RECOLLEMENTS OF ABELIAN CATEGORIES AND IDEALS IN HEREDITY CHAINS - A RECURSIVE APPROACH TO QUASI-HEREDITARY ALGEBRAS

NAN GAO, STEFFEN KOENIG AND CHRYSOSTOMOS PSAROUDAKIS

Abstract. Recollements of abelian categories are used as a basis of a homological and recursive approach to quasi-hereditary algebras. This yields a homological proof of Dlab and Ringel’s characterisation of idempotent ideals occurring in heredity chains, which in turn characterises quasi-hereditary algebras recursively. Further applications are given to hereditary algebras and to Morita context rings.

1. Introduction

Quasi-hereditary algebras are abundant in representation theory and its applications to Lie theory and geometry. Examples include hereditary algebras, Auslander algebras and generally algebras of global dimension two, Schur algebras of reductive algebraic groups and other algebras arising from highest weight categories, endomorphism algebras of projective generators in categories filtered by standard or exceptional objects, and so on. Customary definitions of quasi-hereditary algebras proceed inductively by first defining what is called a heredity ideal AeA in an algebra A (with an idempotent element $e = e^2$) and then considering A/AeA and a heredity ideal therein. The (finite) induction then produces a chain $0 ⊂ Ae_nA ⊂ Ae_{n-1}A ⊂ \cdots ⊂ Ae_1A ⊂ Ae_0A = A$ with subquotients being heredity ideals in the respective quotient algebras. Equivalently, one may define standard modules as being relative projective over the respective quotient algebra, with $\Delta(n) = Ae_n$, $\Delta(n-1) = Ae_{n-1}/Ae_n$, and so on. Starting with (semi)simple algebras, all quasi-hereditary algebras can be constructed using a generalisation of Hochschild cocycles (see Parshall and Scott’s ‘not so trivial extensions’ in [11]).

Another construction of all quasi-hereditary algebras, recursive in nature and not using cocycles, has been given by Dlab and Ringel [4], who were motivated by constructions for perverse sheaves (that are closely related to quasi-hereditary algebras). Using ring theoretical methods, Dlab and Ringel gave a characterisation of a given algebra A being quasi-hereditary and a given idempotent ideal AeA occurring somewhere in a heredity chain of A, in terms of both eAe and A/AeA being quasi-hereditary (which is not sufficient) and additional conditions. In the background of all the definitions, characterisations and properties of quasi-hereditary algebras are six functors that are the algebraic analogues of Grothendieck’s six functors and that form a recollement of abelian categories relating the module categories of A and of eAe and A/AeA. The aim of this article is to take such recollements and the occurring functors as basic ingredients for redeveloping the theory of quasi-hereditary algebras, replacing ring theoretical by homological tools and the inductive approach (starting with heredity ideals) by a recursive characterisation (starting with any ideal in a heredity chain) in Theorem 2.1, which is proved.

The first named author is supported by the National Natural Science Foundation of China (Grant No. 11771272). The third named author is supported by Deutsche Forschungsgemeinschaft (DFG, grant KO 1281/14 – 1).
by a direct and homological approach; the main result of [4] then follows quickly. Another approach via recollements of abelian categories, has been considered by Krause [9]; this approach concentrates on heredity ideals.

On the way, various basic properties of quasi-hereditary algebras are given new proofs. Feasibility of the new approach is demonstrated further by also giving a homological proof that hereditary algebras are quasi-hereditary with any ordering (a result due to Dlab and Ringel) and by adding a class of Morita context rings to the known classes of examples of quasi-hereditary algebras. In addition, our approach provides a solution to the problem when the middle term in a recollement of module categories (over semiprimary rings) is hereditary.

2. Quasi-hereditary algebras and ideals in heredity chains

Let A be a semiprimary ring. Let X be a poset and assume that $\{S(x) \mid x \in X\}$ is a complete set of pairwise non-isomorphic simple A-modules. Semiprimary rings are perfect [1], hence every module has a projective cover. We write $P(x)$ for the projective cover of the simple A-module $S(x)$.

Let $N := \{N_1, \ldots, N_k\}$ be a finite set of A-modules. The category of A-modules with N-filtration, denoted by $\mathcal{F}(A,N)$, is defined to be the full subcategory of A-Mod, i.e. the category of all left A-modules, consisting of A-modules M such that there exists a filtration $0 = M_{i+1} \subseteq M_i \subseteq \cdots \subseteq M_0 = M$ where each quotient M_i/M_{i+1} belongs to $\text{Add} N_i$ for some N_i (i depending on j) in $N = \{N_1, \ldots, N_k\}$. Note that the filtration has to be finite, while the subquotients may be infinite sums in $\text{Add} N_i$, which is the full subcategory of A-Mod consisting of all modules which are summands of a direct sum of N_i. Objects in $\mathcal{F}(A,N)$ are said to be filtered by N_1, \ldots, N_k.

Recall from [3] that the ring A is called quasi-hereditary with respect to the poset X if for each $x \in X$, there is a quotient module $\Delta(x)$ of $P(x)$, called a standard module, satisfying the following two conditions:

(i) the kernel of the canonical epimorphism $P(x) \twoheadrightarrow \Delta(x)$ is filtered by $\Delta(z)$ with $z > x$, and
(ii) the kernel of the canonical epimorphism $\Delta(x) \twoheadrightarrow S(x)$ is filtered by $S(y)$ with $y < x$.

Recollements of triangulated or abelian categories were introduced by Beilinson, Bernstein and Deligne in [2]. A recollement between abelian categories (see, for instance, [6, 10]) \mathcal{A}, \mathcal{B} and \mathcal{C} is a diagram of the form

$$
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{i} & \mathcal{B} \\
\downarrow{p} & & \downarrow{e} \\
\mathcal{C} & \xleftarrow{r} & \end{array}
$$

henceforth denoted by $(\mathcal{A}, \mathcal{B}, \mathcal{C})$, satisfying the following conditions:

(i) (l, e, r) is an adjoint triple.
(ii) (q, i, p) is an adjoint triple.
(iii) The functors i, l, and r are fully faithful.
(iv) $\text{Im} i = \text{Ker} e$.

For properties of recollements of abelian categories we refer to [6, 14]. We are interested in recollement with all terms being module categories. Let R be a ring and let e be an idempotent element of R. Then there is a recollement of module
By [12], any recollement of module categories is equivalent, in an appropriate sense, to one induced by an idempotent element. Thus, the recollement (2.1) can be considered as the general recollement situation of \(R\text{-Mod} \).

