Periodic integral operators over Cayley-Dickson algebras and spectra

Ludkovsky S.V.

25 March 2012

Abstract

Periodic integral operators over Cayley-Dickson algebras related with integration of PDE are studied. Their continuity and spectra are investigated.

1 Introduction

Integral operators over Cayley-Dickson algebras are useful for integration of linear and non-linear partial differential equations [26, 27].

Sections 2 and 3 are devoted to spectra of periodic integral operators over Cayley-Dickson algebras, that can be used for analysis of solutions in a bounded domain or of periodic solutions on the Cayley-Dickson algebra of PDE including that of non-linear. This is actual, because spectra of operators are used for solutions of partial differential equations, for example, with the help of the inverse scattering problem method (see also [1]). Moreover, hypercomplex analysis is fast developing and also in relation with problems of theoretical and mathematical physics and of partial differential equations [4, 9, 11]. Cayley-Dickson algebras are used not only in mathematics, but also in applications [6, 12, 10, 15, 16].

1 key words and phrases: non-commutative functional analysis, hypercomplex numbers, Cayley-Dickson algebra, integral operator, spectra, non-commutative integration

Mathematics Subject Classification 2010: 30G35, 17A05, 17A70, 47A10, 47L30, 47L60
Analysis over Cayley-Dickson algebras was developed as well [18, 19, 20, 21, 22]. This paper continuous previous articles and uses their results [23, 24, 25, 26, 27]. Notations and definitions of papers [18, 19, 20, 21, 22] are used below. The main results of this paper are obtained for the first time.

2 Periodic integral operators over Cayley-Dickson algebras

1. Notation. Let X be a Banach space over the Cayley-Dickson algebra A_v with $2 \leq v, \ v \in \mathbb{N}$. Let also A_w be the Cayley-Dickson subalgebra $A_w \subseteq A_v$, where $2 \leq w \leq v$.

The Cayley-Dickson algebra A_v has the real shadow \mathbb{R}^{2w}. On this real shadow take the Lebesgue measure μ so that $\mu(\prod_{j=1}^{2w} [a_j, a_j + 1]) = 1$ for each $a_j \in \mathbb{R}$. This measure induces the Lebesgue measure on A_w denoted also by μ. A subset A in A_w is called μ-null if a Borel subset B in A_w exists so that $A \subseteq B$ and $\mu(B) = 0$. The Lebesgue measure is defined on the completion $B_\mu(A_w)$ of the Borel σ-algebra $B(A_w)$ on A_w by μ-null sets.

If $1 \leq p < \infty$, $L^p(A_w, X)$ will denote the norm completion of a space of all μ-measurable step functions $f : A_w \rightarrow X$ for which the norm

$$\|f\|_p := \sqrt[p]{\int_{A_w} \|f(z)\|_X^p \mu(dz)}$$

is finite, where

$$f = \sum_{k=1}^{n} b_k \chi_{B_k}$$

is a step function so that $b_k \in X$ and $B_k \in B_\mu(A_w)$ for each $k = 1, \ldots, n$; $B_k \cap B_j = \emptyset$ for each $j \neq k$; $\|x\|_X$ denotes the norm of a vector x in X; certainly, the norm is non-negative, $0 \leq \|x\|_X$, n is a natural number. If $p = \infty$, the norm is given by the formula:

$$\|f\|_\infty := \text{ess sup}_{z \in A_w} \|f(z)\|_X.$$

Then a Banach space $L_q(L^p(A_w, X))$ of all bounded \mathbb{R}-homogeneous A_w additive operators $T : L^p(A_w, X) \rightarrow L^p(A_w, X)$ is considered. Let $K : A_w^2 \rightarrow L_q(X)$ be a strongly measurable operator valued mapping, that is a mapping
\[g(t, s) := K(t, s)y : A^2_v \to X \text{ is } (\mathcal{B}^2_v(A^2_v), \mathcal{B}(X)) \text{ measurable for each vector } y \in X, \text{ i.e. } g^{-1}(Q) \in \mathcal{B}^2_v(A^2_v) \text{ for each Borel subset } Q \in \mathcal{B}(X), \text{ where } \mu^2 \text{ is the Lebesgue measure on } A^2_w.\]

In the paper [27] the following theorem about first order partial differential operators with variable \(A_v\) coefficients was demonstrated.

Theorem. Suppose that a first order partial differential operator \(\Upsilon\) is given by the formula

\[(i) \quad \Upsilon f = \sum_{j=0}^n \left(\partial f / \partial z_j \right) \phi_j^* (z),\]

where \(\phi_j(z) \neq \{0\} \text{ for each } z \in U \text{ and } \phi_j(z) \in C^0(U, A_v) \text{ for each } j = 0, \ldots, n \text{ such that } \text{Re} \left(\phi_j(z) \phi_k^* (z) \right) = 0 \text{ for each } z \in U \text{ and each } 0 \leq j \neq k \leq n, \text{ where a domain } U \text{ satisfies Conditions 2.1.1(D1, D2), } a \text{ is a marked point in } U, 1 < n < 2^v, 2 \leq v. \text{ Suppose also that a system } \{\phi_0(z), \ldots, \phi_n(z)\} \text{ is for } n = 2^v - 1, \text{ or can be completed by Cayley-Dickson numbers } \phi_{n+1}(z), \ldots, \phi_{2^v-1}(z), \text{ such that (a) } \text{alg}_{\mathbb{R}} \{\phi_j(z), \phi_k(z), \phi_l(z)\} \text{ is alternative for all } 0 \leq j, k, l \leq 2^v - 1 \text{ and (b) } \text{alg}_{\mathbb{R}} \{\phi_0(z), \ldots, \phi_{2^v-1}(z)\} = A_v \text{ for each } z \in U. \text{ Then a line integral } \mathcal{I}_\Upsilon : C^0(U, A_v) \to C^1(U, A_v), \mathcal{I}_\Upsilon f(z) := \Upsilon \int_0^z f(y)dy \text{ on } C^0(U, A_v) \text{ exists so that}

\[(ii) \quad \mathcal{I}_\Upsilon f(z) = f(z)\]

for each \(z \in U; \text{ this anti-derivative is } \mathbb{R}\text{-linear (or } \mathbb{H}\text{-left-linear when } v = 2). \text{ If there is a second anti-derivative } \mathcal{I}_{\Upsilon, 2} f(z), \text{ then } \mathcal{I}_\Upsilon f(z) - \mathcal{I}_{\Upsilon, 2} f(z) \text{ belongs to the kernel } \ker(\Upsilon) \text{ of the operator } \Upsilon.\]

For a first order partial differential operator \(\sigma = \Upsilon\) over \(A_w\) with constant or variable coefficients consider the antiderivative operator \(\sigma f\) on \(A_w\). Put

\[
(3) \quad (Bx)(t) := \sigma \int_{-\infty}^{\infty} K(t, s)x(s)ds
\]

whenever this integral converges in the weak sense as

\[
(4) \quad \sigma \int_{-\infty}^{\infty} u[K(t, s)x(s)ys] := \lim_{a \to a_0, b \to b_0} \sigma \int_{\gamma^u[a, b]} u[K(t, s)x(s)ys]ds \in A_v
\]

for each \(y \in X\) and right \(A_v\) linear continuous functional \(u \in L_r(X, A_v) = X_r^*, \text{ where } x \in L_q(L^p(A_w, X), L^p(A_w, X)) \text{ so that } (xf)(s) = x(s)f(s) \text{ for each } f \in L^p(A_w, X), \text{ } x(s) \in L_q(X) \text{ for every } s \in A_w,

\[
\lim_{a \to a_0} \gamma^a(t) = \infty \text{ and } \lim_{b \to b_0} \gamma^b(t) = \infty,
\]

\[3\]
\(a_a < b_\alpha\), \(\hat{A}_w\) is the one-point (Alexandroff) compactification of the Cayley-Dickson algebra as the topological space, \(\infty = \hat{A}_w \setminus A_w\), \(\alpha \in \Lambda\). The integral in Formula (4) reduces to the integral described in \(\S 4.2.5\) [22]. Consider a periodic integral kernel

\[
(5) \ K(t, s) = K(t + p_j\omega ji_j, s + p_j\omega ji_j),
\]
also \(\phi_j(s + p_j\omega ji_j) = \phi_j(s)\) for \(\mu\) almost every Cayley-Dickson numbers \(t, s \in A_w\) for all integers \(p_j\), where \(\omega_j > 0\) is a period by \(z_j\), \(z = z_0i_0 + \ldots + z_{2^w-1}i_{2^w-1} \in A_w\), \(z_0, \ldots, z_{2^w-1} \in \mathbb{R}\); \(i_0, \ldots, i_{2^w-1}\) denote the standard generators of \(A_w\). Suppose that a foliation of \(A_w\) by paths \(\gamma^\alpha\) is so that

\[
(6) \ K(t, s) = K(\gamma^\alpha(t + p^\alpha_\omega^\alpha), \gamma^\alpha(\kappa + p^\alpha_\omega^\alpha)) = K(\gamma^\alpha(t), \gamma^\alpha(\kappa)),
\]
also \(\phi_j(\gamma^\alpha(\kappa + p^\alpha_\omega^\alpha)) = \phi_j(\gamma^\alpha(\kappa))\)
for \(\mu\) almost all \(t = \gamma^\alpha(t)\) and \(s = \gamma^\alpha(\kappa)\) in \(A_w\) for each \(\alpha\) with \(\omega^\alpha > 0\) and all integers \(p^\alpha\). Let \(S(\omega)\) denote the shift operator

\[
(7) \ S(\nu)x(t) = x(t + \nu)
\]
on a Cayley-Dickson number \(\nu \in A_w\), where \(t \in A_w\).

For example, a foliation \(\{\gamma^\alpha : \alpha\}\) of \(A_w\) may be done by straight lines parallel to \(\mathbb{R}i_0\) indexed by \(\alpha \in \Lambda = \{z \in A_w : Re(z) = 0\}\).

2. Definition. An operator \(x \in L_q(L^p(A_w, X), L^p(A_w, X))\) so that \((xf)(t) = x(t)f(t)\) and \(x(t) \in L_q(X)\) for every \(t \in A_w\) we shall call periodic, if

\[
(1) \ S(\omega ji_j)x(t)f(t) = x(t)S(\omega ji_j)f(t)
\]
for each \(t \in A_w\) and \(f \in L^p(A_w, X)\) and every \(j\), where \(X\) is a Banach space over the Cayley-Dickson algebra \(A_w\) with \(2 \leq v\). A set \(\{\omega_j : j = 0, \ldots, 2^w-1\}\) will be called a net of periodic values. If for \(x\) exists a set of positive minimal periodic values, then it will be call a set of periods.

3. Definition. Let \(Y\) be a Banach space over the Cayley-Dickson algebra \(A_w\), where \(2 \leq v\). Put \(l_\infty(\mathbb{Z}, Y) := \{x : x : \mathbb{Z} \rightarrow Y, \|x\|_\infty := \sup_{k \in \mathbb{Z}} \|x(k)\|_Y < \infty\}\) and \(l_p(\mathbb{Z}, Y) := \{x : x : \mathbb{Z} \rightarrow Y, \|x\|_p := [\sum_{k \in \mathbb{Z}} \|x(k)\|_Y^p]^{1/p} < \infty\}\) to be the Banach spaces of norm \(\|\cdot\|_p\) bounded sequences and with values in \(Y\), where \(\mathbb{Z}\) denotes the ring of all integers, \(1 \leq p < \infty\).

A sequence \(\{x_n : n \in \mathbb{N}\} \subset l_\infty(\mathbb{Z}, Y)\) is called \(c\)-convergent to an element
if for each integer \(k \in \mathbb{Z} \) the limit is zero:

\[
\lim_{n \to \infty} \| x_n(k) - x(k) \| = 0.
\]

4. Definition. An operator \(B \in L_q(\ell_\infty(\mathbb{Z}, Y)) \) will be called \(c \)-continuous, if an image \(\{ Bx_n : n \in \mathbb{N} \} \) of each \(c \)-convergent sequence \(\{ x_n : n \in \mathbb{N} \} \) is a \(c \)-convergent sequence, where \(L_q(X) \) is written shortly for \(L_q(X, X) \), in particular for \(X = \ell_\infty(\mathbb{Z}, Y) \), \(Y \) is a Banach space over the Cayley-Dickson algebra \(\mathcal{A}_v \), \(2 \leq v \). The family of all \(c \)-continuous operators will be denoted by \(L_c^q(\ell_\infty(\mathbb{Z}, Y)) \).

5. Lemma. The family \(L_c^q(\ell_\infty(\mathbb{Z}, Y)) \) from Definition 4 is a closed sub-algebra over the Cayley-Dickson algebra \(\mathcal{A}_v \) in \(L_q(\ell_\infty(\mathbb{Z}, Y)) \) relative to the operator norm topology.

Proof. Evidently, the unit operator \(I \) is \(c \)-continuous. Definitions 3 and 4 imply that \(L_c^q(\ell_\infty(\mathbb{Z}, Y)) \) is a subalgebra in \(L_q(\ell_\infty(\mathbb{Z}, Y)) \). Take an arbitrary sequence \(B_n \) of \(c \)-continuous operators converging to an operator \(B \in L_q(\ell_\infty(\mathbb{Z}, Y)) \) relative to the operator norm. Let \(x_n \) be an arbitrary \(c \)-converging sequence to \(x \) in \(\ell_\infty(\mathbb{Z}, Y) \). From the \(c \)-continuity of an operator \(B_n \) it follows that for each \(\epsilon > 0 \) and \(j \in \mathbb{Z} \) there exists a natural number \(m \) so that \(\|(B_n(x_k - x))(j)\| < \epsilon/2 \) for each \(k > m \). On the other hand, the triangle inequality gives:

\[
\|(B(x_k - x))(j)\| \leq \|(B_n - B)(x_k - x)))(j)\| + \|(B_n(x_k - x))(j)\| \\
\leq \|(B_n - B)(x_k - x)))(j)\| + \epsilon/2.
\]

The sequence \(B_n \) is norm convergent, hence there exists a natural number \(l \in \mathbb{N} \) such that \(\|(B(x_k - x))(j)\| < \epsilon \) for each \(k > l \), since the limit \(\lim_{k \to \infty} x_k(j) = x(j) \) exists for each \(j \) with \(x \in \ell_\infty(\mathbb{Z}, Y) \) and \(\sup_k \|(x_k - x)(j)\|_Y < \infty \). Thus the sequence \(Bx_k \) is \(c \)-convergent:

\[
\lim_k Bx_k(j) = Bx(j) \quad \text{for each } j,
\]

hence this operator \(B \) is \(c \)-continuous.

6. Definitions. Let \(e_k \in l_p(\mathbb{Z}, \mathcal{A}_v) \) be basic elements so that \(e_k(j) = \delta_{k,j} \), where \(\delta_{k,j} = 0 \) for each \(j \neq k \in \mathbb{Z} \), while \(\delta_{j,j} = 1 \) for every \(j \in \mathbb{Z} \). For an operator \(B \in L_q(l_p(\mathbb{Z}, Y)) \) with \(1 \leq p \leq \infty \) and a Banach space \(Y \) over the Cayley-Dickson algebra \(\mathcal{A}_v \), let
for each vector $y \in Y$, where $e_k y \in l_p(Z, Y)$ with $(e_k y)(j) = \delta_{k,j} y$ for each j.

This set of operators $\{B_{j,k} : j, k \in Z\}$ is called a matrix of an operator B.

An A_v Banach subspace in $l_\infty(Z, Y)$ of all two-sided sequences converging to zero $\lim_{|k|\to \infty} x(k) = 0$ is denoted by $c_0(Z, Y)$.

