An ecological study of stillbirths in Mexico from 2000 to 2013

Teresa Murguía-Peniche, Daniel Illescas-Zárate, Gabriela Chico-Barba & Zulfiqar A Bhutta

Objective To examine trends in the rate of stillbirths at or after 21 weeks’ gestation in Mexico from 2000 to 2013, identify factors associated with stillbirths and estimate subnational variability in stillbirth rates and the proportion of deaths occurring intrapartum.

Methods This population-based, ecological study involved data from a national database on 263 475 stillbirths in 29 Mexican states and maternal sociodemographic factors. Subnational variability in the stillbirth rate in 2012 was investigated and stillbirths in 2013 were categorized as intrapartum or antepartum according to the fetus’ skin condition.

Findings The national stillbirth rate declined from 9.2 to 7.2 per 1000 births between 2000 and 2013 (i.e. −1.9% per year). The prevalence of stillbirths varied 3.9-fold between states. Stillbirths were associated, in particular, with: residence in Mexico City (odds ratio, OR: 1.71; 95% confidence interval, CI: 1.68–1.73) or central Mexico (OR: 1.36; 95% CI: 1.34–1.38); maternal education of 9 years or less (OR: 1.10; 95% CI: 1.08–1.11) or 10 to 12 years (OR: 1.16; 95% CI: 1.14–1.18); mothers younger than 15 years (OR: 1.64; 95% CI: 1.55–1.72) or older than 34 years (OR: 1.68; 95% CI: 1.66–1.70); and male fetal sex (OR: 1.20; 95% CI: 1.19–1.21). Overall, 51% (7348/14 344) of fetal deaths occurred intrapartum.

Conclusion In Mexico, the total stillbirth rate declined between 2000 and 2013, however geographical variations were observed. Stillbirths were associated with sociodemographic factors. The proportion of intrapartum stillbirths was relatively high, suggesting that health system performance could be improved, especially at places of delivery.

Introduction

In 2015, there were an estimated 2.6 million stillbirths worldwide, where a stillbirth was the death of a fetus with a gestational age of at least 28 weeks or with a birth weight of 1000 g or more, as defined by the World Health Organization. Between 33% and 46% occurred during labour (i.e. intrapartum) and could have been prevented by simple measures. Between 2000 and 2015, the global stillbirth rate decreased by an estimated 2% per year from 24.7 to 18.4 per 1000 births (i.e. live or dead). In 2015, the majority of stillbirths (98%) occurred in low- and middle-income countries. The highest burden was in sub-Saharan Africa and in parts of south Asia, where the rate was 28.7 and 25.5 per 1000 births, respectively. Pakistan (43.1 per 1000 births), Nigeria (42.9 per 1000 births) and Chad (39.9 per 1000 births) had the highest rates. In contrast, six countries in Western Europe had an estimated stillbirth rate of 2 per 1000 births or less.

Although stillbirths are associated with a wide range of factors (Fig. 1), governments can take action to reduce stillbirths. Between 2000 and 2012, the Mexican government implemented several interventions promoting maternal and perinatal health, including Fair Start in Life, a national programme launched in 2001 that had a safe-motherhood component. In 2003, a health reform carried out under the System of Social Protection in Health established a new form of public health insurance, Seguro Popular. In addition, the Medical Insurance for a New Generation programme was launched in December 2006 to provide health coverage for all neonates. Further, special measures were introduced to expand coverage of antenatal care and to increase the number of institutional deliveries (i.e. the Healthy Pregnancy initiative in 2008) and to improve surveillance of maternal deaths. In 2009, the General Agreement for Collaborative Interinstitutional Care of Obstetric Emergencies was established. Subsequently, maternal mortality declined to 49.0 per 100 000 live births in 2014 from 90.4 per 100 000 in 1990.

However, despite the importance of these interventions for public health, their impact on fetal outcomes has yet to be analysed and, in particular, few data on stillbirths have been reported for Mexico. The failure to count stillbirths makes it impossible to investigate their effect on families, on parental mental health, on economic and psychosocial development or on the health system. In fact, counting and auditing fetal deaths are crucial for understanding perinatal outcomes and for implementing strategies to improve them. Moreover, the perinatal mortality rate is an indicator of quality of care and is essential for making international comparisons.

The objectives of this study were: (i) to analyse trends in stillbirth rates in Mexico from 2000 to 2013; (ii) to identify sociodemographic factors associated with the stillbirth rate during this period; (iii) to investigate subnational variations in the rate; and (iv) to determine the proportion of stillbirths that occurred intrapartum in 2013. We hypothesized that perinatal outcomes have improved in Mexico over recent years because the country has implemented several programmes with that intent.

