ICU退室について考える

慈恵ICU
2020/09/08
山口庸子/ 内野滋彦
ICUで治療継続が必要な患者の退室を無くし、ICU退室後の防げる死亡や重症化を無くしたい。

そもそもICU退室についてあまり知らない。。。
今日の流れ

1. ICU退室の疫学
2. ICU退室の指標
3. ICU再入室を減らすための介入
4. ICU再入室はICUの質の評価になりうるか？
1. ICU退室の疫学

Q1
ICUから退室後の転帰は？
 - 院内死亡率
 - ICU再入室率
A meta-analysis to derive literature-based benchmarks for readmission and hospital mortality after patient discharge from intensive care

Critical Care (2014) 18:715

- **目的**
 - ICU退室患者のICU再入室率と病院死亡率を、文献に基づいた要約推定値を導き出すこと。

- **デザイン**
 - メタアナリシス

- **期間**
 - 2013年3月までに発表された論文

- **使用したデータベース**
 - MEDLINE、Embase、CINAHL、Cochrane Central Register of Controlled Trials
9926 Potentially relevant articles identified and screened
EMBASE - 4752
MEDLINE - 3670
CINAHL - 1318
PUBMED - 1299
COCHRANE - 152

2003 Duplicate articles excluded

7923 Articles for evaluation of abstract

7775 Articles excluded based on title/abstract review

148 Articles for evaluation of full-text

4 Articles identified from references

94 Excluded after full text review and citation search
23 Not original research
35 No outcome of interest
11 Unrelated to ICU discharge
9 Case-control
4 Case report/series
4 No full text available
3 Discharge from step down unit
3 No comparator group
2 No prognostic factor
Kappa 0.84, 95% CI (0.67-1.00)

58 Articles included in systematic review

58 Articles included in the meta-analysis:
46 Articles reported ICU readmission
49 Articles reported hospital mortality

Figure 1 Selection process for articles for review. CI, Confidence interval; ICU, Intensive care unit.
Table 2 Pooled cumulative incidence of ICU readmission and hospital mortality after patient discharge from ICU

Variables	ICU readmission			Hospital mortality				
	Studies, n	Patients, n	Fixed effects pooled proportion (95% CI)	Random effects pooled proportion (95% CI)	Studies, n	Patients, n	Fixed effects pooled proportion (95% CI)	Random effects pooled proportion (95% CI)
Total pooled estimates	46	2,002,269	0.040 (0.039 - 0.040)	0.063 (0.056 - 0.069)	49	1,254,183	0.033 (0.033 - 0.033)	0.068 (0.061 - 0.076)
Geographic region								
North America	16	1,591,273	0.037 (0.037 - 0.038)	0.064 (0.053 - 0.076)	13	815,876	0.030 (0.029 - 0.030)	0.050 (0.036 - 0.065)
Europe	20	77,646	0.048 (0.047 - 0.049)	0.062 (0.050 - 0.074)	27	95,681	0.025 (0.024 - 0.026)	0.081 (0.064 - 0.098)
Australia / New Zealand	5	327,712	0.054 (0.054 - 0.055)	0.051 (0.047 - 0.056)	6	338,675	0.054 (0.053 - 0.055)	0.057 (0.051 - 0.063)
Other regions	5	5,638	0.049 (0.043 - 0.054)	0.081 (0.050 - 0.111)	3	3,951	0.010 (0.007 - 0.013)	0.119 (0.000 - 0.256)
ICU type								
Medical-surgical ICU	28	883,365	0.056 (0.055-0.056)	0.058 (0.054 - 0.061)	29	471,305	0.044 (0.044 - 0.045)	0.086 (0.073 - 0.099)
Cardiovascular ICU	6	23,195	0.038 (0.035-0.040)	0.044 (0.024 - 0.065)	6	22,119	0.007 (0.006 - 0.008)	0.012 (0.006 - 0.019)
Other ICU types	12	1,095,709	0.032 (0.032-0.033)	0.081 (0.065 - 0.096)	14	760,759	0.031 (0.031 - 0.032)	0.066 (0.049 - 0.082)
Patient characteristics								
Age <60	16	376,251	0.054 (0.053 - 0.054)	0.065 (0.057 - 0.072)	18	378,326	0.041 (0.041 - 0.042)	0.092 (0.075 - 0.109)
Age >60	29	1,624,824	0.038 (0.037 - 0.038)	0.062 (0.053 - 0.070)	28	865,604	0.033 (0.032 - 0.033)	0.060 (0.049 - 0.070)
SOI predicted <10% mortality	3	3,369	0.086 (0.077 - 0.095)	0.086 (0.077 - 0.095)	2	9,059	0.005 (0.003 - 0.006)	0.044 (0.000 - 0.125)
SOI predicted >10% mortality	31	1,534,181	0.036 (0.036 - 0.037)	0.064 (0.056 - 0.072)	39	1,228,973	0.035 (0.035 - 0.036)	0.076 (0.067 - 0.084)

【ICU再入室率】
- 固定効果モデルでプールされた累積発生率: 患者100人あたり4.0回
- ランダム効果モデルでプールされた累積発生率: 患者100人あたり6.3回

【院内死亡率】
- 固定効果プールされた病院死亡率累積発生率: 患者の退院100人当たり3.3人
- ランダム効果プールされた累積発生率: 患者の退院100人当たり6.8人

【不均一性】
- これらの推定値の間の不均一性は高く、I²値は99.7%、P<0.001であった。
Table 2 Pooled cumulative incidence of ICU readmission and hospital mortality after patient discharge from ICU

Variables	ICU readmission	Hospital mortality						
	Studies, n	Patients, n	Fixed effects pooled proportion (95% CI)	Random effects pooled proportion (95% CI)	Studies, n	Patients, n	Fixed effects pooled proportion (95% CI)	Random effects pooled proportion (95% CI)
DNR patients excluded	13	1,372,056	0.035 (0.035 - 0.035)	0.068 (0.056 - 0.080)	14	1,132,425	0.022 (0.021 - 0.023)	0.057 (0.045 - 0.070)
DNR patients included	33	630,213	0.055 (0.055 - 0.056)	0.059 (0.054 - 0.064)	35	121,758	0.035 (0.035 - 0.035)	0.076 (0.064 - 0.089)
High study quality	36	1,643,624	0.037 (0.037 - 0.037)	0.066 (0.058 - 0.073)	40	1,215,780	0.033 (0.033 - 0.033)	0.071 (0.063 - 0.079)
Low study quality	10	358,645	0.058 (0.057 - 0.059)	0.052 (0.043 - 0.061)	9	38,403	0.034 (0.032 - 0.036)	0.062 (0.033 - 0.091)
Adjusted for confounding factors	41	1,618,703	0.037 (0.036 - 0.037)	0.060 (0.054 - 0.067)	43	1,231,324	0.034 (0.034 - 0.035)	0.065 (0.057 - 0.072)
Not adjusted for confounding factors	5	383,566	0.063 (0.062 - 0.064)	0.076 (0.069 - 0.082)	6	22,859	0.013 (0.011 - 0.014)	0.110 (0.034 - 0.186)
Follow-up >21 days	41	1,909,407	0.057 (0.057 - 0.058)	0.061 (0.057 - 0.065)	45	538,571	0.045 (0.044 - 0.045)	0.076 (0.066 - 0.086)
Follow-up <21 days	5	911,862	0.029 (0.029 - 0.029)	0.056 (0.037 - 0.074)	4	715,612	0.028 (0.027 - 0.028)	0.016 (0.000 - 0.036)
Patient number >1000	37	1,998,382	0.040 (0.039 - 0.040)	0.060 (0.053 - 0.067)	39	1,250,654	0.033 (0.033 - 0.033)	0.060 (0.052 - 0.068)
Patient number <1000	9	3,887	0.058 (0.051 - 0.065)	0.086 (0.046 - 0.126)	10	3,529	0.085 (0.076 - 0.094)	0.129 (0.089 - 0.168)
Multiple ICU study	19	1,934,123	0.040 (0.039 - 0.040)	0.051 (0.035 - 0.066)	20	1,177,518	0.035 (0.035 – 0.036)	0.076 (0.064 - 0.087)
Single ICU study	27	68,146	0.041 (0.040 - 0.043)	0.063 (0.059 - 0.067)	29	76,665	0.017 (0.016 - 0.018)	0.064 (0.053 - 0.075)

*CI, Confidence interval; DNR, Do-not-resuscitate order; ICU, Intensive care unit; SOI, Severity of illness.

校正

DNR患者を除外した研究では、DNR患者を含む研究と比較して発生率は低かった。
- 再入室累積発生率: 100人の患者の退院あたり3.5人対5.5人
- 病院死亡率: 100人の患者の退院あたり2.2人対3.5人
1. ICU退室の疫学

Q2
ICUへ再入室する患者の特徴は？
また再入室後の転帰は？
Readmissions to Intensive Care:
A Prospective Multicenter Study
in Australia and New Zealand

Crit Care Med 2017;45:290-297

• 目的
 – ICU再入室患者の人口統計学と転帰を記述する。
 – ICUへの再入室が転帰の独立した予測因子であるかどうかを判断すること

• 対象
 – 40のICU:オーストラリア（n=33）とニュージランド（n=7）

• デザイン
 – 前向き多施設観察研究

• 期間
 – 2009年10月～2010年2月
Table E3. Primary diagnosis categories on admission to ICU (APACHE III, major groups)

Medical		Surgical	
Cardiovascular	664 (6.52%)	Cardiovascular	2723 (26.74%)
Respiratory	1101 (10.81%)	Respiratory	409 (4.02%)
Gastrointestinal	371 (3.64%)	Gastrointestinal	1205 (11.83%)
Neurological	495 (4.86%)	Neurological	419 (4.12%)
Sepsis	610 (5.99%)		
Trauma	489 (4.8%)	Trauma	241 (2.37%)
Metabolic	578 (5.68%)		
Hematological	35 (0.34%)		
Renal	159 (1.56%)	Renal	159 (1.56%)
Gynecological	89 (0.87%)		
Orthopedic	281 (2.76%)		
Other	69 (0.68%)	Other	85 (0.84%)
84%が計画外の再入室
計画外の再入室のうち38.6%は、新たな問題が理由。
計画外の再入室のうち10.2%は予防できる可能性があると評価した。
計画外のICU再入室は計画的再入室よりも有意に早く発生。
Table E6. Comparisons between patients readmitted to ICU early (≤72 hours following original ICU discharge) and late (>72 hours following original ICU discharge).

