Effect of different plant growth regulators on growth, yield and quality parameters of cucumber \((Cucumis sativus \text{ L.})\) cv. Kalyanpur green

Pratyksh Pandey, IN Shukla and Ashutosh Upadhyay

Abstract
An investigation was carried out at the Vegetable Research farm, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur during Kharif season of 2018. The soil of the experimental field was sandy-loam with uniform topography. The experiment was laid out in a randomized block design replicated thrice with nine treatments i.e. T1 - foliar application of GA3 (100ppm) at 15 days after sowing, T2 - foliar application of GA3 (150ppm) at 30 days after sowing, T3 - foliar application of GA3 (200ppm) at 45 days after sowing, T4 - foliar application of NAA (100ppm) at 15 days after sowing, T5 - foliar application of NAA (150ppm) at 30 days after sowing, T6 - foliar application of NAA (200ppm) at 45 days after sowing, T7 - foliar application of Ethrel (200ppm) at 2-4 leaf stage, T8 - foliar application of Ethrel (300ppm) at pre flowering and T9 - Control (Water Spray). The result shows that an application of Ethrel 200ppm was found most effective in reducing the number of male flowers (90.75) in comparison to female flowers (52.08). GA3 200ppm reduce the number of days required for appearance of first flower (36.58 days) of cucumber plant, increased the production of female flowers (52.08), increased yield per plant (11.67), increased yield per lact (180.69 q). The next best treatment was GA3 100ppm which increased the yield of fruits per plant (3.42 kg) and yield per hecatare. From the results of this investigation, it could be inferred that Ethrel 200 ppm treatment was found most effective in improving feminality with increased fruit yield of cucumber cv. Kalyanpur Green. Results revealed that the application of plant growth regulators significantly increased growth. GA3 (100ppm) play an important role in increasing yield characters followed by NAA (100 ppm) and male and female flower ratio can be lowered by the application Ethrel (300 ppm). The fruit set and fruit retention percentage was improved through the application GA3 (150ppm) followed by GA3 (200ppm).

Keywords: cucumber, growth regulators (GA3, NAA, Ethrel), yield and quality

Introduction
Vegetables are protective food. They are rich in vitamins and minerals which are most essential for maintaining good health of human. Among the vitamins, vitamin A, B, C, D and E are important. All vitamins are found in small or large quantities in the common vegetable crops. According to recommendation made by the ICMR (Indian Council of Medical Research), an average man with vegetarian or non-vegetarian food habit should consume 300 g of vegetables in his daily diet. It recommended that 125 g of these should be green leafy vegetables, 100 g of roots and tubers vegetables and the remaining 75 g of other vegetables. But our present consumption of vegetables is 184 g per day per capita. This means that we need to produce and consume vegetables than we do as present. Cucumber \((Cucumis sativus \text{ L.})\) is one of the oldest cultivated vegetable crops having its origin probably in India. It belongs to family “Cucurbitaceae” genus Cucumis. The fruit of cucumber is said to have cooling effect, prevent constipation, checks jaundice and indigestion. Fruit is also used as astringent and antipyretic. Nutritively 100 g edible portion of cucumber contains 96.3 g moisture, 2.5 g carbohydrates, 0.4 g protein, 0.1 g fat, 0.3 g minerals, 10 mg calcium, 1.5 mg of iron, 0.4 g fibre and traces of vitamin C and iron.

