UNIQUENESS AND COMPARISON THEOREMS FOR SOLUTIONS OF DOUBLY NONLINEAR PARABOLIC EQUATIONS WITH NONSTANDARD GROWTH CONDITIONS

STANISLAV ANTONTSEV
CMAF, University of Lisbon, Portugal

MICHEL CHIPOT
University of Zurich, Switzerland

SERGEY SHMAREV
University of Oviedo, Spain

To the memory of Professor I. V. Skrypnik

Abstract. The paper addresses the Dirichlet problem for the doubly nonlinear parabolic equation with nonstandard growth conditions:

\[u_t = \text{div} \left(a(x,t,u)|u|^{\alpha(x,t)}|\nabla u|^{p(x,t)} - 2\nabla u \right) + f(x,t) \]

with given variable exponents \(\alpha(x,t) \) and \(p(x,t) \). We establish conditions on the data which guarantee the comparison principle and uniqueness of bounded weak solutions in suitable function spaces of Orlicz-Sobolev type.

1. Introduction. We study the Dirichlet problem for the doubly nonlinear parabolic equation

\[
\begin{aligned}
 u_t &= \text{div} \left(a(z,u)|u|^{\alpha(z)}|\nabla u|^{p(z)} - 2\nabla u \right) + f(z) \\
 &\quad \text{for } z = (x,t) \in Q = \Omega \times (0,T], \\
 u(x,0) &= u_0(x) \text{ in } \Omega, \\
 u &= 0 \text{ on } \Gamma = \partial \Omega \times [0,T].
\end{aligned}

\tag{1}
\]

Equation (1) is formally parabolic, but may degenerate or become singular at the points where \(u \) and/or \(|\nabla u| \) vanish or become infinite. Let us introduce the functions

\[
\begin{aligned}
 \gamma(z) &= \frac{\alpha(z)}{p(z) - 1}, \\
 v(z) &= \int_0^u |s|^{\gamma(z)} \, ds = \frac{u|u|^{\gamma(z)}}{\gamma(z) + 1}, \\
 u(z) &= \Phi_0(z,v) = (1 + \gamma)^{\frac{1}{\gamma(z) + 1}} |v|^{\frac{1}{\gamma(z)}},
\end{aligned}
\]

2000 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.

Key words and phrases. Dimension theory, Poincaré recurrences, multifractal analysis.

The first author was partially supported by FCT, Financiamento Base 2008-ISFL-1-209 and by the research project PTDC/MAT/110613/2009, FCT (Portugal). The second author acknowledges the support of the Swiss National Science Foundation under the grant #200021-129807/1. The third author acknowledges the support of the research projects MTM2007-65088 and MTM2010-18427 (Spain).
and rewrite problem (1) in the form:

\[
\begin{cases}
\partial_t \Phi_0(z,v) = \text{div} \left(b(z,v) |\nabla v + B(v)|^{p(z)-2} (\nabla v + B(v)) \right) + f \quad \text{in } Q, \\
v = 0 \text{ on } \Gamma, \\
v(x,0) \equiv v_0(x) = \frac{u_0|u_0|^\gamma(x,0)}{1 + \gamma(x,0)} \quad \text{in } \Omega,
\end{cases}
\]

with

\[b(z,v) \equiv a(z,\Phi_0(z,v)), \quad B(v) = -\nabla \gamma \cdot \int_0^1 |s|^\gamma(z) \ln |s| \; ds.\]

Problem (3) will be the subject of the further study. Equations of the types (1) and (3) with constant exponents \(\alpha\) and \(p\) arise in the mathematical modelling of various physical processes such as flows of incompressible turbulent fluids or gases in pipes, processes of filtration in porous media, glaciology - see [5, 6, 16, 17, 22, 33] and further references therein. The questions of existence and uniqueness of solutions to equations like (1) and (3) with constant exponents of nonlinearity \(\alpha\) and \(p\) were studied by many authors - see [6, 14, 15, 16, 24, 28, 29] for equations of the type (1) and [17, 21] for the equations of the type (3) with the prescribed function \(B \equiv B(x,t)\) independent of the solution \(v\). Existence, uniqueness, and qualitative properties of solutions for parabolic equations with variable nonlinearity corresponding to the special cases \(\alpha(x,t) = 0\), or \(p(x,t) = 2\) were studied in [1, 2, 3, 4, 8, 9, 10], see also [7] for a review of results concerning elliptic equations with variable nonlinearity. The Cauchy problem for doubly nonlinear parabolic equations with constant exponents of nonlinearities is studied in [30, 31, 32].

The theorem of existence of weak solution to problem (3) (and correspondingly problem (1)) is proved in [11]. Existence of bounded solutions for elliptic equations of this type is proved in [12].

In the present work we prove comparison principle and uniqueness of weak solutions for the Dirichlet problem (3) in which the exponents \(\alpha\) and \(p\) are allowed to be variable. Also we consider localization properties of weak solutions.

The paper is organized as follows. In Section 2 we prove several auxiliary assertions and collect some known facts from the theory of Orlicz–Sobolev spaces. The precise assumptions on the data and main results are given in Section 3. In Section 4 we derive formulas of integration by parts. In Sections 5, 6 we give the proofs of the main comparison theorems. The comparison principle and uniqueness are proved for the solutions subject to some additional restrictions, but under weaker assumptions on the data, and is independent of the proof of the existence theorem. To be precise, the comparison principle and uniqueness are true for the weak solutions with \(\partial_t \Phi_0(z,v) \in L^1(Q)\). In order to ensure that this class of solutions is nonempty, in the final Section 7 we show that the already constructed solution belongs to this class, provided that the data of the problem satisfy some additional conditions.

2. The function spaces.

2.1. Spaces \(L^{p(\cdot)}(\Omega)\) and \(W_0^{1,p(\cdot)}(\Omega)\). The definitions of the function spaces used throughout the paper and a brief description of their properties follow [18, 19, 23, 25]. Further references can be found in the review papers [20, 26]. Let \(\Omega \subset \mathbb{R}^n\) be
a bounded domain, \(\partial \Omega \) be Lipschitz-continuous, and let \(p(x) \) be log-continuous in \(\Omega \): \(\forall x, y \in \Omega \) such that \(|x - y| < \frac{1}{2} \)

\[
|p(x) - p(y)| \leq \omega(|x - y|) \quad \text{with} \quad \lim_{\tau \to 0^+} \left(\omega(\tau) \ln \frac{1}{\tau} \right) = C < \infty. \tag{4}
\]

By \(L^{p(\cdot)}(\Omega) \) we denote the space of measurable functions \(f(x) \) on \(\Omega \) such that

\[
A_{p(\cdot)}(f) = \int_{\Omega} |f(x)|^{p(x)} \, dx < \infty.
\]

The set \(L^{p(\cdot)}(\Omega) \) equipped with the norm

\[
\|f\|_{L^{p(\cdot)}(\Omega)} = \|f\|_{L^{p(\cdot)}(\Omega)} = \inf \{ \lambda > 0 : A_{p(\cdot)}(f/\lambda) \leq 1 \}
\]

becomes a Banach space. The Banach space \(W^{1,p(\cdot)}(\Omega) \) with \(p(x) \in [p^-, p^+] \subset (1, \infty) \) is defined by

\[
W^{1,p(\cdot)}(\Omega) = \left\{ f \in L^{p(\cdot)}(\Omega) : |\nabla f|^{p(x)} \in L^1(\Omega), u = 0 \text{ on } \partial \Omega \right\},
\]

\[
\|u\|_{W^{1,p(\cdot)}(\Omega)} = \sum_i \|D_i u\|_{p(\cdot), \Omega} + \|u\|_{p(\cdot), \Omega}. \tag{5}\]

Throughout the paper we use the following properties of the functions from the spaces \(W^{1,p(\cdot)}(\Omega) \):

- if condition (4) is fulfilled, then \(C^\infty(\Omega) \) is dense in \(W^{1,p(\cdot)}(\Omega) \), and the space \(W^{1,p(\cdot)}(\Omega) \) can be defined as the closure of \(C^\infty(\Omega) \) with respect to the norm (5) – see [27, 34, 35, 36];

- if \(p(x) \in C(\Omega) \), the space \(W^{1,p(\cdot)}(\Omega) \) is separable and reflexive;

- if \(1 < q(x) \leq \sup_{\Omega} q(x) < \inf_{\Omega} p_*(x) \) with

\[
p_*(x) = \begin{cases} \frac{p(x)n}{n - p(x)} & \text{if } p(x) < n, \\ \infty & \text{if } p(x) > n, \end{cases} \tag{6}\]

then the embedding \(W^{1,p(\cdot)}(\Omega) \hookrightarrow L^{q(\cdot)}(\Omega) \) is continuous and compact;

- it follows directly from the definition that

\[
\min \left(\|f\|_{p^-(\cdot)}^{p^-}, \|f\|_{p^+(\cdot)}^{p^+} \right) \leq A_{p(\cdot)}(f) \leq \max \left(\|f\|_{p^-(\cdot)}^{p^-}, \|f\|_{p^+(\cdot)}^{p^+} \right); \tag{7}\]

