On the derivatives $\partial^2 P_\nu(z)/\partial \nu^2$ and $\partial Q_\nu(z)/\partial \nu$
of the Legendre functions with respect to their degrees

Radosław Szmytowski

Atomic and Optical Physics Division,
Department of Atomic, Molecular and Optical Physics,
Faculty of Applied Physics and Mathematics, Gdańsk University of Technology,
ul. Gabriela Narutowicza 11/12, 80–233 Gdańsk, Poland
email: radoslaw.szmytowski@pg.edu.pl

Published as: Integral Transforms Spec. Funct. 28 (2017) 645–62
doi: 10.1080/10652469.2017.1339039

Abstract

We provide closed-form expressions for the degree-derivatives $\partial^2 P_\nu(z)/\partial \nu^2$ and $\partial Q_\nu(z)/\partial \nu$ of the Legendre functions with respect to their degrees. For $\partial^2 P_\nu(z)/\partial \nu^2$, we find that

$$\left. \frac{\partial^2 P_\nu(z)}{\partial \nu^2} \right|_{\nu=n} = -2P_n(z) \text{Li}_2 \left(\frac{1-z}{2} \right) + B_n(z) \ln \frac{z+1}{2} + C_n(z),$$

where $\text{Li}_2((1-z)/2)$ is the dilogarithm function, $P_n(z)$ is the Legendre polynomial, while $B_n(z)$ and $C_n(z)$ are certain polynomials in z of degree n. For $\partial Q_\nu(z)/\partial \nu$ and $z \in \mathbb{C} \setminus [-1,1]$, we derive

$$\left. \frac{\partial Q_\nu(z)}{\partial \nu} \right|_{\nu=n} = -P_n(z) \text{Li}_2 \left(\frac{1-z}{2} \right) - \frac{1}{2} P_n(z) \ln \frac{z-1}{2} - \frac{1}{4} B_n(z) \ln \frac{z-1}{2} + \frac{1}{4} B_n(z) \ln \frac{z+1}{2}$$

$$- \frac{(-1)^n}{4} B_n(-z) \ln \frac{z-1}{2} - \frac{\pi^2}{6} P_n(z) + \frac{1}{4} C_n(z) - \frac{(-1)^n}{4} C_n(-z).$$

A counterpart expression for $\partial Q_\nu(x)/\partial \nu|_{\nu=n}$, applicable when $x \in (-1,1)$, is also presented. Explicit representations of the polynomials $B_n(z)$ and $C_n(z)$ as linear combinations of the Legendre polynomials are given.

Key words: Legendre functions; parameter derivatives; dilogarithm

MSC2010: 33C05, 33B30

1 Introduction

Over the past 20 years or so, a growth of interest in parameter derivatives of various special functions has been observed. The research done on the subject is documented in a number of papers reporting diverse methods for finding such derivatives for orthogonal polynomials in one [1–3] and two [4–6] variables, for Bessel functions [7–10], for Legendre and allied functions [11–18], and also for various types of hypergeometric functions [1, 19–22].

In Refs. [11, 12], we presented results of our investigations on the first-order derivative of the Legendre function of the first kind with respect to its degree. We showed that $\left[\partial P_\nu(z)/\partial \nu \right]_{\nu=n}$,
with \(n \in \mathbb{N}_0 \), is of the form
\[
\left. \frac{\partial P_n(z)}{\partial \nu} \right|_{\nu = n} = P_n(z) \ln \frac{z + 1}{2} + R_n(z),
\]
where \(P_n(z) \) is the Legendre polynomial of degree \(n \) and \(R_n(z) \) is another polynomial in \(z \) of the same degree. We investigated properties of the polynomials \(R_n(z) \) and arrived at their several explicit representations, including the following one:
\[
R_n(z) = 2[\psi(2n + 1) - \psi(n + 1)]P_n(z) + 2 \sum_{k=0}^{n-1} (-1)^{n+k} \frac{2k + 1}{(n-k)(n+k+1)} P_k(z),
\]
where \(\psi(z) = d \ln \Gamma(z)/dz \) is the digamma function.

In the year 2012, Dr. George P. Schramkowski kindly informed the present author that in the course of doing research on a certain problem in theoretical hydrodynamics, he had come across higher-order derivatives \([\partial^k P_n(z)/\partial \nu^k]_{\nu = n} \), with \(n \in \mathbb{N}_0 \) and \(k \geq 2 \). Using Mathematica, Schramkowski found that
\[
\left. \frac{\partial^2 P_n(z)}{\partial \nu^2} \right|_{\nu = 0} = -2 \text{Li}_2 \frac{1 - z}{2},
\]
where
\[
\text{Li}_2(z) = -\int_0^z \frac{\ln(1-t)}{t} \, dt
\]
is the dilogarithm function [23, 24]. In Ref. [25], we gave an analytical proof of the result displayed in Eq. (1.3), and also we derived a closed-form formula for the third-order derivative \([\partial^3 P_n(z)/\partial \nu^3]_{\nu = 0} \).

That work was then extended by Laurenzi [26], who found an expression for the fourth-order derivative \([\partial^4 P_n(z)/\partial \nu^4]_{\nu = 0} \).

The primary purpose of the present work is to pursue further the research initiated by Schramkowski and continued by us in Ref. [25]. We shall show that for arbitrary \(n \in \mathbb{N}_0 \) the second-order derivative \([\partial^2 P_n(z)/\partial \nu^2]_{\nu = n} \) may be expressed in the form
\[
\left. \frac{\partial^2 P_n(z)}{\partial \nu^2} \right|_{\nu = n} = -2P_n(z) \text{Li}_2 \frac{1 - z}{2} + B_n(z) \ln \frac{z + 1}{2} + C_n(z),
\]
where the polynomials \(B_n(z) \) and \(C_n(z) \) have the following representations in terms of the Legendre polynomials:
\[
B_n(z) = 4[\psi(2n + 1) - \psi(n + 1)]P_n(z) + 4 \sum_{k=0}^{n-1} \frac{2k + 1}{(n-k)(n+k+1)} P_k(z)
\]
and
\[
C_n(z) = \left\{ -\frac{\pi^2}{3} + 4[\psi(2n + 1) - \psi(n + 1)]^2 + 4\psi(2n + 1) - 2\psi(n + 1) \right\} P_n(z)
+ 4 \sum_{k=0}^{n-1} (-1)^{n+k} \frac{2k + 1}{(n-k)(n+k+1)} \left\{ 2 \left[\psi(n+k+1) - \psi(n-k+1) \right]
- \psi \left(\frac{n+k}{2} + 1 \right) + \psi \left(\frac{n-k}{2} + 1 \right) \right\}
- (-1)^{n+k} \frac{2k + 1}{(n-k)(n+k+1)} - \frac{2n+1}{(n-k)(n+k+1)} P_k(z),
\]
with \(\psi(z) \) being already defined under Eq. (1.2), \(\psi_1(z) = d \psi(z)/dz \), and \(\lfloor x \rfloor = \max\{n \in \mathbb{Z} : n \leq x \} \) standing for the integer part of \(x \). In fact, the above result for \([\partial^2 P_n(z)/\partial \nu^2]_{\nu = n} \), valid for \(n \in \mathbb{N}_0 \), may be easily extended to any \(n \in \mathbb{Z} \), since with the use of the well-known identity
\[
P_{-\nu-1}(z) = P_{\nu}(z)
\]
one immediately finds that

$$\frac{\partial^2 P_{\nu}(z)}{\partial \nu^2} \bigg|_{\nu=-n-1} = \frac{\partial^2 P_{\nu}(z)}{\partial \nu^2} \bigg|_{\nu=n} \quad (n \in \mathbb{N}_0). \quad (1.9)$$

