Helping patients make informed decisions. Two-year evaluation of the Gustave Roussy prostate cancer multidisciplinary clinic

Anna Patrikidou a,1, Pierre Maroun b,1, Jean-Jacques Patard c, Hervé Baumert d, Laurence Albiges a, Christophe Massard a, Yohann Loriot a, Bernard Escudier a, Mario Di Palma a, Julia Arfi-Rouche e, Laurence Rocher f, Zahira Merabet g, Alberto Bossi b, Karim Fizazi a, Pierre Blanchard b,⇑

a Gustave Roussy, Université Paris-Saclay, Département de médecine oncologique, F-94800 Villejuif, France
b Gustave Roussy, Université Paris-Saclay, Département de Radiothérapie Oncologique, F-94800 Villejuif, France
c Hôpital Bicêtre, Service d’Urologie, F-94270 Le Kremlin-Bicêtre, France
d Hôpital Saint-Joseph, Service d’Urologie, F-75014 Paris, France
e Gustave Roussy, Université Paris-Saclay, Département d’imagerie médicale, F-94800 Villejuif, France
f Hôpital Bicêtre, Service de Radiologie, F-94270 Le Kremlin-Bicêtre, France
g Gustave Roussy, Université Paris-Saclay, Département de biologie et pathologie médicales, F-94800 Villejuif, France

A R T I C L E I N F O
Article history:
Received 20 May 2018
Revised 28 June 2018
Accepted 4 July 2018
Available online 6 July 2018

Keywords:
Prostate cancer
Multidisciplinary
Radiotherapy
Surgery
Shared decision-making

A B S T R A C T
Objectives: The initial treatment decision for newly diagnosed non-metastatic prostate cancer is complex. Multiple valid approaches exist, without a clear and absolute consensus for every clinical scenario, and therefore specialist opinions may vary. Multidisciplinary consultations focusing on shared decision-making aim to provide an apposite tool for the initial treatment decision. We have evaluated the first two years of activity of the Gustave Roussy Prostate Cancer Multidisciplinary Clinic (PCMC), dedicated to the initial decision-making for non-metastatic prostate cancer.

Methods: PCMC consists of two consecutive specialist consultations with a urological surgeon and a radiation oncologist, followed by a dedicated Tumor Board discussion. A study questionnaire was addressed to all PCMC patients via postal mail. Medical notes and questionnaire responses of 195 eligible patients were analyzed.

Results: The questionnaire response rate was 69% (134 patients). Complete satisfaction rate was high (114 of 118 responders, 97%). Patients were offered new treatment options in 55% of cases, and felt better informed in 98% (122 of 125 responders). The double consultation was considered useful (124 of 129 responders, 96%). Reported feeling of active participation was significantly elevated (117 of 131 responders, 89%), while 46% of patients (57 of 125) modified their decision on the management of their prostate cancer following their PCMC consultation.

Conclusions: The experience of a multidisciplinary consultation in the initial management of non-metastatic prostate cancer renders high patient satisfaction, improves their appreciation of feeling better informed, promotes active participation and shared decision-making and strongly influences their final decision.

© 2018 Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
The complexity of treatment strategies pertaining to non-metastatic prostate cancer (CaP) is well recognized, necessitating a co-operation between specialist colleagues, but also a significant input from the patients themselves [1]. The dramatic changes in incidence, diagnostic stage and mortality in the last 30 years resulted in modification of medical attitudes and development of a variety of management options (surgery, external-beam radiotherapy, brachytherapy, cryotherapy, high-intensity focused ultrasound, hormonal therapy, active surveillance, watchful waiting). For localized CaP there does not exist a clearly established, universally applied advantage of a given treatment modality over the others; treatment decision is an intricate process that ought to include risk assessment and precise disease extent and topography, amongst other factors.

https://doi.org/10.1016/j.ctro.2018.07.001
2405-6308/© 2018 Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
A need for multidisciplinary involvement and shared decision-making therefore evolved, highlighting the cardinal importance of patient education.

The Gustave Roussy Prostate Cancer Multidisciplinary Clinic (PCMC), inaugurated in March 2011, is a comprehensive weekly clinic for localized or locally advanced Cap patients requesting a second opinion, based on the model of shared decision-making. It offers expert specialist care in a collaboration between Gustave Roussy and the urological surgical teams of the Hôpital Bicêtre and Hôpital Saint Joseph, Paris, France. Access to the PCMC is via general practitioner or specialist referral, or at the patient’s own initiative.

