DNA barcoding of coral reef fishes from Chuuk State, Micronesia

Jae Ho Choi, Da Geum Jeong, Ji Na Oh, Sung Kim, Youn Ho Lee, Young Ung Cho, Jung Goo Myoung, and Choong Gon Kim

ABSTRACT
The fish diversity of Chuuk Micronesia is currently under threat due to rapid changes in the coral reef ecosystem. Thus, accurate fish identification using DNA barcodes is fundamental for exploring species biodiversity and resource protection. In this study, we analyzed 162 fish mitochondrial DNA cytochrome c oxidase I (COI) barcodes from Chuuk Micronesia. Consequently, we identified 95 species from 53 genera in 26 families and seven orders. The average Kimura 2-parameter genetic distances within species, genera, families, and orders were calculated as 0.17%, 11.78%, 15.63%, and 21.90%, respectively. Also, we have utilized DNA barcodes to perform genetic divergence and phylogenetic analysis of families recognized as dominant groups in Chuuk State. Our findings confirm that DNA barcodes using COI are an effective approach in identifying coral reef fish species. We anticipate that the results of this study will provide baseline data for the protection of coral reef fish biodiversity at Chuuk Micronesia.

Introduction
Micronesia, which is located in the Western Pacific Ocean, consists of four states (Yap, Chuuk, Pohnpei, and Kosrae) that collectively have a coral reef area exceeding 6000 km² (Andréfouët et al. 2006). As growth and spawning grounds for a wide range of marine organisms, coral reefs are often characterized by their high biodiversity (Reaka-Kudla 1997). The reefs of Micronesia have served as a habitat for many species of corals, fishes, and invertebrates. Chuuk State consists of 18 major volcanic islands, many smaller and uninhabited islands, and a diversity of tropical marine reefs, ranging in size from 0.4 to 4.6 km². Recently, population expansion, economic growth, and indiscriminate fishing have threatened the biodiversity of the region (Edward 2002). Further, global climate change is causing ocean acidification, rising sea levels, and rising water temperatures, changes that have been considered detrimental to the coral reef ecosystems and thus creating a crisis of marine biodiversity (Hoegh-Guldberg et al. 2007; Baker et al. 2008; Thompson and Van Woeshik 2009).

Effective conservation and management of fish biodiversity require reliable baseline estimates of fish species diversity based on accurate species identification. Identification of fish species is traditionally based on morphology (Dayrat 2005; Triantafyllidis et al. 2011). However, morphological identification requires considerable expertise, given that the morphology of fish varies and often changes concomitantly with developmental stage (Leis and Carson-Ewart 2000; Wang et al. 2018). These issues can be addressed by DNA barcoding, which is based on pattern analysis of standardized gene regions. This approach has been identified to be more reliable for species identification (Hebert et al. 2003; Hebert and Gregory 2005). A 655-bp fragment of the mitochondrial COI gene is widely used for species-level identifications. Mitochondrial DNA shows a high mutation rate and large copy numbers. Organisms with small effective population sizes often provide genomes that are useful for analyses of evolutionary patterns and processes (Brown et al. 1979; Birky et al. 1989). Numerous previous studies around the world, including studies in Taiwan (Bingpeng et al. 2018), Pacific Canada (Steinke et al. 2009), Australia (Ward et al. 2005), the Philippines (Abdulmalik-Labe and Quilang 2019), China (Wang et al. 2018), India (Lakra et al. 2011), Turkey (Keskin and Atar 2013), and Japan (Zhang and Hanner 2011), have demonstrated the utility of COI barcodes in fish species identification.

We used mitochondrial DNA COI barcodes to identify some coral reef fish species from Chuuk State, Micronesia. These species can be difficult to identify by morphological identification.

Materials and methods
Sample collection
The research area is along the northeastern coast of Weno Island in Chuuk State (7°27′N, 151°51′E), where coral reefs...
are well developed. Fishes were collected by diving and netting or were purchased from a local market in 2006, 2007, 2008, and 2011.

DNA isolation

Genomic DNA was extracted from tissue pieces using a Qiagen DNeasy Blood & Tissue Kits (QIAGEN, Valencia, CA, USA), following the manufacturer’s protocol. All gDNAs extracted from whole samples were stored at -20°C at the Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea. The quality and quantity of extracted DNA were measured using a NanoDrop® ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, USA).

