Decomposition numbers for Hecke algebras of type $G(r, p, n)$: the (ε, q)-separated case

Jun Hu and Andrew Mathas

ABSTRACT

The paper studies the modular representation theory of the cyclotomic Hecke algebras of type $G(r, p, n)$ with (ε, q)-separated parameters. We show that the decomposition numbers of these algebras are completely determined by the decomposition matrices of related cyclotomic Hecke algebras of type $G(s, 1, m)$, where $1 \leq s \leq r$ and $1 \leq m \leq n$. Furthermore, the proof gives an explicit algorithm for computing these decomposition numbers. Consequently, in principle, the decomposition matrices of these algebras are now known in characteristic zero.

In proving these results, we develop a Specht module theory for these algebras, explicitly construct their simple modules and introduce and study analogues of the cyclotomic Schur algebras of type $G(r, p, n)$ when the parameters are (ε, q)-separated.

The main results of the paper rest upon two Morita equivalences: the first reduces the calculation of all decomposition numbers to the case of the l-splittable decomposition numbers and the second Morita equivalence allows us to compute these decomposition numbers using an analogue of the cyclotomic Schur algebras for the Hecke algebras of type $G(r, p, n)$.

Contents

1. Introduction .. 865
 Index of notation 870
2. Hecke algebras of type $G(r, 1, n)$ and the central elements z_B 870
3. Specht modules and simple modules for $H_{r,p,n}$ 884
4. Cyclotomic Schur algebras and decomposition numbers 905
 Appendix A. Technical calculations for v_B 920
 References .. 925

1. Introduction

The cyclotomic Hecke algebras [6] are an important class of algebras that arise in the representation theory of finite reductive groups. These algebras can be defined using generators and relations and they are deformations of the group algebras of the complex corresponding reflection groups. The cyclotomic Hecke algebras can also be constructed using the monodromy representation of the associated braid groups [7] and, in characteristic zero, they are closely connected with category \mathcal{O} for the rational Cherednik algebras by the Knizhnik–Zamolodchikov functor [19].

This paper is concerned with the representation theory of the cyclotomic Hecke algebras $H_{r,p,n}$ of type $G(r, p, n)$, where $r = pd$, $p > 1$ and $n \geq 3$. Throughout we work over a field K which contains a primitive pth root of unity ε. The algebra $H_{r,p,n}$ depends upon the parameters $q \in K$ and $Q = (Q_1, \ldots, Q_d) \in K^d$ (see Definition 2.1). The d-tuple of parameters Q is
(ε, q)-separated over K if
\[
\prod_{1 \leq i,j \leq d} \prod_{-n < k < n} \prod_{1 \leq l < p} (Q_l - \varepsilon^l q^k Q_j) \neq 0. \tag{1.1}
\]
As we explain in Lemma 2.4, (ε, q)-separation is almost the same as assuming that $(\varepsilon) \cap (q) = 1$. This can be viewed as the quantum analogue of the common assumption in Clifford theory that the characteristic of the field should not divide the index of the normal subgroup inside the parent group. In general, the algebra $\mathcal{H}_{r,p,n}$ is not semisimple when Q is (ε, q)-separated.

The following is main result of this paper.

Theorem A. Suppose that K is a field of characteristic zero and that Q is (ε, q)-separated over K. Then the decomposition matrix of $\mathcal{H}_{r,p,n}$ is determined by the decomposition matrices of the cyclotomic Hecke algebras of type $G(s,1,m)$, where $1 \leq s \leq r$ and $1 \leq m \leq n$.

In proving this result, we also obtain an analogous but slightly weaker result for the decomposition numbers of $\mathcal{H}_{r,p,n}$ in positive characteristic. Moreover, when combined with the results of Hu and Mathas [25], Theorem A gives an explicit algorithm for computing the decomposition numbers of $\mathcal{H}_{r,p,n}$ in terms of the decomposition matrices of related Hecke algebras of type $G(s,1,m)$. Ariki [3] has determined the decomposition numbers of the Hecke algebras $\mathcal{H}_{r,n} = \mathcal{H}_{r,1,n}$ of type $G(r,1,n)$ when he, famously, proved and generalized the LLT Conjecture of Lascoux, Leclerc and Thibon. Hence, combining [3] and Theorem A implies the following.

Corollary. Suppose that K is a field of characteristic zero and that Q is (ε, q)-separated over K. Then the decomposition matrix of $\mathcal{H}_{r,p,n}$ is, in principle, known.

We note that Theorem A and its corollary have been obtained by the first author in the special case of the Hecke algebras of type D, when $r = p = 2$ (see [24]). This paper is a (non-trivial) generalization of the results in [24] to the algebras $\mathcal{H}_{r,p,n}$.

To prove Theorem A, it is enough by Hu and Mathas [25, Theorem B] (see Theorem 2.2), to compute the l-splittable decomposition numbers of the Hecke algebras of type $G(r,p,n)$. As is usual in Clifford theory, a decomposition number $[S : D]$ for $\mathcal{H}_{r,p,n}$ is p-splittable if S and D both have trivial *inertia groups*; see Definition 1.1 for a purely combinatorial definition.

In Theorem D below, we give a closed formula for all of the l-splittable decomposition numbers of $\mathcal{H}_{r,p,n}$. This formula depends on the decomposition numbers of certain Hecke algebras $\mathcal{H}_{s,m} = \mathcal{H}_{s,1,m}$, where $s \leq r$ and $m \leq n$, and some scalars $g_{\lambda} \in K$ which come from the semisimple representation theory of $\mathcal{H}_{s,m}$. More precisely, g_{λ} is an lth root of a quotient of two *Schur elements*. The scalars g_{λ} enter the picture because they can be used to decompose the Specht modules of $\mathcal{H}_{r,n}$ into a direct sum of $\mathcal{H}_{r,p,n}$-modules.

All of the results in this paper are geared towards computing the l-splittable decomposition numbers of $\mathcal{H}_{r,p,n}$. This requires a considerable amount of preliminary work, much of which takes place inside the algebra $\mathcal{H}_{r,n}$. This story begins with the Morita equivalence theorem of Dipper and the second author [12], which shows, modulo some technical assumptions on Q, that there is a Morita equivalence
\[
\text{Mod-}\mathcal{H}_{r,n} \xrightarrow{\sim} \bigoplus_{b \in \mathcal{C}_{r,n}} \text{Mod-}\mathcal{H}_{d,b}, \tag{1.2}
\]
where $\mathcal{C}_{r,n}$ is the set of compositions of n into p parts and if $b = (b_1, \ldots, b_p) \in \mathcal{C}_{r,n}$, then $\mathcal{H}_{d,b} = \mathcal{H}_{d,b_1} \otimes \cdots \otimes \mathcal{H}_{d,b_p}$. This result is proved by constructing an explicit $(\mathcal{H}_{d,b}, \mathcal{H}_{r,n})$-bimodule $V_b = v_b \mathcal{H}_{r,n}$ (Definition 2.9), showing that V_b is projective as an $\mathcal{H}_{r,n}$-module and that $\mathcal{H}_{d,b} \cong \text{End}_{\mathcal{H}_{r,n}}(V_b)$.
In this paper, we use the Morita equivalence (1.2) to understand how the Specht modules of \(\mathcal{H}_{r,n} \) behave under restriction to \(\mathcal{H}_{r,p,n} \). One of the key results is Theorem 2.26, which shows that there is an invertible central element \(z_b \) in \(\mathcal{H}_{d,b} \) such that \(ct_b = z_b^{-1} \). \(v_bT_b \) is the idempotent in \(\mathcal{H}_{r,n} \) that generates \(V_b \), where \(T_b = T_{w_b} \) for a certain permutation \(w_b \in \mathfrak{S}_n \). As a byproduct, we construct a parabolic subalgebra of \(\mathcal{H}_{r,n} \) which is isomorphic to \(\mathcal{H}_{d,b} \) and we show that the Morita equivalence (1.2) corresponds to induction from such subalgebras.

The first aim of this paper is to show that \(z_b \) acts as multiplication by an invertible scalar \(f_\chi \) on certain Specht modules of \(\mathcal{H}_{r,n} \). In order to describe these results, and how they help prove Theorem A, we need some more notation. Recall from [11] that \(\mathcal{H}_{r,n} \) is a cellular algebra with cell modules, the Specht modules \(\mathcal{S}(\lambda) \), indexed by the \(r \)-multipartitions \(\lambda = (\lambda^{[1]}, \lambda^{[2]}, \ldots, \lambda^{[r]}) \) of \(n \). If \(\mathcal{H}_{r,n} \) is semisimple, then the Specht modules are a complete set of pairwise non-isomorphic irreducible \(\mathcal{H}_{r,n} \)-modules. More generally, define \(D(\lambda) = \mathcal{S}(\lambda)/\text{rad}(\mathcal{S}(\lambda)) \), where \(\text{rad}(\mathcal{S}(\lambda)) \) is the radical of the bilinear form on \(\mathcal{S}(\lambda) \). Then the non-zero \(D(\lambda) \) are a complete set of pairwise non-isomorphic \(\mathcal{H}_{r,n} \)-modules.

For each \(\lambda \in \mathcal{P}_{r,n} \), we write \(\lambda = (\lambda^{[1]}, \ldots, \lambda^{[b]}) \), where
\[
\lambda^{[t]} = (\lambda^{[dt-d+1]}, \lambda^{[dt-d+2]}, \ldots, \lambda^{[dt]}) \quad \text{for } 1 \leq t \leq p.
\]
For convenience, set \(\lambda^{[k+bp]} = \lambda^{[k]} \) for all \(k \in \mathbb{Z} \). Let \(b = (b_1, \ldots, b_p) \in \mathcal{C}_{p,n} \) and set \(\mathcal{P}_{d,b} = \{ \lambda \in \mathcal{P}_{r,n} | \lambda^{[b]} = b_t \text{ for } 1 \leq t \leq p \} \). Then, by Dipper, James and Mathas [11], the algebra \(\mathcal{H}_{d,b} \) is a cellular algebra with cell modules \(S_b(\lambda) \cong S(\lambda^{[1]}) \otimes \ldots \otimes S(\lambda^{[p]}) \) for \(\lambda \in \mathcal{P}_{d,b} \). Again, the modules \(D_b(\lambda) = S_b(\lambda)/\text{rad} S_b(\lambda) \) for \(\lambda \in \mathcal{P}_{d,b} \) are either absolutely irreducible or zero.

Let \(\mathcal{F} = \mathcal{F}(\epsilon, \dot{q}, \mathbb{Q}) \), where \(\epsilon \in \mathbb{C} \) is a primitive \(p \)-th root of unity in \(\mathbb{C} \) and \(\dot{q} \) and \(\mathcal{Q} \) are indeterminates. The cyclotomic Hecke algebras \(\mathcal{H}^{\mathcal{F}}_{r,n} \) and \(\mathcal{H}^{\mathcal{F}}_{d,b} \) over \(\mathcal{F} \) are semisimple and they come equipped with non-degenerate trace forms \(\text{Tr} \) and \(\text{Tr}_b \), respectively. The Schur elements \(\hat{sl}_\lambda \) and \(\hat{sl}_b^\lambda \) of \(\mathcal{H}^{\mathcal{F}}_{r,n} \) and \(\mathcal{H}^{\mathcal{F}}_{d,b} \), respectively, are the scalars in \(\mathcal{F} \) determined by
\[
\text{Tr} = \sum_{\lambda \in \mathcal{P}_{r,n}} \frac{1}{\hat{sl}_\lambda} \chi^\lambda \quad \text{and} \quad \text{Tr}_b = \sum_{\lambda \in \mathcal{P}_{d,b}} \frac{1}{\hat{sl}_b^\lambda} \chi^\lambda,
\]
where \(\chi^\lambda \) and \(\chi^\lambda_b \) are the characters of the irreducible Specht modules \(\mathcal{S}(\lambda) \) and \(\mathcal{S}_b(\lambda) \), respectively.

The Schur elements \(\hat{sl}_\lambda \) and \(\hat{sl}_b^\lambda \) are explicitly known [8, 28] and, as we now explain, they are closely related to the scalars \(f_\chi \) which give the action of \(z_b \) on the Specht modules of \(\mathcal{H}_{r,n} \). To state this result, define \(o_\lambda = \min\{k \geq 1 | \lambda^{[k+t]} = \lambda^{[t]} \text{ for all } t \in \mathbb{Z} \} \) and set \(p_\lambda = p/o_\lambda \). Note that \(o_\lambda \) divides \(p \) so that \(p_\lambda \) is an integer for all \(\lambda \in \mathcal{P}_{d,b} \).

Theorem B. Suppose that \(\mathcal{Q} \) is \((\epsilon, q) \)-separated over \(K \) and that \(\lambda \in \mathcal{P}_{d,b} \). Then there exists a non-zero scalar \(f_\lambda \in K \) such that \(z_b \cdot v = f_\lambda v \) for all \(v \in \mathcal{S}(\lambda) \). Moreover,
\[
f_\lambda = (\hat{sl}_\lambda/\hat{sl}_b^\lambda) \text{Tr}(v_bT_b) = \epsilon^{(1/2)d_{\lambda,n}(1-p_\lambda)} g^\lambda_\chi,
\]
where \(g_\lambda \in \mathcal{K} \) and \(\epsilon (\hat{sl}_\lambda/\hat{sl}_b^\lambda)(\epsilon, q, \mathcal{Q}) = (\hat{sl}_\lambda/\hat{sl}_b^\lambda)(\epsilon, q, \mathcal{Q}) \) is the specialization of the rational function \(\hat{sl}_\lambda/\hat{sl}_b^\lambda \) at \((\epsilon, \dot{q}, \mathbb{Q}) = (\epsilon, q, \mathcal{Q}) \) (which is well-defined and non-zero).

Roughly half of this paper is devoted to proving Theorem B, but the payoff is considerable as the scalars \(f_\chi \) and \(g_\lambda \) play a role in everything that follows. The three main steps in its proof are Theorem 2.26, which explicitly relates the primitive idempotents in \(\mathcal{H}^{\mathcal{F}}_{r,n} \) and \(\mathcal{H}^{\mathcal{F}}_{d,b} \) under (1.2); Theorem 2.29, which is a comparison theorem relating the trace functions \(\text{Tr} \) and \(\text{Tr}_b \); and, Theorem 3.29, which uses shifting homomorphisms, some Clifford theory and seminormal forms to show that \(f_\lambda \) has a \(p_\lambda \)th root.
The reason why Theorem B is important is that multiplication by z_{μ} induces an $\mathcal{H}_{r,n}$-module endomorphism of $S(\lambda)$. We show that the factorization of f_{λ} given in Theorem B corresponds to a factorization of this endomorphism and hence that there exists a $\mathcal{H}_{r,p,n}$-module endomorphism θ_{λ} of $S(\lambda)$ such that $\theta_{\lambda}^{p\lambda}$ is $g_{\lambda}^{p\lambda}$ times the identity map on $S(\lambda)$ (Corollary 3.38). This allows us to decompose the Specht module as $S(\lambda) = S_{1}^{\lambda} \oplus \ldots \oplus S_{p\lambda}^{\lambda}$, where

$$S_{t}^{\lambda} = \{ x \in S(\lambda) \mid \theta_{\lambda}(x) = \varepsilon^{(t)\lambda} g_{\lambda} x \}$$

is a θ_{λ}-eigenspace of $S(\lambda)$ for $1 \leq t \leq p\lambda$. The module S_{t}^{λ} is an $\mathcal{H}_{r,p,n}$-module which is an analogue of a Specht module for $\mathcal{H}_{r,p,n}$.

Next we want to construct the irreducible $\mathcal{H}_{r,p,n}$-modules. Let D_{t}^{λ} be the head of S_{t}^{λ}. We will show that D_{t}^{λ} is either irreducible or zero. To describe the complete set of irreducible $\mathcal{H}_{r,p,n}$-modules, let $\mathcal{H}_{r,n} = \{ \lambda \in \mathcal{P}_{r,n} \mid D(\lambda) \neq 0 \}$ be the set of Kleshchev multipartitions for \mathbb{Q}^{ε}.

Then $\{ D(\lambda) \mid D(\lambda) \neq 0 \}$ is a complete set of pairwise non-isomorphic irreducible $\mathcal{H}_{r,n}$-modules by Dipper, James and Mathas [11]. Define an equivalence relation \sim_{σ} on $\mathcal{P}_{r,n}$ by $\lambda \sim_{\sigma} \mu$ if there exists a $k \in \mathbb{Z}$ such that $\lambda^{[t]} = \mu^{[k]}$ for $1 \leq t \leq p$ and $\lambda, \mu \in \mathcal{P}_{r,n}$. If Q is (ε, q)-separated over K, then \sim_{σ} induces an equivalence relation on $\mathcal{H}_{r,n}$ (cf. Lemma 3.3). Let $\mathcal{P}_{r,n}$ and $\mathcal{H}_{r,n}$ be the sets of \sim_{σ}-equivalence classes in $\mathcal{P}_{r,n}$ and $\mathcal{H}_{r,n}$, respectively.

Theorem C. Suppose that Q is (ε, q)-separated over the field K. Then:

(a) $\{ D_{t}^{\mu} \mid \mu \in \mathcal{P}_{r,n}^{\sigma} \text{ and } 1 \leq t \leq p_{\mu} \}$ is a complete set of pairwise non-isomorphic absolutely irreducible $\mathcal{H}_{r,p,n}$-modules, and hence K is a splitting field for $\mathcal{H}_{r,p,n}$;

(b) the decomposition matrix of $\mathcal{H}_{r,p,n}$ is unitriangular.

The structure of the Specht modules S_{t}^{λ} and the simple modules D_{t}^{λ} is described in more detail in Theorems 3.40 and 3.42, respectively.

We now have the notation to define the most important l-splittable decomposition numbers of $\mathcal{H}_{r,p,n}$.

Definition 1.1. Suppose that l divides p, $\lambda, \mu \in \mathcal{P}_{d,b}$ and that $1 \leq i \leq p_{\lambda}$ and $1 \leq j \leq p_{\mu}$. The decomposition number $[S_{t}^{\lambda} : D_{j}^{\mu}]$ is l-splittable if $p_{\lambda} = l = p_{\mu}$.

By the results in Section 4, and the general theory developed in [25], the decomposition number $[S_{t}^{\lambda} : D_{j}^{\mu}]$ is p-splittable if and only if S_{t}^{λ} and D_{j}^{μ} both have trivial inertia groups in the usual sense of Clifford theory.

Now suppose that l divides p and let $m = p/l$. To give an explicit formula for the l-splittable decomposition numbers of $\mathcal{H}_{r,p,n}$, let $V(l)$ be the $l \times l$ Vandermonde matrix

$$V(l) = \begin{pmatrix}
1 & 1 & \ldots & 1 \\
\varepsilon^{m} & \varepsilon^{2m} & \ldots & \varepsilon^{lm} \\
\vdots & \vdots & \ddots & \vdots \\
\varepsilon^{(l-1)m} & \varepsilon^{2(l-1)m} & \ldots & \varepsilon^{l(l-1)m}
\end{pmatrix}.$$
For $1 \leq i \leq l$ define $V_i(l)$ to be the matrix obtained from $V(l)$ by replacing its ith column with the column vector
\[
\begin{pmatrix}
d_{\lambda_m, \mu_m}^{l_i}
g_{\lambda}
g_{\mu}
\vdots
g_{\lambda_m, \mu_m}^{l_{i-1}}
\end{pmatrix},
\]
where $d_{\lambda_m, \mu_m} = [S(\lambda^1, \ldots, \lambda^m) : D(\mu^1, \ldots, \mu^m)]$ and $l_t = \gcd(l, t)$.

Theorem D. Suppose that K is a field, that Q is (ε, q)-separated over K and that the decomposition number $[S^\lambda_i : D^\mu_j]$ is l-splittable for some l dividing p. Then
\[
[S^\lambda_i : D^\mu_j] = \frac{\det V_{j-i}(l)}{\det V(l)} \pmod{\text{char } K},
\]
for $1 \leq i, j \leq l = p_\lambda = p_\mu$. In particular, the l-splittable decomposition numbers of $\mathcal{H}_{r, p, n}$ are known when K is a field of characteristic zero.

A closed formula for g_λ is given in Proposition 3.32 and Remark 3.33, so Theorem D completely determines the splittable decomposition numbers of $\mathcal{H}_{r, p, n}$.

The main idea underpinning Theorem D is the introduction of a new algebra $\mathcal{J}_{r, p, n}$, which is an analogue of the cyclotomic Schur algebra $[11]$ for $\mathcal{H}_{r, p, n}$. We construct Weyl modules and simple modules for $\mathcal{J}_{r, p, n}$ and then compute the l-splittable decomposition numbers of $\mathcal{J}_{r, p, n}$ using the twining characters of $\mathcal{J}_{r, p, n}$. The twining characters, which generalize the formal characters, compute the trace of certain elements $\vartheta_\lambda \in \mathcal{J}_{r, p, n}$ on the weight spaces of some $\mathcal{J}_{r, p, n}$-modules. The map ϑ_λ is constructed from the endomorphism ϑ_λ mentioned earlier. So, once again, ϑ_λ comes from the action of z_{λ} upon certain $\mathcal{J}_{r, p, n}$-modules. Finally, Theorem D is proved using a considerable amount of Clifford theory and some natural functors
\[
\bigoplus_{b \in \mathcal{P}_{p, n}} \text{Mod-} \mathcal{J}_{r, p, n}(b) \xrightarrow{\oplus \varphi(b)} \bigoplus_{b \in \mathcal{P}_{p, n}} \text{Mod-} \mathcal{E}_d, b \xrightarrow{\approx} \text{Mod-} \mathcal{H}_{r, p, n},
\]
where the first functor is an analogue of the Schur functor and the second functor is the restriction of the Morita equivalence of (1.2) to $\mathcal{H}_{r, p, n}$.

Very briefly, the outline of this paper is as follows. Chapter 2 studies the right ideals $V_b = v_b \mathcal{H}_{r, n}$. The main results are Lemma 2.21, which shows the existence of the central element z_b, Theorem 2.26, which produces a subalgebra of $\mathcal{H}_{r, n}$ isomorphic to $\mathcal{H}_{d, b}$, and Theorem 2.29, which is a comparison theorem for the natural trace forms on $\mathcal{H}_{d, b}$ and $\mathcal{H}_{r, n}$. In Chapter 3, these results are used to compute the scalars f_λ for $\lambda \in \mathcal{P}_{r, n}$, which describe the action of z_b on the Specht modules $S(\lambda)$ of $\mathcal{H}_{r, n}$. This proves the first half of Theorem B.

Subsection 3.4 marks the first direct appearance of the algebras $\mathcal{H}_{r, p, n}$. Using seminormal forms, we factorize the scalars f_λ in Theorem 3.29, completing the proof of Theorem B. We then use the roots of the scalars g_λ to decompose the Specht modules as $\mathcal{H}_{r, p, n}$-modules, culminating in Theorems 3.40 and 3.42, which describe the Specht modules and simple modules of $\mathcal{H}_{r, p, n}$, respectively. This completes the proof of Theorem C. Chapter 4 begins by lifting the Morita equivalence (1.2) to a new Morita equivalence between $\mathcal{H}_{r, p, n}$ and a new algebra \mathcal{E}_d in Corollary 4.5. Subsection 4.2 introduces and studies the algebras $\mathcal{J}_{r, p, n}$, which are analogues of the cyclotomic Schur algebras for $\mathcal{H}_{r, p, n}$. Theorem 4.28 computes the l-splittable decomposition numbers of $\mathcal{J}_{r, p, n}$ using its twining characters. Applying the functors mentioned in the last
paragraph, we then prove Theorem D and hence complete the proof of Theorem A. Finally, in the appendix we prove some technical results whose proofs were deferred from Chapter 2.

Index of notation

Symbol	Description		
\(\sim_a\)	equivalence relation \(b \sim_0 k	k	\)
\(\sim_b\)	equivalence relation \(\lambda \sim \lambda(k\mathcal{k})\)		
\(A_a^1 A_b\)	induction and restriction functors		
\(A(d, q, Q)\)	product of \(\frac{1}{Q_1} + \frac{1}{Q_1}, Q_1^{1}\) and \(2^{1}\)		
\(b_{\delta}\)	\(b_{\delta} = (b_1 + b_2 + \ldots + b_d)\)		
\(\Theta_a, \Theta_b\)	two linear maps \(\mathcal{H}_d \rightarrow \mathcal{H}_d\)		
\(L_b(\lambda)\)	simple module for \(\mathcal{H}_d\)		
\(M_b\)	permutation module in \(V_b\)		
\(\mathcal{H}_d\)	simple module for \(\mathcal{H}_d\)		
\(\mathcal{F}\)	the field of fractions of \(\mathcal{A}\)		
\(\mathcal{H}_d\)	Weyl module for \(\mathcal{H}_d\)		
\(\mathcal{H}_d^p\)	Weyl module for \(\mathcal{H}_d^p\)		
\(\mathcal{F}_\mathcal{H}_d\)	Specht module for \(\mathcal{H}_d\)		
\(\mathcal{F}_\mathcal{H}_d^p\)	Specht module for \(\mathcal{H}_d^p\)		
\(\mathcal{F}_\mathcal{H}_d^{\mathcal{A}}\)	Specht module for \(\mathcal{H}_d^{\mathcal{A}}\)		
\(\mathcal{F}_\mathcal{H}_d^{\mathcal{A}}\)	Schur element of \(\mathcal{S}(\lambda)\)		
\(\mathcal{F}_\mathcal{H}_d^p\)	Schur element of \(\mathcal{S}(\lambda)\)		
\(\mathcal{F}_\mathcal{H}_d^{\mathcal{A}}\)	standard A-tableaux		
\(\mathcal{F}_\mathcal{H}_d^{\mathcal{A}}\)	Cyclotomic Schur algebra for \(\mathcal{H}_d\)		
\(\mathcal{H}_d\)	Cyclotomic Schur algebra for \(\mathcal{H}_d\)		
\(\mathcal{H}_d^{\mathcal{A}}\)	Cyclotomic Schur algebra for \(\mathcal{H}_d^{\mathcal{A}}\)		
\(\mathcal{H}_d^{\mathcal{A}}\)	Cyclotomic Schur algebra for \(\mathcal{H}_d^{\mathcal{A}}\)		
\(\mathcal{H}_d^{\mathcal{A}}\)	Cyclotomic Schur algebra for \(\mathcal{H}_d^{\mathcal{A}}\)		
\(\mathcal{H}_d^{\mathcal{A}}\)	Cyclotomic Schur algebra for \(\mathcal{H}_d^{\mathcal{A}}\)		
\(\mathcal{H}_d^{\mathcal{A}}\)	Cyclotomic Schur algebra for \(\mathcal{H}_d^{\mathcal{A}}\)		

2. Hecke algebras of type \(G(r, 1, n)\) and the central elements \(z_b\)

The main objects studied in this paper are the Hecke algebras of type \(G(r, p, n)\), where \(r = pd\) for some \(d \in \mathbb{N}\). These algebras are deformations of the group rings of the corresponding complex reflection groups of type \(G(r, p, n)\).
The complex reflection groups of type $G(r,1,n)$ are the groups $(\mathbb{Z}/r\mathbb{Z}) \wr S_n$, where S_n is the symmetric group on $\{1,2,\ldots,n\}$. The group of type $G(pd,p,n)$ is a normal subgroup of $(\mathbb{Z}/pd\mathbb{Z}) \wr S_n$ of index p which is fixed by an automorphism of $G(pd,1,n)$. Similarly, if $n \geq 3$, then the Hecke algebra of type $G(pd,p,n)$ can be defined as the fixed point subalgebra of an automorphism of the Hecke algebra of type $G(pd,1,n)$.

In this chapter, we define the Hecke algebras of types $G(r,1,n)$ and $G(r,p,n)$ and begin to set up the machinery that we need in order to prove Theorem B. The highlights of this chapter are Lemma 2.21, which proves the existence of the central elements z_h from Theorem B, and Theorems 2.26 and 2.29 which, in Chapter 3, will allow us to compute the scalars f_λ and g_λ in Theorem B.

2.1. Cyclotomic Hecke algebras

We begin by defining the Hecke algebras $H_{r,n}$ and $H_{r,p,n}$ from the introduction and recalling the machinery that we need from [25].

Throughout this paper, we fix positive integers n,r,p and d such that $n \geq 3$, $p > 1$ and $r = pd$. Let R be a commutative ring that contains a primitive pth root of unity ε.

Suppose that q,Q_1,\ldots,Q_r are invertible elements of K. The Ariki–Koike algebra $H_{r,n}(q,Q_1,\ldots,Q_r)$ is the unital associative R-algebra with generators T_0,T_1,\ldots,T_{n-1} and relations

$$(T_0-Q_1)\cdots(T_0-Q_r) = 0,$$

$$(T_i-q)(T_i+1) = 0, \quad \text{for } 1 \leq i \leq n-1,$$

$$T_0T_0T_1 = T_1T_0T_0,$$

$$T_{i+1}T_iT_{i+1} = T_iT_{i+1}T_i, \quad \text{for } 1 \leq i \leq n-2,$$

$$T_iT_j = T_jT_i, \quad \text{for } 0 \leq i < j - 1 \leq n-2.$$

To define the Hecke algebras of type $G(r,p,n)$, we fix $Q = (Q_1,\ldots,Q_d) \in R^d$ and replace the (Q_1,\ldots,Q_r) in the above definition by Q^{ε}, where

$$Q^{\varepsilon} = \varepsilon Q \lor \varepsilon^2 Q \lor \ldots \lor \varepsilon^p Q = (\varepsilon Q_1,\ldots,\varepsilon Q_d,\ldots,\varepsilon^p Q_1,\ldots,\varepsilon^p Q_d).$$

(2.1)

We set $H_{r,n}^{R}(Q^{\varepsilon}) := H_{r,n}^{R}(q,Q^{\varepsilon})$. Then the relation for T_0 in $H_{r,n}(Q^{\varepsilon})$ can be written as $(T_0^q - Q_1^q)\cdots(T_0^q - Q_d^q) = 0$. When R and q,Q_1,\ldots,Q_d are understood, we write $H_{r,n} = H_{r,n}(Q^{\varepsilon})$.

Definition 2.1. The cyclotomic Hecke algebra of type $G(r,p,n)$ is the subalgebra $H_{r,p,n} = H_{r,p,n}(Q)$ of $H_{r,n}(Q^{\varepsilon})$ generated by the elements $T_0^p, T_n = T_0^{-1}T_1T_0$ and T_1, T_2,\ldots,T_{n-1}.

In this paper, we are interested in understanding the decomposition matrices of the algebras $H_{r,p,n}$. Although this will not be apparent for quite some time, we have chosen the ordering of the ‘cyclotomic parameters’ $\varepsilon Q \lor \varepsilon^2 Q \lor \ldots \lor \varepsilon^p Q$ in order to ensure that the labelling of the irreducible modules for $H_{r,n}$ and $H_{r,p,n}$ are compatible in the sense of Theorem C.

The algebra $H_{r,n}$ comes equipped with two automorphisms σ and τ, which are useful when studying $H_{r,p,n}$. Let σ be the unique automorphism of $H_{r,n}$ such that

$$\sigma(T_0) = \varepsilon T_0 \quad \text{and} \quad \sigma(T_i) = T_i, \quad \text{for } 1 \leq i < n,$$

(2.2)

and define τ by $\tau(h) = T_0^{-1}hT_0$ for $h \in H_{r,n}$. It is straightforward to check that $H_{r,p,n} = \{h \in H_{r,n} \mid \text{sigma}(h) = h\}$ is the set of σ-fixed points in $H_{r,n}$ and that τ restricts to an automorphism of $H_{r,p,n}$. Moreover, σ is an automorphism of $H_{r,n}$ of order p and τ is an automorphism of $H_{r,p,n}$ with the property that τ^p is an inner automorphism of $H_{r,p,n}$.
Fix a modular system \((F, \mathcal{O}, K)\) ‘with parameters’ for \(H_{r,p,n}\); that is, fix an algebraically closed field \(F\) of characteristic zero and a discrete valuation ring \(\mathcal{O}\) with maximal ideal \(\pi\) and with residue field \(K \cong \mathcal{O}/\pi\), together with parameters \(#\hat{q}, \hat{Q}_1, \ldots, \hat{Q}_d \in \mathcal{O}^\times\) such that \(q = \hat{q} + \pi\) and \(Q_i = \hat{Q}_i + \pi\) for each \(i\). Let \(H_{r,p,n}^F = H_{r,p,n}^F(\mathbb{Q})\) be the Hecke algebra of type \(G(r,p,n)\) over \(F\) with parameters \(#\hat{q}\) and \(Q = (\hat{Q}_1, \ldots, \hat{Q}_d)\) and similarly let \(H_{r,p,n}^O = H_{r,p,n}^O(\mathbb{Q})\) and write \(H_{r,p,n}^O = H_{r,p,n}^O(\mathbb{Q})\). We assume that \(H_{r,p,n}^O\) is semisimple. By Lemma 2.5, \(H_{r,p,n}^F \cong H_{r,p,n}^O \otimes F\) and \(H_{r,p,n}^K \cong H_{r,p,n}^O \otimes K\). Hence, by choosing \(O\)-lattices, we can talk of modular reduction from \(H_{r,p,n}^O\)-Mod to \(H_{r,p,n}^K\)-Mod.

The automorphisms \(\sigma\) and \(\tau\) commute with modular reduction. Hence, we have compatible automorphisms \(\sigma\) and \(\tau\) on \(H_{r,p,n}^F\) and on \(H_{r,p,n}^K\).

Let \(R \in \{F, K\}\) and let \(M\) be an \(H_{r,p,n}^\ast\)-module. Then we define a new \(H_{r,p,n}^R\)-module \(M^\tau\) by ‘twisting’ the action of \(H_{r,p,n}\) using the automorphism \(\tau\). Explicitly, \(M^\tau = M\) as a vector space and the \(H_{r,p,n}^\ast\)-action on \(M^\tau\) is defined by

\[m \cdot h = m\tau(h), \quad \text{for all } m \in M \text{ and } h \in H_{r,p,n}^R.\]

If \(M\) is an \(H_{r,p,n}^\ast\)-module, then \(M \cong M^{\tau^p}\) because \(\tau^p\) is an inner automorphism of \(H_{r,p,n}\). Therefore, there is a natural action of the cyclic group \(\mathbb{Z}/p\mathbb{Z}\) on the set of isomorphism classes of \(H_{r,p,n}^R\)-modules. The inertia group of \(M\) is the group

\[I_M = \{k \mid 0 < k < p, M \cong M^{\tau^k}\},\]

which we consider as a subgroup of \(\mathbb{Z}/p\mathbb{Z}\).

Suppose that \(S\) is an irreducible \(H_{r,p,n}^F\)-module and let \(S_K\) be \(H_{r,p,n}^K\)-module obtained from \(S\) by modular reduction. Let \(D\) be an irreducible \(H_{r,p,n}^K\)-module. By Hu and Mathas [25, Corollary 5.6], the decomposition number \([S_K : D]\) is \(p\)-splittable in the sense of Definition 1.1 if and only if \(I_S = \{0\} = I_D\).

If \(\alpha \in K\), then the \(q\)-orbit of \(\alpha\) is the set \(\{q^b\alpha \mid b \in \mathbb{Z}\}\). Similarly, the \((\varepsilon, q)\)-orbit of \(\alpha\) is \(\{\varepsilon^a q^b \alpha \mid a, b \in \mathbb{Z}\}\).

One of the main results of Hu and Mathas [25] is the following theorem.

Theorem 2.2 [25, Theorem B]: The decomposition numbers of the cyclotomic Hecke algebras of type \(G(r,p,n)\) are completely determined by the \(l\)-splittable decomposition numbers of certain cyclotomic Hecke algebras \(H_{s,l,m}(\mathbb{Q}')\), where \(l\) divides \(p\), \(1 \leq s \leq r\), \(1 \leq m \leq n\) and where the parameters \(\mathbb{Q}'\) are contained in a single \((\varepsilon, q)\)-orbit.

Hence, to prove Theorem A, it is enough to compute all of the \(p\)-splittable decomposition numbers of \(H_{r,p,n}\) and to show that they are determined by the decomposition numbers of Hecke algebras of type \(G(s, 1, \alpha)\), where \(s \geq 1\) divides \(r\) and \(1 \leq \alpha \leq n\).

To compute the \(p\)-splittable decomposition numbers of \(H_{r,p,n}\), we make extensive use of the following result which is a more precise statement of (1.2).

Theorem 2.3 [12, 25]. Suppose that \((Q_1, \ldots, Q_r) = Q_1 \vee \ldots \vee Q_\gamma\), where \(Q_i \in \mathbb{Q}\) and \(Q_j \in \mathbb{Q}_\beta\) are in the same \(q\)-orbit only if \(\alpha = \beta\). Let \(d_\alpha = |Q_\alpha|\) for \(1 \leq \alpha \leq \gamma\). Then \(H_{r,p,n}(q, \mathbb{Q})\) is Morita equivalent to the algebra

\[\bigoplus_{b_1+\ldots+b_s=n} \mathcal{H}_{d_1,b_1}(q, Q_1) \otimes \ldots \otimes \mathcal{H}_{d_s,b_s}(q, Q_\gamma).\]
Recall from (1.1) that Q is (ε, q)-separated if
\[
\prod_{1 \leq i,j \leq d} \prod_{-n < k < n} \prod_{1 \leq t < p} (Q_i - \varepsilon^t q^k Q_j) \neq 0.
\]

To prove our main results, we apply Theorem 2.3 to the decomposition $Q^{\varepsilon} = \varepsilon Q \lor \varepsilon^2 Q \lor \ldots \lor \varepsilon^p Q$. This will allow us to understand the Specht modules $S(\lambda)$ of $\mathcal{H}_{r,n}$ in terms of the Specht modules of the algebras $\mathcal{H}_{d,b} = \mathcal{H}_{d,b_1}(\varepsilon Q) \otimes \ldots \otimes \mathcal{H}_{d,b_p}(\varepsilon^p Q)$. The main benefit in doing this is that, because of our ordering on the parameters in Q^{ε}, it is easier to understand the action of the automorphisms σ on $\mathcal{H}_{d,b}$-modules and this gives us a way to understand the action of σ on $S(\lambda)$. In turn, this will allow to decompose the restriction of $S(\lambda)$ to $\mathcal{H}_{r,p,n}$.