- for all \(f \in L^{p(\cdot)}(\Omega) \), \(g \in L^{p'(\cdot)}(\Omega) \) with \(p(x) \in (1, \infty) \), \(p' = \frac{p}{p - 1} \) Hölder’s inequality holds,

\[
\int_{\Omega} |fg| \, dx \leq \left(\frac{1}{p^-} + \frac{1}{(p')^-} \right) \|f\|_{p(\cdot)} \|g\|_{p'(\cdot)} \leq 2 \|f\|_{p(\cdot)} \|g\|_{p'(\cdot)}. \tag{8}\]
2.2. **Parabolic spaces** $L^{p(\cdot)}(Q)$ and $W(Q)$. Let $p(z), z = (x,t) \in Q$, satisfy condition (4) in the cylinder Q. For every fixed $t \in [0,T]$ we introduce the Banach space

\[V_t(\Omega) = \left\{ u(x) : u(x) \in L^2(\Omega) \cap W^{1,1}_0(\Omega), \quad |\nabla u(x)|^{p(x,t)} \in L^1(\Omega) \right\}, \]

\[\|u\|_{V_t(\Omega)} = \|u\|_{2,\Omega} + \|\nabla u\|_{p(\cdot),\Omega}, \]

and denote by $V_t'(\Omega)$ its dual. By $W(Q)$ we denote the Banach space

\[\begin{cases}
W(Q) = \left\{ u : [0,T] \mapsto V_t(\Omega) \mid u \in L^2(Q), |\nabla u|^{p(z)} \in L^1(Q) \right\}, \\
\|u\|_{W(Q)} = \|\nabla u\|_{p(\cdot),Q} + \|u\|_{2,Q}.
\end{cases} \tag{9} \]

$W'(Q)$ is the dual of $W(Q)$ (the space of linear functionals over $W(Q)$):

\[w \in W'(Q) \iff \begin{cases}
w = w_0 + \sum_{i=1}^n D_i w_i, \quad w_0 \in L^2(Q), \quad w_i \in L^{p(\cdot)}(\Omega), \\
\forall \phi \in W(Q), \quad \langle \langle w, \phi \rangle \rangle = \int_{Q_T} \left(w_0 \phi + \sum_i w_i D_i \phi \right) dz.
\end{cases} \]

The norm in $W'(Q)$ is defined by

\[\|v\|_{W'(Q)} = \sup \left\{ \langle \langle v, \phi \rangle \rangle \mid \phi \in W(Q), \|\phi\|_{W(Q)} \leq 1 \right\}. \]

Set

\[V_+(\Omega) = \left\{ u(x) \mid u \in L^2(\Omega) \cap W^{1,1}_0(\Omega), \quad |\nabla u| \in L^{p^+}(\Omega) \right\}. \]

Since $V_+(\Omega)$ is separable, it is a span of a countable set of linearly independent functions $\{\psi_k(x)\} \subset V_+(\Omega)$.

We will need two elementary inequalities.

Proposition 1 ([16]). *For every* $p \geq 2$, $|a| \geq |b| \geq 0$

\[|a|^{p-2}a - |b|^{p-2}b \leq C(p)|a - b|(|a| + |b|)^{p-2}. \]

This proposition is an immediate byproduct of the easily verified relation

\[1 - t^{p-1} \leq C(p)(1 - t)(1 + t)^{p-2} \quad \forall p \geq 2, \quad t \in [0,1]. \]

Proposition 2 ([16]). *For* $2 - p < \beta < 1$ *and* $|a| \geq |b| \geq 0$

\[|a|^{p-2}a - |b|^{p-2}b \leq C(p)|a - b|^{1-\beta}(|a| + |b|)^{p-2+\beta}. \]

The assertion follows from the inequality

\[1 - t^{p-1} \leq C(p)(1 - t)^{1-\beta}(1 + t)^{p-2+\beta}, \quad t \in [0,1] \]

with the same p and β.
3. **Assumptions and results.** The existence result is established for the problem

\[
\begin{aligned}
\partial_t \Phi_0(z, v) &= \text{div} \left(b(z, v) |\nabla v + B(v)|^{p(z)-2}(\nabla v + B(v)) \right) + f \quad \text{in } Q, \\
v(x, 0) \in \Omega, \quad v = 0 \text{ on } \Gamma,
\end{aligned}
\]

which is formally equivalent to problem (1). Throughout the paper we assume that the coefficient \(a(z, r)\) and the exponents on nonlinearity \(p(z)\), \(\alpha(z)\) satisfy the following conditions:

- \(a(z, r)\) is a Carathéodory function such that there exists \(a^\pm\) such that

\[
\forall z \in Q, \ r \in \mathbb{R} \quad a^- \leq a(z, r) \leq a^+ < \infty,
\]

- \(\alpha(z), \ p(z)\) are measurable and bounded in \(Q\), there exist constants \(\alpha^\pm, \ p^\pm\) such that

\[-1 < a^- \leq a(z) \leq a^+ < \infty, \quad 1 < p^- \leq p(z) \leq p^+ < \infty, \quad \alpha^- + p^- > 1,
\]

- the exponent \(\gamma(z) = \frac{\alpha(z)}{p(z)-1}\) satisfies

\[
|\nabla \gamma(z)|^{p(z)} \in L^1(Q), \ \partial_t \gamma(z) \in L^2(Q),
\]

The solution of problem (10) is understood in the following sense.

Definition 3.1. A function \(v(z)\) is called weak solution of problem (10) if

1. \(v \in W(Q) \cap L^\infty(Q), \ \partial_t \Phi_0(z, v) \in W'(Q),\)
2. for every \(\phi \in W(Q)\)

\[
\int_Q (\phi \partial_t \Phi_0(z, v) + b(z, v)|\nabla v + B(v)|^{p(z)-2}(\nabla v + B(v)) \cdot \nabla \phi - f \phi) \, dz = 0,
\]

3. \(\forall \phi(x) \in C_0^\infty(\Omega)\)

\[
\int_\Omega \Phi_0(z, v(z)) \phi(x) \, dx \to \int_\Omega \Phi_0((x, 0), v_0(x)) \phi(x) \, dx \quad \text{as } t \to 0.
\]

The main existence result is given in the following theorem.

Theorem 3.2. Let conditions (11), (12), (13), (4) be fulfilled. Then for every \(f \in L^1(0, T; L^\infty(\Omega)), \ u_0, v_0 \in L^\infty(\Omega)\) problem (10) has at least one weak solution \(v(z)\) in the sense of Definition 3.1.

The uniqueness result is proved under the assumption that either \(a(z, v) \equiv 1, \) or \(\alpha(z) \equiv 0.\) In the latter case \(\Phi_0(z, v) \equiv v\) and the equation transforms into the evolutional \(p(z)\)-Laplacian equation.

Theorem 3.3. Let us assume that the data of problem (10) satisfy the conditions

\[a(z, u) \equiv 1, \ \Phi_0(z, s) \in C^1(Q \times \mathbb{R}).\]

Let conditions (11), (12) be fulfilled. Then for every weak solutions \(v_1, v_2,\) such that \(\partial_t \Phi_0(z, v_i) \in L^1(Q),\) and a.e. \(t \in (0, T)\)

\[
\|\Phi_0(z, v_1(z)) - \Phi_0(z, v_2(z))\|_{L^1(\Omega)} \\
\leq \|\Phi_0(x, 0, v_{01}) - \Phi_0(x, 0, v_{02})\|_{L^1(\Omega)} + \|f_1 - f_2\|_{L^1(\Omega)}.
\]
Theorem 3.4. Let \(v_1, v_2 \) be two weak solutions of problem (10) with \(\alpha(z) \equiv 0 \). Let the coefficient \(\alpha(z,s) \) be Hölder-continuous with respect to \(s \),

\[
|\alpha(z,s) - \alpha(z,r)| \leq C |s - r|^{\beta}, \quad C = \text{const}, \quad \beta \in (1/2, 1].
\]

If conditions conditions (11), (12) are fulfilled and \(\partial_t u_i \in L^1(Q) \), then for a.e. \(t \in (0,T) \)

\[
\|v_1(x,t) - v_2(x,t)\|_{L^1(Q)} \leq \|v_{01} - v_{02}\|_{L^1(Q)} + \|f_1 - f_2\|_{L^1(Q)}.
\]

The uniqueness is proved in a narrower class of functions than the existence, but since the proofs of Theorems 3.3, 3.4 are practically independent on the proof of Theorem 3.2, the conditions on the exponents \(\alpha(z), p(z) \) are less restrictive. For the sake of completeness of presentation, in the end of the paper we present the conditions on the data of problem (10) which guarantee that the corresponding solution satisfy the conditions of the comparison and uniqueness theorems.

4. Formulas of integration by parts. Let \(\rho \) be the Friedrich’s mollifying kernel

\[
\rho(s) = \begin{cases}
\kappa \exp \left(-\frac{1}{1-|s|^2}\right) & \text{if } |s| < 1, \\
0 & \text{if } |s| > 1,
\end{cases}
\]

with \(\kappa = \text{const} : \int_{\mathbb{R}^{n+1}} \rho(z) \, dz = 1. \)

Given a function \(v \in L^1(Q_T) \), we extend it to the whole \(\mathbb{R}^{n+1} \) by a function with compact support (keeping the same notation for the continued function) and then define

\[
v_h(z) = \int_{\mathbb{R}^{n+1}} v(s)\rho_h(z - s) \, ds \quad \text{with } \rho_h(s) = \frac{1}{h^{n+1}} \rho \left(\frac{s}{h} \right), \quad h > 0.
\]

Lemma 4.1. If \(u \in W(Q_T) \) with the exponent \(p(z) \) satisfying (4) in \(Q \), then

\[
\|u_h\|_{W(Q)} \leq C \left(1 + \|u\|_{W(Q)} \right) \quad \text{and } \|u_h - u\|_{W(Q)} \to 0 \text{ as } h \to 0.
\]

Lemma 4.1 is an immediate byproduct of [36, Theorem 2.1].

Lemma 4.2 ([10]). Let in the conditions of Proposition 4.1 \(u_t \in W'(Q) \). Then \((u_h)_t \in W'(Q) \), and for every \(\psi \in W(Q) \), \(\langle (u_h)_t, \psi \rangle \to \langle (u_t, \psi) \rangle \) as \(h \to 0 \).

