Objective: The effects of 6-month weight loss (WL) versus aerobic exercise training (AEX) on fatty acid metabolism were determined in normal (NGT) and impaired (IGT) glucose tolerant African-American and Caucasian postmenopausal women with overweight/obesity.

Methods: Fat (gluteal and abdominal) lipoprotein lipase (LPL), skeletal muscle LPL, acyl-CoA synthase (ACS), β-hydroxacyl-CoA dehydrogenase, carnitine palmitoyltransferase (CPT-1), and citrate synthase (CS) activities were measured at baseline (n = 104) and before and after WL (n = 34) and AEX + WL (n = 37).

Results: After controlling for age and race, muscle LPL and CPT-1 were lower in IGT, and the ratios of fat/muscle LPL activity were higher in IGT compared to NGT. Muscle LPL was related to insulin sensitivity (M value) and inversely related to G120, fasting insulin, and homeostatic model assessment of insulin resistance. AEX + WL decreased abdominal fat LPL and increased muscle LPL, ACS, and CS. The ratios of fat/muscle LPL decreased after AEX + WL. The change in VO2max was related to the changes in LPL, ACS, and CS and inversely related to the changes in fat/muscle LPL activity ratios.

Conclusions: Six-month AEX + WL, and not WL alone, is capable of enhancing skeletal muscle fatty acid metabolism in postmenopausal African-American and Caucasian women with NGT, IGT, and overweight/obesity.

Introduction

A decrease in partitioning of lipids from storage in skeletal muscle and adipose tissue to oxidation in skeletal muscle may contribute to the pathogenesis of obesity and insulin resistance in postmenopausal women (1). Some studies show that African-American postmenopausal women with overweight and obesity have lower systemic fat oxidation (2), greater intramuscular fat (IMAT), and lower insulin sensitivity (3) compared to Caucasian women with obesity, although the cellular mechanisms for these racial differences are not fully understood.

Six- to twelve-month dietary weight loss (WL) and exercise training programs, alone or combined, significantly improve insulin sensitivity in postmenopausal women with overweight and obesity (4,5). However, aerobic exercise training (AEX) is necessary to improve skeletal muscle insulin action in postmenopausal women with impaired glucose tolerance (IGT), as determined by insulin activation of glycogen synthase during a hyperinsulinemic-euglycemic clamp (5). Similarly, although WL alone decreases systemic fat oxidation in postmenopausal women, AEX is essential to blunt the decline in fat oxidation during WL (6).

Key enzymes involved in lipid partitioning, fatty acid metabolism, and oxidation include adipose tissue and skeletal muscle lipoprotein lipase (LPL) and skeletal muscle acyl-CoA synthase (ACS), carnitine palmitoyltransferase (CPT-1), β-hydroxacyl-CoA dehydrogenase...
Obesity

(OBESITY BIOLOGY AND INTEGRATED PHYSIOLOGY) Original Article

Subject characteristics of African-American and Caucasian women

Race	AA NGT, mean ± SE	AA IGT, mean ± SE	CAU NGT, mean ± SE	CAU IGT, mean ± SE	Race P value	GT P value
Age (y)	55 ± 1 (n = 23)	62.5 ± 1.5 (n = 20)	59.1 ± 0.9 (n = 57)	62.8 ± 2.2 (n = 17)	0.05	0.0002

The following analyses were adjusted for age:

- Weight (kg): AA NGT 91.6 ± 3.3 (n = 23), AA IGT 93.0 ± 3.0 (n = 20), CAU NGT 83.1 ± 1.5 (n = 57), CAU IGT 90.0 ± 5.0 (n = 17), P value < 0.05
- Body fat (%): AA NGT 47.3 ± 1.1 (n = 23), AA IGT 48.6 ± 0.8 (n = 20), CAU NGT 46.6 ± 0.6 (n = 57), CAU IGT 48.0 ± 1.3 (n = 17), P value 0.83
- VAT (cm²): AA NGT 136 ± 16 (n = 21), AA IGT 157 ± 11 (n = 19), CAU NGT 140 ± 7 (n = 53), CAU IGT 177 ± 22 (n = 16), P value 0.22
- SAT (cm²): AA NGT 491 ± 34.3 (n = 20), AA IGT 488 ± 32 (n = 17), CAU NGT 414 ± 14 (n = 48), CAU IGT 390 ± 31 (n = 13), P value 0.004
- VO₂max (mL/kg/min): AA NGT 19.5 ± 1.2 (n = 19), AA IGT 15.3 ± 1.0 (n = 18), CAU NGT 20.3 ± 0.6 (n = 50), CAU IGT 18.5 ± 1.1 (n = 17), P value 0.007
- Fasting glucose (mmol/L): AA NGT 5.1 ± 0.1 (n = 23), AA IGT 5.6 ± 0.1 (n = 20), CAU NGT 5.2 ± 0.1 (n = 57), CAU IGT 5.4 ± 0.1 (n = 17), P value 0.40
- Glucose 120 (mmol/L): AA NGT 6.0 ± 0.2 (n = 23), AA IGT 9.2 ± 0.2 (n = 20), CAU NGT 5.7 ± 0.1 (n = 57), CAU IGT 8.7 ± 0.2 (n = 17), P value 0.33
- Fasting insulin (pmol/L): AA NGT 91 ± 8 (n = 22), AA IGT 122 ± 13 (n = 20), CAU NGT 75 ± 7 (n = 53), CAU IGT 99 ± 13 (n = 17), P value 0.12
- HOMA-IR: AA NGT 3.4 ± 0.3 (n = 22), AA IGT 5.1 ± 0.6 (n = 20), CAU NGT 2.9 ± 0.3 (n = 53), CAU IGT 4.1 ± 0.7 (n = 17), P value 0.18
- M (µmol/kg FFM/min): AA NGT 70.8 ± 3.8 (n = 20), AA IGT 48.6 ± 3.9 (n = 15), CAU NGT 69.1 ± 2.4 (n = 49), CAU IGT 56 ± 4.9 (n = 15), P value 0.44