In addition to the above summarized study on the second-order degree-derivative of the Legendre function of the first kind, which will be presented in detail in Sec. 2 below, later in Sec. 3 we shall also prove that if \(z \in \mathbb{C} \setminus [-1, 1] \) and \(n \in \mathbb{N}_0 \), then the first-order derivative \(\frac{\partial Q_{\nu}(z)}{\partial \nu} \bigg|_{\nu=n} \), where \(Q_{\nu}(z) \) is the Legendre function of the second kind, is given by

$$\frac{\partial Q_{\nu}(z)}{\partial \nu} \bigg|_{\nu=n} = - P_n(z) \text{Li}_2 \left(\frac{1-z}{2} \right) - \frac{1}{2} P_n(z) \ln \frac{z+1}{2} - \frac{1}{4} B_n(z) \ln \frac{z+1}{2} - (-1)^n B_n(-z) \ln \frac{z-1}{2} - \frac{\pi^2}{6} P_n(z) + \frac{1}{4} C_n(z) - \frac{(-1)^n}{4} C_n(-z). \quad (1.10)$$

A counterpart expression for \(\frac{\partial Q_{\nu}(x)}{\partial \nu} \bigg|_{\nu=n} \), applicable when \(x \in (-1, 1) \), will also be derived.

2 The derivatives \([\frac{\partial^2 P_{\nu}(z)}{\partial \nu^2}]_{\nu=n} \)

2.1 The general form of \([\frac{\partial^2 P_{\nu}(z)}{\partial \nu^2}]_{\nu=n} \)

Our point of departure is the well-known recurrence relation

\((\nu + 1) P_{\nu+1}(z) - (2\nu + 1) z P_{\nu}(z) + \nu P_{\nu-1}(z) = 0\) \quad (2.1)

obeyed by the Legendre functions of the first kind. Differentiating it twice with respect to \(\nu \) and setting then \(\nu = n \) yields

\[(n + 1) \frac{\partial^2 P_{\nu}(z)}{\partial \nu^2} \bigg|_{\nu=n+1} - (2n + 1) z \frac{\partial^2 P_{\nu}(z)}{\partial \nu^2} \bigg|_{\nu=n} + n \frac{\partial^2 P_{\nu}(z)}{\partial \nu^2} \bigg|_{\nu=n-1} = -2 \left[\frac{\partial P_{\nu}(z)}{\partial \nu} \bigg|_{\nu=n+1} - 2z \frac{\partial P_{\nu}(z)}{\partial \nu} \bigg|_{\nu=n} + \frac{\partial P_{\nu}(z)}{\partial \nu} \bigg|_{\nu=n-1} \right]. \quad (2.2)\]

If we replace the first-order derivatives on the right-hand side with expressions following from Eq. (1.1), this furnishes

\[(n + 1) \frac{\partial^2 P_{\nu}(z)}{\partial \nu^2} \bigg|_{\nu=n+1} - (2n + 1) z \frac{\partial^2 P_{\nu}(z)}{\partial \nu^2} \bigg|_{\nu=n} + n \frac{\partial^2 P_{\nu}(z)}{\partial \nu^2} \bigg|_{\nu=n-1} = -2 \left[P_{n+1}(z) - 2z P_n(z) + P_{n-1}(z) \right] \ln \frac{z+1}{2} - 2 \left[R_{n+1}(z) - 2z R_n(z) + R_{n-1}(z) \right]. \quad (2.3)\]

From the formal point of view, one may look at Eq. (2.3) as a second-order difference equation and then two additional conditions are necessary to single out the sequence \([\frac{\partial^2 P_{\nu}(z)}{\partial \nu^2}]_{\nu=n} \) from its general solution. Such conditions may be chosen in a variety of ways but for our purposes it is most convenient to take the explicit expression for \([\frac{\partial^2 P_{\nu}(z)}{\partial \nu^2}]_{\nu=0} \), given in Eq. (1.1), as the first one. The second suitable condition follows from Eq. (2.3) after one lets \(n = 0 \). Then, with the use of the identities

\[P_{-1}(z) = 1, \quad P_0(z) = 1, \quad P_1(z) = z\] \quad (2.4)

and [11, Sec. 5.2]

\[R_{-1}(z) = -2 \ln \frac{z+1}{2}, \quad R_0(z) = 0, \quad R_1(z) = z - 1, \quad (2.5)\]
Eq. (2.3) reduces to the form
\[
\left. \frac{\partial^2 P_\nu(z)}{\partial \nu^2} \right|_{\nu=1} - z \left. \frac{\partial^2 P_\nu(z)}{\partial \nu^2} \right|_{\nu=0} = 2(z+1) \ln \frac{z+1}{2} - 2(z-1). \tag{2.6}
\]

On combining Eq. (2.6) with Eq. (1.1), one finds that
\[
\left. \frac{\partial^2 P_\nu(z)}{\partial \nu^2} \right|_{\nu=1} = -2z \text{Li}_2 \frac{1-z}{2} + 2(z+1) \ln \frac{z+1}{2} - 2(z-1). \tag{2.7}
\]

If necessary, Eq. (2.3) may be applied recursively, with Eqs. (1.3) and (2.7) used as initial conditions, to generate the derivative in question for any particular \(n \geq 2 \). However, as we shall show below, it is also possible to obtain a closed-form representation for \(\left[\frac{\partial^2 P_\nu(z)}{\partial \nu^2} \right]_{\nu=n} \).

As the first step towards that goal, we observe that the structure of Eq. (2.3), together with explicit expressions for the derivatives \(\left[\frac{\partial^2 P_\nu(z)}{\partial \nu^2} \right]_{\nu=0} \) and \(\left[\frac{\partial^2 P_\nu(z)}{\partial \nu^2} \right]_{\nu=1} \) displayed in Eqs. (1.3) and (2.7), fix the form of \(\left[\frac{\partial^2 P_\nu(z)}{\partial \nu^2} \right]_{\nu=n} \) to be
\[
\left. \frac{\partial^2 P_\nu(z)}{\partial \nu^2} \right|_{\nu=n} = A_n(z) \text{Li}_2 \frac{1-z}{2} + B_n(z) \ln \frac{z+1}{2} + C_n(z), \tag{2.8}
\]

where \(A_n(z) \), \(B_n(z) \) and \(C_n(z) \) are polynomials in \(z \) of degree \(n \). Since the right-hand side of Eq. (2.3) does not contain the dilogarithm function, the polynomial \(A_n(z) \) solves the homogeneous recurrence
\[
(n+1)A_{n+1}(z) - (2n + 1)zA_n(z) + nA_n(z) = 0 \tag{2.9}
\]
subject to the initial conditions
\[
A_0(z) = -2 = -2P_0(z), \quad A_1(z) = -2z = -2P_1(z), \tag{2.10}
\]

which follow from Eqs. (1.1) and (2.8). Hence, we deduce the following expression for \(A_n(z) \) in terms of the Legendre polynomial \(P_n(z) \):
\[
A_n(z) = -2P_n(z). \tag{2.11}
\]

Consequently, Eq. (2.8) becomes
\[
\left. \frac{\partial^2 P_\nu(z)}{\partial \nu^2} \right|_{\nu=n} = -2P_n(z) \text{Li}_2 \frac{1-z}{2} + B_n(z) \ln \frac{z+1}{2} + C_n(z). \tag{2.12}
\]

The representations of the polynomials \(B_n(z) \) and \(C_n(z) \) remain to be established.

