Spitzer Quasar and ULIRG evolution study (QUEST):
I. The origin of the far infrared continuum of QSOs

M. Schweitzer, D. Lutz, E. Sturm, A. Contursi, L.J. Tacconi, M.D. Lehnert, K. Dasyra, R. Genzel

Max-Planck-Institut für extraterrestrische Physik
Postfach 1312, 85741 Garching, Germany

schweitzer@mpe.mpg.de, lutz@mpe.mpg.de, sturm@mpe.mpg.de, contursi@mpe.mpg.de, linda@mpe.mpg.de, mlehnert@mpe.mpg.de, dasyra@mpe.mpg.de, genzel@mpe.mpg.de

S. Veilleux, D. Rupke, D.-C. Kim, A.J. Baker

Department of Astronomy, University of Maryland
College Park, MD 20742-2421, USA

veilleux@astro.umd.edu, drupke@astro.umd.edu, dckim@astro.umd.edu, ajb@astro.umd.edu

H. Netzer, A. Sternberg

School of Physics and Astronomy and the Wise Observatory
The Raymond and Beverly Sackler Faculty of Exact Sciences
Tel-Aviv University, Tel-Aviv 69978, Israel

netzer@wisel.tau.ac.il, amiel@wise.tau.ac.il

J. Mazzarella, S. Lord

IPAC, California Institute of Technology
MS 100-22, Pasadena, CA 91125, USA

mazz@ipac.caltech.edu, lord@ipac.caltech.edu

ABSTRACT

This paper addresses the origin of the far-infrared (FIR) continuum of QSOs, based on the Quasar and ULIRG Evolution Study (QUEST) of nearby QSOs and

1Jansky Fellow, National Radio Astronomy Observatory
ULIRGs using observations with the Spitzer Space Telescope. For 27 Palomar-Green QSOs at $z \lesssim 0.3$, we derive luminosities of diagnostic lines ([Ne II] 12.8μm, [Ne V] 14.3μm, [O IV] 25.9μm) and emission features (PAH 7.7μm emission which is related to star formation), as well as continuum luminosities over a range of mid- to far-infrared wavelengths between 6 and 60μm. We detect star-formation related PAH emission in 11/26 QSOs and fine-structure line emission in all of them, often in multiple lines. The detection of PAHs in the average spectrum of sources which lack individual PAH detections provides further evidence for the widespread presence of PAHs in QSOs.

Similar PAH/FIR and [NeII]/FIR ratios are found in QSOs and in starburst-dominated ULIRGs and lower luminosity starbursts. We conclude that the typical QSO in our sample has at least 30% but likely most of the far-infrared luminosity ($\sim 10^{10...12} L_\odot$) arising from star formation, with a tendency for larger star formation contribution at the largest FIR luminosities.

In the QSO sample, we find correlations between most of the quantities studied including combinations of AGN tracers and starburst tracers. The common scaling of AGN and starburst luminosities (and fluxes) is evidence for a starburst-AGN connection in luminous AGN. Strong correlations of far-infrared continuum and starburst related quantities (PAH, low excitation [NeII]) offer additional support for the starburst origin of far-infrared emission.

Subject headings: Infrared: galaxies – Galaxies: active – IR observations – Galaxies: starburst – quasars: emission lines

1. Introduction

The infrared properties of luminous active galactic nuclei (AGN) and ultraluminous infrared galaxies (ULIRGs) hold clues for the understanding of galaxy formation, the star formation history of the universe and the connection between black hole and galaxy formation and evolution. Physical insight into the co-evolution of AGN and star formation can be gained by study of the low redshift members of these populations. The Infrared Astronomical Satellite (IRAS) and the Infrared Space Observatory (ISO) have allowed the first comprehensive far-infrared (FIR) studies of extragalactic sources and some high quality mid-infrared (MIR) observations on the brighter sources (see e.g. the review of Genzel & Cesarsky 2000). Issues discussed in IRAS and ISO studies include the nature of ultraluminous infrared galaxies and their starburst and AGN energy sources (Genzel et al. 1998; Klaas et al. 2001), and the SEDs of QSOs and their evolutionary implications (Haas et al.
A 2.5 to 45 \(\mu \text{m} \) spectral inventory of starburst and AGN prototypes (Sturm et al. 2000) and detailed mid-infrared spectroscopic investigations of local lower luminosity AGN (Clavel et al. 2000; Sturm et al. 2002, hereafter S02) have addressed AGN unification and the starburst-AGN connection.

The *Spitzer Space Telescope* (hereafter *Spitzer*) has enabled us to build upon previous work with significantly improved sensitivity. This work is part of a series of papers describing the results of the Quasar and Ulirg Evolution STudy (QUEST), focussing on mid-infrared spectroscopy of a sample of 54 QSOs and ULIRGs at redshifts \(z \lesssim 0.3 \) with the Infrared Spectrograph IRS onboard *Spitzer*. The sample was selected with the aim of investigating the possible connections between those two groups of luminous \((L_{\text{Bol}} \gtrsim 10^{12} L_{\odot}) \) objects in the nearby universe, and is closely connected to optical and near-infrared studies of the morphology and dynamical properties of these two populations (e.g. Dasyra et al. 2006a,b; Veilleux et al. 2006). The purpose of the present paper is to study starburst signatures in QSO host galaxies and to show that most, and in some cases all, of the far-infrared luminosity in QSOs showing strong PAH features is due to starburst activity. A forthcoming complementary paper addresses the spectral energy distribution (SED) of QSOs including the clear far-infrared starburst contribution to the \(\lambda > 30 \mu \text{m} \) continuum of QSOs.

To investigate the link between AGN activity and star formation and the extent to which they occur simultaneously, it is important to quantify the star formation activity in QSO hosts. Such measurements are made difficult, however, by the observational problems of detecting star formation tracers in the presence of extremely powerful AGN emission. SED studies based on the *IRAS* and *ISO* space missions have established QSOs as sources of (sometimes) strong far-infrared emission. (e.g. Neugebauer et al. 1986; Haas et al. 2003). In addition to a nonthermal continuum that is detectable in the infrared only in flat spectrum radio-loud QSOs (e.g. Haas et al. 1998), a strong far-infrared emission component is often observed, at varying levels with respect to the strong AGN mid-infrared continuum. Due to its steep falloff in the submillimeter regime, the origin of this far-infrared emission must be thermal emission of optically thin dust (Chini et al. 1989; Hughes et al. 1993). While the warmer \(T \sim 200 \text{K} \) dust, which dominates the mid-infrared SEDs of QSOs, is generally accepted to be predominantly AGN heated, there is still considerable dispute about the origin of the cooler \(T \sim 50 \text{K} \) emission often dominating the far-infrared. Direct heating by the powerful AGN, but at distances ensuring sufficiently low temperatures, is one possibility (e.g. Sanders et al. 1989; Haas et al. 2003; Ho 2005). Other models prefer an origin in vigorous star formation in the QSO host (e.g. Rowan-Robinson 1995). Rowan-Robinson (1995) used radiative transfer modelling to infer an SED of AGN heated dust that, in \(\nu L_{\nu} \) units, peaks in the mid-IR and decays towards the far-infrared, a feature shared by many other such models. In the QSO SEDs that are often flat over a wide wavelength range including the far-infrared,
the far-infrared component is then plausibly ascribed to a component with an SED similar to that of a star-forming galaxy, in accordance with evidence for coexistence of star formation and AGN in spatially resolved lower luminosity AGN. Rowan-Robinson (1995) found a tight correlation of AGN optical emission and mid-infrared continuum and a weaker correlation between optical and far-infrared emission, which is supporting the view that the far-infrared does not result directly from AGN heating but that there is a connection between AGN and starburst luminosities in the QSOs.

Our goals are to quantify star formation in QSO hosts and to estimate its contribution to the the far-infrared emission. In the mid-infrared, the contrast between the emission from possibly dust-obscured star formation and from the central AGN is favourable, and established star formation tracers are available. We use two such tracers:

(1) The mid-infrared broad aromatic ‘PAH’ emission features arise in regions of the interstellar medium of a galaxy where their aromatic carriers are present, and where their transient excitation is made possible by a non-ionizing (< 13.6eV) soft UV radiation field. This is the case in the photodissociation regions (PDRs) that accompany Galactic star formation regions (e.g. Verstraete et al 1996), as well as in the diffuse interstellar medium where they are excited by the general interstellar UV radiation field that has leaked from its OB star origins to large scales (e.g. Mattila et al. 1996). PAHs have been used as a quantitative tracer of star formation in galaxies (e.g. Genzel et al. 1998; Förster Schreiber et al. 2004; Calzetti et al. 2005). Metallicity above 0.2 solar is a prerequisite for strong PAH emission (Engelbracht et al. 2005), a condition that is probably safely met for local QSO hosts. Destruction of the PAH carriers in energetic environments but survival in starburst PDRs (though not in HII regions proper) is key for the use of PAH features as diagnostic. The PAH features are absent from the hard radiation environment of AGNs according to both empirical (e.g. Roche et al. 1991; Le Floc’h et al. 2001; Siebenmorgen et al. 2004a) and theoretical (Voit 1992) studies. The latter suggest that PAH molecules hit by single energetic EUV/X-ray photons can be efficiently destroyed by photo-thermo dissociation or Coulomb explosion. Since AGN are copious emitters of hard photons, PAH molecules near AGN will be destroyed unless shielded by a large obscuring column.