Methods

Our study was a population-based ecological study covering 2000 to 2013. We used aggregated data from the Mexican National Institute of Statistics and Geography, which records information on vital statistics every year and census data in selected years. In Mexico, about 95% of births occur in hospitals, which register live births and issue death certificates. Consequently, our data represent population estimates. The information we obtained included fetal birth weight, fetal gesta-
tional age from the last menstrual period and selected maternal sociodemographic factors. We defined a stillbirth as a fetal death that occurred at a gestational age of 21 weeks or more; stillbirths were further classified as early (i.e. occurring between 21 and 27 weeks’ gestation) or late (i.e. occurring at 28 weeks’ gestation or later). We used information for 2013 on the condition of the stillborn fetus’s skin at birth to determine when death occurred: fresh skin was taken to indicate an intrapartum death, whereas macerated skin indicated an antepartum death. The percentage of intrapartum stillbirths was stratified by gestational age. In addition, information about the health system was obtained from the Directorate General of Health Information, which maintains public databases.

Stillbirth rates were expressed as the number of fetal deaths per 1000 births (i.e. live or dead). We compared the stillbirth rate in each state for each year between 2000 and 2013 with the corresponding neonatal mortality rate, which was defined as the number of neonatal deaths per 1000 live births. As suggested by others, we excluded any state in which the ratio of the stillbirth rate to the neonatal mortality rate in any year was less than 0.25 or more than 4.0 because such a rate was implausible, given that the expected ratio should be close to 1, and probably indicated poor reporting.

Data on economic indicators, such as the gross domestic product (GDP) per capita, the Gini index and the human development index, were obtained from the National Institute of Statistics and Geography for the year 2012 – the most recent year for which official data on all economic indicators were available. Any state with a GDP per capita more than four standard deviations above the mean for all states was considered an outlier and was excluded from the analysis.

We obtained sociodemographic data on the entire Mexican population from the 2000, 2005 and 2010 censuses. The censuses included national information on: (i) the percentage of all pregnancies that occurred in teenage women (i.e. women aged 19 years or younger); (ii) the percentage of women who lived in an urban or rural area; and (iii) the percentage of women of reproductive age who had had either less than 6 years, 7 to 9 years, 10 to 12 years or more than 12 years of education. In addition, we obtained national health system information on: (i) the number of hospitals per 1 000 000 population (2005 and 2010 censuses only); (ii) the proportion of women who had a live birth and had had more than four antenatal visits (2010 census only); and (iii) the proportion of deliveries assisted by a skilled birth attendant (2010 census only). In our analysis of stillbirths, we considered the influence of the sex of the fetus, urban or rural residence, maternal age (i.e. younger than 15 years, 15 to 19 years, 20 to 34 years or older than 34 years) and the mother’s educational level (i.e. 9 years or less, 10 to 12 years, or more than 12 years of education). The place of delivery was categorized as a private institution, a public institution or other (i.e. outside an institution). For the study, Mexican states were divided into four regions: northern, central, Mexico City and southern, as described previously.

Statistical analysis

We analysed the trend in early and late stillbirth rates between 2000 and 2013 and, for comparison, the trend in the neonatal mortality rate. The compound annual percentage rate change was calculated as:

\[(a / b)^{1/2} - 1 \times 100 \]

where \(a \) defines the most recent stillbirth rate, \(b \) defines the earliest stillbirth rate and \(c \) defines the number of years.

A sequential analysis technique involving a two-sided cumulative sum control chart was used to detect changes in the national stillbirth rate between 2000 and 2013 that were greater than one standard deviation from the national mean stillbirth rate for that period overall, in either a positive or negative direction. The changes were plotted over time in a diagram with two converging horizontal boundaries. If the fetal death rate dropped below the lower boundary, the rate was higher than expected; if it rose above the upper boundary, it was lower than expected.