	Early Readmit	Late Readmit	p-value
Unplanned readmission	224 (93.7%)	243 (76.2%)	<0.001
Admission for new problem	89 (37.6%)	132 (41.6%)	0.336
Admission from OR	34 (14.2%)	121 (37.9%)	<0.001
Cardiac surgery originally	31 (12.5%)	36 (10.8%)	0.600
In retrospect, premature previous	26 (10.9%)	6 (1.9%)	<0.001
In retrospect, admission preventable?	33 (13.8%)	22 (6.9%)	0.009
Limitation of medical treatment at discharge from ICU	8 (3.2%)	11 (3.3%)	1.0
Readmission following arrest	12 (5.0%)	14 (4.4%)	0.840
Problems with ICU care on original admission	14 (5.9%)	8 (2.5%)	0.05
Premature discharge on original admission	16 (6.4%)	10 (3.0%)	0.066
Discharge delayed >8 H on original admission	59 (23.8%)	96 (28.8%)	0.185
MV at any time	143 (57.7%)	203 (61.0%)	0.442
MV in last 24 hours	52 (21.0%)	57 (17.1%)	0.283

ICU退室後、早期（72時間以内）に再入室した患者の特徴

- 計画外の再入室
- 後ろ向きに見ると、ICUからの退室が時期尚早だった（10.9%）
- 後ろ向きに見ると、再入室を防げた可能性がある（13.8%）
Table E6. Comparisons between patients readmitted to ICU early (≤ 72 hours following original ICU discharge) and late (>72 hours following original ICU discharge).

	Early Readmit	Late Readmit	p-value
Unplanned readmission	224 (93.7%)	243 (76.2%)	<0.001
Admission for new problem	89 (37.6%)	132 (41.6%)	0.336
Admission from OR	34 (14.2%)	121 (37.9%)	<0.001
Cardiac surgery originally	31 (12.5%)	36 (10.8%)	0.600
In retrospect, premature previous	26 (10.9%)	6 (1.9%)	<0.001
In retrospect, admission preventable?	33 (13.8%)	22 (6.9%)	0.009
Limitation of medical treatment at discharge	8 (3.2%)	11 (3.3%)	1.000
Readmission following arrest	12 (5.0%)	14 (4.4%)	0.840
Problems with ICU care on original admission	14 (5.9%)	8 (2.5%)	0.05
Premature discharge on original admission	16 (6.4%)	10 (3.0%)	0.066
Discharge delayed >8 H on original admission	59 (23.8%)	96 (28.8%)	0.185
MV at any time	143 (57.7%)	203 (61.0%)	0.442
MV in last 24 hours	52 (21.0%)	57 (17.1%)	0.283
Inotropes at any time	114 (46.0%)	161 (48.4%)	0.614
Inotropes last 24 hours	28 (11.3%)	42 (12.6%)	0.700
NIV at any time	31 (12.5%)	68 (20.4%)	0.014
NIV in last 24 hours	13 (5.2%)	26 (7.8%)	0.244
RRT at any time	19 (7.7%)	28 (8.4%)	0.761
RRT in last 24 hours	5 (2.0%)	11 (3.3%)	0.446
Duration in ICU, days	2.01 (1.01-5.04)	2.86 (1.19-5.75)	0.0193
Tracheostomy on discharge	21 (8.5%)	25 (7.5%)	0.756
Inotropes on discharge	3 (1.2%)	5 (1.5%)	1.000
Dialysis on discharge	8 (3.2%)	14 (4.2%)	0.662
Altered conscious state on discharge	61 (24.3%)	81 (24.3%)	1.000
TPN on discharge	7 (2.8%)	29 (8.7%)	0.005
Hospital mortality	47 (18.9%)	75 (22.5%)	0.305

OR is operating room, MV is mechanical ventilation, NIV is non-invasive ventilation, RRT is renal replacement therapy, TPN is total parenteral nutrition.
【計画外のICU再入室リスク要因】

- 年齢
- ICU入室期間が長い
- 意識状態の変化
- 人工呼吸器の使用歴

は再入室リスクが高い。

- 退室時に治療制限がある
- 心臓手術後の患者は再入室リスクが低い。
【患者因子を調整し再入室が死亡率に及ぼす影響】

- 年齢
- 内科的診断
- 強心薬使用
- 治療制限

は死亡率と有意に関連。

- ICUへの再入室は死亡率の独立したリスク因子ではなかった。

TABLE 4. Hazard Ratios (95% CIs) of Prediction of Mortality Taking Into Account Demographic and Clinical Factors as Well as Adjustment for Readmission

Variable	Hazard Ratio	95% CI	p
Initial ICU admission	1.000	1.000	
First readmission	0.88	0.62–1.26	0.493
Second readmission	0.90	0.41–2.01	0.804
Third readmission	0.44	0.04–4.99	0.503
Age (yr)	1.03	1.02–1.03	<0.001
Cardiac surgical patient	0.52	0.29–0.91	0.022
Medical patient	1.43	1.11–1.85	0.007
Limitation of medical treatment order	17.78	13.72–23.05	<0.001
Tracheostomy	0.38	0.25–0.58	<0.001
Inotrope history	3.47	1.65–7.28	0.001
Renal replacement therapy	1.56	0.94–2.57	0.080
Ward origin of readmission	1.70	1.32–2.19	<0.001
Frailty (q); Log-Hazard Scale	0.82	0.67–0.96	<0.001

The full statistical model is included in the supplemental digital content.
Out-of-hours discharge from intensive care, in-hospital mortality and intensive care readmission rates: a systematic review and meta-analysis

Intensive Care Med (2018) 44:1115–1129

• 目的
 – 退室時間と死亡率/ICU再入室との関連を調査すること
• デザイン
 – システマティックレビューとメタアナリシス
• 方法
 – 2017年6月までのMedline、Embase、Web of Knowledge、CINAHL、Cochrane Library、Open Greyを検索した。
 – ICUから病棟に退室した16歳以上の患者。
 – 特定の疾患に限定した研究は除外した。
• 結果
 - 1961件の研究が同定された。
 - 18件のコホート研究（1994年から2014年までのデータを提示）から1,191,178人の患者から未調整データを含めた。
 - "時間外"には複数の定義があり、始まりは16:00～22:00、終わりは05:59～09:00。
死亡率解析には、927,046人の患者のデータを含む16件の研究が含まれた。

- 時間外退室は、院内死亡率の有意な増加と関連していた。
- 全体的な不均一性は高かった（τ^2 statistic 90.1%）。
1,156,904人の患者を含む11の研究をICU再入室の解析対象とした。

- 時間外退室は、ICU再入室の有意な増加と関連していた。
- 不均一性は高かった（I^2 statistic 90.2%）
1. ICU退室の疫学

Q3
ICUへの再入室を予防することはできるか？
Incidence and Etiology of Potentially Preventable ICU Readmissions

Crit Care Med 2016;44:1704-1709

• 目的
 – 予防可能なICU再入室の割合と、予防可能なICU再入室につながる有害事象を特徴づける。
 – 予防可能な再入室とそうでない再入室の違いを明らかにすること

• 期間
 – 2012年7月から2013年6月まで

• 場所
 – ピッツバーグ大学医療センター（UPMC）プレスピテリアン病院（8つのICUに85床）。
 8つのICUはすべて、経験豊富な医師、ICUディレクターが管理し、訓練を受けた集中治療専門医のほか、クリティカルケアのフェロー、研修医、高度医療従事者がスタッフが配置されている。
 – ICUの平均稼働率は89%、ICUの平均在室日数は6日。

• デザイン
 – レトロスペクティブコホート研究

• 対象
 – ICU退室後48時間以内に同じICUまたは別のICUに再入室した患者
 – 18歳未満の患者およびICU再入室が予定されている患者は、カルテレビューで除外
388例（4.1%）がICUに再入室した。
男性と女性の分布はほぼ同程度。
固形臓器移植ICU（22.8%）、外傷ICU（17.7%）、内科ICU（15.4%）の再入室が最も多かった。
34.6%がICU入室時に機械換気を必要としていた。
37%は深夜退室患者だった。
再入室までの時間の中央値は22.6時間。
再入室群の院内死亡率は11.8%
入室時の診断と再入室時の診断には大きなばらつきがあり、ほとんどどの再入室は心血管系（34％）または呼吸器系（32％）の診断によるものであった。
予防不可能・可能症例の内訳

予防不可能なICU再入室	120件（88.2%）
新たな問題による再入室	67件（56%）
既存の問題の臨床的悪化による再入室	53件（44%）

予防可能なICU再入室	16件（11.8%）
システムエラー	6件
管理エラー	6件
処置に関するイベント	2件
診断エラー	1件
投薬エラー	1件

- システムエラー: 医療システムの欠陥が原因で発生した場合。（例: 培養結果が病棟チームに伝えられなかった。）
- 管理エラー: 禁忌の治療、治療効果を正しくモニターできなかったり、指示された治療を開始しなかったりした結果生じた場合。（例: 肝不全患者に持参薬のラクトースの処方を忘れ、肝性脳症を発症。）
- 処置に関するイベント: 処置や手術に起因する場合。
- 診断エラー: 適切な診断アルゴリズムや検査所見に適切に対応しなかった場合。（例: 肺炎と診断。CTの肺塞栓の見落とし。）
- 投薬エラー: 服薬管理に起因する場合。（例: 肺塞栓治療でヘパリン投与中。ワーサリンの過剰投与による消化管出血。）
予防可能な再入室は、非予防可能な再入室と比較して
✓ ICU滞在日数が短い（2日対3日、p=0.05）
✓ 再入室前の病棟滞在時間が短い（16.6時間対23.6時間、p=0.05）。傾向があった
1. ICU退室の疫学

Q4
ICU退室後の有害事象の特徴は？
また有害事象が発生する患者の特徴は？
目 的

- ICU退室後の有害事象と関連因子、転帰を検討すること

デ ザ イ ン

- 多施設コホート研究

対 象

- カナダの10の内科・外科ICU

期 間

- 2014年7月から2016年1月まで
Supplemental digital content 2. Patient and hospital characteristics

