Inositol phosphates are assembly co-factors for HIV-1

Robert A. Dick1*, Kaneil Z. Zadrozy2, Chaoyi Xu1, Florian K. M. Schur3,5, Terri D. Lyndon6, Clifton L. Ricana6, Jonathan M. Wagner2, Juan R. Perilla3, Barbie K. Pornillos2, Marc C. Johnson6, Owen Pornillos2* & Volker M. Vogt1

A short, 14-amino-acid segment called SP1, located in the Gag structural protein1, has a critical role during the formation of the HIV-1 virus particle. During virus assembly, the SP1 peptide and seven preceding residues fold into a six-helix bundle, which holds together the Gag hexamer and facilitates the formation of a curved immature hexagonal lattice underneath the viral membrane2,3. Upon completion of assembly and budding, proteolytic cleavage of Gag leads to virus maturation, in which the immature lattice is broken down; the liberated CA domain of Gag then re-assembles into the mature conical capsid that encloses the viral genome and associated enzymes. Folding and proteolysis of the six-helix bundle are crucial rate-limiting steps of both Gag assembly and disassembly, and the six-helix bundle is an established target of HIV-1 inhibitors4,5. Here, using a combination of structural and functional analyses, we show that inositol hexakisphosphate (InsP6, also known as IP6) facilitates the formation of the six-helix bundle and assembly of the immature HIV-1 Gag lattice. IP6 makes ionic contacts with two rings of lysine residues at the centre of the Gag hexamer. Proteolytic cleavage then unmasks an alternative binding site, where IP6 interaction promotes the assembly of the mature capsid lattice. These studies identify IP6 as a naturally occurring small molecule that promotes both assembly and maturation of HIV-1.

IP6 is a highly negatively charged compound that is present in all mammalian cells at concentrations of 10–40 μM6. Inositol phosphates stimulate in vitro assembly of HIV-1 Gag into immature virus-like particles (VLPs), with previous data suggesting that IP6 interacts with both the MA and NC domains of Gag7,8. To understand how IP6 affects HIV-1 assembly, we used an HIV-1 Gag construct spanning the CA to NC domains and having one extra amino acid residue, Ser, preceding the normal N-terminal Pro at the start of the CA domain (s-CA; Fig. 1a), because this should disfavour formation of the N-terminal β-hairpin that promotes mature assembly9. Longer N-terminal extensions of CANC constructs have been shown to assemble inefficiently into immature VLPs at pH 8, but not into mature VLPs at pH 68,10.

Fig. 1 | IP6 induces assembly of HIV-1 Gag in vitro. a, Map of the HIV-1 Gag protein, indicating the MA, CA, NC and p6 domains, and spacer peptides SP1 and SP2. Gag-derived constructs used in this study are shown underneath. Blue bar, major homology region; purple bar, SP1 helix; NTD and CTD, N-terminal and C-terminal domains of CA; R18, K290 and K359, locations of mutations; N372, C-terminal residue of the s-CA; and s-CANC(SP1) constructs. **b**, Negative-stain electron microscopy images of mature and immature VLPs formed by s-CANC(50μM) at pH 6 and pH 8 in the absence or presence of the indicated molar ratios of IP6 (0–10 μM). Scale bars, 100 nm. **c**, Number of VLPs per 55 μm2 without and with (+) 10 μM IP6 at pH 6 and pH 8; n shown below and mean above box plots. The experiment was repeated three times with similar results. **d**, Diameters of immature and mature VLPs; n shown below and mean above box plots. e, Representative images of s-CANC VLPs assembled at pH 8 in the absence and presence of IP6, IP3, IP5 and IP6. Scale bars, 100 nm. The experiment was repeated twice with similar results. **e**, Number of VLPs per 55 μm2 without and with 10 μM IP6. **f**, Relative particle production (%). **g**, Parallel transfections of 293FT wild-type (WT) and IPPK knockout (KO) cells were performed with a VSV-G-pseudotyped HIV-1 provirus containing GFP, and infectivity was measured on WT and KO cells. Graphs show mean ± s.d. of four independent experiments; dots show individual data points. Right panels show sequences of total PCR products of the guide RNA target sites from WT and KO cells; guide RNA sequence is underlined in red. **c**, d, f, Centre lines show medians; box limits indicate 25th and 75th percentiles as determined by R software11; whiskers extend to minimum and maximum values.

1Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA. 2Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA. 3Department of Chemistry and Biochemistry, University of Delaware, NewPort, DE, USA. 4Structural and Computational Biology Unit, EMBL, Heidelberg, Germany. 5Institute of Science and Technology Austria, Klosterneuburg, Austria. 6Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA. *e-mail: radb2@cornell.edu; opornillos@virginia.edu
However, we found that s-CANC still formed mature-like particles at both pH values (Fig. 1b). Notably, the presence of IP₆ induced a marked switch to the formation of spherical, immature VLPs (Fig. 1b, d). At pH 8, even a substoichiometric 1:50 molar ratio of IP₆ to protein resulted in an approximately 100-fold increase in immature VLPs (Fig. 1b, c). At pH 6, the effect of IP₆ was less strong, requiring at least a 1:10 ratio to induce immature assembly (Fig. 1b). We conclude that IP₆ imposes an in vitro immature assembly phenotype, even under conditions that favour the mature lattice (pH 6).

