Alternative diagnostic parameter for vehicle lighting products

S Piontkovskaia¹, R Nizamov¹, R Nizamova¹ and A Ferenets¹

¹ Department of Electrical Equipment, Institute of Automation and Electronic Engineering, Kazan National Research Technical University named after A.N.Tupolev – KAI, Kazan, Russia

e-mail: ranizamov@kai.ru

Abstract. The article is devoted to the justification of the use of the parameters of the transition thermal process in the technical diagnosis of vehicle lighting products.

1. Introduction
Currently, the operation of the electrical circuits of lighting products on a assembled vehicle is checked based on an analysis of the steady-state mode of operation of the electrical circuit: the current consumption is measured, the power is determined based on the voltage constant in the vehicle's on-board network, compared with the standard value determined by the technical conditions, and the results of this comparison give a conclusion on the technical condition of the tested product. However, this method of checking the operation has a significant drawback: the value of the diagnostic parameter (current consumption in steady state) is often determined for a group load, which includes lamps that are heterogeneous in power. In fact, such a functional check provides reliable information only about the state of the entire circuit (open or short circuit) [3,4,9,12].

In order to increase the reliability of checking the functioning of electrical circuits of lighting products of a car, we will consider the possibility of using alternative diagnostic parameters, namely, the use of transient parameters at the moment of switching on a lighting product [2,5,10,11].

2. Analysis of transition thermal process
To justify the use of the technical diagnosis of vehicle lighting products, as an alternative diagnostic parameter instantaneous value of current, at the initial moment of commutation of incandescent, it is necessary to analyze the thermal transition in the incandescent and put the theoretical dependence of the instantaneous current of its design parameters [6,7,8].

Consider the transition process in the vehicle incandescent with the following assumptions:
− heat removal from the filament is neglected (adiabatic process);
− believe that the specific heat is independent of temperature, a comparative analysis of this gives an error of not more than 5%.

Resistance of the filament:
\[R(\vartheta) = \rho \frac{l}{S} ; \rho = \rho_0 (1 + \alpha \vartheta), \]

\(\vartheta \) - current temperature.

Incandescent current by Ohm's law:
\[i(t) = \frac{U}{R(\vartheta)}, \quad (1) \]

\(U \) - board voltage, fixed in time.

The heat released in the incandescent due to the current flow:
\[dQ = i^2(t)R(\vartheta)dt \]

Thermal state of the conductor:
\[dQ = c\gamma S d\vartheta, \]

\(c \) - heat capacity of filament material; \(\gamma \) - the proportion of the material; \(l \) - the length of the filament; \(S \) - the filament section; \(d\vartheta \) - the temperature increment of the thread.

Heat balance:
\[c\gamma S d\vartheta = i^2(t)R(\vartheta)dt \quad (2) \]

A similar problem is solved by thermal calculation of fuse elements. Solution of the problem is significantly simplified, since current fuse is specified by parameters of protected circuit. In this case, changing resistance of the filament determines its current [8,10].

In case (2) we divide variables:
\[i^2(t) dt = c\gamma lS \frac{d\vartheta}{R(\vartheta)} \]

or
\[\int i^2(t) dt = c\gamma lS \int \frac{d\vartheta}{R(\vartheta)}. \quad (3) \]

But, as the resistance is
\[R(\vartheta) = \frac{l}{S} \rho_0 (1 + \alpha \vartheta) \quad (4) \]

the right side of the equation takes the following form
\[c\gamma S \int \frac{d\vartheta}{R(\vartheta)} = c\gamma S^2 \rho_0 \int \frac{d\vartheta}{(1 + \alpha \vartheta)} = c\gamma S^2 \ln \frac{1}{A} (1 + \alpha \vartheta), \]

\(A \) - a constant.

Substituting into equation (3), we obtain
\[\int i^2(t) dt = \frac{c\gamma S^2}{\alpha \rho_0} \ln \frac{1}{A} (1 + \alpha \vartheta) \Rightarrow -\frac{\alpha \rho_0}{c\gamma S^2} \int i^2(t) dt = \ln \frac{1}{A} (1 + \alpha \vartheta). \]

We use sequential transformations, properties of degrees and separation of variables [1]:
\[\frac{1}{A} (1 + \alpha \vartheta) = e^{\frac{\alpha \rho_0}{c\gamma S^2} \int i^2(t) dt}. \]

signify \(\vartheta \):
\[\vartheta = \frac{1}{\alpha} \left(e^{\frac{\alpha \rho_0}{c\gamma S^2} \int i^2(t) dt} - 1 \right). \]

By Ohm's law (1) and according to (4), we have
\[i(t) = \frac{U}{R(\vartheta)} = \frac{US}{l \rho_0 (1 + \alpha \vartheta)} = \frac{US}{l \rho_0 A e^{\frac{\alpha \rho_0}{c\gamma S^2} \int i^2(t) dt}}. \]

