A THEOREM FOR RANDOM FOURIER SERIES ON COMPACT QUANTUM GROUPS

SANG-GYUN YOUN

Abstract. Helgason showed that a given measure \(f \in M(G) \) on a compact group \(G \) should be in \(L^2(G) \) automatically if all random Fourier series of \(f \) are in \(M_p(G) \). We explore a natural analogue of the theorem in the framework of compact quantum groups and apply the obtained results to study complete representability problem for convolution algebras of compact quantum groups as an operator algebra.

1. Introduction

The random Fourier series theory has been extensively studied for a long period of time [PZ32, Kah93, SZ54, Hum51, Dud67, Fer75, Mar78 and MP78] and most of the results turned out to be valid for Banach space-valued functions on compact groups [FTR66, Kwa76 and MP81]. Moreover, it has been found that these studies can be applied to various topics of harmonic analysis [Pis77, Pis78] and [Rid75].

A theorem of Helgason [Hel57], which is a subject of this paper, is one of the results of the theory of random Fourier series. It is an improvement of the Littlewood’s work on circle [Lit26].

Throughout this paper, we denote by \(\text{Irr}(G) \) a maximal family of mutually inequivalent irreducible unitary representations of a compact group \(G \) and by \(\mathcal{U} \) the product group \(\prod_{\pi \in \text{Irr}(G)} U(n_\pi) \) where \(U(d) \) is the group of unitary matrices of size \(d \) and \(n_\pi \) is the dimension of \(\pi \in \text{Irr}(G) \). Also, we denote by \(f \sim \sum_{\pi \in \text{Irr}(G)} n_\pi \text{tr}(\hat{f}(\pi)x) \) the Fourier-Stieltjes series of \(f \in M(G) \), where \((\hat{f}(\pi))_{\pi \in \text{Irr}(G)} \) is the sequence of Fourier coefficients of \(f \in M(G) \).

Theorem 1.1 (S.Helgason, [Hel57]). Let \(G \) be a compact group and fix a measure \(f \in M(G) \). Suppose that there exists \(\mu_U \in M(G) \) such that \(\mu_U \sim \sum_{\pi \in G} n_\pi \text{tr}(U_\pi \hat{f}(\pi)x) \) for any \(U = (U_\pi)_{\pi \in G} \in \mathcal{U} \). Then

\[
\sum_{\pi \in G} n_\pi \text{tr}(\hat{f}(\pi)^* \hat{f}(\pi)) < \infty.
\]

After the works of S.Woronowicz, which are [Wor87a, Wor87b] for compact quantum groups, the theory of topological quantum groups has been greatly elevated [KV00, Kus01, KV03] and harmonic analysis on quantum groups has also been vigorously studied in [Cas13, FHL+17, JMP14, JPP17] and [You18]. In particular, progress has been made in research on random Fourier series [Wan17].

Key words and phrases. Random Fourier series, compact quantum group, non self-adjoint operator algebra.

2010 Mathematics Subject Classification. Primary 46L89, Secondary 20G42, 43A30.

The author is supported by TJ Park Science Fellowship.
The main purpose of this paper is to generalize Theorem 1.1 in the framework of compact quantum groups in a natural manner through mobilizing well-known studies on stochastic quantum of some special vector-valued random variables (e.g. Rademacher and Gaussian variables), namely the non-commutative Khintchine inequalities [LP86], [LPP91] and (co-)type studies [TJ74], [Fac87].

The Fourier analysis on compact quantum groups has been developed in respect of traditional philosophy of the Fourier analysis on compact groups to large extent. However, a visible difference appears in the Fourier expansion. In fact, our random Fourier series of $f \in M(G)$ will be described as

$$f_U \sim \sum_{\alpha \in \text{Irr}(G)} d_{\alpha} \text{tr}(U_\alpha \hat{f}(\alpha) Q_\alpha u^\alpha)$$

for any $U = (U_\alpha)_{\alpha \in \text{Irr}(G)} \in \mathcal{U}$. We will explain the details of the above expansion in Section 2.

As in the classical setting, $f \in L^2(G)$ will imply that all of random fourier series f_U are in $L^2(G) \subseteq L^1(G)$ by the Plancherel identity on compact quantum groups (Proposition 2.1). Accordingly what we have to do is to demonstrate the converse direction and main results of this paper are as follows.

Theorem 1.2. In the above notation, let us suppose that $f_U \in M(G)$ for all $U = (U_\alpha)_{\alpha \in \text{Irr}(G)} \in \mathcal{U}$.

1. If G is of Kac type, then we have

$$\sum_{\alpha \in \text{Irr}(G)} n_{\alpha} \text{tr}(\hat{f}(\alpha) \hat{f}(\alpha)) < \infty.$$

2. For general compact quantum groups, we have

$$\sum_{\alpha \in \text{Irr}(G)} \frac{d_{\alpha}^2}{n_{\alpha}} \text{tr}(Q_\alpha \hat{f}(\alpha) \hat{f}(\alpha)) < \infty.$$

Moreover, we will apply the obtained results to a problem determining whether the associated convolution algebra $L^1(G)$ can be completely isomorphic to a closed subalgebra of $B(H)$, in which H is a Hilbert space (See Section 4). In this case, we will say that $L^1(G)$ is completely representable as an operator algebra.

Corollary 1.3. Let $G = (A, \Delta)$ be a compact quantum group. Then $L^1(G)$ is completely representable as an operator algebra if and only if A is finite dimensional.

2. Preliminaries

2.1. **Compact quantum group.** A compact quantum group is a pair $G = (A, \Delta)$ where A is a unital C^*-algebra and $\Delta : A \to A \otimes_{\min} A$ is a unital $*$-homomorphism satisfying

1. $(\Delta \otimes \text{id}) \circ \Delta = (\text{id} \otimes \Delta) \circ \Delta$ and
2. span $\{\Delta(a)(b \otimes 1) : a, b \in A\}$ and span $\{\Delta(a)(1 \otimes b) : a, b \in A\}$ are dense in $A \otimes_{\min} A$.

Let us describe the basic representation theory and the Schur’s orthogonality relation on compact quantum groups. A finite dimensional unitary representation of G is $u = (u_{i,j})_{1 \leq i, j \leq n} \in M_n(A)$ such that $\Delta(u_{i,j}) = \sum_{k=1}^n u_{i,k} \otimes u_{k,j}$ and $(u^* u)_{i,j} = \sum_{k=1}^n u^*_{i,k} u_{k,j} = \delta_{i,j} 1_A = \sum_{k=1}^n u_{i,k} u^*_{k,j} = (uu^*)_{i,j}$ for all $1 \leq i, j \leq n$. We say that a unitary representation $u \in M_n(A)$ is irreducible if $\{X \in M_n : Xu = uX\} = \mathbb{C} \cdot \text{Id}_n$ and denote by $\{u^{i,j} \}_{1 \leq i, j \leq n} = \{u_{i,j} \}_{1 \leq i, j \leq n}$ a maximal family of mutually inequivalent unitary irreducible representations of G.

2
Every compact quantum group allows the analogue of the Haar measure, namely the Haar state, which is the unique state h on A such that $(id \otimes h)(\Delta(a)) = h(a)1_A = (h \otimes id)(\Delta(a))$ for all $a \in A$ and $h(1_A) = 1$.

For each $\alpha \in \text{Irr}(G)$, there exists a unique matrix $Q_{\alpha} \in M_{n_{\alpha}}$ such that $Q_{\alpha}^* w_{\alpha} Q_{\alpha}^{-1}$ is unitary and $\text{tr}(Q_{\alpha}) = \text{tr}(Q_{\alpha}^{-1})$ where $w_{\alpha} := ((u_{i,j}^\alpha)^*)_{1 \leq i,j \leq n_{\alpha}}$. We call $d_\alpha = \text{tr}(Q_{\alpha}) = \text{tr}(Q_{\alpha}^{-1})$ the quantum dimension of $\alpha \in \text{Irr}(G)$. For any $\alpha, \beta \in \text{Irr}(G)$, $1 \leq i,j \leq n_\alpha$ and $1 \leq s,t \leq n_\beta$, we have the Schur’s orthogonality relation as follows.

$$h((u_{s,t}^\beta)^* u_{i,j}^\alpha) = \frac{\delta_{\alpha,\beta} \delta_{j,i} (Q_{\alpha}^{-1})_{i,s}}{\text{tr}(Q_{\alpha})}$$

and

$$h(u_{s,t}^\beta (u_{i,j}^\alpha)^*) = \frac{\delta_{\alpha,\beta} \delta_{j,i} (Q_{\alpha})_{j,t}}{\text{tr}(Q_{\alpha})}.$$

Moreover, we may assume that the matrices Q_{α} are diagonal [Dau10]. Also, we say that G is of Kac type if $Q_{\alpha} = \text{Id}_{n_{\alpha}}$ for all $\alpha \in \text{Irr}(G)$ or equivalently if the Haar state h is tracial.

