Catalytic oxidation of dye waste water by biomass charcoal loaded multiple rare earth composite material

Suriga^1 and Liping CHEN^2,3

^1^College of Chemistry and Environment Science, postgraduate, Inner Mongolia Normal University, Hohhot 010022, China
^2^College of Chemistry and Environment Science, Inner Mongolia Normal University, Hohhot 010022, China

E-mail: clp@imnu.edu.cn

Abstract. The main purpose of this study is to investigate the individual effect as well as the interactions of different influencing factors like catalyst dosage, aeration rate, temperature and pH on the removal of methylene blue (MB) using biomass charcoal loaded multiple rare earth composite material. Design-Expert 7.0 was used to design testing program and establish response surface model. The result showed that among the factors, catalyst dosage played the most important role, then pH value, aeration rate and temperature in turn. By the optimization of process parameters, the optimum experimental conditions were catalyst dosage of 2.50 g, aeration rate of 2.5 L min^{-1}, temperature of 21 °C and pH value of 12, under these optimum conditions, maximum predicted and observed decolorization rate were 100.00% and 99.61%, the observed value was well match with the predicted value.

1. Introduction
With growing urbanization and industrialization, the problem of the dye waste water has been of increasing concern in many parts of the world. China discharge 1.6 hundred million m³ of dye waste water every year [1]. They damage the environment and contain many chemicals that are toxic, mutagenic, hazardous and cancerogenic [2,3]. They also block light penetration, destroy the water quality of the receiving streams, and deliver hazardous and toxic materials to organisms in the food chain [4]. Therefore, dye waste water needs to be treated for the sake of the protection of human beings health and environmental safety. For the practical purpose of water treatment, it was necessary to investigate an efficient, practical method for application in industrial degradation. Dyes were very stable and difficult to be biodegraded because of the synthetic origin and complex aromatic molecular structures, chemical coagulation and biodegradation lead to secondary pollution [5,6]. Recently, the treatment of waste water through catalytic oxidation techniques has proven to be simple, cheap, efficient and nontoxic [7].

Biomass charcoal is a solid waste produced in the agriculture production process. In China, the biomass charcoal has discharged increasing numbers with the increase of sunflower planting, its output is 11.8 billion ton every year in china. Biomass charcoal is a kind of low cost and easily available catalyst and often used in wastewater treatment due to its large surface area, porosity, high adsorption capacity and good stability [8].

In order to study the optimal parameters for catalytic oxidation of MB, we used response surface methodology to design testing program and establish response surface model. RSM is a useful method...
which studying the effect of individual factors as well as their interaction by a limited number of experiments. So, the optimum conditions for desirable responses could be obtained.

In our previous study, biomass charcoal loaded multiple rare earth composite material has been prepared for the removal of MB and investigated the influences of catalyst dosage, aeration rate, temperature and pH on the catalytic oxidation process through single factor test, then obtained the optimal conditions by using RSM and then briefly discussed the experimental result. The results provides a theoretical basis for preparation of the biomass charcoal composite material and catalytic oxidation study.

2. Experimental

2.1. Materials and chemicals

Sunflower straw was taken from the Hetao region of Inner Mongolia; Mixed rare earth was obtained from Baotou of Inner Mongolia. The rare earth oxides and their contents in mixed rare earth used in this study are given in table 1. It was evident from the table that the mixed rare earth were rich in CeO$_2$ of 52% and La$_2$O$_3$ of 28%. That is, CeO$_2$ played a bigger role in mixed rare earth for catalytic oxidation of MB. The other chemicals were methylene blue, phosphoric acid (15 mol∙L$^{-1}$), HCl (0.1 mol∙L$^{-1}$), NaOH (0.1 mol∙L$^{-1}$), sodium silicate, distilled water.