Onwards:
\[
\frac{l_0 \rho_i A}{US} i(t) = e^{\frac{\alpha_{p_0}}{c \gamma S^2} \int i^3(t) dt},
\]
\[
\ln \left(\frac{l_0 \rho_i A}{US} i(t) \right) = -\frac{\alpha_{p_0}}{c \gamma S^2} \int i^3(t) dt,
\]
\[
-\frac{c \gamma S^2 i(t)}{\alpha_{p_0}} \ln \left(\frac{l_0 \rho_i A}{US} i(t) \right) = \int i^3(t) dt,
\]
\[
-\frac{c \gamma S^2}{\alpha_{p_0}} i'(t) = i^3(t).
\]
Thus:
\[
i'(t) = \frac{di(t)}{dt} = -\frac{\alpha_{p_0}}{c \gamma S^2} i^3(t).
\]
Using separation of variables, we obtain:
\[
-\frac{di(t)}{i^3(t)} = \frac{\alpha_{p_0}}{c \gamma S^2} dt;
\]
\[
-\int \frac{di(t)}{i^3(t)} = \int \frac{\alpha_{p_0}}{c \gamma S^2} dt;
\]
\[
\frac{1}{2i^2(t)} = \frac{\alpha_{p_0}}{c \gamma S^2} t + B,
\]
B – a constant.
Thus
\[
i^2(t) = \frac{1}{2 \left(\frac{\alpha_{p_0}}{c \gamma S^2} t + B \right)},
\]
and finally:
\[
i(t) = \pm \sqrt{\frac{1}{2 \left(\frac{\alpha_{p_0}}{c \gamma S^2} t + B \right)}}. \tag{5}
\]
We’ll find the constant B.
Let at \(t = t_1 \), \(i(t) = i(t_1) \), then (5) takes the following form
\[
i(t_1) = \pm \sqrt{\frac{1}{2 \left(\frac{\alpha_{p_0}}{c \gamma S^2} t_1 + B \right)}}.
\]
We perform basic algebraic calculations
\[
i^2(t_1) = \frac{1}{2 \left(\frac{\alpha_{p_0}}{c \gamma S^2} t_1 + B \right)}
\]
\[
\frac{\alpha_{p_0}}{c \gamma S^2} t_1 + B = \frac{1}{2i^2(t_1)}
\]
\[B = \frac{1}{2I^2(t_i)} - \frac{\alpha \rho_0}{c\gamma s^2} t_i. \]

Substituting the found value \(B \) in (5)
\[
i(t) = \pm \sqrt{\frac{1}{2\frac{\alpha \rho_0}{c\gamma s^2} t + \frac{1}{2I^2(t_i)} - \frac{\alpha \rho_0}{c\gamma s^2} t_i}}.
\]
\[
i(t) = \pm \sqrt{\frac{1}{2\frac{\alpha \rho_0}{c\gamma s^2}(t-t_i) + \frac{1}{2I^2(t_i)}}}.
\]
\[
i(t) = \pm \sqrt{\frac{1}{\frac{2\alpha \rho_0}{c\gamma s^2}(t-t_i) + \frac{1}{I^2(t_i)}}}.
\]

Let \(t_i = 0 \), in this case \(\vartheta = \vartheta_{beg} \), then \(R(\vartheta_{beg}) = \frac{l\rho_0}{s}(1 + \alpha \vartheta_{beg}) \), \(i(t_i) = i(0) = \frac{U_s}{l\rho_0(1 + \alpha \vartheta_{beg})} \) and as a result we obtain
\[
i(t) = \frac{s}{\sqrt{\frac{2\alpha \rho_0}{c\gamma s^2} t + \frac{l^2 \rho_0^2(1 + \alpha \vartheta_{beg})^2}{U^2}}}.
\] (6)

This dependence (6) can be used to calculate the transient current in a real circuit. The validity of this expression with the assumptions can be considered within the time from power on to the establishment of the current.

Analyzing (6), we can make the following conclusions:
- the second term of the radicand in \(t = 0 \) specifies the initial value of the current \(i(0) \);
- the first term of the radicand specifies the transition thermal process;
- in general, the equation (6) allows us to estimate variations in characteristics of the incandescent when possible violation of its production, thus, to use the parameters of transient not only for diagnosis of the assembled vehicle, but also for the quality control of certain incandescent.

Let \(t_{ss} \) – to be a time, when \(\vartheta \) achieve the operating temperature of the filament (for wolfram it’s 2700°C). Then (6) transforms into
\[
I_{ss} = \frac{c\gamma}{2\alpha \rho_0} \left(\frac{s}{I_{ss}} - \frac{l^2 \rho_0^2(1 + \alpha \vartheta_{beg})^2}{U^2} \right).
\] (7)

Assuming that
\[I_{ss} = \frac{P}{U} , \]

than (7) takes the form
\[
t_{ss} = \frac{c\gamma}{2\alpha \rho_0} \left(\frac{s^2 U^2}{P^2} - \frac{l^2 \rho_0^2(1 + \alpha \vartheta_{beg})^2}{U^2} \right).
\] (8)

In practice, the value \(t_{ss} \) expressed by (8) can be used to establish the time of the recording equipment (sweep duration, while the program calculate the parameters of the transition process, etc.).

