Photosynthetic assimilation of CO₂ regulates TOR activity

Manuel J. Mallén-Ponce*, Maria Esther Pérez-Pérez*, and José L. Crespoa,1

*Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas–Universidad de Sevilla, Sevilla 41092, Spain

Edited by Michael Hall, Biozentrum, Universitat Basel, Basel, Switzerland; received August 18, 2021; accepted November 29, 2021

The target of rapamycin (TOR) kinase is a master regulator that integrates nutrient signals to promote cell growth in all eukaryotes. It is well established that amino acids and glucose are major regulators of TOR signaling in yeast and metazoan, but whether and how TOR responds to carbon availability in photosynthetic organisms is less understood. In this study, we showed that photosynthetic assimilation of CO₂ by the Calvin–Benson–Bassham (CBB) cycle regulates TOR activity in the model single-celled microalga Chlamydomonas reinhardtii. Stimulation of CO₂ fixation boosted TOR activity, whereas inhibition of the CBB cycle and photosynthesis down-regulated TOR. We uncovered a tight link between TOR activity and the endogenous level of a set of amino acids including Ala, Glu, Gln, Leu, and Val through the modulation of CO₂ fixation and the use of amino acid synthesis inhibitors. Moreover, the finding that the Chlamydomonas starch-deficient mutant sta6 displayed disproportionate TOR activity and high levels of most amino acids, particularly Gln, further connected carbon assimilation and amino acids to TOR signaling. Thus, our results showed that CO₂ fixation regulates TOR signaling, likely through the synthesis of key amino acids.

TOR kinase | CO₂ | amino acids | Chlamydomonas

The target of rapamycin (TOR) kinase is a fundamental regulator of cell growth and metabolism that integrates nutrient and energy signals to the cell growth machinery (1, 2). TOR associates to other proteins to constitute two functionally and architecturally distinct complexes, termed TOR complexes 1 and 2 (TORC1 and TORC2) (3). The core components of TORC1 include the TOR kinase, Raptor/Kog1 and LST8, whereas TORC2 is composed of TOR, LST8, Sin1/Avo1, and Rictor/Avo3. Like TOR itself, TORC1 and TORC2 are highly conserved in eukaryotes, although TORC2-specific components have not been identified in the green lineage (Viridiplantae).

TOR promotes cell growth in response to the availability of nutrients, activating anabolicism and inhibiting catabolism under favorable conditions. Amino acids are main activators ofTORC1 signaling in yeast and metazoans, although activation of this pathway in multicellular organisms requires additional input from growth factors (4, 5). In mammals, amino acid abundance is mainly signaled to mTORC1 via the small GTPases RAGs and RHEB and the lysosomal Regulator complex, while amino acid signaling to TOR is partially conserved in yeast (4, 6). It is currently unknown how many different amino acids are sensed by TORC1 in yeast and mammals, but leucine and arginine are key regulators of mTORC1 activity, and yeast TORC1 responds preferentially to glutamine (4).

TORC1 is structurally and functionally conserved in plants. In Arabidopsis thaliana, TORC1 promotes cell growth by regulating fundamental processes, including ribosome biogenesis, transcription, cell expansion, autophagy, metabolism, and nutrient assimilation (7–9). However, upstream regulators of yeast and mammalian TORC1 such as RAGs and RHEB are not conserved in plants, suggesting that different regulatory mechanisms may operate in these organisms. Plant TOR integrates hormone and stress signals, but the underlying mechanisms are poorly understood. The plant hormones auxin and ABA have been identified as positive and negative regulators, respectively, of TOR signaling in Arabidopsis (10, 11).

Energy and nutrients are also key regulators of TOR activity in plants. An original study performed in Arabidopsis seedlings demonstrated that exogenous glucose activates TOR kinase activity through glycolysis-mitochondria–mediated energy and metabolic relays (12). Neither hormones nor amino acids can substitute for glucose, suggesting that different inputs may act on plant TOR (12). Mounting evidence indicates that amino acid availability modulates TOR activity in plants. Inhibition of branched chain amino acid biosynthesis by genetic or chemical approaches led to TOR inhibition (13, 14), whereas addition of glutamine or isoleucine to leaf discs from Arabidopsis stimulates TOR activity (15). In plants, nitrogen is taken up by roots, and studies performed in TOR-overexpressing seedlings correlated root elongation with TOR function under excess nutrient, suggesting that nitrogen is an important nutrient for TOR signaling (16). Supporting this hypothesis, it has been shown that nitrogen, ammonium, and glutamine promote TOR activity via activation of the small GTPase ROP2 (17).

TORC1 components are widely conserved in algal genomes, including freshwater and marine species (18, 19). Studies performed in the model green alga Chlamydomonas reinhardtii (hereafter Chlamydomonas) provided new insights into TOR signaling in photosynthetic eukaryotes (20). Biochemical evidence revealed the presence of Chlamydomonas TOR in a high-molecular-mass complex that associates with microsomal...
membranes (21). The sensitivity of Chlamydomonas to rapamycin has been exploited to dissect TOR signaling in this alga (22). Chemical inhibition of Chlamydomonas TORC1 with rapamycin blocks translation (23), induces the synthesis and storage of triacylglycerol (24), and triggers autophagy (25). Transcriptomic and metabolomic studies of Chlamydomonas cells treated with rapamycin uncovered TOR as a central regulator of primary metabolism (26, 27). Moreover, quantitative phosphoproteomic analysis following TOR inhibition identified proteins involved in translation, carotenoid biosynthesis, autophagy, and cell signaling (28, 29).

