Gut instincts in neuroimmunity from the eighteenth to twenty-first centuries

Mytien Nguyen1,2 · Noah W. Palm1,2

Received: 16 February 2022 / Accepted: 29 April 2022 / Published online: 4 July 2022 © The Author(s) 2022

Abstract
In the past two decades, work on the microbiota-gut-brain axis has led to a renewed appreciation for the interconnectedness between body systems in both clinical and scientific circles. In the USA alone, millions of adults are burdened with non-communicable chronic diseases whose putative etiologies were previously thought to be restricted to either the gut or brain, such as inflammatory bowel disease, irritable bowel syndrome, Parkinson’s and Alzheimer’s disease, and autism spectrum disorder. However, the recent explosion of research into the impacts of the gut microbiome on diverse aspects of human health has revealed the potentially critical importance of reciprocal interactions between the gut microbiota, the immune system, and the brain in diverse diseases and disorders. In this review, we revisit the history of gut-brain interactions in science and medicine, which dates back to at least the eighteenth century, and outline how concepts in this field have shifted and evolved across eras. Next, we highlight the modern resurgence of gut-brain axis research, focusing on neuro-immune-microbiota interactions and recent progress towards a mechanistic understanding of the diverse impacts of the microbiome on human health. Finally, we offer a forward-looking perspective on the future of microbiota-gut-brain research, which may eventually reveal new paths towards the treatment of diverse diseases influenced by the complex connections between the microbiota and the brain.

Keywords Neuroinflammation · Gut-brain axis · Microbiota · Microbial metabolites · Neurodegenerative diseases

Introduction
The recent explosion of interest in the role of the gut microbiota in human health has led to a growing interest in the so-called microbiota-gut-brain axis. However, the first studies of the gut-brain axis date back more than three centuries. In this review, we explore the saga of the gut-brain axis over the centuries, with a focus on microbiota-neuroimmune communication. We begin by outlining the clinical and scientific conceptualization of the gut-brain axis in the 1700s before reviewing modern investigations of the underlying mechanisms governing gut-brain communication. Finally, we speculate on how our understanding of the myriad links between the gut and brain may shift in the future.

Gut-brain axis: a historical perspective
Scientific and clinical perspectives on the gut-brain axis have historically cycled between holistic and individualized approaches. Early descriptions of the gut-brain connection can be traced back at least three centuries. In the eighteenth century, physicians’ conception of the connection between the gut and brain was primarily holistic. It centered around the idea that digestion, emotions, and identity are linked and that individuals’ digestive functions influence both mind and mood [1–3]. Furthermore, this connection was bidirectional: the mind affects digestive function, and digestive function influences the mind (Fig. 1). In 1765, Robert Whytt, a Scottish physician, introduced the concept of nervous sympathy...
in which all internal body organs, including the gut and the brain, are interconnected by a single communication network [4]. Nervous sympathy thus reflects how eighteenth and nineteenth century scientists and physicians conceptualized the reciprocal nature of the gut-brain axis—that is, an unhealthy digestive system causes an abnormal mind. However, this view shifted in the nineteenth century as medicine became increasingly specialized. In the twentieth century, a resurgence of interest in gut-brain communication emerged as

The development of the germ theory of disease by Louis Pasteur and Robert Koch ushered in a new era of microbe-focused research and innovation [8]. The burden of communicable diseases decreased dramatically beginning in the mid-nineteenth century due to improvements in sanitation hygiene as well as the development of vaccines and antibiotics. At the same time, the burden of non-communicable diseases rapidly increased [9]. Unlike infectious diseases, non-communicable conditions were more lifestyle-driven and often chronic [5, 9]. Faced with this new challenge, clinicians and scientists once again began to approach the body holistically. This transition was marked by a steady progression of research seeking to dissect how the gut affects central nervous system functions and vice versa. For example, surgeons observed that post-operative jejunooileostomy patients experienced episodic central nervous system symptoms, such as slurred speech and confusion, which sometimes recurred months after their operation [10]. These observations challenged previous conceptions that the small intestine and the colon were merely tubes for waste materials [7].

The USA faced an increasing burden of chronic, non-communicable diseases. The modern twenty-first century understanding of the gut-brain axis is characterized by an appreciation for its complexity, the emerging fields of the gut microbiome and neuroimmunology, and the increasing promise of gut-brain interventions as novel therapeutic approaches to treat neurological disease.
Indigenous microbial inhabitants of the gut, now known as the microbiota, also came into focus as a potential key to understanding the gut-brain connection. One of the first proponents of this concept was Russian embryologist Elie Metchnikoff, who proposed that probiotic bacteria found in yogurt could promote health and delay senility more than a century ago [11]. This idea remained largely dormant for many decades, before reemerging in the mid to late twentieth century when multiple research groups began to explore the impact of alterations in the gut microbiota on mammalian phenotypes in rodent models. Ian Rowland in the UK found that toxic concentrations of mercury and associative neurotoxic symptoms were more pronounced in rats treated with antibiotics [12]. Antibiotic administration in rats also altered biogenic amine concentrations in plasma [13, 14]. The generation of germ-free rats that lack all indigenous microbes led to further targeted studies of the gut-brain axis and numerous studies in the late-twentieth century revealed that diverse CNS phenotypes differed between GF and conventional animals. Linda Hegstrand and R. Jean Hine from the William S. Middleton Memorial Veterans Hospital in Wisconsin found that conventional rats had higher hypothalamic histamine levels than germ-free (GF) rats [15]. Furthermore, 1,3-dinitrobenzene administration induced ataxia in GF but not conventional rats [16]. These studies laid the foundation for a growing consensus that gut-brain connections are critical for human health. At the turn of the century, scientists began to examine whether specific commensal bacteria might even prevent or reverse neuropathology. In 1965, following on earlier studies of the probiotic Lactobacillus by Minoru Shiroma and Elie Metchnikoff in intestinal health [11], William Macbeth of Harvard Medical School performed one of the first experiments testing the impact of probiotics on the brain when he successfully treated two patients with hepatic encephalopathy with Lactobacillus acidophilus [17].