7. Lemma. Suppose that $B \in L^c_q(l_\infty(Z, Y))$ is a c-continuous non-zero operator or $B \in L_q(l_p(Z, Y))$, where $1 \leq p < \infty$, Y is a Banach space over the Cayley-Dickson algebra A_v, $2 \leq v$. Then its matrix is non-zero and bounded. Moreover, $Bc_0(Z, Y) \subset c_0(Z, Y)$ for each $B \in L_q(l_\infty(Z, Y))$.

Proof. For each $B \in L_q(l_p(Z, Y))$ we have the estimate:

$$\|B_{j,k} y\|_Y = \|(Be_k y)(j)\|_Y \leq \|Be_k y\|_p \leq \|B\|\|l_q(l_p(Z, Y))\|_p\|y\|_Y$$

for each integers $j, k \in Z$ and every vector $y \in Y$, hence $\sup_{j,k} \|B_{j,k}\| \leq \|B\|l_q(l_p(Z, Y))$. Particularly, for $B \in L_q(l_\infty(Z, Y))$ and $x \in c_0(Z, Y)$ this implies that

$$\|(B - \sum_{|k| \leq n} e_k x(k))(j)\|_Y \leq \|B\|l_q(l_\infty(Z, Y))\|\sum_{|k| \leq n} e_k x(k))(j)\|_Y.$$

But for each $\epsilon > 0$ the set $\{k : \|x(k)\|_Y > \epsilon\}$ is finite, since $x \in c_0(Z, Y)$, consequently,

$$\lim_{n \to \infty} \|x - \sum_{|k| \leq n} e_k x(k)\|_Y = 0$$

and hence $Bx \in c_0(Z, Y)$.

Suppose that $B \in L^c_q(l_\infty(Z, Y))$ has a zero matrix $\{B_{j,k} : j, k \in Z\}$. Take an arbitrary vector $x \in l_\infty(Z, Y)$ and a sequence $\{x_n : n \in Z\} \subset l_\infty(Z, Y) \cap c_0(Z, Y)$ so that it c-converges to x. In the Banach space $c_0(Z, Y)$ with norm $\|x_n\|\infty$ the set of vectors $\{e_k y : y \in Y\}$ is everywhere dense. Since $\{B_{j,k} : j, k \in Z\} = 0$, the restriction $B|_{c_0(Z, Y)}$ is zero and $Bx_n = 0$ for each n. Thus the sequence Bx_n does not converge to Bx. This produces the contradiction. Therefore, the matrix $\{B_{j,k} : j, k \in Z\}$ is non-zero.

In the space $l_p(Z, Y)$ with $1 \leq p < \infty$ a subset of finite two-sided sequences in Y is dense, hence a non-zero operator $B \in L_q(l_p(Z, Y))$ has a non-zero matrix $\{B_{j,k} : j, k \in Z\}$.

6
8. Definition. Let Λ be a Banach algebra with unit over the Cayley-Dickson algebra A_v, $2 \leq v$. A subalgebra Ξ over A_v with unit is called saturated if each element of Ξ invertible in Λ is invertible in Ξ as well.

9. Remark. Henceforth in this section it will be denoted for short by $l(Z,Y)$ each of the Banach spaces $c_0(Z,Y)$ and $l_p(Z,Y)$ with $p \in [1, \infty]$ if something other will not specified. Henceforward operators from $L_q^c(l_\infty(Z,Y))$ will be considered.

Let $g \in l_\infty(Z,A_v)$, then an operator $D(g)$ is defined by the formula:

$$(1) \ (D(g)x)(k) := g(k)x(k)$$

for each $x \in l_\infty(Z,Y)$. The family of all such operators is denoted by \mathcal{E}.

The family of all operators $A \in L_q^c(l_\infty(Z,Y))$ quasi-commuting with each $D(g) \in \mathcal{E}$ is denoted by $L_q^s(l_\infty(Z,Y))$, that is

$$(2) \ jA^k D(g) = (-1)^{\kappa(j,k)} k D(g) jA$$

for each $j, k = 0, 1, 2, ...$ (see §§II.2.1 [28], 2.5 and 2.23 [29]).

Evidently, this subalgebra $L_q^s(l_\infty(Z,Y))$ is saturated in the operator algebra $L_q^c(l_\infty(Z,Y))$ with unit operator I as the unit of these algebras.

10. Definition. Take a Cayley-Dickson number of absolute value one $M \in S_v := \{z : z \in A_v, |z| = 1\}$ and put $M = \{M^n : n \in \mathbb{Z}\} \in l_\infty(Z,A_v)$, where $2 \leq v$.

An operator $B \in L_q^c(l_\infty(Z,Y))$ is called diagonal if it quasi-commutes with $D(M) \in \mathcal{E}$ for each $M \in S_v$, where Y is a Banach space over the Cayley-Dickson algebra A_v, $2 \leq v$. The family of all diagonal operators we denote by $L_q^d(l_\infty(Z,Y))$.

11. Proposition. The family of all diagonal operators $L_q^d(l_\infty(Z,Y))$ is a saturated subalgebra in the algebra $L_q^c(l_\infty(Z,Y))$.

Proof. If $A, B \in L_q^d(l_\infty(Z,Y))$, then equations 9(2) for A and B and $D(M)$ imply

$$(1) \ (jA+jB)^k D(M) = jA^k D(M) + jB^k D(M) = (-1)^{\kappa(j,k)} k D(M) (jA+jB)$$

for each $j, k = 0, 1, 2, ...$ and every $M \in S_v$ due to distributivity of the operator multiplication (see also §3.3.1). If $z \in A_v$, then zA has components:

$$(2) \ j(zA) = \sum_{s,l; i_s i_l = i_j} (z_s i_s^l A + (-1)^{\kappa(s,l)} z_l i_l^s A)$$

7
for each \(j \), where as usually \(z = z_0 i_0 + z_1 i_1 + \ldots \) with \(z_0, z_1, \ldots \in \mathbb{R} \). Therefore, \(zA \) quasi-commutes with each \(D(\mathcal{M}) \) for each \(z \in \mathcal{A}_v \). Analogously it can be demonstrated for \(Az \). Thus \(L^d_q(l_\infty(Z, Y)) \) is an algebra.

An inverse \(A^{-1} \in L^d_q(l_\infty(Z, Y)) \) of an operator \(A \in L^d_q(l_\infty(Z, Y)) \) quasi-commuting with \(D(\mathcal{M}) \) also quasi-commutes with \(D(\mathcal{M}) \), since \(D(\mathcal{M}) \) is invertible and \((AD(\mathcal{M}))^{-1} = (D(\mathcal{M}))^{-1}A^{-1} = D(\mathcal{M}^*)A^{-1} \) and \((D(\mathcal{M})A)^{-1} = A^{-1}D(\mathcal{M}^*) \). \(Ax = y \) implies \(x = A^{-1}y \),

\[
I = (AD(\mathcal{M}))^{-1}(AD(\mathcal{M})) =
\]

\[
(AD(\mathcal{M}))^{-1} \sum_{j; \: i_\ast t_j = i_j} [^* A \: ^t D(\mathcal{M}) + (-1)^{s(l,j)} \: ^t A \: ^s D(\mathcal{M})]
\]

\[
= (AD(\mathcal{M}))^{-1} \sum_{j; \: i_\ast t_j = i_j} [^s D(\mathcal{M}) \: ^t A + (-1)^{s(l,j)} \: ^t D(\mathcal{M}) \: ^s A]
\]

\[
= \sum_{j; \: i_p i_q = i_l; \: i_s t_l = i_j} \{[^p D(\mathcal{M}^*) \: ^s A^{-1} + (-1)^{\kappa(p,q)} \: ^q D(\mathcal{M}^*) \: ^p A^{-1}]}
\]

\[
[^* D(\mathcal{M}) \: ^t A + (-1)^{s(l,j)} \: ^t D(\mathcal{M}) \: ^s A] \},
\]

where \(\mathcal{M}^* \) corresponds to \(M^* = \hat{M} \).

12. **Definition.** A sequence \(g \in l_\infty(Z, \mathcal{A}_v) \) is called periodic of period \(k \in \mathbb{N} \) if \(g(n+k) = g(n) \) for each integer \(n \in \mathbb{Z} \), where \(Y \) is a Banach space over the Cayley-Dickson algebra \(\mathcal{A}_v \), \(2 \leq v \).

13. **Lemma.** Diagonal operators from \(L^d_q(l_\infty(Z, Y)) \) quasi-commute with operators of multiplication on periodic sequences \(g \in l_\infty(Z, \mathcal{A}_v) \), where \(2 \leq v \).

Proof. Let \(A \in L^d_q(l_\infty(Z, Y)) \) be a diagonal operator and \(g \in l_\infty(Z, \mathcal{A}_v) \) be a periodic sequence of period \(k \in \mathbb{N} \). Put \(\theta_j := \exp(2\pi i j/k) \), where \(j = 0, 1, \ldots, k-1 \), \(i \) is an additional purely imaginary generator so that \(i^2 = -1, \: i_l = i i_l \) for each \(l \geq 0 \).

A minimal real algebra with basis of generators \(i_0, i_1, \ldots, i_{2v-1}, i, i i_1, \ldots, i i_{2v-1} \) and their relations as above is the complexification \((\mathcal{A}_v)_C \) of the Cayley-Dickson algebra \(\mathcal{A}_v \), where \(C_1 = R \oplus Ri \). Then \(g \) can be presented in the form:

\[
(1) \quad g(n) = \sum_{j=0}^{k-1} c_j \theta_j^n, \quad \text{where}
\]

\[
(2) \quad c_j = \frac{1}{k} \sum_{n=0}^{k-1} g(n) \theta_j^n
\]
are \((A_v)_C\) Fourier coefficients for each \(j = 0, 1, \ldots, k - 1\). Indeed, \(i(x_ji_j) = -x_ji_j\) for each \(j\) and \(x_j \in Y_j\), while \((a + b)c = ac + bc\) and \(c(a + b) = ca + cb\) for each \(c \in (A_v)_C\) and \(a, b \in Y \oplus Yi\), where we put \(ix = xi\) for each \(x \in Y\).

Put \(\|x + yi\|^2 = \|x\|^2 + \|y\|^2\) for each \(x, y \in Y\) and \(x + yi \in Y \oplus Yi\). Therefore,

\[
\sum_{j=0}^{k-1} c_j \theta_j^m = \frac{1}{k} \sum_{j=0}^{k-1} \left[\sum_{n=0}^{k-1} g_l(n)i_l \hat{\theta}_j^n \right] \theta_j^m
\]

\[
= \sum_l g_l(n) \frac{1}{k} \sum_{j=0}^{k-1} \sum_{n=0}^{k-1} i_l \theta_j^m - n = g(m),
\]

since the multiplication in the Cayley-Dickson algebra is distributive, where \(g(m) = \sum_l g_l(m)i_l\) with \(g_l(m) \in \mathbb{R}\) for each \(l = 0, 1, 2, \ldots,\)

\[
\frac{1}{k} \sum_{j=0}^{k-1} \exp(2\pi ji(m - n)/k) = \delta_{n,m}.
\]

Therefore, the diagonal operator has the decomposition

\[
(D(g)x)(n) = g(n)x(n) = \sum_{j=0}^{k-1} (c_j I)D(\hat{\theta}_j)x(n)
\]

that is

\[
(D(g) = \sum_{j=0}^{k-1} (c_j I)D(\hat{\theta}_j)
\]

again due to distributivity of the multiplication in the Cayley-Dickson algebra \(A_v\) (see §2.5 [29]). On the other hand, \(A\) and \(D(\hat{\theta}_j)\) quasi-commute:

\[
^jA^kD(\hat{\theta}_j) = (-1)^{\alpha(j,k)} D(\hat{\theta}_j) ^jA
\]

for each \(j, k\) and from Proposition 11 it follows that \(A\) and \(D(g)\) quasi-commute, where \(k D(\hat{\theta}_j)(n) \in C_i \ell_k\) for each \(n \in \mathbb{Z}\).

\textbf{14. Corollary.} Diagonal operators from \(L_q^d(l_\infty(\mathbb{Z}, Y))\) quasi-commute with multiplication operators \(D(g)\) on periodic sequences \(g \in l_\infty(\mathbb{Z}, A_v)\), where \(2 \leq v\).

\textbf{15. Definition.} If \(x \in l_p(\mathbb{Z}, Y)\), where \(p \in [1, \infty]\), \(Y\) is a Banach space over the Cayley-Dickson algebra \(A_v\), \(2 \leq v\), then its support is \(\text{supp } x := \{n : n \in \mathbb{Z}; x(n) \neq 0\}\).

\textbf{16. Lemma.} Let \(B \in L_q^d(l_\infty(\mathbb{Z}, Y))\) be a diagonal operator and let \(x \in l_\infty(\mathbb{Z}, Y)\) be with finite support, where \(Y\) is a Banach space over the Cayley-Dickson algebra \(A_v\), \(2 \leq v\). Then \(\text{supp } Bx \subseteq \text{supp } x\).
Proof. If the support of \(x \) is finite, then there exists a natural number \(N \in \mathbb{N} \) so that \(\text{supp} \ x \subseteq [−N,N] \). Consider natural numbers \(m > N \) and \(n \in [−N,N] \). Put \(g(n + 2mk) = 1 \) if \(n \in \text{supp} \ x \), while \(g(n + 2mk) = 0 \) for \(n \in [−N,N] \setminus \text{supp} \ x \), where \(k \in \mathbb{Z} \), hence \(g \in l_{∞}(\mathbb{Z},A) \) is of period \(2m \). Therefore, \(D(g)x = x \) by the construction of \(g \). In view of Corollary 14 \(G(g) \) and \(B \) quasi-commute. On the other hand, \(g(l) = 0 \) for each \(l \in [−m,m] \setminus \text{supp} \ x \), consequently, \((Bx)(l) = 0 \), since \(Bx = BD(g)x \). Thus \((Bx)(l) = 0 \) for each \(l \notin \text{supp} \ x \), since \(m > N \) is arbitrary.

17. Theorem. The algebras \(L^d_q(l_{∞}(\mathbb{Z},Y)) \) and \(L^d_q(l_{∞}(\mathbb{Z},Y)) \) over the Cayley-Dickson algebra \(A \), coincide, where \(2 \leq v \).

Proof. From the definitions it follows that the algebra \(L^d_q(l_{∞}(\mathbb{Z},Y)) \) is a subalgebra of the algebra \(L^d_q(l_{∞}(\mathbb{Z},Y)) \) of diagonal continuous operators. Therefore, it remains to prove the inclusion \(L^d_q(l_{∞}(\mathbb{Z},Y)) \subseteq L^d_q(l_{∞}(\mathbb{Z},Y)) \).

