Do HIV patients have mandibular osteoporotic alterations? A mandibular cortical index case-control study

Aline Yukari NAGAI1, Lucas MORITA1, Luciana MUNHOZ1, Emiko Saito ARITA1

1 - Department of Stomatology, School of Dentistry, São Paulo University, 2227 Lineu Prestes Avenue. Zip Code: 05508-000 São Paulo, SP, Brazil.

doi: 10.14295/bds.2021.v24i1.2157

ABSTRACT

Objective: The objective of this study was to evaluate mandibular osteoporotic alterations in patients with HIV infection in comparison to non-HIV-infected patients using panoramic radiographs. Material and Methods: 26 HIV-infected patients and 142 non-HIV-infected patients (control group) were included in this study. Panoramic radiographs of the participants were assessed considering mandibular cortical index (MCI). Non-parametric comparisons between groups were performed, using Mann-Whitney test, at a level significance level of p = 0.05. Results: HIV-infected patients presented lower bone mineral density (BMD) at mandible, assessed by MCI in panoramic radiographs when compared to non-HIV-infected patients. The medication intake of HIV-infected patients was highly heterogeneous and could not be associated to the low BMD presented in the mandibular cortex. Conclusions: HIV-infected patients may present lower mandibular BMD than non-HIV-infected patients.

KEYWORDS
Panoramic radiograph; osteoporosis; bone mineral density; HIV.

RESUMO

Objetivo: O objetivo deste estudo foi avaliar as alterações osteoporóticas mandibulares em pacientes com infecção por HIV comparando-os com pacientes não infectados, por meio de radiografias panorâmicas. Material e Métodos: 26 pacientes infectados pelo HIV e 142 pacientes não infectados (grupo controle) foram incluídos neste estudo. As radiografias panorâmicas dos participantes foram avaliadas considerando o índice da cortical mandibular (MCI). Comparações não paramétricas entre os grupos foram realizadas, com o teste de Mann-Whitney e nível de significância de p = 0.05. Resultados: Pacientes infectados pelo HIV apresentaram menor densidade mineral óssea (BMD) na mandíbula, avaliada pelo MCI em radiografias panorâmicas, quando comparados aos pacientes não infectados pelo HIV. A ingestão de medicamentos de pacientes infectados pelo HIV foi altamente heterogênea e não pôde ser associada à baixa BMD apresentada no córtex mandibular. Conclusões: Pacientes infectados pelo HIV podem apresentar BMD mandibular menor do que pacientes não infectados pelo HIV.

PALAVRAS-CHAVE
Radiografia panorâmica; Osteoporose; Densidade mineral óssea e HIV.
INTRODUCTION

Approximately 43 million people are infected by the human immunodeficiency virus (HIV), and the number of cases is increasing every year [1]. The treatment for suppression of HIV replication is effective in the progression of the disease, [2] although does not cure the HIV infection [1]. Hence, HIV patients can survive in asymptomatic chronic stages with reduced viral load [1].

Osteoporosis is a worldwide prevailing disease affecting nearly 27.5 million only in Europe, and more than 20 million Brazilians over 65 years old [3-5]. This disorder occurs when the process of bone remodeling becomes unbalanced due to major reabsorption of osteoclasts rather than osteoblasts [6,7]. There are several factors associated with this disorder such as lifestyle, menopause, endocrine hormones, cytokines and drugs that may affect bone remodeling [6,7]. Osteoporotic fractures is the most frequent clinical finding of osteoporosis, and these fractures may lead to morbidity and mortality [8]. As ageing, HIV patients can experience relatively higher reduction on bone mineral density (BMD) than general population [1]. Dual X-Ray Absorptiometry (DXA) is the method of choice to diagnose osteoporosis [9].

DXA scan is an accurate test to measure bone mineral density (BMD) and to diagnose osteoporosis [10]. Based on World Health Organization (WHO) criteria, the DXA result of a T-score of ≥ −1 is considered normal; between - 1.0 and - 2.5 is considered as osteopenia or low bone mass; and a T-score of ≤ −2.5 corresponds to a diagnosis of osteoporosis [11]. DXA examinations can also be used to monitor response to treatment, predict fracture risk and has the ability to verify effectiveness of antifracture therapies [12].

