Atrial fibrillation ablation in heart failure

Cristina Balla¹ and Riccardo Cappato²*

¹Cardiovascular Center, University of Ferrara, Ferrara, Italy; and
²Department of Biomedical Sciences, Humanitas Clinical and Research Center, Humanitas University, Milan, Italy

KEYWORDS
Heart failure; Atrial fibrillation; Risk of stroke; Ablation therapy

Atrial fibrillation (AF) and heart failure (HF) commonly coexist in the same patient and either condition predisposes to the other. Several mechanisms promote the pathophysiological relationship between AF and HF, reducing quality of life, increasing the risk of stroke, and worsening HF progression. Although restoration and maintenance of sinus rhythm would be ideal for those patients, several trials comparing rhythm and rate control failed to show a benefit of rhythm control strategy, achieved with pharmacological therapy, in terms of hospitalization for HF or death. Catheter ablation is a well-established option for symptomatic AF patients, resistant to drug therapy, with normal cardiac function. Several recent studies have shown an improvement in clinical outcomes after AF ablation in HF patients highlighting the emerging role of the invasive approach in this subset of patients. However, several concerns regarding patients’ selection and standardization of the procedure still remain to be addressed.

Introduction

Atrial fibrillation (AF) and heart failure (HF) frequently coexist in the same patient, often promoting the course of each other. Left ventricular (LV) dysfunction is found in about 30% of patients with AF. Conversely, AF can deteriorate LV function determining the occurrence and favouring the progression of HF.¹ Several mechanisms may promote this relationship, including loss of atrial systole, high ventricular rate, and irregular ventricular filling with time impairment of myocardial function. Finally, persistently elevated left atrial pressure and chronic neuro-hormonal up-regulation may lead to atrial fibrosis favouring AF in patients with HF.

In the past decade, several studies have evaluated the role of rhythm control strategies for improving the outcome of patients with AF and HF. Although restoration of sinus rhythm in patients with AF and HF is attractive, several trials using antiarrhythmic drugs (AADs) to restore sinus rhythm failed to result in a significant improvement in clinical outcomes. Herein, we review the current knowledge, unanswered questions and future perspectives of AF ablation in HF patients.

Rate vs. rhythm control

Large prospective randomized trials have identified AF as an independent risk marker of mortality and HF progression in patients with LV dysfunction.² The coexistence of the two conditions is associated with reduced quality of life, worsened HF progression, and increased risk of stroke. Therefore, it is common practice to attempt at restoration and maintenance of steady sinus rhythm in patients with AF and HF. Several studies were performed to investigate the effectiveness of rhythm vs. rate control strategy in AF patients showing similar outcomes.³ Of these, the AF-CHF trial investigated patients with clinically documented HF. In this study, patients with symptomatic HF [New York Heart Association (NYHA) II-IV] and an LV ejection fraction (LVEF) <35% were randomized to pharmacological rate vs. rhythm control (in the latter group mainly based on amiodarone administration). The study showed no differences of death from cardiovascular causes in the two groups.⁴ It is well-known that QT prolongation, conduction block, proarrhythmic effect, and non-cardiac side effects are associated with the use of AADs. In the HF population, selection
of an AAD is mainly based on amiodarone and its use is associated with an increased risk of thyroid, neurologic, skin, eye, and pulmonary toxicity due to the progressive accumulation of the drug in the tissues, especially in case of chronic use, sometimes requiring treatment discontinuation. In summary, the adverse events related to the use of AADs may potentially neutralize the benefit of restoring and maintaining sinus rhythm in patients with HF. In these patients, permanent restoration of sinus rhythm using methods other than drug therapy may provide an optimal model to test the true impact of rhythm control on clinical outcome.

Catheter ablation of atrial fibrillation in patients with heart failure

Catheter ablation of AF has emerged as a potential strategy in patients with HF. Initial results of catheter ablation vs. rate control in HF patients were reported in small studies and early randomized clinical trials (RCTs), although the small number of patients included and the design of the studies limited the strength of data. A recent meta-analysis of prospective RCTs comparing catheter ablation vs. rate control strategies in patients with HF and AF showed a significant improvement in LVEF, quality of life, and functional capacity. Data from this meta-analysis indicate AF burden reduction as a possible cause of functional improvement since 22–50% of patients had AF episodes after ablation.

