Chlorine-Resistant Hollow Nanosphere-Like VO\(_x\)/CeO\(_2\) Catalysts for Highly Selective and Stable Destruction of 1,2-Dichloroethane: Byproduct Inhibition and Reaction Mechanism

Yu Huang\(^1\), Shi Yue Fang\(^1,4\), Mingjiao Tian\(^2\), Zeyu Jiang\(^2\), Yani Wu\(^2\) and Chi He\(^2,3,\)*

1. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; huangyuxhj@163.com (Y.H.); fangshiyue@xust.edu.cn (S.F.)
2. State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; tianmingjiao@stu.xjtu.edu.cn (M.T.); jiangzy@stu.xjtu.edu.cn (Z.J.); wuyani1998@stu.xjtu.edu.cn (Y.W.)
3. National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
* Correspondence: chi.he@xjtu.edu.cn; Tel.: +86-29-82663857
† These authors contributed equally to this work.

Abstract: Developing economical and robust catalysts for the highly selective and stable destruction of chlorinated volatile organic compounds (CVOCs) is a great challenge. Here, hollow nanosphere-like VO\(_x\)/CeO\(_2\) catalysts with different V/Ce molar ratios were fabricated and adopted for the destruction of 1,2-dichloroethane (1,2-DCE). The V\(_{0.05}\)/Ce catalyst possessed superior catalytic activity, reaction selectivity, and chlorine resistance owing to a large number of oxygen vacancies, excellent low-temperature redox ability, and chemically adsorbed oxygen (O\(^-\) and O\(_2^-\)) species mobility. Typical chlorinated byproducts (CHCl\(_3\), CCl\(_4\), C\(_2\)HCl\(_3\), and C\(_2\)H\(_2\)Cl\(_3\)) derived from the cleavage of C–Cl and C–C bonds of 1,2-DCE were detected, which could be effectively inhibited by the abundant acid sites and the strong interactions of VO\(_x\) species with CeO\(_2\). The presence of water vapor benefited the activation and deep destruction of 1,2–DCE over V\(_{0.05}\)/Ce owing to the efficient removal of Cl species from the catalyst surface.

Keywords: catalytic destruction; 1,2-dichloroethane; VO\(_x\)/CeO\(_2\); chlorinated byproduct inhibition; reaction mechanism

1. Introduction

Chlorinated volatile organic compounds (CVOCs) mainly originate from industrial processes and result in great hazards to public health and the natural environment because of their long durability, poor reactivity, and high toxicity [1–3]. So far, several methods including absorption, photocatalytic degradation, catalytic oxidation, and biological processes have been used for CVOC elimination [4]. Among them, catalytic oxidation has been identified as the most efficient treatment measure due to its significant energy saving, adjustable reaction selectivity, low operation temperature, and green environment effect [5,6]. Up to now, various catalysts including transition metal oxides, zeolites/modified zeolites, and supported noble metals have been studied for CVOC destruction. Supported noble–metal catalysts exhibit outstanding catalytic performance, whereas their widespread application is greatly limited by their susceptibility to chlorine poisoning, the formation of chlorinated byproducts, and their high cost [7,8]. Although zeolites/modified zeolites exhibit good catalytic performance, they more easily suffer deactivation due to chlorine poisoning and coke deposition during the oxidation process [9,10]. Comparatively, transition metal oxides (e.g., Cr\(_2\)O\(_3\), MnO\(_x\), and V\(_2\)O\(_5\)) are considered as a category of desired candidates to destroy CVOCs owing to their considerable
catalytic performance, high availability, and low cost [6,11–13]. For example, VOx catalysts are usually used for CVOC destruction due to their excellent resistance to chlorine poisoning [13,14]. Recently, CeO2 catalysts attracted much attention for CVOC destruction attributed to their higher oxygen mobility, superior redox ability, and abundant oxygen vacancies. However, CeO2 catalysts are easily deactivated because of the strong adsorption of Cl species onto their active sites. Generally, the introduction of transition metal oxides is advantageous for promoting activity and stability. Dai et al. [15] presented that a 6 wt.% VOx/CeO2 catalyst displayed superior catalytic activity for 1,2-dichloroethane (1,2-DCE) degradation owing to the strong interaction of VOx species with CeO2 and the high valence of VOx. It was observed that the stability of VOx/CeO2 materials was significantly improved, attributed to the VOx species preventing Cl species from exchanging the surface lattice oxygen of CeO2 during chlorobenzene destruction [16]. Although VOx/CeO2 catalysts have made certain progress in CVOC destruction, there are many issues that should be further solved and clarified; for instance, the role of VOx and/or the synergistic effect of VOx/CeO2 in the production of chlorinated byproducts requires an in-depth study, as well as the effect of water vapor on catalytic performance and chlorinated byproduct distributions over VOx/CeO2 catalysts. It was reported that CeO2 material with a hollow nanosphere structure (CeO2–HS) had abundant oxygen vacancies and a large surface area, which is favorable for VOC oxidation [17]. Meanwhile, CeO2–HS with high stability and water resistance is a potential carrier for fabricating effective CVOC oxidation materials.

Herein, hollow nanosphere–like VOx/CeO2 catalysts with well–dispersed VOx species, abundant surface acid sites, and outstanding low–temperature reducibility were fabricated via a simple wetness impregnation process. The structural properties, reducibility, oxygen mobility, and acidity of prepared materials were deeply analyzed using various techniques such as field emission scanning electron microscopy (FE–SEM), high–resolution transmission electron microscopy (HR–TEM), the hydrogen temperature programmed reduction (H2–TPR), X–ray photoelectron spectroscopy (XPS), the temperature programmed desorption of O2 (O2–TPD) and the temperature programmed desorption of NH3 (NH3–TPD). Catalytic activity and stability, yields of CO and CO2, and the distribution of chlorinated byproducts over prepared materials were studied in detail. In particular, the influence of water vapor on catalytic performance and the vital factors inhibiting the generation of chlorinated byproducts were explored. Accordingly, the destruction mechanism of 1,2–DCE over VOx/CeO2 samples was further proposed.

2. Materials and Methods

2.1. Catalyst Preparation

Hollow nanosphere–like CeO2 was prepared using a hydrothermal route [18]. Specifically, 5.0 g of Ce(NO3)3·6H2O and 5 mL of CH3COOH (36 wt.%) were added into 150 mL of a mixed solution (ethylene glycol (100 mL) and deionized water (50 mL)) under vigorous stirring for 0.5 h. After that, 4.0 g of polyvinyl pyrrolidone (PVP; K–30) was added, with continued stirring at 60 °C for 1 h. The solution was then placed into a 200 mL Teflon–lined stainless–steel autoclave and kept at 180 °C for 6 h. Finally, the precursor was centrifuged, washed, dried, and calcined at 500 °C for 4 h in air.

Hollow nanosphere–like VOx/CeO2 materials were prepared via a wetness impregnation approach. Typically, 3.0 g of the above–prepared CeO2 was dispersed into 150 mL of deionized water, and an appropriate amount of NH4VO3 with the molar ratio of nNH4VO3:nCeO2 = 0.025:1, 0.05:1, 0.1:1, or 0.2:1 was then mixed in the above solution. Subsequently, the corresponding molar amount of oxalic acid with the molar ratio of nNH4VO3:noxalic acid = 1:2 was added to the suspension of CeO2. After that, the solution was vigorously stirred at 80 °C until excess deionized water was completely evaporated. The final products were treated under the same conditions as for CeO2 preparation. The obtained materials were designated as V0.025Ce, V0.05Ce, V0.1Ce, and V0.2Ce, respectively.

In comparison, VOx was also prepared using a hydrothermal method [19]. The prepared powder was also treated as in the CeO2 preparation process to obtain the bulk
VO$_x$. Additionally, commercial CeO$_2$ (Aladdin Reagent Co., Ltd., Shanghai, China, 99.5%) named CeO$_2$–C was also investigated for 1,2–DCE oxidation.

2.2. Catalyst Characterizations

The prepared materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT–IR), low–temperature N$_2$ adsorption/desorption, FE–SEM, HR–TEM, XPS, H$_2$–TPR, O$_2$–TPD, NH$_3$–TPD, FT–IR spectra of NH$_3$ adsorption (NH$_3$–IR), and in situ diffuse reflectance infrared spectroscopy (DRIFTS). The detailed information can be found in the Supplementary Materials.

2.3. Catalytic Activity

The 1,2–DCE destruction experiments were employed in a continuous–flow fixed–bed quartz tube reactor with 10.0 mm inner diameter. Typically, the prepared catalyst (500 mg; 40–60 mesh) was loaded into the isothermal region of the tube reactor. The reactant mixture containing 1000 ppm of 1,2–DCE, 79% N$_2$, and 21% O$_2$, with a total flow rate of 250 mL min$^{-1}$ (gas hourly space velocity (GHSV) = 30,000 mL g$^{-1}$ h$^{-1}$) was obtained through the reactor. The concentrations of 1,2–DCE, chlorinated byproducts, and CO$_x$ (CO and CO$_2$) were measured using an online gas chromatograph (GC9890, China) with Electron Capture Detector (ECD). Furthermore, an online Cl$_2$ and HCl detector (PN–2000, China) was used to analyze the concentrations of Cl$_2$ and HCl.

The 1,2–DCE conversion ($X_{1,2}$–DCE) was calculated using Equation (1).

$$X_{1,2}$–DCE = \frac{C_{in} - C_{out}}{C_{in}} \times 100\%,$$  

where $C_{in}$ and $C_{out}$ refer to the inlet and outlet 1,2–DCE concentrations, respectively.