Glucose 120 was measured during an oral glucose tolerance test.

AA: African-American; CAU: Caucasian; FFM: fat-free mass; GT: glucose tolerance status; HOMA-IR: homeostatic model assessment of insulin resistance; IGT: impaired glucose tolerance; M: insulin sensitivity; NGT: normal glucose tolerance; SAT: subcutaneous adipose tissue; SE: standard error; VAT: visceral adipose tissue.

(β-HAD), and citrate synthase (CS). The activities of fat and skeletal muscle LPL and skeletal muscle CPT-1 and CS are affected by obesity in men and in premenopausal women (7-9). There are also differences in the activities of muscle LPL (10) and ACS (11) and in skeletal muscle palmitate oxidation (11) in premenopausal African-American compared to Caucasian women. Exercise training increases the activities of skeletal muscle LPL (12), CPT-1 (13), β-HAD, and CS (14) in men and in premenopausal women. Detraining of athletes increases the ratio of fat to muscle LPL activity, favoring the shunting of circulating lipids from oxidation in muscle to storage in adipose tissue (15).

This study examines the activities of enzymes that regulate the uptake, storage, and oxidation of fatty acids in adipose tissue and skeletal muscle in premenopausal African-American and Caucasian women with normal glucose tolerance (NGT) and IGT and the effects of WL with and without AEX on the activities of these enzymes. We tested the hypothesis that there are racial differences and differences based on glucose tolerance status in fatty acid metabolism in older women with overweight and obesity, and that AEX with WL will be more effective than WL alone to improve activities of enzymes involved in fatty acid metabolism in women at greatest risk of developing type 2 diabetes.

Methods

Subjects

Postmenopausal healthy women between the ages of 50 and 75 years with overweight and obesity (BMI > 25 kg/m²; range: 25-47 kg/m²) and NGT or IGT (2-h plasma glucose after a 75-g oral glucose tolerance test, 7.8-11.0 mmol/L) were screened with a medical history questionnaire, physical examination, and fasting blood profile. Women were weight stable (<2.0-kg weight change in the past year), sedentary (<20 min of aerobic exercise 2 times/wk), and nonsmokers. Women showed no evidence of liver, renal, or hematological disease, cancer, or other medical disorders and underwent a Bruce graded treadmill test to exclude those with asymptomatic coronary artery disease. Individuals with poorly controlled hypertension (>160/90 mmHg; 10 women in WL group, 11 women in AEX+WL group) or hyperlipidemia (2 women in WL group, 3 in AEX+WL group) were referred to their doctor for therapy and entered the study after treatment with an antihypertensive or lipid-lowering drug that did not affect glucose metabolism. The treatment regimens were maintained throughout the study.

These participants were part of a larger study examining the effects of WL and AEX+WL on insulin sensitivity and skeletal muscle glycogen synthase activity (5). The enzyme activities in skeletal muscle and adipose tissue presented here have not been previously reported. One hundred seventeen women had data from adipose tissue and/or skeletal muscle samples included in the baseline portion of this study (Table 1, Figure 1). Of these women, 71 completed WL (n = 34) or AEX+WL (n = 37) and have data included before and after intervention (Tables 2-3, Figure 2). (For CONSORT diagram, see Supporting Information Figure S1.) The Institutional Review Board of the University of Maryland and the Baltimore Veterans Affairs Research & Development Committee approved all methods and procedures. Each participant provided written informed consent to participate in the study.

