 rpm of mixing. The Gas chromatography (G.Ch.) analysis of the liquid product mixture out of autoclave reactor is given in Fig.2 it can be found a good peak separation is achieved for all components.

![Scheme2](image)

Scheme2. Bath way of carboxylation of glycerol by \(\text{CO}_2 \) and hydration of 2-cyanopyridine over nanoparticles metal oxide catalysts as the coupling reaction

![Fig2](image)

Fig.2 The Gas chromatography analysis peaks of the liquid products mixture ((1) methanol, (2) DMF, (3) 2-pyridincarbonitrate, (4) GL, (5) 2-picolinamide, (6) tetra ethylene glycol, (7) GC.)
3.1. Effect of type of nanoparticles metal oxide catalyst.

Two types of metal oxide nanoparticle catalysts (CuO-PT-400) and (CeO\textsubscript{2}-PT-400) were used in carbonylation of GL with CO\textsubscript{2} to produce GC and their catalytic performances and presented in table 1. Among two catalysts, the (CuO-PT-400) nanoparticle has the highest catalytic performance; in contrast, CeO\textsubscript{2}-PT-400 shows the lowest activity for the reaction of GL with CO\textsubscript{2}. Over (CuO-PT-400) catalyst, the GL conversion (X\textsubscript{GL}), GD yield (Y\textsubscript{GC}), and GD selectivity (S\textsubscript{GC}) were determined by equations (1, 2, 3) and we could reach 57.151%, 47.524%, and 83.156%, respectively as shown in table.1. The results mean (CuO-PT-400) nanoparticle is a good catalyst for carbonylation of GL with CO\textsubscript{2}.

Table 1
The catalytic performances of the metal oxide nanoparticle catalysts in the carbonylation of GL with CO\textsubscript{2} to produce GCa.

Cat.	X\textsubscript{GL}/%	Y\textsubscript{GC}/%	S\textsubscript{GC}/%	Ref.
CuO-PT-400	57.151	47.524	83.156	This work
CeO\textsubscript{2}-PT-400	51.097	36.218	70.88	This work
b. CeO\textsubscript{2}-PT-400	-	35.076	-	[25]

a. Reaction condition: 40 mmol GL, 0.7g Cat. (Cat/GL=19%), 5 g of 2-pyridinecarbonitrile, 15g DMF, 150 °C, 4 MPa CO\textsubscript{2} and 5h.

b. The results from Y\textsubscript{GC}/% were calculated as (cat./GL=36.9%), 0.34 g CeO\textsubscript{2} cat., from ref. J. Liu, et al. 2016 [25].

The catalytic performances were presented in Table1. Show conversion of GL, optimal yield of GC and optimal selectivity of GC with (CuO-PT-400) Nano catalyst when compared with (CeO\textsubscript{2}-PT-400) and yield of (CeO\textsubscript{2}-PT-400), results from Ref. Jiaxiong Liu, al et [25] ranked as:

(CuO-PT-400) > (CeO\textsubscript{2}-PT-400) > (CeO\textsubscript{2}-PT-400)from J. Liu, al et [25]

And the (CuO-PT-400) was more activity than (CeO\textsubscript{2}-PT-400) catalysts at 0.7 g catalyst/40 mmol GL.

3.2. Effect of reaction conditions

The effect of reaction conditions over (CuO-PT-400) nanoparticle catalyst as reaction temperatures, CO\textsubscript{2} pressure, time of reaction and amount of catalyst all had investigated in our research and were shown the results in Fig.3 (a-d) and the optimal performances of reaction conditions had shown in Table.2.
Fig. 3 Effect of (a) reaction temperature, (b) pressure of CO$_2$, (c) reaction time, and (d) weight of catalyst on carbonylation of GL with CO$_2$ over CuO-PT-400 catalyst (Reaction condition: 40 mmol GL, 0.7 g Catalyst (Cat/GL=19%), 5 g of 2-cyanopyridine, 15 g of DMF, 150 oC, 4 MPa CO$_2$ and 5.0 h).

And from article J. Liu, et al. 2016 [25], the effect of reaction conditions over (CeO$_2$-PT-400) nanoparticle catalyst as reaction temperatures, CO$_2$ pressure, time of reaction and amount of catalyst had investigated in this research [25] and all the results were shown in Fig.4 (a-d) and the optimal performances of reaction conditions had shown in Table.3.