The CO and CO$_2$ yields ($Y_{CO}$ and $Y_{CO2}$) were calculated using Equations (2) and (3), respectively:

$$Y_{CO} = \frac{C_{CO}}{2C_{in}} \times 100\%,$$

$$Y_{CO2} = \frac{C_{CO2}}{2C_{in}} \times 100\%,$$

where $C_{CO}$ and $C_{CO2}$ refer to the outlet concentrations of CO and CO$_2$, respectively.

The stability of the prepared catalysts was evaluated at different temperatures corresponding to 90% conversion of 1,2–DCE under the same conditions as the activity experiments. Moreover, the stability of the highest–activity V$_{0.05}$Ce sample for 1,2–DCE oxidation was studied in the absence and presence of water vapor. Different concentrations of water vapor (1, 2, and 5 vol.%) were injected into the reactant mixture containing 1000 ppm of 1,2–DCE using an automatic sample injector.

3. Results

3.1. Structural and Textural Properties

Figure 1a and Figure S1 (Supplementary Materials) exhibit the XRD patterns of prepared catalysts. The peaks located at 28.4°, 33.1°, 47.4°, 56.3°, 59.1°, 69.6°, 76.6°, and 79.2° were attributed to the (111), (200), (220), (311), (222), (400), (331), and (420) crystal planes of CeO$_2$, respectively [20]. The characteristic peaks of VO$_x$ (V$_2$O$_5$) were located at 15.3°, 20.2°, 21.7°, 26.1°, 31.0°, 32.4°, 34.3°, and 47.4° [21]. Notably, no characteristic peaks corresponding to VO$_x$ and CeVO$_4$ species (2θ = 24.0° and 32.5°) could be detected over VO$_x$/CeO$_2$ catalysts, suggesting that VO$_x$ species were highly dispersed on the surface or in the form of a solid solution [15,22]. The position of the main peak of CeO$_2$ (ca. 28.4°) was well maintained over VO$_x$/CeO$_2$ materials, suggesting that VO$_x$ neither altered the CeO$_2$ crystallization nor was incorporated into the CeO$_2$ crystalline phase, forming a solid solution [15,23]. Hence, VO$_x$ species existed in a highly dispersed form.
As shown in Figure 1b, the broad IR peaks over all catalysts between 3500 and 3000 cm\(^{-1}\) corresponded to the stretching vibration of surface hydroxyl groups, while the peaks presented at 1622 cm\(^{-1}\) were indexed as C=O stretching vibration [24]. For CeO\(_2\), the peaks located at wavenumbers lower than 1000 cm\(^{-1}\) were associated with the vibration of Ce–O [25]. For VO\(_x\), the peaks located in the 1100–400 cm\(^{-1}\) region were related to the V–O stretching vibration [26]. The peaks centered at 1045 and 841 cm\(^{-1}\) were consistent with the symmetric stretching vibration of V\(^{5+}\)–O and stretching vibration of O–(V)\(_3\), respectively. It can be observed that V\(^{5+}\)–O vibration located at 1045 cm\(^{-1}\) was detected over VO\(_x\) and VO\(_x\)/CeO\(_2\) catalysts [26]. The two peaks over VO\(_x\)/CeO\(_2\) catalysts at 715 and 841 cm\(^{-1}\) could be regarded as the V–O–Ce modes [27]. In addition, the symmetric and antisymmetric stretching vibration of V–O–V could be detected in the 700–400 cm\(^{-1}\) range over VO\(_x\) and VO\(_x\)/CeO\(_2\) catalysts [26].

FE-SEM images of prepared catalysts are shown in Figure 2a–x. CeO\(_2\) exhibited a regular nanosphere–like morphology with different diameters (ca. 245–600 nm), as displayed in Figure 2a,b. The V\(_{0.05}\)Ce catalyst was made up of nanospheres with a diameter of ca. 100–200 nm (Figure 2e,f). Compared with the V\(_{0.05}\)Ce catalyst, V\(_{0.025}\)Ce (Figure 2c,d), V\(_{0.1}\)Ce (Figure 2g,h) and V\(_{0.2}\)Ce catalysts (Figure 2i,j) consisted of larger nanosphere–like particles with a diameter of ca. 300–400 nm. Moreover, VO\(_x\) showed an irregular nanosphere–like morphology with size varying from ca. 200 to 300 nm (Figure 2k,l). Figure 2m–x and Figure S2 (Supplementary Materials) exhibit the transmission electron microscope (TEM) and high-angle annular dark-field imaging in scanning transmission electron microscopy (HAADF–STEM) images of prepared catalysts. It was revealed that CeO\(_2\) and VO\(_x\)/CeO\(_2\) catalysts possessed a well–defined hollow nanosphere–like structure with diameter in the range of ca. 200–400 nm, in agreement with the FE–SEM results. The results exhibited that VO\(_x\) species were highly dispersed and did not change CeO\(_2\) morphology [28]. VO\(_x\) had an irregular nanosphere–like morphology with a lattice spacing of 0.34 nm, ascribed to the (101) plane of V\(_2\)O\(_5\) (Figure 2w,x) [29]. The measured lattice distances of 0.31, 0.27, and 0.19 nm were ascribed to the (111), (200), and (220) lattice planes of CeO\(_2\) nanospheres (JCPDS #34–0394), respectively (Figure 2n). Figure 2p,r,t and Figure S2 (Supplementary Materials) show that V\(_{0.025}\)Ce, V\(_{0.05}\)Ce, V\(_{0.1}\)Ce, and CeO\(_2–\)C catalysts possessed the (200) and (111) lattice planes of CeO\(_2\) with lattice spacings of 0.27 and 0.31 nm, respectively. For V\(_{0.2}\)Ce, the lattice spacings of 0.27 and 0.19 nm were associated with the (200) and (220) crystal planes of CeO\(_2\), respectively (Figure 2v). No VO\(_x\) species on the VO\(_x\)/CeO\(_2\) catalysts could be detected in HAADF–STEM images (Figure 2p,r,t,v), which could be attributed to the rough surface of CeO\(_2\) or the generation of VO\(_x\) films from the layer structure [15].
Figure 2. Field emission scanning electron microscopy (FE–SEM) images of (a,b) CeO$_2$, (c,d) V$_{0.025}$Ce, (e,f) V$_{0.05}$Ce, (g,h) V$_{0.1}$Ce, (i,j) V$_{0.2}$Ce, and (k,l) VO$_x$; high-resolution transmission electron microscopy (HR–TEM) patterns of (m,n) CeO$_2$, (o,p) V$_{0.025}$Ce, (q,r) V$_{0.05}$Ce, (s,t) V$_{0.1}$Ce, (u,v) V$_{0.2}$Ce, and (w,x) VO$_x$.

N$_2$ adsorption/desorption isotherms of the prepared materials are presented in Figure 3. CeO$_2$ and VO$_x$/CeO$_2$ catalysts showed a type II isotherm curve with H3–type hysteresis loops at the relative pressure ($P/P_0$) range of 0.7–1.0 (Figure 3a), indicating that meso- and macropore structures co–existed in CeO$_2$ and VO$_x$/CeO$_2$ catalysts [30,31]. VO$_x$ exhibited a type III isotherm curve with H3–type hysteresis loops ($P/P_0$ = 0.9–1.0), illustrating that the presence of textural pores facilitated the filling of interparticle spaces. It was demonstrated that the pore size distribution of prepared catalysts was centered at approximately 25.4, 11.7, 19.4, 37.6, 27.0, and 17.4 nm, respectively (Figure 3b), indicating that all catalysts possessed a large number of mesopores. The pore size distribution of materials in the 100–500 nm region could be attributed to the existence of a macroporous structure. The specific surface area, average pore diameter, and pore volume of materials are documented in Table 1, and the average pore diameter followed the order of VO$_x$ (63.1 nm) > V$_{0.1}$Ce (30.1 nm) > V$_{0.025}$Ce (18.0 nm) > V$_{0.2}$Ce (14.8 nm) > CeO$_2$ (13.2 nm) > V$_{0.05}$Ce (10.7 nm). The specific surface area of CeO$_2$ and VO$_x$/CeO$_2$ was much higher than that of VO$_x$, which obeyed the sequence of CeO$_2$ (110.9 m$^2$·g$^{-1}$) > V$_{0.025}$Ce (101.0 m$^2$·g$^{-1}$) > V$_{0.05}$Ce (98.6 m$^2$·g$^{-1}$) > V$_{0.1}$Ce (93.4 m$^2$·g$^{-1}$) > V$_{0.2}$Ce (76.1 m$^2$·g$^{-1}$) >> VO$_x$ (11.3 m$^2$·g$^{-1}$). It was revealed that the specific surface area of VO$_x$/CeO$_2$ catalysts decreased along with the increase in VO$_x$ loading because of the partial blockage of CeO$_2$ pores by VO$_x$ species [28].
Figure 3. (a) Nitrogen adsorption/desorption isotherms and (b) pore size distribution of prepared catalysts.

Table 1. Textural properties and catalytic performance of prepared catalysts.

| Sample | \(S_{BET}^a\) (m\(^2\)/g) | \(V_t^b\) \((\times 10^{-2}, \text{ cm}^3/\text{g})\) | \(D_p^c\) (nm) | \(T_{50}^d\) (°C) | \(T_{90}^d\) (°C) |
|--------|-----------------|-----------------|----------------|----------------|----------------|
| CeO\(_2\) | 110.9 | 36.54 | 13.2 | 328 | 381 |
| V\(_{0.025}\)Ce | 101.0 | 45.46 | 18.0 | 299 | 367 |
| V\(_{0.05}\)Ce | 98.6 | 26.43 | 10.7 | 281 | 347 |
| V\(_{0.1}\)Ce | 93.4 | 30.46 | 10.7 | 281 | 347 |
| V\(_{0.2}\)Ce | 76.1 | 28.18 | 14.8 | 307 | 413 |
| VO\(_x\) | 11.3 | 17.92 | / | / | / |

\(a\) Specific surface area obtained at \(P/P_0 = 0.05–0.30\) by the Brunauer–Emmett–Teller (BET) method; \(b\) total pore volume estimated at \(P/P_0 = 0.99\); \(c\) pore diameter calculated from the \(N_2\) desorption branch by the Barrett–Joyner–Halenda (BJH) method; \(d\) temperatures at which 50% and 90% conversion of 1,2-dichloroethane (1,2-DCE) occurred.