When using Clifford theory to understand the representation theory of the group $G(r, p, n)$ in terms of the representation theory of $G(r, 1, n)$, it is natural to assume that the characteristic of the field does not divide p, which is the index of $G(r, p, n)$ in $G(r, 1, n)$. As the following results indicates, (ε, q)-separation can be viewed as a quantum analogue of this condition.

Lemma 2.4. Suppose that $Q \in K^d$ and $R = K$ is a field.

(a) Suppose that Q is (ε, q)-separated over K. Then
\[
\prod_{-n < k < n} \prod_{1 \leq t < p} (1 - \varepsilon^t q^k) \neq 0.
\]
In particular, $\langle \varepsilon \rangle \cap \langle q \rangle = \{1\}$ whenever $q^k = 1$ for some $1 \leq k < n$.
(b) Suppose that $\langle \varepsilon \rangle \cap \langle q \rangle = \{1\}$ and that Q is contained in a single q-orbit. Then Q is (ε, q)-separated over K.

Proof. Part (a) follows by looking at the terms in the product corresponding to $i = j$ in (1.1). For (b) observe that if $\langle \varepsilon \rangle \cap \langle q \rangle = \{1\}$, then $\varepsilon^t q^k \neq 1$ if $t \neq p$. Since Q is contained in a single q-orbit, this implies the result. \square

2.2. Jucys–Murphy elements and a basis for $\mathcal{H}_{r,n}$

In order to define a basis for $\mathcal{H}_{r,n}$, let S_n be the symmetric group on n letters and let $s_i = (i, i + 1) \in S_n$ be a simple transposition for $1 \leq i < n$. Then s_1, \ldots, s_{n-1} are the standard Coxeter generators of the symmetric group S_n. Let $\ell : S_n \rightarrow \mathbb{N}$ be the length function on S_n, so that $\ell(w) = k$ if k is minimal such that $w = s_{i_1} \ldots s_{i_k}$, where $1 \leq i_1, \ldots, i_k < n$. As the type A braid relations hold in $\mathcal{H}_{r,n}$, for each $w \in S_n$ there is a well-defined element $T_w \in \mathcal{H}_{r,n}$, where $T_w = T_{i_1} \ldots T_{i_k}$ whenever $w = s_{i_1} \ldots s_{i_k}$ and $k = \ell(w)$.

Set $L_1 = T_0$ and $L_{k+1} = q^{-1} T_k L_k T_k$ for $k = 1, \ldots, n - 1$. These elements L_i are the Jucys–Murphy elements of $\mathcal{H}_{r,n}$ and they generate a commutative subalgebra of $\mathcal{H}_{r,n}$.

Lemma 2.5. (a) The algebra $\mathcal{H}_{r,n}$ is free as an R-module with basis $\{L_1^a \ldots L_n^a T_w \mid 0 \leq a_j < r \text{ and } w \in S_n\}$ (see [4, Theorem 3.10]).

(b) The algebra $\mathcal{H}_{r,p,n}$ is free as an R-module with basis $\{L_1^a \ldots L_n^a T_w \mid 0 \leq a_j < r, a_1 + \ldots + a_n = 0 \text{ (mod } p) \text{ and } w \in S_n\}$ (see [2, Proposition 1.6]).

Inspecting the relations, there is a unique anti-isomorphism $*$ of $\mathcal{H}_{r,n}$ which fixes each of the generators $T_0, T_1, \ldots, T_{n-1}$ of $\mathcal{H}_{r,n}$. We have $T_w^* = T_{w^{-1}}$ and $L_k^* = L_k$ for $1 \leq k \leq n$.

We use the following well-known properties of the Jucys–Murphy elements without mention.
LEMMA 2.6 (cf. [4, Lemma 3.3]). Suppose that $1 \leq i < n$ and $1 \leq k \leq n$. Then:

(a) T_i and L_k commute if $i \neq k, k - 1$;
(b) T_k commutes with L_kL_{k+1} and $L_k + L_{k+1}$;
(c) $T_kL_k = L_{k+1}(T_k - q + 1)$ and $T_kL_{k+1} = L_kT_k + (q - 1)L_{k+1}$.

For integers k and s, with $1 \leq k \leq n$ and $1 \leq s \leq p$, set

$$L_k^{(s)} = \prod_{i=1}^{d}(L_k - \varepsilon^s Q_1).$$

More generally, if $1 \leq l \leq m \leq n$ and $1 \leq i, j \leq p$, then set

$$L_{l,m}^{(i,j)} = \prod_{l \leq k \leq m, s \in I_{ij}} \prod_{l \leq k \leq m, t = 1}^{d}(L_k - \varepsilon^s Q_1),$$

where $I_{ij} = \{i, i+1, \ldots, j\}$ if $i \leq j$, and $I_{ij} = \{1, 2, \ldots, j, i, i+1, \ldots, p\}$ if $i > j$.

A key property of the Jucys–Murphy elements of $\mathcal{H}_{r,n}$ is that T_i commutes with any polynomial in L_1, \ldots, L_n that is symmetric with respect to L_i and L_{i+1}. In particular, any symmetric polynomial in L_1, \ldots, L_n is central in $\mathcal{H}_{r,n}$. Hence, we have the following.

LEMMA 2.7. Suppose that $1 \leq l < m \leq n$ and $1 \leq t \leq p$. Then

$$T_i L_{l,m}^{(t)} = L_{l,m}^{(t)} T_i \quad \text{and} \quad L_j L_{l,m}^{(t)} = L_{l,m}^{(t)} L_j,$$

for all i, j such that $1 \leq i < n$, $1 \leq j \leq n$ and $i \neq l - 1, m$.

Throughout this paper, we shall need some special permutations. For non-negative integers a, b with $0 < a + b \leq n$, we set $w_{a,b} = (s_{a+b-1} \ldots s_1)^b$. (In particular, $w_{a,0} = 1 = w_{0,b}$.) If we write $w_{a,b} \in \mathcal{S}_{a+b}$ as a permutation in two-line notation, then

$$w_{a,b} = \begin{pmatrix} 1 & \cdots & a & a+1 & \cdots & a+b \\ b & 1 & \cdots & a+b & 1 & \cdots & b \end{pmatrix}. \quad (2.3)$$

For simplicity, we write $T_{a,b} = T_{w_{a,b}}$. Similarly, if k is a non-negative integer such that $0 < a + b + k \leq n$, then we set $w_{a,b}^{(k)} = (s_{a+b+k-1} \ldots s_k)^b$. Then $w_{a,b} = w_{a,b}^{(0)}$ and, abusing notation slightly, we write $T_{a,b}^{(k)} = T_{w_{a,b}^{(k)}}$.

The following result is easily checked.

LEMMA 2.8. Suppose that a, b and c are non-negative integers such that $a + b + c \leq n$. Then $w_{a,b+c} = w_{a,b}w_{a,c}^{(b)}$ and $w_{a+b,c} = w_{b,c}^{(a)}w_{a,c}$, with the lengths adding. Consequently, $T_{a,b+c} = T_{a,b}T_{a,c}^{(b)}$ and $T_{a+b,c} = T_{b,c}^{(a)}T_{a,c}$. Moreover, $TT_{a,b} = T_{a,b}T_{i}^{(i)}w_{a,b}^{(i)}$ if $1 \leq i < n$ and $i \neq a + c$.

2.3. The elements v_b and $v_b^{(t)}$

As remarked in the introduction, all of the results in this paper rely on the Morita equivalence of Theorem 2.3. This equivalence is induced by certain $(\mathcal{H}_{d,b}, \mathcal{H}_{r,n})$-bimodules $V_b = v_b \mathcal{H}_{r,n}$. In this section, we define these modules and, in Proposition 2.10, give one of the key properties of the elements v_b.
Recall from the introduction that \(C_{p,n} \) is the set of compositions of \(n \) into \(p \) parts. Thus, \(b \in C_{p,n} \) if and only if \(b = (b_1, \ldots, b_p) \), \(b_1 + \ldots + b_p = n \) and \(b_i \geq 0 \) for all \(i \). If \(b \in C_{p,n} \) and \(i \) and \(j \) are integers, then we set \(b'_i = b_i + \ldots + b_j \) if \(i \leq j \) and \(b'_i = 0 \) if \(i > j \).

The following elements of \(\mathscr{H}_{r,n} \) were introduced in [25, Definition 2.4]. They play an important role throughout this paper.

Definition 2.9. Suppose that \(b \in C_{p,n} \). Let

\[
v_b(Q) = \mathcal{L}_{1,b_p}^{(1,p-1)} T_{b_p,b_p-1} \mathcal{L}_{1,b_p-1}^{(1,p-2)} T_{b_p-1,b_p-2} \ldots \mathcal{L}_{1,b_2}^{(1,1)} T_{b_2,b_2-1} \mathcal{L}_{1,b_2-1}^{(2,2)} \mathcal{L}_{1,b_2}^{(3)} \ldots \mathcal{L}_{1,b_1}^{(p-1)}.
\]

We write \(v_b = v_b(Q) \) and, for \(t \in \mathbb{Z} \), set \(v_b^{(t)} = v_b(\varepsilon^t Q) \).

Set \(V_b = v_b \mathscr{H}_{r,n} \) and, more generally, let \(V_b^{(t)} = v_b^{(t)} \mathscr{H}_{r,n} \).

The element \(v_b \) can be written in many different (and useful) ways. The proof of the next result requires several long and uninspiring calculations, so we refer the reader to Proposition A.3 in the appendix for the proof.

Proposition 2.10. Suppose that \(b \in C_{p,n} \) and \(1 \leq j \leq p \). Then

\[
v_b = \prod_{j \leq k < p} \mathcal{L}_{1,b_{k+1}}^{(j,k)} T_{b_{k+1},b_j} \prod_{1 \leq i < j} \mathcal{L}_{1,b_i}^{(i)} \prod_{j < k \leq p} \mathcal{L}_{1,b_j}^{(k-1)} \prod_{1 \leq i \leq j} T_{b_i,b_i-1}^{(i,p)}
\]

where all products are read from left to right with decreasing values of \(i \) and \(k \).

Corollary 2.11. Suppose that \(b \in C_{p,n} \) and \(t \in \mathbb{Z} \). Then \(v_b^{(t)} = \mathcal{L}_{1,b^p}^{(t+1)} \mathscr{H}_{r,n} \).

Proof. It is enough to consider the case when \(t = 0 \) and \(v_b^{(t)} = v_b \). In this case, the result follows by taking \(j = p \) in Proposition 2.10.

\[
Y_t v_b^{(t-1)} = v_b^{(t)} Y_t^*.
\]

Proof. It is enough to consider the case \(t = 1 \). Taking \(j = 2 \) in Proposition 2.10,

\[
Y_t v_b = \mathcal{L}_{1,b_1}^{(2,p)} T_{b_1,b_2} \mathcal{L}_{1,b_2}^{(2,p)} T_{b_p,b_p-1} \ldots \mathcal{L}_{1,b_3}^{(2,2)} T_{b_3,b_2} \mathcal{L}_{1,b_2}^{(3)} \ldots \mathcal{L}_{1,b_1}^{(p-1)}
\]

\[
\times \mathcal{L}_{1,b_2}^{(1,1)} T_{b_2,b_1} \mathcal{L}_{1,b_1}^{(2,2)}
\]

\[
= v_b^{(1)} T_{b_1,b_2} \mathcal{L}_{1,b_1}^{(2,2)}
\]

as required.

The point of Corollary 2.12 is that left multiplication by \(Y_t \) defines an \(\mathscr{H}_{r,n} \)-module homomorphism from \(V_b^{(t-1)} = v_b^{(t-1)} \mathscr{H}_{r,n} \) to \(V_b^{(t)} = v_b^{(t)} \mathscr{H}_{r,n} \).
The aim of this section is to prove the existence of the central element z_b that H similarly, w in two-line notation, Y Theorem B. We start by studying the elements 2.4. Note that b Lemma 2.16. Suppose that $1 \leq t \leq p$, and $b \in C_p$. Then θ'_t is the $H_{r,n}$-module homomorphism

$$\theta'_t : V_{b(t-1)}^{(t-1)} \longrightarrow V_b^{(t)} : x \longmapsto Y_t x,$$

for all $x \in V_{b(t-1)}^{(t-1)}$.

Since $v_b = v_{b(p)}$, composing the maps $\theta'_t \circ \ldots \circ \theta'_1$ gives an $H_{r,n}$-module endomorphism of $v_b H_{r,n}$. We need another description of this map.

Proposition 2.14. Suppose that $b \in C_p$. Then $Y_p Y_{p-1} \ldots Y_2 Y_1 = v_b T_b$.

This result is proved in the appendix as Proposition A.4.

2.4. The central element z_b

The aim of this section is to prove the existence of the central element z_b which appears in Theorem B. We start by studying the elements $Y_t v_{b(t-1)}^{(t-1)}$. Generalizing (2.3), for $b \in C_p$, we set

$$w_b = u_{b(p)}^{(p)} \cdots u_{b(2)}^{(2)} u_{b(1)}^{(1)} \cdots u_{b_2}^{(2)} u_{b_1}^{(1)}.$$

In two-line notation, w_b is the permutation

$$\begin{pmatrix} 1 & b_1 & b_1 + 1 & \cdots & b_{p-1} + 1 & \cdots & b_p \\ b_1 + 1 & b_2 + 1 & \cdots & b_3 & \cdots & 1 & \cdots & b_p \end{pmatrix}.$$

Note that $b_1 = b_{1}, b_p = b_{p}$ and $n = b_{0}$. Also, if $b = (a, b)$, then $w_b = w_{a,b}$.

For convenience we set $T_b = T_{w_b}$. For example, $T_{a,b} = T_{w_{a,b}}$.

For any $b = (b_1, b_2, \ldots, b_p) \in C_p$, we define $b' = (b_p, \ldots, b_2, b_1)$. Since $w_{a,b}^{-1} = w_{b,a}$, it follows that $w_{b'}^{-1} = w_{b}$.

Set $G_b = G_{b_1} \times G_{b_2} \times \ldots \times G_{b_p}$, which we consider as a subgroup of G_n in the obvious way. Similarly, $H_q(G_b)$ is a subalgebra of $H_q(G_n)$ via the natural embedding.

The following important property of v_b was established in [25].

Lemma 2.15 [25, Proposition 2.5]. Suppose that $b \in C_p$, and $1 \leq i, j \leq n$, with $i \neq b_i^p$ for $1 \leq t \leq p$. Then:

(a) $T_i v_b = v_b T_{(i)w_b^{-1}}$;

(b) $L_j v_b = v_b L_{(j)w_b^{-1}}$.

Using this fact, we can prove the following two results.

Lemma 2.16. Suppose that $1 \leq t \leq p$, and let i and j be integers such that $1 \leq i, j \leq n$ and $i \neq b_i^t$ for $\alpha = t - p + 1, t - p + 2, \ldots, t$. Then

$$T_i (Y_t v_{b(t-1)}^{(t-1)}) = \begin{cases} (Y_t v_{b(t-1)}^{(t-1)}) T_i, & \text{if } 1 \leq i < b_t, \\
(Y_t v_{b(t-1)}^{(t-1)}) (T_{(i)w_b^{-1}}), & \text{if } b_t + 1 \leq i < n, \end{cases}$$

and

$$L_j (Y_t v_{b(t-1)}^{(t-1)}) = \begin{cases} (Y_t v_{b(t-1)}^{(t-1)}) L_j, & \text{if } 1 \leq j < b_t, \\
(Y_t v_{b(t-1)}^{(t-1)}) (L_{(j)w_b^{-1}}), & \text{if } b_t + 1 \leq j \leq n. \end{cases}$$
Proof. For the first equality, if \(i \neq b_t \), then, using Lemmas 2.8 and 2.7,
\[
T_i Y_i v_{b(t-1)}^{(t-1)} = T_i L_{1,b_t}^{(t+1,t+p-1)} T_{b_t,n-b_t} v_{b(t-1)}^{(t-1)}
\]
\[
= L_{1,b_t}^{(t+1,t+p-1)} T_j T_{b_t,n-b_t} v_{b(t-1)}^{(t-1)}
\]
\[
= L_{1,b_t}^{(t+1,t+p-1)} T_{b_t,n-b_t} v_{b(t-1)}^{(t-1)}.
\]
The first claim now follows using Lemma 2.15. For the second claim observe that, by Corollary 2.11, there exists an \(h \in \mathcal{R}_{t,n} \) such that
\[
L_j Y_i v_{b(t-1)}^{(t-1)} = \left(T_j L_{1,h_t}^{(t+1,t+p-1)} v_{b(t-1)}^{(t-1)}\right) = v_{b_t,n-b_t}^{(t+1,t+p-1)} L_j v_{b_t,n-b_t} h
\]
\[
= L_{1,b_t}^{(t+1,t+p-1)} T_{b_t,n-b_t} v_{b(t-1)}^{(t-1)}.
\]
So the result again follows using Lemma 2.15.

\[
\text{LEMMA 2.17. Suppose that } 1 \leq t \leq p \text{ and let } i \text{ and } j \text{ be integers such that } 1 \leq i, j \leq n \text{ and } i \neq b_t^{l_i} \text{ whenever } t - p + 1 \leq \alpha \leq t. \text{ Then}
\]
\[
T_i(Y_t \ldots Y_2 Y_1 v_{b_t}) = \begin{cases}
(Y_i \ldots Y_2 Y_1 v_{b_t}) T_i v_{b_1^{l_i-1}}, & \text{if } 1 \leq i < b_t, \\
(Y_i \ldots Y_2 Y_1 v_{b_t}) T_{i-b_t+b_1} \ldots v_{b_1}, & \text{if } b_t + 1 \leq i < b_t^{l_i-1}, \\
\vdots & \\
(Y_i \ldots Y_2 Y_1 v_{b_t}) L_{i-b_t} v_{b_1^{l_i-1}}, & \text{if } 1 \leq i < b_t, \\
(Y_i \ldots Y_2 Y_1 v_{b_t}) L_{j-b_t} v_{b_1^{l_i-1}}, & \text{if } b_t + 1 \leq j < b_t^{l_i-1}, \\
\vdots & \\
(Y_i \ldots Y_2 Y_1 v_{b_t}) L_{j-b_t} v_{b_1^{l_i-1}}, & \text{if } 1 \leq j < b_t, \\
(Y_i \ldots Y_2 Y_1 v_{b_t}) L_{j-b_t} v_{b_1^{l_i-1}}, & \text{if } b_t + 1 \leq j < b_t^{l_i-1}, \\
\end{cases}
\]
\[
L_j(Y_t \ldots Y_2 Y_1 v_{b_t}) = \begin{cases}
(Y_i \ldots Y_2 Y_1 v_{b_t}) T_{i-b_t} v_{b_1^{l_i-1}}, & \text{if } 1 \leq i < b_t, \\
(Y_i \ldots Y_2 Y_1 v_{b_t}) L_{j-b_t} v_{b_1^{l_i-1}}, & \text{if } b_t + 1 \leq j < b_t^{l_i-1}, \\
\vdots & \\
(Y_i \ldots Y_2 Y_1 v_{b_t}) L_{j-b_t} v_{b_1^{l_i-1}}, & \text{if } 1 \leq j < b_t, \\
(Y_i \ldots Y_2 Y_1 v_{b_t}) L_{j-b_t} v_{b_1^{l_i-1}}, & \text{if } b_t + 1 \leq j < b_t^{l_i-1}, \\
\end{cases}
\]
\[
T_i(Y_t \ldots Y_2 Y_1 v_{b_t}) = (Y_t \ldots Y_2 Y_1 v_{b_t}) T_{i-b_t} v_{b_1^{l_i-1}}, \\
L_j(Y_t \ldots Y_2 Y_1 v_{b_t}) = (Y_t \ldots Y_2 Y_1 v_{b_t}) L_{j-b_t} v_{b_1^{l_i-1}}.
\]

In particular, taking \(t = p \), we have
\[
T_i(Y_p \ldots Y_2 Y_1 v_{b_t}) = (Y_p \ldots Y_2 Y_1 v_{b_t}) T_{i-b_t} v_{b_1^{l_i-1}}, \\
L_j(Y_p \ldots Y_2 Y_1 v_{b_t}) = (Y_p \ldots Y_2 Y_1 v_{b_t}) L_{j-b_t} v_{b_1^{l_i-1}}.
\]

Proof. This can be proved in exactly the same way as Lemma 2.16. Note that the final claim also follows from Proposition 2.14 using Lemma 2.8.

The following definition is repeated from (1.1).

\[
\text{DEFINITION 2.18. Suppose that } R \text{ is a commutative ring with } 1 \text{ and set}
\]
\[
A(\varepsilon, q, Q) = \prod_{1 \leq i, j \leq d} \prod_{-n < k < n} \prod_{1 \leq l < p} (Q_i - \varepsilon^l q^k Q_j).
\]
Then Q is (ε, q)-separated in R if $A(\varepsilon, q, Q)$ is invertible in R.

Observe that, even though our notation does not reflect this, whether or not Q is (ε, q)-separated also depends on n and the ring R.

Remark 2.19. When $d = 1$, the algebra $\mathcal{H}_q(\mathfrak{S}_b)$ can be naturally embedded into $\mathcal{H}_{r,n}$ as a subalgebra; see [22]. In that case, the condition of being (ε, q)-separated means that $\prod_{|k| < n, 1 \leq t < q} (1 - \varepsilon^q k^{t})$ is invertible.

Fix $b \in \mathfrak{E}_{p,n}$ and set $V_b = v_b \mathcal{H}_{r,n}$ and $\mathcal{H}_{d,b} = \mathcal{H}_{d,b_1}(\varepsilon Q) \otimes \cdots \otimes \mathcal{H}_{d,b_p}(\varepsilon^p Q)$. Then the following proposition is an important result from [25].

Proposition 2.20 [25, Proposition 2.15]. Suppose that $b \in \mathfrak{E}_{p,n}$ and that Q is (ε, q)-separated if $d > 1$. Then:

(a) $\mathcal{H}_{d,b}$ acts faithfully on V_b from the left and $\text{End}_{\mathcal{H}_{r,n}}(V_b) \cong \mathcal{H}_{d,b}$;

(b) V_b is projective as an $\mathcal{H}_{r,n}$-module and $\bigoplus_{b \in \mathfrak{E}_{p,n}} V_b$ is a progenerator for $\mathcal{H}_{r,n}$.

To describe the action of $\mathcal{H}_{d,b}$ on V_b, given a permutation $w = s_{i_1} \cdots s_{i_k} \in \mathfrak{S}_n$ and an integer $c \in \mathbb{N}$ such that $i_j + c < n$, for $1 \leq j \leq k$, define $w(c) = s_{i_1+c} \cdots s_{i_k+c}$. Then $w(c) \in \mathfrak{S}_n$. Note that this is compatible with our previous definition of w_a^c.

Define Θ_b to be the ‘natural inclusion map’ $\mathcal{H}_{d,b} \hookrightarrow \mathcal{H}_{r,n}$; that is, Θ_b is the R-linear map determined by

\[
\Theta_b((L_{a_{1,1}}^{1} \cdots L_{a_{1,b_1}}^{1} T_{x_1}) \otimes (L_{a_{2,1}}^{2} \cdots L_{a_{2,b_2}}^{2} T_{x_2}) \otimes \cdots \otimes (L_{a_{p,1}}^{p} \cdots L_{a_{p,b_p}}^{p} T_{x_p}))
\]

\[
= (L_{L_{a_{1,1}}^{1} \cdots L_{a_{1,b_1}}^{1} T_{x_1}}^{1} \otimes (L_{a_{2,1}}^{2} \cdots L_{a_{2,b_2}}^{2} T_{x_2}) \otimes \cdots \otimes (L_{a_{p,1}}^{p} \cdots L_{a_{p,b_p}}^{p} T_{x_p})
\]

\[
= (L_{a_{1,1}}^{1} \cdots L_{a_{1,b_1}}^{1} (L_{a_{2,1}}^{2} \cdots L_{a_{2,b_2}}^{2} T_{x_2}) \cdots (L_{a_{p,1}}^{p} \cdots L_{a_{p,b_p}}^{p} T_{x_p})
\]

for all $x_i \in \mathfrak{S}_b$ and $0 \leq a_{t,j} < d$ for $1 \leq t \leq p$ and $1 \leq j \leq b_t$, and where $x_i' := x_i^{(b_i^{-1})}$ for $1 \leq i \leq p$. The second equality follows because all of these terms commute. Thus, we have $x_i' = x_i$ and $\Theta_b(T_{x_1} \otimes \cdots \otimes T_{x_p}) = T_w$, where $w = x_1 x_2^{(b_1)} \cdots x_p^{(b_p^{-1})} \in \mathfrak{S}_b$ for $x_t \in \mathfrak{S}_b$. We emphasize that Θ_b is an R-module homomorphism but not a ring homomorphism.

Similarly, define $\hat{\Theta}_b$ to be the R-linear map $\hat{\Theta}_b : \mathcal{H}_{d,b} \rightarrow \mathcal{H}_{r,n}$ determined by

\[
\hat{\Theta}_b((L_{a_{1,1}}^{1} \cdots L_{a_{1,b_1}}^{1} T_{x_1}) \otimes (L_{a_{2,1}}^{2} \cdots L_{a_{2,b_2}}^{2} T_{x_2}) \otimes \cdots \otimes (L_{a_{p,1}}^{p} \cdots L_{a_{p,b_p}}^{p} T_{x_p}))
\]

\[
= (L_{a_{1,1}}^{1} \cdots L_{a_{1,b_1}}^{1} (L_{a_{2,1}}^{2} \cdots L_{a_{2,b_2}}^{2} T_{x_2}) \cdots (L_{a_{p,1}}^{p} \cdots L_{a_{p,b_p}}^{p} T_{x_p})
\]

\[
= (L_{a_{1,1}}^{1} \cdots L_{a_{1,b_1}}^{1} L_{a_{2,1}}^{2} \cdots L_{a_{2,b_2}}^{2} T_{x_2} \cdots L_{a_{p,1}}^{p} \cdots L_{a_{p,b_p}}^{p} T_{x_p})
\]

where the x_t and $a_{t,j}$ are as before and $x_{p}'' := w_b^{-1} x_{p}^{(b_p^{-1})} w_b = w_b^{-1} x_{p}'' w_b$. In particular, $x_{p}'' = x_{p}$ and $x_{p}'' = w_b^{-1} x_{p}^{(b_p^{-1})} w_b \in \mathfrak{S}_b$.

Given these definitions, the proof of Proposition 2.20(a), that is, of Hu and Mathas [25, Proposition 2.15], shows that $h \in \mathcal{H}_{d,b}$ acts on V_b as left multiplication by $\hat{\Theta}_b(h)$. Moreover,

\[
\hat{\Theta}_b(h) v_b = v_b \Theta_b(h), \quad \text{for all } h \in \mathcal{H}_{d,b},
\]

by Lemma 2.15. Typically, if $h \in \mathcal{H}_{d,b}$, then we write $h \cdot v_b = \hat{\Theta}_b(h) v_b$ in what follows. Thus,

\[
h \cdot v_b = v_b \Theta_b(h), \quad \text{for all } h \in \mathcal{H}_{d,b},
\]

for $h \in \mathcal{H}_{d,b}$.
The following lemma introduces the elements \(z_b \). These elements play a central role in the proofs of all of our main theorems from the introduction.

Lemma 2.21. Suppose that \(Q \) is \((\varepsilon, q)\)-separated and let \(b \in \mathcal{C}_{p,n} \). Then there exists a unique element \(z_b \) in \(\mathcal{H}_{d,b} \) such that

\[
z_b \cdot v_b = Y_p Y_{p-1} \cdots Y_2 Y_1 v_b = v_b \Theta_b(z_b).
\]

Moreover, \(z_b \) belongs to the centre of \(\mathcal{H}_{d,b} \).

Proof. By Proposition 2.14, left multiplication by \(Y_p \cdots Y_2 Y_1 \) defines a homomorphism in \(\text{End}_{\mathcal{H}_{r,n}}(V_b) \). Therefore, there exists a unique element \(z_b \) in \(\mathcal{H}_{d,b} \) such that

\[
Y_p Y_{p-1} \cdots Y_2 Y_1 v_b = \hat{\Theta}_b(z_b) v_b = v_b \Theta_b(z_b)
\]

by Proposition 2.20(a) and (2.4).

It remains to show that \(z_b \) is central in \(\mathcal{H}_{d,b} \). As \(\mathcal{H}_{d,b} \) acts faithfully on \(V_b \), it is enough to show that \(\hat{\Theta}_b(z_b h) v_b = \hat{\Theta}_b(h z_b) v_b \) for all \(h \in \mathcal{H}_{d,b} \). By Lemma 2.15,

\[
\hat{\Theta}_b(z_b h) v_b = \hat{\Theta}_b(z_b) \hat{\Theta}_b(h) v_b = \hat{\Theta}_b(z_b) v_b \Theta_b(h) = Y_p \cdots Y_2 Y_1 v_b \Theta_b(h).
\]

Applying (the last statements in) Lemma 2.17 shows that

\[
Y_p \cdots Y_2 Y_1 v_b \Theta_b(h) = \hat{\Theta}_b(h) Y_p \cdots Y_2 Y_1 v_b = \hat{\Theta}_b(h) \hat{\Theta}_b(z_b) v_b = \hat{\Theta}_b(h z_b) v_b,
\]

as required. \(\square \)

2.5. A Morita equivalence for \(\mathcal{H}_{r,n} \)

In this section, we give a new description of the Morita equivalence of Theorem 2.3 which will be useful for proving the first half of Theorem B. In particular, in this section we will show that \(z_b \) is an invertible element of \(\mathcal{H}_{d,b} \).

By Proposition 2.20(b), \(V_b \) is a projective \(\mathcal{H}_{r,n} \)-module. Let \(\mathcal{H}_{r,n}(b) \) be the smallest two-sided ideal of \(\mathcal{H}_{r,n} \) which contains \(V_b = v_b \mathcal{H}_{r,n} \) as a direct summand. By Dipper and Mathas [12, Theorem 1.1] the Morita equivalence of Theorem 2.3 is induced by equivalences

\[
\mathcal{H}_b : \text{Mod-} \mathcal{H}_{d,b} \xrightarrow{\sim} \text{Mod-} \mathcal{H}_{r,n}(b)
\]

given by \(\mathcal{H}_b(X) = X \otimes_{\mathcal{H}_{d,b}} V_b \). Hence, by Proposition 2.20(a) and the general theory of Morita equivalences (cf. [5, Section 2.2]), we have the following theorem.

Lemma 2.22 (cf. [12, Corollary 4.9]). Suppose that \(Q \) is \((\varepsilon, q)\)-separated in \(R \) and let \(X \) be a right ideal of \(\mathcal{H}_{d,b} \). Then, as right \(\mathcal{H}_{r,n} \)-modules,

\[
\mathcal{H}_b(X) \cong \hat{\Theta}_b(X) V_b.
\]

We next show that \(\mathcal{H}_b \) can be realized as induction from a subalgebra of \(\mathcal{H}_{r,n} \). To do this, we need to produce a subalgebra of \(\mathcal{H}_{r,n} \), which is isomorphic to \(\mathcal{H}_{d,b} \).

Before we state this result, given a sequence \(b = (b_1, \ldots, b_p) \in \mathcal{C}_{p,n} \), define

\[
u^+(Q) = L^{(2)}_{1,b_1} L^{(3)}_{1,b_2} \cdots L^{(p)}_{1,b_{p-1}} \quad \text{and} \quad \nu^-(Q) = L^{(p-1)}_{1,b_p} L^{(2)}_{1,b_p} L^{(1)}_{1,b_p}.
\]

(2.5)
In the notation of Dipper, James and Mathas [11, Definition 3.1], $u^+_b(Q) = u^+_{\omega_b}$, where $\omega_b = (\omega_b^{(1)}, \ldots, \omega_b^{(r)})$ is the multipartition

$$\omega_b (s) = \begin{cases} (1^{b_s}), & \text{if } s = d\alpha \text{ for some } \alpha, \\ (0), & \text{otherwise}. \end{cases}$$

Hereafter, we write $u^+_b = u^+_b(Q)$.

Taking $j = 1$ and $j = p$ in Proposition 2.10, respectively, we can write $v_b = v^+_b v^-_b = v^+_b v^-_b$ where

$$v^+_b = L_{1,b_p}^{(1,p-1)} T_{b_p,b_1^{p-1}} L_{1,b_p-1}^{(1,p-2)} T_{b_p-1,b_1^{p-2}} \cdots L_{1,b_1}^{(1,1)} T_{b_1,b_1^1}$$

and

$$v^-_b = T_{b_p,b_1^{p-1}} L_{1,b_p-1}^{(p,p)} T_{b_p-1,b_1^{p-2}} L_{1,b_1}^{(3,p)} T_{b_1,b_1^1}.$$
Theorem 2.26. Suppose that \(b \in \mathcal{C}_{p,n} \) and that \(Q \) is \((\varepsilon, q)\)-separated. Then:

(a) \(e_b \) is an idempotent in \(\mathcal{H}_{r,n} \) and \(V_b = e_b \mathcal{H}_{r,n} \);
(b) \(\mathcal{H}_{d,b} \) is a unital subalgebra of \(\mathcal{H}_{r,n} \) with identity element \(e_b \);
(c) the map \(\mathcal{H}_{d,b} \to \mathcal{H}_{d,b}; h \mapsto h \cdot e_b \) is an algebra isomorphism.

Proof. Suppose that \(x, y \in \mathcal{H}_{d,b} \). Then, using the definitions, (2.4) and Lemma 2.21, we have that

\[
(x \cdot e_b)(y \cdot e_b) = (x z_{b}^{-1} \cdot v_{b} T_{b}) (y z_{b}^{-1} \cdot v_{b} T_{b}) = x z_{b}^{-1} \cdot v_{b} T_{b} v_{b} \Theta_{b}(y z_{b}^{-1}) T_{b}
\]

\[
= x z_{b}^{-1} z_{b} \cdot v_{b} \Theta_{b}(y z_{b}^{-1}) T_{b} = x \cdot v_{b} \Theta_{b}(y z_{b}^{-1}) T_{b}
\]

\[
= x y z_{b}^{-1} \cdot v_{b} T_{b} = (xy) \cdot e_b.
\]

Taking \(x = y = 1_{\mathcal{H}_{d,b}} \) shows that \(e_b \) is an idempotent in \(\mathcal{H}_{r,n} \). As \(\mathcal{H}_{d,b} \) acts faithfully on \(V_b \) by Proposition 2.20(a), all of the claims now follow.

Theorem 2.26 says that the natural inclusion map \(\Theta_{b} : \mathcal{H}_{d,b} \to \mathcal{H}_{r,n} \) is an inclusion of algebras when it is composed with left multiplication by \(e_b \). Note that, in general, the image of \(\Theta_{b} \) is not a subalgebra of \(\mathcal{H}_{r,n} \).

Combining Theorem 2.26 and Lemma 2.22 gives a second description of the Morita equivalence \(H_{b} \). If \(A \) is a subalgebra of an algebra \(B \), let \(\uparrow_{A}^{B} \) be the corresponding induction functor.

Corollary 2.27. Suppose that \(Q \) is \((\varepsilon, q)\)-separated and that \(X \) is a right \(\mathcal{H}_{d,b} \) module, where \(b \in \mathcal{C}_{p,n} \). Then

\[
H_{b}(X) \cong (X \cdot e_b) \uparrow_{\mathcal{H}_{d,b}}^{\mathcal{H}_{r,n}} = X \cdot e_b \otimes \mathcal{H}_{d,b},
\]

2.6. Comparing trace forms on \(V_b \)

Theorem 2.26 shows how to realize \(\mathcal{H}_{d,b} \) as a subalgebra of \(\mathcal{H}_{r,n} \). The aim of this section is to use this result to prove a comparison theorem for the natural trace forms on \(\mathcal{H}_{r,n} \) and \(\mathcal{H}_{d,b} \). This is one of the key steps in proving Theorem B from the introduction because the Schur element \(s_{\lambda} \) from (1.4) can be computed from the trace of the primitive idempotents for the Specht module \(S(\lambda) \) in the semisimple case.

Recall that a trace form on an \(R \)-algebra \(A \) is a linear map \(\text{tr} : A \to R \) such that \(\text{tr}(ab) = \text{tr}(ba) \) for all \(a, b \in A \). The form \(\text{tr} \) is non-degenerate if whenever \(0 \neq a \in A \), then \(\text{tr}(ab) \neq 0 \) for some \(b \in A \).

By Malle and Mathas [27] the Hecke algebras \(\mathcal{H}_{d,b} \) and \(\mathcal{H}_{r,n} \) are both equipped with ‘canonical’ non-degenerate trace forms \(\text{Tr}_{b} \) and \(\text{Tr} \), respectively. The aim of this subsection is to compare these two trace forms. More precisely, we show that

\[
\text{Tr}(h \cdot v_{b} T_{b}) = \text{Tr}_{b}(h) \text{Tr}(v_{b} T_{b}),
\]

for all \(h \in \mathcal{H}_{d,b} \). This result will be used in the next section to compute the scalar \(1_{\lambda} \) from the introduction.

The trace form \(\text{Tr} : \mathcal{H}_{r,n} \to R \) on \(\mathcal{H}_{r,n} \) is the \(R \)-linear map determined by

\[
\text{Tr}(L_{1}^{a_{1}} \ldots L_{n}^{a_{n}} T_{x} T_{y}) = \begin{cases}
q^{\ell(x)}, & \text{if } a_{1} = \ldots = a_{n} = 0 \text{ and } x = y^{-1}, \\
0, & \text{otherwise},
\end{cases}
\]

(2.6)
(This equation completely determines Tr by Lemma 2.5.) The trace form Tr_b on $\mathcal{H}_{d,b}$ is defined similarly. Comparing these two trace forms requires more technical calculations with the elements v_b.

Before Lemma 2.23 we noted that $v_b = v_b^+ u_b^+$ for some element v_b^+. To compare the trace forms Tr and Tr_b, we need a different expression for v_b^+. To state this, let \mathcal{H}_m^L be the R-submodule of $\mathcal{H}_{r,n}$ spanned by the elements

$$\{T_w L_{a_1}^{a_1} \ldots L_{a_{m-1}}^{a_{m-1}} \mid 0 \leq a_1, \ldots, a_{m-1} < r \text{ and } w \in \mathcal{G}_m\}.$$

Note that \mathcal{H}_m^L is not, in general, a subalgebra of $\mathcal{H}_{r,n}$.

