Current-induced nonreciprocity and refraction-suppressed propagation in a multilayered graphene-dielectric crystal

D P Huang and K Y Xu

School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, People’s Republic of China

E-mail: xuky@scnu.edu.cn

Received 27 July 2020, revised 7 October 2020
Accepted for publication 15 October 2020
Published 17 November 2020

Abstract
Nonreciprocal photonic devices play a significant role in regulating the propagation of electromagnetic waves. Here we theoretically investigate the nonreciprocal properties of transverse magnetic modes in a multilayered graphene-dielectric crystal under an applied DC bias. We find that drifting electrons driven by the external DC electric field can give rise to extremely asymmetric dispersion diagrams. Furthermore, when the drifting electrons travel antiparallel to the normal component of the incident wave vector, negative refraction can be strongly suppressed, causing the energy of light to flow along the direction of the electric current. Our theoretical findings can be used to design nonreciprocal optoelectronic devices and enable light to propagate without refraction.

Keywords: nonreciprocity, graphene, drifting electrons, surface plasmon polaritons, negative refraction, transfer-matrix methods, multilayered graphene-dielectric crystals

1. Introduction
Optical nonreciprocity can be achieved by breaking time-reversal symmetry (Lorentz reciprocity) in photonic systems [1, 2]. Nonreciprocal photonic devices based on time-reversal symmetry breaking play a significant role in manipulating the flow of light. In general, such devices allow light to propagate in one direction, but suppress the flow of light in the opposite direction [3, 4]. There are various ways to break the time-reversal symmetry, including optical nonlinearities [5–8], spatiotemporal modulations [9–15], and magneto-optical effects [16–31]. Very recently, the issue of truly unidirectional surface plasmon polaritons (SPPs), based on magneto-optical effects, has attracted much attention. According to [25], if nonlocality and dissipation were taken into consideration, strictly unidirectional SPPs cannot exist in the nonreciprocal plasmonic systems. However, in a follow-up theoretical study, the authors found that a class of truly one-way propagating SPPs, located in the upper bulk-mode bandgap characterized by the so-called gap Chern number, can robustly exist at the interface between an opaque material and a magnetized plasma, even though nonlocal effects and realistic dissipation were included [28–30]. This shows that nonlocality may play an important role in studying the topic of nonreciprocal responses, but the inclusion of nonlocal effects does not hinder the emergence of truly unidirectional SPPs in some cases.

Recently, nonreciprocal responses in plasmonic platforms have been realized by applying an external DC voltage [32–42]. Such a novel approach can lead to a Doppler frequency shift of SPPs [35–37], wherein forward-propagating (backward-propagating) waves traveling parallel (antiparallel) to the direction of drifting electrons obtain a blueshift (redshift) and the corresponding propagating length is enhanced (suppressed) [36, 37]. Thus, the dispersion diagram of the SPPs will become extremely asymmetric, resulting in nonreciprocal responses. However, the effect of drifting electrons on a multilayered graphene-dielectric crystal has, to the best of our knowledge, not been explored.
In this work, we investigate the nonreciprocal properties of transverse magnetic (TM) modes in a multilayered graphene-dielectric crystal subjected to an external electric field. Using the transfer matrix method, we find that the band structure of TM modes and the corresponding hyperbolic isofrequency contours (IFC) become asymmetric as drift velocity increases. Moreover, we show that drifting electrons driven by the electric field can suppress the refraction angles of the wave vector and group velocity. Such properties may offer a novel route to control light propagation.