Characteristics	Patients n=451*	AE n=84	no AE n=367	p-value
Patient Characteristics on Admission to ICU	n (%)	n (%)	n (%)	
Female	185 (41)	34 (40)	151 (41)	0.91
Age, median (IQR) in years	59 (49-69)	63 (51-71)	59 (49-68)	0.27
Caucasian	243 (82)	40 (83)	203 (82)	0.77
Primary spoken language other than English or French	38 (12)	7 (14)	31 (12)	0.63
Highest level of education, high school or less	153 (50)	25 (54)	128 (50)	0.55
Co-morbid illness	n (%)	n (%)	n (%)	
Chronic heart or vascular disease	106 (24)	30 (36)	76 (21)	0.003
Chronic lung disease	97 (22)	20 (24)	77 (21)	0.57
Diabetes mellitus	121 (27)	22 (26)	99 (27)	0.88
Liver disease	31 (7)	7 (8)	24 (7)	0.56
Malignancy	46 (10)	12 (14)	34 (9)	0.17
Neurological or mental health illness	107 (24)	27 (32)	80 (22)	0.044
Chronic kidney disease	50 (11)	23 (27)	27 (7)	<0.001
Charlson score	n (%)	n (%)	n (%)	
0	173 (38)	20 (24)	153 (42)	
1	103 (23)	16 (19)	87 (24)	
2+	175 (39)	48 (57)	127 (35)	
Primary reason for ICU admission	n (%)	n (%)	n (%)	0.67
Respiratory	129 (29)	21 (25)	108 (29)	
Cardiovascular	75 (17)	11 (13)	64 (17)	
Gastrointestinal	74 (16)	14 (17)	60 (16)	
Neurological	65 (14)	14 (17)	51 (14)	
Trauma & musculoskeletal	57 (13)	11 (13)	46 (13)	
Other	51 (11)	13 (15)	38 (10)	
ICU admission scheduled in advance	78 (17)	13 (16)	65 (18)	0.63
Location before ICU admission	n (%)	n (%)	n (%)	0.40
Emergency department	173 (38)	28 (33)	145 (40)	
Operating room/recovery	96 (21)	18 (21)	78 (21)	
Ward	134 (30)	25 (30)	109 (30)	
Other hospital	48 (11)	13 (15)	35 (10)	
Surgery before ICU admission	n (%)	n (%)	n (%)	0.16
Elective	90 (20)	11 (13)	79 (22)	
Emergency	77 (17)	18 (21)	59 (16)	
Cardiopulmonary arrest or MET activation before ICU admission	82 (18)	20 (24)	62 (17)	0.14
Previous ICU admission during hospital stay	n (%)	n (%)	n (%)	0.058
APACHE II Score, median (IQR)	18 (13-23)	20 (15-24)	17 (12-23)	0.014
SOFA Score, median (IQR)	6 (3-9)	7 (5-8)	6 (3-9)	0.14
Characteristics	Patients n=451a	AE n=84	no AE n=367	p-value
-----------------	--------------	--------	-----------	---------
Patient Characteristics on Discharge from ICU				
Therapies received in the ICU				
Mechanical ventilation	302 (67)	54 (64)	248 (68)	0.56
Duration, median (IQR) in days	3 (2-7)	4 (2-8)	3 (2-7)	0.85
Vasoactive medications	201 (45)	42 (50)	159 (44)	0.28
Renal replacement therapy	50 (12)	14 (17)	36 (10)	0.095
Delirium	127 (28)	27 (32)	100 (27)	0.37
ICU length of stay, median (IQR) in days	5 (2-9)	6 (2-10)	5 (3-9)	0.94
Eligible for ICU readmission (goals of care)	432 (96)	79 (94)	353 (96)	0.38
APACHE II Score, median (IQR)	9 (6-12)	11 (9-14)	9 (6-12)	<0.001
SOFA Score, median (IQR)	2 (1-4)	2 (2-5)	2 (1-4)	0.012
Hospital Characteristics				
Hospital Type				0.79
Community care	107 (24)	19 (23)	88 (24)	
Tertiary care	344 (76)	65 (77)	279 (76)	
Teaching hospital	403 (89)	75 (89)	328 (89)	0.98
Number of beds in hospital				0.068
<600	223 (49)	34 (40)	189 (51)	
> 600	228 (51)	50 (60)	178 (49)	
Number of beds in ICU				0.82
<20	215 (48)	41 (49)	174 (47)	
>20	236 (52)	43 (51)	193 (53)	
Intensivist lead ICU	427 (95)	76 (90)	351 (96)	0.057
ICU discharge guideline/policy	125 (28)	24 (29)	101 (28)	0.85
Hospital-wide EMR	199 (44)	37 (44)	162 (44)	0.99

【AE発生患者の特徴】

＜ICU退室時＞
✓ APACHE II スコア
✓ SOFASスコアが高かった

ICUでの
✓ 人工呼吸器使用・期間
✓ 気管切開
✓ ICU在室期間との関連はなかった。

【AE発生の病院の特徴】
✓ 集中治療医主導（p=0.057）
✓ ICU退室ガイドラインの存在と有意差はなかった。
Characteristics	Patients n=451	AE n=84	no AE n=367	p-value
	n (%)	n (%)	n (%)	
Transition Processes				
ICU beds occupied at 09:00 on day of ICU discharge, median % (IQR)	86 (74-94)	90 (77-96)	86 (74-93)	0.050
Discharged from ICU at night (18:01-07:59)	145 (32.2)	116 (31.6)	29 (34.5)	0.61
Time from transfer initiation to ICU discharge, median (IQR) in hours	25 (6-52)	16 (6-48)	26 (6-54)	0.17
ICU physician rated overall quality of transfer of care as above average	186 (52)	32 (53)	154 (52)	0.81
Ward physician rated overall quality of transfer of care as above average	138 (67)	30 (79)	108 (65)	0.090
ICU physician rated quality of communication with ward provider as good or excellent	283 (80)	52 (87)	231 (78)	0.14
Ward physician rated quality of communication with ICU provider as good or excellent	166 (81)	33 (87)	133 (80)	0.34
ICU physician reported method of communication with ward provider				
Verbal communication over telephone	262 (78)	50 (85)	212 (77)	0.19
Verbal communication face-to-face	124 (37)	26 (44)	98 (36)	0.22
Written communication	144 (43)	26 (44)	118 (43)	0.87
Ward physician reported method of communication				
Verbal communication over telephone	120 (62)	27 (73)	93 (59)	0.11
Verbal communication face-to-face	108 (55)	24 (65)	84 (53)	0.20
Written communication	61 (31)	17 (46)	44 (28)	0.033

*Data presented as number (%) unless otherwise indicated.

【AE発生患者の退室過程の特徴】

☑ 退室日のベッドの占有率が高い
84 人 (18.6%) が退室後 7 日以内に少なくとも 1 回の AE を経験した

合計 98 件の AE が確認された

大半の AE は症状のみであり、障害や死亡に至るものは少なかった

最も多かった AE は、支持療法の失敗（転倒、褥瘡、体液・電解質障害など）と薬剤関連であった

TABLE 1. Nature and Severity of Adverse Events

Descriptor	n (%)	Rate per 1,000 Patient-Days (95% CI)^a
Number of patients experiencing at least one AE	84 (18.6)	Not applicable
Number of AEs	98	38 (30–46)
Nature of AE (n = 98)		
Operative	10 (10.2)	4 (1–6)
Medical procedure	10 (10.2)	4 (2–6)
Drug related	34 (34.7)	13 (9–18)
Supportive care failureb	39 (39.8)	16 (11–20)
Diagnostic error	10 (10.2)	4 (2–6)
Anesthesia related	0 (0.0)	0
Other	11 (11.2)	4 (2–7)
Preventable^c (n = 98)	35 (36)	13 (9–18)
Severity (n = 98)		
Some symptomsd	75 (76.5)	29 (23–36)
Disability	17 (17.3)	6 (3–9)
Permanent disability or death	6 (6.1)	2 (0–4)

AE = adverse event.

^aThree patients excluded from calculation due to unknown hospital discharge date.

bFor example, falls, pressure ulcers, fluid, and electrolyte disorders.

cCategorized as a greater than 50% chance the AE was preventable.

dSymptoms (e.g., pain, dyspnea, pruritus) related to the AE and not the patients’ underlying condition.
ICU Readmission and Hospital Mortality

Among those who had an AE after transfer from ICU to hospital ward, 26 patients (16.7%; 95% CI, 13.3–20.4%) were readmitted to the ICU and 21 patients died (13.4%; 95% CI, 10.3–16.8%) prior to hospital discharge. Most ICU readmissions occurred within 6 days of transfer and most deaths occurred 2 to 3 days after transfer (Fig. 1).

Physician Predictions of AEs, ICU Readmission, and Hospital Mortality

The sensitivity, specificity, and AUC for ICU and ward physician predictions of AEs, ICU readmission, and hospital death after transfer from the ICU were overall low (Fig. 2; and Supplemental Digital Content 3, http://links.lww.com/CCM/F390). Although sensitivity was low for all three outcomes, specificity was highest for hospital mortality. Predictions were most accurate for ICU readmission; the AUCs for ICU physicians and ward physicians were respectively 0.69 (95% CI, 0.57–0.82) and 0.77 (95% CI, 0.66–0.88).

Associations Between AEs and Clinical Outcomes

Using multivariable analysis and controlling for potential founders (sex, age, Charlson Comorbidity Index, and APACHE II score at admission), patients who experienced an AE were more likely to be readmitted to the ICU (odds ratio [OR], 5.5; 95% CI, 2.4–13.0; \(p < 0.001 \)), have a longer hospital stay (mean difference, 16.1 d; 95% CI, 8.4–23.7; \(p < 0.001 \)) and die in hospital (OR, 4.6; 95% CI, 1.8–11.8; \(p = 0.001 \)) than those who did not experience an AE.

TABLE 2. Predictors of Any Adverse Event After Transfer

Characteristics	Odds Ratio (95% CI)
Any Adverse Event	
Preventable Adverse Event	
Female	0.85 (0.50–1.42)
Age	1.00 (0.98–1.02)
Charlson Comorbidity Index	1.24 (1.09–1.41)
Surgery before ICU admission	Not applicable
Elective	0.51 (0.23–1.02)
Emergency	1.44 (0.74–2.73)
Acute Physiology and Chronic Health Evaluation II score on ICU discharge	1.07 (1.02–1.14)
≥80% ICU beds occupied day of ICU discharge	1.97 (1.15–3.47)

- **Sex and age were forced into the logistic regression model.**
- **Surgery before admission and ICU bed occupancy were not included in the model for preventable adverse events because the univariate analysis was not significant.**
- **ICU occupancy measured at 09:00.**

Figure 1. Timing of adverse events, ICU readmission, and hospital mortality relative to ICU discharge.

- ほとんどのAEはICUから病棟退室後3日以内に発生した。
- ICU退室後AEを発生した患者のうち
 - 26例（16.7%）がICUに再入室。
 - 21例（13.4%）が退院前に死亡していた。
TABLE 2. Predictors of Any Adverse Event After Transfer

Characteristics	Any Adverse Event	Preventable Adverse Event
Female^a	0.85 (0.50–1.42)	1.61 (0.76–3.43)
Age^a	1.00 (0.98–1.02)	1.01 (0.98–1.04)
Charlson Comorbidity Index	1.24 (1.09–1.41)	1.28 (1.09–1.50)
Surgery before ICU admission		
No surgery	1.00 (reference group)	
Elective	0.51 (0.23–1.02)	
Emergency	1.44 (0.74–2.73)	
Acute Physiology and Chronic Health Evaluation II score on		
ICU discharge	1.07 (1.02–1.14)	1.09 (1.01–1.17)
≥ 80% ICU beds occupied day of ICU discharge^c	1.97 (1.15–3.47)	Not applicable^b

^aSex and age were forced into the logistic regression model.
^bSurgery before admission and ICU bed occupancy were not included in the model for preventable adverse events because the univariate analysis was not significant.
^cICU occupancy measured at 09:00.

多変量解析では、
✓ Charlsonの併存スコア / 退室時のAPACHE IIスコア / 退室日のベッド占有率はAEの発生オッズの増加と関連していた。

✓ Charlson 併存症スコア / 退室時の APACHE II スコアは予防可能なAE のオッズの増加と関連していた。
We found that AEs are common after the transition from ICU to hospital ward (18, 20, 22, 27, 34, 35). Patients who are discharged from the ICU experience other outcomes that may be indicative of a safety event, such as ICU readmission (6%). In one study, nearly one-third of AEs were considered preventable. AEs were not predictable by either the ICU or ward physician. Having two or more comorbidities, a higher APACHE II score at discharge and being in an ICU with a persistent challenge in the patient safety literature (38–44) and lower than previous reports (likely, at least partially explained by censoring our analysis to 7 d after ICU transfer), we did find the proportion of patients who were readmitted to the ICU to hospital ward—18% of ICU discharges experienced an AE, and 4.6 times greater odds of dying in hospital.