If \(S \) is a simple \(A \)-module (resp. simple \(eAe \)-module), then we denote by \(P(S) \) (resp. \(P_e(S) \)) the projective cover of the simple module \(S \).

Now, the main result can be stated and proved; Dlab and Ringel’s original result will follow as Corollary 2.4.

Theorem 2.1. Let \(A \) be a semiprimary ring and \(e \) be an idempotent of \(A \). The following statements are equivalent:

(i) The ring \(A \) is quasi-hereditary and there exists a heredity chain such that \(AeA \) is contained.

(ii) There is a recollement of module categories of the form (2.1) such that the following conditions hold:

(a) \(A/ AeA \) and \(eAe \) are quasi-hereditary rings;

(b) The counit map \(Ae \otimes_{eAe} eA(1 - e) \rightarrow A(1 - e) \) is a monomorphism;

(c) \(eA \in \mathcal{T}(eAe \Delta) \);

(d) \(\text{Tor}^A_{1}(Ae, eAe \Delta) = 0 \).

Proof. Let \(S_1, S_2, \ldots, S_m, S_{m+1}, \ldots, S_n \) be a full set of non-isomorphic simple \(A \)-modules. Note that the poset \(X \) is now the set \(\{1, 2, \ldots, n\} \). Indices are chosen such that \(e_S = 0 \) for all \(1 \leq i \leq m \) and \(e_S \neq 0 \) for all \(m + 1 \leq i \leq n \). Then \(\{S_1, \ldots, S_m\} \) are the simple \(A/ AeA \)-modules and \(\{eS_{m+1}, \ldots, eS_n\} \) are the simple \(eAe \)-modules up to isomorphism.

Moreover, there is an epimorphism \(Ae \otimes_{eAe} eS_i \rightarrow S_i \) for any \(m + 1 \leq i \leq n \). Furthermore, considering the exact sequence \(0 \rightarrow AeA \rightarrow A \rightarrow A/ AeA \rightarrow 0 \) of right \(A \)-modules and applying \(- \otimes_A S_i \), we have that \(A/ AeA \otimes_A S_i = S_i \) and \(\text{Tor}^A_{1}(A/ AeA, S_i) = 0 \) since \(e_S = 0 \) for all \(1 \leq i \leq m \).

Step 0. If \(e_S \neq 0 \), then \(e_S = \text{Hom}_A(Ae, S_i) \neq 0 \) and thus \(S_i \) is a quotient of \(Ae \). Hence there exists a primitive idempotent \(e_i \) with \(e \cdot e_i = e_i = e_i \cdot e \) such that \(Ae_i \) is a projective cover of \(S_i \), i.e. isomorphic to \(P(S_i) \). Then \(eAe_i \) is a projective cover of \(eS_i \), thus isomorphic to \(P_e(eS_i) \). We use this step later in the proof.

(i) \(\implies \) (ii): Let \(\Delta(1), \ldots, \Delta(n) \) be the standard \(A \)-modules up to isomorphism. The proof is divided into seven steps.

Step 1. We show that \(e\Delta(i) = 0 \) and \(\text{Tor}^A_{1}(A/ AeA, \Delta(i)) = 0 \) for all \(1 \leq i \leq m \).

Since \(A \) is quasi-hereditary, there is an exact sequence

\[
0 \rightarrow \text{Ker} \ f_i \rightarrow \Delta(i) \rightarrow S_i \rightarrow 0
\]

such that \(\text{Ker} \ f_i \) is filtered by \(S_j \) with \(1 \leq j < i \). Applying the exact functor \(eA \otimes_A - \) to the filtration of \(\text{Ker} \ f_i \), it follows that \(e \text{Ker} \ f_i = 0 \). This implies that \(e\Delta(i) = 0 \).

Consider now the exact sequence \(0 \rightarrow AeA \rightarrow A \rightarrow A/ AeA \rightarrow 0 \) of right \(A \)-modules. Applying the functor \(- \otimes_A \Delta(i) \), we get the exact sequence:

\[
0 \rightarrow \text{Tor}^A_{1}(A/ AeA, \Delta(i)) \rightarrow AeA \otimes_A \Delta(i) \rightarrow A \otimes_A \Delta(i) \rightarrow A/ AeA \otimes_A \Delta(i) \rightarrow 0
\]

Since \(e\Delta(i) = 0 \), it follows that \(\text{Tor}^A_{1}(A/ AeA, \Delta(i)) = 0 \) for all \(1 \leq i \leq m \).
Step 2. We show that $Ae \otimes_{eAe} eP(S_i) \simeq P(S_i)$ and $A/ AeA \otimes_A \Delta(i) = 0$ for all $m + 1 \leq i \leq n$. By Step 0, $P(eS_i) = eAe_i = eP(S_i)$. Thus, we get an isomorphism $Ae \otimes_{eAe} eAe_i \simeq A_i$ showing the first claim. For the second one, $A/ AeA \otimes_A (eS_i) \cong A/ AeA \otimes_A Ae \otimes_{eAe} eP(S_i) = 0$ since $A/ AeA \otimes_A Ae = 0$. Since A is quasi-hereditary, there is an epimorphism $P(S_i) \to \Delta(i)$ and therefore $A/ AeA \otimes_A \Delta(i) = 0$.

Step 3. We show that eAe is a quasi-hereditary ring with standard modules $\{e\Delta(m+1), \ldots, e\Delta(n)\}$. For every $m + 1 \leq i \leq n$ there is an exact sequence of the form (2.2) such that $\text{Ker} f_i$ is filtered by S_j with $1 \leq j < i$. Since eAe is an epimorphism. Consider now the exact commutative diagram

$$
\begin{array}{c}
\text{Ker} g_i \\
\downarrow \\
P(S_i) \\
\downarrow g_i \\
\Delta(i) \\
\downarrow \\
0
\end{array}
$$

such that $\text{Ker} g_i$ is filtered by $\Delta(j)$ with $i < j \leq n$. Applying the exact functor $e(-)$ we get the exact sequence $(\ast): 0 \to e\text{Ker} g_i \to eP(S_i) \to e\Delta(i) \to 0$. Note that by Step 0 the module $eP(S_i) \simeq P_g(eS_i)$ is projective. Clearly, the module $e\text{Ker} g_i$ is filtered by $e\Delta(j)$ with $i < j \leq n$. Hence, eAe is a quasi-hereditary ring with standard eAe-modules $\{e\Delta(m+1), \ldots, e\Delta(n)\}$.

