Androgenetic alopecia in women and men is not related to COVID-19 infection severity: a prospective cohort study of hospitalized COVID-19 patients

To the Editor,

The ongoing outbreak of COVID-19 has posed significant threats to international health. The first biologic step of potential infectivity of COVID-19 is the priming of the spike proteins by transmembrane protease, serine 2 (TMPRSS2). TMPRSS2 cleave angiotensin converting enzyme 2 for augmented viral entry and thus is regarded as essential for viral spread and pathogenesis in the infected hosts.1,2 Androgen receptor activity is considered as a requirement for the transcription of the TMPRSS2 gene and no other regulatory element of the TMPRSS2 promoter has been described in human to date.3 Thus, this led us to hypothesize that variations in the androgen receptor gene may predispose male COVID-19 patients to increased disease severity.

Through a prospective study, 116 hospitalized patients due to severe COVID-19 infection (confirmed with viral nucleic acid testing) were involved in the study. Lung high-resolution computed tomography (HRCT) findings as well as laboratory data, and disease outcome including discharge, intensive care unit (ICU) care, intubation and death, were recorded for each patient. hyper-androgenic skin manifestations including androgenetic alopecia (AGA), acne severity, seborrheic dermatitis and hirsutism were examined by a dermatologist. Severity of AGA was assessed using Hamilton scale and Ludwig scale for male and female patients, respectively. Patients with immunosuppressive conditions and anti-androgenic medication were excluded. Analyses were carried out by Statistical Package for Social Sciences computer software (SPSS version 16, Chicago, IL, USA).

Totally, 118 confirmed COVID-19 patients including 61 men (51.7%) and 57 women (48.3%) with mean age of 60.45 ± 15.99 (ranging 18–100) years were investigated. All the patients were symptomatic. Triad of dyspnoea, cough and fatigue were the most common symptoms that were recorded in 100 (84.7%), 78 (66.1%) and 57 (48.3%) patients, respectively. Twenty-nine patients (24.4%) had all the symptoms of the triad (Table 1).

Chest HRCT showed abnormalities in 115 patients (97.4%) whom all of them had more than one involved lobe. Lesions were inclined to distribute in the lower lobes. Right inferior (92.3%) and right middle lobes (61.0%) were the most and the least affected lobes, respectively. Combination of ground glass opacification and consolidation which was presented in 65 patients (55.1%) was the most involved pattern.

Androgenetic alopecia was present in 45 men out of 61 (73.7%) including 13 (28.8%) severe AGA (Hamilton scale >5), 22 (48.8%), moderate AGA (Hamilton scale 3–4) and 10 (22.2%) mild AGA (Hamilton scale 1–2). In total, 32 women out of 57 (56.1%) had AGA including 2 (6.2%) severe AGA (Ludwig score advanced and frontal), 14 (43.7%) moderate AGA (Ludwig score 2–3) and 16 (50.0%) mild AGA (Ludwig score 1). Both the mortality rate and AGA severity were significantly higher in patients over 60 years old (P = 0.003 and 0.020, respectively). AGA was significantly higher in men than women (P = 0.045). AGA severity did not show any significant correlation with HRCT severity, neither with patients’ ICU care, intubation and expire in both genders. Similarly, other hyper-androgenic manifestations did not significantly correlate with disease outcome and HRCT severity (Table 2).

Among disease outcomes, ICU care, intubation and death were recorded in 48 patients (40.7%), 16 (13.6%) and 22 (18.6%) patients, respectively. Mortality rate was 18.0% among males (11 patients) and 19.3% among women (11 patients). No significant difference was observed between the two genders in terms of disease outcome.

The precise prevalence of AGA among healthy Iranian population is unknown; however, based on literature, prevalence of age-matched AGA in a similar white population is estimated 31–53% in men and up to 38% in women.4 Our results indicated substantial proportion of AGA in hospitalized COVID-19 patients considering estimated age-matched AGA in healthy population. Moreover, hyper-androgenic phenotypes have been recently observed by some authors to have correlation with severe forms of COVID-19.5–8 However, the results of this study revealed that AGA as well as other skin hyper-androgenic manifestations are not related risk of severe COVID-19 infection. Additional large-scale prospective studies are recommended.

Funding source

The study was financially supported by the Vice Chancellor for Research, Mashhad University of Medical Sciences, Mashhad, Iran.

