Augmented base loci and restricted volumes on normal varieties, II:
The case of real divisors

BY ANGELO FELICE LOPEZ†

Dipartimento di Matematica e Fisica, Università di Roma Tre, Largo San Leonardo Murialdo 1, 00146, Roma, Italy.
e-mail: lopez@mat.uniroma3.it

(Received 06 June 2014; revised 13 August 2015)

Abstract

Let X be a normal projective variety defined over an algebraically closed field and let Z be a subvariety. Let D be an \mathbb{R}-Cartier \mathbb{R}-divisor on X. Given an expression $D \sim_{\mathbb{R}} t_1 H_1 + \cdots + t_s H_s$ with $t_i \in \mathbb{R}$ and H_i very ample, we define the (\ast)-restricted volume of D to Z and we show that it coincides with the usual restricted volume when $Z \notin B_+(D)$. Then, using some recent results of Birkar [Bir], we generalise to \mathbb{R}-divisors the two main results of [BCL]: The first, proved for smooth complex projective varieties by Ein, Lazarsfeld, Mustaţă, Nakamaye and Popa, is the characterisation of $B_+(D)$ as the union of subvarieties on which the (\ast)-restricted volume vanishes; the second is that $X - B_+(D)$ is the largest open subset on which the Kodaira map defined by large and divisible (\ast)-multiples of D is an isomorphism.

1. Introduction

Let X be a projective variety and let D be an \mathbb{R}-Cartier \mathbb{R}-divisor on X. After their introduction in [N, ELMNP1], the stable base loci of D have gained substantial importance in the study of the birational geometry of X, see for example [T, HM, BDPP, BCHM], to mention only a few. Let us recall here their definitions.

Definition 1.1. The stable base locus of D is either $B(D) = X$ if there is no $E \geq 0$ such that $E \sim_{\mathbb{R}} D$ or, otherwise

$$B(D) = \bigcap_{E \geq 0: E \sim_{\mathbb{R}} D} \text{Supp}(E).$$

The augmented base locus of D is either $B_+(D) = X$ if there is no $E \geq 0$ such that $D - E$ is ample or, otherwise

$$B_+(D) = \bigcap_{E \geq 0: D - E \text{ is ample}} \text{Supp}(E)$$

where E is an \mathbb{R}-Cartier \mathbb{R}-divisor.

† Research partially supported by the MIUR national project “Geometria delle varietà algebriche” PRIN 2010-2011.
Since $B_+(D)$ measures the failure of D to be ample, it is clearly a key tool in several instances. On the other hand it is often not so easy to identify. To this end, an important result of Ein, Lazarsfeld, Mustaţă, Nakamaye and Popa [ELMNP2, theorem C] is helpful, at least when X is complex and smooth:

$$B_+(D) = \bigcup_{Z \subset X \text{ vol}_{X|Z}(D) = 0} Z,$$

where $\text{vol}_{X|Z}(D)$ is defined as follows. Given a subvariety $Z \subseteq X$ of dimension $d > 0$, when D is Cartier (whence also when it is a \mathbb{Q}-Cartier \mathbb{Q}-divisor), one defines the restricted linear series $H^0(X|Z, mD)$ to be the image of the restriction map $H^0(X, mD) \to H^0(Z, mD|_Z)$ and the restricted volume as

$$\text{vol}_{X|Z}(D) = \lim_{m \to +\infty} \sup \frac{h^0(X|Z, mD)}{m^d/d!}.$$

One of the deep parts of [ELMNP2] is then to prove the strong continuity result that, if Z is an irreducible component of $B_+(D)$, then $\lim_{D' \to D} \text{vol}_{X|Z}(D') = 0$, where D' is a \mathbb{Q}-Cartier \mathbb{Q}-divisor whose class goes to the class of D [ELMNP2, theorem 5.7].

In [BCL, theorem B] we generalized [ELMNP2, theorem C] to any normal projective variety defined over an arbitrary algebraically closed field, but for \mathbb{Q}-Cartier \mathbb{Q}-divisors D. This was achieved, in part, by outlining the importance of the behavior on Z of the maps $\Phi_m : X \to \mathbb{P}H^0(X, mD)$ associated to mD.

Now, when D is an \mathbb{R}-Cartier \mathbb{R}-divisor, several difficulties arise, as for example one does not have neither the linear series $|mD|$, nor the associated maps nor, in general, the restricted volume. Of course one could use the integer part, but, at least for this type of problems, this does not appear to be the right choice (see also Section 2).

On the other hand, in a recent article of Birkar, a different approach was taken, and this proved quite successful, since it allowed him to generalise Nakamaye’s theorem ([N, theorem 0.3], [Laz, section 10.3]) to nef \mathbb{R}-Cartier \mathbb{R}-divisors on arbitrary projective schemes over a field [Bir, theorem 1.3].

Definition 1.2. Let X be a projective variety and let D be an \mathbb{R}-Cartier \mathbb{R}-divisor on X. We can write

$$(* \ D \sim_{\mathbb{R}} t_1 H_1 + \cdots + t_s H_s$$

where, for $1 \leq i \leq s$, H_i is a very ample Cartier divisor on X and $t_i \in \mathbb{R}$. For $m \in \mathbb{N}$ we set

$$\langle mD \rangle = |mt_1| H_1 + \cdots + |mt_s| H_s$$

and

$$\Phi_{\langle mD \rangle} : X \to \mathbb{P}H^0(X, \langle mD \rangle).$$

It is clear that both $H^0(X, \langle mD \rangle)$ and $\Phi_{\langle mD \rangle}$ depend on the expression (*). On the other hand, as proved by Birkar, several facts about D are in fact independent on (*), such as, for example, that D is big if and only if the upper growth of $h^0(X, \langle mD \rangle)$ is $m^{\dim X}$ [Bir, lemma 4.2] (see also Lemma 3.2(i)) or that $B_+(D) = \bigcap_{m \in \mathbb{N}} \mathcal{B}((mD) - A)$ can be defined as is done for Cartier divisors [Bir, lemma 3.1].