Study protocol

The WL and AEX components and compliance with the study protocol have been described previously (5). Briefly, women in both groups attended weekly WL classes led by a registered dietitian and were instructed to reduce their caloric intake by 500 kcal/d. Women in the WL group were encouraged to maintain the same activity habits as when they enrolled throughout the study, and women in both groups wore biaxial accelerometers to access physical activity (17). Women in the AEX+WL intervention exercised at the

www.obesityjournal.org Obesity | VOLUME 25 | NUMBER 7 | JULY 2017 1247
Figure 1 Baseline intramuscular adipose tissue and enzyme activities in African-American (AA) (gray bars) and Caucasian (Cau) women (white bars) with normal glucose tolerance (NGT, clear bars) or impaired glucose tolerance (IGT, striped bars). Data presented after controlling for age. (A) Gluteal fat lipoprotein lipase (LPL) activity is not different between groups. $n = 15$ (AA NGT), 11 (AA IGT), 33 (Cau NGT), 14 (Cau IGT). (B) Abdominal fat LPL activity is not different between groups. $n = 15$ (AA NGT), 11 (AA IGT), 33 (Cau NGT), 14 (Cau IGT). (C) Muscle LPL activity is higher in NGT than IGT. $n = 15$ (AA NGT), 9 (AA IGT), 41 (Cau NGT), 14 (Cau IGT). (D) The ratio of gluteal fat/muscle LPL activity is higher in IGT than in NGT women. $n = 13$ (AA NGT), 9 (AA IGT), 32 (Cau NGT), 12 (Cau IGT). (E) The ratio of abdominal fat/muscle LPL activity is higher in IGT than in NGT women. $n = 13$ (AA NGT), 9 (AA IGT), 32 (Cau NGT), 12 (Cau IGT). (F) Intramuscular adipose tissue (IMAT) is higher in AA than in Cau women. $n = 21$ (AA NGT), 17 (AA IGT), 52 (Cau NGT), 14 (Cau IGT). (G) Muscle acyl-CoA synthase (ACS) activity is not different between groups. $n = 21$ (AA NGT), 17 (AA IGT), 19 (AA IGT), 54 (Cau NGT), 16 (Cau IGT). (H) Muscle carnitine palmitoyltransferase-1 (CPT-1) activity is higher in NGT than IGT. $n = 13$ (AA NGT), 11 (AA IGT), 31 (Cau NGT), 13 (Cau IGT). (I) Muscle ß-hydroxyacyl-CoA dehydrogenase (ß-HAD) activity is not different between groups. $n = 20$ (AA NGT), 18 (AA IGT), 50 (Cau NGT), 15 (Cau IGT). (J) Muscle citrate synthase (CS) activity is not different between groups. $n = 21$ (AA NGT), 18 (AA IGT), 50 (Cau NGT), 15 (Cau IGT).
Veterans Affairs Maryland Health Care System exercise facility 3 times/wk for 6 months using treadmills and elliptical trainers at >85% heart rate reserve for 45 minutes. Adherence was >85% for WL and AEX+WL.

Whole-body insulin sensitivity (M value) was measured in WL (n = 21) and AEX+WL (n = 32) using the hyperinsulinemic-euglycemic clamp technique (18) as previously described (5). The clamp procedure was not performed in 17 women due to scheduling conflicts or difficulties in venous access. Plasma glucose and insulin during each clamp period were similar before and after WL (5 ± 0.1 vs. 4.9 ± 0.1 mmol/L and 1,119 ± 46 vs. 1,158 ± 33 pmol/L) and AEX+WL (5 ± 0.1 vs. 5 ± 0.3 mmol/L and 1,138 ± 33 vs. 1,136 ± 30 pmol/L).

VO2max was measured using a continuous treadmill test protocol (19). Height (cm) and weight (kg) were measured to calculate BMI, and waist and hip circumference were determined. Fat mass and fat-free mass (lean + bone) were determined by dual-energy X-ray absorptiometry (Prodigy, LUNAR Radiation Corp., Madison, Wisconsin). A single computed tomography (Siemens SOMATOM Sensation 64, Fairfield, Connecticut) scan at the L4-L5 region was used to determine visceral adipose tissue (VAT) area and subcutaneous adipose tissue area and was analyzed using Medical Image Processing, Analysis and Visualization, v.7.0.0 (National Institutes of Health, Bethesda, Maryland). A second scan at the midthigh was used to quantify muscle area, total fat area, and low-density lean tissue area by Hounsfield units (19); values of the right leg were used in the statistical analyses. Low-density lean tissue measured by computed tomography has been used to quantify intramuscular adipose tissue in numerous studies (20). Adipose tissue aspirations of the gluteal and abdominal regions were performed as previously described (21) and frozen at −80°C until

TABLE 2 Change in subject characteristics of women following WL and AEX+WL, adjusted for age

