Exceptionally Monadic Error Handling
Looking at bind and squinting really hard

Jan Malakhovski∗

IRIT, University of Toulouse-3 and ITMO University

February 2014 - October 2018

Abstract

We notice that the type of catch :: c a -> (e -> c a) -> c a operator is a special case of monadic bind operator (>>=) :: m a -> (a -> m b) -> m b, the semantics (surprisingly) matches, and this observation has many interesting consequences.

For instance, the reader is probably aware that the monadic essence of the (>>=) operator of the error monad λA.E ∨ A is to behave like identity monad for 'normal' values and to stop on "errors". The unappreciated fact is that handling of said 'errors' with a catch operator of the "flipped" "conjoined" error monad λE.E ∨ A is, too, a monadic computation that treats still unhandled 'errors' as 'normal' values and stops when an "error" is finally handled.

We show that for an appropriately indexed type of computations such a 'conjoined' structure naturally follows from the conventional operational semantics of throw and catch operators. Consequently, we show that this structure uniformly generalizes all conventional monadic error handling mechanisms we are aware of. We also demonstrate several more interesting instances of this structure of which at least bi-indexed monadic parser combinators and conventional exceptions implemented via continuations have immediate practical applications. Finally, we notice that these observations provide surprising perspectives on error handling in general and point to a largely unexplored trail in programming language design space.

Contents

1 Extended Abstract 3
2 Preliminaries 4
3 Introduction 5
4 Not a Tutorial: Side A 7
 4.1 Before-Monadic 7
 4.1.1 Monoid 8
 4.1.2 Functor, Pointed, Applicative 9
 4.1.3 Alternative 10
 4.2 Purely Monadic 11
 4.2.1 Monad definition 11
 4.2.2 MonadFish 12
 4.2.3 Monad’s fail and MonadFail 13
 4.2.4 Identity monad 14
 4.2.5 Maybe monad 14
 4.2.6 Either monad 15
 4.3 An intermission on Monadic boilerplate 15
 4.4 MonadTransformers 16
 4.4.1 Identity 16
 4.4.2 Maybe 17

∗papers@oxij.org; preferably with paper title in the subject line
1 Extended Abstract

In this article we shall use Haskell programming language extensively for the purposes of precise expression of thought (including Haskell type class names for the names of the respective algebraic structures where appropriate, e.g. 'Monad' instead of 'monad').

- We note that the types of

\[
\begin{align*}
\text{throw} & :: e \rightarrow c \ a \\
\text{catch} & :: c \ a \rightarrow (e \rightarrow c \ a) \rightarrow c \ a
\end{align*}
\]

operators are special cases of Monadic return and (\(\gg\gg\)) (bind) operators

\[
\begin{align*}
\text{return} & :: a \rightarrow m \ a \\
(\gg\gg) & :: m \ a \rightarrow (a \rightarrow m \ b) \rightarrow m \ b
\end{align*}
\]

(substitute \([a \mapsto e, m \mapsto \lambda__c \ a]\) into their types, see sections 6 and 7).

- Hence, a type of computations \(c \ e \ a\) with two indexes where \(e\) signifies a type of errors and \(a\) signifies a type of values can be made a Monad twice: once for \(e\) and once for \(a\).

\[
\begin{align*}
\text{class ConjoinedMonads c where} \\
\text{return} & :: a \rightarrow c \ e \ a \\
(\gg\gg) & :: c \ e \ a \rightarrow (a \rightarrow c \ e \ b) \rightarrow c \ e \ b
\end{align*}
\]

Moreover, for such a structure throw is a left zero for (\(\gg\gg\)) and return is a left zero for catch (see sections 8 and 10).

- We prove that the type of the above catch is most general type for any Monadic structure \(\forall a \rightarrow c \ e \ a\) with additional throw and catch operators satisfying conventional operational semantics (via simple unification of types for several equations that follow from semantics of said operators, see section 7). Or, dually, we prove that (\(\gg\gg\)) has the most general type for expressing sequential computations for Monadic structure \(\forall e \rightarrow c \ e \ a\) (with operators named throw and catch) with additional return and (\(\gg\gg\)) operators satisfying conventional operational semantics (see footnote 20).

- Substituting a Constant Functor for \(c\) into ConjoinedMonads above (i.e., fixing the type of errors) produces the definition of MonadError, and, with some equivalent redefinitions, MonadCatch (see section 12). Similarly, IO with similar redefinitions and with the usual caveats of remark 4 is a ConjoinedMonads instance too (see section 16).

- ExceptT (section 9) and some other lesser known and potentially novel concrete structures (see all sections with 'Instance:' in the title, most interestingly, section 14) have operators of such types and their semantics matches (or they can be redefined in an equivalent way such that the core part of the resulting structure then matches) the semantics of Monad exactly.

- Monad type class has a well-known 'fish' representation where 'bind' (\(\gg\gg\)) operator is replaced by 'fish' operator

\[
\begin{align*}
(\gg\gg) & :: (a \rightarrow m \ b) \rightarrow (b \rightarrow m \ c) \rightarrow (a \rightarrow m \ c)
\end{align*}
\]

and Monad laws are just monoidal laws.

Hence, all those structures can be seen as a pairs of monoids over bi-indexed types with identity elements for respective binds as left zeros for conjoined binds (section 8). We find this symmetry to be hypnotic and generalize it in section 17.
• The answer to "Why didn’t anyone notice this already?" seems to be that this structure cannot be expressed well in Haskell (see section 11).

• Meanwhile, it has at least several practically useful instances:

 – Parser combinators that are precise about errors they produce and that reuse common Monadic combinators for both parsing and handling of errors. For instance, the type of many for such a parser combinator guarantees that it cannot throw any errors

 \[
 \text{many} :: \text{c e a} \rightarrow \text{c f} \ [a]
 \]

 (since \(f\) can be anything, it cannot be anything in particular) and

 \[
 \text{choice} :: [\text{c e a}] \rightarrow \text{c e a}
 \]

 is an instance of \text{foldM} (see section 13).

 – Conventional exceptions expressed using \text{Reader Monad} and second-rank \text{callCC} (the whole idea of which seems to be novel, see section 14).

 – Error-explicit \text{IO} (section 15), the latter and similar structures with similar motivation were proposed before, but they did not use the fact that their "other half" is a Monad too.

Every item on the above list, to our best knowledge, is a headline contribution.

2 Preliminaries

Most of the results of this paper are language-agnostic and can be applied (if not straight to practice, then at least to inform design choices) to any programming language (that permits at least two computationally distinguishable program states and some kind of dynamic control flow control) as our definition of an 'error' in 'error handling' is just 'an abnormal program state causing execution of an abnormal code path' and both "abnormal"s can be arbitrarily defined (see footnote 2).

While most of our results are applicable to any programming language, we need some language to express them in and Haskell seems to be the most natural choice to host this discussion since

• most of the cited literature uses Haskell or some variant of ML;
• it has the largest number of error handling mechanisms in active use of all the programming languages we are aware of;
• as a consequence, most other programming languages implement a subset of Haskell’s enormous library of error handling mechanisms;
• while it is not ideal for our purposes (Haskell cannot properly express the main result and the improper encoding of the main result is not particularly convenient, see section 11), it is expressive enough to show how a convenient encoding could have been implemented in theory;
• it is surprisingly popular for an 'academic' language.

Using Haskell also allows this paper to be encoded as a set of Literate Haskell programs in a single Emacs Org-Mode tree [1, 2].

Our preferred compiler is The Glorious Glasgow Haskell Compiler (GHC) [3] version 8.2 as we shall use a number of its extensions over Haskell 2010 [4] specification.

Readers unfamiliar with Haskell are advised to read through any tutorial introduction into Haskell at least until they start feeling like Haskell is just a syntax for school-level arithmetic with user-definable functions, lambdas, types, algebraic data types and type classes. After that it is recommended to look over Typeclassopedia [5], Diehl’s web-page [6], the table of contents (just the list of modules) of GHC’s base package [7], and the types and descriptions of functions from the Prelude module of base.

The rest can be learned on-demand from sections 4 and 5 and cited documentation.

1 The source code is available at https://oxij.org/paper/ExceptionallyMonadic/. It also gets embedded into the PDF version of this article when the source gets compiled straight to PDF (i.e. via pdftex, xetex, or luatex, but not via dvipdf). Unfortunately, the file you are looking at was compiled using dvipdf. This also means that in this file URLs with line breaks would not be clickable as dvipdf generates incorrect PDF link boxes for them. Properly compiled version is available via the above link.
3 Introduction

Definition 1. Generally, when program encounters an "error" all it can do is to switch to an "exceptional" execution path [8]. The latter can then either encounter an "error" itself or

1. gracefully "terminate" some part of the previous computation (including the whole program as a degenerate case) and continue (when there is something left to continue),

2. "fix" the "problem" and resume the computation as if nothing has happened.

Error handling\(^2\) is an algebraic subfield of the programming languages theory that studies this sort of seemingly simple control structures.

Different substitutions for "error", "exceptional" and "terminate" into definition 1 variant 1 and substitutions for "error", "exceptional", "fix" and "problem" into definition 1 variant 2 produce different error handling mechanisms. Some examples:

- Identity substitution for variant 1 gives programming with error codes, programming with algebraic data types [9, 10] that encode errors, programming with algebraic data types with errors [11, 12] (not the same thing), exceptions in conventional programming languages [8, 13–16] (with so called "termination semantics" [17, 16.6 Exception Handling: Resumption vs. Termination]), error handling with monads [18–23], monad transformers [24–26], Scheme’s and ML’s call/cc [27], and delimited callCC [26, 28, 29].

- Substituting 'unparsable string', 'alternative', 'backtrack' for variant 1 gives monadic parser combinators [30].

- Identity substitution for variant 2 gives error handling in languages with so called 'resumption semantics' [17, 16.6 Exception Handling: Resumption vs. Termination] like, for instance, Common LISP [31] (condition handling) and Smalltalk [15].

- Substituting 'effect', 'effect handler', 'handle', 'it' for variant 1 or 2 (depending on the details of the calculus) produces effect systems [25, 32–36] and effect systems based on modal logic with names [37, 38].

- "System call", "system call handler", 'handle', 'it' for variant 2 produces conventional system calls [39].\(^4\)

- Substituting 'signal', "signal handler", 'handle', 'it', 'it' for variant 2 gives hardware interrupts and POSIX signals [39].\(^5\)

\(^2\) Not a consensus term. Some people would disagree with this choice of a name as they would not consider some of our examples below to be about "errors". However, for the purposes of this article we opted into generalizing the term "error" of 'error handling' instead of inventing new terminology or appropriating terminology like 'exceptions', 'interrupts', 'conditions' or 'effects' that has other very specific uses. To see the problem with the conventional terminology consider how would you define 'program encountered an error' formally and generally for any abstract interpreter (you can not). Now consider the case where an interpreter is a tower of interpreters interpreting one another. Clearly, what is an 'error' for one interpreter can be considered normal execution for the one below. A simple example of such a structure is the Maybe Monad discussed in section 4.2.5 in which expressions using do-syntax never consider Nothing while handling said Nothings by the Monadic (>>=) operator is a completely ordinary case for the underlying Haskell interpreter. Hence, in this article we consider anything that matches definition 1 to be about 'error' handling. If the reader still feels like disagreeing with our argument we advise mentally substituting every our use of "error" with something like "an abnormal program state causing execution of an abnormal code path" (where definitions of both "abnormal"’s are interpreter-specific).

\(^4\) Except in most UNIX-like operating systems system calls cannot call other system calls directly and have to use an equivalent kernel API instead.

\(^5\) Indeed, algebraic effects from the point of view of an OS-developer are just properly typed system calls with nesting and modular handling.

\(^3\) Indeed, POSIX signals and hardware interrupts are 'system calls in reverse' (with some complications outside of the scope of this article): kernel and/or hardware raises and applications handle them.
The first complication of the above scheme is the question of whenever for a given error handling mechanism the "error" raising operator

1. passes control to a statically selected (lexically closest or explicitly specified) enclosing error handling construct (e.g. `throw` and `catch` in Emacs LISP [40], POSIX system calls and signals) or

2. the language does dynamic dispatch to select an appropriate error handler (like exceptions in most conventional languages like C++, Java, Python, etc do).

Another complication is ordering:

1. Most conventional programming languages derive their error handling from SmallTalk [15] and Common LISP [31] and the order in which the program handles "errors" corresponds to the order in which execution encounters them.

2. Meanwhile, some CPU ISAs\(^6\) expose the internal non-determinism and allow different independent data-flows to produce hardware exceptions in non-deterministic manner (e.g. arithmetic instructions on DEC Alpha). So do Haskell [41] (see section 4.5) and, to some extent, C++ [42] programming languages.

Finally, another dimension of the problem is whenever the objects signifying "errors" (e.g. arguments of `throw`) are

1. first-class values (error codes, algebraic data types) as in most conventional languages,

2. labels or tags as in modal logic with names and, to some degree, with `call/cc` and `callCC`.

In short, despite its seemingly simple operational semantics, error handling is an algebraically rich field of programming languages theory.

Meanwhile, from the perspective of types there are several schools of thought about effects.

- The first one, started by Gifford and Lucassen [43–45] represents effects as type annotations. This works well in programming languages with eager evaluation, but becomes complicated in lazy languages (application in a lazy language delays effects until thunk’s evaluation, hence type system has to either put nontrivial restrictions on the use of effects in expressions or annotate both arrows and values with effects, the latter, among other things, breaks type preservation of η-conversion since \(λx.txt\) moves effect annotation from the arrow to the result type).

- The second one, started by Moggi and Wadler [18, 20] confines effects to monadic computations. The latter can then be annotated with effect annotations themselves [46]. Monads work well for small programs with a small number of effects, but, it is commonly argued, they don’t play as nice in larger programs because they lack in modularity [33] (hence, the need for monad transformers, which are then critiqued as hard to tame [35]) and produce languages with non-uniform syntax (pure functions look very different from monadic ones and functions that are useful in both contexts have to be duplicated, think e.g. `map` and `mapM`).

- The third one, started by Nanevski [37] represents effects using modal logic with names. Practical consequences of this way of doing things are unknown, as this construction didn’t get much adoption yet.

\(\text{6Instruction Set Architecture (ISA) is a specification that describes a set of Operation Codes (OPcodes, which are a binary representation of an assembly language) with their operational semantics. "i386", "i686", "amd64" ("x86_64"), "aarch64", "riscv64", etc are ISAs.}\)
In short, from type-theoretic point of view the progression of topics in the cited literature can be seen as pursuing calculi that are, at the same time, computationally efficient, algebraically simple (like monads), but modular (like effect systems).

