Diagnostic value of metagenomics next-generation sequencing technology in disseminated strongyloidiasis

Peng Song, Xia Li

Abstract

The symptoms of disseminated strongyloidiasis are not typical, and it is difficult for clinicians to identify strongyloidiasis in some non-endemic areas. We report a 70-year-old woman who was diagnosed with Guillain-Barré syndrome due to autonomic disturbance, symmetrical bulbar palsy, and lower-motor-nerve damage in the extremities; her symptoms continued to worsen after hormone and immunoglobulin therapy. Later, parasitic larvae were found in the patient’s gastric fluid, and metagenomic next generation sequencing (mNGS) detection of bronchoalveolar-lavage fluid also found a large number of Strongyloides roundworms. The patient was diagnosed with disseminated strongyloidiasis. The patient was given albendazole for anthelmintic treatment, but died two days after being transferred to the intensive care unit due to the excessive strongyloidiasis burden. In recent years, mNGS has been increasingly used in clinical practice, and is becoming the main means of detecting strongyloides stercoralis in non-endemic areas. Especially during the corona virus disease 2019 pandemic, mNGS technology has irreplaceable value in identifying the source of infection.

Key Words: Metagenomics; Next-generation sequencing; Disseminated; Strongyloidiasis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: Metagenomic next-generation sequencing (mNGS) has a high sensitivity in identifying pathogen species. As a new pathogenic detection method, it plays an irreplaceable role in unexplained infectious diseases. It can provide important information for clinicians to identify new pathogens, non-tuberculosis mycobacteria and parasites. With the continuous improvement of clinical laboratory diagnostic technology, mNGS has been used more and more widely in clinical practice, and has become the main means to identify parasites in non-endemic areas.

Citation: Song P, Li X. Diagnostic value of metagenomics next-generation sequencing technology in disseminated strongyloidiasis. World J Clin Cases 2022; 10(33): 12455-12457
URL: https://www.wjgnet.com/2307-8960/full/v10/i33/12455.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i33.12455

TO THE EDITOR

We read an interesting case report by Zheng JH et al[1]. A man with rheumatoid arthritis who was previously treated with multiple immunosuppressants. He was admitted with small bowel obstruction, cough, and peripheral neuropathy. The authors found active Strongyloides larvae in stool and sputum smears. After treatment with ivermectin combined with albendazole, the patient’s symptoms improved significantly.

We agree with the author’s point of view in the discussion section, ivermectin is currently the most effective treatment for strongyloidiasis[2], and the author’s combined use of albendazole and ivermectin has achieved a good therapeutic effect. However, there is no commercial preparation of ivermectin in mainland China, so we want to know whether the author has been approved by special procedures and used veterinary ivermectin. The sharing of this experience will help in the treatment of patients in non-endemic areas.

According to the estimation, the global prevalence is ten times higher than previous estimates, ranging between 30 to 100 million people[3]. Corona virus disease 2019 has become a global pandemic in the past three years, and some severe patients may need to receive high-dose hormone and immunosuppressive therapy, which is a potential risk factor for severe parasitic infections[4]. The Huashan Hospital Affiliated to Fudan University, where the author is located, is home to the top disciplines of infectious diseases in mainland China, which can identify the species of parasites in a short time. However, in some non-endemic areas of parasitic diseases, many inspectors have difficulty identifying the parasite species under the microscope, thereby delaying the treatment of patients. In recent years, the application value of mNGS technology in the field of infectious etiology has received more and more attention and recognition. Because its random primer amplification is undifferentiated, it has higher sensitivity than traditional detection methods, and is a breakthrough technology in the field of pathogen detection. At present, there are preliminary achievements in the clinical application of this technology at home and abroad, including case reports, case series reports, large sample studies, involving bone and joint infections, skin and soft tissue infections, lung infections, central nervous system infections, etc. The research results show that mNGS has obvious advantages over traditional detection methods in detecting pathogens[5-6]. In the future, mNGS may overturn the traditional pathogen detection process and become the dominant diagnostic method. We have a 70-year-old female who was diagnosed with Guillain-Barre syndrome due to her combination of autonomic nervous disorder, symmetrical bulbar palsy and motor nerve injury of lower limbs. After adequate hormone and immunoglobulin treatment, her symptoms did not improve. During treatment, adult parasites were found in the gastric juice of the patient (the type of parasite could not be identified), diffuse lesions in both lungs of a patient with extensive Strongyloidi sequences detected by mNGS in bronchoalveolar lavage fluid, the patient was diagnosed with disseminated strongyloidiasis. The patient was given albendazole for deworming, but the patient died from a high strongyloidiasis burden.

From this interesting case report and our case, it can be concluded that the high-risk population with suppressed immune function should be aware of the threat of parasitic infection and actively prevent infection. Patients receiving long-term and sufficient hormone treatment should take albendazole every three months to prevent strongyloidiasis[7].

FOOTNOTES

Author contributions: Song P designed research; Li X analyzed data; Song P wrote the letter; and Li X revised the letter; all authors read and approved the final manuscript.

Conflict-of-interest statement: Author(s) certify that there is no conflict of interest related to the manuscript.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Peng Song 0000-0002-6316-5123; Xia Li 0000-0002-6262-9790.

S-Editor: Chang KL
L-Editor: A
P-Editor: Chang KL

REFERENCES

1 Zheng JH, Xue LY. Disseminated strongyloidiasis in a patient with rheumatoid arthritis: A case report. World J Clin Cases 2022; 10: 6163-6167 [PMID: 35949857 DOI: 10.12998/wjcc.v10.i18.6163]

2 Henriquez-Camacho C, Gotuzzo E, Echevarria J, White AC Jr, Terashima A, Samalvides F, Pérez-Molina JA, Plana MN. Ivermectin vs albendazole or thiabendazole for Strongyloides stercoralis infection. Cochrane Database Syst Rev 2016; CD007745 [PMID: 26778150 DOI: 10.1002/14651858.CD007745.pub3]

3 Buonfrate D, Bisanzio D, Giorli G, Odermatt P, Fürst T, Greenaway C, French M, Reithinger R, Gobbi F, Montresor A, Bisoffi Z. The Global Prevalence of Strongyloides stercoralis Infection. Pathogens 2020; 9 [PMID: 32545787 DOI: 10.3390/pathogens9060468]

4 Tili M, Olliaro P, Gobbi F, Bisoffi Z, Bartoloni A, Zammarchi L. Neglected tropical diseases in non-endemic countries in the era of COVID-19 pandemic: the great forgotten. J Travel Med 2021; 28 [PMID: 32970143 DOI: 10.1093/jtm/taaa179]

5 Chen P, Sun W, He Y. Comparison of metagenomic next-generation sequencing technology, culture and GeneXpert MTB/RIF assay in the diagnosis of tuberculosis. J Thorac Dis 2020; 12: 4014-4024 [PMID: 32944313 DOI: 10.21037/jtd-20-1232]

6 Huang H, Deng J, Qin C, Zhou J, Duan M. Disseminated Coinfection by Mycobacterium fortuitum and Talaromyces marneffei in a Non-HIV Case. Infect Drug Resist 2021; 14: 3619-3625 [PMID: 34526784 DOI: 10.2147/IDR.S316881]

7 Wang C, Xu J, Zhou X, Li J, Yan G, James AA, Chen X. Strongyloidiasis: an emerging infectious disease in China. Am J Trop Med Hyg 2013; 88: 420-425 [PMID: 23468357 DOI: 10.4269/ajtmh.12-0596]