We define the space of matrix coefficients as

$$\text{Pol}(G) = \text{span} \{ u_{i,j}^\alpha : \alpha \in \text{Irr}(G), 1 \leq i,j \leq n_\alpha \}$$

and then the Haar state h is faithful on $\text{Pol}(G)$. We denote by $L^2(G)$ the closure of $\text{Pol}(G)$ with respect to the pre-inner product $\langle a,b \rangle_{L^2(G)} = h(b^{*} a)$ for all $a,b \in \text{Pol}(G)$ and denote by $\Lambda : \text{Pol}(G) \hookrightarrow L^2(G)$, $a \mapsto \Lambda(a)$ the natural embedding. Also, we define $C_r(G)$ as the norm-closure of $\text{Pol}(G)$ in $B(L^2(G))$ under the GNS representation $[i(a)](\Lambda(x)) := \Lambda(ax)$ for all $a,x \in \text{Pol}(G)$ and $L^\infty(G)$ as weak *-closure of $C_r(G)$ in $B(L^2(G))$.

The Haar state h extends to $L^\infty(G)$ as a normal faithful state and we will denote it by h again. We consider the predual $L^1(G)$ of $L^\infty(G)$ and the dual $M(G)$ of $C_r(G)$ respectively. Then we have a contractive embedding $L^\infty(G) \hookrightarrow L^1(G)$, $x \mapsto h(x)$ and the isometric formal identity from $L^1(G)$ into $M(G)$. Note that $\text{Pol}(G)$ is dense in $L^1(G)$.

2.2. Fourier analysis on compact quantum groups. It is known that every compact quantum group admits the dual discrete quantum group \hat{G} with a natural quantum group structure under the generalized Pontrjagin duality. Although we will not mention its quantum group structure, we will specifically explain some of non-commutative l^p-spaces on the discrete quantum group \hat{G}.

The associated von Neumann algebra of \hat{G} is given by

$$L^\infty(\hat{G}) = \left\{ (X_\alpha)_{\alpha \in \text{Irr}(G)} \in \prod_{\alpha \in \text{Irr}(G)} M_{n_\alpha} : \sup_{\alpha \in \text{Irr}(G)} \| X_\alpha \| < \infty \right\}$$

with the norm $\|(X_\alpha)_{\alpha \in \text{Irr}(G)}\|_{L^\infty(\hat{G})} = \sup_{\alpha \in \text{Irr}(G)} \| X_\alpha \|_{M_{n_\alpha}}$.

We define the Fourier-Stieltjes transform by $\mathcal{F} : M(G) = C_r(G)^* \to L^\infty(\hat{G})$,

$$\mu \mapsto (\hat{\mu}(\alpha))_{\alpha \in \text{Irr}(G)}$$

with $\hat{\mu}(\alpha) = (\mu((u_{i,j}^\alpha)^*))_{1 \leq i,j \leq n_\alpha}$, to follow the standard notations of Fourier analysis on compact groups. Then the Fourier expansion of $\mu \in M(G)$ is given by

$$\mu \sim \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(\hat{\mu}(\alpha) Q_\alpha u^\alpha) = \sum_{\alpha \in \text{Irr}(G)} \sum_{i,j=1}^{n_\alpha} d_\alpha (\hat{\mu}(\alpha) Q_\alpha)_{i,j} u_{j,i}^\alpha.$$

Indeed, if $f \in \text{Pol}(G)$, then we have

$$f = \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(\hat{f}(\alpha) Q_\alpha u^\alpha).$$
The associated ℓ^2 and ℓ^1 spaces on \hat{G} are
\[
\ell^2(\hat{G}) = \left\{(X_\alpha)_{\alpha \in \text{Irr}(G)} \in \ell^2(\hat{G}) : \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(Q_\alpha X_\alpha^* X_\alpha) < \infty \right\},
\]
\[
\ell^1(\hat{G}) = \left\{(X_\alpha)_{\alpha \in \text{Irr}(G)} \in \ell^2(\hat{G}) : \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(|X_\alpha Q_\alpha|) < \infty \right\}
\]
with the norm structures
\[
\|(X_\alpha)_{\alpha \in \text{Irr}(G)}\|_{L^2(\hat{G})} = (\sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(Q_\alpha X_\alpha^* X_\alpha))^\frac{1}{2},
\]
\[
\|(X_\alpha)_{\alpha \in \text{Irr}(G)}\|_{\ell^1(\hat{G})} = \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(|X_\alpha Q_\alpha|)
\]
respectively. When we restrict the domain of the Fourier-Stieltjes transform to $L^2(G)$, we have the isometry $F : L^2(G) \to \ell^2(\hat{G})$ [Wan17], which is called the Plancherel identity.

2.3. Random Fourier series. From now on, we call formal series
\[
\sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(U_\alpha \hat{f}(\alpha) Q_\alpha u^\alpha)
\]
the random Fourier series of $f \in M(G)$ for $U = (U_\alpha)_{\alpha \in \text{Irr}(G)} \in \mathcal{U}$. The main question of this paper is to find out when all of the random Fourier series are in $M(G)$ simultaneously. It can be seen that one direction on our question can be solved simply from the Plancherel identity.

Proposition 2.1. If $f \in L^2(\hat{G})$, all of random fourier series f_U are in $L^2(\hat{G})$.

Proof.
\[
\|f_U\|_{L^2(\hat{G})}^2 = \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(Q_\alpha \hat{f}(\alpha)^* U_\alpha^* U_\alpha \hat{f}(\alpha)) = \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(Q_\alpha \hat{f}(\alpha)^* \hat{f}(\alpha)) = \|f\|_{L^2(G)}^2.
\]

Lemma 2.2. For $\mu \sim \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(\hat{\mu}(\alpha) Q_\alpha u^\alpha) \in M(G)$ and $f \in \text{Pol}(G)$,
\[
\langle \mu, f^* \rangle_{M(G), C_c(G)} = \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(\hat{\mu}(\alpha) Q_\alpha \hat{f}(\alpha)^*).
\]

Proof. For $f = \sum_{\alpha \in \text{Irr}(G)} \sum_{i,j=1}^{n_\alpha} d_\alpha (\hat{f}(\alpha) Q_\alpha)_{i,j} u_{i,j}^\alpha \in \text{Pol}(G)$,
\[
\hat{f}^* = \sum_{\alpha \in \text{Irr}(G)} \sum_{i,j=1}^{n_\alpha} d_\alpha (\hat{f}(\alpha) Q_\alpha)_{i,j} (u_{i,j}^\alpha)^*.
\]
and
\[
\langle \mu, f^* \rangle_{M(G), C_r(G)} = \sum_{\alpha \in \text{Irr}(G)} \sum_{i,j=1}^{n_\alpha} d_\alpha (\hat{f}(\alpha)Q_\alpha)_{i,j} \langle \mu, (w^*_i)^* \rangle_{M(G), C_r(G)}
\]
\[
= \sum_{\alpha \in \text{Irr}(G)} \sum_{i,j=1}^{n_\alpha} d_\alpha (\hat{f}(\alpha)Q_\alpha)_{i,j} \langle \mu, (\hat{\mu}^*_\alpha)^* \rangle_{i,j}
\]
\[
= \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(\hat{f}(\alpha)Q_\alpha\hat{\mu}_\alpha^*)
\]
\[
= \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(\hat{\mu}_\alpha Q_\alpha\hat{f}(\alpha)^*)
\]
\[
\square
\]

Proposition 2.3. Fix a family of matrices \((X_\alpha)_{\alpha \in \text{Irr}(G)}\). Then
\[
\mu_U \sim \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(U_\alpha X_\alpha u^\alpha) \in M(G)
\]
for all \(U = (U_\alpha)_{\alpha \in \text{Irr}(G)} \in \mathcal{U}\) if and only if
\[
\mu_B \sim \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(B_\alpha X_\alpha u^\alpha) \in M(G)
\]
for all \(B = (B_\alpha)_{\alpha \in \text{Irr}(G)} \in \ell^\infty(\hat{G})\).

In this case, the map
\[
\Phi : \ell^\infty(\hat{G}) \to M(G), B = (B_\alpha)_{\alpha \in \text{Irr}(G)} \mapsto \mu_B \sim \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(B_\alpha X_\alpha u^\alpha),
\]
is automatically a bounded map by the closed graph theorem.