The proof of the next result is not particularly pretty, so we defer it until Lemma A.6. Recall from Subsection 2.4 that $b' = (b_p, \ldots, b_2, b_1)$ if $b = (b_1, b_2, \ldots, b_p)$.

Lemma 2.28. Suppose that $b \in \mathcal{C}_{p,n}$. Then

$$v_b^+ = T_{b'} \left(L_{b_1+1,n}^{(1)} \cdots L_{b_{l+1},n}^{(p-1)} + \sum_{l=1}^{p-1} \sum_{m=-b_1+1}^{b_1} \sum_{c=1}^{d} h_{l,m,c} L_m^c \right),$$

for some $h_{l,m,c} \in \mathcal{H}_m^L$.

Using this result, we can prove the promised comparison theorem for Tr and Tr_b.

Theorem 2.29. Suppose that $b \in \mathcal{C}_{p,n}$. Then

$$\text{Tr}(h \cdot v_b T_b) = \text{Tr}_b(h) \text{Tr}(v_b T_b),$$

for all $h \in \mathcal{H}_{d,b}$.

Proof. By linearity, it is enough to let h run over a basis of $\mathcal{H}_{d,b}$. Let

$$\mathcal{B}_b = \{L_{b_1}^{a_1} \cdots L_{b_1}^{a_1} T_{x_1} \otimes \cdots \otimes L_{b_1}^{a_{n-1}} \cdots L_{b_p}^{a_{n-1}} T_{x_p} \mid 0 \leq a_{i,t} < d \text{ and } x_t \in \mathcal{G}_{b_t}\}$$

be the basis of $\mathcal{H}_{d,b}$ from Lemma 2.5. Then it is enough to show that

$$\text{Tr}(h \cdot v_b T_b) = \text{Tr}_b(h) \text{Tr}(v_b T_b), \quad \text{for all } h \in \mathcal{B}_b.$$

If $h = 1_{\mathcal{H}_{d,b}}$, then there is nothing to prove. Therefore, by (2.6) it remains to show that $\text{Tr}(h \cdot v_b T_b) = 0$ whenever $1_{\mathcal{H}_{d,b}} \neq h \in \mathcal{B}_b$. For the rest of the proof fix such an h. Write $h = L_{b_1}^{a_1} \cdots L_{b_1}^{a_1} T_{x_1} \otimes \cdots \otimes L_{b_1}^{a_{n-1}} \cdots L_{b_p}^{a_{n-1}} T_{x_p}$, where $0 \leq a_{j,t} < d$ and $x_t \in \mathcal{G}_{b_t}$, and set

$$h' = \Theta_b(h) = L_{b_1}^{a_1} \cdots L_{b_1}^{a_1} L_{b_1}^{a_{n-1}} \cdots L_{b_l}^{a_{n-1}} L_{b_l}^{a_{n-1}} \cdots L_{b_l}^{a_{n-1}} \cdots L_{b_1}^{a_{n-1}} \cdots L_{b_1}^{a_{n-1}} T_{x},$$

where $x = x_1 x_2(b_1) \ldots x_p(b_p^{-1})$.

Recall from before Lemma 2.23 that $v_b = v_b^+ u_b^+$. Therefore, using Lemma 2.28 and the fact that Tr is a trace form,

$$\text{Tr}(h \cdot v_b T_b) = \text{Tr}(v_b h' T_b) = \text{Tr}(v_b^+ u_b^+ h' T_b)$$

$$= \text{Tr}(T_{b'} u_b^+ h' T_b) + \sum_{l=1}^{p-1} \sum_{m=-b_1+1}^{b_1} \sum_{c=1}^{d} \text{Tr}(T_{b'} h_{l,m,c} L_m^c u_b^+ h' T_b)$$

$$= \text{Tr}(u_b^+ h' T_b T_{b'}) + \sum_{l=1}^{p-1} \sum_{m=-b_1+1}^{b_1} \sum_{c=1}^{d} \text{Tr}(L_m^c u_b^+ h' T_b T_{b'} h_{l,m,c}),$$
where \(h_{l,m,e} \in \mathcal{H}_m^L \) and \(\bar{a}_b^e := L_{b_1+1,n}^{(1)} L_{b_1+1,n}^{(2)} \cdots L_{b_1+1,n}^{(p-1)} \). Fix a triple \((l,m,e)\), from the sum, with \(1 \leq l < p, b_1^e < m \leq b_1^{e+1} \) and \(1 \leq e \leq d \). By assumption, \(L_m \) appears in \(h' \) with exponent \(0 \leq a_{l+1,m'} < d \), where \(m = b_1^{e+1} + m' \). Therefore, \(L_m u_b^e h'T_b T_{h_{l,m,e}} \) is a linear combination of terms of the form \(L_m u_b^e f_1 (L) T_w f_2 (L) \), where \(w \in \mathcal{S}_n \), \(f_1 (L) \) is a polynomial in \(L_1, \ldots, L_n \) of degree at most \(a_{l+1,m'} < d \) as a polynomial in \(L_m \), and where \(f_2 (L) \) is a polynomial in \(L_1, \ldots, L_{m-1} \). As \(T \) is a trace form,

\[
\text{Tr}(L_m u_b^e f_1 (L) T_w f_2 (L)) = \text{Tr}(f_2 (L) L_m u_b^e f_1 (L) T_w).
\]

Now, considered as a polynomial in \(L_m \), \(f_2 (L) L_m u_b^e f_1 (L) \) is a polynomial with zero constant term (since \(e > 0 \)) and degree

\[
0 < f := e + d(p - l - 1) + a_{l+1,m'} < d(p - 1) + d = r.
\]

By the same argument, if \(m < k \leq n \), then \(L_k \) appears in \(f_2 (L) L_m u_b^e f_1 (L) \) with exponent at most \(d(p - l'_{k-1}) + a_{l+1,k'} < d(p - 1) < r \), where \(k = b_1^{l_{k-1}} + k' \) and \(1 \leq k' \leq b_k \). If \(k < m \), then \(L_k \) could appear in \(f_2 (L) L_m u_b^e f_1 (L) \) with exponent greater than \(r - 1 \), however, by Lemma 2.6 this will not affect the exponents of \(L_m, \ldots, L_n \) when we rewrite this term as a linear combination of Ariki–Koike basis elements. Hence, \(L_m^{l_1} \) is a left divisor of \(f_2 (L) L_m u_b^e f_1 (L) \) when it is written as a linear combination of Ariki–Koike basis elements.

Consequently, \(\text{Tr}(f_2 (L) L_m u_b^e f_1 (L)) = 0 \) by (2.6). Therefore, \(\text{Tr}(L_m u_b^e h'T_b T_{h_{l,m,e}}) = 0 \) so that \(\text{Tr}(h \cdot v_b h'T_b) = \text{Tr}(v_b h'T_b) = \text{Tr}(\bar{a}_b^e u_b^e h'T_b T_{b'}) \).

Now consider \(\text{Tr}(\bar{a}_b^e u_b^e h'T_b T_{b'}) \). By definition,

\[
\bar{a}_b^e u_b^e h' = L_{b_1+1,n}^{(1)} L_{b_1+1,n}^{(2)} \cdots L_{b_1+1,n}^{(p-1)} L_{b_1+1,n}^{(2)} \cdots L_{b_1+1,n}^{(p)} h'.
\]

If \(a_{l,m'} \neq 0 \) for some \(l \) and \(m' \), then \(L_m^{a_{l,m'}} \) divides \(h' \), where \(m = b_1^{l_{k-1}} + m' \) as above. By the argument above, \(\bar{a}_b^e u_b^e h' \), when considered as a polynomial in \(L_m \), is a polynomial with zero constant term and degree strictly less than \(r \). Therefore,

\[
\text{Tr}(h \cdot v_b T_b) = \text{Tr}(\bar{a}_b^e u_b^e h'T_b T_{b'}) = 0,
\]

as required. It remains, then, to consider the cases when \(a_{l,m'} = 0 \) for \(1 \leq l \leq p \) and \(1 \leq m' \leq b_l \), that is, when \(h' = T_x \) for some \(1 \neq x \in \mathcal{S}_b \), by (2.6), in this case we have

\[
\text{Tr}(h \cdot v_b T_b) = \text{Tr}(\bar{a}_b^e u_b^e T_x T_{b'}) = \text{Tr}(\bar{a}_b^e u_b^e) \text{Tr}(T_x T_{b'}) = 0 \quad \text{by (2.7)}.
\]

Recall that \(u_b \) is a distinguished coset representative for \(\mathcal{S}_b \), so that \(\ell(x u_b) = \ell(x) + \ell(u_b) \). Therefore, \(\text{Tr}(T_x T_{b'}) = \text{Tr}(T_{x u_b} T_{b'}) = 0 \) by (2.6) since \(x \neq 1 \). Hence, \(\text{Tr}(h \cdot v_b T_b) = 0 \), completing the proof.

We can improve on Theorem 2.29 by explicitly computing \(\text{Tr}(v_b T_b) \). In fact, in proving the theorem, we have essentially already done this. To state the result, given \(b \in \mathcal{C}_{n,p} \) set,

\[
\alpha(b) = \sum_{i=1}^p i b_i \in \mathbb{N}.
\]

Corollary 2.30. Suppose that \(b \in \mathcal{C}_{n,p} \). Then

\[
\text{Tr}(v_b T_b) = (-1)^{dn(p-1)} q^{\ell(u_b)} q^{(1/2)r n(p-1) - d \alpha(b)} (Q_1 \cdots Q_d)^n(p-1).
\]

Proof. By (2.7), and (2.6), we have that

\[
\text{Tr}(v_b T_b) = \text{Tr}(1_{\mathcal{C}_{n,p}} \cdot v_b T_b) = \text{Tr}(\bar{a}_b^e u_b^e) \text{Tr}(T_{b'} T_b) = q^{\ell(u_b)} \text{Tr}(\bar{a}_b^e u_b^e).
\]
Now $\text{Tr}(\hat{u}_b^{-1}u_b^+)$ is just the constant term of $\hat{u}_b^{-1}u_b^+$ by (2.6). Therefore,

$$\text{Tr}(v_bT_b) = q^{\ell(w_b)} \prod_{t=1}^p((-1)^d \varepsilon^d Q_1 \ldots Q_d)^{n-b_t}$$

$$= (-1)^{d(n(p-1))} q^{\ell(w_b)} \varepsilon^d(Q_1 \ldots Q_d)^{n-1} - \alpha(b)(Q_1 \ldots Q_d)^{n(p-1)},$$

since $b_1 + \ldots + b_p = n$.

\[\square \]

Remark 2.31. Suppose that $b \in C_{p,n}$. Then it is not difficult to see that

$$\ell(w_b) = \sum_{1 \leq i < j \leq p} b_i b_j.$$

3. Specht modules and simple modules for $\mathcal{H}_{r,p,n}$

In this chapter, we introduce analogues of the Specht modules for $\mathcal{H}_{r,p,n}$ and hence construct a complete set of irreducible $\mathcal{H}_{r,p,n}$-modules. To do this, we first use the results of the last chapter to prove Theorem B from the introduction. The first step is easy as Schur's Lemma easily implies that the element $2\nu_b$ acts on the Specht module $S(\lambda)$ of $\mathcal{H}_{r,n}$ as multiplication by a scalar f_{λ} (Proposition 3.4). Using Theorems 2.26 and 2.29, we then compute f_{λ} explicitly in terms of the Schur elements of $\mathcal{H}_{d,b}$ and $\mathcal{H}_{r,n}$ (Theorem 3.6). We show that the scalar f_{λ} has a p_{λ}th root and so complete the proof of Theorem B.

Using seminormal forms and ‘shifting homomorphisms’ we show that, taking the p_{λ}th root of f_{λ} corresponds, representation theoretically, to the existence of an $\mathcal{H}_{r,p_{\lambda},n}$-module endomorphism θ_{λ} of $S(\lambda)$ such that $\theta_{\lambda}^{k_{\lambda}}$ is a scalar multiple of the identity map on $S(\lambda)$. As an $\mathcal{H}_{r,p,n}$-module, the Specht module $S(\lambda)$ then decomposes as a direct sum

$$S(\lambda) = S_{\lambda}^{1} \oplus S_{\lambda}^{2} \oplus \ldots \oplus S_{\lambda}^{p_{\lambda}}$$

of eigenspaces for θ_{λ}. The modules S_{λ}^{t}, for $1 \leq t \leq p_{\lambda}$, play the role of Specht modules for $\mathcal{H}_{r,p,n}$. Using some Clifford theory, we show in Theorem 3.42 that every irreducible $\mathcal{H}_{r,p,n}$-module arises as the simple head of some S_{λ}^{1} in a unique way, up to cyclic shift. These results complete the proof of Theorem C from the introduction.

Subsection 3.3 marks the real appearance of the Hecke algebras $\mathcal{H}_{r,p,n}$ of type $G(r,p,n)$ as, up until now, we have worked exclusively with $\mathcal{H}_{r,n}$-modules. In fact, we do not really start working with $\mathcal{H}_{r,p,n}$ until Subsection 3.7 where we construct Specht modules and simples modules for $\mathcal{H}_{r,p,n}$.

3.1. Specht modules for $\mathcal{H}_{d,b}$ and $\mathcal{H}_{r,n}$

The algebras $\mathcal{H}_{d,b}$ and $\mathcal{H}_{r,n}$ are both cellular algebras [11, 20] with the cell modules of both algebras being called Specht modules. In this section, we quickly recall the construction of these modules and the relationship between the Specht modules of these algebras.

First, recall that a partition of n is a sequence $\lambda = (\lambda_1, \lambda_2, \ldots)$ of weakly decreasing non-negative integers that sum to $|\lambda| = n$. The conjugate of λ is the partition $\lambda' = (\lambda'_1, \lambda'_2, \ldots)$, where $\lambda'_i = \# \{ j \geq 1 \mid \lambda_j \geq i \}$.

An r-multipartition of n is an ordered r-tuple $\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)})$ of partitions such that $|\lambda^{(1)}| + \ldots + |\lambda^{(r)}| = n$. Let $\mathcal{P}_{r,n}$ be the set of r-multipartitions of n. The partitions $\lambda^{(i)}$ are the components of λ and we call λ a multipartition when r is understood. If $\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)})$ is a multipartition, then its conjugate is the multipartition $\lambda' = (\lambda^{(r)}', \ldots, \lambda^{(1)}')$. To each multipartition λ, we also associate a Young subgroup $\mathcal{S}_{\lambda} = \mathcal{S}_{\lambda^{(1)}} \times \ldots \times \mathcal{S}_{\lambda^{(r)}}$ of \mathcal{S}_n in the obvious way.
The diagram of λ is the set $[\lambda] = \{(i, j, s) \mid 1 \leq j \leq \lambda^{(s)}_j \text{ and } 1 \leq s \leq r\}$. A λ-tableau is a map $t: [\lambda] \rightarrow \{1, 2, \ldots, n\}$, which we think of as a labelling of the diagram of λ. Thus, we write $t = (t^{(1)}, \ldots, t^{(r)})$ and we talk of the rows, columns and components of t. Let $\text{Std}(\lambda)$ be the set of standard λ-tableaux.

By Dipper, James and Mathas [11, Theorem 3.26], $\mathcal{H}_{r,n}$ is a cellular algebra with a cellular basis of the form

$$\{m_{st} \mid s, t \in \text{Std}(\lambda), \text{ for } \lambda \in \mathcal{P}_{r,n}\}.$$

Hence, the cell modules of $\mathcal{H}_{r,n}$ are indexed by $\mathcal{P}_{r,n}$ and if $\lambda \in \mathcal{P}_{r,n}$, then the corresponding cell module $S(\lambda)$ has a basis of the form $\{m_t \mid t \in \text{Std}(\lambda)\}$.

Recall from the introduction that if $\lambda \in \mathcal{P}_{r,n}$ is a multipartition, then $\lambda^{[t]} = (\lambda^{(dt-d+1)}, \lambda^{(dt-d+2)}, \ldots, \lambda^{(dt)})$ for $1 \leq t \leq p$. More generally, set $\lambda^{[t+kp]} = \lambda^{[t]}$ for $k \in \mathbb{Z}$.

Definition 3.1. (a) Suppose that $\lambda \in \mathcal{P}_{r,n}$. Then the Specht module $S(\lambda)$ for $\mathcal{H}_{r,n}$ is the cell module indexed by λ defined in [11, Definition 3.28].

(b) Suppose that $\lambda \in \mathcal{P}_{d,b}$. Then the Specht module for $\mathcal{H}_{d,b}$ is the module $S_b(\lambda) \cong S(\lambda^{[1]}) \otimes \ldots \otimes S(\lambda^{[p]})$.

We write $S^R(\lambda)$ when we want to emphasize that $S(\lambda)$ is an R-module. We give an explicit construction of these modules in Subsection 3.4.

When $\mathcal{H}_{d,b}$ is semisimple, the modules $\{S_b(\lambda) \mid \lambda \in \mathcal{P}_{d,b}\}$ give a complete set of pairwise non-isomorphic simple $\mathcal{H}_{d,b}$-modules. Similarly, the modules $\{S(\lambda) \mid \lambda \in \mathcal{P}_{r,n}\}$ give a complete set of pairwise non-isomorphic simple $\mathcal{H}_{r,n}$-modules when $\mathcal{H}_{r,n}$ is semisimple.

More generally, by the general theory of cellular algebras [20], each Specht module $S(\lambda)$ comes with an associative bilinear form and the radical $\text{rad} S(\lambda)$ of this form is an $\mathcal{H}_{r,n}$-module. Define $D(\lambda) = S(\lambda)/\text{rad} S(\lambda)$. A multipartition $\lambda \in \mathcal{P}_{r,n}$ is Kleshchev if $D(\lambda) \neq 0$. Let $\mathcal{H}_{r,n}(Q^{\vee}) = \{\lambda \in \mathcal{P}_{r,n} \mid D(\lambda) \neq 0\}$ be the set of Kleshchev multipartitions of n. Then

$$\{D(\lambda) \mid \lambda \in \mathcal{H}_{r,n}(Q^{\vee})\}$$

is a complete set of pairwise non-isomorphic irreducible $\mathcal{H}_{r,n}$-modules. Typically we write $\mathcal{H}_{r,n} = \mathcal{H}_{r,n}(Q^{\vee})$ in what follows.

If A is an algebra and M is an A-module, let Head(M) be the head of M; that is, M is the largest semisimple quotient of M. For example, by Dipper, James and Mathas [11], if $\lambda \in \mathcal{H}_{r,n}$, then $D(\lambda) = \text{Head}(S(\lambda))$. If S and D are modules for an algebra, with D irreducible, let $[S : D]$ be the multiplicity of D as a composition factor of S.

If λ and μ are two multipartitions, then λ dominates μ, and we write $\lambda \triangleright \mu$ if

$$\sum_{s=1}^{t-1} |\lambda^{(s)}| + \sum_{j=1}^{i} \lambda_j^{(t)} \geq \sum_{s=1}^{t-1} |\mu^{(s)}| + \sum_{j=1}^{i} \mu_j^{(t)},$$

for $1 \leq t \leq r$ and $i \geq 0$. We write $\lambda \triangleright \mu$ if $\lambda \triangleright \mu$ and $\lambda \not\triangleright \mu$. The dominance partial order on $\mathcal{P}_{r,n}$ is useful because of the following fact.

Lemma 3.2 [11, Section 3]. Suppose that $[S(\lambda) : D(\mu)] \neq 0$ for $\lambda \in \mathcal{P}_{r,n}$ and $\mu \in \mathcal{H}_{r,n}$. Then $\lambda \triangleright \mu$. Moreover, if $\mu \in \mathcal{H}_{r,n}$, then $[S(\mu) : D(\mu)] = 1$ and $D(\mu) = \text{Head} S(\mu)$.

Let $\mathcal{H}_{d,b} = \{\lambda \in \mathcal{P}_{d,b} \mid \lambda^{[t]} \in \mathcal{H}_{d,b}(Q^{\vee}) \text{ for } 1 \leq t \leq p\}$. If $\lambda \in \mathcal{H}_{d,b}$, let

$$D_b(\lambda) = S_b(\lambda)/\text{rad} S_b(\lambda) \cong D(\lambda^{[1]}) \otimes \ldots \otimes D(\lambda^{[p]}).$$
Theorem 2.3 and the remarks above imply that \(\{ D_b(\lambda) \mid \lambda \in \mathcal{H}_{d,b} \} \) is a complete set of pairwise non-isomorphic irreducible \(\mathcal{H}_{d,b} \)-modules.

Recall the functor \(F_b \) from Section 2.5. By Dipper and Mathas [12, Proposition 4.11] (see also [25, Proposition 2.13]), we have the following.

Lemma 3.3. Suppose that \(\lambda \in \mathcal{P}_{d,b} \). Then:

(a) \(F_b(S_b(\lambda)) \cong S(\lambda) \) as \(\mathcal{H}_{r,n} \)-modules;

(b) \(F_b(D_b(\lambda)) \cong D(\lambda) \) as \(\mathcal{H}_{r,n} \)-modules;

(c) \(\lambda = (\lambda^{[1]}, \ldots, \lambda^{[p]}) \in \mathcal{H}_{d,b}(Q^{\psi^*}) \) is Kleshchev if and only if \(\lambda^{[i]} \in \mathcal{H}_{d,b}(\varepsilon^i Q) \), for \(1 \leq t \leq p \).

In particular, we can consider \(S(\lambda) \cong F_b(S_b(\lambda)) = S_b(\lambda) \cdot V_b \) to be a submodule of \(V_b \).

3.2. The scalar \(f_\lambda \)

It follows from Schur’s Lemma that the central element \(z_b \) acts on the Specht modules \(S(\lambda) \) as multiplication by a scalar for \(\lambda \in \mathcal{P}_{d,b} \). In this section, we explicitly compute this scalar, thus proving half of Theorem B from the introduction.

We define \(A = \mathbb{Z}[\varepsilon, \hat{q}^{\pm 1}, \hat{Q}_{\varepsilon}^{\pm 1}, \ldots, \hat{Q}_{\varepsilon}^{-1}, A(\varepsilon, \hat{q}, Q)^{-1}] \), where \(\varepsilon \) is a primitive \(p \)th root of unity in \(\mathbb{C} \), and \(\hat{q} \) and \(Q = (Q_1, \ldots, Q_d) \) are indeterminates over \(\mathbb{Z}[\varepsilon] \). Let \(F \) be the field of fractions of \(A \). If \(Q \) is \((\varepsilon, q) \)-separated over \(R \), then \(R \) can be considered as an \(A \)-module by letting \(\varepsilon \) act on \(R \) as multiplication by \(\varepsilon \), \(\hat{q} \) act as multiplication by \(q \) and \(\hat{Q}_i \) act as multiplication by \(Q_i \), for \(1 \leq i \leq d \). Therefore, \(\mathcal{H}_{r,n}(q, Q) \cong \mathcal{H}_{r,n}(\hat{q}, Q) \otimes_A R \) are isomorphic \(R \)-algebras. In particular, \(\mathcal{H}_{r,n} \cong \mathcal{H}_{r,n}^f(\hat{q}, Q) \otimes_A F \). The algebra \(\mathcal{H}_{r,n}^f \) is semi-simple because \(\mathcal{H}_{r,n} \) is a cellular algebra (and every field is a splitting field for a cellular algebra; see [20, Theorem 3.4]).

Abusing notation, we call the elements of \(A \) polynomials and if \(f(\varepsilon, \hat{q}, Q) \in A \), then we define \(f(\varepsilon, q, Q) = f(\varepsilon, \hat{q}, Q) \cdot 1_R \) to be the value of \(f(\varepsilon, \hat{q}, Q) \) at \((\varepsilon, q, Q)\).

The scalar \(f_\lambda \) in the next proposition plays a key role in the proofs of all of our main results, Theorems A–D, from the introduction.

Proposition 3.4. Suppose that \(Q \) is \((\varepsilon, q) \)-separated in \(R \) and that \(b \in \mathcal{C}_{p,n} \) and \(\lambda \in \mathcal{P}_{d,b} \). Then there exists a non-zero scalar \(f_\lambda \in R \) such that

\[z_b \cdot x = f_\lambda x, \]

for all \(x \in S(\lambda) \). Moreover, there exists a non-zero polynomial \(\hat{f}_\lambda = f_\lambda(\varepsilon, \hat{q}, Q) \in A \) such that \(f_\lambda = f_\lambda(\varepsilon, q, Q) \in R \).

Proof. The Specht module \(S_b(\lambda) \) is free as an \(R \)-module, and so, by the remarks above, \(S_b(\lambda) \cong S_b^A(\lambda) \otimes_A R \). Therefore, to show that such a scalar exists, it is enough to consider the case when \(R = A \). Similarly, since \(S_b^A(\lambda) \) embeds into \(S_b^F(\lambda) \cong S_b^A(\lambda) \otimes_A F \), we may assume that \(R = F \). By the remarks above, the algebra \(\mathcal{H}_{d,b}^F \) is split semi-simple and the module \(S_b^F(\lambda) \) is an irreducible \(\mathcal{H}_{d,b}^F \)-module, and so, by Schur’s Lemma, the homomorphism of \(S_b(\lambda) \) given by left multiplication by \(z_b \) is equal to multiplication by some scalar \(f_\lambda \). Note that \(f_\lambda \) is an element of \(A \) because \(z_b \cdot v_T = f_\lambda \cdot v_T \in \mathcal{H}_{r,n} \). By specialization, the scalar \(f_\lambda \in R \) in the statement of the lemma is given by evaluating the polynomial \(f_\lambda(\varepsilon, \hat{q}, Q) \) at \((\varepsilon, q, Q)\). Finally, observe that \(f_\lambda \neq 0 \) since \(z_b \) acts invertibly on \(V_b \) by Lemma 2.23. \(\square \)
We will determine the scalar $\hat{f}_\lambda \in R$ by computing the polynomial \hat{f}_λ in A. In fact, we have already done all of the work needed to determine \hat{f}_λ. To describe \hat{f}_λ, we only need some definitions.

Abusing notation slightly, let Tr be the trace form on $H_{r,n}^F$ given by (2.6). Let χ^λ be the character of $S^F(\lambda)$ for $\lambda \in \mathcal{P}_{r,n}$. Then \{\chi^\lambda \mid \lambda \in \mathcal{P}_{r,n}\} is a complete set of pairwise inequivalent irreducible characters for $H_{r,n}^F$. In particular, Tr can be written in a unique way as a linear combination of the irreducible characters. Moreover, it is easy to see that every character χ^λ must appear in Tr with non-zero coefficient because Tr is non-degenerate; see, for example, [16, Example 7.1.3]. Consequently, the following definition makes sense.

Definition 3.5. The Schur elements of $H_{r,n}^F$ are the scalars $\hat{s}_\lambda = \hat{s}_\lambda(\hat{e}, \hat{q}, \hat{Q}) \in F$ for $\lambda \in \mathcal{P}_{r,n}$, such that

$$\text{Tr} = \sum_{\lambda \in \mathcal{P}_{r,n}} \frac{1}{\hat{s}_\lambda} \chi^\lambda.$$

For $\lambda \in \mathcal{P}_{r,n}$ fix F_λ a primitive idempotent in $H_{r,n}^F$ such that $F_\lambda H_{r,n}^F \cong S^F(\lambda)$. Using, for example, seminormal forms $H_{r,n}^F$ (see [28, Theorem 2.11]), it is easy to see that $\chi^\lambda(F_\mu) = \delta_{\lambda\mu}$ for $\lambda, \mu \in \mathcal{P}_{r,n}$. Hence, a second characterization of the Schur elements is that

$$\hat{s}_\lambda = \frac{1}{\text{Tr}(F_\lambda)}.$$

(3.1)

Similarly, for each $\lambda \in \mathcal{P}_{d,b}$ the trace form Tr_b determines Schur elements $\hat{s}_\lambda^b \in F$ for $H_{d,b}^F$. By the remarks above, the Schur elements of $H_{d,b}^F$ satisfy

$$\hat{s}_\lambda^b = \prod_{t=1}^{p} \hat{s}_{\lambda^t}(\hat{e}, \hat{q}, \hat{Q}) = \frac{1}{\text{Tr}_b(F_b(\lambda))},$$

where $F_b(\lambda)$ is a primitive idempotent in $H_{d,b}^F$ such that $S_b^F(\lambda) \cong F_b(\lambda)H_{d,b}^F$.

Theorem 3.6. Suppose that $b \in \mathcal{P}_{p,n}$ and that $\lambda \in \mathcal{P}_{d,b}$. Then

$$\hat{f}_\lambda = \frac{\hat{s}_\lambda}{\hat{s}_\lambda} \text{Tr}(v_b T_b).$$

Consequently, $\hat{f}_\lambda = (1)^{n(r-d)}q^{2(\lambda_1/2)n\left(p-1\right)-d \omega(b)}(\hat{Q}_1 \ldots \hat{Q}_d)^{n(p-1)}\hat{s}_\lambda/\hat{s}_\lambda^b$.

Proof. To compute \hat{f}_λ, we may assume that $R = F$ and work in $H_{r,n}^F$. Let $F_b(\lambda)$ be a primitive idempotent in $H_{d,b}^F$ such that $S_b^F(\lambda) \cong F_b(\lambda)H_{d,b}^F$. Then $F_b(\lambda) \cdot e_b$ is a primitive idempotent in $H_{r,n}^F$ such that $F_b(\lambda) \cdot e_b H_{r,n}^F \cong S^F(\lambda)$ by Theorem 2.26 and Lemma 3.3. Therefore, using the remarks above,

$$\frac{1}{\hat{s}_\lambda} = \text{Tr}(F_b(\lambda) \cdot e_b) = \text{Tr}(z_b^{-1} F_b(\lambda) \cdot v_b T_b), \quad \text{since } z_b \text{ is central in } H_{d,b},$$

$$= \frac{1}{\hat{f}_\lambda} \text{Tr}(F_b(\lambda) \cdot v_b T_b), \quad \text{by Proposition 3.4},$$

$$= \frac{1}{\hat{f}_\lambda} \text{Tr}_b(F_b(\lambda)) \text{Tr}(v_b T_b), \quad \text{by Theorem 2.29},$$

$$= \frac{1}{\hat{f}_\lambda \hat{s}_\lambda} \text{Tr}(v_b T_b).$$
Rearranging this equation gives the first formula for \(\dot{j}_\lambda \). Applying Corollary 2.30 proves the second.

Remark 3.7. The proof of Theorem 3.6 is deceptively easy: all of the hard work is done in proving Theorems 2.26 and 2.29.

We want to make the formula for \(\dot{j}_\lambda \) more explicit. To do this, we recall the elegant closed formula for the Schur elements obtained by Chlouveraki and Jacon [8]. Before we can state their result, we need some notation. First, for \(\lambda \in \mathcal{P}_{d,b} \) define \(\overline{\lambda} \) to be the partition obtained from \(\lambda \) by putting all of the parts of \(\lambda \) in weakly decreasing order. (For example, if \(\lambda = ((2,1^2), (3,2,1)) \), then \(\overline{\lambda} = (3,2^2,1^3) \).) Next, if \(\lambda \) is a partition, define

\[
\beta(\lambda) = \sum_{i \geq 1} (i - 1)\lambda_i = \sum_{i \geq 1} \binom{\lambda_i}{2},
\]

where \(\lambda' = (\lambda'_1, \lambda'_2, \ldots) \) is the partition conjugate to \(\lambda \) (the second equality is well known and straightforward to check). Given two partitions \(\lambda \) and \(\mu \) and \((i,j) \in [\lambda] \), define

\[
h_{ij}(\lambda, \mu) = \lambda_i - i + \mu'_j - j + 1,
\]

which Chlouveraki and Jacon call a generalized hook length. Observe that if \(1 \leq s \leq r \), then \(s \) can be written uniquely in the form \(s = d(p_s - 1) + d_s \), where \(1 \leq p_s \leq p \) and \(1 \leq d_s \leq d \). Then, as in (1.3), \(\lambda^{(s)} \) is the \(d_s \)th component of \(\lambda^{[p]} \). Finally, if \((i,j,s) \in [\lambda] \) and \(1 \leq t \leq r \), then set

\[
h^\lambda_{ij}(s,t) = \varepsilon^{p_t - p_s} q^{h_{ij}(\lambda^{(s)}, \lambda^{(t)})} \dot{Q}_{d_s} \dot{Q}^{-1}_{d_t}.
\]

After translating their notation to our setting, Chlouveraki and Jacon [8, Theorem 3.2] show that

\[
\dot{s}_\lambda = (-1)^{n(r-1)} q^{-\beta(\overline{\lambda})} (q - 1)^{-n} \prod_{(i,j,s) \in [\lambda]} \prod_{1 \leq t \leq r} (h^\lambda_{ij}(s,t) - 1).
\]

There is an analogous formula for \(\dot{s}_\lambda^n = \prod_{i=1}^p \dot{s}_\lambda[q_i] \) which can be obtained by setting \(p = 1 \). Using Theorem 3.6, and the equations above, we obtain the following closed formula for \(\dot{j}_\lambda \).

Corollary 3.8. Suppose that \(b \in \mathcal{C}_{p,n} \) and that \(\lambda \in \mathcal{P}_{d,b} \). Then

\[
\dot{j}_\lambda = \varepsilon^{(1/2)n(p-1) - d_0(b)} q^{\gamma_b(\lambda)(\dot{Q}_1 \cdots \dot{Q}_d)^n(p-1)} \prod_{(i,j,s) \in [\lambda]} \prod_{1 \leq t \leq r} \prod_{p_i \neq p_s} (h^\lambda_{ij}(s,t) - 1),
\]

where \(\gamma_b(\lambda) = \ell(w_b) - \beta(\overline{\lambda}) + \sum_{a=1}^p \beta(\overline{\lambda}^{[a]}) \). In particular, \(\dot{j}_\lambda \in \mathbb{Z}[\varepsilon, q^\pm, \dot{Q}_1^\pm, \ldots, \dot{Q}_d^\pm] \).

If \(\lambda \in \mathcal{P}_{r,n} \), then \(\dot{j}_\lambda \in \mathcal{A} \) by Proposition 3.4. Corollary 3.8 establishes the stronger result that \(\dot{j}_\lambda \) is a Laurent polynomial in \(\mathbb{Z}[\varepsilon, q^\pm, \dot{Q}_1^\pm, \ldots, \dot{Q}_d^\pm] \). Using the definitions, it is easy to see that if \((i,j,s) \in [\lambda] \) and \(1 \leq t \leq r \), then \(h^\lambda_{ij}(s,t) - 1 \) divides \(A(\varepsilon, q, \dot{Q}) \). Therefore, it is self-evident from Corollary 3.8 that \(\dot{j}_\lambda = \dot{j}_\lambda(\varepsilon, q, \dot{Q}) \) is both well-defined and non-zero whenever \(\dot{Q} \) is \((\varepsilon, q) \)-separated over \(R \).

3.3. Graded Clifford systems

We use Clifford theory extensively in order to understand the representation theory of \(\mathcal{H}_{r,p,n} \) in terms of the representation theory of \(\mathcal{H}_{r,n} \). This section recalls the results that we need most and starts applying it to the algebras \(\mathcal{H}_{r,p,n} \).
Suppose that A is a finitely generated R-algebra. A family of R-submodules $\{A_s \mid s \in \mathbb{Z}/p\mathbb{Z}\}$ is a $\mathbb{Z}/p\mathbb{Z}$-graded Clifford system if the following conditions are satisfied:

(a) $A_s A_t = A_{s+t}$ for any $s, t \in \mathbb{Z}/p\mathbb{Z}$;
(b) for each $s \in \mathbb{Z}/p\mathbb{Z}$, there is a unit $a_s \in A_s$ such that $A_s = a_s A_0 = A_0 a_s$;
(c) $A = \bigoplus_{s \in \mathbb{Z}/p\mathbb{Z}} A_s$;
(d) $1 \in A_0$.

Any automorphism α of an R-algebra A induces an equivalence $F^\alpha : \text{Mod}-A \to \text{Mod}-A$. Explicitly, if M is an A-module, then $F^\alpha (M) = M^\alpha$ is the A-module that is equal to M as an R-module but with the action twisted by α so that if $m \in M$ and $x \in A$, then $m \cdot x = m x^\alpha = m \alpha(x)$, where on the right-hand side we have the usual (untwisted) action of A.

The following general result is proved in [17, Proposition 2.2], together with [23, Appendix], which corrects a gap in the original argument. Recall that we have assumed that R contains a primitive pth root of unity ε.

Lemma 3.9. Suppose that A and B finitely generated R-free R-algebras such that $A = \bigoplus_{t=0}^{p-1} B \theta^t$ where θ is a unit in A such that $\theta^p \in B$ and $\theta B = B \theta$. Then there is an isomorphism of (A, A)-bimodules

$$A \otimes_B A \cong \bigoplus_{t=0}^{p-1} A^\theta_i \otimes_{\theta^j} A = \sum_{t=0}^{p-1} (\varepsilon^t b \theta^{i+j}) \bigotimes (\theta^t),$$

for $b \in B$ and $0 \leq i, j < p$ and where $(\varepsilon^t b \theta^{i+j}) \bigotimes (\theta^t)$ for each (A, A)-bimodule by making A act from the left as left multiplication and from the right on A^θ_i as right multiplication twisted by θ^j for $0 \leq t < p$.

An explicit isomorphism, as in the lemma, is constructed in [23, p. 3391].

In the set-up of Lemma 3.9, the subspaces $\{B \theta^s \mid s \in \mathbb{Z}/p\mathbb{Z}\}$ form a $\mathbb{Z}/p\mathbb{Z}$-graded Clifford system in A. Now we assume that $R = K$ is a field. Let α be the automorphism of B given by $\alpha(b) = \theta b \theta^{-1}$ for $b \in B$. Let β be the automorphism of A given by $\beta(b \theta^i) = \varepsilon^i b \theta^j$ for $b \in B$ and $j \in \mathbb{Z}/p\mathbb{Z}$.