Continuing in this vein, we propose an analogous definition for the restricted volume

$$\text{vol}_{X|Z}(D) = \lim_{m \to +\infty} \sup \frac{h^0(X|Z, mD)}{m^d/d!}.$$
Augmented base loci and restricted volumes on normal varieties, II

Definition 1.3. Let \(X \) be a projective variety and let \(D \) be an \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisor on \(X \) with an expression \((*)\) as in Definition 1.2. Let \(Z \subseteq X \) be a subvariety of dimension \(d > 0 \). We set

\[
\text{vol}_{X|Z}(D, (*)) = \limsup_{m \to +\infty} \frac{h^0(X|Z, (mD))}{m^d/d!}.
\]

and for the stable base locus

Definition 1.4. Let \(X \) be a projective variety and let \(D \) be an \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisor on \(X \) and fix an expression \((*)\) as in Definition 1.2. We set

\[
\mathcal{B}(D, (*)) = \bigcap_{m \in \mathbb{N}^+} \text{Bs} |\langle mD \rangle|.
\]

As we will see in Proposition 2.8, while in general \(\text{vol}_{X|Z}(D, (*)) \) does depend on \((*)\), in the important case when \(Z \not\subseteq \mathcal{B}_+(D) \), it is independent of \((*)\) and coincides with the usual \(\text{vol}_{X|Z}(D) \).

Our point is that this definition of restricted volume allows us to generalise, to any \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisor, the main results of [BCL].

First, we have the description of the complement of \(\mathcal{B}_+(D) \) in terms of the maps \(\Phi_{\langle mD \rangle} \):

Theorem 1. Let \(D \) be a big \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisor on a normal projective variety \(X \) defined over an algebraically closed field and fix an expression \((*)\) as in Definition 1.2. Then the complement \(X - \mathcal{B}_+(D) \) of the augmented base locus is the largest Zariski open subset \(U \subseteq X - \mathcal{B}(D, (*)) \) such that, for all large and divisible \(m \), the restriction of the morphism \(\Phi_{\langle mD \rangle} \) to \(U \) is an isomorphism onto its image.

Second, we have the description of \(\mathcal{B}_+(D) \) in terms of restricted volume:

Theorem 2. Let \(D \) be an \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisor on a normal projective variety \(X \) defined over an algebraically closed field and fix an expression \((*)\) as in Definition 1.2. For every irreducible component \(Z \) of \(\mathcal{B}_+(D) \) we have \(\text{vol}_{X|Z}(D, (*)) = 0 \), and hence

\[
\mathcal{B}_+(D) = \bigcup_{Z \subseteq X \colon \text{vol}_{X|Z}(D, (*)) = 0} Z.
\]

We remark that, if \(D_\varepsilon = D + \sum_{i=1}^s \varepsilon_i H_i \) for some positive rational numbers \(\varepsilon_i \), the method of proof does not allow to prove the stronger statement \(\lim_{\varepsilon \to 0} \text{vol}_{X|Z}(D_\varepsilon, (*)) = 0 \).

2. Volume and restricted volume of real divisors

Throughout the paper we work over an arbitrary algebraically closed field \(k \). An *algebraic variety* is by definition an integral separated scheme of finite type over \(k \).

We set \(\mathbb{N}^+ = \{ n \in \mathbb{N} : n > 0 \} \) and, given \(x \in \mathbb{R} \), \(\lfloor x \rfloor = x - [x] \).

We will often use the following fact, proved in [Bir, theorem 1.3]. Birkar’s theorem is deeper, as it proves Nakamaye’s theorem ([N, theorem 0.3], [Laz, section 10.3]) on arbitrary projective schemes over a field (not necessarily algebraically closed), namely that, if \(D \) is nef, then \(\mathcal{B}_+(D) \) coincides with the exceptional locus of \(D \). On the other hand, for the part of [Bir, theorem 1.3] that we use, in the proof given in [Bir], the nefness of \(D \) is not needed.
Theorem 2.1. Let \(X \) be a projective scheme over a field and let \(D \) be an \(\mathbb{R}\)-Cartier \(\mathbb{R}\)-divisor on \(X \) with an expression \((\ast)\) as in Definition 1.2. Let \(H \) be a very ample Cartier divisor on \(X \). Then there exists \(m_0 \in \mathbb{N}^+ \) such that \(B_+(D) = B((km_0D) - H) = B_+(km_0D) - H \) for all \(k \in \mathbb{N}^+ \).

Let \(X \) be a projective variety and let \(D \) be an \(\mathbb{R}\)-Cartier \(\mathbb{R}\)-divisor on \(X \) with an expression \((\ast)\) as in Definition 1.2. We start by defining a graded ring associated to \(D \) and \((\ast)\).

