Redox control of β_2-glycoprotein I–von Willebrand factor interaction by thioredoxin-1

F. H. PASSAM,* 1 S. RAHGOZAR,* 1 M. QI,* M. J. RAFTERY,‡ J. W. H. WONG,§ K. TANAKA,* Y. IOANNOU,* J. Y. ZHANG,* R. GEMMELL,† J. C. QI,* B. GIANNAKOPOULOS,* W. E. HUGHES,¶ P. J. HOGG§ and S. A. KRILIS* 1

*Department of Immunology, Allergy and Infectious Diseases and Department of Medicine, University of New South Wales, St George Hospital; ‡Department of Hematology, St George Hospital; †Bioanalytical Mass Spectrometry Facility, University of New South Wales; §UNSW Cancer Research Centre, University of New South Wales; and ¶The Garvan Institute of Medical Research, Sydney, Australia

To cite this article: Passam FH, Rahgozar S, Qi M, Raftery MJ, Wong JWH, Tanaka K, Ioannou Y, Zhang JY, Gemmell R, Qi JC, Giannakopoulos B, Hughes WE, Hogg PJ, Krilis SA. Redox control of β_2-glycoprotein I–von Willebrand factor interaction by thioredoxin-1. J Thromb Haemost 2010; 8: 1754–62.

Summary. Background: β_2-Glycoprotein I (β_2GPI) is an abundant plasma protein that is closely linked to blood clotting, as it interacts with various protein and cellular components of the coagulation system. However, the role of β_2GPI in thrombus formation is unknown. We have recently shown that β_2GPI is susceptible to reduction by the thiol oxidoreductases thioredoxin-1 and protein disulfide isomerase, and that reduction of β_2GPI can take place on the platelet surface. Methods: β_2GPI, reduced by thioredoxin-1, was labeled with the selective sulphydryl probe Nα-(3-maleimidylpropionyl)biocytin and subjected to mass spectrometry to identify the specific cysteines involved in the thiol exchange reaction. Binding assays were used to examine the affinity of reduced β_2GPI for von Willebrand factor (VWF) and the effect of reduced β_2GPI on glycoprotein (GP)Ibα binding to VWF. Platelet adhesion to ristocetin-activated VWF was studied in the presence of reduced β_2GPI. Results: We demonstrate that the Cys288–Cys326 disulfide in domain V of β_2GPI is the predominant disulfide reduced by thioredoxin-1. Reduced β_2GPI in vitro displays increased binding to VWF that is dependent on disulfide bond formation. β_2GPI reduced by thioredoxin-1, in comparison with non-reduced β_2GPI, leads to increased binding of GPIIbα to VWF and increased platelet adhesion to activated VWF.

Conclusions: Given the importance of thiol oxidoreductases in thrombus formation, we provide preliminary evidence that the thiol-dependent interaction of β_2GPI with VWF may contribute to the redox regulation of platelet adhesion.

Keywords: β_2-glycoprotein I, oxidoreductase, platelet adhesion, thioredoxin, von Willebrand factor.

Introduction

β_2-Glycoprotein I (β_2GPI) is a circulating plasma protein that consists of five repeating amino acid domains [1,2]. β_2GPI may play a role in platelet adhesion as, in vitro, it interacts with von Willebrand factor (VWF) [3] and the platelet receptors glycoprotein (GP)Ibα and ApoER2 [4,5]. β_2GPI contains 11 disulfide bonds and no unpaired cysteine. The first four domains include four cysteines each, with disulfide bridges joining the first to the third and the second to the fourth cysteine. The fifth domain has an extra 20 amino acid tail, with an unusual termination in a cysteine, that forms a loop-back disulfide link with an extra cysteine found midway between the standard second and third cysteine positions [1].

We have recently shown that β_2GPI can be reduced by thioredoxin-1 (TRX-1) and protein disulfide isomerase (PDI) in vitro [6,7]. Thiol oxidoreductases are becoming increasingly recognized as important mediators of platelet function [8,9]. The prototype member, PDI, is involved in regulation of activation of the fibrinogen receptor $\alpha_\text{IIb}\beta_3$ [10] and tissue factor [11]. Several novel members of the thiol isomerase family have been recently shown to translocate to the platelet surface following platelet activation [12]. TRX-1 is another member of the superfamily, and has been shown to protect endothelial cells from oxidative stress [13,14]. Extracellular TRX-1 mediates lymphocyte effector function [15] and may regulate platelet adhesion [16]. We have shown that reduction of β_2GPI is achieved on the platelet surface and endothelial cells [6,7]. In the current study, we show that β_2GPI is reduced by TRX-1 at...
Cys288–Cys326 in domain V of β2GPI, and that this reduction results in a significantly increased affinity of β2GPI for VWF.

Materials and methods

Materials

Chemicals Reduced l-glutathione (GSH), apyrase, 1-chloro-2,4-dinitrobenzene (DNCB), α-thrombin, HEPES, dithiothreitol (DTT), bovine serum albumin (BSA) and human serum albumin (HSA) were from Sigma-Aldrich (St Louis, MO, USA). Np-(3-maleimidylpropionyl)biocytin (MPB) and NuPAGE 4–12% Bis–Tris gels were from Invitrogen Corporation (Carlsbad, CA, USA). Ristocetin was from Chrono-log (Haverton, PA, USA). NADPH was from Calbiochem-Novabiochem (San Diego, CA, USA). The bicinchoninic acid (BCA) Protein Assay Reagent and p-nitrophenyl phosphate (pNPP) substrate were from Pierce (Rockford, IL, USA). Streptavidin 96-well plates were from NUNC (Rocky, NY, USA).

