Ground-state phase diagram and thermodynamics of coupled trimer chains

R. R. Montenegro-Filho, E. J. P. Silva-Júnior, and M. D. Coutinho-Filho

1Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco, 50760-901 Recife-PE, Brasil

(Dated: April 26, 2022)

The density matrix renormalization group and quantum Monte Carlo method are used to describe coupled trimer chains in a magnetic field \(h \). The Hamiltonian contains exchange terms involving the intra-trimer coupling \(J_1 \) (taken as the unit of energy) and the inter-trimer coupling \(J_2 \), plus the Zeeman interaction for a magnetic field \(h \) along the \(z \) direction. Results for the magnetization per trimer \(m \) are calculated in regimes of positive and negative values of the ratio \(J = J_2/J_1 \), from which the rich field-induced ground state phase diagram \(h \) versus \(J \) is derived, with the presence of Luttinger liquid, the 1/3 – plateau \((m = 1/2)\), and the one of fully polarized magnetization \((m = 3/2)\). Also, the zero-field Lanczos calculation of spin-wave dispersion from the 1/3 – plateau for \(S^z = 1 \) is shown at the previous regimes of \(J \) values. In addition, we also report on the decay of correlation functions of trimers along open chains, as well as the average two-magnon distribution. The ground state is ferrimagnetic for \(0 < J \leq 1 \), and is a singlet for \(-1 \leq J < 0 \). In the singlet phase, the spin correlation functions along the legs present an antiferromagnetic power-law decay, similar to the spin-1/2 linear chain, thus suggesting that the ground state is made of three coupled antiferromagnetically oriented chains. In the singlet phase, the dimensionless thermal magnetic susceptibility per site normalized by \(1/J \) gets closer to \(1/\pi^2 \) as the temperature \(T \to 0 \). For the ferrimagnetic phase, we fit the susceptibility to the experimental data for the compound \(\text{Pb}_3\text{Cu}_3(\text{PO}_4)_4 \) and estimate the model exchange couplings: \(J_1 = 74.8K \) and \(J = 0.4 \). These values imply a range of energies for the magnon excitations that are in accord with the data from neutron scattering experiments on \(\text{Pb}_3\text{Cu}_3(\text{PO}_4)_4 \) for two excitation modes. The 1/3 – plateau closes only at \(1/J = 0 \) with \(J < 0 \).

I. INTRODUCTION

Chains of spin-1/2 sites exhibit a rich quantum behavior depending on the way the spins are coupled [1]. The spin-1/2 antiferromagnetic linear chain [2] is a paradigmatic model with a gapless spectrum that unveiled, for example, collective excitations such as the spinons and holons [1]. On the other hand, the physics of short-range valence bond states manifests in the singlet gapped holons [1]. On the other hand, the physics of short-range valence bond states manifests in the singlet gapped holons [1].

In a similar but more complex fashion, chains of coupled spin-1/2 trimers have a unit cell made of three spin-1/2 sites and exhibit rich phase diagrams. We notice two typical exchange pathways arrangements for unfrustrated bipartite lattices, both in accord with the topological Lieb-Mattis theorem [3]. In the first case [9–13], the lattice can be divided into two groups with the same number of sites, and the ground state is a gapless singlet. In particular, the magnetic features of the compound \(\text{Cu}_2(\text{P}_2\text{O}_9\text{OH})_2 \) are investigated through this model [11, 14]. In the second case [15–17], there are two unit-cell sites in one sublattice and one unit-cell site in the other; thus, a spontaneous break of the rotation symmetry occurs. The ground state has a finite magnetic moment in the thermodynamic limit and exhibits a ferrimagnetic order [18]. The low-energy magnon spectra [15–17, 18] have a fermagnetic gapless Goldstone mode, due to the broken symmetry, and two gapped excitations, one ferromagnetic and the other antiferromagnetic. The Hamiltonians in this category are used to understand the magnetism of the ferrimagnetic phosphates \(\text{A}_3\text{Cu}_3(\text{PO}_4)_4 \) \((A = \text{Ca}, \text{Sr}, \text{and Pb})\). Considering non-bipartite frustrated lattices, we mention the diamond chains [20, 21], which have a singlet ground state and model the azurite compound \(\text{Cu}_3(\text{CO}_3)_2(\text{OH})_2 \) [22]. Further, frustrated models exhibit frustration-induced magnon condensation [23], first-order phase transitions [26], and pseudo phase transitions [27].

In any of the above-mentioned coupled trimer chains, a magnetization plateau at 1/3 of the saturation magnetization (a 1/3 – plateau) is observed in the magnetization curve as a function of a magnetic field. This is in accord with the topological Oshikawa-Yamanaka-Affleck criteria [28], due to the number of unit-cell sites and the absence of broken translation symmetry. However, the quantum state of the three unit-cell spins depends on the parameter regime and the Hamiltonians considered. In some cases, two of the unit-cell spins are in a singlet state [21], while in others, the same spins are in a coherent superposition of triplet states [19]. Further, we mention that the edge states present at the 1/3 – plateau phase of unfrustrated [24] and frustrated [20] models with open boundaries were recently investigated.

In this work, we calculate the phase diagram of coupled trimer chains by using density matrix renormalization group (DMRG) [31] and quantum Monte Carlo (QMC) methods. In Sec. 11 we present the Hamiltonian of the trimer chain and the details of the methods mentioned.
above. In Sec. III we show the bounds of the $1/3$ – plateau and fully polarized plateau, besides the parameter region in which a singlet antiferromagnetic phase is found. In Sec. IV we discuss the low-energy excitation modes from the $1/3$ – plateau state (three magnon excitations), and from the singlet antiferromagnetic phase, a spinon excitation as in the spin-1/2 linear chain [32]. Further, in Sec. V we consider the edge states of open chains, which are associated with the 1/3 and the fully polarized plateaus. We investigate the thermal susceptibility χ at zero magnetic field in Sec. VI and the closing of the $1/3$ – plateau in Sec. VII. We summarize our results in Sec. VIII.

