Lepton-flavor-violating semileptonic τ decay and $K \rightarrow \pi \nu \bar{\nu}$

Xiao-Gang He,1,2,3 Jusak Tandean2,3 and German Valencia4

1Tsung-Dao Lee Institute & School of Physics and Astronomy, SKLPPC, Shanghai Jiao Tong University, Shanghai 200240, China
2Department of Physics, National Taiwan University, Taipei 10617, Taiwan
3Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan
4School of Physics and Astronomy, Monash University, Melbourne VIC-3800, Australia

E-mail: hexg@phys.ntu.edu.tw, jtandean@phys.ntu.edu.tw,
german.valencia@monash.edu

Abstract: We consider lepton-flavor violation in strangeness changing ($|\Delta S| = 1$) semileptonic τ-lepton decays arising from new physics encoded in a standard model effective Lagrangian. Its invariance under the standard model gauge group entails the relevance of other processes which can serve as complementary probes of the new physics operators. We show in particular that for some of them the bounds implied by current data on the rare kaon decays involving a neutrino pair, $K \rightarrow \pi \nu \bar{\nu}$, are stronger than the existing limits from direct searches for lepton-flavor-violating semileptonic τ decays. We discuss additional processes affected by the same operators and find that certain leptonic charged-meson decays also provide stricter constraints on a few more of them. Upcoming results of ongoing experiments such as Belle II and NA62 will further test the new physics parameter space.
Contents

1 Effective Lagrangian 2

2 Amplitudes and rates 3
 2.1 $|\Delta S| = 1$ semileptonic τ decays 3
 2.2 Other modes 5

3 Numerical results 7
 3.1 $|\Delta S| = 1$ semileptonic τ decays 7
 3.2 Other modes 8
 3.3 Constraints on $c^{\ell,\tau,\tau}_{h}$ 10

4 Conclusions 10

A Feynman Rules 11
Interactions manifesting lepton-flavor violation (LFV) do not occur in the standard model (SM) with zero neutrino mass but are relatively common in new physics (NP) scenarios. There is a renewed interest in studying LFV for both theoretical and experimental reasons. On the theoretical side, the so-called ‘B-physics anomalies’ constitute suggestive evidence for lepton-flavor universality violation [1]. Model building to account for them often gives rise to LFV as well. On the experimental side, there are a number of ongoing and forthcoming efforts that will improve upon the existing limits on LFV. Amongst them are LHCb [1], BESIII [2], Belle II [3], and COMET [4].

In a recent paper [5] we have investigated the case of LFV in strangeness-changing ($|\Delta S| = 1$) hyperon and kaon decays, where an initial strange (anti)quark decays. In the present paper we turn our attention to τ-lepton decay where the strange quark (or antiquark) appears in the final state along with a down antiquark (or quark) and an electron or muon. This kind of semileptonic τ transition has been addressed extensively in the past [6–14], besides its strangeness-conserving counterpart [7–23], under various NP contexts.

Following our earlier work [5], here we adopt a model-independent approach that starts from the most general effective Lagrangian involving dimension-six operators which respect the SM gauge symmetry and can generate $|\Delta S| = 1$ tau-flavor-violating interactions. The resulting operators also contribute to other processes, in particular to ones where the lepton flavor is carried by a neutrino. We explore the impact of these operators at tree level on various low-energy processes and map the constraints that can be extracted from the data available at the moment. We find that the so-called golden rare kaon decays, $K \to \pi \nu \bar{\nu}$, impose bounds on a number of the operators that are stricter by up to two orders of magnitude than the limits from direct searches for LFV in semileptonic τ decay. Likewise, certain leptonic charged-meson decays also provide stronger restrictions on a few more of the operators. The KOTO and NA62 experiments [24] can further tighten the constraints from $K \to \pi \nu \bar{\nu}$ in the near future, and Belle II after achieving an integrated luminosity of 50 ab$^{-1}$ may improve upon the current limits on τ couplings exhibiting LFV by as much as an order of magnitude [3].

1 Effective Lagrangian

The most general effective Lagrangian constructed from SM fields, including an elementary Higgs, and invariant under the SM gauge group exists in the literature [25, 26]. The part of this Lagrangian containing the operators Q_k pertinent to our discussion can be written as

$$\mathcal{L}_{NP} = \frac{1}{\Lambda_{NP}^2} \left[\sum_{k=1}^{5} C^{ijxy}_k Q^{ijxy}_k + (C^{ijxy}_6 Q^{ijxy}_6 + \text{H.c.}) \right],$$

(1)
where \(\Lambda_{\text{NP}} \) stands for a heavy mass scale associated with the NP interactions, the coefficients \(C_{ijxy}^{(6)} \) are in general complex, and the family indices \(i, j, x, y = 1, 2, 3 \) are implicitly summed over. Explicitly,

\[
\begin{align*}
Q_1^{ijxy} &= \overline{q}_i \gamma^\mu q_j \overline{\ell}_x \gamma^\mu \gamma^\nu \ell_y, \\
Q_2^{ijxy} &= \overline{q}_i \gamma^\mu q_j \overline{\ell}_x \gamma^\nu \gamma^\mu \gamma^\nu \ell_y, \\
Q_3^{ijxy} &= \overline{q}_i \gamma^\mu d_j \overline{\ell}_x \gamma^\mu \gamma^\nu \ell_y, \\
Q_4^{ijxy} &= \overline{q}_i \gamma^\mu d_j \overline{\ell}_x \gamma^\nu \gamma^\mu \gamma^\nu \ell_y, \\
Q_5^{ijxy} &= \overline{q}_i \gamma^\mu q_j \overline{\ell}_x \gamma^\nu \gamma^\mu \gamma^\nu \ell_y, \\
Q_6^{ijxy} &= \overline{q}_i \gamma^\mu d_j \overline{\ell}_x q_y.
\end{align*}
\]

