Major bleeding in users of direct oral anticoagulants in atrial fibrillation: A pooled analysis of results from multiple population-based cohort studies

Hendrika A. van den Ham1 | Patrick C. Souverein1 | Olaf H. Klungel1 | Robert W. Platt2 | Pierre Ernst2 | Sophie Dell’Aniello2 | Sven Schmiedl3,4 | Birgit Grave5 | Marietta Rottenkolber6 | Consuelo Huerta7 | Elisa Martín Merino7 | Luz M. León-Muñoz7 | Dolores Montero7 | Morten Andersen8 | Mia Aakjær8 | Marie L. De Bruin1,9 | Helga Gardarsdottir1,10,11

1Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
2Canada and Canadian Network for Observational Drug Effect Studies (CNODES), Lady Davis Institute of the Jewish General Hospital, Montreal, Canada
3Department of Clinical Pharmacology, School of Medicine, Faculty of Health, Witten/Herdecke University (UW/H), Witten, Germany
4Philipp Klee-Institute for Clinical Pharmacology, Helios University Hospital Wuppertal, Wuppertal, Germany
5AOK NORDWEST, Dortmund, Germany
6Diabetes Research Group, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
7Division of Pharmacoepidemiology and Pharmacovigilance, Spanish Agency for Medicines and Medical Devices (AEMPS), Madrid, Spain
8Pharmacovigilance Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
9Copenhagen Centre for Regulatory Science, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract

Objective: To establish the risk of major bleeding in direct oral anticoagulant (DOAC) users (overall and by class) versus vitamin K antagonist (VKA) users, using health care databases from four European countries and six provinces in Canada.

Methods: A retrospective cohort study was performed according to a similar protocol. First-users of VKAs or DOACs with a diagnosis of non-valvular atrial fibrillation (NVAF) were included. The main outcome of interest was major bleeding and secondary outcomes included gastrointestinal (GI) bleeding and intracranial haemorrhage (ICH). Incidence rates of events per 1000 person years were calculated. Hazard ratios (HRs) and 95% confidence intervals (95% CI) were estimated using a Cox proportional hazard regression model. Exposure and confounders were measured and analysed in a time-dependant way. Risk estimates were pooled using a random effect model.

Results: 421 523 patients were included. The risk of major bleeding for the group of DOACs compared to VKAs showed a pooled HR of 0.94 (95% CI: 0.87–1.02). Rivaroxaban showed a modestly increased risk (HR 1.11, 95% CI: 1.06–1.16). Apixaban and dabigatran showed a decreased risk of respectively HR 0.76 (95% CI: 0.69–0.84) and HR 0.85 (95% CI: 0.75–0.96).

Conclusions: This study confirms that the risk of major bleeding of DOACs compared to VKAs is not increased when combining all DOACs. However, we observed a modest higher risk of major bleeding for rivaroxaban, whereas for
apixaban and dabigatran lower risks of major bleeding were observed compared to VKAs.

KEYWORDS

atrial fibrillation, cohort studies, directoral anticoagulants, major bleeding, oral anticoagulants, vitamin K antagonists

KEY POINTS

- Until now, this is the largest population-based cohort study that confirms that there is no clinically relevant difference in overall major bleeding risk between VKAs and DOACs as a class.
- Younger patients (<75) tend to have a lower risk for major bleeding while treated with DOACs versus VKAs.
- Rivaroxaban showed a modestly increased risk for major bleeding. Both rivaroxaban and dabigatran increased risk for GI bleeding by approximately 20%.
- All individual DOACs reduced the risk for ICH, which is in line with the clinical trials results.

1 | INTRODUCTION

Since the introduction of the first direct oral anticoagulant (DOAC), dabigatran, the treatment options for the prevention of ischaemic stroke in patients with non-valvular atrial fibrillation (NVAF) have broadened. Other DOACs including rivaroxaban and apixaban followed quickly, and finally edoxaban was also approved for this specific indication. The randomised clinical trials (RCTs) and meta-analysis of these trials showed that the DOACs are at least non-inferior to warfarin, a vitamin K antagonist (VKA), in reducing the risk of stroke and systemic embolism.\(^1\)\(^-\)\(^5\) The risk of haemorrhagic stroke was significantly lower compared to warfarin; it was reduced by 51%.\(^5\) However, the risk of gastrointestinal bleeding with DOACs was higher compared to warfarin with a relative risk of 1.25%\(^-\)95% confidence interval (95% CI) of 1.01–1.55.\(^5\) As the outcome of haemorrhagic stroke is more life threatening than gastro-intestinal bleeding the benefit–risk balance can be considered to be more positive than that of warfarin.\(^6\) Also, the fact that the pharmacokinetic profile of DOACs was more predictable and not so much influenced by external factors such as interacting co-medication or inter-current illnesses, as is the case for warfarin, contributed to the popularity of DOACs as they did not require frequent monitoring of anticoagulant activity at the antithrombotic clinic. Therefore, DOACs are currently the preferred treatment over VKAs for the prevention of ischaemic stroke in NVAF in first initiators of oral anticoagulants according to both the European and Canadian guidelines.\(^7\)\(^-\)\(^9\)

Several observational studies have been carried out to investigate if the positive benefit–risk balance would hold in a real-life population, as the clinical trials were conducted in a highly selected group of patients.\(^10\)\(^-\)\(^15\) These studies showed similar results as the RCTs, although the evidence remains inconclusive on specific points. Studies were not large enough to show differences in specific subpopulations such as the elderly, those with impaired renal function and comorbidities. Also, there is insufficient information available about the direct comparative effectiveness and safety within the class of DOACs as the bleeding risk seems to vary between the different drugs.\(^16\)\(^-\)\(^19\)

The aim of this study was to pool the results from pharmacoepidemiological studies using longitudinal data collected in electronic health care databases from four different countries in Europe and six different provinces in Canada, to characterise the risk of major bleeding and stroke in DOAC users in a real-world setting. This study also assessed differences in safety and effectiveness for the individual DOACs and for different age groups.

2 | METHODS

This study is a follow-up study using the results from multiple retrospective cohort studies that were performed for the European Medicines Agency to study the safety profile of DOACs. A common protocol was used by all centres involved and is registered and accessible under the European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP) EU PAS register number 16014. In the current article a summary is given of the methodology used for the retrospective cohort studies. More detailed information (e.g., definition of outcomes, variables and exposure) can be found in Appendix A (Chapter 9.1c–9.3c pp. 16–18).