Despite recent progress on the study of TOR signaling in algae, little is known about upstream regulation of this pathway by nutrients and the underlying mechanisms. The similar response of TOR inhibition and nitrogen starvation suggested that this nutrient might regulate TOR signaling in Chlamydomonas (22, 24, 25, 27, 30). The TOR kinase has also been connected to inositol polyphosphate metabolism in Chlamydomonas, but the precise role of these molecules in TOR signaling is currently unknown (31). A recent study demonstrated that polysaccharide availability regulates TOR activity via LST8 in Chlamydomonas. Phosphorus starvation results in a sharp decrease in LST8 abundance and downregulation of TOR activity (32). The transcription factor PSR1, a global regulator of the phosphorus starvation response in Chlamydomonas (33), has been linked to the control of TOR signaling, as neither LST8 level nor TOR activity is properly regulated in PSR1-defective cells (32).

Photosynthetic organisms are able to fix inorganic carbon as inorganic CO2 to more reduced organic forms, a fundamental process that sustains life on Earth. This reaction is driven by the Calvin-Benson-Bassham (CBB) cycle in the chloroplast of plant and algal cells. Although nutrients such as nitrogen, phosphorus, sulfur, amino acids, and glucose have been shown to regulate TOR in different organisms, it is currently unknown whether this signaling pathway responds to inorganic carbon. In this study, we aimed to investigate whether carbon availability regulates TOR signaling using Chlamydomonas as model system. Our results demonstrated that the carbon source is a main regulator of TOR activity. We found that the photosynthetic assimilation of CO2 efficiently activates TOR, probably through the synthesis of central amino acids.

Results

The Carbon Source Modulates TOR Activity. Given the fundamental role of TOR in coupling nutrient availability to cell growth, we investigated whether the carbon source regulates TOR in Chlamydomonas. To this aim, we monitored TOR activity in wild-type cells with atmospheric CO2 as the sole carbon source (high saline medium, HSM) or using acetate as an additional carbon source [Tris-acetate-phosphate (TAP) medium], which sustains robust growth and biomass productivity in Chlamydomonas (ref. 34; Fig. 1A). The analysis of RPS6 phosphorylation, an established readout of TOR activity in Chlamydomonas (35), revealed a twofold increase in TOR activity in TAP-grown cells (Fig. 1B), which is consistent with a previous report showing stimulation of TOR activity under mixotrophic conditions in Chlamydomonas (30). The abundance of TOR and LST8 proteins was similar in cells grown either with acetate or atmospheric CO2 (Fig. 1B), indicating that the carbon source might influence TOR activity without altering the level of TORC1 proteins.

Amino acids are main regulators of TOR signaling (4, 5), and a significant portion of assimilated carbon is invested in the synthesis of amino acids in Chlamydomonas (34). Thus, to understand why TAP-grown cells displayed higher TOR activity compared to HSM-grown cells, we analyzed the concentration of all amino acids in both conditions. The total amino acid content was around 40% higher in cells using acetate as additional carbon source (SI Appendix, Fig. S1A), and the level of eight amino acids increased significantly (Fig. 1C). This subset of up-regulated amino acids included Glu, Gin, Ala, Val, Leu, Met, Gly, and Pro, some of which (Ala, Leu, Glu, Gin) are among the most abundant amino acids in Chlamydomonas (SI Appendix, Fig. SIB). Taken together, these results showed that the carbon source controls TOR activity in Chlamydomonas and pinpoint amino acids as potential TOR regulators.

CO2 Fixation Promotes TOR Activity. To investigate the link between TOR and carbon assimilation in Chlamydomonas, we analyzed the effect of HCO3− on RPS6 phosphorylation under autotrophic growth conditions. In aquatic systems, microalgae like Chlamydomonas actively transport and efficiently use HCO3− as the carbon source for photosynthesis (ref. 35; Fig. 24). Accordingly, it is well established that the addition of HCO3− to Chlamydomonas cells potently augments photosynthesis (ref. 36; Fig. 2B). In this study, we found that HCO3− boosted RPS6 phosphorylation within 30 min, indicating that the assimilation of HCO3− triggers TOR activity in Chlamydomonas (Fig. 24). The impact of HCO3− on TOR activity mirrored the stimulation of photosynthesis as both RPS6 phosphorylation and O2 production gradually decreased following the 30-min HCO3− boost (Fig. 2B and C). We also analyzed whether HCO3− might change the abundance of TOR and LST8 proteins, but no significant effect was detected (Fig. 2C). To demonstrate that TOR mediates the increased phosphorylation of RPS6 in response to HCO3−, we examined RPS6 phosphorylation upon HCO3− addition in rapamycin-treated cells. Indeed, inhibition of TOR by rapamycin fully prevented the HCO3−-induced phosphorylation of RPS6 (Fig. 2D).