The notation is standard and detailed in Ref. [5]. For convenience, we work in the mass basis of the down-type fermions, where

\[
q_i = P_L \left(\sum_j (V_{\text{CKM}}^\dagger)_{ij} U_{ij} \right), \quad l_i = P_L \left(\sum_j (U_{\text{PMNS}})_{ij} \nu_j \right), \quad e_i = P_R e_i, \quad d_i = P_R d_i,
\]

with \(V_{\text{CKM}} \) (\(U_{\text{PMNS}} \)) being the Cabibbo-Kobayashi-Maskawa quark (Pontecorvo-Maki-Nakagawa-Sakata neutrino) mixing matrix. All the fields appearing in Eq. (3) are thus mass eigenstates. The part of \(L_{\text{NP}} \) containing the operators responsible for \(|\Delta S| = 1 \) semileptonic \(\tau^\pm \to \ell^\pm \) transitions, with \(\ell = E, \mu, \) can then be expressed as

\[
L_{\text{NP}} \supset \frac{1}{\Lambda_{\text{NP}}} \sum_{k=1}^{6,6'} \sum_{n=1}^{2} \left(c_k E_n^\tau Q_k^E + c_k' E_n^\tau Q_k'^E \right) + \text{H.c.},
\]

where \(c_k E_n^\tau(q_{6n}) = C_k^{12n}(23n) \) and \(Q_k E_n^\tau(q_{6n}) = Q_k^{12n}(23n) \) for \(k' = 1, \ldots, 5, c_6 E_n^\tau(q_{6}) = C_6^{12}(3n12) \), \(Q_6 E_n^\tau(q_{6}) = Q_6^{12}(3n12) \), and \(Q_6 E_n^\tau(q_{6}) = Q_6^{3n12(3n21)} \).}

2 Amplitudes and rates

2.1 \(|\Delta S| = 1 \) semileptonic \(\tau \) decays

We treat first \(\tau \) decay into a charged lepton \(\ell \) plus a pseudoscalar meson \(P \) or a vector meson \(V \), on which there are direct search data. For \(\tau^- \to \ell^- P \) and \(\tau^- \to \ell^- V \) the amplitudes have the general forms, respectively,

\[
M_{\tau \to \ell P} = i u_{\ell} \left(S_{P}^\ell + \gamma_5 P_{P}^\ell \right) u_\tau, \\
M_{\tau \to \ell V} = \bar{u}_{\ell} \gamma_V \left(V_{V}^\ell + \gamma_5 A_{V}^\ell \right) u_\tau,
\]

which lead to the decay rates

\[
\Gamma_{\tau \to \ell P} = \frac{K^{1/2}(m_{\tau}^2, m_{\ell}^2, m_{P}^2)}{16\pi m_{\tau}^2} \left\{ \left[(m_{\tau} + m_{\ell})^2 - m_{P}^2 \right]|S_P|^2 + \left[(m_{\tau} - m_{\ell})^2 - m_{P}^2 \right]|S_P'|^2 \right\},
\]

\[
\Gamma_{\tau \to \ell V} = \frac{K^{1/2}(m_{\tau}^2, m_{\ell}^2, m_{V}^2)}{16\pi m_{\tau}^2 m_{V}^2} \left\{ \left[\hat{K}(m_{\tau}^2, m_{\ell}^2, m_{V}^2) - 6m_{\tau} m_{\ell} m_{V} \right]|V_V^\ell|^2 + \left[\hat{K}(m_{\tau}^2, m_{\ell}^2, m_{V}^2) + 6m_{\tau} m_{\ell} m_{V} \right]|A_V^\ell|^2 \right\}.
\]
where $\mathcal{K}(x, y, z) = (x - y - z)^2 - 4yz$ and $\bar{\mathcal{K}}(x, y, z) = (x - y)^2 + (x + y)z - 2z^2$.

For $\tau^- \to \ell^- K_S^0$ the hadronic matrix elements which do not vanish are

$$\langle K^0|\mathcal{D}^\gamma\gamma_S|0\rangle = \langle K^0|\pi^-\gamma_5 s|0\rangle = if_K \bar{p}_K,$$

$$\langle K^0|\mathcal{D}^\gamma\gamma_S|0\rangle = \langle \bar{K}^0|\pi^-\gamma_5 d|0\rangle = iB_0f_K,$$

where f_K is the kaon decay constant and $B_0 = m_K^2/(m_d + m_s)$. Applying them to the operators in Eq. (4) for the amplitude in Eq. (5), with the approximation $\sqrt{2} K_S = K^0 - \bar{K}^0$ we get

$$S_{K_S}' = f_K \frac{(m_\tau - m_\ell)(\tilde{V}_{\ell\tau} - \tilde{V}_{\tau\ell}) + B_0(\tilde{s}_{\ell\tau} + \tilde{s}_{\tau\ell})}{4\sqrt{2} \Lambda_{NP}^2},$$

$$P_{K_S}' = f_K \frac{(m_\tau + m_\ell)(-\tilde{\lambda}_{\ell\tau} + \tilde{\lambda}_{\tau\ell}^*) + B_0(\tilde{p}_{\ell\tau} - \tilde{p}_{\tau\ell}^*)}{4\sqrt{2} \Lambda_{NP}^2},$$

where

$$\tilde{V}_{XY} = c_1^{XY} + c_2^{XY} - c_3^{XY} - c_4^{XY} + c_5^{XY},$$

$$\tilde{S}_{XY} = c_6^{XY} - c_6^{XY},$$

$$\tilde{\lambda}_{XY} = -c_1^{XY} - c_2^{XY} - c_3^{XY} + c_4^{XY} + c_5^{XY},$$

$$\tilde{p}_{XY} = c_6^{XY} + c_6^{XY}.$$

Similarly, for $\tau^- \to \ell^- K^{*0}, \ell^- \bar{K}^{*0}$ the nonzero mesonic matrix elements are

$$\langle K^{*0}|\mathcal{D}^\gamma\gamma_S|0\rangle = \langle \bar{K}^{*0}|\pi^-\gamma_5 d|0\rangle = \varepsilon_{K^*}^\eta f_{K^*} m_{K^*},$$

where ε_{K^*} and f_{K^*} are, respectively, the polarization vector and decay constant of K^*, and so from Eqs. (4) and (6) follow