Note, however, that all of those schools of thought consider exceptions to be effects, they only disagree about the way to represent the latter. Meanwhile, from a perspective of a programming language implementer, there are several problems with that world view:

- mechanisms that support resumption semantics are commonly disregarded as useless and computationally expensive error handling mechanisms (most notably [17, 16.6 Exception Handling: Resumption vs. Termination, pp. 390–393]),
- in particular, all popular programming languages implement builtin exceptions even though they have more general error handling mechanisms like condition handling in Common LISP and call/cc in Scheme and ML because those are just too computationally expensive for emulation of conventional exceptions [29],
- and even in languages with nothing but exceptions and termination semantics, high-performance libraries that do a lot of error handling frequently prefer not to use exceptions for performance reasons and to remove any non-local control-flow.

In short, from practical point of view most of those type-theoretic constructs are an overkill for most programs. Meanwhile, we are not aware of any non-ad-hoc language-agnostic algebraic structure that captures all of the exception handling (both throwing, and catching) without introducing any other superfluous structure on top. In this article we shall demonstrate a fairly straightforward but surprisingly useful solution to this problem.

4 Not a Tutorial: Side A

While algebraic structures used in this article are simple, there are a lot of them. This section is intended as a reference point for all algebraic structures relevant in the context of error handling that are referenced in the rest of the paper (for reader’s convenience and for high self-sufficiency of the Literate Haskell version). Most of those are usually assumed to be common knowledge among Haskell programmers. Note however, that this section is not intended to be a tutorial on either

- functional/declarative programming in general,
- Haskell language in particular (see section 2 for pointers),
- error handling in Haskell in general,
- practical usage of error handling structures discussed is this section in particular (we show only very primitive examples, if any; for the interesting ones the reader will have to look into citations and examples given in the original sources).

All structures of this section are ordered from semantically simple to more complex (that is, we do not topologically sort them by their dependencies in GHC sources). For the reasons of simplicity, uniformity, self-containment, and novel perspective some of the given definitions differ slightly from (but are isomorphic/equivalent to) the versions provided by their original authors. The most notable difference is the use of Pointed type class (see section 4.1.2) instead of conventional Monadic return and Applicative pure. All structures are listed alongside references to the corresponding papers, documentation and original source code.

This section can be boring (although, we feel like most remarks and footnotes are not). On the first reading we advise to skip straight to section 5 and refer back to this section on demand.

4.1 Before-Monadic

This subsection describes type classes that have less structure than Monad but are useful for error handling nevertheless.
4.1.1 Monoid

GHC.Base from base [7] package defines Monoid type class as follows:

```
class Monoid a where
  mempty :: a
  mappend :: a -> a -> a

  -- defined for performance reasons
  mconcat :: [a] -> a
  mconcat = foldr mappend mempty
```

and wants its instances to satisfy the following conventional equations ("Monoid laws")

```
-- `mempty` is left identity for `mappend`,
  mempty `mappend` x == x

-- `mempty` is right identity for `mappend`,
  x `mappend` mempty == x

-- `mappend` is associative,
  x `mappend` (y `mappend` z) == (x `mappend` y) `mappend` z
```

and an additional constraint

```
-- and `mconcat` is extensionally
-- equal to its default implementation
  mconcat == foldr mappend mempty
```

Signature and default implementation for mconcat is defined in the type class because mconcat
is a commonly used function that has different extensionally equal intensionally non-equal definitions
with varied performance trade-offs. For instance,

```
mconcat' :: Monoid a => [a] -> a
mconcat' = foldl' mappend mempty
```

(where foldl' is a strict left fold) is another definition that satisfies the law given above (since mappend
is associative), but this implementation will not produce any superfluous thunks for strict mappend.

Monoids are not designed for error handling per se but programmers can use their neutral elements
to represent an error and associative composition to ignore them. Whenever "ignoring" is "handling"
is a matter of personal taste.

One of the simpler instances is, of course, a list

```
instance Monoid [a] where
  mempty = []
  mappend = (++)
```

and hence, for instance, functions generating errors can produce empty lists on errors and singleton
lists on successes.

Note that by following Pointed logic used below we should have split Monoid into two type classes, but since we will
not use Monoids that much in the rest of the article we shall use the original definition as is.
4.1.2 Functor, Pointed, Applicative

Most of the error handling mechanisms that follow are Applicative Functors. GHC.Base from base [7] package defines those two algebraic structures as follows

class Functor f where
 fmap :: (a -> b) -> f a -> f b

infixl 4 <*>
class Functor f => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

and wants their instances to satisfy

-- `fmap` preserves identity
fmap id == id

-- `(<*>)` is `fmap` for pure functions
pure f <*> x == fmap f x

and some more somewhat more complicated equations [5]. We shall ignore those for the purposes of this article (we will never use them explicitly). Meanwhile, for the purposes of this article we shall split the pure function out of Applicative into its own Pointed type class and redefine Applicative using it as follows (this will simplify some later definitions).

class Pointed f where
 pure :: a -> f a

infixl 4 <*>
class (Pointed f, Functor f) => Applicative f where
 (<*>) :: f (a -> b) -> f a -> f b

We shall give all definitions and laws using this hierarchy unless explicitly stated otherwise.

The most trivial example of Applicative is the Identity Functor defined in Data.Functor.Identity of base

newtype Identity a = Identity { runIdentity :: a }

instance Pointed Identity where
 pure = Identity

instance Functor Identity where
 fmap f (Identity a) = Identity (f a)

instance Applicative Identity where
 (Identity f) <*> (Identity x) = Identity (f x)

The most trivial example of a Functor that is not Applicative is Constant Functor defined in Data.Functor(Const of base as

newtype Const a b = Const { getConst :: a }

instance Functor (Const a) where
-- note that it changes type here
fmap f (Const a) = Const a
-- so the following would not work
-- fmap f x = x

It is missing a `Pointed` instance. However, if the argument of `Const` is a `Monoid` we can define it as

```haskell
instance Monoid a => Pointed (Const a) where
  pure a = Const mempty
```

```haskell
instance Monoid a => Applicative (Const a) where
  Const x <*> Const a = Const (mappend x a)
```

Remark 1. One can think of `Applicative f` as representing generalized function application on structure `f`: `pure` lifts pure values into `f` while `(<*>)` provides a way to apply functions to arguments over `f`. Note however, that `Applicative` is not a structure for representing generalized functions (e.g. `Applicative` gives no way to compose functions or to introduce lambdas, unlike the `Monad`, see remark 2).

4.1.3 Alternative

Control.Applicative module of base [7] defines `Alternative` class as a monoid on `Applicative` Functors.7

```haskell
class Applicative f => Alternative f where
  empty :: f a
  (<|>) :: f a -> f a -> f a

  -- defined for performance reasons
  some :: f a -> f [a]
  some v = fmap (:) v <|> many v

  many :: f a -> f [a]
  many v = some v <|> pure []
```

requiring monoid laws to hold for `empty` and `(<|>)`

```haskell
-- `empty` is left identity for `(<|>)`,
empty <|> x == x

-- `empty` is right identity for `(<|>)`,
 x <|> empty == x

-- `( <|>` is associative,
 x <|> (y <|> z) == (x <|> y) <|> z

-- and both `some` and `many` are
-- extensionally equal to their
-- default implementations
some v == fmap (:) v <|> many v
many v == some v <|> pure []
```

Combinators `some` and `many`, similarly to `mconcat`, commonly occur in functions handling `Alternatives` and can have different definitions varying in performance for different types. The
most common use of Alternative type class is parser combinators (section 5.2) where some and many coincide with + ('one or more') and * ('zero or more', Kleene star) operators from regular expressions/EBNF. Before the introduction of Alternative that role was played by now deprecated MonadPlus class, currently defined in Control.Monad of base as follows

```
class (Alternative m, Monad m) => MonadPlus m where
  mzero :: m a
  mzero = empty

  mplus :: m a -> m a -> m a
  mplus = (<|>)
```

We shall give example instance and usage of Alternative in section 5.2.

4.2 Purely Monadic

This subsection describes algebraic structures that involve Monad type class and its instances.

4.2.1 Monad definition

GHC.Base from base [7] defines Monad in the following way using the original (i.e. not Pointed) hierarchy (also, at the time of writing base uses a bit uglier definition which is discussed in section 4.2.3)

```
infixl 1 >>=
class Applicative m => Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> m b) -> m b
```

and wants its instances to satisfy the following equations known as "Monad laws"

```
-- 'return' is left identity for '(>>=)'
return a >>= f == f a

-- 'return' is right identity for '(>>=)'
f >>= return == f

-- '(>>=)' is associative
(f >>= g) >>= h == f >>= (\x -> g x >>= h)
```

Note that this definition also expects the following additional "unspoken laws" from its parent structures (see section 4.3 for definitions of liftM and ap).

```
fmap == liftM
pure == return
(<*>) == ap
```

Moreover, we feel that the name 'return' itself is an unfortunate accident since return only injects pure values into m and does not "return" anywhere. We shall avoid that problem and simplify the above equations by redefining Monad using Pointed hierarchy instead

```
infixl 1 >>=
class Applicative m => Monad m where
  (>>=) :: m a -> (a -> m b) -> m b

-- for backward-compatibility
return :: Monad m => a -> m a
return = pure
```
Remark 2. Note that while Applicative is too weak to express generalized functions (remark 1), Monad, in some sense, is too strong since (>>=) combines function composition (the whole type) with lambda introduction (the type of the second argument). This might be easier to see with the definition given in section 4.2.2.

What is the "just right" structure for representing a generalized function is a matter of debate: some would state "an Arrow" [47], others "a (Cartesian Closed) Category" [48], yet others might disagree with both.

A very common combinator used with Monads bears a name of (>>) and can be defined as

\[
(\gg) :: \text{Monad} m \Rightarrow m a \rightarrow m b \rightarrow m b
\]
\[
a \gg b = a \gg= \text{const} \ b
\]
\[
\rightarrow a \gg= _ \rightarrow b
\]

The following subsections will provide many example instances.

4.2.2 MonadFish

A somewhat lesser known but equivalent way to define Monad is to define (>>=) in "fish" form as follows

\[
\text{infixl 1 } \gg=
\]
\[
\text{class Applicative } m \Rightarrow \text{MonadFish } m \text{ where}
\]
\[
(\gg=) :: (a \rightarrow m b) \rightarrow (b \rightarrow m c) \rightarrow (a \rightarrow m c)
\]

This way Monad laws become Monoid laws

- `pure` is left identity for `(\gg=)`
 \[
 \text{pure } \gg= f = f
 \]
- `pure` is right identity for `(\gg=)`
 \[
 f \gg= \text{pure} = f
 \]
- `(\gg=)` is associative
 \[
 (f \gg= g) \gg= h = f \gg= (g \gg= h)
 \]

Both definitions of Monad are known to be equivalent in the folklore, but we could not find a reference with a simple proof of that fact, hence we shall give one ourselves.

Lemma 1. \((f \gg= g) \cdot h = (f . h) \gg= g\)

Proof. For pure values `(\gg=)` is a composition with flipped order of arguments (.)

\[
\text{instance MonadFish Identity where}
\]
\[
f \gg= g = g \cdot \text{runIdentity} . f
\]

In other words, \(f \gg= g = g \cdot f\), which gives the following

\[
(f \gg= g) \cdot h \gg= (f \gg= g)
\]
\[
\gg = (h \gg= \text{pure}) \gg= (f \gg= g)
\]
\[
\gg = ((h \gg= \text{pure}) \gg= f) \gg= g
\]
\[
\gg = (h \gg= f) \gg= g
\]
\[
\gg = (f \cdot h) \gg= g
\]

which, with some abuse of notation `(\gg=)` is not heterogeneous, the above lifts pure values into \(m\) with pure, can be written simply as
Lemma 2. Monad and MonadFish define the same structure.

Proof. The cross-definitions:

\[
\begin{align*}
\text{instance } & (\text{Applicative } m, \text{Monad } m) => \text{MonadFish } m \text{ where} \\
& f >>= g = \lambda a \rightarrow (f a) >>= g -- (1) \\
\text{instance } & \{-\# \text{OVERLAPPABLE} \-\} \\
& (\text{Applicative } m, \text{MonadFish } m) => \text{Monad } m \text{ where} \\
& ma >>= f = (\text{id} >>= f) ma -- (2)
\end{align*}
\]

- (1) implies (2):

\[
\begin{align*}
ma >>= f & = (\text{id} >>= f) ma \\
& = (\lambda a \rightarrow \text{id} a >>= f) ma \\
& = ma >>= f
\end{align*}
\]

- (2) implies (1):

\[
\begin{align*}
f >>= g & = \lambda a \rightarrow (f a) >>= g \\
& = \lambda a \rightarrow (\text{id} >>= g) (f a) \\
& = (\text{id} >>= g) . f \\
& = (\text{id} . f) >>= g \\
& = f >>= g
\end{align*}
\]

4.2.3 Monad’s fail and MonadFail

Section 4.2.1 did not give the complete definition of Monad as is defined in the current version of base [7]. Current GHC.Base module defines Monad in the following way using the original (not Pointed) hierarchy

\[
\text{infixl 1 >>=} \\
\text{class } \text{Applicative } m => \text{Monad } m \text{ where} \\
\text{return} : : a \rightarrow m a \\
(\text{>>=} : : m a \rightarrow (a \rightarrow m b) \rightarrow m b \\
\text{fail} : : \text{String} \rightarrow m a \\
\text{fail s} = \text{error} s
\]

Note the definition of the fail operation. That function is invoked by the compiler on pattern match failures in do-expressions (see section 4.7 for examples, see section 4.5.6 for the definition of error), but it can also be called explicitly by the programmer in any context where the type permits to do so.

The presence of fail in Monad class is, clearly\(^2\), a hack. There is an ongoing effort (aka "MonadFail proposal", "MFP") to move this function from Monad to its own type class defined as follows (in both hierarchies)

\(^2\)It involves an error handling mechanism that is more complicated than the thing itself. It creates semantic discrepancies (e.g. Maybe is not equivalent to Either () , see section 4.2.6).
class Monad m => MonadFail m where
 fail :: String -> m a
 fail s = error s

As of writing of this article the new class is available from Control.Monad.Fail, but fail from
the original Monad is not even deprecated yet. We shall use MonadFail instead of the original fail in
our hierarchy for simplicity.

