Phase I/II study of S-1 combined with irinotecan for metastatic advanced gastric cancer

M Inokuchi*, 1, T Yamashita2, H Yamada1, K Kojima1, W Ichikawa2, Z Nihei4, T Kawano1 and K Sugihara5
1 Department of Esophageal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo 113-8519, Japan; 2 Mutsugi Clinic, 1-4-14, Mutsugi, Adachi-ku, Tokyo 121-0052, Japan; 3 Department of Digestive and General Surgery, Saitama Medical School, 38, Moro-Hongo, Maruyama-cha, Iruma-gun, Saitama 350-0495, Japan; 4 Tojun Hospital 4-3-4, Hitotsuya, Adachi, Tokyo 121-0075, Japan; 5 Department of Surgical Oncology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo 113-8519, Japan

A dose-escalation study of irinotecan (CPT-11) combined with S-1, an oral dihydropyrimidine dehydrogenase inhibitory fluoropyrimidine, was performed to determine the maximum-tolerated dose (MTD), recommended dose (RD), dose-limiting toxicities (DLTs), and objective response rate (RR) in advanced gastric cancer (AGC). S-1 was administered orally at 80 mg m⁻² day⁻¹ from day 1 to 14 of a 28-day cycle and CPT-11 was given intravenously on day 1 and 8 at an initial dose of 70 mg m⁻² day⁻¹, stepping up to 100 mg m⁻². The treatment was repeated every 4 weeks, unless disease progression was observed. In the phase I portion, the MTD of CPT-11 was presumed to be 100 mg m⁻², because 66.6% of patients (two of three) developed DLTs. All three patients at the initial RD of CPT-11 (90 mg m⁻²) experienced grade 4 haematological or grade 3 nonhaematological toxicities at second course, followed by the dose reduction of CPT-11 from the third course. Considering safety and the ability to continue treatment, the final RD was determined to be 80 mg m⁻². In the phase II portion, 42 patients including seven patients in the final RD phase I portion were evaluated. The median treatment course was five (range: 1–13). The incidences of severe (grade 3–4) haematological and nonhaematological toxicities were 19 and 10%, respectively, but all were manageable. The RR was 62% (26 of 42, 95% confidence interval: 47.2–76.6%), and the median survival time was 444 days. Our phase I/II trial showed S-1 combined with CPT-11 is effective for AGC and is well tolerated, with acceptable toxicity.

Keywords: S-1; irinotecan; combination chemotherapy; advanced gastric cancer

Unresectable advanced or recurrent gastric cancer still has a poor prognosis despite chemotherapy. Many randomised phase III studies of combination chemotherapy for unresectable advanced gastric cancer (AGC) resulted in median survival times (MSTs) of the 5–9.6 months and overall response rates (RRs) of 9–46% in Western and Asian countries (Webb et al, 1997; Icli et al, 1998; Vanhoefer et al, 2000; Ross et al, 2002; Ohtsu et al, 2003). The significant survival advantage of 5-fluorouracil (5-FU)-based chemotherapy for AGC has been demonstrated, compared with best supportive care (Murad et al, 1993; Pyrhonen et al, 1995; Glimelius et al, 1997); however, a standard regimen for AGC has not yet been established. New anticancer drugs, such as oral fluoropyrimidines, taxanes, and irinotecan hydrochloride (CPT-11), have been developed and their antitumour effects against fluoropyrimidines, taxanes, and irinotecan hydrochloride (CPT-11), have been demonstrated and good feasibility have been demonstrated (Futatsuki et al, 1994; Ajani et al, 1998; Sakata et al, 1998; Graziano et al, 2000; Koizumi et al, 2000).