(2) The low excitation fine-structure emission lines like [Ne II] 12.8µm are among the dominant emission lines of HII regions. Observations of starburst galaxies, as well as a combination of evolutionary synthesis and photoionization modelling, show [Ne II] 12.8µm to be stronger than higher excitation mid-infrared lines ([NeV], [O IV], [Ne III]) in typical ionized regions excited by young stellar populations (Thornley et al. 2000; Verma et al. 2003). Use of low excitation lines as star formation tracers requires, however, the consideration of possible contributions from the AGN Narrow Line Region (NLR) which can be significant despite
the generally higher excitation of such regions (e.g. Spinoglio & Malkan 1992; Alexander et al. 1999) compared to starburst H\textsc{ii} regions.

Section 2 of the paper describes the sample, observations and data reduction used to obtain the line and continuum fluxes in our sources. Emission lines that are relevant to the present study are tabulated for all sources. In Section 3 we discuss the widespread presence of PAH emission and its relation to other components of the QSO spectra. Finally, Section 4 addresses the issue of star formation in host galaxies of QSOs, shows the importance of this process and compares our results with earlier findings. In a forthcoming paper, we discuss the implications of our results for QSO SEDs in general. We adopt $\Omega_m = 0.3$, $\Omega_\Lambda = 0.7$ and $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$.

2. The QUEST PG QSO sample: Observations and reduction

2.1. The sample

As part of the Spitzer spectroscopy project QUEST (PID 3187, PI Veilleux) we are studying QSOs, ultraluminous infrared galaxies, and the possible evolutionary connection between the two using the infrared spectrograph IRS (Houck et al. 2004). The QSO sample is largely drawn from that of Guyon (2002) and Guyon et al. (2006). It consists of Palomar-Green (PG) QSOs (Schmidt & Green 1983) and covers the full ranges of bolometric luminosity ($\sim 10^{11.5-13}L_\odot$ based on the B band absolute magnitude and the SED of Elvis et al. 1994), radio loudness, and infrared excess ($\log(\nu L_\nu(60\mu m)/L_{\text{Bol}}) \sim 0.02-0.35$) spanned by the local members of the PG QSO sample (see also Jester et al. 2005, for a recent view on selection effects in the PG sample). B2201+31A is not a PG QSO but is in the sample because its B magnitude actually satisfies the PG QSO completeness criterion of Schmidt & Green (1983). It is one of the five radio-loud systems in our sample. At the sample’s maximum redshift of 0.325, important emission lines like [O IV] 25.89\mu m stay within the IRS spectral range for all objects. The QUEST sample used in this paper includes 23 of 32 objects from the Guyon sample. We exclude here two recently observed QUEST objects that are not yet fully processed by the Spitzer pipeline. We add two Palomar-Green objects from the Guyon et al. sample previously observed by Spitzer (PG0050+124 = IZw1; Weedman et al. (2005) and PG0157+001 = Mrk1014; Armus et al. (2004)) and two PG QSOs from another project (PID 20241, PI Lutz). Table 1 lists names and redshifts of all 27 QSOs in our sample. In total, our sample covers a range from M_B -21 to -26, with median -23.3. In the remainder of this paper, we will compare some aspects of the PG QSOs to ultraluminous infrared galaxies whose properties will be presented in more detail in an upcoming paper based on QUEST data (Veilleux et al., in preparation).
2.2. Data reduction and line and continuum measurements

For the QUEST sample, spectra were taken both at 5-14\(\mu m\) in the low resolution (SL short-low) mode and at 10–37\(\mu m\) in the high resolution (SH short-high and LH long-high) modes of the IRS. Slit widths of 3.6\(''\) to 11.1\(''\) include much of the QSO hosts as well as the vicinity of the AGN. Our data reduction starts with the two-dimensional basic calibrated data (BCD) products provided by version 12 of the Spitzer pipeline reduction. We used our own IDL-based tools for removing outlying values for individual pixels and for sky subtraction and SMART (Higdon et al. 2004) for extraction of the final spectra. Small multiplicative corrections were applied to stitch together the individual orders of the low resolution and high resolution spectra, as well as additive corrections for residual offsets still found between the low resolution spectra and the SH and LH high resolution spectra after zodiacal light correction of the latter. Emission line fluxes were measured using fits of Gaussian lines superposed on a local continuum. PAH fluxes were mostly measured by simultaneously fitting Lorentzians to the main 6.2, 7.7, and 8.6\(\mu m\) features superposed on a 5.3 to 9.6\(\mu m\) (rest frame) continuum approximated by a second order polynomial, and in a few cases by combined Lorentzian and continuum fits over smaller ranges. We use below the flux for the brightest (7.7\(\mu m\)) feature as PAH strength indicator \(F_{\text{PAH}}\). In PG0050+124, where this feature was present but difficult to quantify in the presence of strong silicate emission, we have estimated the flux scaling from the flux of the well-detected 6.2\(\mu m\) PAH feature, using the 7.7/6.2 feature ratio measured in the starburst/AGN NGC 6240 (Lutz et al. 2003; Armus et al. 2006). Flux upper limits (3\(\sigma\)) were derived adopting typical widths for the lines (\(\sim 600\text{km/s}\)) and broad features (\(\sim 0.6\mu m\) for the 7.7\(\mu m\) feature). In one source (PG1307+085) we could only analyse the high resolution spectra since low resolution data are proprietary to another program. This limits our sample to 26 objects for analysis related to PAH emission. QUEST data for ultraluminous infrared galaxies that are used for comparison with the QSOs were processed in the same way.

Figure 1 shows individual example spectra of two PG QSOs illustrating the broad differences between QSOs with strong and weak PAH emission. Table 1 also lists the continuum flux densities in several mid- and far-infrared bands. In the mid-infrared, the quality of the IRS spectra is superior to most pre-existing IRAS or ISO photometry. For that reason and to characterise the continuum at wavelengths reasonably free of emission features, we have derived average observed flux densities over narrow bands (\(\Delta\lambda/\lambda \sim 0.07\)) centered at several rest wavelengths. The shortest wavelength continuum point at 6\(\mu m\) is shortward of the main PAH complex; the 15\(\mu m\) point is between the two silicate emission peaks at about 10 and 18\(\mu m\) (Siebenmorgen et al. 2005; Hao et al. 2005; Sturm et al. 2005), but still partly affected by silicate emission if present. The longest wavelength point at 30\(\mu m\) is near the long end of the IRS spectra and already beyond the strongest part of the longer wavelength silicate
feature. We later use continuum luminosities at these rest wavelengths: 6μm, 15μm, and 30μm, defined as νL_ν.

Far-infrared fluxes have been taken from the literature, usually giving preference to ISO based results over IRAS based ones, because the smaller effective ISO beams reduced the susceptibility to cirrus contamination at 100μm. The far IR luminosity, $L(\text{FIR})$, is often obtained from F_{FIR} which is defined as $F_{\text{FIR}} = 1.26(S_{100} + 2.58 \times S_{60}) \times 10^{-18}\text{W/cm}^2$, where S_{100} and S_{60} are flux densities in Jy (e.g. Sanders & Mirabel 1996). In order to use a consistent definition over the full $z \leq 0.33$ redshift range of our sample and to reduce the sensitivity to galactic cirrus contamination that is most problematic at 100μm, we adopt a far-infrared luminosity νL_ν which is solely based on the flux at rest wavelength 60μm interpolated from the photometry in the literature. Even nearby QSOs are typically close to the far-infrared detection limits of the previous space missions. In six cases where only one of S_{100} or S_{60} was detected we estimated the other flux as the lower of the measured limit and an extrapolation using the detected flux and the ratio $S_{60}/S_{100} = 0.93$ that is the median for the part of the sample detected in both bands. The flux at 60μm rest wavelength was interpolated linearly between the observed 60 and 100μm points. For seven PG QSOs in our sample that are undetected in both bands, upper limits on νL_ν at 60μm rest wavelength were derived in an analogous way interpolating linearly between the limits at observed wavelengths of 60 and 100μm. Since QSO fluxes are close to the detection limits of the original IRAS and ISO references and because of residual cirrus contamination, uncertainties of order 30-50% for the far-infrared fluxes may well occur.

3. Results

Table 2 lists the intensities of the three emission lines used in the present analysis, [Ne II] 12.8μm, [Ne V] 14.3μm, [O IV] 25.9μm and of the emission feature PAH 7.7μm. The table includes detections as well as upper limits. A more comprehensive list including more lines will be given in a forthcoming paper.

3.1. PAH emission is common in QSOs

As is clear from inspection of Table 2, some of the QSOs in our sample show only high excitation lines, likely originating in the NLRs of these objects. Others (11 of 26) show prominent PAH 7.7μm and other PAH features, indicative of significant star formation. The existence of “composite” sources (see S02 for definition and references to ISO-based studies)
that show both AGN and starburst properties, has been known for several years. Such sources contain both powerful star forming regions, giving rise to the observed PAH emission through near-UV heating, and high luminosity NLRs that are excited by the central radiation source. Since the star forming activity is a property of the host galaxy, and the NLR line luminosities scale with the AGN continuum luminosity, the intensity of the starburst emission features relative to the continuum might be expected to be weaker in AGN whose luminosities are in the QSO regime. Because the S02 sample included only three objects with QSO-like luminosities (i.e. \(L(\text{FIR}) > 5 \times 10^{11} L_\odot \)) and suffered from the limited S/N achievable with ISO, a quantitative verification of this idea was not possible up to now.

