Draft Genome Sequences of Shewanella sp. Strain UCD-FRSP16_17 and Nine Vibrio Strains Isolated from Abalone Feces

Ashley Vater, Vivian Agbonavbare, Dylan A. Carlin, Griselda M. Carruthers, Adam Chac, Ladan Doroud, Samuel J. Farris, Melanya Gudzeva, Guillaume Jospin, John A. Kintner, Jonathon P. Knauss, Yi Lor, Randi Pechacek, Eden S. Rohner, Sierra M. V. Simmons, Mayya Verescshagina, Christian S. Wirawan, Leonel Zagal, David A. Coil

Integrative Pathobiology, University of California Davis, Davis, California, USA; University of California Davis, Davis, California, USA; University of California Davis Genome Center, Davis, California, USA

We present here the draft genome sequences for nine strains of Vibrio (V. cyclitrophicus, V. splendidus, V. tasmaniensis, and three unidentifed) and one Shewanella strain. Strains were isolated from red (Haliotis rufescens) and white (Haliotis sorenseni) abalone, with and without exposure to "Candidatus Xenohaliotis californiensis," the causative agent of abalone withering syndrome.

Received 18 July 2016 Accepted 22 July 2016 Published 15 September 2016

Citation Vater A, Agbonavbare V, Carlin DA, Carruthers GM, Chac A, Doroud L, Farris SJ, Gudzeva M, Jospin G, Kintner JA, Knauss JP, Lor Y, Pechacek R, Rohner ES, Simmons SMV, Verescshagina M, Wirawan CS, Zagal L, Coil DA. 2016. Draft genome sequences of Shewanella sp. strain UCD-FRSP16_17 and nine Vibrio strains isolated from abalone feces. Genome Announc. 4(5):e00977-16. doi:10.1128/genomea.00977-16.

Copyright © 2016 Vater et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to David A. Coil, dcoil@ucdavis.edu.

Withering abalone syndrome ("Candidatus Xenohaliotis californiensis" infection) has caused a large decline in the population of abalone in coastal California in recent years (1). In this study, we isolated bacteria from the feces of both red abalone (Haliotis rufescens) and white abalone (Haliotis sorenseni) with and without exposure to "Ca. Xenohaliotis californiensis." All of the resulting strains for which we obtained genome sequence data were either Vibrio or Shewanella species. Vibrio is a genus of Gram-negative marine bacteria that can cause illness (e.g., cholera and vibriosis) in humans and animals. Shewanella species are normal flora of shellfish and are not known to cause disease.

Abalone feces were streaked onto seawater agar (15.0 g of agar, 5.0 g of peptone, 2.0 g of beef extract, 0.5 g of KNO3, and 1.0 liter of InstantOcean), Columbia blood agar, lysogeny broth (LB), and Difco seawater medium. Liquid cultures were prepared from single colonies and grown at room temperature for four days. DNA was isolated using a Qiagen DNeasy blood and tissue kit. A 16S rRNA gene product was amplified using the 1391R (5'-GACGGGC GGTGTTGTRCA-3') and 27F (5'-AGAGTTTGATCMTGGCTCAG-3') universal primers. Isolates were identified by Sanger sequencing of the PCR product. Sequencing libraries were constructed using a Kapa HyperPlus kit, and libraries were size selected to 600 to 900 bp using a BluePippin platform (Sage Science). Paired-end (PE) 300-bp sequencing was performed on an Illumina MiSeq platform.

An average of 682,098 reads were generated for each of the Vibrio strains, and 534,102 reads were generated for the Shewanella strain (Table 1). All sequence processing and assembly was performed using the A5-miseq assembly pipeline (version 20150522). This pipeline automates the processes of data cleaning, error correction, contig assembly, and quality control (2, 3).

The final Vibrio assemblies had an average of 66 contigs, with an average genome size of 4.85 Mbp and an assembly N50 of 510,207 bp (Table 1). The assembly for Shewanella sp. strain UCD-FRSP16_17 contained 51 contigs, a genome size of 5 Mbp,