2.1 | Setting

Data were extracted from four European health care databases and six Canadian provinces within the Canadian Network for Observational Drug Effect Studies (CNODES). The following European
databases were used: the Danish National Registers (DK), “Allgemeine Ortskrankenkasse” (AOK) NORDWEST in Germany, Base de Datos para la Investigación Farmacoepidemiológica en Atención Primaria (BIFAP) in Spain and the Clinical Practice Research Datalink (CPRD) in the United Kingdom. The following Canadian provinces were used: British Colombia (BC), Alberta (AB), Saskatchewan (SK), Manitoba (MB), Ontario (ON) and Nova Scotia (NS). Characteristics of these databases such as the number of patients included, type of database, available variables and coding dictionary used are presented in Table 1.

2.2 | Study population

The study population comprised of all new DOAC (dabigatran, rivaroxaban, apixaban) or VKA (warfarin, acenocoumarol, phenprocoumon) users in the period 2008–2015 for Canada 2010–2015, aged ≥18 years and with a diagnosis of NVAF.

The date of the first prescription of a VKA or DOAC defined the start of cohort entry (index date). New users were defined as patients initiating a DOAC or a VKA during the study period without any use of these medicines for at least 12 months prior to cohort entry. Each patient was followed until the outcome, the end of valid data collection, discontinuation or switching of treatment, loss to follow-up or death, whichever came first.

2.3 | Outcome definition

The primary outcome of interest was the occurrence of a first recorded major bleeding event during follow-up, including haemorrhagic stroke and/or intracranial bleeding, gastrointestinal bleeding, other extracranial or unclassified bleeding, and traumatic intracranial bleeding. Outcomes were identified using relevant Read codes, ICD-9, ICD-10, or ICPC-2 codes, depending on data source (relevant codes available in Appendix A, Table A3.1, pp. 49–52). Two independent analyses were also performed for gastrointestinal and intracranial bleeding events. Occurrence of any stroke (both ischaemic, haemorrhagic or unspecified stroke and transient ischemic attacks, TIsAs) was evaluated as a secondary outcome.

2.4 | Exposure definition

For each patient a period of current use was defined by constructing treatment episodes of drug usage that allowed for a 30-day permissible gap between the theoretical end date of the prescription and the subsequent prescription. A treatment episode was defined as a series of subsequent prescriptions for VKAs or DOACs, independent of dose changes and constructed according to the method of Gardarsdottir et al. The preferred method for calculating the individual prescription duration was by using information on the prescribed number of tablets and the dosage. If this information was not available in the database, the duration was estimated by using the median time between prescription for the individual patients or using the most frequently occurring estimated prescription duration for the specific drug in the study population. A new row was created in case a patient switched from one type of treatment to another within a treatment episode.

2.5 | Potential confounders

Potential confounders considered in this study were based on the literature review (i.e., risk factors for major bleeding and stroke). Important risk factors considered for major bleeding were thrombocytopenia, hypertension, history of stroke/TIA, history of major bleeding event, presence of malignancy, hepatic impairment, concomitant use of medicines that modify haemostasis or increase the gastrointestinal bleeding risk such as nonsteroidal anti-inflammatory drugs, corticosteroids, selective serotonin reuptake inhibitors, antiplatelet drugs; history of pulmonary embolism (PE) or deep venous thrombosis (DVT) and peptic ulcer diseases. Risk factors for any stroke were prior stroke/TIA, PE/DVT, hypertension, diabetes mellitus, congestive heart failure and other (cardio)vascular disease (angina, myocardial infarction, coronary heart disease, aortic plaque and peripheral arterial disease). Additionally, lab values on estimated glomerular filtration rate (eGFR) as measure for renal function were used where possible. Sex, weight (<50, 50–100, >100 kg), body mass index (BMI), smoking status and alcohol status were assessed at baseline (i.e., VKA or DOAC initiation) and considered constant throughout follow-up. Age, comorbidities (various time intervals prior to the start of the time period), and co-medication (6 months before each interval) use were considered as time-dependent confounders and their status was updated whenever the exposure status changed, or when exposure state exceeded 6 months at the start of each 6-month interval. It should be noted that not all variables were available in each database (Table 2). Relevant codes can be found in Appendix A, Tables A4.1–A4.3, pp. 65–67.

2.6 | Data analysis

Baseline characteristics were summarised as means and SDs or proportions where appropriate. Crude incidence rates of outcome events per 1000 person years were calculated. Cox proportional hazard regression analysis was used to estimate the risk of study outcomes comparing current use of DOACs and current use of VKAs, expressed as hazard ratios (HRs) with 95% confidence intervals (95% CI). The analysis was adjusted by entering the aforementioned risk factors separately in the model without any selection based on statistical significance. Data were analysed using STATA 13 or SAS 9.3/4 software and data analysts developed their own programs for data preparation and analysis.
Source population	Germany AOK NORDWEST	Spain BIFAP	UK CPRD	Danish National Registers	Canada CNODES
	2.7 m	7.5 m	12.5 m	5.5 m	Approx. 11 m

Year(s) covered for this study	2008–2015	2008–2015	2008–2015	2008–2015	2010–2015

Type of database	Claims database including data for dispensed and reimbursed drugs	General practice prescribing data	Dispensing data	Administrative data from publicly funded health insurance programs

Data available since	2007	2002	1987	1994	Before 1990

Demographic variables available	Date of registration	Date of transferring out	Date of birth	Gender	Date of prescribing/dispensing
	Yes	Yes	MM-YY	Yes	Yes

Drug information available	Active international coding	Product coding	Date of prescribing/dispensing	Quantity prescribed/dispensed	Dosing regimen
ATC	ATC	PZN	Primary care sector: Yes	Yes (package size)	No
ATC	BNF	CNF	Secondary care sector: Yes	Yes	Yes
ATC	ATC/AHFS	Product code	From 2011 dispensing is also available	Yes	No

Outcome information	Outpatient primary care diagnosis	Hospital discharge diagnosis	Laboratory tests	Mortality
ICD-10-GM (quarterly base)	ICD-10-GM	ICD-10-GM	ICPC-2, ICD-9	No
ICPC-2, ICD-9	Not systematically recorded	ICD-9, ICD-10	Yes (as requested by GP)	Yes (no cause of death)
ICD-9, ICD-10	ICD-8, ICD-10	ICD-10-CA	Yes	Yes