Proof. One direction is trivial. On the other direction, pick \(B = (B_\alpha)_{\alpha \in \text{Irr}(G)} \in \text{Ball}(\ell^\infty(\hat{G}))\) and take an arbitrary \(f \in \text{Pol}(G)\). Then
\[
\langle \mu_B, f^* \rangle_{M(G), C_r(G)} = \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(B_\alpha X_\alpha f(\alpha)^*)
\]
For each \(\alpha \in \text{Irr}(G)\), there exist unitaries \(v^j_\alpha\) with \(j = 1, \cdots, 4\) such that
\[
X_\alpha = \frac{\sum_{j=1}^{4} v^j_\alpha}{2}
\]
by considering the following decomposition
\[
X_\alpha = \frac{X^*_\alpha + X_\alpha}{2} + i \frac{X_\alpha - X^*_\alpha}{2i} =: h_1 + ih_2
\]
and
\[
h_j = \left(\frac{h_j + i\sqrt{1 - |h_j|^2}}{2} \right) + \left(\frac{h_j - i\sqrt{1 - |h_j|^2}}{2} \right), \text{ for } j = 1, 2.
\]
We define \(V_j = (v^j_\alpha)_{\alpha \in \text{Irr}(G)} \in \mathcal{U}\) for \(j = 1, \cdots, 4\) and then
\[
\langle \mu_B, f^* \rangle_{M(G), C_r(G)} = \frac{1}{2} \sum_{j=1}^{4} \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(v^j_\alpha A_\alpha Q_\alpha \hat{f}(\alpha)^*) = \frac{1}{2} \sum_{j=1}^{4} \langle \mu_{V_j}, f^* \rangle_{M(G), C_r(G)}
\]
Since \(\text{Pol}(G)\) is dense in \(C_r(G)\), we get the conclusion
\[
\mu_B = \frac{\sum_{j=1}^{4} \mu_{V_j}}{2} \in M(G).
\]
2.4. **Vector valued probabilistic methods.** In this subsection, we gather some probabilistic techniques, namely non-commutative Khintchine inequality and cotype 2 condition, to be used in this study.

First of all, let us write down the non-commutative Khintchine inequality in the context of the present compact quantum group setting. For more details, see [Pis12].

For a sequence $(x_j)_{j=1}^n \subseteq L^1(\mathbb{G})$, we set

$$\| (x_j)_{j=1}^n \|_1 = \sup \left\{ \sum_{j=1}^n (x_j y_j) : y_j \in L^\infty(\mathbb{G}) \right\}$$

where $\| (y_j)_{j=1}^n \|_C = \left(\sum_{j=1}^n y_j y_j^* \right)^{\frac{1}{2}}$ and $\| (y_j)_{j=1}^n \|_R = \left(\sum_{j=1}^n y_j y_j^* \right)^{\frac{1}{2}}$.

Let $(g_j)_{j=1}^n$ be an independent and identically distributed (in short, i.i.d.) sequence of real valued Gaussian random variables with mean zero and variance 1. Then a part of the Khintchine inequality for non-commutative L^1-spaces is as follows:

Theorem 2.4 (Theorem 9.1, [Pis12]). If \mathbb{G} is of Kac type, there exists a universal constant $C > 0$ such that

$$\frac{1}{C} \| (x_j)_{j=1}^n \|_1 \leq \int_{\mathbb{G}} \left\| \sum_{j=1}^n g_j(w) x_j \right\|_B d\mathbb{P}(w) \leq \| (x_j)_{j=1}^n \|_1$$

for any finite set $(x_j)_{j=1}^n \subseteq L^1(\mathbb{G})$.

Also, we will make use of a cotype study on non-commutative L^1-spaces. In general, we say that a Banach space is of **cotype 2** if there is a constant $K > 0$ such that for all finite sets $(x_j)_{j=1}^n \subseteq B$ we have

$$\int_{B} \left\| \sum_{j=1}^n \epsilon_j(w) x_j \right\|^2 d\mathbb{P}(w) \geq K \left(\sum_{j=1}^n \| x_j \|^2 \right)^\frac{1}{2},$$

where $(\epsilon_j)_{j}$ is a family of i.i.d. Rademacher variables. It is known that every predual of von Neumann algebra is of cotype 2 [LT13] and it is possible to replace the Rademacher variables ϵ_j to the Gaussian variables g_j [LT13].

Theorem 2.5. There exists a universal constant $K > 0$ such that

$$\int_{L^1(\mathbb{G})} \left\| \sum_{j=1}^n g_j(w) x_j \right\| d\mathbb{P}(w) \geq K \left(\sum_{j=1}^n \| x_j \|^2_{L^1(\mathbb{G})} \right)^\frac{1}{2}$$

for any finite sets $(x_j)_{j=1}^n \subseteq L^1(\mathbb{G})$.

3. **The main results**

3.1. **Affirmative answer on Kac cases.** In this subsection, we will make use of random matrices $G_n = \left(\frac{1}{\sqrt{n}} t_{i,j}^n \right)_{i,j=1}^n \in M_n$ where $(g_{i,j}^n)_{i,j=1}^n$ is a family of independent real valued Gaussian random variables with mean zero and variance 1.

Lemma 3.1 (Proposition 1.5, Chapter 5, [MPS1]). There exist universal constants $C_1, C_2 > 0$, which are independent of n, such that

$$C_1 \leq \int \| G_n(w) \| d\mathbb{P}(w) \leq C_2,$$

where $\| \|$ is the operator norm of matrices.
Theorem 3.2. Let \mathcal{G} be a compact quantum group of Kac type and suppose that all random fourier series $f_U \sim \sum_{\alpha \in \text{Irr}(\mathcal{G})} n_\alpha \text{tr}(U_\alpha \hat{f}(\alpha) u^\alpha)$ of $f \in M(\mathcal{G})$ are in $M(\mathcal{G})$ for all $U = (U_\alpha)_{\alpha \in \text{Irr}(\mathcal{G})} \in \mathcal{U}$. Then we have

$$
\sum_{\alpha \in \text{Irr}(\mathcal{G})} n_\alpha \text{tr}(\hat{f}(\alpha)^* \hat{f}(\alpha)) < \infty.
$$

Proof. By Proposition 2.3, there exists a universal constant $K > 0$ such that

$$
K \|B\|_{\ell^\infty(\hat{\mathcal{G}})} \geq \left\| \sum_{\alpha \in \text{Irr}(\mathcal{G})} n_\alpha \text{tr}(B_\alpha \hat{f}(\alpha) u^\alpha) \right\|_{M(\mathcal{G})}
$$

for any $B = (B_\alpha)_{\alpha \in \text{Irr}(\mathcal{G})} \in \ell^\infty(\hat{\mathcal{G}})$. Now we fix a finite subset $S \subseteq \text{Irr}(\mathcal{G})$ and naturally takes into account a family of random matrices $(G_{n_\alpha})_{\alpha \in S} = \left(\frac{1}{\sqrt{n_\alpha}} g_{i,j}^\alpha \right)_{i,j=1}^{n_\alpha}$ in $\ell^\infty(\hat{\mathcal{G}})$. Then from the estimate above and Theorem 2.4, we have

$$
(3.1) \quad K \sup_{\alpha \in S} \|G_{n_\alpha}\|_{d\mathbb{P}(w)} \geq \left\| \sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} \sqrt{n_\alpha} g_{i,j}^\alpha (w)(\hat{f}(\alpha) u^\alpha)_{j,i} \right\|_{L^1(\mathcal{G})}
$$

$$
\geq \frac{1}{C} \|(\hat{f}(\alpha) u^\alpha)_{j,i}\|_1
$$

$$
= \frac{1}{C} \sup_{(y_{i,j}^\alpha)_{i,j}} \sum_{i,j}(x_{i,j}^\alpha, y_{i,j}^\alpha)_{L^1(\mathcal{G}), L^\infty(\mathcal{G})}
$$

where $x_{i,j}^\alpha = \sqrt{n_\alpha}(\hat{f}(\alpha) u^\alpha)_{j,i}$ and the supremum runs over all $(y_{i,j}^\alpha)_{i,j} \subseteq L^\infty(\mathcal{G})$ such that

$$
\max \left\{ \left\| \sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} (y_{i,j}^\alpha)^* y_{i,j}^\alpha \right\|_{L^\infty(\mathcal{G})}, \left\| \sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} y_{i,j}^\alpha (y_{i,j}^\alpha)^* \right\|_{L^\infty(\mathcal{G})} \right\} \leq 1.
$$