We next investigated the mechanism by which HCO3− promotes TOR activity in Chlamydomonas. For its assimilation, HCO3− must be converted to CO2 through the carboxyl anhydrase CAH3 localized in the thylakoid lumen, and then rubisco catalyzes the formation of 3-phosphoglycerate (3PG) from ribulose-1,5-bisphosphate (RuBP) and CO2, a key reaction in the CBB cycle (ref. 34; Fig. 24). To study the possible effect of disrupting CO2 fixation on TOR, we used glycolaldehyde (GLA), a specific inhibitor of phosphoribulokinase (PRK) activity that interrupts the CBB cycle and inactivates photosynthesis (37). We indeed confirmed that GLA blocks PSI activity in our experimental setup within 30 to 60 min (SI Appendix, Fig. S2). GLA treatment led to a strong decrease of RPS6 phosphorylation that was detectable within 2 h following GLA addition (Fig. 2E). Moreover, we found that the inhibition of the CBB cycle by GLA abolished the HCO3−-mediated up-regulation of TOR activity (Fig. 2F), indicating that disruption of CO2 fixation inhibits TOR activity in Chlamydomonas.

Photosynthetic carbon assimilation constitutes a major source of intermediates for the synthesis of amino acids. We thus analyzed whether HCO3−-induced stimulation of photosynthesis might change the amino acid content in Chlamydomonas. Excluding Ser and Gly, the level of all amino acids increased within 30 min of HCO3− addition (Fig. 2G). Some amino acids (Val, Leu, Ile, Thr, Pro, Met, Phe, Tyr) remained high, while others (Ala, Glu, Gin, Asp, Asn, Lys, His, Arg, Trp) gradually decreased in the time course of the experiment. Among the transiently up-regulated amino acids, Ala, Glu, Gin, Asp, and Asn displayed a similar trend to TOR activity, peaking at 30 min after HCO3− addition. Moreover, Ala and Glu were the amino acids most highly induced by HCO3− at 30 min (Fig. 2G). We also studied the effect of GLA on the amino acid content in Chlamydomonas. In contrast to HCO3−, inhibition of CO2 fixation by GLA caused a progressive decline of most amino acids (Fig. 2H). The negative effect of GLA on the amino acid content and TOR activity was evident after 2 to 4
cells resulted in a fast and strong reactivation of TOR (Fig. 3, Appendix). Interestingly, reillumination of dark-adapted TOR by light, we analyzed the effect of a dark-to-light transition on TOR activity. Based on the regulatory role that CO₂ fixation plays on synthesis provides ATP and NADPH required for carbon fixation. Inhibition of Photosynthesis Down-Regulates TOR Activity. Photosynthesis provides ATP and NADPH required for carbon fixation. Based on the regulatory role that CO₂ fixation plays on TOR activity (Fig. 2), we speculated that the disruption of photosynthesis might disturb TOR signaling in *Chlamydomonas*. To test this hypothesis, we monitored TOR activity in air-grown *Chlamydomonas* cells subjected to darkness or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Our results showed that the inhibition of photosynthesis by darkness or DCMU (*SI Appendix, Fig. S2*) led to a gradual and pronounced decrease of TOR activity (Fig. 2A and B). To characterize the regulation of TOR by light, we analyzed the effect of a dark-to-light transition on TOR activity. Interestingly, reillumination of dark-adapted cells resulted in a fast and strong reactivation of TOR (Fig. 3C). Moreover, we found that inhibition of CO₂ fixation by GLA fully prevented the reactivation of TOR by light (Fig. 3C), further supporting the regulation of TOR by carbon fixation.

We also determined the amino acid content in *Chlamydomonas* cells subjected to darkness or treated with DCMU. Two clusters of amino acids with similar patterns were detected under both conditions. About half of the amino acids declined, following a similar trend to TOR activity, while the other half increased in response to photosynthesis inhibition (Fig. 3D). The subset of down-regulated amino acids included Ala, Glu, Gln, Leu, and Val, whose levels were also found to correlate with the relative amount of NH₄⁺ under these conditions (*SI Appendix, Fig. S2*). These results revealed a tight link between TOR activity and the endogenous level of some amino acids including Ala, Glu, Gln, Leu, and Val in response to the stimulation or inhibition of CO₂ fixation.

The Abundance of Intracellular Amino Acids Regulates TOR Activity. We aimed to establish a direct role of amino acids in the control of TOR signaling by carbon fixation. Given the inability of *Chlamydomonas* cells to transport amino acids other than Arg (38), in order to show a direct link between intracellular amino acids and TOR, we blocked the synthesis of central amino acids. For this purpose, we treated *Chlamydomonas* cells with sulfometuron methyl (SMM), an inhibitor of acetolactate synthase that catalyzes the first common step in the biosynthesis of Ala and Val (ref. 39; Fig. 4A), and aminooxyacetate (AOA), which blocks Ala formation by inhibiting alanine aminotransferase (ref. 40; Fig. 4A). The analysis of the amino acid profile of SMM- and AOA-treated cells confirmed the efficiency of the two inhibitors. As expected, SMM caused a sharp drop of Leu...
and Val, whereas AOA led to a pronounced decrease of Ala (Fig. 4B). However, the down-regulation of Leu, Val, and Ala synthesis by SMM and AOA also resulted in a strong increase of some amino acids, probably because of the redirection of fixed carbon to the synthesis of other amino acids and/or the activity of transaminases. Indeed, SMM boosted the level of Gln, Glu, and Ala among other amino acids while AOA markedly raised Leu, Val, Gln, Glu, Asp, Asn, and Pro abundance (Fig. 4B). We next analyzed the effect of SMM and AOA on TOR activity. Notably, TOR activity was up-regulated in cells treated with these inhibitors, indicating that TOR responds to changes in amino acid abundance (Fig. 4C). Moreover, we found that the inhibition of carbon fixation by GLA fully prevented the up-regulation of TOR induced by SMM and AOA (Fig. 4D). Thus, our results revealed that carbon fixation is the primary regulator of TOR activity in SMM- and AOA-treated cells and demonstrated a direct link between the abundance of intracellular amino acids and TOR in *Chlamydomonas*.