$$V_{K^{*0}}' = \frac{f_{K^*} m_{K^*}}{4\Lambda_{NP}^2} V_{\ell\tau},$$

$$A_{K^{*0}}' = \frac{f_{K^*} m_{K^*}}{4\Lambda_{NP}^2} A_{\ell\tau},$$

$$V_{\bar{K}^{*0}}' = \frac{f_{K^*} m_{K^*}}{4\Lambda_{NP}^2} V_{\tau\ell},$$

$$A_{\bar{K}^{*0}}' = \frac{f_{K^*} m_{K^*}}{4\Lambda_{NP}^2} A_{\tau\ell}.$$

with

$$V_{XY} = -c_1^{XY} - c_2^{XY} - c_3^{XY} - c_4^{XY} - c_5^{XY},$$

$$A_{XY} = c_1^{XY} + c_2^{XY} - c_3^{XY} + c_4^{XY} - c_5^{XY}.$$

Clearly, $\tau^\pm \to \ell^\pm K^{*0}, \ell^\pm \bar{K}^{*0}$ can access only the coupling combinations $V_{\ell\tau,\tau\ell}$ and $A_{\ell\tau,\tau\ell}$, while $\tau^\pm \to \ell^\pm K_S$ cannot probe them.

We turn now to the three-body modes $\tau^- \to \ell^- \pi^\pm K^\pm$, on which empirical information also exists. The relevant hadronic matrix elements in this case are given by

$$\langle \pi^- K^+|\mathcal{D}^\gamma\gamma_S|0\rangle = -\langle \pi^+ K^-|\pi^-\gamma_5 d|0\rangle = f_+(p_\pi^+ - p_K^-) - f_- q_\pi^-,$$

$$\langle \pi^- K^+|\mathcal{D}\pi|0\rangle = \langle \pi^+ K^-|\pi d|0\rangle = \tilde{B}_0 f_0,$$

$$f_+ = (f_0 - f_-) \frac{\Delta_{K^\pm}}{q_\pi^-}.$$
where \(f_+ \) and \(f_0 \) denote form factors which are functions of \(q^2 \),

\[
\hat{q} = p_\pi + p_K, \quad \Delta_{K\pi}^2 = m_{K^+}^2 - m_{\pi^+}^2, \quad \tilde{B}_0 = \frac{\Delta_{K\pi}^2}{m_s - m_d}.
\]

Accordingly, the amplitude for \(\tau^- \to \ell^- \pi^- K^+ \) is

\[
\mathcal{M}_{\tau^- \to \ell^- \pi^- K^+} = \bar{u}_\ell \left(S_{\pi^- K^+}^\ell + \gamma_5 \mathcal{P}_{\pi^- K^+}^\ell \right) u_\tau,
\]

where

\[
S_{\pi^- K^+}^\ell = \left[-2 f_+ p_K + \left(f_+ - f_- \right) (m_\tau - m_\ell) \right] \frac{V_{\tau\ell}}{4 \Lambda_{NP}^2} + \tilde{B}_0 f_0 S_{\tau\ell},
\]

\[
\mathcal{P}_{\pi^- K^+}^\ell = \left[2 f_+ p_K - \left(f_+ - f_- \right) (m_\tau + m_\ell) \right] \frac{A_{\tau\ell}}{4 \Lambda_{NP}^2} + \tilde{B}_0 f_0 P_{\tau\ell},
\]

with \(S_{\tau\ell} = -c_{\theta_{\ell}}^\tau - c_{\theta_{\ell}}^\ell = -\tilde{P}_{\tau\ell} \) and \(P_{\tau\ell} = -c_{\theta_{\ell}}^\tau + c_{\theta_{\ell}}^\ell = -\tilde{S}_{\tau\ell} \). Its differential rate is then

\[
\frac{d\Gamma_{\tau^- \to \ell^- \pi^+ K^-}}{d\hat{s}} = \frac{\lambda_{\tau-\tau}^{1/2} \Lambda_{\pi^+ K^+}^{1/2} |f_0|^2}{256 \pi^3 m_\tau^2 \Lambda_{NP}^4} \left\{ \left[\lambda_{\pi^+ K^+}^2 |f_+|^2 \frac{\lambda_{\tau+}^s + 3 \hat{\sigma}_-^s \hat{s}}{3 |f_0|^2 \hat{s}^3} + \Delta_{K\pi}^4 \frac{\lambda_{\tau\ell}^s + \hat{\sigma}_+^s \hat{s}}{\hat{s}^3} \right] |V_{\tau\ell}|^2 \frac{16}{15}
+ \left[\lambda_{\pi^+ K^+}^2 |f_+|^2 \frac{\lambda_{\tau+}^s + 3 \hat{\sigma}_-^s \hat{s}}{3 |f_0|^2 \hat{s}^3} + \Delta_{K\pi}^4 \frac{\lambda_{\tau\ell}^s + \hat{\sigma}_+^s \hat{s}}{\hat{s}^3} \right] |A_{\tau\ell}|^2 \frac{16}{15}
+ \frac{\Delta_{K\pi}^2 \tilde{B}_0}{8 \hat{s}^2} \Re \left(\hat{\mu}_+ \hat{\sigma}_- A_{\tau\ell} \hat{S}_{\tau\ell} - \hat{\mu}_- \hat{\sigma}_+ V_{\tau\ell} \hat{S}_{\tau\ell} \right)
+ \frac{\tilde{B}_0^2}{16 \hat{s}} \left(\hat{\sigma}_+ |S_{\tau\ell}|^2 + \hat{\sigma}_- |P_{\tau\ell}|^2 \right) \right\},
\]

where

\[
\hat{s} = q^2, \quad \lambda_{XY} = \mathcal{K} \left(m_X^2, m_Y^2, \hat{s} \right), \quad \hat{\sigma}_\pm = \hat{\mu}_\pm^2 - \hat{s}, \quad \hat{\mu}_\pm = m_\pm + m_\ell.
\]

The differential rate of \(\tau^- \to \ell^- \pi^+ K^- \) is also given by Eq. (19) but with \((V_{\tau\ell}, A_{\tau\ell}, S_{\tau\ell}, P_{\tau\ell}) \) changed to \((V_{\tau\ell}, A_{\tau\ell}, S_{\tau\ell}, P_{\tau\ell}) \). We observe that, unlike \(\tau \to \ell K^{*0}, \ell \bar{K}^{*0} \), these three-body modes are sensitive to all the operators with parity-even quark parts.