Lemma 4.3 (Integration by parts). Let \(v, w \in W(Q) \) and \(v_1, w_1 \in W'(Q) \) with the exponent \(p(z) \) satisfying (4) in \(Q \). Then

\[
\forall \text{a.e. } t_1, t_2 \in (0,T] \quad \int_{t_1}^{t_2} \int_{\Omega} v w_t \, dz + \int_{t_1}^{t_2} \int_{\Omega} v_t w \, dz = \int_{\Omega} v w \, dx \bigg|_{t=t_2}^{t=t_1}.
\]

Proof. Let \(t_1 < t_2 \). Take

\[
\chi_k(t) = \begin{cases}
0 & \text{for } t \leq t_1, \\
k(t - t_1 + \frac{1}{k}) & \text{for } t_1 - \frac{1}{k} \leq t \leq t_1, \\
1 & \text{for } t_1 + \frac{1}{k} \leq t \leq t_2 - \frac{1}{k}, \\
k(t_2 - t) & \text{for } t_2 - \frac{1}{k} \leq t \leq t_2, \\
0 & \text{for } t \geq t_2.
\end{cases}
\]

For every \(k \in \mathbb{N} \) and \(h > 0 \).
0 = \int_{Q_T} (v_h w_h \chi_k)_t \, dz \equiv \int_Q (v_h w_h)_t \chi_k \, dz - k \int_{\theta - \frac{1}{k}}^\theta \int_{\Omega} v_h w_h \, dz \bigg|_{\theta = t_2}.

The last two integrals on the right-hand side exist because \(v_h, w_h \in L^2(Q_T) \). Letting \(h \to 0 \), we obtain the equality

\[\lim_{h \to 0} \int_Q (v_h (w_h)_t + (v_h)_h) \chi_k(t) \, dz = k \int_{t_2}^{t_1} \int_{\Omega} v \, w \, dz - k \int_{t_1}^{t_2} \int_{\Omega} v \, w \, dz. \]

According to Lemmas 4.1, 4.2 \(v_h \to v \) in \(\mathbf{W}(Q) \), \((w_h)_t = (w_t)_h \to w_t \) weakly in \(\mathbf{W}'(Q_T) \) as \(h \to 0 \), and \(\|v\|_\mathbf{W}, \|(w_h)_t\|_\mathbf{W}' \) are uniformly bounded. It follows that

\[\lim_{h \to 0} \int_Q (v_h (w_h)_t \chi_k(t)) \, dz = \lim_{h \to 0} \int_Q (v_h - v)(w_h)_t \chi_k(t) \, dz + \lim_{h \to 0} \int_Q v ((w_h)_t - w_t) \chi_k(t) \, dz + \int_Q v w_t \chi_k(t) \, dz. \]

In the same way we check that

\[\lim_{h \to 0} \int_Q (v_h)_t w_h \chi_k(t) \, dz = \int_Q v w_t \chi_k(t) \, dz. \]

By the Lebesgue differentiation theorem

\[\forall \text{ a.e. } \theta > 0 \quad \lim_{k \to 0} k \int_{\theta - \frac{1}{k}}^\theta \left(\int_{Q_T} v \, w \, dx \right) \, dt = \int_{Q_T} v \, w \, dx, \]

whence for almost every \(t_1, t_2 \in [0, T] \)

\[\int_{t_1}^{t_2} \int_{\Omega} (v w_t + v_t w) \, dz = \lim_{k \to \infty} \int_Q (v w_t + v_t w) \chi_k(t) \, dz \]

\[= \lim_{k \to \infty} k \int_{\theta - \frac{1}{k}}^\theta \left(\int_{Q_T} v \, w \, dx \right) \bigg|_{t = t_2}^{t = t_1} = \int_{Q_T} v \, w \, dx \bigg|_{t = t_1}^{t = t_2}. \]

\[\square \]

Corollary 1. Let \(u \in \mathbf{W}(Q) \) and \(u_t \in \mathbf{W}'(Q) \) with the exponent \(p(z) \) satisfying (4). Then

\[\forall \text{ a.e. } t_1, t_2 \in (0, T] \quad \int_{t_1}^{t_2} \int_{\Omega} u u_t \, dz = \frac{1}{2} \|u\|_{2, \Omega}^2 \bigg|_{t = t_2}^{t = t_1}. \]

Lemma 4.4. Let \(u \in \mathbf{W}(Q) \cap L^\infty(Q) \), \(u_t \in \mathbf{W}'(Q) \), and let the exponent \(p(z) \) satisfy (4). Introduce the function

\[v = \int_0^s (\epsilon + |s|)^{\gamma(z)} \, ds, \quad \epsilon > 0, \]

with the exponent \(\gamma(z) \geq \gamma^- > -1 \) such that \(\gamma_t \in L^2(Q) \) and \(|
\nabla \gamma(z)|^{p(z)} \in L^1(Q) \). For a.e. \(t_1, t_2 \in [0, T] \)
\[\int_{t_1}^{t_2} \int_\Omega u_t v \, dz = \int_\Omega \frac{u \, v}{\gamma + 2} \, dx \bigg|_{t=t_1}^{t=t_2} + \int_{t_1}^{t_2} \int_\Omega \frac{u \, v}{\gamma + 2} \, dz + \epsilon \int_{t_1}^{t_2} \int_\Omega \frac{v}{\gamma + 2} \, dx \bigg|_{t=t_1}^{t=t_2} + \epsilon \int_{t_1}^{t_2} \int_\Omega \frac{\gamma_t}{\gamma + 2} \, dz \bigg|_{t=t_1}^{t=t_2} \]
\[- \epsilon \int_{t_1}^{t_2} \int_\Omega \frac{v}{\gamma + 2} \, dz \bigg|_{t=t_1}^{t=t_2} \]
\[- \epsilon \int_{t_1}^{t_2} \int_\Omega \frac{u}{\gamma + 2} \, dz \bigg|_{t=t_1}^{t=t_2} \]
\[+ \epsilon \int_{t_1}^{t_2} \int_\Omega \frac{u}{\gamma + 2} \, dz \bigg|_{t=t_1}^{t=t_2} \]
\[+ \epsilon \int_{t_1}^{t_2} \int_\Omega \frac{v}{\gamma + 2} \, dz \bigg|_{t=t_1}^{t=t_2} + \epsilon \int_{t_1}^{t_2} \int_\Omega \frac{v}{\gamma + 2} \, dz \bigg|_{t=t_1}^{t=t_2} \]
\[= \mu(u, v). \]

Proof. Let \(u_h \in C^\infty(Q) \) be the mollification of \(u \in W(Q) \) and
\[v_h = \int_0^{u_h} (\epsilon + |s|)^{\gamma(z)} \, ds = \frac{\text{sign} u_h}{\gamma + 1} (\epsilon + |u_h|)^{\gamma+1} - \epsilon^{\gamma+1}. \]
Since \(u \) and \(u_h \) are bounded by a constant \(1 + K_0 \), and \(\gamma(z) \geq \gamma^- > -1 \), it follows from Propositions 1, 2 that
\[|v_h - v| \leq C \max \left\{ |u_h - u|, |u_h - u|^{1+\min\{0, \gamma^-\}} \right\}, \quad C \equiv C(\epsilon, p^\pm, \alpha^\pm, K_0). \]
The inclusion \(u \in L^\infty(Q) \) entails the convergence \(\|v_h - v\|_{L^\infty(Q)} \to 0 \) as \(h \to 0 \) for every \(s > 1 \). Explicitly calculating the primitive, in the same way we check that for every \(s > 1 \)
\[\left\| \int_0^{u_h} (\epsilon + |s|)^{\gamma(z)} \ln (\epsilon + |s|) \, ds \right\|_{L^\infty(Q)} \to 0 \quad \text{as} \quad h \to 0. \]
Let \(\psi_k(z) = \frac{\chi_k(t)}{\gamma + 2} \) with the function \(\chi_k \) introduced in (15). Following the proof of Lemma 4.3, we find:
\[k \int_{\theta - \frac{1}{k}}^\theta dt \int_{\Omega} \frac{u_k v_h}{\gamma + 2} \, dx \bigg|_{\theta=1}^{\theta=2} = \int_{t_1}^{t_2} \int_\Omega \chi_k(t)(u_h)_t v_h \, dz \]
\[- \int_{t_1}^{t_2} \int_\Omega \frac{u_k v_h}{\gamma + 2} \gamma_t \chi_k(t) \, dz \]
\[- \epsilon \int_{t_1}^{t_2} \int_\Omega \frac{v_h}{\gamma + 2} \gamma_t \chi_k(t) \, dz \bigg|_{t=t_1}^{t=t_2} \]
\[+ \epsilon \int_{t_1}^{t_2} \int_\Omega \frac{v_h}{\gamma + 2} \gamma_t \chi_k(t) \, dz \bigg|_{t=t_1}^{t=t_2} + \epsilon k \int_{\theta}^{\theta - \frac{1}{k}} dt \int_{\Omega} \frac{v_h}{\gamma + 2} \, dx \bigg|_{\theta=1}^{\theta=2}. \]
Since \(u \in W(Q) \cap L^\infty(Q) \) and \(\gamma^- > -1, v \in W(Q) \) for every \(\epsilon > 0 \). Indeed: since \(\|u\|_{L^\infty(Q)} \leq M \), we have the estimates
\[|v| \leq M\gamma^\pm, M, \quad \int_0^{u} (\epsilon + |s|)^{\gamma} \ln (\epsilon + |s|) \, ds \leq M_2(\gamma^\pm, M), \]
which provide the inclusion
\[|\nabla v| \leq (\epsilon + |u|)^{\gamma(z)} |\nabla u| + |\nabla \gamma| \int_0^{u} (\epsilon + |s|)^{\gamma(z)} \ln (\epsilon + |s|) \, ds \in L^{p(\cdot)}(Q). \]
By Lemma 4.1
\[\|v_h\|_{W(Q)} \leq C (1 + \|v\|_{W(Q)}) \quad \text{and} \quad \|v_h - v\|_{W(Q)} \to 0 \quad \text{as} \quad h \to 0. \]