Consider arbitrary continuous diagonal operator \(B \in L^d_q(l_{∞}(\mathbb{Z},Y)) \) and an element \(g \in l_{∞}(\mathbb{Z},A) \). Take \(x \in l_{∞}(\mathbb{Z},Y) \) so that \(x_n = 0 \) for each \(|n| > N \), where \(N \) is a natural number. We have \(jD(g)Bx = (-1)^{\kappa(j,k)} k B^j D(g)x \) for each \(j, k \). Extend the sequence \(g \) periodically to \(h \) so that \(h(−N) = g(N+1) \) and \(h(m) = g(m) \) for each \(m \in [−N,N] \), consequently, \((D(g)x)(m) = (D(h)x)(m) \) for each \(m \in [−N,N] \). In view of Corollary 14

\[
(iB^k D(g)x)(m) = (iB^k D(h)x)(m) = (-1)^{\kappa(j,k)} (kD(h)^j Bx)(m)
\]

\[
= (-1)^{\kappa(j,k)} (kD(g)^j Bx)(m)
\]

for each \(j, k \) and \(m \in [−N,N] \). Applying Lemma 16 for each \(|m| > N \) we get \((Bx)(m) = 0 \) and hence

\[
(iB^k D(g)x)(m) = (-1)^{\kappa(j,k)} (kD(g)^j Bx)(m)
\]

for each \(j, k = 0,1,2,... \) and every integer number \(m \in \mathbb{N} \). Thus for sequences with finite supports this theorem is accomplished. But a set of all sequences with finite support is dense in \(c_0(\mathbb{Z},Y) \) and in \(l_p(\mathbb{Z},Y) \) for every \(1 \leq p < ∞ \). Therefore, the statement of this theorem is valid on these spaces. In accordance with Lemma 7 the conjecture spreads on a \(c \)-continuous operator \(B \) from \(c_0(\mathbb{Z},Y) \) on the entire Banach space \(l_{∞}(\mathbb{Z},Y) \).
18. **Definition.** Let \(g = (G^m : m \in \mathbb{Z}) \) be a sequence belonging to the Banach space \(l_\infty(\mathbb{Z}, L_q(Y)) \), where \(Y \) is a Banach space over the Cayley-Dickson algebra \(\mathcal{A}_v \), \(2 \leq v \). An operator \(D(g) \in L^c_\infty(l_\infty(\mathbb{Z}, Y)) \) will be defined by the formula: \((D(g)x)(m) = G^m x(m) \) for each integer number \(m \). A set of all (left) multiplication operators on bounded operator valued sequences forms an algebra over the Cayley-Dickson algebra \(\mathcal{A}_v \), which will be denoted by \(L^b_q(l_\infty(\mathbb{Z}, Y)) \).

An operator \(B \in L^c_q(l_\infty(\mathbb{Z}, Y)) \) is called a \((k, n)\) ribbon operator with \(k \in \mathbb{N} \) and \(n \in \mathbb{Z} \) if \(B_{s,l} = 0_Y \) is the zero operator from \(L_q(Y) \) for each \(|s - l + n| \geq k\), where \(s, l \in \mathbb{Z} \). Their family is denoted by \(L^{(k, n)}_q(l_\infty(\mathbb{Z}, Y)) \).

A \((k, 0)\) ribbon operator is called \(k\)-ribbon (single ribbon for \(k = 1 \)).

Two propositions follow immediately from the latter definition.

19. **Proposition.** An operator \(B \in L^c_q(l_\infty(\mathbb{Z}, Y)) \) is \((1, 0)\) ribbon if and only if it is a multiplication operator on operator valued sequence.

20. **Proposition.** The algebra \(L^{(k, 0)}_q(l_\infty(\mathbb{Z}, Y)) \) is the saturated subalgebra of the algebra \(L^c_q(l_\infty(\mathbb{Z}, Y)) \) over the Cayley-Dickson algebra \(\mathcal{A}_v \).

21. **Theorem.** Let \(B \in L^c_q(l_\infty(\mathbb{Z}, Y)) \), where \(Y \) is a Banach space over the Cayley-Dickson algebra \(\mathcal{A}_v \), \(2 \leq v \). An operator \(B \) is \((1, 0)\) ribbon if and only if \(B \) is diagonal.

Proof. Suppose that \(B \) is a diagonal operator. Take a vector \(x \in Y \) and an element \(y^* = e_s x \in l_\infty(\mathbb{Z}, Y) \), where \(y^*(k) = \delta_{s,k} x \), hence \(B_{m,s}(By)(m) \in Y \), where \(s, m \in \mathbb{Z} \), \(B_{s,m} \) are elements of the matrix of \(B \). For \(M \in S_v \) matrix elements of the operator \(D(\mathcal{M}^*)BD(\mathcal{M}) \) are prescribed by the formula:

\[
(D(\mathcal{M}^*)BD(\mathcal{M})y^*)(m) = M^{-m}(BM^s y^*)(m)
\]

for each \(s, m \in \mathbb{Z} \).

Take any purely imaginary generator \(i_p \) of the Cayley-Dickson algebra and put \(M = i_p \) with \(p \geq 1 \). As an operator \(B \) is diagonal, the equalities follow:

\[
(kBy^*)(m) = (-1)^{\kappa(p,k)} \eta(s) i_p^{s-m}(kBy^*)(m)
\]

for each \(m, s \), where \(\eta(s) = 0 \) for \(s \) even, while \(\eta(s) = 1 \) for \(s \) odd. This implies that \(B_{m,s} = 0_Y \) for \(s \neq m \) and \(B_{m,s} = B_{m,m} \) for \(m = s \). Thus the operator \(B \) is \((1, 0)\) ribbon.
The inverse conjecture follows from Lemma 7 and Definition 18.

22. **Corollary.** An operator \(B \in L_q^c(l_\infty(Z,Y)) \) is diagonal if and only if \(B \) is an operator of multiplication on a bounded operator valued sequence in \(L_q(Y) \).

23. **Definition.** An operator \(B \in L_q(l_\infty(Z,Y)) \) is called uniformly \(c \)-continuous, if a mapping \(\bar{B} : S^1 \to L_q(l_\infty(Z,Y+Yi)) \) is continuous relative to the operator norm topology on \(L_q(l_\infty(Z,Y+Yi)) \) and a topology on \(S^1 := \{ z : z \in C_i; \ |z| = 1 \} \) induced by the norm on the complex field \(C_i \), where \(2 \leq v, \ \bar{B}(M) := D(M)BD(M^*) \) for each \(M \in S^1 \), \(D(M) \) is a diagonal (left) multiplication operator on a sequence \(M(k) = M^k, \ Y \) is a Banach space over \(A_v \). The family of all uniformly \(c \)-continuous operators is denoted by \(L_q^{uc}(l_\infty(Z,Y)) \) and is supplied with the uniform operator norm topology

\[
\|B\|_u := \sup_{M \in S^1} \|\bar{B}(M)\|.
\]

The real field is the center of the Cayley-Dickson algebra \(A_v \) with \(v \geq 2 \), hence the generator \(i \) can be realized as the real matrix \(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \). If \(X \) and \(Y \) are two \(A_v \) vector spaces and \(B : X \to Y \) is a real homogeneous \(A_v \) additive operator, then it has a natural extension \(B : X_1 \to Y_1 \) so that \(B(a+bi) = (Ba)+(Bb)i \) for each vectors \(a,b \in X \), where \(X_1 \) is obtained form \(X \) by extending the algebra \(A_v \) to \((A_v)_{C_i} \) and \(X_1 \) can be presented as the direct sum \(X_1 = X \oplus Xi \) of two \(A_v \) vector spaces \(X \) and \(Xi \). It is convenient to denote \(B \) also by \(B \) on \(X_1 \).

24. **Proposition.** The family \(L_q^{uc}(l_\infty(Z,Y)) \) is a normed algebra over the Cayley-Dickson algebra \(A_v \) (see §23). If an operator \(B \in L_q^c(l_\infty(Z,Y)) \) is \(k \)-ribbon, then this operator \(B \) is uniformly \(c \)-continuous.

Proof. In algebra \(L_q(X) \) for a Banach space \(X \) over the Cayley-Dickson algebra \(A_v \), the operator norm satisfies the inequality: \(\|AB\| \leq \|A\|\|B\| \), particularly for \(X = l_\infty(Z,Y) \) or \(X = l_\infty(Z,Y+Yi) \). Therefore, for each uniformly \(c \)-continuous operators \(A \) and \(B \) the inequality follows:

\[
\|AB\|_u = \sup_{M \in S^1} \|D(M)ABD(M^*)\| = \sup_{M \in S^1} \|D(M)AD(M^*)D(M)BD(M^*)\|
\leq \sup_{M \in S^1} \|D(M)AD(M^*)\| \sup_{M \in S^1} \|D(M)BD(M^*)\| = \|A\|_u \|B\|_u,
\]

12
since set theoretic composition of operators is associative and $D(M)D(M^*) = I$ for each $M \in S^1$ (see [32]). On the other hand, $\|B\|_u \geq \|B\|$ for each $B \in L^u_q(l_\infty(Z,Y))$, since $D(I) = I$ and $1 \in S^1$, where $I = (... ,1,1,...)$ corresponds to 1.

For a k ribbon operator B a finite sequence nB of single ribbon operators exists with $|n| \leq k$ so that

$$B = \sum_{n=-k}^{k} nBS(n),$$

where $S(n)$ denotes a shift operator on n, $(S(n)g)(m) := g(m+n)$ for each $n, m \in Z$ and $g \in l_\infty(Z,Y)$. Therefore, the equality follows:

$$(\tilde{B}(M)x)(j) = \sum_{n=-k}^{k} [(M^{j+n}I)_nB((M^*)^nI)x](j+n),$$

but $\|[(M^{j+n}I)_nB((M^*)^nI)y]\| \leq \|nBy\|$ for each $y \in Y$ and $M \in S^1$, consequently, $\|B\|_u \leq \sum_{n=-k}^{k} \|nB\| < \infty$.

25. Lemma. Let $B \in L^u_q(l_\infty(Z,Y))$ be a uniformly c continuous operator and $(B_{s,p})$ be its matrix, where $s, p \in Z$, where Y is a Banach space over the Cayley-Dickson algebra A_v, $2 \leq v$. Then for each $M \in S^1$ matrix elements of an operator $\tilde{B}(M)$ have the form:

$$\tilde{B}(M)_{s,p} = (M^sI)B_{s,p}(M^{-p}I).$$

Proof. In accordance with Definition 6 the equalities are valid:

$$(\tilde{B}(M)_{s,p}) = ((D(M)BD(M^*))_{s,p}x = ((D(M)BD(M^*))e_px)(s) = ((M^sI)B(M^{-p}I)e_px)(s)$$

for all integer numbers $s, p \in Z$ and for each vector $x \in Y$, since $M \in S^1$ implies $|M|^2 = MM^* = M^*M = 1$ and hence $M^{-1} = M^*$.

26. Proposition. Let $A, B \in L^u_q(l_\infty(Z,Y))$ be two uniformly c-continuous operators, where Y is a Banach space over the Cayley-Dickson algebra A_v, $2 \leq v$. Then $(AB)(M) = \tilde{A}(M)\tilde{B}(M)$ for each $M \in S^1$.

Proof. The algebra of operators relative to the set-theoretic composition is evidently associative (see also [32]), hence

$$(\tilde{A}\tilde{B})(M) = D(M)\tilde{A}(M)\tilde{B}(M) = D(M)AD(M^*)BD(M^*)$$
since \(MM^* = M^*M = 1 \) and hence \(D(M)D(M^*) = D(M^*)D(M) \).

27. Proposition. Let \(B \in L_q^{uc}(l_\infty(Z,Y)) \) be a uniformly \(c \)-continuous invertible operator, where \(Y \) is a Banach space over the Cayley-Dickson algebra \(A_v \), \(2 \leq v \). Then an operator \(\tilde{B}(M) \) is invertible so that \(\tilde{B}^{-1}(M) = (\tilde{B})^{-1}(M) \) for each \(M \in S^1 \).

Proof. Applying Proposition 26 with \(A = B^{-1} \) one gets \((\tilde{B})^{-1}(M) = (D(M)BD(M^*))^{-1} = D(M^*)^{-1}B^{-1}D(M)^{-1} = D(M)B^{-1}D(M^*) = B^{-1}(M) \).

28. Lemma. Let \(B \in L_q^{uc}(l_\infty(Z,Y)) \) be a uniformly \(c \)-continuous operator, where \(Y \) is a Banach space over the Cayley-Dickson algebra \(A_v \), \(2 \leq v \). Then there exists an equivalent norm on \(Y \) relative to an initial one so that \(\|B\| \geq \|\tilde{B}(M)\| \) for each \(M \in S^1 \).

Proof. The norm on the Cayley-Dickson algebra \(A_v \) satisfies the inequality \(|ab| \leq |a||b| \) for each \(a, b \in A_v \) with \(2 \leq v \). Particularly, for \(v \leq 3 \) the norm on \(A_v \) is multiplicative.

Two norms \(\|\cdot\| \) and \(\|\cdot\|' \) on a Banach space \(Y \) are called equivalent if two positive constants \(0 < c_1 \leq c_2 < \infty \) exist so that \(c_1\|x\| \leq \|x\|' \leq c_2\|x\| \) for each vector \(x \in Y \). Then \(\|ax\| \leq |a|\|x\| \) for each \(a \in A_v \) and \(x \in Y \) up to a topological isomorphism of Banach spaces, i.e. up to an equivalence of norms on \(Y \), since \(\|tx_ji_j\| = |t|\|x_j\| = \|tx_j\| \) for each \(x_j \in Y_j \) and \(j = 0, 1, 2, \ldots \). Indeed, the multiplication of vectors on numbers \(A_v \times Y \ni (a, x) \mapsto ax \in Y \) is continuous relative to norms on \(A_v \) and \(Y \). Therefore, \(\|\tilde{B}(M)x\| = \|D(M)BD(M^*)x\| \leq \|D(M)\|\|\tilde{B}\|\|D(M^*)\|\|x\| \), consequently, \(\|B\| \geq \|\tilde{B}(M)\| \) for each \(M \in S^1 \), since \(|M|^n = |M^n| = 1 \) for each integer \(n \) and hence \(\|D(M)\| = 1 \).

29. Definition. Let \(C_s(S^1, L_q^{uc}(l_\infty(Z, Y \oplus Y))) \) denote a Banach space of continuous bounded mappings from \(S^1 \) into \(L_q^{uc}(l_\infty(Z, Y \oplus Y)) \), where \(Y \) is a Banach space over the Cayley-Dickson algebra \(A_v \), \(2 \leq v \).

30. Corollary. There exists an equivalent norm on a Banach space \(Y \) over the Cayley-Dickson algebra \(A_v \) such that the mapping \(F : L_q^{uc}(l_\infty(Z, Y)) \rightarrow C_s(S^1, L_q^{uc}(l_\infty(Z, Y \oplus Y))) \) given by the formula \(F(B)(M) = \tilde{B}(M) \) for each \(M \in S^1 \) is \(R \)-linear and \(A_v \)-additive and isometric operator.

Proof. This follows by combining Proposition 24 and Lemma 28.
31. Lemma. Let $B \in L^uc_q(l_\infty(Z,Y))$. Then an operator valued mapping $\tilde{B} : S^1 \rightarrow L^uc_q(l_\infty(Z,Y))$ has the Fourier series of the form:

$$\tilde{B} \sim \sum_{n=-\infty}^{\infty} M^n n \tilde{B}$$

for each $M \in S^1$, where

$$n \tilde{B} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-nt} \tilde{B}(e^{it})dt$$

are Fourier coefficients. Moreover, each operator $n \tilde{B} S(-n)$ is diagonal.