Our new sample includes 27 high luminosity AGN and it is therefore important that the fraction of clear PAH emitters in the sample is large. This is strengthened further by the detection of PAH 7.7\(\mu \)m and 11.3\(\mu \)m peaks in the average spectrum of the 15 QSOs not showing individual PAH detections (Fig. 2, bottom). Since this average spectrum excludes sources with individual PAH detections, the PAH emission seen is unlikely to be due to a few PAH-strong sources only, in an otherwise largely PAH-free group. It also has the implication that typically the true PAH fluxes of the PAH nondetections cannot be far below our limits. This high incidence of PAH emission is our first major conclusion and is further discussed in the following sections.

3.2. Trends with level of PAH emission

Before embarking on an analysis of the correlations of different starburst and AGN tracers, we use the two average spectra of the PG QSOs that are individually detected in PAH emission (11 objects) or individually undetected in PAH emission (15 objects) (Fig. 2) to identify some of the salient trends in our data. The two spectra have been obtained by averaging the individual spectra after normalizing to the same total flux in the mid-infrared 5-25\(\mu \)m rest wavelength region. We caution that significant variations are present also within those two groups.

(i) PAH 7.7\(\mu \)m is 2.5 times stronger (relative to the total 5-25\(\mu \)m mid-infrared flux) in the average of the objects with individual PAH detections. This is a natural consequence of the object grouping for the two average spectra. As noted, the relatively small difference argues for the presence of PAH emission in most of the objects that did not have individual detections.

(ii) The far-infrared continuum emission is relatively stronger compared to the mid-infrared continuum in the objects with PAH detections. This is apparent in several ways.
Firstly, all PAH detections are also far-infrared (60\(\mu\)m rest-frame) detections while 7 of 15 PAH nondetections are also not detected in the far infrared. Secondly, the mean ratio \(\nu F_{\nu}(60\mu m)/\nu F_{\nu}(6\mu m)\) is 1.72\(\pm\)0.54 for the 11 PAH detections, 1.00\(\pm\)0.15 for the 8 FIR-detected PAH nondetections, < 0.88 for the 7 objects undetected in both far-infrared and PAH, and finally <0.94 for all 8+7 PAH nondetections. The values for the two upper limits assume that the far-infrared fluxes are less than or equal to the measured limits for the individual far-infrared nondetections. Thirdly, inspection of the average IRS spectra in Fig. 2 shows significant differences in the extrapolation to 60\(\mu\)m: The average spectrum of the PAH detections continues to rise beyond 25\(\mu\)m, while there is an indication for a downturn in the average of the PAH nondetections beyond this wavelength. Regardless of uncertainties in the extrapolation that are related to the assumed intrinsic spectral shape and to technical issues like IRS spectral response calibration and zodiacal light subtraction, the 60\(\mu\)m to 6\(\mu\)m flux density ratio must be significantly larger in the average spectrum of the sources with detected PAHs. We estimate that this ratio is larger for the PAH detections by a factor 2 to 3.

We have also tentatively grouped the PAH nondetections into two average spectra for the 8 far-infrared-detected and 7 far-infrared-nondetected sources. While the statistics and S/N are poorer in these samples, there are indications that the sources undetected in both tracers are at the end of the physical trends described in (i) and (ii) – little PAH, weak far-infrared, and indication for more of a downturn at \(\lambda > 25\mu m\); that is, they are not just fainter overall.

(iii) The lower excitation [NeII] line is stronger in the QSOs detected in PAHs. Normalized by the higher excitation lines [SIV] and [OIV], the [NeII] line is 1.9 and 1.7 times stronger in the QSOs detected in PAHs compared to those undetected in PAHs.

(iv) The broad 10\(\mu\)m silicate emission peak is apparently weaker in the sources with detected PAHs. We argue this is largely an artefact of having a stronger starburst component with its PAH emission. This is illustrated by the dotted line in the upper panel of Fig. 2, which shows the average spectrum after subtracting a PAH-dominated M82 spectrum (Sturm et al. 2000) roughly scaled to the PAH features, and the dashed line, which shows the equivalent result using the average of 12 starburst-dominated QUEST ULIRGs (see §4.1) as a starburst template. As noted by, e.g., Sturm et al. (2000), a main difference between different starburst templates is in the level of increase of the \(\lambda \gtrsim 12\mu m\) very small grain continuum, even for similar shorter wavelength PAH spectra. Our two choices illustrate the effect of such a template variation. The two PAH complexes around 7 and 12\(\mu\)m and the far-infrared upturn serve to ‘fill in’ the minima between and around the two silicate emission peaks. This is analogous to the well-known difficulty of quantifying silicate absorption in
spectra with strong PAH emission. We note that subtracting a starburst spectrum from the PAH-strong average QSO spectrum, in addition to recovering the correct pronounced silicate emission, also indicates a flatter or decreasing extrapolation to beyond 25 µm, similar to what is seen in the PAH-weak average QSO spectrum.

(v) Molecular hydrogen emission in the S(1), S(2) and S(3) rotational lines has a larger equivalent width in the PAH-strong average spectrum, by factors 3-5 comparing these detections with the detections/limits for the PAH-weak average spectrum.

All these trends are consistent with a starburst component (containing strong PAH and far-infrared continuum, low excitation fine-structure line, and possibly molecular hydrogen emission) being superimposed in increasing proportion on a pure AGN spectrum (consisting of warm and hot dust continuum, silicate, and high excitation line emission).

4. Discussion

4.1. Nature of the QSO far-infrared emission and the starburst-AGN connection

We use our sample to compare several AGN- and starburst related quantities observed in the PG QSOs, in an attempt to identify the likely origin of the far-infrared emission. We compare the starburst tracers in these QSOs with those of pure starbursts from two samples: (i) A subset of starburst-dominated QUEST ULIRGs observed with IRS (‘SB-ULIRGs’). In order to restrict ourselves to the ULIRGs with the highest star burst contribution to their infrared luminosity, we require these objects to have no [O\textsc{iv}] 25.9 µm detection, a peak ratio of the PAH 7.7 µm feature to its local continuum of at least 1, and a 5-10 µm spectrum in which visual inspection shows that the absorption features like the 6 µm ice feature are not dominant, although sometimes present. The last criterion is used to avoid ambiguities concerning the internal energy sources of the most heavily obscured ULIRGs (Spoon et al. 2004a,b). (ii) A small sample of six ISO-observed local starbursts (M82, NGC253, NGC1808, IC342, NGC3256, NGC7552) for which the PAH emission is measured without significant aperture corrections relative to the far-infrared data from IRAS, ISO or the Kuiper Airborne Observatory KAO. The ratio of PAH and far-infrared emission is known to vary somewhat with physical conditions (see e.g. discussion in §4.2 of Lutz et al. 2003), decreasing with the average intensity of the radiation field (e.g., Dale et al. 2001). Because of these trends with ISM conditions, we add as another group of comparison objects (iii) twelve ‘FIR quiescent’ galaxies (with particularly low L_{FIR}/L_B and low S_{60}/S_{100}) from the sample of normal galaxies of Lu et al. (2003), for which we convert their PAH fluxes measured in
ISOPHOT-S spectra to our measurement procedure and apply aperture corrections based on their PAH-dominated ISOCAM LW2 images. We add to this group NGC 891 that has been mapped with ISOPHOT-S by Mattila et al. (1999), arriving at a sample of 13 FIR-quiescent objects. The three comparison samples cover a range in luminosity as well as in the average intensity of their interstellar radiation fields that is reflected in their mid-to far-infrared SEDs.

An important new result is the clear correlation between $L(\text{PAH } 7.7\mu m)$ and $L(\text{FIR})$ for the PAH-containing QSOs. Figs. 3 and 4 compare the luminosities and fluxes of PAH $7.7\mu m$ and $60\mu m$ continuum. The QSOs with PAH detections and the starburst-dominated ULIRGs follow the same trend. Fig. 5 shows the equivalent continuous trend from QSOs to starburst-dominated ULIRGs for the comparison of $[\text{Ne}\ II] 12.8\mu m$ and $60\mu m$ continuum.

These trends also imply almost identical mean ratios for the QSO and starburst-dominated ULIRG populations. For the 11 QSOs with both PAH and far-infrared emission detected we find $<L(\text{PAH})/L(\text{FIR})> = 0.0110 \pm 0.0021$ while for the 12 starburst-dominated ULIRGs we get $<L(\text{PAH})/L(\text{FIR})> = 0.0130 \pm 0.0015$. Similarly, comparing $[\text{Ne}\ II] 12.8\mu m$ and far-infrared emission we get for the 18 QSOs with both quantities detected $<L([\text{Ne}\ II])/L(\text{FIR})> = (5.15 \pm 0.73) \times 10^{-4}$ and for the 12 starburst-dominated ULIRGs $<L([\text{Ne}\ II])/L(\text{FIR})> = (4.22 \pm 0.57) \times 10^{-4}$. In both cases, the ratio of the star formation indicator and far-infrared emission is the same in QSOs and in starburst-dominated ULIRGs – the observations are consistent with starbursts producing all of the QSO far-infrared emission if their specific properties are similar to those in starburst dominated ULIRGs.

