INTRODUCTION

In India, Jammu and Kashmir is the main apple producing state and produces around 60% of the apples of the country. India lacks efficient post-harvest systems, which lead to the loss of around 30% agricultural and horticultural produce, therefore, conversion to related processed products can be the best option to minimize the losses (Bhardwaj & Pandey, 2011). Apple is considered as 4th important fruit throughout the world (Zarein et al., 2015). Apple (Malus domestica) is consumed throughout the world as it contains vitamins, dietary fiber, and bioactive compounds (phenolic compounds) besides carbohydrates, proteins, and lipids (Sun et al., 2002). Consumption of apple is usually in natural form; however, the service life of apple is limited and decline in quality attributes is rapid during storage (Vieira et al., 2009). Preservation of apples for optimum periods can be achieved by processing apple into different processed products, like jams, jellies, and even sauces (Gould, 2000). Processed products like fruit sauces are considered...
a big turn in the food industry and are an important part of the infant diet. These processed products are a valuable source of micronutrients, antioxidants, and fiber fostering health benefits for infants (Patras et al., 2009). There is an increase in the demand for apple sauce throughout the world by around 13% and more than 13% in Asia and the Middle East (Parker, 2011). Apple sauce is mainly used as snacks, it can also be used as a functional alternative to chocolate. It is also used as between-meal food particularly by children (Colin-Henrion et al., 2009). Besides being a rich source of nutrients, these sauces must be acceptable to the consumers from the sensory point of view. Nowadays, consumers are apprehensive about the quality attributes of processed food product; therefore, it is necessary to have an understanding of physiochemical changes and rheological parameters as processing (cooking) and storage can modify the characteristic parameters of the processed product (Nindo et al., 2007). Furthermore, there is limited literature available on apple sauce developed from indigenous cultivars of apple. Therefore, considering the above facts the objectives of the research are to study the physicochemical and rheological properties of five different Kashmiri cultivars of apple sauce during the storage period of 45 days at ambient and refrigerated temperatures.

2 | MATERIALS AND METHODS

2.1 | Procurement of raw material

Fresh, ripe, and sound fruits of 5 apple cultivars American Apirouge, Delicious, Red Delicious, Mollies Delicious, Chamure, devoid of any microbial infection or mechanical fissures were procured from the local market of Srinagar and then bought to the food processing and training center of Islamic University of Science and Technology, Awantipora for further processing.

2.2 | Preparation of samples

Apple processing was done according to Wani et al., (2009). Apples were first sorted and damaged fruits were discarded. The selected apples were washed, peeled, and followed by the removal of core and seeds. The pulp was obtained by fruit pulper, strained, and cooked with 1/3rd amount of sugar followed by spice addition (bag method) to the desired consistency (Wani et al., 2009). The standard recipe used for apple sauce making was as follows: apple pulp 1 kg, sugar 250 g, salt 10 g, onion (chopped) 200 g, ginger (chopped) 100 g, garlic (chopped) 50 g, red chili powder 10 g, clove (headless) 5 numbers, cinnamon, cardamom (large), aniseed (powdered) 15 g each, vinegar/ acetic acid 50 ml, and sodium benzoate or KMS 0.7 g per kg sauce. The final product was filled hot in sterilized bottles stored and divided into ten groups (T0, T1, A0, A1, B0, B1, C0, C1, D0, and D1) with each cultivar consisting of two groups for both refrigerated and ambient storage study as shown in Table 1.

2.3 | Physicochemical analysis of the sauce

2.3.1 | Determination of pH

The pH of the apple pulp was determined using a digital pH meter (the pH meter, mod. Cyberscan 510). The calibration of the pH meter was done before sample analysis, then the required amount of sample was taken and brought into contact with the electrode of the pH meter, and reading was noted.

2.3.2 | Determination of titratable acidity

The method used for calculating titratable acidity was done as per the procedure of (Horwitz, 2000). The percentage of titratable acidity was calculated as below.

\[
\text{Acidity} \% \ (\text{g/L}) = \frac{\text{Titrevalue} \times \text{Normality of alkali} \times \text{Vol made up} \times \text{Equivalent wt. of acid} \times 100}{\text{Volume of sample taken for estimation} \times \text{wt or vol. of sample} \times 1000 \times 100}
\]

2.3.3 | Determination of total solid soluble solids and total solids

Calibrated refractometer (Atago) was used for estimation of total soluble solids and total solids in Brix according to (Wani et al., 2009).