Proof. From the definition of the uniformly c-continuous operator it follows that the restriction of \tilde{B} on S^1 is continuous, since a mapping $\tilde{B} : S^1 \rightarrow L^uc_q(l_\infty(Z,Y))$ is continuous. The function e^{it} has the period 2π. Therefore, integrals (2) exist for every n and a formal Fourier series (1) can be written. On the other hand, the algebra $alg_{R}(i_k,i_l)$ is associative for every k and $l = 0,1,2,\ldots$. Therefore, using the distributivity law in the algebra $(A_v)_C$, we deduce that

$$M^{\pm k} B_{k,l} M^{\pm l} \sum_{p} x_p i_p = M^{\pm k} B_{k,l} \sum_{p} M^{\pm l} x_p i_p,$$

where $M \in S^1$, $x_p \in Y_p$ for each $p = 0,1,2,\ldots$. The algebra $alg_{R}(i,i_p,i_k)$ is associative for each p,k, consequently, the inversion formula (1) is valid, since

$$\frac{1}{2\pi} \int_{0}^{2\pi} e^{-nt} e^{niti} m \tilde{B} x dt = \delta_{m,n} m \tilde{B} x$$

for each vector $x \in Y$. Then one gets

$$D(M) \ n \tilde{B} S(-n) D(M^*) = D(M) \ n \tilde{B} D(M^*) D(M) S(-n) D(M^*)$$

$$= (M^n I) \ n \tilde{B} (M^{-n} I) (M^n I) S(-n) (M^{-n} I) = (M^n I) \ n \tilde{B} S(-n) (M^{-n} I)$$

for each $M \in S^1$ and every integer n, since the product of diagonal operators is diagonal.

32. Theorem. The algebra $L^uc_q(l_\infty(Z,Y))$ is the saturated subalgebra in $L^c_q(l_\infty(Z,Y))$, where Y is a Banach space over the Cayley-Dickson algebra A_v, $2 \leq v$.

Proof. The algebraic R linear A_v additive embedding $L^uc_q(l_\infty(Z,Y)) \hookrightarrow L^c_q(l_\infty(Z,Y))$ follows from the definitions. If a uniformly c-continuous operator B on $l_\infty(Z,Y)$ is invertible in the algebra $L^c_q(l_\infty(Z,Y))$, then the mapping
\tilde{B}^{-1} is continuous from S^l into $L_q^c(l_\infty(Z, Y))$ due to Proposition 27. Thus $B^{-1} \in L_q^{c,\text{per}}(l_\infty(Z, Y))$.

33. Definition. An operator $B \in L_q^c(l_\infty(Z, Y))$ is called periodic of period n on the Banach space $l_\infty(Z, Y)$ over the Cayley-Dickson algebra A_v with $2 \leq v$ if $S(n)B = BS(n)$, where n is a natural number, $(S(n)x)(k) = x(n+k)$ for each vector $x \in l_\infty(Z, Y)$ and every integer k. A set of n periodic operators will be denoted by $L_n^{\text{per}}(l_\infty(Z, Y))$.

34. Proposition. A set $L_n^{\text{per}}(l_\infty(Z, Y))$ of n periodic operators on $l_\infty(Z, Y)$ is a closed saturated subalgebra in the algebra $L_q^c(l_\infty(Z, Y))$, where Y is a Banach space over the Cayley-Dickson algebra A_v, $2 \leq v$.

Proof. If operators $A, B \in L_q^c(l_\infty(Z, Y))$ commute with $S(n)$, then

$$[(\alpha I)A + B(\beta I)]S(n) = (\alpha I)S(n)A + BS(n)(\beta I)$$

$$= S(n)(\alpha I)A + S(n)B(\beta I) = S(n)[(\alpha I)A + B(\beta I)]$$

for each Cayley-Dickson numbers $\alpha, \beta \in A_v$ and

$$ABS(n) = AS(n)B = S(n)AB.$$

Thus $L_n^{\text{per}}(l_\infty(Z, Y))$ is an algebra over the Cayley-Dickson algebra A_v.

From Definition 33 the algebraic R linear A_v additive embedding $L_n^{\text{per}}(l_\infty(Z, Y)) \hookrightarrow L_q^c(l_\infty(Z, Y))$ follows.

The relation $S(n)B - BS(n) = 0$ defines a closed subset in $L_q^c(l_\infty(Z, Y))$, since $S(n)$ is the bounded continuous operator on $l_\infty(Z, Y)$ and the mapping $f(B) := S(n)B - BS(n)$ is continuous from $L_q^c(l_\infty(Z, Y))$ into itself $L_q^c(l_\infty(Z, Y))$. Thus $L_n^{\text{per}}(l_\infty(Z, Y))$ is the closed subalgebra.

If an n periodic operator $B \in L_n^{\text{per}}(l_\infty(Z, Y))$ is invertible in $L_q^c(l_\infty(Z, Y))$, then $B^{-1}S(n) = S(n)B^{-1}$, since $BS(n) = S(n)B \iff S(n) = B^{-1}S(n)B \iff S(n)B^{-1} = B^{-1}S(n)$. Thus $B^{-1} \in L_n^{\text{per}}(l_\infty(Z, Y))$ and hence the subalgebra $L_n^{\text{per}}(l_\infty(Z, Y))$ is saturated in $L_q^c(l_\infty(Z, Y))$.

35. Lemma. An operator $B \in L_q^c(l_\infty(Z, Y))$ is n periodic if and only if its matrix satisfies the condition $B_{k+n,l+n} = B_{k,l}$ for each integers k and l, where Y is a Banach space over the Cayley-Dickson algebra A_v, $2 \leq v$.

Proof. Suppose that $B \in L_n^{\text{per}}(l_\infty(Z, Y))$ and $(B_{k,l})$ is its matrix. Then $B_{k,l}x = (Be_lx)(k) = (S(-n)BS(n)e_lx)(k) = (S(-n)Be_{l+n}x)(k) = (Be_{l+n})(k + n) = B_{k+n,l+n}x$ for each vector $x \in Y$ and integers k and l.

Vise versa if $B \in L_q^c(l_\infty(Z, Y))$ is a c-continuous operator, then it has
a matrix \((B_{k,l})\) by Lemma 7. Then the condition \(B_{k+n,l+n} = B_{k,l}\) for each integers \(k\) and \(l\) implies \(B_{k+n,l+n}x = (Be_{l+n})x(k+n) = (S(-n)Be_{l+n})x(k) = (S(-n)BS(n)e_{l}x)(k) = (Be_{l})x(k)\), consequently, \(S(-n)BS(n) = B\) and hence \(BS(n) = S(n)B\). Thus the operator \(B\) is \(n\)-periodic.

36. **Corollary.** Suppose that \(B\) is a \(c\)-continuous operator \(B \in L^c_q(l_\infty(Z,Y))\). Then \(B\) is \(n\)-periodic and diagonal if and only if it is a (left) multiplication operator on a stationary \(n\)-periodic sequence in \(L_q(Y)\).

Proof. This follows from Theorem 17 and Lemma 35.

37. **Definition.** A function \(\hat{B} : S^1 \rightarrow L_q(Y \oplus Y)\) prescribed by the formula \(\hat{B}(M)x := \bigoplus_{j=0}^{\infty} B(D(M)x)(j)\) will be called the Fourier transform of an \(n\)-periodic operator \(B \in L^q_{n,\text{per}}(l_\infty(Z,Y))\), where \(Y\) is a Banach space over the Cayley-Dickson algebra \(A_n\), \(2 \leq v\). We put

\[
\|\hat{B}(M)x\| := \max_{j=0}^{\infty} \|B(D(M)x)(j)\|.
\]

By \(C_s(S^1, (L_q(Y \oplus Y))^{\infty})\) will be denoted the Banach space of all bounded continuous mappings \(G : S^1 \rightarrow L_q(Y \oplus Y)\) supplied with the norm

\[
\|G\| := \sup_{M \in S^1} \max_{j=0}^{\infty} \|jG(D(M))\|,
\]

where \(\|A\|\) denotes a norm of an operator \(A \in L_q(Y)\), \(Y\) is a Banach space over the Cayley-Dickson algebra \(A_v\), \(2 \leq v\), \(G = \bigoplus_{j=0}^{\infty} jG\) with \(jG \in L_q(Y \oplus Y)\) for every \(j\).

38. **Lemma.** Let \(B \in L^q_{n,\text{per}}(l_\infty(Z,Y))\) be a periodic operator, where \(Y\) is a Banach space over the Cayley-Dickson algebra \(A_v\), \(2 \leq v\). Then \(\hat{B} \in C_s(S^1, (L_q(Y \oplus Y))^{\infty})\).

Proof. A uniform space \(C_s(S^1, L_q(Y \oplus Y))\) is complete for a Banach space \(Y\) over the Cayley-Dickson algebra \(A_v\). Take an arbitrary vector \(x \in Y\) and a complex number \(K \in S^1\) and a sequence \(\varepsilon M \in S^1\) converging to \(K\). The Banach spaces \((L_q(Y \oplus Y))^{\infty}\) and \(\bigoplus_{j=0}^{n-1} L_q(Y \oplus Y)\) are isometrically isomorphic when supplied with the corresponding norms, since \(n\) is a natural number, where

\[
\|A\| = \sup_{0 \leq j \leq n-1} \|jA\|
\]

for each \(A = (0A, \ldots, n-1A) \in \bigoplus_{j=0}^{n-1} L_q(Y \oplus Y)\), also
for each \(x = (0, x, \ldots, n-1) \in \bigoplus_{j=0}^{n-1}(Y \oplus Y)\). Then a sequence \(\{B(D(k,M)x) : k \in \mathbb{N}\}\) \(c\)-converges to \(B(D(K)x)\), since an operator \(B\) is \(c\)-continuous. By Definitions 3 and 37 this means that the limit exists
\[
\lim_{k \to \infty} \|\hat{B}(k,M)x - \hat{B}(K)x\| = \lim_{k \to \infty} \max_{j=0}^{n-1} \|B(D(k,M)x)(j) - B(D(K)x)(j)\| = 0
\]
and hence \(\|F\| \leq 1\), where \(F\) denotes the Fourier transform operator on \(L_{q}^{n,\text{per}}(l_{\infty}(Z,Y))\) with values in \(C_{s}(\mathbb{S}, (L_{q}(Y \oplus Y))^{n})\).

39. Corollary. If a sequence \(\{B_{p} : p \in \mathbb{N}\}\) of \(n\)-periodic operators converges to an \(n\)-periodic operator \(B\) relative to the norm on \(L_{q}^{n,\text{per}}(l_{\infty}(Z,Y))\), then a sequence of their Fourier transforms \(F(B_{p})\) converges to \(F(B)\) in \(C_{s}(\mathbb{S}, (L_{q}(Y \oplus Y))^{n})\).

40. Corollary. If \(B\) is an \(n\)-periodic operator and \(F(B) = \hat{B}\) its Fourier transform, then \(\|B\| \geq \sup_{M \in \mathbb{S}} \|\hat{B}(M)\|\).

41. Notation. A family of all \(n\)-periodic operators \(B \in L_{q}^{n,\text{per}}(l_{\infty}(Z,Y))\) such that its Fourier transform \(F(B) = \hat{B}\) has an absolutely converging Fourier series
\[
\hat{B}(M) = \sum_{k=-\infty}^{\infty} \left(\bigoplus_{j=0}^{n-1} M^{(k-1)n+j} \right) B,
\]
i.e. \(\sum_{k=-\infty}^{\infty} \max_{j=0}^{n-1} \|(k-1)n+jB\| < \infty\), will be denoted by \(L_{q}^{n,1}(l_{\infty}(Z,Y))\).

42. Lemma. Let \(B \in L_{q}^{n,\text{per}}(l_{\infty}(Z,Y))\) be an \(n\)-periodic operator and its Fourier transform \(F(B) = \hat{B}\) has the form:
\[
\hat{B}(M) = \sum_{l=-\infty}^{\infty} M^{l}B,
\]
where \(Y\) is a Banach space over the Cayley-Dickson algebra \(\mathbb{A}_{v}\), \(2 \leq v\). Then
\[
(1) \quad B = \sum_{k=-\infty}^{\infty} k\hat{B}S(kn),
\]
where \(k\hat{B} = \bigoplus_{j=0}^{n-1} (k-1)n+jB \in \bigoplus_{j=0}^{n-1} L_{q}^{c}(l_{\infty}(Z,Y))\) is an operator of (left) multiplication on stationary operator valued sequence \(k\hat{B} \in \bigoplus_{j=0}^{n-1} L_{q}(Y)\), moreover,
\[
(2) \quad \|k\hat{B}\| = \sup_{0 \leq j \leq n-1} \|k-1)\| B\| \text{ for each } k.
\]

Proof. In view of Lemma 7 the Banach spaces \(\bigoplus_{j=0}^{n-1} L_{q}^{c}(l_{\infty}(Z,Y))\) and \(L_{q}^{c}(l_{\infty}(Z,Y))\) are isometrically isomorphic, that follows from using the block
form of matrices $(B_{(k-1)n+j,(m-1)n+l})$ of operators B, where $k, m \in \mathbb{Z}$ and $j, l = 0, ..., n - 1$, $n \geq 1$. From Lemma 5 it follows that an operator
\[\sum_{k=-\infty}^{\infty} B_{(k-1)n+j}(kn) \] is c-continuous for each j, consequently, \[\sum_{k=-\infty}^{\infty} k\bar{B}_{(k-1)n+j}(kn) \] is also c-continuous. A matrix of the operator B coincides with that of \[\sum_{k=-\infty}^{\infty} k\bar{B}_{(k-1)n+j}(kn) \] by Lemma 35 and Definition 37. Therefore, Formula (1) is satisfied in accordance with Lemma 7. The natural isometric embedding $Y \hookrightarrow Y \oplus Y_l$ induces isometric embeddings $L_q(Y) \hookrightarrow L_q(Y \oplus Y_l)$ and $L_q(l_\infty(Z, Y)) \hookrightarrow L_q(l_\infty(Z, Y \oplus Y_l))$ of normed spaces over the Cayley-Dickson algebra A_v.

From the definition of the operator norms on $L_q(Y \oplus Y_l)$ and $\bigoplus_{j=0}^{n-1} L_q(Y \oplus Y_l)$ (see Formulas 38(1, 2)) and $L_q^c(l_\infty(Z, Y \oplus Y_l))$. Equality (2) follows, where
\[(3) \|A\| = \sup_{0 \leq j \leq n-1} \|jA\| \]
for each $A = (0A, ..., n-1A) \in \bigoplus_{j=0}^{n-1} L_q^c(l_\infty(Z, Y \oplus Y_l))$.

43. Corollary. If $B, D \in L_q^{n,per}(l_\infty(Z, Y))$, then
\[(1) \quad (Bx)(l) = \sum_{s=-\infty}^{\infty} sBx(s + l) \]
\[= \sum_{s=-\infty}^{\infty} s-lBx(s) =: (b \ast x)(l) \]
and $(BD)(x) = b \ast (d \ast x)$ for each $x \in l_\infty(Z, Y)$, where $b = \{ sB : s \in \mathbb{Z} \} \in l_1(Z, L_q(Y))$, where Y is a Banach space over the Cayley-Dickson algebra A_v. Particularly, as $0 \leq v \leq 2$ the convolution is associative $b \ast (d \ast x) = (b \ast d) \ast x$.

Proof. The equalities follow
\[(Bx)(l) = \sum_{k=-\infty}^{\infty} \sum_{j=0}^{n-1} B_{(k-1)n+j}(kn) \]
\[= \sum_{k=-\infty}^{\infty} \sum_{j=0}^{n-1} (k-1)n+jBx((k-1)n + j + l) \]
from Lemma 42. Putting $s = (k-1)n + j$ one gets Formula (1).

44. Remark. If $n = 1$, the Fourier transform of an operator valued function $b : \mathbb{Z} \rightarrow L_q(Y)$ with $b \in l_1(Z, L_q(Y))$ coincides with the Fourier series for a mapping \hat{B}.

45. Proposition. Let A and B be two operators in $L_q^{n,per}(l_\infty(Z, Y))$, where Y is a Banach space over the Cayley-Dickson algebra A_v, $2 \leq v$. Then
\[(1) \quad \hat{AB}(M) = \hat{A}(M)\hat{B}(M) \]
for each $M \in S^1$.