Other inositol derivatives also promoted s-CANC assembly, but to a lesser extent, in the order IP₃ < IP₄ < IP₅ < IP₆ (Fig. 1e, f), with efficacy correlating with the number of phosphate groups. Other negatively charged compounds did not promote or only marginally promoted assembly (Extended Data Fig. 1). Overall, these results indicate that IP₆ interacts with Lys290 and Lys359 in the immature HIV-1 Gag hexamer. a, IP₆-induced assembly of s-CASP1 into immature VLPs. The experiment was repeated four times with similar results. b, IP₆-induced assembly of CA₇_{CTD}SP₁ into flat micro-crystals. The experiment was repeated six times with similar results. c, Two-dimensional cryo-EM projection map of a micro-crystal. Images of multiple crystals were collected during two rounds of data collection from separate assembly reactions and all crystals had similar unit cells. Two individual crystals had single layer regions and could be further processed. These crystals generated similar maps. d, e, Top view (d) and side view (e) of the CA₇_{CTD}SP₁ hexamer X-ray crystal structure showing the protein in grey ribbons and unbiased mFo–DFc difference density in blue mesh, contoured at 2σ. f, Top and side views of IP₆ in its myo configuration, docked into the difference density as a rigid body in one of six rotationally equivalent orientations. All six binding modes are shown in Extended Data Fig. 4a. g, Side view of the two rings of Lys290 (green) and Lys359 (cyan) with bound IP₆ in the middle. Densities were omitted for clarity, and are shown in Extended Data Fig. 4b.

Fig. 2 | IP₆ interacts with Lys290 and Lys359 in the immature HIV-1 Gag hexamer. a, IP₆-induced assembly of s-CASP1 into immature VLPs. The experiment was repeated four times with similar results. b, IP₆-induced assembly of CA₇_{CTD}SP₁ into flat micro-crystals. The experiment was repeated six times with similar results. c, Two-dimensional cryo-EM projection map of a micro-crystal. Images of multiple crystals were collected during two rounds of data collection from separate assembly reactions and all crystals had similar unit cells. Two individual crystals had single layer regions and could be further processed. These crystals generated similar maps. d, e, Top view (d) and side view (e) of the CA₇_{CTD}SP₁ hexamer X-ray crystal structure showing the protein in grey ribbons and unbiased mFo–DFc difference density in blue mesh, contoured at 2σ. f, Top and side views of IP₆ in its myo configuration, docked into the difference density as a rigid body in one of six rotationally equivalent orientations. All six binding modes are shown in Extended Data Fig. 4a. g, Side view of the two rings of Lys290 (green) and Lys359 (cyan) with bound IP₆ in the middle. Densities were omitted for clarity, and are shown in Extended Data Fig. 4b.

Fig. 3 | IP₆ induces mature CA assembly by interacting with Arg18. a, Representative negative stain images of mature CA assemblies at pH 6 and 100 mM NaCl with increasing IP₆ concentrations (0–1,250 µM). The experiment was repeated five times with similar results. b, Representative image of failed CA R18A assembly even in the presence of 1,250 µM IP₆. The experiment was repeated three times with similar results. c, d, Top view (c) and side view (d) of a CA hexamer crystal structure showing the protein in yellow ribbons and unbiased mFo–DFc difference density in blue mesh, contoured at 2.2σ. e, Side views of myo–IP₆, docked into the difference density in two possible binding modes. f, Illustration of a single IP₆ molecule bound within a chamber enclosed by the N-terminal 3-hairpins and the Arg18 ring (magenta). In a second crystal form, IP₆ densities were observed both above and below the Arg18 ring (Extended Data Fig. 8).
charge neutralization is a fundamental aspect of IP₆-mediated HIV-1 Gag assembly, and that the details of coordination geometry and/or local stereochemistry are also important.

To address the biological importance of IP₆ in HIV-1 replication, we generated a knockout cell line in which the gene encoding inositol pentakisphosphate 2-kinase (IPPK), the enzyme responsible for the final step in IP₆ synthesis, was ablated (Fig. 1g). Infectious HIV-1 particle production from these knockout cells was reduced by between 10- and 20-fold (Fig. 1g). We interpret this result as implying that IP₆ has a critical role in assembly of immature and/or mature HIV-1.

As the s-CANC construct lacks the MA domain, the effect of IP₆ cannot depend on this domain, as previously suggested. The NC domain also cannot be essential, because IP₆ still promoted assembly in the absence of nucleic acid (Extended Data Fig. 2a, d). Furthermore, IP₆ also promoted the formation of abundant immature VLPs from the smaller protein s-CASP1, which lacks the NC domain altogether (Fig. 2a and Extended Data Fig. 2b, d). However, deletion of the SP1 domain abrogated the effect of IP₆, as IP₆ failed to induce assembly of s-CA into immature VLPs (Extended Data Fig. 2c).

Both the CA domain of Gag and the mature CA protein are composed of two separately folded sub-domains, CA-NTD and CA-CTD. To further define the site of action of IP₆, we removed the N-terminal CA-NTD sub-domain to create CA-CTDS1, which makes up the minimal Gag hexagonal lattice. In the presence but not the absence of IP₆, and at physiological pH and ionic strength, CA-CTDS1 formed flat hexagonal crystals, as shown by negative-stain electron microscopy (Fig. 2b). These crystals had the characteristic immature lattice spacing (Fig. 2c). That s-CASP1 formed a spherical lattice while CA-CTDS1 formed a flat lattice suggests that CA-CTD provides the contacts necessary for enforcing lattice curvature.

We next determined the X-ray crystal structure of CA-CTDS1 crystals in the presence of IP₆ (Fig. 2d, e and Extended Data Table 1). This revealed a single, six-fold symmetric density in the middle of the hexameric ring (blue mesh in Fig. 2d–f), indicating that one IP₆ molecule binds one CA-CTDS1 hexamer. Notably, this density coincides precisely with an unknown density feature observed in cryo-electron microscopy (cryo-EM) maps of the HIV-1 Gag hexamer derived from authentic immature virions (Extended Data Fig. 3). This further supports the idea that IP₆ is a cofactor of Gag assembly in cells and is a structural component of the HIV-1 particle.