Remark 2.2. For \(a, b \in \mathbb{N}^+, t_i \in \mathbb{R}, 1 \leq i \leq s \), set \(\gamma_i(a, b) = [(a + b)t_i] - [at_i] - [bt_i] \). Then:

(i) \(\gamma_i(a, b) \in \{0, 1\} \) for all \(i, a, b \);
(ii) \(\gamma_i(a, b) + \gamma_i(a + b, c) = \gamma_i(a, b + c) + \gamma_i(b, c) \) for all \(i, a, b, c \);
(iii) \(\langle(a + b)D\rangle = \langle aD \rangle + \langle bD \rangle + \sum_{i=1}^{s} \gamma_i(a, b)H_i \).

By (iii), choosing some divisors \(E_i \in |H_i| \), we get a multiplication map

\[
H^0(X, \langle aD \rangle) \otimes H^0(X, \langle bD \rangle) \longrightarrow H^0(X, \langle(a + b)D\rangle)
\]

and by (ii) this gives rise to a ring and to a semigroup.

Definition 2.3. Let \(X \) be a projective variety and let \(D \) be an \(\mathbb{R}\)-Cartier \(\mathbb{R}\)-divisor on \(X \) with an expression \((\ast)\) as in Definition 1.2. Let \(E_i \in |H_i| \) for \(1 \leq i \leq s \). The associated graded ring is

\[
\mathbb{R}(X, D, (\ast)) = \bigoplus_{m \in \mathbb{N}} H^0(X, \langle mD \rangle)
\]

and the associated semigroup is

\[
\mathbb{N}(X, D, (\ast)) = \{m \in \mathbb{N} : H^0(X, \langle mD \rangle) \neq 0\}.
\]

Let \(Z \subseteq X \) be a subvariety and pick \(E_i \in |H_i| \) so that \(Z \not\subseteq \text{Supp}(E_i) \) for all \(i \). We define

\[
H^0(X|Z, \langle mD \rangle) = \text{Im}[H^0(X, \langle mD \rangle) \twoheadrightarrow H^0(Z, \langle mD \rangle|Z)],
\]

\[
\mathbb{R}(X|Z, D, (\ast)) = \bigoplus_{m \in \mathbb{N}} H^0(X|Z, \langle mD \rangle)
\]

and

\[
\mathbb{N}(X|Z, D, (\ast)) = \{m \in \mathbb{N} : H^0(X|Z, \langle mD \rangle) \neq 0\}.
\]

Remark 2.4. Note that \(\mathbb{N}(X|Z, D, (\ast)) \) and \(\mathbb{R}(X|Z, D, (\ast)) \) depend on \((\ast)\). For example let \(H \) be a very ample Cartier divisor on \(X \) and let \(D_i \in |H|, i = 1, 2 \) with \(H_1 \neq H_2 \). Let \(\alpha \in \mathbb{R} - \mathbb{Q} \) and let \(D = \alpha H_1 - \alpha H_2 \). If we use this expression as \((\ast)\) we get, for every \(m \in \mathbb{N}^+, \langle mD \rangle = [m\alpha]|H_1 + [-m\alpha]|H_2 \sim_Z -H \), whence \(\mathbb{N}(X, D, (\ast)) = \{0\} \) and \(\mathbb{R}(X, D, (\ast)) = \mathbb{C} \). But if we use as \((\ast)\) the expression \(D \sim_{\mathbb{R}} 0H_1 + 0H_2 \) we get \(\langle mD \rangle = 0 \) and then \(\mathbb{N}(X, D, (\ast)) = \mathbb{N} \) and \(\mathbb{R}(X, D, (\ast)) = \bigoplus_{m \in \mathbb{N}} \mathbb{C} \).

Remark 2.5. Let \(\sigma_0, \ldots, \sigma_r \in H^0(X, \langle aD \rangle) \) for some \(a \in \mathbb{N}^+ \). It is easy to prove that if \(\sigma_0^{t_0} \cdots \sigma_r^{t_r} \) is a homogeneous product of degree \(d \) in \(H^0(X, \langle daD \rangle) \) as in (1), then

\[
\sigma_0^{t_0} \cdots \sigma_r^{t_r} = \sigma_0^{t_0} \cdots \sigma_r^{t_r} \prod_{i=1}^{s} e_i^{[da_i] - [a_i]}
\]
Augmented base loci and restricted volumes on normal varieties, II 521

where \(e_i \in H^0(X, H_i) \) is the section defining \(E_i \) and the product on the right-hand side is the usual product of sections of line bundles.

Since we have a graded ring structure on \(R(X|Z, D, (\ast)) \), it follows that the associated volume function is homogeneous of degree \(\dim Z \). For completeness, we give a proof of this fact, in analogy with [DP, lemma 3-2].

Lemma 2.6. Let \(D \) be an \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisor on a projective variety \(X \) of dimension \(n \) and fix an expression \((\ast)\) as in Definition 1.2. Let \(Z \subseteq X \) be a subvariety of dimension \(d > 0 \). Then \(\text{vol}_{X|Z}(D, (\ast)) \) is homogeneous of degree \(d \), that is, for every \(p \in \mathbb{N}^+ \):

(i) \(\limsup_{m \to +\infty} \frac{h^0(X, (mD))}{m^d/n!} = \limsup_{m \to +\infty} \frac{h^0(X, (pmD))}{(pm)^d/n!} \),

(ii) \(\limsup_{m \to +\infty} \frac{h^0(X|Z, (mD))}{m^d/d!} = \limsup_{m \to +\infty} \frac{h^0(X|Z, (pmD))}{(pm)^d/d!} \).