Abbreviations: AHFS, American Hospital Formulary Service; AOK NORDWEST, Allgemeine Ortskrankenkasse NORDWEST; ATC, Anatomical Therapeutic Chemical; BIFAP, Base de Datos para la Investigación Farmacoepidemiológica en Atención Primaria; BNF, British National Formulary; CA, Canada; CNF, Código nacional de fárma; CM, Clinical Modification; CNODES, Canadian Network for Observational Drug Effect Studies; CPRD, Clinical Practice Research Datalink; DIN, Drug Identification Number; DOAC, direct oral anticoagulant; GM, Germany; GP, general practitioners; ICD, International Statistical Classification of Diseases and Related Health Problems; ICPC, International Classification of Primary Care; PZN, Pharmazentralnummer; UK, United Kingdom; VKA, vitamin K antagonist.
TABLE 2	Baseline characteristics for users of DOACs and VKAs within the different databases in the United Kingdom, Spain, Germany, Denmark and Canada									
	United Kingdom (CPRD)	Spain (BIFAP)	Germany (AOK NORDWEST)	Denmark	Canada (CNODES)					
	DOAC (n = 5852)	VKA (n = 33 277)	DOAC (n = 8775)	VKA (n = 42 255)	DOAC (n = 18 566)	VKA (n = 70 176)	DOAC (n = 28 113)	VKA (n = 44 705)	DOAC (n = 95 330)	VKA (n = 74 474)
Follow-up, years (mean, SD)	0.8 (0.7)	2.7 (2.0)	1.5 (1.1)	2.6 (1.9)	NA	NA	0.91 (0.89)	1.00 (1.30)	1.8 (1.3)	2.3 (1.4)
Females	44.0	43.3	46.4	47.8	54.6	51.9	46.4	41.3	47.4	46.5
Age										
Mean age at index date (years, SD)	74.8 (11.0)	73.8 (10.4)	75.6 (10.0)	75.4 (10.8)	74.8 (11.4)	73.9 (9.6)	73.4 (11.2)	71.6 (11.2)	77.1 (8.9)	76.1 (10.6)
18–55 years	5.6	5.5	5.0	4.1	7.1	4.9	5.9	8.3	2.1	4.9
56–65 years	12.9	13.8	12.5	11.0	12.2	11.8	16.3	18.6	4.9	8.2
66–75 years	26.0	27.9	26.9	27.1	25.8	34.7	34.4	33.3	33.4	28.6
75+ years	55.5	52.8	55.6	57.7	54.8	48.6	43.3	39.7	59.6	58.3
Weight										
<50 kg	1.1	0.7	2.0	2.0	NA	NA	NA	NA	NA	NA
50–100 kg	28.1	28.7	39.1	45.2	NA	NA	NA	NA	NA	NA
>100 kg	6.2	7.0	3.1	4.1	NA	NA	NA	NA	NA	NA
Missing	64.6	63.6	56.9	49.7	NA	NA	NA	NA	NA	NA
BMI										
Mean BMI at index date (SD)	29.0 (6.3)	29.5 (6.3)	29.7 (5.1)	30.2 (5.3)	NA	NA	NA	NA	NA	NA
<20 kg/m²	1.6	1.2	0.5	0.5	NA	NA	NA	NA	NA	NA
20–24.9 kg/m²	7.5	7.1	6.3	6.4	NA	NA	NA	NA	NA	NA
25–29.9 kg/m²	12.7	12.9	16.6	19.1	NA	NA	NA	NA	NA	NA
30–34.9 kg/m²	8.0	8.7	12.6	15.1	NA	NA	NA	NA	NA	NA
≥35 kg/m²	5.3	6.1	5.3	7.8	NA	NA	NA	NA	NA	NA
Missing	64.8	63.9	58.7	51.1	NA	NA	NA	NA	NA	NA
Smoking status										
Never	38.2	37.6	9.5	11.2	NA	NA	NA	NA	NA	NA
Current	11.2	11.1	35.9	41.6	NA	NA	NA	NA	NA	NA
Ex	50.4	51.0	4.3	8.1	NA	NA	NA	NA	NA	NA
Missing	0	0	50.4	39.0	NA	NA	NA	NA	NA	NA
Alcohol										
Yes	9.6	6.7	18.3	22.6	NA	NA	4.8	4.3	5.9	6.8
Renal function										
Normal (>80 ml/min)	16.6	12.8	NA							
Normal – mildly reduced (CrCl 50–80 ml/min)	45.4	44.9	12.3	18.0	NA	NA	NA	NA	NA	NA
Moderately reduced (CrCl 30–49 ml/min)	20.0	22.1	4.5	6.4	NA	NA	NA	NA	NA	NA
Table 2 (Continued)

	United Kingdom (CPRD)	Spain (BIFAP)	Germany (AOK NORDWEST)	Denmark	Canada (CNODES)					
	DOAC \(n = 5852\)	VKA \(n = 33\)	DOAC \(n = 8775\)	VKA \(n = 42\)	DOAC \(n = 18\)	VKA \(n = 70\)	DOAC \(n = 28\)	VKA \(n = 44\)	DOAC \(n = 95\)	VKA \(n = 74\)
Severely reduced (CrCl 15–29 ml/min)	0.6 1.4	0.2 0.5	5.8 6.6	NA	NA	NA	NA	NA	NA	NA
Very severely reduced (CrCl <15 ml/min)	0.0 0.2	0.0 0.1	14.7 12.1	2.9 5.1	4.8	12.3	22.9	33.3	43.1	
Missing	17.3 18.6	83.0 75.0	18.5 17.7	3.2 3.7	23.7	25.2				
History of disease ever before										
Other cardiovascular disease (angina, myocardial infarction, coronary heart disease, aortic plaque, PAD)	24.8 27.0	19.3 19.6	67.2 65.8	28.1 31.8	55.5 63.5					
Chronic kidney diseaseb	n/a n/a	5.0 7.1	42.8 42.3	13.7 17.2	33.3	43.1				
Congestive heart failure	9.6 11.8	10.2 11.9	8.1 7.2	2.9 5.1	4.8	12.3	22.9	33.3	43.1	
Deep vein thrombosis/Pulmonary embolism	2.2 3.2	1.5 2.4	18.5 17.7	3.2 3.7	23.7	25.2				
Diabetes mellitus	18.4 17.7	21.8 25.3	43.1 42.8	11.9 13.1	41.6	44.7				
Hypertension	4.6 5.1	4.6 5.4	86.0 85.5	21.1 22.0	46.4	52.9				
Hepatic impairment (moderate/severe)	0.0 0.1	0.2 0.3	14.7 12.1	1.0 1.1	2.3	3.2				
Malignancy, including lymphoma and leukaemia and metastatic solid tumour, except malignant neoplasm of the skin	2.0 2.2	0.9 1.2	18.5 17.7	3.2 3.7	23.7	25.2				
Major bleeding event	32.2 29.5	15.7 15.4	33.7 24.5	19.3 17.5	25.6	32.1				
Peptic ulcer disease	6.4 6.0	3.1 4.9	10.8 8.0	6.8 6.9	15.9	21.1				
Stroke/TIA	21.1 17.4	11.8 11.0	25.2 20.6	19.4 17.5	16.3	20.8				
Thrombocytopenia	0.0 0.1	0.2 8.0	1.4 1.5	0.1 0.1	0.3	0.8				
Drug use within 6 months prior to index date										
Antihypertensive drugsc	79.6 83.2	77.4 81.9	93.9 91.0	88.2 89.9	90.3	90.5				
Antidiabetic drugs (including insulin)	12.7 13.0	18.3 20.6	20.5 20.9	12.4 12.9	22.7	29.1				
Antiplatelet drugs	49.3 58.2	44.1 40.9	22.6 18.1	45.2 52.3	14.3	21.5				
Systemic glucocorticoids	10.7 10.6	7.7 7.8	10.6 8.8	8.8 9.4	9.5	11.3				
NSAIDs	10.8 12.4	28.7 26.2	26.3 23.9	16.0 16.5	12.9	12.0				
SSRIs	8.3 6.4	9.2 8.7	4.7 3.1	8.1 8.0	9.8	10.5				

