Introduction

Point of care (POC) transthoracic echocardiography (TTE) is a limited bedside investigation done and interpreted by a physician. POC TTE is a safe and cost-effective tool for non-invasive examination of the real-time cardiac status, which can be repeated for its diagnostic and therapeutic responses as and when required. It can precisely answer some of the important clinical questions in perioperative patient management. TTE is traditionally owned, dominated and practised by cardiologists. However, the role of echocardiography (echo) has now extended to other specialities including anaesthesia, critical care and emergency medicine including pre-hospital setting.[1,2]

A comprehensive or formal TTE is a thorough cardiac assessment done at a single point of time. It does not give us an idea about the changing haemodynamic conditions unless stress echo is done with similar intention. Myocardial ischaemia or infarction, hypovolaemia, cardiac tamponade, hydropneumothorax and thromboembolism are major causes of haemodynamic disturbances in the perioperative period. TTE has an advantage of better visualisation of right-sided/anterior structures, namely the right ventricle and tricuspid valve pathologies and is less prone for foreshortening of left ventricular apex. Chronic obstructive pulmonary diseases (COPD), surgical dressings and artificial ventilation all make visualisation of heart structures difficult.[1-3] However, acceptable acquisitions of echo images are possible at least in one window which can be useful for clinical management and therapeutic intervention.[3]

This article deals with perioperative clinical applications, examination techniques, haemodynamic calculations, and available resources for training and education. Various uses of ultrasound in anaesthesia and critical care practise, ultrasound physics and principles are already discussed and reviewed extensively in the literature and are not addressed in this article.[2]
HANDHELD ULTRASOUND DEVICES

Over the past decade, handheld ultrasound devices are available from various manufacturers for clinical use. The utility and clinical applications of POC-TTE have been widely used in elective and emergency situations.\[4\] It has proven potential in clinical application for rapid assessment and diagnosis of cardiac function.\[5\] The American Society of Echocardiography (ASE) task force document gives an overview of handheld ultrasound devices, their utility, application and level of training in detail (Table 1). These devices are miniature forms of traditional ultrasound machines with capability to display two-dimensional and colour echo and are affordable with comparable clarity.\[6\]

CLINICAL APPLICATION

Pre-operative period

The pre-operative utility of POC TTE extends from patient’s admission to discharge including the pre-anesthetic clinic. Pre-anesthetic evaluation before induction of anaesthesia includes focused history, physical examination and non-invasive assessment of basic haemodynamic variables, namely, heart rate, blood pressure, respiratory rate, temperature and urine output if possible. However, these primary variables and the physical examination have repeatedly proven insufficient and inaccurate for haemodynamic evaluation and assessment of occult diseases in healthy patients and in high-risk and critically ill patients. Besides a detailed bedside clinical history and physical examination, POC TTE will be complementary and valuable in the pre-operative setting.\[3\] TTE helps in pre-operative assessment of undiagnosed or undifferentiated murmurs, and shortness of breath in known or suspected valvular heart disease patients. It is useful to assess the severity of the valvular disease in elderly hip fracture patients who are poor historians, and in patients who are shocked, sick, intubated patients where the delay in surgery is associated with an increase in morbidity and mortality. TTE has been demonstrated to be an adjunct tool for detailed pre-operative evaluation of the cardiovascular status and rapid assessment in critically ill or rapidly deteriorating patients.\[3\]

In trained and experienced operators’ hand, POC TTE is easy to use, non-invasive and can be repeated in real time. It can be used as a cardiorespiratory monitor for screening, diagnosis and therapeutic interventions in the perioperative period. Availability of standard ultrasound machines for vascular and regional anaesthesia makes it easy to upgrade to TTE with the addition of cardiac probe.

Pre-operative assessment of right and left ventricular function, valvular pathologies, intravascular volume status, pericardial effusion, pleural effusion, pneumothorax, pulmonary hypertension, thromboembolism and regional wall motion abnormalities can be done effectively. Therefore, pre-operative POC TTE helps in the process of decision-making, informed consent and better patient care by providing additional prognostic information. New diagnostic findings can assist in avoiding delays for the operating theatre by appropriate referral and consultation. Formal in-depth TTE examination with the cardiologist in a timely manner is needed for optimisation of cardiac conditions before scheduling to the operating theatre. POC TTE has been described and published for its usefulness, utility and feasibility in various settings for high-risk patients for pre-operative evaluation. Table 2 lists the established risk factors