2.2 Differential equations for the polynomials \(B_n(z) \) and \(C_n(z) \)

It is known that the Legendre function \(P_\nu(z) \) obeys the differential identity
\[
\left[\frac{d}{dz} (1-z^2) \frac{d}{dz} + \nu(\nu+1) \right] P_\nu(z) = 0. \tag{2.13}
\]

If we differentiate it twice with respect to \(\nu \) and then put \(\nu = n \), this gives
\[
\left[\frac{d}{dz} (1-z^2) \frac{d}{dz} + n(n+1) \right] \left. \frac{\partial^2 P_\nu(z)}{\partial \nu^2} \right|_{\nu=n} = -2(2n+1) \left. \frac{\partial P_\nu(z)}{\partial \nu} \right|_{\nu=n} - 2P_n(z) \tag{2.14}
\]

and further, after Eq. (1.1) is plugged into the first term on the right-hand side,
\[
\left[\frac{d}{dz} (1-z^2) \frac{d}{dz} + n(n+1) \right] \left. \frac{\partial^2 P_\nu(z)}{\partial \nu^2} \right|_{\nu=n} = -2(2n+1)P_n(z) \ln \frac{z+1}{2} - 2(2n+1)R_n(z) - 2P_n(z). \tag{2.15}
\]
Next, we insert Eq. (2.12) into the left-hand side of Eq. (2.15) and equate those terms appearing on both sides which involve the logarithmic factor. This yields the following inhomogeneous differential equation for $B_n(z)$:

$$\left[\frac{d}{dz}(1 - z^2)\frac{d}{dz} + n(n + 1) \right] B_n(z) = 4 \left(z + 1 \right) \frac{dP_n(z)}{dz} - n P_n(z). \tag{2.16}$$

Similarly, after equating polynomial expressions on both sides, we arrive at the inhomogeneous equation for $C_n(z)$:

$$\left[\frac{d}{dz}(1 - z^2)\frac{d}{dz} + n(n + 1) \right] C_n(z) = 2(z - 1) \frac{dB_n(z)}{dz} + B_n(z) - 2(2n + 1)R_n(z). \tag{2.17}$$

Consider Eq. (2.16). It is evident that it does not possess a unique polynomial solution, since to any particular solution of that form one may add an arbitrary multiple of the Legendre polynomial $P_n(z)$, which results in another polynomial solution. To make the polynomial solution unique, we thus need an additional constraint. The latter follows from the limiting relation [27]

$$P_\nu(z) \xrightarrow{z \to -1} \frac{\sin(\pi \nu)}{\pi} \ln \frac{z + 1}{2} + O(1), \tag{2.18}$$

from which we find

$$\lim_{\nu \to \nu \to 1} \frac{\partial^2 P_\nu(z)}{\partial \nu^2} = 0. \tag{2.19}$$

Hence, the left-hand side of Eq. (2.12) remains finite for $z \to -1$ and to make the right-hand side also finite in that limit, we are forced to put

$$B_n(-1) = 0. \tag{2.20}$$

If, in turn, we wish to make the polynomial solution to Eq. (2.17) unique, we use the identity

$$P_{\nu}(1) = 1. \tag{2.21}$$

Differentiating twice with respect to ν, we obtain

$$\lim_{\nu \to \nu \to 1} \frac{\partial^2 P_\nu(1)}{\partial \nu^2} = 0. \tag{2.22}$$

Since $\text{Li}_2 0 = 0$ and $\ln 1 = 0$, we deduce that $C_n(z)$ is constrained to obey

$$C_n(1) = 0. \tag{2.23}$$

Below we shall exploit Eqs. (2.16), (2.20), (2.17) and (2.23) to determine the polynomials $B_n(z)$ and $C_n(z)$.

2.3 Construction of the polynomials $B_n(z)$

A general form of the polynomials $B_n(z)$ may be obtained with ease. In Ref. [11, Sec. 5.2.2], we have found that the polynomials $R_n(z)$ obey the differential relation

$$\left[\frac{d}{dz}(1 - z^2)\frac{d}{dz} + n(n + 1) \right] R_n(z) = 2 \left(z - 1 \right) \frac{dP_n(z)}{dz} - n P_n(z). \tag{2.24}$$

Hence, with the use of the well-known identity

$$P_n(-z) = (-1)^n P_n(z), \tag{2.25}$$

we deduce that

$$\left[\frac{d}{dz}(1 - z^2)\frac{d}{dz} + n(n + 1) \right] R_n(-z) = (-1)^n 2 \left(z + 1 \right) \frac{dP_n(z)}{dz} - n P_n(z). \tag{2.26}$$
Comparison of Eqs. (2.16) and (2.26) shows that the polynomial \(B_n(z) \) must be of the form
\[
B_n(z) = (-1)^n 2R_n(-z) + b_n P_n(z). \tag{2.27}
\]
To determine the constant \(b_n \), we put \(z = -1 \) in Eq. (2.27). By virtue of the constraint (2.20), with the use of the relations
\[
P_n(-1) = (-1)^n \tag{2.28}
\]
and (cf. Ref. [11, Eq. (5.10)])
\[
R_n(1) = 0, \tag{2.29}
\]
we infer that
\[
b_n = 0, \tag{2.30}
\]
and thus finally we arrive at
\[
B_n(z) = (-1)^n 2R_n(-z). \tag{2.31}
\]
On combining Eq. (2.31) with Eq. (1.2), we have the following explicit representation of \(B_n(z) \):
\[
B_n(z) = 4\left[\psi(2n + 1) - \psi(n + 1) \right] P_n(z) + 4 \sum_{k=0}^{n-1} \frac{2k + 1}{(n-k)(n+k+1)} P_k(z). \tag{2.32}
\]
Further expressions for \(B_n(z) \) may be obtained if one combines Eq. (2.31) with Eqs. (2.1), (2.2), (2.4) and (5.90) from Ref. [11] or with Eqs. (11) and (12) from Ref. [12].

