Optical Performance of Top-Down Fabricated AlGaN Nanorod Arrays with Multi-Quantum Wells Embedded

Shucheng Ge 1, Jiangping Dai 2, Na Gao 1, Shiqiang Lu 1, Penggang Li 1, Kai Huang 1*, Bin Liu 2*, Junyong Kang 1, Rong Zhang 1,2 and Youdou Zheng 2

Abstract

Deep ultraviolet AlGaN-based nanorod (NR) arrays were fabricated by nanoimprint lithography and top-down dry etching techniques from a fully structural LED wafer. Highly ordered periodic structural properties and morphology were confirmed by scanning electron microscopy and transmission electron microscopy. Compared with planar samples, cathodoluminescence measurement revealed that NR samples showed 1.92-fold light extraction efficiency (LEE) enhancement and a 12.2-fold internal quantum efficiency (IQE) enhancement for the emission from multi-quantum wells at approximately 277 nm. The LEE enhancement can be attributed to the well-fabricated nanostructured interface between the air and the epilayers. Moreover, the reduced quantum-confined stark effect accounted for the great enhancement in IQE.

Keywords: DUV AlGaN multi-quantum wells, Nanorod light-emitting diodes, Internal quantum efficiency, Light extraction

Introduction

In the past decade, AlGaN-based UV LEDs have attracted wide attention because of their promising applications such as water purification, sterilization, and biochemical detection. [1–3]. Compared with traditional mercury UV lamps, AlGaN-based UV LEDs are robust, compact, and environmentally friendly and can be turned on without warming up step. However, strong piezoelectric field exists in the AlGaN multi-quantum wells (MQWs), resulting in spatial separation of electrons and holes, named as quantum-confined stark effect (QCSE), which dramatically decreases the internal quantum efficiency (IQE) [4]. Another problem is the low light extraction efficiency (LEE) [5], which is caused not only by the internal total reflection at the epilayers’ interface, but also by the dominant transverse magnetic (TM) polarized light [6].

Previous investigations suggested that the energy band engineering is an effective way to reduce the QCSE and thus improve the IQE [7]. On the other hand, the interface engineering, such as incorporating structures like photonic crystal [8, 9], patterned substrate [10, 11], distributed Bragg Reflector [12], and surface plasmons [13–16], can enhance the LEE of the deep UV LEDs. However, the combination of these methods is relatively difficult.

Fabrication of AlGaN-based deep UV nanostructured LEDs can be an alternative way to overcome QCSE and low LEE issues at the same time. Generally, nanostructured LEDs were fabricated by nanometers scale masks and top-down dry etching techniques. The masks were prepared via annealed metal nanoparticles such as nickel (Ni) or gold [17, 18], nanosphere lithography [19–21], electron beam lithography (EBL) [22], and focused ion beam milling [23]. Meanwhile, several selective area epitaxy methods have been developed to obtain InGaN-based nanowire LEDs [24, 25]. However, each method has its own natural disadvantages, such as expensive, uncontrollable morphology, non-uniform, incompatible with microelectronics processes, and time-consuming.

In order to overcome these shortcomings, we have...
developed a soft UV-curing nanoimprint lithography (NIL) technique to prepare controllable masks in a very large area, with high uniformity and low density of defects [26, 27].

In this work, we successfully prepared AlGaN nanorod (NR) arrays with MQWs embedded from planar AlGaN LED wafers. Compared with the planar (PLA) samples, 1.92-fold LEE enhancement and 12.2-fold relative IQE enhancement have been demonstrated. Cathodoluminescence (CL), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) measurements suggested that the enhanced LEE can be attributed to the improved interfacial quality between the air and the epilayers. The Raman measurements demonstrated that the strain in the MQWs is reduced from 0.42% to 0.13%, which is beneficial for IQE enhancement.