Moreover, since the modules $e\text{Ker} g_i$ and $e\Delta(i)$ belong to $\mathcal{F}(eAe, \Delta)$, the module $eP(S_i)$ lies in $\mathcal{F}(eAe, \Delta)$ for all $1 \leq i \leq n$ and thus condition (c) holds.

Step 4. We show that $Ae \otimes_{eAe} e\Delta(i) \simeq e\Delta(i)$ and $\text{Tor}^1_{eAe}(eAe, e\Delta(i)) = 0$ for all $m + 1 \leq i \leq n$ (condition (d)). Consider the canonical morphism $\mu_{\Delta(i)}: Ae \otimes_{eAe} e\Delta(i) \to e\Delta(i)$. The cokernel of $\mu_{\Delta(i)}$ is $A/ AeA \otimes_A \Delta(i)$ which is zero by Step 2. Hence, the map $\mu_{\Delta(i)}$ is an epimorphism for any $m + 1 \leq i \leq n$. Since A is quasi-hereditary, for all $m + 1 \leq i \leq n$ there is an exact sequence of the form (2.3) such that $\text{Ker} g_i$ is filtered by $\Delta(j)$ with $i < j \leq n$. We claim that the map $\mu_{\text{Ker} g_i}: Ae \otimes_{eAe} e\text{Ker} g_i \to \text{Ker} g_i$ is an epimorphism. Indeed, let $0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_{n-1} \subseteq \text{Ker} g_i$ be the filtration by $\Delta(j)$ with $i < j \leq n$. Then there are exact sequences

$$
\begin{align*}
0 & \to M_1 \to M_2 \to M_2/M_1 \to 0, \\
& \quad \cdots, \\
& \quad 0 \to M_{n-1} \to \text{Ker} g_i \to \text{Ker} g_i/M_{n-1} \to 0
\end{align*}
$$

such that $M_t, M_t/M_{t-1}$ for $t = 2, \ldots, n-1$, and $\text{Ker} g_i/M_{n-1}$ belong to the set $\{\Delta(i+1), \Delta(i+2), \ldots, \Delta(n)\}$. Applying $Ae \otimes_{eAe} eAe$ to the first exact sequence yields the following exact commutative diagram

$$
\begin{array}{c}
\text{Ker} g_i \\
\downarrow \\
P(S_i) \\
\downarrow \\
\Delta(i) \\
\downarrow \\
0
\end{array}
$$

By diagram chase, the map $\mu_{\Delta(i)}$ is an epimorphism. Continuing inductively, with respect to the above exact sequences of the filtration of $\text{Ker} g_i$, we obtain that $\mu_{\text{Ker} g_i}$ is an epimorphism. Consider now the exact commutative diagram

$$
\begin{array}{c}
0 \to \text{Tor}^1_{eAe}(eAe, e\Delta(i)) \to Ae \otimes_{eAe} e\text{Ker} g_i \to Ae \otimes_{eAe} eP(S_i) \to Ae \otimes_{eAe} e\Delta(i) \to 0
\end{array}
$$
Step 2 provides an isomorphism $Ae \otimes eA eP(S_i) \simeq P(S_i)$ for all $m + 1 \leq i \leq n$. Then, by Snake Lemma and since the map μ_{eS_i} is an epimorphism, we have $Ae \otimes eA e\Delta(i) \simeq \Delta(i)$. Since $\ker g_i$ is filtered by $\Delta(j)$ with $i < j \leq n$, we also get that $Ae \otimes eA e\ker g_i \simeq \ker g_i$ for all $m + 1 \leq i \leq n$. This implies that $\Tor^1(Ae, e\Delta(i)) = 0$ for all $m + 1 \leq i \leq n$.

Step 5. We show that the map $\mu_{P(S_i)} : Ae \otimes eA eP(S_i) \rightarrow P(S_i)$ is a monomorphism for all $1 \leq i \leq m$. Consider the short exact sequence (2.3). Since $e\Delta(i) = 0$ for all $1 \leq i \leq m$ by Step 1, there is the following exact commutative diagram:

$$
\begin{array}{c}
0 & \xrightarrow{\epsilon} & Ae \otimes eA e\ker g_i & \xrightarrow{\mu_{eS_i}} & Ae \otimes eA eP(S_i) & \xrightarrow{\mu_{PS_i}} & P(S_i) & \rightarrow & \Delta(i) & \rightarrow & 0
\end{array}
$$

We claim that the map μ_{eS_i} is a monomorphism. Consider the filtration of $\ker g_i$, and in particular, the exact sequence $0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_2/M_1 \rightarrow 0$ (as in the proof of Step 4) where M_1 and M_2/M_1 lie in the set $\{\Delta(i+1), \ldots, \Delta(n)\}$. Note that $j > i$ and $1 \leq i \leq m$. Consider now the diagram (2.4). Step 1 implies $e\Delta(i) = 0$ for all $1 \leq i \leq m$ and by Step 4 we have $Ae \otimes eA e\Delta(i) \simeq \Delta(i)$ for all $m + 1 \leq i \leq n$. Clearly, in any of the latter cases the map μ_{eS_i} in (2.4) is a monomorphism. Continuing inductively on the length of the filtration of $\ker g_i$, the map μ_{eS_i} is seen to be a monomorphism. Then from diagram (2.5) it follows that the map $\mu_{P(S_i)}$ is a monomorphism for any $1 \leq i \leq m$, that is, condition (b) holds.

Step 6. We show that $\Tor^1(A/AeA, \Delta(i)) = 0$ for all $m + 1 \leq i \leq n$. Consider the exact sequence $0 \rightarrow AeA \rightarrow A \rightarrow A/AeA \rightarrow 0$ of right A-modules. By Step 2 we have the following exact sequence:

$$
\begin{array}{c}
0 & \rightarrow & \Tor^1(A/AeA, \Delta(i)) & \rightarrow & AeA \otimes_A \Delta(i) & \rightarrow & A \otimes_A \Delta(i) & \rightarrow & 0
\end{array}
$$

Consider the following exact commutative diagram:

$$
\begin{array}{c}
Ae \otimes eA eA & \xrightarrow{\mu_A} & A & \rightarrow & A/AeA & \rightarrow & 0
\end{array}
$$

Applying the functor $- \otimes_A \Delta(i)$, we get the commutative diagram

$$
\begin{array}{c}
Ae \otimes eA eA \otimes_A \Delta(i) & \xrightarrow{\mu_A \otimes \Delta(i)} & A \otimes \Delta(i) & \rightarrow & 0
\end{array}
$$

From Step 4, the map $\mu_A \otimes \Delta(i)$ is an isomorphism. This implies that the map $\kappa_A \otimes \Delta(i)$ is an isomorphism and the map $\lambda_A \otimes \Delta(i)$ is an epimorphism. By the commutativity of the above diagram, we get the desired \Tor-vanishing.