In the late twentieth century, advances in understanding the connection between the gut and the brain were spurred on by the establishment of the new field of neuroimmunology, which began to challenge the traditional assumption that the brain is segregated from the immune system (Fig. 1). A series of pioneering studies by early proponents of this field demonstrated a critical role for T lymphocytes in maintaining brain homeostasis, injury repair, and resolution of neuroinflammation [18–24]. The shift of clinical research towards a more team-based and multidisciplinary approach in the late twentieth century [25] led to mechanistic insights into the gut-brain axis and the immune system’s role in these interactions. Patrick Dougherty’s lab in the 1980s found that the bacterial product 6-0-stearoyl-muramyl dipeptide (MDP) could attenuate opiate withdrawal severity in a dose-dependent fashion when injected directly into the brain [26, 27]. Sylvain Nadateau and Serge Rivest at Laval University found that myeloid-derived cells in the brain express the LPS receptor CD14, indicating that brain-resident myeloid cells may sense peripheral bacterial products [28]. At the same time, a few studies began to indicate a critical role for the immune system in mediating the bidirectional communication between the gut and the brain. Specifically, Baciu et al. found that tuberomammillary lesions dramatically reduced the phagocytic activity of circulating immune cells [29]. These early indications of neuro-immune-microbiota connections paved the way for the gut-brain-microbiome boom that would occur in the twenty-first century. During this same era, advances in next-generation sequencing enabled facile assessments of microbiota composition independent of microbial culture via 16S rRNA gene sequencing. Many early research efforts using these technologies focused on identifying individual causative agents of non-communicable human diseases; however, after failing to find individual pathogens responsible for these diseases, the field largely converged on the modern holistic view of microbiota-mediated impacts on host health [30].

Modern understanding of neuro-immune-microbiota connections

Modern clinical conceptions of the neuro-immune-microbiota axis are, in essence, an homage to the eighteenth- and nineteenth-century holistic approaches to understanding the gut-brain connection. A preponderance of clinical and pre-clinical data underscore the consistent comorbidity between neuropsychiatric diseases and intestinal pathologies [31, 32]. Correspondingly, the gut microbiota has been found to modulate psychological outcomes, such as behavioral abnormalities in neurodevelopment and the anti-seizure effects of ketogenic diets [33, 34]. An explosion of recent studies has also provided insights into the role of the neuro-immune-microbiota axis in complex diseases such as ulcerative colitis, inflammatory bowel disease, Parkinson’s disease, and multiple sclerosis [35, 36]. Indeed, in the past 21 years, there have been 2.5 times as many publications in this field as compared to the past century altogether. Most recently, spurred on by the rapid growth of the microbiome field, mechanistic insights into the role of the immune system in the gut-brain axis have started to come into focus. Below, we offer a brief review of the current understanding of the neuroimmune-microbiota connection with a focus on the influence of bacteria and their metabolites on neurodegenerative disease.

The classical role of microglia in neuroinflammation

Considered endogenous macrophages of the central nervous system, microglia are essential for tissue homeostasis in
the brain. Microglial activation is central to the macrophage
theory of depression, where neuroinflammation is a core
contributor to abnormal depressive behaviors [37]. Micro-
glia dysfunction is also prominent in other neuropathologies,
including schizophrenia (increased microglial activity and
density, elevated expression of proinflammatory cytokines)
[38, 39], Parkinson’s disease (increased activation in the
substantia nigra by alpha-synuclein, proinflammatory profile) [40, 41], Alzheimer’s disease (increased activation, syn-
aptic remodeling) [42–44], and multiple sclerosis (increased
activation profile and oxidative stress) [45, 46].

Building upon earlier experiments from the Rivest lab
[28], multiple research groups found that GF mice and mice
with a dysbiotic gut microbiota have abnormal microglia
populations in the hippocampus, cortex, and cerebellum
[47–49]. Microglia from GF mice are immature as compared
to microglia from conventionalized mice [48], as character-
ized by higher Kit67 and Csf1r expressions and diminished
capacity to produce a variety of chemokines and cytokines
upon infection [48]. This “dysbiotic” microglial population
ultimately leads to a reduced ability to fight against both sys-
temic and local bacterial and viral infections [48]. Microglial
morphology is also altered in GF mice and mice colonized
with simple bacterial communities, with increased branch-
ing [48].