Figure 2. ICU and ward physician predictions of adverse events, ICU re-admission, and hospital mortality. Patients characteristics included in the model are Acute Physiology and Chronic Health Evaluation II score at discharge, Charlson Comorbidity Index, age, and sex. Response rate was 80% (n = 358) for ICU physicians and 46% (n = 203) for ward physician.

【医師によるAE、ICU再入室、病院死亡率の予測】

- ICUと病棟医師による、AE、ICU再入室、病院死亡の予測の感度、特異度、AUC(Area under the curve)は低かった。
- 特異性は病院死亡率が最も高かった。
- 予測はICU再入室が最も正確であった。
- ICU医師と病棟医師のAUCはそれぞれ0.69（95%CI, 0.57-0.82）と0.77（95%CI, 0.66-0.88）であった。
1. ICU退室の疫学

Q5
ICU再入室後の転帰は？
再入室の影響は？
The Association Between ICU Readmission Rate and Patient Outcomes*

Crit Care Med 2013; 41:24–33

• 目的
 – ICUの再入室率と症例構成を調整した転帰との関連を検討する。
• デザイン
 – レトロスペクティブコホート研究
• 期間
 – 2002年1月1日から2010年12月31日まで
• 場所
 – 米国の46病院の105のICU
• 対象
 – ICU入室患者369,129例のうち、ICUを生存退室した263,082例で分析
Characteristics of the hospitals and ICUs are shown in Table 1.

The 46 hospitals were well dispersed across bed size, teaching status, and geographic region except the Northeast. The median number of total ICU admissions at each hospital was 3,322 (intraquartile range 1629–8600). The 105 ICUs varied in type and included 13 specialized cardiac (coronary) and nine neurological units. Although only two ICUs were specifically designated as trauma units, another ten units had >25% of their admissions with a trauma diagnosis. Of the 105 ICUs, 83 (79%) had access to a SDU available as evidenced by >10% of their admissions being discharged there. The median number of admissions at each ICU was 1,932 (intraquartile range 937–5138).

Patient Characteristics and Outcomes

Among the 263,082 admissions, 16,481 (6.3%) had one or more ICU readmissions; 11,134 (68%) were to the same ICU that originally discharged the patient. Patient and institutional factors based on whether or not there was an eventual readmission are shown in Appendix 2. Compared to patients who were not readmitted, those with readmission were significantly older, had more comorbidities, nonoperative diagnoses, dialysis, emergency surgery, physiological abnormalities (higher acute physiology score [APS]), longer initial ICU stay, and were more frequently discharged to a SDU at ICU discharge (all \(p < 0.001 \)).

Readmitted patients had a significantly higher postdischarge mortality than patients not readmitted (21.3% vs. 3.6%), longer initial ICU stays (4.9 days vs. 3.4 days), and longer hospital stays (13.3 days vs. 4.5 days). All \(p \) values were < 0.001. Among readmissions, 5,631 readmissions (34.2%) were within 48 hrs.

Readmission Rates Across ICUs

Figure 1 shows the distribution of ICU readmission rates for the 105 units. Mean readmission rate was 6.3% (range 1.2% to 14.5%), and the median rate was 5.9% (interquartile range 5.0% to 7.1%). Patient characteristics at units with low, moderate, and high readmission rates are compared in Table 2. Patients at ICUs with high readmission rates had a higher APS and longer hospital stay before admission; were more likely to have at least one chronic health condition, admitted to hospitals with a large number of beds, be a medical admission, and discharged at night; and were less likely to be admitted after cardiac surgery. Patients at ICUs with low readmission rates were less likely to have an SDU available, and had the lowest percentage of medical admissions as well as patients requiring mechanical ventilation. An increase in the daily census the day before discharge, marking limited bed availability, was highest in the units with a low readmission rate.

Figure 1. Percentage of patients who were ICU readmissions and 95% confidence interval at 105 ICUs.

平均再入室率は6.3%（範囲1.2%～14.5%）、中央値は5.9%（四分位間範囲5.0%～7.1%）であった。
Figure 2. Mean observed and predicted hospital mortality among 105 ICUs stratified by frequency of readmission, high (>7%), moderate (5%-7%), or low (<5%).

- Three readmission rate layers: low (<5%), moderate (5.1%-7%), and high (>7%).

- Observed hospital mortality: 10.0% in the low rate group, 11.6% in the moderate rate group, and 13.3% in the high rate group.

- After adjustment for patient risk factors, these differences ceased to exist.

- Figure 3 shows mean observed and predicted ICU and hospital lengths of stay, stratified by readmission frequency. As with hospital mortality, a trend existed between increasing readmission and increasing ICU length of stay. However, the difference between observed and expected ICU lengths of stay was almost zero (4–5 hrs) within each readmission strata.

For hospital length of stay, the observed minus expected values were slightly better for the low (<16 hrs) and moderate (~16 hrs) readmission rate groups than for the high (~5 hrs) rate ICUs. These differences, however, were negated after taking into account the length of hospital stay before ICU admission (Table 2).
再入室率が高い群では、ICUの在室日数が増加する傾向がみられた。
入院期間についても、再入室率が高い群では、入院期間が長くなる傾向が見られた。しかし、ICUへの入室前の入院期間を考慮すると差はなかった。

再入室した患者は、再入室しなかった患者に比べて
- 退室後の死亡率が有意に高い（21.3％ vs. 3.6％）
- 初回ICU在室日数が長い（4.9日 vs. 3.4日）
- 入院日数が長く（13.3日 vs. 4.5日）（p値 <0.001）

再入室のうち、5,631件（34.2％）は48時間以内の再入室であった。
ICU退室に関する疫学のまとめ

・ ICU退室後の院内死亡率は、3.3〜6.8%。ICU再入室率は、4.0〜6.3%
・ 予定外の再入室率：約84%。うち新たな問題での入室：約40%
・ 再入室リスクが高い患者の特徴は、年齢/ICU入室期間が長い/意識状態の変化/人工呼吸器の使用歴。
・ 再入室と死亡率との関連は、年齢/内科的診断/強心薬の使用/治療制限、のある患者は死亡率が高かった。
・ ICUへの再入室は死亡率の独立したリスク因子ではなかった。
・ 時間外退室は、院内死亡率とICU再入室率が高くなる。
・ 予防可能な再入室は約10%。ICU滞在期間が短い（2日）、再入室前の病棟滞在時間が短い（16.6時間）傾向があった。
・ ICUに再入室すると、院内死亡率と入院期間が増加する。
今日の流れ

1. ICU退室の疫学情報
2. ICU退室の指標
3. ICU再入室を減らすための介入
4. ICU再入室はICUの質の評価になりうるか？
2. ICU退室の指標

Q1
ICU再入室を予測できるか？
Accuracy of Clinicians’ Ability to Predict the Need for Intensive Care Unit Readmission

• 目的
 – ICU再入室予測に対するICU医師と看護師の精度を調べること

• 期間
 – 2015年8月から2017年9月まで

• 場所
 – 650床の学術3次医療機関の24床の成人ICU

• デザイン
 – 前向き研究
• 方法
 - 再入室の可能性に関する医療従事者の予測を評価するために以下の質問をした。
 ➢ 「1から10までの尺度で、10は「非常に可能性が高い」、この患者が今後48時間以内にICUに再入室する可能性はどれくらいですか？」
 - 医療従事者には、再入室の最も可能性の高い原因を確認するための質問も行われた。
 ➢ ICU再入室の一般的な理由を示す複数選択式の質問。
 ➢ 再入室の理由を1つ選ぶか、自分の答えと一致しない場合は、再入室の理由を記載しなければならなかった。

• 対象患者について
 - Primary outcome : ICU退室後48時間以内のICU再入室。
 - Secondary outcomes : ICU退室後の再入室と院内死亡率
 - ICUで緩和ケアを受けていた患者は、新規または悪化の兆候を示した場合にはICUに再入室しないため除外。
結果

項目	割合
ICU再入室	12％（n = 114）
48時間以内にICUに再入室	4％（n = 40）
再入室までの時間の中央値	82時間（四分位間範囲 [IQR]、29～179時間）
病棟退室後の死亡率	4％（n = 34）
Figure 1. Box plot of likelihood of readmission scores by clinician types. ICU = intensive care unit.

✓ 回答率が最も高かったのは、ICU看護師75％（702/938）、次いで、フェロー（68％、643/938）、インターン（65％、606/938）、アテンティング（51％、480/938）、レジデント（43％、402/938）。
Figure 2. Area under the curve (AUC) for the receiver operating characteristic curve for primary and secondary outcomes. ICU = intensive care unit.

- ICU退室後48時間以内のICU再入室の予測については、看護師が最も正確であり（AUC、0.72; 95% CI、0.64-0.81）、次いでレジデント（AUC、0.71; 95% CI、0.61-0.82）であった。

- 院内死亡率を予測するために臨床医が提供した尤度スコアを使用した場合、フェローが最も正確であり（AUC、0.83; 95% CI、0.76-0.90）、インターンは最も正確ではなかった（AUC、0.64; 95% CI、0.54-0.74）。
Table S2: Kappa statistic for potential reason for ICU readmission by clinician pair

Clinician Pairs	Observation, n	Kappa for Reason for ICU Readmission
Resident vs Nurses	216	0.44
Interns vs Nurse	328	0.45
Nurse vs Attendings	248	0.50
Fellows vs Nurse	335	0.52
Interns vs Resident	197	0.53
Interns vs Attendings	239	0.53
Interns vs Fellows	336	0.56
Residents vs Fellows	205	0.56
Residents vs Attendings	150	0.58
Fellows vs Attendings	261	0.58
48時間以内の再入室の理由として最も考えられるもの

・呼吸と気道に対する問題が一番多かった。（39%）
2. ICU退室の指標

Q2
ICU再入室を予測する指標は？
A systematic review of tools for predicting severe adverse events following patient discharge from intensive care units

Critical Care 2013, 17:R102

目的
退室後の重篤な有害事象を予測するためのツールに関する文献を整理し、その運用上の特徴を述べ、臨床的有効性を評価すること

デザイン
システマテックレビュー

方法
PRISMA（Preferred Reporting Items for Systematic Reviews and Meta-Analysis）ガイドラインを使用した。

2013年3月まで、Ovid EMBASE、Ovid MEDLINE、CINAHL、PUBMED、およびCochrane Central Register of Controlled Trialsに掲載された論文について系統的に検索を行った。

重篤な有害事象を以下のいずれかと定義した。
- MET発動
- ICU再入室
- ICU退室後の患者の入院期間中の死亡
• Inclusion criteria

- 以下の基準をそれぞれ満たしていなければならな

1) 査読付きジャーナルに掲載されたオリジナル
2) ICU退室した成人患者（大多数が16歳以上の患者）を対象とした研究
3) ICU退室時に患者をリスク層別化するツールの導出、検証、または臨床的影響を記述した研究
4) ICUからの退室後の患者転帰、METの利用、ICUへの再入室、死亡率のうち少なくとも1つを報告した研究
Figure 1 describes the results of the article screening and selection process. The literature search identified 9,926 potentially relevant articles in five databases; from these we reviewed 148 full-text articles and selected 8 articles for final inclusion in the study [9-16]. The two most common reasons for exclusion of articles after full-text review were that articles did not report original research or did not report study outcomes (MET activation, ICU readmission, hospital mortality). Inter-rater agreement was assessed using the kappa statistic and was found to be excellent (κ = 0.81).