II. MODEL AND METHODS

The coupled trimer chain Hamiltonian is sketched in Fig. 1. For a chain of L coupled trimers in a magnetic field, the Hamiltonian in units of the intra-trimer coupling J_1 reads

$$
\frac{H}{J_1} = \sum_{i=1}^{L} [A_i \cdot (B_{1,i} + B_{2,i}) + J(A_i \cdot B_{2,i+1} + B_{1,i} \cdot A_{i+1})] - S^z h,
$$

where each trimer i has three spin-1/2 spins ($h \equiv 1$) at sites A_i, $B_{1,i}$, and $B_{2,i}$, with spin operators denoted by A_i, $B_{1,i}$, and $B_{2,i}$, respectively, while the ratio $J \equiv J_2/J_1$, where J_2 is the intertrimer coupling. We define h as the magnetic field in units of $J_1/g\mu_B$, where μ_B is the Bohr magneton and the g factor is assumed the same at all sites. The total spin component in the z direction (field direction) is S^z. We consider m as the magnetization per trimer in units of $g\mu_B$, such that $m \equiv S^z/L$.

![FIG. 1. Sketch of the spin-1/2 trimer chain Hamiltonian. The total number of trimers is denoted by L. The intratrimer coupling is J_1, while the intertrimer one is J_2, the ratio between the couplings is defined as $J \equiv J_2/J_1$.](image)

Our zero-temperature results were obtained with the density matrix renormalization group (DMRG) on chains with open boundary conditions and exact diagonalization on closed chains. We retained up to 243 states per block in the DMRG calculations and the maximum discarded weight was 1×10^{-8}. The thermal magnetic susceptibility was obtained with the quantum Monte Carlo (QMC) method, using the code from the

![FIG. 2. Magnetization per trimer m as a function of the magnetic field h for the indicated values of $J = J_2/J_1$. Density matrix renormalization group results for an open chain with $L = 120$ trimers. The insets show a zoom of the curves in the vicinity of (a) the $1/3$ – plateau and (b) the fully polarized plateau to have a better view of the magnetizations of localized edge states.](image)

Algorithms and Libraries for Physics Simulations (ALPS) project [33]. We have used 1×10^5 Monte Carlo steps in the QMC calculations.

III. MAGNETIZATION CURVES AND PHASE DIAGRAM

Considering first the case of zero field, $h = 0$, the ground-state total spin for $J > 0$ is very distinct from the $J < 0$ case. For $J > 0$, the ground-state total spin is 1/2 per trimer, as shown in Fig. 2(a), and presents a spontaneously broken rotation symmetry in spin space. On the other hand, for $J < 0$, the ground state is a rotationally invariant singlet state, as shown in Fig. 2(b). In particular, the ground-state total spin for $J > 0$ is in accord with the Lieb-Mattis theorem [6], while the trimer chain Hamiltonian does not satisfy the requirements of this theorem for $J < 0$. For $J = 0$ the trimers are decoupled and there is a degeneracy between total spin states from 0 to 1/2 per trimer. In particular, we mention that the ferrimagnetic phase is also observed in the phase diagram of frustrated chains, like the distorted diamond chain [21], and perturbation theories can be developed from the state of decoupled spin-1/2 trimers [21].

In the presence of a magnetic field $h \neq 0$, the magnetization curves of the trimer chain, for $J \geq 0$ [Fig.
In the insets of Figs. 3 (a) and 3 (b), present two magnetization plateaus: the fully polarized (FP) plateau, h_{FP}, to gapless Luttinger liquid (LL) phases. The phase diagram is estimated from the DMRG results for chains with up to $L = 120$ trimers. For $h = 0$, the ground state is a singlet for $-1 \leq J < 0$, and is ferrimagnetic for $0 < J \leq 1$. In the inset we present the average spin at A and B_1 (or B_2) sites at the 1/3 - plateau. The relative orientation of the average spins changes from a ferrimagnetic pattern, found in the range $-0.75 < J < 1$, to a ferromagnetic orientation in $-1 < J < -0.75$, as sketched in (b).

We present in Fig. 3 (a) the phase diagram of the trimer chain as a function of magnetic field and of the ratio J. The gapped FP–plateau is bounded by the saturation field h_s, while the 1/3 – plateau phase is bounded by the lower and higher critical fields, $h_{1/3,-}$ and $h_{1/3,+}$, respectively. We notice that $h_{1/3,-} = 0$ for $J \geq 0$, since, in zero field, the ground state total spin is $1/2$ per trimer and is degenerate for $J = 0$. The gapped phases are separated by gapless Luttinger liquid (LL) phases. We also show the average spin at A and B sites in the inset of Fig. 3 (a) for the 1/3 – plateau magnetization. The average spin in a trimer presents an antiferromagnetic arrangement for $-0.75 \leq J \leq 1$, implying a ferrimagnetic ground state; and a ferromagnetic orientation for $-1 \leq J \lesssim -0.75$, as sketched in Fig. 3 (b).

IV. LOW ENERGY EXCITATIONS

In this section we discuss the low-energy magnetic excitations from the 1/3 – plateau phase and from the singlet ground state of the $-1 \leq J < 0$ region. We obtain the energy $E_q(S^z)$ of finite chains with periodic boundary conditions as a function of the lattice wave vector q for a fixed value of S^z by using exact diagonalization.

For the 1/3 – plateau state, we consider three magnetic excitations in zero magnetic field, as shown in Fig. 4. Two of them, $\omega_0^{(-)}$ and $\omega_1^{(-)}$, carry a spin $\Delta S^z = -1$ and are given by

$$
\omega_n^{(-)}(q) = E_n^{0}(S^z = L/2 - 1) - E_{q=0}(S^z = L/2),
$$

for $n = 0$, lowest energy in the sector $(q, S^z = S_{\text{GS}} - 1)$, and $n = 1$, first excitation in the same sector. Notice that the ground state in zero field has the total spin $S_{\text{GS}} = L/2$ for $J \geq 0$; while in the range $-1 \leq J \leq 0$, this is the total spin of the ground state only for $h_{1/3,-} \leq h \leq h_{1/3,+}$. In fact, as shown in Fig. 4, $\omega_0^{(-)}(q) < 0$ in zero field for $J < 0$, with the $q = \pi$ sector as the lowest one. For $h \neq 0$, we add the Zeeman term, $-hS^z$, to the energy and the excitation energy changes as

$$
\omega_0^{(-)}(q, h) = \omega_0^{(-)}(q) + h.
$$

Hence, the critical field $(h = h_{1/3,-})$ for which the ground state has $S^2 = L/2$ can be obtained from the condition $\omega_0^{(-)}(q = \pi, h_{1/3,-}) = 0$, such that $h_{1/3,-} = -\omega_0^{(-)}(\pi)$. The values of $h_{1/3,-}$ thus obtained are in excellent accord with those from DMRG, shown in Figs. 2 and 3.