Oxides	Contant / (wt %)
La$_2$O$_3$	28
CeO$_2$	52
Pr$_6$O$_{11}$	5
Nd$_2$O$_3$	15

2.2. Preparation of Biomass Charcoal

Select the sunflower straw before preparation and sheared to desired size fragment (1-2 cm), then fully washed with distilled water several times and oven dry. The samples were immersed in phosphate solution for 12 h with an impregnation rate of m (sunflower straw): m (phosphate) = l: 1.8, then placed the mixture into the oven and activation for 24 h at 150°C, remove the mixture and rinsed with distilled water until the pH was neutral, oven dry at 105°C, Then, the catalyst was ground and sieved to a particle size of 120 meshes for further studies.

2.3. Preparation of Multiple Rare Earth/Biomass Charcoal Composite Material

Activated carbon, mixed rare earth oxide powder and sodium silicate were mixed with the quality ratio of 40:1:1, appropriate amount of water added into the mixture and transferred into the sludge, heating to 70-80°C and washing with distilled water until the pH value neutral, drying, grinding 1-2 hours, 120 mesh sieve, then get the composite materials.

2.4. Catalytic oxidation experiment

30 mL MB solution (500 mg∙L$^{-1}$) was added into the beaker, adjusted the pH by the NaOH solution(0.1 mol∙L$^{-1}$) and HCl solution(0.1 mol∙L$^{-1}$),then 0.1 g composite material was added into above solution to form a mixed system with surging for 3 h on a ED-85A thermalstat oscillator, 1 mL filtrate was separated from the solution and measuring the concentration of MB by 722N visible spectrophotometer at 665 nm. The decolorization rate was calculated by the following equation (1):

$$\eta = (1 - \frac{c}{c_0})\times 100\%$$

Where η (%) represented the decolorization rate of MB, c_0 (mg∙L$^{-1}$) represented the initial concentration of MB, c (mg∙L$^{-1}$) represented the concentration of MB after reaction.
2.5. Box–Behnken experimental design

According to single-factor experiment, a four factor, three level Box–Behnken experimental design was established. The experimental levels of independent variables considered in this study were presented in Table 2. The levels of independent factors of the Box–Behkenk experimental design were chosen based on the single factor experiment, the experimental result was analyzed by response surface methodology.

3. Results and discussions

3.1. Box–Behnken experimental result and ANOVA analysis

The relationship between decolorization rate and four influencing factors (catalyst dosage, aeration rate, temperature and pH) and the interaction between variables were analyzed based on the box–behkenkenk experimental design. The results were tabulated in Table 3. Final equation in terms of coded factors was evaluated and given in Eq. (2).

\[
\eta = 97.47 + 3.83x_1 - 0.44x_2 + 0.000x_3 + 2.83x_4 + 1.69x_1x_2 + 5.00 \times 10^{-3}x_1x_3 - 4.58x_1x_4 + 5.00 \times 10^{-3}x_2x_3 - 0.44x_2x_4 + 0.023x_3x_4 - 2.09x_1^2 - 1.60x_2^2 + 3.86x_3^2 - 0.56x_4^2
\]

(2)

The significance of the model was studied by analysis of variance (ANOVA). The ANOVA for response surface quadratic model for MB removal was listed in Table 4. F-value indicated the significant level of the model and homologous variables, F-value > 3 indicates that the model or homologous variables are significant. In this Model, F-value of 3.16 implies the model is significant.

The homologous variables or interaction effect would be more significant if the p-value < 0.05, values greater than 0.1000 indicate the model terms are not significant, p-value of 0.0197 in this model implies the model is significant.

In this case, \(x_1, x_4, x_1x_4\) and \(x_3^2\) are significant model terms. The significant level of the four factors is \(x_1 > x_4 > x_2 > x_3\). "Adeq Precision" measures the signal to noise ratio, a ratio greater than 4 is desirable. In this model, ratio of 7.918 indicates an adequate signal. This model can be used to navigate the design space.

Table 2. Independent variables and their coded levels.
Variables

Catalyst dosage (g)
Aeration rate (L·min⁻¹)
Temperature (°C)
pH
3.2. Response surface analysis and optimization by RSM

The R² and adjusted R² values were found to be 0.7594 and 0.5189, which indicates that there was a good agreement between the actual and the predicted values[9], as shown in Figure 1. This suggests that the obtained regression model is adequate to explain most of the variability for MB removal under a given experimental condition.