4.2.4 Identity monad

We can define the following Monad and MonadFail instances for the Identity Functor

instance Monad Identity where
 (Identity x) >>= f = f x

instance MonadFail Identity where
 -- default implementation
despite this instance it is still usually referenced as 'Identity Functor' even though it is also an
Applicative and a Monad.

4.2.5 Maybe monad

The simplest form of Monadic error handling (that is, not just 'error ignoring') can be done with
Maybe data type and its Monad instance defined in Data.Maybe of base [7] equivalently to
data Maybe a = Nothing | Just a

instance Pointed Maybe where
 pure = Just

instance Monad Maybe where
 (Just x) >>= k = k x
 Nothing >>= _ = Nothing

instance MonadFail Maybe where
 -- custom `fail`
 fail _ = Nothing

The pure operator simply injects a given value under Just constructor, while the definition of
(>>=) ensures that

- injected values are transparently propagated further down the computation path,
- computation stops as soon as the first Nothing gets emitted.

In other words, Maybe Monad is Identity Monad that can stop its computation on request. A
couple of examples follow

maybeTest1 :: Maybe Int
maybeTest1 = do
 x <- Just 1
 pure x

maybeTest2 :: Maybe Int
maybeTest2 = do
x <- Just 1
pure x
Nothing
Just 2

maybeTest = maybeTest1 == Just 1
&& maybeTest2 == Nothing

4.2.6 Either monad

Either data type is defined in Data.Either of base [7] equivalently to

data Either a b = Left a | Right b

instance Pointed (Either e) where
 pure = Right

instance Monad (Either e) where
 Left l >>= _ = Left l
 Right r >>= k = k r

instance MonadFail (Either e)
 -- default 'fail'

Either is a computation that can stop and report a given value (the argument of Left) when falling out of Identity execution. The intended use is similar to Maybe

eitherTest1 :: Either String Int
eitherTest1 = do
 x <- Right 1
 pure x

eitherTest2 :: Either String Int
eitherTest2 = do
 x <- Right 1
 pure x
 Left "oops"
 Right 2

eitherTest = eitherTest1 == Right 1
&& eitherTest2 == Left "oops"

Purely by its data type definition Maybe a is isomorphic to Either () a (where () is Haskell’s name for the ML’s unit type and type-theoretic 'top' type), but their Monad instances (in the original hierarchy, MonadFail in our hierarchy) differ: Maybe has non-default fail, while Either does not. This produces some observable differences discussed in section 4.7.

4.3 An intermission on Monadic boilerplate

Haskell does not support default definitions for functions in superclasses that use definitions given in subclasses. That is, Haskell has no syntax to define Functor and Applicative defaults from Monad instance of the same type.

Which is why to compile the code above we have to borrow a couple of functions from Control.Monad of base
The problem with Monads is that they, in general, do not compose. Monad transformers [24] provide a systematic way to define structures that represent 'a Monad with a hole' that allow computations from an inner Monad m to be lifted through a hole in an outer Monad (t m) (t transforms monad m, hence 'monad transformer'). The main type class is defined in Control.Monad.Trans.Class module of transformers [26] package as follows:

```haskell
class MonadTrans t where
    lift :: (Monad m) => m a -> t m a
```

Haskell type class system is not flexible enough to encode the requirement that t m needs to be a Monad in a single definition, so it has to be encoded in every instance by using the following instance schema:

```haskell
instance Monad m => Monad (t m) where
    -- ...
```

Different MonadTransfomers (t1, t2 ... tn) can then be composed with an arbitrary Monad m (usually called 'the inner Monad') using the following scheme:

```haskell
newtype comp m a = t1 (t2 (.. (tn (m a))))
```

and the whole composed stack would get a Monad instance inferred for it. Popular choices for the inner Monad m include Identity Funct or and IO Monad (see section 4.5).

In short, MonadTransfomers are, pretty much, composable Monadic structures. The following subsections will provide many example instances. For an in-depth tutorial readers are referred to [49] and [24].

4.4.1 Identity

The simplest MonadTransformer is IdentityT defined in Control.Monad.Trans.Identity of transformers [26] package equivalently to
newtype IdentityT m a = IdentityT
 { runIdentityT :: m a }

instance MonadTrans IdentityT where
 lift = IdentityT

instance Monad m => Monad (IdentityT m) where
 pure = lift . pure

instance Monad m => Monad (IdentityT m) where
 x >>= f = IdentityT $ do
 v <- runIdentityT x
 runIdentityT (f v)

Remark 3. Note that IdentityT MonadTransformer is different from Identity Monad and cannot be redefined as simply

type IdentityT' m a = Identity (m a)
(even though the data type definition matches exactly) because IdentityT 'inherits' Monad implementation from its argument m while Identity provides its own. I.e. IdentityT is an identity on MonadTransformers while Identity is an identity on types.

 In particular, for Identity (Maybe a)

 pure == Identity

while for IdentityT Maybe a

 pure == IdentityT . pure == IdentityT . Just

4.4.2 Maybe

 Transformer version of Maybe called MaybeT is defined in Control.Monad.Trans.Maybe from transformers [26] package equivalently to

newtype MaybeT m a = MaybeT
 { runMaybeT :: m (Maybe a) }

instance MonadTrans MaybeT where
 lift = MaybeT . liftM Just

instance Monad m => Monad (MaybeT m) where
 pure = lift . pure

instance Monad m => Monad (MaybeT m) where
 x >>= f = MaybeT $ do
 v <- runMaybeT x
 case v of
 Nothing -> pure Nothing
 Just y -> runMaybeT (f y)

instance MonadFail m => MonadFail (MaybeT m) where
 fail _ = MaybeT (pure Nothing)
4.4.3 Except

Transformer version of Either for historical reasons bears a name of ExceptT and is defined in Control.Monad.Trans.Except from transformers [26] package equivalently to

```haskell
newtype ExceptT e m a
 = ExceptT { runExceptT :: m (Either e a) }

instance MonadTrans (ExceptT e) where
  lift = ExceptT . liftM Right

instance Pointed m
  => Pointed (ExceptT e m) where
  pure a = ExceptT $ pure (Right a)

instance Monad m
  => Monad (ExceptT e m) where
  m >>= k = ExceptT $ do
    a <- runExceptT m
    case a of
      Left e -> pure (Left e)
      Right x -> runExceptT (k x)

instance MonadFail m
  => MonadFail (ExceptT e m) where
  fail = ExceptT . fail
```

The main attraction of ExceptT for the purposes of this article is the fact that it provides its own non-imprecise non-dynamic-dispatching throw and catch operators defined as

```haskell
throwE :: (Monad m) => e -> ExceptT e m a
throwE = ExceptT . pure . Left

catchE :: (Monad m) =>
  ExceptT e m a
  -> (e -> ExceptT f m a)
  -> ExceptT f m a
m `catchE` h = ExceptT $ do
  a <- runExceptT m
  case a of
    Left l -> runExceptT (h l)
    Right r -> pure (Right r)
```

There also exists deprecated ErrorT (defined in Control.Monad.Trans.Error from transformers package) which at the time of writing has exactly the same definition as ExceptT

```haskell
newtype ErrorT e m a
 = ErrorT { runErrorT :: m (Either e a) }
```

but its instances require type class Exception (see section 4.5.4) from its argument e. Older versions of transformers package made this requirement in the definition of ErrorT
newtype ErrorT e m a = Exception e => ErrorT { runErrorT :: m (Either e a) }

but that mechanism itself was deprecated awhile ago.

4.4.4 Reader and State

While there seems to be no way to directly use Reader and State Monads for error handling, these structures are used in IO Monad of section 4.5 and parser combinators of section 5.2. This seems to be as good place as any to define them.

Reader Monad is defined in Control.Monad.Trans.Reader module of transformers [26] package equivalently to

type Reader s = ReaderT s Identity

newtype ReaderT s m a = ReaderT { runReaderT :: s -> m a }

instance MonadTrans (ReaderT s) where
 lift m = ReaderT $ _ -> m

instance Pointed m => Pointed (ReaderT s m) where
 pure a = ReaderT $ _ -> pure a

instance Monad m => Monad (ReaderT s m) where
 m >>= k = ReaderT $ \s -> do
 a <- runReaderT m s
 runReaderT (k a) s

instance MonadFail m => MonadFail (ReaderT s m) where
 fail str = ReaderT $ _ -> fail str

Meanwhile, State Monad is defined in Control.Monad.Trans.State.Lazy and Control.Monad.Trans.State.Strict modules (the difference between them does not matter for the purposes of this article, so we shall ignore it) from transformers [26] package equivalently to

type State s = StateT s Identity

newtype StateT s m a = StateT { runStateT :: s -> m (a, s) }

instance MonadTrans (StateT s) where
 lift m = StateT $ \s -> do
 a <- m
 pure (a, s)

instance Pointed m => Pointed (StateT s m) where
 pure a = StateT $ \s -> pure (a, s)

instance Monad m => Monad (StateT s m) where
 m >>= k = StateT $ \s -> do
 (a, s') <- runStateT m s
 runStateT (k a) s'

instance MonadFail m => MonadFail (StateT s m) where
 fail str = StateT $ _ -> fail str
Both structures provide monadic structures that handle state. ReaderT simply applies variables throughout its whole computation via its (>>=) operator thus supplying computations with a context (i.e. read-only state). Meanwhile, StateT chains its s between computations, thus providing computations with a (read-write) state.

4.5 Imprecise exceptions

As we mentioned in the introduction, GHC implements imprecise exceptions mechanism proposed in [41]. Such exceptions look superficially similar to those of C++/Java/Python/etc but differ in two important aspects.

Firstly, GHC imprecise exceptions in pure computations are completely imprecise. That is, evaluation of (a ~op~ b) with a raising e and b raising f (and assuming op can evaluate either argument first) can raise either or even both (on different evaluations) of e and f. Haskell is not the only language that does this, C++, for instance, defines sequence points that serve the same purpose [42]. However, in GHC the order in which exceptions are raised is limited only by data dependencies, while C++’s sequence points add some more ordering on top.

Secondly, the C++/Java/Python exceptions have dynamic dispatch builtin, while GHC’s dynamically dispatched exceptions are implemented as a library on top of statically dispatched exceptions. To be more specific

- on the base level GHC runtime defines raise# and catch# operations for which raise# "simply" unwinds the stack to the closest catch# (i.e. raise# is "just" a GOTO: casting, re-raising, finally, etc are left for the libraries to implement and are not builtins),
- on top of that GHC libraries then provide dynamically dispatched exceptions by casting elements of Typeable types from/to SomeException existential type [50].

In the following subsections we shall discuss the details of the actual implementation.

4.5.1 IO

GHC defines the mystical IO Monad in GHC.Types (the types) and GHC.Base (the instances), pretty much, as a State Monad (see section 4.4.4) on State# RealWorld (definitions of both of which are beyond the scope of this article)

type IO# a = State# RealWorld -> (# State# RealWorld, a #)

newtype IO a = IO { runIO :: IO# a }

instance Pointed IO where
 pure a = IO $ \s -> (# s, a #)

instance Monad IO where
 m >>= f = IO $ \s -> case runIO m s of
 (# s', a #) -> runIO (f a) s'

The IO# definition given above is not actually in GHC but without it all of the definitions below become unreadable. We also renamed unIO to runIO for uniformity with State. Note however, that we did not swap the elements of the result tuple of IO# to match those of State since that would make it incompatible with GHC runtime we reuse in Literate Haskell version.

9 We put "simply" and "just" into quotes since unwinding of the stack must unwind into the lexically correct handler which is nontrivial in a lazy language like Haskell where thunks can be evaluated in an environment different from the one they were created in. In short, thunks must capture exception handlers as well as variables.
Remark 4. Note that \texttt{IO} is not a proper \texttt{Monad} since it cannot satisfy the laws simply for the fact that \texttt{RealWorld} cannot have an equality.10

In this article, however, for the purposes of formal arguments involving \texttt{IO} we shall treat \texttt{IO} as if it was just a \texttt{State} over some state type with some simple denotational semantics (although, possibly unknown value). This, of course, immediately disqualifies our proofs for \texttt{IO} from using non-determinism, hence, for instance, we will not be able to prove things about imprecise exceptions or threads.

The alternative would be to split every lemma and theorem mentioning \texttt{IO} into two: one for a \texttt{RawMonad (Monad without laws)} for cases mentioning \texttt{IO}, and one for \texttt{Monad} for all other cases. This would make a very little practical sense for this article since we will not attempt proofs involving non-determinism anyway.

4.5.2 \texttt{raise\#} and \texttt{catch\#}

Primitive \texttt{raise\#} and \texttt{catch\#} operations are 'defined' (those, of course, are just stubs to be replaced by references to the actual implementations in GHC runtime) in \texttt{GHC.Prim} module like follows

\begin{verbatim}
raise\# :: a -> b
raise\# = raise#

catch\# :: IO\# a -> (b -> IO\# a)
 -> IO\# a
catch\# = catch#
\end{verbatim}

Evaluating \texttt{raise\#} "simply"9 unwinds computation stack to the point of the closet \texttt{catch\#} with the appropriate type and applies raised value to the second argument of the latter. Note, however, that while the type of \texttt{raise\#} permits its use anywhere in the program, \texttt{catch\#} is sandboxed to \texttt{IO\#} on the lowest observable level and GHC provides no "\texttt{unsafeCatch}\#. This allows GHC to perform many useful optimizations that influence evaluation order without exposing pure computations to non-determinism.

4.5.3 Typeable

GHC implements dynamic casting with \texttt{Typeable} type class. The details of its actual implementation are beyond the scope of this article. For our purposes it suffices to say that it is a type class of types that have type representations that can be compared at runtime

\begin{verbatim}
class Typeable a where
 -- magic beyond the scope of this article
\end{verbatim}

and it provides a \texttt{cast} operation with the following type signature that shows that it compares said representations of types of its argument and result and either returns its argument value wrapped in \texttt{Just} constructor when the types match or \texttt{Nothing} else

\begin{verbatim}
cast :: forall a b . (Typeable a, Typeable b)
 => a -> Maybe b
\end{verbatim}

Interested readers should inspect the source code of \texttt{Data.Typeable} module of \texttt{base [7]}.

10Although \texttt{IO} can be reformulated as a free \texttt{Monad} made of 'requests to the interpreter' and continuations if one is willing to forget about the internal structure of the \texttt{RealWorld} 51.