Although DXA scan is the most accepted method for BMD evaluation, it is an expensive examination [13] and has limited accessibility in developing countries [14]. Hence, imaging examinations such as panoramic radiographs, often requested by dental professionals, can be applied as an opportunistic screening tool for the identification of patients with high risks low BMD [13]. Panoramic radiographs have advantages as their low cost, wide easy access and a low radiation exposure [15].

Mandibular cortical index (MCI), obtained from panoramic radiographs, is a reliable radiomorphometric index in the screening patients with low BMD [16,17]. MCI reliability was exhausted confirmed by a broad range of researchers, which verified its correlation with BMD [8,15,17,18]. Briefly, the MCI is a qualitative assessment of the endosteal margin of mandible, specifically between the bicuspids and molar area, in which the presence of radiolucent defects is verified [17].

In HIV-infected patients, the pathogenesis of osteoporosis differs from the general population, as a number of modificatory factors, such as the intake of antiretrovirals, may alter the bone metabolism [19,20]. The decrease in BMD in HIV-infected patients treated with antiretrovirals is pronounced during the first six months after first exposure to antiretrovirals, but stabilize in long-term therapy [21]. However, it is hypothesized that the decrease of BMD in HIV patients may be related to hormonal changes caused by antiretrovirals that affects bone turnover [22]. Considering the types of antiretrovirals that are more often related to BMD decrease in HIV-infected patients, literature points that among nucleoside reverse transcriptase inhibitors, zidovudine can increase osteoclast activity and tenofovir can prejudice bone mineralization [23].

Hence, HIV-infected patients may present higher frequency of deleterious effects of osteoporosis at younger ages, due to the antiretroviral medication intake. As DXA is not frequently performed in younger patients, but,
eventually, panoramic radiographs could be performed in the beginning of dental treatments, MCI can be applied as a screening tool to low BMD in these patients.

Thus, this investigation aimed to assess the mandibular BMD of HIV-infected patients, using the MCI from panoramic radiographs. Additionally, MCI from HIV-infected patients was compared with MCI of non-HIV-infected patients, with the same age and the same gender.

MATERIAL AND METHODS

Study participants and inclusion and exclusion criteria

This retrospective study was conducted with 26 patients who had a confirmed diagnosis of HIV infection (from the 23607.888 São Paulo, Brazil) and 142 non-HIV-infected patients (from São Paulo University Dentistry School, Brazil) who underwent panoramic radiographic examinations for dental treatment. Approval was obtained from the Ethics Committee at São Paulo University Dentistry and Medicine School, Dentistry University database.

The guidelines of Helsinki were followed in this investigation.

Panoramic radiographic examinations with technical failures were excluded. The non-HIV-infected patients (control group) were selected randomly in order to match the age and gender of the HIV-infected patients.

MCI analysis was performed independently by four experienced radiologists two weeks apart to avoid memory bias. Intraobserver reliability was assessed between measurements. The radiologists assessed the appearance of the cortical bone at the mandibular endosteal margin on both sides of the mandible, between the mental foramen to the posterior limit of the angle of the mandible, using the MCI (Klemmetti) classification proposed in 1994 [17]. This classification is as follows: C1= normal, when a sharp and marked continuous endosteal margin is observed; C2= moderately eroded, with evidence of lacunar resorption and C3= severely eroded. A schematic explanation of the aforementioned is available on Figure 1. A figure containing panoramic radiographs of this sample is demonstrated on Figure 2.

Statistical Analysis

For MCI, non-parametric comparisons between groups (Mann-Whitney test.) were performed. Intra- and inter-observer agreement was assessed using the Kappa test. Agreement between observers for MCI was evaluated using this study panoramic radiographs in random order and with a seven-day interval between MCI assessments to avoid memory bias.

All statistical analyses were performed using the IBM SPSS Statistics 24 software (SPSS, Inc., Chicago, IL, USA).
Do HIV patients have mandibular osteoporotic alterations?
A mandibular cortical index case-control study
Nagai AY et al.
Braz Dent Sci 2021 Jan/Mar;24(1)

RESULTS

Descriptive data

Table I depicts the number, gender, median age of HIV-infected patients, as well as the medication intake description. A detail of the HIV-infected patients with MCI C2 and C3, which is associated with low BMD at mandible according to medication intake is also described.