S-1 is an oral fluorinated pyrimidine that combines tegafur with two 5-FU-modulating substances, 5-chloro-2,4-dihydroxy pyridine and potassium oxonate, in a molar ratio of 1:0.4:1 (Shirasaka et al, 1996). Tegafur is an oral prodrug of 5-FU, which is gradually converted to 5-FU. 5-chloro-2,4-dihydroxy pyridine is a reversible inhibitor of dihydropyrimidin dehydrogenase, which catalyses 5-FU, leading to an increase in antitumour activity. Potassium oxonate is an orotate phosphoribosyltransferase inhibitor and decreases the incorporation of 5-FU triphosphate into RNA in the gastrointestinal mucosa. It reduces the incidence and severity of diarrhoea. According to the Japanese clinical trials of S-1, 80 mg m⁻² day⁻¹ was the recommended dose (RD). In phase II trials of S-1 against unresectable or recurrent gastric cancer, RRs were 44–49% with a low incidence of severe toxicities (Sakata et al, 1998; Koizumi et al, 2000).

CPT-11 is an inhibitor of DNA topoisomerase I. A Japanese late phase II study of CPT-11 as a single agent for AGC obtained an RR of 23% (Futatsuki et al, 1994). Some previous studies suggested a lack of crossresistance between CPT-11 with fluoropyrimidines (Houghton et al, 1996; Cao and Rustum, 2000). Combination of CPT-11 with 5-FU and leucovorin have shown promising activity not only in metastatic colorectal cancer but also in AGC (Douillard et al, 2000; Saltz et al, 2000; Assersohn et al 2004; Bouche et al, 2004; Pozzo et al, 2004).

We therefore conducted a phase I/II clinical study of combination treatment of S-1 with CPT-11. The primary objectives of the
and with no disease progression observed. Prophylactic adminis-
tration of antiemetic medication (5-HT₃ antagonist and corticos-
teroid) at standard doses was routinely used when CPT-11 was
vomited (vomiting) during the first course. The MTD was defined as
the dose at which >33% patients experienced DLTs during the first
course. Lesions noted at baseline and 1 week after each course were
measured or evaluated by CT. Objective responses were evaluated
according to the RECIST criteria. The survival period was
calculated from the start of treatment to death or the latest
followed-up day. The eligibility and suitability for assessment and
the objective response to the treatment were reviewed extra-
murally.

RESULT
Between January 2001 and December 2003, 51 eligible patients
were entered in this study. The first 16 patients were entered
into the phase I portion and the next 35 patients were entered into
the phase II portion to confirm the toxicities and efficacy at
the RD. All patients were eligible for toxicity evaluation in any
course and objective response evaluations (Table 1). Thirty-one
patients had undergone gastrectomy and none had received
adjuvant chemotherapy after gastrectomy. Histological evaluation
revealed 21 patients to be intestinal type and 30 patients
to be diffuse type. A total of 267 courses were given. The median
number of treatment courses was four (range: 1–16) and five
(range: 1–13) in phase I and II portion, respectively (Table 2).
The median duration of therapy per patient was 161 days (range:
28–637) in phase I portion, and 172 days (range: 28–599)
in phase II portion, respectively. The median number of days until
the start of the second course after completion of scheduled S-1 in
the first course was 14 (range: 14–21 days) among 46 patients who
were treated with two courses or more. Three of the six patients at
level 3 and 4 required more than 14 days interval to start
the second course, although none of 42 patients did in phase II
portion.

Table 1 Patient characteristics

Level	Phase I portion	Phase II portion			
CPT-11 (mg m⁻²)	70	80	90	100	80
No. of patients	3	7	3	3	35

Age (years)	Median	Range	<65	≥65	<65	≥65	<65	≥65	<65	≥65
Median	70	57	58	63	63	47	79	21	67	18
Range	68–76	39–73	51–77	21–67	47–79	21–67	21–67	21–67	21–67	21–67
Sex	Female	0	1	0	1	0	1	0	1	13
	Male	3	6	3	2	3	2	3	2	22
Pathology	Intestinal	2	2	1	0	16				
	Diffuse	1	5	2	3	19				
	Gastrectomy	1	5	2	2	21				

Evaluation
A complete blood cell count, liver and renal function test, and
urinalysis were assessed at least once a week during the first
course, and every other week afterwards. Before each course,
additional examinations were performed to evaluate sites. The
National Cancer Institute common toxicity criteria version 2.0 was
applied to evaluate the toxicity of this therapy during each course.
Dose-limiting toxicities were defined as grade 4 neutropenia, grade
4 thrombocytopenia, any febrile grade 3 or 4 haematological
toxicity, or grade 3 nonhaematological toxicity (except nausea and
vomiting) during the first course. The MTD was defined as the
dose at which >33% patients experienced DLTs during the first
course.