2.4 Construction of the polynomials \(C_n(z) \)

We shall seek a representation of \(C_n(z) \) in the form of a linear combination of Legendre polynomials:
\[
C_n(z) = \sum_{k=0}^{n} c_{nk} P_k(z). \tag{2.33}
\]

Action on both sides of Eq. (2.33) with the Legendre differential operator appearing on the left-hand side of Eq. (2.17) gives
\[
\left[\frac{d}{dz}(1 - z^2) \frac{d}{dz} + n(n + 1) \right] C_n(z) = \sum_{k=0}^{n-1} (n-k)(n+k+1)c_{nk} P_k(z). \tag{2.34}
\]
On the other side, with the aid of Eqs. (1.2) and (2.32), and of the identity
\[
(z - 1) \frac{dP_n(z)}{dz} = n P_n(z) + \sum_{k=0}^{n-1} (-1)^{n+k} (2k + 1) P_k(z), \tag{2.35}
\]
after some algebra we find that the expression on the right-hand side of Eq. (2.17) may be written as
\[
2(z - 1) \frac{dB_n(z)}{dz} + B_n(z) - 2(2n + 1)R_n(z)
= \sum_{k=0}^{n-1} \left\{ (-1)^{n+k} 8(2k + 1) [\psi(2n + 1) - \psi(n + 1)]
+ 8(2k + 1) \sum_{m=k}^{n-1} (-1)^{m+k} \frac{2m + 1}{(n-m)(n+m+1)}
- \frac{4(2k + 1)^2}{(n-k)(n+k+1)} - (-1)^{n+k} \frac{4(2n + 1)(2k + 1)}{(n-k)(n+k+1)} \right\} P_k(z). \tag{2.36}
\]
Equations (2.17), (2.34) and (2.36) yield

\[c_{nk} = (-1)^{n+k} \frac{\psi(2n+1) - \psi(n+1)}{(n-k)(n+k+1)} \frac{8(2k+1)}{} \]
\[+ \frac{8(2k+1)}{(n-k)(n+k+1)} \sum_{m=k}^{n-1} (-1)^{m+k} \frac{2m+1}{(n-m)(n+m+1)} \]
\[- \frac{4(2k+1)^2}{(n-k)^2(n+k+1)^2} - (-1)^{n+k} \frac{4(2n+1)(2k+1)}{(n-k)^2(n+k+1)^2} \quad (0 \leq k \leq n-1). \]
(2.37)

It is proven in Appendix A.1 that

\[\sum_{m=k}^{n-1} (-1)^{n+m} \frac{2m+1}{(n-m)(n+m+1)} = -\psi(2n+1) + \psi(n+k+1) + \psi(n+1) - \psi(n-k+1) \]
\[- \psi \left(\left\lfloor \frac{n+k}{2} \right\rfloor + 1 \right) + \psi \left(\left\lfloor \frac{n-k}{2} \right\rfloor + 1 \right) \quad (0 \leq k \leq n-1), \]
(2.38)

where \([x] = \max\{n \in \mathbb{Z} : n \leq x \} \). Use of Eq. (2.38) casts Eq. (2.37) into the final form

\[c_{nk} = (-1)^{n+k} \frac{8(2k+1)}{(n-k)(n+k+1)} \]
\[\times \left\{ \psi(n+k+1) - \psi(n-k+1) - \psi \left(\left\lfloor \frac{n+k}{2} \right\rfloor + 1 \right) + \psi \left(\left\lfloor \frac{n-k}{2} \right\rfloor + 1 \right) \right\} \]
\[- \frac{4(2k+1)^2}{(n-k)^2(n+k+1)^2} - (-1)^{n+k} \frac{4(2n+1)(2k+1)}{(n-k)^2(n+k+1)^2} \quad (0 \leq k \leq n-1). \]
(2.39)

Equation (2.39) says nothing about the coefficient \(c_{nn} \). But from Eqs. (2.23), (2.21) and (2.33) it can be deduced that \(c_{nn} \) may be expressed as

\[c_{nn} = -\sum_{k=0}^{n-1} c_{nk}. \]
(2.40)

This implies that the polynomial \(C_n(z) \) may be written as

\[C_n(z) = \sum_{k=0}^{n-1} c_{nk}[P_k(z) - P_n(z)], \]
(2.41)

or explicitly, if the result in Eq. (2.39) is used, as

\[C_n(z) = 4 \sum_{k=0}^{n-1} (-1)^{n+k} \frac{2k+1}{(n-k)(n+k+1)} \]
\[\times \left\{ 2 \left[\psi(n+k+1) - \psi(n-k+1) - \psi \left(\left\lfloor \frac{n+k}{2} \right\rfloor + 1 \right) + \psi \left(\left\lfloor \frac{n-k}{2} \right\rfloor + 1 \right) \right] \]
\[- (-1)^{n+k} \frac{2k+1}{(n-k)(n+k+1)} - \frac{2n+1}{(n-k)(n+k+1)} \right\} [P_k(z) - P_n(z)]. \]
(2.42)

A bit different formula for \(C_n(z) \) is obtained if the coefficient \(c_{nn} \) is expressed in a closed form.
To find the latter, we combine Eqs. (2.37) and (2.40) and write

\[c_{nn} = -8[\psi(2n + 1) - \psi(n + 1)] \sum_{k=0}^{n-1} (-1)^{n+k} \frac{2k + 1}{(n-k)(n+k+1)} \]

\[-8 \sum_{k=0}^{n-1} (-1)^k \frac{2k + 1}{(n-k)(n+k+1)} \sum_{m=k}^{n-1} (-1)^m \frac{2m + 1}{(n-m)(n+m+1)} \]

\[+ 4 \sum_{k=0}^{n-1} \frac{(2k + 1)^2}{(n-k)^2(n+k+1)^2} + 4 \sum_{k=0}^{n-1} (-1)^{n+k} \frac{(2n + 1)(2k + 1)}{(n-k)^2(n+k+1)^2}. \] (2.43)

The sums appearing in Eq. (2.43) are evaluated in individual subsections of the appendix, where it is found that

\[\sum_{k=0}^{n-1} (-1)^{n+k} \frac{2k + 1}{(n-k)(n+k+1)} = -\psi(2n + 1) + \psi(n + 1), \] (2.44)

\[\sum_{k=0}^{n-1} (-1)^k \frac{2k + 1}{(n-k)(n+k+1)} \sum_{m=k}^{n-1} (-1)^m \frac{2m + 1}{(n-m)(n+m+1)} \]

\[= \frac{\pi^2}{12} - \frac{\gamma}{2n + 1} + \frac{1}{2}[\psi(2n + 1) - \psi(n + 1)]^2 - \frac{1}{2n + 1} \psi(2n + 1) - \frac{1}{2} \psi_1(2n + 1), \] (2.45)

\[\sum_{k=0}^{n-1} \frac{(2k + 1)^2}{(n-k)^2(n+k+1)^2} = \frac{\pi^2}{6} - \frac{2\gamma}{2n + 1} - \frac{2}{2n + 1} \psi(2n + 1) - \psi_1(2n + 1) \] (2.46)

and

\[\sum_{k=0}^{n-1} (-1)^{n+k} \frac{(2n + 1)(2k + 1)}{(n-k)^2(n+k+1)^2} = -\frac{\pi^2}{12} + \psi_1(2n + 1) - \frac{1}{2} \psi_1(n + 1), \] (2.47)

with \(\gamma \) standing for the Euler–Mascheroni constant and with \(\psi_1(\zeta) = d\psi(\zeta)/d\zeta \) being the trigamma function. Plugging the results (2.44)–(2.47) into the right-hand side of Eq. (2.43) furnishes the coefficient \(c_{nn} \) in the compact form

\[c_{nn} = -\frac{\pi^2}{3} + 4[\psi(2n + 1) - \psi(n + 1)]^2 + 4\psi_1(2n + 1) - 2\psi_1(n + 1). \] (2.48)

