Raman spectroscopic studies and DFT calculations on NaCH$_3$CO$_2$ and NaCD$_3$CO$_2$ solutions in water and heavy water†

Wolfram W. Rudolph* and Gert Irmerb

Sodium acetate and sodium acetate-d$_3$ solutions in water and heavy water were studied using Raman spectroscopy over a wide concentration range and from low wavenumbers (40 cm$^{-1}$) up to 4200 cm$^{-1}$. In the terahertz region the broad breathing mode Na–O at 189 cm$^{-1}$ was detected as well as a broad shoulder at 245 cm$^{-1}$ of the restricted translation band of acetate–water. Fundamental modes of CH$_3$CO$_2$–(aq) and acetate–d$_3$, CD$_3$CO$_2$–(aq), were assigned and discussed according to pseudo C$_2$ symmetry. The vibrational isotope effect of the CH$_3$/CD$_3$ group was observed and the Teller-Redlich product rule confirmed the assignments. Additionally, band assignments of CH$_3$CO$_2$– and CD$_3$CO$_2$– in heavy water were reported and discussed. By changing from H$_2$O to D$_2$O, relatively strong H-bonding between the oxygen atoms of acetate causes a change in the vibrational energy levels of the dissolved acetate. The symmetric stretching mode of the CO$_2$ group for CH$_3$CO$_2$– in water and heavy water was obtained at 1413.5 cm$^{-1}$ and 1418.6 cm$^{-1}$ respectively and for CD$_3$CO$_2$– in water and heavy water, the symmetric stretch was obtained at 1407.5 cm$^{-1}$ and 1412.4 cm$^{-1}$ respectively. Coupling of the intramolecular acetate bands is fairly extensive and therefore DFT calculations were carried out on discrete acetate–water (heavy water) clusters. The clusters with the general stoichiometry CH$_3$CO$_2$–nH$_2$O–mH$_2$O (n = 1–5, m = 1) and n the number of first shell water molecules and m the second shell were considered and calculations at the B3LYP 6-311+G(5df,2p) level were performed. The frequency calculations on CH$_3$CO$_2$–·5H$_2$O and CD$_3$CO$_2$--·5H$_2$O clusters supported the assignments of the fundamental modes. The geometrical parameters such as bond length and bond angles of acetate in solution state were obtained. The influence of acetate on the O–H stretching band of water was measured as a function of concentration in order to determine the influence of the methyl group on the structure of water. No enhancement of the water structure around the nonpolar methyl group could be detected nor the existence of dangling H bonds at ~3670 cm$^{-1}$. In NaCF$_3$CO$_2$ solutions, however, dangling O–H bonds could be observed at ~3670 cm$^{-1}$ caused by the hydrophobic CF$_3$ group. Finally, the nature of the ion pairs formed between Na$^+$ and acetate were discussed in NaCH$_3$CO$_2$(aq) and in concentrated solutions no contact ion pairs could be detected.

1. Introduction

Interest in the study of aqueous carboxylates and carboxylic acids originates from their importance as constituents in biomolecules such as amino acids, fatty acids and surfactants.1,2 Nuclear magnetic resonance (NMR) experiments revealed a hydration number of 5–6 water molecules for the carboxylate group R–CO$_2$– (ref. 3) while X-ray diffraction studies on divalent transition metal acetates gave a hydration number for acetate in the range between 3.0–6.1.4 An X-ray study on NaCH$_3$CO$_2$(aq)3 and a neutron diffraction (ND) investigation6 on NaCH$_3$CO$_2$ in D$_2$O reported a hydration number of 4. Ab initio molecular orbital calculations indicated relatively strong H-bonds between CH$_3$CO$_2$– oxygen atoms and first shell water molecules.7,8 Molecular dynamics (MD) simulations demonstrated, furthermore, that the first-shell waters are either loosely or tightly bound to their CH$_3$CO$_2$– oxygen atoms leading to a fluctuation in the hydration number ranging from 2–5.9 Dielectric relaxation spectroscopic (DRS) measurements on NaCH$_3$CO$_2$(aq) aimed at the hydration, dissociation and ion-pair formation were recently reported.10,11 A combined Raman and infrared spectroscopic investigation on NaCH$_3$CO$_2$(aq) was undertaken and for NaCH$_3$CO$_2$ solutions, it was established that even up to very high concentrations, the acetate forms solvent separated ion pairs with Na$^+$ instead of contact ion pairs and in addition...
vibrational band assignments of \(\text{CH}_3\text{CO}_2^- \) were supported by comparison with DFT frequencies.\(^{12}\)

In this study, we have expanded our work on acetate in aqueous solution to investigate acetate-\(\text{d}_3 \), \(\text{CD}_3\text{CO}_2^- \), by including the vibrational deuterium isotope effect of the C-H bands (Teller-Redlich product rule) as one central point of interest. It became clear, however, that the acetate bands of the hydrated ion were also affected by changing the solvent from water to heavy water even though the \(\text{CH}_3\text{CO}_2^- \) ion possesses no exchangeable hydrogen at room temperature in its molecular structure. (The same holds true for \(\text{CD}_3\text{CO}_2^- \) which does not possess exchangeable deuterium.) This deuterium solvent effect observed for the acetate and acetate-\(\text{d}_3 \) is the second point of interest in this investigation. Furthermore, the influence of the acetate on the broad O-H stretching band of water and the formation of ion-pairs in \(\text{NaCD}_3\text{CO}_2 \) and \(\text{NaCH}_3\text{CO}_2 \) will be dealt with as well. Raman and infrared spectra of \(\text{NaCH}_3\text{CO}_2 \) supported the assignments of the intramolecular modes. The theoretical frequency calculations assisted in assigning the vibrational band assignments of \(\text{CH}_3\text{CO}_2^- \) and \(\text{CD}_3\text{CO}_2^- \). The chosen cluster approach takes into account the directional nature of the H-bonds formed in aqueous solution. DFT frequency calculations on clusters of light acetate, \(\text{CH}_3\text{CO}_2^- \), and heavy acetate, \(\text{CD}_3\text{CO}_2^- \), were undertaken.

2. **Experimental section**

2.1. **Preparation of the solutions**

A \(\text{NaCH}_3\text{CO}_2 \) stock solution was prepared from dried anhydrous NaCH\(_3\)CO\(_2\) (99.5% extra pure; Merck, Darmstadt, Germany) with triply distilled water free of CO\(_2\) by weight. The stock solution was 5.022 mol L\(^{-1}\) (6.506 mol kg\(^{-1}\), \(R_w = 8.51 \)). Further NaCH\(_3\)CO\(_2\) solutions were prepared: 3.262 mol L\(^{-1}\) (3.822 mol kg\(^{-1}\), \(R_w = 14.52 \)), 2.184 mol L\(^{-1}\) (2.425 mol kg\(^{-1}\), \(R_w = 22.94 \)), 1.209 (1.280 mol kg\(^{-1}\), \(R_w = 43.53 \)), 0.810 (0.842 mol kg\(^{-1}\), \(R_w = 66.17 \)), 0.161 (0.162 mol kg\(^{-1}\), \(R_w = 341.80 \)) and 0.0325 mol L\(^{-1}\) (0.0328 mol kg\(^{-1}\), \(R_w = 1702.71 \)). The solutions of sodium acetate react alkaline a dn the pH value of a 0.161 mol L\(^{-1}\) solution at 23 °C is 8.8. The acetate solutions were sealed in plastic, air tight bottles in order to prevent the uptake of CO\(_2\) from air. The solution densities were determined with a pycnometer of 5.000 mL volume at 23 ± 0.1 °C. From the solution densities and the concentrations in mol L\(^{-1}\), the concentrations in mol kg\(^{-1}\) were calculated and from the latter, the \(R_w \) values were determined. \(R_w \) values represent the number of moles of water per one mole of salt.

Three NaCH\(_3\)CO\(_2\) solutions in heavy water (99.9% D; Merck, Darmstadt, Germany) were prepared from dried anhydrous NaCH\(_3\)CO\(_2\) and heavy water by weight. The following solutions were prepared: 3.944, 0.790 and 0.262 mol L\(^{-1}\).