2.2 Other modes

The required SU(2)\(_L\)-gauge-invariance of \(Q^{\ell\tau}_K \) and \(Q^{\ell\ell}_K \) in Eq. (4) implies that some of these operators involve left-handed quark and/or lepton doublets and therefore can influence additional processes. The related couplings are summarized in appendix A and can generate transitions with one or two neutrinos. Here we discuss the extra modes which may offer complementary restrictions on the couplings.
$K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$

The operators in Eq. (4) with a pair of left-handed lepton doublets provide the $(\bar{d}s)(\nu_\ell \nu_\tau)$ interaction listed in Table 2, as well as its $\bar{\nu}_\tau \nu_\ell$ counterpart. Since they have neutrino-flavor combinations that are different from those in the SM amplitudes, the former have no interference with latter and cause the $K \to \pi \nu \bar{\nu}$ rates to exceed their SM values, as the neutrinos are not detected. The resulting modifications ΔB_{K^+} and ΔB_{K_L} to the SM branching fractions can be inferred from Eqs. (9)-(10) in Ref. [27] to be

$$\Delta B_{K^+} = B(K^+ \to \pi^+ \nu \bar{\nu})_{\text{SM}} = \frac{\kappa_+}{3} \sum_{\ell = e, \mu} (|W_{\ell\tau}|^2 + |W_{\ell\tau}|^2),$$

$$\Delta B_{K_L} = B(K_L \to \pi^0 \nu \bar{\nu})_{\text{SM}} = \frac{\kappa_L}{12} \sum_{\ell = e, \mu} |W_{\ell\tau} - W_{\ell\tau}|^2,$$

$$W_{\chi} \simeq 9700 \left(\frac{1 \text{ TeV}}{\Lambda_{\text{NP}}} \right)^2 (c_1^X - c_2^X + c_4^X),$$

where [28] $\kappa_+ = 5.17 \times 10^{-11}$ and $\kappa_L = 2.23 \times 10^{-10}$.

$\tau^- \to \ell^- \pi^0$ and $\tau^- \to \ell^- \rho^0$

These are induced by the $(\bar{u}u)(\bar{\ell}\tau)$ couplings in Table 2 from the operators with a pair of left-handed quark doublets. The pertinent mesonic matrix elements are $\langle \pi^0 | \bar{u} \gamma^n \gamma_5 u | 0 \rangle = im_{\pi}/\sqrt{2}$ and $\langle \rho^0 | \bar{u} \gamma^n u | 0 \rangle = \varepsilon_{\rho} m_{\rho}/\sqrt{2}$, where m_{ρ} is the pion (ρ meson) decay constant and ε_{ρ} is the ρ polarization vector. The $\tau \to \ell \pi$, $\ell \rho$ rates have, respectively, the forms in Eq. (7) with

$$S_{\pi^0} = \frac{i f_{\pi} V_{ud} V_{us}^*}{4\sqrt{2} \Lambda_{\text{NP}}^2} (c_1^\tau - c_2^\tau + c_5^\tau)(m_{\tau} - m_{\ell}),$$

$$P_{\pi^0} = \frac{i f_{\pi} V_{ud} V_{us}^*}{4\sqrt{2} \Lambda_{\text{NP}}^2} (c_1^\ell - c_2^\ell - c_5^\ell)(m_{\tau} + m_{\ell}),$$

$$V_{\rho^0} = \frac{-f_{\rho} m_{\rho} V_{ud} V_{us}^*}{4\sqrt{2} \Lambda_{\text{NP}}^2} (c_1^\tau - c_2^\tau + c_5^\tau),$$

$$V_{\rho^0} = \frac{f_{\rho} m_{\rho} V_{ud} V_{us}^*}{4\sqrt{2} \Lambda_{\text{NP}}^2} (c_1^\ell - c_2^\ell - c_5^\ell).$$

These are suppressed by the CKM factor $|V_{ud} V_{us}| \simeq 0.22$ compared to their counterparts in Eqs. (9) and (12).

$J/\psi \to \ell^+ \ell^-$

Like the preceding case, Eq. (4) includes the $(\bar{c}c)(\bar{\ell}\tau, \bar{\tau}\ell)$ interactions listed in Table 2 which bring about the charmonium decay $J/\psi \to \ell^+ \ell^-$. Thus, the amplitude for $J/\psi \to \ell^- \tau^+$ also has a suppression factor of $|V_{ud}V_{cs}| \simeq 0.22$. Its rate in the $m_{\ell} = 0$ limit is

$$\Gamma_{J/\psi \to \ell^+ \ell^-} = \frac{f_{J/\psi}^2 |V_{ud} V_{cs}|^2}{192\pi \Lambda_{\text{NP}}^4 m_{J/\psi}^3} (m_{J/\psi}^2 - m_{\ell}^2)^2 (2m_{J/\psi}^2 + m_{\ell}^2) \left(|c_1^\ell - c_2^\ell|^2 + |c_5^\ell|^2 \right),$$

where the J/ψ decay constant $f_{J/\psi}$ is defined by $\langle 0 | \bar{c} \gamma^n c | J/\psi \rangle = \varepsilon_{J/\psi} f_{J/\psi} m_{J/\psi}$.

$P^+ \to \ell^+ \nu$

The couplings in the last four rows of Table 2 and/or their partners with ℓ and τ interchanged can affect the SM-dominated leptonic decay $P^+ \to \ell^+ \nu$ of a pseudoscalar meson $P^+ \sim u\bar{d}$,
where $u = u, c$ and $d = d, s$. The biggest impact comes from the (pseudo)scalar operators, which are not subject to helicity suppression, with $\ell = e$, in which case the SM amplitude is the most helicity-suppressed. With only $O_{6(i)}^{\tau, \tau}$ being present, we derive the modification $\Delta \Gamma_{P^+ \rightarrow e^+\nu}$ to the SM rate of $P^+ \rightarrow e^+\nu$ for $P = \pi, K, D, D_s$ to be $[5]$

$$\Delta \Gamma_{P^+ \rightarrow e^+\nu} = \frac{|\hat{c}_P|^2 f_P^2 m_P^5}{64 \pi \Lambda_{np}^4 (m_u + m_d)^2},$$

$$\hat{c}_\pi = c_0^{\tau e} V_{us}^*,$$

$$\hat{c}_K = c_6^{\tau e} V_{ud}^*,$$

$$\hat{c}_D = c_0^{\tau e} V_{cs}^*,$$

$$\hat{c}_{D_s} = c_6^{\tau e} V_{cd}^*,$$

with P decay constant f_P being defined by $\langle 0 | \overline{\psi}_f \gamma_5 \psi | P^+ \rangle = i f_P m_P^2 / (m_u + m_d)$ and the lepton masses ignored. Note that there is no interference with the SM contribution as the neutrino is the wrong flavor $[6]$.