Let Irr(A) and Irr(B) be the sets of isomorphism classes of simple A-modules and simple B-modules, respectively. For each $D(\lambda) \in \text{Irr}(A)$ fix a simple B-submodule $D(\lambda \downarrow_B^A)$ of $D(\lambda \downarrow_B^A)$. It is clear that $D(\lambda^\alpha) \cong D(\lambda)$ and $(D^\lambda)^\beta \cong D^\lambda$. Let α_λ be the smallest positive integer such that $D(\lambda)^{\beta^\alpha_\lambda} \cong D(\lambda)$. Then α_λ divides p, so we set $p_\lambda = p/\alpha_\lambda$. Define an equivalence relation \sim_β on Irr(A) by declaring that

$$D(\lambda) \sim_\beta D(\mu) \iff D(\lambda) \cong D(\mu)^{\beta^\alpha}, \text{ for some } t \in \mathbb{Z}/p\mathbb{Z}.$$

Similarly, let \sim_α be the equivalence relation on Irr(B) given by

$$D^\lambda \sim_\alpha D^\mu \iff D^\lambda \cong (D^\mu)^{\alpha^t}, \text{ for some } t \in \mathbb{Z}/p\mathbb{Z}.$$

If D is an A-module, let Soc$_A(M)$ be its socle, that is, the maximal semisimple submodule of A. Similarly, recall that Head$_A(M)$ is the maximal semisimple quotient of M.

The following result is similar to [18, Lemma 2.2]. The result in [18] is proved only in the case $R = \mathbb{C}$. As we now show, the argument applies over any algebraically closed field.

Lemma 3.10 (cf. [18, Lemma 2.2]). Suppose that $R = K$ is an algebraically closed field and that $A = \bigoplus_{t=0}^{t=p-1} B \theta^t$ as in Lemma 3.9.
(a) Suppose that $D(\lambda) \in \text{Irr}(A)$. Then p_λ is the smallest positive integer such that $D^\lambda \cong (D^\lambda)^{\alpha p^\lambda}$.

(b) Suppose that $D^\lambda \in \text{Irr}(B)$. Then $D^\lambda \uparrow B^A \cong D(\lambda) \oplus D(\lambda)\beta \oplus \ldots \oplus D(\lambda)^{\beta^{\lambda-1}}$, and $D(\lambda) \downarrow B^A \cong D^\lambda \oplus (D^\lambda)^{\alpha} \oplus \ldots \oplus (D^\lambda)^{\alpha(p^\lambda-1)}$.

(c) The set $\{(D^\lambda)^{\alpha} \mid D(\lambda) \in \text{Irr}(A) / \sim_{\beta} \text{ for } 1 \leq i \leq p_\lambda\}$ is a complete set of pairwise non-isomorphic absolutely irreducible B-modules.

(d) The set $\{D(\lambda)^{\beta} \mid D^\lambda \in \text{Irr}(B) / \sim_{\alpha} \text{ for } 1 \leq i \leq o_\lambda\}$ is a complete set of pairwise non-isomorphic absolutely irreducible A-modules.

Proof. Let $D(\lambda) \in \text{Irr}(A)$. Let p_λ' be the smallest positive integer such that $D^\lambda \cong (D^\lambda)^{\alpha p^\lambda}$. By Curtis and Reiner [9, Proposition 11.16] the module $D(\lambda) \downarrow B^A$ is semisimple. Now

$$\text{Hom}_A(D^\lambda, D(\lambda) \uparrow B^A) \cong \text{Hom}_A((D^\lambda)^{\alpha^t}, D(\lambda) \downarrow B^A), \quad \text{for any } t \in \mathbb{Z}.$$

Therefore, there exists an integer $c > 0$ such that

$$D(\lambda) \downarrow B^A \cong (D^\lambda \oplus (D^\lambda)^{\alpha} \oplus \ldots \oplus (D^\lambda)^{\alpha(p^\lambda-1)})^{\oplus c}.$$

(3.2)

By Frobenius reciprocity

$$\text{Hom}_B(D(\lambda) \downarrow B^A, D^\lambda) \cong \text{Hom}_A(D(\lambda), D^\lambda \uparrow B^A).$$

Since K is algebraically closed, both A and B are split over K. It follows that

$$(D(\lambda) \oplus D(\lambda)^{\beta} \oplus \ldots \oplus D(\lambda)^{\beta^{\lambda-1}})^{\oplus c} \subseteq \text{Soc}_A(D^\lambda \uparrow B^A).$$

(3.3)

By (3.2) and (3.3), we have that

$$\dim D(\lambda) = cp_\lambda' \dim D^\lambda \quad \text{and} \quad p \dim D^\lambda \geq c0_\lambda \dim D(\lambda).$$

(3.4)

Hence,

$$p \geq c^2 p_\lambda' o_\lambda.$$

(3.5)

On the other hand, since R contains a primitive pth root of unity, the integer p and all of its divisors are invertible in R. Let π_λ be a linear endomorphism of $D(\lambda)$ that induces an A-module isomorphism $D(\lambda) \cong D(\lambda)^{\beta^{\lambda}}$. Then $(\pi_\lambda)^{p_\lambda} \in \text{End}_A(D(\lambda)) = K$. Renormalizing π_λ, if necessary, we can assume that $(\pi_\lambda)^{p_\lambda} = \text{id}_A$, where id_A is the identity map on $D(\lambda)$.

Let X be an indeterminate over K and suppose that o divides p. Differentiating the identity $X^{o^\alpha} - 1 = \prod_{j=1}^{o^\alpha}(X - \varepsilon^{j\alpha})$, and setting $X = \pi_\lambda$ and $o = o_\lambda$, shows that

$$p_\lambda \pi_\lambda^{p_\lambda-1} = \sum_{j=1}^{p_\lambda} \prod_{1 \leq t \leq p_\lambda, t \neq j} (\pi_\lambda - \varepsilon^{t\alpha}).$$

Thus,

$$\text{id}_A = \frac{1}{p_\lambda} \sum_{j=1}^{p_\lambda} \prod_{1 \leq t \leq p_\lambda, t \neq j} (\pi_\lambda - \varepsilon^{t\alpha}) \pi_\lambda^{1-p_\lambda}.$$

For each integer $1 \leq j \leq p_\lambda$, we define

$$D_j(\lambda) := \frac{1}{p_\lambda} \prod_{1 \leq t \leq p_\lambda, t \neq j} (\pi_\lambda - \varepsilon^{t\alpha}) \pi_\lambda^{1-p_\lambda} D(\lambda).$$

It is easy to check that each $D_j(\lambda)$ is a B-submodule of $D(\lambda) \downarrow B^A$ and $D_j(\lambda) \theta = D_{j+1}(\lambda)$ for each $j \in \mathbb{Z}/p\mathbb{Z}$. In particular, this implies that $D(\lambda) \downarrow B^A$ can be decomposed into a direct sum
of \(p_\lambda \) non-zero \(B \)-submodules. Comparing this with (3.2), we deduce that \(p_\lambda = p/\alpha_\lambda \leq cp'_\lambda \). Combining this with (3.5) shows that \(c^2p'_\lambda \alpha_\lambda \leq p \leq cp'_\lambda \alpha_\lambda \), which forces \(c = 1 \), \(p = \alpha_\lambda p'_\lambda \), and

\[
D^\lambda \uparrow^A_B = \text{Soc}_A(D^\lambda \uparrow^A_B) = D(\lambda) \oplus D(\lambda) \beta \oplus \ldots \oplus D(\lambda) \beta^{w-1}.
\]

This proves the first two statements of the lemma. The last two statements follow by Frobenius reciprocity using the first two statements.

We now apply these results to \(\mathcal{H}_{r,p,n} \). Recall from Subsection 2.1 that \(\mathcal{H}_{r,n} \) has two automorphisms \(\sigma \) and \(\tau \) such that \(\mathcal{H}_{r,p,n} \) is the \(\sigma \)-fixed point subalgebra of \(\mathcal{H}_{r,n} \) and \(\tau \) restricts to an automorphism of \(\mathcal{H}_{r,p,n} \).

It is straightforward to check that, as a right \(\mathcal{H}_{r,p,n} \)-module,

\[
\mathcal{H}_{r,n} = \mathcal{H}_{r,p,n} \oplus T_0 \mathcal{H}_{r,p,n} \oplus \ldots \oplus T_0^{p-1} \mathcal{H}_{r,p,n}.
\]

(For example, use [25, Lemma 3.1].) Hence, \(\mathcal{H}_{r,n} \) is a \(\mathbb{Z}/p\mathbb{Z} \)-graded Clifford system over \(\mathcal{H}_{r,p,n} \).

Applying Lemma 3.9 to \(\mathcal{H}_{r,n} = \bigoplus_{i=0}^{p-1} \mathcal{H}_{r,p,n} T_0^i \), we obtain the following useful result.

Proposition 3.11. There is a natural isomorphism of \((\mathcal{H}_{r,n}, \mathcal{H}_{r,n})\)-bimodules

\[
\mathcal{H}_{r,n} \otimes \mathcal{H}_{r,n} / \mathcal{H}_{r,n} \cong \bigoplus_{m=0}^{p-1} (\mathcal{H}_{r,n})^m,
\]

where \(\mathcal{H}_{r,n} \) acts from the left on \((\mathcal{H}_{r,n})^m\) as left multiplication and from the right with its action twisted by \(\sigma^m \).

Corollary 3.12. Suppose that \(M \) is an \(\mathcal{H}_{r,n} \)-module. Then, as \(\mathcal{H}_{r,n} \)-modules,

\[
M \downarrow \mathcal{H}_{r,n} \mathcal{H}_{r,n} \mathcal{H}_{r,n} \cong \bigoplus_{i=0}^{p-1} M^\sigma_i.
\]

Proof. By definition, \(M \downarrow \mathcal{H}_{r,n} \mathcal{H}_{r,n} \mathcal{H}_{r,n} = M \otimes \mathcal{H}_{r,n} \mathcal{H}_{r,n} \mathcal{H}_{r,n} \mathcal{H}_{r,n} \). Now apply Proposition 3.11.

3.4. Twisting modules by \(\sigma \)

In this section, we investigate the effect on \(\mathcal{H}_{r,n} \)-modules of twisting by the automorphism \(\sigma \) defined in Subsection 2.1. These results will be useful when showing that \(f_\lambda \) has a \(p_\lambda \) root and when constructing and classifying the irreducible \(\mathcal{H}_{r,p,n} \)-modules.

Recall that \(\sigma(T_0) = \varepsilon T_0 \) and that \(\sigma(T_i) = T_i \) for \(1 \leq i < n \). It is easy to check that \(\sigma(T_w) = T_w \) and that \(\sigma(L_m) = \varepsilon L_m \) for \(w \in \mathcal{S}_n \) and for \(1 \leq m \leq n \). Hence, using the definitions, we obtain the following.

Lemma 3.13. Suppose that \(1 \leq b \leq n \) and \(1 \leq s \leq t \leq p \). Then

\[
\sigma(p_{s,t}^{b}) = \varepsilon^{bd(t-s+1)}L_{1,b}^{(s-1,t-1)}.
\]

Consequently, if \(b \in \mathcal{C}_{p,n} \), then \(\sigma(v_b) = \varepsilon^{-nd}v_b^{-1} \) and \(\sigma(Y_t) = \varepsilon^{-db}Y_{t-1} \) for \(1 \leq t \leq p \).

By the remarks in Subsection 3.3, the automorphism \(\sigma \) induces a functor \(\mathbb{F}^\sigma \) on the category of \(\mathcal{H}_{r,n} \)-modules. We want to compare \(\mathbb{F}^\sigma \) with the functors \(\mathbb{H}_b \) for \(b \in \mathcal{C}_{p,n} \), which appear in the Morita equivalences of Theorem 2.3.
Lemma 3.14. Let $b \in C_{p,n}$ and $t \in \mathbb{Z}$. Suppose that Q is (ε, q)-separated over K. Then $V_b^{(t)} \cong V_b^{t+1}$.

Proof. Let $\zeta = \sigma^{-1}$. Then it is enough to show that $V_b^\xi \cong V_b^{t(1)}$ which is equivalent to the statement in the lemma when $t = 0$. By Corollary 2.24 there is an isomorphism $V_b \xrightarrow{\sim} V_b^{(1)}$.

On the other hand, $V_b^\xi \cong \sigma(V_b) \cong V_b^{t(-1)}$ by Lemma 3.13. Therefore, the map $v \mapsto (Y_1v)^\xi$, for $v \in V_b$, gives the required isomorphism $V_b^\xi \xrightarrow{\sim} V_b^{t(1)}$.

Suppose that $b \in C_{p,n}$ and recall that, by definition,

$$H_d,b = H_d,b(Q^{\varepsilon}) = H_d,b_1(\varepsilon Q) \otimes \ldots \otimes H_d,b_p(\varepsilon^p Q).$$

Suppose that $h = h_1 \otimes \ldots \otimes h_p \in H_d,b$. Applying the relations, there is an algebra isomorphism

$$H_d,b \xrightarrow{\sim} H_d,b(-1); h_1 \otimes \ldots \otimes h_p \mapsto h(-1) = h_p^\sigma \otimes h_1^\sigma \otimes \ldots \otimes h_{p-1}^\sigma,$$

where we abuse notation slightly and define $\sigma(T_0^{(t)}) = \varepsilon^{-1}T_0^{(t+1)}$ and $\sigma(T_0^{(t)}) = T_0^{(t+1)}$ for $1 \leq i < b$ and where we equate superscripts modulo p. It follows that there is an equivalence of categories $F_b^\sigma : \text{Mod-}H_d,b \longrightarrow \text{Mod-}H_d,b(-1)$ given by

$$F_b^\sigma(M_1 \otimes \ldots \otimes M_p) = M_p \otimes M_1 \otimes \ldots \otimes M_{p-1},$$

for an H_d,b-module $M_1 \otimes \ldots \otimes M_p$ and where $H_d,b(-1)$ acts via the isomorphism above.

Proposition 3.15. Let $b \in C_{p,n}$. Suppose that Q is (ε, q)-separated over K. Then

$$\xymatrix{ \text{Mod-}H_d,b \ar[r]^{F_b^\sigma} \ar[d]_{H_b} & \text{Mod-}H_d,b(-1) \ar[d]_{H_b(-1)} \\ \text{Mod-}H_{r,n} \ar[r]_{F^\sigma} & \text{Mod-}H_{r,n} }$$

is a commutative diagram of functors.

Proof. Let M be an H_d,b-module. Then we have to prove that

$$(M \otimes H_d,b V_b)^\sigma = F_b^\sigma(M) \otimes H_d,b(-1) V_b(-1)$$

as right $H_{r,n}$-modules. Mimicking the proof of Lemma 3.14, the required isomorphism is the map $m \otimes v \mapsto m(-1) \otimes (Y_1v)^\sigma$ for $m \otimes v \in M \otimes H_d,b V_b$.

We want to use this result to determine the σ-twists of various $H_{r,n}$-modules. To this end, set $a_{s,t} = |\lambda(dt-ds+1)| + \ldots + |\lambda(dt-ds-s+1)|$ for $1 \leq i \leq d$ and $1 \leq t \leq p$, and define

$$u_{\lambda[t]}^+ = u_{\lambda[t]}^+(\varepsilon^t Q) = \prod_{s=2j=1}^d a_{s,t} \prod_{j=1}^d (L_j - \varepsilon^t Q_s) \quad \text{and} \quad x_{\lambda[t]} = \sum_{w \in \mathcal{G}_{\lambda[t]}} T_w,$$

which we think of as elements of $H_d,b(\varepsilon^t Q)$ in the natural way. Now set $u_{\lambda,b} = u_{\lambda[1]}^+ \otimes \ldots \otimes u_{\lambda[p]}^+$ and $x_{\lambda,b} = x_{\lambda[1]} \otimes \ldots \otimes x_{\lambda[p]}$. We remark that it is easy to check that $u_{\lambda,b}$ and $x_{\lambda,b}$ commute using Lemma 2.6.
By Du and Rui [14, Theorem 2.9], there exists an element \(s_b(\lambda) = s(\lambda^{[1]}) \otimes \cdots \otimes s(\lambda^{[p]}) \in \mathcal{H}_{d,b} \) such that \(S_b(\lambda) = s_b(\lambda) \mathcal{H}_{d,b} \). Explicitly, \(s(\lambda^{[i]}) = u^{+}_{\lambda^{[i]}}(\varepsilon^{t}Q')y_{\mu^{[i]}}T_{w(\mu)}x_{\lambda^{[i]}}u^{+}_{\lambda^{[i]}} \), where \(\mu^{[i]} \) is the multipartition conjugate to \(\lambda^{[i]} \) for \(1 \leq i \leq p \). By Lemma 3.3 we have that

\[
S(\lambda) \cong \mathcal{H}_b(S_b(\lambda)) \cong s_b(\lambda) \cdot v_b \mathcal{H}_{d,b}.
\] (3.7)

Henceforth, we identify \(S(\lambda) \) with \(s_b(\lambda) \cdot V_b \) and \(S_b(\lambda) \) with \(s_b(\lambda) \mathcal{H}_{d,b} \) via these isomorphisms. Observe that \(\mathcal{H}_b(S_b(\lambda)) = S(\lambda) \) with these identifications.

Definition 3.16. Suppose that \(b \in \mathcal{C}_{p,n} \) and \(\lambda \in \mathcal{P}_{d,b} \). Define

\[
M_b(\lambda) = u^{+}_{\lambda,b}x_{\lambda,b} \mathcal{H}_{d,b} \quad \text{and} \quad M^\lambda_b = \mathcal{H}_b(M_b(\lambda)).
\]

The definitions above apply equally well to \(\mathcal{H}_{r,n} \)-modules by taking \(p = 1 \). In particular, we have elements \(u^{+}_{\lambda} \) and \(x_\lambda \) in \(\mathcal{H}_{r,n} \) and an \(\mathcal{H}_{r,n} \)-module \(M(\lambda) = u^{+}_{\lambda}x_{\lambda} \mathcal{H}_{r,n} \). Using the definitions, it is easy to check that \(x_\lambda = \mathcal{H}_b(x_{\lambda,b}) \) and that \(u^{+}_{\lambda} = u^{+}_{\lambda} \Theta_b(u^{-}_{\lambda,b}) \), where \(u^{+}_{\lambda} \) is the element introduced in (2.5). It follows that \(M^\lambda_b = u^{+}_{\lambda}M(\lambda) \). Hence, in general, \(M^\lambda_b \) is a proper submodule of \(V_b \).

We can now prove the promised result about \(\sigma \)-twisted modules.

Proposition 3.17. Let \(b \in \mathcal{C}_{p,n} \) and \(\lambda \in \mathcal{P}_{d,b} \). Suppose that \(Q \) is \((\varepsilon, q)\)-separated over \(K \). Then

\[
(M^\lambda_b)^\sigma = M^{{\lambda(-1)}^\sigma}_{b(-1)} \quad \text{and} \quad S(\lambda)^\sigma \cong S(\lambda(-1)).
\]

Moreover, if \(\lambda \in \mathcal{H}_{r,n} \), then \(D(\lambda)^\sigma \cong D(\lambda(-1)) \).

Proof. We have that \(\sigma(u^{\lambda}_{\lambda}((\varepsilon^t)Q)) = \varepsilon^{r_\lambda}u^{\lambda}_{\lambda}((\varepsilon^{t-1})Q) \) for some integer \(k_\lambda \), exactly as in Lemma 3.13. From the definitions, \(F^\sigma_b(M_b(\lambda)) \cong M_{b(-1)}(\lambda(-1)) \). Therefore, using Proposition 3.15,

\[
(M^\lambda_b)^\sigma = F^\sigma_b(M_b(\lambda)) \cong \mathcal{H}_b(M_b(\lambda)) \cong \mathcal{H}_b(-1)(M_b(-1)(\lambda(-1))) \cong M^{{\lambda(-1)}^\sigma}_{b(-1)} ,
\]

giving the first isomorphism. A similar argument shows that \(S(\lambda)^\sigma \cong S(\lambda(-1)) \).

Finally, if \(\lambda \) is Kleshchev, then \(D(\lambda) \neq 0 \) and there is a short exact sequence

\[
0 \rightarrow \text{rad} S(\lambda) \rightarrow S(\lambda) \rightarrow D(\lambda) \rightarrow 0.
\]

The functor \(F^\sigma \) is exact, and \(D(\lambda(-1)) \) is the head of \(S(\lambda(-1)) \), so \(D(\lambda)^\sigma \cong D(\lambda(-1)) \) because \(S(\lambda)^\sigma \cong S(\lambda(-1)) \) by the last paragraph. (Note that \(\lambda \) is Kleshchev if and only if \(\lambda(-1) \) is Kleshchev by Lemma 3.3(c).)

\[\square\]

As \(\sigma \) is trivial on \(\mathcal{H}_{r,p,n} \), Lemma 3.14 and Proposition 3.17 imply the following corollary.

Corollary 3.18. Suppose that \(Q \) is \((\varepsilon, q)\)-separated over \(K \) and that \(b \in \mathcal{C}_{p,n} \), \(\lambda \in \mathcal{P}_{d,b} \) and \(t \in \mathbb{Z} \). Then:

1. \(V_b \upharpoonright \mathcal{H}_{r,p,n} \cong V_{b(t)} \upharpoonright \mathcal{H}_{r,p,n} \);
2. \(M^\lambda_b \upharpoonright \mathcal{H}_{r,p,n} \cong M^{\lambda(t)}_b \upharpoonright \mathcal{H}_{r,p,n} \);
3. \(S(\lambda) \upharpoonright \mathcal{H}_{r,p,n} \cong S(\lambda(t)) \upharpoonright \mathcal{H}_{r,p,n} \);
4. If \(\lambda \in \mathcal{H}_{r,n} \), then \(D(\lambda) \upharpoonright \mathcal{H}_{r,p,n} \cong D(\lambda(t)) \upharpoonright \mathcal{H}_{r,p,n} \).
3.5. Shifting homomorphisms

In this section, we show that our ordering of the cyclotomic parameters $Q^{\epsilon \ell}$ in (2.1) implies the existence of some isomorphisms between Specht modules. The shifting homomorphisms are, ultimately, what allow us to construct the irreducible $\mathcal{H}_{r,p,n}$ modules, and hence prove Theorem C. These results also underpin our calculation of the l-splittable decomposition numbers of $\mathcal{H}_{r,p,n}$ and, consequently, our proof of Theorem D.

Extending the notation that we used for the modules $V_{b}^{(t)}$, for each multipartition $\lambda \in \mathcal{P}_{d,b}$ let $S(\lambda)^{(t)}$ be the Specht module for $\mathcal{H}_{r,n}$ that is defined with respect to the ordered parameters $\epsilon^{t}Q^{\epsilon \ell}$ (rather than $Q^{\epsilon \ell}$). Then $S(\lambda) \cong S(\lambda(t))^{(t)}$ as $\mathcal{H}_{r,n}$-modules and $S(\lambda(t))^{(t)}$ is a submodule of $V_{b}^{(t)}$. The following result makes this more explicit.

Lemma 3.19. Suppose that Q is (ϵ, q)-separated over K and that $\lambda \in \mathcal{P}_{d,b}$ for $b \in \mathcal{C}_{p,n}$, and $1 \leq t \leq p$. Then

$$Y_{t} \ldots Y_{1}S(\lambda) = S(\lambda(t))^{(t)}$$

as subsets of $\mathcal{H}_{r,n}$.

Proof. As we have already observed, left multiplication by $Y_{p} \ldots Y_{1}$ is invertible by Lemmas 2.23 and 2.21. Therefore, $Y_{t} \ldots Y_{1}S(\lambda) \cong S(\lambda)$ as a right $\mathcal{H}_{r,n}$-modules, so it is enough to show that $Y_{t} \ldots Y_{1}S(\lambda) \subseteq S(\lambda(t))^{(t)}$. Recall from before Definition 3.16 that we are identifying $S_{b}(\lambda)$ with the ideal $S_{b}(\lambda) = s_{b}(\lambda)\mathcal{H}_{d,b}$ and $S(\lambda) = s_{b}(\lambda) \cdot V_{b}$. Using Lemma 2.17, we compute

$$Y_{t} \ldots Y_{1}(s_{b}(\lambda) \cdot v_{b}) = Y_{t} \ldots Y_{1}v_{b} \Theta_{b}(s_{b}(\lambda))
= \hat{\Theta}_{b}(t) (s_{b}(\lambda(t))) Y_{t} \ldots Y_{1}v_{b}
= s_{b}(\lambda(t)) \cdot v_{b}(t) Y_{t}^{*} \ldots Y_{1}^{*},$$

the last equality following from Corollary 2.12. Hence, $Y_{t} \ldots Y_{1}S(\lambda) \subseteq S(\lambda(t))^{(t)}$ as we needed to show.

Fix $b \in \mathcal{C}_{p,n}$ and $\lambda \in \mathcal{P}_{d,b}$ and suppose that $\lambda = \lambda(m)$ for some integer $1 \leq m \leq p$ with m dividing p. Then $b = b(m)$ and σ^{m} is an automorphism of $\mathcal{H}_{r,n}$ of order p/m. Set

$$Q = (Q_{1}, Q_{1}^{\epsilon \ell}, \ldots, Q_{1}^{m-1}, Q_{2}, \ldots, Q_{2}^{m-1}, \ldots, Q_{d}, \ldots, Q_{d}^{m-1}).$$

Then $\mathcal{H}_{r,n} = \mathcal{H}_{r,n}(Q^{\epsilon \ell}) = \mathcal{H}_{r,n}(Q^{\epsilon \ell^{m}})$. By definition $\mathcal{H}_{r,p/m,n} = \mathcal{H}_{r,p/m,n}(Q)$ is the subalgebra of $\mathcal{H}_{r,n}$ generated by $T_{0}^{p/m}, T_{1}, \ldots, T_{n-1}$, so that

$$\mathcal{H}_{r,p/m,n} \cong \{ h \in \mathcal{H}_{r,n} \mid h = \sigma^{m}(h) \}. \quad (3.8)$$

This observation will be useful below.

For $0 \leq t < p/m$ we now consider the modules $V_{b}^{(tm)}$ and $S(\lambda)^{(tm)}$. Then, by definition, $S(\lambda)^{(tm)}$ is a submodule of $V_{b}^{(tm)}$. Further, by Lemma 3.13 and Proposition 3.17,

$$(V_{b}^{(tm)})^{\sigma^{m}} = V_{b}^{(tm)} \quad \text{and} \quad (S(\lambda)^{(tm)})^{\sigma^{m}} = S(\lambda)^{(tm)}.$$

Motivated by Definition 2.13, define

$$Y_{t,m} = Y_{t+m} \ldots Y_{t+2} Y_{tm+1},$$

for $0 \leq t < p/m$, and let $\theta'_{t,m} : V_{b}^{(tm)} \rightarrow V_{b}^{(tm+m)}$ be the map $\theta'_{t,m}(v) = Y_{t,m}v$ for $v \in V_{b}^{(tm)}$.

DEFINITION 3.20 (Shifting homomorphisms). Suppose that \(b \in \mathcal{C}_{p,n} \) and that \(b = b(m) \) for some \(1 \leq m \leq p \) with \(m \) dividing \(p \). For \(0 \leq t < p/m \) define \(\theta_{t,m} = \sigma^m \circ \theta'_{t,m} \).

LEMMA 3.21. Suppose that \(b \in \mathcal{C}_{p,n} \), with \(b = b(m) \) for some \(1 \leq m \leq p \) with \(m \) dividing \(p \), and suppose that \(0 \leq t < p/m \). Then \(\theta_{t,m} \in \text{End}_{\mathcal{H}_{r,p/m,n}}(V_b^{(tm)}) \).

Proof. By Definition 2.13 and the remarks above, \(\theta_{t,m} \in \text{End}_{R}(V_b^{(tm)}) \) since \(b = b(m) \). Moreover, if \(v \in V_b^{(tm)} \) and \(h \in \mathcal{H}_{r,n} \), then
\[
\theta_{t,m}(vh) = \sigma^m(\theta'_{t,m}(vh)) = \sigma^m(\theta'_{t,m}(v))\sigma^m(h),
\]
since \(\theta'_{t,m} \) is an \(\mathcal{H}_{r,n} \)-module homomorphism by Definition 2.13. Therefore, \(\theta_{t,m}(vh) \) is an \(\mathcal{H}_{r,p,m,n} \)-module homomorphism since \(\mathcal{H}_{r,p,m,n} = \mathcal{H}_{r,n}^{\sigma m} \) by (3.8). \[\square \]

3.6. Seminormal forms and roots of \(f_\lambda \)

In this section, we show that if \(\lambda = \lambda(m) \), for an integer \(m \) dividing \(p \) such that \(1 \leq m \leq p \), then there exists a scalar \(f_\lambda^{(1)} \) such that \(f_\lambda = \varepsilon^{mn(l-1)/2}(f_\lambda^{(1)})' \), where \(l = p/m \) as in Theorem B. By relating \(f_\lambda \) to the shifting homomorphisms, we will show that this factorization of \(f_\lambda \) corresponds to a factorization of the endomorphism of \(S(\lambda) \) given by left multiplication by \(z_b \).

Recall that \(\mathcal{A} = \mathbb{Z}[\dot{\varepsilon}, \dot{\zeta}^{\pm 1}, \dot{Q}_1^{\pm 1}, \ldots, \dot{Q}_d^{\pm 1}, \mathcal{A}(\dot{\varepsilon}, \dot{\zeta}), \mathcal{Q}]^{-1} \) and that \(\mathcal{F} \) is the field of fractions of \(\mathcal{A} \). As seen in Subsection 3.2, the algebra \(\mathcal{H}_{r,n} \) is semisimple. Note that \(\mathcal{Q} \) is \((\dot{\varepsilon}, \dot{\zeta})\)-separated over \(\mathcal{F} \), so we can apply all of our previous results.

Fix \(\lambda \in \mathcal{P}_{r,n} \) and an integer \(m \) such that \(\lambda = \lambda(m) \) and \(1 \leq m \leq p \) and \(m \mid p \). Let \(l = p/m \). Since \(\mathcal{H}_{r,n}^{\sigma m} \) is semisimple, the Specht module \(S(\lambda) = S_{\mathcal{F}}(\lambda) \) is irreducible and has, as we now recall, a seminormal representation over \(\mathcal{F} \). First we need some notation.

Recall from Subsection 3.1 that \(\text{Std}(\lambda) \) is the set of standard \(\lambda \)-tableaux. Each standard tableau \(\mathfrak{s} \in \text{Std}(\lambda) \) is an \(r \)-tuple \(\mathfrak{s} = (\mathfrak{s}^{(1)}, \ldots, \mathfrak{s}^{(r)}) \) of standard tableaux. Extending the notation for \(\lambda = (\lambda^{[1]}, \ldots, \lambda^{[p]}) \), write \(\mathfrak{s} = (\mathfrak{s}^{[1]}, \ldots, \mathfrak{s}^{[p]}) \), where \(\mathfrak{s}^{[j]} = (\mathfrak{s}^{[j-1]+1}, \ldots, \mathfrak{s}^{[j]+1}) \) is a \(\lambda^{[j]} \)-tableau for \(1 \leq j \leq p \). Similarly, if \(z \in \mathbb{Z} \), define \(\mathfrak{s}(z) = (\mathfrak{s}^{[z+1]}, \ldots, \mathfrak{s}^{[z+p]}) \), where, as usual, we set \(\mathfrak{s}^{[j+kp]} = \mathfrak{s}^{[j]} \) for \(1 \leq j \leq p \) and \(k \in \mathbb{Z} \).

If \(1 \leq k \leq n \) and \(\mathfrak{s} \in \text{Std}(\lambda) \), define the content of \(k \) in \(\mathfrak{s} \) to be
\[
\text{cont}_\mathfrak{s}(k) = \dot{\varepsilon}^{j} \dot{\zeta}^{a} \dot{Q}_c \in \mathcal{F},
\]
if \(k \) appears in row \(a \) and column \(b \) of \(\mathfrak{s}^{(c+jd)} \). The following useful fact is easily proved by induction on \(n \).

LEMMA 3.22 (cf. [26, Lemma 3.12]). Suppose that \(\mathfrak{s} \in \text{Std}(\lambda) \) and \(t \in \text{Std}(\mu) \) for \(\lambda, \mu \in \mathcal{P}_{r,n} \). Then \(\mathfrak{s} = \mathfrak{t} \) if and only if \(\text{cont}_\mathfrak{s}(k) = \text{cont}_\mathfrak{t}(k) \) for \(1 \leq k \leq n \).

If \(\mathfrak{s} \) is a standard \(\lambda \)-tableau and \(1 \leq i < n \), let \(\mathfrak{s}(i, i+1) \) be the tableau obtained by interchanging the positions of \(i \) and \(i+1 \) in \(\mathfrak{s} \). Then \(\mathfrak{s}(i, i+1) \) is a standard \(\lambda \)-tableau unless \(i \) and \(i+1 \) are either in the same row or in the same column.

LEMMA 3.23 (Ariki–Koike [4, Theorem 3.7]). Let \(V(\lambda) \) be the \(\mathcal{F} \)-vector space with basis \(\{v_{\mathfrak{s}} \mid \mathfrak{s} \in \text{Std}(\lambda)\} \). Then \(V(\lambda) \) becomes an \(\mathcal{H}_{r,n} \)-module with \(\mathcal{H}_{r,n} \)-action, for \(1 \leq k \leq n \) and \(1 \leq i < n \), given by
\[
v_{\mathfrak{s}}L_k = \text{cont}_\mathfrak{s}(k)v_{\mathfrak{s}} \quad \text{and} \quad v_{\mathfrak{s}}T_i = \beta_{\mathfrak{s}}(i)v_{\mathfrak{s}} + (1 + \beta_{\mathfrak{s}}(i))v_{\mathfrak{s}},
\]
where \(t = s(i, i + 1), v_t = 0 \) if \(t \) is not standard and
\[
\beta_s(i) = \frac{(\hat{q} - 1)\text{cont}_t(i)}{(\text{cont}_t(i) - \text{cont}_s(i))}.
\]
Moreover, \(V(\lambda) \cong S^F(\lambda) \) as \(\mathcal{H}_{r,n} \)-modules.

The module \(V(\lambda) \) is a seminormal form for \(S^F(\lambda) \).
Recall that we have fixed integers \(m \) and \(l = p/m \) such that \(m \mid p \) and \(\lambda = \lambda(m) \). Thus, \(S^F(\lambda(t_m)) \cong S^F(\lambda) \) for \(0 \leq t < l = p/m \). By (3.7),
\[
S^F(\lambda(t_m)) = s_b(\lambda) \cdot v_{(tm)}^{(tm)} \mathcal{H}_{r,n}.
\]
For convenience, we set \(v_{(tm)}^{(tm)} = s_b(\lambda) \cdot v_{(tm)}^{(tm)} \in \mathcal{H}_{r,n} \).

Recall from Subsection 3.2 that \(t^\lambda \) is the standard \(\lambda \)-tableau which has the numbers
\(1, 2, \ldots, n \), entered in order from left to right along the rows of its first component, then its second component and so on.

Lemma 3.24. Suppose that \(0 \leq t < l \). Then
\[
v_{(tm)}^{(tm)} L_k = \text{cont}_{\lambda(-tm)}(k) v_{(tm)}^{(tm)}.
\]
for \(1 \leq k \leq n \).

Proof. It suffices to consider the case \(t = 0 \) when the result is effectively a restatement of Mathas [28, Proposition 3.13]. Alternatively, this can be proved using Du and Rui’s proof [14, Theorem 2.9] that the Specht module \(S(\lambda) \) is isomorphic to the corresponding cell module from [11] together with the description of the action of \(L_1, \ldots, L_n \) on the standard basis of the cell modules from [26, Proposition 3.7].

Corollary 3.25. Suppose that \(0 \leq t < l \). Then there exists a unique \(\mathcal{H}_{r,n} \)-module isomorphism
\[
\varphi_{(tm)}^{(tm)} : V(\lambda) \cong S^F(\lambda(t_m))
\]
such that \(\varphi_{(tm)}^{(tm)}(v_{\lambda(-tm)}^{(tm)}) = v_{(tm)}^{(tm)} \).

Proof. By the lemma, \(v_{(tm)}^{(tm)} \) is a simultaneous eigenvector for \(L_1, \ldots, L_n \) with the eigenvalues being given by the content functions \(\text{cont}_{\lambda(-tm)}(k) \) for \(1 \leq k \leq n \). By Proposition 3.23 the corresponding simultaneous eigenspace in \(V(\lambda) \) is \(\mathcal{F}v_{\lambda(-tm)}^{(tm)} \), and so any \(\mathcal{H}_{r,n} \)-module isomorphism from \(V(\lambda) \) to \(S^F(\lambda(t_m)) \) must send \(v_{\lambda(-tm)}^{(tm)} \) to a scalar multiple of \(v_{(tm)}^{(tm)} \). As \(V(\lambda) \cong S^F(\lambda(t_m)) \), by renormalizing any isomorphism \(V(\lambda) \to S^F(\lambda(t_m)) \), we get the result.

Suppose that \(0 \leq t < l \). For each standard \(\lambda \)-tableau \(s \) set \(v_s^{(tm)} = \varphi_{(tm)}^{(tm)}(v_{s(-tm)}^{(tm)}) \). Then \(\{v_s^{(tm)} \mid \ s \in \text{Std}(\lambda)\} \) is a Young seminormal basis of \(S^F(\lambda(t_m)) \) and, by construction,
\[
v_s^{(tm)} L_k = \varphi_{(tm)}^{(tm)}(v_{s(-tm)}^{(tm)}) L_k = \text{cont}_{s(-tm)}(k) v_s^{(tm)},
\]
for \(1 \leq k \leq n \). Recall from Lemma 3.19 that \(Y_{l,m} S(\lambda(t_m)) = S(\lambda(t_m + m)) \). We can now describe the map given by left multiplication by \(Y_{l,m} \) more explicitly.
Proposition 3.26. Suppose that $0 \leq t \leq m$ and $s \in \text{Std}(\lambda)$. Then there exists a scalar $i^{(t+1:m)}_{\lambda}(\dot{\varepsilon}, \dot{\eta}, \dot{Q}) \in \mathcal{F}$ such that

$$Y_{t,m}v_{s(m)}^{(tm)} = i^{(t+1:m)}_{\lambda}(\dot{\varepsilon}, \dot{\eta}, \dot{Q})v_{s}^{(tm+m)},$$

for all $s \in \text{Std}(\lambda)$.