Proof. With $M \in S^1$ we infer that

$$(2) \quad m(AB) = \sum_{p=0}^{m} pA_{m-p}B$$

and this implies Formula (1), since $\hat{AB}(M)x = A(D(M)B(D(M)x))$ for each $x \in Y$ and $M \in S^1$, since $\hat{i}i_j = i_j$ for each j.

46. **Proposition.** Let an operator $B \in L_q^{n,\text{per}}(l_\infty(Z,Y))$ be n-periodic, where Y is a Banach space over the Cayley-Dickson algebra A_v, $2 \leq v$. Then an operator $\hat{B}(M)$ is invertible and $(\hat{B}(M))^{-1}x = \hat{A}^{-1}(M)x$ for each $M \in S^1$ and $x \in Y$.

Proof. If $N \in S^1$, then an algebra $\text{alg}_R(N, i_s)$ is associative for each $s \geq 0$, since $N = N_0 + N_1i$ with $N_0, N_1 \in R$ and $i_s = i_4i$ for each $s \geq 0$. If $M \in S^1$ and $x \in Y$, one can take the algebra $\text{alg}_R(M)$ which is either the real or complex field. Therefore, $B(D(M)B^{-1}(D(M)x)) = AA^{-1}x = x$ with $Ax = B(D(M))$ by Proposition 45.

47. **Corollary.** Let $B, D \in L_q^{n,\text{per}}(l_\infty(Z,Y))$ be n-periodic operators and let $(\hat{B}(M))^{-1}x = \hat{D}(M)x$ for each $M \in S^1$ and $x \in Y$, where Y is a Banach space over the Cayley-Dickson algebra A_v, $2 \leq v$. Then $D = B^{-1}$.

Proof. This follows from Proposition 46, since the R linear span $\text{span}_R\{y = Mx : M \in S^1, x \in X\}$ of such set of vectors is isomorphic with $X \oplus Xi$.

48. **Lemma.** Let an n-periodic operator $B \in L_q^{n,\text{per}}(l_\infty(Z,Y))$ be uniformly c-continuous, where Y is a Banach space over the Cayley-Dickson algebra A_v, $2 \leq v$. Then its Fourier transform \hat{B} is uniformly c-continous, $\hat{B} \in L_q^{c}(l_\infty(Z,Y \oplus Yi))$.

Proof. From the conditions of this lemma it follows, that the mapping $\hat{B} : S^1 \ni M \mapsto D(M)B(M^*)$ is continuous from S^1 into $L_q^{n,\text{per}}(l_\infty(Z,Y \oplus Yi))$. Up to an R-linear continuous algebraic automorphism of the Cayley-Dickson algebra A_v and the corresponding automorphism of a Banach space Y, the Fourier series

$$(1) \quad \hat{B}(M) \sim \sum_{k=-\infty}^{\infty} M^k \hat{B}$$

exists by Lemma 31. This series converges to $\hat{B}(M)$ by Cezaro, that is

$$(2) \quad \hat{B}(M) = \lim_{m \to \infty} \sum_{k=-m}^{m} (1 - \frac{|k|}{m+1})M^k \hat{B},$$
since \((1 - \frac{|k|}{m+1}) \in \mathbb{R}\) while the real field is the center of the Cayley-Dickson algebra \(\mathcal{A}_v\). Particularly, for \(M = 1\) one has \(M^k = 1\) and \(\hat{B}(1) = B\) (see also §20.2(743) [S]).

The operator \(B\) is \(n\)-periodic, so consider its Fourier transform and get
\[
(3) \quad \hat{B}(M) = \lim_{m \to \infty} \sum_{k=-m}^{m} \left(1 - \frac{|k|}{m+1}\right) k \hat{B}(M).
\]

In view of Lemma 31 each operator \(k \hat{B}S(-k)\) is diagonal. Since \(B\) is \(n\)-periodic, this implies that every operator \(\bigoplus_{j=0}^{n-1} (k-1)n+j \hat{B}S(-(k-1)n-j)\) is \(n\)-periodic as well. Therefore, \(k \hat{B}(M)x = (k \hat{B}(D(M)x))(0) = (M^k I) kBx\) for each vector \(x \in Y \oplus Y_i\), since \(M^k(M^{-k}x_i l) = M^k(M^{-k}i x) = x_i l\) for each \(l \geq 0\) and \(x_i l \in Y_i\), consequently, \(k \hat{B}(M) = (M^k I) kB\) and hence
\[
(4) \quad \hat{B}(M) = \lim_{m \to \infty} \sum_{k=-m}^{m} \left(1 - \frac{|k|}{m+1}\right) (M^k I) kB,
\]
where \((k \hat{B})_{s,p} = kB\) for each \(s - p = k\), \(s, p \in \mathbb{Z}\).

49. Notation. Let \(P\) be a Banach algebra over the Cayley-Dickson algebra \(\mathcal{A}_v\) with \(2 \leq v\). We denote by \(F(S^1, P)\) a Banach space of all continuous functions \(f : S^1 \to P\) with absolutely converging Fourier series
\[
(1) \quad f(M) = \sum_{k=-\infty}^{\infty} M^k k f
\]
relative to the norm:
\[
(2) \quad \|f\| := \sum_{k=-\infty}^{\infty} \|k f\|,
\]
where \(k f \in P\) for each \(k \in \mathbb{Z}\).

50. Corollary. Let \(B \in L_q^{n,per}(L_\infty(\mathbb{Z}, Y))\), where \(Y\) is a Banach space over the Cayley-Dickson algebra \(\mathcal{A}_v\), \(2 \leq v\). Then the following conditions are equivalent:

(1) \(\hat{B} \in F(S^1, L_q(Y \oplus Y_i))\) and
(2) \(\hat{B} \in F(S^1, L_q^c(l_\infty(\mathbb{Z}, Y \oplus Y_i))\).

Proof. This follows from Lemma 48, since \(\|k \hat{B}\| = \|kB\|\) for each \(k \in \mathbb{Z}\).

Indeed, generally \(\|k \hat{B}x\| = \|kBx\|\), since \(|ab| \leq |a||b|\) for each Cayley-Dickson numbers \(a, b \in \mathcal{A}_v\) and \(\|ax\| \leq |a||x|\) for each \(a \in \mathcal{A}_v\) and \(x \in Y\) (see §I.2.1 [28]). In particular, if \(x \in Y_0\) or \(x \in Y_i\), then \(\|ax\| = |a||x|\).
51. Theorem. The algebra $L_{n,\text{per}}^q(l_\infty(Z, Y))$ is the subalgebra of the algebra $L_{uc}^q(l_\infty(Z, Y))$, where Y is a Banach space over the Cayley-Dickson algebra A_v, $2 \leq v$.

Proof. If $B \in L_{n,\text{per}}^q(l_\infty(Z, Y))$, then by Lemma 42 we have

$$B = \sum_{k=-\infty}^{\infty} k \bar{B} S(kn),$$

where $k \bar{B} = \bigoplus_{j=0}^{n-1} (k-1)n+j B \in \bigoplus_{j=0}^{n-1} L_q^c(l_\infty(Z, Y))$ is an operator of (left) multiplication on stationary operator valued sequence $k \tilde{B} \in \bigoplus_{n=0}^{\infty} L_q(Y)$, moreover,

$$\|k \bar{B}\| = \|k \tilde{B}\|$$

for each k. In view of Proposition 24 an 1-ribbon operator $k \bar{B}$ is uniformly c-continuous. On the other hand, each shift operator $S(n)$ is uniformly c-continuous. The algebra $L_{uc}^q(l_\infty(Z, Y))$ is complete as the uniform space. Therefore, the operator B is uniformly c-continuous.

3 Fourier transform on algebras and spectra

52. Definitions. Let G be a quasi-group, i.e. a set with one binary operation (multiplication) so that

1. there exists a unit element e so that $eb = be = b$;
2. each element b has an inverse b^{-1}, i.e. $b^{-1}b = bb^{-1} = e$;
3. a multiplication is alternative $(ab)b = a(ab)$ and $b(aa) = (ba)a$ and
4. $a^{-1}(ab) = b$ and $(ba)a^{-1} = b$ for each $a, b \in G$.

Let R_a be a Banach algebra over the real field \mathbb{R} for each $a \in G$ such that R_a is isomorphic with R_b for all $a, b \in G$. Put

$$R = \{B : B \in \bigoplus_{a \in G} aR_a, \|B\| < \infty\},$$

$$G_R = : \{x : x \in \bigoplus_{a \in G} aR, \ |x| \ < \infty\}$$

is a quasi-group ring over the real field so that $a\beta = \beta a$ for each $a \in G$ and $\beta \in \mathbb{R}$,

$$|x|^2 = \sum_{a \in G} |x_a|^2 \text{ for } x = \sum_{a \in G} x_a a$$

with $x_a \in \mathbb{R}$ for each $a \in G$;

$$\|A\|^2 := \sum_{b \in G} \|A_b\|^2$$
for $A = \sum_{b \in G} A_b b$ with $A_b \in R_b$ for each $b \in G$,

(8) $bA_a = A_a b$ for each $A_a \in R_a$ and $a, b \in G$. Suppose that R_a

(9) contains a unit element I and that

(10) $\|I\| = 1$ and

(11) $\|AB\| \leq \|A\|\|B\|$ for each $A, B \in R_a$.

Denote by $L(R)$ the Banach space of all strongly integrable functions $f : R \to R$ supplied with the norm

(12) $\|f\| := \int_{-\infty}^{\infty} \|f(t)\| dt < \infty$.

Henceforward, we suppose that an algebra R

(13) is alternative $(AA)B = A(AB)$ and $B(AA) = (BA)A$ for each $A, B \in R$ and

(14) if A is left invertible, then also $A^{-1}(AB) = B$, if A is right invertible $(BA)A^{-1} = B$ for every $A, B \in R$.

The alternativity implies that G and R are power-associative that is

$b^m b^n = b^{m+n}$ and $B^m B^n = B^{m+n}$ for each $b \in G$ and $B \in R$ and natural numbers n, m, where $b^n = b(b(...(bb)...))$ denotes the n-fold product,

$b^0 = e$ for $b \neq 0$, $B^0 = I$ for $B \neq 0$.

We consider their complexifications $G_{C_1} := G_R \oplus G_R i$ and $R_{C_1} := R \oplus R i$, where $C_1 = R \oplus R i$ with $ai = ia \in G_{C_1}$,

(15) $|a + bi|^2 = |a|^2 + |b|^2$ for each $a, b \in G_R$ and

(16) $\|A + Bi\|^2 = \|A\|^2 + \|B\|^2$ for every $A, B \in R$.

Analogously a Banach space $L(R_{C_1})$ is defined with $f : R \to R_{C_1}$.

53. Lemma. Let R be an algebra as in §52 and let an element $A \in R$
be of norm $\|A\| < 1$, then the series $C = I - A + A^2 - A^3 + ...$ is absolutely convergent and

(1) $C(I + A) = (I + A)C = I$.

Proof. From Formulas 52(7, 11, 16) it follows that $\|A^n\| \leq \|A\|^n$ for each natural number n, consequently, the sequence of partial sums $S_n := I - A + A^2 - A^3 + ... + (-1)^n A^n$ converges in R. A Banach algebra R is power-associative and this implies Formula (1).

54. Lemma. Let R be an algebra as in §52 and let an element $A \in R$
have a left inverse Q. If $B \in R$ is an element such that $\|B\|\|Q\| < 1$, then
A + B has a left inverse C so that

\[C = Q(I - BQ + (BQ)^2 - (BQ)^3 + ...). \]

Proof. A Banach algebra R satisfies conditions 52(13, 14), hence \((A + B) = (I + BQ)A\), since \(QA = I\). The alternativity (13) implies the Moufang identities in the algebra R:

1. \((M1) (XYX)Z = X(Y(XZ))\),
2. \((M2) Z(XYX) = ((ZX)Y)X\),
3. \((M3) (XY)(ZX) = X(YZ)X\) for each \(X, Y, Z \in R\).

From Lemma 53 and Formulas \((M1, M2)\) it follows that \(C(A + B) = (Q(I - BQ + (BQ)^2 - ...))(I + BQ)(A + B) = I\).

55. Corollary. The set \(U_l\) of all left invertible elements \(A \in R\) is an open subset in \(R\).

56. Notation. Denote by \(R'\) the algebra over \(R\) of all periodic functions \(x : [0, 2\pi] \to R\) of the form

\[x(t) = \sum_{n=-\infty}^{\infty} a_n e^{nti} \]

with coefficients \(a_n \in R\) such that

\[\sum_{n} ||a_n|| < \infty \]

with point-wise addition and multiplication of functions

\[(x + y)(t) = x(t) + y(t), \quad (xy)(t) = x(t)y(t) \text{ for each } t \in [0, 2\pi]. \]

57. Lemma. Suppose that \(x \in R'\) and \(x(0)\) has a left inverse in \(R\), then there exists an element

\[y(t) = \sum_{n=-\infty}^{\infty} c_n e^{nti} \in R' \]

such that

1. \(c_0\) has a left inverse \(q_0\) in \(R\) and
2. \(||q_0|| \sum_{n=1}^{\infty} ||c_n + c_{-n}|| < 1\) and
3. there exists \(\epsilon > 0\) so that \(y(t) = x(t)\) for each \(t \in (-\epsilon, \epsilon)\).
Proof. Consider the following function given piecewise \(w_\varepsilon(t) = 1 \) for
\(|t| < \varepsilon, \ w_\varepsilon(t) = 2 - |t|/\varepsilon \) for \(\varepsilon \leq |t| < 2\varepsilon, \ w_\varepsilon(t) = 0 \) for \(2\varepsilon \leq |t| \), where
\(0 < \varepsilon \leq \pi/2 \). Then one defines the function

\[
y_\varepsilon(t) = w_\varepsilon(t)x(t) + [1 - w_\varepsilon(t)]x(0) = \sum_{n=-\infty}^{\infty} b_n(\varepsilon)e^{int}.
\]

This function satisfies Condition (4). It has the Fourier series with coefficients \(b_n = b_n(\varepsilon) \):

\[
b_n = \frac{3\varepsilon}{2\pi}a_n + \sum_{k=1}^{\infty} \frac{a_{n-k} + a_{n+k}}{\pi k^2\varepsilon} (\cos(\varepsilon k) - \cos(2\varepsilon k)) - \sum_{k=-\infty}^{\infty} a_k \frac{\cos(\varepsilon n) - \cos(2\varepsilon n)}{\pi n^2\varepsilon}
\]

for \(n \neq 0 \) and

\[
b_0 = a_0 + \sum_{k=1}^{\infty} (a_{-k} + a_k)[1 + \frac{\cos(\varepsilon k) - \cos(2\varepsilon k)}{\pi k^2\varepsilon} - \frac{3\varepsilon}{2\pi}].
\]

Therefore,

\[
\lim_{\varepsilon \downarrow 0} ||b_0|| = || \sum_{k=-\infty}^{\infty} a_k || = ||y(0)|| > 0 \quad \text{and} \quad \sum_{k=1}^{\infty} (||b_k|| + ||b_{-k}||) \leq \sum_{k=-\infty}^{\infty} ||a_k||A_k,
\]

where a positive number \(\delta > 0 \) exists such that \(0 \leq A_k < \varepsilon^{1/2}[2|k|C + 9/\pi] \) for each \(0 < \varepsilon < \delta \) and every \(k \in \mathbb{Z} \), where \(C = const > 0 \). Thus a positive number \(\epsilon_0 > 0 \) exists so that

\[
||b_0|| > \sum_{k=1}^{\infty} (||b_k|| + ||b_{-k}||)
\]

for each \(0 < \epsilon < \epsilon_0 \) (see also [2, 33]). From Lemma 54 statements (2, 3) of this lemma follow.