This specialist clinic offers patients the opportunity to successively consult with a radiation oncologist and a urological surgeon, part of a dedicated 5-member team. Consultation time for each specialist is 45 min. All cases are discussed at the Genitourinary (GU) Tumor Board on the same day, with the further participation of medical oncologists, specialist and interventional radiologists and histopathologists. The final treatment plan is established at this multidisciplinary meeting. Patients were informed of the Tumor Board recommendation during a follow-up clinic or telephone consultation.

We consider the concept and design of this PCMC to be adapted to the specific setting of localized and locally advanced CaP. We present here an evaluation of the first two years of the Gustave Roussy PCMC activity.

Methods

Patient cohort

All patients seen in the PCMC clinic were included in the initial register; the following exclusion criteria were applied for the final cohort analysis, aiming for bias elimination:

- Absence of histopathological confirmation of prostatic adenocarcinoma.
- Pre-treated patients.
- Patients not specifically addressed to the PCMC Clinic, seen by a single specialist in regard with a previously established treatment plan.
- Patients belonging to Gustave Roussy staff.

Data collection

The data source was the hospital electronic and paper records and a dedicated questionnaire. Data were collected in a dedicated Excel-based database (Microsoft Inc, Washington, USA). Table 1 presents an outline of the recorded data. The patient socioeconomic status was scored according to the French 2003 classification of Professions and Socio-Professional Categories [2]. All PSA measurements and biopsies were performed outside Gustave Roussy prior to the consultation date. The weight and volume of the prostatic gland were estimated based on MRI, CT, ultrasound imaging and clinical examination. The T.N.M. classification was according to the 7th AJCC edition [3]. The clinical T stage was scored based on the information in the medical notes; since the precise T2 stage scoring was available for only a small subset of patients, it was not included in the analysis. Apical involvement and capsular and seminal vesicle involvement were scored based on available information (clinical examination, imaging, localization of positive cores).

This study was designed as an early service evaluation, and therefore of a short follow-up, so no long-term data on oncologic outcome could be retrieved.

Table 1	Collected data/analysis variables.	
Personal data	Marital status	Socio-economic status
Consultation details	Consultation year	Initial/s opinion consultation
		Consultation order (surgery/radiotherapy)
		Consulting urologist
		Consulting radiotherapist
Comorbidities	Cardiovascular disease	Previous TURP
	Family history of prostate cancer	IPSS score
	Presence of nocturia	Presence of hesitancy
	Presence of terminal dribbling	Presence/quality of erection
PSA	Total number of cores	Total number of positive cores
	Number of positive cores in the right lobe	Number of positive cores in the left lobe
Prostate biopsy: core number		
Prostate biopsy: length	Total length of biopsy cores	Total length of tumour
	Total length of tumour in the right lobe	Total length of tumour in the left lobe
Gleason score	Total Gleason score	Primary grade of Gleason score
	Secondary grade of Gleason score	
Prostate Weight/Volume	Estimated weight & volume of the prostate gland	
TNM classification	Clinical T stage	
Imaging	MRI performed	
	Local extension on MRI	
	Pathological lymph nodes on MRI	
	CT scan performed	
	Pathological lymph nodes on CT	
	Bone scan performed	
	Findings indicative of metastasis	
Multimodal staging (clinical, biopsy, imaging)	Apical involvement	
	Capsular infiltration	
	Seminal vesicle infiltration	
Prognostic stage	NCCN stage	
Proposed treatment plans	D’Amico classification	
	Pre-existing treatment plan (if applicable)	
	Consultant urologist proposal	
	Consultant radiotherapist proposal	
	Multidisciplinary team proposal	
	Chosen treatment modality	
	Modification of pre-existing choice	
	Place of treatment	
Patient choice	Modification of place of treatment	

Questionnaire

The project questionnaire was designed and dispatched via postal mail at two time-points at a 5-month interval, accompanied by an introductory letter and prepaid postage envelope, in accordance with national legislations. The questionnaire enquired upon patient satisfaction, perception of the consultation experience, and aimed to collect complementary information on CaP management after the time of PCMC consultation (Table S1).