Proof. By definition, if $s \in \text{Std}(\lambda)$, then $v_{s}^{(tm+m)}L_{k} = \text{cont}_{s}^{(tm+m)}(k)v_{s}^{(tm+m)}$ for $1 \leq k \leq n$. The same statement holds true for $Y_{t,m}v_{s(m)}^{(tm)}$, and so, by construction, $Y_{t,m}v_{s(m)}^{(tm)}$ must be a scalar multiple of $v_{s}^{(tm+m)}$. By direct calculation the map that sends $v_{s(m)}^{(tm)}$ to $v_{s}^{(tm+m)}$, for each $s \in \text{Std}(\lambda)$, defines an $\mathcal{H}_{r,n}$-isomorphism. By Schur’s Lemma this scalar is independent of s and so the lemma follows.

We write $i^{(t)}_{\lambda} = i^{(tm)}_{\lambda}(\dot{\varepsilon}, \dot{\eta}, \dot{Q})$ if m is clear from the context. It is tempting to say that $i_{\lambda}^{(t)} \in \mathcal{A}$ since left multiplication by $Y_{t,m}$ is defined over \mathcal{A}, however, the construction of the basis $\{v_{s}^{(tm)}\}$ is only valid over \mathcal{F}. Nonetheless, we will show below that $i^{(t)}_{\lambda} \in \mathcal{A}$ using the fact that \mathcal{A} is integrally closed in \mathcal{F}.

Lemma 3.27. Let $\varphi : V(\lambda) \to V(\lambda)$ be the \mathcal{F}-linear map such that

$$\varphi(v_{s}) = v_{s(m)}, \text{ for all } s \in \text{Std}(\lambda).$$

Then φ is an $\mathcal{H}_{q}^{F}(\mathfrak{S}_{n})$-module homomorphism. Moreover, $\varphi(vx) = \varphi(v)\sigma^{m}(x)$ for all $v \in V(\lambda)$ and $x \in \mathcal{H}_{r,n}$. Hence, φ is an $\mathcal{H}_{q}^{F}(\mathfrak{S}_{n})$-module homomorphism.

Proof. Suppose that $s \in \text{Std}(\lambda)$ and $1 \leq i < n$ and let $t = s(i, i+1)$. Then, by Lemma 3.23,

$$\varphi(v_{s}T_{i}) = \beta_{s}(i)\varphi(v_{s}) + (1 + \beta_{s}(i))\varphi(v_{i}) = \beta_{s}(i)v_{s(m)} + (1 + \beta_{s}(i))v_{t(m)},$$

where the second last equality follows because $\beta_{s}(i) = \beta_{s(m)}(i)$. Hence, φ is a $\mathcal{H}_{q}(\mathfrak{S}_{n})$-homomorphism. To prove the second claim, it is enough to show that $\varphi(v_{s}L_{k}) = \dot{\varepsilon}^{-m}v_{s(m)}L_{k}$ for all $s \in \text{Std}(\lambda)$ and $1 \leq k \leq n$. This is immediate because $\text{cont}_{s(m)}(k) = \dot{\varepsilon}^{-m}\text{cont}_{s}(k)$ by Lemma 3.24.

Corollary 3.28. Suppose that $0 \leq t < l$ and that $s \in \text{Std}(\lambda)$. Then

$$\sigma^{m}(v_{s}^{(tm)}) = \dot{\varepsilon}^{-dmn}v_{s}^{(tm-m)}.$$
as required.

Theorem 3.29. Suppose that $\lambda \in \mathcal{P}_{d,b}$ be a multipartition such that $\lambda = \lambda(m)$ for some $b \in \mathcal{C}_{p,n}$ and $1 \leq m \leq p$ with $m \mid p$. Set $l = p/m$. Then

$$\tilde{i}_\lambda = i^{(1)}_\lambda \cdots i^{(l)}_\lambda = \varepsilon^{(1/2)dmn(l-1)}(i^{(1)}_\lambda)^l.$$

Consequently, $i^{(t)}_\lambda \in \mathcal{A}$ for $1 \leq t \leq l$.

Proof. By Lemma 3.4 and Proposition 3.26, if $s \in \text{Std}(\lambda)$, then

$$\tilde{i}_\lambda v_s^{(0)} = Y_{p} \cdots Y_{l-1,m} Y_{l-1,m} \cdots Y_{0,m} v_s^{(0)} = i^{(1)}_\lambda Y_{l-1,m} \cdots Y_{l,m} v_s^{(m)} = \cdots = i^{(l)}_\lambda v_s^{(p)}.$$

Therefore, $\tilde{i}_\lambda = i^{(1)}_\lambda \cdots i^{(l)}_\lambda$, since $v_s^{(p)} = v_s^{(0)}$. This proves the first claim.

For the second claim, observe that, by Lemma 3.13,

$$\sigma^m(Y_{l-1,m}) = \varepsilon^{(p-1)dmn/l} Y_{l-1,m} = \varepsilon^{-dmn/l} Y_{l-1,m},$$

since $\varepsilon^p = 1$ and $l\mathbf{b}_1 = \mathbf{b}_l = n$. Therefore,

$$i^{(t)}_\lambda v_s^{(m)} = Y_{l-1,m} v_s^{(m)} = \sigma^{-m}(Y_{l-1,m} v_s^{(m)}) = \varepsilon^{-dmn(l+1)/l} \sigma^{-m}(Y_{l-1,m} v_s^{(m)}) = \varepsilon^{-dmn(l+1)/l} i^{(t-1)}_\lambda (t^{(m)}) = \varepsilon^{-dmn/l} i^{(t)}_\lambda v_s^{(m)}.$$

Therefore, $i^{(t+1)}_\lambda = \varepsilon^{-dmn/l} i^{(t)}_\lambda = \cdots = \varepsilon^{-tdmn/l} i^{(1)}_\lambda$. The second claim follows.

To complete the proof, observe, for example, using [15, Exercises 4.18 and 4.21, p. 138], that the ring \mathcal{A} is an integrally closed domain. Therefore, $i^{(1)}_\lambda \in \mathcal{A}$ because $i^{(1)}_\lambda$ and $(i^{(1)}_\lambda)^l = \varepsilon^{(1/2)dmn(l-1)} i^{(1)}_\lambda$ both belong to \mathcal{A} by Proposition 3.4. Hence, $i^{(t)}_\lambda \in \mathcal{A}$ for $1 \leq t \leq m$, completing the proof.

Henceforth, let $\tilde{i}^{(t)}_\lambda$ be the value of $i^{(t)}_\lambda$ at $(\varepsilon, \tilde{q}, \tilde{Q}) = (\varepsilon, q, Q)$ for each integer $1 \leq t \leq l$.

Corollary 3.30. Suppose that Q is $\langle \varepsilon, q \rangle$-separated over R and let $\lambda \in \mathcal{P}_{d,b}$ be a multipartition such that $\lambda = \lambda(m)$ for some $b \in \mathcal{C}_{p,n}$ and $1 \leq m \leq p$ with $m \mid p$. Set $l = p/m$. Then

$$\tilde{i}_\lambda = i^{(1)}_\lambda \cdots i^{(l)}_\lambda = \varepsilon^{(1/2)dmn(l-1)}(i^{(1)}_\lambda)^l.$$

Combining Corollary 3.30 with Proposition 3.4 and Theorem 3.6, we have proved Theorem B from the introduction.

Recall from the introduction that $o_\lambda = \min\{k \geq 1 \mid \lambda^{[k+t]} = \lambda^{[t]} \text{ for all } t \in \mathbb{Z} \}$, and that $p_\lambda = p/o_\lambda$. Note that o_λ divides p so that p_λ is an integer.

Definition 3.31. Suppose that $\lambda \in \mathcal{P}_{d,b}$ for $b \in \mathcal{C}_{p,n}$. Define $\tilde{g}_\lambda = \tilde{i}^{(1:o_\lambda)}_\lambda$. If Q is $\langle \varepsilon, q \rangle$-separated, let $g_\lambda = \tilde{g}_\lambda(q, \varepsilon, Q)$ be the specialization of $\tilde{g}_\lambda = \tilde{g}_\lambda(\varepsilon, \tilde{q}, Q)$ at $(\varepsilon, \tilde{q}, Q) = (\varepsilon, q, Q)$.

As the scalars \tilde{g}_λ are central to all of our main results, it is important to have a closed formula for them. Set $\sqrt{\lambda} = (\lambda^{[1]}, \ldots, \lambda^{[p_\lambda]})$. Abusing notation slightly, $\lambda = (\sqrt{\lambda}, \ldots, \sqrt{\lambda})$, where $\sqrt{\lambda}$
is repeated p_λ times. Recall from before Corollary 3.8 that if $(i, j, s) \in |\lambda|$ and $1 \leq t \leq r$, then $h_{ij}^\lambda(s, t) = \hat{\varepsilon}p_s - p_t \hat{q}^{h_{ij}(\lambda(s), \lambda(t))}Q_d Q_d^{-1}$.

Proposition 3.32. Suppose that $\lambda \in \mathcal{P}_{d,b}$ for $b \in \mathcal{E}_{p,a}$, and set $n_\lambda = n/p_\lambda$. Then there exists $k \in \mathbb{Z}$ such that

\[\hat{g}_\lambda = \hat{\varepsilon}^{\alpha(\lambda) + k_\lambda} \hat{q}^{\gamma_b(\sqrt{\lambda})} (\hat{Q}_1 \ldots \hat{Q}_d)^{n_\lambda(p-1)} \prod_{(i, j, s) \in |\sqrt{\lambda}|} \prod_{1 \leq t \leq d_\lambda} \prod_{0 \leq a < p_\lambda} \prod_{a \neq 0 \text{ if } p_t = p_s} (\hat{\varepsilon}^{a_\alpha} h_{ij}^\lambda(s, t) - 1), \]

where $\gamma_b(\sqrt{\lambda}) = (\ell(w_b) + \sum_{a=1}^p \beta(\lambda^{\alpha[a]}) - \beta(\lambda))/p_\lambda$ and $\alpha(\lambda) = \frac{1}{2} n_\lambda(rp - d_\lambda a) - d_\lambda a(\lambda)/p_\lambda$ are both integers.

Proof. First observe that $n_\lambda = n/p_\lambda = |\sqrt{\lambda}| \in \mathbb{N}$. By Theorem 3.29, $\hat{g}_\lambda^{p_\lambda} = \hat{\varepsilon}^{(1/2)d_\lambda n(p_\lambda - 1)} \hat{I}_\lambda$. Therefore, by Corollary 3.8, $\hat{g}_\lambda^{p_\lambda}$ is equal to

\[\hat{\varepsilon}^{(1/2)d_\lambda n(p_\lambda - 1)} \hat{I}_\lambda = \hat{q}^{\gamma_b(\sqrt{\lambda})} \hat{g}_\lambda^{p_\lambda} \hat{Q}_d^{\alpha(\lambda)} (\hat{Q}_1 \ldots \hat{Q}_d)^{n(p-1)} \prod_{(i, j, s) \in |\lambda|} \prod_{1 \leq t \leq r} \prod_{p_t \neq p_s} (h_{ij}^\lambda(s, t) - 1). \]

Observe that, because $\lambda = \lambda(\alpha, \lambda)$, if $1 \leq s, t \leq d_\lambda$ and $0 \leq a, b < p_\lambda$, then $(i, j, s + \alpha a \lambda, t + b \alpha \lambda) \in |\lambda|$ and $h_{ij}^\lambda(s, t) = \hat{\varepsilon}^{(a-b)\alpha} h_{ij}^\lambda(s + \alpha a \lambda, t + b \alpha \lambda)$. Therefore,

\[\prod_{(i, j, s) \in |\lambda|} \prod_{1 \leq t \leq r} \prod_{p_t \neq p_s} (h_{ij}^\lambda(s, t) - 1) = \prod_{(i, j, s) \in |\sqrt{\lambda}|} \prod_{0 \leq a < p_\lambda} \prod_{0 \leq b < p_\lambda} \prod_{p_t + b \alpha \lambda \neq p_s + a \alpha \lambda} (\hat{\varepsilon}^{(a-b)\alpha} h_{ij}^\lambda(s, t) - 1). \]

Now, in the right-hand products $1 \leq s, t \leq d_\lambda$, so $p_t + b \alpha \lambda = p_s + a \alpha \lambda$ if and only if $p_t = p_s$ and $a = b$. Therefore, the last equation becomes

\[\prod_{(i, j, s) \in |\lambda|} \prod_{1 \leq t \leq r} \prod_{p_t \neq p_s} (h_{ij}^\lambda(s, t) - 1) = \prod_{(i, j, s) \in |\sqrt{\lambda}|} \prod_{1 \leq t \leq d_\lambda} \prod_{0 \leq a < p_\lambda} (\hat{\varepsilon}^{a_\alpha} h_{ij}^\lambda(s, t) - 1)^{p_\lambda}. \]

Taking p_λ-th roots, the formula for \hat{g}_λ in the statement of the proposition now follows. Note that this determines \hat{g}_λ up to multiplication by $\hat{\varepsilon}^{k_\lambda a \lambda}$, a p_λ-th root of unity, for some $k \in \mathbb{Z}$.

Finally, since $\hat{g}_\lambda \in \mathcal{A}$ by Theorem 3.29, it follows that $\gamma_b(\sqrt{\lambda})$ and $\alpha(\lambda)$ are both integers. We remark that it is not difficult to show this directly using just the definitions above. We leave this as an exercise for the reader. \qed

Remark 3.33. Proposition 3.32 determines \hat{g}_λ up to a p_λ-th root of unity $\hat{\varepsilon}^{k_\lambda a \lambda}$. For the rest of this paper, we make a fixed but arbitrary choice of the root of unity in Proposition 3.32. For the sake of definiteness, we take $k = 0$ and set

\[\hat{g}_\lambda = \hat{\varepsilon}^{\alpha(\lambda)} \hat{q}^{\gamma_b(\sqrt{\lambda})} (\hat{Q}_1 \ldots \hat{Q}_d)^{n_\lambda(p-1)} \prod_{(i, j, s) \in |\sqrt{\lambda}|} \prod_{1 \leq t \leq d_\lambda} \prod_{0 \leq a < p_\lambda} (\hat{\varepsilon}^{a_\alpha} h_{ij}^\lambda(s, t) - 1). \]

The formula for the splittable decomposition numbers in Theorem D and all of the results that follow (for example, Definition 3.39) are relative to the choice of scalar \hat{g}_λ. The reader can check that any other choice works equally well.

Theorem 3.29 shows that $\hat{g}_\lambda \in \mathcal{A}$ and, together with Proposition 3.4, this implies that the specialization $g_\lambda = \hat{g}_\lambda(\hat{\varepsilon}, \hat{q}, Q)$ is well-defined and non-zero whenever Q is $(\hat{\varepsilon}, \hat{q})$-separated. Proposition 3.32 immediately implies the following stronger characterization of \hat{g}_λ.\[\text{ }\]
Corollary 3.34. Suppose that $\lambda \in \mathcal{P}_{r,\lambda}$ for $b \in \mathcal{O}_{p,n}$. Then $\hat{g}_\lambda \in \mathbb{Z}[\varepsilon, \hat{Q}^{\pm 1}_1, \ldots, \hat{Q}^{\pm 1}_d]$. Moreover, $g_\lambda \neq 0$ whenever Q is (ε, q)-separated.

The last two results follow directly from Corollary 3.8. In particular, they do not need the machinery developed in this section. The main results of this section are really Proposition 3.26 and Theorem 3.29, which connect the polynomials \hat{g}_λ with the representation theory of $\mathcal{H}_{r,p,n}$ via the shifting homomorphisms.

3.7. Specht modules for $\mathcal{H}_{r,p,n}$

Theorem 3.29 shows that \hat{g}_λ is a $p\lambda$th root of \hat{I}_λ. This implies that the endomorphism of $S(\lambda)$ induced by multiplication by z_b is a $p\lambda$th power of a ‘simpler’ endomorphism θ_λ. In this section, we show that, as a $\mathcal{H}_{r,p,n}$-module, the Specht module decomposes into a direct sum of θ_λ-eigenspaces each of which is an $\mathcal{H}_{r,p,n}$-module. These eigenspaces are analogues of Specht modules for $\mathcal{H}_{r,p,n}$ and they will allow us to construct all of irreducible $\mathcal{H}_{r,p,n}$-modules.

Lemma 3.35. Suppose that $b \in \mathcal{O}_{p,n}$ and that $b = b(m)$ for some $1 \leq m \leq p$ with m dividing p. Let $l = p/m$. Then $\theta'_{t,m} = \varepsilon^{dmn/l} \sigma^m \circ \theta'_{t,m} \circ \sigma^{-m}$ for $0 \leq t < l$.

Proof. We first show that $\theta'_{t,m} = \varepsilon^{dmn/l} \sigma^m \circ \theta'_{t+1,m} \circ \sigma^{-m}$ whenever $0 \leq t < l$. By construction both maps belong to $\text{Hom}_{\mathcal{H}_{r,p,n}}(V_{t,m}^{(bn)}(V_{t+1,m+1}^{(bn+1)})$. By Lemma 3.13, $\sigma^m(Y_{t+1,m}) = \varepsilon^{-dmn/l}Y_{t,m}$. Consequently, for $v \in V_{t,m}^{(bn)}$, then

$$(\sigma^m \circ \theta'_{t+1,m} \circ \sigma^{-m})(v) = \varepsilon^{-dmn/l}Y_{t,m}v = \varepsilon^{-dmn/l} \theta'_{t,m}(v).$$

Hence, $\theta'_{t,m} = \varepsilon^{dmn/l} \sigma^m \circ \theta'_{t+1,m} \circ \sigma^{-m}$, as claimed. Therefore, if $0 \leq t < l$, then $\theta'_{0,m} = \varepsilon^{dmn/l} \sigma^m \circ \theta'_{1,m} \circ \sigma^{-m}$ by induction on t.

By Lemma 3.21, we have that $\theta_{t,m} = \sigma^m \circ \theta'_{t,m} \in \text{End}_{\mathcal{H}_{r,p,m,n}}(V_{t,m}^{(bn)})$, for $0 \leq t < p/m$. In particular, $\theta_{0,m} \in \text{End}_{\mathcal{H}_{r,p,m,n}}(V_b)$.

Lemma 3.36. Suppose that $b \in \mathcal{O}_{p,n}$ and that $b = b(m)$ for some $1 \leq m \leq p$ with m dividing p. Let $l = p/m$. Then

$$(\theta_{0,m})'(v) = \varepsilon^{(1/2)dmn(l-1)}z_b \cdot v,$$

for all $v \in V_b$; that is, $\theta_{0,m}' = \varepsilon^{(1/2)dmn(l-1)}z_b$ as elements of $\text{End}_{\mathcal{H}_{r,n}}(V_b)$.

Proof. By Lemma 3.35, $\theta'_{0,m} = \varepsilon^{dmn/l} \sigma^m \circ \theta'_{t,m} \circ \sigma^{-m}$ for $0 \leq t < l$. Therefore,

$$(\theta_{0,m})'(v) = (\sigma^m \circ \theta'_{0,m}) \circ (\sigma^m \circ \theta'_{0,m}) \circ \ldots \circ (\sigma^m \circ \theta'_{0,m})$$

$$= \sigma^m \circ \varepsilon^{dmn(l-1)/l} \sigma^{l(l-1)m} \circ \theta'_{l-1,m} \circ \sigma^{l(l-1)m} \circ \varepsilon^{dmn(l-2)/l} \sigma^{l(l-2)m} \circ \ldots \circ \sigma^m \circ \theta'_{0,m}$$

$$= \varepsilon^{(1/2)dmn(l-1)} \theta'_{l,m} \circ \theta'_{l-1,m} \circ \ldots \circ \theta'_{0,m},$$

since $\sigma^l \sigma^m = \sigma^m$. By Lemma 3.21 and the definitions, if $v \in V_b$, then $(\theta'_{l-1,m} \circ \theta'_{l-2,m} \circ \ldots \circ \theta'_{0,m})(v) = Y_p \ldots Y_1 v = z_b \cdot v$, so the result follows.

Given $k \in \mathbb{Z}$ and a sequence $a = (a_1, a_2, \ldots, a_m)$, define $a(k) = (a_{k+1}, a_{k+2}, \ldots, a_{k+m})$, where we set $a_{i+j,m} = a_i$ whenever $j \in \mathbb{Z}$ and $1 \leq i \leq m$. Now define $o_m(a) = \min \{k \geq 1 |$
\(a(k) = a\). In particular, if \(b \in \mathcal{C}_{p,n}\) and \(\lambda = (\lambda[1], \ldots, \lambda[p]) \in \mathcal{P}_{d,b}\), then this defines integers \(o_p(b)\) and \(o_p(\lambda)\). By definition, \(o_p(b)\) and \(o_p(\lambda)\) both divide \(p\), so \(o_p(b)\) and \(o_p(\lambda)\) are both integers. Further, \(o_p(b)\) divides \(o_p(\lambda)\).

For convenience, set \(o_{\lambda} = o_p(\lambda)\), \(p_{\lambda} = p/o_{\lambda}\), \(o_b = o_p(b)\) and \(p_b = p/o_b\). The definition of \(o_{\lambda}\) and \(p_{\lambda}\) agree with those given in the introduction.

Definition 3.37. Suppose that \(b \in \mathcal{C}_{p,n}\) and \(\lambda \in \mathcal{P}_{d,b}\). Let \(\theta_{\lambda}\) be the restriction of \(\theta_{0,o_{\lambda}}\) to \(S(\lambda)\).

As in Lemma 3.21, the image of \(\theta_{\lambda}\) is contained in \(S(\lambda)\), so we can consider \(\theta_{\lambda}\) to be an \(H_{r,p_{\lambda},n}\)-module endomorphism of \(S(\lambda)\). Recall the scalar \(g_{\lambda} = \tilde{g}_{\lambda}(\varepsilon, q, Q)\) from Definition 3.31 and Remark 3.33.

Corollary 3.38. Suppose that \(b \in \mathcal{C}_{p,n}\) and \(\lambda \in \mathcal{P}_{d,b}\). Then

\[(\theta_{\lambda})^{p_{\lambda}} = g_{\lambda}^{p_{\lambda}} 1_{S(\lambda)},\]

where \(1_{S(\lambda)}\) is the identity map on \(S(\lambda)\).

Proof. Proposition 3.4 and Lemma 3.36 show that \((\theta_{\lambda})^{p_{\lambda}} = \varepsilon^{(1/2)dn_{\lambda}(p_{\lambda} - 1)} \lambda_1 1_{S(\lambda)}\). Now apply Theorem 3.29. \(\square\)

Definition 3.39. Suppose that \(b \in \mathcal{C}_{p,n}\), \(\lambda \in \mathcal{P}_{d,b}\) and \(1 \leq t \leq p_{\lambda}\). Define

\[S_t^{\lambda} = \{x \in S(\lambda) \mid \theta_{\lambda}(x) = \varepsilon^{t\alpha_{\lambda}} g_{\lambda} x\} = \ker(\theta_{\lambda} - \varepsilon^{t\alpha_{\lambda}} g_{\lambda} 1_{S(\lambda)})\]

Set \(\pi_t^{\lambda} = \prod_{1 \leq s \leq p_{\lambda}, s \neq t} (\theta_{\lambda} - \varepsilon^{s\alpha_{\lambda}} g_{\lambda})\), so that \(\pi_t^{\lambda} \in \text{End}_{H_{r,p_{\lambda},n}}(S(\lambda))\).

By definition, \(S_t^{\lambda}\) is an \(H_{r,p_{\lambda},n}\)-submodule of \(S(\lambda)\) for \(1 \leq t \leq p_{\lambda}\). By restriction, we consider \(S_t^{\lambda}\) to be an \(H_{r,p_{\lambda},n}\)-module. Recall that \(\tau\) is the automorphism of \(H_{r,n}\) given by \(\tau(h) = T_0^{-1} h T_0\) for \(h \in H_{r,n}\).

Theorem 3.40. Suppose that \(\lambda \in \mathcal{P}_{d,b}\), for \(b \in \mathcal{C}_{p,n}\), and \(1 \leq t \leq p_{\lambda}\). Then:

(a) \(S_t^{\lambda} T_0 = S_{t+1}^{\lambda}\); equivalently, \((S_t^{\lambda})^\tau \cong S_t^{\lambda}\);
(b) \(S_t^{\lambda} = \pi_t^{\lambda}(S(\lambda))\);
(c) \(S(\lambda)_{H_{r,p_{\lambda},n}} \cong S_1^{\lambda} \oplus \ldots \oplus S_{p_{\lambda}}^{\lambda}\);
(d) \(\dim S_t^{\lambda} = (1/p_{\lambda}) \dim S(\lambda)\);
(e) \(S_t^{\lambda} _{H_{r,p_{\lambda},n}} \cong S(\lambda) \oplus S(\lambda)^{\sigma} \oplus \ldots \oplus S(\lambda)^{\sigma(p_{\lambda} - 1)}\).

Proof. Suppose that \(x \in S_t^{\lambda}\) and let \(m = o_{\lambda}\). By definition,

\[\theta_{\lambda}(x T_0) = (\sigma^m \circ \theta_{0,m}'(x) T_0) = \sigma^m (\theta_{0,o_{\lambda}}(x) T_0),\]

since \(\theta_{0,m}'\) is an \(H_{r,n}\)-module homomorphism. Therefore,

\[\theta_{\lambda}(x T_0) = \theta_{\lambda}(x) \sigma^m(T_0) = \varepsilon^{(t+1)m} g_{\lambda} x T_0.\]
Hence, \(xT_0 \in S_{\lambda_{t+1}}^\lambda \), proving the first half of (a). That \(S_{\lambda_{t+1}}^\lambda \cong (S^\lambda)^{\tau} \) is now immediate because if \(x \in S_{\lambda_{t+1}}^\lambda \), then \(x = x'T_0 \) for some \(x' \in S_t^\lambda \). Therefore, if \(h \in \mathcal{H}_{r,n} \), then \(xh = x'T_0h = x'\tau(h)T_0 \). Hence, we have proved (a).

By Corollary 3.38, the map \(\theta^\lambda_{\lambda} - g^\lambda_{\lambda} \) kills every element of \(S(\lambda) \). Thus, on \(S(\lambda) \) we have

\[
0 = \theta^\lambda_{\lambda} - g^\lambda_{\lambda} = \prod_{1 \leq s \leq p_{\lambda}} (\theta^\lambda_{\lambda} - \varepsilon^{s\alpha_{\lambda}} g^\lambda_{\lambda}) = \pi^\lambda_{\lambda} \circ (\theta^\lambda_{\lambda} - \varepsilon^{s\alpha_{\lambda}} g^\lambda_{\lambda}).
\]

Hence, the image of \(\pi^\lambda_{\lambda} \) is contained in \(S_t^\lambda \) and \(\ker \pi^\lambda_{\lambda} = \sum_{s \neq t} S_s^\lambda \). Note that the assumption \(f_{\lambda} \) is invertible in \(R \) implies that \(g^\lambda_{\lambda} \) is also invertible in \(R \). If \(x \in S_t^\lambda \), then \(\pi^\lambda_{\lambda}(x) = \alpha_t x \), where \(\alpha_t = g^\lambda_{\lambda} \prod_{s \neq t} (\varepsilon^{s\alpha_{\lambda}} - \varepsilon^{s\alpha_{\lambda}}) \) is invertible in \(R \). It follows that if we set \(\tilde{\pi}^\lambda_{\lambda} = (1/\alpha_t) \pi^\lambda_{\lambda} \), then

\[
1_{S(\lambda)} = \tilde{\pi}^\lambda_{\lambda} + \tilde{\pi}^\lambda_{2} + \ldots + \tilde{\pi}^\lambda_{p_{\lambda}},
\]

and \(\tilde{\pi}^\lambda_{\lambda} \) is the projection map from \(S(\lambda) \) onto \(S_t^\lambda \). Hence, (b) and (c) now follow. Moreover, since \(\dim S_t^\lambda = \dim S_{\lambda_{t+1}}^\lambda \) by (a), we obtain (d) from (c).

It remains then to prove (e). First observe that, by part (a),

\[
S_t^\lambda \mid_{\mathcal{H}_{r,n}} = (S_{\lambda_{t+1}}^\lambda)^{\tau} \mid_{\mathcal{H}_{r,n}} \cong (S_{\lambda_{t+1}}^\lambda \mid_{\mathcal{H}_{r,n}})^{\tau} \cong S_{\lambda_{t+1}}^\lambda \mid_{\mathcal{H}_{r,n}}.
\]

Therefore, \(S_{\lambda_{t+1}}^\lambda \mid_{\mathcal{H}_{r,n}} \cong \ldots \cong S_t^\alpha \mid_{\mathcal{H}_{r,n}} \). Hence, using part (c), which we have already proved, and applying Corollary 3.12, we see that

\[
(S_t^\lambda \mid_{\mathcal{H}_{r,n}}) \oplus^p_{\lambda} \cong (S_t^\lambda \oplus \ldots \oplus S_t^\lambda) \mid_{\mathcal{H}_{r,n}} \cong S(\lambda) \mid_{\mathcal{H}_{r,n}} \cong \bigoplus_{j=0}^{p-1} S(\lambda)^{\sigma_j}
\]

where the last isomorphism follows because \(S(\lambda)^{\sigma_j} \cong S(\lambda(-t)) \) by Proposition 3.17. Applying the Krull–Schmidt theorem, we deduce

\[
S_t^\lambda \mid_{\mathcal{H}_{r,n}} \cong S(\lambda) \oplus S(\lambda)^{\sigma} \oplus \ldots \oplus S(\lambda)^{\sigma(\alpha - 1)},
\]

proving (e). This completes the proof of Theorem 3.40.

As in the introduction, let \(\sim_{\sigma} \) be the equivalence relation on \(\mathcal{P}_{r,n} \) where \(\mu \sim_{\sigma} \lambda \) whenever \(\lambda = \mu(m) \) for some \(m \in \mathbb{Z} \). Let \(\mathcal{P}_{r,n}^{\sigma} \) be the set of \(\sim_{\sigma} \)-equivalence classes in \(\mathcal{P}_{r,n} \). By Proposition 3.17, the set \(\mathcal{H}_{r,n} \) of Kleshchev multipartitions is closed under \(\sim_{\sigma} \)-equivalence.

Let \(\mathcal{H}_{r,n}^{\sigma} \) be the set of \(\sim_{\sigma} \)-equivalence classes of Kleshchev multipartitions. We abuse notation and think of the elements of \(\mathcal{P}_{r,n}^{\sigma} \) as multipartitions so that when we write \(\mu \in \mathcal{P}_{r,n}^{\sigma} \), we really mean that \(\mu \) is a representative of an equivalence class in \(\mathcal{P}_{r,n}^{\sigma} \). Similarly, \(\mu \in \mathcal{H}_{r,n}^{\sigma} \) means that \(\mu \) is a representative for an equivalence class in \(\mathcal{H}_{r,n}^{\sigma} \).

Let \(R = K \) be a field. We call the modules \(\{ S_t^\lambda \mid \lambda \in \mathcal{P}_{r,n}^{\sigma} \text{ and } 1 \leq i \leq p_{\lambda} \} \) the Specht modules of \(\mathcal{H}_{r,p,n} \). Using these modules, we can now construct the irreducible \(\mathcal{H}_{r,p,n} \)-modules.

Definition 3.41. Suppose that \(\lambda \in \mathcal{H}_{r,n} \) and \(1 \leq i \leq p_{\lambda} \). Define \(D^\lambda_t = \text{Head}(S_t^\lambda) \).

Although this is not clear from the definition, the module \(D^\lambda_t \) is irreducible when \(\lambda \in \mathcal{H}_{r,n} \) and, moreover, every irreducible \(\mathcal{H}_{r,p,n} \)-module arises in this way.

The following result establishes Theorem C from the introduction and, in fact, proves quite a bit more.
THEOREM 3.42. Suppose that \(Q \) is \((\varepsilon, q)\)-separated over the field \(K \). Let \(\lambda \in \mathcal{H}_{r,p,n} \). Then.

(a) The module \(D^\lambda_i = \text{Head}(S^\lambda_i) \) is an irreducible \(\mathcal{H}_{r,p,n} \)-module, for \(1 \leq i \leq p_\lambda \). Moreover, \((D^\lambda_{i+1})^r \cong D^\lambda_i \) for \(1 \leq i \leq p_\lambda \).

(b) If \(1 \leq i, j \leq p_\lambda \), then \([S^\lambda_i : D^\lambda_j] = \delta_{ij} \).

(c) The integer \(p_\lambda \) is the smallest positive integer such that \(D^\lambda_i \cong (D^\lambda_1)^{r \cdot p_\lambda} \).

(d) The integer \(o_\lambda \) is the smallest positive integer such that \(D(\lambda) \cong D(\lambda)^{o_\lambda} \).

(e) As an \(\mathcal{H}_{r,p,n} \)-module \((D^\lambda_i)_{i=1}^{\mathcal{H}_{r,p,n}} \cong D(\lambda) \oplus D(\lambda)^\sigma \oplus \ldots \oplus D(\lambda)^{\sigma^{p_\lambda}-1} \) and as an \(\mathcal{H}_{r,p,n} \)-module \(D(\lambda)_{k=1}^{\mathcal{H}_{r,p,n}} \cong D^\lambda \oplus (D^\lambda_1)^\tau \oplus \ldots \oplus (D^\lambda_1)^{\tau^{p_\lambda}-1} \).

Furthermore, the Hecke algebra \(\mathcal{H}_{r,p,n} \) is split over \(K \) and

\[
\{ D^\mu_i \mid \mu \in \mathcal{H}_{r,p,n}^{\sigma} \text{ and } 1 \leq i \leq p_\mu \}
\]

is a complete set of pairwise non-isomorphic absolutely irreducible \(\mathcal{H}_{r,p,n} \)-modules.

Proof. By Proposition 3.17, \(D(\lambda)^\sigma \cong D(\lambda(-1)) \), so it is clear that \(o_\lambda \) is the smallest positive integer such that \(D(\lambda) \cong D(\lambda)^{o_\lambda} \). Similarly, once we know that \(D^\lambda_i = \text{Head}(S^\lambda_i) \) is irreducible, then \((D^\lambda_{i+1})^r \cong D^\lambda_i \) by Theorem 3.40(a) since twisting by \(\tau \) induces an exact functor on \(\text{Mod-} \mathcal{H}_{r,p,n} \).

For the other statements, we first consider the case where \(K = \overline{K} \) is algebraically closed so that \(\mathcal{H}_{r,p,n} \) splits over \(\overline{K} \). The algebra \(\mathcal{H}_{r,p,n} \) is cellular over any ring and so, in particular, it is split over \(K \). Therefore, if \(\mu \in \mathcal{H}_{r,p,n}^{\sigma} \), then \(D^\lambda(\mu) = D(\mu) \otimes_K \overline{K} \). Fix an irreducible \(\mathcal{H}_{r,p,n}^{\overline{K}} \)-submodule \(D^\mu_{K,i} \) of \(D^\lambda(\mu) \). By Lemma 3.10 the integer \(p_\lambda \) is the smallest positive integer such that \(D^\lambda_i \cong (D^\lambda_1)^{r \cdot p_\lambda} \) and, further,

\[
D^\lambda(\mu)_{i=1}^{\mathcal{H}_{r,p,n}^{\overline{K}}} \cong D^\lambda_{K,i} \oplus (D^\lambda_{K,i})^\tau \oplus \ldots \oplus (D^\lambda_{K,i})^{\tau^{p_\lambda}-1}.
\]

and \(D^\lambda_{K,i} \oplus \mathcal{H}_{r,p,n}^{\overline{K}} \cong D^\lambda(\mu) \oplus D^\lambda(\mu)^\sigma \oplus \ldots \oplus D^\lambda(\mu)^{\sigma^{p_\lambda}-1} \).

Moreover, \(\{(D^\mu_i)^{\sigma^j} \mid \mu \in \mathcal{H}_{r,p,n}^{\sigma} \text{ and } 1 \leq i \leq p_\mu \} \) is a complete set of pairwise non-isomorphic simple \(\mathcal{H}_{r,p,n}^{\overline{K}} \)-modules.

Suppose that \(\mu \in \mathcal{H}_{r,p,n} \) and let \(S^\mu_{K,i} = S^\mu \otimes_K \overline{K} \) for \(1 \leq j \leq p_\mu \). We claim that \(D^\lambda_i \cong \text{Head}(S^\mu_{K,i}) \) for some \(i \), if and only if \(\lambda \sim_\sigma \mu \) and in this case \(i \) is uniquely determined. Using the restriction formula for \(D^\lambda(\mu) \) given above, Frobenius reciprocity and Theorem 3.40, we find that

\[
\bigoplus_{i=0}^{p_\mu - 1} \text{Hom}_{\mathcal{H}_{r,p,n}^{\overline{K}}} (S^\mu_{K,i}, D^\lambda_{K,i}) \cong \text{Hom}_{\mathcal{H}_{r,p,n}^{\overline{K}}} (S^\lambda(\mu), D^\lambda_{K,i}) \cong \text{Hom}_{\mathcal{H}_{r,p,n}^{\overline{K}}} (S^\lambda(\mu), D^\lambda) \cong \text{Hom}_{\mathcal{H}_{r,p,n}^{\overline{K}}} (S^\lambda(\mu), D^\lambda(\mu)^{\sigma^j}) \cong \begin{cases} \overline{K}, & \text{if } \mu \sim_\sigma \lambda, \\ 0, & \text{otherwise}, \end{cases}
\]

where the last line follows because \(D^\lambda(\mu) = \text{Head}(S^\lambda(\mu)) \), by Lemma 3.2, and because \(D^\lambda(\mu)^{\sigma^j} \cong D^\lambda(\lambda(-j)) \) by Proposition 3.17. This proves our claim. Without loss of generality, we can take \(\mu = \lambda \). Note that \(\text{Head}(S^\lambda(\lambda)) = D^\lambda(\lambda) \) is simple. The above isomorphisms imply that \(\text{Head}(S^\lambda_{K,i}) = D^\lambda_{K,i} \) is also simple. By Lemma 3.2, \([S^\lambda(\lambda) : D^\lambda(\lambda)] = 1\) and \(D^\lambda(\lambda) \) is the simple head of \(S^\lambda(\lambda) \). By considering the restriction of the composition series of \(S^\lambda(\lambda) \)
to \(\mathcal{H}_{r,p,n} \), it follows that \([S_{R,i}^{\lambda} : D_{R,j}^{\lambda}] = \delta_{ij}\). This proves all the statements in the theorem when \(K = \overline{K} \).