We were unable to calculate 95% confidence intervals (CIs) for the national prevalence of sociodemographic factors and health system indicators for 2000, 2005 and 2010 because of limitations in the data sources. However, stillbirth rates were calculated for the period 2000 to 2013 for a range of sociodemographic subgroups and for different places of delivery. By using crude odds ratios (ORs) and 95% CIs derived from these rates, we were able to identify factors associated with fetal deaths. Odds ratios were not calculated for any variable for which 20% or more possible data values were missing. We were unable to perform a multivariable analysis because our sources provided aggregated data rather than data on individuals. Moreover, the National Institute of Statistics and Geography’s database did not include information on the number of antenatal care visits received by a mother for each live birth before 2008. We compared stillbirth rates in different Mexican states in 2012 and derived Spearman correlation coefficients for the relationship between the stillbirth rate.
and the state's GDP per capita, Gini index and human development index. OpenEpi version 3.03 was used to calculate ORs, rates and prevalences and other analyses were performed using SAS v. 9.4 (SAS Institute Inc., Cary, United States of America). P-values less than 0.05 were considered significant.

Results

Our analysis included data from 29 of the 32 Mexican states: Coahuila, Guerrero and Sinaloa were excluded because some stillbirth-to-neonatal mortality ratios lay outside the range 0.25 to 4.0. In 2013, these three states accounted for 8.8% (218 087/2 478 889) of all births nationally and for 2.6% (431/16 440) of all stillbirths. A total of 33 163 577 births and 263 475 stillbirths occurred between 2000 and 2013 in the other 29 states (average stillbirth rate: 7.9 per 1000 births). Fig. 2 depicts the national trend in stillbirth and neonatal mortality rates over that period and indicates the years in which various national strategies to improve perinatal outcomes were implemented. The compound annual decline in these two rates was −1.9% and −2.2%, respectively. The late fetal death rate decreased by an average of −3.0% per year, whereas the early fetal death rate increased slightly by 0.2% per year. According to the cumulative sum control chart analysis (Fig. 3, Table 2 and Fig. 4; both available at: http://www.who.int/bulletin/volumes/94/5/15-154922), the trends in fetal and neonatal mortality rates declined more than expected between 2003 and 2010.

Table 1 lists selected sociodemographic characteristics for the whole Mexican population in 2000, 2005 and 2010 and several health system variables. The proportion of women with more than 12 years of education and the number of public hospitals per 1 000 000 population both increased substantially between 2000 and 2010. The proportion of pregnancies occurring in teenagers and in women aged over 34 years increased. Table 2 shows how the number and rate of stillbirths varied according to the sex of the fetus, place of delivery and various demographic characteristics for the whole study period. Table 3 lists the factors associated with stillbirths. Odds ratios were not calculated for the place of delivery or the area of residence because a large proportion of data was missing.

Fig. 5 depicts the stillbirth rate and the number of stillbirths in 2012 in 28 of the 29 Mexican states included in the analysis and illustrates their relationship with GDP per capita. The state of Campeche was excluded because its GDP per capita was more than four standard deviations above the mean. Four of the 28 states – the State of Mexico, Mexico City, Puebla and Jalisco – accounted...
for 44% (7098/16210) of all stillbirths. These four states were home to about one third of the national population. There was no clear correlation between a state’s GDP per capita and its stillbirth rate. Moreover, there was no apparent correlation between the stillbirth rate and either the Gini index or the human development index across the states: the correlation coefficient was −0.180 (P = 0.36) and 0.122 (P = 0.53) for the two indices, respectively. However, there was a 3.9-fold difference in the stillbirth rate between the State of Mexico, which had the highest rate, and Nayarit, which had the lowest.

We analysed the time of fetal death for 16009 stillbirths reported in 2013–1665 were excluded because their skin condition was not reported. Among stillbirths whose skin condition was known, the mean proportion of deaths that occurred intrapartum was 51% (7348/14344): the proportion varied from 34% (28/82) to 57% (886/1542) across the states. In addition, the proportion of deaths that occurred intrapartum varied with the gestational age of the fetus (Fig. 6). The proportion was 72% (2098/2907) for stillbirths that occurred earlier than 24 weeks’ gestation and was roughly 40% for those that occurred at 28 weeks’ gestation or later.

Discussion

In Mexico, the decreases in stillbirth and neonatal mortality rates observed between 2000 and 2013 were similar, which was expected because the factors affecting these two outcomes are closely linked. However, the neonatal mortality rate increased slightly between 2009 and 2012, whereas the total stillbirth rate declined (Fig. 2). Moreover, whereas the early (i.e. 21 to 27 weeks’ gestation) stillbirth rate failed to improve, the late
Stillbirths in Mexico