Abbreviations: AOK NORDWEST, Allgemeine Ortskrankenkasse NordWEST; VKA, vitamin K antagonist; BIFAP, Base de Datos para la Investigación Farmacoepidemiológica en Atencion Primaria; BMI, Body mass index; CNODES, Canadian Network for Observational Drug Effect Studies; CPRD, Clinical Practice Research Datalink; CrCl, Creatinine Clearance; DOAC, direct oral anticoagulant; NSAIDs, Nonsteroidal anti-inflammatory drugs; PAD, peripheral artery disease; SD, standard deviation; SSRIs, selective serotonin reuptake inhibitors; TIA, transient ischemic attack.

a Coding of renal function differs in the BIFAP database, where ≥ 60 ml/min is considered normal kidney function, and therefore there is no coding for 80 ml/min.

b For those databases that do not have lab-values available for renal function.

c Antihypertensive drugs include angiotensin converting enzyme (ACE) inhibitors, angiotensin II (ATII) -blockers, beta blockers, calcium channel blockers, diuretics, doxazosine and moxonidin.
All participating centres performed the analyses independently at their local site according to a common protocol (ENCePP EU PAS register number 16014). Investigators from individual sites were blinded to results from other sites until all analyses were finalised. The HR results were then pooled using a random effects model, assuming that the true effect size may vary between studies. The I^2 was calculated to measure statistical heterogeneity. The analysis was performed using R statistical software version 3.2.3. The results for patients younger and older than 75 were also pooled.

Results

In total 421 523 users of anticoagulants with a diagnosis of NVAF were identified of which 156 636 (37.2%) used a DOAC and 264 887 (62.8%) used a VKA. In the European countries, the use of DOACs was lower than of VKAs, ranging from 14.9% in the United Kingdom to 38.6% in Denmark. In Canada the majority of patients were prescribed a DOAC (56.1%). A summary of baseline characteristics of the population is given in Table 2. The mean age of patients was similar across databases and the highest percentage of all VKA and DOAC users were in the 75+ category. It should be noted that two databases in Canada only included patients that were 65 or older of age. The reported history of cardiovascular disease and hypertension was much higher in the AOK NORDWEST and CNODES databases compared to the CPRD and BIFAP databases.

For the primary outcome, major bleeding, the forest plots are shown in Figure 1. The pooled HR for DOACs compared to VKAs was found to be 0.94 with a 95% CI of 0.87–1.02, suggesting some reduction in risk, although the CI including 1 indicates that there is no superiority of DOACs compared to VKAs. Differences were observed between the individual DOACs. Rivaroxaban showed a modest increased risk (HR 1.11, 95% CI 1.06–1.16). On the other hand,
2.1 Gastro-intestinal bleeding – overall

Data source	event DOAC IR (/1000py)	event VKA IR (/1000py)	HR (95% CI)
Alberta, 18+	101	70.10	1.46 (1.15-1.85)
British Columbia, 18+	468	35.80	1.09 (0.74-1.61)
Manitoba, 18+	94	12.90	0.91 (0.88-2.21)
Nova Scotia, 18+	33	33.60	1.09 (1.01-2.02)
Ontario, 18+	1051	24.20	1.03 (0.15-8.08)
Saskatchewan, 18+	85	27.50	1.00 (0.73-1.24)
UK CPPI, 18+	44	25.30	1.00 (0.11-8.91)
Spain DTA, 18+	96	22.45	1.00 (0.12-1.99)
Germany AOK, 18+	210	27.30	1.00 (0.91-1.27)
Denmark, 18+	399	13.40	1.07 (1.01-1.13)

Random effects model
Heterogeneity: $\chi^2 = 23.93$, $p = 0.03$.

2.2 Gastro-intestinal bleeding – dabigatran

Data source	event DOAC IR (/1000py)	event VKA IR (/1000py)	HR (95% CI)
Alberta, 18+	173	60.10	1.19 (1.01-1.40)
British Columbia, 18+	1167	38.00	1.18 (1.01-1.39)
Manitoba, 18+	150	16.90	1.00 (0.89-1.13)
Nova Scotia, 18+	56	66.70	1.00 (0.05-1.57)
Ontario, 18+	2897	26.70	0.54 (0.15-1.30)
Saskatchewan, 18+	156	26.60	1.00 (0.60-1.68)
UK CPPI, 18+	168	24.20	1.00 (0.17-1.62)
Spain DTA, 18+	232	18.90	1.00 (1.06-1.55)
Germany AOK, 18+	800	24.90	1.00 (0.15-1.39)
Denmark, 18+	665	14.10	1.04 (0.35-1.51)

Random effects model
Heterogeneity: $\chi^2 = 23.93$, $p = 0.02$.