Name of the examination	Other similar/parallel names of same examination technique	Description
Handheld ultrasound examination	Hand carried Mobile (mobile gadget connected) TTE	This is limited echo study done in limited time and performed by basic or intermediate or advanced users Limited use of echo modes (2D, colour Doppler)
Point of care transthoracic echo	Focus TTE Limited TTE Goal-directed TTE Bedside TTE Rapid assessment TTE Portable TTE	This is limited echo study in limited time, done by basic, or intermediate or advanced users Limited use of echo modes (2D, colour Doppler)
Complete transthoracic echo	Comprehensive TTE Formal TTE	This is detailed complete echo study done by expert and advanced echocardiographer only Use of all echo modes (2D, colour and spectral Doppler and advanced modes and study protocols)

2D – Two-dimensional; TTE – Transthoracic echocardiography; Echo – Echocardiography
on post-operative mortality.[7] In asymptomatic or undiagnosed patients with chronic dyspnoea or in poor historians, POC TTE is helpful in the diagnosis of conditions enumerated in Table 3.

Intra-operative period

The operating theatre is a unique environment of changing physiological milieu with dramatic, acute and unstable situations. POC TTE can be done in addition to other focussed ultrasound protocols for the airway, lung and abdomen. Moreover, merging TTE evaluation with any available clinical algorithms is easy, repeatable and non-invasive.[1-7] Utilising this tool in a timely manner can help in troubleshooting the causes of tachycardia, hypotension and hypoxia when time and situation demand. This modality not only helps in the diagnosis but can also help in monitoring the therapeutic intervention by the patients’ clinical response and to titrate the therapy appropriately. Some of the limitations of TTE and poor echo window in the intra- and post-operative period are access to patients’ chest due to unconventional positioning, surgical dressing, electrocardiography leads, drapes and body habitus.

POC TTE is a safe and easily accessible diagnostic tool to aid in the investigation of arterial hypoxaemia in critically ill patients. It can be used to diagnose both cardiac and non-cardiac causes of arterial hypoxaemia and along with the haemodynamic data it can facilitate early correction to ensure optimal resuscitation and tissue oxygenation [Table 4]. Transoesophageal echo (TOE) can be an adjunct to obtain good windows in difficult situations due to positioning in critically ill and anaesthetised patients.

Routine intra-operative transthoracic echocardiography monitoring

Real-time routine perioperative TTE in non-cardiac surgery could be ideal, as history and monitoring may not provide the answer to an underlying cardiovascular status in the haemodynamically stable patients. TTE before anaesthesia or even in elective outpatient pre-admission anaesthetic clinics can help clinician in actual decision-making at the critical time for appropriate management.[8-10] Conventional first-line management of a patient in an unstable condition with fluid and vasopressor administration will work most of the times. However, in an unresponsive and unstable haemodynamic situation, TTE can provide information required for a rational approach for definitive clinical treatment. This practice possibly can become a new gold standard for anaesthetic monitoring and an adjunct to anaesthesia armamentarium. The important limitations are challenging ergonomics and acquisition of images in non-standard positions whilst on the operating table. Lack of clinical expertise and resources makes it difficult and limits its utility. However, the routine POC TTE practice can create good clinical

Table 2: Established conditions/risk factors for post-operative mortality diagnosed by point of care transthoracic echocardiography

Condition
Systolic dysfunction
RWMA
Valvular heart disease particularly severe aortic stenosis, mitral stenosis, mitral regurgitation
Diastolic heart failure
Hypovolaemia
Severe LV hypertrophy
Large and grossly visible intracardiac masses

RWMA – Regional wall motion abnormalities; LV – Left ventricular

Table 3: Conditions diagnosed on point of care transthoracic echocardiography

Condition
Poor global LV function
Significant aortic stenosis and other valvular heart diseases
Adult congenital heart diseases
Undiagnosed shunts
Pericardial diseases
Diastolic dysfunction
Pulmonary arterial and vascular and thromboembolism diseases
Right ventricular failure
Pleural effusion
Haemo/pneumo or haemopneumothorax
Hypovolaemia
Severe right heart enlargement and high RVSP suggesting pulmonary embolism
Vasodilatation e.g., anaphylaxis
Pericardial effusion
Diagnosis of cardiogenic shock
Peri-arrest situations