Table 2. Stillbirths, by demographic characteristic, Mexico, 2000–2013

Demographic characteristic	Stillbirths, No.	Births, No.	Stillbirths per 1000 births (95% CI)
National total	263475	33163577	7.94 (7.91–7.97)
Sex of fetus			
Female	117938	16533893	7.13 (7.09–7.17)
Male	141267	16589422	8.51 (8.47–8.56)
Unknown, %	1.62	0.12	NA
Region of country			
Northern	40036	6211015	6.45 (6.38–6.50)
Central	11619	13279387	8.75 (8.69–8.78)
Mexico City	30949	2823854	10.96 (10.84–11.08)
Southern	76321	10849321	7.03 (6.98–7.09)
Maternal age at delivery, years			
< 15	1476	125401	11.77 (11.17–12.37)
15–19	40628	5473878	7.42 (7.35–7.49)
20–34	163724	2266168	7.22 (7.19–7.26)
> 34	38502	3192736	12.06 (11.94–12.18)
Unknown, %	7.27	5.16	NA
Maternal education, years			
≤ 9	183076	2207363	8.29 (8.25–8.33)
10–12	43001	4912778	8.75 (8.67–8.83)
> 12	21196	2802434	7.56 (7.46–7.66)
Unknown, %	6.15	10.18	NA
Area of residence			
Rural	53441	3699066	14.45 (14.33–14.57)
Urban	193730	22851198	8.48 (8.44–8.51)
Unknown, %	6.19	19.94	NA
Place of delivery			
Public institution	129384	21306009	6.07 (6.04–6.10)
Private institution	27058	5303970	5.10 (5.04–5.16)
Outside an institution	11102	4034635	2.75 (2.70–2.80)
Unknown, %	36.41	7.60	NA

CI: confidence interval; NA: not applicable.

a Data are for 29 of the 32 Mexican states – Coahuila, Guerrero and Sinaloa were excluded because the stillbirth-to-neonatal mortality ratio was outside the range 0.25 to 4.0.

b All values are absolute numbers unless otherwise stated.

c Data for 2004 to 2013 only.

(i.e. 28 weeks’ gestation or more) rate declined continuously. These observations might indicate that obstetric care improved or that at-risk fetuses were detected and delivered early, thereby increasing the burden of care on neonatologists who would have had to treat smaller and sicker babies. These findings deserve further research.

Overall, the stillbirth rate declined by 24.3% between 2000 and 2013 from 9.2 to 7.2 per 1000 births, thereby saving an estimated 41 630 fetuses over this period. Worldwide, the average estimated stillbirth rate after 28 weeks’ gestation in 2015 was 18.4 per 1000 births, which corresponded to a decline of 25.3% from 2000. In China, the decline between 1995 and 2009 was a remarkable 47.5%, whereas the decline in countries in sub-Saharan Africa and Oceania during the same period was smaller, at around 8%. However, countries define stillbirths differently. For example, previous global estimates were based on stillbirths in the third trimester whereas we included all fetal deaths after 21 weeks’ gestation. Considering only third-trimester fetuses, the stillbirth rate in Mexico decreased from 6.4 to 4.3 per 1000 births between 2000 and 2013 (i.e. compound annual rate: −3.0%). This decline is greater than in Latin America as a whole, where the stillbirth rate decreased from 11.3 to 8.2 per 1000 births between 2000 and 2015 (i.e. compound annual rate: −2.1%).

In Mexico, several factors affecting the stillbirth rate improved during the study period. In our view, changes in general determinants of fetal health, such as government policy and health-care reform (Fig. 1), were important for improving perinatal outcomes – in particular, the cumulative sum control chart analysis showed that fetal outcomes were better than expected between 2000 and 2010. Government strategies aimed at expanding pregnancy and emergency obstetric care appeared to decrease the stillbirth rate, though a plateau was reached at the end of the government administration from 2006 to 2012. The two main strategies were: (i) health reform legislation in 2003 that created the System of Social Protection in Health; and (ii) the launch of the Medical Insurance for a New Generation programme in 2006. As a result of all strategies: (i) 51.8 million of the more than 60 million Mexicans who had no institutional health protection in 2002 were enrolled in Seguro Popular by 2011; (ii) the physician-to-population ratio increased 54% between 2004 and 2010 such that there were 46.2 health-care providers per 10 000 people in 2012; (iii) the proportion of mothers using public health facilities (ministry of health) to give birth increased from 32% to 48% between 2000 and 2012; (iv) the proportion of pregnant women who received antenatal care increased from 67.3% to 89.2% between 2006 and 2010; and (v) the proportion of deliveries aided by a skilled birth attendant reached 97.8% in 2010. In addition, the educational level of women of reproductive age increased during the study period and the health infrastructure improved. Together these interventions could explain some of the improvement in fetal outcomes observed during the two government administrations between 2000 and 2012, which illustrates that modifying the social determinants of health and pregnancy care is important. Nevertheless, attention must be paid to the quality of care if fetal well-being is to be further enhanced.

