The marine myxosporean Sigmomyxa sphaerica (Thélohan, 1895) gen. n., comb. n. (syn. Myxidium sphaericum) from garfish (Belone belone (L.)) uses the polychaete Nereis pelagica L. as invertebrate host

Karlsbakk, Egil; Køie, Marianne

Published in:
Parasitology Research

DOI:
10.1007/s00436-011-2471-8

Publication date:
2012

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Karlsbakk, E., & Køie, M. (2012). The marine myxosporean Sigmomyxa sphaerica (Thélohan, 1895) gen. n., comb. n. (syn. Myxidium sphaericum) from garfish (Belone belone (L.)) uses the polychaete Nereis pelagica L. as invertebrate host. Parasitology Research, 110(1), 211-218. https://doi.org/10.1007/s00436-011-2471-8
The marine myxosporean *Sigmomyxa sphaerica* (Thélohan, 1895) gen. n., comb. n. (syn. *Myxidium sphaericum*) from garfish (*Belone belone* (L.)) uses the polychaete *Nereis pelagica* L. as invertebrate host

Egil Karlsbakk · Marianne Køie

Received: 18 April 2011 / Accepted: 17 May 2011 / Published online: 15 June 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract *Sigmomyxa sphaerica* (Thélohan, 1892) gen. n. (Myxozoa, Myxosporea) with myxosporean stages in the gall bladder of *Belone belone* (L.) (Teleostei, Belonidae) uses the polychaete *Nereis pelagica* L. (Nereidae) from shallow water in the northern Øresund, Denmark, as invertebrate host. The nearly spherical tetractinomyxon-type actinospores of *S. sphaerica* differ from those of two species of *Ellipsomyxa* which also use *Nereis* spp. as invertebrate host. Pansporocysts of *S. sphaerica* were not seen. *S. sphaerica* is redescribed on the basis of myxospore stages from *B. belone* and actinospores from *N. pelagica*, and the phylogenetic affinities examined on the basis of ribosomal small subunit gene sequences. *S. sphaerica* is closest related to *Ellipsomyxa* spp., and is not congeneric with morphologically similar *Myxidium* spp. from gadids. This is the fifth elucidated two-host life cycle of a marine myxozoan.

Introduction

Only four marine myxozoan life cycles involving polychaete hosts have been elucidated and controlled using DNA analysis. *Ellipsomyxa gobii* Køie, 2003 and *Ellipsomyxa mugilis* (Sitjà-Bobadilla and Alvarez-Pellitero, 1993) use *Nereis* spp. (Nereidae), *Gadimyxa atlantica* Køie et al., 2007 (Parvicapsulidae) uses *Spirorbis* spp. (Spirorbidae) and *Ceratomyxa auerbachii* Kabata, 1962 (Ceratomyxidae) uses *Chone infundibuliformis* Krøyer, 1856 (Sabellidae), as invertebrate hosts (Køie et al. 2004, 2007, 2008; Rangel et al. 2009). Marine actinosporean stages have in addition been found in the polychaetes *Hydroides norvegicus* Gunnerus, 1768 (Serpulidae), in unidentified spionids (Spionidae) and in *Diopatra neapolitana* Delle Chiaje, 1841 (Onuphidae; Køie 2002, 2005; Rangel et al. 2011). In the present study actinospores found in *Nereis pelagica* (L.) are identified with the garfish (*Belone belone* L.) myxosporean *Myxidium sphaericum* on the basis of SSU rDNA sequences. *M. sphaericum* was originally described from *B. belone* from the Mediterranean and Atlantic coasts off France (Thélohan 1895). However, the species has later been identified and described from other hosts such as the gadid *Merlangius merlangus* (L.), widening the species conception. The conspecificity of *M. sphaericum* from belonid and gadid hosts has been questioned (MacKenzie and Kalavati 1995). Here we redescribe *M. sphaericum* from *B. belone* and show that the species does not belong in genus *Myxidium* and is not closely related to *Myxidium* spp. from gadids. Based on the morphological and phylogenetic distinctness from genus *Myxidium* sensu stricto, the novel genus *Sigmomyxa* is proposed for *M. sphaericum*.