	WL, mean ± SE	AEX+WL, mean ± SE	Intervention P value	Race P value	GT P value	Overall P value
Δ Weight (kg)	−7.0 ± 0.6 (n = 34)	−6.9 ± 0.6 (n = 37)	0.24	0.95	0.62	<0.0001
Δ % Body fat	−3.0 ± 0.4 (n = 34)	−3.6 ± 0.5 (n = 37)	0.30	0.60	0.06	<0.0001
Δ VAT (cm²)	−18.8 ± 6.8 (n = 31)	−25.7 ± 9.3 (n = 36)	0.16	0.40	0.93	<0.0001
Δ Intramuscular fat	−0.75 ± 0.7 (n = 32)	−1.78 ± 0.7 (n = 33)	0.49	0.31	0.15	0.01
Δ SAT (cm²)	−48.5 ± 16.9 (n = 23)	−58.8 ± 17.1 (n = 26)	0.01	0.11	0.08	0.0002
Δ VO2 max (L/min)	−0.05 ± 0.03 (n = 34)	0.23 ± 0.04 (n = 37)	<0.0001	0.68	0.39	
Δ Fasting glucose (mmol/L)	−0.32 ± 0.1 (n = 34)	−0.20 ± 0.1 (n = 37)	0.61	0.78	0.46	0.0002
Δ Glucose 120 (mmol/L)	−0.33 ± 0.3 (n = 34)	−0.29 ± 0.2 (n = 37)	0.57	0.93	0.0007	
Δ Fasting insulin (pmol/mL)	−20.5 ± 5 (n = 33)	−18 ± 5 (n = 37)	0.93	0.21	0.12	<0.0001
Δ HOMA-IR	−0.98 ± 0.2 (n = 33)	−0.87 ± 0.3 (n = 37)	0.93	0.51	0.05	
Δ M (μmol/kg FFM/min)	3.6 ± 2.7 (n = 21)	5.5 ± 2.7 (n = 32)	0.82	0.38	0.56	<0.005

AEX, aerobic exercise training; FFM, fat-free mass; GT, glucose tolerance status; HOMA-IR, homeostatic model assessment of insulin resistance; M, insulin sensitivity; SAT, subcutaneous adipose tissue; SE, standard error; VAT, visceral adipose tissue; WL, weight loss.

TABLE 3 Enzyme activities before and after WL and AEX+WL

	WL (mean ± SE)	P value before vs. after	AEX+WL (mean ± SE)	P value before vs. after		
Gluteal LPL (nmol/min/10^6 cells)	20.6 ± 2.4	14.8 ± 2.1	0.01	20.1 ± 1.7	14.1 ± 1.4	0.0002
Abdominal LPL (nmol/min/10^6 cells)	11.3 ± 1.2	8.9 ± 1.6		11.8 ± 1.1	7.4 ± 0.6	<0.0001
Skeletal muscle LPL (nmol/min/mg protein)	8.8 ± 0.8	8.6 ± 1.3		8.1 ± 0.8	10.9 ± 1.4	<0.05
Gluteal/muscle LPL	2.9 ± 0.4	3.6 ± 1.1		3.2 ± 0.4	2.1 ± 0.5	<0.05
Abdominal fat/muscle LPL	1.5 ± 0.2	2.2 ± 0.8		2.0 ± 0.3	1.2 ± 0.8	0.005
ACS (pmol/min/mg protein)	891 ± 94	813 ± 95		624 ± 63	781 ± 91	0.05
CPT-1 (pmol/min/g)	10.8 ± 1.1	10.5 ± 1.2		10.6 ± 1.6	11.0 ± 1.4	0.05
β-HAD (μmol/min/mg protein)	0.28 ± 0.02	0.28 ± 0.03		0.25 ± 0.02	0.28 ± 0.03	0.05
CS (μmol/min/mg protein)	0.16 ± 0.02	0.15 ± 0.01		0.13 ± 0.01	0.16 ± 0.02	0.05

ACS, acyl-CoA synthase; AEX, aerobic exercise training; β-HAD, β-hydroxacyl-CoA dehydrogenase; CPT-1, carnitine palmitoyltransferase; CS, citrate synthase; LPL, lipoprotein lipase; SE, standard error; WL, weight loss.
Vastus lateralis muscle sampling was performed under local anesthesia, with samples frozen immediately in clamps cooled in liquid nitrogen and stored at -28 °C until lyophilization. Muscle and fat sampling were performed after an overnight fast and, in the AEXWL group, 36 to 48 hours after the last bout of exercise.

Adipose tissue (heparin elutable) LPL activity

Three hundred fifty microliters of PBS containing heparin (50 µL/mL) was added to frozen adipose tissue samples (50 mg) and kept at ambient temperature. After 1 hour, 100 µL aliquots were assayed in triplicate with 100 µL of substrate (22) prepared by sonication of 10 µCi of 1-14C-glycerol triolein, 50 mg unlabeled triolein, and 6 mg lecithin in 8 mL of 0.233 M Tris buffer, pH 8.2, containing 7% free fatty acid (FFA)-free bovine serum albumin and 400 µL fasting serum (source of apolipoprotein CII). The enzyme reaction was stopped after 45 minutes at 37 °C by addition of Belfrage's extraction mixture (23) to separate the product, labeled FFA, from unreacted substrate. The labeled FFAs were quantitated by liquid scintillation counting and after correction for recovery during extraction. Adipose tissue LPL activity was normalized for fat cell size and expressed as nmol FFA produced/min × 10^6 cells.

