Longitudinal trajectory of response to electroconvulsive therapy associated with transient immune response & white matter alteration post-stimulation

Blake Andreou1,8, Benjamin Reid1,8, Amanda E. Lyall1,2, Suheyla Cetin-Karayumak1, Antoni Kubicki3, Randall Espinoza4, Jennifer Kruse4,5, Katherine L. Narr4,6 and Marek Kubicki1,2,7

© The Author(s) 2022

Research suggests electroconvulsive therapy (ECT) induces an acute neuroinflammatory response and changes in white matter (WM) structural connectivity. However, whether these processes are related, either to each other or to eventual treatment outcomes, has yet to be determined. We examined the relationship between levels of peripheral pro-inflammatory cytokines and diffusion imaging-indexed changes in WM microstructure in individuals with treatment-resistant depression (TRD) who underwent ECT. Forty-two patients were assessed at baseline, after their second ECT (T2), and after completion of ECT (T3). A Montgomery Åsberg Depression Rating Scale improvement of >50% post-ECT defined ECT-responders (n = 19) from non-responders (n = 23). Thirty-four controls were also examined. Tissue-specific fractional anisotropy (FAt) was estimated using diffusion imaging data and the Free-Water method in 17 WM tracts. Inflammatory panels were evaluated from peripheral blood. Cytokines were examined to characterize the association between potential ECT-induced changes in an inflammatory state and WM microstructure. Longitudinal trajectories of both measures were also examined separately for ECT-responders and non-responders. Patients exhibited elevated Interleukin-8 (IL-8) levels at baseline compared to controls. In patients, correlations between IL-8 and FAt changes from baseline to T2 were significant in the positive direction in the right superior longitudinal fasciculus (R-SLF) and right cingulum (R-CB) (p = 0.008). In these tracts, linear mixed-effects models revealed that trajectories of IL-8 and FAt were significantly positively correlated across all time points in responders, but not non-responders (R-CB-p = 0.001; R-SLF-p = 0.008). Our results suggest that response to ECT in TRD may be mediated by IL-8 and WM microstructure.

Translational Psychiatry (2022) 12:191; https://doi.org/10.1038/s41398-022-01960-8

INTRODUCTION

Major depressive disorder (MDD) is one of the most common and debilitating psychiatric illnesses in Western societies, with a lifetime prevalence estimated to be between 16 and 17% [1]. Associated with significant functional impairment, MDD is also the leading global cause of years lived with disability [2]. Despite the large number of therapeutic options available, between 15 and 33% of those with MDD suffer from treatment-resistant depression (TRD), such that two or more treatment attempts of adequate dose and duration have failed to result in remission of symptoms [3, 4]. For patients with TRD, electroconvulsive therapy (ECT)—the brief application of convulsive seizures using an electrical stimulus—is considered the gold standard of treatment, achieving remission rates of up to 50% [5]. Despite its efficacy, the precise mechanism by which ECT remediates depressive symptoms remains unclear [5].

Research has suggested that MDD is due, in part, to a dysfunction of the immune response, with MDD patients exhibiting higher levels of circulating pro-inflammatory cytokines in the peripheral blood compared to healthy individuals [3, 6]. The connection between MDD and an inflammatory state is further supported by several additional findings: (1) mood disorders are highly comorbid with somatic diseases that involve chronic inflammation, including diabetes mellitus and cardiovascular disease; (2) prolonged stress, a known risk factor for MDD, has been shown to induce a pro-inflammatory state; (3) use of pro-inflammatory cytokines as a therapy for somatic conditions, such as interferon-α for hepatitis C infection, is associated with an increased rate of MDD symptom development; (4) several anti-inflammatory therapies for autoimmune and inflammatory disorders have been shown to exhibit antidepressant effects; and (5) a number of available antidepressant medications possess anti-inflammatory properties [7–9].

Though its mechanism of action is not fully understood, ECT has been shown to induce a dynamic neuroinflammatory response.

1Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA. 2Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. 3Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA. 4Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, CA, USA. 5Cousins Center for Psychoneuroimmunology, Los Angeles, CA, USA. 6Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA. 7Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA. 8These authors contributed equally: Blake Andreou, Benjamin Reid. ✉email: kubicki@bwh.harvard.edu

Received: 1 October 2021 Revised: 19 April 2022 Accepted: 26 April 2022
Published online: 07 May 2022
MDD patients undergoing ECT have generally been found to experience a transient spike in pro-inflammatory cytokines after a single session of ECT, which ultimately returns to baseline, or below baseline, following the course of treatment [3]. Van Buel et al. postulate that this acute increase in pro-inflammatory markers serves a neurotrophic role, stimulating changes in brain structure that precipitate clinical response [5]. More specifically, the authors propose that the initial increase in pro-inflammatory cytokines may stimulate the release of neurotrophins, such as BDNF, which may serve a neuroprotective role, such as the induction of hippocampal neurogenesis [5]. This hypothesis is consistent with previous studies reporting increased BDNF levels [10] and increases in hippocampal volume post-ECT [11, 12]. Furthermore, animal models have found volumetric increases in the hippocampus and a reduction in depressive behaviors in mice, follow-up, and as non-responders (N = 34, 39.44 years, 12.26 SD) had no history of any major depressive episode depression, the onset of illness after 50 years of age, depression related to a serious medical illness, and ECT or other neuromodulation therapies (vagal nerve stimulation, repetitive transcranial magnetic stimulation) within past 6 months. Patients were tapered off medications, including antidepressants, benzodiazepines, and anticonvulsants for a minimum of 48 to 72 h prior to enrollment.

Patients were diagnosed with treatment-resistant MDD (TRD), such that two or more antidepressant medication trials had previously failed to result in remission of the disorder [26]. Patients underwent a course of clinically prescribed ECT (5000Q MECTA Corp., Tualatin, Oregon) administered at five-times ST for right-unilateral “d”Elia” placement using an ultrabrief pulse-width (0.3 ms), and 1.5-times ST for bilateral placement using a brief pulse-width (0.5 ms). All patients began with right-unilateral placement and, given a lack of efficacy with right-unilateral placement, transitioned to bilateral lead placement. This bilateral transition occurred in approximately 30% of our patients. On average, patients underwent 10.88 ECT sessions (SD = 3.91 sessions), with an average seizure threshold of 29.57 mC (SD = 25.94 mC) and seizure duration across all treatments of 67.77 s (SD = 19.46 s).

Patients were assessed at three time points over the course of ECT: within 24 h before their first session (baseline), following the second session occurring ~48 h after their first session (time point 2), and within 1 week of completing the course of treatment (time point 3). Depressive symptoms were evaluated using the Montgomery Åsberg Depression Rating Scale (MADRS) [27]. Subjects were defined as responders (n = 19) if their MADRS score improved by 50% or greater from baseline to second follow-up, and as non-responders (n = 23) if their MADRS score improved by less than 50% in this time frame.

Control subjects (N = 34, 39.44 years, 12.26 SD) had no history of any DSM-IV-TR disorder (confirmed by the M.I.N.I [25]) or prior use of psychotropic medications and were recruited to match TRD sample demographics, including age, sex, race/ethnicity, and level of education. Controls were assessed at baseline only. All participants provided written informed consent for study procedures approved by the UCLA Institutional Review Board.

Blood-based measures of inflammation
Peripheral inflammation was assessed at each time point as previously described [24]. In brief, plasma concentrations of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α were measured using a Bio-Plex 200
Diffusion weighting (b = 96 over 24 cm; 2.5 mm isotropic voxels).

All dMRI scans were visually inspected for motion and signal loss, corrected for eddy current artifacts through affine registration. Merged DWI scans contained a total of 61 non-collinear diffusion directions with b = 1000 mm²/s, and 10 volumes without diffusion weighting (b = 0) (55 axial slices; TR/TE: 7300/95 ms; FOV: 96 × 96 over 24 cm; 2.5 mm isotropic voxels).

Two diffusion magnetic resonance imaging (dMRI) scans were acquired on a Siemens 3 T Allegra (Siemens Healthineers AG, Erlangen, Germany) for all subjects at each time point (baseline, time point 2, time point 3), and subsequently merged using an unbiased pairwise registration, which estimates optimal subject space and rotates gradients accordingly through affine registration. Merged DWI scans contained a total of 61 non-collinear diffusion directions with b = 1000 mm²/s, and 10 volumes without diffusion weighting (b = 0) (55 axial slices; TR/TE: 7300/95 ms; FOV: 96 × 96 over 24 cm; 2.5 mm isotropic voxels).

