Current Exercise Behaviors of Breast Cancer Patients Diagnosed with Chemotherapy-induced Peripheral Neuropathy

Karen Y. Wonders1,2* and Daniel G. Drury3

1Department of Health, Physical Education and Recreation, Wright State University, 316 Nutter Center, 3640 Colonel Glen, Glenn Hwy, Dayton, OH 45435, USA
2Maple Tree Cancer Alliance, 106 Peach Orchard Ave, Dayton, OH, 45419, USA
3Gettysburg College, Department of Health Sciences, 300 N. Washington Street, Gettysburg, PA 17325, USA

Abstract

Introduction: Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose-limiting effect of cancer therapy. The neuropathic pain associated with CIPN often has negative implications on an individual’s quality of life (QOL) and has long been recognized as one of the more difficult types of pain to treat. Treatment of neuropathic pain due to CIPN often requires a multidisciplinary approach, with much attention focused on the use of pharmacological therapies. However, in most instances, these agents have been shown to have additional negative side effects for cancer patients. Thus, other interventions that address the symptoms of CIPN should be considered. One such possible intervention is exercise rehabilitation, which has previously been reported effective in attenuating numerous cancer treatment-related toxicities and enhancing the QOL of patients. However, to our knowledge, there have been no published clinical trials examining the role of exercise in preserving neurological function following chemotherapy. As such, the purpose of this investigation was to examine the current exercise habits of breast cancer patients who are diagnosed with CIPN and the impact on pain and QOL.

Methods: 300 women listed in the Breast Cancer Registry of Greater Cincinnati database were recruited by mail and asked to complete three questionnaires (McGill QOL, Leeds Assessment of Neuropathic Symptoms and Signs, and Current Exercise Behaviors). Data was analyzed at the 0.05 level of significance using a student’s t-test and a Pearson’s product moment correlation.

Results: 134 completed surveys were returned and analyzed (44.6% response rate). Overall, QOL and exercise behaviors were moderately correlated (r = 0.36). Patients reported exercising an average of 2.3 d/wk and an overall QOL of 4.7. Of the patients completing the recommended amount of physical activity (EX, n = 21), QOL was 6.3, which was significantly higher than patients who did not meet these recommendations (SED, n = 113, p<0.001). Likewise, only 15% of EX patients reported experiencing pain compared to 72% of SED patients (p<0.001). Conclusions: Based on these data, it seems likely that an exercise intervention would be successful in attenuating symptoms of CIPN and improving the overall QOL of breast cancer patients.

Keywords: Chemotherapy-induced peripheral neuropathy; Exercise behaviors; Quality of life; Pain

Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) is a common ailment among those taking chemotherapeutic drugs. This condition is characterized by damage to the nervous system that is a direct result of the medications associated with chemotherapy. Little is known about the mechanisms responsible for the development of CIPN [1]. The peripheral toxicity involved with CIPN is specific to each chemotherapy drug class, and in most cases, appears to be dose and duration dependent, however it can evolve even after a single drug application [2]. The chemotherapy agents Docetaxel, Paclitaxel, or Vinorelbine are used to treat breast cancer, and often result in damage to central nervous system pain pathways, resulting in neuropathic pain [3-6]. The presence and severity of neuropathic pain is often shown to be associated with impairments in walking, general activities, sleep, work, mood, enjoyment of life, and relationships with others [7,8].

Much effort has been made to explore pharmacological therapies to reduce CIPN. Some of these therapies provide modest improvements in neurological function. However, in most instances, these agents have been shown to have additional negative side effects for cancer patients, such as cardiac conduction defects, abnormalities in diuretic hormone secretion, loss of balance, swelling in extremities, tremor, and increased chemotherapy resistance [9-11]. Thus, other interventions that address the symptoms of CIPN should be considered. One intervention that has the potential of preventing or alleviating CIPN is exercise rehabilitation. Exercise has been shown to have a local effect on peripheral nerves, inducing changes in both the vasculature and metabolic systems [12]. Short-term exercise stimulates endothelium-dependent vasodilation and endoneurial blood flow [13]. Long-term exercise has a positive effect on oxygen delivery, as increased blood flow exposes blood vessels to shear stress, which augments vasodilation [13]. Several studies have illustrated the beneficial effects of exercise in attenuating numerous cancer treatment-related toxicities and enhancing the quality of the lives of patients [14-21]. In addition, numerous studies on the effect of exercise in populations with diabetic peripheral neuropathy have produced promising results [22-24]. However, published clinical trials examining the role of exercise in preserving neurological function following chemotherapy are limited. Since breast cancer survivors represent the largest population of cancer survivors in the United States,
the purpose of this investigation was to examine the current exercise behaviors of breast cancer patients who were diagnosed with CIPN and to determine the resulting impact on their pain and quality of life.