Altered microglial profiles in GF versus conventional
mice can be at least partially explained by the effects of
microbial-derived metabolites on microglia (Fig. 2). The gut
microbiota produces thousands of unique small-molecule
metabolites, some of which can accumulate systemically and
reach extra-intestinal tissues, including the brain [35, 50].
Short-chain fatty acids (SCFAs), which are produced dur-
ing microbial fermentation of dietary fiber, are among the
best-studied microbial metabolites [50]. Reduced SCFA con-
centrations have been associated with multiple CNS patholo-
gies, such as brain amyloidosis in Alzheimer’s disease [51].
Furthermore, SCFA administration restored microglial acti-
vation profiles and functions in GF mice [48]. Conversely,
microbial-derived SCFA promoted microglial activation
and enhanced motor dysfunction in a mouse model of Par-
kinson’s disease [52]. SCFAs also induced microglial pro-
duction of neuroprotective IL-10 [53]. Beyond SCFA, other
microbial metabolites such as indole and its derivatives have
also been shown to influence microglial activation and neu-
rotoxicity [54–57]. Microglial activation is also thought to
be an initial step in the chemical-induced neurotoxic cas-
cade [58]. Gut microbes that synthesize AhR agonists from
dietary tryptophan (e.g. Peptostreptococcus russellii), also
influence microglial activation by promoting TGFα produc-
tion and modulating astrocyte activation and neuroinflam-
mation [54–56].

Emerging evidence also suggests that microglial neuro-
inflammation in the central nervous system may result from
microbiota-mediated priming via the peripheral immune
system (Fig. 2). In mice treated with dextran sulfate sodium
(DSS) to induce colitis, researchers observed parallel and
synergistic inflammatory responses in the gut mucosa and
the cerebral cortex, marked by increased expression of IFNγ
and iNOS [59]. DSS-colitis ultimately led to microglial alter-
ations characterized by increased activation and elevated
cytokine levels, which mirrors the microglial phenotype
in germ-free mice [48]. Potential priming of microglia by
peripheral immunity is also supported by data from Par-
kinson’s disease mouse models. For example, DSS–induced
intestinal inflammation led to accelerated brain neuropath-
ology and motor dysfunction in a Parkinson’s disease model
[60]. The age of onset of motor dysfunction was also sig-
nificantly earlier in DSS-treated mice compared to mice that
were not challenged with DSS. Although the authors did not
profile microglia in these studies, these findings are con-
sistent with the microglia hypothesis of Parkinson’s disease
progression. However, it is unknown precisely how periph-
eral immune responses reprogram microglia. Illuminating
the nature of this neuromodulation will be vital to develop
strategies to protect the central nervous system from the
pathological impacts of peripheral immune activation by
the microbiome.

Adaptive immunity: T lymphocytes in neuro-immune-microbiota communication

Immune cells in the meningeal compartments are essential
for maintaining neurological homeostasis, including regu-
late behavior and resolution of neuroinflammation after
injury [61]. T lymphocytes are critical coordinators and
effectors of both mucosal and systemic immunity. Intestinal
dendritic cells constantly sample the luminal contents of the
gut, resulting in persistent priming of T cells by gut bacteria
that primarily results in regulatory T cell (Treg) expansion
[62, 63]. Thus, commensal microbes profoundly impact
intestinal T cell activation and differentiation. Microbial
metabolites, such as SCFAs, maintain immune homeosta-
sis by inducing Treg differentiation [64, 65] (Fig. 2). Con-
versely, butyrate can activate antigen-specific CD8+ T cell
populations, promoting anti-pathogen immunity in the gut
[66]. Other metabolites that can alter T lymphocyte func-
tionality include ascorbate (induction of T cell apoptosis)
[67], mevalonate and dimethylglycine (inhibit the develop-
ment of IFNγ + CD8 T cells) [68], and poly-γ-glutamic acid
(induction of regulatory T cells), to name just a few [69].
Specific gut bacteria can also induce defined T cell subsets,
such as Th17 induction by segmented filamentous bacteria
(SFB) and Treg induction by Bacteroides fragilis [70–73].

Microbiota-induced peripheral T cell dysregulation can
potentially lead to alterations in T cell populations in the
CNS. For example, microbiota-induced increases in Th17
Differentiation contribute to maternal immune activation–induced behavioral abnormalities [74] and exacerbate the mouse model of multiple sclerosis experimental autoimmune encephalomyelitis (EAE) [75] [76]. By combining single-cell RNA-sequencing and repertoire sequencing of Th17 T cells across peripheral and central tissues, a recent study solidified the connections between peripheral and CNS T cells in EAE. This study identified two subsets of Th17 cells in the CNS: a homeostatic SLAMF6+ population and a pathogenic CXCR6+ population that migrates to the central nervous system in EAE (Fig. 2). Homeostatic SLAMF6+ Th17 cell populations in intestinal tissues contribute to maternal immune activation–induced behavioral abnormalities [74] and exacerbate the mouse model of multiple sclerosis experimental autoimmune encephalomyelitis (EAE) [75] [76]. By combining single-cell RNA-sequencing and repertoire sequencing of Th17 T cells across peripheral and central tissues, a recent study solidified the connections between peripheral and CNS T cells in EAE. This study identified two subsets of Th17 cells in the CNS: a homeostatic SLAMF6+ population and a pathogenic CXCR6+ population that migrates to the central nervous system in EAE [77] (Fig. 2). Homeostatic SLAMF6+ Th17 cell populations in intestinal tissues...
gave rise to pathogenic CXCR6+ Th17 cells, which were significantly reduced in mice treated with antibiotics. These data suggest that microbial composition and density play a critical role in maintaining SLAMF6+ Th17 cells [77]. The conversion of SLAMF6+ to CXCR6+ Th17 cells was also reduced in antibiotic-treated mice [77], providing an attractive mechanistic explanation for the resistance of germ-free mice to EAE.