Fetal outcomes were better in northern parts of the country and in urban areas. This could be due to environmental, genetic or sociodemographic factors or to a failure of the health-care system in some areas. In addition, the stillbirth rate was higher in women who became pregnant very early or very late in their reproductive life and in those with a lower level of education. Multisectoral efforts are needed to empower and educate women and to promote pregnancies at an optimal maternal age. The odds of dying in utero were higher for a male than...
Table 3. Factors associated with stillbirths, Mexico, 2000–2013

Factor	Risk of stillbirth, Crude OR (95% CI)
Sex of fetus	
Female	Reference
Male	1.20 (1.19–1.21)
Region of country	
Northern	Reference
Central	1.36 (1.34–1.38)
Mexico City	1.71 (1.68–1.73)
Southern	1.09 (1.08–1.10)
Maternal age at delivery, years	
< 15	1.64 (1.55–1.72)
15–19	1.03 (1.02–1.04)
≥ 34	1.68 (1.66–1.70)
Maternal education, years	
≤ 9	1.10 (1.08–1.11)
10–12	1.16 (1.14–1.18)
> 12	Reference

CI: confidence interval; OR: odds ratio.

In Mexico, 51% of all stillbirths occurred intrapartum, as did around 40% of stillbirths reported at 28 weeks’ gestation or later. The latter figure is within the global estimate of 33 to 46% for third-trimester stillbirths. These proportions are very high and action should be taken to reduce stillbirth rates both in Mexico and worldwide. Since most deliveries in Mexico take place in institutions, efforts could be made to improve emergency obstetric care and monitoring practices during labour. In fact, according to a Delphi analysis conducted by experts, providing basic emergency obstetric care could reduce intra-partum deaths by 40% compared with not providing such care and providing comprehensive emergency obstetric care could reduce deaths by 85%. Recently, two global initiatives have targeted the reduction of stillbirths – Stillbirths: the vision for 2020 and the Every Newborn action plan. The first calls for countries with a third-trimester stillbirth rate under 5 per 1000 births to eliminate all preventable stillbirths and close equity gaps by 2020. All other countries should reduce their stillbirth rate by at least 50% by 2020 from a 2009 global average of 18.9 per 1000 births. The second initiative adopted a national stillbirth target rate of 10 per 1000 births or lower by 2035, advocated addressing inequalities such as subnational variations in the stillbirth rate and encouraged the use of strategies to avoid preventable deaths. One strength of our analysis is the use of data from a large, representative, national database that covered two government administrations, during which several health programmes and initiatives were implemented. Furthermore, by analysing the skin condition of fetuses as a proxy for the time of death, we were able to identify the best intervention strategies. Limitations included the underreporting of stillbirths in three states and the absence of information about the fetus’s skin condition on around 10% of death certificates. Moreover, because several public health interventions overlapped during the study period, it was difficult to assess their individual effects. The missing data on some sociodemographic characteristics influencing stillbirths might have affected our findings. Also, since it was not possible to match live births and death certificates in the national health information system, an adjusted analysis could not be performed.

In conclusion, implementation of strategies to improve social conditions and pregnancy care has most likely decreased the stillbirth rate in Mexico. However, to further prevent antenatal deaths, more interventions are needed – such as improvement in education, good prenatal and preconception interventions and improvement of the quality of care at places of delivery.

Acknowledgements
We thank Gerardo Sierra-Murguia and Jourdan Cadena for their help with data presentation and analysis.

Competing interests: None declared.
دراسة بيئية عن وفيات الولادة المبكرة في المكسيك في الفترة من عام 2000 إلى عام 2013

أو تتضمن المكسيك (نسبة الاحتمال: 1.36%; نسبة أرجحية مقترحة: 1.34–1.38). تتفتيت الأمهات لديها 9 سنوات أو أقل (نسبة الاحتمال: 1.10%; نسبة أرجحية مقترحة: 1.04–1.15). في المكسيك في الفترة من عام 2000 إلى عام 2013، وتحدد العوامل المرتبطة بوفيات الولادة المبكرة وتقرير التغيرات الثنائية في معدلات وفيات الولادة المبكرة في الألفة الناتجة أثناء الولادة في الفترة بين عامي 2000 و2013. كذلك، وتم الاعتراف بالعوامل المرتبطة بوفيات الولادة المبكرة في عام 2012 وتم تصفيف وفيات الولادة المبكرة في عام 2013 لحالة الولادة أو في الفترة السابقة للولادة وفقًا لحالة جلد الجين.