Sodium acetate-\(\text{d}_3 \), NaCD\(_3\)CO\(_2\) (Aldrich; 99% D) solutions in water were prepared with a concentration at 2.936 mol L\(^{-1}\) (3.377 mol kg\(^{-1}\), \(R_w = 16.44 \)) 1.468 mol L\(^{-1}\) (1.572 mol kg\(^{-1}\), \(R_w = 35.29 \)) and 0.294 mol L\(^{-1}\) (0.298 mol kg\(^{-1}\), \(R_w = 185.92 \)).

A sodium acetate-\(\text{d}_3 \), NaCD\(_3\)CO\(_2\) (Aldrich; 99% D) solution in heavy water was prepared with a concentration of 2.792 mol L\(^{-1}\) and 0.972 mol L\(^{-1}\).

Six aqueous NaCF\(_3\)CO\(_2\) (Sigma-Aldrich; 99%) solutions were prepared from dried anhydrous NaCF\(_3\)CO\(_2\) and water by weight. The following solutions were prepared: 3.554 mol L\(^{-1}\) (\(R_w = 12.24 \)), 2.865 mol L\(^{-1}\) (\(R_w = 15.94 \)), 1.424 mol L\(^{-1}\) (\(R_w = 35.73 \)), 0.850 mol L\(^{-1}\) (\(R_w = 61.98 \)) and 0.427 mol L\(^{-1}\) (\(R_w = 126.78 \)). A hydrous NaCF\(_3\)CO\(_2\) melt was also prepared at 9.35 mol L\(^{-1}\) (\(R_w = 2.48 \)).

2.2. **Raman spectra**

Raman spectra were measured in the macro chamber of a T6 4000 Raman spectrometer from Jobin Yvon in a 90° scattering geometry at (23 ± 0.1) °C. The solutions have been measured in high precision quartz cuvettes from Hellma Analytics (Mülheim, Germany) which were sealed with an air tight stopper. The spectra were excited with the 487.98 nm line of an Ar\(^{2+}\) laser at a power level of >1100 mW at the sample. After passing the spectrometer in subtractive mode, with gratings of 1800 grooves per mm, the scattered light was detected with a cooled CCD detector. The \(I_{\text{VV}} \) and \(I_{\text{VH}} \) spectra were obtained with fixed polarisation of the laser beam by rotating the polarizer at 90° between the sample and the entrance slit to give the scattering geometries: \(I_{\text{VV}} = I(Y[2Z]X) = 45\alpha^2 + 4\gamma^2 \) and \(I_{\text{VH}} = I(Y[2Y]X) = 3\gamma^2 \). The isotropic spectrum, \(I_{\text{iso}} \), was then constructed:

\[
I_{\text{iso}} = I_{\text{VV}} - 4/3I_{\text{VH}}
\]

The depolarization ratio, \(\rho \), was determined according to:

\[
\rho = I_{\text{VH}}/I_{\text{VV}} = 3\gamma^2/(45\alpha^2 + 4\gamma^2)
\]

The polarization analyser was calibrated with CCl\(_4\) before each measuring cycle and adjusted if necessary (for details see ref. 14).

The wavenumber positions have been checked with Neon lines and the peak positions for bands with smaller band width (full width at half height; fwhh) have been determined with an error of ±0.5 cm\(^{-1}\) and broader bands fwhh ≥ 25–30 cm\(^{-1}\) with a precision of ±1 cm\(^{-1}\). In dilute solutions, the signal to noise ratio (S/N) was excellent for the spectra at >450.
Band intensities have been determined by fitting the bands using Gaussian–Lorentzian product functions on baseline corrected spectra. Relative band intensities for CH$_3$CO$_2^-$ (aq), and CH$_3$CO (D$_2$O) as well as for Cd$_2$CO$_3^-$ (aq) and Cd$_2$CO$_3^-$ (D$_2$O) were presented so that the strongest mode was set to 100 and the band intensities of the other modes relative to this value. Details of the band fitting procedure of the baseline corrected Raman-bands were described elsewhere.

Spectra in R-format (Bose–Einstein correction) were obtained. The isotropic spectrum, R_{iso} was then constructed similar to eqn (2): $R_{iso} = R_{VV} - 4/3R_{OH}$. The isotropic R-spectra have been used to characterize the restricted translation band of water and restricted translation band of water and acetate (O–H···O$^\cdot$). A more detailed description of the Raman measurements and the construction of the spectra in R-format is given in ref. 14 and 17.

2.3. Density functional theory calculations

For the purpose of modeling the vibrational frequencies the DFT calculations were performed employing the B3LYP functional with a triple-ζ basis set 6-311++G(3df,2pd) from the Gaussian 03 program suite. The geometry of the acetate ion was then optimized and frequency calculations allowed the assignments of the fundamental modes. Proper description of anions with electrons which are located, on average, relatively far from the nuclei, require diffuse orbitals and polarization basis sets. The optimization procedure led to the result that the geometry of the CH$_3$CO$_2^-$ with the dihedral angle $\varphi = 0^\circ$ is stable and possesses no imaginary frequency. DFT frequency calculations were performed for this stable configuration in the gas phase and in addition in the presence of the solvent (water) by placing the solute within the solvent. The latter was modelled as an isotropic and homogeneous continuum characterized by its dielectric properties. The frequencies were calculated with a floating cavity (a set of interlocking spheres attached to the solute atoms). The electrostatic solute–solvent interaction was calculated introducing an apparent charge attached to the solute atoms. The electrostatic solute (the CH$_3$CO$_2$ group) is e \cdots H$_2$O and consists of R_{iso} calculated using the DFT frequencies of the discrete cluster with 5 water molecules to guide in the assignments. Next, the aqueous solvent isotope effects in light and heavy water for CH$_3$CO$_2^-$ and Cd$_2$CO$_3^-$ are presented and discussed. A description of the influence of the Na$^+$ ion and acetate on the O–H band of water is given including the hydrophobic effect of the methyl group. Finally, the different ion pairs of acetate with Na$^+$ formed in these solutions are briefly presented.

3. Results and discussion

From here on the paper is organized as follows: first, the structures and symmetries of acetate–water clusters are presented with particular focus on the cluster with 5 water molecules. Then, a brief discussion of the terahertz frequency region is given, including the spectral influence of the Na$^+$ (aq) and the restricted translation modes of acetate and water. This is then followed by an examination and assignment of the Raman spectroscopic intramolecular acetate bands in aqueous solutions on CH$_3$CO$_2^-$ and Cd$_2$CO$_3^-$ using the DFT frequencies of the discrete cluster with 5 water molecules to guide in the assignments. Next, the aqueous solvent isotope effects in light and heavy water for CH$_3$CO$_2^-$ and Cd$_2$CO$_3^-$ are presented and discussed. A description of the influence of the acetate on the O–H band of water is given including the hydrophobic effect of the methyl group. Finally, the different ion pairs of acetate with Na$^+$ formed in these solutions are briefly presented.

3.1. Symmetry of the CH$_3$CO$_2^-$ ion and acetate–water clusters

The conformer of the CH$_3$CO$_2^-$ gas phase ion with the dihedral angle $\varphi = 0^\circ$ is by 11 cal mol$^{-1}$ more stable than the conformer, $\varphi = 29^\circ$ (ref. 12) (both structures possess C_s symmetry). The structure of the gas phase ion (bond lengths and angles) for $\varphi = 0^\circ$ resulted in a non-equivalence of the two oxygen atoms of the CO$_2$ group (Fig. 3, ref. 12). Because of the slight energy difference between the two conformers in comparison with the thermal energy quantum kT (576 cal mol$^{-1}$ at 290 K), the calculated frequencies of the two conformers differ nominally from each other and are within the band width of the observed acetate bands.