3.2. Surface Composition and Element Status

The surface elemental composition and oxidation status of prepared materials were characterized through XPS, as illustrated in Figure 4 and Table 2. The C 1s, O 1s, V 2p, and Ce 3d peaks of prepared materials could be detected, as shown in Figure 4a. As shown in Figure 4b, O 1s XPS spectra were classified into three sub-peaks centered at 529.3–529.9, 531.5–531.9, and 533.0–533.4 eV, which were attributed to lattice oxygen (\(O\alpha; O_2^-\)), surface oxygen species adsorbed on oxygen vacancies (\(O\beta; O_2^-\), \(O^-\), \(OH^-\), and \(CO_3^{2-}\)), and carbonates and/or water (\(O\gamma\)), respectively [32,33]. The \(O\beta/(O\alpha + O\beta)\) ratios of prepared catalysts followed the sequence of V\(_{0.05}\)Ce (0.61) > V\(_{0.1}\)Ce (0.57) > V\(_{0.025}\)Ce (0.54) > CeO\(_2\) (0.48) > V\(_{0.2}\)Ce (0.46) > VO\(_x\) (0.45) (Table 2), suggesting that the V\(_{0.05}\)Ce catalyst possessed the largest number of surface oxygen species, facilitating the destruction of 1,2-DCE [5]. Figure 4c shows the V 2p XPS spectra of VO\(_x\) and VO\(_x\)/CeO\(_2\) catalysts. Only V\(^{5+}\) species could be detected over VO\(_x\), corresponding to the presence of the V\(_2\)O\(_5\) phase. The peaks at 517.1–517.4 and 515.0–515.4 eV represented V\(^{5+}\) and V\(^{4+}\), respectively, suggesting that V\(^{5+}\) and V\(^{4+}\) species co-existed on VO\(_x\)/CeO\(_2\) catalysts [34]. Moreover, the peak–fitting results demonstrated that VO\(_x\)/CeO\(_2\) catalysts were mainly composed of V\(^{5+}\) species corresponding to the V\(_2\)O\(_5\) phase [21,34]. As shown in Table 2, the ratios of V\(^{5+}/(V^{4+} + V^{5+})\) for V\(_{0.025}\)Ce, V\(_{0.05}\)Ce, V\(_{0.1}\)Ce, and V\(_{0.2}\)Ce catalysts were 0.84, 0.87, 0.85, and 0.83, respectively, indicating that the V\(_{0.05}\)Ce material possessed high ratios of V\(^{5+}/(V^{4+} + V^{5+})\), favorable for 1,2-DCE oxidation. The Ce 3d XPS spectra were split into eight sub-peaks, as depicted in Figure 4d. Six peaks of Ce 3d labeled by V, V', V'', U, U', and U'' were assigned to Ce\(^{4+}\) species and the other two peaks labeled by U' and V' belonged to Ce\(^{3+}\) species [34]. The Ce\(^{3+}/(Ce^{3+} + Ce^{4+})\) ratios of prepared catalysts were calculated according to the corresponding peak areas, as documented in Table 2. Generally,
surface oxygen vacancies were formed by the removal of lattice oxygen species \((O_\alpha)\) in \(\text{CeO}_2\), causing the formation of \(\text{Ce}^{3+}\) species \((\text{Ce}^{4+} + e^- \rightarrow \text{Ce}^{3+} + \Diamond)\) [35]. According to Table 2, \(\text{Ce}^{3+}/(\text{Ce}^{3+} + \text{Ce}^{4+})\) ratios of prepared materials followed the order of \(\text{V}_{0.05}\text{Ce} (0.19) > \text{V}_{0.1}\text{Ce} (0.18) > \text{V}_{0.025}\text{Ce} (0.17) > \text{CeO}_2(0.15) > \text{V}_{0.2}\text{Ce} (0.13)\), suggesting that \(\text{V}_{0.05}\text{Ce}\) owned the largest amount of \(\text{Ce}^{3+}\) species. It was reported that a large amount of \(\text{Ce}^{3+}\) species contributes to the formation of oxygen vacancies, which can effectively accelerate the mobility of active oxygen species and consequently promote the catalytic activity [35]. This result also suggested that \(\text{VO}_x\) species interaction with \(\text{CeO}_2\) was strongest over \(\text{V}_{0.05}\text{Ce}\), leading to the formation of more low-valence \(\text{Ce}^{3+}\) species [28].

![Figure 4](image-url)

**Figure 4.** X-ray photoelectron spectroscopy (XPS) spectra of prepared catalysts: (a) C 1s, (b) O 1s, (c) V 2p, and (d) Ce 3d.

**Table 2.** XPS results of prepared catalysts.

| Sample     | Binding Energy (eV) | Molar Ratio    |
|------------|---------------------|----------------|
|            | \(\text{V}^{4+}\) | \(\text{V}^{5+}\) | \(O_\alpha\)^{a} | \(O_\beta\)^{b} | \(O_\gamma\)^{c} | \(O_\beta/(O_\alpha + O_\beta)\) | \(V_\gamma/(V_\gamma + V_\gamma)\) | \(\text{Ce}^{3+}/(\text{Ce}^{3+} + \text{Ce}^{4+})\) |
| CeO\(_2\)  | /                   | /              | 529.5           | 531.5           | 533.2           | 0.48                        | /                           | 0.15                          |
| \(\text{V}_{0.025}\text{Ce}\) | 515.2             | 517.1          | 529.3           | 531.7           | 533.0           | 0.54                        | 0.84                        | 0.17                          |
| \(\text{V}_{0.05}\text{Ce}\)  | 515.4             | 517.2          | 529.5           | 531.6           | 533.1           | 0.61                        | 0.87                        | 0.19                          |
| \(\text{V}_{0.1}\text{Ce}\)   | 515.0             | 517.2          | 529.4           | 531.9           | 533.4           | 0.57                        | 0.85                        | 0.18                          |
| \(\text{V}_{0.2}\text{Ce}\)   | 515.4             | 517.4          | 529.9           | 531.8           | 533.3           | 0.46                        | 0.83                        | 0.13                          |
| \(\text{VO}_x\)           | /                 | 517.2          | 529.6           | 531.9           | 533.3           | 0.45                        | /                           | /                             |

\(^{a}\) Lattice oxygen species; \(^{b}\) surface oxygen species; \(^{c}\) adsorbed oxygen species from hydroxyl and adsorbed water on the surface.
3.3. Reducibility and Oxygen Species Mobility

An H\textsubscript{2}–TPR experiment was employed to test the redox properties of all samples, as depicted in Figure 5a. For CeO\textsubscript{2}, the reduction peaks presented at ca. 524 and 785 °C were respectively associated with the reduction of surface Ce\textsuperscript{4+} to Ce\textsuperscript{3+} and bulk CeO\textsubscript{2} [28]. The introduction of VO\textsubscript{x} could effectively enhance the redox capacity of CeO\textsubscript{2}. For VO\textsubscript{x}/CeO\textsubscript{2} catalysts, the reduction peaks located at 518, 500, 507, and 526 °C were indexed to the reduction of VO\textsubscript{x} species (V\textsuperscript{5+} → V\textsuperscript{4+}), while the peaks at 436, 454, 466, and 492 °C were indexed to the reduction of surface CeO\textsubscript{2} (Ce\textsuperscript{4+} → Ce\textsuperscript{3+}) [22,28], indicating the co–existence of Ce\textsuperscript{4+}/Ce\textsuperscript{3+} and V\textsuperscript{5+}/V\textsuperscript{4+} species, in accordance with the XPS results (Figure 4). It is illustrated that the reduction temperature of VO\textsubscript{x} species in VO\textsubscript{x}/CeO\textsubscript{2} (except V\textsubscript{0.025}Ce) catalysts apparently shifted to higher temperatures along with the increase in VO\textsubscript{x} loading due to the CeO\textsubscript{2} interaction with VO\textsubscript{x} species affecting the redox performance of surface CeO\textsubscript{2} [22]. The total H\textsubscript{2} consumption of prepared materials below 600 °C followed the order of V\textsubscript{0.05}Ce (9.86 mmol·g\textsuperscript{-1}) > V\textsubscript{0.1}Ce (9.53 mmol·g\textsuperscript{-1}) > V\textsubscript{0.025}Ce (8.64 mmol·g\textsuperscript{-1}) > CeO\textsubscript{2} (8.02 mmol·g\textsuperscript{-1}) > V\textsubscript{0.2}Ce (7.63 mmol·g\textsuperscript{-1}), suggesting that V\textsubscript{0.05}Ce possessed superior reducibility (Table 3). Additionally, the initial H\textsubscript{2} consumption (less than 25% H\textsubscript{2} consumption for the first reduction peak) rate was also employed to evaluate the low-temperature reducibility of all catalysts [24]. Figure 5b shows that the initial H\textsubscript{2} consumption rates of the catalysts followed the sequence of V\textsubscript{0.05}Ce > V\textsubscript{0.1}Ce > V\textsubscript{0.025}Ce > CeO\textsubscript{2} > V\textsubscript{0.2}Ce, suggesting that V\textsubscript{0.05}Ce had superior low-temperature reducibility.

The O\textsubscript{2}–TPD results of prepared materials are displayed in Figure 6. Generally, the peaks located at <250, 250–550, and 550–750 °C could be regarded as the physically adsorbed oxygen species, chemically adsorbed oxygen (O\textsuperscript{-} and O\textsuperscript{2-}) species, weak surface lattice oxygen (O\textsuperscript{2-}) species; total area of NH\textsubscript{3} desorption peaks.