2. Theoretical model

Consider a periodic multilayer structure consisting of graphene sheets and dielectric materials as shown in figure 1. Since the transverse electric modes maintain time-reversal symmetry in the presence of an external bias and the corresponding dispersion lacks hyperbolic-like characteristic [43–45], here we mainly focus on the TM-polarized modes. By using the transfer matrix method and applying the Bloch theorem, the dispersion relation for the multilayered graphene-dielectric crystal can be expressed as [46, 47]

\[
\cos(K_Bd) = \cos(k_d) - \frac{1}{2} \frac{\omega_d^{\text{drift}}}{\omega_0\varepsilon_d} k_z \sin(k_d),
\]

where \(K_B\) is the Bloch wave vector, \(d\) is the period, \(\varepsilon_0\) is the vacuum permittivity, \(\varepsilon_d\) is the relative permittivity, \(k_z = \sqrt{\varepsilon_d(\omega/e)^2 - k_x^2}\) (assuming \(k_y = 0\)) is the \(z\) component of the wave vector, and \(\sigma^{\text{drift}}\) is the nonlocal conductivity of graphene with drifting electrons. In the absence of a DC bias voltage, the general nonlocal conductivity of graphene can be obtained by employing the random-phase approximation [48–52]. Then we have

\[
\sigma_g(\omega, k_z) = i\omega \frac{e^2}{k_z^2} \Pi(\omega, k_z),
\]

with

\[
\Pi(\omega, k_z) = \frac{k_z^4}{4\pi^2 \sqrt{\omega^2 - k_z^4}} \times \left[G \left(\frac{2k_Fv_F + \omega}{k_zv_F} \right) - G \left(\frac{2k_Fv_F - \omega}{k_zv_F} \right) \right] - \frac{2\epsilon}{\pi\nu_F\hbar}.
\]

Applying a DC bias voltage to the multilayered graphene-dielectric crystal can induce drifting electrons in each graphene sheet (see the green arrow in figure 1). In this scenario, the corresponding nonlocal conductivity can be modified as [39–41]

\[
\sigma^{\text{drift}}_g(\omega, k_z) = \frac{\omega}{\omega - k_zv_0} \sigma_g(\omega - k_zv_0, k_z),
\]

where \(v_0\) is the velocity of drifting electrons traveling along the \(x\) direction. Such a current-carry nonlocal conductivity model can be obtained either by using a quantum mechanical method based on the self-consistent field approach [40], or by solving the semiclassical Boltzmann transport equation [41]. A detailed discussion about the variation of the current-carrying nonlocal graphene conductivity with either \(k_z\) or \(\omega\) can be found in [39]. It should be noted that the Doppler-shifted factor \(\omega - k_zv_0\) caused by the drifting electrons makes the nonlocal conductivity of graphene become nonreciprocal, i.e. \(\sigma^{\text{drift}}_g(\omega, k_z) \neq \sigma^{\text{drift}}_g(\omega, -k_z)\). This implies that time-reversal symmetry breaking in graphene-based plasmonic systems can be achieved by applying an electrical DC bias [37, 39].

3. Numerical results and discussions

The dispersion relation of TM-polarized propagating waves is given by solving equation (1). Here we consider \(\varepsilon_d = 4\), \(E_F = 0.1\) eV, \(\gamma = -500\) fs, \(d = 100\) nm and \(v_F = 10^6\) m s\(^{-1}\). These parameters are used throughout the rest of the paper. As shown in figure 2, the orange shaded regions correspond to the plasmonic (polaritonic) modes arising from the coupling of SPPs between adjacent graphene layers, while green color regions depict the photonic modes conformed to the light line [54–58]. Note that the allowed band of the plasmonic mode will shrink progressively to the dispersion of a SPP for a single graphene layer (represented by blue curves in figure 2), as the period of the structure increases [59]. Since the dispersion curve for the plasmonic mode is characterized by hyperbolas in the wave vector space, and most importantly, such a hyperbolic dispersion characteristic is responsible for negative refraction [54, 60], in what follows we focus only on the plasmonic mode. In figure 2(a), in the absence of DC electrical
current, \(v_0 = 0 \), the dispersion diagrams associated with the forward plasmonic band \(k_x > 0 \) and backward plasmonic mode \(k_x < 0 \) are symmetric about the \(k_x = 0 \) axis. In other words, the time-reversal symmetry is preserved. However, as illustrated in figure 2(b), increasing the electron drift velocity to \(0.65v_F \) gives rise to an extremely asymmetric band structure, namely, \(\omega(k_x) \neq \omega(-k_x) \). Hence, a strong nonreciprocal response of TM-polarized modes also emerges in a multilayered graphene-dielectric nanostructure under an applied DC bias.

