Selenium deficiency-induced redox imbalance leads to metabolic reprogramming and inflammation in the liver

Chaohua Tanga,b, Shuang Lia,b, Kai Zhanga,b, Jing Lia,b, Yunsheng Hana,b, Tengfei Zhana,b, Qingyu Zhaoa,b, Xiaoqing Guoa,b, Junmin Zhanga,b\textsuperscript,*

a State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
b Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China

Abstract

Selenium (Se) intake disequilibrium is associated with many human diseases (e.g., Keshan disease and type 2 diabetes). To understand the mechanism of Se deficiency-induced hepatic pathogenesis, a pure line pig model was established by feeding a diet with either 0.07 mg/kg Se or 0.3 mg/kg Se for 16 weeks. The hepatic metabolome, lipome, global proteome, and whole transcriptome were analyzed. Se deficiency causes a redox imbalance via regulation of selenoproteins at both the mRNA and protein level, and blocks the glutathione antioxidant system along with enhanced glutathione synthesis and catabolism. The Warburg effect was observed by enhanced activation of the glycolysis and phosphate pentose pathways. The tricarboxylic acid cycle was dysfunctional since the preliminary metabolites decreased and shifted from using glycolysis origin substrates to a glutamine catabolism-preferred metabolic mode. The reprogrammed central carbon metabolism induced widely restrained lipid synthesis. In addition, a Se deficiency initiated inflammation by activating the NF-κB pathway through multiple mechanisms. These results identified the potential metabolic vulnerability of the liver in response to a Se deficiency-induced redox imbalance and possible therapeutic or intervention targets.

1. Introduction

Selenium (Se) is considered to represent a living history of how the accumulation of knowledge has extended our understanding of nutrients and human health. Discovered by Berzelius in 18181, Se was initially considered to be a toxic substance. Se deficiency was later identified to be the main cause of Keshan disease in the 19th century and recommended as an essential trace element by the WHO in 1973.

Abbreviations: Se, selenium; SELENO, selenoprotein; GSH, glutathione; GSSG, oxidized glutathione; TRX, thioredoxin; ROS, reactive oxygen species; NADPH, nicotinamide adenine dinucleotide phosphate; NADH, nicotinamide adenine dinucleotide; ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; TCA, tricarboxylic acid cycle; AMPK, AMP-activated protein kinase; NF-κB, nuclear factor κ-light-chain-enhancer of activated B-cells; GPX, glutathione peroxidase; Se-D, Se deficient; Se-A, Se adequate; ICP-MS, inductively coupled plasma mass spectrometry; TXNRD, thioredoxin reductase; CAT, catalase; SOD, super oxide dismutase; MDA, malondialdehyde; IL, interleukin; TNF-α, tumor necrosis factor α; TGF-β, transfer growth factor β; PPP, pentose phosphate pathway; ncRNA, non-coding RNA; ceRNA, competing endogenous RNA; PCA, principal component analysis; SEPHS2, selenoprotein synthetase 2; MSRB, methionine-R-sulfoxide; GCLC, glutamate-cysteine ligase catalytic subunit; GST, glutathione S-transferase; ANPEP, aminopeptidase N; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; Cysthi, -Cystathionine; PAPSS2, bifunctional 3-phosphoadenosine5′-phosphosulfate synthase 2; CTH, cystathionase; HIF-1α, hypoxia-inducible factor 1α; Ribi-SP, ribose-5-phosphate; Sed-7p, sedoheptulose 7-phosphate; 2-OG, Oxoglutaric acid; PKLR, pyruvate kinase; TRPC, dihydropyridine receptor; PGD, 6-phosphogluconate dehydrogenase; PIDA, pyruvate dehydrogenase kinase isozyme 4; GLUD1, glutamate dehydrogenase 1; FASN, fatty acid synthase; GPAM, glycerol-3-phosphate acyltransferase 1; ACAAI2, 3-ketoacyl-CoA thiolase mitochondrial; GK, glycerol kinase; PLA2P3, phospholipase A2; DGKZ, diacylglycerol kinase zeta; ACSL5, long-chain-fatty-acid-CoA ligase 5-like; CPT1A, carnitine O-palmitoyltransferase 1; CPT2, carnitine palmitoyltransferase 2; ACOX1, acyl-CoA oxidase 1; PA, fatty acids; TG, triglycerides; PKLR, pyruvate kinase; PI, phosphatidylinositol; PG, phosphatidylglycerol; DG, diglycerides; PE, phosphatidylethanolamine; PC, phosphatidylycholine; Cer, ceramides; CL, cardiolipin; IL1R1, IL-1β receptor; PLCG2, 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2; KLF15, krueppel-like factor 15; RIG-1, antiviral innate immune response receptor RIG-1; IFIT, interferon-induced protein with tetra-ricopeptide repeats; Mx1, interferon-induced GTP-binding protein Mx1; ISG15, ubiquitin-like protein ISG15.

Corresponding author. Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, Beijing, 100193, China.

E-mail addresses: zhjxms@sina.com, zhangjunmin@caas.cn (J. Zhang).