---

**Table 3.** H\textsubscript{2}–TPR, O\textsubscript{2}–TPD, and NH\textsubscript{3}–TPD results of prepared catalysts.

| Sample   | H\textsubscript{2} Consumption (mmol·g\textsuperscript{-1}) | O\textsubscript{2} Desorption Peaks | NH\textsubscript{3} Desorption Peaks |
|----------|------------------------------------------------------------|------------------------------------|-------------------------------------|
|          | \(P^a\)                                                    | \(P_1^b\)                          | \(P_2^c\)                          | \(P_3^d\)                          | \(P^e\)                          |
| CeO\textsubscript{2} | 8.02                                                       | 25,200                             | 7190                               | 5029                               | 231.78                           |
| V\textsubscript{0.025}Ce | 8.64                                                       | 40,000                             | 9423                               | 11,700                             | 250.55                           |
| V\textsubscript{0.05}Ce  | 9.86                                                       | 30,700                             | 13,700                             | 26,900                             | 257.03                           |
| V\textsubscript{0.1}Ce   | 9.53                                                       | 27,800                             | 12,256                             | 56,600                             | 244.76                           |
| V\textsubscript{0.2}Ce   | 7.63                                                       | 8536                                | 2551                               | 59,100                             | 223.09                           |
| VO\textsubscript{x}      | /                                                          | /                                  | /                                  | 26,700                             | 83.87                            |

\(a\) Hydrogen consumption at 100–600 °C; \(b\) areas of physically adsorbed oxygen species; \(c\) chemically adsorbed oxygen (O\textsuperscript{-} and O\textsuperscript{2-}) species; \(d\) weak surface lattice oxygen (O\textsuperscript{2-}) species; \(e\) total area of NH\textsubscript{3} desorption peaks.
surface lattice oxygen (O\(^2\)) (bulk lattice oxygen at above 750 °C), respectively [36,37]. For CeO\(_2\) and VO\(_x\)/CeO\(_2\) catalysts, the desorption peaks located at 169, 160, 187, 193, and 176 °C were assigned to the physically adsorbed oxygen (O\(^-\) and O\(_2\)\(^-\)) species. The desorption peaks in the region of 250–550 °C corresponded to the chemically adsorbed oxygen species. Additionally, the desorption peaks located at 642, 747, 706, 644, and 565 °C could be associated with the weak surface lattice oxygen (O\(^2\)) [16,38]. Generally, the lattice oxygen diffused from bulk to surface, which further promoted the reduction of V\(^{5+}\) to V\(^{4+}\) and Ce\(^{4+}\) to Ce\(^{3+}\) [38]. For the VO\(_x\) catalyst, the desorption peaks presented at 629 and 684 °C were consistent with the weak surface lattice oxygen (O\(^2\)). As displayed in Table 3, the desorption amount of chemically adsorbed oxygen (O\(^-\) and O\(_2\)\(^-\)) species followed the sequence of \(\text{V}_{0.05}\)\text{Ce} > \(\text{V}_{0.1}\)\text{Ce} > \(\text{V}_{0.025}\)\text{Ce} > CeO\(_2\) > \(\text{V}_{0.2}\)\text{Ce}, suggesting that \(\text{V}_{0.05}\)\text{Ce} possessed excellent chemically adsorbed oxygen (O\(^-\) and O\(_2\)\(^-\)) species mobility, favorable for 1,2-DCE oxidation.

Figure 6. Temperature programmed desorption of O\(_2\) (O\(_2\)-TPD) profiles of prepared catalysts.

3.4. Surface Acidity

The acidity properties of the prepared catalysts were investigated through NH\(_3\)-TPD, as displayed in Figure 7a. Generally, the NH\(_3\) desorption spectra of prepared catalysts were divided into three peaks corresponding to weak acidity (<200 °C), moderate acidity (200–400 °C), and strong acidity (>400 °C) [24]. CeO\(_2\) displayed two peaks presented at 198 and 365 °C, which were related to the weak and moderate acid sites, respectively. The broad peaks over \(\text{V}_{0.05}\)\text{Ce} (232 °C) and \(\text{V}_{0.1}\)\text{Ce} (246 °C) catalysts were attributed to the moderate acid sites. Similarly, \(\text{V}_{0.025}\)\text{Ce}, \(\text{V}_{0.2}\)\text{Ce}, and VO\(_x\) catalysts also exhibited wide peaks at 160, 187, and 157 °C, which corresponded to the weak acid sites. The total NH\(_3\) desorption amount of the prepared catalysts followed the order of \(\text{V}_{0.05}\)\text{Ce} > \(\text{V}_{0.1}\)\text{Ce} > \(\text{V}_{0.025}\)\text{Ce} > CeO\(_2\) > \(\text{V}_{0.2}\)\text{Ce} > VO\(_x\) (Table 3), which revealed that the opportune introduction of VO\(_x\) could enhance the total acidity of CeO\(_2\). \(\text{V}_{0.05}\)\text{Ce} possessed the largest number of acid sites, crucial for promoting the adsorption and activation of 1,2-DCE molecules [39].
An NH$_3$–IR analysis of prepared catalysts was further conducted to characterize the acid site types, as shown in Figure 7b. Generally, the bands in the regions of 1500–1400 and 1690–1660 cm$^{-1}$ were associated with the symmetric and antisymmetric stretching vibrations of NH$_4^+$ species adsorbed on Brønsted acid (designated as B) sites [40,41]. The bands at 1300–1200 and 1600–1540 cm$^{-1}$ were related to the symmetric and antisymmetric stretching vibration of NH$_3$ adsorbed on Lewis acid (designated as L) sites [30,40]. For CeO$_2$, the band located at 1429 cm$^{-1}$ was related to the B acid sites, and the bands centered at 1279 and 1551 cm$^{-1}$ could be connected to the L acid sites. The bands at 1296, 1541, and 1599 cm$^{-1}$ associated with L acid sites over V$_{0.025}$Ce could be detected. For V$_{0.05}$Ce, the band located at 1437 cm$^{-1}$ corresponded to the B acid sites, while the bands centered at 1541 and 1599 cm$^{-1}$ corresponded to the L acid sites. Compared with CeO$_2$, more B and L acid sites could be observed over V$_{0.05}$Ce. For V$_{0.1}$Ce and V$_{0.2}$Ce, the bands at 1404, 1427, and 1672 cm$^{-1}$ could be ascribed to the B acid sites. However, no L acid sites could be detected over V$_{0.1}$Ce and V$_{0.2}$Ce catalysts, indicating that more L acid sites were occupied with the increase in V loading [30]. The bands at 1404 and 1427 cm$^{-1}$ over VO$_3$ corresponded to the B acid sites.

4. Discussion

4.1. Catalytic Activity and Stability

All prepared materials were evaluated in 1,2-DCE destruction, as exhibited in Figure 8a. According to $T_{90}$ (the temperature for 90% conversion of 1,2–DCE), the activity sequence of synthesized materials was in the order of V$_{0.05}$Ce (347 °C) > V$_{0.1}$Ce (356 °C) > V$_{0.025}$Ce (367 °C) > CeO$_2$ (381 °C) > V$_{0.2}$Ce (413 °C) > CeO$_2$–C (> 450 °C) >> VO$_3$. The catalytic activity of CeO$_2$–C was significantly lower than that of hollow nanosphere–like CeO$_2$, indicating that the designed hollow nanosphere structure for CeO$_2$ had an advantage in 1,2–DCE degradation. Furthermore, it could be found that the activity of all catalysts increased slowly (<240 °C) and then enhanced rapidly with the increase in temperature as 1,2–DCE was firstly adsorbed at relatively low temperature and then activated with increasing temperature. Compared with CeO$_2$, the activity of V$_{0.025}$Ce, V$_{0.05}$Ce, and V$_{0.1}$Ce catalysts was obviously improved because the strong interaction of VO$_x$ species with CeO$_2$ could promote the efficient removal of Cl species on the catalyst surface [16]. On the other hand, the catalytic activity of V$_{0.2}$Ce was lower than that of CeO$_2$, which was related to the excessive VO$_x$ content covering some oxygen vacancies or active sites of CeO$_2$ and inhibiting the removal of Cl species [42]. According to the XPS results in Figure 4d, V$_{0.05}$Ce possessed the highest amount of Ce$^{3+}$, indicating the presence of more oxygen vacancies in CeO$_2$, which could be advantageous to improving the mobility of active oxygen species and further promoting the oxidation of 1,2–DCE. According to H$_2$–TPR and O$_2$/NH$_3$–TPD results (Figures 5–7), it was demonstrated that V$_{0.05}$Ce possessed superior low–temperature
reducibility, excellent chemically adsorbed oxygen (O$^-$ and O$_2^-$) species mobility, and a large number of acid sites, facilitating the adsorption and oxidation of 1,2-DCE. Moreover, the strong interaction of VO$_x$ species with CeO$_2$ could also efficiently enhance the activity of V$_{0.05}$Ce.

The yields of CO and CO$_2$ as a function of temperature were analyzed in Figure 8b,c. It was revealed that the yields of CO and CO$_2$ over CeO$_2$ and CeO$_2$–C catalysts increased with increasing temperature; however, much different behaviors could be found over VO$_x$/CeO$_2$. The yields of CO and CO$_2$ over CeO$_2$ only had a tiny gap and could reach approximately 50% at 450 °C, whereas the yields of CO (46%) and CO$_2$ (35%) over CeO$_2$–C were lower than that of hollow nanosphere–like CeO$_2$. It could be found that the yield of CO significantly increased when VO$_x$ species were loaded on the surface of CeO$_2$. In addition, the yields of CO and CO$_2$ over V$_{0.025}$Ce, V$_{0.1}$Ce, and V$_{0.2}$Ce catalysts increased with increasing temperature. However, the yield of CO over V$_{0.05}$Ce catalyst initially increased and then decreased with increasing temperature, attributed to the further oxidation of CO (>360 °C). It was reported that the final product mainly containing carbon species is CO over VO$_x$/CeO$_2$ catalysts during 1,2-DCE destruction, and the high yield of CO is presumed to be connected to the surface lattice oxygen of VO$_x$ [15].