Statistical analysis

The reported percentages in the descriptive statistics are estimated on the total number of the cohort (n = 195). The reported percentages relevant to questionnaire responses refer to the total number of received responses, unless otherwise specified. The percentage values were rounded to the nearest unit.
Results

We identified 215 consecutive patients seen in the PCMC clinic during the period March 2011-December 2013. A total of 20 patients were excluded from the analysis as per the above exclusion criteria. The final analysis was performed on 195 patients. Of them, 91 patients consulted in 2011 and 104 patients in 2012. A flowchart of study procedure is shown in Fig. 1. A total of 134 questionnaires were returned (69%). Question-specific response rates varied greatly (39–68%) (Table S2). Patient and disease characteristics and consultation specifics are detailed in Table 2.

Treatment proposals during the PCMC consultation depended on disease recurrence risk. Overall, three, two and one options were offered for low, intermediate and high-risk patients, respectively. At the subsequent GU Tumor Board, one or two treatment options were suggested for the majority of low- and intermediate-risk patients, while for high-risk patients a single recommendation was usually made. Table 3 gives an account of treatment recommendations by the PCMC specialists and the GU Tumor Board.

Concordance rate amongst the PCMC clinic specialists was 96.6%, with complete concordance for all proposals at 67.4% (for patients for which more than one was made). Concordance between the radiation oncologist and Tumor Board was 94.4%, and between the surgeon and Tumor Board was 97.3% (complete concordance rates of 55.8% and 65.4% respectively).

The eventual treatment choices were recorded in the medical files or communicated via the questionnaire for 71% of patients (outlined in Table S3). The percentages of surgery and radiotherapy (external beam or brachytherapy) choices did not differ (29.2% and 29.8% respectively). The final patient choice was in agreement with the Tumor Board recommendation in 93.4%; concordance was 93.4% and 84.5% with the surgeon and radiation oncologist proposals, respectively.

Since this was a second-opinion consultation, all patients had previously seen a urological surgeon elsewhere, and had an established histological diagnosis and a provisional treatment plan. More than half of responding patients (55%) reported that, during their Gustave Roussy PCMC consultation, they were offered treatment options not considered during their initial consultation. Patient satisfaction rate was almost absolute, with 114 of 118 (96.6%) and 4 of 118 (3%) of responding patients reporting complete and moderate satisfaction, respectively. The great majority of responders (122 of 125, 97.6%) felt better informed, either

![Fig. 1. PCMC study consort diagram.](image-url)
Table 2
Patient characteristics and consultation specifics.

Consultation motive (number, %)	84 (62.7)	39 (29.1)	21 (15.7)	13 (9.7)	14 (10.4)
Advice of friends/family					
Medical referral					
Internet-based information					
Inadequate prior information					
Consultation order (number, %)					
Surgery then radiation oncologist	25 (12.8)				
Radiation oncologist then surgery	129 (66.1)				
Order not recorded	13 (6.7)				
Joint consultation	20 (10.2)				
Surgeon only	3 (1.6)				
Radiation oncologist only	5 (2.6)				
Age (yrs)	42–81	63.5	63.8	59	68
Range					
Median					
Mean					
Q1					
Q3					
Age group (number, %)					
40–49	8 (4.1)	45 (33.1)	102 (52.3)	40 (20.5)	
50–59					
60–69					
70–81					
Prior history (number, %)					
Cardiovascular disease	88 (64.2)				
TURP	10 (7.5)				
LUTS (number, %)					
Terminal dribbling	26 (24.8)				
Hesitancy	23 (30.0)				
IPSS score					
<7	46 (56.1)				
8–19	36 (43.9)				
20–35	2 (2.4)				
Prostate volume (cm³)					
Range	15–140				
Median	40				
T stage					
T1	98 (62.4)				
T2	49 (31.2)				
T3	10 (6.4)				
T4	0 (0)				
Imaging					
MRI prostate-pelvis	144 (73.8)				
CT abdomen-pelvis	57 (29.2)				
CT & MRI	31 (15.9)				
Bone scan	2 (1.0)				
PSA (ng/ml)					
Median	7.3				
<10	139 (71.3)				
10–20	43 (22.0)				
≥20	12 (6.2)				
Unknown	1 (0.5)				
Prostatic biopsies					
Median number of cores	12				
Median number of positive cores	3				
Median tumor length (mm)	7				
Capsular involvement	28 (12)				
Seminal vesicle involvement	14 (7)				
Gleason score					
6	95 (48.7)				
7	84 (43.1)				
7 (3 + 4)	65				
7 (4 + 3)	15				
Unknown	4				
8	11 (5.6)				
9	1 (0.5)				
10	0 (0)				
Unknown	4 (2.1)				
D’Amico classification					
Low risk	73 (37.4)				
Intermediate risk	89 (45.7)				
High risk	25 (12.8)				
Metastatic	8 (4.1)				

1 Estimated for the total of returned questionnaires (n = 134).
2 More than one answer to this question was possible.
3 Estimated for the total of analyzed patients (n = 195).
4 Estimated for the total of patients for whom relevant information was recorded.