3 Numerical results

3.1 $|\Delta S| = 1$ semileptonic τ decays

We treat the two-body modes with the amplitude terms in Eqs. (9) and (12) and the rates in Eq. (7). The required decay constants are $f_K = 155.6(4)$ MeV $[29]$ and $f_{K^*} = 206(6)$ MeV, the latter having been extracted from the data on $\tau^- \rightarrow \nu K^{*-}$ under the assumptions of isospin symmetry and no NP in this channel.\footnote{We have employed $B(\tau^- \rightarrow \nu K^{*-}) = 0.0120(7)$ and $m_{K^{*-}} = 895.5(8)$ MeV from $[29]$. For V_{us} and the other CKM matrix elements needed in our numerical work, we use the results of $[30]$ with the latest updates available at http://ckmfitter.in2p3.fr.} For hadron and quark masses, we use the central values supplied by Ref. $[29]$. Thus, we arrive at the branching fractions

$$B(\tau^- \rightarrow e^- K_S) = 3.2 \left[|\tilde{V}_{e\tau} - \tilde{V}_{\tau e}^* + 1.4 (\tilde{s}_{e\tau} + \tilde{s}_{\tau e})|^2 + |\tilde{\lambda}_{e\tau} - \tilde{\lambda}_{\tau e}^* - 1.4 (\tilde{p}_{e\tau} - \tilde{p}_{\tau e})|^2 \right] \frac{10^7 \text{GeV}^4}{\Lambda_{np}^4},$$

$$B(\tau^- \rightarrow \mu^- K_S) = \left[3.2 \left| \tilde{V}_{\mu\tau} - \tilde{V}_{\tau\mu}^* + 1.5 (\tilde{s}_{\mu\tau} + \tilde{s}_{\tau\mu}) \right|^2 + 3.1 \left| \tilde{\lambda}_{\mu\tau} - \tilde{\lambda}_{\tau\mu}^* - 1.3 (\tilde{p}_{\mu\tau} - \tilde{p}_{\tau\mu}) \right|^2 \right] \frac{10^7 \text{GeV}^4}{\Lambda_{np}^4},$$

$$B(\tau^- \rightarrow e^- K^{*0}) = 1.1 \left(|V_{e\tau}|^2 + |A_{e\tau}|^2 \right) \frac{10^8 \text{GeV}^4}{\Lambda_{np}^4},$$

$$B(\tau^- \rightarrow \mu^- K^{*0}) = \left(1.0 |V_{\mu\tau}|^2 + 1.2 |A_{\mu\tau}|^2 \right) \frac{10^8 \text{GeV}^4}{\Lambda_{np}^4}. \quad (27)$$

To evaluate the three-body case with Eq. (19), we need the πK form-factors f_+ and f_0 as functions of \hat{s}. Assuming isospin symmetry, we adopt the $\pi^- K_S$ invariant-mass spectrum which has
been extracted from the study of $\tau^--\nu\pi^-K_S$ by the Belle Collaboration [31]. Thus, after integrating the differential rate over $(m_{\pi^+} + m_{K^+})^2 \leq \delta \leq (m_\tau - m_\ell)^2$, we obtain for $\ell = e, \mu$

$$B(\tau^- \rightarrow e^-\pi^-K^+) = \left[7.2 \left(|V_{ee}|^2 + |A_{ee}|^2 \right) + 8.5 \left(|S_{ee}|^2 + |P_{ee}|^2 \right)
+ 2.7 \text{Re} \left(A_{ee}^* P_{ee} - V_{ee}^* S_{ee} \right) \right] \frac{10^7 \text{GeV}^4}{A_{NP}^4},$$

$$B(\tau^- \rightarrow \mu^-\pi^-K^+) = \left[6.5 |V_{\mu\mu}|^2 + 7.7 |A_{\mu\mu}|^2 + 10 |S_{\mu\tau}|^2 + 6.6 |P_{\mu\tau}|^2
+ 3.0 \text{Re} \left(V_{\mu\tau}^* S_{\mu\tau} \right) \right] \frac{10^7 \text{GeV}^4}{A_{NP}^4}. \quad (28)$$

As already mentioned, $B(\tau^- \rightarrow \ell^-\pi^+K^-)$ is equal to $B(\tau^- \rightarrow \ell^-\pi^-K^+)$ except the subscript $\ell\tau$ of the couplings is replaced with $\tau\ell$ and a minus sign is added to $S_{\tau\ell}$.

From Eqs. (27)-(28), we notice that these modes do not all probe the same set of couplings and hence are complementary in their sensitivity to the NP contributions. The existing experimental limits [at 90\% confidence level (CL)] for these decays are [29]

$$B(\tau^- \rightarrow e^-K_S) < 2.6 \times 10^{-8}, \quad B(\tau^- \rightarrow \mu^-K_S) < 2.3 \times 10^{-8},$$

$$B(\tau^- \rightarrow e^-K^{*0}) < 3.2 \times 10^{-8}, \quad B(\tau^- \rightarrow \mu^-K^{*0}) < 5.9 \times 10^{-8},$$

$$B(\tau^- \rightarrow e^-\bar{K}^{*0}) < 3.4 \times 10^{-8}, \quad B(\tau^- \rightarrow \mu^-\bar{K}^{*0}) < 7.0 \times 10^{-8},$$

$$B(\tau^- \rightarrow e^-\pi^-K^+) < 3.1 \times 10^{-8}, \quad B(\tau^- \rightarrow \mu^-\pi^-K^+) < 4.5 \times 10^{-8},$$

$$B(\tau^- \rightarrow e^-\pi^+K^-) < 3.7 \times 10^{-8}, \quad B(\tau^- \rightarrow \mu^-\pi^+K^-) < 8.6 \times 10^{-8}. \quad (29)$$