2.3.4 | Determination of color

A hunter laboratory color spectrophotometer (Colorflex, Hunterlab) was used to measure the L, a* and b* values of the four samples. The colorimeter was calibrated using standard white and blackboards. The color values were expressed as L (whiteness to darkness), a (redness to greenness), and b (yellowness to blueness). The samples were placed in a transparent petri dish covered with a standard black cup and placed against the light source for color measurement. For each sample, three measurements were taken at different positions of the sample.

2.3.5 | Determination of rheological characteristics

The rheological properties were studied using Rheometer Physica MCR 101 (Anton Paar). The parallel plate geometry with 0.5 mm gap was used, and tests were conducted at a constant temperature of 25°C. To evaluate visco-elastic characteristics (loss modulus, G″, and storage modulus, G′), the dynamic oscillatory frequency sweep test with a frequency range of 0.1 to 20 rad/s at a strain value of 2%
and TS can be explained by the fact that during the storage period, there was a significant decrease in TSS and a similar trend in TS is non-significant. The samples stored at ambient temperature for 45 days for refrigerated samples; however, increase in TSS is non-significant. The samples stored at ambient temperature show an increase in TSS up to 30 days, and at the end of the storage period, there was a significant decrease in TSS and a similar trend was reported by Levent and Alpaslan (2018). The increase in TSS and TS can be explained by the fact that during the storage period, the percentage of acetic acid ranges between 3.3 and 4.6. There were little differences in pH in all cultivars. However, with the advancement of the storage period (30 days) difference in pH became significant for red delicious with respect to all other cultivars. pH values and titratable acidity values show a slight change during first 30 days of storage, however, change in titratable acidity and pH became significant at 45 days of storage period for all the cultivars with respect to zero days of storage. A slight increase in titratable acidity with the advancement of the storage period was also observed by (Touati et al., 2014; Levent and Alpaslan, 2018). The overall increase in titratable acidity was more for ambient samples as compared to refrigerated samples for all the cultivars. The observation resembles the study of (Wisal et al., 2013) for strawberry juice. The increase in acidity can be explained by the fact that with the advancement of the storage period enzymes can catalyze the breakdown of sugars into acids and hence can increase the acidity (Kumhar et al., 2014).

Color

As is evident from Table 3 the values for lightness (L^*), decreases slightly for 45 days of storage at refrigerated and ambient condition. L^* values of sauce show slight change during the storage period as the sauce becomes darker, which corresponds to the decrease in L^* value (Wickramarachchi & Ranamukhaarachchi, 2005). The highest decrease in the L^* value has been observed in samples D0 and D1 (Chamure cultivar). The a^* and b^* values did not show any significant differences and increased slightly with storage time. The decrease in the L^* value and increase in a^* and b^* values can be related to the increase in reducing sugars and amino groups because of higher temperatures during processing and similar findings.
TABLE 2 Physiochemical analysis of Apple sauce (TSS, total Sugars, pH and titratable acidity)
Cultivar
American Apirouge
Delicious
Red Delicious
Mollies Delicious
Chamure
Mean

Change in Total sugars during storage
American Apirouge
Delicious
Red Delicious
Mollies Delicious
Chamure
Mean

Changes in pH during storage
American Apirouge
Delicious
Red Delicious
Mollies Delicious
Chamure
Mean

Changes in titratable acidity during storage
American Apirouge
Delicious
Red Delicious
Mollies Delicious
Chamure
Mean

