Red blood cell and leukocyte alloimmunization in patients awaiting kidney transplantation

Silvia Fernandes Ribeiro da Silva1,3
Gláucia Maria Ferreira1
Sonia Leite da Silva1
Tânia Maria de Oliveira Alves2
Ilana Farias Ribeiro1
Thyciana Rodrigues Ribeiro4
Maria do Carmo Serpa Cavalcante3

1Universidade de Fortaleza - Unifor, Fortaleza, CE, Brazil
2Centro de Hematologia e Hemoterapia do Ceará - Hemoce, Fortaleza, CE, Brazil
3Centro de Pesquisas em Doenças Hepato-Renais - CPDHR, Fortaleza, CE, Brazil
4Universidade Federal do Ceará – UFC, Fortaleza, CE, Brazil

Conflict-of-interest disclosure: The authors declare no competing financial interest

Submitted: 10/24/2012
Accepted: 12/10/2012

Corresponding author:
Silvia Fernandes Ribeiro da Silva
Centro de Pesquisas em Doenças Hepato-Renais
Av. José Bastos, 3390 - Rodolfo Teófilo
60431-086 Fortaleza, CE, Brazil
silvafernandes@unifor.br

www.rbhh.org or www.scielo.br/rbhh
DOI: 10.5581/1516-8484.20130043

Objective: To determine the rates of red blood cell and leukocyte alloimmunization in patients with chronic kidney disease awaiting kidney transplantation.

Methods: In this cross-sectional and prospective study, the serum of 393 chronic kidney disease patients on a transplant waiting list in Ceará, Northeastern Brazil were tested for red cell and leukocyte antibodies. In addition, demographic, clinical and laboratory data were collected.

Results: The average age in the sample of 393 patients was 34.1 ± 14 years. Slightly more than half (208; 52.9%) were male. The average numbers of transfusions and gestations were 3.1 ± 3.3 and 1.6 ± 6, respectively. One third (33.6%) were alloimmunized: 78% with leukocyte antibodies, 9.1% with red cell antibodies and 12.9% with both. Red cell antibodies were detected in 29 cases (7.4%), 17 of whom were women, who had received more transfusions than the males (p-value < 0.0001). The most frequently detected red cell antibodies belonged to the Rh (24.1%) and Kell (13.8%) blood group systems. Leukocyte antibodies were detected in 30.5% of cases, 83 of whom were women, who had received more transfusions than the males (p-value < 0.0001) and were more reactive to panel reactive antibodies (p-value < 0.0001). The mean alloreactivity to panel reactive antibodies was 47.7 ± 31.2%.

Conclusion: Chronic kidney disease patients on the transplant waiting list in Ceará, Brazil, display high rates of red cell (7.4%) and leukocyte (30.5%) alloimmunization. In this sample, alloimmunization was significantly associated with the number of transfusions and gender.

Keywords: Kidney failure, chronic; Blood transfusion; Kidney transplantation; Antibodies; Erythrocyte transfusion; Cross-sectional studies

Introduction

Chronic kidney disease (CKD) consists of renal injury followed by progressive and irreversible loss of kidney function(1). Complications of CKD include anemia, most often due to insufficient renal production of erythropoietin(2). Other factors may contribute to the appearance of anemia in CKD patients, such as iron deficiency, blood loss, hyperparathyroidism and inflammation(3). In general, CKD patients require treatment for anemia, including iron supplementation, administration of erythropoietin and red blood cell (RBC) transfusions(4).

Blood transfusions to treat anemia poses several risks, including viral and bacterial infections, and RBC and leukocyte alloimmunization(5,6). Depending on the center and the population studied, the incidence of RBC and leukocyte alloimmunization is 2.5-76% and 20-65%, respectively(6-9).

CKD patients in need of RBC transfusions are preferential targets of post-transfusion alloimmunization. At each transfusion, the patient is exposed to new foreign antigens, eventually becoming alloimmunized against RBC antigens. Due to the presence of contaminating leukocytes in blood products, patients may also become sensitized to antigens of the human leukocyte antigen (HLA) system(9,10). As a result, RBC alloimmunization may limit the availability of compatible blood for future transfusions, whereas the development of leukocyte alloimmunization often makes it necessary to postpone transplantation.

The objective of the present study was to evaluate the profile of RBC and leukocyte alloimmunization in CKD patients awaiting kidney transplantation at a referral center in Northeastern Brazil.

