THE FUNDAMENTAL LEMMA FOR
THE SHALIKA SUBGROUP OF $GL(4)$

by SOLOMON FRIEDBERG AND HERVÉ JACQUET

University of California, Santa Cruz
Columbia University
ABSTRACT

The authors establish the fundamental lemma for a relative trace formula. This trace formula compares generic automorphic representations of $GSp(4)$ with automorphic representations of $GL(4)$ which are distinguished with respect to a character of the Shalika subgroup, the subgroup of matrices of 2×2 block form \(\begin{pmatrix} g & 0 \\ X & g \end{pmatrix} \).

The fundamental lemma, giving the equality of two orbital integrals, amounts to a comparison of certain exponential sums arising from these two different groups. On the $GSp(4)$ side one has the Kloosterman sums for this group, and on the $GL(4)$ side certain, new, relative Kloosterman sums. To show that these are equal for each relevant Weyl group element, the authors compute the Mellin transforms of the sums and match them in all cases.
CONTENTS

Chapter I. Introduction and Statement of Results
1. Introduction
2. The Shalika Subgroup H of $GL(4)$: Relevant Double Cosets and Kloosterman Integrals
3. The Symplectic Group $GSp(4)$: Relevant Double Cosets and Kloosterman Integrals
4. The Main Theorem
5. Kloosterman Integrals and Gauss Sums

Chapter II. Evaluation of the Integral for the Main H-Relevant Double Cosets
1. Plan of the Computation
2. The Unipotent Integral
3. The Toroidal Integral
4. Two Supplementary Integrals
5. Evaluation of the Mellin Transform I: The Ramified Case
6. Evaluation of the Mellin Transform II: The Case χ_1 Ramified, χ_2 Unramified
7. Evaluation of the Mellin Transform III: The Case χ_1 Unramified, χ_2 Ramified
8. Evaluation of the Mellin Transform IV: The Unramified Case

Chapter III. Evaluation of the Integrals for the Other H-Relevant Double Cosets
1. Evaluation of the Integral $M_F(\chi; 1)$, I: Unipotent Integration
2. Evaluation of the Integral $M_F(\chi; 1)$, II: Toroidal Integration and Simplification
3. Evaluation of the Integral $M_F(\chi; (132))$, I: Unipotent Integration
4. Evaluation of the Integral $M_F(\chi; (132))$, II: Toroidal Integration and Simplification
Chapter IV. Evaluation of the $GSp(4)$ Integral for the Main Double Cosets

1. Computation of the Integral $J(t)$ 81
2. Simplification of the Integrals Giving $J(t)$ 87
3. Computation of the Mellin Transform 93
4. Evaluation of the Mellin Transform I: The Ramified Case 102
5. Evaluation of the Mellin Transform II: The Case χ_1 Ramified, χ_2 Unramified 104
6. Evaluation of the Mellin Transform III: The Case χ_1 Unramified, χ_2 Ramified 112
7. Evaluation of the Mellin Transform IV: The Unramified Case 119

Chapter V. Evaluation of the $GSp(4)$ Integrals for the Other Relevant Double Cosets

1. Computation of the Integral $J(w_1, t)$ 131
2. Evaluation of the Mellin Transform $M_J(\chi; w_1)$ 134
3. Computation of the Integral $J(w_2, t)$ 137
4. Evaluation of the Mellin Transform $M_J(\chi; w_2)$ 140

References 143
1. Introduction

(1.1) Let K be a number field and let G be the group $GL(4)$ regarded as an algebraic group over K. Suppose that π is a cuspidal automorphic representation of G. Thus, conjecturally, π is associated to a representation τ of the hypothetical Langlands group L_K into $L^0 = GL(4, \mathbb{C})$. Suppose furthermore that π is self-contragredient. Then either the symmetric square L-function or the exterior square L-function of π has a pole at $s = 1$. Assume that the exterior square L-function has a pole at $s = 1$. Conjecturally, this means that $\wedge^2 \tau$ has a fixed vector, and hence that τ factors through the symplectic group in 4 variables $Sp(4, \mathbb{C})$, which is the L-group of $SO(5, K)$. Thus it is predicted that π is the functorial image of a cuspidal automorphic representation π' (or rather a packet of representations) of the group $SO(5)$. On the other hand, the condition that the exterior square L-function has a pole at $s = 1$ can be read directly on the space of the representation π, due to the integral representation for the exterior square L-function given by Jacquet and Shalika [JS]. More precisely, let H be the Shalika subgroup of $GL(4)$