IP₆ is an asymmetric molecule with multiple stereoisomers, the most abundant of which is the myo form, with a chair configuration of one axial and five equatorial phosphate groups. This is the most commonly observed stereoisomer in structures of various IP₆-binding proteins. In our CA-CTDS1 structure, the IP₆ density is also consistent with the myo form, with the axial phosphate pointing towards the six-helix bundle (6HB) (Fig. 2f). The bound ligand can adopt six energetically equivalent orientations, and the six-fold symmetric density is therefore the sum of these equivalent positions (Extended Data Fig. 4a). More importantly, the bound IP₆ is surrounded by two rings of lysine sidechains—Lys290 from the major homology region loop and Lys359 from the 6HB (Fig. 2g). In our previous crystal structure of the CA-CTDS1 hexamer in the absence of IP₆, sidechain densities for these lysines were not visible, implying that these residues were highly flexible. In the current structure, these sidechains are better ordered, and in direct ionic contact through their primary ε-amines with the IP₆ phosphate groups (Fig. 2g and Extended Data Fig. 4b).

Consistent with the structure, we found that s-CANC mutant proteins in which Lys290 or Lys359 were replaced with alanine (K290A and K359A) were 100-fold less responsive to added IP₆ (Extended Data Fig. 5a–d). These results further indicate that both lysine rings are required for productive IP₆ binding. K290R and K359R mutants had less pronounced defects but still did not respond to IP₆, as well as wild-type s-CANC, consistent with the high degree of lysine conservation in these positions (99.94% for K290 and 99.84% for K359; http://www.hiv.lanl.gov). Furthermore, the K290A and K359A mutations abolished infectivity (Extended Data Fig. 5e). Thus, optimal HIV-1 assembly in cells appears to require lysines at both positions. The results of previous studies that examined the effects of the above mutations on virus budding from cells and on virus infectivity are consistent with our findings.

![Image](https://example.com/image.png)

Fig. 4 | **Model.** a, Diagram of HIV-1 Gag, with the indicated positions of R150 (triangle; R18 in mature CA), K290 (circle; K158 in mature CA), K359 (square; K227 in mature CA). Dotted lines indicate protease cleavage sites. b, Diagram of Gag organization in immature virions (left). Following cleavage of Gag by protease (that is, maturation), CA re-organizes to form a mature core around viral RNA (right). c, d, Surface representations of the CASP1 and CA hexamers in the immature (c) and mature virus (d), with IP₆ shown in its binding sites. The marked rearrangement of CA upon maturation is evident, as is the change in IP₆ binding site between immature and mature viruses. CA-NTD, blue; CA-CTD, orange; 6HB, purple; IP₆, red.

The above data suggest that IP₆ acts by stabilizing the 6HB and promoting the formation of the immature Gag hexamer. To test this notion, we examined the dynamic behaviour of the CA-CTDS1 hexamer by using all-atom molecular dynamics simulations. In the absence of IP₆, the six-fold symmetry of the CA-CTDS1 hexamer collapsed after 200 ns and did not recover during the 2μs of simulation (Extended Data Fig. 6 and Supplementary Video 1). By contrast, six-fold symmetry in the presence of IP₆ was maintained, particularly at the top of the 6HB, proximal to the IP₆-binding site. Other inositol derivatives and mellitic acid (hexacarboxybenzene) also stabilized the 6HB in our simulations, consistent with their ability to also support immature s-CANC assembly in vitro (Extended Data Fig. 6b, c).

We also examined the effect of IP₆ on mature capsid assembly, which is mediated by the CA protein that is generated upon Gag proteolysis. We found that IP₆ promoted assembly of HIV-1 CA into mature-like structures, which was mediated by the CA protein that is generated upon Gag proteolysis. We found that IP₆ promoted assembly of HIV-1 CA into mature-like structures (Fig. 3a and Extended Data Fig. 7b, d). Compared to immature s-CANC assembly, however, higher amounts of IP₆ were...
required (Extended Data Fig. 7b, d). Mellitic acid (Extended Data Fig. 7c, e) and IP₆, but not IP₃ or IP₄ (Extended Data Fig. 7f, g), stimulated mature CA assembly, although less potently than IP₆.

The mature HIV-1 CA hexamer also contains a positively charged ring, made up of Arg18 sidechains (Arg150 in Gag numbering)²¹,²². This ring was previously shown to mediate transport of nucleoside triphosphates, which facilitates reverse transcription of the encapsulated genome²³. We therefore tested whether IP₆ would promote assembly of the HIV-1 CA R18A mutant, and found that it did not (Fig. 3b). HIV-1 virions containing this mutation were also non-infectious¹⁷,²³ (Extended Data Fig. 5e). We next crystallized the mature CA hexamer in the presence of IP₆ (Extended Data Table 1). Although IP₆ can bind both above and below the ring (Extended Data Fig. 8), densities were most pronounced in the upper binding site, inside a chamber surrounded by the N-terminal β-hairpins of CA (Fig. 3c–f). Thus, IP₆ also binds and promotes assembly of the mature HIV-1 CA lattice.