Methods

This study was cross-sectional and prospective and relied on data retrieved from patient records. Serum samples were collected from 393 CKD patients on the transplant waiting list of the Ceará State Transplantation Service between January and May, 2011. The study protocol was previously approved by the Research Ethics Committee of the Universidade de Fortaleza (UNIFOR) under #003/2009.

Demographic, clinical and laboratory data (including gender, age, number of transfusions and number of gestations) were obtained by an active search of the records of the histocompatibility laboratory of the Ceará Center for Research in Heart and Kidney Diseases.
The RBC antibody study was conducted at the immunohematology laboratory of the Centro de Hematologia e Hemoterapia do Ceará (HEMOCE). Serum samples were initially tested with ID-DiaCell I and II (BioRad®). Positive samples were then submitted to antibody screening with ID-DiaPanel and ID-DiaPanel-P cells (BioRad®) using a gel centrifugation system in accordance with the manufacturer’s instructions.

The leukocyte antibody study was conducted at the histocompatibility laboratory of the Ceará Center for Research in Heart and Kidney Diseases. Using a complement-dependent microlymphocytotoxicity test sensitized with human antiglobulin, the sera were tested against panel-reactive antibodies (PRA) consisting of 50 individuals phenotyped with HLA class I antigens representative of the local genetic variation. Based on the observed reactivity to PRA, patients were classified into three groups: Group 1 – patients not alloreactive to PRA (0%), Group 2 – patients mildly or moderately alloreactive to PRA (1-49%) and Group 3 – patients strongly alloreactive to PRA (≥ 50%).

The results were entered onto an Excel 2010 spreadsheet. The qualitative variables were expressed as frequencies while the quantitative variables were expressed as means ± standard deviation. The findings were submitted to Fisher’s exact and ANOVA tests, followed by the Student-Newman Keuls test using the GraphPad Prism® software. The level of statistical significance was set at 5% (p-value < 0.05).

Results

Serum samples were collected from 393 patients, of whom 208 (52.9%) were male and 185 (47.1%) were female. The mean age was 34.1 ± 14 years (range: 4-77), with no significant difference between the genders (p-value = 0.1234).

Patients received 3.1 ± 3.3 transfusions on average with women receiving more than men (6.8 ± 4 vs. 1.1 ± 3; p-value = 0.0009). The mean number of gestations was 1.6 ± 6 per woman.

One hundred and thirty-two patients (33.6%) were alloimmunized, some with leukocyte alloantibodies only (103/132; 78%), some with RBC antibodies only (12/132; 9.1%), and some with both (17/132; 12.9%). Eighty-eight of the alloimmunized patients (66.7%) were female with, on average, 1.6 ± 1.3 gestations. Women received more transfusions than men (6.8 ± 4.1 vs. 0.5 ± 3; p-value < 0.0001). Table 1 shows the distribution of the 393 CKD patients with regard to mean age and the numbers of transfusions and gestations.

RBC alloantibodies were found in 29 patients (7.4%), of whom 17 (58.6%) were female and 12 (41.4%) were male. There were no significant differences between genders with regards to the mean age. In this group, the mean number of transfusions was 7 ± 3.1, with women receiving more transfusions than men (7 ± 3 vs. 3 ± 2.6; p-value = 0.0220). The most frequently detected RBC antibodies belonged to the Rh (24.1%), Kell (13.8%), Lewis (3.5%) and Diego (3.5%) blood group systems. Associations of two or more antibodies were observed in six (20.7%) patients. In ten (34.5%) patients, the antibodies could not be determined. Table 2 shows the frequency and specificity of the detected RBC antibodies.

RBC antibodies	n	%
Rh blood system	7	24.1
Anti-E	3	10.3
Anti-D	3	10.3
Anti-e	1	3.5
Other blood systems	6	20.7
Anti-Lea	1	3.5
Anti-Dia	1	3.5
Anti-K	4	13.8
Associations	6	20.7
Anti-D and Anti-C	1	3.5
Anti-K and Anti-Jk	1	3.5
Anti-E and Anti-Le	1	3.5
Anti-E, Anti-c and Anti-s	1	3.5
Anti-E, Anti-Dia and Anti-K	1	3.5
Anti-c, Anti-K and Anti-Jk	1	3.5
Not determined	10	34.5

Anti-Le: Lewis blood system; Anti-K: Kell blood system; Anti-Dia: Diego blood system; Anti-Jk: Kidd blood system; Anti-E, anti-e, anti-D, anti-c: Rh blood system; Anti-s: MNS blood system.