On the basis of flowering habit cucumber has three types of varieties (i) gynoecious, which produces only female flowers (ii) pre-dominantly gynoecious, which also bears some male flowers, and (iii) the monoeocious, which produces both male and female flowers. At the early stages of development, flower buds contain primordia of both stamen and pistil, and sex determination occurs due to the selective arrest of development of either the staminate or pistillate primordia just after the bisexual stage. Cucurbits exhibit different constraints in increasing the production out of these, sex expression is most important one.
Cucurbitaceous plants have variable range of male and female flowers. The production of male flowers is greater than that of female flowers and ultimately only the female flowers contribute towards yields. Increase in number of female flowers per vine would obviously result into more production of fruits. The expression of different sex forms is influenced by genetic factors, the manifestation of which is influenced by environmental conditions. Besides, exogenous applications of plant hormones play an important role in changing sex tendency in these plants. Subsequently, growth regulating chemicals became important tools in this respect. The suppression of male flowers and increasing the number of female flowers by application of plant growth regulators in cucumber was found in series of reports from USA, Japan, Israel and also from India (Bhandary et al., 1974) [1]. The chemicals mostly used were MH, NAA, IAA, TIBA and GA on cucumber, watermelon and bottle gourd. Growth regulators have tremendous effects on sex expression and flowering in cucumber crop leading to either suppression of male flowers or an increase in the number of female flowers (Al-Masoum and Al-Masri, 1999) [2] without imposing any deleterious effect on the environment and human health. Plant growth regulators are also used to control the vegetative growth of cucumber plants, thereby increasing the plant population per unit area with regard to yield (Latimer, 1991) [3].

Materials and Methods
The Experiment was conducted at Department of vegetable science, College of Horticulture, Kanpur (U.P.) during the year 2017-2019. It comes under sub-tropical region, having a temperature range from 29°C to 41°C as maximum and 7°C to 23 °C as minimum in summer and winter season, respectively. The soil of the experimental field was sandy-loam with uniform topography. The experiment was laid out in a randomized complete block design replicated thrice with nine treatments i.e. T1 - foliar application of GA3 (100ppm) at 15 days after sowing, T2 - foliar application of GA3 (150ppm) at 30 days after sowing, T3 - foliar application of GA3 (200ppm) at 45 days after sowing, T4 - foliar application of NAA (100ppm) at 15 days after sowing, T5 - foliar application of NAA (150ppm) at 30 days after sowing, T6 - foliar application of NAA (200ppm) at 45 days after sowing, T7 - foliar application of Ethrel (200ppm) at 2-4 leaf stage, T8 - foliar application of Ethrel (300ppm) at pre flowering and T9 - Control (Water Spray). Sowing was done in the month of June on ridges after preparation of well levelled and fine seed bed. Well rotten Farm Yard Manure was applied @ 20 tons/ha before preparing of the plot. Nitrogen, Phosphorus and potash were applied @ 80:50:40 kg/ha in the form of urea, single super phosphate and muriate of potash, respectively. First hoeing and weeding was done after twenty days of sowing and second weeding was repeated after twenty days of first weeding in all the treatments to keep plots weed free. Light irrigation was applied for establishment of seed. After sowing subsequent irrigations were provided as and when required for growth and development of plants. Plant protectants chemicals were also used for keep the plant safe from insect pest and diseases.

Results and Discussion
Effect of Different Plant Growth Regulators on Yield Attributes
In the present study it was observed that GA3 is most effective in increasing the fruit set per cent and fruit retention per cent (Table 1). Among all the treatments, GA3@150 ppm, 200 ppm and 100 ppm recorded maximum fruit set (88, 85.08 and 84.33, respectively) whereas the fruit set was minimum in control (75.25). This might be due to the physiological process in treated plants, remains higher than the checks, this indicates that there may be lesser chances of female flower drop which resulted into increased fruit set. Similar findings were reported by Dubey (1983) [4] in bitter gourd and Patel (1992) [5] in bottle-gourd. All the growth regulator treatments were significantly superior in recording more length (cm) of fruit as compared to the water spray control as well as absolute control (Table 1). It was observed that among all the treatments GA3@100 and 150 ppm produced the longest marketable fruit (25.23 cm and 24.6 cm, respectively). These results are in consonance with those of Choudhury (1988) [6] in cucumber, Singh and Choudhury (1989) [7] in bottle gourd and Singh and Arora et al. (1982) [8] in sponge gourd. These may be probably due to cell enlargement as well as activate the metabolic activity in fruit. Similar results were also obtained by Arora et al. (1987) [9] in ridge gourd. It was observed that among all the treatments, GA3@100ppm and 150ppm recorded the maximum diameter of marketable fruit (8.41cm and 8.2cm, respectively). The increased in diameter of marketable fruit is in agreement with the results of Arora et al. (1988) [10], Singh and Choudhury (1989) [7], Patel (1992) [5] and Singh and Choudhury (1989) [7] in cucumber. The present studies indicated that the response of different treatments to male and female sex ratio differed significantly. All the treatments significantly lowered the male and female sex ratio over control (Table 1). Among all the treatments, GA3@100 ppm and NAA@100 ppm was found to be most effective in lowering the male and female flower ratio (1.54: 1 and 1.66: 1, respectively). Probably, it could be attributed to the suppression in number of stamine flowers and promoted in more number of pistillate flowers. Similar results were obtained Sharma et al. (1988) [11] and Patel (1992) [5] in bottle-gourd, and Kshirsagar et al. (1995) [12] in cucumber.