The above results are found in the Fig.3 (a-d) and Table.2 that perform optimally of (CuO-PT-400) nanoparticle catalysts was T=150 °C, P$_{\text{CO}_2}$ = 4 MPa, t$_{\text{reaction}}$= 5h and m$_{\text{Catal}}$ = 0.7g, the results of conversion of GL (X$_{\text{GL}}$/%), yield of GC (Y$_{\text{GC}}$/%) and selectivity of GC (S$_{\text{GC}}$/%) were 57.1507, 47.5240, and 83.1556 respectively. But the results in the Fig.4 (a-d) and Table.3 (J. Liu, et al. 2016) [25] found perform optimally of (CeO$_2$-PT-400) nanoparticle catalyst was T=150 °C, P$_{\text{CO}_2}$= 4 MPa, t$_{\text{reaction}}$=5h and m$_{\text{Catal}}$. =0.7g, the results of yield of GC (Y$_{\text{GC}}$/%) is 33.786 and the mass ratio CeO$_2$/GL =0.72 and when using 1.73g CeO$_2$ as the mass ratio CeO$_2$/GL =1.9 the results of yield of GC (Y$_{\text{GC}}$/%) is 78.234. But from the economic side when using
0.7g of (CuO-PT-400) the yield of GL $Y_{GC} / \% = 47.5240$ and the mass ratio CuO/GL =0.19, therefore the Optimal performance for (CuO-PT-400) was higher than for (CeO$_2$-PT-400) in these conditions.

![Fig. 4](image)

Fig. 4 Effect of (a) reaction temperature, (b) CO$_2$ pressure, (c) reaction time, (d) amount of catalyst on carbonylation of glycerol with CO$_2$ over CeO$_2$-PT-400 (Reaction condition: 10 mmol (0.91g) glycerol, 30 mmol 2-cyanopyridine, 0.34 g CeO$_2$ for (a), (b) and (c), 10 mL DMF), results from J. Liu, et al. [25]

Reaction Conditions	Yield of GC ($Y_{GC} / \%$)
T=170 °C ,Fig.4a	22.354
P_{CO2}=5MPa ,Fig.4b	21.456
Time = 20h ,Fig.4c	35.076
m_{cat}=1.73g (10 mmol) ,Fig.4d	78.234
m_{cat}=0.7g (4.07mmol) ,Fig.4d	33.786

*The results were calculated from J. Liu, et al. 2016 (charts). [25]
the amount of CO$_2$ adsorption and H$_2$ consumption of CuO-PT-400 nanoparticle catalysts measured respectively by CO$_2$-TPD and H$_2$-TPR.

Cat.	aCO$_2$ adsorption amount (μmol/g)	H$_2$ consumption (mmol/g)
CuO-PT-400	13.80(27.3%) 15.00(29.7%) 21.70(43.0%)	50.49 1.66
CeO$_2$-PT-400	- -	55.00 c 0.072

a The number in bracket is the percentage of different strength basic sites on total CO$_2$ desorption amount.
b The results of CeO$_2$-PT-400 were calculated from J. Liu, et al. 2016 [25].
c 72 μmol/g from J. Liu, et al. 2016 [25].

3.3 Catalyst characterization.
3.3.1 XRD.

Fig. 5, 6 shows the XRD patterns of (CuO, CeO$_2$ and CeO$_2$) from work of Ref. [25]) nanoparticles catalysts calcined at temperature (400 °C) for 4h. The samples present a typical band of CuO phase with monoclinic crystal system Ref. Code(00-048-1548) (at 2θ = 32.5, 35.5, 38.8, 46.2, 48.8, 51.4, 53.5, 58.3, 61.5, 66.3, 68.13, 72.5, 75.1, 80.1, 82.5, 83.1, 83.6, and see PDF-2….e2004-163835) also a typical band of CeO$_2$ phase with monoclinic crystal system Ref. Code(00-044-1159) (at 2θ = 28.55°, 33.077°, 47.490°, 56.328°, 59.096°, 69.407°, 76.736°, 79.079 °, 88.451 °, 95.432 °, and see PDF-2….e2004-163835) In Fig. 5, it is also found the diffraction intensity of crystal face for CuO-PT-400 sample (-110, 002, 111, 200, -112, 020, 202, -113, 022, -311, 113, -220, 311, 004, -222, -204, -313, 222, 400, 402) and the diffraction intensity of crystal face for CuO-PT-400 sample (111, 200, 220, 311, 222, 400, 331, 420, 422) indicating the gradual bulk sintering and growth of crystallite size of CuO-PT-400. All the catalysts show clear and sharp peaks of CuO-PT-400 more than CeO$_2$-PT-400 and the diffraction intensity of crystal face (111) in CuO-PT-400 and in CeO$_2$-PT-400 were the greatest among all about (91-100)%. The width of the diffraction lines is produced using the smaller grains. The diffraction peaks of nanoparticles CeO$_2$-PT-400 were broader, which indicates the presence of small particles in the former catalysts and show the particle size is fine, and all the Cu-based, Ce-based metal oxides nanoparticles obtained by calcination at 400°C for 5h. Exhibit the diffraction peaks of CeO$_2$ crystals in another article J. Liu, et al. 2016 [25], located at (2θ) around 38.484°, 33.273°, 47.756°, 56.236°, 59.346, 69.254, 69.685, 77.324, and 79.249°, which are attributed to the (111), (200), (220), (311), (222), (400), (331), (420) and (422) reflections, respectively in fig.6. It means that the effectiveness of the CeO$_2$-PT-400 was a little and less than CuO-PT-400, which is accordant with the order of the catalytic activity for these catalysts (Table 1, except with CuO-PT-400), meaning that the crystal face (111) for CuO-PT-400...
nanoparticles catalyst may be have more active site for the carbonylation of GL with CO\textsubscript{2}. The predominantly exposed planes were the most stable (111) plane, whereas the CeO\textsubscript{2} and CuO nanoparticles catalyst predominantly exposed the well-defined and less stable (200) and (220) planes. Since the energy required to create oxygen vacancies on the plane has strong relevance with their stabilities, the difference of exposed plane might have affection the catalytic performance of CuO-PT-400 and CeO\textsubscript{2}-PT-400 nanoparticles catalyst.