Step 7. We show that the ring A/AeA is quasi-hereditary with standard modules $\{A/AeA \otimes_A \Delta(1), \ldots, A/AeA \otimes_A \Delta(m)\}$. Recall that for all $1 \leq i \leq m$ we have $\Tor^1(A/AeA, S_i) = 0$ (see the first paragraph of the proof). Applying the functor $A/AeA \otimes_A -$ to the short exact sequence (2.2), we get the short exact sequence $0 \rightarrow A/AeA \otimes_A \ker f_i \rightarrow A/AeA \otimes_A \Delta(S_i) \rightarrow A/AeA \otimes_A S_i \rightarrow 0$ such that $A/AeA \otimes_A \ker f_i$ is filtered by $A/AeA \otimes_A S_j$ with $1 \leq j < i$. Consider now the short exact sequence (2.3). Recall that in this case $\ker g_i$ is filtered by $\Delta(S_j)$ with $i < j \leq n$. Then, by Step 6 we obtain the exact sequence $0 \rightarrow$
$A/AeA \otimes_A \text{Ker} g_i \rightarrow A/AeA \otimes_A P(S_i) \rightarrow A/AeA \otimes_A \Delta(i) \rightarrow 0$ such that $A/AeA \otimes_A \text{Ker} g_i$ is filtered by $A/AeA \otimes_A \Delta(j)$ with $i < j \leq n$. We infer that the ring A/AeA is quasi-hereditary.

(ii) \implies (i): Since the ring eAe is quasi-hereditary, there exist standard eAe-modules
\[
\{\Delta(eS_{m+1}), \ldots, \Delta(eS_n)\}.
\]
Also, since the ring A/AeA is quasi-hereditary, there are standard A/AeA-modules
\[
\{\Delta(S_1), \ldots, \Delta(S_m)\}.
\]

The proof is divided into two steps.

Step 1. We show that $\{Ae \otimes eA \Delta(eS_{m+1}), \ldots, Ae \otimes eA \Delta(eS_n)\}$ are standard A-modules. First, recall that $Ae \otimes eA eP(S_i) \simeq P(S_i)$ for any $m+1 \leq i \leq n$, see the proof of Step 2 in (i) \implies (ii). The latter isomorphism together with condition (b) gives the isomorphism $Ae \otimes eA eA \simeq AeA$.

Since eAe is quasi-hereditary, there exists an exact sequence
\[
0 \rightarrow \text{Ker} \phi_i \rightarrow \Delta(eS_i) \xrightarrow{\phi_i} eS_i \rightarrow 0 \tag{2.6}
\]
for all $m+1 \leq i \leq n$, such that $\text{Ker} \phi_i$ is filtered by eS_j with $m+1 \leq j < i$. Applying $Ae \otimes eA$ - to (2.6) gives an exact sequence
\[
0 \rightarrow \text{Ker} \psi_i \rightarrow Ae \otimes eA \Delta(eS_i) \xrightarrow{\psi_i} S_i \rightarrow 0
\]
Moreover, $eAe \psi_i \simeq \text{Ker} \phi_i$. We claim that $\text{Ker} \psi_i$ is filtered by S_j with $1 \leq j < i$. Assume to the contrary that $0 \subsetneq L_1 \subsetneq L_2 \subsetneq \cdots \subsetneq L_{n-1} \subset \text{Ker} \psi_i$ is a filtration of $\text{Ker} \psi_i$ by S_j for $1 \leq j \leq n$. Then there are exact sequences $0 \rightarrow L_1 \rightarrow L_2 \rightarrow L_2/L_1 \rightarrow 0$, $0 \rightarrow L_2 \rightarrow S_i \rightarrow S_i/L_2 \rightarrow 0$ and so on, where L_1 and all the quotients are simple A-modules. Applying $eA \otimes_A$ - to the above sequences, we obtain that $\text{Ker} \phi_i$ is filtered by eS_j with $m+1 \leq j \leq n$, which is a contradiction since j is strictly smaller than i. Hence, our claim holds.

On the other hand, in the short exact sequence
\[
0 \rightarrow \text{Ker} f_i \rightarrow P_i(eS_i) \xrightarrow{f_i} \Delta(eS_i) \rightarrow 0 \tag{2.7}
\]
the first term $\text{Ker} f_i$ is filtered by $\Delta(eS_j)$ for $i < j \leq n$. Since $\text{Tor}_1^{Ae}(Ae, \Delta(eS_j)) = 0$ for all $m+1 \leq i \leq n$ by condition (d), applying the functor $Ae \otimes eA$ - to (2.7) yields the short exact sequence:
\[
0 \rightarrow Ae \otimes eA \text{Ker} f_i \rightarrow P(S_i) \rightarrow Ae \otimes eA \Delta(eS_i) \rightarrow 0
\]
such that $Ae \otimes eA \text{Ker} f_i$ is filtered by $Ae \otimes eA \Delta(eS_j)$ with $i < j \leq n$.