Table I - Descriptive statistics of HIV-infected patients. Median age, gender, medication intake and a detail of C2 and C3 mandibular cortical index patient’s medication intake

Variable	Total of patients assessed	Gender	Median age
		Number of patients	1(26-73)
Medication intake		Number of patients	
AZT + 3TC + Biovir	6	3	
Biovir + Kaletra	1	1	
TDF + 3TC + EFV	2	2	
Biovir + ATZ + Ritonavir	2	1	
TDF + 3TC + EFV	2	1	
AZT + ATZ + 3TC + Vit A e D	1	1	
TDF + 3TC + RAL + Duran	1	1	
TNF + 3TC + EFV	1	1	
Biovir + EFV	2	2	
AZT + 3TC + Kaletra	2	2	
AZT + 3TC + EFV	2	1	
AZT + ETC + NVP	1	1	
NEV + EST + LAMII	1		
Puran T4 + Assert	2		

Regarding to MCI, differences between groups are available in Table II. The HIV-infected patients presented a higher MCI classification (median= 2) than non-HIV-infected patients (median= 1), with a p value of 0.067.

Table II - Mandibular cortical index classification for HIV-infected patients and non-HIV-infected patients (control group) and differences between groups according to Mann-Whitney test

Mandibular cortical index	HIV	Control
C1	12	94
C2	12	39
C3	2	9
Median	2a	1b
Total	26	142
p value	p= 0.067	

Legend: distinct letters indicate statistically significant difference between groups.

The Kappa test for MCI showed significant intra and interobserver values (0.82 (p = 0.01) and 0.87 (p = 0.02), respectively).

DISCUSSION

In the present study, we found that HIV-infected patients presented lower mandibular BMD, when assessed using MCI in panoramic radiographs, when compared to non-HIV-infected patients. As MCI can be applied as a screening tool to low BMD and previous researchers considering HIV-infected patients mention the higher risk of osteoporosis in HIV-infected patients, our findings corroborate and emphasize the literature.

It is well known that the prevalence of low BMD in HIV-infected patients is relatively higher when compared to the general population [24]. HIV-infected patients are believed to be three times more likely to present osteoporosis than non-HIV-infected patients [23]. HIV infection and the use of antiretroviral drugs (ART) modifies the regulatory markers of bone absorption and resorption, leading to lower BMD [25].

Effective combined ART uses drugs targeting viral enzymes in HIV infections (26). Based on their resistance profiles and molecular mechanisms, these drugs are divided into six distinct classes: nucleoside/ nucleotide reverse transcriptase inhibitors (NRTIS), non-nucleoside
reverse transcriptase inhibitors (NNRTIs),
integrase inhibitors, protease inhibitors (PIs),
fusion inhibitors and co-receptor antagonists
[27].

Although certain sociodemographic
characteristics of individuals with HIV infection,
such as smoking and liver disease, may be prone
to low BMD, it is established that exposure to
antiretroviral therapy affects BMD directly and
indirectly, with the impact on BMD differing
between the ART classes and among the
individual antiretroviral agents within a given
class of drugs [19]. In the present study sample
of HIV-infected patients, it was not possible to
correlate a specific ART to the low BMD as the
combination of drugs are highly heterogeneous.

Some studies show that the initiation of
ART use reduces the BMD from 6% to 2% in 1
to 2 years [28]. Greater losses in BMD at the
beginning of treatment with ART are observed
with the use of nucleoside / nucleotide reverse
transcriptase inhibitors and protease inhibitors,
but less with the integrase inhibitor raltegravir
[19].

The extent of BMD loss depends in part
on the specific drugs used in the treatment [29].
Furthermore, the characteristics and magnitude
of the change in BMD between HIV viremic
and HIV avirenic infected patients may occur [19].

Moreover, the reduction in BMD in HIV-
infected patients can occur as a secondary event
to the immune reconstitution and / or an effect
of ART on bone metabolism. BMD modifications
may occur due to a pattern of early increases in
bone resorption markers, followed by delayed
increases in bone formation markers [30].

The most negative outcome of osteoporosis
is the low-energy fractures due to low BMD
[6,31]. Considering the aforementioned, Triant
et al. found that fractures prevalence was higher
in HIV-infected patients when compared to a
control group [32].