Our results lead to the following model (Fig. 4). IP₆ facilitates the formation of the six-helix CA–SP1 bundle by binding to two rings of primary amines at Lys290 and Lys359, thereby neutralizing otherwise repulsive charges at the centre of the HIV-1 Gag hexamer (Fig. 4c). Although other negatively charged molecules can also bind this pocket, our data suggest that IP₆ is the most potent in promoting assembly, probably because it has the most optimal binding geometry. Some 300–400 molecules of IP₆—one per hexamer—are incorporated into the virus particle as a structural component of the immature Gag shell (Fig. 4c). During virus maturation, proteolysis of Gag disrupts the 6HB, thus releasing IP₆ and at the same time unmasking the Arg18 binding site in mature CA. IP₆ then binds to this newly exposed site in CA (Fig. 4d), promoting the formation of CA hexamers and in turn the mature CA lattice. This involvement of a small molecule in two distinct steps in virus assembly, by binding to highly conserved sites, suggests strategies for possible therapeutic intervention in HIV-1 replication.

Online content
Any Methods, including any statements of data availability and Nature Research reporting summaries, along with any additional references and Source Data files, are available in the online version of the paper at https://doi.org/10.1038/s41586-018-0396-4.

Received: 1 December 2017; Accepted: 10 July 2018; Published online 1 August 2018.

Acknowledgements We thank J. Briggs for discussions and reading of the manuscript. This work was supported by the National Institutes of Health (NIH) grants R01-GM107013 (V.M.V.), R01-GM105684 (G.W. Feigenson), P30-CA051008, K08-GM110758 and P50-GM007225 (J.R.P.), R01-AI129678 (O.P. and B.K.G.-P.), U54-GM103297 (O.P.), and R01-GM110776 (M.C.J.). F.K.M.S. was supported at PSC by NSF award number ACI-1445606. Some of the EM machine at PSC was generously made available by D. E. Shaw Research. This work was supported by National Science Foundation (NSF) grant number OCI-1053575. Specifically, it used the Bridges system, which is supported at PSC by NSF award number ACI-1445606. Some of the EM work was conducted at the Molecular Electron Microscopy Core facility at the University of Virginia.

Reviewer information Nature thanks E. Freed and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author contributions R.A.D. performed protein purification and in vitro assembly. F.K.M.S. did comparative analyses of cryo-EM and crystal structure data. K.K.Z., J.R.P., B.K.G.-P. and O.P. carried out crystallization trials and solved the structure. B.K.G.-P. and J.R.P. performed all-atom MD simulations. T.D.L., C.L.R. and M.C.J., performed cell biology and virology. The manuscript was written primarily by R.A.D., J.R.P., B.K.G.-P., O.P. and V.M.V. The project was originally conceived by R.A.D., with input from all authors throughout experimentation and manuscript preparation.

Competing interests The authors declare no competing interests.

Additional information Additional data is available for this paper at https://doi.org/10.1038/s41586-018-0396-4.

Supplementary information is available for this paper at https://doi.org/10.1038/s41586-018-0396-4.

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence and requests for materials should be addressed to R.A.D. or O.P.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
METHODS
No statistical methods were used to predetermine sample size. The experiments were not randomized and investigators were not blinded to allocation during experiments and outcome assessment.

Protein purification. DNA coding for HIV-1 Gag proteins were cloned into a His6 SUMO vector25. The proteins were expressed in Escherichia coli and purified using standard Ni2+ affinity chromatography followed by cleavage of the SUMO moiety by ULP1 protease. In brief, bacterial pellets were resuspended in buffer and lysed by sonication and cellular debris removed by centrifugation. The supernatant was filtered through a 0.2-μm filter, applied to a Ni2+ affinity resin, and eluted with imidazole. The eluted protein was dialysed overnight in the presence of ULP1 protease, and subjected to Ni2+ chromatography a second time to remove the SUMO tag and ULP1 protease.

All proteins containing the NC domain were purified with additional steps for more stringent removal of nucleic acid. Following bacterial lysis and centrifugation, nucleic acid was precipitated by addition of 0.03% (v/v) polyethyleneimine followed by centrifugation. Ammonium sulfate to 20% saturation was added to the resulting supernatant, and the precipitate was resuspended in buffer (20 mM Tris-HCl, pH 8, 100 mM NaCl, 2 mM TCEP (tris(2-carboxyethyl)phosphine), 5 mM ZnCl2). The protein was then purified by anion exchange and Ni2+ chromatography as above. All purification steps were performed at 4 °C or on ice. All of the final purified proteins, at concentrations of 2–5 mg/ml and having A260/A280 ratios of <0.6, were flash-frozen in liquid nitrogen and stored at −80 °C.

In vitro assembly. Assembly of s-CANC VLPs was performed by dialysing 500 μM protein against buffer (50 mM MES, pH 6 or 50 mM Tris–HCl, pH 8, 100 mM NaCl, 5 mM ZnCl2, 2 mM TCEP) with a single-stranded 50-mer oligonucleotide (G758) at a 1.5 molar ratio of oligonucleotide to protein for 4 h at 4 °C. All reactions were adjusted to a final volume of 100 μl with buffer following dialysis. Working stocks of 10 mM inositol phosphates were made fresh (IP3, TCI cat# P0409; IP5, Cayman Chemical cat# IP5–60980, IP6, 60980, and IP2, 10009851) with the pH adjusted to 6.0 with NaOH, and added both to the assembly reaction and dialysis buffer. Both s-CASPI and CA2574 SP1 assembly reactions were performed as described for s-CANC but with 500 μM protein and 500 μM IP6. Mature CA assembly was performed by dialysis into buffer (50 mM MES, pH 6, 100 mM NaCl) to 250 μM final concentration in the presence of increasing amounts of IP6. Note that under these low-salt conditions, HIV-1 CA does not spontaneously assemble efficiently. The mature reactions were diluted 1:10 before spotting on EM grids. All VLP assemblies were visualized by EM negative staining with uranyl acetate. Quantification was performed by counting particles on at least five images from at least two different assembly reactions. Box plot; centre lines show the medians; box limits indicate the quartiles. whiskers extend to minimum and maximum values.