Note: Values are mean ± standard deviation (n = 3).
a-b: Within a row, different letters indicate significant differences among the storage period (p < .05).
A-B: Within a column, different letters indicate significant differences among different cultivars of apple (p < .05).
| Cultivar | Refrigerated | | | | Mean | | | | | | | | | |
|-------------------|--------------|----------------|----------------|----------------|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------|
| | 0 day | 15 day | 30 day | 45 day | | 0 day | 15 day | 30 day | 45 day | | 0 day | 15 day | 30 day | 45 day |
| Changes in “L**” value’s during storage | | | | | | | | | | | | | | |
| American Apriouge | 31.38 ± 0.539A | 30.84 ± 0.029D | 30.74 ± 0.029D | 29.93 ± 0.029D | 30.72 | 32.08 ± 0.029B | 31.97 ± 0.019E | 30.04 ± 0.029D | 28.12 ± 0.049D | 30.55 | | | |
| Delicious | 32.08 ± 0.039C | 30.16 ± 0.029B | 28.05 ± 0.029A | 27.95 ± 0.039C | 29.56 | 32.08 ± 0.019B | 30.64 ± 0.029D | 28.60 ± 0.029C | 27.73 ± 0.029C | 29.76 | | | |
| Red Delicious | 32.08 ± 0.019C | 30.09 ± 0.029A | 28.14 ± 0.029B | 27.32 ± 0.039A | 29.41 | 32.08 ± 0.029B | 30.04 ± 0.029A | 28.05 ± 0.029A | 27.52 ± 0.029B | 29.42 | | | |
| Mollies Delicious | 32.01 ± 0.029B | 30.60 ± 0.029C | 28.44 ± 0.029C | 27.32 ± 0.029A | 29.59 | 31.99 ± 0.019A | 30.09 ± 0.029B | 28.60 ± 0.029C | 27.75 ± 0.019C | 29.61 | | | |
| Chamure | 32.04 ± 0.029B | 30.16 ± 0.029B | 28.15 ± 0.029B | 27.46 ± 0.029B | 29.45 | 31.98 ± 0.019A | 30.14 ± 0.029C | 28.11 ± 0.029B | 27.26 ± 0.029A | 29.37 | | | |
| Mean | 31.92 | 30.37 | 28.70 | 27.99 | 32.04 | 30.57 | 28.68 | 27.67 | | | | | |
| Changes in “a**” value’s during storage | | | | | | | | | | | | | | |
| American Apriouge | 24.14 ± 0.029B | 24.12 ± 0.019A | 24.12 ± 0.029A | 24.14 ± 0.029A | 24.13 | 24.10 ± 0.029A | 24.1 ± 0.029A | 24.11 ± 0.029A | 24.15 ± 0.029B | 24.12 | | | |
| Delicious | 24.14 ± 0.019A | 24.13 ± 0.029A | 24.16 ± 0.019A | 24.21 ± 0.029B | 24.16 | 24.11 ± 0.019A | 24.18 ± 0.019B | 24.11 ± 0.029A | 24.1 ± 0.029A | 24.12 | | | |
| Red Delicious | 24.15 ± 0.059A | 24.21 ± 0.029D | 24.15 ± 0.029A | 24.11 ± 0.029C | 24.15 | 24.14 ± 0.029B | 24.15 ± 0.029B | 24.16 ± 0.029C | 24.29 ± 0.019D | 24.21 | | | |
| Mollies Delicious | 24.16 ± 0.019B | 24.18 ± 0.019B | 24.23 ± 0.029C | 24.26 ± 0.029C | 24.21 | 24.13 ± 0.029A | 24.16 ± 0.029B | 24.23 ± 0.029B | 24.26 ± 0.029C | 24.19 | | | |
| Chamure | 24.07 ± 0.029A | 24.15 ± 0.029C | 24.18 ± 0.029C | 24.24 ± 0.029C | 24.16 | 24.15 ± 0.029B | 24.18 ± 0.029B | 24.21 ± 0.029B | 24.24 ± 0.029C | 24.19 | | | |
| Mean | 24.13 | 24.16 | 24.17 | 24.19 | 24.13 | 24.15 | 24.18 | 24.21 | | | | | |
| Changes in “b**” value’s during storage | | | | | | | | | | | | | | |
| American Apriouge | 42.05 ± 0.029A | 42.06 ± 0.029A | 42.08 ± 0.019A | 42.07 ± 0.019A | 42.06 | 42.06 ± 0.029A | 42.08 ± 0.029A | 42.14 ± 0.029B | 42.13 ± 0.029A | 42.10 | | | |
| Delicious | 42.08 ± 0.029A | 42.15 ± 0.029B | 42.11 ± 0.029B | 42.16 ± 0.019B | 42.12 | 42.14 ± 0.029B | 42.16 ± 0.029C | 42.06 ± 0.029A | 42.15 ± 0.029B | 42.12 | | | |
| Red Delicious | 42.17 ± 0.019C | 42.14 ± 0.029B | 42.08 ± 0.029A | 42.13 ± 0.029C | 42.13 | 42.14 ± 0.029B | 42.22 ± 0.019D | 42.26 ± 0.029D | 42.25 ± 0.029B | 42.22 | | | |
| Mollies Delicious | 42.10 ± 0.029B | 42.16 ± 0.029B | 42.23 ± 0.029C | 42.26 ± 0.029D | 42.19 | 42.16 ± 0.019B | 42.18 ± 0.029C | 42.20 ± 0.019C | 42.25 ± 0.029B | 42.19 | | | |
| Chamure | 42.16 ± 0.029C | 42.19 ± 0.029B | 42.22 ± 0.029C | 42.25 ± 0.039D | 42.20 | 42.05 ± 0.039A | 42.13 ± 0.029B | 42.2 ± 0.029C | 42.23 ± 0.029B | 42.15 | | | |
| Mean | 42.11 | 42.14 | 42.14 | 42.17 | 42.11 | 42.15 | 42.17 | 42.20 | | | | | |