Three dimensional response surface was estimated the interactive effect of two variables on decolorization rate of MB. Figure 2 showed the effect of catalyst dosage and pH on efficiency of composite material for decolorization of MB when the temperature and aeration rate were coded factor (0.000). The interaction between catalyst dosage and pH has significant influence on MB removal with an P value<0.05. The capacity of composite material for the removal of MB can be determined by the catalyst dosage at any given pH, the decolorization rate gradually increased with the increase of the catalyst dosage at any given pH, the decolorization rate gradually increased with the increase of the catalyst dosage and pH, and then reached a stable level. During the initial reaction stage, with the increase of catalyst dosage, surface area and dispersion of catalyst has increased, so the reaction becomes faster, to a certain dosage, reaction basically completed and decolorization rate had no obvious change. With the increase of dissolved oxygen concentration, a series of free radical reactions occurring on the surface of the catalyst [10]:\[\text{O}_2 + \text{RH} \rightarrow \text{R} + \text{HO}_2^-; \text{H}_2\text{O} + \text{HO}^- + \text{O}^\cdot \rightarrow \text{HO}_2^- + \text{O}^\cdot \] (RH represents the organic matter), HO- and HO2- are free radicals with strong oxidizing properties.

Table 3. Box-Behken experimental design and experimental data.

Run	Coded variables x₁	Coded variables x₂	Coded variables x₃	Coded variables x₄	η %
1	-1	0	0	1	99.83
2	-1	0	1	0	99.93
3	0	0	0	0	97.47
4	0	-1	0	1	99.81
5	0	0	0	0	97.47
6	-1	0	0	-1	81.07
7	0	0	1	-1	99.95
8	0	0	0	0	97.47
9	1	-1	0	0	99.84
10	0	-1	1	0	99.91
11	1	0	1	0	99.95
12	0	1	0	-1	93.09
13	-1	0	-1	0	99.95
14	0	0	0	0	97.47
15	-1	1	0	0	82.52

Table 4. ANOVA for response surface quadratic model analysis of variance.

Source	Sum of square	DF	Mean square	F-value	P value
Model	547.64	14	39.12	3.16	0.0197
x₁	175.95	1	175.95	14.20	0.0021
x₂	2.33	1	2.33	0.19	0.6710
x₃	0.000	1	0.000	0.000	1.0000
x₄	95.99	1	95.99	7.75	0.0147
x₁x₂	11.36	1	11.36	0.92	0.3546
x₁x₃	2.500E-005	1	2.500E-005	2.018E-006	0.9989
x₁x₄	83.91	1	83.91	6.77	0.0209
x₂x₃	1.000E-004	1	1.000E-004	8.071E-006	0.9978
x₂x₄	0.77	1	0.77	0.062	0.8073
x₃x₄	2.025E-003	1	2.025E-003	1.634E-004	0.9900
x₁²	28.40	1	28.40	2.29	0.1523
x₂²	16.61	1	16.61	1.34	0.2664
x₃²	96.83	1	96.83	7.81	0.0143
x₄²	2.06	1	2.06	0.17	0.6895
Residual	173.47	14	12.39		
Lack of fit	173.47	10	17.35		
property, attack the -C=N-, -C=S- and other heterocyclic structures of MB, so that the MB conversion to two methyl aniline and further oxidized to two methyl amine, then be degraded into CO₂, H₂O and other small molecular substances eventually [11,12], at alkaline condition, the intermediate organic acids were further reacted with alkali, so the MB was degraded [13].

![Image](image1)

Figure 1. Plot of the actual response versus predicted response for decolorization rate.

![Image](image2)

Figure 2. The three-dimensional response plot.

The model predicted a maximum decolorization rate of 100.00%, the optimum conditions were found to be as follows: catalyst dosage 2.50 g, aeration rate 2.5 L·min⁻¹, temperature 21 °C and pH value 12.