Applying the PC method to account for the hydration effect in aqueous solution resulted in good frequency values for CH$_3$CO$_2^-$ (aq) but it is unable to account for the directionality of the H-bonds between acetate and H$_2$O. Modeling the influence of solvation (i.e. hydration) by applying a structureless PC around the species will not result in calculable frequency changes by going from water to heavy water as a solvent. Water at 25 °C has a ε-value of 78.54 while D$_2$O possesses $\varepsilon = 78.06$. Such a small difference in ε cannot explain the change of the acetate frequencies using PCM.

The acetate–water cluster with 5 waters (CH$_3$CO$_2^-$·5H$_2$O) which will be discussed in greater detail resembles a realistic model for the hydrated acetate ion. The directionality of the H-bonds for the cluster structure for CH$_3$CO$_2^-$·5H$_2$O is shown in Fig. 1 and the geometrical parameters in Table 1. The CH$_3$CO$_2^-$ in this cluster possesses a dihedral angle of 14.7° which leads to symmetry C_1. Including the CH$_3$CO$_2^-$·5H$_2$O cluster, six cluster models of acetate with increasing number of
water molecules (see Experimental section) were optimized and for completeness all results are presented in Table S1† and the structures in Fig. S1†.

From the results of the discrete cluster calculations, it is clear that with an increasing number of water molecules hydrating the oxygen atoms of the –CO_2 moiety, the following takes place: shortening of the C–C bond distances, change of the dihedral angle $\neq 0^\circ$ (loss of C_s symmetry) and the change of the C–O bond lengths of the two C–O bonds leading to a slightly longer bond and one slightly shorter. The acetate water cluster with one water molecule, $\text{CH}_3\text{CO}_2\cdot\text{H}_2\text{O}$ still possesses C_s symmetry and the water molecule binds in a bifurcated fashion to the two oxygen atoms of the –CO_2 moiety. The DFT calculations led to a symmetrical geometry and an energy minimum on the PES was obtained (Fig. S1†). However, this is not a realistic model for structural and energetic reasons.28 Bifurcated bound water molecules with acetate would lead to an artificially narrow restricted translation band at ca. 216 cm$^{-1}$ (DFT result) which is clearly in conflict with the observed broad restricted translation mode of water bound to acetate.12 For the cluster with $n = 2$, $\text{CH}_3\text{CO}_2\cdot2\text{H}_2\text{O}$, the water molecules hydrating the acetate ion form two relatively strong H-bonds with each water molecule yielding slightly different H-bond lengths (Fig. S1 and Table S1†). Due to asymmetric binding of the water molecules, clusters with $n > 2$ cause the CH_3CO_2^- ion to be distorted ($\varphi \neq 0^\circ$) and its symmetry is, strictly speaking, C_1 (C_s with small deviations). The cluster with four water molecules reflects a realistic snapshot of the hydration process which was demonstrated by MD calculations.9 The cluster with six H$_2$O molecules represents an example of a cluster with 5 waters in the first sphere and the sixth water in the second sphere. From a variety of structural investigations3-6 and theoretical calculations,7-9 however, it became evident that the –CO_2 group is hydrated by ~5 water molecules. The geometry optimized CH_3CO_2^-·5H$_2$O cluster was used to calculate the second derivative of the energy, with respect to the nuclear positions, in order to yield frequencies of the acetate ion and the water molecules of the first hydration sphere.

The result of the CH_3CO_2^-·5H$_2$O cluster model describes the hydrated acetate ion in solution quite well (Fig. 1). The numbering of the atoms of the acetate ion is the same as in ref. 12 and thus allows comparison of the parameters with the ones presented in Table 1 (ref. 12). A recent DRS study29 reported two strong H-bonds with two H$_2$O molecules with the acetate and a total hydration number of ~11 at infinite dilute solution. Five of 11 water molecules weakly and strongly interact with the oxygen atoms of the –CO_2 unit while the other six water molecules surround the CH$_4$ group forming a weakly interacting cluster structure (hydrophobic interaction).7,10 The PC method does not take into account the directional forces of the H-bonds formed between water and the –CO_2 moiety of acetate and is not helpful in this context. Although the frequencies derived from the PC model are satisfactory and useful for the assignments of the fundamental modes of CH_3CO_2^-, certain modes deviate quite noticeably from the measured frequencies. The discrete cluster model presented offers a remedy for this problem.

The geometrical parameters of the CH_3CO_2^-·5H$_2$O cluster model compared with those of the unhydrated acetate ion (Table 1) reveal that the C–C bond distance shortens, the C–O bond distances differ in bond length quite noticeably, and a dihedral angle at 14.7$^\circ$ results in a loss of the symmetry plane and, subsequently, a loss in symmetry (C_1).

Table 1 Geometrical parameters for the cluster CH_3CO_2^-·5H$_2$O

Parameter	CH$_3\text{CO}_2^-$ in vacuo	CH$_3\text{CO}_2^-$·solvation sphere	CH$_3\text{CO}_2^-$·5H$_2$O
$a_{1,2}$	1.561	1.533	1.526
$a_{2,3}$	1.253	1.261	1.269
$a_{2,4}$	1.252	1.259	1.250
$a_{5,1}$	1.091	1.088	1.087
$a_{6,1}$	1.093	1.091	1.089
$a_{3,2,4}$	128.84$^\circ$	125.40$^\circ$	125.03$^\circ$
$a_{5,4,6}$	109.51$^\circ$	109.30$^\circ$	110.55$^\circ$
$a_{5,1,7}$	109.51$^\circ$	109.30$^\circ$	108.88$^\circ$
$a_{6,1,7}$	107.03$^\circ$	107.04$^\circ$	107.18$^\circ$
$d_{a_{1,2,1,3}}$	0°	0°	14.71$^\circ$
$a_{1,12}$	n.a.	n.a.	2.032
$a_{1,13}$	n.a.	n.a.	1.947
$a_{1,14}$	n.a.	n.a.	1.780
$a_{1,15}$	n.a.	n.a.	1.756
$a_{1,16}$	n.a.	n.a.	2.016
$a_{1,17}$		n.a.	2.967
$a_{1,18}$		n.a.	2.886
$a_{1,19}$		n.a.	2.762
$a_{1,20}$		n.a.	2.741
$a_{1,21}$		n.a.	2.907

* n.a. = not applicable.
3.2. The terahertz frequency region of the Na-acetate solutions

Aqueous solutions of NaCH₃CO₂ are strongly dissociated in dilute solutions forming Na⁺[aq] and CH₃CO₂⁻[aq] but ion pair formation should be taken into account in concentrated solutions. In NaCH₃CO₂ solutions, the ion pairs formed are of the outer-sphere and outer-outer-sphere type with water molecules interposed between Na⁺ and CH₃CO₂⁻. The types of ion pairs change significantly with concentration. Completely hydrated Na⁺ and CH₃CO₂⁻ are formed in very dilute solutions. In more concentrated solutions, outer-outer-sphere ion-pairs form and in the most concentrated ones ion pairs with one water molecule interposed between Na⁺ and CH₃CO₂⁻ are formed. The question arises as to whether direct ion pairs are formed in these solutions and this will be discussed in Section 3.4.