Proteins Native β2GPI (nβ2GPI) was from Haematologic Technologies (Essex Junction, VT, USA) or was a generous gift of I. Schousboe (University of Copenhagen, Denmark). Recombinant β2GPI (rβ2GPI), anti-β2GPI monoclonal antibody (mAb) (clone 4B2E7) and affinity-purified rabbit polyclonal anti-β2GPI were generated in our laboratory as previously described [17,18]. Recombinant human TRX-1 and recombinant GPlba were from R&D (Minneapolis, MN, USA) or American Diagnostica (Stamford, CT, USA). Recombinant rat thioredoxin reductase (TRX-R) was from American Diagnostica. Recombinant human PDI was from Medical & Biological Laboratories(Woburn, MA, USA). VWF was from Calbiochem-Novabiochem.

Antibodies. Mouse anti-TRX-1 was from BD Biosciences (Cowley, UK). Mouse anti-human TRX-R was from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Streptavidin–horseradish peroxidase (HRP), rabbit polyclonal anti-mouse HRP and goat polyclonal anti-rabbit HRP antibodies were from Dako (Glostrup, Denmark). Mouse anti-TRX (clone RL90) and mouse anti-VWF were from AbCam (Cambridge, UK). Mouse anti-CD42b was from ABR-Affinity Bioreagents (Golden, CO, USA).

Methods

Structural analysis of β2GPI The structural features of all disulfide bonds in two structures of β2GPI (Protein Data Bank ID: 1C1Z and 1QUB) were determined with the disulfide bond analysis tool available at http://www.cancerresearch.unsw.edu.au/CRCWeb.nsf/page/Disulfide+Bond+Analysis. The secondary structures, in which the cysteines reside, and their solvent accessibility values are from DSSP (http://swift.cmbi.ru.nl/gv/dssp/). The dihedral strain energy of the disulfides was estimated from the magnitude of the five χ angles that constitute the bond [19]. The analysis of the disulfide bonds in β2GPI is shown in Table 1.

Mass spectrometry To localize the specific cysteine(s) of β2GPI that are reduced by TRX-1, nβ2GPI was treated with a TRX-1/TRX-R/NADPH mixture and labeled with the selective sulfhydryl reagent MPB, on the basis of a previously described method [20]. Specifically, TRX-1 (5 μM) was reduced by incubation for 1 h at 37 °C with TRX-R (10 nm) and NADPH (200 μM) in a total volume of 300 μL. nβ2GPI or rβ2GPI was added at a concentration of 0.2 μM to TRX-1/TRX-R/NADPH and incubated for 1 h at 37 °C. To label free thiols, MPB at a concentration of 100 μM was added to β2GPI/TRX-1/TRX-R/NADPH and incubated for 10 min at 37 °C. The reaction was quenched by the addition of GSH at a concentration of 200 μM for 10 min at 37 °C. All reactions were performed in 20 mM HEPES buffer containing 0.14 M NaCl (pH 7.4) (HBS).

Samples were separated by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) (4–12%) under non-reducing conditions, and stained with Coomassie Blue stain. The position of reduced (by TRX-1/TRX-R/NADPH) β2GPI ± MPB on Bis–Tris gel after separation by SDS-PAGE has been previously determined [6]. The corresponding bands of β2GPI, reduced β2GPI and reduced β2GPI + MPB were excised from the gel, and β2GPI peptides were prepared and analyzed by mass spectrometry and Mascot and X!Tandem searches (the preparation of β2GPI peptides and analysis of biotinylation are provided in detail in Data S1).

Assays for binding of β2GPI to immobilized VWF

Binding of β2GPI reduced by TRX-1/TRX-R/NADPH to immobilized VWF Ninety-six well microtiter plates were coated with 100 μL of human VWF (10 μg mL⁻¹) in 0.1 M NaHCO₃ (pH 8.3), as previously described [21]. Wells were washed with HBS, and non-specific binding sites were blocked by adding 200 μL of 2% BSA in HBS for 2 h at room temperature; this was followed by washing with HBS. Eight micromolar TRX-1 was incubated with 35 nm TRX-R and 180 μM NADPH for 1 h at 37 °C. Reduced nβ2GPI was prepared by incubating 187 μL of nβ2GPI (1.8 μM) or HBS with 38 μL of TRX-1/TRX-R/NADPH for 1 h at 37 °C. Reactions were diluted 1 : 1 in HBS, and VWF-coated wells were incubated with 100-μL reaction mixtures for 1 h at room temperature. Wells were washed four times with HBS containing 1 mM NaCl, and 100 μL of anti-β2GPI mAb (20 μg mL⁻¹) was added and incubated for 1 h at room temperature. After washing with HBS, 100 μL of a 1 : 1000 dilution of goat anti-mouse alkaline phosphatase (AP)-conjugated antibody was added and incubated for 1 h at room temperature. Wells were washed with HBS, and 100 μL of pNPP (1 mg mL⁻¹) in 1 M diethanolamine buffer and 0.5 mM MgCl₂ (pH 9.8) was added to each well. In some experiments, free thiols in β2GPI/TRX-1/TRX-R/NADPH were blocked by adding MPB (100 μM) for 10 min at 37 °C before addition of the mixture to VWF-coated plates. In other experiments, TRX-R was inhibited, as previously described [22], by incubating 3.5 μM DNCB with TRX-R/NADPH before addition to TRX-1 (the
Table 1 Properties of the \(\beta_2\)-glycoprotein I (\(\beta_2\)-GPI) disulfide bonds in two X-ray structures of the protein [1,2]; analysis of the properties of the disulfide bonds in \(\beta_2\)-GPI was performed as previously described [36,37]