Table 1: Influence of plant growth regulators on yield attributes in cucumber

TREATMENTS	Length Of Fruit (cm.)	Diameter Of Fruit (cm.)	Fruit set%	Fruit retention %	Sex ratio
GA3 100ppm(T1)	25.23	8.41	81.92	84.83	1.54:1
GA3 150ppm(T2)	24.60	8.20	86.08	88.00	1.70:1
GA3 200ppm(T3)	24.07	8.02	82.08	85.08	1.68:1
NAA 100ppm(T4)	24.47	8.16	81.08	82.25	1.66:1
NAA 150ppm(T5)	24.13	8.04	77.00	83.00	1.87:1
NAA 200 ppm(T6)	23.53	7.84	77.58	81.25	1.73:1
Ethrel 200ppm(T7)	20.17	6.72	77.17	80.92	1.73:1
Ethrel 300ppm(T8)	22.30	7.43	80.33	81.42	1.93:1
Control/Water spray	18.60	6.20	75.25	78.33	1.41:1
S.E.m±	0.033	0.004	0.422	0.203	0.00
CD at 5% Level	0.313	0.104	1.124	0.780	0.032
Effect of Different Plant Growth Regulators on Yield

The results of the present investigation revealed that all the GA₃ @ 200ppm and NAA @100ppm concentrations were found significantly superior in recording more yield in Kg per plant as well as quintal per hectare as compared to control (Table 2). Further, it was observed that among all these treatments GA₃@200 ppm produced the maximum yield 3.89Kg per plant and 180.69 quintal per ha; while control produced the lowest yield 2.64Kg per plant and 163.89 quintal per ha. An increase in fruit yield in treated plants may further be attributed to the reason that plant remained physiologically more active to build up sufficient food stock for the developing flowers and fruits, ultimately leading to higher yield. Increased fruit yield is also due to the increase in pistillate flowers production and ultimately harvested more number of fruits per plant. These findings are in consonance with those of Mangal et al. (1981) [13], and Zeng et al. (1998) [14] in bitter gourd, Sharma et al. (1988) [11] and Patel (1992) [5] in bottle-gourd and Kshirsagar et al. (1995) [15] in cucumber.

Influence of Growth Substances On Quality Characters

Total soluble solids (obrix)

The present studies showed that the response of different growth regulator treatments on total soluble solids content in bitter gourd (Table 2) differed significantly. It was observed that all the treatments were effective in recording more T.S.S. (obrix) as compared to the control. The treatment GA₃@200ppm produced the significantly highest T.S.S. (5.1 obrix) followed by GA₃@150ppm (4.53 obrix). The increase in T.S.S. in the fruits seems probably due to accumulation of metabolites which stimulated functioning of a number of enzymes in physiological process. Which turns, hydrolyzed starch and helped in the metabolic activity during the change of available starch into sugar and T.S.S. These results agree with the reports of Randhawa (1974) [22] in muskmelon.