While SFB-induced Th17 cells can promote EAE, B. fragilis-induced Tregs can ameliorate EAE [78] (Fig. 2). The B. fragilis zwiterionic capsular polysaccharide A protects against severe inflammation in EAE by inducing the conversion of naïve T cells to IL-10+ FoxP3+ regulatory T cells [79]. Although the exact mechanism of protection is unclear, it is postulated that these Tregs directly combat IL-17a induction. Recent studies describe a new role for killer T (iNKT) cells [84]; thus, NKT cells may also form an additional link between the gut and the brain [85].

In addition to classical T cells, innate-like lymphocytes may also influence neuronal functions. For example, the release of IL-17a by γδ T cells in the meninges can directly activate cortical glutaminergic neurons and induce anxiety-like behaviors [61]. The gut microbiome also has a profound impact on the selection and function of invariant natural killer T (iNKT) cells [84]; thus, NKT cells may also form an additional link between the gut and the brain [85].

Adaptive immunity: B lymphocytes in neuro-immune-microbiota communication

Accumulating data indicate that B cells also play a critical role in regulating CNS immunity. As with T lymphocytes, microbial metabolites can shape B lymphocyte differentiation and function (Fig. 2). Lactobacillus-derived 3-idoleacetic acid and lipopolysaccharide (LPS) enhance the production of IL-35 by Bregs [86]. SCFAs influence plasma cell differentiation and antibody production [87, 88], where acetate induces IgA production and butyrate suppresses IgA production [89, 90]. In the intestine, IgA+ plasma cells critically regulate microbiota composition and barrier function [91], and IgA production by intestinal plasma cells is rapidly induced following microbial colonization [92]. IgA levels in the meninges also depend on microbial colonization status. Like T cells, gut-derived plasma cells can also traffic to the brain [93]. Although IgA+ plasma cells are abundant in the dural venous sinuses of conventional mice, only very low levels of IgA+ plasma cells are found in the dural sinuses of GF mice. Colonization of ex-GF mice with human fecal microbes restored IgA+ plasma cell populations in the dural venous sinuses; notably, dural B cell repertoires overlapped with intestinal plasma cells, suggesting that dural venous sinus plasma cells originated in the gut [93]. IgA-producing plasma cells in the dural venous sinuses provide critical protection against infection as depletion of meningeal IgA+ plasma cells resulted in infiltration of fungi to the brain after intravascular injection [93].

Finally, several recent studies have highlighted immunoregulatory roles for gut-derived IgA+ plasma cells in the central nervous system. Early evidence of immune suppression by B cells emerged in 2010 when Lloyd Casper’s group found that antibiotic treatment of EAE mice induced expansion of CD5+ B cell populations in lymphoid organs and adoptive transfer of these CD5+ B cells conferred protection against EAE pathology [94]. More recently, microbiota-specific IgA+ plasma cells were shown to protect against EAE by trafficking to the central nervous system [95], presumably as part of a homeostatic response to reduce inflammation. This protection is mediated by gut-derived IgA+ plasma cells, which can traffic to the central nervous system and reduce disease severity in an IL-10-dependent manner [96]. Together, these studies show that the impacts of microbiota-mediated education of the immune system extend beyond the intestine to the CNS in both health and disease.

The potential role of vagal and central neurons in neuro-immune-microbiota connections

The vagus nerve can serve as a physical conduit that directly relays signals from the gut microbiota to the central nervous system (Fig. 2). The vagus nerve comprises 80% afferent fibers and 20% efferent fibers [97], and vagal nerve endings in the gastrointestinal tract can sense luminal inputs [98, 99]. Numerous microbial-derived metabolites have been shown to impact vagal activation. The microbiota-derived SCFA oleate activates the vagus nerve via the CCK-A receptor [100], and butyrate can directly activate vagal afferent terminals in the gut [100]. Furthermore, vagal fibers express pattern recognition receptors such as Toll-like receptor 4, enabling direct detection of and activation by bacterial products [101]. Interestingly, targeted vagal stimulation can suppress LPS-induced pro-inflammatory cytokine production by microglia [102, 103]. The vagus nerve’s role in the gut-brain axis is commonly studied using vagotomized humans and
mice. For example, vagotomized humans had a significantly lower risk of developing Parkinson’s disease [104, 105]. In mice, Lactobacillus rhamnosus–induced amelioration of anxiety- and depression-related behaviors was diminished after vagotomy [106, 107].