58. Corollary. If \(y \in R' \) and \(y(t) \) satisfies Properties (2, 3) of Lemma 57, then \(y \) has a left inverse \(z \) in \(R' \).

59. Theorem. If \(R' \) is an algebra of periodic functions as in §56. Then \(x(t) \) has a left inverse in \(R' \) if \(x(t_0) \) has a left inverse in \(R \) for each \(t_0 \).

Proof. In view of Lemma 57 and Corollary 58 for each \(\tau \in [0,2\pi] \) a positive number \(\epsilon > 0 \) and an element \(y_\tau \in R' \) exist such that \(y_\tau(t)x(t) = I \) for each \(t \in (\tau - \epsilon, \tau + \epsilon) \). The segment \([-\pi,\pi]\) is compact, that is, each its open covering has a finite subcovering, consequently, a finite number of functions \(y_\tau \) induces a function \(y \in R' \) so that \(y(t)x(t) = I \) for each \(t \).
60. Lemma. Suppose that $-\pi < \alpha < a < b < \beta < \pi$ and $x_1, x_2 \in R'$ and $x_2(t)$ has a left inverse for each $t \in (\alpha, \beta)$ and $x_1(t)$ vanishes for every $-\pi \leq t < a$ and $b < t \leq \pi$. Then an element $x_3 \in R'$ exists vanishing on $[-\pi, \alpha) \cup (\beta, \pi]$ such that

(1) $x_1(t) = x_3(t) x_2(t)$ for each $t \in [-\pi, \pi]$.

Proof. From Lemma 57 and Corollary 58 it follows, that to any $\tau \in [a, b]$ a positive number $\epsilon > 0$ and an element $y_\tau \in R'$ correspond such that $y_\tau(t) x_2(t) = I$ for each $t \in (\tau - \epsilon, \tau + \epsilon)$. As in §59 one gets that an element $z \in R'$ exists such that $z(t) x_2(t) = I$ for every $t \in [a, b]$. Put $x_3(t) = x_1(t) z(t)$, consequently, $x_3(t) = 0$ for each $t \in [-\pi, \alpha) \cup (\beta, \pi]$ and $x_3 \in R'$ and hence Assertion (1) is valid, since the algebra R satisfies Conditions 52(13, 14) and $e^{n \tau i}$ commutes with R and $(a_n e^{n \tau i})(b_k e^{k \tau i}) = (a_n b_k) e^{(n+k)\tau i}$ for each $a_n, b_k \in R$ and $n, k \in \mathbb{Z}$.

61. Lemma. Suppose that $x(t)$ is strongly integrable on $(-\pi, \pi)$ function with values in R and vanishes on $(-\pi, -\pi + \epsilon) \cup (\pi - \epsilon, \pi)$ with $0 < \epsilon < \pi/2$ and

(1) $f(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x(\tau) e^{-\tau t i} d\tau$,

(2) $a_n = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(\tau) e^{-n \tau i} d\tau$,

then

(3) $\int_{-\infty}^{\infty} \|f(t)\| dt < \infty$

if and only if

(4) $\sum_{n=-\infty}^{\infty} \|a_n\| < \infty$.

Proof. Consider a positive number $0 < \delta < \pi/2$ so that $x(t)$ vanishes on $[-\pi, -\pi + 2\delta) \cup (\pi - 2\delta, \pi)$. Put $\phi(t) = 1$ for $|t| < \pi - \delta$, $\phi(t) = \frac{\pi - |t|}{\delta}$ for $|\pi - \delta| \leq |t| < \pi$, $\phi(t) = 0$ for $\pi \leq |t|$. If

(5) $x(t) = \sum_{n=-\infty}^{\infty} a_n e^{n \tau i}$,

then

(6) $x(t) = x(t) \phi(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} e^{\tau t i} \left[\sum_{n=-\infty}^{\infty} a_n \frac{\cos(\tau + n)(\pi - \delta) - \cos(\tau + n)\pi}{(\tau + n)^2 \epsilon} \right] d\tau$,\n
26
since this integral and this sum are absolutely convergent. Therefore, the function

\[f(t) := \sqrt{\frac{2}{\pi}} \sum_{n=-\infty}^{\infty} a_n \frac{\cos(\tau + n)(\pi - \delta) - \cos(\tau + n)\pi}{(\tau + n)^2\epsilon} \]

satisfies Conditions (1, 3), if (4) is fulfilled.

Vise versa, Condition (3) implies that

\[\sum_{n=-\infty}^{\infty} \| \int_{n-1/2}^{n+1/2} f(t) dt \| < \infty, \]

consequently,

\[\int_{n-1/2}^{n+1/2} f(t) dt = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} x(t) \frac{2\sin(t/2)}{t} e^{\pi i t} dt. \]

Thus the Fourier series of the function \(x(t)\frac{2\sin(t/2)}{t} \) converges absolutely. Moreover, the Fourier series of the mapping \(\frac{t}{2\sin(t/2)} \phi(t) \) also is absolutely convergent. Thus the Fourier series of \(x(t) = [x(t)\frac{2\sin(t/2)}{t}] [\frac{t}{2\sin(t/2)} \phi(t)] \) is absolutely convergent, since \(R' \) is an algebra over the real field \(R \) and \(i \) commutes with each \(y \in R' \).

62. Corollary. Let \(g \) and \(f \in L(R) \), let also

\[x_1(t) = \int_{-\infty}^{\infty} g(\tau) e^{-\pi i t} d\tau \]

vanish outside some interval \((a,b) \subset (-\pi, \pi) \). Suppose that

\[x_2(t) = \int_{-\infty}^{\infty} f(\tau) e^{-\pi i t} d\tau \]

is zero outside an interval \((\alpha, \beta) \subset (-\pi, \pi) \) with \(\alpha < a \) and \(b < \beta \) and \(x_2(t) \) has a left inverse for each \(\alpha < t < \beta \). Then an element \(y \in L(R) \) exists so that

\[g(t) = \int_{-\infty}^{\infty} y(\tau) f(t-\tau) d\tau. \]

This follows immediately from Lemmas 60 and 61.

63. Lemma. If \(f \in L(R) \), then

\[\lim_{\epsilon \downarrow 0} \int_{-\infty}^{\infty} \| f(t + \epsilon) - f(t) \| dt = 0. \]
Proof. The Lebesgue measure is σ-finite and σ-additive, so the statement of this theorem for step functions is evident. In $L(R)$ the set of step functions

$$g(t) = \sum_{k=1}^{n} a_k \chi_{B_k}(t)$$

is dense with $a_k \in R$, $B_k \in \mathcal{B}(R)$, $n \in N$, where $\mathcal{B}(R)$ denotes the σ-algebra of all Borel subsets of R.

64. Lemma. Suppose that $f \in L(R)$ and $h \in L(R)$ so that $\text{supp}(h) \subset (-\epsilon, \epsilon)$ for some positive number $0 < \epsilon < \infty$. Then

$$\int_{-\infty}^{\infty} \| f(t) \int_{-\infty}^{\infty} h(\tau)d\tau - \int_{-\infty}^{\infty} f(t + \tau)h(\tau)d\tau \| dt \leq \left[\int_{-\infty}^{\infty} \| h(\tau) \| d\tau \right] \sup_{|u| \leq \epsilon} \int_{-\infty}^{\infty} \| f(t + u) - f(t) \| dt.$$

Proof. This follows from Fubini’s theorem

$$\int_{-\infty}^{\infty} \| f(t) \int_{-\infty}^{\infty} h(\tau)d\tau - \int_{-\infty}^{\infty} f(t + \tau)h(\tau)d\tau \| dt \leq \int_{-\infty}^{\infty} \| f(t) - f(t + \tau) \| \| h(\tau) \| d\tau dt \leq \int_{-\infty}^{\infty} \| h(\tau) \| d\tau \sup_{|u| \leq \epsilon} \int_{-\infty}^{\infty} \| f(t + u) - f(t) \| dt.$$

65. Lemma. If $f \in L(R)$, then

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \| f(t) - \frac{1}{\pi n} \int_{-\infty}^{\infty} f(t + \tau) \frac{\sin^2(n\tau)}{\tau^2} d\tau \| dt = 0.$$

Proof. Put $h_0(t) = \frac{\sin^2(nt)}{t^2} = h_1(t) + h_2(t)$ with $h_1(t) = h_0(t)[1 - |t|\sqrt{n}]$ for $|t| \leq n^{-1/2}$, while $h_1(t) = 0$ for $|t| > n^{-1/2}$. An application of Lemmas 63 and 64 leads to

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \| f(t) - \frac{1}{\pi n} \int_{-\infty}^{\infty} f(t + \tau)h_1(\tau)d\tau \| dt = 0$$

and

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{1}{\pi n} \| f(t + \tau)h_2(\tau)d\tau \| dt \leq \left[\int_{-\infty}^{\infty} \| f(t) \| dt \right] \lim_{n \to \infty} \frac{1}{\pi n} \int_{-\infty}^{\infty} h_2(\tau)d\tau.$$

On the other hand,

$$\frac{1}{\pi n} \int_{-\infty}^{\infty} h_2(t) dt =$$
\[
\frac{1}{\pi n} \left[\int_{-\infty}^{\infty} \frac{\sin^2(nt)}{t^2} dt - \int_{-\infty}^{n^{-1/2}} \frac{\sin^2(nt)}{t^2} dt \right] = \frac{2}{\pi} \int_{n^{1/2}}^{\infty} \frac{\sin^2(t)}{t^2} dt + \frac{2}{\pi \sqrt{n}} \int_{0}^{\sqrt{n}} \frac{\sin^2(t)}{t^2} dt = O(n^{-1/2} \ln n),
\]
consequently,

\[
\lim_{n \to \infty} \int_{-\infty}^{\infty} \left| \frac{1}{\pi n} \int_{-\infty}^{\infty} f(t + \tau) h_2(\tau) d\tau \right| dt = 0.
\]

66. Theorem. Let \(f \in L(R) \) and let the Fourier transform

\[
(1) \quad x(\tau) = \int_{-\infty}^{\infty} f(t) e^{\tau it} dt
\]

have a left inverse in \(R \) for each \(\tau \in [-\pi, \pi] \). Then the \(R \)-linear combinations

\[
(2) \quad \sum_{n} b_{n} f(t - \tau_{n}) \quad \text{with} \quad b_{n} \in R
\]

are dense in \(L(R) \), where \(\tau_{n} \in [-\pi, \pi] \).

Proof. Lemma 65 means that a function

\[
(3) \quad f_{\delta}(t) = \frac{1}{\pi n} \int_{-\infty}^{\infty} f(t + \tau) \frac{\sin^2(n\tau)}{\tau^2} d\tau
\]

exists so that

\[
(4) \quad \int_{-\infty}^{\infty} \| f(t) - f_{\delta}(t) \| dt < \delta,
\]

where \(0 < \delta \). Consider its Fourier transform:

\[
(5) \quad h_1(u) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{uti} \left[\frac{1}{\pi n} \int_{-\infty}^{\infty} f(t + \tau) \frac{\sin^2(n\tau)}{\tau^2} d\tau \right] dt
\]

\[
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{uti} \left[\frac{1}{\pi n} \int_{-\infty}^{\infty} \frac{\sin^2(n\tau)}{\tau^2} e^{-urt} d\tau \right] dt,
\]

consequently,

\[
h_1(u) = (1 - |u|) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{uti} dt \quad \text{when} \quad |u| < 2n
\]

and \(h_1(u) = 0 \) for \(|u| \geq 2n \). Analogously the Fourier transform

\[
h_2(u) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{uti} \left[\frac{1}{2\pi n} \int_{-\infty}^{\infty} f(t + \tau) \frac{\sin^2(2n\tau)}{\tau^2} d\tau \right] dt
\]

vanishes for each \(u \) so that \(|u| > 4n \). The Fourier series of \(h_1 \) and \(h_2 \) over \((-8n, 8n)\) converge absolutely by Lemma 61. Then one can write \(h_1(u) = h_2(u) h_3(u) \), where

\[
h_3(u) = \int_{-\infty}^{\infty} \psi(t) e^{uti} dt
\]
with $\psi \in L(R)$, since the algebra R is alternative and e^{tu} commutes with any $y \in R'$ for each real numbers t and u. Therefore, we deduce that

$$
(6) \quad \int_{-\infty}^{\infty} f_\delta(t)e^{tu}dt = \int_{-\infty}^{\infty} e^{tu}[f_\delta(t) - \frac{1}{2\pi n}] f(t + x)\left\{ \int_{-\infty}^{\infty} \frac{\sin^2(2\pi \tau)}{\tau^2} \psi(\tau - x)d\tau \right\} dx dt, \quad \text{consequently,}
$$

$$
\int_{-\infty}^{\infty} e^{tu}[f_\delta(t) - \frac{1}{2\pi n}] f(t + x)\left\{ \int_{-\infty}^{\infty} \frac{\sin^2(2\pi \tau)}{\tau^2} \psi(\tau - x)d\tau \right\} dx dt = 0
$$

for each u, hence

$$
(7) \quad f_\delta(t) = \frac{1}{2\pi n} \int_{-\infty}^{\infty} f(t + x)\Phi(x)dx, \quad \text{where}
$$

$$
\Phi(x) = \int_{-\infty}^{\infty} \frac{\sin^2(2\pi \tau)}{\tau^2} \psi(\tau - x)d\tau
$$

is absolutely integrable. Lemmas 63 and 64 imply that

$$
(8) \quad \lim_{n \to \infty} \int_{-\infty}^{\infty} \| \int_{-\infty}^{\infty} f(t + x)\Phi(x)dx - \frac{n^2 - 1}{n} \sum_{k=-n^2}^{n^2-1} f(t + \frac{k}{n}) \int_{k/n}^{(k+1)/n} \Phi(x)dx \| dt = 0.
$$

From Formulas (5, 6) and Lemma 65 the assertion of this theorem follows.

67. **Lemma.** Let R be an algebra with unit (see §52) and let I be a maximal left ideal. Suppose that X is an additive group of all cosets R/I and H is an algebra of homomorphisms of X onto itself produced by multiplying by elements of R from the left. Then X is irreducible relative to H.

Proof. Consider the quotient mapping $\theta : R \to R/I$ (see also §I.2.39 [28]). A space X is R-linear, since R is an algebra over R. Therefore, $\theta(R)a =: V_a$ is an R-linear space for each nonzero element $a \in R \setminus \{0\}$. Put $S_a = \theta^{-1}(V_a)$. Evidently, S_a is a left ideal in R and $I \subset S_a, \quad S_a \not\subset I$. The ideal I is maximal, hence $S_a = R$, consequently, $V_a = X$ and $Ha = X$ for each nonzero element $a \in R \setminus \{0\}$.

68. **Lemma.** Let R, I, X and H be the same as in Lemma 67. Suppose that for a marked element $x \in R$ and each maximal left ideal I the corresponding element $\theta(x)$ is left invertible in H. Then x is left invertible in R.

Proof. An algebra R has the unit element $I \subset R$. Each left ideal is contained in a maximal left ideal. Therefore, an element $x \in R$ is left invertible if and only if this element x is not contained in a maximal left
ideal. On the other hand, if \(yx = I\), then \(\theta(y)\theta(x) = \theta(I)\). Take cosets \(b_I\) and \(b_0\) in \(R/I\) so that \(I \in b_I\) and \(0 \in b_0\). Then \(\theta(y)\theta(x)b_I = \theta(I)b_I\). But \(\theta(I)b_I = b_I\), since \(II = I\). If \(x \in b_0 = I\), then \(\theta(x)b_I = b_0\) and \(\theta(y)\theta(x)b_I = b_0\), since \(x \in \theta(x)b_I\).