21
4.5.4 Exception

On top of Typeable in GHC.Exception module of base [7] GHC provides the Exception type class that casts values to and from SomeException existential type (the following syntactic forall is type-theoretic exists, historic reasons)

data SomeException = forall e. Exception e => SomeException e

class (Typeable e, Show e) => Exception e where
toException :: e -> SomeException
fromException :: SomeException -> Maybe e

toException = SomeException
fromException (SomeException e) = cast e

instance Show SomeException where
 show (SomeException e) = show e

instance Exception SomeException where
 toException = id
 fromException x = Just x

4.5.5 throw and catch

Finally, throw and catch operators defined in GHC.Exception module of base [7] use all of the above to implement dynamic dispatch of exceptions.

The throw operator simply wraps given exception into SomeException and raise#s

throw :: Exception e => e -> a
throw e = raise# (toException e)

The catchException operator defined in GHC.IO does the actual dynamic dispatch

- it catch#es an exception produced by its first argument ('computation'),
- tries to cast it to a type expected by its second argument ('handler') and either calls the latter on success, or raise#s again on failure.

catchException :: Exception e => IO a -> (e -> IO a) -> IO a
catchException (IO io) handler
 = IO $ catch# io handler'
 where
 handler' e = case fromException e of
 Just f -> runIO (handler f)
 Nothing -> raiseIO# e

The catch operator simply calls catchException after forcing its first argument into a thunk with lazy operator (this wrapping is necessary to prevent GHC from performing strictness analysis on the 'computation' to prevent its evaluation before the exception is even raised; this fact can be ignored for the purposes of this article) which is yet another special GHC runtime function (this time, extentionally equal to its definition, i.e. identity).

22
lazy :: a -> a
lazy x = x

catch :: Exception e
 => IO a -> (e -> IO a)
 -> IO a
catch act = catchException (lazy act)

That is, catch is extensionally equal to catchException. Control.Exception module of base simply reexports throw, catch, and Exception type class and implements a bunch of practically convenient combinators using them.

We should also mention that older versions of base package had another special catch that handled only IOError errors defined in Prelude and System.IO.Error respectively. Those were deprecated in 2011 and as of writing of this article are completely gone from current version of base. But they are are occasionally mentioned in tutorials, usually in the context of "don’t use catch from Prelude, use the one from Control.Exception", nowadays the catch from Prelude is the catch from Control.Exception.

4.5.6 error and undefined

error and undefined primitives are defined in GHC.Err of base as follows

newtype ErrorCall = ErrorCall String

instance Exception ErrorCall where

error :: String -> a
error s = throw (ErrorCall s)

undefined :: forall a . a
undefined = error "Prelude.undefined"

Actually, this implementation is taken from the older version of base, modern version also implements call stack capture, which is beyond the scope of this article. Interested readers are referred to the source code of GHC.Err.

4.6 Precise raiseIO# and throwIO

Besides imprecise exceptions GHC’s IO also has operators for precise exceptions a-la ExceptT defined in GHC.Prim and GHC.Exception as follows

raiseIO# :: a -> IO# b
raiseIO# = raiseIO#

throwIO :: Exception e => e -> IO a
throwIO e = IO $ raiseIO# (toException e)

While throwIO has a type that is an instance of throw, their semantics differ: throwIO produces Monad actions while throw produces values. For example, both functions in the following example will raise SomethingElse, not ErrorCall.

data SomethingElse = SomethingElse

instance Exception SomethingElse where
throwTest :: IO ()
throwTest = do
 let x = throw (ErrorCall "lazy")
 pure (Right x)
throwIO SomethingElse

throwTest' :: IO ()
throwTest' = do
 let x = throw (ErrorCall "lazy")
 pure x
throwIO SomethingElse

The catch operator, however, can be reused for handling both imprecise and precise exceptions.

Remark 5. In other words, we can say that IO has two different exception mechanisms (precise and imprecise exceptions) with a single exception handling mechanism (catch). (And this is pretty weird.)

4.7 Non-exhaustive patterns

As a side note, non-exhaustive pattern matches (and cases) throw PatternMatchFail exception, while the default fail implementation calls error which throws ErrorCall.

{-# LANGUAGE ScopedTypeVariables #-}

import Control.Exception

check t =
 (evaluate t >> print "ok")
 `catch`
 (\(e :: PatternMatchFail) -> print "throws PatternMatchFail")
 `catch`
 (\(e :: ErrorCall) -> print "throws ErrorCall")

patFail 1 x = case x of 0 -> 1
fail1 = patFail 1 1
fail2 = patFail 2 2
maybeDont = do { 1 <- Just 1 ; return 2 }
maybeFail = do { 0 <- Just 1 ; return 2 }
eithrDont = do { 1 <- Right 1 ; return 2 }
eithrFail = do { 0 <- Right 1 ; return 2 }

testPatterns = do
 check fail1 -- throws PatternMatchFail
 check fail2 -- throws PatternMatchFail
 check maybeDont -- ok
 check maybeFail -- ok ("Nothing")
 check eithrDont -- ok
 check eithrFail -- throws ErrorCall

4.8 Monadic generalizations

In previous subsections we have seen a plethora of slightly different error handling structures with different throw and catch operators. In this subsection we shall describe several Hackage packages that provide structures that try to unify this algebraic zoo.
4.8.1 MonadError

MonadError class (Control.Monad.Error.Class from mtl [52] package) is defined as

class (Monad m) => MonadError e m
 | m -> e where
throwError :: e -> m a
catchError :: m a
 -> (e -> m a) -> m a

This structure simply generalizes ExceptT

instance Monad m => MonadError e (ExceptT e m) where
 throwError = throwE
 catchError a h = ExceptT $ catchError (runExceptT a) (runExceptT . h)

instance MonadError e m => MonadError e (IdentityT m) where
 throwError = lift . throwM
 catchError a h = IdentityT $ catchError (runIdentityT a) (runIdentityT . h)

instance MonadError e m => MonadError e (MaybeT m) where
 throwError = lift . throwM
 catchError a h = MaybeT $ catchError (runMaybeT a) (runMaybeT . h)

4.8.2 MonadThrow and MonadCatch

MonadThrow and MonadCatch classes (Control.Monad.Catch from exceptions [53]) are defined as

class Monad m => MonadThrow m where
 throwM :: Exception e => e -> m a

class MonadThrow m => MonadCatch m where
 catchM :: Exception e
 -> m a -> (e -> m a) -> m a

These two structures, too, generalize ExceptT

instance MonadThrow m => MonadThrow (ExceptT e m) where
 throwM = lift . throwM

instance MonadCatch m => MonadCatch (ExceptT e m) where
 catchM x f = ExceptT $ catchM (runExceptT x) (runExceptT . f)

and they, too, are transitive over common MonadTransformers

-- (this time without UndecidableInstances)

instance MonadThrow m => MonadThrow (IdentityT m) where
 throwM = lift . throwM

instance MonadCatch m => MonadCatch (IdentityT m) where
 catchM = IdentityT $ catchM (runIdentityT x) (runIdentityT . f)

11 Except for the fact that MonadCatch from exceptions names its operator catch, not catchM, we renamed it for uniformity and so that it would not be confused with the operator from Control.Exception.
instance MonadCatch m => MonadCatch (IdentityT m) where
 catchM x f = IdentityT $ catchM (runIdentityT x) (runIdentityT . f)

instance MonadThrow m => MonadThrow (MaybeT m) where
 throwM = lift . throwM

instance MonadCatch m => MonadCatch (MaybeT m) where
 catchM x f = MaybeT $ catchM (runMaybeT x) (runMaybeT . f)

but they constrain their argument e to the Exception type class, and they also generalize the imprecise exceptions

instance MonadThrow IO where
 throwM = throw

instance MonadCatch IO where
 catchM = catch

The latter fact complicates their use somewhat since one can not be sure about the dynamic-dispatch part of the semantics without actually looking at the definitions for a particular instance.

5 Not a Tutorial: Side B

This section, logically, is a continuation of section 4. However, in contrast to that section this section discusses non-basic structures that are of particular importance to the rest of the article. While this section does not introduce any non-trivial novel ideas, some perspectives on well-known ideas seem to be novel.

5.1 Continuations

When speaking of 'continuations' people usually mean one or more of the three related aspects explained in this subsection.

5.1.1 Continuation-Passing Style

Any (sub-)program can be rewritten into Continuation-Passing Style (CPS) [54, 55] by adding a number of additional continuation arguments to every function and tail-calling into those arguments with the results-to-be at every return point instead of just returning said results.

For instance, the following pseudo-Haskell program

```haskell
foo =
  if something
    then Result1 result1
    else Result2 result2

bar = case foo of
  Result1 a -> bar1 a
  Result2 b -> bar2 b
```

can be transformed into (here we CPS-ignore something and the if for illustrative purposes)
fooCPS \texttt{cont1 cont2} = \\
\textbf{if} \, \textit{something} \\
\quad \textbf{then} \, \texttt{cont1 result1} \\
\quad \textbf{else} \, \texttt{cont2 result2} \\

barCPS = \texttt{fooCPS bar1 bar2} \\

In conventional modern low-level imperative terms this transformation requires all functions to receive their return addresses as explicit parameters instead of popping them from the bottom of their stack frame.

The latter, of course, means that we can treat "normal" programs (in which all functions have a single return address) as a degenerate case of programs written in "implicit-CPS" (in fact, \texttt{Cont Monad} of section 5.1.3 is exactly such an "implicit-CPS") — a syntactic variant of CPS in which

- every function has an implicit argument that specifies a default return address (which is set to the next instruction following a corresponding function call by default)
- that can be reached from the body of the function by tail-calling a special symbol that jumps to the implicitly given address.

Finally, one can even imagine a computer with a "CPS-ISA" (i.e. an ISA where each instruction explicitly specifies its own return address) in which case all programs for such a computer would have to be translated into an explicit CPS form to be executed. In fact, drum memory-based computers like IBM 650 had exactly such an ISA. From the point of view of an IBM 650 programmer modern conventional CPUs simply convert their non-CPS OPcodes into their CPS forms on the fly, thus applying CPS-transform to any given program on the fly.

Returning to the pseudo-Haskell listing above, note that programs written in CPS

- introduce a linear order on their computations, hence they are not particularly good for parallel execution,
- consume somewhat more memory in comparison to their "normal" representations (as they have to handle more explicit addresses),
- can have poorer performance on modern conventional CPUs (since said CPUs split their branch predictors into 'jump' and 'call' units and the latter unit rests completely unused by CPS programs),
- are harder to understand.

However, the advantage of the CPS form is that it allows elimination of duplicate computations. For instance, in the example above \texttt{foo} produces different results depending on the value of \textit{something} and \texttt{bar} has to duplicate that choice (but not the computation of \textit{something}) again by switching \texttt{case} on the result of \texttt{foo}. Meanwhile, \texttt{barCPS} is free from such an inefficiency. Applying this transformation recursively to a whole (sub-)program allows one to transform the (sub-)program into a series of tail calls whilst replacing all constructors and eliminators in the (sub-)program with tail calls to newly introduced continuation arguments and \texttt{case} bodies respectively.

The logical mechanic behind this transformation is a technique we call \textit{generalized Kolmogorov's translation} (since it is a trivial extension of Kolmogorov's translation \cite{56}) of types of functions' results. That is, double negation followed by rewriting by well-known isomorphisms until formula contains only arrows, bottoms and variables followed by generalizing bottoms by a bound variable.

For instance, the result of a function of type

\[i \to j \to b \]

is \(b \), which can be doubly negated as
\[\neg b \]
\[(b \to \bot) \to \bot \]

and generalized to either of

\[\forall c. (b \to c) \to c \]
\[\lambda c. (b \to c) \to c \]

which allows us to generalize the whole function to either of

\[\text{former} = \forall c. i \to j \to (b \to c) \to c \]
\[\text{latter} = \lambda c. i \to j \to (b \to c) \to c \]

depending on the desired properties:

- the former term requires a rank-2 type system but it does not add any new type lambdas or free type variables, thus keeping the transformation closed,
- the latter term does not need rank-2 types, but it requires tracking of these new type variables,
- the latter term also retains full control over \(c \) variable, (for instance, it can produce the former term in rank-2 type system on demand with \(\forall c. \text{latter} \ c \)).

Similarly, Either \(a \ b \) may be seen as logical \(a \lor b \) which can be rewritten as

\[\neg \neg (a \lor b) \]
\[\neg (\neg a \land \neg b) \]
\[(a \to \bot \land b \to \bot) \to \bot \]
\[(a \to \bot) \to (b \to \bot) \to \bot \]

and a pair of \((a, b) \) is logical \(a \land b \) and can be rewritten as

\[\neg \neg (a \land b) \]
\[\neg (a \land b) \to \bot \]
\[(a \land b \to \bot) \to \bot \]
\[(a \to b \to \bot) \to \bot \]

Hence, \(i \to j \to (a \lor b) \) can be rewritten into either of

\[\forall c. i \to j \to (a \to c) \to (b \to c) \to c \]
\[\lambda c. i \to j \to (a \to c) \to (b \to c) \to c \]

and \(i \to j \to (a \land b) \) into either of

\[\forall c. i \to j \to (a \to b \to c) \to c \]
\[\lambda c. i \to j \to (a \to b \to c) \to c \]
5.1.2 Scott-encoding

A technique of applying generalized Kolmogorov’s translation to data types and their constructors and eliminators instead of normal functions in a (sub-)program is called Scott-encoding (apparently, Dana Scott did not publish, to our best knowledge the first mention in print is [57, p. 219] and first generic description of the technique for arbitrary data types is [58]).

As before, \texttt{Either} can be replaced with either of

\[\forall c. (a \rightarrow c) \rightarrow (b \rightarrow c) \rightarrow c \]
\[\lambda c. (a \rightarrow c) \rightarrow (b \rightarrow c) \rightarrow c \]

which can be encoded in Haskell as either of

\begin{verbatim}
newtype EitherS a b = EitherS
 { runEitherS :: forall c
 . (a -> c) -> (b -> c) -> c }

left :: a -> EitherS a b
left a = EitherS (\ac bc -> ac a)

right :: b -> EitherS a b
right b = EitherS (\ac bc -> bc b)
\end{verbatim}

with \texttt{runEitherS} (\texttt{runEitherS'}) taking the role of an eliminator (\texttt{case} operator) and \texttt{left} and \texttt{right} (\texttt{left}' and \texttt{right}') taking the roles of \texttt{Left} and \texttt{Right} constructors respectively.