https://doi.org/10.1016/j.redox.2020.101519
Received 2 February 2020; Received in revised form 8 March 2020; Accepted 21 March 2020
Available online 06 June 2020
2213-2317/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
nine dinucleotide phosphate (NADPH) [16,21], referred to as in-
number of di-
habit, and other factors, which enable the e-
metabolism are indirectly and directly linked in multiple ways. Such
mechanisms and at numerous locations [26]. In
process of generating adenosine triphosphate (ATP), has long been re-
trinsically linked redox and energy metabolism. Energy metabolism, the
mans and pigs have 25 and mice have 24. There is a range of 1
its biological function primarily through selenoproteins, of which hu-
derlying mechanisms of Se on human health is fundamental for tackling
Se intake disequilibrium-induced health problems.
Inserting protein synthesis in the form of selenocysteine, Se exerts
its biological function primarily through selenoproteins, of which hu-
emammalian diseases. For a Se de-
tion of innate immune
indirect ways are ROS-mediated as described above, whereas the direct
ways are mediated via the metabolic requirement of innate immune
cells. While neutrophils are more dependent on glycolysis, monocytes
can use both mitochondrial oxidative phosphorylation and glycolysis,
whereas lymphocytes are largely reliant on oxidative phosphorylation
[27]. Taken together, these factors demonstrate the interplay of ROS-
energy metabolism-inflammation. Therefore, this interaction network is
crucial to our understanding of the molecular basis of disease patho-
genes[28,29].
Based on the above characteristics, hepatic metabolic disorders and
pathology (e.g., elevated oxidative stress and diabetes-like changes,
also altered ultrastructure, and cirrhosis) have been observed in response to a
Se deficiency or excess [30–33]. For Se excess, our preliminary
findings have shown that high dietary Se-induced hyperglycemia and
hyperinsulinemia are associated with the suppression of sugar meta-
bolism and elevated lipid synthesis in pig livers [34]. These findings are in line with that of other studies which have shown a relationship be-
tween high Se intake and type 2 diabetes [8,9,32,35], thereby ex-
tending the knowledge of Se excess toxicity and chronic metabolic
diseases. For a Se deficiency, it has been shown that dietary Se defi-
icien
t activity and resulted in oxidative stress [36,37], enhanced glycolysis and modulated one-carbon metabolism [36,38], and activated signaling pathways linked to
utri
host cells. For a Se de-
cient area of Heilongjiang, China, and the
physiology, represent a more suitable animal model.
In this manner, we created a model using a pure line of pigs and
found that a Se deficiency induced pathological changes in the liver.
The hepatic metabolome, global proteomics, and the whole tran-
scriptome were all altered. Multi-omics data revealed that a Se defi-
cy region of the Se transcriptome, which were then oxidized in mitochondria is a substantial con-
tricarboxylic acid (TCA) cycle enzyme activity through various post-transcriptional mechanisms [22]. AMP and ADP can regulate energy metabolism
through AMP-activated protein kinase (AMPK) signaling pathways.
Despite glycolysis and the TCA cycle, lipid metabolism is also tightly connected to ROS production and can also be regulated by
feedback mechanisms [24,25]. The catabolism of triglycerides into fatty
acids, which are then oxidized in mitochondria is a substantial con-
tributor of ROS production (i.e., cardiomyocytes). Moreover, lipid
metabolism can be feedback regulated by ROS since de novo synthesis
lipid substrates (e.g., citrate and acetyl-CoA) involved in central carbon
metabolism can be regulated by ROS as described above [24].
Additionally, inflammation is energy-intensive and contributes to the
ROS-energy metabolism interaction network. Moreover, ROS can act as stimuli and interact with inflammatory cells at various stages
within the signaling pathway. Using nuclear factor κ-light-chain-en-
hancer of activated B-cells (NF-κB) as an example, the transcription of
NF-κB-dependent genes influences the level of ROS. In turn, the level of
NF-κB activity is also regulated by the level of ROS [26]. Depending
on the context, ROS can both activate and inhibit NF-κB signaling. A high
degree of complexity characterizes ROS interactions with the NF-κB
signaling pathway since ROS can simultaneously function via multiple
mechanisms and at numerous locations [26]. Inflammation and energy
metabolism are indirectly and directly linked in multiple ways. Such
2. Materials and methods
2.1 Animal experiment
All animal procedures used in this study were approved by the Animal Care and Use Committee of the Institute of Animal Sciences of
Chinese Academy of Agricultural Sciences. The pigs were pure line castrated male Yorkshire pigs (45 days old) and housed in a climate-
controlled facility (20°C-25°C) in ventilated cages (one pig per cage) and given ad libitum access to feed and water.
A total of 24 pigs (two each from the same sow, aged 45-days-old) were divided into two equal groups. Two pigs obtained from the same
sow were divided into two different groups, with 12 replicates per group and one pig per replicate. One group was fed a Se deficient (Se-D)
diet, composed of corn and soybeans (Supplemental Table 1) produced in the Se-deficient area of Heilongjiang, China, and the final Se content in
the diet was 0.007 mg/kg as determined by inductively coupled plasma mass spectrometry (ICP-MS). The other group was fed a Se
adequate (Se-A) diet, which was supplemented with SeMet (J&K Che-
metal, Shanghai, China). The final Se content was 0.3 mg Se/kg (re-
commended value by NY/Y 65–2004). The trial lasted for 16 weeks, and
hair and whole blood samples were collected at 8, 12, and 16 weeks

for an analysis of the Se content. At the end of the experiment, after the pigs were fasted for 12 h, blood samples were collected from the pre-caval vein and centrifuged at 3000 × g for 10 min at 4 °C to achieve plasma separation, and stored at −80 °C. All 24 pigs were anesthetized and exsanguinated, the liver was rapidly removed, washed in ice-cold isotonic saline, minced with surgical scissors, snap-frozen in liquid nitrogen, and stored at −80 °C before further use. The tissues used for pathological examination were fixed in 4% paraformaldehyde for approximately 24 h, dehydrated, embedded in paraffin, and sectioned into slices. The tissue sections were stained with H&E for further microscopic observation.

2.2. Se content, redox parameters, cytokines, and selenoprotein mRNA expression analysis

The hair, whole-blood, and liver Se content were determined by ICP-MS using our previously reported methods [40]. The enzyme activity, including GxPs, thioredoxin reductase (TXNRD), catalase (CAT), and super oxide dismutase (SOD) were measured using commercial kits (Nanjing Jiancheng Bioengineering Institute, Jiangsu, China). The amount of H₂O₂, NO, and malondialdehyde (MDA) were also measured using commercial kits (Nanjing Jiancheng Bioengineering Institute, Jiangsu, China). Inflammatory molecules, including interleukin-1β (IL-1β), IL-6, IL-8, IL-12, tumor necrosis factor α (TNF-α), transfer growth factor β (TGFB-β), NF-xB, and NF-xB p65 were determined using commercial kits (Shanghai Enzyme-linked Biotechnology Co. Ltd. Shanghai, China). Inflammatory parameters in both plasma and liver and redox parameters in liver were normalized by protein concentrations which were measured with a bichenichonic acid assay.