Amplification and sequencing

PCR amplification was performed using combinations of primers for fish 655-bp COI barcoding region (Ward et al. 2005). Thermal amplification reactions were performed in 25 μL reaction mixtures, which contained 1× PCR buffer, 2 mM MgCl₂, 10 pmol of each primer, 0.25 mM of each dNTP, 0.25 U of Taq polymerase, and 100 ng of DNA template. The thermocycling program consisted of an initial step of 94°C for 1 min; followed by 35 cycles of 94°C for 30 s, 50°C for 40 s, and 72°C for 1 min; a final extension at 72°C for 10 min; and a final hold at 4°C. PCR products were then checked using 2% agarose gel electrophoresis. PCR products were purified using a QIAquick PCR Purification Kit (QIAGEN, Valencia, CA, USA), following the manufacturer’s protocol. Sequencing reactions were performed in an MJ Research PTC-225 Peltier Thermal Cycler using ABI PRISM BigDye™ Terminator Cycle Sequencing Kits with AmpliTaq DNA polymerase (FS enzyme) (Applied Biosystems), following the protocols provided by the manufacturer.

Sequence analysis

All sequences were aligned and integrated using MEGA X (Kumar et al. 2018). Obtained sequences were then compared with sequences from NCBI GenBank databases. Samples with similarity indices greater than 97% compared with available database sequences were considered to be the same species. Nucleotide composition, transition (si)/transversion (sv) pair ratios, and K2P genetic distances, including intra- and interspecific divergences, were calculated using MEGA X. Neighbor-joining (NJ) phylogenetic tree (Saitou and Nei 1987) was constructed based on K2P genetic distance using MEGA X with bootstrap tests of 1000 replications were generated to verify the robustness of the tree. The K2P can be rapidly calculated, which in turn can provide consistent results for many species that show required differences between intra- and interspecies variability (Kimura 1980; Shen et al. 2016). The K2P model is commonly used in DNA barcoding (Zhang and Hanner 2011; Keskin and Atar 2013; Bingpeng et al. 2018; Wang et al. 2018).

Results and discussions

Analysis of 162 COI DNA barcodes was able to identify 95 species, 53 genera, 26 families, and seven orders (Anguilliformes, Beloniformes, Beryciformes, Mugiliformes, Ophidiiformes, Perciformes, and Tetraodontiformes) among fishes from Chuuk State. We then obtained the NCBI accession numbers for all the specimens (Table 1). The COI barcode used in the analyses comprised 655 nucleotide base pairs per taxon, and no contamination, insertions, deletions, or stop codons were determined in any obtained sequence. Average K2P genetic distances within species, genera, families, and orders were determined to be 0.17%, 11.78%, 15.63%, and 21.90%, respectively. The average interspecific genetic distance increased concomitant with an increase in genetic variation at progressively higher taxonomic levels. DNA barcoding efficiency is then verified by intraspecific and interspecific distances (Liewens et al. 2001). Average intraspecific genetic distance is 0.3% in BOLD (Barcode of Life Data System) fish databases, and congeneric distance is at least 30-fold higher than conspecific distances (Zhang and Hanner 2011). Intraspecific distance and congeneric distance were determined to be 69-fold higher than conspecific distance in the current study. Our study confirmed that DNA barcodes are useful in identifying coral reef fish species. Moreover, we found that intraspecific genetic distances determined in this present study are less than the previously reported distances; in contrast, interspecific genetic distance was found to be greater.