This argument depends on the adopted specific properties of the comparison starforming galaxies, because of the changes of the PAH to $60\mu m$ ratio with ISM properties mentioned above. For ULIRG starbursts we obtained $<L(\text{PAH})/L(\text{FIR})> = 0.0130 \pm 0.0015$. For the six lower luminosity starbursts for which the ratio of PAH and far-infrared can be derived from ISO data without significant aperture corrections, we obtain $<L(\text{PAH})/L(\text{FIR})> = 0.0399 \pm 0.0087$. Finally, for the sample of 13 FIR-quiescent normal galaxies we get $<L(\text{PAH})/L(\text{FIR})> = 0.126 \pm 0.016$ with individual objects like NGC 891 reaching up to a value 0.2.

Comparing these three ratios to the average of the QSOs, we find that almost all, at least $\sim 30\%$, and at least $\sim 10\%$ of the QSO far-infrared emission would be due to non-AGN sources (that is current and recent star formation), adopting the values for ULIRGs, starbursts and FIR-quiescent galaxies as templates. Irrespective of the adopted template, PAH-based values are lower limits since for QSOs there is the interesting possibility of additional weakening of PAH emission in star-forming regions that are also exposed to AGN radiation, by destruction of the PAH molecules. This may be particularly relevant if some of the far-infrared emission
is generated by star formation occurring in compact clusters or disks very close to the AGN (Davies et al. 2004a,b). This makes values towards the upper end of the range for the non-AGN contribution more likely.

Using only PAH and far-infrared evidence, a formal solution is possible which maximizes the AGN fraction of the far-infrared emission by assigning the PAH emission to a very FIR-quiescent galaxy. The QSO PAH luminosities are on average larger than those of the FIR quiescent galaxies, but the most luminous quiescent objects are of a similar PAH luminosity as the typical QSOs (Fig. 3). Comparing these objects to QSOs, the AGN would then contribute roughly 90% of the QSO far-infrared flux. These objects yield biased comparisons, however, since they are specifically selected for FIR quietness. A fairer comparison would need to populate the PAH/FIR plane of Fig. 3 with a large and complete sample of non-AGN galaxies. While such a sample is currently not available, we qualitatively indicate in Fig. 3 the expected locus of such non-AGN galaxies by connecting the locations of the averages of our three small comparison samples (dotted line). While the FIR quiescent objects are likely more PAH luminous than the average galaxy of the same FIR luminosity, and thus their point placed too high, the overall trend of PAH flux with FIR flux is certainly robust, and the slope of this relation for non-AGN galaxies less than 1, in agreement with the photometric relation between total infrared and ISOCAM LW2 emission studied by Chary & Elbaz (2001). Applying such a luminosity-dependent ratio of PAH to FIR luminosity to QSOs is consistent with our finding of star formation dominating the FIR emission in many of our QSOs. The alternate scenario, in which host galaxies are all PAH luminous but FIR-quiescent and the far-infrared emission of QSOs is AGN dominated, is both complex and inconsistent with some of the evidence presented in §3.2. Specifically, it cannot explain why both the far-infrared and the PAH emission rise together relative to the mid-IR continuum (i.e. AGN) luminosity (see also Figure 2). Moreover, this scenario does not agree with the multiwavelength evidence for active star formation mentioned in §4.3.

Considering these trends and the fact that the far-infrared luminosities of the PG QSOs are typically in the \(\geq 10^{11} L_\odot \) regime, we conclude that for the average QSO in the sample the star formation contribution to the FIR emission is at least 30% (applying the starburst PAH to 60\(\mu\)m conversion), and that star formation may well be dominant. Comparing the locus of QSOs in Fig. 3 with the trend for star-forming comparison objects suggests a tendency for the star formation contribution to be largest in the most FIR-luminous QSOs.

Similar considerations can be made for the comparison of [NeII] 12.8\(\mu\)m and far-infrared emission in QSOs and ULIRGs (Fig.5). Here, the sources of uncertainty are the NLR contribution to [NeII] 12.8\(\mu\)m for the QSOs and the possibility of different extinction in the QSO starbursts and the ULIRGs which show considerable mid-IR extinction (Genzel et al. 1998).
The similarity between QSOs and starburst-dominated ULIRGs in trends and ratios based on PAH 7.7\(\mu m\), [Ne\textsc{ii}] 12.8\(\mu m\), and far-infrared continuum no longer holds when we plot a clearly AGN-related quantity on one axis. Fig. 6 shows that the ratio of PAH and 6\(\mu m\) continuum differs between QSOs and starburst-dominated ULIRGs by more than an order of magnitude, and that the two classes separate clearly in the diagram. An additional strong non-starburst component is required in the QSOs which clearly is the AGN-heated warm dust continuum. We note, however, a clear correlation between the luminosities of AGN 6\(\mu m\) continuum and starburst PAH among the QSOs. We will now argue on the basis of a more comprehensive comparison that this correlation is indirect, caused by a starburst-AGN connection in QSOs.

In a flux-limited sample selected based on an emission component that is directly due to the AGN, as is the case for the PG sample (selected by pointlike appearance, B magnitude and blue U-B color), we expect correlations between the luminosities of the various AGN tracers to arise directly as a consequence of the sample selection. Correlations are not expected when comparing AGN- and starburst-related quantities unless there is a real physical correlation.

A summary of correlation coefficients among the continua, PAH and line fluxes measured in the QSOs is given in Table 3. Some of the relations are also shown in Figs. 3 to 8. In Table 3 we list Spearman rank correlation coefficients for the detected objects and their significance both for luminosities and for the observed fluxes. Given the selection of the PG sample over a relatively narrow flux range, the correlations in flux are generally less tight, but agree with the findings based on luminosities. Our dataset includes upper limits, in particular for feature measurements and far-infrared fluxes, as well as trends between luminosity and distance caused by the flux limited selection. For these reasons, we also list in Table 3 partial correlation coefficients (explicitly excluding the effect of distance) that have been computed using the formalism of Akritas & Siebert (1996) which provides partial correlation analysis for censored data. The results from this analysis of the full censored dataset are in agreement with those from the detections only.

A first and expected finding is the significant correlations between various luminosities tracing the AGN components, e.g. 6\(\mu m\) continuum and the high excitation emission lines. There is a noticeable spread in the ratio of mid-infrared continuum emission and emission in the mid-infrared high excitation lines [O\textsc{iv}] 25.9\(\mu m\) and [Ne\textsc{v}] 14.3\(\mu m\), however, equivalent to a spread in equivalent width of these lines. This is not uncommon in other AGN narrow emission lines like [O\textsc{iii}] \(\lambda5007\) (e.g. Boroson & Green 1992; Baskin & Laor 2005) and has implications for the reliability of NLR lines as direct tracers of AGN bolometric luminosity. Netzer et al. (2006) discuss this large spread of [O\textsc{iii}] \(\lambda5007\) equivalent width which is likely
a general property of AGN and also a function of source luminosity (the ‘Baldwin-effect’) and emission line reddening.

Clear correlations are also seen between quantities tracing starburst activity (PAH $7.7\mu m$ being the cleanest) and others that in the QSOs must be almost fully dominated by the AGN (like $6\mu m$ continuum or high excitation lines). Such correlations are not caused by the PG sample selection by B-band flux and U-B color, and must indicate a true relation of more luminous QSOs on average being associated with more luminous star formation. In the presence of such a “starburst-AGN connection”, evidence on the causal links connecting the correlated observables has to be obtained from the quality of the correlations, and in particular from comparing the absolute values of the correlated quantities with templates as done above for far-infrared and PAH.

While the size of the present sample is modest, Table 3 shows that the correlation between PAH $7.7\mu m$ and far-infrared luminosities is one of the tighter among the combinations we investigated. Consistent with this trend is the stronger correlation of $[\text{NeII}] 12.8\mu m$ with far-infrared than is the case for far-infrared with either $[\text{OIV}] 25.9\mu m$ or $[\text{NeV}] 14.3\mu m$. $[\text{NeII}] 12.8\mu m$ is a line that is emitted both in the NLR of AGN (Sturm et al. 2002), with higher excitation lines usually being stronger, and as the strongest mid-infrared line in the spectra of most starbursts (Thornley et al. 2000; Verma et al. 2003). The good correlation of $[\text{NeII}] 12.8\mu m$ and far-infrared thus indicates a strong starburst contribution to both $[\text{NeII}] 12.8\mu m$ and far-infrared emission, reinforcing the conclusion reached from the starburst-like ratios of these quantities. In a larger sample, these considerations could be expanded to a more rigorous test on the basis of the quality of the correlations. Even in the presence of a starburst-AGN connection, starburst tracers should usually correlate more tightly with other starburst tracers than with AGN tracers. Our sample is not big enough for robust conclusions of this type. Looking at the probability of exceeding the partial correlation coefficients for the full censored dataset in the null hypothesis of uncorrelated data (column 11 of Table 3), it is nevertheless reassuring but certainly tentative that the seven least significant of the 14 correlations discussed are $60\mu m$ vs. $6\mu m$, $60\mu m$ vs. $[\text{OIV}] 25.9\mu m$, $60\mu m$ vs. $[\text{NeV}] 14.3\mu m$, PAH vs. $6\mu m$, PAH vs. $[\text{OIV}] 25.9\mu m$, PAH vs. $[\text{NeV}] 14.3\mu m$, $6\mu m$ vs. $[\text{NeV}] 14.3\mu m$. With the exception of the last, these less significant correlations are all of the type starburst tracer vs. AGN tracer, in the superposition scenario outlined in §3.2, and provided that the far-infrared is counted as a star formation tracer.