![Fig.5 XRD patterns of the nanoparticle catalysts: (a) CeO\textsubscript{2}-PT-400, (b) CuO-PT-400.](image)

![Fig.6 XRD patterns of the nanoparticle catalysts of CeO\textsubscript{2}-PT-400 results from J. Liu, et al. 2016 [25]](image)
3.3.2 CO$_2$-TPD

The basicity of CuO nanoparticle catalysts is characterized by CO$_2$-TPD and the profiles are shown in Fig. 7. In the TPD profiles of these samples, the peaks at the temperature range of 50–277 °C, 277–490 °C, and > 490 °C are attributed to desorption of CO$_2$ from weak, medium, and strong basic sites, respectively. By integrating these peak areas shows that except the medium basic sites, the amounts of weak and strong basic sites increase with the increase of calcination temperature and the total amounts of the basic sites as well as. The results mean that the quantitative distribution of different strength basic sites and total amount of desorbed CO$_2$ are dramatically influenced by the calcination temperature.

![Fig. 7. CO$_2$-TPD profiles of CuO-PT-400 nanoparticles catalyst](image)

From the J. Liu, et al. 2016 results [25] found the basicity of CeO$_2$ was characterized by CO$_2$-TPD, and the profiles were shown in Fig. 8. The amount of weak, medium and strong basic sites were estimated from the integrated area under CO$_2$-TPD profiles in the temperature range of (20–200) °C, (200–450) °C and > 450°C, respectively. It is noticeable that the quantitative distribution of different strength basic sites and total amount of desorbed CO$_2$.
By integrating these peak areas, the amounts of basic sites can be evaluated and the results are presented in Table 4.

In general, a more basicity is beneficial for the carbonylation of GL with CO$_2$. Compared with CuO-PT-400 and CeO$_2$-PT-400 has higher amount of basic sites, so it also has higher GC yield. It is also observed that among these samples, though CeO$_2$-PT-400 has the highest basicity.

3.3.3 H$_2$-TPR

The H$_2$-TPR was used to determine the redox ability and oxygen vacancy density of CuO-PT-400 nanoparticle catalysts in our present work compared with CeO$_2$-PT-400 nanoparticle catalysts in the J. Liu, et al. 2016 [25]. The H$_2$-TPR profiles of CuO and CeO$_2$ are shown in Fig. 8 and Fig. 9; the data of H$_2$ consumption at 400 °C are listed in the sixth column in Table 3. It is found that all of the samples have only one strong and sharp reduction peak, indicating that there may be a type of CuO and CeO$_2$ species in these samples. Meanwhile, in these H$_2$-TPR profiles, the temperature of H$_2$ consumption maximum is different and it was 277 °C for CuO-PT-400. In these samples, CuO-PT-400 has the lowest reduction temperature, meaning this sample can be easily reduced.

The H$_2$-TPR characterization can be engaged to determine the redox ability and oxygen vacancy density of CeO$_2$. The H$_2$-TPR profiles of CeO$_2$ are depicted in Fig. 9 and the data of H$_2$ consumption below 600 °C is listed in Table 3. Two obvious peaks could be observed from the...
reduction profiles: the low-temperature peak at about 540°C and the high-temperature peak at about 890°C. The peak below 600°C is generally interpreted as the surface shell reduction, including the reduction of the surface Ce from Ce⁴⁺ to Ce³⁺ and the formation of bridging OH⁻¹ groups, and the peak above 600°C is corresponding to the bulk reduction [25].

![H₂-TPR profiles of the CuO-PT-400 nanoparticle catalysts calcined at temperature 400 °C, in our work.](image1)

Fig.9 H₂-TPR profiles of the CuO-PT-400 nanoparticle catalysts calcined at temperature 400 °C, in our work.

![H₂-TPR profiles of the CeO₂-PT-400 nanoparticle catalysts only (a) calcined at temperature 400 °C, from the J. Liu, et al. 2016 results [25](image2)

Fig.10 H₂-TPR profiles of the CeO₂-PT-400 nanoparticle catalysts only (a) calcined at temperature 400 °C, from the J. Liu, et al. 2016 results [25]

These differences may be due to the difference of the particle size, surface area and morphology with various exposed crystal planes. The H₂ consumption can be a glancing
representative of oxygen vacancy density and decreases with the increase of the calcination temperature (see the sixth column in Table 3), suggesting that CuO-PT-400 may have the highest oxygen storage/release capacity and CeO$_2$-PT-400 has the lowest. In the present work, we have found that the catalytic activity of CuO nanoparticle catalyst is connected to not only its amount of basic sites and surface area, but also the redox ability and oxygen vacancy density. CuO-PT-400 with the best redox ability and a higher oxygen vacancy gives the highest yield of GC. In contrast, CeO$_2$-PT-400 produces the lowest GC yield by using the same amount of catalyst (0.7g) because of the least oxygen vacancy and the weakest redox ability. On the basis of these understanding, it is not unreasonable to predict that the best catalyst for the synthesis of GC from carbonylation of GL with CO$_2$ should have not only high amount of basic sites and surface area, but also high redox ability and oxygen vacancy.