CRISPR knockout. The lentiviral CRISPR v2 vector was a gift from F. Zhang (Addgene plasmid 92378; http://n2t.net/addgene:92378). Lentiviral expression vector27 was obtained through the NIH AIDS Research and Reference Reagent Program. HEK293FT cells were purified by anion exchange and Ni2+ chromatography as above. All purification steps were performed at 4 °C or on ice. All of the final purified proteins, at concentrations of 2–5 mg/ml and having A260/A280 ratios of <0.6, were flash-frozen in liquid nitrogen and stored at −80 °C.

Infectivity assays. Equivalent numbers of 293FT WT or IPPK KO cells were plated in 35-mm dishes and transfected with 900 ng of vector and 100 ng of VSV-G. Medium was collected two days post-transfection and frozen at −80 °C to lyse cells in the supernatant. Thawed supernatants were centrifuged at 1,500g for 5 min to remove cellular debris. Infections were performed in fresh 293FT cells, Cells were collected two days later, fixed with 4% paraformaldehyde, and analysed for GFP expression using an Accuri C6 flow cytometer.

Two-dimensional crystallography. CA2574 SP1 2D crystals were produced by incubating 0.8 mM protein with 0.8 mM IP6 at room temperature for 30 min. Samples were placed on a carbon-coated grid, washed with 0.1 M KCl, blotted to near dryness and flash frozen by plunging in liquid ethane. Low-dose images were collected on a Tecnai F20 equipped with 4k × 4k Ultrascan CCD camera (Gatan) under low electron-dose conditions (~20 e/Å2). Images were converted to MRC format and macromolecular model building and corrections for CTF were performed using the PHENIX suite of programs18 and COOT19. Refinement of the protein was first completed before modelling the IP6 and Lys290/Lys359 sidechain densities. The IP6 density was unambiguously identified from mFo−DF, different maps, and the interpretation that the density was due to bound IP6 was further supported by comparison with difference maps from our previously reported CA2574 SP1 structure in the absence of IP6. Given the resolution of the data and crystallographic averaging of the ligand density, we assumed that the bound IP6 was in the myo conformation and refined the ligand as a rigid body with 1/6 occupancy. Only weak residual difference densities were observed after this treatment, suggesting that the modelled IP6 conformation was a reasonable interpretation of the data.

Disulphide-stabilized CA A14C/E45C/W184C/K185A was prepared as previously described20,21. IP6-containing samples were prepared for crystallization as described for CA2574 SP1, except that the protein stock concentration in this case was 10 mg/ml. P6 crystals were obtained in precipitant containing 2% Tacsimate, 14% PEG 8,000, 0.1 M Tris, pH 8.4, whereas P212121 crystals were obtained in 8% PEG 8,000, 0.1 M Tris, pH 8.2. Data were collected at Advanced Photon Source beamline 22-BM (P6 form) or 22-ID (P212121 form) and processed with HKL200029. The crystals were isomorphous with previously deposited structures solved in the absence of IP6 (PDB 3H47 and 3H4E)30, and so initial refinement was through rigid body placement of the deposited coordinates (with Arg150 sidechains and waters removed). Refinement of protein-only models were first completed before modelling the IP6 and Arg150 sidechain densities. As with the immature hexamer, IP6 densities were unambiguously identified by mFo−DF, difference maps and by difference density comparisons of CA hexamers crystallized with and without IP6. The IP6 densities in the mature hexamers were modelled as follows. For the P6 crystal form, a single well-defined IP6 density was found inside the β-hairpin chamber (Fig. 3c–e). In the case of the immature hexamer, the ligand density was also six-fold symmetric due to crystallographic averaging, but in this case indicated at least two binding modes, one with the axial phosphate pointing away from the Arg18 ring and a second pointing towards the ring. Two IP6 molecules were therefore docked into the density, again in the myo form and refined as rigid bodies with 1/12 occupancy (Fig. 3e). Again, only weak residual difference densities were observed after this treatment, suggesting that the modelled IP6 conformations were reasonable interpretations of the data. For the P212121 form, IP6 densities were observed on both sides of the Arg18 ring (there were two hexamers in the asymmetric unit and so we observed 4 different features). (Extended Data Fig. 8). These were modelled by docking myo-IP6, in one or in two configurations that appeared most consistent with the local density distribution, and then refined as rigid bodies with appropriate occupancy. In this case, significant residual difference densities were observed at the ligand positions after refinement, indicating that additional binding modes were possible. However, we did not attempt to model these multiple overlapping binding modes. The P6 form crystallized in the presence of Tacsimate (Hampton Scientific), which is a mixture of organic carboxylic acids. The excess of negatively charged precipitant therefore appears to have inhibited binding of IP6 below the Arg18 ring; this can be reasonably interpreted to mean that IP6 has greater affinity for the site enclosed by the β-hairpins. The P212121 form crystallized in the absence of Tacsimate, allowing IP6 binding on both sides of the Arg18 ring.

Statistics for all three crystal structures are reported in Extended Data Table 1. Structure visualizations and images were made by using PyMol (Schrödinger Scientific).