Hence, by virtue of Eqs. (2.33), (2.39) and (2.48), we eventually arrive at the sought formula

\[C_n(z) = \left\{ -\frac{\pi^2}{3} + 4[\psi(2n + 1) - \psi(n + 1)]^2 + 4\psi_1(2n + 1) - 2\psi_1(n + 1) \right\} P_n(z) \]

\[+ 4 \sum_{k=0}^{n-1} (-1)^{n+k} \frac{2k + 1}{(n-k)(n+k+1)} \left\{ 2\left[\psi(n + k + 1) - \psi(n - k + 1) \right] \right. \]

\[- \psi\left(\left\lfloor \frac{n + k}{2} \right\rfloor + 1 + \psi\left(\left\lfloor \frac{n - k}{2} \right\rfloor + 1 \right) \right) \right. \]

\[- (-1)^{n+k} \frac{2k + 1}{(n-k)(n+k+1)} - \frac{2n + 1}{(n-k)(n+k+1)} \right\} P_k(z), \] (2.49)

alternative to the one in Eq. (2.42).
2.5 Explicit expressions for $[\partial^2 P_\nu(z)/\partial \nu^2]_{\nu=n}$ with $0 \leq n \leq 3$

It may be of interest to see how the derivatives $[\partial^2 P_\nu(z)/\partial \nu^2]_{\nu=n}$ look explicitly for several lowest values of n. From Eqs. (2.12), (2.32) and (2.49), for $0 \leq n \leq 3$ we find that

\[
\frac{\partial^2 P_\nu(z)}{\partial \nu^2}
\bigg|_{\nu=0} = -2 \operatorname{Li}_2 \left(\frac{1-z}{2} \right), \tag{2.50a}
\]

\[
\frac{\partial^2 P_\nu(z)}{\partial \nu^2}
\bigg|_{\nu=1} = -2z \operatorname{Li}_2 \left(\frac{1-z}{2} \right) + (2z+2) \ln \frac{z+1}{2} - 2z + 2, \tag{2.50b}
\]

\[
\frac{\partial^2 P_\nu(z)}{\partial \nu^2}
\bigg|_{\nu=2} = (-3z^2 + 1) \operatorname{Li}_2 \left(\frac{1-z}{2} \right) + \left(\frac{7}{2}z^2 + 3z - \frac{1}{2} \right) \ln \frac{z+1}{2} - \frac{11}{4}z^2 + \frac{5}{2}z + \frac{1}{4}, \tag{2.50c}
\]

\[
\frac{\partial^2 P_\nu(z)}{\partial \nu^2}
\bigg|_{\nu=3} = (-5z^3 + 3z) \operatorname{Li}_2 \left(\frac{1-z}{2} \right) + \left(\frac{37}{6}z^3 + 5z^2 - \frac{5}{2}z - \frac{4}{3} \right) \ln \frac{z+1}{2} - \frac{155}{36}z^3 + \frac{23}{6}z^2 + \frac{19}{12}z - \frac{10}{9}. \tag{2.50d}
\]

3 The derivatives $[\partial Q_\nu(z)/\partial \nu]_{\nu=n}$ and $[\partial Q_\nu(x)/\partial \nu]_{\nu=n}$

In Refs. [11, 12], we exploited representations of the first-order derivatives $[\partial P_\nu(z)/\partial \nu]_{\nu=n}$ found therein to obtain expressions for the Legendre functions of the second kind $Q_\nu(z)$, with $n \in \mathbb{N}_0$, both for $z \in \mathbb{C} \setminus [-1, 1]$ and for $z = x \in (-1, 1)$. Below we shall show that the knowledge of the second-order derivatives $[\partial^2 P_\nu(z)/\partial \nu^2]_{\nu=n}$ allows one to obtain explicit formulas for the first-order derivatives $[\partial Q_\nu(z)/\partial \nu]_{\nu=n}$ and $[\partial Q_\nu(x)/\partial \nu]_{\nu=n}$, again with $n \in \mathbb{N}_0$.

3.1 The derivatives $[\partial Q_\nu(z)/\partial \nu]_{\nu=n}$ for $z \in \mathbb{C} \setminus [-1, 1]$

3.1.1 The general form of $[\partial Q_\nu(z)/\partial \nu]_{\nu=n}$

The Legendre function of the second kind, $Q_\nu(z)$, may be defined in terms of the function of the first kind through the formula

\[
Q_\nu(z) = \frac{\pi}{2} \frac{e^{\pi i \nu} P_\nu(z) - P_\nu(-z)}{\sin(\pi \nu)} \quad \text{(Im } z \geq 0). \tag{3.1}
\]

Hence, it follows that

\[
\frac{\partial Q_\nu(z)}{\partial \nu} = \frac{\pi}{2 \sin^2(\pi \nu)} \left\{ -\pi[P_\nu(z) - P_\nu(-z) \cos(\pi \nu)] + \left[e^{\pi i \nu} \frac{\partial P_\nu(z)}{\partial \nu} - \frac{\partial P_\nu(-z)}{\partial \nu} \right] \sin(\pi \nu) \right\} \quad \text{(Im } z \geq 0). \tag{3.2}
\]

From this, for $n \in \mathbb{N}_0$, with the use of the L’Hospital rule, we obtain

\[
\frac{\partial Q_\nu(z)}{\partial \nu}
\bigg|_{\nu=n} = -\frac{\pi^2}{4} P_n(z) \mp \frac{i\pi}{2} \frac{\partial P_n(z)}{\partial \nu} \bigg|_{\nu=n} + \frac{1}{4} \frac{\partial^2 P_n(z)}{\partial \nu^2} \bigg|_{\nu=n} + \frac{(1-n)^2}{4} \frac{\partial^2 P_n(-z)}{\partial \nu^2} \bigg|_{\nu=n} \quad \text{(Im } z \geq 0). \tag{3.3}
\]

If in the above formula the second-order derivatives $[\partial^2 P_\nu(z)/\partial \nu^2]_{\nu=n}$ are substituted with expressions following from Eq. (2.12) and the first-order derivative $[\partial P_\nu(z)/\partial \nu]_{\nu=n}$ is replaced by the right-hand side of Eq. (1.1), this yields $[\partial Q_\nu(z)/\partial \nu]_{\nu=n}$ in the form

\[
\frac{\partial Q_\nu(z)}{\partial \nu}
\bigg|_{\nu=n} = \frac{1}{2} P_n(z) \left(\operatorname{Li}_2 \left(\frac{z+1}{2} \right) - \frac{1-z}{2} \right) + \frac{1}{4} B_n(z) \mp \frac{i\pi}{2} P_n(z) \ln \frac{z+1}{2} - \frac{(1-n)^2}{4} \frac{\partial^2 P_n(-z)}{\partial \nu^2} \bigg|_{\nu=n} \quad \text{(Im } z \geq 0). \tag{3.4}
\]
A more elegant expression for \(\partial Q_\nu(z)/\partial \nu \rvert_{\nu=n} \) follows if the dilogarithm \(\text{Li}_2[(1+z)/2] \) is eliminated from Eq. (3.4) with the aid of the Euler’s identity [23, Eq. (1.11)]

\[
\text{Li}_2 z + \text{Li}_2(1-z) = \frac{\pi^2}{6} - \ln z \ln(1-z),
\]