We conclude that, while there are also ‘indirect’ correlations caused by a global correlation of AGN and starburst luminosity in our PG sample, the relation between PAH, $[\text{NeII}]$, and far-infrared is real and reflects the starburst component. The most important support for this interpretation is the starburst-like ratios of these three quantities. Starbursts con-
tribute at least $\sim 30\%$ and likely most of the far-infrared emission in the average QSO in our sample. An upper limit to the starburst contribution is imposed by the need for a realistic continuation to longer wavelengths of the AGN mid-IR continuum, which cannot fall off more steeply than the Rayleigh-Jeans like emission of optically thin dust of an appropriate temperature. The true slope is likely somewhat shallower due to variation in temperature and due to non-negligible optical depth in part of the mid-IR emitting region. We feel that the origin and interplay of silicate emission and continuum in the SED of the AGN is not yet well enough measured or modelled for an accurate AGN continuum extrapolation of this type. This is also due to the need for unambiguous decomposition of starburst, silicate, and AGN continuum. Nevertheless, we consider the minimum pure AGN far-infrared continuum required by the data to be consistent with our global conclusion from the PAH 7.7μm and [NeII] 12.8μm emission.

4.2. Mid-infrared diagnostics and the starburst-AGN connection in QSOs

Extending earlier ground-based work (e.g., Roche et al. 1991), Genzel et al. (1998) and Laurent et al. (2000) presented the first empirical versions of the tools now used to separate AGN-powered from starburst-powered infrared galaxies. The basis of these tools is that the intensity of the PAH features in starburst-powered systems traces the starburst’s (far-infrared) luminosity, while these features are easily destroyed by the strong and hard AGN radiation. Our present study widens the scope of the Genzel et al. (1998) work by focusing on star formation signatures in high luminosity bona-fide AGNs. We have used our QUEST QSO sample to look for three starburst signatures, strong PAH features, strong [NeII] lines and strong far-infrared continuum. Although two of those ([NeII] and far-infrared) can also partly originate in AGN environments, we have argued in §4.1 that the three quantities scale with each other and are tracing significant star formation in most objects of our PG QSOs sample. The measured far-infrared luminosity $\nu L_{\nu}(60\mu\text{m})$ ranges between 1.7×10^{10} and $2.5 \times 10^{12} L_\odot$, covering a wide range of starburst luminosity up to the ULIRG regime, and limits for the remaining QSOs are consistent with starburst emission in the same range of luminosities.

An important result is the correlation of PAH (starburst) luminosity and AGN luminosity in our sample. This extends to higher luminosity a similar result obtained by S02 on the basis of ISO spectroscopy of mostly lower luminosity Seyferts, and of a wide range of optical and near-infrared studies suggesting elevated starburst activity in Seyferts (e.g. Heckman et al. 1997; Oliva et al. 1999; Gonzalez-Delgado et al. 2001; Imanishi 2003; Kauffmann et al. 2003). Such a connection between small scale AGN feeding and larger scale starburst...
activity is plausible (e.g., Norman & Scoville 1988) and may play a role in establishing the black hole mass to bulge velocity dispersion relation in galaxies. Its details are far from trivial, however, and warrant observations with higher spatial resolution to elucidate the spatial structure of star formation in these QSOs (see for example Cresci et al. 2004).

Another effect of this connection relates to the interpretation of correlations between QSO properties measured at different wavelengths. Some observed correlations may be indirect, driven by the starburst-AGN connection, as argued for example by Rowan-Robinson (1995) for optical and far-infrared continua. Haas et al. (2003), however, have used among other arguments the observed correlation between rest frame mid-infrared and far-infrared continuum in their QSO sample to argue for an AGN origin of the latter. The sensitivity of the ISO spectroscopic data they had available did not allow for a conclusive test on the basis of PAH emission. While we confirm the mid- to far-infrared correlation for QSOs for our PG sample (e.g., Fig. 7), we use our higher sensitivity Spitzer PAH 7.7μm and [Ne II] 12.8μm data to argue for an indirect nature of this correlation for the luminosity range covered by our sample, induced by a starburst-AGN connection. A similar test remains to be done for the highest luminosity members of the Haas et al. (2003) sample, which are not sufficiently represented in our local PG sample or in the IRS spectra of radio galaxies and radio-loud QSOs of Haas et al. (2005). Such high quality mid-infrared spectra of highest luminosity QSOs should also be able to test whether a trend for decreasing FIR to MIR ratio at highest optical luminosity (as suggested by Fig. 4 of Haas et al. 2003) reflects an increase in relative AGN intensity compared to the host and its star formation.

A central question in the study of QSOs and ULIRGs is their possible evolutionary relation (e.g. Sanders et al. 1988). Our finding of luminous starburst activity in many QSOs is clearly consistent with such an evolutionary link between ULIRGs (which show ultraluminous star formation and frequent coexisting AGN) and QSOs (which show ultraluminous AGN and frequent coexisting starbursts). From such basically energy-related considerations, an evolutionary path with a clear time arrow is, however, difficult to demonstrate and distinguish from more random processes. Including structural and dynamical information, e.g. from other elements of the QUEST program, will better probe this link.

4.3. Direct AGN heating of cold dust and PAHs?

Several models have proposed a direct AGN heating of the far-infrared emission of QSOs (e.g., Sanders et al. 1989). A basic feature of such models, needed in order to fit QSO SEDs with moderately strong far-infrared emission, is a significant covering factor by obscuring dust at relatively large (few kpc) distances from the central AGN that is not shadowed by
matter closer in. In the model of Sanders et al. (1989), for example, this is accomplished by invoking a dusty galactic disk that is warped into the unshielded AGN radiation on such scales. In such a scenario, the star formation activity and associated PAH emission would be low. The PAH to far-infrared correlation that we find would have to be due to PAH excitation by the AGN itself at this relatively large distance. The required emission is significant - as we argued above, the ratio of PAH and far-infrared is similar to that in starburst-dominated systems, and far-infrared is a significant fraction of the bolometric luminosity for our sample (\(\sim 10\%\) mean for the systems with far-infrared detections).

A main argument against this scenario is the likely destruction mechanism of PAH by AGN radiation: If this process works through destruction by individual EUV and X-ray photons, then the PAH carriers cannot survive at even kpc distances unless shielded by a large column able to stop the deeply penetrating hard photons (Voit 1992). Such a large absorbing column (\(N_H \gtrsim 10^{22} \text{cm}^{-2}\)) would, however, prevent the heating of a significant far-infrared emitting dust component at large distance, by absorbing the UV ‘big blue bump’ bulk part of the AGN SED. It would also absorb the near-UV (\(<13.6\text{eV}\)) radiation needed to actually excite infrared feature emission from the shielded PAH molecules. As argued by Voit (1992) and Maloney (1999), PAH molecules can survive even relatively close to a powerful AGN if placed behind large obscuration. Such high obscuring columns could be plausibly identified with the anisotropic obscuring structure postulated by unified AGN models. Exciting these surviving PAH molecules will however require a separate near-UV source, for example by reintroducing a circumnuclear starburst. An indirect transport of AGN near-UV radiation to this shielded material, for example by scattering of UV emerging into the AGN ionisation cones, appears unlikely to produce the required large PAH luminosities for \(\sim 1\%\) scattering efficiency, as often assumed on the basis of polarimetric AGN studies (e.g. Pier et al. 1994).

Freudling et al. (2003) and Siebenmorgen et al. (2004b) present observations and models of radio-loud AGN in which they ascribe the full infrared SED including sometimes present PAH emission to the AGN, without invoking additional star formation. Their models (see discussion in Siebenmorgen et al. 2004a) invoke a different treatment of PAH destruction in the AGN radiation field. While this issue certainly deserves future study, their models may underestimate PAH destruction by the AGN. They predict strong PAH emission from optically thin dust illuminated by an AGN at a typical NLR distance, as well as significant PAH emission from an optically thick model for the central region of a nearby AGN which has most of its mid-infrared emission arising in a compact (\(\sim 10 \text{ pc}\)) region (Fig. 20, 21, 22 of Siebenmorgen et al. 2004a). In contrast, spatially resolved observations put very strong limits on the PAH emission from such regions of some nearby AGN (Le Floc’h et al. 2001; Siebenmorgen et al. 2004a; Weedman et al. 2005; Mason et al. 2006).
Our interpretation is also consistent with other, partly circumstantial, evidence for star formation in QSOs. Canalizo & Stockton (2001) find optical spectroscopic evidence for relatively recent $\lesssim 300$Myr star formation in a sample that ranges from ULIRGs to some of the moderately FIR-bright PG QSOs of our sample. Veilleux et al. (2006) find some PG QSOs brighter than the H-band fundamental plane, possibly indicating circumnuclear star formation. Molecular gas detections of PG QSOs (e.g. Evans et al. 2001; Scoville et al. 2003), while not directly probing star formation, suggest sufficient material to power the far-infrared emission if star formation is efficient.