Molecular dynamics simulations. The structure of the IP6-bound CA2574 SP1 hexamer was used to derive bound and unbound CA2574 SP1 models. The IP6 and mellitic acid molecules were placed in the central pore of the hexamer between K290 and K359 rings in the corresponding models by aligning the carbons present in the central cyclic ring. All models were then solvated with TIP3P water31 and the salt concentration was set to 150 mM NaCl. Sixteen chloride molecules and twenty-three sodium ions were placed near the hexamer using the CIONIZE plugin in VMD32 to minimize the electrostatic potential. The resulting CA2574 SP1 models each contained a total of 30,000 atoms.

After model building, the systems were initially subjected to minimization in two stages, both using the conjugated gradient algorithm33 with linear searching37. In the case of the first stage, only water molecules and ions were free to move, while the protein and IP molecules, if any, were fixed. In the second stage, the backbone atoms of the protein were restrained with a force constant of 10.0 Kcal mol−1 Å−2. Convergence of the
minimizations were confirmed once the variances of the gradients were not greater than 1 Kcal mol$^{-1}$ Å$^{-1}$. During thermalization the systems were heated from 50 K to 310 K in 20 K increments over 1 ns. Subsequently, the systems were equilibrated, while the backbone atoms of CA$_{CTD}$SP1 were restrained. The positional restraints were gradually released at a rate of 1.0 Kcal mol$^{-1}$ Å$^{-1}$ per 400 ps from 10.0 to 0.0 Kcal mol$^{-1}$ Å$^{-1}$. NAMD 2.1238 was employed during minimization/thermalization and equilibration steps.

Simulations of IP$_6$ bound and unbound CA$_{CTD}$SP1 were then performed on the special purpose computer Anton39 in the Pittsburgh supercomputing centre for 2 µs. The CHARMM 36m40 force-field was used for all simulations. Parameters for IP$_6$ were derived by analogy following the CGENFF protocol41. During the simulation, the temperature (310 K) and pressure (1 atm) were maintained by using the Multigrator integrator42 and the simulation time-step was set to 2.5 fs/step, with short-range forces evaluated at every time step, and long-range electrostatics evaluated at every second time step. Short-range non-bonded interactions were cut off at 17 Å; long range electrostatics were calculated using the k-Gaussian Split Ewald method43.

Simulations of CA$_{CTD}$SP1 bound to IP$_3$, IP$_4$, and IP$_5$ were performed for 2 µs on TACC Stampede 2 using NAMD 2.1238. The molecular simulations were conducted under isothermal (310 K) and isobaric (1 atm) conditions, regulated by the Langevin thermostat44 and the Nosé-Hoover Langevin piston45,46, respectively. All bonds to hydrogen atoms were constrained with the SHAKE algorithm47. A time step of 2 fs was used for all simulations. Long-range electrostatics were calculated using the Particle-Mesh Ewald method, as implemented in NAMD 38, with a cutoff of 1.2 nm. Full electrostatic interactions were calculated every two time steps while nonbonded interactions were performed every time step.

Analysis of MD simulations. Root-mean-square deviations (RMSDs) and root mean square fluctuations (RMSFs) of the CO of the CA$_{CTD}$SP1 hexamers were computed using the measure command in VMD37. Before RMSD and RMSF calculations, the structure of the hexamer was aligned to a common reference. RMSFs of each monomer in a central hexamer were calculated to obtain RMSF standard deviations of an entire hexamer.

Reporting summary. Further information on experimental design is available in the Nature Research Reporting Summary linked to this paper.

Data availability. Coordinates and structure factors have been deposited at the RCSB Protein Data Bank (PDB) database, under accession numbers 6BHR, 6BHT, and 6BHS. All other data are available from the authors on request; see author contributions for specific datasets.

25. Malakhov, M. P. et al. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J. Struct. Funct. Genomics 5, 75–86 (2004).
26. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 785–784 (2014).
27. Chang, L. J., Urlacher, V., Iwakuma, T., Cui, Y. & Zucai, J. Efficacy and safety analyses of a recombinant human immunodeficiency virus type 1 derived vector system. Gene Ther. 6, 715–728 (1999).
28. Gipson, B., Zeng, X., Zhang, Z. Y. & Stahlberg, H. 2dx-user-friendly image processing for 2D crystals. J. Struct. Biol. 157, 64–72 (2007).
29. Otwonowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
30. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
31. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
32. Pornillos, O. et al. X-ray structures of the hexameric building block of the HIV capsid. Cell 137, 1282–1292 (2009).
33. Pornillos, O., Ganser-Pornillos, B. K., Banumathi, S., Hua, Y. & Yeager, M. Disulfide bond stabilization of the hexameric capsomer of human immunodeficiency virus. J. Mol. Biol. 401, 985–995 (2010).
34. Jorgensen, W. L. & Jenson, C. Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: seeking temperatures of maximum density. J. Comput. Chem. 19, 1179–1186 (1998).
35. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–28 (1996).
36. Fletcher, R. & Reeves, C. M. Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964).
37. Sun, W. & Yuan, Y.-X. Optimization Theory and Methods: Nonlinear Programming (Springer US, 2006).
38. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).
39. Shaw, D. E. et al. In Proc. Inti Conf. High Performance Computing, Networking, Storage and Analysis 41–53 (IEEE Press, New Orleans, 2014).
40. Best, R. A. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain $\chi1$ (1) and $\chi2$ dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).
41. vanommeslaeghe, K. et al. CHARMM general force field: A force field for biomolecular modeling. J. Comput. Chem. 26, 1781–1802 (2005).
42. Lippert, R. A. et al. Accurate and efficient integration for molecular dynamics simulation—the Langevin Piston Method. J. Chem. Phys. 139, 164106 (2013).
43. Shan, Y., Klepeis, J. L., Eastwood, M. P., Dror, R. O. & Shaw, D. E. Gaussian split Ewald: A fast Ewald mesh method for molecular simulation. J. Chem. Phys. 122, 54101 (2005).
44. Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).
45. Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).
46. Feller, S. E., Zhang, Y. H., Pastor, R. W. & Brooks, B. R. Constant pressure molecular dynamics simulation—the Langevin Piston Method. J. Chem. Phys. 103, 4613–4621 (1995).
47. Rychwaut, J.-P., Ciccotti, G. & Berendsen, H. J. Numerical integration of the cartesian equations of motion of a system with constraints; molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).
Extended Data Fig. 1 | Effect of acidic molecules on immature s-CANC assembly. a, Representative negative-stain electron microscopy images. Scale bars, 200 nm. The experiment was repeated twice with similar results. b, Number of immature VLPs per 55 μm². n = 5, mean shown above box plots; centre lines show medians; box limits indicate 25th and 75th percentiles as determined by R software; whiskers extend to minimum and maximum values.
Extended Data Fig. 2 | s-CANC and s-CASP1 VLPs. a–c, Representative negative-stain electron microscopy images of s-CANC (a), s-CASP1 (b) and s-CA (c) proteins assembled in the absence of GT25 and in the presence of the indicated IP6 concentrations. Scale bars, 200 nm.