Independent sample t-tests were run to evaluate diagnostic group differences (individuals with TRD, controls) in cytokine levels at baseline (Fig. 1). Only cytokines showing significant differences between diagnostic groups at baseline were used for the investigation of relationships with change in tract FAt following ECT. Cytokines showing group differences at baseline (see Fig. 2) were selected for further analysis. To investigate biological correlates of alterations in cytokine activity in individuals with TRD compared to controls, Pearson correlations were run between the percent change of selected cytokines and percent change in FAt between baseline and time point 2 (i.e., ~48 h before treatment initiation and ~24 h after the second ECT session). It is important to note that changes between baseline to time point 2 were examined based on prior observations of an acute inflammatory response following the initiation of ECT that appears to normalize by completion of the ECT treatment series [3]. Bonferroni correction for multiple comparisons was performed for each of the above analyses to determine a threshold of significance (p < 0.05). For tracts showing significant correlations between WM microstructure and inflammatory biomarkers, subsequent longitudinal analyses were performed.

A generalized linear mixed-effects model was used to investigate the relationship between longitudinal trajectories of cytokines of interest and FAt, separately in responders and non-responders, by following these steps: first, each selected cytokine was labeled as a response variable and eddy corrected to be normally distributed using a log transform. Next, the modified cytokine level and FAt were standardized by z-mapping. Finally, we treated each subject as random effects in the mixed-effects model. Age and sex were included as fixed effects and Bonferroni correction for multiple comparisons was applied. Lastly, a cluster analysis was performed.
change signif
non-responders (Fig. 4). From baseline to time point 2, IL-8
multiple comparisons (i.e., 24 h after the second session) in the right cingulum II and
percent change in FAt from baseline to time point 2 were
Elevated levels of IL-8 were found in the blood of MDD patients
levels observed in our sample of TRD patients may suggest that
while non-responders experienced an average decrease of 0.43%
from baseline to time point 2. In the right SLF, FAt increased over
this time by an average of 0.72% in responders and decreased by
an average of 0.046% in non-responders.

Using a linear mixed-effects model, the longitudinal trajectories
of IL-8 and FAt were shown to be significantly correlated across all
time points in responders in the right cingulum II (p = 0.001) and
right SLF (p = 0.008) after multiple comparison correction (p_{sig} = 0.025). These trajectories were not significantly correlated in non-
responders (Fig. 5).

DISCUSSION

This is the first study to assess the relationship between
longitudinal, dynamic changes in WM integrity and levels of
pro-inflammatory cytokines in the context of ECT. This study
further builds on the relatively limited literature investigating
effects of ECT by analyzing patients separately based on clinical
response and contributes to the growing literature investigating
WM microstructural changes in patients with TRD. In this study, we
found diagnostic group differences in IL-8 at baseline, as well as a
significant correlation between percent change in IL-8 and
percent change in FAt in patients from baseline to time point 2
(i.e., 24 h after the second session) in the right cingulum II and
right SLF. In these tracts, we additionally found that in patients
who responded clinically to ECT, but not in non-responders, the
longitudinal trajectories of IL-8 and FAt were significantly
correlated across all three time points.

The pro-inflammatory cytokines most commonly reported to be
elevated in MDD, including IL6 and TNF-alpha [3], were not
statistically different between patients and controls in our sample.
While there have only been a small number of studies focusing on
IL-8 differences in MDD, a meta-analysis of immune activation in
MDD reported that in all four studies that analyzed this cytokine,
reduced levels of IL-8 were found in the blood of MDD patients
compared with healthy controls [31]. However, within the MDD
patient population, elevations in pro-inflammatory markers have
been shown to positively correlate with treatment resistance, and
a recent study analyzing cytokine profiles in patients with TRD
found higher levels of IL-8 in patients compared to controls [8, 32].
In the context of existing literature, the baseline elevation in IL-8
levels observed in our sample of TRD patients may suggest that
there is a different cytokine profile in patients with TRD than there
is in the general MDD population.