Starch Deficiency Up-Regulates TOR Activity. Starch biosynthesis is an essential outlet of photosynthetic electron transport. In *Chlamydomonas*, it has been shown that the disruption of starch synthesis results in a pronounced drop in photosynthetic capacity and the redirection of photosynthetically fixed carbon.
under autotrophic conditions (41). Thus, to further explore the connection between TOR and carbon fixation in *Chlamydomonas*, we analyzed TOR activity in the **sta6** mutant, which is unable to synthesize starch because of the lack of the enzyme ADP glucose pyrophosphorylase (42). Since the **sta6** mutant was generated in the cell wall-deficient **cw15** background (42), first of all we confirmed that **cw15** and wild-type cells display the same basal TOR activity in our experimental setup (SI Appendix, Fig. S3A). Actually, we also determined the amino acid profile in both strains, and no significant differences were detected for any amino acid (SI Appendix, Fig. S3B). Remarkably, the analysis of RPS6 phosphorylation in **sta6** cells revealed a much higher TOR activity in this mutant compared to the **cw15** strain (Fig. S4A), indicating that the inability to synthesize starch up-regulates TOR. To exclude that the up-regulation of TOR activity in **sta6** cells might be related to additional mutations reported in this strain (43), we also monitored RPS6 phosphorylation in a **sta6**-rescued strain (44). As anticipated, the complemented **sta6** strain exhibited the same level of RPS6 phosphorylation as **cw15** cells (SI Appendix, Fig. S4A).

Given the tight connection found between TOR activity and the amino acid content in *Chlamydomonas*, we determined the amino acid abundance of **sta6** cells under autotrophic growth. The total amino acid content was around 60% higher in **sta6** cells than in **cw15** and **sta6** cells. All amino acids other than Lys, Thr, Tyr, Trp, and Phe were up-regulated in **sta6** cells (Fig. 2B), although the most remarkable increase was detected in the Gln content, which was eight times higher (SI Appendix, Fig. S4C). To further investigate the misregulation of TOR in the starch-deficient **sta6** mutant, we determined TOR activity and amino acid abundance in this strain under conditions that either increase or diminish the activity of TOR. On the one hand, addition of HCO$_3^-$ to **cw15** and **sta6** cells stimulated TOR activity in both strains, although to a different range. Like in wild-type cells (Fig. 2B), HCO$_3^-$ led to a sevenfold raise of TOR activity in **cw15** cells, whereas this increase was less pronounced in the **sta6** mutant (Fig. 5C). The effect of HCO$_3^-$ in the amino acid content of **cw15** and **sta6** cells was similar, but some amino acids like Gln did not increase in the **sta6** mutant (Fig. 5B), probably because of the massive concentration of this amino acid before HCO$_3^-$ addition (SI Appendix, Fig. S4C). On the other hand, inhibition of CO$_2$ fixation or photosynthesis down-regulated TOR activity in **sta6** cells to levels comparable to the ones detected in **cw15** cells despite the much higher
TOR activity inherent to the starchless mutant (Fig. 5 D–F). The analysis of the amino acid content under these conditions revealed similar effects for most amino acids except Ile, Tyr, Thr, Trp, and Phe, which were less abundant in the sta6 mutant and markedly increased in response to the inhibition of CO2 fixation or photosynthesis (Fig. 5 B). Taken together, these results suggested that the higher TOR activity of the sta6 mutant might be due to the elevated concentration of key amino acids such as Gln, which activates TOR signaling in yeast and mammalian cells (4).

Discussion

The CBB cycle catalyzes the incorporation of inorganic CO2 into organic molecules, an essential process performed by photosynthetic organisms that keeps life on Earth. In this study, we found that CO2 fixation promotes the activity of the cell growth master regulator TOR in the green alga *Chlamydomonas*. The TOR pathway integrates different nutrient signals including the availability of organic carbon compounds like glucose. In non-photosynthetic eukaryotes, glucose is the major carbon source and TOR perceives glucose deficiency through the AMPK/Snf1 kinase (4). In plants, it has been shown that exogenous glucose taken up by root glucose transporters activates TOR kinase activity (12). Glucose-TOR signaling seems to be a main channel for the regulation of central metabolism in plants, as profound transcriptional reprogramming takes place in metabolic networks upon glucose stimulation of TOR (12). Chemical targeting of mitochondria demonstrated that glucose-mediated activation of plant TOR depends on mitochondrial electron transport chain and oxidative phosphorylation (12).