RVSP – Right ventricular systolic pressure; LV – Left ventricular

Table 4: Cardiac conditions causing hypoxia diagnosed on point of care transthoracic echocardiography

Condition
RV failure secondary to volume and pressure overload
Pulmonary hypertension
Left heart failure (poor LV EF)
Intracardiac shunts
Primary ASD
Secondary ASD
Patent foramen ovale
Undiagnosed adult congenital heart diseases
Pulmonary embolism-air, fat, gas and clots
Undiagnosed asymptomatic mitral valve disease
Pericardial and or pleural effusion
Newly diagnosed perioperative myocardial infarction or ischaemia with new onset RWMA

ASD – Atrial septal defect; RV – Right ventricle; EF – Ejection fraction; RWMA – Regional wall motion abnormalities; LV – Left ventricular
experience without patient harm which will be useful in clinically demanding circumstances.[10] With limited teaching and education, non-cardiologist physicians and medical students’ performance was found to have good accuracy and agreement with cardiologists’ clinical accuracy after addition of TTE.[11,12]

Post-operative period

An algorithm-based approach for hypotension in post-operative period can help to identify the true causes of hypotension.[13,14] Causes of hypotension after any surgery are likely due to vasodilatation secondary to anaesthetics or other medications, or intra-operative hypovolaemia. Rare causes of unresponsive hypotension in high-risk patients are mentioned in Table 4.

POC TTE is helpful to differentiate the above causes in diagnosis and management immediately after surgery in the post-anaesthesia care unit.

POC TTE can be a useful and excellent adjunct to TOE, as it can be done at the bedside and has advantage in interrogating right heart structures and in situations where TOE is contraindicated. It can be used during weaning studies as well as in patients undergoing extracorporeal membrane oxygenation and in anticoagulated patients.[15]

Procedures related to intracardiac devices, pacing wires, prosthetic valves and pacemakers are potential sources of traumatic pericardial effusion and haemodynamic compromise in the post-operative period. However, TTE can be helpful in diagnosing these conditions very quickly and assist in pericardiocentesis, particularly in angiography suites, cardiac catheterisation and electrophysiology laboratory where patients are likely to be anticoagulated with heparin and/or have active antiplatelet agents on board. These locations may be unfamiliar or hostile and remote locations with limited resources and help. Although TTE and TOE are within the cardiologist’s domain and expertise, the anaesthetist with echo skills can enhance rapid diagnosis and treatment.

Table 5 shows some of the clinical indications where POC TTE can be effectively used as adjunct to other monitoring before or after cardiac surgery.

Point of care transthoracic echocardiography in trauma and resuscitation

Focussed TTE ultrasound is currently recommended by ASE and American College of Emergency Physicians (ACEP) in cardiac arrest situation without interruption of standard advanced cardiac life support algorithm. It helps to differentiate between pseudo- and true pulseless electrical activity (PEA) by diagnosing potentially treatable causes, namely, cardiac tamponade, tension pneumothorax and pulmonary embolism. Echo has been used to confirm the diagnosis of pseudo-PEA and shown to have a better outcome than true PEA in out of hospital cardiac arrest patients.[16]

Rapid and accurate diagnosis is vital, particularly during the ‘golden hour’ of trauma resuscitation. Critical care experts and emergency physicians are using POC TTE for the diagnosis of haemodynamic instability, hypoxia and reversible causes of peri-arrest situations such as pulmonary embolism and cardiac tamponade. Focussed assessment with sonography in trauma (FAST) examination can diagnose poor cardiac contractility, penetrating chest injuries, cardiac contusions and tamponade. Now, FAST scan is an important integral part of advanced life support (advanced trauma life support) algorithm. POC TTE can be very helpful to diagnose the causes of hypotension and shock in addition to facilitate lifesaving procedure and interventions.[16-18]

Education and training opportunities

Various short courses and hands-on workshop opportunities are available for non-cardiology specialists to learn TTE in India and abroad. These post-graduate courses are available for certification, accreditation and reaccreditation. Haemodynamic echo assessment in real-time (HEART) scan is conducted by University of Melbourne, Australia.[19]

This comprehensive on-line educational resource is offering certificate courses, diploma and master degree which is available at physician’s doorstep through distance education, that one can study at their own pace, time and location. In India, Perioperative and Intensive Care Echocardiography and Ultrasonography foundation also has similar type of collaboration with USabcd Organisation (Denmark)

Table 5: Transthoracic echocardiography indications in patients for cardiac surgery