A comparison of the Raman spectra in R-form in the terahertz frequency region are given in Fig. 2 for NaCH₃CO₂ in water and heavy water while the ones for NaCD₃CO₂ are given in Fig. 3. The Na⁺ ion in aqueous solution is hydrated and a very broad band at ~189 cm⁻¹ (isotropic scattering, 185 cm⁻¹ in the polarized scattering; Fig. 2 upper panel) was detected.²¹ A neutron scattering study combined with Raman spectroscopic measurements²² revealed an isotropic band at 185 cm⁻¹ which is quite close to our value. A Na⁺-tetra- or -penta-hydrate has to be assumed because our high level DFT cluster calculations revealed that the Na⁺-hexahydrate is not stable while tetra and penta-aqua Na⁺ clusters are. Both clusters give a quite similar νNa-O stretching band at 196 and 192 cm⁻¹ respectively. For the deuterated Na⁺-tetra- and penta-clusters, the peak frequencies were calculated at 186 cm⁻¹ and 178 cm⁻¹ respectively in good accord with the measured peak position at 178 cm⁻¹ in the polarized scattering and at 180 cm⁻¹ in the isotropic scattering for NaCH₃CO₂(D₂O) (Fig. 2, lower panel). The calculated frequencies are quite close together and cannot be used to determine which cluster is prevalent. Most of the values for the first hydration number were given at 5 and an internuclear distance Na-O with 2.34 A.²²,²³ Our DFT frequency calculations on [Na(OH₂)₅]⁺ and [Na(OH₂)₆]⁺ led to stable structures while [Na(OH₂)₆]⁺ gave no stable structure. Recent MD modelling confirmed that the Na⁺-hexa-hydrate is only one of the possible hydrated species along with the tetra- and penta-hydrates.²²,²⁵

In addition to the Na-O stretching mode at 189 cm⁻¹ a broad band contribution at 245 cm⁻¹ appeared (Fig. 2, upper panel) and was assigned to the restricted translation band, ν₀-O⋯O, reflecting the strong H-bonds between both oxygen atoms of the CO₂ group and H₂O.²² This restricted translational mode, determined by acetate water hydrogen bonds, becomes less important with dilution and in dilute acetate solutions this mode appears as a weak polarized band at 175 cm⁻¹ due to O⋯H–O bonds between the water molecules. In NaCH₃CO₂ solution in heavy water a similar restricted translation band, ν₀-O⋯D⋯-O, reflecting the D-bonds between oxygen atoms of the CO₂ group and D₂O appears at 233 cm⁻¹ (see Fig. S2†). A weak polarized band due to O⋯D–O bonds between the heavy molecules appears at 169 cm⁻¹ in neat D₂O(l).

The cluster with five water molecules (Fig. 1) reveals bond distances of O-D⋯O in O⋯H–O nearest-neighbor distances of the H-bond) from 2.741 Å to 2.967 Å (Table 1). These are in good agreement with the experimental values between 2.77 and 2.95 from X-ray diffraction studies on concentrated divalent transition metal acetates and with a value at 2.78 Å from later measurements on an aqueous 8 mol% NaCH₃CO₂ solution.⁶

Recent neutron scattering data support the X-ray diffraction

† For the B3LYP/6-311+G(3df,2p) level of theory lower DFT frequencies were obtained for the cluster [NaH₂O]⁺. However, this value is insecure because one imaginary frequency was obtained (saddle point).
values and the radial distribution curves of the two C···O and O···O distances, calculated with MD simulations, show peaks at 3.4 Å and 2.7 Å, respectively. It should be noted that the CH$_3$ group has little effect on the geometry of the hydration shell which reveals that the radial distribution curves for HCO$_2$···HOH is comparable with that for CH$_3$CO$_2$···HOH. The cluster model with five water molecules shows frequencies at 206 and 219 cm$^{-1}$ which are slightly lower than the peak position of the broad shoulder observed at ~245 cm$^{-1}$.

3.3. Fundamental frequencies of CH$_3$CO$_2^-$ and CD$_3$CO$_2^-$ — vibrational spectroscopic results on CH$_3$CO$_2^-$ [aq] and CD$_3$CO$_2^-$[aq]

The acetate cluster with five water molecules forming single H-bonds with the two oxygen atoms of the –CO$_2$ group represents a realistic cluster modelling the acetate in water (see Section 3.1.). The second derivative of the energy with respect to the nuclear positions then allowed the calculation of the frequencies for the [CH$_3$CO$_2$···H$_2$O] model. Comparison of the DFT frequencies of CH$_3$CO$_2^-$ in the gas phase with ones in solution show the strong effect of hydration on acetate in solution state especially the pronounced frequency shifts of the –CO$_2$ group, such as both stretching modes, \(\nu_\text{s} \) and \(\nu_\text{as} \) of the CO$_2$ group, the deformation mode of the –CO$_2$ moiety, \(\delta_\text{CO$_2^-$} \) and the rocking mode (\(\rho \)). This is reinforced by comparing the measured frequencies of the acetate in water and heavy water showing changes in the fundamental modes with respect to peak positions and intensities. In other words, the acetate modes will change despite the fact that the molecule does not contain exchangeable H(D) in its structure. The cluster model with five water molecules which take into account the directionality of the H-bonds enables modelling of the deuterium effect of the solvent followed by change from H$_2$O to D$_2$O. The DFT frequencies for CH$_3$CO$_2^-$·5H$_2$O(D$_2$O) and CD$_3$CO$_2^-$·5H$_2$O(D$_2$O) clusters are presented in Tables 2 and 3. The vibrational modes are mixed on the PES and therefore assignment of the normal modes is difficult. However, DFT frequencies are an excellent guide in assigning the fundamental modes of acetate in solution of water and heavy water.

Because of the small deviation from \(C_s \) symmetry, acetate is treated as having pseudo \(C_s \) symmetry. The 15 normal modes of the CH$_3$CO$_2^-$ ion of the gas phase structure with \(p = 0^\circ \) belong to the point group \(C_s \) and span the representation: \(\Gamma_{\text{vib}}(C_s) = 10a'(Ra, i.r.) + 5a''(Ra, i.r.) \). All modes are Raman and i.r. active and the modes with the character \(a' \) are partially polarized while the ones with symmetry \(a'' \) are depolarized.

Stretching band parameters are concentration dependent especially for bands of the –CO$_2$ group such as \(\nu_\text{s} \) and \(\nu_\text{as} \) and therefore extrapolation to concentration zero resulted in the band parameters of infinitely dilute solution. The Raman spectroscopic data for aqueous NaCH$_3$CO$_2$ and NaCD$_3$CO$_2$ are summarized in Tables 2 and 3, respectively, and representative Raman spectra of CH$_3$CO$_2^-$ [aq] and CD$_3$CO$_2^-$[aq] are presented in Fig. 4 and 5 respectively. For assignment purposes, the CH$_3$CO$_2^-$ spectra in D$_2$O have been measured in order to observe the antisymmetric stretching mode of the –CO$_2$ group.

Table 2: Raman band parameters of CH$_3$CO$_2^-$ [aq] and CH$_3$CO$_2^-$·D$_2$O, assignments and DFT frequencies (data from dilute NaCH$_3$CO$_2$ in water and heavy water)a

CH$_3$CO$_2^-$ [aq]	CH$_3$CO$_2^-$·D$_2$O

a Raman band parameters of CH$_3$CO$_2^-$ [aq] and CH$_3$CO$_2^-$·D$_2$O, assignments and DFT frequencies (data from dilute NaCH$_3$CO$_2$ in water and heavy water).
Table 3

CD\(\text{CO}_2\)\(\text{D}_2\)O	\(\nu_{\text{max}}\) cm\(^{-1}\)	Depol.	Integ. Intensity	Numbering of Integr. B3LYP 6-311++ (a0) Depol. ratio	Integ. Intensity
\(\text{CD}_3\text{CO}_2\)	\(3192\)	\(25.9\)	\(22.7\)	\(36.5\)	\(29.3\)
\(\text{CD}_3\text{CO}_2\)	\(2978\)	\(31.1\)	\(32.2\)	\(34.5\)	\(33.6\)
\(\text{CD}_3\text{CO}_2\)	\(2386\)	\(33.4\)	\(33.6\)	\(33.6\)	\(33.6\)
\(\text{CD}_3\text{CO}_2\)	\(2008\)	\(34.5\)	\(34.7\)	\(34.7\)	\(34.7\)
\(\text{CD}_3\text{CO}_2\)	\(1700\)	\(35.8\)	\(35.8\)	\(35.8\)	\(35.8\)
\(\text{CD}_3\text{CO}_2\)	\(1556\)	\(34.5\)	\(34.5\)	\(34.5\)	\(34.5\)
\(\text{CD}_3\text{CO}_2\)	\(1500\)	\(35.8\)	\(35.8\)	\(35.8\)	\(35.8\)
\(\text{CD}_3\text{CO}_2\)	\(1400\)	\(37.0\)	\(37.0\)	\(37.0\)	\(37.0\)
\(\text{CD}_3\text{CO}_2\)	\(1000\)	\(38.3\)	\(38.3\)	\(38.3\)	\(38.3\)
\(\text{CD}_3\text{CO}_2\)	\(1000\)	\(38.3\)	\(38.3\)	\(38.3\)	\(38.3\)