69. Lemma. A maximal left or right ideal \(I\) in \(R\) is closed.

Proof. If \(I\) is not closed, then its closure \(cl_R(I)\) in \(R\) contains an ideal \(I\). On the other hand, \(cl_R(I)\) is a left or right ideal in \(R\) respectively, since \(R\) is a topological algebra. Therefore, \(cl_R(I) = I\), since \(I\) is maximal.

70. Lemma. If \(R\) is a Banach algebra, and \(I, X\) and \(H\) have the same meaning as in Lemma 67, then \(X\) is a Banach space, \(H\) is a normed algebra with norm \(\|\theta(z)\|\) on \(H\) so that \(\|\theta(x)\|_H \leq \|x\|_R\) for each \(x \in R\). If moreover \(R\) is a Hilbert algebra over either the quaternion skew field or the octonion algebra \(A_v\) with \(2 \leq v \leq 3\), then \(X\) is a Hilbert space over \(A_v\).

Proof. The quotient algebra \(R/I\) is supplied with the quotient norm \(\|\theta(x)\|_X = \inf_{z \in \theta(x)} \|z\|_R\) (see also §I.2.39 [28]). Therefore,

\[
\|\theta(x)\|_H = \sup_{b \in X} \|\theta(x)b\|_X/\|b\|_X \leq \|x\|_R.
\]

If \(R\) is a Hilbert algebra over \(A_v\), then \(\|x\|_R = \sqrt{<x;x>}\), where a scalar \(A_v\)-valued product \(<x;y>\) on \(R\) satisfies conditions of §I.2.3 [28]. From the parallelogram identity and the polarization formula one gets that \(\|\theta(x)\|_X\) induces an \(A_v\)-valued scalar product on \(X\) (see Formulas I.2.3(1 – 3, SP) [28]).

71. Notation. Let \(R\) be a quasi-commutative \(C^*\)-algebra over either the quaternion skew field or the octonion algebra \(A_r\), \(2 \leq r \leq 3\), satisfying conditions of §52. Let also \(F\) be a normed algebra of functions either \(f, g : \Lambda \to A_r\) or \((A_r)_{C_1}\) with point-wise multiplication \(f(t)g(t)\) and addition \(f(t) + g(t)\) of functions and \(\phi : F \to A_r\) or \((A_r)_{C_1}\) respectively be a continuous \(R\) homogeneous additive multiplicative homomorphism, \(\phi(fg) = \phi(f)\phi(g)\).

Suppose that the unit function \(h(t) = 1\) for each \(t \in \Lambda\) belongs to \(F\), also \(R'\) is a family of functions \(x : \Lambda \to R\) or \(x : \Lambda \to R_{C_1}\) satisfying the following conditions:

1. \(R'\) is an algebra over the real field \(R\) under point-wise multiplication and addition;
(2) if \(x_1, \ldots, x_n \in R \) and \(f_1, \ldots, f_n \in F \), then \((x_1 f_1 + \ldots + x_n f_n) \in R' \);

(3) \(R' \) is a normed algebra so that \(\| x^f \| = \| x \| | f | \) in the case over \(A_r \) or \(\| x^f \| \leq \| x \| | f | \) over \((A_r)_{C_1} \) for each \(x \in R \) and \(f \in F \), where \(x^f := xf \), \(|f| \) denotes a norm of \(f \) in \(F \);

(4) the \(\mathbb{R} \)-linear combinations of Form (2) are dense in \(R' \);

(5) if \(x = x_1 f_1 + \ldots + x_n f_n \) and \(\phi \) is a continuous homomorphism as above, then \(\| x_1 \phi(f_1) + \ldots + x_n \phi(f_n) \| \leq \| x \| \).

Each homomorphism \(\phi \) of \(F \) induces \(\hat{\phi}(x) \) with the property \(\hat{\phi}(x^f) = x \phi(f) \) and \(\hat{\phi} \) will be called a generated homomorphism.

72. Theorem. Let suppositions of §71 be satisfied. Then and element \(x \in R' \) has a left inverse if for each generated homomorphism \(\hat{\phi} \) the corresponding element \(\hat{\phi}(x) \) of \(R \) has a left inverse in \(R \).

Proof. Since a homomorphism \(\phi \) is \(\mathbb{R} \)-homogeneous and additive, then it is \(\mathbb{R} \)-linear. Take an arbitrary maximal ideal \(\mathcal{I} \) in \(R' \). It has the decomposition

\[
\mathcal{I} = \bigoplus_{j=0}^{2^r-1} \mathcal{I}_j i_j,
\]

where \(\mathcal{I}_j \) is either a real or complex algebra isomorphic with \(\mathcal{I}_k \) for each \(0 \leq j, k \leq 2^r - 1 \). Each \(x \in R' \) has the corresponding element \(\theta(x) \) of \(H \) (applying Lemma 68 to \(R' \) here instead of \(R \) in §68). The algebra \(R' \) has the decomposition \(R' = R'_{0i_0} \oplus \ldots \oplus R'_{mi_m} \) induced by that of \(R \) with pairwise isomorphic commutative algebras \(R'_{j} \) and \(R'_{k} \) either over \(\mathbb{R} \) or \(C_1 \) respectively for each \(k, j, \ m = 2^r - 1 \). Thus any two elements \(a, b \in R' \) quasi-commute and \(a = a_{0i_0} + \ldots + a_{mi_m} \) and \(b = b_{0i_0} + \ldots + b_{mi_m} \) with \(a_j, b_j \in R'_{j} \) for each \(j \). Particularly, elements \(I^f = I \phi \) of \(R' \) quasi-commute with each \(x^g \in R' \) and hence with each \(b \in R' \). In view of Theorem I.2.81 and Corollary I.2.84 \[28\] and Lemmas 67 and 70 above the mapping \(\theta(I^f) \) is the continuous algebraic homomorphism from \(F \) into \(A_r \) or \((A_r)_{C_1} \) correspondingly. There exists a homomorphism \(\hat{\phi} \) so that \(\theta(I^f) = J \hat{\phi}(f) \), where \(J := \theta(I) \) is a unit of \(H \). Therefore, \(\hat{\phi}(x_1 f_1 + \ldots + x_n f_n) = \theta(x_1) \theta(I f_1) + \ldots + \theta(x_n) \theta(I f_n) = \theta(x_1 f_1) + \ldots + \theta(x_n f_n) \in R' \). From Condition 71(5) and Lemma 70 it follows that \(\theta(x) = \theta(\hat{\phi}(x) 1) \) for each \(x \in R' \).
If \(\hat{\phi}(x(t)) \) has a left inverse \(y \) in \(R \), then \(\theta(y1)\theta(x) = \theta(yx) \), consequently, \(\theta(yx) = \theta(\hat{\phi}(yx)1) = \theta(y\hat{\phi}(x)1) = \theta(I1) = J \). This means that \(\theta(x) \) has a left inverse, hence by Lemma 68 \(x \) has a left inverse in \(R' \).

73. Corollary. If suppositions of §71 are fulfilled and for each \(\phi(f) \) with \(f \in F \) a point \(t_0 \) exists so that \(\phi(f) = f(t_0) \), then Condition 71(5) can be replaced by \(\|x(t_0)\| \leq \|x\| \) for each \(t_0 \). Moreover, in the latter situation an element \(x \in R' \) has a left inverse in \(R' \), if \(x(t) \) has a left inverse in either \(R \) or \(R_{C_1} \) correspondingly for each \(t \).

74. Remark. If an algebra \(F \) has not a unit, then one can formally adjunct a unit \(1 \) and consider an algebra \(\bar{F} := \{ c1 + f : c \in Q, f \in F \} \), where either \(Q = A_r \) or \(Q = (A_r)_{C_1} \) correspondingly, putting \(|c1 + f|^2 = |c|^2 + |f|^2 \) and \(\bar{R}' := \{ z = cI1 + x : x \in R', c \in Q \} \) with \(\|z\|^2 = |c|^2 + \|x\|^2 \). This standard construction induces an extended homomorphism either \(\bar{\phi}(c1 + f) = c + \phi(f) \) or an exceptional homomorphism \(\bar{\phi}(c1 + f) = c \). If \(F \) has not a unit, then statements above can be applied to \(\bar{F} \) and \(\bar{R}' \) so that an element \(\bar{x} = cI1 + x \) with \(c \neq 0 \) may have a left inverse of the form \((bI1 + y) \).

75. Corollary. Suppose that \(\Gamma \) is an additive discrete group so that \(\Gamma = \Gamma_0i_0 \oplus \ldots \oplus \Gamma_mi_m \) with pairwise isomorphic commutative groups \(\Gamma_j \) and \(\Gamma_k \) for each \(0 \leq j, k \leq m \) with \(m = 2^r - 1, \ 0 \leq r \leq 3 \), while \(G = G_0i_0 \oplus \ldots \oplus G_mi_m \) is an additive group so that \(G_j \) is dual to \(\Gamma_j \) with continuous characters \(\chi(\beta, t) = \prod_{k=0}^{m} \chi_k(\beta_k, t_k) \in S^1 \), where \(S^1 := \{ u \in C_1 : |u| = 1 \} \), \(\beta = \beta_0i_0 + \ldots + \beta_mi_m \) and \(t = t_0i_0 + \ldots + t_mi_m \) with \(\beta_k \in \Gamma_k \) and \(t_k \in G_k \) for each \(k \). Let

\[
(1) \quad x(t) = \sum_{\beta \in \Gamma} a_{\beta} \chi(\beta, t)
\]

with \(a_{\beta} \in R \) for each \(\beta \in \Gamma \) and

\[
(2) \quad \sum_{\beta \in \Gamma} \|a_{\beta}\| < \infty,
\]

then \(x \in R' \) has a left inverse in \(R' \) if \(x(t) \) has a left inverse in \(R_{C_1} \) for each \(t \in G \).

76. Corollary. Let suppositions of Corollary 75 be satisfied, but with (2) replaced by

\[
(1) \quad \sum_{\beta \in \Gamma} e^{\phi(\beta)}\|a_{\beta}\| < \infty,
\]

33
where \(q(\beta) \in \mathbb{R} \) and

\[
q(\alpha + \beta) \leq q(\alpha) + q(\beta) \quad \text{and} \quad q(0) = 0.
\]

Then \(x \in R' \) is invertible, if

\[
\sum_{\beta \in \Gamma} a_\beta e^{p(\beta)} \chi(\beta, t) \chi(\beta, t) \lambda(d\beta)
\]

has a left inverse in \(R_{C_1} \) for each \(t \in G \) with a system

of reals \(p(\beta) \in \mathbb{R} \) so that

\[
(2) \quad p(\alpha + \beta) = p(\alpha) + p(\beta) \quad \text{and} \quad p(0) = 0 \quad \text{and} \quad p(\beta) \leq q(\beta) \quad \text{for each} \beta \in \Gamma.
\]

77. Corollary. Let suppositions of Corollary 76 be satisfied, but let \(\Gamma \) be a locally compact group with a nontrivial nonnegative Haar measure \(\lambda \). If \(R' \) is formed by elements of the form:

\[
(1) \quad x(t) = \int_{\Gamma} a_\beta \chi(\beta, t) \lambda(d\beta)
\]

with \(a_\beta \in \mathbb{R} \) and

\[
(2) \quad \int_{\Gamma} e^{q(\beta)}\|a_\beta\|\lambda(d\beta) < \infty.
\]

If \(R' \) has the unit \(1(t) = 1 \) for each \(t \in G \), then \(x \) is left invertible, if \(x(t) \) has a left inverse in \(R_{C_1} \), for each \(t \in \Gamma \). If \(R' \) has not a unit, but 1 is an adjoint unit as in §74, then an element \(\check{x} = c1 + x \) with \(c \neq 0 \) has a left inverse of the form \(b1 + y \), if \([cI + \int_{\Gamma} a_\beta e^{p(\beta)} \chi(\beta, t) \lambda(d\beta)] \) has a left inverse for every \(t \in G \) and each continuous system \(p(\beta) \) satisfying Conditions 76(2,3).

78. Remark. Duality theory for locally compact groups is contained in [31, 13]. Particularly, \(A_r \) can be considered as the additive commutative group \((A_r, +) \). As the additive group it is isomorphic with \(\mathbb{R}^{2^r} \). The group of characters of \(\mathbb{R}^n \) is isomorphic with \(\mathbb{R}^n \) for any natural number \(n \) (see §23.27(f) in Chapter 6 of the book [13]). The Lebesgue measure on the real shadow \(\mathbb{R}^{2^r} \) induces the Lebesgue measure \(\lambda \) on \(A_r \), which is the Haar measure on \((A_r, +) \) (see also §1).

It is possible to consider a dense subgroup \(K \) of the total compact dual group \(G \), when \(\Gamma \) is discrete. It is sufficient an existence of a left inverse \(y(t) \) of \(x(t) \) for each \(t \in K \) and that \(\sup_{t \in K} \|y(t)\| < \infty \) due to the following lemma.

79. Lemma. Let \(x_n \) tend to \(x \) in \(R \), when a natural number \(n \) tends to the infinity, let also \(y_n \) be a left inverse of \(x_n \) for each \(n \) and \(\sup_n \|y_n\| < \infty \), then \(x \in R \) possesses a left inverse.

Proof. From the equality \(I - y_n x = I - y_n x_n + y_n x_n - y_n x \) it follows that

\[
\|I - y_n x\| \leq \|y_n\| \|x_n - x\|.
\]

Then Lemma 53 implies that a natural number \(k \)
exists so that $y_n x$ has a left inverse z_n for each $n \geq k$, consequently, $z_n y_n$ is a left inverse of x due to the alternativity of the algebra R or using Moufang’s identities.

80. Corollaries. Suppose that an algebra R is over the Cayley-Dickson algebra A_v (see §52) and $0 \leq r \leq v$ and $2 \leq v \leq 3$, $\Gamma = (A_r, +)$ (see §§75-78).

1. If

$$x(t) = \sum_n a_n e^{(\beta(n), t)_1} \in R'$$

with $a_n \in R$ and $\sum_n \|a_n\| < \infty$, $(\beta, t) = \text{Re}(\beta t^*) = \beta_0 t_0 + \ldots + \beta_m t_m$, where $\beta = \beta_0 i_0 + \ldots + \beta_m i_m \in (A_v, +)$, $t = t_0 i_0 + \ldots + t_m i_m \in G = (A_v, +)$, $m = 2^r - 1$, moreover, a left inverse $z(t)$ exists for each t and $\sup_t \|z(t)\| = C < \infty$, then a function

$$y(t) = \sum_n b_n e^{(\tau(n), t)_1} \in R'$$

exists with $\sum_n \|b_n\| < \infty$ such that $y(t) x(t) = I$ for each t.

2. If $a(\beta) \in R$ is a strongly integrable function with

$$\int_{A_v} \|a(\beta)\| \lambda(d\beta) < \infty$$

and if for a nonzero complex number $c \in C \setminus \{0\}$ a function

$$[cI + \int_{A_v} a(\beta) e^{(\beta, t)_1} \lambda(d\beta)]$$

has a left inverse for all t (see λ in §78), then a left inverse of the form

$$[qI + \int_{A_v} b(\beta) e^{(\beta, t)_1} \lambda(d\beta)]$$

exists with

$$\int_{A_v} \|b(\beta)\| \lambda(d\beta) < \infty.$$
(1) an operator B is invertible;

(2) a Fourier transform operator $\hat{B}(M)$ is invertible for each $M \in S^1$ and $x \in Y$.

