Stem cell transplantation - Section 17

Unmanipulated haploidentical transplantation for adult patients with hematological malignancies

Annalisa Ruggeri1, Nicole Santoro2

1 Department of Pediatric Haematology and Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy; 2 Section of Hematology, Department of Medicine, University of Perugia, Centro Ricerche Emato-Oncologiche, Perugia, Italy

Take home messages

• The number of patients transplanted using Haplo-HSCT is increasing consistently in Europe and United States.
• Haplo-HSCT with the use of PTCy for GVHD prophylaxis, allows low incidence of grade III to IV acute GVHD, chronic GVHD, and comparable survival with HLA-matched unrelated and cord blood transplantation.

Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT) represents a curative treatment for different hematological disease. HSCT from a human leukocyte antigen (HLA)-matched sibling donor (MSD) is the standard of care for treating those patients, however only 25% to 30% of the patients in need have a MSD available. Even with the use of large unrelated donor registries, 25% of Caucasian patients are unable to find an HLA matched unrelated donor (MUD), and this percentage increases to 50% to 85% for individuals of other ethnicities.

Historically, the use of mismatched related donor was limited by the high level of HLA disparities, rendering this strategy such an alternative, using a “megadose of CD34+ selected graft” after ex-vivo T-cells depletion, to avoid severe graft versus host disease (GVHD). However, this approach was associated with high risk of graft failure, relapse and delayed immune recognition.

More recently, the use of novel strategies without ex-vivo T-cell depletion made the use of unmanipulated haploidentical transplants (haplo-HSCT) feasible, allowing a continuous increase in its use in different countries.

Current state of the art

Haplo HSCT are attractive because do not require any graft manipulation, and allow important reduction of costs, making the procedure affordable for the majority of transplant centers. In addition, family donors are easily available and highly motivated, the procedure may be organized fast, avoiding delay. There are several platforms of haplo-HSCT available, and among them, two main approaches were developed in the last decades with different platform of GVHD prophylaxis, based either on anti-thymocyte globulin (ATG) or on post-transplant cyclophosphamide (PT-Cy). Details on the recent studies available are showed in Table 1.

ATG allows extensive in vivo T-cell depletion and induces tolerance with expansion of regulatory T-cells. ATG effectively reduce GVHD incidence after both MSD and MUD HSCT. The Beijing group first reported the efficacy of the “GIAC protocol” in haplo-HSCT, using intensified immunosuppression through ATG, cyclosporine (CSA), mycophenolate-mofetil (MMF), short-course methotrexate, and monoclonal antibodies. On the other hand, Luznik et al introduced the use of high dose PT-Cy for GVHD prophylaxis in the combination with reduced-intensity conditioning regimen (RIC) and bone marrow (BM) as stem-cell source. In the absence of prospective trials comparing the different platforms of haplo-HSCT, most of the data come from single centers or registries reports.

The PT-Cy is more frequently associated with calcineurin inhibitors and MMF, however some authors reported the efficacy of the PT-Cy in combination with rapamycin to enhance regulatory T-cells, showing low rates of acute GVHD and NRM, and favorable immune reconstitution profile.

Despite the low incidence of acute and chronic GVHD and the low NRM also for older patients reported with RIC PT-Cy, disease recurrence is rather high, partially due to the high risk disease in most of the transplanted patients.

The broad HLA disparities in the haplo setting was a limitation to the use of peripheral blood stem cell (PBSC). With the intent to
Ruggeri and Santoro

Unmanipulated haploidentical transplantation for adult patients with hematological malignancies

Author, Journal	Year	Disease (%)	BM/ PBSC																				
Martelli et al. Blood 2014	2014	43	AML 77% ALL23%	CR1 58%	3.8	TCD PBSC	40	95%	15%	NA	2.4%	4.9%	40%	1.5y	56%	NA							
Ciceri et al. Blood 2008	2008	173	AML 65% CR1 29%	3.9	MAC TCD PBSC	37	91%	100 d5%	NA	2 y	10%	2 y	16%	2 y	48%	NA							
93	ALL 35% 39%	2.4	MAC TCD PBSC	21	91%	100 d18%	NA	2 y	19%	2 y	26%	2 y	44%	2 y	13%	NA							
Di Bartolomeo et al. Blood 2013	2013	80	AML 56%	56%	1.5	MAC BM 37	93%	100 d24%	5%	2 y	17%	1 y	21%	1 y	36%	3 y	44%						
Ciurea et al. Blood 2015	2015	NM 88	AML 100%	82%	3.3	NS PTCy BM 88%	88%	90%	3 m	16%	3 m	7%	3 y	30%	3 y	44%	3 y	14%	N/A	3 y	45%		
McCurdy et al. Blood 2015	2015	372	AL 31%	MDS/MPN 9%	84%	4.1	NS PTCy BM 55	92%	3 m	32%	3 m	4%	2 y	13%	3 y	46%	3 m	8%	3 y	40%	3 y	50%	
Kasamon et al. JCO 2015	2015	271	AML 24%, MDS 13%, ALL 3%	84%	4	NS PTCy BM 61	94%	6 m	33%	6 m	3%	1 y	10%	2 y	52%	6 m	8%	3 y					
Cancer 2016	2016	60	AML/MDS 67%, ALL 12%	67%	2	NS PTCy BM 45	97%	100 d 28%	100 d	3%	2 y	24%	2 y	24%	2 y	23%	2 y	53%	2 y	55%			
Santoro et al. JHO 2017	2017	208	ALL 100%	CR1 44%	2.5	NS BM 57% 53%	32	92%	100 d 31%	100 d	11%	3 y	29%	3 y	37%	3y	32%	3 y	31%	3 y	33%		
Bashey et al. JCO 2017	2017	BM 481	AML 39%, ALL 14%	63%	2.9	NS BM 58	91%	6 m	25%	6 m	7%	2 y	20%	2 y	45%	2 y	17%	2 y	41%	2 y	54%		
Ruggeri et al. Cancer 2018	2018	BM 260	AML 75%	CR1 67%	1.8	MAC BM 46	92%	100 d 22%	100 d	4%	2y	36%	2y	27%	2y	23%	2y	23%	2y	49%	2y	55%	
PB 191	AML 71%	1.5	MAC BM 44	95%	100 d 38%	100 d	14%	2y	32%	2y	22%	2y	54%	2y	17%	2y	41%	2y	54%				
Santoro et al. Cancer 2019	2019	MAC 373	AML 100%	CR 1 48%	2.5	MAC BM 54% 53%	55	91%	100 d 25%	100 d	8%	100 d 27%	2 y	25%	2 y	31%	2 y	44%	2 y	48%			