The excitation $\omega_1^{(-)}(q)$ is higher than $\omega_0^{(-)}(q)$, approximately dispersionless and near 1 for $J > 0$. For $J = 1$, the chain has a local parity symmetry, and an exact dispersionless mode in the sector $S^2 = L/2 - 1$ with one singlet between B_2 of one trimer and the B_1 of the nearest neighbor trimer. In fact, there is a crossing between localized and dispersive modes as follows. The localized excitation is observed in the last two points near the zone boundary of the excitation $\omega_0^{(-)}(q)$, while the last two points near the zone boundary of the excitation $\omega_1^{(-)}(q)$ are, in fact, a continuation of the dispersive mode observed in the four points near $q = 0$ of $\omega_1^{(-)}(q)$. As shown in Fig. 4 for $0 < J < 1$ the excitation $\omega_1^{(-)}(q)$ gains some dispersion, implying a certain mobility of the local singlet, but there is not a crossing between the modes, since in this case there is not a local symmetry. Also, $\omega_1^{(-)}(q)$ acquires a minimum in a value of $q \neq 0$ and π.

\[\text{FIG. 3. (a) Magnetic field } h \text{ vs. exchange ratio } J \text{ phase diagram of the trimer chain. We show the transition lines from the gapped 1/3 – plateau, } h_{1/3,+} \text{ and } h_{1/3,-}, \text{ and the fully polarized (FP) plateau, } h_{\text{FP}}, \text{ to gapless Luttinger liquid (LL) phases. The phase diagram is estimated from the DMRG results for chains with up to } L = 120 \text{ trimers. For } h = 0, \text{ the ground state is a singlet for } -1 \leq J < 0, \text{ and is ferrimagnetic for } 0 < J \leq 1. \text{ In the inset we present the average spin at } A \text{ and } B_1 \text{ (or } B_2) \text{ sites at the 1/3 – plateau. The relative orientation of the average spins changes from a ferrimagnetic pattern, found in the range } -0.75 < J < 1, \text{ to a ferromagnetic orientation in } -1 < J < -0.75, \text{ as sketched in (b).} \]
along the sublattices $J > 0$, and exhibit an alternating pattern. Also, for sufficiently large distances, the dominant term in Eq. (2) is \(q \to 0\), while spin-wave decay. In a linear antiferromagnetic chain, the asymptotic behavior of the spin correlation functions in the singlet ground state, at zero magnetic field, has the following form:

\[
\langle S(0) \cdot S(l) \rangle \sim c_1 \frac{1}{l^2} + c_2 (-1)^l \frac{\ln^{1/2}(l)}{l},
\]

where the amplitudes \(c_1\) and \(c_2\) are not universal. At large distances, the dominant term in Eq. (7) is \((-1)^l/l\), discarding the ln factor. Thus, in the trimer chain, our

The third excitation in Fig. 4, \(\omega^+(q)\), carries a spin \(\Delta S^z = +1\) and is calculated from

\[
\omega^+(q) = E_q(S^z = L/2 + 1) - E_{q=0}(S^z = L/2).
\]

For \(J > 0\) the minimum energy is observed at \(q = 0\), while for \(-1 < J < 0\) the minimum is found at \(q = \pi\). In the presence of a magnetic field, this mode condenses in the critical field \(h = h_{1/3,+}\). Since, for \(h \neq 0\), we have:

\[
\omega^+(q, h) = \omega^+(q) - h,
\]

the condition at critical field is \(\omega^+(q_{\text{min}}, h = h_{1/3,+}) = 0\), where \(q_{\text{min}} = 0\) for \(J > 0\) and \(q_{\text{min}} = \pi\) for \(J < 0\). The critical field thus obtained is also in excellent agreement with the DMRG results, shown in Figs. 2 and 3. For \(0 \leq J \leq 1\), we notice that analytical results from perturbation theory or interacting spin-wave analysis are in good accord with the exact diagonalization data depending on the value of \(J\). Perturbation theory is better for lower values of \(J, J \lesssim 0.5\), while spin-wave analysis gives better results for \(0.5 \lesssim J \leq 1\).

We start the discussion of the low-energy magnetic excitations from the singlet ground state of the trimer chain in zero field, for \(-1 < J < 0\), by considering the spin correlation functions in the ground state. We use DMRG in open chains to calculate the correlation functions in sublattices \(A\) and \(B\) as follows:

\[
C_x(l) = \langle \langle S_{x,i} \cdot S_{x,j} \rangle \rangle_{i-j=\pm l},
\]

where \(\langle \langle \ldots \rangle \rangle_{i-j=\pm l}\) is an average over all pairs of trimers \(i\) and \(j\) separated by the distance \(l\), \(X = A\) or \(B\), and \(B\) can be either \(B_1\) or \(B_2\), since the correlations are equal along the sublattices \(B_1\) and \(B_2\).

The spin correlation functions are shown in Fig. 5(a) and exhibit an alternating pattern. Also, for sufficiently low distances to avoid edge effects, the correlation functions have an \(1/l\) decay. In a linear antiferromagnetic chain 1, the asymptotic behavior of the spin correlation functions in the singlet ground state, at zero magnetic field, has the following form:

\[
\langle S(0) \cdot S(l) \rangle \sim c_1 \frac{1}{l^2} + c_2 (-1)^l \frac{\ln^{1/2}(l)}{l},
\]

where the amplitudes \(c_1\) and \(c_2\) are not universal. At large distances, the dominant term in Eq. (7) is \((-1)^l/l\), discarding the \(\ln\) factor. Thus, in the trimer chain, our

![Image](image330x542_549x603)

FIG. 4. Spin-wave modes from the 1/3 - plateau magnetization \((m = 1/2)\) for the indicated values of \(J\) and magnetic field \(h = 0\), where \(q\) is the lattice wave vector. The modes \(\omega_0(\pi)\) and \(\omega_2(\pi)\) have spin \(\Delta S^z = -1\), while the mode \(\omega_1(\pi)\) has spin \(\Delta S^z = 1\). The data are exact-diagonalization results for a closed chain with \(L = 10\) trimers.