Methods

The AlGaN LED wafer was grown by metal-organic chemical vapor deposition (MOCVD) on a 2 in. c plane sapphire substrate, which is defined as the PLA sample. The epitaxy comprised a 900-nm undoped AlN buffer, a 400-nm graded Al composition AlGaN layer, a 1.4-μm-thick Si-doped n-Al0.25Ga0.75N, and 5 periods of Al0.35Ga0.65N/Al0.45Ga0.55N MQWs with well and barrier thickness of 3 and 10 nm, respectively, followed by a 100-nm Mg-doped p-GaN contact layer.

A soft UV-curing NIL and a post-growth etching approach have been employed to obtain the AlGaN NR arrays [26–28]. As shown in Fig. 1a–h, NIL process started with a deposition of a 200-nm-thick silicon dioxide (SiO2) by using plasma-enhanced chemical vapor deposition (PECVD) method (Fig. 1b). Then, a layer of 300-nm-thick SU8 photoresist and a layer of 80-nm-thick UV curable resist were directly spin-coated on the epilayer (Fig. 1c), with post soft UV-curing NIL on the UV curable resist (Fig. 1d). To remove the UV resist residue and duplicate the nano-patterns to the SU8 photoresist layer, oxygen (O2) plasma was utilized to etch SU8 photoresist via reactive-ion etching (RIE) procedure (Fig. 1e). After that, a 30-nm-thick Ni layer was deposited via physical vapor deposition (PVD), and lift-off process followed to form periodic Ni islands on the surface of SiO2 layer, which served as the hard mask (Fig. 1f). The prepared Ni hard mask was used to transfer the patterns to SiO2 layer by another RIE process (Fig. 1g). Subsequently, these SiO2 nanorod arrays were employed as a second mask to etch the AlGaN LED wafer via an inductively coupled plasma (ICP) etching process. Finally, these SiO2 nanorod array masks were
Fig. 2 The top view (a), titled (inset in a), and cross-sectional (b) SEM images of the AlGaN NR arrays. (c, d) the TEM images of single NR and AlGaN MQWs, respectively.

Fig. 3 (a, b) CL spectra of NR samples at 300 K and 10 K, respectively, excited by an electron beam (10 kV, 992 pA). (c, d) CL spectra of PLA samples at 300 and 10 K, respectively, excited by an electron beam (10 kV, 992 pA). The solid lines and dash lines are corresponding to the experimental and Gaussian fitting curve.
removed by HF solution, and AlGaN NR arrays were acquired as depicted in Fig. 1h. The yield of nanostructures with this NIL technology is over 98% on 2 in. wafer, which is comparable with the EBL method but the NIL technology is much cheaper. The details could be found in our previous report [27]. It is inevitable to generate surface states on the sidewall of the nanorods during dry etching, which may serve as non-radiation recombination centers and suppress the luminescence of AlGaN MQWs. Thus, all the NR samples have undergone a chemical treatment by using KOH and dilute acid solution at 90 °C in water bath to remove the surface states.

The morphology of fabricated AlGaN NR arrays was characterized in a ZEISS SIGMA high-resolution field emission SEM system. TEM images were collected by FEI Titan 80-300 TEM system with electron beam operating at 200 kV. The CL spectra were collected by an electron beam-fiber probe system with electron beam operating at 10 kV and 922 pA. The spectra of Raman scattering was obtained in a Confocal Raman spectroscopy imaging system (WITec alpha 300RA) with backscattering configuration, by using a 514-nm laser as excitation source. The Raman measurement was calibrated by a standard single crystal silicon sample with optical phonon mode at 520.7 cm⁻¹.

Results and Discussion

Figure 2 a, inset in a, and b show the typical top view, titled, and cross-sectional SEM images of the fabricated AlGaN NR arrays with good uniformity and smooth sidewalls. One can see that the NR are in a highly ordered hexagonal array. The diameter, period, and length of the NRs are approximately 350 nm, 730 nm, and 1300 nm, respectively. As shown in Fig. 2 c and d, the MQWs embedded in the NR can be clearly observed after NR fabrication. The well and barrier are presented as dark and bright areas, respectively, and the interface is still legible, flat, and steep.