The vagus nerve is also thought to serve as a physical transporter of protein aggregates in Alzheimer’s and Parkinson’s disease via a mechanism analogous to prion disease. The accumulation of α-synuclein aggregates in gut vaginal endings often precedes CNS symptoms in progressive Parkinson’s disease, and recent studies have shown that α-synuclein aggregates injected into the gut can transit to the brain via the vagus nerve [108] (Fig. 2). Gut bacteria can also produce amyloid proteins, such as curli or CsgA, which is important for biofilm formation and epithelial adhesion [109, 110]. Colonization with E. coli–producing curli exacerbated motor deficit in a mouse model of Parkinson’s disease [111], suggesting that microbial influences on α-synuclein aggregation in the gut can seed or enhance disease progression via the trafficking of peripheral protein aggregates to the central nervous system.

Recent evidence also suggests that microbial metabolites can directly influence the CNS (Fig. 2). For example, the circulation of microbial metabolites to the brain can affect thalamic axonogenesis in early life [112]. Also, specific microbial-derived metabolites associated with neuropsychiatric disorders, such as 3-(3-hydroxyphenyl)-3-hydroxypropanoic acid (HPHPA), are more abundant in cerebrospinal fluid from conventional mice as compared to GF mice [113]. Finally, recent pioneering studies underscore the bidirectional nature of the gut-brain axis (Fig. 2). Koren et al. demonstrated that a subset of neurons in the insular cortex were activated by DSS-induced intestinal inflammation [114]. Remarkably, reactivation of these neurons after removal of DSS led to the re-induction of intestinal inflammation, suggesting that these neurons can store and retrieve past immunological activation. Prior observations of psychosomatic immune responses, including conditional allergic responses, indicate the potential generalizability of CNS-mediated recall of past immune responses. Future exploration of the memory and recall capacity of the brain in neuro-immune-microbiota cross talk promises to further solidify this fascinating concept.

Conclusion

Scientific and clinical endeavors to understand the gut-brain axis over the past three centuries have evolved in fits and starts toward the modern holistic approach that underlies the explosion of new interest in this area. The emergence of neuroimmunology as a core discipline that links the study of the nervous and immune systems has critically enabled our current understanding of the gut-brain connection. Furthermore, the technology-fueled explosion in microbiome research over the past two decades has ushered in a new era of exploration of the microbiota-gut-brain axis. Going forward, holistic approaches and close collaborations between normally disparate disciplines will be critical to expose the core mechanistic principles that underlie the complex and multi-dimensional interactions between these systems.

Acknowledgements

Figures were created with BioRender.com.

Funding

This work was supported by a grant from the Aligning Science Across Parkinson’s ASAP-000529 through the Michael J. Fox Foundation for Parkinson’s Research (MJFF). MN gratefully acknowledges support from the National Institutes of Health NIGMS (T32GM136651) and NIADD (F30AI157227). NWP gratefully acknowledges support from the Leona M. and Henry B. Helmsley Charitable Trust (3083), the Common Fund of the National Institutes of Health (DP2DK125119), Chan Zuckerberg Initiative, the Ludwig Family Foundation, the Mathers Foundation, the Pew Charitable Trust, NIGMS (R1GM141649), NIA (R01AG068863), and F. Hoffmann-La Roche. For the purpose of open access, the author has applied a CC BY 4.0 public copyright license to all Author Accepted Manuscripts arising from this submission.

Declarations

Ethics approval

An ethics statement is not applicable because this study is based exclusively on published literature.

Competing interests

N.W.P. is a co-founder of and consultant for Artizan Biosciences and Design Pharmaceuticals, and has received research funding from Artizan Biosciences and F. Hoffmann-La Roche Ltd.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Moore AM, Mathias M, Valeur J (2018) Contextualising the microbiota-gut-brain axis in history and culture. Microbiol Ecol Health Dis 30:1546267
2. Miller I (2015) A modern history of the stomach: gastric illness, medicine and British society, 1800–1950: Routledge
3. Forth CE, Carden-Coyne A (2005) Cultures of the abdomen: diet, digestion, and fat in the modern world: Springer
4. King LS (1970) Robert Whyt, the Soul, and Medicine. JAMA 211: 303–5
5. Weisz G (2003) The emergence of medical specialization in the nineteenth century. Bull Hist Med 77:536–575