Note: Values are mean ± standard deviation (n = 3).
a-b: Within a row, different letters indicate significant differences among the storage period (p < .05).
A-B: Within a column, different letters indicate significant differences among different cultivars of apple (p < .05).
Table 4: Sensory analysis of Zero-day and 45-days sample

Cultivar	Color Mean	Taste Mean	Aroma Mean	Appearance Mean	Overall acceptability Mean	Color Mean	Taste Mean	Aroma Mean	Appearance Mean	Overall acceptability Mean
Zero-day analysis										
American Apirouge	4.25 ± 0.02	4.04 ± 0.02	4.36 ± 0.02	4.04 ± 0.01	4.34 ± 0.02	4.21	4.23 ± 0.02	4.02 ± 0.02	4.34 ± 0.02	4.02 ± 0.02
Delicious	4.26 ± 0.03	4.65 ± 0.02	4.36 ± 0.02	4.22 ± 0.02	4.44 ± 0.02	4.39	4.21 ± 0.01	4.63 ± 0.02	4.34 ± 0.02	4.18 ± 0.02
Red Delicious	4.20 ± 0.02	4.34 ± 0.02	4.35 ± 0.01	4.25 ± 0.02	4.26 ± 0.02	4.28	4.16 ± 0.02	4.30 ± 0.02	4.33 ± 0.02	4.23 ± 0.02
Mollies Delicious	4.22 ± 0.02	4.40 ± 0.02	4.34 ± 0.02	4.23 ± 0.02	4.38 ± 0.02	4.31	4.18 ± 0.02	4.34 ± 0.02	4.32 ± 0.02	4.22 ± 0.02
Chamure	4.24 ± 0.02	4.42 ± 0.02	4.33 ± 0.02	4.26 ± 0.02	4.40 ± 0.02	4.33	4.20 ± 0.02	4.40 ± 0.02	4.30 ± 0.02	4.22 ± 0.02
Mean	4.23	4.37	4.35	4.20	4.36	4.20	4.20	4.33	4.33	4.17