We now return to the general case where \(K \) is an arbitrary field. By the last paragraph, \(S_{R,i}^{\lambda} \otimes_K \overline{K} \) has a simple head, so that \(D_{R}^{\lambda} = \text{Head}(S_{R}^{\lambda}) \) is indecomposable. Therefore, \(D_{R}^{\lambda} \) is irreducible (since it is also semisimple).

To complete the proof of the theorem, we show that \(D_{i}^{\lambda} \otimes_K \overline{K} \cong D_{R,i}^{\lambda} \). Let \(l \geq 1 \) be the minimal positive integer such that \((D_{i}^{\lambda})^{\tau} \cong D_{i}^{\lambda} \). Then \(l \geq p_{\lambda} \) since \(D_{R,i}^{\lambda} \cong \text{Head}(D_{i}^{\lambda} \otimes_K \overline{K}) \).

Similarly, \(\dim_{K} D_{i}^{\lambda} \cong \dim_{\overline{K}} D_{R,i}^{\lambda} \). By Curtis and Reiner [9, Proposition 11.16], there exists an integer \(c \geq 1 \) such that

\[
D(\lambda) \downarrow_{\mathcal{H}_{r,n}} \cong (D_{i}^{\lambda} \oplus (D_{i}^{\lambda})^{\tau} \oplus \ldots \oplus (D_{i}^{\lambda})^{\tau_{l-1}}) \oplus_{c}.
\]

Taking dimensions, \(\dim_{K} D(\lambda) = cd \dim_{K} D_{i}^{\lambda} \). Hence, comparing dimensions on both sides of the restriction formula for \(D(\lambda) \) above shows that

\[
cl \ dim D_{i}^{\lambda} = \dim_{K} D(\lambda) = \dim_{\overline{K}} D(\lambda) = p_{\lambda} \dim_{K} D_{i}^{\lambda} \leq p_{\lambda} \dim_{K} D_{i}^{\lambda}.
\]

Since \(l \geq p_{\lambda} \), this forces \(c = 1 \), \(l = p_{\lambda} \) and \(\dim_{K} D_{i}^{\lambda} = \dim_{\overline{K}} D_{R,i}^{\lambda} \). Therefore, \(D_{R,i}^{\lambda} \cong D_{i}^{\lambda} \otimes_K \overline{K} \), implying that \(D_{i}^{\lambda} \) is absolutely irreducible and hence that \(K \) is a splitting field for \(\mathcal{H}_{r,p,n} \).

All of the parts in the theorem now follow from the corresponding statements for \(D_{R,i}^{\lambda} \), using the isomorphism \(D_{R,i}^{\lambda} \cong D_{i}^{\lambda} \otimes_K \overline{K} \).

The algebra \(\mathcal{H}_{r,n}(Q^{\mathfrak{e}}) \) is not necessarily semisimple when \(d > 1 \). With a little more work, it is possible to show that if \(Q \) is \((\varepsilon, q) \)-separated over \(K \), then the following are equivalent:

a) \(\mathcal{H}_{r,n} \) is (split) semisimple;

b) \(\mathcal{H}_{r,p,n} \) is (split) semisimple;

c) \(S_{t}^{\lambda} = D_{t}^{\lambda} \), for all \(\lambda \in \mathcal{P}_{r,n} \) and \(1 \leq t \leq p_{\lambda} \).

We omit the details. If \(d = 1 \), then it is known that \(\mathcal{H}_{p,p,n} \) is semisimple if and only if \(\langle \varepsilon \rangle \cap \langle q \rangle = \{1\} \) and \(e > n \) (see [22, Theorem 5.9]).

Extend the dominance order to \(\mathcal{P}_{r,n} \times Z \) by defining \((\lambda, j) \supset (\mu, i) \) if \(\lambda \supset \mu \). Let

\[
D_{\mathcal{H}_{r,p,n}} = ([S_{t}^{\lambda} : D_{j}^{\mu}])_{(\lambda, i), (\mu, j)}
\]

be the decomposition matrix of \(\mathcal{H}_{r,p,n} \), where \(\lambda \in \mathcal{P}_{r,n}, \mu \in \mathcal{H}_{r,n}, 1 \leq i \leq p_{\lambda} \) and \(1 \leq j \leq p_{\mu} \), and where the rows and columns of \(D_{\mathcal{H}_{r,p,n}} \) are ordered in a way that is compatible with dominance.

Suppose that \(\lambda \in \mathcal{P}_{p,n}, \mu \in \mathcal{H}_{r,n} \) and \(1 \leq i \leq p_{\lambda} \) and \(1 \leq j \leq p_{\mu} \). If \(\lambda \neq \mu \), then \([S_{t}^{\lambda} : D_{j}^{\mu}] \neq 0 \) only if \((\lambda, i) \supset (\mu, j) \) because, by Theorem 3.42 and Lemma 3.2,

\[
[S_{t}^{\lambda} : D_{j}^{\mu}] \neq 0 \quad \Rightarrow \quad [S(\lambda) : D(\mu)] \neq 0 \quad \Rightarrow \quad \lambda \supset \mu.
\]

On the other hand, \([S_{t}^{\mu} : D_{j}^{\mu}] = \delta_{ij} \) by Theorem 3.42. Hence, we have proved the following.

Corollary 3.43. Suppose that \(Q \) is \((\varepsilon, q) \)-separated over the field \(K \). Then the decomposition matrix \(D_{\mathcal{H}_{r,p,n}} \) of \(\mathcal{H}_{r,p,n} \) is unitriangular.

Theorem 3.42 and Corollary 3.43 complete the proof of Theorem C from the introduction.
In this section, we prove a new Morita equivalence theorem for the cyclotomic Hecke algebras V theorem given by the first author for the Hecke algebras of type θ refinement of Hu and Mathas [25, Theorem A] and a generalization of the Morita equivalence theorem given by the first author for the Hecke algebras of type D (see [21]).

In particular, we have proved Theorems B and C from the introduction. The key to proving Theorem C was the construction of the $H_{r,p,n}$-endomorphism θ_λ of the Specht module $S(\lambda)$ in Definition 3.37.

In this chapter, we compute the p-splittable decomposition numbers of $H_{r,p,n}$. To do this, we first construct a new algebra E_d which is Morita equivalent to $H_{r,p,n}$. This allows us to construct an analogue of the (cyclotomic) Schur algebra for $H_{r,p,n}$. The endomorphisms θ_λ, for $\lambda \in \mathcal{P}_{d,b}$, lift to analogous elements ϑ_λ of $\mathcal{F}_{r,p,n}$. Extending the arguments of Hu [24], we compute the trace of ϑ_λ on certain weight spaces (the twining characters). These trace functions give a system of linear equations that determine the p-splittable decomposition numbers of the three algebras $\mathcal{F}_{r,p,n}$, E_d and $H_{r,p,n}$. This will complete the proofs of Theorems A and D from the introduction.

Many of the early results in this section hold over an integral domain, however, for convenience we work over a field $R = K$. We maintain our assumption that Q is (ε, q)-separated over K.

4.1. A Morita equivalence for $\mathcal{H}_{r,p,n}$

In this section, we prove a new Morita equivalence theorem for the cyclotomic Hecke algebras $\mathcal{H}_{r,p,n}$ which is an analogue of Theorem 2.3. This equivalence (Corollary 4.5) is both a refinement of Hu and Mathas [25, Theorem A] and a generalization of the Morita equivalence theorem given by the first author for the Hecke algebras of type D (see [21]).

Fix a composition $b \in \mathcal{C}_{p,n}$ and set $\sigma_b = \sigma_p(b)$ and $p_b = p/\sigma_b$. Mirroring Definition 3.37, define

$$\theta_b = \theta_{0,\sigma_p(b)}.$$

Then $\theta_b \in \text{End}_{\mathcal{H}_{r,p,n}}(V_b)$ by Lemma 3.21 and $\theta_b(v) = \sigma_b^0(Y_{0,\sigma_b}v)$ for all $v \in V_b$. In particular, θ_b is an $\mathcal{H}_{r,p,n}$-endomorphism of V_b.

The module $V_b = v_b \mathcal{H}_{r,n} \mathcal{H}_{r,p,n}$ is an $\mathcal{H}_{r,p,n}$-module by restriction. For simplicity we usually write V_b instead of $V_b \mathcal{H}_{r,n} \mathcal{H}_{r,p,n}$ when we consider V_b as an $\mathcal{H}_{r,p,n}$-module.

Definition 4.1. Suppose that $b \in \mathcal{C}_{p,n}$. Define $\mathcal{E}_{d,b} = \text{End}_{\mathcal{H}_{r,p,n}}(V_b)$.

Notice that $\mathcal{H}_{d,b}$ is a subalgebra of $\mathcal{E}_{d,b}$, by Proposition 2.20(a), and that θ_b is an element of $\mathcal{E}_{d,b}$ by the remarks above.

Theorem 4.2. Suppose that $b \in \mathcal{C}_{p,n}$. Then, as an algebra, $\mathcal{E}_{d,b}$ is generated by $\mathcal{H}_{d,b}$ and the endomorphism θ_b. Moreover, if $\{x_i \mid i \in I\}$ is a K-basis of $\mathcal{H}_{d,b}$, then $\{x_i \theta_b \mid i \in I \text{ and } 0 \leq k < p_b\}$ is a K-basis of $\text{End}_{\mathcal{H}_{r,p,n}}(V_b)$. In particular, $\dim \mathcal{E}_{d,b} = p_b \dim \mathcal{H}_{d,b}$.

Proof. We first compute the dimension of $\mathcal{E}_{d,b}$. By Frobenius reciprocity,

$$\mathcal{E}_{d,b} = \text{Hom}_{\mathcal{H}_{r,p,n}}(V_b \mathcal{H}_{r,n} \mathcal{H}_{r,p,n}, V_b \mathcal{H}_{r,n}) \cong \text{Hom}_{\mathcal{H}_{r,n}}(V_b, V_b \mathcal{H}_{r,n}) \cong \bigoplus_{i=0}^{p-1} \text{Hom}_{\mathcal{H}_{r,n}}(V_b, V_b^{(i)}) \cong \bigoplus_{i=0}^{p-1} \text{Hom}_{\mathcal{H}_{r,n}}(V_b, V_b^{(i)}),$$

where the third isomorphism is Corollary 3.12 and the fourth isomorphism follows because $V_b^{(i)} \cong V_b(-i)$ by Proposition 3.14. By Hu and Mathas [25, Proposition 2.13], if $b \neq c$, then
Hom_{H, r,n}(V_b, V_c) = 0 because V_b and V_c belong to different blocks. Therefore, as vector spaces,

$$\mathcal{E}_{d,b} \cong \bigoplus_{i=0}^{p_b-1} \text{Hom}_{H, r,n}(V_b, V_b^{(i\omega)}) \cong \bigoplus_{i=0}^{p_b-1} \text{Hom}_{H, r,n}(V_b, V_b) \cong \mathcal{H}_{d,b}^{\otimes p_b},$$

since $\text{End}_{H, r,n}(V_b) \cong \mathcal{H}_{d,b}$ by Proposition 2.20(a). Hence, $\dim \mathcal{E}_{d,b} = p_b \dim \mathcal{H}_{d,b}$.

It remains to show that $\mathcal{H}_{d,b}$ and θ_b generate $\mathcal{E}_{d,b}$ as a K-algebra. First observe that θ_b is an invertible element of $\mathcal{E}_{d,b}$ because $(\theta_b)^{p_b}(v) = \varepsilon^{d_n(p_\alpha \omega)/2} b_{d,n} v$ by Lemma 3.36 for $v \in V_b$. Therefore, since $\text{End}_{H, r,n}(V_b) \cong \mathcal{H}_{d,b}$ by Proposition 2.20(a), it suffices to show that every element of $\text{End}_{H, r,n}(V_b, V_b^{\sigma_r \circ \tau_b})$ corresponds to $\theta_b^{-i} x$ for some x in $\mathcal{H}_{d,b}$. Let π_j be the projection from $\mathcal{E}_{d,b}$ to $\text{Hom}_{H, r,n}(V_b, V_b^{\sigma_r \circ \tau_b})$ under the vector space isomorphism above. Under Frobenius reciprocity the $\mathcal{H}_{r,p,n}$-endomorphism

$$\theta_b^{-i} \in \text{End}_{H, r,p,n}(V_b, \mathcal{H}_{r,p,n})$$

corresponds to the $\mathcal{H}_{r,p,n}$-homomorphism $V_b \rightarrow V_b \otimes \mathcal{H}_{r,p,n}$ given by

$$v_b h \mapsto \sum_{s=0}^{p-1} \theta_b^{-i}(v_b h T_0^{-s}) \otimes T_0^s,$$

for $h \in \mathcal{H}_{r,n}$. Using Proposition 3.10 and the explicit isomorphism given in Lemma 3.9,

$$\pi_j(\theta_b^{-i})(v_b) = \sum_{s=0}^{p-1} \varepsilon^{j \omega s} \theta_b^{-i}(v_b T_0^{-s}) T_0^s = \sum_{s=0}^{p-1} \varepsilon^{j \omega s} \theta_b^{-i}(v_b) \varepsilon^{-i s \omega} T_0^{-s} T_0^s$$

$$= \sum_{s=0}^{p-1} \varepsilon^{(j+i) \omega s} \theta_b^{-i}(v_b) = \delta_{ij} p \theta_b^{-i}(v_b).$$

By assumption p does not divide the characteristic of K, so p is invertible in K. So we deduce that $\pi_i(\theta_b^{-i})$ is actually an isomorphism from V_b onto $V_b^{\sigma_r \circ \tau_b}$. Essentially the same argument shows that if $x \in \mathcal{H}_{d,b}$, then

$$\pi_j(x)(v_b) = \delta_{ij} p x \cdot v_b = \delta_{ij} p v_b \Theta_b(x).$$

Therefore, $\pi_i(\theta_b^{-i}) x(v_b) = \delta_{ij} \delta_{0 \alpha p \omega} \theta_b^{-i}(v_b) \Theta_b(x)$. Note that every homomorphism in $\text{Hom}_{H, r,n}(V_b, V_b^{\sigma_r \circ \tau_b})$ can be decomposed into a composition of the isomorphism $\pi_i(\theta_b^{-i})$ with an endomorphism in $\text{End}_{H, r,n}(V_b) \cong \mathcal{H}_{d,b}$. All of the claims in the theorem now follow.

The algebra $\mathcal{E}_{d,b}$ is generated by $\mathcal{H}_{d,b}$ and θ_b by Theorem 4.2. To make this more explicit, for $s = 1, \ldots, p$, let $T_i^{(s)}$ and $L_j^{(s)}$, for $1 \leq i < b_s$ and $1 \leq j \leq b_s$, be the generators of $\mathcal{H}_{d,b}$; that is,

$$T_i^{(s)} = 1 \otimes s^{-1} \otimes T_i \otimes 1 \otimes s^{-p-s} \quad \text{and} \quad L_j^{(s)} = 1 \otimes s^{-1} \otimes L_j \otimes 1 \otimes s^{p-s},$$

interpreted as elements of $\mathcal{H}_{d,b} = \mathcal{H}_{d,b_1}(\varepsilon Q) \otimes \ldots \otimes \mathcal{H}_{d,b_s}(\varepsilon^{p} Q)$. The elements $T_i^{(s)}$ and $L_j^{(s)}$, for $1 \leq s \leq p$, $1 \leq i < b_s$ and $1 \leq j \leq b_s$, generate $\mathcal{H}_{d,b}$ subject to the relations implied by the defining relations for $\mathcal{H}_{r,n}$.

To determine the relations these elements satisfy in $\mathcal{E}_{d,b}$, we need, at a minimum, to determine the commutation relations between elements and θ_b. Using Lemma 2.17, it is easy to deduce the following result.
LEMMA 4.3. Suppose that \(b \in \mathcal{C}_{p,n} \), \(1 \leq s \leq p \), \(1 \leq i < b_s \) and \(1 \leq j \leq b_s \). Then

\[
T_i^{(s)} \theta_b = \begin{cases}
\theta_b T_i^{(s+ob)} & \text{if } s + ob \leq p, \\
\theta_b T_i^{(s+ob-p)} & \text{if } s + ob > p,
\end{cases}
\]

\[
L_j^{(s)} \theta_b = \begin{cases}
\varepsilon^{-ob} \theta_b L_j^{(s+ob)} & \text{if } s + ob \leq p, \\
\varepsilon^{-ob} \theta_b L_j^{(s+ob-p)} & \text{if } s + ob > p.
\end{cases}
\]

This lemma, when combined with the relation that \(\theta_b^{pb} = \varepsilon^{dn(p-ob)/2} b \) is central in \(\mathcal{E}_{d,b} \) and the relations coming from \(\mathcal{H}_{d,b} \) gives a complete set of commutator relations for the generators of \(\mathcal{E}_{d,b} \). It would be interesting to know whether or not this gives a presentation for the algebra \(\mathcal{E}_{d,b} \).

REMARK 4.4. Suppose that \(b \in \mathcal{C}_{p,n} \) and \(1 \leq s, t \leq p \) and \(s \equiv t \pmod{ob} \), so that \(b_s = b_t \). Let \(\pi_{st} \) be the algebra isomorphism \(\mathcal{H}_{d,b} \cong \mathcal{H}_{d,b} \) given by

\[
T_i^{(s)} \longrightarrow T_i^{(t)} \quad \text{and} \quad T_0^{(s)} = L_1^{(s)} \longrightarrow \varepsilon^{s-t} T_0^{(t)}, \quad \text{for } 1 \leq i \leq n-1.
\]

Thus, \(\pi_{st} \) identifies the \(st \)th tensor factor and the \(th \) tensor factor in \(\mathcal{H}_{d,b} \) and Lemma 4.3 says that conjugation by \(\theta_b \) coincides with the map \(\pi_{st} \), where \(t = s + ob \) if \(s + ob \leq p \); or \(t = s + ob - p \) if \(s + ob > p \).

Extend the equivalence relation \(\sim_\sigma \) on \(\mathcal{C}_{r,n} \) to \(\mathcal{C}_{p,n} \) by defining \(b \sim_\sigma c \) if \(b = c(k) \) for some \(k \in \mathbb{Z} \), for \(b, c \in \mathcal{C}_{p,n} \). Let \(\mathcal{C}^\sigma_{p,n} = \mathcal{C}_{p,n} / \sim_\sigma \) be the set of \(\sim_\sigma \)-equivalence classes in \(\mathcal{C}_{p,n} \). Once again, we write \(b \in \mathcal{C}^\sigma_{p,n} \) to indicate that \(b \) is a representative for an equivalence class in \(\mathcal{C}^\sigma_{p,n} \).

Define \(\mathcal{E}_d = \bigoplus_{b \in \mathcal{C}^\sigma_{p,n}} \mathcal{E}_{d,b} \). Note that \(\mathcal{E}_d \) depends on the parameters \(q \) and \(Q^{\varepsilon} \) and on \(n \). Further, by definition, \(\text{Mod-} \mathcal{E}_d = \bigoplus_{b \in \mathcal{C}^\sigma_{p,n}} \text{Mod-} \mathcal{E}_{d,b} \).

COROLLARY 4.5. There is a Morita equivalence

\[
F_\mathcal{E} : \text{Mod-} \mathcal{E}_d \longrightarrow \text{Mod-} \mathcal{H}_{r,p,n} : M \longmapsto M \otimes_{\mathcal{E}_d} V_b,
\]

for \(M \in \text{Mod-} \mathcal{E}_{d,b} \) and \(b \in \mathcal{C}^\sigma_{p,n} \).

Proof. By Proposition 2.20(b), \(\bigoplus_{b \in \mathcal{C}^\sigma_{p,n}} V_b \) is a progenerator for \(\mathcal{H}_{r,n} \). Moreover, if \(b \in \mathcal{C}_{p,n} \), then

\[
V_b \downarrow \mathcal{H}_{r,p,n} \cong V_b \downarrow \mathcal{H}_{r,n} \cong V_b(-t) \downarrow \mathcal{H}_{r,p,n},
\]

for any \(t \in \mathbb{Z} \) by Lemma 3.14. Therefore, \(\bigoplus_{b \in \mathcal{C}^\sigma_{p,n}} V_b \) is a progenerator for \(\mathcal{H}_{r,p,n} \) and, by well-known arguments, for example, [5, Section 2.2], it induces the Morita equivalence \(F_\mathcal{E} \) above.

We now describe the images of the Specht modules and simple modules of the algebra \(\mathcal{H}_{r,p,n} \) under this Morita equivalence.

Let \(\lambda \in \mathcal{P}_{d,b} \). By definition \(ob | o_\lambda \) and \(o_\lambda | p \). Let \(pb/\lambda := pb/p_\lambda = o_\lambda/ob \in \mathbb{N} \). Then \(pb = p_b/p_\lambda p_\lambda \).

DEFINITION 4.6. Suppose that \(\lambda \in \mathcal{P}_{d,b} \) for \(b \in \mathcal{C}^\sigma_{p,n} \). Define

\[
S^\lambda = S_b(\lambda) \uparrow_{\mathcal{H}_{d,b}}^{\mathcal{E}_{d,b}} \quad \text{and} \quad D^\lambda = D_b(\lambda) \uparrow_{\mathcal{H}_{d,b}}^{\mathcal{E}_{d,b}}.
\]
Define $E_{d,\lambda}$ to be the subalgebra of $\mathcal{E}_{d,b}$ generated by $\mathcal{H}_{d,b}$ and $(\theta_b)^{p_b/\lambda}$.

By definition $E_{d,\lambda} \cong E_{d,\mu}$ whenever $\lambda, \mu \in \mathcal{P}_{d,b}$ and $p_\lambda = p_\mu$. Further, $\dim E_{d,\lambda} = p_\lambda \dim \mathcal{H}_{d,b}$ by Theorem 4.2. Note that the maps $(\theta_b)^{p_b/\lambda}$ and θ_λ agree when they are restricted to $S(\lambda)$.

Now fix generators $s_b(\lambda)$ and $d_b(\lambda)$ of $S_b(\lambda)$ and $D_b(\lambda)$, respectively, which we consider as elements of $E_{d,b}$. Motivated by Definition 3.16 we define such an algebra $H_{d,b}$ by Lemma 4.3, define

$$S_{i,p \lambda}^\lambda = s_b(\lambda) \prod_{1 \leq i \leq p \lambda, i \neq i} ((\theta_b)^{p_b/\lambda} - g_\lambda) \mathcal{H}_{d,b} \hookrightarrow E_{d,\lambda},$$

$$D_{i,p \lambda}^\lambda = d_b(\lambda) \prod_{1 \leq i \leq p \lambda, i \neq i} ((\theta_b)^{p_b/\lambda} - g_\lambda) \mathcal{H}_{d,b} \hookrightarrow E_{d,\lambda}.$$

By Lemma 4.3, $S_{i,p \lambda}^\lambda$ and $D_{i,p \lambda}^\lambda$ are $E_{d,\lambda}$-submodules of S^λ and D^λ, respectively. Moreover, it is easy to see that

$$S_b(\lambda) \mid_{\mathcal{H}_{d,b}}^E_{d,\lambda} \cong \bigoplus_{i=1}^{p \lambda} S_{i,p \lambda}^\lambda$$

and $D_b(\lambda) \mid_{\mathcal{H}_{d,b}}^E_{d,\lambda} \cong \bigoplus_{i=1}^{p \lambda} D_{i,p \lambda}^\lambda$.

Now define

$$S_{i,p}^\lambda = S_{i,p \lambda}^\lambda \mid_{E_{d,\lambda}}^E_{d,\lambda}$$

and $D_{i,p}^\lambda = D_{i,p \lambda}^\lambda \mid_{E_{d,\lambda}}^E_{d,\lambda}$.

Let \sim_b be the equivalence relation on $\mathcal{P}_{d,b}$ where if $\lambda, \mu \in \mathcal{P}_{d,b}$, then $\mu \sim_b \lambda$ if $\lambda = \mu(k0_b)$, for some $k \in \mathbb{Z}$. Let $\mathcal{P}_{d,b}$ be the set of \sim_b-equivalence classes in $\mathcal{P}_{d,b}$ and $\mathcal{P}_{d,b}^b$ be the equivalence classes in $\mathcal{H}_{d,b}$. Once again, we blur the distinction between equivalence classes in $\mathcal{P}_{d,b}$ and the multipartitions in these equivalence classes.

Lemma 4.7. Suppose that $\lambda \in \mathcal{P}_{d,b}$, $\mu \in \mathcal{H}_{d,b}^b$, $1 \leq i \leq p_\lambda$ and $1 \leq j \leq p_\mu$. Then $F_\lambda S_{i,p}^\lambda \cong S_{i}^\lambda$ and $F_\lambda D_{i,j}^\mu \cong D_{j}^\mu$. In particular,

$$\{D_{i,j}^\mu \mid \mu \in \mathcal{H}_{d,b}^b, 1 \leq j \leq p_\mu\}$$

is a complete set of pairwise non-isomorphic absolutely irreducible $E_{d,b}$-modules.

Proof. This follows directly from the definitions and standard properties of the Schur functor F_λ. \qed

4.2. A cyclotomic q-Schur algebra for $\mathcal{H}_{r,p,n}$

The next step towards computing the l-splittable decomposition numbers of $\mathcal{H}_{r,p,n}$ is to lift our computations up to an analogue of the (cyclotomic) Schur algebra for $\mathcal{H}_{r,p,n}$. In this section, we define such an algebra $\mathcal{H}_{r,p,n}$ and prove a basis theorem for it.

The cyclotomic Schur algebras \cite{[1]} are defined as endomorphism algebras of certain permutation-like modules. In Definition 3.16 we defined modules

$$M(\lambda), M_b(\lambda) = M(\lambda^{[1]} \otimes \ldots \otimes M(\lambda^{[p]})) \quad \text{and} \quad M_b^\lambda = H_b(M_b(\lambda)) \cong v_b^+ M(\lambda),$$

for $\lambda \in \mathcal{P}_{d,b}$ and $b \in \mathcal{C}_{r,n}$. The Schur algebras for the three algebras $\mathcal{H}_{r,n}$, $\mathcal{H}_{d,b}$ and $\mathcal{H}_{r,p,n}$ are then defined to the endomorphism algebras of direct sums of these modules.
DEFINITION 4.8. (a) The cyclotomic q-Schur algebra of $\mathcal{H}_{r,n}$ is the endomorphism algebra

$$\mathcal{S}_{r,n} = \text{End}_{\mathcal{H}_{r,n}} \left(\bigoplus_{\lambda \in \mathcal{P}_{r,n}} M(\lambda) \right).$$

(b) For $b \in C_{p,n}$ the cyclotomic q-Schur algebra of $\mathcal{H}_{d,b}$ is the endomorphism algebra

$$\mathcal{S}_{d,b} = \text{End}_{\mathcal{H}_{d,b}} \left(\bigoplus_{\lambda \in \mathcal{P}_{d,b}} M_b(\lambda) \right).$$

(c) The cyclotomic q-Schur algebra of $\mathcal{H}_{r,p,n}$ is the endomorphism algebra $\mathcal{S}_{r,p,n} = \bigoplus_{b \in C_{p,n}} \mathcal{S}_{r,p,n}(b)$, where

$$\mathcal{S}_{r,p,n}(b) = \text{End}_{\mathcal{H}_{r,p,n}} \left(\bigoplus_{\lambda \in \mathcal{P}_{d,b}} M_{\lambda}^b \right),$$

where M_{λ}^b is considered as an $\mathcal{H}_{r,p,n}$-module by restriction.

The algebra $\mathcal{S}_{r,p,n}$ is new, generalizing the Schur algebras of type D introduced by the first author in [24]. The cyclotomic Schur algebra $\mathcal{S}_{r,n} = \mathcal{S}_{r,n}(\mathbb{Q}^q)$ was introduced in [11]. By Definition 3.16, $M_b(\lambda) = M(\lambda^0) \otimes \ldots \otimes M(\lambda^p)$ so that

$$\mathcal{S}_{d,b} \cong \text{End}_{\mathcal{H}_{d,b}} \left(\bigoplus_{\lambda \in \mathcal{P}_{d,b}} M_b(\lambda) \right) \cong \mathcal{S}_{d,b_1}(\varepsilon^0 \mathbb{Q}) \otimes \ldots \otimes \mathcal{S}_{d,b_p}(\varepsilon^p \mathbb{Q}).$$

Moreover, applying the functor H_b shows that

$$\mathcal{S}_{d,b} \cong \text{End}_{\mathcal{H}_{r,n}} \left(\bigoplus_{\lambda \in \mathcal{P}_{d,b}} M_{\lambda}^b \right). \quad (4.1)$$

Hence, we can (and do!) consider $\mathcal{S}_{d,b}$ as a subalgebra of $\mathcal{S}_{r,p,n}$.

Recall that before Definition 4.1 we defined $\theta_b = \theta_{0,ob} \in \text{End}_{\mathcal{H}_{r,p,n}}(V_b)$. By definition M_{λ}^b is a submodule of V_b. We next show that θ_b maps M_{λ}^b to $M_{\lambda}^{\theta_b(o_b)}$.

LEMMA 4.9. Suppose that $b \in C_{p,n}$ and $\lambda \in \mathcal{P}_{d,b}$. Then θ_b restricts to give an $\mathcal{H}_{r,p,n}$-homomorphism from M_{λ}^b to $M_{\lambda}^{\theta_b(o_b)}$.

Proof. Let $Y_b = Y_{0,ob} = Y_{ob} \ldots Y_1$. Then $\theta_b(v) = \sigma_{ob}(Y_b v)$ for all $v \in V_b$. By definition $M_{\lambda}^b = u^b(v^b u^b x_\lambda \mathcal{H}_{r,n})$ and $v^b u^b x_\lambda \mathcal{H}_{r,n} = v_b \Theta_b(u^b x_\lambda \mathcal{H}_{d,b}) \mathcal{H}_{r,n} = \Theta_b(x_\lambda b u^b x_\lambda \mathcal{H}_{d,b}) \mathcal{H}_{r,n}$, where these elements are defined just before Definition 3.16. Therefore, it is enough to prove that $\theta_b(v^b u^b x_\lambda) = \sigma_{ob}(Y_b v^b u^b x_\lambda)$ belongs to $M_{\lambda}^{\theta_b(o_b)}$. Using (2.4), we compute

$$Y_b v^b u^b x_\lambda = Y_b v_b \Theta_b(u^b x_\lambda \mathcal{H}_{d,b}) = \Theta_b(\sigma_{ob}(u^b x_\lambda \mathcal{H}_{d,b})) Y_b v_b, \quad \text{by Lemma 2.17,}$$

$$= \Theta_b(\sigma_{ob}(v^b x_\lambda \mathcal{H}_{d,b})) Y_b v^b, \quad \text{by Corollary 2.12.}$$
Hence, using Lemma 3.13, there exists an integer $c \in \mathbb{Z}$ such that
\[\theta_b(u^+_\lambda x_\lambda) = \varepsilon^c v_{b(\omega)} \Theta_b(u^+_{\lambda(\omega)}, b(\omega)) \sigma_{b}^b(Y^*_b) \in v_{b(\omega)} u^+_{\lambda(\omega)} \sigma_{b}^b(Y^*_b). \]

Thus, $\theta_b(u^+_\lambda x_\lambda) \in M^\lambda_{b(\omega)}$. Moreover, this map is surjective because left multiplication by Y_b, and hence by $\sigma_{b}^b(Y^*_b)$, is invertible by Lemmas 2.21 and 2.23. As M^λ_b and $M^\lambda_{b(\omega)}$ are both free and of the same rank, the proof is complete.

Recall from Lemma 2.21 that z_b is a central element of $\mathcal{H}_{d,b}$ for $b \in \mathcal{P}_{p,n}$. Consequently, if $\lambda \in \mathcal{P}_{d,b}$, then
\[z_b \cdot v^+_\lambda u^+_\lambda x_\lambda = (z_b u^+_{\lambda,b} x_\lambda) \cdot v_b = (u^+_{\lambda,b} x_\lambda, v_b z_b) \cdot v_b = (u^+_{\lambda,b} x_\lambda, v_b \Theta_b(z_b)) \in M^\lambda_b. \]

Therefore, left multiplication by z_b induces a homomorphism in $\text{End}_{\mathcal{H}_{p,n}}(M^\lambda_b)$.

Definition 4.10. Suppose that $b \in \mathcal{P}_{p,n}$. Define maps ϑ_b and ζ_b in $\mathcal{I}_{r,p,n}(b)$ by
\[\vartheta_b(m) = \theta_b(m) \quad \text{and} \quad \zeta_b(m) = z_b \cdot m, \]
for $m \in M^\lambda_b$ and $\lambda \in \mathcal{P}_{d,b}$.

Using this definition and Lemma 3.36, we obtain the following lemma.

Lemma 4.11. Suppose that $b \in \mathcal{P}_{p,n}$. Then ζ_b is central in $\mathcal{I}_{r,p,n}$ and
\[\vartheta^b_{\mu,b} = \varepsilon(1/2)^{d_{\mu,n}(p_b - 1)} \zeta_b. \]

As remarked in (4.1), $\mathcal{I}_{d,b} \cong \text{End}_{\mathcal{H}_{p,n}}(\bigoplus_{\lambda \in \mathcal{P}_{d,b}} M^\lambda_b)$ and we view $\mathcal{I}_{d,b}$ as a subalgebra of $\mathcal{I}_{r,p,n}(b)$ via this isomorphism.

Theorem 4.12. As a K-algebra, $\mathcal{I}_{r,p,n}(b)$ is generated by $\mathcal{I}_{d,b}$ and the endomorphism ϑ_b. Moreover, if $\{x_i \mid i \in I\}$ is a K-basis of $\mathcal{I}_{d,b}$, then
\[\{x_i \vartheta^b_{\mu,b} \mid i \in I \text{ and } 0 \leq k < p_b\} \]
is a K-basis of $\mathcal{I}_{r,p,n}(b)$. In particular, $\dim \mathcal{I}_{r,p,n}(b) = p_b \dim \mathcal{I}_{d,b}$.

Proof. This can be proved by repeating the argument of Theorem 4.2. \qed

4.3. Weyl modules, simple modules and Schur functors

This section lifts the problem of computing the p-splittable decomposition numbers of $\mathcal{H}_{r,p,n}$ up to $\mathcal{I}_{r,p,n}$ by constructing Weyl modules, simple modules for $\mathcal{I}_{r,p,n}$. We then construct an analogue of the Schur functor to relate the categories of $\mathcal{I}_{r,p,n}$-modules and $\mathcal{H}_{r,p,n}$-modules, via the category of \mathcal{E}_{d}-modules.

The cyclotomic Schur algebra $\mathcal{S}_{r,n}$ is a quasi-hereditary cellular algebra with basis $\{\varphi_{\mathcal{S}} \mid S \in \mathcal{T}_0(\lambda, \mu), \mathcal{T} \in \mathcal{T}_0(\lambda, \nu) \text{ for } \lambda, \mu, \nu \in \mathcal{P}_{r,n}\}$, where $\mathcal{T}_0(\lambda, \tau)$ is the set of semistandard λ-tableaux of type τ for $\tau \in \mathcal{P}_{r,n}$; see [11, Definition 4.4 and Theorem 6.6]. In this paper, we do not need the precise combinatorial definition of semistandard tableaux. For our purposes it
is enough to know that if \(x = u_r^+ x_r h \in M(\tau) \), and \(S \in T_0(\lambda, \mu) \) and \(T \in T_0(\lambda, \nu) \), then

\[
\varphi_{ST}(x) = \delta_{\nu T} m_{ST} h,
\]

where \(m_{ST} \) is a certain element of \(M(\mu) \).

For each \(\lambda \in \mathcal{P}_{r,n} \) there is a Weyl module \(\Delta(\lambda) \), which is a cell module for \(\mathcal{J}_{r,n} \). Let \(L(\lambda) = \Delta(\lambda)/\text{rad} \Delta(\lambda) \), where \(\text{rad} \Delta(\lambda) \) is the Jacobson radical of \(\Delta(\lambda) \). Then \(\{ L(\lambda) \mid \lambda \in \mathcal{P}_{r,n} \} \) is a complete set of pairwise non-isomorphic irreducible \(\mathcal{J}_{r,n} \)-modules. Further, if \(\lambda, \mu \in \mathcal{P}_{r,n} \), then \(L(\mu) \) is the simple head of \(\Delta(\lambda) \) and

\[
[\Delta(\lambda) : L(\mu)] = \begin{cases} 1, & \text{if } \lambda = \mu, \\ 0, & \text{if } \lambda \nleq \mu. \end{cases}
\] (4.2)

All of these facts are proved in [11, Section 6].

Similarly, for \(\beta \in \mathcal{C}_{p,n} \) let \(\Delta_\beta(\lambda) \) and \(L_\beta(\lambda) \) be the Weyl modules and the irreducible modules of \(\mathcal{J}_{d,b} \), for \(\lambda \in \mathcal{P}_{d,b} \). For \(1 \leq t \leq p \), \(\lambda, \nu, \mu \in \mathcal{P}_{d,b} \) and \(S \in T_0(\lambda, \mu) \), \(T \in T_0(\lambda, \nu) \), let \(\varphi_{ST}^{(t)} \) be the corresponding element of \(\mathcal{J}_{d,b} \) given by

\[
\varphi_{ST}^{(t)}(x_1 \otimes \ldots \otimes x_p) = x_1 \otimes \ldots \otimes x_{t-1} \otimes \varphi_{ST}(x_t) \otimes x_{t+1} \otimes \ldots \otimes x_p,
\]

where \(k_{\lambda,\nu} \) is the unique multipartition in \(\mathcal{P}_{d,b} \). Then

\[
\varphi_{ST}^{(s)} \varphi_{ST}^{(t)} = \begin{cases} \varepsilon^{-\alpha_{b,\lambda,\nu}} \varphi_{ST}^{(s+\alpha_{b})}, & \text{if } s + \alpha_{b} \leq p, \\ \varepsilon^{-\alpha_{b,\lambda,\nu}} \varphi_{ST}^{(s+\alpha_{b} - p)}, & \text{if } s + \alpha_{b} > p, \end{cases}
\]

for \(k_{\lambda,\nu} = \sum_{s=1}^{d-1} \sum_{t=1}^{s} (|\lambda^{(t)}| - |\nu^{(t)}|) \).