![Image](image0001_01)

FIG. 5. (a) Density matrix renormalization results for the alternating correlation functions between spins at \(B_1\) (or \(B_2\)) sites and at \(A\) sites, \((-1)^lC_{B}(l)\) (left panel) and \((-1)^lC_{A}(l)\) (right panel), respectively, as a function of the distance \(l\) between trimers, for \(J = 0\) and the \(J\) values indicated in the figure, for an open chain with \(L = 120\) trimers. The intermediate-distance behavior suggests a \(1/l\) (full lines) antiferromagnetic power-law correlation along each sublattice, \(A, B_1\) or \(B_2\), as sketched in (b). (c) Exact-diagonalization results for the low-lying magnetic excitation mode from \(m = 0\), with total spin \(S = 1\), for \(J = J_2/J_1 = -1.0, -0.8, -0.6, -0.4\), and \(-0.2\) (from bottom to top) as a function of a translated lattice wave vector \(|q - q_0|\) in a closed chain, normalized by \(|J|\). We present the data for two system sizes \(L = 8\) (filled symbols) and \(L = 10\) (open symbols). The ground state energy (with \(S = 0\)) is observed at the wave vector \(q = q_0\) with \(q_0 = \pi\) for \(L = 8\) and \(q_0 = 0\) for \(L = 10\).
data suggests that the spins in each sublattice are correlated as in the antiferromagnetic spin-1/2 linear chain, following the form in Eq. (7), with a short-range magnetic pattern as sketched in Fig. 5b).

The low-energy magnetic excitations from the ground state, Ω, shown in Fig. 5(c) reinforce this picture. In particular, the antiferromagnetic spin-1/2 linear chain presents an alternation of the ground-state wave vector between the values 0 and π, as shown from the Bethe ansatz solution [32]. On the other hand, the low-energy excitations of the spin-1/2 linear chain are spinons [1], which, in the thermodynamic limit, have the dispersion relation [32]

$$\epsilon(q)^{\text{spinon}} = \frac{\pi}{2} J_{\text{linear chain}} |\sin(q)|, \quad (8)$$

where $J_{\text{linear chain}}$ is the superexchange coupling between nearest neighbor spins.

We use exact diagonalization to calculate Ω(q) for finite chains with periodic boundary conditions for $-1 \leq J < 0$ from

$$\Omega(q) = E_q(S^z = 1) - E_{q = q_0}(S^z = 0), \quad (9)$$

where q_0 is the ground-state wave vector, which is $q_0 = \pi$ if L is a multiple of 4 and $q_0 = 0$ otherwise, for L even, as in the antiferromagnetic spin-1/2 linear chain. In Fig. 5(c) we show Ω(q) for $L = 8$ and $L = 10$ as a function of $|q - q_0|$, normalized by $|J|$. Although the system sizes are short, we can suggest some features for the thermodynamic limit. The general trend of the curves points to a periodicity like in Eq. (5), but the dependence on J is not as simple as in Eq. (5) for the system sizes shown.

V. EDGE STATES

The 1/3 and the fully polarized plateaus satisfy the Oshikawa-Yamanaka-Affleck (OYA) topological criterion for their occurrence in magnetization curves of magnetic insulators [28]: $(m_u - S_u) = \text{integer}$, where m_u and S_u are respectively the magnetization and the maximum spin in a unit period of the ground-state wave-function. In the trimer chain, there is not a broken translation symmetry; thus $m_u = 1/2$ for the 1/3 plateau and $m_u = 3/2$ for the fully polarized state, with $S_u = 3/2$ in both cases. Further, the non-trivial topological nature of a magnetic state gives rise to zero-energy edge states, as expected from the bulk-edge correspondence [33, 36]. In fact, edge-mode properties have proved useful in investigating topological quantum phase transitions [28, 37, 40]. On the other hand, it was shown [41] that spin-S antiferromagnets on d-dimensional lattices present fractionally quantized magnetization at the corners, similarly to ionic crystals. In addition, the edge magnetization can have a non-topological origin [39]. In particular, in Ref. [39] the authors have shown that $U(1)$ and site-inversion symmetry protects the edge magnetizations in the ferromagnetic phase of the Union Jack stripe. Besides, the appearance of magnon densities at the edges of alternating ferrimagnetic chains depends on magnon interactions [42] and the uniform local potentials of the associated Holstein-Primakoff Hamiltonians.

In Fig. 6 we present the edge magnon densities of the trimer chain by considering the magnon distribution as two magnons are added to the insulating states at $m = 1/2$ (ferrimagnetic state) and $m = 3/2$ (fully polarized state). As evidenced in the inset of Figs. 2(a) and 2(b), the localized magnetization states inside the thermodynamic plateaus appear for $m = 3/2$ and $J < 0$, and for $m = 1/2$ and $J > 0$. The magnons carry a spin $\Delta S^z = +1$ in the case of $m = 1/2$, and a spin $\Delta S^z = -1$ for $m = 3/2$, such that their distribution along the chain are calculated through

$$\langle n = (S^z_1)_{S^z = (L/2)+2} - (S^z_1)_{S^z = L/2} \rangle \quad (10)$$

for $m = 1/2$, and through

$$\langle n = (S^z_1)_{S^z = 3L/2} - (S^z_1)_{S^z = 3L/2-2} \rangle \quad (11)$$

for $m = 3/2$, where S^z_1 is the spin of the trimer l.

For the ferrimagnetic state at $m = 1/2$, we observe in Fig. 6a) the presence of magnon density at the edges of the trimer chain for $J > 0$. However, the magnon distribution becomes less localized as J decreases from $J = 1$, and turns into bulk excitations for $J < 0.5$. As in the case of ferrimagnetic alternating chains [42], the magnon densities at the edges can have two contributions: one from the geometry of the system and the other from the magnon-magnon interactions. In the case of the fully...
values of J linear chain with N. We present the cross indicates the exact value of magnon densities have only a geometrical origin.