Similarly, \((a, b)\) can then be generalized to either of

\[\forall c. (a \rightarrow b \rightarrow c) \rightarrow c \]
\[\lambda c. (a \rightarrow b \rightarrow c) \rightarrow c \]

and encoded in Haskell as either of

\begin{verbatim}
newtype PairS a b = PairS
 { runPairS :: forall c
 . (a -> b -> c) -> c }

pair :: a -> b -> PairS a b
pair a b = PairS (\f -> f a b)
\end{verbatim}

\begin{verbatim}
newtype PairS' c a b = PairS'
 { runPairS' :: (a -> b -> c) -> c }
\end{verbatim}
```haskell
pair' :: a -> b -> PairS' c a b
pair' a b = PairS' (\f -> f a b)
```

Substituting all `Lefts` with `left`, `Rights` with `right`, `cases` on `Eithers` with `runEitherS`, pair constructions with `pair`, and `cases` on pairs with `runPairS` (and similarly for primed versions) does not change computational properties of the transformed program in the sense that Scott-transformation of the original program’s normal form coincides with the normal form of the Scott-transformed program.

Replacing a single data type in a program with its Scott-encoding can be viewed as a kind of selective CPS-transform on those subterms of the program that use the data type. The type of transformed functions changes the same way in both transformations, but Scott-encoding groups all continuation arguments, hides them behind a type alias and introduces a bunch of redundant beta reductions in constructors and eliminators.

The upside of CPS-transforming with Scott-encoding is that it supports partial applications, requires absolutely no thought to perform and no substantial changes to the bodies of the functions that are being transformed. It is also very useful for designing new languages and emulating data types in languages that do not support them\(^{12}\) as it allows to use data types when none are supported by the core language.

The most immediate downside of this transformation is very poor performance on modern conventional CPUs. For instance, pattern matching on `Either` produces a simple short conditional `jmp` while for `runEitherS` the compiler, in general, cannot be sure about value of the arguments (it can be anything of the required type, not only `left` or `right`) and has to produce an indirect `jmp` (or `call` if it is not a tail call) and both `left` and `right` require another indirect `jmp`. This wastes address cache of CPU’s branch predictor and confuses it\(^{13}\) when instruction pointer jumps out of the stack frame.

For some classes of programs, however, it can increase performance significantly. For instance, in a `'case-tower'` like

```haskell
doSomethingOn s = case internally s of
  Right a -> returnResult a
  Left b -> handleError b

internally s =
  case evenMoreInternally s of
    Right (a,s) -> doSomethingElse a s
    Left b -> Left b

doSomethingElse a s =
  case evenMoreInternally s of
    Right (a,s) -> Right a
    Left b -> Left b
```

(which is commonly produced by parser combinators) performing this selective CPS-transform followed by inlining and partial evaluation of the affected functions will replace all construction sites of `Lefts` with direct calls to `handleError`, and `Rights` in `doSomethingElse` (and, possibly, the ones residing in `evenMoreInternally`) with `returnResult`.

In other words, rewriting this type of code using Scott-encoded data types is a way to apply deforestation\[^{59}\] to it, but semi-manually as opposed to automatically, and with high degree of control. This fact gets used a lot in Hackage libraries, where, for example, most parser combinators (section 5.2) use Scott-encoded forms internally.

\(^{12}\) For example, most instances of the `visitor` object-oriented (OOP) design pattern that are not simply emulating `Functor` instances usually emulate pattern matching with Scott-encoding.

\(^{13}\) Note that this does not happen for the full CPS-transform of the previous subsection since that translation does no calls.
5.1.3 Cont

One of the roundabout ways to express pure values in Haskell is to wrap them with the Identity Functor (section 4.1.2) for which Identity a, logically, is just a pure type variable a. Applying generalized Kolmogorov’s translation to this variable gives either of

\[\forall c. (a \rightarrow c) \rightarrow c \]

\[\lambda c. (a \rightarrow c) \rightarrow c \]

In Haskell the latter type is called Cont. It is defined in Control.Monad.Cont of mtl [52] as

```hs
newtype Cont r a = Cont { runCont :: (a -> r) -> r }
```

with the following Monad instance

```hs
instance Pointed (Cont r) where
    pure a = Cont $ \c -> c a
```

```hs
instance Monad (Cont r) where
    m >>= f = Cont $ \c -> runCont m $ \a -> runCont (f a) c
```

Cont has a transformer version defined in Control.Monad.Trans.Cont module of transformers [26] package as follows

```hs
newtype ContT r m a = ContT { runContT :: (a -> m r) -> m r }
```

```hs
instance MonadTrans (ContT r) where
    lift m = ContT (m >>=
```

Interestingly, however, unlike Identity and IdentityT which have different Monad instances (see section 4.4.1), Cont and ContT have identical ones (equivalent to the one given above). Of particular note is the fact that the definition of (>>=) for ContT does not refer to the Monad operators of its argument m. This means that in cases when we do not need the MonadTrans instance (for which we have to have a newtype wrapper) we can redefine ContT as simply

```hs
type ContT r m a = Cont (m r) a
```

The latter fact means that ContT, unlike other MonadTransformers we saw before, is not a 'Monad transformer' as it is not a functor on category of monads (it is always a Monad irrespective of the argument m). This property can be explained by the fact that, as we noted at the top of this section, Cont Monad is a kind of "implicit-CPS" form of computations. Since all it does is chain return addresses it does not care about types of computations those addresses point to.

5.1.4 Delimited callCC

Peirce’s law states that

\[((a \rightarrow b) \rightarrow a) \rightarrow a \]

by applying generalized Kolmogorov’s translation we get

\[\neg \neg (((a \rightarrow b) \rightarrow a) \rightarrow \neg a) \]

\[\neg (\neg a \rightarrow \neg (((a \rightarrow b) \rightarrow a) \rightarrow a)) \]

\[\neg \neg ((a \rightarrow b) \rightarrow a) \rightarrow \neg \neg \neg a \]
\((\neg\neg(a \rightarrow b) \rightarrow \neg\neg a) \rightarrow \neg\neg a\)

\(((\neg\neg a \rightarrow \neg\neg b) \rightarrow \neg\neg a) \rightarrow \neg\neg a\)

which can be encoded in Haskell as (note that this time we use ∀ variant of the translation)

\[
\text{peirceCC} :: ((\text{Cont } r \ a \rightarrow \text{Cont } r \ b) \rightarrow \text{Cont } r \ a) \\
\quad \rightarrow \text{Cont } r \ a
\]

\[
\text{peirceCC} \ f = \text{Cont } $ \ _ \rightarrow \text{runCont } _ \rightarrow \text{runCont } c) \ c
\]

This operator takes a function \(f\), applies some magical subterm to it and then gives it its own return address. That is, for a function \(f\) that ignores its argument \(\text{peirceCC}\) is completely transparent. The magical argument \(\text{peirceCC}\) applies to \(f\) is itself a function that takes a computation producing value of the same type \(f\) returns as a result. The subterm then computes the value of the argument but ignores its own return address and continues to the return address given to \(\text{peirceCC}\) instead. In other words, \(\text{peirceCC}\) applies \(f\) with an escape continuation which works exactly like a return statement of conventional imperative languages (as opposed to Monad’s pure which should not be called ”return”, see section 4.2.1).

Note that the \(\text{ac}\) argument to the magical subterm is pretty boring: it is a computation that gets computed immediately. Hence, unless we require every subterm of our program to be written in implicit-CPS form we can simplify \(\text{peirceCC}\) a bit as follows

\[
\text{callCC} :: ((a \rightarrow \text{Cont } r \ b) \rightarrow \text{Cont } r \ a) \rightarrow \text{Cont } r \ a
\]

\[
\text{callCC} \ f = \text{Cont } $ \ _ \rightarrow \text{runCont } _ \rightarrow c) \ c
\]

This operator bears a name of "delimited call/cc (callCC)" [28] and the escape continuation it supplies to \(f\) not only works but also looks exactly like an imperative return (in that it takes a pure value instead of a computation producing it).

5.1.5 Scheme’s call/cc and ML’s callcc

Note that delimited callCC is semantically different from similarly named operators of SML [60] and Scheme [27]. SML defines its operator as

\[
\text{type } 'a \ cont
\]

\[
\text{val callcc : ('a cont -> 'a) -> 'a}
\]

where ‘a cont type is the type of the current global continuation which is the computation till the end of the whole program, this type is a kind of technical alias for what, logically, should be \(a \rightarrow b\), i.e. callcc’s type, logically, is non-Kolmogorov-translated Peirce’s law.

The difference is that by applying Kolmogorov’s translation to Peirce’s law callCC gains intuitionistic witnesses (and, hence, purely functional implementations) and becomes delimited by the current Cont context instead of the whole program. Meanwhile, implementations of non-delimited callcc and call/cc require special support from the compiler/interpreter and Kiselyov [29] eloquently advocates that they simply should not exist as they are less useful than their delimited versions and their implementations introduce nontrivial trade-offs to the languages in question.

5.2 Monadic Parser Combinators

Monadic parser combinators are not by themselves an error handling mechanism, but they have to handle failed parsing attempts and such computations can be seen as a kind of error handling.

Parser combinators can possess a wide variety of semantics and implementations, to mention just a few possible dimensions of the space:

- they can either automatically backtrack on errors or keep the state as is,
they can distinguish not only successful and failed parsing attempts but also attempts that consumed none of the input and those that consumed at least one element of the input [30],
- they can support an impure state (e.g., make it a Monad),
- track position in the input stream,
- allow programmer-provided types in errors,
- provide MonadTransformer versions,
- encode their internals with Scott-encoding (section 5.1.2) for efficiency.

Discussing most of those features and their combinations is beyond the scope of this article. In the following subsections we shall only mention "backtrack vs. not" problem, in section 15 we shall also apply Scott-encoding to an almost identical structure. Detailed implementations of other features can be studied by following respective references.

The most popular parser combinator libraries for Haskell are Parsec [61], Attoparsec [62], and Megaparsec [63].

5.2.1 Simple stateful parser combinator

The simplest Monad ic parser combinator is just a composition of StateT (section 4.4.4) and ExceptT (section 4.4.3) MonadTransformers with inner Identity (section 4.1.2)

type SParser s e = StateT s (ExceptT e Identity)

which can be β-reduced into

newtype SParser s e a = SParser
 { runSParser :: s -> Either e (a, s) }

with the following Monad instance

instance Pointed (SParser s e) where
 pure a = SParser $ \s -> Right (a, s)

instance Monad (SParser s e) where
 p >>= f = SParser $ \s ->
 case runSParser p s of
 Left x -> Left x
 Right (a, s') -> runSParser (f a) s'

5.2.2 ... with full access to the state

While the definition above is, in fact, exactly the definition used in ponder [64] parser combinator library, it provides no way to access the state of the parser on error, which makes it very inconvenient in practice. However, a simple modification of the type that moves Either into the tuple

newtype Parser s e a = Parser
 { runParser :: s -> (Either e a, s) }

which, of course, in isomorphic to

newtype Parser s e a = Parser
 { runParser :: s -> Either (e, s) (a, s) }

solves this problem of access to state while keeping the definition of Monad identical to the above.

14 The corresponding MonadTrans former stack is better left unspoken.
Theorem 1. *Parser* satisfies *Monad* laws.

Proof. By case analysis. Also see the next proof. □

The binary *choice* operator can be implemented by one of the two possible instances of *Alternative*. The first one rolls-back the state on error

```haskell
instance Monoid e => Alternative (Parser s e) where
  empty = Parser $ \s -> Left (mempty, s)
  f <|> g = Parser $ \s -> case runParser f s of
    Right x -> Right x
    Left (e, _) -> case runParser g s of
      Right x -> Right x
      Left (f, _) -> Left (e `mappend` f, s)
```

while the second does not

```haskell
instance Monoid e => Alternative (Parser s e) where
  empty = Parser $ \s -> Left (mempty, s)
  f <|> g = Parser $ \s -> case runParser f s of
    Right x -> Right x
    Left (e, s') -> case runParser g s' of
      Right x -> Right x
      Left (f, s'') -> Left (e `mappend` f, s'')
```

Theorem 2. Both versions satisfy the laws of *Alternative*.\(^\text{15}\)

Proof. By case analysis.

Note that to convince yourself that \((<|>)\) is associative it is enough to observe that in \(a <|> b <|> c\) for the above definitions

- *Right* is a zero,
- values of \(e\) always propagate to the right,
- while \(s\) is stays constant in the roll-back version, or always propagates in the no-roll-back version, but never both.

Which means that parentheses can’t influence anything in either case.

The same idea can be used in similar proofs involving similar operators of *State* and *Parser*. □

From the popular Haskell parser combinator libraries mentioned above Attoparsec rolls-back while Parsec and Megaparsec do not, instead they implement backtracking with a separate combinator for which we could give the following type signature

```haskell
try :: Parser s e a -> Parser s e a
```

5.2.3 Examples

The already given definitions allow us enough headroom to define some primitive parsers and a couple of examples. For instance, assuming *Alternative* rolls-back we can write

\(^{15}\)Note, however, that *SParser* from section 5.2.1 can only do backtracking because, unlike *Parser*, it is asymmetric in its use of *Either*.
type Failures = [String]

eof :: Parser String Failures ()
eof = Parser $ \\s -> case s of
 [] -> Right ((), s)
 _ -> Left ("expected eof", s)

char :: Char -> Parser String Failures ()
char x = Parser $ \\s -> case s of
 [] -> Left (["unexpected eof"], s)
 (c:cs) -> if (c == x)
 then Right ((), cs)
 else Left (["expected \" ++ [x] ++ '\" got \" ++ [c] ++ '\"", s)

string :: String -> Parser String Failures ()
string [] = pure ()
string (c:cs) = char c >> string cs

parseTest = runParser (string "foo") "foo bar"
 == Right(((), " bar")
 \&\& runParser (string "abb <|> string "abc") "aba"
 == Left (["expected 'b' got 'a'","expected 'c' got 'a'"], "aba")

To use the other implementation of Alternative we would need to wrap all calls to string on the left hand sides of (<|>) with tryrs.

Semantics-wise our Parser combines features of Attoparsec (backtracking) and Megaparsec (custom error types). Of course, it fits on a single page only because it has a minuscule number of features in comparison to either of the two. To make it practical we would need, at the very least, to implement tracking of the position in the input stream and a bunch of primitive parsers, which we leave as an exercise to the interested reader.

Interestingly, this exact implementation of handling of errors by accumulation via Alternative over a Monoid seems to be novel (although, pretty trivial). Megaparsec, however, does something very similar by accumulating errors in Sets instead of Monoids.

