We prove that the set of right 4-Engel elements of a group G is a subgroup for locally nilpotent groups G without elements of orders 2, 3 or 5; and in this case the normal closure $\langle x \rangle^G$ is nilpotent of class at most 7 for each right 4-Engel elements x of G.

Keywords: Right 4-Engel elements of a group; 4-Engel groups.

Mathematics Subject Classification 2000: 20D45

1. Introduction and Results

Let G be any group and n a nonnegative integer. For any two elements a and b of G, we define inductively $[a, n] b$ the n-Engel commutator of the pair (a, b), as follows:

$[a, 0] b := a, \quad [a, 1] b := a^{-1} b^{-1} a b$ and $[a, n+1] b = [[a, n] b, b]$ for all $n > 0$.

An element x of G is called right n-Engel if $[x, n] g = 1$ for all $g \in G$. We denote by $R_n(G)$ the set of all right n-Engel elements of G. A group G is called n-Engel if $G = R_n(G)$. It is clear that $R_1(G) = Z(G)$ is the center of G and Kappe [5] proved $R_2(G)$ is a characteristic subgroup of G. Macdonald [6] has shown that the inverse or square of a right 3-Engel element need not be right 3-Engel. Nickel [8] generalized Macdonald’s result to all $n \geq 3$. Although Macdonald’s example shows that $R_3(G)$ is not in general a subgroup of G, Heineken [4] has already shown that if A is the subset of a group G consisting of all elements a such that $a^{±1} \in R_3(G)$, then A is a subgroup if either G has no element of order 2 or A consists only of elements having finite odd order. Newell [7] proved that the normal closure of every right 3-Engel element is nilpotent of class at most 3. In Sec. 2, we prove that if G is a 2′-group, then $R_3(G)$ is a subgroup of G. Nickel’s example shows that the set
of right 4-Engel elements is not a subgroup in general (see also the first example in Sec. 4 of [1]). In Sec. 3, we prove that if \(G \) is a locally nilpotent \(\{2, 3, 5\}' \)-group, then \(R_4(G) \) is a subgroup of \(G \).

Traustason [11] proved that any locally nilpotent 4-Engel group \(H \) is Fitting of degree at most 4. This means that the normal closure of every element of \(H \) is nilpotent of class at most 4. More precisely he proved that if \(H \) has no element of order 2 or 5, then \(H \) has Fitting degree at most 3. Now by a result of Havas and Vaughan-Lee [3], one knows any 4-Engel group is locally nilpotent and so Traustason’s result is true for all 4-Engel groups. In Sec. 3, by another result of Traustason [12] we show that the normal closure of every right 4-Engel element in a locally nilpotent \(\{2, 3, 5\}' \)-group, is nilpotent of class at most 7.

Throughout the paper, we have frequently used \texttt{nq} package of Nickel [9] which is implemented in \texttt{GAP} [10]. All given timings were obtained on an Intel Pentium 4-1.70GHz processor with 512 MB running Red Hat Enterprise Linux 5.

2. Right 3-Engel Elements

Throughout, for any positive integer \(k \) and any group \(H \), \(\gamma_k(H) \) denotes the \(k \)-th term of the lower central series of \(H \). The main result of this section implies that \(R_3(G) \) is a subgroup of \(G \) whenever \(G \) is a \(2' \)-group. Newell [7] proved that

Theorem 2.1. Let \(G = \langle a, b, c \rangle \) be a group such that \(a, b \in R_3(G) \). Then

1. \(\langle a, c \rangle \) is nilpotent of class at most 5 and \(\gamma_5(\langle a, c \rangle) \) has exponent 2.
2. \(G \) is nilpotent of class at most 6.
3. \(\gamma_5(G)/\gamma_6(G) \) has exponent 10. Furthermore \([a, c, b, c, c]^2 \in \gamma_6(G) \).
4. \(\gamma_6(G) \) has exponent 2.

Theorem 2.2. Let \(G \) be a group such that \(\gamma_5(G) \) has no element of order 2. Then \(R_3(G) \) is a subgroup of \(G \).

Proof. Let \(a, b \in R_3(G) \) and let \(c \) be an arbitrary element of \(G \). Thus

1. \([a, c, c, c] = 1 \).
2. \([b, c, c, c] = 1 \).

Since by our assumption \(\gamma_5(G) \) has no element of order 2, it follows from Theorem 2.1 parts (1), (3), and (4), respectively that

3. the subgroup \(\langle a, c \rangle \) is nilpotent of class at most 4.
4. \([a, c, b, c, c] = 1 \).
5. the subgroup \(\langle a, b, c \rangle \) is nilpotent of class at most 5.
To prove $R_3(G)$ is a subgroup, we have to show that both a^{-1} and ab belong to $R_3(G)$. We first prove that $a^{-1} \in R_3(G)$. It easily follows from (1) and (3) that:

$$[a^{-1},c,c,c] = [a,c,c,c]^{-1} = 1.$$

Therefore $a^{-1} \in R_3(G)$.