3.2 Other modes

The $K \rightarrow \pi\nu\bar{\nu}$ modes are sensitive to $c_{1,2,4}^{\ell\tau,\ell\tau}$ according to Eqs. (21)-(22). In view of the SM predictions $B(K^+ \rightarrow \pi^+\nu\bar{\nu}) = (8.5_{-1.0}^{+1.1}) \times 10^{-11}$ and $B(K_L \rightarrow \pi^0\nu\bar{\nu}) = (3.2_{-0.2}^{+1.1}) \times 10^{-11}$ [32] and the data $B(K^+ \rightarrow \pi^+\nu\bar{\nu}) = 1.7(1.1) \times 10^{-10}$ [29] and $B(K_L \rightarrow \pi^0\nu\bar{\nu}) < 3.0 \times 10^{-9}$ at 90\% CL [33], we impose $\Delta B_{K^+} < 2.7 \times 10^{-10}$ and $\Delta B_{K_L} < 3.0 \times 10^{-9}$ at 90\% CL on the NP contributions in Eq. (21). The ΔB_{K^+} bound is clearly stricter than the ΔB_{K_L} one and translates into $|W_{\ell\tau,\ell\tau}| < 3.9$. Improvement on this bound from NA62 is expected in the near future.

The $|\Delta S| = 0$ decays $\tau \rightarrow \ell\pi^0, \ell\rho^0$ can potentially probe $c_{1,2,5}^{\ell\tau,\ell\tau}$ as Eq. (23) indicates. The needed decay constants are $f_\pi = 130.2(1.7)$ MeV [29] and $f_\rho = 210.5(4)$ MeV, the latter having been extracted from the data on $\tau^- \rightarrow \nu\rho^-$ assuming isospin symmetry and no NP in this...
channel.3 We then get

\[
\begin{align*}
B(\tau^- \to e^- \pi^0) &= 2.5 \left(|c_1^{\tau^+} - c_2^{\tau^+}|^2 + |c_5^{\tau^+}|^2 \right) \frac{10^6 \text{GeV}^4}{\Lambda_{\text{NP}}^4}, \\
B(\tau^- \to \mu^- \pi^0) &= 2.4 \left(|c_1^{\mu^+} - c_2^{\mu^+}|^2 + |c_5^{\mu^+}|^2 \right) \frac{10^6 \text{GeV}^4}{\Lambda_{\text{NP}}^4}, \\
B(\tau^- \to e^- \rho^0) &= 5.9 \left(|c_1^{\tau^+} - c_2^{\tau^+}|^2 + |c_5^{\tau^+}|^2 \right) \frac{10^6 \text{GeV}^4}{\Lambda_{\text{NP}}^4}, \\
B(\tau^- \to \mu^- \rho^0) &= \left(2.7 |c_1^{\tau^+} - c_2^{\tau^+} + c_5^{\tau^+}|^2 + 3.1 |c_1^{\mu^+} - c_2^{\mu^+} - c_5^{\mu^+}|^2 \right) \frac{10^6 \text{GeV}^4}{\Lambda_{\text{NP}}^4}.
\end{align*}
\]

These numbers are smaller than those of the $|\Delta S| = 1$ modes in Sect. 3.1 partly because of the aforementioned CKM suppression factor, $|V_{ud}V_{us}|^2 \simeq 0.048$. Comparing Eq. (30) to the existing data at 90\% CL 29

\[
\begin{align*}
B(\tau^- \to e^- \pi^0) &< 8.0 \times 10^{-8}, & B(\tau^- \to \mu^- \pi^0) &< 1.1 \times 10^{-7}, \\
B(\tau^- \to e^- \rho^0) &< 1.8 \times 10^{-8}, & B(\tau^- \to \mu^- \rho^0) &< 1.2 \times 10^{-7},
\end{align*}
\]

we see that limits on $c_{1,2,5}^{\ell \tau, \tau \ell}$ from $\tau^\pm \to \ell^\pm \rho^0$ are stronger than from $\tau^\pm \to \ell^\pm \pi^0$. However, at present they are not competitive to $K \to \pi\nu\bar{\nu}$ and the $|\Delta S| = 1$ τ decays in bounding these coefficients. Neither are other $|\Delta S| = 0$ semileptonic channels, such as $\tau \to \ell(\eta, \omega, \pi^+ \pi^-)$.

The same coefficients contribute to $J/\psi \to \ell^+\tau^-$. Using $f_{J/\psi} = 407(5)\text{MeV}$ extracted from the measured $J/\psi \to e^+e^-$ rate 29, from Eq. (24) we find

\[
B(J/\psi \to \ell^- \tau^+) = 4.4 \left(|c_1^{\ell \tau} - c_2^{\ell \tau}|^2 + |c_5^{\ell \tau}|^2 \right) \frac{\text{GeV}^4}{\Lambda_{\text{NP}}^4}.
\]

Searches for them have led to $B(J/\psi \to e^+\tau^+) < 8.3 \times 10^{-6}$ and $B(J/\psi \to \mu^+\tau^+) < 2.0 \times 10^{-6}$ both at 90\% CL 29. It follows that these modes are far less sensitive to $c_{1,2,5}^{\ell \tau, \tau \ell}$ than all the τ and K decays discussed above, although future quests for $J/\psi \to \ell^+\tau^-$ by BESIII may improve upon the current branching-fraction limits by up to two orders of magnitude 34.

Unlike the other decays addressed in this subsection, $P^+ \to e^+\nu$ for $P = \pi, K, D, D_s$ can probe the (pseudo)scalar couplings $c_6^{\ell \tau, \tau \ell}$ and $c_\nu^{\ell \tau, \tau \ell}$ according to Eqs. (25)-(26). The empirical limits on NP effects in these modes are4

\[
\begin{align*}
B(\pi^+ \to e^+\nu) &< 6.6 \times 10^{-7}, & B(K^+ \to e^+\nu) &< 1.2 \times 10^{-7}, \\
B(D^+ \to e^+\nu) &< 8.8 \times 10^{-6}, & B(D_s^+ \to e^+\nu) &< 8.3 \times 10^{-5},
\end{align*}
\]

all at 90\% CL. For numerical comparison with these data, we adopt $f_D = 211.9\text{MeV}$ and $f_{D_s} = 249\text{MeV}$ 29 besides the $f_{\pi, K}$ numbers quoted earlier.