$$H = \left\{ \begin{pmatrix} g & \ \\ I_2 & I_2 \end{pmatrix} \mid g \in GL(2), X \in M_{2 \times 2} \right\},$$

again regarded as an algebraic group over K. If ψ is an additive character of the adeles \mathbb{A} of K trivial on K define a character still denoted ψ of $H(\mathbb{A})$ by

$$\begin{pmatrix} g & \ \\ I_2 & I_2 \end{pmatrix} \mapsto \psi(trX).$$

Then the exterior square L-function has a pole at $s = 1$ if and only if π is distinguished with respect to ψ, in the sense that there is a vector ϕ in the representation π such that

$$\int \phi(h) \psi(h) \, dh \neq 0.$$

More generally, we can consider automorphic representations which are essentially self-contragredient, that is, self-contragredient up to twist by a character. This amounts to replacing the exterior square L-function in the above discussion by a suitable twist. A pole at $s = 1$ conjecturally implies that the representation τ factors through the group of symplectic similitudes $GSp(4, \mathbb{C})$, which is the L-group of $GSp(4, K)$. This means that the representation π should be distinguished with respect to a character of the form $h \mapsto \chi(det g) \psi(trX)$.
(1.2) The above considerations suggest the existence of a trace formula of the following type. For simplicity, we restrict ourselves to the study of self-contragredient representations with trivial central character, and we consider only the character ψ of the Shalika subgroup. Let Φ be a smooth function of compact support on $G(\mathbb{A})$. Define as usual a kernel function

$$K_\Phi(g_1, g_2) = \sum_{\xi \in G(K)} \Phi(g_1^{-1} \xi g_2).$$

Similarly, let G' be the group $GSp(4)$ regarded as an algebraic group over K, let Φ' be a smooth function of compact support on $G'(\mathbb{A})$, and define the kernel function

$$K_{\Phi'}(g'_1, g'_2) = \sum_{\xi' \in G'(K)} \Phi'(g'^{-1}_1 \xi' g'_2).$$

The trace formula in question takes the form:

$$(1.2) \quad \int K_\Phi(h^{-1}, n) \psi(h) \theta(n) \, dh \, dn = \int K_{\Phi'}(n_1, n_2 z) \theta'(n_1^{-1} n_2) \, dn_1 \, dn_2 \, dz.$$

Here h is integrated over the Shalika subgroup, n, n_1, n_2 are integrated over the unipotent radicals of the respective Borel subgroups, θ, θ' are nondegenerate characters, and z is integrated over the center of $GSp(4)$. Both sides can be computed in terms of orbital integrals, that is, integrals taken over double cosets of the appropriate groups. Not all double cosets contribute. There is a bijection between the relevant double cosets of the two groups, and the above identity holds if the corresponding orbitals integrals are equal. This is described in more detail below. Assuming that there are enough pairs Φ, Φ' satisfying this condition of matching orbital integrals, spectral expansions of the kernels should allow one to derive from this identity another identity asserting that

$$\int K_{\text{cusp}}^c(h^{-1}, n) \psi(h) \theta(n) \, dh \, dn = \int K_{\text{cusp}}^c(n_1, n_2 z) \theta'(n_1^{-1} n_2) \, dn_1 \, dn_2 \, dz.$$

Here the exponent cusp is used to indicate that only the cuspidal part of the kernel is considered. (In fact, one expects that some discrete terms will have to be added to the cuspidal kernel.)