Material and methods

Specimens of the garfish *B. belone* (L.) (Teleostei, Belonidae) were obtained from local fishermen in May to June 2008 and in September 2010. These fish were caught in the northern Øresund, Denmark. Also, an *M. sphaericum*-infected specimen (76 cm) was collected in June...
2003, near Misje, western Norway. Fresh smears of parts of the urinary system and bile were examined at high magnification (×1,000), and myxosporean spores and plasmodia were photographed. Measurements were taken from digital images using the software ImageJ 1.43u. Measurements are in micrometres.

About 45 specimens of *N. pelagica* L. (Annelida, Polychaeta, Nereidae) were dredged in the northern Øresund, Denmark at 4–12 m (12–20‰ salinity) during 2008–2010. Most specimens were examined for actino-sporean infections immediately upon capture; a few were kept live in aquaria and examined later. Actinosporean measurements were taken from live specimens.

Two infected gall bladders of *B. belone* from Denmark in 2008 (isolates SigBel-1 and 2), from Norway in 2003 (isolate Msph) and pieces of infected *N. pelagica* (isolates Npel-1 and 2) were fixed in absolute ethanol for later DNA extraction. Morphological description is based on material represented by isolate ‘Msph’ and an infection from Denmark in 2010. Additional sequences for comparison were obtained from two *Myxidium laticurum* Kabata, 1962-infected *Trachinus draco* L. caught in northern Øresund, Denmark (sequence isolates Mtra and MyFj-1; GenBank Accession No’s JN033229-30 respectively), and from a *Myxidium bergense* Auerbach, 1909-infected *Pollachius virens* (L.) from Bodø, Norway (isolate X1; JN033231).

DNA was extracted from myxosporean spores and developmental stages or pieces of polychaetes using the DNeasy® Tissue Kit protocol for animal tissues (Qiagen, Hilden, Germany). The PCR primers used were the forward primers ErIb1/Ur-R1, MarF1/RosR2 and MyxF2/Myxgen4R (see Kabata 1962; see Køie et al. 2008), with annealing temperatures 57°C, 60°C and 58°C, respectively. The novel reverse primer Ur-R1 has sequence 5′-AAG AAT TTC ACC TCT CGC CA. The PCR amplifications were performed in a total volume of 50 μl using 2 μl of template DNA and a reaction mixture consisting of 10 μl 5× PCR buffer, 3 μl 25 mM MgCl₂, 5 μl 10 mM dNTP, 2 μl (10 mM) of the reverse and forward primer, 2 μl of thermostable DNA polymerase (GoTaq) and 26 μl H₂O. The PCR conditions were as previously described (Køie et al. 2008). The PCR products were cleaned with ExoSAP-IT™ (Affymetrix Inc.) and then sequenced using the BigDye® Terminator v3.1 Cycle Sequencing Kit. The sequencing was done using the amplification primers. The sequence data were assembled with the Vector NTI 11 software (Invitrogen) and GenBank searches were done with Blast (2.0).

The phylogenetic relationship between *M. sphaericum* and related members of the ‘marine clade’ (Fiala 2006) was examined using Bayesian inference (MrBayes 3.1.2; 3×10⁶ generations), maximum likelihood (ML, Paup 4.0b10; 100 bootstrap replicates) and maximum parsimony (Mega 4.0.2). Sequences were aligned using AlignX (Vector NTI), and manually edited in Genedoc. Hypervariable or ambiguous regions were deleted in order to achieve comparison of homologous positions. The Paup ML analysis used a heuristic search algorithm with 10 random sequence additions and TBR branch swapping. A GTR+Γ+I model of nucleotide substitution was selected (AIC) following the examination of the data set with the program jModelTest (Posada 2008). The model was implemented in Paup (Paup Block) and MrBayes (Invgamma).