3We have employed $B(\tau^- \to \nu\rho^-) = 0.2549(9)$ and $m_{\rho^-} = 775.11\text{MeV}$ from 29.

4The numbers in the first line of Eq. (33) correspond to the 90\%-CL ranges of the errors in the observed values $B(\pi^+ \to e^+\nu) = (1.230 \pm 0.004) \times 10^{-4}$ and $B(K^+ \to e^+\nu) = (1.582 \pm 0.007) \times 10^{-5}$ from 29.9
3.3 Constraints on $c_k^{\ell\tau,\tau\ell}$

We entertain the possibility that only one of the coefficients $c_k^{\ell\tau,\tau\ell}$ is nonzero at a time. In this case, after comparing the calculated branching fractions and their experimental data described in the preceding two subsections, we collect in Table 1 the best upper-bound, and the process supplying the corresponding constraint, on each coefficient. Evidently, $K^+ \to \pi^+ \nu \bar{\nu}$ and $\pi^+, K^+ \to e^+ \nu$ produce the strongest restrictions to date on a number of these couplings. If NA62 reaches its goal of testing the SM prediction with 10% precision [24], the bound from $K^+ \to \pi^+ \nu \bar{\nu}$ in Table 1 will be improved by roughly a factor of 4. The bounds derived from lepton-flavor-violating τ decays may be lowered as much as 10 times by Belle II, which aims at reducing their branching-fraction limits by 2 orders of magnitude with its expected full dataset [3].

| k | Lepton flavor indices (f_1f_2) | Upper bound on $|c_k^{f_1f_2}| \left(\frac{1 \text{ TeV}}{\Lambda_{NP}}\right)^2$ | Process |
|-----|--------------------------------|---|---------|
| 1, 2, or 4 | $e\tau, \mu\tau, \tau e, \text{ or } \tau\mu$ | 4.0×10^{-4} | $K^+ \to \pi^+ \nu \bar{\nu}$ |
| 3 or 5 | $e\tau$ | 0.012 | $\tau^- \to e^- K^{*0}$ |
| 3 or 5 | τe | 0.012 | $\tau^- \to e^- K^{*0}$ |
| 3 or 5 | $\mu\tau$ | 0.017 | $\tau^- \to \mu^- K^{*0}$ |
| 3 or 5 | $\tau\mu$ | 0.018 | $\tau^- \to \mu^- K^{*0}$ |
| 6 | $e\tau$ | 0.014 | $\tau^- \to e^- \pi^- K^+$ |
| 6 | τe | 1.9×10^{-3} | $\pi^+ \to e^+ \nu$ |
| 6 | $e\tau$ | 1.3×10^{-4} | $K^+ \to e^+ \nu$ |
| 6 | τe | 0.015 | $\tau^- \to e^- \pi^+ K^-$ |
| 6 or 6′ | $\mu\tau$ | 0.014 | $\tau^- \to \mu^- K_S$ |
| 6 or 6′ | $\tau\mu$ | 0.023 | $\tau^- \to \mu^- \pi^+ K^-$ |

Table 1: The strongest upper-bound on each of the coefficients $c_k^{f_1f_2}$ if only one of them is nonzero at a time and the processes which provide the constraints. Note that the lepton-flavor index (f_1 or f_2) can be carried by the neutrino.

4 Conclusions

We have outlined the existing constraints on LFV in $|\Delta S| = 1$ semileptonic τ decays. To do this, we first parametrized the NP responsible for LFV with all the dimension-six operators in the effective Lagrangian that respects the gauge symmetry of the SM and is appropriate for an elementary Higgs. We subsequently computed all the $|\Delta S| = 1$ semileptonic τ decays with an electron or muon plus one or two mesons in the final state that have been searched for. We
finally extracted the constraints on the parameters of the effective Lagrangian using the current 90%-CL upper limits on their respective rates.

Noticing that the gauge symmetry of the SM relates these τ decay modes to other processes, we then studied those other modes. We found that the golden rare kaon decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ places the most stringent constraint available on several of the NP couplings and that this can be further improved by the expected NA62 results in the near future. Moreover, the measured $\pi^+ \rightarrow e^+ \nu$ and $K^+ \rightarrow e^+ \nu$ rates imply the strictest limits to date on a couple other of the NP couplings. Our numerical findings are summarized in Table 1.

Acknowledgements

The work of X.G.H. was supported in part by the NSFC (Grant Nos. 11575115 and 11735010), by Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education, and Shanghai Key Laboratory for Particle Physics and Cosmology (Grant No. 15DZ2272100), and in part by the MOST (Grant No. MOST 106-2112-M-002-003-MY3). We thank Hai-Bo Li for information on experimental matters.

A Feynman Rules

The various four-fermion couplings with (2quark)(2lepton) flavor structures arising from the operators Q^ℓ_τ in Eq. (4) with $\ell = e, \mu$ are collected in Table 2. Those with the lepton flavors interchanged, (2quark)($\bar{\tau}\ell$) and (2quark)($\bar{\nu}_\tau\nu_\ell$), are readily obtainable from the corresponding entries in the table by making the change $c^\ell_\tau \rightarrow c^{\bar{\tau}}_\ell$. The Hermitian conjugates of all these couplings are additional ones with the quarks interchanged.

We remark that in general there are operators [25, 26] not germane to $d\ell\tau$ interactions which may also affect some of the others listed in Table 2. For instance, $Q^{1113}_{lu} = u^c \gamma^9 u_1 l_1^c \gamma_3 l_3$ contributes to $(\bar{u}u)(\bar{e}^c \gamma^9 \nu_1)$ couplings.
Table 2: Feynman rules from $\mathcal{L}_{\nu\nu}$ in Eq. (4). In the second column, each entry is to be furnished with an overall factor Λ_R^{-2} and with the spinors of the fermions in the first column, $V_{l_i l_j} = (V_{\text{CKM}})_{ij}$ from Eq. (3), and we have defined $L_\eta = \gamma_\eta P_L$, $R_\eta = \gamma_\eta P_R$, $\tilde{L} = P_L$, and $\tilde{R} = P_R$. Since the neutrinos are nearly massless and not detected in decays, we display their weak eigenstates $\nu_\ell = \sum_j (U_{\text{PMNS}})_{ij} \nu_j$ in the first column.