45 days analysis										
American Apirouge	4.07 ± 0.02	3.84 ± 0.02	4.19 ± 0.02	3.86 ± 0.02	3.98 ± 0.02	3.988	4.05 ± 0.02	3.82 ± 0.02	4.17 ± 0.02	3.82 ± 0.02
Delicious	4.16 ± 0.03	4.44 ± 0.02	4.28 ± 0.02	4.30 ± 0.02	4.28 ± 0.02	4.292	4.21 ± 0.01	4.63 ± 0.02	4.34 ± 0.02	4.18 ± 0.02
Red Delicious	4.06 ± 0.02	4.44 ± 0.02	4.04 ± 0.01	3.94 ± 0.02	4.16 ± 0.02	4.128	3.93 ± 0.02	4.08 ± 0.02	4.10 ± 0.02	3.95 ± 0.02
Mollies Delicious	3.86 ± 0.02	3.00 ± 0.02	4.03 ± 0.02	3.93 ± 0.02	3.94 ± 0.04	3.752	3.92 ± 0.02	4.10 ± 0.02	4.04 ± 0.02	3.93 ± 0.02
Chamure	3.88 ± 0.02	4.04 ± 0.02	4.02 ± 0.02	3.92 ± 0.02	4.08 ± 0.02	3.988	3.90 ± 0.02	4.10 ± 0.02	4.00 ± 0.02	3.92 ± 0.02
Mean	4.01	3.93	4.11	3.99	4.09	4.00	4.15	4.13	3.96	4.08
reason might be that at ambient storage change in chemical parameters is more as compared to refrigerated storage which in turn affects the rheological parameters. The study resembles the study of Guerrero and Katlijn (Guerrero and Alzamora, 1998; Katlijn et al., 2013).

3.5.2 Shear rate versus viscosity

From Figures 5 and 6, it is clear that with the increase in the shear rate the apparent viscosity decreases and the decrease in viscosity shows linear relation with the shear rate which indicates the shear-thinning behavior of apple sauce. The reason behind the decrease in viscosity can be attributed to the fact that heating during the sauce preparation can modify cellular structure especially cell wall structure, which can result in the softening of the pectin and thus changing the rigidity of the cells. Redgwell (Redgwell et al., 2008) and Abd-Elhady (Abd-Elhady, 2014) in their studies on apple pulp and strawberry, respectively, reported that the decrease in viscosity can be explained by the fact that during the preparation of sauces heating can destabilize the cellulose network, which results in the decrease in viscosity of apple samples. The sample of apple sauce with the highest Brix showed the lowest consistency. A similar study was reported by Ditchfield et al. (2004). At the end of storage (Figure 4), the sample shows a gradual decrease in a rheological value. The highest decrease has been observed in C1 and C0. The decrease in the rheological behavior can be because of the structural breakdown of molecules that occurs initially during the preparation of the samples due to the generation of the different operating forces and also because of the increased alignment of constituted molecules in the
later stages. In all the samples, the rate of the structural breakdown was higher in the initial phase and the decrease was marginal in later stages (Nindo et al., 2007).

4 | CONCLUSION

The results of our study indicated that the apple sauces stored at refrigerated conditions prompted less physiochemical changes as compared to the storage at a temperature of 25°C (ambient conditions). Interaction of storage time and the temperature had a significant effect on the stability of apple sauce. An increase in acidity has been observed in both cases, while ambient storage shows the highest increase than that of refrigerated storage. The highest acidity has been found in the D0 sample while the lowest acidity has been observed in B0. Sensory analysis of sauces has shown A0 as the highest acceptable product. Frequency sweep tests demonstrated that the elastic modulus was greater than the viscous modulus for all the samples, and both the moduli decreased with a decrease in frequency. Viscosity showed a linear decrease with the increasing shear stress. The knowledge provided by the study can be used for the development of sauces from different cultivars of apple in terms of storage behavior and consistency for industrial applications.

ACKNOWLEDGMENT

The authors are highly thankful to the Department of Food Technology, Islamic University of Science and Technology Awantipora Pulwama J and K for providing facilities for the current research.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this paper.

ETHICAL APPROVAL

This study did not involve any animal or human testing.

ORCID

Zakir S. Khan https://orcid.org/0000-0002-3501-9137
B.N. Dar https://orcid.org/0000-0003-4120-3616

REFERENCES

Abd-Elhady, M. D. (2014). Effect of citric acid, calcium lactate and low temperature prefreezing treatment on the quality of frozen strawberry. Annals of Agricultural Sciences, 59, 69–75. https://doi.org/10.1016/j.aoas.2014.06.010.

Aly, M. M., El-Agamy, S. Z. A., & Biggs, R. H. (1981). Ethylene production and firmness of Peach and nectarine fruits as related to storage. Proceedings of the Annual Meeting of the Florida State Horticultural Society, 94, 291–294.