Discussion of the fundamental modes for CH\(_3\)CO\(_2\)\(\text{D}_2\)O and CD\(_3\)CO\(_2\)\(\text{D}_2\)O in H\(_2\)O. The normal mode with the lowest frequency at 15.1 cm\(^{-1}\) is a pure torsional motion of the CO\(_2\) group, \(\nu_{\text{15}}\) and could not be observed experimentally. Three bands were observed in the region from 400–700 cm\(^{-1}\) the origin of which can be reasonably attributed to the rocking and deformational modes of the –CO\(_2\) group. For CH\(_3\)CO\(_2\)\(\text{aq}\), the slightly polarized mode at 474 cm\(^{-1}\) represents a rocking mode of the –CO\(_2\) group, \(\nu_{\text{10}}\) couples quite severely with an out-of-plane deformation mode of the CH\(_3\) group (Fig. 2, upper panel). For acetate-d\(_3\), CD\(_3\)CO\(_2\)\(\text{aq}\), this rocking mode of the –CO\(_2\) group, \(\nu_{\text{10}}\) appears at lower frequencies namely at 422.5 cm\(^{-1}\) (Fig. 3, upper panel). The Raman mode, \(\nu_{\text{4}}\) at 620.7 cm\(^{-1}\) for CH\(_3\)CO\(_2\)\(\text{aq}\) is depolarized and assigned to an out-of-plane rocking mode of the –CO\(_2\) group which is strongly coupled with an out-of-plane deformation mode of the CH\(_3\) group. For CH\(_3\)CO\(_2\)\(\text{D}_2\)O, the mode, \(\nu_{\text{4}}\) is shifted to lower wave-numbers and appears at 526.5 cm\(^{-1}\) (Fig. 3, upper panel). The deformation mode of the –CO\(_2\) moiety, CH\(_3\)CO\(_2\)\(\text{aq}\), \(\nu_{\text{9}}\) quite strongly polarized, shows at 654.2 cm\(^{-1}\) and the mode for CD\(_3\)CO\(_2\)\(\text{aq}\) appears at 620.5 cm\(^{-1}\). The strongest Raman band at 928.4 cm\(^{-1}\) for CH\(_3\)CO\(_2\)\(\text{aq}\) (Fig. 6 upper panel) is assigned to the C–C stretch, \(\nu_{\text{9}}\), which is strongly polarized but occurs at lower frequencies (885 cm\(^{-1}\) in acetate-d\(_3\) (Fig. 7, upper panel). In CD\(_3\)CO\(_2\)\(\text{aq}\) the \(\nu\text{C–C}\) mode is numbered \(\nu_{\text{9}}\), however, because the rocking mode of the CH\(_3\) group is shifted due to the deuterium isotope effect to 834.1 cm\(^{-1}\) (Fig. 7, upper panel).§ In the Raman scattering for CD\(_3\)CO\(_2\)\(\text{aq}\), a weakly polarized band of low intensity appears at 834.1 cm\(^{-1}\) and is assigned to a rocking mode of the CD\(_3\) group numbered \(\nu_{\text{9}}\). For the undeuterated acetate in aqueous solution, this mode appears at 1021.5 cm\(^{-1}\) as a weak band and is numbered \(\nu_{\text{9}}\). This large frequency shift is due to the deuterium isotope effect upon substituting D for H. The second librational band of the CH\(_3\) group of CH\(_3\)CO\(_2\)\(\text{aq}\), \(\nu_{\text{13}}\) occurs at 1052 cm\(^{-1}\). In the spectrum for acetate-d\(_3\) in aqueous solution, \(\nu_{\text{13}}\) shows at 937 cm\(^{-1}\). Large vibrational deuterium isotope effects also occur for the bands, \(\nu_{\text{13}}\), \(\nu_{\text{14}}\) and \(\nu_{\text{12}}\) for CH\(_3\)CO\(_2\)\(\text{aq}\) at 1347.6 cm\(^{-1}\), 1426 cm\(^{-1}\) and 1440 cm\(^{-1}\) respectively. The modes at 1347.6 cm\(^{-1}\), 1426 cm\(^{-1}\), and 1440 cm\(^{-1}\) are assigned to bending modes of the CH\(_3\) group (Table 2, Fig. 3 and 6).

§ Note, that the numbering of the bands for CD\(_3\)CO\(_2\)\(\text{aq}\) is different from the one for CH\(_3\)CO\(_2\)\(\text{aq}\) because of the large isotope shift of the C–D modes (compare fundamental modes in Tables 2 and 3).
Considering the same bands for acetate-d\textsubscript{3} dissolved in H\textsubscript{2}O results in the following band positions: at 1086.4 cm-1, 1035 cm-1 and 1043 cm-1 respectively (Table 3). The Raman band at 1413.2 cm-1 is at \(r = 0.26 \) quite polarized and assigned to the stretching mode, \(v_5(a') \), of the CO\textsubscript{2} unit. This mode is strong in the Raman effect and in infrared. However, the symmetric stretch of the CO\textsubscript{2} group, \(v_4(a') \) appears as an asymmetric band due to accidental overlap with the deformation modes of the CH\textsubscript{3} group (Fig. S2†). The symmetric stretch of the –CO\textsubscript{2} group for CD\textsubscript{3}CO\textsubscript{2} (aq), now numbered as \(v_4(a') \) is strong in Raman and appears as a quite narrow symmetrical band (lift of accidental band overlap) because both deformation modes of the CD\textsubscript{3} group shifted to much lower frequencies due to the deuterium isotope effect and appear as one broad band at \(\sim 1044 \) cm-1 (accidental overlap of \(\delta_2 \) and \(\delta_{a\text{ac}} \); Table 3, Fig. 5 and 7). Two bands at 1426 and 1440 cm-1, the aforementioned deformation modes of the CH\textsubscript{4} group, are overlapped almost entirely by the symmetric stretch of the –CO\textsubscript{2} group and the band appears asymmetric (Fig. 6 and S2†). The Raman band at 1556 cm-1 is the strongest mode in infrared but fairly weak in Raman and has been assigned to the asymmetric stretch of the CO\textsubscript{2} group in the spectrum for CH\textsubscript{3}CO\textsubscript{2} (aq), numbered, \(v_3(a') \). In CD\textsubscript{3}CO\textsubscript{2} (aq), \(v_3(a') \) occurs as a broad and fairly weak band at 1547 cm-1. (For this mode the numbering is the same for the light and the heavy isotopomer.) In the Raman spectra of aqueous solutions, this mode is overlapped by the deformation band of water at 1641 cm-1 which is broad, quite polarized (\(r = 0.14 \)) and shows the non-coincidence effect between the isotropic and anisotropic Raman scattering band positions. For CD\textsubscript{3}CO\textsubscript{2} (D\textsubscript{2}O), the asymmetric stretch of the CO\textsubscript{2} group occurs at 1546.5 cm-1 as a weak band free of the overlap from the deformation mode of the water at 1641 cm-1 (shift of the deformation band of heavy water to 1206 cm-1; Fig. 7).
The C–H stretching modes are somewhat decoupled from the rest of the vibrational modes and lie above 2900 cm⁻¹ for the C–H bands and 2100 cm⁻¹ for the C–D bands (Fig. 2 and 3, left panels). Three bands at 2935.5 cm⁻¹, the strongest mode in Raman, ν₂(α′) and the much weaker bands at 2984 and 3014 cm⁻¹, numbered ν₁(α′) and ν₁(α′), respectively, are assigned to the stretching bands of the CH₃ group. The ν₂(α′), the ν₂CD₃ mode in CD₂CO₂⁻(aq) shows a large frequency shift due to the changes in masses from H to D and the corresponding fundamental frequency decreases by the factor 1/√2, the square root of the ratio of masses. The ν₂CD₃ mode in CD₂CO₂⁻(aq) appears at 2112.5 cm⁻¹ and the ratio ν₂/ν₁CH₃ has an experimental value of 0.719, compared with the theoretically expected value of 0.707. The discrepancy is attributed to the fact that the C–H/C–D vibrations are not strictly harmonic and may be further complicated by Fermi resonance. One other fact is remarkable, namely, that the peak position of ν₂(α′) C–H at 2935.5 cm⁻¹ hardly changes with increasing concentration. However, the fwhh broadens with increasing NaCH₃CO₂ concentration by only a few wavenumbers. The fwhh of ν₂(α′) C–H for a 5.02 mol L⁻¹ NaCH₃CO₂ solution is 23.1 cm⁻¹ and decreases in width with concentration and is ~21 cm⁻¹ for a solution at zero concentration. (It is noteworthy that a severe broadening and a small wavenumber shift occurs in La(CH₃CO₂)₃(aq)²⁷). This fact shows that the C–H bonds are barely influenced by hydration which is believed to be due to the hydrophobic interaction effect. Calculations on CH₄(aq) suggests that the methyl group will only contribute ca. 1 kcal mol⁻¹ to ΔH_hydro at 25 °C (ref. 8, page 305).