The total RNA was isolated from liver samples with an RNAprep pure tissue kit (Tiangen Biotech Co. Ltd. Beijing, China) and the RNA purity and integrity were evaluated with agarose gel (1.2%) electrophoresis and the OD260/OD280 value. The cDNA was synthesized from 2 μg of the total RNA with a PrimeScript RT reagent Kit (TaKaRa, Japan), according to the manufacturer’s protocol. The expression of selected mRNAs was detected with an Applied Biosystems QuantStudioTM Real-Time PCR system (Thermos Fisher Scientific, USA), with SYBR® Premix Ex TaqTM reagents (TaKaRa, Japan). The primers for selenoprotein and a housekeeping gene (GAPDH) were as previously described [41] and are presented in the Supplemental Table 2. The relative mRNA abundance of the selected genes was normalized to GAPDH expression and was then calculated using the 2−ΔΔCt method.
10 mM ammonium formate in acetonitrile as buffer B (pH 10). The peptides were separated using the following gradients: 0–3 min, 5% B; 3–40 min, 60% B; 40–48 min, 80% B; 48–52 min, 80% B; 52–53 min, 5% B; and 53–55 min, 5% B. A total of 36 fractions were collected, dried using a SpeedVac, combined into nine fractions, and resuspended in 0.1% formic acid and 2% acetonitrile for a subsequent nano LC-MS/MS analysis.

A nano LC-MS/MS analysis was performed using an Orbitrap Fusion Tridrib MS (Thermo Scientific, San Jose, CA) equipped with a nanospray flex ion source, and coupled with a Dionex UltiMate 3000 RSLC nano system (Thermo, Sunnyvale, CA). Peptide samples (2 μL) were injected into the PepMap C18 columns (27 μm × 200 mm) at 8 μL/min for on-line enrichment and then separated on a PepMap C18 column (3 μm, 75 μm × 250 mm) with 0.1% formic acid as buffer A and 0.1% formic acid in 80% acetonitrile as buffer B at 300 nL/min. The peptides were eluted with the followed gradients: 0–5 min, 5–12% B; 5–65 min, 12%–38% B; 65–72 min, 38–95% B; 72–80 min, 95% B; 80–81 min, 95–5% B; and 81–95 min, 5% B. The raw data files were searched using Proteome Discoverer (Thermo Fisher Scientific, Version 2.3) against the Sus scrofa protein database from UniProt Proteomes. Mass tolerances for precursor and fragment ions were 0.02 Da and 10 ppm, respectively. The proteins and peptides were filtered with a false discovery rate (FDR) < 1%. The enzyme parameter was limited to semi-tryptic peptides with a maximum mis cleavage of 2. Carbamidomethyl (C) of the peptides was set as fixed modifications; oxidation (M) and deamidated (Q) on the N-terminus of proteins were set as variable modifications. TMT quantification was obtained for the reporter ion intensities per peptide following the manufacturer’s instructions.

2.6. Whole-transcriptome analysis

2.6.1. The mRNA and non-coding RNA sequencing and analysis

After the total RNA was extracted, rRNAs were removed to retain mRNAs and non-coding RNAs (ncRNAs). The enriched mRNAs and ncRNAs were fragmented into short fragments using fragmentation buffer and reverse transcribed into cDNA using random primers. Second-strand cDNA were synthesized using DNA polymerase I, RNase H, dNTP (dUTP instead of dTTP), and buffer. Next, the cDNA fragments were purified with a Qiagen PCR extraction kit, end repaired. The poly(A) was added and ligated to Illumina sequencing adapters. Then UNG (Uracil-N-Glycosylase) was used to digest the second-strand cDNA. The digested products were size selected by agarose gel electrophoresis, PCR amplified, and sequenced using Illumina NovaSeq 6000 platform. After sequencing, the data were subjected to the following preliminary analyses and procedures: filtering of clean reads, alignment with reference genome, transcripts reconstruction, as well as the identification and annotation of novel transcripts. The CNGI (http://www.bioinfo.org/software/cngi) and CPC (http://cpc.cbi.pku.edu.cn/) software was used to assess the protein-coding potential of novel transcripts using default parameters. The level of transcript expression was normalized using the Fragments Per Kilobase of transcript per Million mapped reads (FPKM) method. For circRNA, after filtering the clean reads, RNA alignment, and alignment with the reference genome. For identification, 20mers from both ends of the unmapped reads were extracted and aligned to the reference genome to identify unique anchor positions within the splice site. Anchor reads aligned in the reversed orientation (head-to-tail) indicated circRNA splicing and were then subjected to find_circ to identify the circRNAs. The anchor alignments were then extended such that the complete aligned reads and the breakpoints were flanked by GU/GA splice sites. Candidate circRNA was termed if it was supported by at least two unique back spliced reads in at least one sample. To quantify the circRNAs, back-spliced junction reads were scaled to reads per million mapped reads (RPKM).

2.6.2. Small RNA sequencing and analysis

After the total RNA was extracted using TRIzol, the RNA molecules in a size range of 18 nt–30 nt was enriched by polyacrylamide gel electrophoresis. Then the 3’ adapters were added and the 36 nt–44 nt RNAs were enriched. The 5’ adapters were then also ligated to the RNAs. The ligation products were reverse transcribed by PCR amplification and the 140 bp–160 bp-sized PCR products were enriched to generate a cDNA library and sequenced using an Illumina HiSeq 2500 platform. After sequencing, the data were subjected to the following preliminary analyses and procedures: filtering of clean tags, alignment and identification of small RNA (including existing, known, and novel). The existing small RNA were identified against miRBase (http://www.mirbase.org/, Release 21). All of the unannotated tags were aligned with the reference genome. The novel miRNA candidates were identified according to their genomic positions and hairpin structures predicted by software Mireap (http://sourceforge.net/projects/mireap/ Version 0.2). The level of miRNA expression was calculated and normalized to transcripts per million. For targeted gene prediction, the software, RNAhybrid (v2.1.2) + svm_light (v6.01), Miranda (http://www.microrna.org/microrna/home.do, v3.3a), and TargetScan (http://www.targetscan.org/vert_70/, Version 7.0) were used to predict the various targets. The intersection of the results were selected as the predicted miRNA target genes.