Methods

Subjects

This investigation used a non-probability sample of convenience. Women who met the eligibility criteria and were listed in the Breast Cancer Registry of Greater Cincinnati (BCRGC) database were recruited by mail in the fall of 2010. The eligibility criteria included women who (a) have recently received a clinical diagnosis of CIPN, and (b) were currently taking the chemotherapy agents Docetaxel, Paclitaxel, or Vinorelbine, and (c) were able to read and write English. The BCRGC is a database established by the University of Cincinnati, Department of Environmental Health for the purpose of supporting studies that focus on breast cancer issues. Women who were breast cancer survivors and were located in the Greater Cincinnati area may become members by signing a consent form and completing a registration form that includes questions specific to the detection, diagnosis, and treatment of their disease. A total of 300 women listed in the BCRGC met the eligibility criteria of the study. All procedures were approved by the Wright State University Institutional Review Board prior to data collection.

Data collection

The 300 women who met the eligibility criteria and agreed to be contacted received a packet that included a cover letter, the McGill Quality of Life questionnaire [25], the Leeds Assessment of Neuropathic Symptoms and Signs questionnaire (LANSS) [26], a questionnaire to measure current exercise behaviors (Reigle), and a self-addressed, stamped envelope. Women were asked to return the completed questionnaires within two weeks of receiving the packet. Women who did not respond within two weeks were sent a reminder postcard.

Data analysis

Descriptive statistics have been computed as means and standard deviations. A Pearson’s product moment correlation was used to determine the relationship between QOL and current exercise behaviors for the group as a whole. A student’s T-test was used to compare the overall QOL ratings, as well as the prevalence of pain ratings, among those who did not respond within two weeks were sent a reminder postcard.

Results

Of the 300 surveys sent out, 134 completed surveys were returned and analyzed, giving a 44.6% response rate. The characteristics of the patients are summarized in Table 1. The distribution of QOL was normal. On average, patients reported exercising 2.3 d/wk (approximately 69 min/wk) and rated their overall quality of life (QOL) as 4.7 on a 10-point scale. CIPN impacted routine activities, functions, and behaviors in the areas of domestic, work, and social/leisure life. A moderate correlation was measured between QOL and current exercise behaviors for the group as a whole (r = 0.56). Table 2 summarizes the results of the Exercise Behaviors Survey for all respondents. Table 3 presents the results of the LANSS survey for all respondents.

Responses were analyzed to determine the percentage of patients completing the recommended amount of physical activity (at least 150 min moderate-intense ex/wk and muscle strengthening activity 2 d/wk [27]. Approximately 15.6% of the patients surveyed reported meeting these recommended levels of physical activity (EX, n = 21). This group of patients reported an overall QOL of 6.3. As demonstrated in (Figure 1), this was significantly higher than those patients who did not meet these recommendations (SED, n = 113), who reported an average overall QOL of 3.4 (p<0.001). Similarly, only 15% of EX patients reported experiencing pain compared to 72% of SED patients (p<0.001) (Figure 2). The pain was frequently described as “tingling” and “numbness” and localized to “hands and feet”. Several respondents (n = 46) indicated that this pain was “better when I exercise”.

Table 1: Subject Characteristics. Values are means ± SE.

Subject Characteristics	Values are means ± SE.
Age at time of diagnosis (yrs)	50.4 ± 5.7
Education Level	36 = high school 68 = college 30 = postgrad
Race	White = 105 Black = 21 Hispanic = 6 Other = 2
Length of Cancer Treatment	4.5 ± 6.4 mo’s

Table 2: Results from Exercise Behaviors Survey. Values are means ± SE.