Proof. Since (i) is just the case \(Z = X \) of (ii), let us prove (ii). We can assume that \(N(X|Z, D, (\ast)) \neq \{0\} \). Let \(e = e(N(X|Z, D, (\ast))) \) be the exponent of \(N(X|Z, D, (\ast)) \). Then there is \(r_0 \in \mathbb{N}^+ \) such that for every \(r \geq r_0 \) we have that \(er \in N(X|Z, D, (\ast)) \) and moreover for every \(m \in N(X|Z, D, (\ast)) \) we have that \(e|m \). Then

\[
\limsup_{m \to +\infty} \frac{h^0(X|Z, (mD))}{m^d/d!} = \limsup_{k \to +\infty} \frac{h^0(X|Z, (ekD))}{(ek)^d/d!}.
\]

Now let \(b = \gcd(e, p) \) so that \(e = vb, p = ab \) with \(\gcd(v, a) = 1 \). If \(pm \in N(X|Z, D, (\ast)) \) then \(e|pm \), whence \(pm = eak \) for some \(k \in \mathbb{N}^+ \) and therefore

\[
\limsup_{m \to +\infty} \frac{h^0(X|Z, (pmD))}{(pm)^d/d!} = \limsup_{k \to +\infty} \frac{h^0(X|Z, (eakD))}{(eak)^d/d!}.
\]

Let \(r \in \mathbb{N}^+ \) be such that \(r_0 \leq r \leq r_0 + a \). Then we can find \(D_r \in |(erD)| \) such that \(Z \not\subseteq \text{Supp}(D_r) \) and, for every \(q \in \mathbb{N}^+ \) such that \(qa - (r_0 + a) \geq r_0 \), we can find \(D'_q \in |(e(qa - r)D)| \) such that \(Z \not\subseteq \text{Supp}(D'_q) \). By Remark 2.2(iii) we deduce that, for every \(k \in \mathbb{N}^+ \),

\[
h^0(X|Z, (eakD)) \leq h^0(X|Z, (e(ka + r)D)) \leq h^0(X|Z, (e(k + q)aD)).
\]

Now exactly as in the proof of [Laz, lemma 2.2.38] we get that

\[
\limsup_{k \to +\infty} \frac{h^0(X|Z, (ekD))}{(ek)^d/d!} = \limsup_{k \to +\infty} \frac{h^0(X|Z, (eakD))}{(eak)^d/d!}
\]

whence (ii) by (2) and (3).

Let \(D \) be an \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisor on a projective variety \(X \) and let \(Z \subseteq X \) be a subvariety of dimension \(d > 0 \). How to define \(\text{vol}_{X|Z}(D) \)? When \(Z \not\subseteq B_+(D) \) this is done in [ELMNP2], as follows. Consider the cone \(\text{Big}^Z(X)_Q^+ \) of divisor classes \(\xi \in N^1(X)_Q \) such that \(Z \not\subseteq B_+(\xi) \). By [ELMNP2, theorem A] \(\text{vol}_{X|Z} \) is defined on \(\text{Big}^Z(X)_Q^+ \) and extends uniquely to a continuous function on \(\text{Big}^Z(X)_R^+ \). On the other hand if \(Z \subseteq B_+(D) \) several problems arise, perhaps the most important one being the loss of continuity, as there exist examples [ELMNP2, example 5.10] of \(\mathbb{Q} \)-Cartier \(\mathbb{Q} \)-divisors \(D_i \) such that \(\lim D_i = D \) but \(\text{vol}_{X|Z}(D) \neq \lim_{i \to \infty} \text{vol}_{X|Z}(D_i) \). One possibility to go around this problem is to define, as in
[Leh, definition 2.12], $\text{vol}_{X/Z}(D) = \limsup_{m \to +\infty} \frac{h^0(X|Z, [mD])}{m^d/d!}$.

We want to point out here that this definition does not agree with $\text{vol}_{X/Z}(D, *)$, and, even more, it can happen that one is zero and the other one is not, as in the following example.

Remark 2.7 ([ELMNP2, example 5.10]). Let $R \subset \mathbb{P}^3$ be a line and let $\pi : X \to \mathbb{P}^3$ be the blowing up of R with exceptional divisor E. Let H be a plane in \mathbb{P}^3 not containing R and let \tilde{H} be its strict transform on X. Let $\alpha \in \mathbb{R}^+ \setminus \mathbb{Q}$ and $D = \alpha \tilde{H}$. Let C be a curve of type $(2,1)$ on $E \cong \mathbb{P}^1 \times \mathbb{P}^1$. We claim that $\limsup_{m \to +\infty} \frac{h^0(X|C, [mD])}{m} = \alpha$ while there exists an expression $(*)$ as in Definition 1.2 such that $\text{vol}_{X/C}(D, *) = 0$. To see this, first notice that, as in [ELMNP2, example 5.10], we have that $h^0(X|C, [mD]) = h^0(X|C, [m\alpha] \tilde{H}) = [m\alpha] + 1$ and therefore

$$\limsup_{m \to +\infty} \frac{h^0(X|C, [mD])}{m} = \alpha.$$

Now let $A = a\tilde{H} - E$ for $a \geq 0$ so that A is ample and let $s \geq 0$ be such that $H_2 := sA$ and $H_1 := \tilde{H} + sA$ are very ample. Then we have the expression

$$(*) \quad D = \alpha H_1 - \alpha H_2$$

as in Definition 1.2 and $\langle mD \rangle = [m\alpha] \tilde{H} - H_2 = ([m\alpha] - sa)\tilde{H} + sE$. But now either $\text{Bs} \langle mD \rangle = X$ or $\text{Bs} \langle mD \rangle = E$, so that, for all $m \in \mathbb{N}^+$ we have $C \subset \text{Bs} \langle mD \rangle$, whence $h^0(X|C, \langle mD \rangle) = 0$ and $\text{vol}_{X/C}(D, *) = 0$.