2.7. Data analysis

The data are presented as the mean and standard error of the mean and bar graph were drawn using GraphPad Prism 7.0 (GraphPad Software, Inc. San Diego, USA). The significance of the Se content, redox and inflammatory factors, and the relative selenoprotein mRNA expression obtained from Real-Time PCR was examined with a Student’s t-test and p < 0.05 were used to indicate significance. The principal component analysis (PCA) of the metabolome, lipidome, and proteome was performed using Metaboanalyst 4.0 [43]. Hydrophilic and lipidomics metabolite lipids were normalized to the proteins level and analyzed with a Student’s t-test, and the significant hydrophilic metabolites (p < 0.05) were imported into Metaboanalyst 4.0 [43] for an enrichment analysis. For the proteomic data, the protein abundance was compared using a Student's t-test, carried out on a log2-transformed ratio, p < 0.05 and fold-change (>1.13 or <0.87, inter-error was defined as the value of the fold-change at which 90% of all proteins did not deviate from each other) were used as criteria, and the genes of significant proteins were imported into Metascape [44] for an enrichment analysis. The RNA sequencing data were analyzed by R, a fold-change of 1.5 and FDR 0.05 threshold were set for the mRNA sequencing data, and a fold-change of 2.0 and FDR 0.05 threshold were set for ncRNA. The differential gene expression was imported into Metascape [44] for an enrichment analysis. The miRNA-mRNA targeted network was visualized in Cytoscape (http://apps.cytoscape.org/apps/keggscrape, Version 3.7.1), and the upregulated and downregulated mRNA were enriched by KEGG analysis. The competing endogenous RNA (ceRNA) network was constructed based on: 1) expression of the correlation coefficient between mRNA-miRNA or IncRNA-miRNA < -0.7 were selected as negatively co-expressed lncRNA-miRNA or mRNA-miRNA pairs, both mRNA and lncRNA were miRNA target genes, and all RNAs were differentially expressed; 2) the expression correlation coefficient between lncRNA-mRNA > 0.9 was selected as the co-expressed lncRNA-mRNA pairs, and both the mRNA and IncRNA in this pair were targeted and negatively co-expressed with a common miRNA; and 3) a hypergeometric cumulative distribution function test was used to test whether the common miRNA sponges between the two genes were significant, and only the gene pairs with a p-value less than 0.05 were selected.
Fig. 1. Se deficiency induces a redox imbalance and inflammation in the blood and causes pathological changes in the liver. (A–C) A Se deficiency decreases the Se content in the hair, blood, and liver (n = 6). (D–O) Se deficiency induced a blood redox imbalance by decreasing the anti-oxidant capacity, as well as increasing ROS levels and blood pro-inflammatory factors (n = 12). (P) Se deficiency causes hepatic stripe-like hyperplasia (yellow arrow), sinus expansion (black arrow), and lymphocyte infiltration (blue arrow). Data are represented as mean ± SEM. The white and black bar represents the Se adequate (Se-A) and deficient (Se-D) group, respectively. *P < 0.05; **P < 0.01; ***P < 0.001. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Both the hepatic hydrophilic and lipophilic metabolome are affected by Se deficiency (n = 10). (A and B) The PCA and heatmap show that the hepatic hydrophilic metabolome were affected by a Se deficiency. The red dots and green dots represent the Se-A and Se-D group, respectively. (C) An enrichment analysis of significant metabolites using Metaboanalyst 4.0, and top 50 clusters with their representative enriched terms are presented here, using a discrete color scale to represent statistical significance. (D) PCA shows that the hepatic lipidome was affected by a Se deficiency, the red and green dots represent the Se-A and Se-D group, respectively. (E) The heatmap shows that the hepatic lipids were extensively decreased by a Se deficiency, since the red cells and green cells represent increases and decreases, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Fig. 3. The hepatic global protein expression profiles were altered by a dietary Se deficiency (n = 5). (A) The PCA shows that the global proteome expression profile of the liver from Se-A and Se-D groups differ. The red dots and green dots represent the Se-A and Se-D group, respectively. (B and C) The volcano plot and heatmap represent significant proteins between the Se-A and Se-D groups, the red dots and cells are increased. The blue dots and green cells were decreased. (D) An enrichment analysis of the genes for significant proteins was performed using Metascape. The top 20 clusters with their representative enriched terms were presented here using a discrete color scale to represent a statistical significance. (E) The Metascape enrichment network visualization showed the intra-cluster and inter-cluster similarities of the enriched terms. Cluster annotations are shown in the color code. Metascape visualization of the interactome network was formed by all the genes of significant proteins, in which the Molecular Complex Detection (MCODE) complexes were colored according to their identities. Two MCODE complexes were automatically identified. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

3. Results

3.1. Se deficiency induces a redox imbalance and inflammation in the blood and causes pathological changes in the liver

The Se hair content was increased and decreased in the Se-A and Se-D group, respectively, both with a time-dependent manner throughout the whole trial. Se in both hair and blood of the Se-D group was significantly lower at all three time points compared with that in the Se-A group (Figure 1A and B). Dietary Se deficiency also decreased the hepatic Se content in the liver (Fig. 1C). This implied decreased Se availability in the animals in the Se-D group. Decreased Se availability weakens the plasma anti-oxidant capacity by decreasing GPXs, SOD, and CAT, and increased the level of NO, H2O2, and the level of the lipid peroxidation product, MDA (Fig. 1D-I). Pro-inflammatory molecules (IL-1β, IL-6, IL-8, NF-κB, NF-kB p65) along with a TGF-β levels in the Se-D group were all significantly higher than those in the Se-A group (Fig. 1J-O). The histological stains showed that a dietary Se deficiency induced hepatic sinus expansion (black arrow), lymphocyte infiltration (blue arrow), and stripe-like hyperplasia (yellow arrow), as shown in Figure 1P. All of these results show that a Se deficiency induces a systematic redox imbalance and inflammation in the blood and causes pathological changes in the liver.

3.2. Se deficiency alters the hepatic metabolome, proteome, and whole-transcriptome

To explore the mechanisms related to the phenotype changes, we analyzed the hepatic metabolome, global proteome, and whole-transcriptome. Using an in-house mass spectrometry-based targeted metabolomics approach, 161 hydrophilic metabolites were detected (Supplemental Data 1) and the profiles between the two groups were found to differ (Fig. 2A). A total of 70 hydrophilic metabolites were found to be significantly altered by a Se deficiency (Fig. 2B). These metabolites were involved in the anti-oxidant system (GSH metabolism), central carbon metabolism (e.g., Warburg effect, PPP, transfer of acetyl groups to the mitochondria, mitochondrial electron transport chain, glycolysis, and TCA cycle), one carbon metabolism (e.g., betaine metabolism and methionine metabolism), amino acid metabolism (e.g., glutamate, arginine, and proline metabolism), and glycerolipid metabolism, according to an enrichment analysis using MetaboAnalyst 4.0 (Fig. 2C). Lipidomics detected 1601 and 967 lipid molecules in the positive and negative mode, of which 531 and 434 lipid molecules were confirmed, respectively (Supplemental Data 2 and Supplemental Data 3). The lipid profiles between the two groups all differed (Fig. 2D) and the Se deficiency extensively induced lipid reduction (Fig. 2E). Together these findings showed that both hydrophilic and lipophilic metabolites are greatly altered by a Se deficiency.