Proof. A real linear Banach subspace X_k is considered, which is linearly isometrically isomorphic with $l_\infty(Z, Y_k)$ for each $k \geq 0$. On the other hand, the real span $\text{span}_R\{x \in X_k i_k : k \geq 0\}$ is dense in X. In view of Theorem 51 an operator B is uniformly c-continuous, $B \in L_{uc}^q(l_\infty(Z, Y))$. Therefore, its invertibility on $\text{span}_R\{x \in X_k i_k : k \geq 0\}$ is equivalent to that of on X.

Let $B \in L_{n, \text{per}}^q(l_\infty(Z, Y))$ be an invertible operator with $D = B^{-1}$. In view of Corollary 81 the inverse operator D is n-periodic as well and has an absolutely converging Fourier series. From Theorem 51 it follows that D is uniformly c-continuous. Applying Corollary 47 and Proposition 45 we deduce that the Fourier transform operator \hat{B} is invertible for each $M \in S^1$ and $x \in Y$, that is $\hat{B}(M)\hat{D}(M)x = \hat{B}\hat{D}(M)x = I_Y x = x$. Thus (1) \Rightarrow (2).

Vise versa suppose that Condition (2) is fulfilled. Then by Corollary 81 the mapping $\psi : M \mapsto (\hat{B}(M))^{-1}$ has an absolutely converging Fourier series:

$$\psi(M) = \sum_{k=-\infty}^{\infty} M^k kD,$$

$$kD := \frac{1}{2\pi} \int_0^{2\pi} e^{-ikt} \psi(e^{it}) dt \in L_q(Y \oplus Y i).$$

Put $D = \sum_{k=-\infty}^{\infty} k\hat{D}S(k)$, where as usually $S(k)$ denotes the coordinatewise shift operator on k, $S(k)x(l) = x(l + k)$, while $k\hat{D}$ denotes an 1-ribbon operator, matrix elements of which on the k-th diagonal are equal to kD. Therefore, the operator D is bounded with $\|D\| \leq \sum_{k=-\infty}^{\infty} \|kD\| = c < \infty$. In accordance with Corollary 47 the operator D is inverse of B, i.e. $D = B^{-1}$.

83. Corollary. Let $B \in L_{q, \text{per}}^n(l_\infty(Z, Y))$, where Y is a Banach space over either the quaternion skew field or the octonion algebra A_v, $2 \leq v \leq 3$. Then spectral sets of B and $B(D(M))$ are related by the formula:

$$\sigma(B) = \bigcup_{M \in S^1} \sigma(B(D(M)))$$

where B denotes the natural extension of B from $l_\infty(Z, Y)$ onto $l_\infty(Z, Y \oplus Y i)$.

Proof. The spectral set $\sigma(B)$ is the complement of the resolvent set (see Definition I.2.6 [23]), where $Y \oplus Y i$ and $l_\infty(Z, Y \oplus Y i)$ have structures of A_v.

36
Banach spaces as well. In view of Proposition 45 and Theorem 82 one gets this corollary.

84. Theorem. Let a kernel K of a periodic operator B from §1 satisfy the condition:

$$\sup_{t,s} \|K(t, s)\| = c_1 < \infty,$$

where $2 \leq v \leq 3$. Then an operator $A = I - B$ is invertible if and only if a Fourier transform operator $\hat{A}(M)$ is invertible on $Y \oplus Y^i$ for each $M \in S^1$.

Proof. Condition (1) implies that an operator B is bounded and the integral of the condition:

$$\int_{\mathbb{R}}^t \mathcal{F}(\hat{A})d\tau = 0$$

for each variable τ. For a function (x, ω) where ω is invertible if and only if $\omega = \omega_j \in [0, \omega_j]$. Thus, this operator \hat{A} is invertible on $Y \oplus Y^i$ for each $M \in S^1$.

Take an operator $A = I - B \in L_q(L^p(A_w, Y))$, where $p \in [1, \infty]$. Choose a domain V in the Cayley-Dickson algebra A_w so that $V = \{z : z \in A_w; \forall j z_j \in [0, \omega_j]; z = \sum_{j=0}^{2^{w-1}} z_j\}$. Then we define an operator $U : L^p(A_w, Y) \to l_p(\mathbb{Z}^{2^w}, L^p(V, Y))$ by the formula: $(Ux)(t) := y_m(\tau)$, where $x \in L^p(A_w, Y)$ and $y \in l_p(\mathbb{Z}^{2^w}, L^p(V, Y))$ are related by the equation: $y_m(\tau) = x(t - \sum_j m_j \omega_j)$ for each $0 \leq j \leq 2^w - 1$, where $m = (m_0, ..., m_{2^w-1}) \in \mathbb{Z}^{2^w}$. This definition implies that such an operator U is an invertible isometry.

There exists an operator $Q = UAU^{-1}$, hence $Q \in L_q(l_p(\mathbb{Z}^{2^w}, L^p(V, Y)))$. Evidently Q is invertible if and only if A is such. If $S(\omega)x(t) = x(t + \omega)$ and $\hat{S}(\mathcal{F})y_m = y_{m+n}$ are shift operators, they satisfy the equation $\hat{S}(\mathcal{F}) = US(\sum_j m_j \omega_j)U^{-1}$. Therefore, the operator Q commutes with each shift operator $\hat{S}(\mathcal{F})$, where $\mathcal{F} \in \mathbb{Z}^{2^w}$. Thus, this operator Q is 1-periodic by each $m_j \in \mathbb{Z}$ (see Definition 33).

For a function $x \in L^p(V, Y)$ put $\bar{x}_m(\mathcal{F}) := [\prod_{j=0}^{2^w-1} \delta_{m_j, k_j}]x$, hence $\bar{x}_m \in l_p(\mathbb{Z}^{2^w}, L^p(V, Y))$. By each variable m_j, a matrix of the operator Q takes the form: $Q_{k_j, s_j}x = (Q\bar{x}_s)(\mathcal{F}) = (UAU^{-1}\bar{x}_s)(\mathcal{F}) = (UAy_s)(\mathcal{F})$, when $k_l = s_l$ for each $l \neq j$, where $y_s \in l_p(\mathbb{Z}^{2^w}, L^p(V, Y))$ is given by the formula: $y_s(\tau) = 0$ if there exists j so that $\tau_j \notin [s_j \omega_j, (s_j + 1) \omega_j)$, while $y_s(\tau) = x(t - \sum_j s_j \omega_j)$ for each j, where $\tau = t - \sum_j s_j \omega_j$. This means that a tensor operator Q^{δ}_k is defined: $Q^{\delta}_k = (Q\bar{x}_s)(\mathcal{F})$. Then the function $(UAy_s)(\mathcal{F}) \in L^p(V, Y)$ takes the form:

$$2 \sup_{t,s} \|K(t, s)\| = c_1 < \infty,$$
a tensor operator takes the form:

\[-\sigma \int_{\gamma^n(b)|b_0 \in [x_0:0,(x_0+1)\omega_0]} \cdots \sigma \int_{\gamma^n(b)|b_u \in [x_u:0,(x_u+1)\omega_u]} K((\tau + \sum_j k_j \omega_j i_j), b) \]

\[x(b - \sum_j s_j \omega_j i_j) db_0 \cdots db_u\]

\[= x(\tau) - \sigma \int_{\gamma^n(b)|b_0 \in [x_0:0,(x_0+1)\omega_0]} \cdots \sigma \int_{\gamma^n(b)|b_u \in [x_u:0,(x_u+1)\omega_u]} K((\tau + \sum_j k_j \omega_j i_j), b) \]

\[(b + \sum_j (s_j - k_j) \omega_j i_j) x(b) db_0 \cdots db_u\]

in accordance with Conditions 1(5, 6), where \(u := 2^w - 1 \). This implies that a tensor operator takes the form:

\[(3) \quad Q_{\bar{s}}^\bar{k} = x(\tau) - \sigma \int_{\gamma^n(b)|b_0 \in [x_0:0,(x_0+1)\omega_0]} \cdots \sigma \int_{\gamma^n(b)|b_u \in [x_u:0,(x_u+1)\omega_u]} K((\tau + \sum_j k_j \omega_j i_j), \]

\[b + \sum_j (s_j - k_j) \omega_j i_j) x(b) db_0 \cdots db_u\]

for each \(\bar{s}, \bar{k} \in \mathbb{Z}^{2^w} \). Elements of this tensor depend only on the difference \(\bar{s} - \bar{k} \), so it is possible to put \(Q_{\bar{s}}^\bar{k} = Q_{\bar{s} - \bar{k}} \).

The operators \(U, A \) and \(U^{-1} \) are \(c \)-continuous by each \(s_j \), consequently, the operator \(Q_{\bar{s}} \) is also \(c \)-continuous by each \(s_j \), where \(j = 0, 1, \ldots, 2^w - 1 \).

Applying Theorem 82 we obtain the statement of this theorem.

85. Corollary. Let an operator \(B \) satisfy conditions of Theorem 84, then a spectral set is \(\sigma(Q) = \bigcup_{M \in \mathbf{M}} \sigma(Q(D(M))) \), where \(Q \) denotes the natural extension of \(Q \) from \(l_\infty(\mathbb{Z}^{2^w}, L_\infty(V,Y)) \) onto \(l_\infty(\mathbb{Z}^{2^w}, L_\infty(V,Y)) \).

Proof. This follows from Theorem 84 and Corollary 83 applying the Fourier transform by each variable, since \(Q \in L_{q,1}^{\text{per}}(l_\infty(\mathbb{Z}^{2^w}, L_\infty(V,Y))) \) due to Condition 84(1) and the latter Banach space over the Cayley-Dickson algebra \(\mathcal{A}_v \) is isomorphic with \(L_{q,1}^{\text{per}}(l_\infty(\mathbb{Z}^{2^w}, L_\infty(V,Y))) \).

References

[1] M. J. Ablowitz, H. Segur. "Solitons and the inverse scattering transform" (SIAM: Philadelphia, 1981).
[2] S. Bochner, R.S. Phillips. "Absolutely convergent Fourier expansions for non-commutative normed rings". Annals of Mathem. 43: 3 (1942), 409-418.

[3] J.C. Baez. ”The octonions”. Bull. Amer. Mathem. Soc. 39: 2 (2002), 145-205.

[4] F. Brackx, R. Delanghe, F. Sommen. "Clifford analysis" (London: Pitman, 1982).

[5] L.E. Dickson. ”The collected mathematical papers”. Volumes 1-5 (Chelsea Publishing Co.: New York, 1975).

[6] G. Emch. ”Mécanique quantique quaternionienne et Relativité restreinte”. Helv. Phys. Acta 36 (1963), 739-788.

[7] J.C. Ferrando, M. López Pellicer, L.M. Sánchez Ruiz. ”Metrizable barrelled spaces” (Longman Group Ltd: Harlow, 1995).

[8] G.M. Fihtengolz. ”Course of differential and integral calculus”, 8-th Edition, V. 1-3 (Moscow: Fizmatlit, 2003).

[9] J.E. Gilbert, M.A.M. Murray. ”Clifford algebras and Dirac operators in harmonic analysis”. Cambr. studies in advanced Mathem. 26 (Cambr. Univ. Press: Cambridge, 1991).

[10] P.R. Girard. ”Quaternions, Clifford algebras and relativistic Physics” (Birkhäuser: Basel, 2007).

[11] K. Gürlebeck, W. Sprössig. ”Quaternionic analysis and elliptic boundary value problem” (Birkhäuser: Basel, 1990).

[12] F. Gürsey, C.-H. Tze. ”On the role of division, Jordan and related algebras in particle physics” (World Scientific Publ. Co.: Singapore, 1996).

[13] E. Hewitt, K.A. Ross. ”Abstract harmonic analysis” (Berlin: Springer, 1979).
[14] I.L. Kantor, A.S. Solodovnikov. "Hypercomplex numbers" (Springer-Verlag: Berlin, 1989).

[15] R.S. Krausshar, J. Ryan. "Some conformally flat spin manifolds, Dirac operators and automorphic forms". J. Math. Anal. Appl. 325 (2007), 359-376.

[16] V.V. Kravchenko. "On a new approach for solving Dirac equations with some potentials and Maxwell’s system in inhomogeneous media". Operator Theory 121 (2001), 278-306.

[17] V.V. Kuznetzov. "Spectral properties of periodic integral operators". Prepr. 11 (2000), 1-32 (RAN DVO: Vladivostok, 2000).

[18] S.V. Ludkovsky, F. van Oystaeyen. "Differentiable functions of quaternion variables". Bull. Sci. Math. (Paris). Ser. 2. 127 (2003), 755-796.

[19] S.V. Ludkovsky. "Differentiable functions of Cayley-Dickson numbers and line integration". J. of Mathem. Sciences 141: 3 (2007), 1231-1298.

[20] S.V. Ludkovsky. "Algebras of operators in Banach spaces over the quaternion skew field and the octonion algebra". J. Mathem. Sciences 144: 4 (2008), 4301-4366.

[21] S.V. Ludkovsky. "Residues of functions of octonion variables". Far East Journal of Mathematical Sciences (FJMS), 39: 1 (2010), 65-104.

[22] S.V. Ludkovsky. "Analysis over Cayley-Dickson numbers and its applications" (LAP Lambert Academic Publishing: Saarbrücken, 2010).

[23] S.V. Ludkovsky, W. Sproessig. "Ordered representations of normal and super-differential operators in quaternion and octonion Hilbert spaces". Adv. Appl. Clifford Alg. 20: 2 (2010), 321-342.

[24] S.V. Ludkovsky, W. Sprössig. "Spectral theory of super-differential operators of quaternion and octonion variables", Adv. Appl. Clifford Alg. 21: 1 (2011), 165-191.
[25] S.V. Ludkovsky, W. Sprössig. “Spectral representations of operators in Hilbert spaces over quaternions and octonions”. Complex Variables and Elliptic Equations, online, DOI:10.1080/17476933.2010.538845, 24 pages (2011).

[26] S.V. Ludkovsky. ”Integration of vector hydrodynamical partial differential equations over octonions”. Complex Variables and Elliptic Equations, online, DOI:10.1080/17476933.2011.598930, 31 pages (2011).

[27] S.V. Ludkovsky. ”Line integration of Dirac operators over octonions and Cayley-Dickson algebras”. Computational Methods and Function Theory, 12: 1 (2012), 279-306.

[28] S.V. Ludkovsky. ”Operator algebras over Cayley-Dickson numbers” (LAP LAMBERT Academic Publishing AG & Co. KG: Saarbrücken, 2011).

[29] S.V. Ludkovsky. ”Unbounded normal operators in octonion Hilbert spaces and their spectra”, Los Alamos Nat. Lab., math.FA/1204.1554 (2012), 49 pages.

[30] F. van Oystaeyen. ”Algebraic geometry for associative algebras”. Series ”Lect. Notes in Pure and Appl. Mathem.” 232 (Marcel Dekker: New York, 2000).

[31] L.S. Pontrjagin. ”Continuous groups” (Moscow: Nauka, 1984).

[32] R.D. Schafer. ”An introduction to non-associative algebras” (Academic Press: New York, 1966).

[33] N. Wiener. ”Tauberian theorems”. Annals of Mathematics. 33: 1 (1932), 1-100.

[34] S. Zelditch. ”Inverse spectral problem for analytic domains, II: \(\mathbb{Z}_2 \)-symmetric domains”. Advances in Mathematics 170: 1 (2009), 205-269.