While the association between ECT and changes in pro-
flammatory cytokines have been reported in several studies
[7–9], the effects of ECT on levels of IL-8 are less well-established.
IL-8 is a chemokine that is known to elicit widespread recruitment
and activation of neutrophils in response to inflammatory stimuli
[33]. In patients, the observed baseline elevation in IL-8 supports
previous studies that have found an association between MDD
and a peripheral inflammatory response [3]. Furthermore, the changes in IL-8 seen in our study are consistent with the hypothesis that ECT-induced neuroinflammation may serve a compensatory role, as IL-8 has previously been found to exhibit neurotrophic effects. Indeed, IL-8 has been shown to enhance neuronal survival of hippocampal cell cultures [34], and to promote neuronal growth following brain injury in TBI by stimulating the production of nerve growth factors [35]. It is therefore plausible that in responders, dynamic changes in IL-8 following ECT stimulate neuroprotective processes, such as glial proliferation, which promote clinical response to treatment. This potential glial proliferation may manifest as the transient increases in FAt that we observed in ECT-responders. In fact, rodent studies have established that glial cells comprise a substantial portion of WM voxel volume [36] and that alterations to both the quantity and organization of these cells can affect diffusion measurements [37]. In a recent publication, Sydnor et al. hypothesized that the transient FA increases observed following ketamine infusions in TRD patients may be in part due to increased WM glial cell reactivity [38]. The hypothesized mechanisms by which ketamine infusions produce antidepressant effects often include immune modulation and subsequent alterations to glial cells, namely microglia and astrocytes [39]. Thus, our study provides some evidence that successful response to ECT may be immune-mediated in a similar fashion. This may suggest that successful response to multiple neuromodulatory techniques in TRD patients occurs via neuroinflammation-mediated glial activation, but more research will be needed to properly link the increase in pro-inflammatory cytokines and the increase in WM integrity.

It is not insignificant that the right cingulum II and the right SLF were the tracts most significantly associated with IL-8. The cingulum bundle has long been theorized to play a critical role in emotional regulation [40] and, while not directly tied to emotional processing, the right SLF has been reported to play a role in affective behaviors, such as empathizing and brooding [41, 42]. Previous research has demonstrated that those with TRD exhibit reduced FA in both the SLF and cingulum bundle [43], and that reduced FA in these tracts is associated with increased symptom severity and treatment resistance in those with MDD [18]. It is therefore plausible that immune-mediated processes serve to partially reverse structural deficits seen in the context of TRD. However, it is critical to acknowledge a second potential cause in the right-side bias we observed: all patients undergoing electroconvulsive therapy in the current study received treatment using either right-unilateral or bilateral lead placement. In other words, all subjects received some right-hemispheric stimulation, but only a subset of our population received stimulation on the left hemisphere. It is therefore also possible that our right-sided bias is a result of the lead placement parameters chosen as part of our population’s clinical treatment course. Further research should strive to further investigate the potential right-side bias of the current results, as well as the individual tracts implicated.

A strength of this study is the use of a highly dimensional, longitudinal dataset that permits analysis of biomarkers across the
entire course of treatment. Additionally, the longitudinal nature of this study enables us to capture associations between the larger trajectories of these measures that would be obscured in cross-sectional analysis. It is important that future research into the effects of ECT reflects the longitudinal nature of the treatment paradigm, analyzing dynamic changes that occur over the course of treatment. An additional strength of our study is the use of free-water correction. Free-water imaging differs from standard diffusion tensor imaging as it utilizes a bi-tensor model to approximate a cellular “tissue” compartment and an extracellular “free-water” compartment. Identifying and eliminating the “free-water” creates a depiction of the WM microstructure independent of the extracellular compartment. This facilitates the detection of microstructural changes beyond alterations to WM, which in turn allows for a more precise and nuanced analysis of microstructural changes than would be possible with the standard fractional anisotropy measure.