2.3 Gastro-intestinal bleeding – rivaroxaban

Data source	event DOAC IR (/1000py)	event VKA IR (/1000py)	HR (95% CI)
Alberta, 18+	67	85.90	1.19 (1.03-1.35)
British Columbia, 18+	604	43.90	1.40 (1.35-1.45)
Manitoba, 18+	74	24.10	1.00 (0.90-1.10)
Nova Scotia, 18+	1296	32.50	1.17 (0.98-1.37)
Ontario, 18+	92	25.00	1.00 (0.91-1.13)
Saskatchewan, 18+	109	18.00	1.00 (0.96-1.04)
UK CPPI, 18+	509	26.50	1.00 (0.92-1.02)
Denmark, 18+	160	16.80	1.00 (0.95-1.15)

Random effects model
Heterogeneity: $\chi^2 = 14.86$, $p = 0.007$.

2.4 Gastro-intestinal bleeding – apixaban

Data source	event DOAC IR (/1000py)	event VKA IR (/1000py)	HR (95% CI)
Alberta, 18+	a	721	1.07 (0.92-1.25)
British Columbia, 18+	95	24.50	0.79 (0.67-1.01)
Manitoba, 18+	12	10.10	0.54 (0.30-0.97)
Nova Scotia, 18+	a	24.70	1.00 (0.38-3.73)
Ontario, 18+	550	21.80	0.66 (0.60-0.73)
Saskatchewan, 18+	a	459	0.75 (0.73-1.04)
UK CPPI, 18+	312	10.40	1.00 (0.85-1.17)
Spain DTA, 18+	91	14.80	1.00 (0.36-1.79)
Germany AOK, 18+	121	17.50	0.80 (0.66-0.96)
Denmark, 18+	56	12.50	0.74 (0.60-0.95)

Random effects model
Heterogeneity: $\chi^2 = 14.86$, $p = 0.007$.

FIGURE 2 Forest plots for gastro-intestinal bleeding. (2.1) Gastro-intestinal bleeding – overall. (2.2) Gastro-intestinal bleeding – dabigatran. (2.3) Gastro-intestinal bleeding – rivaroxaban. (2.4) Gastro-intestinal bleeding – apixaban. AOK NORDWEST, Allgemeine Ortskrankenkasse NORDWEST; BIFAP, Base de Datos para la Investigación Farmacoepidemiológica en Atención Primaria; CI, confidence interval; CPRD, Clinical Practice Research Datalink; DOAC, direct oral anticoagulants; HR, Hazard Ratio; IR, incidence rate; py, person years; VKA, vitamin K antagonist; W, weight. 18+: patient population of 18 years or older. 65+: patient population of 65 years or older. S: cells with less than five events were suppressed by participating site due to privacy restrictions.
Apixaban showed a decreased risk (HR 0.76, 95% CI 0.69–0.84) compared to VKAs, as did dabigatran (HR 0.85, 95% CI 0.75–0.96). Risk differed by age group; for those ≥75 years old, HR was 1.01, 95% CI was 0.94–1.09, while for those <75 HR was 0.84, 95% CI of 0.74–0.95. However, this was not statistically significant as CIs were still overlapping (Figure 1-1.5,1.6).
In Figures 2 and 3, the forest plots for specific bleeding events are shown. Figure 2 shows that the overall risk for GI bleeding for DOACs compared to VKAs observed was slightly higher (HR 1.16, 95% CI 1.05–1.28). When assessing the different DOACs separately, a lower risk compared to VKAs was observed for apixaban with a HR of 0.77 and a 95% CI of 0.67–0.87. A higher risk was observed for

4.1 Stroke – overall

Data source	event DOAC IR (1000py)	event VKA IR (1000py)	HR (95% CI)
Alberta, 18+	82	37.20	34.30
British Columbia, 18+	339	10.70	54.40
Manitoba, 18+	81	9.10	16.30
Nova Scotia, 65+	13	14.20	65.13
Ontario, 65+	2104	19.40	1046
Saskatchewan, 18+	186	32.40	626.39
UK CRD, 18+	206	30.60	1352
Spain Bup, 18+	190	14.60	822.12
Germany AOK, 18+	714	20.00	4279
Denmark, 18+	686	14.70	1270

Random effects model
Heterogeneity: $I^2 = 0\%$, $\chi^2 = 0.056$, $p = 0.81$

Favors DOAC Favors VKA

4.2 Stroke – dabigatran

Data source	event DOAC IR (1000py)	event VKA IR (1000py)	HR (95% CI)
Alberta, 18+	49	37.20	34.30
British Columbia, 18+	142	10.50	447.15.40
Manitoba, 18+	38	9.20	13.60
Nova Scotia, 65+	9	18.20	65.13
Ontario, 65+	745	17.10	1046.15.40
Saskatchewan, 18+	93	31.00	626.39
UK CRD, 18+	46	27.60	1352
Spain Bup, 18+	61	14.30	822.12
Germany AOK, 18+	148	19.30	4279
Denmark, 18+	445	13.70	1270

Random effects model
Heterogeneity: $I^2 = 0\%$, $\chi^2 = 0.14$, $p = 0.7$.

Favors dabigatran Favors VKA

4.3 Stroke – rivaroxaban

Data source	event DOAC IR (1000py)	event VKA IR (1000py)	HR (95% CI)
Alberta, 18+	30	37.50	34.30
British Columbia, 18+	159	10.50	447.15.40
Manitoba, 18+	29	11.00	15.30
Nova Scotia, 65+	6	9.20	55.13
Ontario, 65+	612	20.30	1046.15.40
Saskatchewan, 18+	76	12.20	626.39
UK CRD, 18+	192	29.40	1352
Spain Bup, 18+	59	14.60	822.12
Germany AOK, 18+	457	21.70	4279
Denmark, 18+	147	14.90	1270

Random effects model
Heterogeneity: $I^2 = 83\%$, $\chi^2 = 0.038$, $p = 0.01$

Favors rivaroxaban Favors VKA

4.4 Stroke

(i) Stroke – overall. (ii) Stroke – dabigatran. (iii) Stroke – rivaroxaban. (iv) Stroke – apixaban. AOK NORDWEST, Allgemeine Ortskrankenkasse NORDWEST; BIFAP, Base de Datos para la Investigación Farmacoepidemiológica en Atención Primaria; CI, confidence interval; CPRD, Clinical Practice Research Datalink; DOAC, direct oral anticoagulants; HR, Hazard Ratio; IR, incidence rate; py, person years; VKA, vitamin K antagonist; W, weight. 18+: patient population of 18 years or older. 65+: patient population of 65 years or older. S: cells with less than five events were suppressed by participating site due to privacy restrictions.
DOACs and VKAs (HR 0.98, 95% CI 0.84–0.98) there were no significant differences found for stroke between the independent DOACs for this outcome should be interpreted with caution as in some databases event numbers in the DOAC arm were very low, which could bias results. Figure 4 illustrates that there were no significant differences found for stroke between DOACs and VKAs (HR 0.98, 95% CI 0.84–1.15).