Results

Infections in *B. belone* and *N. pelagica*

Myxospores identified as *M. sphaericum* Thelohan were found in the gall bladder of one specimen of *B. belone* in May 2008 and in one in June 2008. The total number of specimens examined in 2008 was about 100. One of 200 gall bladders examined in September 2010 was infected. All caught in the northern Øresund, Denmark. A single *B. belone* caught near Bergen, western Norway was also infected with *M. sphaericum* in the gall bladder. No myxospores were found in the urinary system of the *B. belone* examined in 2008.

None of the about 40 specimens of *N. pelagica* caught in 2008–2010 and examined immediately upon capture were infected with actinospores. In August 2010 six specimens (4–6 cm long) were isolated in glass containers (8°C, 20‰ S) without air supply. Accidentally the temperature increased to about 22°C for about 24 h. During this period one specimen died. When it was examined the following day, it contained hundreds of free actinospores. Most of the internal organs had disappeared and bacteria occurred in the body cavity. The remaining five surviving specimens were not infected.

Description of *M. sphaericum* from *B. belone*

Plasmodia were spherical to irregular (Fig. 1a, b), attached to gall bladder epithelium or free, often with brushy region representing the zone of epithelial adhesion. Parts of plasmodia with distinct ectoplasm when unsporulated (Fig. 1a), while ectoplasm often not apparent in fully sporulated ones (Fig. 1a, b). Plasmodia contained refractive granules, scattered or in aggregations, increasing in number during sporogony. Mature plasmodia were usually markedly vacuolate (Fig. 1b). Plasmodia were generally disporic, rarely tetrasporic. Sporogony was disporic. Occasionally, plasmodia releasing spores were seen to contain a second sporoblast at an early stage in sporogony. Plasmodia without spores measured up to 36 μm in average diameter (*N*=16), plasmodia with immature spores 20–30 μm (*N*=4), and plasmodia with two mature spores 23–37 μm (mean 28 μm, *N*=11).
Spore main outline was ellipsoid (Fig. 1c), but valvular protrusions were associated with the tip of the polar capsules (PC), giving a sigmoid appearance in sutural view and spindle shape in valvular view (Fig. 2). Immature spores were occasionally crescent shaped. Valves were smooth, thicker along the ellipsoid outline of the main spore body and thin surrounding the protruding part of the PCs (Fig. 1c, d). Suture was weakly sigmoid, faint and symmetrical (Fig. 2). PCs were terminal, equal, elongate pyriform, PC axis in medial plane in valvular view, but with an angle reaching c. 47° to spore axis in sutural view. Polar filament coils are perpendicular to PC axis, with filament coil diameter averaging 70% of PC diameter. Coils are not present in the protruding part of the PCs (Fig. 1c–e). Polar capsule length to spore length was 1:2.1–2.8 (mean 2.3±0.2; N=21). Fully extruded polar filaments reach 134–153 μm in length. Sporoplasm was binucleate, filling the barrel-shaped spore cavity between the PC cells. Spore measurements are given in Table 1.

Description of actinospores from N. pelagica

All actinospores were of the tetractinomyxon type (Fig. 3). They all occurred free in the decaying polychaete body. No pansporocysts were found. The thick-walled actinospores were spherical to slightly ellipsoidal, length 7.0–8.0 (mean 7.6; n=10) and diameter 6.0–7.5 (6.7). The actinospores were composed of eight cells most easily identified by the presence of their nuclei; the three nuclei of the shell valve cells appeared as small thickenings internally on the spore wall, the three nuclei of the polar capsules and the two nuclei of the sporoplasm. The diameter of the three identical spherical polar capsules was 2.0–2.3 (2.1). It was not possible to provoke extrusion of the polar filaments.

SSU rDNA sequences

Partial SSU rDNA sequences were obtained from M. sphaericum-infected gall bladders of two B. belone from Denmark (sequence isolates SigBel-1 and 2, GenBank accession nos. JN033225, JN033226) and the studied infection from Norway (sequence isolate Msph, JN033227). These were identical (1696 nt compared).
Two different parts of a N. pelagica infected with tetractinomyxon actinospores produced two identical partial SSU sequences (sequence isolates Npel 1 and 2, JN033228) (1696 nt compared). These sequences were identical with the M. sphaericum sequences from B. belone, apart for four substitutions (99.8 % identity, 1696 nt compared). On this basis the actinosporean infection in N. pelagica is identified with the myxosporean M. sphaericum infecting B. belone.