Thus, the localization of the two magnons at the edges of the chain minimizes the total energy, and the edge magnon densities have only a geometrical origin.

VI. SUSCEPTIBILITY

This section discusses the finite-temperature magnetic susceptibility of the trimer chain with quantum Monte Carlo simulations. Initially, we examine the antiferromagnetic regime, $J < 0$, and, next, the ferrimagnetic phase, observed for $J > 0$. In the last case, we compare our results with the experimental data for the Pb$_3$Cu$_3$(PO$_4$)$_4$ phosphate [13, 44], which is a ferrimagnetic quasi-one-dimensional compound.

In Fig. 7 we study the magnetic susceptibility of the trimer chain for $J < 0$. In Fig. 7(a), we present the susceptibility per site of the trimer chain, and of the antiferromagnetic spin–1/2 linear chain. For simplicity, we define J_1 as the superexchange coupling between the nearest neighbors in the linear chain. The low-T behavior of χ for the linear chain is given by $\chi(T) = \frac{1}{T} + \frac{1}{\pi v |J|}$. In Fig. 7(a), we also show that $\chi(T)$ has an infinite slope as $T \rightarrow 0$. Notwithstanding, Eq. (12) is expected to be universal [45] under some general conditions. Introducing the expression for v into Eq. (12), we obtain

$$\chi(T) = \frac{1}{2\pi v} + \frac{1}{4\pi v \ln(T/T_0)},$$

where the spin-wave velocity $v = J_1 \pi/2$ is the slope of the dispersion relation obtained from the Bethe ansatz and T_0 is a non-universal constant. The logarithmic correction implies that $\chi(T)$ has an infinite slope as $T \rightarrow 0$.

In Fig. 7(b), we present χ for different values of J. For $J = 0$, decoupled trimers, the susceptibility has a paramagnetic behavior with $\chi \sim 1/T$ as $T \rightarrow 0$ [see also Fig. 8(a) for $\chi(T)]$. For $J < 0$, the susceptibility curve exhibits a maximum marking the crossover from the low-temperature regime to the high-temperature decoupled-trimer behavior. This maximum is found in a temperature that increases with decreasing J. In the inset of Fig. 7(b), we present $(J_1\chi)/(1/|J|)$, so that $(J_1\chi)/(1/|J|) = |J|/(J_1\chi) = |J_2|\chi$. For any value of $J < 0$, the data approach $J_1\chi(0)$ for the antiferromagnetic linear chain: $1/\pi^2$. A simple reasoning can be used to explain this behavior. Although the spin-wave velocity of the trimer chain can have a complex dependence on J_2, we expect that v is an increasing function of $|J_2|$.

polarized plateau, the edge magnon density shows up for $J < 0$. Here, the sites at the edges are coupled to the chain by only one antiferromagnetic bonding, while the other sites have at least one ferromagnetic bond: $J < 0$. Thus, the localization of the two magnons at the edges of the chain minimizes the total energy, and the edge magnon densities have only a geometrical origin.

FIG. 7. Quantum Monte Carlo results for the magnetic susceptibility χ per site. (a) Trimer chain with $L = 128$ and $J = -1$, and antiferromagnetic linear chain with $N = 128$ sites. The cross indicates the exact value of χ at $T = 0$ for the antiferromagnetic linear chain: $1/\pi^2$. In the inset we highlight low-temperature regime. Open symbols are results for a trimer chain with $L = 256$ and for the antiferromagnetic linear chain with $N = 256$. (b) Trimer chain for the indicated values of J, the cross also marks the value $1/\pi^2$. In the inset we present $|J|\chiJ_1$ which is equal to $|J_2|\chi$. In the range of temperatures exhibited.
Further, the low-energy magnetic excitations shown in Fig. 5 suggest that \(v \) is nearly proportional to \(|J| = |J_2| \), by fixing \(J_1 = 1 \). If we use \(v = |J_2|\pi/2 \) in Eq. 12, we obtain that \(|J_2|\chi(0)/N g^2 \mu_B^2 = 1/\pi^2 \), as suggested by the data in the inset of Fig. 7(b).

We remark that an antiferromagnetic pattern like that of the linear spin-1/2 chain was reported in Ref. 19 for the unfrustrated diamond chain, and their data also suggests a finite susceptibility at \(T = 0 \).

In Fig. 8(a), we present the magnetic susceptibility per trimer for \(J > 0 \), where the trimer chain is found in the ferrimagnetic regime. One of the signatures of the ferrimagnetic phase is a minimum in the \(\chi T \) versus \(T \) curve at zero field. This minimum marks a crossover between the low-temperature ferromagnetic regime, for which \(\chi \sim 1/T^2 \), and the high-temperature decoupled-trimer (\(J = 0 \)) behavior. Thus, the minimum of \(\chi T \) and its temperature location decrease with \(J \). As discussed above, for \(J = 0 \), the data in Fig. 7(b) show that \(\chi \sim 1/T \) as \(T \to 0 \), with \(\chi T \) becoming very flat in the low-\(T \) regime, as shown in Fig. 8(a). In order to estimate the values of \(J_1 \) and \(J_2 \), and \(g \) for the phosphate \(\text{Pb}_3\text{Cu}_3(\text{PO}_4)_4 \), we fit the QMC results to the experimental data for this compound 43. The value of \(J_1 \) is estimated by comparing the dimensionless value of the temperature, \(k_B T/J_1 \), with its value in the experimental curve for all values of \(J \). Further, we compare the value of the minimum of \(\chi T \) in the experimental curve and the dimensionless QMC data for all values of \(J \), thus obtaining \(g \) for each value of \(J \). Finally, with these values of \(g \) and \(J_1 \), we normalize the experimental curve and compare it with the QMC data for all values of \(J \) simulated. Following this procedure, we have found that the experimental curve is best fitted by \(J = 0.2 \) and \(J_1 = 96.7 \) K, in the low-\(T \) regime, while above the crossover temperature, the best fit occurs for \(J = 0.4 \) and \(J_1 = 74.8 \) K, as shown in Fig. 8(a) and in Fig. 8(b). The curve for \(J = 0.4 \) starts to depart from the experimental one at about \(T \sim 25 \) K. The three-dimensional ordering temperature for this compound is estimated from specific heat data 44 to be \(T_{CD} \approx 1.3 \) K, and does not affect the value of \(J \) appreciably. Lastly, we also mention that the enhancement of \(J \) above the crossover temperature could be associated with lattice vibrations.