Condition	TTE Indication
Bedside assessment of haemodynamic status in non-intubated patient before induction	Hypotension
Hypotension	Pericardial tamponade in pre- and post-operative period
For ECMO cannulation and weaning study	Acute STEMI and aortic dissection
Acute STEMI and aortic dissection	Acute cardiogenic shock
Post-operative cardiac surgical patients	ECMO – Extracorporeal membrane oxygenation; STEMI – ST-elevation myocardial infarction
and conducts basic echo workshop, Focus Assessed Transthoracic Echo (FATE) course with online e-reading material, complimented with simulator and hands-on human model workshop.[20,21] Indian Academy of Echocardiography[22] and World Interactive Network Focused on Critical Ultrasound[23] also have extensive e-learning, pre-reading materials, courses, workshops, conferences, certification and fellowships programmes.

Society guidelines and endorsement

International Liaison Committee on Focused Cardiac Ultrasound (FoCUS) for the International Conference on FoCUS has released extensive international evidence-based recommendations for FoCUS in 2014 and emphasises extensively on clinical application, teaching, benefits, education and certification principles.[24] Emergency physician training in echo for trauma patients, FAST[25] and FOCUS[24] is endorsed by ASE and American College of Emergency Physicians in their position statement.[26] There are various endorsements and emphasis for the inclusion of echo training and teaching curriculum by the critical care colleges, namely, American College of Critical Care, European College of Critical Care and Australian and New Zealand College of Anaesthetists.[24-28] The position statement and guidelines emphasise on acquisition of images and interpretation of a certain number of cases. From an Indian doctors’ clinical practise perspective, statutory permissions as per Pre-Conception and Pre-Natal Diagnostic Techniques Act 1994 should be obtained by an individual/organisation for the use of ultrasound of any use in any format. In this scenario, a radiologist or a cardiologist’s opinion, in writing or that of a certified echocardiographer, only will stand in a court of law.

AVAILABLE POINT OF CARE TRANSTHORACIC ECHOCARDIOGRAPHY PROTOCOLS

In our opinion and training, HEART scan[29] and FATE[30] protocol can be easily merged with routine as well as emergency clinical anaesthesia practice. Peri-arrest algorithms and protocols are meant for life-threatening crisis situations and need different thinking, approach and training and cannot be generalised in elective situations. Currently, there is no evidence for recommendations for a fixed number of clinical cases and clinical hours for POC clinical ultrasound and/or echo. Appendices 1-3 and Figure 1 give good insight and overview of POC TTE.

LIMITATIONS AND SOLUTIONS

Currently, cost and lack of availability of this technology in remote and regional locations, particularly in third world countries may be limiting factors in its use in routine practice. In addition, unavailability of teaching expertise, courses, workshops and accredited university degrees are main concerns for lack of training and standards. Incorrect diagnosis or misdiagnosis is possible and can cause more patient harm than benefit. Rigorous standards and presence of credentialing

Figure 1: Window/View/Images	PLAX	RV inflow	PSAX	A4C	SC 4C	SC IVC
PLAX	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)	![Image](image4.png)	![Image](image5.png)	![Image](image6.png)
RV inflow	![Image](image7.png)	![Image](image8.png)	![Image](image9.png)	![Image](image10.png)	![Image](image11.png)	![Image](image12.png)
PSAX	![Image](image13.png)	![Image](image14.png)	![Image](image15.png)	![Image](image16.png)	![Image](image17.png)	![Image](image18.png)
A4C	![Image](image19.png)	![Image](image20.png)	![Image](image21.png)	![Image](image22.png)	![Image](image23.png)	![Image](image24.png)
SC 4C	![Image](image25.png)	![Image](image26.png)	![Image](image27.png)	![Image](image28.png)	![Image](image29.png)	![Image](image30.png)
SC IVC	![Image](image31.png)	![Image](image32.png)	![Image](image33.png)	![Image](image34.png)	![Image](image35.png)	![Image](image36.png)