PDB ID	Cys1 residue	Secondary structure	Solvent exposure (\(\sim \AA^2\))	Cys2 residue	Secondary structure	Solvent exposure (\(\sim \AA^2\))	Dihedral strain energy (kJ mol\(^{-1}\))	Classification
1CIZ	4	\(\beta\)-Strand	0	47	Irregular	2	11.6	+/-RHSpiral
1CIZ	32	\(\beta\)-Strand	28	60	\(\beta\)-Strand	10	8.2	-LHSpiral
1CIZ	65	Irregular	6	105	\(\beta\)-Strand	108	14.7	-RHSpiral
1CIZ	91	\(\beta\)-Strand	28	118	\(\beta\)-Strand	11	7.9	-LHSpiral
1CIZ	123	\(\beta\)-Strand	0	169	\(\beta\)-Bridge	1	14.5	+/-RHSpiral
1CIZ	155	\(\beta\)-Strand	21	211	\(\beta\)-Strand	10	4.3	-LHSpiral
1CIZ	186	\(\beta\)-Strand	7	229	\(\beta\)-Bridge	0	15.7	-RHSpiral
1CIZ	215	\(\beta\)-Strand	32	241	\(\beta\)-Strand	7	7.4	-LHSpiral
1CIZ	245	\(\beta\)-Bridge	2	296	Irregular	0	9.3	+/-RHSpiral
1CIZ	281	Strand	2	306	Turn	33	18.7	+/LHHook
1CIZ	288	Irregular	6	326	Irregular	117	11.1	-/+RHHook
1QUB	4	\(\beta\)-Strand	0	47	Irregular	2	11.6	+/-RHSpiral
1QUB	32	\(\beta\)-Strand	33	60	\(\beta\)-Strand	408	6.8	-LHSpiral
1QUB	65	Irregular	4	105	\(\beta\)-Strand	2	13.6	+/-RHSpiral
1QUB	91	\(\beta\)-Strand	32	118	\(\beta\)-Strand	18	6.3	-LHSpiral
1QUB	123	\(\beta\)-Strand	0	169	\(\beta\)-Bridge	1	10.1	+/-RHSpiral
1QUB	155	\(\beta\)-Strand	24	211	\(\beta\)-Strand	7	7.0	-LHSpiral
1QUB	186	\(\beta\)-Strand	10	229	\(\beta\)-Bridge	1	18.4	+/-RHSpiral
1QUB	215	\(\beta\)-Strand	33	241	\(\beta\)-Strand	8	4.8	-LHSpiral
1QUB	245	\(\beta\)-Bridge	4	296	Irregular	0	7.8	+/-RHSpiral
1QUB	281	Strand	1	306	Turn	31	12.2	+/RHHook
1QUB	288	\(\beta\)-Strand	4	326	Irregular	103	12.2	-/+RHHook

PDB, Protein Data Bank; LH, left-handed; RH, right-handed.

final concentration of DNCB was 0.25 \(\mu\)M per well). The dose response of binding of (reduced and non-reduced) n\(\beta\)-GPI to immobilized VWF (5 \(\mu\)g \(\text{mL}^{-1}\)) was measured by adding \(\beta_2\)-GPI at concentrations between 0.01 and 4 \(\mu\)M.

To assess the effect of TRX-1/TRX-R/NADPH on the capacity of immobilized VWF to bind to \(\beta_2\)-GPI, VWF-coated wells were treated with or without 100 \(\mu\)L of TRX-1/TRX-R/NADPH at concentrations equimolar to that used for reduction of \(\beta_2\)GPI. Subsequently, \(\beta_2\)-GPI was reduced with TRX-1/TRX-R/NADPH, half of which was subsequently incubated with DNCB (as described above), to inactivate residual activity of TRX-R before it was added to VWF.

Binding of recombinant GPIba to immobilized VWF in the presence of reduced n\(\beta_2\)-GPI vs. non-reduced \(\beta_2\)-GPI
\(\beta_2\)-GPI or equimolar BSA was treated with TRX-1/TRX-R/NADPH at concentrations between 0.01 and 4 \(\mu\)M, and then incubated with 100 \(\mu\)g/mL of immobilized VWF or VWF/ristocetin before addition to immobilized \(\beta_2\)-GPI.

Assays for binding of VWF to immobilized \(\beta_2\)-GPI
Binding of VWF in solution, in the presence or absence of ristocetin, to immobilized reduced vs. non-reduced \(\beta_2\)-GPI
Non-reduced and reduced r\(\beta_2\)-GPI (reduced by TRX-1/TRX-R/NADPH) were coated on ELISA plates at a concentration of 10 \(\mu\)g \(\text{mL}^{-1}\) for the \(\beta_2\)-GPI component, according to Hulstein et al. [3]. One hundred microliters of VWF (10 \(\mu\)g \(\text{mL}^{-1}\)) alone or after preincubation with 1 \(\mu\)g \(\text{mL}^{-1}\) ristocetin for 5 min at room temperature was added to the wells and incubated for 1 h at room temperature. For some experiments, 3.5 \(\mu\)M DNCB was incubated with VWF or VWF/ristocetin before addition to immobilized \(\beta_2\)-GPI.

To study the effect of TRX-1/TRX-R/NADPH on VWF in solution, VWF (10 \(\mu\)g \(\text{mL}^{-1}\)) was incubated with or without TRX-1/TRX-R/NADPH as above; half of the VWF mixture was subsequently activated with ristocetin. These VWF mixtures were then added to wells coated with \(\beta_2\)-GPI. The amount of bound VWF was assessed with the use of 100 \(\mu\)L of anti-VWF mAb (5 \(\mu\)g \(\text{mL}^{-1}\)) and secondary anti-mouse AP-conjugated antibody (1:1000).

All enzyme-linked immunosorbent assay (ELISA) incubations were performed under argon, as exposure of reduced \(\beta_2\)-GPI to air led to its gradual reoxidation [7].