Clinical Studies
Determination of MTD

In the phase I portion at level 2, one patient developed grade 3 diarrhoea during the first course, but the other two patients in the same cohort showed no DLT. An additional four patients were enrolled for safety evaluation, but overall only one of the total of seven patients developed a DLT at 80 mg m\(^{-2}\) of CPT-11. As dose level 4, two of three patients exhibited DLTs in the first course, one of whom had grade 3 febrile leucopenia and neutropenia, and grade 4 thrombocytopenia, another had grade 3 nonhaematological toxicity (diarrhoea). The frequency of severe haematological and nonhaematological toxicities increased according to the increment of the CPT-11 dose (Table 3). Based on these results, dose level 4 was declared as the MTD, and level 3 should be declared as the initial RD according to the protocol. However, all three patients at level 3 experienced grade 4 haematological or grade 3 nonhaematological toxicities during the second course, followed by dose reduction of CPT-11 from the third course. The dose intensity per course of CPT-11 was 86% of planned CPT-11 dose at level 3, compared with 96% at level 2 (Table 2). Thus, considering the safety and the continuation of the treatment, the final RD was level 2 dose of 80 mg m\(^{-2}\) in the following phase II portion.

Safety

In the 42 patients of the phase II portion including seven patients assigned at level 2 in the phase I portion, the most frequently observed severe (grades 3 and 4) haematological toxicity was neutropenia (6 cases, 14%) (Table 3). Frequently observed nonhaematological toxicities (all events) included nausea (25 cases, 59%), anorexia (23 cases, 55%), and vomiting (16 cases, 38%). In addition, the overall incidence of diarrhoea was 40% (17 out of 42); however, grade 3 or 4 diarrhoea was observed in four out of 42 (10%), and recovered within seven days (Table 3). During this study, eight patients received granulocyte colony-stimulating factor because of neutropenia. Incidences of the worst-grade toxicities in patients treated with the final RD were none (four cases, 10%), grade 1 (11 cases, 26%), grade 2 (16 cases, 38%), grade 3 (seven cases, 17%), and grade 4 (four cases, 10%), respectively. Neither treatment-related death nor delayed severe toxicity was observed.

Efficacy

All 42 patients including seven patients assigned in phase I portion were evaluated to determine the RR at the RD. The RR at the RD in the phase II portion was 62% (26 of 42, 95% confidence interval (CI): 47.2 – 76.6%); 11 patients showed stable disease as their best response, five patients had PD (Table 4). The median time to progression (TTP) was 195 days (range: 25 – 684) in the phase II portion (Figure 1). The median time to response and the median overall durations of response in 26 responders in phase II portion were 48 (range: 28 – 158) and 178 days (range: 66 – 643),

Table 2 Completed course and dose intensity (DI)

Level	Phase I portion	Phase II portion*		
CPT-11 (mg m\(^{-2}\))	70	80	90	100
n	37	3	4	2
Course				
Range	6–16	1–13	3–7	2–4
%DI				
S-1				
DI	1120	1120	1120	1089
%DI	100	100	100	97
CPT-11				
DI	140	155	155	169
%DI	100	96	86	84

DI = dose (per m\(^2\)) per course. *Including seven patients at level 2 of phase I portion.

Table 3 Toxicity incidence

Course	Phase I portion	Phase II portion*							
CPT-11 (mg m\(^{-2}\))	70	80	90	100					
No. of patients	3	7	3	3	42				
Toxicity/grade	All events	Grade 3/4							
Haematological	Leucopenia	1	0	3	0	1	0	3	1
	Neutropenia	0	0	3	0	1	0	3	1
	Anaemia	1	0	0	0	2	0	2	1
	Thrombocytopenia	0	0	0	0	0	0	1	1
Nonhaematological	Anorexia	3	0	3	0	2	0	2	1
	Nausea	3	0	4	0	2	0	2	1
	Vomiting	0	0	1	0	2	0	1	1
	Diarrhoea	0	0	1	1	1	0	1	1

*Including seven patients at level 2 of phase I portion.