Step 2. We prove that $\{\Delta(S_1), \ldots, \Delta(S_m)\}$ are standard A-modules. Since A/AeA is quasi-hereditary, for all $1 \leq i \leq m$ there is an exact sequence of left A/AeA-modules, and thus also of left A-modules,
\[
0 \rightarrow \text{Ker} \varphi_i \rightarrow \Delta(S_i) \xrightarrow{\varphi_i} S_i \rightarrow 0
\]
such that $\text{Ker} \varphi_i$ is filtered by S_j with $1 \leq j < i$. Since $A/AeA \otimes_A P(S_i) = A/AeA \otimes_A Ae_i = (A/AeA)e_i$, it follows that $A/AeA \otimes_A P(S_i)$ is the projective cover of S_i as an A/AeA-module. Consider the epimorphism $h_i: A/AeA \otimes_A P(S_i) \rightarrow \Delta(S_i)$ where $\ker h_i$ is filtered by $\Delta(S_j)$ for $i < j \leq m$. By assumption (b), for all $1 \leq i \leq m$ there is the following short exact sequence of left A-modules
\[
0 \rightarrow Ae \otimes eA eP(S_i) \xrightarrow{eP(S_i)} P(S_i) \xrightarrow{\lambda P(S_i)} A/AeA \otimes_A P(S_i) \rightarrow 0
\]
Define the composition \(g_i := h_i \circ \lambda_{P(S_i)} \) and consider the short exact sequence

\[
0 \longrightarrow \text{Ker} \, g_i \longrightarrow P(S_i) \xrightarrow{g_i} \Delta(S_i) \longrightarrow 0
\]

We claim that the first term \(\text{Ker} \, g_i \) is filtered by \(\Delta(S_i) \) for \(i < j \leq n \). Applying the Snake Lemma to the commutative diagram

\[
\begin{array}{ccc}
Ae \otimes_{eAe} eP(S_i) & \longrightarrow & \text{Ker} \, g_i \\
\downarrow \text{inc} & & \downarrow \text{inc} \\
Ae \otimes_{eAe} eP(S_i) & \longrightarrow & P(S_i) \\
\downarrow g_i & & \downarrow h_i \\
\Delta(S_i) & \longrightarrow & \Delta(S_i)
\end{array}
\]

provides us with the short exact sequence

\[
0 \longrightarrow Ae \otimes_{eAe} eP(S_i) \longrightarrow \text{Ker} \, g_i \longrightarrow \text{Ker} \, h_i \longrightarrow 0 \quad (2.8)
\]

By assumption (c) and (d), for all \(1 \leq i \leq m \), the \(eAe \)-module \(eP(S_i) \) is filtered by \(\Delta(eS_j) \) for \(m + 1 \leq j \leq n \) and \(\text{Tor}_1^{eAe}(Ae, \Delta(eS_j)) = 0 \). Therefore, \(Ae \otimes_{eAe} eP(S_i) \) is filtered by \(Ae \otimes_{eAe} \Delta(eS_j) \) with \(m + 1 \leq j \leq n \). Moreover, the module \(\text{Ker} \, h_i \) is filtered by \(\Delta(S_j) \) for \(i < j \leq m \). From (2.8) it follows that \(\text{Ker} \, g_i \) is filtered by \(Ae \otimes_{eAe} \Delta(eS_j) \) and \(\Delta(S_j) \) for \(i < j \leq n \).

By Step 1 and Step 2, the ring \(A \) is quasi-hereditary.

\[\square \]

Remark 2.2. Dlab and Ringel have shown that \(A \) is a quasi-hereditary ring if and only if the opposite ring \(A^{op} \) is quasi-hereditary [5, Statement 9]. The proof proceeds inductively and is based on the fact that for a heredity ideal \(AeA \) in a ring, multiplication in \(A \) provides an isomorphism \(\text{Hom}_A(AeA, \text{mult} \ AeA) \) of \(A \)-bimodules. When \(AeA \) is a heredity ideal, then \(eAe \) is semisimple, and then multiplication in \((e) \) is an isomorphism if and only if \(AeA \) is projective as a left \(A \)-module if and only if it is projective as a right \(A \)-module. This is the left-right symmetry needed. The isomorphism \((e) \) is a special case of a direct consequence of condition (b) in Theorem 2.1. Using the result of Dlab and Ringel, Theorem 2.1 can be reformulated for the ring \(A^{op} \) in terms of conditions (a)(op)–(d)(op).

Let \(A \) be a quasi-hereditary ring with heredity chain \(\mathcal{J} = (J_i)_{0 \leq i \leq n} \) and let \(M \) be an \(A \)-module. Then the \(\mathcal{J} \)-filtration of \(M \) is the chain of submodules

\[
0 = J_{n+1}M \subseteq J_nM \subseteq \cdots \subseteq J_0M = M.
\]

Dlab and Ringel [4] called the \(\mathcal{J} \)-filtration of \(M \) good if the quotient \(J_iM/J_{i+1}M \) is projective as an \(A/J_{i+1} \)-module for all \(0 \leq i \leq n \).

Lemma 2.3. Let \(A \) be a quasi-hereditary ring and let \(M \) be a left \(A \)-module. The following statements are equivalent.

(i) The \(\mathcal{J} \)-filtration of \(M \) is good.

(ii) \(M \in \mathcal{T}(A) \).

Proof. The heredity ideal \(J_n \) is generated by a primitive idempotent \(e_n \), hence \(J_n = Ae_nA \). Therefore, \(J_nM = Ae_nM \) is the trace of \(Ae_n \) in \(M \). It is projective if and only if it is in \(\text{Add}(Ae_n) \), which equals \(\text{Add}(\Delta(n)) \) because of \(\Delta(n) \cong Ae_n \). As \(\Delta(j) \) for \(j \neq n \) has no composition factor \(S(j) \) and hence \(\text{Hom}_A(Ae_n, \Delta(j)) = e_n \Delta(j) = 0 \) for all \(j \neq n \), the bottom part of a \(\Delta \)-filtration of \(M \), if there is one, must coincide with \(Ae_nM \), which then must be projective. Continuing by induction, the claimed equivalence follows.

\[\square \]
2.1 we obtain the hold. On the other hand, we give a new proof which simultaneously provides an answer to the and Lemma 2.2]

\[e \text{ hereditary and the conditions (c) and (d) of Theorem } A \]

\[\text{contradiction to } e \text{ implies } f \text{ restricts to injective maps } \ker A \text{ is a monomorphism and its image must be contained in } f \text{ is not a monomorphism, then } \ker f \text{ is projective since } A \text{ is hereditary and therefore } \text{pd Coker } f = 2, \text{ contradicting the fact that } A \text{ is hereditary. Thus, the morphism } f \text{ must be a monomorphism and its image must be contained in } \text{rad}(Ae). \text{ Hence, } f \text{ restricts to injective maps } \text{rad}^j(Ae) \to \text{rad}^j(\text{Im}(f)) \subset \text{rad}^{j+1}(Ae) \text{ for all } j, \text{ a contradiction to } A \text{ being semiprimary and thus having finite radical length. This implies } e(\text{rad } A)e = 0 \text{ and therefore the ideal } AeA \text{ is heredity. Moreover, since } e(\text{rad } A)e = \text{rad } AeA, \text{ the algebra } eAe \text{ is semisimple. Thus, the algebra } eAe \text{ is quasi-hereditary and the conditions (c) and (d) of Theorem 2.1 hold. On the other hand,}