3.3.4 XPS

Fig.11. Presents the X-ray photoelectron spectroscopy (XPS) of (CuO-PT-400) nanoparticles catalyst Survey scan. All the indexed peaks are corresponding to Cu, O and C, as shown in the survey spectrum, the spectrum shows Cu photoelectron peaks (Cu 2p), O peaks (O 1s) and C peaks (C 1s). The high resolution XPS spectra of the (Cu 2p), (O 1s) and (C 1s) are shown in Figure.11. The fitting peaks were strong at about (634.002, 529.852 and 285.002) eV for (Cu 2p, O 1s and C 1s) respectively. Also the high resolution XPS spectra of the Cu 2p were higher one peaks lie at 933.31 eV. And the O1s was core-level. The spectrum is broad and consists of two levels of peaks, at the lower level binding energy of 528.65 eV which is in agreement with O$^{2-}$ in copper oxide while the other level peak at a higher energy of 529.85 eV accredited to adsorbed oxygen on the surface of nanoparticles. The results are in agreement with the literature [27]. The atomic ratio of Cu:O calculated on the basis of Cu 2p and O 1s spectra is approximately equal to 3:4, which shows that the surface of the product is rich in O, but the C 1s with higher one peaks lie at 285.002 eV and very little at (CuO-PT- 400) nanoparticles catalyst. No peaks of other elements except C, Cu and O were observed in the picture, indicating the high purity of the product.
In order to reveal the chemical state of cerium on the catalyst surface, the three as-prepared CeO₂ samples were investigated by XPS. The XPS patterns of Ce (3d) and O (1s) region are illustrated in Fig. 12. From the J. Liu, et al. 2016 results[25]. The O (1s) spectra was composed of two overlapping peaks. The main peak with lower binding energy of 529.1 eV roots in the lattice oxygen with Ce⁴⁺ ions[28]. The lower intense peak at 531.2 eV was assigned to different attributions: CO³⁻ contamination[29], hydroxyl contamination[30], highly polarized oxygen around the defect site[31] and oxygen vacancies in metal oxides[28].
3.3.5 Nitrogen adsorption–desorption isotherms analysis (BET)

The catalysts showed large BET surface areas: 58.54 m2/g and 59.40 m2/g for nanoparticles catalyst, (CuO-PT-400) and (CeO$_2$-PT-400), respectively, as listed in Table 5. Compared with the other two type of nanoparticles catalyst, (CuO-PT-400) and (CeO$_2$-PT-400) and in the Jiaxiong Liu, et al. 2016 results [25] showed larger surface area and average pore diameter, which was in favor of the activation and diffusion of the reactants. Typically, metal oxide grains grew into nanoparticles catalyst, the dissolution and recrystallization at the crystal-solution interface under hydrothermal condition, which was beneficial of the homogenous morphology and crystallite size.

Table 5:
The BET surface area and pore diameter for the (CuO-PT-400) and *(CeO$_2$-PT-400)* nanoparticles catalysts.

Cat.	BET Surface Area (m2/g)	Average pore diameter (nm)
CuO-PT-400	58.54	7.75
a.CeO$_2$-PT-400	59.40	9.94

* From the J. Liu, et al. 2016 results [25].

3.4 Stability of the CuO-PT-400 and CeO$_2$-PT-400 nanoparticle catalyst.

Stability of CuO-PT-400 nanoparticles catalyst is very important to complete all the functions of using the catalyst and one of these functions is recyclability of catalyst several times at least five times, the used catalysts were recovered. The stability of CuO-PT-400 was also researched and the result is shown in Fig. 13. It is found that at the fourth recycling, the activity of CuO-PT-400 hardly decreases and the GL conversion and GC yield can also reach 46.09% and 37.71%, respectively. At the fifth recycling, the GL conversion and GC yield reach 46.10% and 35.86%, respectively, indicating that the activity of CuO-PT-400 slightly decreases. In order to ascertain the reason of the decrease of the catalytic activity for the CuO-PT-400 catalyst, the recovered CuO-PT-400 in the fifth recycling was also characterized by XRD and FT-IR. Fig.14 (a) shows that the crystalline structure of recovered CuO-PT-400 is changed, and it has a strong cubic Cu phase (2θ= 43.5°, 50.65°, see PDF 00-001-1242). Fig.15 (a) shows that in the FT-IR spectra of recovered CuO-PT-400, the characteristic peaks attributed to Cu-O stretching mode (at 517 and 598 cm$^{-1}$) are vanished. These results imply that generation of Cu phase is responsible for the deactivation of the CuO-PT-400 catalyst. Interestingly, when the recovered CuO-PT-400 is calcined at 400 °C, its main phase can be converted back into the monoclinic CuO again (Fig. 14 (b), Fig. 15 (b)).
Fig. 13. The stability of CuO-PT-400 nanoparticle catalyst on the reaction of GL with CO$_2$ (Reaction condition: 40 mmol GL, 37.7 mmol % Cat./GL, 5 g of 2-pyridinecarbonitrate, 15 g DMF, 150 °C, 4 MPa CO$_2$, 5 h).