For arbitrary $(A(\alpha))_{\alpha \in S}$ such that $\sum_{\alpha \in S} n_\alpha \text{tr}(A(\alpha)^* A(\alpha)) \leq 1$, we can find that the family $(y_{i,j}^\alpha = (\sqrt{n_\alpha}(A(\alpha) u^\alpha)_{j,i})^*)$ satisfies the condition above. Indeed,

$$
\sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} (y_{i,j}^\alpha)^* y_{i,j}^\alpha = \sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} n_\alpha (A(\alpha) u^\alpha)_{j,i} [(A(\alpha) u^\alpha)_{j,i}]^*
$$

$$
= \sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} n_\alpha (A(\alpha) u^\alpha)_{j,i} [(u^\alpha)^* A(\alpha)^*]_{i,j}
$$

$$
= \sum_{\alpha \in S} n_\alpha \text{tr}(A(\alpha) u^\alpha)^* A(\alpha)^* u_{i,j}^\alpha
$$

$$
= \sum_{\alpha \in S} n_\alpha \text{tr}(A(\alpha) A(\alpha)^*) 1_A
$$

$$
= \sum_{\alpha \in S} n_\alpha \text{tr}(A(\alpha)^* A(\alpha)) 1_A
$$
and
\[
\sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} y_{i,j}^\alpha (y_{i,j}^\alpha)^* = \sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} n_\alpha [(A(\alpha)u^\alpha)_{j,i}]^* (A(\alpha)u^\alpha)_{j,i}
\]
\[
= \sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} n_\alpha (A(\alpha)u^\alpha)_{j,i} [(u^\alpha)^t A(\alpha)^t]_{i,j}
\]
\[
= \sum_{\alpha \in S} n_\alpha \text{tr} (A(\alpha)u^\alpha)^t A(\alpha)^t) = \sum_{\alpha \in S} n_\alpha \text{tr} (A(\alpha)^* A(\alpha)) 1_A = \sum_{\alpha \in S} n_\alpha \text{tr} (A(\alpha)^* A(\alpha)) 1_A,
\]
so that we have
\[
\max \left\{ \left\| \left(\sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} (y_{i,j}^\alpha)^* y_{i,j}^\alpha \right)^{\frac{1}{2}} \right\|_{L^\infty(G)}, \left\| \left(\sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} y_{i,j}^\alpha (y_{i,j}^\alpha)^* \right)^{\frac{1}{2}} \right\|_{L^\infty(G)} \right\}
\]
\[
\leq \left(\sum_{\alpha \in S} n_\alpha \text{tr} (A(\alpha)^* A(\alpha)) \right) \frac{1}{2} \leq 1
\]
Finally, by Lemma 3.1 we have
\[
KC_2 \geq \frac{1}{C} \sup_{(A(\alpha))_{\alpha \in S}} \sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} \langle \sqrt{n_\alpha} \hat{f}(\alpha) u^\alpha_{j,i}, \sqrt{n_\alpha} [(A(\alpha)u^\alpha)_{j,i}]^* \rangle_{L^1(G), L^\infty(G)}
\]
\[
= \frac{1}{C} \sup_{(A(\alpha))_{\alpha \in S}} \sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} n_\alpha \sum_{k,l=1}^{n_\alpha} \hat{f}(\alpha)_{j,k} A(\alpha)_{j,l} \langle u^\alpha_{k,i}, (u^\alpha_{k,i})^* \rangle_{L^1(G), L^\infty(G)}
\]
\[
= \frac{1}{C} \sup_{(A(\alpha))_{\alpha \in S}} \sum_{\alpha \in S} \sum_{i,j} n_\alpha \sum_{k,l=1}^{n_\alpha} \frac{\delta_{k,l}}{n_\alpha} \hat{f}(\alpha)_{j,k} A(\alpha)_{j,l}
\]
\[
= \frac{1}{C} \sup_{(A(\alpha))_{\alpha \in S}} \sum_{\alpha \in S} n_\alpha \text{tr} (\hat{f}(\alpha) A(\alpha)^*)
\]
\[
= \frac{1}{C} \left(\sum_{\alpha \in S} n_\alpha \text{tr} (\hat{f}(\alpha)^* \hat{f}(\alpha)) \right)^{\frac{1}{2}}
\]
since the supremum runs over all \((A(\alpha))_{\alpha \in S}\) such that \(\sum_{\alpha \in S} n_\alpha \text{tr} (A(\alpha)^* A(\alpha)) \leq 1\).

Now we reach the conclusion since the finite set \(S\) is chosen to be arbitrary.

\[\square\]

Remark 3.3. In the category of compact groups, it seems that some experts already have their own way to understand Theorem 1.1 through the Khintchine inequality. Indeed, the arguments below are simplified as follows.
Let $\Phi : L^p(G) \to \ell^1(\hat{G})$, $f \mapsto (X_\alpha \hat{f}(\alpha))_{\alpha \in \text{Irr}(G)}$, is bounded for all $2 \leq p \leq \infty$ since $L^p(G) \subseteq L^2(G)$ for such p. The converse is also true thanks to Theorem 3.2. Indeed, boundedness of Φ implies that the multiplier
\[\Phi : \ell^\infty(\hat{G}) \to M(G), (A_\alpha)_{\alpha \in \text{Irr}(G)} \mapsto \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(A_\alpha X_\alpha^* u) \]
is bounded. Then, by Proposition 2.3 and Theorem 3.2 we can conclude that the space of such multipliers from $L^p(G)$ into $\ell^1(\hat{G})$ can be identified with $L^2(G)$ independently of the choice of $2 \leq p \leq \infty$.

3.2. A partial answer on general cases. In spite of the complete answer on the Kac case, the proof of Theorem 3.2 could not be applied for the general case (1) For any $\alpha \in \text{Irr}(G)$ and any $1 \leq i, j \leq n_\alpha$, we have
\[\left\| \sum_{k=1}^{n_\alpha} A_{ik} (u_{k,j}^{\alpha})^* \right\|_{L^\infty(G)} \leq (Q_\alpha^{1/2})_{i,j} \left(\sum_{k=1}^{n_\alpha} |(A_\alpha Q_\alpha^{-1/2})_{i,k}|^2 \right)^{1/2}. \]

(2) For any $\alpha \in \text{Irr}(G)$ and any $1 \leq i, j \leq n_\alpha$, we have
\[\left\| \sum_{k=1}^{n_\alpha} (BQ_\alpha)_{i,k} u_{k,j}^{\alpha} \right\|_{L^1(G)} \geq \frac{(Q_\alpha^{1/2})_{i,j}}{d_\alpha} \left(\sum_{k=1}^{n_\alpha} |(BQ_\alpha)_{i,k}|^2 \right)^{1/2}. \]

Proof. (1) Since $Q_\alpha^{1/2} u = Q_\alpha^{-1/2}$ is a unitary representation, we have
\[\left(Q_\alpha^{1/2} \right)_{i,j} \left\| \sum_{k=1}^{n_\alpha} A_{ik} (u_{k,j}^{\alpha})^* \right\|_{L^\infty(G)} \]
\[= \left\| \sum_{k=1}^{n_\alpha} (AQ_\alpha^{-1/2})_{i,k} [Q_\alpha^{1/2} Q_\alpha^{1/2}]_{k,j} \right\|_{L^1(G)} \]
\[\leq \left(\sum_{k=1}^{n_\alpha} |(AQ_\alpha^{1/2})_{i,k}|^2 \right)^{1/2} \left(\sum_{k=1}^{n_\alpha} [Q_\alpha^{1/2} Q_\alpha^{1/2}]_{k,j} [Q_\alpha^{1/2} Q_\alpha^{1/2}]_{k,j} \right)^{1/2} \]
\[= \left(\sum_{k=1}^{n_\alpha} |(AQ_\alpha^{1/2})_{i,k}|^2 \right)^{1/2}. \]
(2) Define \(w_{i,k} = (AQ_{\alpha}^{-\frac{\alpha}{2}})_{i,k} \) for all \(1 \leq i, k \leq n_\alpha \) for convenience. Then, by (1), we can see that

\[
\left\| \sum_{k=1}^{n_\alpha} (BQ_{\alpha})_{i,k} u_{k,j}^\alpha \right\|_{L^1(\mathbb{G})} \\
\geq \sup_{(\sum_{k=1}^{n_\alpha} |w_{i,k}|^2)^{\frac{1}{2}}} \left\{ \sum_{k=1}^{n_\alpha} (BQ_{\alpha})_{i,k} u_{k,j}^\alpha, (Q_{\alpha}^{-\frac{\alpha}{2}})_{j,j} \sum_{k=1}^{n_\alpha} A_{i,k}(u_{k,j}^\alpha) \right\}_{L^1(\mathbb{G}), L^\alpha(\mathbb{G})}
\]

\[
= (Q_{\alpha}^{-\frac{\alpha}{2}})_{j,j} \sup_{(\sum_{k=1}^{n_\alpha} |w_{i,k}|^2)^{\frac{1}{2}}} \sum_{k=1}^{n_\alpha} (BQ_{\alpha})_{i,k} w_{i,k} (Q_{\alpha}^{-\frac{\alpha}{2}})_{k,k} h((u_{k,j}^\alpha)^* u_{k,j}^\alpha)
\]

\[
= (Q_{\alpha}^{-\frac{\alpha}{2}})_{j,j} \sup_{(\sum_{k=1}^{n_\alpha} |w_{i,k}|^2)^{\frac{1}{2}}} \sum_{k=1}^{n_\alpha} \frac{(BQ_{\alpha})_{i,k} w_{i,k}}{d_\alpha} \sum_{k=1}^{n_\alpha} \left(\frac{(BQ_{\alpha}^\alpha)_{i,k} w_{i,k}}{d_\alpha} \right) d_\alpha
\]

\[
= (Q_{\alpha}^{-\frac{\alpha}{2}})_{j,j} \left(\sum_{k=1}^{n_\alpha} \frac{|(BQ_{\alpha}^\alpha)_{i,k}|^2}{d_\alpha} \right)^{\frac{1}{2}} = \frac{(Q_{\alpha}^{-\frac{\alpha}{2}})_{j,j}}{d_\alpha} \left(\sum_{k=1}^{n_\alpha} \frac{|(BQ_{\alpha}^\alpha)_{i,k}|^2}{d_\alpha} \right)^{\frac{1}{2}}
\]

\[\square\]