Skeletal muscle (total extractable) LPL activity

Lyophilized microdissected muscle samples were homogenized (1:15 w/v) in ice-cold buffer (pH8.2) containing 25 mmol/L NH3, 5 mmol/L EDTA, 1% Triton X-100, 0.1% SDS, 25 IU heparin/mL, protease inhibitors (complete, Mini, EDTA-free, Roche; Sigma-Aldrich, St. Louis, Missouri) and centrifuged at 10,000 × g for 10 minutes at 4 °C (24). Triplicate 5 µL of supernatant and 95 µL of PBS were incubated with substrate as previously described.

For both adipose tissue and skeletal muscle LPL assays, post heparin plasma control serum was run with each assay to determine substrate quality and for internal control, and pre- and postintervention samples were run in the same assay. The ratio of fat to muscle LPL activity provides a measure of the propensity for storage of FFA derived from triglyceride in adipose tissue versus oxidation in skeletal muscle (15,25).

Skeletal muscle ACS, CPT-1, β-HAD, and CS activities

Ten milligrams of lyophilized microdissected skeletal muscle was homogenized in 300 µL ice-cold buffer (1:30) containing (in mmol/L) 250 sucrose, 10 Tris·HCl, 1 EDTA, pH7.4, and protease inhibitors (Roche 1183617001). Thirty microliters of the 1:30 homogenate were diluted to 1:150 in homogenization buffer, frozen in liquid nitrogen, and stored at −80 °C until assay for CS, β-HAD, ACS, and total protein. ACS, CPT-1, β-HAD, and CS activities were measured as previously described (26).

All skeletal muscle enzyme activities were corrected for total protein content (Coomassie Plus, Pierce; Thermo Fisher Scientific, Waltham, Massachusetts). The homogenates prepared from skeletal muscle samples from WL and AEX+WL individuals were run together, and each sample was run in triplicate.

Statistics

At baseline, the effects of race (African-American vs. Caucasian) adjusted for glucose tolerance status (NGT vs. IGT) on subject characteristics and enzyme activity (variable) were compared using analysis of variance (ANOVA) with interactions. As age was different by race...
and glucose tolerance status, we analyzed the effects of race and glucose tolerance status interactions for age. After adjusting for age, there were no race × glucose tolerance status interactions at baseline; the term was dropped from the model and the analysis rerun to determine effects by race and glucose tolerance status, again adjusting for age. The effect of the intervention (WL vs. AEX+WL) adjusted for race and glucose tolerance was compared using ANOVA: change in variable = baseline value + intervention + race + glucose tolerance status + intervention × race + intervention × glucose tolerance status. After adjusting for age, there were no intervention × race or intervention × glucose tolerance status interactions. Therefore, the interventions were dropped from the model and the analysis rerun to determine the effects of intervention, race, and/or glucose tolerance status, again adjusted for age. Pearson correlations were used to assess relationships between key variables, reporting 2-tailed probability. All data are presented as mean ± standard error, with statistical significance set at P ≤ 0.05.

Results

Baseline subject characteristics

At baseline, there were no significant race × glucose tolerance status interactions. The interaction terms were therefore dropped from the models. Women with IGT were older than women with NGT (P < 0.0005), and Caucasian women were older than African-American women (P = 0.05) (Table 1). Therefore, all further effects tested by race and glucose tolerance status were adjusted for age. African-American women had higher subcutaneous abdominal fat than Caucasian women (P < 0.005) and lower VO2max (P < 0.01), regardless of glucose tolerance status. Percent body fat was similar between groups. Women with IGT were heavier (P < 0.05) and had higher VAT (P < 0.05), fasting glucose (P = 0.01), G120 (P < 0.0001), fasting insulin levels (P < 0.01), and homeostatic model assessment of insulin resistance (HOMA-IR) (P = 0.003) and lower insulin sensitivity (M value) (P < 0.001) than women with NGT. African-American women had higher IMAT compared to Caucasian women (P < 0.01, Figure 1), and IMAT was inversely related to VO2max (r = -0.26, P < 0.01, n = 98).

Baseline enzyme activities by race and glucose tolerance status

There were no significant race × glucose tolerance interactions. Skeletal muscle LPL (P < 0.05) and CPT-1 (P < 0.01) activities were lower in women with IGT than with NGT (Figure 1). Gluteal and abdominal adipose tissue LPL activity and CS activity did not differ among women by race or glucose tolerance status. The ratio of adipose tissue to skeletal muscle LPL activity was determined, as it is a marker for partitioning/storage of circulating lipids between the 2 tissues. The ratios of both gluteal (P < 0.05) and abdominal (P < 0.0001) fat to muscle LPL activity were higher in women with IGT than NGT. ACS and ß-HAD activities were 20% and 15% lower in African-American compared to Caucasian women, respectively, but were not significantly different between races.