Fig. 14. XRD patterns of the CuO nanoparticle catalysts: (a) the recovered CuO-PT-400 catalyst after the fifth recycling; (b) the recovered CuO-PT-400 catalyst regeneration by again calcination at 400 °C.
Fig. 15. FT-IR spectra of CuO nanoparticles catalysts: (a) the recovered CuO-PT-400 catalyst after the fifth recycling; (b) the recovered CuO-PT-400 catalyst regeneration by again calcination at 400 °C.

Meanwhile, the regenerated catalyst CuO-PT-400 was used to the reaction of GL and CO$_2$ and also can produce GL conversion of 48.25% and GC yield of 38.10% (Fig. 13). It indicates that the recovered catalyst CuO-PT-400 can be easily regenerated by calcining at 400 °C after washing in methanol three times. Furthermore, the Cu concentration in the reaction mixture in the first run was also measured by inductively coupled plasma-mass spectrometry (ICP-MS) and the result only 45.12 μg/L, indicating that the leaching of CuO almost can be neglected.

In addition, the used CeO$_2$-PT-400 catalysts in the J. Liu, et al. 2016 results [25], were recovered, washed with ethanol or methanol and dried at 60 °C for 24 h, but they showed great loss of activity (yield of glycerol carbonate was 4.1% for the used CeO$_2$-PT-400, only 1/4 of the fresh catalyst.). Thus a deactivation of CeO$_2$ occurred in the CeO$_2$/2-cyanopyridine/DMF system. One possible reason might be that the produced amide, such as benzamide, was adsorbed on the CeO$_2$ surface and poisoned the active sites of CeO$_2$. In order to further investigate the used catalysts, XRD and FT-IR characterizations were conducted. XRD profiles were unchanged for the catalysts before and after the reaction with 2-cyanopyridine as dehydrating agent, suggesting that the nanostructure of CeO$_2$ was stable under the reaction conditions. The IR spectra of the used catalysts showed no obvious sign of adsorption of amides with respect to that of the fresh one, but the peak of hydroxyl became noticeably larger.
For the recycle use of CeO$_2$, the regeneration of spent catalysts was performed by calcination at 400°C for 5 h. The recyclability of CeO$_2$ nanoparticles was verified as shown in Fig.16. The yield of glycerol carbonate and 2-picolinamide over regenerated CeO$_2$ stayed practically the same as that of the fresh one even after recirculation for five times[25]. ICP results confirmed that the leaching of CeO$_2$ was below the detection limit, indicating that the microstructure of the catalyst was stable and the active sites were easily regenerated by a simple calcination procedure [25].

![Fig.16 Recyclability of CeO$_2$-PT-400 (Reaction condition: 10 mmol glycerol, 30 mmol 2-cyanopyridine, 0.34 g CeO$_2$, 10 mL DMF, 150°C, 4 MPa CO$_2$, 5 h). From the J. Liu, et al. 2016 results [25]](image)

3.5. Comparison the Optimal performance for both CuO and CeO$_2$

Comparison the Optimal performance for both CuO-PT-400 and CeO$_2$-PT-400 as a metal oxide nanoparticles Catalyst in the carbonylation the Glycerol with Carbon Dioxide to produce Glycerol carbonate by The results of this work which are listed in the (table.6,7) and found at the best reaction conditions (40 mmol GL, 0.7 g Catalyst as the mass ratio CuO/GL =0.19, 5 g of 2-cyanopyridine, 15 g of DMF, 150°C, 4MPa CO$_2$ and 5.0 h) the Optimal performance for CuO-PT-400 in conversion of GL, X$_{GL}$/% , yield of GC, Y$_{GC}$/% and selectivity of GC, S$_{GC}$/% were 57.1507, 47.5240 and 83.1556 respectively. And in comparison with the results of the (J. Liu, et al. 2016 results) [25] for CeO$_2$-PT-400 at the same reaction conditions, found the yield of GC, Y$_{GC}$/% was 33.786, but when using very high amount of CeO$_2$ 1.73g to GL as the mass ratio CeO$_2$/GL =1.9 the yield of GC, Y$_{GC}$/% was 78.234 that means the Optimal performance for CuO-PT-400 more than the Optimal performance for CeO$_2$-PT-400 under the same reaction conditions.
Comparison the Catalyst characterizations as shown in table 5, it is very clear that the XRD and CO\textsubscript{2}-TPD Catalyst characterizations for both CuO-PT-400 and CeO\textsubscript{2}-PT-400 were most stable 111 face, high basic sites respectively, but the Catalyst characterizations H\textsubscript{2}-TPR and XPS for CuO-PT-400 were (high redox ability and high O\textsubscript{2} vacancy) and (high polarized O\textsubscript{2} with impurity C) respectively, and for CeO\textsubscript{2}-PT-400 were (low redox ability and low O\textsubscript{2} vacancy) and (high polarized O\textsubscript{2}) respectively, also the BET Surface area (m2/g) for CuO-PT-400 was 58.54 m2/g, and for CeO\textsubscript{2}-PT-400 was 59.40 m2/g. Moreover the recyclability for CuO-PT-400 and CeO\textsubscript{2}-PT-400 were five times.