Theorem 3.6. Suppose that all random Fourier series \(f_U \sim \sum_{\alpha \in \text{Irr}(\mathbb{G})} d_\alpha \text{tr}(U_{\alpha} \hat{f}(\alpha) Q_{\alpha} u^\alpha) \) are in \(M(\mathbb{G}) \) for all \(U = (U_{\alpha})_{\alpha \in \text{Irr}(\mathbb{G})} \in \mathcal{U} \). Then we have

\[
\sum_{\alpha \in \text{Irr}(\mathbb{G})} \frac{d_\alpha}{n_\alpha} \text{tr}(Q_{\alpha} \hat{f}(\alpha)^* \hat{f}(\alpha)) < \infty.
\]

Proof. As in the proof of Theorem 3.2, there exists a universal constant \(K > 0 \), which is independent of the choice of finite subset \(S \subseteq \text{Irr}(\mathbb{G}) \), such that

\[
K \geq \int \left\| \sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} \frac{d_\alpha}{\sqrt{n_\alpha}} g_{i,j}^\alpha(w) \sum_{k=1}^{n_\alpha} \left(\hat{f}(\alpha) Q_{\alpha} \right)_{i,k} u_{k,j}^\alpha \right\|_{L^1(\mathbb{G})} d\mathbb{P}(w)
\]

where \((g_{i,j}^\alpha(w))_{\alpha \in \text{Irr}(\mathbb{G}), 1 \leq i,j \leq n_\alpha}\) is a i.i.d. family of Gaussian variables with mean zero and variance 1.

Let \(v_{i,j}^\alpha \) be the \(i \)-th row vector of the matrix \(\hat{f}(\alpha) Q_{\alpha}^\frac{1}{2} \). Then, by Lemma 3.5 and Theorem 2.5 we have that

\[
K \geq K' \left(\sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} \frac{d_\alpha^2}{n_\alpha} \left\| \sum_{k=1}^{n_\alpha} \left(\hat{f}(\alpha) Q_{\alpha} \right)_{i,k} u_{k,j}^\alpha \right\|^2_{L^1(\mathbb{G})} \right)^{\frac{1}{2}}
\]

\[
\geq K' \left(\sum_{\alpha \in S} \sum_{i,j=1}^{n_\alpha} \frac{(Q_{\alpha}^{-\frac{1}{2}})_{i,j} \| u_{i,j}^\alpha \|^2}{d_\alpha} \right)^{\frac{1}{2}}
\]

\[
= \left(\sum_{\alpha \in \text{Irr}(\mathbb{G})} \frac{d_\alpha}{n_\alpha} \text{tr}(Q_{\alpha} \hat{f}(\alpha)^* \hat{f}(\alpha)) \right)^{\frac{1}{2}}.
\]

Since \(S \subseteq \text{Irr}(\mathbb{G}) \) is arbitrary, we can conclude that

\[
\sum_{\alpha \in \text{Irr}(\mathbb{G})} \frac{d_\alpha}{n_\alpha} \text{tr}(Q_{\alpha} \hat{f}(\alpha)^* \hat{f}(\alpha)) < \infty.
\]

\[\square\]

Remark 3.7. Although Theorem 3.6 does not give the complete conclusion for non-Kac cases, we can expect that the quantity \(\frac{d_\alpha}{n_\alpha} \) gets very close to the desired quantity of \(d_\alpha \). At least in certain cases, \(n_\alpha \) is significantly smaller than the quantum dimension \(d_\alpha \). Indeed, if the function \(\alpha \to n_\alpha \) has subexponential growth and if \(\mathbb{G} \)
is of non-Kac type, then the function $\alpha \mapsto d_\alpha$ is of exponential growth \cite{DPR16}. In particular, the Drinfeld-Jimbo deformations G_q with $0 < q < 1$ are important non-Kac type compact quantum groups. In this case, the function $\alpha \mapsto n_\alpha$ is of subexponential growth.

Let us clarify what Remark 3.7 implies for concrete example $G = SU_q(2)$.

Corollary 3.8. Let $G = SU_q(2)$ with $0 < q < 1$ and suppose that all random fourier series $f_U = \sum_{\alpha \in \text{Irr}(G)} d_\alpha \text{tr}(U_\alpha f(\alpha)Q_\alpha u^\alpha)$ are in $M(G)$ for all $U = (U_\alpha)_{\alpha \in \text{Irr}(G)} \in \mathcal{U}$.

Then we have

$$
\sum_{\alpha \in \text{Irr}(G)} d_\alpha^{1-\epsilon} \text{tr}(Q_\alpha \hat{f}(\alpha)^* \hat{f}(\alpha)) < \infty \text{ for each } \epsilon > 0.
$$

Proof. It is known that $\text{Irr}(G)$ is identified with $\{0\} \cup \mathbb{N}$ and $n_k = k + 1$ for all $k \in \text{Irr}(G) = \{0\} \cup \mathbb{N}$. Also, $d_k = q^{-k} + q^{-k+2} + \cdots + q^k \geq q^{-k}$ for all $k \geq 0$. Therefore, for each $\epsilon > 0$,

$$
\sum_{k \geq 0} d_k^{1-\epsilon} \text{tr}(Q_\alpha \hat{f}(k)^* \hat{f}(k)) \leq \sum_{k \geq 0} \frac{n_k d_k}{n_k q^{-k}} \text{tr}(Q_\alpha \hat{f}(k)^* \hat{f}(k))
$$

$$
\leq \sum_{k \geq 0} \frac{k+1}{q^{-k}} \text{tr}(Q_\alpha \hat{f}(k)^* \hat{f}(k))
$$

$$
\leq \frac{1}{(1-q^2)^2} \sum_{k \geq 0} \frac{d_k}{n_k} \text{tr}(Q_\alpha \hat{f}(k)^* \hat{f}(k)) < \infty.
$$

\[\square\]

3.3. A remark on central forms

While Theorem 3.6 clearly contains insufficient points to reach the conclusion, we conjecture that the ultimate conclusion might turn out to be positive. The reason is that if the starting measure $f \in M(G)$ has a specific form, the so-called central form, it can offset the deficit considerably.

Throughout this subsection, we will consider a sub von Neumann algebra N generated by $\{\chi_\alpha\}_{\alpha \in \text{Irr}(G)}$ in $L^\infty(G)$. Then the restriction of Haar state to N is a finite tracial state since

$$
h(\chi_\alpha \chi_\beta) = h(\chi^*_\alpha \chi_\beta) = \delta_{\alpha,\beta} = \delta_{\alpha,\beta} \chi_\alpha = h(\chi_\beta \chi_\alpha) = h(\chi_\beta \chi_\alpha) \text{ for all } \alpha, \beta \in \text{Irr}(G).
$$

Lemma 3.9. Let G be a compact quantum group satisfying $\inf_{\alpha \in \text{Irr}(G)} h(|\chi_\alpha|) > 0$. Then there exists a universal constant K satisfying the following: for any sequence $(a_\alpha)_{\alpha \in \text{Irr}(G)}$ with $\sum_{\alpha \in \text{Irr}(G)} |a_\alpha|^2 \leq 1$, there exists $(T_i)_i \subseteq \text{Pol}(G) \cap K \cdot \text{Ball}(L^\infty(G))$ such that $\lim_i |h(T_i \chi_\alpha^*)| \geq |a_\alpha|$ for all $\alpha \in \text{Irr}(G)$.

Proof. By [Theorem 5, LP97], there exists a universal constant $K > 0$ and for any such sequence $(a_\alpha)_{\alpha \in \text{Irr}(G)}$, there exists $T \in K \cdot \text{Ball}(N)$ such that $T \sim \sum_{\alpha \in \text{Irr}(G)} c_\alpha \chi_\alpha$

with $|c_\alpha| \geq |a_\alpha|$ for all $\alpha \in \text{Irr}(G)$.