TABLE 1 Genome assembly information

Strain	Accession no.	Host species	WS exposure	Contigs	Genome size (bp)	N50 (bp)	No. of raw reads (×)	Coverage of RNAs	No. of genes	No. of RNAs
Vibrio cyclitrophicus UCD-FRSP16_1	LZFR000000000	H. rufescens	Exposed	66	5,051,153	373,940	821,306	49	4,362	198
Vibrio cyclitrophicus UCD-FRSP16_8	LZFZ000000000	H. rufescens	Exposed	64	5,018,558	550,710	722,502	43	4,351	199
Vibrio sp. UCD-FRSP16_10	LZFX000000000	H. rufescens	Exposed	81	3,599,647	147,192	717,028	60	3,168	155
Vibrio splendidus UCD-FRSP16_15	LZGA000000000	H. rufescens	Unexposed	44	5,379,662	819,026	577,438	32	4,658	179
Vibrio cyclitrophicus UCD-FRSP16_18	LZTF000000000	H. rufescens	Unexposed	50	5,046,131	354,326	710,666	42	4,394	184
Vibrio tasmaniensis UCD-FRSP16_25	LZE000000000	Unknown	Unknown	39	5,556,487	968,710	643,116	35	4,827	175
Vibrio sp. UCD-FRSP16_30	LZFW000000000	H. rufescens	Exposed	85	3,606,693	175,784	667,338	56	3,167	151
Vibrio cyclitrophicus UCD-FRSP16_31	LZFU000000000	Unknown	Unexposed	94	4,963,458	495,080	640,182	39	4,330	192
Vibrio tasmaniensis UCD-FRSP16_35	LZFY000000000	H. rufescens	Exposed	73	5,660,313	390,830	778,512	41	4,963	180
Shewanella sp. UCD-FRSP16_17	LZFV000000000	H. sorenseni	Unexposed	66	4,853,869	510,207	682,098	44	4,232	177

WS, Withering Syndrome.
and an N50 of 603,668 bp. Completeness of the genomes was assessed using the PhyloSift software (4), which searches for a list of 37 highly conserved single-copy marker genes (5), of which all 37 were found in all assemblies.

Automated annotation was performed using the RAST annotation server (6). Shewanella sp. UCD-FRSSP16_17 contains an estimated 4,319 protein-coding sequences and 125 noncoding RNA sequences. The Vibrio isolates contain an estimated average 4,232 protein-coding sequences and 177 noncoding RNA sequences (Table 1).

Taxonomy was determined for Shewanella sp. UCD-FRSSP16_17 by taking the full-length 16S rRNA sequence from RAST, adding to an alignment of Shewanella strains at the Ribosomal Database Project (RDP) (7), and inferring a maximum-likelihood tree with FastTree (8). Because the resulting tree contained polyphyletic clades and significant ambiguity, we did not assign a species name to this isolate. For all Vibrio strains, we generated a whole-genome concatenated marker tree. This tree was inferred from an alignment of 441 Vibrio genomes and contained mostly well-supported monophyletic clades that allowed us to assign species names to the V. cyclitrophicus, V. splendidus, and V. tasmaniensis isolates.

Accession number(s). All 10 assemblies described in this paper have been deposited as whole-genome shotgun projects in DDBJ/EMBL/GenBank under the accession numbers provided in Table 1.

ACKNOWLEDGMENTS

Illumina sequencing was performed at the DNA Technologies Core facility in the Genome Center at University of California, Davis, CA.

Funding for this work was provided by the Alfred P. Sloan Foundation, the UC Davis Faculty Allotment Funds (Barbara Byrne), and the First Year Seminar Program in the Office of Undergraduate Education, UC Davis.

We thank Dave Furlow and Jonathan Eisen for their support of the class that led to this publication.

FUNDING INFORMATION

This work, including the efforts of Ashley Vater, was funded by First Year Seminar Program, Office of Undergraduate Education UC Davis. This work, including the efforts of David A. Coil, was funded by Alfred P. Sloan Foundation.

REFERENCES

1. Crosson LM, Wight N, VanBlaricom GR, Kiryu I, Moore JD, Friedman CS. 2014. Abalone withering syndrome: distribution, impacts, current diagnostic methods and new findings. Dis Aquat Organ 108:261–270. http://dx.doi.org/10.3354/dao02713.

2. Coil D, Jospin G, Darling AE. 2015. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31:587–589. http://dx.doi.org/10.1093/bioinformatics/btu661.

3. Tritt A, Eisen JA, Facciotti MT, Darling AE. 2012. An integrated pipeline for de novo assembly of microbial genomes. PLoS One 7:e42304. http://dx.doi.org/10.1371/journal.pone.0042304.

4. Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA. 2014. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2:e243.

5. Wu D, Jospin G, Eisen JA. 2013. Systematic identification of gene families for use as “markers” for phylogenetic and phylogeny-driven ecological studies of bacteria and archaea and their major subgroups. PLoS One 8:e77033. http://dx.doi.org/10.1371/journal.pone.0077033.

6. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsmo K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. http://dx.doi.org/10.1186/1471-2164-9-75.

7. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGrarrell DM, Marsh T, Garrity GM, Tiedje JM. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145.

8. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. http://dx.doi.org/10.1371/journal.pone.0009490.