Through the above mentioned and according to our knowledge, the optimal performance of CuO-PT-400 and CeO\textsubscript{2}-PT-400 are both high and higher than metal oxide nanoparticles Catalyst else in the carbonylation the Glycerol with Carbon Dioxide to produce Glycerol carbonate, but when comparing the overall optimum performance of both CuO-PT-400 and CeO\textsubscript{2}-PT-400 (Table 6,7) were very close and when looking closely, the optimal performance of CuO-PT-400 is somewhat better than CeO\textsubscript{2}-PT-400 because the catalyst/GL was very suitable less than 20% but over CeO\textsubscript{2}-PT-400 good yield of GC with high amount of catalyst/GL was more than 188%.

Table 6
Comparison the Optimal performance for both CuO and CeO\textsubscript{2} as a metal oxide nanoparticles Catalyst in the carbonylation the Glycerol with Carbon Dioxide to produce Glycerol carbonate a.

The optimal properties	CuO-PT-400 (this work)	CeO\textsubscript{2}-PT-400 (this work)	b. CeO\textsubscript{2}-PT-400 (ref. [25])
X\textsubscript{GL}/%	57.1507	57.1507	-
Y\textsubscript{GC}/%	47.5240	47.5240	33.786, (78.234)c.
S\textsubscript{GC}/%	83.1556	83.1556	-
XRD	Most stable 111	Most stable 111	Most stable 111
CO\textsubscript{2}-TPD	High basic sites	High basic sites	High basic sites
H\textsubscript{2}-TPR	High redox ability and O\textsubscript{2} vacancy	High redox ability and O\textsubscript{2} vacancy	low redox ability and O\textsubscript{2} vacancy
XPS	High polarized O\textsubscript{2}	High polarized O\textsubscript{2}	High polarized O\textsubscript{2} with impurity C
BET	58.54 m2/g	58.54 m2/g	59.40 m2/g
Recyclability	5 times	5 times	5 times

a. Reaction condition: 40 mmol GL, 0.7 g Catalyst (cat/GL=19%), 5 g of 2-cyanopyridine, 15 g of DMF, 150 °C, 4MPa CO\textsubscript{2} and 5.0 h.

b. from the J. Liu, et al. 2016 article results [25].

c. Over 1.73 g Catalyst (CeO\textsubscript{2}) and 0.921g GL (cat/GL=188%).
Table 7

The Mass of Catalyst (g)	$Y_{GC}/\%$ over (CuO-PT-400) (this work)	$Y_{GC}/\%$ over (CeO$_2$-PT-400) (this work)	$Y_{GC}/\%$ over (CeO$_2$-PT-400)b. (ref[25] work)
0.5	27.8	14.0	28.0
0.7	47.5(cat/GL=19%)	36.0(cat/GL=19%)	35.0(cat/GL=76%)
1.0	36.5	-	48.0
1.73	33.0(cat/GL=46.96%)	-	78.0 (cat/GL=188%)

a Reaction condition: 40 mmol GL (3.684g GL.), 5 g of 2-cyanopyridine, 15 g of DMF, 150 °C, 4MPa CO$_2$ and 5.0h.

b from the J. Liu, et al. 2016 article results for 0.921g GL [25].