Detection of TRX-1 and TRX-R in platelet lysates
Washed platelets from healthy donors were prepared as previously described [20,23]. A platelet suspension, 4 \(\times\) \(10^{11}\) \(\text{L}^{-1}\) in 20 \(\mu\)M HEPES, 137 \(\text{mM NaCl}, 4\text{ mM KCl}, 0.5\text{ mM Na}_2\text{HPO}_4\) and 0.1 \(\text{mM CaCl}_2\) (pH 7.4) was activated with thrombin (100 \(\text{nm}\)).
Platelet adhesion to reduced β₂GPI coated on microtiter wells in the presence of VWF. The method is based on that reported by Lahav et al. [8]. Washed platelets in Jamieson buffer were pelleted and resuspended in platelet adhesion buffer (Tris-buffered saline containing 0.05 M Tris-HCl, 140 mM NaCl, 2 mM Mg abbrev and 0.1% BSA, pH 7.4) at 12 × 10⁶ L⁻¹. Ninety-six-well plates were coated with non-reduced or reduced β₂GPI (reduced by TRX-1/TRX-R/NADPH), washed three times with HBS, and incubated with VWF in the presence of ristocetin (1 mg ml⁻¹), as described above. Platelets in adhesion buffer with or without TRX-1/TRX-R/NADPH or DNCB were aliquoted into the corresponding (± TRX-1/TRX-R/NADPH) wells and incubated at room temperature for 1 h. After washing with phosphate-buffered saline (five times), platelets that had adhered to the wells were visualized with a Leica DM IRB (Leica, Wetzlar, Germany) microscope. Images were obtained with a Leica DC200 (Leica) camera (×10 magnification). The number of adherent platelets was quantified by adding lysis buffer [0.07 M trisodium citrate, 0.3 M citric acid, 5 mM pNPP and 0.1% (v/v) Triton X-100, pH 5.4] for 1 h. The reaction was terminated by addition of 2 M NaOH, and absorbance was read at 405 nm.

Statistical analysis

The spss 17.0 statistics software (SPSS Inc., Chicago, IL, USA) was used for the analysis of data. Data were analyzed by ANOVA followed by Dunnett’s correction for multiple comparisons. A P-value of < 0.05 was considered to be statistically significant.

Results

Identification of a free thiol in Cys326 of β₂GPI after reaction with TRX-1

Mass spectrometry showed biotinylation of β₂GPI treated with TRX-1/TRX-R/NADPH/MPB (see Tables S1 and S2 for a full list of peptides for each sample). As a number of cysteines were found to be biotinylated in β₂GPI, the MBP/iodoacetamide-labeled peptide ratio was used to determine the cysteine target of reduced TRX-1. As shown in Table S3, Cys326 is by far the most heavily modified cysteine in the protein.

Structural analysis of disulfide bond Cys288–Cys326 of the β₂GPI molecule

Nine of the 11 disulfides in β₂GPI have a spiral configuration (RHS, right-handed spiral or LHS, left-handed spiral), the most common configuration and one associated with structural disulfides (Table 1). The Cys288–Cys326 disulfide has a –/+/ right-handed hook (+/- RH Hook) configuration in both crystal structures of the protein [1,2]. None of the bonds are particularly strained based on the measure of the dihedral strain energy. Notably, Cys326 is particularly exposed to solvent. This exposure is likely a factor in the reduction of the Cys288-Cys326 disulfide bond by protein oxidoreductases.

Redox control of the interaction of β₂GPI with VWF

Assays for binding of β₂GPI to immobilized VWF. β₂GPI reduced by TRX-1 shows increased binding to immobilized VWF. Given the importance of thiol linkage in VWF multimerization [24] and its previously described ability to bind β₂GPI [3], we proceeded to examine whether free thiols generated in β₂GPI are involved in its interaction with VWF. We applied β₂GPI reduced by TRX-1/TRX-R/NADPH to VWF-coated ELISA plates, and detected the amount of β₂GPI bound to VWF with the mAb 4B2E7. The binding of β₂GPI treated with TRX-1/TRX-R/NADPH to immobilized VWF was increased 3.5-fold when compared with untreated β₂GPI (Fig. 1A). Non-reduced β₂GPI displayed low binding to VWF, regardless of the concentrations used, whereas binding of reduced β₂GPI to VWF showed a ‘bell-shaped’ curve with maximal binding at 0.8 μM (Fig. 1B) and decreased binding at higher concentrations. This can be attributed to the ‘high-dose hook effect’ described for high concentration of some ligands in ELISA systems [25]. For a monotonic increase in signal with concentration, there must be an excess of antibodies, both capture and enzyme-conjugated, relative to the analyte being detected. As the concentration of analyte (in this case, β₂GPI) begins to exceed the amount of antibody, the dose–response curve will plateau and, with further increase, may, paradoxically, become negatively sloped. In some cases, this phenomenon has also been attributed to the coating density of the capture antibody (the capture protein in this case being VWF).

Thiol dependence of reduced β₂GPI binding to VWF.

The increased binding of reduced β₂GPI to immobilized VWF was abrogated when the thiol-reactive molecule MBP was added to reduced β₂GPI (reduced by TRX-1/TRX-R/NADPH) before addition to VWF-coated wells. This indicated
that the binding of reduced β2-GPI to VWF was dependent on disulfide bond formation between the two molecules, which was prevented in the presence of MPB (Fig. 1A).

Inhibition of TRX-R activity by DNBC (before the inclusion of TRX-R in the TRX-1/TRX-R/NADPH mixture used to reduce β2-GPI) decreased the binding of β2-GPI treated with TRX-1/TRX-R/NADPH to immobilized VWF, and the binding was comparable to that of untreated β2-GPI (Fig. 1C).

Reduction of VWF by TRX-1 is not necessary for interaction with β2-GPI. There is evidence from the literature that exposure of VWF to TRX-1/DTT reduces disulfide bonds in the molecule, decreasing the binding affinity of collagen [21]. To exclude the effect of TRX-1/TRX-R/
NADPH on VWF in our experiments, we used two different approaches. First, we treated VWF coated on the wells with TRX-1/TRX-R/NADPH or buffer alone, and compared binding affinities for β2GPI. Treatment of VWF with the reducing mixture before addition of β2GPI did not affect β2GPI binding: non-reduced β2GPI showed low binding to VWF, whether or not VWF had been pretreated with TRX-1/TRX-R/NADPH. Also, reduced β2GPI showed a high level of binding to VWF, whether or not VWF had been pretreated with TRX-1/TRX-R/NADPH (Fig. 1D).