In particular, the red arrows showed in figure 2 indicate the band-crossing (degeneracy) point, where the photonic band and plasmonic band touch each other \([56–58]\). Expanding the dispersion equation equation \((1)\) in powers of \(k_zd \), and then substituting \(K_B = 0 \) into the resulting expansion, yielding \([57]\)

\[
k_z^2 = \frac{12}{d^2} \frac{d}{d + 4d} \left(\frac{i \sigma_{\text{drift}}}{2 \omega_0 \varepsilon_d} \right).
\]

Next, plugging \(k_z = 0, k_x = -\sqrt{\varepsilon_d \omega/c} \) and \(v_0 = 0.65v_F \) into equation \((6)\), we readily obtain the operation frequency of the band-crossing point for the backward plasmonic mode \(f \approx 8.97 \text{ THz} \) (\(f = \omega / 2\pi \)).

To further examine the feature of nonreciprocal responses, we plot the IFC of the multilayered graphene-dielectric crystal with different electron drift velocity values in figure 3. For \(v_0 = 0 \) (see the green curves), the hyperbolic contour of the plasmonic mode remains symmetric. Remarkably, the presence of the drifting electrons makes the hyperbolic contour strongly asymmetrical with respect to the \(k_z = 0 \) axis.

Figure 2. Dispersion diagrams of TM-polarized modes for different drift velocity values. The red arrows in the insets indicate the band-crossing points. Colored regions correspond to the allowed bands, wherein the photonic modes are shown by green color and the plasmonic modes are represented by orange color. The blue line depicts the dispersion curve of a single graphene sheet with the same dielectric permittivity \(\varepsilon_d = 4 \). Other parameters are \(E_F = 0.1 \text{ eV}, d = 100 \text{ nm}, v_F = 10^6 \text{ m s}^{-1} \) and \(\gamma^{-1} = 500 \text{ fs} \).
As shown in figure 3(a), at the operation frequency $f = 8.5$ THz, the backward plasmonic mode ($k_x < 0$) undergoes the so-called topological transition with the increase of the drift velocity, and finally forms a closed ellipse [24]. Interestingly, as the operation frequency increases to 8.97 THz, such a closed ellipse will shrink to a point (i.e. the band-crossing point). By contrast, as clearly seen in figure 3(b), for the operation frequency corresponding to the band-crossing point $f = 8.97$ THz, increasing the drift velocity gradually causes the dispersion curve of the backward plasmonic mode to become almost flat. Such an interesting characteristic and the resultant effect on negative refraction will be discussed in what follows. Meanwhile, for the Bloch wave vector $K_B = 0$ and drift velocity $v_0 = 0$, the magnitudes of the wave vectors for the forward plasmonic mode and backward plasmonic mode are equivalent. Nevertheless, as the drift velocity increases, in stark contrast to the forward plasmonic mode, the magnitude of the backward wave vector has a considerable increase. This means that the band gap, which is the magnitude of the difference between the wave vector of two plasmonic modes (forward mode and backward mode), becomes asymmetric about the $k_x = 0$ axis. Such an asymmetric band gap is useful for examining the one-way total transmission [16].

As shown in figure 3(a), at the operation frequency $f = 8.5$ THz, the backward plasmonic mode ($k_x < 0$) undergoes the so-called topological transition with the increase of the drift velocity, and finally forms a closed ellipse [24]. Interestingly, as the operation frequency increases to 8.97 THz, such a closed ellipse will shrink to a point (i.e. the band-crossing point). By contrast, as clearly seen in figure 3(b), for the operation frequency corresponding to the band-crossing point $f = 8.97$ THz, increasing the drift velocity gradually causes the dispersion curve of the backward plasmonic mode to become almost flat. Such an interesting characteristic and the resultant effect on negative refraction will be discussed in what follows. Meanwhile, for the Bloch wave vector $K_B = 0$ and drift velocity $v_0 = 0$, the magnitudes of the wave vectors for the forward plasmonic mode and backward plasmonic mode are equivalent. Nevertheless, as the drift velocity increases, in stark contrast to the forward plasmonic mode, the magnitude of the backward wave vector has a considerable increase. This means that the band gap, which is the magnitude of the difference between the wave vector of two plasmonic modes (forward mode and backward mode), becomes asymmetric about the $k_x = 0$ axis. Such an asymmetric band gap is useful for examining the one-way total transmission [16].