(3.5)

the relation

\[
1 - z = e^{\pi i \nu}(z - 1) \quad (\text{Im } z \geq 0)
\]

(3.6)

and the result in Eq. (2.31). Proceeding in that way, one eventually finds that

\[
\frac{\partial Q_\nu(z)}{\partial \nu} \bigg|_{\nu=n} = -P_n(z) \text{Li}_2 \frac{1-z}{2} - \frac{1}{2}P_n(z) \ln \frac{z+1}{2} \ln \frac{z-1}{2} + \frac{1}{4}B_n(z) \ln \frac{z+1}{2} - \frac{(-1)^n}{4}B_n(-z) \ln \frac{z-1}{2} - \frac{\pi^2}{6}P_n(z) + \frac{1}{4}C_n(z) - \frac{(-1)^n}{4}C_n(-z) \quad (n \in \mathbb{N}_0).
\]

(3.7)

3.1.2 Explicit expressions for \(\partial Q_\nu(z)/\partial \nu \rvert_{\nu=n} \) with \(0 \leq n \leq 3 \)

Explicit forms of the derivatives \(\partial Q_\nu(z)/\partial \nu \rvert_{\nu=n} \) with \(0 \leq n \leq 3 \), obtained from Eq. (3.7) with the use of Eqs. (3.22) and (2.49), are

\[
\frac{\partial Q_\nu(z)}{\partial \nu} \bigg|_{\nu=0} = -\text{Li}_2 \frac{1-z}{2} - \frac{1}{2} \ln \frac{z+1}{2} \ln \frac{z-1}{2} - \frac{\pi^2}{6},
\]

(3.8a)

\[
\frac{\partial Q_\nu(z)}{\partial \nu} \bigg|_{\nu=1} = -z \text{Li}_2 \frac{1-z}{2} - \frac{1}{2} \ln \frac{z+1}{2} \ln \frac{z-1}{2} + \left(\frac{1}{2} + \frac{1}{2} \ln \frac{z+1}{2} \right) \ln \frac{z-1}{2} - \frac{\pi^2}{6} z + 1,
\]

(3.8b)

\[
\frac{\partial Q_\nu(z)}{\partial \nu} \bigg|_{\nu=2} = -\left(\frac{3}{4} z^2 + \frac{1}{2} \right) \text{Li}_2 \frac{1-z}{2} + \left(\frac{3}{4} z^2 + \frac{1}{4} \right) \ln \frac{z+1}{2} \ln \frac{z-1}{2} + \left(\frac{7}{8} z^2 + \frac{3}{4} z - \frac{1}{8} \right) \ln \frac{z+1}{2} + \left(-\frac{7}{8} z^2 + \frac{3}{4} z + \frac{1}{8} \right) \ln \frac{z-1}{2} - \frac{\pi^2}{4} z^2 + \frac{5}{4} z + \frac{\pi^2}{12},
\]

(3.8c)

\[
\frac{\partial Q_\nu(z)}{\partial \nu} \bigg|_{\nu=3} = -\left(\frac{5}{2} z^3 + \frac{3}{2} z^2 \right) \text{Li}_2 \frac{1-z}{2} + \left(\frac{5}{4} z^3 + \frac{3}{4} z^2 \right) \ln \frac{z+1}{2} \ln \frac{z-1}{2} + \left(\frac{37}{24} z^3 + \frac{5}{4} z^2 - \frac{5}{8} z - \frac{1}{3} \right) \ln \frac{z+1}{2} + \left(-\frac{37}{24} z^3 + \frac{5}{4} z^2 + \frac{5}{8} z - \frac{1}{3} \right) \ln \frac{z-1}{2} - \frac{5 \pi^2}{12} z^3 + \frac{23}{12} z^2 + \frac{\pi^2}{4} z - \frac{5}{9}.
\]

(3.8d)

We find it remarkable that coefficients in the polynomial part of \(\partial Q_\nu(z)/\partial \nu \rvert_{\nu=n} \) are alternately irrational and rational.

3.2 The derivatives \(\partial Q_\nu(x)/\partial \nu \rvert_{\nu=n} \) for \(-1 < x < 1 \)

On the real interval \(-1 < x < 1\), the Legendre function of the second kind, \(Q_\nu(x) \), is defined as the average of the limits \(Q_\nu(x+i0) \) and \(Q_\nu(x-i0) \) resulting when \(z \) approaches \(x \) from the upper (\(\text{Im } z > 0 \)) and lower (\(\text{Im } z < 0 \)) half-planes, respectively. One has

\[
Q_\nu(x) = \frac{1}{2} \left[Q_\nu(x+i0) + Q_\nu(x-i0) \right] \quad (-1 < x < 1),
\]

(3.9)

and consequently

\[
\frac{\partial Q_\nu(x)}{\partial \nu} \bigg|_{\nu=n} = \frac{1}{2} \left(\frac{\partial Q_\nu(x+i0)}{\partial \nu} \bigg|_{\nu=n} + \frac{1}{2} \frac{\partial Q_\nu(x-i0)}{\partial \nu} \bigg|_{\nu=n} \right).
\]

(3.10)
From this, with the use of Eq. (3.7) and the identity
\[x - 1 \pm 0 = e^{\pm i\pi} (1 - x) \quad (-1 < x < 1), \]
(3.11)

one finds that
\[
\partial Q_{\nu}(x) \bigg|_{\nu=n} = -P_n(x) \operatorname{Li}_2 \left(\frac{1 - x}{2}\right) - \frac{1}{2} P_n(x) \ln \frac{1 + x}{2} - \frac{1}{2} \ln \frac{1 - x}{2} + \frac{1}{4} B_n(x) \ln \frac{1 + x}{2}
\]
\[- \frac{(-1)^n}{4} B_n(-x) \ln \frac{1 - x}{2} - \frac{\pi^2}{6} P_n(x) + \frac{1}{4} C_n(x) - \frac{(-1)^n}{4} C_n(-x) \quad (n \in \mathbb{N}_0). \]
(3.12)

There is no need to provide here explicit representations for the derivatives \(\partial Q_{\nu}(x) / \partial \nu \big|_{\nu=n} \) for several lowest non-negative values of \(n \). As it is seen from Eqs. (3.7) and (3.12), such representations for \(0 \leq n \leq 3 \) may be immediately deduced from Eqs. (3.8a)–(3.8d) after the replacement of \(z \) with \(x \) is made everywhere in the latter set of equations, except for the logarithm \(\ln[(z - 1)/2] \), which is to be substituted with \(\ln[(1 - x)/2] \).

Acknowledgments

I wish to thank Dr. George P. Schramkowski for kindly communicating to me the formula in Eq. (1.3) and for the subsequent inspiring correspondence.