Treatments	Number of fruit/plant	Fruit yield kg/plant	Fruit yield q/ha	T.S.S.
GA₃ 100ppm	10.25	3.42	180.46	3.83
GA₃ 150ppm	9.75	3.25	177.19	4.53
GA₃ 200ppm	11.67	3.89	180.69	5.10
NAA 100ppm	10.75	3.58	174.82	4.10
NAA 150ppm	10.25	3.42	168.59	4.33
NAA 200 ppm	9.25	3.08	170.54	3.93
Ethrel 200pm	11.08	3.69	171.98	3.03
Ethrel 300pm	9.08	3.03	170.14	3.67
Control (T0)	7.92	2.64	163.89	4.27
S.Em±	0.172	0.014	0.538	0.005
CD at 5% Level	0.718	0.207	1.269	0.126

Conclusion

It can be concluded from the above findings of investigation, that GA₃ @ 150 ppm to 100 ppm recorded significantly higher yield attributes i.e. Length of Fruit, Diameter of Fruit, Fruit set%, Fruit retention% and Sex ratio where as GA₃ @ 200 ppm recorded maximum yield and quality parameters i.e. T.S.S. (brix) in Kalyanpur green cultivar of cucumber (Cucumis sativus L.).

References

1. Bhandary KR, Shetty KPV, Sulkier GS. Effect of ethrel (2-chloroethyl phosphonic acid) on the sex expression and yield of cucumber. Progressive Horticulture 1974;6:2-3.
2. Al-Masoun AA, Al-Masri AA. Effect of ethephon on flowering and yield of monoecious cucumber. Egyptian J. Horti 1999;26:229-236.
3. Latimer JG. Growth retardants affect landscape performance of Zinnia, Impatiens and Marigold. Hort Sci 1991;26:557-560.
4. Dubey KC. Effect of ethrel, naphthalene acetic acid and maleic hydrazide on growth, flowering and yield of sponge gourd. Indian J. Agric. Sci 1983:28(2):25-27.
5. Patel AK. Assessment of the effectiveness of MH and NAA ongrowth, sex behaviour and yield of bottle gourd [Lagenaria siceraria (Mol. Standl.) cv. Pattiwali. M.Sc. (Agri.) thesis submitted to Gujarat Agril. University, S.K. Nagar 1992.
6. Singh RK, Choudhary B. Differential response of chemicals on sex modification of three genera of cucurbits. Indian J. Hort 1988;45(1, 2):88-89.
7. Singh RK, Choudhary B. Differential response of three generation of cucurbits to boron and plant growth regulators. Indian J. Hort 1989;46(2):215-221.
8. Arora SK, Pandita ML, Sidhu AS. Effect of various plant growth regulators on vegetative growth, sex expression and fruit yield in summer squash (Cucurbita L.). Havana Agric. Univ. J Res 1988;12(4):598-604.
9. Arora SK, Pandita ML, Dahiya MS. Effect of plant growth regulators on vegetative growth flowering and yield of ridge gourd (Luffa acutangula Roxb.) Haryana Agric. Univ. J. Res 1987;17(4):319-24.
10. Arora SK, Partap PS. Effect of plant growth regulators on vegetative growth, flowering and fruit yield in pumpkin (Cucurbita moschata Duch. Ex. Poir.). Haryana Agricultural University Journal of Research. 1988;18(4):284-290.
11. Sharma NK, Arora SK, Dhanekhar BS. Effect of plant growth substances on growth, flowering, sex expression and fruit yield in bottle gourd [L. siceraria(Mol.) Standl.]. Haryana Agric. Univ. J Res 1988;18(4):291-297.
12. Kshirsagar DB, Desai UT, Patil BT, Pawar BG. Effect of plant growth regulators on sex expression and fruiting in cucumber Cv. Himangi. J Maharashatra Agric. Uni 1995;20(3):473-474.
13. Mangal JL, Pandita ML, Singh GR. Effect of various chemicals on growth, flowering and yield of bitter gourd. Indian J. Agri. Res 1981;15(3):185-188.
14. Wang Q, Zeng G. Hormonal regulation of sex differentiation on Momordica charantia L. J. Zhejiang Agric. Univ 1998;23(5):551-556.
15. Randhawa KS. Quality of muskmelon (*Cucumis melo* L.) as influenced by foliar applications of certain growth substances. Punjab Hort. J 1974;10(3, 4):298-304.