Spin-Hall effects in a Josephson contact

A. G. Mal’shukov1,2,3, C. S. Chu2

1Institute of Spectroscopy, Russian Academy of Sciences, 142190, Troitsk, Moscow oblast, Russia
2Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
3National Center for Theoretical Sciences, Physics Division, Hsinchu 30043, Taiwan

In connection with various spintronic applications, much interest have been attracted recently to spin-orbit interaction (SOI) effects on electron transport in normal metals and semiconductors. This interaction gives rise to fundamental transport phenomena, such as the spin-Hall effect (SHE) (for a review see [1]) and electric spin orientation [1-4]. These effects represent a direct manifestation of the spin-orbit coupling between spin and charge degrees of freedom in electron transport. At the same time, spin-orbit effects were also discussed for superconductors. Some works dealt with SFS junctions [3] (F stands for ferromagnet), others considered SNS [4], SN [5] systems, or bulk superconductors [2, 6]. As was pointed out in Ref. [2, 6], SOI leads to admixture of triplet components to the pairing function. This sort of singlet-triplet coupling looks similar to the spin-charge coupling in normal systems. Therefore, one would expect that phenomena closely related to SHE could manifest themselves in superconductors. At the first sight on this problem it becomes clear that, at least in the case of zero voltage across the junction, the spin-Hall current can not be generated as a linear response to the superconducting current. The reason is that these currents have opposite parities with respect to the time inversion, while they must be equal in the stationary nondissipative superconducting transport. On the other hand, besides the spin currents, in normal systems SHE leads to spin accumulation near sample edges. Therefore, it is interesting to find out, if similar accumulation of magnetization takes place in superconducting systems. It should be noted that, despite formal similarities, such a magnetization is fundamentally distinct from that induced by the normal SHE, since it is not subject to the energy dissipation accompanying spin diffusion and relaxation in normal systems.

We will consider SHE and the electric spin orientation for a Josephson tunneling through a 2D normal contact (see Fig 1). The SOI there is represented by the Hamiltonian $H_{so} = \sigma \cdot h_k$, where σ is a vector consisting of Pauli matrices. The spin-orbit field h_k, which is a function of the electron wave vector k, can be given, for example, by Rashba [7], or Dresselhaus [8] SOI, as well as by their combination. In this case the vector h_k lies in the plane of the 2D system. The electron transport through the contact will be treated within the diffusion approximation, so that the length of the junction L, the electron coherence length L_c and the spin precession length $L_{so} = v_F / h$, where v_F is the Fermi velocity and h is the angular averaged spin orbit field, are assumed to be much larger than the electron mean free path l. The electric voltage across the junction is set to zero. Hence, the supercurrent is provided by the phase difference between two electrodes. The analysis of such a problem will be performed within a standard semiclassical treatment of Gor’kov’s equations in the diffusion approximation (for a review see [9]). Our goal is to derive linearized Usadel type equations and calculate the spin density induced by SHE.

As far as the thermal equilibrium state is considered, all observables of interest can be expressed via retarded and advanced Green functions. The corresponding Gor’kov’s equations in the Nambu representation have the form

$$\left(\frac{\partial}{\partial t} - \hat{H} - \hat{\Sigma}^{ra} \right) \hat{G}^{ra}(X, X') = \delta(X - X'), \quad (1)$$

where r, a denote retarded or advanced functions, $X = (x, L), X' = (x', L)$. The Josephson tunneling through a 2D normal contact with the spin-orbit split conduction band has been studied in the diffusive regime. Linearized Usadel equations for triplet components of the pairing function revealed a striking similarity to the equations of spin diffusion driven by the electric field in normal metals. Consequently, we predict that the out-of-plane spin-Hall polarization accumulates towards lateral sample edges and the in-plane polarization is finite throughout the entire normal region. At the same time, the spin-Hall current is absent in the considered case of the stationary Josephson effect.
where the electron energy. In our case this procedure is not convenient because of electron energy spin splitting. Instead, within the diffusion approximation, from Eq. \ref{eq:1} we will express G_{12} in terms of g_{12}, and taking its sum over k obtain the closed diffusion equation for g_{12}. Before doing this, we transform the 2×2 matrix $G_{12, \alpha \beta}$ to the conventional pairing function $F_{\alpha \beta} \equiv G_{12, \alpha \beta}$, where β denotes the spin projection opposite to β. Further, it is convenient to decompose F into triplet F_1, F_{-1}, F_0 and singlet F_s components as

$$F_0 = \frac{F_{12} + F_{21}}{\sqrt{2}}, \quad F_s = \frac{F_{12} - F_{21}}{\sqrt{2}}, \quad F_1 = F_{11}, \quad F_{-1} = F_{22}. \tag{7}$$

The corresponding density function $f = \sum_k F$ will also be represented in a similar way. After this transformation, it is easy to see that the last term in the l.h.s. of Eq.\ref{eq:3} is responsible for a coupling between the singlet and triplet components of the pairing function. Besides, the singlet-triplet coupling also originates from the spin dependent parts of G_{12}^{0} and G_{22}^{0} in Eq.\ref{eq:3}. Due to such coupling, the triplet component of F is generated within the junction between two singlet superconductors.