Relationships between subject characteristics and enzyme activities at baseline

Skeletal muscle LPL activity was inversely related to body weight (r = -0.33, P < 0.005), VAT (r = -0.32, P < 0.01), G120 (r = -0.28, P = 0.01), insulin (r = -0.28, P = 0.01), and HOMA-IR (r = -0.25, P < 0.05); muscle LPL activity was directly related to M value (r = 0.38, P < 0.005). The ratio of abdominal fat to muscle LPL activity was directly related to body weight (r = 0.28, P < 0.05), VAT (r = 0.33, P < 0.01), G120 (r = 0.30, P = 0.01), insulin (r = 0.28, P < 0.05), and HOMA-IR (r = 0.30, P = 0.01); the ratio of abdominal fat to muscle LPL activity was inversely related to M value (r = -0.29, P < 0.05).

Effects of interventions: subject characteristics

There were no intervention × race or intervention × glucose tolerance status interactions for any of the variables presented in Table 2. The interaction terms were therefore dropped from the models. All effects tested by race and glucose tolerance status were adjusted for age.

Overall, the women had decreases in body weight, percent body fat, VAT, fasting glucose, fasting insulin (all P < 0.0005), and IMAT (P < 0.01) and comparable increases in M value (P < 0.05) regardless of intervention, race, or glucose tolerance status. There were intervention effects for the change in subcutaneous adipose tissue (greater decrease following AEX+WL, P < 0.01) and VO2max (L/min; increase only following AEX+WL, P < 0.0001). Women with IGT had greater reductions in G120 level (NGT vs. IGT: 0.32 ± 0.22 vs. -1.28 ± 0.26 mmol/L, P < 0.0001) and HOMA-IR (-0.60 ± 0.14 vs. -1.4 ± 0.36, P = 0.05) than women with NGT.

Effects of interventions: enzyme activities

There were no intervention × race or intervention × glucose tolerance status interactions for any adipose or skeletal muscle enzyme activities. The interaction terms were therefore dropped from the models.

Both interventions reduced gluteal fat activity (overall effect for percent decrease P = 0.0004) (Table 3, Figure 2). WL did not significantly affect abdominal fat LPL activity, whereas AEX+WL decreased abdominal fat LPL activity (overall effect for percent decrease P < 0.0001). There was an intervention effect for percent change in skeletal muscle LPL activity (P = 0.009); muscle LPL activity did not change with WL but increased with AEX+WL.

There was an intervention effect for the percent change in the ratios of both gluteal fat/muscle LPL activity (P = 0.02) and abdominal fat/muscle LPL activity (P = 0.01). The ratios were not affected following WL alone, whereas both ratios decreased following AEX+WL (both P < 0.05).

There were overall effects on percent changes in ACS and CPT-1 activities (both P < 0.05). AEX+WL increased ACS activity (P = 0.05), and the percent change tended to be different between AEX+WL and WL (P < 0.06). There was no change in CS following WL in contrast to an increase following AEX+WL (P = 0.05). The percent increase in ACS activity was correlated with the increase in CS activity in the AEX+WL group (r = 0.74, P < 0.0001).

The percent increase in VO2max was associated with the percent increases in muscle LPL (r = 0.26, P = 0.05), ACS (r = 0.53, P < 0.001), and CS activities (r = 0.43, P < 0.001), and the percent decreases of both fat/muscle LPL ratios (both r = -0.32, P < 0.05).
Discussion

African-American women with IGT and obesity are at greatest risk for the development of type 2 diabetes. The results of our study indicate that although postmenopausal African-American women have higher IMAT and subcutaneous adipose tissue and lower VO₂max compared to older Caucasian women, there are no significant differences in the activity of key enzymes involved in fatty acid metabolism between African-American and Caucasian women after adjusting for age. On the other hand, women with IGT who have higher VAT, fasting insulin, and HOMA-IR and a lower M value compared to women with NGT have lower skeletal muscle LPL and CPT-1 activity and higher fat (gluteal and abdominal)/muscle LPL activity ratios after adjusting for age. In addition, we show that AEX+WL, and not WL alone, reduces the activity of abdominal fat LPL, increases the activities of skeletal muscle LPL, ACS, and CS, and reduces the ratio of fat (gluteal and abdominal)/muscle LPL activity. The change in VO₂max is related to changes in all 3 enzyme activities and inversely related to changes in both fat/muscle LPL activity ratios. The significant differences in the changes in muscle LPL activity and ratio of fat/muscle LPL activities between the 2 interventions are independent of race and glucose tolerance status, suggesting that African-American and Caucasian women with either NGT or IGT comparably improve fatty acid metabolism, specifically partitioning, after participation in a well-controlled lifestyle intervention of AEX+WL.

We previously reported that postmenopausal African-American women were more insulin resistant and had higher IMAT than their age-matched Caucasian counterparts (3). Although neither insulin sensitivity (M value) nor HOMA-IR was different between races in the current study, the African-American women had higher IMAT compared to the Caucasian women. This difference was driven by the Caucasian women with NGT, who had 25% lower IMAT compared to the other 3 groups. Furthermore, within the Caucasian group, the women with NGT had 60% higher muscle LPL and CPT-1 activities, both likely contributing to increased fatty acid oxidation and lower IMAT in these women. The ratio of fat (abdominal and gluteal adipose tissue) to muscle LPL activity, an index of the preferential storage of circulating lipids in adipose tissue (15), was 80% lower in the women with NGT, indicative of greater oxidation of circulating lipids in skeletal muscle versus storage in fat.