Figure 3 a and b show the room temperature (RT; 300 K) and low temperature (LT; 10 K) CL spectra of NR samples, respectively. Figure 3 c and d show the RT and LT CL spectra of the PLA samples, respectively. The solid lines and dash lines are experimental and fitted curve (Gaussian). Gaussian fitting indicates that all spectra consist of two emission peaks. Regardless of the PLA or NR sample, the CL luminescence intensities measured at LT exhibit a great enhancement compared with those under RT. This can be attributed to the weak thermal activation energy at LT. Thus, the carriers cannot migrate to defects where carriers can be non-radiatively recombined, which means that the carriers only perform radiation recombination and the IQE can be regarded as approximately 100%. Considering the structure of the epitaxial layer, the peaks at short (Peak 1) and long (Peak 2) wavelengths are attributed to the emissions of n-type layer and MQW, respectively. The detailed parameters obtained from the Gaussian divided peaks are shown in Table 1. For the NR sample, the integrated intensities of emission from the n-type layer are approximately 2.89 \(\left(\frac{I_{1(NR300K)}}{I_{1(PLA300K)}} \right) \) and 2.78 \(\left(\frac{I_{1(NR10K)}}{I_{1(PLA10K)}} \right) \) times higher than that for the PLA sample at RT and LT, respectively. However, at RT, the integrated intensity of the emission from the MQW for NR sample is approximately 5.81 \(\left(\frac{I_{2(NR300K)}}{I_{2(PLA300K)}} \right) \) times higher than that of PLA sample, while the ratio is only 0.48 \(\left(\frac{I_{2(NR10K)}}{I_{2(PLA10K)}} \right) \) at LT.

Compared with PLA sample, the sidewalls of the NR sample are exposed to the air as shown in Fig. 4a,

Table 1 The integrated peak intensities of the NR and PLA samples at 300 K and 10 K
Peak 1 integrated intensity \(I_1(\text{a.u.}) \)

NR 300 K
NR 10 K
PLA 300 K
PLA 10 K
resulting in a significant increase of the total interface area between the air and the epilayer. Thus, the LEE can be enhanced for both n-type layer and MQW emissions. The LEE enhancement of the n-type layer emission can be estimated to be approximately $2.8 \frac{I_{1,(NR)}}{I_{1,(PLA)}}$. Moreover, according to the geometric structure obtained from Fig. 2a, the MQW area of the PLA sample is approximately 4 times larger than that of the NR samples. By assuming the IQEs for both PLA and NR samples as 1 at 10 K, the relative light extraction enhancement can be obtained as approximately $1.9 \frac{4 \times I_{2,(NR10K)}}{I_{2,(PLA10K)}}$. Clearly, the LEE enhancement of the n-type layer emission is higher than that of the MQW emission.

Finite-difference time-domain (FDTD) simulations were performed to clarify the LEE enhancement of AlGaN NR arrays. The diameter, period, and length of the NR arrays are set as 350 nm, 730 nm, and 1300 nm, respectively, to accord with the fabricated NR arrays as depicted in Fig. 4a. Other simulation parameters are similar to our previous report [29]. Field collected by monitor was used to integrate the power P_0 that escape from the top surface, and the source power of dipole is defined as P_S, so the LEE is $\eta = P_0/P_S$. And the extraction enhancement can be calculated by $E_\eta = \eta / \eta_0$, where η_0 is the LEE of PLA and NR samples, respectively. Figure 4b shows the light extraction enhancement of the

![Fig. 5 Raman spectra of the PLA and NR samples stimulated by a 514 laser at RT. The black and red curves represent PLA and NR samples, respectively. The blue and pink dashed lines correspond to E_{2h} peak of unstressed GaN and $\text{Al}_0.3\text{Ga}_{0.7}\text{N}$, respectively.](image)

![Table 2 The E_{2h} (high) phonon frequencies (cm$^{-1}$) observed at 300 K and the calculated stress and strain](image)