MonadTransfomer versions of these structures can be trivially obtained by adding Monadic index m after the arrow in definition of Parser (i.e. by exposing the internal Monad of the original MonadTrans stack) and correspondingly tweaking base-level definitions and all type signatures.

5.3 Other variants of MonadCatch

Finally, worth mentioning are two lesser-known variants of structures similar to structures of section 4.8. The first one is defined in Control.Monad.Exception.Catch module of control-mathad-exception [65] package as

class (Monad m, Monad n) => MonadCatch e m n | e m -> n, e n -> m where
 catch :: m a -> (e -> n a) -> n a

and the second one in Control.Monad.Catch.Class module of catch-fd [66] package

class Monad m => MonadThrow e m | m -> e where
 throw :: e -> m a

class (MonadThrow e m, Monad n) => MonadCatch e m n | n e -> m where
 catch :: m a -> (e -> n a) -> n a
Note that \texttt{control-monad-exception} does not define a type class with a \texttt{throw} operator, that library provides a universal computation type \texttt{EM} (similar to \texttt{EIO} of section 15) with such an operator instead. Also note that the common point of those two definitions is that both \texttt{catch} operators change the type of computations from \texttt{m} to \texttt{n}.

6 The nature of an error

Let\'s forget for a minute about every concrete algebraic error-handling structure mentioned before and try to invent our own algebra of computations by reasoning like a purely pragmatic programmer who likes to make everything typed as precisely as possible.

We start, of course, by pragmatically naming our type of computations to be \texttt{C}. Then, we reason, it should be indexed by both the type of the result, which we shall pragmatically call \texttt{a}, and the type of exceptions \texttt{e}. We are not sure about the body of that definition, so we just leave it undefined

\begin{verbatim}
data C e a
\end{verbatim}

Now, we know that \texttt{Monad}s usually work pretty well for the computation part (since we can as well just lift everything into \texttt{IO} which is a \texttt{Monad}), so we write

\begin{verbatim}
return :: a -> C e a
(>>=) :: C e a -> (a -> C e b) -> C e b
\end{verbatim}

and expect these operators to satisfy \texttt{Monad} laws (section 4.2.1).

Meanwhile, pragmatically, an "exceptional" execution path requires two conventional operators:

- a method of raising an exception; the type of this operator seems to be pretty straightforward

\begin{verbatim}
throw :: e -> C e a
\end{verbatim}
as it simply injects the error into \texttt{C},

- and a method to catch exceptions; the overly-general type for this operator is, again, pretty straightforward

\begin{verbatim}
catch :: C e a -> (e -> C f b) -> C g c
\end{verbatim}

The only obvious requirement here is that the type the "handler" function (the second argument of \texttt{catch}) can handle should coincide with the type of errors the "computation" (the first argument) can \texttt{throw}.

Finally, we pragmatically expect the above to obey the conventional operational semantics of error handling operators, giving us the following definition.

\textbf{Definition 2. Pragmatic error handling structure.} Structure \texttt{m :: \emph{a} * \emph{a} * with return, (>>=), throw, and catch} operators satisfying

1. \texttt{return} and \texttt{(>>=)} obey \texttt{Monad} laws (section 4.2.1),
2. \texttt{throw e >>= f == throw e ("throwing of an error stops the computation")},
3. \texttt{throw e `catch` f == f e ("throwing of an error invokes the most recent error handler")},\footnote{Similarly to GHC\textquotesingle{}s imprecise exceptions of section 4.5 dynamic dispatch can be implemented on top of such a structure. We shall do this in section 12.2.}
4. \texttt{return a `catch` f == return a ("return is not an error")}.
7 The type of error handling operator

The first question to the structure of C is, of course, what is the precise type of catch operator.

\[
\text{catch} :: C e a \rightarrow (e \rightarrow C f b) \rightarrow C g c
\]

In other words, we would like to know which of the variables \(f\), \(g\), \(b\), and \(c\) in this signature should have their own universal quantifier and which should be substituted with others. The answer comes by considering several cases.

- Firstly, let us consider the following expression.

 \[
 \text{return } a \text{'catch'} f
 \]

 The expected semantics of catch requires (by item 4 of definition 2)

 \[
 \text{return } a \text{'catch'} f == \text{return } a
 \]

 Note that the most general type for return a expression is \(\forall e \cdot C e a\) for \(a : a\)\(^{17}\). Moreover, we can assign the same type to any expression that does not throw since

 - both \(a\) and \(e\) in the type signify the potential to return and throw values of the corresponding types,
 - and an expression that does not throw any errors can be said to not-throw an error of any particular type, similarly to how bottom elimination rule works. Or, equivalently, any such computation can be said to throw values of an empty type and an empty type can always be replaced with any other type by bottom elimination.\(^{18}\)

- Now let us consider the following expression, assuming \(e\) and \(f\) are of different types (i.e. both the computation and the handler throw different exceptions).

 \[
 \text{throw } e \text{'catch'} (_ \rightarrow \text{throw } f)
 \]

 The expected semantics of catch requires (by item 3 of definition 2)

 \[
 \text{throw } e \text{'catch'} (_ \rightarrow \text{throw } f) == \text{throw } f
 \]

 These two cases show that \(g\) should be substituted with \(f\) and \(e\) should be kept separate from \(f\) because

 - if computation throws then the type \(f\) in the handler 'wins',
 - but if it does not throw then \(e\) is an empty type and it can be substituted for any other type, including \(f\) (similarly to the type of return above)\(^{19}\)
 - these two cases are mutually exclusive.

 That is, the type for catch is at most as general as

 \[
 \text{catch} :: \forall e f . C e a \rightarrow (e \rightarrow C f b) \rightarrow C f c
 \]

 - Continuing, item 4 of definition 2 shows that \(c\) has to coincide with \(a\).

\(^{17}\) The reader might have noticed already that we abuse notation somewhat by assuming type variables and term variables use distinct namespaces. This expression happens to be the first and the only one that uses both at the same time, hence it looks like an exiting 'type-in-type' kind of thing, but it is not, it is ordinarily boring.

\(^{18}\) Implicitly or with \(f\) 'catch' bot-elim which is extensionally equal to \(f\).

\(^{19}\) The only nontrivial observation in this section.
• Similarly, item 3 requires

\[\text{throw } e \ `catch` (_ \rightarrow \text{return } a) \rightarrow \text{return } a \]

which shows that \(c \) has to coincide with \(b \).

All these observations combine into the following.\(^{20}\)

Theorem 3. For any type \(C :: * \rightarrow * \rightarrow * \) obeying definition 2 the most general type for the \(\text{catch} \) operator is

\[\text{catch} :: \forall a e f . \ C e a \rightarrow (e \rightarrow C f a) \rightarrow C f a \]

Proof. By the above reasoning. That is, by simple unification of types of \(\text{return}, \text{throw}, \ (\gg\gg) \) operators of definition 2 and the following equations that are consequences of equations of definition 2

\[
\begin{align*}
\text{return } a \ `catch` f & \rightarrow \text{return } a \\
\text{throw } e \ `catch` (_ \rightarrow \text{return } a) & \rightarrow \text{return } a \\
\text{throw } e \ `catch` (_ \rightarrow \text{throw } f) & \rightarrow \text{throw } f
\end{align*}
\]

\(\square \)

8 **Conjoinedly Monadic algebra**

After theorem 3 it becomes hard to ignore the fact that \(\text{throw} \) has the type of \(\text{return} \) and \(\text{catch} \) has the type of \((\gg\gg) \) in the "wrong" index for \(C \). Moreover, item 3 of definition 2 looks exactly like a left identity law for \(\text{Monad} \) (section 4.2.1). While it is not as immediately clear that \(\text{catch} \) should be associative, it seems only natural to ask whenever the following conjoinedly \(\text{Monad} \)ic restriction of definition 2 has any instances.

Definition 3. Conjoinedly monadic error algebra. A type \(m :: * \rightarrow * \rightarrow * \) for which

- \(m \) is a \(\text{Monad} \) in its second index (that is, \(m e \) is a \(\text{Monad} \) for all \(e \)),
- \(m \) is a \(\text{Monad} \) in its first index (that is, \(\forall e . \ m e a \) is a \(\text{Monad} \) for all \(a \)),

and assuming

- the names of \(\text{Monad} \) operators in the second index of \(m \) are \(\text{return} \) and \((\gg\gg) \),
- the names of \(\text{Monad} \) operators in the first index are \(\text{throw} \) and \(\text{catch} \),

the following equations hold

1. \(\text{return } x \ `catch` f \rightarrow \text{return } x \),
2. \(\text{throw } e \gg\gg f \rightarrow \text{throw } e \).

If we replace \(\text{Monad} \) in definition 3 with \(\text{MonadFish} \) (section 4.2.2), as usual, the latter two equations become a bit clearer.

\(^{20}\) Spoilers! The reader is only supposed to notice the following after reading section 10.

Note that we could have written an equivalent up to names of operators sections 6 and 7 that explained why the type of \((\gg\gg) \) is the correct type for sequencing computations in \(C \) given that error handling should be done \(\text{Monad} \)ically. In particular, the fact that the dual of definition 2 lists valid operational equations is a rather curious observation by itself. Which is another reason why we disagree with the conventional wisdom in footnote 2.
Definition 4. **Fishy conjoinedly monadic error algebra.** A type \(m : : * => * => * \) for which

- \(m \) is a \textit{MonadFish} in its second index,
- \(m \) is a \textit{MonadFish} in its first index,

and assuming

- the names of \textit{MonadFish} operators in the second index are \texttt{return} and \((\Rightarrow\Rightarrow) \),
- the names of \textit{MonadFish} operators in the first index are \texttt{throw} and \texttt{handle},

the following equations hold

1. \(\texttt{return } \text{`handle'} \ f == \texttt{return} \),
2. \(\texttt{throw } \Rightarrow \Rightarrow \ f == \texttt{throw} \).

On other words, definitions 3 and 4 define a structure that is a \textit{Monad} (\textit{MonadFish}) twice and for which \texttt{return} is a left zero for \texttt{catch (handle)} and \texttt{throw} is a left zero for \((\Rightarrow\Rightarrow) ((\Rightarrow\Rightarrow)) \).

9 Instances: Either

Pragmatic programmer finally loses last bits of concentration realizing that \texttt{Either} type seems to match requirements of definition 3 and goes into sources to check whenever Haskell’s standard library already has such a \texttt{catch}. Unfortunately, \texttt{Data.Either} module does not define such an operator. However, \texttt{catchE} and \texttt{throwE} of \texttt{ExceptT} (section 4.4.3) match. Of course, if we substitute \texttt{Identity} for \texttt{m}, \texttt{ExceptT} turns into \texttt{Either} and those operators can be simplified to

\[
\begin{align*}
\texttt{throwE'} \ &: \ e \rightarrow \text{Either } e \ a \\
\texttt{throwE'} &= \text{Left} \\
\texttt{catchE'} \ &: \text{Either } e \ a \\
\quad &\rightarrow (e \rightarrow \text{Either } f \ a) \\
\quad &\rightarrow \text{Either } f \ a \\
\texttt{catchE'} (\text{Left } e) \ h &= h \ e \\
\texttt{catchE'} (\text{Right } a) \ _ &= \text{Right } a
\end{align*}
\]

Lemma 3. For a given \textit{Monad} \(m \) and a fixed argument \(a \), \texttt{ExceptT} with \texttt{throwE} as \texttt{return} and \texttt{catchE} as \((\Rightarrow\Rightarrow) \) is a \textit{Monad} in argument \(e \).

Proof. Any of the following

- **By brute force:** by case analysis, using the fact that \(m \) satisfies \textit{Monad} laws.
- **Another way:** trivial consequence of section 10.

Lemma 4. For \texttt{ExceptT} with the above operators the following equations hold

1. \(\texttt{return } x \ `\texttt{catchE'} \ f == \texttt{return } x \),
2. \(\texttt{throwE } e \Rightarrow \Rightarrow \ f == \texttt{throwE } e \).

Proof. By trivial case analysis.

Theorem 4. \texttt{ExceptT} and, by consequence, \texttt{Either} satisfy definition 3.

Proof. Consequence of lemma 3 and lemma 4.
10 Logical perspective

Note, that from a logical perspective most of the above is simply trivial. Either \(a \land b \) is just \(a \lor b \) and so if \(\lambda a. a \lor b \) must be a \texttt{Monad} too since \(\lor \) operator is symmetric. Sections 6-8 simply generalize this fact with interactions between \texttt{Left}, \texttt{Right} and two \((>>=)\) operators into definition 3.\(^{20}\)

The main point of this article is that there are other instances of this generalization and, more importantly, that this generalization is itself interesting — the facts that we shall demonstrate in the sections that follow.

11 Encodings

Despite the noted triviality, these facts do not seem to be appreciated by the wider Haskell community. In particular:

- \texttt{ExceptT} does not get much use in Hackage packages in general,
- the equivalent of \texttt{catchE} for \texttt{ErrorT} has an overly-restricted type

\[
\texttt{catchError :: (Monad m) => ErrorT e m a -> (e -> ErrorT e m a) -> ErrorT e m a}
\]

\[
\texttt{m `catchError` h = ErrorT $ do a <- runErrorT m case a of Left l -> runErrorT (h l) Right r -> return (Right r)}
\]

- no \texttt{Monad}ic parsing combinator library from Hackage (most obvious beneficiaries of the observation) defines the would-be-\texttt{Monad} instance of \texttt{throwE} and \texttt{catchE}.

To our best knowledge, the only Hackage package that is explicitly aware of the fact that \texttt{Either} is a \texttt{Monad} twice is \texttt{errors} [67]\(^{21}\) and the only packages that seem to be aware that \texttt{throw} and \texttt{catch} in general need more general types than those given by \texttt{MonadCatch} of section 4.8 are those discussed in section 5.3 (but they miss the fact that their \texttt{catch} operators want to be \texttt{Monad}ic \texttt{bind}s). To our best knowledge, no Hackage package utilizes both facts.

As to the question why had not anybody notice and start exploiting these facts yet we hypothesize that the answer is because Haskell cannot express these properties conveniently (not to mention less expressive mainstream languages which cannot express them at all).