575
6. Baicus A (2012) History of polio vaccination. World J Virol 1:108–114
7. Cotton P (2014) A history of luminal gastroenterology in Britain: the inside guide. BMJ Publishing Group
8. Koch R (1890) An address on bacteriological research. Br Med J 2:380–383
9. Jakovljevic MB, Milovanovic O (2015) Growing burden of non-communicable diseases in the emerging health markets: the case of BRICS. Front Publ Health 3:65
10. Ayub A, Faloon WW, Heining RE (1981) Encephalopathy following jejunileostomy. Jama 246:970–973
11. Mackowiak PA (2013) Recycling metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front Public Health 1:52
12. Rowland IR, Davies MJ, Evans JG (1980) Tissue content of mercury in rats given methylmercuric chloride orally: influence of intestinal flora. Arch Environ Health 35:155–160
13. Sandler M, Karoum F, Ruthven CR, Calne DB (1969) m-Hydroxyphenylacetic acid formation from L-dopa in man: suppression by neomycin. Science 166:1417–1418
14. Fischer JE, James JH, Baldessarini R (1972) Changes in brain amines following portal flow diversion and acute hepatic coma: effects of levodopa (L-dopa) and intestinal sterilization. Surg Forum 23:348–350
15. Hegstrand LR, Hine RJ (1986) Variations of brain histamine levels in germ-free and nephrectomized rats. Neurochem Res 11:185–191
16. Philbert MA, Gray AJ, Connors TA (1987) Preliminary investigations into the involvement of the intestinal microflora in CNS toxicity induced by 1,3-dinitrobenzene in male F-344 tigations into the involvement of the intestinal microflora in Lactobacillus acidophilus. Lancet 1:399–403
17. Macbeth WA, Kass EH, McDermott WV Jr (1965) Treatment of hepatic encephalopathy by alteration of intestinal flora with Lactobacillus acidophilus. Lancet 1:399–403
18. Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M (2004) T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccine for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci 101:8180–8185
19. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5:49–55
20. Schwartz M, Peralta-Ramos JM, Ben-Yehuda H (2020) A 20-year journey from axonal injury to neurodegenerative diseases and the prospect of immunotherapy for combating Alzheimer’s disease. J Immunol 204:243
21. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9:268–275
22. Ben-Nun A, Cohen IR (1981) Vaccination against autoimmune encephalomyelitis (EAE): attenuated autoimmune T lymphocytes confer resistance to induction of active EAE but not to EAE mediated by the intact T lymphocyte line. Eur J Immunol 11:949–952
23. Vandenbark AA, Hashim G, Offner H (1989) Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature 341:541–544
24. Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ (2000) Functional requirement for class I MHC in CNS development and plasticity. Science 290:2155–2159
25. Nutma E, Willison H, Martino G, Amor S (2019) Neuroimmunomunology - the past, present and future. Clin Exp Immunol 197:278–293
26. Dougherty PM, Dafny N (1988) Neuroimmune intercommunication, central opioid, and the immune response to bacterial endotoxin. J Neurosci Res 19:140–148
27. Dougherty PM, Drath DB, Dafny N (1987) Evidence of an immune system to brain communication axis that affects central opioid functions: muramyl peptides attenuate opiate withdrawal. Eur J Pharmacol 141:253–260
28. Nadeau S, Rivest S (1999) Regulation of the gene encoding tumor necrosis factor alpha (TNF-alpha) in the rat brain and pituitary in response to different models of systemic immune challenge. J Neuropathol Exp Neurol 58:61–77
29. Bacić I, Oltzau A, Prodan T, Báicsmu E, Vaida A (1988) Changes of phagocytic biological rhythm by reduction of circadian times and by influences upon hypothalamus. Int J Neurosci 41:143–153
30. Byndloss MX, Bäumlker AJ (2018) The germ-organ theory of non-communicable diseases. Nat Rev Microbiol 16:103–110
31. Taché Y, Bernstein CN (2009) Evidence for the role of the brain-gut axis in inflammatory bowel disease: depression as cause and effect? Gastroenterology 136:2058
32. Wouters MM, Van Wanrooij S, Nguyen A, Dooley J, Aguileral-Lizarra J, Van Brabant W, Garcia-Perez JE, Van Oudenhove L, Van Ranst M, Verhaegen J (2016) Psychological comorbidity increases the risk for postinfectious IBS partly by enhanced susceptibility to develop functional gastrointestinal. Gut 65:1279–1288
33. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosoin JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463
34. Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY (2018) The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173:1728–1741
35. Jacobson A, Yang D, Vella M, Chiu IM (2021) The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol 14:555–565
36. Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145–155
37. Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 19:11–38
38. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsyhotic effects. Biol Psychiatry 70:663–671
39. Mongi A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, Yamauchi Y, Yamada S, Kanba S (2013) Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 42:115–121
40. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. Fasebj 19:533–542
41. Kim YS, Jho TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38:333–347
42. Koenigskaehn-Talbou j, Meyer-Luehmann M, Parsadanian M, Garcia-Alloza M, Finn MB, Hyman BT, Bacskaï BJ, Holtzman DM (2008) Rapid microglial response around amyloid pathology after systemic anti-Abeta antibody administration in PDAPP mice. J Neurosci 28:14156–14164
43. Xiang Z, Haroutunian V, Ho L, Purohit D, Pasinetti GM (2006) Microglia activation in the brain as inflammatory biomarker of Alzheimer’s disease neuropathology and clinical dementia. Dis Markers 22:95–102
44. Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM (2018) Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 18:83–90
45. Vogel DY, Vereyken EJ, Gilm JE, Heijnen PD, Moetonn M, van der Valk P, Amor S, Teunissen CE, van Horssen J, Dijkstra CD
58. Dempsey E, Aburat-Daly Å, Docherty NG, Medina C, Harkin A (2019) Persistent central inflammation and region specific cellular activation accompany depression- and anxiety-like behaviours during the resolution phase of experimental colitis. Brain Behav Immun 80:616–632

59. Kishimoto Y, Zhu W, Hosoda W, Sen JM, Mattson MP (2019) Chronic mild gut inflammation accelerates brain neuropathology and motor dysfunction in α-Synuclein mutant mice. Neuromolecular Med 21(3):239–249. https://doi.org/10.1007/s12017-019-00539-5. Epub 2019 May 11.