Global proteomics identified 2900 proteins (Supplemental Data 4), and the protein profiles were separated according to the treatment (Fig. 3A), and 100 proteins were significantly expressed between the two groups (Fig. 3B and C). The genes of significantly expressed proteins were imported into Metascape [44] for an enrichment analysis. The top nonredundant enrichment clusters were related to cofactor metabolism, lipid metabolism, cellular amino acid metabolism, fatty acid derivative metabolism, biological oxidation, cellular response to interferon-γ, mitotic DNA integrity checkpoint, and others (Fig. 3D). Enrichment networks are created by representing each enriched term as a node and connecting pairs of nodes with Kappa similarities above 0.3, to capture the inter-cluster similarities and intra-clusters redundancies (Fig. 3E). To analyze the protein interactions, a mature complex identification algorithm was applied, and two complexes were automatically identified (Fig. 3E). To link the changes in the metabolome and proteome with those in the transcriptome, the liver was subjected to both mRNA and ncRNA sequencing. PCA showed that the hepatic mRNA profiles were moderately affected (Fig. 4A) and 608 transcripts were significantly altered (Fig. 4B and C). The top non-redundant enrichment clusters showed that the genes involved in central carbon metabolism (e.g., carbohydrate metabolic process, carbon metabolism, pyruvate metabolism, and citric acid cycle), lipid metabolism (fatty acid metabolism, regulation of lipid metabolism, fatty acid metabolism, glicerolipid metabolism, and PPARα-activated gene expression), cofactor metabolism, cellular amino acid metabolism, and others were altered by a Se deficiency (Fig. 4D). For ncRNA, the miRNA profiles were only moderately affected (Figs. 4E) and 82 miRNAs were significantly altered (Fig. 4F and G). The targeted mRNAs of miRNAs were predicted and the miRNA-mRNA target network was constructed based on a Pearson’s correlation coefficient < ~0.7 (Fig. 4H). The KEGG enrichment analysis showed that for the downregulated mRNA and upregulated miRNA network was characterized by selenocompound metabolism, cysteine and methionine metabolism, lipid metabolism (e.g., peroxisome proliferator activated receptor signaling pathway, glycerolipid metabolism, glicerophospholipid metabolism, fatty acid degradation, and fatty acid elongation), and others. The upregulated mRNA and downregulated miRNA network is primarily characterized by energy production (carbon metabolism, glycolysis, and the AMPK signaling pathway) and the inflammatory pathway (NF-κB signaling pathway). In addition, a total of 247 lncRNAs and 90 circRNAs were significantly expressed between the two groups. The ceRNAs were constructed using all significant mRNA, lncRNA, circRNA, and miRNA (Supplemental Table 3). Together these data provided comprehensive datasets for understanding how the liver responds to a dietary Se deficiency at the metabolome, global proteome, and whole-transcriptome level.

3.3. Se deficiency causes a redox imbalance by selenoprotein regulation and blocks the GSH system in the liver

To assess the redox state at the hepatic level and understand how a dietary Se deficiency causes a redox imbalance, we performed a targeted analysis and using the data obtained from omics. A dietary Se deficiency decreased the hepatic anti-oxidant capacity by decreasing the GPXs, TXNRD, and CAT, and increased the level of H2O2, NO and MDA (Fig. 5A–F), showed an elevated oxidative stress, a typical metabolic phenotype of Se deficiency which was widely reported [58]. The mRNA expression of three selenoprotein genes (SELENOP, GPX1, and GPX3) was significantly decreased in the RNA sequencing data, and the mRNA expression of 14 selenoprotein genes was significantly decreased, except for one (selenophosphate synthetase 2, SEPHS2), was significantly increased as determined by quantitative real-time PCR (Fig. 5G–I). At the protein level, all four selenoproteins (GPX1, GPX4, TXNRD1, and SELENOP) identified by global proteomics were found to
GO:0015711: organic anion transport
GO:0032787: monocarboxylic acid metabolic process
GO:0031386: cofactor metabolic process
R-HSA-8978868: Fatty acid metabolism
GO:0019226: regulation of lipid metabolic process
GO:0002075: carbohydrate metabolic process
GO:0006520: cellular amino acid metabolic process
GO:0009089: serine family amino acid metabolic process
hsa01212: Fatty acid metabolism
GO:0042794: response to starvation
GO:1901699: cellular response to nitrogen compound
hsa01210: Carbon metabolism
GO:0048732: gland development
R-HSA-1989783: PRADA activates gene expression
GO:0070885: response to growth factor
GO:0033528: cytoplasmic pattern recognition receptor signaling pathway in response to virus
R-HSA-71406: Pyruvate metabolism and Citric Acid (TCA) cycle
GO:0046489: glycerolipid metabolic process
CORUM:592: SMAD3,SMAD4,Gcn4,Fos complex
ME63: PID AVE3 ORP1 PATHWAY

selenocompound metabolism
cysteine and methionine metabolism
PPAR signaling pathway
glycerolipid metabolism
glycerophospholipid metabolism
fatty acid degradation
fatty acid elongation
pyruvate metabolism

ferroptosis
focal adhesion
folate biosynthesis
carbon metabolism
glycolysis/gluconeogenesis
AMPK signaling pathway
protein processing in ER
NF-kappa B signaling pathway
nicotinate and nicotinamide metabolism

(caption on next page)
be significantly decreased (Fig. 5J). These data demonstrate the robust data achieved using the different techniques and shows that Se decreases selenoprotein expression at both the mRNA and protein level.

Since selenoproteins maintain redox homeostasis primarily through the GSH and TRX systems by transferring the reducing power from NADPH to ROS, we picked up metabolites and mRNAs that were significantly changed as obtained from targeted metabolomics and RNA sequencing to illustrate how decreased selenoproteins caused a redox imbalance. The downregulated selenoprotein mRNAs and proteins by Se deficiency decreased GPXs and TXNRD activity, which hindered the GSH system, and resulted in increased substrates, GSH, NAPDH, and ROS, as well as decreased products, oxidized glutathione (GSSG), and NADP + (Fig. 5K). The blocked GSH system also fed back an enhanced GSH synthesis and catabolism, because the gene expression of the key enzymes, such as glutamate-cysteine ligase catalytic subunit (GCLC), glutathione S-transferase (GST), and aminopeptidase N (ANPEP), were all increased (Figure 5N) and the substrate of GSH synthesis, Gly, choline, Met, Thr, and cystathionine (Cysthi) were decreased, along with increased S-adenosylmethionine (SAM) and decreased S-adenosylhomocysteine (SAH) in response to a Se deficiency (Figure L and M).