We may now pass to the limit as \(h \to 0 \) in every term of (17), following the proof of Lemma 4.3:

\[
\begin{align*}
&k \int_{\theta - \frac{1}{k}}^{\theta} dt \int_{\Omega} \frac{u v}{\gamma + 2} dx |_{t=\theta, t_1}^{t=\theta, t_2} = \int_{t_1}^{t_2} \int_{\Omega} \chi_k(t) u_t v dz - \int_{t_1}^{t_2} \int_{\Omega} \frac{u v}{\gamma + 2} \gamma_t \chi_k(t) dz \\
&\quad - \epsilon \int_{t_1}^{t_2} \int_{\Omega} \chi_k(t) \frac{\gamma_t}{\gamma + 2} \int_{0}^{u} (\epsilon + |s|)^\gamma \ln (\epsilon + |s|) ds dz \\
&\quad + \epsilon \int_{t_1}^{t_2} \int_{\Omega} \chi_k(t) v \frac{\gamma_t}{(\gamma + 2)^2} dz + \epsilon k \int_{\theta - \frac{1}{k}}^{\theta} dt \int_{\Omega} \frac{v}{\gamma + 2} dx |_{t=\theta, t_1}^{t=\theta, t_2}.
\end{align*}
\]

Letting \(k \to \infty \) and applying the Lebesgue differentiation theorem, we arrive at (16).

Remark 1. Let \(\epsilon = 0, u \in W(Q), u_t \in W'(Q), \) and let \(v = \frac{u |u|^\gamma}{\gamma + 1} \in W(Q). \) Under the foregoing conditions on the exponents \(p(z) \) and \(\gamma(z) \) the following formula of integration by parts holds:

\[
\int_{t_1}^{t_2} \int_{\Omega} u_t v dz = \int_{\Omega} \frac{u v}{\gamma + 2} dx |_{t_1}^{t_2} + \int_{t_1}^{t_2} \int_{\Omega} \frac{u v}{\gamma + 2} \gamma_t dz \equiv \mu(u,v).
\]

Let us introduce the function space

\[V(Q) = \{v(z) : v \in W(Q) \cap L^\infty(Q), \partial_t \Phi_0(z,v) \in L^1(Q) \cap W'(Q)\}. \]

with \(\Phi_0 \) defined in (2) and define the functions

\[T_\delta(s) = \frac{s}{\sqrt{\delta^2 + s^2}}, \quad \delta > 0, \]

\[\phi_{k,\delta,\theta}(z) = \chi_{k,\theta}(t) T_\delta(v(z)) \quad \text{(18)} \]

with

\[
\chi_{k,\theta}(t) = \begin{cases}
0 & \text{for } t \leq 0, \\
kt & \text{for } 0 \leq t \leq \frac{1}{k}, \\
1 & \text{for } \frac{1}{k} \leq t \leq \theta - \frac{1}{k}, \\
k (\theta - t) & \text{for } \theta - \frac{1}{k} \leq t \leq \theta, \\
0 & \text{for } t \geq \theta,
\end{cases}
\]

It is easy to see that

\[T_\delta(s) \to \text{sign } s \text{ as } \delta \to 0, \quad T_\delta'(s) = \frac{\delta^2}{(\delta^2 + s^2)^2} > 0, \quad -1 \leq s T_\delta'(s) \leq 1 \text{ for } s \in \mathbb{R}. \]
Lemma 4.5. Let $v_i \in V(Q)$, $v = v_1 - v_2$ and $w = w_1 - w_2 \equiv \Phi_0(z, v_1) - \Phi_0(z, v_2)$. For a.e. $\theta \in (0, T)$ there exists the limit
\[
\lim_{\delta \to 0} \lim_{k \to \infty} \int_Q \phi_{k, \delta, \theta} \partial_t w \, dz = \int_{\Omega} |w| \, dx \bigg|_{t=0}.
\]

Proof. Since $w \in L^\infty(Q)$ and $\phi = \phi_{k, \delta, \theta}$ are uniformly bounded, it follows from the dominated convergence theorem that
\[
\int_Q \chi_{k, \theta}(t) T_\delta(v) \partial_t w \, dz \to \int_{Q_\theta} T_\delta(v) \partial_t w \, dz \quad \text{as} \quad k \to \infty, \quad Q_\theta = Q \cap \{t < \theta\},
\]
and, because $\text{sign} \ v = \text{sign} \ w$, \[
\lim_{k \to \infty} \int_Q \phi_{k, \delta, \theta} \partial_t w \, dz = \int_Q T_\delta(v) \partial_t w \, dz
\]
\[
\to \int_{Q_\theta} \text{sign} \ v \partial_t w \, dz \equiv \int_{Q_\theta} \text{sign} \ w \partial_t w \, dz = J \quad \text{as} \quad \delta \to 0.
\]

On the other hand, repeating the same arguments with the test-function $\phi_{k, \delta, \theta} \equiv \chi_{k, \theta}(t) \ T_\delta(w)$, we find that \[
J = \lim_{\delta \to 0} \lim_{k \to \infty} \int_Q T_\delta(w) \chi_{k, \theta}(t) \partial_t w \, dz.
\]
The straightforward computation shows that
\[
\int_Q T_\delta(w) \chi_{k, \theta}(t) \partial_t w \, dz = \int_Q \chi_{k, \theta}(t) \partial_t \left(\int_0^w T_\delta(s) \, ds \right) \, dz
\]
\[
= k \int_{\theta - 1/k}^{\theta} \, dt \int_\Omega \left(\int_0^w T_\delta(s) \, ds \right) \, dx
\]
\[
- k \int_0^{1/k} \, dt \int_\Omega \left(\int_0^w T_\delta(s) \, ds \right) \, dx,
\]
where
\[
\int_0^w T_\delta(s) \, ds = \sqrt{\delta^2 + w^2} - \delta \to \sqrt{w^2} = |w| \quad \text{as} \quad \delta \to 0.
\]

Letting $k \to \infty$, $\delta \to 0$ and applying the Lebesgue differentiation theorem, we find that for a.e. $\theta \in (0, T)$
\[
\int_Q T_\delta(w) \chi_{k, \theta}(t) \partial_t w \, dz = \int_\Omega \left(\int_0^w T_\delta(s) \, ds \right) \, dx \bigg|_{t=0} = \int_\Omega \sqrt{\delta^2 + w^2} \, dx \bigg|_{t=0} = \int_\Omega |w| \, dx \bigg|_{t=0}
\]
\[
\to J = \int_\Omega |w| \, dx \bigg|_{t=0}.
\]
\qed
5. **Proof of Theorem 3.3.** Let $v_i \in \mathcal{V}(Q)$ be two bounded weak solutions of problem (3) with the data (f_i, v_{0i}), $i = 1, 2$. Introduce the functions

$$w = \Phi_0(z, v_1) - \Phi_0(z, v_2), \quad v = v_1 - v_2, \quad F(s) = |\mathcal{B}(v) + \nabla v|^{p(z)-2} (\mathcal{B}(v) + \nabla v).$$

By (14) for every test-function $\phi \in \mathcal{W}(Q)$

$$\int_Q \left(\phi \partial_t w + (F(v_1) - F(v_2)) \cdot \nabla \phi \right) dz = \int_Q (f_1 - f_2) \phi dz. \quad (19)$$

Taking for the test-function $\phi_{k,\delta,\theta}$ defined in (18) and applying Lemma 4.5 we have that for a.e. $\theta \in (0, T)$ there exists the limit of the first term on the left-hand side of (19):

$$\int_Q \phi_{k,\delta,\theta} \partial_t w dz \to \int_Q |w| dx \begin{array}{c} \{= \theta \} \\ \{= 0 \} \end{array} \quad \text{as} \quad k \to \infty, \ \delta \to 0.

The second term on the left-hand side of (19) with $\phi(z) = \chi_{k,\delta}(t) T_{\delta}(v(z))$ is represented in the form

$$I_2 = \int_Q (F(v_1) - F(v_2)) \cdot \nabla \phi dz = \int_Q \chi_{k,\theta}(F(v_1) - F(v_2)) \nabla T_{\delta}(v) dz$$

$$= \int_Q \chi_{k,\theta} T_{\delta}'(v) (F(v_1) - F(v_2)) \nabla v dz. \quad (20)$$

Let us denote

$$\zeta_i = \nabla v_i + \mathcal{B}(v_i), \quad i = 1, 2,$$

so that

$$\nabla v_i = \zeta_i - \mathcal{B}(v_i), \quad F(v_i) = |\zeta_i|^{p(z)-2} \zeta_i, \quad \zeta_i = |F(v_i)|^{p(z)-2} F(v_i)$$