\[\text{gl dim } A \leq 1, \text{ then } \mathcal{S} \text{ and } \mathcal{C} \text{ are also hereditary. The converse is wrong, when just one recollement is used. There is, however, a converse in terms of a set of recollections related with heredity chains in semiprimary rings. To state this result, some notation has to be fixed. Let } A \text{ be a semiprimary ring and let } X \text{ be the set of isomorphism classes of simple } A \text{ modules. Suppose } X = X_1 \sqcup X_2 \text{ is a disjoint union of two non-empty subsets. Let } e_{X_1} \text{ be an idempotent such that } Ae_{X_1} \text{ is a direct sum of projective covers of simple modules representing all classes in } X_1, \text{ and } e_{X_2} \text{ similarly.}

\[\text{Corollary 3.1. (5, Theorem 1) Let } A \text{ be a semiprimary ring. The following statements are equivalent:}

(i) \(A \) is a hereditary ring.
(ii) \(A \) is a quasi-hereditary ring with any ordering.
(iii) For all partitions of \(X \) into \(X_1 \sqcup X_2 \), the ring \(A \) has a heredity chain such that \(Ae_{X_1} \) is contained and \(A/Ae_{X_2}A, \) \(e_{X_2}Ae_{X_2}A \) are hereditary.

\[\text{Proof. (i) } \Rightarrow (ii): \text{ Suppose that } A \text{ is hereditary and let } e \text{ be a primitive idempotent of } A. \text{ Associated with any idempotent element } e \text{ we always have a recollement of module categories, see diagram (2.1). Since } \text{gl dim } A \leq 1, \text{ it follows that } AeA \text{ is a projective left } A \text{-module. Moreover, let } f:AeA \to AeA \text{ be a non-zero } A \text{-morphism. We claim that } f \text{ is an isomorphism. Indeed, if } f \text{ is an epimorphism then it is an isomorphism since } AeA \text{ is indecomposable. Suppose } f \text{ is not surjective. If } f \text{ is not a monomorphism, then } \ker f \text{ is projective since } A \text{ is hereditary and therefore } \text{pd Coker } f = 2, \text{ contradicting the fact that } A \text{ is hereditary. Thus, the morphism } f \text{ must be a monomorphism and its image must be contained in } \text{rad}(Ae). \text{ Hence, } f \text{ restricts to injective maps } \text{rad}^j(Ae) \to \text{rad}^j(\text{Im}(f)) \subset \text{rad}^{j+1}(Ae) \text{ for all } j, \text{ a contradiction to } A \text{ being semiprimary and thus having finite radical length. This implies } e(\text{rad } A)e = 0 \text{ and therefore the ideal } AeA \text{ is heredity. Moreover, since } e(\text{rad } A)e = \text{rad } AeA, \text{ the algebra } eAe \text{ is semisimple. Thus, the algebra } eAe \text{ is quasi-hereditary and the conditions (c) and (d) of Theorem 2.1 hold. On the other hand,} \]
the projectivity of AeA implies that it is a stratifying ideal, i.e. $AeA \cong AeA$ and $\text{Tor}^i_{eA}(AeA, eA) = 0$ for all $i > 0$, thus condition (b) of Theorem 2.1 holds. Since AeA is a stratifying ideal, $\text{gl.dim }A/eA \leq \text{gl.dim }A \leq 1$. By induction on the number of simple modules and since A/AeA is hereditary, A/AeA is quasi-hereditary. By Theorem 2.1, the algebra A is quasi-hereditary with any ordering since e was an arbitrary idempotent element of A.

(ii) \implies (i): Suppose that A is a quasi-hereditary algebra with any ordering. We proceed by induction on the number of simple modules. Induction starts with a local quasi-hereditary ring A. Then A equals a heredity ideal AeA, for some idempotent e that must be equivalent to the unit of A. Then eAe, which is semisimple, is Morita equivalent to A. Hence A is simple. Assume that we have two non-trivial idempotents e_1 and e_2 (i.e. $e_2 = 1 - e_1$). Then we have the recollement of module categories $(A/eA\text{-Mod}, A\text{-Mod}, eA\text{-Mod})$ and we iterate like this.

We continue now by showing that A is hereditary. Let S be a simple A-module which is annihilated by a primitive idempotent element e of A. Since A is a quasi-hereditary algebra with any ordering, it follows that AeA is a heredity ideal and A/AeA is a quasi-hereditary algebra with any ordering. By induction hypothesis the algebra A/AeA is hereditary and therefore we have $\text{pd}_{A/AeA} S \leq 1$. Since AeA is a projective left A-module, it follows that $\text{pd}_{A} A/eA = 1$. This implies that $\text{pd}_{A} S \leq 2$. We claim that $\text{pd}_{A} S = 2$ is not the case. Since $eS = 0$ and A/eA is a projective left A-module, applying the functor $- \otimes_{A} S$ to the exact sequence $0 \rightarrow AeA \rightarrow A \rightarrow A/eA \rightarrow 0$ of right A-modules, we get that $\text{Tor}^1_{A}(A/eA, S) = 0$ for any $n \geq 1$.

Let

$$
0 \rightarrow P_2 \overset{f_2}{\rightarrow} P_1 \overset{f_1}{\rightarrow} P_0 \overset{f_0}{\rightarrow} S \rightarrow 0
$$

be a minimal projective resolution of S. Since $\text{Tor}^1_{A}(A/eA, \text{Ker } f_0) = 0$, applying the functor $A/eA \otimes_{A} -$ we obtain the following exact sequence

$$
0 \rightarrow A/eA \otimes_{A} P_2 \overset{1d \otimes f_2}{\rightarrow} A/eA \otimes_{A} P_1 \overset{1d \otimes f_1}{\rightarrow} A/eA \otimes_{A} P_0 \overset{1d \otimes f_0}{\rightarrow} S \rightarrow 0
$$

where $A/eA \otimes_{A} P_i$ are projective left A/eA-modules. Since $\text{pd}_{A} A/eA S \leq 1$ it follows that either $A/eA \otimes_{A} P_2 = 0$ or $1d \otimes_{A} f_2$ is a non-zero split monomorphism.