Augusto, P. E. D., Cristianini, M., & Ibarz, A. (2012). Effect of temperature on dynamic and steadystate shear rheological properties of siriguela (Spondias purpurea L.) pulp. Journal of Food Engineering, 108(2), 283–289. https://doi.org/10.1016/j.jfoodeng.2011.08.015.

Bakshi, R. A., Khanday, S., Khan, Z. S., & Dar, B. N. (2020). Physiochemical and rheological characteristics of sorbitol low sugar cherry jam. Journal of Postharvest Technology, 8(3), 61–70.

Bhardwaj, R. L., & Pandey, S. (2011). Juice blends-a way of utilization of under-utilized fruits, Vegetables and spices: A review. Critical Reviews in Food Science and Nutrition, 51(6), 563–570. https://doi.org/10.1080/10408391003710654.

Colin-Henrion, M., Ménaginc, E., Renard, C. M. G. C., Richomme, P., & Jourjon, F. (2009). From apple to applesauce: Processing effects on dietary fibres and cell wall polysaccharides. Food Chemistry, 117(2), 254–260. https://doi.org/10.1016/j.foodchem.2009.03.109.

Ditchfield, C., Tadiní, C., Singh, R., & Toledo, R. (2004). Rheological properties of banana Puree at high temperatures. International Journal of Food Properties, 7(3), 571–584. https://doi.org/10.1081/JFP-200032973.

Gonzalez-Buesa, J., Arias, E., Salvador, M. L., Oriá, R., & Ferrer-Mairal, A. (2011). Suitability for minimal processing of non-melting clingstone peaches. International Journal of Food Science & Technology, 46, 819–826. https://doi.org/10.1111/j.1365-2621.2011.02572.x.

Gould, G. W. (2000). Emerging Technologies in food preservation and processing in the last 40 years. In G. V. Canovas, & G. W. Gould (Eds.), Barbosa (pp. 1–11). Innovations in food processing. Technomic Publishing Co.

Guerrero, S. N., & Alzamora, S. M. (1998). Effect of pH, temperature and glucose addition on flow behaviour of fruit pureses: II. Peach, papaya and mango puree’s. Journal of Food Engineering, 37(1), 77–101.

Horwitz, W. (2000). Acidity titratable of fruit products (AOAC Official Method 942.15). Official Methods of analysis of AOAC International.

Hussain, P. R., Suradkar, P. P., Wani, A. M., & Dar, M. A. (2015). Retention of storage quality and post-refrigeration shelf-life extension of plum (Prunus domestica L.) cv. Santa Rosa using combination of carboxymethyl cellulose (CMC) coating and gamma irradiation. Radiation Physics and Chemistry, 107, 136–214. https://doi.org/10.1016/j.radphyschem.2014.10.007.

Hussein, Z., Fawole, O. A., & Opara, U. O. (2020). Effects of bruising and storage duration on physiological response and quality attributes of pomegranate fruit. Scientia Horticulturae, 267, 109306. https://doi.org/10.1016/j.scienta.2020.109306.

Kaushik, N., Kaur, B. P., Rao, P. S., & Mishra, H. N. (2014). Effect of high pressure processing Oncolor, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science & Emerging Technologies, 22, 40–50. https://doi.org/10.1016/j.ifset.2013.12.011.

Kumhar, D. S., Pareek, S., & Ameta, K. D. (2014). Effect of antioxidants and storage temperatures on browning and quality of custard apple (Annona squamosa L.) pulp. Journal of Scientific & Industrial Research, 73, 622–626.

Levent, O., & Alpaslan, M. (2018). Effect of processing parameters on some physicochemical properties, sugar profile and rheological characterization of apricot sauce. Journal of Food Measurement and Characterization, 12(2), 1072–1083. https://doi.org/10.1007/s11694-018-9723-6.

Moei, K. R. N., Jolie, R. P., Palmers, S. K. J., Cardinaels, R., Christiaens, S., Van Buggenhout, S., Van Loey, A. M., Moldenaers, P., & Hendrickx, M. E. (2013). The effects of process-induced pectin changes on the viscosity of carrot and tomato sera. Food and Bioprocess Technology, 6(10), 2870–2883. https://doi.org/10.1007/s11947-012-1004-5.

