Corrigendum: Postsynaptic current bursts instruct action potential firing at a graded synapse

Ping Liu, Bojun Chen & Zhao-Wen Wang

Nature Communications 4:1911 doi: 10.1038/ncomms2925 (2013); Published 28 May 2013; Updated 14 May 2014

The legend to Fig. 5 of this Article contains a typographical error. Cholinergic PSCs in panel a were conducted using pipette solution I not III. The correct version of the legend appears below.

Figure 5 | Optogenetically evoked cholinergic and GABAergic PSC bursts depended on specific postsynaptic receptors. (a,b) Left: sample traces from worms raised in the presence of all-trans retinal showing the effects of (+)-TBC (0.5 mM) and gabazine (0.5 mM) on optogenetically evoked cholinergic and GABAergic PSC bursts, respectively. The horizontal blue lines represent blue light pulses while the ‘’ sign indicates that the peak was cut off. Right: the persistent current of evoked cholinergic (n = 15) and GABAergic (n = 12) bursts were abolished by TBC and gabazine, respectively. (c) The persistent current of evoked cholinergic PSC bursts was greatly decreased in unc-29(e1072) but unchanged in acr-16(ok789) compared with wild type (WT). (d) The large initial transient of evoked cholinergic PSC bursts was greatly decreased in acr-16(ok789) but unchanged in unc-29(e1072) compared with WT. In c,d, the sample size (n) was eight for every group. The WT group is the same as that shown in Fig. 4. The asterisk (*) indicates a statistically significant difference (P < 0.01) compared with either the control period in a or b (paired t-test) or the WT group in c and d (one-way analysis of variance followed by Bonferroni post hoc test). In a and b, extracellular solution I and pipette solution I were used to record cholinergic PSCs whereas extracellular solution II and pipette solution II were used to record GABAergic PSCs. In c and d, extracellular solution I and pipette solution I were used.