In the second approach, we utilized the TRX-R inhibitor DNCB to inactivate the residual reducing activity of TRX-1/TRX-R/NADPH after it had already reduced β2GPI. When DNCB had been incubated with TRX-1/TRX-R/NADPH before it was used to reduce β2GPI, β2GPI could not be reduced, and therefore the mixture of β2GPI and inactive TRX-1/TRX-R/NADPH showed the same low level of binding to VWF as β2GPI alone (Fig. 1C). However, when DNCB was added to TRX-1/TRX-R/NADPH after it had already reduced β2GPI, β2GPI/inactive TRX-1/TRX-R/NADPH showed the same high level of binding as β2GPI/active TRX-1/TRX-R/NADPH, thus showing that the critical event in VWF–β2GPI binding is the reduction of β2GPI (Fig. 1D).

β2GPI reduced by TRX-1 promotes binding of GPIba to immobilized VWF. The presence of reduced β2GPI (reduced by TRX-1/TRX-R/NADPH) increased the binding of GPIba to immobilized VWF in comparison with untreated β2GPI or BSA treated with TRX-1/TRX-R/NADPH as control protein (Fig. 1E).

Assays for binding of VWF to immobilized β2GPI. Dependence of VWF binding to reduced β2GPI on ristocetin activation of VWF. Ristocetin-activated VWF bound more than non-activated VWF to coated, non-reduced β2GPI. Furthermore, there was a significant increase in the binding of ristocetin-activated VWF to coated, reduced β2GPI as compared with non-activated VWF (Fig. 2A). This shows that the affinity of reduced β2GPI for VWF is high when VWF is activated either by coating on microtiter wells (Fig. 1A) or being treated in solution with ristocetin (Fig. 2A). Incubating TRX-1/TRX-R/NADPH with VWF in solution did not affect its capacity to bind to β2GPI (Fig. 2A).

The binding of VWF (activated or non-activated by ristocetin) to immobilized (reduced or non-reduced) β2GPI was not affected by the presence or not of DNCB in the VWF solution (Fig. 2B).

Potential role of reduced β2GPI and TRX-1 in platelet adhesion

TRX-1 and TRX-R are detected by western blot in platelet lysates. As VWF tethers platelets, we were interested to determine whether the source of β2GPI’s reducing agent, TRX-1, can be found in platelets. Both TRX-1 and TRX-R were detected in platelet lysates of resting and thrombin-activated platelets. TRX-1 was also detected in the releasates from resting and thrombin-activated platelets (Fig. 3A).

β2GPI reduced by TRX-1 increases platelet adhesion to activated VWF. The VWF–platelet GP Ibα receptor interaction is important for the initial step of platelet adhesion. Ristocetin promotes VWF binding to GP Ibα in

© 2010 International Society on Thrombosis and Haemostasis

Fig. 2. Assays for binding of von Willebrand factor (VWF) in solution to immobilized β2-glycoprotein 1 (β2GPI). Ristocetin-activated VWF has increased affinity for reduced β2GPI. Dependence of VWF–β2GPI binding on the reduction state of β2GPI. (A) Ristocetin activation of VWF increases binding to immobilized reduced recombinant β2GPI (rβ2GPI). Non-reduced and reduced rβ2GPI [reduced by thioredoxin-1 (TRX-1)/thioredoxin reductase (TRX-R)/NADPH] were coated on enzyme-linked immunosorbent assay (ELISA) plates (under argon) at a concentration of 10 μg mL⁻¹ for the β2GPI component. After washing, VWF (10 μg mL⁻¹) was added alone or after incubation with TRX-1/TRX-R/NADPH (at the same concentration and with the same method as used for the reduction of β2GPI). Half of the VWF solution was further incubated with ristocetin before addition to the wells. The amount of bound VWF was assessed with an anti-VWF monoclonal antibody. Ristocetin-activated VWF showed a marked increase in binding to reduced β2GPI as compared with non-activated VWF. Treatment of VWF in solution with the reducing mixture TRX-1/TRX-R/NADPH did not affect its binding to β2GPI in the presence or absence of ristocetin. (B) Binding of VWF to coated β2GPI in the presence of 1-chloro-2,4-dinitrobenzene (DNCB). Reduced and non-reduced β2GPI (reduced by TRX-1/TRX-R/NADPH) was coated onto 96-well plates under argon. Preparations of VWF or VWF activated by ristocetin were prepared, and half of these were incubated with DNCB. The VWF mixtures were added to the wells and incubated for 1 h at room temperature. Detection with an anti-VWF antibody showed that the presence of DNCB did not affect the binding of VWF to already reduced β2GPI on the plate. OD, optical density; β2GPI, TRN, TRX-1/TRX-R/NADPH; risto, ristocetin; NS, not significant. For all ELISAs, values are the mean ± standard error of the mean (n = 3). ***P < 0.001.
solution. We demonstrated that ristocetin-activated VWF had a greater affinity for reduced β2GPI (Fig. 2A), so we tested whether reduced β2GPI could support platelet adhesion. The method was based on one previously published, which uses an ELISA to measure acid phosphatase in adherent platelets [8]. In this system, reduced β2GPI caused a significant increase, by 41%, in platelet adhesion as compared with non-reduced β2GPI when VWF was activated with ristocetin (OD 0.68 ± 0.04 vs. 0.40 ± 0.02, respectively, mean ± standard deviation, n = 3 in triplicate, P < 0.0001). Platelet adhesion was partially inhibited by addition of the TRX-R inhibitor DNCB, supporting the notion that reduction of β2GPI by TRX-1 was partially responsible for the adhesion of the platelets (Fig. 3B). Representative images of the platelet adhesion assay are shown in Fig. 3C. Platelets displayed low adhesion to VWF not treated with ristocetin, with no differences being seen between coated β2GPI, HSA, TRX-1-treated β2GPI or TRX-1-treated HSA (data not shown).