The trimer chain compound \(\text{Pb}_3\text{Cu}_3(\text{PO}_4)_4 \) was also investigated through neutron scattering experiments 44. From this study, two excitation modes were observed at \(T = 8 \) K: one at energy 9.00 meV, and the other at 13.7 meV, as indicated in Fig. 8(c). We also show in this figure the magnon modes \(\omega_0^{(-)} \), \(\omega_1^{(-)} \), and \(\omega^{(+)} \), previously presented in Fig. 4 for \(J = 0.2 \) and \(J_1 = 96.7 \) K, as 8.34 meV. We thus see in Fig. 8(c) that the optical mode \(\omega^{(+)} \) is centered at approximately 13.7 meV, indicating that it is one of the excitations observed in the neutron scattering experiment 44. Also, the nearly flat mode \(\omega_1^{(-)} \) is centered at 7.7 meV, which departs about 16 % from the second mode found by neutron scattering. The
The points are calculated with DMRG by extrapolating the critical fields from chains of size $L = 120, 180, \text{and} 240$. In the inset we present the plateau width Δ/J as a function $1/|J|$. Dashed lines are guides to the eye.

The 1/3 - plateau width decreases as J decreases in the region $J < 0$, as shown in the phase diagram. In this section we investigate the 1/3 – plateau for $J < -1$ and discuss two possibilities for the gap-closing behavior in this region.

First, we notice that for a finite value of J_1 and $J_2 \rightarrow -\infty$, or $1/|J| = J_1/J_2 \rightarrow 0$, the trimers are decoupled with each trimer having a total spin equal to $1/2$, or 1; see Fig. VII. Since in this case the chain is composed of totally uncorrelated spin-3/2 trimers, the total spin is degenerate for $h = 0$. Thus, any finite magnetic field saturates the magnetization at $1/|J| = 0$. We remark that the trimer chain is also decoupled for $J = 0$, however in this case with the trimers in a spin-1/2 total spin with a gap. Thus, a finite magnetic field, $h = 1.5$, is required to put the trimers in the spin-3/2 state and the chain in the fully polarized state, as shown in Figs. VII and VIII.

Since $|J_2|$ is the higher energy scale for $J < -1$, it is better to consider the energy in units of $|J_2|$ instead of J_1. Thus, because h is the magnetic field in units of J_1/g_{μ_B}, the magnetic field in units of $|J_2|/g_{\mu_B}$ is $h/|J| = h J_1/J_2$, and the plateau width (the gap) Δ in units of $|J_2|/g_{\mu_B}$ is given by $\Delta/|J|$. In Fig. VIII we show the region where the 1/3 of the saturation magnetization, $m_s/3$, is found in the plane $h/|J|$ versus $1/|J|$, and also indicate the decoupled-chain limit. The points are calculated with DMRG by extrapolating the upper and the lower critical fields for $m = m_s/3$ by using their values for $L = 120$, 180, and 240 trimers. We do not show the scale behavior of these critical fields, but we mention that it follows a simple straight line as $1/|J|$. We can draw two scenarios from the numerical data. In the first one, the plateau width becomes exactly null at a value of $1/|J|$ higher than zero. In this case, the transition would be of a Kosterlitz-Thouless (KT) type to a gapless Luttinger liquid phase with a power-law decay of the transverse spin correlation functions. In particular, KT transition points were observed in ferrimagnetic chains and zigzag models as the coupling between the two spin-1/2 chains that compose these systems is reduced to zero. We present data below that supports the second scenario for the spin trimmer chain.

To investigate the possibility of a KT transition, we follow a strategy that was successfully used in the boson Hubbard model in one dimension and in an anisotropic ferrimagnetic chain. In the gapless Luttinger liquid phase, the asymptotic behavior of the trans-
verse spin correlation functions is

$$\Gamma(l) \sim \frac{1}{l^2},$$ \hfill (14)$$

and $$\eta = 0.25$$ at the KT transition point. We thus use DMRG to estimate $$\eta$$ by fitting the transverse spin correlation function in finite-size open systems and extrapolating the result to $$L \to \infty$$. For a chain of size $$L$$ the transverse spin correlation function between the spins in the sublattice $$A$$ is calculated through

$$\Gamma_L(l) \equiv \langle\langle S^+(i)S^-(i + l)\rangle\rangle_i,$$ \hfill (15)$$

where $$\langle\langle \cdots \rangle\rangle_i$$ indicates the quantum expectation value and an average of the correlation over all pairs of $$A$$ sites at trimers with a distance $$l$$ between them, in order to minimize the effects of the open boundaries. In Fig. 10(a) we exemplify the behavior of $$\Gamma_L(l)$$ for $$1/|J| = 1/|−3.5| \approx 0.28$$ for $$L = 120, 180$$, and 240. To estimate $$\eta_l$$, we choose three intervals of $$l$$: [1, 16], [16, 32], and [32, 48], to fit $$\Gamma_L(l)$$ to Eq. (14). Using a linear scale function in $$1/L$$, we obtain the extrapolated value $$\eta_l$$ for each interval. This procedure is illustrated in Fig. 10(b) for $$1/|J| \approx 0.28$$. The estimated values of $$\eta$$ are shown in Fig. 10(c) as a function of $$1/|J|$$. We define $$\eta$$ as $$\eta_l\equiv (\eta_{l,\text{max}} + \eta_{l,\text{min}})/2$$, with an error $$\eta_{l,\text{max}−\eta_{l,\text{min}}}/2$$, where $$\eta_{l,\text{max}}$$ and $$\eta_{l,\text{min}}$$ are the maximum and the minimum values of $$\eta_l$$, respectively. Thus, we did not detect a point at which $$\eta = 0.25$$ for the values of $$1/|J|$$ investigated, although $$\eta$$ approaches 0.25 as $$1/|J| \to 0$$. This implies that the KT transition does not occur down to the lowest value shown: $$1/|−3.9| = 1/3.9 \approx 0.26$$. However, the data do not preclude the possibility of gap closing for $$1/|J| \lesssim 0.26$$.