The simplest possible encoding of definition 3 in Haskell is just

\[
\texttt{class ConjoinedMonads m where return :: a -> m e a (>>=) :: m e a -> (a -> m e b) -> m e b throw :: e -> m e a catch :: m e a -> (e -> m f a) -> m f a}
\]

\(^{21}\) In [68] Gabriel Gonzalez, the author of the \texttt{errors} package, also explicitly mentions the fact that the \texttt{Monad}ic operators for the other index of \texttt{Either} seem to match the semantics for the corresponding \texttt{throw} and \texttt{catch} operators. Though he gives no proofs or claims of general applicability, he mentions that the fact itself was first pointed out to him by Elliott Hird who named it the 'success \texttt{Monad}'. So, though the Net seems to have no evidence of that conversation, it is entirely possible some of the discussed facts were already discovered in their complete forms before (at least in the idealistic sense, but not, to our best knowledge, in the 'communicated in this form before' sense). (Which is usually the case for almost anything anyway.) (Which is a yet another reminder that "intellectual property" is an oxymoron.)
but it does not play too well with the rest of the Haskell ecosystem. In the ideal world, definition 3 would get encoded with the following pseudo-Haskell definition

Definition 5. Proper pseudo-Haskell definition.

```haskell
class (forall a . Monad (\e -> m e a)) -- 'Monad' in 'e'
    , forall e . Monad (m e) -- 'Monad' in 'a'
  => ConjoinedMonads m where
    -- and that's it
```

however, Haskell allows neither rank 2 types in type classes, nor lambdas in types, which brings us to the following 'theorem'.

"Theorem" 5. *Haskell cannot properly (equivalently to definition 5) define ConjoinedMonads.*

Proof. Proper definition of ConjoinedMonads requires rank 2 types in type class declaration, which is not possible in modern Haskell. There is no way to emulate rank 2 definition using only rank 1 constructions.

We call it a 'theorem' because we do not really know if its proof really works out for Haskell as Haskell has an awful lot of language extensions (including future ones) and there might be some nontrivial combination of those that gives the desired effect. In particular, GHC version 8.6 released just before this article was finished introduced QuantifiedConstraints extension [69] allowing us to write

```haskell
data Swap r a e = Swap { unSwap :: r e a }

instance (forall e . Monad (r e)
    , forall a . Monad (Swap r a))
  => ConjoinedMonads r where
    -- ...
```

which, arguably, can be considered good enough, though not very convenient in practice.

The purposes of this article, however, is not to demonstrate that there is a convenient form of definition 3 in Haskell but to show what could be achieved if there were such a convenient definition. Which means that we can and, hence, shall completely ignore the question of the most elegant Haskell representation for definition 3 and just use the very first definition of ConjoinedMonads from above for simplicity.

As to the naming, it is, indeed, tempting to call this structure BiMonad, but that name is already taken by another structure from category theory. Then, since the structure consists of two Monads that are 'dual' to each other via interaction laws it is tempting to call it DualMonad as a double-pun, but that 'duality' is different from the usual duality of category theory. Which is why we opted into using the name 'ConjoinedMonads' (in the sense of 'conjoined twins', conjoined with left-zeroes).

12 Instances: constant Functors

In this section we discuss the relationship between ConjoinedMonads (and definition 3) and MonadThrow, MonadCatch, and MonadError from section 4.8.

12.1 MonadError

MonadError (section 4.8.1) relationship to ConjoinedMonads turns out to be pretty simple. Remember that MonadError is defined using functional dependencies

```haskell
class (Monad m) => MonadError e m
    | m -> e where
```

```
This means that Haskell type system guarantees that for each \( m \) there exist unique \( e \) if \( \text{MonadError} \ e \ m \) is inhabited. This, in turn, means that substituting a constant \( \text{Functor} \ r = \ \lambda a \rightarrow m a \) over \( \text{Monad} \ m \) into the definition of \( \text{ConjoinedMonads} \) produces

\[
\begin{aligned}
\text{class ConjoinedMonads} \ (\ \lambda a \rightarrow m a) \ &\ \text{where} \\
\ &\ \text{return} :: a \rightarrow m a \\
\ &\ (\gg=) :: m a \rightarrow (a \rightarrow m b) \rightarrow m b \\
\ &\ \text{throw} :: e \rightarrow m a \\
\ &\ \text{catch} :: m a \rightarrow (e \rightarrow m a) \rightarrow m a
\end{aligned}
\]

The first two operators are just the definition of \( \text{Monad} \ m \), the latter two match \( \text{MonadError}'s \) \( \text{throwError} \) and \( \text{catchError} \) exactly.

**Theorem 6.** \( \text{MonadError} \) is a \( \text{ConjoinedMonads} \) that is constant in its first index.

**Proof.** By the above argument.

\[\square\]

### 12.2 MonadThrow and MonadCatch

For \( \text{MonadThrow} \) and \( \text{MonadCatch} \) (section 4.8.2) it is not the case that \( e \) is unique, since \( \text{Exception} \ e \) is a whole class of types. Moreover, operator \( \text{catchM} \) of \( \text{MonadCatch} \), unlike \( \text{catchError} \) of \( \text{MonadError} \), does dynamic dispatch by casting \( \text{Exceptions} \) to the type of its handler’s argument and propagating errors when the \( \text{cast} \) fails. Note that, strictly speaking, purely from type perspective \( \text{MonadCatch} \) is not \textit{required} but \textit{allowed} to \textit{cast}, but all the instances do actually \textit{cast}. The latter fact means that we can distill that common computational pattern by redefining those structures using the technique used by imprecise exceptions of section 4.5 as follows

\[
\begin{aligned}
\text{class Monad} \ m \Rightarrow \text{MonadThrowS} \ m \ &\ \text{where} \\
\ &\ \text{throwS} :: \text{SomeException} \rightarrow m a \\
\text{class MonadThrow} \ m \Rightarrow \text{MonadCatchS} \ m \ &\ \text{where} \\
\ &\ \text{catchS} :: m a \rightarrow (\text{SomeException} \rightarrow m a) \rightarrow m a \\
\ &\ \text{throwM}' :: (\text{MonadThrowS} \ m, \text{Exception} \ e) \\
\ &\ \Rightarrow e \rightarrow m a \\
\ &\ \text{throwM}' = \text{throwS} \ . \ \text{toException} \\
\ &\ \text{handleOrAgain} \ h \ e = \text{case fromException} \ e \ of \\
\ &\ \ \text{Just} \ f \rightarrow h f \\
\ &\ \ \text{Nothing} \rightarrow \text{throwM} \ e \\
\ &\ \text{catchM}' :: (\text{MonadCatchS} \ m, \text{Exception} \ e) \\
\ &\ \Rightarrow m a \rightarrow (e \rightarrow m a) \rightarrow m a \\
\ &\ \text{catchM}' m a = \text{catchS} \ m a \ . \ \text{handleOrAgain}
\end{aligned}
\]

Note that \( \text{MonadCatchS} \) is, again, a constant \( \text{ConjoinedMonads} \) with error index fixed to \( \text{SomeException} \). Also note that \( \text{throwM}' \) above is the only way to get an equivalent for \( \text{throwM} \) because \( \text{toException} \) is the only way to cast an arbitrary type to \( \text{SomeException} \). On the other hand, \( \text{catchM} \) from \( \text{MonadCatch} \), unlike \( \text{catchM}' \) above, allows for instances that can cheat. For example, \( \text{catchM} \) can give a constant \( \text{SomeException} \) to the handler every time instead of \textit{casting} anything. We feel that this implies that \( \text{MonadCatch} \) is not a proper formal structure for error handling.
Definition 6. **Proper MonadCatch instance.** We shall call an instance of MonadCatch proper when its catch\(M\) can be decomposed into catch\(S\) and handle\(OrAgain\).

Theorem 7. Every proper instance of MonadCatch is a composition of ConjoinedMonads that is constant in its error index with toException in throw\(D\) and handle\(OrAgain\) in catch\(D\). In particular, MonadThrow is a composition of Pointed in the error index with toException.

Proof. By the above reasoning.

13 Instances: parser combinators

In this section we discuss the application of ConjoinedMonads and definition 3 to Monadic parser combinators discussed in section 5.2.

13.1 Inevitable definitions

To start off, let us continue using the definition of Parser type from section 5.2.2. The Monad instance in index \(e\) for this type is similarly easy to implement (by just trying all free functions of appropriate types) and it, too, has two possible implementations

\[
\begin{align*}
\text{throwP} & : e \to Parser s e a \\
\text{throwP} e & = \text{Parser $ \backslash s \to Left\ (e, s)$} \\
\text{catchP} & : Parser s e a \to (e \to Parser s f a) \to Parser s f a \\
\text{catchP} p f & = \text{Parser $ \backslash s \to$} \\
& \quad \text{case runParser p s of} \\
& \quad \quad \text{Right x} \to \text{Right x} \\
& \quad \quad \text{Left\ (e, _)} \to \text{runParser (f e) s} \\
\text{catchP'} & : Parser s e a \to (e \to Parser s f a) \to Parser s f a \\
\text{catchP'} p f & = \text{Parser $ \backslash s \to$} \\
& \quad \text{case runParser p s of} \\
& \quad \quad \text{Right x} \to \text{Right x} \\
& \quad \quad \text{Left\ (e, s')} \to \text{runParser (f e) s'}
\end{align*}
\]

with catch\(P\) doing backtracking on failures and catch\(P'\) proceeding to handling with the current state.

Theorem 8. Parser is a ConjoinedMonads for both versions of catch\(P\).

Proof. Monad laws for catch\(P'\) follow from the corresponding laws for (\(\gg\gg\)) of section 5.2.2. The rest can be proven by trivial case analysis and/or by using the observation from the proof of theorem 2.

A curious consequence of the above theorem is that (\(\gg\gg\)) of section 5.2.2 also has a roll-back version which satisfies Monad laws

\[
\begin{align*}
\text{bindP} p f & = \text{Parser $ \backslash s \to$} \\
& \quad \text{case runParser p s of} \\
& \quad \quad \text{Left x} \to \text{Left x} \\
& \quad \quad \text{Right\ (a, _)} \to \text{runParser (f a) s}
\end{align*}
\]

Though, of course, a Parser that would use bind\(P\) in place of the usual (\(\gg\gg\)) could not be called a 'parser' anymore.
13.2 The interesting parts

The first interesting fact is that (<!>) operator of the Alternative (section 4.1.3) type class is simply a type restricted version of orElseP which, in turn, is just (>>) operator for the Monad in index e

\[
\text{orElseP} :: \\
\text{Parser } s e a \to \\
\text{Parser } s f a \to \\
\text{Parser } s f a
\]

\[
\text{instance } \text{Monoid } e \Rightarrow \text{Alternative } (\text{Parser } s e) \text{ where} \\
\text{empty } = \text{Parser } $ \\backslash s \rightarrow \text{Left } (\text{mempty}, s) \\
f (\text{<!}) g = f \ `\text{catchP}` \text{ const } g
\]

Of even more interest is the fact that substituting orElseP instead of (<!>) into the definition of many operator produces many and some operators with types that show that some inherits error produced by its argument while many ignores them

\[
\text{someP} :: \text{Parser } s e a \rightarrow \text{Parser } s e [a]
\]

\[
\text{someP } v = \text{fmap } (:) v \leftrightarrow \text{manyP } v
\]

\[
\text{manyP} :: \text{Parser } s e a \rightarrow \text{Parser } s f [a]
\]

\[
\text{manyP } v = \text{someP } v \ `\text{orElseP}` \text{ pure } []
\]

This method of substituting (<!>) with orElseP extends to other similar combinators like choice, optional, notFollowedBy of all three aforementioned parser combinator libraries (Parser, Attoparsec, Megaparsec) and similar structures. The overall effect of this substitution is very useful in practice: it produces generic parser combinators that can be used to express parsers that are precise about errors they raise and handle. We can not emphasize this fact enough.

All of the above results of this section trivially generalize to their MonadTrans versions as usual.

14 Instances: conventional throw and catch via callCC

It is well-known fact that Emacs LISP-style throw and catch can be emulated with Scheme’s call/cc and some mutable variables \([70, 71]\). As a Haskell instance, Neil Mitchel used the same technique translated to Haskell’s IORefs and callCC in for Shake build system \([72, 73]\) (however, at the time of writing Shake no longer uses that code). In this section we shall demonstrate that a structure with the same semantics can be implemented in pure Haskell without the use of mutable variables. In all the cases, as usual, C++/Java-style dynamic dispatch can be added on top using the same casting technique of sections 4.5 and 12.2. Hence without the loss of generality in this section we shall discuss only the most-recent-handler case.

14.1 Second-rank callCC

Remember the definition of callCC from section 5.1.4. The underappreciated fact about that function is that its type is not its most general type for its term. Note that variable \(b\) in Peirce’s law

\[
((a \to b) \to a) \to a
\]

plays the same role as \(r\) plays in the definition of Cont: it is a generalization of the bottom \(\perp\) constant. This, of course, means that we can generalize Peirce’s law to

\[
((\forall b.a \to b) \to a) \to a
\]

and, by repeating the derivation in section 5.1.4, give the following second-rank type for callCC

\[
\text{callCCR2} :: ((\forall b.a \rightarrow \text{Cont } r b) \rightarrow \text{Cont } r a) \rightarrow \text{Cont } r a
\]

while keeping exactly the same implementation.
14.2 ThrowT MonadTransformer

Note that, in essence, \texttt{catch} maintains a stack of handler addresses and \texttt{throw} simply \texttt{jmp}s to the most recent one. Emulation of exceptions with \texttt{call/cc} works similarly [70, 71]. The main never explicitly stated observation in that translation is that the type of the handler in the type of \texttt{catch} :: \texttt{M -> (e -> M) -> M}

matches the type of \texttt{throw :: e -> M} and the type of escape continuation when \texttt{M} is \texttt{ContT r m b}. In other words, we can simply assign

\[
\text{type Handler r e m = forall b . e -> ContT r m b}
\]

to be to type of our handler and since \texttt{callCC} provides an escape continuation directly to its argument \texttt{catch} can simply save it and \texttt{throw} can simply take the most recent one and escape into it

\[
\text{throwT :: e -> ThrowT r m e a}
\]

\[
\text{throwT e = ThrowT $ \\text{currentThrow} \to \text{currentThrow e}}
\]

Also note that since the stack \texttt{catch} maintains stays immutable between \texttt{catches} and each state of the stack is bound to the computation argument of \texttt{catch}, in principle, we should be able to use a simple context (pure function, \texttt{Reader}) instead of a mutable variable as follows

\[
\text{type ThrowT r m e a =}
\]

\[
\text{ReaderT (Handler r e m) -- for saving last handler}
\]

\[
(\text{ContT r m}) -- \text{for callCC}
\]

\[
a
\]

which, after inlining all the definitions except pure \texttt{Cont} becomes

\[
\text{newtype ThrowT r m e a = ThrowT}
\]

\[
\{ \text{runThrowT :: (forall b . e -> Cont (m r) b) -> Cont (m r) a} \}
\]

Finally, since the escape continuation of delimited \texttt{callCC} escapes to the same address where the body of \texttt{callCC} normally returns, to emulate a single \texttt{catch} we need to chain two \texttt{callCCs} as follows

\[
\text{catchT :: ThrowT r m e a}
\]

\[
\to (e \to \text{ThrowT r m f a})
\]

\[
\to \text{ThrowT r m f a}
\]

\[
\text{catchT m h = ThrowT $ \text{\text{currentThrow} \to}}
\]

\[
\text{callCC $ \text{\text{normalExit} \to do}}
\]

\[
e \leftarrow \text{callCC2 $ \text{\text{newThrow} \to runThrowT m newThrow \to normalExit}}
\]

\[
\quad \text{-- newThrow escapes here}
\]

\[
\text{runThrowT (h e) outerThrow}
\]

\[
\quad \text{-- normalExit escapes here}
\]

Note that this expression requires our second-rank \texttt{callCC2} since our \texttt{Handler} is universally quantified by the variable \texttt{b}. However, if we fix \texttt{e} to a constant type then the conventional \texttt{callCC} will suffice.

Similarly to other uses of generalized Kolmogorov’s translation we, too, can hide \texttt{r} parameter behind \texttt{forall}
newtype ThrowT' m e a = ThrowT'
{ runThrowT' :: forall r
    . (forall b . e -> Cont (m r) b)
    -> Cont (m r) a }

throwT' :: e -> ThrowT' m e a
catchT' :: ThrowT' m e a
     -> (e -> ThrowT' m f a)
     -> ThrowT' m f a

without any changes to the bodies of throw and catch.

Theorem 9. For Monad m and any r, ThrowT r m and ThrowT' m are ConjoinedMonads.

Proof. For each index.

- In index a: ThrowT is a special case of ReaderT and Cont and m are Monads.
- In index e: by substitution of the above definitions into the Monad laws, since the definitions of throwT and throwT' are, essentially, identity functions.

\[\square\]

15 Instances: error-explicit IO

As we saw in section 4.5, IO is defined as a State Monad with some magical primitive operations. Which means there is nothing preventing us from extending that IO signature with a type for errors.

newtype EIO e a

Similarly to parser combinators of section 13 there are several possible implementations of this EIO (including, in principle, the ones that do backtracking on errors, though, of course, that would be inconsistent with the semantics of the RealWorld). The simplest one matches a definition for non-backtracking parser combinator on State# RealWorld from section 5.2.2

newtype EIO e a = EIO
{ runEIO :: State# RealWorld
     -> (# Either e a, State# RealWorld #) }

instance Pointed (EIO e) where
pure a = EIO $ \s -> (# Right a, s #)

instance Monad (EIO e) where
m >>= f = EIO $ \s -> case runEIO m s of
(# Left a, s' #) -> (# Left a, s' #)
(# Right a, s' #) -> runEIO (f a) s'

-- Note how symmetric this is with Pointed and Monad instances.
throwEIO :: e -> EIO e a
throwEIO e = EIO $ \s -> (# Left e, s #)

catchEIO :: EIO e a -> (e -> EIO f a) -> EIO f a
catchEIO m f = EIO $ \s -> case runEIO m s of
(# Left a, s' #) -> runEIO (f a) s'
(# Right a, s' #) -> (# Right a, s' #)

\[22\] Some of which actually break Monad laws, but as mentioned in remark 4 that is out of scope of this discussion.
Note that very similar structures were proposed before in [22] and Control.Monad.Exception.Catch module of control-mond-exception [65] discussed in section 5.3. Also note that the definition of GHC’s IO before imprecise exceptions were introduced was similar to EIO above (but without the parameter e) and one of the primary motivations behind introduction of built-in exceptions into GHC mentioned in [41] was to make IO more efficient by allowing its ( >>= ) to be implemented without pattern-matching. But there are, of course, other ways to eliminate pattern matching. By moving Either in the definition of EIO out the parentheses using the technique from section 5.2.2 and then Scott-encoding the resulting type we can make the following definition