In addition, two miRNAs (novel-m0064-5p and miR-146-x) targeting deficiency down-regulates selenoproteins at both the mRNA and protein level and blocks the GSH system, which results in a redox imbalance, enhanced GSH synthesis and catabolism (Figure SO).

3.4. Se deficiency-induced redox imbalance leads to hepatic central carbon and lipid metabolic reprogramming

The interplay between ROS and metabolism is crucial to understanding the molecular basis of metabolic diseases and designing therapeutic strategies [28]. Products like ROS and AMP can feedback standing the molecular basis of metabolic diseases and designing therapeutic strategies [28]. Products like ROS and AMP can feedback the GSH and TRX systems by transferring the reducing power from NADPH to ROS, we picked up metabolites and mRNAs that were significantly changed as obtained from targeted metabolomics and RNA sequencing to illustrate how decreased selenoproteins caused a redox imbalance. The downregulated selenoprotein mRNAs and proteins by Se deficiency decreased GPXs and TXNRD activity, which hindered the GSH system, and resulted in increased substrates, GSH, NAPDH, and ROS, as well as decreased products, oxidized glutathione (GSSG), and NADP + (Fig. 5K). The blocked GSH system also fed back an enhanced GSH synthesis and catabolism, because the gene expression of the key enzymes, such as glutamate-cysteine ligase catalytic subunit (GCLC), glutathione S-transferase (GST), and aminopeptidase N (ANPEP), were all increased (Figure 5N) and the substrate of GSH synthesis, Gly, choline, Met, Thr, and cystathionine (Cysthi) were decreased, along with increased S-adenosylmethionine (SAM) and decreased S-adenosylhomocysteine (SAH) in response to a Se deficiency (Figure L and M).

In addition, two miRNAs (novel-m0064-5p and miR-146-x) targeting deficiency down-regulates selenoproteins at both the mRNA and protein level and blocks the GSH system, which results in a redox imbalance, enhanced GSH synthesis and catabolism (Figure SO).

3.5. Se deficiency-induced redox imbalance initiates liver inflammation via multiple mechanisms

Despite a disruption in energy metabolism, ROS is also an important signal for the initiation of inflammation, which was histopathologically observed as lymphocyte infiltration in the Se-D group. Hepatic pro-inflammatory factors and molecules involved in the inflammatory pathway (IL-1β, IL-6, IL-12, NF-κB, and NF-κB p65) were all significantly increased in the Se-D group (Fig. 7A–F), which indicated that a Se deficiency-induced redox imbalance initiates liver inflammation at the molecular level. For the pathways attributed to the initiation of inflammation, the mRNA expression of IL-1β receptor (IL1R1), and its downstream molecules, 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (PLCG2), were upregulated (Fig. 7G). Three miRNAs (miR-11631-x, miR-6238-y, and miR-9277-y) which targeted NF-κB were identified. In addition, the transcriptional regulator, krueppel-like factor 15 (KLF15), which could inhibit NF-κB activation, was down-regulated at the mRNA level (Fig. 7G). The target miRNAs were also identified (miR-8970-y, miR-11971-y, miR-2904-x, and ssc-miR-29b). Additionally, six proteins, including antiviral innate immune response receptor RIG-I (RIG-1), interferon-induced protein with tetratricopeptide repeats I (IFIT1), IFIT3, IFIT5, interferon-induced GTP-binding protein Mx1 (Mx1), and ubiquitin-like protein ISG15 (ISG15), were involved in the cytosolic RNA-mediated activation of the NF-κB pathways.
C. Tang, et al.
Redox Biology 36 (2020) 101519

(A) GPXs (U/mg prot)
(B) TXNRD (U/mg prot)
(C) H2O2 (nanomol/ml)
(D) NO (nanomol/ml)
(E) CAT (U/mg prot)
(F) MDA (nanomol/ml)

(G) Selenoprotein gene expression
(H) Selenoprotein gene expression
(I) Selenoprotein gene expression

(J) Selenoprotein expression
(K) Metabolites relative intensity
(L) Metabolites relative intensity

(M) Metabolites relative intensity
(N) Genes mRNA relative expression

(O) Red → Green → novel-m0064-5p
Se deficiency → SEPHS2 and 14 selenoprotein gene transcription levels → selenoprotein gene protein levels → miR-146-x novel-m0064-5p → GPXs and TXNRDs enzymes activities

Met → SAM → SAH → CTH → Cys → GCLC → GSH → RX → GST → NADPH → NADP+ → GSSG → Catabolism

(caption on next page)
Fig. 5. Se deficiency induced a hepatic redox imbalance via the regulation of selenoproteins at both the mRNA and protein level and blocks the GSH system. (A–F) A Se deficiency induced a hepatic redox imbalance by decreasing the anti-oxidant capacity and increasing ROS levels (n = 12). (G–I) The mRNA expression of 14 selenoprotein genes were significantly decreased in response to a Se deficiency, while one was significantly increased (SEPHS2) (n = 9). (J) Global proteomics identified five selenoproteins, which were all significantly decreased and in line with the transcription (n = 5). (K, L, M, and N) Targeted metabolomics and RNA sequencing showed that the metabolites and mRNA of the genes involved in the GSH system and related pathways were substantially changed, indicating a blocked GSH system (n = 10 and n = 3 for metabolites and mRNA, respectively). (O) The integrated redox parameters, targeted metabolome, global proteome, and transcriptome revealed that a Se deficiency induced a redox imbalance via regulation of selenoproteins at both the mRNA and protein level and their post-transcriptional regulations, which then blocked the GSH system and increased ROS. The green and red color represents the decreased and increased metabolites or transcripts in the Se-D group, compared with that in the Se-A group. Data are represented as mean ± SEM. The white and black bar represents the Se adequate (Se-A) and deficient (Se-D) group, respectively. *P < 0.05; **P < 0.01; ***P < 0.001. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

signaling pathway were all upregulated as identified by global proteomics (Fig. 7H and I). Thus, all four signaling pathways may contribute to the activation of the NF-κB pathway under a Se deficiency-induced redox imbalance, and result in the initiation of inflammation (Fig. 7J).