4.4. Comparison to QSO star formation estimates based on $[\text{O}\,\text{II}]\,\lambda 3727$

Our finding that star formation activity is able to power the far-infrared emission is in contrast to the result of Ho (2005). For a PG-based sample partly overlapping with our sample, he found insufficient star formation from an analysis using the $[\text{O}\,\text{II}]\,\lambda 3727$ line as a star formation tracer. Large and uncertain corrections for extinction of this tracer are likely the main contributor to this discrepancy.

Ho (2005) used $[\text{O}\,\text{II}]\,\lambda 3727$ fluxes for his QSOs from the literature and the calibration of Kewley et al. (2004) for extinction-corrected $[\text{O}\,\text{II}]\,\lambda 3727$ as a star formation indicator that is also a function of metallicity: $\text{SFR}([\text{O}\,\text{II}],Z)$. Kewley et al. (2004) base their work on a sample of nearby field galaxies with detailed integrated optical spectroscopy, and star formation rates spanning 4 orders of magnitude centered on $\sim 1 M_\odot \text{yr}^{-1}$. They demonstrate that $[\text{O}\,\text{II}]\,\lambda 3727$ is a star formation indicator as good as Hα over this range, provided extinction can be corrected for individual objects, and individual metallicities are known.

To apply this calibration to QSOs whose optical spectra are strongly dominated by AGN emission, Ho (2005) made three assumptions: (1) Screen attenuation of $A_V=1$ towards the star forming regions, (2) metallicity twice solar, (3) one third of the $[\text{O}\,\text{II}]\,\lambda 3727$ emission comes from star formation. Another implicit assumption is (4) aperture corrections to $[\text{O}\,\text{II}]\,\lambda 3727$ can be ignored for the hosts of this QSO sample with median $z \sim 0.09$ observed with 2-5″ optical spectroscopic apertures. Under these assumptions, Ho (2005) infers star formation rates of at most $20 \, M_\odot \text{yr}^{-1}$ but often much less, and typically an order of magnitude below those inferred by ascribing the far-infrared emission to star formation.

While all four assumptions contribute to the uncertainties of this approach, we believe that assumption (1) about the reddening to the star forming regions is the key to the systematic difference to our Spitzer results. As noted, e.g., by Kewley et al. (2004), extinction is a strong function of intrinsic $[\text{O}\,\text{II}]\,\lambda 3727$ luminosity. At the short wavelength of $[\text{O}\,\text{II}]\,\lambda 3727$
where $A_\lambda \sim 1.5 \times A_V$, increased dust extinction can relatively easily offset much of an increase in intrinsic line luminosity. Since the far-infrared luminosities of our quasars reach beyond $10^{11} L_\odot$, it is instructive to compare to the systematic optical spectroscopic study of a complete sample of luminous infrared galaxies by Poggianti & Wu (2000), which is addressing objects with $L_{FIR} \sim 10^{11.5} L_\odot$ for our cosmology. More than half of their objects have so-called e(a) optical spectra, characterized by absorption in the higher Balmer lines, weak [O II] $\lambda 3727$, and significant obscuration of the emission lines. E(B-V) is ~ 1.11 even in the simplifying screen assumption, which still ignores regions in such highly dusty objects that are too obscured to contribute to the optical lines. With observed $L(H\alpha) \sim 10^{41}$ erg s$^{-1}$ and [O II] $\lambda 3727/H\alpha \sim 0.23$, they are in the regime of or below the portion (1/3) of the QSO [O II] $\lambda 3727$ luminosities that Ho (2005) ascribes to star formation, already considering that [O II] $\lambda 3727$ aperture corrections may be more significant for the Poggianti & Wu (2000) sample which has median $z=0.0324$ and similar spectroscopic apertures. Similar arguments apply, to a lesser degree, to the Poggianti & Wu (2000) objects with spectral classifications other than e(a). There is a large population of dusty luminous starbursts that could fit the weak [O II] $\lambda 3727$ emission of the Ho (2005) QSOs.

In summary, while the QSO optical data are consistent with the low star-formation rate interpretation of Ho (2005), they are also consistent with much higher star formation rates. This is because the optical analysis of Ho (2005) is based on a single line that is strongly extinction sensitive, and no extinction constraints are available for this component from the optical data. Less extinction sensitive data like the Spitzer infrared spectra are needed to break this degeneracy, and suggest more substantial star formation rates. Some of the QSO host optical spectra may share properties of infrared galaxies with e(a) optical spectra: little obscuration towards the stellar continuum spectra dominated by an older post-burst component, but still significant obscuration of the active star forming regions (Poggianti & Wu 2000).

4.5. Implications for high redshift QSOs

Deep submm and mm photometry has led to the detection of rest frame submm and far-infrared dust emission from radio-quiet QSOs at redshifts up to 6.42 (e.g. Omont et al. 2001; Isaak et al. 2002; Bertoldi et al. 2003). It has been variously argued through indirect arguments like CO content that this emission is star formation powered (e.g. Walter et al. 2003), implying that these QSOs coexist with extremely powerful $\gtrsim 10^{13} L_\odot$ starbursts. Our results support a starburst origin of QSO far-infrared emission, but do not extend to this luminosity and redshift regime. If the ratio of PAH to far-infrared emission for these QSOs
is similar to the one in the local QSOs and in ULIRGs, detection of PAH emission on top of a strong continuum may be within reach of Spitzer spectroscopy. PAH emission from similar luminosity SMGs is detectable at ULIRG-like ratios to the far-infrared emission (Lutz et al. 2005). Luminous PAH emission has also been reported in mid-infrared selected samples of z∼2 infrared galaxies (Yan et al. 2005). Probing for PAH emission may currently be the only way to verify the assumption of simultaneous strong star formation and QSO activity in high redshift QSOs.

5. Conclusions

Sensitive Spitzer mid-infrared spectroscopy reveals the widespread presence of aromatic ‘PAH’ emission features in z≲ 0.3 QSOs from the Palomar-Green sample, indicating the presence of powerful (νLν(60µm)≈ 1.7×10^{10} to 2.5×10^{12}L_⊙) star formation activity in these systems. Starburst and AGN activity are connected in QSOs up to these high luminosities. By comparing the ratios of PAH 7.7µm, [Ne II] 12.8µm, and far-infrared emission in QSOs with starbursts we conclude that for the average QSO in our sample at least 30% and likely most of the QSO far-infrared emission is due to star formation. The data suggest a trend with the star formation contribution being the largest in the most FIR-luminous QSOs.

We thank Aprajita Verma, Natascha Förster Schreiber and Helene Roussel for help with comparison starburst data. We are grateful for comments by the referee.

This work is based on observations carried out with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Support for this work was provided by NASA through contract 1263752 (S.V.) issued by JPL/Caltech. The authors wish to recognize the very significant cultural role that Theresienwiese has always had with the indigenous Bavarian community.

HN acknowledges a Humboldt Foundation prize and thanks the host institution, MPE Garching, where this work has been done. AJB acknowledges support from the National Radio Astronomy Observatory, which is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation.
REFERENCES

Akritas, M.G., Siebert, J. 1996, MNRAS, 278, 919

Alexander, T., Sturm, E., Lutz, D., Sternberg, A., Netzer, H., Genzel, R. 1999, ApJ, 512, 204

Armus, L., et al. 2004, ApJS, 154, 178

Armus, L., et al. 2006, ApJ, in press (astro-ph/0511381)

Baskin, A., Laor, A. 2005, MNRAS, 358, 1043

Bertoldi, F., Carilli, C.L., Cox, P., Fan, X., Strauss, M.A., Beelen, A., Omont, A., Zylka, R. 2003, A&A, 406, L55

Boroson, T.A., Green, R.F. 1992, ApJS, 80, 109

Calzetti, D., et al. 2005, ApJ, 633, 871

Canalizo, G., Stockton, A., 2001, ApJ, 555, 719

Chary, R., Elbaz, D. 2001, ApJ, 556, 562

Chini, R., Kreysa, E., Biermann, P.L., 1989, A&A, 219, 87

Clavel, J., et al. 2000, A&A, 357, 839

Cresci, G., Maiolino, R., Marconi, A., Mannucci, F., Granato, G.L. 2004, A&A. 423, L13

Dale, D.A., Helou, G., Contursi, A., Silbermann, N.A., Kolhatkar, S. 2001, ApJ, 549, 215

Dasyra, K.M., et al. 2006a, ApJ, 638, 745

Dasyra, K.M., et al. 2006b, ApJ, submitted

Davies, R.I., Tacconi, L.J., Genzel, R. 2001, ApJ, 602, 148

Davies, R.I., Tacconi, L.J., Genzel, R. 2001, ApJ, 613, 781

Elvis, M., et al. 1994, ApJS, 95, 1

Engelbracht, C.W., Gordon, K.D., Rieke, G.H., Werner, M.W., Dale, D.A., Latter, W.B. 2005, ApJ, 628, L29