This study is the first to report lower muscle LPL activity in postmenopausal women with overweight and obesity and IGT compared to women with NGT. African-American women with NGT had 64% lower muscle LPL activity than Caucasian women with NGT. Contrary to our findings, Berk et al. showed 3-fold higher skeletal muscle LPL activity in premenopausal African-American compared to Caucasian women, although the data were not stratified by glucose tolerance status (10). The difference between results could be explained by the difference in subject characteristics (e.g., premenopausal vs. postmenopausal) and methodologies. We measured total extractable LPL activity in lyophilized microdissected muscle, which removes visible fat. Berk et al. measured heparin elutable LPL in frozen, nonmicrodissected muscle. Thus, it is possible that contaminating fat in the muscle sample contributed to the LPL results in the Berk study. Another reason for the discrepancy could be that the majority of muscle LPL is found in the extractable fraction, unlike adipose tissue LPL, which is found mostly in the heparin elutable fraction (27). In agreement with Berk’s study, we did not find differences in fat LPL activity between African-American and Caucasian women.

Although skeletal muscle LPL activity and the ratios of fat (abdominal and gluteal) to muscle LPL were different between NGT and IGT at baseline, the increase in muscle LPL activity and decreases in the ratios of fat to muscle LPL following AEX+WL were similar between women with NGT and IGT. Detraining of healthy athletes reduces skeletal muscle LPL activity by 45% and increases abdominal fat LPL by 86% (15), corresponding to a greater than 8-fold increase in the ratio of adipose to muscle LPL. In our study, the increase in skeletal muscle LPL activity and decrease in abdominal fat LPL activity would favor an increase in skeletal muscle fatty acid uptake and oxidation in the postmenopausal women following AEX+WL.

We are not aware of any reports on the effects of WL or exercise training on ACS activity, but a 2-month AEX program in lean men increased acyl-CoA synthase long chain family member 1 (ACSL1), CPT1, and LPL gene expression, and the changes in ACSL1 and CPT1 gene expression following training and detraining were related to the change in palmitate oxidation (28). Similarly, in our study, the activities of skeletal muscle LPL and ACS were increased following AEX+WL.

Several studies in middle-aged men and women (premenopausal) reported an increase in CPT-1 activity following exercise training (13,29). In older men, 6-week endurance training tended to increase skeletal muscle CPT-1 activity (35%, P < 0.08) and significantly increase CS activity (46%) (30). In the current study, CS activity increased 32%, and there was an overall effect of the interventions to increase CPT-1 activity. Although we did not see an increase in β-HAD activity following AEX+WL in the postmenopausal women, some studies reported an increase in β-HAD activity following high-intensity interval training in premenopausal women (31,32).

There are several strengths of this research study, including a large sample size of well-characterized women, several enzyme activity measurements in skeletal muscle, and cross-sectional and longitudinal data. A major limitation of this study is that we were unable to determine mitochondrial respiration and ATP generation (both requiring fresh tissue), the results of which may have verified alterations in fatty acid oxidation in postmenopausal women with IGT, and improvements following AEX+WL regardless of glucose tolerance status.

Postmenopausal women with overweight/obesity and IGT have lower skeletal muscle LPL and CPT-1 activity and greater fat/muscle LPL activity ratios, which could all contribute to reduced skeletal muscle fatty acid oxidation and increased adipose tissue storage compared to women with NGT. Following AEX+WL, postmenopausal women with overweight and obesity, regardless of race or glucose tolerance status, have improvements in the activities of skeletal muscle LPL, ACS, and CS and in the ratios of fat/muscle LPL, which could all contribute to enhanced fatty acid metabolism.

Acknowledgments

Our appreciation is extended to the women who participated in this study and to the Geriatric Research, Education, and Clinical Center...
medical doctors, nurses, laboratory technicians, and exercise physiologists.

© 2017 The Obesity Society

References

1. Blaak EE. Characterisation of fatty acid metabolism in different insulin-resistant phenotypes by means of stable isotopes [published online January 19, 2017]. Proc Natl Acad Sci. doi:10.1073/pnas.1603013

2. Nicklas BJ, Berman DM, Davis DC, Dobrovolny CL, Dennis KE. Racial differences in metabolic predictors of obesity among postmenopausal women. Obes Res 1999;7:463-468.

3. Ryan AS, Nicklas BJ, Berman DM. Racial differences in insulin resistance and mid-thigh fat deposition in postmenopausal women. Obes Res 2002;10:336-344.

4. Mason C, Foster-Schubert KE, Imayama I, et al. Dietary weight loss and exercise effects on insulin resistance in postmenopausal women. Am J Prev Med 2011;41:366-375.

5. Ryan AS, Ortmeyer HK, Sorkin JD. Exercise with calorie restriction improves insulin sensitivity and glycogen synthase activity in obese postmenopausal women with impaired glucose tolerance. Am J Physiol Endocrinol Metab 2012;302:E145-E152.