In the absence of exogenous carbon supply, CO2 fixation provides carbon skeletons for all reactions in photosynthetic cells. In order to sustain cell growth, a significant portion of fixed carbon is invested in the synthesis of amino acids (34). In close agreement, we found that HCO3/C02 addition to *Chlamydomonas* cells quickly increased the level of all amino acids except Gly and Ser, which are likely down-regulated due to a decrease of rubisco oxygenase activity and photorespiration (Fig. 2 G). Conversely, inhibition of CO2 fixation resulted in a sharp drop of most amino acids (Fig. 2 H), corroborating the role of fixed carbon in the synthesis of amino acids. Our results also demonstrated that carbon fixation regulates TOR activity in *Chlamydomonas*. Stimulation of CO2 fixation with HCO3/C02 boosted TOR activity, whereas inhibition of this fundamental process led to a strong decline of TOR activity (Fig. 2). Moreover, the amino acid profile of *Chlamydomonas* cells subjected to different carbon sources or treated with inhibitors of carbon fixation,
photosynthesis, or amino acid synthesis uncovered a close link between the kinase activity of TOR and the abundance of Ala, Glu, Gln, Leu, and Val (Fig. 6). Thus, in close agreement with the established and evolutionarily conserved role of amino acids as TOR regulators (4), our study strongly suggests that the modulation of TOR activity by fixed carbon in Chlamydomonas is ultimately governed by the intracellular abundance of a subset of key amino acids (Fig. 6).

In yeast and mammalian cells, Leu and Gln regulate TORC1 signaling via the RAG family of small GTPases (4). Recent studies performed in Arabidopsis indicated that amino acids are also key upstream signals for plant TOR activation. Accumulation of branched chained amino acids, particularly Val, in a mutant defective in Leu biosynthesis leads to up-regulation of TOR activity (13). Moreover, the same study showed that exogenous feeding of plants with Val, Leu, and Ile stimulated TOR activity (13). Similarly, incubation of Arabidopsis leaf discs in Ile or Gln up-regulated TOR activity (13). An in-depth analysis of TOR regulation by nitrogen and amino acids in Arabidopsis revealed an efficient activation of TOR by exogenously supplied amino acids, although with different capacities (17). A group of amino acids composed by Ala, Gln, Gly, Cys, Ser, Glu, Asp, and Leu exhibited
TOR activity in the synthesis of amino acids, particularly Gln, leading to a massive increase of Val, increasing with HCO₃⁻/NADPH to fuel chemical reactions from the CBB cycle. The availability of main carbon sink in photosynthetic cells. Photosynthesis provides ATP and carbon in Chlamydomonas of high potency for the regulation of TOR activity by inorganic CO₂ into organic molecules such as amino acids and starch, a main carbon sink in photosynthetic cells. Photosynthesis provides ATP and NADPH to fuel chemical reactions from the CBB cycle. The availability of fixed carbon modulates the endogenous level of Ala, Glu, Gln, Leu, and Val, increasing with HCO₃⁻ and decreasing upon inhibition of CO₂ fixation (GLA) or photosynthesis (DCMU, dark). These amino acids regulate TOR activity, which couples carbon sufficiency to cell growth. The inability of the sta6 mutant to synthesize starch redirects part of the fixed carbon to the synthesis of amino acids, particularly Gln, leading to a massive increase of TOR activity. Heat maps show the relative levels of amino acids and TOR activity in Chlamydomonas cells under the conditions indicated in Figs. 2, 3, and 5. Inhibitors of CO₂ fixation (GLA), photosynthesis (DCMU), and TOR (rap) are indicated.

Despite the evolutionary distance between plants and algae, our study in Chlamydomonas also connected TOR activity regulation to a similar set of amino acids. Fluctuations in carbon availability resulted in profound changes in TOR activity and the endogenous level of Ala, Glu, Gln, Leu, and Val, reinforcing the tight relationship among carbon fixation, amino acids, and TOR in photosynthetic organisms (Fig. 6). Furthermore, experiments performed with amino acid synthesis inhibitors demonstrated a direct connection between intracellular amino acid abundance and TOR. Blocking the synthesis of Ala or the branched chain amino acids Val and Leu resulted in a marked increase of other central amino acids and the up-regulation of TOR activity (Fig. 4). The amino acids identified in Chlamydomonas as potential TOR regulators are generated from the central carbon-skeleton donors pyruvate (Ala, Leu, and Val) and α-ketoglutarate (Glu and Gln) (/Appendix, Fig. S5). Remarkably, a similar conclusion was reached in Arabidopsis since addition of amino acids derived from pyruvate or the nitrogen-assimilation pathway exhibited the highest TOR-activating capacity (17). The same study also concluded that external supply of amino acids originating from glycolate (Gly, Ser) and sulfur-assimilation (Cys) pathways led to high activation of TOR (17). However, the endogenous levels of Gly, Ser, and Cys followed an opposite trend to TOR activation in Chlamydomonas (/Appendix, Fig. S5), precluding these amino acids as potential regulators of TOR activity in response to carbon availability.

The molecular mechanisms by which TOR perceives amino acids have been reported only in yeast and mammals. Yeast TORC1 seems to sense Leu availability through the Leu-transfer RNA synthetase (45). In mammalian cells, the cytosolic proteins Sestrin2 and Castor1 have been identified respectively as specific sensors of Leu and Arg acting upstream of mTORC1 (5). How mTORC1 perceives Gln is unclear, but it has been reported that activation of mTORC1 by Gln occurs via glutaminolysis (46). Neither orthologs of Leu and Arg sensors nor upstream mTORC1 regulators have been identified in plant and algal genomes, suggesting that the TOR pathway might have experienced specific evolutionary adaptations in the green lineage. Unlike yeast and mammals, algae and plants are autotrophic and can synthesize all amino acids using CO₂ as the sole carbon source. Thus, photosynthetic eukaryotes might have developed unique mechanisms to signal carbon and amino acid sufficiency to the TOR pathway.