(recall that $\mathcal{B}(s)$ is defined in (3)). Passing to the limit as $k \to \infty$, for every fixed δ and θ we obtain the equality

$$\lim_{k \to \infty} I_2 = \int_{Q^\delta} T_{\delta}'(v) (F(v_1) - F(v_2)) \cdot \nabla v dz$$

$$= \int_{Q^\delta} T_{\delta}'(v) (F(v_1) - F(v_2)) (\zeta_1 - \zeta_2) dz$$

$$- \int_{Q^\delta} T_{\delta}'(v) (F(v_1) - F(v_2)) (\mathcal{B}(v_1) - \mathcal{B}(v_2)) dz$$

$$\equiv J_1(\delta) - J_2(\delta).$$

Making use of the well-known inequality

$$\forall \xi, \eta \in \mathbb{R}^n$$

$$\langle |\xi|^{p-2} \xi - |\eta|^{p-2} \eta, (\xi - \eta) \rangle \geq \begin{cases} 2^{-p} |\xi - \eta|^p & \text{if } 2 \leq p < \infty, \\ \frac{2}{(p-1)} \frac{|\xi - \eta|^2}{(|\xi|^p + |\eta|^p)^{(p-2)/p}} & \text{if } 1 < p < 2, \end{cases} \quad (21)$$

we may write
\[
J_1(\delta) = \int_{Q_0} T_0'(v) \left(|\zeta_1|^{p(z)-2} \zeta_1 - |\zeta_2|^{p(z)-2} \zeta_2 \right) (\zeta_1 - \zeta_2) \, dz
\]
\[
\geq 2^{-(p^-)} \int_{Q_0 \cap \{ p(z) \geq 2 \}} T_0'(v) |F(v_1) - F(v_2)|^{p(z)} \, dz
\]
\[
+ (p^- - 1) \int_{Q_0 \cap \{ p(z) \in (1,2) \}} T_0'(v) |F(v_1) - F(v_2)|^2
\]
\[
\times \left(|F(v_1)|^{p(z)} + |F(v_2)|^{p(z)} \right)^{\frac{p(z)-2}{p(z)}} \, dz.
\]

Next,
\[
J_2(\delta) \leq \int_{Q_0 \cap \{ z : p(z) \geq 2 \}} T_0'(v) |F(v_1) - F(v_2)| |B(v_1) - B(v_2)| \, dz
\]
\[
+ \int_{Q_0 \cap \{ z : 1 < p(z) < 2 \}} \ldots \equiv \mathcal{J}^{(1)}(\delta) + \mathcal{J}^{(2)}(\delta).
\]

To estimate \(\mathcal{J}^{(1)}(\delta) \) we use make use of the following elementary lemma.

Lemma 5.1. For every \(p(z) \in [p^-, p^+] \subset (1, \infty) \) and \(\epsilon \in (0, 1) \)
\[
a \ b \leq \epsilon a p'(z) + \frac{\epsilon^{1-p^+}}{p^-} \left(\frac{p^+}{p^+ - 1} \right)^{1-p^-} b^{p(z)} \ \forall a, b \geq 0.
\]

Proof. The assertion follows from Young’s inequality
\[
a \ b = \left(\epsilon p'(z) \right)^{\frac{1}{p'(z)}} a \left(\epsilon p'(z) \right)^{-\frac{1}{p'(z)}} b
\]
\[
\leq \frac{1}{p'(z)} \left(\epsilon p'(z) \right)^{\frac{1}{p'(z)}} a^{p'(z)} + \frac{1}{p(z)} \left(\epsilon p'(z) \right)^{-\frac{1}{p''(z)}} b^{p(z)}
\]
and the inequalities
\[
\epsilon^{-\frac{p(z)}{p'(z)}} = \epsilon^{-(p(z)-1)} = \epsilon^{-(p(z)-1) \ln \epsilon} \leq \epsilon^{-\frac{1}{p(z)}} \ln \epsilon = \epsilon^{1-p^+},
\]
\[
\left(p'(z) \right)^{-\frac{p(z)}{p'(z)}} = \left(1 - \frac{1}{p(z)} \right)^{p(z)-1} = \epsilon^{(p(z)-1) \ln (1 - \frac{1}{p(z)})}
\]
\[
\leq e^{(p^- - 1) \ln (1 - \frac{1}{p^+})} = \left(\frac{p^+}{p^+ - 1} \right)^{1-p^-}.
\]

\[\Box\]

Applying Lemma 5.1 we have:
Choosing ϵ we arrive at the inequality

$$J^{(1)}(\delta) \equiv \int_{Q_\delta \cap \{ p(z) \geq 2 \}} (T_\delta'(v))^{\frac{1}{2-p}} |F(v_1) - F(v_2)| (T_\delta'(v))^{\frac{1}{2-p}} |B(v_1) - B(v_2)| \, dz$$

$$\leq \epsilon \int_{Q_\delta \cap \{ p(z) \geq 2 \}} T_\delta'(v) |F(v_1) - F(v_2)|^{p(z)} \, dz$$

$$+ C(\epsilon, p^-, p^+) \int_{Q_\delta \cap \{ p'(z) \geq 2 \}} T_\delta'(v) |B(v_1) - B(v_2)|^{p(z)} \, dz$$

(22)

By Young’s inequality

$$J^{(2)}(\delta) \equiv \int_{Q_\delta \cap \{ p(z) < 2 \}} \left(\sqrt{T_\delta'(v)} |F(v_1) - F(v_2)| (|F(v_1)|^p + |F(v_2)|^p)^{\frac{2-p}{2}} \right)$$

$$\times \left(\sqrt{T_\delta'(v)} |B(v_1) - B(v_2)| (|F(v_1)|^p + |F(v_2)|^p)^{\frac{2-p}{2}} \right) \, dz$$

$$\leq \epsilon \int_{Q_\delta \cap \{ p(z) < 2 \}} T_\delta'(v) |F(v_1) - F(v_2)|^2 (|F(v_1)|^p + |F(v_2)|^p)^{\frac{2-p}{2}} \, dz$$

$$+ \frac{1}{4\epsilon} \int_{Q_\delta \cap \{ p(z) < 2 \}} T_\delta'(v) |B(v_1) - B(v_2)|^2 (|F(v_1)|^p + |F(v_2)|^p)^{\frac{2-p}{2}} \, dz$$

(23)

Gathering (21), (22) and (23) we arrive at the inequality

$$J_1(\delta) - J_2(\delta) \geq J_1(\delta) - J^{(1)}(\delta) - J^{(2)}(\delta)$$

$$\geq (2^{-\frac{p}{2}} - \epsilon) \int_{Q_\delta \cap \{ p(z) \geq 2 \}} T_\delta'(v) |F(v_1) - F(v_2)|^{p(z)} \, dz$$

$$- C(\epsilon, p^-, p^+) \int_{Q_\delta \cap \{ p(z) \geq 2 \}} T_\delta'(v) |B(v_1) - B(v_2)|^{p(z)} \, dz$$

$$+ (p^- - 1 - \epsilon) \int_{Q_\delta \cap \{ p(z) \in [1, 2) \}} T_\delta'(v) |F(v_1) - F(v_2)|^2$$

$$\times \left(|F(v_1)|^{p(z)} + |F(v_2)|^{p(z)} \right)^{\frac{p(z)-2}{p(z)}} \, dz$$

$$- \frac{1}{4\epsilon} \int_{Q_\delta \cap \{ p(z) < 2 \}} T_\delta'(v) |B(v_1) - B(v_2)|^2 (|F(v_1)|^p + |F(v_2)|^p)^{\frac{2-p}{2}} \, dz.$$
\[\lim_{k \to \infty} I_2 \geq -C \int_{Q_{\delta} \cap \{ v(z) \geq 2 \}} T_{\phi}^T(v) |B(v_1) - B(v_2)|^{p(z)} \, dz \]
\[- \frac{1}{4\epsilon} \int_{Q_{\delta} \cap \{ v(z) < 2 \}} T_{\phi}^T(v) |B(v_1) - B(v_2)|^2 \]
\[\times (|F(v_1)|^p + |F(v_2)|^p)^{\frac{2-p}{r}} \, dz \]

with a positive constant \(C \equiv C(p^+) \). It remains to show that the right-hand side of the last inequality tends to zero as \(\delta \to 0 \).

We will use the following Lemmas.

Lemma 5.2. For every \(\eta \in (0,1) \)
\[|B(v_1) - B(v_2)| \leq |\nabla \gamma(z)||v_1 - v_2|^{1-\eta} \left(\int_{u_1}^{u_2} |s|^{\gamma(z)} |\ln |s||^{\frac{1}{\eta}} \, ds \right)^{\eta}. \]

Proof. By the definition
\[B(v) = -\nabla \gamma \cdot \int_0^u |s|^{\gamma(z)} \ln |s| \, ds, \quad v = \int_0^u |s|^{\gamma(z)} \, ds. \]

Not losing generality we may assume that \(u_1 \geq u_2 \) and, thus, \(v_1 \geq v_2 \). Then for every \(\eta \in (0,1) \)
\[|B(v_1) - B(v_2)| = |\nabla \gamma(z)| \left(\int_{u_1}^{u_2} |s|^{\gamma(z)} \ln |s| \, ds \right) \]
\[\leq |\nabla \gamma(z)| \left(\int_{u_1}^{u_2} |s|^{\gamma(z)(1-\eta)} |s|^{\gamma(z)\eta} \ln |s| \, ds \right) \]
and the assertion follows by Young’s inequality with \(p = \frac{1}{1-\eta}, q = \frac{1}{\eta}, \quad \square \)

Lemma 5.3. For every \(p, r > 0, q \geq \frac{r}{2} \) and all \(v \in \mathbb{R} \)
\[\frac{\delta^p |v|^r}{(\delta^2 + v^2)^q} \leq \delta^{p+r-2q}. \]

Proof. It suffices to notice that
\[\frac{\delta^p |v|^r}{(\delta^2 + v^2)^q} \leq \frac{\delta^p (\delta^2 + v^2)^{\frac{r}{2}}}{(\delta^2 + v^2)^{q-\frac{r}{2}}} = \frac{\delta^p (\delta^2 + v^2)^{\frac{r}{2} - \frac{r}{2}}}{(\delta^2 + v^2)^{q-\frac{r}{2}}} \delta^{p+r-2q} \leq \delta^{p+r-2q}. \quad \square \]