We now consider the effect of drifting electrons on the refraction angle. As schematically shown in the inset of figures 4(a) and (b), Let us suppose a TM-polarized wave with the wave vector k_i oblique incident from a dielectric material with permittivity ε_i to the multilayered graphene-dielectric crystal that carries a DC electrical current. The group velocity (direction of energy flow) for the TM-polarized mode (see the red arrows in the figure 4) can be written as [27, 31]

$$V_g = \frac{\partial \omega}{\partial k_x} \hat{x} + \frac{\partial \omega}{\partial K_B} \hat{z}.$$

As seen in figure 4(b), when the electrons are traveling toward the $-x$ direction, the corresponding IFC is nearly flat, which means that incident waves with different wave vectors can be converted to TM-polarized waves with almost the same wave vectors. Such a nearly flat IFC, also called as canalization, can be used to suppress diffraction [60, 61]. According to the boundary continuity condition of the electromagnetic wave propagation, the tangential component of the incident wave vector $k_i = \omega/c$ should be continuous at the interface between an isotropic material and a graphene-based photonic crystal [62, 63], namely, $K_B = k_i \sqrt{\varepsilon_i} \sin \theta$. The refraction angles of the wave vector and group velocity can be defined as [62]

$$\theta_k = \arctan \left(\frac{K_B}{k_x} \right),$$

$$\theta_g = \arctan \left(\frac{\partial \omega}{\partial K_B} \frac{\partial \omega}{\partial k_x} \right).$$

respectively. Figure 4(c) shows the refraction angles of the wave vector and group velocity for different drift velocity values. When the drifting electrons move along the +x direction, that is, the direction of the drifting electrons is parallel to the normal component of the incident wave vector, the drift velocity has an insignificant impact on the refraction angle. By contrast, for the electrons moving in the −x direction, the refraction angle of the wave vector gradually decreases with the increase of the drift velocity. Notably, the refraction angle of the group velocity goes down from 80° to nearly 0°, a drop of 80°. It should be noted that the refraction angle of the wave vector as well as group velocity drop to nearly 0°, that is, drifting electrons driven by an external electrical field can drag the wave vector and group velocity to the same direction, which makes the electromagnetic wave energy flow along the direction of the DC current. Such properties not only can be used to design tunable nonreciprocal devices but also offer a novel route to control the light propagation.

4. Conclusion

In summary, we have theoretically discussed the dispersion characteristics of a multilayered graphene-dielectric crystal that carries a DC current. Our numerical results indicate that drifting electrons driven by an external electric field can lead to asymmetric hyperbolic dispersion diagrams. Furthermore, when the drifting electrons travel antiparallel to the normal component of the incident wave vector, the negative refraction will be suppressed strongly. This means that the drifting electrons with a large enough drift velocity value can drag the wave vector and group velocity to the same direction, which makes the electromagnetic wave energy flow along the direction of the DC current. Such properties not only can be used to design tunable nonreciprocal devices but also offer a novel route to control the light propagation.

Acknowledgments

This work was supported by the Science and Technology Program of Guangzhou (No. 20190300001) and the National Natural Science Foundation of China (No. 11404115). We thank T A Morgado and M G Silveirinha for useful discussions.