```
newtype SEIO e a = SEIO
 { runSEIO :: forall r
 . (e -> State# RealWorld -> r)
 -> (a -> State# RealWorld -> r)
 -> State# RealWorld
 -> r }

instance Pointed (SEIO e) where
 pure a = SEIO $ \err ok s -> ok a s

instance Monad (SEIO e) where
 m >>= f = SEIO $ \err ok s -> runSEIO m err (\a -> runSEIO (f a) err ok) s

 -- Note the same here.
 throwSEIO :: e -> SEIO e a
 throwSEIO e = SEIO $ \err ok s -> err e s

 catchSEIO :: SEIO e a -> (e -> SEIO f a) -> SEIO f a
 catchSEIO m f = SEIO $ \err ok s -> runSEIO m (\e -> runSEIO (f e) err ok) ok s
```

Theorem 10. Both EIO and SEIO with the above operations are ConjoinedMonads.

Proof. Consequence of theorem 8 and the fact that Scott-encoding preserves computational properties.

16 Instances: conventional IO

Theorem 11. IO is a composition of ConjoinedMonads that is constant in its error index with toException in raiseIO# and handleOrAgain in catch#.

Proof. A consequence of of results of theorems 7 and 10 for e == SomeException.

Note that, according to remark 4, the above works out only because raiseIO#/throwIO, unlike raise#/throw, are deterministic (see section 4.5).

Also note that in a dialect of Haskell with separate operators for imprecise exceptions (or without imprecise exceptions altogether) we can completely replace IO with EIO as defined above. We can not, however, apply that construction to GHC’s Haskell dialect since it merges precise and imprecise catch (see remark 5).

17 Applicatives

Now let us once more turn our attention to the bodies of definitions 3, 4, and 5 (all of which define the same structure).
class (forall a . Monad (\e -> m e a))

, forall e . Monad (m e)

=> ConjoinedMonads m where

Since ConjoinedMonads is simply a Monad × Monad with interaction laws between pure and bind operators (definition 3) it is natural to ask what would happen if we replace one or both of those Monads with more general structures like Applicative and modify the interaction laws accordingly.

The two structures with Applicative in index e seem to be unusable for the purposes of this article since they lack conventional error handling operators. However, the structure with Monad in index e and Applicative in index a looks interesting.

class (forall a . Monad (\e -> m e a))

, forall e . Applicative (m e)

=> MonadXApplicative m where

In this structure the Monadic index gives conventional throw and catch operators, and the Applicative index can be treated as expressing generalized function application (see section 4.1.2) for structure m.

In other words, when the above structure preserves errors and pure values similarly to definition 3

throw e <**> a == throw e
pure a `catch` f == pure a

(and obeys the laws of Applicative and Monad for corresponding operators) then it can be used to express λ-calculus with exceptions by simply injecting all pure values and lifting all pure functions into it.

In particular, since ConjoinedMonads is a special case of MonadXApplicative, all ConjoinedMonads instances from the previous sections can be used as a basis for such a formalism.

While it is not immediately clear how to make imprecise exceptions into an instance of MonadXApplicative (since they are non-deterministic, hence disobeying the above laws, and throw having a wrong type to be the identity element for catch, see remark 5), there are some interesting instances of MonadXApplicative that are not ConjoinedMonads.

For instance, a folklore example of an Applicative that is not a Monad is 'computations collecting failures in a Monoid', which can be defined as follows

newtype EA e a = EA { runEA :: Either e a }

instance Pointed (EA e) where

pure = EA . Right

instance Monoid e => Applicative (EA e) where

f <**> a = EA \$ runEA f <**> runEA a where

 (Right f) <**> (Right a) = Right \$ f a
(Left e) <**> (Left a) = Left e
(Left e1) <**> (Left e2) = Left \$ e1 `mappend` e2

Note, however, that this structure is a Monad in e

throwEA :: e -> EA e a
throwEA = EA . Left

catchEA :: EA e a -> (e -> EA f a) -> EA f a
(\(EA a)`catchEA` f = case a of
  Right a -> pure a
  Left e -> f e


48
which means it is also an instance of MonadXApplicative. If we now remember that

- graded monads [23] also require e to be a Monoid and

- imprecise exceptions, too, can be though as producing a Monoid of possible errors with catch (including the implicit catch over main) 'observing' one of its elements,

we come to a conclusion that in a calculus with IO-effects separated from non-determinism-effects, imprecise exceptions over non-deterministic Applicative computations, indeed, form a Monad (with equivalence defined up to raising the same set of exceptions, similarly to section 4 of [41]) over the Monoid of imprecise exceptions. That is, those, too, are examples of MonadXApplicative.

18 Conclusions and future work

We hope that with this article we pointed and then at least partially plugged an algebraic hole in the programming languages theory by showing that conventional computational formalisms with throw/try/catch-exceptions are 'conjoined' products of pairs of Monads (or, less imperatively, Monads and Applicatives). This fact, in our opinion, makes a lot of conventional programming "click into place" similarly to how plain Monads "click" imperative "semicolons".

Of particular note is the fact that everything in this paper, including EIO of section 15, follows the "marriage" framework of [46] of confining effects to monads, but ignores the question of any additional rules for type indexes in question. In other words, ad-hoc exception encoding constructions like that of error-explicit IO [22] or graded monads [23] are mostly orthogonal to our "conjoined" structures and can be used simultaneously.

Besides practical applications described in the body of the paper and observations already mentioned in section 1 (rereading said section about now is highly recommended) we also want turn your attention to the following observations.

1. Conventional error handling with throw and catch (but without dynamic dispatch) is dual to conventional Monadic sequential computation, a fact which, in our opinion, is interesting by itself (see footnote 20).

2. Meanwhile, the "without dynamic dispatch" part above, in our opinion, provides an algebraic foundation for the argument against building new languages with builtin dynamic dispatch of exception handlers and/or an argument against extensively relying on that feature in the languages that have it, a point which is commonly discussed in the folklore ("exceptions are evil") and was articulated by Hoare from programmer comprehension standpoint already in 1981 [74].

   Not only dynamic dispatch of exceptions is, citing Hoare, 'dangerous', but it also prevents programs from directly accessing the inherent Monadic structures discussed in this article.

3. We feel that the usual arguments against using Monads for error handling are moot.

   • The problem of syntactic non-uniformness between pure computations, Applicatives and Monads, in our view, is almost trivial to solve: common primitives like map/mapM should be expressed in terms of Applicatives (of which pure functions are trivial instance) instead of Monads. For instance, mapM for list can be rewritten as

     \[
     \text{mapAp} :: \text{Applicative } f = \rightarrow (a \rightarrow f b) \rightarrow [a] \rightarrow f [b]
     \]

     \[
     \text{mapAp } f [] = \text{pure } []
     \]

     \[
     \text{mapAp } f (a:as) = \text{fmap } (:) (f a) \leftrightarrow \text{mapAp } f \ as
     \]

     Meanwhile, the uniform syntax for pure functions and Applicatives can be made by adding some more missing instances of the LISP macros into the compiler in question. For

---

23 And, similarly, for Traversable which we shall continue to ignore for the purposes of this article.

24 From a cynical LISP-evangelist point of view, all of "the progress" of the programming languages in the last 50 years can be summarized as "adopting more and more elements (lately, meta-programming) from LISP while trying very hard not to adopt the syntax of LISP". From a less cynical perspective, "the progress", at least in typed languages, consists of well-typing said elements.
instance, quasiquotation \citep{75} is one conventional way do such a translation, Conal Elliot’s "Compiling to Categories" \citep{48} provides another categorically cute way to achieve similar results.

- We feel that the problem of modularity as stated by Brady \citep{33}

Unfortunately, useful as monads are, they do not compose very well. Monad transformers can quickly become unwieldy when there are lots of effects to manage, leading to a temptation in larger programs to combine everything into one coarse-grained state and exception monad.

can be solved by applying graded monads to the \texttt{Monad} part of \texttt{MonadXApplicative}.

In other words, we think that a programming language that

- provides a primitive \texttt{catch} operator that does no dynamic dispatch,
- provides quasi-quoting/compiling to categories for \texttt{Applicative}s,
- distinguishes between \texttt{IO}-effects and non-determinism, and
- uses a graded \texttt{MonadXApplicative} for a base type of computations

would provide all the efficiency of imprecise exceptions, simplicity of \texttt{Monads} (doubled, in some sense, since error handling would stop being special), while having none of the usual arguments against said mechanisms applying to it.

We feel that the following future work directions on the topic would be of particular value:

- implementation of a practical "good-enough" (section 11) library for GHC Haskell, and, eventually, an implementation of a dialect of Haskell with a graded \texttt{MonadXApplicative} as a base type of computations,
- research into syntax and semantics of 'marriages' between precise and imprecise exceptions in a single language, including, but not limited to, research into simpler semantic models for \(\lambda\)-calculus with Monads \citep{46, 76},
- research into the question of whether multiplying more than two \texttt{Monads} and \texttt{Applicatives} with non-trivial interaction laws produces interesting structures.\footnote{It is clear that one can have more than one index \(e\) conjoined to a single \(a\), but such a construction doesn’t seem to make much sense in presence of graded \texttt{Monads}. However, that fact by itself does not exclude a possibility of existence of an interesting structure for which there are non-trivial interactions between different indexes \(e\).}

All the practical results of this article except for \texttt{catchT} combinator of section 14 were born in 2014 in a course of a single week from observing the structure of a parser combinator \texttt{Monad} indexed by errors and values (and other things beyond the scope of this article, the original structure is also an indexed \texttt{State Monad} to allow parsing of arbitrary data types, not just streams) a very simplified version of which was presented in sections 5.2 and 13. The article itself was started in 2016 but then was rewritten from scratch four times before finally settling to the current presentation. The \texttt{catchT} combinator was discovered while writing section 5.1.

This article would have been impossible without the patience of Sergei Soloviev who read and meticulously commented numerous drafts of the paper, numerous people who encouraged me to write this after I described the general idea to them, and all contributors to Emacs and org-mode without whom neither the planning nor the writing of the actual text would have been manageable. The author is also grateful to Sergey Baranov for helpful discussions on related topics which steered the first half of this paper into its current form.

References

\citep{1} Carsten Dominik, Eric Schulte, Nicolas Goaziou, et al. \textit{Org mode for Emacs}. 2018. \url{https://orgmode.org/} (cit. on p. 4).