4 | DISCUSSION

This study observes that there is no clinically relevant difference in overall major bleeding risk between VKAs and DOACs as a class when pooling results from large population-based cohort studies using a common protocol from different healthcare databases in Europe and Canada. However, it seemed that younger patients (<75) tend to have a lower risk for major bleeding while treated with DOACs versus VKAs. When stratifying the results for the different DOACs independently, only rivaroxaban showed a modest increased risk for major bleeding. For the secondary outcome, GI bleeding, we found differences in results for the different DOACs. Apixaban showed a lower risk for GI bleeding, while rivaroxaban and dabigatran showed a 21%–28% increased risk, respectively, when compared to VKAs. It was also confirmed that there was a 40% decrease in risk of ICH for all DOACs when compared to VKAs. No difference was found for overall stroke risk.

Several observational studies have been carried out to address the safety and effectiveness of DOACs. Although these studies differ in characteristics of the study population, study design, reporting of outcomes of interest and treatment comparisons, the results found are generally in line: DOACs are safe and effective alternatives to warfarin.11,15,17,21,22 Similar to our study, it was found in a propensity-weighted nation-wide cohort study in Denmark that rivaroxaban is associated with higher risk of major bleeding versus VKA.11 A study conducted in the United Kingdom in two health care databases, including CPRD (which was also used in this study), also concluded that apixaban showed lower risks on major bleeding as well as on ICH and GI-bleeding compared to warfarin.23 Although they did not find higher risks for bleeding with rivaroxaban compared to warfarin as we do, they did find an increased risk of all-cause mortality.

The finding that rivaroxaban is associated with a higher risk for bleeding is also seen in the United States. Studies carried out in the United States in claims databases also found that rivaroxaban had a worse safety profile than dabigatran and apixaban.16,24 A very recent study among 221 228 AF patients captured in healthcare claims databases in the United States it was found in a secondary analysis that apixaban and dabigatran had a more pronounced decrease risk of major bleeding.25 However, no significant difference in bleeding risk was found between rivaroxaban and warfarin in this study (HR 1.02, 95% CI 0.94–1.12). Another study from the same authors directly compared apixaban users and rivaroxaban users from the Optum claims database and found that apixaban was associated with a lower rate of stroke or systematic embolism (HR 0.82, 95% CI 0.68–0.98) as well as bleeding (HR 0.58, 95% CI 0.52–0.66), compared with rivaroxaban.26 It is hypothesised that higher bleeding rates in users of rivaroxaban may be explained by the fact that rivaroxaban is the only once daily dosed DOAC which causes a higher peak plasma level in patients than DOACs that are dosed twice a day.27

It is reassuring that similar results are found in studies that assess the performance of individual DOACs by comparing them indirectly against warfarin, as the current study, and studies that make direct comparisons between the individual DOACs.

The occurrence of atrial fibrillation increases with age, and increasing age is also a very important independent risk factor for stroke, which makes optimal treatment with oral anticoagulants in this patient population crucial.28 It has been shown that the net clinical benefit for treatment with oral anticoagulants is the greatest in the elderly.29 When stratifying the results for the different age groups it was found that the risk on major bleeding did not increase in patients with age ≥75 for DOACs versus warfarin. However, no difference is observed in the risk of bleeding between warfarin and DOACs, which means that other factors may determine treatment decisions. Other patient-specific characteristics that can be considered are cognitive impairment (most DOACs are suitable to include in blister packs and dosette boxes), concomitant interacting medicines and comorbidities such as the presence of chronic kidney disease.30,31

Although many observational studies have been carried out in the last few years since the introduction of the DOACs, we think this observational study provides additional evidence for the safety of DOACs and the individual DOACs. To our knowledge this is the largest sample size showing the effect of the medicines prescribed in clinical/daily practice using multiple health care databases within Europe and Canada, and by pooling the results we have a precise estimate reflected in the narrow 95% CIs. Especially for the outcome ICH, which is a rare one, this is very valuable. Another advantage of this study is the number of geographical areas covered, which increases the applicability of the results. We have tried to limit differences in results due to methodological choices by using a common protocol harmonising the choices in study design and the definition and the coding of outcomes and exposures. As a result this study is better able to detect an overall effect than when aggregated data from multiple studies with different set-up and quality are pooled. Having a network of databases ready that can look at benefits and risks of drugs, according to a common protocol will increase consistency in the results across these databases in different countries and will increase the value of observational drug research.32

We have corrected in all the analyses for confounding by including risk factors for major bleeding. However, in some databases we were unable to adjust for renal function, weight/BMI, smoking or alcohol status which may cause residual confounding since they may also determine the treatment decision. Also, unobserved confounding may still be present, mainly those determining the treatment selection by the physician who may choose the safer one (in terms of haemorrhagic effect) among patients at higher risk.
higher risk for bleeding. It should also be noted that different VKAs, such as warfarin, acenocoumarol and phenprocoumon, were pooled together in the analysis, although they do differ with respect to pharmacokinetic profile.

5 | CONCLUSION

This study shows that the risk of major bleeding of DOACs compared to VKAs is not different for DOACs as a class. When stratifying the result for different DOACs, the risk for major bleeding was elevated for rivaroxaban compared to VKAs. The risk on gastro-intestinal bleeding was elevated for both rivaroxaban and dabigatran 20%. The risk for ICH was reduced for all individual DOACs versus VKA.