4. Conclusion.

CuO and CeO$_2$ nanoparticle were synthesized by precipitation method (PT). It showed the best two and excellent catalytic optimal performance among nanoparticles metal oxide catalyst in the carbonylation of glycerol and CO$_2$ with 2-cyanopyridine as a dehydrating agent. The active site of CuO-PT-400 and CeO$_2$-PT-400 catalysts may be crystal face (111). The incredibly yield of glycerol carbonate GC (can reach about 33-47%) had strong relevance with the efficient hydration of 2-pyridinecarbonitrate (2-cyanopyridine) and solvent effect of DMF and (400) °C was a good calcination temperature for 5h. The proper reaction conditions were (5.0-7.0) g 2-pyridinecarbonitrate (about 3 times of stoichiometric value), 150 °C, 4 MPa and 5 h. The active site of the CuO catalyst is all CuO surface also the CeO$_2$ catalyst is all CeO$_2$ surface. The catalyst not only has higher surface area, but also higher mechanical strength, and is suitable for the industrial reactor. The stability research for CuO and CeO$_2$ nanoparticle shows that the catalyst can be reused five times with little loss of activity and can be easily regenerated by calcination at 400 °C after washing in methanol or ethanol three times. In our future work, the suitable support for this catalyst and mixed this catalyst with another suitable nanoparticles metal oxide catalyst will be investigated and reported in due course and when Comparison the Optimal performance for CuO, CeO$_2$ in this our work and CeO$_2$ from J. Liu, et al. 2016 [25] article work found the Optimal performance were very close in low mass of catalyst less than 1g and the Optimal performance of CuO-PT-400 more than CeO$_2$-PT-400 but at high mass of catalyst more than 1g the Optimal performance of CeO$_2$-PT-400 more than CuO-PT-400. On the other hand, in chemical engineering and chemical industries, the amount of catalyst must be less than the reactants as the mass ratio catalyst/GL = 0.1 – 0.3, but in J. Liu, et al. 2016 [25] article the...
amount of catalyst as the mass ratio CeO$_2$/GL =1.88 (cat./GL=188%) this very high, in our work the amount of catalyst as the mass ratio CuO/GL = 0.19 (cat./GL=19%) (Table 6, 7).

Economically and industrially: in our work and comparison with results of ref. [25], the optimal performance of CuO-PT-400 more than CeO$_2$-PT-400 because the CuO-PT-400 was an economic, efficient and new catalyst for synthesis of glycerol carbonate from glycerol and Carbon Dioxide.

Author Contributions: Formal analysis, Jassim Mohamed Hamed AL-Kurdhani; Funding acquisition, Jassim Mohamed Hamed AL-Kurdhani; Investigation, Jassim Mohamed Hamed AL-Kurdhani; Project administration, Huajun Wang; Resources, Taha Seham Ismail; Software, Jassim Mohamed Hamed AL-Kurdhani; Supervision, Huajun Wang; Writing – original draft, Taha Seham Ismail; Writing – review & editing, Jassim Mohamed Hamed AL-Kurdhani.

Acknowledgements

We acknowledge the financial support by the National Natural Science Foundation of China (21106050), the Specialized Research Foundation for the Doctoral Program of Ministry of Education of China (20100142120066), and the Fundamental Research Funds for the Central Universities of China (2011QN117) for laboratory work at the School of Chemistry and Chemical Engineering and for testing and analysis of materials. XRD and SEM analysis was performed in the Analytical and Testing Center, and FT-IR analysis was performed in the Experimental Teaching Center of chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Also we acknowledge the financial support by Industrial research and development directory - Ministry of sciences and technology, Baghdad - Iraq. The content is solely the responsibility of the authors and does not necessarily represent the official views of these official institutions

Conflicts of Interest: The authors declare no conflicts of interest.

References

[1] P. Okoye, B. Hameed, *Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production*, Renewable and Sustainable Energy Reviews, 53 (2016) 558-574.

[2] J.P. da Costa Evangelista, A.D. Gondim, L. Di Souza, A.S. Araujo, *Alumina-supported potassium compounds as heterogeneous catalysts for biodiesel production: a review*, Renewable and Sustainable Energy Reviews, 59 (2016) 887-894.
[3] A.P. Vyas, N. Subrahmanyam, P.A. Patel, Production of biodiesel through transesterification of Jatropha oil using KNO$_3$/Al$_2$O$_3$ solid catalyst, 88 (2009) 625-628.

[4] G. Baskar, I.A.E. Selvakumari, R. Aiswarya, Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst, Bioresource technology, 250 (2018) 793-798.

[5] F. Moghzi, J. Soleimannejad, Sonochemical synthesis of a new nano-sized barium coordination polymer and its application as a heterogeneous catalyst towards sono-synthesis of biodiesel, Ultrasonics sonochemistry, 42 (2018) 193-200.

[6] J.R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, B. Maestro-Madurga, A. Pesquera-Rodríguez, C. Ramírez-López, L. Lorenzo-Ibarreta, J. Torrecilla-Soria, Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization, Applied Catalysis A: General, 366 (2009) 315-324.

[7] P. Lu, H. Wang, K. Hu, Synthesis of glycerol carbonate from glycerol and dimethyl carbonate over the extruded CaO-based catalyst, Chemical engineering journal, 228 (2013) 147-154.

[8] K. Hu, H. Wang, Y. Liu, C. Yang, KNO$_3$/CaO as cost-effective heterogeneous catalyst for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate, Journal of Industrial and Engineering Chemistry, 28 (2015) 334-343.

[9] C. Vieville, J. Yoo, S. Pelet, Z. Mouloungui, Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO$_2$ in the presence of zeolites and ion exchange resins, Catalysis Letters, 56 (1998) 245-247.

[10] M. Aresta, A. Dibenedetto, F. Nocito, C. Pastore, A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions, Journal of Molecular Catalysis A: Chemical, 257 (2006) 149-153.