Considering the second scenario, that the gap closes exactly at $$1/|J| = 0$$, we have obtained a good fitting of our data to the analytical formula $$\Delta G_{\text{SC}}$$ suggested by field theory to the gap closing in the case of the zigzag chain near the decoupled two chains from its antiferromagnetic phase. The analytical expression $$\Delta G_{\text{SC}}$$ for the zigzag chain adapted to our model is given by

$$\Delta = |J|^{-2/3} \exp \left[-c \left(\frac{1}{|J|}\right)^{-2/3}\right].$$ \hfill (16)$$

such that

$$\ln \left(\frac{\Delta}{|J|}\right) = \ln D - c \left(\frac{1}{|J|}\right)^{-2/3}.$$ \hfill (17)$$

We show in Fig. 10(d) that our gap satisfies this expression for the lowest values of $$1/|J|$$ calculated.

Thus, with $$J_2 < 0$$, down to the lowest values of $$1/|J|$$, our results indicate that the gap closes only at $$1/|J| = 0$$. Further, since the chain is not in a critical phase at $$1/|J| = 0$$ for $$J_2 < 0$$, we do not have a genuine phase transition in our case in this scenario. However, a deeper analytical study of the trimer chain, out of the scope of this investigation, can put this conclusion in a more firm basis.

VIII. SUMMARY

We have investigated the rich phase diagram of the spin-1/2 trimer chain for $$−1 \leq J \leq 1$$ in the presence and in the absence of a magnetic field. The ground state at zero field is ferrimagnetic for $$J > 0$$, in accord with the Lieb-Mattis theorem, and a singlet state for $$−1 \leq J < 0$$, a range of $$J$$ for which the Lieb-Mattis theorem does not apply. We have shown that the field-dependent magnetization exhibits the fully polarized plateau, and the 1/3−plateau for all values of $$J$$. In the 1/3−plateau, the unit-cell spins have a ferrimagnetic orientation for $$−0.75 \lesssim J < 1$$, and a ferromagnetic orientation for $$−1 \leq J \lesssim −0.75$$. For finite-size systems with open boundaries, the 1/3−plateau is made of two steps for $$0.5 \lesssim J \leq 1$$; likewise, the fully polarized plateau has the same referred feature for $$−1 \leq J < 0$$.

The breaking of the plateaus is associated with the magneton occupation of localized states at the edges of the chain. We have argued that, for the fully polarized plateau, the magneton density at edge states has a purely geometrical origin. In contrast, the edge densities in the 1/3−plateau have a mixed nature: geometrical and from magnon-magnon interactions. The low-energy bulk magnon excitations have three bands: two ferromagnetic—the first is gapless and dispersive, the second is gapped and nearly flat, for excitations carrying a spin $$\Delta S^z = −1$$—and the third is a dispersive antiferromagnetic mode, carrying a spin $$\Delta S^z = +1$$. The gapless ferromagnetic mode is unstable for $$−1 \leq J < 0$$, in which case the singlet state is the ground state at zero magnetic field. The low-energy excitation from the singlet state, normalized by $$|J|$$, follows a profile similar to the spinon band of the antiferromagnetic spin-1/2 linear chain. In particular, the minimum energy in the excitation spectrum presents an alternation between $$q = 0$$, for even system sizes excluding multiples of 4, and $$q = \pi$$, for system sizes that are multiples of 4, as in the spin-1/2 linear chain.

The magnetic susceptibility $$\chi$$ times the temperature, $$\chi T$$, has a minimum as a function of $$T$$ in the ferrimagnetic phase, $$0 < J < 1$$. We determine the values of the coupling constants, $$J$$ and $$J_1$$, to fit the experimental susceptibility of the ferrimagnetic trimer-chain compound Pb$_3$Cu$_3$(PO$_4$)$_4$. Further, we confirm that the centers of the two gapped magnon bands of the Pb$_3$Cu$_3$(PO$_4$)$_4$ are in accord with the coupling constants estimated from the susceptibility. For the singlet phase, $$−1 \leq J < 0$$, our data evidence that the dimensionless susceptibility per site normalized by $$1/|J|$$ approaches $$1/\pi^2$$ as the temperature $$T \to 0$$, similarly to the spin-1/2 linear chain. Finally, the transverse spin correlation functions and the gap behavior for $$J \to −\infty$$ points to a closing of the 1/3−plateau only at $$1/|J| = 0$$ with $$J < 0$$.
IX. ACKNOWLEDGMENTS

We thank A. A. Belik for sending to us the susceptibility data of the compound Pb$_2$Cu$_3$(PO$_4$)$_4$, and useful discussions with M. Matsuda. We also acknowledge the support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), Brazilian agencies, including the PRONEX Program which is funded by CNPq and FACEPE, Grant No. APQ-0602-1.05/14.