What are the applications of such an identity? Via the twisted trace formula, one expects to be able to establish that (essentially) self-contragredient automorphic representations of $GL(4)$ whose (possibly twisted) exterior square L-function has a pole are functorial images from the group $GSp(4)$. The present trace formula would then establish that in any global packet of representations of $GSp(4)$ there is at least one element with a global Whittaker model.

We caution that the details of this program are far from completed. In particular, we have not discussed the relation between representations of $SO(5)$ and $GL(4)$. In the case at hand, the Weil representation might be a quicker way to arrive at the same result. However, for higher ranks, the Weil representation is not available and one has to resort to a trace formula of the above type. In that case the group $GSp(4)$ is to be replaced by a spin group whose L-group is the $GSp(2n, \mathbb{C})$.
2. The Shalika Subgroup H of $GL(4)$: Relevant Double Cosets and Kloosterman Integrals

(2.1) For convenience, let us write H instead of $H(K)$ for the Shalika subgroup of $GL(4, K)$:

$$H = \left\{ \begin{pmatrix} g & \ast \\ g' & X \end{pmatrix} \begin{pmatrix} I_2 \\ X \end{pmatrix} \middle| \begin{array}{l} g \in GL(2, K), X \in M_{2 \times 2}(K) \end{array} \right\}.$$

If B is a Borel subgroup of $GL(2, K)$, let $H(B)$ be the subgroup of the Shalika subgroup defined by

$$H(B) = \left\{ \begin{pmatrix} b & \ast \\ b & X \end{pmatrix} \begin{pmatrix} I_2 \\ X \end{pmatrix} \middle| \begin{array}{l} b \in B, X \in M_{2 \times 2}(K) \end{array} \right\}.$$
When working with the Shalika subgroup (this Section and Chapters 2 and 3), we let N denote the subgroup of $GL(4,K)$ consisting of upper triangular unipotent matrices.

The additive character ψ gives rise to a character of the group H, which we shall again denote by ψ, by the formula (1.1). In addition, let θ denote the character of N given by

$$\theta(n) = \psi(n_{1,2} + n_{2,3} + n_{3,4}).$$

(2.2) A double coset HrN of $GL(4,K)$ is said to be H-relevant if the map

$$hrn \mapsto \psi(h)\theta(n)$$

is well defined. This is the case if and only if

$$\theta(n) = \psi(rnr^{-1})$$

for all $n \in r^{-1}Hr \cap N$.

It is precisely these double cosets which enter into the relative trace formula.

To make these explicit, let W denote the Weyl group of $GL(4)$ with respect to the standard Borel subgroup B_4. Then W is isomorphic to the permutation group S_4. To make this explicit, associate with each permutation $\sigma \in S_4$ the permutation matrix with entries 1 in the $(i,\sigma(i))$ positions and 0 elsewhere. Note that with this convention, permutations are multiplied from the right, so $(12)(13) = (123)$ rather than (132), and if w is the permutation matrix corresponding to σ, then $w^{-1}m_{i,j}w = m_{\sigma(i),\sigma(j)}$. Let $\text{diag}(\cdot)$ denote the 4×4 diagonal matrix. Then we have

Proposition 2.1. The H-relevant double cosets of $GL(4,K)$ are

1. $H(1243)N$
2. $H\text{diag}(-a_1,a_1,1,1)N$
3. $H(132)\text{diag}(a_1,1,1,1)N$
4. $H(12)\text{diag}(a_1a_2,a_1,1,1)N$

with $a_1, a_2 \in K^\times$.