End of the proof of Theorem 3.3. Fix some \(\eta \in (0,1) \) and denote
\[K(u_1, u_2, \eta) = \left(\int_{u_1}^{u_2} |s|^{\gamma(z)} |\ln |s||^{\frac{1}{\eta}} \, ds \right)^{\eta}. \]

Since \(u_i \) are bounded, so is \(K(u_1, u_2, \eta) \). By virtue of Lemmas 5.2, 5.3 the first term on the right-hand side of (24) is estimated as follows: for \(\eta \in (0, 1 - 1/p^-) \)
\[\int_{Q_\delta \cap \{ p(z) \geq 2\}} T_\delta'(v) |B(v_1) - B(v_2)|^{p(z)} \, dz \]
\[\leq \int_{Q_\delta \cap \{ p(z) \geq 2\}} \frac{\delta^2}{(\delta^2 + \eta^2)^{\frac{3}{2}}} |v|^{p(1-\eta)} |\nabla \gamma|^{p} K^p \, dz \]
\[\leq \int_{Q_\delta \cap \{ p(z) \geq 2\}} \delta^{p(z)-1-p(z)\eta} |\nabla \gamma|^{p(z)} K^{p(z)} \, dz \]
\[\leq \delta^{p-1-p^{\eta}} \int_{Q_\delta \cap \{ p(z) \geq 2\}} |\nabla \gamma|^{p(z)} K^{p(z)} \, dz \to 0 \quad \text{as } \delta \to 0 \]

because \(K^{p(z)} \) is uniformly bounded and \(|\nabla \gamma(z)|^{p(z)} \in L^1(Q) \). The second term of (24) is estimated in a similar way:

\[\int_{Q_\delta \cap \{ p(z) < 2\}} T_\delta(v)|B(v_1) - B(v_2)|^2 (|F(v_1)|^p + |F(v_2)|^p)^{\frac{2-p}{p}} \, dz \]
\[\leq \int_{Q_\delta \cap \{ p(z) < 2\}} \frac{\delta^2}{(\delta^2 + \eta^2)^{\frac{3}{2}}} |v|^{2(1-\eta)} (|F(v_1)|^p + |F(v_2)|^p)^{\frac{2-p}{p}} |\nabla \gamma|^2 K^2 \, dz \]
\[\leq \delta^{1-2\eta} \int_{Q_\delta \cap \{ p(z) < 2\}} (|F(v_1)|^p + |F(v_2)|^p)^{\frac{2-p}{p}} |\nabla \gamma|^2 K^2 \, dz \]
\[\leq \delta^{1-2\eta} \int_{Q_\delta \cap \{ p(z) < 2\}} \left[\frac{2}{p} |\nabla \gamma|^2 K^p + \left(1 - \frac{2}{p}\right) (|F(v_1)|^p + |F(v_2)|^p) \right] \, dz \to 0 \]

as \(\delta \to 0 \), because \(|F(v_1)|^{p(z)} = |\nabla v_i + B(v_i)|^{p(z)} \in L^1(Q) \). Plugging (25)-(26) to (24), we obtain, letting \(\delta \to 0 \) in (20): for a.e. \(\theta \in (0,T) \)

\[\int_{\Omega} |w(x,\theta)| \, dx \leq \int_{\Omega} |w(x,0)| \, dx + \int_{Q} \text{sign } w(f_1 - f_2) \, dz, \]

whence the assertion of Theorem 3.3. \(\square \)

6. **Proof of Theorem 3.4: \(\alpha = 0 \):** Let us consider the Dirichlet problem for the evolutional \(p(z) \)-Laplace equation

\[
\begin{align*}
 v_t &= \text{div} \left(a(z,v) |\nabla v|^{p(z)-2} \nabla v \right) + f(z) \quad \text{in } Q, \\
 v(x,0) &= v_0(x) \quad \text{in } \Omega, \\
 v &= 0 \quad \text{on } \Gamma.
\end{align*}
\]

(27)

This equation is a particular case of equation (1) with \(\alpha = 0 \). Given two weak solutions of problem (27) \(v_1 \) and \(v_2 \), we denote \(v = v_1 - v_2 \). Following the proof of Theorem 3.3 we see that to prove Theorem 3.4 amounts to show that \(\lim_{\delta \to 0} (I_1 + I_2) \geq 0 \), where

\[
I_1 = \int_{Q_T} a(z,v_1) T_\delta'(v) \left((|\nabla v_1|^{p-2} \nabla v_1 - |\nabla v_2|^{p-2} \nabla v_2) \cdot \nabla v \right) \, dz,
\]
\[
I_2 = \int_{Q_T} T_\delta'(v)(a(z,v_1) - a(z,v_2)) |\nabla v_2|^{p-2} \nabla v_2 \cdot \nabla v \, dz.
\]
Proposition 3 ([13]). Let 1 < p < ∞. There is a constant $C(p^-, p^+)$ such that

$$(|\xi|^{p-2} - |\zeta|^{p-2}) \cdot (\xi - \zeta) \geq C |\xi - \zeta|^2 (|\xi| + |\zeta|)^{p-2}.$$

Proof. For $p \in (1, 2]$ the assertion is a byproduct of (21). Let $p \geq 2$. Take some $\xi, \zeta \in \mathbb{R}^n$ and assume, without loss of generality, that $|\xi| \geq |\zeta|$. Denote

$$A = (|\xi|^{p-2} - |\zeta|^{p-2}) \cdot (\xi - \zeta) = |\xi|^p + |\zeta|^p - \{(|\xi|^{p-2} + |\zeta|^{p-2}) (\xi, \zeta).$$

Since $(\xi, \zeta) = \frac{1}{2} (|\xi|^2 + |\zeta|^2 - |\xi - \zeta|^2)$, we have

$$A = \frac{1}{2} \{(|\xi|^{p-2} + |\zeta|^{p-2}) \cdot (|\xi|^p + |\zeta|^p) - \frac{1}{2} (|\xi|^{p-2} + |\zeta|^{p-2}) (|\xi|^2 + |\zeta|^2)\}
\leq \frac{1}{2} \{(|\xi|^{p-2} + |\zeta|^{p-2}) \cdot (|\xi|^2 + |\zeta|^2)\}.$$

For $p \geq 2$ the mapping $X \mapsto X^{p-2}$ is nondecreasing. The second term of the last inequality is then nonnegative and can be dropped. Moreover, $|\xi| \geq \frac{1}{2} (|\xi| + |\zeta|)$ by assumption. It follows that for $p \geq 2$

$$A \geq \frac{1}{2} \{(|\xi|^{p-2} + |\zeta|^{p-2}) \cdot |\xi - \zeta|^2 \geq \frac{1}{2} |\xi|^{p-2} |\xi - \zeta|^2 \geq \frac{1}{2p-1} (|\xi| + |\zeta|)^{p-2} |\xi - \zeta|^2.$$

\[\square\]

Applying Proposition 3 we have for some constants C

$$I_1 \geq C \int_{Q_0} \frac{\delta^2}{(\delta^2 + v^2)^{3/2}} |\nabla(v_1 - v_2)|^2 (|\nabla v_1| + |\nabla v_2|)^{p-2} dz,$$

$$I_2 \leq C \int_{Q_0} \frac{\delta^2}{(\delta^2 + v^2)^{3/2}} |v|^\beta |\nabla v_1|^{p-1} (|\nabla v_1| + |\nabla v_2|) dz
\leq C \int_{Q_0} \frac{\delta^2}{(\delta^2 + v^2)^{3/2}} |v|^\beta (|\nabla v_1| + |\nabla v_2|)^{p-1} (|\nabla v_1| + |\nabla v_2|) dz
\leq C \int_{Q_0} \left(\frac{\delta^2}{(\delta^2 + v^2)^{3/2}}\right)^{1/2} |\nabla(v_1 - v_2)| (|\nabla v_1| + |\nabla v_2|)^{p-2} dx
\times \left(\frac{\delta^2}{(\delta^2 + v^2)^{3/2}}\right)^{1/2} |v|^\beta dz
\leq C \epsilon \int_{Q_0} \frac{\delta^2}{(\delta^2 + v^2)^{3/2}} |\nabla(v_1 - v_2)| (|\nabla v_1| + |\nabla v_2|)^{p-2} dz
+ C \frac{\epsilon^\beta}{4\epsilon} \int_{Q_0} \frac{\delta^2 |v|^{2\beta}}{(\delta^2 + v^2)^{3/2}} (|\nabla v_1| + |\nabla v_2|)^p dx.$$

For all sufficiently small ϵ these inequalities yield

$$I_1 + I_2 \geq -\frac{C \delta^{2\beta-1}}{4\epsilon} \int_{Q_0} (|\nabla v_1| + |\nabla v_2|)^p dz.$$

The result follows since $\beta > 1/2$.
7. Existence of solutions \(u \in \mathcal{V}(Q) \): \(L^1 \)-estimate for \(\partial_t \Phi(z, v) \). Let us check that problem (10) indeed admits solutions in \(\mathcal{V}(Q) \), which means that the class of uniqueness is nonempty. Following [11], we construct a solution as the limit of the sequence of solutions of the regularized problems

\[
\begin{cases}
 \partial_t u_\epsilon = \text{div} \left(A_{\epsilon,K}(z, u_\epsilon) \nabla u_\epsilon |p(z)|^{-2} \nabla u_\epsilon \right) + f(z) \quad \text{in } Q, \\
 u_\epsilon(x, 0) = u_0 \text{ in } \Omega, \quad u_\epsilon = 0 \text{ on } \Gamma
\end{cases}
\]

(27)

with the coefficient

\(A_{\epsilon,K}(z, u_\epsilon) = a(z, u_\epsilon)(\epsilon + \min\{K, |u_\epsilon|\})^{\alpha(z)} \),

depending on the given parameters \(\epsilon > 0, K > 0 \). For every \(\epsilon \in (0, 1) \) and \(1 < K < \infty \) the coefficient \(A_{\epsilon,K}(z, u_\epsilon) \) is separated away from zero and infinity, so that problem (27) can be regarded as the Dirichlet problem for the evolutional \(p(z) \)-Laplacian.