PLAX – Parasternal long axis; RV – Right ventricle; PSAX – Parasternal short axis; A4C – Apical four chamber; SC 4C – Subcostal four chamber; SC – Subcostal; IVC – Inferior vena cava; 2D – Two-dimensional; DA – Descending aorta
authority/licensing body are keys to maintain standards and meet medicolegal requirements. Reporting in standard format and cross-checking by experts from time to time will keep authentication and comparing with other imaging modalities for confirmation of diagnosis will avoid wrong diagnosis and helps in better patient management. Peer review, group discussion, continuous medical education, speciality conferences and maintaining a logbook will keep echocardiographer knowledge and skill up-to-date and also helps in maintenance of continuous professional development (CPD). This paradigm shift of POC assessment by non-cardiologist physician will improve the competency in managing complex patients. With the rapid development of technology and miniaturisation to handheld form of ultrasound machines, affordability and access is a reality in near future. Accuracy of POC TTE in the hands of novice is comparable with expert and has a positive impact on clinical situations.[9-11] It is also equally important to refer the findings of the patients appropriately and in timely fashion for long-term management and follow-up with cardiologists. Authors also acknowledge the huge task and responsibility of teaching and education of already practising anaesthetists. Unfortunately, current evidence is based on all retrospective data, experts’ opinion, consensuses and case studies and prospective randomised studies would better assess its usefulness in routine practice.[31]

ULTRASOUND EDUCATION AND TRAINING

To improve ultrasound teaching and training, there is a need to incorporate an ultrasound curriculum within anaesthesia training from the foundation years.[31,32] Simulation can also be helpful for clinician certification and recertification process.[33,34]

CPD is mandatory and highly warranted. There should be departmental resource manual for the guidelines and mandatory policies related to available equipment, expected performance and annual skill level assessment.[35]

SUMMARY

POC TTE in periooperative settings is an excellent imaging and monitoring tool to guide and manage critically ill patients by the anaesthetist for the best clinical outcome. POC TTE is highly established clinical adjunct because of pattern recognition and helps in answering clinically important questions. It also helps in understanding the physiological state and reserve of cardiovascular system. The authors positively anticipate good results from future prospective randomised trials of POC TTE because of the non-invasive and focussed approach.

POC TTE is a useful investigation to promote a better standard of healthcare driven by diagnostic accuracy and efficiency. This will be possible by ensuring widespread availability of skill and knowledge by incorporating ultrasound education in undergraduate and graduate curriculum. ‘Routine perioperative point of care transthoracic echocardiography’ will be an exciting area of future research.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Faris JG, Veltman MG, Royse CF. Limited transthoracic echocardiography assessment in anaesthesia and critical care. Best Pract Res Clin Anaesthesiol 2009;23:285-98.
2. Jørgensen MR, Bøtker MT, Juhl-Olsen P, Frederiksen CA, Sloth E. Point-of-care ultrasonography. OA Crit Care 2013;1:8.
3. Cowie B. Focused cardiovascular ultrasound performed by anesthesiologists in the perioperative period: Feasible and alters patient management. J Cardiothorac Vasc Anesth 2009;23:450-6.
4. Mehta M, Jacobson T, Peters D, Le E, Chadderdon S, Allen AJ, et al. Handheld ultrasound versus physical examination in patients referred for transthoracic echocardiography for a suspected cardiac condition. JACC Cardiovasc Imaging 2014;7:983-90.
5. Labovitz AJ, Noble VE, Bierig M, Goldstein SA, Jones R, Kort S, et al. Focused cardiac ultrasound in the emergent setting: A consensus statement of the American Society of Echocardiography and American College of Emergency Physicians. J Am Soc Echocardiogr 2010;23:1225-30.
6. Seward JB, Douglas PS, Erb R, Kerber RE, Kronzon I, Rakowski H, et al. Hand-carried cardiac ultrasound (HCU) device: Recommendations regarding new technology. A report from the echocardiography task force on new technology of the nomenclature and standards committee of the American Society of Echocardiography. J Am Soc Echocardiogr 2002;15:369-73.
7. Cho DH, Park SM, Kim MN, Kim SA, Lim H, Shim WJ. Presence of preoperative diastolic dysfunction predicts postoperative pulmonary edema and cardiovascular complications in patients undergoing noncardiac surgery. Echocardiography 2014;31:42-9.
8. Hoole SP, Faller F. Evaluation of hypoxic patients with transeosophageal echocardiography. Crit Care Med 2007;35 8 Suppl: S408-13.
9. Kobal SL, Trento L, Baharami S, Tolstrup K, Naqvi TZ, Cercek B, et al. Comparison of effectiveness of hand-carried ultrasound to bedside cardiovascular physical examination.
Margale, et al.: Point of care transthoracic echocardiography