More recently, the Ablation vs. Amiodarone for Treatment of Atrial Fibrillation in Patients with Congestive Heart Failure (AATAC) study aimed to evaluate a rhythm control strategy in both arms by comparing AF catheter ablation vs. pharmacologic rhythm control with amiodarone. The study enrolled HF patients with LVEF < 40%, an NYHA class II–III, persistent AF, and an implantable cardioverter-defibrillator provided with an atrial lead (Table 1). The study showed a superiority of catheter ablation in achieving freedom from AF recurrences compared to amiodarone therapy, with a favourable effect on rates of death and unplanned hospitalization. During 24-month follow-up, 70% of patients in the ablation arm [95% confidence interval (CI) 60–78%] and 34% in the control arm [95% CI 25–44%] remained free from arrhythmia recurrences. Permanent restoration of sinus rhythm was associated with functional improvement suggestive of a direct role of stable sinus rhythm on cardiac contractility. In this study, the presence of a transvenous atrial lead provided accurate monitoring of arrhythmia episodes. The high selectivity of the population, the median time in AF before enrolment, the high discontinuation rate of amiodarone, and the lack of uniformity of the ablation procedure have raised some criticism about the applicability of AATAC results in daily practice.

The recent Catheter Ablation vs. Standard Conventional Therapy in Patients with Left Ventricular Dysfunction (CASTLE-AF) trial assessed for the first time the impact of AF catheter ablation compared to medical therapy (rate or rhythm control) on mortality and progression rates in patients with HF. The study enrolled symptomatic paroxysmal or persistent AF with an NYHA class II–IV, LVEF <35%, and an implanted device. In this population, catheter ablation was associated with a significant reduction of the composite of death and hospitalization compared to medical therapy (hazard ratio 0.62; 95% CI 0.43–0.87) (Table 1). Moreover, a benefit in all-cause mortality alone, mainly driven by a reduction of cardiovascular deaths, was described in the ablation group. The study added important results to the current literature regarding hard endpoints such as mortality and hospitalization after AF catheter ablation in HF patients.

The continuous monitoring to check for AF recurrences and the secondary endpoints of 6-min walking distance and LVEF allowed an extensive characterization of the response after ablation compared to medical therapy. Similar to what previously reported, the clinical benefit was correlated with a reduction in the burden of recorded AF. Potential limitation of CASTLE-AF stems on the observation that procedures were performed by experienced operators in high-volume medical centres. In addition, there was a large heterogeneity in the ablation technique by the different operators.

Current guidelines recommend catheter ablation of AF in symptomatic patients with HF in order to improve symptoms and cardiac function in particular when tachycardia and/or conduction disturbances are present. However, several questions remain to be answered regarding success rate on those patients after a single procedure, selection of appropriate patients, type and timing of proceed.

Selection of candidates to catheter ablation, procedural features, complication and success rates

Abnormalities in atrial electrophysiological properties, such as increased atrial refractory period, increased atrial conduction time along the low lateral right atrium and coronary sinus and function delay at the crista terminalis and at the Bachmann bundle, may cause more complex arrhythmia manifestations in HF patients. Pre-procedural risk stratification tools to identify patients who might benefit more from catheter ablation, could avoid unnecessary procedures or offer different approaches in these subset of patients. In the Catheter Ablation vs. Medical Rate Control in Atrial Fibrillation and Systolic Dysfunction (CAMERA-MRI) study, patients with idiopathic cardiomyopathy and persistent AF were all studied with cardiac magnetic resonance imaging (MRI) and randomized to catheter ablation or rate control therapy. A significant improvement in LVEF was found in patients after catheter ablation compared to patients randomized to medical therapy despite optimal rate control. In the ablation group, patients without evidence of late gadolinium enhancement (LGE) had better results on ventricular function after the procedure compared to LGE positive patients suggesting that cardiac MRI could identify HF patients who may benefit more from catheter ablation. Moreover, the study highlights the positive impact of sinus rhythm on ventricular function compared to an optimal rate control (Table 1). As summarized in Table 1, in all studies the ablation strategy

Table 1
Study	Patients	Aetiology and features of HF	AF pattern	Ablation strategy	Medical strategy	Ablation success rate	Results	Median follow-up (months)
PABA-CHF9	81	73% ischaemic CMEF < 40% NYHA II–III	49% paroxysmal 51% persistent	PVI ± additional linear lesions	AV node ablation	88%	† EF, 6MWT, and QoL in ablation arm	6
MacDonald et al. 10	41	50% ischaemic CMEF < 35% NYHA II–IV	100% persistent	PVI ± additional linear lesions	Medical rate control	50%	No differences in EF, 6MWT, and QoL in ablation arm	6
ARC-HF8	52	33% ischaemic CMEF < 35%	100% persistent	Step wise: PVI, linear ablation at roof and mitral isthmus, CFE ablation	Medical rate control	88%	† Exercise performance and BNP in ablation arm	12
CAMTAF7	50	26% ischaemic CMEF < 50%	100% persistent	PVI ± linear lesions ± CFE ablation	Medical rate control	73%	† EF, exercise performance, and QoL in ablation arm	12
AATAC11	203	62% ischaemic CMEF < 40% ICD or CRTD	100% persistent	PVI ± linear lesions ± CFE ablation	Amiodarone	70%	† AF recurrences, † Mortality and unplanned hospitalization in ablation arm	24
CAMERA-MRI12	68	100% idiopathic CMEF < 45%	28% paroxysmal 72% persistent	PVI ± additional linear lesions	Medical rate control	75%	† EF, in ablation arm, greater in LGE negative	6
CASTEL-AF13	363	46% ischaemic CMEF < 35% NYHA II–III	30% paroxysmal 70% persistent	PVI ± additional linear lesions	Medical rate control	63.1%	† Mortality and HF hospitalization in ablation arm	37