CONCLUSIONS

When evaluating mandibular BMD
modifications in HIV-infected patients, Caputo
et al. observed that postmenopausal women
presented higher risk of low BMD when
compared to non-HIV infected patients, which is
in concordance with the present study [36].

Patients with a moderately eroded
endosteal margins, as detected in MCI, have a
significant chance to have at least osteopenia.
According to Calciolari et al., the presence of any
cortical erosion in endosteal margin, verified by
MCI, can be applied as a low BMD indicator,
with a chance of 80% of these patients have at
least osteopenia [37].

The limitations of the present investigation
are the retrospective nature of this investigation,
the limited number of patients and the lack
of information regarding to the HIV status of
the HIV-infected patients, such as the lack of
information related to viremia and CD4 + cell
count of HIV-infected patients.
of the possibility to screen these patients using panoramic radiographs, in order to avoid low-energy fractures and provide proper refer to early treatment for systemic low BMD.

Conflicts of interest

Lucas Morita, Aline Nagai, Luciana Munhoz, and Emiko Saito Arita declares no conflicts of interest.

No financial support to report.

REFERENCES

1. Brody C, Sok S, Tuot S, Pantelic M, Restoy E, Yi S. Do combination HIV prevention programmes result in increased empowerment, inclusion and agency to demand equal rights for marginalised populations in low-income and middle-income countries? A systematic review. BMJ Glob Health. 2019 Oct;4(5):e001660. doi:10.1136/bmjgh-2019-001660

2. Rodger AJ, Lodwick R, Schechter M, Deeks S, Amin J, Gilson R, et al. Mortality in well controlled HIV in the continuous antiretroviral therapy arms of the SMART and ESPRIT trials compared with the general population. AIDS. 2013 Mar;27(6):973-9. doi:10.1097/QAD.0b013e32835ba69c

3. Hermund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013 Oct;8:36. doi:10.1007/s11657-013-0136-1.

4. Maninho GC, Guerra JP, Drummond JB, Silva RC, Soares MM. The burden of osteoporosis in Brazil. Arq Bras Endocrinol Metabol. 2014 Jul;58(5):434-43. doi:10.5905/0029-7303000003203

5. Baccaro LF, Conde DM, Costa-Paiva L, Pinto-Neto AM. The epidemiology and management of postmenopausal osteoporosis: a viewpoint from Brazil. Clin Interv Aging. 2015 Mar;10:583-90. doi:10.2147/CIA.S54614.

6. Billington EO, Reid IR. Pathogenesis of Osteoporosis: In: Huhtaniemi I, Martini L, editors. Encyclopedia of Endocrine Diseases (Second Edition). Oxford: Academic Press; 2019. p. 222-32.

7. Yedavalli-Yellayi S, Ho AM, Patalinghug EM. Update on Osteoporosis. Primary Care Clinics in Office Practice. 2019 Mar;64(1):75-90. doi:10.1016/j.pcp.2018.10.014

8. Munhoz L, Mura DK, Watanabe PCA, Arita ES. Bone mineral density and mandibular osteoporotic alterations in panoramic radiographic: Correlation by peripheral bone densitometry in men. Indian J Dent Res. 2019;31(3):457-64. doi:10.4103/ijdr.IJDR_440_18

9. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;931:1-29.

10. Nayak S, Edwards DL, Saleh AA, Greenspan SL. Systemic review and meta-analysis of the performance of clinical risk assessment instruments for screening for osteoporosis or low bone density. Osteoporos Int. 2015 Feb;26(5):1431-54. doi:10.1007/s00198-015-3025-1

11. Garg MK, Kharal S. Dual energy X-ray absorptiometry: Pitfalls in measurement and interpretation of bone mineral density. Indian J Endocrinol Metab. 2013 Mar;17(2):203-10. doi:10.4103/2230-8210.109659

12. Blake GM, Fogelman I. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J. 2007 Mar;83(982):509-17. doi:10.1136/pgmj.2007.057505

13. Kim OS, Shin MH, Song H, Lim KJ, Yoon SJ, Kim OL, et al. Digital panoramic radiographs are useful for diagnosis of osteoporosis in Korean postmenopausal women. Gerodontolgy. 2016 Jun;33(2):185-92. doi:10.1111/gend.12134

14. Wan CS, Ward LC, Halim J, Gow ML, Ho M, Brody JN, et al. Biomechanical impedance analysis to estimate body composition, and change in adiposity, in overweight and obese adolescents: comparison with dual-energy x-ray absorptiometry BMD Pediatr. 2014 Oct;12:369-432. doi:10.1086/680877.