d, Diameters of immature VLPs; mean diameter above plot; n below plot. Centre lines show medians; box limits indicate 25th and 75th percentiles as determined by R software; whiskers extend to minimum and maximum values.
Extended Data Fig. 3 | Comparison of the HIV-1 Gag cryo-EM structure with the CA\textsubscript{CTD}SP1–IP\textsubscript{6} crystal structure. a, The crystal structure of CA\textsubscript{CTD}SP1 bound to IP\textsubscript{6} (cyan) was superimposed on a previously described model of the CA-SP1 segment built into cryo-EM densities of immature HIV-1 particles (PDB 5L93, orange2). Note the close correspondence in K359 rotamers, which were modelled independently in the two structures. For visualization purposes, only one of the six possible IP\textsubscript{6} conformations is displayed. b, RMSD calculations of the crystal structure and PDB 5L93. For full-length (residues 149–237) and CA-SP1 (residues 223–237), the RMSDs were calculated only for the atoms that were modelled in both maps. If a sidechain was not modelled, the entire residue was omitted from the calculation. The overall agreement of the models is very high, indicating that the crystal structure corresponds well with conformations found in the virus. c, The CA\textsubscript{CTD}SP1 bound to IP\textsubscript{6} (orange and red, respectively) was fitted into two previously published cryo-EM densities2 from VLPs collected from cells (EMD-2706 and EMD-4017). Both maps are shown at 8.8 Å, which is the resolution of the lower resolved map, EMD-2706. In the zoomed insets, only the density corresponding to IP\textsubscript{6} is shown. Matching of models and maps and RMSD calculations were performed in Chimera.
Extended Data Fig. 4 | Interpretation of the IP₆ density in the immature CA₆₇₉SP1 hexamer structure. a, Top and side views of the unbiased mFₐ–DFₐ difference density (blue mesh, 2σ) ascribed to the bound IP₆. Shown are six IP₆ molecules docked in six rotationally equivalent positions, consistent with the six-fold rotational symmetric density. b, Top view of the docked IP₆ molecules within the CA₆₇₉SP1 hexamer. Unbiased mFₐ–DFₐ difference densities (blue mesh) are also shown for both the bound IP₆ and sidechains of Lys290 (green) and Lys359 (cyan). Density for Lys359 is more pronounced, which we interpret to mean that this residue adopts a more restricted range of rotamers for binding IP₆.
Extended Data Fig. 5 | Quantification of wild-type and mutant HIV s-CANC assembly at pH 6 and pH 8. a, c. Number of immature (purple) and mature (orange) VLPs per 55 µm² without (−) and with (+) 10 µM IP₆ at pH 6 and pH 8. Mean above and n below box plots. Centre lines show medians; box limits indicate 25th and 75th percentiles as determined by R software; whiskers extend to minimum and maximum values.
b, d. Representative negative stain electron microscopy images of wild-type and mutant s-CANC assembly in the absence (−) and presence (+) of 10 µM IP₆ at pH 6 and pH 8. Scale bar, 400 nm. Repeated three times with similar results.
e. Infectivity relative to wild-type virus of IP₆ binding residues mutated to alanine and CA residue numbering in parenthesis. Error bars represent s.d., individual data points represented as dots; from four independent experiments.
Extended Data Fig. 6 | IP₆ modulates the stability of the 6HB.