Discussion

In the current study, we have shown that β2GPI reduced by TRX-1 demonstrates thiol-dependent increased binding to VWF and platelet adhesion to activated VWF. TRX-1 is ubiquitously expressed and is secreted to the cell surface [26]. TRX-1 is also present in platelet lysates [27] and releasates. We have previously shown that β2GPI is partially reduced on the platelet surface by TRX-1/TRX-R/NADPH [6]. We now demonstrate that the predominant cysteine reduced by TRX-1 is Cys326 in domain V. This finding is in agreement with the majority of biological functions of β2GPI being attributed to domain V including phospholipid [1], thrombin [28] and GPIbα binding [4,5], and FXIa cleavage [29]. The fifth domain is predicted to be anchored to the plasma membrane, providing the appropriate interface to react with cell surface proteins such as platelet oxidoreductases.

Fig. 3. Detection of thioredoxin-1 (TRX-1) and thioredoxin reductase (TRX-R) in platelets. β2-glycoprotein I (β2GPI) reduced by TRX-1 increases platelet adhesion to activated von Willebrand factor (VWF). (A) Platelets as a source of TRX-1 and TRX-R. Western blotting of TRX-1 under reducing conditions in lysates of resting (lane 2) and thrombin-activated (lane 3) platelets, and releasates of resting (lane 4) and thrombin-activated (lane 5) platelets. Detection of TRX-1 was confirmed on non-reduced proteins of platelet lysate of thrombin-activated platelets (lane 2) and resting platelets (lane 3). Lane 1 shows the band for recombinant human TRX-1 (400 ng) and recombinant rat TRX-R (250 ng), respectively. Platelet lysates (1.5 μg) were loaded in lanes 2 and 3, and platelet releasate (5 μg) in lanes 4 and 5. (B) Platelet adhesion to reduced β2GPI is enhanced in the presence of activated VWF. Recombinant β2GPI (rβ2GPI) was treated or not treated with TRX-1/TRX-R/NADPH and coated onto 96-well plates. After blocking, wells were incubated with VWF activated with ristocetin. Platelets in adhesion buffer with or without TRX-1/TRX-R/NADPH or 1-chloro-2,4-dinitrobenzene (DNCB) were aliquoted into the corresponding (± TRX-1/TRX-R/NADPH) wells and incubated at room temperature for 1 h. After extensive washing with phosphate-buffered saline, platelets that had adhered were quantified with lysis buffer for 1 h. The reaction was terminated by the addition of 2 M NaOH, and absorbance was read at 405 nm. OD, optical density; β2, β2GPI; TRN, TRX-1/TRX-R/NADPH; HSA, human serum albumin. Values are the mean ± standard error of the mean (n = 3, in triplicate). ***P < 0.001. (C) Representative images of platelet adhesion obtained with a Leica DC200 camera at ×10 magnification. β2GPI reduced by TRX-1/TRX-R/NADPH significantly enhanced platelet adhesion to vWF activated by ristocetin, whereas non-reduced β2GPI or TRX-1/TRX-R/NADPH-treated HSA did not. Platelet adhesion was partially inhibited when TRX-1/TRX-R/NADPH was treated with DNCB.
It is interesting that β2GPI has been shown to bind both with GPIbα and VWF [3–5]. Hulstein et al. [3] showed that β2GPI bound to the A1 domain of VWF with low affinity and inhibited platelet adhesion to immobilized VWF. However, when free thiols are introduced into β2GPI by TRX-1, the binding affinity for VWF increases significantly and promotes adhesion of GPIbα and platelets to activated VWF. The GPIbα–VWF interaction is crucial for hemostasis. Disulfide exchange may be an important feature of platelet tethering to exposed VWF, as shear has been shown to promote disulfide formation between VWF subunits and VWF binding to platelets [24]. Furthermore, GPIbα shows physical proximity to PDI on the platelet surface [20]. Platelets may also provide the surface for reduction of β2GPI, which could be a modifier of disulfide reactions of VWF and/or GPIbα.

Multiple interactions of β2GPI have been shown with various components of the coagulation and fibrinolysis system in vitro, often with conflicting results and interpretations. Although β2GPI deficiency does not lead to gross hemostatic abnormalities, we believe that reduction of circulating β2GPI can promote thrombus formation under specific conditions. This idea is supported by the facts that β2GPI−/− mice have impaired thrombin generation [30] and that β2GPI inhibits thrombin inactivation by heparin cofactor II [31]. Our laboratory has shown that β2GPI is predominantly in the reduced form in vivo [7]. Hence, it is possible that in vivo reduced β2GPI supports platelet adhesion, a function not apparent in in vitro studies, where the purified protein has been significantly oxidized. The design of in vivo studies would delineate the role of reduced vs. non-reduced β2GPI in platelet adhesion.

The presence of the reduced form of β2GPI in the circulation may be relevant to disease development. There are a number of publications addressing the relationship of β2GPI levels to thrombotic and atherothrombotic disease, some in the context of antiphospholipid syndrome. In a review by Inanc et al. [32], the levels of circulating β2GPI was not associated with thrombotic risk. High levels of circulating β2GPI have been reported to decrease the risk of myocardial infarction in elderly men [33]. With regard to the risk of thrombosis, the amount of reduced β2GPI in the circulation may be more important than the total levels of circulating β2GPI.