References

[1] Caloz C, Alù A, Tretyakov S, Sounas D, Aghouri K and Deck-Léger Z L 2018 Electromagnetic nonreciprocity Phys. Rev. Appl. 10 047001
[2] Asadchy V, Mirmoosa M S, Díaz-Rubio A, Fan S and Tretyakov S 2020 Tutorial on electromagnetic nonreciprocity and its origins Proc. IEEE 108 1684–727
[3] Jalas D et al 2013 What is—and what is not—an optical isolator Nat. Photonics 7 579–82
[4] Fan S, Shi Y and Lin Q 2018 Nonreciprocal photonics without magneto-optics IEEE Antennas Wirel. Propag. Lett. 17 1948
[5] Soljačić M, Luo C, Joannopoulos J D and Fan S 2003 Nonlinear photonic crystal microdevices for optical integration Opt. Lett. 28 637–9
[6] Fan L, Wang J, Varheese L T, Shen H, Niu B, Xuan Y, Weiner A M and Qi M 2012 An all-silicon passive optical diode Science 335 447–50
[7] Shi Y, Yu Z and Fan S 2015 Limitations of nonlinear optical isolators due to dynamic reciprocity Nat. Photonics 9 388–92
[8] Sounas D L, Soric J and Alù A 2018 Broadband passive isolators based on coupled nonlinear resonances Nat. Electron. 1 113–9
[9] Correas-Serrano D, Gómez-Díaz J S, Sounas D L, Haday Y, Alvarez-Melcon A and Alù A 2016 Nonreciprocal graphene devices and antennas based on spatiotemporal modulation IEEE Antennas Wirel. Propag. Lett. 15 1529–32
[10] Chamanara N, Taravati S, Deck-Léger Z L and Caloz C 2017 Optical isolation based on space-time engineered asymmetric photonic band gaps Phys. Rev. B 96 155409
[11] Sounas D L and Alù A 2017 Non-reciprocal photonics based on time modulation Nat. Photonics 11 774–83

Figure 4. (a), (b) Isofrequency contours of the graphene-dielectric periodic nanostructure with drifting electrons traveling in different directions at a given drift velocity \(v_0 = 0.65 v_f \). Each inset shows a TM-polarized wave incident from an isotropic material with permittivity \(\varepsilon = 4 \), where the green arrow represents the direction of the drifting electrons. The red arrow indicates the direction of the group velocity, while the dashed line represents the continuity of the tangential component of \(k_i \) at the interface. (c) Refraction angles of the wave vector and group velocity vector as functions of incident angles at a given drift velocity \(v_0 \). (d) Refraction angles for the wave vector and group velocity vector as functions of incident angles at a given drift velocity \(v_0 = 0.65 v_f \). Each inset shows a TM-polarized wave incident from an isotropic material with permittivity \(\varepsilon = 4 \), where the green arrow represents the direction of the drifting electrons. The red arrow indicates the direction of the group velocity, while the dashed line represents the continuity of the tangential component of \(k_i \) at the interface. (c) Refraction angles of the wave vector and group velocity vector as functions of incident angles at a given drift velocity \(v_0 \). (d) Refraction angles for the wave vector and group velocity vector as functions of incident angles at a given drift velocity \(v_0 = 0.65 v_f \). Each inset shows a TM-polarized wave incident from an isotropic material with permittivity \(\varepsilon = 4 \), where the green arrow represents the direction of the drifting electrons. The red arrow indicates the direction of the group velocity, while the dashed line represents the continuity of the tangential component of \(k_i \) at the interface. (c) Refraction angles of the wave vector and group velocity vector as functions of incident angles at a given drift velocity \(v_0 \).
Correas-Serrano D, Ali A and Gomez-Diaz J S 2018 Magnetic-free nonreciprocal photonic platform based on time-modulated graphene capacitors Phys. Rev. B 98 165428

Huidobro P A, Galiffi E, Guenneau S, Craster R V and Pendry J B 2019 Fresnel drag in space–time-modulated metamaterials Proc. Natl. Acad. Sci. USA 116 24043–8

Galiffi E E, Huidobro P A and Pendry J B 2019 Broadband nonreciprocal amplification in luminal metamaterials Phys. Rev. Lett. 123 206101