ACKNOWLEDGMENTS

The research leading to these results was conducted as part of the activities of the PE & PV (Pharmacoepidemiology and Pharmacovigilance) Research Network which is a public academic partnership coordinated by the University of Utrecht, The Netherlands. The project has received support from the European Medicines Agency under the Framework service contract nr EMA/2015/27/PH. The authors of the BIFAP database would like to acknowledge the excellent collaboration of the primary care general practitioners and paediatricians, and also the support of the regional governments to the database. This study is based in part on data from the “Base de datos para la investigación Farmacoepidemiológica en Atención Primaria” (BIFAP) fully financed by the Spanish Agency on Medicines and Medical Devices (AEMPS). The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the AEMPS. The Canadian Network for Observational Drug Effect Studies (CNODES), a collaborating centre of the Drug Safety and Effectiveness Network (DSEN), is funded by the Canadian Institutes of Health Research (Grant Numbers DSE-111845 and DSE-146021). This study was made possible through data sharing agreements between CNODES member research centres and the respective provincial governments of Alberta, British Columbia, Manitoba (HIPC # 2017/2018–07), Nova Scotia, Ontario, and Saskatchewan. The BC Ministry of Health and the BC Vital Statistics Agency approved access to and use of BC data facilitated by Population Data BC for this study. British Columbia data sources were as follows [http://www.popdata.bc.ca/data]; British Columbia Ministry of Health [creator] (2017): Medical Services Plan (MSP) Payment Information File. BC Ministry of Health [publisher]. MOH (2017); British Columbia Ministry of Health [creator] (2017): PharmaNet. BC Ministry of Health [publisher]. Data Stewardship Committee (2017); Canadian Institute for Health Information [creator] (2017): National Ambulatory Care Reporting System. BC Ministry of Health [publisher]. MOH (2017); Canadian Institute for Health Information [creator] (2017): Discharge Abstract Database (Hospital Separations). BC Ministry of Health [publisher]. MOH (2017); British Columbia Ministry of Health [creator] (2017): Consolidation File (MSP Registration & Premium Billing). BC Ministry of Health [publisher]. MOH (2017); BC Vital Statistics Agency [creator] (2017): Vital Statistics Deaths. BC Ministry of Health [publisher]. Vital Statistics Agency (2017).

This manuscript is under concurrent review by the Saskatchewan Ministry of Health and, based on their recommendations, may be subject to change within 30 days from the date of submission to a journal. The opinions, results, and conclusions reported in this paper are those of the authors. No endorsement by the provinces or data stewards is intended or should be inferred. We acknowledge the programming support of Jianguo Zhang (Alberta), Greg Carney (British Columbia), Matthew Dahl (Manitoba), Yan Wang (Nova Scotia), Anjie Huang (Ontario), and Nianping Hu (Saskatchewan). We also acknowledge the important contributions of all of the CNODES collaborators and assistants at each site. This work was supported by the European Medicines Agency (EMA) under the Framework service contract nr [EMAE/2015/27/PH] with regard to the re-opening of competition no.3 and the Canadian Institutes of Health Research [Grant Number DSE-146021]. The Canadian Network for Observational Drug Effect Studies (CNODES) Investigators are: Samy Suissa (Principal Investigator); Colin R. Dormuth (British Columbia); Brenda R. Hemmelgarn (Alberta); Jacqueline Quail and Gary F. Teare (Saskatchewan); Patricia Caetano and Dan Chateau (Manitoba); David A. Henry and J. Michael Paterson (Ontario); Jacques LeLorier (Québec); Adrian R. Levy (Atlantic: NS, NL, NB, PEI); Pierre Ernst and Kristian B. Filion (UK Clinical Practice Research Datalink (CPRD)); Robert W. Platt (Methods); and Ingrid S. Sketris (Knowledge Translation). CNODES, a collaborating centre of the Drug Safety and Effectiveness Network (DSEN), is funded by the Canadian Institutes of Health Research [Grant Number DSE-146021]. This document expresses the opinion of the authors of the paper, and may not be understood or quoted as being made on behalf of or reflecting the position of the European Medicines Agency or one of its committees or working parties.

CONFLICT OF INTEREST

Other than de direct funders of the study (European Medicines Agency and Canadian Institutes of Health Research), authors Hendrika A. van den Ham, Patrick C. Souverein, Olaf H. Klungel, Pierre Ernst, Sophie Dell’Aniello, Birgit Grave, Marietta Rottenkolber, Consuelo Huerta, Elisa Martín Merino, Luz M León-Muñoz, Dolores Montero and Helga Gardarsdottir had nothing to disclose. Marie L. De Bruin reports grants from Novo Nordisk, grants from Ferrin Pharmaceuticals, grants from LEO Pharma, grants from Lundbeck, outside the submitted work. Sven Schmiedl reports a lecture fee from Daiichi Sankyo Deutschland GmbH. Robert W. Platt reports personal fees from
Biogen, personal fees from Eli Lilly, personal fees from Pfizer, personal fees from Merck, personal fees from Amgen, outside the submitted work. Morten Andersen reports research grants from AstraZeneca, H. Lundbesenck & Mertz, Janssen, Merck Sharp & Dohme, Novartis and Pfizer, received by the institutions at which he has been employed. Morten Andersen has received fees for organising and teaching pharmacoepidemiology courses at Mediacademy, the Danish Association for the Pharmaceutical Industry. Morten Andersen’s professorship is supported by a grant from the Novo Nordisk Foundation to the University of Copenhagen (NNF15SA0018404). Mia Aakjær received support for her PhD study from Novo Nordisk Foundation (NNF15SA0018404).

ETHICS STATEMENT
Each data source has their own ethical guidelines and data protection procedure in place. For more information about the data sharing regarding this study, please contact the principal investigator.

ORCID
Hendrika A. van den Ham https://orcid.org/0000-0003-1339-9818
Robert W. Platt https://orcid.org/0000-0002-5981-8443
Elisa Martin Merino https://orcid.org/0000-0002-3576-8605
Marie L. De Bruin https://orcid.org/0000-0001-9197-7068

ENDNOTE
Although the first DOAC for the indication NVAF was registered in Europe since 2011 and in Canada in 2010, DOACs were already on the market since 2008 for the prevention/treatment of deep venous thrombosis and pulmonary embolism.