The Teller-Redlich product rule²⁸,²⁹ proved to be useful for the assignments of the fundamental modes of the isotomers. This rule was used to check the assignments of the CH₃CO₂⁻ ion and its deuterated analog, CD₃CO₂⁻. For the two species α' and α'' of the point group C₃, the following formulae apply:

\[
\prod_{i=1}^{10} \frac{p_{i,i}}{p_i} = \left(\frac{m_i}{m_0} \right)^{5/2} \left(\frac{M_i}{M} \right) \left(\frac{I_{x,i}}{I_{x}} \right)^{1/2} \tag{3a}
\]

\[
\prod_{i=1}^{14} \frac{p_{i,i}}{p_i} = \left(\frac{m_i}{m_0} \right)^2 \left(\frac{M_i}{M} \right)^{1/2} \left(\frac{I_{x,i}}{I_{x}} \right)^{1/2} \left(\frac{I_{y,i}}{I_{y}} \right)^{1/2} \tag{3b}
\]

and for all frequencies the following formula applies:

\[
\prod_{i=1}^{15} \frac{p_{i,i}}{p_i} = \left(\frac{M_i}{M} \right)^{3/2} \left(\frac{I_{x,i}}{I_{x}} \right)^{1/2} \left(\frac{I_{y,i}}{I_{y}} \right)^{1/2} \left(\frac{I_{z,i}}{I_{z}} \right)^{1/2} \left(\prod_{i=0}^{7} \frac{m_i}{m_{d,i}} \right)^{3/2} \tag{4}
\]

The symbol \(p_{i}(\alpha_{d}) \) denotes the frequencies of the ion (deuterated ion), the index \(I \) numerates the 10 and 5 normal vibrations of the \(\alpha' \) and \(\alpha'' \) species, respectively. \(M(\alpha_{d}) \) are the total masses of the ions, \(I_{x}, I_{y}, I_{z} \) are the moments of inertia about the \(x, y, \) and \(z \) axes through the center of mass, \(m_{d}(\alpha_{d}) \) denote the masses of the atoms of the ions. (The \(x, y \) axes were chosen lying in the symmetry plane, the \(z \) axis perpendicular to it.)

The theoretical results for the product of frequency quotients obtained from DFT calculations are:

\[
\prod_{i=1}^{10} \frac{p_{d,i}}{p_i} = 0.197, \quad \prod_{i=11}^{14} \frac{p_{d,i}}{p_i} = 0.247, \quad \prod_{i=15}^{15} \frac{p_{d,i}}{p_i} = 0.0487.
\]
Inserting the measured Raman frequencies (see Tables 2 and 3), we obtain:

\[
\left(\prod_{i=1}^{10} \frac{R_{d,i}}{R_i} \right)_{\text{exp}} = 0.206, \quad 0.62 \left(\prod_{i=1}^{14} \frac{R_{d,i}}{R_i} \right)_{\text{exp}} = 0.248, \quad \text{and}
\]

\[
0.62 \left(\prod_{i=1}^{14} \frac{R_{d,i}}{R_i} \right)_{\text{exp}} = 0.0504 \quad \text{in reasonable agreement with the theoretical values.}
\]

Because the torsional vibrations \(R_{d,15}(R_{d,15}) \) with the lowest frequency values could not be measured, the quotient of the theoretical values was used instead, \(\left(\prod_{i=1}^{15} \frac{R_{d,i}}{R_i} \right)_{\text{exp}} = \left(\prod_{i=1}^{15} \frac{R_{d,i}}{R_i} \right)_{\text{th}} = 0.62. \)

H₂O/D₂O solvent isotope effect on acetate. Turning to the problem concerning the aqueous solvent isotope effect, the direct comparison of the spectroscopic data of acetate in water and heavy water \(\{\text{CH}_3\text{CO}_2^- [\text{aq}] \} \) and \(\{\text{CH}_3\text{CO}_2^- (\text{D}_2\text{O}) \} \) are contrasted in Table 2 and the ones for acetate-\(d_3 \) \(\{\text{CD}_3\text{CO}_2^- [\text{aq}] \} \) and \(\{\text{CD}_3\text{CO}_2^- (\text{D}_2\text{O}) \} \) in Table 3. Comparative Raman spectra of \(\text{CH}_3\text{CO}_2^- [\text{aq}] \) and \(\text{CH}_3\text{CO}_2^- (\text{D}_2\text{O}) \) are presented in Fig. 6 and the ones for the Raman spectra of \(\text{CD}_3\text{CO}_2^- [\text{aq}] \) and \(\text{CD}_3\text{CO}_2^- (\text{D}_2\text{O}) \) in Fig. 7. In general, one expects a solvent change from \(\text{D}_2\text{O} \) to \(\text{H}_2\text{O} \) should not cause a shift of the acetate fundamental modes or should lead to a small shift to lower frequencies. Inspection of the vibrational modes of acetate in \(\text{D}_2\text{O} \) and \(\text{H}_2\text{O} \) in Table 2 and acetate-\(d_3 \) in Table 3 revealed a surprising result, namely, that although in \(\text{D}_2\text{O} \) some vibrational modes are not shifted at all or shifted only to slightly lower wavenumbers, certain bands shift noticeably to higher wavenumbers compared with the bands measured in light water. In other words, the change from water to heavy water as a solvent markedly influences the vibrational energy levels of dissolved acetate ions.

The frequencies for the \(\text{CO}_2 \) group increase by changing from \(\text{H}_2\text{O} \) to \(\text{D}_2\text{O} \) for both acetate species namely \(\text{CH}_3\text{CO}_2^- \) and \(\text{CD}_3\text{CO}_2^- \). For example, for \(\text{CH}_3\text{CO}_2^- [\text{aq}] \) and \(\text{CH}_3\text{CO}_2^- (\text{D}_2\text{O}) \) the deformation mode, \(\delta \text{CO}_2 \) appears at 654.2 cm\(^{-1}\) for the former and at 661.5 cm\(^{-1}\) for the latter, while \(\nu \text{CO}_2 \) occurs at 1413.5 cm\(^{-1}\) and at 1418.2 cm\(^{-1}\), respectively. The same is true for \(\nu_{as} \text{CO}_2 \) which occurs at 1556 cm\(^{-1}\) in water and at 1563 cm\(^{-1}\) in heavy water (data in Table 2). For acetate-\(d_3 \), \(\nu \text{CD}_3 \) occurs at 1407.5 cm\(^{-1}\) and at 1410.5 cm\(^{-1}\), respectively. The antisymmetric stretch, \(\nu_{as} \text{CO}_2 \) for acetate-\(d_3 \), in water and heavy water occurs at 1546 cm\(^{-1}\) and 1552 cm\(^{-1}\), respectively (Table 3). The acetate cluster model with 5 water molecules reflects the \(\text{H}_2\text{O}-\text{D}_2\text{O} \) solvent isotope effect quite well. These DFT frequencies for \(\text{CH}_3\text{CO}_2^- \) and \(\text{CD}_3\text{CO}_2^- \) in water and heavy water are presented in Tables 2 and 3, respectively. This change of water to heavy water simply means that the deformation mode and the symmetric stretch of the \(\text{CO}_2 \) group get stiffer in heavy water. This may be due to a simple mass effect but the different hydrogen bond strength versus the deuterium bond strength may also play a role. The main reason for this effect comes from the (anharmonic) coupling of the solvent with the solute. Buckingham studied the H-bond strength versus D-bond strength by quantum mechanical calculations many years ago and found that in aqueous systems, the D-bond strength is slightly stronger than the H-bond strength. The aqueous solvent isotope effect for acetate (and other Na-salts of aliphatic carboxylic acids) was first reported from a combination of heats of transfer measured by calorimetry and free energies of transfer obtained from emf measurements. The negative value at \(-34\) cal mol\(^{-1}\) for the transfer free energy, \(\Delta G_{\text{aq-D}} \), going from water to heavy water indicates that this process occurs spontaneously. A great variety of electrolytes and non-electrolytes was reported and summarized in ref. 32 and attempts to explain this phenomenon were put forward applying Gurney’s potential.

