Case Report

Split cord malformation type I distal to segmental myelomeningocele

Bassam M. Addas, MBChB, FRCSC.

ABSTRACT

The coexistence of myelomeningocele (MMC) and split cord malformation (SCM) is a well-known phenomenon. The SCM is usually above or at the level of the MMC. Split cord malformation distal to the MMC is considered to be the rarest form of such a combination. We report a case of SCM (type I) distal to the MMC diagnosed pre-operatively. Repair of the MMC and the SCM were carried out in the same setting.

Saudi Med J 2014; Vol. 35 Supplement 1: S72-S74

From the Division of Neurosurgery, Department of Surgery, Faculty of Medicine, King AbdulAziz University Hospital, Jeddah, Kingdom of Saudi Arabia.

Received 20th July 2014. Accepted 13th October 2014.

Address correspondence and reprint request to: Dr. Bassam M. Addas, Assistant Professor of Neurosurgery, Division of Neurosurgery, Department of Surgery, Faculty of Medicine, King AbdulAziz University Hospital, PO Box 80215, Jeddah 21589, Kingdom of Saudi Arabia. Tel. +966 (12) 6401000 Ext. 18230. E-mail: bassamaddas@yahoo.com

Myelomeningocele (MMC) is the most common and most severe congenital anomaly of the CNS that is compatible with life, occurring between the 25th and 27th post ovulatory days.1 Myelomeningocele can be associated with other dysraphic malformations, with split cord malformation (SCM) being the most common association. The incidence of type I SCM in patients with MMC who had MRI performed ranges from 5-40%.2 The most common location of SCM is one or 2 levels above the MMC, and is thus hidden from the surgical field during closure of the MMC. Usually, the MMC is repaired in the initial operation, and the SCM is dealt with in a later setting either following the symptoms of tethered cord later in childhood, or after routine MRI. This case highlights the importance of recognizing the rare combination of MMC and distal SCM to avoid inadvertent injury to the distal conus, and avoid the possibility of missing the SCM, which may require an additional operation in the future.

Case Report. A 28-year-old Yemeni female presented to the obstetric service in labor. Obstetric ultrasound showed the fetus to have severe hydrocephalus. A mid-lumbar MMC and a Chiari II malformation were also evident. The baby was delivered via cesarean section. Pre-operative examination of the placode showed a suspicious structure distal to the placode, and the diagnosis of segmental MMC with distal type I SCM was entertained (Figure 1). Pre-operative motor assessment showed a slight bilateral foot plantar flexion following plantar stimulation. Rectal tone and anal puckering were present. Intra-operatively it was quite evident that the malformation was indeed a proximal segmental open neural tube defect (ONTD) with a caudal type I SCM containing a cartilaginous midline septum (Figure 2). The hemicords reunite just distal to the septum to form a relatively normal looking conus. Distal to the open placode, the right hemicord was neurulated, but the left hemicord remained non-neurulated for a short distance. The cartilaginous septum was resected and the placode was
neurulated using 8/0 Ethilon sutures (Figure 3). The dura was closed primarily. A left unilateral skin relaxing incision was needed to approximate the skin over the defect. A ventriculo-peritoneal shunt was inserted in the third week following closure of the defect. The child was examined at 2 months of age and showed preservation of foot and toe flexion with the right side showing more robust movement compared with the left.

Discussion. Up to 40% of SCM cases may have an associated ONTD, affecting either both hemicords, or only one hemicord in the form of hemi-myelomeningocele.² According to the unified theory of Pang,² all SCMs arise from a common basic embryogenetic error that occurs during gastrulation (formation of trilaminar embryo), an event preceding even primary neurulation. The main event of gastrulation is the formation of the notochord. The primitive knot (Hensen’s node) provides pre-notochordal cells, which eventually transform the notochord into a solid cord. A communication between the ectoderm and the endoderm takes place and a temporary neurenteric canal forms, which heals in 2-3 days. Failure of such a healing and the persistence of such a communication, which can be called the ecto-endomesenchymal tract, is probably the most important error in the embryogenesis of SCMs. At post ovulatory day 28, cells derived from the primitive meninx (the precursors of dura matter) become involved with the ecto-endomesenchymal tract and eventually dictate the formation of type I SCM with double dural sleeves, or type II SCM with a single dural sleeve.²

For more than 100 years, different theories on the pathogenesis of MMC have been proposed. The most widely accepted ones are the simple non-closure theory and the reopening theory.³ It is generally agreed upon that the caudal neuropore closes at days 25-27 and is the last part of the neural tube that undergoes closure.¹ This clearly indicates that the pathogenesis of SCM predates the pathogenesis of MMC. The combination of both pathologies may suggest a common pathogenesis.³

In the largest reported series of SCM, Mahapatra⁴ did mention the association with MMC, but he did not specify the relation between the level of the split and the placode in detail. Ansari and associates,⁵ in a retrospective review of 330 cases of MMC found 33 cases of SCM, 17 were at the level of the placode, 6 proximal, and 10 cases were located distally; one of these cases was associated with hemi-myelomeningocele. Kumar et al⁶ reported 16 cases of such a combination, 12 cases of

Figure 1 - Preoperative photograph showing the placode (P) and distal spur (S) through the transparent sac.

Figure 2 - Intra-operative photograph depicting the placode (P), and the cartilaginous spur (S).

Figure 3 - Intra-operative photograph following neurulation of the neural placode (NP), union of both hemicords (HC), and the distal conus (C).
Split cord malformation and myelomeningocele ... Addas

Although delayed repair of SCM has been shown to be safe, a second operation for SCM near a scarred, previously repaired MMC can be difficult and may cause further neurological deficits.

References

1. Dias MS, Partington M. Embryology of myelomeningocele and anencephaly. Neurosurg Focus 2004; 16: E1.
2. Pang D, Dias MS, Ahab-Barmada M. Split cord malformation: Part I: A unified theory of embryogenesis for double spinal cord malformations. Neurosurgery 1992; 31: 451-480.
3. Rokos J, Cekanova E, Kithierova E. Pathogenesis of trypan-blue-induced spina bifida. J Pathol 1976; 118: 25-34.
4. Mahapatra AK. Split cord malformation - A study of 300 cases at AIIMS 1990-2006. J Pediatr Neurosci 2011; 6 (Suppl 1): S41-S45.
5. Ansari S, Nejat F, Yazdani S, Dadmehr M. Split cord malformation associated with myelomeningocele. J Neurosurg 2007; 107 (4 Suppl): 281-285.
6. Kumar R, Bansal KC, Chhabra DK. Occurrence of split cord malformation in meningomyelocele: complex spina bifida. Pediatr Neurosurg 2002; 36: 119-127.
7. Erşahin Y. Split cord malformation types I and II: a personal series of 131 patients. Childs Nerv Syst 2013; 29: 1515-1526.
8. Iskandar BJ, McLaughlin C, Oakes WJ. Split cord malformations in myelomeningocele patients. Br J Neurosurg 2000; 14: 200-203.
9. Higashida T, Sasano M, Sato H, Sekido K, Ito S. Myelomeningocele associated with split cord malformation type I -three case reports. Neurol Med Chir (Tokyo) 2010; 50: 426-430.