[11] R.P. Leonardo P. Ozorioa, Luciana da Cruz Machadoa, Jussara L. Miranda, Cásia C. Turcha, Antônio C.O. Guerrab, E. Falabella Souza-Aguia, Claudio J.A. Motoc, Metal-impregnated zeolite Y as efficient catalyst for the direct carbonation of glycerol with CO$_2$, Appl. Catalyst., A-Gen., Volume 504 (5 September 2015) Pages 187–191. Pages 187-191.

[12] J. Li, T. Wang, Chemical equilibrium of glycerol carbonate synthesis from glycerol, The Journal of Chemical Thermodynamics, 43 (2011) 731-736.

[13] S. Paulose, R. Raghavan, B.K. George, Copper oxide alumina composite via template assisted sol–gel method for ammonium perchlorate decomposition, Journal of industrial and engineering chemistry, 53 (2017) 155-163.

[14] J. George, Y. Patel, S.M. Pillai, P. Munshi, Methanol assisted selective formation of 1, 2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst, Journal of Molecular Catalysis A: Chemical, 304 (2009) 1-7.

[15] S.C. Kim, Y.H. Kim, H. Lee, B.K. Song, Lipase-catalyzed synthesis of glycerol carbonate from renewable glycerol and dimethyl carbonate through transesterification, Journal of Molecular Catalysis B: Enzymatic, 49 (2007) 75-78.

[16] J.R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, C. Ramírez-López, M. Belsué, A brief review on industrial alternatives for the manufacturing of glycerol carbonate, a green chemical, Organic Process Research & Development, 16 (2012) 389-399.

[17] Q.X.L. M.M. Du, W.T. Dong, T. Geng, Y.J. Jiang, Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by K2CO3/MgO, Res. Chem. In termed, 38 (2012) 1069–1077.

[18] F.S.H. Simanjuntak, T.K. Kim, S.D. Lee, B.S. Ahn, H.S. Kim, H. Lee, CaO-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate: Isolation and characterization of an active Ca species, Applied Catalysis A: General, 401 (2011) 220-225.

[19] M.G. Alvarez, A.M. Segarra, S. Contreras, J.E. Sueiras, F. Medina, F. Figueras, Enhanced use of renewable resources: transesterification of glycerol catalyzed by hydrotalcite-like compounds, Chemical Engineering Journal, 161 (2010) 340-345.
[20] S. Sato, F. Sato, H. Gotoh, Y. Yamada, Selective dehydration of alkanediols into unsaturated alcohols over rare earth oxide catalysts, ACS Catalysis, 3 (2013) 721-734.

[21] Y. Sakata, V. Ponec, Reduction of benzoic acid on CeO2 and, the effect of additives, Applied Catalysis A: General, 166 (1998) 173-184.

[22] H. Gotoh, Y. Yamada, S. Sato, Dehydration of 1, 3-butanediol over rare earth oxides, Applied Catalysis A: General, 377 (2010) 92-98.

[23] M. Kobune, S. Sato, R. Takahashi, Surface-structure sensitivity of CeO2 for several catalytic reactions, Journal of Molecular Catalysis A: Chemical, 279 (2008) 10-19.

[24] M. Honda, M. Tamura, K. Nakao, K. Suzuki, Y. Nakagawa, K. Tomishige, Direct cyclic carbonate synthesis from CO2 and diol over carboxylation/hydration cascade catalyst of CeO2 with 2-cyanopyridine, ACS Catalysis, 4 (2014) 1893-1896.

[25] J. Liu, Y. Li, J. Zhang, D. He, Glycerol carboylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters, Applied Catalysis A: General, 513 (2016) 9-18.

[26] K. Phiwdang, S. Suphankij, W. Mekprasart, W. Pecharapa, Synthesis of CuO nanoparticles by precipitation method using different precursors, Energy Procedia, 34 (2013) 740-745.

[27] J. Xu, W. Ji, Z. Shen, S. Tang, X. Ye, D. Jia, X. Xin, Preparation and characterization of CuO nanocrystals, Journal of Solid State Chemistry, 147 (1999) 516-519.

[28] V. Grover, R. Shukla, R. Kumari, B. Mandal, P. Kulriya, S. Srivastava, S. Ghosh, A. Tyagi, D. Avasthi, Effect of grain size and microstructure on radiation stability of CeO2: an extensive study, Physical Chemistry Chemical Physics, 16 (2014) 27065-27073.

[29] D. Xue-yan, L. Wen-chao, L. Zhen-xiang, X. Kan, X-ray photoelectron spectroscopy investigation of ceria doped with lanthanum oxide, Chinese physics letters, 16 (1999) 376.

[30] A. Pfau, K. Schierbaum, The electronic structure of stoichiometric and reduced CeO2 surfaces: an XPS, UPS and HREELS study, Surface Science, 321 (1994) 71-80.

[31] M. Škoda, M. Cabala, I. Matolínová, T. Skála, K. Vebrická, V. Matolín, A photoemission study of the ceria and Au-doped ceria/Cu (111) interfaces, Vacuum, 84 (2009) 8-12.