A Appendix: Proofs of summation formulas used in Sec. 2.4

A.1 The summation formulas (2.38) and (2.44)

We denote
\[
S_1 = \sum_{k=m}^{n-1} (-1)^{n+k} \frac{2k + 1}{(n - k)(n + k + 1)} \quad (0 \leq m \leq n - 1).
\]
(A.1.1)

We have
\[
S_1 = \sum_{k=m}^{n-1} (-1)^{n+k} \frac{n-k}{n} - \sum_{k=m}^{n-1} (-1)^{n+k} \frac{n+k+1}{n+k+1}
\]
(A.1.2)

and further
\[
S_1 = \sum_{k=1}^{n+m} \frac{(-1)^k}{k} + \sum_{k=n+m+1}^{2n} \frac{(-1)^k}{k} = \sum_{k=1}^{n-m} \frac{(-1)^k}{k} + \sum_{k=1}^{2n} \frac{(-1)^k}{k} - \sum_{k=1}^{n+m} \frac{(-1)^k}{k}.
\]
(A.1.3)

However, it is easy to show that
\[
\sum_{k=1}^{N} \frac{(-1)^k}{k} = -\sum_{k=1}^{N} \frac{1}{k} + \sum_{k=1}^{\lfloor N/2 \rfloor} \frac{1}{k} \quad (N \in \mathbb{N}_0),
\]
(A.1.4)

where \(\lfloor x \rfloor = \max\{n \in \mathbb{Z} : n \leq x\} \) stands for the integer part of \(x \). Since
\[
\sum_{k=1}^{N} \frac{1}{k} = \psi(N + 1) - \psi(1) \quad (N \in \mathbb{N}_0),
\]
(A.1.5)

with \(\psi(z) = d \ln \Gamma(z)/dz \) being the digamma function, Eq. (A.1.4) may be rewritten in the form
\[
\sum_{k=1}^{N} \frac{(-1)^k}{k} = -\psi(N + 1) + \psi \left(\left\lfloor \frac{N}{2} \right\rfloor + 1 \right) \quad (N \in \mathbb{N}_0).
\]
(A.1.6)
Application of the result (A.1.6) to each of the three sums on the extreme right-hand side of Eq. (A.1.3) gives finally
\[
\sum_{k=m}^{n-1} (-1)^{n+k} \frac{2k + 1}{(n - k)(n + k + 1)} = -\psi(2n + 1) + \psi(n + m + 1) + \psi(n + 1) - \psi(n - m + 1) - \psi \left(\left\lfloor \frac{n + m}{2} \right\rfloor + 1 \right) + \psi \left(\left\lfloor \frac{n - m}{2} \right\rfloor + 1 \right) \quad (0 \leq m \leq n - 1). \tag{A.1.7}
\]
After \(k \) is interchanged with \(m \), Eq. (A.1.7) becomes identical with Eq. (2.38).

For \(m = 0 \), Eq. (A.1.7) becomes
\[
\sum_{k=0}^{n-1} (-1)^{n+k} \frac{2k + 1}{(n - k)(n + k + 1)} = -\psi(2n + 1) + \psi(n + 1), \tag{A.1.8}
\]
which is Eq. (2.44).

A.2 The summation formula (2.45)

We denote
\[
S_2 = \sum_{k=0}^{n-1} (-1)^{k} \frac{2k + 1}{(n - k)(n + k + 1)} \sum_{m=k}^{n-1} (-1)^{m} \frac{2m + 1}{(n - m)(n + m + 1)}. \tag{A.2.1}
\]
Application of the identity
\[
\sum_{k=0}^{N_2} f_k \sum_{m=0}^{N_2} f_m = \frac{1}{2} \left(\sum_{k=0}^{N_2} f_k \right)^2 + \frac{1}{2} \sum_{k=0}^{N_2} f_k^2 \quad (N_1 \leq N_2) \tag{A.2.2}
\]
transforms Eq. (A.2.1) into
\[
S_2 = \frac{1}{2} \sum_{k=0}^{n-1} (-1)^{k} \frac{2k + 1}{(n - k)(n + k + 1)} \right)^2 + \frac{1}{2} \sum_{k=0}^{n-1} \frac{(2k + 1)^2}{(n - k)^2(n + k + 1)^2}. \tag{A.2.3}
\]
from which, with the help of Eqs. (A.1.8) and (A.3.7), we obtain
\[
\sum_{k=0}^{n-1} (-1)^{k} \frac{2k + 1}{(n - k)(n + k + 1)} \sum_{m=k}^{n-1} (-1)^{m} \frac{2m + 1}{(n - m)(n + m + 1)} = \frac{\pi^2}{12} - \frac{\gamma}{2n + 1} + \frac{1}{2} \psi'(2n + 1) - \psi(n + 1) \left| 2n + 1 \right| - \frac{1}{2} \psi(2n + 1), \tag{A.2.4}
\]
which is Eq. (2.45).

To prove the identity (A.2.2), we write the obvious chain of equalities (\(N_1 \leq N_2 \) is assumed)
\[
\left(\sum_{k=N_1}^{N_2} f_k \right)^2 = \sum_{k=N_1}^{N_2} f_k \sum_{m=N_1}^{N_2} f_m = \sum_{k=N_1}^{N_2} f_k \sum_{m=N_1}^{k} f_m + \sum_{k=N_1}^{N_2} f_k \sum_{m=k}^{N_2} f_m - \sum_{k=N_1}^{N_2} f_k^2. \tag{A.2.5}
\]
Manipulating with the first term on the extreme right-hand side of Eq. (A.2.5), we have
\[
\sum_{k=N_1}^{N_2} f_k \sum_{m=N_1}^{k} f_m = \sum_{k=N_1}^{N_2} f_k \sum_{m=k}^{N_2} f_m = \sum_{k=N_1}^{N_2} f_k \sum_{m=k}^{N_2} f_m. \tag{A.2.6}
\]
Plugging the result (A.2.6) into Eq. (A.2.5), we obtain

\[
\left(\sum_{k=N_1}^{N_2} f_k \right)^2 = 2 \sum_{k=N_1}^{N_2} f_k \sum_{m=k}^{N_2} f_m - \sum_{k=N_1}^{N_2} f_k^2, \tag{A.2.7}
\]

from which the identity in Eq. (A.2.2) follows immediately.