4. Discussion

The report of Se deficiency-induced hepatic pathological changes (necrotic degeneration) in 1950s was a milestone that initiated research into the benefits of Se on health. However, despite the redox maintenance effect, only recently studies have preliminary demonstrated that Se deficiency can modulate liver one-carbon metabolism and glycolysis [36,38]. In this study, our global metabolome, proteome, and transcriptome findings extended the essential physiological perspective on Se biology, and suggested that suboptimal dietary Se induced a systematic redox imbalance. Such suboptimal dietary Se has the unexpected ability to drive both central carbon and lipid metabolic reprogramming, and initiating inflammation via multiple pathways in the liver. Knowledge of how to regulate metabolic disorders and inflammation induced by a redox imbalance using Se has wide intervention implications for multiple human diseases [21,47].

The biological function of Se is primarily processed by insertion into selenoprotein synthesis in the form of selenocysteine. Selenoproteins process anti-oxidant effects primarily via two of the most important systems in an organism: the GSH and TRX system. The decreased activities and expression of selenoproteins, as well as the elevated oxidative stress in response to dietary Se has been widely reported [5,37] and confirmed by our findings. Of note, the selenoprotein mRNA was also regulated by a dietary Se deficiency, as the mRNA of 14 selenoproteins was decreased and one (SEPHERS2) was up-regulated, which indicated that dietary Se could modulate selenoproteins at both the mRNA and protein level. Although the impact of dietary Se on selenoproteins synthesis has already been established, the mechanism of selenoprotein mRNA regulated by dietary Se remains unclear. It was recently found that Se induces a protective selenome via activating the transcription factors, TFAP2c and Sp, which prevents ferroptosis and ferroptosis-independent models of cell death [3]. We also predicted some ncRNA that target selenoprotein mRNA, which could be used for further investigation on how Se modulates selenoproteins at the mRNA level. Due to the “bridge”function of GPxs in the anti-oxidant system, a decrease in GPxs resulted in enhanced GSH synthesis and catabolism, which appeared to be a compensatory effect. However, this effect was insufficient to combat the elevated levels of ROS induced by a Se deficiency. Additionally, the dysregulation of the GSH system also altered one-carbon metabolism, since methionine, choline, and SAH were decreased, SAM was increased. These findings may impact the hepatic methylation process, which has been proven elsewhere [38].

ROS are primarily produced from oxidative phosphorylation and can act as a signaling feedback to regulate energy metabolism, and the interaction between ROS and metabolism is related to human disease pathogenesis [48,49]. In this study, we found that a dietary Se deficiency induced oxidative stress to enhance glycolysis, diverted significant amounts of glycolytic intermediates to the PPP for NADPH production. Furthermore, the TCA cycle was found to be dysfunctional since the preliminary metabolites were decreased, whereas the glutamine and backend metabolites (malic acid and fumarate) were increased. All of these findings imply that the hepatic central carbon metabolism shifted to a Warburg mode and glutamine catabolism preferred the TCA cycle metabolism mode, rather than the glycolysis origin substrates during a Se deficiency. The Warburg mode enables the cells to resist metabolic stress [50], and was mainly observed in cancer cells [51]. Regarding whether the Warburg effect was the cause or consequence of carcinogenesis remains controversial, and whether the switch to aerobic glycolysis may represent the very point in time when a normal cell becomes cancerous warrants further investigation [52,53]. Moreover, it has also been shown that efficient mitochondrial oxidative phosphorylation supplies a chronic energy demand primarily for macromolecule synthesis and glycolysis necessary to supply the rapid energy demands of normal cells [54]. Thus, the above results may provide therapeutic or nutritional restoration targets for Se deficiency-induced metabolic diseases. In addition, the level of lipids were substantially decreased in several of the detected species, which may impair membrane function and signaling transduction. The reduction of lipids may attribute to the decreased availability of the de novo synthesis substrate (e.g., acetyl enzyme CoA and citrate) due to a shifted carbon metabolism mode, as they are intrinsically linked [24].

Despite metabolic reprogramming, the initiation of inflammation was also observed in our study, as the NF-κB pathway was activated and pro-inflammatory factors were increased at both the plasma and liver level, which were in line with a recent study, which showed that GPX2 and GPX1 have distinct and overlapping functions in controlling inflammatory lipid mediator synthesis [39]. NF-κB pathways may be activated by multiple mechanisms, as the IL-1R1 and downstream genes were upregulated, with some miRNA that targeted NF-κB. In addition, KLF 15 expression was found to be down-regulated and possibly involved in the activation of the NF-κB pathway, because KLF15 was proven to alter the acetylation status and activity of the pro-inflammatory factor NF-κB through direct interaction with the histone acetyltransferase, p300, and is critical for vascular inflammation [55]. Of note, auto inflammation or autoimmunity protected the organism against inappropriate immune recognition of self-nucleic acids by cytosolic sensors through metabolizing or processing intracellular DNA or RNA [56]. Such pathways were triggered, as evidenced by the upregulation of several molecules (RIG-1, ISG15, IFIT3, and Mx1) that may give rise to the initiation of NF-κB activation and inflammation. Together, these findings suggest that multiple mechanisms may be responsible for activation of the NF-κB pathway and result in Se deficiency-induced hepatic inflammation. Furthermore, investigations to clarify the main upstream activation of the NF-κB pathway on a cellular level would be beneficial, and studies on different ages and elderly organism are also required, since Se metabolism functions in a sex- and age-specific manner [57].

5. Conclusion

Using a pig model, we generated a global picture of how the global metabolome, proteome, and transcriptome were altered in dietary Se

C. Tang, et al. Redox Biology 36 (2020) 101519
deficiency-induced hepatic disease. Multi-omics data revealed that a Se deficiency induced a redox imbalance by regulating selenoproteins at both the mRNA and protein level, blocked the GSH system in conjunction with enhanced GSH synthesis and catabolism. Glycolysis was enhanced, revealing a Warburg effect, and significant amount of glycolytic intermediates were diverted into PPP. The TCA cycle shifted to a glutamine catabolism preferred metabolism mode, rather than the glycolysis origin substrates during a Se deficiency. In addition, lipid...
Synthesis was greatly suppressed by the reprogrammed central carbon metabolism. We also propose that a Se deficiency-induced redox imbalance initiated in inflammation by activating the NF-κB pathway through multiple mechanisms at an organ level, and further studies on a cell-specific level (e.g., hepatocytes versus endothelial or Kupffer cells) are warranted. Taken together, these results extend the comprehensive knowledge of the essential physiological perspective on Se biology related to liver function, and may provide intervention targets for Se deficiency-induced disease in the future.