	GaN		Al$_0.3$Ga$_{0.7}$N			
	Raman shift (cm$^{-1}$)	Stress (GPa)	Strain	Raman shift (cm$^{-1}$)	Stress (GPa)	Strain
PLA	576.6	−2.82	−0.59%	591.3	−1.65	−0.34%
NR	568.1	−0.32	−0.07%	588.3	−0.71	−0.15%

On the other hand, the reduced QCSE can enhance the IQE for the NR sample for the MQW emission. The IQEs of the n-type layer emission at 300 K can be estimated as approximately 1.96% $[I_1(PLA300K)/I_1(PLA10K)]$ and 2.03% $[I_1(NR300K)/I_1(NR10K)]$ for the PLA and NR samples, respectively. They are very close to each other because the QCSE does not exist in the n-type layer. However, the IQEs of the MQW emission at 300 K are approximately 1.32% $[I_2(PLA300K)/I_2(PLA10K)]$ and 16.1% $[I_2(NR300K)/I_2(NR10K)]$ for the PLA and NR samples, respectively. Thus the enhancement ratio of IQE is 12.2 for the MQW emission of the NR sample compared with the PLA sample. This great enhancement of the relative IQE should be attributed to the reduced QCSE of the NR sample. According to some similar works in blue/green LEDs [27, 31], a large strain relaxation due to the NR fabrication will reduce the QCSE effect. The reduced QCSE will increase the wave function overlap of electrons and holes and results in an increased IQE.

Raman measurement was performed to confirm the strain relaxation in the NR samples. Figure 5 shows the Raman spectra of the PLA and NR samples. The E_{2h} (high) phonon mode is usually utilized to characterize the stress state in the epitaxial layers. Notably, three E_{2h} (high) phonon modes are shown in the Raman spectra for both PLA and NR samples, corresponding to the
GaN contact layer, n-type layer, and AlN buffer layer. Clearly, the peak shifts of PLA and NR samples are different compared with stress-free E_2(high) phonon modes, indicating that the stress state has changed after the PLA sample was fabricated into the NR sample. Usually, the in-plane stress of the epitaxial layers is expressed by the following equation [29]:

$$\omega_{E_2(\text{high})} - \omega_0 = C \sigma,$$

(1)

where C is the stress-shift rate ($-3.4 \text{ cm}^{-1}/\text{GPa}$, $-3.1 \text{ cm}^{-1}/\text{GPa}$, and $-3.25 \text{ cm}^{-1}/\text{GPa}$ for GaN, AlN, and Al$_{0.5}$Ga$_{0.5}$N, respectively) [29]. $\omega_{E_2(\text{high})}$ and ω_0 are the Raman shifts for the E_2(high) mode of the corresponding epitaxial layers in our study and the stress-free materials, respectively. The ω_0 values for GaN and Al$_{0.5}$Ga$_{0.5}$N are reported to be 567.0 and 586.0 cm$^{-1}$ at RT, respectively [32]. The strain of the epitaxial layers can be expressed as [33]:

$$\sigma_{xx} = \left[C_{11} + C_{12} - \frac{2}{C_{33}} \right] \epsilon_{xx},$$

(2)

where σ_{xx} is the in-plane stress; ϵ_{xx} is the in-plane strain, and C_{ij} is the elastic constants of GaN and AlN given in previous report [34], i.e., a proportionality factor of 478.5 GPa for GaN, and 474.5 GPa for Al$_{0.5}$Ga$_{0.5}$N.

Using Eqs. (1, 2), the Raman shift, stress, and the strain are listed in Table 2. Notably, the strain is greatly reduced in the GaN contact layer. By simply considering a linear interpolation of the strain and stress in the different Al content epilayers, the stress/strain in the MQWs layer of the NR sample. Thus, a 69% strain has been relaxed in the MQWs layer of the NR sample.