For simplicity, when deriving the diffusion equation, let us assume that SOI is strong enough, so that $L_{so} \ll L_c$. Further, considering I_{sc} together with the last term in the l.h.s. of Eq.\ref{eq:3} as sources, we resolve Eq.\ref{eq:3} in performing expansion in $(v \cdot \hat{q}) \tau$ and $(h_k \tau)$ up to the second order. Finally, we obtain the following diffusion equation for the triplet pairing function $f_m = (i/\pi N_F) \sum_k F_m$, $(m = 0, 1, -1)$:

$$2i \omega f = \tau (-i v \cdot \frac{\partial}{\partial r} + 2 J \cdot h_k)^2 f + M f_s, \tag{8}$$

where J is the vector of 3×3 angular moment operators and $(..)$ denotes the angular averaging over the Fermi surface. The triplet-singlet coupling is given by

$$M_0 = 0, \quad M_{\pm 1} = \frac{4 \tau^2}{\sqrt{2}} \langle h_k^\tau (h_k \times \delta h_k) \rangle f_s, \tag{9}$$

with $h_k^\tau = h_k^\tau \mp i h_k^\sigma$. The singlet f_s satisfies the usual Usadel equation \ref{eq:4} with an additional term which is Hermitian conjugate to M. Since this term is small, we will neglect a corresponding correction to f_s in Eq.\ref{eq:6}. Hence, f_s is given by the well known unperturbed solution in the SNS contact. Since it varies within the scale $L_c \gg L_{so}$, we neglected all contributions to M with higher powers of gradients, as well as terms proportional to $\omega \sim D/L_c^2$, where D is the diffusion constant.

Without the last term in the r.h.s., Eq.\ref{eq:6} formally coincides with the spin diffusion equation for 2DEG in a zero electric field \ref{eq:8}. The spin diffusion equation in the presence of the electric field has been derived in Ref.\ref{eq:11} for the case of the Rashba SOI, and for a general SOI in
After a linear transformation to spin density variables Eq. (8) will also coincide with these equations, if, apart from a constant factor, f_s is formally identified with the electric field potential. Hence, a coupling of the spin to the electric field in normal spin transport appears to be very similar to the singlet-triplet coupling in Eq. (8).

Let us consider an example of the Rashba SOI. In this case $\tilde{h}_b^L = \alpha k_x$ and $\tilde{h}_b^R = -\alpha k_x$. For a homogeneous in y-direction case all functions depend only on x and we get $f_0 = 0$, $f_1 = f_{-1}$, with f_1 satisfying the equation

$$D \frac{\partial^2 f_1}{\partial x^2} - \Gamma_{so} f_1 = i \frac{\alpha}{\sqrt{2}} \frac{\partial}{\partial x} f_s,$$ \hspace{1cm} (10)

where $\Gamma_{so} = 2\tau_0 k_F^2$ is the D’yakonov-Perel' spin relaxation time [10]. The small l.h.s. of Eq. (8) has been neglected in (10). Boundary conditions at $x = \pm L/2$ can be written in a way similar to a singlet SN interface [17]. At least in the linearized approximation the boundary conditions contain only characteristics of one-particle transmission. Therefore, they can be easily generalized to the case of a triplet pairing. Following calculations of Ref. [17] we obtain

$$(f_{1s} - gf_{1N})_{x = \mp L/2} = \pm b \frac{\partial f_{1N}}{\partial x} \bigg|_{x = \mp L/2},$$

where the labels S and N denote superconductor and normal sides of SN contacts at $x = \pm L/2$, and $g = |\omega|/\sqrt{(\omega + i0^+)^2 - |\Delta|^2}$ is a DOS factor for a superconductor. The characteristic length b depends on the SN barrier transmittance. For our choice of parameters $b >> L_{so}$. The same equation (11) takes place for f_s. At the low SN barrier transmission one may use the so called rigid boundary conditions and set $f_{1S} = 0$. At the same time, the singlet pairing function $f_{sS}|_{x = L/2} = y \Delta \exp(\pm i\phi)/\omega$. Neglecting the third derivative of f_s, the solution of Eq. (10) can be written as

$$f_1 = -\frac{i \alpha}{\sqrt{2}} \frac{\partial}{\partial x} f_s + \psi(x),$$ \hspace{1cm} (12)

where $\psi(x)$ is a linear combination of $\exp(\pm i k x)$, with $k = \sqrt{D/\Gamma} \equiv 1/L_{so}$. It is easy to see from (11) that at $k b \gg 1$ the first term dominates in Eq. (12). Therefore, ψ will be neglected below.