This type of phenomenon does not happen when $Z \not\subset B_+(D)$:

PROPOSITION 2.8. Let D be an \mathbb{R}-Cartier \mathbb{R}-divisor on a projective variety X of dimension n and fix an expression $(*)$ as in Definition 1.2. Then

(i) $\text{vol}(D) = \limsup_{m \to +\infty} \frac{h^\ell(X, \langle mD \rangle)}{m^n/n!}$

(ii) for every subvariety $Z \subset X$ of dimension $d > 0$ such that $Z \not\subset B_+(D)$ we have $\text{vol}_{X/Z}(D) = \text{vol}_{X/Z}(D, (*))$.

Proof. For $1 \leq i \leq s$ let $q_{il}, q'_{il}, l \in \mathbb{N}^+$ be two sequences of rational numbers such that $q_{il} \leq t_i, q'_{il} \geq t_i$ for all l and $\lim_{l \to +\infty} q_{il} = \lim_{l \to +\infty} q'_{il} = t_i$. Set $D_l = \sum_{i=1}^s q_{il}H_i, D'_l = \sum_{i=1}^s q'_{il}H_i$, so that D_l and D'_l converge to D in $N^1(X)_{\mathbb{R}}$. Pick $E_i \subset |H_i|$. Then, for every $m \in \mathbb{N}^+$, we have

$$\langle mD_l \rangle = \sum_{i=1}^s [mq_{il}]H_i \sim_Z \sum_{i=1}^s [mq_{il}]E_i \leq \sum_{i=1}^s [mt_i]E_i \sim_Z \sum_{i=1}^s [mt_i]H_i = \langle mD \rangle$$

and similarly

$$\langle mD \rangle \sim_Z \sum_{i=1}^s [mt_i]E_i \leq \sum_{i=1}^s [mq'_{il}]E_i \sim_Z \langle mD'_l \rangle$$

so that

$$h^0(X, \langle mD_l \rangle) \leq h^0(X, \langle mD \rangle) \leq h^0(X, \langle mD'_l \rangle).$$
Let \(p_1, p'_1 \in \mathbb{N}^+ \) be such that \(p_1 D_1 \) and \(p'_1 D'_1 \) are Cartier. Note that \(mp_1 D_1 = (mp_1 D_1) \) and \(mp'_1 D'_1 = (mp'_1 D'_1) \). Then Lemma 2-6(i) gives

\[
\text{vol}(D) = \lim_{l \to +\infty} \text{vol}(D) = \lim_{m \to +\infty} \frac{h^0(X, mp D)}{m^n/n!} = \frac{h^0(X, mp D)}{m^n/n!}
\]

and this proves (i). To see (ii) we follow the above proof but now choose \(E_i \in |H| \) for all \(i \). Then, for \(m \in \mathbb{N}^+ \), it follows as above that

\[
h^0(X|Z, (m D)) \leq h^0(X|Z, (m D)) \leq h^0(X|Z, (m D))
\]

and Lemma 2-6(ii) gives

\[
\text{vol}_{X|Z}(D) \leq \text{vol}_{X|Z}(D) \leq \text{vol}_{X|Z}(D)
\]

and this proves (ii).

3. Stable and augmented base loci

Let \(X \) be a projective variety and let \(D \) be an \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisor on \(X \) with an expression \((*)\) as in Definition 1-2. We will study the stable and augmented base loci associated to \(D \) in terms of \((*)\), in particular \(B(D, \alpha) \) (see Definition 1-4).

Note that \(B(D, \alpha) \) depends on \((*)\). In fact in the example of Remark 2-4 we get \(B(D, \alpha) = X \) when we use \(D = \alpha H_1 - \alpha H_2 \) and \(B(D, \alpha) = \emptyset \) when we use \(D \sim \mathbb{R} 0 H_1 + 0 H_2 \).

Nevertheless this stable base locus is in between \(B(D) \) and \(B_+(D) \).

Lemma 3-1. Let \(D \) be an \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisor on a projective variety \(X \) and fix an expression \((*)\) as in Definition 1-2. Then:

(i) there exists \(m_0 \in \mathbb{N}^+ \) such that \(B(D, \alpha) = B_+|(m D)| \) for all \(k \in \mathbb{N}^+ \);

(ii) \(B(D) \subseteq B(D, \alpha) \subseteq B_+(D) \);

(iii) there exists \(m_1 \in \mathbb{N}^+ \) such that \(B_+(D) = B_+(|m D|) \) for all \(k \in \mathbb{N}^+ \).