6MWT, 6-min walking test; BNP, B-type natriuretic peptide; CFE, complex fractionated electrograms; CM, cardiomyopathy; CRT, cardiac resynchronization therapy; EF, ejection fraction; ICD, implantable cardioverter-defibrillator; LGE, late gadolinium enhancement; PVI, pulmonary vein isolation; QoL, quality of life.
was left to best operator judgement which led to a large heterogeneity of techniques. Although many tools were introduced in the last decade to improve the efficacy of AF ablation, a standardized approach for the procedure is currently lacking. A recent meta-analysis from clinical trials and observational studies of AF ablation in HF patients found no difference in sinus rhythm persistence between pulmonary vein isolation alone approaches vs. extensive left atrial ablation. Therefore, since a more extensive ablation could be preferred in this subset of patients and considering the potential need of additional procedures in up to 40–50% of the patients increasing the risk of complications, the selection of the appropriate candidate for AF ablation should be considered a substantial element to increase success and safety in HF patients.

In summary, catheter ablation in patients with AF and HF appears promising. Several concerns remain regarding patients’ selection and standardization of the ablation approach to best weigh risks and benefits of the procedure in this population.

Conflict of interest: none declared.

References

1. Santhanakrishnan R, Wang N, Larson MG, Magnani JW, McManus DD, Lubitz SA, Ellison PT, Cheng S, Vasan RS, Lee DS, Wang TJ, Levy D, Benjamin EJ, Ho JE. Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction. Circulation 2016;133:484-773.

2. Dries DL, Exner DV, Gerh BJ, Domanski MJ, Waclawiw MA, Stevenson LW. Right atrial ablation is associated with an increased risk for mortality and heart failure progression in patients with asymptomatic and symptomatic left ventricular systolic dysfunction: a retrospective analysis of the SOLVD trials. Studies of Left Ventricular Dysfunction. J Am Coll Cardiol 1998;32:695-703.

3. Al-Khatib SM, Allen LaPointe NM, Chatterjee R, Crowley MJ, Dupre ME, Kong DF, Lopes RD, Povsic TJ, Raju SS, Shah B, Kosinski AS, McBroom AJ, Sanders GD. Rate- and rhythm-control therapies in patients with atrial fibrillation: a systematic review. Ann Intern Med 2014;160:760-773.

4. Roy D, Talajic M, Nattel S, Wyse DG, Dorian P, Lee KL, Bourassa MG, Arnold JMO, Buxton AE, Camm AJ, Connolly SJ, Dubuc M, Ducharme A, Guerra PG, Hohnloser SH, Lambert J, Le Heuzey J-Y, O'Hara G, Pedersen OD, Rouleau J-L, Singh BN, Stevenson UW, Stevenson WG, Thibault B, Waldo AL. Atrial Fibillation and Congestive Heart Failure Investigators. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med 2008;358:2667-2677.

5. Vorperian VR, Havighurst TC, Miller S, January CT. Adverse effects of low dose amiodarone: a meta-analysis. J Am Coll Cardiol 1997;30:791-798.

6. Hunter RJ, Berriman TJ, Diab I, Kandrar R, Richardson L, Baker V, Goromoroz F, Sawhnley V, Duncan E, Page SP, Ullah W, Unsworth B, Mayet J, Dinhoo MA, Earley MJ, Sporton S, Schilling RJ. Randomized controlled trial of catheter ablation versus medical treatment of atrial fibrillation in heart failure (the CAMTAF trial). Circ Arrhythm Electrophysiol 2014;7:31-38.

7. Jones DG, Haldar SK, Hussain W, Sharma R, Francis DP, Rahman-Haleyl SJ, McDonagh TA, Underwood SR, Markides V, Wong T. A randomized trial to assess catheter ablation versus rate control in the management of persistent atrial fibrillation in heart failure. J Am Coll Cardiol 2013;61:1894-1903.

8. Khan MN, Jais P, Cummings J, Di Biase L, Sanders P, Martin DO, Kautzner J, Hao S, Themistocliakas S, Fanelli R, Potenza D, Massaro R, Wazni O, Schwerkert R, Saliba W, Wang P, Al-Ahmad A, Behey S, Santarelli P, Starling RC, Russo AD, Pelargonio G, Brachmann J, Schillingby V, Borsa A,ケース cellulare, Haisgauqe M, Natale A. Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. N Engl J Med 2008;359:1778-1785.