Table 4 Response rate

Phase II portion	n	CR	PR	SD	PD	Response (%)
Lymph nodes	42	0	26	11		62
Liver	12	0	7	3		58
Peritoneum	13	0	9	2		69
Primary	16	0	11	3		69
Total	51	1	30	15		61

CR = complete response; PR = partial response; SD = stable disease; PD = progressive disease. Response rate = number of CR and PR/total number (n).
respectively. One patient was able to undergo gastrectomy after five courses of combination therapy. Subgroup analysis according to tumour lesion and pathological type for the 42 patients in phase II portion showed that the RR was 58% (seven of 12) for liver metastasis, 60% (15 of 25) for lymph node metastasis, 69% (nine of 13) for metastatic peritoneal nodule, and 69% (11 of 16) for primary lesions (Table 4), and the RR according to pathological type was 61% (11 of 18) for the intestinal type and 63% (15 of 24) for the diffuse type. The MST of patients in the phase II portion was 444 days (range: 54–1029) and 1- and 2-year survival rates were 61 and 28%, respectively (Figure 2). The median follow-up time for survival analysis was 736 days.

DISCUSSION

This study was undertaken to determine the RD for a phase II study of CPT-11 combined with S-1 for metastatic advanced gastric cancer and to investigate the antitumour effect and feasibility of this combination. The RD was determined to be 80 mg m$^{-2}$ of CPT-11 on day 1 and day 8, and 80 mg m$^{-2}$ per day of S-1 on days 1–14 of a 28-day cycle. The phase II study using this combination obtained an RR of 62% (26 of 42), and in particular, the MST of 444 days and the TTP of 195 days for chemotherapy-naïve patients were promising. In addition, toxicity was mild and tolerable, and therapy was administered on an outpatient basis.

Two late phase II studies of S-1 as a single agent in advanced gastric cancer in Japan obtained RRs of 44 and 49%, respectively (Sakata et al., 1998; Koizumi et al., 2000). Combined analysis of the results of these phase II studies suggested an MST of 244 days, while toxicities were generally mild. Based on these data, there are several ongoing combination studies of S-1 with another anticancer agent with a different mechanism of action, aimed at achieving more survival benefit.

CPT-11 was shown to lack crossresistance with fluoropyrimidines in both experimental and clinical settings (Vanhoefer et al., 2001). The response rate of CPT-11 alone in gastric cancer was 23% in a Japanese phase II study (Futatsuki et al., 1994). The response rate in patients with previous 5-FU-containing regimens was 18.9%, which indicated a lack of crossresistance between CPT-11 and 5-FU in gastric cancer. Preclinical studies of human cancer cell lines and tumour xenografts have suggested that the combination of CPT-11 and 5-FU has additive-to-synergistic antitumour activities (Houghton et al., 1996). Thus, we selected CPT-11 as the combination agent to be used with S-1.

When CPT-11 is combined with S-1, there is concern about the increase of the frequency of severe diarrhoea, which is the common toxicity not only in CPT-11 alone regimen but also in S-1 alone regimen. As the median time to deteriorate into the worst grade of S-1-induced diarrhoea was 15 days of consecutive S-1-alone administration (Oshikawa et al., 2005), we planned that CPT-11 was administered iv. on day 1 and day 8, and S-1 was orally taken for 2 consecutive weeks followed by 2-week drug holiday. In this phase I portion, S-1 was given at a fixed dose of 80 mg m$^{-2}$ day$^{-1}$ and the CPT-11 dose was escalated from 70 mg m$^{-2}$ as level 1 to 100 mg m$^{-2}$ as level 4. DLTs were observed in two of three patients at level 4, which was defined as the MTD. DLTs consisted of grade 3 febrile neutropenia, grade 4 thrombocytopenia, and grade 3 diarrhoea. According to the protocol conditions, the initial RD of CPT-11 combined with S-1 should be the level 3 dose of 90 mg m$^{-2}$; however, all three patients assigned the level 3 dose experienced grade 4 haematological or grade 3 nonhaematological toxicities in the second course. Considering the safety and the ability to continue treatment, the final RD of CPT-11 was the level 2 dose of 80 mg m$^{-2}$. In the phase II portion, the incidence of the most common toxicities (grade 3 or 4) was 14% for neutropenia, and 10% for diarrhoea and anorexia. Thus, mild and tolerable toxicities resulted in the median treatment course of 5, achieving an RR of 62 and MST of 444 days.