According to previous investigation [35], the polarization field E_w in the quantum wells can be expressed as

$$E_w = \frac{l_b (P_b - P_w)}{l_w l_b + l_b E_w},$$

(3)

where l_w, l_b, P_w, P_b, and E_w are the widths, total polarizations and dielectric constants of the wells and the barriers, respectively. Thus, not only the piezoelectric polarization but also the spontaneous polarization should be taken into account. The piezoelectric polarization is calculated by $P_{px} = 2(e_{31} - e_{33} C_{33}) \epsilon_{xx}$ [36], where e_{31}, e_{33}, C_{31}, and C_{33} are obtained by the linear interpolation from the related parameters of GaN and AlN [37, 38], the strain ϵ_{xx} is calculated by the Raman spectra using linear interpolation method. The spontaneous polarization is obtained by the linear interpolation from the spontaneous polarization of GaN and AlN [37, 39]. Thus, by using the dielectric constant of the wells and the barriers obtained by the linear interpolation from the dielectric constant of GaN and AlN (0.0536 and 0.0066 for GaN and AlN, respectively) [40], the polarization field can be calculated by Eq. (3). Table 3 lists the spontaneous polarization, piezoelectric polarization, total polarization, and polarization field in the quantum wells for PLA and NR samples; one can clearly see that the polarization field is reduced after the NR fabrication.

Conclusion

In summary, highly uniform AlGaN NR arrays with MQWs embedded have been successfully fabricated by NIL and top-down etching techniques. Two peaks corresponding to the emission from the n-type layer (at higher energy) and MQWs (at lower energy) are observed by the CL measurement for both NR and PLA samples at 300 K and 10 K. For the n-type layer emission, an over 2-fold LEE enhancement has been observed while the IQE is hardly enhanced via the NR fabrication. For MQW emission, the LEE enhancement ratio can be estimated around 1.9 and a 12.2-fold IQE enhancement is achieved. Raman spectra demonstrated that the strain is reduced from 0.42% to 0.13% by the NR fabrication, showing a strong evidence of reduced QCSE. Our results indicated that for the samples without great crystal quality, the spatial separation between the electrons and the holes caused by the QCSE would be an important factor for the IQE reduction.

Table 3: Spontaneous polarization, piezoelectric polarization, total polarization, and polarization field in the quantum wells

Sample	Spontaneous polarization (C/m2)	Piezoelectric polarization (C/m2)	Total polarization (C/m2)	Polarization field (C/m2)
PLA	−0.0536	0.0066	−0.047	−0.00397
NR	−0.0536	0.002	−0.0516	−0.00335

Abbreviations

- CL: Cathodoluminescence
- EBL: Electron beam lithography
- FDTD: Finite-difference time-domain
- ICP: Inductively coupled plasma
- LEE: Light extraction efficiency
- LT: Low temperature
- MOCVD: Metal-organic chemical vapor deposition
- MQWs: Multi-quantum wells
- Ni: Nickel
- NIL: Nanoimprint lithography
- Ni: Nickel
- PECVD: Plasma-enhanced chemical vapor deposition
- PLA: Planar
- PVD: Physical vapor deposition
- QCSE: Quantum-confined Stark effect
- RIE: Reactive-ion etching
- RT: Room temperature
- SEM: Scanning electron microscopy
- TE: Transverse electric
- TEM: Transmission electron microscopy
- TM: Transverse magnetic
- UV: Ultraviolet

Acknowledgements

The authors are grateful to Tao Tao and Jian Guo for their experimental assistance and thank Jiawei Liao, He Wang, and Zhengyuan Wu for their helpful discussions.

Funding

The work is supported by the National Key Research and Development Program (2016YFB0400903), National Science Foundation of Fujian Province (2017J01121) and Fundamental research funds for the central universities (20720160018 and 20720170098).
Availability of Data and Materials
The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

Authors’ Contributions
SG, NC, SL, and KH designed the experiment and analyzed the data. JD, BL, and RZ explored the NIL technology and made some morphological characterization. PL, SG, KH, and JK participated in the discussions and supervised the writing of the manuscript. All authors read and approved the final manuscript.