Details of the Literature Search

Database	Number of Articles
EMBASE	4752
MEDLINE	3670
CINHAL	1318
PUBMED	1299
COCHRANE	152

2,003 duplicate articles were excluded, leaving 7,923 articles for evaluation of abstract. After title/abstract review, 7,775 articles were excluded, leaving 148 articles for evaluation of full-text. 4 articles were identified from references, and 0 articles were identified from citations. After full-text review and citation search, 144 articles were excluded.

- 23 Not original research
- 87 No tool/outcome of interest
- 11 Unrelated to ICU discharge
- 9 Case-control
- 4 Case report/series
- 4 No full text available
- 3 Discharge from step down unit
- 3 No comparator group

8 articles were included in the systematic review.
Table 1 Characteristics of included studies

Study	Year	Country	Follow-up	Type of ICU	# Patients	Age (Mean)	Female (%)	Severity of Illness score (Mean)	Readmission No. (%)	Mortality No. (%)
Gajic	2008	USA, Netherlands	7 days	Medical-Surgical	2,622	64\(^\mu\)	46\(^\mu\)	APACHE III (59)\(^\mu\)	217 (8.3)	5 (0.4)\(^\mu\)
Frost	2010	Australia	Hospital discharge	Medical-Surgical	14,952	57	39	APACHE II (13)	896 (6.0)	869 (6.0)
Reini	2012	Sweden	Hospital discharge	Medical-Surgical	518	59	46	SAPS III (55)	13 (3.7)	29 (8.8)
Badawi	2012	USA	48 hours	Mixed\(^\§\)	704,963	62	46	APACHE IV (47\(^\beta\))	17,874 (2.5)	6,492 (0.9)
Daly	2001	UK	Hospital discharge	Medical-Surgical	13,924	67-72\(^\gamma\)	36	APACHE II (13)	142 (2.6)\(^\mu\)	1,158 (8.3)
Fernandez	2006	Spain	Hospital discharge	Medical-Surgical	1,159	60	N/A	APACHE II (20)\(^\dagger\)	N/A	111 (9.6)
Fernandez	2010	Spain	Hospital discharge	Medical-Surgical	3,587	61	33	N/A	190 (5.3)	242 (6.7)\(^\alpha\)
Ouanes	2012	France	7 days	Medical-Surgical	3,462	61	38	SAPS II (35)	74 (2.1)	28 (0.8)

APACHE, Acute Physiology and Chronic Health Evaluation; ICU, Intensive Care unit; N/A, Not Available; SAPS, Simplified Acute Physiology Score; UK, United Kingdom; USA, United States of America.

\(\epsilon\) Readmission to ICU following patient discharge from ICU.

\(\zeta\) Hospital mortality following patient discharge from ICU.

\(\mu\) Data from derivation cohort.

\(\§\) Mixed ICUs: Medical, Medical-Surgical, Surgical, Trauma, Neurological, Cardiac, Cardiovascular.

\(\beta\) Median value.

\(\gamma\) Range of median ages for the derivation and validation cohorts.

\(\dagger\) Point score estimated from predicted risk of death (percentage).

\(\alpha\) Sensitivity analyses restricted to unexpected deaths produced the same mortality percentage.

✔ 主に米国および欧州の内科外科ICUで実施された。

✔ 各研究の患者数は518〜70万4,963人で、総計745,187人がレビューに含まれていた。

✔ 主な研究では、患者の重症度を測定するためにAPACHEスコアが使用された。

✔ 5件の研究では、退院まで患者を追跡した。

✔ ICU退室後のICU再入室は2.1〜8.3%、病院死亡率は0.4〜9.6%であった。

✔ どの研究もMET発動の報告はしていなかった。
Author, Tool, Country	Tool Components/Variables (Weighting/Points)	Prediction Outcome (Follow-up)	Tool Development (# patients)	Tool Validation (# patients/ICU)	Sensitivity (%)	Specificity (%)	LR+	LR-	AUROC (95% CI)
Gajic 'SWIFT Score' USA, 2008	Source of ICU admission (Other than ED: 8 pt) ICU length of stay (2 to 10 d: 1 pt, >10 d: 4 pt) Last measured PaO2/FiO2 ratio (150 to 399: 5 pt, 100 to 149: 10 pt, <100: 13 pt) GCS at ICU discharge (11 to 14: 6 pt, 8 to 10: 14 pt, <8: 24 pt) Last PaCO2 (>45 mmHg: 5 pt)	Readmission (7 days)	Multivariate (1,131)	Internal (783/1) External (708/1)	56	83	3.09	0.56	(0.70 to 0.80)
Frost Australia, 2010	Age (years: 0 to 8 pt) Male (2 pt) Elective admission (12 pt) Admission source (ED: 9 pt, Other hospital: 10 pt, Ward: 15 pt) APACHE II score (0 to 20 pt) ICU length of stay >7 days (17 pt) After hours discharge (4 pt) Renal failure (10 pt)	Readmission (Hospital Discharge)	Multivariate (14,952)	Internal‡ (14,952/1)	n/a	n/a	n/a	n/a	0.66 (n/a)
Reini Sweden, 2012	Pulse rate (0 to 3 pt) Respiratory rate (0 to 3 pt) Systolic blood pressure (0 to 3 pt) Level of consciousness (0 to 3 pt) Temperature (0 to 2 pt)	Readmission (72 hours)	Existing Score	External (518)	15§	85§	1.01§	0.99§	OR 0.98 (0.69 to 1.37)
Badawi USA, 2012	23 variables§	Readmission (48 hours)	Multivariate (469,967)	Internal (234,976/219)	6 to 96¥	19 to 99¥	1.19 to 5.72¥	0.19 to 0.95¥	0.71 (0.71 to 0.71)
		Mortality (48 hours)	Multivariate (469,967)	Internal (234,976/219)	47 to 82¥	87 to 99¥	6.44 to 55¥	0.20 to 0.53¥	0.92 (0.92 to 0.92)

- **SWIFT** (Stability and Workload Index for Transfer)スコアとFrostのノモグラムは、ICU退室後のICU再入室を予測するために開発された。
- Reiniらは、Modified Early Warning Score（MEWS）が退室後72時間以内のICU再入室を予測する能力を評価した。
- Badawiは、ICU退室後48時間後の再入室と死亡率をそれぞれ予測するツールを開発した。
| Author, Tool, Country, Year | Tool Components/ Variables (Weighting/Points) | Prediction Outcome (Follow-up) | Tool Development (# patients) | Tool Validation (# patients/ #ICU) | Sensitivity (%) | Specificity (%) | LR+ | LR- | AUROC (95% CI) |
|-----------------------------|--|-------------------------------|-------------------------------|----------------------------------|-----------------|----------------|-----|-----|----------------|
| Daly, United Kingdom, 2002 | β coefficients¹ Age per year (0.0532) Chronic Health Points (0.2501) ICU length of stay per day (0.0447) Acute Physiology points (0.1556) Cardiothoracic surgery (-2.104) Constant (-4.5821) | Mortality (Hospital Discharge) | Multivariate (5,475) | Internal (1,136/1) External (7,319/19) | 74 | 71 | 2.55 | 0.37 | 0.80 (0.79 to 0.81)² |
| Fernandez, 'Sabadell Score' Spain, 2006 and 2010 | Subjective intensive care physician scoring: Good Prognosis (0) Poor long term prognosis, >6 months (1) Poor short term prognosis, <6 months (2) Death expected within hospitalization (3) | Mortality (Hospital Discharge) | Existing Score Modified | Internal (1,521/1) External (3,587/31) | 23 to 87 | 26 to 85 | 79 to 99 | 4.14 to 23 | 0.16 to 0.78 (0.84 to 0.93) |
| Ounes, 'MIR' France, 2012 | β coefficients¹ SAPS II (admission) (0.017) Central venous catheter (0.74) SIRS (max) (0.61) SOFA (discharge) (0.19) Discharge at night (0.92) Constant (-5.59) | Readmission or mortality (7 days) | Multivariate (3,462) | Internal¹ (3,462/4) | 50 to 96^a | 19 to 82^a | 1.19 to 2.78^ψ | 0.21 to 0.71^ψ (0.68 to 0.79) |

APACHE, Acute Physiology and Chronic Health Evaluation; AUROC, area under the receiver operating characteristic curves; ED, emergency department; GCS, Glasgow Coma Scale; ICU, Intensive Care unit; LR, likelihood ratio; MIR, Minimizing ICU Readmission; N/A, Not Available; SAPS, Simplified Acute Physiology Score; SIRS, Systemic Inflammatory Response Syndrome; SOFA, Sequential Organ Failure Assessment score; SWIFT, Stability and Workload Index for Transfer; USA, United States of America.

¹ Resampling using bootstrap techniques.
² Calculated using the Modified Early Warning Score on admission to ICU of <6 vs. >6.
^ψ Odds ratio for readmission to ICU within 72 hours of ICU discharge reported for each one point increase in the Modified Early Warning Score at the time of ICU discharge. The receiver operating characteristic curve not reported.

- Readmission model variables: Admission characteristics (age), Elective surgery, ICU type, Admission diagnosis category, Admit source, ICU visit number, Body mass index, ICU interventions (number of lactate values in 24 hours, ICU length of stay), Last day labs (serum bicarbonate, white blood cell count, serum creatinine, hemoglobin), Last day physiology (heart rate, respiratory rate, diastolic blood pressure, systolic blood pressure, percent oxygen, most recent Glasgow coma scale score).

- Mortality model variables: Admission characteristics (age, body mass index), Operative diagnosis (elective surgery), ICU interventions (ICU length of stay, ventilation status), Last day labs (serum lactate, serum creatinine, white blood cell count, serum glucose), Last day physiology (diastolic blood pressure, heart rate, mean arterial pressure, respiratory rate, percent oxygen saturation, most recent Glasgow coma scale score).

- β coefficients reported from multivariable regression model.

- AUROC reported for combined data for internal and external validation cohorts.

- Range of sensitivities, specificities and likelihood ratios reported for four different thresholds of the MIR score.