3.4. The influence of acetate on the O–H stretching band of water

The influence of the solute, \(\text{NaCH}_3\text{CO}_2 \), on the water spectrum, especially in the O–H stretching region, should allow conclusions about the hydrophobic hydration of the apolar CH\(_3\) group of the acetate with H\(_2\)O. The Raman O–H band profile of \(\text{NaCH}_3\text{CO}_2(aq) \) at 5.022 mol L\(^{-1}\) \((R_w = 8.5) \) is displayed in Fig. 4, left panel and the infrared absorption spectrum from 400 to 4000 cm\(^{-1}\) of an aqueous 2.184 mol L\(^{-1}\) \(\text{NaCH}_3\text{CO}_2 \) solution \((R_w = 22.9) \) with the one of neat water are presented in Fig. S3. The complete concentration band profiles of three dilute to moderately concentrated aqueous \(\text{NaCH}_3\text{CO}_2 \) solutions are given in Fig. S4 together with the difference spectra of the OH band profiles of the dilute acetate solutions from which the water contributions were subtracted (see Fig. S5). In the neat liquid, the isotopic O–H profile the water O–H band may be fitted with three Gaussian bands, two very broad and strong band contributions at 3211 cm\(^{-1}\) and 3405.6 cm\(^{-1}\) (also called the double band) and a shoulder at \(\sim 3625 \) cm\(^{-1}\) which is also relatively broad (fwhh \(\sim 125 \) cm\(^{-1}\)). The band contribution at 3625 cm\(^{-1}\) is assigned to the weakly H-bonded H\(_2\)O molecules.

Fig. 8 Concentration profiles of the isotropic scattering of \(\text{NaCD}_3\text{CO}_2(aq) \): from top to bottom: (A) 2.936 mol L\(^{-1}\); (B) 1.468 mol L\(^{-1}\); (C) 0.294 mol L\(^{-1}\). The open star denotes the scattering contribution of the deformation mode of water and the mode denoted by the arrow indicates the combination band at 1463 cm\(^{-1}\). The bands at 1408 and 1547 cm\(^{-1}\) are due to the symmetric stretch of the \(\sim \text{CO}_2 \) group while the mode at 885 cm\(^{-1}\) is the stretching mode of C–C and the mode at 621 cm\(^{-1}\) is due to the rocking mode of the \(\sim \text{CO}_2 \) group. (The strong mode at 1086 cm\(^{-1}\) is due to the CD\(_2\) deformation mode.)
of the water H-bond network while the band at 3211 cm\(^{-1}\) is assigned to represent the tetrahedrally H-bonded water molecules.\(^{35,34}\) The isotropic O–H Raman band profile of water of a concentrated NaCH\(_3\)CO\(_2\) solution was fitted into three Gauss band contributions, as well, positioned at 3292 cm\(^{-1}\), 3455.5 cm\(^{-1}\) and a shoulder at \(\sim 3618\) cm\(^{-1}\) (fwhh = 120 cm\(^{-1}\)). Except for the shift of the two broad and strong band contributions at 3211 and 3406 cm\(^{-1}\) for the isotropic O–H band profile, the shoulder at higher wavenumbers is almost unchanged (Fig. 8). A band from dangling H-bonds reported recently at 3672 cm\(^{-1}\) (ref. 35) showing a relatively narrow band width at 34 cm\(^{-1}\) could not be observed for the H-bonds around the methyl group in acetate solutions. The similarity of bulk water at higher wavenumbers in the O–H profile suggests that the water molecules (~6 water\(^{49}\)) are “clathrate-like” which means three out of four H-bonds are tangential oriented to the CH\(_3\) surface and one toward the bulk (Fig. 2 of ref. 36). The water structure around the small hydrophobic CH\(_3\) group is quite similar to the bulk water except for a somewhat slower water–water H-bond exchange kinetic which is only slightly retarded with respect to the bulk water.\(^{46}\) From theoretical and experimental methods, it turns out that the small CH\(_3\) group (in contrast to long alkyl chains) does not noticeable change the water structure, its connectivity, nor its H-bond strength.\(^{36,37}\) In other words, no enhanced hydrophobic hydration can be found around the methyl group of acetate. Furthermore, no signs of dangling O–H bands at \(\sim 3670\) cm\(^{-1}\) could be observed. However, in contrast to the NaCH\(_3\)CO\(_2\)(aq) in spectra of aqueous NaCF\(_3\)CO\(_2\) solutions (see Fig. S6†), measured for comparison, from the diluted to concentrated solution stage a polarized band at 3671 cm\(^{-1}\) (fwhh = 34 cm\(^{-1}\)) clearly indicates “dangling” OH bonds (see our results in Fig. S7†). These dangling OH bonds represent water molecules of the hydrophobic shell surrounding the strongly hydrophobic CF\(_3\) group and are quite similar to the ones in a water air or a water oil interface.\(^{38,39}\)

3.5. Na\(^+\)-acetate ion pairs

The question of the ion pairs formed in Na\(^+\) acetate solutions was addressed in our previous publication.\(^{12}\) However, the solutions of acetate-d\(_3\) in aqueous solution and heavy water may be used and studied again to shed light on this question. Raman bands of the CO\(_2\) group are significant markers for ion pair formation in solution. In conjunction with earlier DRS results, the nature of ion pairs in NaCH\(_3\)CO\(_2\)(aq) as a function of concentration may be highlighted. DR spectroscopy, a method used to yield information about the character of the ion pairs, reported a sequence of different species: outer–outer-sphere ion pairs, outer-sphere ion pairs but only a small number of contact ion pairs. The latter, if formed in solution should lead to large changes of the acetate bands in NaCH\(_3\)-CO\(_2\)(aq) or a split of the modes into bound or “free” acetate which means non-associated. The formation of contact ion pairs/complexes formed in aqueous solutions was followed but no contact ion pairs could be verified. The advantage of studying the per-deuterated acetate ion, NaCD\(_3\)CO\(_2\)(aq), is that the symmetric stretching mode, \(\nu\)CO\(_2\), at 1407.5 cm\(^{-1}\) may be observed undisturbed. In NaCH\(_3\)CO\(_2\)(aq), however, the symmetric stretch is obscured by the accidental overlap with two CH\(_3\) deformation modes as discussed above in Section 3.3. The \(\nu\)-C mode and also \(\nu\)CO\(_2\) impress as narrow and symmetrical bands in CD\(_3\)CO\(_2\)(aq) (Fig. 8) and this indicates that no contact ion pairs of the form Na\(^+\)-CH\(_3\)CO\(_2\)-(Na\(^+\)-CD\(_3\)CO\(_2\)) are formed because bands of the bound acetate will lead to separated bands or visible shoulders separate from the bands of the “free”, hydrated acetate ion. DRS investigations of acetate solutions, however, favored the formation of small amounts of contact ion pairs between Na\(^+\) and CH\(_2\)CO\(_2\),\(^{38}\) while in a subsequent paper the existence of such ion pairs was denied.\(^{11}\) Examples of divalent and even trivalent metal ion acetato complexes have been published over the years.\(^{40,41}\)