Mazor Y and Ali A 2020 One-way hyperbolic metasurfaces based on synthetic motion IEEE Antennas Wirel. Propag. Lett. 68 1739

Yu Z, Wang Z and Fan S 2007 One-way total reflection with one-dimensional magneto-optical photonic crystals Appl. Phys. Lett. 90 121133

Yu Z, Veronis G, Wang Z and Fan S 2008 One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal Phys. Rev. Lett. 100 023902

Davoyan A R and Engheta N 2013 Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity Phys. Rev. Lett. 111 257401

Silveirinha M G 2015 Chern invariants for continuous media Phys. Rev. B 92 125153

Silveirinha M G 2016 Z2 topological index for continuous photonic materials Phys. Rev. B 93 073110

Wang Z, Chong Y D, Joannopoulos J D and Soljačić M 2008 Reflection-free one-way edge modes in a gyromagnetic photonic crystal Phys. Rev. Lett. 100 013905

Lu L, Joannopoulos J D and Soljačić M 2014 Topological photonics Nat. Photonics 8 821–9

Lu L, Joannopoulos J D and Soljačić M 2016 Topological states in photonic systems Nat. Phys. 12 626–9

Leviyev A, Stein B, Christof A, Galfsky T, Krishnamoorthy H, Kuskovski I L, Menon V and Khanikaev A B 2017 Nonreciprocity and one-way topological transitions in hyperbolic metamaterials APL Photonics 2 076103

Buddhiraju S, Shi Y, Song A, Wojcik C, Minkov M, Ian A D, Dutt W A and Fan S H 2020 Absence of unidirectionally propagating surface plasmon-polaritons at nonreciprocal metal-dielectric interfaces Nat. Commun. 11 674

Hassani Gangaraj S A and MONTICONE F 2018 Topological waveguiding near an exceptional point: defect-immune, slow-light, and loss-immune propagation Phys. Rev. Lett. 121 093901

Hassani Gangaraj S A, Hanson G W, Silveirinha M G, Shastri K, Antezza M and Monticone F 2019 Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms Phys. Rev. B 99 245414

Hassani Gangaraj S A and MONTICONE F 2019 Do truly unidirectional surface plasmon-polaritons exist? Optica 6 1158–65

Hassani Gangaraj S A and MONTICONE F 2020 Physical violations of the bulk-edge correspondence in topological electromagnetics Phys. Rev. Lett. 124 153901

Monticone F 2017 A truly one-way lane for surface plasmon polaritons Nat. Photonics 14 461–5

Pakniyat S, Holmes A M, Hanson G W, Hassani Gangaraj S A, Antezza M, Silveirinha M G, Jam S and Monticone F 2020 Nonreciprocal, robust surface plasmon polaritons on gyrotropic interfaces IEEE Antennas Wirel. Propag. Lett. 68 3718

Sabbagh M, Lee H, Stauber T and Kim K 2015 Drift-induced modifications to the dynamical polarization of graphene Phys. Rev. B 92 195429

Borgnia D S, Phan T V and Levitov L S Quasi-relativistic Doppler effect and non-reciprocal plasmons in graphene (arXiv:1512.09044)

Van Duppen B, Tomadin A, Grigorenko A N and Polini M 2016 Current-induced birefringent absorption and non-reciprocal plasmons in graphene 2D Mater. 3 015011

Bliokh K Y, Fortuno F J, Belkhaev A Y, Kivshar Y S and Nori F 2018 Electric-current-induced unidirectional propagation of surface plasmon-polaritons Opt. Lett. 43 963–6

Wenger T, Viola G, Kinaret J, Fogelström M and Tassn P 2018 Current-controlled light scattering and asymmetric plasmon propagation in graphene Phys. Rev. B 97 085419

Morgado T A and Silveirinha M G 2018 Drift-induced unidirectional graphene plasmons ACS Photonics 5 4253

Correas-Serrano D and Gomez-Diaz J S 2019 Nonreciprocal and collimated surface plasmons in drift biased graphene Phys. Rev. B 100 081410(R)