The finding that the Chlamydomonas starchless mutant sta6 displays excessive TOR activity provided a further connection of carbon assimilation and amino acids to TOR signaling. Our results indicate that the inability of sta6 cells to synthesize starch redirects part of the assimilated carbon to the synthesis of amino acids (Fig. 5), as revealed by the higher abundance detected in the sta6 mutant of most amino acids, notably Gln, which increased eight times. Given the direct link identified in this study between amino acids and TOR (Fig. 4), it is plausible that redirection of fixed carbon to the synthesis of amino acids boosted TOR activity in the sta6 mutant (Fig. 6). Supporting this conclusion, we found that inhibition of carbon fixation or photosynthesis abolished the hyperactivation of TOR in sta6 cells (Fig. 5). The TOR pathway has been shown to regulate starch metabolism in plants and algae. Mutations in the LST78-1 gene or down-regulation of AITTOR expression triggers starch accumulation in Arabidopsis (47, 48). Similarly, treatment of Chlamydomonas or the unicellular red alga Cyanidioschyzon merolae with rapamycin increases the starch content (26, 49). However, the impact of starch deficiency on plant TOR signaling has not been explored yet. Our study suggests that starch might regulate cell growth in Chlamydomonas since starch deficiency activates TOR, the main growth-promoting pathway in the cell. This hypothesis is in agreement with a previous study in plants showing that starch acts as a major integrator in the regulation of plant growth (50).

In conclusion, we have shown that CO₂ fixation and photosynthesis activate TOR signaling in Chlamydomonas, likely
through the synthesis of key amino acids. The regulation of TOR and cell growth by inorganic carbon might have biotechnological implications in algae and plants. Photosynthetic organisms are responsible for converting sunlight and CO$_2$ into organic matter and are therefore visualized as a resource for the renewable fuel industry and a solution to mitigate the problems arising from previous contaminations of inorganic CO$_2$ (3). Therefore, modulation of TOR activity by inorganic carbon might help to improve biomass productivity in algae and plants, directly influencing agricultural yield or biofuel production.

Materials and Methods

C. reinhardtii Strains and Growth Conditions. *C. reinhardtii* strains used in this study were wild-type 4A, cw15, sta6, and complemented sta6 (termed as C6) and are available as CC-4051, CC-4349, CC-4348, and CC-4567, respectively, from the Chlamydomonas Resource Center (https://www.chlamycollection.org). Chlamydomonas cells were grown under standard illumination (~50 µE m$^{-2}$ s$^{-1}$ from light-emitting diode lamps) in HSM or TAP medium (38) on an orbital shaker (100 rpm) at 25 °C. When required, cells in exponential growth phase (~2 x 106 cells mL$^{-1}$) were treated with HCO$_3$ (Sigma-Aldrich, S5761), GLA (Sigma-Aldrich, G-9376), rapamycin (rap; Cayman Chemical, S31238-88-9), DCMU (Sigma-Aldrich, D7763), SMM (Sigma-Aldrich, 34224), or AOA (Sigma-Aldrich, C-14308) at the indicated concentrations and time. For light–dark transition experiments, cells grown in HSM were transferred from standard illumination to complete darkness for the indicated time. Growth rates were estimated during exponential growth phase according to the formula $\mu = \ln(N) / t$, where N and t represent the cell number at $t=0$ and at $t=t$, respectively. μ is expressed in h$^{-1}$. Cell number was determined using a Countess IIFL Automated Cell Counter (Invitrogen).

Protein Preparation, Western Blot Assays, and TOR Activity Determination. Protein electrophoresis in denaturing conditions was performed as previously described (25). Chlamydomonas cells from liquid cultures were collected by centrifugation (4,000 x g, 2 min), washed in lysis buffer [50 mM Tris HCl (pH 7.5)], and resuspended in a minimal volume of the same buffer. Cells were lysed by two cycles of slow freezing to ~80 °C followed by thawing at room temperature. The soluble protein cell extract was separated from the insoluble fraction by centrifugation (15,000 x g, 20 min, 4 °C). Proteins were quantified using the Coomassie dye binding method (Bio-Rad, 500-0006) as described by the manufacturer.

For immunoblot analyses, total protein extracts (15 to 40 µg) were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then transferred to either polyvinylidene fluoride membrane (Millipore, IPVH00010) previously activated in methanol for P-RPS6 detection or nitrocellulose membrane (Amersham, 16060003) for detection of other proteins. Primary antibodies raised against Chlamydomonas P-RPS6 and RPS6 (32), TOR (21), and LST8 (21) proteins and secondary anti-rabbit (Sigma-Aldrich, A6154) were diluted 1:6,000, 1:6,000, 1:1,000, 1:6,000, and 1:10,000, respectively, in phosphate-buffered saline containing 0.1% (vol/vol) Tween-20 (Applichem, A4974) and 5% (vol/vol) milk powder (Applichem, A0830). Proteins were detected with the Lumina Crescendo Millipore immunoblotting detection system (Millipore, WBLUR0500) and visualized using a ChemiDoc Imaging System (Bio-Rad). Coomassie brilliant blue–stained gels were used as protein loading control. For determination of the phosphorylation status of RPS6, phosphorylated (P-RPS6) and total RPS6 were quantified using the ImageLab software (Bio-Rad), and the P-RPS6/RPS6 ratio was calculated as previously described (32).