Competing Interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 December 2018 Accepted: 7 May 2019

References
1. Tanigawa Y, Kuro M, Makimoto T (2006) An aluminum nitride light-emitting diode with a wavelength of 210 nanometers. Nature 441:325–328
2. Oto T, Banal RG, Kataoka K, Funato M, Kawakami Y (2010) 100 mw deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam. Nat Photonics 4:767–770
3. Shigeta Y, Lin BC, Chen KJ, Lin CC, Lee PT, Kuo HC (2014) Enhanced performance of nitride-based ultraviolet vertical-injection light-emitting diodes by non-insolation current blocking layer and textured surface. Nanoscale Res Lett 9:699
4. Cingolani R, Botchkarev A, Tang H, Morkoç H, Traetta G (2000) Spontaneous polarization and piezoelectric field in GaN/AlGaN/GaN quantum wells: impact on the optical spectra. Phys Rev B 61:2171–2175
5. Nakada N, Nakaji M, Ishikawa H, Egawa T, Umeno M, Jimbo T (2000) Light emission by an electron beam. Nat Photonics 4:767–770
6. Kuo YK, Chen FM, Chang JY, Shih YH (2016) Structural design and optimization of near-ultraviolet light-emitting diodes with wide wells. J Appl Phys 119:77
7. Jonathan JR, Wierer J, David A, Megens MM (2009) Solid-state nitride polarization and piezoelectric field in GaN-based light-emitting diodes. J Cryst Growth 311:3686–3688
8. Lai F, Yang JF (2013) Enhancement of light output power of GaN-based ultraviolet light-emitting diodes with high extraction efficiency. Nanotechnology 24:405303
9. Zha, Z, Guo X, Liu B, Fu H, Dai JY, Zhang Y (2016) Large-scale fabrication and luminescence properties of GaN nanoyrods fabricated by a soft UV-curing nanoimprint lithography. Nanotechnology 27:15301
10. Zha, Z, Li Y, Liu B, Guo X, Dai JY, Zhang G (2013) Optical polarization characteristics of c-plane InGaN/GaN asymmetric nanolayers. J Appl Phys 112:3311
11. Lin W, Jiang W, Gao N, Cai D, Li S, Kang J (2013) Optical isotropization of anisotropic wurtzite Al-rich AlGaN via asymmetric modulation with ultrathin InGaN(alN) n superlattices. Laser Photonics Rev 7:572–579
12. Wang Q, Dai JY, Gao NA, Ho YP, Wang T (2011) Influence of strain relaxation on the optical properties of GaN nanorods with different Al compositions for emission enhancement in UV range. Nanotechnology 22:385205
13. Lin W, Wang W, Gao N, Cai D, Li S, Kang J (2013) Optical isotropization of anisotropic wurtzite Al-rich AlGaN via asymmetric modulation with ultrathin InGaN(alN) n superlattices. Laser Photonics Rev 7:572–579
14. Ou Y, Iida D, Fadil A, Hu H (2016) Enhanced emission efficiency of size-controlled InGaN/GaN green nanopillar light-emitting diodes. Int J Optic Photonic Eng 11
15. Lauter F, Blettner P, Saraia G, Hoflich K, Heilmann M, Chen W (2017) Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation. Nanotechnology 28:055201
16. Hu Y, Hao Z, Lai W, Geng C, Luo Y, Yan Q (2015) Nano-fabrication and related optical properties of InGaN/GaN nanopillar LEDs. Nanotechnology 26:075302
17. Dong F, Yan J, Zhang Y, Wang J, Geng C, Zheng H, Wei X (2014) Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes. Opt Express 22:A320–A327
18. Xu X, Qiang W, Li C, Ji X, Xu M, Yang H, Xu X (2018) Enhanced localised effect and reduced quantum-confined stark effect of carriers in InGaN/GaN multiple quantum wells embedded in nanopillars. J Lumin 203:216–221