Table 1 - Distribution of 393 patients with chronic kidney disease according to age, gender and numbers of transfusions and gestations

Clinical data	Number of patients	%	Mean age (years)	Mean number of transfusions	Mean number of gestations	p-value
Alloimmunized	132	33.6	35.6 ± 13	5 ± 3.7*	1.1 ± 0.9	< 0.0001
Not alloimmunized	261	66.4	32.6 ± 13.3	1.3 ± 3.1	0 ± 1.1	
Red cell antibodies detected	12	9.1	40 ± 12.6	7 ± 3	2 ± 2	
Female	6	50	40 ± 7	7 ± 3.5*		< 0.0220
Male	6	50	36 ± 14.4	2 ± 1		
Leukocyte antibodies detected	103	78	34.8 ± 13.6	4.7 ± 3.8	1 ± 0.7	
Female	71	68.9	36.5 ± 13.4	6.8 ± 4.1*		< 0.0001
Male	32	31.1	31.5 ± 14	0.5 ± 3		
Red cell + leukocyte antibodies	17	12.9	45.9 ± 11	5.5 ± 3	0	
Female	11	64.7	44 ± 9.1	6.4 ± 2.4*		< 0.0001
Male	6	35.3	48 ± 13	4 ± 3		

* p-value < 0.05
Leukocyte antibodies were detected in 120 patients (30.5%), 83 of whom (69.2%) were female. There were no significant differences between genders with regards to the mean age. In this group, the mean number of transfusions was 4.7 ± 3.8, with women receiving more transfusions than men (5.6 ± 4.1 vs. 0 ± 2.9; p-value < 0.0001). The mean number of gestations per women was 1.2 ± 1.4. The mean level of alloreactivity to PRAs was 47.7 ± 31.2%. Sixty-six patients (55%) were classified as Group 2 (1-49% alloreactivity) while 54 (45%) were classified as Group 3 (> 50% alloreactivity). Females displayed greater alloreactivity than males (52.6 ± 28.2% vs. 23 ± 24%; p-value < 0.0001).

Discussion

The detection of RBC and leukocyte alloantibodies in, respectively, 7.4% and 30.5% of our sample of 393 CKD patients confirms the risk of alloimmunization to which this patient population is exposed through RBC transfusions. The 29 patients with RBC alloantibodies had been submitted to, on average, 7 ± 3.1 transfusions. The corresponding figure for the 120 patients with leukocyte alloantibodies was 4.7 ± 3.8 transfusions. These findings are supported by the literature showing that the risk of alloimmunization is dependent on the number and frequency of transfusions(11).

The RBC alloantibodies most frequently observed in our sample belonged to the Rh (24.1%) and the Kell (13.8%) blood group systems. Similar findings were obtained for multiply-transfused patients from Uberaba (Minas Gerais) and Catanduva (São Paulo)(10,12,13). Thus, to help prevent RBC alloimmunization, phenotyping for the Rh and Kell blood group systems should be considered in patients requiring multiple transfusions(10). RBC phenotyping has been performed at the Uberaba blood center since 1996 for patients with sickle cell disease, thalassemia, aplastic anemia, lymph and myeloproliferative diseases, refractory anemia and CKD(12). Following the adoption of this transfusion policy, the incidence of RBC alloimmunization at the Uberaba blood center has been reduced to 0.75%, as opposed to a study involving multiply-transfused patients from Uberaba (Minas Gerais) and Catanduva (São Paulo)(20). On the other hand, in a study involving multiply-transfused patients, gender and alloimmunization were found to be strongly associated, as RBC alloantibodies were detected in 72.8% of the women in the sample(12). Thus, transfusion to female CKD patients on the transplant waiting list should be carefully considered in view of the additional risk of alloimmunization from maternal-fetal incompatibility.

Conclusion

CKD patients on the transplant waiting list in Ceará, Brazil, display high rates of RBC (7.4%) and leukocyte (30.5%) alloimmunization. In our sample, alloimmunization was significantly associated with the number of transfusions and gender. The most frequently observed RBC alloantibodies belonged to the Rh and the Kell blood group systems. The average alloreactivity to PRA was 47.7 ± 31.2%, with higher rates of leukocyte alloantibodies among women (52.6 ± 28.2%).