Amino Acid Analysis. To determine the amino acid profile, Chlamydomonas cells growing exponentially (~2 x 106 cells mL$^{-1}$) under the indicated treatment were collected by centrifugation (4,000 x g, 2 min) and immediately frozen in liquid nitrogen. Cells were then lyophilized and 2 mg of dry weight for each condition were used to extract amino acids. Cells were resuspended with HCl 0.1 N, mixed by vortexing, and then incubated on ice for 1 h. After centrifugation (15,000 x g, 15 min) at 4 °C to remove cells debris, the supernatant was transferred to a fresh tube and used to analyze the amino acid content by mass spectrometry (Sciex 6500+ QTRAP hybrid triple quadrupole liquid chromatography with tandem mass spectrometry). Amino acids were quantified using a standard amino acid mixture (Sigma-Aldrich). At least four biological replicates were analyzed for each condition.

Oxygen Evolution Measurement. Chlamydomonas cells growing autotrophically in HSM medium were incubated with bicarbonate, DCMU, or GLA for the indicated time, and then 2 mL of cells (~2 x 106 cells mL$^{-1}$) was used to determine oxygen evolution at 25 °C with continuous stirring in a Clark-type electrode (Chlorolab 2+ System; Hansatech). Photosynthetic rate was calculated as the difference between oxygen production in the light and oxygen consumption in the dark. Oxygen production was analyzed for 5 min at 60 µmol photons m$^{-2}$ s$^{-1}$. Cells were then exposed to darkness for 5 min to calculate oxygen consumption.

Chlorophyll Fluorescence Measurement. Chlorophyll fluorescence measurements were performed using a DUAL-PAM-100 (Walz). Chlamydomonas cells growing autotrophically in HSM medium were incubated with DCMU or GLA for the indicated time, and then 2 mL of cells (~2 x 106 cells mL$^{-1}$) was used to determine relative electron transport rate (ETR) and maximum photochemical efficiency (Fv/Fm). Cells were adapted for 15 min with constant stirring to obtain the Fv/Fm ratio. Cells were then exposed to 50 µmol photons m$^{-2}$ s$^{-1}$ for 5 min to quantify ETR values.

Statistics. Data from at least three independent experiments were analyzed using SigmaPlot 11 software. Two-tailed Student’s t tests were used to compare different strains, different growing conditions, and different treatments. One-way ANOVA followed by Bonferroni’s post hoc comparisons tests were used to analyze the temporal changes in the different treatments. $P < 0.05$ was taken as the threshold for statistical significance. Single (*), double (**), and triple (***)) asterisks indicate a significant difference: $P < 0.05$, $P < 0.01$, and $P < 0.001$, respectively. For amino acid analysis, heat map showing the fold changes were generated using the MeV software. Amino acid correlations were clustered with hierarchical clustering using Pearson correlation for the distance measure and average linkage for the linkage method. A summary of the statistical analysis of experiments shown in main and supplementary figures can be found in SI Appendix, Tables S1 and S2.

Data Availability. All study data are included in the article and/or SI Appendix.

ACKNOWLEDGMENTS. This work was supported in part by Ministerio de Ciencia y Tecnología (Grants PGC2018-099048-B-I00 to J.L.C. and PID2019-110080GB-I00 to M.E.P.-P.) and Consejo Superior de Investigaciones Científicas (Grant 202040I006 to M.E.P.-P.). We thank Carlos Parejo for technical assistance with the analysis of amino acid profiles.

1. M. Laplante, D. M. Sabatini, mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

2. S. Wullschleger, R. Loewith, M. N. Hall, TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

3. R. Loewith et al., Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).

4. A. Gonzalez, M. N. Hall, Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 36, 397–408 (2017).

5. R. L. Wolfson, D. M. Sabatini, The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab. 26, 301–309 (2017).

6. M. Binda et al., The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 35, 563–573 (2009).

7. L. Fu, P. Wang, Y. Xiong, Target of rapamycin signaling in plant stress responses. Physiol. Plant. 182, 1613–1623 (2020).

8. C. Ingargiola, G. Turqueto Duarte, C. Robaglia, A. S. Leprince, C. Meyer, The plant target of rapamycin: A conduit of TOR nutrition and metabolism in photosynthetic organisms. Genes (Base) 11, 1285 (2020).

9. Y. Muguine, Z. Kazibwe, D. C. Basham, Target of rapamycin in control of autophagy: Puppet master and signal integrator. Int. J. Mol. Sci. 21, 8259 (2020).

10. M. Schepetilnikov et al., TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J. 32, 1087–1102 (2013).

11. P. Wang et al., Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol. Cell 69, 100–112.6 (2018).

12. Y. Xiong et al., Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496, 181–186 (2013).

13. P. Cao et al., Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis. elife 8, e05074 (2019).

14. M. Schaufelberger et al., Mutations in the Arabidopsis ROL17/isopropylmalate synthase 1 locus alter amino acid content, modify the TOR network, and suppress the beta cell development mutant Int. J. Exp. Bot. 70, 2133–21323 (2019).

15. B. M. O’Leary, G. G. K. Oh, C. P. Lee, A. H. Miller, Metabolic regulatory interactions control plant respiratory metabolism via target of rapamycin (TOR) kinase activation. Plant Cell 32, 666–682 (2020).
16. D. Deprost et al., The Arabidopsis TORK kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep. 8, 864–870 (2007).

17. Y. Liu et al., Diverse nitrogen signals activate convergent ROP2-TOR signaling in Arabidopsis. Dev. Cell 56, 1283–1295.e5 (2021).