Lastly, since $\mathcal{A} = \text{Pol}(G) \cap N$ is a unital $*$-algebra and dense in N under the weak $*$-topology, $\text{Ball}(\mathcal{A})$ is dense in $\text{Ball}(N)$ by the Kaplansky’s density theorem. Thus, we obtain a net $(T_i)_i \subseteq \text{Pol}(G) \cap K \cdot \text{Ball}(L^\infty(G))$ satisfying

$$
|c_\alpha| = h(T_i \chi_\alpha^*) = \lim_i |h(T_i \chi_\alpha^*)| \geq |a_\alpha|
$$

for all $\alpha \in \text{Irr}(G)$. \[\square\]
Theorem 3.10. Let \mathbb{G} be a compact quantum group such that $\inf_{\alpha \in \text{Irr}(\mathbb{G})} h(|\chi_\alpha|) > 0$ and suppose that all random Fourier series $f_U \sim \sum_{\alpha \in \text{Irr}(\mathbb{G})} d_\alpha \text{tr}(U_\alpha \hat{f}(\alpha)Q_\alpha u^\alpha)$ are in $M(\mathbb{G})$ for all $U = (U_\alpha)_{\alpha \in \text{Irr}(\mathbb{G})} \in \mathcal{U}$. Then we have

$$\sum_{\alpha \in \text{Irr}(\mathbb{G})} \text{tr}(|\hat{f}(\alpha)|^2) < \infty.$$

Proof. Let $(a_\alpha)_{\alpha \in \text{Irr}(\mathbb{G})}$ be a sequence with $\sum_{\alpha \in \text{Irr}(\mathbb{G})} |a_\alpha|^2 \leq 1$. Then we have a family $\{T_i\}_i \subseteq \text{Pol}(\mathbb{G}) \cap K \cdot \text{Ball}(L^\infty(\mathbb{G}))$ coming from Lemma 3.9. Let us write T_i as $\sum_{\alpha \in \text{Irr}(\mathbb{G})} c_i^\alpha \chi_\alpha$. Then $\hat{T}_i(\alpha)Q_\alpha = \frac{c_i^\alpha}{d_\alpha} \text{Id}_{a_\alpha}$ for all $\alpha \in \text{Irr}(\mathbb{G})$. Therefore, using Proposition 2.3 there exists a universal constant $K' > 0$ such that

$$\infty > K' \geq \sup_{U} \sup_{i} \langle f_U, T_i^* \rangle_{L^1(\mathbb{G}), L^\infty(\mathbb{G})} = \sup_{U} \sup_{i} \sum_{\alpha \in \text{Irr}(\mathbb{G})} d_\alpha \text{tr}(U_\alpha \hat{f}(\alpha)Q_\alpha \hat{T}_i(\alpha)^*)$$

$$= \sup_{U} \sup_{i} \sum_{\alpha \in \text{Irr}(\mathbb{G})} c_i^\alpha \text{tr}(U_\alpha \hat{f}(\alpha))$$

$$= \sup_{i} \sum_{\alpha \in \text{Irr}(\mathbb{G})} \left| c_i^\alpha \right| \text{tr}(|\hat{f}(\alpha)|)$$

$$\geq \sum_{\alpha \in \text{Irr}(\mathbb{G})} |a_\alpha| \text{tr}(|\hat{f}(\alpha)|)$$

$$\geq \sum_{\alpha \in \text{Irr}(\mathbb{G})} |a_\alpha| \text{tr}(|\hat{f}(\alpha)|).$$

The conclusion can be reached as stated above since (a_α) is arbitrary. \hfill \square

Corollary 3.11. Let \mathbb{G} be a compact quantum group such that $\inf_{\alpha \in \text{Irr}(\mathbb{G})} h(|\chi_\alpha|) > 0$ and fix a central element $f \sim \sum_{\alpha \in \text{Irr}(\mathbb{G})} c_\alpha \chi_\alpha \in M(\mathbb{G})$. If all random Fourier series $f_U \sim \sum_{\alpha \in \text{Irr}(\mathbb{G})} d_\alpha \text{tr}(U_\alpha \hat{f}(\alpha)Q_\alpha u^\alpha)$ are in $M(\mathbb{G})$ for all $U = (U_\alpha)_{\alpha \in \text{Irr}(\mathbb{G})} \in \mathcal{U}$, then we have

$$\sum_{\alpha \in \text{Irr}(\mathbb{G})} d_\alpha \text{tr}(Q_\alpha \hat{f}(\alpha)^* \hat{f}(\alpha)) = \sum_{\alpha \in \text{Irr}(\mathbb{G})} |c_\alpha|^2 < \infty.$$

Proposition 3.12. The quantum groups listed in the following list are known to satisfy the condition of Corollary 3.11:

- Free orthogonal quantum groups O_n^+
- Quantum automorphism group $\mathbb{G}_{\text{aut}}(B, \psi)$ with a δ-form ψ
- Drinfeld-Jimbo q deformations G_q with $0 < q < 1$

Proof. Let \mathbb{G}_1 and \mathbb{G}_2 be compact quantum groups. If there exists a bijective map $\Phi : \text{Irr}(\mathbb{G}_1) \to \text{Irr}(\mathbb{G}_2)$ such that $\Phi(\pi_1 \otimes \pi_2) = \Phi(\pi_1) \otimes \Phi(\pi_2)$ and $\Phi(\oplus_{i=1}^n \pi_i) = \oplus_{i=1}^n \Phi(\pi_i)$ for all $\pi_i \in \text{Irr}(\mathbb{G}_1)$ and $n \geq 1$, then the map Φ extends to a bijective $*$-homomorphism $\Phi : N_1 \to N_2$ where N_j is the weak $*$-closure of span $\{\chi_{\alpha,j}\}_{\alpha \in \text{Irr}(\mathbb{G}_j)}$ in $L^\infty(\mathbb{G}_j)$ for each $j = 1, 2$. Also, recall that the Haar states h_j are tracial on N_j respectively.
Moreover, \(\Phi \) is trace-preserving by repeating the proofs of [Proposition 6.7, [Wan17] and [Lemma 4.7, [You18]]. Therefore, we can conclude that
\[
h_1(\chi_{1,1}^G) = h_2(\chi_{\Phi(\alpha)}^{2}) \text{ for all } \alpha \in \text{Irr}(G).
\]

On the other hand, in [Pr175], it is shown that
\[
\inf_{\pi \in \text{Irr}(G)} \left\| \chi_{\pi} \right\|_{L^1(G)} > 0
\]
for any compact connected Lie group.

The existence of the bijective map \(\Phi : \text{Irr}(G) \rightarrow \text{Irr}(G) \) is known for \((G, G) = (O_N^+, SU(2)), (G_{ab}(B, \psi), SO(3))\) and \((G_q, G)\). Refer to [Bra13], [NT13] and [Tim08] for details.

\[\square\]

4. APPLICATION TO COMPLETE REPRESENTABILITY PROBLEM

In the category of Banach algebras, \(C^* \)-algebras are in a special position. One of typical examples that are not \(C^* \)-algebras is the convolution algebra \(L^1(G) \) of a locally compact group. Moreover, it turned out that \(L^1(G) \) is isomorphic to a closed subalgebra of \(B(H) \) for some Hilbert \(H \) as Banach algebras if and only if \(G \) is finite. This fact is based on the study of the Arens irregularity for convolution algebras \(L^1(G) \) [You73], which shows \(L^1(G) \) is Arens regular only if \(G \) is finite.

In the framework of locally compact quantum groups, the Fourier algebra \(A(G) \) is understood as a dual object of the convolution algebra \(L^1(G) \) in view of the generalized Pontrjagin duality. Very recently, it has shown that the Fourier algebra is \emph{completely isomorphic} to a closed subalgebra of \(B(H) \) for some Hilbert space if and only if \(G \) is finite ([LY17] for discrete groups and [LS10] for general cases). Here, complete isomorphism is the natural isomorphism in the category of operator spaces. Some terminologies of operator space theory required in this section will be explained in the below.

To my knowledge, prior to [LY17], all conclusions in this direction were based on Arens regularity studies. In the quantum group setting, the situation is similar. Thanks to [HNR12] investigating Arens irregularity for convolution algebras \(L^1(G) \) of locally compact quantum groups, we know that the convolution algebra \(L^1(G) \) is completely isomorphic to a closed subalgebra of \(B(H) \) if and only if \(L^\infty(G) \) is finite dimensional for \(G \sim \) a co-amenable compact quantum group.

Our contribution in this direction is the following fact, which removes the additional condition of co-amenability in the category of compact quantum groups.

\textbf{Theorem 4.1.} Let \(G = (A, \Delta) \) be a compact quantum group. Then \(L^1(G) \) is completely representable as an operator algebra, i.e. \(L^1(G) \) is completely isomorphic to a closed subalgebra of \(B(H) \) for some Hilbert space \(H \) if and only if \(A \) is finite dimensional.

An abstract operator space is a vector space \(E \) equipped with a matricial norm structure on \(M_n(E) = M_n \otimes E \) for which
\[
(1) \quad \left\| v_1 \oplus v_2 \right\|_{M_{m+n}(E)} \leq \max \left\{ \left\| v_1 \right\|_m, \left\| v_2 \right\|_n \right\} \quad \text{for all } v_1 \in M_m(E) \text{ and } v_2 \in M_n(V)
\]
and
\[
(2) \quad \left\| ab \right\|_{M_{m,n}(E)} \leq \left\| a \right\|_{M_{m,n}} \left\| b \right\|_{M_{n,m}(E)} \quad \text{for all } a \in M_{m,n}, b \in M_{n,m} \text{ and } v \in M_n(E).
\]

We say that a linear map \(L : E \rightarrow F \) between the two operator spaces \(E \) and \(F \) is completely bounded if \(\sup_{n \in \mathbb{N}} \left\| \text{id}_n \otimes L : M_n(E) \rightarrow M_n(F) \right\| < \infty \).