We now show that $ab \in R_3(G)$.

$$[ab,c,c,c] = [[a,c,c,b][b,c],c,c]$$

$$= [[a,c,b][b,c][b,c],c,c]$$

$$= [[a,c,b][b,c][b,c],c,c]$$

$$= [[a,c,b][b,c],c,c]$$

$$= [a,c,b,c]$$

by (4)

This completes the proof.

Now we give a proof of Theorem 2.2 by using nq package of Nickel [9] which is implemented in GAP [10]. Note that the knowledge of Theorem 2.1 is crucial in the following proof. The package nq has the capability of computing the largest nilpotent quotient (if it exists) of a finitely generated group with finitely many identical relations and finitely many relations. For example, if we want to construct the largest nilpotent quotient of a group G as follows

$$\langle x_1, \ldots, x_n | r_1(x_1, \ldots, x_n) = \cdots = r_m(x_1, \ldots, x_n) = 1, w(x_1, \ldots, x_n, y_1, \ldots, y_k) = 1 \rangle,$$

where r_1, \ldots, r_m are relations on x_1, \ldots, x_n and $w(x_1, \ldots, x_n, y_1, \ldots, y_k) = 1$ is an identical relation in the group $\langle x_1, \ldots, x_n \rangle$, one may apply the following code to use the package nq in GAP:

```cpp
LoadPackage("$nq$"); # nq package of Werner Nickel #
F:=FreeGroup(n+k);
L:=F/[r1(F.1,...,F.n),... ,rm(F.1,...,F.n),w(F.1,...,F.n,F.(n+1),...,F.(n+k))];
H:=NilpotentQuotient(L,[F.(n+1),...,F.(n+k)]);
```

Note that we need to construct the free group of rank $n+k$ because as well as the n generators for G we also have an identical relation with k free variables.

Note that the function $\text{NilpotentQuotient}(L)$ attempts to compute the largest nilpotent quotient of L and it will terminate only if L has a largest nilpotent quotient.

Second Proof of Theorem 2.2. By Theorem 2.1, we know that (x, y, z) is nilpotent if $x, y \in R_3(G)$ and $z \in G$. We now construct the largest nilpotent group $H = \langle a, b, c \rangle$ such that $a, b \in R_3(H)$ and $c \in H$, by nq package.
LoadPackage("nq");
F:=FreeGroup(4); a1:=F.1; b1:=F.2; c1:=F.3; x:=F.4;
L:=F/\LeftNormedComm([a1,x,x,x]),\LeftNormedComm([b1,x,x,x])];
H:=NilpotentQuotient(L,[x]);
a:=H.1; b:=H.2; c:=H.3; d:=\LeftNormedComm([a^{-1},c,c,c]);
e:=\LeftNormedComm([a*b,c,c,c]); Order(d); Order(e);
C:=LowerCentralSeries(H); d in C[5]; e in C[5];

Then if we consider the elements $d = [a^{-1},c,c,c]$ and $e = [ab,c,c,c]$ of H, we can see by above command in GAP that d and e are elements of $\gamma_5(H)$ and have orders 2 and 4, respectively. So, in the group G, we have $d = e = 1$. This completes the proof. □

Note that, the second proof of Theorem 2.2 also shows the necessity of assuming that $\gamma_5(G)$ has no element of order 2.

3. Right 4-Engel Elements

Our main result in this section is to prove the following.

Theorem 3.1. Let G be a $\{2,3,5\}'$-group such that $\langle a, b, x \rangle$ is nilpotent for all $a, b \in R_4(G)$ and any $x \in G$. Then $R_4(G)$ is a subgroup of G.

Proof. Consider the “freest” group, denoted by U, generated by two elements u, v with u a right 4-Engel element. We mean this by the group U given by the presentation

$$\langle u, v \mid [u,4,x] = 1 \text{ for all words } x \in F_2 \rangle,$$

where F_2 is the free group generated by u and v. We do not know whether U is nilpotent or not. Using the nq package shows that the group U has a largest nilpotent quotient M with class 8. By the following code, the group M generated by a right 4-Engel element a and an arbitrary element c is constructed. We then see that the element $[a^{-1},c,c,c]$ of M is of order $375 = 3 \times 5^3$. Therefore, the inverse of a right 4-Engel element of G is again a right 4-Engel element. The following code in GAP gives a proof of the latter claim. The computation was completed in about 248s.

```gap
F:=FreeGroup(3); a1:=F.1; b1:=F.2; x:=F.3;
U:=F/\LeftNormedComm([a1,x,x,x,x]);
M:=NilpotentQuotient(U,[x]);
a:=M.1; c:=M.2;
h:=\LeftNormedComm([a^{-1},c,c,c,c]);
Order(h);
```