✅ Sabadellスコアは、ICU退室時の患者の予後について医師の（主観的）判断により、4ポイントスケールを用いて計算された。

✅ Minimizing ICU Readmission (MIR)スコアは、ICU退室後7日目の患者の死亡またはICU再入室の複合結果を予測するために設計された。

✅ Sabadellスコアを除くすべてのツールでは、5〜26の変数をリスク計算に組み込んでおり、ICU在室期間が唯一共通の変数であった。
Discussion

• 同定された8つのICU退室リスク層別化ツールのアウトカムは、ICU再入室、ICU退室後の死亡率、およびその両方の組み合わせであった。

• Sabadellスコアを除くすべてのツールは、患者的生理学的および臨床的特徴を用いていた。

• SWIFTスコア、Badawi死亡率ツール、MIRスコアは、それぞれICU再入室、病院死亡、ICU再入室と病院死亡の複合アウトカムを予測するために最も優れた操作特性が報告された。

• MIRスコアはSWIFTよりも優れたAUROC値だった。

• MIRスコアやBadawi and Breslowの死亡率ツールが有望視されている。
Discussion

- リスク層別化ツールが医師の臨床判断とどのように関連しているかは不明である。
- 患者の特徴はICU間で大きく異なることがあり、患者集団全体に広く適用できるツールの開発は困難である可能性がある。
- リスク層別化ツールを導入することで、患者ケアのプロセスとアウトカムを改善できるかどうかは不明である。
- 理想的なICU退室リスク層別化ツールは
 - 患者の転帰を予測する。
 - 以下のケアを促進する。
 - 安全で（例: ハイリスク患者の早期退室を減らす）
 - 効果的で（例: 退室に必要なリソースを、ハイリスク患者に集約する）
 - 効率的な（例: ローリスク患者のICU退室を迅速化する）
Findings from the Implementation of a Validated Readmission Predictive Tool in the Discharge Workflow of a Medical Intensive Care Unit

AnnalsATS Volume 11 Number 5 | June 2014

- 目的
 - ICUの退室ワークフローにSWIFTスコアを組み込んだ後の効果を記述する。

- 期間
 - 2007年12月から2009年12月まで

- 場所
 - ミネソタ州ロチェスター、メイヨー・クリニック成人ICU

- 対象
 - ICUから退室した成人（18歳以上）患者。
 - 緩和ケア施設または他の病院に転院した患者、または他のICUに転院した患者は除外。
方法
- 期間：通常の退室のベースライン期間（2007年12月～2008年11月）介入（SWIFT導入）期間（2008年12月～2009年11月）

- SWIFT導入期間
 ■ 各患者のSWIFTスコアは、毎日午前6時45分に自動ウェブベースのツールを用いて、SWIFT値が計算された。
 ■ 朝の回診でICU内の全患者のSWIFTスコアが提供された。
 ■ SWIFTの議論は特定のラウンド日に退院が決定された患者に限定された。
 ■ 医師が患者を退室させる決定をした後（スコアを見ずに）、医療チームにSWIFTスコアが明らかにされた。
 ■ SWIFTスコアの公開後、退室判断の変更を以下の分類し記録した。
 1) より監視ができる部署（病室）への退室
 2) ICU 退室の延期
 3) 一般病棟スタッフへ口頭での申し送りを強化して退室
ICU退室後24時間以内のICU再入室の可能性を予測する検証されたツールである。
最小および最大スコアはそれぞれ0から64である。
SWIFTスコアの値が15以上の場合は、ICU退室後24時間以内の再入室を予測する感度は50%、特異度は85%であった。
Figure 1. Flow diagram. *Transferred to one of nine specialized care units at the Mayo Clinic Rochester, based on need for specialized care. ICU = intensive care unit.
A SWIFT score of more than 15 (compared services for 17.7% discharges (Figure 2). Verbal communication with the receiving patients and to discharge with enhanced to keep in ICU for longer) for 12.6% of destination to a monitored unit or decision led to changes in discharge plan (change of the SWIFT score at the time of discharge in the second quarter (Table 3). Discussion

Readmission rate

Resource Utilization

Table 2. Characteristics, resource utilization measures, and readmission rates in baseline and SWIFT implementation cohorts

Characteristic	Baseline (n = 1,906)	SWIFT (n = 1,938)	P Value
Age, yr*	64 (19)	63 (18)	0.14
Sex: male, n (%)	967 (50.7)	1,109 (57.5)	<0.0001
Admission APACHE III*	69.2 (24.7)	67.5 (24.0)	0.03
BMI, kg/m²*	31.3 (16.8)	30.9 (9.2)	0.60
Race: white, n (%)	1,632 (89.0)	1,623 (87.5)	0.54
Resource Utilization†			
Invasive ventilation use, n (%)	403 (21.1)	381 (19.8)	0.29
Invasive ventilation, d	0.63	0.53	0.06
Noninvasive ventilation use, n (%)	336 (17.6)	282 (14.6)	0.01
Noninvasive ventilation, d	0.20	0.15	0.007
Hospital length of stay, d	11.6	9.0	<0.001
ICU length of stay, d	2.20	2.05	0.04
Readmission rate†			
24-h	36 (1.9)	47 (2.4)	0.24
7-d	124 (6.5)	143 (7.4)	0.26

Definition of abbreviations: APACHE = Acute Physiology and Chronic Health Evaluation; BMI = body mass index; ICU = intensive care unit; SWIFT = Stability and Work Load Index for Transfer.

*Mean (SD).
†Unadjusted statistics.

 ✓ ベースライン期間と実施期間の間にICUから退室した患者は、性別および入室時の重症度に関して有意に異なっていた。
 ✓ SWIFTが議論された患者と議論がされなかった患者的再入室率（24時間と7日間）に差はなかった。
We observed a SWIFT implementation rate of 18\% of all discharges and 25\% of discharges with SWIFT score above 15. Such low compliance rates are reflective of a failure in change management, given that this implementation was performed in the same ICU where the SWIFT score was initially derived and validated. Coiera (18) outlined four major causes for the failure of decision support systems to be used clinically. Several of these factors may partly explain why the SWIFT implementation rate at our study ICU was low. First, we depended totally on an electronic system to calculate and supply SWIFT data. As illustrated in Table 3 (footnotes), the electronic SWIFT score, which was computed at 6:45 A.M. daily, was available for only 1,738 of 1,938 discharges. Second, the SWIFT score lacked precision for individual patients and despite efforts at provider education, it often did not make sense to rotating ICU providers and its implementation did not seamlessly into the established routine process of care. These factors were identified in our PDSA assessments as barriers to full- edged adoption and probably led to a waning of enthusiasm with the implementation over time.

Given the observed compliance rates, the effective study sample likely was underpowered to detect any true difference in readmission rates. Apart from low adoption rates, other factors could also potentially explain why our intervention did not impact on readmission rates. It is possible that the SWIFT score may not adequately capture all factors that are critical to preventing readmissions. The derivative components of the SWIFT score are composed mostly of patient-centered factors, and data from Table E1 in the online supplement, showing association between scores greater than 15 and increased resource utilization, suggest that the SWIFT score can be considered a marker for severity of illness. Apart from severity of illness and other patient-related factors (11, 19–21), studies also suggest that there may be a relationship between ICU readmissions and physician- or hospital-related factors such as patient flow (22), ICU occupancy (23), and decision-making practices (24). These factors are not part of the SWIFT score calculation.

Another potential limitation of this study is that the design makes it difficult to directly link SWIFT introduction with outcomes. For example, we cannot attribute the significantly lower rates of resource utilization during the implementation period to the introduction of SWIFT.

Table 3. Compliance with SWIFT implementation and observed changes in provider discharge decisions

Variable	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
Total discharges	504	451	468	515
SWIFT score \(>15\)	140 (30.0\%)	126 (31.6\%)	122 (29.8\%)	120 (25.8\%)
SWIFT score discussed †	86 (17.1\%)	119 (26.4\%)	77 (16.5\%)	74 (14.4\%)
Change in discharge plan ‡	13 (15.1\%)	17 (14.3\%)	8 (10.4\%)	7 (9.4\%)
Monitored setting	5 (5.8\%)	13 (10.9\%)	7 (9.1\%)	4 (5.4\%)
Discharge postponed	8 (9.3\%)	5 (4.2\%)	1 (1.3\%)	2 (2.7\%)
Enhanced communication ‡	20 (23.3\%)	22 (18.5\%)	10 (13.0\%)	11 (14.9\%)
Readmissions within 24 h †	17 (3.4\%)	6 (1.3\%)	16 (3.4\%)	8 (1.6\%)

Definition of abbreviation: SWIFT = Stability and Work Load Index for Transfer.

*SWIFT score was calculated for 1,738 discharges. Quarterly breakdown not shown.
† Numbers expressed as percentage of total discharges.
‡ Numbers expressed as percentage of total cases in which SWIFT was discussed.

Figure 2. SWIFT implementation and provider discharge decision flow chart. *Subgroup utilized for post hoc APACHE-matched comparisons. †Includes 200 subjects for whom the SWIFT score was not available at discharge. APACHE = Acute Physiology and Chronic Health Evaluation; ICU = intensive care unit; SWIFT = Stability and Work Load Index for Transfer.

✓ 退室時にSWIFTスコアをふまえ議論することで、30.3%の患者が退室計画の変更となった。
Table 4. Readmission rates and resource utilization in APACHE-matched subgroups

Variable	Before* \((n = 93) \)	After† \((n = 93) \)	Difference (P Value)
Readmission within 24 h	3 (3.2)	0 (0)	0.25
Readmission within 7 d	8 (8.6)	6 (6.5)	0.8
Invasive ventilation use, n (%)	25 (26.9)	25 (26.9)	1
Invasive ventilation, d†	0.85 (2.4)	0.67 (1.6)	0.9
Noninvasive ventilation use, n (%)	21 (22.6)	16 (17.2)	0.5
Noninvasive ventilation, d†	0.16 (0.4)	0.11 (0.4)	0.3
Hospital length of stay, d	6.3	6.1	0.68
ICU length of stay, d	1	2	0.12

Definition of abbreviations: APACHE = Acute Physiology and Chronic Health Evaluation; ICU = intensive care unit.
*APACHE-matched subgroup of baseline cohort (exact APACHE III scores).
†Subgroup with SWIFT score discussed during implementation \((n = 356) \).
‡Median values of 0, thus mean and SD reported.

✓ SWIFTが議論された患者と議論がされなかった患者的重症度を調整しても、再入室率に差はなかった。
今日の流れ

1. ICU退室の疫学情報
2. ICU退室の指標
3. ICU再入室を減らすための介入
4. ICU再入室はICUの質の評価になりうるか？
Transition of care at discharge from the Intensive Care Unit: a scoping review*

Rev. Latino-Am. Enfermagem 2020;28:e3325.