19. Wang Q, Ji Z, Zhou Y, Wang X, Liu B, Xu X (2017) Diameter-dependent photoluminescence properties of strong-phase-separated dual-wavelength InGaN/GaN nanopillar LEDs. Appl Surf Sci 410:196–200
20. Aikhabashi HA, Almarwani AM (2018) Enhancement of the optical properties of the InGaN/GaN quantum well nanopillar arrays prepared via MOVPE approach. Optik 164:28–35
21. Yamano K, Kishino K (2018) Selective area growth of InGaN-based nanocolumn LED crystals on AlN/Si substrates useful for integrated μ-LED fabrication. Appl Phys Lett 112:201105
22. Zhang Z, Guo X, Zhang G, Liu B, Zhang R, Zhi T (2013) Large-scale fabrication and luminescence properties of GaN nanoyrods fabricated by a soft UV-curing nanoimprint lithography. Nanotechnology 24:405303
23. Zha, Z, Guo X, Liu B, Fu H, Dai JY, Zhang Y (2016) Large-scale fabrication of InGaN/GaN elliptic nanorod arrays on a wafer scale. Nanotechnology 27:15301
24. Zha, Z, Li Y, Liu B, Guo X, Dai JY, Zhang G (2013) Optical polarization characteristics of c-plane InGaN/GaN asymmetric nanolayers. J Appl Phys 112:3311
25. Dai JY, Liu B, Zha Z, He G, Zhi T, Tao T (2017) Fabrication of AlGaN nanorods with different Al compositions for emission enhancement in UV range. Nanotechnology 28:385205
26. Vurgaftman I, Meyer JR (2003) Band parameters for nitrogen-containing semiconductors. J Appl Phys 94:3676–3696
27. Bernardini F, Fiorentini V, Vanderbilt D (1997) Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys Rev B 56:334
28. Gao N, Huang K, Li JC, Li SP, Yang X, Kang JY (2012) Surface-plasmon enhanced deep-UV light-emitting diodes based on AlGaN multi-quantum wells. Sci Rep 2:816
29. Shim JP, Seong WS, Min JH, Kong DJ, Seo DJ, Kim HJ, Lee DS (2016) Size-controlled InGaN/GaN nanopillar LEDs with an ITO/graphene transparent layer. Nanotechnology 27:465202
30. Lin W, Jiang W, Gao N, Cai D, Li S, Kang J (2013) Optical isotropization of anisotropic wurtzite Al-rich AlGaN via asymmetric modulation with ultrathin InGaN(alN) n superlattices. Laser Photonics Rev 7:572–579
31. Wang Q, Bai J, Gong YP, Wang T (2011) Influence of strain relaxation on the optical properties of InGaN/GaN multiple quantum well nanorods. J Phys D Appl Phys 44:395102
32. Davydov VV, Goncharuk IN, Smirnov AN, Nikolaev AE, Lundin WV (2002) Composition dependence of optical phonon energies and Raman line broadening in hexagonal AlGaN n alloys. Phys Rev B 65:125203
33. Gleize J, Denassart F, Frandon J, Renucci MA, Widmann F (1999) Phonons in a strained hexagonal GaN–AlN superlattice. Phys Rev Lett 74:703–705
34. Wright AF (1997) Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J Appl Phys 82:2833–2839
35. Liu W, Zhu L, Zeng F, Liu B, Feng Z (2013) Influence of GaN barrier thickness on optical properties of in-graded InGaN/GaN multiple quantum wells. Appl Phys Express 6:0181001
36. Ambacher O, Foutz B, Smart J, Schaff WW, Eastman LF (2000) Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J Appl Phys 87:354–344
37. Vurgaftman I, Meyer JR (2003) Band parameters for nitrogen-containing semiconductors. J Appl Phys 94:3676–3696
38. Bernardini F, Fiorentini V, Vanderbilt D (1997) Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys Rev B 56:334
39. Fiorentini V, Bernardini F, Ambacher O (2002) Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures. J Appl Phys 90:1204–1206
40. Wu J (2009) When group-III nitrides go infrared: new properties and perspectives. J Appl Phys 105:011101

Available online: 21 May 2019