Proof. We first determine a complete set of coset representatives for the double cosets $H \backslash GL(4,K)/B_4$. Let $P_{2,2}$ be the standard parabolic subgroup of type $(2,2)$, and let $W_{2,2}$ be the subgroup of W corresponding to $P_{2,2}$. Identify W with the group of 4×4 permutation matrices as above. By the Bruhat decomposition, we have the disjoint union

$$GL(4,K) = \bigcup_{w \in W_{2,2}\setminus W} P_{2,2}wB_4.$$

Now a set of coset representatives for $H \backslash P_{2,2}$ is given by matrices of the form

$$\begin{pmatrix} g & \cdot \\ \cdot & I_2 \end{pmatrix}$$

with $g \in GL(2,K)$. Such a g may be written $g = b_1w_1b_2$ with w_1 a 2×2 permutation matrix and b_1 and b_2 either upper or lower triangular (with independent choices). Changing on the left by an element of the Shalika subgroup,

$$H\begin{pmatrix} g & \cdot \\ \cdot & I_2 \end{pmatrix}wB_4 = H\begin{pmatrix} w_1b_2 & \cdot \\ \cdot & b_1^{-1} \end{pmatrix}wB_4.$$
But for correct choices of upper/lower triangularity of the b_i, they may each be pulled past the w and absorbed in B_4. It follows that for any $w \in W$,

$$P_{2,2}wB_4 = HwB_4 \cup H(12)wB_4.$$

This gives the decomposition

$$(2.2) \quad GL(4, K) = \bigcup_{<(34)> \setminus W} HwB_4. \quad \text{(disjoint union)}$$

Next let us determine which of the twelve double cosets HwB_4 in (2.2) may contain a relevant double coset $HwaN$, for some diagonal a. Suppose that w corresponds to a permutation σ. Consideration of the characters ψ and θ shows that (2.1) holds only when the following conditions are satisfied:

1. If $\sigma(3) < \sigma(1)$, then $\sigma(1) = \sigma(3) + 1$.
2. If $\sigma(4) < \sigma(2)$, then $\sigma(2) = \sigma(4) + 1$.
3. If $\sigma(3) < \sigma(2)$, then $\sigma(2) \neq \sigma(3) + 1$.
4. If $\sigma(4) < \sigma(1)$, then $\sigma(1) \neq \sigma(4) + 1$.
5. If $\sigma(1) < \sigma(2)$ and $\sigma(3) < \sigma(4)$, then either $\sigma(1) + 1 < \sigma(2)$ and $\sigma(3) + 1 < \sigma(4)$, or $\sigma(1) + 1 = \sigma(2)$ and $\sigma(3) + 1 = \sigma(4)$.

Using these conditions, one finds that if a double coset $HwaN$ is relevant, then (modulo left multiplication by (34)), σ must be one of the permutations 1, (12), (132), and (1243).

To complete the proof of the Proposition, one checks that for each of these four permutations, the double cosets of the form $HwaN$ satisfying (2.1) are precisely those of the form listed. We omit this calculation.

(2.3) For each relevant double coset, we now introduce an integral of the unit element Ξ of the $GL(4)$ Hecke algebra. The integral is to be compared with an appropriate symplectic integral. To facilitate this comparison, it is useful to consider a Mellin transform of the integral against a quasicharacter of the appropriate torus.

The integral is described as follows. Let Ξ be the characteristic function of the maximal compact subgroup $K = GL(4, O)$ of $GL(4, K)$. Suppose that the double coset $HwaN$ is relevant. Then we consider

$$F(w, a) = \int_N \int_{H/H \cap wNw^{-1}} \Xi(hwan) \psi(h) \theta(n) \, dh \, dn,$$

where dh is the quotient measure obtained from the normalized right Haar measure on H.

A first simplification of (2.3) is given as follows. Let B denote a Borel subgroup of $GL(2, K)$, and let K_1 denote the compact subgroup $GL(2, O)$. Then with suitable normalizations of the Haar measures

$$\int_{GL(2, K)} dg = \int_{K_1} dk_1 \int_B db.$$
Moving the matrix \(\begin{pmatrix} k_1 & 0 \\ 0 & k_1 \end{pmatrix} \) \(\in \mathcal{K} \) to the left and using the \(\mathcal{K} \)-invariance of \(\Xi \), we may do the \(\mathcal{K}_1 \) integral. We find that the integral (2.3) is unchanged if we replace \(H \) by the subgroup \(H(B) \).

