Meson screening masses at finite temperature with Highly Improved Staggered Quarks

Yu Maezawa (Brookhaven National Lab)
in collaboration with
A. Bazavov, F. Karsch, S. Mukherjee, P. Petreczky

Extreme QCD @ Berm, Switzerland, Aug. 5 2013
Contents

Introduction

Meson propagators in HISQ and spectrum at $T=0$
 Strangeness, open-charm and charmonium

Screening mass at finite T
 At $T < T_c$, consistency with pole mass at $T = 0$
 At $T \sim T_c$, modification of meson bound state in QGP
 At high T, comparison with thermal perturbation theory

Summary
Introduction

In-medium properties of hadronic excitations in hot QCD matter

Heavy-Ion Collision Experiments at RHIC and LHC

Charmonium

purely created after collision: direct probe in HIC experiments
e.g. dissociation of J/ψ at high temperature
direct signal that Quark-Gluon plasma is created Matsui and Satz (1986)

Survival probability of J/ψ
in PHENIX experiment at RHIC…

Suppression of survival probability of J/ψ
Understanding suppression of hadronic excitation in QGP
Theoretical understanding
of meson thermal properties: indispensable

Gunji et al. 2007

PHENIX Au+Au (0<y<0.35)

S_n, $S_{1/2}$, $0.7S_n + 0.3S_{1/2}$

N_{part}
Introduction

Lattice QCD at finite temperature

Direct investigation of hadronic excitation: Difficult

Meson correlation function to spatial direction: Screening mass

\[
G(z, T) = \int dx dy \int_0^{1/T} d\tau \langle \bar{q}\Gamma q(x, y, z, \tau)\bar{q}\Gamma q(0, 0, 0, 0)\rangle \xrightarrow{z \to \infty} A e^{-M_T z}
\]

\[
G(z, T) = \int_0^\infty \frac{2d\omega}{\omega} \int_{-\infty}^{\infty} dp ze^{ipz} \sigma(\omega, p_z, T)
\]

Spectral function

in thermal medium...

at \(T \sim 0 \), hadron structure: pole mass at \(T = 0 \): \(M(T) \sim m_0 \)

at \(T \sim T_c \), sensitive to quark structure: bound states broaden

at \(T \to \infty \), free meson with two quark propagators

which have the lowest Matsubara mode: \(M_{\text{free}} = 2\sqrt{(\pi T)^2 + m_q^2} \)
Meson screening mass at finite T

Boundary Condition to temporal direction:
Investigation of hadronic modification due to thermal effect

- Anti-periodic BC: $q(\vec{x}, 1/T) = -q(\vec{x}, 0)$
- Periodic BC: $q(\vec{x}, 1/T) = q(\vec{x}, 0)$

at low T: bosonic bound state \Rightarrow no discrepancy
at high T: difference due to Matsubara mode

$M(T) \rightarrow \begin{cases}
2\sqrt{(\pi T)^2 + m_q^2} & \text{for APB} \\
2m_q & \text{for PB}
\end{cases}$

probe of temporal broadening \Rightarrow width of the spectral function

Screening mass in lattice QCD simulations
in p4 action for light and charm sector (2011)
in this study: in HISQ action for charmonium,
open-charm and strangeness sectors
Highly Improved Staggered Quarks

HISQ action Bazavov et al. (2011)

- Reduction of the taste violation
- Control of the cutoff effects

Bulk thermal properties: investigated
Hot-QCD Coll. (2011)

- Abundant statistics with widely T range: utilizable

Lattice setup

- 2+1 flavor QCD (charm quenched)
- $m_l/m_s = 0.05$ ($m_\pi \sim 160$ MeV, $m_K \sim 504$ MeV)
- $48^3 \times 48$ or 64 at $T = 0$
- $48^3 \times 12$, $\beta = 6.664 - 7.280$ ($T = 138 - 245$ MeV, 15 points)
- $N_\tau = 10, 8, 6, 4$ at $\beta = 7.280$, $N_s/N_\tau = 4$ ($T = 297 - 743$ MeV)

- Scale: f_K input
- Meson propagators: point and wall sources (5000—10000 traj.)
$T = 0$

- Meson propagators in HISQ
- Meson spectrum in strange and charm
Meson correlators in staggered action

Staggered propagator: mixture of parities

\[C(\tau) = A_{NO} e^{-m_- \tau} \]

\[- (-)^{\tau} A_O e^{-m_+ \tau} \]

Meson propagator: S and PS

\[C(C) = 48^3 \times 64 \]

\[\beta = 7.280 \]

Effective masses

Taste different meson

Artifacts due to the taste violation:

well suppressed at large distance in HISQ action
Meson spectrum at $T = 0$

Ground states with negative parity

\[M_{PS}^-, M_V^- \]

Determination of quark mass at $T = 0$

Strange-quark mass:

\[
m_{\eta_{s\bar{s}}} = \sqrt{2m_K^2 - m_\pi^2}\]

Charm-quark mass:

\[
\frac{1}{4}m_{\eta_c} + \frac{3}{4}m_{J/\psi}
\]

No significant β dependence:

well improvement of the cutoff effect in HISQ action
Finite temperature

- Screening mass: Anti-periodic BC and periodic BC
 - Charmonium
 - Open-charm and strangeness
- At high temperature
 - comparison with thermal perturbation theory
Charmonium screening mass at $T \sim T_c$

Screening mass divided by pole mass at $T = 0$

- At low T: $M(T)/m_0 = 1$
- At $T \sim 200—220$ MeV:
 - APB: increases
 - PB: decreases
- At high T:
 - $M^{APB} \sim 2\sqrt{(\pi T)^2 + m_c^2}$
 - $M^{PB} \sim 2m_c$
- η_c, J/ψ survive at $T < 1.3T_c$
- and modified at $T > 1.3—1.4T_c$
Open-charm and strangeness: $T \sim T_c$

at $T \sim 160$ MeV:
- discrepancy btw APB and PB

D_s, D_s^* modified at $T > T_c$

$\eta_{s\bar{s}}, \phi$ significant modification at $T < 0.8T_c$

even at $T < 140$ MeV:
- discrepancy btw APB and PB
Screening mass at high T vs. thermal perturbation

with T increasing...

$c\bar{c}$, $s\bar{c}$

M/T decreases and converges to 2π

$S\bar{S}$

Significant T dependent slightly above T_c

Convergence to 2π

PS: from below

V: from above

Thermal perturbation

- all channel converges
- described by

$$M_{\text{weak}} = 2\pi T(1 + g^2 \times \begin{cases} 0.022(N_f = 0) \\ 0.033(N_f = 3) \end{cases})$$

on lattice: no convergence

similar results in p4 (2011)

precise investigations at high T: future
Summary

Meson screening masses in Highly Improved Staggered Quarks
for charmonium, open-charm and strangeness

at low T: corresponding to pole mass at $T = 0$

at high T: convergence to $2\sqrt{\left(\pi T\right)^2 + m_q^2}$ with Anti-periodic BC

$2m_q$ with periodic BC

Modification due to thermal medium

η_c, J/ψ survive at $T \sim 1.3 T_c$

D_s, D_s^* modified at $T \sim T_c$

$(\eta s\bar{s})$, ϕ significant modification even at $T < 0.8 T_c$

Comparison with thermal perturbation: $S\bar{S}$ V— is similar, but PS— is not

no convergence: precise investigation at higher T