The two operator spaces that are noted in this section are the convolution algebra \(L^1(G) \) and the extended Haagerup tensor product space \(L^\infty(G) \otimes_{eh} L^\infty(G) \). Each
spaces has a natural operator space structure. Let us present equivalent description of those operator spaces.

First of all, for \(F = (f_{i,j})_{i,j=1}^{n} \in M_n(L^1(\mathbb{G})) \), the natural matricial norm structure is given by

\[
\|F\|_{M_n(L^1(\mathbb{G}))} = \sup_{m \in \mathbb{N}} \left\| \left\langle f_{i,j}, x_{k,l} \right\rangle_{L^1(\mathbb{G}), L^\infty(\mathbb{G})} \right\|_{i,j=1}^{n} \sup_{k,l=1}^{m} \|M_{mn}\),
\]

where the supremum runs over all \(X = (x_{k,l})_{k,l=1}^{m} \in \text{Ball}(M_n(L^\infty(\mathbb{G}))) \) under the identification \(M_m(L^\infty(\mathbb{G})) \subseteq M_m(B(L^2(\mathbb{G}))) \equiv B(L^2(\mathbb{G}) \oplus \cdots \oplus L^2(\mathbb{G})) \).

Secondly,

\[
L^\infty(\mathbb{G}) \otimes_{ch} L^\infty(\mathbb{G}) = \left\{ \sum_{i} a_i \otimes b_i : \sum_{i} a_i a_i^* \text{ and } \sum_{i} b_i^* b_i \text{ converges} \right\}
\]

with respect to the weak *-topologies and the matricial norm structure comes from the completely isometric embedding into \(CB^p(B(L^2(\mathbb{G})), B(L^2(\mathbb{G}))) \). More precisely, the matricial norm for \((\sum_{k} a_{i,j}^* b_{i,j}^{*})_{i,j=1}^{n} \in M_n \otimes (L^\infty(\mathbb{G}) \otimes_{ch} L^\infty(\mathbb{G})) \) is given by

\[
\sup_{m \in \mathbb{N}} \sup_{T = (T^s,t)_{s,t=1}^{m}} \left\| \sum_{k} a_{i,j}^* T^{s,t} b_{i,j}^{*} \right\|_{i,j=1}^{n} \sup_{s,t=1}^{m} \|M_{mn}(B(L^2(\mathbb{G})))\),
\]

where the supremum runs over all \(T = (T^{s,t})_{1 \leq s,t \leq m} \in \text{Ball}(M_m(B(L^2(\mathbb{G})))\).

Note that the restricted comultiplication \(\Delta : L^\infty(\mathbb{G}) \rightarrow L^\infty(\mathbb{G}) \otimes L^\infty(\mathbb{G}) \) and it induces the natural Banach algebraic structure on \(L^1(\mathbb{G}) \). For \(f_1, f_2 \in L^1(\mathbb{G}) \), we define the convolution product of \(f_1 \) and \(f_2 \) by

\[
\langle f_1 \ast f_2, a \rangle_{L^1(\mathbb{G}), L^\infty(\mathbb{G})} = (f_1 \otimes f_1)(\Delta(a)) \text{ for all } a \in L^\infty(\mathbb{G})
\]

Moreover, the convolution product extends to a completely contractive map \(m = \Delta_* : L^1(\mathbb{G}) \hat{\otimes} L^1(\mathbb{G}) \rightarrow L^1(\mathbb{G}) \) where \(\hat{\otimes} \) is the projective tensor product in the category of operator spaces. Refer to [Pis03] or [ER00] for details. The result of [Ble95], which actually covers general completely contractive Banach algebras, is written as follows in our setting:

Proposition 4.2. The convolution algebra \(L^1(\mathbb{G}) \) is completely isomorphic to a closed subalgebra of \(B(H) \) for some Hilbert space \(H \) if and only if the comultiplication \(\Delta : L^\infty(\mathbb{G}) \rightarrow L^\infty(\mathbb{G}) \otimes_{ch} L^\infty(\mathbb{G}) \) is completely bounded.

Lemma 4.3. Given \(B = (B_\alpha)_{\alpha \in \text{Irr}(\mathbb{G})} \in \text{Ball}(\ell^\infty(\mathbb{G})) \), define an operator \(T_B \in B(L^2(\mathbb{G})) \) by \(u_{j,i} \mapsto [Q_\alpha^{-1}(u^\alpha)^* B_\alpha]_{j,i} = \sum_{p=1}^{n_\alpha} (Q_\alpha^{-1})_{j,j}(u^\alpha_{p,j})^* (B_\alpha)_{p,i} \). Then \(T_B \) is a contraction.

Proof. Take \(v = \sum_{\alpha \in \text{Irr}(\mathbb{G})} \sum_{i,j=1}^{n_\alpha} c_{i,j}^\alpha u_{j,i}^\alpha \). Then

\[
T_B v = \sum_{\alpha \in \text{Irr}(\mathbb{G})} \sum_{j,p=1}^{n_\alpha} \sum_{i=1}^{n_\alpha} \left(\sum_{i,j=1}^{n_\alpha} c_{i,j}^\alpha (Q_\alpha^{-1})_{j,j}(B_\alpha)_{p,j} \right) u_{j,i}^\alpha.
\]

14
Also, put $C_α = (e^α_{ij})_{1 \leq i,j \leq n_α}$. Then

\[
\|T_B v\|_{L^2(G)}^2 = \sum_{α \in \text{Irr}(G)} \sum_{j,p=1}^{n_α} \left| \sum_{i=1}^{n_α} e^α_{i,j} (Q^{-1}_α)_{j,j} (B_α)_{p,i} \right|^2 \frac{(Q_α)_{j,j}}{d_α}
\]

\[
= \sum_{α \in \text{Irr}(G)} \sum_{j,p,i,i'=1}^{n_α} (Q^{-1}_α)_{j,j} \overline{e^α_{i,j} (B_α)_{p,i} e^α_{i',j} (B_α)_{p,i'}} \frac{1}{d_α}
\]

\[
= \sum_{α \in \text{Irr}(G)} \text{tr}(Q^{-1}_α C^*_α B^*_α B_α C_α) \frac{1}{d_α}
\]

\[
\leq \sum_{α \in \text{Irr}(G)} \text{tr}(Q^{-1}_α C^*_α C_α) \frac{1}{d_α}
\]

\[
= \sum_{α \in \text{Irr}(G)} \sum_{i,j=1}^{n_α} (Q^{-1}_α)_{i,j} |e^α_{i,j}|^2 \frac{1}{d_α} = \|v\|^2_{L^2(G)} .
\]

\[\square\]

Proof of Theorem 4.1 One direction is trivial. For the other direction, suppose that $Δ : L^∞(G) \to L^2(G) \otimes_{eh} L^∞(G)$ is completely bounded. Then, for any

\[
f = \sum_{α \in \text{Irr}(G)} \sum_{i,j}^{n_α} d_α (f(α) Q_α)_{i,j} u^α_{j,i} \in \text{Pol}(G),
\]

\[
Δ(f) = \sum_{α \in \text{Irr}(G)} \sum_{i,j=1}^{n_α} d_α (f(α) Q_α)_{i,j} u^α_{j,i} \otimes u^α_{i,j} \in L^∞(G) \otimes_{eh} L^∞(G).
\]

For each $(B_α)_{α \in \text{Irr}(G)} \in \text{Ball}(ℓ^∞(G))$, pick T_B of Lemma 4.3. Then $(Δ(f))(T_B)$ sends $1_A \in L^2(G)$ to

\[
x := \sum_{α \in \text{Irr}(G)} \sum_{i,j,k,p=1}^{n_α} d_α (f(α) Q_α)_{i,j} (Q^{-1}_α)_{k,k} (B_α)_{p,i} u^α_{j,k} (u^α_{p,k})^* \in L^2(G).
\]

Then

\[
\|Δ\|_{cb} \|f\|_{L^∞(G)} \geq \|x\|_{L^2(G)}
\]

\[
\geq |h(x)|
\]

\[
= |\sum_{α \in \text{Irr}(G)} \sum_{i,j=1}^{n_α} d_α (f(α) Q_α)_{i,j} \frac{1}{d_α} (B_α)_{j,i}| |
\]

\[
= |\sum_{α \in \text{Irr}(G)} n_α \text{tr}(f(α) Q_α B_α)|.
\]

Since $B_α$ is arbitrarily chosen, we have a bounded map $Φ_* : C_r(G) \to ℓ^1(G), f \mapsto \sum_{α \in \text{Irr}(G)} \frac{n_α}{d_α} f(α)$ and it induces the bounded dual map $Φ : ℓ^∞(G) \to M(G)$ determined by

\[
\langle f, Φ(A) \rangle_{C_r(G), M(G)} = \sum_{α \in \text{Irr}(G)} n_α \text{tr}(f(α) Q_α A(α)).
\]

Now, we can find that the map $Ψ : ℓ^∞(G) \to M(G), A = (A(α))_{α \in \text{Irr}(G)} \mapsto μ_A \sim \sum_{α \in \text{Irr}(G)} d_α \text{tr}(A_α (\frac{n_α}{d_α} \text{Id}_V) Q_α w^α)$, is bounded since for any $f \in \text{Pol}(G)$ we have

\[
\langle f^*, Ψ(A) \rangle_{C_r(G), M(G)} = \langle f, Φ(A^*) \rangle_{C_r(G), M(G)}
\]

by Lemma 4.2.
Finally, Proposition 2.3 and Theorem 3.6 say that
\[
\sum_{\alpha \in \text{Irr}(\mathcal{G})} \frac{d_\alpha}{n_\alpha} \text{tr}(Q_\alpha n_\alpha^2 \text{Id}_{n_\alpha}) = \sum_{\alpha \in \text{Irr}(\mathcal{G})} n_\alpha < \infty,
\]
so that \(A \) should be finite dimensional. \(\square \)

Acknowledgement. The author is grateful to Professor Hun Hee Lee for his encouragement and to Professor Gilles Pisier for his helpful comments, particularly on Remark 3.3.