References

1. Gragert L, Eapen M, Williams E, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371:339–348.
Analysis of donor availability across different ethnicities using the large US registry.

2. Aversa F, Tabliio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–1193.

3. Passweg JR, Baldomero H, Bader P, et al. Is the use of unrelated donor transplantation leveling off in Europe? The 2016 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplantation. 2018;53:1139–1148.

4. Huang X, Liu D, Liu K, et al. Haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for treatment of hematologic malignancies in children. Biol Blood Marrow Transplant. 2009;15:91–94.

5. Luznik L, Jalla S, Engstrom LW, et al. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood. 2001;98:3456–3464.

6. Kröger N, Solano C, Wolschke C, et al. Antilymphocyte globulin for prevention of chronic graft-versus-host disease. N Engl J Med. 2016;374:43–53.

This study shows the results of the prospective randomized trial on the use of ATG in the setting of related and unrelated donor transplantation.

7. Cieri N, Greco R, Crucitti L, et al. Post-transplantation cyclophosphamide and sirolimus after haploidentical hematopoietic stem cell transplantation using a treosulfan-based myeloablative conditioning and peripheral blood stem cells. Biol Blood Marrow Transplant. 2015;2:1506–1514.

8. Kasamon YI, Bolanos-Meade J, Prince GT, et al. Outcomes of nonmyeloablative HLA-haploidentical blood or marrow transplantation with high-dose posttransplantation cyclophosphamide in older adults. J Clin Oncol. 2015;33:3152–3161.

9. Bashey A, Zhang MJ, McCurdy SR, et al. Mobilized peripheral blood stem cells versus unstimulated bone marrow as a graft source for T-cell-replete haploidentical donor transplantation using post-transplant cyclophosphamide. J Clin Oncol. 2017;35:3002–3009.

10. Ruggieri A, Labopin M, Bacigalupo A, et al. Bone marrow versus mobilized peripheral blood stem cells in haploidentical transplants using posttransplantation cyclophosphamide. Cancer. 2018;124:1428–1437.

11. Santoro N, Labopin M, Ciceri F, et al. Impact of conditioning intensity on outcomes of haploidentical stem cell transplantation for patients with acute myeloid leukemia over 45 years of age. Cancer. 2019;(Epub ahead of print).

12. Ciurea SO, Cao K, Fernandez-Vina M, et al. The European Society for Blood and Marrow Transplantation (EBMT) consensus guidelines for the detection and treatment of donor-specific Anti-HLA antibodies (DSA) in haploidentical hematopoietic cell transplantation. Bone Marrow Transplant. 2018;53:521–534.

13. Bashey A, Zhang X, Szemere CA, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31:1310–1316.

14. Ruggieri A, Labopin M, Sanz G, et al. Comparison of outcomes after unrelated cord blood and unmanipulated haploidentical stem cell transplantation in adults with acute leukemia. Leukemia. 2015;29:1891–1900.

First retrospective analysis in a large series of patients showing comparable results between haplo and unrelated cord blood.

15. Salvatore D, Labopin M, Ruggieri A, et al. Outcomes of hematopoietic stem cell transplantation from unmanipulated haploidentical versus matched sibling donor in patients with acute myeloid leukemia in first complete remission with intermediate or high-risk cytogenetics: a study from the acute leukemia working party of the European society for blood and marrow transplantation. Haematologica. 2018;103:1317–1328.

16. Santoro N, Labopin M, Giannotti F, et al. Unmanipulated haploidential in comparison with matched unrelated donor stem cell transplantation in patients 60 years and older with acute myeloid leukemia: a comparative study on behalf of the ALWP of the EBMT. J Hematol Oncol. 2018;11:55.

17. Ciceri F, Bonini C, Stanghellini MTL, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidential haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol. 2009;10:489–500.

18. Ciurea SO, Schafer JR, Bassett R, et al. Phase 1 clinical trial using mIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood. 2017;130:1857–1868.

Phase 1 clinical trial exploring the efficacy of adoptive immunotherapy with expanded NK cells after haplo-HSCT to reduce the risk of relapse.

19. Zeidan AM, Forde PM, Symons H, et al. HLA-Haploidentical donor lymphocyte infusions for patients with relapsed hematologic malignancies after related HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant. 2014;20:514–318.

20. Ghiso A, Raiola AM, Guandalini F, et al. DLI after haploidential BMT with post-transplant CY. Bone Marrow Transplant. 2015;34:1608.