We shall compute the integral \(F((1243), I_4) \) directly momentarily. To study the remaining integrals, let \(\chi_1, \chi_2 \) be quasicharacters of \(K \). Let us introduce the following formal Mellin transforms of \(F(w, a) \):

\[
M_F(\chi_1; 1) = \int_{K^\times} F(1, \text{diag}(-a_1, a_1, 1, 1)) \chi_1(a_1) \, d^\times a_1
\]

(2.4)

\[
M_F(\chi_1; (132)) = \int_{K^\times} F((132), \text{diag}(a_1, 1, 1, 1)) \chi_1(a_1) \, d^\times a_1
\]

(2.5)

\[
M_F(\chi_1, \chi_2; (12)) = \int_{(K^\times)^2} F((12), \text{diag}(a_1 a_2, a_1, 1, 1)) \chi_1(a_1) \chi_2(a_2) \, d^\times a_1 \, d^\times a_2.
\]

(2.6)

The meaning of these formal integrals is the following. Let \(\phi_A \) be the characteristic function of the compact set \(q^{-A} \leq |x| \leq q^A \), and introduce the integrals

\[
M_F(\chi_1; 1; A) = \int_{K^\times} F(1, \text{diag}(-a_1, a_1, 1, 1)) \chi_1(a_1) \phi_A(a_1) \, d^\times a_1,
\]

(2.7)

\[
M_F(\chi_1; (132); A) = \int_{K^\times} F((132), \text{diag}(a_1, 1, 1, 1)) \chi_1(a_1) \phi_A(a_1) \, d^\times a_1,
\]

(2.8)

\[
M_F(\chi_1, \chi_2; (12); A) = \int_{(K^\times)^2} F((12), \text{diag}(a_1 a_2, a_1, 1, 1)) \chi_1(a_1) \chi_2(a_2) \times \phi_A(a_1) \phi_A(a_2) \, d^\times a_1 \, d^\times a_2.
\]

(2.9)

The integrands then have compact support. If the quasicharacters \(\chi_1, \chi_2 \) are ramified, then these integrals have limits as \(A \) tends to infinity. The formal Mellin transform is by definition this limit. In (2.7) and (2.8), when the quasicharacter \(\chi_1 \) is unramified, these integrals represent Laurent polynomials in \(\chi_1(\varpi) \). As \(A \) tends to infinity, these Laurent polynomials approach a Laurent series; this is by definition the formal Mellin transform. Here the topology on the space of Laurent series is that of pointwise convergence of the coefficients. The treatment of (2.9) is similar; the formal Mellin transform is a Laurent series in \(\chi_1(\varpi) \) and \(\chi_2(\varpi) \) when both quasicharacters are unramified, and is a Laurent series in one variable in the mixed cases.

For a fixed relevant \(w \), we occasionally suppress the dependence of \(M_F \) on \(w \).

(2.4) The quantity \(M_F(\chi_1, \chi_2; (12)) \) is evaluated in Chapter 2 of these notes. In Chapter 3 we evaluate the remaining two Mellin transforms. First, though, let us dispose of \(F((1243), I_4) \).
Proposition 2.2. $F((1243), I_4) = 1$.

Proof. A direct computation shows that with $w = (1243)$

$$H \cap wNw^{-1} = \left\{ \begin{pmatrix} 1 & x \\ 1 & 1 \\ 1 & x \end{pmatrix} \begin{pmatrix} 1 & 1 \\ r & s \\ u & 1 \end{pmatrix} \right\}.$$