We define the first derivative of the current at the time of commutation:
\[
\frac{di(t)}{dt}igg|_{t=0} = \frac{2\alpha \rho_0}{2c\gamma s^2} \left(\frac{Us}{l \rho_0 (1 + \alpha \delta_{beg})} \right)^3 = -\frac{\alpha \rho_0 U_s^3 s^3}{c\gamma s^5 l^2 \rho_0^3 (1 + \alpha \delta_{beg})^3} = -\frac{\alpha U_s^3 s}{c\gamma l^2 \rho_0^3 (1 + \alpha \delta_{beg})^3}.
\]

Dividing constants and design parameters of the incandescent, finally we obtain:

\[
\frac{di(t)}{dt}igg|_{t=0} = \frac{\alpha U_s^3}{c\gamma l^2 \rho_0^3 (1 + \alpha \delta_{beg})^3} \cdot \frac{s}{l^3}
\]

Thus, instantaneous value of current at the initiate moment of commutation of the incandescent might be used while diagnostic of vehicle lighting products as an alternative diagnostic parameter.

3. Conclusion

This equation \(i(t) = \frac{s}{\sqrt{\frac{2\alpha \rho_0}{c\gamma} l^2 \rho_0^3 (1 + \alpha \delta_{beg})^2} U_s^3} \) can be used to calculate the transient current in a real circuit. The validity of this expression with the assumptions can be considered within the time from power on to the establishment of the current. In general, the dependence allows us to estimate variations in characteristics of the incandescent when possible violation of its production, thus, to use the parameters of transient not only for diagnosis of the assembled vehicle, but also for the quality control of certain incandescent.

Instantaneous value of current at the initiate moment of commutation of the incandescent might be used while diagnostic of vehicle lighting products as an alternative diagnostic parameter.

This work was carried out as part of the international program ERASMUS + project 573879-EPP-1-2016-1-FR-EPPKA2-CBHE-JP “INSPIRE”.

References

[1] Abramovic M and Sigan I 1979 Reference on special functions with formulas, graphs and mathematical tables, ed M Abramovic and I Sigan (Moscow: science Press) p 904
[2] Azenberg U B 1995 Reference book on lighting technology, ed U B Azenberg (Moscow: Energoatomizdat Press) p 528
[3] Elivanov D M 2016 Vehicle lighting products (Topical issues of technical sciences in modern conditions) release 3 pp 14-17
[4] GOST 2023.1-88 (IEC 809-85) 1997 Lamps for road vehicles.Dimensional, electrical and luminous requirements, 1990-01-01 p 104
[5] GOST 20911-89 2009 Technical diagnostics. Terms and definitions 1991-01-01 p 11
[6] Litvinov V S 1983 Calculation methods and optimization of parameters of light sources of wide application (Dissertation for the degree of Doctor of Technical Sciences) p 303
[7] Litvinov V S 1990 Light source optimization (Moscow: Energoatomizdat Press) p 407
[8] Litvinov V S and Rohlin 1975 Thermal sources of optical radiation: theory and calculation (Moscow: Energy Press) p 265
[9] Petinov O V, Petinov U O, Piontkovskaia S A and Pyanov M A 2006 The testing device of electrical equipment of VAZ 1118 "Kalina" (news in the Samara scientific center of the Russian academy of sciences) number 2 pp 217-225
[10] Petinov U O 2006 Checking the functioning of electrical circuits of lighting products of a car in industrial production (Dissertation for the degree candidate of technical sciences) p 110
[11] RU 2314432 C2, Int. Cl. F02P 17/00 G01M 15/00 Method of diagnosing condition of automobile electrical equipment
[12] Uytt V E 2019 Electric equipment of cars and electric vehicles (Moscow: Hotline - Telecom Press) p 480
[13] Metelev I, Dvorkin D and Isakov R 2017 Different load types modeling using MatLab IOP Conference Series: Materials Science and Engineering 240

[14] Metelev I, Isakov R, Ferenz A, Gilmanshin I, Gilmanshina S and Galeeva A 2018 Using of functional capability of RTDS hardware and software complex in the educational process of electrotechnical speciality master’s training in economy global digitalization conditions IOP Conf. Series: Materials Science and Engineering 412

[15] Fedorov E, Tereshchuk V and Ferenz A 2015 Wiring of complicated electrical circuits of interblock assembling in automated design of aircraft Russian Aeronautics 58, pp 96-99

[16] Fedorov E, Tereshchuk V and Ferenz A 2015 Technique of computer-aided design of power supply system of vehicles Journal of Engineering and Applied Sciences 10 pp 110-7

[17] Nizamov R and Fedorov E 2018 Layout of Items and Structural Assemblies of Electrical Equipment of UAV ICIEAM pp 1-4

[18] Nizamov R, Fedorov E and Ferenz A 2018 Placing the Elements and Structural Assemblies of Electrical Equipment of an UAV International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) pp 1-5