Proof. To see (i), as in the case of the stable base locus of a Cartier divisor [Laz, proposition 2-1.21], it is enough to notice that, by Remark 2-2(iii), it follows that \(\text{Bs} |(m D)| \subseteq \text{Bs} |(m D)| \), for every \(m, l \in \mathbb{N}^+ \). As for the first inclusion in (ii), let \(x \in B(D) \),
let $E \in |\langle mD \rangle|$ and let $E_i \in |H_i|$ such that $x \notin \text{Supp}(E_i)$ for all i. Then

$$F := \frac{1}{m}(E + \sum_{i=1}^{s}\{mt_i\}E_i) \sim_{\mathbb{R}} \frac{1}{m}\sum_{i=1}^{s}mt_iH_i \sim_{\mathbb{R}} D$$

and $F \geq 0$, whence $x \in \text{Supp}(F)$ and then $x \in \text{Supp}(E)$. Therefore $x \in \text{Bs}|\langle mD \rangle|$.

Now let H be a very ample Cartier divisor on X. By Theorem 2.1 there exists $m_1 \in \mathbb{N}^+$ such that $B_+(D) = B(\langle km_1D \rangle - H) = \text{Bs}|\langle km_1D \rangle - H|$ for all $k \in \mathbb{N}^+$. Since $km_1D - \langle km_1D \rangle \sim_{\mathbb{R}} \sum_{i=1}^{s}\{km_1t_i\}H_i$ is zero or ample, we get

$$B_+(D) = B_+(\langle km_1D \rangle) \subseteq B_+(\langle km_1D \rangle) \subseteq B(\langle km_1D \rangle - H) = B_+(D)$$

and this gives (iii). Finally by (i) we get

$$B(D, (\ast)) = \text{Bs}|\langle m_1m_0D \rangle| \subseteq \text{Bs}|\langle m_1m_0D \rangle - H| = B_+(D)$$

and this gives the second inclusion in (ii).

Note that (iii) above is not needed in the sequel. We included since it might be useful in other situations.

We now consider the behavior of the maps associated to D and (\ast).

Lemma 3.2. Let D be an \mathbb{R}-Cartier \mathbb{R}-divisor on a projective variety X and fix an expression (\ast) as in Definition 1.2. Then:

(i) D is big if and only if there exists $m_0 \in \mathbb{N}^+$ such that $\Phi_{\langle mD \rangle} : X \dashrightarrow \mathbb{P}H^0(X, \langle mD \rangle)$ is birational onto its image for every $m \geq m_0$.

(ii) assume that D is big. For every $m \in \mathbb{N}^+$ such that $\Phi_{\langle mD \rangle}$ is birational onto its image, let $U_m(\ast) \subseteq X - B(D, (\ast))$ be the largest open subset on which $\Phi_{\langle mD \rangle}$ is an isomorphism.

Then the set $\{U_m(\ast)\}$ has a unique maximal element $U_D(\ast)$, that is there exists $m_0 \in \mathbb{N}^+$ such that $U_D(\ast) = U_{km_0}(\ast)$ for all $k \in \mathbb{N}^+$.

Proof. To see (i) assume that D is big and let A be a sufficiently ample Cartier divisor such that $A + \langle D \rangle$ is globally generated. By Theorem 2.1 there exists $m_1 \in \mathbb{N}^+$ such that $B_+(D) = \text{Bs}|\langle m_1D \rangle - A|$, so that there is $E \in |\langle m_1D \rangle - A|$. Then $\langle m_1D \rangle \sim_{\mathbb{Z}} A + E$ and therefore $m_1 \in \mathcal{N}(X, D, (\ast))$. By Remark 2.2(iii) there is an effective Cartier divisor F on X such that $\langle (m_1 + 1)D \rangle \sim_{\mathbb{Z}} \langle m_1D \rangle + \langle D \rangle + F$. Hence $\langle (m_1 + 1)D \rangle \sim_{\mathbb{Z}} A + \langle D \rangle + E + F$ and therefore $m_1 + 1 \in \mathcal{N}(X, D, (\ast))$. Then $\mathcal{N}(X, D, (\ast))$ has exponent 1 and there is $r_0 \in \mathbb{N}^+$ such that $H^0(X, \langle rD \rangle) = 0$ for every $r \geq r_0$. Now for every $m \geq m_0 := m_1 + r_0$, we get, by Remark 2.2(iii), that we can write $\langle mD \rangle \sim_{\mathbb{Z}} \langle m_1D \rangle + \langle (m - m_1)D \rangle + H$ with H zero or very ample. Hence $\langle mD \rangle \sim_{\mathbb{Z}} A + E + \langle E \rangle + H$ for some effective Cartier divisor E' and therefore $\Phi_{\langle mD \rangle}$ is an isomorphism over $X - \text{Supp}(E \cup E')$. On the other hand if $\Phi_{\langle mD \rangle}$ is birational onto its image for some m, then $\langle mD \rangle$ is big and so is D since $md \sim_{\mathbb{R}} \langle mD \rangle + \sum_{i=1}^{s}\{mt_i\}H_i$.

To see (ii) note that, for all $m \in \mathbb{N}^+$ such that $\Phi_{\langle mD \rangle}$ is birational onto its image and for all $k \in \mathbb{N}^+$, we have by Remark 2.2(iii) that also $\Phi_{\langle kmD \rangle}$ is birational onto its image, whence $U_m(\ast) \subseteq U_{km}(\ast)$. If $Y_m(\ast) = X - U_m(\ast)$ we then have $Y_m(\ast) \supseteq Y_{km}(\ast)$ for all $k \in \mathbb{N}^+$, whence there is a unique minimal element $Y_{m_0}(\ast) = Y_{km_0}(\ast)$ for all $k \in \mathbb{N}^+$ and therefore a unique maximal element $U_D(\ast) = U_{km_0}(\ast)$ for all $k \in \mathbb{N}^+$.