There are several limitations to this study. First, due to the observational nature of this study, it is not possible to determine whether IL-8 changes precipitate alterations in WM, and therefore a causal relationship cannot be deduced. Second, given the sparse amount of research into the immune-activating potential of IL-8, further investigation is needed to determine its potential role in mediating white matter changes related to treatment response in ECT. Finally, the small sample size and high variability within the sample precluded the detection of statistically significant changes in FA at IL-8 between discrete time points in either response group. However, our additional clustering analysis suggests that responders were more likely to experience a larger and more positive change in FA and IL-8 compared to non-responders. Qualitatively, our results suggest that the magnitude of these changes differs between responders and non-responders, but we are unable to demonstrate these changes statistically. This may be in part due to the small sample size and high variability within the sample.

In summary, the current study examined the relationship between pro-inflammatory cytokines and WM changes throughout a course of ECT, in a population of patients diagnosed with TRD. An association between the longitudinal trajectories of IL-8 and FA across two tracts was observed in those who responded to ECT treatment, elucidating a potential role of IL-8 in mediating changes to ECT treatment, in a population of patients diagnosed with major depression. Biopsychosoc Psychiatry. 2018;43:2380.

van Velzen LS, Kelly S, Iseas D, Aleman A, Aftanas LI, Bauer J, et al. White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol Psychiatry. 2019;7:1511–25.

Liao Y, Huang X, Wu Q, Yang C, Kuang W, Du M, et al. Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry Neurosci. 2013;38:49–56.

de Diego-Adelino J, Pires P, Gómez-Ansón B, Serra-Blasco M, Vives-Gilbert Y, Puigdemont D, et al. Microstructural white-matter abnormalities associated with treatment resistance, severity and duration of illness in major depression. Psychol Med. 2014;44:1171–82.

Guo W, Liu F, Chen J, Xu X, Wu R, Ma C, et al. Altered white matter integrity of the extracellular compartment. Neurontin receptor antagonists. Proprius R Soc Lond, B, Biol Sci. 2012;367:2475–84.

Kruke JL, Congdon E, Olmstead R, Njau S, Breen EC, Narr KL, et al. (2018). Inflammation and improvement of depression following electroconvulsive therapy in treatment-resistant depression. J Clin Psychiatry. 2018;79:111597.

Sheehan DV, Lecrubier Y, Sheehan KH, Amorin P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59:22–33.

Nemeroff CB. Prevalence and management of treatment-resistant depression. J Clin Psychiatry. 2007;68:17–25.

Williams JBW, Kobal KA. Development and reliability of a structured interview guide for the Montgomery Asberg Depression Rating Scale (SIGMA). Br J Psychiatry. 2008;192:52–58.

Epstein MM, Breen EC, Magpantay L, Detels R, Lepone P, Penugonda S, et al. Temporal stability of serum concentrations of cytokines and soluble receptors measured across two years in low-risk HIV-seronegative men. Cancer Epidemiol Biomark Prev. 2013;22:2009–15.

Pasternak O, Sochen N, Guy Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med. 2009;62:717–30.

Zhang S, Arfanakis K. Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template characteristics, spatial normalization accuracy, and detection of small inter-group FA differences. Neuroimage. 2018;172:48–50.

Dowellati Y, Herrmann N, Swarfedler W, Liu H, Sham L, Reim EK, et al. Meta-analysis of cytokines in major depression. Biopsychosoc Psychiatry. 2010;67:446–57.

Strawbridge R, Hodsoll J, Powell TR, Hotopf M, Hatch SL, Breen G, et al. Inflammation profiles of severe treatment-resistant depression. J Affect Disord. 2019;246:42–51.

Ehrlich LC, Hu S, Sheng WS, Sutton RL, Rockswold GL, Peterson PK, et al. Cytokine regulation of human microglial cell IL-8 production. J Immunol. 1998;160:1944–8.
ACKNOWLEDGEMENTS

This work is supported by National Institute of Mental Health grants (R03 MH110745 and K01 MH115247 to AEL, R01MH102377 and K24MH110807 to MK, MH092301 and MH110008 to KLN and RE, and MH116127 to JK) and a Young Investigator Award by the Brain and Behavior Research Fund (AEL).

AUTHOR CONTRIBUTIONS

Study conception and design: RE, JK, KLN, and MK; Data collection and processing: AK and RE; Analysis and interpretation of results: BA, BR, SC-K, and MK; Preparation of manuscript: BA, BR, AEL, and MK.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Marek Kubicki.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022