Reaction stability is one of the most important indices to evaluate the application prospect of a catalyst. The stabilities of V$_{0.05}$Ce, CeO$_2$, and VO$_x$ were studied at approximately $T_{90}$ temperatures, as shown in Figure 8d. The V$_{0.05}$Ce catalyst possessed outstanding catalytic stability and resistance to chlorine poisoning, maintaining approximately 94% of 1,2-DCE conversion at 347 °C for 32 h. Similarly, the catalytic stability of CeO$_2$ was maintained at approximately 92% at 384 °C in 32 h. However, the conversion of 1,2-DCE over VO$_x$ decreased distinctly from 93% to 83% in the first 27 h, which could be ascribed to the attack of Cl species, leading to the loss of active sites.
4.2. Chlorinated Intermediate Species Distribution and Proposed Reaction Mechanism

CO₂, CO, HCl, and Cl₂ are the ideal products for CVOC destruction; however, chlorinated byproducts are usually inevitably formed. In this work, 1,1,2–trichloroethane (C₂H₃Cl₃), vinyl chloride (C₂H₃Cl), trichloroethylene (C₂HCl₃), dichloromethane (CH₂Cl₂), trichloromethane (CHCl₃), and perchloromethane (CCl₄) were observed during the oxidation of 1,2–DCE. CCl₄, CHCl₃, C₂HCl₃, and C₂H₃Cl₃ as primary chlorinated byproducts collected at different reaction temperatures. Figure 9 presents the remarkable differences in the concentration of chlorinated byproducts detected over all catalysts. The concentrations of CCl₄, CHCl₃, C₂HCl₃, and C₂H₃Cl₃ over VOₓ/CeO₂ catalysts were obviously lower than those over CeO₂ and VOₓ. Additionally, it was observed that the concentrations of chlorinated byproducts over CeO₂ and VOₓ/CeO₂ catalysts firstly increased and then decreased with increasing test temperature (>250 °C). The appropriate introduction of VOₓ species (V₀.025Ce, V₀.05Ce, and V₀.1Ce) in CeO₂ was advantageous for the catalytic activity of CeO₂ and remarkably inhibited the formation of chlorinated byproducts, ascribed to the strong interaction between VOₓ species and CeO₂ and the superior removal ability of Cl species during 1,2-DCE oxidation [30,43].

![Figure 9](image_url)

**Figure 9.** Chlorinated byproducts distribution in 1,2–DCE destruction over prepared catalysts: (a) CHCl₃, (b) CCl₄, (c) C₂HCl₃, and (d) C₂H₃Cl₃.

The reaction process of 1,2-DCE over prepared materials was deeply studied using an in situ DRIFTS experiment, as displayed in Figure 10. The broad bands presented at 3100–4000 cm⁻¹ were indexed to the stretching vibrations of hydrogen–bonded OH [15,44]. Additionally, no bands corresponding to VOₓ species were detected over VOₓ/CeO₂ catalysts because of the highly dispersed VOₓ species on the CeO₂ surface [44].
Figure 10. In situ diffuse reflectance infrared spectroscopy (DRIFTS) of 1,2-DCE catalytic oxidation:
(a) CeO$_2$, (b) V$_{0.025}$Ce, (c) V$_{0.05}$Ce, (d) V$_{0.1}$Ce, (e) V$_{0.2}$Ce, and (f) VO$_x$.

The bands presented at 2932–2933 and 2837–2843 cm$^{-1}$ attributed to the asymmetric and symmetric stretching of methyl (CH$_3$) could be observed over CeO$_2$ and V$_{0.025}$Ce, respectively, which was attributed to the generation of CH$_3$CHO and CH$_3$COOH intermediates during the 1,2-DCE oxidation process [45]. On the other hand, no bands could be detected over the V$_{0.05}$Ce catalyst in the above wavenumber range. The weak bands located at 3036–3032 cm$^{-1}$ were detected over V$_{0.1}$Ce (>150 $^\circ$C) and V$_{0.2}$Ce (>180 $^\circ$C) catalysts, which corresponded with the asymmetric stretching of methylene species (–CH$_2$–) [15,45]. VO$_x$ exhibited two weak bands at 3064 and 2931 cm$^{-1}$ corresponding to antisymmetric stretching of methylene species and antisymmetric stretching of methyl (CH$_2$–), respectively [45]. Generally, the vibration of –CH– stretching ($\nu$(CH), such as CH$_2$– and CH$_3$– groups) is related to the adsorption of 1,2-DCE on the catalyst surface [46]. The bands present between 2400 and 2300 cm$^{-1}$ were associated with CO$_2$ adsorption, while the bands located in the 2300–2000 cm$^{-1}$ region were indexed to CO adsorption [15,43]. As shown in Figure 10b,c, no bands corresponding to adsorbed CO$_2$ were detected over V$_{0.025}$Ce and
V_{0.05}Ce catalysts, and the bands corresponding to adsorbed CO could not be observed in all catalysts. The bands at 1700–1200 cm\(^{-1}\) could be classified as the vibration of surface formates, carbonate species, and hydrocarbons, which were associated with the formation of \(\text{CO}_2\) and CO during 1,2–DCE oxidation [24].

For all catalysts, the bands present at 1666–1610 cm\(^{-1}\) were considered as C=C stretching vibration [30]. The intensity of the stretching vibration of C=C over \(V_{0.1}\)Ce and \(V_{0.2}\)Ce catalysts gradually decreased with increasing temperature and finally disappeared at relative high temperature. The band deemed as C=O stretching vibration (ca. 1693 cm\(^{-1}\)) could be found over \(\text{VO}_x\) [43]. The characteristic bands appearing at 1587–1532 cm\(^{-1}\) corresponding to the carboxylate \(\bar{\nu} (\text{COO}^-)\) asymmetric stretching of acetate species could be detected over all catalysts [47]. The bands located at 1332–1364 cm\(^{-1}\) over \(\text{VO}_x/\text{CeO}_2\) catalysts could be detected, which were ascribed to the partial oxidized surface species as acetates, maleate species, and formats [47]. The bands presented at 1138–1120 cm\(^{-1}\) were indexed to the vibration stretching of –CH–. The bands at 1284–1292 cm\(^{-1}\) over \(\text{CeO}_2\) and \(V_{0.025}\)Ce catalysts could be attributed to –CH– vibration groups [48]. The band present at 1209 cm\(^{-1}\) could be indexed to phenolate (\(\bar{\nu} (\text{CH})/\bar{\nu} (\text{CO})\)) over \(\text{CeO}_2\). Moreover, the bands over \(\text{VO}_x\) located at 1269, 1234, and 1180 cm\(^{-1}\) could be identified as the formation of –CH– and –CH– groups, suggesting that 1,2–DCE was adsorbed and activated over the catalyst.

Combining the results of in situ DRIFTS and byproduct distribution (Figures 9 and 10), a destruction mechanism of 1,2–DCE over prepared materials was proposed, as shown in Scheme 1. Generally, the catalytic oxidation of chlorinated alkanes (CA) proceeds according to the procedure of CA adsorption \(\rightarrow\) Cl dissociation \(\rightarrow\) C–C/C–Cl cleavage \(\rightarrow\) Cl desorption/accumulation [49,50]. As such, 1,2–DCE is initially adsorbed on the surface of catalysts, which is mainly ascribed with the adsorption and dissociated of Cl bonds on Lewis acid sites (\(\text{V}^{5+}/4^+\) and \(\text{Ce}^{4+}/3^+\)) [15]; The C–Cl (Path 1) and C–C (Path 2) bonds in 1,2–DCE are activated and cleaved, forming chloroethane, vinyl chloride, and chloromethane intermediates. Afterward, the polychlorinated byproducts (\(\text{CHCl}_3,\ \text{CCl}_4,\ \text{C}_2\text{HCl}_3,\ \text{and} \ \text{C}_2\text{H}_2\text{Cl}_3\)) are mainly produced via dehydrochlorination and chlorination. Then, the reaction of dissociative Cl from polychlorinated byproducts and surface hydroxy groups can form HCl, and HCl would be partially oxidized to form \(\text{Cl}_2\) (the Deacon reaction) [15,49]. Additionally, the intermediate acetaldehyde (from the activation of the C–H bond and the transformation of hydrogen species on \(\text{VO}_x\) species [15]) would be easily and rapidly oxidized to oxygenate species (carbonate bidentate) and partially oxidized to maleates, acetates, formates, and so on, which are usually considered the main source for the generation of CO and \(\text{CO}_2\) [24,51]. The above oxygenate species are further oxidized to form the final products (CO, \(\text{CO}_2\), \(\text{Cl}_2\), and HCl).