Blast searches returned Ellipsomyxa spp. as most similar to the partial M. sphaericum SSU rDNA sequences. Phylogenetic analyses on the basis of the SSU rDNA sequences supported a close relationship between genus Ellipsomyxa and M. sphaericum (Fig. 4). Myxidium queenslandicus Gunter and Adlard, 2008 represent a sister group to Ellipsomyxa spp./M. sphaericum in these analyses (Fig. 4). The congeneric marine clade members M. laticurvum, Myxidium incurvatum Thélohan, 1892 Myxidium gadi Georgévitich, 1916 and M. bergense are not closely related to M. sphaericum (Fig. 4). A schematic illustration of the life cycle of Sigmomyxa sphaerica (syn. M. sphaericum, see below) is shown in Fig. 5.

Discussion

Taxonomy

M. sphaericum was originally described from B. belone from the Mediterranean (Banyuls) and Atlantic (Vivier) coasts of France (Thélohan 1895), as producing large (15–20 μm long) spores in disporic plasmodia. Noble (1957) identified the species from the gadid fish M. merlangus in Plymouth, and doubted the validity of M. bergense, a species described from the gadid P. virens by Auerbach (1909) and recorded from other gadids including M. merlangius in Norway (Auerbach 1912). Other authors studying the myxosporea of M. merlangus accepted this, which resulted in a very wide conception of M. sphaericum that has caused much taxonomic confusion. MacKenzie and Kalavati (1995) distinguished between M. sphaericum and M. bergense, and considered it possible that the parasite from B. belone is distinct from Myxidium spp. in the gallbladder of gadid hosts. M. sphaericum as redescribed
Fig. 4 Phylogenetic affinities of *S. sphaerica* among related members of the marine clade of Myxosporea. *S. sphaerica* is closest related to *Ellipsomyxa* spp., and these two genera represent a sister group to *M. queenslandicus* incertae sedis in a well-supported clade. Other *Myxidium* spp. in the marine clade are not closely related to *S. sphaerica*, including *M. laticurvum* (JN033229, new sequence) and *M. bergense* from the type host *P. virens* in Norway (JN033231, new sequence). All new sequences in bold. Clade support values: upper, MrBayes posterior probabilities (in percent); middle, maximum likelihood bootstrap (*N* = 100) support values (Paup); lower, maximum parsimony (Mega).

Fig. 5 Schematic illustration of the life cycle of *S. sphaerica*. The polychaete *N. pelagica* acts as the invertebrate hosts and the garfish *B. belone* acts as the fish hosts. a Actinospore, b myxospore. Not to scale.
here is clearly differentiated from all *Myxidium* spp. recorded from gadids in the northeast Atlantic by characters such as the large and elongated polar capsules with a high number of windings, and show phylogenetic affinity to the *Ellipsomyxa* spp. rather than to the *Myxidium* spp. with sigmoid spores recorded from gadids.

Considering only records of *M. sphaericum* from *B. belone*, there are two records subsequent to Thélohan (1895), both from the Adriatic Sea (Lubat et al. 1989; Mladineo et al. 2009). Lubat et al. (1989) provided spore measurements agreeing well with the present. However, Mladineo et al. reported spore lengths shorter than the width, which suggests these may be erroneous. The polar capsule lengths of Lubat et al. (1989) and Mladineo et al. (2009) are less than the present, but similar measurements were obtained by us when taken in valvular view. Such measurements tend to represent polar capsule span and not length, due to the oblique angle of the polar capsule axes relative to the spore main axis. However, while such considerations may account for differing length observations, the polar capsule width measurements also differ significantly, being less in the Adriatic samples. Hence verification of conspecificity of Adriatic *M. sphaericum* isolates with the present through SSU rRNA sequencing would be valuable. The light microscope images of *M. sphaericum* spores and plasmodia presented by Mladineo et al. (2009) compare well with the present material.