Conflict of interest

None declared.
Table 1: Demographic characteristics, clinical history, symptoms and signs of 118 patients admitted to hospitals with confirmed COVID-19 infection

Characteristics (Unit)	Results (Mean ± SD) N(%)	Characteristics (Unit)	Results (Mean ± SD) N(%)	Characteristics (Unit)	Results (Mean ± SD) N(%)	Characteristics (Unit)	Results (Mean ± SD) N(%)
Demography		History		Symptoms		Signs	
Gender						Oral temperature	
Men	61 (51.7%)	Smoking	30 (25.4)	Dyspnoea	100 (84.7%)	≥ 38	42 (35.6%)
Women	57 (48.3%)	Alcohol consumption	4 (3.4%)	Cough	78 (66.1%)	< 38	76 (64.4%)
Age	60.45 ± 15.99	Opium consumption	24 (20.3%)	Fatigue	57 (48.3%)	> 90	31 (26.2%)
Men	58.36 ± 17.04	Hypertension	40 (33.8%)	Fever	42 (35.6%)	80-90	65 (55.0%)
Women	64.82 ± 13.60	Diabetes mellitus	32 (27.1%)	Muscle pain	40 (33.9%)	< 80	22 (18.6%)
Height (cm)	166.89 ± 9.59	Ischemic heart disease	18 (15.2%)	Chest pain	36 (30.5%)	≥ 20	101 (85.6%)
Educational status						< 20	17 (14.4%)
Illiterate	52 (44.1%)	Family history of COVID-19 infection	12 (10.2%)	Loss of appetite	26 (22.0%)		
Less than 11 years	46 (39.0%)						
More than 11 years	20 (16.9%)						
Job status							
Employee	18 (15.3%)						
Self employed	28 (23.7%)						
Retired and unemployed	20 (16.9%)						
Housewife	52 (44.1%)						
Location							
Urban	85 (72.0%)						
Rural	33 (28.0%)						
Marital status							
Single	11 (9.3%)						
Married	107 (80.7%)						
Days from symptom onset to admission							
Chilling	26 (22.0%)						
Sputum	20 (16.9%)						
Sore throat	10 (8.5%)						
Table 2 Lung HRCT findings vs. hyper-androgenic finding in 118 patients admitted to hospitals with confirmed COVID-19 infection

HRCT findings	N (%)	Hyper-androgenic findings	N (%)
Number of involved lobes (>5%)		Both genders (N = 118)	
0	3 (2.5%)	History of acne	18 (15.3%)
1	0 (0.0%)	Current acne	7 (5.8%)
2	16 (13.6%)	Mild	3 (2.5%)
3	21 (17.8%)	Moderate	4 (3.4%)
4	31 (26.3%)	Severe	0 (0.0%)
5	47 (39.8)	History of greasy skin	38 (32.2%)
Lobe of lesion distribution (>5%)			
Left upper lobe	90 (76.2%)	Current seborrheic dermatitis	6 (5.1%)
Left lower lobe	105 (8.9%)	Androgenic alopecia (Hamilton-Norwood scale)	45 (73.7%)
Right upper lobe	78 (66.1%)	Mild	10 (22.2%)
Right middle lobe	72 (61.0%)	Moderate	22 (48.8%)
Right lower lobe	109 (92.3%)	Severe	13 (28.8%)
Bilateral upper lobes	70 (59.3%)	Excess hair	24 (39.3%)
Bilateral lower lobes	99 (83.9%)	Face	21 (87.5%)
		Ear	23 (95.8%)
		Chest	6 (25.0%)
		Pre-puberty	0 (0.0%)
Pleural effusion	21 (17.8%)	Androgenic alopecia (Ludwig scale)	
Pericardial effusion	1 (0.8%)	Mild	16 (50.0%)
Cavitation	0 (0.0%)	Moderate	14 (43.7%)
		Severe	2 (6.2%)
		History of infertility	2 (3.5%)
		Dysmenorrhea	11 (19.3%)
		History of hirsutism	15 (26.3%)
		Current hirsutism	19 (33.3%)
		Face	17 (89.4%)
		Nipple	9 (47.3%)

Disclosure statements

Nothing to disclose.

References

1. Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 1–10.
2. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlan S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2014; 88: 1293–1307.
3. Lucas JM, Heinlein C, Kim T et al. The androgen- regulated protease TMPRSS2 activates a proteolytic cascade involving components of the
tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov 2014; 4: 1310–1325.

4 Severi G, Sinclair R, Hopper JL et al. Androgenetic alopecia in men aged 40–69 years: prevalence and risk factors. Br J Dermatol. 2003; 149: 1207–1213.

5 Wambier CG, Goren A, Dhurat R et al. COVID-19: Raw data from study of severity of alopecia versus hospital outcomes. Mendeley Data 2020; 1. https://doi.org/10.17632/jdkx76y8fz.1

6 Lee J, Yousaf A, Fang W, Kolodney MS. Male balding is a major risk factor for severe COVID-19. J Am Acad Dermatol 2020; 83: E353–E354.

7 Goren A, Wambier CG, Herrera S et al. Anti-androgens may protect against severe COVID-19 outcomes: results from a prospective cohort study of 77 hospitalized men. J Eur Acad Dermatol Venereol 2021; 35: e13–e15.

8 McCoy J, Wambier CG, Herrera S et al. Androgen receptor genetic variant predicts COVID-19 disease severity: a prospective longitudinal study of hospitalized COVID-19 male patients. J Eur Acad Dermatol Venereol. 2021; 35: e15–e17.

DOI: 10.1111/jdv.17353