Average nucleotide composition of the 162 DNA barcodes was $T = 29.08\%$, $C = 28.39\%$, $A = 24.18\%$, and $G = 18.35\%$. The average GC and AT contents were 46.74% and 53.26%, respectively. The highest (52.76%) and lowest (38.51%) GC values were detected in COI barcodes of *Fibramia thermalis* and *Zenarchopterus dispar*. Further, the average ratio (si/sv) of all specimens has been determined to be 1.38. Divergence time among specimens was analyzed in terms of transition (si)/transversion (sv) ratio and genetic distance. The former is considered a general property of DNA sequence evolution. This ratio provides a reliable estimate of sequence distance and can be further used in phylogeny reconstruction. A high si/sv ratio is indicative of a small genetic distance, and vice versa (Yang and Yoder 1999). We were able to analyze the divergence times among families, for example, Acanthuridae, Labridae, Scaridae, and Serranidae, which are dominant in Chuuk Micronesia using DNA barcodes of the fish collected in this study. Average si/sv ratios for these families were 2.10, 1.56, 3.5, and 1.8, respectively. Further, the mean genetic distances among species within families were 16.08%, 20.25%, 11.15%, and 18.80%, respectively. Scaridae family displays the highest si/sv ratio (3.5) and the lowest genetic distance among species within families (11.15%). Scaridae appears to be a recently diverged group and is youngest among dominant families in Chuuk State, Micronesia. Moreover, compared with other families with similar divergence times, we collected a larger number of species in the Scaridae. It is predicted that Scaridae is well adapted to the rich coral reef found at Chuuk State. In contrast,
Order	Family	Genus/Species	GenBank accession no.	Voucher ID	N	Reference accession no.	Similarity (%)
Perciformes	Acanthuridae	Acanthurus lineatus	MN73 3352	CKF003	1	HM034183	100
		Acanthurus nigrocauda	MN73 3350, MN73 3350	CKF004, CKF121	2	HM034188	100
		Acanthurus tristissus	MN73 3351, MN73 3352	CKF005, CKF006	2	JQ349668	100
		Chromis viridis	MN73 3352, MN73 3353	CKF007, CKF042, CKF043	3	MJ658679	99
		Chromis viridis	MN73 3356, MN73 3357				
		Naso brevis	MN73 3351, MN73 3352	CKF008, CKF134	2	K930171	100
		Naso brevis	MN73 3351, MN73 3352	CKF008, CKF0084	2	HM034244	100
		Naso unicornis	MN73 3353, MN73 3354	CKF009, CKF0087	3	KF71494	99
		Naso unicornis	MN73 3353, MN73 3354	CKF009, CKF0087	3	KF71494	99
		Zebrasoma velifer	MN73 3355, MN73 3356	CKF120	1	MJ65844	100
		Ambassidae	MN73 3357, MN73 3358	CKF146, CKF160	3	HQ64265	99
		Apogonidae	MN73 3359, MN73 3360				
		Blepharidae	MN73 3361, MN73 3362				
		Caesionidae	MN73 3363, MN73 3364				
		Lethrinidae	MN73 3366, MN73 3367				
		Lutjanidae	MN73 3368, MN73 3369				
		Monodactylidae	MN73 3370, MN73 3371				
		Mullidae	MN73 3372, MN73 3373				

(continued)
Order	Family	Genus/Species	GenBank accession no.	Voucher ID	N	Reference accession no.	Similarity (%)
Parupeneus barberinus		MN733620	CKF092	1		AP018401	100
Parupeneus cyclostomus		MN733667	CKF136	1		MK658466	100
Parupeneus insularis		MN733666	CKF135	1		JQ431985	99
Parupeneus multifasciatus		MN733621	CKF093	1		AP012314	99
Abudelfadl vaigiensis	Pomatocentridae	MN733527	CKF001	2		JQ707144	98
Amblyglyphidodon acaecae		MN733535, MN733536	CKF008, CKF009	2		KF929588	100
Chromis viduis		MN733676	CKF144	1		MT199208	99
Chrysipterus griseus		MN733625, MN733692	CKF097, CKF154	2		JQ707144	98
Neopomacentrus acaecae		MN733626	CKF098	1		KP194962	100
Cetoscarus bicolor		MN733544, MN733545	CKF017, CKF018	2		AY662758	99
Chlorurus brevirostris		MN733663	CKF096	2		MN707261	100
Chlorurus frontalis		MN733633	CKF124	1		JQ431617	100
Chlorurus micrhorhinos		MN733664	CKF037	1		JN131047	99
Scarus chameleon		MN733628, MN733629	CKF100, CKF101	2		FJ237915	99
Scarus ghobban		MN733656	CKF126	1		FJ449707	100
Scarus nigri		MN733672	CKF140	1		JQ432105	99
Scarus oviceps		MN733631	CKF103	1		JQ432106	100
Scarus prionobasianus		MN733630, MN733632	CKF102, CKF104	2		MK658527	100
Scarus rubricinctus		MN733633	CKF105	1		FJ227899	99
Scarus schlegeli		MN733671	CKF139	1		JQ432114	99
Hippopraeux longiceps		MN733695	CKF155	1		KP194973	100
Thalassoma albovittatum	Scombridae	MN733644, MN733645	CKF116, CKF117	2		KF259550	100
Aethaloperca rogaa		MN733698	CKF156	1		KCS93376	100
Cephalopholis argus		MN733543	CKF016	1		MF113507	100
Epinephelus polyphekadion		MN733585, MN733586,	CKF058, CKF059, CKF044	14		MH707787	99
Epinephelus howlandi		MN733583, MN733582	CKF056, CKF057	2		MH707757	100
Epinephelus meba		MN733584	CKF058	1		KCP70471	99
Epinephelus sploctacis		MN733584	CKF128	1		MH707800	100
Plectropomus aequalis		MN733586	CKF137	1		KCS93369	99
Plectropomus lanceolatus		MN733582	CKF094	1		KF929973	100
Plectropomus argus		MN733623, MN733624	CKF095, CKF096	2		MH422409	99
Varialia lovi		MN733647, MN733648	CKF118, CKF119	2		JQ432114	99
Siganidae		MN733675	CKF143	1		MT607497	100
Siganus argenteus		MN733635, MN733674	CKF107, CKF142	2		KF929973	99
Siganus virgata		MN733634	CKF106	1		KP194704	100
Siganus stilifer		MN733636, MN733637	CKF108, CKF109	2		FJ548115	99
Siganus vulpinus		MN733638	CKF110	1		JQ432106	100
Spinyrcha jolli		MN733642	CKF114	1		M422420	99
Sphyraena jolli		MN733677	CKF145	1		M422420	99
Tetraodontiformes		MN733540	CKF013	3		KP194857	99
Tetrarhynchus manilensis		MN733682, MN733704	CKF148, CKF142	2		KP194857	99
Zanclus fuscus		MN733585, MN733682	CKF123	1		KF929973	100
Zanclus gaddi		MN733585, MN733682	CKF123	1		KF929973	100
Zanclus spilotes		MN733585, MN733682	CKF123	1		KF929973	100
Neophron samsoni		MN733585, MN733682	CKF149, CKF150	2		MK67106	100
Anguilliformes		MN733588, MN733688	CKF060, CKF061, CKF152	3		KP194043	99