Questions	% of respondents answering Yes
Would you describe your pain as pricking, tingling, pins and needles?	51.2%
Does the skin in the painful areas look different than normal?	17.9 ± 0.5%
Is the skin sensitive to touch?	33.3 ± 1.7%
Does your pain come on suddenly in bursts when you are still?	42.3 ± 1.1%
Do you feel that skin temperature in the painful area has changed?	20.5 ± 2.1%
Does stroking the affected area with cotton wool produce pain?	9.2 ± 0.3%

Table 3: Results from LANSS Survey. Values are means ± SE.

Questions	% of respondents answering Yes
Would you describe your pain as pricking, tingling, pins and needles?	51.2%
Does the skin in the painful areas look different than normal?	17.9 ± 0.5%
Is the skin sensitive to touch?	33.3 ± 1.7%
Does your pain come on suddenly in bursts when you are still?	42.3 ± 1.1%
Do you feel that skin temperature in the painful area has changed?	20.5 ± 2.1%
Does stroking the affected area with cotton wool produce pain?	9.2 ± 0.3%
However, as explained earlier, it is possible that exercise may have a therapeutic effect on symptoms of pain related to CIPN, as pain became “better” upon exercise. This finding is supported by several studies conducted on healthy populations, whereby pain thresholds and tolerance levels have been reported to increase both during and following exercise. In addition, intensity ratings of pain appear to decrease following exercise [42,43].

While literature examining the role of exercise on symptoms of pain related to CIPN is lacking, we believe that the existing tangential research supports the use of exercise as a means to attenuate general cancer related pain. Exercise during cancer treatment has been shown to have a beneficial effect on pain for breast cancer patients [44-47]. In a similar study to ours, Liu et al. [45] surveyed the daily physical activity levels of individuals who were undergoing chemotherapy, but were not diagnosed with CIPN. These authors reported that those patients who received the recommended 150 min/wk of moderate activity reported significantly less symptoms of pain than their sedentary counterparts.

In light of the findings and the literature surrounding this topic, it seems feasible to assume that a supervised exercise program would provide a beneficial effect on quality of life and pain associated with CIPN in breast cancer patients. More follow up investigations are warranted.

Limitations

The most apparent limitation in the present study is the low response rate from the breast cancer patients (44.6%). However, in survey research, no single response rate is considered a standard [48]. Mail surveys typically have lower response rates than other types of surveys [49]. In the present study, non respondents were sent a reminder postcard in an attempt to increase the response rate; however, additional measures could have also been employed, such as personal contact. In addition, due to the lack of existing literature examining the effects of exercise on symptoms of CIPN, the authors had to look to the effects of exercise on symptoms of peripheral neuropathy in other chronic diseases (i.e., diabetes) to make its generalizations. Thus, it is possible that an exercise program may not produce similar results in a breast cancer patient. Likewise, since the location of cancer will vary the symptoms related to CIPN, it is possible that the exercise response would produce a different outcome in another form of cancer.