REFERENCES
1. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093-2104.
2. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139-1151.
3. Patel M, Mahaffey K, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883-891. https://doi.org/10.1056/NEJMoa1009638
4. Granger C, Alexander J, McMurray JJV, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981-992.
5. Ruff C, Giugliano R, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in nonvalvular atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383(9921):955-962.
6. Fang MC, Go AS, Chang Y, et al. Death and disability from warfarin-associated intracranial and extracranial hemorrhages. Am J Med. 2007;120(8):700-705.
7. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893-2962.
8. Macle L, Cairns J, Leblanc K, et al. 2016 focused update of the Canadian cardiovascular society guidelines for the management of atrial fibrillation. Can J Cardiol. 2016;32(10):1170-1185.
9. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014;64(21):e1-e176.
10. Larsen T, Rasmussen L, Skjath F, et al. Efficacy and safety of dabigatran etexilate and warfarin in “real-world” patients with atrial fibrillation: a prospective nationwide cohort study. J Am Coll Cardiol. 2013;61(22):2264-2273.
11. Larsen TB, Skjoth F, Nielsen PB, Kjaeldgaard JN, Lip GY. Comparative effectiveness and safety of non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial fibrillation: propensity weighted nationwide cohort study. BMJ. 2016;353:i3189.
12. Abraham N, Singh S, Alexander GC, et al. Comparative risk of gastrointestinal bleeding with dabigatran, rivaroxaban, and warfarin: population based cohort study. BMJ. 2015;350:h1857.
13. Smythe M, Forman M, Bertran E, Hoffman J, Priziola J, Koerber J. Dabigatran versus warfarin major bleeding in practice: an observational comparison of patient characteristics, management and outcomes in atrial fibrillation patients. J Thromb Thrombolysis. 2015;40(3):280-287.
14. Graham D, Reichman M, Wernecke M, et al. Cardiovascular, bleeding, and mortality risks in elderly medicare patients treated with dabigatran or warfarin for nonvalvular atrial fibrillation. Circulation. 2015;131(2):157-164.
15. Graham DJ, Reichman ME, Wernecke M, et al. Stroke, bleeding, and mortality risks in elderly medicare beneficiaries treated with dabigatran or rivaroxaban for nonvalvular atrial fibrillation. JAMA Intern Med. 2016;176(11):1662-1671.
16. Lip GY, Keshihanian A, Kamble S, et al. Real-world comparison of major bleeding risk among non-valvular atrial fibrillation patients initiated on apixaban, dabigatran, rivaroxaban, or warfarin. Thromb Haemost. 2016;115(5):975-986.
17. Gorst-Rasmussen A, Lip GY, Bjorregaard LT. Rivaroxaban versus warfarin and dabigatran in atrial fibrillation: comparative effectiveness and safety in danish routine care. Pharmacoepidemiol Drug Saf. 2016;25(11):1236-1244.
18. Maura G, Bliotiere PO, Bouillon K, et al. Comparison of the short-term risk of bleeding and arterial thromboembolic events in nonvalvular atrial fibrillation patients newly treated with dabigatran or rivaroxaban versus vitamin K antagonists: a french nationwide propensity-matched cohort study. Circulation. 2015;132(13):1252-1260.
19. Yao X, Abraham NS, Sangaralingham LR, et al. Effectiveness and safety of dabigatran, rivaroxaban, and apixaban versus warfarin in nonvalvular atrial fibrillation. J Am Heart Assoc. 2016;5(6):e003725.
20. Gardarsdottir H, Souverein PC, Eggerts TC, Heerdink ER. Construction of drug treatment episodes from drug-dispensing histories is influenced by the gap length. J Clin Epidemiol. 2010;63(4):422-427.
21. Forslund T, Wettermark B, Andersen M, Hjemdahl P. Stroke and bleeding with non-vitamin K antagonist oral anticoagulant or warfarin treatment in patients with non-valvular atrial fibrillation: a population-based cohort study. EP Europace. 2018;20(3):420-428.
22. Blin P, Dureau-Pouzin C, Cottin Y, et al. Effectiveness and safety of 110 or 150 mg dabigatran vs. vitamin K antagonists in nonvalvular atrial fibrillation. Br J Clin Pharmacol. 2018;85(2):432-441.
23. Vinogradova Y, Coupland C, Hill T, Hippisley-Cox J. Risks and benefits of direct oral anticoagulants versus warfarin in a real world setting: cohort study in primary care. BMJ. 2018;362:k2505.
24. Tepper PG, Mardekanian J, Masseria C, et al. Real-world comparison of bleeding risks among non-valvular atrial fibrillation patients prescribed apixaban, dabigatran, or rivaroxaban. PLoS One. 2018;13(11): e0205989.
25. Huybrechts KF, Gopalakrishnan C, Bartels DB, et al. Safety and effectiveness of dabigatran and other direct oral anticoagulants compared with warfarin in patients with atrial fibrillation. Clin Pharmacol Ther. 2020 Jun;107(6):1405-1419.
26. Fralick M, Colacci M, Schneeweiss S, Huybrechts KF, Lin KJ, Gagne JJ. Effectiveness and safety of apixaban compared with rivaroxaban for patients with atrial fibrillation in routine practice: a cohort study. *Ann Intern Med*. 2020;172:463-473.

27. Frost C, Song Y, BarrettYC, et al. A randomized direct comparison of the pharmacokinetics and pharmacodynamics of apixaban and rivaroxaban [published correction appears in Clin Pharmacol. 2018 Jun 11:10:71]. *Clin Pharmacol*. 2014;6:179-187.

28. Marinigh R, Lip GY, Fiotti N, Giansante C, Lane DA. Age as a risk factor for stroke in atrial fibrillation patients: implications for thromboprophylaxis. *J Am Coll Cardiol*. 2010;56(11):827-837.

29. Singer DE, Chang Y, Fang MC, et al. The net clinical benefit of warfarin anticoagulation in atrial fibrillation. *Ann Intern Med*. 2009;151(5):297-305.

30. Diener H, Aisenberg J, Ansell J, et al. Choosing a particular oral anticoagulant and dose for stroke prevention in individual patients with non-valvular atrial fibrillation: part 1. *Eur Heart J*. 2016;38(12):852-859.

31. Diener H, Aisenberg J, Ansell J, et al. Choosing a particular oral anticoagulant and dose for stroke prevention in individual patients with non-valvular atrial fibrillation: part 2. *Eur Heart J*. 2016;38(12):860-868.

32. Klungel OH, Kurz X, de Groot MC, et al. Multi-centre, multi-database studies with common protocols: lessons learnt from the IMI PROTECT project. *Pharmacoepidemiol Drug Saf*. 2016;25(Suppl 1):156-165.

33. Steinberg BA, Shrader P, Thomas L, et al. Off-label dosing of non-vitamin K antagonist oral anticoagulants and adverse outcomes: the ORBIT-AF II registry. *J Am Coll Cardiol*. 2016;68(24):2597-2604.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: van den Ham HA, Souverein PC, Klungel OH, et al. Major bleeding in users of direct oral anticoagulants in atrial fibrillation: A pooled analysis of results from multiple population-based cohort studies. *Pharmacoepidemiol Drug Saf*. 2021;30(10):1339-1352. https://doi.org/10.1002/pds.5317