Evans, A.S., Frayer, D.T., Surace, J.A., Sanders, D.B. 2001, AJ, 121, 3286
Förster Schreiber, N.M., Roussel, H., Sauvage, M., Charmandaris, V. 2004, A&A, 419, 510
Freudling, W., Siebenmorgen, R., Haas, M. 2003, ApJ, 599, L13
Genzel, R., et al. 1998, ApJ, 498, 579
Genzel, R., Cesarsky, C. J. 2000, ARA&A, 38, 761
Gonzalez-Delgado, R.M., Heckman, T., Leitherer, C. 2001, ApJ, 546, 845
Guyon, O. 2002, PhD Thesis, Univ. Paris VI
Guyon, O., Sanders, D.B., Stockton, A. 2006, ApJS, in press (astro-ph/0605079)
Haas, M., Chini, R., Meisenheimer, K., Stickel, M., Lemke, D., Klaas, U., Kreysa, E. 1998, ApJ, 503, L109
Haas, M., Müller, S.A.H., Chini, R., Meisenheimer, K., Klaas, U., Lemke, D., Kreysa, E., Camenzind, M. 2000, A&A, 354, 452
Haas, M., et al. 2003, A&A, 402, 87
Haas, M., Siebenmorgen, R., Schulz, B., Krügel, E., Chini, R. 2005, A&A, 442, L39
Hao, L., et al. 2005, ApJ, 625, L75
Heckman, T., Gonzalez-Delgado, R., Leitherer, C., Meurer, G.R., Krolik, J., Wilson, A.S., Koratkar, A., Kinney, A. 1997, ApJ, 482, 114
Higdon, S.J.U., et al. 2004, PASP, 116, 975
Ho, L. 2005, ApJ, 629, 680
Houck, J.R., et al. 2004, ApJS, 154, 18
Hughes, D.H., Robson, E.I., Dunlop, J.S., Gear, W.K. 1993, MNRAS, 263, 607
Imanishi, M. 2003, ApJ, 599, 918
Isaak, K.G., Priddey, R.S., McMahon, R.G., Omont, A., Peroux, C., Sharp, R.G., Withington, S. 2002, MNRAS, 329, 149
Jester, S., et al. 2005, AJ, 130, 873
Kauffmann, G., et al. 2003, MNRAS, 346, 1055
Kewley, L.J., Geller, M.J., Jansen, R.A. 2004, AJ, 127, 2002
Klaas, U., et al., 2001, A&A, 379, 823
Laurent, O., Mirabel, I.F., Charmandaris, V., Gallais, P., Madden, S.C., Sauvage, M., Viguoux, L., Cesarsky, C. 2000, A&A, 359, 887
Le Floc’h, E., Mirabel, I.F., Laurent, O., Charmandaris, V., Gallais, P., Sauvage, M., Viguoux, L., Cesarsky, C. 2001, A&A, 367, 487
Lu, N., et al., 2003, ApJ, 588, 199
Lutz, D., Sturm, E., Genzel, R., Spoon, H.W.W., Moorwood, A.F.M., Netzer, H., Sternberg, A. 2003, A&A, 409, 867
Lutz, D., Valiante, E., Sturm, E., Genzel, R., Tacconi, L.J., Lehnert, M.D., Sternberg, A., Baker, A.J. 2005, ApJ, 625, L83
Maloney, P. 1999, Ap&SS, 266, 207
Mason, R.E., Geballe, T.R., Packham, C., Levenson, N.A., Elitzur, M., Fisher, R.S., Perlman, E. 2006, ApJ, in press (astro-ph/0512202)
Mattila, K., Lemke, D., Haikala, L.K., Laureijs, R.J., Leger, A., Lehtinen, K., Leinert, C., Mezger, P.G. 1996, A&A, 315, L353
Mattila, K., Lehtinen, K., Lemke, D., 1999, A&A, 342, 643
Netzer, H., et al. 2006, A&A, in press
Neugebauer G., Miley, G.K., Soifer, B.T., Clegg, P.E. 1986, ApJ, 308, 815
Norman, C., Scoville, N.Z. 1988, ApJ, 322, 124
Oliva, E., Origlia, L., Maiolino, R., Moorwood, A.F.M., 1999, A&A, 350, 9
Omont, A., Cox, P., Bertoldi, F., McMahon, R.G., Carilli, C., Isaak, K.G. 2001, A&A, 374, 371
Pier, E.A., Antonucci, R., Hurt, T., Kriss, G., Krolik, J. 1994, ApJ, 428, 124
Poggianti, B.M., Wu, H. 2000, ApJ, 529, 157
Roche, P.F., Aitken, D.K., Smith, C.H., Ward, M.J. 1991, MNRAS, 248, 606
Rowan-Robinson, M. 1995, MNRAS, 272, 737

Sanders, D.B., Soifer, B.T., Elias, J.H., Madore, B.F., Matthews, K., Neugebauer, G., Scoville, N.Z. 1988, ApJ, 325, 74

Sanders, D.B., Phinney, E.S., Neugebauer, G., Soifer, B.T., Matthews, K. 1989, ApJ, 347, 29

Sanders, D.B., Mirabel, I.F. 1996, ARA&A, 34, 749

Schmidt, M., Green, R.F. 1983, ApJ, 269, 353

Scoville, N.Z., Frayer, D.T., Schinnerer, E., Christopher, M. 2003, ApJ, 585, L105

Siebenmorgen, R., Krügel, E., Spoon, H.W.W. 2004a, A&A, 414, 123

Siebenmorgen, R., Freudling, W., Krügel, E., Haas, M. 2004b, A&A, 421, 129

Siebenmorgen, R., Haas, M., Krügel, E., Schulz, B. 2005, A&A, 436, L5

Spinoglio, L., Malkan, M.A. 1992, ApJ, 399, 504

Spoon, H.W.W., Moorwood, A.F.M., Lutz, D., Tielens, A.G.G.M., Siebenmorgen, R., Keane, J.V. 2004a, A&A, 414, 873

Spoon, H.W.W., et al. 2004b, ApJS, 154, 184

Sturm, E., Lutz, D., Tran, D., Feuchtgruber, H., Genzel, R., Kunze, D., Moorwood, A.F.M., Thornley, M.D. 2000, A&A. 358, 481

Sturm, E., Lutz, D., Verma, A., Netzer, H., Sternberg, A., Moorwood, A.F.M., Oliva, E., Genzel, R. 2002, A&A, 393, 821 (S02)

Sturm, E., et al. 2005, A&A, 629, L21

Thornley, M.D., Förster Schreiber, N., Lutz, D., Genzel, R., Spoon, H.W.W., Kunze, D., Sternberg, A. 2000, ApJ, 539, 641

Veilleux, S., et al. 2006, ApJ, in press (astro-ph/0601565)

Verma, A., Lutz, D., Sturm, E., Sternberg, A., Genzel, R., Vacca, W. 2003, A&A, 403, 829

Verstraete, L., Puget, J.L., Falgarone, E., Drapatz, S., Wright, C.M., Timmermann, R. 1996, A&A, 315, L337
Voit, G.M. 1992, MNRAS, 258, 841
Walter, F., et al. 2003, Nature, 424, 406
Weedman, D., et al. 2005, ApJ, 633, 706
Yan, L., et al. 2005, ApJ, 628, 604
Table 1. QSO sample

Object	z	S6	S15	S30	S60	S100	Ref	DL	log(μLν(60μm))	L⊙
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
PG0026+129	0.1420	16.2	35.8	74	<162	<129	H00 672	<11.10		
PG0050+124 (IZw1)	0.0611	178.3	515.1	1183	2243	2634	FSC 274	11.45		
PG0157+001 (Mrk1014)	0.1630	32.1	217.3	1352	2224	2164	FSC 781	12.39		
PG0838+770	0.1310	12.1	46.3	105	140	146	H03 768	11.18		
PG0953+414	0.2341	21.3	33.0	34	<129	<315	N86 1170	<11.71		
PG1001+054	0.1605	16.8	34.5	69	140	146	H03 768	11.18		
PG1004+130	0.2400	17.2	74.8	164	191	191	H03 768	11.18		
PG1116+215	0.1765	54.5	78.4	113	<219	<285	H03 853	<11.50		
PG1126-041 (Mrk1298)	0.0600	37.2	101.9	311	669	1172	N86 269	10.93		
PG1229+204 (Mrk771)	0.0630	28.2	88.3	183	241	317	H03 283	10.52		
PG1244+026	0.0482	15.8	66.7	194	368	362	H03 214	10.44		
PG1302-102	0.2784	21.3	80.4	201	343	343	S89 1203	11.74		
PG1307+085	0.1550	50.2	101	212	155	155	S89 1203	11.29		
PG1309+355	0.1840	22.1	70.9	106	<162	<192	H03 893	<11.40		
PG1411+442	0.0896	61.4	96.9	139	147	140	H00 410	10.62		
PG1426+015	0.0865	55.1	135.3	251	350	312	H03 395	10.96		
PG1435-067	0.1260	18.3	33.3	77	304	<333	H03 590	11.28		
PG1440+356 (Mrk478)	0.0791	55.1	135.3	251	597	780	H03 359	11.13		
PG1448+273	0.0650	19.0	70.1	117	117	<252	S89 292	10.22		
PG1613+658 (Mrk876)	0.1290	55.7	120.2	298	591	1002	H00 605	11.64		
PG1700+518	0.2920	51.4	127.8	348	374	374	H03 1505	12.22		
PG1700+518	0.2920	51.4	127.8	348	374	374	H03 1505	12.22		
PG2214+139 (Mrk304)	0.0658	56.0	76.8	80	337	<282	N86 296	10.68		
B2 2201+31A	0.2950	32.2	58.4	<295	<870	SP 1553	<12.43			
PG2251+113	0.3255	15.4	35.6	<67	<214	N86 1706	<11.92			
PG2349-014	0.1740	21.2	59.8	167	271	290	S89 840	11.55		