15. Choi I, Munhoz L, Arita ES. Assessment of Osteoporotic Alterations in Brazilian Postmenopausal Women: A Retrospective Study. Journal of Clinical and Dental Research. 2018 May;2(1):234-237. doi:10.7860/JCDR/2018/154566

16. Munhoz L, Aoki EM, Cortes ARG, de Freitas CF, Arita ES. Osteoporotic alterations in a group of different ethnicity Brazilian postmenopausal women: An observational study. Gerodontolgy. 2018;35(2):101-109. doi:10.1111/gend.12232.

17. Klemetti E, Kolmakov S, Krüger H. Pantomography in assessment of the osteoporosis risk group. Scand J Dent Res. 1994 Jun;102(1):68-72. doi:10.1111/j.1600-0722.1994.tb0156x.

18. Pallagatti S, Parmiani P, Sheikh S, Gupta D. Efficacy of Panoramic Radiography in the Detection of Osteoporosis in Post-Menopausal Women When Compared to Dual Energy X-Ray Absorptiometry Open Dent J. 2017 Jun;11:350-9. doi:10.2174/1874210601711031050.

19. Mallon PW. Aging with HIV: osteoporosis and fractures. Current opinion in HIV and AIDS. 2014 Jul;9(4):428-35. doi:10.1097/QCO.0b013e328334fe9a.

20. Mallon PW. HIV and bone mineral density. Current Opinion in Infectious Diseases. 2017 Feb;20(1):23-24. doi:10.1097/QCO.0000000000000080.

21. Mallon PW. HIV and bone mineral density. Current Opinion in Infectious Diseases. 2017 Feb;20(1):8-9. doi:10.1097/QCO.0000000000000080.

22. Zhang L, Su Y, Xia W, Xie J, Han Y, et al. Bone turnover and bone mineral density in HIV-1 infected Chinese taking highly active antiretroviral therapy -a retrospective observational study. BMC Musculoskelet Disord. 2013 Jul;14:224. doi:10.1186/1471-2474-14-224

23. Ungal AB, Mattingly AS, Jones SE, Purdy JB, Reynolds JC, Kopp JB, et al. Effect of Antiretroviral Therapy on Bone and Renal Health in Young Adults Infected With HIV in Early Life. J Clin Endocrinol Metab. 2017 Aug;102(8):2896-904. doi:10.1210/jc.2017-00197.

24. Mallon PW. Antiretroviral therapy and the prevalence of osteoporosis and osteoporosis: a meta-analytic review. AIDS. Mol2006/07/012.16-10.1186/1471-2474-14-224.

25. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteoporosis and osteoporosis: a meta-analytic review. AIDS. 2006/07/012.16-10.1186/1471-2474-14-224.

26. Mallon PW. HIV and bone mineral density. Curr Opin Infect Dis. 2010 Feb;23(1):1-8. doi:10.1097/QCO.0b013e328334fe9a.

27. Zhang L, Su Y, Xia W, Xie J, Han Y, et al. Bone turnover and bone mineral density in HIV-1 infected Chinese taking highly active antiretroviral therapy -a prospective observational study. BMC Musculoskelet Disord. 2013 Jul;14:224. doi:10.1186/1471-2474-14-224

28. Unal AB, Mattingly AS, Jones SE, Purdy JB, Reynolds JC, Kopp JB, et al. Effect of Antiretroviral Therapy on Bone and Renal Health in Young Adults Infected With HIV in Early Life. J Clin Endocrinol Metab. 2017 Aug;102(8):2896-904. doi:10.1210/jc.2017-00197.

29. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteoporosis and osteoporosis: a meta-analytic review. AIDS. Mol2006/07/012.16-10.1186/1471-2474-14-224.