![Scheme 1. Proposed 1,2-DCE destruction mechanism over prepared catalysts.](image-url)
4.3. Effect of Water Vapor

It is of great importance to study the influence of water vapor on the reaction activity of samples for CVOC destruction. Here, water vapor with different concentrations (1–5 vol.%) was introduced to study the influence of water vapor on the activity of the V$_{0.05}$Ce catalyst in 1,2–DCE oxidation (Figure 11a). The conversion of 1,2–DCE was maintained at approximately 94% without water vapor. Interestingly, when 1, 2, or 5 vol.% of water vapor was injected into the atmosphere, 1,2–DCE conversion over the V$_{0.05}$Ce catalyst increased slightly and was maintained at approximately 97%, 96%, or 95%, respectively, owing to that low concentration of water molecules efficiently removing Cl species from the catalyst surface [52]. However, the promotion effect of water vapor gradually decreased with increasing concentration because of the competitive adsorption or blockage of water molecules on active sites [17,52]. In addition, the catalytic activity of V$_{0.05}$Ce was restored to the initial level when water vapor was removed from the reaction atmosphere, indicating that the V$_{0.05}$Ce catalyst had good water resistance and stability under the conditions with/without water vapor during 1,2–DCE destruction. The effect of water vapor on chlorinated byproduct distribution over the V$_{0.05}$Ce catalyst was further investigated, as exhibited in Figure 10b–d. It was found that the presence of water vapor did not change the type of chlorinated byproducts; however, the yields of CHCl$_3$, CCl$_4$, and C$_2$HCl$_3$ over the V$_{0.05}$Ce catalyst were apparently lower than those in the absence of water vapor because the reactivity of Cl$_2$ was inhibited by water molecules as a hydrogen source [7,49]. Moreover, the yield of chlorinated byproducts decreased with increasing water vapor concentration, suggesting that the presence of water vapor could efficiently inhibit the generation of chlorinated byproducts during 1,2–DCE oxidation.

Figure 11. (a) Effects of water on 1,2–DCE conversion over V$_{0.05}$Ce catalyst; (b) CHCl$_3$, (c) CCl$_4$, and (d) C$_2$HCl$_3$ distribution during the stability test.
4.4. Key Factors Inhibiting the Formation of Chlorinated Intermediate Species

Figure 9 reveals that the yields of chlorinated byproducts (CHCl₃, CCl₄, C₂HCl₃, and C₂H₃Cl₃) over VOₓ/CeO₂ were significantly lower than those of CeO₂ and VOₓ during the 1,2-DCE oxidation process, ascribed to the high surface Cl removal ability of composite catalysts. Feng et al. [24] reported that the CoCrOₓ catalyst can effectively inhibit the yield of chlorinated byproducts during 1,2-DCE destruction, and it possesses better product selectivity than Cr₂O₃ and Co₃O₄ due to the abundant Br and L acid sites and higher acid strength. Therefore, the relationship between chlorinated byproducts yield and total acidity over VOₓ/CeO₂ catalysts was analyzed. As shown in Figure 12a, CHCl₃, CCl₄, C₂HCl₃, and C₂H₃Cl₃ yields versus total acidity maintained linear relationships (R² = 0.996, 0.991, 0.993, and 0.997, respectively). Compared with V₀.025Ce, V₀.1Ce, and V₀.2Ce catalysts, V₀.05Ce possessed higher total acidity and lower chlorinated byproduct (CHCl₃, CCl₄, C₂HCl₃, and C₂H₃Cl₃) yields, indicating that the yields of chlorinated byproducts decreased with increasing total acidity, which apparently reduced the occurrence of the chlorination reaction [53]. In addition, the catalytic activity of VOₓ/CeO₂ catalysts (T₉₀) versus total acidity maintained a good linear relationship (R² = 0.995), as shown in Figure 12b. The above results indicate that the total acidity of catalysts played a vital role in inhibiting the production of chlorinated byproducts. Therefore, it can be reasonably explained that the low chlorinated byproduct yields could be ascribed to the higher total acidity and good synergy between CeO₂ and VOₓ species during the 1,2-DCE oxidation process.

4.5. Characterization of the Used Catalysts

XRD and XPS analyses of the used V₀.05Ce catalyst were carried out, and the results are summarized in Figure 13 and Table S1 (Supplementary Materials). Compared to the fresh V₀.05Ce catalyst, the crystal phase of CeO₂ of the used V₀.05Ce catalyst remained unchanged, indicating that the phase of CeO₂ was not destroyed by the attack of Cl species, further confirming that the V₀.05Ce catalyst possessed excellent resistance to chlorine poisoning (Figure 13a). Figure 13b shows that the lattice oxygen (Oₐ) species abundance of the used V₀.05Ce catalyst was lower than that of the fresh V₀.05Ce catalyst, indicating that a large number of lattice oxygen species were removed, giving rise to the greater formation of Ce³⁺ species (Table S1, Supplementary Materials) [35]. We discovered that the Ce³⁺ species abundance of the used V₀.05Ce catalyst was remarkably higher than that of the fresh V₀.05Ce catalyst, confirming that the lattice oxygen species was removed leading to the greater formation of Ce³⁺ species (Figure 13c and Table S1, Supplementary Materials). Additionally, greater Ce³⁺ species abundance led to greater formation of surface oxygen vacancies, with surface oxygen species being adsorbed onto oxygen vacancies over time, showing that the V₀.05Ce catalyst owned superior catalytic performance (Figure 13b and Table S1, Supplementary Materials). No V⁴⁺ species over the used V₀.05Ce catalyst.
could be detected, suggesting that the V$^{4+}$ species were completely transformed into V$^{5+}$ species ($V^{4+}\rightarrow V^{5+}$), accelerating the oxidation of 1,2–DCE (Figure 13d). According to the above results, it was confirmed that the Ce$^{3+}$ species and surface oxygen ($O_β$) species are important factors in improving the catalytic performance of the V$₀.₀₅$Ce catalyst.

Figure 13. (a) XRD of the used V$₀.₀₅$Ce catalyst; XPS spectra of the used V$₀.₀₅$Ce catalyst: (b) O 1s, (c) Ce 3d, and (d) V 2p.

The Cl 2p spectra of all used catalysts were also further employed to investigate the chlorine deposit over catalysts, as displayed in Figure S5 (Supplementary Materials). The peaks at 198.1–198.5 eV were assigned to HCl and/or Cl$_₂$, while the peaks at 198.1–198.5 eV were ascribed to the adsorption of 1,2–DCE on the catalyst surface [36]. It was revealed that CeO$_₂$ had two peaks respectively ascribed to the HCl (and/or Cl$_₂$) species and the adsorption of 1,2–DCE on the catalyst surface. However, it the adsorption peak of 1,2–DCE on the catalyst surface could not be observed over CeO$_₂$–C. It was speculated that the 1,2–DCE did not directly contact the surface of the catalyst during the reaction process, which could explain the poor catalytic performance of the CeO$_₂$–C catalyst. HCl (and/or Cl$_₂$) species and the adsorption of 1,2–DCE on the catalyst surface over VO$ₓ$/CeO$_₂$ catalysts (except V$₀.₀₅$Ce) could be detected. Unexpectedly, no peaks could be discovered over V$₀.₂$Ce and VO$ₓ$ catalysts, potentially due to the formation of chlorinated oxide rather than HCl (and/or Cl$_₂$) species.

4.6. Key Factors for 1,2–DCE Oxidation

Combining the results of the surface properties (XRD and XPS) of the used V$₀.₀₅$Ce catalyst, it was discovered that the lattice oxygen ($O_α$) species abundance of the used V$₀.₀₅$Ce catalyst was lower than that of the fresh V$₀.₀₅$Ce catalyst and the Ce$^{3+}$ species abundance of the used V$₀.₀₅$Ce catalyst was remarkably higher than that of the fresh V$₀.₀₅$Ce catalyst. Moreover, the surface oxygen species abundance adsorbed on the oxygen vacancies of the V$₀.₀₅$Ce catalyst increased after the stability test. Therefore, the large
number of Ce\(^{3+}\) species could enhance the formation of oxygen vacancies, which could effectively accelerate the mobility of active oxygen species and consequently promote the catalytic activity. According to the results of H\(_2\)–TPR, it was revealed that both the total H\(_2\) consumption amount and the initial H\(_2\) consumption rate of catalysts followed the sequence of V\(_{0.05}\)Ce > V\(_{0.1}\)Ce > V\(_{0.025}\)Ce > CeO\(_2\) > V\(_{0.2}\)Ce, suggesting that V\(_{0.05}\)Ce had superior low–temperature reducibility, effectively promoting the low–temperature reaction of 1,2-dichloroethane. The relationship between chlorinated byproduct yields and total acidity over VO\(_x\)/CeO\(_2\) catalysts was also analyzed. It was found that CHCl\(_3\), CCl\(_4\), C\(_2\)HCl\(_3\), and C\(_2\)H\(_3\)Cl\(_3\) yields versus total acidity maintained linear relationships (\(R^2 = 0.996, 0.991, 0.993,\) and 0.997, respectively). Compared with V\(_{0.025}\)Ce, V\(_{0.1}\)Ce, and V\(_{0.2}\)Ce catalysts, V\(_{0.05}\)Ce possessed higher total acidity and lower chlorinated byproduct (CHCl\(_3\), CCl\(_4\), C\(_2\)HCl\(_3\), and C\(_2\)H\(_3\)Cl\(_3\)) yields, indicating that the yields of chlorinated byproducts decreased with increasing total acidity. Moreover, the catalytic activity of VO\(_x\)/CeO\(_2\) catalysts (\(T_{90}\)) versus total acidity maintained a good linear relationship (\(R^2 = 0.995\)). The above results indicated that the low chlorinated byproduct yields could be ascribed to higher total acidity during 1,2–DCE oxidation process. The influence of water vapor on the formation of chlorinated byproducts was also studied. It was displayed that the presence of water vapor did not change the type of chlorinated byproducts; however, the yields of CHCl\(_3\), CCl\(_4\), and C\(_2\)HCl\(_3\) over the V\(_{0.05}\)Ce catalyst were apparently lower than those in the absence of water vapor because the reactivity of Cl\(_2\) was inhibited by water molecules as a hydrogen source. Moreover, the yield of chlorinated byproducts decreased with increasing water vapor concentration, suggesting that the presence of water vapor could efficiently inhibit the generation of chlorinated byproducts during 1,2–DCE oxidation.