6. Nicklas BJ, Rogus EM, Goldberg AP. Exercise blunts declines in lipolysis and fat oxidation after dietary-induced weight loss in obese older women. Am J Physiol 1997;273:E149-E155.

7. Taskinen MR, Nikkila EA. Lipoprotein lipase activity in adipose tissue and in postheparin plasma in human obesity. Acta Med Scand 1977;202:399-408.

8. Pollare T, Vesby B, Lithell H. Lipoprotein lipase activity in skeletal muscle is related to insulin sensitivity. Arterioscler Thromb 1991;11:1192-1203.

9. Kim JY, Hickner RC, Corrignt RL, Dohm GL, Houmard JA. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 2000;279:E1039-E1044.

10. Berk ES, Johnson JA, Lee M, et al. Higher post-absorptive skeletal muscle LPL activity in African American vs. non-Hispanic White pre-menopausal women. Obesity (Silver Spring) 2003;52:735-738.

11. Privette JD, Hickner RC, Macdonald KG, Portes WJ, Barakat HA. Fatty acid oxidation by skeletal muscle homogenates from morbidly obese black and white American women. Metabolism 2003;52:735-738.

12. Seip RL, Angelopoulos TJ, Semenkovich CF. Exercise induces human lipoprotein lipase gene expression in skeletal muscle but not adipose tissue. Am J Physiol 1995; 268:E229-E236.

13. Bruce CR, Thrush AB, Mertz VA, et al. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab 2006;291:E99-E107.

14. Carter SL, Remnie CD, Hamilton SJ, Tarnopolsky. Changes in skeletal muscle in males and females following endurance training. Can J Physiol Pharmaco 2001;79:386-392.

15. Simooloo RB, Ong JM, Kern PA. The regulation of adipose tissue and muscle lipoprotein lipase in runners by detraining. J Clin Invest 1993;92:2124-2130.

16. American Diabetes A. 2. Classification and Diagnosis of Diabetes. Diabetes Care 2016;39 (Suppl 1):S13-S22.

17. Serra MC, Treuth MS, Ryan AS. Dietary prescription adherence and non-structured physical activity following weight loss with and without aerobic exercise. J Nutr Health Aging 2014;18:888-893.

18. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979;237:E214-E223.

19. Ryan AS, Nicklas BJ, Berman DM. Aerobic exercise is necessary to improve glucose utilization with moderate weight loss in women. Obesity (Silver Spring) 2006;14:106-1072.

20. Addison O, Marcus RL, Lastayo PC, Ryan AS. Intermuscular fat: a review of the consequences and causes. Int J Endocrinol 2014;2014:309570. doi:10.1155/2014/309570.

21. Fried SK, Tittelbach T, Blumenthal J, et al. Resistance to the antilipolytic effect of insulin in adipocytes of African-American compared to Caucasian postmenopausal women. J Lipid Res 2010;51:1193-1200.

22. Iverius PH, Brunzell JD. Human adipose tissue lipoprotein lipase: changes with feeding and relation to postheparin plasma enzyme. Am J Physiol 1985;249:E107-E114.

23. Belfrage P, Vaughan M. Simple liquid-liquid partition system for isolation of labeled oleic acid from mixtures with glycerides. J Lipid Res 1969;10:341-344.

24. Bergo M, Olivecrona G, Olivecrona T. Regulation of adipose tissue lipoprotein lipase in young and old rats. Int J Obes Relat Metab Disord 1997;21:980-986.

25. Greenwood MR. The relationship of enzyme activity to feeding behavior in rats: lipoprotein lipase as the metabolic gatekeeper. Int J Obes 1985;9 (Suppl 1):67-70.

26. Ortmeyer HK, Ryan AS, Hafer-Macko C, Oursler KK. Skeletal muscle cellular metabolism in older HIV-infected men. Physiol Rep 2016;4. doi:10.14814/phy2.12794.

27. Borensztajn J. Lipoprotein Lipase. Chicago: Erevener Publications; 1987:336.

28. Bergouignan A, Momken I, Lefai E, et al. Activity energy expenditure is a major determinant of dietary fat oxidation and trafficking, but the deleterious effect of detraining is more marked than the beneficial effect of training at current recommendations. Am J Clin Nutr 2013;98:648-658.

29. Schenk S, Horowitz JF. Commumunprecipitation of FAT/CD36 and CPT I in skeletal muscle increases proportionally with fat oxidation after endurance exercise training. Am J Physiol Endocrinol Metab 2006;291:E254-E260.

30. Berthon P, Freyssenet D, Chatard JC, et al. Mitochondrial ATP production rate in running trained men. J Appl Physiol (1985) 2003;94:1276-1281.

31. Gillen JB, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ. Interval training increases fat oxidation in women. J Appl Physiol (1985) 2000;88:1276-1281.

32. Talanian JL, Galloway SD, Heigenhauser GJ, Bonen A, Spriet LL. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol (1985) 2007;102:1439-1447.