Am J Cardiol 2005;96:1002-6.
10. Canty DJ, Royse CF. Audit of anaesthetist-performed echocardiography on perioperative management decisions for non-cardiac surgery. Br J Anaesth 2009;103:52-8.
11. Brennan JM, Blair JE, Gnozwodrena S, Ronan A, Shah D, Vasaivala S, et al. A comparison by medicine residents of physical examination versus hand-carried ultrasound for estimation of right atrial pressure. Am J Cardiol 2007;99:1614-6.
12. Martin LD, Howell EE, Ziegelstein RC, Martire C, Whiting-O'Keefe QJ, Shaprio EF, et al. Hand-carried ultrasound performed by hospitalists: Does it improve the cardiac physical examination? Am J Med 2009;122:35-41.
13. Marum S, Price S. The use of echocardiography in the critically ill; the role of FADE (Fast Assessment Diagnostic Echocardiography) training. Curr Cardiol Rev 2011;7:197-200.
14. Perera P, Mailhot T, Riley D, Mandavida D. The RUSH exam: Rapid ultrasound in SHock in the evaluation of the critically ill. Emerg Med Clin North Am 2010;28:29-56.
15. Piatts DG, Sedgwick JF, Burstow DJ, Mullany DV, Fraser JE. The role of echocardiography in the management of patients supported by extracorporeal membrane oxygenation. J Am Soc Echocardiogr 2012;25:131-41.
16. Prosen G, Krizmaric M, Završnik J, Grmec S. Impact of modified treatment in echocardiographically confirmed pseudo-pulseless electrical activity in out-of-hospital cardiac arrest patients with constant end-tidal carbon dioxide pressure during compression pauses. J Int Med Res 2010;38:1458-67.
17. Blaivas M, Fox JC. Outcome in cardiac arrest patients found to have cardiac standstill on the bedside emergency department echocardiogram. Acad Emerg Med 2001;8:616-21.
18. Greenstein YY, Martin TJ, Rolnitzky L, Felner K, Kaufman B. Goal-directed transthoracic echocardiography during advanced cardiac life support: A pilot study using simulation to assess ability. Simul Healthc 2015;10:193-9.
19. The Ultrasound Education Group (UEG), University of Melbourne; HEART Scan Resources. Available from: http://www.heartweb.com. [Last updated on 2011 Jun 08].
20. Perioperative and Intensive Care Echocardiography and Ultrasonography (PICEU) Foundation; FATE Scan Resources. Available from: http://www.piceufoundation.com/. [Last accessed on 2016 July 08].
21. Ultrasound Airway Breathing Circulation Dolor Organisation; FATE Scan Resources. Available from: http://www.piceufoundation.com/. [Last accessed on 2016 July 08].
22. Indian Academy of Echocardiography. Available from: http://www.piceufoundation.com/. [Last accessed on 2016 Oct 20].
23. World Interactive Network Focused on Critical Ultrasound (WINFOCUS). Available from: http://www.piceufoundation.com/. [Last accessed on 2016 Aug 5].
24. Labovitz AJ, Noble VE, Bierig M, Goldstein SA, Jones R, Kort S, et al. American Society of Echocardiography consensus statement: focused cardiac ultrasound in the emergent setting: A consensus statement of the American Society of Echocardiography and American College of Emergency Physicians. J Am Soc Echocardiogr 2010;23:1225-30.
25. Scalea TM, Rodriguez A, Chiu WC, Brennan MD, Fallon WF Jr., Kato K, et al. Focused assessment with sonography for trauma (FAST): Results from an international consensus conference. J Trauma 1999;46:466-72.
26. American College of Emergency Physicians; Emergency Ultrasound Imaging Compendium; 2006. Available from: https://www.acep.org/ICCM---Practice-Management/Ultrasound. [Last accessed on 2009 Nov 01].
27. Neskovic AN, Edvardsen T, Galderisi M, Garbi M, Gullace G, Jurcut R, et al. Focus cardiac ultrasound: The European Association of Cardiovascular Imaging viewpoint. Eur Heart J Cardiovasc Imaging 2014;15:958-60.
28. Australian and New Zealand College of Anaesthetists (ANZCA). ANZCA Guidelines on Training and Practice of Perioperative Cardiac Ultrasound in Adults. PS 46. Available from: http://www.piceufoundation.com/. [Last accessed on 2016 Sep 12].
29. Royse CF. Ultrasound-guided haemodynamic state assessment. Best Pract Res Clin Anaesthesiol 2009;23:273-83.
30. Focus Assessed Transthoracic Echo (FATE) Scan and Protocol Resources. Available from: http://www.piceufoundation.com/. [Last accessed on 2016 June 3].
31. Mosier JM, Malo J, Stolz LB, Bloom JW, Reyes NA, Snyder LS, et al. Critical care ultrasound training: A survey of US fellowship directors. J Crit Care 2014;29:645-9.
32. Expert Round Table on echocardiography in ICU. International consensus statement on training standards for advanced critical care echocardiography. Intensive Care Med 2014;40:654-66.
33. Matyal R, Bose R, Warraich H, Shahul S, Ratchiff S, Panzica P, et al. Transthoracic echocardiographic: simulator: Normal and the abnormal. J Cardiothorac Vasc Anesth 2011;25:177-81.
34. Neelankavil J, Howard-Quijano K, Hsieh TC, Ramsingh D, Scovotti JC, Chua JH, et al. Transthoracic echocardiography simulation is an efficient method to train anesthesiologists in basic transthoracic echocardiography skills. Anesth Analg 2012;115:1042-51.
35. Shillcutt SK, Brakke TR, Thomas WR, Thomas RP, Lisco SJ. The development of a perioperative echocardiography consult service: The Nebraska experience. J Cardiothorac Vasc Anesth 2015;29:777-84.