We now show that the product of every two right 4-Engel elements in G is a right 4-Engel element. Let $a, b \in R_4(G)$ and $c \in G$. Then we claim that $H = \langle a, b, c \rangle$ is nilpotent of class at most 7. (*)
By induction on the nilpotency class of H, we may assume that H is nilpotent of class at most 8. Now we construct the largest nilpotent group $K = \langle a_1, b_1, c_1 \rangle$ of class 8 such that $a_1, b_1 \in R_4(K)$.

F:=FreeGroup(4); A:=F.1; B:=F.2; C:=F.3; x:=F.4;
W:=F/[LeftNormedComm([A,x,x,x,x]),LeftNormedComm([B,x,x,x,x])];
K:=NilpotentQuotient(W,[x],8);
LowerCentralSeries(K);

The computation took about 22.7h. We see that $\gamma_8(K)$ has exponent 60. Therefore, as H is a $(2,3,5)'$-group, we have $\gamma_8(H) = 1$ and this completes the proof of our claim (\ast).

Therefore, we have proved that any nilpotent group without elements of orders 2, 3, or 5 which is generated by three elements two of which are right 4-Engel, is nilpotent of class at most 7.

Now we construct, by the nq package, the largest nilpotent group S of class 7 generated by two right 4-Engel elements s, t and an arbitrary element g. Then one can find by GAP that the order of $[s, g, g, g]$ in S is 300. Since H is a quotient of S, we have that $[ab, c, c, c]$ is of order dividing 300 and so it is trivial, since H is a $(2,3,5)'$-group. This completes the proof.

Corollary 3.2. Let G be a $(2,3,5)'$-group such that $\langle a, b, x \rangle$ is nilpotent for all $a, b \in R_4(G)$ and for any $x \in G$. Then $R_4(G)$ is a nilpotent group of class at most 7. In particular, the normal closure of every right 4-Engel element of group G is nilpotent of class at most 7.

Proof. By Theorem 3.1, $R_4(G)$ is a subgroup of G and so it is a 4-Engel group. In [12], it is shown that every locally nilpotent 4-Engel $(2,3,5)'$-group is nilpotent of class at most 7. Therefore, $R_4(G)$ is nilpotent of class at most 7. Since $R_4(G)$ is a normal set, the second part follows easily.

Therefore, to prove that the normal closure of any right 4-Engel element of a $(2,3,5)'$-group G is nilpotent, it is enough to show that $\langle a, b, x \rangle$ is nilpotent for all $a, b \in R_4(G)$ and for any $x \in G$.

Corollary 3.3. In any $(2,3,5)'$-group, the normal closure of any right 4-Engel element is nilpotent if and only if every 3-generator subgroup in which two of the generators can be chosen to be right 4-Engel, is nilpotent.

Proof. By Corollary 3.2, it is enough to show that a $(2,3,5)'$-group $H = \langle a, b, x \rangle$ is nilpotent whenever $a, b \in R_4(H)$, $x \in H$ and both $\langle a \rangle^H$ and $\langle b \rangle^H$ are nilpotent. Consider the subgroup $K = \langle a \rangle^H \langle b \rangle^H$ which is nilpotent by Fitting’s theorem. Now we prove that K is finitely generated. We have $K = \langle a, b \rangle^{(x)}$ and since a and b are both right 4-Engel, it is well-known that

$$\langle a \rangle = \langle a, a^x, a^{x^2}, a^{x^3} \rangle$$

and

$$\langle b \rangle = \langle b, b^x, b^{x^2}, b^{x^3} \rangle,$$
and so
\[K = (a, a^x, a^{x^2}, a^{x^3}, b, b^x, b^{x^2}, b^{x^3}). \]

It follows that \(H \) satisfies maximal condition on its subgroups as it is (finitely generated nilpotent)-by-cyclic. Now by a famous result of Baer [2] we have that \(a \) and \(b \) lie in the \((m + 1)\)th term \(\zeta_m(H) \) of the upper central series of \(H \) for some positive integer \(m \). Hence \(H/\zeta_m(H) \) is cyclic and so \(H \) is nilpotent. This completes the proof.