To confirm that the model is satisfactory in predicting the maximum decolorization rate of MB, an experiment was performed under the optimum conditions, the experimental result was 99.61%, which is in good agreement with the predicted value. It indicated that the response surface methodology could be an reliable and effective methods to optimizing the catalytic oxidation process of MB onto the biomass charcoal loaded multiple rare earth composite material.
4. Conclusion
The present investigation was carried to study the removal of MB using biomass charcoal loaded multiple rare earth composite material and to conduct process optimization using RSM for finding the optimum values of parameters affecting the process to achieve maximum removal efficiency. The significant level of the four factors is $x_1 > x_2 > x_3$, the interaction between catalyst dosage and pH was found to be a significant factor. The optimum conditions were found to be as follows: catalyst dosage 2.50 g, aeration rate 2.5 L·min$^{-1}$, temperature 21 $^\circ$C and pH value 12, under these optimum conditions, the maximum decolorization rate of MB was 99.61%. The observed values were consistent with the theoretical values, leading support to the conclusion. The optimized result showed that the biomass charcoal loaded multiple rare earth composite material was supposed to be an environmentally friendly, economically and efficiency catalyst for the treatment of MB.

Acknowledgement
This research was financially supported by the Hohhot Natural Science Foundation (2014MS0221).

References
[1] Dong Li and Yin Guo-Jie 2008 J. Study on adsorption of methylene blue by modified coal gangue. Non-Metallic Mines 31 59-61
[2] Demirbas E and Nas M Z 2009 J. Batch kinetic and equilibrium studies of adsorption of Reactive Blue 21 by fly ash and sepiolite. Desalination 243 8–21
[3] Hajati S, Ghaedi M and Yaghoubi S 2015 J. Local, cheap and nontoxic activated carbon as efficient adsorbent for the simultaneous removal of cadmium ions and malachite green: Optimization by surface response methodology. Journal of Industrial and Engineering Chemistry 21 760–767
[4] Kah Aik Tan, Norhashimah Morad and Tjoon Tow Teng 2015 J. Synthesis of magnetic nanocomposites (AMMC-Fe$_3$O$_4$) for cationic dye removal: Optimization, kinetic, isotherm, and thermodynamics analysis. Journal of the Taiwan Institute of Chemical Engineers 54 96–108
[5] Masoud Giahi, Roohan Rakhshaee and Mohammad A 2011 J. Removal of methylene blue by tea wastages from the synthesis waste waters. Chinese chemical letters 22 225-228
[6] Abdul Halim, Abdullah and Jia Hui 2012 J. Response surface methodology analysis of the photocatalytic removal of methylene blue using bismuth vanadate prepared via polyol route. Journal of environmental sciences 24 1694-1701
[7] Gao Jun-Jie, Qin Ye-Bo and Zhou Tao 2013 J. Adsorption of methylene blue onto activated carbon produced from tea (camellia sinensis L.) seed shells: Kinetics, equilibrium, and thermodynamics studies. Zhejiang university-science B (Biomed & Biotechnol) 14 650-658
[8] Xu Nan-Nan, Lin Da-Song and Xu Ying-Ming 2014 J. Adsorption of Aquatic Cd$^{2+}$ by biochar obtained from Corn Stover. Journal of Agro-Environment Science 33 958-964
[9] Liu Jian-Yong, Qi Zhou and Chen Jun-Hua 2013 J. Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber. Chemical Engineering Journal, 216 859–867
[10] Zhang Yong-Li 2009 J. Treatment of printing and dyeing wastewater with catalytic wet oxidation technology. Chinese Journal of Environmental Engineering, 06 1011-1014
[11] Sadana A and Katzer J 1974 J. Involvement of Free Radicals in the Aqueous-Phase Catalytic Oxidation of Phenol over Copper Oxide. Catalysis, 35 140-152
[12] Rivas F, Kolaczkowski S and Beltran F 1998 J. Development of a Model for Wet Air Oxidation of Based on a Free Radical. Mechanism. Chemical Engineering Science, 53 2575-2586
[13] Liu Zhan-meng, Tang Chao-chun, Li Jing and Bao Dong-jie 2009 J. Catalytic ozonation with activated carbon for degradation of methylene blue in wastewater. Journal of Zhejiang Forestry College, 26 406-410