Three other phase I studies for combination therapy with CPT-11 and S-1 have been reported. Yamada et al. (2003) reported an RD of 150 mg m$^{-2}$ CPT-11 administration on day 1 with 80 mg m$^{-2}$ day$^{-1}$ S-1 administration from day 1 to day 14 of a 21-day cycle. Another study assigned patients to receive 80 mg m$^{-2}$ CPT-11 on days 1 and 15, and S-1 from day 1 to day 21, followed by a 2-week rest (Takiuchi et al., 2005). In the two regimens, the doses of S-1 were similar to single-agent therapy of S-1, which consist of 4-week consecutive administration with a 2-week rest. On the other hand, Komatsu et al. (2005) reported the regimen of 125 mg m$^{-2}$ CPT-11 on day 1 and day 15, combined with 80 mg m$^{-2}$ day$^{-1}$ S-1 administration from day 1 to day 14 of a 28-day cycle. The dose intensity of S-1 in that regimen, as in ours, is smaller than that of the single-agent S-1 therapy. Little constructive information can be obtained by comparing the results of these different studies. However, we are the first to report the promising result of the phase II portion for combination therapy with CPT-11 and S-1, in detail.

Previous reports indicated that 5-FU might inhibit the conversion of CPT-11 to SN-38, which is its active form (Sasaki et al., 1994; Falcone et al., 2001). On the contrary, it has been reported that pharmacokinetic (PK) analysis of CPT-11 when combined
Clinical Studies

with S-1 showed no change in any PK parameter as compared with the expected values for CPT-11 as a single agent (Yamada et al., 2003). Additionally, the PK results of S-1 combined with CPT-11 were similar to those obtained by S-1 single-agent treatment (Takuchi et al., 2005). Taken together with these data, it appears there is no PK interaction between CPT-11 and S-1.

Cisplatin has been employed in the treatment of AGC. Boku et al. (1999) reported the promising results of 48% RR and 322 days MST for AGC treated by CPT-11 combined with CDDP, with acceptable toxicity. A phase II/II study of S-1 combined with CDDP indicated the surprising results of an RR of 74% (Koizumi et al., 2003). However, the MST of S-1 combined with CDDP was 383 days, which was shorter than the 444 days in our study. The incidence of grade 3 or 4 haematological toxicities was almost the same (16 and 19% in the CDDP combination and CPT-11 combination, respectively), whereas the incidence of nonhaematological toxicities was 26% in S-1 combined with CDDP, which was higher than the 10% in our study. Additionally, in the combination of CDDP, it is necessary to hydrate patients with drip infusion to avoid of CDDP-induced renal damages. Thus, S-1 combined with CPT-11 might be less toxic and more easily manageable in outpatient clinics than the CDDP-combined regimen.

In three randomised phase II trials, the combination of CPT-11 and 5-FU/LV was compared with the combination of CPT-11 and CDDP (Pozzo et al., 2004), CDDP and 5-FU/LV (Bouche et al., 2004), and etoposide and 5-FU/LV (ELF) (Moehler et al., 2005). All three trials indicated that the combination of CPT-11 and 5-FU/LV was the most effective combination and will be assessed in a phase III trials. The RR, TTP, and MST in the combination arm of CPT-11 and 5-FU/LV ranged from 30 to 40%, 4.5–6.9 months, and 10.8–11.3 months, respectively, with acceptable toxicity profiles. In addition, the randomised phase III study confirmed that the combination of CPT-11 and 5-FU/LV is superior in terms of TTP, compared with the combination of CPT-11 and CDDP (Dank et al., 2005). These results underline the potential role of the combination of CPT-11 and 5-FU/LV. If S-1 could be used instead of 5-FU infusion, S-1 combined with CPT-11 might become an alternative to the combination of CPT-11 and 5-FU/LV. We are awaiting the results of a randomised phase III trial (5-FU infusion vs S-1 vs CPT-1 with CDDP) for AGC patients.