Discussion

The PCMC proposes an interdisciplinary consultation time with emphasis on management options and patient choice. It is a time of information, reflection and decision-making. The participating oncology specialists practice different therapeutic modalities and therefore have distinct medical cultures. These double, long, expert consultations serve to optimize provision of specialist information and care. The diversity of provided information, if moderate and not contradictory, may act to facilitate the reflection process of the patient. The sequential consultations with the two specialists, frequently accompanied by his family, feature the patient himself in the centre of the action as the common denominator.

This shared decision-making is a multilevel process influenced by several factors, such as history of cardiovascular disease or recent transurethral resection of the prostate (TURP). The nature and severity of urinary symptoms also influence management decisions; surgery allows for improvement of obstructive symptoms, whilst radiotherapy (either brachytherapy or external beam irradiation) might worsen them. Irritative symptoms frequently worsen after radiotherapy, while surgery is associated with increased risk of urinary incontinence [4]. Their assessment equally allows for decision on the indication for symptomatic medical treatment or a combined modality.

Interestingly, the median age of our cohort (63.5 years) was significantly lower than the national median for CaP diagnosis (70 years) [5], indicating that younger patients were more actively seeking a second opinion and participation in the decision-making process [6].

It ought to be highlighted that the few de novo metastatic patients were purposefully not excluded from our analysis (Table 2), although they represent a minority of patients in our cohort as the PCMC clinic was designed for patients with localized and locally advanced disease. In the era of changing paradigm for de novo metastatic CaP [7–9], lymph-node only pelvic disease or even oligometastatic patients may benefit from a primary locoregional treatment alone or in combination with upfront systemic therapy and could therefore derive benefit from consulting early after diagnosis with specialists involved in locoregional treatments.

The main limitations of our study include memory bias (questionnaires dispatched at an average of two years after the consultation), information bias (the measured outcome was subject to receiving a written response), and associated selection bias, as the obtained answers may not be representative of the cohort (patients with stronger opinions are generally more likely to respond). A further bias could refer to the order of specialist consultations; indeed for clinic scheduling purposes the majority of patients consulted with the radiation oncologist first followed by the surgeon (129 patients, 66%). That could lead to under-representation of certain aspects of clinical elements pertaining to the decision-making, should it was felt that they might have been sufficiently exposed in the preceding consultation.
The concordance rates amongst specialists and Tumor Board were highly satisfactory. Although the input of a medical oncologist was obtained in the GU Tumor Board discussion, the presence of a medical oncologist in the PCMC consultation itself would optimize management both for localized CaP and for newly-diagnosed metastatic patients [10], and most likely further improve the concordance rates between PCMC and Tumor Board, as well as enrich the discussions regarding potential participation in novel agent trials, as the latter have now moved forward to the early convalescence: 48-month quality-of-life outcomes after treatment for metastatic prostate cancer. J Natl Cancer Inst 2009;101:888–92

The double specialist consultation received significant appreciation, providing patients with valid scientific approaches and management details, but also enhancing confidence in the recommendations towards finalizing a treatment plan, and providing them with a feeling of active participation.

Acknowledgements
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors declare that they have no conflict of interest.

Appendix A. Supplementary data
Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ctro.2018.07.001.

References
[1] Horwich A, Hugosson J, de Reijke T, Wiegel T, Fizazi K, Kataja V, Panel Members; European Society for Medical Oncology. Prostate cancer: ESMO Consensus Conference Guidelines 2012. Ann Oncol 2013;24: 1141–62.
[2] Nomenclature des professions et catégories socioprofessionnelles des employés d’entreprise PCS-FSE 2003. http://www.insee.fr/fr/methodes/nomenclatures/pcse/pcese2003/doc/Brochure_PCS_FSE_2003.pdf.
[3] Edge S, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A (eds). AJCC cancer staging manual. 7th ed., American Joint Committee on Cancer; 2010.
[4] Gore JL, Kwan L, Lee SP, Reiter RE, Litwin MS. Survivorship beyond convalescence: 48-month quality-of-life outcomes after treatment for localized prostate cancer. J Natl Cancer Inst 2009;101:888–92.
[5] Institut National du Cancer, “Épidémiologie du cancer de la prostate en France métropolitaine-Données essentielles,” lesdonnes.e-cancer.fr, Online. Available: 32