First case: $A/eA \otimes_{A} P_2 = 0$. Since $A/eA \otimes_{A} P_2 \cong P_2$ and A/eA is a projective left A-module, we get a split exact sequence $0 \rightarrow P_2 \rightarrow A/eA \otimes_{A} P_1 \rightarrow A/eA \otimes_{A} P_0 \rightarrow 0$. Note that $A/eA \otimes_{A} P_1$ is a direct summand of P_1, and thus from the splitting we get that P_2 is a direct summand of P_1. However, this contradicts the minimality of the projective resolution of S.

Second case: $1d \otimes_{A} f_2$ is a non-zero split monomorphism. Let $1d \otimes_{A} h$ be the inverse and denote by π_2: $P_2 \rightarrow A/eA \otimes_{A} P_2$ the canonical epimorphism. Since $(1d \otimes_{A} h f_2)\pi_2 = \pi_2(h f_2)$, it follows that $\pi_2 = \pi_2(h f_2)$. Consider now the following diagram with exact rows:

$$
\begin{array}{ccc}
0 & \rightarrow & A/eA \otimes_{A} P_2 \\
\downarrow & & \downarrow \\
A/eA \otimes_{A} P_2 & \rightarrow & P_2 \\
\downarrow & & \downarrow \\
0 & \rightarrow & A/eA \otimes_{A} P_2
\end{array}
$$

Then the map $1d_{P_2} - h f_2$ factors through ι_2, i.e. there is a map ψ: $P_2 \rightarrow A/eA \otimes_{A} P_2$ such that $1d_{P_2} = h f_2 + \iota_2 \psi$. Hence, P_2 is a direct summand of $P_1 \otimes (A/eA \otimes_{A} P_2)$ and this implies that P_2 and P_1 have common direct summands. This contradicts the minimality of the projective resolution of S. Thus $\text{pd}_{A} S \leq 1$, i.e. A is hereditary.

(ii) \iff (iii): Assume that (ii) holds and let $X = X_1 \cup X_2$ be a partition of X. Then the ring A has a heredity chain such that AeX_2A is contained and since A is
hereditary, it follows from [13, Theorem 4.8] that the rings \(A/Ae_{X_2}A \) and \(e_{X_2}Ae_{X_2} \) are hereditary. The implication (iii) \(\implies \) (ii) is clear.

Next we provide a sufficient condition for a class of Morita context rings to be quasi-hereditary. For more details on Morita context rings, we refer to [8].

Corollary 3.2. Let \(A \) be a finite dimensional \(k \)-algebra over a field \(k \), and \(e \) and \(f \) two idempotent elements of \(A \) such that \(fAe = 0 \). Let \(N := Ae \otimes_k fA \) and \(\Lambda_{(0,0)} := (\frac{N}{A}) \). If \(A \) is a quasi-hereditary algebra, then the Morita context ring \(\Lambda_{(0,0)} \) is a quasi-hereditary algebra.

Proof. Since \(fAe = 0 \), it follows that \(N \otimes_A N = 0 \). Then by [7, Example 4.16], \(\Lambda_{(0,0)} \) is a Morita context ring, whose addition is componentwise, and multiplication is given as follows:

\[
\begin{pmatrix} a & n \\ m & b \end{pmatrix} \cdot \begin{pmatrix} a' & n' \\ m' & b' \end{pmatrix} = \begin{pmatrix} aa' + nb' \\ ma' + bm' \end{pmatrix}
\]

The objects of \(\text{mod}-\Lambda_{(0,0)} \) are given by tuples \((X,Y,f,g)\), where \(X \in \text{mod}-A, Y \in \text{mod}-A, f: N \otimes_A X \to Y \) and \(g: N \otimes_A Y \to X \). The compatibility conditions that objects over a Morita context ring should satisfy are trivial since \(N \otimes_A N = 0 \), see [8]. Furthermore, from [8, Proposition 2.4] there is a recollement

\[
\begin{aligned}
A\text{-mod} & \longrightarrow \Lambda_{(0,0)}\text{-mod} & U_A \\
H_A \rotatebox{90}{\hookrightarrow} \Lambda_{(0,0)}\text{-mod} & \longrightarrow & A\text{-mod}
\end{aligned}
\]

where \(T_A(X) = (X,N \otimes_A X,\operatorname{Id}_{N \otimes_A X},0) \), \(U_A(X,Y,f,g) = X \) and \(H_A(X) = (N \otimes_A X,X,0,\operatorname{Id}_{N \otimes_A X}) \). From [8, Proposition 3.1] the indecomposable projective \(\Lambda_{(0,0)} \)-modules are of the form \(T_A(P) \) and \(H_A(P) \), where \(P \) is an indecomposable projective \(A \)-module. We use Theorem 2.1 to derive that \(\Lambda_{(0,0)} \) is a quasi-hereditary algebra. The recollement of \(\Lambda_{(0,0)}\text{-mod} \) induced by the idempotent element \(\varepsilon = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \) is precisely the one given above (consider the recollement (2.1) for finitely generated modules). Condition (a) of Theorem 2.1 is clearly satisfied since \(A \) is quasi-hereditary. To check condition (b), we compute the counit map of the adjunction \((T_A,U_A)\). In particular, there are morphisms

\[
\begin{aligned}
T_A U_A(T_A(P)) & \longrightarrow T_A(P) \\
T_A U_A(H_A(P)) & \longrightarrow H_A(P)
\end{aligned}
\]

where \(T_A U_A(H_A(P)) = (N \otimes_A P,0,0,0) \). Hence, the counit map in any projective is a monomorphism, so condition (b) holds.

For conditions (c) and (d) of Theorem 2.1, observe that \(\varepsilon \Lambda_{(0,0)} \varepsilon \) is a projective right \(\varepsilon \Lambda_{(0,0)} \varepsilon \)-module and \(\varepsilon \Lambda_{(0,0)} \varepsilon \) is a projective left \(\varepsilon \Lambda_{(0,0)} \varepsilon \)-module since \(N \) is a both left and right projective \(A \)-module. Note that \(A \simeq \varepsilon \Lambda_{(0,0)} \varepsilon \).

By Theorem 2.1, \(\Lambda_{(0,0)} \) is quasi-hereditary.