Replacing H by $H(B)$ where B is the standard Borel subgroup of $GL(2)$ consisting of upper triangular matrices, we thus arrive at the expression

$$F((1243), I_4) = \int \Xi \begin{pmatrix} t_3 \\ t_3 \\ \gamma t_3 \\ t_4 \end{pmatrix} n \theta(n) \left| \frac{t_3}{t_4} \right|^2 d\gamma d^x t_3 d^x t_4 dn$$

$$= \int \Xi \begin{pmatrix} t_3 \\ t_3 \\ \gamma t_3 \\ t_4 \end{pmatrix} n \theta(n) \left| \frac{t_3}{t_4} \right|^2 d\gamma d^x t_3 d^x t_4 dn,$$

where for the last step we have moved (1243) to the left and used the K-invariance of Ξ. But a matrix calculation (or the use of Plücker coordinates, as in Chapter 2 below) shows that the matrix

$$\begin{pmatrix} t_3 & t_3 & t_4 & \gamma t_3 \end{pmatrix}$$

is in KN if and only if it is in K. Thus the integrand is nonzero only when $n \in K$, and it is easy to see that the integral reduces to 1.

3. The Symplectic Group $GSp(4)$: Relevant Double Cosets and Kloosterman Integrals

(3.1) We consider the similitude symplectic group $G'(K) = GSp(4, K)$ for the skew symmetric matrix

$$w_0 = \begin{pmatrix} 0 & w_s \\ -w_s & 0 \end{pmatrix}$$

where we have set:

$$w_s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

We denote by T the group of diagonal matrices in $G'(K)$. It consists of all matrices of the form

$$t = \text{diag}(a_1, a_2, a_2^{-1} \lambda, a_1^{-1} \lambda).$$
The scalar λ is the similitude ratio. If $\lambda = 1$ the matrix t is in the symplectic group and the positive roots take the following values on t:

$$\alpha_1 = a_1 a_2^{-1}, \alpha_2 = a_2^2, \alpha_1 \alpha_2 = a_1 a_2, \alpha_1^2 \alpha_2 = a_1^2.$$

We let Z be the center of $G'(K)$. When working with the group $GSp(4, K)$ (this Section and Chapters 4 and 5), we let N denote the group of upper triangular symplectic matrices with unit diagonal. Thus N is the semi-direct product of the group V of matrices of the form:

$$v = \begin{pmatrix} 1 & x & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -x \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

and the group U of matrices of the form:

$$u = \begin{pmatrix} 1 & 0 & p & r \\ 0 & 1 & s & p \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

We define a generic character θ of N by

$$\theta(u) = \psi(s), \theta(v) = \psi(x).$$

Also, let \overline{N} be the opposite (transposed) subgroup to N.

(3.2) A double coset $\overline{N} r N$ is said to be relevant if the map $$t n_1 r n_2 \mapsto \theta(n_1 n_2)$$ is well defined. This is the case if and only if

$$\theta(n) = \theta(t(rnr^{-1})) \quad \text{for all} \quad n \in r^{-1} N r \cap N.$$

It is precisely these cosets which enter into the relative trace formula. Relevant double cosets are easily described: as in any split group, they are associated with the standard parabolic subgroups $P = MU$ of G'. Let w_M be the longest element in $W \cap M$ and t an element of the center of M. Then the double coset of $w_M t$ is relevant and all relevant double cosets have a unique representative of this form for a suitable M.

More precisely, let w_1 and w_2 be the following matrices:

$$w_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}. $$

Then the a set of representatives for the relevant double cosets consists of the matrices of the form

$(1) \quad t$
$(2) \quad w_1 \text{ diag}(a_1, a_2, -a_2, -a_1^{-1} a_2^2)$
$(3) \quad w_2 \text{ diag}(a_1, a_1^{-1} \lambda, a_1^{-1} \lambda)$
$(4) \quad w_0 \text{ diag}(a_1, a_1, a_1, a_1).$
4. THE MAIN THEOREM

(3.3) Let Ξ' be the characteristic function of $GL(4, \mathcal{O}) \cap GSp(4, F)$. For each relevant double coset $N wt N$ we consider the integrals

\begin{equation}
J(w, t) = \int_{N \cap w^{-1} N \setminus N} \Xi'(t n_2 w t n_1) \theta(n_1 n_2) \, dn_2 \, dn_1,
\end{equation}

\begin{equation}
J'(w, t) = \int_{Z} \int_{N \cap w^{-1} N \setminus N} \int_{N} \Xi'(t n_2 w z t n_1) \theta(n_1 n_2) \, dn_2 \, dn_1 \, dz.
\end{equation}

Our main result compares these integrals to the integrals $F(w, a)$ introduced in paragraph (2.3).