30. Mallon PW. HIV and bone mineral density. Curr Opin Infect Dis. 2010 Feb;23(1):1-8. doi:10.1097/QCO.0b013e328334fe9a.

31. Smaka L, Reddy S, Phair J, Paletta FJ, Jr, Brown TT. Changes in bone turnover markers with HIV senconversion and ART Initiation. J Antimicrob Chemother. 2017 Oct;72(5):1465-61. doi:10.1093/jac/dkw310.

32. Bandera A, Gori A, Claric M, Sirini M. Phylogenetics in ART-HIV reservoirs, HIV latency and drug resistance. Curr Opin Pharmacol. 2019 Out;48:24-32. doi:10.1016/j.copha.2019.03.003

33. Arts EJ, Hauda DJ. HIV-1 antiretroviral drug therapy Cold Spring Harb Perspect Med. 2012 Apr;2(4):a007161. doi:10.1101/cshperspect.a007161.
Do HIV patients have mandibular osteoporotic alterations?
A mandibular cortical index case-control study

Nagai AY et al.

28. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis. 2011 Jun;203(12):1931-41. doi: 10.1093/infdis/jir194.

29. Brown TT, Moser C, Currier JS, Ribaudo HJ, Rothenberg J, Keleắtidie T, et al. Changes in Bone Mineral Density After Initiation of Antiretroviral Treatment With Tenofovir Disoproxil Fumarate/Emtricitabine Plus Atazanavir/Ritonavir, Darunavir/Ritonavir, or Raltegravir. J Dent. 2015 Out;212(8):1241-9. doi: 10.1016/j.jom.2015.02.010

30. Cotter AG, Vrouenraets SM, Brady JJ, Wit FW, Fox CA, Furrer H, et al. Impact of switching from zidovudine to tenofovir disoproxil fumarate on bone mineral density and markers of bone metabolism in virologically suppressed HIV-1 infected patients: a substudy of the PREPARE study. J Clin Endocrinol Metab. 2013 Apr;98(4):1659-66. doi:10.1210/jc.2012-3686

31. Armas LAG, Recker RR. Pathophysiology of Osteoporosis: New Mechanistic Insights. Endocrinology and Metabolism Clinics of North America. 2012 Sep;41(3):475-86.doi: 10.1016/j.ecl.2012.04.006

32. Triant VA, Brown TT, Lee H, Grinspoon SK. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008 Sep;93(9):3499-504.doi: 10.1210/jc.2008-0826

33. Lemos CAA, Verri FR, Cruz RS, Santiago-Junior JF, Faverani LP, Pellizier EP. Survival of dental implants placed in HIV-positive patients: a systematic review. Int J Oral Maxillofac Surg. 2018 Oct;47(10):1336-42.doi: 10.1016/j.ijom.2018.02.010

34. Rubinstein NC, Jacobson Z, McCausland GL, Dibart S. Retrospective study of the success of dental implants placed in HIV-positive patients. Int J Implant Dent. 2019 Jun;5(1):30.doi: 10.1186/s40729-019-0174-6

35. de Medeiros F, Kudo GAH, Leme BG, Saraiva PP, Verri FR, Honorio HM, et al. Dental implants in patients with osteoporosis: a systematic review with meta-analysis. Int J Oral Maxillofac Surg. 2018 Apr;47(4):439-41.doi:10.1016/j.ijom.2017.05.021

36. Caputo BV, Traversa-Caputo GC, Costa C, Giovanni EM. Evaluation of bone alterations in the jaws of HIV-infected menopausal women. Brazilian Oral Research. 2013 Apr;27(2):7.doi: 10.1590/S1806-82422013005000014

37. Calciolari E, Donos N, Park JC, Petrie A, Mardas N. Panoramic measures for oral bone mass in detecting osteoporosis: a systematic review and meta-analysis. J Dent Res. 2016 Nov;95(3 Suppl):27a-27b. doi: 10.1177/0022034515649149

Luciana Munhoz
(Corresponding address)
Department of Stomatology, School of Dentistry, University of São Paulo, 2227 Lineu Prestes Avenue. Zip Code: 05508-000 São Paulo, SP, Brazil.
E-mail: dra.lucimunhoz@usp.br

Date submitted: 2020 Apr 17
Accept submission: 2020 Jul 27