• 目的
 – ICUから病棟への退室時に使用されるケアの移行の構成要素、実践、戦略、ツール、および成人患者の転帰への影響について、利用可能なエビデンスを明らかにすること

• デザイン
 – スコーブレビュー

• Research question
 – ICUから病棟への患者の移行を構成する要素は何か？
 – ICUから病棟への退室の質を向上させるためには、どのような実践、戦略、ツールが関係しているのか？
 – 退室後の患者の転帰にはどのような影響があるのか？
• Inclusion criteria
 - 成人患者（18歳以上）を対象に実施された一次研究
 - 英語、スペイン語またはポルトガル語で発表された研究
 - 2014年1月1日から2018年12月31日までの期間に実施された研究

• Exclusion criteria
 - 重複論文
 - 研究質問の少なくとも1つに回答していない論文
 - レビュー研究、書籍、編集者への手紙、学会誌に掲載された抄録
 - ICU から精神科、産科、緩和ケアのために移された患者に関する研究。これらの患者のケアの特殊性と、専門の入院病棟に移されることが多いため、結果の比較に限界があるため。
Figure 2 – Flowchart of the study selection process adapted from Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA)18. Porto Alegre, RS, Brazil, 2019.
主に米国、カナダ、オーストラリアで行われた。
方法論はバラエティに富んでおり、質的研究、コホート研究、準実験的研究が多かった。
| 図3: ICUからの病棟退室に影響を与える可能性のある実践、戦略、ツール | 影響 |
|---|----------------|
| ＜ICUに関連する要因＞ | |
| 夜間(11,21,24,32-35)、勤務交代時(24)、週末(19,21)の退室 | ネガティブ |
| 重要な情報の伝達が不十分、または標準的でない(21,23-25,27,36-38) | ネガティブ |
| 早期退室(11,20,28,37-38) | ネガティブ |
| 退室基準がない(11,14,21,25,37) | ネガティブ |
| 移動の遅れ(23,24,39,40) | ネガティブ |
| ケアの目標が決まっていない(21,23-24,37) | ネガティブ |
| 退室後の病棟の種類が適切でない(11,22,38) | ネガティブ |
| 効率的なコミュニケーションのための環境が整っていない(21,23) | ネガティブ |
| 病棟スタッフとの口頭(14,22,27,41-44)及び書面(14,22,24-27,28,38,41,43,45)によるコミュニケーション | ポジティブ |
| 退室後にICUの専門家から監視・助言を受けている(13-14,24-25,27,30-31,44,46-47) | ポジティブ |
| 患者・家族のための退室計画とガイドライン(22-24,28-29,42,44-45,48) | ポジティブ |
| 薬剤師による服薬調整・レビュー(14,22,24-26,49) | ポジティブ |
| チェックリスト/転送ツール/退室プロトコル(22-23,25-27,41) | ポジティブ |
| 事前に退室計画が準備されている(14,25,29,44) | ポジティブ |
| 移送時の患者・家族の参加(22,24,41-42) | ポジティブ |
＜ICUに関連する要因＞続き

要因	ポジティブ
リスク層別化ツール/スコアの利用(23,43,50)	
ベッドサイドでのケアの移行(23-24,27)	
退室前のバイタルサインの最適化と集中治療の必要性の軽減(29,37)	
中間ケア病棟への退院(14,50)	
ケアプロセスの移行を大切にする施設文化(27)	
多職種チームメンバー全員による各職種間でのケアの伝達(43)	

＜病棟に関連する要因＞

要因	ネガティブ
スタッフの資格・経験不足(11,25,28,30,37-38,42)	
モニタリングの削減(11,14,34,37)	
専門家の数を減らす(11,25,27,37)	
利用可能な材料資源の不足(21,25,27)	
患者の最初の臨床評価までの時間が長い(14,24,43)	
複数チームでのケアの細分化(11)	
新しい医療チームと患者との事前の接触(24,29)	

＜ICUと病棟に関連する要因＞

要因	ポジティブ
送る、受け取る情報に対する説明責任(23,29,43)	
再入室リスクのアラート(43,50)	
A nurse-led critical care outreach program to reduce readmission to the intensive care unit: A quasi-experimental study with a historical control group

Australian Critical Care 32 (2019) 494e501

• 目的
 – 看護師主導のクリティカルケアフォローアッププログラムが、ICUの再入室と病院死亡率に及ぼす影響を評価すること

• デザイン
 – A quasi-experimental study

• 対象
 – 香港の2300床の急性期三次医療病院のICU（22床の混合内科外科ユニット）
• **Inclusion criteria**
 - 18歳以上の成人患者。
 - 初めてICU入室し、24時間以上ICUに在室している
 - ICU再入室リスクの増加に関連する以下の呼吸器系の問題のうち少なくなくとも1つを有する。
 - 一般病棟への退室前に26/分の呼吸数、咳き込みが悪いまたは中程度の痰量があることが記録されている。
 - 非侵襲的機械換気の使用
 - ICUで気管切開を行った患者

• **Exclusion criteria**
 - 患者が他の病院に転院している場合
 - ICUから研究病院の心臓病棟に直接転院している場合
方法

- 過去の対照群と13ヵ月間の前向き介入群

- 2014年9月から2015年9月までにICUに入室した患者（13ヵ月）を対照群、2015年10月から2016年10月までにICUに入室した患者（13ヵ月）を介入群

- 介入群は通常のケアに加えて、看護師主導の集学的ICUフォローアッププログラムを受けた。

- CCOチームについて

- ナースコンサルタント（NC）1名、上級看護師1名、ICUの上級医師で構成。

- NCと上級看護師はいずれも10年以上の経験を持ちICU看護師の資格を有していた。

- このICUフォローアッププログラムはNCが主導で看護師チームのメンバーがフォローアップを行った。上級ICU医師はこのプログラムをサポートし、必要に応じてICUのフォローアップ訪問を行った。
MEWS, were assessed and recorded. Based on the results of assessment, nursing care or related actions were suggested. The follow-up was terminated when the patient met one of the following conditions:

1. Improved general condition, as indicated by MEWS score of 2 upon the third follow-up visit. A higher score indicates more severe health condition.
2. Readmitted to the ICU.
3. Discharge home or transfer to another hospital before the third follow-up visit; or
4. Died.

ii) Standardised vital signs monitoring
Ward nurses were tasked to monitor patients' vital signs and record MEWS results every 4 h on the first day of discharge to general wards, four times a day on day two, and twice per day on day three and beyond, according to the patient's condition. The standardised vital signs monitoring allowed ward nurses to detect early deterioration of patients' condition and initiate timely treatment accordingly.

iii) Application of revised track and trigger system
The MEWS requires periodic observation of the five physiological parameters ("tracking") with predetermined criteria ("triggering") for calling the attendance of the doctor. In this study, a lower MEWS score of 3 was used instead of the standard MEWS trigger score of 4 as the "triggering" to initiate a call for outreach team, as a lower "triggering" score may prevent the delayed response to a patient's deterioration which was considered leading to high ICU readmission rates in the study site.

iv) Bedside coaching of ward nurses
Ward nurses were coached at bedside by the outreach team nurse members with the knowledge and skills about how to care for patients with respiratory problems. Core topics covered were as follows: (1) the importance of respiratory rate monitoring and its relationship to patient's clinical condition; (2) regular vital signs monitoring and MEWS recording and the "triggering" score to call ICU outreach team; and (3) tracheostomy care, including examining the characteristics of the sputum, checking the application of...

ICUでのフォローアップ
✓ 午前9時から午後5時
✓ 週7日

プログラムの中核要素
✓ 一般病棟へのフォローアップ訪問
✓ 標準化されたバイタルサインモニタリング
✓ 改訂されたトラック＆トリガーシステムの適用
✓ 一般病棟看護師のベッドサイドコーチング
✓ コンサルテーション

Fig 1. The ICU follow-up protocol. GC = general condition; ICU = intensive care unit; MEWS = modified early warning score.

病棟看護師は
• 退室初日に4時間ごと
• 2日目に4回
• 3日目以降に2回
バイタルサインをモニターし、MEWSの結果を記録した。MEWSトリガースコア4（標準的）の代わりに、より低い3を使用した。
一般病棟ナースへのベッドサイドコーチング内容
- 呼吸数モニタリングの重要性と患者の臨床状態との関係
- 定期的なバイタルサインのモニタリングとMEWSの記録
- ICUアウトリーチチームに連絡するためのトリガースコア
- 痰の特徴、気管カフ圧の確認、加湿の有効性の評価を含む気管切開のケア
- 中心静脈カテーテルのケアやベッドサイドでの可搬型人工呼吸器の使用など
- 必要に応じてアウトリーチチームが患者のケアを行った。

コンサルテーションについて
以下の場合には、ICUアウトリーチチームに相談するように勧められた。
- ICU退室後の患者ケアに疑問がある場合
- 特にMEWS3以上
- 痛みやせん妄・興奮の増加
- 懸念がある患者
病棟での通常ケア

- 不規則なバイタルサイインのモニタリング
- MEWS の記録
- MEWSの標準的なトリガースコアである「4」を病棟医師を呼ぶための「きっかけ」とした。

気管切開患者へのケア

✓ 気管切開部の毎日のドレッシング
✓ 痰の気管吸引など
• Primary outcome
 – 72時間以内のICU再入室

• Secondary outcome
 – 全ICU再入室（ICU退室後の時間に関わらず）
 – 病院死亡率
 – 90日死亡率
Sputum, guidance on choosing appropriate device for respiratory related care such as use of tracheal suctioning to clear copious mostly respiratory-related care such as tracheostomy care, inadequate was about 81 h. During the follow-up, problems identified referrals to chest physiotherapy were the most frequently suggested each of the visits as the need of support for the participant and ward nurses on early ICU readmission, transfer out to other hospital, discharge to home, or death. Three participants received four follow-up visits and more than 95% received the second and third ICU follow-up visits. The reasons for not receiving ICU follow-up visits included risk factors, number of risk factors, number of comorbidities.

Table 1: Demographic and Clinical Health Characteristics of Patients in the Intervention and Control Groups

