Irreducible euclidean representations of the Fibonacci groups

Rafał Lutowski

Let Γ be a crystallographic group of dimension n, i.e. a discrete and cocompact subgroup of the group $E(n) = O(n) \times \mathbb{R}^n$ of isometries of the euclidean space \mathbb{R}^n. If Γ is in addition torsionfree we call it a Bieberbach group. In that case the orbit space $X = \mathbb{R}^n/\Gamma$ is a flat manifold (closed connected Riemannian manifold with sectional curvature equal to zero) and $\Gamma = \pi_1(X)$.

Let $r, n \in \mathbb{N}$. The Fibonacci group $F(r, n)$ is a group on n generators a_0, \ldots, a_{n-1} with relations $a_i \ldots a_{i+r} = a_{i+r+1}$ where $i = 0, \ldots, n - 1$ and subscripts are taken modulo n. Fibonacci groups have some interesting geometric interpretation. For example $F(2, 2n), n \geq 4$ is the fundamental group of a certain closed hyperbolic 3-manifold and $F(2, 6)$ is the fundamental group of the 3-dimensional flat manifold (see below) called Hantzsche-Wendt manifold.

In the paper [1] Andrzej Szczechpański proves that in every odd dimension $n \geq 3$ there exist a Hantzsche-Wendt group, i.e. a Bieberbach group for which the holonomy group of the corresponding flat manifold is isomorphic to \mathbb{Z}_{2}^{n-1}, which is epimorphic image of the Fibonacci group $F(n - 1, 2n)$.

In the review of the paper, available in MathSciNet, Juan Pablo Rossetti states that the only two Hantzsche-Wendt groups of dimension 5 are both epimorphic images of the group $F(4, 10)$. He also suggests that there may exist many epimorphisms of the type presented in the paper.

We show that for every odd n the family of subgroups of $E(n)$ which are epimorphic images of the Fibonacci group $F(n - 1, 2n)$ not only includes the family of Hantzsche-Wendt groups. Groups in this family don’t even have to be torsionfree and even more – they don’t have to be crystallographic.

References

[1] A. Szczechpański, The Euclidean representations of the Fibonacci groups, Q. J. Math. 52 (2001), no. 3, 385–389