Theorem 7.1 ([10]). For every \(u_0 \in L^2(\Omega), f \in L^2(Q), \epsilon > 0, K > 0 \) problem (27) has at least one weak solution \(u_\epsilon \in L^\infty(0, T; L^2(\Omega)) \cap \mathcal{W}(Q) \) such that \(\partial_t u_\epsilon \in \mathcal{W}'(Q) \) and for every test-function \(\phi \in L^\infty(0, T; L^2(\Omega)) \cap \mathcal{W}(Q) \) with \(\phi_t \in \mathcal{W}'(Q) \) and arbitrary \(t_1, t_2 \in [0, T] \)

\[
\int_{t_1}^{t_2} \int_{\Omega} u_\epsilon \phi_t \, dx = \int_{t_1}^{t_2} \int_{\Omega} \left[u_\epsilon \phi_t - A_{\epsilon,K}(z, u_\epsilon) \nabla u_\epsilon |p(z)|^{-2} \nabla u_\epsilon \cdot \nabla \phi + f \phi \right] dz.
\]

Moreover, if \(u_0 \in L^\infty(\Omega), f \in L^1(0, T; L^\infty(\Omega)) \), this solution belongs to \(L^\infty(Q) \) and obeys the estimate

\[
\|u_\epsilon\|_{L^\infty(Q)} \leq \|u_0\|_{L^\infty(\Omega)} + \int_0^T \|f(\cdot, s)\|_{L^\infty(\Omega)} \, ds \equiv K_0.
\]

(28)

As a byproduct we also have that for every \(\phi \in \mathcal{W}(Q) \) (see [10])

\[
\int_Q \left[\phi \partial_t u_\epsilon + A_{\epsilon,K}(z, u_\epsilon) \nabla u_\epsilon |p(z)|^{-2} \nabla u_\epsilon \cdot \nabla \phi - f \phi \right] dz = 0.
\]

(29)

The solution of problem (27) is obtained as the limit as \(m \to \infty \) of the sequence of Galerkin’s approximations,

\[
u_{\epsilon}^{(m)}(z) = \sum_{i=1}^{m} c_{i,m,\epsilon}(t) \psi_i(z),
\]

(30)

where the family \(\{\psi_i(x)\} \) is dense in \(\mathcal{V}_+(\Omega) \) and forms an orthogonal basis of \(L^2(\Omega) \). Estimate (28) makes the coefficient \(A_{\epsilon,K}(z, u_\epsilon) \) independent of \(K \), provided that \(K \geq K_0 + 1 \):

\(A_{\epsilon,K}(z, u_\epsilon) \equiv A_{\epsilon}(z, u_\epsilon) = a(z, u_\epsilon)(\epsilon + |u_\epsilon|)^{\alpha(z)} \).

Problem (27) is considered then as a problem with the unique regularization parameter \(\epsilon \). Passage to the limit as \(\epsilon \to 0 \) is justified in [11, Sec.5] in the proof of Theorem 3.1. To this end problem (27) is substituted by the formally equivalent problem.
\[
\begin{aligned}
\frac{\partial_t \Phi_\epsilon(z, v_\epsilon)}{v_\epsilon} &= \text{div} \left(b_1(z, v_\epsilon) \nabla v_\epsilon + B(v_\epsilon) \right)^{p(z) - 2} \left(\nabla v_\epsilon + B(v_\epsilon) \right) + f \quad \text{in } Q, \\
v_\epsilon &= 0 \text{ on } \Gamma, \quad v_\epsilon(x, 0) = v_0(x) \text{ in } \Omega,
\end{aligned}
\]

in which

\[
v_\epsilon(z) = \int_0^{u_\epsilon(z)} (\epsilon + |s|)^{\gamma(z)} \, ds, \quad u_\epsilon = \Phi_\epsilon(z, v_\epsilon),
\]

\[
\gamma(z) = \frac{\alpha(z)}{p(z) - 1} \geq \gamma^- > -1.
\]

and

\[
B(v_\epsilon) = -\nabla \gamma \int_0^{u_\epsilon} (\epsilon + |s|)^{\gamma(z)} \ln (\epsilon + |s|) \, ds, \quad b(z, v_\epsilon) \equiv a(z, u_\epsilon).
\]

The proof is based on the uniform a priori estimates for the functions \(v_\epsilon, \nabla v_\epsilon\) and \(\nabla v_\epsilon + B(v_\epsilon)\) in the variable Lebesgue spaces \(L^{p(z)}(Q)\), the integration-by-parts formulas (see Lemma 4.4), and the monotonicity of the elliptic part of equation (31).

The proof of integrability of \(\partial_t \Phi_0(z, v) \equiv \partial_t u\) is thus reduced to checking that for the solutions \(u^{(m)}_\epsilon\) of the regularized problems (31) the norms \(\|\partial_t \Phi_\epsilon(z, v^{(m)}_\epsilon)\|_{1,Q}\) are bounded uniformly with respect to \(\epsilon\) and \(m\). By virtue of (30) and (32), the coefficients \(c_{i,m,\epsilon}(t)\) are defined as the solutions of the system of the ordinary nonlinear differential equations

\[
\begin{aligned}
c'_{i,m,\epsilon}(t) &= -\int_\Omega \left| \nabla u^{(m)}_\epsilon + B_\epsilon(v^{(m)}_\epsilon) \right|^{p(z) - 2} \left(\nabla v^{(m)}_\epsilon + B_\epsilon(v^{(m)}_\epsilon) \right) \cdot \nabla \psi_i \, dx + f_i(t), \\
\end{aligned}
\]

where \(u_{0i}\) and \(f_i(t)\) are the Fourier coefficients of the functions \(u_0(x)\) and \(f(z)\) in the basis \(\{\psi_i\}\):

\[
u^{(m)}_0 = \sum_{i=1}^m u_{0i} \psi_i(x) \rightarrow u_0, \quad f^{(m)} = \sum_{i=1}^m f_i(t) \psi_i(x) \rightarrow f.
\]

The function \(u^{(m)}_\epsilon = \Phi_\epsilon(z, v^{(m)}_\epsilon)\) defined by (30) is a weak solution of problem (31) with the data \(u^{(m)}_0, f^{(m)}\) and satisfies (29) with an arbitrary \(\phi \in W(Q)\). Let us fix some \(\epsilon > 0, m \in \mathbb{N}\), and introduce the function

\[
V = \partial_t \Phi_\epsilon(z, v^{(m)}_\epsilon) = \sum_{i=1}^m c'_{i,m,\epsilon}(t) \psi_i(x).
\]

Set \(\Psi = \nabla v^{(m)}_\epsilon + B_\epsilon(v^{(m)}_\epsilon), \ F = \Phi |^{p \cdot 2} \Psi \). Differentiating equation (31) for \(u^{(m)}_\epsilon\) in \(t\), we write the equation for \(V\) in the form

\[
V_t = \text{div} \ F + f^{(m)}_t.
\]

This equation is fulfilled in the following sense: for every test-function \(\phi \in W(Q)\)

\[
\int_Q \left[\phi V_t + F \cdot \nabla \phi - f^{(m)}_t \phi \right] \, dz = 0.
\]
The straightforward calculation gives the equalities

\[V = (\Phi_x)_v v_t + (\Phi_x)_t, \]
\[\mathcal{F} = (p - 1)|\Psi|^p - 2\Psi_t + |\Psi|^p - 2 \Psi \ln |\Psi| p_t, \]
\[\Psi_t = \nabla v_t + (\mathcal{B}_v)v_t + (\mathcal{B}_v)_t. \]

Combining these formulas we conclude that

\[v_t = \frac{V - (\Phi_x(z, v))_t}{(\Phi_x(z, v))_v}, \]
\[\Psi_t = \nabla \left(\frac{V - (\Phi_x(z, v))_t}{(\Phi_x(z, v))_v} \right) + (\mathcal{B}_v)_v \frac{V - (\Phi_x(z, v))_t}{(\Phi_x(z, v))_v} + (\mathcal{B}_v)_t; \]
\[\mathcal{F} = (p - 1)|\Psi|^p - 2 \left[\nabla \left(\frac{V - (\Phi_x(z, v))_t}{(\Phi_x(z, v))_v} \right) + (\mathcal{B}_v)_v \frac{V - (\Phi_x(z, v))_t}{(\Phi_x(z, v))_v} + (\mathcal{B}_v)_t \right] + |\Psi|^p - 2 \Psi \ln |\Psi| p_t. \]

Let us introduce the functions

\[h_\mu(\sigma) = \begin{cases}
\frac{2}{\mu} \left(1 - \frac{|\sigma|}{\mu} \right) & \text{if } |\sigma| < \mu, \\
0 & \text{if } |\sigma| \geq \mu,
\end{cases} \]
\[H_\mu(\sigma) = \int_0^\sigma h_\mu(s) ds, \quad \mathbf{H}_\mu(\sigma) = \int_0^\sigma h_\mu(s) ds dq. \]

According to the definition

\[\begin{cases}
h_\mu(\sigma) \geq 0, & \lim_{\eta \to 0} \sigma h_\mu(\sigma) = 0, \\
|H_\mu(\sigma)| \leq 1, & \lim_{\eta \to 0} H_\mu(\sigma) = \text{sign } \sigma, & \lim_{\mu \to 0} \mathbf{H}_\mu(\sigma) = |\sigma|. \end{cases} \tag{34} \]