Announcement

Northern Journal of ISA

Now! Opportunity for our members to submit their articles to the Northern Journal of ISA (NJISA)! The NJISA, launched by ISA covering the northern zone of ISA, solicits articles in Anaesthesiology, Critical care, Pain and Palliative Medicine. Visit http://www.njisa.org for details.

Dr. Sukhminder JIT Singh Bajwa, Patiala
Editor In Chief

Dr. Zulfiquar Ali, Srinagar
Co-Editor

Indian Journal of Anaesthesia | Vol. 61 | Issue 1 | January 2017
Name of the window	Name of the view	Location	Position of the patient	Probe position	Structures need to see/look for	TTE modes	Calculations and pathologies
Parasternal	PLAX view	Left parasternal 4th intercostal space	Patient lying on left side on bed with left upper arm and forearm below the pillow so as to extend the intercostal space. Body exposed above waist	Orientation marker facing right shoulder	Pericardium LV, Mitral valve, Aortic valve, LA, DA in short axis	2D echo Colour Doppler M - Mode	Pericardial and plural effusion
	PLAX RV inflow view	Left parasternal 4th intercostal space	As above	Orientation marker facing right shoulder and probe tilted towards patients pelvis/leg	RA, RV	2D echo Colour Doppler	RVSP Look for Tricuspid regurgitation
	PSAX view	Left parasternal 4th intercostal space	As above	Orientation marker facing left shoulder	Pericardium RV, LV, Mitral valve	2D echo Colour Doppler M - Mode	FAC Look for Pericardial and plural effusion
Apical	Apical 4/5 chamber view	Inframammary, approximately sixth intercostal space, corresponding to apex impulse	As above	Orientation marker facing left side of patient (imagine=ultrasound probe footprint facing from apex of the heart through so that fan of ultrasound is directed towards between shoulder blades)	Pericardium RV, LV, Mitral valve, Aortic valve, TV, RA, LA, LVOT	2D echo Colour Doppler M - Mode	FAC/LVOT VTI visual estimation of EF
	SC 4/5 chamber view	Sub Xiphisternal space, left of the midline	Patient lying flat on back, hands on side, body exposed above waist	Orientation marker facing left side of patient (imagine=ultrasound probe footprint facing from Xiphisternal area so that ultrasound footprint is directed towards between left shoulder and or left scapula)	Pericardium RV, LV, Mitral valve, Aortic valve, TV, RA, LA, LVOT	2D echo Colour Doppler	FAC/LVOT VTI visual estimation of EF
	SC IVC view and SC DA view	Sub Xiphisternal space	Patient lying flat on back, hands on side, body exposed above waist	Orientation marker facing roof (imagine = ultrasound probe footprint facing from Xiphisternal area through so that USG footprint is directed posteriorly with some degree of anticlockwise rotation)	Pericardium RA, TV, RV, IVC view DA	2D echo Colour Doppler	FAC/LVOT VTI preload calculation by IVC size - collapsibility index with respiration