Morgado T A and Silveirinha M G 2020 Nonlocal effects and enhanced nonreciprocity in current-driven graphene systems Phys. Rev. B 102 075102

Morgado T A and Silveirinha M G 2017 Negative Landau damping in bilayer graphene Phys. Rev. Lett. 119 133901

Morgado T A and Silveirinha M G 2019 Reply to comment on negative Landau damping in bilayer graphene Phys. Rev. Lett. 123 219402

Papaj M and Lewandowski C 2020 Plasmonic nonreciprocity driven by band hybridization in Moire materials Phys. Rev. Lett. 125 066801

Othman M A K, Guclu C and Capolino F 2013 Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption Opt. Express 21 7614–32

Guo T, Zhu L, Chen P and Argyropoulos C 2018 Tunable terahertz amplification based on photoexcited active graphene hyperbolic metamaterials Opt. Mater. Express 8 3941–52

Shi Q, Dong H, Fung K, Dong Z and Wang J 2018 Optical non-reciprocity induced by asymmetrical dispersion of Tamm plasmon polaritons in terahertz magnetoplasmonic crystals Opt. Express 26 33613–24

Yeh P, Yariv A and Hong C-S 1977 Electromagnetic propagation in periodic stratified media I. General theory J. Opt. Soc. Am. 67 423

Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 Transfer matrix method for optics in graphene layers J. Phys.: Condens. Matter 25 215301

Wunsch B, Stauber T, Solis F and Guinea F 2006 Dynamical polarization of graphene at finite doping New J. Phys. 8 318

Hwang E H and Das Sarma S 2007 Dielectric function, screening, and plasmons in two-dimensional graphene Phys. Rev. B 75 205418

Lin I-T, Lai Y-P, Wu K-H and Liu J-M 2014 Terahertz optoelectronic property of graphene: substrate-induced effects on plasmonic characteristics Appl. Sci. 4 28–41

Goñalves P A D and Peres N M R 2016 An Introduction to Graphene Plasmonics (Singapore: World Scientific) 10.1142/9948

Liu J-M and Lin I-T 2019 Graphene Photonics (Cambridge: Cambridge University Press) 10.1017/9781108656870

Jablan M, Buljan H and Soljačić M 2009 Plasmonics in graphene at infrared frequencies Phys. Rev. B 80 245435

Chern R L, Han D Z, Zhang Z Q and Chan C T 2014 Additional waves in the graphene layered medium Opt. Express 22 31677–90

Chern R-L and Han D 2014 Nonlocal optical properties in periodic lattice of graphene layers Opt. Express 22 4817–29

Bludov Y V, Peres N M R and Vasilevskiy M I 2013 Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence J. Opt. 15 114004
[57] Bludov Y V, Peres N M R, Smirnov G and Vasilevskiy M I 2016 Scattering of surface plasmon polaritons in a graphene multilayer photonic crystal with inhomogeneous doping Phys. Rev. B 93 245425
[58] Ge L, Liu L, Xiao M, Du G, Shi L, Han D, Chan C T and Zi J 2017 Topological phase transition and interface states in hybrid plasmonic–photonic systems J. Opt. 19 06LT02
[59] Smirnova D, Buslaev P, Iorsh I, Shadrivov I V, Belov P A and Kivshar Y S 2014 Deeply subwavelength electromagnetic Tamm states in graphene metamaterials Phys. Rev. B 89 245414
[60] Orlov A A, Zhukovsky S V, Iorsh I V and Belov P A 2014 Controlling light with plasmonic multilayers Photonics Nanostruct. Fundam. Appl. 12 213–30
[61] Belov P A and Simovski C R 2005 Canalization of subwavelength images by electromagnetic crystals Phys. Rev. B 71 193105
[62] Liu Y, Bartal G and Zhang X 2014 All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region Opt. Express 16 15439–48
[63] Bang S, So S and Rho J 2019 Realization of broadband negative refraction in visible range using vertically stacked hyperbolic metamaterials Sci. Rep. 9 14093