The type species in genus *Myxidium*, *Myxidium lieberkuehni* Bütschli, 1882, produce large polysporic plasmodia in the urinary system of pike, *Esox lucius* L., a freshwater fish. Spores develop in disporic pansporoblasts and show striated valves. Phylogenetic analyses on the basis of SSU rRNA sequences place *M. lieberkuehni* in a ‘freshwater clade’ of Myxosporea, as a member of a ‘*M. lieberkuehni* clade’, representing a sister group to a ‘*Myxobolus* clade’ containing mostly members of the Platysporina (see Fiala 1999). Our SSU rDNA sequences of *M. sphaericum* is closest related to *Ellipsomyxa* spp. in the ‘marine clade’ and belongs to the marine ‘*Myxidium* clade’ of Fiala (2006). Sequence similarity in the aligned SSU rDNA sequences of *M. sphaericum* and *M. lieberkuehni* is only 66% (2,057 sites compared). Hence *M. sphaericum* is not congeneric with *M. lieberkuehni* and does not belong in the Myxidiidae typhified by that species. We therefore propose a novel genus to encompass *M. sphaericum* and related species.

Sigmo- myxa n. gen.

Coelozoic in gallbladder, sporogony disporic, plasmodia are di- to polysporic, spores smooth, spindle shaped in valvular view and sigmoid in sutural view. Valves are ellipsoid in outline, with thin walled protrusions associated with the PC tips. Polar capsules elongate pyriform, with >7 windings. Intercapsular distance is short. Type species is *S. sphaerica* (Thélohan, 1895)

Comments

Myxidium elmatboulii Ali et al., 2006 and *Myxidium maamouni* Abdel-Baki, 2009 are similar to *S. sphaerica* and likely congeners, but molecular data is lacking (cf. Ali et al. 2006; Abdel-Baki 2009). *M. elmatboulii* is transferred to *Sigmomyxa* as *Sigmomyxa elmatboulii* (Ali et al., 2006) comb. n. on the basis of its morphology, the species is so similar to *S. sphaerica* that conspecificity is possible. The host, *Tylosurus choram* (Rüppell, 1837) is also related to *B. belone* (both belonids). The spores of *M. queenslandicus* appear morphologically similar to those of *S. sphaerica*, but these species show only 89% identity in the partial SSU rDNA sequences available. However, expansion segments in the V7 region of *M. queenslandicus* are responsible for the low identity; exclusion of these gives 94% identity with the present material.

The erection of *Sigmomyxa* n. gen. removes two species from the polyphyletic genus *Myxidium* Bütschli, 1882. Several species in the marine group of Myxosporea and currently assigned to *Myxidium* are not closely related to *Myxidium sensu stricto* or *Sigmomyxa* n. gen. on the basis of their SSU rDNA sequences, but show a related morphology and development. Redescriptions and revisions of these taxa are needed.

Life cycle

The actinosporean infection in *N. pelagica* and the myxosporean *S. sphaerica* in *B. belone* is considered different life cycle stages due to the high SSU sequence similarity. Sequence identity has aided the disclosure of all the marine myxosporean life cycles known so far. We observed that five specimens of *N. pelagica* survived and only the infected specimen died due to stress (high temperature and lack of oxygen). This indicates that an infection with actinosporean stages may affect the survival
of the polychaete host. Other observations on the effects of actinosporeans on the annelid hosts are scarce. Shirakashi and El-Matbouli (2009) found feeding and fecundity of actinosporean-infected Tubifex tubifex to be reduced, but did not observe reduced survival.

Apparently only fully developed actinospores of *S. sphaerica* were found in the examined *N. pelagica*. However, the wall of the pansporocysts and younger developmental stages may have disintegrated in the decaying polychaete host.

The present actinospores differ from those of *E. gobii* and *E. mugilis* (as *Zschokkella mugilis*), which also use *Nereis* spp. as polychaete hosts, by being nearly spherical contrary to the elongated actinospores of *Ellipsomyxa* spp. having nearly twice the length (Køie et al. 2004; Rangel et al. 2009).