Proof. We first note that \(\varphi_{ST}^{(s+\alpha_{b})} \) and \(\varphi_{ST}^{(s+\alpha_{b} - p)} \) make sense. As the map \(\varphi_{ST} \) is given by left multiplication by an element of \(\mathcal{H}_{d,b} \), the result follows from Lemma 4.3. (In what follows, we only need to know that the scalar \(\varepsilon^{-\alpha_{b,\lambda,\nu}} \) above is equal to \(\varepsilon^{\alpha_{b,k}} \), for some \(k \in \mathbb{Z} \), which is a consequence of Lemma 4.3. That \(k = k_{\lambda,\nu} \) can be determined using the definition of \(m_{ST} \) from [11].)

Remark 4.14. Suppose that \(\beta \in \mathcal{C}_{p,n} \) and \(1 \leq s, t \leq p \) and \(s \equiv t \pmod{\alpha_{b}} \), so that \(b_s = b_t \). Just as in Remark 4.4, if we let \(\pi_{st}^{(s)} \) be the algebra isomorphism \(\mathcal{J}_{d,b_{s^{(s)}}} \cong \mathcal{J}_{d,b_{t^{(s)}}} \) given by \(\varphi_{ST}^{(s)} \mapsto \varepsilon^{-\alpha_{b,\lambda,\nu}} \varphi_{ST}^{(t)} \) for \(S \) and \(T \) as above, then \(\varphi_{ST} \) coincides with \(\pi_{st}^{(s)} \), where \(t = s + \alpha_{b} \) if \(s + \alpha_{b} \leq p \); or \(t = s + \alpha_{b} - p \). If \(s + \alpha_{b} > p \).

For each multipartition \(\mu \in \mathcal{P}_{d,b} \) the identity map \(\varphi_{\mu} : M_\mu(\mu) \rightarrow M_\mu(\mu) \) belongs to \(\mathcal{J}_{d,b} \). Then \(\varphi_{\mu} \) is an idempotent in \(\mathcal{J}_{d,b} \) and \(\sum_{\mu \in \mathcal{P}_{d,b}} \varphi_{\mu} \) is the identity element of \(\mathcal{J}_{d,b} \). If \(M \) is a \(\mathcal{J}_{d,b} \)-module, then \(M \) has a weight space decomposition

\[
M = \bigoplus_{\mu \in \mathcal{P}_{d,b}} M_\mu, \quad \text{where } M_\mu = M \varphi_{\mu}.
\]

Recall from (2.5) that \(\omega_{b} = (\omega_{b}^{[1]}, \ldots, \omega_{b}^{[p]}) \) is the unique multipartition in \(\mathcal{P}_{d,b} \) such that \(\mu \geq \omega_{b} \) for all \(\mu \in \mathcal{P}_{d,b} \). By definition, \(\varphi_{\omega_{b}} \) is the identity map on \(\mathcal{H}_{d,b} \) so that \(\varphi_{\omega_{b}, \mathcal{J}_{d,b}} \varphi_{\omega_{b}} \cong \mathcal{H}_{d,b} \). Hence, we have a Schur functor

\[
F_{\omega_{b}} : \text{Mod-} \mathcal{J}_{d,b} \rightarrow \text{Mod-} \mathcal{H}_{d,b}; \quad M \mapsto M_{\omega_{b}}, \quad \text{for } M \in \text{Mod-} \mathcal{J}_{d,b}. \quad (4.3)
\]
By Dipper, James and Mathas [11, Corollary 6.14] the Weyl module \(\Delta_b(\lambda) \) has a basis
\[
\{ \varphi_S \mid Stab \in T_0(\lambda, \mu) \text{ for } \mu \in \mathcal{P}_{d,b} \}
\]
such that \(\{ \varphi_S \mid S \in T_0(\lambda, \mu) \} \) is a basis for the \(\mu \)-weight space of \(\Delta_b(\lambda) \). This implies that \(F_{\omega_b}(\Delta_b(\lambda)) \cong S_b(\lambda) \) for all \(\lambda \in \mathcal{P}_{d,b} \); see [26, Proposition 2.17]. Hence, \(F_{\omega_b}(L_b(\lambda)) \cong D_b(\lambda) \) for all \(\lambda \in \mathcal{M}_{d,b} \), since \(F_{\omega_b} \) is exact.

There is a unique semistandard \(\lambda \)-tableau \(T^\lambda \) of type \(\lambda \) and \(\varphi_{T^\lambda} \) is a ‘highest weight vector’ in \(\Delta_b(\lambda) \). In particular, \(\varphi_{T^\lambda} \) generates \(\Delta_b(\lambda) \).

Lemma 4.15. Suppose that \(\lambda \in \mathcal{P}_{d,b} \) for \(b \in \mathbb{C}_{p,n} \). Then
\[
\varphi_{T^\lambda} \zeta_b = \{ \lambda \varphi_{T^\lambda} \quad \text{and} \quad \varphi_{T^\lambda} \varphi_{b}^{p_b} = (g_b)^{p_b} \varphi_{T^\lambda}\}.
\]

Proof. By James and Mathas [26, (2.18)] the Weyl module \(\Delta_b(\lambda) \) can be identified with a set of maps from \(\bigoplus_{\mu \in \mathcal{P}_{d,b}} M_b(\mu) \) to \(S_b(\lambda) \) in such a way that \(\varphi_{T^\lambda} \) is identified with the natural projection map \(M_b(\lambda) \twoheadrightarrow S_b(\lambda) \). Hence, \(\varphi_{T^\lambda} \zeta_b = \{ \lambda \varphi_{T^\lambda} \) by Proposition 3.4 and \(\varphi_{T^\lambda} \varphi_{b}^{p_b} = (g_b)^{p_b} \varphi_{T^\lambda} \) by Corollary 3.38. \(\square \)

By Theorem 4.12 the subspaces \(\{ \mathcal{J}_{d,b}, \vartheta_b, \mathcal{J}_{d,b}, \ldots, (\vartheta_b)^{p_b-1}\mathcal{J}_{d,b} \} \) define a \(\mathbb{Z}/p_b\mathbb{Z} \)-graded Clifford system for \(\mathcal{J}_{r,p,n}(b) \). In particular, conjugation with \(\vartheta_b \) defines an algebra automorphism of \(\mathcal{J}_{d,b} \). For any \(\mathcal{J}_{d,b} \)-module \(M \) let \(M^\vartheta_b \) be the \(\mathcal{J}_{d,b} \)-module obtained by twisting the action of \(\mathcal{J}_{d,b} \) by \(\vartheta_b \).

Lemma 4.16. Suppose that \(\lambda \in \mathcal{P}_{d,b} \) for \(b \in \mathbb{C}_{p,n} \). Then
\[
\Delta_b(\lambda)^{\vartheta_b} \cong \Delta_b(\lambda(\vartheta_b)) \quad \text{and} \quad L_b(\lambda)^{\vartheta_b} \cong L_b(\lambda(\vartheta_b))
\]
as \(\mathcal{J}_{d,b} \)-modules.

Proof. This follows directly from Lemma 4.13 and Remark 4.14. \(\square \)

The following definitions mirror the constructions of the Specht modules and irreducible \(\mathcal{C}_{d,b} \)-modules given by Definition 4.6.

Definition 4.17. Suppose that \(\lambda \in \mathcal{P}_{d,b} \) for \(b \in \mathbb{C}_{p,n} \). Define
\[
\Delta^\lambda = \Delta_b(\lambda) \uparrow_{\mathcal{J}_{r,p,n}(b)}^{\mathcal{J}_{d,b}} \quad \text{and} \quad L^\lambda = L_b(\lambda) \uparrow_{\mathcal{J}_{d,b}}^{\mathcal{J}_{r,p,n}(b)}.
\]

Let \(\hat{\sigma} \) be the automorphism of \(\mathcal{J}_{r,p,n}(b) \) which, using Theorem 4.12, is defined on generators by
\[
(x^k)^{\hat{\sigma}} = x^{k \text{mod } p_b}, \quad \text{for all } x \in \mathcal{J}_{d,b} \text{ and } 0 \leq k < p_b.
\]

By definition, \(\hat{\sigma} \) restricts to the identity map on \(\mathcal{J}_{d,b} \). By Lemma 3.9 there is an isomorphism of \(\mathcal{J}_{r,p,n}(b) \)-\(\mathcal{J}_{r,p,n}(b) \)-bimodules,
\[
\mathcal{J}_{r,p,n}(b) \otimes \mathcal{J}_{d,b} \cong \bigoplus_{j=1}^{p_b} (\mathcal{J}_{r,p,n}(b))^{\hat{\sigma}^j},
\]
such that the left \(\mathcal{J}_{r,p,n}(b) \)-module structure on \((\mathcal{J}_{r,p,n}(b))^{\hat{\sigma}^j} \) is given by left multiplication and the right action is twisted by \(\hat{\sigma}^j \).
Recall that if \(\lambda \in \mathcal{P}_{d,b} \), then \(p_b/\lambda = p_b/\rho_{p_A} \). Let \(\mathcal{I}_{d,\lambda} \) be the subalgebra of \(\mathcal{I}_{r,p,n} \) generated by \(\mathcal{I}_{d,b} \) and \(\vartheta_\lambda = \varphi_{\rho_{p_A}}^\lambda \). Let \(\varphi_{T_\lambda} \) be the image of \(\varphi_{T_\lambda} \) in \(L_b(\lambda) \). For \(1 \leq i \leq p_\lambda \) define

\[
\Delta_{i,p,\lambda}^T = \varphi_{T_\lambda} \prod_{1 \leq t \leq p_\lambda, t \neq i} (\vartheta_\lambda - \varrho_\lambda \varepsilon^{\alpha_t}) \mathcal{I}_{d,b} \to \mathcal{I}_{d,\lambda},
\]

\[
L_{i,p,\lambda}^T = \varphi_{T_\lambda} \prod_{1 \leq t \leq p_\lambda, t \neq i} (\vartheta_\lambda - \varrho_\lambda \varepsilon^{\alpha_t}) \mathcal{I}_{d,b} \to \mathcal{I}_{d,\lambda}.
\]

Then, by Lemmas 4.13 and 4.15, \(\Delta_{i,p,\lambda}^T \) and \(L_{i,p,\lambda}^T \) are \(\mathcal{I}_{d,\lambda} \)-submodules of \(\Delta^\lambda \) and \(L^\lambda \); respectively. Next, for \(1 \leq i \leq p_\lambda \) define

\[
\Delta_{i,p}^\lambda = \Delta_{i,p,\lambda}^T \left|_{\mathcal{I}_{d,\lambda}} \right. \quad \text{and} \quad L_{i,p}^\lambda = L_{i,p,\lambda}^T \left|_{\mathcal{I}_{d,\lambda}} \right. .
\]

As we will see (cf. Lemma 3.10), each \(L_{i,p,\lambda} \) is an irreducible \(\mathcal{I}_{d,\lambda} \)-module and each \(L_{i,p}^\lambda \) is an irreducible \(\mathcal{I}_{r,p,n} \)-module.

Proposition 4.18. Suppose that \(\lambda \in \mathcal{P}_{d,b} \), for \(b \in \mathcal{P}_{p,n} \), and let \(\hat{\sigma}_\lambda = (\hat{\sigma})^{p_b/\lambda} \). Then:

(a) if \(1 \leq i \leq p_\lambda \), then

\[
(\Delta_{i,p,\lambda}^T)^{\hat{\sigma}_\lambda} \cong \Delta_{i+1,p,\lambda}^T, \quad (\Delta_{i,p}^T)^{\hat{\sigma}_\lambda} \cong \Delta_{i+1,p}^T,
\]

\[
(L_{i,p,\lambda}^T)^{\hat{\sigma}_\lambda} \cong L_{i+1,p,\lambda}^T, \quad (L_{i,p}^T)^{\hat{\sigma}_\lambda} \cong L_{i+1,p}^T .
\]

(b) \(\Delta_b(\lambda) \left|_{\mathcal{I}_{d,b}} \right. \cong \bigoplus_{i=1}^{p_\lambda} \Delta_{i,p,\lambda}^T \) and \(L_b(\lambda) \left|_{\mathcal{I}_{d,b}} \right. \cong \bigoplus_{i=1}^{p_\lambda} L_{i,p,\lambda}^T \). Moreover, there is a unique \(\mathcal{I}_{d,b} \)-module isomorphism \(\Delta_b(\lambda) \to \Delta_{i,p,\lambda}^T \left|_{\mathcal{I}_{d,b}} \right. \) such that

\[
\varphi_{T_\lambda} \mapsto \varphi_{T_\lambda} \prod_{1 \leq t \leq p_\lambda, t \neq i} (\vartheta_\lambda - \varrho_\lambda \varepsilon^{\alpha_t});
\]

this latter map induces an isomorphism \(L_b(\lambda) \to L_{i,p,\lambda}^T \left|_{\mathcal{I}_{d,b}} \right. .
\]

(c) \(\Delta^\lambda = \Delta_{1,p}^\lambda \oplus \ldots \oplus \Delta_{p_\lambda,p}^\lambda \) and \(L^\lambda = L_{1,p}^\lambda \oplus \ldots \oplus L_{p_\lambda,p}^\lambda \) as \(\mathcal{I}_{r,p,n} \)-modules;

(d) \(\Delta^\lambda \cong \Delta^\lambda(\varrho_b) \) and \(L^\lambda \cong L^\lambda(\varrho_b) \) as \(\mathcal{I}_{r,p,n} \)-modules.

Proof. We only prove the results for the Weyl modules. The other cases can be proved using similar arguments or using the fact that twisting by \(\hat{\sigma} \) is an exact functor.

By Lemma 4.16 we know that \((\Delta_b(\lambda))^{\hat{\sigma}_\lambda} \cong \Delta_b(\lambda(\varrho_b)) = \Delta_b(\lambda) \). Therefore,

\[
\Delta^\lambda(\varrho_b) = \Delta_b(\lambda(\varrho_b)) \left|_{\mathcal{I}_{r,p,n}(b)} \right. \cong \Delta_b(\lambda)^{\hat{\sigma}_b} \left|_{\mathcal{I}_{r,p,n}(b)} \right. = (\Delta^\lambda)^{\hat{\sigma}_b} \cong \Delta^\lambda .
\]

This proves (d).

Arguing as in Theorem 3.40, it is easy to see that \(\varphi_{T_\lambda} \in \Delta_{i,p}^\lambda + \ldots + \Delta_{p_\lambda,p}^\lambda \). Hence, \(\Delta^\lambda = \Delta_{1,p}^\lambda + \ldots + \Delta_{p_\lambda,p}^\lambda \). On the other hand, if \(1 \leq i \leq p_\lambda \) and \(f \in \mathcal{I}_{d,b} \), then the isomorphisms in Remark 4.14, together with the fact that \(\lambda(\varrho_b) = \lambda \), imply that \(\varphi_{T_\lambda} f = 0 \) if and only if \(\varphi_{T_\lambda} (\vartheta_\lambda f \vartheta_\lambda^{-1}) = 0 \). It follows that the map

\[
\varphi_{T_\lambda} \mapsto \varphi_{T_\lambda} \prod_{1 \leq t \leq p_\lambda, t \neq i} (\vartheta_\lambda - \varrho_\lambda \varepsilon^{\alpha_t})
\]
extends uniquely to a $\mathcal{S}_{d,b}$-module surjection $\rho_i : \Delta_b(\lambda) \rightarrow \Delta_{i,p\lambda}^{\lambda} \downarrow \mathcal{S}_{d,b}$ for $1 \leq i \leq p\lambda$. In particular, $\dim \Delta_{i,p\lambda}^{\lambda} \leq \dim \Delta_b(\lambda)$. By construction, however, $\dim \Delta_{i,p\lambda}^{\lambda} = p\lambda \dim \Delta_b(\lambda)$. Therefore, the maps ρ_i, for $1 \leq i \leq p\lambda$, are all isomorphisms. This proves (b), while (c) follows easily from the definitions and (b).

It remains to prove part (a). Suppose that $1 \leq i \leq p\lambda$. The definition of $\hat{\sigma}$ implies that if $f \in \mathcal{S}_{r,p,n}(b)$, then $\varphi_{T\lambda} f = 0$ if and only if $\varphi_{T\lambda} f^{\sigma\lambda} = 0$. Therefore, the map

$$\varphi_{T\lambda} \prod_{1 \leq i \leq p\lambda, i \neq i \neq i + 1} (\vartheta - g_\lambda \epsilon^{a\lambda}) f \mapsto \varphi_{T\lambda} \prod_{1 \leq i \leq p\lambda, i \neq i} (\vartheta - g_\lambda \epsilon^{a\lambda}) f^{\sigma\lambda}$$

is a well-defined $\mathcal{S}_{r,p,n}(b)$-module homomorphism from $\Delta_{i+1,p\lambda}^{\lambda}$ onto $(\Delta_{i,p\lambda}^{\lambda})^{\sigma\lambda}$. Similarly, one can prove that $(\Delta_{i,p\lambda}^{\lambda})^{\sigma\lambda} \cong \Delta_{i+1,p\lambda}^{\lambda}$.

The proof of Proposition 4.18(a) yields the following corollary.

Corollary 4.19. Suppose that $\lambda \in \mathcal{P}_{d,b}$ and that $1 \leq i \leq p\lambda$. Then, as a K-vector space,

$$\Delta_{i,p\lambda}^{\lambda} \cong \Delta_{i,p\lambda}^{\lambda} \oplus \Delta_{i,p\lambda}^{\lambda} \vartheta_b \oplus \ldots \oplus \Delta_{i,p\lambda}^{\lambda} \vartheta_b^{p\lambda/p\lambda - 1},$$

Moreover, the action of $\mathcal{S}_{r,p,n}(b)$ on $\Delta_{i,p\lambda}^{\lambda}$ is uniquely determined by the following conditions:

(a) $\Delta_{i,p\lambda}^{\lambda} \downarrow \mathcal{S}_{d,b}(b) \cong \Delta_{i,p\lambda}^{\lambda} \oplus \Delta_{i,p\lambda}^{\lambda} \vartheta_b \oplus \ldots \oplus \Delta_{i,p\lambda}^{\lambda} \vartheta_b^{p\lambda/p\lambda - 1}$;

(b) $(x \vartheta_b^j) \vartheta_b^j = x \vartheta_b^{j+t}$ for all $x \in \Delta_{i,p\lambda}^{\lambda}$ and $j, t \in \mathbb{Z}$;

(c) ϑ_λ acts as the scalar $g_\lambda \epsilon^{i\lambda}$ on the highest weight vector of $\Delta_{i,p\lambda}^{\lambda} \cong \Delta_{i+1,p\lambda}^{\lambda}$.

Analogous statements hold for the simple module $\mathcal{L}_{i,p\lambda}^{\lambda}$.

Proof. By definition,

$$\Delta_{i,p\lambda}^{\lambda} \cong \Delta_{i,p\lambda}^{\lambda} \oplus \Delta_{i,p\lambda}^{\lambda} \vartheta_b \oplus \ldots \oplus \Delta_{i,p\lambda}^{\lambda} \vartheta_b^{p\lambda/p\lambda - 1}. $$

As in the proof of Proposition 4.18, we can identify $\Delta_{i,p\lambda}^{\lambda}$ with $\Delta_{i,p\lambda}^{\lambda}$ using the isomorphism ρ_i for $1 \leq i \leq p\lambda$. Then the highest weight vector $\varphi_{T\lambda}$ of $\Delta_{i,p\lambda}^{\lambda}$ corresponds to the vector $\varphi_{T\lambda} (\prod_{1 \leq i \leq p\lambda, i \neq i} (\vartheta - g_\lambda \epsilon^{a\lambda}))$. This implies that $\vartheta_\lambda = \vartheta_b^{p\lambda/p\lambda}$ acts as the scalar $g_\lambda \epsilon^{i\lambda}$ on the highest weight vector of $\Delta_{i,p\lambda}^{\lambda} \cong \Delta_{i+1,p\lambda}^{\lambda}$. All of the claims in the corollary now follow.

Corollary 4.20. Suppose that $\lambda, \mu \in \mathcal{P}_{d,b}$.

(a) If $1 \leq i \leq p\lambda$, then $\mathcal{L}_{i,p\lambda}^{\lambda}$ is the simple head of $\Delta_{i,p\lambda}^{\lambda}$.

(b) If $1 \leq i \leq p\lambda$ and $1 \leq j \leq p\mu$, then

$$[\Delta_{i,p\lambda}^{\lambda} : \mathcal{L}_{j,p\mu}^{\mu}] = \begin{cases} \delta_{ij}, & \text{if } \lambda = \mu, \\ 0, & \text{if } \lambda \neq \mu. \end{cases}$$

Proof. By (4.2), $\mathcal{L}_b(\lambda)$ is the simple head of $\Delta_b(\lambda)$ and

$$[\Delta_b(\lambda) : \mathcal{L}_b(\mu)] = \begin{cases} 1, & \text{if } \mu = \lambda, \\ 0, & \text{if } \mu \neq \lambda. \end{cases}$$

Hence, the result follows from Proposition 4.18 and Frobenius reciprocity.

Recall that \sim_b is the equivalence relation on $\mathcal{P}_{d,b}$ such that $\lambda \sim_b \mu$ if $\mu = \lambda(k\sigma_b)$ for some $k \in \mathbb{Z}$.
The algebra $S_{r,p,n}(b)$ is split over K and

$$\{L_{i,p}^\lambda \mid \lambda \in \mathcal{P}_{d,b} \text{ and } 1 \leq i \leq p\lambda\}$$

is a complete set of pairwise non-isomorphic absolutely irreducible $S_{r,p,n}(b)$-modules.

Proof. Just as in the proof of Theorem 3.42, this follows from Corollary 4.20, Frobenius reciprocity and some general arguments in Clifford theory. \qed

Recall from (4.3) that the Schur functor $F_\omega : \text{Mod-}S_{d,b} \longrightarrow \text{Mod-}H_{d,b}$ is given by $F_\omega(M) = M\varphi_{\omega_b}$, where φ_{ω_b} is the identity map on $H_{d,b}$. Using the embedding $\mathcal{H}_{d,b} \hookrightarrow S_{r,p,n}(b)$, and the fact that $v_b = v_b^+u_b^-$, it is easy to check that φ_{ω_b} corresponds to the natural projection from $\bigoplus_{\lambda \in \mathcal{P}_{d,b}} M_\lambda$ onto $V_b = M_{\omega_b}^b$. In particular,

$$\varphi_{\omega_b} : S_{r,p,n}(b) \varphi_{\omega_b} = \mathcal{E}_{d,b} \text{ and } \varphi_{\omega_b} : S_{d,b} \varphi_{\omega_b} = \mathcal{H}_{d,b}.$$

Hence, we have a second Schur functor $F_\omega^{(p)} : \text{Mod-}S_{r,p,n}(b) \longrightarrow \text{Mod-}E_{d,b}$, which is given by $F_\omega^{(p)}(M) = M\varphi_{\omega_b}$, and if $\varphi \in \text{Hom}_{S_{r,p,n}(b)}(M, N)$, then $F_\omega^{(p)}(\varphi)(x\varphi_{\omega_b}) = \varphi(x)$ for all $x \in M$. It is straightforward to check that we have the following commutative diagram of functors:

$$\begin{array}{ccc}
\text{Mod-}S_{r,p,n}(b) & \xrightarrow{?_{S_{r,p,n}(b)}} & \text{Mod-}S_{d,b} \\
F_\omega^{(p)} \downarrow & & \downarrow F_{\omega_b} \\
\text{Mod-}E_{d,b} & \xrightarrow{?_{E_{d,b}}} & \text{Mod-}H_{d,b} \\
\end{array}$$

(4.5)

Lemma 4.22. Suppose that $\lambda \in \mathcal{P}_{d,b}$ and $1 \leq i \leq p\lambda$. Then

$$F_\omega^{(p)}(\Delta_{i,p}^\lambda) \cong S_{i,p}^\lambda \text{ and } F_\omega^{(p)}(L_{i,p}^\lambda) \cong \begin{cases} D_{i,p}^\lambda, & \text{if } \lambda \in \mathcal{H}_{d,b}, \\ 0, & \text{otherwise.} \end{cases}$$

Proof. This follows directly from (4.5) and Lemma 4.7. \qed

Corollary 4.23. Suppose that $b \in \mathcal{C}_{r,p,n}$, $\lambda \in \mathcal{P}_{d,b}$, $\mu \in \mathcal{H}_{d,b}$, $1 \leq i \leq p\lambda$ and that $1 \leq j \leq p\mu$. Then $[\Delta_{i,p}^\lambda : L_{j,p}^\mu] = [S_{i,p}^\lambda : D_{j,p}^\mu] = [S_{i,j}^\lambda : D_{j,j}^\mu]$.

Proof. This follows directly from Lemmas 4.22 and 4.7 together with the easily checked fact that the functors $F_\omega^{(p)}$ and $F_\omega^{(e)}$ are exact. \qed

Therefore, in order to compute the decomposition number $[S_{i,j}^\lambda : D_{j,j}^\mu]$, it is enough to compute the decomposition number $[\Delta_{i,p}^\lambda : L_{j,j}^\mu]$ for $S_{r,p,n}$.

4.4. Splittable decomposition numbers

In this section, we derive explicit formulae for the l-splittable decomposition numbers of the algebras $S_{r,p,n}(b)$, and hence of $H_{r,p,n}$ by Corollary 4.23, in characteristic zero. These decomposition numbers depend explicitly on the decomposition numbers of certain Ariki-Koike algebras and on the scalars g_α introduced in Lemma 3.37. By Theorem 2.2 this will determine all of the decomposition numbers of $H_{r,p,n}$.
Suppose that \(\lambda \) and \(\mu \) are multipartitions in \(\mathcal{P}_{d,b} \). We want to compute the decomposition numbers \([\Delta_{b,p}^{\lambda} : L_{j,p}^{\mu}]\) for \(1 \leq i \leq p_\lambda \) and \(1 \leq j \leq p_\mu \). By Corollary 4.19 and the exactness of \(\partial_{b} \), if \(p_\lambda = p_\mu \), then
\[
[\Delta_{i,p}^{\lambda} : L_{j,p}^{\mu}] = [\Delta_{i+1,p}^{\lambda} : L_{j+1,p}^{\mu}],
\]
where we read \(i + 1 \) and \(j + 1 \) modulo \(p_\lambda \). Therefore, these decomposition numbers are determined by the decomposition numbers
\[
d^{(j)}_{\lambda \mu} = [\Delta_{0,p}^{\lambda} : L_{j,p}^{\mu}],
\]
for \(1 \leq j \leq p_\mu \). In fact, as noted above, it is enough to compute the splittable decomposition numbers; that is, the \(d^{(j)}_{\lambda \mu} \) such that \(p_\lambda = p_\mu \) for \(\lambda, \mu \in \mathcal{P}_{d,b} \).

Before we start to compute the decomposition numbers \(d^{(j)}_{\lambda \mu} \), we introduce some new notation. If \(A \) is any finite-dimensional algebra, let \(\mathcal{R}(A) \) be the Grothendieck group of finitely generated \(A \)-modules. If \(M \) is an \(A \)-module, let \([M] \) be the image of \(M \) in \(\mathcal{R}(A) \). In particular, note that the Grothendieck group of \(\mathcal{R}(\mathcal{P}_{r,n}) \) is equipped with two distinguished bases:
\[
\{[\Delta(\lambda)] \mid \lambda \in \mathcal{P}_{r,n}\} \quad \text{and} \quad \{[L(\lambda)] \mid \lambda \in \mathcal{P}_{r,n}\}.
\]
Similar remarks apply to the Grothendieck groups of the cyclotomic Schur algebras \(\mathcal{I}_{d,b} \) and \(\mathcal{I}_{r,p,n}(b) \) for \(b \in \mathcal{P}_{p,n} \).

Fix integers \(l \) and \(m \) such that \(p = lm \) and suppose that \(\mu \in \mathcal{P}_{d,b} \) for some \(b \in \mathcal{P}_{p,n} \). Then a multipartition \(\mu \) is \(l \)-symmetric if
\[
\mu = \nu^l := (\nu, \ldots, \nu),
\]
for some multipartition \(\nu \in \mathcal{P}_{r,l,n/l} \). Note that if \(d^{(j)}_{\lambda \mu} \) is an \(l \)-splittable decomposition number, then \(\lambda \) and \(\mu \) are both \(l \)-symmetric multipartitions.

Let \(\mathcal{P}_{d,b}^l \) be the set of \(l \)-symmetric multipartitions in \(\mathcal{P}_{d,b} \). It is easy to see that
\[
\mathcal{P}_{d,b}^l = \{\mu \mid \mu \in \mathcal{P}_{d,b} \text{ and } o_\mu \mid m\}.
\]
If \(\mathcal{P}_{d,b}^l \) is non-empty, then \(o_\mu \mid m \) and we define \(b_m = (b_1, \ldots, b_m) \). If \(\mu \in \mathcal{P}_{d,b}^l \), define \(\mu_m = (\mu^{[1]}, \ldots, \mu^{[m]}) \). Then \(\mu_m \in \mathcal{P}_{r/l,b_m} \subseteq \mathcal{P}_{r/l,n/l} \). It is easy to check that the map \(\nu \mapsto \nu^l \) defines a bijection from \(\mathcal{P}_{r/l,b_m} \) to \(\mathcal{P}_{d,b}^l \), with the inverse map being given by \(\mu \mapsto \mu_m \).

We now return to our main task of computing splittable decomposition numbers. We do this by deriving a system of equations that uniquely determine the decomposition numbers \(d^{(j)}_{\lambda \mu} \) for \(1 \leq j \leq l = p_\lambda \).

For the rest of this subsection fix \(\lambda \in \mathcal{P}_{d,b} \) and set \(m = o_\lambda \) and \(l = p_\lambda \). Then \(b_m = (b_1, \ldots, b_m) \in \mathcal{P}_{r/l,n/l} \) and \(\lambda_m \in \mathcal{P}_{r/l,b_m} \). By (4.1) the cyclotomic Schur algebras \(\mathcal{I}_{r/l,b_m} \) and \(\mathcal{I}_{d,b} \) are related by
\[
\mathcal{I}_{r/l,b_m} \cong \mathcal{I}_{d,b_1} \otimes \cdots \otimes \mathcal{I}_{d,b_m} \quad \text{and} \quad \mathcal{I}_{d,b} \cong (\mathcal{I}_{r/l,b_m})^\otimes l.
\]
For \(\mu \in \mathcal{P}_{d,b} \) let \(d_{\lambda_m \mu_m} = [\Delta_{b_m}(\lambda_m) : L_{b_m}(\mu_m)] \) be the corresponding decomposition number for the cyclotomic Schur algebra \(\mathcal{I}_{r/l,b_m} \). Since
\[
\Delta_{b_m}(\lambda_m) \cong \Delta(\lambda^{[1]}) \otimes \cdots \otimes \Delta(\lambda^{[m]}) \quad \text{and} \quad L_{b_m}(\mu_m) \cong L(\mu^{[1]}) \otimes \cdots \otimes L(\mu^{[m]}),
\]
we have that
\[
d_{\lambda_m \mu_m} = \prod_{i=1}^{m} [\Delta(\lambda^{[i]} : L(\mu^{[i]})] = d_{\lambda^{[1]} \mu^{[1]}} \cdots d_{\lambda^{[m]} \mu^{[m]}},
\]
(4.7)
where \(d_{\lambda^{[i]} \mu^{[i]}} = [\Delta(\lambda^{[i]} : L(\mu^{[i]})] \) for \(1 \leq i \leq m = o_\lambda \).

Recall that if \(\mu \in \mathcal{P}_{d,b} \), then \(p_{b/\mu} = p_b/p_\mu = o_\mu/o_b \). If \(\mu \in \mathcal{P}_{d,b}^l \) is \(l \)-symmetric, then \(o_\mu \) divides \(m \), so we define \(p_{\mu/\lambda} = p_\mu/p_\lambda \). Then \(p_{\mu/\lambda} \in \mathbb{N} \) and \(p_{\mu/\lambda} = o_\lambda/o_\mu = p_b/\lambda/p_b/\mu \).
Lemma 4.24. Suppose that $\lambda \in \mathcal{P}_{d,b}$, $l = p_\lambda$ and $m = o_\lambda$. Then:

(a) $[\Delta_{b,m}(\lambda_m)] = \sum_{\nu \in \mathcal{P}_{d,b}} d_{\lambda_m \nu_m} [L_{b,m}(\nu_m)]$;

(b) $[\Delta_{b,p}] = \sum_{\nu \in \mathcal{P}_{d,b}} \sum_{1 \leq j \leq p} d^{(j)}_{\lambda \nu} [L_{j,p}]$;

(c) if $\mu \in \mathcal{P}_{d,b}$, then $d^{(1)}_{\lambda \mu} + d^{(2)}_{\lambda \mu} + \ldots + d^{(l)}_{\lambda \mu} = p_{\mu/\lambda} d^{l}_{\lambda \mu} m_{\lambda \mu} m$.

Proof. Part (a) is just a rephrasing of the definition of decomposition numbers combined with the bijection $\mathcal{P}_{d,b} \cong \mathcal{P}_{r/l,b,m}; \mu \mapsto \mu_m$. Part (b) follows similarly.

Suppose that $\mu \in \mathcal{P}_{d,b}$. We prove (c) by computing the decomposition multiplicity of $L_b(\mu)$ on both sides of part (b) upon restriction to $\mathcal{S}_{d,b}$. By Corollary 4.19,

$$[\Delta_{0,p}] \mathcal{S}_{r,p,n}(b) \cong \Delta_{b}^{\lambda}(\lambda) \oplus \Delta_{b}^{\lambda}(\lambda)^{\vartheta_{b}^{-1}} \oplus \ldots \oplus \Delta_{b}^{\lambda}(\lambda)^{p_{b/\lambda}}.$$

Now, every composition factor of $\Delta_{b}^{\lambda}(\lambda)$ is isomorphic to $L_b(\nu)$, for some $\nu \in \mathcal{P}_{d,b}$, and $L_b(\nu)^{\vartheta_{b}} \cong L_b(\nu)$ by Lemma 4.16. Therefore, the decomposition multiplicity of $L_b(\mu)$ in $\Delta_{0,p} \mathcal{S}_{r,p,n}(b)$ is

$$\frac{p_{b/\lambda}}{p_{b/\mu}} [\Delta_{b}^{\lambda}(\lambda); L_b(\mu)] = p_{\mu/\lambda} d^{l}_{\lambda \mu} m_{\lambda \mu} m,$$

where the second equality follows from (4.7).

Now consider the multiplicity of $L_b(\mu)$ on the right-hand side of (b). If $\nu \in \mathcal{P}_{d,b}$ and $1 \leq j \leq p$, then, using Corollary 4.19 again,

$$L_{j,p}^{\lambda} \mathcal{S}_{r,p,n}(b) \cong L_b(\lambda) \oplus L_b(\lambda)^{\vartheta_{b}^{-1}} \oplus \ldots \oplus L_b(\lambda)^{p_{b/\nu}}.$$

Therefore, $[\lambda_{j,p} \mathcal{S}_{r,p,n}(b); L_b(\mu)] = 1$ by Lemma 4.16. Equating the multiplicity of $L_b(\mu)$ on both sides of (b) now gives (c).

Lemma 4.24 gives our first relation satisfied by the decomposition numbers $d^{(j)}_{\lambda \mu}$. We now use formal characters to find more relations. Let $K[\mathcal{P}_{r,n}]$ be the K-vector space with basis $\{e^{\mu} \mid \mu \in \mathcal{P}_{r,n}\}$. The (K-valued) formal character of the $\mathcal{S}_{d,b}$-module M is

$$\text{ch} M = \sum_{\mu \in \mathcal{P}_{d,b}} (\dim M_{\mu}) e^{\mu},$$

an element of $K[\mathcal{P}_{r,n}]$. The coefficients appearing in the formal characters are the traces of the identity maps on the weight spaces. We need a more general version of the formal character which records the traces of powers of ϑ_{λ} on certain weight spaces for $1 \leq t < l = p_\lambda$.

Fix an integer t with $1 \leq t < p_\lambda$. Let $\ell_t = \text{gcd}(t,l)$ be the greatest common divisor of t and l and set $\ell = l/\ell_t$. By convention, we set $\ell_0 = l$. Then $r/\ell_t = d\ell_t$, so that $K[\mathcal{P}_{d\ell_t,n/\ell_t}] = K[\mathcal{P}_{r/\ell_t,n/\ell_t}]$.

Now suppose that M is an $\mathcal{S}_{r,p,n}(b)$-module and that $\gamma = \gamma_{\ell_t}$ is an ℓ_t-symmetric multipartition. We will show in Lemma 4.25 that ϑ_{λ}^t stabilizes each ℓ_t-symmetric weight space $M_{\gamma_{\ell_t}}$. With this in mind, we define the twining character of M to be

$$\text{ch}_{\ell_t} M = \sum_{\gamma \in \mathcal{P}_{r/\ell_t,n/\ell_t}} \text{Tr}(\vartheta_{\lambda}^t, M_{\gamma_{\ell_t}}) e^{\gamma} \in K[\mathcal{P}_{r/\ell_t,n/\ell_t}].$$

It is easy to see that, just like the usual character, the twining character lifts to a well-defined map $\text{ch}_{\ell_t} : R(\mathcal{S}_{r,p,n}(b)) \rightarrow K[\mathcal{P}_{r/\ell_t,n/\ell_t}]$ on the Grothendieck group of $\mathcal{S}_{r,p,n}(b)$.