Our next step is to calculate the spin polarization density associated with triplet components of the pairing function. This polarization is given by

$$S^i(r) = \frac{i}{2} \sum_k \int \frac{d\omega}{2\pi} n_F(\omega) \times \frac{\Delta}{\sqrt{2}} \frac{\partial}{\partial x} (G_{k11}^{p}(\omega, r) - G_{k11}^{n}(\omega, r)), \hspace{1cm} (13)$$

where n_F is the equilibrium Fermi distribution function. It is easy to see that the nonzero value of Eq. (13) is provided by triplet components of anomalous Green functions which contribute to G_{11} with a correction term $\propto f_s^2$. Up to the leading second order with respect to f_s and keeping only the linear terms of the triplet $f_{s}\alpha = (1, -1, 0)$, for the retarded function we obtain from Eqs. (11)

$$\sum_k Tr[\sigma^j G_{k11}^r/a] = \frac{\pm 1}{\pi N_F} \frac{i \delta z}{2} (f_0^r/a f_s^{\mp a} - f_s^r/a f_0^{\mp a}) + \frac{1}{\sqrt{2}} (f_r^r/a f_s^{\mp a} + f_s^r/a f_r^{\mp a}), \hspace{1cm} (14)$$

where $f_{y} = (f_1 + f_{-1})/2$ and $f_{x} = -i(f_1 - f_{-1})/2$. The conjugate functions $f^r(\omega) = -f^s(\omega)$. In the case of Rashba SOI $f_s = f_0 = 0$ and $f_y = f_r$.

The latter is given by Eq. (12). Then, from (14) it immediately follows that only the y-projection of the spin density is finite. Using the relations $f_s^r(\omega) = f_s^r(\omega)$ and $f_s^0(\omega) = -f_s^0(\omega)$ ($m = 1, -1, 0$), we arrive to the spin polarization

$$S^y(x) = e N_F \alpha \tau J_c(x)/\sigma_{dc}, \hspace{1cm} (15)$$

where σ_{dc} is the dc conductivity of the normal metal and J_c is the Josephson current density

$$J_c = \frac{e D}{4\pi^2 N_F} \int d\omega n_F(\omega) [(f_s^r \frac{\partial f_s^{\mp a}}{\partial x} - f_s^r \frac{\partial f_s^r}{\partial x} - (r = a)]. \hspace{1cm} (16)$$

The spin polarization (15) coincides with polarization induced in normal metals by the electric field E [2], if the Josephson current is substituted for the normal dissipative dc current $J_c = \sigma_{dc} E$. It is easy to check that this analogy takes place also for the Dresselhaus SOI, with a little more complicated expression for $S^i(x)$ [16]. An important distinction from the electric spin orientation in normal metals is that due to the charge neutrality, $J_c = const$ in the x direction, while the supercurrent varies inside the contact. Similar effect has been predicted by Edelstein [6] for bulk superconductors and at NS boundary, providing the supercurrent flows along the SN interface.

Let us now check, if the analogy with the electric spin orientation extends to the spin-Hall effect. Hence, our goal is to calculate $J_{y y}^s$, which is the y projection of a spin flux polarized in the z-direction. The corresponding spin current operator can be written as $J_{y y}^s = \{\sigma_z, v_y\}/2$, where the velocity $v_y = k_y/m^* \mp \partial(\sigma \cdot h_4)/\partial k_y$. Since it has been assumed that $h_z = 0$, one gets $J_{y y}^s = \alpha k_y/m^*$. The spin-Hall current J_{sH}, in its turn, can be derived from Eq. (13), with σ^j substituted for $J_{y y}^s$. Keeping the same leading terms as in calculation of the spin density, we arrive to $J_{sH} = 0$. This result does not depend on whether h_4 is given by the Rashba or Dresselhaus interactions. That is very distinct from the normal spin-Hall effect, where in the diffusive regime the spin-Hall conduction is zero for the Rashba SOI, but finite for the cubic
The first term in this equation is the diffusive current, the first term in the brackets is determined by the spin precession in the effective spin-orbit field, and the last term looks as the spin-Hall current in the normal spin transport. As far as f_s is treated a slowly varying function of x, thus allowing one to ignore its higher gradients together with edge terms like ψ in (12), the analysis of Eq. (8) with the above boundary conditions is the same, as for SHE in normal systems. Henceforth, following Ref. [15, 20] one may conclude that $f_0 = 0$ for Rashba SOI, but f_0 is finite in the case of the cubic Dresselhaus interaction. From Eqs. (13) and (14) it is immediately seen that in the former case $S^z = 0$. For the Dresselhaus SOI the solution of Eq. (8) has the form $f_0 = \chi(y)(\partial f_s / \partial x)$, where χ is a real odd function of y. Then, Eqs. (13), (14) and (16) give $S^z = -eN_F \chi(y)(J / \sigma_{dc})$. The function χ, in its turn, have been calculated in Ref. [15].