Nindo, C. I., Tang, J., Powers, J. R., & Takhar, P. S. (2007). Rheological properties of blueberry puree for processing applications. LW-T Food Science and Technology, 40(2), 292–299. https://doi.org/10.1007/j.lwt.2005.10.003.

Parker, P. M. (2011). The 2011-2016 world outlook for canned apple sauce. Retrieved May/5, 2013, from http://web.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=5&sid=b232f0e bd62e-4329-8587-5496c5739ce%40sessionmgr111&hid=112.
Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purees. *Innovative Food Science & Emerging Technologies*, 10(3), 308–313.

Redgwell, R. J., Curti, D., & Gehin-Delval, C. (2008). Physicochemical properties of cell wall materials from apple, kiwifruit and tomato. *European Food Research and Technology*, 227(2), 607–618. https://doi.org/10.1007/s00217-007-0762-1.

Saleem, N., Kamran, M., Shaikh, S. A., Tarar, O. M., & Jamil, K. (2011). Studies on preparation and processing of peach squash. *Pakistan Journal of Biochemistry Molecular Biology*, 44(1), 12–17.

Sato, A. C. K., & Cunha, R. L. (2009). Effect of particle size on rheological properties of jaboticaba pulp. *Journal of Food Engineering*, 91(4), 566–570. https://doi.org/10.1016/j.jfoodeng.2008.10.005.

Schweiggert, R. M., Steingass, C. B., Heller, A., Esquivel, D., & Carle, R. (2011). Characterization of chromoplasts and carotenoids of red and yellow fleshed papaya. *Planta*, 234, 1031–1044.

Sun, J., Chu, Y., Wu, X., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of common fruits. *Journal of Agricultural and Food Chemistry*, 50, 7449–7454. https://doi.org/10.1021/jf0207530.

Sunthanont, K. (1998). Evaluation of processing quality of selected apple cultivars grown in Michigan. Masters thesis, Food Science and Human Nutrition, Michigan State University. https://doi.org/10.25335/M5ZS2KR0B.

Sunthanont, Korada (1998). Evaluation of processing quality of selected apple cultivars grown in Michigan. *Food Science and Human Nutrition, Michigan State University*, https://doi.org/10.25335/M5ZS2KR0B.

Tanon, R. V., Alexandre, D., Hubinger, M. D., & Cunha, R. L. (2009). Steady and dynamic shear Rheological properties acai pulp (Euterpe oleracea Mart.). *Journal of Food Engineering*, 92, 425–431.

Touati, N., Tarazona-Diaz, M. P., Aguayo, E., & Louailache, H. (2014). Effect of storage time and temperature on the physicochemical and sensory characteristics of commercial apricot jam. *Food Chemistry*, 145, 23–27. https://doi.org/10.1016/j.foodchem.2013.08.037.

Vidhya, R., & Narain, A. (2011). Formulation and evaluation of preserved products utilizing under exploited fruit, wood apple (Limonia acidissima). *American-Eurasian Journal of Agricultural and Environmental Sciences*, 10(1), 112–118.

Wani, S. M., Ahsan, H., Dalal, M. R., Dar, B. N., & Malik, A. R. (2009). Chemical characteristics of different formulations of apple sauce under ambient storage. *SKUAST Journal of Research*, 11, 104–111.

Wills, R. B. H., Bembridge, P. A., & Scott, K. J. (1980). Use of flesh firmness and other objective tests to determine consumer acceptability of Delicious apple. *Australian Journal of Experimental Agriculture*, 20(103), 252–256.

Wisal, S., Ullah, J., Zeb, A., & Khan, M. Z. (2013). Effect of refrigeration temperature, sugar concentrations and different chemicals preservatives on the storage stability of strawberry juice. *International Journal of Engineering and Technology*, 13(2), 160–168.

Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. *Journal of the Saudi Society of Agricultural Sciences*, 14(1), 41–47. https://doi.org/10.1016/j.jssas.2013.06.002.

How to cite this article: Bakshi RA, Aslam A, Khan ZS, Fayaz S, Dar BN. Physiochemical, sensorial, and rheological characteristics of sauce developed from Kashmiri apples: Influence of cultivars and storage conditions. *Food Sci Nutr*. 2022;10:1685–1693. https://doi.org/10.1002/fsn3.2239