النتائج: انخفض معدل الولادات الإنجابية للولادات المبكرة في المكسيك في الفترة بين عامي 2000 و2013، ولكن لوحظ اختلافات جغرافية بعيدة، وفيات الولادة المبكرة بالعمل换 الاجتماعي والديموغرافية. كانت نسبة وفيات الولادة المبكرة أثناء الولادة مرتفعة، مما يعطي من الممكن تعيسن أن النظام الصحي وخاصة في أماكن إنجاب الأطفال.

المستند

المختصر

مексيكو 2000 إلى 2013: الوفيات في الولادة المبكرة

العوامل: الوفيات في الولادة المبكرة في المكسيك في الفترة بين عامي 2000 و2013، ولكن لوحظ اختلافات جغرافية بعيدة، وفيات الولادة المبكرة بالعملحای الاجتماعي والديموغرافية. كانت نسبة وفيات الولادة المبكرة أثناء الولادة مرتفعة، مما يعطي من الممكن تعيسن أن النظام الصحي وخاصة في أماكن إنجاب الأطفال.

الملخص

دراسة بيئية عن وفيات الولادة المبكرة في المكسيك في الفترة من عام 2000 إلى عام 2013

المستند

مексيكو 2000 إلى 2013: الوفيات في الولادة المبكرة

العوامل: الوفيات في الولادة المبكرة في المكسيك في الفترة بين عامي 2000 و2013، ولكن لوحظ اختلافات جغرافية بعيدة، وفيات الولادة المبكرة بالعملحای الاجتماعي والديموغرافية. كانت نسبة وفيات الولادة المبكرة أثناء الولادة مرتفعة، مما يعطي من الممكن تعيسن أن النظام الصحي وخاصة في أماكن إنجاب الأطفال.

المستند

مексيكو 2000 إلى 2013: الوفيات في الولادة المبكرة

العوامل: الوفيات في الولادة المبكرة في المكسيك في الفترة بين عامي 2000 و2013، ولكن لوحظ اختلافات جغرافية بعيدة، وفيات الولادة المبكرة بالعملحای الاجتماعي والديموغرافية. كانت نسبة وفيات الولادة المبكرة أثناء الولادة مرتفعة، مما يعطي من الممكن تعيسن أن النظام الصحي وخاصة في أماكن إنجاب الأطفال.

المستند

مексيكو 2000 إلى 2013: الوفيات في الولادة المبكرة

العوامل: الوفيات في الولادة المبكرة في المكسيك في الفترة بين عامي 2000 و2013، ولكن لوحظ اختلافات جغرافية بعيدة، وفيات الولادة المبكرة بالعملحای الاجتماعي والديموغرافية. كانت نسبة وفيات الولادة المبكرة أثناء الولادة مرتفعة، مما يعطي من الممكن تعيسن أن النظام الصحي وخاصة في أماكن إنجاب الأطفال.
Резюме

Экологическое исследование случаев мертворождения в Мексике, произошедших в 2000–2013 гг.

Цель
Проанализировать тенденции изменений коэффициента мертворождаемости на 21 неделе гестации (или позднее) в Мексике за период с 2000 по 2013 год, определить факторы, обуславливающие мертворождения, и измерить вариацию коэффициентов мертворождаемости на субнациональном уровне и до уровня интранатальных смертей.

Методы
В ходе этого популяционного экологического исследования использовались данные из национальной базы данных по 263 475 случаям мертворождений, произошедших в 29 мексиканских штатах, и социально-демографическими факторами, определяющими состояние здоровья матерей. Была изучена вариация коэффициента мертворождаемости на субнациональном уровне в 2012 году, а мертворождения в 2013 году были отнесены к категории интранатальных или антенатальных мертворождений в зависимости от состояния кожи плода.

Результаты
Национальный коэффициент мертворождаемости снизился с 9,2 до 7,2 на 1000 рождений за период между 2000 и 2013 годами (t. e. -1,9% anual). La prevalencia de muertes fetales varió hasta 3,9 veces de 9,2 a un 7,2 por cada 1 000 nacimientos entre 2000 y 2013 (es decir, -1,9% anual). Национальный коэффициент мертворождаемости снизился с 9,2 до 7,2 на 1000 рождений за период между 2000 и 2013 годами (t. e. -1,9% anual). La prevalencia de muertes fetales varió hasta 3,9 veces de 9,2 a un 7,2 por cada 1 000 nacimientos entre 2000 y 2013 (es decir, -1,9% anual).