The finding for the first time that β2GPI can be involved in thiol exchange reactions with TRX-1 is of considerable importance, given β2GPI’s high concentration in plasma makes it easily available for reactions where thiols are needed. There is increased scientific interest in the role of thiol-acting enzymes such as PDI in thrombus formation. PDI has been shown in vivo to be required for thrombus formation [34] and tissue factor activation [35]. Inhibition of PDI action by an inhibitory antibody or the thiol blocker bacitracin abrogated thrombus formation. Although the substrate of PDI has not been definitely established, existing data support integrin αIIIβ1 or GPIbα. The demonstration that β2GPI is a substrate of TRX-1 and PDI has implications for a role of β2GPI in thrombus formation. Our results also provide considerable insight into the participation of extracellular TRX-1 in the regulation of platelet adhesion.

Addendum

F. H. Passam., S. Rahgozar and M. Qi performed experiments and wrote the manuscript; K. Tanaka and J. C. Qi prepared recombinant β2GPI and anti-β2GPI antibodies; M. J. Raffery, J. W. H. Wong and P. J. Hogg performed the mass spectrometry and the disulfide bond structural analysis; R. Gemmell and W. E. Hughes provided experimental materials and analytic tools; B. Giannakopoulos, Y. Ioannou and J. Y. Zhang were involved in the interpretation of data and revision of the manuscript; P. J. Hogg and S. A. Krilis made important intellectual contributions; and S. A. Krilis provided the scientific hypothesis, interpreted the data, revised the manuscript and coordinated the whole study.

Acknowledgements

The authors would like to thank I. Schousboe for the kind donation of native β2GPI. This work was supported by research grants from the Australian National Health and Medical Research Council (to S. A. Krilis), by a research grant from the Foundation of the Greek Society of Hematology (to F.H. Passam) and by an Arthritis Research Campaign Clinician Scientist Fellowship, UK (grant 17821) (to Y. Ioannou). Subsidized access (of M. J. Raftery) to the Bioanalytical Mass Spectrometry Facility of the UNSW with infrastructure provided by the NSW Government co-investment in the National Collaborative Research Infrastructure Scheme is gratefully acknowledged.

Disclosure of Conflict of Interests

The authors state that they have no conflict of interest.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Data S1. Reduction of β2GPI by TRX-1 for mass spectrometry.
Table S1. Results from X!Tandem search for tryptic peptides produced from the three samples: nB2GPI, nB2GPI/TRX-1/TRX-R/NADPH and nB2GPI/TRX-1/TRX-R/NADPH + MPB.
Table S2. Results from Mascot search for tryptic peptides produced from the three samples: nB2GPI (2A), nB2GPI/TRX-1/TRX-R/NADPH + MPB (2B) and nB2GPI/TRX-1/TRX-R/NADPH (2C).
Table S3. MPB/IA labeled abundance ratios of cysteine containing peptides in nβ2GPI treated with TRX-1/TRX-R/NADPH/MPB.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
References

1 Schwarzenbacher R, Zeth K, Diederichs K, Gries A, Kostner GM, Lagger P, Prassl R. Crystal structure of human beta2-glycoprotein I: implications for phospholipid binding and the antiphospholipid syndrome. *EMBO J* 1999; 18: 6228–39.

2 Bouma B, de Groot PG, van den Elsen JM, Ravelli RB, Schouten A, Simmelink MJ, Derksen RH, Kroon J, Gros P. Adhesion mechanism of human beta2-glycoprotein I to phospholipids based on its crystal structure. *EMBO J* 1999; 18: 5166–74.

3 Hulstein JJ, Lenting PJ, de Laat B, Derksen RH, Fijnheer R, de Groot PG. Beta2-glycoprotein I inhibits von Willebrand factor dependent platelet adhesion and aggregation. *Blood* 2007; 110: 1483–91.

4 Shi T, Giannakopoulos B, Yan X, Yu P, Berndt MC, Andrews RK, Rivera J, Iverson GM, Cockerill KA, Linnik MD, Krilis SA. Anti-beta2-glycoprotein I antibodies in complex with beta2-glycoprotein I can activate platelets in a dysregulated manner via glycoprotein Ib-IX-V. *Arthritis Rheum* 2006; 54: 2558–67.

5 Pennings MT, Derksen RH, van Lummel M, Adelmeijer J, Van-Hoorbeeke K, Urbanus RT, Lisman T, de Groot PG. Platelet adhesion to dimeric beta-glycoprotein I under conditions of flow is mediated by at least two receptors: glycoprotein Ibalpha and apolipoprotein E receptor 2. *J Thromb Haemost* 2007; 5: 36–77.

6 Passam FH, Rahgozar S, Qi M, Raftery MJ, Wong JWH, Tanaka K, Ioannou Y, Zhang JY, Gemmell R, Qi JC, Giannakopoulos B, Hughes WE, Hogg PJ, Krilis SA. Beta 2 glycoprotein I is a substrate of thioldioxidreductases. *Blood* 2010, in press.

7 Ioannou Y, Zhang JY, Passam FH, Rahgozar S, Qi JC, Giannakopoulos B, Qi M, Yu P, Yu DM, Hogg PJ, Krilis SA. Naturally occurring free thiols within [beta2-glycoprotein I in vivo: nitrosylation, redox modification by endothelial cells and regulation of oxidative stress induced cell injury. *Blood* 2010; blood-2009-04-215335v1-blood-2009-04-215335.

8 Lahav J, Wijnen EM, Hess O, Hamaia SW, Griffiths D, Makris M, Knight CG, Essex DW, Farndale RW. Enzymatically catalyzed disulfide exchange is required for platelet adhesion to collagen via integrin alpha2beta1. *Blood* 2003; 102: 2085–92.

9 Furie B, Furie BC. Mechanisms of thrombus formation. *N Engl J Med* 2008; 359: 938–49.

10 Essex DW, Li M, Miller A, Feinman RD. Protein disulfide isomerase during thrombus formation in mice. *Blood* 2006; 108: 2617–27.

11 Lillig CH, Holmgren A. Thioredoxin and related molecules – from biology to health and disease. *Antioxid Redox Signal* 2001; 3: 627–37.