References

[Ble95] David P Blecher. A completely bounded characterization of operator algebras. *Mathematica Annalen*, 303(1):227–239, 1995.

[Bra13] Michael Brannan. Reduced operator algebras of trace-preserving quantum automorphism groups. *Doc. Math.*, 18:1349–1402, 2013.

[Cas13] Martijn Caspers. The \(L^p \)-fourier transform on locally compact quantum groups. *J. Operator Theory*, 2013.

[Daw10] Matthew Daws. Operator biprojectivity of compact quantum groups. *Proceedings of the American Mathematical Society*, 138(4):1349–1359, 2010.

[DPR16] Alessandro D’Andrea, Claudia Pinzari, and Stefano Rossi. Polynomial growth for compact quantum groups, topological dimension and \(* \)-regularity of the fourier algebra. Preprint, arXiv:1602.07496, 2016.

[Dud67] Richard M Dudley. The sizes of compact subsets of hilbert space and continuity of gaussian processes. *Journal of Functional Analysis*, 1(3):290–330, 1967.

[ER00] Edward G. Effros and Zhong-Jin Ruan. *Operator spaces*. Clarendon Press, 2000.

[Fac87] Thierry Fack. Type and cotype inequalities for non commutative \(L^p \)-spaces. *Journal of Operator Theory*, pages 255–279, 1987.

[Fer75] Xavier Fernique. Des resultats nouveaux sur les processus gaussiens. In *Séminaire de Probabilités IX Université de Strasbourg*, pages 318–335. Springer, 1975.

[FHL`17] Uwe Franz, Guixiang Hong, Francois Lemeux, Michael Ulrich, and Haonan Zhang. Hypercontractivity of heat semigroups on free quantum groups. *Journal of Operator Theory*, 77(1):61–76, 2017.

[FTR66] Alessandro Figà-Talamanca and Daniel Rider. A theorem of littlewood and lacunary series for compact groups. *Pacific Journal of Mathematics*, 16(3):505–514, 1966.

[Hel57] Sigurdur Helgason. Topologies of group algebras and a theorem of littlewood. *Transactions of the American Mathematical Society*, 86(2):269–283, 1957.

[HNR12] Zhiguo Hu, Matthias Neufang, and Zhong-Jin Ruan. Module maps over locally compact quantum groups. *Studia Mathematica*, 211:111–145, 2012.

[Hun51] GA Hunt. Random fourier transforms. *Transactions of the American Mathematical Society*, 71(1):38–69, 1951.

[JMP14] Marius Junge, Tao Mei, and Javier Parcet. Smooth fourier multipliers on group von neumann algebras. *Geom. Funct. Anal.*, 24(6):1913–1980, 2014.

[JPMP17] Marius Junge, Carlos Palazuelos, Javier Parcet, and Mathilde Perrin. Hypercontractivity in group von neumann algebras. 2017.

[Kah93] Jean-Pierre Kahane. *Some random series of functions*, volume 5. Cambridge University Press, 1993.

[Kus01] Johan Kustermans. Locally compact quantum groups in the universal setting. *Internat. J. Math.*, 12(3):289–338, 2001.

[KV00] Johan Kustermans and Stefaan Vaes. Locally compact quantum groups. *Ann. Sci. École Norm. Sup. (4)*, 33(6):837–934, 2000.

[KV03] Johan Kustermans and Stefaan Vaes. Locally compact quantum groups in the von Neumann algebraic setting. *Math. Scand.*, 92(1):68–92, 2003.

[Kwa76] S Kwapień. A theorem on the rademacher series with vector valued coefficients. *Probability in Banach spaces*, pages 157–158, 1976.

[Lit26] JE Littlewood. On the mean values of power series. *Proceedings of the London Mathematical Society*, 2(1):328–337, 1926.

[LP86] Françoise Lust-Piquard. Inégalités de khintchine dans \(L^p \). *CR Acad. Sci. Paris*, 303:289–292, 1986.

[LP97] Françoise Lust-Piquard. On the coefficient problem: a version of the kahane–katzenel–de leuw theorem for spaces of matrices. *Journal of functional analysis*, 149(2):352–376, 1997.
Françoise Lust-Piquard and Gilles Pisier. Non commutative khintchine and paley inequalities. *Arkiv för matematik*, 29(1):241–260, 1991.

Hun Hee Lee, Ebrahim Samei, and Nico Spronk. Similarity degree of Fourier algebras. *J. Funct. Anal.*, 271(3):593–609, 2016.

Michel Ledoux and Michel Talagrand. *Probability in Banach Spaces: isoperimetry and processes*. Springer Science & Business Media, 2013.

Hun Hee Lee and Sang-Gyun Youn. New deformations of convolution algebras and fourier algebras on locally compact groups. *Canad. J. Math.*, 69(2):434–452, 2017.

Michael B Marcus. Continuity and the central limit theorem for random trigonometric series. *Probability Theory and Related Fields*, 42(1):35–56, 1978.

Michael B Marcus and Gilles Pisier. Necessary and sufficient conditions for the uniform convergence of random trigonometric series. 1978.

Michael B Marcus and Gilles Pisier. *Random Fourier Series with Applications to Harmonic Analysis. (AM-101)*, volume 101 of Annals of Mathematics Studies. Princeton University Press; University of Tokyo Press, 1981.

Sergey Neshveyev and Lars Tuset. *Compact quantum groups and their representation categories*, volume 20 of *Cours Spécialisés [Specialized Courses]*. Société Mathématique de France, Paris, 2013.

G Pisier. Sur l’espace de banach des séries de fourier aléatoires presque sûrement continues. *Séminaire Analyse fonctionnelle* (dit, pages 1–33, 1977.

Gilles Pisier. Ensembles de sidon et processus gaussiens. *CR Acad. Sci. Paris*, 286(15):A671–A674, 1978.

Gilles Pisier. *Introduction to operator space theory*, volume 294 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Cambridge, 2003.

Gilles Pisier. Grothendieck’s theorem, past and present. *Bull. Amer. Math. Soc.* 49(2):237–323, 2012.

JF Price. On local central lacunary sets for compact lie groups. *Monatsh. Math.*, 80(3):201–204, 1975.

REAC Paley and A Zygmund. On some series of functions. *Mathematical Proceedings of the Cambridge Philosophical Society*, volume 28, pages 190–205. Cambridge University Press, 1932.

Daniel Rider. Randomly continuous functions and sidon sets. *Duke Math. J.*, 42(4):759–764, 1975.

Raphael Salem and Antoni Zygmund. Some properties of trigonometric series whose terms have random signs. *Acta Mathematica*, 91(1):245–301, 1954.

Thomas Timmermann. *An invitation to quantum groups and duality*. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2008. From Hopf algebras to multiplicative unitaries and beyond.

N Tomczak-Jaegermann. On the rademacher averages and the moduli of convexity and smoothness of the schatten classes sp. *Studia Math.*, 50:163–182, 1974.

Simeng Wang. Lacunary fourier series for compact quantum groups. *Communications in Mathematical Physics*, 349(3):895–945, 2017.

Stanislaw L. Woronowicz. Compact matrix pseudogroups. *Comm. Math. Phys.*, 111(4):613–665, 1987.

Stanislaw L. Woronowicz. Twisted SU(2) group. An example of a noncommutative differential calculus. *Publ. Res. Inst. Math. Sci.*, 23(1):117–181, 1987.

NJ Young. The irregularity of multiplication in group algebras. *The Quarterly Journal of Mathematics*, 24(1):59–62, 1973.

Sang-Gyun Youn. Hardy-littlewood inequalities on compact quantum groups of Kac type. *Analysis & PDE*, 11(1):237–261, 2018. DOI 10.2140/apde.2018.11.237.

Sang-Gyun Youn: Department of Mathematical Sciences, Seoul National University, San56-1 Shinrim-dong Kwanak-gu, Seoul 151-747, Republic of Korea

E-mail address: yun87654@snu.ac.kr