A. Patrikidou et al. / Clinical and Translational Radiation Oncology 12 (2018) 28–33

Table 3

PCMC recommended treatment options	Active surveillance	Surgery	RT	Brachytherapy	HT	Other	Unknown
Low risk (n = 72)							
Initial	10 (13.9)	24 (33.3)	5 (6.9)	5 (6.9)	0 (0.0)	1 (1.4)	40 (55.5)
Radiation oncologist	34 (47.2)	60 (83.3)	33 (45.8)	43 (59.7)	0 (0.0)	3 (4.2)	1 (1.4)
Surgeon	29 (40.3)	51 (70.8)	28 (38.9)	26 (36.1)	0 (0.0)	7 (9.7)	1 (1.4)
MDT	26 (36.1)	39 (54.2)	19 (26.4)	32 (44.4)	0 (0.0)	8 (11.1)	1 (1.4)
Intermediate risk (n = 89)							
Initial	3 (3.4)	34 (38.2)	13 (14.6)	2 (2.2)	1 (1.1)	2 (2.2)	49 (55.0)
Radiation oncologist	2 (2.2)	73 (82.0)	82 (92.1)	18 (20.2)	0 (0.0)	5 (5.6)	0 (0.0)
Surgeon	1 (1.1)	70 (78.6)	67 (56.3)	16 (17.9)	0 (0.0)	7 (7.9)	3 (3.4)
MDT	2 (2.2)	60 (67.4)	50 (56.2)	9 (10.1)	1 (1.1)	8 (9.0)	2 (2.2)
High risk (n = 24)							
Initial	0 (0.0)	3 (12.5)	4 (16.7)	0 (0.0)	0 (0.0)	0 (0.0)	18 (75.0)
Radiation oncologist	0 (0.0)	7 (29.2)	23 (95.8)	0 (0.0)	0 (0.0)	1 (4.2)	2 (0.0)
Surgeon	0 (0.0)	6 (25.0)	22 (91.7)	0 (0.0)	1 (4.2)	1 (4.2)	0 (0.0)
MDT	0 (0.0)	1 (4.2)	21 (87.5)	0 (0.0)	1 (4.2)	3 (12.5)	0 (0.0)
Metastatic (n = 8)							
Initial	0 (0.0)	0 (0.0)	2 (25.0)	0 (0.0)	1 (12.5)	0 (0.0)	5 (62.5)
Radiation oncologist	0 (0.0)	0 (0.0)	5 (62.5)	0 (0.0)	0 (0.0)	1 (12.5)	0 (0.0)
Surgeon	0 (0.0)	0 (0.0)	4 (50.0)	0 (0.0)	0 (0.0)	5 (62.5)	0 (0.0)
MDT	0 (0.0)	0 (0.0)	4 (50.0)	0 (0.0)	0 (0.0)	1 (12.5)	0 (0.0)
Total (n = 195)	13 (6.7)	61 (31.3)	24 (12.3)	7 (3.6)	2 (1.0)	4 (2.0)	112 (57.4)
Radiation oncologist	37 (19.0)	140 (71.8)	143 (73.3)	61 (31.3)	3 (1.5)	12 (6.2)	2 (1.0)
Surgeon	31 (15.9)	127 (65.1)	121 (62.0)	52 (26.7)	3 (1.5)	18 (9.2)	6 (3.1)
MDT	29 (14.9)	104 (53.3)	90 (46.1)	41 (21.0)	6 (3.1)	21 (10.8)	4 (2.0)

1 Percentages in brackets refer to the respective (sub-)cohort total.
2 The total cohort number includes the 2 patients whose prostate cancer diagnosis was on TRUP.
3 HT refers to hormonal treatment alone, while hormonal treatment (short or long course) combined with RT is included in the RT group.

Conclusion
The evaluation of the first years of the Gustave Roussy PCMC indicated high levels of patient satisfaction and a perceived sense of being better equipped to make their final decision on treatment. The double specialist consultation received significant appreciation, providing patients with valid scientific approaches and management details, but also enhancing confidence in the recommendations towards finalizing a treatment plan, and providing them with a feeling of active participation.