As a matter of fact we will prove below that $U_D(\ast)$ is independent of (\ast).

We follow the proofs in [BCL].

4. Proof of the main theorems

4.1. Proof of Theorem 1

Proof. Let H be a very ample Cartier divisor on X. By Theorem 2.1 there exists $m_1 \in \mathbb{N}^+$ such that $B_+(D) = B_+(\langle km_1 D \rangle - H)$ for all $k \in \mathbb{N}^+$. It follows that $|\langle km_1 D \rangle - H|$ is basepoint free on $X - B_+(D)$ for all $k \in \mathbb{N}^+$, which implies that $\Phi_{\langle km_1 D \rangle}$ is an isomorphism on $X - B_+(D)$. Set $U_m = U_m(*)$ and $U_D = U_D(*)$ (cfr. Lemma 3.2(ii)). By Lemmas 3.1(ii) and 3.2(ii) we get that $X - B_+(D) \subseteq U_D$.

Conversely, by Lemmas 3.1(i) and 3.2(ii), there is an $m_0 \in \mathbb{N}^+$ such that $B(D, *) = B_+(\langle km_0 D \rangle)$ and $U_D = U_{km_0}$ for every $k \in \mathbb{N}^+$. Set $m = km_0$ and consider the commutative diagram

$$
\begin{array}{ccc}
X_m & \xrightarrow{f_m} & Y_m \\
\mu_m \downarrow & & \downarrow v_m \\
X & \xrightarrow{\Phi_{(mD)}} & \Phi_{(mD)}(X),
\end{array}
$$

where μ_m is the normalised blow-up of X along the base ideal of $|\langle m D \rangle|$, v_m is the normalization of $\Phi_{(mD)}(X)$, and $f_m : X_m \to Y_m$ is the induced birational morphism between normal projective varieties. By construction, we have a decomposition

$$
\mu_m^* (\langle mD \rangle) = f_m^* A_m + F_m,
$$

where A_m is an ample line bundle on Y_m and F_m is an effective divisor with

$$
\text{Supp}(F_m) = \mu_m^{-1}(B(D, *)) .
$$

Now $\Phi_{(mD)}$ is an isomorphism on U_m, whence, by (4), $v_m \circ f_m$ is an isomorphism on $\mu_m^{-1}(U_m)$ since μ_m is an isomorphism over $X - B(D, *)$, and it follows that

$$
\mu_m^{-1}(U_m) \subseteq X_m - (\text{Exc}(f_m) \cup \text{Supp}(F_m)) .
$$

Since $\mu_m(\text{Exc}(\mu_m)) \subseteq B(D, *) \subseteq B_+(D)$, by Lemma 3.1(ii), using [BBP, proposition 2.3] (which holds over any algebraically closed field) we get

$$
B_+(\mu_m^* D) = \mu_m^{-1}(B_+(D)).
$$

Now let $G_m = \sum_{i=1}^s \{mt_i\} H_i$, so that G_m is zero or ample and $mD \sim_{\mathbb{R}} \langle mD \rangle + G_m$. Let

$$
V_m = \begin{cases}
\emptyset & \text{if } G_m = 0, \\
B_+(\mu_m^* G_m) & \text{if } G_m \text{ is ample.}
\end{cases}
$$

By [BBP, proposition 2.3] we get that, if G_m is ample, then $V_m \subseteq \text{Exc}(\mu_m) \subseteq \text{Supp}(F_m)$. Therefore, by the numerical invariance of $B_+(D)$ [ELMN, proposition 1.4], we get

$$
B_+(\mu_m^* D) = B_+(\mu_m^* (\langle mD \rangle)) = B_+(\mu_m^* (\langle mD \rangle) + \mu_m^* G_m) = B_+(f_m^* A_m + F_m + \mu_m^* G_m) \subseteq B_+(f_m^* A_m + F_m) \cup V_m \subseteq B_+(f_m^* A_m) \cup \text{Supp}(F_m).
$$

Another application of [BBP, proposition 2.3] gives

$$
B_+(f_m^* A_m) \cup \text{Supp}(F_m) \subseteq \text{Exc}(f_m) \cup \text{Supp}(F_m),
$$
so that
\[\mu_m^{-1}(B_+(D)) \subseteq \text{Exc}(f_m) \cup \text{Supp}(F_m) \] (6)
and, thanks to (5), we conclude as desired that \(U_m \subseteq X - B_+(D) \).

4.2. Proof of Theorem 2

Proof. If \(D \) is not big Theorem 2 follows by Proposition 2.8(i).

Now assume that \(D \) is big. We use the notation in the previous subsection.

Let \(Z \) be an irreducible component of \(B_+(D) \), let \(d = \dim Z \), so that necessarily \(d > 0 \) by \([\text{ELMNP2}, \text{proposition 1-1}]\) (which relies on a result of [Z] valid for normal varieties over any algebraically closed field). If \(Z \subseteq B(D, (*) \) then obviously \(H^0(X|Z, \langle lD \rangle) = 0 \) for every \(l \in \mathbb{N}^+ \) and therefore \(\text{vol}_{X|Z}(D, (*)) = 0 \).