PLAX – Parasternal long axis; RV – Right ventricle; PSAX – Parasternal short axis; LV – Left ventricle; LVOT – Left ventricle outflow tract; TTE – Transthoracic echocardiography; 2D – Two-dimensional; FS – Fractional shortening; FAC=Fractional area change; RVSP – Right ventricular systolic pressure; VTI – Velocity time integral; IVC – Inferior vena cava; DA – Descending aorta; RA – Right atrium; USG – Ultrasonography; LA – Left atrium; TV – Tricuspid valve; EF – Ejection fraction; CO – Cardiac output; SC – Subcostal; Echo – Echocardiography
Appendix 2: Quick overview of haemodynamic point of care transthoracic echocardiography calculation

Cardiac status	Look for	Formula	How to calculate	Views and windows
Contractility	FS	$FS = \frac{LVEDD−LVESD}{LVEDD} \times 100 \%$	Use M - Mode Measure the length in systole and diastole	Use PS LAX or PS SAX view
	FAC	$FAC = \frac{LVEDA−LVESA}{LVEDA} \times 100 \%$	Use M - Mode Measure the area in systole and diastole	PS SAX view
	Eyeball estimation of EFs			PS SAX view
	RWMA			PS SAX view
CO=HR×SV	SV=CSA × VTI	CSA × VTI	Use PWD and place the pulse in LVOT Obtain PWD envelope	A5C view
	VTI	Serially compare the VTI number provided HR remain same	Same as above	A5C view
Volume status	LVEDA	Calculate area in diastole		PS SAX view
	IVC size and variations with respiration (collapsibility index)	Measure the diameter in inspiration and expiration		SC IVC view

CSA – Cross-sectional area; SV – Stroke volume; CO – Cardiac output; HR – Heart rate; RWMA – Regional wall motion abnormalities; VTI – Velocity time integral; LVEDA – Left ventricular end diastolic area; LVEDD – Left ventricular end-diastolic dimension; LVESA – Left ventricular end systolic area; LWEDA – Left ventricular end systolic dimension; PWD – Pulse wave Doppler; LVOT – Left ventricle outflow tract; SC – Subcostal; IVC – Inferior vena cava; PS – Parasternal; LAX – Long axis; SAX – Short axis; A4C – Apical 4 chamber; A5C – Apical 5 chamber
Appendix 3: Quick guide for gross pathologies

Pathology	Gross suggestive features	View and windows
Poor LV systolic function	Poor/sluggish ventricle contraction, Ventricle cavity dilatation, Not uniform thickening of left ventricle walls	PS LAX, A4C, SC SAX, SC 4C
Poor RV function	Poor/sluggish ventricle contraction, Ventricle cavity dilatation more than left, Right heart size more than left heart, Not uniform thickening of ventricle walls	PS LAX, A4C, PS LAX RV inflow, SC SAX, SC 4C
Severe diastolic dysfunction	Large LA > 4 cm, Size of atrium is more than size of ventricle, LV hypertrophy (> 15 mm)	PS LAX, A4C, SC SAX, SC 4C
Stenotic lesions	Leaflets movements are restricted, Calcified annulus, Subvalvular apparatus thickening and calcification	PS LAX, A4C, PS LAX RV inflow, SC SAX, SC 4C
Regurgitant lesions	No leaflets coaptation, Floppy valve leaflets, Colour Doppler shows mosaic pattern (flow acceleration) in expected previous/back chamber	PS LAX, A4C, PS LAX RV inflow, SC SAX, SC 4C
Thromboembolism	Any noticeable mass fix or floating in any chambers or on valves	PS LAX, A4C/5C, SC 4C
Hypovolemia	Vigorous ventricle contraction and small size LV (hyperkinetic), Papillary muscles (in extreme hypovolaemia - ventricle walls) touching each other	PS SAX, A4C/5C, SC 4C
Pericardial effusion	Pericardium is not lined up with ventricle wall and stretched with hypoechoic shadow suggesting fluid collection, Severe if it is > 2 cm space around the heart (around 750 ml of fluid around the heart), Sign of right-sided chamber collapse and left sided in severe cases	PS LAX, A4C, SC 4C

RV – Right ventricle; LV – Left ventricle; SC – Subcostal; LA – Left atrium; PS – Parasternal; LAX – Long axis; SAX – Short axis; A4C – Apical 4 chamber; SC 4C – Sub costal 4 chamber; A5C – Apical 5 chamber