References

1. Kaley TJ, Deangelis LM (2009) Therapy of chemotherapy-induced peripheral neuropathy. Br J Haematol 145: 3-14.
2. Quasthoff S, Hartung HP (2002) Chemotherapy-induced peripheral neuropathy. J Neurol 249: 9-17.
3. Horowitz SH (2007) The diagnostic workup of patients with neuropathic pain. Med Clin North Am 91: 21-30.
4. Verstappen CCP, Heimans JJ, Hoekman K, Postma TJ (2003) Neurotoxic complications of chemotherapy in patients with cancer: Clinical signs and optimal management. Drugs 63: 1549-1563.
5. Višovský C (2003) Chemotherapy-induced peripheral neuropathy Nursing Perspectives. Cancer Investigation 21: 439-451.
6. Tolle T, Xu X, Sadosky AB (2006) Painful diabetic neuropathy: a cross-sectional survey of health state impairment and treatment patterns. J Diabetes Complications 20: 26-33.
7. Zelman DC, Gore M, Dukes E, Tai KS, Brandenburg N (2005) Validation of a modified version of the brief pain inventory for painful diabetic peripheral neuropathy. J Pain Symptom Manage 29: 401-410.
9. Goodman LS, Limbird LE, Milinoff PB (1996) (ed) Goodman and Gilman’s
Pharmacological Basis of Therapeutics. 9th ed New York NY: McGraw-Hill
Professional.
10. Rao RD, Michalak JC, Sloan JA, Loprinzi CL, Soori GS, et al. (2007) Efficacy
of gabapentin in the management of chemotherapy-induced peripheral
neuropathy: a phase 3 randomized, double-blind, placebo-controlled, crossover trial (N00C3). Cancer 110: 2110-2118.
11. Suzuki T, Nishio K, Tanabe S (2001) The MRP family and anticancer drug me-
tabolism. Curr Drug Metab 2: 367-377.
12. Gustafsson T, Puntchart A, Kajiser L, Janssen E, Sundberg CJ (1999) Exer-
cise-induced expression of angiogenesis-related transcription and growth fac-
tors in human skeletal muscle. Am J Physiol 276: H679-H685.
13. Fukui T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, et al. (2000) Regu-
lation of the vascular extracellular superoxide dismutase by nitric oxide and
exercise training. J Clin Invest 105: 1631-1639.
14. Marks M, Brockow T, Resch KL (2006) Exercise for women receiving adjuvant
therapy for breast cancer. Cochrane Database Syst Rev CD005001.
15. Irwin ML, Cumley D, McTiernan A, Bernstein L, Baumgartner R, et al. (2003)
Physical activity levels before and after a diagnosis of breast carcinoma: the
Health, Eating, Activity, and Lifestyle (HEAL) study. Cancer 97: 1746-1757.
16. Herrero F, San Juan AF, Fleck SJ, Balmer J, Perez M, et al. (2006) Combined
aerobic and resistance training in breast cancer survivors: A randomized,
controlled pilot trial. Int J Sports Med 27: 573-580.
17. Altiken DR, James AG (1997) Seromas and physiotherapy after mastectomy.
Ann Surg Oncol 4: 293-297.
18. Schneider CM, Dennehy CA, Roozbeehom M, Carter SD (2002) A model pro-
gram: exercise intervention for cancer rehabilitation. Integr Cancer Ther 1:
76-82.
19. Schneider CM, Hsieh CC, Sprod LK, Carter SD, Hayward R (2007) Effects of
supervised exercise training on cardiopulmonary function and fatigue in breast
ancer survivors during and after treatment. Cancer 110: 918-925.
20. Schneider CM, Hsieh CC, Sprod LK, Carter SD, Hayward R (2007) Exercise
training manages cardiopulmonary function and fatigue during and following
cancer treatment in male cancer survivors. Integr Cancer Ther 6: 235-241.
21. Schneider CM, Hsieh CC, Sprod LK, Carter SD, Hayward R (2007) Cancer treat-
ment-induced alterations in muscular fitness and quality of life: the role of
exercise training. Ann Oncol 18: 1967-1962.
22. Balducci S, Iacobelli G, Parisi L, Di Biasi N, Calandriello E, et al. (2006) Exer-
cise training can modify the natural history of diabetic peripheral neuropathy. J
Diabetes Complications 20: 216-223.
23. Richardson JK, Sandman D, Vela S (2001) A focused exercise regimen im-
proves clinical measures of balance in patients with peripheral neuropathy.
Arch Phys Med Rehabil 82: 205-209.
24. Tesfaye S, Harris ND, Wilson RM, Ward JD (1992) Exercise-induced conduc-
tion velocity increment: A marker of impaired peripheral nerve blood flow in
diabetic neuropathy. Diabetologia 35: 155-159.
25. Cohen SR, Mount BM, Strobel MG, Bui F (1995) The McGill Quality of Life