We conclude this section with the following interesting information on the group \(M \) in the proof of Theorem 3.1. In fact, for the largest nilpotent group \(M = \langle a, b \rangle \) relative to \(a \in R_4(M) \), we have that \(M/T \) is isomorphic to the largest (nilpotent) 2-generated 4-Engel group \(E(2, 4) \), where \(T \) is the torsion subgroup of \(M \) which is a \(\{2, 3, 5\} \)-group. Therefore, in a nilpotent \(\{2, 3, 5\}' \)-group, a right 4-Engel element with an arbitrary element generate a 4-Engel group. This can be seen by comparing the presentations of \(M/T \) and \(E(2, 4) \) as follows. One can obtain two finitely presented groups \(G_1 \) and \(G_2 \) isomorphic to \(M/T \) and \(E(2, 4) \), respectively by GAP:

\[
\begin{align*}
\text{MoverT:=FactorGroup(M,TorsionSubgroup(M));} \\
E24:=NilpotentEngelQuotient(FreeGroup(2),4); \\
isol1:=IsomorphismFpGroup(MoverT);isol2:=IsomorphismFpGroup(E24); \\
G1:=Image(isol1);G2:=Image(isol2);
\end{align*}
\]

Next, we find the relators of the groups \(G_1 \) and \(G_2 \) which are two sets of relators on 13 generators by the following command in GAP.

\[
\begin{align*}
r1:=\text{RelatorsOfFpGroup}(G1);r2:=\text{RelatorsOfFpGroup}(G2);
\end{align*}
\]

Now, save these two sets of relators by LogTo command of GAP in a file and go to the file to delete the terms as

\[
<\text{identity } \ldots>
\]

in the sets \(r1 \) and \(r2 \). Now call these two modified sets \(R1 \) and \(R2 \). We show that \(R1=R2 \) as two sets of elements of the free group \(f \) on 13 generators \(f1,f2,\ldots,f13 \).

\[
\begin{align*}
f:=\text{FreeGroup}(13); \\
f1:=f.1;f2:=f.2;f3:=f.3;f4:=f.4;f5:=f.5;f6:=f.6; \\
f7:=f.7;f8:=f.8;f9:=f.9;f10:=f.10;f11:=f.11;f12:=f.12;f13:=f.13;
\end{align*}
\]

Now by Read function, load the file in GAP and type the simple command \(R1=R2 \). This gives us true which shows \(G_1 \) and \(G_2 \) are two finitely presented groups with the same relators and generators and so they are isomorphic. We do not know if there is a guarantee that if someone else does as we did, then he/she finds the same relators for \(\text{Fp} \) groups \(G_1 \) and \(G_2 \), as we have found. Also we remark that using function IsomorphismGroups to test if \(G_1 \cong G_2 \), did not give us a result in less than 10h and we do not know whether this function can give us a result or not.
We summarize the above discussion as following.

Theorem 3.4. Let G be a nilpotent group generated by two elements, one of which is a right 4-Engel element. If G has no element of order 2, 3, or 5, then G is a 4-Engel group of class at most 6.

Acknowledgments

The authors are grateful to the referee for his/her careful reading and insightful comments. The research of the first author is financially supported by the Center of Excellence for Mathematics, University of Isfahan.

References

[1] A. Abdollahi and H. Khosravi, On the right and left 4-Engel elements, to appear in Comm. Algebra 38(3) (2010) 933–943.
[2] R. Baer, Engelsche elemente Noetherscher Gruppen, Math. Ann. 133 (1957) 256–270.
[3] G. Havas and M. R. Vaughan-Lee, 4-Engel groups are locally nilpotent, Int. J. Algebra Comput. 15(4) (2005) 649–682.
[4] H. Heineken, Engelsche Elemente der Länge drei, Illinois J. Math. 5 (1961) 681–707.
[5] W. P. Kappe, Die A-Norm einer Gruppe, Illinois J. Math. 5 (1961) 187–197.
[6] I. D. Macdonald, Some examples in the theory of groups, in Mathematical Essays Dedicated to A. J. Macintyre (Ohio University Press, Athens, Ohio, 1970), pp. 263–269.
[7] M. L. Newell, On right-Engel elements of length three, Proc. Roy. Irish. Acad. Sect. A. 96(1) (1996) 17–24.
[8] W. Nickel, Some groups with right Engel elements, Groups St. Andrews 1997 in Bath, II, London Math. Soc. Lecture Note Ser., Vol. 261 (Cambridge Univ. Press, Cambridge, 1999), pp. 571–578.
[9] W. Nickel, NQ, 1998, A refereed GAP 4 package, see [10].
[10] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4.12 (2008), (http://www.gap-system.org).
[11] G. Traustason, Locally nilpotent 4-Engel groups are fitting groups, J. Algebra 270(1) (2003) 7–27.
[12] G. Traustason, On 4-Engel groups, J. Algebra 178(2) (1995) 414–429.