5. Conclusions

In this work, hollow nanosphere–like VO\(_x\)/CeO\(_2\) materials were prepared using a wetness impregnation route and tested for 1,2–DCE destruction. The superior low–temperature reducibility and the mobility of O\(^{-}\) and O\(^{2-}\) species (chemically adsorbed oxygen species) ensured the superior catalytic activity, catalytic stability, and superior resistance to chlorine poisoning of the V\(_{0.05}\)Ce catalyst for 1,2–DCE oxidation. The generation of chlorinated byproducts (e.g., CHCl\(_3\), CCl\(_4\), C\(_2\)HCl\(_3\), and C\(_2\)H\(_3\)Cl\(_3\)) derived from the cleavage of C–C and C–Cl bonds of 1,2–DCE was inhibited owing to the abundant acid sites and synergy between VO\(_x\) and CeO\(_2\). Water vapor (1–5 vol.\%) had a promoting effect on the activity of V\(_{0.05}\)Ce, which was ascribed to the efficient removal of Cl species on the surface.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-9717/9/1/119/s1: Figure S1. XRD profiles of CeO\(_2\)–C catalyst; Figure S2. HAADF–STEM images of CeO\(_2\)–C catalyst; Figure S3. Nitrogen adsorption/desorption isotherms of CeO\(_2\)–C catalyst; Figure S4. Pore size distribution of CeO\(_2\)–C catalyst; Figure S5. Cl 2p XPS spectra of the used catalysts; Figure S6. CO\(_2\) selectivity of prepared catalysts; Table S1. XPS results of used V\(_{0.05}\)Ce catalyst.

Author Contributions: Y.H. and S.F. presided over the methodology and writing—original draft; M.T. assisted with the investigation and resources; Y.W. helped with the visualization of graphs; Z.J. was in charge of data validation; C.H. conceptualized the project and was responsible for administration and writing—review and editing. All authors read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: “Not applicable” for studies not involving humans or animals.

Informed Consent Statement: “Not applicable” for studies not involving humans.

Data Availability Statement: All data, models, and code generated or used during the study appear in the submitted article.
Acknowledgments: This work was financially supported by the National Natural Science Foundation of China (21922606, 21876139, 21677114), the Key R&D Program of Shaanxi Province (2019SF-244, 2019ZDLFSF-05-02), and the Shaanxi Natural Science Fundamental Shaanxi Coal Chemical Joint Fund (2019JM-14). The authors gratefully acknowledge the support of the K.C. Wong Education Foundation and Instrumental Analysis Center of Xi’an Jiaotong University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, P.; Yang, S.S.; Shi, Z.N.; Tao, F.; Guo, X.L.; Zhou, R.X. Accelerating effect of ZrO$_2$ doping on catalytic performance and thermal stability of CeO$_2$–Cr$_2$O$_3$ mixed oxide for 1,2-dichloroethane elimination. Chem. Eng. J. 2016, 285, 544–553. [CrossRef]
2. Gu, Y.F.; Cai, T.; Gao, X.H.; Xia, H.Q.; Sun, W.; Zhao, J.; Dai, Q.G.; Wang, X.Y. Catalytic combustion of chlorinated aromatics over WO$_3$/CeO$_2$ catalysts at low temperature. Appl. Catal. B Environ. 2019, 248, 264–276. [CrossRef]
3. Lin, F.W.; Zhang, Z.M.; Li, N.; Yan, B.B.; He, C.; Hao, Z.P.; Chen, G.Y. How to achieve complete elimination of Cl-VOCs: A critical review on byproducts formation and inhibition strategies during catalytic oxidation. Chem. Eng. J. 2021, 404, 126534. [CrossRef]
4. Dai, Q.G.; Bai, S.X.; Wang, Z.Y.; Wang, X.Y.; Lu, G.Z. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts. Appl. Catal. A Gen. 2019, 579, 44–51. [CrossRef]
5. Jiao, Y.M.; Chen, X.; He, F.; Liu, S.T. Simple preparation of uniformly distributed mesoporous Cr/TiO$_2$ microspheres for low-temperature catalytic combustion of chlorobenzene. Chem. Eng. J. 2019, 372, 107–117. [CrossRef]
6. Ye, N.; Li, Y.; Yang, Z.; Zheng, J.; Zuo, S.F. Rare earth modified kaolin-based Cr$_2$O$_3$ catalysts for catalytic combustion of chlorobenzene. Catal. Today 2015, 253, 172–177. [CrossRef]
7. Dai, Q.G.; Bai, S.X.; Wang, Z.Y.; Wang, X.Y.; Lu, G.Z. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts. Appl. Catal. B Environ. 2012, 126, 64–75. [CrossRef]
8. Topka, P.; Delaigle, R.; Kuluza, L.; Gaigneaux, E.M. Performance of platinum and gold catalysts supported on ceria–zirconia mixed oxide in the oxidation of chlorobenzene. Catal. Today 2015, 253, 152–157. [CrossRef]
9. Romero-Saéz, M.; Divakar, D.; Aranzabal, A.; Gonzalez-Velasco, J.R.; Gonzalez-Marcos, J.A. Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior. Appl. Catal. B Environ. 2016, 180, 210–218. [CrossRef]
10. Su, J.; Liu, Y.; Yao, W.Y.; Wu, Z.B. Catalytic Combustion of Dichloromethane over HZSM-5-Supported Typical Transition Metal (Cr, Fe, and C) Oxide Catalysts: A Stability Study. J. Phys. Chem. C 2014, 118, 3271–3277. [CrossRef]
11. Wang, X.Y.; Kang, Q.; Li, D. Catalytic combustion of chlorobenzene over MnO$_2$–CeO$_2$ mixed oxide catalysts. Appl. Catal. B Environ. 2009, 86, 166–175. [CrossRef]
12. Yang, Z.Y.; Yi, H.H.; Tang, X.L.; Zhao, S.Z.; Huang, Y.H.; Xie, X.Z.; Song, L.L.; Zhang, Y.Y. Study of reaction mechanism based on further promotion of low temperature degradation of toluene using nano-CeO$_2$/Co$_2$O$_3$ nanotubes catalysts for catalytic combustion of chlorobenzene. Catal. Today 2015, 253, 145–151. [CrossRef]
13. Gannoun, C.; Turki, A.; Kochkar, H.; Delaigle, R.; Eloy, P.; Ghorbel, A.; Gaigneaux, E.M. Elaboration and characterization of Fe-Cr/TiO$_2$ nanorods catalysts for chlorobenzene total oxidation. Appl. Catal. B Environ. 2014, 147, 58–64. [CrossRef]
14. Finocchio, E.; Ramis, G.; Busca, G. A study on catalytic combustion of chlorobenzene. Catal. Today 2011, 169, 3–9. [CrossRef]
15. Dai, Q.G.; Bai, S.X.; Li, H.; Liu, W.; Wang, X.Y.; Lu, G.Z. Catalytic total oxidation of 1,2-dichloroethane over highly dispersed vanadia supported on CeO$_2$ nanobelts. Appl. Catal. B Environ. 2015, 168–169, 141–155. [CrossRef]
16. Huang, H.; Gu, Y.F.; Zhao, J.; Wang, X.Y. Catalytic combustion of chlorobenzene over VO$_x$/CeO$_2$ catalysts. J. Catal. 2015, 326, 54–68. [CrossRef]
17. Feng, Z.T.; Ren, Q.M.; Peng, R.S.; Mo, S.P.; Zhang, M.Y.; Fu, M.L.; Chen, L.M.; Ye, D.Q. Effect of CeO$_2$ morphologies on toluene catalytic combustion. Catal. Today 2019, 332, 177–182. [CrossRef]
18. Jiang, X.L.; Chen, R.Q.; Zhang, J.; Yu, L.; Xu, X. Synthesis of mono-dispersed ceria hollow nanospheres by a hydrothermal method. Micro Nano Lett. 2016, 11, 137–141. [CrossRef]
19. Le, T.K.; Kang, M.; Kim, S.W. Morphology engineering, room-temperature photoluminescence behavior, and sunlight photocatalytic activity of V$_2$O$_5$ nanostructures. Mater. Charact. 2019, 153, 52–59. [CrossRef]
20. Khan, M.E.; Khan, M.M.; Cho, M.H. Ce$^{3+}$-ion, Surface Oxygen Vacancy, and Visible Light-induced Photocatalytic Dye Degradation and Photocapacitive Performance of CeO$_2$-Graphene Nanostructures. Sci. Rep. 2017, 7, 5928. [CrossRef]
21. Le, T.K.; Kang, M.; Tran, V.T.; Kim, S.W. Relation of photoluminescence and sunlight photocatalytic activities of pure V$_2$O$_5$ nanohollows and V$_2$O$_5$/RGO nanocomposites. Mat. Sci. Semicon. Proc. 2019, 100, 159–166. [CrossRef]
22. Li, Y.; Wei, Z.H.; Gao, F.; Kovarik, L.; Peden, C.H.F.; Wang, Y. Effects of CeO$_2$ support facets on VO$_x$/CeO$_2$ catalysts in oxidative dehydrogenation of methanol. J. Catal. 2014, 315, 15–24. [CrossRef]
23. Peng, Y.; Wang, C.Z.; Li, J.H. Structure–activity relationship of VO$_x$/CeO$_2$ nanorod for NO removal with ammonia. Appl. Catal. B Environ. 2014, 144, 538–546. [CrossRef]
24. Feng, X.B.; Tian, M.J.; He, C.; Li, L.; Shi, J.-W.; Yu, Y.K.; Cheng, J. Yolk-shell-like mesoporous CoCr$_2$O$_4$ with superior activity and chlorine resistance in dichloromethane destruction. Appl. Catal. B Environ. 2020, 264, 118493. [CrossRef]
25. Kang, D.J.; Yu, X.L.; Ge, M.F. Morphology-dependent properties and adsorption performance of CeO₂ for fluoride removal. *Chem. Eng. J.* 2017, 330, 36–43. [CrossRef]