a, Structural changes observed after 2 µs of molecular dynamics simulations of CACTDSP1 with and without bound IP₆.
b, RMSDs of the ligand-bound and unbound forms of the CACTDSP1 hexamer.
c, RMSFs of the central hexamer during the simulation. The RMSF was averaged over the six central monomers; dashed line shows the s.d. for each residue.
Extended Data Fig. 7 | Quantification of mature HIV-1 CA assembly and VLP diameter at pH 6. **a**, Example of CA assembly in the absence of IP₆ or mellitic acid. **b**, Representative negative-stain electron microscopy images of assemblies induced by IP₆ (b) and mellitic acid (c). Scale bars, 200 nm. Tubes (T), cones (C), and other (O) morphologies are marked by coloured arrowheads. **a**–**c**, Repeated four times with similar results. **d**, Number of assembled CA tubes (blue), cones (orange) and other (green) per 55 µm² at increasing IP₆ concentrations. Mean shown above plots, n = 5. **e**, Number of assembled tubes (blue), cones (orange) and other (green) per 55 µm² at increasing mellitic acid concentrations. Mean shown above and n below box plots. **f**, Representative images of mature VLPs assembled with IP₅ and IP₆ at 50 mM NaCl. Scale bars, 100 nm. Repeated three times with similar results. **g**, Number of CA VLPs per 10 µm² without and with IP₃, IP₄, IP₅, and IP₆. Mean shown above, n = 5. **d**, **e**, **g**, Centre lines show medians; box limits indicate 25th and 75th percentiles as determined by R software; whiskers extend to minimum and maximum values.
Extended Data Fig. 8 | Crystal structure of IP₆ bound to the mature CA hexamer. a, b, Top view (a) and side view (b) of a second CA hexamer crystal structure (P212121 space group) showing the protein in yellow ribbons and unbiased mFᵦ–DFᵦ difference density in blue mesh, contoured at 2.5σ. c, Close-up view showing IP₆ densities both above and below the ring of Arg18 residues (magenta).
Extended Data Table 1 | Crystallographic statistics

	CA_{CTD}SP1+IP6	CA_{CC1}+IP6	CA_{CC1}+IP6
Data collection			
Space group	P6	P6	P212121
Cell dimensions			
a, b, c (Å)	70.9,70.9,42.0	90.6,90.6,56.6	135.6,137.8,209.9
α, β, γ (°)	90,90,120	90,90,120	90,90,90
Resolution (Å)	50-2.90 (2.95-2.90)	50-1.98 (2.03-1.98)	50-2.69 (2.74-2.69)
R_{merge}	0.16 (0.94)	0.16 (1.69)	0.06 (0.79)
I/σI	10.3 (1.1)	15.2 (1.2)	13.1 (1.1)
Completeness (%)	96.3 (87.8)	100 (100)	99.3 (98.8)
Redundancy	8.1 (4.3)	11.0 (8.8)	3.8 (3.6)

Refinement

	CA_{CTD}SP1+IP6	CA_{CC1}+IP6	CA_{CC1}+IP6
Resolution (Å)	35.47-2.91	39.25-1.98 (2.12-1.98)	39.90-2.69 (2.97-2.69)
No. reflections	1,986	18,196 (2,660)	95,906 (2,545)
R_{work}/R_{free}	21.5/26.5	23.6/28.4 (28.0/32.4)	22.7/25.4 (30.3/35.5)
No. atoms			
Protein	668	1,641	19,621
IP6	36	72	144
Water	0	145	173
B-factors (Å²)			
Protein	33.0	35.4	57.0
IP6	39.2	39.6	157.5
Water	n/a	35.9	31.0
R.m.s. deviations			
Bond lengths (Å)	0.005	0.005	0.003
Bond angles (°)	1.093	1.091	0.630

Values in parentheses are for highest-resolution shell. Each structure was solved from data collected with 1 crystal.

© 2018 Springer Nature Limited. All rights reserved.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

n/a	Confirmed
☑	The exact sample size \((n)\) for each experimental group/condition, given as a discrete number and unit of measurement
☑	An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
☑	The statistical test(s) used AND whether they are one- or two-sided
☑	Only common tests should be described solely by name; describe more complex techniques in the Methods section.
☑	A description of all covariates tested
☑	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
☑	A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
☑	For null hypothesis testing, the test statistic (e.g. \(F\), \(t\), \(r\)) with confidence intervals, effect sizes, degrees of freedom and \(P\) value noted
☑	Give \(P\) values as exact values whenever suitable.
☑	For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
☑	For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
☑	Estimates of effect sizes (e.g. Cohen’s \(d\), Pearson’s \(r\)), indicating how they were calculated
☑	Clearly defined error bars
☑	State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection	NAMD 2.12 was used for data collection
Data analysis	Processing diffraction data: HKL2000
	Structure determination and refinement: PHENIX v. 1.11.1-2575
	Visualization and model building: Coot v. 0.8.8
	Image rendering: Pymol v. 1.8.2.3
	Data analysis: VMD1.9.13

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Coordinates and structure factors are deposited at the PDB database, under accession numbers 6BH5, 6BHT, and 6BHS.

Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	No statistical methods were used to determine sample size. Sample sizes are within an acceptable standard range for experiments.
Data exclusions	No data was excluded from the analysis
Replication	All in vitro assembly data was reproduced with no less than two independent protein purifications, and no less than two independent assembly conditions per protein preparation. All data was highly reproducible.
Randomization	The experiments were not randomized. Interpretation of results was binary, either VLPs were observed, or they were not.
Blinding	The investigators were not blinded to allocation during data collection or during analysis. The binary nature of the data, VLPs or not, is reasonably not subject to interpretation bias.

Reporting for specific materials, systems and methods

Materials & experimental systems

Methods
n/a
x
x
x

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)	HEK 293T cells were purchased from Invitrogen (now Thermofisher). A derivative of this cell line was created with the gene IPPK knocked out.
Authentication	Cell lines derived from the parent cell line were confirmed by amplifying and sequencing the target domain
Mycoplasma contamination	Tested; no mycoplasma contamination
Commonly misidentified lines (See ICLAC register)	This cell line was used because it can be efficiently transfected and produces high titers of HIV-1 particles.
Flow Cytometry

Plots

- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation | Fixed with paraformaldehyde.
Instrument | Accuri
Software | Accuri software
Cell population abundance | 0.1% - 40%
Gating strategy | Transduced cells turned green, we gated the green population. Gating the green cells is a score for infectivity.

☐ Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.