All COI reference databases were derived from GenBank. (N: Number of individuals).
the Labridae family has showed the highest genetic distance (20.25%) and lowest si/sv ratio (1.74) among major groups. This result may reflect an early divergence of species in the Labridae.

The NJ tree from 162 specimens was constructed based on K2P distances (Figure 1). We used this tree to confirm that all species were clustered monophyletic. Thus, DNA barcode analysis is effective in identifying species known to be similar based on morphological observation. Confamilial species are then classified and grouped as independent clades in general phylogenetic analysis. However, some families in this study (Acanthuridae, Serranidae, and Labridae) were not grouped together. Mitochondrial DNA evolves faster than nuclear DNA and is characterized by larger numbers of variable and informative sites. Rapid substitution rates of mitochondrial DNA also make it useful for analyses at species and genus levels. However, deeper branching may then reduce saturation, which can result in homoplasy, as the phylogenetic signal has been reduced (Caterino et al. 2001; Rubinoff and Sperling 2002; Rubinoff and Holland 2005). A previous study (Ward et al. 2005) suggests that phylogenetic analysis using single mitochondrial DNA is suitable for simpler studies, not for deep phylogenetic analysis. Therefore, we confirmed that mitochondrial DNA COI barcodes are effective for

![Figure 1. Neighbor-joining (NJ) tree of 162 COI barcodes using K2P distances.](image-url)
identification of coral reef fish species and analysis of phylogenetic relationships at the species and genus level.

This study, to the best of our knowledge, is the first in which mitochondrial DNA COI barcodes have been used in analyzing coral reef fishes in Chuuk, Micronesia. We identified 95 species, 53 genera, 26 families, and seven orders based on DNA barcoding of 162 fish specimens. Furthermore, we have analyzed divergence time and phylogenetic relationships of fish families that are dominant groups in Chuuk State. Our results confirm that the mitochondrial COI DNA barcodes are an effective tool for the identification of coral reef fish. We predict that similar analyses using larger sample sizes would yield more accurate results given the high marine biodiversity of the study area. We thus anticipate that DNA barcode information obtained in this study will provide baseline data for the protection of coral reef fish biodiversity in Chuuk State, Micronesia.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This study was supported by research funds from the KIOST [PE99724: Exploration of new marine biological/genetic resources and rare metal resources in the Area beyond national jurisdiction] and [PE99812: Biogeochemical cycling and marine environmental change studies].

ORCID
Choong Gon Kim http://orcid.org/0000-0003-4907-5540

Data availability statement
The data that support the findings of this study are openly available in NCBI at https://www.ncbi.nlm.nih.gov/, all reference numbers in Table 1.

References
Abdulmalik-Labe OP, Quilang JP. 2019. DNA barcoding of fishes from Lake Lanao, Philippines. Mitochondrial DNA B. 4(1):1890–1894.