References

[1] A. Cerri et al., *Opportunities in Flavour Physics at the HL-LHC and HE-LHC*, 1812.07638.

[2] H.-B. Li and S.-H. Zhu, *Mini-review of rare charmonium decays at BESIII*, *Chin. Phys. C* **36** (2012) 932 [1202.2955].

[3] *Belle II* collaboration, *The Belle II Physics Book*, 1808.10567.

[4] L. Calibbi and G. Signorelli, *Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction*, *Riv. Nuovo Cim.* **41** (2018) 71 [1709.00294].

[5] X.-G. He, J. Tandean and G. Valencia, * Charged-lepton-flavor violation in $|\Delta S| = 1$ hyperon decays*, 1903.01242.

[6] G. Valencia and S. Willenbrock, *Quark - lepton unification and rare meson decays*, *Phys. Rev.* **D50** (1994) 6843 [hep-ph/9409201].
[7] A. Ilakovac, B. A. Kniehl and A. Pilaftsis, Semileptonic lepton number / flavor violating tau decays in Majorana neutrino models, *Phys. Rev.* **D52** (1995) 3993 [hep-ph/9503456].

[8] A. Ilakovac, Probing lepton number / flavor violation in semileptonic τ decays into two mesons, *Phys. Rev.* **D54** (1996) 5653 [hep-ph/9608218].

[9] J. P. Saha and A. Kundu, Constraints on R parity violating supersymmetry from leptonic and semileptonic tau, B(d) and B(s) decays, *Phys. Rev.* **D66** (2002) 054021 [hep-ph/0205046].

[10] S. Kanemura, T. Ota and K. Tsumura, Lepton flavor violation in Higgs boson decays under the rare tau decay results, *Phys. Rev.* **D73** (2006) 016021 [hep-ph/0505191].

[11] M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, *Eur. Phys. J.* **C70** (2010) 1071 [1008.0280].

[12] I. Dorsner, J. Drobnak, S. Fajfer, J. F. Kamenik and N. Kosnik, Limits on scalar leptoquark interactions and consequences for GUTs, *JHEP* **11** (2011) 002 [1107.5393].

[13] A. Pich, Precision Tau Physics, *Prog. Part. Nucl. Phys.* **75** (2014) 41 [1310.7922].

[14] Y. Cai and M. A. Schmidt, A Case Study of the Sensitivity to LFV Operators with Precision Measurements and the LHC, *JHEP* **02** (2016) 176 [1510.02486].

[15] E. Gabrielli, Model independent constraints on leptoquarks from rare muon and tau lepton processes, *Phys. Rev.* **D62** (2000) 055009 [hep-ph/9911539].

[16] E. Arganda, M. J. Herrero and J. Portoles, Lepton flavour violating semileptonic tau decays in constrained MSSM-seesaw scenarios, *JHEP* **06** (2008) 079 [0803.2039].

[17] X.-G. He and S. Oh, Lepton FCNC in Type III Seesaw Model, *JHEP* **09** (2009) 027 [0902.4082].

[18] A. Arhrib, R. Benbrik and C.-H. Chen, Lepton flavor violating tau decays in type-III seesaw mechanism, *Phys. Rev.* **D81** (2010) 113003 [0903.1553].

[19] T. Goto, Y. Okada and Y. Yamamoto, Tau and muon lepton flavor violations in the littlest Higgs model with T-parity, *Phys. Rev.* **D83** (2011) 053011 [1012.4385].

[20] A. A. Petrov and D. V. Zhuridov, Lepton flavor-violating transitions in effective field theory and gluonic operators, *Phys. Rev.* **D89** (2014) 033005 [1308.6561].

[21] T. Hua and C.-X. Yue, Lepton Flavor Violating Decays τ → μM in the 331 Model, *Commun. Theor. Phys.* **62** (2014) 388.
[22] A. Celis, V. Cirigliano and E. Passemar, Model-discriminating power of lepton flavor violating τ decays, Phys. Rev. D89 (2014) 095014 [1403.5781].

[23] Y. Cai, M. A. Schmidt and G. Valencia, Lepton-flavour-violating gluonic operators: constraints from the LHC and low energy experiments, JHEP 05 (2018) 143 [1802.09822].

[24] NA62 collaboration, Results and prospects for $K \to \pi \nu \bar{\nu}$ at NA62 and KOTO, EPJ Web Conf. 199 (2019) 01007 [1809.05384].

[25] W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B268 (1986) 621.

[26] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [1008.4884].

[27] X.-G. He, G. Valencia and K. Wong, Constraints on new physics from $K \to \pi \nu \bar{\nu}$, Eur. Phys. J. C78 (2018) 472 [1804.07449].

[28] A. J. Buras, F. Schwab and S. Uhlig, Waiting for precise measurements of $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$, Rev. Mod. Phys. 80 (2008) 965 [hep-ph/0405132].

[29] Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D98 (2018) 030001.

[30] J. Charles et al., Current status of the Standard Model CKM fit and constraints on $\Delta F = 2$ New Physics, Phys. Rev. D91 (2015) 073007 [1501.05013].

[31] Belle collaboration, Study of $\tau \to K_S \pi^- \nu_\tau$ decay at Belle, Phys. Lett. B654 (2007) 65 [0706.2231].

[32] C. Bobeth and A. J. Buras, Leptoquarks meet ε'/ε and rare Kaon processes, JHEP 02 (2018) 101 [1712.01295].

[33] KOTO collaboration, Search for the $K_L \to \pi^0 \nu \bar{\nu}$ and $K_L \to \pi^0 X^0$ decays at the J-PARC KOTO experiment, Phys. Rev. Lett. 122 (2019) 021802 [1810.09655].

[34] BESIII collaboration, Status and future prospects for charged lepton flavor violation searches at BESIII, PoS NuFact2017 (2018) 119.