Note. — Col. (1) — Source name.
Col. (2) — Redshift.
Cols. (3-5) — Observed narrow band continuum flux densities around 6, 15, and 30 μm rest wavelength, extracted from the IRS spectra. Missing entries are outside the rest wavelength range available for a given object.
Cols. (6-8) — ISO or IRAS fluxes at observed 60 and 100 μm, and related references: FSC – IRAS Faint Source Catalog, H00 – Haas et al. (2000), H03 – Haas et al. (2003), N86 – Neugebauer et al. (1986), S89 – Sanders et al.
Col. (9) — Luminosity distance in Mpc for a $H_0=70\text{km}\text{s}^{-1}\text{Mpc}^{-1}$, $\Omega_m = 0.3$ and $\Omega_\Lambda = 0.7$ cosmology
Col. (10) — Far infrared luminosity. See text for treatment of limits.
Table 2. Measured emission features

Object	[Ne ii] 12.8μm	[Ne v] 14.3μm	[O iv] 25.9μm	PAH 7.7μm
	W cm\(^{-2}\)	W cm\(^{-2}\)	W cm\(^{-2}\)	W cm\(^{-2}\)
PG0026+129	2.29E-22	4.73E-22	2.14E-21	<8.70E-21
PG0050+124	1.94E-21	5.50E-21	2.75E-21	7.29E-20
PG0157+001	5.52E-21	5.18E-21	1.17E-20	5.93E-20
PG0838+770	4.11E-22	3.24E-22	1.30E-21	1.04E-20
PG0953+414	<1.70E-22	<1.90E-22	5.08E-22	<2.33E-20
PG1001+054	4.00E-22	<1.20E-22	5.19E-22	<1.32E-20
PG1004+130	<2.43E-22	<2.76E-22	2.10E-21	<1.47E-20
PG1116+215	<3.20E-22	<2.90E-22	1.10E-21	<3.50E-20
PG1126-041	1.39E-21	4.34E-21	1.59E-20	1.49E-20
PG1229+204	6.13E-22	9.06E-22	2.77E-21	<1.40E-20
PG1244+026	9.42E-22	5.31E-22	1.51E-21	6.02E-21
PG1302-102	3.56E-22	4.87E-22	2.60E-21	<8.52E-21
PG1307+085	3.98E-22	5.63E-22	7.38E-22	
PG1309+355	5.07E-22	2.69E-22	<4.95E-22	<3.80E-20
PG1411+442	3.61E-22	9.56E-22	1.49E-21	1.02E-20
PG1426+015	1.29E-21	1.25E-21	3.43E-21	2.36E-20
PG1435-067	<1.05E-22	5.22E-22	3.88E-22	<5.20E-21
PG1440+356	4.11E-21	1.33E-21	6.26E-21	7.38E-20
PG1448+273	5.07E-22	2.67E-21	1.01E-20	1.55E-20
PG1613+658	3.88E-21	1.13E-21	4.89E-21	3.86E-20
PG1617+175	2.89E-22	<1.70E-22	3.92E-22	<1.05E-20
PG1626+554	6.91E-23	<6.90E-23	<1.97E-22	<7.10E-21
PG1700+518	1.21E-21	<2.30E-22	1.68E-21	<2.40E-20
PG2214+139	2.26E-22	2.70E-22	1.27E-21	<1.30E-20
B2 2201+31A	9.64E-23	5.31E-22	5.62E-22	<7.89E-21
PG2251+113	1.69E-22	4.90E-22	3.08E-21	<8.00E-21
PG2349-014	1.44E-21	7.05E-22	3.87E-21	1.66E-20
Table 3. Correlation of measured properties

Property A	Property B	Number Detect.	R_S	Probability	R_S	Probability	Dispersion	Number	PKT	Probability
60μm	PAH	11	0.945	1.1E-5	0.582	6.0E-2	0.293	26	0.248	5.7E-3
60μm	6μm	19	0.894	2.4E-7	0.567	1.1E-2	0.303	26	0.321	1.6E-2
60μm	15μm	20	0.938	9.8E-10	0.746	1.6E-4	0.212	27	0.441	2.8E-4
60μm	30μm	19	0.926	1.3E-8	0.825	1.4E-5	0.384	24	0.530	4.6E-5
60μm	[NeII]	18	0.899	4.0E-7	0.744	4.0E-4	0.284	27	0.329	1.1E-3
60μm	[OIV]	19	0.670	1.7E-3	0.493	3.2E-2	0.422	27	0.267	1.4E-2
60μm	[NeV]	16	0.788	2.9E-4	0.456	7.6E-2	0.345	27	0.257	3.1E-2
PAH	6μm	11	0.873	4.6E-4	0.473	1.4E-1	0.283	26	0.174	6.2E-2
PAH	15μm	11	0.927	1.0E-5	0.800	3.1E-3	0.219	26	0.277	5.3E-3
PAH	30μm	11	0.927	4.0E-5	0.636	3.5E-2	0.268	23	0.346	1.6E-3
PAH	[NeII]	11	0.936	2.2E-5	0.845	1.1E-3	0.246	26	0.287	1.1E-3
PAH	[OIV]	11	0.600	5.1E-2	0.436	1.8E-1	0.397	26	0.186	2.6E-2
PAH	[NeV]	11	0.682	2.1E-2	0.636	3.5E-2	0.352	26	0.214	1.2E-2
6μm	[OIV]	24	0.657	4.8E-4	0.147	4.9E-1	0.482	26	0.264	8.4E-3
6μm	[NeV]	19	0.770	1.2E-4	0.484	3.6E-2	0.366	26	0.256	4.0E-2

Note. — Col. (1) — First variable. Wavelengths stand for continuum at that rest wavelength.
Col. (2) — Second variable.
Col. (3) — Number of sources detected in both quantities.
Col. (4) — Spearman’s rank correlation coefficient for luminosities, for detected sources.
Col. (5) — Probability of exceeding the measured correlation coefficient for luminosities in the null hypothesis of uncorrelated data. Smaller values indicate more significant correlations.

Col. (6) — Spearman’s rank correlation coefficient for fluxes.

Col. (7) — Probability of exceeding correlation coefficient for fluxes in the null hypothesis.

Col. (8) — Dispersion of $\log_{10}(A/B)$ for the detected sources.

Col. (9) — Total number of sources measured (detections and limits).

Col. (10) — Partial Kendall τ coefficient describing correlation between luminosities A and B, excluding the effect of distance. Value computed using the formalism of Akritas & Siebert (1996) that extends the Kendall τ-coefficient to partial correlation in the presence of censored data (i.e. data including upper limits).

Col. (11) — Probability of exceeding partial correlation coefficient in the null hypothesis.
Fig. 1.— IRS spectra of two PG QSOs, combined with far-infrared photometric fluxes. These two nearby sources were selected to illustrate the full range between sources with strong PAH, [NeII], and far-infrared emission and others with weak emission in all these tracers. The spectrum of PG1440+356 has been multiplied by a factor 4 for clarity.
Fig. 2.— Average spectra of QSOs. Individual spectra have been normalized to the same total 5-25 \(\mu \text{m} \) flux before averaging. Note the change in spectral resolution from low at short wavelengths to high at \(\gtrsim 9 \mu \text{m} \) rest wavelength. Top: 11 QSOs for which PAH 7.7 \(\mu \text{m} \) is detected in the individual spectra. The dotted line is the same spectrum after subtracting an M82 spectrum scaled to the PAH features, and the dashed line after subtracting a starburst-dominated ULIRG spectrum scaled to the PAH features. Emission line residuals have been removed for clarity. The inset repeats the same spectra with different plot scaling, emphasizing the wider range SED trends. Bottom: 15 QSOs for which PAH 7.7 \(\mu \text{m} \) is not detected individually. A broad maximum near 7.7 \(\mu \text{m} \) rest wavelength as well as an 11.3 \(\mu \text{m} \) feature is detected in the average, however, indicating a high incidence of PAH emission in the contributing spectra.
Fig. 3.— Luminosities $L(\text{PAH} \, 7.7 \mu m)$ vs. $L(60 \mu m)$ for the QSOs. Starburst dominated ULIRGs, lower luminosity starbursts, and FIR-quiescent galaxies are added for comparison. The thin dotted line connects the mean locations of these three groups of comparison objects. The small blue symbols repeat the QSOs without individual PAH detections, but assuming that the individual ratios of PAH $7.7 \mu m$ to rest frame 5-25μm flux are the same as in the average spectrum of Fig. 2 (bottom). A 30% 1σ uncertainty is indicated in the lower right corner.
Fig. 4.— Fluxes $F(\text{PAH } 7.7\mu m)$ vs. $F(60\mu m)$ for the QSOs and for starburst dominated ULIRGs.
Fig. 5.— Luminosities $L([\text{Ne} \text{II}] 12.8\,\mu m)$ vs. $L(60\mu m)$ for the QSOs and for starburst dominated ULIRGs.
Fig. 6.— Luminosities $L(\text{PAH} \, 7.7 \mu m)$ vs. $L(6 \mu m)$ for the QSOs and for starburst dominated ULIRGs.
Fig. 7.— Luminosities $L(6\mu m)$ vs. $L(60\mu m)$ for the QSOs and for starburst dominated ULIRGs.
Fig. 8.— Luminosities $L([\text{O IV}] 25.9 \mu m)$ vs. $L(60 \mu m)$ for the QSOs