4. Conclusions

Solutions of the sodium salts of CH\(_3\)CO\(_2\)\(^-\) and CD\(_3\)CO\(_2\)\(^-\) in water and heavy water were studied by Raman and infrared spectroscopy over a broad concentration range and in the wavenumber range from 40 cm\(^{-1}\) to 4200 cm\(^{-1}\). In the terahertz region the breathing mode of [Na(OH\(_2\))\(_3\)(n = 4, 5)] was characterized at 189 cm\(^{-1}\) and the restricted translation mode of CH\(_3\)CO\(_2\)...HOH a broad shoulder at 245 cm\(^{-1}\) (see also ref. 12). The acetate/acetate-d\(_3\) spectra were assigned according to pseudo C\(_4\) symmetry. Characteristic modes for acetate and acetate-d\(_3\) were identified. The two stretching modes of the CO\(_2\) group, \(\nu\) and \(\nu\)as at 1431.5 cm\(^{-1}\) and 1556 cm\(^{-1}\) respectively at 1407.5 cm\(^{-1}\) and 1547 cm\(^{-1}\) are characteristic. The stretching mode, r-C–C for CH\(_3\)CO\(_2\)(aq), appears at 928.4 cm\(^{-1}\) and the same stretching mode for CD\(_3\)CO\(_2\)(aq) at 885.2 cm\(^{-1}\). In solutions of heavy water, however, the r-C–C mode appears at 927.2 cm\(^{-1}\) and 882.8 cm\(^{-1}\) respectively. The vibrational isotope effect of the –CH\(_3\)(–CD\(_3\)) group was observed and application of the Teller-Redlich product rule confirmed the frequency assignments.

Coupling of the intramolecular modes are fairly extensive and therefore DFT cluster calculations on CH\(_3\)CO\(_2\)-5H(D)\(_2\)O and CD\(_3\)CO\(_2\)-5H(D)\(_2\)O were carried out in order to compare the measured spectra with the calculated ones. The geometrical parameters, such as bond length and bond angles of the acetate in solution state, were given.

The possibility of dangling r-O–H bonds was discussed for aqueous NaCH\(_3\)CO\(_2\) solutions. No evidence for such bonds could be found over the complete concentration range in these solutions in the infrared and Raman spectroscopy. However, in NaCF\(_3\)CO\(_2\)(aq) dangling r-O–H bands were observed at 3670 cm\(^{-1}\). A deuterium solvent isotope effect was observed for the intramolecular acetate and acetate-d\(_3\) bands in water and heavy water. Finally, the formation process and the nature of the ion pairs formed between Na\(^+\) and acetate were discussed and it became clear that no contact ion pairs exist even in concentrated NaCH\(_3\)CO\(_2\)/NaCD\(_3\)CO\(_2\) solutions.
References

1 B. Hess and N. F. A. van der Vegt, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 13296–13300.
2 J. S. Uciej, C. P. Schwartz, A. M. Duffin, W. S. Drisdell, R. C. Cohen and R. J. Saykally, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 6809–6812.
3 I. D. Kuntz, J. Am. Chem. Soc., 1971, 93, 514–516.
4 R. Caminiti, P. Cucca, M. Monduzzi, G. Saba and G. Crisponi, J. Chem. Phys., 1984, 81, 543–551.
5 H. Naganuma, Y. Kameda, T. Usuki and O. Uemura, J. Phys. Soc. Jpn., 2001, 70(suppl. A), 356–358.
6 Y. Kameda, M. Sasaki, M. Yaegashi, K. Tsuji, S. Oomori, S. Hino and T. Usuki, J. Solution Chem., 2004, 33, 733–745.
7 G. D. Markham, M. Trachtman, C. L. Bock and C. W. Bock, J. Mol. Struct., 1998, 455, 239–256.
8 G. D. Markham, C. L. Bock and C. W. Bock, Struct. Chem., 1997, 8, 293–306.
9 A. Payaka, A. Tongraa and B. M. Rode, J. Phys. Chem. A, 2010, 114, 10443–10453.
10 H. M. A. Rahman, G. Hefter and R. Buchner, J. Phys. Chem. B, 2012, 116, 314–323.
11 H. M. A. Rahman and R. Buchner, J. Mol. Liq., 2012, 176, 93–100.
12 W. W. Rudolph, D. Fischer and G. Irmer, Dalton Trans., 2014, 43, 3174–3185.
13 I. A. Heisler and S. R. Meech, Science, 2010, 327, 857–860.
14 W. W. Rudolph and G. Irmer, Appl. Spectrosc., 2007, 61, 1312–1324.
15 W. W. Rudolph, D. Fischer and G. Irmer, Appl. Spectrosc., 2006, 60, 130–144.
16 W. W. Rudolph, Z. Phys. Chem., 1996, 194, 73–90.
17 W. W. Rudolph, M. H. Brooker and C. C. Pye, J. Phys. Chem., 1995, 99, 3793.
18 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.
19 M. Cossi, G. Scalmani, N. Rega and V. Barone, J. Chem. Phys., 2002, 117, 43–54.
20 M. Meot-Ner and L. Wayne Sieck, J. Am. Chem. Soc., 1986, 108, 7525–7529.
21 Y. Kameda, K. Sugarwara, T. Usuki and O. Uemura, Bull. Chem. Soc. Jpn., 1998, 71, 2769–2776.
22 S. Varma and S. B. Rempe, Biophys. Chem., 2006, 124, 192–199.
23 R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci and A. K. Soper, J. Phys. Chem. B, 2007, 111, 13570–13577.
24 S. S. Azam, T. S. Hofer, B. R. Randolf and B. M. Rode, J. Phys. Chem. A, 2009, 113, 1827–1834.
25 A. Bankura, V. Carnevale and M. L. Klein, J. Chem. Phys., 2013, 138, 014501–014510.
26 D. C. McKean, Spectrochem. Acta, Part A, 1973, 29, 1559–1574.
27 W. W. Rudolph and G. Irmer, unpublished results, TU Bergakademie Freiberg 2010.
28 G. Herzberg, Molecular spectra and molecular structure, II. Infrared and Raman spectra of polyatomic molecules, Van Nostrand Reinhold Company, New York, 1945, p. 231.
29 O. Redlich, Z. Phys. Chem., Abt. B, 1935, 28, 371–382.
30 A. D. Buckingham and L. Fan-Chen, Int. Rev. Phys. Chem., 1981, 1, 253–269.
31 H. Snell and J. Greyson, J. Phys. Chem., 1970, 74, 2148–2152.
32 G. Janco and W. A. Van Hook, Chem. Rev., 1974, 74, 689–750, p. 736.
33 B. Auer, R. Kumar, J. R. Schmidt and J. L. Skinner, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 14215–14220.
34 B. M. Auer and J. L. Skinner, J. Phys. Chem., 2008, 128, 224511.
35 P. N. Perera, K. R. Fega, C. Lawrence, E. J. Sundstrom, J. Tomlinson-Phillips and D. Ben-Amotz, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 12230–12234.
36 M. Montagna, F. Sterpone and L. Guidoni, J. Phys. Chem. B, 2012, 116, 11695–11700.
37 J. Teixeira and A. Luzar, Physics of Liquid Water. Structure and Dynamics in Hydration Processes in Biology, ed. M. C. Bellissent-Funel, IOS Press, Ohmsma, NATO-Science Series, Series A, Life Science-305, 1999, pp. 35–68.
38 N. Ji, V. Ostroverkhov, C. S. Tian and Y. R. Shen, Phys. Rev. Lett., 2008, 100, 096102.
39 F. G. Moore and G. L. Richmond, Acc. Chem. Res., 2008, 41, 739–748.
40 G. B. Deacon and R. J. Phillips, Coord. Chem. Rev., 1980, 33, 227–250.
41 J. E. Tackett, Appl. Spectrosc., 1989, 43, 483–489.