Questionnaire: a measure of quality of life appropriate for people with advanced
disease. A preliminary study of validity and acceptability. Palliat Med 9: 207-
219.
26. Bennett M (2001) The LANSS Pain Scale: the Leeds assessment of neu-
ropathic symptoms and signs. Pain 92: 147-157.
27. Centers for Disease Control and Prevention (2011) How much physical activity
do adults need?
28. del Porto LA, Nicholson GA, Ketheswaram P (2010) Correlation between muscle
atrophy on MRI and manual strength testing in hereditary neuropathies. J Clin
Neurosci 17: 874-878.
29. Carter GT, Abresch RT, Fowler WM Jr, Johnson ER, Kilmer DD, et al. (1995)
Profiles of neuromuscular diseases. Hereditary motor and sensory neuropathy,
types I and II. Am J Phys Med Rehabil 74: S140-S149.
30. Lindeman E, Lefters P, Spaans F, Drukker J, Reulen J, et al. (1995) Strength
training in patients with myotonic dystrophy and hereditary motor and sensory
neuropathy: a randomized clinical trial. Arch Phys Med Rehabil 76: 612-620.
31. Kilmer DD, McCrory MA, Wright NC, Allkens SG, Bernauer EM, et al.
(1994) The effect of a high resistance exercise program in slowly progressive
neuro-muscular disease. Arch Phys Med Rehabil 75: 560-563.
32. Fisher MA, Langbein WE, Collins EG, Williams K, Corzine L (2007) Physiologi-cal improvement with moderate exercise in type II diabetic
neuropathy. Electro-mygcr Clin Neurophysiol 47: 23-28.
33. Smith AG, Russell J, Feldman EL, Goldstein J, Pettler A, et al. (2006)
Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care 29: 1294-1299.
34. Spellman CW (2008) Aggressively managing type 2 diabetes mellitus,
hyperlip-idaemia, and bone loss. J Am Osteopath Assoc 108: S20-S27.
35. Van meerenten NL, Brakkee JH, Biessels GJ, Kappelle AC, Holders PJ et al.
(1996) Effect of exercise training on acute (crush lesion) and chronic
diabetes mellitus) peripheral neuropathy in the rat. Restor Neurol Neurosci 10:
85-93.
36. Cook DB, Nagelkirk PR, Poluri A, Mores J, Ntatehon BH (2006) The influence
of aerobic fitness and fibromyalgia on cardiovascular and perceptual
responses to exercise in patients with chronic fatigue syndrome. Arthritis Rheum
54: 3351-3362.
37. Cook DB, Stiegner AJ, Ellingson LD (2010) Exercise alters pain sensitivity
in Gulf War Veterans with chronic musculoskeletal pain. J Pain 11: 764-772.
38. Schenone A, Nibbolo M, Monti Bragadin M, Ursini G, Grandis M (2011)
Inherited neuropathies. Curr Treat Options Neurol 13: 160-179.
39. Udina E, Puigdemasa A, Navarro X (2011) Passive and active exercise
im-prove regeneration and muscle reinervation after peripheral nerve injury in
the rat. Muscle Nerve 43: 500-509.
40. Seo TB, Oh MJ, Yu BG, Kwon KB, Chang IA, et al. (2009) ERK ½-
mediated Schwann cell proliferation in the regenerating sciatic nerve by treadmill
training. J Neurotrauma 26: 1733-1744.
41. Portenoy RK, Hagen NA (1990) Breakthrough pain: definition, prevalence and
characteristics. Pain 41: 273-281.
42. Koltyn KD, Garvin AW, Gardner RL, Nelson TF (1996) Perception of pain
following aerobic exercise. Med Sci Sports Exerc 28: 1416-1421.
43. Gurevich M, Kohn PM, Davis C (1994) Exercise-induced analgesia and the
role of reactivity in pain sensitivity. J Sports Sci 12: 549-559.
44. Rief W, Bardwell WA, Dimsdale JE, Natarajan L, Flatt SW, et al. (2011)
Long-term course of pain in breast cancer survivors: A 4-year longitudinal
study. Breast Cancer Res Treat 130: 579-586.
45. Liou YM, Lee HL, Chien LY, Kao YW, Chiang CC, et al. (2011) Daily-life
physical activity and related factors among patients with cancer receiving
chemotherapy in Taiwan. Cancer Nurs 34: 443-452.
46. Courneya KS, Tamburri AL, Woolcott CG, McNeely ML, Karvinen KH, et al.
(2011) The Alberta physical activity and breast cancer prevention trial: Quality
of life outcomes. Prev Med 52: 26-32.
47. Griffith K, Wenzel J, Shang J, Thompson C, Stewart K, et al. (2009) Impact
of a walking intervention on cardiorespiratory fitness, self-reported physical
func-tion, and pain in patients undergoing treatment for solid tumors. Cancer
115: 4874-4884.
48. Fink A (1995) How to sample in surveys. Thousand Oaks, CA: SAGE.
49. Fowler FJ (1993) Survey research methods (2nd ed.). Thousand Oaks,
CA: SAGE.