Demographic and Clinical Health Characteristics	All Patients	Intervention Group	Control Group	Statistical Test	p value
Gender (%)	Male 244 (66.1)	119 (64.3)	125 (67.9)	$\chi^2 = 0.537$	0.464
	Female 125 (33.9)	66 (35.7)	59 (32.1)		
Age, mean (±SD)	66.5 ± 16.0	64.4 ± 15.5	68.5 ± 16.3	$t = -2.472$	0.014
APACHE IV score, mean (±SD)	82.8 (31.00)	78.85 (31.75)	86.56 (29.73)	$t = -2.467$	0.014
APACHE IV risk of death, mean (±SD)	0.3602 ± 0.2636	0.3344 ± 0.2595	0.3860 ± 0.2658	$t = -1.887$	0.06
ICU LOS (days), mean (±SD)	11.8 (12.68)	11.72 (10.05)	10.44 (14.86)	$t = 0.974$	0.331
GCS, median (IQR)	12 (6–15)	14 (7–15)	11 (6–15)		
Admission type (%)	Nonoperation 275 (74.5)	135 (73)	140 (76.1)	$\chi^2 = 0.471$	0.492
	After operation 94 (25.5)	50 (27)	44 (23.9)		
Admission status (%)	Emergency 346 (93.8)	172 (93)	177 (96.2)	$\chi^2 = 1.869$	0.172
	Elective 20 (6.2)	13 (7)	7 (3.8)		
Admission sources (%)	Accident & emergency 50 (13.6)	30 (16.2)	20 (10.9)	$\chi^2 = 5.174$	0.27
	General ward 213 (57.7)	100 (54.1)	113 (61.4)		
	Operating theatre 94 (25.5)	50 (27)	44 (23.9)		
	Others 12 (3.2)	5 (2.7)	7 (3.8)		
Parent specialties	Medical wards 236 (64)	119 (64.3)	117 (63.6)	$\chi^2 = 0.022$	0.883
	Nonmedical wards 61 (16.5)	35 (18.9)	26 (14.1)		
	Neurosurgical 43 (11.7)	12 (6.5)	31 (16.8)		
	Ear, nose, and throat 20 (5.4)	15 (8.1)	5 (2.7)		
	Orthopaedic 3 (0.8)	2 (1.1)	1 (0.5)		
	Gynaecology 2 (0.5)	1 (0.5)	1 (0.5)		
	Oncology 4 (1.1)	1 (0.5)	3 (1.6)		
Disease category (%)	Sepsis 147 (39.8)	79 (42.7)	68 (37)	$\chi^2 = 18.168$	0.003
	Neurosurgical/Neurological 65 (17.6)	37 (20)	28 (15.2)		
	Respiratory 60 (16.3)	36 (19.5)	24 (13)		
	Cardiovascular 44 (11.9)	11 (5.9)	33 (17.9)		
	Gastrointestinal 24 (6.5)	8 (4.3)	16 (8.7)		
	Others 29 (7.9)	14 (7.6)	15 (8.2)		
Number of comorbidities	0 300 (81.3)	158 (85.9)	141 (76.6)	$\chi^2 = 10.744$	0.005
	1 63 (17.1)	21 (11.4)	42 (22.8)		
	2 6 (1.6)	5 (2.7)	1 (0.5)		
Number of risk factors	1 136 (36.8)	62 (33.5)	74 (40.2)	$\chi^2 = 4.671$	0.097
	2 205 (55.6)	104 (56.2)	101 (54.9)		
	3 28 (7.6)	19 (10.3)	9 (4.9)		
Risk factors	RR ≥ 26/min 226 (61.2)	88 (47.6)	138 (75)	$\chi^2 = 29.248$	<0.001
	NIV 129 (35)	49 (26.5)	80 (42.5)	$\chi^2 = 11.714$	0.001
	Tracheostomy 117 (31.7)	46 (26.1)	71 (38)		<0.001
Poor coughing effort/moderate amount of sputum	158 (42.8)	114 (61.6)	44 (23.9)	$\chi^2 = 53.574$	<0.001

Note: # = Mann–Whitney U test; SD = standard deviation; IQR = interquartile range (25%, 75%); ICU LOS = intensive care unit length of stay; APACHE IV score = Acute Physiological and Chronic Health Evaluation IV score; GCS = Glasgow Coma Scale; RR = respiratory rate; NIV = noninvasive mechanical ventilation.
ICUフォローアッププログラムを通じて提供されたケア

- 合計531件のフォローアップ訪問
- 看護師の訪問は全体の68％近くを占めていた。
- 98.9％が初回のフォローアップを受け、95％以上が2回目と3回目のフォローアップを受けた。
- 3回の訪問での平均滞在時間は、それぞれ10.03（±5.54）分、9.06（±5.03）分、8.25（±5.0）分であった。
- フォローアップ期間中に確認された問題点
 - 気管切開ケアなどの呼吸器関連ケア
 - 喘痰貯留リスクへのケアが不十分であること
 - 呼吸数の測定や記録が不正確であること
- 介入内容
 - 多量の喘痰を除去するための気管吸引の方法
 - 気管切開チューブの閉塞を防ぐための適切な呼吸器加湿装置の選択
 - 胸部理学療法の紹介
 - 気管切開チューブに関する知識
 - 呼吸数モニタリング
 - 気管切開ケアに関する緊急時の対応
Table 2
Comparison of the outcome variables between two groups.

Outcome variables	All patients (n = 369)	Intervention group (n = 185)	Control group (n = 184)	Statistical test	p
Primary outcome (%)					
ICU readmission within 72 h	20 (5.4)	3 (1.6)	17 (9.2)	a	0.001
Secondary outcomes (%)					
All ICU readmission	62 (16.8)	18 (9.7)	44 (23.9)	$\chi^2 = 13.275$	<0.001
Hospital mortality	82 (22.2)	33 (17.8)	49 (26.6)	$\chi^2 = 4.126$	0.042
90-day mortality	71 (19.2)	29 (15.7)	42 (22.8)	$\chi^2 = 3.035$	0.081

ICU = intensive care unit; χ^2 = chi-square tests.

a Fisher’s exact test.

- 72時間以内のICU再入室は、介入群で有意に少なかった。
- 介入群は対照群に比べて全ICU再入室率と病院死亡率も低かった。
- 90日死亡率では有意差はなかった。
Table 3
Predictors for ICU readmission within 72 h and hospital mortality.

Factors	B	Adjusted OR	95% CI	p value
Predictors for ICU readmission within 72 h				
Intervention	-1.847	0.158	0.041–0.602	0.007
Medical wards	-1.327	0.265	0.095–0.741	0.011
Tracheostomy	-1.622	0.198	0.042–0.927	0.04
Predictors for hospital mortality				
Age	0.026	1.026	1.006–1.047	0.010
Sex (male)	0.719	2.052	1.134–3.713	0.017
APACHE IV risk of death	1.611	5.009	1.828–13.723	0.002
Tracheostomy	0.929	2.531	1.395–4.592	0.005
Intervention	-0.474	0.622	0.362–1.069	0.086

APACHE IV score = Acute Physiological and Chronic Health Evaluation IV score; CI = confidence interval; ICU = intensive care unit; OR = odds ratio.

✓ 72時間以内のICU再入室の予測因子について
 • 介入を受けること、病棟への退室、気管切開は、72時間以内のICU再入室を有意に低下させた。
✓ 病院死亡率の予測因子について
 • 介入を受けることは病院死亡率の減少と関連していたが有意ではなかった。
 • 年齢、男性であること、APACHE IVの死亡リスク、気管切開術を受けていることは、すべて病院死亡率の増加と関連していた。
今日の流れ

1. ICU退室の疫学情報
2. ICU退室の指標
3. ICU再入室を減らすための介入
4. ICU再入室はICUの質の評価になりうるか？
ICU退室の特徴

- 医療提供者間での患者ケアの移行は、予防可能なエラーや有害事象が生じやすい医療提供の脆弱な時期である。
 - 入院中の最も病状の悪い患者が資源の豊富な環境（ICU）から資源の少ない環境への移行。
 - 関与する医療提供者の数が減る。
 - 標準化された退室方法の欠如
 - 医療者と患者・家族、または医療者間での口頭および書面によるコミュニケーションの複雑さ

Am J Respir Crit Care Med Vol 185, Iss. 9, pp 955–964, May 1, 2012
• ICUの再入室は、最初にCooperら（1999）によって、病院関連のパフォーマンスを補完する重要な指標として同定された。

 Med Care 1999, 37:399–408.

• Rosenbergらは（2001）、再入室の発生率が7%であることを確認し、これをケアの質の指標として使用することを提案した。

 Crit Care Med 2001, 29:511–518.

• 最近では、複数の国の専門団体、認定機関等がICU再入室を質の指標として提案しているが、ベンチマーク値は指定していない。

 Intensive Care Med 2012, 38:598–605.

 J Crit Care 2007, 22:267–274.

 NSW, Australia: ACHS; 2012.

 Acta Anaesthesiol Scand 2012, 56:1078–1083.

 Critical Care (2014) 18:715より
【ICU再入室に関する現状】
• ICU再入室とICU退室後の死亡率に関するICUベンチマークについてはコンセンサスが得られていない。
• 再入室が予防可能なのか、それとも悪い転帰（重症化・死亡率の増加など）と因果関係があるのか解明されていない。
• ICU再入室の大部分は予防可能なものではないことが示唆されている。

• 再入室リスクを評価するための有効なスコアがいくつか存在するが、それらのスコアを退室の意思決定に取り入れても再入室率の低下にはつながらない。

• 退室した患者を体系的にフォローアップするICUアウトリーチチームは、わずかな利益しかもたらさないようである。しかし、これらのプログラムには多額の費用がかかり、費用対効果の面でも課題が残る。

ICUの再入室率は重症患者のケアにおける病院の質を示す良い指標ではないかもしれない。

- 優れたパフォーマンス指標とは、エビデンスに基づいた実践によって測定可能数値の改善が可能であることを。ICUの再入室率は必ずしもこの基準を満たしているわけではない。
• 再入室が多すぎると、予防可能な有害事象の発生を示唆する可能性もある。

• 再入室の中には避けられないものもあれば、患者にとって有益なものもある。

• 再入室が少なすぎると、患者を必要以上に長くICUで管理してしまっている可能性もある。
 - ICUに長期滞在することでの弊害（特殊な環境、せん妄の助長、リハビリの遅延）
 - ICU管理が必要な他の患者がICU入室できない
 - 医療費の増加

ICUの再入室率は病院によって大きく異なり、病院間での比較により質の向上のための指標となる可能性がある。

Crit Care Med 2016;44:1704-1709
Am J Respir Crit Care Med Vol 185, Iss. 9, pp 955–964, May 1, 2012
当院の状況
ICU再入室および院内死亡

• 期間: 2019年4月1日から2020年3月31日

項目	患者数・割合
ICU入室患者数	2180名
ICU死亡	62名
ICU死亡率	2.8%
退院時転帰（死亡）	135名
一治療制限なしで病棟退室	55名
ICU退室患者の院内死亡率	6.4%
ICU再入室	140名
ICU再入室率	6.4%
ICU再入室患者の退院時転帰（死亡）	25名
ICU再入室後の死亡率	17.9%
ICU時間外退室（18時から8時）	37名
ICU時間外退室患者の退院時転帰（死亡）	0名
今年度の再入室患者の概要: 26名

＜再入室理由＞
・新たな問題による入室: 4名
・原疾患の治療経過での病態の悪化: 22名

＜再入室までの時間＞
・48時間以内の再入室: 4名
 - 低血圧: 2名
 » 2名とも退室1時間前に低血圧でICU医師と協議
 » 1名は退室8時間前にノルアドレナリンOFF（SWIFTスコア5点）
 » 1名はSWIFTスコア20点（統合失調症あり）
 - 皮弁血流不全による再手術後の入室: 2名
昨年度の気切（PDTおよび外科的切開）患者29名

- 転帰（死亡）: 11名（38%）
 - ICU死亡: 5名
 - 退室後院内死亡: 6名
 - ICU退室時に治療制限あり: 3名
 - 病棟退室後に治療制限: 3名
私見

• 当院のICUの再入室率や死亡率は文献と比較して標準的であった。

• 退室基準のスコアやツールなどを使用していないが、多職種で退室について協議し、申し送りや退室前のケア共有ができていることが、結果につながっていると感じた。

• 「臨床でさらに改善できることがあるか」という視点で考えると、何か新しいことを導入するというより、今行なっているプラクティスを改めて見直し確認する、という意味合いが強かった。

• 気切患者に関して、文献からは再入室のリスク因子との関連は示されていなかった。また、当院の気切患者の転帰を振り返って見ても、退院時転帰に影響するような介入のポイントはなかった。

• しかし、死亡率や再入室率とは関連しなくても、ケアの質という点から、気切患者のケアをフォローアップすることの意義はあるのではないか。