Multiplying (33) by \(H_\mu(V) \) and integrating by parts in \(t \), we arrive at the equality

\[\int_Q H_\mu(V) V_t \, dz = \int_Q \partial_t \mathbf{H}(V(z)) \, dz \\
= \int_\Omega H_\mu(V(z)) \, dx - \int_\Omega H_\mu(V(x, 0)) \, dx \\
= -\int_Q \mathcal{F} \nabla H_\mu(V) \, dz + \int_Q f_1^{(m)} H_\mu(V) \, dz \tag{35} \\
= -\int_Q \mathcal{F} h_\mu(V) \nabla V \, dz + \int_Q f_1^{(m)} H_\mu(V) \, dz. \]

Let us consider the simple case: \(p_t = 0, \gamma_t = 0, \Phi_x \equiv \Phi_x(x, v) \). In this case

\[\mathcal{F} = (p - 1)|\Psi|^p - 2 \left[\nabla \left(\frac{V}{(\Phi_x)_v} \right) + (\mathcal{B}_v)_v \frac{V}{(\Phi_x)_v} \right] \]
\[= (p - 1) \left| \frac{\Psi}{(\Phi_x)_v} \right|^p \left[\nabla V - \frac{V \nabla V}{(\Phi_x)_v} + V (\mathcal{B}_v)_v \right]. \]
Since
\[(\Phi_\epsilon)'_v = (\gamma + 1)^{-\frac{1}{\gamma}} v^{-\frac{2}{\gamma}},\]
\[(B_\epsilon(v))'_v = \nabla \gamma \cdot (\epsilon + |\Phi_\epsilon(x,v)|)^\gamma \ln(\epsilon + |\Phi_\epsilon(x,v)|)(\Phi_\epsilon)'_v,\]
the previous equality becomes
\[F = (p - 1)|\Psi|^{p-2}\left[\frac{\nabla V}{(\Phi_\epsilon)'_v} - \frac{V \nabla u}{((\Phi_\epsilon)'_v)^2} + V \nabla \gamma \cdot (\epsilon + |\Phi_\epsilon|)^\gamma \ln(\epsilon + |\Phi_\epsilon|)\right].\]
Let us write (35) in the form
\[\int_\Omega H_\mu(V) \, dx \bigg|_{t=0}^{t=T} = I_1 + I_2 + I_3 + \int_Q f_t^{(m)} H_\mu(V) \, dz \tag{36}\]
with
\[I_1 = -\int_Q (p - 1)|\Psi|^{p-2} (\gamma + 1)^{-\frac{1}{\gamma}} v^{-\frac{2}{\gamma}} (\nabla V)^2 h_\mu(V) \, dz \leq 0,\]
\[I_2 = \int_Q (p - 1)|\Psi|^{p-2} (\gamma + 1)^{-\frac{1}{\gamma}} v^{-\frac{2}{\gamma}} \nabla V \cdot \nabla (V h_\mu(V)) \, dz,\]
\[I_3 = -\int_Q (p - 1)|\Psi|^{p-2} (\nabla \gamma \cdot \nabla V) (\epsilon + |\Phi_\epsilon|)^\gamma \ln(\epsilon + |\Phi_\epsilon|) (V h_\mu(V)) \, dz.\]
Dropping the nonpositive term I_1 on the right-hand side of (36), letting $\mu \to 0$ and using (34) we finally obtain:
\[\int_\Omega |V(x,t)| \, dx \leq \int_\Omega |V(x,0)| \, dx + \int_Q |f_t| \, dz, \quad V = \partial_t \Phi_\epsilon(x,v).\]
Since the right-hand side of this inequality is independent of m and ϵ, the needed estimate follows by passing to the limit as $m \to \infty$ and $\epsilon \to 0$.

REFERENCES

[1] Y. Alkhutov, S. Antontsev, and V. Zhikov, Parabolic equations with variable order of nonlinearity, Zb. Pr. Inst. Mat. NAN Ukr., 6 (2009), pp. 23–50.
[2] S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results, Differential and Integral Equations, 21 (2008), pp. 401–419.
[3] S. Antontsev, M. Chipot, and Y. Xie, Uniqueness results for equations of the p(x)-Laplacian type, Adv. Math. Sci. Appl., 17 (2007), pp. 287–304.
[4] S. Antontsev and V. Zhikov, Higher integrability for parabolic equations of p(x,t)-Laplacian type, Adv. Differential Equations, 10 (2005), pp. 1053–1080.
[5] S. Antontsev, Localization of solutions of degenerate equations of continuum mechanics, Akad. Nauk SSSR Sibirsk. Otdel. Inst. Gidrodinamiki, Novosibirsk, 1986. (in Russian; "Lokalizatsiya reshenii vyrozdhayushchikhsya uravnenii mekaniki sploshnoi sredy").
[6] S. Antontsev, J. I. Diaz, and S. Shmarev, Energy Methods for Free Boundary Problems: Applications to Non-linear PDEs and Fluid Mechanics, Bikhäuser, Boston, 2002. Progress in Nonlinear Differential Equations and Their Applications, Vol. 48.
[7] S. Antontsev, S. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Elsevier, 2006. Handbook of Differential Equations. Stationary Partial Differential Equations, Elsevier, Vol. 3, Chapter 1, pp.1-100.
[8] ——, Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity, Journal of Mathematical Sciences, 150 (2008), pp. 2289–2301.
[9] ——, Vanishing solutions of anisotropic parabolic equations with variable nonlinearity. J. Math. Anal. Appl., 361 (2010), pp. 371–391.
[10] Anisotropic parabolic equations with variable nonlinearity, Publ. Sec. Mat. Univ. Autònoma Barcelona, (2009), pp. 355–399.

[11] Parabolic equations with double variable nonlinearities, Math. Comput. Simul., to appear, (2011), doi:10.1016/j.matcom.2010.15 pp.

[12] Elliptic equations with triple variable nonlinearity, Special Issue: Complex Variables and Elliptic Equations, Complex Variables and Elliptic Equations, to appear. (2011) 28 pp. doi: 10.1080/17476933.2010.504844.

[13] M. Chipot, Elliptic Equations: An Introductory Course. A series of Advanced Textbooks in Mathematics, Birkhäuser (2009), 288 pp.

[14] M. Chipot and J.-F. Rodrigues, Comparison and stability of solutions to a class of quasilinear parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A, 110 (1988), pp. 275–285.

[15] Ju. Dubinskii, Weak convergence into nonlinear elliptic and parabolic equations, Mat. Sb. 67 (4) (1965), pp. 609–642.

[16] J. Díaz and J. Padial, Uniqueness and existence of a solution in BV(α,q) space to a doubly nonlinear parabolic problem, Publ. Mat., 40 (1996), pp. 527–560.

[17] J. Díaz and F. Thélin, On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal, 25 (1994), pp. 1085–1111.

[18] L. Diening, Maximal function on generalized Lebesgue spaces Lp(·), Math. Inequal. Appl., 7 (2004), pp. 245–253.

[19] D. Edmunds and J. Rákosník, Sobolev embeddings with variable exponent, Studia Math., 143(3) (2000), pp. 267–293.

[20] P. Harjuleto and P. Hästöö, An overview of variable exponent Lebesgue and Sobolev spaces, preprint, (2004), pp. 1–8.

[21] A. I. Ivanov and J. F. Rodrigues, Existence and uniqueness of a weak solution to the initial mixed boundary-value problem for quasilinear elliptic-parabolic equations, Journal of Mathematical Sciences, Vol.109, No. 5 (2002), pp. 1851–1866.

[22] A. Kalashnikov Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Russian Math. Surveys 42 (1987), no. 2, pp. 169–222.

[23] O. Kováčik and J. Rákosník, On spaces Lp(·) and Wk,p(·), Czechoslovak Math. J., 41(116) (1991), pp. 592–618.

[24] G. I. Laptev, Solvability of second-order quasilinear parabolic equations with double degeneration, Sibirsk. Mat. Zh., 38 (1997), pp. 1335–1355.

[25] J. Musielak, Orlicz spaces and modular spaces, vol. 1034 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983.

[26] S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integral Transforms Spec. Funct., 16 (2005), pp. 461–482.

[27] S. Samko, Density C_m^p(R^α) in the generalized Sobolev spaces W^{m,p}(R^n), Dokl. Akad. Nauk, 369 (1999), pp. 451–454.

[28] K. Soltanov, Some nonlinear equations of the nonstable filtration type and embedding theorems, Nonlinear Anal., 65 (2006) pp. 2103–2134.

[29] M. Sango, Local boundedness for doubly degenerate quasi-linear parabolic systems, Applied Mathematics Letters. An International Journal of Rapid Publication,16(4), 2003, 465-468.

[30] A. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations, Appl. Anal., 86(6), 2007, 755–782.

[31] S. Degtyarev and A. Tedeev, L_1–L_∞ estimates for the solution of the Cauchy problem for an anisotropic degenerate parabolic equation with double nonlinearity and growing initial data, Mat. Sb., 198(5), 2007, 45–66.

[32] P. Cianci, A. Martynenko and A. Tedeev, A. F. On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics, SIAM J. Appl. Math., 63 (2) (2003), pp. 683–707.

[33] V. Zhikov, On Lavrentiev’s effect, Dokl., Ross. Akad. Nauk, 345 (1995), pp. 10–14.

[34] On Lavrentiev’s phenomenon, Russian J. Math. Phys., 3 (1995), pp. 249–269.

[35] On the density of smooth functions in Sobolev-Orlicz spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), pp. 1–14.
E-mail address: antontseven@mail.ru
E-mail address: m.m.chipot@math.uzh.ch
E-mail address: shmarev@orion.ciencias.uniovi.es