We may thus assume that \(Z \not\subseteq B(D, (*)) \). The proof of Theorem 1 gives, by (5) and (6), that, for all \(m = km_0 \),

\[\mu_m^{-1}(B_+(D)) = \mu_m^{-1}(X - U_m) = \text{Exc}(f_m) \cup \text{Supp}(F_m) \]

so that the strict transform \(Z_m \) of \(Z \) on \(X_m \) is an irreducible component of \(\text{Exc}(f_m) \). Since \(f_m \) is a birational morphism between normal varieties, it follows that \(\dim f_m(Z_m) < \dim Z \), whence, by (4), also that

\[\dim \Phi_{(mD)}(Z) = \dim(v_m \circ f_m)(Z_m) < d. \]

As in \([\text{BCL}, \text{proof of corollary 2-5}]\) we have \(\Phi_{(mD)}(Z) = \Phi_{W_m}(Z) \), where \(W_m = H^0(X|Z, \langle mD \rangle) \). Hence, setting \(\kappa = \kappa(R(X|Z, D, (*)) := \text{tr. deg}(R(X|Z, D, (*)) - 1 \) we see, as in \([\text{BCL}, \text{lemma 2-3}]\) (here we use Remark 2.5 - see \([\text{Bou}, \text{lemma 3-14}]\)), that \(\kappa < d. \)

Now, as in \([\text{BCL}, \text{proposition 2-1}]\) (using also \([\text{Bir}, \text{lemma 4-1}]\), we get that there exists \(C > 0 \) such that \(h^0(X|Z, \langle lD \rangle) \leq C l^\kappa \) for every \(l \in \mathbb{N}^+ \) and therefore \(\text{vol}_{X|Z}(D, (*)) = 0. \)

It remains to prove that, if \(Z \subseteq X \) is a subvariety of dimension \(d > 0 \) such that \(Z \not\subseteq B_+(D) \), then \(\text{vol}_{X|Z}(D, (*)) > 0 \). Since \(B_+(D) = \text{Bs} \langle m_1D \rangle - \text{H} \) there is \(E \in \langle \langle m_1D \rangle - \text{H} \rangle \) such that \(Z \not\subseteq \text{Supp}(E) \). Let \(l_0 \in \mathbb{N}^+ \) be such that \(H^1(X, \mathcal{J}_Z(lH)) = 0 \) for every \(l \geq l_0 \), so that the commutative diagram

\[
\begin{array}{ccc}
H^0(X, lH) & \rightarrow & H^0(Z, lH|_Z) \\
\downarrow & & \downarrow \\
H^0(X, l\langle m_1D \rangle) & \rightarrow & H^0(Z, l\langle m_1D \rangle|_Z)
\end{array}
\]

shows that \(h^0(X|Z, l\langle m_1D \rangle) \geq h^0(Z, lH|_Z) \geq C l^d \) for some \(C > 0. \) By Remark 2.2(iii) we have that \(h^0(X|Z, \langle l\langle m_1D \rangle \rangle) \geq h^0(X|Z, l\langle m_1D \rangle) \) and we conclude by Lemma 2.6(ii).

REFERENCES

[BBP] S. Boucksom, A. Broustet and G. Pacienza. Uniruledness of stable base loci of adjoint linear systems via Mori theory. Math. Z. 275 (2013), no. 1-2, 499-507.

[BCHM] C. Birkar, P. Cascini, C. Hacon and J. McKernan. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23 (2010), no. 2, 405-468.

[BCL] S. Boucksom, S. Cacciola and A. F. Lopez. Augmented base loci and restricted volumes on normal varieties. Math. Z. 278 (2014), no. 3-4, 979-985.

[BDPP] S. Boucksom, J. P. Demailly, M. Păun and T. Peternell. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom. 22 (2013), no. 2, 201-248.

[Bir] C. Birkar. The augmented base locus of real divisors over arbitrary fields. Preprint (2013) arXiv:1312.0239.
Augmented base loci and restricted volumes on normal varieties, II

[Bou] S. Boucksom. Corps d’Okounkov (d’après Okounkov, Lazarsfeld–Mustaţă and Kaveh–Khovanskii). Séminaire Bourbaki. vol. 2012/2013, exposé 1059. Preprint available at http://www.math.jussieu.fr/~boucksom/publis.html.

[DP] L. Di Biagio and G. Pacienza. Restricted volumes of effective divisors. Preprint (2012) arXiv:1207.1204

[ELMNP1] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye and M. Popa. Asymptotic invariants of base loci. Ann. Inst. Fourier (Grenoble) 56 (2006), no. 6, 1701–1734.

[ELMNP2] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye and M. Popa. Restricted volumes and base loci of linear series. Amer. J. Math. 131 (2009), no. 3, 607–651.

[HM] C. D. Hacon and J. McKernan. Boundedness of pluricanonical maps of varieties of general type. Invent. Math. 166 (2006), no. 1, 1–25.

[Laz] R. Lazarsfeld. Positivity in algebraic geometry. I. Ergeb. Math. Grenzgeb 3. Folge 48 (Springer-Verlag, Berlin, 2004.)

[Leh] B. Lehmann. Comparing numerical dimensions. Algebra Number Theory 7 (2013), no. 5, 1065-1100.

[N] M. Nakamaye. Stable base loci of linear series. Math. Ann. 318 (2000), no. 4, 837–847.

[T] S. Takayama. Pluricanonical systems on algebraic varieties of general type. Invent. Math. 165 (2006), no. 3, 551–587.

[Z] O. Zariski. The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface. Ann. of Math. (2) 76 (1962), 560–615.