In conclusion, the spin-Hall effect induced by a supercurrent across an SNS junction has been studied in the diffusive regime for a relatively strong $(L_{so} \gg L)$ SOI in the 2D junction and for low conducting SN barriers. We found out that, although the spin-Hall current is forbidden by the time inversion symmetry, in the case of cubic Dresselhaus SOI the out-of-plane magnetization is accumulated near sample edges at $y = \pm L_y / 2$, in a very close analogy to SHE in normal systems. Also, similar to the electric spin orientation, the spin polarization parallel to 2DEG is finite throughout the entire N-region.

This work was supported by Russian RFBR, No 060216699, and Taiwan NSC, No 96-2811-M-009-038.

[1] H.-A. Engel, E. I. Rashba, and B. I. Halperin, in Handbook of Magnetism and Advanced Magnetic Materials, ed. by H. Kronmuller and S. Parkin (Wiley, Chichester, UK, 2007).
[2] V.M. Edelstein, Solid State Commun., 73, 233 (1990); J. I. Inoue, G. E. W. Bauer, and L.W. Molenkamp, Phys. Rev. B 67, 033104 (2003).
[3] E. V. Bezuglyi, A. S. Rozhavsky, I. D. Vagner, and P. Wyder, Phys. Rev. B 66, 052508 (2002); E. A. Demler, G. B. Arnold, and M. R. Beasley, Phys. Rev. B 55, 15174 (1997); S. Oh, Y. H. Kim, D. Youm, M. R. Beasley, Phys. Rev. B 63, 052501 (2000); F.S. Bergeret, A.F. Volkov, and K.B. Efetov, Phys. Rev. B 75, 184510 (2007).
[4] L. DellAnna, A. Zazunov, R. Egger, and T. Martin Phys. Rev. B 75, 085305 (2007); O. V. Dimitrova and M. V. Feigelman, JETP 102, 652 (2006).
[5] L. F. Gor'kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004 (2001).
[6] V. M. Edelstein, Phys. Rev. B 67, 020505 (2003), Phys. Rev. Lett. 75, 2004 (1995).
[7] Yu. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
[8] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[9] F. S. Bergeret, A. F. Volkov, K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005); A.A. Golubov, M. Yu. Kupriyanov, E. Ilichev, Rev. Mod. Phys. 76, 411 (2004).
[10] A.A. Abrikosov, L.P. Gor'kov, and I.E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics, (Dover, New York, 1975).
[11] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, New York, 1981).
[12] G. Eilenberger, Z. Phys. 214, 195 (1968).
[13] A. G. Mal'shukov and K. A. Chao, Phys. Rev. B 61, R2413 (2000).
[14] E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev. Lett. 93, 226602 (2004); A. A. Burkov, A. S. Nunez, and A. H. MacDonald, Phys. Rev. B 70, 155308 (2004).
[15] A. G. Mal'shukov, L. Y. Wang, C. S. Chu and K. A. Chao, Phys. Rev. Lett. 95, 146601 (2005).
[16] M. I. D'yakonov and V. I. Perel', Sov. Phys. JETP 33, 1053 (1971) [Zh. Eksp. Teor. Fiz. 60, 1594 (1971)].
[17] M. Yu. Kupriyanov and V. F. Lukichev, Zh. Eksp. Teor. Fiz. 94, 139 (1988) [Sov. Phys. JETP 67, 1163 (1988)].
[18] A. G. Mal'shukov and K. A. Chao, Phys. Rev. B 71, 121308(R) (2005).
[19] V. M. Galitski, A. A. Burkov, and S. Das Sarma, Phys. Rev. B 74, 115331 (2006); G. Usaj and C. Balsiero, cond-mat/0405065.
[20] A. I. Adagideli and G.E. W. Bauer, Phys. Rev. Lett. 95, 256602 (2005); A. Brataas, A. G. Mal'shukov and Ya. Tserkovnyak, New J. Phys. 9, 345 (2007); R. Raimondi, C. Gorini, P. Schwab, and M. Dzierzawa, Phys. Rev. B 74, 035340 (2006).
[21] O. Bleibaum, Phys. Rev. B 74, 113309 (2006).