In conclusion, our phase II/II trial showed S-1 combined with CPT-11 is effective and well tolerated with acceptable toxicity. This regimen should be one of the choices for an experimental arm in phase III trials in near future.

ACKNOWLEDGEMENTS

We are indebted to Professor J Patrick Barron of the International Medical Communications Center of Tokyo Medical University for his review of this paper.

REFERENCES

Ajani JA, Fairweather J, Dumas P, Patt YZ, Padzur R, Mansfield PF (1998) Phase II study of Taxol in patients with advanced gastric carcinoma. Cancer J Sci Am 4: 269–274

Assersohn L, Brown G, Cunningham D, Ward C, Oates J, Waters JS, Hill ME, Norman AR (2004) Phase II study of irinotecan and 5-fluorouracil/leucovorin in patients with primary refractory or relapsed advanced oesophageal and gastric carcinoma. Ann Oncol 15: 64–69

Boku N, Ohtsu A, Shimada Y, Shirao K, Seki S, Saito H, Sakata Y, Hyodo I (1999) Phase II study of a combination of irinotecan and cisplatin against metastatic gastric cancer. J Clin Oncol 17: 319–323

Bouche O, Raoul JL, Bonnetain F, Giovannini M, Etienne PL, Lledo G, Arsene D, Paulet JF, Guerin-Meyer V, Mitry E, Buecher B, Kaminsky MC, Seitz JF, Rougier P, Bedenne L, Milan C (2004) Randomized multicenter phase II trial of a biweekly regimen of fluorouracil and leucovorin (LV5F2U), LV5F2U plus cisplatin, or LV5F2U plus irinotecan in patients with previously untreated metastatic gastric cancer: a Federation Francophone de Cancers Gastrointestinaux Digestive Group Study – FCCG 9803. J Clin Oncol 22: 4319–4328

Cao S, Rustum YM (2000) Synergistic antimutant activity of irinotecan in combination with 5-fluorouracil in rats bearing advanced colorectal cancer: role of drug sequence and dose. Cancer Res 60: 3717–3721

Dank M, Zaluski J, Barone C, Valvere V, Peschel G, Wenczl M, Goker E, Risse M, Awad L, Bugat R (2005) Randomized phase 3 trial of irinotecan (CPT-11)+5FU/folinic acid (FA) vs CDDP+5FU in 1st-line advanced gastric cancer patients. Proc Am Soc Clin Oncol 23: 4003

Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P, Jandik P, Iveson T, Carmichael J, Alakl M, Gruia G, Rougier P (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355: 1041–1047

Falcone A, Di Paolo A, Masi G, Allegrini G, Danesi R, Lencioni M, Pfanner E, Comis S, Del Taccia M, Conte P (2001) Sequence effect of irinotecan and fluorouracil treatment on pharmacokinetics and toxicity in chemotherapy-naive metastatic colorectal cancer patients. J Clin Oncol 19: 3456–3462

Futatsuki K, Wauki A, Nakao I, Sakata Y, Kambe M, Shimada Y, Yoshino M, Taguchi T, Ogawa N (1994) Late phase II study of irinotecan hydrochloride (CPT-11) in advanced gastric cancer. CPT-11 Gastrointestinal Cancer Study Group. Ipn J Cancer Chemother 21: 1033–1038

Glimelius B, Ekstroem K, Hoffmann K, Graf W, Sjoen PO, Haglund U, Svensson C, Enander LK, Linne T, Sellstrom H, Heuman R (1997) Randomized comparison between chemotherapy plus best supportive care with best supportive care in advanced gastric cancer. Ann Oncol 8: 163–168

Graziano F, Catalano V, Baldelli AM, Giordani P, Testa E, Lai V, Catalano G, Battelli N, Cascini S (2000) A phase II study of weekly dactinomycin as salvage chemotherapy for advanced gastric cancer. Ann Oncol 11: 1263–1266