60. Alves de Lima K, Rustenhoven J, Da Mesquita S, Wall M, Salvador AF, Smirnov I, Martellosio Cebolini G, Manuladze T, Baker W, Papadopoulos Z, Lopes MB, Cao WS, Xie XS, Herz J, Kipnis J (2020) Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat Immunol 21:1421–1429

61. Maldonado RA, von Andriah UH (2010) How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol 108:111–165

62. Bakdash G, Vogelpoel LT, van Capel TM, Kapsenberg ML, de Jong EC (2015) Retinoic acid primes human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells. Mucosal Immunol 8:265–278

63. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science (New York, N.Y.) 341:569–73

64. Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J, Kim CH (2015) Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol 8:80–93

65. Bachem A, Makhlouf C, Binger KJ, de Souza DP, Tull D, Hochheiser K, Whitney PG, Fernandez-Ruiz D, Dahlöng S, Kastenmüller W, Jönnsson J, Gressier E, Lew AM, Perdomo C, Kupz A, Figgett A, Mackay F, Oleshansky M, Russ BE, Parish IA, Kallies A, McConville MJ, Turner SJ, Gebhardt T, Bedouzi S (2019) Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD4+ T cells. Immunity 51:285–97.e5

66. Chang Y-L, Rossetti M, Vlamakis H, Casero D, Sunga G, Harre N, Miller S, Humphries R, Stappenbeck T, Simpson KW (2019) A screen of Crohn’s disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunol 12:397–407

67. Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiyama Y, Narushima S, Vlamakis H, Motoo I, Sugita K, Shiota A, Takeshita K, Yasumoto-Mitobe K, Riemthaler D, Kaisho T, Norman M, Mucida D, Suematsu M, Yaguchi T, Bucci V, Inoue T, Kawakami Y, Olle B, Roberts B, Hattori M, Xavier RJ, Atarashi K, Honda K (2019) A defined commensal consortium elicits CD8+ T cells and anti-cancer immunity. Nature 565:600–605

68. Lee K, Hwang S, Paik DJ, Kim WK, Kim JM, Youn J (2012) Bacillus-derived poly-g-glutamic acid regularly regulates the differentiation of T helper 17 and regulatory T cells and attenuates experimental autoimmune encephalomyelitis. Clin Exp Immunol 170:66–76

69. Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 107:12204–12209

70. Ivanov II, Atarashi K, Manol N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaka A, Itoh K, Takeda K, Umescski Y, Honda K, Littram DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(599–609):e1-3

71. Tan TG, Sefik E, Geva-Zatorsky N, Kua L, Naskar D, Teng F, Pasman L, Ortiz-Lopez A, Jupp R, Wu H-JJ, Kasper DL, Benoist C, Mathis D (2016) Identifying species of symbiont bacteria from...
the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci 113:EB14–EB150

73. Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S, Suda W, Imaoka A, Setoyama H, Nagamori T, Ishikawa E, Shima T, Haru T, Kado S, Jinnohara T, Ohno H, Kondo T, Toyooka K, Watanabe E, Yokoyama S-i, Tokoro S, Mori H, Noguchi Y, Morita H, Ivanov Iaylo I, Sugiyama T, Nuñez G, Camp JG, Hattori M, Umesaki Y, Honda K (2015) Th17 cell induction by adhesion of microbes to epithelial cells. Cell 163:367–380

74. Kim S, Kim H, Yim YS, Ha S, Atarashi K, Tan TG, Longman RS, Honda K, Littman DR, Choi GB, Huh JR (2017) Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549:528–532

75. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci 108:4615–4622

76. Korn T, Anderson AC, Bettei E, Oukka M (2007) The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis. J Neuroimmunol 191:51–60

77. Schnell A, Huang L, Singer M, Singaraju A, Barilla RM, Regan BML, Bolhagen A, Thakore PI, Dionne D, Delorey TM, Pawlak M, Meyer zu Horste G, Rozenblatt-Rosen O, Irizarry RA, Regev A, Kuchroo VK (2021) Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 184:6281–98.e23

78. Haghisia A, Jörg S, Duscha A, Berg I, Manzel A, Waschbisch A, Hammer A, Lee DH, May C, Wilck N, Balogh A, Ostermann AI, Schebb NH, Akkad DA, Grohme DA, Kleinwietfeld M, Kempa S, Thöne J, Demir S, Müller DN, Gold R, Linker RA (2015) Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43:817–829

79. Ochoa-Repáraz J, Mielcarz DW, Haque-Begum S, Kasper LH (2010) Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microbiota. Gut Microbes 1:103–108

