From potential modularity to modularity for integral Galois representations and rigid Calabi-Yau threefolds

Luis V. Dieulefait
Universitat de Barcelona *

December 20, 2021

Abstract

In a previous article, we have proved a result asserting the existence of a compatible family of Galois representations containing a given crystalline irreducible odd two-dimensional representation. We apply this result, combined with the potential modularity results of Taylor, to prove modularity for any irreducible crystalline \(\ell \)-adic odd 2-dimensional Galois representation (with finite ramification set) unramified at 3 verifying an “ordinarity at 3” easy to check condition, with Hodge-Tate weights \(\{0, w\} \) such that \(2w < \ell \) (and \(\ell > 3 \)) and such that the traces \(a_p \) of the images of Frobenii verify \(\mathbb{Q}(\{a_p\}) = \mathbb{Q} \). This result applies in particular to any motivic compatible family of odd two-dimensional Galois representations of \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) if the motive has rational coefficients, good reduction at 3, and the “ordinarity at 3” condition is satisfied. As a corollary, this proves that all rigid Calabi-Yau threefolds defined over \(\mathbb{Q} \) having good reduction at 3 and satisfying \(3 \nmid a_3 \) are modular.

1 The result and its proof

The main tools in our proof are the existence of families proved in [D], together with the potential modularity results proved in [T1], [T2]. We will

* e-mail: LDieulefait@ub.edu

1
also need a result from [W] which controls ordinariness for Hilbert modular forms.

We will call field of coefficients of a Galois representation the field generated by the traces of the images of Frobenii elements.

Theorem 1.1 Let $\ell > 3$ be a prime. Let σ_ℓ be a two dimensional odd irreducible ℓ-adic Galois representation (of the absolute Galois group of \mathbb{Q}, continuous) ramified only at ℓ and at a finite set of primes S not containing 3, with field of coefficients \mathbb{Q}. Assume that σ_ℓ is crystalline at ℓ, with Hodge-Tate weights $\{0, w\}$ (w odd). Assume also that $\ell > 2w$. Then, if $a_3 := \text{trace}(\sigma_\ell(Frob 3))$ is not divisible by 3, the representation σ_ℓ is modular.

Corollary 1.2 If an odd, two-dimensional, compatible family of Galois representations attached to a motive defined over \mathbb{Q}, having rational coefficients and good reduction at 3, verifies $3 \nmid a_3 := \text{trace}(\sigma_\ell(Frob 3))$, $\ell \neq 3$, then the family (thus, the motive) is modular. In particular, any rigid Calabi-Yau threefold defined over \mathbb{Q} with good reduction at 3 and $3 \nmid a_3$ is modular.

Remark: This modularity criterion for rigid Calabi-Yau threefolds is different than those obtained in [DM]. In particular, the criteria in [DM] required good reduction at 5 or 7.

Proof of corollary: Just apply the theorem to the ℓ-adic representation in the family for a sufficiently large prime ℓ where the motive has good reduction.

Proof of theorem:
First, recall that from the existence of a family result in [D], we can insert σ_ℓ in a (strongly) compatible family $\{\sigma_q\}$, which has rational coefficients and is unramified at 3 for any $q \neq 3$. Also, from the results in [T2], we know that this family is potentially modular, i.e., that when restricted to some totally real number field F all representations in the family agree with those attached to some Hilbert modular form h over F.

Now, we will translate the “easy to check condition” on the trace of σ_ℓ at Frob 3 into ordinariness of the 3-adic representation in the compatible family. We apply a result of Wiles [W], which tells us that we can read in the corresponding eigenvalue of a Hilbert modular form that the attached Galois
representation is ordinary. Our family of representations becomes modular when restricted to the Galois group of a totally real number field F which can be assumed (using solvable base change) to be such that 3 is totally split in F/\mathbb{Q} (cf. [D]), so that ordinarity at 3 of the restriction to the Galois group of F is equivalent to ordinarity of the full 3-adic representation. The condition $3 \nmid a_3$ implies (cf. [W]) that when we restrict σ_3 to the Galois group of F we get a modular Galois representation which is ordinary at (every prime of F dividing) 3, therefore we conclude that σ_3 is ordinary.

The proof finishes using Skinner-Wiles results: since the residual mod 3 representation has coefficients in \mathbb{F}_3, it is known that it is either modular or reducible (by results of Langlands and Tunnell). Knowing that σ_3 is ordinary, an application of [SW1] and [SW2] gives the modularity of σ_3, thus of σ_ℓ (because they are compatible).

2 Bibliography

[D] Dieulefait, L., Existence of compatible families and new cases of the Fontaine-Mazur conjecture, to appear in J. Reine Angew. Math.; available at [http://front.math.ucdavis.edu/math.NT]

[DM] Dieulefait, L., Manoharmayum, J., Modularity of rigid Calabi-Yau threefolds over \mathbb{Q}, in “Calabi-Yau Varieties and Mirror Symmetry”, Fields Institute Communications, 38, AMS (2003)

[SW1] Skinner, C., Wiles, A., Residually reducible representations and modular forms, Publ. Math. IHES 89 (2000)

[SW2] Skinner, C., Wiles, A., Nearly ordinary deformations of irreducible residual representations, Ann. Fac. Sci. Toulouse Math. (6) 10 (2001)

[T1] Taylor, R., Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu 1 (2002)

[T2] Taylor, R., On the meromorphic continuation of degree two L-functions, preprint, (2001); available at [http://abel.math.harvard.edu/~rtaylor/]

3
[W] Wiles, A., *On ordinary λ-adic representations associated to modular forms*, Invent. Math. 94 (1988)