26. Jing, X.Y.; Zhang, Y.F.; Jiang, H.M.; Cheng, Y.; Xing, N.; Meng, C.G. Facile template-free fabrication of hierarchical V₂O₅ hollow spheres with excellent charge storage performance for symmetric and hybrid supercapacitor devices. *J. Alloys Compd.* 2018, 763, 180–191. [CrossRef]

27. Ji, F.R.; Li, C.X.; Wang, J.Q.; Wang, J.; Shen, M.Q. New insights into the role of vanadia species as active sites for selective catalytic reduction of NO with ammonia over VOₓ/CeO₂ catalysts. *J. Rare Earths* 2020, 38, 719–724. [CrossRef]

28. Zhang, T.; Chang, H.Z.; Li, K.Z.; Peng, Y.; Li, X.; Li, J.H. Different exposed facets VOₓ/CeO₂ catalysts for the selective catalytic reduction of NO with NH₃. *Chem. Eng. J.* 2018, 349, 184–191. [CrossRef]

29. Zeleke, M.A.; Ku, D.-H. Synthesis and application of V₂O₅-CeO₂ nanocomposite catalyst for enhanced degradation of methylene blue under visible light illumination. *Chemosphere* 2019, 235, 935–944. [CrossRef]

30. Tian, M.J.; Guo, X.; Dong, R.; Guo, Z.; Shi, J.W.; Yu, Y.K.; Cheng, M.X.; Albilali, R.; He, C. Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOₓ/MnOₓO₃ for 1,2-dichloroethane destruction. *Appl. Catal. B Environ.* 2019, 252, 98–110. [CrossRef]

31. Xiao, P.; Zhu, J.J.; Li, H.L.; Jiang, W.; Wang, T.; Zhu, Y.J.; Zhao, Y.X.; Li, J.L. Effect of Textural Structure on the Catalytic Performance of LaCoO₃ for CO Oxidation. *ChemCatChem* 2014, 6, 1774–1781. [CrossRef]

32. Zhang, W.; Niu, X.Y.; Chen, L.Q.; Yuan, F.L.; Zhu, Y.J. Soot Combustion over Nanostructured Ceria with Different Morphologies. *Sci. Rep.* 2016, 6, 29062. [CrossRef]

33. Feng, X.B.; Chen, C.W.; He, C.; Chai, S.N.; Yu, Y.K.; Cheng, J. Non-thermal plasma coupled with MOF-74 derived Mn-Co-Ni-O porous composite oxide for toluene efficient degradation. *J. Hazard. Mater.* 2020, 383, 121143. [CrossRef] [PubMed]

34. Zheng, X.H.; Li, Y.L.; Zhang, L.Y.; Shen, L.J.; Xiao, Y.H.; Zhang, Y.F.; Au, C.; Jiang, L.L. Insight into the effect of morphology on catalytic performance of porous CeO₂ nanocrystals for H₂S selective oxidation. *Appl. Catal. B Environ.* 2019, 252, 98–110. [CrossRef]

35. Dong, F.; Meng, Y.; Han, W.L.; Zhao, H.J.; Tang, Z.C. Morphology effects on surface chemical properties and lattice defects of Cu/CeO₂ catalysts applied for low-temperature CO oxidation. *Sci. Rep.* 2019, 9, 12056. [CrossRef] [PubMed]

36. Tian, M.J.; Jian, Y.F.; Ma, M.D.; He, C.; Chen, C.W.; Liu, C.; Shi, J.-W. Rational design of CrOₓ/LaSrMnCoO₆ composite catalysts with superior chlorine tolerance and stability for 1,2-dichloroethane deep destruction. *Appl. Catal. A Gen.* 2019, 570, 62–72. [CrossRef]

37. Liang, H.; Hong, Y.X.; Zhu, C.Q.; Li, S.H.; Chen, Y.; Liu, Z.L.; Ye, D.Q. Influence of partial Mn-substitution on surface oxygen species of LaCoO₃ catalysts. *Catal. Today* 2013, 201, 98–102. [CrossRef]

38. Lin, X.T.; Li, S.J.; He, H.; Wu, Z.; Wu, J.L.; Chen, L.M.; Ye, D.Q.; Fu, M.L. Evolution of oxygen vacancies in MnOₓ-CeO₂ mixed oxides for soot oxidation. *Appl. Catal. B Environ.* 2018, 223, 91–102. [CrossRef]

39. Zhang, X.-m.; Deng, Y.-Q.; Tian, P.F.; Shang, H.-h.; Xu, J.; Han, Y.-F. Dynamic active sites over binary oxide catalysts: In situ/operando spectroscopic study of low-temperature CO oxidation over MnOₓ-CeO₂ catalysts. *Appl. Catal. B Environ.* 2016, 191, 179–191. [CrossRef]

40. Casapu, M.; Kroecher, M.; Mehring, M.; Nachtegaal, M.; Borca, C.; Harouche, M.; Grolimund, D. Characterization of Nb-Containing MnOₓ-CeO₂ Catalyst for Low-Temperature Selective Catalytic Reduction of NO with NH₃. *J. Phys. Chem. C* 2010, 114, 9791–9801. [CrossRef]

41. Su, J.; Yao, W.Y.; Liu, Y.; Wu, Z.B. The impact of CrOₓ loading on reaction behaviors of dichloromethane (DCM) catalytic combustion over Cu-O/HZSM-5 catalysts. *Appl. Surf. Sci.* 2017, 396, 1026–1033. [CrossRef]

42. Dai, Y.; Wang, X.Y.; Dai, Q.G.; Li, D. Effect of Ce and La on the structure and activity of MnOₓ catalyst in catalytic combustion of chlorobenzene. *Appl. Catal. B Environ.* 2012, 114–118, 141–149. [CrossRef]

43. Wang, W.; Zhu, Q.; Dai, Q.G.; Wang, X.Y. Fe doped CeO₂ nanosheets for catalytic oxidation of 1,2-dichloroethane: Effect of preparation method. *Chem. Eng. J.* 2017, 307, 1037–1046. [CrossRef]

44. Gannoun, C.; Delaigue, R.; Debecker, D.P.; Eloy, P.; Ghorbel, A.; Gaigneaux, E.M. Effect of support on V₂O₅ catalytic activity in chlorine oxidation. *Appl. Catal. A Gen.* 2012, 447–448, 1–6. [CrossRef]

45. Mei, J.; Ke, Y.; Yu, Z.J.; Hu, X.F.; Qu, Z.; Yan, N.Q. Morphology-dependent properties of Co₃O₄/CeO₂ catalysts for low temperature dibromomethane (CH₂Br₂) oxidation. *Chem. Eng. J.* 2017, 320, 124–134. [CrossRef]

46. Yang, P.; Meng, Z.H.; Yang, S.S.; Shi, Z.N.; Zhou, R.X. Highly active behaviors of CeO₂–CrOₓ mixed oxide catalysts in deep oxidation of 1,2-dichloroethane. *J. Mol. Catal. A-Chem.* 2014, 393, 75–83. [CrossRef]

47. Cai, T.; Huang, H.; Deng, W.; Dai, Q.G.; Liu, W.; Wang, X.Y. Catalytic combustion of 1,2-dichlorobenzene at low temperature over Mn-modified Co₃O₄ catalysts. *Appl. Catal. B Environ.* 2015, 166–167, 393–405. [CrossRef]

48. Tian, M.J.; He, C.; Yu, Y.K.; Pan, H.; Smith, L.; Jiang, Z.Y.; Gao, N.B.; Jian, Y.F.; Hao, Z.P.; Zhu, Q. Catalytic oxidation of 1,2-dichloroethane over three-dimensional ordered meso-macroporous Co₃O₄/LaₓFe₃O₃/FeOₓCeO₂: Destruction route and mechanism. *Appl. Catal. A Gen.* 2018, 553, 1–14. [CrossRef]

49. Dai, Q.G.; Yin, L.-L.; Bai, S.X.; Wang, W.; Wang, X.Y.; Gong, X.-Q.; Lu, G.Z. Catalytic total oxidation of 1,2-dichloroethane over VOₓ/CeO₂ catalysts: Further insights via isotopic tracer techniques. *Appl. Catal. B Environ.* 2016, 182, 598–610. [CrossRef]
50. Dai, Q.G.; Wu, J.Y.; Deng, W.; Hu, J.S.; Wu, Q.Q.; Guo, L.M.; Sun, W.; Zhan, W.C.; Wang, X.Y. Comparative studies of P/CeO\textsubscript{2} and Ru/CeO\textsubscript{2} catalysts for catalytic combustion of dichloromethane: From effects of H\textsubscript{2}O to distribution of chlorinated by-products. *Appl. Catal. B Environ.* 2019, 249, 9–18. [CrossRef]

51. Deng, W.; Dai, Q.G.; Lao, Y.J.; Shi, B.B.; Wang, X.Y. Low temperature catalytic combustion of 1,2-dichlorobenzene over CeO\textsubscript{2}–TiO\textsubscript{2} mixed oxide catalysts. *Appl. Catal. B Environ.* 2016, 181, 848–861. [CrossRef]

52. Hetrick, C.E.; Patcas, F.; Amiridis, M.D. Effect of water on the oxidation of dichlorobenzene over V\textsubscript{2}O\textsubscript{5}/TiO\textsubscript{2} catalysts. *Appl. Catal. B Environ.* 2011, 101, 622–628. [CrossRef]

53. Li, N.; Cheng, J.; Xing, X.; Sun, Y.G.; Hao, Z.P. Distribution and formation mechanisms of polychlorinated organic by-products upon the catalytic oxidation of 1,2-dichlorobenzene with palladium-loaded catalysts. *J. Hazard. Mater.* 2020, 393, 122412. [CrossRef] [PubMed]