Houghton JA, Cheshire PJ, Hallman II JD, Lutz L, Luo X, Li Y, Houghton PJ (1996) Evaluation of irinotecan in combination with 5-fluorouracil or etoposide in xenograft models of colon adenocarcinoma and rhabdomyosarcoma. Clin Cancer Res 2: 107–118

Icli F, Celik I, Aykan F, Uner A, Demirkazik A, Ozet A, Ozguroglu M, Tas F, Akbulut H, Firat D (1998) A randomized phase III trial of etoposide, epirubinc, and cisplatin vs 5-fluorouracil, epirubicin, and cisplatin in the treatment of patients with advanced gastric carcinoma. Turkish Oncology Group. Cancer 88: 2475–2480

Koizumi W, Kurihara M, Nakano S, Hasegawa K (2000) Phase II study of S-1, a novel oral derivative of 5-fluorouracil, in advanced gastric cancer. For the S-1 Cooperative Gastric Cancer Study Group. Oncology 58: 191–197

Koizumi W, Tanabe S, Saigenji K, Ohtsu A, Boku N, Nagashima F, Shirao K, Matsumura Y, Gotoh M (2003) Phase I/II study of S-1 combined with cisplatin in patients with advanced gastric cancer. Br J Cancer 89: 2207–2212

Komatsu Y, Yuki S, Fuse N, Takei M, Kato T, Miyagishima T, Kudo M, Kunieda Y, Tateyama M, Wakahama O, Meguro T, Ohiuzumi H, Watanabe M, Akita H, Sakata Y, Asaka M (2005) Phase II study of oral S-1 plus irinotecan in patients with advanced colorectal cancer: Hokkaido Gastrointestinal Cancer Study Group HGCGS0302. Ipn J Clin Oncol 35: 88–89

Moehler M, Eimermacher A, Siebler J, Hohler T, Wein A, Menges M, Flieger H, Dank M, Zaluski J, Barone C, Valvere V, Peschel G, Wenczl M, Goker E, Risse M, Awad L, Bugat R (2005) Randomized phase II evaluation of irinotecan plus high-dose 5-fluorouracil and leucovorin (IEF) vs 5-fluorouracil, leucovorin, and etoposide (ELF) in untreated metastatic gastric cancer. Br J Cancer 92: 2122–2128

Murad AM, Santiago FF, Petroianu A, Rocha PR, Rodrigues MA, Rausch M (1999) Modified therapy with 5-fluorouracil, doxorubicin, and methotrexate in advanced gastric carcinoma. Ann Oncol 10: 107–118

Murad AM, Santiago FF, Petroianu A, Rocha PR, Rodrigues MA, Rausch M (1999) Modified therapy with 5-fluorouracil, doxorubicin, and methotrexate in advanced gastric carcinoma. Ann Oncol 10: 107–118

Nagasawa N, Ohtsu A, Yoshida S, Ito K (2005) Japanese nationwide postmarketing survey of S-1 in patients with advanced gastric cancer. Gastric Cancer 8: 6–11
Ohtsu A, Shimada Y, Shirao K, Boku N, Hyodo I, Saito H, Yamamichi N, Miyata Y, Ikeda N, Yamamoto S, Fukuda H, Yoshida S (2003) Randomized phase III trial of fluorouracil alone vs fluorouracil plus cisplatin vs uracil and tegafur plus mitomycin in patients with unresectable, advanced gastric cancer: The Japan Clinical Oncology Group Study (JCOG9205). *J Clin Oncol* 21: 54 – 59

Pozzo C, Barone C, Szanto J, Padi E, Peschel C, Bukki J, Gorbunova V, Valverde V, Zaluski J, Biakhov M, Zuber E, Jacques C, Bugat R (2004) Irinotecan in combination with 5-fluorouracil and folinic acid or with cisplatin in patients with advanced gastric or esophageal–gastric junction adenocarcinoma: results of a randomized phase II study. *Ann Oncol* 15: 1773 – 1781