The following lemma will allow us to compute the twining character ch_{ℓ_t} on both sides of Lemma 4.24(b).
Lemma 4.25. Suppose that $\lambda \in \mathcal{P}_{d,b}$ and $1 \leq t < l = p\lambda$. Then

$$\text{ch}_i^{\lambda}(\Delta_{\lambda}) = \varepsilon_{i}^{tm}p_{b/\lambda}g_{\lambda}^i \text{ch} \Delta_{\lambda(i,m)}^{(\lambda(i,m))},$$

for $1 \leq i \leq p\lambda$. Moreover, if $\mu \in \mathcal{P}_{d,b}^1$ and $1 \leq j \leq p\mu$, then

$$\text{ch}_i^{\mu}(L_{\lambda}^{\mu}) = \varepsilon_{i}^{tm}p_{b/\mu}h_{\mu}^{\mu}g_{\lambda}^i \text{ch} L_{\lambda(i,m)}^{(\mu(m))}.$$

Proof. We only prove the formula for $\text{ch}_i^{\mu}(L_{\lambda}^{\mu})$ and leave the almost identical calculation of $\text{ch}_i^{\lambda}(\Delta_{\lambda})$ to the reader. To ease the notation, let $m' = o_{\mu}$ so that $b_{m'} = (b^{[1]}, \ldots, b^{[m']})$ and $\mu_{m'} = (\mu^{[1]}, \ldots, \mu^{[m']}) \in \mathcal{P}_{r/p_{\mu}, b_{m'}}.$

To determine $\text{ch}_i^{\mu}(L_{\lambda}^{\mu})$ for each $\gamma \in \mathcal{P}_{r/\ell_t, n/\ell_t}$, we need to compute

$$\text{Tr}(\psi^\mu_{\lambda}(L_{\lambda}^{\mu}) \psi^\mu_{\lambda}) = \text{Tr}(\psi^\mu_{b/\lambda}, (L_{\lambda}^{\mu}) \psi^\mu_{\lambda}) = \text{Tr}((\psi^\mu_{b/\mu}(\mu(m))) \psi^\mu_{\lambda})$$

$$= \text{Tr}(\psi^\mu_{b/\mu}(\mu(m))) \psi^\mu_{\lambda}).$$

By Corollary 4.19 we can identify L_{λ}^{μ} with the K-vector space

$$L_b(\mu) \oplus L_b(\mu) \psi_b \oplus \ldots \oplus L_b(\mu) \psi_b^{p_b/n-1},$$

where the action of $\mathcal{P}_{r,n}(b)$ on L_{λ}^{μ} is determined by the following conditions:

(a) $L_{\lambda}^{\mu} \psi_b \psi_{r,n}(b) \cong L_b(\mu) \psi_b \psi_{r,n}(b) \oplus \ldots \oplus L_b(\mu) \psi_b^{p_b/n-1};$

(b) $(x \psi_b^{p_b/n})(x) = x \psi_b^{p_b/n}$ for all $x \in L_b(\mu)$ and $a, c \in Z$;

(c) ψ_b acts as the scalar $\varepsilon^{p_b/n}g_{\mu}$ on the highest weight vector of $L_b(\mu)$.

Note that $p_b/n \in \text{N}$, since $\mu \in \mathcal{P}_{d,b}^1$, and $\psi_b = \psi_b^{p_b/n} = \psi_b^{p_b/n}$. Therefore,

$$\text{Tr}(\psi^\mu_{\lambda}(L_{\lambda}^{\mu}) \psi^\mu_{\lambda}) = \text{Tr}(\psi^\mu_{b/\lambda}, (L_{\lambda}^{\mu}) \psi^\mu_{\lambda}) = \psi_b(1) \text{Tr}(\psi^\mu_{b/\mu}(\mu(m))) \psi^\mu_{\lambda}).$$

To compute this trace, first observe that if φ_{μ} is the highest weight vector of $L_b(\mu)$, then, by (c) above (which comes from Corollary 4.19),

$$\varphi_{\mu} \psi_b^{p_b/n} \psi_{\mu} = \varepsilon^{p_b/n}g_{\mu} \varphi_{\mu}.$$ \hspace{1cm} (4.8)

Now $p = \ell_t l_t m = \ell_t l_t p_{\mu}/\lambda m'$, so we can identify the two modules $L_b(\mu)$ and $L_{b_{1, m}}(\mu_{1, m})$. Using Lemma 4.13, if $1 \leq j \leq p/\ell_t$, then

$$\varphi_{\mu}^{(j)} \psi_b^{j} = \varepsilon^{-m j} \psi_b^{j} \varphi_{\mu}^{(j)} \psi_b^{j},$$ \hspace{1cm} (4.9)

for some $k \in Z$, where we identify $\varphi_{\mu}^{(j)}$ and $\varphi_{\mu}^{(j)}$ if $j \equiv j' (\text{mod } p)$. Therefore, since φ_{μ} generates $L_b(\mu)$, it follows from (4.8) and (4.9) that each simple p-tensor

$$\beta = (x^{(1)}_{1} \otimes \ldots \otimes x^{(1)}_{1,l_t m}) \otimes \ldots \otimes (x^{(1)}_{1} \otimes \ldots \otimes x^{(1)}_{1,l_t m})$$

in $L_b(\mu)_{\gamma, \ell_t}$ is mapped by $\psi_b^{j} = \psi_b^{j}$ to a scalar multiple of

$$(x^{(1)}_{1} \otimes \ldots \otimes x^{(1)}_{1,l_t m}) \otimes \ldots \otimes (x^{(1)}_{1} \otimes \ldots \otimes x^{(1)}_{1,l_t m}),$$

where we identify $x^{(j)}_{i} = x^{(j')}_{i}$ whenever $j \equiv j' (\text{mod } \ell_t)$ for $1 \leq i \leq l_t m$. Thus, to calculate $\text{Tr}(\psi_b^{j} L_b(\mu))$, we only need to consider the case when $x^{(s)}_{i} = x^{(s')}_{i}$ for all $1 \leq i \leq l_t m$ and all $1 \leq s \leq \ell_t$. By construction, $(tm)/(l_t m) \equiv 0 (\text{mod } \ell_t)$, so this can only happen if

$$x^{(s)}_{i} = x^{(s')}_{i}, \; \text{ whenever } 1 \leq i \leq l_t m \text{ and } 1 \leq s, s' \leq \ell_t.$$

Consequently, β contributes to the twining character only if $\beta = \beta \otimes \ldots \otimes \beta$ (ℓ_t times) for some $\beta \in L_{b_{1, m}}(\mu_{1, m})$. Note that if $\beta \in L_{b_{1, m}}(\mu_{1, m})_{\gamma}$, for some $\gamma \in \mathcal{P}_{r/\ell_t, n/\ell_t}$, then $\beta \in L_b(\mu)_{\gamma, \ell_t}$.

In particular, this shows that \(\vartheta^t \) stabilizes \(L_{b_{i,m}}(\mu_{l,m})_\gamma \) as we claimed when introducing the twining character.

In (4.8), we have already shown that \(\vartheta^t \) acts as multiplication by \(\varepsilon^{jtm} \frac{g_\mu}{g_\lambda} \) on the highest weight vector of \(L_{b_{i,m}}(\mu_{l,m})^{\otimes t} \). On the other hand, using (4.9) and abusing the notation of Lemma 4.13 slightly, if \(1 \leq j \leq t \), then

\[
(\varphi_{ST}^{(j)})^{\otimes t} \vartheta^g = \varepsilon^{-mtk} \vartheta^g (\varphi_{ST}^{(j)})^{\otimes t},
\]

where the last equality follows because \(mtl = p(t/l) \) is divisible by \(p \). Therefore, writing \(\beta^{\otimes t} = \varphi_{ST}^{(j)} \) for some \(\varphi \in \mathcal{H}_{t,m,b_{i,m}} \), we have that

\[
\beta^{\otimes t} \vartheta^g = \varphi_{ST}^{(j)} \vartheta^g \beta^{\otimes t} = \varepsilon^{jtm} \frac{g_\mu}{g_\lambda} \varphi_{ST}^{(j)} = \varepsilon^{jtm} \frac{g_\mu}{g_\lambda} \beta^{\otimes t},
\]

where the third equality uses (4.8). Consequently,

\[
\text{Tr}(\vartheta^{g}) (L_{j,p}^{\mu} \varphi_{ST}^{(j)}) = p_b / \mu \varepsilon^{jtm} \frac{g_\mu}{g_\lambda} \dim L_{b_{i,m}}(\mu_{l,m})_\gamma.
\]

Summing over \(\mathcal{P}_{d,b} \) gives the desired formula for \(\text{ch}_1^{l}(L_{j,p}^{\mu}) \) and completes the proof. \(\square \)

Corollary 4.26. Suppose that \(\lambda, \mu \in \mathcal{P}_{d,b} \), and \(0 \leq t < l = p \lambda, l' = p \mu \). Then, in \(K \),

\[
p_{\mu/\lambda} \left(\frac{g_\lambda}{g_\mu} \right)^t d^{l}_{\mu,\lambda} = \varepsilon^{tm} d^{(1)}_{\lambda\mu} + \varepsilon^{2tm} d^{(2)}_{\lambda\mu} + \ldots + \varepsilon^{l'tm} d^{(l')}_{\lambda\mu}.
\]

Proof. If \(t = 0 \), then the result is just Lemma 4.24(c). If \(t \neq 1 \), then combining Lemmas 4.24(b) and 4.25 shows that

\[
\text{ch} \Delta_{b_{m}}(\lambda_{m})^{\otimes t} = \sum_{\mu \in \mathcal{P}_{d,b}} \sum_{1 \leq j < p_{\mu}} \varepsilon^{jtm} \frac{p_{b/\mu} g_{\mu}}{p_{b/\lambda} g_{\lambda}} L_{b_{m}}(\mu_{m})^{\otimes t} \text{ch} L_{b_{m}}(\mu_{m})^{\otimes t}.
\]

On the other hand, by Lemma 4.24(a),

\[
\text{ch} \Delta_{b_{m}}(\lambda_{m})^{\otimes t} = \sum_{\mu \in \mathcal{P}_{d,b}} d^{l}_{\mu,\lambda} \text{ch} L_{b_{m}}(\mu_{m})^{\otimes t}.
\]

As the characters \(\{ \text{ch} L_{b_{m}}(\nu_{m}) \} \) are linearly independent, comparing the coefficient of \(\text{ch} L_{b_{m}}(\mu_{m}) \) on both sides gives the result. \(\square \)

Corollary 4.27. Suppose that \(l \) divides \(p \), \(\lambda, \mu \in \mathcal{P}_{d,b} \) and that \(p \lambda = l = p \mu \). If \(0 \leq t < l \), then, in \(K \),

\[
\left(\frac{g_\lambda}{g_\mu} \right)^t d^{l}_{\mu,\lambda} = \varepsilon^{tm} d^{(1)}_{\lambda\mu} + \varepsilon^{2tm} d^{(2)}_{\lambda\mu} + \ldots + \varepsilon^{l'tm} d^{(l')}_{\lambda\mu}.
\]

We can now complete the proof of the main results of this paper. Recall from just before Theorem D in the introduction that we defined matrices \(V(l) \) and \(V_i(l) \), whenever \(l \) divides \(p \) and \(1 \leq i \leq l \).
Theorem 4.28. Suppose that $\lambda, \mu \in \mathcal{P}_{d,b}$ and $p_\lambda = l = p_\mu$ for some $b \in \mathcal{C}_{p,n}$. Then, for $1 \leq j \leq p_\lambda$,

$$\left[\Delta^\lambda_{b,p} : L^\mu_{j,p} \right] \equiv \frac{\det V_j(l)}{\det V(l)} \pmod{\text{char } K}.$$

In particular, $\left[\Delta^\lambda_{0,p} : L^\mu_{j,p} \right] = \frac{\det V_j(l)}{\det V(l)}$ if K is a field of characteristic zero.

Proof. By Corollary 4.27 the decomposition numbers $d^{(1)}_{\lambda \mu}, \ldots, d^{(l)}_{\lambda \mu}$ satisfy the matrix equation

$$V(l) \begin{pmatrix} d^{(1)}_{\lambda \mu} \\ \vdots \\ d^{(l)}_{\lambda \mu} \end{pmatrix} = \begin{pmatrix} \left(\frac{g^\lambda}{g^\mu} \right)^0 & d^{(l)}_{\lambda \mu \mu} \\ \vdots & \vdots \\ \left(\frac{g^\lambda}{g^\mu} \right)^{l-1} & d^{(l(l-1))}_{\lambda \mu \mu} \end{pmatrix}.$$

Hence, the theorem follows by Cramer’s rule.

Observe that the condition $p_\lambda = l = p_\mu$ says that the decomposition numbers $\left[\Delta^\lambda_{i,p} : L^\mu_{j,p} \right]$ are l-splittable for $1 \leq i, j < l$. Moreover, $\left[\Delta^\lambda_{i,p} : L^\mu_{j,p} \right] = \left[\Delta^\lambda_{0,p} : L^\mu_{j-i,p} \right]$ by (4.6). Hence, by Corollary 4.23 and Theorem 4.28 we have computed all of the l-splittable decomposition numbers of $S_{r,p,n}(b)$ and $H_{r,p,n}$.

Corollary 4.29. Suppose that $\lambda \in \mathcal{P}_{d,b}$, $\mu \in \mathcal{H}_{d,b}$, for some $b \in \mathcal{C}_{p,n}$, and that $p_\lambda = p_\mu = l$. Then, for $1 \leq i, j \leq l$,

$$\left[S_i : D^\mu_j \right] = \left[\Delta^\lambda_{i,p} : L^\mu_{j,p} \right] \equiv \det V_{j-i}(l) / \det V(l) \pmod{\text{char } K}.$$

In particular, this establishes Theorem D from the introduction. Finally, we are able to prove Theorem A, our main theorem from the introduction.

Proof of Theorem A. By Theorem 2.2 the decomposition numbers of $H_{r,p,n}$ are completely determined by the l-splittable decomposition numbers of the Hecke algebras $H_{s,l,m}$, where l divides p, $1 \leq s \leq r$ and $1 \leq m \leq n$. Hence, Theorem A follows from Corollary 4.29.

We remind the reader that the polynomials \hat{g}_λ, for $\lambda \in \mathcal{P}_b$, are determined by Proposition 3.32 and Remark 3.33. Hence, this result explicitly determines the l-splittable decomposition numbers of $S_{r,p,n}$ (and of $H_{r,p,n}$).

When K is a field of positive characteristic the results above only determine the l-splittable decomposition numbers of $S_{r,p,n}$ and $H_{r,p,n}$ modulo the characteristic of K.

Appendix A. Technical calculations for v_b

In Chapter 2, we omitted the proofs of Propositions 2.10 and 2.14 and Lemma 2.28 because their proofs are long and uninspiring calculations. This appendix proves these three results.

A.1. Proof of Proposition 2.10

We start by proving Proposition 2.10, which gives several different expressions for the element v_b from Definition 2.9.
We need the following fact, which is a generalization of a fundamental result of Dipper and James [10, Lemma 3.10].

Lemma A.1 [12, Proposition 3.4]. Suppose that a, b, s and t are positive integers with $1 \leq a + b < n$ and $1 \leq s \leq t \leq p$. Let $v_{a, b}^{(s, t)} = L_{1, a}^{(s, t)} T_{a, b} L_{1, b}^{(t+1, s-1)}$. Then

$$T_{i} v_{a, b}^{(s, t)} = v_{a, b}^{(s, t)} T_{(i)w_{a, b}}$$

and

$$L_{j} v_{a, b}^{(s, t)} = v_{a, b}^{(s, t)} L_{(j)w_{a, b}},$$

for all i, j such that $1 \leq i, j \leq a + b$ and $i \neq a, a + b$.

Recall from Subsection 2.1 that $b(k) = (b_{k+1}, b_{k+2}, \ldots, b_{k+p})$ if $b \in \mathscr{C}_{p, n}$ and $k \in \mathbb{Z}$, where we set $b_{i+p} = b_{i}$ for $1 \leq i \leq p$.

Lemma A.2. Suppose that $b \in \mathscr{C}_{p, n}$ and that $1 \leq j < s \leq p$. Then

$$\prod_{j \leq k < s} L_{1, b_{k+1}, b_{j}^{k}} \cdot \prod_{j < k \leq p} L_{1, b_{j}^{k-1}} \cdot \prod_{1 \leq i < j} L_{1, b_{i+1}^{p}},$$

where all products are read from left to right with decreasing values of i and k.

Proof. Let $L(s)$ and $R(s)$, respectively, be the left- and right-hand sides of the formula in the statement of the lemma. We show that $L(s) = R(s)$ by induction on s. To start the induction, observe that, by our conventions,

$$L(j) = \prod_{j < k \leq p} L_{1, b_{j}^{k-1}} \cdot \prod_{1 \leq i < j} L_{1, b_{i+1}^{p}} = R(j).$$

Hence, the lemma is true when $s = j$. If $j \leq s < p$, then, by induction,

$$L(s + 1) = L_{1, b_{s+1}, b_{j}^{s}} L(s) = L_{1, b_{s+1}, b_{j}^{s}} R(s),$$

$$= L_{1, b_{s+1}, b_{j}^{s}} \prod_{j+1 \leq k < s} L_{1, b_{k+1}, b_{j}^{k}},$$

$$\times L_{1, b_{j+1}^{s+1}, b_{j}} \prod_{1 \leq i < j} L_{1, b_{i+1}^{p}},$$

$$= L_{1, b_{s+1}, b_{j}^{s}} \prod_{j+1 \leq k < s} L_{1, b_{k+1}, b_{j}^{k}},$$

$$\times L_{1, b_{j+1}^{s+1}, b_{j}} \prod_{1 \leq i < j} L_{1, b_{i+1}^{p}}.$$
since $T_{n,b}$ commutes with $L^{(i)}_{1,k}$ by Lemma 2.6 whenever $a + b \leq k$ and $1 \leq i \leq p$ (we use this fact several times below). Therefore, using Lemmas 2.8 and A.1,

\[
L(s + 1) = L^{(j,s)}_{1,b_{j+1},b_{j}^{p+1}} T_{b_{j+1},b_{j}^{p+1}}^{(b_{j}^{p+1})} \prod_{j+1 \leq k < s} L^{(j+1,k)}_{1,b_{k+1},b_{k}^{p+1}} \cdot \prod_{1 \leq i < j} L^{(i)}_{b_{j+1},b_{j}^{p+1}} = L^{(j)}_{b_{j+1},b_{j}^{p+1}} \prod_{j+1 \leq k < s} L^{(j+1,k)}_{1,b_{k+1},b_{k}^{p+1}} \cdot \prod_{1 \leq i < j} L^{(i)}_{b_{j+1},b_{j}^{p+1}} = v_{b_{j+1},b_{j}^{p+1}}^{(j+1,s)} L^{(j)}_{1,b_{j+1},b_{j}^{p+1}} \prod_{j+1 \leq k < s} L^{(j+1,k)}_{1,b_{k+1},b_{k}^{p+1}} \cdot \prod_{1 \leq i < j} L^{(i)}_{b_{j+1},b_{j}^{p+1}} = R(s + 1),
\]

where in the two lines we have, in essence, reversed some of the previous steps. This completes the proof.

We are now ready to prove Proposition 2.10. This result includes the definition of v_{b} as the special case $j = 1$. For the reader’s convenience we restate the result.

Proposition A.3. Suppose that $b \in \mathcal{C}_{p,n}$ and $1 \leq j \leq p$. Then

\[
v_{b} = \prod_{j+1 \leq k < p} L^{(j,k)}_{1,b_{k+1},b_{k}^{p}} \cdot \prod_{1 \leq i < j} L^{(i)}_{1,b_{i+1}} \cdot \prod_{j+1 \leq k < p} L^{(k)}_{1,b_{k+1},b_{k}^{p}} \cdot \prod_{1 \leq i < j} T_{b_{i},b_{i+1}}^{(i)} L^{(i,p)}_{1,b_{i+1},b_{i+1}};
\]

where all products are read from left to right with decreasing values of i and k.

Proof. We argue by induction on j. When $j = 1$, the lemma is a restatement of Definition 2.9, so there is nothing to prove. Suppose now that $1 \leq j < p$ and that the formula in the proposition holds. Then, by induction and Lemma A.2 (with $s = p$), we see that

\[
v_{b} = \prod_{j+1 \leq k < p} L^{(j,k)}_{1,b_{k+1},b_{k}^{p}} \cdot \prod_{1 \leq i < j} L^{(i)}_{1,b_{i+1}} \cdot \prod_{j+1 \leq k < p} L^{(k)}_{1,b_{k+1},b_{k}^{p}} \cdot \prod_{1 \leq i < j} T_{b_{i},b_{i+1}}^{(i)} L^{(i,p)}_{1,b_{i+1},b_{i+1}} \times \prod_{1 \leq i < j} T_{b_{i},b_{i+1}}^{(i)} L^{(i,p)}_{1,b_{i+1},b_{i+1}}
\]

Since $T_{n,b}$ commutes with $L^{(i)}_{1,k}$ by Lemma 2.6 whenever $a + b \leq k$ and $1 \leq i \leq p$ (we use this fact several times below). Therefore, using Lemmas 2.8 and A.1,
Therefore, by Lemma A.1, we have

\[\prod_{j+1 \leq k < p} L_{b_{k+1}}^{(j+1,k)} T_{b_{k+1}, b_{j+1}} \cdot \prod_{1 \leq i < j} L_{b_{i+1}, b_{j+1}}^{(i)} \cdot \prod_{1 \leq i < j} L_{b_{i+1}, b_{j+1}}^{(i,j)} \cdot \prod_{j+1 < k \leq p} L_{b_{j+1}, b_{j+1}}^{(k)} \]

\[\times \prod_{1 \leq i < j} T_{b_{i+1}, b_{j+1}} L_{b_{i+1}, b_{j+1}}^{(i,p)} \]

\[= \prod_{j+1 \leq k < p} L_{b_{k+1}}^{(j+1,k)} T_{b_{k+1}, b_{j+1}} \cdot \prod_{1 \leq i < j} L_{b_{i+1}, b_{j+1}}^{(i)} \cdot \prod_{j+1 < k \leq p} L_{b_{j+1}, b_{j+1}}^{(k)} \]

\[\times \prod_{1 < i < j} T_{b_{i+1}, b_{j+1}} L_{b_{i+1}, b_{j+1}}^{(i,p)} \]

which is precisely the statement of the proposition for \(j + 1 \).

\[\square \]

A.2. Proof of Proposition 2.14

Proposition 2.14 is quite an important result because it implies the existence of the central element \(z_b \in \mathcal{H}[d, b] \). See the proof of Lemma 2.21.

Proposition A.4. Suppose that \(b \in \mathcal{E}_{p,n} \). Then \(Y_p Y_{p-1} \ldots Y_1 = v_b T_b \).

Proof. To prove the lemma, it is enough to show by induction on \(t \) that

\[Y_t \ldots Y_1 = L_{1,b_t}^{(1,t-1)} T_{b_t, b_{t-1}} \ldots L_{1,b_2}^{(1,1)} T_{b_2, b_1} \cdot L_{1,b_1}^{(t)} \]

\[\times \prod_{1 \leq s \leq t} L_{1,b_s}^{(s)} \cdot T_{b_s, b_{s+1}} \ldots T_{b_1, b_p} \]

When \(t = 1 \), the right-hand side of this equation is just \(Y_1 \), so there is nothing to prove. Now suppose that \(1 < t < p - 1 \). Then, by induction and Lemma 2.7,

\[Y_{t+1} \ldots Y_1 = L_{1,b_{t+1}}^{(t+1,t-p)} T_{b_{t+1}, b_{t-p+1}} \cdot L_{1,b_t}^{(1,t-1)} T_{b_t, b_{t-1}} \ldots L_{1,b_2}^{(1,1)} T_{b_2, b_1} \cdot L_{1,b_1}^{(t)} \]

\[\times \prod_{1 \leq s \leq t} L_{1,b_s}^{(s)} \cdot T_{b_s, b_{s+1}} \ldots T_{b_1, b_p} \]

\[= L_{1,b_{t+1}}^{(t+1,t-p)} T_{b_{t+1}, b_{t-p+1}} L_{1,b_t}^{(1,t-1)} T_{b_t, b_{t-1}} \ldots L_{1,b_2}^{(1,1)} T_{b_2, b_1} \cdot L_{1,b_1}^{(t)} \]

\[\times \prod_{1 \leq s \leq t} L_{1,b_s}^{(s)} \cdot T_{b_s, b_{s+1}} \ldots T_{b_1, b_p} \]

Therefore, by Lemma A.1, we have

\[Y_{t+1} \ldots Y_1 = \prod_{1 \leq s \leq t} L_{1,b_s}^{(s)} \cdot T_{b_s, b_{s+1}} \ldots T_{b_1, b_p} \]

completing the proof of our claim. Taking \(t = p \) in the claim completes the proof.

\[\square \]
A.3. Proof of Lemma 2.28

In this section, we prove Lemma 2.28 and hence complete the proofs of all of our main results. Recall from Subsection 2.6 that \(\mathcal{H}_m^L \) is the \(R \)-submodule of \(\mathcal{H}_{r,n} \) spanned by the elements
\[
\{ T_w L_{a_1} \ldots L_{a_{m-1}} | 0 \leq a_1, \ldots, a_{m-1} < r \text{ and } w \in S_m \}.
\]

To prove Lemma 2.28, we first need the following result.

Lemma A.5. Suppose that \(a, b, k \) and \(l \) are positive integers such that \(k \leq l \leq a \) and \(1 \leq s \leq t \leq p \). Then
\[
\mathcal{L}_{k,l}^{(s,t)}(T_{a,b}) = T_{a,b} \left(\mathcal{L}_{b+k,b+l}^{(s,t)}(Q) + \sum_{m=b+k}^{b+l} \frac{d(t-s+1)}{h_{m,e} L_m^e} \right),
\]
for some \(h_{m,e} \in \mathcal{H}_m^L \).

Proof. For the duration of this proof let \(L_{k,l}(Q) = \prod_{m=k}^{l}(L_m - Q) \), for \(Q \in R \). Then \(\mathcal{L}_{k,l}^{(s,t)} = \prod_{i=1}^{d} \prod_{u=s}^{t} L_{k,i}(Q) \). By the right-handed version of Mathas [28, Lemma 5.6],
\[
L_{k,i}(Q)T_{a,b} = T_{a,b} \left(\mathcal{L}_{b+k,b+l}^{(s,t)}(Q) + \sum_{m=b+k}^{b+l} h_{m,L_m} \right)
\]
for some \(h_m \in \mathcal{H}_m^L \). Therefore, there exist elements \(h_{m,i,t} \in \mathcal{H}_m^L \) such that
\[
\mathcal{L}_{k,l}^{(s,t)} T_{a,b} = T_{a,b} \prod_{i=1}^{d} \prod_{u=s}^{t} \left(\mathcal{L}_{b+k,b+l}^{(s,t)}(Q) + \sum_{m=b+k}^{b+l} h_{m,i,u} L_m \right).
\]
Collecting the terms in the product, we obtain \(\mathcal{L}_{b+k,b+l}^{(s,t)} \), as the leading term, plus a linear combination of terms that are products of \(d(t-s+1) \) elements, each of which is equal to either \(L_{b+k,b+l}(Q) \) or \(h_{m,i,u} L_m \), for some \(m, i, u \) as above. Expand the factors \(L_{b+k,b+l}(Q) \) into a sum of monomials in \(L_{b+k}, \ldots, L_{b+l} \) and consider the resulting linear combination of products of these summands with the terms \(h_{m,i,u} L_m \) above. Fix one of these products of \(d(t-s+1) \) terms, say \(X \), and let \(m \) be maximal such that \(L_m \) appears in \(X \). By assumption the rightmost \(L_m \), which appears in \(X \), cannot have both \(T_m \) and \(T_{m-1} \) to its right, and so, using Lemma 2.6, we can rewrite \(X \) as a linear combination of terms of the form \(h_{X,e} L_m^e \), where \(1 \leq e \leq d(t-s+1) \) and \(h_{X,e} \in \mathcal{H}_m^L \). Note that when we rewrite \(X \) in this form, some of the \(L_m \), with \(m' < m \), are changed into \(L_m \) when we move them to the right. However, \(T_m \) never appears to the right of these newly created \(L_m \). The final exponent of \(L_m \) is at most \(d(t-s+1) \) because no factor can increase the exponent of \(L_m \) by more than 1. The result follows. \(\square \)

Lemma A.6. Suppose that \(b \in \mathcal{C}_{p,n} \). Then
\[
v_{b}^{+} = T_b \left(\mathcal{L}_{b_1+1,n}^{(1)} \mathcal{L}_{b_1+1,n}^{(2)} \ldots \mathcal{L}_{b_1-1+1,n}^{(p-1)} + \sum_{l=1}^{b_1+1} \sum_{m=b_1+1}^{b_1+1} \sum_{e=1}^{d l} h_{l,m,e} L_m^e \right),
\]
for some \(h_{l,m,e} \in \mathcal{H}_m^L \).

Proof. Recall that \(v_{b}^{+} = \mathcal{L}_{1,b_p}^{(p-1)} T_{b_p,b_1}^{(1)} \mathcal{L}_{b_1-1,b_2}^{(1)} T_{b_2,b_1}^{(2)} \ldots \mathcal{L}_{b_1-1,b_p}^{(1)} T_{b_p,b_1}^{(p-2)} \mathcal{L}_{1,b_1}^{(1)} T_{b_1,b_1}^{(1)} \). To prove the lemma, let \(v_{b,p}^{+} = 1 \) and set \(v_{b,k}^{+} = v_{b,k+1} \mathcal{L}_{1,b_{k+1}}^{(1)} T_{b_{k+1},b_{k+1}}^{(1)} \), for \(1 \leq k < p \). We claim that if
\[1 \leq k \leq p, \text{ then} \]
\[v_{b,k}^+ = T_{(b_1, \ldots, b_{k+1}, b_k^+)} \left(L_{b_1^{p-1}+1, b_1}^{(1,p-1)} \cdots L_{b_1^{k+1}, b_1}^{(1,k)} + \sum_{l=k+1}^{p-1} b_l^{k+1} + \sum_{l=k+1}^{p-1} \sum_{m=b_l^{k+1}+1}^{p-1} h_{l,m,e} L_m^{e} \right), \]

for some \(h'_{l,m,e} \in R_m^L \). When \(k = p \), there is nothing to prove, so we may assume that \(1 \leq k < p \) and, by induction, that the claim is true for \(v_{b,k+1}^+ \). Therefore, by Lemma A.5,

\[v_{b,k}^+ = T_{(b_1, \ldots, b_{k+2}, b_1^{k+1})} \left(L_{b_1^{p-1}+1, b_1}^{(1,p-1)} \cdots L_{b_1^{k+1}, b_1}^{(1,k+1)} + \sum_{l=k+1}^{p-1} b_l^{k+1} + \sum_{l=k+1}^{p-1} \sum_{m=b_l^{k+1}+1}^{p-1} h'_{l,m,e} L_m^{e} \right) \times T_{b_1^{k+1}} \left(L_{b_1^{k+1}+1, b_1}^{(1,k)} + \sum_{m=b_1^{k+1}+1}^{p-1} \sum_{e=1}^{h''_{m,e} L_m^{e}} \right), \]

for some \(h''_{l,m,e}, h''_{m,e} \in R_m^L \). Now, by Lemma 2.6, \(T_{b_1^{k+1}b_1} \) commutes with \(L_m \) whenever \(m > b_1^{k+1} \). Moreover, since \(m > b_1^{k+1} \),

\[h'_{l,m,e} L_m T_{b_1^{k+1}, b_1} = h'_{l,m,e} T_{b_1^{k+1}, b_1} L_m = T_{b_1^{k+1}, b_1} h''_{l,m,e} L_m, \]

where \(h''_{l,m,e} = T_{b_1^{k+1}, b_1} h'_{l,m,e} T_{b_1^{k+1}, b_1} \). It is easy to check that \(h''_{l,m,e} \in R_m^L \). Next, note that

\[T_{(b_1, \ldots, b_{k+2}, b_1^{k+1})} T_{b_1^{k+1}, b_1} = T_{(b_1, \ldots, b_{k+1}, b_1^{k+2})}. \]

Therefore, \(v_{b,k}^+ \) is equal to

\[v_{b,k}^+ = T_{(b_1, \ldots, b_{k+1}, b_1^{k+2})} \left(L_{b_1^{p-1}+1, b_1}^{(1,p-1)} \cdots L_{b_1^{k+2}, b_1}^{(1,k+1)} + \sum_{l=k+1}^{p-1} b_l^{k+2} + \sum_{l=k+1}^{p-1} \sum_{m=b_l^{k+2}+1}^{p-1} h''_{l,m,e} L_m^{e} \right) \times \left(L_{b_1^{k+1}+1, b_1}^{(1,k)} + \sum_{m=b_1^{k+1}+1}^{p-1} \sum_{e=1}^{h''_{m,e} L_m^{e}} \right). \]

To complete the proof of the claim, observe that

\[L_{b_1^{p-1}+1, b_1}^{(1,p-1)} \cdots L_{b_1^{k+2}, b_1}^{(1,k+1)} = L_{b_1^{k+1}+1, n}^{(1)} \cdots L_{b_1^{k+1}+1, n}^{(k+1)} \cdots L_{b_1^{k+2}+1, n}^{(k+2)} \cdots L_{b_1^{k+1}+1, n}^{(p-1)} \cdots \]

Therefore, when we write this element as a polynomial in \(L_{b_1^{k+1}+1}, \ldots, L_n \), the exponent of \(L_m \) is at most \(dl \) if \(b_1^{l} < m \leq b_1^{l+1} \) for some \(k+1 \leq l \leq p-1 \). Using this observation, it is now a straightforward exercise to expand the formula for \(v_{b,k}^+ \) above and show that \(v_{b,k}^+ \) can be written in the required form, thus completing the proof of the claim.

Returning to the proof of the lemma, observe that \(v_0^+ = v_{b_1}^+ \) and that the statement of the lemma is the special case of the claim above when \(k = 1 \) (and setting \(k = 0 \) in the last displayed equation).

\[\square \]

References

1. S. Ariki, ‘On the semi-simplicity of the Hecke algebra of \((\mathbb{Z}/r\mathbb{Z}) \wr S_n \)’, J. Algebra 169 (1994) 216–225.
2. S. Ariki, ‘Representation theory of a Hecke algebra of \(G(r,p,n) \)’, J. Algebra 177 (1995) 164–185.
3. S. Ariki, ‘On the decomposition numbers of the Hecke algebra of \(G(m,1,n) \)’, J. Math. Kyoto Univ. 36 (1996) 789–808.
4. S. Ariki and K. Koike, ‘A Hecke algebra of \((\mathbb{Z}/r\mathbb{Z}) \wr S_n \) and construction of its irreducible representations’, Adv. Math. 106 (1994) 216–243.
5. D. J. Benson, Representations and cohomology, Cambridge Studies in Advanced Mathematics 30 (Cambridge University Press, Cambridge, 1991).
6. M. Broué and G. Malle, ‘Zyklotomische Heckealgebren’, Astérisque 212 (1993) 119–189.
7. M. Broué, G. Malle and R. Rouquier, ‘Complex reflection groups, braid groups, Hecke algebras’, J. reine angew. Math. 500 (1998) 127–190.
8. M. Chlouveraki and N. Jacon, ‘Schur elements for the Ariki–Koike algebras and applications’, Preprint, 2011, arXiv1105.59.
9. C. W. Curtis and I. Reiner, Methods of representation theory, vols I and II (Wiley, New York, 1987).
10. R. Dipper and G. James, ‘Representations of Hecke algebras of type B_n’, J. Algebra 146 (1992) 454–481.
11. R. Dipper, G. James and A. Mathas, ‘Cyclotomic q-Schur algebras’, Math. Z. 229 (1999) 385–416.
12. R. Dipper and A. Mathas, ‘Morita equivalences of Ariki–Koike algebras’, Math. Z. 240 (2002) 579–610.
13. J. Du and H. Rui, ‘Ariki–Koike algebras with semisimple bottoms’, Math. Z. 234 (2000) 807–830.
14. J. Du and H. Rui, ‘Specht modules for Ariki–Koike algebras’, Comm. Algebra 29 (2001) 4710–4719.
15. D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics 150 (Springer, New York, 1995). With a view toward algebraic geometry.
16. M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori–Hecke algebras (Oxford University Press, New York, 2000).
17. G. Genet, ‘On decomposition matrices for graded algebras’, J. Algebra 274 (2004) 523–542.
18. G. Genet and N. Jacon, ‘Modular representations of cyclotomic Hecke algebras of type $G(r,p,n)$’, Int. Math. Res. Not. 2006 (2006), Art. ID 93049, 18.
19. V. Ginzburg, N. Guay, E. Opdam and R. Rouquier, ‘On the category O for rational Cherednik algebras’, Invent. Math. 154 (2003) 617–651.
20. J. J. Graham and G. I. Lehrer, ‘Cellular algebras’, Invent. Math. 123 (1996) 1–34.
21. J. Hu, ‘A Morita equivalence theorem for Hecke algebra $H_q(D_n)$ when n is even’, Manuscripta Math. 108 (2002) 409–430.
22. J. Hu, ‘Modular representations of Hecke algebras of type $G(p,p,n)$’, J. Algebra 274 (2004) 446–490.
23. J. Hu, ‘The number of simple modules for the Hecke algebras of type $G(r,p,n)$’, J. Algebra 321 (2009) 3375–3396. With an appendix by Xiaoyi Cui.
24. J. Hu, ‘On the decomposition numbers of the Hecke algebra of type D_n when n is even’, J. Algebra 321 (2009) 1016–1038.
25. J. Hu and A. Mathas, ‘Morita equivalences of cyclotomic Hecke algebras of type $G(r,p,n)$’, J. reine. angew Math. 628 (2009) 109–194.
26. G. D. James and A. Mathas, ‘The Jantzen sum formula for cyclotomic q–Schur algebras’, Trans. Amer. Math. Soc. 352 (2000) 5381–5404.
27. G. Malle and A. Mathas, ‘Symmetric cyclotomic Hecke algebras’, J. Algebra 205 (1998) 275–293.
28. A. Mathas, ‘Matrix units and generic degrees for the Ariki–Koike algebras’, J. Algebra 281 (2004) 695–730.

Jun Hu
Department of Mathematics
Beijing Institute of Technology
Beijing 100081
China
and
School of Mathematics and Statistics F07
University of Sydney
NSW 2006
Australia
junhu303@yahoo.com.cn

Andrew Mathas
School of Mathematics and Statistics F07
University of Sydney
NSW 2006
Australia
andrew.mathas@sydney.edu.au