Let \(A \) now be a finite dimensional quasi-hereditary algebra over a field \(k \) and with respect to a poset \(X \). The \(k \)-duals of the standard \(A^{\op} \)-modules are \(A \)-modules, which are called costandard. Recall from [3] that for each \(x \in X \), the costandard module \(\nabla(x) \) satisfies the following two conditions:

(i) there is a monomorphism \(L(x) \longrightarrow \nabla(x) \) such that the cokernel is filtered by \(L(y) \) with \(y < x \);
(ii) there is a monomorphism $\nabla(x) \longrightarrow I(x)$ such that the cokernel is filtered by $\nabla(z)$ with $z > x$.

We denote by $\mathcal{F}(eA\nabla)$ the full subcategory of $A\text{-mod}$ consisting of A-modules which have a filtration by costandard A-modules.

Ringel [15] introduced the notion of the characteristic tilting module, which is a basic module T such that $\mathcal{F}(A\Delta) \cap \mathcal{F}(eA\nabla) = \text{add} T$. We close this section with the next result, where we investigate the behaviour of the characteristic tilting module along the recollement situation (2.1) of Theorem 2.1. We remark that we consider below a version of (2.1) for finitely generated modules.

Corollary 3.3. Let A be a quasi-hereditary algebra such that eAe is contained in a heredity chain of A. The following hold.

(i) The functor $eA \otimes_{eAe} - : eA\text{-mod} \longrightarrow A\text{-mod}$ sends $\mathcal{F}(eA\Delta)$ to $\mathcal{F}(A\Delta)$.

(ii) The functor $eA \otimes_A - : A\text{-mod} \longrightarrow eA\text{-mod}$ sends $\mathcal{F}(A\Delta)$, resp. $\mathcal{F}(eA\nabla)$, to $\mathcal{F}(eA\Delta)$, resp. $\mathcal{F}(eA\nabla)$.

(iii) The inclusion functor inc: $A/AeA\text{-mod} \longrightarrow A\text{-mod}$ sends $\mathcal{F}(A/AeA\Delta)$, resp. $\mathcal{F}(A/AeA\nabla)$, to $\mathcal{F}(A\Delta)$, resp. $\mathcal{F}(A\nabla)$.

(iv) The functors $eA \otimes_A -$ and inc preserve the characteristic tilting modules.

Proof. (i) This follows immediately using condition (d), i.e. $\text{Tor}_{1}^{eA}(A, eAe) = 0$, of Theorem 2.1.

(ii) First, from the proof of Step 3 in (i) \implies (ii) of Theorem 2.1, we have that the functor $eA \otimes_A - : A\text{-mod} \longrightarrow eA\text{-mod}$ sends $\mathcal{F}(A\Delta)$ to $\mathcal{F}(eA\Delta)$. We show that the functor $eA \otimes_A -$ sends $\mathcal{F}(eA\nabla)$ to $\mathcal{F}(eA\nabla)$. Indeed, since A is quasi-hereditary, the opposite algebra A^{op} is also quasi-hereditary. Denote by $D = \text{Hom}_k(-, k)$ the standard k-duality and let $\nabla(S_1), \ldots, \nabla(S_n)$ be all costandard A-modules. Then $D(\nabla(S_i))$ is a standard A^{op}-module for each $1 \leq i \leq n$. Thus, we get that $D(\nabla(S_i))e$ is a standard $(eA)^{op}$-module. Since $D(e\nabla(S_i)) \cong D(\nabla(S_i))e$, it follows that $e\nabla(S_i)$ is a costandard eA-module for each $1 \leq i \leq n$.

(iii) By Step 2 of (ii) \implies (i) in Theorem 2.1, the inclusion functor inc restricts to a functor inc: $\mathcal{F}(A/AeA\Delta) \longrightarrow \mathcal{F}(A\Delta)$. Also, a similar argument as above shows that the inclusion functor sends $\mathcal{F}(A/AeA\nabla)$ to $\mathcal{F}(A\nabla)$.

(iv) This follows immediately by (ii) and (iii). \qed

References

[1] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488.
[2] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, in: Analysis and topology on singular space, Luminy, 1981, Astérisque 100 (1982), 5–171.
[3] E. Cline, B. J. Parshall, L. L. Scott, Finite dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85–99.
[4] V. Dlab, C. M. Ringel, A construction of quasi-hereditary algebras, Compos. Math. 70 (1989), 155–175.
[5] V. Dlab, C. M. Ringel, Quasi-hereditary algebras, Illinois J. Math. 33 (2) (1989), 280–291.
[6] V. Franjou and T. Pirashvili, Comparison of abelian categories recollements, Documenta Math. 9 (2004), 41–56.
[7] N. Gao, C. Psaroudakis, Gorenstein homological aspects of monomorphism categories via Morita rings, Algebr. Represent. Theory 20 (2) (2017), 487–529.
[8] E. L. Green, C. Psaroudakis, On Artin algebras arising from Morita contexts, Algebr. Represent. Theory 17 (5) (2014), 1485–1525.
[9] H. Krause, Highest weight categories and recollements, Ann. Inst. Fourier (Grenoble) 67 (2017), 2679–2701.
[10] N. J. Kuhn, The generic representation theory of finite fields: a survey of basic structure. Infinite length modules (Bielefeld 1998), 193–212, Trends Math., Birkhauser, Basel, 2000.
[11] B. J. Parshall and L. L. Scott, Derived categories, quasi-hereditary algebras, and algebraic groups. Proceedings of the Ottawa-Moosonee Workshop in Algebra (1987), 105 pp., Carleton Univ., Ottawa, ON, 1988. Available on http://people.virginia.edu/~lls2l/Ottawa.pdf.

[12] C. Psaroudakis and J. Vitoria, Recollements of Module Categories, Appl. Categ. Structures 22 (2014), no. 4, 579-593.

[13] C. Psaroudakis, Homological theory of recollements of abelian categories, J. Algebra 398 (2014), 63–110.

[14] C. Psaroudakis, A representation-theoretic approach to recollements of abelian categories, preprint.

[15] C. M. Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), 209–223.

Nan Gao, Department of Mathematics, Shanghai University, Shanghai 200444, PR China
E-mail address: nangao@shu.edu.cn

Steffen Koenig, Institute of Algebra and Number Theory, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
E-mail address: skoenig@mathematik.uni-stuttgart.de

Chrysostomos Psaroudakis, Institute of Algebra and Number Theory, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
E-mail address: chrysostomos.psaroudakis@mathematik.uni-stuttgart.de