Nereis diversicolor and *Nereis succinea* from less than 1 metre depth may be infected with actinosporean stages (Køie et al. 2004; Rangel et al. 2009). The *N. pelagica* specimens examined were dredged in among other a shallow sandy bay harbouring *N. diversicolor* and *N. succinea*. These two species were only infected with *E. gobii*, even though specimens of *B. belone* have must have spent some time in this bay. Hence it is possible that these myxosporeans display some degree of host specificity to the invertebrate host; *E. gobii* uses two species of *Nereis* as invertebrate hosts (Køie et al. 2004), whereas *S. sphaerica* apparently use one species, *N. pelagica*.

Actinospores of the tetractinomyxon type are the actinosporean stages of myxozoans belonging to at least three clades: the *Ceratomyxa* clade (Køie et al. 2008), the Parvicapsulidae (Bartholomew et al. 2006; Køie et al. 2007) and the Sigmomycxa/Ellipsomyxa clade. A fourth clade is represented by *Ceratomyxa shasta*, which also show tetractinomyxon actinospores (Bartholomew et al. 1997), but the phylogenetic affinities of *C. shasta* is unclear (see Fiala and Bartosova 2010).

Acknowledgements We are grateful to Ann Cathrine Bärdsgerie Einen of the Institute of Marine Research in Bergen for the help with some PCR work. The study was partially supported by The Norwegian Biodiversity Information Centre Project no. 701 842 19.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Abdel-Baki AAS (2009) Two new *Myxidium* species (Myxosporea: Myxidiidae) infecting the gallbladder of African flying fish, *Cheliopterogon nigricans* and Suez fusiler, *Caesio suevius* from the Red Sea, Egypt: a morphological and morphometric study. Parasitol Res 105:513–518

Ali M, Abdel-Baki AA, Sakran T (2006) *Myxidium elmatboulii* n. sp and *Ceratomyxa ghaffari* n. sp (Myxozoa: Myxosporidia) parasitic in the gallbladder of the red sea houndshark *Tylosurus chorun* (Ruppell, 1837) (*Teleostei: Belonidae*) from the Red Sea, Egypt. Acta Protozool 45:97–103

Auerbach M (1909) Biologische und morphologische Bemerkungen über Myxosporidien. Zool Anz 35:57–63

Auerbach M (1912) Studien über die Myxosporidien der norwegischen Seefische und ihre Verbreitung. Zool Jahrb Syst 34:1–50

Bartholomew JL, Whipple MJ, Stevens DG, Fryer JL (1997) The life cycle of *Ceratomyxa shasta*, a myxosporean parasite of salmonids, requires a freshwater polychaete as an alternate host. J Parasitol 83:859–868

Bartholomew JL, Atkinson SD, Hallett SL (2006) Involvement of *Manayunkia speciosa* (Annelida: Polychaeta: Sabellidae) in the life cycle of *Parvicapsula minicornis*, a myxozoan parasite of Pacific salmon. J Parasitol 92:742–748

Canning EU, Curry A, Anderson CL, Okamura B (1999) Ultrastructure of *Myxidium trachinorum* sp. nov. from the gallbladder of the lesser weever fish *Echitichthys vipera*. Parasitol Res 85:910–919

Fiala I (2006) The phylogeny of *Myxospora* (Myxozoa) based on small subunit ribosomal RNA gene analysis. Int J Parasitol 36:1521–1534

Fiala I, Bartosova P (2010) History of myxozoan character evolution on the basis of rDNA and EF-2 data. BMC Evol Biol 10:228

Holzer AS, Wooten R, Sommerville C (2007) The secondary structure of the unusually long 18S ribosomal RNA of the myxozoan *Sphaerospora truttae* and structural evolutionary trends in the Myxozoa. Int J Parasitol 37:1281–1295

Kabata Z (1962) Five new species of *Myxosporidia* from marine fishes. Parasitology 52:177–186

Karlsbakk E (2001) *Myxospora*. In: Costello MJ, Emblow C, White R (eds) European register of marine species. A check-list of the marine species in Europe and a bibliography of guides to their identification. Patrimoines Naturels 50:80–84