В Мексике общий коэффициент мертворождаемости снизился за период с 2000 по 2013 год, однако это сокращение различалось в зависимости от территориального расположения. Мертворождения обусловлены социально-демографическими факторами. Доля интранатальных мертворождений была относительно высокой, из чего можно заключить, что эффективность системы здравоохранения может быть увеличена, особенно в местах проведения родов.

References

1. Blencowe H, Cousens S, Jassir FB, Say L, Chou D, Mathers C, et al; Lancet Stillbirth Epidemiology Investigator Group. National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: a systematic analysis. Lancet Glob Health. 2016 Feb;4(2):e98–108. doi: http://dx.doi.org/10.1016/S2214-109X(15)00275-2 PMID: 26795602

2. Cousens S, Blencowe H, Stanton C, Chou D, Ahmed S, Steinhardt L, et al. National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: a systematic analysis. Lancet Glob Health. 2016 Feb;4(2):e98–108. doi: http://dx.doi.org/10.1016/S2214-109X(15)00275-2 PMID: 26795602

3. Lawn JE, Gravett MG, Nunes TM, Rubens CE, Stanton C, GAPPs Review Group. Global report on preterm birth and stillbirth (1 of 7): definitions, description of the burden and opportunities to improve data. BMC Pregnancy Childbirth. 2016;1(1):S1. doi: http://dx.doi.org/10.1186/1471-2393-10-S1-P1 PMID: 2023382

4. Orozco-Núñez E, González-Bock MA, Kageyama-Escobar LM, Hernández-Prado B. Participación social en salud: la experiencia del programa de salud materna Arranque Parejo en la Vida [The experience of the Mexican maternal health care program Arranque Parejo en la Vida]. Salud Publica Mex. 2009 Mar-Apr;51(2):104–13. Spanish. doi: http://dx.doi.org/10.1590/ S0036-36342009000200005 PMID: 19377736

5. Knail FM, González-Pier E, Gómez-Dantés O, García-Junco D, Arreola-Ornelas H, Barraza-Lórez M, et al. El quehacer de una red de cobertura en el acceso a la atención materna [The experience of the Mexican maternal health care program Arranque Parejo en la Vida]. Salud Publica Mex. 2009 Mar-Apr;51(2):104–13. Spanish. doi: http://dx.doi.org/10.1590/ S0036-36342009000200005 PMID: 19377736

6. Lázaro-Ponce E, Schivorn A, Uribe-Zúñiga P, Walker D, Suárez-López L, Luna-Gordillo R, et al. Cobertura de atención del parto en México [The experience of the Mexican maternal health care program Arranque Parejo en la Vida]. Salud Publica Mex. 2009 Mar-Apr;51(2):104–13. Spanish. doi: http://dx.doi.org/10.1590/ S0036-36342009000200005 PMID: 19377736

7. Orozco-Núñez E, González-Bock MA, Kageyama-Escobar LM, Hernández-Prado B. Participación social en salud: la experiencia del programa de salud materna Arranque Parejo en la Vida [The experience of the Mexican maternal health care program Arranque Parejo en la Vida]. Salud Publica Mex. 2009 Mar-Apr;51(2):104–13. Spanish. doi: http://dx.doi.org/10.1590/ S0036-36342009000200005 PMID: 19377736
7. Kassebaum NJ, Bertozzi-Villa A, Coggeshall MS, Shackelford KA, Steiner C, Heuton KR, et al. Global, regional, and national levels and causes of maternal mortality during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014 Sep 13;384(9947):980–1004. doi: http://dx.doi.org/10.1016/S0140-6736(14)60696-6. PMID: 24797575

8. A decade of tracking progress for maternal, newborn and child survival: the 2015 report. New York and Geneva: United Nations Children's Fund & World Health Organization; 2015. Available from: http://www.countdown2015mnch.org/documents/2015Report/CDReport_2015_ex-profiles_final.pdf [cited 2016 Mar 17].