80. Pröbstel AK, Zhou X, Baumann R, Wischnerowsk S, Kutza M, Rojas OL, Sellrie K, Bischof A, Kim K, Ramesh A, Anderek K, Greenfield AL, Schubert RD, Bisanz JE, Vistnes S, Khaleghi K, Landefeld J, Kirkish G, Liesche-Starnecker F, Ramaglia V, Singh S, Tran EB, Barba P, Zorn K, Oechtering J, Forsberg K, Shiou LR, Henry GR, Graves J, Cree BC, Hauser SL, Kuhle J, Gelend J, Anders M, Schlegel J, Turnbull PJ, Seebberger PH, Gommern J, Wilson MR, Schirmer L, Baranzini SE (2020) Gut microbiota-specific IgA+ B cells traffic to the CNS in active multiple sclerosis. Sci Immunol 5:eaaw0115

81. Pröbstel OL, Pröbstel A-K, Portillo EA, Wang AA, Charabati M, Sun T, Lee DSW, Galicia G, Ramaglia V, Ward LA, Leung LYT, Najafi G, Khaleghi K, Garciñán B, Li A, Besa R, Naour I, Caio EY, Chiaranunt P, Burrows K, Robinson HG, Allanach JR, Yam J, Luck H, Campbell DJ, Allman D, Brooks DG, Tomura M, Bauermann T, Zamvil SS, Bar-Or A, Horwitz MS, Winer DA, Mortha A, Mackay F, Prat A, Osborne LC, Robbins C, Baranzini SE, Gommern J, Wilson MR, Schirmer L, Baranzini SE (2020) Gut microbiota-specific IgA+ B cells traffic to the CNS in active multiple sclerosis. Sci Immunol 5:eaaw0115

82. Bonaz B, Bazin T, Pellissier S (2018) The Vagus Nerve at the interface of the microbiota-gut-brain axis. Front Neurosci 12:49

83. Williams EK, Chang RB, Stroshlic DE, Umans BD, Lowell BB, Liberdes SD (2016) Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166:209–221

84. Powley TL, Spaulding RA, Harglof SA (2011) Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. J Comp Neurol 519:644–660

85. Lal S, Kirkup AJ, Brunsden AM, Thompson DG, Grundy D (2001) Vagal afferent responses to fatty acids of different chain length in the rat. Am J Physiol Gastrointest Liver Physiol 281:G907–G915

86. Goehler LE, Gaykema RP, Nguyen KT, Lee JE, Tilders FJ, Maier SF, Watkins LR (1999) Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J Neurosci 19:2799–2806

87. Meneses G, Bautista M, Florentino A, Díaz G, Acero G, Bese- dovsky H, Meneses D, Fleury A, Del Rey A, Gevorkian G,
Fragoso G, Sciutto E (2016) Electric stimulation of the vagus nerve reduced mouse neuroinflammation induced by lipopolysaccharide. J Inflamm (Lond) 13:33

103. Zhang J, Ma L, Chang L, Pu Y, Qu Y, Hashimoto K (2020) A key role of the subdiaphragmatic vagus nerve in the depression-like phenotype and abnormal composition of gut microbiota in mice after lipopolysaccharide administration. Transl Psychiatry 10:186

104. Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekblom A, Svenningsson P, Chen H, Wirdefeldt K (2017) Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology 88:1996–2002

105. Svensson E, Horváth-Puhó E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P, Sørensen HT (2015) Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol 78:522–529

106. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 108:16050–16055

107. Bharwani A, West C, Champagne-Jorgensen K, McVey Neufeld KA, Ruberto J, Kunze WA, Bienenstock J, Forsythe P (2020) The vagus nerve is necessary for the rapid and widespread neuronal activation in the brain following oral administration of psychoactive bacteria. Neuropharmacology 170:108067

108. Friedland RP (2015) Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis 45:349–362

109. Tursi SA, Tükel Ç (2018) Curli-containing enteric biofilms inside and out: matrix composition, immune recognition, and disease implications. Microbiol Mol Biol Rev 82:e00028-e118

110. Vidakovic L, Singh PK, Hartmann R, Nadell CD, Drescher K (2018) Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nat Microbiol 3:26–31

111. Sampson TR, Challis C, Jain N, Moiseyenko A, Ladinsky MS, Shastri GG, Thron T, Needham BD, Horvath I, Debelius JW, Janssen S, Knight R, Wittung-Stafshede P, Gradinaru V, Chapman M, Mazmanian SK (2020) A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. eLife 9: e53111

112. Vuong HE, Pronovost GN, Williams DW, Coley EJL, Siegler EL, Qiu A, Kazantsev M, Wilson CJ, Rendon T, Hsiao EY (2020) The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586:281–286

113. Cha C, Murdock MH, Jing D, Won TH, Chung H, Kressel AM, Tsaava T, Addorioso ME, Putzel GG, Zhou L, Bessman NJ, Yang R, Moriyama S, Parkhurst CN, Li A, Meyer HC, Teng F, Chavan SS, Tracey KJ, Regev A, Schroeder FC, Lee FS, Liston C, Artis D (2019) The microbiota regulate neuronal function and fear extinction learning. Nature 574:543–548

114. Koren T, Re Y, Amer M, Krot M, Boshnak N, Ben-Shaanan TL, Azulay-Debby H, Zalayat I, Avishai E, Hajjo H, Schiller M, Haykin H, Korin B, Farfara D, Hakim F, Kobiler O, Rosenblum K, Rolls A (2021) Insular cortex neurons encode and retrieve specific immune responses. Cell 184:5902–15.e17

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.