(3.4) First, for completeness, we record the value of $J(w_0, I_4)$. The proof is similar to that given in paragraph (2.4).

\begin{proposition}
\[J(w_0, I_4) = 1. \]
\end{proposition}

To study the remaining integrals, let χ_1, χ_2 be quasicharacters of K^\times. Let us introduce the following formal Mellin transforms of the functions $J'(w, t)$:

\begin{equation}
M_J(\chi_1; w_1) = \int_{K^\times} J'(w_1, \text{diag}(a, 1, -1, -a^{-1})) \, \chi_1(a) \, d^\times a,
\end{equation}

\begin{equation}
M_J(\chi_1; w_2) = \int_{K^\times} J'(w_2, \text{diag}(a, a, 1, 1)) \, \chi_1(a) \, d^\times a,
\end{equation}

\begin{equation}
M_J(\chi_1, \chi_2; 1) = \int_{(K^\times)^2} J'(1, \text{diag}(a_1 a_2, a_2, a_1^{-1})) \, \chi_1(a_1) \, \chi_2(a_2) \, d^\times a_1 \, d^\times a_2.
\end{equation}

The quantity $M_J(\chi_1, \chi_2; 1)$ is evaluated in Chapter 4 and the other quantities in Chapter 5.

4. The Main Theorem

(4.1) To state the main theorem, we let $\sigma a \leftrightarrow wt$ be the bijection between relevant double coset representatives on the two groups described as follows. The double cosets wt for $GSp(4)$ are taken modulo the center. Then the bijection is given by

\begin{align*}
(12) \text{diag}(a_1 a_2, a_1, 1, 1) & \leftrightarrow \text{diag}(-a_1 a_2, -a_2, 1, a_1^{-1}) \\
\text{diag}(-a_1, a_1, 1, 1) & \leftrightarrow w_1 \text{diag}(a_1, 1, -1, -a_1^{-1}) \\
(132) \text{diag}(a_2, 1, 1, 1) & \leftrightarrow w_2 \text{diag}(a_2, a_2, 1, 1) \\
(1243) & \leftrightarrow w_0.
\end{align*}

The main theorem states that the orbital integrals introduced above for the two different groups are in fact equal.
Main Theorem. For the bijection of relevant cosets $\sigma a \leftrightarrow wt$, the relative orbital integral on $GL(4)$ with respect to the Shalika subgroup is equal to the Kloosterman orbital integral on $GSp(4)$:

$$F(\sigma, a) = J'(w, t).$$

To establish the Main Theorem, we shall compare these two functions of the form $f(a_1, a_2)$ (resp. $f(a_1), f(a_2)$), by comparing their formal Mellin transforms in the sense described above. As we shall show in this work, these formal Mellin transforms are in fact equal. For the main relevant orbits, these Mellin transforms are computed in Chapters II (M_F) and IV (M_J), and the comparison is also included in Chapter IV. For the other two nontrivial relevant orbits, the Mellin transforms are computed in Chapters III (M_F) and V (M_J), and the comparisons are included in Chapter V.

5. Kloosterman Integrals and Gauss Sums

(5.1) We end this Chapter with a brief review of Kloosterman integrals and of Gauss sums. For $r, s \in K^\times$, the $(GL(2))$ Kloosterman integral $Kl(r, s)$ is defined by the formula

$$Kl(r, s) = \int_{|sx|=1} \psi \left(x - \frac{s}{rx} \right) dx.$$

Here dx denotes the Haar measure on K, normalized so that O has measure 1. The following proposition allows one to evaluate this integral explicitly when $|rs| \neq 1$.

Proposition 5.1. The Kloosterman integral satisfies the following properties:

1. $Kl(r, s) = |rs|^{-1} Kl(s^{-1}, r^{-1})$.
2. Suppose $|rs| < 1$.