A.3 The summation formula (2.46)

We denote

\[
S_3 = \sum_{k=0}^{n-1} \frac{(2k+1)^2}{(n-k)^2(n+k+1)^2}. \tag{A.3.1}
\]

If we carry out the partial fraction decomposition of the summand, we have

\[
S_3 = \sum_{k=0}^{n-1} \frac{1}{(n-k)^2} + \sum_{k=0}^{n-1} \frac{1}{(n+k+1)^2} = \frac{1}{2n+1} \sum_{k=0}^{n-1} \frac{1}{n-k} - \frac{2}{2n+1} \sum_{k=0}^{n-1} \frac{1}{n+k+1}, \tag{A.3.2}
\]

and further, after obvious rearrangements,

\[
S_3 = \sum_{k=0}^{2n-1} \frac{1}{(k+1)^2} - \frac{2}{2n+1} \sum_{k=1}^{2n-1} \frac{1}{k}. \tag{A.3.3}
\]

Now, it holds that

\[
\sum_{k=0}^{N-1} \frac{1}{(k+1)^2} = \sum_{k=0}^{\infty} \frac{1}{(k+1)^2} - \sum_{k=0}^{\infty} \frac{1}{(k+N+1)^2} = \psi_1(1) - \psi_1(N+1) \quad (N \in \mathbb{N}_0), \tag{A.3.4}
\]

where \(\psi_1(z) = d\psi(z)/dz \) is the trigamma function. On employing Eqs. (A.3.4) and (A.1.5) in Eq. (A.3.3), after using the well-known relations

\[
\psi(1) = -\gamma \quad \tag{A.3.5}
\]

(here and below \(\gamma \) stands for the Euler–Mascheroni constant) and

\[
\psi_1(1) = \frac{\pi^2}{6}, \tag{A.3.6}
\]

we finally obtain

\[
\sum_{k=0}^{n-1} \frac{(2k+1)^2}{(n-k)^2(n+k+1)^2} = \frac{\pi^2}{6} - \frac{2\gamma}{2n+1} - \frac{2}{2n+1} \psi(2n+1) - \psi_1(2n+1), \tag{A.3.7}
\]

which is Eq. (2.46).

A.4 The summation formula (2.47)

We denote

\[
S_4 = \sum_{k=0}^{n-1} (-1)^{n+k} \frac{(2n+1)(2k+1)}{(n-k)^2(n+k+1)^2}. \tag{A.4.1}
\]

A partial-fraction decomposition of the summand gives

\[
S_4 = \sum_{k=0}^{n-1} (-1)^{n+k} \frac{1}{(n-k)^2} - \sum_{k=0}^{n-1} (-1)^{n+k} \frac{1}{(n+k+1)^2}. \tag{A.4.2}
\]
With a little bit of algebra on the right-hand side of Eq. (A.4.2), we obtain

$$S_4 = \sum_{k=0}^{2n-1} \frac{(-1)^{k+1}}{(k+1)^2}$$

(A.4.3)

and further

$$S_4 = -\sum_{k=0}^{2n-1} \frac{1}{(k+1)^2} + \frac{1}{2} \sum_{k=0}^{n-1} \frac{1}{(k+1)^2}.$$

(A.4.4)

From this, with reference to Eqs. (A.3.4) and (A.3.6), we eventually arrive at

$$\sum_{k=0}^{n-1} (-1)^{n+k} \frac{(2n+1)(2k+1)}{(n-k)(n+k+1)^2} = -\frac{\pi^2}{12} + \psi_1(2n+1) - \frac{1}{2}\psi_1(n+1),$$

(A.4.5)

which is Eq. (2.47).

References

[1] J. Froehlich, Parameter derivatives of the Jacobi polynomials and the Gaussian hypergeometric function, Integral Transforms Spec. Funct. 2 (1994) 253

[2] W. Koepf, Identities for families of orthogonal polynomials and special functions, Integral Transforms Spec. Funct. 5 (1997) 69

[3] R. Szmytkowski, A note on parameter derivatives of classical orthogonal polynomials, arXiv:0901.2639

[4] R. Aktaş, A note on parameter derivatives of the Jacobi polynomials on the triangle, Appl. Math. Comput. 247 (2014) 368

[5] R. Aktaş, On parameter derivatives of a family of polynomials in two variables, Appl. Math. Comput. 256 (2015) 769

[6] R. Aktaş, Representations for parameter derivatives of some Koornwinder polynomials in two variables, J. Egyptian Math. Soc. 24 (2016) 555

[7] Yu. A. Brychkov, K. O. Geddes, On the derivatives of the Bessel and Struve functions with respect to the order, Integral Transforms Spec. Funct. 16 (2005) 187

[8] J. Sesma, Derivatives with respect to the order of the Bessel function of the first kind, arXiv:1401.4850

[9] T. M. Dunster, On the order derivatives of Bessel functions, Constr. Approx. (2016) doi:10.1007/s00365-016-9355-1

[10] Yu. A. Brychkov, Higher derivatives of the Bessel functions with respect to the order, Integral Transforms Spec. Funct. 27 (2016) 566

[11] R. Szmytkowski, On the derivative of the Legendre function of the first kind with respect to its degree, J. Phys. A 39 (2006) 15147 [corrigendum: J. Phys. A 40 (2007) 7819]

[12] R. Szmytkowski, Addendum to ‘On the derivative of the Legendre function of the first kind with respect to its degree’, J. Phys. A 40 (2007) 14887

[13] R. Szmytkowski, On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order), J. Math. Chem. 46 (2009) 231
[14] Yu. A. Brychkov, On the derivatives of the Legendre functions $P^\mu_\nu(z)$ and $Q^\mu_\nu(z)$ with respect to μ and ν, Integral Transforms Spec. Funct. 21 (2010) 175

[15] H. S. Cohl, Derivatives with respect to the degree and order of associated Legendre functions for $|z| > 1$ using modified Bessel functions, Integral Transforms Spec. Funct. 21 (2010) 581

[16] H. S. Cohl, On parameter differentiation for integral representations of associated Legendre functions, Sym. Integ. Geom.: Meth. Appl. (SIGMA) 7 (2011) 050

[17] R. Szmytkowski, On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree (with applications to the construction of the associated Legendre function of the second kind of integer degree and order), J. Math. Chem. 49 (2011) 1436

[18] R. Szmytkowski, On parameter derivatives of the associated Legendre function of the first kind (with applications to the construction of the associated Legendre function of the second kind of integer degree and order), J. Math. Anal. Appl. 386 (2012) 332

[19] J. Abad, J. Sesma, Successive derivatives of Whittaker functions with respect to the first parameter, Comput. Phys. Commun. 156 (2003) 13

[20] L. U. Ancarani, G. Gasaneo, Derivatives of any order of the confluent hypergeometric function $\, _1F_1(a, b, z)$ with respect to the parameter a or b, J. Math. Phys. 49 (2008) 063508

[21] L. U. Ancarani, G. Gasaneo, Derivatives of any order of the Gaussian hypergeometric function $\, _2F_1(a, b, c; z)$ with respect to the parameters a, b and c, J. Phys. A 42 (2009) 395208

[22] L. U. Ancarani, G. Gasaneo, Derivatives of any order of the hypergeometric function $\, _pF_q(a_1, \ldots, a_p; b_1, \ldots, b_q; z)$ with respect to the parameters a_i and b_i, J. Phys. A 43 (2010) 085210

[23] L. Lewin, Polylogarithms and Associated Functions, North-Holland, New York, 1981

[24] T. M. Apostol, Zeta and related functions, in: NIST Handbook of Mathematical Functions, edited by F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, Cambridge University Press, Cambridge, 2010 (Sec. 25.12)

[25] R. Szmytkowski, The derivatives $[\partial^2 P_\nu(z)/\partial \nu^2]_{\nu=0}$ and $[\partial^3 P_\nu(z)/\partial \nu^3]_{\nu=0}$, where $P_\nu(z)$ is the Legendre function of the first kind, arXiv:1301.6586

[26] B. J. Laurenzi, Derivatives with respect to the order of the Legendre polynomials, arXiv:1502.06507

[27] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer, Berlin, 1966

15