9. Heazell AE, Siassakos D, Blencowe H, Burden C, Bhutta ZA, Cacciatore J, et al.; Lancet Ending Preventable Stillbirths Series study group; Lancet Ending Preventable Stillbirths investigator group. Stillbirths: economic and psychosocial consequences. Lancet. 2016 Feb 6;387(10018):604–16. doi: http://dx.doi.org/10.1016/S0140-6736(15)00836-3. PMID: 26794073

10. Richardus JH, Graafmans WC, Verloove-Vanhorick SP, Mackenbach JP. The perinatal mortality rate as an indicator of quality of care in international comparisons. Med Care. 1998 Jan;36(1):54–66. doi: http://dx.doi.org/10.1097/00005650-199801000-00007. PMID: 9431331

11. Mortalidad. Consulta interactivo de datos [Mortality. Interactive data query]. Aguascalientes: National Institute of Statistics and Geography; 2014. Available from: http://www.inegi.org.mx/est/lista_cubos/consulta.aspx?adm=3 [cited 2016 Mar 17]. Spanish.

12. McClure EM, Goldenberg RL, Bann CM. Maternal mortality, stillbirth and measures of obstetric care in developing and developed countries. Int J Gynaecol Obstet. 2007 Feb;96(2):139–46. doi: http://dx.doi.org/10.1016/j.ijgo.2006.10.010. PMID: 17274999

13. Indicadores generales. Recursos materiales y humanos [General indicators. Human and material resources]. Mexico DF: Directorate General of Health Information, Ministry of Health; 2015. Spanish. Available from: http://www.dgis.salud.gob.mx/contenidos/sinais/indic_gral.html [cited 2015 Nov 6].

14. Gutiérrez JP, Rivera-Dommarco J, Shamah-Levy T, Villalpando-Hernández S, Franco A, Cuevas-Nasu L, et al. Encuesta nacional de salud y nutrición 2012. Resultados nacionales [National health and nutrition survey 2012. National results]. Cuernavaca: National Institute of Public Health; 2012. Available from: http://ensanut.insp.mx/informes/ENSANUT2012ResultadosNacionales.pdf [cited 2016 Mar 17]. Spanish.

15. Berhan Y, Berhan A. A meta-analysis of selected maternal and fetal factors for perinatal mortality. Ethiop J Health Sci. 2014 Sep;24(0) Suppl:55–68. doi: http://dx.doi.org/10.4314/ejhs.v24i0.6. PMID: 25489183

16. Hernández B, Ramírez-Villalobos D, Duarte MB, Gocho A, Villarreal G, Jiménez A, et al. Subregistro de defunciones de menores y certificación de nacimiento en una muestra representativa de los 101 municipios con más bajo índice de desarrollo humano en México [Underreporting of deaths in children and birth certification in a representative sample of the 101 municipalities with lowest human development index in Mexico]. Salud Publica Mex. 2012 Jul-Aug;54(4):393–400. Spanish. doi: http://dx.doi.org/10.1590/S0036-36342012000400009. PMID: 22832831

17. Lee AC, Cousens S, Darmstadt GL, Blencowe H, Pattinson R, Moran NF, et al. Care during labor and birth for the prevention of intrapartum-related neonatal deaths: a systematic review and Delphi estimation of mortality effect. BMC Public Health. 2011;11 Suppl 3:510. doi: http://dx.doi.org/10.1186/1471-2458-11-S3-S10. PMID: 21501427

18. Goldenberg RL, McClure EM, Bhutta ZA, Belizán JM, Reddy UM, Rubens CE, et al.; Lancet's Stillbirths Series steering committee. Stillbirths: the vision for 2020. Lancet. 2011 May 21;377(9779):1798–805. doi: http://dx.doi.org/10.1016/S0140-6736(11)62235-0. PMID: 21496912

19. Every Newborn: an action plan to end preventable deaths. Geneva: World Health Organization; 2014. Available from: http://apps.who.int/iris/bitstream/10665/127059/1/9789241507448_eng.pdf?ua=1 [cited 2016 Mar 17].
Fig. 3. Cumulative sum control chart for the stillbirth rate, Mexico, 2000–2013

The y-axis scale indicates the cumulative sum of the standardized deviation of the mean in each year from the national mean stillbirth rate for 2000 to 2013 overall. The analysis was set to identify values more than one standard deviation from the mean stillbirth rate for the whole period with an α of 0.10. In particular, the stillbirth rate was lower than expected in years where the line lies above the upper boundary of the shaded area.

Fig. 4. Cumulative sum control chart for neonatal mortality, Mexico, 2000–2013

The y-axis scale indicates the cumulative sum of the standardized deviation of the mean in each year from the national mean neonatal mortality rate for 2000 to 2013 overall. The analysis was set to identify values more than one standard deviation from the mean neonatal mortality rate for the whole period with an α of 0.10. In particular, neonatal mortality was lower than expected in years where the line lies above the upper boundary of the shaded area.