9. MacDonald MR, Connelly DT, Hawkins NW, Steedman T, Payne J, Shaw M, Denvir M, Bhagra S, Small S, Martin W, McMurray JJV, Petrie MC. Radiofrequency ablation for persistent atrial fibrillation in patients with advanced heart failure and severe left ventricular systolic dysfunction: a randomised controlled trial. Heart 2011;97:740-747.

10. Di Biase L, Mohanty P, Mohanty S, Santangeli P, Trivedi C, Lakireddy D, Reddy M, Jais P, Themistocliakas S, Dello Russo A, Caseula M, Pelargonio G, Narducci ML, Schwerkert R, Neuzil P, Sanchez J, Horton R, Behey S, Hongo R, Hao S, Rossillo A, Forlilo G, Tondo C, Burkehardt JD, Haisgauqe M, Natale A. Ablation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: results from the AATAC Multicenter Randomized Trial. Circulation 2016;133:1637-1644.

11. Kaplan BA, Stevenson WG. Atrial fibrillation in heart failure: should catheter ablation play a larger role? Circulation 2016;133:1631-1633.

12. Calkins H, Hindricks G, Cappato R, Kim Y-H, Saad EB, Aguina S, Akar JG, Badhwar V, Brugada J, Camm J, Chen PS, Chen SA, Chung MK, Nielsen JC, Curtis AB, Davies DW, Day JD, d’Avila A, de Groot NMS, Di Biase L, Dystscherme M, Edgerton JR, Ellenbogen KA, Ellison PT, Ernst S, Fenelon G, Gerstenfeld EP, Haines DE, Haisgauqe M, Heli RH, Hylek E, Jackman WM, Jalife J, Kalman JM, Kautzner J, Kottkamp H, Kuck KH, Kumagai K, Lee R, Lewalter T, Lindsay BD, Macle L, Mansour M, Marchilinski FE, Michaud GP, Nakagawa H, Natale A, Nattel S, Okumura K, Packer D, Pokushalov E, Reynolds MR, Sanders P, Scanavacca M, Schilling R, Cao T, Hao M, Verma A, Wilber DJ, Yamane T. 2017 HRS/EHRA/ECAS/APHRS/SOLACE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2017;14:e275-e444.

13. Kirchhof P, Lip GY, Van Gelder IC, Bax J, Hylek E, Kaufto J, Wesscheider K, Borlan G, Brandes A, Ezekowitz M, Diener H, Haegele L, Heibuchel H, Lane D, Mont L, Willers S, Dorian P, Aunes-Janson M, Blomstrom-Lundqvist C, Borenstein M, Breitstein S, Bruckmeck M, Catter N, Clemen A, Doebrev D, Dubner S, Edvardsson NG, Friberg L, Goette A, Gulizna M, Hatala R, Horwod J, Zsuzsmovski L, Kappenberger L, Kautzner J, Leute A, Lobbont T, Meyer R, Millerajen H, Morgan J, Muenzel F, Nabauer M, Baertels C, Off M, Paa D, Politka J, Ravens U, Rosin L, Stengek W, Steinbeck G, Vardas P, Vincent A, Walter M, Berzhtad G, Camm AJ. Comprehensive risk reduction in patients with atrial fibrillation: emerging diagnostic and therapeutic options-a report from the 3rd Atrial Fibrillation Competence Network/European Heart Rhythm Association consensus conference. Europace 2012;14:9-27.

14. Marrouche NF, Khirkhoffanah M, Brachmann J. Catheter ablation. J Am Coll Cardiol 2016;37:397-402.

15. Prabhu S, Taylor AJ, Costello BT, Kaye DM, McCullan AJA, Vesikobokin A, Sugumar H, Lockwood SM, Stokes MB, Pathik B, Nalliah CJ, Wong GR, Azizpardi SM, Gutman SJ, Lee G, Layland J, Mariani JA, Ling LH, Kalman JM, Kistler PM, Catheter ablation versus medical rate control in atrial fibrillation and systolic dysfunction: the CAMERA-MRI study. J Am Coll Cardiol 2017;70:1949-1961.

16. Anselmno M, Matta D, D’Ascenzo F, Bunck TJ, Schilling RJ, Hunter RJ, Pappone C, Neumann T, Noletter G, Filia M, Bertaglia E, Frontera A, Duncan E, Nalliah CJ, Pais P, Weerasononya R, Kalman JM, Gaita F. Catheter ablation of atrial fibrillation in patients with left ventricular systolic dysfunction: a systematic review and meta-analysis. Circ Arrhythm Electrophysiol 2014;7:1011-1018.