 (i) If $|r| \geq 1$, then $Kl(r, s) = (1 - q^{-1})|r|^{-1}$.

 (ii) If $|r| < 1$, $|s| > 1$, then $Kl(r, s) = 0$.

 (iii) If $|r| < |rs|$, $|s| \leq 1$, then $Kl(r, s) = 0$.

 (iv) If $|r| = |rs|$, $|s| \leq 1$, then $Kl(r, s) = -1$.

(5.2) If χ is a ramified quasicharacter of K and f is a positive integer, we shall say that χ has conductor f if χ is trivial on the subgroup $1 + \mathcal{O}$ of O^\times, but not on the subgroup $(1 + \mathcal{O}) \cap O^\times$. If χ is a ramified quasicharacter of conductor f, let $G(\chi)$ denote the Gauss sum

$$G(\chi) = \int_{|s|=q^f} \chi(s)\psi(s) ds.$$

Then one has

$$\int_{|s|=q^h} \chi(s)\psi(s) ds = \delta_{h, f} G(\chi),$$

where $\delta_{h, f}$ denotes the Kronecker delta, for if $h \neq f$ then the oscillations give zero.
REFERENCES

[F] S. Friedberg, Poincaré series for $GL(n)$: Fourier expansion, Kloosterman sums, and algebro-geometric estimates, Math. Zeitschrift 196 (1987), 165-188.

[FJ] S. Friedberg and H. Jacquet, Le lemme fondamental pour le sous-groupe de Shalika de $GL(4)$, Comptes Rendus de l’Académie des Sciences, Paris 316 (1993), 407-410.

[G] D. Goldfeld, Kloosterman zeta functions for $GL(n, \mathbb{Z})$, Proc. Intern. Cong. Math. Berkeley 1 (1986), 417-424.

[I] H. Iwaniec, On Waldspurger’s Theorem, Acta Arith. 49 (1987), 205-212.

[J1] H. Jacquet, On the nonvanishing of some L-functions, Proc. Indian Acad. Sci. (Math. Sci.) 97 (1987), 117-155.

[J2] ______, Relative Kloosterman integrals for $GL(3)$: II, Canadian J. Math. 44 (1992), 1220-1240.

[J3] ______, The continuous spectrum of the relative trace formula for $GL(3)$ over a quadratic extension, Israel J. Math. (to appear).

[JL] H. Jacquet and K. F. Lai, A relative trace formula, Compositio Math. 54 (1985), 243-310.

[JLR] H. Jacquet, K. F. Lai, and S. Rallis, A trace formula for symmetric spaces, Duke Math. J. 70 (1993), 305-372.

[JS] H. Jacquet and J. Shalika, Exterior square L-functions, in Automorphic Forms, Shimura Varieties, and L-functions, Academic Press, 1990, pp. 143–226.

[JY1] H. Jacquet and Y. Ye, Une remarque sur le changement de base quadratique, Comptes Rendus de l’Académie des Sciences, Paris 311 (1990), 671–676.

[JY2] ______, Relative Kloosterman integrals for $GL(3)$, Bull. Soc. Math. France 120 (1992), 263-295.

[JY3] ______, Distinguished representations and quadratic base change for $GL(3)$ (preprint).

[M] Z. Mao, Relative Kloosterman integrals for $GL(3)$: III, Canadian J. Math. 45 (1993), 1211-1230.

[S] G. Stevens, Poincaré series on $GL(r)$ and Kloosterman sums, Math. Ann. 277 (1987), 21-51.

[Y1] Y. Ye, Kloosterman integrals and base change for $GL(2)$, J. reine angew. Math. 400 (1989), 57-121.

[Y2] ______, The Fundamental lemma of a relative trace formula for $GL(3)$, Compositio Math. 89 (1993), 121-162.

[Y3] ______, An integral transform and its applications, Math. Ann. (to appear).

[Z] ______, D. Zagier, Modular forms associated to real quadratic fields, Invent. Math. 30 (1975), 1-46.