12 Holbrook LM, Watkins NA, Simmonds AD, Jones CI, Ouwehand WH, Gibbins JM. Platelet release novel thiol isomerase enzymes which are recruited to the cell surface following activation. *Br J Haematol* 2010; 148: 627–37.

13 Lillig CH, Holmgren A. Thioredoxin and related molecules – from biology to health and disease. *Antioxid Redox Signal* 2007; 9: 25–47.

14 Yamawaki H, Pan S, Lee RT, Berk BC. Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. *J Clin Invest* 2005; 115: 733–8.

15 Schwartseusk U, Balmer Y, Gutscher M, Weingarten L, Preuss M, Engelhard J, Winkler M, Dick TP. Selective redox regulation of cytochrome oxidase activity by thioredoxin-1. *EMBO J* 2007; 26: 3086–97.

16 Lahav J. Multiple redox systems operate in extracellular regulation of integrin-mediated platelet adhesion. *J Thromb Haemost* 2007; 5(Suppl 2): 254.

17 Iverson GM, Victoria EJ, Marquis DM. Anti-beta2 glycoprotein I (beta2GPI) autoantibodies recognize an epitope on the first domain of beta2GPI. *Proc Natl Acad Sci USA* 1998; 95: 15542–6.

18 Reddel SW, Wang YX, Sheng YH, Krilis SA. Epitope studies with anti-beta 2-glycoprotein I antibodies from autoantibody and immunized sources. *J Autoimmun* 2000; 15: 91–6.

19 Schmidt B, Ho L, Hogg PJ. Allosteric disulfide bonds. *Biochemistry* 2006; 45: 7429–33.

20 Burgess JK, Hotchkiss KA, Suter C, Dudman NP, Szollosi J, Chesterman CN, Chong BH, Hogg PJ. Physical proximity and functional association of glycoprotein Ibalpha and protein-disulfide isomerase on the platelet plasma membrane. *J Biol Chem* 2000; 275: 9758–66.

21 Xie L, Chesterman CN, Hogg PJ. Control of von Willebrand factor multimer size by thrombospondin-1. *J Exp Med* 2001; 193: 1341–9.

22 Nordberg J, Zhong L, Holmgren A, Arner ES. Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selencysteine and its neighboring cysteine residue. *J Biol Chem* 1998; 273: 10835–42.

23 Mustard JF, Perry DW, Ardlie NG, Packham MA. Preparation of suspensions of washed platelets from humans. *Br J Haematol* 1972; 22: 193–204.

24 Choi H, Aboulafta K, Pownall HJ, Cook R, Dong JF. Shear-induced disulfide bond formation regulates adhesion activity of von Willebrand factor. *J Biol Chem* 2007; 282: 3564–61.

25 Hoofnagle AN, Wener MH. The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. *J Immunol Methods* 2009; 347: 3–11.

26 Sahal B, Söderberg A, Spyrou G, Barral AM, Pekkari K, Holmgren A, Rosén A. Thioredoxin expression and localization in human cell lines: detection of full-length and truncated species. *Exp Cell Res* 1997; 236: 181–92.

27 Abdulu NA, Nakamura H, Sahal B, Yodj J, Holmgren A, Rosé A. Thioredoxin blood level increases after severe burn injury. *Antioxid Redox Signal* 2000; 2: 707–16.

28 Rahgozar S, Yang Q, Giannakopoulos B, Yan X, Miyakis S, Krilis SA. Beta2-glycoprotein I binds thrombin via exosite I and exosite II; anti-beta2-glycoprotein I antibodies potentiate the inhibitory effect of beta2-glycoprotein I on thrombin-mediated factor XIa generation. *Arthritis Rheum* 2007; 56: 605–13.

29 Shi T, Iverson GM, Qi JC, Cockerill KA, Linnik MD, Konecny P, Krilis SA. Beta 2-glycoprotein I binds factor XI and inhibits its activation by thrombin and factor XIa: loss of inhibition by clipped beta 2-glycoprotein I. *Proc Natl Acad Sci USA* 2004; 101: 3939–44.

30 Sheng Y, Reddel SW, Herzog H, Wang YX, Brightton T, France MP, Robertson SA, Krilis SA. Impaired thrombin generation in beta 2-glycoprotein I null mice. *J Biol Chem* 2001; 276: 13817–21.

31 Rahgozar S, Giannakopoulos B, Yan X, Wei J, Cheng Qi J, Gemmell R, Krilis SA. Beta2-glycoprotein I protects thrombin from inhibition by heparin cofactor II: potentiation of this effect in the presence of anti-beta2-glycoprotein I autoantibodies. *Arthritis Rheum* 2008; 58: 1146–55.

32 Inanc M, Radway-Bright EL, Isenberg DA, β2-glycoprotein I and anti-β2-glycoprotein I antibodies: where are we now? *Br J Rheumatol* 1997; 36: 1247–57.

33 de Laat B, de Groot PG, Derksen RH, Urbanus RT, Mertens K, Rosendaal FR, Doggen CJ. Association between beta2-glycoprotein I plasma levels and the risk of myocardial infarction in older men. *Blood* 2009; 114: 3566–61.

34 Cho J, Furie BC, Coughlin SR, Furie B. A critical role for extracellular protein disulfide isomerase during thrombus formation in mice. *J Clin Invest* 2008; 118: 1123–31.

35 Reinhardt C, von Brühl ML, Manukyan D, Grahl L, Lorenz M, Altmann B, Dlugai S, Hess S, Konrad I, Orschiedt L, Mackman N, Ruddock L, Massberg S, Engelmann B. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. *J Clin Invest* 2008; 118: 1110–22.

36 Schmidt B, Hogg PJ. Search for allosteric disulfide bond formation regulates adhesion activity of von Willebrand factor. *J Biol Chem* 2007; 282: 3564–61.

37 Katz BA, Kossiakoff A. The crystallographically determined structures of atypical stranded disulfides engineered into subtilisin. *J Biol Chem* 1986; 261: 15480–5.