References

1. Romão Júnior JE. Doença renal crônica: definição, epidemiologia e classificação. J Bras Nefrol. 2004;26(Supl. 1):1-3.
2. Abensur H. Anemia da doença renal crônica. J Bras Nefrol. 2004;26(3 Supl. 1):26-8.
3. Canziani ME, Bastos MG, Bregman R, Pecoits Filho R, Tomiyama C, Draibe SA, et al. Deficiência de ferro e anemia na doença renal crônica. J Bras Nefrol. 2006;28(2):86-90.
4. Cançado RD, Chiantone CS. Anemia de doença crônica. Rev Bras Hematol Hemoter. 2002;24(2):127-36.
5. Swardlow PS. Red cell exchange in sickle cell disease. Hematology Am Soc Hematol Educ Program. 2006:48-53.
6. Wiliamson LM, Wimperis JZ, Williamson P, Copplestone JA, Gooi HC, Morgenstern GR, et al. Bedside filtration of blood products in the prevention of HLA alloimmunisation – a prospective randomized study. Alloimmunisation Study Group. Blood. 1994;83(10):3028-35.
7. Fabrom Junior A, Bordin J. Estudo da significância de alantígenos eritrocitários em pacientes com anemia falciforme. Rev Bras Hematol Hemoter. 2001;23(2):121-2.
8. Gil BC, Moraes D, Teresan R, Jobim M, Scholtfeldt J, Salim P, et al. Grau de sensibilização contra antígeno HLA em 579 pacientes em lista de espera para transplante renal do Rio Grande do Sul. Rev HCPA. 2006;26(supl. 1):200.
9. Arruda DM, Silva SF, Silva SL, Pitombeira MH, Campos HH, Mota RM, et al. Aloimunidade contra antígenos HLA de classe I em pacientes com síndromes mielodisplásicas e anemia aplástica. Rev Bras Hematol Hemoter. 2008;30(1):18-23.

10. Cruz RO, Mota MA, Conti FM, Pereira RA, Kutner JM, Aravechia MG, et al. Incidência de aloimunização eritrocitária em pacientes politransfundidos. Einstein (São Paulo). 2011;9(2):173-8.

11. Santos FW, Magalhães SM, Mota RM, Pitombeira MH. Post-transfusion red cell alloimmunization in patients with acute disorders and medical emergencies. Rev Bras Hematol Hemoter. 2007;29(4):369-72.

12. Martins PR, Alves VM, Pereira GA, Souza HM. Frequência de anticorpos irregulares em politransfundidos no Hemonúcleo Regional de Uberaba-MG, de 1997 a 2005. Rev Bras Hematol Hemoter. 2008;30(4):272-6.

13. Ruiz LG. Frequência de aloanticorpos e auto-anticorpos em pacientes politransfundidos atendidos pelo Hemonúcleo de Catanduva (Hemorede-Funfarme). Rev Bras Hematol Hemoter. 2008;30(4):272-6.

14. Moreira Júnior G, Bordin JO, Kuroda A, Kerbauy J. Red blood cell alloimmunization in sickle cell disease: the influence of racial and antigenic pattern differences between donors and recipients in Brazil. Am J Hematol. 1996;52(3):197-200.

15. Murao M, Viana MB. Risk factors for alloimmunization by patients with sickle cell disease. Braz J Med Biol Res. 2005;38(5):675-82.

16. Baptista MW, Nardin JM, Stinghen ST. Aloimunização eritrocitária em pacientes de um hospital infantil atendido pelo Instituto Paranaense de Hemoterapia e Hematologia, de 2007 a 2010. Cad Esc Saude (Curitiba). 2011;6(2):131-42.

17. Michaels PJ, Fishein MC, Colvin RB. Humoral rejection of human organ transplants. Springer Semin Immunopathol. 2003;25(2):119-40.

18. Amico P, Honger G, Mayr M, Schaub S. Detection of HLA antibodies prior to renal transplantation: prospects and limitations of new assays. Swiss Med Wkly. 2008;138(33-34):472-6.

19. Ceará. Governo do Estado do Ceará. Secretaria da Saúde. Central de Transplantes. Central de Transplantes funciona 24 horas [Internet]. Fortaleza; 2008. [cited 2010 Aug 2]. Available from: http://www.saude.ce.gov.br/index.php/rede-de-servicos/central-de-transplante

20. Helman R, Cançado RD, Olivatto C. Incidência de aloimunização eritrocitária em pacientes com doença falciforme: experiência de um centro em São Paulo. Einstein (São Paulo). 2011;9(2):160-4.