Køie M (2002) Spororbib and serpulid polychaetes are candidates as invertebrate hosts for *Myxozoa*. Folia Parasitol 49:160–162

Køie M (2005) The Spionidae (Polychaeta) acts as invertebrate hosts for marine *Myxozoa*. Folia Parasitol 51:47–53

Holzer AS, Wooten R, Sommerville C (2007) The secondary structure of the unusually long 18S ribosomal RNA of the myxozoan *Sphaerospora truttae* and structural evolutionary trends in the Myxozoa. Int J Parasitol 37:1281–1295

Kabata Z (1962) Five new species of *Myxosporidia* from marine fishes. Parasitology 52:177–186

Karlsbakk E (2001) Myxospora. In: Costello MJ, Emblow C, White R (eds) European register of marine species. A check-list of the marine species in Europe and a bibliography of guides to their identification. Patrimoines Naturels 50:80–84

Køie M (2002) Spororbib and serpulid polychaetes are candidates as invertebrate hosts for *Myxozoa*. Folia Parasitol 49:160–162

Køie M (2005) The Spionidae (Polychaeta) acts as invertebrate hosts for marine *Myxozoa*. Bull Eur Assoc Fish Pathol 25:179–306

Køie M, Whipp CM, Kent ML (2004) *Ellipsomyxa gobii* (Myxozoa: Ceratomyxidae) in the common goby *Pomatoschists microps* (*Teleostei: Gobiidae*) used *Nereis* spp. (Annelida: Polychaeta) as invertebrate hosts. Folia Parasitol 51:14–18

Køie M, Karlsbakk E, Nylund A (2007) A new genus *Gadimyxa* with three new species (Myxozoa, Parvicapsulidae) parasitic in marine fish (Gadidae) and the two-host life cycle of *Gadimyxa atlantica* n. sp. J Parasitol 93:1459–1467

Køie M, Karlsbakk E, Nylund A (2008) The marine herring myxozoan *Ceratomyxa aurubachi* (Myxozoa: Ceratomyxidae) uses *Chone infundibuliformis* (Annelida: Polychaeta: Sabellidae) as invertebrate host. Folia Parasitol 55:100–104

Lubat V, Radujkovic BM, Marques A, Bouix G (1989) Parasites des poissons marins du Montenegro: myxosporidies. Acta Adriat 29:851–867

MacKenzie K, Kalavati C (1995) Species in the genus *Myxidium* Bütschli, 1882 (Myxosporea: Bivalvulida) parasitizing the gall bladders of gadid fish in the northeast Atlantic. J Nat Hist 29:851–863

Mladineo I, Segvic T, Bocina I, Grubisic L (2009) Redescription of *Myxidium sphaericum* Thélohan, 1895 and *Ceratomyxa beloneae* Lubat et al., 1989 from the gall bladder of the garpike, *Belone belone* in the Adriatic Sea. Acta Parasitol 54:289–294

Noble ER (1957) Seasonal variations in host–parasite relations between fish and their protozoa. J Mar Biol Assoc UK 36:143–155
Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256
Rangel LF, Santos MJ, Cech G, Székely C (2009) Morphology, molecular data, and development of Zschokkella mugilis (Myxosporea, Bivalvulida) in a polychaete alternate host, Nereis diversicolor. J Parasitol 95:561–569
Rangel LF, Cech G, Székely C, Santos MJ (2011) A new actinospore type Unicapsulactinomyxon (Myxozoa), infecting the marine polychaete, Diopatra neapolitana (Polychaeta: Onuphidae) in the Aveiro Estuary (Portugal). Parasitology 138:698–712
Shirakashi S, El-Matbouli M (2009) Myxobolus cerebralis (Myxozoa), the causative agent of whirling disease, reduces fecundity and feeding activity of Tubifex tubifex (Oligochaeta). Parasitology 136:603–613
Thélohan P (1895) Recherches sur les Myxosporidies. Bull Sci Fr Belg 5:100–394