18. S. Diaz-Troya, M. E. Perez-Perez, F. F. J. Florencio, J. L. Crespo, The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4, 851–865 (2008).

19. A. Shemi, S. Ben-Dor, A. Vardi, Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes. Autophagy 11, 701–715 (2015).

20. M. E. Perez-Perez, I. Couso, J. L. Crespo, The TOR signaling network in the model unicellular green alga Chlamydomonas reinhardtii. Biomolecules 7, 54 (2017).

21. S. Diaz-Troya, F. F. J. Florencio, J. L. Crespo, Target of rapamycin and LST8 proteins associate with membranes from the endoplasmic reticulum in the unicellular green alga Chlamydomonas reinhardtii. Eukaryot. Cell 7, 212–222 (2008).

22. J. L. Crespo, S. Diaz-Troya, F. F. J. Florencio, Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol. 139, 1736–1749 (2005).

23. S. Diaz-Troya et al., Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas. Plant Physiol. 157, 730–741 (2011).

24. S. Imamura et al., Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Plant Mol. Biol. 89, 309–318 (2015).

25. M. E. Perez-Perez, F. F. J. Florencio, J. L. Crespo, Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol. 152, 1874–1888 (2010).

26. J. Juppter et al., The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells. Plant J. 93, 355–376 (2018).

27. U. Mubeen, J. Juppter, I. Alpers, D. K. Hinch, P. Giavalisco, Target of rapamycin inhibition in Chlamydomonas reinhardtii triggers de novo amino acid synthesis by enhancing nitrogen assimilation. Plant Cell 30, 2240–2254 (2018).

28. V. Routan, W. Weekwerth, Quantitative phosphoproteomic and system-level analysis of TOR inhibition uncovers distinct organellar acclimation in Chlamydomonas reinhardtii. Front. Plant Sci. 9, 1590 (2018).

29. E. G. Werth et al., Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: From known homologs to new targets. New Phytol. 221, 247–260 (2019).

30. S. Upadhyaya, S. Agrawal, A. Gorakshakar, B. J. Rao, TOR kinase activity in Chlamydomonas reinhardtii is modulated by cellular metabolic states. FEBS Lett. 594, 3122–3141 (2020).

31. I. Couso et al., Synergism between inositol polyphosphates and TOR kinase signaling in nutrient sensing, growth control and lipid metabolism in Chlamydomonas. Plant Cell 28, 2026–2042 (2016).

32. I. Couso et al., Phosphorus availability regulates TORC1 signaling via LST8 in Chlamydomonas. Plant Cell 32, 69–80 (2020).

33. D. D. Wykoff, A. R. Grossman, D. P. Weeks, H. Usuda, K. Shimogawara, Par1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc. Natl. Acad. Sci. U.S.A. 96, 15336–15341 (1999).

34. X. Johnson, J. Alric, Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: Metabolic constraints for carbon partitioning between oil and starch. Eukaryot. Cell 12, 776–793 (2013).

35. Y. Wang, D. J. Stessman, M. H. Spalding, The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: How Chlamydomonas works against the gradient. Plant J. 82, 429–448 (2015).

36. G. Amoroso, D. Sultemeyer, C. Thysen, H. F. Pock, Uptake of HCO3 and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiol. 116, 193–201 (1998).

37. S. Takahashi, N. Murata, Interruption of the Calvin cycle inhibits the repair of Photosystem II from photodamage. Biochim. Biophys. Acta 1708, 352–361 (2005).

38. E. H. Harris, The Chlamydomonas Sourcebook, (Academic Press, San Diego, 2009).

39. M. E. Hartnett, J. R. Newcomb, R. C. Hodson, Mutations in Chlamydomonas reinhardtii conferring resistance to the herbicide sulfofenuron methyl. Plant Physiol. 85, 898–901 (1987).

40. J. V. Moroney, R. J. Wilson, N. E. Tolbert, Glycolate metabolism and excretion in Chlamydomonas reinhardtii. Plant Physiol. 82, 821–826 (1986).

41. S. Saroussi et al., Alternative outlets for sustaining photosynthetic electron transport during dark-to-light transitions. Proc. Natl. Acad. Sci. U.S.A. 116, 11518–11527 (2019).

42. C. Zabawinski et al., Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J. Bacteriol. 183, 1069–1077 (2001).

43. I. K. Blaby et al., Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25, 4305–4323 (2013).

44. Y. Li et al., Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab. Eng. 12, 387–391 (2010).

45. G. Bonifils et al., Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 46, 105–110 (2012).

46. R. V. Duran et al., Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47, 349–358 (2012).

47. C. Caldana et al., Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J. 73, 897–909 (2013).

48. M. Moreau et al., Mutations in the Arabidopsis homolog of LST8/Gilu, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24, 463–481 (2012).

49. I. Pancha et al., Target of rapamycin-signaling modulates starch accumulation via glycogen phosphorylation status in the unicellular red alga Cyanidioschyzon merolae. Proc. Natl. Acad. Sci. U.S.A. 106, 10348–10353 (2009).

50. R. Sulcipe et al., Starch as a major integrator in the regulation of plant growth. Proc. Natl. Acad. Sci. U.S.A. 106, 10348–10353 (2009).

51. S. S. Merchant, J. Kropat, B. Liu, J. Shaw, J. Warakanont, TAG, you’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr. Opin. Biotechnol. 23, 352–363 (2012).