Andréouët S, Muller-Karger FE, Robinson JA, Kraneburng CJ, Torres-Pulliza D, Spraggsins SA, Murch B. 2006. Global assessment of modern coral reef extent and diversity for regional science and management applications: a view from space. In Proceedings of the 10th International Coral Reef Symposium, Japanese Coral Reef Society Okinawa, Japan, Vol. 2, p. 1732–1745.

Baker AC, Glynn PW, Rieg B. 2008. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine Coastal Shelf Sci. 80(4):435–471.

Bingpeng X, Heshan L, Zhilan Z, Chenguang W, Yanguo W, Jianjun W. 2018. DNA barcoding for identification of fish species in the Taiwan Strait. PLoS One. 13(6):e0198109.

Birky CW, Fuerst P, Maruyama T. 1989. Organelle gene diversity under equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics. 121(3):613–627.

Brown WM, George M, Wilson AC. 1979. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA. 76(4):1967–1971.

Caterino MS, Reed RD, Kuo MM, Sperling FA. 2001. A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera: Papilionidae). Syst Biol. 50(1):106–127.

Dayrat B. 2005. Towards integrative taxonomy. Biol J Linn Soc. 85(3):407–417.

Edward A. 2002. Marine biodiversity of the Federated States of Micronesia. Report of the Global Environmental Facility, FSM National Biodiversity Strategy and Action Plan Project. Department of Economic Affairs. Federated States of Micronesia, Palikir, 1–20.

Hebert PD, Gregory TR. 2005. The promise of DNA barcoding for taxonomy. Syst Biol. 54(5):852–859.

Hebert PDN, Cywinska A, Ball SL, DeWaard JR. 2003. Biological identifications through DNA barcodes. Proc R Soc Lond B. 270(1512):313–321.

Hoegh-Guldberg O, Mummy PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science. 318(5857):1737–1742.

Keskin E, Atar HH. 2013. DNA barcoding commercially important fish species. Mol Ecol Resour. 13(5):788–797.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 16(2):111–120.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.

Lakra WS, Verma MS, Goswami M, Lal KK, Mohindra V, Punia P, Gopalakrishnan A, Singh KV, Ward RD, Hebert P. 2011. DNA barcoding Indian marine fishes. Mol Ecol Resour. 11(1):60–71.

Leis JM, Carson-Ewart BM, editors. 2000. The larvae of Indo-Pacific coastal fishes: an identification guide to marine fish larvae. Leiden; Boston: Brill.

Lievens S, Goormachtig S, Holsters M. 2001. A critical evaluation of differential display as a tool to identify genes involved in legume nodulation: looking back and looking forward. Nucleic Acids Res. 29(17):3459–3468.

Reaka-Kudla ML. 1997. The global biodiversity of coral reefs: a comparison with rain forests. In: Reaka-Kudla ML, Wilson DE, Wilson EO, editors. Biodiversity II: understanding and protecting our biological resources. Vol 2. Washington (DC): Joseph Henry Press; p. 551.

Rubinoff D, Holland BS. 2005. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst Biol. 54(6):952–961.

Rubinoff D, Sperling FA. 2002. Evolution of ecological traits and wing morphology in Hemileuca (Saturniidae) based on a two-gene phylogeny. Mol Phylogenet Evol. 25(1):70–86.

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 4(4):406–425.

Shen Y, Guan L, Wang D, Gan X. 2016. DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River. Ecol Evol. 6(9):2702–2713.

Steinke D, Zemlak TS, Boutillier JA, Hebert PD. 2009. DNA barcoding of Australian fishes. Mar Biol. 156(12):2641–2647.

Thompson DM, Van Woens R. 2009. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc Biol Sci. 276(1669):2893–2901.

Triantafyllidis A, Bobori D, Koliatmis C, Giandi E, Mpanti M, Petriki O, Karaiskou N. 2011. DNA barcoding analysis of fish species diversity in four north Greek lakes. Mitochondrial DNA. 22(Supp1):37–42.

Wang L, Wu Z, Liu M, Liu W, Zhao W, Liu H, You F. 2018. DNA barcoding of marine fish species from Rongcheng Bay, China. PeerJ. 6:e5013.

Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD. 2005. DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci. 360(1462):1847–1857.

Yang Z, Yoder AD. 1999. Estimation of the transition/transversion rate bias and species sampling. J Mol Evol. 48(3):274–283.

Zhang JB, Hanner R. 2011. DNA barcoding is a useful tool for the identification of marine fishes from Japan. Biochem Syst Ecol. 39(1):31–42.