Funding

This study was supported by the National Natural Science Foundation of China 31802073, National Key Research and Development Program of China 2018YFD050040001-02/03, and the Agricultural Science and Technology Innovation Program ASTIP-IAS12.

Declaration of competing interest

The authors declare no competing interests.

Acknowledgement

The authors highly acknowledge the excellent technical support by Dr. Xiaohui Liu from Tsinghua University.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.redox.2020.101519.
References

[1] J.J. Berzelius, Undersökning av en ny Mineral-kropp, funne i de oertern ore sormen af det i Falun tillverkade svavlet. Aftandligar i fysik, kemi och mineralogia 6 (1818) 42.

[2] Lengo D. and Losalzo J. Shenan disease, selenium deficiency, and the selenoproteome. N. Engl. J. Med.; 370(18): 1756-1760.

[3] I. Alim, J.T. Caulfield, Y. Chen, V. Swarup, D.H. Geschwind, E. Ivanova, J. Seravalli, V. A., J.H. Sanning, K.T. Liu, R. H., R. R., H. A., M. and S. M., J.T. Cavé, B.T. Sagdullaev, S.S. Karuppagounder, R.R. Ratan, Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis, Cell 172 (3) (2018) 409–422 e21.

[4] B.H. Yim, C.B. Clish, V.N. Gladyshev, Selenium deficiency is associated with pro-purine-purine expression at nutritional levels of intact health and longevity, Free Radic. Biol. Med. 127 (2018) 46–54.

[5] M.P. Rayman, K.H. Winther, R. Pastor-Barriuso, R.P. Donahue, M.B. Rayman, K.H. Winther, R. Pastor-Barriuso, F. Cold, M. Thvilum, S. Stranges, L. Zhang, H.W. Zeng, W.H. Cheng, Beneficial and paradoxical roles of selenium at nutritional levels of health in Europe and the Middle East, Nutrients 7 (3) (2015) 1494–1537. Epub 2015 227.

[6] K. Zhang, Y. Han, Q. Zhao, J.Y. Tang, K. Li, X.J. Xin, K.N. Wang, K. Li, X.G. Lei, Selenium deficiency actives mouse liver Nrf2–ARE but vitamin d deficiency does not, Free Radic. Biol. Med. 127 (2019) 409–422 e21.

[7] S. Stranges, J.R. Marshall, R. Natarajan, R.P. Donahue, M.B. Rayman, K.H. Winther, R. Pastor-Barriuso, F. Cold, M. Thvilum, S. Stranges, E. Guallar, S. Doll, Effect of long-term selenium supplementation on mortality: results from a multiple-dose, randomised controlled trial, Free Radic. Biol. Med. 127 (2018) 46–54.

[8] J. Zhou, K. Huang, X.G. Lei, Selenium and diabetes—evidence from animal studies, J. Nutr. Sci. Vitaminol. 63 (2017) 1548–1554.

[9] M.P. Rayman, Selenium and human health, Lancet 379 (9822) (2012) 1256–1268.

[10] J.W. Sun, X.O. Shu, H.L. Li, W. Zhang, J. Gao, L.G. Zhao, W. Zheng, Y.B. Xiang, Dietary selenium intake and mortality in two population-based cohort studies of 133 957 Chinese men and women, Pehl. Nutr. Health 19 (16) (2016) 2991–2996.

[11] R. Stoffen, N.L. Morse, A review of dietary selenium intake and selenium status in Europe and the Middle East, Nutrients 7 (3) (2015) 1494–1537.

[12] K. Zhang, Y. Han, W. Li, H. Liang, J. Yi, W. Tan, S. He, S. Wang, F. Li, X. Wu, J. Ma, X. Shi, Long-term selenium-deficient diet induces liver damage by interrupting hepatocyte ultrastructure and MMP1/3 and TIMP1/3 expression in growing rats, Biol. Trace Elem. Res. 175 (2) (2017) 396–404.

[13] H. Misu, T. Takamura, H. Takahama, H. Hayashi, N. Matsuura-Nagata, S. Kurita, K. Ishikura, H. Ando, Y. Takehisa, T. Ota, M. Sakurai, T. Yamashita, E. Mizukoshi, T. Yamashita, M. Honda, K.-i Miyamoto, T. Kubota, N. Kubota, T. Kadowaki, H.-J. Kim, I.K. Lee, Y. Minokoshi, Y. Sato, K. Takahashi, Y. Yamada, N. Takahara, S. Kimura, A liver-derived protein, selenoprotein P, causes insulin resistance, Cell Metabol. 12 (5) (2010) 483–495.

[14] X. Hu, J.D. Challenger, M.L. Orr, L. Han, K. Liu, K. Uppal, Y.M. Go, D.P. Jones, Selenium supplementation alters hepatic energy and fatty acid metabolism in mice, J. Nutr. 148 (5) (2018) 796–800.

[15] K. Zhang, Y. Han, Q. Zhao, T. Zhan, Y. Li, W. Sun, S. Li, D. Sun, X. Yi, Y. Yu, Q. Cang, T. Zhang, Targeted metabolomics analysis reveals that dietary selenoprotein and acyclic 1,4-dihydropyridine improve selenium homestasis in pig liver, J. Nutr. (2019), https://doi.org/10.1093/jn/nxz317.

[16] I. Galan-Chulet, M. Grau-Perez, De M. Guallar, J.C. Martin-Escudero, A. Dominguez-Lucas, I. Gonzalez-Manzano, R. Lopez-Izquierdo, L.S. Briones-Figueras, J. Redon, F.J.K. Almeida, M. Telles-Plaza, A gene-environment interaction analysis of plasma selenium with prevalent and incident diabetes: the Hertega study, Redox Biol 12 (2017) 798–805.

[17] C. Lennicke, P. John, C. Kripp, R.P. Dojcinovic, A. Muller, L.A. Wessjohann, R. Lichtfels, B. Seliger, Individual differences of selenium compounds on the hepatic proteome and energy metabolism of mice, Biochim. Biophys. Acta Gen. Subj. 1860 (2016) 85–96.