Pyrhonen S, Kuitunen T, Nyandoto P, Kouri M (1995) Randomised comparison of fluorouracil, epidoxorubicin and methotrexate (FEMTX) plus supportive care with supportive care alone in patients with non-resectable gastric cancer. *Br J Cancer* 71: 587 – 591

Ross P, Nicolson M, Cunningham D, Valle J, Seymour M, Harper P, Price T, Anderson H, Iveson T, Hickish T, Lofts F, Norman A (2002) Prospective randomized trial comparing mitomycin, cisplatin, and protracted venous-infusion fluorouracil (PVI 5-FU) With epirubcin, cisplatin, and PVI 5-FU in advanced esophagogastric cancer. *J Clin Oncol* 20: 1996 – 2004

Sakata Y, Ohtsu A, Horikoshi N, Sugimachi K, Mitachi Y, Taguchi T (1998) Late phase II study of novel oral fluoropyrimidine anticancer drug S-1 (1-tetragur – 0.4 tegustat – 1 isostat potassium) in advanced gastric cancer patients. *Eur J Cancer* 34: 1715 – 1721

Saltz LB, Cox JV, Blanke CD, Fehrenbacher L, Moore MJ, Flaherty KR, Pirota N, Leffring GL, Miller LL (2000) Irinotecan plus fluorouracil and irinotecan for metastatic colorectal cancer. *J Natl Cancer Inst* 92: 905 – 914

Sasaki Y, Ohtsu A, Shimada Y, Ono K, Saijo N (1994) Simultaneous administration of CPT-11 and fluorouracil: alteration of the pharmaco-

kinetics of CPT-11 and SN-38 in patients with advanced colorectal cancer. *J Natl Cancer Inst* 86: 1096 – 1098

Shirasaka T, Shimamoto Y, Ohshima H, Yamaguchi M, Kato T, Yonekura K, Fukushima M (1996) Development of a novel form of an oral 5-fluorouracil derivative (S-1) directed to the potentiation of the tumour selective cytotoxicity of 5-fluorouracil by two biochemical modulators. *Anticancer Drugs* 7: 548 – 557

Takizaki H, Narahara H, Tsujinaka T, Gotoh M, Kawabe S, Katsu K, Ishih T, Tatsuta M, Fujitani K, Furukawa H, Taguchi T (2005) Phase I study of S-1 combined with irinotecan (CPT-11) in patients with advanced gastric cancer (OSSG 0002). *Jpn J Clin Oncol* 35: 520 – 525

Vanhoef U, Harstrick A, Achterrath W, Cao S, Seeber S, Rystum YM (2001) Irinotecan in the treatment of colorectal cancer: clinical overview. *J Clin Oncol* 19: 1501 – 1518

Vanhoef U, Rougier P, Wilke H, Ducieux MP, Lacave AJ, Van Cutsen E, Planker M, Santos JG, Piedbois P, Paillot B, Bodenstein H, Schmoll HJ, Bleiberg H, Nordlinger B, Couvreur ML, Baron B, Wils JA (2000) Final results of a randomized phase III trial of sequential high-dose methotrexate, fluorouracil, and doxorubicin vs etoposide, leucovorin, and fluorouracil vs infusional fluorouracil and cisplatin in advanced gastric cancer: a trial of the European Organization for Research and Treatment of Cancer of the Gastrointestinal Tract. *J Clin Oncol* 18: 2648 – 2657

Yamada Y, Yasui H, Goto A, Araki T, Ura T, Hamaguchi T, Muro K, Shimada Y, Shirao K (2003) Phase I study of irinotecan and S-1 combination therapy in patients with metastatic gastric cancer. *Int J Clin Oncol* 8: 374 – 380

Webb A, Cunningham D, Scarffe JH, Harper P, Norman A, Joffe JK, Hughes M, Mains J, Findley M, Hill A, Oates J, Nicolson M, Hickish T, O’Brien M, Iveson T, Watson M, Underhill C, Wardley A, Meehan M (1997) Randomized trial comparing epirubicin, cisplatin, and fluorouracil vs fluorouracil, doxorubicin, and methotrexate in advanced esophagogastric cancer. *J Clin Oncol* 15: 261 – 267