[1] T. Giamarchi, Quantum physics in one dimension (Clarendon Press, Oxford, 2004).
[2] G. Müller, H. Thomas, H. Beck, and J. C. Bonner, Physical Review B 24, 1429 (1981).
[3] E. Dagotto, J. Riera, and D. Scalapino, Physical Review B 45, 5744 (1992).
[4] T. Barnes, E. Dagotto, J. Riera, and E. S. Swanson, Physical Review B 47, 3196 (1993).
[5] E. Dagotto and T. M. Rice, Science 271, 618 (1996).
[6] S. R. White, Physical Review Letters 66, 2639 (1991).
[7] B. Frischmuth, B. Ammon, and M. Troyer, Physical Review B 54, R3714 (1996).
[8] E. Lieb and D. Mattis, Journal of Mathematical Physics 3, 749 (1962).
[9] M. Hase, M. Kohno, H. Kitazawa, N. Tsuji, O. Suzuki, K. Ozawa, G. Kido, M. Imai, and X. Hu, Physical Review B 73, 104419 (2006).
[10] B. Gu, G. Su, and S. Gao, Physical Review B 73, 134427 (2006).
[11] M. Hase, M. Matsuda, K. Kakurai, M. Hase, M. Kitazawa, N. Tsuji, A. Dönni, M. Kohno, and X. Hu, Physical Review B 76, 064431 (2007).
[12] J.-Q. Cheng, J. Li, Z. Xiong, H.-Q. Wu, A. W. Sandvik, and D.-X. Yao, npj Quantum Materials 7, 3 (2022).
[13] T. Verkholyak and J. Strečka, Physical Review B 103, 184415 (2021).
[14] M. Hase, V. Y. Pomjakushin, L. Keller, U. Stuhr, A. Dönni, M. Kohno, and A. Tanaka, Physical Review B 102, 014403 (2020).
[15] A. M. S. Macedo, M. C. dos Santos, M. D. Coutinho-Filho, and C. A. Macedo, Physical Review Letters 74, 1851 (1995).
[16] E. P. Raposo and M. D. Coutinho-Filho, Physical Review Letters 78, 4853 (1997).
[17] E. P. Raposo and M. D. Coutinho-Filho, Physical Review B 59, 14384 (1999).
[18] G.-S. Tian, Journal of Physics A 27, 2305 (1994).
[19] S. Yamamoto and J. Ohara, Physical Review B 76, 014409 (2007).
[20] K. Takano, K. Kubo, and H. Sakamoto, Journal of Physics: Condensed Matter 8, 6405 (1996).
[21] K. Okamoto, T. Tonegawa, and M. Kaboragi, Journal of Physics: Condensed Matter 15, 5979 (2003).
[22] H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, and H. Ohta, Physical Review Letters 94, 227201 (2005).
[23] K. C. Rule, A. U. B. Wolter, S. Süßow, D. A. Tennant, A. Brühl, S. Köhler, B. Wolf, M. Lang, and J. Schreuer, Physical Review Letters 110, 177202 (2008).
[24] F. Aimo, S. Krämer, M. Klajnsek, H. Horvátić, C. Berthier, and H. Kikuchi, Physical Review Letters 102, 127205 (2009).
[25] R. R. Montenegro-Filho and M. D. Coutinho-Filho, Physical Review B 78, 014418 (2008).
[26] A. M. do Nascimento-Junior and R. R. Montenegro-Filho, Physical Review B 99, 064404 (2019).
[27] O. Rojas, S. M. de Souza, J. Torrico, L. M. Veríssimo, M. S. S. Pereira, and M. L. Lyra, Physical Review E 103, 042123 (2021).
[28] M. Oshikawa, M. Yamanaka, and I. Affleck, Physical Review Letters 78, 1984 (1997).
[29] R. R. Montenegro-Filho, F. S. Matias, and M. D. Coutinho-Filho, Physical Review B 102, 035137 (2020).
[30] S. C. Furuya and M. Sato, Physical Review B 104, 184401 (2021).
[31] S. R. White, Physical Review Letters 69, 2863 (1992).
[32] Physical Review B 48, 10345 (1993).
[33] U. Schollwöck, Reviews of Modern Physics 77, 259 (2005).
[34] J. des Cloizeaux and J. J. Pearson, Physical Review 128, 2131 (1962).
[35] B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner, and S. Wessel, J. Stat. Mech.: Theory Exp. 2011, P05001 (2011).
[36] R. Montenegro-Filho and M. Coutinho-Filho, Physica A 357, 173 (2005).
[37] H. Hu, C. Cheng, Z. Xu, H.-G. Luo, and S. Chen, Physical Review B 90, 035150 (2014).
[38] H.-P. Hu, C. Cheng, H.-G. Luo, and S. Chen, Scientific Reports 5, 8433 (2015).
[39] M. A. Griffith and M. A. Continentino, Physical Review E 97, 012107 (2018).
[40] S. Rufo, N. Lopes, M. A. Continentino, and M. A. R. Griffith, Physical Review B 100, 195432 (2019).
[41] V. M. Martinez Alvarez and M. D. Coutinho-Filho, Physical Review A 99, 013833 (2019).
[42] S. Rufo, M. A. R. Griffith, N. Lopes, and M. A. Continentino, Physical Review B 100, 195432 (2019).
[43] S. Rufo, M. A. R. Griffith, N. Lopes, and M. A. Continentino, Physical Review B 100, 214427 (2019).
[44] H. Watanabe, Y. Kato, H. H. Po, and Y. Motome, Physical Review B 93, 035150 (2014).
[45] W. M. da Silva and R. R. Montenegro-Filho, Physical Review B 103, 054432 (2021).
[46] A. A. Belik, A. Matsuo, M. Azuma, K. Kindo, and M. Takano, Journal of Solid State Chemistry 178, 709 (2005).
[47] M. Matsuda, K. Kakurai, A. A. Belik, M. Azuma, M. Takano, and M. Fujita, Physical Review B 71, 144411 (2005).
[45] S. Eggert, I. Affleck, and M. Takahashi, Physical Review Letters 73, 332 (1994).
[46] S. Lukyanov, Nuclear Physics B 522, 533 (1998).
[47] A. Klümper and D. C. Johnston, Physical Review Letters 84, 4701 (2000).
[48] D. Johnston, R. Kremer, and M. Troyer, Physical Review B 61, 9558 (2000).
[49] B. Gu and G. Su, Physical Review B 75, 174437 (2007).
[50] M. Takahashi and M. Yamada, Journal of the Physical Society of Japan 54, 2808 (1985).
[51] M. Yamada and M. Takahashi, Journal of the Physical Society of Japan 55, 2024 (1986).
[52] T. Sakai and S. Yamamoto, Physical Review B 60, 4053 (1999).
[53] L. M. Veríssimo, M. S. S. Pereira, J. Strečka, and M. L. Lyra, Physical Review B 99, 134408 (2019).
[54] K. Karl’ová, J. Strečka, and M. L. Lyra, Physical Review E 100, 042127 (2019).
[55] S. R. White and I. Affleck, Physical Review B 54, 9862 (1996).
[56] C. Itoi and S. Qin, Physical Review B 63, 224423 (2001).
[57] T. D. Kühner, S. R. White, and H. Monien, Physical Review B 61, 12474 (2000).